

# AUTOMAÇÃO RESIDENCIAL UTILIZANDO IOT E MQTT

Júlia A. R. PINTO<sup>1</sup>; Matheus A. de PÁDUA<sup>2</sup>; Eduardo L. NASCIMENTO<sup>3</sup>

#### **RESUMO**

Este projeto tem como propósito desenvolver um sistema de automação residencial que possa ser controlado via interface web, utilizando o conceito de IoT (Internet of Things) e o protocolo MQTT (Message Queuing Telemetry Transport) para o envio das informações. A demonstração do sistema foi feita por meio da construção de uma maquete devidamente composta de motores, sensores e LEDs (Light Emitting Diode) controlados por um micro controlador, além de uma página web para acionamento dos circuitos e exibição das informações. O projeto apresentou praticidade e funcionalidade fornecendo controle sobre sua residência mesmo estando em outro local. Após o desenvolvimento do trabalho foi possível concluir que ele pode ser implementado de forma real nas residências fornecendo benefícios aos seus moradores.

Palavras-chave: Automação Residencial; Micro Controlador; Página Web.

# 1. INTRODUÇÃO

Algumas ações cotidianas são repetidas inúmeras vezes por seres humanos, principalmente quando está associada ao controle de sua moradia. Imagine o número de vezes que o morador se desloca com a intenção de acionar o interruptor da iluminação, outra situação, é o caso de se locomover de sua residência e esquecer a janela aberta, além de apresentar risco à segurança, alterações na condição climática podem fornecer situações indesejadas. Pensando nessas situações que o termo automação residencial foi desenvolvido.

A automação residencial vem crescendo exponencialmente e pode ser definida como um conjunto de tecnologias que ajudam na gestão e execução de tarefas domésticas cotidianas. A sua utilização tem por objetivo proporcionar um maior nível de conforto, comodidade e segurança (BOLZANI, 2004).

Além da automação outro conceito vem ganhando destaque no controle das residências, o termo Iot (Internet of Things), que foi criado em 1999 pelo empresário Kevin Ashton, apresenta uma rede de objetos físicos conectados na internet capazes de coletar e transmitir dados tomando decisões baseadas nas informações captadas.

Baseado nas situações apresentadas até aqui, o presente trabalho propôs o desenvolvimento e a implementação de um sistema que controle alguns componentes da residência através de uma

<sup>1</sup> Orientado, IFSULDEMINAS - Campus Inconfidentes. E-mail: juliaparodrigues116@gmail.com

<sup>2</sup> Orientado, IFSULDEMINAS – Campus Inconfidentes. E-mail: matheus.paduaif@gmail.com

<sup>3</sup> Orientador, IFSULDEMINAS - Campus Inconfidentes. E-mail: eduardo.nascimento@ifsuldeminas.edu.br

página web, sendo possível que os moradores acionem iluminação, controlem portas, janelas e portões, além de visualizar informações referentes à temperatura, umidade e condição climática, mesmo estando em outro local, poupando tempo com tarefas repetitivas.

#### 2. MATERIAL E MÉTODOS

O desenvolvimento do projeto iniciou-se na construção do circuito elétrico montado sobre um micro controlador, que é um circuito integrado capaz de executar processos lógicos podendo ser programável para a finalidade desejada (SOUZA, 2000). O NodeMCU ESP8266 foi escolhido por ser uma placa que fornece conexão sem fio para se conectar na internet.

A programação do micro controlador é feita através do software de desenvolvimento chamado Arduino IDE, que permite programar a placa utilizando a linguagem de programação C/C++.

Na implementação do sistema, LEDs foram usados para simular a iluminação, servo motores serviram como atuadores no controle da porta, janela e portão, o sensor DHT11 foi usado para captar a temperatura e umidade do ambiente, além da utilização do sensor de chuva para analisar a condição climática.

A figura 1 apresenta o circuito elétrico que interliga os componentes da casa com o ESP para acionamento dos sistemas.



Figura 1 – Ligações do circuito elétrico.

Fonte: Autoria Própria.

Para o acionamento dos circuitos criados e exibição das informações dos sensores foi criado uma página web utilizando a linguagem HTML (Hypertext Markup Language), que é uma linguagem de marcação de texto utilizada para criação de documentos com hipertexto e exibição de páginas, tendo seu conteúdo interpretado por navegadores web (PEREIRA, 2018).

Em relação à formatação de estilo do site foi usado o CSS (Cascading Style Sheet), que é um mecanismo para adicionar estilos e formatação a páginas web (HOGAN, 2012).

O estabelecimento da comunicação entre o site e a placa ESP8266 foi feita através da linguagem de programação JavaScript juntamente com o protocolo MQTT (Message Queuing Telemetry Transport), ele foi escolhido por ser um protocolo aberto de mensagens projetado para comunicação M2M (Machine-to-Machine), na qual deve lidar com alta latência, instabilidade na comunicação e baixa largura de banda (TORRES; ROCHA; SOUZA, 2016).

O MQTT utiliza o método publish/subscribe (publicador/assinante) para envio das mensagens, onde os dados são enviados para um intermediário, chamado Broker, que se encarrega de enviar as mensagens aos destinatários corretos (TORRES; ROCHA; SOUZA, 2016).

Neste projeto foi instalado o serviço Broker MQTT em uma máquina Windows, que está acessível de receber solicitações oriundas da internet, tendo o dever de receber as requisições do site e repassa para o ESP e vice-versa.

Para demonstração do projeto funcionando foi construída uma maquete como mostrado na figura 2.



Figura 2 – Maquete que simula a residência.

Fonte: Autoria Própria.

# 3. RESULTADOS E DISCUSSÕES

Utilizando a metodologia proposta foi possível criar uma interface web amigável no controle do cenário proposto, como pode ser visto na parte superior da figura 3, ela é dividida basicamente em três abas, as duas primeiras possuem botões para acionamento dos motores e controle da iluminação, a última possui campos onde são apresentadas as informações captadas pelos sensores.

**Figura 3** – Interface web que controla o sistema.



Fonte: Autoria Própria.

O sistema apresentou ótima usabilidade podendo ser gerenciado mesmo pelos moradores que não possuem conhecimentos aprimorados na área de tecnologia da informação.

### 4. CONCLUSÕES

Os testes realizados no sistema apresentaram os resultados esperados no desenvolvimento deste projeto, apresentando praticidade e mobilidade no controle da residência podendo facilmente ser implementado de forma real.

Por fim, implementações de segurança podem ser feitas como melhoria do projeto, mas não sendo o objetivo principal deste trabalho, ficando como sugestão para implementações futuras.

# REFERÊNCIAS

BOLZANI, C. A. M. Residências Inteligentes. [S.l.]: Livraria da Física, 2004.

HOGAN, Brian P. **HTML 5 e CSS3:** desenvolva hoje com o padrão de amanhã. Rio de Janeiro: Ciência Moderna, 2012. xvi, 282 p.

PEREIRA, Mateus de Paula. **SisLAB:** Sistema para controle do acesso à Internet em laboratórios de informática. 2018. 4 f. TCC (Graduação) - Curso de Redes de Computadores, Ifsuldeminas, Inconfidentes, 2018.

SOUZA, D.J. **Desbravando o PIC:** Baseado no microcontrolador PIC 16F84. 5. ed. São Paulo: Érica, 2000.

TORRES, Andrei B. B.; ROCHA, Atslands R.; SOUZA, José Neuman de. **Análise de Desempenho de Brokers MQTT em Sistema de Baixo Custo.** 2016. 12 f. TCC (Graduação) 
Curso de Redes de Computadores, Universidade Federal do Ceará, Fortaleza, 2016.

11ª Jornada Científica e Tecnológica e 8º Simpósio da Pós-Graduação do IFSULDEMINAS. ISSN: 2319-0124.