Вступление.

Рассмотрим отношение равносильности $A \equiv B \stackrel{def}{\iff} (A \Rightarrow B) \& (B \Rightarrow A)$

Очевидно это отношение эквивалентности, оно разбивает множество формул на классы эквивалентности. Возникает желание найти канонические формы формул разных классов. Так каноническими являются префиксные и антипрефиксные формулы.

Префиксные формулы (предваренная нормальная форма).

Формула А называется префиксной, если она имеет вид:

$$A=Q_1x_1Q_2x_2\dots Q_nx_nB,$$

где Q_i – кванторы \forall или \exists ; x_i – индивидные переменные; B – бескванторная формула; ($\forall i$).

На содержательном уровне – это формулы, у которых кванторы вынесены максимально вперед.

Утв.: любую формулу языка логики первого порядка можно привести к префиксному виду.

Алгоритм основан на применении следующих правил:

 $1. \neg \forall xA = \exists x \neg A$ $5. [\forall xA] \& B = \forall x[A \& B]$

* 3-4: А не имеет свободных вхождений переменной у

 $2. \neg \exists x A = \forall x \neg A \qquad 6. [\exists x A] \& B = \exists x [A \& B]$

* 5-8: B не имеет свободных вхождений переменной x

* A, B – формулы, $A_x[y]$ – результат подстановки y вместо

3. $\forall xA = \forall yA_x[y]$ 7. $[\forall xA] \cup B = \forall x[A \cup B]$ 4. $\exists xA = \exists yA_x[y]$ 8. $[\exists xA] \cup B = \exists x[A \cup B]$

всех вхождений x в A

Примеры.

- $[\forall x P(x)] \cup [\forall x Q(x)] = 3$ $[\forall x P(x)] \cup [\forall y Q(y)] = 7$ $\forall x [P(x) \cup [\forall y Q(y)]] = 7$ $\forall x [P(x) \cup Q(y)]$
- $[\forall x P(x)] \rightarrow [\forall x Q(x)] \neq \forall x \forall y [P(x) \rightarrow Q(y)]$

$$[\forall x P(x)] \rightarrow [\forall x Q(x)] = [\exists x \bar{P}(x)] \cup [\forall x Q(x)] = [\exists x \bar{P}(x)] \cup [\forall y Q(y)] = \exists x \forall y [\bar{P}(x) \cup Q(y)] = \exists x \forall y [\bar{P}(x) \cup Q(y)] = [\exists x \forall y [\bar{P}(x) \cup Q(y)]] = [\exists x [\bar{P}(x) \cup Q(x)]] = [\exists x [\bar{P}(x)$$

Продвижение вперед возможно только для булевых связок.