8 October, 2017 12:02

1.

$$n_{Mg} = \frac{0.1326g}{24.305 \frac{g}{mol}} = 5.456 \cdot 10^{-3} \text{ mol}$$

$$E = 5760 \frac{J}{C^{\circ}} \cdot 0.570 \text{ } C^{\circ} = 3283.2 \text{ J}$$

$$\Delta H^{\circ} = -\frac{3283.2\,J}{5.456\cdot 10^{-3}\,mol} = -602\frac{kJ}{mol}$$

2.

[valenselektron i nøytralt atom] – [Frie elektronpar i atomet] – $\frac{1}{2}$ [elektroner i binding]

$$= 0 5 - (8 - 2x) - x = 0$$

$$5 - 8 + x = 0$$

$$5 - 8 + x = 0$$

$$x = 3$$

3.

Reaksjon	ΔH°
$K(s) \to K(g)$	$79.2 \frac{kJ}{mol}$
$K(g) \rightarrow K^+(g) + e^-$	$418.7 \frac{kJ}{mol}$
$Cl_2(g) \to 2Cl(g)$	$242.8 \frac{kJ}{mol}$
$Cl(g) + e^- \rightarrow Cl^-(g)$	$-348 \frac{kJ}{mol}$
$KCl(s) \rightarrow K(s) + \frac{1}{2}Cl_2(g)$	$435.7 \frac{kJ}{mol}$
$KCl(s) \rightarrow K^+(g) + Cl^-(g)$	X

Så legger vi sammen enthalpiene for å finne X

$$79.2 + 418.7 + \frac{1}{2} \cdot 242.8 - 348 + 435.7 = 707 \frac{kJ}{mol}$$

Både NH_2^- og vann er av typen AB_2E_2 , som gir en tetraedersk elektronstruktut en en bøyd lineær molekylstruktur. Berylliumhydrid er av typen AB_2 som gir en rettlinjet molekylstruktur. A blir rett alternativ.

- B fordi du kan ikke ha et magnetspin kvantetall med absoluttverdi større enn banespinnkvantetallet.
- 6. Den mest sannsynelige strukturen til N_2O er når ett nitrogenatom er dobbelbundet til det andre nitrogenet og enkelbundet til oksygenet. Da får oksygen en formell ladning på 6 - 4 - 1 = 1

В

7.

- b) S-orbitalet og ett p-orbital er hybridisert til et sp-orbital som står for σ -bindingene I dobbeltbindingene. De to resterende p-orbitalene danner π -bånd uten å hybridiseres.
- c) Svoveldioksid er I klassen AB_2E og er altså et bøyd molekyl. Siden svovel har to σ -bånd og et "lone pair" vil svovelatomet få en sp^2 hybridisering.

9.68

Siden ozon har to likeverdige 1.5 bindinger kan vi finne den totale bindingsenergien og dele på 2 for å finne energien for hver av bindingene (som blir snitt energien). Tabellverdi for bindingsenergien til O_2 på 498.7 $\frac{kJ}{mol}$ blir brukt i utregningen.

$$\frac{498.7 - (-107.2)}{2} = 303.0 \frac{kJ}{mol}$$

9.75

Ingen oppfyller oktettregelen. Hvis en hadde hatt et dihalogenid (f.eks ClF) hadde det hatt vanlig oktett.

9.99

10.16 Beryllium hydrid er et molekyl av typen AB_2 som er lineært. Det vil si at de to dipolmomentene til bindingene står parallelt I motsatt retning og summen blir null.

10.32

 sp^3 hybridisering i SH_4 og i $\left(SH_3\right)_2$. Dette er fordi I begge tilfellene har silisiumatomet fire sigma bånd tilsvarende karbon I metan og etan. Hybridiseringen endres ikke for Si-Si bindinger I forhold til Si-H bindinger (Selv om molekylorbitalene vil ha betydelig forskjellige bølgefunksjoner I de to molekylene som resultat av forskjellig struktur og elektronegativitet).