

PHYSICS CHAPTER 3

5th SECONDARY

M.P.C.L.

MOTIVATING STRATEGY

¿Para dar en el blanco realmente se debe apuntar al blanco?

¿QUÉ ES UN MOVIMIENTO PARABÓLICO DE CAIDA LIBRE?

Es un movimiento de trayectoria PARABÓLICA, a causa de la acción de la gravedad sin resistencia alguna. (Se desprecia la resistencia del aire)

MOVIMIENTO PARABOLICO DE CAÍDA

Un MPCL lo podemos analizar como si fuera la composición de:

CONSIDERACIONES:

- La componente horizontal de la velocidad: V_{χ} : constante
- En la posición de altura máxima: $V_y = 0$ (cuidado $V = V_x$)
- En todo instante su RAPIDEZ (V)

$$V = \sqrt{V_x^2 + V_x^2}$$

01

1). Desde la ventana de un edificio se lanza una esfera en forma horizontal y con una rapidez de 10 m/s. Si despreciamos la resistencia del aire y la esfera tarda 2,5 s en llegar al piso, determine a qué distancia de la base del edificio la esfera impacta contra el piso. (g=10 m/s²).

En el eje X (M.R.U)

$$d = v.t$$

$$d = \left(10\,\frac{m}{s}\right).\left(2,5\,s\right)$$

$$d = 25 m$$

HELICO | PRACTICE

2) Desde la azotea de un edificio de 80 m de altura, se lanza un proyectil en forma horizontal y con una rapidez de 60 m/s. Si consideramos que el proyectil desarrolla un MPCL, determine a qué distancia de la base del edificio el proyectil impacta contra la superficie. (g=10 m/s²).

Resolución

 $h = v_i \cdot t + \frac{1}{2}a \cdot t^2$

En el eje Y:

$$80 = (0).t + \frac{1}{2}(10).t^2$$

$$t^2 = 16$$
 $\rightarrow t = 4 \text{ s}$

En el eje X:

$$d = v.t$$

$$d = 60.4$$

$$\therefore d = 240 m$$

3) Desde el borde de un acantilado un osado motociclista se lanza en forma horizontal y con una rapidez de 40 m/s. Si despreciamos la resistencia del aire, determine le módulo de la velocidad del motociclista luego de 3 s de abandonar el acantilado. ($g=10 \text{ m/s}^2$).

Resolución

En el eje Y:
$$v_f = v_i + g.t$$

$$v_y = 0 + 10.(3)$$

$$v_y = 30 \frac{m}{s}$$

Al final de los 3 s:

$$v = \sqrt{v_x^2 + v_y^2}$$

$$v = \sqrt{40^2 + 30^2}$$

$$v = 50 \text{ m/s}$$

4) Un cañón antiaéreo en reposo dispara un proyectil con una rapidez de 500 m/s y un ángulo de elevación de 53° sobre la horizontal. Si consideramos que el proyectil desarrolla un MPCL, determine la rapidez luego de 10 s desde su lanzamiento. (g=10 m/s²).

RESOLUCIÓN

5) Una catapulta medieval ubicado en la orilla del mar lanza una roca con una rapidez de 50 m/s y un ángulo de elevación de 37° sobre la horizontal. Si la roca impacta en un navío enemigo en reposo, determine a qué distancia de la orilla se encontraba el navío destruido. Considere que la roca desarrolla un MCPL y $g=10 \text{ m/s}^2$.

RESOLUCIÓN

En el eje Y:

Calculando el tiempo de vuelo (t_v)

$$t_v = \frac{2v_{iy}}{g}$$

$$t_v = \frac{2(30)}{10} \longrightarrow t_v = 6$$

En el eje X:

$$d = v_{\chi}$$
. t

$$d = 40.6$$

$$d = 240 m$$

6) Un jugador de futbol está dispuesto a cobrar un tiro libre luego de que adversario le cometiera una falta. Para ello da un puntapié al balón e inicia su movimiento con una rapidez de 25 m/s y un ángulo de elevación de 53° sobre la horizontal. Si el balón desarrolla un MPCL, determine la altura máxima que logra alcanzar el balón. $(g=10 \text{ m/s}^2).$

En el eje Y:

Determinando la altura máxima $h_{(max)}$:

$$h_{(max)} = \frac{v_{iy}^2}{2g}$$

$$h_{(max)} = \frac{30^2}{2(10)}$$

$$\therefore h_{(max)} = 45 m$$

RESOLUCIÓN

MPCL y $g=10 \text{ m/s}^2$.

En el eje Y:

Determinando el tiempo BC

$$h = v_{iy}t + \frac{1}{2}g.t^2$$

$$1400 = 30t + \frac{1}{2}.10.t^2$$

$$t_{BC} = 14 s$$

Además: $t_{AB} = 6 s$

En el eje X:

$$d = v_{x} \cdot t$$

$$d = 40.20$$

$$d = 800 m$$