Least squares vs MLE

Least squares vs.
$$MLE$$

Random var. X with pdf $f(x; \theta)$

Random var. X with pdt $f(x; \theta)$ Sample Xi iid: $\{x_i\}_{i=1}^N \rightarrow each i has xi$

max
$$L = \max_{\delta} \prod_{i=1}^{N} f(x_i; \delta)$$

max $\ln L = \max_{\delta} \sum_{i=1}^{N} \ln[f(x_i; \delta)]$

Solution: $\hat{\Theta}$ satisfies $\frac{\partial \ln L}{\partial \hat{B}} = 0$ Propostives: $\hat{\mathbb{O}}$ (onsistency: $\hat{\mathbb{G}}$ from $\hat{\mathbb{O}}$ Asymptotic normality (CLT): $\hat{\mathbb{G}}$ $\hat{\mathbb{G}}$ Asymptotic efficiency

FOC:

$$L = Pr(X = 1) \cdot 112 \times P \cdot (1-p)$$

$$= \beta \cdot \beta \cdot (1-\beta)$$

$$= p^{2}(1-p)$$

$$= p^{2}(1-p)$$

$$\max_{n \in \mathbb{Z}} 2^{2}(1-p^{2})$$

$$= \rho^{2}(1-p)$$

$$= \max_{p} \sum_{k=1}^{2} (1-p^{2})$$

$$= \max_{k=1}^{2} \sum_{k=1}^{2} (1-p^{2})$$

$$MLE: \max_{p} L = \max_{p} \tilde{p}^{2}(1-\tilde{p})$$

$$\max_{p} \ln L = \max_{p} Z \ln(\tilde{p}) + \ln(1-\tilde{p})$$

$$\max_{\hat{p}} |nL = \max_{\hat{p}} Z \ln(\hat{p}) + \ln(1-\hat{p})$$

$$\frac{d|nL}{d\hat{p}} = \frac{Z}{\hat{p}} - \frac{1}{1-\hat{p}} = 0 \implies \hat{p} = \frac{Z}{3}$$

N Bernoulli variables, S successes, N-S failures

Bernoulli variables,
$$S$$
 successes, $N-S$.

$$L = \rho^{S} (1-\rho)^{N-S}$$

$$In L = S In(\rho) + (N-S) In (1-\rho)$$

$$\hat{\rho} = \frac{S}{N}$$

Methods for finding MLE DAnalytic optimization O(1) lighted) acid sourch

(Undirected) grid search

3) (Directed) grid search

