

Lecture 14: Packaging, Power, & Clock

Outline

- Packaging
- Power Distribution
- ☐ Clock Distribution

Packages

- □ Package functions
 - Electrical connection of signals and power from chip to board
 - Little delay or distortion
 - Mechanical connection of chip to board
 - Removes heat produced on chip
 - Protects chip from mechanical damage
 - Compatible with thermal expansion
 - Inexpensive to manufacture and test

Package Types

☐ Through-hole vs. surface mount

Chip-to-Package Bonding

- ☐ Traditionally, chip is surrounded by pad frame
 - Metal pads on 100 200 μm pitch
 - Gold bond wires attach pads to package
 - Lead frame distributes signals in package
 - Metal heat spreader helps with cooling

Advanced Packages

- Bond wires contribute parasitic inductance
- □ Fancy packages have many signal, power layers
 - Like tiny printed circuit boards
- ☐ Flip-chip places connections across surface of die rather than around periphery
 - Top level metal pads covered with solder balls
 - Chip flips upside down
 - Carefully aligned to package (done blind!)
 - Heated to melt balls
 - Also called C4 (Controlled Collapse Chip Connection)

Package Parasitics

- ☐ Use many V_{DD}, GND in parallel
 - Inductance, I_{DD}

Heat Dissipation

- ☐ 60 W light bulb has surface area of 120 cm²
- ☐ Itanium 2 die dissipates 130 W over 4 cm²
 - Chips have enormous power densities
 - Cooling is a serious challenge
- Package spreads heat to larger surface area
 - Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases (\$\$\$)

Thermal Resistance

- \Box $\Delta T = \theta_{ia}P$
 - $-\Delta T$: temperature rise on chip
 - $-\theta_{ia}$: thermal resistance of chip junction to ambient
 - P: power dissipation on chip
- □ Thermal resistances combine like resistors
 - Series and parallel
- $\Box \quad \theta_{ja} = \theta_{jp} + \theta_{pa}$
 - Series combination

Example

- ☐ Your chip has a heat sink with a thermal resistance to the package of 4.0° C/W.
- □ The resistance from chip to package is 1° C/W.
- ☐ The system box ambient temperature may reach 55° C.
- □ The chip temperature must not exceed 100° C.
- What is the maximum chip power dissipation?
 - \Box (100-55 C) / (4 + 1 C/W) = 9 W

Temperature Sensor

- Monitor die temperature and throttle performance if it gets too hot
- ☐ Use a pair of pnp bipolar transistors
 - Vertical pnp available in CMOS

$$\begin{split} I_c &= I_s e^{\frac{qV_{BE}}{kT}} \longrightarrow V_{BE} = \frac{kT}{q} \ln \frac{I_c}{I_s} \\ \Delta V_{BE} &= V_{BE1} - V_{BE2} = \frac{kT}{q} \left(\ln \frac{I_{c1}}{I_s} - \ln \frac{I_{c2}}{I_s} \right) = \frac{kT}{q} \left(\ln \frac{I_{c1}}{I_{c2}} \right) = \frac{kT}{q} \ln m \end{split}$$

- ☐ Voltage difference is proportional to absolute temp
 - Measure with on-chip A/D converter

Power Distribution

- □ Power Distribution Network functions
 - Carry current from pads to transistors on chip
 - Maintain stable voltage with low noise
 - Provide average and peak power demands
 - Provide current return paths for signals
 - Avoid electromigration & self-heating wearout
 - Consume little chip area and wire
 - Easy to lay out

Power Requirements

- \Box $V_{DD} = V_{DDnominal} V_{droop}$
- \Box Want $V_{droop} < +/- 10\%$ of V_{DD}
- Sources of V_{droop}
 - IR drops
 - L di/dt noise
- ☐ I_{DD} changes on many time scales

IR Drop

- \square A chip draws 24 W from a 1.2 V supply. The power supply impedance is 5 m Ω . What is the IR drop?
- \sqcup

L di/dt Noise

□ A 1.2 V chip switches from an idle mode consuming 5W to a full-power mode consuming 53 W. The transition takes 10 clock cycles at 1 GHz. The supply inductance is 0.1 nH. What is the L di/dt droop?

Bypass Capacitors

- Need low supply impedance at all frequencies
- $lue{}$ Ideal capacitors have impedance decreasing with ω
- Real capacitors have parasitic R and L
 - Leads to resonant frequency of capacitor

Power System Model

- Power comes from regulator on system board
 - Board and package add parasitic R and L
 - Bypass capacitors help stabilize supply voltage
 - But capacitors also have parasitic R and L
- ☐ Simulate system for time and frequency responses

Frequency Response

- Multiple capacitors in parallel
 - Large capacitor near regulator has low impedance at low frequencies
 - But also has a low self-resonant frequency
 - Small capacitors near chip and on chip have low impedance at high frequencies
- ☐ Choose caps to get low impedance at all frequencies

Example: Pentium 4

- Power supply impedance for Pentium 4
 - Spike near 100 MHz caused by package L
- Step response to sudden supply current chain
 - 1st droop: on-chip bypass caps
 - 2nd droop: package capacitance
 - 3rd droop: board capacitance

Charge Pumps

- ☐ Sometimes a different supply voltage is needed but little current is required
 - 20 V for Flash memory programming
 - Negative body bias for leakage control during sleep
- ☐ Generate the voltage on-chip with a charge pump

$$V_{\text{out}} = N \left[\frac{CV_{DD} - \frac{I_{\text{out}}}{f}}{C + C_s} - V_s \right]$$

Energy Scavenging

- ☐ Ultra-low power systems can scavenge their energy from the environment rather than needing batteries
 - Solar calculator (solar cells)
 - RFID tags (antenna)
 - Tire pressure monitors powered by vibrational energy of tires (piezoelectric generator)
- ☐ Thin film microbatteries deposited on the chip can store energy for times of peak demand

Clock Distribution

- On a small chip, the clock distribution network is just a wire
 - And possibly an inverter for clkb
- On practical chips, the RC delay of the wire resistance and gate load is very long
 - Variations in this delay cause clock to get to different elements at different times
 - This is called *clock skew*
- Most chips use repeaters to buffer the clock and equalize the delay
 - Reduces but doesn't eliminate skew

Example

- ☐ Skew comes from differences in gate and wire delay
 - With right buffer sizing, clk₁ and clk₂ could ideally arrive at the same time.
 - But power supply noise changes buffer delays
 - clk₂ and clk₃ will always see RC skew

Review: Skew Impact

- ☐ Ideally full cycle is available for work
- Skew adds sequencing overhead
- ☐ Increases hold time too

$$t_{pd} \leq T_c - \left(t_{pq} + t_{\text{setup}} + t_{\text{skew}}\right)$$
sequencing overhead

$$t_{cd} \ge t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$$

Solutions

- ☐ Reduce clock skew
 - Careful clock distribution network design
 - Plenty of metal wiring resources
- □ Analyze clock skew
 - Only budget actual, not worst case skews
 - Local vs. global skew budgets
- Tolerate clock skew
 - Choose circuit structures insensitive to skew

Clock Dist. Networks

- ☐ Ad hoc
- ☐ Grids
- ☐ H-tree
- ☐ Hybrid

Clock Grids

- ☐ Use grid on two or more levels to carry clock
- ☐ Make wires wide to reduce RC delay
- Ensures low skew between nearby points
- ☐ But possibly large skew across die

Alpha Clock Grids

H-Trees

- ☐ Fractal structure
 - Gets clock arbitrarily close to any point
 - Matched delay along all paths
- □ Delay variations cause skew
- ☐ A and B might see big skew

Itanium 2 H-Tree

- ☐ Four levels of buffering:
 - Primary driver
 - Repeater
 - Second-level clock buffer
 - Gater
- ☐ Route around obstructions

Hybrid Networks

- ☐ Use H-tree to distribute clock to many points
- ☐ Tie these points together with a grid
- □ Ex: IBM Power4, PowerPC
 - H-tree drives 16-64 sector buffers
 - Buffers drive total of 1024 points
 - All points shorted together with grid