Natural Language Processing

Compositional Semantics

Dan Klein – UC Berkeley

Truth-Conditional Semantics

2

4

1

Truth-Conditional Semantics

- Linguistic expressions:
- "Bob sings"

- Logical translations:
- sings(bob)
- Could be p_1218(e_397)

- Denotation:
- (||bob|| = some specific person (in some context)
- (||sings(bob)|| = ???

- Types on translations:
- bob : e (for entity)
- sings(bob) : t (for truth-value)

Truth-Conditional Semantics

Proper names:

Refer directly to some entity in the world

Bob: bob [[bob]] → ???

Sentences:

Are either true or false (given how the world actually is)

Bob sings: sings(bob)

So what about verbs (and verb phrases)?

sings must combine with bob to produce sings(bob)

The λ-calculus is a notation for functions whose arguments are not yet filled.
sings: λλ. sings(N)

This is a predicate – a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.

11 12

Logical Form Translation

16 17

20 21

24 25

28 29

Inputs: Training set $\langle \langle x,z \rangle | i=1...n \rangle$ of sentences and logical forms. Initial parameters w. Number of iterations T. Training: For t=1...T, t=1...n:

Step 1: Check Correctness

• Let $y^a = \operatorname{argmax} w \cdot f(x,y)$ • If $L(y^a) = z_1$, go to the next example

Step 2: Lexical Generation

• Set $\lambda = \Lambda \cup \operatorname{GENLEX}(x,z_1)$ • Let $\frac{1}{2} = \operatorname{arg} \max_{x} w \cdot f(x_1,y)$ • Define λ to be the lexical entries in y^{λ} • Set lexicon to $\lambda = \Lambda \cup \lambda$.

Step 3: Update Parameters

• Let $y' = \operatorname{argmax} w \cdot f(x_1,y)$ • If $L(y') \neq z_1^{\lambda}$ • Set $w = w \cdot f(x_1,y)$ • Step $w = w \cdot f(x_1,y)$ Output: Lexicon λ and parameters w.

32 33

Related Work for Evaluation

Hidden Vector State Model: He and Young 2006

- Learns a probabilistic push-down automaton with EM
- Is integrated with speech recognition

- - Easily applied to different languages

Zettlemoyer and Collins 2005

Uses GENLEX with maximum likelihood batch training and stricter grammar

Two Natural Language Interfaces

ATIS (travel planning)

- Manually-transcribed speech queries
- 4500 training examples500 example development set
- 500 test examples

Geo880 (geography)

- Edited sentences
 600 training examples
 280 test examples

34

35

Evaluation Metrics

Precision, Recall, and F-measure for:

- Completely correct logical forms
- Attribute / value partial credit

 $\lambda x. flight(x) \land from(x,BOS) \land to(x,PRG)$

is represented as:

 $\{from = BOS, to = PRG \}$

Two-Pass Parsing

Simple method to improve recall:

- For each test sentence that can not be parsed:
 - Reparse with word skipping
 - Every skipped word adds a constant penalty
 - Output the highest scoring new parse

36

