Name:	Signature:
P525/1	
Chemistry	
Paper 1	
JUNE/JULY 2024	
2 3/4 hours	

2 % nours

UGANDA ADVANCED CERTIFICATE OF EDUCATION S.5 CHEMISTRY

Paper 1

BEGINNING OF TERM 2

2 ¾ hours

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section A and any six questions in section B
- All questions must be answered in the spaces provided; no answer sheet must be attached.
- The Periodic Table, with relative atomic masses, is supplied.
- Mathematical tables are adequate or non-programmable scientific electronic calculators may be used
- Illustrate your answers with equations where applicable.
- Where necessary, use the following:

Molar gas constant R = 8.31 JK - 1 mol - 1

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 N m^{-2}

	For Examiners' use Only															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

SECTION A. (46 MARKS)

Attempt all questions in this section.

1. When 142cm ³ of a hydrocarbon Q, of formula C _x H _y , and molecula exploded with excess oxygen and cooled to room temperature, the vegas was 694cm ³ . When residual gas was passed through a combustic copper turnings, there was a decrease in volume by 126cm ³ . (a) Write an equation for the reaction that occurred in combustion characteristics.	olume of the residual on chamber with
(b) (i) Determine the molecular formula of Y.	(02marks)
(ii) Write the IUPAC names of any two possible isomers of Y.	(01 mark)
(c) With appropriate reaction conditions, show how butan-2-ol carone isomer above without using equations.	n be obtained from (02 marks)

2. (a) What is meant by the term ebullioscopic constant?	(01 mark)
(b) (i) 2.7 g of ethanamide (CH ₃ CONH ₂) was dissolved in 75g of ethano boiling point of the resultant solution [ebullioscopic constant, Kb of ethanol $^{-1}$ kg $^{-1}$ and the boiling point of ethanol is 78° C]	
(ii) State any two assumptions made in the calculation in b (i) above.	(01 mark)
3. (a) What is meant by first electron affinity ?	(01 mark)
(b) Write an equation for first electron affinity of oxygen.	(01 mark)

(c) Explain why the first electron affinity of oxygen is negative while the s affinity is positive.	econd electron (03 marks)
4. An organic compound M has a structural formula as shown below; COOH CH=CH ₂	
(a) Write the names of the functional groups of compound M.	(01 mark)
(b) Name the reagent that can be used to identify each functional group above and state what is observed in each case.	named in (a) (02 marks)
(c) Using equations show how compound M can be converted to phenyl	ethane. (02 marks)

5. The table below shows the atomic radii and ionic radii of the elements in group II of the periodic table.

Element	Be	Mg	Ca	Sr	Ba
atomic radius	0.112	0.160	0.197	0.215	0.221
ionic radius	0.030	0.065	0.094	0.110	0.134

(a) What is meant by atomic radius ?	(01 mark)
(b) Explain the trend in atomic radius of the group II elements al	bove. $(2\frac{1}{2} marks)$
(c) In each case, the ionic radius is smaller than the atomic radiu observation.	us. Explain this (02 marks)
6. (a) What is meant by an ideal gas	(01 mark)

(b) The curves below show deviations of some gases from ideal behavior.

Explain why;

- (i) Hydrogen doesn't show negative deviation from ideal behaviour. $(1\frac{1}{2}marks)$
- (ii) Carbon dioxide deviates more than oxygen from ideal behavior (02marks)

(c) State conditions under which gases tend to have ideal behaviour. (01 mark)

7. (a) Complete occurs.	the following equat	ions and write a	n mechanism for t	he reaction that
(i) CH ₃ CH=CH	I ₂ <u>H</u>	^{IBr} →		(02marks)
(ii) (CH ₃) ₃ C-B	Br <u>NaOH (</u> Heat	aq)		(02 marks)
	ype of reaction in a (lements Q , T , and P
Element	1)	(KJmol-1)	(KJmol-1)	(KJmol-1)
Q	900	1800	14800	21000
T	800	2400	3700	25000
P	1090	2400	4600	6200
(a) State and exp	lain the trend in the su	accessive ionizati	on energies of eler	ments A. $(2\frac{1}{2} \text{ marks})$

Lofreezer majje @#

Page 7

(b) With a reason, state the element that belongs to group (\mathbf{II}) of the periodic tab	le (02 marks)				
9. An organic compound R has a simplest formula of C_3H_8O . When 0.698g of R was dissolved in 1000g of a solvent, there was a $0.19^{0}C$ depression in freezing point of solution. (Kf of the solvent = $1.63^{0}Ckg^{-1}mol^{-1}$). (a) Determine the molecular formula of compound R. (02 mar					
(b) Write the structural formulae of any two isomers of R.	(01 mark)				
(c) Show how a named alkane can be synthesized from one isomer of R.	(02 marks)				

SECTION B. (54 MARKS)

Answer six questions from this section.

10. (a) State;				
(i) Graham's law of gaseous diffusion.	(01 mark)			
(ii) Dalton's law of partial pressure of gases.	(01 mark)			
b) A gaseous organic compound G diffuses through a porous partition in 2 minutes. However under similar conditions, the same volume of oxygen diffuses in 1.75minutes. Determine the molecular formula of Q, hence deduce the structural formulae of Q. (04marks)				

(c) The figure below shows the mass spectrum of magnesium and the relative abundance of its isotopes. Determine the average atomic mass of magnesium. (03marks)

11. Benzene when mixed with chloroethane, they undergo a reaction forming W.	ng compound
(a) State the;(i) Condition(s) required for the reaction to occur.	(01mark)
(ii) I.U.P.A.C name of compound W.	$(0\frac{1}{2} \text{ marks})$
(ii) Type of the reaction that occurs. Give a reason for your answer.	$(01\frac{1}{2} \text{marks})$
(b) Write an equation for the reaction and outline a mechanism for the react occurs.	ion that (03marks)

(c) Write equation	ns to show how compound W can be converted to phenyle	ethene.
		(03 marks)
(c) Write equation ethene.	s to show how the product in (b) above can be converted	to phenyl (02marks)
12. Sodium, alum	nium, and chlorine are elements in the Period 3 of the Per	riodic Table.
	nulae of the oxide(s) of the each of the elements.	(02 marks)
ELEMENT	OXIDE(S) OF ELEMENT	
Sodium		
Chlorine		
Aluminium		
(b) Write an equat	ion for the reaction that occurs when;	
(i) One oxide of so	odium reacts with water.	(01 mark)

(ii) Aluminium oxide is formed from its elements					(11)	/2 marks)	
(iii) Chlori	ne reacts wit	h Aluminiun	1.			(01	l mark)
	n hydroxide cess. State v					r the reaction	
13. (a) Ex	plain why a	lkanes are g	enerally un	reactive org	anic compo	ounds (0	2 marks)
	ible below s	1		_	1	T	Сн
Alkanes Boiling points (°C)	-162	-89	-42	-0.5	C ₅ H ₁₂ 36	C ₆ H ₁₄ 69	C ₇ H ₁₆ 98

		Ш
		Ш
		ш
		$^{+}$
		\blacksquare
		#
		ш
		#
		Ш
		\blacksquare
		-
		#
		#
		Ħ
		Ħ
		Ħ
		Ш
		Ш
		Ш
	(03marks)	
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (_
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (
Explain the trend in boiling points of the alkanes above. (

(c) From the table, A compound has molecular formula of C_5H_{12} . Arrange the this compound in order of decreasing boiling points and give a reason for you	
	$02\frac{1}{2}$ marks)
14. (a) state the laws of osmotic pressure. (02 marks)
(b) Describe how the RMM of polystyrene can be determined using osmot method. [Diagram not required]	tic pressure (03 marks)

(c) When O.50g of polystyrene was dissolved in 250.0cm ³ of water; it produced a solution of osmotic pressure of 60.0Pa at 27 ^o C. Determine the molar mass of the polystyrene; hence calculate the number of styrene molecules in the polymer.
. (04 marks)
15. Explain each of the following observations (Your answer should include balanced equations
if any). (a) When hydrogen iodide is treated with concentrated sulphuric acid, iodine is liberated wherea when hydrogen chloride is similarly treated, chlorine is not evolved.
(b) An aqueous solution of sodium sulphite has a pH greater than 7 whereas that of sodium hydrogen sulphite is less than 7.

(c) When hydrogen sulphide is bubbled through an aqueous solution of iron	(III) chloride a
yellow precipitate is observed.	
16. Write equations and mechanisms for the reaction that occurs when compounds react.	the following
(a) Benzene with heated iron and bromine.	(03marks)
(b) 2-methylpropan-1ol with heated concentrated sulphuric acid.	(03marks)
(c) But-1-yne with hydrogen chloride.	(03marks)
	ŕ

17. An organic compound K contains 9.09% hydrogen, 36.41% oxygen and carbon.	the rest
(a) Determine the empirical formula of K.	(02 marks)
(b) 0.54g of K occupies 150.9cm ₃ at a temperature of 19 ^o C and a 740mmHg	Ţ.
(i) Determine the molecular formula of K.	(02 marks)
(ii) Write the structural formula of any two isomers of compound K.	(01 mark)

(c) Compound K produces effervescence who	en reacted with sodium carbonate. Show
how compound K can be converted to; (i) Hexane.	(02 marks)
(ii) Propan-1-ol	(02 marks)
	ND

WISH YOU SUCCESS ALWAYS.