《微机原理与接口》

第4章 8088存储系统

教师: 苏曙光

华中科技大学软件学院

- ●第四章 8088存储系统
 - ■1. 存储器的设计
 - ■2. IBM PC/XT的结构
 - ■3.8088最小系统设计

第1节8088的存储器

●存储的层次

- 存储器 (Memory)
 - ■存储器是计算机的记忆设备,用来存放程序和数据。
 - ■存储介质
 - ◆半导体器件和磁性材料。
 - ◆最小存储单位就是一个双稳态半导体电路或一个 CMOS晶体管或磁性材料存储元,它可存储一位
 - 二进制代码(BIT)。

存储器的分类

- 按存储介质分
 - ■半导体存储器:用半导体器件组成的存储器。
 - ■磁表面存储器:用磁性材料做成的存储器。
- 按存储方式分
 - 随机存储器: 任何存储单元的存取时间和位置无关。
 - ■顺序存储器:只能按某种顺序来存取,存取时间和位置有关。
- 按存储器的读写方式
 - ■只读存储器(ROM): 半导体存储器。
 - ■随机读写存储器(RAM): 半导体存储器。
- 按信息的可保存性分
 - ■非永久记忆的存储器: 断电后信息即消失的存储器。
 - ■永久记忆性存储器: 断电后仍能保存信息的存储器。

存储芯片中存储单元的两种排列方式

● 以64个存储单元为例

线性排列

存储单元的两种排列方式

- 两种地址译码方式
 - ■单译码方式•64根选择线
 - ■双译码方式•16根选择线

半导体存储器芯片的结构

- 组成:
 - ■存储体
 - ◆多个存储单元的有机集合就是存储体。
 - □线性排列或矩阵排列
 - ■外围控制电路
 - ◆地址引脚(地址总线)
 - ◆数据总线(输入和/输出总线)
 - ◆片选端 (CS/CE)
 - ◆读控制端OE/RD
 - ◆写控制端WR

RAM芯片的典型结构

- RAM芯片的典型结构
 - ■一组地址线
 - ■一组数据线
 - ■片选线
 - ■读线
 - ■写线

		3	
1		28	
2		27	$\overline{\mathrm{WE}}$
3		26	1
4		25	A_8
5		24	$-A_9$
6		23	A_{11}
7		22	$-\overline{ ext{OE}}$
8	RAM	21	-A ₁₀
9		20	$\overline{\text{CE}}$
10		19	D_7
11		18	$-D_6$
12		17	$-D_{5}$
13		16	$-D_4$
14		15	$-D_3$
	3 4 5 6 7 8 9 10 11 12 13	3 4 5 6 7 8 RAM 9 10 11 12 13	2 27 3 26 4 25 5 24 6 23 7 22 8 RAM 21 9 20 10 19 11 18 12 17 13 16

典型SRAM芯片

- 典型SRAM芯片
 - Intel2114\6116\6232\6264\621
 - \bullet 6264=8KB=8K×8=2¹³ × 8
 - ◆13根地址线
 - ◆8根数据线
 - ◆片选线、读线、写线
- ●引脚名称
 - ■地址线: A0~A12
 - ■数据线: D0~ D7
 - ■输出允许信号: Œ
 - ■写允许信号: WE
 - ■选片信号: Œ

				29
NC	1		28	$-V_{\circ \circ}$
A 12	2		27	$\overline{\mathrm{WE}}$
A_7 —	3		26	—NC
A_6 —	4		25	A_8
A_5 —	5		24	A_9
A_4 —	6		23	A_{11}
A_3	7	6264	22	$\overline{\text{OE}}$
A_2 —	8	0204	21	A_{10}
A_1 —	9		20	$\overline{\text{CE}}$
A_{o}	10		19	D ₇
D° —	11		18	$-D_6$
D_1	12		17	$-D_5$
D_2	13		16	$-D_4$
$SND^{}$	14		15	$-D_3$
1				- FEETE

6264的引脚名称和工作过程

CE	WE	ŌĒ	方式	操作
0	0	0	非法	不允许WE与OE同时为低电平
0	1	0	读出	从RAM中读出数据
0	0	1	写入	将数据写入RAM中
0	1	1	选中	内部I/O三态门均处于高阻
1	×	×	未选中	内部I/O三态门均处于高阻

INTEL6264的封装和简化画法

- 内存与CPU的连接
 - ■地址线的连接
 - ■数据线的连接
 - ■控制线的连接

MREQ#: Mmeory REQuest: MEMR 或MEMW

- 内存与CPU的连接
 - ■地址线的连接
 - ■数据线的连接
 - ■控制线的连接
- ●在连接中要考虑的问题

- CPU DB位数和存储芯片DB位数匹配.(位扩展/横向扩展)
 - ◆CPU DB位数:即指字长
- ■用户需求容量与存储芯片容量的匹配.(字扩展/纵向扩展)
- ■每个存储芯片在地址空间中的范围(片选CE的地址范围设计)

存储器系统地址译码的设计

- 存储空间的设计
 - ■字扩展
 - ■位扩展
 - ■字扩展和位扩展

位扩展

- 存储芯片的数据总线扩展
- 各个存储芯片并行工作
- 当存储芯片数据位数〈 CPU数据位数(或字长)时,进行位扩展, 用多个芯片扩展起来提供一个完整的字数据。
 - 芯片数量 = CPU数据位数(或字长)/存储芯片数据位数
- 扩展原则
 - 所有存储芯片同名的<u>地址线</u>、<u>控制线</u>、<u>片选端</u>相连后与CPU 连接,每个存储芯片的<u>数据总线</u>分别连接CPU数据总线的不 同位段,使得每个芯片提供同一个字的不同位段。

位扩展

CPU字宽 N位,存储芯片K位: K<N,共需要(N/K)个芯片

位扩展的例子

● 例:用Intel2114芯片(1K x 4),设计1K * 8的存储系统。

位扩展

●用Intel2114芯片(1K x 4),设计一个1Kx8的存储系统

字扩展

●功能

- 当储存芯片字数 〈 用户需求容量时,进行字扩展,用多个芯片扩展起来提供一个更大容量的存储空间。
- ■芯片数量 =用户需求容量/存储芯片字数
- ●扩展原则
 - ■所有存储芯片同名的<u>地址线</u>、<u>控制线</u>、<u>数据总线</u>相 连后与CPU连接,每个芯片的<u>片选端</u>分别连接地址 译码器的不同输出,从而每个芯片占据存储空间的 不同子空间。
 - ◆CPU地址总线中剩余高位连接地址译码器的输入

用户需求容量 M,存储芯片容量K: K<M,共需 (M/K) 个芯片

字扩展的例子

- ●例子
 - ■用两片1K×8位SRAM芯片构成2K×8位的存储器

字扩展的例子

■用两片1K×8位SRAM芯片构成2K×8位的存储器

字/位扩展

- 适用条件:
 - ■字向和位向均不满足用户要求时进行字/位扩展。
- 方法:
 - ■用户需求M字×N位 且使用L字×K位的芯片
 - ◆需要 (M/L) × (N/K) 个存储芯片。
 - ■存储芯片分成: M/L组,每组N/K片
 - ◆组内采用位扩展连接(不同芯片的数据线分开连接)
 - ◆组间采用字扩展连接(不同组的片选线分开连接)

用户MxN位,芯片mxn位:需要(M/m)x(N/n)个芯片

字位扩展的例子(课堂作业)

- 例3: 用2K×4位芯片组成8K×8位的RAM存储器。
 - ■需要芯片数量: 8K/2K x 8位/4位 = 8片
 - ■分成: 8K/2K = 4组
 - ■每组片数: 8位/4位 = 2片

字位扩展的例子:8片=4组X2片/组

内存单元地址译码的过程

- CPU对存储单元的访问过程
 - ■假如CPU AB = 20位,且存储芯片容量=2ⁿ
 - ■第一步: 片选: 选择存储芯片。
 - ◆由CPU地址线的高若干位得到片选信号。
 - ◆用地址高位实现片选(片选译码)(用户设计)
 - □高位位数 = An, An+1, ...,A19
 - ■第二步:字选:在存储芯片内选择存储单元。
 - ◆由CPU地址总线低n位选择。
 - ◆用地址低位实现字选(片内译码)(芯片实现)

字扩展的例子

■用两片1K×8位SRAM芯片构成2K×8位的存储器

片选译码方法(片选译码电路的设计)

- ●存储系统片选信号的产生方法
 - ■线选法
 - ■全译码法
 - ■部分译码法

线选法

- 方法:
 - ■用高位地址线直接(/反向)连存储芯片片选信号。

- 优点
 - ■电路简单,不需外加额外电路。
- ●缺点
 - ■存储芯片地址空间不连续。
 - ■存储单元具有多个地址(地址重叠)。
- ●适用场合
 - ■适用于存储容量较小的简单
 - ■不需要扩充内存空间的系统。

全译码法

- 方法:
 - ■将地址总线全部高位线接到片选地址译码器的输入 端参加译码,输出信号连接各芯片的片选信号。

全译码法

A19A18A17A16 A15A14A13X XXXXX XXXX XXXX

芯片1地址:	0001	0100	0000	0000	0000
	0001	0100	1111	1111	1111
	0004	0440	0000	0000	0000

芯片**2**地址: 0001 0110 0000 0000 0000 0011 0111 1111 1111

- 优点:
 - ■存储单元地址唯一
- 缺点:
 - ■对译码电路要求较高。
- ●适用场合
 - ■适用于存储器芯片较多的系统。

部分译码法

● 方法:

■ 高位地址线中部分线(不是全部)输入到片选地址译码器产生片 选信号。线选和全译码混合。存在地址重叠

部分译码的例子

● A₁₈不参与译码

- ●存储芯片的地址范围
 - ■F0000H~F1FFFH 和 B0000H~B1FFFH
 - ■被选中芯片的每个单元都占有两个地址。