

Contents

- 1 Obligations in terms of proxy
- 2 The general method
- 3 The French exemple

Obligations in terms of proxy

Context

Regulation (EU) 2020/1208

Article 7

Dools to Indon

- GHG summary proxy inventory is required
- Reported by end July every year
- Proxy inventory for year X-1

The format

- Annex VI
- CRT summary 2 format
- If ETS available → including also the ETS and non ETS emission share
- Brief description of the key drivers

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALEN (Sheet 1 of 1)

FRA-CRT-2025-V0.1

Franc

2024

Back to index							
GREENHOUSE GAS SOURCE AND	N ₂ O	HFCs	PFCs	Unspecified mix of HFCs and PFCs	SF ₆	NF ₃	Total
SINK CATEGORIES		C	O ₂ equivalents (kt)	(2)			
Total (net emissions) (1)							
1. Energy							
1.A. Fuel combustion							
1.A.1. Energy industries							

Article 1: Subject matter

Regulation

• (b) Contracting Parties' reporting on approximated greenhouse gas (or GHG) inventories, greenhouse gas inventories and accounted greenhouse gas emissions and removals pursuant to Article 26 of Regulation (EU) 2018/1999 as adapted and adopted by Ministerial Council Decision 2021/14/MC-EnC

Article 7: Reporting approximated greenhouse gas inventories

The format

- (a) 1. Contracting Parties shall report their approximated greenhouse gas inventories pursuant to Article 26(2) of Regulation (EU) 2018/1999 as adapted and adopted by Ministerial Council Decision 2021/14/MC-EnC in accordance with the format set out in Annex VI, at a level of disaggregation of categories reflecting the activity data and methods available for the preparation of estimates for the year X-1;
- 2. Contracting Parties shall provide explanations including on the main drivers for the key changes in emissions and removals reported in accordance with the format set out in Annex VI compared to the most recent final greenhouse gas inventory reported.

The general method

The proxy in brief: what and how (reminder of January's webinar)

What is a proxy?

- The proxy is the estimation of the emissions for the year (X-1)
- The proxy is estimated during the current year (X)

How to estimate a proxy?

- Extrapolation of the last inventoried year (X-2)
- Use of available data (X-1)
- Use of monthly or yearly indicators (X-2 and X-1)

General equation

Emissions (E) = Activity data (AD) x Emission factor (EF)

General method: How to estimate proxy emissions?

General proxy equation (with abreviations):

Proxy emissions (E_p) = Proxy Activity data (AD_p) x Proxy Emission factor (EF_p)

The estimate method depends on the sort of available data

Order of priority use:

- 1. Available proxy emission data (X-1)
- 2. Available proxy activity data (X-1)
 - \checkmark With available EF (X-1), if not
 - ✓ With available EF (X-2)

Best estimates

- 3. Available indicators
 - ✓ With available EF (X-2)
- 4. Report emissions (X-2)

1. Available proxy emission data

What you need

→ Proxy year (X-1) emissions by GHG and by full CRT sector

2. Available proxy activity data

What you need

Combustion

Proxy year (X-1) activity data by fossil fuel and sector

Production/ Quantity

Proxy year (X-1) production/quantity by CRT sector

Area

Proxy year (X-1) area by CRT sector

Emission factor

Proxy EF (X-1), if not available \rightarrow EF inventoried year (X-2)

3. Available indicators (I) – general method?

C

Equation: $E_p = AD_{(X-2)} \times I$ (trend ratio_(X-1/X-2)) $\times EF_{(X-2)}$

- What you need (generalities)
- \rightarrow
- Indicators for two years X-1 and X-2
- Activity data of inventoried year (X-2)
- Emission factor data of inventoried year (X-2)

Emission estimation steps

Gather indicators data for two years (X-2 and X-1)

Calculate the trend ratio of the indicators between the 2 years

Estimate the proxy activity

Estimate proxy emissions

Gather the inventoried year EF (X-2)

3. Available indicators (I) - the trend ratio

The calculation of the trend depends on the indicator frequency

Annual indicators \rightarrow Calculate trend ratio between the two years

Monthly indicators → Depends on the months availability

12 months per year are available → Sum up the 12 months per year
→ Calculate trend ratio between the two years

Lack of months for proxy \rightarrow have to fill the missing months

Gather indicators data inventoried year (X-2) of the missing proxy months

Sum up the 12 months per year

Calculate trend ratio between the two years

3. Available indicators (I) - Proxy emissions

Proxy activity

$$E_p = AD_{(X-2)} \times I \text{ (trend ratio}_{(X-1/X-2)}) \times EF_{(X-2)}$$

What you need

- → Activity data of inventoried year (X-2)
- → Indicators trend ratio

$$AD_{(X-1)} = AD_{(X-2)} \times trend ratio_{(X-1/X-2)}$$

Proxy emission

What you need

- → Proxy activity data (X-1)
- \rightarrow EF of inventoried year (X-2)

$$E_p = AD_{(X-1)} \times EF_{(X-2)}$$

4. No available data - Report emissions (X-2)

What you need

→ Inventoried year (X-2) emissions

Proxy emission = Inventoried emission

The French exemple

2023 French proxy results

Results by sector and gas

					,						
Implementing Regulation Article 7: Reporting on appr	oximated Gr	eenhouse G	as Inventori	es				Year	2023		
Member States shall report their approximated greenh	ouse gas inve	entories purs	uant to Arti	icle 26(2) of Re	egulation (EU	J) 2018/199	3 9	Submission	2024		1
	-	-					,	Country	France		•
							,	Geographical scope	EU scope		1
							Unspecified		·		
GREENHOUSE GAS SOURCE AND	CO ₂ ⁽¹⁾	CH₄	N ₂ O	HFCs	PFCs	SF ₆	mix of HFCs		Total	ETS	Effort Sharing (3)
			2				and PFCs				
					CO ₂ equival	ent (kt)				CO ₂ eq	uivalent (kt)
Total (net emissions) ⁽¹⁾	259340,46	58160,08	25378,46	8504,18	317,15	477,35	NO,NA	25,91	352203,59	70 598	280 411
1. Energy	252064,63	2681,72	2987,53						257733,88	44 506	213 228
2. Industrial processes and product use	25922,08	55,23	470,94	8504,18	317,15	477,35	NO,NA	25,91	35772,83	26 092	8 486
3. Agriculture	2029,46	40579,56	20169,98						62779,00		
4. Land use, land-use change and forestry ⁽¹⁾	-22295,04	756,11	884,37						-20654,56		
5. Waste	1619,33	14087,47	865,65						16572,45		
6. Other (as specified in summary 1.A)	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	NO	NO
Memo items											
International bunkers	19575,88	368,15	528,83						20472,86		
Aviation	16175,54	60,52	440,93						16677,00		
Navigation	3400,34	307,63	87,89						3795,86		

2023 French proxy results

Evolution with 2022 (last inventoried year)

GREENHOUSE GAS SOURCE AND	Total 2023	Total 2022	Trend
	, equivalent		%
Total (net emissions) ⁽¹⁾	352203,59	376325,90	-6%
1. Energy	257733,88	276344,85	-7%
2. Industrial processes and product use	35772,83	38262,97	-7%
3. Agriculture	62779,00	63645,38	-1%
4. Land use, land-use change and forestry ⁽¹⁾	-20654,56	-18499,75	12%
5. Waste	16572,45	16572,45	0%
Memo items			
International bunkers	20472,86	17903,29	14%
Aviation	16677,00	14058,81	19%
Navigation	3795,86	3844,48	-1%

2023 French proxy against real inventory

LULUCF included	202	4 submis	sion	202	5 submis	sion	Di	ifferences	(%)
Mt	Inv. 2022	Proxy 2023	Evol %	Inv. 2022	Inv. 2023	Evol %	2022	2023	Evol
CO2	282	259	-8,1%	269	241	-10,6%	-4,7%	-7,2%	-2,4%
CH4	59,0	58,2	-1,4%	62,3	61,4	-1,5%	5,6%	5,6%	-0,1%
N2O	25,9	25,4	-2,0%	27,9	27,7	-0,5%	7,7%	9,3%	1,5%
Gaz F	9,9	9,3	-6,1%	10,0	9,0	-9,6%	0,3%	-3,5%	-3,5%
Total	377	352	-6,6%	369	339	-8,3%	-2,1%	-3,8%	-1,6%

Differences explanations

- Recalculations between editions
- Not all the sectors are estimated in the proxy → GHG inventory underestimated

→ Proxy in continous improvement

2023 French proxy: available proxy data Electricity production

- Bottum-up for CO₂ emissions
- Bottum-up on energy consumption by fuel

Calculation

- CO₂ 2023 emissions → Total of the electricity plants
- Other gases:
- \rightarrow Total E₂₀₂₃ = Total₂₀₂₃ energy consumption by fuel x EF₂₀₂₂ by fuel

Refineries

- Bottum-up for CO₂ emissions

Calculation

- CO₂ 2023 emissions → Total of the refineries
- Other gases:
- \rightarrow Total E₂₀₂₃ = Activity₂₀₂₂ x CO₂ emission trend_(2023/2022) x EF₂₀₂₂

2023 French proxy: available proxy data

Road transport

- Consumption by fuel
- Vehicle fleet
- Specific proxy EF calculated

Calculation

→Use of COPERT model

2023 French proxy: available indicators

Buildings

- Consumption by (some) fuel of the sector

Calculation

 \rightarrow Total E₂₀₂₃ = Activity₂₀₂₂ x Fuel consumption trend_(23/22) x EF₂₀₂₂

Combustion in industry

Consumption by (some) fuel by industry size (big/small)

Calculation

 \rightarrow Total E₂₀₂₃ = Activity₂₀₂₂ x Fuel consumption trend_(23/22) x EF₂₀₂₂

2023 French proxy: available indicators

IPPU

- Production index (by month) by industrial sector

Calculation

- 1. Index trend_(2023/2022) = 2023 Total 12 months / 2022 Total 12 months
- 2. Total E_{2023} = Activity₂₀₂₂ x Index trend_(2023/2022) x EF_{2022}

Agriculture

- Livestock
- Crops

Calculation

Use of national model (made by Citepa)

2023 French proxy: no available data

Waste

Calculation

$$E_{2023} = E_{2022}$$

Major part of LULUCF

Calculation

$$E_{2023} = E_{2022}$$

From the Proxy (X-1) to monthly pre-estimations (X)

General method

- → Approximately same general method but with monthly indicators for all the sectors
- → If no indicator: annual emissions devided by 12 and report of the monthly emissions

How reliable are the monthly pre-estimations?

GHG (Mt CO2e)
Emissions year
edition
Total LULUCF

Editi	on 2023	
proxy	Month	2023
2022	baro. 2023	VS
inv.	ed. mars	
2023	2024	2022
404	385	-4,8%

Editio	n 2024	
Inv.	proxy	2023
2022	2023	VS
Secten	Secten	2022
2024	2024	2022
396	373	-5,8%

. 2024)	025 (dec	Edition 2
	Inv.	Inv.
2023 VS	2023	2022
2022	déc.	déc.
	2024	2024
-6,7%	377	404

Diff VS éd. 2023

excluded

Diff VS éd. 2024 Diff VS ed. 2025

2,0% **3,1**% 1,0%

0,0%

2,1% 1,9%

Differences explanations

- Recalculations between editions
- Not all the sectors are estimated in the baro/proxy → GHG inventory underestimated
- 3 editions difference
- Improvement of the proxy during 2024 edition (aviation, agriculture,...)

Thank you for your attention

Citepa is an association that guides players in the ecological transition in France and around the world.

It assesses the impact of human activities on climate and air pollution. It produces reference data and develops solutions to encourage action to reduce emissions, improve air quality and adapt to climate change.

Our multidisciplinary team contributes to building a sustainable world.

Annex: CRT sectors

1. Energy

- 1.A.1. Energy industries
- 1.A.2. Manufacturing industries and construction
- 1.A.3. Transport
- 1.A.4. Other sectors
- 1.A.5. Other
- 1.B.1. Solid fuels
- 1.B.2. Oil and natural gas and other emissions from energy production
- 1.C. CO2 transport and storage

4. LULUCF

- 4.A. Forest land
- 4.B. Cropland
- 4.C. Grassland
- 4.D. Wetlands
- 4.E. Settlements
- 4.F. Other land
- 4.G. Harvested wood products
- 4.H. Other

2. Industrial processes and product use

- 2.A. Mineral industry
- 2.B. Chemical industry
- 2.C. Metal industry
- 2.D. Non-energy products from fuels and solvent use
- 2.E. Electronic Industry
- 2.F. Product uses as ODS substitutes
- 2.G. Other product manufacture and use
- 2.H. Other

5. Waste

- 5.A. Solid waste disposal
- 5.B. Biological treatment of solid waste
- 5.C. Incineration and open burning of waste
- 5.D. Waste water treatment and discharge
- 5.E. Other

Memo items

- 1.D.1. International bunkers
- 1.D.1.a. Aviation
- 1.D.1.b. Navigation
- 1.D.2. Multilateral operations
- 1.D.3. CO2 emissions from biomass
- 1.D.4. CO2 captured
- 5.F.1. Long-term storage of C in waste disposal sites
- Indirect N2O

3. Agriculture

- 3. Agriculture
- 3.A. Enteric fermentation
- 3.B. Manure management
- 3.C. Rice cultivation
- 3.D. Agricultural soils
- 3.E. Prescribed burning of savannahs
- 3.F. Field burning of agricultural residues
- 3.G. Liming
- 3.H. Urea application
- 3.I. Other carbon-containing fertilizers
- 3.J. Other

6. Other Indirect CO2