

Document Title Annex 1 – Data Management Plan (DMP)

Deliverable number **D6.6**

Deliverable version **1.0**

Action Number: 101079338

Action title: Towards Excellent Robotics and Artificial Intelligence at a Slovak University

Action Acronym: TERAIS

Deliverable 6.6 Data Management Plan – Final version <u>Annex 1</u>

WP6 - Project Management

Authors: Daniela Olejarova, Valentina Pasquale, Carlo Mazzola, Omar Eldardeer, Hassan Ali, Viktor Kocur, Xenia Daniela Poslon, Martin Takac, Sara Finocchietti, Igor Farkas

Lead participant: UKBA (Comenius University Bratislava)

Date: 30/09/2025

Dissemination level: public **DMP Annex 1 Version:** 2.0

Status of the Document: Submitted (not yet accepted)

Deliverable number D6.6

Deliverable version 1.0

Table of Contents

1. Introduction	2
2. List of datasets	3
3. Abbreviations & keywords	12

1. Introduction

This Annex to Data Management Plan (DMP) of TERAIS project, specifies all the datasets related to studies published under the TERAIS acknowledgement. Datasets are organized as follows: six parent datasets, two for each partner of the consortium, are listed in the main document of the DMP and reports all main features that are valid for the child datasets that are connected to them. Child datasets are listed in this Annex (Annex 1). For each child-dataset, features such as the dataset name, authors, related publication, keywords, repository, level of Confidentiality / Accessibility policies, and PID are specified in Table 1.

Deliverable number
D6.6

Deliverable version
1.0

2. List of datasets

Here below are listed the child datasets of the TERAIS project, each connected to:

- 1) a parent dataset (PD) whose features are listed in the main document of the DMP
- 2) a specific publication acknowledging TERAIS.

Table 1. Summary of the TERAIS research datasets

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
1	TERAIS_SLS-S uperSampl_cod e	2 חם	lukas.gajdosech@fmph .uniba.sk 0000-0002-8646-2147	Supersampling of Data from Structured-light Scanner with Deep Learning https://doi.org/10.48550/arXiv.2305.05215	-	Zenodo, https://doi.org/10.5281/zeno do.10688235 Restricted (collaboration with the private sector)	The code used to evaluate 3D point cloud supersampling methods. Restricted access due to collaboration with the private sector.
	TERAIS_SLS-S uperSampl_dat a	וטף	lukas.gajdosech@fmph .uniba.sk 0000-0002-8646-2147	Supersampling of Data from Structured-light Scanner with Deep Learning https://doi.org/10.48550/arXiv.2305.05215	-	Zenodo, https://doi.org/10.5281/zeno do.10688199 Restricted (collaboration with the private sector)	The data used to evaluate 3D point cloud supersampling methods. Restricted access due to collaboration with the private sector.
.3	BillBoardLamac _code	PD 2 UKBA code	viktor.kocur@fmph.unib a.sk 0000-0001-8752-2685	Evaluating the Significance of Outdoor Advertising from Driver's Perspective Using Computer Vision https://arxiv.org/abs/2311.07390	12.0 kB	Zenodo, https://zenodo.org/doi/10.52 81/zenodo.10689666 OA	The code can be used with conjunction with the published data to create models for assessing significance of roadside advertisements as well as for similar assessment for other types of objects
	BillBoardLamac _data	PD 1 UKBA Exp Data	viktor.kocur@fmph.unib a.sk 0000-0001-8752-2685	Evaluating the Significance of Outdoor Advertising from Driver's Perspective Using Computer Vision https://doi.org/10.48550/arXiv.2311.07390	1.5 MB	Zenodo, https://zenodo.org/doi/10.52 81/zenodo.10689664 OA	The data can be used to research aspects of roadside advertisement such as its significance in terms of driver's attention
	TERAIS_STD- Noise_code	PD 2	lukas.gajdosech@fmph .uniba.sk 0000-0002-8646-2147	Enhancement of 3D Camera Synthetic Training Data with Noise Models https://doi.org/10.48550/arXiv.2402.16514	60.4 ME	Zenodo, https://doi.org/10.5281/zeno do.10581562 OA	The provided code can be used to estimate the parameters of 3D camera noise models. The code can also be used to train Deep CNN with synthetic

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
							noise added and evaluation of the trained model.
6	TERAIS_STD- Noise_data	PD 1 UKBA Exp Data	lukas.gajdosech@fmph .uniba.sk 0000-0002-8646-2147	Enhancement of 3D Camera Synthetic Training Data with Noise Models https://doi.org/10.48550/arXiv.2402.16514	6.5 GB	Zenodo, https://doi.org/10.5281/zeno do.10581278 OA	The dataset can be used to estimate noise parameters of three different types of 3D cameras. The dataset can also be used to train and evaluate DeepCNNs for object segmentation from depth maps featuring an object for which its precise 3D model is available.
7	SnaptureGR_c ode	PD 6 UHAM code	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Snapture—a Novel Neural Architecture for Combined Static and Dynamic Hand Gesture Recognition https://doi.org/10.1007/s12559-023-10174-z	435.4 kB	Zenodo, https://zenodo.org/doi/10.52 81/zenodo.10679196 OA	The code can be used to train a gesture recognition model which can enhance the robot's human-awareness using non-verbal cues.
8	SnaptureGR_d ata	PD 5 UHAM Exp Data	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Snapture—a Novel Neural Architecture for Combined Static and Dynamic Hand Gesture Recognition https://doi.org/10.1007/s12559-023-10174-z	190.6 kB	Zenodo, https://zenodo.org/doi/10.52 81/zenodo.10693816 OA	The repository refers to the public datasets used for this study. Other gestures recognition models can be trained using the same data.
9	SafeRL_code	PD 2 UKBA code	igor.farkas@fmph.uniba .sk 0000-0003-3503-2080	Safe Reinforcement Learning in a Simulated Robotic Arm https://doi.org/10.48550/arXiv.2312.09468	9.8 MB	Zenodo, https://zenodo.org/doi/10.52 81/zenodo.10694747 OA	The repository contains code for the paper enabling further research into various RL approaches in robotics.
10	SynthGaze_cod e	PD 1 UKBA Exp Code	igor.farkas@fmph.uniba .sk 0000-0003-3503-2080	Appearance-based gaze estimation enhanced with synthetic images using deep neural networks https://doi.org/10.48550/arXiv.2311.14175	109.2 kB	Zenodo, https://zenodo.org/doi/10.52 81/zenodo.10696083 OA	This repository contains code to train and evaluate NNs for eye gaze estimation.
11	whatisthis_code	PD2 UKBA code	lucny@fmph.uniba.sk 0000-0001-6042-7434	Tuning-less Object Naming with a Foundation Model https://doi.org/10.48550/arXiv.2311.04924	13.9 kB	Zenodo https://doi.org/10.5281/zeno do.10702868 OA	This repository contains code to run the system for the tuning-less object naming and can be used by the research community.
12	whatisthis_data	PD1 UKBA data	lucny@fmph.uniba.sk 0000-0001-6042-7434	Tuning-less Object Naming with a Foundation Model https://doi.org/10.48550/arXiv.2311.04924		Zenodo https://zenodo.org/doi/10.52 81/zenodo.10841424 OA	A set of images collected during interaction with the robot naming objects

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
13	BinGen_code	PD2_UKBA code	lukas.gajdosech@fmph .uniba.sk 0000-0002-8646-2147	Novel Synthetic Data Tool for Data-Driven Cardboard Box Localization https://doi.org/10.48550/arXiv.2305.05215	-	Zenodo https://doi.org/10.5281/zeno do.10649535 Restricted (collaboration with the private sector)	The code in this repository can be used to generate synth data and train a neural network for semantic segmentation.
14	BinGen_data	PD1_UKBA Exp Data	lukas.gajdosech@fmph .uniba.sk 0000-0002-8646-2147	Novel Synthetic Data Tool for Data-Driven Cardboard Box Localization https://doi.org/10.48550/arXiv.2305.05215	3.4 GB	Zenodo https://doi.org/10.5281/zeno do.10650158 OA	The data in this repository can be used to train neural networks for bin pose estimation.
15	WSL-SegTeeth _code	PD2_UKBA code	viktor.kocur@fmph.unib a.sk 0000-0001-8752-2685	Processing and Segmentation of Human Teeth from 2D Images using Weakly Supervised Learning https://doi.org/10.48550/arXiv.2311.07398	-	Zenodo https://doi.org/10.5281/zeno do.10688264 Restricted (collaboration with the private sector)	The code in this repository can be used to train a deep neural network for human teeth keypoint detection and segmentation. Restricted access due to collaboration with the private sector.
16	WSL-SegTeeth _data	PD1_UKBA Exp Data	viktor.kocur@fmph.unib a.sk 0000-0001-8752-2685	Processing and Segmentation of Human Teeth from 2D Images using Weakly Supervised Learning https://doi.org/10.48550/arXiv.2311.07398	-	Zenodo https://doi.org/10.5281/zeno do.10688365 Restricted (collaboration with the private sector)	This dataset contains images of human oral cavities with annotated keypoints of teeth. Few samples also have mask annotations. Restricted access due to collaboration with the private sector.
17	QuasiNet_code	PD2_UKBA code	kristina.malinovska@fm ph.uniba.sk 0000-0001-7638-028X	Neural network with trainable product layers https://doi.org/10.48550/arXiv.2401.06137	7.0 kB	Zenodo https://doi.org/10.5281/zeno do.10702248 OA	Code for the proposed neural network implementation. The repository also contains experiments from the paper for replication.
18	GANShift_code	PD2_UKBA code	kristina.malinovska@fm ph.uniba.sk 0000-0001-7638-028X	Controlling the Output of a Generative Model by Latent Feature Vector Shifting https://doi.org/10.48550/arXiv.2311.08850	47.5 MB	Zenodo https://doi.org/10.5281/zeno do.10708458 OA	The repository contains the code for the proposed method to be used by the research community.

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
19	VR_SDM_code	PD2_UKBA code	<u>ivan.polasek@fmph.uni</u> <u>ba.sk</u> 0000-0001-6004-701X	Collaborative software design and modeling in virtual reality https://doi.org/10.1016/j.infsof.2023.107369	-	Zenodo https://doi.org/10.5281/zeno do.10706815 Restricted (collaboration with the private sector)	Code for the system proposed in the paper.
20) VR_SDM_data	PD3_UKBA Exp. data	ivan.polasek@fmph.uni ba.sk 0000-0001-6004-701X	Collaborative software design and modeling in virtual reality https://doi.org/10.1016/j.infsof.2023.107369	-	Zenodo https://doi.org/10.5281/zeno do.10706914 Restricted (collaboration with the private sector)	Data from human evaluations of the proposed method.
2	Xmodels_code	PD2_UKBA code	lukas.radosky@fmph.u niba.sk 0000-0003-3909-3219 ivan.polasek@fmph.uni ba.sk 0000-0001-6004-701X	Executable Multi-Layered Software Models https://doi.org/10.1145/3643660.3643938	644.9 MB	Zenodo https://zenodo.org/doi/10.52 81/zenodo.10710970 OA	The code in this repository is a software modelling tool using fusion of static and dynamic models, that is also able to generate source code in Python
22	SynthGaze_dat a	PD1_UKBA Exp. data	igor.farkas@fmph.uniba .sk 0000-0003-3503-2080	Appearance-based gaze estimation enhanced with synthetic images using deep neural networks https://doi.org/10.48550/arXiv.2311.14175	16.95 GB	Zenodo https://doi.org/10.5281/zeno do.10711778 OA	Synthetically generated gaze images which can be used for training of Gaze Estimation neural networks.
23	MHS-MXP_cod e	PD2_UKBA code	martin.homola@fmph.u niba.sk 0000-0001-6384-9771	Merge, Explain, Iterate: A Combination of MHS and MXP in an ABox Abduction Solver https://doi.org/10.5281/zenodo.10724508	315.8 MB	Zenodo https://doi.org/10.5281/zeno do.10708157 OA	Code for the methods presented in the paper.
24	ImAssocRob_c ode	PD2_UKBA code	andrej.lucny@fmph.uni ba.sk 0000-0001-6042-7434	Robot at the mirror: learning to imitate via associating self-supervised models https://doi.org/10.48550/arXiv.2311.13226	18.6 kB	Zenodo https://doi.org/10.5281/zeno do.10713544 OA	Code for the methods presented in the paper. Can be used by the research community.
25	ImAssocRob_d ata	PD2_UKBA data	andrej.lucny@fmph.uni ba.sk 0000-0001-6042-7434	Robot at the mirror: learning to imitate via associating self-supervised models https://doi.org/10.48550/arXiv.2311.13226	575.7 MB	Zenodo https://doi.org/10.5281/zeno do.10841497 OA	A set of simulated robot poses recorded during learning imitation at the mirror for various parameter setups

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
26	EduDrone_cod e	PD2_UKBA code	pavel.petrovic@fmph.u niba.sk 0000-0001-8308-0066	Using Programmable Drone in Educational Projects and Competitions https://doi.org/10.48550/arXiv.2402.17409	1.9 MB	Zenodo https://doi.org/10.5281/zeno do.10715699 OA	Code for the methods presented in the paper. Can be used by the research community.
27	DL Addressee Estimation Model for HRI - data	PD3_IIT_d ata	<u>carlo.mazzola@iit.it</u> 0000-0002-9282-9873	To Whom are You Talking? A Deep Learning Model to Endow Social Robots with Addressee Estimation Skills https://doi.org/10.48550/arXiv.2308.10757	16.1 GB	Zenodo https://doi.org/10.5281/zeno do.10711588 OA	Data derived from deep learning Addressee Estimation model trained on Vernissage Corpus
28	DL Addressee Estimation Model for HRI - code	PD4_IIT_c ode	carlo.mazzola@iit.it 0000-0002-9282-9873	To Whom are You Talking? A Deep Learning Model to Endow Social Robots with Addressee Estimation Skills https://doi.org/10.48550/arXiv.2308.10757	58.3 kB	Zenodo https://doi.org/10.5281/zeno do.10709858 OA	Code to train a deep learning Addressee Estimation model on Vernissage Corpus
29	NICOL_Softwar e	PD 6 UHAM code	matthias.kerzel@uni-ha	NICOL: A Neuro-Inspired Collaborative Semi- Humanoid Robot That Bridges Social Interaction and Reliable Manipulation https://doi.org/10.1109/ACCESS.2023.332937	-	UHAM Website https://www.inf.uni-hamburg. de/en/inst/ab/wtm/research/ neurobotics/nicol.html	NICOL robot software and CAD/URDF files, including everything needed to run the CoppeliaSim simulation
30) cycleik_code	PD 6 UHAM code	jan-gerrit.habekost@uni -hamburg.de	CycleIK: Neuro-inspired Inverse Kinematics https://doi.org/10.1007/978-3-031-44207-0 <u>38</u>	-	Zenodo https://doi.org/10.5281/zeno do.17208436 OA	Implementation of CycleIK reproduce the results of the paper
3	Calin_F code	PD 2 UKBA code	viktor.kocur@fmph.unib a.sk	Robust Self-calibration of Focal Lengths from the Fundamental Matrix https://doi.org/10.48550/arXiv.2311.16304	134.4 kB	Zenodo https://doi.org/10.5281/zeno do.14584742 OA	Implementation of the proposed method for robust self-calibration and experiments
32	Cause-RL_co de	PD 2 UKBA code	cibula25@uniba.sk	Learning Low-Level Causal Relations Using a Simulated Robotic Arm https://doi.org/10.48550/arXiv.2410.07751	2.9 MB	Zenodo https://doi.org/10.5281/zeno do.14550231 OA	Implementation of the proposed methods and experiments in the paper
33	PetrzalkaDriv e_code	PD 2 UKBA code	haladova@fmph.uniba. <u>sk</u>	A method for estimating roadway billboard salience https://doi.org/10.48550/arXiv.2501.07342	32.8MB	Zenodo 10.5281/zenodo.14652519.	Implementation of the methods proposed in the paper

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
34	RecViT_code	PD 2 UKBA code	stefan.pocos@fmph.uni ba.sk 0000-0003-3799-7038	RecViT: Enhancing Vision Transformer with Top-Down Information Flow https://www.scitepress.org/PublicationsDetail.aspx?ID=YBKNc57tfvU=&t=1	4.5MB	Zenodo https://doi.org/10.5281/zeno do.14767157	Implementation of the proposed methods and experiments in the paper
35	hf_code	PD 2 UKBA code	viktor.kocur@fmph.unib a.sk	Three-view Focal Length Recovery From Homographies https://doi.org/10.48550/arXiv.2501.07499	46.7kB	Zenodo https://doi.org/10.5281/zeno do.14672713	Code for the camera calibration method and its evaluation
36	HomoTT	PD 1 UKBA data	viktor.kocur@fmph.unib a.sk	Three-view Focal Length Recovery From Homographies https://doi.org/10.48550/arXiv.2501.07499	4.5 GB	Zenodo https://doi.org/10.5281/zeno do.14638903	Dataset of planar scenes captured by calibrated cameras
37	rd_code	PD 2 UKBA code	viktor.kocur@fmph.unib a.sk	Are Minimal Radial Distortion Solvers Necessary for Relative Pose Estimation? https://doi.org/10.48550/arXiv.2410.05984	36 kB	Zenodo https://doi.org/10.5281/zeno do.14672694	Code for the method of camera calibration and relative pose estimation for cameras with radial distortion.
38	30 rot	PD 2 UKBA code	viktor.kocur@fmph.unib a.sk	On Representation of 3D Rotation in the Context https://doi.org/10.48550/arXiv2410.103	1.64 MB	Zenodo https://doi.org/10.5281/zeno do.14704247	Code for the implemented evaluation of 3D rotation representations using synth and real data
39	LECT_code	PD 2 UKBA code	zuzana.cernekova@uni ba.sk	Detection of Vascular Leukoencephalopathy in CT Images https://arxiv.org/abs/2501.09863	7 MB	Zenodo https://doi.org/10.5281/zeno do.14711814	Code for Detection of Vascular Leukoencephalopathy in CT Images
40	LECT_models	PD 1 UKBA exp.data	zuzana.cernekova@uni ba.sk	Detection of Vascular Leukoencephalopathy in CT Images https://arxiv.org/abs/2501.09863	13.7 MB	Zenodo https://doi.org/10.5281/zeno do.14711380	Trained models for Detection of Vascular Leukoencephalopathy in CT Images
41	EMLSM_code	PD 2 UKBA code	ivan.polasek@fmph.uni ba.sk	Executable Multi-Layered Software https://doi.org/10.48550/arXiv.2501.081 86	76.8 MB	Zenodo https://doi.org/10.5281/zeno do.14714535	Code for the software visualisation and animation method presented in the paper.
42	EMLSM_data	PD 1 UKBA exp. data	ivan.polasek@fmph.uni ba.sk	Executable Multi-Layered Software https://doi.org/10.48550/arXiv.2501.081 86	52.9 kB	Zenodo https://doi.org/10.5281/zeno do.14714553	Data for software visualisation and animation used in the paper.

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
43	threeview_cod e	PD 2 UKBA code	viktor.kocur@fmph.unib a.sk	Practical Solutions to the Relative Pose of Three Calibrated Cameras https://doi.org/10.48550/arXiv.2303.16078	476.3 kB	Zenodo https://doi.org/10.5281/zeno do.16599943	Code for evaluation of methods for the threeview relative pose problem of calibrated cameras
44	threeview_dat a	PD 1 UKBA exp. data	viktor.kocur@fmph.unib a.sk	Practical Solutions to the Relative Pose of Three Calibrated Cameras https://doi.org/10.48550/arXiv.2303.16078	354 MB	Zenodo https://doi.org/10.5281/zeno do.16603086	Extracted matches and GT poses for evaluation of methods for the threeview relative pose problem
45	GlassNICOL_ code	PD 2 UKBA code	lukas.gajdosech@fmph .uniba.sk	Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks https://doi.org/10.48550/arXiv.2503.04308	< 1 MB	Zenodo https://doi.org/10.5281/zeno do.17076764	Code with data processing, model implementation and evaluation for detection of glass objects with NICOL robot
46	GlassNICOL_d ataset	PD 5 UHAM exp. data	lukas.gajdosech@fmph .uniba.sk	Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks https://doi.org/10.48550/arXiv.2503.04308	100 MB	Zenodo https://doi.org/10.5281/zeno do.17076895	Dataset for evaluation of glass objects detection with NICOL robot
47		PD 6 UHAM code	luca.muller@uni-hambu rg.de	Pointing-Guided Target Estimation via Transformer-Based Attention https://doi.org/10.48550/arXiv.2509.05031	380 kB	Zenodo https://doi.org/10.5281/zeno do.17077063	Code for research project that uses a Transformer model with Intermodality Attention to predict which object a person is pointing at in 2D images.
48	TrajGen_code	PD 2 UKBA code	lucny@fmph.uniba.sk	Generating and Customizing Robotic Arm Trajectories using Neural Networks https://doi.org/10.48550/arXiv.2506.20259	102.4 kB	https://doi.org/10.5281/zeno do.15789671	Code for research project that generates exact trajectories of given legible shape via training neural networks
49	TrajGen_data	PD 1 UKBA exp. data	ucny@fmph.uniba.sk	Generating and Customizing Robotic Arm Trajectories using Neural Networks https://doi.org/10.48550/arXiv.2506.202 59	3.2 MB	https://doi.org/10.5281/zeno do.15789880	Data for research project that generates exact trajectories of given legible shape via training neural networks
50	SS-TP_code	PD 2 UKBA code	<u>cibula25@uniba.sk</u> 0009-0000-8460-6533	Towards Bio-Inspired Robotic Trajectory Planning via Self-Supervised RNN https://doi.org/10.48550/arXiv.2507.02171	1.3 MB	Zenodo https://doi.org/10.5281/zeno do.17127997 OA	Implementation of the proposed methods and experiments in the paper
51	Legibility_exp_c ode	PD 2 UKBA code	michal.vavrecka@cvut. cz	Examining the legibility of humanoid robot arm movements in a pointing task https://doi.org/10.48550/arXiv.2508.05104	101.6 kB	https://doi.org/10.5281/zeno do.16962622	Code for the legibility experiment

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
52	Legibility_exp_ data	PD 1 UKBA exp. data	michal.vavrecka@cvut. cz	Examining the legibility of humanoid robot arm movements in a pointing task https://doi.org/10.48550/arXiv.2508.05104	218 kB	https://doi.org/10.5281/zeno do.16962714	Data for the legibility experiment
53	S2R-RobCal_c ode	PD 2 UKBA code	gavura4@uniba.sk 0009-0006-2487-0782	Robotic Calibration Based on Haptic Feedback Improves Sim-to-Real Transfer https://doi.org/10.48550/arXiv.2507.08572		Zenodo https://doi.org/10.5281/zeno do.17167890 OA	Code for the paper
54	applesoranges_code	PD 6 UHAM code	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Comparing Apples to Oranges: LLM-Powered Multimodal Intention Prediction in an Object Categorization Task https://doi.org/10.1007/978-981-96-3525-2 2 25	85.2 kB	Zenodo, https://doi.org/10.5281/zeno do.17184581 OA	The code blocks that enable the robot to perceive the user's gestures and surrounding environment (objects on the table).
55	applesoranges_ data	PD 5 UHAM Exp Data	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Comparing Apples to Oranges: LLM-Powered Multimodal Intention Prediction in an Object Categorization Task https://doi.org/10.1007/978-981-96-3525- 2_25	9.3 kB	Zenodo, https://doi.org/10.5281/zeno do.17184640 OA	The repository includes a sample interaction between the user and robot which can be used to create an interactive demo as in the paper.
56	llmmultitask_co de	PD 6 UHAM code	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Robots Can Multitask Too: Integrating a Memory Architecture and LLMs for Enhanced Cross-Task Robot Action Generation https://doi.org/10.1109/Humanoids58906.2024.10769803	2.8 kB	Zenodo, https://doi.org/10.5281/zeno do.17184086 OA	The repository includes task prompts used to define the robot's capabilities for different experiments. Running the prompts require external dependencies mentioned in the paper.
57	llmmultitask_da ta	PD 5 UHAM Exp Data	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Robots Can Multitask Too: Integrating a Memory Architecture and LLMs for Enhanced Cross-Task Robot Action Generation https://doi.org/10.1109/Humanoids58906. 2024.10769803	98 kB	Zenodo, https://doi.org/10.5281/zeno do.17183948 OA	The repository includes experimental data generated using the developed system.
58		PD 5 UHAM Exp Data	hassan.ali@uni-hambur g.de 0000-0001-9907-1834	Pointing-Guided Target Estimation via Transformer-Based Attention https://doi.org/10.1007/978-3-032-04552-2_10		Zenodo, https://doi.org/10.5281/zeno do.17200616 OA	Data and various augmentations to train and evaluate a Transformer model with Intermodality Attention to predict which object a person is pointing at in 2D images.

Deliverable number **D6.6**

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
59	TRD_data	PD 1 UKBA exp. data	lucny@fmph.uniba.sk	Teaching a Robot to Draw https://doi.org/10.5281/zenodo.14771416		Zenodo https://doi.org/10.5281/zeno do.14713225 OA	Dataset containing the drawings by the robot and the human participants
60	diffusion_data	PD 5 UHAM Exp Data	josua.spisak@uni-ham burg.de 0009-0005-6625-4980	Diffusing in Someone Else's Shoes: Robotic Perspective Taking with Diffusion https://doi.org/10.1109/Humanoids58906. 2024.10769830		Zenodo https://doi.org/10.5281/zeno do.17235665 OA	Experimental data related to the publication Diffusing in Someone Else's Shoes: Robotic Perspective Taking with Diffusion
61	cycleik_code	PD 6 UHAM code	jan-gerrit.habekost@uni -hamburg.de 0009-0007-9812-7614	CyclelK: Neuro-inspired Inverse Kinematics https://doi.org/10.1007/978-3-031-44207-0 0 38		Zenodo https://doi.org/10.5281/zeno do.17208436 OA	Code used to train a neural model to control the arms of the NICOL robot
62	Ilminteractive_c ode	PD 6 UHAM Code	jonas.werner@uni-ham burg.de	LLM-based Interactive Imitation Learning for Robotic Manipulation https://doi.org/10.48550/arXiv.2504.21769		Zenodo https://doi.org/10.5281/zeno do.17193925 OA	Code for the paper
63	SketchIt_code	PD 4 IIT Code	lorenzo.morocutti@iit.it	Sketch it for the robot! How child-like robots' joint attention affects humans' drawing strategies https://doi.org/10.1109/ICDL61372.2024.1 0644384	58.7 kB	Zenodo https://doi.org/10.5281/zeno do.10944480 OA	This repository holds the code developed for the project "Sketch it for the robot! How child-like robots' joint attention affects humans' drawing strategies".
64	SketchIt_data	PD 3 IIT Exp. Data	lorenzo.morocutti@iit.it	Sketch it for the robot! How child-like robots' joint attention affects humans' drawing strategies https://doi.org/10.1109/ICDL61372.2024.1 0644384	28.5 MB	Zenodo https://doi.org/10.5281/zeno do.10943977 OA	This repository holds the data collected during the experimental sessions for the project "Sketch it for the robot! How child-like robots' joint attention affects humans' drawing strategies".
65	Addresee_code	PD 4 IIT code	carlo.mazzola@iit.it	A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation https://doi.org/10.48550/arXiv.2407.03340	280 kB	Zenodo https://doi.org/10.5281/zeno do.14883488 OA	Code for the paper to train and evaluate the model for multi-party addressee estimation with explanation.

Deliverable number
D6.6

Deliverable version
1.0

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
66 A	Addresee_data	PD 3 IIT exp. data	carlo.mazzola@iit.it	A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation https://doi.org/10.48550/arXiv.2407.03340	157 MB	Zenodo https://doi.org/10.5281/zeno do.14833239 OA	The personal data collected with iCub to retrain the XAE model and improve the real-time addressee estimation accuracy on the robot and test the accuracy of the model in real-time interactions.

3. Abbreviations & keywords

Table 6. Abbreviations and keywords.

Abbreviation/ Keyword	Definition			
CD	Child-Dataset			
DMP	Data Management Plan			
DOI	Digital Object Identifier			
IIT	IIT Italian Institute of Technology			
PD	Parent-Dataset			
PID	Persistent Identifier			
TERAIS	Towards Excellent Robotics and Artificial Intelligence at a Slovak University			
UKBA	UKBA Comenius University Bratislava (Univerzita Komenského v Bratislave)			
UHAM	University of Hamburg			