

Q Search

Ø (□) (

1000	ta=pd.read_excel('CreditCardData.xlsx') ta.head()						
	Card_ID	Campai	gn_Responce	Registration_D	Date Gende	r Birth_Date	
0	100005950		False	1998-11	-18 M	1984-02-06	
1	100022191		True	1999-09	-15 F	1959-09-11	
2	100025442		False	1998-05	-12 M	1970-08-25	
3	100026513		False	1999-02	-12 M	1951-03-12	
4	100039145		False	2000-08-	12 M	1949-06-08	
, di	ata.shape						
. (297, 5)						
: d	ata.dtypes						
C F	ard_ID ampaign_Resp legistration_ sender		int bo datetime64[n obje	ol s]			

Simple Random Sampling

- Random sampling without replacement: Repeatation of samples are not allowed.
- Random sampling with replacement: Repeatation of samples are allowed.

```
# Task - Select 5 records randomly from Binom sheet and save it as a datafram df1

df1 = data.sample(n = 5, random_state= 44)

df1
```

	Card_ID	Campaign_Responce	Registration_Date	Gender	Birth_Date
252	105607063	False	1998-05-27	F	1940-03-21
175	103828605	False	1998-05-29	М	1966-04-26
192	104235958	False	1998-01-27	F	1951-04-25
43	100867201	True	1999-12-17	F	1957-05-10
28	100614020	True	1998-07-21	М	1958-11-19

Check the indexes of the selected sample df1.index

Int64Index([252, 175, 192, 43, 28], dtype='int64')

```
# Check the counts of campaign response
    df1.Campaign Responce.value counts(normalize= True)
41: False
             0.6
             0.4
    True
    Name: Campaign Responce, dtype: float64
    data.Campaign Responce.value counts(normalize= True)
51: False
          0.835017
    True
             0.164983
    Name: Campaign Responce, dtype: float64
6]: df1 = data.sample(n = 100, random state= 44)
    df1
           Card_ID Campaign_Responce Registration_Date Gender Birth Date
    252 105607063
                                 False
                                             1998-05-27
                                                             F 1940-03-21
    175
        103828605
                                 False
                                            1998-05-29
                                                            M 1966-04-26
    192
        104235958
                                 False
                                             1998-01-27
                                                               1951-04-25
        100867201
                                 True
                                            1999-12-17
                                                             F 1957-05-10
        100614020
                                 True
                                                            M 1958-11-19
                                            1998-07-21
    157
                                                            F 1984-08-09
        103475707
                                 True
                                            2000-03-15
```

```
df1.Campaign Responce.value_counts(normalize= True)
17]:
[17]: False
            0.86
              0.14
      True
      Name: Campaign Responce, dtype: float64
      #Task - Select 10% of records randomly, and create a dataframe df2
181:
      df2 = data.sample(frac = 0.1, random state= 44)
      df2.shape
[18]: (30, 5)
191: # Check indexes
      df2.index
[19]: Int64Index([252, 175, 192, 43, 28, 33, 12, 134, 185, 278, 20, 287, 179,
                  148, 201, 46, 294, 95, 110, 107, 174, 211, 226, 36, 65, 135,
                  277, 7, 229, 88],
                 dtype='int64')
201: # Check the counts of campaign response
      df2.Campaign Responce.value counts(normalize= True)
1207: False 0.8
      True 0.2
      Name: Campaign Responce, dtype: float64
```

```
#Task - Select 35 records with replacement. Create a dataframe df3
   df3 = data.sample(n = 35, random state= 44, replace= True)
  # Check indexes
   df3.index
  Int64Index([276, 241, 173, 59, 96, 84, 239, 120, 151, 195, 199, 67, 227,
              109, 245, 100, 57, 257, 14, 120, 213, 96, 287, 72, 189, 72,
               86, 242, 144, 116, 50, 18, 92, 285, 1],
              dtype='int64')
   sum(df3.index.duplicated())
   Stratified Sampling
# Find out what is the % distribution by Gneder
   data['Gender'].value counts()/data.shape[0]
       0.572391
        0.427609
   Name: Gender, dtype: float64
# Task - Select 30% of records stratified according to Gender
    from sklearn.model_selection import train_test_split
```

```
# Create sample - df1 and df2
df1, df2 = train_test_split(data, test_size = 0.3, stratify = data['Gender'], random_state = 44)
#Train
df1.shape[0]/data.shape[0]
0.696969696969697
#Test
df2.shape[0]/data.shape[0]
0.30303030303030304
df2.head()
        Card_ID Campaign_Responce Registration_Date Gender Birth Date
 102
     102366360
                               False
                                           2000-05-14
                                                           M 1967-12-05
 199
      104449587
                               False
                                           2000-01-15
                                                              1968-11-23
      103241485
 140
                               False
                                           1999-05-08
                                                           M 1959-06-22
  258
     105820678
                               False
                                           2001-09-14
                                                          F 1948-03-27
   75 101746024
                               False
                                           1999-06-30
                                                          M 1950-10-12
  df2['Gender'].value_counts(normalize= True)
       0.577778
       0.422222
```

■ U Markdown ∨

```
df2['Gender'].value_counts(normalize= True)
: M
       0.577778
       0.422222
  Name: Gender, dtype: float64
  df1['Gender'].value_counts(normalize= True)
       0.570048
       0.429952
  Name: Gender, dtype: float64
  # Task - Select 25% of records from 'data' stratified based on 'Campaign_Responce' variable.
  data['Campaign_Responce'].value_counts(normalize= True)
   False 0.835017
   True 0.164983
   Name: Campaign Responce, dtype: float64
```