Lecture 7 Representative Firm

Hui-Jun Chen

The Ohio State University

January 13, 2023

Provide micro-foundation for the macro implication (Lucas critique)

■ Representative Consumer:

- Lecture 4: preference, constraints
- Lecture 5: optimization, application
- Lecture 6: Numerical Examples

Representative Firm:

• Lecture 7: production, optimization, application

Production Function

Production function describes the technology possibility for converting inputs into outputs.

Representative firm produces output Y with production function

$$Y = zF(K, N^d) (1)$$

- \blacksquare Y: output (consumption goods)
- \blacksquare z: total factor productivity (TFP) (productivity for the economy)
- K: capital (fixed for now, : 1-period model)
- N^d : labor demand (chose by firm, d represents demand)

Hui-Jun Chen (OSU)

Properties of Production Function: Marginal Product

- Marginal product: how much $Y \uparrow$ by one unit of $K \uparrow$ or $N^d \uparrow$.
 - $\bullet \ \, \text{Marginal product of capital (MPK):} \ zD_KF(K,N^d) \\$
 - Marginal product of labor (MPN): $zD_NF(K,N^d)$
- Marginal product is positive and diminishing:
 - Positive MP: $Y \uparrow$ if either $K \uparrow$ or $N^d \uparrow$
 - more inputs result in more output
 - **Diminishing MP**: MPK \downarrow as $K \uparrow$; MPN \downarrow as $N^d \uparrow$
 - the rate/speed of output increasing is decreasing
- Increasing marginal cross-products:
 - e.g. MPK \uparrow as $N \uparrow$; MPN \uparrow as $K \uparrow$

- **Return to scale**: how Y will change when both K and N increase
- Constant return to scale (CRS): $xzF(K, N^d) = zF(xK, xN^d)$
 - small firms are as efficient as large firms
- Increasing return to scale (IRS): $xzF(K, N^d) > zF(xK, xN^d)$
 - small firms are less efficient than large firms
- **Decreasing return to scale** (DRS): $xzF(K, N^d) < zF(xK, xN^d)$
 - small firms are more efficient than large firms

Example: Cobb-Douglas Production Function

- Cobb-Douglas: $zF(K,N) = zK^{\alpha}N^{1-\alpha}$, α is the share of capital contribution to output
- Positive MPK & MPN:
 - MPK = $D_K z F(K, N) = z \alpha K^{\alpha 1} N^{1 \alpha} = z \alpha \left(\frac{K}{N}\right)^{\alpha 1} > 0$
 - $\bullet \ \ \mathsf{MPN} = D_N z F(K,N) = z(1-\alpha) K^\alpha N^{-\alpha} = z(1-\alpha) \left(\tfrac{K}{N} \right)^\alpha > 0$
- Diminishing MP:
 - $\bullet \ \ \text{For} \ K\text{, } D_K\left(z\alpha K^{\alpha-1}N^{1-\alpha}\right)=z\alpha \textcolor{red}{(\alpha-1)}K^{\alpha-2}N^{1-\alpha}<0$
 - For N, $D_N(z(1-\alpha)K^{\alpha}N^{-\alpha})=z(1-\alpha)(-\alpha)K^{\alpha}N^{-\alpha-1}<0$
- Increasing marginal cross-product:
 - For MPK, $D_N(z\alpha K^{\alpha-1}N^{1-\alpha})=z\alpha(1-\alpha)K^{\alpha-1}N^{-\alpha}>0$
 - For MPN, $D_K(z(1-\alpha)K^{\alpha}N^{-\alpha})=z(1-\alpha)\alpha K^{\alpha-1}N^{-\alpha}>0$

Hui-Jun Chen (OSU)

7/13

Example: Cobb-Douglas and Return to Scale

Let's assume that Cobb-Douglas production is $zF(K, N) = zK^{\alpha}N^{\beta}$ So if both inputs are increasing by twice, then

$$zF(2K,2N) = z(2K)^{\alpha}(2N)^{\beta} = 2^{\alpha} \times 2^{\beta}zK^{\alpha}N^{\beta}$$
$$= 2^{\alpha+\beta}zK^{\alpha}N^{\beta} = 2^{\alpha+\beta}Y$$

- If $\alpha + \beta = 1$, then zF(2K, 2N) = 2Y, constant return to scale
- \bigcirc If $\alpha + \beta < 1$, then $zF(2K, 2N) = 2^{\alpha + \beta}Y < 2Y$, decreasing return to scale
- 3 If $\alpha + \beta > 1$, then $zF(2K, 2N) = 2^{\alpha + \beta}Y > 2Y$, increasing return to scale

Lecture 7 January 13, 2023

Visualization

Diminishing Marginal Product

Increasing Marginal Cross-product

Labor Input, Nd

Visualization: Changes in TFP

TFP shifts up the Production Function

TFP increases MPN

Labor Input, Nd

Solow Residual for US

We cannot see TFP, how to measure it?

■ Assume Cobb-Douglas production function: $Y = zK^{\alpha}N^{1-\alpha}$

- By data, $K/Y = 0.3 \Rightarrow$ $\alpha = 0.3$
- Can observe *K*, *Y*, *N* in data:

$$z = \frac{Y}{K^{0.3} N^{0.7}}$$

Hui-Jun Chen (OSU)

Lecture 7

Firm's Problem: Profit Maximization

Firm maximizes profit (π) , which is the revenue minus the wage bill:

$$\pi = \max_{N^d} zF(K, N^d) - wN^d \tag{2}$$

■ Constraints: $N^d > 0$, relatively simple!

Cobb-Douglas:
$$zF(K, N^d) = zK^{\alpha}(N^d)^{1-\alpha}$$
 (3)

FOC:
$$w = z(1 - \alpha)K^{\alpha}(N^d)^{-\alpha}$$
 (4)

$$(N^d)^{\alpha} = \frac{z(1-\alpha)K^{\alpha}}{w} \tag{5}$$

Labor demand:
$$N^d = \left(\frac{z(1-\alpha)K^\alpha}{w}\right)^{\frac{1}{\alpha}} = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}}K$$
 (6)

As $w \uparrow$, $N^d \downarrow \Rightarrow$ downward-sloping demand.

Hui-Jun Chen (OSU) Lecture 7 January 13, 2023 11/13

Payroll tax: suppose firms have to pay additional per-unit tax t>0 on the wage bill, then

Firm Problem:
$$\max_{N^d} zK^{\alpha}(N^d)^{1-\alpha} - w(1+t)N^d \tag{7}$$

FOC:
$$w(1+t) = z(1-\alpha)K^{\alpha}(N^d)^{-\alpha}$$
 (8)

$$N^{d} = K \left(\frac{z(1-\alpha)}{w(1+t)} \right)^{\frac{1}{\alpha}} \tag{9}$$

- wage \uparrow : $w \uparrow \Rightarrow N^d \downarrow$ (same as benchmark)
- $tax \uparrow: t \uparrow \Rightarrow N^d \downarrow$
- capital \uparrow : $K \uparrow \Rightarrow N^d \uparrow \Rightarrow$ what if firm can also choose K?

Hui-Jun Chen (OSU)

Experiment 2: Choice of Capital

Capital rent: suppose that firm can choose capital level but have to pay rof per-unit rent.

Firm Problem:
$$\max_{K,N^d} zK^{\alpha}(N^d)^{1-\alpha} - rK - wN^d \qquad (10)$$

FOC on N:
$$w = z(1-\alpha)K^{\alpha}(N^d)^{-\alpha}$$
 (11)

FOC on K:
$$r = z\alpha K^{\alpha-1}(N^d)^{1-\alpha}$$
 (12)

Divide (11) with (12):
$$\frac{w}{r} = \frac{(1-\alpha)}{\alpha} \frac{K}{N^d}$$
 (13)

Capital-Labor ratio:
$$\frac{K}{N^d} = \frac{w}{r} \frac{\alpha}{1 - \alpha}$$
 (14)

When firm can choose K, they choose both capital and labor such that (14) satisfied!

Lecture 7 January 13, 2023 13 / 13