Yelp Business Data Analysis: Feature Selection, Ratings Prediction, Sentiment Analysis

Nikhil Patil

Problem Description

- Feature Selection
- Ratings Prediction
- Sentiment Analysis
- Geospatial Visualization of Ratings

Dataset Description:

- Sub-datasets: business, user review, check-in. Total size: 5 GB.
- Business: 144K businesses with stars, attributes, categories
- ❖ E.g. parking availability, happy hour, drive thru, restaurants table service etc.
- Review: 4 M user comments, useful votes
- Check-in: check-in counts
- Challenges:
 - Data extraction
 - Integration of sub-datasets
 - Categorical features: quantification of True or False

Feature Selection

- Map Reduce Jobs.
- Frequently occurred attributes, categories in high star rated businesses: Suggestion to new businesses.
- User review count, available attributes count, available categories count, total check in counts and stars for each business.
- Machine learning approach to predict stars, based on these features.

BusinessAccep	ptsCredit	Cards	103200;	BikePar	king	51914	
BusinessParki	ing	49767;		Restaur	antsTake(Out	45544
GoodForKids	44115;			Restaura	antsGoodI	ForGroups	40887
WheelchairAc	ecessible	34799;		GoodFor	Meal	25093	
RestaurantsT	ableServ	ice	24423;	Ambienc	e	21965	
HasTV	21233;			Outdoor	Seating	19510	
RestaurantsReservations			17378;	Caters	14938		
ByAppointmen	tOnly	14201;		Restaur	antsDeliv	very	10162
BestNights	5632;			НарруНо	our	5473	
AcceptsInsura	ance	5255;		Music	4850		
DogsAllowed	3089;	SOCIETY CO. E. P.		DriveTh	ru	2154	
GoodForDancing 194		1940;		Hair Specializes In		n	1079
CoatCheck 1011;			RestaurantsCounterSe			e 246	
BusinessAcceptsBitcoin			178;	DietaryRestrictions		ions	155
Corkage	140;			BYOB	47		
Open24Hours	29}						

Architecture: Feature Selection & Ratings Prediction

Ratings Prediction using Classification Algorithms

- Feature Spaces (X_train, test):
 - Count-based (4): [business_id, review count, attribute count, category count, checkin count]
 - ➤ Categorical (1 or 0) (31): [BusinessParking, HasTV, BYOB, etc.]
- Labels (y_train, test): Star ratings. [0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5] -> [0,1,2,3,4,5,6,7,8,9,10]
- Training Set: 75% (~110K); Test Set: 25% (~30K)
- Algorithms:
 - > Regression: linear regression
 - Classification: SVM_linear, SVM_rbf, SGD

Evaluation of Analysis:

Sentiment Analysis of Reviews on Business

- Sentiment score for each review
- Sentiment score = (n_Positive n_Negative)/(n_Positive + n_Negative)
- Priority based sorting of users stars, sentiment score, useful votes
- Top-N user suggestion.
- Average sentiment score for each business.
- Linear regression based star prediction using average sentiment score of business.
- Mean Square Error = 0.23

Geospatial Visualization of Ratings

- Visualization to reveal trends in star ratings within a city
- Parse business_data in MapReduce with 'city' as key
- Get all Business_id, Latitude, Longitude, and Stars
- Use Google fusion table API for heatmap

Conclusion

- We did frequency based feature selection for attributes of business.
- Ratings prediction formulated as a 11-classification problem.
- To improve predictions:
 - Need better features
 - Need to optimize parameters for classification algorithms
- Sentiment Analysis: Unigrams-based sentiment results in positive correlation between sentiment value and the star ratings.
- Visualization helps to decide what areas, streets in a city have higher density of 4.5 or 5 stars.

Questions?

Thank You.