

Apuntes

Nicolas Muñoz

Teoria De Integración Licenciatura en Matemática Pontificia Universidad Católica - Chile

12 de septiembre de 2025

Índice

1.	Introducción a la Integración de Riemann	
	1.1. Particiones y Sumas de Riemann	
	1.2. Sumas de Darboux	
	1.3. Integrales de Darboux	
	1.4. Medida de un conjunto	
	1.5. Limitaciones de la Integral de Riemann	
	1.6. Teorema Fundamental del Cálculo	
2 .	Extendiendo la Integral de Riemann	
	2.1 La Función Longitud	

1. Introducción a la Integración de Riemann

1.1. Particiones y Sumas de Riemann

Definición 1.1. Una partición de un intervalo $[a,b] \subseteq \mathbb{R}$ es un subconjunto finito $\pi \subseteq [a,b]$ tal que $a,b \in \pi$. Denotaremos a las particiones como $\pi = \{x_0,\ldots,x_n\}$ donde los puntos están ordenados, es decir $a=x_0 < x_1 < \ldots < x_n = b$. Los intervalos $I_i = [x_{i-1},x_i]$ para $i=1,\ldots,n$ son llamados los intervalos de la partición. A veces identificaremos la partición con $(I_i)_{i=1,\ldots,n}$.

Definición 1.2. La norma de una partición π se define como:

$$||\pi|| := \max_{i=1,\dots,n} (x_i - x_{i-1}) = \max_{I_i \in \pi} |I_i|$$

Definición 1.3. Una partición marcada de [a,b] es un par $\pi^* = (\pi,\epsilon)$, donde $\pi = \{x_0,\ldots,x_n\}$ es una partición de [a,b], y $\epsilon = \{x_1^*,\ldots,x_n^*\}$ es una colección de puntos tal que $x_i^* \in I_i$ para cada $i=1,\ldots,n$. La norma de una partición marcada se define como $||\pi^*|| = ||\pi||$.

Definición 1.4 (Suma de Riemann). Sea $f : [a, b] \to \mathbb{R}$ acotada y $\pi^* = (\pi, \epsilon)$ una partición marcada. La suma de Riemann de f asociada a π^* se define como:

$$S_R(f, \pi^*) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}) = \sum_{I_i \in \pi} f(x_i^*)|I_i|$$

Definición 1.5 (Integrabilidad de Riemann). Dada $f : [a, b] \to \mathbb{R}$ acotada, decimos que es Riemann integrable si existe el límite:

$$\lim_{||\pi^*||\to 0} S_R(f,\pi^*)$$

Esto significa que $\exists L \in \mathbb{R}$ tal que para cualquier $\epsilon > 0$, existe $\delta = \delta(\epsilon) > 0$ tal que si $||\pi^*|| < \delta$, entonces $||S_R(f,\pi^*) - L|| < \epsilon$. Cuando este límite existe, lo llamamos la integral de Riemann de f en [a,b] y lo denotamos por $\int_a^b f(x)dx$.

1.2. Sumas de Darboux

Definición 1.6. Dadas $f:[a,b]\to\mathbb{R}$ acotada y $\pi=(I_i)_{i=1,\dots,n}$ una partición de [a,b], definimos:

- $m_{I_i} := \inf_{x \in I_i} f(x)$
- $M_{I_i} := \sup_{x \in I_i} f(x)$
- \bullet La suma inferior de Darboux: $\underline{S}(f;\pi):=\sum_{i=1}^n m_{I_i}(x_i-x_{i-1})=\sum_{I_i\in\pi} m_{I_i}|I_i|$
- La suma superior de Darboux: $\overline{S}(f;\pi) := \sum_{i=1}^n M_{I_i}(x_i x_{i-1}) = \sum_{I_i \in \pi} M_{I_i}|I_i|$

Observación 1.7. Como $m_{I_i} \leq f(x) \leq M_{I_i}$ para todo $x \in I_i$, para cualquier partición marcada $\pi^* = (\pi, \epsilon)$, se tiene que:

$$\underline{S}(f;\pi) \le S_R(f;\pi^*) \le \overline{S}(f;\pi)$$

Definición 1.8 (Refinamiento). Una partición π' de [a,b] es un refinamiento de otra partición π si $\pi \subset \pi'$. Equivalentemente, si para todo $J_i \in \pi'$ existe $I_i \in \pi$ tal que $J_i \subseteq I_i$.

Proposición 1.9. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces:

- Si $\pi \subseteq \pi'$ son particiones de [a, b], entonces $\underline{S}(f; \pi) \leq \underline{S}(f; \pi')$ y $\overline{S}(f; \pi) \geq \overline{S}(f; \pi')$.
- Si π_1, π_2 son particiones de [a, b] cualesquiera, entonces $\underline{S}(f; \pi_1) \leq \overline{S}(f; \pi_2)$.

1.3. Integrales de Darboux

Definición 1.10. Sea $f:[a,b]\to\mathbb{R}$ acotada. Definimos:

• La integral superior (de Darboux) de f como:

$$\overline{\int_a^b} f(x)dx := \inf_{\pi \text{ part. de } [a,b]} \overline{S}(f;\pi)$$

■ La integral inferior (de Darboux) de f como:

$$\underline{\int_{a}^{b}} f(x)dx := \sup_{\pi \text{ part. de } [a,b]} \underline{S}(f;\pi)$$

Teorema 1.11. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces:

$$\underline{\int_{a}^{b}} f(x)dx = \lim_{||\pi|| \to 0} \underline{S}(f;\pi), \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{||\pi|| \to 0} \overline{S}(f;\pi)$$

Equivalentemente, para cualquier sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $||\pi_n||\to 0$ cuando $n\to\infty$, se tiene que:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \underline{S}(f; \pi_n) \quad \text{y} \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{n \to \infty} \overline{S}(f; \pi_n)$$

Teorema 1.12 (Criterios de Integrabilidad). Dada $f:[a,b]\to\mathbb{R}$ acotada, las siguientes afirmaciones son equivalentes:

- 1. f es integrable Darboux, es decir, $\int_a^b f(x)dx = \overline{\int_a^b} f(x)dx$.
- 2. f es Riemann integrable.
- 3. $\lim_{||\pi|| \to 0} (\overline{S}(f;\pi) \underline{S}(f;\pi)) = 0.$
- 4. Para cualquier sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $||\pi_n|| \to 0$, se tiene que $\lim_{n\to\infty}(\overline{S}(f;\pi_n)-\underline{S}(f;\pi_n))=0$.
- 5. Existe una sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $\lim_{n\to\infty}(\overline{S}(f;\pi_n)-\underline{S}(f;\pi_n))=0$.

Observación 1.13. Las integrales en el sentido de Darboux (1) y el de Riemann (2) coinciden.

Proposición 1.14. • Si $f:[a,b] \to \mathbb{R}$ es monótona, entonces es Riemann integrable.

■ Si $f:[a,b] \to \mathbb{R}$ es continua, entonces es Riemann integrable.

1.4. Medida de un conjunto

Definición 1.15. Decimos que un conjunto $I \subseteq \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$ es un intervalo si satisface que para todo $x, y \in I$, se tiene que $z \in I$ para todo z tal que $\min\{x, y\} \leq z \leq \max\{x, y\}$.

Definición 1.16. La medida de un intervalo $I \subseteq \overline{\mathbb{R}}$ se define como $|I| := \sup I - \inf I$. Se define $|\emptyset| := 0$ y |x| := 0 para un punto.

Si $I \subseteq J$ son intervalos, entonces $|I| \le |J|$.

Definición 1.17. Un conjunto $E \subseteq \mathbb{R}^d$ se dice de medida nula si, dado $\epsilon > 0$, existe una sucesión de intervalos $(I_n)_{n \in \mathbb{N}}$ de \mathbb{R}^d tal que $E \subseteq \bigcup_{n \in \mathbb{N}} I_n$ y $\sum_{n \in \mathbb{N}} |I_n| < \epsilon$.

Teorema 1.18. Sea $f:[a,b] \to \mathbb{R}$ acotada. Entonces, f es Riemann integrable si y sólo si su conjunto de discontinuidades tiene medida nula.

1.5. Limitaciones de la Integral de Riemann

La integral de Riemann tiene algunas limitaciones:

- 1. Solo está definida para funciones acotadas y en intervalos [a, b] acotados. Las integrales impropias resuelven parcialmente este problema.
- 2. La convergencia puntual no siempre garantiza la intercambiabilidad del límite y la integral. Es decir, $f_n \to f$ puntualmente no implica que lím $\int f_n = \int \text{lím} f_n$. Ejemplos como $f_n(x) = n\chi_{(0,1/n]}$ en [0,1] muestran esta limitación.

Teorema 1.19. Si $(f_n)_{n\in\mathbb{N}}\subseteq R([a,b])$ y $f_n\to f$ uniformemente en [a,b], entonces $f\in R([a,b])$ y $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$.

1.6. Teorema Fundamental del Cálculo

Teorema 1.20 (Teorema Fundamental del Cálculo). Si $f \in R([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F(x) := \int_a^x f(t)dt$ es derivable en x_0 y $F'(x_0) = f(x_0)$. En particular, F es derivable en x y F'(x) = f(x) para todo x salvo un conjunto de medida nula.

Nota 1.21. Este çasi"no puede removerse. Hay contraejemplos notables:

- Teorema de Hankel (1871): Existe $f \in R([a,b])$ tal que $F(x) = \int_a^x f(t)dt$ no es derivable para ningún punto en un subconjunto denso de [a,b].
- Teorema de Volterra (1881): Existe una función $f : [a, b] \to \mathbb{R}$ que es derivable en [a, b] y su derivada f' es acotada en [a, b], pero $f' \notin R([a, b])$.

2. Extendiendo la Integral de Riemann

Una manera de extender el concepto de la integral es a través de funciones escalonadas.

Definición 2.1 (Función Escalonada). Una función $\phi : [a,b] \to \mathbb{R}$ se dice escalonada si existe una partición $\pi = \{x_0, \ldots, x_n\}$ de [a,b] y constantes $c_1, \ldots, c_n \in \mathbb{R}$ tales que $\phi|_{(x_{i-1},x_i)} \equiv c_i$ para todo $i=1,\ldots,n$.

Cualquier función escalonada se puede escribir como una combinación lineal de funciones características de intervalos. La integral de una función escalonada se define como:

$$\int_{a}^{b} \phi(x)dx = \sum_{i=1}^{n} c_{i}|I_{i}|$$

2.1. La Función Longitud

Sea \mathcal{I} la colección de todos los intervalos en \mathbb{R} . La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ se define como $\lambda(I) := |I|$.

La función longitud λ tiene las siguientes propiedades:

- $\bullet \ \lambda(\emptyset) = 0.$
- Monotonía: Si $I_1, I_2 \in \mathcal{I}$ y $I_1 \subseteq I_2$, entonces $\lambda(I_1) \leq \lambda(I_2)$.
- Aditividad Finita: Si $I \in \mathcal{I}$ tal que $I = \bigcup_{i=1}^n J_i$ con $J_i \in \mathcal{I}$ disjuntos, entonces $\lambda(I) = \sum_{i=1}^n \lambda(J_i)$.
- Aditividad Contable (σ -aditividad): Si $I \in \mathcal{I}$ es tal que $I = \bigcup_{i=1}^{\infty} I_i$ con $(I_i)_{i \in \mathbb{N}} \subseteq \mathcal{I}$ disjuntos, entonces $\lambda(I) = \sum_{i=1}^{\infty} \lambda(I_i)$.
- σ -subaditividad: Si $I \in \mathcal{I}$ verifica $I \subseteq \bigcup_{i=1}^{\infty} I_i$, donde $(I_i)_{i \in \mathbb{N}}$ son intervalos (no necesariamente disjuntos), entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$.
- Invarianza por traslaciones: $\lambda(I+x) = \lambda(I)$ para todo $x \in \mathbb{R}$.
- $\lambda(\{x\}) = 0$ para todo $x \in \mathbb{R}$.

Nos gustaría extender λ a una clase más grande que \mathcal{I} . Más precisamente, nos gustaría definir una aplicación $m: \mathcal{M} \to [0, \infty]$, donde \mathcal{M} es una coleccción de subconjuntos de \mathbb{R} tal que $\mathcal{I} \subseteq \mathcal{M}$, de manera tal que, dado $E \in \mathcal{M}$, m(E) represente la "longitud" de E. Idealmente, nos gustaría que m cumpla lo siguiente:

- 1. $\mathcal{M} = \mathcal{P}(\mathbb{R})$:
- 2. Si $I \in \mathcal{I}$, entonces m(I) = |I|;
- 3. m es σ -aditiva $(E, (E_n)_{n \in \mathbb{N}} \in \mathcal{M}, E = \sum_{n=1}^{\infty} E_n \implies m(E) = \sum_{n=1}^{\infty} m(E_n));$
- $(1) + (2) + (3) \implies m$ es monóton, σ -subaditiva y finitamente aditiva.
- 4 Si $E \in \mathcal{M}$, entonces $E + x \in \mathcal{M}$ y $m(E + x) = m(E) \ \forall x \in \mathbb{R}$.

El problema es que, si asumimos el Axioma de Elección, uno puede mostrar que no existe una tal m que cumpla (1) - (2) - (3) - (4) y, de hecho, no se sabe si existe m que cumpla (1) - (2) - (3). (Si asumimos la hipótesis del continuo, entonces no existe m que cumpla (1) - (2) - (3)).

Luego, para construir m debemos debilitar alguna de las propiedades:

- Si debilitamos (1) \implies TEORÍA DE LA MEDIDA:
- Si debilitamos (3) pidiento solo (hay dos opciones):
 - \rightarrow aditividad finita \Longrightarrow "medidas finitamente aditivas";
 - $\rightarrow \sigma$ -subaditividad \Longrightarrow "medidas exteriores".

Vamos a optar por debilitar (1).

Una manera de extender λ es la siguiente:

- i. Si $E = \prod_{i=1}^{n} I_i$ entonces definitions $\lambda(E) \sum_{i=1}^{n} \lambda(I_i)$;
- ii. Si $E = \sum_{i=1}^{\infty} I_i$ entonces definimos $\lambda(E) \sum_{i=1}^{\infty} \lambda(I_i)$;
- iii. La fórmula anterior nos permite definir $\lambda(6)$ para todo 6 abierto en \mathbb{R} ;
- iv. Para conjuntos mas generales, .aproximar" por abiertos.

Definición 2.2 (premedida). Sea X un conjunto no vacío y C una colección de subconjuntos de X tal que $\emptyset \in C$. Diremos que una aplicación $\mathcal{T}: C \to [0, \infty]$ es una premedida si $\mathcal{T}(\emptyset) = 0$.

Observación 2.3. El conjunto no vacío X será llamado un espacio y la colección C será llamada una clase (de subconjuntos de X).

Intuitivamente, C representa la colección de subconjuntos cuyo "tamaño" sabemos medir y \mathcal{T} nos da su medida.

- 1. Premedida de Lebesgue: $C\mathcal{I}\{I \subseteq \mathbb{R} : I \text{ intervalo}\}, \mathcal{T}(I)|I|$.
- 2. Premedidas de Lebesgue-Stieltjes: Sea $F : \mathbb{R} \to \mathbb{R}$ monótona creciente y continua a derecha ($\lim_{x \to x_0}^+ F(x) = F(x_0)$). Una función tal se dice una función de Lebesgue-Stieltjes.

Observemos que, por monotonía, existen límites

$$\left\{ F(\infty) \lim_{x \to \infty} F(x) \atop F(-\infty) \lim_{x \to -\infty} F(x) \right\} \in \mathbb{R}$$

Sea además la clase $\widetilde{\mathcal{I}}$ de intervalos de $\mathbb R$ dada por

$$\begin{split} \widetilde{\mathcal{I}}\{I(a,b) \ : \ \} \ &\text{donde} \ I(a,b)(a,b] \cap \mathbb{R} \\ &= \{(a,b] \ : \ -\infty \leq a \leq b\} \cup \{(a,\infty) \ : \ -\infty \leq a < \infty\}.. \end{split}$$

Definimos la premedida \mathcal{T}_F de Lebesgue-Stieltjes asociada a F como la aplicación $\mathcal{T}_F: \widetilde{\mathcal{I}} \to [0,\infty]$, dada por

$$\mathcal{T}_F(I(a,b)) = F(b) - F(a).$$

Nota 2.4. Observar que si F(x) = x entonces \mathcal{T}_F es la premedida de Lebesgue (sobre $\widetilde{\mathcal{I}}$.

3. Premedidas de Probabilidad: Si F es una función de L-S tal que $F(\infty) = 1$ y $F(-\infty) = 0$, decimos que F es una función de distribución (acumulada). En tal caso, la premedida \mathcal{T}_F se conoce como premedida de probabilidad o predistribución (en \mathbb{R}).

Observación 2.5.
$$\mathcal{T}_F(\mathbb{R}) = \mathcal{T}_F(I(-\infty,\infty)) = F(\infty) - F(-\infty) = 1 - 0 = 1.$$

4. Premedida...

Definición 2.6 (semiálgebra). Sea X un espacio y C una clase de subconjuntos de X. Decimos que C es una semiálgebra (de subconjuntos de X) si cumple:

- 1. $\varnothing \in C$;
- 2. (C es cerrada por intesecciones finitas) $A, B \in C \implies A \cap B \in C$;
- 3. Si $A \in C$, existen $C_1, \ldots, C_n \in C$ disjuntos tal que $A^c = \prod_{i=1}^n C_i$.
- 1. La clase \mathcal{I}_d de intervalos en \mathbb{R}^d es una semiálgebra.
- 2. La clase $\widetilde{\mathcal{I}}\{(a,b]\cap\mathbb{R}\ :\ -\infty\leq a\leq b\leq\infty\}$ es una semiálgebra.
- 3. Si X e Y son espacios y C_X , C_Y son semiálgebras en X e Y respectivamente, entonces

$$C_X \times C_Y \{ F \times G : F \in C_X, G \in C_Y \}$$

es una semiálgebra en $X \times Y$, llamada "semiálgebra producto".

Definición 2.7 (álgebra). Sean X un espacio y A una clase de subconjuntos de X. Decimos que A es un álgebra (de subconjuntos de X) si cumple que:

- (i) $\varnothing \in A$;
- (ii) A es cerrado por intersecciones finitas;
- (iii) (A es cerrada por complementos) $A \in A \implies A^c \in A$.

Equivalentemente, en presencia de (iii), (ii) se puede reemplazar por:

- (ii') (A es cerrada por uniones finitas) $A, B \in A \implies A \cup B \in A$. (**Dem:** Ejercicio!)
 - 1. X espacio, $A_1\{\emptyset, X\}$, $A_2\mathcal{P}(X)$ son álgebras (donde A es llamada el álgebra trivial);
 - 2. Sea S una semiálgebra de subconjuntos de un espacio X. Entonces

$$A\{E\subseteq X\ :\ \exists S_1,\dots,S_n\in S \text{ disjuntos tal que } E={n\atop i=1}S_i\}$$

es un álgebra, llamada el álgebra generada por S. Notemos que A(S es el menor álgebra que contiene a S:

- (i) A(S) es un álgebra y $S \subseteq A(S)$;
- (ii) Si A' es un álgebra con $S \subseteq A'$ entonces $A(S \subseteq A')$.

Nota 2.8. Toda álgebr es una semiálgebra.

Definición 2.9 (σ -álgebra). Una clase (no vacía) M de subconjuntos de un espacio X se dice una σ -álgebra si cumple:

- 1. $\varnothing \in M$;
- 2. $E \in M \implies E^c \in M$;
- 3. $(E_n)_{n\in\mathbb{N}}\subseteq M \implies \bigcup_{n\in\mathbb{N}} E_n\in M.$

Llamamos al par (X, M) un espacio medible y a los elementos de M, conjuntos medibles.

Nota 2.10.

- 1. Todo σ -álgebra es un álgebra;
- 2. Equivalentemente, en presencia de (1), (3) se puede reemplazar por

(iii')
$$(E_n)_{n\in\mathbb{N}}\subseteq M \implies \bigcap_{n\in\mathbb{N}} E_n\in M.$$

- 1. σ -álgebra \implies álgebra \implies semiálgebra (no valen las recíprocas);
- 2. $\{\emptyset, X\}, \mathcal{P}(X)$ son σ -álgebras;
- 3. Si $(M_{\gamma})_{\gamma \in \Gamma}$ son σ -álgebras, entonces

$$\bigcap_{\gamma \in \Gamma} M_{\gamma} \{ E \subseteq X : E \in M_{\gamma}, \ \forall \gamma \in \Gamma \}$$

es una σ -álgebra.

4. Si M es una clase de subconjuntos de X, entonces

$$\sigma(M) \bigcap_{M \text{ } \sigma\text{-\'algebra}} M$$

$$C \subseteq M$$

es la σ -álgebra generada por C. De hecho, $\sigma(M)$ es la menor σ -álgebra que contiene a C:

- a) $\sigma(C)$ es σ -álgebra y $C \subseteq \sigma(C)$;
- b) Si F es σ -álgebra y $C \subset F$ entonces $\sigma(C) \subseteq F$.
- 5. Si (X,T) es un espacio topológico, $\sigma(T)$ se conoce como la σ -álgebra de Borel, y sus elementos se llaman Borelianos. La notamos $\beta(X)$ $(=\sigma(T))$.

 $\beta(\mathbb{R})$ contiene a tods los abiertos, cerrados, intervalos, conjuntos de tipo G_{δ} y F_{σ}, \ldots De hecho, $\beta(\mathbb{R}) = \sigma(\text{cerrados}) = \sigma(\text{compactos}) = \sigma(\mathcal{I}) = \sigma(\widetilde{\mathcal{I}})$.

Definición 2.11. Sea C una clase (no vacía) de subconjuntos de X y $\mu: C \to [0, \infty]$ una función (la llamamos una función de conjuntos). Diremos que:

- (i) μ es monótona (en M) si $A, B \in C$, $A \subseteq B \implies \mu(A) \le \mu(B)$;
- (ii) μ es finitamente aditiva si $(A_i)_{i=1,\dots,n} \subseteq C$ disjuntos $\implies \mu(_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i);$
- (iii) μ es σ -aditiva si $(A_n)_{n\in\mathbb{N}}\subseteq C$ disjuntos $\Longrightarrow \mu(\sum_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mu(A_i);$
- (iv) μ es σ -subaditiva si $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_n)$, para todo $A \in C$ y $(A_n)_{n \in \mathbb{N}} \subseteq C$ tal que $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$

Observación 2.12. Rana da una definición más débil de (4):

$$A \in C, \ A = \bigcup_{i=1}^{\infty} A_i, \ A_i \in C \ \forall i \implies \mu(A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Ambas definiciones son equivalentes si C es una semiálgebra y μ es monótona (siempre será el caso para nosotros).

Definición 2.13 (premedida finita y σ -finita). Una premedida $\mathcal{T}: C \to [0, \infty]$ se dice:

- 1. finita si $X \in C$ y $\mathcal{T} < \infty$;
- 2. σ -finita si existen $(C_n)_{n\in\mathbb{N}}\subseteq C$ disjuntos tales que $\sum_{n=1}^{\infty}C_n=X$ y $\mathcal{T}(C_n)<\infty$ $\forall n\in\mathbb{N}$.
- 1. finita $\implies \sigma$ -finita;
- 2. La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ es σ -finita pero no finita;
- 3. Si F es una función de L-S, entonces $\mathcal{T}_F: \widetilde{\mathcal{I}} \to [0, \infty]$ es siempre σ -finita $(\mathcal{T}_F((n, n + 1]) = F(n+1) F(n) < \infty \ \forall n \in \mathbb{Z})$ y es finita si y sólo si $\mathcal{T}_F(\mathbb{R}) = \mathcal{T}_F((-\infty, \infty] \cap \mathbb{R}) = F(\infty) F(-\infty) < \infty$.

Definición 2.14 (medida). Sea (X, M) es un espacio medible. Diremos que $\mu : M \to [0, \infty]$ es una medida (en (X, M)) si:

- 1. $\mu(\emptyset) = 0$;
- 2. μ es σ -subaditiva en M $(\mu \begin{pmatrix} \infty \\ i=1 \end{pmatrix} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

Llamamos a la terna (X, M, μ) un epacio de medida.

Objetivo. Construir un espacio de medida (\mathbb{R}, M, μ) tal que $\mathcal{I} \subseteq M$ y

$$\begin{cases} \mu(I) = |I| \ \forall I \in \mathcal{I}, \\ \mu(E+x) = \mu(E) \ \forall E \in M. \end{cases}$$

[Espacios de Probabilidad] Si (X, M, μ) es un EdM tal que $\mu(X) = 1, (X, M, \mu)$ recibe el nombre de espacios de probabilidad.

- X recibe el nombre de espacio muestral, y se lo nota Ω (en lugar de X);
- M se suele notar como F (\acute{o} Y). Sus elementos se dicen <u>eventos</u>;
- μ recibe el nombre de medida de probabilidad ó <u>distribución</u> y se la nota \mathbb{P} .

En probabilidad, típicamente se estudian 2 tipos de distribuciones en \mathbb{R} (o en \mathbb{R}^d).

- 1. Distribuciones discretas: $\exists S \subseteq \mathbb{R}$ numerable y $(p_x)_{x \in S} \subseteq [0,1]$ tal que $\mathbb{P}(A) = \sum_{x \in A \cap S} p_x$. Binomial, Geométrica, Poisson,...
- 2. Distribuciones (absolutamente) continuas: $\exists f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ ïntegrable"tal que $\mathbb{P}(A) = \int_A f(x) dx$. Uniforme, Exponencial, Normal,...

Propiedades generales de una medida. Si μ es una medida sobre (X, M), entonces:

- 1. μ es monótona (en M);
- 2. μ es σ -subaditiva;
- 3. μ es continua por debajo: si $(A_n)_{n\in\mathbb{N}}\subseteq M$ es creciente $(A_n\subseteq A_{n+1}\ \forall n)$ entonces

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

4. μ es **continua por arriba**: si $(A_n)_{n\in\mathbb{N}}\subseteq M$ es <u>decreciente</u> $(A_{n+1}\subseteq A_n\ \forall n)$ y $\mu(A_{n_0})<\infty$ para algún $n_0\ (\Longrightarrow \mu(A_n)<\infty\ \forall n\geq n_0)$, entonces

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

(Cuidado! (4) puede no valer si $\mu(A_n) = \infty \ \forall n \in \mathbb{N}$)

Definición 2.15 (premedida extendible y unívocamente extendible). Una premedida \mathcal{T} : $S \to [0, \infty]$ definida sobre una semiálgebra de subconjunto de X, se dice:

- 1. Extendible si es
 - (E1) finitamente aditiva en S;
 - (E2) σ -subaditiva en S.
- 2. Univocamente extendible si es extendible y se cumple
 - (E3) σ -finita

Observación 2.16. Los nombres de extendible y unívocamente extendible no se encontrarán en el Rana (los puso el profe).

Teorema 2.17 (Extensión de Carathéodory). Dados un espacio X y una premedida \mathcal{T} sobre una semiálgebra S de subconjuntos de X tal que \mathcal{T} es extendible, existe una extensión de \mathcal{T} a una medida $\mu_{\mathcal{T}}$ definida sobre $\sigma(S)$ la σ -álgebra generada por S. Más aún, si \mathcal{T} es unívocamente extendible, entonces la extensión $\mu_{\mathcal{T}}$ a $\sigma(S)$ es <u>única</u>.

Por último, si \mathcal{T} es unívocamente extendible, entonces se puede extender de manera única a una medida $\overline{\mu_{\mathcal{T}}}$ sobre la $\mu_{\mathcal{T}}$ -completación de $\sigma(S)$, i.e. la σ -álgebra $\overline{\sigma(S)}$ dada por

$$\overline{\sigma(S)}\{B \cup N : B \in \sigma(S), \exists \widetilde{N} \in \sigma(S) \text{ con } N \subseteq \widetilde{N} \text{ y } \mu_{\mathcal{T}}(\widetilde{N}) = 0\}$$

mediante la fórmula $\overline{\mu_{\mathcal{T}}}(B \cap N)\mu_{\mathcal{T}}(B)$.

Observación 2.18. Si $\mathcal{T}: S \to [0, \infty]$ es σ -aditiva en S y S es una semiálgebra, entonces \mathcal{T} es extendible.

Observación 2.19. La extensión puede no ser única si \mathcal{T} no es σ -finita.

$$\widetilde{\mathcal{I}}_{\mathbb{O}}\widetilde{\mathcal{I}} \cap \mathbb{Q} = \{(a, b] \cap \mathbb{Q} : -\infty \le a \le b \le \infty\}$$

Nota 2.20.

- $\mathcal{I}_{\mathbb{Q}}$ es una semiálgebra;
- $\bullet \ \sigma(\widetilde{\mathcal{I}}_{\mathbb{Q}}) = \sigma(\widetilde{\mathcal{I}} \cap \mathbb{Q}) \stackrel{\mathrm{Ej!}}{=} \sigma(\widetilde{\mathcal{I}}) \cap \mathbb{Q} = \beta(\mathbb{R}) \cap \mathbb{Q} = \mathcal{P}(\mathbb{Q}) \ (9.52)$
- $\mathcal{T}: \widetilde{\mathcal{I}}_{\mathbb{Q}} \to [0, \infty]$, dada por $\mathcal{T}(A) \begin{cases} 0 & A = \emptyset \\ \infty & A \neq \emptyset, \ A \in \widetilde{\mathcal{I}}_{\mathbb{Q}} \end{cases}$ (Observar que \mathcal{T} no es σ -finita)
- Para cada r > 0, $\mu_r : \mathcal{P}(\mathbb{Q}) \to [0, \infty]$ dada por $\mu_r(A)r(\#A)$ es una extensión de \mathcal{T} (y es una medida)

Definición 2.21 (espacio completo y conjuntos μ -nulos). Sea (X, M, μ) un EdM y definamos

$$N_{\mu}\{E \subset X : \exists N \in M \text{ con } E \subseteq N \text{ y } \mu(N) = 0\}$$

Los elementos de N_{μ} se dicen <u>conjuntos μ -nulos</u>. Diremos que (X, M, μ) es <u>completo</u> si $N_{\mu} \subseteq M$

Observación 2.22. $(X, \overline{\sigma(S)}, \overline{\mu_{\delta}})$ es completo. En efecto, $N_{\overline{\mu_{\delta}}}$ corresponde al subconjunto de $\overline{\sigma(S)}$ que se obtiene tomando $B = \emptyset$.

Observación 2.23. Veremos más adelante que las siguientes premedidas son UE:

- (i) Premedidas de Lebesgue-Stieltjes (en particular, la función longitud λ (sobre $\widetilde{\mathcal{I}}$) y las premedidas de probabilidad).
- (ii) Premedidas de Lebesgue en \mathbb{R}^d , con $d \in \mathbb{N}$.

En particular;

Corolario 2.24. Para cada función F de Lebesgue-Stieltjes, existe una σ -álgebra M_F sobre \mathbb{R} y una única medida μ_F en (\mathbb{R}, M_F) tal que

$$\mu_F = (I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

Además, $\beta(\mathbb{R}) \subseteq M_F$. Es decir, μ_F es una medida que extiende a \mathcal{T}_F , a todo M_F (y en particular, a todo $\beta(\mathbb{R})$). Además, (\mathbb{R}, M_F, μ_F) es un EdM completo. $(M_F \sigma(\widetilde{\mathcal{I}})^F, \mu_F \overline{\mu_{\mathcal{T}_F}})$. La medida μ_F se conoce como medida de L-S asociada a F. En particular, para cualquier función de distribución F, existe una única medida de probabilidad \mathbb{P}_F en $(\mathbb{R}, \beta(\mathbb{R}))$ tal que

$$\mathbb{P}_F(I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

(En la guía 3 veremos que $F \to \mathbb{P}_F$ es una biyección)

Nota 2.25. Los β son los Borelianos y $I(a,b)=(a,b]\cap\mathbb{R}$. (super $F\to 10.26$).

[Importante!] **Medida de Lebesgue en** \mathbb{R} . Tomando F = id en el Corolario anterior, obtenemos una σ -álgebra $L(\mathbb{R})M_{id}$ con $\beta(\mathbb{R}) \subseteq L(\mathbb{R})$ y una medida μ_{id} en $(\mathbb{R}, L(\mathbb{R}))$ tal que $\mu_{id}(I(a,b)) = b-a \quad \forall -\infty \leq a \leq b \leq \infty$. En particular, de esto se deduce que $\mu_{id}(I) = |I| \quad \forall I \in \mathcal{I}$. Dicha medida recibe el nombre de <u>medida de Lebesgue</u> (en \mathbb{R}), y los elementos de $L(\mathbb{R})$ se dicen <u>conjuntos medibles Lebesgue</u>. Adoptaremos la notación $\mu_{id}(E)\lambda(E)|E|$. La medida μ_{id} <u>es</u> la extensión de la noción de longitud que buscábamos y $L(\mathbb{R})$ son los conjuntos cuya "longitud" podremos medir. Además, los conjuntos de medida nula (de la guía 2), son <u>exactamente</u> aquellos $A \in L(\mathbb{R})$ tal que $\mu_{id}(A) = 0$ (lo veremos más adelante!).

[Medida de Lebesgue en \mathbb{R}^d] Si \mathcal{I}_d son los intervalos en \mathbb{R}^d y definimos $\mathcal{T}: \mathcal{I}_d \to [0, \infty]$ como $\mathcal{T}(I)|I|$, entonces \mathcal{I}_d es una semiálgebra y \mathcal{T} es una premedida σ -aditiva en \mathcal{I}_d (lo veremos después). Por lo tanto, \mathcal{T} se puede extender (de manera única, pues \mathcal{T} es σ -finita) a una medida μ_δ sobre la σ -álgebra $L(\mathbb{R}^d) = \overline{\sigma(\mathcal{I}_d)^{\mathcal{T}}}$, llamada medida de Lebesgue en \mathbb{R}^d y $L(\mathbb{R}^d)$ es la clase de conjuntos medibles Lebesgue en \mathbb{R}^d . Al igual que antes, dado $E \in L(\mathbb{R}^d)$, notamos $|E|\mu_{\mathcal{T}}(E)$.

Demostración del teorema de extensión de Carathéodory

Paso 1: Medidas Exteriores

Si $I \subseteq \mathbb{R}$ es un intervalo,

$$|E|_e = \inf\{\sum_{n=1}^{\infty} |I_n| : (I_n)_{n \in \mathbb{N}} \text{ intervalos, } E \subseteq \bigcup_{n=1}^{\infty} I_n\}$$

 $Proof. \geq$) Tomando $I_1 = I, I_{n+1} = \emptyset \quad \forall n \in \mathbb{N}$

 \leq) Por la σ -subaditividad de λ en \mathcal{I} : si $I \subseteq \bigcup_{n=1}^{\infty}$ entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$.

Definición 2.26 (Medida exterior inducida por una premedida). Sea X un espacio, C una clase de subconjuntos de X y $\mathcal{T}: C \to [0, \infty]$ una premedida. Definimos la medida exterior inducida por \mathcal{T} como la aplicación $\mu_{\mathcal{T}}^*: P(X) \to [0, \infty]$ dada por

$$\mu_{\mathcal{T}}^*(A) \inf \{ \sum_{n=1}^{\infty} \mathcal{T}(C_i) : (C_i)_{i \in \mathbb{N}} \subseteq C \text{ y } A \subseteq \bigcup_{i=1}^{\infty} C_i \}$$

con la convención de que inf $\emptyset \infty$.

 $\mu_{\lambda}^* = medida \ exterior \ de \ Lebesgue \ y \ la notamos \ |E|_e \mu_{\lambda}^*(E).$ Idealmente, nos gustaría que $\mu_{\mathcal{T}}^*$ cumpla

$$\begin{cases} (C1) \ \mu_{\mathcal{T}^*}(C) = \mathcal{T}(C) & \forall C \in C \\ (C2) \ \mu_{\mathcal{T}}^* \text{ es } \sigma\text{-subaditiva en } P(X) \end{cases}$$

no tienen por qué cumplirse ninguna de la 2:

(C1)
$$X = \{a, b\}, C = \{\varnothing, \{a\}, X\}, \mathcal{T}(A) = \begin{cases} 0 & A = \varnothing \\ 2 & A = \{a\} \\ 1 & A = X \end{cases} \mathcal{T}(\{a\}) = 2, \ \mu_{\mathcal{T}}^*(\{a\}) = 1 \neq \mathcal{T}(\{a\}).$$

(C2) Medida exterior de Lebesgue no es σ -aditiva (lo vemos mas adelante!)

Proposición 2.27. Si \mathcal{T} es una premedida sobre una semiálgebra S que satisface

(E2) \mathcal{T} es σ -subaditiva en S,

entonces $\mu_{\mathcal{T}}^*(A) = \mathcal{T}(A) \quad \forall A \in S \text{ (i.e. } \mu_{\mathcal{T}}^* \text{ cumple (C1))}.$

Demostración. $\mu_{\mathcal{T}}^*(A) \leq \mathcal{T}(A)$. Tomando $C_1 = A \in S$, $C_{n+1} = \emptyset \in S$. Luego $(C_n)_{n \in \mathbb{N}}$ es cubrimiento de A por elementos de S y luego

$$\mu_{\mathcal{T}}^*(A) \le \sum_{n \in \mathbb{N}} \mathcal{T}(C_n) = \mathcal{T}(A)$$

 $\underline{\mathcal{T}(A)} \leq \mu_{\mathcal{T}}^*(A)$. Si $(C_n)_{n \in \mathbb{N}} \subseteq S$ es un cubrimiento de $A \in S$ entonces por (E2), tenemos que $\underline{\mathcal{T}(A)} \leq \sum_{n \in \mathbb{N}} \mathcal{T}(C_n)$. Tomando ínf sobre tales cubrimientos, resulta $\mathcal{T}(A) \leq \mu_{\mathcal{T}}^*(A)$. \Box

Teorema 2.28. Sean X un espacio, C una clase de subconjuntos de X y $\mathcal{T}: C \to [0, \infty]$ una premedida. Entonces,

- 1. $\mu_{\mathcal{T}}^*(\varnothing)$;
- 2. $\mu_{\mathcal{T}}^*$ es monótona $(A \subseteq B \implies \mu_{\mathcal{T}}^*(A) \le \mu_{\mathcal{T}}^*(B));$
- 3. $\mu_{\mathcal{T}}^*$ es σ -subaditiva $(A \subseteq \bigcup_{n \in \mathbb{N}} A_n \implies \mu_{\mathcal{T}}^*(A) \le \sum_{n=1}^{\infty} \mu_{\mathcal{T}}^*(A_n)$.

Demostración. 1. $\mu_{\mathcal{T}}^*(\varnothing) \geq 0$ es por definición. Para ver que $\mu_{\mathcal{T}}^*(\varnothing) \leq 0$, tomamos el cubrimiento $C_n = \varnothing$ y repetimos el argumento de la Proposición anterior.

2. Si $\mu_{\mathcal{T}}^*(B) = \infty$, la desigualdad es inmediata. Si $\mu_{\mathcal{T}}^*(B) < \infty$, entonces existen cubrimientos de B por elementos de S. Sea $(C_n)_{n \in \mathbb{N}} \subseteq S$ un cubrimiento de B. Entonces, $(C_n)_{n \in \mathbb{N}}$ es también cubrimiento de A y, luego, $\mu_{\mathcal{T}}^*(A) \leq \sum_{n \in \mathbb{N}} \mathcal{T}(C_n)$. Como esto es cierto para todo cubrimiento $(C_n)_{n \in \mathbb{N}}$ de B, tomando ínfimo en la desigualdad anterior sobre tales cubrimientos resulta $\mu_{\mathcal{T}}^*(A) \leq \mu_{\mathcal{T}}^*(B)$.

3. Dado $\varepsilon > 0$, sea $(C_i^{(n)})_{i \in \mathbb{N}}$ un cubrimiento de A_n tal que $\sum_{i=1}^{\infty} \mathcal{T}(C_i^{(n)}) \leq \mu_{\mathcal{T}}^*(A_n) + \frac{\varepsilon}{2^n}$. Luego, notando que $(C_i^{(n)} : i \in \mathbb{N}, n \in \mathbb{N})$ es un cubrimiento de A, obtenemos que

$$\mu_{\mathcal{T}}^*(A) \le \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \mathcal{T}(C_i^{(n)}) \le \sum_{n=1}^{\infty} \left(\mu_{\mathcal{T}}^*(A_n) + \frac{\varepsilon}{2^n} \right)$$
$$\le \sum_{n=1}^{\infty} \mu_{\mathcal{T}}^*(A_n) + \varepsilon \underbrace{\sum_{n=1}^{\infty} \frac{1}{2^m}}_{1}$$

Luego, $\mu_{\mathcal{T}}^*(A) \leq \sum_{n=1}^{\infty} \mu_{\mathcal{T}}^*(A_n) + \varepsilon \quad \forall \varepsilon > 0$. Tomando $\varepsilon \to 0^+$, obtenemos la σ -subaditividad de $\mu_{\mathcal{T}}^*$.

Definición 2.29 (medida exterior). Sea X un espacio. Decimos que $\mu^*: P(X) \to [0, \infty]$ es una medida exterior si:

- 1. $\mu^*(\emptyset) = 0$;
- 2. $A \subseteq B \implies \mu^*(A) < \mu^*(B)$:
- 3. $A \subseteq \bigcup_{n \in \mathbb{N}} A_n \implies \mu^*(A) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$.
- 1. Medidas exteriores generadas por una premedida;
- 2. Si $(\mu_{\gamma}^*)_{\gamma \in \Gamma}$ son medidas exteriores sobre X, entonces

$$\mu^*(A) \sup_{\gamma \in \Gamma} \mu_{\gamma}^*(A)$$

es una medida exterior (Ej. Guía 3).

- 3. Medida exterior s-dimensional de Hausdorff en \mathbb{R}^d .
 - Si I es un intervalo en \mathbb{R}^d , entonces $|rI| = r^d |I|$;
 - Si $E \subseteq \mathbb{R}^d$ es medible Lebesgue, entonces $|rE| = r^d |E|$;
 - En particular, si E = B(x, r), entonces

$$|E| = |B(0,r)| = |rB(0,1)| = r^d |B(0,1)| = C_d (diam E)^d, \quad C_d \frac{|B(0,1)|}{2^d}$$

 \bullet Si $E\subseteq\mathbb{R}^d$ es "s-dimensional
z H_s es la medida que queremos, entonces

$$H_s(E) \approx \sum_{i \in \mathbb{N}} H_s(E \cap B(x_i, r_i)) \approx \sum_{i \in \mathbb{N}} (\operatorname{diam}(E \cap B(x_i, r_i)))^s$$

Teniendo eso en cuenta, dados $d \in \mathbb{N}, s \in [0, d], \delta > 0$, definimos

• $C_{\delta}A \subseteq \mathbb{R}^d$: diam $A < \delta$.

• $H_s^{(\delta)}(E)$ inf $\sum_{n\in\mathbb{N}}(\text{diam }A_n)^s:(A_n)_{n\in\mathbb{N}}\subseteq C_\delta,E\subseteq\cup_{n\in\mathbb{N}}A_n$

Observar que si $\delta < \delta$ entonces $H_s^{(\delta)}(E) \ge H_s^{(\delta)}(E)$. Luego, podemos definir:

$$H_s(E) = \sup_{\delta > 0} H_s^{(\delta)}(E) = \lim_{\delta \to 0^+} H_s^{(\delta)}(E)$$

Definición 2.30. Sea X un espacio y $\mu^*: P(X) \to [0, \infty]$ medida exterior. Decimos que $E \subseteq X$ es un conjunto μ^* -medible si

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \quad \forall A \subseteq X$$

Observación 2.31. Que $\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$ vale siempre (por σ -subaditividad de μ^*). Luego, para ver que E es μ^* -medible, baste ver que $\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$

Teorema 2.32. Sea μ^* una medida exterior sobre un espacio X. Entonces:

- (1) $\mu^*(E) = 0 \Rightarrow E \text{ es } \mu^*\text{-medible.}$
- (2) La clase M_{μ^*} de conjuntos μ^* -medibles es un σ -álgebra.
- (3) La restricción μ de μ^* a M_{μ^*} es una medida.

En particular, (X, M_{u^*}, μ) es un espacio de medida completo.

Demostración.

- 1. Si $A \subseteq X$, $\mu^*(A \cap E) \le \mu^*(E) = 0$. Además, por monotonía, $\mu^*(A \cap E^c) \le \mu^*(A)$. Luego, $\mu^*(A \cap E) + \mu^*(A \cap E^c) = 0 + \mu^*(A \cap E^c) \le \mu^*(A)$.
- 2. $\varnothing \in M_{\mu^*}$: Se sigue de (1), pues $\mu^*(\varnothing) = 0$, por definición.

 $E \in M_{\mu^*}$: Directo de la definición de M_{μ^*} , puesto que es simétrica en E y E^c .

 $(E_n)_{n\in\mathbb{N}}\subseteq M_{\mu^*} \Longrightarrow \bigcup_{n\in\mathbb{N}} E_n\in M_{\mu^*}$: Esto lo demostramos en tres pasos. En primer lugar, demostramos que si $E_1,E_2\in M_{\mu^*}$, entonces $E_1\cap E_2,E_1\cup E_2\in M_{\mu^*}$.

Demostración. Si $A \subseteq X$, entonces

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c)$$

$$= \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c \cap E_2) + \mu^*(A \cap E_1^c \cap E_2^c)$$

$$> \mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1 \cup E_2)^c).$$

Notar que la primera igualdad se tiene por $E_1 \in M_{\mu^*}$ y la segunda por $E_2 \in M_{\mu^*}$. Esto implica que $E_1 \cap E_2 \in M_{\mu^*}$. Pero entonces $E_1 \cap E_2 = ((E_1 \cap E_2)^c)^c = (\underbrace{E_1^c}_{\in M_{\mu^*}} \cup \underbrace{E_2^c}_{\in M_{\mu^*}})^c \in \underbrace{M_{\mu^*}}_{\in M_{\mu^*}}$

$$M_{\mu^*}$$

Para el segundo paso, demostramos que si $E_1, \ldots, E_n \in M_{\mu^*}$ disjuntos, entonces $\mu^*(A \cap \binom{n}{i=1}E_i) = \sum_{i=1}^n \mu^*(A \cap E_i).$

Demostración. La idea es probarlo por inducción. Basta ver el caso n=2 (los otros casos salen iterando éste)

$$\mu^*(A \cap (E_1 E_2)) = \mu^*(\underbrace{A \cap (E_1 E_2) \cap E_1}_{A \cap E_1}) + \mu^*(\underbrace{A \cap (E_1 E_2) \cap E_1^c}_{A \cap E_2}).$$

pues $E_2 \subseteq E_1^c$ por ser disjuntos.

Por último, vemos que si $(E_n)_{n\in\mathbb{N}}\subseteq M_{\mu^*}$, entonces $\bigcup_{n\in\mathbb{N}}E_n\in M_{\mu^*}$.

Demostración. Podemos suponer que los E_n son disjuntos. Si no, los cambiamos por

$$E'_{1}E_{1} \in M_{\mu^{*}}$$
 $E'_{2}E_{2} \setminus E_{1} = E_{2} \cap E^{c}_{1} \in M_{\mu^{*}}$

$$\vdots$$

$$E'_{n+1}E_{n+1} \setminus \bigcup_{i=1}^{n} E_{i} \in M_{\mu^{*}},$$

y $\bigcup_{n\in\mathbb{N}} E_n = \sum_{n=1}^{\infty} E'_n$. Sea $F_n^n = E_i = \sum_{n\in\mathbb{N}} E_n$. Notar que si $F_n \subseteq E$, entonces $E^c \subseteq F_n^c$. Luego, dado $A \subseteq X$, como $F_n \in M_{\mu^*}$, se tiene

$$\mu^*(A) = \underbrace{\mu^*(A \cap F_n)}_{=\sum_{i=1}^n \mu^*(A \cap E_i)} + \mu^*(\underbrace{A \cap F_n^c}_{\subseteq A \cap E^c})$$
$$\geq \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c).$$

Tomando $n \to \infty$,

$$\mu^*(A) \ge \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c)$$

$$\ge \mu^*(A \cap E) + \mu^*(A \cap E^c) \qquad (\mu^* \text{ σ-subad.})$$

$$A \cap E = \bigcup_{i=1}^\infty A \cap E_i.$$

POR COMPLETAR

Observación 2.33.

- Si queremos definir una medida finita sobre $(\mathbb{R}, B(\mathbb{R}))$ por el comentario de la vez pasada, basta predefinirla por un π -sistema P que genere $B(\mathbb{R})$ (si queremos unicidad de la extensión a $B(\mathbb{R})$).
- Una eleción natural es tomar $P(-\infty, x) : x \in \mathbb{R}(\sigma(P) = B(\mathbb{R}))$
- Luego, si μ es una medida que se exiente a una premedida τ sobre P, entonces μ queda univocamente determinada sobre $\widetilde{\mathcal{I}}$
- $\bullet \ \mu(\mathbb{R}) = \mu\left(\bigcup_{n \in \mathbb{N}} (-\infty, n]\right) = \lim_{n \to \infty} \mu((-\infty, n]) = \lim_{n \to \infty} \tau((-\infty, n])$
- $\mu(a,b] = \mu(-\infty,b] \ (-\infty,a] = \tau((-\infty,b]) \tau((-\infty,a])$
- $\mu((a,\infty)) = \mu \mathbb{R} (\infty, a] = \lim_{x \to \infty} \tau((-\infty, n]) \tau((-\infty, a])$

En conclusiión, $\widetilde{\mathcal{I}}$ es una semiálgebra natrual que aparece cuando buscamos extender una premedida definida sobre P (y necesitamos definirla al menos sobre un π -sistema como P si queremos unicidad). Luego, la idea será

au sobre $P \Rightarrow \text{ extensión automática a } \widetilde{\mathcal{I}} \Rightarrow \text{ extensión a } B(\mathbb{R})$ por Carathéodory $\tau((-\infty, x))F_{\tau}(x)$

Teorema 2.34. Sea $F: \mathbb{R} \to \mathbb{R}$ monótona creciente. Entonces, $\tau_F: \widetilde{\mathcal{I}} \to [0, \infty]$ dada por $\tau(I(a, b)) = (b) - F(a)$ cumple que:

- E1) τ_F es finitamente aditiva
- E2) Si F es continua a derecha, τ_F es σ subaditiva.

Es decir, si F es de L-S entonces τ_F es extendible

Demostración. El Sea