电路原理实验报告

实验名称	RLC串联电路的幅频特性和谐振观集
------	-------------------

班 号<u>it51</u>

实验日期 10月14日

实验者经

同组人 张权楠

成绩评定:

教师签名:

清华大学实验报告

实验三 RLC串联电路的幅 频特性和谐振现象

一实验目的

- 1.测量RLC串联电路的幅频特性
- 2.研究串联谐振现象及电路参数对谐振特性的影响。

二实验电路及原理

/ 电路中频率的改变会引起电抗的改变,从而引起阻抗的改变,如果维持电源电压不变,则电路中电流的大小会随即频率而改变.

在RLC串联电路(见图3.1)中,总的输入阻抗及电流为

$$Z = |Z| \times \varphi = R + j(X_L + X_c) = R + j(wL - \frac{1}{wC})$$

$$1 = \frac{U_i}{|Z|} = \frac{U_i}{\sqrt{R^2 + (wL - \frac{1}{wC})^2}}$$

由此可以看出电流的大小随频率的变化关系。

3. 从选择性来看 要求I(f) 曲线越尖锐越好, 即在谐振频率附近,阻抗要灵敏, 地随频率而变化, 常用品质因数 Q来表示电路选择性的好坏, Q为谐振时电压感电压 U. 或电容电压 U. 与电源电压之比,即

$$Q : \frac{U_{1}}{U_{i}} = \frac{U_{c}}{U_{i}} = \frac{w_{0}L}{R} : \sqrt{\frac{UC}{R}}$$

$$\vec{Q} = \frac{w_{0}}{w_{s} \cdot w_{r}} = \frac{1}{\frac{w_{0}}{w_{0}} \cdot \frac{w_{0}}{w_{0}}}$$

式中心和心为谐振曲线上击: 些的点,所对应的角频率.又称转折频率,如图所示.

三实验险

电感线圈	11
电容箱	11
电阻器	个
NY4500型双通道 或流產使表	一块
万州表 MF-14型	块
EM 1643型函数发生器	1台.

四实验络

- 1.用图3.1线路测RLC串联电路的幅频特性 ISD.测出临振频率长. 谐振电流I.。电容电压U.。及电感电压U.。给定参数为:R:10A.C:0S.AF. IL~100mH·电源电压维持1V不变
- 1.改变R.使R=901.重复给1
- 3. 改变L.使L2+00mL. 重复任务1. 汉 fo. Is. U.o. U.o.
- 4.根据对偶原理和带顿定理.利用现有的实验设备自己设计 -fR, L, C 并联谐振实验线路.

五 简要的预习计算.

六. 实验数据:

(略): fo=7111tz. Io=40.34mA. Uco=17.36V. Uco=17.58y

									track of the second					-	-	-
	组别	1	ב	3	4	5	6	7	S	9	10	1	בו י	13	14	15
1	f(H2)	70	390	550	63 o	670	690	700	711	720	730	750	190	810	1030	1350
	I(MA)	0.13	1.78	4.35	9.11	17.12	27.20	34.16	40.34	36.84	29.61	18.90	10.46	5.58	298	1.64

			包	路).	fo=711t	lz. J	, 123	mΑ	Uc= 4.101	Un=4.10V.
组别	1	1	3	4	5	6	7	8	9	
f(112)	390	630	690	700	711	720	730	790	1030	
1(mA)	1.74	6.63	9.18	9.40	€	9.44	9.26	7.10	2.84	

偽3: fo=356H2 Is=23.32mA Uto=20.48V (Uto=20.51V.

七. 实验中需要注意的地方:

- 1.一定要保证每次改变频率时.电压表示数为11、否则数据会处现极大误差.
- 2.因为实验导线接头与仪器插口不匹西己.所以要用钳子夹住金属部分. 过部分极易脱落.所以务处决察.
- 3.在选择测试点时.频率的选择要与峰值处有充分的距离.否则画图时只能画出上半部分.产生较大《误差》

4.实验中电感箱每度为50mH.旋转时要注意,此处易发生错误.

八.对形上"实验报告要求"的回答.

Reg =
$$\frac{U_{i}}{10}$$
 = 108.46 Ω

Req =
$$\frac{U_1}{I_3}$$
 = 42.88 Ω
Q = $\frac{WC}{Peg}$ = 20.86.

2. 画出任务(1).(2)的电流谐振曲线 Y1.~f·

3. 推导Q= 以的各达式。

几实验误差。

1. 电表内部误差.

2.未待电表示数稳定便开始读数产生误差.

3. 因本实验存在导线接头与仪器插口不匹配的问题。因此可能会因接触 祖产误差.

4.由电表工作时.国外界影响产生的波动与误差.

实验中、遇到误差过大的点应舍式重测、从免对实验结果产生影响

十字验结论

- 1.当 XL=-Xc,即 wL: 症, w时, 电流达到最大值, 电路中产生"谐振"现象,此时谐振 角频率 woing. 谐振频率foing.c. 刚.LC大的谐振频率fo. LC小的谐振频率大·
- 2.从谐振频率f.向两端延伸. I/I。添渐减小. 减小速率逐渐加快. 到转折频率f. 减小速和逐渐变慢.
- 3. 岩丰1。说明电感与电容的电阻不可忽略. 4. Q= 野. R-定时. 亡越大·品质因数越好. 血线最高处越尖锐.

十-、思考题·

1. 在RLC串联电路中谐振时电流最大. 问这时U. U.是否最大?

若不是. 问频率 W. 为多少时 U. 最大? 频率 W. 为多少时 U. 最大?

电容的阻抗:-jinc. 电感的阻抗:jwL.

- .. 是串联电路
- ·· 阻抗越大·分得电压越大· ·· 当wc ·· 时,Uc最大· 当w. ·· 时,U.最大·
- Wc. WL和W·有什么关系?

WCW1=W.

(顶加详细推导)

2. (自行思考) 除了计算及不断测量选取 1的最大值·还有代办法可以断定电路处于谐振 状态!

不断测量以与UL,当UL;UL(理想情况)时,电路处于谐振

3.(自行思考). 本实验中、电容与电感的电阻不可忽略、却大致仍有Uc=UL.为他?

推测,探图验中、西看的电阻了能太致也相等、才会导致此现象。

但是.在做实验时.电感箱-格是50mH.我却思维定势.认为-格是100mH. 导致了-些小错误.以后要多注意,更仔细-些.

+-思義點 1.

任务 | 表格 fo=711 Hz Io=40.34mA Up=17.36V Up=17.58

组别	1	٦, ١	3	4	5	6	7	8	9	10
f(H2)	70	390	550	630	670	690	700	71(42	720	130
I(mA)										

组制	11	ıΣ	13	14	15
f(H2)	750	790	870	(030	1350
1(mA)	18.90	10.46	5.58	2,98	1.64

任务注格. fo= 711Hz Is= \$10V Uso = 4.10V

	组别	1	2	3	4	5	6	7	8	9
].	f(H2)	390	630	690	700	71]	710	730	790	(030
	I(mA)	1.74	6.63	9.18		9.54	9.44	9.26	7.10	2.84

俄3.

fo=356H2 Is= H JOHA U(0=7-20-48V 20-51V)

实验以

功率信号源

15030446

电容箱

13024255

+进电感箱 03006973

架 All

交流基件 1101 3535

战 15021551

2016年10月24日.

电阻箱

DE-1403

由 扫描全能王 扫描创建