Lecture 5

Rotation tensor; Change of coordinates; Rigid body kinematics: Euler's theorem

11-18 August, 2021

Review of L4

- I. Orthogonal tensor: $|Q \cdot a| = |a|$, any **a**.
 - 1. $Q^{-1} = Q^T$
 - 2. $\det(Q) = \pm 1$
 - 3. $\lambda_3 = \pm 1$, $\lambda_{1,2} = a \pm i b$
 - 4. One *real* principal vector $\hat{\mathbf{e}}_3$ for λ_3 .
 - 5. $(\mathbf{Q} \cdot \mathbf{a}) \cdot (\mathbf{Q} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$
 - i. Q preserves relative orientation.
 - 6. Plane normal to $\hat{\mathbf{e}}_3$ is invariant under Q
 - 7. $\det(Q) = \lambda_3(a^2 + b^2) = \lambda_3 = \pm 1$ Q either rotates objects about $\hat{\mathbf{e}}_3$ or reflects them about invariant plane.
- II. **Rotation tensor**: *Orthogonal* tensor R with $\det(R) = +1 \Leftrightarrow \lambda_3 = +1$, $\lambda_{1,2} = a \pm ib$
 - 1. Rotation angle, $\theta = \arctan(b/a)$.
 - 2. Axis of rotation is along $\hat{\mathbf{e}}_3$.

 R rotates objects about $\hat{\mathbf{e}}_3$ by θ .

Rotation tensor: Applications I

- I. Example. CCS $\{\mathscr{E}, O, \hat{\mathbf{e}}_i\}$, $\{\mathscr{E}_1, O, \hat{\mathbf{e}}_i'\}$:
 - 1. $\hat{\mathbf{e}}'_{j} = (\hat{\mathbf{e}}'_{j} \cdot \hat{\mathbf{e}}_{i}) \hat{\mathbf{e}}_{i} =: R_{ij} \hat{\mathbf{e}}_{i} \implies R_{ij} = \hat{\mathbf{e}}'_{j} \cdot \hat{\mathbf{e}}_{i}$
 - 2. $R = R_{ij} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j = (\hat{\mathbf{e}}'_j \cdot \hat{\mathbf{e}}_i) \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$ is a rotation tensor. Prove
 - 3. $\hat{\mathbf{e}}'_i = \mathbf{R} \cdot \hat{\mathbf{e}}_i \implies \hat{\mathbf{e}}_i = \mathbf{R}^T \cdot \hat{\mathbf{e}}'_i$ $\mathbf{R} \, \underline{rotates} \, \hat{\mathbf{e}}_i \, \text{to} \, \hat{\mathbf{e}}'_i; \, \mathbf{R}^T \, \underline{rotates} \, \hat{\mathbf{e}}'_i \, back \, \text{to} \, \hat{\mathbf{e}}_i.$
- II. Implication: $\left\{\mathscr{E}, O, \hat{\mathbf{e}}_i\right\} \stackrel{\mathsf{R}}{\underset{\mathsf{R}^T}{\rightleftarrows}} \left\{\mathscr{E}_1, O, \hat{\mathbf{e}}_i'\right\}$

Any two Cartesian CS are related by a rotation tensor R, given by

$$R = R_{ij} \,\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j = (\hat{\mathbf{e}}_j' \cdot \hat{\mathbf{e}}_i) \,\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j \,!$$

Rotation tensor: Applications II

- I. **Multiplication**: R_1 , R_2 rotation tensors.
 - 1. $R = R_2 \cdot R_1$ is also a rotation tensor.
 - i. NO commutation: $R_2 \cdot R_1 \neq R_1 \cdot R_2$.
 - 2. Let $\hat{\mathbf{e}}'_i = \mathsf{R}_1 \cdot \hat{\mathbf{e}}_i$ and $\hat{\mathbf{e}}''_i = \mathsf{R}_2 \cdot \hat{\mathbf{e}}'_i$, then $\hat{\mathbf{e}}''_i = \mathsf{R}_2 \cdot \mathsf{R}_1 \cdot \hat{\mathbf{e}}_i = \mathsf{R} \cdot \hat{\mathbf{e}}_i$.

Successive rotations of $\hat{\mathbf{e}}_i$.

- II. Successive rotations of CS: Given CCS $\{\mathscr{E}, O, \hat{\mathbf{e}}_i\}$, $\{\mathscr{E}_1, O, \hat{\mathbf{e}}_i'\}$, $\{\mathscr{E}_2, O, \hat{\mathbf{e}}_i''\}$.
 - 1. Can find rotation tensors R_1 and R_2 :

$$\left\{\mathscr{E}, O, \hat{\mathbf{e}}_i\right\} \overset{\mathsf{R}_1}{\underset{\mathsf{R}_1^T}{\rightleftarrows}} \left\{\mathscr{E}_1, O, \hat{\mathbf{e}}_i'\right\} \overset{\mathsf{R}_2}{\underset{\mathsf{R}_2^T}{\rightleftarrows}} \left\{\mathscr{E}_2, O, \hat{\mathbf{e}}_i''\right\}$$

2. Then, with $R = R_2 \cdot R_1$:

$$\left\{\mathscr{E}, O, \hat{\mathbf{e}}_i\right\} \overset{\mathsf{R}}{\underset{\mathsf{R}^T}{\rightleftarrows}} \left\{\mathscr{E}_2, O, \hat{\mathbf{e}}_i^{"}\right\}$$

III. **Addition**: $R_2 + R_1$ is <u>not</u> a rotation tensor.

Coordinate transformation

- I. Requirement: In CCS $\{\mathcal{E}, O, \hat{\mathbf{e}}_i\}$: $[\mathbf{a}]_{\mathcal{E}}$, $[A]_{\mathcal{E}}$ known. Given another CCS, $\{\mathcal{E}_1, O, \hat{\mathbf{e}}_i'\}$, compute $[\mathbf{a}]_{\mathcal{E}_1}$ and $[A]_{\mathcal{E}_1}$.
- II. **Solution**: We can find *rotation* tensor R: $\left\{ \mathcal{E}, O, \hat{\mathbf{e}}_i \right\} \stackrel{\mathsf{R}}{\rightleftharpoons} \left\{ \mathcal{E}_1, O, \hat{\mathbf{e}}_i' \right\}, \text{ i.e. } \hat{\mathbf{e}}_i' = \mathsf{R} \cdot \hat{\mathbf{e}}_i$

with $R = R_{ij} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$ and $R_{ij} = \hat{\mathbf{e}}'_j \cdot \hat{\mathbf{e}}_i$.

Then, we will find:

- 1. $[\mathbf{a}]_{\mathscr{E}_1} = [\mathsf{R}]_{\mathscr{E}}^T [\mathbf{a}]_{\mathscr{E}} \Leftrightarrow a_i' = R_{ji} a_j$.
- 2. $[A]_{\mathscr{E}_1} = [R]_{\mathscr{E}}^T [A]_{\mathscr{E}} [R]_{\mathscr{E}} \Leftrightarrow A'_{ij} = R_{ki} A_{kl} R_{lj}$.
- III. Fact: $R = R'_{ij} \hat{\mathbf{e}}'_i \otimes \hat{\mathbf{e}}'_j$ in $\{\mathscr{E}_1, O, \hat{\mathbf{e}}'_i\}$.
 - 1. $[R]_{\mathscr{E}_1} = [R]_{\mathscr{E}} \iff R'_{ij} = R_{ij} = \hat{\mathbf{e}}'_j \cdot \hat{\mathbf{e}}_i!$
 - 2. Lessens work and confusion.

End of Math preliminaries!

l think.

Its OK to like tensors.

But you may start getting angry at people who don't.

Rigid body dynamics

Wolfgang Pauli (left), Neils Bohr and a Tippie Top

Rigid body

I. **Definition**: A body in which the distance between two *material points* remains *fixed*: $|\mathbf{r}_A - \mathbf{r}_B| = \text{constant}$, for *any* two points.

II. Implications:

- 1. Angle between intersecting *material lines* remains fixed.
- 2. Orientation and location of a rigid body is fixed by the position of *three* <u>non-collinear</u> material points.
- 3. Three *non*-collinear material points define a CS attached to rigid body.
- III. **Definition**: *Body Fixed CS* (*BFCS*): Cartesian CS <u>attached</u> to the rigid body.
 - 1. Rigid body's motion ← BFCS' motion

Rigid body kinematics

Euler's theorem

- I. **Question**: How are two orientations of a *rigid* body related?
- II. **Euler's theorem**: *Any* two orientations of a rigid body are linked by a *single* rotation about an axis.

Proof: Let the rigid body's two orientations be labeled '0' and '1'.

- 1. Construct a BFCS $\{\mathscr{E}, O, \hat{\mathbf{e}}_i\}$ in '0'.
 - i. Will become BFCS $\left\{\mathscr{E}_{1}, O, \hat{\mathbf{e}}_{i}'\right\}$ in '1'.
- 2. There exists rotation tensor R such that $\left\{\mathscr{E}, O, \hat{\mathbf{e}}_i\right\} \stackrel{\mathsf{R}}{\rightleftharpoons} \left\{\mathscr{E}_1, O, \hat{\mathbf{e}}_i'\right\}.$
- 3. R's principal values: $\lambda_3 = 1$, $\lambda_{1,2} = a \pm ib$.
- 4. Angle of rotation $\theta = \arctan(b/a)$
- 5. Rotation axis: Principal vector $\hat{\mathbf{e}}_3$ of $\lambda_3 = 1$

2d Dynamics $\ll 3d$ Dynamics