Understanding GB Power Prices and Renewable Generation Methods

Zach Wu 2024/07/14

Power Price Drivers

Energy Technology Analysis

Predicting Power Price for 2020

- Commodity Prices Influence
 Power Prices: Gas and coal price
 are the main driver
- Seasonality: Power prices exhibit a seasonal pattern, driven by higher heating demands in winter months
- Renewable vs. Non-Renewable Generation: the generation gap is decreasing
- Renewable Generation: Offshore and onshore wind dominate total generation and biomass shows highest load factor
- Linear Regression Model: outperforms other models, with gas price being the top feature
- Predicted Price for 2020: closely follows the gas price, impacted by significant events

A Power Price Drivers

Wholesale Market Price is Affected by Commodity Price and Underlying Demand; It Mainly Drives by Gas Price and Has Strong Seasonality

Wholesale Market Price Has Strong Positive Correlations with Gas Price and Coal Price

- Coal and Carbon Prices vs Wholesale Market Price

 Coal Price
 Fitted Line For Coal/Power Price
 Carbon Price

 Carbon Price
 Fitted Line For Coal/Power Price
 Carbon Price

 Coal Price
 Fitted Line For Coal/Power Price
 Carbon Price

 Commodity Prices (GBP/tonne)
- A 1 GBP/MMBtu increase in gas prices results in an approximate 6.74 GBP/MWh increase in wholesale market prices
- Strong relationship between gas and power price, with the fitted line explains 73.9% of the power price variability
- 1 GBP/tonne increase in coal prices results in an approximate 0.68 GBP/MWh increase in power price, moderate correlations

The Power Prices Shows a Seasonal Pattern, Driven by Heating Demands in Winter

Winter months experiences higher power prices and underlying demand

Power generation is adjusted based on seasonal demand, with lower generation during summer and increased generation during winter

The demand-driven pricing effect is evident from the correlation between demand and prices

Correlation of Wholesale Market Price vs

Gas Price	Coal Price	Carbon Prid
0.65	0.49	-0.28

Tot Generation	Load Factor	Underlying Demand
0.057	0.083	0.42

High	Low	High
Correlations	Corr	Corr
1.0	0.0	-0.5

B Energy Technology Analysis

Renewable Generation is Catching Up Non-Renewable Generation; Wind and Biomass Being the Top Renewable Method With High Generation and Load Factor

The Generation Gap Between Renewable Method and Non-Renewable Method is Decreasing Between 2018-2019

- Renewable energy generation has steadily increased, while nonrenewable energy generation shows a declining trend
- This trend indicates a significant shift towards renewable energy sources, suggesting increased adoption and investment in renewable technologies

Offshore and Onshore Wind Lead the Renewable Generation; Biomass Has the Highest Load Factor

 Offshore wind and onshore wind are the leading renewable energy sources in total generation, followed by biomass

Biomass is the highest load factor, indicating its consistent and efficient output

C Models Predicting Power Price for 2020

Linear Regression Model is Built to predict the Power Price in 2020, With Gas Price Being the Most Important Feature; The Price in 2020 Expect to See a Sharp Drop in the First Half and Gradual Recovery in the Second Half

Linear Regression Model Performs the Best, with Gas Price, Day, and the Price Yesterday Being the Top Features

Model	Mean Abs Error	R^2 Score
Linear Regression	4.04	0.30
XGBoost	4.52	0.23
Random Forest	4.51	0.25

- Linear Regression
 outperforms other models,
 having mean absolute error
 of 4.04 and explaining
 30.32% of the variability
- Gas price is the most important feature, followed by day of the week and power price of yesterday

Predicted Power Price Follow the Gas Price; There is a Sharp Drop in the H1 and Gradually Recover in the H2

- The predicted power price closely followed the gas prices. Significant events like geopolitical tensions and COVID-19 played a crucial role influencing the power prices
- A price war between Saudi Arabia& Russia led to a significant drop in oil and gas prices
- It caused reduction in economic activity and energy demand, resulting drop in gas and power price

COVID-19

^{*} If don't have historical power prices, model would inference based on previous predicted price

Data Exploration: Correlation Matrix for Slide 1

Slide 1: Wholesale Power Price vs Commodity Price

Slide 1: Wholesale Power Price vs Total Generation and Underlying Demand

Slide 2: Total Generation and Average Load Factor by Renewable Method

Slide 2: Renewable and Non-Renewable Generation and Load Factor Comparison

Slide 3: Linear Regression Model Test Result and Feature Explanation

Slide 3: Linear Regression Model Power Price Inference and Actual Price Globally

Quarterly average electricity prices in selected markets, 2016-2020

IEA. Licence: CC BY 4.0

Australia Germany Japan Nordic countries United States Inc

Slide 3: Other Models Test and Inference Result

Slide 3: Random Forest Feature Explanation

