Лабораторная работа №4

Модель гармонических колебаний

Парфенова Е. Е.

29 февраля 2024

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Парфенова Елизавета Евгеньвена
- студент
- Российский университет дружбы народов
- 1032216437@pfur.ru
- https://github.com/parfenovaee

Вводная часть

Актуальность

- Важность умения строить визуальное представление (графики решений, фазовые портреты и т.д) для различных математических моделей, представленных дифференциальными уранвениями
- Более глубокое понимание поведения физических систем, которые подобны той, что описана в лабораторной работе, в различных случаях

Цели и задачи

- Изучить понятие гармонических колебаний и гармонического осциллятора
- Изучить математичсекую модель колебаний гармонического осциллятора
- Найти решение уравнений и построить фазовый портерт для различных случаев в Julia и OpenModelica

Теоретическое введение

Теоретичсекое введение(1)

Гармонические колебания — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.

Гармониический осциллятор (в классической механике) — система, которая при выведении её из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x:

F=kx, где k - постоянный коэффициент.

Теоретичсекое введение(2)

Если F — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором.

Если имеется ещё и сила трения (затухание), пропорциональная скорости движения, то такую систему называют затухающим или диссипативным осциллятором.

Теоретичсекое введение(3)

По второму закону Ньютона дифференциальное уравнение, описывающее затухающий осциллятор выглядит так:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 = 0$$

где x – переменная, описывающая состояние системы, γ – параметр, характеризующий потери энергии, ω_0 – собственная частота колебаний, t – время.

Фазовый портрет - это геометрическое представление орбит динамической системы в фазовой плоскости. Каждый набор начальных условий представлен отдельной точкой или кривой.

Задание лабораторной работы

Задача

Мой вариант - вариант №8

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+1.5x=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + \dot{x} + 10x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + \dot{x} + 11x = 2\cos(t)$

На интервале $t \in [0;60]$ (шаг 0.05) с начальными условиями $x_0 = 0, y_0 = 0$

Выполнение лабораторной

работы

Математчисекая модель (1)

Как уже было обозначено в теоретическом введении, уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 = 0$$

Математчисекая модель (2)

Уравнение, написанное выше, - это линейное однородное дифференциальное уравнение второго порядка и оно является примером линейной динамической системы. При отсутствии потерь в системе ($\gamma=0$) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени:

$$\ddot{x} + \omega_0^2 = 0$$

Математчисекая модель (3)

анное уранение второго порядка можно представить в виде системы дифференциальных уравнений первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\omega_0^2 x \end{cases}$$

с начальными условиями:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

Математчисекая модель (4)

Независимые переменные x,y определяют пространство, в котором «движется» решение. Это фазовое пространство системы, поскольку оно двумерно будем называть его фазовой плоскостью.

Решению уравнения движения как функции времени отвечает гладкая кривая в фазовой плоскости. Она называется **фазовой траекторией**.

Если множество различных решений (соответствующих различным начальным условиям) изобразить на одной фазовой плоскости, возникает общая картина поведения системы. Такую картину, образованную набором фазовых траекторий, называют фазовым портретом.

Колебания гармонического осциллятора без затуханий и без действий внешней силы. Julia

Уравнение для этого случая представлено в таком виде: $\ddot{x}+1.5x=0$. Здесь $\omega^2=1.5$.

В результате моделирования были сгенерированы два изображения

1. Решение уравнения колебаний гармонического осциллятора для случая без затуханий и без воздествия внешей силы.

Рис. 1: График решения уравнения колебаний гармонического осциллятора без затуханий и без воздествия внешей силы на Julia

Колебания гармонического осциллятора без затуханий и без действий внешней силы. Julia

2. Фазовый портрет колебаний гармонического осциилятора для случая без затуханий и без воздествия внешей силы.

Рис. 2: Фазовый портет колебаний гармонического осциллятора без затуханий и без воздествия внешей силы на Julia

Колебания гармонического осциллятора без затуханий и без действий внешней силы. OpenModelica

В результате моделирования получились такие же график решения и фазовый портрет, как и для Julia:

1. Решение уравнения колебаний гармонического осциллятора для случая без затуханий и без воздествия внешей силы.

Рис. 3: График решения уравнения колебаний гармонического осциллятора без затуханий и без воздествия внешей силы на OpenModelica

Колебания гармонического осциллятора без затуханий и без действий внешней силы. OpenModelica

2. Фазовый портрет колебаний гармонического осциилятора для случая без затуханий и без воздествия внешей силы.

Рис. 4: Фазовый портет колебаний гармонического осциллятора без затуханий и без воздествия внешей силы на OpenModelica

Колебания гармонического осциллятора без затуханий и без действий внешней силы. OpenModelica

Так как начальные условия равны нулю ($x_0=0,y_0=0$), то в итоге без затуханий и воздествия каких-либо внещних сил решением уранвения колебаний становятся две совпадающие друг с другом прямые, проходящие через центр координат. А фазовый портрет приобретает вид точки, которая находится в центре координат. Что мы, собственно, и видим на представленных графиках.

Колебания гармонического осциллятора с затуханиями и без действий внешней силы. Julia

Уравнение для этого случая представлено в таком виде: $\ddot{x}+\dot{x}+10x=0$. Здесь $\omega^2=10$, а g=1.

В результате работы кода сгенерировались такие изображения:

1. Решение уравнения колебаний гармонического осциллятора для случая с затуханиями и воздествия внешей силы.

Рис. 5: График решения уравнения колебаний гармонического осциллятора с затуханиями и без воздествия внешей силы на Iulia

Колебания гармонического осциллятора с затуханиями и без действий внешней силы. Julia

2. Фазовый портрет колебаний гармонического осциилятора для случая с затуханиями и без воздествия внешей силы.

Рис. 6: Фазовый портет колебаний гармонического осциллятора с затуханиями и без воздествия внешей силы на Julia

Колебания гармонического осциллятора с затуханиями и без действий внешней силы. OpenModelica

В результате моделирвоания:

1. Решение уравнения колебаний гармонического осциллятора для случая с затуханиями и без воздествия внешей силы.

Рис. 7: График решения уравнения колебаний гармонического осциллятора с затуханиями и без воздествия внешей силы на OpenModelica

Колебания гармонического осциллятора с затуханиями и без действий внешней силы. OpenModelica

2. Фазовый портрет колебаний гармонического осциилятора для случая с затуханием и без воздествия внешей силы.

Рис. 8: Фазовый портет колебаний гармонического осциллятора с затуханием и без воздествия внешей силы на OpenModelica

Колебания гармонического осциллятора с затуханиями и без действий внешней силы. OpenModelica

Данные графики повторяют графики предыдущего случая, так как начальные условия остаются неизменны и превращают график решения уранвения в две совпадающие прямые, а фазовый портрет схлопывают в точку. Затухания никак не влияют на поведение графика в данном случае.

Колебания гармонического осциллятора с затуханиями и с действием внешней силы. Julia

Уравнение для этого случая представлено в таком виде:

$$\ddot{x}+\dot{x}+11x=2cos(t)$$
. Здесь $\omega^2=11$, а $g=1$.

В результате моделирования получились вот такие изображения:

Колебания гармонического осциллятора с затуханиями и с действием внешней силы. Julia

1. Решение уравнения колебаний гармонического осциллятора для случая с затуханиями и с воздествием внешей силы.

Рис. 9: График решения уравнения колебаний гармонического осциллятора с затуханиями и с воздествием внешей силы на Julia

Колебания гармонического осциллятора с затуханиями и с действием внешней силы. Julia

2. Фазовый портрет колебаний гармонического осциилятора для случая с затуханиями и с воздествием внешей силы.

Рис. 10: Фазовый портет колебаний гармонического осциллятора с затуханиями и с воздествием внешей силы на Julia

Колебания гармонического осциллятора с затуханиями и с действием внешней силы. OpenModelica

Результаты моделирования в данном случае:

1. Решение уравнения колебаний гармонического осциллятора для случая с затуханиями и с воздествием внешей силы.

Рис. 11: График решения уравнения колебаний гармонического осциллятора с затуханиями и с воздествием внешей силы на OpenModelica

Колебания гармонического осциллятора с затуханиями и с действием внешней силы. OpenModelica

2. Фазовый портрет колебаний гармонического осциилятора для случая с затуханиями и с воздествием внешей силы.

Рис. 12: Фазовый портет колебаний гармонического осциллятора с затуханиями и с воздествием внешей силы на OpenModelica

Колебания гармонического осциллятора с затуханиями и с действием внешней силы. OpenModelica

В результате вмешательства внешней силы график решения и фазовый портерт уже выглядят не так, как в предыдущих двух случаях. Графики на Julia и OpenModelica совпадают, немного отличаются лишь масштабом (фазовый портрет в OpemModelica получился более растянутым)

Вывод

Вывод

Были изучены понятия гармоничсекого осциллятора и гармонических колебаний, изучена модель колебаний гармонического осциллятора и с помощью нее построены графики решения уравнения и фазовые протреты для нескольких случаев в Julia и OpenModelica.