Theorie des Algorithmischen Lernens Sommersemester 2006

Teil 2.3: Lernen formaler Sprachen: Patternsprachen

Version 1.1

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

Patternsprachen

Alphabet Σ und aufzählbare Menge X von *Variablen*, $\Sigma \cap X = \emptyset$

Ein *Pattern* ist ein String $\pi \in (\Sigma \cup X)^+$

eine (non-erasing) Substitution σ ist eine Abbildung von $X \to \Sigma^+$

Kanonische Erweiterung von Substitutionen auf Patterns

 $L(\pi) = \{ w \mid w \in \Sigma^+ \text{ und es gibt eine Substitution } \sigma \text{ so daß } \sigma(\pi) = w \}$

Patternsprache: Sprache durch Pattern beschreibbar

PAT: Menge aller Patternsprachen

Einordnung in die Chomsky-Hierarchie

Offenes Problem: $(L_{pattern} \cap L_{cf}) \setminus L_{reg} = \emptyset$?

Beobachtungen

- Patternsprachen sind entweder einelementig oder unendlich
- Falls nur Substitutionen durch nichtleere Zeichenketten erlaubt sind, gibt es nur endlich viele Patterns (bis auf Umbenennung der Variablen), die w erzeugen können.
 - Begriff: Kanonisches Pattern:
 - * Variablen sind durchnumeriert
 - * Wenn an einer Stelle die Variable x_{i+1} vorkommt, dann kommt links davon (vorher) die Variable x_i vor.
 - Falls auch Substitutionen durch leere Zeichenketten erlaubt sind, gibt es unendlich viele Patterns, die \boldsymbol{w} erzeugen können.
- Eine Patternsprache ist eindeutig durch die Menge ihrer kürzesten Wörter bestimmt.

Ein erster Lernalgorithmus

Theorem 2.3.1:

 $PAT \in LimTxt$

Übungsaufgabe: Geben Sie die Telltalemengen an.

Ein erster Lernalgorithmus

Proof.

Definition 2.3.1:

Ein Pattern π heißt **beschreibend** für eine Menge S von Wörtern, falls gilt:

- \bullet π ist konsistent mit S, d.h. $S \subseteq L(\pi)$.
- Es gibt kein Pattern π' mit $S \subseteq L(\pi') \subset L(\pi)$.

 $M(t_x)$: Wenn x=0 gehe zu (*). Ansonsten teste, ob $t_x^+\subseteq L(M(t_{x-1}))$ gilt. Wenn ja, gib $M(t_{x-1})$ aus, sonst gehe zu (*).

(*) Berechne ein beschreibendes Pattern von t_x^+ und gib es aus.

Verifikation → Übungsaufgabe

Ein erster Lernalgorithmus

Übungsaufgabe: Wie könnte ein Algorithmus zur Berechnung beschreibender Patterns aussehen?

Theorem 2.3.2:

Die Berechnung von beschreibenden Patterns ist NP-hart.

Der Algorithmus von Lange und Wiehagen

Beobachtung: Eine Patternsprache ist eindeutig durch die Menge ihrer kürzesten Wörter bestimmt.

```
Sei der Text t = w_0, w_1, w_2, \ldots gegeben. M(t_0) = w_0 M(t_{x+1}) = \begin{cases} M(t_x) &: |w_{x+1}| > M(t_x) \\ w_{x+1} &: |w_{x+1}| < M(t_x) \\ join(M(t_x), w_{x+1}) : \text{sonst} \end{cases}
```

 $join(\pi, w)$: For $j = 1, 2, \dots |w|$:

- Wenn $w[j] = \pi[j]$, dann setze $\pi'[j] = \pi[j]$.
- Wenn $w[j] \neq \pi[j]$ und die Kombination $(w[j], \pi[j])$ kommt in π' bereits vor (sagen wir an Stelle j'), dann setze $\pi'[j] = \pi'[j']$.
- Wenn $w[j] \neq \pi[j]$ und die Kombination $(w[j], \pi[j])$ kommt noch nicht in π' vor, dann setze $\pi'[j]$ auf die Variable X_j .

Gib π' aus.

(w[j] meint den j en Buchstaben von w)

Diskussion

Übungsaufgabe:

- In welchen Fällen ist die Hypothese stets konsistent, an welchen stets inkonsistent?
- ◆ Arbeitet der Algorithmus richtig? → Verifikation
- Wie ist das Laufzeitverhalten?

Diskussion

Theorem 2.3.3:

Der Algorithmus von Lange und Wiehagen lernt *PAT inkrementell* im Limes, ist nicht konsistent und arbeitet in *Polynomialzeit*.

Übungsaufgabe: Wie kann man den Algorithmus umgestalten, so daß er konsistent und trotzdem inkrementell arbeitet?

Reguläre Patterns

Definition 2.3.2:

Ein Pattern heißt *regulär* genau dann wenn jede Variable nur einmal auftritt.

rPAT: Menge aller regulären Patternsprachen.

Lernalgorithmus für reguläre Patternsprachen:

$M(t_x)$:

Sei w ein kürzestes Wort in t_x und k dessen Länge. Setze π auf das Pattern $X_1X_2\cdots X_k$ und j=1.

Solange bis $t_x^+ \not\subseteq L(\pi)$:

ullet Ersetze die je Variable in π durch den jen Buchstaben von w und erhöhe j.

Gib das letzte π aus, das mit t_x^+ konsistent war.

Reguläre Patterns

Analyse:

- Algorithmus arbeitet korrekt
 - Warum?
- Laufzeitverhalten:
 - Konstruktion von π ist linear in k
 - Test $w \in L(\pi)$ ist für jedes Wort w linear in k
 - Komplexität von M ist "kürzeste Wortlänge \cdot Summe aller Wortlängen"

Zusammenfassung

- Patternsprachen sind aus Text Iernbar, aber ineffizient.
- Beim Verzicht auf Konsistenz gewinnt man Polynomialzeitverhalten.
- Reguläre Patternsprachen sind effizient lernbar.

Changelog

- V1.1:
 - Folie 8: $join(M(t_x), x+1) \rightarrow join(M(t_x), w_{x+1})$
 - Folie 11: Algorithmus neu