Stage 3

Differentiate each function by product rule.
 Fully factorize your answers and find the values of x for which the derivative is zero.

(a)
$$y = x^3(3x+8)$$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(b)
$$y = (3x-2)(2x+1)$$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(c)
$$y = x(x+3)^4$$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(e) $y = x(1-x)^6$

JE MATHS

JE MATHS

JE MATHS

IE MATHS

JE MATHS

(f) $y = x^2 (x+1)^4$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(h) $y = x^3 (3x+1)^4$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(i) $y = x^5 (1-x)^7$ JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(1) $y = 2x^5(5x+3)^3$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(n) $y = (x+2)(x+4)^6$

JE MATHS

JE MATHS

JE MATHS

IE MATHS

(o) $y = (x+1)(2x+5)^4$

JE MATHS

2. (i) Find the derivative of $y = x^2 (2x-1)^4$.

JE MATHS

JE MATHS

JE MATHS

(ii) Hence, find the equation of tangent and normal to the curve at the point P(l, l).

JE MATHS

JE MATHS

JE MATHS

JE MATHS

3. (i) Find the derivative of $y = (2x+3)(3x-1)^5$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(ii) Hence, find the equation of tangent and normal to the curve at the point A(0,-3).

JE MATHS JE MATHS

JE MATHS

4. (i) Find the derivative of $y = (2x-1)^3(x-2)^4$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(ii) Hence, find the equation of tangent and normal to the curve at the point P(1, 1).

JE MATHS

5. Differentiate each function by product rule. Fully factorised your answers.

(a)
$$y = x(1-x^2)^5$$

JE MATHS

JE MATHS

JE MATHS

(b) $y = 2x^2(x^2 + 3)^4$ JE MATHS JE MATHS

JE MATHS

JE MATHS

JE MATHS

(c) $y = 4x^4(x^2 + x - 1)^3$ JE MATHS

Stage 4

Differentiate each function by quotient rule.
 Fully factorize your answers and find the values of x for which the derivative is zero.

(a)
$$y = \frac{x^3}{x^2 - 4}$$

$$\text{JE MATHS}$$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(b) $y = \frac{x}{2x^2 - 1}$ JE MATHS

IR MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(c) $y = \frac{x+1}{3x^2-7}$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(d)
$$y = \frac{x^2 - 4x - 1}{3x + 4}$$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(e)
$$y = \frac{4x^2 - 2}{x^2 + 5}$$

JB MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(f)
$$y = \frac{x^3 + 2x - 1}{x + 3}$$

(f) $y = \frac{x^3 + 2x - 1}{x + 3}$ (x values for y' = 0 are not required in this question)

JE MATHS

JE MATHS

JE MATHS

(g) $y = \frac{x+1}{x^3-1}$ (x values for y' = 0 are not required in this question)

JE MATHS

JE MATHS

JE MATHS

(h) $y = \frac{x-1}{(7x+2)^4}$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(i) $y = \frac{x}{(x^2 + 1)^2}$ JE MATHS

2. (i) Find the derivative of $y = \frac{4x+5}{1-2x}$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(ii) Find the gradient of tangent at point $A\left(2, -\frac{13}{3}\right)$ and its angle of inclination.

JE MATHS

JE MATHS

JE MATHS

(iii) Find the equation of tangent and normal at point A.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

3. (i) Find the derivative of $y = \frac{x^2 - 1}{x + 3}$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(ii) Find the gradient of tangent at point P(-1,0) and its angle of inclination.

JE MATHS

JE MATHS

JE MATHS

(iii) Find the equation of tangent and normal at point A.

 $_{
m JE\ MATHS}$

- 4. Let the function $y = \frac{x}{x+2}$.
 - (a) Find the equation of tangent to the curve at the origin O.

JE MATHS

(b) (i) Find the equation of tangent to the curve at the point P(-3,3).

JE MATHS

(ii) Find the points ^{15}A and B where the tangent at P meets at the x and y axis.

ww.jeedircarion.com.au				JI
(iii) Find the area of tria	ngle <i>OAB</i> .			
JE MATHS	JE.)	AATHS		JE MATHS
	JE MATHS		JE MATHS	
(c) Find the point where the	tangent at O and	l at P intersect. JE MATHS		
JE MATHS				JE MATHS
	lE)	MATHS		
JE MATHS			JE MATHS	
	JE MATHS			
JE MATHS		JE MATHS		

JE MATHS

JE MATHS

Stage 3

1. (a)
$$y' = (x^3)' \cdot (3x+8) + x^3 \cdot (3x+8)'$$

 $= 3x^2(3x+8) + 3x^3$
 $y = 12x^2(3x+8+x)$ $y = 12x^2(x+2)$
 $\therefore y' = 12x^2(x+2)$
Let $y' = 0 \Rightarrow 12x^2(x+2) = 0$
 $\Rightarrow x = 0, x = -2$

(b)
$$y' = (3x - 2)^{t} \cdot (2x + 1) + (3x - 2) \cdot (2x + 1)^{t}$$

 $= 3(2x + 1) + 2(3x - 2)$
 $= 12x - 1$
 $\therefore y' = 12x - 1$
 $\int_{JB} MATHS$
Let $y' = 0 \Rightarrow 12x - 1 = 0$
 $\Rightarrow x = \frac{1}{12} \int_{JB} MATHS$

(c)
$$y' = x' \cdot (x+3)^4 + x \cdot \left[(x+3)^4 \right]'$$

 $= (x+3)^4 + 4x(x+3)^3 \cdot (x+3)'$
 $= (x+3)^4 + 4x(x+3)^3$
 $\lim_{x \to \infty} (x+3)^3 (x+3+4x)$
 $= (x+3)^3 (5x+3)$
 $\therefore y' = (x+3)^3 (5x+3)$

Let
$$y' = 0 \implies (x+3)^3 (5x+3) = 0$$

 $\Rightarrow x = -3, x = -\frac{3}{5}$

$$\begin{aligned}
\text{(d)} \quad y' &= (3x)' \cdot (x-2)^5 + 3x \cdot \left[(x-2)^5 \right]' \\
&= 3(x-2)^5 + 15x(x-2)^4 \cdot (x-2)' \\
&= 3(x-2)^5 + 15x(x-2)^{4\text{MATHS}}
\end{aligned}$$

$$= 3(x-2)^4 \left[(x-2) + 5x \right]$$

$$= 3(x-2)^4 (6x-2)$$

$$= 6(x-2)^4 (3x-1)$$

$$\therefore \quad y' &= 6(x-2)^4 (3x-1)$$

$$\downarrow B \text{ MATHS}$$

$$\downarrow B \text{ MATHS}$$

Let
$$y'=0 \Rightarrow 6(x-2)^4(3x-1)=0$$

 $j_{\text{B MATHS}}$ $\Rightarrow x=2, x=\frac{1}{3}$ $j_{\text{B MATHS}}$

(e)
$$y' = x' \cdot (1-x)^6 + x \cdot \left[(1-x)^{6} \right]^{\text{THS}}$$

$$= (1-x)^6 + 6x(1-x)^5 \cdot (1-x)'$$

$$= (1-x)^6 + 6x(1-x)^5 \cdot (-1)$$

$$= (1-x)^6 + 6x(1-x)^5$$

$$= (1-x)^5 \left[(1-x) - 6x \right]$$

$$= (1-x)^5 \left[(1-x) - 6x \right]$$

$$= (1-x)^5 (1-7x)$$

$$\therefore y' = (1-x)^5 (1-7x)$$

$$\Rightarrow y' = (1-x)^5 (1-7x)$$

Let
$$y'=0 \Rightarrow (1-x)^5(1-7x)=0$$

$$\Rightarrow x=1, x=\frac{1}{7}$$

(f)
$$y' = (x^2)' \cdot (x+1)^4 + x^2 \cdot [(x+1)^4]'$$
 $= 2x(x+1)^4 + 4x^2(x+1)^3 \cdot (x+1)'$
 $= 2x(x+1)^4 + 4x^2(x+1)^3$
 $= 2x(x+1)^4 + 4x^2(x+1)^3$
 $= 2x(x+1)^3 (3x+1)$
 $\therefore y' = 2x(x+1)^3 (3x+1) = 0$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -1, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = -\frac{1}{3}$
 $\Rightarrow x = 0, x = \frac{1}{4}, x = \frac{1}{10}$
 $\Rightarrow x = 0, x = \frac{1}{4}, x = \frac{1}{10}$
 $\Rightarrow x = 0, x = \frac{1}{4}, x = \frac{1}{10}$
 $\Rightarrow x = 0, x = \frac{1}{4}, x = \frac{1}{10}$
 $\Rightarrow x = 0, x = \frac{1}{4}, x = \frac{1}{10}$

(h)
$$y' = (x^3)' \cdot (3x+1)^4 + x^3 \cdot \left[(3x+1)^4 \right]'$$

 $= 3x^2 (3x+1)^4 + 4x^3 (3x+1)^3 \cdot (3x+1)'$
 $= 3x^2 (3x+1)^4 + 4x^3 (3x+1)^3 \cdot 3$
 $= 3x^2 (3x+1)^4 + 12x^3 (3x+1)^3$
 $= 3x^2 (3x+1)^3 \left[(3x+1) + 4x \right]$
 $= 3x^2 (3x+1)^3 (7x+1)$ IB MATHS
 $\therefore y' = 3x^2 (3x+1)^3 (7x+1)$
Let $y' = 0 \implies 3x^2 (3x+1)^3 (7x+1) = 0$
 $\therefore y' = 3x^2 (3x+1)^3 (7x+1) = 0$

(i) $y' = (x^5)' \cdot (1-x)^7 + x^5 \cdot [(1-x)^7]'$ $= 5x^4 (1-x)^7 + 7x^5 (1-x)^6 \cdot (1-x)'$ $= 5x^4 (1-x)^7 + 7x^5 (1-x)^6 \cdot (-x)^6$ $= 5x^4 (1-x)^7 - 7x^5 (1-x)^6$ $= x^4 (1-x)^6 [5(1-x)-7x]$ $= x^4 (1-x)^6 (5-12x)$ $\therefore y' = x^4 (1-x)^6 (5-12x)$

Let
$$y'=0 \Rightarrow x^4(1-x)^6(5-12x)=0$$

$$\Rightarrow x=0, x=1, x=\frac{5}{12} \text{ JE MATHS}$$

$$\text{JE MATHS}$$

(j)
$$y' = (9x^3)' \cdot (2x-7)^4 + 9x^3 \cdot [(2x-7)^4]'$$

$$= 27x^2(2x-7)^4 + 9x^3 \cdot 4(2x-7)^3 \cdot (2x-7)'$$

$$= 27x^2(2x-7)^4 + 9x^3 \cdot 4(2x-7)^3 \cdot 2$$

$$= 27x^2(2x-7)^4 + 72x^3(2x-7)^3$$

$$= 9x^2(2x-7)^4 [3(2x-7)+8x]$$

$$= 9x^2(2x-7)^3 [14x-21]^{MATHS}$$

$$= 63x^2(2x-7)^3(2x-3)$$

$$\therefore y' = 63x^2(2x-7)^3(2x-3)$$

$$\Rightarrow x = 0, x = \frac{7}{2}, x = \frac{3}{2}$$

$$= 12x^3(4-x)^3 + 3x^4 \cdot 3(4-x)^2 \cdot (4-x)'$$

$$= 12x^3(4-x)^3 + 3x^4 \cdot 3(4-x)^2 \cdot (-1)$$

$$= 3x^3(4-x)^2 [16-7x)$$

$$\therefore y' = 3x^3(4-x)^2 (16-7x)$$

$$\Rightarrow x = 0, x = 0$$

$$\Rightarrow x = 0,$$

 $\Rightarrow x = 0, x = 4, x = \frac{16}{7}$

(I)
$$y' = (2x^5)' \cdot (5x+3)^3 + 2x^5 \cdot [(5x+3)^3]'$$

$$= 10x^4 (5x+3)^3 + 2x^5 \cdot 3(5x+3)^2 \cdot (5x+3)'$$

$$= 10x^4 (5x+3)^3 + 2x^5 \cdot 3(5x+3)^2 \cdot 5$$

$$|B MATHS|$$

$$= 10x^4 (5x+3)^3 + 30x^5 (5x+3)^2$$

$$= 10x^4 (5x+3)^3 [(5x+3)+3x]$$

$$= 10x^4 (5x+3)^2 [(8x+3)^2]$$

$$= 10x^4 (5x+3)^2 (8x+3)$$

$$\therefore y' = 10x^4 (5x+3)^2 (8x+3)$$
Let $y' = 0 \Rightarrow 10x^4 (5x+3)^2 (8x+3) = 0$

$$|B MATHS|$$

$$\therefore y' = (x-1)' \cdot (x-2)^3 + (x-1) \cdot [(x-2)^3]'$$

$$= (x-2)^3 + (x-1) \cdot 3(x-2)^2 \cdot (x-2)'$$

$$= (x-2)^3 + 3(x-1)(x-2)^2 \cdot (x-2)'$$

$$= (x-2)^2 [(x-2)+3(x-1)]$$

$$= (x-2)^2 (4x-5)$$

$$\therefore y' = (x-2)^2 (4x-5)$$

$$|B MATHS|$$
Let $y' = 0 \Rightarrow (x-2)^2 (4x-5) = 0$

$$\Rightarrow x = 2, x = \frac{5}{4}$$

JE MATHS

JE MATHS

(n)
$$y' = (x+2)' \cdot (x+4)^6 + (x+2) \cdot [(x+4)^6]'$$

$$= (x+4)^6 + (x+2) \cdot 6(x+4)^5 \cdot (x+4)'$$

$$= (x+4)^6 + 6(x+2)(x+4)^5$$

$$= (x+4)^5 [(x+4) + 6(x+2)]$$

$$= (x+4)^5 (7x+16)$$

$$\therefore y' = (x+4)^5 (7x+16)$$

$$\exists B MATHS$$
Let $y' = 0 \Rightarrow (x+4)^5 (7x+16) = 0$

$$\Rightarrow x = -4, x = -\frac{16}{7}$$

$$\exists B MATHS$$
(o) $y' = (x+1)' \cdot (2x+5)^4 + (x+1) \cdot [(2x+5)^4]'$

$$= (2x+5)^4 + (x+1) \cdot 4(2x+5)^3 \cdot (2x+5)'$$

$$\exists B MATHS$$

$$= (2x+5)^4 + 8(x+1)(2x+5)^3 \cdot 2$$

$$= (2x+5)^4 + 8(x+1)(2x+5)^3$$

$$= (2x+5)^3 (10x+13)$$

$$\therefore y' = (2x+5)^3 (10x+13)$$

$$\Rightarrow x = -\frac{5}{2}, x = -\frac{13}{10}$$

$$\Rightarrow x = -\frac{5}{2}, x = -\frac{13}{10}$$

JE MATHS

JE MATHS

2. (i)
$$y' = (x^2)' \cdot (2x-1)^4 + x^2 \cdot [(2x-1)^4]'$$

 $= 2x(2x-1)^4 + x^2 \cdot 4(2x-1)^3 \cdot (2x-1)'$
 $= 2x(2x-1)^4 + x^2 \cdot 4(2x-1)^3 \cdot 2$
 $= 2x(2x-1)^4 + 8x^2(2x-1)^3$
 $= 2x(2x-1)^3[(2x-1)+4x]$
 $= 2x(2x-1)^3(6x-1)$ IB MATHS
 $\therefore y' = 2x(2x-1)^3(6x-1)$

JE MATHS

(ii)
$$y' = 2x(2x-1)^3(6x-1) \Rightarrow y'(1) = 10$$

 $\Rightarrow m_T = 10, m_N = -\frac{1}{10} \text{ at point } P(1,1)$
 $I_T: y-1=10(x-1) \Rightarrow 10x-y-9=0^{\text{EMATHS}}$
 $I_N: My = -\frac{1}{10}(x-1) \Rightarrow x+10y-11=0$

3. (i) $y' = (2x+3)' \cdot (3x-1)^5 + (2x+3) \cdot \left[(3x-1)^5 \right]$ $= 2(3x-1)^5 + (2x+3) \cdot 5(3x-1)^4 \cdot (3x-1)'$ $= 2(3x-1)^5 + (2x+3) \cdot 5(3x-1)^4 \cdot 3$ $= 2(3x-1)^5 + 15(2x+3)(3x-1)^4$ $= (3x-1)^4 \left[2(3x-1) + 15(2x+3) \right]$ $= (3x-1)^4 (36x+43)$ $\therefore y' = (3x-1)^4 (36x+43)$

(ii)
$$y' = (3x-1)^4 (36x+43) \Rightarrow y'(0) = 43$$

 $\Rightarrow m_T = 43, \quad m_N = -\frac{1}{43} \text{ at point } A(0, -3)$
 $l_T: y+3=43x \Rightarrow 43x-y-3=0$
 $l_N: y+3=-\frac{1}{43}x \Rightarrow x+43y+129=0$

4. (i)
$$y' = [(2x-1)^3]' \cdot (x-2)^4 + (2x-1)^3 \cdot [(x-2)^4]'$$

 $= 3(2x-1)^2 \cdot (2x-1)' \cdot (x-2)^4 + (2x-1)^3 \cdot 4(x-2)^3 \cdot (x+2)^6$
 $= 3(2x-1)^2 \cdot 2 \cdot (x-2)^4 + (2x-1)^3 \cdot 4(x-2)^3 \cdot 1$
 $= 6(2x-1)^2 (x-2)^4 + 4(2x-1)^3 (x-2)^3$
 $= (2x-1)^2 (x-2)^3 [6(x-2) + 4(2x-1)]_{\text{BMATHS}}$
 $= (2x-1)^2 (x-2)^3 (14x-16)$
 $= 2(2x-1)^2 (x-2)^3 (7x-8)$
 $\therefore y' = 2(2x-1)^2 (x-2)^3 (7x-8)$

(ii)
$$y' = 2(2x-1)^2(x-2)^3(7x-8) \Rightarrow y'(1) = 2$$

 $\Rightarrow m_T = 2, m_N = -\frac{1}{2} \text{ at point } P(1,1)$
 $I_T: y-1=2(x-1) \Rightarrow 2x-y-1=0$
 $I_N: y-1=-\frac{1}{2}(x-1) \Rightarrow x+2y-3=0$
 $I_{N}: MATHS$

5. (a)
$$y' = (x)' \cdot (1-x^2)^5 + x \left[(1-x^2)^5 \right]'$$

 $= (1-x^2)^5 + x \cdot 5(1-x^2)^4 \cdot (1-x^2)'$
 $= (1-x^2)^5 + x \cdot 5(1-x^2)^4 \cdot (-2x)$
 $JB MATHS$
 $= (1-x^2)^5 - 10x^2(1-x^2)^4$
 $= (1-x^2)^4 \left[(1-x^2) - 10x^2 \right]$
 $= (1-x^2)^4 (1-11x^2)$ $JB MATHS$
 $\therefore y' = (1-x^2)^4 (1-11x^2)$

MATHS

(b)
$$y' = (2x^2)' \cdot (x^2 + 3)^4 + 2x^2 [(x^2 + 3)^4]'$$

 $= 4x(x^2 + 3)^4 + 2x^2 \cdot 4(x^2 + 3)^3 \cdot (x^2 + 3)'$
 $= 4x(x^2 + 3)^4 + 2x^2 \cdot 4(x^2 + 3)^3 \cdot 2x$
 $= 4x(x^2 + 3)^4 + 16x^3(x^2 + 3)^3$
 $= 4x(x^2 + 3)^4 [(x^2 + 3) + 4x^2]$
 $= 4x(x^2 + 3)^3 (5x^2 + 3)$
 $= 4x(x^2 + 3)^3 (5x^2 + 3)$
 $\therefore y' = 4x(x^2 + 3)^3 (5x^2 + 3)$

(c)
$$y' = (4x^4)' \cdot (x^2 + x - 1)^3 + 4x^4 \left[(x^2 + x - 1)^3 \right]'$$

 $= 16x^3(x^2 + x - 1)^3 + 4x^4 \cdot 3(x^2 + x - 1)^2 \cdot (x^2 + x - 1)'$
 $= 16x^3(x^2 + x - 1)^3 + 12x^4(x^2 + x - 1)^2 \cdot (2x + 1)$
 $= 4x^3(x^2 + x - 1)^2 \left[4(x^2 + x - 1) + 3x(2x + 1) \right]$
 $= 4x^3(x^2 + x - 1)^2 (10x^2 + 7x - 4)$
 $\therefore y' = 4x^3(x^2 + x - 1)^2 (10x^2 + 7x - 4)$

Stage 4

Stage 4

1. (a)
$$y' = \frac{(x^3)' \cdot (x^2 - 4) - x^3 \cdot (x^2 - 4)'}{(x^2 - 4)^2}$$

$$= \frac{3x^2(x^2 - 4) - x^3 \cdot 2x}{[x^2 - 4)^2}$$

$$= \frac{x^2 \left[3(x^2 - 4) - 2x^2 \right]}{(x^2 - 4)^2}$$

$$= \frac{x^2(x^2 - 12)}{(x^2 - 4)^2}$$
Let $y' = 0 \implies \frac{x^2(x^2 - 12)}{(x^2 - 4)^2} = 0$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x = 2\sqrt{3}, \quad x = -2\sqrt{3}$$

$$\implies x = 0, \quad x =$$

Let
$$y' = 0 \implies \frac{-2x^2 - 1}{(2x^2 - 1)^2} = 0$$

$$\implies 2x^2 + 1 = 0$$

$$\implies \text{no solutions for } x \text{ js MATHS}$$

we perforation.com.au

(c)
$$y' = \frac{(x+1)' \cdot (3x^2 - 7) - (x+1) \cdot (3x^2 - 7)'}{(3x^2 - 7)^2}$$

$$= \frac{(3x^2 - 7) - (x+1) \cdot 6x}{(3x^2 - 7)^2}$$

$$= \frac{-3x^2 - 7 - 6x}{(2x^2 - 1)^2}$$
Let $y' = 0 \Rightarrow \frac{-3x^2 - 7 \cdot \cancel{B} \cdot \cancel{O} \cdot \cancel{A} + 15}{(2x^2 - 1)^2} = 0$

$$\Rightarrow 3x^2 + 6x + 7 = 0$$

$$\Rightarrow \text{no solutions for } x$$

$$\cancel{B} \cdot \cancel{M} \cdot \cancel{A} + 15$$
(d) $y' = \frac{(x^2 - 4x - 1)' \cdot (3x + 4) - (x^2 - 4x - 1) \cdot (3x + 4)'}{(3x + 4)^2}$

$$= \frac{(2x - 4) \cdot (3x + 4) - (x^2 - 4x - 1) \cdot 3}{(3x + 4)^2}$$

$$= \frac{(6x^2 - 4x - 16) - (3x^2 - 12x - 3)}{(3x + 4)^2}$$

$$= \frac{3x^2 + 8x - 13}{(3x + 4)^2}$$

$$= \frac{3x^2 + 8x - 13}{(3x + 4)^2}$$

Let
$$y' = 0 \Rightarrow \frac{3x^2 + 8x - 13}{\text{JB MATHS}} = 0$$

$$\Rightarrow 3x^2 + 8x - 13 = 0$$

$$\Rightarrow x = \frac{-8 \pm \sqrt{220}}{6}$$

$$\Rightarrow x = \frac{-4 \pm \sqrt{55}}{3}$$

(e)
$$y' = \frac{(4x^2 - 2)' \cdot (x^2 + 5) - (4x^2 - 2) \cdot (x^2 + 5)'}{(x^2 + 5)^2}$$

$$= \frac{8x \cdot (x^2 + 5) - (4x^2 - 2) \cdot 2x}{(x^2 + 5)^2}$$

$$= \frac{8x^3 + 40x - 8x^3 + 4x}{(x^2 + 5)^2}$$

$$= \frac{44x}{(x^2 + 5)^2}$$

Let
$$y' = 0 \implies \frac{44x}{(x^2 + 5)^2} = 0$$

$$\implies 44x = 0$$

$$\implies Ax = 0$$

$$\implies Ax = 0$$

$$\implies Ax = 0$$

$$\implies Ax = 0$$

(f)
$$y' = \frac{(x^3 + 2x - 1)' \cdot (x + 3) - (x^3 + 2x - 1) \cdot (x + 3)'}{(x + 3)^2}$$

$$= \frac{(3x^2 + 2) \cdot (x + 3) - (x^3 + 2x - 1)}{(x + 3)^2}$$

$$= \frac{(3x^3 + 9x^2 + 2x + 6) - (x^3 + 2x - 1)}{(x + 3)^2}$$

$$= \frac{2x^3 + 9x^2 + 7}{(x + 3)^2}$$
(x values for $y' = 0$ are not required in this question)

(g)
$$y' = \frac{(x+1)' \cdot (x^3-1) - (x+1) \cdot (x^3-1)'}{(x^3-1)^2}$$

$$= \frac{(x^3-1) - (x+1) \cdot 3x^2}{(x^3-1)^2}$$

$$= \frac{-2x^3 - 3x^2 - 1}{(x^3-1)^2}$$
 (x values for $y' = 0$ are not required in this question)

(h)
$$y' = \frac{(x-1)' \cdot (7x+2)^4 - (x-1) \cdot \left[(7x+2)^4 \right]}{(7x+2)^8}$$

$$= \frac{(7x+2)^4 - (x-1) \cdot 4(7x+2)^3 \cdot (7x+2)'}{(7x+2)^8}$$

$$= \frac{(7x+2)^4 - (x-1) \cdot 4(7x+2)^3 \cdot 7}{(7x+2)^8}$$

$$= \frac{(7x+2)^4 - 28(x-1)(7x+2)^3}{(7x+2)^8}$$

$$= \frac{(7x+2)^4 - 28(x-1)(7x+2)^3}{(7x+2)^8}$$

$$= \frac{(7x+2)^3 \left[(7x+2) - 28(x-1) \right]}{(7x+2)^8}$$

$$= \frac{30-21x}{(7x+2)^5}$$

$$= \frac{30-21x}{(7x+2)^5}$$
Let $y' = 0 \implies \frac{30-21x}{(7x+2)^5} = 0$

$$\implies x = \frac{10}{7}$$

(i)
$$y' = \frac{x' \cdot (x^2 + 1)^2 - x \cdot \left[(x^2 + 1)^2 \right]^{\frac{1}{2}}}{(x^2 + 1)^4}$$

$$= \frac{x' \cdot (x^2 + 1)^2 - x \cdot 2(x^2 + 1) \cdot (x^2 + 1)'}{(x^2 + 1)^4}$$

$$= \frac{(x^2 + 1)^2 - x \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4}$$

$$= \frac{(x^2 + 1) \left[(x^2 + 1) - 4x^2 \right]}{(x^2 + 1)^4}$$

$$= \frac{(x^2 + 1) \left[(x^2 + 1) - 4x^2 \right]}{(x^2 + 1)^4}$$

$$= \frac{1 - 3x^2}{(x^2 + 1)^3}$$

IB MATHS

Let
$$y' = 0 \implies \frac{1 - 3x^2}{(x^2 + 1)^3} = 0$$

$$\implies 1 - 3x^2 = 0$$

$$\implies x = \frac{\sqrt{3}}{3}, \quad x = -\frac{\sqrt{3}}{3}$$

2. (i)
$$y' = \frac{(4x+5)' \cdot (1-2x) - (4x+5) \cdot (1-2x)'}{(1-2x)^2}$$

$$= \frac{4(1-2x) - (4x+5) \cdot (-2)}{(1-2x)^2}$$

$$= \frac{4(1-2x) + 2(4x+5)}{(1-2x)^2}$$

$$= \frac{4(1-2x) + 2(4x+5)}{(1-2x)^2}$$

$$= \frac{14}{(1-2x)^2}$$

IB MATHS

IB MATHS

(ii)
$$y' = \frac{14}{(1-2x)^2} \Rightarrow y'(2) = \frac{14}{9}$$

$$\Rightarrow m_T = \frac{14}{9} \text{ at point } A\left(2, -\frac{13}{3}\right)$$
Let $\tan \theta = \frac{14}{9} \Rightarrow \theta = 57^{\circ}16'$

$$\text{JE MATHS}$$

(iii)
$$m_T = \frac{14}{9}$$
, $m_N = -\frac{9}{14}$ at point $A\left(2, -\frac{13}{3}\right)$

$$\begin{array}{l}
I_T : \\
I_D : MATY + \frac{13}{3} = \frac{14}{9}(x-2) \Rightarrow 14x - 9y - 67 = 0 \\
I_N : y + \frac{13}{3} = -\frac{9}{14}(x-2) \Rightarrow 27x + 42y + 128 = 0
\end{array}$$
JEMATHS

3. (i)
$$y' = \frac{(x^2 - 1)' \cdot (x + 3) - (x^2 - 1) \cdot (x + 3)'}{(x + 3)^2}$$

$$= \frac{2x(x + 3) - (x^2 - 1)}{(x + 3)^2}$$

$$= \frac{x^2 + 6x + 1}{(x + 3)^2}$$

$$= \frac{x^2 + 6x + 1}{(x + 3)^2}$$
JE MATHS

(ii) $y' = \frac{x^2 + 6x + 1}{(x+3)^2} \Rightarrow y'(-1) = -1$ $\Rightarrow m_T = -1$ at point P(-1, 0)

Let $\tan \theta = -1 \Rightarrow_{JB \text{ MATHS}} \theta = 135^{\circ}$

(iii) $m_T = -1$, $m_N = 1$ at point P(-1,0) $I_T: y = -1(x+1) \Rightarrow x+y+1=0$ $I_N: y = x+1 \Rightarrow x-y+1=0$ $I_N: y = x+1 \Rightarrow x-y+1=0$

JE MATHS

JE MATHS

JE MATHO

4. (a)
$$y' = \frac{x' \cdot (x+2) - x \cdot (x+2)'}{(x+2)^2}$$

$$= \frac{(x+2)-x}{(x+2)^2}$$

$$= \frac{2}{(x+2)^2}$$

JE MATHS

JE MATHS

JE MATHS

$$y' = \frac{2}{(x+2)^2} \implies y'(0) = \frac{1}{2}^{\text{MATHS}}$$

$$\Rightarrow m_T = \frac{1}{2} \text{ at the origin}$$

$$\downarrow \text{Is MATHS}$$

$$l_T: y = \frac{1}{2}x \Rightarrow x - 2y = 0$$

JE MATHS

(b) (i)
$$y' = \frac{2}{(x+2)^2} \Rightarrow y'(-3) = 2$$

$$\Rightarrow m_T = 2$$
 at point $P(-3,3)$

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f^{HS} y - 3 = 2(x+3) \Rightarrow 2x - y + 9 = 0$$

JE MATHS

(ii)
$$I_T: 2x-y+9=0 \implies A(12, 0), B(0, 9)$$

(iii)
$$Area_{\triangle OAB} = \frac{1}{2} \times \frac{9}{2} \times 9 = \frac{81}{4}$$

JE MATHS

(c)
$$\begin{cases} x - 2y = 0 \\ 2x - y + 9 = 0 \end{cases} \Rightarrow x = -6, y = -3$$

 \therefore point of intersection (-6, -3)

JE MATHS

JE MATHS