Assignment -2 Data Visualization and Pre-processing

Assignment Date	30 September 2022
Student Name	M.DHIVYA
Student Roll Number	CS19009
Maximum Marks	2 Marks

```
In []:
# Importing required libraries
import numpy as np import
pandas as pd
In []:
# Reading the dataset
df = pd.read_csv('/content/Churn_Modelling.csv')
In []:
# Visualizing 1st 50 data
df.head()
Out[]:
                        0
                                    1 15634602 Hargrave
                                                           619
                                                                   France Female
                                                                                        2
                                                                                               0.00
   RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance
   NumOfProducts HasCrCar
                            2 15647311
                                             Hill
                                                           Spain Female
                                                                                        83807.86
                                                    608
                                                                                 41 1
                 15619304
                             Onio
                                         502
                                                 France Female
                                                               42
                                                                         8 159660.80
                                                                                                3
                                                  Spain Female 43
                 15737888
                                         850
                                                                         2 125510.82
                                                                                                1
                           Mitchell
                                             Boni 699
                       4
                               15701354
                                                           France Female
                                                                                 39
                                                                                        1
                                                                                               0.00
```

3

In []:

Checking for null values

df.isnull().sum() Out[

]:

RowNumber 0 CustomerId 0

Surname 0

CreditScore 0

Geography 0

Gender 0

Age 0

Tenure 0

Balance 0

NumOfProducts 0

HasCrCard 0

IsActiveMember 0

EstimatedSalary 0

Exited dtype: 0

int64

In []:

df.dtypes

Out[]:

RowNumber int64

CustomerId int64

Surname object

CreditScore int64

Geography object

Gender object

Age int64

Tenure int64

Balance float64

NumOfProducts int64

HasCrCard int64

IsActiveMember int64

EstimatedSalary float64 Exited

int64 dtype:

object

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [47]:

Univariate Analysis

```
sns.histplot(data["CreditScore"],color='darkorange')
```

In [48]:

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f831677f6d0>

sns.displot(data['Age'], kde=True)

In [49]:

Out[49]:

<seaborn.axisgrid.FacetGrid at 0x7f831661b210>

Bi - Variate Analysis

```
sns.barplot(data=data.head(50), x="Geography", y="CreditScore")
```

In [50]:

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f8313ce63d0>


```
sns.catplot(x='Gender', y='CreditScore', hue='HasCrCard', data=data)
```

In [51]:

Out[51]:

<seaborn.axisgrid.FacetGrid at 0x7f8317198a90>

Multi - Variate Analysis

```
sns.jointplot(
    x='CreditScore',
    y='Age',
    data=data.head(100),
    palette='bright',
    hue='Geography');
```

In [52]:

sns.pairplot(data)

In [53]:

Out[53]:

<seaborn.axisgrid.PairGrid at 0x7f8313a71390>

Perform descriptive statistics on the dataset

data.describe()

In [54]:

Out[54]:

RowNum CustomerI CreditScor Age Tenure Balance NumOfProd HasCrCa I ber d e ucts rd s										
count 10000.000 1.000000e 10000.000 10000.000 10000.000 10000.000 10000.000 00 +04 000 000 000	0000 10000.00 0									
mean 5000.5000 1.569094e 650.528800 38.921800 5.012800 76485.8892	1.530200 0.70550									
0 +07 88 std 2886.8956 7.193619e 10.487806 2.892174 62397.4052 96.653299 02	0.581654									
8 +04 min 1.00000 1.556570e 350.000000 18.000000 0.000000 0.000000	1.000000 0.00000									
+07	1.000000 0.00000									
25% 2500.7500 1.562853e 584.000000 32.000000 3.000000 0.0000000 0 +07	1.000000 0.00000									
50% 5000.5000 1.569074e 652.000000 37.000000 5.000000 97198.5400 00	1.000000 1.00000									
75% 7500.2500 1.575323e 718.000000 44.000000 7.000000 127644.240 000	2.000000 1.00000									
max 10000.000 1.581569e 850.000000 92.000000 10.000000 250898.090 4.000 +07 000	1.00000 00									

Handle the Missing values

data.isnull().sum()

In [55]:

Out[55]:

RowNumber 0

CustomerId	0	
Surname	0	
CreditScore	0	
Geography	0	
Gender 0		
Age 0		
Tenure 0		
Balance 0		
NumOfProducts	;	0
HasCrCard	0	
IsActiveMembe	r	0
EstimatedSalary	7	0
Exited 0		
dtype: int64		

Find the outliers and replace the outliers

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result import seaborn as sns
sns.boxplot(data['CreditScore'])
```

in an error or misinterpretation. In [56]:

FutureWarning

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f8310b82990>


```
import numpy as np
Q1 = np.percentile(data['CreditScore'], 25,
                   interpolation = 'midpoint')
Q3 = np.percentile(data['CreditScore'], 75,
                   interpolation = 'midpoint')
IQR = Q3 - Q1
#Upper bound
upper = np.where(data['CreditScore'] >= (Q3+1.5*IQR))
#Lower bound
lower = np.where(data['CreditScore'] <= (Q1-1.5*IQR))</pre>
print("Q3: ",Q3)
print("Q1: ",Q1)
print("IQR: ",IQR)
mean = data["CreditScore"].mean()
data["CreditScore"] = np.where(data["CreditScore"] > 850, mean, data['CreditScore'])
data["CreditScore"] = np.where(data["CreditScore"] < 400, mean, data['CreditScore'])
sns.boxplot(data['CreditScore'])
```

In [57]:

Q3: 718.0

Q1: 584.0

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

IQR: 134.0 Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f83177a7310>

Check for Categorical columns and perform encoding

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
data['Geography'] = le.fit_transform(data['Geography'])
data['Gender'] = le.fit_transform(data['Gender'])

data.head()
```

In [58]:

Out[58]:

R	lowNu	mb	er Custom	nerId Surna	me Cred	itScore	Geogr	aphy	Gen	der Age	Tenure Balance
o Nu	ımOfT	Prod	lucts1 15634	602 HasCrCa	r 619.0	0	0	42	2	0.00	1
Hargr	rave										
1	2		15647211	TT:11	600.0	2	0	41	1	02007.06	1
1 2	2	3	15647311	Hill Onio	608.0 502.0	2	0	41		83807.86 159660.80	3
2		J	13017304	Onio	302.0	U	U	72	Ü	137000.00	J
		_	45727000	A411 1 11	050.0		•	42	_	125512.02	
4		5	15737888	Mitchell	850.0	2	0	43	2	125510.82	1
3		4	15701354	Boni	699.0	0	0	39	1	0.00	2
4											<u> </u>

Split the data into dependent and independent variables

```
y = data['CreditScore'] #dependent
x = data.drop(columns = ['CreditScore'],axis = 1) #independent
```

x . head()

In [59]:

Out[59]:

	RowNumber Cu	stomer	Surna Geograp Gende Ag Tenu Balance NumOfProd HasCrC IsActiv							
		Id me	hy	r e	re	ucts	ard Me			
0	1 15634602	Hargra ve	0	0 42	2 0.00	1	1			
1	2 15647311	Hill	2	0 41	1 83807.8	1	0			

							6		
2	3 15619304	Onio	0	0 4	-2	8	159660. 80	3	1
3	4 15701354	Boni	0	0 3	39	1	0.00	2	0
4	5 15737888 Mitchell		2	0 4	-3	2	125510. 82	1	1

▼

Scale the independent variables

```
names = ['RowNumber','CustomerId','Geography','Gender','Age','Tenure','Balance','NumOfPro
```

In [60]:

ducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited']

In [61]:

from sklearn.preprocessing import scale

```
x = scale(x[names]) x Out[61]:
array([[-1.73187761, -0.78321342, -0.90188624,
                                                               0.97024255,
          0.02188649, 1.97716468],
            [-1.7315312, -0.60653412, 1.51506738,
                                                               0.97024255,
          0.21653375, -0.50577476],
          [-1.73118479, -0.99588476, -0.90188624,
                                                        ..., -1.03067011,
          0.2406869, 1.97716468],
          [1.73118479, -1.47928179, -0.90188624,
                                                               0.97024255,
          -1.00864308, 1.97716468],
            [ 1.7315312 , -0.11935577, 0.30659057,
                                                        ..., -1.03067011,
          -0.12523071, 1.97716468],
           [ 1.73187761, -0.87055909, -0.90188624,
                                                        ..., -1.03067011,
         -1.07636976, -0.50577476]])
```

In [62]: x = pd.DataFrame(x,columns = names)x

.head()

RowNum Customer Geograp Gende Age Tenu Balanc NumOfProd HasCrCa re e IsActiveMe ber Id hy r ucts rd mbe

1 -1.731531 -0.606534 1.515067 1.0959 0.19816 1.3875 0.1173 -0.911583 0.97024 88 4 38 50 1.547768 0.97024 **0** -1.731878 -0.783213 1.2258 -0.911583 0.646092 1.0959 0.29351 1.0417 48 0.901886 88 7 60 **2** -1.731185 -0.995885 - 1.0959 0.29351 1.0329 1.3330 2.527057 0.646092 -1.03067 0.901886 88 7 08 53 **3** -1.730838 0.144767 - 1.0959 0.00745 1.3875 1.2258 0.807737 -1.03067 7 38 48 0.901886 88 1.547768 0.97024 0.911583 0.646092 **4** -1.730492 0.652659 1.515067 1.0959 0.38887 1.0417 0.7857 88

1 60

28

Split the data into training and testing

In [69]:

from sklearn.model_selection import train_test_split

Split training and testing data

xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.20,random_state=0)

In [70]:

Checking shape of data

xtrain.shape,xtest.shape Out[70]: ((8000,

12), (2000, 12))