Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный нефтяной технический университет» Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке

«ОБРАЗОВАНИЕ И НАУКА В СОВРЕМЕННЫХ УСЛОВИЯХ»

Сборник материалов Внутривузовской научно-практической конференции 15-16 февраля 2016 г.

УДК 661.124; 628.54; 67.08; 54.574 ББК 72 О23 **ISBN**

О23 Образование и наука в современных условиях: Сборник материалов Внутривузовской научно-практической конференции. – Стерлитамак: Изд-во «ПОЛИГРАФИЯ», 2016. – **411** с. ISBN

Сборник научных статей включает в себя материалы Внутривузовской научно-практической конференции «Образование и наука в современных условиях», прошедшей в ФГБОУ ВПО «Уфимский государственный нефтяной технический университет», филиал в г. Стерлитамаке 15-16 февраля 2016 г.

Издание предназначено для научных работников, преподавателей и студентов.

Материалы публикуются в авторской редакции.

Авторы несут ответственность за достоверность материалов, изложенных в сборнике.

ISBN

© Уфимский государственный нефтяной технический университет, 2016

- 2. Синтез ингибитора кислотной коррозии на основе циклических азотсодержащих соединений / Тимербаев Г.Г., Иванов А.Н., Исламутдинова А.А., Калимуллин Л.И. //В сборнике: Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность. Сборник материалов Всероссийской научно-практической конференции с международным участием. ФГБОУВПО "УГНТУ" Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке. 2013. С. 70-71.
- 3. Синтез ингибирующего состава для предотвращения коррозии нефтепромыслового оборудования / Даминев Р.Р., Исламутдинова А.А., Иванов А.Н., Хамзин И.Р. // Бутлеровские сообщения. 2015. Т. 43. № 7. С. 106-111.
- 4. Синтез четвертичных аммониевых соединений на основе отходов производства аллилхлорида и их практическое применение / Исламутдинова А.А. // диссертация на соискание ученой степени кандидата химических наук / Уфимский государственный нефтяной технический университет. Уфа. 2006.
- 5. Choudhary, Y. K., Sabhapondit, A., Kumar, A., Soc. Petrol. Eng. SPE Int. Conf. Exhib. Oilfield Corros., 2012, 264-273.
- 6. А.И. Иванов, А.Р. Дашкина, И.Р. Хамзин, Г.Р. Галиева, П.С. Сайтмуратов, А.А. Исламутдинова. Ингибитор коррозии на основе продуктов конденсации ванилина и анилина. Актуальные проблемы науки в студенческих исследованиях (биология, экология и химия) II Всеросс. студ. Науч.-практич. Конф.: Саранск. С.15-17, 2015.

УДК 620.197.3

В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов, А.А. Исламутдинова

СИНТЕЗ АНТИКОРРОЗИОННОЙ ДОБАВКИ НА ОСНОВЕ ДИАМИНОВ

Филиал ФГБОУ ВПО «Уфимский государственный нефтяной технический университет» в г. Стерлитамаке

В настоящее время в нефтедобывающей и нефтеперерабатывающей промышленности используемое оборудование подвержено износу вследствие коррозии. В связи с этим для предотвращения преждевременного выхода из строя нефтедобывающих установок применяются соответствующие ингибиторы коррозии, в том числе кислотной [1].

В настоящее время на первой производственной площадке ОАО «БСК» в городе Стерлитамаке выпускаются ингибиторы серии «Викор», которые основаны на азотсодержащих органических соединениях – алкилимидазолинах изостроения, органической кислоты, неионогенного поверхностно-активного вещества и растворителя.

В связи с тем, что в последнее время стоимость имидазолинов увеличиваются, а их производственные объёмы снижаются, возникает потребность в производстве более дешёвого продукта, не уступающего по

своим показателям предыдущие, и способного заменить их на рынке. Проанализировав сложившуюся ситуацию, мы решили заняться разработкой состава и технологии получения ингибитора.

Проведя литературный обзор существующих ингибиторов кислотной коррозии [2-3], нами был сделан вывод, что соединения четвертичного азота являются основой многих современных ингибиторов [4]. Нами предлагается получать четвертичные соединения азота из доступного сырья, в частности, этилендиамина (ЭДА), формальдегида и уксусной кислоты (рис. 1).

Синтез дициандиаммониевого соединения идет по реакции:

$$2 \text{ H}_{2}\text{C} = \text{C} + \text{H}_{2}\text{N} + \text{H}_{2} + \text{H}_{2} + \text{C} + \text{C}$$

Рис. 1 - Уравнение реакции получения ингибитора коррозии

В ходе работы были проведены исследования по изучению физико-химических свойств полученного соединения. Для этого продукт синтеза был подвергнут, в частности, хроматографическому и спектрометрическому анализам для подтверждения структуры соединения. Полученные результаты представлены в таблице 1.

Исследуемое соединение было подвергнуто электрохимическому анализу на индикаторе скорости коррозии МОНИКОР-2М. Для получения точных результатов защитного действия ингибирующего вещества была произведена репрезентативная выборка значений концентрации исследуемого ингибирующего состава в конечном объёме испытуемого раствора кислоты. Для этого были выбраны следующие процентные концентрации: 0,25; 0,5; 0,75; 1,0; 1,5; а также осуществлён контрольный опыт без применения ингибитора кислотной коррозии. Концентрация соляной кислоты во всех экспериментах составляла 10 %. Полученные обработаны В программном комплексе «CEAMP» представлены в ниже следующих графиках (рис. 2-3).

Таблица 1 - Физико-химические показатели соединения

Наименование	Показатель
1. Внешний вид	сиропообразная масса от
	бесцветного до желтого цвета
2. Растворимость в дистиллированной воде при 40^{0} С	полная
3. Стабильность, об/мин (3000 об/мин., $\tau = 15$	устойчив
мин.)	(не расслаивается)
4. Относительная вязкость водного раствора	
в соотношении $1:1$ об.при 20^{0} С, спз не	1,48
менее	
5. Плотность при 20 ⁰ C, г/см ³	1,0800
6. Массовая доля азота, %	15,0
7. Массовая доля уксусной кислоты, % мас.	_
8. Массовая доля формальдегида, % мас.	_
9. pH	7,0
10. Кислотность, мг КОН	19,1

 $Puc.\ 2$ - Cкорость коррозии (мм/год) для концентраций $0,\ 0.5\ u\ 1,5\ \%$

 $Puc.\ 3$ - Скорость коррозии (мм/год) для концентраций $0.25,\ 0.75\ u\ 1,0$

Как видно из полученных данных, исследуемое дициандиаммониевое соединение на опыте проявляет ингибирующую способность в кислой среде. При достижении значения концентрации ингибитора 0,75 % дальнейшее увеличение содержания вещества в растворе практически не снижает скорость коррозии. Из этого можно сделать вывод, что данная концентрация действующего вещества является оптимальной для защиты от коррозии.

Список использованных источников:

- 1. Защитные свойства ингибиторов коррозии на основе азотсодержащих и бор-, азотсодержащих соединений / Исламутдинова А.А., Евдокимова А.С., Гайдукова И.В., Калимуллин Л.И. // Актуальные проблемы гуманитарных и естественных наук. 2010. № 8. С. 33-35.
- 2. Синтез ингибитора кислотной коррозии на основе циклических азотсодержащих соединений / Тимербаев Г.Г., Иванов А.Н., Исламутдинова А.А., Калимуллин Л.И. // В сборнике: Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность. Сборник материалов Всероссийской научно-практической конференции с международным участием. ФГБОУВПО "УГНТУ" Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке. 2013. С. 70 71.
- 3. Синтез ингибирующего состава для предотвращения коррозии нефтепромыслового оборудования / Даминев Р.Р., Исламутдинова А.А., Иванов А.Н., Хамзин И.Р. // Бутлеровские сообщения. 2015. Т. 43. № 7. С. 106-111.
- 4. Синтез четвертичных аммониевых соединений на основе отходов производства аллилхлорида и их практическое применение / Исламутдинова А.А. // диссертация на соискание ученой степени кандидата химических наук / Уфимский государственный нефтяной технический университет. Уфа. 2006.

СОДЕРЖАНИЕ

Секция 1 – Общая химическая технология

В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов «ЗЕЛЕНЫЕ» ИНГИБИТОРЫ	3
В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов, А.А. Исламутдинова СИНТЕЗ АНТИКОРРОЗИОННОЙ ДОБАВКИ НА ОСНОВЕ ДИАМИНОВ	4
Д.Р. Арифулина, Д.А. Суркова ИСПОЛЬЗОВАНИЕ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ В ЦЕМЕНТНОЙ ПРОМЫШЛЕННОСТИ	8
Д.Р. Арифулина, Д.А. Суркова ПЕРСПЕКТИВЫ УТИЛИЗАЦИИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ В ЦЕМЕНТНОЙ ПРОМЫШЛЕННОСТИ	10
Д.Р. Арифулина, Д.А. Суркова ПРОБЛЕМЫ НАКОПЛЕНИЯ И УТИЛИЗАЦИИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ В РЕСПУБЛИКЕ БАШКОРТОСТАН	11
Д.В. Бакке ГИДРИРОВАНИЕ УГЛЕВОДОРОДОВ НА НИКЕЛЕВЫХ КАТАЛИЗАТОРАХ	13
Д.В. Бакке МЕТОДЫ СИНТЕЗА НАНЕСЕННЫХ КАТАЛИЗАТОРОВ ГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ	15
Д.В. Бакке, М.Ю. Черезов МИКРОВОЛНОВЫЙ СИНТЕЗ В КАТАЛИЗЕ	17
З.Р. Бахтиярова ЛИКВИДАЦИЯ РАЗЛИВОВ НЕФТИ НА ПОВЕРХНОСТИ ВОДЫ	20
3.Р. Бахтиярова РЕКУЛЬТИВАЦИЯ НЕФТЕЗАГРЯЗНЕННЫХ БОЛОТ	23
3.Р. Бахтиярова, Н.Н. Шарафутдинова, Н.М. Абдрахимова ОЦЕНКА ТОКСИЧНОСТИ ОТХОДОВ ОБОГАЩЕНИЯ МЕТОДОМ ФИТОТЕСТИРОВАНИЯ	26
Р.А. Буляккулов, Р.Ф. Нафикова РАЗРАБОТКА ХИМИКАТОВ ДОБАВОК НА ОСНОВЕ ПРОДУКТОВ НЕФТЕХИМИИ ДЛЯ ПЕРЕРАБОТКИ ХЛОРСОДЕРЖАЩИХ ПОЛИМЕРОВ	29
Н.А. Быковский, Н.Н. Фанакова, Л.Н. Пучкова ОСОБЕННОСТИ ЗАГРЯЗНЕНИЯ ПОЧВ ПРИ ДОБЫЧЕ НЕФТИ	31
В.Ф. Галиев, А.А. Исламутдинова ОБЗОР КАТАЛИТИЧЕСКИХ СИСТЕМ ПРИМЕНЯЕМЫХ ДЛЯ	34