You should work carefully on all problems. However you only have to hand in solutions to problems 3 and 6. This assignment is due on Tuesday, October 18 in class.

Exercise 1. Show that the sets

$$A = \left\{ 2 + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\} \text{ and } B = \left\{ \frac{1}{n} + (-1)^n : n \in \mathbb{N} \right\}$$

are bounded and determine their supremum and infimum.

Exercise 2. Let A and B be two nonempty subsets of \mathbb{R} . Prove that $A \cup B$ is bounded above if and only if A and B are bounded above. If it is the case, prove that $\sup (A \cup B) = \sup (\sup A, \sup B)$.

Exercise 3. [10 points] We say that a number $x_0 \in \mathbb{R}$ is an accumulation point of a set $S \subseteq \mathbb{R}$ if for every $\epsilon > 0$, $S \cap (x_0 - \epsilon, x_0 + \epsilon) \setminus \{x_0\} \neq \emptyset$.

- (i) What are the accumulation points of \mathbb{Q} ?
- (ii) Assume that S is bounded and not finite. Let A be the set of all points $x \in \mathbb{R}$ such that $(x, \infty) \cap S$ is not finite.
 - (a) Show that A is not empty and $\sup S$ is an upper bound of A.
 - (b) Show that $\sup A$ is an accumulation point of S.

Exercise 4. Prove that for every $x, y \in \mathbb{R}$, the following inequalities are true:

- (i) $|x| + |y| \le |x + y| \le |x| + |y| + 1$.
- (ii) $\lfloor x \rfloor + \lfloor x + y \rfloor + \lfloor y \rfloor \le \lfloor 2x \rfloor + \lfloor 2y \rfloor$.

Exercise 5. Let $a, b \in \mathbb{R}$ be such that a < b. Prove that

$$\operatorname{Card}([a,b] \cap \mathbb{Z}) = \lfloor b \rfloor + \lfloor 1 - a \rfloor.$$

Exercise 6. [10 points]

- (i) By modifying the proof of the Archimedean property, show that for every $z \in \mathbb{R}$, there exists $k \in \mathbb{N}$ such that $10^k > z$.
- (ii) Show that the set

$$\mathbb{D} = \left\{ \frac{a}{10^k} : a \in \mathbb{Z}, \, k \in \mathbb{N} \right\}$$

is dense in \mathbb{R} , namely for every $x, y \in \mathbb{R}$ such that x < y, there exists $r \in \mathbb{D}$ such that x < r < y. Hint: The proof of density of \mathbb{Q} in \mathbb{R} may inspire you.