3. Model proporcjonalnych hazardów

Model Coxa

Model proporcjonalnych hazardów

Szacowanie współczynników

Wnioskowanie

Model warstwowy

Modele w analizie przeżycia

 Najczęściej używany model proporcjonalnych hazardów, często nazywany modelem Coxa.

 Alternatywna rodzina modeli przyśpieszonego czasu do niepowodzenia (accelerated failure time model, AFT).

Hazard

- "Chwilowy współczynnik intensywności zdarzeń", jako funkcja czasu
 - Oznaczany przez $\lambda(t)$
- Jednostką są zdarzenia na jednostkę czasu
 - "Prędkość" występowania zdarzeń
 - $\lambda(t) \geq 0$
 - λ(t)∆t ≈ prawdopodobieństwo zdarzenia w (t, t +∆t], pod warunkiem niewystąpienia zdarzenia przed t

Funkcje hazardu: przykłady

Figure 1.1 Some types of hazard functions: (a) hazard for human mortality; (b) positive aging; (c) negative aging.

Funkcja hazardu i przeżycia

- Funkcja przeżycia S(t) opisuje prawdopodobieństwo wystąpienia zdarzenia po chwili czasu t
- Funkcja hazardu $\lambda(t)$ opisuje możliwość wystapienia zdarzenia tuż po chwili czasu t pod warunkiem, że nie wystąpiło do chwili t
- Obie funkcje zawierają pełną informacją o rozkładzie czasu do wystąpienia zdarzenia:

$$S(t) = e^{-\int_{0}^{t} \lambda(u) du}$$

Funkcja skumulowanego hazardu

Zdefiniowana jako

$$\Lambda(t) = \int_{0}^{t} \lambda(u) du$$

- Nieujemna i niemalejąca (gdyż λ(t)≥0)
- Zachodzi

$$-\ln S(t) = \int_{0}^{t} \lambda(u) du = \Lambda(t)$$

 Funkcja skumulowanego hazardu jest związana z λ(t) i S(t), więc również zawiera pełną informację o rozkładzie czasu do wystąpienia zdarzenia

Modelowanie funkcji hazardu

Załóżmy, że mamy wektor zmiennych niezależnych

$$Z(t)'=(Z_1(t), Z_2(t), ..., Z_p(t))$$

- w szczególnym przypadku, Z(t) może nie zależeć od czasu
- Model "względnego hazardu" ("względnego ryzyka") otrzymujemy przez przyjęcie, że

$$\lambda(t; \mathbf{Z}(t)) = \lambda_0(t) \cdot r(\mathbf{Z}(t))$$

gdzie *r()* jest ustaloną funkcją, np.

- $r(\mathbf{Z}(t)) = 1 + \beta' \cdot \mathbf{Z}(t)$
- $r(\mathbf{Z}(t)) = \{1 + \beta' \cdot \mathbf{Z}(t)\}^{-1}$
- $r(\mathbf{Z}(t)) = e^{\beta' \cdot \mathbf{Z}(t)}$

Model Coxa

Zakłada, że

$$\lambda(t; \mathbf{Z}(t)) = \lambda_0(t) \cdot e^{\beta' \mathbf{Z}(t)}$$

W szczególności, dla Z(t)≡ Z, otrzymujemy model proporcjonalnych hazardów:

$$\lambda(t; \mathbf{Z}) = \lambda_0(t) \cdot e^{\beta' \mathbf{Z}}$$

Model proporcjonalnych hazardów

 Zakłada, że wpływ zmiennej niezależnej Z na czas do wystąpienia niepowodzenia wyraża się poprzez przemnożenie funkcji hazardu przez stałą wartość liczbową

Przykład:

- Funkcja hazardu dla kobiet: $\lambda_F(t)$
- Funkcja hazardu dla mężczyzn: $\lambda_M(t) = \lambda_F(t) \cdot c$
- Interpretacja: hazard dla mężczyzn jest c razy mniejszy/większy niż dla kobiet, niezależnie od chwili czasu

Iloraz hazardów

 Równoważne sformułowanie modelu proporcjonalnych hazardów:

$$\frac{\lambda_{M}\left(t\right)}{\lambda_{F}\left(t\right)} = c$$

Iloraz hazardów *HR(t)*

- Model proporcjonalnych hazardów (PH) zakłada, że iloraz hazardów dla dwóch wartości zmiennej niezależnej Z jest stały w czasie
 - często iloraz jest (niepoprawnie) nazywany ryzykiem względnym (relative risk)

Iloraz hazardów w modelu PH (1)

$$\lambda(t) = \lambda_0(t) \cdot e^{\beta \cdot Z}$$

Przykład:

•Przyjmijmy Z=0, 1, 2, dla TNM= I, II, III

- •Funkcja hazardu dla TNM I: $\lambda_i(t)$ $=\lambda_{O}(t)\cdot e^{O\cdot\beta}$ $=\lambda_{o}(t)$
- •Funkcja hazardu dla TNM II: $\lambda_{||}(t) = \lambda_{0}(t) \cdot e^{1 \cdot \beta} = \lambda_{0}(t) \cdot e^{\beta}$ •Funkcja hazardu dla TNM III: $\lambda_{|||}(t) = \lambda_{0}(t) \cdot e^{2 \cdot \beta} = \lambda_{0}(t) \cdot e^{2\beta}$

Iloraz hazardów w modelu PH (2)

- Przykład (cd.):
 - Funkcja hazardu dla TNM I: $\lambda_I(t) = \lambda_O(t) \cdot e^{\mathbf{0} \cdot \mathbf{\beta}} = \lambda_O(t)$
 - Funkcja hazardu dla TNM II: $\lambda_{II}(t) = \lambda_{O}(t) \cdot e^{1 \cdot \beta} = \lambda_{O}(t) \cdot e^{\beta}$
 - Funkcja hazardu dla TNM III: $\lambda_{III}(t) = \lambda_0(t) \cdot e^{2 \cdot \beta} = \lambda_0(t) \cdot e^{2\beta}$
 - Iloraz hazardów dla Z=1 vs. Z=0:

$$\lambda_{II}(t)/\lambda_{I}(t) = \lambda_{O}(t) \cdot e^{\beta}/\lambda_{O}(t) = e^{\beta}$$

Dla Z=2 vs. Z=1:

$$\lambda_{III}(t)/\lambda_{II}(t) = \lambda_O(t) \cdot e^{2\beta}/\lambda_O(t) \cdot e^{\beta} = e^{\beta}$$

- Model zakłada, że wzrost Z o 1 zwiększa hazard e^{β} razy
 - iloraz hazardu (HR) dla Z=z+1 vs. Z=z wynosi e^β

Efekt zmiennej niezależnej w modelu PH

Wniosek: w modelu PH z jedną zmienną niezależną:

$$\lambda_{Z}(t) = \lambda_{O}(t) \cdot e^{\beta \cdot Z}$$

e^β wyraża <u>proporcjonalną</u> zmianę hazardu wynikającą ze wzrostu Z o 1 jednostkę

- β >0 \rightarrow hazard wzrasta; β <0 \rightarrow maleje
- Przykład:
 - Przyjmijmy Z=0, 1, 2 dla TNM= I, II, III
 - Dla β =1, otrzymujemy $e^{\beta} = e^1 = 2.73$
 - Wzrost TNM o jeden stopień zwiększa hazard (np. śmiertelność) 2.73 razy

Poziom odniesienia zmiennej niezależnej (1)

Przykład:

- Z=0, 1, 2, dla TNM= I, II, III
- Funkcja hazardu dla TNM $|:\lambda_{I}(t)| = \lambda_{O}(t) \cdot e^{O\beta} = \lambda_{O}(t)$
- Funkcja hazardu dla TNM II: $\lambda_{II}(t) = \lambda_{O}(t) \cdot e^{1\beta} = \lambda_{I}(t) \cdot e^{\beta}$
- Funkcja hazardu dla TNM III: $\lambda_{III}(t) = \lambda_0(t) \cdot e^{2\beta} = \lambda_1(t) \cdot e^{2\beta}$
- Wniosek: funkcje hazardu dla TNM II i III są zdefiniowane względem funkcji hazardu dla TNM I

Poziom odniesienia zmiennej niezależnej (2)

- Przykład (cd.):
 - Z=2, 1, 0, dla TNM= I, II, III
 - TNM III: $\lambda_{III}(t) = \lambda_O(t) \cdot e^{O\beta} = \lambda_O(t)$
 - TNM II: $\lambda_{II}(t) = \lambda_{O}(t) \cdot e^{1\beta} = \lambda_{III}(t) \cdot e^{\beta}$
 - TNM I: $\lambda_{I}(t) = \lambda_{O}(t) \cdot e^{2\beta} = \lambda_{III}(t) \cdot e^{2\beta}$
- Wniosek: funkcje hazardu dla TNM | i | są zdefiniowane względem funkcji hazardu dla TNM | ll
- Poziom odniesienia (Z=0) uległ zmianie!

Częściowa funkcja wiarogodności

- Przedstawmy dane Y jako zbiór zmiennych A₁,B₁,...,A_m,B_m
- Niech $A^{(j)} = (A_1, ..., A_j)$ and $B^{(j)} = (B_1, ..., B_j)$
- Załóżmy, że gęstość łącznego rozkładu (A^(m), B^(m)) można przedstawić jako

$$\prod_{j=1}^{m} f(b_j \mid b^{(j-1)}, a^{(j-1)}; \theta, \beta) \prod_{j=1}^{m} f(a_j \mid b^{(j)}, a^{(j-1)}; \beta)$$
częściowa funkcja wiarogodności

- Nie jest funkcją wiarogodności w "zwykłym" znaczeniu. Ale może być użyta do wnioskowania o β
 - z pewną stratą na efektywności szacowania

Częściowa funkcja wiarogodności dla modelu Coxa

$$\lambda(t; \mathbf{Z}(t)) = \lambda_0(t) e^{\beta \cdot \mathbf{Z}(t)}$$

- K obserwacji pełnych (zdarzeń) dla $t_{(1)} < ... < t_{(K)}$ (bez "zlepień")
- B_j =cenzurowanie w $[t_{(k-1)}, t_{(k)})$ i zdarzenia w $[t_{(k)}, t_{(k)} + h_k)$
- A_j =zdarzenie dla jednostki j w $[t_{(k)}, t_{(k)} + h_k)$
- $Y_i(t)=1$ jeśli jednostka pod obserwacją dla t, 0 w p.p.
- Dla niezależnego cenzurowania

$$L(\beta) = \prod_{k=1}^{K} f(a_k \mid b^{(k)}, a^{(k-1)}; \beta) = \prod_{k=1}^{K} \frac{\lambda(t_{(k)}; Z_{(k)}(t_{(k)})) h_k}{\sum_{l=1}^{n} Y_l(t_{(k)}) \lambda(t_{(k)}; Z_l(t_{(k)})) h_k}$$

$$=\prod_{k=1}^{K}\frac{\lambda_{0}(t_{(k)})h_{k}e^{\beta'Z_{(k)}(t_{(k)})}}{\sum_{l=1}^{n}Y_{l}(t_{(k)})\lambda_{0}(t_{(k)})h_{k}e^{\beta'Z_{l}(t_{(k)})}}=\prod_{k=1}^{K}\frac{e^{\beta'Z_{(k)}(t_{(k)})}}{\sum_{l=1}^{n}Y_{l}(t_{(k)})e^{\beta'Z_{l}(t_{(k)})}}$$

Jednoczesne zdarzenia (1)

- Niech $r_i(t) = exp\{\beta' \mathbf{Z}_i(t)\}$
- Wkład pojedyńczej obserwacji pełnej (zdarzenia) do $L(\beta)$ to

$$\frac{r_i(t)}{\sum_{l=1}^n Y_l(t) r_l(t)}$$

- Rozważmy 3 jednoczesne zdarzenia w t wśród 5 obserwacji
- Gdybyśmy znali dokładne czasy dla dwóch pierwszych zdarzeń, wkład do L(β) wynosiłby

$$\frac{r_1}{r_1 + r_2 + r_3 + r_4 + r_5} \cdot \frac{r_2}{r_2 + r_3 + r_4 + r_5} \text{ lub } \frac{r_2}{r_1 + r_2 + r_3 + r_4 + r_5} \cdot \frac{r_1}{r_1 + r_2 + r_3 + r_4 + r_5}$$

Jednoczesne zdarzenia (2)

- Metoda Breslowa: $\frac{r_1 r_2 r_3}{(r_1 + r_2 + r_3 + r_4 + r_5)^3}$
- Metoda Efrona: $\frac{r_1 r_2 r_3}{(r_1 + r_2 + r_3 + r_4 + r_5) \left(\frac{2r_1}{3} + \frac{2r_2}{3} + \frac{2r_3}{3} + r_4 + r_5\right) \left(\frac{r_1}{3} + \frac{r_2}{3} + \frac{r_3}{3} + r_4 + r_5\right)}$
- Metoda "dokładna": rozważyć wszystkie 3! konfiguracje i użyć średniej odpowiednich wkładów do L(β).
 - Problem: ogólnie, d!-d mnożeń; np. 8!-8=322560
- $\frac{r_1}{r_1 + r_2 + r_3 + r_4 + r_5} \cdot \frac{r_2}{r_2 + r_3 + r_4 + r_5} + \frac{r_2}{r_1 + r_2 + r_3 + r_4 + r_5} \cdot \frac{r_1}{r_1 + r_2 + r_3 + r_4 + r_5} \cdot \frac{r_1}{r_1 + r_3 + r_4 + r_5}$ $= \int_0^\infty \left\{ 1 \exp\left(\frac{r_1 t}{r_3 + r_4 + r_5}\right) \right\} \left\{ 1 \exp\left(\frac{r_2 t}{r_3 + r_4 + r_5}\right) \right\} e^{-t} dt$
 - Całkujemy numerycznie; złożoność O(d²)

Jednoczesne zdarzenia (3)

Potraktujmy dane jako "dyskretne". Wówczas możemy rozważyć

 $\frac{r_1 r_2 r_3}{\sum_{(i_1, i_2, i_3)} r_{i_1} r_{i_2} r_{i_3}}$

- Problem numeryczny: dla 10 jednoczesnych zdarzeń wśród 1000 obserwacji, mianownik zawiera 2.6·10²³ składników.
- Problem teoretyczny: odpowiedni model to

$$\frac{\lambda_i(t)}{1 - \lambda_i(t)} = \frac{\lambda_0(t)}{1 - \lambda_0(t)} e^{\beta' Z_i}$$

Jednoczesne zdarzenia (4)

- Metoda Breslowa: najszybsza, lecz najmniej dokładna.
 - Bardzo często domyślna w różnych pakietach statystycznych!
- Metoda "dokładna": złożona numerycznie.
- Metoda Efrona: szybka i daje dobre przybliżenie "dokładnej".
 - O ile liczba jednoczesnych zdarzeń nie jest zbyt duża.
- Metoda dla danych dyskretnych: nie dla modelu PH.

Pochodna logarytmu (częściowej) funkcji wiarogodności i macierz informacji

- Średnia ważona Z(t): $\overline{Z}(\beta,t) = \sum_{i=1}^{n} Z_i(t) \frac{Y_i(t)e^{\beta'Z_i(t)}}{\sum_{j=1}^{n} Y_j(t)e^{\beta'Z_j(t)}} \equiv \sum_{i=1}^{n} w_i(t)Z_i(t)$
- Gradient ("score") $U(\beta) = \frac{\partial \ln L(\beta)}{\partial \beta} = \sum_{k=1}^{K} \left\{ Z_{(k)}(t_{(k)}) \overline{Z}(\beta, t_{(k)}) \right\}$
- (Obserwowana) Macierz informacji $I(\beta) = -\frac{\partial^2 \ln L}{\partial \beta \partial \beta^T} = \sum_{k=1}^K V(\beta, t_{(k)})$

gdzie
$$V(\beta,t) = \sum_{i=1}^{n} w_i(t) \{Z_i(t) - \overline{Z}(\beta,t)\} \{Z_i(t) - \overline{Z}(\beta,t)\}^T$$

ważona wariancja Z w chwili t

Szacowanie parametrów modelu Coxa

- Oszacowanie β uzyskujemy rozwiązując $U(\hat{\beta}) = 0$
- Można pokazać, że asymptotycznie $\hat{\beta} \sim N[\beta, \{E(I(\beta))\}^{-1}]$
- Estymator wariancji: $I(\hat{\beta})^{-1}$

Testowanie hipotez (1)

- Testowanie hipotez H_0 : $\beta = \beta_0$ (np. $\beta = 0$)
 - Test ilorazu wiarogodności: $2\{\ln L(\hat{\beta}) \ln L(\beta_0)\} \equiv 2\{l(\hat{\beta}) l(\beta_0)\}$
 - Test Walda: $(\hat{\beta} \beta_0)^T I(\hat{\beta})(\hat{\beta} \beta_0)$
 - Test "score": $U^T(oldsymbol{eta}_0)I(oldsymbol{eta}_0)^{-1}U(oldsymbol{eta}_0)$
- Rozkład χ^2 z p (liczba elementów β) stopniami swobody

Testowanie hipotez (2)

- Test Walda, ilorazu wiarogodności i "score" równoważne asymptotycznie, ale nie dla "małych" próbek
 - Preferowany test ilorazu wiarogodności
- Test "score" dla jednej zmiennej kategorycznej równoważny testowi logrank.
- Uwaga na braki danych przy teście ilorazu wiarogodności!
 Modele powinny być szacowane na tym samym zbiorze danych.

Równoważność asymptotyczna testów

- Test Walda, ilorazu wiarogodności i "score" równoważne asymptotycznie.
 - Test Walda: przybliżenie $l(\beta)$ funkcją kwadratową w $\hat{\beta}$

$$l(\beta) \approx l(\hat{\beta}) + (\beta - \hat{\beta})^{T} U(\hat{\beta}) - (\beta - \hat{\beta})^{T} I(\hat{\beta})(\beta - \hat{\beta}) / 2$$
$$l(\hat{\beta}) - l(\beta_{0}) \approx (\hat{\beta} - \beta_{0})^{T} I(\hat{\beta})(\hat{\beta} - \beta_{0}) / 2$$

• Test "score": przybliżenie $l(\beta)$ funkcją kwadratową w β_0

$$l(\beta) \approx l(\beta_0) + (\beta - \beta_0)^T U(\beta_0) - (\beta - \beta_0)^T I(\beta_0)(\beta - \beta_0) / 2$$

$$U(\hat{\beta}) \approx U(\beta_0) - I(\beta_0)(\hat{\beta} - \beta_0) \Rightarrow I(\beta_0)^{-1} U(\beta_0) \approx (\hat{\beta} - \beta_0)$$

$$l(\hat{\beta}) - l(\beta_0) \approx U(\beta_0)^T I(\beta_0)^{-1} U(\beta_0) / 2$$

Własności testów dla "małych" próbek

- Test Walda, ilorazu wiarogodności i "score" równoważne asymptotycznie, ale nie dla "małych" próbek
 - Przykład: test H₀: μ=1 dla obserwacji Y=4 z rozkładu Poissona

Testowanie hipotez liniowych

- Testowanie liniowych hipotez H_0 : $C\beta = \beta_0$
 - Np. (0,0,1,-1) $(\beta_1, \beta_2, \beta_3, \beta_4)^T = 0 \Leftrightarrow \beta_3 = \beta_4$
- Test Walda: $(C\hat{\beta} \beta_0)^T \{CI(\hat{\beta})^{-1}C^T\}^{-1} (C\hat{\beta} \beta_0) \sim \chi^2_{rank(C)}$
- Test ilorazu wiarogodności:
 - Szacujemy model "alternatywny" (β)
 - Szacujemy model odpowiadający H₀ (β*)
 - Statystyka testowa: $2\{l(\hat{\beta}^*)-l(\hat{\beta})\}\sim \chi^2_{rank(C)}$

Przedziały ufności dla współczynników modelu

- Dopasowanie modelu do danych pozwala na uzyskanie oszacowania współczynników β i ich błędów standardowych (SE)
- Przy ich użyciu możemy skonstruować 95% przedział ufności dla β_i : $[\hat{\beta}_i 1.96 \cdot SE(\hat{\beta}_i), \hat{\beta}_i + 1.96 \cdot SE(\hat{\beta}_i)]$
- Przedział ufności dla ilorazu hazardów:

$$[e^{\hat{\beta}_i-1.96\cdot SE(\hat{\beta}_i)},e^{\hat{\beta}_i+1.96\cdot SE(\hat{\beta}_i)}]$$

Przedział ufności oparty na "profilowanej" funkcji wiarogodności

- Użyteczne jeśli problem z przybliżeniem rozkładem normalnym (Wald)
- Idea: dla różnych wartości β_i dopasowujemy model do danych i wykreślamy wartość $l(\hat{\beta})$
- 95% przedział ufności dla β_i oparty na $\arg\max\{l(\hat{\beta})-3.84/2\}$
 - wymaga "ręcznego" programowania

FIGURE 3.2: Profile likelihood curve and 95% confidence interval cutoff for prothrombin time

"Nieskończone" współczynniki

Gdy np. w jednej z grup nie było zdarzeń:

Grupa	Żyjący	Zgony
Leczona	40	0
Kontrolna	30	10

Przykład (S+):

Testy dla "nieskończonych" współczynników

- Test ilorazu wiarogodności:
 - $l(10.582)-l(0) \approx l(\infty)-l(0)$
 - wynik ma sens
- Test "score" : przybliżenie funkcją kwadratową w 0
 - max dla 3.4
 - wynik ma sens
- Test Walda : przybliżenie funkcją kwadratową w 10.6
 - B. złe, wynik nie ma sensu

FIGURE 3.3: Likelihood ratio, score, and Wald tests for an infinite coefficient

Model PH: niedrobnokomórkowy rak płuca (NSCLC) (1)

- ◆Laudański *et al.*, *Eur Respir J* (2001)
- Wpływ ekspresji białka P53 na czas przeżycia 102 pacjentów
- ◆Test logrank: p=0.008 →

Model PH: NSCLC (2)

Zmienna "P53e" = 0 jeśli brak ekspresji, 1 jeśli ekspresja

		 [95% Conf. Interval]
.7859412		
		 [95% Conf. Interval]
2.194471		

- Wniosek: ekspresja P53 zwiększa hazard zgonu (śmiertelność) w przybliżeniu 2 razy
- Efekt jest istotnie statystyczny na poziomie istotności 5%
 - •Uwaga: dla testu logrank, *p*=0.008

Alternatywna postać modelu PH (1)

Zauważmy, że

$$\lambda(t) = \lambda_0(t) \cdot e^{\beta \cdot \mathbf{Z}}$$

implikuje

$$\Lambda(t) = \Lambda_0(t) \cdot e^{\beta \cdot \mathbf{Z}}$$

W konsekwencji

$$e^{-\Lambda(t)} = e^{-\Lambda_0(t) \cdot \exp(\boldsymbol{\beta} \cdot \mathbf{Z})}$$

oraz

$$S(t) = S_0(t)^{\exp(\boldsymbol{\beta} \cdot \mathbf{Z})}$$

gdzie $S_0(t)$ jest funkcją przeżycia odpowiadającą bazowej funkcji hazardu

Alternatywna postać modelu PH (2)

$$S(t) = S_0(t)^{\exp(\beta \cdot \mathbf{Z})}$$

• Wzrost $Z = z \rightarrow Z = z + 1$ powoduje:

$$S_z(t) = S_0(t)^{\exp(\beta \cdot \mathbf{z})}$$
 \rightarrow $S_{z+1}(t) = S_0(t)^{\exp(\beta \cdot \mathbf{z} + \beta)} = S_z(t)^{\exp(\beta)}$

- β>0 oznacza zmniejszenie wartości p-stwa przeżycia
 - wyższą wartość hazardu

Model PH na skali logarytmicznej

Ponieważ

to

$$\lambda(t) = \lambda_0(t) \cdot e^{\beta \cdot Z} \qquad \qquad \Lambda(t) = \Lambda_0(t) \cdot e^{\beta \cdot Z}$$
 o
$$\ln \lambda(t) = \ln \lambda_0(t) + \beta \cdot Z \qquad \qquad \ln \Lambda(t) = \ln \Lambda_0(t) + \beta \cdot Z$$

- Na skali logarytmicznej otrzymujemy model liniowy
 - interpretacja β jak w modelu prostej regresji liniowej
- \wedge $\Lambda(t) = -\ln S(t)$, skad In $\{-\ln S(t)\} = \ln \{-\ln S_0(t)\} + \beta \cdot Z$
 - Związek użyteczny dla graficznego sprawdzenia założenia PH

Szacowanie bazowej funkcji hazardu

Dla zaobserwowanych czasów zdarzeń $t_{(1)} < ... < t_{(K)}$ kładziemy

$$\hat{\lambda}_0(t_{(k)}) = 1 - \hat{\xi}_k$$

gdzie

$$\sum_{j:t_{j}=t_{(k)}} \frac{\delta_{j} e^{\hat{\beta}'Z_{j}(t_{(k)})}}{1 - (\hat{\xi}_{k})^{\beta'Z_{j}(t_{(k)})}} = \sum_{i=1}^{n} Y_{i}(t_{(k)}) e^{\hat{\beta}'Z_{i}(t_{(k)})}$$

Jeśli nie ma jednoczesnych czasów zdarzeń, to

$$\hat{\xi}_{k} = \left\{ 1 - \frac{e^{\hat{\beta}' Z_{(k)}(t_{(k)})}}{\sum_{i=1}^{n} Y_{i}(t_{(k)}) e^{\hat{\beta}' Z_{i}(t_{(k)})}} \right\}$$

Szacowanie bazowej funkcji przeżycia

Podobnie jak w metodzie Kaplana-Meiera, używamy

$$\hat{S}_0(t) = \prod_{t_{(k)} \le t} \hat{\xi}_k$$

Bez zmiennych niezależnych mamy

$$\sum_{j:t_{i}=t_{(k)}} \frac{\delta_{j}}{1-\hat{\xi}_{k}} \equiv \frac{d_{k}}{1-\hat{\xi}_{k}} = \sum_{i=1}^{n} Y_{i}(t_{(k)}) \equiv n_{k} \Rightarrow \hat{\xi}_{k} = \frac{n_{k}-d_{k}}{n_{k}}$$

czyli estymator Kaplana-Meiera

Szacowanie bazowej funkcji skumulowanego hazardu

Korzystając z oszacowania funkcji przeżycia, mamy

$$\hat{\Lambda}_0(t) = -\ln \hat{S}_0(t) = -\sum_{t_{(k)} \le t} \ln \hat{\xi}_k$$

 $\hat{\Lambda}_0(t) = -\ln \hat{S}_0(t) = -\sum_{t_{(k)} \leq t} \ln \hat{\xi}_k$ • Alternatywnie, kładąc $(\xi_k)^{e^{-\hat{\beta}'Z_j(t_{(k)})}} \approx 1 + e^{-\hat{\beta}'Z_j(t_{(k)})} \ln \xi_k$ dostajemy

$$\sum_{j:t_j=t_{(k)}} \frac{\delta_j}{-\ln \widetilde{\xi}_k} = \sum_{i=1}^n Y_i(t_{(k)}) e^{\hat{\beta}' Z_i(t_{(k)})} \Rightarrow \widetilde{\xi}_k = \exp\left(-\frac{d_k}{\sum_{i=1}^n Y_i(t_{(k)}) e^{\hat{\beta}' Z_i(t_{(k)})}}\right)$$

i w konsekwencji estymator Breslowa:

$$\widetilde{\Lambda}_{0}(t) = -\ln \widetilde{S}_{0}(t) = \sum_{t_{(k)} \le t} \frac{d_{k}}{\sum_{i=1}^{n} Y_{i}(t_{(k)})} e^{\hat{\beta}' Z_{i}(t_{(k)})}$$

Model PH: NSCLC (3)

Zmienna "P53e" = 0 jeśli brak ekspresji, 1 jeśli ekspresja

Coef.		 [95% Conf. Interval]
.7859412		.1936769 1.378205
Haz. Ratio		 [95% Conf. Interval]
2.194471		1.213704 3.967775

- Wniosek: ekspresja P53 zwiększa śmiertelność w przybliżeniu
 2 razy w porównaniu do braku ekspresji
 - •logarytm hazardu wzrasta o 0.78

Model PH: NSCLC, ekspresja P53

Oszacowanie (logarytmu) funkcji skumulowanego hazardu

Model PH dla wielu zmiennych niezależnych

• Model dla trzech zmiennych Z_1 , Z_2 , i Z_3 przyjmuje postać:

$$\lambda(t) = \lambda_0(t)e^{\beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3}$$

- exp(β₁) opisuje zmianę hazardu wynikającą ze wzrostu
 Z₁ o 1 jednostkę <u>dla ustalonych wartości Z₂ i Z₃</u>
- Model umożliwia skorygowanie efektu Z_1 ze względu na możliwy efekt Z_2 i Z_3

Model PH: NSCLC (4)

- Laudański et al., Eur Respir J (2001)
- Mutacja genu P53 (analiza DNA)
- Wpływ na czas przeżycia102 chorych
 - ◆Test logrank: p<0.001 →</p>

mutacja	ekspresja +
-	27.8%
+	82.3%

Model PH: NSCLC (5)

Zmienna "P53m" = 0 jeśli brak mutacji, 1 jeśli mutacja

	Haz. Ratio			P> z	[95% Conf.	Interval]
P53m	5.670694 .8191471	2.308899	4.262 -0.538	0.000	2.553043 .3959371	

- Wniosek: skorygowanie ze względu na efekt mutacji "usuwa" efekt espresji białka P53 (współliniowość?)
- Ocena ekspresji białka nie "dodaje informacji" jeśli wiemy czy występuje mutacja

Model PH: NSCLC (6)

t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
P53m P53e	1.735312 1994916	.4071634 .3709294	4.26 -0.54	0.000 0.591	.937286 9264999	2.533337 .5275166
_t Ha:	z. Ratio St	d. Err.	z	P> z	[95% Conf.	Interval]
· · · · · · · · · · · · · · · · · · ·		 308899 038457	4.262 -0.538	0.000 0.591	2.553043 .3959371	12.59547 1.694718

- Obecność mutacji zwiększa śmiertelność ponad 5.5 razy
- Teoretycznie, model definiuje 4 "grupy ryzyka":

mutacja (P53m)	ekspresja (P53e)	iloraz hazardów
- (0)	- (0)	1
- (0)	+ (1)	$e^{1.74\cdot 0 - 0.20\cdot 1} = 1 \cdot e^{-0.20} = 0.82$
+ (1)	- (0)	$e^{1.74\cdot 1 - 0.20\cdot 0} = e^{1.74} \cdot 1 = 5.67$
+ (1)	+ (1)	$e^{1.74\cdot 1 - 0.20\cdot 1} = 5.67 \cdot 0.82 = 4.65$

Model PH: marskość wątroby

- Christiansen et al., Gastroenterology (1985)
- Próba kliniczna z 248 chorymi na marskość wątroby
- Czas przeżycia
- W oparciu o model Coxa, zdefinowano indeks prognostyczny

Marskość wątroby: indeks prognostyczny

	Coeff.	Std. Err.	P> z
bilirubin [log (µmol/L)]	2.51	0.32	<0.001
age [exp {(years-20)/10}]	0.0069	0.0016	<0.001
cirrhosis [no=0, yes=1]	0.88	0.22	<0.001
albumin [g/L]	-0.50	0.018	<0.006
cholestiasis [no=0, yes=1]	0.68	0.27	0.01
<pre>drug [azathiorpine=0, placebo=1]</pre>	0.52	0.21	0.01

indeks prognostyczny:

 $PI = 2.51 \times bilirubin + 0.0069 \times age + 0.88 \times cirrhosis - 0.50 \times albumin + 0.68 \times cholestiasis + 0.52 \times drug$

Marskość wątroby: walidacja indeksu

85 chorych z grupy placebo w innej próbie klinicznej

Figure 7. Observed (——) and estimated (——) survival funct of three groups of placebo-treated patients from a trolled trial of o-penicillamine (Reference 4): group PI < 2.5, n = 44, O = 2, E = 0.9; group 2: 2.5 < 1 3.75, n = 22, O = 5, E = 2.7; group 3: PI > 3.75, n = O = 9, E = 9.0. O and E are the observed and expendence of the proof of three groups of placebo-treated patients from a trolled trial of o-penicillamine (Reference 4): group PI < 2.5, n = 44. O = 2, E = 0.9; group 2: 2.5 < 1 3.75, n = 0.75, n = 0.7

Warstwowy model PH (1)

 W niektórych sytuacjach założenie PH może nie być spełnione dla wszystkich zmiennych niezależnych

 Można wówczas użyć modelu PH dla zmiennych, dla których założenie jest spełnione, przy odpowiedniej modyfikacji bazowych funkcji hazardu

Warstwowy model PH (2)

- Załóżmy PH dla zmiennej binarnej Y
- Przyjmijmy, że założenie nie jest spełnione dla X
- Możemy wówczas zdefiniować następujący model:

$$\lambda(t) = \lambda_1(t) \cdot e^{\beta \cdot Y}$$
 if $X = x_1$
 $\lambda(t) = \lambda_2(t) \cdot e^{\beta \cdot Y}$ if $X = x_2$

- Jest to model warstwowy:
 - bazowe funkcje hazardu są różne dla różnych warstw, zdefinowanych wartościami zmiennej niezależnej X, ale
 - efekt Y jest nadal wyrażony jako proprocjonalna zmiana funkcji hazardu (dla ustalonej wartości X)

Interpretacja warstwowego modelu PH

$$\lambda(t) = \lambda_1(t) \cdot e^{\beta \cdot Y}$$
 jeśli $X = x_1$
 $\lambda(t) = \lambda_2(t) \cdot e^{\beta \cdot Y}$ jeśli $X = x_2$

- Gdy X=x₁, wzrost Y o 1 zmienia funkcję hazardu e^β razy.
 Podobnie dla X=x₂.
- ♦ Ale iloraz hazardów dla x₂ vs x₁ wynosi

$$\{\lambda_2(t)\cdot e^{\beta\cdot Y}\}/\{\lambda_1(t)\cdot e^{\beta\cdot Y}\} = \lambda_2(t)/\lambda_1(t)$$

Wniosek: zależy od t!

Szacowanie parametrów warstwowego modelu PH

Częściowa funkcja wiarogodności (s indeksuje warstwy):

$$L(\beta) = \prod_{s=1}^{S} \prod_{k=1}^{K_s} \frac{\lambda_{0s}(t_{(k)}) h_k e^{\beta' Z_{(k)}(t_{(k)})}}{\sum_{l=1}^{n_s} Y_l(t_{(k)}) \lambda_{0s}(t_{(k)}) h_k e^{\beta' Z_l(t_{(k)})}} = \prod_{s=1}^{S} \prod_{k=1}^{K_s} \frac{e^{\beta' Z_{(k)}(t_{(k)})}}{\sum_{l=1}^{n_s} Y_l(t_{(k)}) e^{\beta' Z_l(t_{(k)})}}$$

gdzie K_s – liczba czasów zdarzeń w warstwie s, n_s – liczba obserwacji w warstwie s

• Oszacowanie β uzyskujemy rozwiązując $U(\hat{\beta}) = 0$

Warstwowy model PH: przykład (1)

- Niklińska et al., Lung Cancer (2001)
- Ekspresja czynnika wzrostu VEGF
- Wpływ na przeżycie 89 chorych leczonych operacyjnie
- ◆Test logrank (dla trendu):
 p <0.001→</p>

Wastwowy model PH: przykład (2)

- Trzy typy histpat: SqCCa, AdenoCa, LCCa
- Graficzna ocena założenia proporcjonalnych hazardów:

wykresy powinny być równoległe →

(Nie-)Warstwowy model PH: przykład (3)

Model ze wieloma zmiennymi niezależnymi:

```
    -"vegf" = 1, 2, 3 dla niskiej, średniej, i wysokiej ekspresji VEGF
    -"p53m" = 0 jeśli brak mutacji P53, 1 jeśli mutacja
    -"sex" = 0 dla kobiet, 1 dla mężczyzn
    -"tnm" = 1, 2, 3 dla TNM I, II and IIIA
```

-"adCC" = 0 dla SqCCa/LCCa, 1 dla AdenoCa-"ICC" = 0 dla SqCCa/AdenoCa, 1 dla LCCa

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
 vegf	1.428507	.3145729	1.619	0.105	.9277663	2.199512
p53m	2.767612	1.039047	2.712	0.007	1.325983	5.776602
sex	1.114986	.471841	0.257	0.797	.4864711	2.555535
tnm	3.208635	.8751451	4.274	0.000	1.88	5.476245
adCC	1.699829	.617637	1.460	0.144	.8339101	3.464906
1CC	3.330073	1.384905	2.893	0.004	1.473864	7.524021

- /

Warstwowy model PH: przykład (4)

 Warstwowy model z warstwami zdefiniowanymi typem histopatologicznym:

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
vegf	1.548393	.3493506	1.938	0.053	.99502	2.409519
p53m	2.738736	1.061083	2.600	0.009	1.281636	5.852422
sex	1.00601	.4357343	0.014	0.989	.4304479	2.351171
tnm	3.095804	.8460452	4.135	0.000	1.811968	5.289278
					<u></u>	
					Stratified	by histpat

- Efekt typu histpat nie jest oszacowany
- Jest uwzględniony poprzez bazowe funkcje hazardu

Warstwowanie i liczebność próbki (1)

- Przyjmijmy $\beta=0$ i $V(\beta,t)\equiv V$ dla ważonej wariancji Z
- Oczekiwana wartość oszacowania wariancji wynosi V(n-1)/n
- Załóżmy brak jednoczesnych zdarzeń i cenzurowania dla n=10
- Oczekiwana wartość informacji wynosi

$$E\{I(\beta)\} = V(9/10 + 8/9 + ... + 1/2 + 0/1)$$

- I-1 daje wariancję oszacowania β
- Niech n=200. Wówczas
 E{I(β)} = V(199/200 + 198/199 + ... + 1/2 + 0/1) ≈ 194.1 V
- Rozważmy 4 warstwy, każdą z 50 zdarzeniami. Wówczas
 E{I(β)} = 4V(49/50 + 48/49 + ... + 1/2 + 0/1) ≈ 182 V
 - (194.1-182) / 194.1 = 6% strata efektywności

Warstwowanie i liczebność próbki (2)

- Dla *n*=200, E{*l*(β)} ≈ 194.1 V
- ◆ Dla 4 warstw z 50 zdarzeniami, E{I(β)} ≈ 182 V
 - (194.1-182) / 194.1 = 6% strata efektywności
- Dla 50 warstw z 4 zdarzeniami każda,

$$E\{I(\beta)\} = 50V(3/4 + 2/3 + 1/2 + 0/1) \approx 95.8 \text{ V}$$

• (194.1-95.8) / 194.1 = 51% strata efektywności

Warstwowanie i liczebność próbki (3)

- Załóżmy d=200 dla n=1400 i obserwacje cenzurowane > czas ostatniego zdarzenia
- Wówczas

$$E\{I(\beta)\} = V \sum_{i=1}^{200} \frac{1200 + i - 1}{1200 + i} \approx 199.85V$$

Dla 50 równolicznych warstw z 4 zdarzeniami każda:

$$E\{I(\beta)\}=50V\sum_{i=1}^{4}\frac{24+i-1}{24+i}=\frac{27}{28}+\frac{26}{27}+\frac{25}{26}+\frac{24}{25}\approx 192.44V$$

Strata efektywności: (1-192.44/199.85)=3.7%

4. Diagnostyka dla modelu proporcjonalnych hazardów

Reszty

Ocena graficzna dopasowania modelu

Test założenia proporcjonalnych hazardów

Model PH: założenia

$$\lambda(t) = \lambda_0(t) \cdot e^{\alpha \cdot X + \beta \cdot Y}$$

- Główne założenia:
 - niezależność obserwacji
 - nie-informatywne cenzurowanie
 - proporcjonalność hazardów (PH)
 - postać funkcjonalna efektu zmiennej niezależnej

Zmienne zależne od czasu w modelu Coxa (1)

$$\lambda(t) = \lambda_0(t) \cdot e^{\alpha \cdot X + \beta \cdot Z(t)}$$

Interpretacja: jeśli w chwili czasu t dla jednostki A jest Z(t)=z, a dla B jest Z(t)=z+1 (a wartości pozostałych zmiennych niezależnych są równe), to

$$\lambda_{B}(t)/\lambda_{A}(t) = e^{\beta \cdot (z+1) - \beta \cdot z} = e^{\beta \cdot z + \beta - \beta \cdot z} = e^{\beta}$$

• W rezultacie, e^{β} jest *ilorazem hazardu* związanym ze wzrostem Z(t) o 1 w dowolnej chwili czasu t

Zmienne zależne od czasu w modelu Coxa (2)

 Zmienne "zewnętrzne": nie związane z obserwowaną jednostką, o wartościach znanych z góry (np. wiek, planowane dawki leku, itd.)

- Zmienne "wewnętrzne": mierzalne tylko gdy jednostka pozostaje pod obserwacją; np. wielokrotne pomiary ciśnienia krwi chorego
 - Wymagają ostrożności przy budowie modelu. Ich uwzględnienie może np. spowodować błąd w oszacowaniu efektu zmiennej, którą jesteśmy zainteresowani.

Współczynniki zależne od czasu w modelu Coxa

Możliwe jest również założenie, że efekt zmiennej Z zależy od czasu:

$$\lambda(t) = \lambda_0(t) \cdot e^{\alpha \cdot X + \beta(t) \cdot Z}$$

• Dla np. $\beta(t) = \beta + \beta_T \cdot t$ zachodzi

$$\lambda(t) = \lambda_0(t) e^{\alpha \cdot X + \beta \cdot Z + \beta_{\tau} \cdot t \cdot Z} = \lambda_0(t) \cdot e^{\alpha \cdot X + \beta \cdot Z + \beta_{\tau} \cdot Z \cdot t} = \lambda_0(t) \cdot e^{\alpha \cdot X + \beta \cdot Z + \beta_{\tau}}$$

Przyjmując $Z(t) = Z \cdot t$

- możemy traktować ten model jako model ze zmienną zależną od czasu
- ale efekt zmiennej może być trudny do przedstawienia i interpretacji

Proste metody oceny założenia PH (1)

- Iloraz hazardów dla dwóch wartości zmiennej niezależnej Z
 jest stały w czasie
- Proste metody graficzne oceny założenia:
 - Jeśli krzywe przeżycia się krzyżują, funkcje hazardu nie mogą być proporcjonalne
 - Zgodnie z modelem,

In
$$\{-\ln S(t)\} = \ln \{-\ln S_o(t)\} + \beta \cdot Z$$
.

Wykres $ln{-ln}S(t)$ } w funkcji czasu lub jego logarytmu powininen mieć postać równoległych krzywych

Proste metody oceny założenia PH (2)

- Metody graficzne mogą być trudne w interpretacji
- Formalne testy mogą być bardziej przydatne
- Rozważmy model

$$\lambda(t) = \lambda_0(t) \cdot e^{\beta \cdot Z + \beta_T \cdot Z \cdot t}$$

- można użyć innych funkcji czasu, np. In t
- Dla Z=z i Z=z+1 otrzymujemy

$$\lambda_{z+1}(t)/\lambda_{z}(t) = e^{\beta(z+1)+\beta_{\tau}(z+1)\cdot t - \beta z - \beta_{\tau}z\cdot t} = e^{\beta+\beta_{\tau}\cdot t}$$

- Iloraz hazardów zależy od czasu! Ale tylko jeśli $\beta_T \neq 0...$
- ... więc można użyć modelu do testu czy $\beta_T = 0$

Model PH: NSCLC, ekspresja P53

Zmienna "P53e" = 0 jeśli brak ekspresji białka, 1 jeśli ekspresja

Coef.		 [95% Conf. Interval]
.7859412		.1936769 1.378205
•		 [95% Conf. Interval]
2.194471		1.213704 3.967775

Założenie PH: NSCLC (1)

- Krzywe przeżycia się nie przecinają

Równoległe krzywe?

Założenie PH: NSCLC (2)

- Zmienna "P53e" = 0 jeśli brak ekspresji białka, 1 jeśli ekspresja
- "P53e · time" dodana do modelu

	_t					[95% Conf.	
rh	P53e	.9412935	.7483608	1.26	0.208	5254666	2.408054
t	i					068566	.0542757

Note: Second equation contains variables that continuously vary with respect to time; variables are interacted with current values of _t.

- Wniosek: test dla β_T = 0 nie jest istotny statystycznie na poziomie istotności 5%
- Założenie może byc przyjęte dla P53e

Ocena założeń przy użyciu reszt

- Dla modelu PH można zdefiniować różne rodzaje reszt:
 - reszty martyngałowe
 - reszty oparte na dewiancji
 - (skalowane) reszty "score"
 - (skalowane) reszty Schoenfelda
 - ...
- Są używane do oceny różnych aspektów dobroci dopasowania modelu na podstawie wykresów
- Wykresy nie są łatwe w interpretacji

Przydatne wykresy reszt

- Reszty martyngałowe/dewiancji vs lin. komb. zmiennych
 - duże reszty sygnalizują problem z dopasowaniem modelu do danych
- Reszty martyngałowe vs ciągła zmienna niezależna
 - wygładzony wykres może sugerować postać funkcjonalną zmiennej
- Reszty Schoenfelda dla zmiennej vs czas
 - wygładzony wykres może być przydatny do oceny założenia PH

Reszty martyngałowe

$$M(t) = N(t) - \int_{0}^{t} Y(u) \lambda_{0}(u) e^{\beta^{T} Z(u)} du$$

- N(t) to proces zliczający zdarzenia, Y(t) to proces zbioru ekspozycji na ryzyko zdarzenia
- W szczególności, dla $t = \infty$ i zmiennych niezależnych stałych w czasie

$$\hat{M}_{i} = \delta_{i} - \hat{\Lambda}_{0}(t_{i}) \exp(\hat{\beta}^{T} Z_{i}) \equiv \delta_{i} - \hat{E}_{i}$$

gdzie δ_i i t_i to wskaźnik zdarzenia i czas obserwacji dla i-tej jednostki

- M(t) = obserwowane oczekiwane zdarzenia dla chwili czasu t
- Własności
 - $\mathsf{E}(M_i) = 0$
 - $Cov(M_i, M_i) = 0$

 - $\operatorname{Cov}(\hat{M}_i, \hat{M}_i) < 0$

Reszty oparte na dewiancji

Dla zmiennych niezależnych stałych w czasie

$$\hat{r}_{Di} = sign(\hat{M}_i) \sqrt{-\hat{M}_i - \delta_i \log(\delta_i - \hat{M}_i)}$$

• Motywacja:
$$2\{l(\hat{\beta}^*)-l(\hat{\beta})\}=\sum_i \hat{r}_{Di}^2$$

- Szereg Taylora pierwszego rzędu daje $\hat{r}_{Di} \approx \frac{\delta_i E_i}{\sqrt{\hat{E}_i}}$ ** reszta Pearsona
- Reszty oparte na dewiancji mają bardziej symetryczny rozkład niż M_i

Reszty martyngałowe i dewiancji: użyteczne wykresy

- Reszty martyngałowe/dewiancji vs lin. komb. zmiennych
 - duże reszty sygnalizują problem z dopasowaniem modelu do danych
- Reszty martyngałowe vs ciągła zmienna niezależna
 - wygładzony wykres może sugerować postać funkcjonalną zmiennej

Reszty martyngałowe i dewiancji: sumaryczna ocena dopasowania

 Wykres może ujawnić obserwacje, do których model nie pasuje (nie w przykładzie)

Figure 4.2 Index plots of the martingale and deviance residuals.

Postać funkcjonalna ciągłej zmiennej niezależnej stałej w czasie (1)

$$\lambda(t) = \lambda_0(t) \cdot e^{\beta \cdot f(Z)}$$

- ◆Jaka f()?
 - Dopasowujemy model "zerowego" (z wartościami β równymi 0)
 - Sporządzamy wykres reszt martyngałowych dla danej zmiennej
 - "Wygładzamy" wykres dla ustalenia f()
- Przykład: punkt odcięcia (zmienna binarna) →

Postać funkcjonalna ciągłej zmiennej niezależnej stałej w czasie (2)

Przykład: trend liniowy i logarytmiczny

FIGURE 5.3: PBC data, residual plots for age and bilirubin

FIGURE 5.4: PBC data, logarithmic plot for bilirubin

Zauważalne "smugi" wynikające z cenzurowania

Postać funkcjonalna ciągłej zmiennej niezależnej stałej w czasie: model Poissona (1)

- Przyjmijmy $\lambda(t) = \lambda_0(t) \cdot e^{\beta f(Z)}$
- Wówczas $E(\delta_i|z) = \Lambda_0(t_i) \cdot e^{\beta f(z)}$ oraz In $E(\delta_i|z) = \ln \Lambda_0(t_i) + \beta f(z)$
 - Gdybyśmy znali $\Lambda_0(t_i)$, byłby to model regressji Poissona
- Idea: oszacujmy $\Lambda_0(t)$, potraktujmy wskaźnik zdarzeń jako zliczenie i zastosujmy model regresji Poissona z gładką f(z)
 - można użyć modelu PH z oryginalnymi zmiennymi niezależnymi
- Postać funkcjonalna przyjęta na podstawie wykresu f(z)

Postać funkcjonalna ciągłej zmiennej niezależnej stałej w czasie: model Poissona (2)

 Trend logarytmiczny dla bilirubiny, liniowy dla wieku i albuminy

FIGURE 5.11: PBC Data, functional form using Poisson approach

Elastyczne postaci funkcjonalne ciągłej zmiennej niezależnej stałej w czasie

- Zamiast "znajdować" postać funkcjonalną, możena próbować ją modelować bezpośrednio
 - wielomiany "cząstkowe" (fractional polynomials)
 - spline'y regresyjne (liniowe, kwadratowe, kubiczne, ...)
 - spline'y wygładzające
- Spline'y są "lokalne" i dlatego bardziej użyteczne
 - spline'y regresyjne wymagają wyboru węzłów
 - w spline'ach wygładzających stopień wygładzania może być wybrany "automatycznie"

FIGURE 5.14: Spline fits for bilirubin

Reszty "score"

- Score process dla obserwacji i $U_i(\beta,t) = \int_0^t \{Z_i(u) \overline{Z}(\beta,u)\}^T dM_i(u)$
 - wektor!
- Dla k-tego czasu zdarzenia oraz zmiennej j:

$$U_{ijk}(\beta) = \int_{t_{(k-1)}}^{t_{(k)}} \{Z_{ij}(u) - \overline{Z}_{j}(\beta, u)\} dM_{i}(u)$$

- Reszta "score" dla obserwacji i i zmiennej j: $\hat{r}_{Uij} = U_{ij}(\hat{\beta}, \infty)$
 - Macierz reszt, *U*, rozmiaru n x p
 - $\sum_{i} U_{ii} = 0$ (score equation)

Skalowane reszty "score"

$$\hat{r}_{Ui}^* = \hat{r}_{Ui} I(\hat{\beta})^{-1} = \hat{r}_{Ui} var(\hat{\beta})$$

- Zachodzi $\hat{r}_{Uij}^* \approx \hat{\beta}_j \hat{\beta}_{j(i)}$ gdzie $\beta_{j(i)}$ to współczynnik uzyskany dla j-tej zmiennej po usunięciu i-tej obserwacji (metoda "scyzorykowa")
- Użyteczne w diagnostyce wpływu obserwacji na model
- Ponadto, $(U^*)^T U^* = var(\hat{\beta})(U^T U)var(\hat{\beta})$ jest "odpornym" estymatorem wariancji

Skalowane reszty "score": diagnostyka wpływu na model (1)

- Niedoszacowanie dużych wartości
 - zmiany w wariancji oszacowań współczynników ignorowane
- Porównujemy wartości z oszacowanymi błędami standardowymi
- Wykres w funkcji rang czasu może ujawnić związek między czasem a wpływem obserwacji na model

Figure 4.10 Plot of the exact (*) and approximate (\bullet) delta-betas for Age against rank order of time to infection.

Figure 4.11 Plot of the exact (*) and approximate (\bullet) delta-betas for Sex against rank order of time to infection.

Skalowane reszty "score": diagnostyka wpływu obserwacji na model (2)

Reszty Schoenfelda (1)

• Definiowane dla czasów zdarzeń $t_{(k)}$:

$$\hat{r}_{Sk} = \int_{t_{(k-1)}}^{t_{(k)}} \sum_{i} \left\{ Z_{i}(u) - \overline{Z}(\hat{\beta}, u) \right\}^{T} d\hat{M}_{i}(u) = \int_{t_{(k-1)}}^{t_{(k)}} \sum_{i} \left\{ Z_{i}(u) - \overline{Z}(\hat{\beta}, u) \right\}^{T} dN_{i}(u)$$

$$= \sum_{i:t_{i}=t_{(k)}} \delta_{i} \left\{ Z_{i}(t_{(k)}) - \overline{Z}(\hat{\beta}, t_{(k)}) \right\}^{T}$$

- wektor!
- Macierz reszt Schoenfelda S rozmiaru K x p

Reszty Schoenfelda (2)

- Jeśli nie ma jednoczesnych zdarzeń $\hat{r}_{Sk} = \left\{ Z_{(k)}(t_{(k)}) \overline{Z}(\hat{\beta}, t_{(k)}) \right\}^T$
 - $\sum_{k} r_{kj} = 0$ (score equation)
 - asymptotycznie o średniej równej zero, nieskorelowane

 Dla d_k jednoczesnych zdarzeń, programy komp. definiują d_k osobnych reszt, jak wyżej

Skalowane reszty Schoenfelda (1)

$$\hat{r}_{Sk}^* = \hat{r}_{Sk} I(\hat{\beta}, t_{(k)}) = \hat{r}_{Sk} var^{-1}(\hat{\beta}, t_{(k)})$$

• Niech $\lambda(t) = \lambda_0(t) \cdot e^{\beta(t)^2 \mathbf{Z}}$

• Wówczas $E\{(\hat{r}_{Skj}^*)^T\} + \hat{\beta}_j \approx \beta_j(t_{(k)})$

gdzie $\hat{oldsymbol{eta}}_{j}$ jest oszacowaniem współczynnika dla zmiennej stałej w czasie

• Wykres $(\hat{r}_{Skj}^*)^T + \hat{\beta}_j$ w funkcji czasu może ujawnić problem z PH

Skalowane reszty Schoenfelda (2)

- ullet W praktyce, $V(\hat{eta},t_{(k)})$ może być niestabilne dla "późnych" $t_{(k)}$
- Z drugiej strony, $V(\hat{\beta},t)$ zmienia się powoli
- Ponadto mamy $\sum_{k} V(\hat{\beta}, t_{(k)}) = I(\hat{\beta})$
- W praktyce, zakłada się stałą V i używa średniej I / d, skąd

$$\hat{r}_{Sk}^* = \left(\sum_{k} d_k\right) \hat{r}_{Sk} var(\hat{\beta})^{-1} = d \cdot \hat{r}_{Sk} var(\hat{\beta})^{-1}$$

Macierz skalowanych reszt Schoenfelda S* rozmiaru Kx p

Skalowane reszty Schoenfelda (3)

- Uwaga na modele warstwowane: założenie o stałej V może nie być spełnione dla warstw o mocno różnych Z
- Przykład: interakcje zmiennych z warstwami
 - 4 szpitale jako warstwy, Z=1 dla leczenia w szpitalu i, 0 w p.p.
 - Model: $\lambda(t) = \lambda_{0i}(t) \cdot \exp(\beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3 + \beta_4 Z_4 + ...)$
 - Problem: $Z_1=0$ w warstwach 2, 3, 4, więc jej wariancja = 0
- "Ręczne" rozwiązanie
 - Dopasuj model do danych
 - 2. Dopasuj model do każdej z warstw (użyj oszacowań β z pkt. 1 jako wartości startowych, liczba iteracji=0), wylicz skalowane reszty
 - 3. Użyj reszt do sporządzenia wykresów / testów

Skalowane reszty Schoenfelda: współczynniki zależne od czasu

FIGURE 6.4: Time-dependent coefficient plot for the gastric data

Dla modelu PH oczekujemy poziomej linii

Wykresy skalowanych reszt Schoenfelda

Istnieje szereg testów do testowania założenia PH

Większość odpowiada wykresowi skalowanych reszt
 Schoenfelda dla pewnej funkcji czasu g(t)

Testy oparte na skalowanych resztach Schoenfelda (1)

• Ustalamy funkcję g(t); wektor $g^T = (g(t_{(1)}), ..., g(t_{(K)})) \equiv (g_1, ..., g_K)$

• Test globalny ~
$$\chi^2_p$$

$$T = \frac{(g - \overline{g} \cdot 1_K)^T S^* var^{-1} (\hat{\beta}) S^{*T} (g - \overline{g} \cdot 1_K)}{d \sum_{k} (g_k - \overline{g})^2}$$

• Test dla jednej zmiennej
$$T_j = \frac{\left\{\sum (g_k - \overline{g})\hat{r}_{Skj}^{*T}\right\}^2}{d \ var(\hat{\beta}_j)\sum (g_k - \overline{g})^2}$$

• \approx test dla współczynnika w prostej regresji liniowej dla r^*_{Skj} vs. $g(t_k)$

Testy oparte na skalowanych resztach Schoenfelda (2)

- Oprócz wyniku testu warto zwrócić uwagę na wykres
 - β(t) może być funkcją kwadratową, której może nie wykryć test dla funkcji liniowej
- Problemem jest również moc statystyczna testu

Model PH: NSCLC, ekspresja P53

Zmienna "P53e" = 0 jeśli brak ekspresji, 1 jeśli ekspresja

_	Coef.		 [95% Conf. Interval]
	.7859412		
	Haz. Ratio		 [95% Conf. Interval]
	2.194471		1.213704 3.967775

Założenie PH: NSCLC (1)

- Krzywe przeżycia się nie przecinają
- Równoległe?

Założenie PH: NSCLC (2)

- Zmienna "P53e" = 0 jeśli brak ekspresji, 1 jeśli ekspresja
- "P53e · time" dodana do modelu

	_t					[95% Conf.	
rh	P53e	.9412935	.7483608	1.26	0.208	5254666	2.408054
t	i					068566	.0542757

Note: Second equation contains variables that continuously vary with respect to time; variables are interacted with current values of _t.

- Wniosek: test dla β_T = 0 nie jest statystycznie istotny na poziomie istotności 5%
- Założenie PH dla ekspresji P53 wydaje się być spełnione

Założenie PH: NSCLC (3)

Wygładzony wykres skalowanych reszt Schoenfelda dla P53e

- Wygładzona krzywa bliska poziomej
- Dla testu Schoenfelda p=0.819 brak trendu w czasie

Model PH: NSCLC, ekspresja i mutacja P53

- "P53m" = 0 jeśli brak mutacji, 1 jeśli mutacja
- "P53e" = 0 jeśli brak ekspresji, 1 jeśli ekspresja

	Haz. Ratio		z		[95% Conf.	_
P53m	5.670694 .8191471	2.308899		0.000	2.553043 .3959371	12.59547 1.694718

- Wniosek: skorygowanie ze względu na efekt mutacji "usuwa" efekt espresji białka P53 (współliniowość?)
- Ocena ekspresji białka nie "dodaje informacji" jeśli wiemy czy występuje mutacja

Dopasowanie modelu: NSCLC, ekspresja i mutacja P53

- Reszty oparte na dewiancji vs lin. kombinacja P53e i P53m
- Wykres trudny w interpretacji tylko cztery grupy
- Powinien być symetryczny, bez wyraźnie odstających obserwacji
 - •kilka dużych, dodatnich reszt?

Założenie PH: NSCLC, mutacja P53 (1)

Krzywe przeżycia się przecinają

Założenie PH: NSCLC, mutacja P53 (2)

• "P53m · time" added to the model

	_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
rh	P53e P53m	2435042 .2350653	.3749779 .7795496	-0.65 0.30	0.516 0.763	9784474 -1.292824	.491439 1.762954
t	P53m	.0729449	.0344783	2.12	0.034	.0053686	.1405211

Note: Second equation contains variables that continuously vary with respect to time; variables are interacted with current values of _t.

Założenie PH: NSCLC, mutacja P53 (3)

Test Schoenfelda

	rho	chi2	df	Prob>chi2
P53e P53m	-0.23896 0.34884	3.29 7.75	1	0.0697 0.0054
global test		7.81	2	0.0201

Warstwowy model PH: NSCLC, ekspresja P53

_	Haz. Ratio			P> z	[95% Conf.	_
P53m	5.670694 8191471	2.308899	4.262 -0.538	0.000		12.59547 1.694718

Model dla ekspresji P53, warstwowy ze względu na mutację P53

Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
.8154742	.3033883	-0.55	0.583	.3933054	1.690793

Stratified by P53m

- Wniosek: efekt ekspresji "znika" po uwzględnieniu mutacji
 - •Warstwowy test logrank: *p*=0.58

Dopasowanie modelu: NSCLC, ekspresja P53

- Reszty oparte na dewiancji vs. efekt P53e (=-0.20 dla P53e=1)
- Wykres trudny w interpretacji tylko dwie grupy
- Bez wyraźnie odstających obserwacji

Strategie dla nie-proporcjonalnych hazardów (1)

"Znaczący efekt"?

- Efekt wieku wydaje się nie być stały w czasie (wzrasta po pierwszych 1-1.5 roku)...
- ale zmiany w czasie są niewielkie w porównaniu do "globalnego" efektu

FIGURE 6.9: DVT/PE data, test of PH for age

Strategie dla nie-proporcjonalnych hazardów (2)

"Efekt rzeczywisty"?

- Test dla $\beta(t)=Zt$ nie jest istotny statystycznie, dla $\beta(t)=Z\ln t$ jest ...
- ... z powodu odstających reszt

FIGURE 6.10: Outliers and test for PH

Strategie dla nie-proporcjonalnych hazardów (3)

- Użycie modelu warstwowego
 - efekt zmiennej warstwującej pozostaje nie oszacowany
 - warstwy dla zmiennej ciągłej?
 - strata na efektywności?
- Użycie modelu PH dla odcinków czasu
- Użycie modelu ze współczynnikiem zależnym od czasu
- Użycie innego modelu (sumarycznych hazardów, AFT, ...)

Współczynnik zależny od czasu w modelu Coxa : przykład (1)

- Nikliński et al., Eur Respir J (1998)
- Przedoperacyjny poziom CYFRA 21-1 jako czynnik prognostyczny w operowalnym NSCLC
- Wpływ na czas przeżycia 94 chorych leczonych chirurgicznie

◆ Test logrank (trend): p<0.001→</p>

Współczynnik zależny od czasu w modelu Coxa: przykład (2)

Zmienne objaśniające:

```
"level" = 1 dla podwyższonego, 0 dla normalnego poziomu CYFRA "stage2" = 1 dla TNM II, 0 w dla I/IIIA "stage3" = 1 dla TNM IIIA, 0 dla I/II "adeno" = 1 dla AdenoCa, 0 dla SqCCa/LCCa "large" = 1 dla LCCa, 0 dla SqCCa/AdenoCa
```

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
level stage2 stage3 adeno large	8.793789 1.570952 6.164546 5.018086 3.530907	3.807352 .8384226 3.181685 2.236916 1.580739	5.02 0.85 3.52 3.62 2.82	0.000 0.397 0.000 0.000	3.763921 .5519169 2.241679 2.094582 1.468301	20.54526 4.471489 16.9523 12.02206 8.490974

Współczynnik zależny od czasu w modelu Coxa: przykład (3)

Test założenia PH

	rho	chi2	df	Prob>chi2
level	0.42286	8.24	1	0.0041
stage2	0.01139	0.01	1	0.9418
stage3	-0.09119	0.28	1	0.5977
adeno	0.07211	0.21	1	0.6502
large	0.01765	0.01	1	0.9103
global test		9.98	5	0.0759

	_t	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
rh							
	level	-2.770215	1.688021	-1.64	0.101	-6.078676	.5382463
	stage2	.4993004	.5394972	0.93	0.355	5580946	1.556695
	stage3	2.037793	.5289788	3.85	0.000	1.001014	3.074573
	adeno	1.944006	.492415	3.95	0.000	.9788907	2.909122
	large	1.570528	.4876386	3.22	0.001	.6147741	2.526282
t	+ 						
	level	.1954465	.0676342	2.89	0.004	.0628859	.3280071

Note: Second equation contains variables that continuously vary with respect to time; variables are interacted with current values of t.

Współczynnik zależny od czasu w modelu Coxa : przykład (4)

	_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
rh	 						
	stage2	.4993004	.5394972	0.93	0.355	5580946	1.556695
	stage3	2.037793	.5289788	3.85	0.000	1.001014	3.074573
	adeno	1.944006	.492415	3.95	0.000	.9788907	2.909122
	large	1.570528	.4876386	3.22	0.001	.6147741	2.526282
	level	-2.770215	1.688021	-1.64	0.101	-6.078676	.5382463
	+						
t							
	level	.1954465	.0676342	2.89	0.004	.0628859	.3280071

Dla level=1 dostajemy

$$\lambda(t) = \lambda_0(t) \cdot \exp(0.499 \cdot stage2 + ... + 1.571 \cdot large - 2.77 + 0.195 \cdot t)$$

a dla $level=0$

$$\lambda(t) = \lambda_0(t) \cdot \exp(0.499 \cdot stage2 + \dots + 1.571 \cdot large)$$

Iloraz hazardów wynosi

$$HR = \exp(-2.77 + 0.195 \cdot t)$$

Współczynnik zależny od czasu w modelu Coxa : przykład (5)

- Iloraz hazardów dla podwyższonego i normalnego poziomu CYFRA zależy od czasu
 - HR <1 dla t<14.2 mies., HR >1 dla t >14.2 mies.
- Trudność w interpretacji: początkowo efekt prewencyjny?
- Trudność w opisie
 - HR=exp($-2.77 + 0.195 \cdot t$)?
 - Z = level · t?

Model PH: komplikacje (1)

• Rozważmy dwie zmienne, binarną Z_1 oraz Z_2 .

Niech dla obu zachodzi model PH, tj.

$$\lambda(t \mid z_1, z_2) = \lambda_0(t) e^{\beta_1 z_1 + \beta_2 z_2}$$

• Załóżmy, że używamy modelu tylko z Z_1 .

Model PH: komplikacje (2)

• Brzegowa funkcja hazardu dla $Z_1 = z_1$:

$$\lambda(t \mid z_1) = \lambda_0(t) e^{\beta_1 z_1} E\{e^{\beta_2 z_2} \mid Y(t) = 1, Z_1 = z_1\}$$

gdzie

$$E\left\{e^{\beta_2 z_2} \mid Y(t) = 1, Z_1 = z_1\right\} = \frac{\int e^{\beta_2 z_2} \exp\left\{\Lambda_0(t) e^{\beta_1 z_1 + \beta_2 z_2}\right\} C(t; z_2) dG(z_2)}{\int \exp\left\{\Lambda_0(t) e^{\beta_1 z_1 + \beta_2 z_2}\right\} C(t; z_2) dG(z_2)}$$

 $G(z_2)$, dystrybuanta Z_2 , a $C(t,z_2)$ – funkcja przeżycia dla zmiennej cenzurującej.

W rezultacie

$$\frac{\lambda(t \mid z_1 = 1)}{\lambda(t \mid z_1 = 0)} = e^{\beta_1} \frac{E\{Y(t)e^{\beta_2 z_2} \mid Z_1 = 1\}}{E\{Y(t)e^{\beta_2 z_2} \mid Z_1 = 0\}} \equiv e^{\beta(t)}$$

Model PH: komplikacje (2)

- Jeśli $\beta_2 \neq 0$, pominięcie Z_2 spowoduje obciążenie oszacowania β_1 .
 - Nawet jeśli rozkład wartości Z₂ jest zrównoważony dla Z₁
 - Problem w próbach klinicznych!
- \bullet Ponadto spowoduje zależność od czasu HR dla Z_1 .
 - Efekt trudno odróżnić od współczynnika zależnego od czasu