

GRUNDLAGEN DER SENSORIK – ÜBUNGSBLATT ZU KAPITEL 2/ SS 2015

- 1. Eine Stahlstange mit kreisrundem Querschnitt (Durchmesser $d_0 = 20$ mm) wird bei einer Ausgangslänge von $I_0 = 1$ m mit der **Zugkraft** $F_N = 25$ kN belastet.
 - a) Wie groß ist die **Zugspannung** σ ?
 - b) Wie groß ist die **Dehnung** ε (Angabe in Prozent)?
 - c) Wie groß ist die **Verlängerung** ΔI (Angabe in mm)?
 - d) Wie groß ist die **Durchmesserveränderung** Δd (Angabe in mm)? [Angaben zur Rechnung: Elastizitätsmodul E von Stahl: $E=20,6\cdot10^{10}$ N/m² Querdehnungszahl μ von Stahl: $\mu=0,3$]
- 2. Dieselbe Stahlstange wird am oberen Ende eingespannt und am unteren Ende um den **Torsionswinkel** $\varphi = 1^{\circ}$ verdreht (s. Vorlesung).
 - a) Welches **Drehmoment** *M* ist dafür erforderlich?
 - b) Welche tangential angreifende **Kraft** F_t ist dafür erforderlich?
 - c) Um welche **Strecke** s hat sich ein Punkt P_1 am unteren Ende der Stahlstange auf der Mantelfläche verdreht (hin zur neuen Position P_2)?
- 3. Gegeben sei eine **Membran** aus Aluminium (mit Querdehnungszahl $\mu = 0,34$) mit Durchmesser d=230 mm und Dicke s=3 mm. Auf diese Membran wirkt eine **Druckdifferenz** von $\Delta p=10$ mbar.
 - a) Wie groß ist die radiale **Normalspannung** σ_r in der Mitte der Membran?
 - b) Wie groß ist die radiale Normalspannung $\sigma_{\rm r}$ am äußersten Rand der Membran?
 - c) Bei welchem Abstand r_1 (relativ zur Mitte) verschwindet die radiale Normalspannung σ_r ?

- 4. Welche **Druckdifferenz** $\Delta p = p_{Boden} p_a$ (Angabe in bar) wird gemessen bei einem Tank mit **Füllhöhe** 8 m bei folgenden Flüssigkeiten:
 - a) Benzin (Dichte $\rho = 0.78 \text{ kg/dm}^3$)
 - b) Heizöl (Dichte ρ = 0,95 kg/dm³)
 - c) Natronlauge (Dichte $\rho = 1,434 \text{ kg/dm}^3$)?
- 5. Die Füllhöhe in einer Regenwasserauffanganlage wird mit einem Schwimmerventil geregelt (s. untere Abb.). Das Zulaufventil wird über einen zylinderförmigen **Schwimmer** mit der Masse m=20 g geschlossen. Die Schaltkraft von $F_S=2$ N muss bei einer Eintauchtiefe h=8 cm erreicht werden. Welchen **Durchmesser** d muss der Schwimmer besitzen?

Ein zylinderförmiger Schwimmer (s. Abb. unten, Typ III) hat nach
 Datenblatt folgende Abmessungen: A = 23 mm, B = 10 mm, C = 25 mm. Er
 wiegt 6 g. Dieser Schwimmer misst einen Wasserfüllstand
 (Wasserdichte: 1 kg/l).

- a) Wie groß ist die **Eintauchtiefe** E (von Oberkante des Schwimmers gemessen, s. Abb.) in **Wasser**?
- b) Ab welcher kritischen Dichte **geht** der Schwimmer komplett **unter**?

 Jogwich / SS15 / GDS_AI_U_JO_SS15_2 / Seite 2

7. In ein Rohr mit dem Durchmesser $d_{01} = 50$ mm ist eine **Blende** mit dem Öffnungsverhältnis m = 0.35 eingebaut.

Wasser (Dichte $\rho = 1 \text{ kg / I}$) erzeugt beim Durchfließen den **Wirkdruck** $\Delta p_{\text{M}} = 10 \text{ mbar}.$

Die Durchflusszahl sei α = 1,03, die Expansionszahl $\varepsilon \approx 1$.

Berechnen Sie

- a) den **Durchmesser** d_0 der eingebauten Blende
- b) den Massendurchfluss m
- c) die mittlere **Strömungsgeschwindigkeit** $v_{\rm m}$
- 8. Mit Hilfe einer **Ultraschall-Durchflussmessung** wird in einem Rohr mit Innendurchmesser d=100 mm die Strömungsgeschwindigkeit v=1 m/s eines Wasserstroms gemessen. Der Einstrahlwinkel beträgt $\varphi=45^\circ$, das Kompressionsmodul für Wasser sei $K=2,08\cdot10^9$ Pa und die Dichte 0,9997 kg/dm³.
 - a) Wie groß ist die **Schallgeschwindigkeit** *c* im ruhenden Wasser?
 - b) Welche **Zeitdifferenz** Δt wird gemessen?
 - c) Wie groß ist die Zeitauflösung bei einer geforderten Signalauflösung von 0,5 % ?

Viel Erfolg bei der Lösung der Aufgaben!

```
[Lösungen:
```

```
1a) 7,958 · 10<sup>7</sup> N/m<sup>2</sup>; 1b) 0,039 %; 1c) 0,386 mm; 1d) - 0,002 mm; 2a) 21,72 Nm; 2b) 2,172 kN; 2c) 0,175 mm; 3a) -7,384·10<sup>5</sup> N/m<sup>2</sup>; 3b) 1,102·10<sup>6</sup> N/m<sup>2</sup>; 3c) 72,8 mm; 4a) 0,612 bar; 4b) 0,746 bar; 4c) 1,125 bar; 5) 0,059 m; 6a) 7 mm; 6b) 712 kg/m<sup>3</sup>; 7a) 0,03 m; 7b) 1 kg/s; 7c) 0,509 m/s; 8a) 1442,437 m/s; 8b) 96 ns; 8c) 480 ps]
```