# Big data Project

A 반 2 조 강 지 영

데이터 구성

데이터 정제

모델링 비교

보완점 및 향후 계획

### 데이터 구성

등등

보험 청구 지급 정보 (insu\_request.csv) -<mark>고객 ID</mark> -성별 -연령 -검사 구분(혈액/일반) -판정결과(승인/재검) -보험 청구 금액 -보험 지급 금액 -누적 납입 보험료 -보험 상품 가입 기간 -보험 상품 -주 상병



보험 가입 사전 승인 검진 정보 (insu\_pre\_review.csv)

-<mark>고객 ID</mark>
-성별
-연령
-검사 구분(혈액/일반)
-신장/체중/가슴 둘레/허리 둘레/BMI/WHTR 등등 -혈압 / 맥박 -항목별 혈액검사 수치 (ex.콜레스테롤, 혈당 등등) -항목별 혈액검사 수치에 따른 정상/비정상 판정 결과 등등 개인별 보험 청구 지급 및 검진 정보 (add\_profit.csv)

> -보험 청구 지급 정보와 보험 가입 승인 검진 정보에 있는 모든 변수 존재

-수익성 판단을 위해 <mark>"profit"</mark>변수 생성

-수익성에 따른 위험/비 위험고객 으로 이진 분류한 <mark>"risk"</mark>변수 생성

## 개인별 보험 청구 지급 및 검진 정보 (add profit.csv)

Profit (수익성)

- profit : 순 수익성을 알기 위해 각 개인이 보험 회사에 납부한 총 납입액(insu\_cum\_amount)과

보험 회사로부터 수령한 총 지급액(insu\_pay\_amount)을 감사한 값

• 개인별 총 납입액 - 총 지급액

Risk (위험 / 비 위험 고객)

- risk : 수익성을 기준으로 위험 고객/비 위험 고객 이진(binary)분류

- 납입-지급 >= 50000 : 비 위험
- 납입-지급 < 50000 : 위험

선정한 이유는 보험 회사측에서 사전 검사(혈액 혹은 소변검사) **비용을 부담**하기 때문에 사전 검사로 인한 손실을 충당하기 위해서는 사전 검사 비용을 기준으로 수익성 판단

-0원이 아닌 50000으로 분류 기준을

부가 설명

: 개인이 청구를 0원 하더라도 정액 보험과 같은 경우, 개인에게 지급되는 보험금이 존재

- <mark>"납입-지급"</mark>을 선정한 이유?



따라서, '청구'보다는 확실한 수익성을 계산할 수 있는 '납입'을 사용



#### 데이터 정제

## [ Data set : 개인별 보험 청구 지급 및 검진 정보 ]

- 위험 고객 여부 판별할 수 있는 것은 오직 고객의 사전 검사 데이터
- <mark>개인의 특성</mark>으로만 위험 고객 판별할 예정이므로 개인의 특성과 관련 없는 columns 제거
- -보험 관련 (insu\_id / insu\_contract\_date / insu\_prod\_id / insu\_prod\_name)
- → 사전 검사 데이터에서 각 개인이 어떤 보험을 들 것인지 알 수 없으므로 제거.
- -청구 관련 (req\_id / req\_id\_seq)
- → 청구보다 정확한 납입 데이터 사용할 예정이므로 제거.
- -상병 관련 (sick\_main / sick\_1st / sick\_2nd / sick\_3rd)
- → 사전 검사 데이터만으로 개인의 병 예측 불가하므로 제거.

#### 데이터 정제

## [ Data set : 개인별 보험 청구 지급 및 검진 정보 ]

- 위험 고객 여부 판별할 수 있는 것은 오직 고객의 사전 검사 데이터
- <mark>개인의 특성</mark>으로만 위험 고객 판별할 예정이므로 개인의 특성과 관련 없는 columns 제거

-진단 관련 (dg\_cat / dg\_start\_date / dg\_end\_date / dg\_duration)

→ 사전 검사만으로 미리 알 수 없는 정보이므로 제거. dg\_cat과 dg\_duration은 고려 후 사용 가능성 존재.

-보험금 관련(insu\_req\_amount / insu\_pay\_amount / insu\_pay\_date / insu\_duration / insu\_cum\_amount)

→ 보다 정확한 수익성을 위해 청구 보험금이 아닌 납입 보험금을 사용하기로 하였으므로 청구 금액 제거.

→ 수익성(profit)은 납입 보험금과 지급 보험금으로 파생된 변수이므로 제거.

→ 보험 기간은 납입 보험금과 상관관계가 높으므로 제거.

-검사 관련 (review\_date)

→ 위험고객 판정과 검사 일자 관련 무관하므로 제거.

### 데이터 정제

| Blood 7       | -<br>Test |
|---------------|-----------|
| bt_chol       | 0         |
| bt_crea       | 1058      |
| bt_gluc       | 0         |
| bt_hb         | 0         |
| bt_hbsa       | 0         |
| bt_hct        | 0         |
| bt_mch        | 0         |
| bt_mchc       | 0         |
| bt_mvc        | 0         |
| bt_plat       | 0         |
| bt_rbc        | 0         |
| <u>bt_wbc</u> | 0         |
| bt_rgpt       | 1579      |
| bt_sgot       | 1492      |
| bt_sgpt       | 0         |
| bt_trig       | 900       |

- 혈액 검사 데이터 : 총 8개의 결측 columns 존재 (bt crea / bt rgpt / bt sgot / bt trig 와 그에 따른 판정 결과)
- ① 결측 데이터 있는 행 제거 or 결측 데이터 대체 : 약 1000개 이상의 데이터 손실
- ② 결측 데이터 존재하는 columns 제거 : 8개의 columns 손실
- 1000개의 데이터 손실보다 8개의 columns 손실이 낫다고 판단.
  → bt\_crea / bt\_rgpt / bt\_sgot / bt\_trig 와 그에 따른 판정 결과

→ 개인별 특성 파악해서 수익성 여부를 판별하는 모델링이기 때문에,

- → bt\_crea / bt\_rgpt / bt\_sgot / bt\_trig 와 그에 따른 판정 걸고columns 제거 후 모델링.
- 일반 검진 데이터 : 결측 데이터 X

## 데이터 모델링 - 일반 검진

### **Decision Tree**

- · Accuracy
- -Training set: 1.0
- -Validation set: 0.882
- -Test set : 0.923
- Variable Importance waist>age>bust> pulse\_count>height

## Random Forest

- · Accuracy
- -Training set: 0.977
- -Validation set : 0.946
- -Test set : 0.909
- Variable ImportanceBmi>whtr>pulse\_count>age>waist

## **Gradient Boosting**

- · Accuracy
- -Training set: 0.995
- -Validation set : 0.943 -Test set : 0.909
- Variable Importancebt\_chol>bt\_RBC>bt\_hct>bt\_plat>bt\_gluc

→ Decision Tree로 모델링 했을 때 가장 높은 test set 정확도를 보였다.



### 데이터 모델링 - 혈액 검사

## **Decision Tree**

- · Accuracy
- -Training set: 1.0
- -Validation set: 0.821
- -Test set: 0.923
- · Variable Importance Bmi (only)

## Random Forest

- · Accuracy
- -Training set: 0.977
- -Validation set : 0.900
- -Test set : 0.923
- Variable Importance
- Age>bt\_chol>whtr>b mi>bt\_plat>bt\_hb

## **Gradient Boosting**

- · Accuracy
- -Training set: 0.96
- -Validation set: 0.897
- -Test set : 0.923
- Variable ImportanceWeight>bmi>whtr>ag
- e>height

→ Test set의 정확도는 모두 동일하므로, validation set의 정확도가 가장 높은 RF로 사용한다.

# 데이터 모델링 - 혈액 검사

**Decision Tree** 

| 1                        | -<br>eature | Importance |        | Feature | Importance |        | Feature | Import |
|--------------------------|-------------|------------|--------|---------|------------|--------|---------|--------|
| 5                        | bmi         | 1.0        | 0      | age     | 0.12       | 10     | bt_chol | (      |
| U                        | VIIII       | 1.0        | 10     | bt_chol | 0.11       | 18     | bt_rbc  |        |
| 0                        | age         | 0.0        | 6      | whtr    | 0.09       | 10     | 01_100  | ,      |
| 10 11 1:                 |             | 0.0        | 5      | bmi     | 0.09       | 13     | bt_hct  | 0      |
| l3 new_bt_mch_ju         | dge_0.0     | 0.0        | 17     | bt_plat | 0.06       | 17     | bt_plat | 0      |
| 31 new_pulse_count_i     | udae 0      | 0.0        | 12     | bt_hb   | 0.06       | 11     | bi_piai | U      |
| // new_paloe_count_      | uugo_o      | 0.0        | 20     | bt_sgpt | 0.05       | 11     | bt_gluc | 0      |
| 32 new_pulse_count_i     | udge_1      | 0.0        | 3      | bust    | 0.05       | 5      | bmi     | 0      |
|                          |             |            | 13     | bt_hct  | 0.04       | J      | DIIII   | U      |
| 33 new_bt_chol_judge_0.0 | 0.0         | 1          | height | 0.04    | 16         | bt mvc | 0       |        |

→ 대체적으로 bmi, bt\_chol 등이 중요한 변수로 보인다.

Random Forest

**Gradient Boosting** 

## 보완점 및 향후 계획

## [보완점]

- 1 . 위험 고객 분류 모델 정확도 향상
- : 사전 검진에서 거절된 고객들 중 비 위험 고객 찾아서 신규 고객으로 유치할 수 있는 방안 마련.
- : 모델에 test 데이터 적용해 본 결과, Accuracy는 0.93으로 비교적 높은 수치이지만 위험 고객을 찾을 수 없으므로 개선 필요.
- 2. 데이터 셋의 다양화 시도
- : Null 값을 처리하기 위해서는 데이터 셋을 쪼개서 사용할 수 밖에 없음.
- : 현재 가지고 있는 데이터 셋 제외하고, 다양한 변수의 조합으로 데이터 손실을 최소화하는 데이터 셋 생성.

## 보완점 및 향후 계획

## [ 향후 계획 ]

- 1 . 혈액과 일반 검진 모델을 통해 위험한 고객의 특성으로 나타난 변수들을 이용
  - 수익성 향상시키는 고객과 유사한 특징을 가진 거절 고객을 신규 고객으로 유치
  - 수익성 악화시키는 고객과 유사한 특징을 가진 신규 고객에게 할증 혹은 거절
- 2 . 국민건강검진 정보 데이터 활용
  - 사전 검진 정보 데이터와 겹치는 국민 건강 검진 정보의 변수(키, 몸무게, 혈압 등등)을 이용하여, 사전 검진 정보 데이터에서 새로운 변수 생성(시력, 청력, 흡연 음주 등등) 후 모델링 정확도 향상을 시도
    - (ex. 키, 몸무게, 혈압 등 비슷한 사람들에게 그에 해당하는 시력, 청력, 흡연, 음주 등의 변수 값 부여)
  - → 모델링에 보다 많은 변수 이용 가능