

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №1 на тему:

"Итерационные методы решения систем линейных алгебраических уравнений"

Студент	ФН2-51Б (Группа)	(Подпись, дата)	М.А. Каган (И.О. Фамилия)
Студент	ФН2-51Б (Группа)	(Подпись, дата)	И. А. Яковлев (И. О. Фамилия)
Проверил	(- FJ)	(Подпись, дата)	(И.О. Фамилия)

Оглавление

1.	Исходные данные	3
2.	Краткие сведения	3
	2.1. Метод простой итерации	3
	2.2. Метод Якоби	3
	2.3. Метод Зейделя	3
	2.4. Метод релаксации	3
Ko	онтрольные вопросы	3

1. Исходные данные

Система линейных уравнений №1:

$$\begin{cases} 0.2910x_1 + 1.8100x_2 + 9.3110x_3 + 9.1100x_4 = 4.2280 \\ 1.4500x_1 + 8.5790x_2 + 44.1950x_3 + 42.9950x_4 = 20.4290 \\ -0.2900x_1 - 1.7980x_2 - 9.2500x_3 - 9.0500x_4 = -4.2080 \\ 0.0000x_1 + 0.0820x_2 + 0.4100x_3 + 0.4500x_4 = 0.1220 \end{cases}$$

Система линейных уравнений №2:

$$\begin{cases}
-106.4000x_1 - 7.0000x_2 - 4.9900x_3 + 0.2600x_4 = 1040.8100 \\
3.6100x_1 + 22.2000x_2 - 8.5900x_3 - 8.9200x_4 = 615.4100 \\
2.2800x_1 + 7.7500x_2 + 52.2000x_3 + 9.6500x_4 = 427.5400 \\
-9.0000x_1 + 5.8100x_2 - 0.0900x_3 + 136.8000x_4 = -265.3500
\end{cases}$$

2. Краткие сведения

Пусть A — невырожденная матрица $n \times n$, b — ненулевой n-мерный вектор. Необходимо найти такой n-мерный вектор x, чтобы он удовлетворял уравнению

$$Ax = b. (1)$$

- 2.1. Метод простой итерации
 - 2.2. Метод Якоби
 - 2.3. Метод Зейделя
 - 2.4. Метод релаксации

Контрольные вопросы

1. Почему условие ||C|| < 1 гарантирует сходимость итерационных методов?

Omeem:

Условие ||C|| < 1 связано с тем, что для нахождения единственного решения (единственной неподвижной точки) оператору C необходимо быть сжимающим, а из определения сжимающего оператора следует, что его норма должна быть строго меньше единицы.

2. оп оп

Ответ:

3. На примере системы из двух уравнений с двумя неизвестными дайте геометрическую интерпретацию метода Якоби, метода Зейделя, метода релаксации.

Ответ:

Рассмотрим метод Якоби. В этом случае итерационный процесс организуется следующим образом:

$$\begin{cases} a_{11}x_1^{k+1} + a_{12}x_2^k = f_1, \\ a_{21}x_1^{k+1} + a_{22}x_2^k = f_2. \end{cases}$$

Каждое из уравнений задает некоторую прямую, точное решение \hat{x} лежит на их пересечении. Приведем картинку с поэтапным поиском приближений:

4. оп оп

Ответ:

5. Выпишите матрицу C для методов Зейделя и релаксации.

Oтвет:

В матричном виде метод Зейделя задается как:

$$(D+L)(x^{k+1}-x^k) + Ax^k = b.$$

Необходимо получить в левой части x^{k+1} , а в правой — свободный член и x^k умноженный на некоторый матричный коэффициент. Собрав множители при x^k и перенеся его в правую часть, получим:

$$(D+L)x^{k+1} = (D+L-A)x^k + b.$$

Домножим обе части на $(D + \omega L)^{-1}$:

$$x^{k+1} = (D + \omega L)^{-1}(D + L - A)x^k + (D + L)^{-1}b,$$

откуда
$$C = (D+L)^{-1}(D+L-A) = (D+L)^{-1}(-U) = -(D+L)^{-1}U.$$

6. оп оп

Ответ:

7. Какие еще критерии окончания итерационного процесса можно предложить?

Omeem:

Можно воспользоваться следующими критериями останова:

$$||x^{k+1} - x^k|| \le \varepsilon ||x^k|| + \varepsilon_0, \quad ||Ax^{k+1}|| \le \varepsilon.$$

Однако у них есть существенный недостаток: они не могут гарантировать условия $\|x^k - \hat{x}\| \le \varepsilon$, то есть сходимости к точному решению.