

Class 7 7 50 =

Book _____

Copyright No_____

COPYRIGHT DEPOSIT:

Modern Painter's Cyclopedia

SOME OF THE SUBJECTS:

Adulteration of Paint, Blistering of Paint, Brushes, Calcimining, Carriage Painting, China Painting, Colors, Color Harmony, Color Mixing, Color Testing, Exterior Painting, Frescoing, Gilding, Graining, House Painting, Marbling, Oils and Driers, Oil Painting on Glass, Painting a Bath Tub, Painting in Distemper, Paperhanger's Tools, Paperhanging, Pigments, Scenic Painting, Sign Painting, Stains, Staining, Stenciling, Statuary Painting, Turpentine, Varnishes, Varnishing, Water Color Painting.

F. MAIRE

OVER 100 ILLUSTRATIONS

CHICAGO
FREDERICK J. DRAKE & COMPANY
PUBLISHERS

1305

COPYRIGHT 1910 BY FREDERICK J. DRAKE & Co.

INTRODUCTION

The Modern Painter's Cyclopedia is not merely the compiling and putting together the stale writings and antiquated methods which have been put to use by many persons to make up a book to sell, but has been completely rewritten and the subject matter handled in such a way as to describe the latest methods used in performing the work. Owing to the great number of subjects handled the descriptions given are necessarily brief. The more important ones will be treated more at length than those of minor interest to the general reader, as for instance "China painting," etc; to treat the subject in a thorough manner would of itself fill a good sized volume, while the majority of readers would probably pass it by as of no interest to them, while they would naturally look for at least concise, full information on colors, house, carriage or sign painting and kindred subjects in which the big majority of readers are interested.

The alphabetical arrangement of the "Painter's Cyclopedia" has been preserved and the subject matter described will be found thus more readily. While this arrangement has many advantages, it must be admitted that it has its faults in that the various operations in painting are rather scattered without regard to sequence

or any gradation upward from the simpler to the more difficult parts.

This defect has been greatly minimized by numbering each paragraph and to keep them sufficiently pointed to differ from the preceding or succeeding ones. Throughout the work wherever the necessity occurs, reference by number will be made to such paragraphs in other parts of the book; this will make the subject matter more easily understood without the necessity of repeating; saving much space. Thus operations which are common to many branches of painting are only described once and the reader will be referred by number to where the additional information can be found. This it is hoped will reduce the defect mentioned above to its lowest limits.

Besides a very copious index has been prepared which will enable the reader to find readily every phase of any subject treated.

To enable students to memorize or recollect the subject matter of each heading, a series of questions will be found at the end numbered to correspond to that of the paragraphs containing the answer. This will enable the student to determine for himself the correctness of his own answer.

As many persons no doubt will buy this book with a view to educating themselves upon one or more branches of the trade—in a manner it will take the place of the correspondence school to such—at a greatly reduced cost.

In organized, practical trade schools, it is hoped that it may prove a valuable help, not only to the students but also the instructors—in that under classified headings any or at least most of the subject matter relating to the branches taught will be found treated and the questions which are added at the end of each heading will permit its use as a text book in such schools.

It makes no claim to be able to lead the student along as fast nor as well as he would under the personal surveillance and advice of a capable instructor who can demonstrate an error in a practical way—but where it is used as an adjunct to his oral instruction and as a book of reference by the student, it will greatly facilitate the acquiring of knowledge.

The lack of such a book for the purpose indicated above, is one of the main reasons for its publication—aside from the need of a manual covering the ground and subject matter treated in a late and up-to-date manner.

Again it is repeated that many branches of painting require appliances, tools, colors, etc. To save repetition, each of these are treated fully but once, under their several headings, and if the reader will care to inform himself more fully in regard to any of these, he can readily do so by referring to the paragraph number indicated as describing such.

With the above synopsis of the scope and manner of handling the subject matter of the book, it is presented to the world—not as the acme of perfection, which unfortunately is unattainable, but as a helping hand to the student or others seeking general information on the paint and kindred trades—with the hope that many may be benefitted by its perusal, study, or use as a reference book.

F. MAIRE.

MODERN PAINTER'S CYCLOPEDIA

ADULTERATION

I. There is much less need of an extensive knowledge of the "how to detect" adulteration in painting material today than was necessary only a decade ago. Thanks to the wise action of the general government and that of many of our state legislatures, the gross adulterations to which all such material had been subjected then, has been greatly curtailed since. At the present time it is possible for one to know to a certainty the composition of any color, or what are the contents of any barrel, can or other package containing paint, varnishes, vehicles, etc. The law in many of our states forcing the manufacturer to state upon the label the name of every ingredient entering into the composition of the contents. So if the name of a desired color, say Chrome yellow, medium, is printed upon the label as pure, and the name of the manufacturer appears upon it too, one may be safe in buying it for what it is. The greatest danger is in the buying so-called second quality goods. In the above instance suppose the label said "Chrome yellow-medium. Contents, chrome yellow and barytes. Of course this indicates that it is not pure—but how much pure? It may contain 25% pure

chrome yellow and 75% barytes which is about the average in the better grade of off colors, or it may be 10% chrome yellow, and even much less, and the rest barytes. And in the dry colors many run as low as 3% actual colors to 97% barytes chalk or other adulterants.

- 2. In colors or pigments dry or ground in oil, water or japan, there is a possibility of greatly adulterating most of these without any remarkable change in the looks of the goods themselves, so that it requires a knowledge of the principal ingredients used in adulterating to understand *how* to detect them.
- 3. Heavy weight colors are usually adulterated with some substance of as near the bulk or weight as their own; besides the adulterant must be as clear or colorless as possible, so as not to change materially the color or tone of the pigments they are added to. If much lighter in weight the usual size package used to pack the pure color would have to be greatly increased to accommodate the larger bulk of the adulterant needed to make up the weight. This would at once give it away in the mind of one who is at all familiar with the customary packaging of pure goods.
- 4. a. What is known as Barytes or Barium Sulphate is the most common adulterant used in the sophistification of all heavy colors. This substance seems eminently well fitted for this purpose as when mixed in oil it is so very transparent that it may be painted over new wood in several coats without hiding the grain of the wood much more than so many oilings would have

done. This great transparency enables the color(?) manufacturer to add it in nearly any proportion desired to colored pigments. But it is after all mainly as an adulterant of white lead and zinc white, that it shows up to the best advantage—as an adulterant. It is the nearest substance in weight to white lead, being very heavy, and known as heavy spar in lead mines where it is frequently found. This great density permits the use of a package for the adulterated lead little greater than that used for the strictly pure article. It is said nearly—but not quite. An expert will detect even the slight enlargement of the package necessary to contain a given weight.

- b. Some of the colored pigments themselves are adulterated with barytes to an extent and degree incredible to the uninitiated. Some of the stronger ones are frequently met with—especially in the dry state, containing as much as ten or twelve times their own weight of barytes, while in such pigments ground in oil the proportion ranges from 75% to 500% in extreme cases.
- c. The pure food laws, so called, are of doubtful utility in that in most states the percentage of each substance or ingredient in a compound is not stated, but the adulteration is only indicated by the mention of its presence. So one is left to guess at it. In the preceding paragraph 4b, it is stated that the proportion may be anywhere from 75% to 500%. Seventy-five per cent., high as that may sound (I part color to 3 parts

adulteration) is legitimate for many colors that are very strong and which cover well in the self color, or which are very seldom used for tinting purposes. Chrome green and all the fancy named proprietary greens, by common consent and custom have sanctioned it, are all made on that basis. The pure color used in painting in its self color will cover very little more surface than the commercial, which is adulterated in the proportion stated of 3 to 1. In that it cheapens the cost of the goods, it really becomes a benefit to the consumer, that is when confined to the well known trade custom limits —but unfortunately it is not always done, and in the dry colors especially, the coloring matter contained in some goods is little more than that used in the preparing of colored chalk.

5. To detect the amount of adulteration present is not so difficult as may be supposed it is. There are two very distinct methods of doing this. First, by a chemical analysis (quantitative) which, if properly made, will give a complete tale of the quantity of each ingredient entering into the compound. As most of the readers of this book are not chemists and as the cost of an analysis properly made will usually cost far in excess of the value of the material under examination, it must be waved aside as impracticable to most people.

While without question a chemical analysis is the most satisfactory, and only correct manner of determining adulteration accurately, fortunately there is a way of approximatively fixing the amount of it in any

goods that no one need buy adulterated goods without knowing very nearly just what he is paying for; nor has one any need of a knowledge of chemistry in making the test.

- 6. This test is called the "Scale test." To make the test all the implements required is an accurate pair of scales with weights in grains or grammes. What are known as army surgeon's scales or any of the apothecaries' pocket scales will do. A few sheets of waxed paper. A few pieces of glass, well cleaned, to lay the colors upon. A palette knife to triturate the colors with and some blotting paper to absorb the oil out of colors so that each may have the same consistency. The above or equivalents are all the appliances needed to equip one for testing.
- 7. The testing is made in the following manner: The person wishing to make a test should have a sample which is well known to be genuine to use as a standard to judge of the value of a similar color about to be tested. These standard colors can easily be procured at any color or painter's supply store, by procuring tubes of Windsor and Newton's artist colors in tubes. These are standard colors of known purity and while there may be a number of others as good as they, none will surpass them and they will be found better, while many will be found inferior to them. So that if W. & N.'s are not procurable any other made by a reputable house will be found sufficiently good for the purpose.

Now it stands to reason that if two similar colors to

be tested are equally pure that an equal weight of each color when triturated with two batches of white lead both also of an equal weight it follows that when the two colors have been mixed each one separately with the lead—that the tint made will be very nearly of the same strength of tone if both are equally pure, but that if one has been adulterated then it must lack in coloring matter to about the same quantity or percentage as had been added of adulteration to the pure color in the first place.

Thus if one grain or gramme of say—chrome yellow, is carefully placed upon a small square of waxed paper (about ¾ inch square) and afterward weighed carefully upon the balances, then placed upon a piece of glass, rubbing the waxed paper over the glass to remove all traces of color from it; then triturated with say 50 grains or grammes of white lead, also placed on waxed paper and carefully weighed, the tint resulting from the triturating should be spread out on the glass, bringing it quite to one edge of it on one side, so as to permit of an easy inspection of each sample when placed side and side together; then afterward doing the same with the other color in each case in like manner, that if there be no adulteration that there will be but very little difference in the tints made.

If the color examined has been adulterated, the tint it will make with white lead will be much weakened as stated before. Now to determine in a sufficiently accurate manner what the proportion of adulterant has been added to it—all that will be necessary will be to add more white lead to the tint made by the stronger color until it is reduced to the strength of the tint made by the weaker color. The tint made by the addition of more white lead should be reweighed.

Thus if one grain of color and 50 grains of white lead produced a tint that is fully equalled by one grain of another color and 250 grains of white lead, it must be that the color which is the weakest has been adulterated with four times its own weight of some kind of an adulterant which has lessened the proportion of coloring matter to the same proportion that the adulterant contained in it bears to the pure.

This test is especially valuable for all chemically made colors having well known formulas. It is useful, however, to determine the relative value of most all the earth colors also with the exception of some very few transparent ones whose chief value consist in this very transparency and their brilliancy of tone. In the latter case the mere strength test is of little value. Under the subject head of colors by referring to paragraphs 61 to 74, fuller information is given regarding their value and really substitution takes the place of adulteration for such.

8. To test adulteration in white lead made by the Dutch process or the hyd.-carb. of lead, a very simple test is made use of to detect such. Place a small bit of the lead to be tested upon a sliver of pine wood, light a match, bring the flame from it in contact with the lead

on the stick. In a very short time, if the lead is pure, some very fine globules of metallic lead will appear upon it. It may possibly take a couple of matches to make the test satisfactory, if one has been careless in not getting the full force of the flame in the first one.

The blow pipe test is more satisfactory but it somewhat more difficult to make; requiring also a blow pipe which is a tube curved at one end and a piece of charcoal. A candle is also necessary. Place some lead in a small cavity prepared in the charcoal, put the charcoal with the lead on it in the left hand and near the candle, then blow the pipe upon the flame of the candle in such a way as to deflect the blue flame resulting from the blowing upon the lead. This will burn up the oil and in a minute the lead, if it is pure, will have resolved itself into a small metallic globule of pure lead.

If the lead has been adulterated with as small a quantity as 10% of barytes zinc clay or silicate earth, it will not reduce to the metallic state and as no one would undertake to adulterate lead with as small a quantity of barytes as that for it would not pay, it will be easily understood that if it will not reduce, it is surely adulterated much more than that.

It may be well to state here that the above tests will not apply to any other form of white salts used as paint which are derived from lead. Sublimed lead, for instance, will not be reduced by it, being a basic sulplate of lead. It would need fluxing and a very high degree of heat to reduce it and such a test is not to be thought of to a novice or others unfamiliar with the process nor equipped for it.

The described scale test reversed will give a fair indication of the amount of adulteration in any sample of white lead. To make the test—only the one color must be used taken from the same can. Weigh one grain of color, which place on glass—repeat this and place the color upon another glass; then weigh 50 grains of lead which place with the first grain of color weighed out; repeat this but use 50 grains of the white lead you wish to test. The first having been taken from a keg which is known to be pure; the other being the suspicioned one. Triturate each upon their separate pieces of glass, if one has been adulterated, it will lack in opacity and body and the color will be able to tint it to a very much deeper tone than it has been able to do with the pure lead, which being more opaque, will hide the coloring matter much more than the adulterated sample has been able to do. In other words the stronger the lead—the less will a given weight of color change its color.

Now to return to the practical side of the test; if one grain of Venetian red has been able to color 50 grains of lead known to be pure then it will be safe to infer that the first contains 33 1/3% of white lead and 66 2/3 barytes or other adulterant; or I part lead, 2 parts adulteration.

While the above tests are all approximative, they are practical and easily made, being within the possibil-

ity of everyone, requiring no knowledge of chemistry and while not conclusive as to what the adulterant really consists of, in reality this knowledge is not very important to the purchaser of color. It shows him how much valuable material is contained in the various samples tested and after all that is the main thing for him to know. He can know to a certainty whether he is paying a right price for his goods or whether he wants them at all or not.

QUESTIONS UPON ADULTERATION.

- 1. What can be said generally about the adulteration of colors, etc., at the present time?
- 2. Are adulterated colors readily distinguished from those that are pure?
- 3. What kind of an adulterant is required for heavy and light colors respectively?
 - 4a. What adulterant is mainly used in white lead?
- b. Is barytes used in adulterating colored pigments?
- c. Are the pure food laws a complete protection against the adulteration of color?
 - 5. How is the amount of adulteration detected?
 - 6. What is needed in making the scale test?
 - 7. Describe the manner of making the test.
- 8. How can strictly pure white lead be tested for purity?

THE BLISTERING OF PAINT.

9. There are several causes which produce the blis-

tering of paint, but only two principal ones are worthy of any attention, as all the others are variations of the following two agents, to-wit: Moisture and heat.

- 10. *Moisture* is the principal direct cause producing nine-tenths of all the blistering of paint on the outside of buildings.
- 11. But it cannot really produce a blistering of paint without the concurring assistance of *heat*.
- 12. With the numberless essays which have been written and the endless discussions which have taken place at Painters' Conventions and elsewhere relating to the blistering of paint, it must be acknowledged that there are many points involved in this relation which are as yet but improperly understood.

MOISTURE.

13. Some parts of its action upon paint is very plainly to be seen, so that nearly every one who has given the subject a thought, one would suppose some uniform explanation would be given of it, yet upon the very plainest action of moisture many intelligent men differ materially in explaining its action upon paint.

Moisture in the paint itself very rarely injures the painting done with it, however strange it may sound for one to make the statement. Thus emulsated paints properly prepared will last fully as long as paints which have not been prepared by emulsion—but they must have been prepared scientifically or they usually will be found short lived enough.

- a. If moisture is present in the wood over which paint is applied or that can be sucked up from the earth by capillary attraction as in stone, brick and cement structure, then there is great danger that the paint will blister sooner or later.
- b. As stated before there must be heat present to help moisture in producing a blister. Heat acts upon it in this way: Moisture may and does remain confined for a long time when there is no way opened for it to escape. So long as it remains in the state of water it will never produce a blister. For this reason one never hears of blistering in late autumn, winter or early spring.
- c. But when that water becomes heated by the hot sun it is turned into steam; as it is prevented from evaporating by the impervious coat of paint. In expanding itself into steam it forms a blister large enough to hold it under the paint which has been softened by the heat of both steam and sun from both sides.
- d. This skin may or may not break out so as to let the steam escape into the atmosphere. When it does not do so, as soon as the atmosphere becomes cooled the steam is condensed into water again. Anyone can easily prove this to his perfect satisfaction by pricking the bubble with a pin when the water will at once run out.
- e. It is very seldom that blisters caused by moisture can ever be seen except upon the south side of buildings, the west and the east but mostly on the south, then

next in number on the west and least on the east with none on the north. This order verifies the theory advanced that moisture without the aid of heat will not cause blistering of paint as the south which receives the sun's rays nearly all day shows the most blisters, the west next and the east its weakest as it receives early morning rays and the intense ones only for a short time about 10 to 12 noon exhibits the smallest number of blisters

The above applies to wood, brick, stone, or cement buildings alike, if they absorb moisture—the wooden from imperfectly seasoned lumber and the others by capillary attraction from the earth or by defect in the roof or eaves, causing moisture to run down behind the paint.

HEAT.

- 14. We have seen its action in the foregoing paragraphs in conjunction with moisture.
- a. Heat alone, if it be great enough, will blister paint and the best proof of it is: That most of all old paint removed from overpainted surfaces, is chiefly taken off by the aid of the paint burners which heats it and softens it into heat blisters.
- b. There are other instances where blisters are produced directly by the action of heat without the aid of moisture: 1st where a very dark paint has been applied to a surface which before had been coated over with a very light tint. It is explained in this way: Light is

reflected by white and all light tints, and absorbed by all dark ones; therefore the dark coat will absorb the sun's rays readily, but it stops at the light color underneath and instead of further penetration the reverse takes place-it is there reflected. The heat having softened the linseed oil contained in the upper coat which from its having been put there more recently is yet full of elasticity, will swell cut from the pushing away influence it receives from the heat and light reflected by the light under coat and gradually loosen itself from it far enough away that there is no more expansion needed. These bubbles or blisters are always dry when pricked through, showing no moisture and are always seen above the light tinted coat underneath, leaving that intact upon the building. This class of blisters are very similar to the ones formed upon painted surfaces too near a stove and other places subject to overheating.

c. There is another instance where an upper paint coat will separate from an under one—this is due to the action of moisture—not in the wood, brick, stone or cement—but from its development in the under coats of paint. It can be traced as readily as the former and as easily understood.

It is a well known fact that clay will absorb and give out moisture. Some pigments like our American ochres, for instance, are composed mainly of alumina (clay) colored by ferric hydroxides. They may have been very thoroughly dried before grinding in oil and

all the care possible taken to have the article in good condition and as the oil used as a vehicle remains sound and impervious there will be no trouble between the clay ochre priming or sub-coats and the superadded ones, as in that condition an air-tight overcoating of the upper layers of paint protect it from moisture; but as soon as the natural decay of the linseed oil has fairly commenced, then the trouble commences, although it is imperceptible at first. The oil having lost all its glycerides, their place forms very fine pores or conduits through which the moisture will find its way to the clay based ochre underneath and as it, too, has felt the effects of the decay in its own coat of oil, this moisture is absorbed by the clay in wet weather and as freely parted with in dry hot weather. The sun softening the oil of the upper coat makes it impervious again, its action upon the moisture contained in the clay ochre is to turn that into steam—that of steam is to expand and to vaporize and become absorbed by the atmosphere but being prevented by the softened coats of paint above it, it expands itself into a blister large enough to hold it. Then either of two things happen: 1st the blister will burst and the condensed steam in the shape of water will run out; 2nd, or it will not burst and the condensed steam water will be held a prisoner under the blister till released by the breaking of the bubble or reabsorbed by the undercoat of clay ochre.

This is a form of blistering well known to every experienced painter in the land, but frequently misun-

derstood by them. They know the effect, but many are not aware of the cause of it. It has led many to reject ochre altogether for priming. For a more extended notice of this peculiarity of ochres the reader is referred to paragraph 79. The above two *reasons why* under which 99% of all cases of blistering can be traced will suffice to explain the troublesome phenomena of blistering. As to the remedy, alas! there is none but a removal of the cause.

QUESTIONS ON BLISTERING OF PAINT.

- 9. How many principal causes why paint blisters?
- 10. Name the principal one.
- 11. Name its accessory.
- 12. Are the causes of blistering well understood?
- 13. Describe how moisture affects paint in sub-sections, a, b, c, d and e.
- 14. Describe how heat affects paint in sub-sections a, b and c.

BRUSHES.

15. Brushes are one of the most important line of implements used by the paint trade in all its branches, from the coarsest down to the finest of artists' work and next to skill in guiding them take the lead as helpers to users of paint.

In the description of all the various brushes used by the paint and paper hangers' trades which follows in the course of this heading, precedence is given to the larger, which will be reviewed first and downward to the smaller ones and this will be the case for each one of the raw material from which they are made—as bristle brushes are those which are used the most of all, brushes made from that material will be reviewed first from the largest to the smallest and the same course will be taken with all the other sorts as much as possible, giving those which are mostly used in sequence.

It is lucky that under the alphabetical arrangement of the subject matter of this book that brushes come in at the beginning of this manual, as there will be no need of any explanation under the various headings other than a reference to the figures and their number, thus showing at a glance the particular tools each branch requires.

It will be in order here to state that the manufacturing of brushes has progressed along and kept up with advances made by other lines toward perfection, which, however, it has not yet attained—but great improvments have been made over the past.

It is not intended to go very deeply into details concerning the manufacture of brushes. This would lead into an infinity of details requiring full and minute description to be intelligently understood and really belongs to a treatise devoted entirely to that industry. Nor would such details be of much interest to the users of brushes.

16. The material from which brushes are made consists of the hair and fur of various animals, usually set in cement or in glue or in rubber, and bound onto the

head which is usually of wood by either thread, cord, wire or nailed metal strips or leather or a solid metal casing or vulcanized rubber.

As has already been stated the brushes will be classed and described according to the raw material that they are made from and as near as possible in the order of their greatest usefulness.

BRISTLES.

Boar or hog bristles being by far the most important of all the raw material used in brush making, is entitled to being noticed first of all. It enters into the manufacture of nearly all the brushes used in general painting.

All the larger brushes flat, round or oval, are made of the very highest priced Russian bristles for the first qualities. It is claimed that the best of these are procured from the wild boar. There is no doubt but that some bristles are obtained from that animal, but it seems doubtful if the crop of bristle from that source would go very far in supplying the quantity required for the consumption of the whole world.

The semi-tamed Russian hog produces, fortunately, bristles that are little inferior to that of the wild hog. Those borne upon the crest of the neck of the animal being the most valuable, being strong, elastic and longer than upon other parts of the body, although the other parts also produce very good but shorter bristles. Their market value diminishes according to length from the

longest to the shortest. But even in the smaller sizes the Russian hog bristles are superior to all others in elasticity and wearing qualities.

The so-called French bristles into which class nearly all other European bristles may be placed, furnish a very good next quality to that of the Russian and for the purpose of making varnish brushes or fine brushes to lay color for the carriage trade, they even surpass the Russian on account of their greater fineness and smoothness. The black bristles known as Chinese bristles, do not all come from the Orient as their name would indicate, but most of it comes from many other countries in Asia and Europe, beside what is furnished by our own packing houses where everything belonging to the hog is carefully saved excepting the squeal it is said.

Our own packing houses furnish the bulk of the bristles used in making brushes and their output is not confined to black bristles only, but to all the colors which the many breeds are characterized with. But while some very good bristles are originated here, it must be admitted that they are few and come from that now nearly extinct specimen—the razor back. High breeding seems to deteriorate the bristle so that while the flesh and fat producing has greatly improved, the hair is much inferior to the old native and the great bulk of American bristle is inferior to the European importations

SIBERIAN OX HAIR.

18. Siberian ox hair of the best quality is said to be the clippings of hair from the inside of the ears of the Siberian ox. Whether other parts of the growth on the body is not also used seems doubtful as the quantity of brushes which are sold under the name would indicate that if only the inner part of the ear produces all that is used then they must have enormous herds of oxen in that country. The probabilities are that not only Siberia but America as well is called upon to furnish the material required for the brush matter sold under that name.

The best quality is unusually springy and varnish brushes made from it are very highly prized by the furniture wood finishing trades for certain kinds of work. The sign painter also uses them largely in both the quill bound and flat sizes for the one stroke letter shape so much in demand now days.

BADGER HAIR.

19. Badger hair is the product of several animals belonging to the same family, "the marmotte' or "marmouse" to which the badger and our famous weather prophet "the ground hog" belongs. It is long and while soft, it preserves its shape well. Finishing and flowing varnish brushes for both the wood finishing and carriage trades are made from it. Gold tips and gold dusters for gilders. Blenders for the graining and marbling trades all prize it highly; nothing has been

devised for that purpose that is anywhere equal to badger hair.

BEAR AND FITCH HAIR.

20. These two may be bracketed together as both are used mainly for the purpose of making flowing varnish brushes. They make most excellent brushes for the purpose either alone or mixed together in certain proportions which is thought to make them better by some wood finishers. Many carriage painters having become used to sable hair claim them to be better than anything else.

SABLE HAIR.

21. Sable hair of both the *red* and *black* variety are very highly esteemed by artists, decorators, sign writers and stripers. They are rather expensive but as they are much more durable and for the laying of heavy bodied colors are so much better adapted to the work than camel hair brushes are that the latter are losing ground for use in heavy weighted pigments with all discriminating users.

CAMEL HAIR.

22. Camel hair is a misnomer as the squirrel furnishes the bulk of it, however, as it is known only under that name, it is likely to stick as long as the English language lasts.

It is very soft and lays color very smoothly and when carefully done little if any brush mark will show. The better made brushes of that material are excellent and it would be a sad day for many workmen if the supply should suddenly be stopped as many would be completely lost to know what to do in replacing them. They as well as all good things have a great fault in that being very soft, they have little elasticity and if used in heavy colors they are likely to bend and become deformed. The carriage trade, the wood finisher, sign writers, stripers, decorators, enamelers, lacquerers, artists, etc., all use them to a greater or lesser extent.

23. This concludes the list of raw material from which brushes are made for the paint trade with the possible exception of "Tampico," which may be considered as an adulterant and which is used chiefly in making up the cheaper grades of bristle brushes. possesses not an atom of value other than to fill up a given space and takes up that which should be occupied by better material. It can scarcely be called a fraud because such brushes are made for a class of trade who want to buy something for nothing and they must be accommodated. But the advice given to those who buy brushes is to buy the best only. The first cost of a brush may be large in comparison to the poor tool, but it is actual economy to buy the best, as they last much longer and enable the workman to do his work in a creditable manner, which is nearly impossible to do with poor tools.

BRISTLE BRUSHES.

24. Under this head all bristle brushes made for the general paint trade, including the decorators, etc., will be reviewed and an illustration of each kind given,

Fig. 1-Kalsomine Brush.

which will show the shapes. As, however, all or most of them are made in several qualities and sizes, it will be impossible to give all these in "illustrations." In the description the various sizes that each is made up in will be given.

a. The calcimine brush is probably the largest and most expensive brush made for the paint trade. The best are made from long springy Russian stock and on downward to clear Tampico. They are made on a flat wooden head with a wooden handle and are bound in metal nailed on to the head, usually galvanized iron is used for the purpose. They are made in three sizes: 6, 7 and 8 inches wide. See Fig. 1.

Fig. 2-Extra Wall Stipplers.

- b. Wall stipplers are long bristle brushes made upon an oblong square head usually in two sizes, $3\frac{1}{2}x$ 8 and $3\frac{1}{2}x9$ inches. These brushes are used only in following up wall painting to obliterate brush marks and producing a uniform grained finish to the work, by beating the painting evenly all over. The head is a wooden one and the finished tool looks like a mammoth cloth brush. See Fig. 2.
 - c. Flat wall brushes are made up in all qualities

and widths of head from 3 to 5 inches wide, and are bound to a wooden head and handle by a metallic band or by a leather binding when they are then known being set in a rubber head and vulcanized. This pre-

Fig. 3-Stucco Wall Paint Brush.

vents the losing of hair. See Fig. 3 for the shape of as "stucco wall" brushes. Some are also made by

Fig. 4-Stucco Wall Paint Brush.

metal bound wall, and Fig. 4 for the "stucco or leather bound."

d. Round bristle paint brushes are made in many qualities, weights and lengths of bristles; in open centers, semi-open centers or full stock, besides a number of patented arrangements each claiming to be "it." The binding is usually wire or cording or set in a solid

rubber head. The sizes run by 0 from 1.0 the smallest to 8.0 the largest. See Fig. 5.

e. Oval bristle paint brushes only differ from the above by the shape of the make up which as the name indicates is oval instead of round. In qualities and sizes they are similar to the round brush described in the preceding sub-section. See Fig. 5, which also represents it fairly well only that the handle is flatter than in the round brush.

Fig. 5.

- f. Painters' dusters, either round or flat, and in many qualities of white or black bristles. The best quality is that known as the coach painter's duster and are made in white bristles only. The length and thickness of hair make the selling price higher and lower running from $3\frac{1}{2}$ to 5 inches long. See Fig. 6 for the round. The flat is shaped like Fig. 3 only more loosely put together.
- g. Before closing up on the large bristle brushes it will be well to note "the whitewash heads" as sometimes the painter is called upon to do that kind of work; besides being an excellent tool to do calcimining with

Flat Painter's Duster.

Round Painter's Duster. Fig. 6.

Fig. 7.

also in apartments where furniture, carpets, etc., encumber a room so that stepladders and scaffolding is not to be thought of, a long handle can be set in the whitewash head and the work of calcimining a ceiling done from the floor. They come in widths ranging from 6 to 9 inches. They are bound to the wooden head by either metal bands or leather. The illustration shows the leather bound. See Fig. 7.

- h. Sash tools are made either round or oval full length of bristle or chisel edge. They are bound by cording, wire, a solid metal head or set in a hard rubber head and in many qualities of material. They come in numbered sizes, No. 1 being the smallest, to No. 10 the largest. See Fig. 8 for the full length hair and Fig. 9 for the chisel edge shapes.
- i. Coach painters' spoke brushes run in sizes from No. 1 to 3 and are used chiefly by the carriage trade, but they are also very useful for a number of purposes in general painting where a long but slim brush is to be used. Decorators in water colors will also find them a handy tool for coves, etc. See Fig. 10.
- j. Glue brushes are usually metal bound and well set. They run in sizes from 000 to No. 4 or from 5% inch to 1½ inch in diameter. See Fig. 11. They are also made flat, metal bound, and from 1 inch to 6 inches wide. The flat brushes are also made chisel edged. See Fig. 12.
- k. Painter's car scrub brushes are made from very stiff bristles and run in sizes from No. 4 to No. 6. It

Fig. 8-Sash Tool.

Fig. 9—Sash Tool, Chisel Edged.

is a very useful tool to the carriage painter. See Fig. 13.

BRISTLE VARNISH BRUSHES.

l. Bristle varnish brushes are usually made oval

Fig. 10-Coach Painters' Spoke Brushes.

and are bound with wire or by solid metal heads and with full length of bristle or chisel edged in many qual-

Fig. 11-Round Glue Brushes, Gray Bristles.

Fig. 12-Flat Glue, Gray Bristles.

ities and sized by o from 1.0 the smallest, to 8.0 the largest. All have flattened wooden handles, Fig. 14 showing the full length and Fig. 15 the chisel edge shapes. Fig. 15 also shows the solid metal head.

There are also a number of different qualities of flat

varnish bristle brushes from very good to very poor single thick, double thick, full length bristle to chiseled edge. The shapes vary very much as well as that of

Fig. 13—Painters' Car Scrubs.

the handles. The two Figs. 16 and 17 will suffice to show the leading shapes. Like all flat brushes they are sold by the inch, being made from 1 inch to 4 inches, graded by half inches between.

Coach painters and many others use a brush made up very much like the one shown in Fig. 15, and which is known as a coach painter's color brush.

m. Stencil brushes are used for the purpose indicated by their name. Like all the rest there are many

Fig. 14—Gloss Oval Varnish Brushes.

qualities. They are bound with wire or set in a solid metal head or band. In size they run from \mathcal{I} inch to $2\frac{1}{2}$ inches in diameter. Figs. 18 and 19 illustrate the two bindings.

n. Artists and decorators in both water and oil colors use a number of round, flat and triangular shaped

Fig. 15—Oval Chişelled Varnish Brush,

small brushes with either short, medium or long bristles. According to what they have been designed for they are called a multitude of different names, as marking brushes, artists' round and flat bristle, fresco round

Fig. 16-Fitch Varnish Brush.

Fig. 17—Badger Hair Flowing Brush.

and flat, these cover about all the varieties. They are all metal ferruled with a long slim handle. They usually run in numbers from 1 to 10 for the round and from 1/4 inch to 11/4 inch wide for the flat ones, by 1/8 inch gradations. Fig. 20 illustrates the round and Fig. 21 the flat sorts,

- o. Weighted brushes for polishing waxed floors for or waxed varnished ones, are extensively used at the present to imitate dead rubbed polish. They are shown in Fig. 22.
 - p. The wood finishing trade uses many of the bris-

Fig. 18. Fig. 19. Stencil Brushes.

tle brushes which have been described for filling, shellacing, etc. They buy those under the special names that they are wanted for, but differ so slightly from many of the flat stucco wall brushes that Fig. 4 will give one

Fig. 20—Fresco Bristle Brushes,

a good idea of their shapes and sizes. However, the furniture trade uses a brush known as rubbing brushes which is illustrated in Fig. 23. This brush comes in many shapes or forms with enough variations to suit all the views of the finishers.

The *brick liner*, a tool used to color the mortar line on painted brick being shaped very nearly as the above only that it contains only a very thin row of hair, it will not be necessary to describe it more.

PAPER HANGERS' BRISTLE BRUSHES.

- q. The paper hanger's paste brush is specially made so as to rub out paste easily, but many paper hangers use a worn out calcimine brush instead. It is illustrated in Fig. 24.
- r. Paper hangers' smoothing brushes are made from one to four rows of stiff bristles, wire drawn, in several qualities and are sized according to the length of head from 10 to 14 inches wide. Fig. 25 shows the ordinary smoothing brush and Fig. 26 the combination smoothing brush and seam roller.

GRAINERS' BRISTLE TOOLS.

s. Grainers use a few bristle brushes which are shown by the following illustrations: Fig. 27 shows the stippler used in putting in an all over coarse grain as in walnut, chestnut, etc. Fig. 28 shows the fantail overgrainers which are sized according to width of head from I inch up to 4 inches wide by half inch grad-

Fig. 21—Artist's Bristle Brushes.

ations. Fig. 29 shows a grainer's mottler and Fig. 30 a bristle piped overgrainers, etc.

BADGER HAIR BRUSHES,

25. a. The badger haired flowing varnish brushes are the principal ones used by the carriage and car painting trades and are also well liked by some wood finishers. They are all made chisel edged and bound in

Fig. 21a.

metal on a flat wood head or a continuation of the metal binder into a head with wooden handle attached. They are made single and double thick, ranging in sizes by ½ inch gradations from ½ inch to four inches wide. Fig. 31 shows both the single and double shape.

b. Gilders' tips are made from either badger or camel's hair or a mixture of both as the squirrel is usually too flimsy by itself. See Fig. 32.

c. The knotted bonehead badger hair blender of the grainer's trade, is an indispensable tool; it is used also by marblers and all painting requiring good blending.

Fig. 22-Augular Bristle Fresco Brushes.

It is sized according to width by half inch gradations from 2 to 5 inches wide. See Fig. 33.

d. Round badger haired blenders are used princi-

Fig. 23—Furniture Rubbing Brushes.

pally by artists and as a duster by gold leaf workers. They are bound in quill and of various sizes grading by numbers from No. 1 to No. 12. See Fig. 34.

OX HAIR BRUSHES.

26. a. Ox hair flowing varnish brushes are very highly prized by many wood finishers. They are made single and double and come in sizes and shapes same as Fig. 31, which see.

b. Ox hair flat sign writers' brushes are made to supply the demand for a one stroke letter in a cheaper

Fig. 24—Paperhanger's Paste Brush.

material than sable capable of carrying heavy colors. The size ranges by 1/4 inch gradation up to 1 inch wide.

Fig. 25—Paperhanger's Smoothing Brush.

Fig. 26.

See Fig. 35, which also illustrates all other makes from other material.

c. Ox hair is also used in the make up of full lines of lettering and striping brushes, either bound in quill or metal. The illustrations shown below will also illus-

Fig. 27-Walnut Stipplers.

trate all other makes as shapes and bindings are about the same. See Fig. 36 for lettering and Fig. 37 for striping brushes, and Fig. 38 for metal bound handled.

Fig. 28.

The sizes in all kinds are numbered alike from No. 1 up to No. 12. Many kinds are only numbered to No. 6.

RED AND BLACK SABLE BRUSHES.

27. a. Black and red sable brushes to all intents

Fig. 29-Mottlers.

and purposes may be classed together, as they are nearly alike in working qualities. As they are very springy and soft at the same time, they make up a very valuable

Fig. 30—Piped Overgrainers, Etc.

flowing varnish brush which is highly prized by coach painters and wood finishers. They are made up in same sizes and shape as shown in Fig. 31, which see.

b. Black and red sable sign writers, flat one stroke lettering, are the best of the kind for heavy colors.

Fig. 31—Badger Hair Flowing.

While costing more than any other, they last so much longer in good condition if taken care of that they are the cheapest in the end. Same sizes and shape as shown in Fig. 35, which see.

c. Sign writers' quilled and ferruled letterers are the same in size and shapes as shown in Fig. 36.

Fig. 32-Gilder's Camel-Hair Tips.

d. Striping brushes of this material are indespensable for use in heavy colors. See Fig. 37 for shape and sizes.

e. Red sable artists' brushes are well known the world over. No other material could well replace it for use in heavy colors. They come both round and

Fig. 33—Flat Knotted Badger Blender.

flat, ranging in number from No. 1 the smallest, to No. 12 the largest. See Fig. 39, illustrating both.

FITCH BRUSHES.

28. The Fitch flowing varnish brush is the only valuable brush which comes under that name. It is well liked by some carriage painters and to some extent

Fig. 34—Round Badger Blender.

by some wood finishers. See Fig. 31 for shape and sizes.

29. Bear's hair flowing varnish brushes are very valuable either when made up of that material alone or when mixed with some other material, which is too

Fig. 35—Flat Black Sable Lettering Brushes.

stiff by itself as a corrective. The wood finishing trade, especially the better class of furniture manufacturers, use it in great quantities. It is made up in same sizes and shape as shown in Fig. 31, which see.

CAMEL'S HAIR BRUSHES.

- 30. a. Camel's hair varnish brushes are used for many purposes and by nearly all branches of the painter's trade. They are very soft and lay varnish very smoothly. They all are made flat on somewhat variously shaped heads with shorter length hair than varnish brushes from other material are usually made as otherwise they would work too flabby. Their sizes are numbered according to width in ½ inch gradations from ½ to 4 inches. See Fig. 40.
- b. The camel's hair mottler is a somewhat similar brush, but longer haired and thicker than the varnish brush. The mottler is used by many carriage painters as a color brush, but is specially made up then with thicker hair than the ordinary mottler used by grainers, stainers and others. They are metal bound and sized

Fig. 36—Lettering.

according to width from I to 3 inches by ½ inch gradations. See Fig. 41.

c. Camel hair lacquering brushes are used by all trades where lacquering is done. They come both

Fig. 37-Striping Pencils.

round and flat. Both are metal bound. The round are sized from No. 1 to No. 6. The flat according to width by ½ inch gradations up to 1 inch wide. See Fig. 42.

d. The camel hair quill bound and ferruled lettering—the flat one stroke letterer and the striping brushes

Fig. 38-Round.

of that material, are excellent tools to work in the lighter weight colors. See Figs. 35, 36, 37, 38 and 39 to illustrate the shape and sizes of the several brushes mentioned.

e. The camel hair dagger striping brush is a shape

well liked by many stripers, as much longer lines can be carried through without filling than with other shapes. See Fig. 43. They come numbered from No. 1 to No. 4.

QUESTIONS ON BRUSHES.

- 15. Generalities?
- 16. What material is used in making brushes?
- 17. What can you say concerning hog bristle?

Fig. 39—Artists' Red Sable Brushes.

- 18. What can you say regarding Siberian ox hair?
- 19. What can you say regarding badger hair?
- 20. What are bear and fitch hair brushes mainly used for?
- 21. What kind of brushes are made from red and black sable?

- 22. What can you say regarding camel hair?
- 23. Is Tampico useful as brush making material?
- 24. *a.* What kind of brushes are made from bristles? *b, c, d, c, f, g, h, i, j, k, l, m, n, o, p, q, r,* and *s*?

Fig. 40-Camel's Hair Mottler.

- 25. a. Describe the flowing varnish brushes.
 - b. Describe the gold tip.
 - c. Describe the knotted bonehead badger blender.
 - d. Describe the rounded blenders.

Fig. 41.

- 26. a. Describe the Siberian ox hair flowing varnish brushes.
 - b. Describe the ox hair flat sign lettering brushes.
 - c. Describe the quilled and ferruled ox hair lettering brushes.

- 27. a. Describe black and red sable flowing varnish brushes.
 - b. Describe the sable one stroke lettering brush.

Fig. 42—Camel's-Hair Lacquering Brushes.

- c. Describe the quilled and ferruled sable letterers.
- d. Describe the striping sable pencils.
- e. Describe the sable artists' brushes.

Fig. 43-Champion Sword Stripers.

- 28. Describe the Fitch flowing varnish brush.
- 29. Describe bear's hair flowing varnish brushes.
- 30. a. Describe the camel hair flowing varnish brush.
 - b. Describe the camel hair mottler.
 - c. Describe the camel hair lacquering brushes.
 - d. Describe the camel hair lettering brushes.

- e. Describe the camel hair striping brushes.
- f. Describe the camel hair striping dagger.

CALCIMINING.

31. Under this appellation will be considered all plastered wall painting done in water colors and distemper, except the more artistic and difficult section better known under the name of fresco painting.

There are several ways of spelling the name used in describing the process such as: kalsomine, calsomine, distemper work and so forth, but all are one and the same thing. The root word calc—being taken from the Latin for *chalk*, which is the main material used in preparing it.

Calcimining in one form or another has been used from time immemorial, probably ever since walls have received coats of plastering to make them more level and pleasing to the eye than the naked rough stone finish did. As this of itself was already a step towards embellishment it is but fair to infer that the same desire for the beautiful must have prompted the uniform coloring of the plastering at nearly about the same time for the purpose of still further embellishing the interior of dwellings.

Walls covered with coatings of water colors and lime are and have been unearthed in Asia Minor and Egypt, which are nearly as old probably as the beginning of civilization in man. One must look for prehistoric remains where everything is blank for a time when painting in some form with water colors was unknown as remains of it are to be found with the oldest records existing of all the ancient civilizations. Nor is the old world the only place where such records exist for the Aztec civilization existing in America previous to its discovery by Columbus is particularly rich in fairly well designed and colored remains of its most ancient periods.

At the present time fully 98 per cent of all wall coloring and embellishments consist of water color painting or printing which are either used upon the walls direct or pasted upon them in the shape of wall paper, which after all, is but—watercolored paper.

Many persons become confused by the same thing being called by so many different names. The decorator hardly likes to have his work known under the name of calcimine (which is all it is in fact) as the name sounds too common, so he dubs it fresco, which it is not, or distemper or watercolor painting, which it is in common with plain everyday calcimining; but the other names sound more aristocratic and under those names he can command a very much larger price than he could under the other and he can hardly be blamed for it.

The name distemper is taken from the French "d'étrempe" or colors mixed with water (drenched). The name is certainly very appropriate for the French at least; but why should English speaking nations call it that when the words "water color" are well under-

stood to mean the same thing and are never misunderstood by anyone.

It is hoped the above will remove any misapprehensions any one may have had as to these various names meaning different sorts of wall painting—they are all one and the same.

TOOLS NEEDED FOR CALCIMINING.

- 32. a. Galvanized pails holding about 12 qts. can be found at any hardware store. A strip of tin or wire should be soldered across the top about 2/3 of the distance of its diameter, this simple contrivance will be found very convenient for the purpose of removing any surplus color not wanted on the brush, it will also act as a support for the brush when not in use, keeping it flat and in good shape. However, it is only a convenience but not a necessity. Besides there are many specially contrived pails for sale at the supply stores which are tony looking affairs, but none will be found much superior to a good galvanized pail with a wire soldered across its face and these will cost much less.
- b. An iron stand to rest the pail upon in order to raise it to a convenient height to dip the brush into when working on a scaffold is a necessity, and will quickly pay for itself in time saved bending down to the floor each time color is wanted and will save many a backache. A fair but a much more clumsy substitute can be made by using a wooden box of about the proper height.

- c. The calcimine brush (see Fig. 1). Buy only the best—others are mere makeshifts. The first cost of a brush, well made and fitted to this work, will more than be repaid over the price of an inferior one in a single day's work by the increased amount of work that can be done with it—to say nothing of the ease of spreading the calcimine and the certainty of a good looking job when done and of the cleanliness made possible by their use. A good workman can take a high grade calcimine brush and work over carpets without dropping any color upon them—if careful. This, of course, is not advisable and carpets, furniture and everything that could possibly be injured should either be removed or at least covered over—but it is within the possible to not drop anything upon them.
- d. A number of smaller flat and round brushes will be needed by the decorator in lining off his work and in hand work decorating also for reaching into coves and mouldings where his larger brush could not be made to reach. For shapes and sizes of these see Figs. 10, 16, 18, 19, 21, 22.
 - e. Step ladders (see Fig. 78).
 - f. Tressles and planks (see Fig. 79).
 - g. Chalk line and plumb bob to lay out work with.
- h. A small portable stove to warm or boil water upon to melt glue with. In fact all paint shops need one as there are many uses to which they can be put. A small gasoline stove is probably as convenient and as cheap as any thing that could be got.

Plate I.

- i. A glue pot to melt glue in although it is not a necessity especially if the glue has been soaked up in cold water some time before, as when it is swelled up warm water will quickly dissolve it without bringing it to a boil.
- j. A T-square, some lining straightedges, a 2-foot rule and an awl to hold the chalk line are needed wherever any attempts are made at decorations.

The above comprises about all the most essential tools needed in applying calcimine. A number of others will be needed by the decorator in water colors, and will be treated more fully under several headings where water colors are employed in the more artistic branches of distemper work.

33. a. The material required for calcimining is fully described under the heading of colors (see paragraphs 61 to 84) it will only be necessary to state that whiting is the mostly used base upon which are added the coloring pigments necessary to produce the tints required. Under heading of color mixing (see paragraphs 61 to 84) full directions are given for making them. It will be useless even to name over the colors which are used in water color painting as nearly every pigment known can be mixed for use in water color painting. The base is the most important of all. The whiting should be of good quality, well washed of sediments and the colors of pure tone, so as to produce clean looking tints. Some prefer to mix their tints on a zinc white base, claiming that the tints so mixed are

clearer toned and cover better in one coat. It increases the cost somewhat, but that will not count on first class work.

b. Glue is used more extensively than any other substance to bind the colors with, for it is both cheap and convenient to handle. Some of the decorators use gum arabic to mix the higher priced colors used on the finest work. There are also a number of patented sizes on the market for which superlative excellence is claimed, which probably will be found convenient but none so far have been able to supplant good glues for general use.

THE WALLS.

34. Calcimining or water color painting is chiefly done on plastered walls. To a great extent it depends upon their being in a proper condition as to whether the work shall look good or bad when completed.

An ideal wall to work upon is one that will be sufficiently hard to have but little suction, nearly but not quite non-absorbent. The patent plastered walls left either in a stipled rough state or covered over with a skim coat of plaster paris make an excellent surface to calcimine upon.

But—alas! all walls are not in such a condition. With all the cheap John sort of plastering that is being done by contractors at a price which would mean a sure loss to them if they used good material, but which must be done so as to make a profit anyhow, many of the surfaces the calciminer has to deal with will be

found very porous and absorbing, having a great deal of suction; in many instances so much so that the calcimine will be absorbed from the brush as soon as it is laid upon the wall so that it will not be possible to spread it any distance from where the brush first touched it. Such walls are called in the vernacular, "hot walls." They constitute the most troublesome and disagreeable feature of any of the ills belonging to the calcimining trade.

35. The only sure way to enable one to do good work upon such walls is to stop this suction. There are several methods employed to do this. The old timers used to do this by using sizing, double sizing, etc., but it never was an entire success in that glue absorbs and gives out moisture with the result that decay of the glue soon commences and cracking of the glue underneath the calcimine which is soon followed up by the scaling of the whole thing in flakes like bark coming off a sycamore tree. This will not always follow sizing, but the chances are that it may, so that today there is but little sizing of walls being done with glue.

The better way is to give the walls a coat of what is known to the trade as a *surfacer*.

36. A surfacer in reality is a varnish specially prepared with a view of filling and stopping suction. It enters the porous plaster, forming an impervious coating upon them over which one good coat of calcimine usually makes a good looking even finish.

Many surfacers are placed upon the market with

astounding claims and loaded down with superlatives and adjectives sufficient to cause an ordinary circus poster to blush; nevertheless they usually do the work of stopping the suction and that is the main thing required.

Any quick, hard drying varnish will do the same thing and it is even intimated by some that gloss oil will do so. While this may be true in some instances, no one should be advised to put their trust in it and at best it should not be used if anything better can be had. Furniture, No. I coach and the cheaper so called "hard oil" varnishes will be found much safer than gloss oil.

37. The surfacing coat being thoroughly dry, which requires from 10 to 24 hours according to the composition of the surfacer, the walls are ready for the calcimine. (For its preparation see paragraph 96.)

If the rooms or halls are large and high ceiled, it will be much better to have tressles of the proper height with a flooring of 2-inch walking boards across them, sufficiently close together that the workmen will not have to waste any of his precious time shifting the boards about while he should be at his work busy on fresh edges upon which he can join before they have set, thus preventing an ugly lap line, showing at the end of every stretch. It should be remembered that the quicker the work can be done and finished from the time it has commenced to completion the better the job will look and the less likelihood of the surface showing brush marks and laps.

Plate II.

The calcimine need not be rubbed out and laid off like oil paint. It will be sufficient that the color be laid on so as to cover every portion of the work without skinning it or leaving any holidays upon it (holidays in painters' parlance means a spot left untouched by paint). To insure having gone all over the surface of the wall, the better way is to first lay the color all over cross ways of the stretch then to brush it the long way of it. In this manner should there be any pin holes or places left untouched by the first cross brushing, the second will be almost sure to catch it unless the work is done in some very dark place where it is impossible to see what is being done.

If the suction has been properly stopped and the calcimine properly mixed the job will present an even and perfectly covered appearance of a beautiful flat finish entirely free of brush marks and laps; but it sometimes happens that the suction has not been perfectly stopped or that the calcimine has been imperfectly mixed. In that case it will be necessary to give the job another coat. To give this second coat one should proceed in exactly the same manner as has been described for the putting on of the first coat.

Where there has been no stoppage of the suction of the plastered walls and they are "hot" or in an absorbing condition, it is possible to go over them in a "way" which reduces the suction trouble to a minimum. It is this: to calcimine mixed in the ordinary way add about 4 ounces of glycerine to the gallon pail. One ounce of powdered alum previously dissolved in warm water with just enough of that to dissolve it added for each gallon of calcimine, will also help. Some add a ½ pint of molasses to the gallon. The idea in all these additions is to retard the drying in of the water paint on the plaster long enough that the next brushfull applied will still find the spot covered by the previous one wet enough to blend in with it without rubbing up. Glycerine has a great affinity for moisture and will retain it, so has molasses to some extent, but in a much lessened degree. A little soft soap is also of good benefit in retarding the drying in, beside giving to the calcimine much easier spreading properties.

38. It is usual to count all ornamental work even that done in stencils over distemper painting as "fresco painting," but it is hardly proper to call by that name a paneled ceiling or walls stenciled with some simple designs or even with a stenciled center piece, corners and brakes. While properly speaking there is no fresco painting done in the United States, the name stands for a higher and more artistic class of work than that spoken of above. Every calciminer should be able to do this simple ornamentation without trouble.

To lay out a ceiling with a center panel with stiles surrounding it in different color requires but little skill. A chalk line should be used to mark out the outlines accurately and the various colors carefully cut in up to the line. When dry it is ready to be lined up with such line work as is necessary and stenciled in appropriate colors,

Under the heading of stencils a full description is given of the "how to make them" beside the proper way of using and taking care of them. (See paragraphs 290 to 302.)

QUESTIONS ON CALCIMINING.

- 31. What is calcimine and calcimining?
- 32. a. What kind of pails are necessary?
 - b. What support is required for them?
 - c. What is the main brush used in laying it on walls?
 - d. What other brushes are necessary?
 - e. How is the work reached?
 - f. What other means?
 - g. How is work laid out?
 - h. What are the best means of heating water
 - i. What is required to melt glue in?
 - j. What other tools are useful?
- 33. What material is employed in mixing calcimine?
- 34. What has been said regarding walls?
- 35. How can suction be stopped in hot walls?
- 36. What is a surfacer?
- 37. How is calcimine applied?
- 38. How are walls and ceilings laid out into panels, stiles, etc.?

CARRIAGE PAINTING, CAR AND COACH PAINTING.

For all practical purposes, all the above stand upon one and the same footing. The underlying principles and the reasons why of everything connected with them all being the same and having the same foundation.

Why is it that carriages, cars, coaches, and all vehicles, delivery wagons, automobiles, in fact all vehicles making any attempt at brilliancy by a polished varnish surface and which are used out of doors for a great part of the time, subject to all the vicissitudes and hardships, great changes of temperature resulting from the inclemencies of the weather, why is it that such vehicles are painted in an entirely different manner than that used for the painting of buildings which have to be out in the weather all the time, summer and winter when the heat will almost boil water or get down below the o mark until mercury will freeze solid?

At first sight one would think that what was good enough for the painting of buildings which have to stand so much more hardships from the weather than vehicles usually do, that the same treatment applied to vehicles would be just the right thing for them.

All are well aware that house painting is chiefly done by using linseed oil as a binder and vehicle of the pigments used in doing the work and really it is by this use only that a lasting job of painting can be done at all upon these while in the painting of carriages and other vehicles linseed oil is dispensed with in all but the first priming or foundation coats. Even if that first priming coat could be put on with any other liquid vehicle that would do the same good that is expected of it—it is more than likely that there would be none used at all.

Plate III.

This seeming inconsistency and variance is due to the fact that a perfectly level surface has to be made up for a carriage before it is colored and varnished, which is non-elastic or very slightly so or at least no greater than that of the varnishes themselves is. It is necessary that all coatings going onto the vehicle conform themselves to this end: the making of all the coats as near as possible, of each being as near like the others in contraction and expansion. Now if after the priming, linseed oil was used instead of japan and varnish as binder and vehicles, the varnish, which is composed mainly of hard gums would be unable to follow the greater expansion and contraction of the undercoats where the linseed oil was used with the consequence that it would have to give or crack, which means the same thing, to accommodate itself to its more pliable neighbor and the job would soon be an eyesore-besides oil coats have usually the very bad habit of sweating through the varnish coats and stickiness would ensue, which would catch all the dust and dirt it could carry and hold it there. So that what was once a thing of beauty would soon become an eyesore to look upon.

It can thus readily be seen why it is not employed in carriage painting.

THE TOOLS REQUIRED.

40. a. Round or oval bristle brushes to do the priming with. It does not matter so much about size or shape. It should possess sufficient elasticity and firmness that the oil can be well rubbed in with it.

- b. A fair sized flat wall brush rather stiff but elastic, to put on rough stuff with, with some smaller ones to use in places where the larger ones would not readily reach.
- c. Some good heavy camel hair mottlers to lay color coats with somewhat identical in shape to Figs. 31 or 41. Also some oval bristle chiseled edge varnish brushes which are used for the same purpose. (See Fig. 15.)
- d. Some badger, fitch and camel hair brushes to use in flowing, rubbing and varnishing running gear parts. (See Figs. 31, 40, 41.)
- e. Coach dusters, preferably made of white bristles fine and soft, to clean all dirt and dust with. (See Fig. 6.)
- f. Spoke brushes, which are long and slender, to reach down to the hub of wheels. (See Fig. 10.)
- g. A number of various sized kinds of lettering, striping and artists' brushes for ornamenting, in both camel hair and sable. (See Figs. 36, 37, 39.)

EQUIPMENT USED IN CARRIAGE SHOPS.

41. a. Every shop aims to adapt its contrivances to do work with in accord with its own particular needs and requirements. The ones described below need not be after any set pattern. Almost anything which will answer the purpose intended for will do from the crudest to the very costliest, if they permit the painter to get at his work and do it without loss of time and convenience.

- b. The most important are good tressles of proper height or adjustable, to lay bodies upon during the painting and drying operation and some others for carriage parts.
- c. Varnishing stands made to tilt are the most convenient and require special mention. They need not be very expensive either, 3 legs and a tilting top 12 inches square is all that is needed. This arrangement permits the workman getting all the way around the job without any hindrance from the tressle legs.
- d. Wheel jacks, which may be simply a post with a projecting peg to hang the wheel upon and turn it gradually while it is being painted or varnished.
- e. Frames for bodies, gears and seats, each specially designed for the particular parts they are wanted for.
- f. Some good brush keepers—some for color brushes, others for the different brushes used in varnishing, preferably one for each brush to hang in its own kind of varnish. There are a number of very good ones on the market that are patented and in which brushes can be suspended without touching the bottom and with covered tops to prevent dirt or dust entering the keeper. One can make a very good individual brush keeper by going to the refuse heap, picking up some of the smaller sizes of tins wherein fruits and vegetables had been previously packed. Melt the top off, have a wire soldered on long enough to bend it so one end will act as a peg to fit a hole bored in the brush handle

so the brush will hang free of the bottom of the can, then put the can into a large glass jar, some of the fruit packing jars will answer, and after the top has been screwed on one has an air tight and convenient brush keeper at small cost. The wire projecting above the tin itself will be found very convenient to lift it by, serving as a handle when it is desired to take it out of the can.

g. Putty knives in various shapes and widths, stiff and flexible square pointed and triangular. Spatulas for triturating and lifting paints and putties; some good paint strainers for straining not only paint but varnishes, compose the most necessary small and large tools of the hardware variety.

THE MATERIAL USED.

42. Nearly all the pigments used in painting are available for coloring carriages and wagons, etc., as colors or pigments are fully described in following pages under the heading "Colors," it will be unnecessary here to repeat the same and the reader is referred to paragraphs 61 to 84 for full particulars concerning these.

White lead either ground in oil, japan varnish or dry is probably the most important on the list, ochre and filling material next in preparatory work and blacks by long odds the most important in coloring coats, with a variety covering the whole chromatic scale in wagon and car painting.

Plate IV.

THE WORK PROPER-THE PRIMING.

43. This is the foundation upon which the whole superstructure will either make good or fail, therefore one should well understand its principles and take the utmost care in its performance in a good workmanlike manner.

It has already been mentioned that the priming or foundation coat is the only one in which linseed oil should be used and the reasons therefore given. Under the name of priming, however, it is not meant the first coat (which is merely an oiling) but all coatings of the foundation for rough stuffing must be understood as forming a part of the priming.

The first operation for the priming is the mixing of the color. This should consist of white lead colored to a deep gray with lampblack or white lead and ochre in various proportions also tinted with lampblack, which should be greatly thinned with raw linseed oil to which has been added a little dryer. The pigments themselves are understood as having been finely ground in oil and to have been so thinned, that the application of the priming may be said to be the giving the job a coat of colored oil. While the coating is thin the going over the parts painted must be plainly seen to have been colored by it. The work of its application with the brush must be thorough and put on with plenty of elbow grease, well brushed in—not simply gone over.

The primed parts should be laid aside where they will have a chance to dry well and ample time should

be given it for the same. The priming and for that matter all painting done with linseed oil may feel dry and seemingly hard under the touch of the finger, this is not an indication, however, that it is through drying. It is not one day nor two days that it will take for the oil to be dry, but—certainly no less than a week should be allowed and two weeks would be better.

Under the high pressure system in vogue, this is now seldom done, but when it is a well known fact that linseed oil keeps absorbing oxygen from the atmosphere for about 10 days and that during that period it is undergoing changes of both form and bulk—it increases about 10% and it is not to be considered as dry until this change shall have taken place. It must readily be understood that another application of paint over the priming before the changes due to drying are completed that it will be imperfect and incomplete and greatly hindered by the application of another coat from access to air from which it draws oxygen which becomes combined with it and forms a gum resin during the process of drying.

44. a. This coat being dry should be followed up by applications which are best known as the lead coats.

THE LEAD COATS.

44. b. This is composed of white lead which has been colored with lamp black to a light slate or dark gray. The lead is what in carriage painting is known as keg lead or white lead ground in linseed oil, and

hereafter when that term is used, it means white lead in oil only. This should be thinned with about ½ linseed oil and ¾ turpentine to a proper consistency for applying with a bristle brush, in a smooth even manner.

Some painters prefer a flat lead coat or one which contains just enough linseed oil to bind it on, the thinner consisting chiefly of turpentine.

THE RUB LEAD.

This is without doubt the better way of prepar-45. ing the job for further operations. It consists in mixing dry white lead to which a little lamp black has been mixed in about 3/4 parts of raw linseed oil to which 1/4 part of japan has been added, to a stiff paste and the same ground up in a shop paint mill and afterward thinned in the same proportion of linseed oil and japan. It should be applied as stiff as it can be worked, with a half worn out stiff bristle brush. After it has been spread let it stand a few minutes, just enough to let it take on a tact, when the lead rub coat should be rubbed over with the palm of the hand. It is needless to say that this rub lead coat should not be applied over the lead coats mentioned in paragraph 44, but instead it takes their place and should be applied directly over the linseed oil priming first described. This requires some little time to harden sufficiently for further operations, and for that reason is considered too slow in many shops, although it is undoubtedly the "very best way" to proceed in surfacing the priming.

KNIFING IN LEAD.

46. Knifing in lead is a quicker way of surfacing the priming coat. The lead used for this purpose is specially ground in japan for that purpose, but many prefer to mix it themselves from dry white lead mixed in various proportions of rubbing varnish, japan and turpentine. As the name indicates, it is spread with a knife. It requires careful manipulations so as to level up everything perfectly and it should be well pressed into any cavity or depressions. As work which has been "knifed" is seldom rough stuffed afterward it should be done so well that it will in a manner take the place of that operation. In fairly good work it is never used on bodies or wagon beds, but for the cheaper and medium grades even the bodies are "knifed in."

PUTTY AND PUTTYING.

47. The next operation in order after the rub lead has become hardened sufficiently is to putty up the job previous to rough stuffing. It is made by triturating together dry white lead, rubbing varnish and japan in about equal quantities. The consistency is somewhat variable for the different purposes that it may be wanted for, but for general purposes it should be sufficiently thin that it can be made to enter readily into any opening about to be filled, but also thick enough that the putty knife will made a clean level cut over it, as otherwise such parts will be eyesores, especially if the job is not to receive any rough stuffing.

Plate V.

SAND PAPERING.

48. After the puttying has dried and hardened sufficiently, the job is ready for the sand papering. This should be very carefully done with fine sand paper to level up any of the putty which rises over the parts surrounding it. Great care should be taken that in using the paper too energetically, the lead coats may not be cut through, therefore it should be confined to the parts where it is needed and the rest very lightly gone over, merely to assure one's self that no roughness has been overlooked.

THE ROUGH STUFF.

- 49. a. It would be impossible to produce that piano-like smoothness of finish which constitutes the chief beauty of a carriage body, without rough stuffing it. Therefore the operation of rough stuffing consists in the perfect leveling of the surface over which it is applied. It fills up whatever inequalities may be upon it, small pores, etc., until it is as level as a slab of polished marble.
- b. The material used consists mainly of coarse mineral paints which all the supply stores sell under the name of fillers, and these are combined with white lead. They are mixed in the proportion of 3 parts of the filler to 1 of keg lead, by weight, into a stiff paste in a thinner composed of equal parts of quick rubbing varnish and japan, thinned to the proper working consistency with turpentine. There are a number of other methods of

mixing rough stuff, but the one given is that which is chiefly in use and will be found satisfactory.

c. It should be put on carefully and leveled up with as much attention as in any of the other applications, but somewhat thicker than is required for color coats. While rough stuff should be thicker than those, yet it should be thinned sufficiently so as to allow of the proper brushing it out without dragging, and a good chiseled edge bristle varnish brush should be used which has been broken in but not much worn. (See Fig. 15.)

It is a much better policy to give the job 3, 4 or even 5 coats of rather thin coats than to try to accomplish the came object with two coats which are too heavy.

The mixing formula given requires 24 hours drying before a next coat be applied.

d. When giving the job the last coat of rough stuff, the latter should have a little Venetian red mixed up with it and should be thinned more liberally with turpentine than was used in the preceding coats.

RUBBING THE ROUGH STUFF.

50. a. If the rough stuff coats have been carefully put on, the work will now be in proper shape for "rubbing down."

There is nothing better for the purpose than the rubbing brick which may be found in all the supply stores in the United States, ready prepared. The fine Italian natural blocks of pumice stone, well leveled, is still used where an extra fine job is desired.

- b. While the rubbing is being done the surface should be kept well wetted with clean water and often sponged off to keep it from gumming.
- c. And here is where the last guide coat prepared with Venetian red puts in its good end. If the work of rubbing the rough stuff has been carefully and systematically done by rubbing the surface with strokes leading in one direction back and forth, without wiggling or going over the surface in a haphazard way, when the guide coat has been cut through the surface will be level. Yet the cutting through of the guide coat is not always an indication that the work has been properly done or leveled. The skilled workman however can readily ascertain this by passing the palm of his hand over it, and his fine sense of touch will readily give him notice of any imperfectly leveled parts. Time and experience alone will enable one to become a good judge as to whether the work has been well done or not.

THE COLORING AND GLAZING COATS.

- 51. a. Generally speaking concerning the application of the color coats, it must here be stated that it requires a good degree of workmanship to do it well.
- b. As to the tools used, nothing but a camel hair mottler or color brush should be used, (see Fig. 41) as the color should be laid very evenly and without brush marks. One thing the novice should learn to guard against is the brushing his work crossways at the ends. This should be avoided and it should be done by work-

ing the brush back and forth in one direction only and with an easy and even motion.

- b. Each color requires a somewhat different manner of handling, but on the whole this much can be said: never to put them on too thickly, and if the color is very transparent it is better to give the job more coats than to risk spoiling the smoothness of the surface of the job produced upon it by the rough stuffing process.
- c. It goes without the saying it again that no linseed oil is permissible in the application of color coats and that the thinner used for binding them should be varnish thinned with turpentine.
- While jobs require special treatment of their own from the ground up, they should first be cleaned of all dirty marks on the bare wood, then carefully oiled over with clear linseed oil, sand papered and painted over with a keg lead coat, thinned with I part of raw linseed oil with 3 parts turpentine. The puttying should be done on this coat, then it should be followed up with another thinned with only half as much raw linseed oil as the first had, with a corresponding increase of turpentine; then after lightly sand papering it, apply a coat of flake white thinned sufficiently to work freely under the brush. This flake white coat should be thinned with hard drying finishing varnish. These coats should be very smoothly and evenly put on and should be followed up with hard drying finishing varnish in which a little of the flake white has been added to hide the yellow tinge of the varnish. When dry rub with

Plate VI.

pumice stone and apply another coat of the same varnish, which should be treated as before.

THE ORNAMENTATION.

52. a. Some coach painters do the ornamentation and striping upon the last coat of color, but it is much better and safer to first give the job a coat of quick drying rubbing varnish and to lightly rub it down with pumice stone, being careful not to cut it through into the color. This will act as a protection and prevent fatal results upon the surface as mistakes can be cleaned off the varnish coating which it would be impossible to do over the color coat itself.

The ornamentation consists in fine, medium and broad lines or striping, scroll work, coat of arms and other ornaments, lettering, etc., etc., according as to what the job is; each having its own fashions as to the decoration, be it a coach, carriage, car, business wagon or whatever other name and kind the vehicle may be.

b. The striping requires skill, so a novice will do well to acquire considerable of that before he undertakes the striping upon a good job, for he must have that and a good amount of confidence in himself to make a success of it. For the tools needed to do the work with the reader is referred to Fig. 37 for the shape of quill bound striping brush and to Fig. 43 for the sword striper, which is used in making fine lines.

Colors for striping should be mixed with varnish, japan and turpentine, tempering these to suit the job

and color used upon it, some colors requiring a little more of one and less of another than some others would.

- c. A great deal of the ornamentation done upon vehicles is by means of transfers. These transfers are printed in colors upon a specially prepared paper which is applied face downward upon tacky varnish on the job, or sometimes the varnish is applied to the ornament itself and then applied to the place wanted. After smoothing over the transfer, the paper is sponged on the back with clean water which it will absorb and swell, when it can be slipped about and off the job, leaving the ornament upon it held tightly by the varnish under it.
- d. Hand ornamentation requires both skill and time. Only such as possess the first should undertake it, as an eyesore and loss of reputation would surely result from a botched job. All colors used in ornamentation require the same thinning and treatment as was described in Sec. B of this paragraph.

Sign writing upon vehicles, aside from the fact that it is done in coach colors thinned in the same manner as stated in section b of this paragraph is done in very much the same manner as is fully described under the heading of Sign Painting, so the reader is referred to paragraphs 260 to 277 for fuller information.

THE VARNISHING.

53. a. The varnishing of vehicles is a very particular branch of the coach painter's trade. It is almost

needless to have to warn against varnishing a job where it will be subjected to dust, changes of temperature and the thousand and one other causes which will make varnish go wrong. Only those who are familiar with the host of "make-varnish-go-wrong-agencies" have any idea of their multitude and extent. It also seems as needless to say that it requires skill and experience. Under the heading of varnishing, fuller directions are given as to the "how to do the work" and the reader is referred to paragraphs 312 to 317 for fuller information, but there are some peculiarities about the varnishing of vehicles which are their own and which are noted below.

The skimpy, skinny manner of putting on varnish some workmen have who are always afraid of putting on too much and who brush out the little they put on to the last limit, will never make good carriage varnishers. Even the rubbing coats are the better for having been flowed on, and they should be so put on especially in shops where jobs can be tipted.

It is necessary to caution especially against doing the varnishing in any place where dust cannot be kept out and where the temperature be regulated with uniformity in cold weather.

THE RUBBING COATS.

54. a. The job should receive two heavy coats of rubbing varnish which is much better than double that number of coats put on thinly. As soon as dry, which will require two days, the rubbing may be done.

- b. The needed material consists in a rubbing pad of felt which can be bought ready made at supply stores. These pads are prepared specially for all sorts of purposes in varnish rubbing. It is made of felt of different degrees of hardness and texture and varies in thickness from ½ to 2 inches. Chamois skins, sponges, pails for water and 0 or 00 pumice stone. The Italian kind is much the best, running even and free of grit. Some of the American is very poor and especially gritty, for that reason it should not be employed in carriage rubbing as it would scratch the life out of a job.
- c. The job should be washed perfectly clean and dried by rubbing it over with a chamois skin, then it is ready to be rubbed. This operation is done by first dipping the pad into clean water then into the box holding the pulverized pumice stone; then proceeding to rub the mouldings and outside edges of panels, then proceeding towards the center where the rubbing should end. The rubbing should all be done in one direction, or as much as possible at least, and should be very carefully made. After the operation has been completed the job should be well washed and cleaned of the pumice stone and again dried with chamois skin. When all moisture has been completely dried it is then ready for the flowing finishing coats.

THE FLOWING FINISHING COATS.

55. As the name indicates these coats should be "flowed" on for good results, or the mirror like surface which all the previous operations have led to step by

Plate VII

step, will have been done to no avail. In putting on the flowing coats do all the parts adjacent to the panels first, finishing the wide panels last. The brush should always be loaded full of varnish for in that condition the job can be gone over more quickly and easily. It should be cross brushed lightly before finally laying it off. See paragraph 312 to 317, under the heading "Varnishing," for fuller information.

56. The varnishing of running gears is somewhat easier to do properly than that of bodies, but requires skill too. Only a small surface should be gone over at a time before laying off and it takes a watchful workman to put it on. Much care should be taken to prevent dust and good cleaning done before and after each operation. In putting on rubbing varnish on the wheels always lay it off after having gone over half a dozen spokes or so.

QUESTIONS ON CARRIAGE, CAR OR COACH PAINTING.

- 39. Give a synopsis of the difference between carriage painting and ordinary out door oil painting.
 - 40. a. What kind of brush is used in priming?
 - b. What kinds of brushes are used in rough stuffing?
 - c. What kinds of brushes are needed for color laying?
 - d. What kinds of brushes are used for varnishing?
 - e. What kind of brush is used for cleaning?

- f. What tool is used in painting spokes?
- g. What brushes are needed in striping and ornamenting*?
- 42. What is said regarding the material used?
- 43. What is priming?
- 44. a. What are the lead coats? b. What is a flat lead coat?
 - 45. What is a rub lead coat?
 - 46. What is knifing in lead?
 - 47. How is carriage putty made and applied?
 - 48. How is the sandpapering done?
 - 49. a. What is rough stuff?
 - b. What material is chiefly used in mixing rough stuff?
 - c. How should it be put on?
 - d. What is a guide coat?
 - 50. a. How is rough stuff rubbed?
 - b. How is rough stuff made?
 - c. How is it performed?
 - 51. a. What is said in a general way concerning the color coats?
 - b. Are all colors used in color coats to be used in the same manner?
 - c. Should linseed oil be used in the painting of color coats?
 - d. How would you proceed to paint a white job?
 - 52. a. What is said regarding ornamentation?
 - b. How is striping done?

- c. What are transfers?
- d. What is said of hand decoration?
- e. What is said of sign work on vehicles?
- 53. What is said generally of varnishing?
- 54. How is rubbing done?
- 55. How is flowing varnish put on?
- 56. How are running gears varnished?

CHINA PAINTING.

57. China painting differs radically from any other sort in a number of ways.

It is of course out of the question to think of using linseed oil and ordinary artists' colors mixed with it, as then the painting would be subject to many vicissitudes, it would be easily scratched, marred and even rubbed off, besides it would be impossible to use them upon the table as food carriers or holders, for many of the colors are poisonous and none of them very appetizing, and most persons would as soon have them remain upon the platters or plates, much rather than having them mixed up with their food. At best such painting would render the article so painted good for show only, but unfitted for use; to be hung upon the wall or placed on a shelf to look at, the same as any other oil painting done on canvas.

The requirements of china painting are that both the colors and the medium used in their application shall be *vitrifiable* and assimilate or be capable of being incorporated with the blank china upon which the

painting is done that the two shall form but one inseparable whole and become one integral part of it.

Therefore to accomplish this the colors must be either vitrifiable of themselves or be made so by a flux mixed with them that will attach them with an artificial coating under the influence of a high degree of heat which melts it.

As the coloring matter of many of the colors used in china painting are not developed until the china has been fired (put into a kiln and burned) it can easily be understood that in that alone it would differ from any other painting and must cause a novice some anxiety at first as to just what will be the results of his labor, as he cannot always perceive what progress has been made or whether the painting has been rightly or wrongly done. At best he is likely to spoil a few pieces in learning by experience just how to handle these changeable undeveloped colors. This is probably the most troublesome point of difference between china painting and any other.

MATERIAL REQUIRED.

58. There are to be found at the present time a great number of ready prepared colors with plates showing the exact coloring of each, just as they will appear after the firing. This simplifies the otherwise difficult task of knowing what color one must select for obtaining certain results. These ready prepared colors have the flux ready mixed with them or are in the shape of

Plate VIII.

powders to which the flux must be added. Upon the whole it will be best for novices, as well as others, to use moist vitrifiable colors in tubes. These are nearly all the go now among amateur and professional china painters. They save the tedious and annoying methods of goneby days when it was necessary to prepare the medium by the slow processes of evaporation of spirits of turpentine and of oil of tar to make the fat oils of each. Everything can be bought ready prepared and ready to use. It has rendered a great service to the many who have taken up the painting of china as a pastime and for the many who now find pleasure from this employment of their spare time who would have been deterred from the undertaking but for this saving of drudgery.

Small slabs with depressions upon them to lay colors upon and to hold fluxes, mediums, etc., should be procured. Gold, platinum, etc. Gold and other metals used in decorating china can also be bought ready for use in all the shades of the metal and the different alloys.

One should also be well supplied with many different sizes of camel's hair brushes to lay the colors with; a list of useful accessory tools and appliances would make up a fair sized pamphlet. As the description without the illustration of such by cuts would be more likely to be misunderstood than otherwise, the reader is advised to send to some of the art stores in our larger cities for an illustrated catalogue which will give him, for the ask-

ing, a very full understanding of all the tools, brushes and appliances needed in china painting, besides giving him the price at which each is sold.

THE PAINTING.

59. Either outline the design upon the china with a lithographic pencil or with black leads. Some use India ink in outlining as it burns out entirely during the firing process, leaving the design painted free of outline marks and for that reason it is preferred by many.

After the design has been laid out, proceed to paint it on by mixing the colors needed with the medium and applying them with a brush.

The powder colors should be laid on a slab and be worked into a stiff paste with the fat oil which is afterward reduced to the proper working consistency by thinning with spirits of turpentine.

Those in tubes should be thinned according to directions.

60. After the ware has been painted it is necessary that it should be fired in an oven to vitrify the colors and bind them to the china. These ovens are portable, many of them, and are made small enough to suit the requirements of those who do not paint china in a commercial way. Again as in all our larger cities persons are found who fire china for an amateur clientele, many of these prefer to patronize them to save the expense and trouble of owning a furnace.

QUESTIONS ON CHINA PAINTING.

- 57. What is said about china painting in general?
- 58. What material is required?
- 59. How is the painting done?
- 60. What must be done to vitrify the colors?

COLORS.

61. Colors or pigments are of the utmost importance to the paint trade and it should be a subject of great interest to every one who handles a brush. They should be well understood by men who make daily use of them, for without an intimate knowledge of their properties and peculiarities the painting done with them may or may not be all that it should be. Many a good job well brushed on has gone wrong because of the ignorance of the painter who mixed the paint.

It will be impossible in a work of this size to devote as much space to the subject as it requires, but of all the most important at least, an explanation of their derivation, composition, manufacture and uses will be given. Their chief properties will be considered and warning given of their antipathies for other pigments.

For the purpose of examination the colors will be placed in groups—not because of nearness of relation to each other, nor of their chemical composition, because colors with but little difference in their chemistry may be of an entirely different color as the ferric oxide colors show—othre being yellow, while the Venetian reds are red. So the colors will be grouped ac-

cording to their coloring regardless of their composition.

62. Pigments are derived from each of the various kingdoms according as they are most important to the trade. First, those derived from the metals, as the leads, the ferric oxides, the zinc whites, those of copper origin, etc. Second, that numerous branch derived from the mineral kingdom, as the ochres, umbers, siennas, whiting, gypsum, etc.

Third, those derived from the vegetable kingdom, as most of the lakes.

Fourth, those of animal origin, as carmine, etc.

63. While pigments can thus be classed according to their origin, they must be reclassed again for the purpose of examination and grouped together not according to their formation but according to their color.

This will not only greatly facilitate the work but a comparison with others of the same color can be made more readily. Therefore they will be placed together into seven general groups. In each group the pigments which come nearest to its color will be classed. It is true that a few pigments will seem out of place as they border so near to another group that it is hard to tell which has the most claims for it, but only very few such cases will need bother one—the orange chrome yellows—some of the deeper one are really more red than yellow—and but for the fact that under the name of chrome yellow remarks are made which belong to the whole range of color of those yellows, no matter what

their tone may be, they would have been included in the red—but for reasons stated they are best placed with the yellows. It saves useless repetition or the need of referring the reader to the proper paragraphs giving the explanations.

- 64. a. For convenience sake then, the various pigments of real value to the painter have been classed in the seven following groups:
 - I. The whites.
 - 2. The reds.
 - 3. The yellows.
 - 4. The blues.
 - 5. The greens.
 - 6. The browns.
 - 7. The blacks.
- b. As each pigment varies in character from others and better adapted to some uses than to others—some being worthless in oil, while they may be invaluable as water colors and vice-versa, they must not be judged by their unfitness for work to which they are not adapted.

THE WHITES.

65. a. As the whites are by far the most important of all the pigments used in painting, it is fitting that they should be placed at the head of the list. This is due to them, not only because of their self color, in which they are used in enormous quantities, but also because they are the dominant pigment or base upon

which all light tints made by the addition of other coloring pigments are effected.

b. Whites are chiefly the products of the salts of the metal lead and that of zinc (its oxide and only white form). The rest of the whites being natural earths of various composition and extraction. In examining them the metallic whites being the ones mostly used will be placed at the head of the list.

THE METALLIC WHITES.

- 66. a. White lead heads the list by undisputed right, it being heads and shoulders ahead of any of the other whites, many times over more than all the others put together for out and indoor oil painting and well it deserves it. Its great covering power due to its opacity, (when the word covering is used in connection with a pigment it does not mean its spreading capacity so much as its opaqueness in hiding the coats of paint over which it is applied).
- b. Its peculiarities are that it forms a linoleate lead soap with linseed oil which renders it smooth and easy of application. This saponification does not extend to all the oil necessary to its application and it is a pity that it does not, as when dry the lead soap thus formed is insoluble.

White lead should never be used where sulphurous fumes are generated, especially where sulphuretted hydrogen gas is developed, as it greedily assimilates it and is turned into a black sulphide of lead. This change

will sometimes occur over night. The atoms composing the lead seem to have no affinity for one another and it is no doubt due to this reason that whenever the linseed oil commences to decay that having nothing to hold them on they dust or chalk off, as under the name this peculiarity is best known. It is true that white lead, even the best of it, chalks, but if the painting has been done with good linseed oil the chalking will not commence so soon, nor really is this peculiarity worth mentioning as a fault. A good coat of paint given soon after the lead is noticed to chalk will rebind on all these particles and the surface even when let go for sometime after that will always be in a good condition for repainting as white lead never scales off that has been applied with raw linseed oil.

c. The best qualities of the white lead of commerce known to the paint trade as "strictly pure" is that corroded by the "Dutch Process." This means that dilute acetic acid, carbonic acid, oxygen and hydrogen are furnished to the lead in more or less ingenious ways and that those agents corrode and combine with the lead and that the product of the combination is what is known as white lead. White lead is a basic carbonate of lead, or to be more correct, an hydrate oxide carbonate of lead. The proportion may vary somewhat, but that agreed upon as being the best is about 1/3 hydroxide of lead and 2/3 carbonate of that metal—more of the hydrate means better opacity but more chalking

propensity. More carbonate means less opacity but also less chalking.

d. There are two methods of corroding lead under the "Dutch Process" so called system, the *stack* and the *cylinder* methods.

The stack method consists in placing what are known as buckles (these are thin perforated discs of metallic lead) into porous earthenware pots of somewhat the same texture as flower pots. These have a space at the bottom to hold dilute acetic acid of the strength of ordinary vinegar and, along the sides are projections serving to keep the buckles apart. This and the perforations in the disc permits the acetic vapor and the carbonic acid gas to come into contact with the lead. First a floor of manure or tan bark or a combination of the two is laid down at the bottom of the stack, then a row of empty jars which are afterward filled with buckles to nearly the top, then dilute acetic acid is furnished to each jar through a hose with a nozzle. Then the tier is covered over with boards which again are covered with manure or tan bark and the same operations are repeated until the stack is completed to the top. The stack starts from the ground upward to what might be called the second story, but which in corroding houses is known as the working alley, as all the material is first received there to be placed in the stacks, a row of these extending on both sides of it to any length desired. The compartments called stacks being about 8 or 10 feet wide by about 12 to 16 feet long. There are stacks in

the corroding houses in all stages of completion. Some finished and the jars containing corroded lead being taken out, others being filled, and so on. It requires about three months to complete the corrosion, which goes on as long as any acetic acid remains and enough heat in generated by the manure to evaporate it and furnish carbonic acid, the main element absorbed by the lead to make itself what it is—a basic carbonate of lead. Were it not for carbonic acid being present and the lead having more affinity for it than for the acetic, then it would simply become an acetate of that metal—of no value whatever as a pigment.

c. The cylinder method is an entirely different system of applying the same elements entering into the lead corrosion, i. e., acetic acid, carbonic acid, oxygen and hydrogen, than that of the stack system, and produces a lead of the same chemical composition.

The lead in place of being cast into buckles is melted and while it is being poured out, a jet of live steam is played against it, reducing it to very small globules of about the fineness of ordinary sand. This sand is placed in revolving cylinders (hence the name of the system) which are connected with generators which furnish it with acetic acid vapors, carbonic acid gas, oxygen and the proper moisture for hydrogen. These cylinders revolve slowly all the time and the particles of lead being very fine are soon acted upon and the whole mass becomes pretty thoroughly corroded inside of three to six days. Besides the corrosion is nearly com-

plete, there being very little if any uncorroded blue or metallic lead remaining after the operation is over which cannot be said of the stack process.

f. Space forbids giving an extended description of the various handlings of the lead after it is corroded, before it is finally ground and packed ready for consumption in the way the painter is accustomed to buy it. There is no material difference between the two leads produced by either system. The difference is in the application of the corroding agents and time required with which operations the manufacturer is more concerned than the painter. The cylinder system does away with the application of manure, heat and carbonic acid being furnished from other sources. This manure, or rather fine particles of it, are very hard to keep out entirely in the stack system of corrosion. It is true that infinite pains are taken by conscientious manufacturers by repeated washings in water and fine silk gauze straining to get all such out, but even with such precautions, either through neglect or the human depravity of some of the workmen, it is not unusual to find little specks of it occasionally in some of the lead corroded by that system of which the cylinder lead is entirely free.

No one should be deterred from using either as the difference is immaterial; it is of course possible to make very poor pure lead by both systems and to have it off color and badly ground or packaged, but of that neither methods are responsible for.

SUBLIMED LEAD.

67. Sublimed lead is white and but that it would create confusion in calling it "white lead" because it would then be confounded with what has become a well known article, which, when it has been labeled "strictly pure" is supposed to mean, "hyd-carb. of lead" and nothing else, but for confusing the two it would be entitled to the name. But it would be unwise to open up a door which would break up the distinction between the two and to return to that state of uncertainty which in the past was so annoying and which it took so much fighting for, to establish upon the firm foundation it stands upon today.

Sublimed lead is a basic sulphate of lead containing in its composition some lead oxide with a small percentage of zinc oxide. It has much to recommend it for many purposes to which it is well adapted. It is extremely fine, so much so, that its particles float in oil without readily settling, making it an ideal dipping white paint. It is not affected by sulphureted hydrogen gas, fatal to most all other salts of lead. It is somewhat less opaque than Dutch process white lead, therefore does not cover quite so well. It is produced by the vaporisation of lead ore. These vapors are conducted to chambers above where they come in contact with oxygen contained in atmospheric air, combining with it, form the oxy-sulphate of lead. This transformation takes place in a somewhat similar manner as that which is described for the manufacture of zinc white

(see paragraph 69). At the present time it is being used in large quantities by manufacturers of ready mixed paints and color grinders, but so far it has not appeared under its own name in its white state, but is found in many of the compound whites manufactured by color grinders.

68. There are several other salts of lead that are white, such as the white oxide of lead and some other compound salts of that metal, none of which, however, have proven themselves formidable rivals of "white lead" all having so many faults that the ones related as appertaining to Dutch process white lead seem "venial" when compared to theirs.

ZINC WHITE.

69. a. Is the white and only oxide of that metal. For painting material it is a very valuable pigment and after "white lead" is next to that, the most extensively used of all the white pigments by all classes of painters with the exception of the carriage trade.

Its peculiarities are all its own and differ widely from those of white lead. It has more spreading power and absorbs more oil. It is not so opaque and in consequence does not cover so well as that pigment, but if its spreading power be taken into consideration, a given weight of it would probably cover over as much and as well as the same quantity of white lead would if thinned out sufficiently to cover as many square feet of surface as the zinc did. Zinc white cannot be applied

with the same amount of linseed oil as would suffice to render the white lead thin enough to work well with the brush, as it is much lighter in weight.

One of its peculiarities, is the great affinity existing between its atoms for each other, it is so great that after the oil has decayed they will hang together into a scale but never chalk off. In this respect it is the very opposite of white lead whose atoms we have seen have no affinity and which fall singly in what is known as chalking when the oil holding them together has decayed. But while this great adherence of its particles is good in some ways it has its faults too, in that when the oil has decayed instead of falling off single or chalking they hold together until they fall off as scales.

Zinc white therefore is a good corrective to combine with white lead for outside painting while the lead itself is a good corrective for the too great affinity of its own particles. The zinc preventing the chalking off of the lead and the lead its scaling propensities.

b. Zinc white is a very fine pigment to use in distemper, covering well and the tints made with it when used as a base are invariably cleaner and purer toned than those made with any other white as a base. The above also holds true for any tint made from it as a base with colors in oil.

It is invaluable for all enamelling work when ground in varnish. Some of the better kinds of French process made zinc whites are so very white in tone that ordinary white lead shows a yellowish tone when placed side by side together.

Zinc white is the oxide of that metal and is made in two different ways—but by the same process of oxidation. These two methods are known as the "French" and as the "American." The zinc white made by the so called French process is manufactured from the metal, while that named American from the zinc ore instead.

THE FRENCH PROCESS.

Zinc white made by the French process is produced by placing metallic zinc in retorts or ovens where it is vaporized by heat-this vapor is conducted to upper chambers which are supplied with fresh atmospheric air for which the zinc has a great affinity in the state of vapor and with which it instantly combines when it comes in contact with it. From the ceilings of these chambers hang long sacks with their mouths opened and closely fitted together into which the floculent feathery oxide rises up and is caught up in these. The oxide which is caught the farthest away from the openings through which the zinc vapor arises from the retorts is the whitest and best—that which is caught nearest the openings usually containing more or less of foreign matter in the shape of dust, etc., which finds its way from the retorts into the chamber. This feathery mass is next subjected to a powerful compression when it is then ground up and packaged

ready for the market in a dry state or to be ground up in oil or varnish.

THE AMERICAN PROCESS.

- d. The American process of making zinc white is essentially the same as that related for the French, differing from it only in the shape of the raw material. Instead of using the metallic zinc, zinc ore becomes the provider. That is placed in the retorts and vaporized in the same manner as related for the French process. However, as the ore contains so much more foreign matter and impurities the zinc white thus obtained is inferior in whiteness and quality to the first and is sold for less money than the other.
- e. The name of French zinc has lost its significance, as to being an index as to the source of supply of that article as today there is as good a quality of French process zinc made in America and which commands as good a price as any zinc white imported from Europe.

In both the French and American zinc white the first and second qualities are designated as green and red seal respectively. The green denoting the best quality—the red the second.

THE EARTH WHITES.

70. a. Earth whites so called are all of mineral origin and according as they contain as a base either lime, clay, or sand are known as cretaceous, aluminous

or silicious. All possess somewhat different properties, each being better than any of the others for certain specific purposes.

b. Cretaceous earths are chiefly used in water colors and for that matter all earth whites are at their best in distemper and have that much in common, excepting when they are used in oils as adjuncts, correctives or adulterants for the metallic whites or any of the coloring pigments where each differ materially from the other.

The principal pigment with a cretaceous base is whiting or the carbonate of line, all others being simply variations of it more or less impure. Whiting is used in immense quantities as a base upon which to make the tints used in the printing of wall paper. As the main base in mixing tints for calcimine or in its self color, it reigns supreme and nearly all the ready prepared calcimine found on the market contain it as the main ingredient in their preparation. As an adjunct to graining colors in oil it is highly valued as it enables the grainer to reduce the strength of his colors so they can be thinned much more than would be possible but for the addition of the whiting.

The only other cretaceous pigment of value which differs from whiting materially is *Gypsum* or the sulphate of lime. It does not work quite so well as whiting in water colors and is seldom used as such without a special preparation which is patented and too intricate for use by the general painter. It is the base used

in all the so called anti-kalsomine paints patented preparations. It is too transparent in oil to be of any use as a self paint but is valuable in the preparation of Venetian red where it becomes its base. It is also useful as a corrective in many of the other colors and in the compounding of white paints.

There used to be a number of whites in the markets some years ago such as Spanish white, London and other fancy named whites, which were prepared from whiting and from which they differed only in the form given it of pyramidal drops or cakes.

- c. The only pigment with an aluminous base is "China clay" which is worth mentioning. It possesses more body in oil than those of the preceding class and when well cleaned of foreign matter makes a good water color paint. On account of its body, if such may be called a semi-transparent muddy looking stuff in its self color in oil it is used as an adjunct and corrective in many white paints which come ready prepared but it is used most frequently as an adulterant.
- d. The silicious whites are represented by the white silicate earths. Some are found that are of a clean white but most of them are generally off color. The white ones are used in the preparation of "English kalsomine" and used as water colors but they are very inferior to whiting for such a purpose. Their greatest utility as pigments lays in the silicate earth's use as correctives to the white metallic pigments and as such also for several other colors. For such a pur-

pose they are used in very large quantities by the paint grinders, but are seldom bought as such and compounded by the consumer.

BARYTES.

- 71. a. Last but not least among the whites comes Barytes. Barytes in its native state is better known as heavy spar. This is ground, washed and is prepared for market according to the qualities it may possess. It is very heavy and in its natural state as clear as quartz.
- b. Its utility as a pigment is, to say the least, "questionable." From its transparency one may infer that as an oil color it would cover very little better than the linseed oil used in spreading it and for water colors it is inferior and more costly than whiting. It is true that when it has been prepared to the condition when it takes the name of "Blanc-fixe" it is highly prized by artists for use as an indestructible white in water colors —but then it is not in the same shape as the barvtes of commerce. In the latter shape barytes is an intimate friend of almost every color and every package of adulterated color or cheap ready mixed paint contains a good proportion of it. Its great clearness and transparency permits its use in almost any percentage that the greed of the manufacturer would suggest to him that it should be used or that the ability to unload it upon an unsuspecting public would permit.

THE REDS.

72. The red constitute a numerous class of pigments. They are derived from the metallic, mineral, vegetable and animal kingdoms. They comprise a range of color tones varying from a red brown to the most brilliant scarlet reds bordering on the yellow.

They will be reviewed according to their origin as derived from a metallic, mineral or vegetable kingdom.

THE METALLIC REDS.

- 73. a. Red oxide is the most common form of the red pigments derived from iron. It enters into the make up of a number of various reds and in its pure state all by itself is most excellent. It is seldom sold under that name in a pure state nor is it necessary that it should when it is considered that 20 to 25% of the pure color when added to any transparent base will cover solidly over any color black or white. It is so strong that unless it should be used for tinting it will bear reducing very much and still cover well. This addition of a cheaper material is legitimate under such a circumstance when it is known to the buyer and the cost of the paint reduced to him.
- b. Venetian red is supposedly a natural color, but that which is found upon the market today is certainly not of that character. It is made artificially and is much better for it, as then it can be made uniform in tone and texture which is not the case with any natural earth color. It is made upon a base of various kinds,

the chief of which are barytes, whiting and gypsum to which red oxide of iron has been added. That made with a gypsum base is much the best and the qualities known under the name of English Venetian red are usually of that quality. It contains about 25% of iron oxide and that is enough to enable it to cover over anything. That made upon a gypsum base is very permanent and the change noticed in pure red oxide due to a tendency to become hydrated making it more yellowish, is reduced to the minimum. Thus made it is permanent.

Turkey red, Pompeian reds of some, with others of many names really are only brighter specimen having been made by the addition of some very bright toned oxide of iron on bases similar to Venetian red and they should all be classed under that head and name. Besides the names are used by some manufacturers to designate an entirely different class of pigments especially that known as Turkey red which is a dark purplish red of a rich lakey tone.

All the reds derived from red oxide of iron made on a gypsum base are permanent or so nearly so as to warrant their being so called. All are useful in oil, japan and water colors and are used by all painters, decorators and artists.

c. The *Indian reds* derive their coloring matter from the peroxide of iron. At one time they used to be imported but now they are altogether of home manufacture, being much more even in texture and coloring matter than those which were mined and prepared from the Asiatic ore. Indian reds have a range of tones of an entirely different order from that of the Venetian reds, being of a purplish shade of red ranging from pale to dark. They are very useful in producing tints with white. The light toned Indian red producing tints of rosy lilac while the dark produce tones of a violet lilac. They can be used in oil coach and water color work. They and their shades are permanent.

These are all the red pigments derived from iron. It is true that there are a number of reds for sale in artists' colors especially which owe their coloring matter to either ferric oxide or the peroxide but not-withstanding their high sounding name they can all be classed as shades of either Venetian or Indian reds.

d. The Tuscan reds are included with the metallic reds because their base is usually Indian red plus some of the whites. They owe their beautiful tones to a dye in which they are plunged and which they absorb. If they have absorbed much of it they are classed afterward as deep Tuscan—if less as light Tuscan reds. It depends upon what the dyeing agent is, as to the beautiful tone being permanent or not. If made rich by a cheap aniline dye they will fade quickly—if from an alizarin one they will be permanent. They, like the Indian red, of whose nature they mainly partake, are useful for all sorts of painting in oil, japan or distemper but unlike the Indian red they do not produce very good tints with the whites.

THE RED PIGMENTS DERIVED FROM LEAD.

- 74. Red lead is the bi-oxide of that metal. It is made by roasting in retorts either the monoxide of lead or white lead or even the metal itself. They are kept in those revolving retorts until they acquire the proper amount of oxidation. Red lead while permanent in its constituent parts, fades to a lighter tone of yellow red as it has a tendency to return to a monoxide—its more natural condition. It is one of the best pigments known for the priming of iron and all metals and for such a purpose is used in enormous quantities.
- 75. a. Orange mineral is the ter-oxide of iron and is usually made from white lead which is off color from one cause or another. It carries more oxygen in its composition than red lead and is of a richer tone, but it also is not permanent, and will loose its extra oxidation and return to the monoxide. Both are subject to that foe of all lead salts except the sulphate —sulphureted hydrogen gas.
- b. American vermillion is a pigment made from white lead and bichromate of potash. It is crystallic in form and should not be ground fine as that destroys the color. Since the advent of the vermillion reds it has lost ground until it is little known to the present generation of painters.

ENGLISH VERMILLION OR QUICKSILVER VERMILLION.

76. a. English or quicksilver vermillion in the shape of native cinnabar which is a sulphuret of mer-

cury is found in all parts of the world where quick-silver is mined. Yet little if any ever finds its way to the market as such. All the quicksilver vermillion is artificially made. The process while easy to understand is nevertheless somewhat intricate and too lengthy to describe fully enough to be understood in the space available. It is first made into a black sulphuret by the addition of eight parts of sulphur to one of mercury which turns it into a black sulphuret which is its natural condition and afterwards it is sublimed when it is changed into the red which is an artificial condition for it, hence its tendency to darken as it seeks to return to its natural condition and it will quickly do so if left unprotected by varnish from atmospheric air.

b. It is used for a great many purposes but not to the same extent today that it was previous to the introduction of the para reds and other imitation vermillion reds. None can compare with it for richness or brilliancy of tone—but for its fugitiveness it would be the king of the reds. There are two varieties of it, one called the pale which is of a bright scarlet tone and the deep which has a bluish tinge and is of the amaranth order. The pale has a much better body or opacity than the deep and cannot be replaced by any other red for striping as it will cover solid over black which no other scarlet red will do in one coat. It is used chiefly by the carriage trade in a self color or as a ground to be glazed over with a carmine glaze. When well covered over by varnish and ground up in it, it

will preserve its beautiful tone a long time before changing its color.

THE IMITATION VERMILLIONS OR VERMILLION REDS.

- 77. a. Imitation vermillions, or vermillion reds as some know them, must not be confounded with American vermillion as some erroneously call them. (See paragraph 75 b.) They are not chromates of lead, but are made some of them at least upon a white lead or a chromate of lead base upon which is thrown a dye from which the base absorbs the rich coloring matter giving them the rich tones which make them near rivals of quicksilver vermillion; but there the resemblance ends. The dyes used in giving them their tones vary very much-some of the cheaper reds being colored with the cheapest of aniline dyes, which are fugitive while the better grades are colored with cosine and the best with alizarin. In the best of the vermilion reds such an excellence has been attained that they are much more permanent than quicksilver vermilion, if not quite so rich nor opaque.
- b. These reds are used for an infinity of purposes especially by coach painters, by agricultural implement manufacturers and all builders of machinery. They are as well adapted to water colors as they are to oil and japan work. They are known under an infinity of proprietary names and come in all qualities as well as tones from scarlet to purple red.

THE RED LAKES.

78. a. Lakes usually are transparent colors thrown upon a transparent base. They are chiefly used as glazing colors by artists and coach painters. Some of the lakes are only semitransparent and are used as self colors or in tinting—only more coats are required to cover solidly with them.

It depends upon the bases used in some degree and to a greater degree still to the coloring agent used in giving them their color as to whether the lakes are good or bad, permanent or fugitive. The range of tone for the red lakes is great varying from a scarlet and carmine down the scale to a reddish brown. Carmine itself is derived from coloring obtained from cochineal, an insect. It is too fugitive for work requiring permanency and has become supplanted by alizarin made lakes which are much more permanent and which equal the ones derived from madder.

THE YELLOWS.

78. a. The family of yellows is about of equal importance and to the house painter of greater value than the reds. The various yellow pigments are derived from the metallic, mineral and vegetable kingdoms while some are derived from a combination of these.

THE OCHRES.

b. Ochres while not the brightest in tone of the yellow pigments are by long odds the most useful of

that color. They are permanent and are used in their self color or combined with the whites to make a wide range of tints from an ivory or cream to a buff and combined with other colors to make an infinity of They may be placed in two general classes: the argillaceous and the silicious according as to which predominates in their base. The first are chiefly derived from America while the second comes from Europe. The argillaceous ochres are best adapted to water color work while the silicious ochres are much the best for oil painting especially if exposed out of doors. All ochres are natural earth products with an earth base colored with hydrate oxide of iron. They vary very much in the quality of this iron hyd-oxide. A volume could be written upon them and their peculiarities without exhausting the subject. The general house painter should never use the American or the argillaceous ochres for solid self painting nor priming for reasons assigned under heading entitled "Blistering of paint" (paragraph 4 c, which see). The silicate ochres or the genuine French and English are the only safe ones to use for such a purpose.

CHROME YELLOWS.

79. a. Chrome yellow or the neutral chromate of lead is the only one of all the shades and tones classed under that name which is really entitled to it as all other shades varying from it are either alkaline on one side or acid upon the other; the canary and range

of tones on the lemon order owing their lighter shade to sulphate of lead or rather to sulphuric acid which turns the lead to a sulphate and the range of the orange toned ones to lime or some other caustic alkali which turns them reddish. All shades owe their yellow tone to bichromate of potash which combines with the lead base to form the neutral and the other shades by the additions mentioned above.

b. Chrome yellows are used in oil, coach or water color painting. It is well adapted to all kinds of painting. The only limitation to their use is that under certain conditions they fade slightly or change their tone. Sulphureted hydrogen gases are as fatal to them as to white lead—that being a part of their make up. The sun's rays too have a tendency to cause them to change somewhat. But with all their faults there are no yellows so useful to the general painting trade. Should they disappear they would be sorely missed.

The chrome yellows with their extended range of shades and tones comprising the whole gamut of yellow tones from the palest of canary to the deepest of orange have nearly driven out of the market a number of other yellows which were extensively used a few years ago such as orpiment, Naples yellow, etc. While fugitives they are less so than those they have replaced.

80. A simple naming of the other yellows is all that will be necessary as their use has dwindled down to very small quantities and that mainly among artists and decorators of the old school. The only one of any

great intrinsic value is *lemon* or *baryta yellow*. This is permanent and but for its greater cost and of its being more transparent than the lemon chrome yellow it would be used more than it is.

Aureolin is a cobalt yellow very transparent even in water and difficult to handle.

Gamboge, an old standard in oil colors, transparent and very fugitive.

Indian yellow is of animal origin and when well prepared is of value to the artist.

Dutch pink. A yellow lake derived from grinding tree barks of various kinds—and dyeing some base with them—of no great value even to the decorator in water colors.

Naples yellow. Not to be relied on, as it is fugitive; besides it is no good as a water color and some varieties of ochre mixed with whites will closely reproduce its tone.

Vanadium yellow—Kings yellow besides being poisonous is not permanent.

Yellow lake under which name most anything that is transparent and will do for glazing is sold—all being fugitive and of little value to the general painter.

Under various fancy names the artists' catalogues are burdened with a host of proprietary named yellows belonging really to the ones already enumerated.

THE BLUES.

- 81. a. The blues are derived from metallic, mineral, vegetable and animal sources and combinations of these. Outside of ultramarine blue, no blues are found in a natural state.
- b. Prussian blue in both the soluble and insoluble form are chemically about the same. The first is better known as Chinese and as soluble blue. Both are prussiates of iron and are very useful in water or in oil colors. They will loose their color entirely by contact with fresh lime and are not entirely permanent in sunlight. They are very strong in coloring matter.
- c. Ultramarine blue is the most remarkable blue on the list. As said before it is the only blue found in nature in a developed state, but is difficult of extraction from its matrix "Lapis Lazuli," a semi-precious stone, so it was sold at an enormous price and royalty only could enjoy its use. It is produced artificially at a very low cost fully equal in quality or tone to the genuine. It is entirely permanent in sunlight or in contact with lime and has a range of tones from a greenish blue running to clear blue and on to a purplish cast of blue, the latter being much inferior in tone to the true blue. Ultramarine blue is made use of in all kinds of painting ground in oil, in japan or in water and all-painters praise it highly. It is not nearly as strong in coloring matter as Prussia blue.
- d. Cobalt blue is a very pretty tone of light blue which when pure (which it is difficult to find) is de-

rived from cobalt. It is universally made now by simply mixing enough zinc white to a clear blue ultramarine to reduce it to the tone of the true cobalt blue so that practically it is only a tint of those two pigments. It is so easily made by admixture that few supply stores carry it in stock. It is fully as permanent as its parents.

- e. Ceruleum is another cobalt color which can be readily imitated by using the greenish blue ultramarine reduced with zinc white.
- f. Indigo blue is derived from a plant and its use in either water colors or oil is confined to a few artists. With so many better blues to choose from, its name as a pigment might as well be forgotten. The scene painters use it mostly.

The above comprise all the useful blues. Yet the manufacturers of artists' colors persist in loading down their catalogues with a long list of names to confuse the public with the false idea that such are distinct pigments when they are not.

THE GREENS.

82. a. A wide range of greens are found in the market but they can be all classed in two groups, those whose tones incline towards the yellows and those which incline towards the blues. Green is a secondary and a compound color made from yellow and blue, so there is nothing very remarkable in the fact that its tones should incline one way or the other toward the parents.

Greens are all made chemically, yet some dirty greenish black earths are found and classed as greens in some catalogues.

- b. Chrome greens as they are known in America are by far the most used of any of the greens. They are made by various combinations of Prussian blue and chrome yellow or their chemical equivalents and precipitated. Their range of tone is great from very light tender grass green nearly as bright as Paris green down to the deepest tones bordering on black. While not absolutely permanent, they are fairly so. Of course, lime will destroy the Prussian blue it contains. On the continent and especially in England chrome green is the named applied to the green oxide of chromium, a color little known or used here, but fairly permanent.
- c. Cobalt or zinc green, as some call it, is derived from that metal. It is permanent but as it can be very nearly duplicated by using a good green ultramarine and zinc white one might just as well call it a tint of those pigments and prepare it from them when needed.
- d. Viridian is an invaluable green to the artist but its great cost will hardly permit its use to the general painter. Much of it is adulterated and it is better to buy it only under the label and name of well known makers of artists' colors.
- e. Paris or emerald green as it is known in England is a very poisonous arsenical product. It is very transparent and only fit to glaze with. It should be discarded entirely.

f. Verdigris. Another poisonous pigment derived from copper. It was used in the past much more than it is today. It is said to possess anti-fouling properties and is used by a few in the painting of boat bottoms. A few old time carriage painters still use it as a glaze but many general painters today die without having ever seen it and never miss it.

Beside the above are to be found a large number of greens sold under proprietary names—all are various shades of chrome greens to which manufacturers have attached a trade mark name of their own. This creates confusion, leading people to think that such are some different production—besides there is the usual array of fancy named greens of the artists' color catalogue, none better if as good as the well known colors described above.

THE BROWNS.

83. a. The Browns are produced in abundance in the natural state by mother earth. There are also to be found of metallic origin. To facilitate the understanding of some of the brown earth pigments, it will be well to note that the burning of them has a tendency to change their tone. Those containing ferric oxide will become redder than they were in the raw state. Those containing manganese will become darker in tone. Nearly all the brown earth pigments are valuable for one purpose or another in water colors to produce neutral tint and for the same purpose in oil paint-

ing or in japan for the coach painter. Some are very transparent, others only semi-transparent and such are of value to the grainer or for glazing to the carriage painter, artists and decorators.

- b. Umber, raw and burnt, vary very much in their composition. The best come from Asia Minor and are sold as Turkey umber. The raw is of a greenish brown and by burning is changed into a rich clear toned brown which in good umbers will be free of redness—they are semi-transparent. They are useful in all kinds of painting and in all mediums.
- c. Siennas, raw and burnt, like the umber vary greatly, so much so as to be hardly recognizable as being of the same nature—the poor, showing a muddy brownish red tone in the burnt, while the good has a rich subdued red which has a clear lakey transparency. For this reason the siennas are invaluable to the grainer and artists, who could not get along without it. It is used in oil, japan and water color painting.

The raw owes its yellowish brown tone to its ferric oxide which is hydrated and which looses by burning, becoming red after that.

d. Vandyke brown is a natural bituminous color found chiefly in bogs. It is known as Cassel earth, from the town in Germany near which it is produced. It is very transparent. It is useful as a glazing color in carriage painting and as a graining color to the grainer. It is not entirely permanent and for that reason, besides

of its being a very poor dryer in linseed oil, it is not as extensively used now as it was.

- e. Asphaltum or mineral pitch, when well refined is useful as a glaze, it being very transparent. As it is liable to crack it is more useful in show card painting or for the painting of iron gratings, heat registers and such than for anything else.
- f. Metallic browns. Under that name a number of raw and calcined dark iron oxide paints are marketed, some becoming quite reddish by calcination, some being of that tone naturally. They have an excellent body or opacity but that the tone of their color is not very attractive nor the tints made from them they would be used still more than they are. For freight car painting, bridge work, barns and the cheap outbuildings, roofs and all kinds of structural iron work they are used in immense quantities.

Under the name ought to be included such old time colors as Spanish brown, etc., which designation is still used on the eastern seaboard while it has become obsolete in the middle west.

THE BLACKS.

84. a. The blacks play an important role in every department of painting. It is used largely as a self color in the painting of iron work, steam and other ships and carriages, coaches, etc. While as a tinting color with whites and as an adjunct to other colors to darken them they are invaluable as tint producers.

Most of the blacks are of carbonic composition produced in a natural state in black lead; derived from fats as in lampblack or from the calcination of the bones of animals as ivory black and again the product of the calcination of woods as in Brunswick black.

- b. Lampblack is produced by the incomplete combustion of fatty substances. It is very strong in coloring matter, but only moderately black in tone. It produces clean toned grays with whites and is the best black to use for the making of tints with any other colors. It is used more than any of the other blacks by sign and house painters and by the carriage trade for priming coats. It has more opacity than any other black excepting gas black.
- c. Gas black or carbon black is also a black produced by the incomplete combustion of natural gas. It is more intensely black than lampblack and used as a self color it is a close rival to the bone blacks for its jet black tone. As a tint producer it is very poor—the tints being rusty with none of the clearness of lampblack. It is used to improve the tone of that pigment in sign writer's black and since the grinders have discovered a way of grinding it so that it will not liver with linseed oil, it is highly prized for solid black painting of all kinds. It is also substituted for drop black in the cheaper colors ground in japan as it will bear adulterating 10 to 1 and still be as strong as ivory black.
 - d. Ivory, drop and coach blacks are all one and

the same article under different labels it is true but—the same. They are bone blacks which vary greatly in quality according as to the kind of bones, hard or soft, used in calcination and also in the carefulness in conducting of the process. All are useful in oil, japan or water colors. It is used in all kinds of painting, but the carriage trade consumes the most of it.

- e. Brunswick black is the charcoal produced by the combustion of twigs of trees and vines of various growths. It is very transparent and useful only in water colors.
- f. Black lead or plumbago is a natural carbon produced by nature and it is mined in many parts of the world. As a pigment it is permanent and but for its indifferent tone, would be used more extensively than it is. It is chiefly used in oil for the painting of roofs, iron structures and out door painting.

This ends the list of useful pigments.

QUESTIONS ON COLORS.

- 61. What is said regarding colors in general?
- 62. In how many main classes can pigments be divided?
 - 63. How are pigments grouped for convenience?
 - 64. a. How many groups of colors?
 - b. What is said concerning their characters?
 - 65. a. What is said of the whites generally?
 - b. Give their derivation?
 - 66, a, What is said generally of white lead?

- b. What are its peculiarities?
- c. What is the "Dutch process" or corrosion?
- d. What is the "stack" system of corrosion?
- c. What is the "cylinder" system of corrosion?
- f. Does one system make a better white lead than the other?
- 67. What is "sublimed lead"?
- 68. Are any of the other salts of lead that are white useful as paints?
 - 69. a. What is said of zinc white and its peculiarities?
 - b. How many processes are used for making zinc white?
 - c. Describe the French process?
 - d. Describe the American process?
 - e. Are French zinc whites made in France only?
 - 70. a. How are the earth whites divided?
 - b. What are the pigments with a cretaceous base?
 - c. What are the pigments with an aluminous base?
 - d. What are the silicious whites?
 - 71. a. What is barytes?
 - b. What are its uses?
 - 72. What is said of the reds generally?
 - 73. a. What is said of red oxide of iron?
 - b. What is said of Venetian red, Pompeian red, Turkish red, etc.?

- c. What is said regarding the Indian reds?
- d. What are Tuscan reds?
- 74. What is red lead and what are its uses?
- 75. a. What is orange mineral and what are its uses?
 - b. What is American vermillion?
- 76. a. What is English or quicksilver vermillion?
 - b. Where is it mostly used?
- 77. a. What are imitation or Vermillion reds?
 - b. What are their uses?
- 78. What are lakes and what are their uses?
- 79. a. What is said regarding the ochres?
 - b. What are chrome yellows?
 - c. What are their uses?
- 80. What other yellows are they?
- 81. a. What is said of the blues in general?
 - b. What is Prussian blue and what are its
 - c. What are ultramarine blues and what are their uses?
 - d. How is cobalt blue made?
 - e. What is ceruleum and how is it imitated?
 - f. What is said of indigo blue?
- 82. a. What is said of greens in general?
 - b. What are chrome greens?
 - c. What about cobalt or zinc greens?
 - d. What is said of viridian?
 - e. What of Paris or Emerald green?
- 83. a. What is said generally of the browns?

- b. What about raw and burnt umbers?
- c. What about raw and burnt sienna?
- d. What is Vandyke brown?
- 84. a. What is said of the blacks generally?
 - b. What is lampblack and what are its uses?
 - c. Where does gas black differ from lamp-black?
 - d. What is Brunswick black?
 - e. What is black lead or plumbago?

COLOR HARMONY.

85. Exterior and even more so interior painting no matter how well it may have been done nor how well planned, the decorations will have that undefinable "gingerbread" look to it as the painters would call it, if the coloring lacks in harmony, and even if well done and harmonious, if the draperies, furniture and carpets are not in harmony with the painting, that will suffer in consequence of the latter inharmonious neighborhood.

It is said that poets are born but not made; this to a certain extent can be said of a good colorist. It is a lamentable fact that 10% of men are at least partially color blind and incapable of judging the effects of true harmony. Some are totally color blind and can only recognize shades of black and white—the latter case is much more rare but railroad companies are forced to reject a large per cent of applicants for positions where the quick recognition of certain colors is a "sine qua non,"

But while poets are not made, persons who so desire may educate themselves into certainly not becoming good colorists but into a knowledge of the laws governing coloring and when they understand them fairly well they will be able to design color schemes which will not be an outrage upon the vision of persons of taste who are naturally able to recognize harmonious coloring.

86. The subject of color harmony is too deep a topic to elucidate in even a desultory manner in the small space which can be devoted to it in a manual which is to treat of the whole subject-matter of paint and painting. All that can be done is to point the reader the way to a deeper study of harmony in books devoted to the subject of which many have appeared recently.

To understand how to harmonize colors one must first of all become acquainted with a knowledge of what colors are. These are the result of decomposition of light which is white and which is the result of the perfect union of all colors. The rainbow with its beautiful coloring does on a large scale what a glass prism breaking the sun's rays does on a smaller scale; it decomposes the rays into the various colors of the spectrum.

This decomposition of light shows in reality to the naked eye but three groups of three colors each, the last three but faintly, however, while the first three alone cannot be divided and therefore are called the *primary colors;* they are: *Red, yellow* and *blue*.

- 87. Secondary colors, also three in number, are formed by the mixture of any two of the primaries, thus: Red and yellow gives *orange*, red and blue gives *purple* and yellow and blue gives *green*. So orange, purple and green are the secondary colors.
- 88. A third trio of colors is produced by the mixture of any two of the secondaries thus: Orange and green gives *citrinc*; green and purple gives *olive* and orange and purple gives *russct*. So citrine, olive and russet constitute the three tertiary colors.
- 89. The further combination of the tertiaries produce an infinity of neutral grays with an addition of white or black.

It must be born in mind that to produce a perfect harmony that the primaries or their equivalents in secondary or tertiary colors ought to be present to produce a perfect harmony in about the same proportion as they exist in the spectrum and in which they unite to produce perfect light or white.

- 90. But other harmonies can be produced by graded shades of the same color. Such an harmony is always pleasing to the eye and are always in good taste, so that a person can hardly err in giving satisfactory results if he treats his decorative scheme in this way. This is called harmony by analogy.
- 91. Harmony by contrast is much more difficult to master, as it is not only the coloring used in the decoration that must be taken into consideration but that of the furniture and draperies. Besides there are a great

many things which must be well understood which enhance or detract from the effects to be had from the use of any color.

A good general rule to follow, is: that the complementary colors (as are called the contrasting opposites) should be used in about the same proportion as the three primary colors themselves stand in the formation of pure white. The primary colors stand in the proportion of three parts red, five parts yellow and eight parts blue in the make up of white light; then if the leading color used in the decoration is blue, it follows that red and yellow or the product of their combination, orange is the complementary color of blue and either that or the color value of these in others either secondary or tertiaries must be used in about the proportion needed of the primaries in making them would have stood to make white light. If yellow is the main color ground, blue and red or their tertiary equivalents or secondary, which is purple, must be the complementary color to use. If the main color be red then green, which is the result of the union of blue and yellow, is the contrasting color of red.

It does not follow however that a pleasing contrast will follow even by a proper use of opposites, unless these are of the right tones and shades and as these depend upon a number of qualifying circumstances which will have great influence in the making of a perfect blend, the laws of color relation to each other and of the effect of neutrals and of black and white must be well understood.

- 92. The secondary and tertiary colors are simply combinations of the primaries and their source must be carefully noted, so that the equivalent of the opposites may be furnished as they are necessary to form a good harmony by contrast.
- 93. The rules given are general and must be very incomplete even then as so much must be taken in consideration as influencing the results in the use of color that the reader must be referred to some good treatise on color harmony treating the subject-matter fully. Then only can one understand why it is that after having chosen proper complementary colors, that the contrast seems dull or out of harmony. The knowledge of the effect neutral tones have in heightening or depressing colors or why certain tones should be used instead of others of the same color will then be understood and even a partially color blind decorator will not commit any unpardonable sins—in harmonizing colors.

QUESTIONS ON COLOR HARMONY.

- 85. What is said of color harmony?
- 86. What are the primary colors?
- 87. What are the secondary colors?
- 88. What are the tertiary colors?
- 89. What are further combinations called?
- 90. What is harmony by analogy?
- 91. What is harmony by contrast?

- 92. What is the harmony of contrast of the secondary and tertiaries?
 - 93. What is further said regarding harmony?

COLOR MIXING.

94. The mixing of tints requires some care and attention but is not as difficult to understand as many suppose it to be. If the rules given below are strictly followed, even a novice will come very near to the matching of sample tints—at least of such as are mostly used and with the tones of which he is familiar.

There is a wide difference between mixing tints in oil or in water colors. In the former a person can see for himself just what the mixture is all through the stages of the mixing but in water colors the tints show so much darker than they will be when dry that somewhat different rules must be adopted to mix the two.

RULES FOR MIXING COLORS IN OIL.

95. a. The base color is always the most important one. It may be any color and here is where some good judgment is at times required to determine what that is, when one has to choose it for himself in trying to match certain samples. Usually it is a white if the tint is at all light in tone. If it be a dark one, the mixer should be sufficiently well acquainted with colors to judge at a glance which must be used as having the prevailing importance in the make up of the tint and that is the base.

- b. This base should be well broken up in linseed oil but not nearly as thin as it should be for application with a brush. If it be white lead, the most usual base for all light tints, it is better to have it well broken up the day before as then all small lumps will be dissolved and when it has been well stirred up, it will be uniform throughout—a very important requisite.
- c. The tinting pigments or colors which it will be necessary to add to the base for producing the tint should be pretty well thinned with linseed oil and turpentine half and half. It is of great importance that no lumps or specks remain undissolved in these and they should be thinned somewhat more than stated for that of the lead base. If necessary they should be strained through a fine meshed paint strainer.
- d. The pigment entering in the largest quantity in the make up of a tint aside of the base should now be mixed with it—not by pouring it in all at once and thus overshooting the mark, but very gradually and should be well stirred up to insure uniform incorporation. It should not be added to the full extent needed for the tint, but just short of it. Proceed next to add in the other colors needed in the same manner as stated above. When all the pigments required have been well stirred up, if the mark has not been overshot, the resulting tint will be very near to the color wanted and by a further addition of this or that one, the tint will be brought up to just where it is wanted. If too much coloring pigment has been put in however it is easy to

understand that it cannot be taken out. Then the only remedy is to add more base to counteract the too great quantity of color used and also of the rest of the tinting colors and this usually means loss of material where too much has been mixed.

- e. A list of principal tints is given further on. Many are so very closely related that but some who desire to make them, might be misled, they might as well have been left out. Another word—what one man understands as an apple green may be very different from what another's idea of what an apple green ought to be and so on all through the list. For this and other reasons the quantity of each is not given. The other reasons are that some colors of the same name bought of various manufacturers may be twice, thrice and even four or ten times stronger in coloring than others and a tint would be utterly ruined if quantities were given. The colors are named according to the importance they occupy in making the tints. The more important being named after the base and the leastlast.
- 96. Tints in water colors require about the same coloring pigments to produce any given tint as in oil and the same advice about not overdoing the addition of the pigments to the base is even more needed. The base for tints is usually whiting or some other earth white which has been properly thinned with glue water. But after colors also thinned with glue water have been added, as the tint appears much darker than it really

is, it will be necessary to "try" it. Dip a small piece of paper in it and place it in the sun or upon a stove and dry it. As soon as dry the true tone of the color will show up and any colors lacking can be added—gradually, well stirred up and tried by heat again, being always careful to have it just a trifle under than above the mark. This trying is tedious, it is true, but much less so than having to throw away the whole batch and commence the mixing all over again—and less expensive too.

LIST OF TINTS.

97. Acacia. Lampblack for base, colored with Indian red and tinged with Prussian blue.

Acorn brown. See Chocolate as it is nearly the same but lightened up with white lead.

Alderney brown. Lampblack, orange chrome yellow, French ochre, white lead.

Alabaster. White lead for base, add enough medium chrome yellow to very slightly tinge it.

Amaranth. Tuscan red and vermillion for base, add enough ultramarine blue to shade wanted.

Anemone. Vermillion red for base, add Prussian blue to suit shade wanted and a trifle of black and white lead or zinc which is better.

× Antique bronze. Orange chrome yellow for base, add ivory black. Lampblack can be used but shade will not be so bright.

Antwerp blue. Ultramarine blue for base, add

chrome green to shade wanted, lighten up with zinc white.

Apple green. White lead for base, add light chrome green and orange chrome yellow.

Apricot. Medium chrome yellow for base; venetian red and carmine lake. If a light shade is wanted lighten it up with zinc white.

Armenian red. Bright venetian red for base, lightened up with French ochre.

Asiatic bronze. Raw umber for base; medium chrome yellow to which add sufficient white lead for shade wanted.

Ash gray. White lead for base; tinge with lamp-black; add a bit of French ochre.

Autumn leaf. White lead for base; to which add French ochre, orange chrome yellow, a trifle Venetian red to tinge it to tone of red desired.

Asure blue. White lead for base, but zinc white is better; add Prussian blue to shade of it desired.

Bay. Lampblack for base; add Venetian red and orange chrome yellow.

Begonia. Vermillion red of a good scarlet shade for base; tinge with Prussian blue and lampblack.

Bismark brown. Burnt sienna for base; add burnt umber and orange chrome yellow; lighten slightly with white lead to suit.

Black slate. Lampblack for base; Prussian blue; slightly lighten it up with white lead.

Bordeaux blue. Lampblack for base; Prussian blue, orange chrome yellow.

Bottle green. Lampblack and Prussian blue for base; lemon chrome yellow; to obtain this color at its best glaze it over with a yellow lake.

Brass. White lead for base; add medium chrome yellow and French ochre to shade of it wanted.

Bronze blue. Lampblack for base; tinge with Prussian blue and slightly lighten with white lead.

Bronze green. Extra dark chrome green for base; add lampblack. For a richer tone of it: medium chrome green for base, add ivory black and a trifle of raw umber.

Bronze red. Vermillion red for base; add orange chrome yellow and a trifle of lampblack.

Bronze yellow. Medium chrome yellow for base; raw umber, lighten up to suit with white lead.

Brick color. Yellow ochre for base; add Venetian red to suit; for very light shades add white lead in very small quantity.

Brown stone. Tuscan red for base; add orange chrome yellow; lighten up to suit with white lead. Some shades of it require a bit of ivory black.

Browns and Brown drabs—all shades. Venetian red for base; add French ochre and lampblack in various proportion according to shades of brown wanted. For the brown drabs add white lead to reduce the above brown tints.

Buttercup. White lead for base; add lemon chrome yellow to suit shade wanted.

Café au lait. Burnt umber for base; add white lead, French ochre and Venetian red.

Cambridge red. Vermillion for base; add Prussian blue to suit.

Canary. Use chrome yellow of that name or lemon yellow for base, lightened up with zinc white.

Carnation. English vermillion for base; add good madder lake or carmine. If wanted very light, add zinc white.

Celestial blue. Prussian blue for base; chrome green and zinc white.

Cerulean blue. Zinc white for base; add ultramarine blue of good tone to suit.

Chamois. White lead for base; add French ochre, medium chrome yellow to suit, redden it with a little burnt sienna.

Chamoline. White lead for base; add raw sienna, lemon chrome yellow to suit.

Chartreuse. Medium chrome yellow for base; add some medium chrome green.

Chestnut. Venetian red for base; add medium chrome yellow, French ochre and lampblack to suit.

Chocolate. Burnt umber for base; add rich crimson vermillion red or lake. Another which is cheaper but not so rich: French ochre for base; add lampblack and Venetian red to suit.

Cinnamon. White lead for base; add burnt sienna, French ochre, medium chrome yellow.

Crimson. Deep English vermillion or any of the crimson shades of vermillion reds. If desired very rich, add some of the crimson lakes or glaze with them.

Claret. Madder lake and ultramarine blue for base, to which add English vermillion and ivory black.

Clay bank. French ochre for base; add orange chrome yellow, lighten up with white lead to shade desired.

Clay drab. White lead for base; medium chrome yellow, raw and burnt umber.

Cobalt blue. This is a solid blue. Good ultramarine blue; lighten up to suit with zinc white.

Cocoanut brown. Burnt umber for base; lightened up with white lead.

Colonial yellow. White lead for base; add medium chrome yellow, tinge with a trifle of orange chrome yellow.

Copper. Medium chrome yellow; tinged with burnt sienna.

Coral pink. Vermillion for base; white lead, medium chrome yellow.

Cotrine. White lead for base; add orange chrome yellow and lampblack.

Cream color and all the buffs. White lead for base; add some good French or Oxford ochre to make the shade of them wanted. More or less of the ochre added to the base will make an affinity of shades of that order.

Dove color. White lead for base; add ultramarine blue, Indian red and lampblack.

Dregs of wine. Dark Tuscan red for base; add white lead and a trifle of zinc white.

Ecru. White lead for base; add French ochre, burnt sienna, lampblack. The tint has a wide range of tones.

Electric blue. Ultramarine blue for base; add white lead and raw sienna.

Emerald. Paris green as it is, or better an imitation of it, in very light chrome green.

Egyptian green. White lead for base; add raw umber, lemon chrome yellow, Prussian blue to suit.

Fawn. White lead for base; add medium chrome yellow, Venetian red, burnt umber.

Flesh color. White lead for base; add medium chrome yellow, French ochre and Venetian red.

Fog blue. Burnt sienna for base; add Prussian blue, then lighten up with white lead to suit.

French blue. Ultramarine blue for base; lighten up with zinc white to shade wanted and tinge it slightly with light chrome green.

French gray. White lead for base; add ivory black with a faint tinge of ultramarine blue and madder lake or carmine.

French red. Indian red for base; add English pale vermillion to brighten it, then glaze with madder red or carmine.

Gazelle. French ochre for base; add Tuscan red,

Venetian red, lampblack, lighten up to suit with white lead.

Geranium. Vermillion red for base; add Indian red and a trifle of ivory black.

Gobelin blue. Ivory black for base; add white lead, Prussian blue and a trifle of medium chrome green.

Gold. White lead for base; add medium chrome yellow, some good bright French ochre and a very little English vermillion or vermillion red of good tone.

Golden brown. French ochre for base; add orange chrome yellow, lampblack. Lighten up with white lead to suit.

Grass green. Extra light chrome green just as it comes from the can or lighten up the light chrome green with canary chrome yellow.

Gray green. White lead for base; add ultramarine blue, lemon chrome yellow, lampblack.

Granite blue. White lead for base; lampblack, Prussian blue.

Green stone. White lead for base; add medium chrome green, raw umber, and French ochre.

Gray stone. White lead for base; add lampblack, Prussian blue, Venetian red.

Gray drabs—all shades of them. White lead for base; add lamp or drop black with a little burnt umber in various proportions according to the depth and shade of drab wanted.

Grays, all shades. White lead for base; lampblack in various proportions to suit shade wanted.

Hay color. White lead for base; add orange chrome yellow, light chrome green, Indian red.

Heliotrope. Zinc white for base; add bright Venetian red and ultramarine blue.

Indian pink. White lead for base; add Indian red.Indian brown. Indian red for base; add lampblack,French ochre.

Iron gray. Lampblack for base; add white lead and a trifle of orange chrome yellow.

Ivy green. French ochre for base; add lampblack, Prussian blue.

Jasper. Lampblack for base; add medium chrome yellow, light Indian red.

Jonquil. White lead for base; add medium chrome yellow to which should be added a tinge of red with English pale vermillion.

Lavender. White lead for base; add ivory black, ultramarine blue, tinge with carmine or madder lake.

Leaf buds. White lead for base; add orange chrome yellow, light chrome green.

Lead color. See Grays.

Leather. French ochre for base; add burnt umber. If a warm tone is wanted add Venetian red.

Lemon. Use the chrome yellow of that name.

Lilac. White lead for base; add dark Indian red to suit.

London smoke. Yellow ochre for base; add ultramarine blue, lampblack, lighten up to suit with white lead.

Magenta. Vermillion for base; add carmine or madder lake with a tinge of ultramarine blue.

Manila or deck paint. White lead for base; add French ochre, medium chrome yellow.

Marigold. Medium chrome yellow for base; add white lead, orange chrome yellow.

Maroon. Carmine or madder lake for base; add ivory black and a bit of orange chrome yellow. A cheaper way: Tuscan red for base; add orange chrome yellow and some ivory black.

Mastic. White lead base; add French ochre, Venetian red and a trifle of lampblack.

Mexican red. Bright Venetian red for base; add red lead.

Mignonette. Medium chrome green for base; add Prussian blue, medium chrome yellow, lampblack.

Mascot. Lampblack for base; add Prussian blue to suit.

Mauve. Ultramarine blue for base; add zinc white, tint with madder lake.

Methyl blue. Ultramarine for base; add medium chrome green and a tinge of red.

Moorish red. Vermillion red for base; add madder lake.

Mouse color. White lead for base; add lampblack, a tinge of Venetian red and burnt umber.

Moss rose. Lemon chrome yellow for base; add medium chrome green; lighten up with white lead to suit.

Mountain blue. White lead for base; add madder lake, ultramarine blue.

Navy blue. Ultramarine blue for base; add ivory black.

Neutral blue. Prussian blue for base; add raw umber and lighten up with white lead to suit.

Nile blue. White lead for base; add Prussian blue with a trifle of medium chrome green.

Normandy blue. Medium chrome green; ultramarine blue, a trifle of white lead.

Nut brown. Lampblack for base; add Venetian red, medium chrome yellow, French ochre.

Oak color. Light and dark shades of it. White lead for base; add French ochre and a small quantity of Venetian red; vary quantities to suit light or dark shades.

Old gold. White lead for base; add medium chrome yellow, French ochre and a little burnt umber.

Olive. Lemon chrome yellow for base; add about equal parts of Prussian blue and lampblack. Some shades of olive can be made by substituting French ochre for lemon chrome yellow, when, of course, the tone will not be so bright. A trifle of lemon chrome added to the ochre will improve it and still make another variety of it.

Olive brown. Raw umber for base; add lemon chrome yellow. Vary the quantity to suit depth of tone wanted.

Opal gray. White lead for base; add burnt sienna, ultramarine blue.

Oriental blue. White lead for base; add Prussian blue, lemon chrome yellow.

Oriental green. Raw umber for base; add lemon chrome yellow to suit.

Orange. Orange chrome yellow as it comes from the can.

Orange brown. Orange chrome yellow for base; add raw sienna, a trifle of burnt umber.

Peach blossom. White lead for base; add pale Indian red to suit. A tinge of madder lake will enrich it.

Pearl. White lead for base; add ivory black and a trifle of ultramarine blue and carmine lake. This is a very light shade just off the white. It must not be overdone.

Pea green. White lead for base; add medium chrome green to suit.

Peacock blue. Ultramarine blue for base; add extra light chrome green and zinc white to suit.

Persian orange. Orange chrome yellow for base; add French ochre, white lead.

Pistache. Ivory black for base; add French ochre, medium chrome green.

Pink. Zinc white for base; add madder lake or carmine or the crimson shades of vermillion.

Pompeian red. Vermillion red base; add orange chrome yellow, a bit of ivory black.

Pompeian blue. White lead base; add ultramarine blue, vermillion red, French ochre.

Plum color. White lead for base; add Indian red, ultramarine blue.

Portland stone. French ochre for base; add raw umber; lighten up to suit with white lead.

Primrose. White lead for base; add lemon or medium yellow chrome, according to the shade wanted.

Purple. White lead for base; add dark Indian red and a trifle of light Indian red to suit.

Purple brown. Dark Indian red for base; add ultramarine blue, a trifle of lampblack and white lead to lighten up to suit.

Quaker green. White lead for base; add French ochre, lampblack and burnt sienna.

Roan. Lampblack for base; add Venetian red, Prussian blue; lighten it up to suit with white lead.

Robin's egg blue. White lead for base; add ultramarine until the shade is a deep blue, then add some pale chrome green to suit tone desired of it.

Russet. White lead for base; add orange chrome yellow, a trifle of lampblack and Prussian blue.

Russian gray. White lead for base; add ultramarine blue, pale Indian red and lampblack.

Sage green. White lead for base; add medium chrome green until the tint is nearly but not quite a pea green, then add lampblack to tinge it the sage tint.

Salmon. White lead for base; add French ochre,

burnt sienna, with a trifle of English vermillion or a good vermillion red.

Sapphire blue. Zinc white for base; add ultramarine blue.

Sap green. White lead for base; add medium chrome yellow, lampblack.

Sea green. White lead base; add Prussian blue, raw sienna.

Seal brown. Burnt umber for base; add good French ochre and a trifle of white lead.

Scarlet. Pale English vermillion or any of the scarlet toned vermillion reds.

Shrimp pink. White lead base; add Venetian red, burnt sienna and a trifle of vermillion.

Sky blue. White lead for base; add Prussian blue to suit

Slate. White lead for base; add raw umber, ultramarine blue, lampblack.

Spruce yellow. French ochre for base; add Venetian red; lighten up with white lead to suit.

Snuff color. French ochre for base; add burnt umber and a bit of Venetian red.

Straw color. Medium chrome yellow for base; add French ochre; a bit of Venetian red; lighten up with white lead.

Stone color and yellow drabs. White lead for base; add French ochre; tinge up with medium chrome yellow and burnt umber. By varying quantities all shades of yellow drab can be made.

Tan. White lead for base; add burnt sienna and a trifle of lampblack.

Tally-Ho. White lead for base; add French ochre, Venetian red, dark chrome green with a bit of ivory black.

Terra-cotta. French ochre for base; add Venetian red and white lead. Some shades of it require the addition of Indian red. If some rich shades are wanted use orange chrome yellow in place of French ochre; add Venetian red and a trifle of burnt umber to suit.

Turquoise blue. White lead for base, or better zinc white and cobalt blue; Paris green or pale chrome green.

Vienna brown. Burnt umber for base; add Venetian red, French ochre, and lighten with white lead to suit.

Violet. White lead for base; add pale Indian red, a trifle of dark Indian red.

Willow green. White lead for base; add sufficient medium chrome yellow to make a pretty deep shade; then add a small quantity of raw umber and ivory black.

Wine color. English vermillion or scarlet toned vermillion red for base; add madder lake or carmine, ultramarine blue, lampblack.

Another way: Dark Tuscan red of good quality to which add a trifle of ivory black.

Water green. White lead for base; add raw sienna, dark chrome green.

Yellow bronse. Lemon or medium chrome yellow for base; add French ochre and a trifle of burnt umber.

QUESTIONS ON COLOR MIXING.

- 94. What is said about color mixing in general?
- 95. a. What is a base for a tint?
 - b. How must the base be prepared?
 - c. How are the tinting colors prepared?
 - d. How must one proceed to mix the tinting colors with the base?
 - e. What advice is given in this section?
- 96. How are tints in water colors made?
- 97. Pupils should familiarize themselves with the tints given and refer to them when they want to know how to make them.

COLOR TESTING.

98. Under the heading of "Colors," paragraph 71 b, the reader will have noticed probably what has been said concerning the chief role played by barytes in the paint world. He may have noticed also what is said in paragraphs 5 to 7 inclusive, under the heading of "Adulterations in relation to the scale test as indicating the relative strength of coloring matter contained in pigments." As a fairly full explanation of the test is there given, it may be well to read that portion over again as it is not necessary to repeat it here, and it plays a very important part in testing the value of many pigments.

There is no better test for nearly all manufactured colors having a recognized chemical formula and besides it nearly always indicates (indirectly) the quality of tone in the tints made while making the test; but after all this test does not show everything connected with the testing of colors nor is it applicable to a large number of valuable pigments, therefore the subject matter of this heading will be considered from the several points which have a bearing upon enhancing or depreciating the value of pigments.

The following are points which are recognized universally as having something to do in determining values; some for one class of pigments, others for another class and some are applicable to all:

- I. Purity of material.
- 2. Purity of tone, brilliancy, richness.
- 3. Fineness of grinding and preparation.
- 4. Spreading capacity.
- 5. Its body; applying only to opaque or semi-opaque pigments.
- 6. Its staining power or tinting strength with white lead.
 - 7. The quality of purity of their tones with whites.
 - 8. If a paste color the consistency of the paste.

PURITY OF PIGMENTS.

99. All chemically prepared pigments which have a well known formula which is recognized among color men as such, have that for a standard of purity. White

lead, zinc white, Prussian blue, the chrome yellows, greens, etc., belong to this class. The word pure here means only this: that they contain no adulteration, but it does not take into consideration, the quality of tone, fineness of grinding, brilliancy, etc., each of which is an important factor in determining the relative value of pigments. The scale test is very valuable in determining the strength of this class of pigments and usually this is the most important point in the judging of values. A color may be very pure and still be very poor, but the above statement applies with more force to the earth or natural pigments than to those that are chemically prepared. Yet it is sometimes necessary to have recourse to all the points named in the preceding paragraph to fully determine the true value of a pigment.

PURITY OF TONE OF PIGMENTS.

nents and the chemically prepared colors should have it applied as well as the others for a Prussian blue or a chrome yellow may have such a poor tone as to be valueless and still be chemically pure and for the natural or earth pigments this test is of the greatest importance and leads all others. In paragraphs 3 to 8, good advice is given in relation to chosing some good standard colors to judge others by. The reader will do well to keep a supply of all such as he is likely to need in testing other colors by and comparing their tones. Brilliancy is as desirable as purity of tone and usually the two are

inseparable for it is inconceivable of a pigment of a good pure tone that it has not brilliancy also, so that there is no need of a separate test for it. Richness is also an inherent quality belonging to purity of tone and it must be inferred as it cannot be separated from it.

FINENESS OF GRINDING.

There are several methods of determining the fineness of grinding of pigments. The fineness of grinding of any color but those of crystallic formation is very important as it gives them more spreading power, makes them more absorbent of linseed oil, which in outside painting means more durability and as finely ground pigments can be spread more smoothly, it also means additional beauty. For the earth colors such as the siennas, the umbers, Vandyke brown, etc., especially if used in their self tones, as they are in graining or in glazing—fineness of grinding is of much importance as it will prevent speckiness, a fault for which the reputation of a carriage painter or grainer using them may suffer much on account of the poor quality of work turned out with such. The following methods may be used in judging the fineness of grinding:

The simplest and easiest of all is to place a little bit of the pigment upon a piece of clean glass and to reduce it with oil until very thin, then to spread it out upon the glass very thinly, then looking through the glass holding it so the light will go through it, it will show any speck or imperfect grinding. Another way

is to thin out the pigment with turpentine and paint it out thinly upon the glass and doing the same with some of the standard which is known to be very finely ground and which is thinned with the same quantity of thinner, and which should be painted alongside of the color being tested. When dry the painting will clearly indicate the relative fineness of the two samples.

The following method is probably as good as any or better rather than any, but it requires a little more time to make the test: Weigh out equal parts each of the colors being tested, after having first taken the precaution to place each upon a piece of blotting paper to remove the oil as one might have more than the other, then after weighing place each sample in a graduated test tube, putting in each tube the same quantity of turpentine to thin them, after which shake them up thoroughly. It will be easy to see which precipitates first, as the heaviest will go to the bottom first always and the finest or lightest will be held in suspension the longest. But even this test would become worthless for colors which have been adulterated with a very fine atomed adulterant or for white lead which contains sublimed lead as that is much finer than Dutch process lead. In either case, however, if the scale test has been used, it will have given away the pigment at fault and one can give a pretty good guess as to what the adulterant may be.

SPREADING POWER OR COVERING POWER.

pigments are not controvertible terms and they are not identical, as between zinc and white lead for instance, and one of great opacity may not have much spreading power. But in pigments which are being tested with another of the same name and composition to all intents and purposes, and for comparison it may be assumed that the two are identical and that spreading is due to the opacity of the pigment, and that they should go hand in hand in helping to determine the value of the samples tested. It would not be fair nor conclusive to apply this test to any of the transparent or even the semitransparent pigments, but is applicable only to white lead and other opaque pigments.

THE BODY.

or its capacity to hide from view, the coats of paint over which their covering properties are being tested. It is nearly related to its spreading so that what was said in the preceding paragraph applies to that also. A pigment having a better body than that of another of the same name, can be spread further, to cover as well as one lacking in body, each hiding the surface over which they are applied as well in each case. For instance if to cover over a certain number of square feet of surface painted black requires one pound of white lead to do as well as one and a half pound of white

lead of another sample did, then the first is worth 50% the most and has 50% more body and the spread helps to determine its body.

TINTING OR STAINING STRENGTH.

104. This is determined by the "scale test" which has been explained under the heading "Adulteration" and the reader is referred to paragraphs 5 to 7. This test is an infallible one in detecting the lack of coloring matter in any pigment.

THE PERMANENCY OF PIGMENTS.

105. This is a very important test but it takes a very long time to make it. There is nothing else to do but to wait for results after having painted over two or more pigments being tested for permanency upon a board side by side, the board being the same and the ground coats being alike, and the exposure the same for each. Each pigment has a permanency of its own and therefore the term is only a relative one. White lead should not be tested by the permanency belonging to lampblack for instance, but by that of samples of other white lead and time will decide which of two or more white leads is the most permanent. Under the heading of "Colors" is given their peculiarities and in the leading ones especially a list of conditions under which they should not be applied and which would shorten their permanency.

QUESTIONS TO COLOR TESTING.

- 98. What is said generally of color testing?
- 99. What about the purity of pigments?
- 100. What can you say regarding the purity of tone?
- 101. How can the fineness of grinding be detected? test is an infallible one in detecting the lack of colorering power of pigments and to what class of pigments is the test applicable?
 - 103. What is the body of a pigment?
- 104. How do you test for the amount of coloring matter contained in pigments?
 - 105. How is the permanency of pigments tested?

ESTIMATING.

106. There is nothing pertaining to the business of painting or decorating which is more puzzling to the beginner and if you please, to many veterans than "how to proceed in making an estimate upon an architect's specifications or even for the repainting of an old building where all the work is in full sight, just as it is." It requires a minute understanding of everything to be done and of the time that will be required to do it, besides making a liberal allowance for time lost or wasted on account of delays occasioned by the thousand and one causes which the experienced contractor alone knows of.

Some men go to work with paper and pencil, reduce every board, molding, etc., into inches and square feet, counting parts requiring more time than plain square surfaces 50, 100 or even 200 per cent more than that for the extra trouble. Others again will simply average up the number of plain, molded and transomed doors and their casings; so many windows of various sizes and their casings; base boards, wainscoting, etc. For the outside they square it up adding a fifth for underside of weather boarding, etc. But it seems to be an intuition with some men to know just how much to charge for each job by just "looking it over," without ever so much as taking the pencil out of the vest pocket. Nor will their figures usually vary as much as those of the men who toil and sweat over long rows of additions made necessary by the carefully itemized account they have made of every board in the house.

How it is possible for people who figure a job so closely to vary so much in their estimates is a puzzle for the Philadelphia lawyer to solve. The opening up of the bids is such a joke that one may look out for any kind of a surprise in the figures named for doing the painting. The results would indicate that reckless guessing was more prevalent than sober judgment in naming the figures as these show variations of from 10 to 150 per cent sometimes. Variations of from 10 to 20% are to be expected—but the others?

Common sense and a thorough knowledge of the "How to bid" should be the motto of the contractor. They generally go hand in hand, but this knowledge is gained only by cool, careful comparisons made as to

what former jobs of about the same amount of surface have cost and in time a man is able to name a price off hands for nearly all kinds and sizes of ordinary buildings by making a proper allowance for the safe side. But the novice who has no such retrospective experience to lean upon and also the men who do not accumulate experience from past transactions, need to square up everything to be able to bid intelligently.

The National Master Painters' Association some years ago adopted a system of measurement which, while it was not to be binding upon its members, was to be used as a guide in the making of estimates, but more especially to establish a price for all kinds of painting which had to be established by law, where the settlement for the painting of a job had to be done through litigation, but it did not work. The association had it made up into pamphlet form and placed it on sale with its secretary and while it was well advertised it took several years before it was sold and given away together. No new edition will ever be made of it.

The Pittsburg local association of Master Painters recognizing the need of a guide in making estimates adopted a price list which is given below. This list is a fairer one than that adopted by the national association, but it is not binding upon the members either. It serves merely as a guide and members can cut it in two if they like,

THE PITTSBURG PRICE LIST.

SQUARE MEASURE.

The same in two colors, per yard......12c
The same in three colors, per yard.....14c
Striping after other work is finished, lineal meas-

Striping after other work is missined, linear meas-

BRICK WORK.

INSIDE WALL PAINTING.

First coat, per yard......12c

Second coat, per yard	ОС
Third coat, per yard	8c

STOPPING AND CLEANING.

Ordinary puttying, charge price of first coat for the several kinds of work. Puttying longitudinal joints in ceilings, siding, floors, etc., to be charged two to four times the price of first coat for the several kinds of work at the discretion of the measurer.

SURFACING, STAINING AND VARNISHING.

Each coat of surfacing, per yardoc
Each coat of stain, per yard 8c
Each coat of varnish, per yard12c

LINEAL MEASURE.

Pillasters, architraves, frames, jambs, base moldings, etc.

0 /					
			·	Per ft.	Varnish
Girth	1 to	4 inch,	each coat,	. ½c	3∕4 c
Girth	4 to	6 inch,	each coat	. 3/4 c	IC
Girth	6 to	8 inch	, each coat	. IC	I ¼ C
Girth	8 to	10 inch	, each coat	. и¼с	I ½C
Girth	10 to	12 inch	, each coat	. I ½c	13/4c
Girth	12 to	14 inch	, each coat	. и ¾c	2C
Girth	14 to	16 inch	, each coat	. 2c	2 ½ C
Girth	16 to	18 inch	, each coat	. 2½c	2½c
Girth	18 to	20 inch	, each coat	. 2½c	23/4C
Girth	20 to	22 inch	, each coat	. 2¾c	3c
Girth	22 to	24 inch	, each coat	. 3c	31/4c

Larger dimensions taken in square measure.

Column mantle as above.

Diain analy aget par foot

Panel jambs, door casings, etc., to be measured by the above rule.

Plain rosettes—add one foot to the length.

Carved rosettes—add two feet to the length.

Other carved or ornamental work at the discretion of the measurer.

MODE OF MEASURING.

Begin at wall, press line in all quirks to bead at edge of jamb casing for girth. For jambs, take inner sash rabbet to corner bead, double the height and measure between jambs for length.

STRING BOARDS, ETC.

Train, each coat, per root
Bracketed, each coat, per foot3c
Carved, each coat, per foot4c
Staff heads, each coat, per foot
Edge of shelves, each coat, per foot $\frac{1}{4}c$
CORNICES AND COLUMNS, PLAIN.
Girth I to 2 feet, each coat3c
Girth 2 to 3 feet, each coat4c

Plain caps on columns—add to length two feet.

Ornamental caps on columns—add to length four feet.

CORNICES WITH BRACKETS.

Girth I to 2 feet, each coat4c
Girth 2 to 3 feet, each coat 6c
Girth 3 to 4 feet, each coat 8c
Girth 4 to 5 feet, each coat
Girth 5 to 6 feet, each coat12c
Larger dimensions in proportion.
Dential cornices same price as brackets.

MODE OF MEASURING.

For girth begin at the top, press line into all quirks and over each member at bottom and to the length add one-half the medium girth of the brackets multiplied by their number.

PRIMING OR TRACING AND GLAZING SASH.

	Priming of	or New	Old Glazing
	Tracing	Glazing	& Glass S.S.
8 to 10x12 to 14	I ¼c	5c	\$0.20 S. S.
8 to 12x16 or 18	I ½c	8c	.35 S. S.
8 to 14x24	2c	Ioc	.40 S. S.
8 to 18x24	3c	14c	.50 S. S.
8 to 24x30	5c	18c	1.00 D.S.
8 to 26x36	6с	20c	1.30 D.S.
8 to 30x36	8c	25c	1.65 D.S.
8 to 36x40	IOC	30c	

8 to 40x4412c	35c
8 to 40x5014c	40c
8 to 40x5616c	5oc
8 to 50x6018c	бос
8 to 50x7020c	75c

These prices do not apply when called out to glaze one or two lights.

For back puttying add one-quarter and for bedding add one-half to above rates.

In new glazing cost of glass is not included. All breakage at the risk of owners, if glass is furnished by them. To all bills of glass furnished by the trade, 20 per cent will be charged additional.

PLATE GLASS.

Sizes same as table above at same prices. Sizes above up to 90 square feet 5 per cent on net cost delivered; 90 to 108 square feet 8 per cent; 108 square feet and upward 10 per cent.

Removing old glass same as above. The owner to pay cost of taking up large glass above first floor.

Unless otherwise provided for the glazier puts glass in at his own risk of breakage, but cutting will be at owner's risk.

SANDING.

First coat of sand equal to two coats of paint in addition to paint coat.

Second coat of sand equal to three coats of paint in addition to paint coat.

GRAINING-SQUARE MEASURE.

Plain Oak, per yard	0.40
Plain Walnut or Ash, per yard	.70
Plain Satinwood or Maple, per yard	.70
Plain Mahogany or Cherry, per yard	.70
Shaded Oak, per yard	1.00
Pencilled Oak or Ash, per yard	1.00
Pencilled Chestnut or Cherry, per yard	1.00
Pencilled Walnut, per yard	1.00
Rosewood, per yard	1.00
Oak or Walnut root, per yard	1.50

LINEAL MEASURE.

		Grain-	Varnish-
		ing	ing
Girth I to 4 inc	ches, per foot	. 3c	3/4 c
Girth 4 to 6 inc	ches, per foot	. 4c	IC
Girth 6 to 8 inc	ches, per foot	. 5c	I 1/4 C
Girth 8 to 10 inc	ches, per foot	. 6c	I ½C
Girth 10 to 12 inc	ches, per foot	. 7c	13/4c
Girth 12 to 14 inc	ches, per foot	. 8c	2C
Girth 14 to 16 inc	ches, per foot	. 9c	21/4c
Girth 16 to 18 inc	ches, per foot	. IOC	2½c
0.1			

Other members in proportion.

Graining edges of shelves, per foot, 11/2c.

Graining sashes double the price of plain painting.

MARBLING-SQUARE MEASURE.

White Marble, per yard	\$0.75
Other kinds, per yard	1.00
Varnishing, each coat, per yard	.12

LINEAL MEASURE.

All members	Marbl-	Varnish-
from	ing	ing
I to 8 inch girth, per foot	8c	IC
8 to 10 inch girth, per foot	I2C	1 ¼c
10 to 12 inch girth, per foot	16с	I ½C
12 to 14 inch girth, per foot	18c	2c
14 to 16 inch girth, per foot	20c	2½c
Larger members in proportion.		

CLEANING AND CALCIMINING.

Ceiling and walls, per yard16c
Plain cornices, 1 to 2 feet girth, per foot 2c
Plain cornices, 2 to 4 feet girth, per foot 3c
Add to the above for each color if more than one,
per foot Ic

QUESTIONS ON ESTIMATING.

106. What is said in a general way of estimating? 107. Tables of reference regarding prices of painting to be referred to when needed.

EXTERIOR PAINTING.

108. The treatment of painting exposed to the tender mercy of the elements such as exterior painting has to go through naturally implies a good understanding of what these conditions are and also a good knowledge of how to adapt the material used in doing it so as to best meet them. Therefore it will be best to first review what these are and this will enable us to be better prepared to devise a suitable remedy, so that whilst decay must in time destroy it, at least that time may be longer delayed.

CAUSES OF DECAY.

109. Nature seems very busily engaged in trying to reduce all compound substances into its simpler constituent elements or in recombining them with others for which they each have a greater affinity and this causes a constant changing or terminating of one partnership and the forming of others. If the reader will remember it was said of red lead and of orange mineral—one being the bi-oxide and the other the ter-oxide of lead that each being overloaded with oxygen had a natural tendency to return to their simpler forms of a monoxide or litharge; also that English or quicksilver vermilion had a tendency to return to its more natural form of a black sulphuret of mercury. These are but samples of what is constantly taking place in nature. The constant changes caused by linseed oil or any of

the other fixed oils coming in contact with the oxygen in the atmosphere will no doubt have been noticed by any one who has taken the pains of so doing. Yet while all this is in plain sight how few who have really thought anything about it or lost a single moment in making any inquiries as to the why and how these changes occur. The phenomena of oil drying is wonderful and full of interest, yet produces but little interest or inquiry about it from the great army of those who daily use it and the why and wherefore never bothers them. But there are many who are interested and it is due to these, that experimenting has been carried on and that some progress has been made in the knowledge which the world at large has of it. The ignorance regarding the drying of linseed oil is such as to hardly be thought possible and like as not half of the painters when asked as to the how it occurs will likely as not tell you that it evaporates itself dry. Such an explanation of it was once given in a trade paper by a man whose name usully carries some weight when he writes about the technical application of paint which he does know—as he is an expert. When such a man can give such a reason as that, it is not to be expected that the others not nearly as well posted should be so ignorant of it.

The various elements composing the air with which exterior painting is in constant companionship are all invisible, being subtle gases which while when joined together in the proper proportions are endued with life giving properties are deadly to all life when separated and alone.

Oxygen, one of the main constituents of our atmospheric air, is one of the principal component parts of an innumerable number of substances and it combines readily with most other elements to form compound substances. Its action upon the drying of the fixed oils is very beneficial—up to a certain point, but after that point has been reached, then it becomes harmful, as after that point has been past the further action of oxygen upon it causes decay. This action is promoted and also retarded by many accessory agents and greatly accelerated by the presence of another constituent of our atmosphere:

Hydrogen which causes the decay of exterior painting by accelerating the action of oxygen and also by that of its own beside. But moisture alone without air will not cause decay readily nor will it act even in the open air without the aid of heat. We have already seen what its action is when present either in the paint itself or in the surface over which paint is applied; the same being fully explained in paragraph 13 a to e, which see.

Sunlight and heat may as well be bracketed together as they are usually inseparable. Yet each has its own particular function as destructive agents of painting. Sunlight causes many pigments to fade away but the heat which its rays also produce causes it to act much more quickly, so that sunlight is much less destructive

to color in the winter than it is in the summer. Light and heat and moisture are the accessories which help hydrogen accomplish its work of destruction and after oxygen are the principal factor which cause paint to decay.

These same agents are also very active in causing the destruction of the fibres of the woods and for this reason it is mainly—after that of beautifying—that the painting of exterior surfaces is used to protect them. "How" it does this will have to be understood in order to apply the remedy more effectually.

It would require a larger volume than this devoted entirely to the subject to enter minutely into a relation of the details which enter into what constitutes the beneficial action of the elements or their destructiveness of painting material and "how" this beneficial and destructive agency occurs. As much of it could not be understood by the reader who is not familiar with chemistry, mere generalities will be all that can be indulged in.

PAINT AS A PROTECTION TO SURFACES.

III. Not only wood fibres but, metals, stone, brick, in fact everything movable or immovable is subject to the action of some of the gases which compose atmospheric air and to others also which are disseminated here and there in it. The metal "iron" which is chiefly used in large architectural structures, bridges, ships, etc., eagerly combines with oxygen to form oxyde of iron or rust. Limestone, marbles, and other form of

lime are very hungry for sulphurous acid fumes of which moisture carries quantities in solution in certain localities and which combines with them to quicken them on to dissolution. The whole list of stone, including sand or even granite are more or less quickly acted upon by some form of the elements or some gases carried by the air.

As the beauty of uncut or cut stone depends upon its natural setting and dress it will not be necessary to say anything further concerning them as they are seldom painted as it destroys their natural beauty and charm. But *iron* which next to woods is fast becoming the chief material used in house construction and which probably in the near future will become the principal, needs to be well protected in order to prevent as much as possible the injurious action of the elements upon it. Having no beauty of its own to plead, it has to depend upon its protector in a large degree for any artificial beauty which that can impart to it, besides the protection that it gives it.

As the principles upon which paint benefits exposed surfaces generally speaking are the same for all kinds of surfaces let them be iron, steel, wood, brick, stone or cement it will be unnecessary to review them separately as they apply sufficiently near to each of them.

Iron, brick, stone or wood are all porous, some so much so that these pores can be detected by the naked eye. Under a powerful microscope their surfaces appear as a huge sponge. It is through these openings that *moisture*, that greatest enemy of them all—for it is mainly by its aid that other destructive agencies are able to do their worst—enters and with it all the others too. It stands to reason that in order to be able to afford protection to this valuable structural material that these pores must be closed up effectually in order to keep out moisture and the other destructive elements.

This is the protection that is given them by the use of paint properly mixed and applied. The paint itself must be finely ground in order to penetrate with its vehicle into the pores of the surfaces over which it is applied; therefore the practice of many to use dry pigments, such as ochre, Venetian red, etc., is a pernicious one and must be unequivocally condemned. Many painters act upon the theory that anything is good enough for priming; instead of which they should adopt the motto that: Nothing is any too good for it nor too finely ground. If any unground pigments must be used upon a job, let its place be upon the finishing coat but never upon the first. It is the very poorest, foolishest of economy to use such for the purpose of priming or for any other for that matter as dry pigments soaked up in oil and unground is unfit for any kind of painting. So that while it is said that it is better to use such on the finishing coat rather than the first is to be taken in the sense that such would be less harmful there than in the priming coat, but not as an indorsement of them for that or any other use in painting.

The action of the vehicle is beneficial in two ways,

if it be a proper one well fitted for the purpose. It binds the particles of the pigment together and holds them in its embrace and it penetrates even to where the finest ground pigment could not enter. It must not however be so penetrating that it will filter through out of sight and leave the pigment entirely. Besides it must be able to solidify without any shrinkage of its bulk as that would imply some room left open for the passage of air. It must also be water or moisture proof and that the latter cannot dissolve it nor wash it out. So the reader must see at once that the vehicle even more than the pigment has a mission to fulfil that requires a number of good qualities to fit it for the purpose.

be used for the binding of paint or of dry substances which when dissolved in water are used as vehicles for pigments (as gum arabic or glue) none fulfil the conditions enumerated in the preceding paragraph as well as "Linseed oil," the king of the fixed oil and what is of enormous importance—as cheaply as that will. It is the painter's best friend.

Linseed oil in common with all other fixed oils possesses the quality of absorbing some oxygen from the atmosphere and by that subtle gas aid, to solidify after having formed a union with it into a waterproof rubber-like gum which is elastic and which lends itself to the contraction and expansion of the material over which paint has been applied so that while solidification

takes place, it is not caused by evaporation out rather by absorption without loss of bulk, but rather with a slight increase of it as it actually does so when it combines with oxygen some 8 per cent, thus swelling up tightly into every nook in the side of the pores through which it has become absorbed. So that it not only binds but fills at the one operation.

The life of linseed oil is prolonged or shortened by the action that is produced upon it by the pigments with which it has been mixed.

Some pigments are neutral; that is, neither acid nor alkaline and such have no effect whatever upon it other than the separation it produces between its atoms. Others again are active in that many of them are alkaline, in such a case the alkali will turn the linseed oil into a soap which when dry may be or may not be soluble and which according as it is one or the other may or may not be beneficial to its longevity.

113. This needs more explanations. Red lead for instance is an active pigment, turning the oil into an oxy-linoleate lead soap, when dry it becomes *insoluble*. This soap becomes the best of cements to join two pieces of glass together and makers of aquariums use it for that purpose. This is certainly a very good proof of its insolubility. Another proof is the use made of it not only as first but as finishing coats for iron ships below the floating line where it remains continually submerged; it stands that where the neutral pigments would surely fail.

As a primer for iron it stands head and shoulders above any other pigment. It lends itself to all the contractions and expansions of that metal without cracking or checking. So the reader will see that the proper kind of an emulsion is not harmful but the reverse.

An emulsated oil, be that a good one or a bad one, will not be subjected to any other changes but dries out its water of emulsion by evaporation leaving the linoleate soap to dry in its accustomed manner. But it is not iron and steel alone which are benefited by the red lead priming, nearly all other metals needing paint as a protection or as an embellishment are greatly benefited by having been primed with it—when afterward as its color is objectionable for many purposes they may receive over that any other color wanted. Galvanized iron either on plain surfaces or on cornices which have been primed with the ordinary mixtures of paint used for the rest of the buildings usually scales off in a short while, but let it be painted with red lead for first coat and there is no more danger of paint scaling afterward than upon any other part of the house.

- 114. For wooden buildings there is nothing better than a coating of white lead or one of half white lead and half French ochre which has been finely ground. Both should be greatly thinned with linseed oil, just enough pigment being added to that to fairly show when applied to the building.
- 115. For brick, stone and other porous mineral substances finely ground English Venetian red is excellent

as a primer but if the finishing coats are intended to be painted white or in light tints white lead and French ochre half and a half—both being also finely ground in oil will be better. If the brick or stone is soft the color should be as thin as for wood but if the brick or stone is very hard and non-absorbent the color should be mixed with more pigment and well rubbed out to keep it from running.

Cement which has recently become in almost general use in all kinds of house construction and which from its being so well adapted to such use is very likely to grow into becoming the leading material in the near future seems to require a long time to ripen and undergo certain changes during which time it exudes certain salts which have the property of staining through paint, thus greatly damaging not only its appearance but in disintegrating the coating also. Heretofore it has not been considered safe to apply any paint to it until all the deleterious matter it contains had come out or was washed away. Many painters were afraid to undertake the painting until a cement building had been exposed a couple of years at least. Thanks however to Mr. Charles MacNichol of Washington, D. C., who very disinterestedly made known to his brother master painters in convention assembled the results of his experiments which enables him to paint over cement as soon as he would over any other kind of material. It is very simple and consists in dissolving equal parts by weight of sulphate of zinc and water and

of painting the surface of the cement with the solution applying it as any other paint. From all reports of those who have tried it it seems to do the work.

THE PAINTING OF EXTERIOR SURFACES.

Considerable space has been devoted to noting the various conditions and building material over which exterior painting is usually done; each kind of material we have seen, having its own peculiarities, in the form of its atoms, their sizes, closeness of adherence together, etc., requiring in some instance a difference in the treatment they should receive in the "priming" as it is the coating which unites the paint to the surfaces any number of subsequent coats may be put on. The importance of its being well done in a workmanlike manner warrants all the space that has been taken up in the telling of it, if it will induce the reader to do it well—and more. As to the manner of the application of the paint, it is supposed that the reader is sufficiently acquainted with the "Modus operandi" of the handling of the brush to need any lengthy advice as to the how it should be done; nor would it be very easy to show him how it is done "under printer's type"; but a few words will be said in the following sections regarding priming and the application of the second and third coats of paint upon various surfaces.

PRIMING.

b. For woods, use white lead or white lead and

French ochre, both to be finely ground in oil and heavily thinned with raw linseed oil. In cold weather if the oil is at all viscid, it will be well to add as much as 1/4 of turpentine or benzine to it as it will be necessary to render it more limpid. It should also have in addition a tablespoonful of some good liquid drier to the quart as otherwise it might take too long to start it to drying and it might become fatty and sticky. No such advice as to adding either is given for priming in warm weather as then neither volatile oil nor drier is needed. Then oil is very fluid and will penetrate into the pores but when cold renders it viscid, it becomes sluggish and is not sufficiently fluid to penetrate as it should. Priming thus treated will penetrate where otherwise it could not and really more linseed oil thus thinned out can be crushed into the pores than would be possible when it is in a viscid condition without the addition.

It is superfluous to say that the surface of the job must be well cleaned and the dust well brushed off before the priming is applied. The lumber should be dry also. The pernicious practice of following up the carpenter with a brush and of priming a board as quick as he has hammered in the last nail, may serve his purpose in preventing any shrinkage on his work. Such a practice is all right enough when the lumber is good and dry and when there is little moisture in the atmosphere, but during wet weather it is the reverse. It is better to let the lumber have a day's drying rather than to paint it damp. It may check, that is true, but better

have a few checks which can be puttied up than blisters and paint cracking.

c. For iron. If the iron is new and free of rust which is seldom the case, it will be fit to be primed after a good cleaning of dirt and dust, etc.; it may have scales and these should be removed with a putty knife and a stiff wire brush, as otherwise the priming coat will not penetrate into the main body of the iron and such unpainted parts would soon rust. If as usual the iron or steel has already started to rusting, a good free use of the wire brush will remove it, and a good dusting from the painter's duster will fit it to receive the priming. As it has been already said, there is nothing better, if as good, for the priming of iron, steel and other metals than red lead. This pigment cannot be bought ready ground up in oil and must form an exception to the advice given—never to use colors in a dry state in the covering of surfaces with linseed oil paint. Red lead has the property of turning linseed oil into a soap as noted before, but it has another also which prevents its preparation in advance by grinding in oil as other pigments in that it has the property of becoming hardened in it. This would render it useless for brushing out, this hardness in time being nearly that of the metal itself, therefore it is better to mix it up in oil as wanted on the job and still better after having so mixed it to run it through a hand paint mill. When put through the mill more oil can be used with it without its running than possible by a simple addition of it to the dry pigment. If put on without the grinding it will have to be applied much thicker than any ordinary pigments used for priming would have to be otherwise the lead being coarser and heavy will separate from the oil and run in streaks down the sides of the job. It should therefore be put on thick and rubbed out thin which will if carefully done prevent the separating of the red lead.

d. For brick and stone. If the brick work is in good condition and the mortar lines solidly filled and the sun has been shining good and bright for a few days, so that there is no possibility of any moisture remaining anywhere upon the surface to be painted then it is ready for the priming, after having first been well cleaned up with the duster. But if the building is an old one and has never been painted before it is very likely that some of the mortar joints may have to be filled up to the same level as the rest of it. should be attended to some few days ahead of the priming in order that the moisture may pass entirely away before it is applied. The job dusted and cleaned proceed to coat it over by a good, faithful brushing in of the priming which for a red brick finish or any other dark colors may consist of good English Venetian red and for light colors of half and have French ochre and white lead; neither should be thinned quite so freely as stated for wood priming—but it should not be nearly so thick as used generally for the finishing coats on wood but more like the consistency of that used for

second coating on three coat work on wood; but no very fixed rule can be given for the reason that brick and stone vary greatly in their absorbing power—a soft brick being very much more absorbent than a hard one and the same may be said of stone. The priming will necessarily have to be adapted to suit the particular job it is applied upon and the thinning will need to be much more freely done for the softer surfaces than for the hard ones where there is little absorption and where consequently the priming must be put on thick and rubbed out thin.

e. Cement. After the cement or cemented surface has received its coat of sulphate of zinc and water and the latter has evaporated away as described in the preceding paragraph then it should be primed with a good medium heavy coat of white lead and French ochre half and half of each which must be well rubbed in and brushed out, as cement is not very absorbent being in that respect very similar to a hard burnt brick and there would be some danger of the priming running if put on too thin.

THE SECOND COAT.

117. It is becoming quite a custom to give new wood work only two roats of paint and to wait a year or so before putting on any more paint on the building. This is a very foolish practice to say no more about it and the architects who so specify must be hard up for a place to save their client's money as to want to

mar the beauty of finish of a building they have planned and which would be more creditable to them if turned out with the best looks possible than the measly looking things it is possible to make of them in two coat work. But they have not only hurt the look of it by so specifying but have deliberately planned to ruin all the future painting that may be put on the building.

The reader will remember the reasons given for a thin priming for wood structures. Now if the job is to be finished in two coats such a thin priming as recommended is an impossibility, because if so given the second which is to be the finishing coat on such jobs will not cover sufficiently well and both the architect and the owner would make a kick about it, so of necessity the priming coat has to be given too heavy and thus become a pretty sure cause for future trouble. It seems that any one would or should know that in a heavy coat of priming much of the oil used in spreading the pigment will be absorbed away from it by the pores underneath and that what is left has an insufficient quantity of oil which will leave the priming dry and porous. Priming cannot be both a penetrating coat and a binder for a surface coat at one and the same time. But this is what is required of it if the second coat of paint is to be the last. As to the supposed saving, it is not worth considering—the three coats necessary to good work will take but little more material than the two heavy coats given and the saving will be in the application only. But no matter how heavy the first coat may have been applied, it cannot stop the suction evenly and the second coat must dry uneven in appearance over it, as it will sink in, in the soft parts of the wood, and in the parts where there is no suction it will be glossy, giving a sort of arlequin look—anything but what is should be—certainly not a credit to the painter who puts it on.

THE PAINTING OF THE SECOND COAT.

- 118. a. Before proceeding to the painting of the second coat—the puttying should be done. It is supposed that a reasonable time to dry has been given the priming coat. The word dry means something else besides that it will not rub off when it is touched. It means that the oil has undergone all the changes during the time it absorbs oxygen. This it does while it feels dry and for some days after, so that there should be eight or ten days allowed before it is real dry.
- b. Nail holes, joints, cracks and checks or any defects in the carpenter's work should be carefully gone over and stopped upon the priming coat and should never be done before the priming has been applied; for then the cracks, nail holes, etc., have been filled up with oil and the putty will stick to it, which it would not do if it had been done before for then the pores, cracks, etc., would have pumped all the oil out of it, leaving it oilless, showing fine lines all around it which could be seen through the several coats of paint applied over it.

c. The painting of the second coat—if that must be the last one, should be as heavy or even heavier than it is usual for the third coat where three coats are given. As the wood is not properly filled up, some of the oil of this second coat will be absorbed by the first coat, especially as that has been put on too heavy and that it has become porous from having its pigment left with an insufficiency of oil. This of course will make the paint flat from having to part with some of its oil to the pigment of the first coat. But as the knotty parts have little absorption, these localities will have a gloss with the result already mentioned that it will not look uniform.

While the above is said concerning wooden buildings, it will also apply to brick and stone structures, as usually they absorb even more oil (being more porous than wood) and if the brick is at all soft it will absorb much more. Cement of course is less absorbent but still even upon that it is not always possible to make a good even looking job in two coats of paint. The puttying, if any be required, should be done before the application of the second coat as was related for that of wood.

The second coat should be about the same as for wood, thinned to suit the job which may be so very porous as to be still absorbent in which case it can be thinned more than if it is to be the last coat; if it is to be followed by a third coat, it should be of nearly the same color as the finishing coat, just a shade darker to serve as a guide for the third coat, as then one can

readily perceive if the whole of the surface has been gone over. The above will apply with equal force to all kinds of painting although it is not absolutely necessary. If the weather is cool, a little turpentine added to the second coat of paint will make it work better and will not harm it—but it must not be over done.

THE THIRD COAT.

which will take about as long as the priming, it will be ready to receive the third or last coat. Before it is applied the surface should be slightly sandpapered to cut down any uneven streaks or dust and dirt which may have blowed against it while it was fresh. This sandpapering can be done as each stretch is being painted and while the ladders or scaffolding is being used for that, as it will save a needless moving of these.

All new work after having received two coats of paint will be well filled and will have become non-absorbent or very nearly so; consequently the third coat will dry upon the surface of the second without parting with any of its oil and will dry with a full uniform gloss. This seals up everything from the injurious action of the elements and will afford the protection that good painting is expected to give the surfaces over which it has been applied.

For third coat the paint should be mixed middling heavy for all kinds of surfaces, wood, brick, stone, cement or iron and the thinner should consist entirely of linseed oil. No turpentine should be used, as it will need all the oil it should carry to bind on the pigment. Being rather thick and heavy it should be well brushed out but it should not be skinned on.

REPAINTING OLD WORK.

agraphs concerning the painting of exterior surfaces supposed these to be new and to have never been painted before. The painting over of surfaces which have been painted before is somewhat different than that of new work, yet in many respects it is similar to that. The chief difference being in the priming coat, which will not be necessary for old work.

If the repainting has not been delayed too long there will be no difficulties. The linseed oil of the previous painting may have become porous but unless the painting is very old, it will not absorb as much oil as the priming did when first put on.

The surface should be well cleaned up and dusted and puttied up and two coats of paint applied over it which will make the job as good as ever again.

But the paint may not be in good condition. From various causes it may be scaling or may have had so many coats put on it that it would be dangerous to apply any more to it. There is but one thing to do under such circumstances and that is to burn it off with a good gasoline torch following it up with a wide putty knife. Some are afraid to undertake it, but with a

little care it is safe enough and much the easiest way to remove old paint upon weatherboarding. Then the job should be sandpapered, primed anew, second and third coated as for new work.

If the job is very old and weatherbeaten it may be necessary to fill it, for it will have become so absorbent that the oil will seem to soak clean through the boards and out again.

b. Such old weatherbeaten surfaces are dreadful and will require more paint and oil than they are worth—if put on in the ordinary way.

They should first be filled. A very good way to do that is to make an emulsion of the first coat of paint in this way: Take 25 lbs. of white lead and add this to 10 lbs. of whiting which has been previously mixed up to a stiff paste with water. Mix the white lead with it, paddling it until it has formed into a stiff paste. In a short time the whiting which is carbonate of lime will have emulsated the oil and the two will mix readily. Now thin this with half linseed oil and half sweet milk —putting in the sweet milk first, a little at a time—so that it may become absorbed before any more goes in when about half a gallon has been absorbed add about the same quantity of linseed oil. This may require a little more thinning for that quantity of material, if needed use more milk and oil in the same proportion. Apply this with a brush as any other paint when it will be found to slide over the old boards with ease, whereas before a brush full of all oil paint would hardly paint a surface larger than where it first touched the board. When gone over the surface will be much smoother than it would have been possible with an oil paint and a good coat of all linseed oil paint given over it will make out of it not only a *nicer* looking job of it but a much *better* one as well, much better in fact than it would if a whole barrel of linseed oil had been wasted upon it.

No one need to be afraid that the above will go wrong with them for it will not. The writer is so sure of that that he is willing to stake his last cent on it—as not only being as good but better and that the finish will be smoother. Any one who has had such old jobs to paint will comprehend what is meant by that, especially if he has done the painting in the ordinary way—to such this smooth finish will be a revelation and will astonish them.

As stated before two coats are usually enough for repainting any old work excepting when it has been burned off.

QUESTIONS ON EXTERIOR PAINTING.

- 108. What is said of exterior painting in general?
- 109. What are the causes of decay in exterior painting?
 - 110. How does paint protect surfaces?
- III. What action performs the vehicle in surface protection?
 - 112. In what way does linseed oil fulfil the require-

ments needed as a vehicle of pigments in exterior painting?

- 113. What is said of red lead as an iron primer?
- 114. What is the best wood primer?
- 115. What pigments are best for priming brick, stone, etc.?
 - 116. a. What is said of the painting of outside work in a general way?
 - b. How should wood buildings be primed?
 - c. How should iron be primed?
 - e. How should cement be treated and primed?
 - 117. a. What is said regarding finishing the exterior painting on new work in two coats?
 - b. When should the puttying be done?
 - 118. a. When should the second coat be applied?
 - b. How should the painting of the second coat be done?
- 119. How should the third coat be mixed and applied?
 - 120. a. What is said regarding the painting of old buildings?
 - b. How would you treat old weatherbeaten buildings?
 - c. How should paint be mixed for repainting?

ENAMELING.

CHINA OR PORCELAIN FINISH.

trovertible terms for the same thing. It is a most beautiful way of painting the interior wood work of rooms. It may be done in any self color without ornamentation or it may be used in connection with gold upon some member of the moulding, but it looks best in white or light tints.

In the white or in very tender tints such as ivory white or pearl white only will it show its beautiful effect of solidity yet with an indescribable transparency which is so much admired. The gloss without this transparency would be apt to clog and look heavy when done in dark tints or colors. As 95 per cent of enameling is done in white the process described below is mainly applicable to that and other very light tints. For dark colors the number of coats can be reduced, as no such care will be required to build it up.

122. When the job is new and has never been painted before the wood work should be carefully dusted and the room swept clean of dirt and dust before commencing operations; then it should be primed with white lead and linseed oil, put on somewhat thicker than recommended for the priming of the exterior of wooden buildings.

This priming coat should be allowed fully one week before it is painted over with the second coat. The puttying up of all nail holes, depressions, cracks and any hollow defects should also be done now with putty prepared as described in paragraph 47, which see, as that will sandpaper smooth.

- The second coat should be mixed from flake white and zinc white half and half of each by weight. If flake white is not readily obtainable, some good white lead—that is white may be used instead. should be thinned with linseed oil and turpentine half and half of each and applied smoothly. When dry which should take another week if the time can be spared, if not then in not less than three days, the coating will be ready for sandpapering and dusting afterward. Should any imperfections have been overlooked in puttying up on the priming coat, it should now be attended to as it is the only time when it can be remedied by leveling up with the same kind of putty as was used before. The second coat should be mixed also a trifle heavier than it is usual to do on outside work which is to be followed up with a third coat.
- 124. The third coat should consist of zinc white ground in poppy seed oil for the best class of finish, although a good green seal French process zinc ground in bleached linseed oil will answer nearly as well. No white lead should be used on this coat. When good genuine French process zinc white has been used and it is thinned with ¼ of poppy seed oil or bleached linseed oil and ¾ turpentine put on rather thick and well rubbed out, the job should look solidly and uniformly

white carrying a fine semi-gloss. If however for any reason it should not look perfectly white and uniform then give it another coat.

- 125. Fourth coat mixed as described for the third and the job should be gone over with it in the same way. This will assure a full, uniform finish all over the surface alike. It always pays in the end to give this fourth coat even when one feels reasonably certain that the third is all it should be.
- 126. The fifth or the flat coat should be mixed from green seal French process zinc white and should be thinned with turpentine only with just enough very light colored varnish to bind it on and this should be laid with a camel's hair coach color brush—after the previous coat has been carefully sandpapererd and dusted off and the room swept clean, with all windows and doors shut to keep the air out so that the coating may set as slow as possible in order to have time to make joints on the work without doubling up and showing laps. This coat dries rapidly and usually will be ready for the next in twenty-four hours.
- 127. The sixth coat should consist of green seal French process zinc white ground in damar varnish, thinned with half damar varnish and half turpentine and should be very evenly applied with a camel's hair coach color brush.
- 128. The seventh and last coat should be damar varnish of good quality into which just enough zinc white has been added to tinge it slightly—this is done

in order to remove any tinge of yellowishness that might be present in the damar varnish and it will also prevent any cloudiness on the finish, but it must not be overdone as the less color used the better it will be. It goes without the saying it that nothing but a camel's hair brush should be used in applying it. While it must not be flowed on as in finishing carriage work, it should be put on full and not skinned on.

This sort of finish requires seven coats as narrated, but if the third is good enough the fourth may be dispensed with reducing it to six. The extra coat, however, is best to be put on and where economy need not be practiced it is better to always give it to make assurance doubly sure.

When tints are used instead of white alone a good copal varnish of pale tone can be advantageously substituted for the damar as that is softer and less water-proof than the other; besides it will stand harder usage in cleaning than that too.

This makes a beautiful finish with a soft porcelain or china look which shows transparency and opaqueness combined—a depth of tone similar to some that are obtained by the coach painter in over glazing and it carries a look which is unobtainable by any other method. The "modus operandi" may be thought irksome, but after all it is not so very difficult as many suppose it to be. Neatness and cleanness throughout all the operations is the main thing and plenty of time so that no part need be hurried onward before

it is fit for the next move. When disasters happen and sometimes they do, they can always be traced to the above two causes aside of that of the use of improper material for which there is no excuse. Of course it would be possible for a botch to so apply the china finish that an uneven surface would be produced and that instead of a joy producing affair might be made an eyesore, but no professional painter used to brushing out his paint evenly need be afraid to tackle it.

129. On old work enameling. There is but little difference between the manner of doing that except in so far that the filling and priming coats having already been done, this will be unnecessary. If the work has been painted white or very light tints after puttying up, sandpapering and cleaning it up properly a good coat of white lead should be given it thinned with 1/4 linseed oil and 3/4 turpentine, after which the mixing recommended for third coat for new work should be put on and the flat coat over that as this ought to make it very solid and opaque. Then the rest should be put on just exactly as recommended for the treatment of new wood.

QUESTIONS ON ENAMELING.

- 121. What is said of enameling?
- 122. How should the wood work be primed?
- 123. How is the second coat mixed?
- 124. How should the third coat be mixed?
- 125. Is a fourth coat always necessary?

126. How is the fifth or flat coat applied?

127. How is the sixth coat prepared?

128. How would you apply the seventh coat?

129. Wherein does enameling old work differ from new?

FLATTING.

130. The flatting of paint upon wod work at least is usually done upon the inside only. It is by far the prettiest manner of finishing it. Flatting has a softness of finish and reposeful look to it which cannot be obtained from gloss coats such as are given to the outside of buildings. The preceding paragraphs give the method used in painting wood work in enamel which certainly carries a gloss too and the statements made under that head seem at first to be at variance with those made here; but there is a wide difference between a glaring gloss such as linseed oil produces on the outside and the softness of finish of an enamel such a was described—but even the subdued and toned down glare of an enamel coat would pall upon most persons if every room in the house should be done with it. As only a few such are done in most houses the change from the flat to a well done enamel is pleasing by contrast. A whole house alone in enamel would tire out its occupants much quicker than if it had all been done in flat work.

If anything could make a person walk about with a chip on his shoulder looking for some one to touch it in order to find an excuse for knocking him down, that person is surely living in a house where glaring colors on walls and wood work stare him in the face the live long day and it would surely put an average man on the warpath. It acts upon him precisely as a red flag is said to act upon the optics of a bull, rendering them desperate.

While glaring gloss paint possess this exasperating quality—if quality it be; flat or dead painting has just the contrary effect, it produces a quieting effect upon the mind.

131. To flat wood work which has been painted before, it should have had at least three coats including the priming.

There is a rule in flatting paint which applies with equal force upon all kinds of material or surfaces over which it is put to wit: That the flat coat should be put on over a gloss coat or that if a gloss coat is desired that it should be put on over a flat one. If the reader will bear this in mind, he will never have trouble in obtaining a good flat or gloss upon any kind of surface.

If the wood work is old and has been already finished flat or semi-flat and it is to be refinished in flatting so much the better as one coat of gloss can be applied over it which will make a good ground for the flat and will help hold it on, if the flatting is not delayed too long.

To produce a *dead flat* the paint must be thinned with turpentine only. Usually most pigment ground in linseed oil contain enough of that to bind them on, but

white lead is not ground with enough of it to bind it on as good as it should be and it would soon wash off with the ordinary cleaning painting receives in most households and it is much better to add a trifle of linseed oil to it in order to bind it better. This will make it carry a very slight gloss, barely noticeable, called an egg shell gloss—but it must not be overdone, one table spoonful to the pint of paint will suffice. This is advisable as better than a dead flat for the wood work which is subject to being touched by greasy sweaty hands and what not—in unavoidable accidents.

In warm weather all flat paints being thinned with turpentine evaporate very fast and set quickly so that to do good work, it must be put on very quickly so the painter should be very careful when painting the panels of a door not to run the paint over on the rails or stiles or in painting the rails to square up pretty even to the stiles in order that there may be no set paint upon such parts when he gets to them in the course of his painting. If he accidently does run over them he should wipe it off with a clean rag.

Great care must be taken to close up all openings which might let in the outer air such as windows, doors, etc. This will prevent in a measure the too sudden evaporation of the turpentine and usually will give a person time to do the work before it sets.

132. Flatting walls and ceilings demand exactly the same treatment as is required for wood work, to wit: a good gloss coat for underground. The same

care to keep out drafts of air and air itself as much as possible. One person should never undertake to flat the walls or ceiling of a room alone, but should always have another man to help him.

On the ceilings of most ordinary sized rooms, the work can be divided up in two stretches. The first man commencing the painting at the side of the room on to the center when the other man takes it up on to the opposite side, continuing in this way until the ceiling is done. If the ceiling is very wide, in halls and in stores, three and even four or more men will be needed to carry the full width along through.

On an ordinary sized room the walls can also be divided up in two strips, with one man to take the upper strip from the ceiling down to the middle from a step ladder while the lower man can do the rest of it from the floor. Where the walls are above 10 feet three or more men will be needed according to height.

If the job is to be stippled as it should be, it will be better to have the previous gloss coat also stippled as one coat only is apt to look uneven. On the flat coat the stipplers should be right behind the men who apply the flatting and should never allow the flat paint to become set before the stippling has been done for no good stippling can be done over paint that has set.

133. Brick flatting is not so difficult to execute as the same kind of work on wood or plaster because the painter can stop his painting anywhere, if he squares it up to a brick joint either at the bottom or side of a stretch. It requires carefulness mainly. The flatting of brick work on outside or exterior surfaces can have but one excuse which is to imitate pressed brick by producing an even dead flat surface. This it very closely does.

Like all flatting the ground to hold it should be pretty glossy and oiled and to have been painted but a couple of days previous to the application of the flat coat for the reason aready given and another very good one besides which is that the gloss coat being still tacky will dry and hold the flat coat very fast and this it sorely needs as the turpentine thinner which was used in its application could not be of any help in holding it on with the battle it must endure against the warring elements which would otherwise make short work of it and wash it off. But if done as recommended before the gloss coat has completely hardened the two practically become one coat only, drying together.

QUESTIONS ON FLATTING.

- 130. What is said of flatting in general?
- 131. How is the wood work flatted?
- 132. How is flatting done on plastered walls?
- 133. How is brick flatting done?

FRESCO PAINTING.

134. True Fresco such as practiced the great masters of the Renaissance period and of which the greatest of them all Michael Angelo has left such numerous and shining examples, may be said to be a dead art today as

few if any practice it even in an amateurish way. This no doubt is due to the fault of this age "Hurry." The present times require speed and to be just—to the many new ways and inventions in pigments as well as in the methods of their application which were unknown in the days when it flourished.

True fresco is very far removed from what is now understood to be that art under the same name. Fresco in Italian means fresh and it indicates the character of the painting it designated, i. e., painting upon fresh laid plaster. In fact it was a part of the plastering itself as the frescoer in those days had to do it himself and no faster than he could color it and put it on. So the fresh lime and sand served him both as surface and binder. Naturally he was restricted in the use of pigments to such as were not affected by lime and one can well wonder today at the knowledge of effects they must have had to judge of the right mixture to make the variations in their shadings to produce such life like pictures as they did with the limitations of such restricted palettes as they possessed then.

True fresco will have to be dismissed with the few outlines of it that are given above, as such it is now too near obsolete to warrant any more details concerning it. A few artists have tried hard to renew it but its revival never extended beyond a narrow circle and it was not a success. It had its days and our age will have none of its slow methods and limitations of colorings.

- 135. Fresco painting or the decorative painting which is known under that name in America today is of two kinds to wit: 1st. Fresco painting in water colors or distemper. 2d. Fresco painting in oil colors on flattened walls and ceilings.
- 136. Fresco painting in water colors or distemper is very popular and a number of our largest churches, halls, theatres, and private residences as well as public buildings are decorated in that manner. As the preparation of the walls and ceilings is similar to calcimining the reader is referred to what is said in paragraphs 31 to 38 for full information concerning this as it is the same up to the point where the decoration commences. As the decoration and the manner of executing it is very much the same for both water color and oil painting aside of the difference of mixing the colors and their manipulations previous to their application, this will be considered together making due allowance for their difference.
- 137. a. Fresco painting in oil requires a proper preparation of the walls and ceilings with oil paint to fit them for receiving the decorations. Fresco painting in oil is by far the most satisfactory and the most permanent way of doing this work. Unlike water color fresco, the walls can be washed with water and ordinary dirt can be easily cleaned off from them without injury to the decorations therefore it should be encouraged more than it is. It is very true that on account of its better flatting properties that water color frescoing looks

best for a while at least—but when a person takes in consideration the great danger of having the whole work spoiled it is questionable if the difference in looks will warrant one in taking such risks. The superior finish and transparent effects of the decorative painting done in oil colors too, will more than balance the lack of perfection in the flatting of the walls. While the preparation of the walls is much cheaper in water colors than in oil the cost of the decorations which is really the main item of expense to be considered is very nearly the same for both and if this is at all intricate the difference will be slight in the making up of the total.

PREPARATION OF THE WALLS FOR OIL FRESCO.

- b. There are three methods employed in preparing walls so that they may be decorated in oil fresco, which are as follows:
- Ist. To size the walls with glue size or a surfacer with a glue size over it and to give them one coat of gloss paint followed by a flat coat upon it.
- 2d. To paint one coat of linseed oil paint over the walls, then give one coat of glue size over it to be followed with one coat of gloss and another of flat paint over it.
- 3d. The last is the best way. It consists in painting the walls with three coats of oil paint and to follow this with another of flat paint.

The first method answers fairly well, when there is no danger of moisture or water coming through the plaster. If there is and there always is such a possibility in accidents, the glue will swell and surely crack and peel off.

The second is much less likely to suffer from such a cause, but yet it is not entirely immune from injury from that cause. Water if present for a long time will filter finally through the one linseed oil coating and the sizing will also flake off.

But the third is a dead sure thing and a perfect guarantee can be given with it from any such a cause and that it will last as long as the plaster is not knocked off or other injuries received from the outside.

Some plastered walls have very persistent fire cracks as they are technically called by fresco painters. These fire cracks do not appear usually until after the painting of the first oil coat. They run in all directions and seem to absorb oil "ad libitum" nor to seem to know when they have enough of it. Ordinarily three coats of oil paint plus one flat coat over them suffice to stop this suction but then again sometimes it will not. In such a case there is nothing to do but to give another coat after the third and in some very bad cases even another may be needed to stop this suction as it would mar the finish. This is hardly ever necessary and as said before three coats plus a flat one is usually all that is needed and where so much expense has been incurred an extra coat should not be dispensed with if necessary to insure a good finish.

THE TOOLS NEEDED.

138. Level and plumb, straight edges, T square dividers of various sizes, some long legged wooden ones, chalk lines, etc., a number of various sizes of small bristle brushes of round, flat and triangular shapes (the latter for angles), see Figs. 18 and 19. The large calcimining brush (Fig. 1) and various sizes of water color camel's hair brushes. For very fine work in oil or water colors, a full set of artist's brushes in sable, ox hair and camel's hair will also be needed.

For oil work there will be needed for the preparing of the walls some good wall brushes, as shown in Figs. 3 and 4 and a stippling brush Fig. 2.

Step ladders, trestles and some two inch thick walking boards. Some few 12 quart galvanized pails for use in distempering, some one gallon tin pails for colors used in painting the walls in oil, and a number of small tins to hold the colors needed for the decorative portion of the work. Glue pot, strainers, etc. These are the principal tools and appliances needed. To these however, every decorator has some pet tool or another that he would wish to add to the list.

MATERIAL USED.

139. a. For distempering: Whiting is the principal color used as a base for tinting. For self coloring or for the preparing of tints, all kinds of dry pigments excepting such as are noted as unsafe to use in water colors under the heading of "Colors." Gum arabic

glue, and gold leaf besides all the bronzes, metallics, flitters, etc.

b. For oil work: White lead and zinc white ground in oil. All the various pigments which are to be found ground in oil may be used in decorating.

THE PAINTING.

- 140. Painting the walls in distemper and preparing the colors for the same is identically the same as fully described under the heading "Calcimining," so the reader is referred to paragraphs 34 to 37 for the information required.
- 141. This work in oil as it was seen, is entirely different from that done in water colors. See paragraph 125, as that explains the various methods sufficiently and needs not to be repeated here.

THE DECORATING.

142. This is a big subject, so it will be impossible to do it justice in the space available, for it must cover the whole field of designing in lineal, mechanical and free hand drawing, each of which by itself, alone, would more than fill this volume.

For the cheaper work, most of it is done with stencils in one, two, three or more colors, either in distemper or in oil with a few hand painted lines. The ceilings being usually divided in panels and stiles, the latter of a different tint, bordered by a narrow dividing line from the panel. Some small stencil bordering

is sometimes used and also in other cases a stenciled center piece with corners and a break between. The walls receive a stenciled border or frieze. The reader is referred to that portion of this manual treating specially upon stencils for fuller information regarding them.

Much hand decoration can be made by persons who know little of drawing, if they buy some of the decorative schemes that are for sale or which they can copy and enlarge from books on decoration, to be had from most art stores. They must not undertake anything too intricate at first but gradually work their way upward. Much of decoration even in hand work is repetitions of a few designs. These can be enlarged to the exact size desired upon a sheet of manilla paper. When the design has been copied to the satisfaction of the decorator, it should be run over all its lines with a tracing wheel or in default of it, pricked through with a coarse needle. The better way to do this is to place the sheet upon a cushion or some blanket or cloth so that the needle will pierce it more easily. When so pricked the holes will not readily clog up. The pounces so prepared can be used to duplicate a design any number of times wanted. It is held in place upon the ceiling or walls by means of small thumb drawing tacks with wide heads and small short points. A small piece of muslin, not too closely woven, in the center of which has been placed a few spoonsful of powdered charcoal or some dry color which can be seen on the wall, and

the side of the rag drawn up tight around it, after tying some string around it, the pricked design is pounced over with this color bag and it will be found that it has sifted through the holes in the design onto the walls and marked out an exact duplicate of the design pricked on the paper, which can be traced out with a brush and colored to suit, in as many colors as desired.

The whole ceiling should be laid out true and squared up for the paneling, center, corners and brakes, and their true position mapped out, and then it is ready for the painting of the decoration.

While the beginner is not advised to undertake to do a class of work which requires much previous training, there is much very pretty, neat decorations which he could do and with some practice gradually grow up into the more intricate parts of the business. He should study drawing and the harmonious use of color, for without that the ability of a Michael Angelo would be of no avail and his best work would look—Bum.

QUESTIONS ON FRESCO PAINTING.

- 134. What is true Fresco?
- 135. How many sorts of Fresco (so called)?
- 136. What is Fresco in water colors?
- 137. a. What is Fresco painting in oil colors?
 - b. How are walls prepared for frescoing in oil?
- 138. What are the tools and appliances needed?
- 139. a. What material is needed for distemper work?

- b. What material is used in oil Fresco?
- 140. How are walls done in water colors?
- 141. How are they done in oil colors?
- 142. What is said about the decorating?

GILDING AND BRONZING.

a. Gilding is the name used to designate the art of laying on of gold leaf and binding it on to surfaces for the purpose of ornamentation. It is not a new art by any means, as it was practiced in very early days. Many persons who will read this have no doubt had the privilege of examining some of the old manuscript books preserved in the larger libraries with so much care, and must have witnessed with astonishment, the wealth of coloring with a profuse use of gold in the illustrations, that the Monks of the middle ages patiently wrought out in the making up of annals, chronicles and especially missals. One can hardly realize that such beautiful capitals and headings could possibly have been done during a period which many of us have been taught that ignorance reigned supreme in the land. The pseudo historians who would have the people believe thus, however, cannot well hide the living witnesses to the contrary, in stone, paintings, gildings, carvings, in the shape of stately cathedrals, churches, castles and public buildings and during that period the handicraft of the gold beater and gilder was probably as much used, according to the wealth of the times, as they are today. Much of the lacelike

tracery of the sculptured woods which then was the covering—with tapestries used in the best rooms over the bare stone walls—were decorated with gilt upon some members of moulding or to emphasize some particular ornament.

The use of gold in decoration is nearly as old as civilization itself and it would be hard to find some of the recently discovered remains of their vanished civilization without also finding that gold was used in some way or another in their ornamentation.

The goldsmith and gold beater no doubt was known hundreds of years before western Europe was more than a vast forest broken up here and there with a little open ground which afforded pasturage to a few herds belonging to the tribal people whose descendants today claim more culture than any other nations of the world.

With the great wealth which has resulted from the discovery of America by Columbus, and from the product of its numerous gold mines, has been continuously adding to that year by year ever since, gold becoming so plentiful, it is little wonder that its employment in decoration has been making a constant gain and that at the present time there are few if any of the dwellers of the land who do not have more or less gilding or gilded objects in their home, let that be as humble as it may. If upon nothing else than a picture frame, or gilt-edged book or china cup. The use of gold leaf is enormous and it is not confined to the decorations of

the interior alone by no means, but exterior decorations and embellishments are done with it on an enormous scale. Domes of the largest size are entirely covered with it on statehouses, churches, halls and other public buildings, producing most brilliantly lighted effects which please the eyes and civic pride of the millions who live in the cities containing them. Many private residences decorated with wrought iron crestings have their most prominent parts emphasized with gold leaf, mouldings of outer doors and what not. But the most profuse use made of it upon exteriors is by the sign writer for gilded signs on wood or upon the glass fronts of stores or other public buildings.

There must be some very potent reasons why gold has been employed for so long a time and for that of a constantly increasing use in ornamentation. In the first place, gold being very bright, of a rich tone, it illuminates everything it comes in contact with. It does not oxidize and with aluminum, another metal having the same property, it remains unchanged amidst the constant changing with which it is surrounded on all sides, so that while its first cost appears great when compared with the cheaper metals, its greater durability to say nothing of its embellishing property, reduces this in the end. The cost of application being the same if gold lasts as long as the object over which it is placed does and which would have had to have been done over many times over again with any other finish, the higher first cost will not appear so great after all and may really be the cheapest in the end.

In interior work and ornamentation it is used even more extensively than upon the exterior; all kinds of wall ornamentation being adorned with it, even wall paper of the better sorts has some gold tracery upon it and in the higher grades it is put on by hand. Mouldings and sculptured and carved parts on woodwork especially in the tasty and dainty—white and gold enamel finish. It imparts richness to water and oil color work so that the fresco painter must be a good gilder if he wishes to obtain good results from his work. Even the dinner table bears it up at least as the ornamentations on china platter, plate or cup bears witness.

- b. Gold is one of the most ductile of the metals and this is what makes its use possible to the extent it is for if gold could not be beaten out in sheets thinner than iron can be there would be but few persons so fortunately situated as to be able to afford to use it on account of its great cost. But its ductility permits its being beaten to a very remarkable degree of thinness and still leaving it entire and solid. It is possible to beat it so thin that it would take 350,000 sheets placed one upon another to make a pile of them one inch in height and one single ounce of gold will beat out into 2,500 leaves 3½ inches square, besides the tailings cut off to square the sheets and which are remelted again.
- 144. a. Gold is alloyed with many other metals and in many different combinations with them to produce the various colors of it demanded by certain in-

dustries for special objects. The colors of it that are best known and which all the supply stores handle are the "pale gold" which as the name indicates is of a light tone, to "deep" and "extra deep" which give the rich gold tones and which are mostly used.

Gold leaf comes in books containing 25 leaves 3½ inches square and a pack contains 40 books or 1,000 sheets. Gold leaf is placed between the paper leaves of a book hence the name. The leaves having been rubbed over with red chalk or bole to keep the leaf from sticking to the paper as otherwise there might be some greasy spots which might hold the gold when it would be broken to pieces when an attempt is made to remove them from the book.

b. All gold leaf manufacturers now also pack it by first attaching each sheet of gold upon a sheet of paper just a trifle larger upon which some substance has been rubbed which gives the paper a slight adherence, sufficient to hold the gold leaf when these are placed inside of the books in the same manner as the loose leaves are. This is a good thing especially so to those who have to do any outside gilding as one may well infer, when even indoor the least breath of air will send it flying about like feathers. If the manufacturers would only use as good a quality of leaf for what is known as their "Stuck leaf" it would be all that could be desired, not only for outside where it can be used with impunity in any wind, but for inside also—excepting always water and glue sizes for which they would

not answer. The better way is to use paraffine wax to rub over sheets of paper and stick the gold on it that is packed loose, it can then be cut with little or no waste and the leaf will have all the density that the loose leaf has usually to a greater degree than the "Stuck" or "Patent."

- 145. The term "Gilding" has come to be used indiscriminatively so that now it covers all metal leaves as well as gold, so that silver, aluminum, imitation gold, Dutch metal, etc., are all included in under the title, at least in so far as that title applies to the application of the leaf, so that it is perfectly proper for a man to say that he is about to gild a surface in aluminum, however absurd it may sound to the uninitiated.
- 146. a. Gilding in oil on wood and other surfaces is the method most usually adopted for gilding any kind of a surface exposed to the elements, a size must be used to cover all the parts to be covered with gold. It will depend upon what the size consists of and of how it has been prepared, as to the resulting permanency of the work. Where pure gold leaf is used the size is protected from the injurious effect of the elements by the gold leaf itself, which we have seen, is not acted upon by oxygen.

In order that the gold leaf may be applied easily and preserve its full lustre the sizing must be tacky. Tackiness does not mean stickiness, however, and gold should never be applied to a surface that is still wet or from which the size can be removed by placing a

finger upon it and to which it would stick. It is a stage which oil painting acquires just before it becomes hard. In ordinary oil painting that stage is of very short duration and the proper time would be very hard to catch so that unless but a very limited quantity of gilding is to be done, such would become too dry before it could be completed and it would not hold the gold tightly or if the gilding was done just on the border of tackiness, then some parts probably would still be too wet and the oil would come through the gold matting it and causing it to darken.

But linseed oil may be so prepared that it will hold a tack on much longer than it is usual for it to do naturally—even for several days after it has set sufficiently hard to become tacky, thus allowing ample time for the completion of a very large amount of gilding. It is prepared in this way: Take shallow dishes into which pour raw linseed oil, then cover them with cheese cloth to keep out insects and dirt, but not air. Place these dishes upon a shelf inside next to a window where sun and air will have free access to them-but rain must be kept out. A few months of such an exposure will render the oil fatty-in other words, the oil will have been in constant contact with oxygen for so long a time that it has lost its power of absorbing much more and when painted out thin, even when driers are used in combination with it, it will dry as far as to become solid, but it will take a long time before it becomes bone hard.

When a supply of fat oil has been obtained it should be bottled and kept for future use. It should be tried by itself to know how long it remains in good condition for gilding when used alone, than with various quantities of liquid driers to know how long it will take before it is ready for gilding and how long it remains in the proper condition. This description and mode of preparation will hardly suit the man who has a job of gilding to do in the near future, but he should take care to prepare some of it, for if he does not, he will have to depend upon such as all supply stores handle ready prepared and none are as good—certainly none can be any better than that which he can prepare for himself. The ready prepared fat oils of the stores come usually in three varieties: The quick fat oil size that will dry in twenty-four hours ready for gilding and hold a tack five or six hours. The medium fat oil size which suits the majority of gilders best of any, this usually dries in 24 to 30 hours ready for gilding and will hold a tack for twenty-four hours or longer. The slow fat oil size which requires 36 to 48 hours to dry fit for gilding and will hold a tack for several days. This is too slow for any purpose except upon very large surfaces and where the greatest solidity is desirable as the slow fat oil size has but little-if any driers added to it and as it dries more naturally, it will have more life and elasticity to resist injury from the action of the elements.

b. The surface to be gilded should have become

very dry by exposure to the atmosphere for several weeks after it has been painted and should be perfectly free from tackiness, for if it is not in such a condition it will probably hold the gold in many places where it is not wanted to stick. The surface should be well cleaned with soap and water and afterward rinsed with clean water to free it of any greasiness which may have gathered upon it from any cause. If it lays with its flat side up it should be sprinkled over with bolted whiting which should be well rubbed over it. Gold will not stick to it and such a surface being flat and whitish makes an excellent ground to size up with size which has not been colored up as that sometimes makes it specky, unless great care has been taken in preparing it. The size will show blackish and shiny. If the ground is very dark or the gilding is done on the side of a wall where the whiting cannot be used, a little chrome yellow medium ground in oil should be added to the size and after having mixed it thoroughly, should be strained through some fine cloth. Previous to sizing such part it will pay well to go over all the parts adjacent to where the gilding is to be done with a freshly cut raw Irish potato, cutting off a fresh surface as needed. There will be a thin film of its juice left to which the gold will not adhere. After this is dry which will require but a few minutes the sizing can proceed. It should be applied with a camel hair brush and laid on evenly; in running lines care should be taken to make them true and even sized without ragged edges

and to bring them to the ends perfectly square. It is proper attention to these details that marks the workman from the botch. It is now a matter as to whether the size used was a quick or a slow one as to how long the gilder will have to wait before laying the leaf but under the greatest temptations of hurrying up, he should hold his peace and wait till it has reached the full stage of tackiness as it is then only that he will experience no trouble nor difficulties in laying his leaf properly.

c. There can be several quick sizes made which answer the purpose fairly well, especially if the gilding upon it is not expected to last forever. Japan (so called) gold size thinned with half its bulk of turpentine or the same mixture of quick drying varnish and turpentine, can be used for a quick gilding size; but as it has already been stated the gilder is sometimes sorely disappointed in not having caught the very short time when the size was in a proper condition to receive the gilding and then he will have had all his pain and labor for nothing.

After all there is little to be gained and very much to be lost by using any of the quick sizes and nothing but a case of absolute necessity and hurry will justify any one in taking such risks. The fat oil sizes can be quickened so they can be used over twenty-four hours after they have been applied. That is quick enough and then they lay in condition for several days. •

147. For gilding in water colors usually one should

prepare two kinds of sizes—one that will permit of burnishing and the other which will make the gold look flat or matt it, as the gilder's technical name for it.

The burnishing size is made from pipe clay and plumbago to which a small quantity of mutton suet has been added while they are ground up on the slab. These sizes require to be prepared as wanted and should be thinned with glue water of medium strength. There is so little gilding been done in water colors at the present time, that it will be better to buy it ready prepared when wanted as it will save the trouble of preparing it every time it is wanted. Those are specially prepared so as to keep and probably have antiseptics added to them which prevent the suet from becoming rancid and ill smelling. This size takes on a good polish and will burnish, which operation should be performed with an agate burnisher.

The second or matt size and Armenian bole, and is also thinned with glue water as stated for the previous one. It too can be bought ready prepared for use and this is much more convenient than preparing for one's self every time it is needed. It will not burnish and can be relied upon to dry "matt."

148. More water color gilding is done upon picture frame molding and room molding than upon anything else and all things else put together.

Picture frame makers use whiting sized up with glue for the purpose of filling and surfacing their moldings. They give them an indefinite number of coats as some forms require more than others, which they continue until they obtain a good body to rub on and this they proceed to do. This levels up the surface of the moldings smoothly and fits them to be burnished. They use both the burnishing and the matt size and they apply 5 or 6 coats of it, which are rubbed smooth after each coat has dried, when they are ready for gilding by simply applying water to the molding with one hand and with the tip holding the leaf letting it down to where the water will carry it level on the molding, the water acting in much the same way as when gold leaf is applied to glass in glass gilding. When dry the gold is either burnished or remains matt according as to the size used. It requires a little practice to become efficient as to the proper way to handle gold for this work. One must acquire a certain definess of motion in order to be able to do the amount of work which is considered a day's work in that trade, and the only way to gain this experience is by constant practice.

GILDING ON GLASS.

149. This kind of gilding is used mainly by sign painters and more will be said under that heading, as there are several ways of using leaf on glass which apply to sign work exclusively. But all styles and modes used for applying gold to glass require the same sizing which is that kind of glue known as *Isinglass*. This glue is very thin and nearly as transparent as glass and as much

at least as mica, so it will not dull the gold when coming between it and the glass. It should not be made too strong either as then the gold will not burnish so well. A small piece the size of a nickel or a quarter of a dollar, should be soaked up in cold water until it has absorbed all of that of which it is capable, then it should be melted in warm, but not boiling, water which should not exceed much over a pint in quantity, to which should be added about a gill of grain alcohol. It should be strained through very fine silk cloth into a bottle which should be labeled and from which it can be used until exhausted, as the alcohol it contains will keep it from souring.

The glass to be gilded should be washed very clean with soap and water, rinsed wth clean water and again sponged with clear alcohol and dried carefully. This will remove any greasiness, fly specks or any other dirt, leaving the glass clean, and through which the gold will appear full of brilliancy and at its best.

The designs to be gilded should be roughly sketched upon the outside so as to act as a guide in applying the gold and to show the gilder if enough has been put on to afterward paint his design upon. Gold leaf is very fragile and much of it, even in the book before touching it, will be found either with small pin holes or even larger ones through which light can be readily seen and through which the paint used in backing it will also show through, for the above reasons it is always best to give a double coat of gold leaf. As soon as the first coat is

dry, which is, say, half a day or more, if there is no hurry, the second coat can be put on in the same manner as the first, which is to keep the surface of the glass well wetted with the isinglass size just ahead of the application of the leaf which should be transferred from the book with a gilder's tip. (See Fig. 32.) If sufficient size is on it will flow the leaf perfectly level on to the surface of the glass. Owing to the much wettings which the underparts receive, it should always be commenced at the top and the application continued downward, taking care to allow about 1/16 of an inch lap to insure a close fit between the pieces of gold. Where the members of the design are small and not closely clustered together it will be well to cut the leaves up to the required width with a small margin allowance of it, but if the designs are clustered close, then it will hardly pay to cut the leaf up and it can be applied in full. The second coat is applied over the first in the same way.

As glass gilding is usually done inside, there is usually no difficulty in protecting one's self against draughts of air, but sometimes it may be necessary to do so and screens should be put up to prevent it. A gilder's cushion which is simply a board through which a round handle to hold it up by is nailed some strips of felt should be glued on the upper side of it and upon that a chamois skin. All around it except in front a strip of stiff leather should be nailed on the side and one-third of the back part of it should be hooded. The gold leaves can then be stowed away underneath it, protected from

air and can be pulled out with the tip upon the front part where they can be straightened and cut up with a gold knife into the required size. This gold knife need not, in fact should not, be sharp and it need not be pressed down upon hard as that would uselessly injure the chamois skin, it should be used like a saw, with a forward and backward motion, otherwise the gold will be ragged edged and will stick to the blade.

The gilder's cushion can be bought ready made, but any one can make one for himself without being much of a mechanic, either. It is needless to say that its use is not confined to gilding upon glass, but that it is useful in oil gilding on wood, or in Water color work as well.

The design which is desired to appear in gold on glass should have been drawn upon a piece of manilla wrapping paper and holes pricked through it with either a tracing wheel or a needle, so as to allow it to be pounced upon the gold previous to backing it up with paint, as it will furnish the proper outlines for that operation. The paint should be mixed from coach colors ground in japan or varnish, but never from colors ground in oil; they should be thinned with varnish and turpentine about half and half of each. It is best to give two coats of backing and this should be mixed exactly as directed for the first. When thoroughly dry the surplus gold can be washed off the glass. The backing coats of paint preserve the design from the water, but the gold which has not been coated over with it will wash off. If the sizing was strong, the water used in

the washing should be warmed and then it will soon soak up the glue sizing so that it will come off. In washing surplus gold off of glass the water should be applied with a soft sponge only, as anything harsh might damage the clean cut edges made with the backing. Many beginners are in too great a hurry to wait until the backing is hard enough and commence the washing too soon, with the universal result that the edges curl and the perfect look of the work is damaged.

BRONZING.

Bronzing is not gilding although its main object and purpose is to create an impression in the mind of others that it is. It is a sham, but such a sham as false teeth and other false things which have become so common, that, notwithstand that no one is fooled by them it is broadly done and admitted as a matter of course. It permits the vanity common to human kind, a mild sort of outlet in making believe something that nobody believes. It enables the lady to buy a 10c store plaster of paris statue to be daubed over with another Ioc worth of gold (?) bronze, and made to represent an ormolu worth 10c worth \$50.00. La Fointaine in one of his fables tells of an ass who thought of scaring all the other animals he was chumming with—taking a lion's skin and dressing himself with it to procure the effect he desired but he had miscalculated the length of his ears nor did his bray correspond to the roarings of the genuine, so that no one was fooled after all,

Bronzes are to be found in all colors imaginable, and in such when used to produce certain metallic reflections in colors otherwise not obtainable in decoration they have a legitimate and even artistic look to them, and the ironical sayings just indulged in at their expense is only directed at their misuse in trying to imitate something which it is not. They are made from all sorts of compoundings of metals, powdered glass and what not. The processes some of them undergo, are carefully guarded, so that the public usually is not invited into the manufacturer's sanctum sanctorum, especially when he has hit upon a happy combination which permits him to control the market upon it after a demand has been created for it. The cheaper inferior sorts quickly tarnish, but the good grades of it are remarkably permanent (some of them) and it is of these and of the manner of their preparation and of fixing the permanency which is kept as secret as possible. Chemists may find out their composition but the manner of keeping the fade out of them, is beyond the power of analysis.

Bronzes are sold according to their fineness at least all the ordinary sorts are. Bronzes sell at from 50c per pound to \$8.00. No doubt but that a good portion of the price paid for the higher grades by the consumers goes to the manufacturers to pay for the "know how."

151. Bronzes may be applied with any kind of a size that carries a little tack so as to hold it on. If an object is to be bronzed all over, the size can be put on as a paint coat would be over it and when it has set suf-

ficiently to have a tack, the bronze powder may be dusted on to it or better rubbed over it with a piece of cotton batting which has first been dipped in the bronze powder. In that way there will be little or no waste of the bronze. If only a certain design in bronze is to appear upon the surface the object should be carefully washed and cleaned free of grease spots for if any tack caused by greasiness remains the powder would adhere to it. The oil, japan or varnish sizes must be put on in the same manner as related for gilding. But there is a better way and a much safer way and that is to mix the bronze powder with a good vehicle which will bind it on the same as any other pigment. Many manufacturers put upon the market bronze sizing japans, etc.; some are fair but many worthless. The best known and mostly used bronze sizing to be used for mixing those with it, is called "Banana Oil" of a strong, pungent, disagreeable odor of that fruit. For those who can stand that odor it is the best there is, as unlike the japans it leaves the bronze with a full undulled metallic luster which is as bright after mixing as it was before, which cannot be said of the others. In fact it is mainly for that reason that objects which are solidly bronzed are sized all over and the dry powdered bronze applied over it-in order to preserve the full metallic reflection.

QUESTIONS ON GILDING AND BRONZING.

- 143. a. What is said generally of the use of gold?
 - b. How is gold leaf made?
- 144. a. How many kinds of gold leaf are there?
 - b. How is gold leaf packed?
- Is the term "Gilding" applicable to gold only?
- 146. a. What is said of gilding in oil?
 - b. How is it applied?
 - c. How are quick sizes made and used?
- 147. How are water sizes made and used?
- 148. How do picture-molding makers prepare them for gilding?
- 149. How is gilding on glass done?
- 150. What is said regarding bronzing?
- 151. How is bronzing applied?

GLAZING.

152. The technical term "Glazing" is in itself a very good description of what the operation it designates consists of, so that its name is appropriate.

Glazing, to painters, has a double signification, especially to such who conduct a general business and who are glaziers as well—but to the coach painter, decorator or artist it has the signification which is given it here. It means with them the application of a coat of paint, giving to an already painted surface an artificial look of transparency and depth which appears some-

what as if the previous coating of paint had been covered over with a sheet of glass—hence the name.

It imparts to pianted surfaces an undescribable look of depth and effect which can be obtained in no other manner. As stated before the glazing coat must have another one of solid color under it. It must be made up with a transparent lake, or some of the transparent colors, or with a solid color which has been made transparent artificially.

These glazing colors need not always be of the same tone as that of the solid color over which they are placed, and some of the richest effects are produced by glazing certain colors with a lake of a widely different tone. But some very pretty effects are obtained by glazing over colors with a glaze coat of a color of the same order, but of a different tone of it; for instance, for a carmine glaze a solid English vermillion coat is given, which when followed with a carmine glaze partakes of the character of both, the vermillion tone being reflected through the transparency of the carmine glaze, but the carmine itself also showing its own particular richness of tone. Thus a double tone is really produced. This is very pleasing to the eye, and this is why this effect is being used upon all first-class carriage work other than black. This is imitated by a blend of solid colors for cheaper work, but, like all imitations, it falls far short of the genuine.

In carriage work the glazing coat follows immediately after the last coat of color has been put on and just

previous to the safety coat of varnish used to decorate upon.

Decorators use glazing colors also, and for the very same purpose as the carriage painters do: that of producing certain depth of tones which they could not obtain in any other way.

Artists, likewise, are very familiar with the use of glazng colors and have recourse to it on many occasions.

QUESTION ON GLAZING.

152. Give a description of glazing.

GRAINING.

153. Graining is not a very old art and it is very doubtful if it was known at all two centuries ago. It is very true that artists had occasion to represent various woods upon pictures, but only in so far as the wood represented was necessary in the make up of their pictures—not as graining. Graining in a commercial way as it is known today was, therefore, unknown previous to the time related, and the artists who imitated woods upon the canvas had no idea as to how the grainers execute their work, nor of its methods, and such a knowledge would have been useless to them as a picture would have been nofield where such could have been practical.

Graining began to flourish about the commencement of the eighteenth century, and from that period until

the middle of the nineteenth it increased greatly until the first class grainer became an mportant character in all communities where such existed, and their renown usually spread all around them. Such as had a wide acquaintance, and grainers were never slow in blowing their horns, were sent for quite long distances from their home towns. The British Isles-England, Scotland and Ireland—seem to have produced the best and most renowned grainers. The Continental countries of Europe, especially the more southern, had the best of Great Britain in the production of good colorists and decorators but that country bore the palm in its graining and the men who did it. The traditions which have been handed down and reached our times give accounts of the feats of the renowned ones who had made enviable reputations during the first three quarters of the last century, which ends the flourishing period of that art. It very suddenly came to an end about the middle of the seventies with an occasional spasmodic revival, which did not last long, however.

Without a doubt, this was due to the introduction of hardwoods in house construction. The supply of white pine finishing lumber giving away about that time, its cost began to rise up so high that it became as cheap or cheaper to use hardwoods for the purpose. As the hardwood is usually better than the imitation the skill of grainers became less and less needed, and with the results that the great grainers of the past have few if any successors in the present generation. The discrimi-

nating customer of "ye olden times" was willing to pay a pretty good price for the graining of a double front door and vestibule or a library, dining-room, or even a parlor, hall, etc.; that would beat some neighbor because good graining was then regarded as an art—which it really was. It deserved good remuneration and it received it as the artist does—not at so much a day—but for the artistic effects produced, regardless of the time consumed. For no one but an artist could reproduce the woods in such natural imitations that it frequently fooled good judges of woods.

The great diffusion of wealth since that time, too, has been another factor militating against graining because it has enabled the great middle class to procure the genuine wood in place of the imitation. So high priced white pine finishing lumber plus the high prices heretofore paid for artistic graining made the imitation come higher than the natural wood, and the cheap, hurry-up kind of graining could not hold out sufficient inducements to tempt artists to devote their life work to do this cheaper class of work: there is little wonder that such were deterred from adopting it as a calling, and that the field is so bare of really good grainers.

But a reaction is taking place now which promises to advance this branch of work again. It must not be expected that it will ever reach the high planes of the past, but the first class grainer today finds that room for his skill is increasing. This, no doubt, is due to the fact that it is now the universal practice of finishing flats, etc., in varnished yellow pine and that that sort of a finish does not satisfy owners nor tenants after a few years, as they darken and become very dingy. The only remedy is painting them over every year, or graining at a little greater expense at the start, but much cheaper in the end, as it need not be renewed yearly to be in good condition.

There is, therefore, a good future in sght now for good grainers and this art is bound to grow into favor again. Possibly there may not be so much oak done as formerly, although that will still remain at the head of the list, but mahogany and maple for bed rooms, with the former for anywhere, as its place is suitable to any room is even now having quite a run, and while it is a bit dark, its richness of color lightens it up and that is overlooked on that account.

It is not intended to give a lengthy account of "how to do graining," but the subject is of sufficient importance to warrant giving enough details as to the "how" to proceed to grain all the principal woods.

THE TOOLS NEEDED.

154. Oval or flat wall paint brushes to paint the ground coats with (see figs. 3, 4, 5). Some partly used oval varnish brushes or any other fair sized wall brushes, not too nearly worn out to be stiff or scrubby.

Oval varnish brushes 4 to 8° (see fig. 15), some mottlers (see fig. 29), floggers (see fig. 28), fantail over grainers of various sizes (see fig. 27), bone-headed bad-

ger hair blenders (see fig. 33), with a good assortment of lettering camel's hair brushes for putting in veins; also a line of various sizes of sable artist's brushes for fine detail work.

Sponges of various sizes and texture.

Rubbers for wiping out.

A set of steel graining combs. Fig. 44.

A set of rubber graining combs. Fig. 45.

A set of three rubber graining cylinders. Fig. 46.

A set of rubber graining rollers or rubber spring. Fig. 47.

Sectional grainers as shown below.

A check roller for putting in weather checks in oil. Fig. $\overline{48}$.

Some clean, soft cotton rags. The above are the essential tools. No doubt the professional grainer may have some pet tool or another of his own invention which he may want to put into the list—but the best of graining can be done without any other. The piped overgrainer, etc., have been cut out of the list as unnecessary; also some forms of mottlers.

THE MATERIAL USED.

155. For painting the grounds suitable for the graining of the various woods upon the following list of pigments required is given: white lead is usually the principal pigment used for the base of all light-tinted grounds, and to that is added the colored pigments required to produce the right tints. These are: Venetian

red, Vandyke brown, raw and burnt umber, raw and burnt sienna and ivory, all to be finely ground in linseed oil.

For thinning: raw and boiled linseed oil, japans and varnishes.

For graining in oil the above named oil colors thinned properly can be used, or graining colors all prepared, ready for thinning, can be bought for almost any of the woods, and in light or dark tones of them.

PREPARING THE GROUNDS.

156. Break up some white lead ground in oil rather stiff in a little linseed oil, add to that the pigments which are named under each wood for the preparing of the right ground for them. These pigments, finely ground in oil, should be thinned much more than the lead, previous to their being mixed with it; stir the mixture well to insure the bottom of it being equally as deep toned as the top. Do not add too much pigment all at once, but add them very slowly until the tone wanted is obtained. The ground color being ready, it should be thinned with raw linseed oil and turpentine sufficiently for application. A little drying japan can be used also to insure proper drying. If two coats are necessary, which is usually the case, give the first one with more oil than turpentine, and the last one with more turpentine than oil so as to have it semi-flat. For graining in water colors the grounds of all woods so to be grained should be a little flatter than for graining in oil.

There is a great variation in the same kinds of natural woods as to their color when finished and varnished so that a man can hardly err if he comes anywhere near to what it should be. No two grainers would select from a line of tints the same shades of them for the graining of any given wood. Of course there is a limit -but it would be very hard to define it. In trying to match some natural wood in the same room, always make the ground for graining about as light as the lightest parts of the wood shows, and when the top graining color is wiped out, it will show an average tone of that of the natural wood it is called upon to imitate. For practice one should have a few sample boards of various toned woods and by a proper selection of grounds and graining colors, he will soon be able to judge at sight of the right shade to make for any sort of toned wood.

Below is given a few simple directions for the selection of colors needed in making grounds. The tone and depth of shade must be left to the judgment of the one who prepares them.

LIGHT OAK.

White lead for base. Raw sienna or French ochre.

DARK OAK.

White lead for base; raw sienna; raw umber, some little ivory black if required for as dark a shade as antique oak.

GOLDEN OAK.

White lead for base, raw sienna or ochre and a trifle of burnt sienna to redden it.

WALNUT.

White lead for base; Vandyke brown or burnt umber ochre; Venitian red; a trifle of ivory black.

MAHOGANY.

White lead for base; ochre and Venitian red.

CHERRY.

White lead for base; raw sienna, tinged with burnt sienna.

MAPLE.

White lead; add just enough raw sienna to make it an ivory white.

SATINWOOD.

Requires a ground of about the same tone as stated for maple.

ASH, CHESTNUT AND SYCAMORE.

Requires the same kind of a ground as a medium oak does.

ROSEWOOD AND DARK MAHOGANY.

Venetian red for base; orange chromo, yellow ochre and burnt umber. It may be required to lighten it up with a little white lead.

The above are about all the woods that are imitated; yet it may be necessary sometmes to match something different than the ones named as in a room finished in hard pine, and where a closet or addition is made from white pine or cypress and one has to grain it to match the rest of the room. It will be an easy matter to make the right ground by following the rule given as to the lightest tone shown by the natural wood and the top graining color will be easily picked out.

PAINTING THE GROUNDS.

157. If the house is new, proceed to prime it with an all oil coat with a little white lead in it; when dry putty it up and follow with a coat of color suitable for ground for the wood to be grained over it; this second coat should be middling heavy and well rubbed out. It should be thinned with half oil, half turpentine. When dry, sandpaper it and it will be ready for the third and last coat. This, like the preceding one, should be a suitable tone for the wood to be grained; it should be thinned with ¼ linseed oil and ¾ turpentine. When dry it should present a smooth, uniform egg-shell gloss or just a trifle more gloss than that.

Old woodwork that has been painted or varnished a reasonable number of coats, not to exceed seven or

eight, will be safe enough to work upon, but, if, as is frequently the case, it has had from a dozen to twenty coats or more, as in some tenement houses one finds them, it is better to remove the old paint as there is great danger of blistering if painted, overgrained and varnished. When it is not necessary to remove the paint, two coats of ground color is enough to make a good solid surface to grain upon; otherwise it should be treated as stated for new work.

GRAINING OAK.

Oak is one of the most beautiful of our native 158. woods and it has such a wealth of variations that it takes a pretty good head to remember them all. This is the reason why probably so many grainers, without exception, adopt some styles of it; which, while not a single one will be a duplicate of any other which they may have grained before, will have a certain family resemblance with all of them because they cannot help working along certain grooves which are peculiar to themselves only, and which one who is at all familiar with their style of graining will recognize at once, and some will go so far as to infallibly give the name of half a dozen grainers who may have done as many rooms on the same jobs, if acquainted with them. It is the same as a handwriting expert would do and no more. The sign writer cannot hide his style of work either. So, if a good grainer is recognized in his work he need not be ashamed of it.

Oak is grained in water colors and in oil, or in combinations of the two. Some grainers excel in the one or the other, but rarely in both. In either ways of graining it is divided up into heart growths and in quartersawed. In color it varies in the natural tones of it, and greatly so in the many dyes of it, which are fads, and which the grainer can adapt his colors to—the coloring having nothing to do with the manner of graining it.

Besides the heart growths and quarter-sawed oak, there are some root growths and the pollard oak both of which differ very much from the two first. There is so much variety and choice in these that there is only the embarassment of the choice from such.

The beginner who has just started to learn graining should procure as many veneers as possible in all varieties of growths of it to familiarize himself with them by copying them for practice. The above advice holds good and applies with equal force to all other kinds of woods. There is nothing equal to it for the purpose of learning their variations, and a few dollars invested in such will be money put in a savings bank at a high rate of interest.

OAK GRAINING IN OIL COLORS.

159. Under Paragraph 155 the material required for graining oak in oil is given and it is stated there that the colors can be bought ready prepared for thinning, or that they could be prepared from colors in oil by the grainer if he so desired.

The professional grainer who does nothing else can prepare his own megilp, as the old English grainers call the prepared graining color, to better advantage than one who probably may not be called upon to do a job of graining again for weeks; such can use the ready prepared graining colors in oil to better advantage than to make up the little he will use on his one job. As every manufacturer of colors mixes his own graining colors according to his own formulas, for best results in using them the grainer should become well acquainted with their several differences in working so as to know how to use them rightly, and when he has found the one which he can work to the best advantage with, he should *stick to it*.

It requires some little time to prepare them for one's self. The colors should be pure, rich-toned and as transparent and fine ground as possible. Beeswax, which has previously been cut fine and soaked in turpentine for 12 hours, will dissolve it at a very low heat in that and can be incorporated readily with the thinner oil color, which has been warmed also. Take care not to put too much in it, about the value of a teaspoonful of the wax to a half a pint of the thinner color. The color itself should be thin, with '1/4 raw linseed oil plus a trifle of driers and 3/4 turpentine. Frequently the graining color has to be applied too thin to comb or wipe out well in order that the ground may not be coated over too dark; in order to remedy that, fine, bolted whiting, which has been well triturated with linseed oil

should be added to the color, and then it may be applied heavier with little danger of making it too dark as the whiting makes it more transparent.

It is then ready to be rubbed in, the technical name used for the aplying of it upon the ground coat. This can be done by the grainer himself, but he will usually prefer to have a man known as the rubber-in to go ahead of him and leave him to do the graining. A halfworn, oval varnish brush makes a good tool for its application, but it can also be done with any other kind of brush of fairly good size that is not too new. The rubber-in should put it on equally all over, but not too heavy for it to run when combed or wiped out. Again, it must not be rubbed in too dry as it would not wipe out well. If the colors have been well tempered and thinned there will be no difficulty in so doing. The panels should be done first, then the inner stiles, then the upper, middle or lock rail, bottom rail, finishing a door with the long side stiles.

The grainer will proceed to wipe out and to comb his panels to suit the style of graining he proposes to execute. Directions as to the "how to do that" would never teach one how to proceed. The beginner should at least see some grainer at it to form an idea of how it is done. Some use their thumb, covering it with a clean rag to do their wiping out; others again make an artificial thumb out of rubber, which they also cover with cloth, sliding that along as the work proceeds in order to always present a dry, clean surface to the

ground about to be wiped; if this is not done the color will slide along in ridges which will give the graining an unnatural and forced look.

For the cheaper graining the use of graining rollers has largely displaced hand work in graining oak either in oil or water color. This, however, applies only to plain growths. Quarter-sawed oak will have to be done by hand as the rollers will not do this right—at best where they are used much of it will have to be finished by hand. These rubber rollers will do the graining wonderfully quick and a great many variations of heart growths can be made with them when they are properly understood and worked.

- 161. The advice given above as to the rubbing-in of colors and of graining them by wiping or with graining rollers is applicable to all kinds of graining in oil where the graining is done by wiping out; therefore it will not be necessary to repeat it over again under each wood. Should the reader forget let him turn back and read these directions over again.
- 162. Graining oak in water colors is very much different than the preceding. For the graining colors one should procure them either dry, or, which is preferable on account of their greater firmness, ground in distemper or water. They are found for sale put up in small glass jars with a tin top cover at all supply stores. The color should be taken out of the jar, put into a clean tin can and thinned with beer to a proper working consistency, and they should be frequently stirred up

while being used as they settle much faster than colors in oil do. If beer is not handy a very good binder for them can be made by using ¼ vinegar and ¾ water with a little brown sugar dissolved in it, or a weak glue size; in short, most anything which has a gelatinous, sweetish tack when dissolved.

To grain heart oak growth for the better kinds of graining it should be done by hand. Run the panels over with the check roller, using some dark coloreither raw or burnt umber or ivory pink, according to the color of the oak to be grained; then proceed to pencil in the veining with a camel's hair lettering brush of suitable size, taking care to use the badger hair blender freely while the color is still wet or else it will be too late and the unblended veins would be harsh looking. The blender should always be used outwards from the growth lines—never blended inward. Only run a few lines, therefore, before blending them, and proceed thus until all the panels have been done. The rails and stiles can be done plainly combed or veined with a fantail overgrainer, taking a dry one and using it over the lines to split them while wet, instead of a blender. The water color can be sponged on and the rubber combs used on it while wet.

The rubber graining rollers can be used as easily or even better over water colors than over oil. The panels should be sponged over with the color the same as the stiles and rails and the rollers used while wet. A little practice will soon enable the operator to turn out neat work with them.

For quarter-sawed oak, sponge the color over the panels, comb and proceed to wipe out the champs or flakes with a chamois skin doubled over the thumbs or an artificial rubber thumb. This can be as well or better done after the color has set; it will be necessary, however, to wet the chamois skin and to go over with that the flakes which will need finishing with a dampened rag afterward. A very nice effect is to touch up a few with the graining color and to put in a few dark flakes with a camel's hair brush which make a pleasing variation.

The better way is to grain quarter-sawed oak in oil, however, and when dry to overgrain it with water colors, putting in the dark flakings where wanted and in burled and knotty growths, to line up gnarled veilings and emphasize knots.

Some of the finest and most natural-looking graining of quartered oak can be done by combining oil and water color work.

When dry both oil and distemper graining of oak can be improved by judiciously shading the tone of colors used, but it must not be overdone as then it will appear ridiculous.

163. Oak root and pollard oak graining may as well be bracketed together as to the graining for both are gnarly growths and are best done in water colors. Oak root resembles a hugh sponge full of little round openings or circles with a system of fine veins intermingling among them, some parts being very close together; in

others again being separated from each other by a few inches of vein veinings. Pollard oak is very similar. the unevenness of the surface being caused by cutting over the branches of the trees at the head for a number of years until an abnormal growth of gnarled projections are the result; these sawed into veneer produce what is known as pollard oak. The knots in pollard oak are larger than in the roots where really there are no knots but the appearance of circular openings resembling them where the circling veining has been cut through by the saw. The ground for oak root or pollardized oak is best made in several shades or tones of the ground color as this will greatly help the graining; it should be put in in clumps according to the graining which is to go over it. The grainer who is to do the work should make his own grounds to suit what he has laid out in his mind's eye. The graining is done with a sponge and blended as the work proceeds; most of it can be characterized with the sponge, to be afterwards emphasized with the camel's hair brush and fantailed overgrainers. The colors used should be very near, or at least in touch with that used on the stiles and rails, otherwise if there is too much contrast the work will appear incongruous.

All water color graining should be oiled soon after the completion of the graining as that will preserve it against harm, for after oiling it will be permanently fixed—becoming, in fact, oil graining.

164. What has been said under oak graining re-

garding the use of water colors and their application with a sponge and camel's hair pencils should be remembered as all other woods done in distemper are treated with them in the same manner, barring the differences between them in color and form of veining. This difference the grainer can readily adapt his colors to, and the style of his graining to suit the difference of forms. Where there is a real difference in the manner of using them, this will be noted under each wood and the same explained.

WALNUT.

- 165. At one time there were few double front doors and vestibules in our Eastern seaboard cities which were not grained in imitation of walnut—usually with burled walnut panels and the rest in plain black walnut with, possibly, the lock rail veined. Halls, libraries and sometimes parlors were also grained in that wood, and then all at once it disappeared. The introduction of hardwood doors did it, and where an imitation in graining was substituted it became golden or some other kind of oak. Walnut, being such a dark wood, is not suited to all places as its somber aspect is not conducive to cheerfullness. The Italian or English walnut is not quite so dark as our American black walnut and the burled markings are so pretty that more of it should be done than is the case today.
- 166. Walnut is usually imitated in water colors or in a combination of water colors and oil. For either

methods it should be stippled first. This is best done by applying some walnut distemper color (either Vandyke brown or burnt umber), with a brush or sponge, and by beating it upward with the flogger (see fig. 28). This divides the color into little short-like pores, which that wood is filled with in all its growths but the burled and with more prominence in the American than in the Italian. The burled walnut is done in the same manner as related for the graining of oak root and pollard oak, the arrangement being somewhat different, however, and the grainer must know how to bring out the details so as to make the imitation look natural.

CHERRY.

167. There is quite a variation in the coloring of this wood and much more in the colors it is grained in than in the natural wood itself. Some people are not satisfied with its rather plain and non-assuming character, and are not satisfied with anything short of the color of its fruit! This is really ridiculous, but they will tell you: "Why, no more so than masquerading oak with a green or blue stain," and how can one blame them when that is tolerated? The natural cherry wood has a very plain growth with quite a few pores showing through, which should be stippled in with a color composed of raw sienna, burnt sienna and burnt umber, but which should not be made nearly as strong colored as in walnut as they show very much more subdued and lighter. The veining is not very prominent either, the

veins being separated far apart, but are fine-lined, for all such woods it is better to mark out the veinings with a pencil of the right color, which, in this instance, is one made of raw sienna and burnt sienna. These pencils can be bought at most of the supply stores and are catalogued in artist's supply houses. There are some fifteen or twenty different tints made of them. They are encased in wood; the wood being colored with the same color as that inside of them it is easy to pick out the right shade at sight.

MAPLE.

168. Maple is one of our most beautiful woods and well deserves the use made of it in house construction, especially for the wood work of bedrooms, for which it is so well fitted. The veining in plain maple is very thin and simple and it owes its chief beauty to its mottlings. Its pores are very small and not sufficiently prominent as to require them to be taken into consideration in making an imitation of that wood. The veining, as stated for cherry, is fine-lined and of but little prominence, and is made best with a proper colored pencil or with an artist's brush and raw sienna in distemper. The ground should be nearly white.

Curled maple is very richly marked with markings called mottlings, of a rich darker color than the rest of the wood and is done by using the mottler and water colors and blending them with the badger hair blender. It can be imitated in oil but will not look so rich. Bird's

eve n.aple is the richest of all, and it, too, is best imitated in water colors. Raw sienna darkened just a trifle with raw umber to kill its too great yellowness is best for the graining. The mottlings having been put in, it is the practice of some to dip the end of their fingers in the graining color and to put in the eyes by pecking their fingers against the ground. The above is easy but is not nearly as good by long odds as the following: Take a fine-pointed red sable artist's brush and put them in-not by dabbing them in solid but by making small circles with it for the natural bird's eye has usually an open center. After these have been put in their proper places, and this is very important and nothing but a close study of the natural wood will teach one where they really belong, proceed to put in the veining with a proper colored pencil as stated for plain maple when it will be ready for varnishing. Bird's eye or mottled maple might be imitated in oil colors but it takes much more time and is more difficult as well and when finished would not look as well.

ASH.

169. Ash is grained in much the same way as oak heart growth. The color of the ground is very much the same. The growth is more regular and somewhat coarser than that of oak. It is easily imitated with the rubber graining rollers. It can be grained in both oil and water colors—the first by wiping out and the latter by penciling on the veining. The variety of it known as

"Hungarian Ash" has a very peculiar growth which looks as if some one had blowed in the lower part of the log and the veining had been swelled out in circles more or less oblong in form. This wood is the most showy of the family and like the plain heart growth is best imitated in water colors.

SYCAMORE.

170. There is but little of this wood imitated by graining. Why that is so is hard to tell. There are indications that more of it will be done in the future than in the past as sycamore lumber is being used more now in house finishing than formerly, and justly so, for it has fine and peculiar markings all its own. These mottlings are small and irregular all over the growth.

It is easily imitated in water colors with a sponge and blender. The ground coat should be about the same as that of dark oak, just a trifle lighter. The graining colors are raw sienna and raw umber. It can be easily imitated with the rubber graining rollers intended for quarter-sawed oak, rolled over quickly over water colors and well blended, and instead of that name they should be called "sycamore rollers," as they are better fitted for that than for the other.

MAHOGANY.

171. Mahogany is one of the richest of woods and it well deserves the great popularity it now enjoys for both furniture and house finishing. It is the richest

toned wood of them all and while rich it is not loud; even that with the richest of marking is never gaudy or suggestive of vulgarity. In shades and tones it runs from a yellowish buff with darker brown mottlings to a rich burnt sienna red with dark brown and some nearly black featherings of great beauty. A wood having such a range of color can have no set tint for a ground color and as to the tint that the ground should have will depend entirely upon the character of the sort of mahogany that is wanted. If a yellow-toned mahogany is desired the ground will have to be made more yellow and lighter toned than for aged mahogany, which will require a deeper reddish-toned ground. While mahogany can be imitated in oil graining, it is much easier and better done in water colors.

The character of the wood should be sponged in and well blended more strongly than for woods of fine veining; this will feather out the edges in both directions. When blended and dry, the details, if any are desired, can be added with either a camel's hair pencil or a fan tail overgrainer, and well blended, too. When dry it should be coated over with linseed oil and turpentine.

ROSEWOOD:

172. Rosewood is a very dark wood and for that reason is seldom used in such large a quantity as for instance a whole room would demand. It is one of the most expensive of the woods. Its use is chiefly confined to piano cases and small artistic objects, and in

furniture. As its darkness and high cost prevents its being used largely its graining, too, is very limited for the first reason given—too dark. Many small objects are grained in imitation of it, however, which is usually done in factories where they are made. The ground for it is about the same as that of dark mahogany, only more red. The graining is best done in water colors. Drop black applied with a sponge in erratic heavy lines to be blended slightly but not feathered as in mahogany, then followed with a fantail overgrainer filled with the same color; put in the fine lines which nearly cover the whole wood, leaving but little here and there of the ground to show through. It is very easily imitated when one has a good conception of its character in mind; but it is also easily spoiled if its average markings are misrepresented. The greatest trouble with the novice is that he tries to put in too many details, and these in the natural wood never force themselves upon the attention, but they have to be closely looked for to distinguish them.

QUESTIONS ON GRAINING.

- 153. What is said regarding graining?
- 154. What are the tools required?
- 155. What material is used?
- 156. What is said about preparing the ground?
- 157. How many coats of ground color should new and old wood receive?
- 158. What is said in a general way about oak graining?

- 159. How are graining colors mixed for graining oak in oil?
- 160. How is the graining color in oil rubbed in and how is the graining done?
- 161. Is what is related in Paragraphs 159 and 160 applicable to other woods as well?
- 162. How is the graining color in distemper for oak prepared and how is the work done?
 - 163. How is oak root and pollard oak grained?
- 164. Is what has been related of the water color graining of oak applicable to other woods?
 - 165. What is said of walnut graining in general?
 - 166. How is walnut grained?
 - 167. How is cherry grained?
 - 168. How is maple grained?
 - 169. How is ash grained?
 - 170. How is sycamore grained?
 - 171. How is mahogany grained?
 - 172. How is rosewood grained?

HOUSE PAINTING.

173. House painting is of two very different kinds—exterior and interior.

Both exterior and interior of buildings are painted for a twofold purpose: first, as a protective covering to the material used in house construction, and secondly, as a means of beautifying its surface.

Under the heading of "Exterior Painting" (see Paragraphs 108 to 120), the reader will find a full explanation as to the best manner of treating all the various material used in the construction of houses, therefore it would be useless to repeat the same here.

174. The painting of interiors has also been fully reviewed in all the several methods used in doing the same, such as in water colors or distemper under the heading of "Calcimining" (see Paragraphs 31 to 38), also the same under the heading of "Fresco Painting" (see Paragraphs 134 to 142), and in oil under the heading of "Flatting" (see Paragraphs 130 to 133), also under the heading of "Enameling" (see Paragraphs 121 to 129), besides such as is finished in "Graining" (see Paragraphs 153 to 172) and "Marbling" (see Paragraphs 173 to 192). The above covering all the various ways used in finishing up interiors will suffice without repeating it and the reader can readily find what he is looking for under the several headings mentioned.

QUESTIONS ON HOUSE PAINTING.

173. What is said of exterior painting?

174. What is said of interior painting?

MARBLING.

175. The imitation of marbles and other variegated stones is a very attractive and interesting section of the painter's trade—one almost feels like saying *art*; for to produce a good imitation of them is artistic. To be able, then, to imitate them the student should have a

good conception of it formed in his mind ready to be transferred by his good right hand by the proper handling of the tools that will reproduce what his head has conceived upon the surface he desires to ornament. Should he spend a whole week in going about from building to building, examining good natural specimens of marble in the great office vestibules, corridors, etc.. or in public buildings, churches, in any of our larger cities, it would be time well spent with him as this would do more to fasten up in his mind a good understanding of their forms and the great variations of these in the several marbles which are so profusely used at the present time. Reading about them will not learn him anything, and he might read till he was gray headed before he could have as clear an understanding of them as a good square look would give him—at the marble itself.

Nor need this study be commenced over for every kind of marble he hears about, nor will he need to make a study specially for each kind of marble as the grainer has to do to understand the peculiarities of each kind of wood, for all marbles, while each has some peculiarity too, can be in reality divided into two general groups: Fissured marble and the other—conglomerate marble.

All the fissure marbles have a great family resemblance; the main difference being in the frequency of occurrence and the fineness of the fissures, the more or less of their transparency, and mostly in the coloring itself. There are a great many names given to certain colored marbles, yet as the chief difference lays in the colors used in executing them, this need not worry the marbler very much.

During the week which he has been advised to spend in examination of various specimens of marbles he will have come to a seemingly contradicting opinion "that they are all alike" and "that it is impossible to find two pieces of marble a foot square that are exactly alike," that is in the fissured marbles, for the solidly colored ones need not be considered, so far as being counted in—they are not imitated. This seeming contradiction—as to their being all alike and yet as being all different—lies in that when one color of fissured marbles has been well studied and understood, all the others, barring the color, will be understood also and their minor differences can be readily taken care of. Their variations are infinite, however, so that the statement that no two pieces are alike is true also.

176. To make a good imitation of marbles a person needs to have an intimate knowledge of colors and of the "how to handle them" by blending them properly so as to make them appear transparent if he wants them so, or solid if he desires it. He will find numerous specimens of markings and veinings in the natural marble that he should not try to imitate because if he did he would be laughed at for his pains. Nature misses it at times and produces some unnatural looking specimen but the marbleizer is not supposed to reproduce them,

It is the same in the various woods; only those of pleasing forms are copied and the abnormal should be shunned as no one wants them. The pleasing forms of marbles are so numerous that if a person was to imitate them daily for a lifetime it is doubtful if he would reproduce any former design; yet, as in graining, every person will adopt certain forms and peculiarities and unconsciously he will put on some of this individuality into his work and these "personal marks" will be recognized by other painters who are familiar with his peculiarities, and a look will suffice them to enable them to name the person who did the job.

The tools needed for marbling are few. Some brushes to lay colors with; these may be of any shape, but as only rather small surfaces are laid over with colors at one time, they should not be too large. Some few flat and round fresco bristle liners; some camel's hair pointed lettering brushes and a few artists' brushes to put in fine lines and outlining with. Some bristle blenders and some badger hair blenders; some feathers to put in fine veins with. Sponges for water colored work and some soft, clean cotton rags. The material used for marbling in oil is: white lead, which is usually the base or principal color in the foundation of all the lighter tints of marble, and for coloring it or for using singly or in connection with other colored pigments; raw and burnt sienna; raw and burnt umber, Oxford and French ochre; Indian red, Prussian blue, ivory black, etc. As marbles can be found in nearly all colors, it is hard to say where the naming of the list of colors used should stop as nearly all of them can be put to use.

For marbling in water colors all the same colors, dry or ground in distemper, can be used with the exception of white lead for which whiting must be substituted.

By long odds the better way of imitating marbles is with oil colors—and the easiest, too. The blending of the colors in distemper is very much more difficult to do properly, and usually it is used only upon the very cheapest of wall work that any of it is ever attempted. A person cannot judge rightly of the value of the colors used as they dry so much lighter than when first put on. It requires quite an expert to imitate marbles properly in distemper. Some few do obtain very good results in work done in that way, but mostly in scenic painting, and their work while pleasing at a distance will not usually bear a very close inspection.

DOVE MARBLE.

178. The ground for dove marble should be a warm gray composed of white lead, lampblack and a trifle of red to warm it up. When dry go over it with a transparent gray made of zinc white, black and whiting to give it transparency and further spreading; put in the darker gray tones in places where desired; then blend them in with a bristle blender. Then run in the veining in white, which blend with the badger blender to make them transparent and look as if disappearing be-

low the surface. Then finish up by putting in the high lights on the veining with white. This makes them appear as if they had continued from below to the top of the surface through the transparent ground. painter will find it one of the easiest to imitate. broader veins or layers, as some call them, can be put in with the bristle fresco liners and the finer with artists' brushes, or still better with feathers dipped into the color; with the feather can also be applied the network veining in clumps where they usually center and divide out from. It is very quickly done and the quicker the better the work will look as hesitation always causes veining to be harsh. For very good work it is better to accentuate details with a camel's hair artist's brush to put in a trifle of dark shading upon spots on one side and to lighten up on one side the lighter shades. helps to produce a more transparent effect to the marbling.

As many of the above details are applicable to the imitation of all kinds of marbles it will not be necessary to repeat them again, so the reader should bear them in mind.

BLACK AND GOLD.

179. The ground for this marble is black and the veining is gold colored as the name indicates. Some large veins of straggling character run in zigzag fashion in all directions; these are made of yellow ochre, raw umber and Venetian red and are to be blended in with

the black and gold veining. After the color has set a bit, the high light gold veining is put in again but not over the first ones which were blended and no attention should be paid to them; they appear as if they were below the ground through the transparency of the surface. Only a portion of this last veining must remain as "high lights," the rest must be carefully blended to make them look as if they were gradually disappearing and give still greater transparency to the job.

EGYPTIAN GREEN MARBLE.

180. The ground for this marble is an invisible green made of black and yellow. When the ground is dry, paint over the whole surface with a green which is suitable, putting in the black masses here and there and with a feather putting in some of the green in veins through these which should be blended. When dry run over the work with blocks of black to give it its proper character. The white masses should now be put in and one side of them should be made sharp by touching them up with a camel's hair pencil.

When stones are cut and polished they are frequently so transparent that we seem to look beneath the surface, and crystallized masses may be observed distinct from the substance which forms the matrix. These crystalline bodies may present their sides or may be cut angularly, thus giving a singular variety of form and great transparence to the mass. This is where the painter can display his skill by imitating it. The novice

will, no doubt, find it difficult at first but perseverance will reward him with success.

VERD ANTIQUE.

181. Black is the ground for verd antique marble. Mix in a small can some Prussian blue and yellow ochre so as to form a brownish green. Then, with feathers, put in the colors—blue and yellow—which blend with a bristle brush, afterwards touching up the same with blue and yellow by means of a camel's hair pencil.

This marble is of the same general character as the Egyptian, its chief distinguishing features being that it is more blotchy.

SERPENTINE MARBLE.

182. This marble resembles the above, being somewhat more veiny and less blotched. There is also less conglomeration showing through it. The green is also lighter toned but otherwise treat it as described for the others.

BROCATELLO.

183. The ground for brocatello is a light, warm yellow of the same tone as that commonly used for sienna marble and is formed of ochre and white lead. Take raw and burnt sienna and add enough whiting to make them spread out very transparent and glaze over the job with it; when this color has set, sprinkle it over with turpentine, using a sash tool for this pur-

pose. It will cause the color to flow and the yellow ground to show through. Then shade the larger blots with a light yellow ochre to show the angular fragments and to give it greater depth. A suitable color made of Prussian blue and vermillion is then prepared, and with a pencil it is used to put in veins around the angular parts, but care should be taken not to carry the dark lines through the blots.

ITALIAN PINK MARBLE.

184. This marble is somewhat of the same general character as that described under sienna marble, and in reality it is only a variation of that. The chief distinction consists in its being more rosy in tone and of a less yellowish red. The painter can follow directions given below, changing the colors to suit this.

SIENNA MARBLE.

185. This marble has a great variety of character and is also known under a variety of names in many places. The tendency now seems to be the placing of all marbles of that character together under the name of sienna and to designate the color of it wanted. One slab will have a dark hue, tending to an umber tone, and another from the same quarry will be a bright yellow. When it is imitated the ground is made a light yellow. After the ground is dry the work should be gone over with a transparent yellow made so by the addition of whiting. While the color is still wet the character may

be formed with a No. 2 black drawing crayon and the same blended with the color with a badger hair blender. The painter will now display his taste by choosing the proper shades and the placing of his colors which are raw and burnt sienna; raw and burnt umber and Venetian red with which he will fill up the spaces left open by his crayon, when the several colors should be blended together. When this is dry the shades should be put in with a darker color; then the work should be thinly glazed here and there and well blended with a badger blender.

Some painters in finishing sienna spot it with pure white. The novice should study this marble well, as it is one which is suited to many situations and which is nearly always pleasing to look at.

WHITE VEINED MARBLE.

186. This is one of the commonest of the marbles, and the painter has frequent occasion to imitate it, but it does not usually require the services of an expert to distinguish between the imitation and the real article. As simple as it looks, it is the hardest marble to imitate of the whole list of them. The man who can fool anyone into believing that his imitation is genuine marble can turn out to perfection any of the colored marbles.

The ground for this marble is a pure white. When it has been applied and is dry; mix white lead and turpentine, adding some whiting to make it more transparent and with that paint over the work. While the color

is wet, form the veins with a black crayon and with a bristle blender soften the veins with the ground. Simple as it is, it is not an easy thing to make it look natural.

FLORENTINE MARBLE.

187. The ground for this marble is white lead, tinted up to suit with Indian red or Tuscan red and black to produce a rather light neutral red tint. Put in the veining with burnt umber and burnt sienna, a few of each, running in all directions without any show of regularity. This veining must be done while the ground is wet. Sometimes these veins run in clumps and seem to break forth, leaving patches here and there nearly free of any veinings, and then suddenly to make a network of them as intricate as those upon the rind of a nutmeg melon.

AGATE.

188. Agate is a conglomerate and really not properly a marble, partaking more of the nature of quartz than it does of lime formation. As it is sometimes imitated it is well to place it with the other stone imitations, along with jasper, porphyry and other forms of granitic formation which the skill of the painter is frequently called upon to imitate. The ground for agate is made of white lead, and the character of the work is put in with a feather, which has been dipped in a transparent crimson lake color and blended. When dry it should be run over with the crimson lake in spots and between

these put in other spots with a medium tone of green made from Prussian blue and yellow ochre, and when the work begins to set, it should be sprinkled with turpentine, which will cause the three colors to run in all directions and afterward they should be touched up in places here and there with some of each of the colors with a camel's hair pencil.

RED PORPHYRY.

189. Red porphyry is of granite formation; it is of a dark redidsh tone and the ground should be made from vermillion and black. Sprinkle the ground with vermillion, dulled with a little white lead, taking care that it does not run on the ground but present each spot separately and distinctively. This done, the work should be sprinkled in the same way but with a still lighter shade of red.

SWEDISH PORPHYRY.

190. The ground for Swedish porphyry is a grayish stone color, formed of white lead, black and raw umber. The work should be sprinkled in shades of gray in a similar way to that stated for red porphyry.

SWISS PORPHYRY.

191. This is considered the most valuable on the list. The ground is black; sprinkle it with two shades of color made from black and red, but the sprinkling should be done more liberally than in the two former

ones, so that they may run into each other. Afterward sprinkle a litle white over the whole work; the white spots should be small.

JASPER.

Is a fancy stone which is seldom used in large masses except by imitation. The ground may be made in color that is suitable to the style or color of jasper to be imitated or to the situation, but usually it is a gray or a yellowish stone color. The ground being dry, paint over a certain portion of the work with an opaque color, made of burnt sienna and a little Indian red. In about half an hour it will be set and then it should be sprinkled with turpentine and whiting; a clean brush being used for the purpose, and wherever the moisture falls large spots will be formed. Then the character must be laid out. This is done with a yellowish grey color by introducing it among the red masses. The work must be then heightened with a pure white color. The peculiar ribbon structure or waving line must be afterward introduced, which is done with the feather of a quill. It has the effect of uniting the red and the other colors. This is done with pure white lead thinned with turpentine, a little inside varnish being added to give it binding. The work is afterward finished in with a camel's hair pencil in light touches.

GRANITES OF ALL KINDS.

193. Granites of any color can readily be imitated. Proceed as stated under porphyry. Prepare the ground of the predominating color of the granite and then sprinkle on the remaining colors so as to spot large or small, according as it is wished.

QUESTIONS ON MARBLING.

- 175. What is said of marbling in a general way?
- 176. What should a person be required to know to become a marbler?
 - 177. What tools and material are needed?
 - 178. How is dove marble imitated?
 - 179. How is black and gold marble imitated?
 - 180. How is Egyptian green marble imitated?
 - 181. How is verd antique marble imitated?
 - 182. How is serpentine marble imitated?
 - 183. How is Brocatello marble imitated?
 - 184. How is Italian pink marble imitated?
 - 185. How is sienna marble imitated?
 - 186. How is white veined marble imitated?
 - 187. How is Florentine marble imitated?
 - 188. How is agate imitated?
 - 189. How is red porphyry imitated?
 - 190. How is Swedish porphyry imitated?
 - 191. How is Swiss porphyry imitated?
 - 192. How is jasper imitated?
 - 193. How are granites imitated?

OILS AND DRYERS.

194. There are several different kinds of oils, each having peculiar properties belonging in general to their class besides each one of the class having some distinguishing traits belonging to them only and not to the others. All classes of oils are useful to man for some purpose or another. For the painter's use, however, there are only two kinds which are of interest to him as related to their business and employed by him in his work, to wit: The "fixed oils" and the "volatile oils."

THE FIXED OILS.

The fixed oils have the property of solidifying -during the process of their drying into a rubber-like gum, which is waterpoof. This property is invaluable to the painting of exteriors, as without such a quality in the liquid used in the application of paint, it would be impossible to hold the pigment of the paint upon it and its stay there would be limited to dry weather, as rains, moisture, hail and beating storms would soon make short work of it and wash it off and the pigment having nothing but its own adhesiveness to hold it on, would soon all be at the bottom of the house, leaving the building in no better condition, if as good, as it was before the painting was done. There are no liquids or substances that will render liquids waterproof, known at the present time, with which pigments could be mixed and applied over surfaces with as vehicles of them which will render the hard service which is demanded of them and which will turn itself into a waterproof covering but—the fixed oils.

It is not the purpose of entering into any great details in reviewing the fixed oils, and some of them will not even be mentioned, as they are either too scarce or expensive to be thought of for use in painting. All fixed oils have the same general properties characteristic of their class in a greater or lesser degree—which is, that they absorb oxygen from the atmosphere and that during this absorption they become solidified into a rubber-like waterproof gum; but besides this general characterizing property of the class which belongs to this group only, they have each of them their own.

All fixed oils gain in weight from the oxygen which they have absorbed, yet the gain is nearly, but not quite, offset by the evaporation of the moisture contained in them and the loss of some certain volatile ethers which are evolved during the wonderful process of their drying.

The drying of the fixed oils is a very interesting study for those among the painters who have a love for knowledge, and to such the study of such works as "Chevreuil's" on the drying of oils, will well repay them for the trouble. A good knowledge of the material they use will greatly help them to understand the why and wherefore of things and no one can know too much about his own business or any of the material used to carry it on.

LINSEED OIL.

196. Of all the drying fixed oils, no others possess as many of the qualities that are desirable in them for the purpose of a paint vehicle and as a preservative of surfaces nor to as high a degree of perfection as *Linseed oil* does.

Besides that it is so much superior to the others in quality, it is far cheaper than the next one to it in cheapness. All things being equal, that of itself would suffice to make it the most popular, so that when the fact is taken in consideration that its qualities are superior to the others in all but a few immaterial points for outside painting at least, and for interior painting excepting in a very few instances, such as white enameling, etc., it is no wonder that it holds first place and stands far above them all.

It was stated in the preceding few lines that linseed oil was the cheapest of all the fixed oils and so it is. Linseed is a Frenchified word for flaxseed, which it is, and it is known under that name all through its growth. The change to linseed only occurring after the oil has been expressed from it upon the same principle that a calf becomes veal after its death. Flax is one of the most useful of all the plants to the human family. When it is wanted for its fiber, however, it is grown in a different manner. Then it is sown much more closely together, which prevents it from going to seed properly, and to branch out, when it is pulled and from such no seed is obtained.

For seed it is sown farther apart, which gives each plant a chance to spread and make a good head for seeds and to become a perfect plant fitted to ripen its seeds properly. This makes its fiber much coarser and it unfits it for all the finer uses made of that raised specially for its fiber, for the weaving of linen cloth, etc. The coarse linen tow which is now extracted from the flax straw is of but little commercial value.

To make good oil—that is to say, to make the very best possible out of it, the flax should not be cut until it has commenced to ripen its seeds and such is the way that it is harvested in India, where labor only costs a few cents per day. In that far-off country the flax is pulled by hand and all the manipulations are hand work. The seed consequently is very plump and rich in oil, the juices having been perfectly elaborated by the natural process of ripening. This seed from India produces an oil that is highly prized by varnish makers and all others who must have linseed oil at its best and as good as can be made. It is for this reason that Calcutta seed linseed oil is so highly esteemed and that these varnish men, who are the best judges of linseed oil in the world, are willing to pay more for it than the price asked for the home grown linseed oil.

But the system of harvesting flaxseed in India cannot be practiced here in the United States nor in the South American countries where it is also raised, not even in Russia, where a good quantity of flaxseed is grown. Such slow processes would raise the price of the seed away beyond the limit. With the large acreage which the American farmer devotes to it, the harvesting of flaxseed would be a hard problem to solve, in fact, it is one that bothers them now under the rapid methods they employ, and what would it be, if they were to undertake the slow ways of India? In America the flax is cut by machinery, in the same manner as wheat—but if the farmers waited until the seed had begun to ripen to cut it, much of it would shell out and be scattered over the field and be wasted from the violent shaking it receives when struck by the harvesting machine; so to prevent this loss, it is cut while the seed is in the dough as it is called, just previous to its hardening. There can be no question but that it becomes solid and that it ripens after the cutting, but it is not so good for it as it does not receive the juices which it would have drawn from mother earth during the finishing of its ripening, and much of it is cut so green that it produces an inferior seed. When the season happens to be a dry one, the seed produced is generally fair, but when, as it sometimes happens, it is rainy and muggy, much inferior seed is the result, which contains more than the average of mucilaginous matter and it cannot be as good for painting purposes as it should be. There is no question then that it would pay owners of buildings being painted on the outside, to pay double the price asked for the inferior oil for a good oil to spread the paint upon them, than it would to use the poorer—but they will not, and who is to blame if poor painting is done?

It is not intended to convey the idea that *all* American linseed oil is poor; far from it, for some very good oil is made here, but only that much inferior seed is raised and sold and that such will not make good oil.

Much poor painting is done—all are aware of that—some contractors use snide oils knowingly, and again some have doped linseed oil palmed off upon them, and again some careful men have an occasional job go wrong, for which they rack their brains to find a cause for; but seldom do they ever think that it lays where it really does—the quality of the linseed oil. *Good linseed oil is the life of paint*.

THE MANUFACTURE OF LINSEED OIL.

197. Not so very many years ago, nearly every locality had its linseed oil mill, its wool carding machine, etc.; many other industries that have all taken wings and left for the great cities, and there are still plenty of men who are living to-day who will recollect them. These local presses bought the seed raised in the neighborhood, crushed it, expressed the oil out of it, tanked it and when settled, sold it far and near. The name and reputation for honesty of the manufacturer was one of the biggest assets of the concern—but those days are gone. These old time crushers did not get near as much oil out of the seed then as is done now and if some of them could go to the present day linseed oil factories and see what is done in the way of extraction, they would hardly believe it possible. Then, under their

crude system of crushing the seed under the chasers and of pressing it with little better machinery than that used by the cider mill next door, perhaps.

The principles of making linseed oil is much the same to-day as then, but their application is different. There is no waste of anything under the new system—but that of the quality. We hear and read a great deal about cold pressed oil, etc., but with the powerful hydraulic presses in use it does not matter so much as to whether the flaxseed meal has been slightly heated or not as to the resulting quality. The only real difference will be that heated seed will make a somewhat more highly colored oil from some of its coloring pigments being released by the process, but that this injures the binding quality of the oil is very doubtful and much of this coloring matter is thrown down during the settling pro-Considerably more of the mucilagenous parts of the seed is expressed under the new system than under the old and how much more of this is held in solution by the oil or how much of it is precipitated during the settling and clarifying process is the question, and it has not been satisfactorily answered so far.

Linseed oil after having been pressed out in the days that are gone, used to be put into settling tanks and good old father time set to work to do the precipitating of all the impurities to make it limpid and fit for use. This took several months. The foots and settling remained behind and—pure linseed oil was the result—such oil as old time painters loved to work with and they did good work with it—work that stood.

These old time retrospects are not colored by fancy or sentiment—no, they are not wanted to come back again and the present has much to be proud of—but its methods certainly do not give us as good linseed oil as into tanks where it is agitated with sulphuric acid as that which we used to get.

Linseed oil today, after it has been expressed, is run into tanks where it is agitated with sulphuric acid, usually, which hastens the precipitation of its impurities. Some mills use chemicals to produce this precipitation and in one week of such treatment, the oil is limpid and ready to be barreled—but is it as good as that settled naturally by 90 days of tanking?

The above is the most usual method of obtaining the linseed oil from flaxseed, but there are other methods, one of which only will be described as it seems to have a sensible way of producing oil, it differing in every respect from that of expressing. It is called the "percolation process."

By the percolation process the oil is not extracted by expression but is dissolved from the seed with a solvent in the following manner: After grinding, the meal is conducted to the top floor of rather high buildings, through the several stories of which to the top floor also, has been built percolators reaching from top to bottom. Into these the flaxseed meal is thrown and solidly packed; then benzine is poured in at the top and percolates through the flaxseed meal, dissolving all the oil in it on its flow downward and holding it in solution

carries it down to the bottom with it; there it flows into pipes hich are heated. Benzine being volatile, vaporizes at comparatively low heat, escaping in that shape into condensing pipes and drums where it is cooled and returned to its liquid state to be used again and again in the same manner—as an agent of extraction. The oil itself is entirely freed of benzine and is conducted to clarifying tanks where it receives the usual treatment to clear it. Benzine no doubt dissolves some other substances, such as coloring matter, etc., that is undesirable in a paint oil—but it has no affinity for mucilage and other baneful substances which are expressed by the other methods and no doubt but that during the process of clarifying much of these foreign substances are eliminated. Some claim that some of these remain which is not thrown down and that it injures the oil—it may be so; as most of these statements seem to orginate with people whose interests are connected with linseed oil obtained the other way may it not be possible that many of these may have been suggested by self interest? While not Missourians, there are several persons who have used both who affirm that they would have to be shown if there was any material difference between them in the use they have made of them in their practical painting experience.

Linseed oil is at its best in the "raw" state only, and it is only in that condition that intelligent painters use it and that it can be recommended for the painting of exteriors of buildings or even for the interiors. In its

raw state it is elastic, which permits it to expand and contract along with any kind of surfaces it is spread over, be they wood, brick, metal or stone. Raw linseed oil is also penetrating, unless in very cold weather, when it is viscid, which enables it to reach down into the pores of any material it is applied upon, with the exception of glass—as all other material used in house construction is more or less porous even to iron and steel. Linseed oil painting thus forms little rootlet like connections with the material it is placed over, which gives it a firm anchorage to its under surface and from which it can be forced only by moisture or the decay of the linseed oil in time. Pigments having a great tenacity between their atoms will usually pull themselves off from surfaces in the shape of scales when they have been used in the priming and these scales will show these rootlet-like projections very plainly.

BOILED LINSEED OIL.

199. Boiled linseed—that has been boiled—which is far from being the case always, has lost its elasticity by the process of boiling it and nearly all its penetration. Boiling it, turns it into a varnish and really it partakes more of that character than that which has been described under raw linseed oil. As it cannot contract and expand itself to accommodate the nature of the surface it covers, it must in time give to the strain given it by the contraction of the surface it is painted over, with the result that it cracks to accommodate it. White lead,

which the reader will recollect is not given to scaling on account of its atoms having no affinity for each other, which chalk off with raw oil after that has decayed—will crack and scale when mixed with boiled oil and all painting of any kind done with it will do the same; only more so.

Then again as nothing short of an expensive chemical analysis can possibly determine its purity the door is practically thrown wide open for the possibility of its adulteration. Few retail dealers buy it in a pure state, although they may believe it to be so and buy it for such. Many others, knowing that the probabilities of obtaining it pure are rather slim, and that some jobbers dope it or bung hole boil it, conclude that they may as well have a finger in it themselves and to know just how much of it they have in it, so they usually take out 5 or 10 gallons of the raw oil from a barrel usually averaging 50 gallons and fill it up with 10 gallons of benzine dryers, a cheap manganese wash, dear at 25 cents per gallon in barrels lots, which gives the oil the proper color and drying qualities of boiled oil and unconsciously perhaps, but surely, the customer is benefitted thereby as that oil so treated is fully as good, if not better, for painting than pure boiled oil—that has been boiled. Bung hole boiling as the above described substitution is called, has become a byword common to 'every user of linseed oil.

REFINED AND BLEACHED LINSEED OIL.

200. As the refining of oil bleaches it and the bleaching refines it, these two designations should go hand in hand as they practically mean one and the same thing.

Linseed oil contains some coloring matter in solution which is extracted with it from the flaxseed, either by the hydraulic system of pressing or that of percolation, as it was seen. It parts with a portion of it while it is settled but still holds a quantity of it after that. Now certain light tones of colors and especially the zinc whites, which require much more oil to grind them than white lead, are apt to gain a yellowish tinge from ordinary oil. Varnish manufacturers too, who put out efforts on all sides to make as light and clear toned varnishes as possible, must get rid of most, if not all, this coloring matter contained in the oil used in grinding such colors, or in preparing varnishes. Such either buy the oil already refined or refine it themselves.

The process of refining and bleaching linseed oil is simple enough; it is: Further agitation of the oil with sulphuric acid and exposure to sunlight for a few days in shallow vessels covered so as to exclude dirt, but admitting light, but little if any air, as that might have a tendency to *fatten* it.

Linseed oil which has been treated so is nearly as light toned (not quite) as poppy seed oil, but it will not nor cannot take the place of that and nut oil for artists' use because—all linseed oil, no matter how carefully coloring matter may have been extracted out of it—

will darken with time. Even the others do, but not quite to the same extent as it will. This darkening of oil is what causes the darkening of old oil paintings.

Let linseed oil's faults be what they may, there is nothing better made for painting purposes, and it is better and stronger than any other of the fixed oils.

POPPY SEED OIL.

201. As its name indicates, this oil is the product of the poppy plant. Some varieties of it produce very large seed heads and are raised in fields in a commercial way for its seeds. They are harvested in baskets as the head ripens—which they do not do all at once, so that it requires several goings over the field to get them all in. This is a slow process, hence this paint oil can never be cheap. The seeds are crushed, the oil drawn out by pressure in much the same way as related for linseed oil. The oil produced is very light and clear, and it is highly esteemed by artists as it does not turn dark with age as linseed oil does, although it will too, (in a lesser degree.)

It does not dry very readily, nor has it the tenacity of linseed oil, and as its cost is so much greater, there is little danger of its ever becoming a very dangerous rival and its use is mainly confined to artists.

The main uses are in the grinding of zinc white, but even for the grinding of this the use of it is waning even artists are beginning to shun it as the cleaner tone obtained from its use applies to whites only, and as with time it darkens also, there is but little gained by its use after all, especially for those who are working for posterity.

NUT OIL.

Nut oil is produced mainly from the meats or kernels of the English walnut, so called no doubt because most of them come from Italy, France and Spain. These meats are crushed and the oil expressed in much the same manner as stated before for linseed oil. This oil is very light and clear with just the slighest suspicion of yellow and is the cleanest toned that can be had for mixing with pigments and for that reason is most highly esteemed by artists who cater mainly to the sale of their painting to the present and do not care to have their work endure forever, for unfortunately the old adage holds true for it: "Pretty is who pretty does," it has not got the tenacity of linseed oil and the decay of the oil will in a comparatively short time loosen its hold · upon the pigments. So with a prohibitive cost in the first place, which artists only can stand—as a little goes a long ways with them—there is little danger of its ever being as much as spoken of in general paint shops.

THE VOLATILE OILS.

203. These oils are so named because of their having great evaporating qualities. When exposed to air, especially under heat, which accelerates the process of evaporation, they vanish entirely away in vapors. All

the volatile oils have an extremely pungent small which is peculiar to each, and by which each class of them is easily recognized by the nose to any one accustomed to their use. Their action in connection with paint and its application is to render it more fluid. They can be mixed in any proportion with linseed oil and are perfect solvents of it.

204. They are indispensable to the proper mixing of paints and without them it would be impossible to do many kinds of painting. By their admixture they render linseed oil more fluid, more penetrating, helping to make it set more quickly. This quicker setting renders possible the application of heavy pigments which would otherwise quickly separate from linseed oil alone as that would not commence to set for a much longer time.

The volatile oils have no binding properties whatever, and their beneficial use for outdoor painting is altogether mechanical as adjuncts to linseed oil and for specific purposes only. When enough has been used of them to accomplish the purpose intended not a drop more should be added—for then they become harmful instead of beneficial.

205. They are chiefly used for interior painting and it is well that it is so, as being in a manner protected they can be used in much larger quantities than for outdoor painting and for *flatting* instead of being the adjunct to linseed oil, they are the principal thinner and linseed oil enters the compound simply because of its binding property and not because it is desirable. All

through this manual has been given under their proper headings, directions as to how the various coats of paint should be mixed with them.

Volatile oils are extensively used in the preparation of varnishes and for tempering them for application when they need it. They are good solvents of the fixed oils and having detergent properties are useful to clean paint brushes, etc.

TURPENTINE.

206. This is the product of the conifers—all pine and resinous evergreen trees contain it in some form, but our own southern long leaf yellow pine produces more of it than all the other pines of the whole world put together. The trees are scarified and the crude turpentine exudes through the wounds, gathering at the bottom of the cut out and hollowed in grooves called "the box." This crude turpentine solidifies into a soft gum which is distilled when the spirits of turpentine of commerce as we know it is separated from its solid portions which remain behind as *rosin*.

Turpentine is by long odds the most useful of the volatile oils used in painting. Its odor while very pungent is not disagreeable to most persons, and while when it is used in large quantities as in flatting, when a person will absorb large quantities of it by absorption and through inhaling it, it will act excessively upon his kidneys when used in a moderate way or out of doors it will not be very likely to injure him.

BENZINE AND NAPTHA.

207. Benzine and naptha are both volatile oils which are obtained from the distillation of crude petroleum oil. They are so nearly identical in composition, working qualities and everything else, that they are joined together in this review as everything that can be said of the one applies to the other also. Their odor is extremely pungent and disagreeable to most persons. They are very dilutent and their effect and action upon paint is very similar to that of turpentine. Few people can remain shut up in a room where they are used in flatting, for few men can stand their fumes long at a time. This is their worst fault, and after all this is the chief reason why they are not used more extensively than they are—without the having to give any other reasons which usually are not to the point and which cannot be made to stand investigation. The time is near at hand when painters will be forced to use them as the turpentine fields are narrowing up every day more and more and in a very few years there will be little more left than will be needed for pharmaceutical preparations in compounding medicine and it will have become so high priced that it will have to be benzine and naptha or nothing.

It is hoped that preivous to that time, chemistry will discover some remedy to remove or disguise the "smell." It is to a great extent minimized now, and the barrel heads say: *deodorized* benzine, etc., but there is

room for still more of it to kill it entirely and much remains to be done.

OIL OF LAVENDER (OIL OF SPIKE.)

208. This is used only in china or porcelain painting, where owing to its fatty and lesser volatile condition than the others which have just been noticed—it prevents the colors from running and gives plenty of time for their application. This is never used in general house painting.

DRYERS.

209. Linseed oil, unless under very adverse circumstances, would dry naturally. Some pigments when mixed with it have the property of rendering it more drying and help it to dry more quickly than it would by its lone self—but others again are anti-drying and greatly retard the drying of the oil. Again the weather conditions may not be propitious to the proper drying of the oil, so that when a person has some outdoor painting to do unless the weather is fair, settled and warm, he will need to use some dryers to hasten the drying of the paint as it would not do to trust to luck and the weather and have the painting spoiled.

The above must not be construed as an endorsement of the unlimited use of driers in paint. No, far from it. There is no one cause why so much linseed oil painting goes to pieces in a hurry than can easily be traced to the *abuse* of driers. The word abuse is used purposely and

underscored because the proper use of driers is allowable.

Nearl all the driers in the market today are compounded from the oxides of manganese and are naturally dark colored on that account. They are prepared and sold under a great variety of names, as japan driers, liquid driers and with a host of fancy proprietary names and at prices where no painter can afford to fool his time away in preparing them himself.

There is a queer thing in connection with the use of the liquid driers and it is that a small quantity of it will sometimes act quicker than an overdose of it, and that when it is used in overdoses it will retard instead of hasten the drying of oil. One tablesponful of any good liquid drier will be sufficient to dry a quart of paint or more.

There are some special driers prepared for use with zinc white—these too are best bought ready for use, ground up in paste form, as the time required and the special facilities needed for grinding, mixing, etc., are not to be had in every shop.

QUESTIONS IN OILS AND DRIERS.

- 194. How are oils useful in painting divided?
- 195. What is said of fixed oils in general?
- 196. What is said concerning the production of flaxseed?
 - 197. How is linseed oil manufactured?
 - 198. What is said of raw linseed oil?

- 199. What is said of boiled linseed oil?
- 200. What is refined or bleached linseed oil?
- 201. How is poppy seed oil produced?
- 202. What is nut oil?
- 203. What are volatile oils?
- 204. What action do they exert in paint?
- 205. Where are they most useful?
- 206. What is turpentine and how produced?
- 207. What is said of benzine and turpentine?
- 208. Where is oil of lavender mostly useful?
- 209. What is said regarding driers?

PAINTING IN OIL ON GLASS.

210. Most of the painting done in oil on glass is that done by "Sign Painters," and as this branch of the business will be treated at length in subsequent pages, the reader is referred to that subject where he will find full directions given for the same. See paragraphs 275 to 276.

There is, it is true, some little amateurish painting in oil upon glass, but such work stands to *true art* in very much the same relation as "doggerel" verse does to poetry.

On account of the difficulty of judging the effects of colors from the back side of the glass where the painting must be done in order to produce the solid and enameled effect which is the only excuse people can have for doing any painting at all upon such fragile material, for if the glass be painted on its front side then it would in no

wise differ from any other painting done on canvas or wood and there could be no excuse given for not using those insetad. For painting on glass from the reverse side, the subject must be outlined and all the prominent dark colors must be put on first, for otherwise they would not show if applied over white and other light tints; then when dry the next prominent dark tints and others which must be blended into them to make graded tones. This is where the great difficulty comes in—to blend them properly—even when well done, which is seldom the case, it cannot possibly be done as well as upon surface work and with its outlines, etc., must present a gingerbread appearance which is in bad taste, to say the least, and which will set an artists' teeth on edge. Such attempt must always be crude and unsatisfactory.

QUESTION ON PAINTING ON GLASS.

210. What is said concerning painting in oil on glass?

PAINTING A BATH TUB.

211. The painting of a bath tub, or rather the repainting of them, is not a very difficult operation—but the preparing and getting ready for it may be so; especially if the painting is expected to stand any length of time.

The paint on a bath tub is subjected to considerable more hardship than any other kind of painting has to;

unless it be that done upon steam pipes and radiators. The great heat at which hot water is sometimes turned on and the suddenness with which ice cold water follows it to cool it is very much harder on the paint than anything it would have to stand from the elements out doors; in order to stand all those extremes it must be mixed in an entirely different manner from that in which exterior oil painting is done, as ordinary linseed oil paint would peel off in no time under the strain it would have to bear.

New bath tubs are painted with a specially prepared varnish paint where the pigment is mixed with what is called "baking japan." After the painting they are placed in an oven and subjected to a great heat which causes the japan paint to flow level and this leveling frees it of brush marks and causes it to dry very hard, nearly as hard as the iron over which it is applied. After having gone through this baking process, water and heat—such at least as it is subjected to in a bath room—have no effect upon it.

process cannot be employed unless the tub is returned to some establishment where they are prepared to do such work with ovens sufficiently large to bake the tubs. This would be much the best way—but such concerns are not to be found everywhere and it is well to know what is the "next best" way to effect the repainting of it "where it stands in the bath room." The "next best" as in most all other things, is not as good as the origi-

nal but answers the purpose fairly well. It will have to be mixed so that it will *air* dry and as no heat can be applied which will cause it to flow level it can not be as level as in the original painting.

In the first place all the chipped or loose paint must be carefully removed and sandpapered; then the surface should be run over with a very stiff bristle brush to remove any dirt which may have found a lodgment any where, especialy between the chipped places. The whole of the inside of the tub should be now washed with a solution of sal-soda which should be afterward carefully rinsed off with clean water and afterward well dried by friction with dry cotton rags, when it should be left several hours to become free of moisture when it will be ready to receive the paint coats.

This is prepared from white lead and turpentine. The white lead should be ground in japan as no oil at all should be used. Go over the bare spots first of all, in order to level up the surface as much as possible; be careful to wipe off the surplus color which will find its way on the adjoining surface of the paint and would make a ridge if not wiped off. It will take two coats of the filling to fill these places. These coats dry quickly and two or three coats can be given in one day. When the filling to fill these bare places. These coats dry quickly and two or three coats can be given in one day. When the filling up has been completed, give the whole inside of the tub two coats, prepared as for the filling. This should make a pretty fair job if the brushing has

been carefully done. It will, however, look flat and a protecting coat of good varnish must be given the paint. It must be a hard drying varnish and moreover it must be of light color. This is sometimes difficult to find in many localities. Upon the whole it will be much better and safer to employ the following system in repainting a bath tub: Clean up in exactly the same way as stated before, then buy some ready prepared bath tub enamel. It is mixed, ready thinned for application with the right kind of varnish by the manufacturers, who are usually better judges of the right sort of varnish to use than the average painter is and these have a reputation to make and sustain and they have to use all possible precaution in preparing them so as to do all that such a paint is expected to do. As some manufacturers prepare these bath tub enamels differently from others, each having their own formula, it will be best to follow the directions printed on the label of each can—and the painting will be the better for it.

QUESTIONS ON PAINTING OF BATH TUBS.

- 211. What is said about the painting of bath tubs in general?
- 212. How are bath tubs to be prepared and repainted?

PAINTING OF STATUARY.

213. Few persons have any idea of the extent of this branch of the painter's art—for it is at least a semi-

artistic occupation. Statues in city and country churches and statuettes in numberless quantities are used in nearly every home, no matter how humble it may be, either as religious objects or in the bric-a-brac shelf or chimney mantle, besides the ornamentation in bed rooms, etc. Some is done in china factories and the greater part of the statuary painting is done in European establishments. Many have commenced the manufacture of statuary in this country. But it is not so much of the painting required in their manufacture which will be referred to in this article as the repainting of them, as in all our larger cities the repainting has to be done again and again, owing to the smoky atmosphere which soon makes them dingy. This furnishes lucrative employment to many painters aside from what is originally done in factories where statues are manufactured.

214. The statutes are cast in plaster paris from moulds. The plaster having been mixed with fiber very similar to well picked oakum but somewhat coarser and longer; this is done in order that they may not break so readily and upon the same principle that hair is added to mortar for plastering.

After the statue has been cast and well seasoned, they must be filled, but previous to the filling it should be primed inside with linseed oil. The statue should be placed upside down as they are usually cast hollow, they should be carefully propped up and guarded from injury from falling and then linseed oil should be poured

into the opening up to the top of it. After an hour the linseed oil should be poured back as the statue will have absorbed all it is capable of in that time.

The above applies to busts and statuettes really more than to statues as the valuable ones of these are frequently cast solidly.

They are then placed upon a receptacle to drip and dry, which will require a week as the linseed oil should be raw and used without any drier.

When dry they should be placed upside down again in the same manner as before, being filled with oil and should be filled with plaster paris made sufficiently liquid to pour out. But little at a time should be added as there is considerable heat evolved during the setting and also some swelling, and the statuette might be cracked from that cause. Pour a little at a time, waiting two hours before pouring in any more and continuing doing so until it is completely filled up. This will make it as solid as if it had been cut out of stone and about as heavy. No more plaster should be mixed up than can be used at one pouring as otherwise it would set very hard and be lost.

According as to the size of the statues it will take from one to three weeks for the plaster to part with all its extra moisture and to become sufficiently dry to begin the painting. If the painting should be commenced before the drying is thoroughly accomplished there would be great danger of its peeling.

215. The statuettes should now be well rubbed

over with a coat of clear linseed oil, brushing them over and over again two or three times as the oil will soak into them quickly. They should now be laid aside to dry and given eight or ten days for the oil to harden up thoroughly, when the painting proper may begin.

The first coat may be thinned with half oil and half turpentine and the coloring should be nearly the same as that intended for the finishing, but no attention need be paid to any of the details.

After two or three days' drying the finishing coat may be applied. This should not contain more than 1/5 linseed oil and 4/5 turpentine for the thinner of the pigment. About ¼ ounce of beeswax (bleached) should have been previously melted for every pint of turpentine used and mixed up with that warmed up. This makes a beautiful, soft flat finish with a delicate transparency of tone unobtainable in any other way. The statues or statuettes are now ready for the details, etc.; and the gilding also should be applied as soon as it has well dried, which will take from 24 to 48 hours.

QUESTIONS ON THE PAINTING OF STATUARY.

- 213. What is said of painting statuary?
- 214. How are statues and statuettes prepared for painting?
 - 215. How are they painted?

PAPER HANGER'S TOOLS.

216. One of the most important tools to the paper hanger is a good table and supports for it to cut paper upon and to spread the paste on it.

The above is shown not so much as that some other form of pasteboard and tresoles may not answer the purpose; but that this is a very convenient and handy one which folds up into a small space when not in use.

The paste brushes shown below will suit the requirements of any paperhanger. Fig. 50 has a grip

Fig. 50-Paperhanger's Paste Brush.

handle and Fig. 51 a slim, oval handle easy, on the hand.

Fig. 51-Paperhanger's Paste Brush.

Under the heading of "Brushes" see Figs. 25 and 26, which show two styles of smoothing brushes, Fig.

Figs. 52 and 53—Paperhanger's Smoothing Brushes. 26 showing one which is a combination tool, having a seam roller at one end.

Seam rollers are shown below in Figs. 54, 55 and 56 of various forms under the letters A, B, C, D, E, F, G, H, J, K, L, M.

Fig. 55—Paperhanger's Seam Rollers.

Fig. 56—Paperhanger's Seam Rollers.

Smoothing rollers are indispensible in smoothing embossed and other high priced paper as the ordinary

Fig. 57—Smoothing Roller.

smoothing brush would be apt to obliterate the embossing. Two kinds are shown in Figs. 57 and 58.

Fig. 58-Smoothing Roller.

A good machine to trim paper is useful for the trimming of all the cheaper papers and can be made to answer fairly well for the better grades also if care is exercised in the trimming with them. Fig. 59 shows

Fig. 59-Machine Trimmer.

Straight edges to trim paper by with the knives, also to split same, are usually made of narrow strips of dif-

Fig. 60-Straight Edges.

ferent kinds of wood glued together. Fig. 60 shows how they are put together.

Paper hangers as a rule are very fastidious about the shape of the knives they use in the trimming of paper. It is a matter of custom and habit which may be gratified, as our Fig. 61 shows all kinds of shapes of them.

Fig. 61—Paperhanger's Knives.

And of the rotary knives an equally large variety are shown in Fig. 62 under the letters A, B, C, D, E, F, G, H.

Fig. 62-Paperhanger's Wheel Knives.

Fig. 62—Paperhanger's Wheel Knives.

An excellent and handy tool to have is a combination casing and corner knife such as is shown in Fig. 63.

Fig. 63—Paperhanger's Wheel Knives.

Some very handy rotary trimming knives are now made which run in a grooved straight edge, which prevents the wheel from slipping or getting off the track.

Fig. 64-Wall Paper Trimmer.

Fig. 64 illustrates the manner of using them and shows the groove on the straight edge into which they are fastened and held. Another excellent tool is the graduated plumb and level. Fig. 65 gives a good illustration of the tool.

Fig. 65—Graduating Plumb and Level.

The old fashion plumb bob is also very useful and is too well known to need illustrating.

A few twelve or fourteen quarts galvanized iron pails to hold size and paste in, a supply of step ladders, ladder trestles and strong 2-inch walking and scaffold planks complete the list.

QUESTION ON PAPER HANGER'S TOOLS.

216. Use the above to refer to as you have need for the same.

PAPER HANGING.

217. Paper hanging has become such an enormous factor in the decoration of interiors as to be used by every family in the land from the very poorest shack or hut to the palatial residence of the millionaire. It is no wonder, then, that it gives employment to such an army of men. Probably 95 per cent of all painters who call themselves general workmen are paper hangers also.

Wall paper certainly is the poor man's friend as some of it is so cheap as to be next to nothing per roll. This makes it possible for any person having a desire for clean and cheerful looking rooms to indulge the fancy at a cost so small that it is not a burden.

Some years ago there was much space taken up in the papers about persons having been poisoned by sleeping in papered bedrooms and the fault had been laid to the employment of arsenic and other poisons in the printing of the wall paper. One hears but little of this now, so the presumption is that whatever may have been the practice of wall paper manufacturers in the past, that now, at least, there are no poisons used in the colors used by them. As they have always strenuously denied that they used arsenic when they were accused of it, it is a matter of great doubt if they ever did resort to it as the purpose for which it might be used can be supplied at a lower cost by non-poisonous compounds. Human nature is much the same in wall paper printers as it is in any one else. They certainly would be fools to

pay more for doing something which they could all know would be hurtful to that business.

Everything under the sun that has ever been used as wall covering is now imitated by wall paper, and that so cleverly as to appear to be the very kind of material they are imitating—tapestries, draperies, canvas, burlap, buckram, laces, leather—there is nothing or no effects which they do not reproduce and the imitative powers of wall paper artists is wonderful to behold!

The wall paper trade has so systematized and arranged things that a good, tasty selection is made possible even for people who are color blind. The arrangement of sample books which show combinations of ceilings, walls and frieze, all colored and designed purposely for each other, are all so good that no one can go far wrong in making a selection. Besides these already prepared tasteful combinations there is a limitless quantity of independent designs which give the tasty person a chance to select something which will show individuality of arrangement, and where he can give his own artistic tastes full play in arranging his decorative schemes.

When selecting wall paper several things should be taken into consideration in order that there may not be any incongruities. The location of the room as to light, the character of the house itself, the prevailing tone of the furniture and carpets, and the social position of the occupants of the house, etc., etc.

A sunny room with plenty of light usually requires cool-toned paper as warm-toned hangings have the ten-

dency to add a feeling of increased heat; this is imaginative it is true, but existing just the same, and no amount of reasoning takes it away, either.

Likewise, for the same reason, but reversed, warm-toned hangings should be selected for rooms which have no sunshine and are in constant shadow. The warm coloring adds a feeling of warmth. Thus by judicious selection an evenly balanced whole will be secured where the difference in temperature will not be so keenly felt as it would be otherwise. The coloring of the carpets may greatly mar an otherwise prefectly combined scheme for the walls and these should always be considered in making a selection.

Now, as to the social position, many would say: "How can that possibly affect the selection of wall paper?" The right of selecting any kind of wall hangers is not denied to any one for we are all born equal and free(?) but sometimes exercising the right may render people ridiculous. A man has a perfect right to wear a swallow tail dress suit on the street and with that put on a chauffeur's cap, but they seldom exercise it. So a person earning \$12.00 per week who would select silk hangings with hand made gold leaf decoration on it to match a 75-cent-a-yard ingrain carpet would have as good a right to it as the man whose weekly income is as great as the first earns in a whole year—the \$12.00 man should not exercise his rights, that's all. Happily wall paper has tasteful selections to

suit the pocket books and taste of all sorts and conditions of people.

218. The proper conditions for hanging paper upon the walls requires them to be hard and smooth. If they are not so naturally they should be made so—at least as near as it is possible to do so, before the hanging is commenced.

In new houses and for new work everything usually works lovely and easy, seldom presenting any difficulties and so such need no special mention as to how to prepare the walls and are ready for hanging.

If the house has been papered before, it is always best to wash off and remove the old paper before applying the next coat of it, yet some people will keep on hanging paper on walls repeatedly without taking off the old. If wall paper is hung anew every year or at most, every two years, it would not be especially hurtful if two thicknesses of it is left on, provided that it be surely taken off before the third one goes on-but usually persons who form the bad habit of hanging new paper over old hardly ever stop on two coats and the habit in time becomes incurable—or till the myriads of bacterial colonies breeding all the diseases human flesh is heir to-fastens some deadly disease upon a member of the family and sends him to an untimely grave. No doubt but that decaying wall hanging furnishes a medium through which many a disease germ has been carried to persons who live in houses where coat after coat of paper have been put on, one on top of another,

for years and years. Probably all the poison cases we used to hear about were due to this same cause—decay.

The moral carried by the above is: Always take off the old paper in a room before hanging the new, that is if you value your own or your family's health.

After taking off the paper the walls should be sized over with glue size made antiseptic by the addition of a few drops of carbolic acid. If the smell is objectionable, by the addition of a few grains of corrosive sublimate, which is still better. This protects the underside of the paper from becoming the habitation of visible as well as invisible insects and bacteria.

In very old houses some of the old-time plastered walls can frequently be found which are in such dilapidated condition that one may well wonder why the plasterer had not been called in ahead of the paper hanger to do patching, which, in some instances, amount to as much as a fourth of the whole surface to be papered—but the paper hanger is suposed to cover the old walls and make them look as good as new.

All paper hangers should be at least two-third plasterers, too, and carry a kit of plasterer's tools with them, at least a pointing trowel and even a large plastering trowel will be needed to patch up some of the "grand openings" on the walls. With the ready-to-use prepared plasters, which can now be found everywhere, it is not such a very difficult job to fix up walls, after all, and they can be gone over in a very little time, ordinarilly. Cracks on plastered walls require more time to fill

them properly than bigger holes do, especially where they are numerous and small. A preparation of plaster paris thinned with glue water will be found best for all the smaller openings as that will set slowly enough to allow plenty of time to do the work, and there being no caustic lime in it, the color of the wall paper will not be injured. As soon as the cracks and holes in the plastering have been repaired, go over them with the size mentioned before and the room is then ready to be papered.

220. Sometimes the paper hanger is called upon to hang paper in the back rooms of stores and elsewhere where one or more sides of a room are wooden partitions. Wall paper hung upon bare wood will soon crack, as the paper is inflexible and cannot give with the wood's contraction in cold, dry weather or its expansion during a hot, moist spell. To prepare the wooden surface so the wall paper will stay on it, they must be canvassed over with muslin. The best way to do this is to sew together enough widths to cover the side of a wall to an opening cut to the proper lengths; then it should be tacked first at the top, then at the bottom and sides. Then tack it through the center and elsewhere so that it will not bag anywhere, but lay flat.

Some paper hangers prefer to size the partitions and to paste the muslin, laying it on in strips the same as wall paper. This method has the advantage of making a solid job of it, but the beading of the boards is likely to show through the paper after it is hung over it. It is also more difficult to hang the wet, limp muslin and it will require two men to handle the wet pieces—the extra man to pull the strip of muslin off the boards until the other has brushed it down.

HANGING THE PAPER.

- 221. The paper which is sent on the job is sometimes machine-trimmed at the shop before it is sent out. With a little care in the pasting of it, paper trimmed before hand answers very well for all ordinary work; but much the better way is to paste the wall paper, fold it both ways and trim it with a knife and straight edge. These knives come in all sorts of shapes and are shown in Fig. 61. Some paper hangers prefer a rotary wheel knife and a good variety of these are shown in Fig. 62. But the surest of these, and the handiest, too, is shown in Fig. 64.
- the market which are offered ready prepared. Some are made from flour, steam cooked, and put up in barrels and half barrels. Some antiseptic preparation is usually added to it to prevent its souring as quickly as it would otherwise. The steam cooked paste is put up very thick and requires thinning with cold water. It works smooth and nice, but it has its faults—the greatest one being that when it has to be shipped from a distance the freight on the water it conains, and he cost of the package, count up heavily, making its cost too high.

The cooked and dried paste in powdered form, only requiring thinning with cold water or even with warm water, are excellent. They keep indefinitely, there is no freight to pay for water. They are handy to send out on a job, being always ready to be thinned as wanted, and enough can be carried in the coat pocket to do an ordinary room.

Then again there are preparations which resemble dextrine somewhat, but which make a stronger paste that dries harder, which are made out of some of the byproducts of starch and glucose factories, which come cheap and are very efficient. They do not make as white a paste as flour but they do not strike through the paper, and paper pasted with it will slide better than the ordinary flour paste would permit; they are readily dissolved in cold water and for that reason are preferred by many paper hangers, but warm water is better.

Some, again, prefer to make their paste from starch. This, of course, makes a very nice, clear smooth paste—but it is not considered as strong as flour paste.

While prepared pastes and powdered paste are very handy, etc., it frequently happens that they cannot be bought in certain localities and for that and other reasons every paper hanger should know how to make his own paste from flour, either wheat or rye. The following directions will make good, smooth paste if the directions are carried out; to make an ordinary pail of paste, take 2½ pounds of flour. It need not be the highest quality as the lower grades make a stronger paste than the whitest does, and the color of paste does

not hurt it any. Put the flour in the pail you intend to make it and cook it in. Then pour in enough cold water to make it up into a stiff dough as for bread. Stir it up well until you are tired of it and some more. When well worked up pour in a little more cold water, stir as before, only that it will be a little thinner, and keep on adding a little water and stirring well until the whole mass is about of the consistency of thick pancake batter. This batter should be of a uniform texture if it has been properly stirred up. While preparing the flour, plenty of water should have been provided and put on the stove to boil. Then pour some of the boiling water into the batter slowly, stirring it well, and keep on pouring with one hand, stirring it well, and until it is cooked, which you will soon find out as the paste thickens and changes color when cooked. Be sure to have enough boiling water or you may not have enough, and the batch will be spoiled, as it must be cooked then or never. As the paste thickens in cooling, it should be thinned with enough water to make it rather thinner than it needs to be for the pasting on, but even then when it cools it will be likely to be too thick for use and probably will require to be thinned with more water. Should it be lumpy it will show that it has not been properly stirred up in the dough or in the batter before cooking it; in that case strain it through a calcimine strainer or through cheese cloth, and it will then be fit for use.

223. Paste should be applied to the wrong side of the paper, never on its face. This advice may sound simple and foolish to most persons, but that is where many paper hangers who are good at hanging manage to get more on than they intended. Good pasters among paper hangers are not as plentiful as they ought to be, and many an otherwise well executed job is marred by paste spots showing here and there or along the edges.

In pasting the paper the outer edge is usually easily taken care of by bringing it over the edge of the board beyond the rest of the paper so that the paste brush will not touch the understrips; it is the back edge which gives trouble. The better way is to run the paste brush on the body of the paper to within 3/4 of an inch of the edge and when the strip has been all pasted but that to slip the hand under the strip being pasted and to slide it along ahead of the paste brush so that the brush can slide over the edge of the paper while it is lifted by the left hand clear of the board. In the ready trimmed paper, extra care should be taken that the edges are not given too much paste as it would squeeze over while being smoothed on the wall.

When the first half of a strip of paper has been pasted, fold it over carefully and pull up the rest of the strip on the paste board, which proceed to paste the same as directed; then fold it together. Folding it in that way prevents the paster slide coming in contact with the hands while handling it, and makes it easy to carry about as only the dry side shows.

For very long strips the paper may have to be doubled over again and again in order to get it all pasted on the ordinary 7 or 8-foot board. In such cases it must be machine-trimmed beforehand as it would be a very difficult and annoying job to unfold it and trim it piecemeal with a knife, or it may be dry trimmed by hand with shears as is the general practice in England today.

224. For very good reasons ceilings are usually papered first. This can be done in two ways: First, with a scaffold, supporting walking boards, which may be ordinary horses of the right height, which can be pulled along on the floor to the end of the room or from a walking board supported by a couple of ladder trestles. If the room is not square, a chalk line should be used in order to mark out the edge where the first strip of paper is to be placed; this should catch all parts of the ceiling between it and the side wall. If the wall is not true, some portions of the first strip will lap over on the side wall, but that does not matter as the frieze will cover it. Then continue, strip by strip, to the end. The first strip being right, all the others must be, too.

Dropped ceilings are so called in wall paper parlance when the ceiling paper is extended over on the side walls either one-half or the width of a whole strip or more.

Cheap papers are usually trimmed only on one side and lapped over the selvage of the other.

The better grades are usually "butted," or both edges are trimmed off and a joint made, as the name indicates,

by abutting the two sides together when they are rolled over with the seam roller, and the rest of the strip with the smoothing roller.

In the hanging of ingrained paper great care must be taken to have the ceiling and walls sandpapered smooth, as a single sand speck will show through it. Also great care must be exercised in trimming the edges for they must fit up close or the plaster will show through. If the ceiling is uneven it will be impossible to make a good job with it except by matching up some distemper color as near like it as possible, and painting a strip an inch wide where the seams should meet; then, if, perchance, the perfect fitting of the edges is impossible, the plaster will not show through and nothing but a critical investigation will show it to the observer.

225. As nearly everything said above concerning the hanging of paper upon ceilings applies with equal force to the hanging of paper upon the side walls, it will be unnecessary to repeat it here again. The only difference is in the manner of doing the work of applying it, which for side walls is done from a step ladder. Commencing at a point where, after going around the room should there be a miss-match where the paper comes together, there will be the less likelihood of its being noticed; the work is continued, strip by strip, until one reaches the starting point. Windows and doors should have the design carried through over them, and the windows under them also. All corners

should be cut out, making an allowance of $\frac{1}{2}$ an inch of paper for the lap over.

It is immaterial as to which way a man turns around the room in hanging wall paper, and it is altogether a matter of habit, as it cannot possibly make any difference. The pieces should have been cut long enough 'so that the border will catch all of it at the top and a trifle over, and that it will reach down on the base board with a little to spare. The paper itself should be hung perfectly plumb. The paper hanger should always carry a plumb bob with him on every job for the purpose of knowing that his work is done properly. A good casing and corner knife will be of great help and a time saver in helping him to fit the end of his pieces. It requires good judgment at times in papering rooms in some of the old houses, where they are not properly trued, and where, sometimes, even the doors and window frames are out of plumb. He has to so plan the hanging of the paper that it may partly hide these defects; as he could not follow the door frames in their wobbling. Under such conditions never use stripe paper nor paper showing a prominent geometrical design, as much as possible select paper having a design with little striking features on it.

226. Borders come in half strips, whole strips, and again in any number of strips to the width of the roll. These smaller borders are used mainly in decorative paper hanging, in panels, etc. Dropped ceilings usually have a picture molding nailed on at the point of junc-

tion of the side wall paper proper, but there are imitations of these now made in paper and many use it in place of the real molding. In most rooms the wide borders or friezes are usually hung where the ceiling and sidewall come together or on half-strip dropped ceilings, just below that.

There are several ways of hanging borders, the most usual is to cut the border up into lengths just about wide enough for the paper hanger to fit on the last one hung, and to reach as far as his other hand can brush it on the wall with the smoothing brush from the top of a step ladder, which is then moved on for the hanging of the next stretch.

Another way: Where there is a walking board to reach from one side of a room to another, or where a scaffold has been put up permitting to go all round the room, which is to have the border trimmed on both sides with a machine trimmer; to paste it, folding it in short folds six to eight inches wide, one fold on top of another, the folds being carried in the left hand, the right fits the border at its beginning, and with the smoothing brush, brush the border tightly to the wall, the left hand letting out the folds as desired to the end. Where a ceiling is straight and the proper walking facilities exist this is much the best way as no laps are shown—but good work can be done by either way.

227. Hanging burlap requires a little more care all the way through than wall paper does. It is much heavier than the heaviest of paper and *must* be butt-

edged. Both selvedges must be knife-trimmed as they are more or less dirty. This should be done with a very sharp knife in order to get a clean cut, without ragged edges, which would prevent the two edges coming closely together. It will be well to read over the directions given in Paragraph 224 as to the painting of a strip under the junction point where the two edges come together so as to prevent any of the plaster showing in places where an imperfect union is made, either through carelessness or, sometimes, unavoidably on account of imperfect walls.

The walls should be sized with glue size in which a little brown sugar has been dissolved, or with some of the prepared glue sizes made especially for the purpose. A strong paste should be made into which about one ounce of glue to the ordinary pail has been dissolved.

228. It frequently happens that the ceilings and walls of a room become very dirty and smoky, especially in our larger cities; where illuminating gas is used, the ceilings will surely become blackened by it and elsewhere the smoke nuisance from the factories will find its way to the interior so that in a comparatively short time the paper begins to show signs of dinginess.

Such can be readily cleaned and restored to their original brightness nearly by the "cleaning" process given below: Take flour and mix it with water to the consistency usual for dough for bread; then knead into it enough plaster paris to make it up into a stiff dough,

which will not leave any traces of its component parts on the walls. Then go over these with a back and forth motion, overlapping each time so that no parts may be left untouched. This must be done in a thorough manner, the hand kneading the dough all the time in order to incorporate the dirt on the wall into it. The ball will become pretty black in time, but as long as the dirt is well worked into it, it will not soil the paper. If the rooms are very dirty and large, it may be well to change occasionally and to prepare another clean ball of dough, as it is inexpensive and can be quickly prepared.

The market is full of patented wall paper cleaners, but none will do the work any better than the one indicated above.

Dirty wall paper can also be cleaned with the inside of fresh bread which has first been kneaded into a ball in the same manner as described for the flour dough, leaving out the plaster paris. This is employed by many cleaners and there is but little difference between the two.

QUESTIONS ON PAPER HANGING.

- 217. What is said of paper hanging in general?
- 218. What condition should the walls be in for paper hanging?
- 219. How are walls prepared for hanging wall paper?
 - 220. How are wooden partitions prepared?
 - 221. How is paper trimmed?

- 222. How is paste prepared?
- 223. How should the paste be applied?
- 224. How are the ceilings hung?
- 225. How are the side walls hung?
- 226. How are the borders hung?
- 227. How is burlap applied to walls?
- 228. How is smoked and dirty wall paper cleaned?

PAINTER'S TOOLS AND APPLIANCES.

229. Painter's tools may be divided into two classes: First, those which are required for the application of the paint, and, secondly, the tools and appliances necesary for the painter to get at his work with with ease and safety.

Many of the tools belonging to the first class were reviewed under the heading of "Brushes," for which see Paragraphs 15 to 30, and those are the most important of that class; the rest, which will be noticed below, are merely adjuncts of these—to take care of them, etc. Some few are indispensible but several could be dispensed with by the use of others equally as well fitted as they are to do the part wanted of them. So that a proper substitute may replace any of them, without the painting being made to suffer for it.

230. Brush keepers are of this character. Brushes are expensive and must be taken care of as otherwise they will not last long nor work as well as they should.

Really any empty vessel wherein a brush can be hung, but not laid, suspended so that the hair will be sur-

rounded by water, linseed oid or varnish, according to the character of the brush—but in which the brush will not touch the bottom, will make a brush keeper for ordinary brushes used in house painting. A wooden pail can have wires driven into its sides, forming an extended projection on the inside and upon them may be hung the brushes after having had a hole bored into their handles at a proper height, which will keep them from touching the bottom. Or a stout wire may be put through the center to which can be fastened a spiral spring coil of wire of sufficient strength to hold up the brushes where they are placed into it. The last is still better, as no hole need be bored into the brush handles.

Under Fig. 66, following, is shown a brush keeper made somewhat upon the above described plan but a galvanized iron pail is used instead.

Fig. 66—Brush Keeper.

Under the heading "Carriage Painting," a cheap and efficient varnish brush keeper is described which is

used as an individual keeper, as all good varnish brushes should be, and under the following Fig. 67 is shown one where several can be hung together and kept free from

Fig. 67 -Paint Brush Holder.

dirt and dust. It has a false bottom, where all dirt can settle.

231. Under Fig. 68 is shown what is known as painter's tinware, consisting of a calcimine strainer, calcimine pail and a paint strainer, with a pot to use paint

Kalsomine Strainers.

Paint Pails.

Paint Strainers.

from—this last holds one gallon and has no ears sticking up at its sides to catch brush and paint.

A wire should be soldered on about one-third of the way across the top, to wipe any surplus paint off the brush and to keep its sides clean; or a handy contrivance can be bought ready made which can be put on or

taken off at will—in a moment—which is still better, as it permits the cleaning of the pots without any interference with the wire. This handy affair is shown in Fig. 69.

232. Under Fig. 70 is shown a sanding bellows

Fig. 70.

which will be found a time saver over the crude and primitive way of throwing it on either by hand or with the old fashioned sandthrower. Besides it will soon pay for itself in the cost of material saved by its use.

233. Scraping knives in various sizes and shapes to suit any reasonable desire are shown in Fig. 71. and

Fig. 71-Painter's Scrapers.

Fig. 72 which show an equal variety of stiff and elastic putty knives.

Fig. 72-Painter's Putty Knives.

Some triangular putty knives are made but one can grind them better to suit such bevels as are desired.

234. Fig. 73 shows a gasoline torch to burn off paint with. It is an indispensible tool to have and should have a place in every well regulated paint shop, as it will save money over any other method that can be used in removing old paint over large surfaces.

Fig. 73.

- 235. There are, no doubt, a number of other time saving and helpful devices which are being used in many paint shops besides the ones enumerated above, still be incomplete. Those reviewed cover about the most essential and the list of such could be increased indefinitely and whole field of the ones that are necessary to do good work with.
- 236. The next class of tools are in reality more appliances useful to get at the painting; but are as essential to the painting trade as those of the former class
- 237. Ladders stand first in the list as they are the most important and are required by all painters to get at their work. These come in many forms and varieties suitable to certain situations or to do a certain

kind of work. The ordinary short length single ladders are too well known to require illustrating. They run from 10 feet upward in 2 feet graduations to 20 feet.

All ladders should be made of light but strong Norway pine sides with hickory rungs screwed into them.

Fig. 74.

241. Fig. 74 illustrates the better grades of extension ladders and the way they fasten together. They are made in two lengths from 26 to 38 feet, and usually in three lengths, from 40 feet upward.

Choose them with rollers as these assist in pushing them upward.

242. Fig. 75 shows the block and falls. Like the adder, it can scarcely be dispensed with even in two or three-story buildings, as they save so much time in moving ladders besides being so much more convenient to do work from than ladders. They are indispensable for all buildings over three stories high. The rigging consists of two double blocks for the top and of two single blocks for the bottoms. The ropes should be of the very best manilla not less than ¾ inch thick, but

7/8 or even one inch is better and certainly safer, especially for long falls. A platform 18 to 22 feet long and two supports for same, which also serve to hook on the single blocks, and which have a wheel fitted in one end to roll down against the building sides without injuring them. Two large Swedish iron roof hooks into which the double blocks are fastened complete the "swing scaffold," as it is best known in many localities. It seems superfluous to say that nothing but the best of

material should enter into their construction, as life and limb are in constant jeopardy while they are being used.

243. Fig. 76 shows the ladder jacks of which there are a number of various shapes and forms, differing

but little, however, as to efficiency if well made from good, soft charcoal iron. Two of these make one set. They are placed on two ladders and a walking plank put between them, resting on the jacks, making a bridge

Fig. 77.

between the ladders from which the painting can be done:

244. Fig. 77 shows a roof ladder. This is attached to the end rungs of a ladder and then it can be thrown over the roof ridge which holds it firmly in place.

245. For inside painting, good strong, well braced step ladders are needed of various sizes from three feet upward. A poor step ladder is dear at any price and none should be too good if life and limb is worth anything to the men who have to use them. Some of the flimsy traps for eternity sold in many stores because

they are cheap may do for some ruralist to go up to glory with, but the painter has no use for them. Fig. 78 shows one that is well braced and which will not wiggle.

246. Painter's trestles are double ladders joined together at the top and which when spread out brace each other, making a solid support for walking planks

to be set upon two of these, which make one set. Fig. 79 shows a pair supporting an extension walking board, an ingenious contrivance enabling the workman to lengthen or shorten it to suit the situation and side of

Fig. 79.

the room where they are used. When done with, the board can be compactly drawn together.

Fig. 80.

247. Fig. 80 illustrates a plank supporter which is very useful in interior work as it can be placed where ladders cannot be set up or anywhere a board can be set up. It fastens itself to any sized board that will

go through its jaws and at any height desired upon it and gives a firmer support to the walking board which may rest upon it and a step ladder.

243. Under Fig. 81 is shown an adjustable scaffold-

ing jack which should be extensively used, as they will save much time and money by doing with a few sets what would require a large number of old fashioned "horses" needed to support walking planks for the painting and decorating of interiors of buildings. They are made in three sizes, ranging from the lowest—3 feet—to a possible extension of 11 feet for the highest.

249. Fig. 82 illustrates a shop paint mill which is an excellent piece of machinery for every paint shop to be equipped with. While it may not be considered as ab-

solutely necessary as now all pigments can be bought ground in oil cheaper and better ground than one can do it for himself. When the mill is handy it would pay to run it through many a mixture, which would be the better for having been put through the mill.

The above comprises all that is required to get at any work to be painted either upon the exterior or interior of buildings. QUESTIONS ON PAINTER'S TOOLS AND APPLIANCES.

229. How many classes of painter's tool are there?

230. What are brush keepers?

231 to 249. Should be used to refer to.

PIGMENTS.

250. Pigment is a synonym of color. As under that heading every pigment of any value and its peculiarities, antipathies, etc., are treated upon fully, the reader is referred to Paragraphs 61 to 84 for the information required concerning them.

SCENE PAINTING.

251. Scene painting is an attractive branch of the trade and calls for considerable artistic ability, requiring special study and which if an individual once makes it a success, generally becomes a lifetime calling.

The painting of theatrical scenery, drop curtains, wings, etc., is usually done in water colors as it looks much better in that medium than when executed in flatted oil colors. Distemper dries perfectly flat and dead, which is hard to get from oil work as so much of the work has to be brushed over and over again, which would make it shiny in places. Were it even posible to make the oil painting look as good in the flat as the water color does, it would not have any advantage over it. To make the oil painting look as flat as the water colors would require them to be thinned altogether with turpentine; then it would not be as well bound as the water colors are, for these have a

strong glue binding which will hold it on well, while the all-turpentine colors would dust off after a thorough drying from the rolling up and down of the scenes.

252. A scene painter should know many things more than is required in most branches of the painting trade in order to be able to represent whatever is required truly and naturally.

He must possess an ultimate knowledge of colors, not only such as all decorative painters should have, but also of their effects upon the vision at great distances from the object painted, and also of the effect that gas and other artificial lights have upon them. He must know beforehand what effects the blending of the colors will be when seen from the audience; for this blending will appear very much different to the man in the back part of the balcony than it will to the man on the stage even in daylight when there is no artificial light to change the color of the pigments, so he must be able to arrange his coloring schemes entirely different from what they look to be from the spot where the painting is done. This study of distant effects must be acquired beforehand or the finished work will be a failure from the artistic standpoint at least.

He should also make a study of the effect of gas and other artificial lights, as has been already intimated. For if he does not possess an intimate knowledge of these effects upon the various colors, some of them he will find so much changed as to be hardly recognizable at night.

It goes without the saying it that he must be a good off-hand designer or he will be apt to put out caricatures where such are not in demand. It is, of course, expected that every decorator should have a good knowledge of drawing, but the scenic painter's must be of a higher character than that of any of the others. The eyes of the whole audience is focused, as it were, upon his work during most of the play and every portion of it will be examined and any fault in the details or incongruous coloring wil be noted and commented upon. Much of which would pass unnoticed in ordinary pictorial work, which one examines at a close range, and where the observation is not constant, as it is apt to be from the audience to the stage.

253. The material needed for scenic painting comprises nearly everything in the line of pigments that can be used in water colors besides glues to bind them on, metallic leaves such as Dutch metal, aluminum, silver leaf, and, sometimes even gold leaf, the metallic foils, tinsels, bronzes, flitters, brocades, with the various liquid sizings required for their application.

Whiting is the principal color used for either painting white or as a base upon which to build up light tints of any colors or by mixing in small quantities with these to render them more opaque. The mixing of tints also requires a greater knowledge of effects of colors than is necessary for decorators whose work is examined at close range. So the scenic artist in preparing his tints is forced to make them much stronger than is required

for nearby work. At first he will be very likely to err in making his contrasts too weak, although they may appear unusually strong to him from the painting floor. As in the course of time the scenic artist will make use of nearly every pigment known, the reader is referred to paragraphs 61 to 84 regarding any information he may require concerning these. In subsequent paragraphs will be given a list of colors best suited to produce certain effects and for certain purposes.

To lay out the design of a scene nothing better than good French charcoal crayons will be found as the lines can be whipped out with a flogger while chalk lines will not always be easily effaced, retaining a faint outline, which is anything but desirable and which are mortifying when appearing upon otherwise well done work.

254. Glue is the material used as the binding material for the water colors. It is a matter of the first importance than that it should be of the best quality and of light color, at least for all light tints or colors with clear tones, otherwise the darker glues would change it or muddy it. The best glues to use are the thin-flaked ones known as calcimine glue. The ones of an ivory tone, nearly clear but not quite so, which are tough and do not break off short with an easy fracture, are the best. Avoid the opaque-looking white flaked glues; they might possibly be all right, but the chances are that they have been weighted down with some adulterating make-weight stuff. This can easily be ascertained by soaking the glue, melting it, diluting

it with water and letting it stand awhile as this white stuff will be precipitated down to the bottom of he vessel.

Glue should be of the consistency of a trembling jelly to mix with the colors, but should be melted and mixed hot or at least warm enough so as not to jell; so, when trying a new kind it will be well to weigh it, soak it in cold water over night, and melt it with the usual quantity of hot water and set it aside to jell; if it is about as thick as usual, it shows that the glue is about of the same strength—if it jells any weaker, then it shows lack of strength. It is well to weigh out any quantity of the glue needed as then the average quantity of water used ordinarily, proportionate to the weight can be added to it and the glue water kept up to a uniform strength.

Good glue will take up seventeen to eighteen times its own weight of water while soaking up over night and will swell to many times its former bulk, so the package should be much larger than needed to hold the dry glue. The amount of water absorbed is of itself a very good indication of the value of a glue, as poor glue has not as great absorbing power as the better kinds have.

The glue water should not be much stronger than that of a trembling jelly, for there is danger that if it be made much stronger of the colors showing up shiny when they dry. Again, one should guard against the opposite danger of having it too weak to bind the colors sufficiently to hold them on well.

255. The tools used in scenic painting do not differ materially from those used by other decorators.

For the sizing of canvas and the layin in of ground colors a good calcimine brush 6 or 7 inches wide make an excellent tool.

For the laying in of large bodies of color 2, 3 and 4 inches flat, double varnish bristle brushes with a few assorted sizes of oval chisel pointed sash tools will suffice.

A few dozens of round, flat, triangular, long and short fresco bristle lining brushes will be needed as nearly all the details of the decorative work as well as the lining up will be done with these. No finer brushes will be needed, such as artists' or decorators' camel's hair pencils, as the work must be coarsely done and the bristle fresco liners are good and small enough for any purpose. Some of the leaves, grass, etc., can and must be done with the sash tools and even larger brushes.

Pallet knives and a marble slab and stone muller to grind down coarse colors with which cannot be obtained ready ground in distemper as is sometimes the case in the smaller towns. The above will not apply in the larger cities, where usually all colors can be bought ground up in distemper. It is true that many colors can be procured ground fine dry; such should be bought in that way as they are cheaper and answer as as well as those ground in distemper, but many are too coarse in their dry state and must be ground with the

muller where it is impossible to buy them properly ground.

Straight edges with beveled edges of various sizes such as fresco painters use in lining are needed, some longer ones for laying out a level and plumb bob, T squares and triangles, large wooden leg dividers, chalk and chalk lines; also some charcoal for chalk line. Floggers to whip out charcoal marks and a palette board to hold colors. This palette board naturally must be made upon an entirely different plan than the common flat form of the ordinary one. It must be made with an edge on three sides to retain the cups into which the colors are put. Some advise a complicated affair with compartments in it to hold the colors in, but they give much trouble to clean. If a compartment becomes dirty the rest may need no cleaning; it is next to impossible to do it properly. The better way is to have tin vessels of proper size which can be lifted out singly as needed and the raised edge will keep them from slipping off the board when the palette is tilted up, as it sometimes requires to be. The vessel holding the glue water should be of different shape so as to be easily recognized and it will be well to have three or four of them so that the brushes used in different groups of color may not muddy it up and render it unfit for use for colors of a different tone.

The above are the principal tools needed for doing the work; no doubt that many more might be added to the list but it is possible to do the best of work with the ones mentioned. In the following paragraph will be described a few appliances necessary for the proper equipment of a scenic studio.

256. The location of a studio is very important to the professional scenic painter. The amateur who only has an occasional job to do will have to necessarily content himself with such accomodations as he may find in an ordinary paint shop, but the latter are unhandy for such work and they will be much hampered in getting at their work as they will have to do the painting from cramped and uncomfortable positions, which usually tell more or less upon the quality of the work done. Few ordinary paint shops have ceilings of sufficient height to accomodate the frame of a large scene or of a drop curtain. Even in many of the theatres and opera houses there are no special arrangements made for the painting or repairing of scenery, although the majority of the newer built ones have arrangements made for this at the back part of the building.

The studio, however, which is built with a special view of being used as a workshop where scenic painting is to be the exclusive business carried on should be built according to the requirements needed for the speediest and easiest methods of executing the work. The building should be three ordinary stories in height and should be well lighted on the top floor where all the painting is done. The lighting should all come from above, from skylights in the roof, as only untram-

meled, direct light will do and no side light should be allowed, so that the third story will be windowless.

The floor itself should be so built that it will not touch the walls around the room by about twelve inches, leaving an empty space of that width all around it. The same arrangement should be carried out upon the second floor, too. This will permit of the largest sized scenery and drop curtains to be raised and lowered at will from the top to the bottom on the first floor. It is needless to say that the second and first floors may have as many windows as may be desirable for them to have, as no painting will need to be done on those floors.

The top floor must be equipped with machinery to raise or lower scenes quickly and there are several patented capstan-like rolling machines which do the work handily and quickly. But any handy carpenter can readily make up a homemade affair that will do the work nearly as well as the others and at much less cost. The above arrangements will enable the scene painter to stand erect at his work in executing the painting. Being secure and feeling so on a solid floor, this assurance will enable him to do twice as much work or more with greater ease to himself than he could possibly do in any other manner.

257. The amateur will be under many disadvantages in doing his work, but frequently special scenery is wanted in the smaller towns where there are no facilities provided other than such makeshifts as may be

found. The painter should secure a place high and wide enough to accommodate the frame upon which the canvas or muslin upon which the scenery is to be painted, will be stretched. This canvas should be a few inches wider and longer each way than the size of the finished scene is to be. It should be evenly stretched upon the frame and all wrinkles removed, then securely tacked on, when it will be ready for the sizing.

The sizing should be rather stout. Soak glue of a good quality until it has absorbed all the water it is capable of, then melt it over a slow fire and in the proportion of about one gallon of water to eight ounces of dry glue so that one pound will make about an ordinary 12-quart pail full of sizing when melted; then proceed to apply this size to the cloth on the frame but do not touch the size to within one inch of where it is tacked on to the frame, leaving one inch of it unsized all the way around the frame (top, sides and bottom being left unsized for one inch). This is very important as otherwise the cloth would not dry evenly but wrinkled and it would be very difficult to take them up even after retacking it over; in fact it could hardly be done while the unsized cloth on the frame and the inch of it left unsized will take up the strain and the cloth will dry evenly and tight.

When dry, proceed to fill the cloth or canvas with a good, solid coat of whiting, which has been strongly sized with glue water. This coat should be well worked in, cross brushed and laid off, so as to insure a perfectly

well covered ground to work upon. If this ground coat has not been properly done there will be trouble afterwards in doing it over, besides loading the canvas with the unnecessary weight of another which will make further trouble in causing suction so that the painting of the details of the scene will be more difficult than over one coat ground well done.

The painting proper of the scene is very much the same as that of any other similar kind of decorative work either in perspective, lineal or free hand painting and will present no great difficulty, especially to one who is used to free hand decoration in distemper, that is, at least, in so far as putting on the colors goes, as that is about the same; in fact it is less difficult in that there is no great preciseness required—but the very seeming freedom and carelessness in the execution of daubing on the painting is all calculated upon and the results of it are as well known in the mind of the scenic artist as the most precise is to the decorator who paints for near-by effects. This very coarseness is discounted beforehand with a full knowledge of certain effects it will produce at a distance and the seeming carelessness is all in the eye of the onlooker.

Scene painting has to be made bold and the colors must be put on strong without regard as to their looks in the immediate vicinity. Colors at a distance blend together so that if they are gradually shaded as for work which is to be closely seen, they would appear very tame either not shaded at all or as a solid shade or tone of one color all blended into one. For the same reason the details too must be put on much stronger colors than for near-by painting. This requires quite a study of distant effects and all amateurs are timid and afraid of going too far—they have to catch on to it gradually when experience will teach them to become more bold in the use of strong coloring and every mistake made becomes an instruction which will eventually make the amateur's work better on the next job he undertakes after he has noted the tameness of the combination used.

There is another phase in the painting of scenery which will give beginners trouble at first and that is the changed appearance of some colors under artificial light such as gas, kerosene or gasoline illumination and in a lesser degree under electric lighting. In a subsequent paragraph is given a list of colors to use to produce the best effects for the painting of various shades and for special purposes which will look well under artificial light. The combinations can be made from such as are named to suit the ideas of the painter.

259. Colors can be used either opaque or transparent when they are naturally so. Some of the transparent ones can be made more opaque by the addition of whiting, but it will somewhat change the tone making them a little lighter, so it must not be over done. If a full deep opaque tone is wanted of a naturally transparent color, it will have to be made by mixing several pigments together that will produce a similar color to the one desired. To explain: If a solid burnt sienna brown

is desired, the natural burnt sienna being transparent and as whiting would reduce its depth, it should be made artificially from solid and opaque colors and a similar color made from Venetian red, othre and black and this would be solidly opaque.

The blues seem to give the most trouble of any as most of them appear greenish under artificial light. Some of the ultramarines have a greenish tone even in daylight and when used should be very carefully selected as the true blue shades of it are after all the best blues to use in making up blue tints for scene painting.

The chrome yellows become much lighter under gas light so that the painting done with those yellows must be made much deeper if the scene is to be used where the lighting is done with gas.

259. Purples are readily made by mixing some of the blue and Indian red taken from the palette and mixed on the mixing board to which can be added whiting to produce the shade of it wanted.

Where considerable color of one tint is wanted as for skies, etc., it is better to prepare it ready for use in a separate can or pot.

For skies—they should be first put on with the solid color and then the brush can be dipped in this and that color and applied where wanted, and blended in while wet and as many variations produced as wanted.

Foliage greens should not be made from chrome green as these contain chrome yellow and under gaslight would appear much lighter toned; besides, that

no good foliage green can be made from them as they are too positive. They are best made from ochres, raw sienna, Prussian blue and glazed with some green lake where a rich effect is desired. The chrome yellow may be used but they must be made deeper in order to produce the effect wanted and this would look unnatural by day light.

For clouds mix verditer and orange chrome. For cold gray clouds add a litle black. For lights in clouds mix yellow ochre and madder lake, or any other good crimson lake, or yellow ochre and orange chrome.

For sea water use Dutch pink alone or raw sienna and black Prussian blue. Water reflects the color of the skies and the image and coloring of near-by objects such as houses, trees, etc.

For moonlight skies a good tint is made from verditer or indigo or its equivalent in Prussian blue and black, lightened up with whiting. For clouds add black and more blue.

For rocks, stone, etc., raw and burnt sienna, Indian red, chrome greens and black, vandyke brown, ultramarine, rose pink and ochres. Black and Venetian red toned down with a little whiting makes a good stone color for many purposes.

For distant foliage, Dutch pink alone or raw sienna and black, or raw sienna and a trifle of Prussian blue.

Gold tones are best made from ochres and Dutch pink, raw sienna and Vandyke brown. For the lights use flake white and lemon chrome yellow or medium chrome yellow according to the shade of it wanted.

For trunks of trees and branches according to species and tones desired, Prussian blue, yellow ochre, raw and burnt sienna, ultramarine Dutch pink, raw and burnt umber and maroon lake for an overglaze.

For grass the chrome greens in all shades of it, using extra light chrome green for the high lights, mixed with pale chrome yellow or medium chrome yellow.

For dead leaves, raw and burnt sienna, raw and burnt umber.

For stone buildings, yellow ochre, raw sienna; raw and burnt umber; ultramarine blue, Venetian red and black.

For brick, Venetian red, and for shadows add ultramarine blue.

For fire reflection use orange mineral. In all the above it is understood that whiting is used to make proper shades of all the tints wanted.

In making out the above list all the colors useful in making the tints are given—not that all should be mixed together, but such should be selected from them to mix the shades wanted. Some of them, as Prussian blue, lampblacks, etc., are very strong and but little of such should be used as little is needed to produce much effect. It is better to add several times if needed in mixing a tint than to spoil the shade by adding too much at the start of making them. It is only by many trials

that a beginner can expect to produce proper shades at once. All such should carefully try the shades by drying them as recommended before.

QUESTIONS ON SCENE PAINTING.

- 251. What material is chiefly used in scene painting and why?
- _ 252. What should a person know in order to become a scene painter?
- 253. What material is chiefly used in scene painting?
 - 254. What is said about glues?
 - 255. What tools are needed for scene painting?
- 256. How should a scene painting studio be arranged?
- 257. How should the cloth or canvas be prepared for the painting?
 - 258. How is the painting done?
- 259. Give colors required for making the various tints.

SIGN PAINTING.

260. Signs in some form or another have probably been in use as long as commerce has existed, or at least some equivalent for it to let people know that at such a place something was for sale or exchange. They certainly existed and were in use during the Roman empire, and traces of them have been handed down in an unbroken chain ever since.

During the middle ages before printing, and later when universal education had made everybody familiar

with the form of letters and with the reading of them, most of the signs were of a pictorial character and as trades all had trade marks the business was represented by that plus some peculiar sign that denoted the individuality of the proprietor. Even as late as the middle of the nineteenth century, before the introduction of forced education, pictorial signs were still largely used. Novelists such as Dickens refer to such signs freely in their writings, and shops and inns were called after and known by the picture represented on their signs. Many of the older men living today can well remember the practice as it existed in the days of their youth. Some of those signs were certainly very crude in the drawing and in the painting of the subjects as there were botches in those days as well as at the present time. But, good or bad, they appealed to the unread as well as to the educated and a servant girl told to go for something to the sign of the "Lion Head" or to the "Three Black Crows" had no need of being told the rest in order to know what place was meant.

Some of the greatest painters in all countries have been guilty of painting such signs as favors shown to some friendly "hosts" at taverns and elsewhere and such, no doubt, must have shown considerable talent in the execution.

But at the present time since everybody can read, this fashion is obsolete at least in business houses, locations of shops of all kinds of trades, professions or manufacturies. But there is still an enormous amount of pictorial sign work done in what is known as "advertising signs," much more in fact than at any other period of the world's existence.

The idea is as good now as in the older days, as people will read a well displayed advertisement to find out what the advertiser has to say about the picture on the sign which has riveted their attention, where, otherwise, without such aid on account of the multitude of such signs they would have passed it by unnoticed. So, it can readily be surmised that a general sign painter in order to make good in all branches of his business must be very versatile and artistic in his knowledge.

- 261. Sign painting can be divided into several branches:
- I. The commercial, which includes the painting of signs upon sign boards to be hung up on buildings or on the buildings themselves. It may be in all kinds of oil work, plain or shaded, and includes gilded signs on wood, but as gilded signs are specially treated upon and that it really is a separate branch from oil painted signs which many otherwise good sign painters are not familiar with, it is entitled to a separate place in the describing of it.
- 2. Show card painting has become specialized into a separate branch and requires training of a different order. One stroke muslin sign work, while upon a much larger scale, properly belongs to this class of work, although much of it is being done by all regular sign painting shops. But for the sake of describing

under a proper classification it will be noticed under this division, which, after all, is and must be arbitrary.

- 3. Gilding on glass and gold lettering on wood with accessories such as ornamentation of the letter with pearl flakes, etc., bronzing, etc.
- 4. The advertising signs in all their forms, which include pictorial painting, etc.

Each one of these four artificial divisions of the sign painting trade will furnish sufficient variation in the use of special skill to keep one pretty busy usually, and as each also requires a different handling, the specialist who makes it his sole business acquires more skill and dispatch in doing his work.

462. The above classification of the trade is an artificial one made for the purpose of examination into its details. It is also made by the large shops in the selection of workmen who are kept within the limits described in the classes described in the former paragraph.

As a matter of fact no such distinctions exist in any of our large city shops. They take everything in the line of all of the four classes with possibly the exception of advertising bulletin work, which is made a special business by itself.

In the country towns, too, the sign painter must be able to do any and all kinds demanded as he seldom has enough work to employ specialists, and frequently no more than he can do himself. So, the general sign painter must be able to do a fairly good piece of work at the risk of being lowered in the estimation of

his customers, if he does not in all branches of the business, from the painting of a dainty show card and gilding on glass to the painting of a big pictorial sign on the broadside of a large barn.

So it can readily be seen that a general sign painter must possess a high class of knowledge. To be successful and a good workman, the sign painter must be a good judge of distances and possess an accurate vision in order to save time in laying out a sign within a given number of feet and to balance it properly. He must be able to judge at a glance what sort of letters will work best for the various situations of a sign and right for any kind of business as all are not equally adapted for all alike. When his work is to be surrounded with dozens of others he must be able to give his own sufficient individuality, that passers-by will notice it and that it may not be confounded with the rest.

He must be able to draw accurately and to scale and also be well versed in perspective for a truthful representation of buildings and machinery upon wagon covers and advertising sign boards. He must be a good judge of color effects at a distance and for nearby ones, sign painter must be able to do a fairly good piece of work too, as the job is seen from both near and far. So he has to arrange a sort of compromise between the two extremes. As much of his work is done upon glass, he must be a good gilder not only on wood but glass and everything where he is required to work upon,

263. The material required for doing sign work comprises about all the colors known to the house painter or decorator not only ground in oil but all the water colors, and those ground in japan or varnish for wagon work. Besides all sorts and kinds of gold and other metal leaves, bronzes, flitters, metallics, etc., for show card work and for the latter to be able to squeeze out raised letters and ornaments from a plaster paris bulb and squeezers, pearl flakes, diamond dust, etc.; he will need nearly all the usual accessories listed in art store catalogues at some time or other in the prosecution of his business.

Much of this material will be used but seldom, and need not be carried in stock.

264. The tools required to do sign painting comprise those used by the house painter for the preparation of grounds, for the painting of the sign proper, and in addition thereto a good assortment of sizes and shapes of camel's hair, ox hair and sable lettering brushes, from No. 1 to 12. Some ½, ½ and 1-inch camel and ox hair one-stroke flat brushes, which are great time savers not only for the making of letters at one stroke, as their name indicates, but which are useful in all regular sign work as well. He will also need striping brushes, gold tips, etc., putty and palette knives, charcoal and chalk crayons, ladders, swing stage blocks and falls, step ladders, easels and frames to stretch muslin signs upon, an air brush for show card work, tin pots and strainers, etc., etc.

Previous to describing the methods used in doing sign work it will be well to give a few general directions for the beginner, as these presuppose a knowledge of making the letters. It will be impossible to give a lengthy "expose" of all that a novice will have to go through to learn how to paint letters; time and experience is required to make a good workman in the sign painting business as well as in any other. But a person who is handy with the use of brushes can soon perfect himself so that he can do all the ordinary sorts of sign work, and gradually work himself up to a higher degree of excellence upon the more intricate parts of the trade.

The best practice the novice can have is to make straight perpendicular lines equidistant from each other—then horizontal ones and slanting ones at all angles and in both directions. When he can make them straight, equidistant and successively so any number of times, and when he has practised on curves and recurves so he can reproduce them consecutively at will, too—he has mastered the sign painting trade. A solid week or two, ten hours a day, at that kind of work will do it. It may be monotonous and may become disgusting, but there is nothing like it to learn fast. All letters resolve themselves into straight lines and curves so that the time which is seemingly wasted enables a beginner really to form any letter at sight when he is master of his straight line strokes and curves.

Letters are not all of the same width, nor will all letters look well separated from each other by an equal spacing as in print. The painter can usually arrange his spacing so as to balance up any deficiency, excepting where two open topped letters come following each other as an A following an L for instance; the wide space looking empty as it will at the top is very hard to balance just right. In such a case reducing the width of the L will help it some but it must not be to the extent of being strikingly so. When an open top letter is followed by one with a wider top than its foot as a V or Y or a T the top can be extended into the space which really belongs to the L if it was square with good effect. So can a V following an A trespass upon the top space of the A with good effect upon the balancing of the wording. Letters with straight line bodies like an H, N, M, E, R or U should be spaced as near equally apart as can be and any of these following an open top letter should be set as close to it as can be done. An I should have more space allowed between it and its neighbors than any other, or it may be confounded with another adjoining straight-bodied letter; the curved letters as O, Q or B, R, and P can be set a trifle closer to a straight-bodied letter than two straightbodied letters can. If the above directions are followed in spacing there will be little trouble in balancing the letters in a word properly—so that they will look at their best.

As the letters for all kinds of sign work are nearly the same in their formation it will be well to notice them here once for all, the proper allowance of size, etc., being made by the reader for the different kinds of work.

With all the innumerable styles of letters which one can see in a type foundry catalogue, aside of Old English or German text and Script, the whole of them are simply variations of two primary styles of letters.

The Roman with its make-up of fine and heavy bodied lines is the author of all such with or without extending spurs and the heavy bodied block is also the prototype of all such with or without extending spurs, thick or thin, shaded or unshaded.

There has been a number of off hand nondescript styles of letters which have had a season or two at the most of faddish popularity, which certainly cannot claim any relationship to the two standard styles described. They make diffcult reading and one might as well have a sign written in Egyptian hieroglyphics or Turkish as a mongrel type which has to be studied over before it can be made out. Life is too short for people to waste much of it in solving puzzles and then there is a general return to the standard styles and its numerous variations, which are certainly plentiful enough to suit almost any taste.

Below are shown a few of the leading styles and their modifications: Fig. 83 shows a pure style of Ro-

MODES

Fig. 83.

man in a proportion where they show their elegant form to good advantage although the Roman type looks very well in an extended form even very much wider than it is high. On the reverse when Roman type is narrowed up, as in Fig. 84, it loses some of its beauty

MERCER

Fig. 84.

and at a distance becomes less distinct.

Roman lower case is shown in Fig. 85 and it, too,

repairing

Fig. 85.

possesses the same beauty of form as its capitals. While signs in several lines usually look best in various styles of letters for each line, or at least for every other one, Roman capitals and lower case may be used alone and give a very neat result, as shown in Fig. 86.

This Desirable RESIDENCE to be Let.

For particulars apply to

Fig. 86.

It was stated before that all other styles were simply variations of the Roman and block, so in Fig. 87 is

MAKER

Fig. 87.

given an illustration of such variation, and in Fig. 88 another shaded where the modification is still stronger, but where the original type can be plainly seen.

In Fig. 89 is shown the other standard form from which all other thick-bodied letters sprang from. Fig.

MAKER

Fig. 89.

90 is probably a better sample of it as being less elongated, but its lines are proportionately much thinner than

MAPS

Fig. 90.

Fig. 89, and this will answer to show some of the many variations in the type. In Fig. 91 the above type some-

HAT

Fig. 91.

what mingled with a spray of Roman is shown with extended spurs, and in Fig. 92 and Fig. 93 is shown a

DENT.

HOUSE

Fig. 93.

thicker bodied letter and an elongated one of the same order. Many styles of letters are compounds of the two main ones so that it is sometimes difficult to tell to which they belong the most, as Figs. 92 and 95.

DRAPER CASE Fig. 94.

Bunkarller Engraver

Old English is shown in Figs. 96 and 97. It is elegant, too, in form with its succession of thin and heavy lines and is frequently used in church text on account of its gothic form with which form religion has cast a hallow of sacredness.

Script is extensively used in sign painting. It may be any style of letter desired, all of them look well. Some of the signatures of the proprietors for whom the

Good Stabling

Fig. 98.

signs are painted sometimes have them imitated upon them. All script signs look neat. Fig. 98 shows one style which is largely used, and Fig. 99 shows one which is continuous as in actual writing.

Rustic letters are very appropriate for many situa-

Fig. 99.

tions and trades, as for gardeners and florists, etc.; an illustration is given of such in Fig. 100.

267. Shading letters improves them very much if properly done and renders them more attractive if the coloring is in good taste. Where shading looks at its best, there must be no crowding in the spacing but a

Fig. 100.

liberal allowance made for the shade, and some over. Crowded letters do not look well, shaded.

In shading letters do not let the shading color come close to the letter itself but leave a margin wide enough that the ground may show between it and the letter itself. It should not be too large, but large enough to be visible.

The taste of the painter can be exercised in the selection of proper shading colors to suit the location, character of the business and the fitness of it for the purpose. An undertaker, for instance, should not have his sign shaded crimson, neither would it do for the doctor. Some sober tones, a compromise between the color of the ground and that of the letter always makes a neat appearance.

Double shading in two or more colors is often resorted to to produce showy signs.

Probably the neatest effect in shading is to use a darker shade of the same color for the underside or under parts of the lettering. This gives it a block effect which is absent from shading done in one solid color, and as shading is done to give an impression of thickness to the letters, the shading done in the above manner will show it much truer and better than a solid shade would.

Shadows are sometimes used to good advantage; unlike a shade it is not placed next to the lettering but at a distance from it, but connected with it at the bottom as the shadow of a man or tree or any standing object would appear from a given angle. Lettering may be outlined with some other color in either thick or thin lines all around them and variegated, or the bodies painted in two or more colors with or without ornaments upon the body. When properly done, this

kind of work looks well for certain kinds of signs, but to be in taste, it must be suitable to the business or it will soon be an eyesore of which the owner will soon tire.

The above directions, it is hoped, will suffice to enable the novice who has been reading this to do a creditable piece of work if he has familiarized himself with the proper formation of letters, and as this advice is applicable to all kinds of sign painting from a show card to a mammoth bulletin sign no further reference as to how to do the work will be made in what follows except in so far as a different application of the rules given may necessitate further explanations.

268. The painting of signs on sign boards or on wooden, brick or stone buildings may well form a section by itself, and as this forms a branch of the trade which gives more employment in all its varieties than all the others put together—with the exception of advertising bulletin signs (which will be treated separately), it is well worth the closest attention.

If the sign is to be painted upon a board in the shop or upon a building, they should be primed as recommended for exterior house painting by using nearly clear linseed oil (raw) with just enough white lead in it to tint it so that it can be plainly seen when applied to the lumber. If upon a sign board, the back of it should be thoroughly primed, too, in the same manner as the front in order to keep the water from soaking up behind it. The next coat of paint should be

given fairly stout, with \(\frac{1}{4} \) turpentine mixed with \(\frac{3}{4} \) raw linseed oil for a thinner, ith a very small quantity of good japan drier added to it. The back part of the sign should be coated with this too; these two coats will be enough for the back of the sign, but the front should have another rather flatter than the usual outdoor third coat, because a glare is very undesirable for a sign ground. For the better class of sign work it is better to give the third coat 2/3 raw linseed oil and 1/3 turpentine put on rather thick, but brushed out thin which will give the board a good, even gloss all over it. When still tacky, apply a coat of flat color to it, which will be held firmly by the partially dried third coat, and then there will be no danger of its giving away very soon as the building has in all probability been already painted; if the paint is in good condition the painting of the sign may have to be done upon it just as it is and this very often happens. If a ground coat is to be painted upon it for the lettering, give a coat of raw linseed oil tinted with the ground coat color and when dry it should be given a heavy, well brushed outcoat of the ground itself, thinned with half raw oil and half turpentine. If the buildings are new and have never been painted they should be treated as stated under the heading of "Exterior Painting," and the space to be occupied by the sign coated over with the proper ground for it. This ground space should be thinned flatter than the rest of the painting.

269. Spacing and balancing a space for the sign is where the practiced eye of the professional save him much time. Generally speaking, and upon the average, each letter is supposed to occupy a given space and for the purpose of filling up a line, it is safe to cut up the number of inches in the space, making due allowance for beginning and ending, also for space between the words by the number of inches each letter would occupy. The painter will dot off the number of inches to be occupied by the separate letters on the sign, keeping track of the number of them as he goes. Then he will roughly sketch out the space each letter will actually occupy, making all necessary corrections as to the variations already spoken off as existing between the various letters and it will be found that the calculation based on the supposition that each shall occupy a similar sized square will not be found much out of the way, and that if there is an exception to the rule it can very soon be adjusted by the next rough sketching of it over, and making the proper allowances.

The professional painter will not need to even count out the number of his letter spaces, but will sketch out his wording at once and will seldom have to efface it to make room for a second sketching as it will be sufficiently near right to enable him to proceed with the lettering and to correct anything wrong in the sketching as he paints it out. The novice, however, should not attempt this, as it would be too risky for him, and until his vision is so well exercised that he can judge of

the right sized letters to make to fill up a given space, he should not only roughly sketch the letters but mark them out in the exact spot which each is to occupy. In that way he will be sure to come out alright.

If there are several lines of work to be done it will be well, especially if the lettering is all done with capitals, to change the style of each line somewhat.

It is usual to paint the name of a firm or person owning a business in larger letters than the rest of the sign. Then the line of business itself should be very prominently displayed, while the details can be painted in much smaller letters than either of the two principal ones.

The styles, shadings, etc., referring to the lettering were fully noticed in Paragraph 267.

270. Show cards and muslin sign painting has come to be specialized insomuch at least that men who are better skilled in the execution of this kind of work than others are usually kept at it in all the larger sign shops. As now it is quite the fad to have these made and shaded with an air brush, it requires a practical use of this tool to do good work with it. Much of it is done in tasty colors and dainty use of roman lower case, and some show considerable ingenuity in the display made. Muslin work, likewise, requires a peculiar kind of skill; not that it is more difficult than that of the regular sign board work, but that the handling is somewhat different, being usually done with one-stroke letter brushes and off hand, and requires a different application of the

knowledge equal to both—of the proper formation of letters.

Muslin is usually stretched tight upon frames and sized, although now muslin can be bought all ready sized, ready to go to work upon it. As time is money and the time required to size and stretch ordinary unsized muslin will much more than make up for the cost of that ready prepared, this is now practically the only kind used for all this kind of work.

Muslin sign work, being done at one stroke and off hand, is very rapidly done by the experienced ones. They are usually employed for hurried work and for a temporary purpose, for the announcement of some special sale and it is not of so much importance about the lasting quality of the work as the looks and speed in painting them. In the aggregate, they make up a big share of the sign work being done in all sign shops today in city or country towns.

271. Gold signs on wood and glass constitute a class of sign work requiring additional skill besides that of the ability to form letters properly, which is common to all the different branches of the trade. This additional skill is that of the proper handling of gold leaf. This is not to be acquired in a day, but is the result of considerable practice. Some learn it in a much shorter time than others, and some never learn it well. Gold is so fragile that the least breath will send it flying in all directions. But, after all, when its peculiarities are well

understood, and the proper care taken, it is not such a difficult thing to learn how to handle it.

For the purpose of examination gold sign work will be taken up under two headings:

- I. Gold signs upon opaque surfaces, such as wood, metals or japanned tin, etc., and—
- 2. Gilding on glass, where gold instead of being applied over a surface as before, is applied under it and shows through, requiring a very different method of handling in each case.
- 272. Wood surfaces, tin (japanned) and painted window shade cloth are the surfaces upon which gold signs are usually painted; each requiring much the same manipulations in the application of the gold, but some variation in preparing the surfaces for the gilding.

Gold leaf sticks closely to anything that has the least greasiness and tackiness; therefore the surface over which it is to be applied must be free of the least bit of it or else the gold will surely attach itself where it is not wanted, and the work spoiled thereby, and it is in this respect that the preparation of the surface mainly differs between the various surfaces mentioned.

Signs gilded on wood are usually smalted and when that is the case, as the ground is cut in around the letters after they have been gilded, it does not make so much difference if some of the gold happens to stick to portions of the boards besides that of the sizing for the letters as the cutting in of the ground will cover it over; if, however, the surface is to be left in the ground color over which the gold is applied, and no smalt is used as is sometimes done when a gold sign or ornaments are painted upon a building of wood or stone, then great care must be taken that the surface will be in a condition that the gold shall not stick to it.

The only proper surfaces for all gilding which is not afterward to be cut in is a *dead flat*, not an egg shell gloss even will do, unless it is first deadened or all its stickiness killed.

The usual method of preparing sign boards to be gilded is to give them three coats of paint as noted in Paragraph 268. The last coat should be given in a dark lead or slate color, so that the black ground to be cut in afterward can be plainly seen, and no spots will then be missed. The last coat must be as nearly flat as it is possible to make it, so that it may be properly bound. It should have a full week, at least, for hard drying. After it has been sand papered as free of brush marks as possible (and this sandpapering should have been resorted to after each previous coat), it will be ready for the sizing.

Nothing but an old, fat, oil size is to be used for outside exposed work, as nothing else would be able to withstand the ravages of the elements. This fat oil can be prepared by any one by exposing linseed oil in shallow vessels exposed to air and light for a few months. It can be bottled up afterward and will always remain in a fatty condition. Linseed oil in that condition seems to have lost much of its power to absorb oxy-

gen and should have some good japan dryer added to it to make it dry. Unlike other linseed oil, however, it remains in a tacky condition for some time, some days even before it will eventually dry hard. It is when in that partially dried, tacky condition only that it is fit to be gilded upon. If gilding is attempted while it is sticky and leaves an imprint upon the finger when touched, it will come through the gold and dull or tarnish it—when dry, but still tacky, is the proper time to apply the gold. If the surface is good and dry when the size for the lettering is applied, and one has been careful not to touch the ground with the fingers or with anything greasy the gold can be applied so that it will stick to the sizing only, but as said before, it does not matter so much if the sign is smalted.

In aplying the size it is well to mix with it a little medium chrome yellow as then there is less chance of leaving a part of a letter unsized as it would show the omission at a glance.

It is well to prepare the size and to test it beforehand so as to know how long it will take to dry it and how long it holds in good condition for the gilding, then to bottle it up and label it with its record of drying. Some need a quick size; others again who have large surfaces to gild need it to hold the tack a long time and a gilder should have a 24-hour, a 48-hour and a 66-hour size. The last would be seldom used except upon work where the operator could not get back to it for some days after applying it.

These gold sizes in fat oil can be bought ready prepared in most of the supply stores. As they are more carefully tested and great care taken of having them just right, it is much better to buy them in that way than to waste the time necessary to prepare them for one's self.

The gilding is done in the same manner as stated in Paragraph 146, to which the reader is referred for further explanations.

273. For surfaces which are not to be cut-in and for japanned tinware, etc., the surface should be rubbed over with whiting after having first been washed over with alcohol and a chamois skin to remove any greasiness. This rubbing over with chalk will deaden the ground so that gold will not adhere to it, but care must be taken not to touch it as there is sufficient tackiness in the touch of the fingers rubbed over the ground to make the gold adhere to it sometimes.

Some take a raw potato and rub over the japanned surface with the freshly cut side of it, cutting slices out of it and rubbing all over the surface with it before sprinkling chalk or whiting over it. The gold size is then applied and the gilding is done as upon wood described in the preceding paragraph. After the surplus gold has been brushed off and dusted, clean the whiting by washing it with a soft sheep's wool sponge and water.

274. Window shades are frequently used for sign work and they are very appropriate to the purpose. Usually it is the lower part only that is lettered as the

upper and central portion of it is ordinarily rolled up, leaving only the lower portion of it visible then—at least during business hours.

If the painting of the sign is to be in oil colors, the painting should be laid out and done in precisely the same manner as it would be upon a board sign.

If to be gilded, the surface being always a dead flat, hard and free from tack, it is an ideal surface to work upon. Unless one has been careless and greased portions of it the gold will not adhere to its surface and one can get a clean-cut edge if a rightly tempered size is used, which should be some quick fat oil size, or if quicker work is desired, some good gold size japan.

275. Gilding on glass has been fully explained under the heading entitled, "Gilding," in Paragraph 149, and the reader should carefully read that over for explanations of the proper way of applying the leaf and other details affecting gilding on glass.

Cleanliness cannot be too strongly insisted upon as the work will surely look lame somewhere if this has not been scrupulously attended to before the gilding is commenced. Rub the whole surface of the glass with alcohol that no grease or dirt of any kind may come between the gold and the glass as it will show through it. It is well to also clean the outside of the glass as sometimes specks which one sees and which it is thought are on the outside may possibly be on the inside instead —besides it is better to have it clear to see through.

The design of the lettering and ornamentation should first be drawn upon manilla paper and pricked through with a tracing wheel or needle to make a pounce of it.; then sandpapered on the reverse side to open up the holes better and so they will not clog up. Take the design and using it right side up proceed, to pounce it on with whiting upon the outside of the glass. As this whiting will show very faint, it is better to take some tailor's chalk or a piece of hard soap sharpened up to an edge and mark out the outlines of the designing, as otherwise the wind and other agencies might obliterate them.

Then proceed to apply the gold leaf on the inside so that every part of the outlined design on the outside shall have been covered over with the leaf and in an hour or two afterward follow up with another coat of gold leaf to make sure that no part has been overlooked and to cover up all cracks and defects in the leaf put on before. This double gilding is the only sure way of making a creditable job of gilding.

When dry the gilding is ready for the backing. Now take the design and pounce it on the inside, upon the back side of it so that it will correspond to what was outlined on the outside and in as nearly the same place as it occupied there. The pouncing should be done with some dark dry color as it will show plainer upon the gold. Some gilders use black asphaltum varnish to back up gold with, but a good coach black in japan thinned with carriage japan and turpentine or

a black rubbing varnish will be found better, and will work better under the brush. Two coats should be given. Some gilders use a chrome yellow ground in japan and thinned as stated before instead of a black. It is certainly more sensible, as should an unseen defect be in the leaf the chrome yellow backing will render it unnoticeable while the black will show through it.

In a day or two wash the surplus gold off and the sign will be ready for the shading if any is to go on, or for outlining, etc. This will give a good plain, solid burnished gold sign.

276. Ornaments in matt gold for parts of letters, or for shading them are quite the fad now. It is being used in shaping letters into a bevelled appearance, and in scroll work on the inside of the letter, or for making the center all matt, and hundreds of variations. These effects of burnished gold and matt are fine if well made and in the beveled letters often would fool one who did not know how such effects are produced.

The process is very simple and easy. All the parts which are to show matt are first painted on the glass with linseed oil and turpentine mixed together so as to work freely under the brush; a very little lemon or medium chrome yellow should be added, but not sufficient to show opaque. The painting *must* be transparent to allow the gold to show through it, or the beautiful effect would be lost.

The introduction of other ornamenting material in the make-up of a glass gilt sign, especially in those that are framed and used for advertising purposes, is frequent. For such purposes circular and any other form of openings are left for the filling of pearl flakes, flitters, etc. These openings are surrounded with a gold line. Sometimes photographs are inserted in them. Such make variety and in these advertising framed glass signs license runs riot on trying to obtain new effects. As they are usually expensive and hung in offices where they can be closely examined, and at leisure, fancy styles of lettering may be indulged in to almost any extent one can wish for; so that would appear ridiculous in a staid and sober street business sign, will be all right for this class of work.

277. Advertising signs can be arranged under two heads: First, those done upon buildings, either on wood or brick, and, second, those done on bulletin boards specially erected for such a purpose.

It is not intended here to go into all the details of this great business, as it would need too much of the space of this manual. This business is usually made a separate one, and many are usually under the control of large concerns who have contracts for advertising all over the country, keeping many gangs of men at work during the open season.

While the general sign painter in the city will not be greatly interested in them, the sign painter in the smaller towns may derive quite a revenue from the erection of bulletin sign boards upon the leading entrance streets to his town and the yearly rent derived from these will make quite an item in his bank account. Few towns are so small that its merchants will not want to be represented upon its bulletin and it will be easy to get them into it, if a few of the leading ones can be induced to make a start at it. At any rate, the nearby big town clothiers, dry goods and other houses will all be eager for good spaces upon them. Besides general advertisers, if written to, and proper explanation is given, will gladly avail themselves of the opportunity which usually will cost them less than the big advertising firms could afford to take similar work for, away from the city, and under big expense in sending out gangs of men for the erection of bulletins and to do the painting.

These bulletins can be made uniform in size and the space let at so much per square foot, including the painting and taking care of it. Or they can be made to suit the ideas of the advertiser. They can be made of wood all through or with a wooden frame to which is nailed galvanized iron sheets.

The wood should have three coats of paint upon the face, and for protection to the boards and to keep them from warping, should have two coats on the back. The galvanized iron should be given one coat of red lead priming and two coats of lead paint over it and when done in that way will hold the paint without scaling, as well as wood.

There is more display for skill in bulletin advertising sign work than is needed in ordinary commercial sign lettering. There is a possibility in the use of colors here not afforded in regular sign work and one should be well versed in the proper harmonizing of these. As much pictorial work of nearly everything manufactured under the sun, the advertising sign painter should be able to draw and paint with accuracy anything and everything that may be demanded of him from a rocking chair to a threshing machine or a building, figures in the bust or full drawn, landscapes, etc. Of course, he will not be expected to produce artistic work in all that the word implies, but the nearer he can call his productions by that name, the better he will please his customers as well as himself.

Work upon the bulletin boards is usually done in the ordinary way as it would be in the shop upon the prepared ground, or it may be done as it is usually done upon the outside walls of brick or frame buildings by painting on the design and lettering first with a heavy color made short so it will cut to an edge without running, by using about one half kerosene oil with linseed oil and benzine in the thinning. This sets quickly upon unpainted surfaces especially, and can be immediately worked upon and cut in with the ground color which is usually black, and being prepared from lamp black covers solidly in one coat.

QUESTIONS ON SIGN PAINTING.

- 260. What is said regarding sign painting?
- 261. How many branches can sign painting be divided into?
 - 262. What should a sign painter know?
 - 263. What material is needed for sign painting?
- 264. What are the principal tools required in a sign painting shop?
 - 265. How are letters made?
- 266. How many kinds of primary forms of letters are there?
 - 267. How are letters shaded?
- 268. How are signs painted on sign boards and upon buildings?
- 269. How should the lettering be spaced upon each line?
- 270. How are show cards and muslin signs prepared and painted?
 - 271. What is said of gold sign painting?
 - 272. How are gold signs on wood, etc., painted?
 - 273. How are japanned tin surfaces gilded?
- 274. How are gold signs painted on window shades?
- 275. How should the glass surface be prepared for the gilding?
- 276. How is the matting of the gold surface produced upon glass gilding?
- 277. Tell what is said concerning advertising signs and their painting?

STAINS AND STAINING.

Staining, as the name indicates, is the operation through which certain substances are changed from their natural color to another. Unlike painting, it does not cover, or at least should not cover up, any of the designs which may be upon the surface the staining is applied to; so woods which are the principal material upon which the painter usually applies stains, should show its veins, pores and other details as clearly after the staining as before its application. Therefore, it is easily to be seen where the difference lies between it and graining; as some people frequently confound the two terms. Staining does not pretend to make another wood out of the one it is applied over, or, at least, to change its veining into an entirely different wood, while graining does. It is true that the dividing line is rather difficult to see at times and that some graining is done sometimes by staining, but it is not the prime object of it, and the great bulk of it is done for a different object in view.

279. Many woods change their colors greatly by aging. Oak, for instance, will become almost a black in time, maple will become of a deep buff brown. Mahogany will take on a deep burnt sienna red brown tone and so on through the whole list of woods.

Now it is impossible to age wood much faster than nature does it and when the effect of age is desired upon new wood the only way open to obtain the results at once, without waiting, is by staining the woods to the tone they would have taken by waiting patiently several hundred years to elapse. Again, many people desire certain tones and colors in a room to harmonize carpets and wall hangings into a good combination, and such do not hesitate to order furniture or wood work to be stained in any color of the rainbow they have a fancy for. It certainly is not in good taste to stain woods in colors which do not belong to them, as blues, greens, etc., and while this is a free country, etc., as long as a person is not sent to the penitentiary for committing outrages against nature, nor to insane asylums, it is very probable that the practice will go on undisturbed. But it is vulgarity, to say the least of the practice, and painters should not encourage it.

Stains are useful and fill a legitimate object in decoration when properly used, and many an ugly-looking, cheaply finished up house inside woodwork can be made more cheery and less of an eyesore if colored up by staining. If graining is permissible—and it is—with as much good reason for it as the representation of objects and scenes upon canvas to look at and enjoy—then for the very same reason it, too, has its "raison d'etre," for it is enjoyable and agreeable to the owner or it would not be put there. Graining may, and would be, objectionable if done in any but the colors which naturally belong to the wood it imitates, and for the same reason that a painter's picture of a green horse would not be, nor should not be admired. It has been stated before that the line of demarcation between

graining and staining was hard to distinguish at times, and it is as much of the staining of mahogany, mottled maple, etc., partakes more or less of that character.

280. So, to distinguish it from the ordinary staining of wood which is done all over without any special preparation, it will be called grained staining. This grained staining is done so as to change the character of the wood being stained over so that it may look more natural and resemble the wood which the stain is supposed to transform it in-in its veinings. Now, the cheap, soft maple has none of the marking of mottled maple, nor has birch any of the feathered markings of mahogany which it is made to imitate so much and so that the mahogany staining which is done over it may appear more natural and pleasing these mottlings are put on the bare wood before the staining proper is put on all over. Even veinings can be put in to good effect with a fan overgraining brush and some fine imitation of many woods can be made upon the bare wood in stain graining. The wood over which such is made, however, must not possess any marked character of their own as they would be brought out by the stain and a double appearance of different veinings would look ridiculous

281. There are two ways of staining wood, or rather of preparing the coloring matter used in making the stains used over them. Both have their uses and are better adapted for certain purposes than the other.

One is to thin the color with linseed oil and the other is to dissolve it in water.

- 282. Oil stains have an advantage over water stains in that upon the bare wood it acts as a primer and partial filler and that they do not raise the grain or pores of the wood—which water stains certainly do. They protect the wood from humidity and mishaps of various kinds, and but that oil stains are not as penetrating as water stains are, and for that reason are easier marred and damaged, they would be superior for general use in hardwood staining. On this account mainly, notwithstanding their good traits otherwise, they are seldom used except for the staining of pine partitions and soft woods of little value, manufacturers of furniture and other hardwood finishers preferring the great drawback of the raised grain to cut down, to the danger of having their work spoiled by the shallowness of the staining. Another reason also is that as most of the oil stains are prepared from finely ground pigments, which all have more or less opacity, as siennas and umbers, although called transparent or semi-transparent, they do not give as clear a tone of stain as the water stains do, so that a portion of the details in the veining of the woods stained with them is lost or hid by the opacity of the pigment in the stain.
- 283. Water stains dissolve the substances used in the making of them and this solution must be entire, or when partial only, as when obtained by maceration or percolation, the stain should be run through a funnel

filled with percolating paper to free it from specks of undissolved foreign matter.

A good water stain should hold the dissolved coloring matter in solution without precipitation, or it will be of little value unless used with constant agitation and even then it will hardly make a satisfactory stain free from specking, so such should be avoided. For this reason the earth colors, such as the siennas, umber, etc., which are not soluble in water but would be only held in suspension in it, are not fitted for water stains, however good they may be for oil stains. Therefore, the substances required for the making of water stains must be entirely soluble in it, or at least the substance used must have a portion of it that is soluble and which can be extracted out of it by either maceration or percolation.

284. The stains which are made from soluble substances as some of the aniline dyes—alizarine, purpurine, nigrine, etc., which are entirely soluble are easily made by simply dissolving them with hot water, usually.

Those made by percolation are also easily made, the ingredients to be percolated being simply placed in a funnel which has been first covered inside with an unsized percolating paper through which the dissolved stain will pass but which will hold back any undissolved matter.

The stains made by maceration require considerable more time, some of them requiring fully two weeks to become entirely dissolved. When so dissolved, they should be filtered through filtering paper as stated for the percolation process.

Sometimes the process of maceration and of solution is hastened by boiling, but again in others it would ruin the stain, so that in subsequent paragraphs where recipes are given as to how to prepare them from various substances unless boiling is plainly stated to be the proper way of dissolving the coloring, cold or only moderately warm water should be used.

With the above instructions it is hoped that there will be no trouble in obtaining good results in the preparing of stains from the formulas given.

Many of the formulas given are of old time tested quality and are good—but too tedious to make in our twentieth century times, but there are some who still want them. The list of such has been abridged, however, giving only a few for each color of wood. Few persons can afford to spare the time necessary for their preparation, and upon the whole it is a question as to whether it will pay them to do so, when they can be made ready for use in a few minutes from the prepared dyes or stains, all ready made, and for sale at most of the supply stores.

285. There is a class of prepared goods which have been used in immense quantities of late—i. e., the varnish stains. Most of them are sold under fancy names, copyrighted by their manufacturers, but which is the same thing after all. They usually consist of cheap varnish, colored with some dye, soluble in volatile

oils. Why they are used to the extent they are is a conundrum, accountable for only because of the extensive advertising given them.

The work done with such can never be as good as that done with a previous stain covered over with varnish of good quality afterward. All varnish stains set quickly with the consequence that the laps of the brush show all over the job and make it look uneven, while, had the stain been applied first it would have a much better appearance—besides if finished over with a good coat of varnish the assurance that the job will remain good for sometime afterward, especially upon floors, etc., where good quality for wear counts for something.

RECIPES FOR MAKING OIL STAINS.

286. Any finely ground transparent or semi-transparent color ground in oil will make an oil stain. If a dark color is wanted it must not be thinned with as much oil; if a light colored stain of it is desired, then it must be thinned out with more.

All the aniline and alizarine colors made which are soluble in oil can also be used to make oil stains so that an immense range can be had. These are not quite as permanent as those made from oil colors—but those made from alizarine are dependable.

I. Oil Oak Stain.—(Light oak.) Raw sienna, raw umber; 2/3 of the former, 1/3 of the latter. Thin with raw linseed oil to suit. Add enough turpentine to make it set and a little liquid dryer.

- 2. Oil Oak Stain.—(Dark oak.) Raw sienna, raw umber, burnt umber; 1/3 of each. Thin with raw linseed oil as stated in No. 1.
- 3. Oil Walnut Stain.—Burnt umber or Vandyke brown, thinned as directed for No. 1. Add more drier if Vandyke brown is used.
- 4. *Ebony*.—Drop black, thinned with raw linseed oil, turpentine, and liquid dryer.

All colors of stains obtainable from either transparent oil colors or aniline soluble in oil in any shade desired can all be made in the manner stated above and those should suffice as an indication as to the "how to make them."

SPIRIT STAINS.

- 287. Alcoholic stains are but little used, not only on account of their expense but because they raise the grain of the wood as bad as water stains do. Some instrument manufacturers, however, want them as well as others tor special uses, so a few of the more important ones are given.
- 5. Yellow.—Tumeric powder, I oz.; alcohol, I pint. Digest four days, shaking occasionally and strain. To be brushed over the wood until the color wanted is obtained.
- 6. Yellowish Red, Orange.—Add an alcoholic solution of dragon's blood to the degree of redness wanted to the above; apply it in the same way.
- 7. Mahogany.—Dragon's blood, 1½ ounces; carbonate of soda, ½ ounce; alcohol, 1 pint. Digest a few

days to make it dissolve, filter and brush it over after the application of the following wash: Wash over the surface with dilute nitric acid.

8. *Ebony*.—Dissolve extract of logwood in denatured or wood alcohol to any shade desired. Strain and apply. The color is afterward developed by washing over the surface with tincture of muriate of iron.

ANILINE DYES ON STAINS.

288. Many persons are afraid of the name aniline as it is the equivalent of "fugitiveness" in their thoughts, and the poorer kinds certainly are. But some are very useful and fairly permanent when properly put on and such as are made from alizarine are as permanent or even more so than similar ones made from any other substances known.

As each manufacturer makes these by processes somewhat different and requiring different treatment in fixing in the use of mordants, acids or alkalies, it will be well to ascertain exactly what is needed by asking the dealer about it, as what would be good for one would harm another.

Another great trouble in these dyes is that there is no nomenclature known among dealers—each manufacturer having adopted a name of his own for the colors he produces, so that there is an endless row of trouble ahead for those who are looking up a new line of these colors to work with. He has to learn over and to forget all about what he had learned before in order to

adapt himself to the different handling required for those made by a different manufacturer.

Those soluble in linseed oil or turpentine require the liquids to be moderately warmed and some little time to perfect the solution. Those soluble in water usually are readily dissolved and below is given a typical recipe to indicate how they are all made and which will suffice for all the others.

9. Mahogany.—Bismarck brown, I ounce; water, 3 quarts. Let the water be boiled, pour upon the Bismark brown and dissolve. It is ready to use as soon as it has cooled.

WATER STAINS.

- 289. Really under the heading of water stains most of the aniline dye stains really belong, but it was thought best to treat of them separately and to place under this heading the old stand-by recipes which have been in use, some of them, from time immemorial. The list is a large one to pick from, but as these are now but seldom used, it has been cut down to one or two sample ones for each of the leading woods.
- 10. Light oak.—Quercitron bark, 2 oz.; water, 1 gallon; macerate for two weeks, filter and use.
- II. Dark oak.—Quercitron bark, 4 oz.; water I gallon; macerate for two weeks, filter and use.
- 12. Walnut No. 1.—Permanganate of potash, I ounce; Epsom salt, I ounce; water, I quart; dissolve, strain and apply, repeating until sufficiently darkened.
 - 13. Walnut, No. 2.—Nutgalls, crushed, 3 ounces;

concentrated lye, 4 ounces; Vandyke brown, (dry) 8 ounces; boil till the bulk is reduced one half. When cold apply to the wood with a cloth or pad.

- 14. Mahogany, No. 1.—Fustie chips, 8 ounces; madder root, 1 pound; water, two gallons. Boil for two or three hours; strain and apply boiling hot.
- 15. Mahogany, No. 2.—Make a decoction of log-wood chips by boiling them in a closely covered vessel for two hours in twice their bulk of water; strain; add a small quantity of chloride of tin; this will give it redness. Be your own judge when to stop. Apply two coats.
- 16. Cherry.—Spanish anetto, I pound; concentrated lye, I ounce; boil for half an hour, boil more to concentrate it. Gamboge added to it will concentrate it.
- 17. Ebony, No. 1.—Extract of logwood, 3 pounds; concentrated lye, I pound; water, seven pounds; dissolve by boiling, strain and apply hot or cold. When dry go over the work with a strong solution of vinegar and iron.
- 18. 'Ebony, No. 2.—Sulphate of iron, ½ pound; Chinese blue, 2 ounces; nutgalls, 3 ounces; extract of logwood, 2 pounds; vinegar, 1 gallon; carbonate of iron, ¼ pound. Boil over a slow fire for two or three hours, strain and apply hot or cold.
- 19. Rosewood.—Any of the mahogany stains will make a rosewood stain if applied over and over until the proper depth has been attained and then stained over with an ebony stain, very lightly put on. Then after-

ward run over with a camel's hair brush loaded with the ebony dye in irregular veins all over the surface. The grain of the natural wood being straggling and occurring in a haphazard sort of way it should be imitated as close as possible.

- 20. Crimson.—Brazilwood, pulverized, I pound; water, 3 pounds; cochineal, ½ ounce; boil the Brazilwood with the water for half an hour. Strain and add the cochineal. Boil gently for another half hour; let it cool and it is fit for use.
- 21. Violet.—Make a solution of orchil and soluble indigo blue of such strength as required. Strain and apply when cold.
- 22. Blue.—Indigo blue, 3 ounces; sulphuric acid, I pound. Put the two together in a porcelain dish and let the indigo dissolve, which will take twenty-four hours or more. Shake it up occasionally to hasten the process. Add a pint of boiling water and strain, applying the stain to the wood while hot. Before the indigo stain has completely dried, wash over the surface with a solution made of 3 ounces of cream of tartar in one quart of water.

The above will suffice to give an idea of the trouble and difficulty in making the easiest ones made of the old timers. It is much easier to use the ones ready prepared and cheaper in the end.

QUESTIONS AS TO STAINING AND STAINS.

278. What is said of staining?

279. Why is staining resorted to?

- 280. What is grained staining?
- 281. How many different methods of staining are there?
 - 282. Where are stains in oil most useful?
 - 283. What kinds of woods require water stains?
 - 284. How are water stains made?
 - 285. What are varnish stains?
 - 286. Oil stains.—Recipes, how to make them.
 - 287. Spirit stains.—Recipes, how to make them.
 - 288. Aniline stains.—Recipe, how to make them.
 - 289. Water stains.—Recipes, how to make them.

STENCILS AND STENCILLING.

290. This is the stencil age. This method of embellishment in ornamenting surfaces is becoming more and more popular and it has passed from the exclusive use of the decorator into common household use by every one having something in the home worthy of being made more beautiful by using them. In other words it has become a fad and with the history of past fads in mind, the time will come when it will come to a stop from the very excesses to which it is put. It will, of course be overdone, and that, as other fads before that are gone and been forgotten, will once more be left where it has a legitimate existence into the hands of professional decorators.

Stencils, in repeated and conventional decoration, will always be used. One could almost assert that ever since decoration has been introduced into the world that in all probabilities stencils were used in repeating designs, and some of the remnants which have been preserved unto our day which are found in museums of antiquities, would indicate that the ancients were not ignorant of its use.

291. Stencils are used for many purposes which the subject matter of this book does not treat upon, such as decorating of textile fabrics, commercial stencils used in marking of boxes, barrels, etc. Stencils therefore will be treated from the standpoint of the decorator and the uses he can make of them in either water or oil colors. Stencils are also extensively used in making numerous duplicates of a given sign by sign painters, either for use upon muslin signs or boards in one or many colors.

MATERIAL USED IN CUTTING STENCILS.

292. The material used in the making of stencils differs according as to what use they are intended for.

Sheet brass is used for commercial purposes and would be the best for the decorator too, but for its cost and the difficulty of cutting them.

A specially prepared resined clear, or rather semitransparent paper, is much used for the purpose by the decorators. This paper cuts a very smooth edge and being tough the ties do not break easily.

Good manilla drafting paper is also very useful and while not sized like the resin paper above, after it has been coated over with two good coats of orange shellac it will withstand the pouncing of the stencil brush about as well and as long as the specially prepared resin paper will.

Cartridge paper, not too thick, makes an excellent material upon which to cut stencils.

Printer's press bedding manilla paper is also much used and can be procured at any printing office when possibly some of the others might not. The above paper is tough and pliable and but that it stretches somewhat too readily, it is the equal of the others in all other respects. It is well to give it a coat of linseed oil on both sides before it is shellacked, as after such a coating it is not so likely to stretch.

To cut the stencils upon, a smooth level surface hard enough to not be dented by the knife must be procured.

Most decorators prefer a piece of plate glass. Some use sheet tin and for a short time no doubt that may be best, but tin soon gets scratched over when the knife will catch and a clean cut line is then out of the question.

A lignum vitæ block well smoothed is the best, but such are not readily obtained anywhere while plate glass can and for this reason if no other it is more used and with good success than any other.

A good stock of stencil brushes from ½ inch to 1½ inches (see Figs. 18 and 19) are indispensable in order to insure good clean work. The larger ones are used mainly upon duplicated muslin signs, some use as large as a 2 inch brush for this purpose as these will hold enough color to coat over the stencil without refilling. Punches for cutting round holes. The colors used in

either water or oil are the whole list of pigments useful in either classes. Some charcoal and drawing crayons to design the ornaments to be cut out and of course, all the requisite thinners for the colors, as linseed oil, turpentine and orange shellac varnish.

Last, but not least, some good stencil knife. While it is possible to cut a stencil with an ordinary pocket knife, the blades in most of these are not formed just right to cut stencils quickly, nor will the cuts made be as clean as the ones which are specially prepared for this purpose and which are found for sale in any of the larger supply stores.

- 293. It is always best to draw the design upon the stencil paper which is about to be cut before the paper is oiled when this is necessary as in the printer's press bedding manilla paper. This is unnecessary for all the others mentioned, but all should have at least one if not two coats of orange shellac given them after the cutting. Where a stencil is to be used over and over a good many times in water colors, especially, it will be well to give them two coats at least. The constant wetting otherwise will make them flabby and it is impossible to make a good showing with such, and much valuable time will have to be wasted in waiting for them to dry before they can be safely used again.
- 294. The designing of a stencil will depend upon the use it is intended for. It may be a simple fillet or serpentine line or it may be the most intricate of designs in one or many colors.

If in one color only, the whole of the design is cut out upon the one stencil—excepting that what are known as ties, which must be left here and there to hold the design together, and to stiffen it up. Those ties instead of detracting from the beauty of the finish, are really helpful in producing effects not otherwise obtainable and in the hands of the skillful designer instead of proving a hindrance as many suppose them to be, they will enhance the beauty of the design. Even the human face and form can be produced in one color stencils with fine effects by the judicious selection of the proper place for putting in the ties.

It is frequently necessary to leave ties in a stencil where color must be used in order to hold it together. In such a case the ties must be filled in by hand. As the texture of the paint put in with the pouncing of the stencil brush some little care will have to be exercised in order to put the color in with a brush that it does not differ too much from the rest of it to be noticed and it will be well to use the stencil brush itself as much as possible in pouncing them over in order that the coloring may look all alike.

295. Below are given a few illustrations of easy stencils to make. In Fig. 101 and Fig. 102 are shown

some simple one color stencils, supplemented by hand painted lines.

Fig. 102.

Stencils in one color can be made more attractive by the use of varied coloring of the ground coats over which they are placed, Figs. 103 and 104. The upper

Fig. 103.

Fig. 104.

part in both those designs being in a deeper tone than that of the lower half. These are also supplemented with hand painted lines. In Fig. 105 the middle portion is painted of a deeper tone, also the rest of it, and the herring bone section of

Fig. 105.

it must have separate small hand painted lines painted on each side of it. In the figure the herring bone shows

in the white, but this would necessitate an extra stencil and is unnecessary as the black or whatever color is used will cover it up and it may as well be painted all over with the rest of it above. A broader hand painted line above between the upper broken line and at the bottom another finer hand painted line, finishes the stencil.

In Fig. 106 is shown a combination of a hand painted molding and of a one color stencil below it or the stencil may be placed below a plaster molding properly colored. This design has only two small hand painted lines.

One color stencils may be made more effective sometimes by using different colors or tones of one color in different parts of it. This requires but little more additional time in its execution. The different colors or tones must each be put on with different stencil brushes is all the difference.

- 296. In preparing stencils where more than one is used in the same color, all that will be required of the second one will be to draw and cut out the parts which show as ties in the first one. This gives the effect of solid hand painted work and lines can be worked out in stencils so as to resemble hand painted lines in the same manner.
- 297. If two or more colors are to be used in stencil work, a separate stencil must be made for each color used. Great care must be taken that each stencil registers perfectly over each other and an allowance must be made of say 1/32 part of an inch so as to insure the covering over and good joining of the two or more colors.

The ties in such a case are of no importance as the next stencil will cover them over. Some beautiful work is done in multi-color stencils which will sometimes puzzle the inexperienced and set them at guessing whether the work is not hand made. An experienced stencil cutter can obtain some very close imitations of hand work in that way and the sign painters obtain really better looking work by the use of several stencils than is usually done by hand in all but the highest priced work.

298. The designs for the several stencils or for the single ones having been drawn out in full upon the face of the stencil paper, the sheet should be placed upon the plate glass or lignum vitæ block or whatever the cutter has decided to use to cut upon. Then with the set of 3 cutting knives provided of the specially made ones mentioned the cutter proceeds to cut out all of the design with the exception of the ties already mentioned. While the stencil cutting set of knives is not absolutely necessary, where one has considerable stencil cutting to do, he will find it very poor economy in trying to do his work with an ordinary knife, nor will his stencils look as well, as no matter how careful he may be there will be some ragged edges.

The round holes, especially the smaller ones, are much better and quicker made with a punch. The ordinary harness maker leather punches are the best for the purpose. The stencil should be placed over a level wooden block and the punch struck with a hammer. Being hollow the paper is forced up it and when done

with it, a pencil will push it out of the punch. One should be used with it. The stencil bruch should be dipvarious ones from ¼ upward to an inch. When a circle is larger than that they can be cut with a knife much easier than the smaller ones.

When the stencilling is done in several colors and requires several stencils to be cut, it has already been stated that they must register perfectly over each other or the work will be imperfect. This should be attended to in the drawing out of the design, but registering guide marks should be cut in to enable the operator when shifting it to a new position to so place it that it will be just right otherwise no matter how well the design has been drawn nor how perfect each stencil may register with the others, a botchy effect will be produced by the unevenness of the lines.

299. The stencils having been cut should now receive the coats of shellac varnish already mentioned. Orange shellac is the best to use as it is stronger than the white. It should be brushed over carefully over both sides of the stencils and these should be hung up to dry which will require 8 to 12 hours according to the seasons. If the first coat has been put on in the morning, a second coat can be put on in the evening when they will be fit for use the next morning.

The above is far the better way. Many who are in a hurry will give each coat one hour apart and will be using them perhaps within another hour, but they will not stand the hardship of those who have been done in the slower way and broken ties and limber stencils will hardly compensate for the waiting of a few hours longer.

- 300. Rooms may look square but may not be and belie their appearance. So to make sure of good results a chalk line should be used and a plumb bob to guide one in making perpendicular lines with it. If the ground is to be parti-colored this should of course have been done before the stencilling begins. All the lines for the various stencils to be used in a room having been struck, the work of painting them on may begin.
- 301. The colors used may be either water colors or colors in oil. If they are water colors they should be mixed somewhat thicker than is usual for ordinary application upon the walls, also a trifle more of the binder should be used with it. The stencil brush should be dipped in the color and then rubbed out upon a board or sheet of metal in order to work the color in well and to remove a superabundance of it on its surface which would blur and make a blotch upon the stencil. It is hard to describe exactly how much or how little should the brush hold and a few trials by the operator will soon teach him the proper quantity his brush should carry. The colors being ready he should place his stencil on the line at the proper part for the beginning. If the stencil is a large one he should first fasten it on to the wall with small thumb tacks made on purpose for this use. These tacks have a wide face somewhat similar to those used in fastening drawing paper to boards. The points are

short and will not hurt the plaster. This fastening insures the stencil against slipping and relieves the operator from having to hold it at arm's length, which is a tiresome job, on a ceiling especially. It gives him the use of both of his hands and enables him to press down the stencil close to the plaster ahead of the other which holds the brush with color. The color should not be brused over as in ordinary painting as that would surely cause some of the color to run under the edges of the stencil and make a blur, but should be pecked on in much the same way as a wall stippler is used. The left hand of the operator being free if he has fastened the stencil on the wall as directed above can slip along just ahead of the brush to smooth and hold down the paper very closely to the wall and much better work will result from it. Clean cut outline is the chief beauty of good stencilling and ragged edges are pretty sure indications of a second class workman.

302. All that was stated in the preceding paragraph excepting as to the preparation of the colors, applies for work done in oil colors. The same care must be exercised all the way through the stencilling. The stencils in either case should be cleaned off of accumulations of colors near the edges as they would in time prevent the close contact required to make a clean cut edge.

The color should be mixed much thicker than for wall work and either flat or semi-flat to match the character of the rest of the walls. The brush should be very carefully rubbed over the board at each new filling to re-

move the surplus which would surely blur and with pecking strokes the color should be applied over the stencils. After the color has been mostly worked off the brush there is not so much danger of its running under the edge of the stencil and it may be used in a twirling way over it without much danger in the hands of a workman who is used to it; the novice, however, is not advised to undertake it till he is sure of himself and of the proper condition when it will be safe to do so.

If the above directions are followed out there is no reason why a painter of ordinary ability may not do a great deal of decorative work which he could easily do at a remunerative price for himself, yet cheap enough as to interest many property owners who have an idea that all such work, which is ordinarily classed as fresco painting is too costly for the pockets of ordinary people. Many fairly good decorators have become such by first commencing to do some very plain stencilling then gradually growing into more difficult phases of it until familiarity developed stencilling with a blending of free hand and pouncings. When a painter has once started on the road (no matter how low) to decoration, he is sure to become so interested and to so love the work that he will use every effort to learn more and more until he finally becomes truly worthy of the name of Decorator.

QUESTIONS ON STENCILS AND STENCILLINGS.

290. What is said of stencils?

201. What are stencils chiefly used upon?

- 292. What materials are used for the making of stencils?
 - 293. How is stencil paper prepared for the cutting?
 - 294. How are the stencils designed and tied?
- 295. Give examples of how one color stencils can be used in and over varied colored grounds?
- 296. What effect is produced by work done in two stencils in one color?
- 297. What effects are produced by work done in two or more stencils in various colors?
 - 298. How are stencils cut?
 - 299. How are stencils shellacked?
 - 300. How are rooms prepared for the stencilling?
 - 301. How are stencils painted on in water colors?
 - 302. How are stencils painted on in oil colors?

VARNISHES.

303. Varnishes have the property of making a gloss or an enamel upon the surfaces over which they are applied.

Their uses in antiquity is far beyond the ken of men or history and in one instance at least more has been lost than has been learned since. In times so very remote that it is impossible to even guess a date within several hundred years, the Chinese produced a glass varnish which was used in coating over articles and which is indestructible. There are many specimens to be found of it and they are as perfect today as upon the day that the varnish was applied, so that one can truly

say of it that it is indestructible. The Chinese themselves have lost the art of making this varnish and so far with all the knowledge modern chemistry has put into the hands of men for scientific researches our savants have been unable to unravel the mystery connected with it. This varnish dates back so far that even Chinese literature which dates back several thousand years before Christ, makes no mention of its discovery.

Aside of this, lacquers were and had been in use also from time immemorial by the Asiatics, both Chinese and Japanese and the East Indies knew its uses in very ancient times.

The varnish industry as we know it now is of comparatively recent origin and it is not so very long back when many of the painters were in the habit of preparing their own varnishes, as no factories such as produce it at this time had any existence then.

Formulas galore were in vogue then and many a painter paid a good bit of money for recipes known and handed down from father to son as an heirloom. Some of them have been handed down to us in both written formulas and in print, so that we can form as pretty good idea of what our forefathers had to do when they wanted a can of varnish for use, for they had it to make.

Most of these recipes are loaded down with quite a number of unnecessary ingredients but the recipes would have been just as good without seven hairs from the inside of the left ear of a white hare, and must have put the painters of the sixteenth, seventeenth and eighteenth centuries to considerable trouble in catching the hares and then pulling the hair out of the hares. And such an array of names for gums as they had—enough to confound all but a twentieth cenury skeptic who has them all classed into very small groups with rosin at the top, of which our forefathers knew little about and cared less. ,

Up to the middle of the nineteenth century varnishes were still made by many painters, although factories began to prepare them in a commercial way and for sale to the trade some time before and in a very humble way compared to the manner in which the large concerns engaged in its manufacture today do.

England and France have the honor of having the oldest varnish factories in the world and compared to many other industries they may be called recent. Their preparations, however, did not extend down to the needs of the house painters, as they catered mainly to the wants of the carriage trade. Some of those old English and French varnish manufacturers' names are still in use and the lineal descendants of the families are still connected with the concerns making the varnishes today. Tradition having handed down the great value of their output said tradition having started when few knew what varnish was and when but few were engaged in its manufacture, it has enabled these old concerns to hold trade against all comers at prices for their products in which the family names weigh more and for which more is paid for by the consumer than it is really

worth to him. There is no doubt about the excellencies of their output but our laterday manufacturies are making just as good goods and at a price for which family name does not count in the making of it.

304. Varnishes are made from various gums and gum-resins and with various solvents. As for certain specific purposes each are better adapted for use in the one that any of the others, all are useful then for certain kinds of work.

Some of the gums used are soluble only in alcohol and are known as spirit varnishes of such character is shellac varnish. Others again are soluble only in volatile oils, as turpentine, etc.

Others are soluble in linseed oil under certain conditions or in combination with volatile oils. For practical purposes, however, varnishes may be divided up in three principal classes with many subdivisions in the three groups:

- 1. Varnishes with an alcoholic base solvent.
- 2. Varnishes with a volatile oil base solvent.
- 3. Varnishes with a fixed oil base solvent, of which more will be said hereafter after the character of the gums used in preparing them has been looked into.
- 305. The gums chiefly used in preparing varnishes are not many. The principal ones are gum copal—which is not a true gum insomuch that it is a fossil and will not dissolve in either water or volatile oil as all true gums do. It is chiefly imported from Africa and comes in many qualities. It ranges in color from a pale, nearly

transparent tone of yellow, to dark brown and opaque chunks and in all sorts of intermediate tones between the two. The lightest and clearest is the most valuable and the intermediate shades decrease in value according as they approach the darker brown shades. Varnishes made from this gum are the most desirable of all and the solvent under heat and special treatment of the manufacturer is mainly linseed oil, which gives the varnishes made from it its greater durability and elasticity.

Kauri gum—is a resin gum of a semi-fossilized sort. It is found where original forests of the kauri pine formerly existed and that is of better quality than that which is obtained from the trees by exudation.

Animac.—A gum-resin derived from a sort of leguminous tree and probably from several varieties of the same specie. In its exudation insects are caught in it and come to market with them imbedded in the chunks, hence the name. The gum is not as hard as the copal gums of good quality and varnishes made from it have not the wearing qualities of the one made from high grade copal. The varnish makers use many of the gums in a blend to obtain varnishes adapted for certain definite purposes by the judicious mixing of various gums.

Amber is used in making certain varnishes. It is a fossilized resin and is found in many countries. The chief source of supply, however, is from Germany,

where it is found imbedded in the sand along the Baltic sea shore.

Damar is a soft whitish gum which exudes from coniferous species of trees in India and Ceylon. It is soluble in the volatile oils and yields a very white varnish of too soft a nature to be of much practical use except as a paper varnish for which on account of its pliability, it seems well adapted also on account of its colorless nature.

Sandarac is also the product of conifers, but is of little better quality although harder than our own resin derived from yellow pine.

Gum mastic is derived from a nut bearing tree of the Grecian archipelago, and exudes from the trees where incisions are made, in the shape of small tear like pebbles. It is also too soft for other uses than that indicated for damar gum varnish.

Resin of yellow pine extraction is used in many ways by varnish factories in connection with other harder gums and with China wood oil it yields some kinds of varnishes useful for many purposes. Since the introduction of wood oil in connection with varnish making, it has rendered its use possible where before it would not have been thought of. This wood oil seems to make it harder and more pliable at the same time and it is replacing many of the soft gums which are mentioned above as it is very much cheaper than any of the others.

Sticlac and Shellac may as well be reviewed together, as shellac is only sticlac refined for commercial use and immense quantities of it are used by the industries of the country besides the use of it made by the hardwood finishing trade. It is the product of vegetation and is soluble in alcohol mainly.

The solvents are alcohol, turpentine and linseed oil. 306. The manufacture of varnish is an intricate, complex business requiring a long apprenticeship and accumulated experience and while the ways of making varnishes are well known, each manufacturer has little tricks of his own in the making of certain grades and in the ripening or blending of various gums which are carefully guarded.

It requires a large capital besides for to properly conduct a varnish manufacturing business. The ripening of varnishes requires months and even years to fit them for certain uses.

It is much cheaper for the consumer to buy the varnishes he uses ready for application than it would be for him to make them, even if he had the know how which he has not, and a person now who would undertake the making of his own varnish as "in ye olden tymes" would be considered as a fit subject for a lunatic asylum. Such easily made ones as shellac varnish, however, do not come under the same heading, and any one can readily make them for himself; all that is required is to give the alcohol sufficient time to dissolve the shellac, but it will not pay one to make it as he cannot buy the shellac nearly as cheap as the manufacturer

does and it will probably cost him as much as the ready prepared article besides the trouble thrown in.

307. The cheapest forms of varnish made are of course made entirely from resin dissolved in cheap mineral volatile oil with some paraffin oil put into it in order that the brittleness of the resin may be counteracted.

The so-called "surfacers" are but little better than the gloss oils and may be classed together. They are chiefly used in coating over plastered walls to stop the suctions previous to the applications of water colors.

308. Because a varnish may be cheap it need not necessarily be a poor one, nor will a high priced varnish necessarily be a good one, simply because high priced material enter into its composition. So there are a number of cheaply made varnishes which are as good and possibly better for the purposes for which they are used than others which would cost many times more per gallon. Since manufacturers have been able by the proper use of wood oil, paraffine oil and linseed oil, to use resin and the darker colored gum copals to prepare good wearing varnishes by blending at a low cost, immense quantities are used by the trade and with good results.

These cheaper varnishes of course all contain resin in greater of lesser quantities grading up in quality from something but little better than the surfacers on upward in quality and price up to extra No. I coach and light hard oil finish (so called) of this character are the Furniture varnishes; coach varnishes, including No. I

coach and extra No. I coach. Some of them so good that they will rub and the whole grade in qualities of the so-called hard oils of which enormous quantities are used in finishing cheap interior wood work.

309. The house painter and hard wood finishers are chiefly interested in the following varnishes, which all varnish houses now make a sepcialty of under some fancy proprietary name, but which are probably all prepared in much the same manner by all of them:

Interior varnish for inside wood finishing. The better grades carry a fine lustre and all are rubbing varnishes, and polish well.

Outside varnish, usually an elastic varnish, but a slower dryer than the interior brands. Supposed to stand the weather, but they do not—at least not very long. Manufacturers should add to the label after the word Outside—when well protected from sun and rain. But then the varnish would not sell so well.

Floor varnish completes the trio which every painter and wood finisher is interested in. This is made from very hard gums so as to stand the hardships it is subjected to from being walked upon, cleaned and brushed over.

All the varnishes which have been mentioned so far are varnishes which are used in house construction by house painters and wood finishers even the so-called coach varnishes. These are never used by the carriage painter, however much the name would indicate that it is. They are chiefly used in the same way as hard oil

finishes for the cheaper kinds of furniture and pine finishes in room work; in short they are all about on a par with furniture varnish.

310. The carriage trade uses a higher grade of varnishes than the average which is used in house work, so they cost more. Competition, however, has reduced the fancy prices asked and obtained by our English cousins across the water since American manufacturers have gained the experience enabling them to make as good carirage varnish as that which formerly was all imported.

While carriage varnishers as a class by itself is of a better quality than the first ones reviewed, they are by no means all equally good, nor is it necessary that they should be. A cheap wagon or vehicle will not and ought not to receive the same treatment as an expensive coach, for if it did—it would not be cheap. Nor need the varnish be as good in the repainting of old vehicles as for first class work. So there are grades and qualities in carriage varnishes as well as in house varnishes.

The carriage rubbing varnishes exemplified what is said in the preceding paragraph. They are made to rub in from 12 to 60 hours. The slower ones being the best and most expensive.

The wearing body varnishes are and should be made from the very finest material and all manufacturers try to excel in their output of it. It too is made in several qualities. The palest which is made from the costliest gums is the highest priced, while the darker gums used in the lower grades of it cheapens the cost, while aside of the color the quality remains nearly as good. Some of the wearing body varnishes are made to dry quicker than others for hurried work. Generally speaking the slower drying ones are the best for wear.

The *gear varnishes*, for the varnishing of running parts, are made to stand more hard knocks than any of the others and are to be found in many degrees of paleness and of quickness in drying. The slower driers are the more elastic.

Manufacturers all have a long list of carriage varnishes, describing each so that the person buying it may know just what to expect from it. All of them can be classed in the three kinds mentioned. The black rubbing is simply a rubbing varnish into which a black color has been ground and could be made in the shop, but that the mixture would not be as smooth and well ground together unless the shop is equipped for it. So all the numerous varnishes listed are simply varieties of those three—many being made in different qualities of paleness, elasticity, etc.

311. As everything that has a gloss is a varnish, asphaltum varnish is entitled to the name. It is classed by itself for the reason that there is only one place where it can be useful and that is upon ironwork. It is made from asphaltum, a mineral gum too well known to need any introduction. It is melted and at as low a heat as possible turpentine or benzine or naptha is mixed in with it to make it fluid enough to be brushed

out upon metals. That made from turpentine is the best to use, as the smell of the others is against them, especially in interior work. It dries quickly and the operator must not wait too long in joining up, or a lap will result. Where registers or iron work are to be coated over with it they can be warmed, then the varnish will flow level and free of brush marks.

Asphaltum varnish is useful also to the sign painter in show card writing and in the painting over of brass and copper plates for etching, and brass and metal signs.

The above comprises about all the varnishes useful to the painters.

QUESTIONS ON VARNISHES.

- 303. What is said of varnishes?
- 304. How many classes of varnishes are there?
- 305. Name the gum-resins chiefly used in the making of varnishes?
 - 306. Will it pay to make one's own varnishes?
 - 307. What are gloss oil and the so called surfacers?
 - 308. What other cheap varnishes are there?
- 309. What grades of varnishes are chiefly useful in hardwood finishing?
 - 310. Name the principal carriage varnishes?
- .311. What is asphaltum varnish and what are its uses?

VARNISHING.

312. The operation of varnishing, which is simple enough to look at, is, nevertheless, one which requires

a great deal more knowledge than appears from simple casual observation. Everybody may put on paint so that it will look well and it would seem that any one could do the same with a varnish brush, but such is not the case. Good varnishers are the exception, and some men have tried for years to acquire the knack, but failed to do so.

There are so many things to be taken into consideration in order to insure good varnishing that the wonder is, not that there are so few good varnishes, but that there is so much of it that is done that proves good as there is under such conditions as exist.

313. a. Varnish, unlike paint, is most sensitive to the atmospheric and barometrical state of the weather. It is so sensitive that a draught of air will cause trouble in the varnish room, so that carriage factories, which are the only places where perfect conditions for doing perfect varnishing can be established, all have taken the greatest of care to guard against every element entering into the possibility of making trouble in the varnish rooms.

As far as possible the varnish room is located farthest away from the blacksmith shop where sulphurous fumes are generated, and from which noxious gases arise. To guard against draughts double windows should be used and a ventilating air shaft should carry out all the bad air of a varnish room and all outer air entering should be filtered free of dust.

Steam coils and radiators are the only heat permissi-

ble, as the varnish room should be maintained at a uniform degree of temperature during both the application of the varnish and its drying. No varnishing can be done when the heat is below 70 degrees Fahrenheit, and the room should never be allowed to cool down below that. There is but little danger of trouble arising from overheating, but a great deal can be expected from sudden changes, and this is never allowed in a first class carriage factory. The greatest troubles arise from barometrical changes and these cannot be altogether guarded against. An exhaust fan and heat will help to reduce damage by humidity to the lowest degree, and where draughts of the outer air are prevented there is usually no damage done.

The above may cause dismay to the beginner and he may well think that if varnishing can only be done under such conditions he may as well give up any hopes of ever becoming a varnisher. In the above was given the description of a varnish room such as the better class of vehicle manufacturers actually do have, and where fine jobs are varnished.

b. As all carriage shops, and especially the repair shops, cannot have such a varnish room, they have to put up with what they have and make out the best they can out of it. As each shop will have, probably, its own peculiar conditions each will have to adapt them so as to come as near to the description given of a first class one as it is possible for it to do so. The proper amount of heat must be maintained during the varnishing and

drying. Dust must be kept down and out, and outer air, too, or there will be blooming and the 1001 varnish deviltries to annoy and make one's life miserable.

- c The furniture factories are all equipped so as to obtain good results in their varnishing departments. While the usual class of furniture varnishing does not require the same amount of care as that which is done in the carriage shop, high grade polished furniture requires nearly if not quite as much precautions. Even for the very cheapest grades of furniture, the least speck of dust will hurt the looks of the cheapest kind of finish and that must be guarded against. So the varnish rooms of such establishments should, and are usually equipped so as to prevent changes of temperature and dust nearly as thoroughly as first class carriage shops are.
- d. The painters and hardwood finishers who have the interior of a new house to finish and complete are not so fortunately situated for doing their varnishing and they must make out the best they can. Yet they will be expected to turn out perfect work and as it is located where it will be under the constant vision of the occupants the least flaw in the work will be sure to be found out and to be brought home to them oftener than they like.

In the summer and early autumn they can manage fairly well; the rooms should be dusted over and over again until there is an assurance of every speck of it is out of the way, and the wood work as well as the floors and walls should be wiped with a damp chamois skin, which will collect all that has been left after the dustings and sweepings. The doors and windows must be closed and the former locked to keep intruders and the dust they would bring—out. This exclusion must last not only during the time required for the application of the varnish, but also during the whole of the time required for its drying safely out of the way of dust sticking to it.

It may seem puerile and harsh to keep out callers, but first class work cannot be done otherwise. After a room has been finished everything should be removed out of it into the next one to be varnished and the door locked so that not even the steps of the varnisher may cause a forgotten atom of dust to rise and fasten itself to the varnished surface.

e. The above is plain sailing and very good varnishing can be done at that time of the year, but in cold weather the troubles begin.

In houses which have a steam heating apparatus or a hot water system the difficulty will not be so great, but where the heating is by hot air or where it must be done with stoves, it is very troublesome. The temperature must be maintained above 70 degrees, Fahr. It is difficult to establish an even heat, especially with stoves, and in the latter case dust galore will be sure to be raised. When the heating is done by stoves, it will be well to arrange it so that considerably more than 70 degrees may be present in the room before

the varnishing begins, then to fill the stoves and regulate them to keep the heat going for several hours more without the having to touch them again after the varnishing. After filling them up proceed to wipe up all dust with a chamois skin, slightly dampened, and go on with the varnishing, keeping out intruders until the varnish is dry.

314. It is customary with a few varnishers to mix two kinds of varnishs together when they do their work.

This should never be resorted to. When a varnish does not work well, better give it up and procure one that is better suited to the work being done.

If the varnisher will bear in mind that the varnish he is using is probably the result of a blend made from several tanks of varnishes, which have been ripening for months and years at the factory, and that the manufacturer who knows all the particulars and the peculiarities of every one of his tanks should certainly be the proper one to make the mixing, and that if he has failed to make it good, certainly the man who knows nothing whatever about that varnish or the one he mixes with it, will certainly make a mess, and probably a botch of it.

Varnishes are tempered just right for their application at the factory, so they require no thinning with either turpentine or oil, especially the latter. Trouble in the shape of sweating and stickiness will surely follow such thinnings. The cheaper varnishes, composed nearly all of turpentine thinner, when long exposed to the air, may become too thick for application; in such a case the addition of turpentine is allowable but the varnish should first be warmed and the turpentine added and well incorporated with it by shaking at intervals of fifteen minutes for an hour before using.

315. When pouring out varnish to be used on a job, never pour out much more than is needed to complete the job. It is better to go again for more, if not enough. For varnish once taken out of the can and exposed to the air should never be poured back into the can. How many painters have learned this lesson only after bitter experiences! They will argue that it is foolish and that no possible harm can follow—and they learn after it is too late that it ruins a good varnish to pour it back and that it queers all the rest of it in the can.

How and why it does so would be hard to explain, and it may remain one of the many other mysteries connected with varnish which no amount of reasoning can explain satisfactorarily to one seeking to understand it. Varnish is a touchy affair—worse than an old maid to handle. It will only be handled in its own good way and no other.

316. The tools required for varnishing will depend upon the kinds of varnishes used and also upon the surfaces to be gone over and the finish desired. The whole list of varnish brushes made from bristles, cam-

el's hair, badger, sable, ox hair, etc., are used. They are shown in their varied shapes under Figs. 12, 15, 16, 17, 31, 40 and 41. Varnish brushes should be well taken care of and each should be kept in an individual brush keeper, if possible, and hung in the kind of varnish that it is used in, nor should it ever be used for any other. At least all the finishing and flowing varnish brushes should be so kept. Where the above is impossible, or when the varnish brushes are used in the cheaper varnishes, they may be hung up in linseed oil in such a keeper as is shown in Fig. 57. The linseed oil must be carefully washed out of the brushes with benzine or naptha before using again.

317. The application proper of the varnish will now follow after all the precautions to guard against chances of the varnish going wrong have been taken.

It is a simple enough looking affair and words will hardly convey the intelligence sufficiently clear to warrant the reader in going ahead and undertaking to do a job of varnishing immediately upon his having read the "how to do it."

He will probably know as much about it if told to dip his brush in the varnish pot and rub it on the surface where it is wanted as he would in a long essay which he will get mixed up in, and which will puzzle him much more than it will enlighten him.

All there is in varnishing is the putting of it on surfaces with a brush. The beginner should not attempt to put on the more difficult flowing coats until he has

acquired the knack and use of the brush upon the varnishing of cheap yellow pine interior partitions or wood work. He should put on his varnish crosswise first, and lay it off afterward the long way of the boards, using the tips of the brush to even it up nicely.

One of the greatest drawbacks to the beginner in his attempts at applying varnish is his fear that he is putting on too much and that it will sag on him, therefore, he works and works it out to the last limit; he does what is known as "skinning it on" in varnish slang.

Now, skinned on varnish never looks well and makes the job look like a man in a dress suit with plow shoes on. Varnish, to look well, must be put on full; if it be the right sort for the purpose it will not be any more likely to sag put on full than it will otherwise unless it is grossly overdone. The work, too, will be much freer of brush marks, as it will tend to flow together and to fill up the gaps left by the hair of the varnish brush. Skimpy varnishing will show every one of these and much more specks of dust, which a heavy coat will absorb and into which they will sink below the surface.

Many varnishers among the wood finishers and carriage shop operators when varnishing on the best work, lay on the varnish full, but evenly; vertically first, and then square it up horizontally. It will not prevent sagging of varnish that has not been put on evenly, but where it has been evenly and fully applied it will give the varnish coat the best chance of setting without sags.

It is hoped that the novice in varnish application will not be deterred from trying his skill by whatever may have been said regarding the difficulties that go along with it. The causes of trouble being known, it is possible, with a little trouble, to circumvent them so that they become harmless.

Some men are born good varnishers and fall into the right way of it like a gosling to a pond of water, and no one knows till they try what they may be capable of. With care, the proper use of the brush can be acquired when it is not natural to a person. It is, of course, much more pleasant to have been born, a varnisher, but some of the best varnishers commenced by aggravated cases of sagging in their first attempts at it. "Try, try again," is a good motto if it is old fashioned. The man who is observant will note where he has erred and the next job will be more perfect because the experience had on the former one will guard him against committing the same mistake again; such men will grow into good varnishers.

QUESTIONS ON VARNISHING.

- 312. What is said of varnishing in general?
- 313. a. What conditions are required for good varnishing?
 - b. How should the varnish room be arranged in carriage shops?
 - c. How should varnish rooms be arranged in furniture factories?

- d. How should the interior of houses be prepared for the varnishing in cold weather?
- 314. Should two kinds of varnish be mixed together before aplying?
- 315. When there is a surplus of varnish left over after a job is done, should it be poured back in the can?
 - 316. What tools are needed in varnishing?
 - 317. How is varnish applied?

VEHICLES.

318. The term "vehicle" has a double signification in the paint trade. To the carriage painter it means one thing and to all the others it means another. To the carriage painter it means anything made that will carry persons—coaches, carriages, buggies, phaetons, landaus, etc., etc.—and what the others know as vehicles he calls thinners.

There is a tendency towards a more uniform designation for the liquids used in the application of paint and thinners are becoming generally used by all kinds of painters.

Vehicle, which means a carrier of something, is still used widely, and is certainly most appropriate for the purpose that liquids are employed—the carrying of the pigment in the paint in which they enter.

319. Some vehicles contain within themselves the binding qualities which serve to hold the pigment firmly where it has been applied in the painting. Others do

not, and such must have had some substances dissolved through their agency which upon the evaporation or drying of the vehicle will remain and bind the pigment firmly.

- 320. The fixed oils are of the first character. They contain within themselves the drying and solidifying properties necessary to hold the paint, which in their liquid condition they served to convey to the surfaces painted. As all have been already reviewed, and their properties noted in the section headed, "Oils and Driers," the reader is referred to what is said concerning them in Paragraphs 194 to 202.
- 320. The volatile oils are used more as adjuncts to the fixed oils, japans and varnishes, than they are altogether alone—as they possess no binding qualities of their own whatever. These, too, have been fully described under the heading of oils and driers in Paragraphs 203 to 208, to which the reader is referred for fuller information.
- 321. Japans, varnishes, etc., are used almost exclusively in the painting of carriages, car and vehicle painting of every sort. These, being compounds, owe their binding qualities aside of that of linseed oil, which they may carry in their composition to such gums or gum resins which enter into them. Drying hard, they pave the way for good varnishing over them, and will not sweat through as oil coats would.
- 322. Water is the vehicle used in all water color or distemper work. Water, having no binding proper-

ties of its own, must have some binding substances added to it and which must be soluble in it in order that the colors applied through its medium will stay where they are placed. Many substances soluble in water will do this nicely. Some of the vegetable gums as gum arabic, for instance, make excellent binders for water colors, and but for their cost and scarcity would be used much more extensively than they are. As it is, their use is chiefly confined to artists who paint in water colors. Should it be used in the quantity required for binding one-hundreth part of the water colors used in wall coloring, there would be a howl about the price jumping away up above the already very high cost of it, as it is now.

Gum Tragacanth, and other gums, have been used in a small way for certain specific purposes, but none possess any value worth considering, except gum arabic, which, it is seen, cannot be obtained in sufficient quantity nor at such a price as to make its use possible in general house work.

322. Glucs are the only material which the calciminer and water color decorator can use. While they are not as clean as gum arabic and will deteriorate much quicker in warm weather, upon the whole, they have answered well the purposes for which they are used—of binding the colors.

There is much variation in the qualities of glues. They are made from the offals of animals derived from skin clippings, hoofs, bones, etc.; those parts which otherwise would have little value. Some of the strongest glues are made grom the bladders and intestines of fish.

Glues may be put into three general classes:

- I. Derived from fish.
- 2. From clippings of hides, and cartilagenous parts of animals.
 - 3. From the boiling of bones.

The first, when made exclusively from fish bladders and intestines, are the strongest and clearest. The second, made from animals' skins, is but little inferior to that made from fish and are very strong, too. The thin calcimine grades of light cream color are the best to use for color binding. The thin calcimine glue of an opaque white color is usually adulterated with some make-weight material, so that notwithstanding their good looks they are not so strong as the light buff-colored, semi-transparent kinds.

The third class of glues, made from bones, are not as strong as the others. They are cheaper in price, but dearer in the end.

323. There is an easy way to determine the value of a glue. While it may be called "empirical," one can attain to something near its worth by a simple process of weighing, say, one ounce of glue, and putting it to soak for a day. It must then be drained of water and re-weighed. Glue should absorb about eighteen times its former weight of water. If it falls much below that it will not be as strong as it should be, and, conse-

quently, more of it must be used to accomplish the same amount of binding that a lesser quantity of stronger glue would do.

QUESTIONS ON VEHICLES OR THINNERS.

- 318. What is understood by the word, "vehicle?"
- 319. What are the fixed oils?
- 320. What is said of volatile oils?
- 321. In what way are japans and varnishes used as vehicles?
 - 322. How many classes of glue are there?
 - 323. How can good glue be determined?

WATER COLORS.

324. As to all intents and purposes water color painting-distemper painting, fresco painting in water colors and calcimining are all one and the same thing, and as under each of those headings full directions are given for the treatment of walls and for the application of colors, and, under, "Mixing of Colors," as to their preparation for use—the reader is referred to those headings for any information he may desire about water colors, either for their application upon walls in plain tints, or as used in decorations as in "fresco," etc.

KEY TO PLATES

All plates shown have been photographed from actual work in graining and marbling done by students at the Chicago School of Painting, Decorating and Paper Hanging.

PLATE I

Door in oak heart growth done in water colors.

PLATE II

Door in quartered oak in oil-(wiped out).

PLATE III

Door in black walnut; stippled and veined in water colors.

Plate IV

Door in walnut root or curled walnut, in water colors.

Plate V

Door in mahogany, in water colors.

PLATE VI

Dado panelled up in mahogany in water colors.

PLATE VII

Dado—in marbles—panels are various colored and formations of marble, stiles and upper slabs, white and black veined—base in black, white veined.

PLATE VIII

Two panelled cupboard doors—top one in conglomerate sienna, the bottom in veined fissured sienna marble, surrounding stiling in black veined white marble.

INDEX

A

Acacia tint—how to make143
Acorn tint—how to make143
Action of volatile oils on paint285
Adulterant used mainly for heavy colors114
Advertising bulletin signs—how painted386
Agate marbling—how done270
Alabaster tint—how made143
Alderney brown tint—how made143
Aluminous earths whites103
Amaranth tint—how made143
American process white zinc
American vermillion
Anemone tint—how made143
Antique bronze tint—how made143
Antwerp blue tint—how made143
Apple green tint—how made144
Apricot tint—how made144
Armenian red tint—how made144
Artists' round and flat lining brushes41
Asiatic bronze tint—how made144
Ash tint—how made144
Ash—graining of255
Ash grey tint—how made144
Asphaltum varnish for iron work424
Autumn leaf tint—how made144
Azure blue tint—how made144
В
2
Banana oil—as size for bronzing
Barytes—as an adulterant of colors
Barytes—as an adulterant of white lead114

Base-color for mixing tints142
Bath tub enamel painting—general remarks on294
Bath tub enamel painting—how done295
Bath tub enamel painting—how to prepare for295
Bay tint—how made144
Begonia tint-how made144
Benzine—what it is290
Bird's eye maple—how to grain254
Bismark brown tint-how made144
Black and gold marble—how imitated266
Blacks—black lead or plumbago132
Blacks—Brunswick132
Blacks—carbon or gas131
Blacks—coach132
Blacks—drop132
Blacks—general remarks on131
Blacks—ivory131
Blacks—lamp
Black slate tint—how made144
Blistering of paint—causes of
Blistering of paint—general remarks on
Blistering of paint—heat 19
Blistering of paint—moisture
Blistering of paint—why 20
Body of colors—how to test for it
Boiled linseed oil—what it is
Bordeaux blue tint—how made145
Borders—how to hang145
Bottle green tint—how to make145
Brass tint—how to make
Brick tint-how to make145
Brick color—in scene painting357
Brick—how to flat203
Bronze blue tint—how made145
Bronze green tint—how made145
Bronze red tint—how made145
Bronze yellow—how made
Bronzing—how to apply it
Bronzing—how to size for it

Index

Bronzing-various colors, its
Brocatello marble—how imitated
Browns and drabs tints—how made145
Browns—general remarks on
Browns—metallic
Browns—siennas—raw and burnt129
Browns—Spanish
Browns—stone tint—how made
Browns—umbers—raw and burnt129
Brushes-badger hair 26
Brushes—bear hair 26
Brushes—black sable hair 26
Brushes—camel hair 27
Brushes—fitch hair 26
Brushes—general remarks on
Brushes—hog bristles
Brushes—material used in making 25
Brushes—red sable hair 26
Brushes—Siberian ox hair 26
Brushes-badger hair-blenders, bone heads 45
Brushes—tampico fibre 27
Brushes-badger hair-blenders, round in quill 45
Brushes—badger hair—flat varnish 44
Brushes—badger hair—gilders' tips 44
Brushes—bear hair—flat varnish 51
Brushes-bristle-artists' round and flat liners 41
Brushes—bristle—brick liners
Brushes—bristle—calcimine
Brushes-bristle-car scrub
Brushes-bristle-dusters round and flat
Brushes—bristle-fan overgrainers 42
Brushes-bristle-fresco liners round and flat 43
Brushes—bristle—furniture rubbing 45
Brushes—bristle—glue
Brushes—bristle—mottlers for graining 44
Brushes—bristle—oval varnish 32
Brushes—bristle—oval wall paint 30
Brushes-bristle-sash tools
Brushes—bristle—smoothing for paper hanging 42
Brushes—bristle—spoke

Index	

Brushes—bristle—stencil
Brushes-bristle-stippler for flatting wall 30
Brushes-bristle-stippler for graining 42
Brushes—bristle—varnish
Brushes-bristle-wall painting 31
Brushes—bristle—wax floor polishing 40
Brushes-camel's hair-artists' 54
Brushes—camel's hair—coach color 50
Brushes—camel's hair—lacquering 53
Brushes—camel's hair—lettering 53
Brushes—camel's hair—mottling 53
Brushes—camel's hair—striping 53
Brushes—camel's hair—varnish 51
Brushes—fitch—varnish 50
Brushes—general remarks on
Brushes—material used in making
Brushes—ox hair—lettering
Brushes—ox hair—striping
Brushes—ox hair—varnish
Brushes—sable (red and black)—artists' 50
Brushes—sable (red and black)—lettering and striping 50
Brushes—sable (red and black)—one stroke lettering 50
Brushes—sable (red and black)—varnish 51
Burlap—how to hang326
Burled walnut—how to grain258
Buttercup tint—how made146
C
Café au lait tint—how made146
Calcimining—general remarks on 57
Calcimining—proper conditions for
Calcimining—to stop suction on walls in
Calcimining—tools needed in 59
Cambridge red tint—how made146
Canary tint—how made146
Car or carriage painting—color coats in
Car or carriage painting—coloring a white job in 85
Car or carriage painting—knifing in coats in 80
Car or carriage painting—general remarks on 70

viii Index

Car or carriage painting—guide coats in
Car or carriage painting—ornamentation in
Car or carriage painting—putty and puttying in 80
Car or carriage painting—rough stuff in 82
Car or carriage painting—rubbing rough stuff 82
Car or carriage painting—sandpapering on 82
Car or carriage painting—sign painting in
Car or carriage painting—striping on
Car or carriage painting—transfers on 87
Car or carriage painting—varnishing on
Carnation tint—how made146
Ceilings—how to hang with wall paper 324
Celestial blue tint—how made146
Cement—to paint in exterior painting 188
Cerulean blue tint—how made146
Chamois tint—how made146
Chamoline tint—how made146
Chartreuse tint—how made146
Chestnut tint—how made146
China painting—general remarks on 94
China painting—how to paint on
China painting—material used for
China painting—tools used in
China painting—vitrifying the colors
Chocolate tint—how made146
Cinnamon tint—how made147
Claret tint—how made147
Claybank tint—how made147
Clay drab tint—how made
Cleaning for wall paper—how made327
Cloud color in scene painting356
Cobalt blue tint—how made147
Cocoanut brown tint—how made147
Colonial yellow tint- how made147
Colors—baryta white—its uses
Colors—blacks—Brunswick132
Colors—blacks—carbon131
Colors—blacks—coach
Colors—blacks—drop132
Colors—blacks—gas131

Colors—blacks—general remarks on
Colors—blacks—ivory
Colors—blacks—lamp131
Colors—blacks—lead or plumbago132
Colors—blues—cerulean126
Colors—blues—cobalt125
Colors—blues—general remarks on125
Colors—blues—indigo126
Colors—blues—Prussian125
Colors—blues—ultramarine125
Colors—browns—general remarks upon128
Colors—browns—metallic
Colors—browns—umber—burnt and raw129
Colors—browns—siennas—burnt and raw129
Colors—browns—vandyke129
Colors—greens—chrome
Colors—greens—cobalt or zinc127
Colors—greens—general remarks on
Colors—greens—Paris127
Colors—greens—ultramarine127
Colors—greens—viridian127
Colors—greens—zinc or cobalt127
Colors—greens—verdigris128
Colors—reds—American vermillion118
Colors—reds—Chinese vermillion119
Colors—reds—English vermillion118
Colors—reds—general remarks on
Colors—reds—imitation vermillions120
Colors—reds—Indian116
Colors—reds—lakes:
Colors—reds—orange mineral118
Colors—reds—oxide of iron
Colors—reds—Pompeian
Colors—reds—red lead118
Colors—red—Tuscan117
Colors—reds—Venetian115
Colors—whites—aluminous white earths103
Colors—whites—American zinc white
Colors—whites—cretaceous earth whites103
Colors—whites—general remarks on102

x Index

Colors—whites—silicious earth whites103
Colors—whites—white lead—Dutch process described104
Colors—whites—white lead—stack system described105
Colors—whites—white lead—sublimed
Colors—whites—zinc white—American process112
Colors—whites—zinc white—French process
Colors—whites—zinc white—general remarks on
Colors—whites—zinc white—process of manufacturing109
Colors—yellows—chrome yellows
Colors—yellows—general remarks on
Colors—yellows—other yellows
Colors—yellows—yellow lakes
Color testing—general remarks on
Color testing—how to determine their purity
Color testing—how to determine fineness of grinding160
Color testing—how to determine strength of coloring163
Color testing—how to determine body and spreading162
Conditions required for good varnishing135
Contrasting harmony—primaries, secondaries and tertiaries136
Copper tint—how made147
Coral pink tint—how made147
Cotrine tint—how made147
Cream tint—how made147
Crimson tint—how made147
Curled maple—how to grain254
,
D
7
Damar varnish—its uses in enamelling199
Dead flat—in flatting204
Dead leaf color—to make in scene painting356
Designing stencils—in stencilling405
Distant foliage—in scene painting356
Distemper painting—in fresco
Dove marble—how imitated264
Dove tint—how made147
Dregs of wine tint—how made147
Drop black—its uses (see colors)
Drivers for point—its uses 200

Dry paste powders in paper lianging319
Dusters (see brushes)
Dutch process white lead (see colors)104
E
Ecru tints—how made
Egg shell gloss—in flatting
Egyptian green tint—how made148
Egyptian green marble—how imitated264
Electric blue tint—how made .*148
Emerald blue tint—how made148
Enamelling—general remarks on197
Enamelling—how applied
Enamelling—in white and gold200
English vermillion (see colors)
Estimating165
Extension walking boards (see painters' tools)340
Exterior painting174
F
Fan overgrainers (see brushes) 42
Fawn tint—how made
Flesh color tint—how made
Filling for old wooden buildings
Fire reflection tint in scene painting
Fitch varnish brushes (see brushes) 50
Fixed oils (see oils)
Flatting—brick painting on exteriors192
Flatting—dead flatting
Flatting—egg shell gloss
Flatting—how to prepare for203
Flatting—in interior painting205
Flatting—stippling it205
Florentine marble—how imitated266
Foliage (distant) in scene painting356
French blue tint—how made148
French grey tint—how made148
French red tint—how made148
Fresco-fire cracks-how to kill207
Fresco—general remarks on

Index

rresco—in oil
Fresco—in water colors
Fresco-material needed in211
Fresco—tools needed211
Furniture rubbing brushes
G
Gas or carbon black (see colors)131
Gasoline torches for burning off paint
Gazelle tint—how made148
General remarks on adulteration
General remarks on blistering of paint
General remarks on brushes
General remarks on calcimining 57
General remarks on carriage painting
General remarks on china painting94
General remarks on colors
General remarks on color harmony
General remarks on color mixing of tints140
General remarks on color testing
General remarks on enamelling197
General remarks on estimating
General remarks on exterior painting
General remarks on fresco painting206
General remarks on gilding215
General remarks on graining241
General remarks on marbling
General remarks on oils and dryers
General remarks on paperhangers' tools301
General remarks on painters' tools329
General remarks on scene painting343
General remarks on sign painting359
General remarks on stains and staining390
General remarks on stencilling402
General remarks on varnishes415
General remarks on varnishing426
General remarks on white lead (see colors)104
General remarks on zinc white (see colors)112
Geranium tint—how made149

Gilders' tip—(see brushes)	44
Gilding—ductibility of gold2	18
Gilding—gold and its alloys2	
Gilding—in oil on wood, etc	
Gilding—japan gold size22	
Gilding—preparing fat oil size for22	
Gilding-preparing wood and other surfaces for22	
Gilding on glass—how to apply the gold22	
Gilding on glass—how to prepare the size	
Gilding on glass—how to back up the gold	
Gilding on glass—how to make a gilder's cushion2	28
Glue brushes (see brushes)	
Graining—ash, how done2	
Graining—chestnut, how done2	
Graining—cherry, how done2	53
Graining—oak, how done2	
Graining—mahogany, how done	56
Graining—maple, how done	54
Graining—rosewood, how done243, 2	57
Graining—satinwood, how done2	57
Graining—sycamore, how done	57
Graining—walnut, how done2	
Granite stone—how imitated	
Grass green tint in scene painting	
Granite blue tint—how made	
Gray green tint—how made	
Gray stone tint—how made	
Grays, all shades—how made	
Gray drab tints—how made	
Greens—(see colors)	
Green stone tint—how made	49
H	
Hanging wall paper—ceilings3	24
Hanging wall paper—walls	
Hanging wall paper—borders3:	
Hanging burlaps	
Harmony of color by analogy	
Harmony of color by contrast	

xiv Index

Hay color tint—how made
Heliotrope—how made
House painting—exterior
How to clean wall paper and distemper work
How to enamel interior wood work
How to gild on glass
How to gild on wood, etc
How to paint brick buildings203
How to paint cement buildings204
How to paint iron buildings202
How to paint stone buildings203
How to paint imitation agate marble270
How to paint imitation brocatello marble267
How to paint imitation black and gold marble266
How to Paint imitation dove marble264
How to paint imitation Egyptian green marble266
How to paint Florentine marble266
How to paint granite marble270
How to paint—general remarks on marble260
How to paint Italian pink marble
How to paint jasper marble272
How to paint red porphyry marble271
How to paint sienna marble
How to paint white veined marble269
How to paint Swedish porphyry marble271
How to paint Swiss porphyry marble271
How to prepare dry-paste for paper, hanging319
How to prepare flour paste for paper hanging319
How to prepare priming coat for exterior painting176
How to prepare second coat for exterior painting178
How to prepare size for gilding
How to prepare size for walls
How to prepare third coat in exterior painting
How to test for adulterations in colors
How to test for amount of adulteration in colors II
How to test with scale test
How to use scale test for white lead
How to tint oil colors
How to tint water colors
TIOM to till watch colors

I

Indian red (see colors)116Indian yellow (see colors)124Indigo (see colors)126Indian brown tint—how made150Indian red tint—how made150Iron tint—how made150Iron buildings—how to paint150Ivy green tint—how made150Italian pink marble—how imitated268
·
Japans and varnishes as vehicles
Japan gold size291
Jasper tint—how to make150
Jasper stone—how to imitate272
Jonquil tint—how made150
K
Knifing in lead in carriage painting 80
Knives—casing in paperhangers' tools310
Knives—putty knives in painters' tools
Knives—rotary in paperhangers' tools309
Knives—scraping in paperhangers' tools333
L
Ladders—in painters' tools
Ladders step—in painters' tools
Ladders jacks—in painters' tools
Lakes all kinds—(see painters' colors)121
Lamp black—(see colors)131
Lavender oil—in china painting
Lavender tint—how made150
Laying out the design in scene painting353
Lead color tint—how made150
Leaf buds tint—how made150

xvi Index

Leather tint—how made150
Lemon tint—how made
Lilac tint—how made
Linseed oil in oils and driers273
Linseed oil (boiled) in oils and driers
Location for scene painting studio
London smoke tint—how made
Zondon smoke tint—now made150
M
Magenta tint—how made151
Mahogany—how grained
Manilla tint—how made
Maple how grained
Maple—how grained
Marbling—agate, how imitated
Marbling—brocatello, how imitated
Marbling—black and gold, how imitated
Marbling—Egyptian green, how imitated
Marbling—Egyptian green, now imitated
Marbling report remarks and imitated
Marbling—general remarks on
Marbling—granites, how imitated
Marbling—Italian pink, how imitated
Marbling—jasper, how imitated
Marbling—material used in imitated
Marbling—red porphyry, how imitated
Marbling—serpentine, how imitated
Marbling—sienna, how imitated
Marbling—Swedish porphyry, how imitated
Marbling—Swiss porphyry, how imitated
Marbling—tools used in
Marigold tint—how made
Maroon tint—how made
Mastic tint—how made
Mascot tint—how made
Material used in brush manufacture
Material used in calcimining
Material used in carriage painting
Material used in china painting
marchiai Aben III Ticoco hammis

Index	

Index	xvii
nting	

Material used in graining painting253
Material used in scene painting345
Material used in sign painting
Material used in staining392
Material used in stencilling411
Mauve tint—how made151
Mexican red tint—how made151
Mignonette tint—how made151
Mixing colors in scene painting355
Moonlight skies in scene painting356
Moisture—in blistering
Moorish red tint—how made151
Moss rose tint—how made151
Mottling brushes (see brushes) 44
Mountain blue—how made152
N ·
Naphtha290
Navy blue tint—how made
Neutral blue tint—how made
Nile blue tint—how made152
Normandy blue tint—how made152
Nut brown tint—how made152
Nut oil—(see oils and dryers)287
0
Oak color tint—how made152
Oak graining—how done in oil244
Oak graining—how done in water colors245
Oak graining—how to prepare grounds for241
Ochres—(see colors)121
Oils and dryers—general remarks on274
Oils—fixed (the)274
Oil—fresco painting in
Oil—gilding
Oil—size for gilding222
Oil stains—how made
Oil—volatile (the) 282

xviii Index

Old gold tint—how made152
Olive tint—how made
Olive brown tint—how made152
Opal gray tint—how made153
Orange tint—how made153
Orange brown tint—how made153
Orange mineral (see colors)124
Oriental blue tint—how made153
Oriental green tint—how made153
Ornamenting in carriage painting
Ornamenting in fresco painting206
Oval paint brushes (see brushes) 29
Oval varnish brushes (see brushes)
Ox hair brushes (see brushes) 47
Oxide of iron (see colors)
P
• • • • • • • • • • • • • • • • • • •
Painters' tools-brush keepers
Painters' tools—extension walking boards340
Painters' tools—gasoline torches
Painters' tools—general remarks on329
Painters' tools—ladders, all kinds
Painters' tools—ladder steps
Painters' tools—ladder jacks337
Painters' tools—ladder roof338
Painters' tools—paint mill332
Painters' tools—palette knives334
Painters' tools—plank supporters339
Painters' tools—putty knives334
Painters' tools—sand bellows332
Painters' tools—scraping knives333
Painters' tools—scaffolding340
Painters' tools—strainers and painters' tinware331
Painters' tools—swing scaffolds
Painters' tools—tressles, all kinds340
Painting a bath tub294
Painting new and old buildings, exterior174
Painting walls for fresco in oil206
Painting walls for fresço in water colors

Painting walls on glass293
Paper hangers' tools—general remarks on301
Paper hangers' tools—casing knives310
Paper hangers' tools—cutting knives308
Paper hangers' tools—paste brushes302
Paper hangers' tools—pasting tables301
Paper hangers' tools—plumb bobs and levels312
Paper hangers' tools—rotary knives309
Paper hangers' tools—seam rollers303, 304, 305
Paper hangers' tools—smoothing brushes306
Paper hangers' tools—smoothing rollers306
Paper hangers' tools—trimming machines307
Paper hanging—general remarks on313
Paper hanging—how to clean dirty wall paper327
Paper hanging—how to hang borders325
Paper hanging—how to hang burlaps326
Paper hanging—how to hang ceilings324
Paper hanging—how to hang muslin strips on wood326
Paper hanging—how to hang walls323
Paper hanging—how to make pastes319
Paper hanging—how to paste the strips320
Paper hanging-how to patch holes and cracks in plaster 322
Paper hanging—proper conditions for321
Paper hanging—how to trim paper with knives323
Paper hanging—how to trim paper with machine323
Paris Green—(see colors)127
Peach blossom tint—how made153
Pearl tint—how made
Peacock blue tint—how made153
Pea green tint—how made153
Persian orange tint—how made153
Pigments—(see colors) 95
Pink tint—how made153
Pistache tint—how made153
Plumbago—(see colors)
Plum color tint—how made153
Polishing brush for wax (see brushes) 40
Pompeian blue tint—how made153
Pompeian red tint—how made154
Poppy seed oil—(see oil and dryers)286

Porphyry stone—how imitated271
Portland stone tint—how made154
Pouring back varnish—(see varnishing)210
Preparing rooms for stencilling413
Price lists for painting, glazing, graining, marbling165
Priming new buildings174
Purples in scene painting355
Purity of tone in colors—how tested for159
Q
Quaker green tint—how made154
Quaker green tint—now made154
R
R
Recipes for making oil stains
Recipes for making spirit stains
Recipes for making water stains
Red colors—American vermillion
Red colors—Chinese vermillion
Red colors—English vermillion
Red colors—general remarks on
Red colors—lakes121
Red colors—imitation vermillions
Red colors—Indian reds116
Red colors—oxide of iron (red)
Red colors—Pompeian116
Red colors—red lead118
Red colors—Tuscan
Repainting—bath tubs294
Round paint bristle brushes (see brushes) 28
Roan tint—how made154
Robins' egg blue tinthow made154
Rocks, stones, etc., in scene painting356
Roof ladder hooks—(see painters' tools)338
Rosewood—how grained243
Roughstuff in carriage painting 82
Rubbing rough stuff
Russet tint—how made154
Russian grey tint_how made

S

Index

Shrimp pink tint—how made	159
Siennas, raw and burnt (see colors)	T20
Signs in carriage painting	8
Sign painting—advertising	386
Sign painting—bulletin	28
Sign painting—general remarks on	350
Sign painting gold—general remarks on	378
Sign painting gold—on glass	383
Sign painting gold—on wood and other surfaces	370
Sign painting—material used in	363
Sign painting—muslin	382
Sign painting—tools used in	363
Sign painting—shading the letters	364
Sign painting—spacing the lettering	365
Slate tint—how made	159
Smoothing paper hangers' brush (see brushes)	306
Snuff color tint—how made	155
Spoke brush (see brushes)	34
Spruce yellow tint—how made	155
Statuary painting—general remarks on	297
Statuary painting—how to prepare for it	298
Statuary painting—how to do the painting	299
Step ladders (see painters' tools)	330
Stains and staining—general remarks on	390
Stains and staining—recipes for water stains	399
Stains and staining—recipes for oil stains	396
Stains and staining-recipes for spirit stains	397
Stains and staining-how to stain in oil, water or spirit	393
Stains and staining-various methods of	392
Stains and staining—what grained staining is	
Stains and staining—why wood is stained	391
Stencils and stencilling-general remarks on	
Stencils and stencilling-designing of	
Stencils and stencilling—in water colors	
Stencils and stencilling—in oil colors	
Stencils and stencilling-how to cut	
Stencils and stencilling-material used in	
Stencils and stencilling-preparing rooms for	413
Stencils and stencilling-stencil paper-how prepared	
Stencils and stencilling-tools used in	410

Stencils and stencilling—where chiefly used403
Stipling—in flat painting205
Stipling—in walnut graining258
Stone color and yellow drab tints—how made155
Straw tint—how made155
Strength of colors—how to test for 10
Striping—in carriage painting 87
Sublimed lead (see colors)
Surfaces—in calcimining
Surfaces—what they are
Swedish porphyry—how imitated271
Swing scaffolds—(see painters' tools)336
Swiss porphyry—how imitated271
Sycamore—how grained257
Ť
Tally-ho tint—how made156
Tampico—(see brushes)
Tan color tint—how made156
Terra cotta tint—how made156
Tertiary colors—what they are
Tints—how made from oil colors
Tints—how made from water colors142
Tools used in fresco painting211
Tools used in graining243
Tools used in painting230
Tools used in paper hanging301
Tools used in staining
Tools used in stencilling410
Tools used in varnishing
Tub (bath)—how to repaint
Turquoise blue tint—how made
Turpentine—in oils and dryers
Tuscan red—(see colors)
Transfers—in carriage painting
Tressles—see painters' tools
Trimming wall paper with knives
Γrimming wall paper with machine 323 Γrunks of trees tint in scene painting 357
Trunks of trees that in scene painting

V
Vandyke brown—(see colors)129
Various methods of staining200
Varnish brushes bristle, oval and flat (see brushes) 26
Varnish brushes badger hair (see brushes) 26
Varnish brushes black and red sable (see brushes) 26
Varnish brushes camel hair (see brushes) 27
Varnish brushes ox hair (see brushes) 26
Varnishing—conditions for good428
Varnishing—general remarks on426
Varnishing-how to arrange rooms for430
Varnishing—how to arrange shops for429
Varnishing-pouring back varnish in can432
Varnishing—tools needed in432
Vehicles—fixed oils272
Vehicles—general remarks on436
Vehicles—glues and adjuncts438
Vehicles—gum arabic477
Vehicles—japans and varnishes437
Vehicles—oil of lavender 97
Vehicles—spirits
Vehicles—turpentine283
Vehicles—volatile oils282
Venetian red (see colors)
Vermillion—American (see colors)118
Vermillion—Chinese (see colors)
Vermillion—English (see colors)118
Vermillion—imitation (see colors)120
Verd antique marble—how imitated264
Vienna Crown tint—how made156
Virwian (see colors)127
Violet tint—how made
Vitrifying colors in china painting
W
TIV-11

Walls—right	condition	for calcin	nning	 	03
Walls-right	condition	for paper	hanging	 	321
Walls-paint	brushes (see brushe	s)	 	31
Walls-stippl					

Walking board extension—see painters' tools340
Water color stencilling—how done412
Water green tint—how made
Water stains—how made
Washing off old paper in paper hanging314
Wax floor polishing brushes (see brushes)
White baryta (see colors)
White earths—aluminous (see colors)
White earths—cretaceous (see colors)
White earths—silicious (see colors)104
White lead—general remarks on
White lead—how made105
White lead—how to test for adulteration 10
White and light tints in enameling208
White veined marble—how imitated271
Why paint blisters 18
Willow green tint—how made
Wine color tint—how made156
Wooden buildings new—how to paint174
Wooden buildings old—how to paint190
Y
Yellows—chrome (see colors)122
Yellows—general remarks on (see colors)121
Yellows—ochres (see colors)121
Yellows—other yellows (see colors)
Yellow bronze tint—how made
Tenow produce time now induce the time to the time time to the time time time time time time time tim
Z
Zinc green (see cobalt green in colors)125
Zinc white—American (see colors)
Zinc white—French (see colors)
Zinc white—general remarks on (see colors)108
Zinc white—its uses (see colors)109
Zinz white—in enamelling

UP=TO=DATE HARDWOOD FINISHER

IN TWO PARTS

By FRED T. HODGSON, Architect

Member of Ontario Association of Architects, Editor of "National Builder," and author of the "Modern Estimator and Contractors' Guide," "Modern Carpentry," "Architectural Drawing Self-Taught," "Practical Uses of the Steel Square," etc.

PART ONE, giving rules and methods for working hardwoods, with description of tools required, the methods of using, and how to sharpen and care for them, including saws, planes, files, scrapers, chisels, gouges and other wood-working tools. How to choose hardwoods for various purposes, and how to work and properly manage veneers. The proper use of glue, directions for preparing glue, blind or secret nailing, how done and how finished. How to sharpen and use scrapers of various forms, with illustrations showing the tools and how to handle them properly, etc.

PART TWO treats, on the filling, staining, varnishing, polishing, gilding and enameling woodwork of all kinds of woods. It also treats on renovating old work, repolishing, revarnishing and wood-finishing generally. There is a short treatise on dyeing woods in various colors for inlaying and marquetry work, with rules for making staining, dyes, fillers, and polishes of various kinds, French polishing, hard-oil finish, rubbed and flat finish, treatment of hardwood floors, waxing, polishing, shellacking and general finishing of hardwood in all conditions.

LARGE 12MO CLOTH, 320 PAGES, 117 ILLUSTRATIONS. PRICE, \$1.00 HALF LEATHER BINDING, GILT TOPS . . . PRICE, \$1.50

FREDERICK J. DRAKE @ CO.
PUBLISHERS OF SELF-EDUCATIONAL BOOKS
CHICAGO, ILL.

HODGSON'S Low Cost American Homes

Arranged and Edited by FRED T. HODGSON Architect

This book contains perspective views and fioor plans of one hundred houses churches, school houses and barns, and is without a doubt the most practical work ever issued. The plans shown have been built from, and many of them duplicated many times over. All are practical, the creation of the well-known author, including many other architects throughout the United States and Canada, and are alike valuable to builders and any one who has in view the erection of a house, etc. The plans are susceptible of slight changes that will adapt them to any taste. The carpenter, remote from the city, needs just such a book to refer to, or to exhibit to his customer so that the latter can give his orders in an intelligible manner. The much desired economy on these structures is not, however, obtained at the expense of beauty—every one of the designs, even the very cheapest, is pleasing to the very cheapest, is pleas

these structures is not, however, obtained at the expense of beauty—every one of the designs, even the very cheapest, is pleasing to the eye. Following the ideas laid down, the builder is sure to obtain a pretty result. Another result aimed at by Mr. Hodgson is the convenience of internal arrangements. Many a good house has been spoiled by having the much needed closet room omitted. All this has been carefully studied by the practical and experienced architects who have compiled this book, so the owner or working builder who selects a design from this work will be sure to secure all the elegance, convenience and economy possible in the erection of the house. The publishers furnish perfect blue prints, including a book of specifications at the printed prices shown in the book. The average price of blue prints and specifications is \$5.00 per set, and they are just the same as plans which, if prepared especially by an architect, would cost from \$50.00 to \$75.00.

The book contains over 225 pages, nearly 300 illustrations, printed on a superior quality of machine finished paper, durably bound in English cloth with unique designs in two colors of ink.

Price \$1.00

FREDERICK J. DRAKE & CO., Publishers CHICAGO, ILL.

Practical Up-to-Date PLUMBING

By

George B. Clow

Over 150 Illustrations

PRACTICAL up-to-date work on Sanitary Plumbing, comprising useful information on the wiping and soldering of lead pipe joints and the installation of hot and cold water and drainage systems into modern residences. Including the gravity tank supply and cylinder and tank system of water heating and the pressure cylinder system of water heating. Connections for bath tub. Connections for water closet. Connections for laundry tubs. Connections for wash-bowl or lavatory. A modern bath room. Bath tubs. Lavatories. Closets. Urinals. Laundry tubs. Shower baths. Toilet room in office buildings. Sinks. Faucets. Bibb-cocks. Scipipe fittings. Drainage fittings. Plumber's tool kit, etc., etc. 256 pages, 180 illustrations.

Sold by Booksellers generally or sent postpaid to any address upon receipt of price by the Publishers

FREDERICK J. DRAKE @ CO. PUBLISHERS Chicago, U.S. A.

Thot Water Theating, Steam and Bas Fitting

By WM. DONALDSON

MODERN treatise on Hot Water, Steam and Furnace Heating, and Steam and Gas Fitting, which is intended for the use and information of the owners of buildings and the mechanics who install the heating plants in them. It gives full and concise information with regard to Steam Boilers and Water Heaters and Furnaces, Pipe Systems for Steam and Hot Water Plants, Radiation, Radiator Valves and connections, Systems of Radiation, Heating Surfaces, Pipe and Pipe Fittings, Damper Regulators, Fitters' Tools, Heating Surface of Pipes, Installing a Heating Plant and Specifications. Plans and Elevations of Steam and Hot Water Heating Plants are shown and all other subjects in the book are fully illustrated.

256 pages, 121 illustrations, 12mo, cloth, price, \$1.50

Sold by Booksellers generally or sent postpaid to any address upon receipt of price by the Publishers

FREDERICK J. DRAKE & CO. CHICAGO, U.S.A.

Practical Mechanical Drawing

and Machine Design Self-Taught

By CHARLES WESTINGHOUSE

Over 200 Illustrations and 160 Pages. Price, \$2 00

COMPLETE SELF-INSTRUCTOR FOR HOME STUDY on Drafting tools—Geometrical definition of plane figures—Properties of the circle—Polygons—Geometrical definitions of solids—Geometrical drawing—Geometrical problems—Mensuration of plane surfaces—Mensuration of volume and surface of solids—The development of curves—The development of surfaces—The intersection of surfaces—Machine drawing—Technical definitions—Material used in machine construction—Shafting—Machine design—Transmission of motion by belts—Horsepower transmitted by ropes—Horsepower of gears—Transmission of motion by gears—Diametral pitch system of gears—Worm gearing—Steam boilers—Steam engines—Tables.

Frederick J. Drake & Co., Publishers CHICAGO, U. S. A.

STEEL SQUARE

A TREATISE OF THE PRACTICAL USES OF

By FRED. T. HODGSON, Architect.

New and up-to-date. Do not mistake this edition for the one published over twenty years ago.

This is the latest practical work on the Steel Square and its uses pub-ished. It is thorough, accurate, clear and easily understood. Confounding terms and phrases have been relig-iously avoided where possible. and everything in the book has been made so plain that a boy twelve years of age, possessing ordinary intelligence, can understand it from beginning to end.

It is an exhaustive work including the proper programment of the property of the

It is an exhaustive work including some very ingenious devices for laying out bevels for rafters, braces and other inclined work; also chapters on the Square as a calculating machine, showing how to measure Solids, Surfaces and Distances—very useful to builders and estimators. Chapters on roofing and how to form them by the aid of the Square. Octagon, Hexagon, Hip and other roofs are shown and explained, and the manner of getting the rafters and jacks given. Chapters on heavy timber framing, showing how the Square is used for laying out Mox

on heavy timber framing, showing how the Square is used for laying out More tises, Tenons, Shoulders, Inclined Work, Angle Corners and similar work. The work also contains a large number of diagrams, showing how the Square may be used in finding Bevels, Angles, Stair Treads and bevel cuts for Hip, Valley, Jack and other Rafters, besides methods for laying out Stair Strings, Stair Carriages and Timber Structures generally. Also contains 25 beautiful halftone illustrations of the perspective and floor plans of 25 medium priced houses.

of 25 medium priced houses.

The work abounds with hundreds of fine illustrations and explanatory diagrams which will prove a perfect mine of instruction for the mechanic, young or old.

Two large volumes, 560 pages, nearly 500 illustrations, printed on superior quality of paper from new large type.

SEND FOR COMPLETE ILLUSTRATED CATALOGUE FREE

FREDERICK J. DRAKE @ CO.

PUBLISHERS OF SELF-EDUCATIONAL BOOKS

CHICAGO, ILL.

PRACTICAL BUNGALOWS AND COTTAGES FOR TOWN AND COUNTRY

THIS BOOK CONTAINS PERSPECTIVE DRAWINGS AND FLOOR PLANS

Of one hundred and fifty low and medium priced houses ranging from four hundred to four thousand dollars each. Also thirty selected designs of bungalows for summer and country homes, furnishing the prospective builder withmany new and up-to-date ideas and suggestions in modern architecture.

The houses advertised in this book are entirely different in style from those shown in Hodgson's Low Cost Homes.

12 MO. CLOTH, 200 PAGES, 300 ILLUSTRATIONS PRICE, POSTPAID \$1.00

FREDERICK J. DRAKE & CO.

CHICAGO

Concretes. Cements.

Mortars. **Plasters** Stuccos

How to Make and How to Use Them

By

Fred T. Hodgson

Architect

HIS is another of Mr. Hodgson's practical works that appeals directly to the workman whose business it is to make and apply the materials named in the title. As far as it has been possible to avoid chemical descriptions of limes, cements and other materials, and theories of no value to the workman, such has been done, and nothing has been admitted into the pages of the work that does not possess a truly practical character.

Concretes and cements have received special attention, and the latest methods of making and using cement building blocks, laying cement sidewalks, putting in concrete foundations, making cement casts and ornaments, are discussed at length. Plastering and stucco work receive a fair share of consideration and the best methods of making and using are described in the usual simple manner so characteristic of Mr. Hodgson's style. The book contains a large number of illustrations of tools, appliances and methods employed in making and applying concretes, cements, mortars, plasters and stucco, which will greatly assist in making it easy for the student to follow and understand the text 300 pages fully illustrated.

12 Mo. Cloth, Price. \$1.50

> Sold by Booksellers generally or sent postpaid to any address upon receipt of price by the Publishers

Frederick J. Drake Q Co. **PUBLISHERS** CHICAGO, U. S. A.

Modern Carpentry

FOR CARPENTERS AND WOOD WORKERS GENERALLY

TRED T. HODGSON, Architect, Editor of the National Builder, Practices
Carpentry, Steel Square and Its Uses, etc., etc.

A NEW, complete guide, containing hundreds of quick methods for performing work in carpentry, joining and general wood-work. Like all of Mr. Hedgson's works, it is

written in a simple, every-day style, and does not bewilder the working-man with long mathematical rormulas or abstract theories. The illustrations, of which there are many, are explanatory, so that any one who can read plain English will be able to understand them easily and to follow the work in hand without difficulty.

The book contains methods of laying roofs, rafters, stairs, floors, hoppers, bevels, joining mouldings, mitering, coping, plain hand-railing, circular work, splayed work, and many other things the carpenter wants to know to help him in his every day vocation. It is the

practical and reliable. One which no carpenter can afford to be without

The work is printed from new, large type plates on a superior quality of cream wove paper, durably bound in English cloth.

Price \$1.00

FREDERICK J. DRAKE & CO., Publishers, CHICAGO, ILL.

Modern Carpentry Vol.

ADVANCED SERIES

By Fred T. Hodgson:

This is a continuation of Mr. Hodgson's first volume on Modern Carpentry and is intended to carry the student to a higher plane than is reached by the first volume. The first volume of this series

may be considered as the alphabet of the science of carpentry and joinery, while the present volume leads the student into the intricacies of the art and shows how certain difficult problems may be solved with a minimum of labor. Every progressive workmanand especially those who have purchased the first volume of this series-cannot afford to be without this volume, as it contains so many things necessary the advanced workman should know, and that is likely to crop up at any time during his daily

labors. The work is well illustrated with over 100 diagrams, sketches and scale drawings which are fully described and explained in the text. Many puzzling working problems are shown, described and solved. This is truly a valuable aid and assistant for the progressive workman.

300 pages, fully illustrated. 12mo, cloth, price,

\$1.00

Sold by Booksellers generally or sent postpaid to any address upon receipt of price by the Publishers

FREDERICK J. DRAKE & CO. PUBLISHERS CHICAGO, U. S. A.

"Builders' Architectural Drawing Self-Taught"

By FRED T. HODGSON

This work is especially designed for Carpenters and Architec's and other woodworkers who desire to learn drawing at home

and who have not the means, time or opportunity of taking a regular course in school or college, or availing themselves of the offers made by one or other of the "Correspondence Schools."

The work commences with a description of drawing instruments and accessories, with rules for using them, and hints as to their care and management. Rules for laying out simple drawings and executing same are given, and the student is taught step by step to draw to scale, first the plans, next the elevations, and finally the details of a cottage, including foundations, walls, doors, windows, stairs, and all other items required for finishing a small building complete in every particular.

A chapter and a number of plates are devoted to more elaborate work, and the student is shown by a

devoted to more elaborate work, and the student is shown by a series of easy lessons in simple language how to make more elaborate drawings. Theory is not considered in the work, nor is perspective or shading, as the author has endeavored to make the work a purely practical one for practical workmen. Nearly all the examples given are drawn to scale and may be followed as they are given or may be enlarged or reduced at the will of the student. As an Architectural Drawing Book for real practical workingmen, who intend making draftsmen of themselves by their own efforts, this book has no equal. 300 pages, over 300 illustrations, including 18 double plates. The book is bound in cloth and half morocco.

Cloth-12mo., price, \$2.00. Half leather, library style, price, \$3.00.

FREDERICK J. DRAKE & CO. CHICAGO

One copy del. to Cat. Div.

LIBRARY OF CONGRESS

0 014 051 170 5