Chapter 5: Matrix Inverses

Definition: For each $n \ge 2$, the **identity matrix** I_n is the $n \times n$ matrix with 1s on the main diagonal (upper left to lower right), and zeros elsewhere.

Key property of identity matrices If A is any $m \times n$ matrix, then

$$AI_n = A$$
 and $I_m A = A$.

Example: Let's verify this fact for I_3 .

Definition: An $n \times n$ matrix A is called **nonsingular**, or **invertible**, if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. Such a B is called the **inverse** of A. If no such B exists, A is called **singular**, or **noninvertible**.

Idea: The inverse of a matrix mimics the reciprocal of a real number.

Example: Let $A = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix}$. Compute both AB and BA, and make a conclusion using the language of inverses.

Fact: If A, B are $n \times n$ matrices such that $AB = I_n$, then $BA = I_n$.

Fact: The inverse of a matrix, if it exists, is unique. Therefore, we can write A^{-1} for the inverse of A.

Example: Does $A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$ have an inverse?

If it does, then
$$\exists B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
, s.t.

$$A \cdot B = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$\Rightarrow C_{12} = 0 \times b_{12} + 0 \times b_{22} = 1, \text{ constradiction}.$$

Theorem: If both A and B are nonsingular $n \times n$ matrices, then the matrix AB is nonsingular and its inverse is $(AB)^{-1} = B^{-1}A^{-1}$.

Proof:

A, B ove invertible (nonsingular),

$$\exists A^{-1}, B^{-1} = I_n$$
.

 $\exists A^{-1}, B^{-1} = I_n$.

 $\exists A^{-1}, B^{-1} = A \cdot I_n \cdot A^{-1} = A \cdot A^{-1} = I_n$.

Follow up facts:

- If $A_1, A_2, \dots, A_{k-1}, A_k$ are $n \times n$ invertible/nonsingular matrices, then $A_1 A_2 \cdots A_{k-1} A_k$ is invertible/nonsingular and $(A_1 A_2 \cdots A_{k-1} A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \cdots A_2^{-1} A_1^{-1}$
- If A is invertible/nonsingular, then A^{-1} is invertible/nonsingular and $(A^{-1})^{-1} = A$.
- If A is invertible/nonsingular, then A^T is invertible/nonsingular and $(A^{-1})^T = (A^T)^{-1}$.
- With the convention that $A^0 = I_n$ for an $n \times n$ invertible matrix A, the rules $A^p A^q = A^{p+q}$ and $(A^p)^q = A^{pq}$ hold for all integers p and q.

Example: If *A* is invertible, and $k \neq 0$, then $(kA)^{-1} = \mathbf{k}^{-1}A^{-1}$.

Theorem: (Inverse of 2×2 matrix) The 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if $ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

We'll learn how to compute inverses for bigger matrices soon.

Example: Find the inverse of each matrix, if possible.

$$A = \begin{bmatrix} -2 & -3 \\ 4 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$(-2) \times 6 - (-3) \times 4 = 0 , A \text{ is not invertible.}$$

$$1 \times 3 - 2 \times 6 \neq 0 , B \text{ is invertible.}$$

$$B^{-1} = -\frac{1}{9} \begin{bmatrix} 3 & -6 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{9} & -\frac{4}{9} \end{bmatrix}$$

Linear Systems and Inverses

If *A* is an $n \times n$ matrix, then the linear system $A\mathbf{x} = \mathbf{b}$ is a system of **n** equations in **n** unknowns. Suppose *A* is nonsingular. How can we use A^{-1} to solve the system $A\mathbf{x} = \mathbf{b}$?

Multiply both sides by
$$A^{-1}$$
, we get
$$A^{-1}(A\overrightarrow{x}) = A^{-1}\overrightarrow{b} \implies (A^{-1}A)\overrightarrow{x} = A^{-1}\overrightarrow{b}$$

$$\implies \overrightarrow{x} = A^{-1}\overrightarrow{b}.$$

Consequences:

- When A^{-1} exists, then $A\mathbf{x} = \mathbf{b}$ has a *unique* solution.
- If A is invertible/nonsingular, then the ONLY solution to the homogeneous system Ax = 0 is $\mathbf{x} = \mathbf{0}$.

Example: Use the inverse of A to solve the linear systems $A\mathbf{x} = \mathbf{b}$, $A\mathbf{x} = \mathbf{c}$, and $A\mathbf{x} = \mathbf{0}$, where A, **b**, and **c** are given below.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

1.
$$\vec{x} = A^{-1} \cdot \vec{b} = \begin{bmatrix} -2 & 1 \\ \frac{2}{3} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} -6 \\ 5 \end{bmatrix}$$

$$2. \quad \vec{\chi} = A^{-1} \cdot \vec{c} = \begin{bmatrix} -2 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ \frac{7}{2} \end{bmatrix}$$

3.
$$\vec{x} = \vec{A} \cdot \vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Chapter 6: Elementary Matrices

Definition: An $n \times n$ **elementary** matrix is a matrix obtained from the identity matrix by performing a single elementary row operation.

Example: Fill in the row operation that is performed on I_3 to get each elementary matrix, then perform the given matrix multiplication on an arbitrary 3×3 matrix. What do you observe?

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{\Upsilon_{1}} \xrightarrow{\Upsilon_{2}} \xrightarrow{\Upsilon_{3}} \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix} = \begin{bmatrix}
0 & h & i \\
d & e & f \\
a & b & c
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{\Upsilon_{2}} \xrightarrow{4\Upsilon_{3}} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix} = \begin{bmatrix}
0 & b & C \\
d & e & f \\
4g & 4h & 4i
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{\Upsilon_{1}} \xrightarrow{\Upsilon_{1}} \xrightarrow{\Upsilon_{1}} \xrightarrow{\Upsilon_{1}} \begin{bmatrix}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix} = \begin{bmatrix}
0 & +3d & b +3e & C +3f \\
d & e & f \\
g & h & i
\end{bmatrix}$$

Theorem: If an elementary row operation is performed on the $m \times n$ matrix A, then the result is the product EA, where E is the elementary matrix obtained by performing the same row operation on the $m \times m$ identity matrix I_m .

Fact: Every elementary matrix is invertible, and its inverse is an elementary matrix.

Example: Find the inverse of $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.