Binary Classification with Missing Data

Huafeng Fan

May 6, 2019

Reference

 Bhattacharyya, Chiranjib, Pannagadatta K. Shivaswamy, and Alex J. Smola. "A second order cone programming formulation for classifying missing data." Advances in neural information processing systems. 2005.

Overview

- Problem Statement and Approach
- 2 Derivation of the basic SOCP
- 3 Using the SOCP for classification in the presence of missing data
- Deriving the Dual Problem
- **5** Experimental Results

Problem Statement and Approach

- In class, we looked at binary classification using SVM in the case where the training data and labels were known.
- In practice, datasets are messy. Even on Kaggle, there are many datasets with incomplete and noisy data. We would like to still achieve optimal classification results with noisy data.
- The approach to solve this problem is to assume our data takes on a Gaussian distribution, and derive a convex optimization problem for classification. This problem will turn out to be a SOCP.

Support Vector Machine

- Given training data $\{x_i, y_i\}_{i=1}^m$ where $x_i \in \mathbb{R}^n$, $y_i \in \{-1, 1\}$, we have two forms of binary classifiers from class:
- LP Heuristic (with an added norm constraint)

minimize
$$\sum_{i=1}^{m} u_i$$
subject to
$$y_i(w^T x_i + b) \ge 1 - u_i(\forall i = 1, ..., m)$$

$$u_i \ge 0 \qquad (i = 1, ..., m)$$

$$||w||_2 \le W$$
(1)

Standard Support Vector Machine classifier

minimize
$$\frac{1}{2}||w||_2^2 + C\sum_{i=1}^m u_i$$
subject to
$$y_i(w^Tx_i + b) \ge 1 - u_i(\forall i = 1, \dots, m)$$
$$u_i \ge 0 \qquad (\forall i = 1, \dots, m)$$
 (2)

• Continue with form (1) to derive the problem for when x_i isn't exactly known.

Dealing with unknown x_i

- In the case where we don't know x_i , we can assume $x_i \sim P_i$, some probability distribution for all i.
- Now our training data is $\{x_i, y_i\}_{i=1}^m$ where $x_i \sim P_i$, $y_i \in \{-1, 1\}$.
- It makes sense now to take probabilities into account, giving us the problem

minimize
$$\sum_{i=1}^{m} u_{i}$$
subject to
$$\Pr\{y_{i}(w^{T}x_{i}+b) \geq 1-u_{i}\} \geq k_{i}(\forall i=1,\ldots,m)$$

$$u_{i} \geq 0 \qquad (i=1,\ldots,m)$$

$$||w||_{2} \leq W$$

$$(3)$$

where k_i is user defined.

• To simplify, we need to know the distributions of x_i .

Dealing with unknown $x_i \sim N(\bar{x}_i, \Sigma_i)$

• Suppose $x_i \sim N(\bar{x}_i, \Sigma_i)$. Then, $z_i = y_i(w^T x_i + b) \sim N(\bar{z}_i, \sigma_{z_i}^2)$. where $\bar{z}_i = y_i(w^T \bar{x}_i + b)$ and $\sigma_{z_i}^2 = w^T \Sigma_i w$, we have that

$$\Pr\{y_{i}(w^{T}x_{i}+b) \geq 1 - u_{i}\} = \Pr\{z_{i} \geq 1 - u_{i}\}$$

$$= \Pr\{\frac{z_{i} - \bar{z}_{i}}{\sigma_{z_{i}}} \geq \frac{1 - u_{i} - \bar{z}_{i}}{\sigma_{z_{i}}}\}$$

$$= \phi(\frac{\bar{z}_{i} + u_{i} - 1}{\sigma_{z_{i}}}) \geq k_{i}$$

$$\implies \bar{z}_{i} \geq \phi^{-1}(k_{i})\sigma_{z_{i}} - u_{i} + 1$$

$$\implies y_{i}(w^{T}\bar{x}_{i} + b) \geq 1 - u_{i} + \gamma_{i}\sigma_{z_{i}}$$

$$\implies y_{i}(w^{T}\bar{x}_{i} + b) \geq 1 - u_{i} + \gamma_{i}\sqrt{w^{T}\Sigma_{i}w}$$

where
$$\phi(u) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp(-\frac{s^2}{2}) ds$$
 and $\gamma_i := \phi^{-1}(k_i)$

Deriving the SOCP Problem

• Putting it all together so far, we have the optimization problem:

```
minimize \sum_{i=1}^{m} u_{i}
subject to y_{i}(w^{T}\bar{x}_{i} + b) \geq 1 - u_{i} + \gamma_{i}\sqrt{w^{T}\sum_{i}w}(\forall i = 1, ..., m)
u_{i} \geq 0 \qquad (i = 1, ..., m)
||w||_{2} \leq W
(4)
```

 Noting that all covariance matrices are positive semi-definite, we get the problem:

minimize
$$\sum_{i=1}^{m} u_{i}$$
subject to
$$y_{i}(w^{T}\bar{x}_{i}+b) \geq 1 - u_{i} + \gamma_{i}||\mathbf{\Sigma}_{i}^{1/2}w||_{2}(\forall i=1,\ldots,m)$$

$$u_{i} \geq 0 \qquad \qquad (i=1,\ldots,m)$$

$$||w||_{2} \leq W$$

$$(5)$$

• There are three cases for the value of $\gamma_i = \phi^{-1}(k_i)$

•
$$\gamma_i = 0$$
 or $k_i = 0.5$: Original SVM problem.

•
$$\gamma_i < 0$$
 or $k_i < 0.5$: Hard optimization problem

•
$$\gamma_i > 0$$
 or $k_i > 0.5$: SOCP

SOCP Problem with both Known and Unknown Data

- Let m_a be the number of datapoints for which the values are available.
- Let m_m be the number of datapoints containing missing values.
- The optimization problem in this case is:

minimize
$$\sum_{i=1}^{m} u_i$$

subject to $y_i(w^T x_i + b) \ge 1 - u_i$ $(i = 1, ..., m_a)$
 $y_i(w^T \bar{x_i} + b) \ge 1 - u_i + \gamma_i || \sum_{i=1}^{1/2} w ||_2 (i = m_a + 1, ..., m_a + u_i) \ge 0$
 $||w||_2 \le W$ (6)

• We can estimate $\bar{x_i}$ and Σ_i using the Expectation Minimization (EM) algorithm from our known data assuming that x follows a jointly normal distribution with mean μ and covariance Σ .

Deriving the Dual Problem 1

• The Lagrangian of the program on the previous slide is:

$$L(w, b, u, \alpha, \beta, \lambda, \theta) = 1^{T} u + \sum_{i=1}^{m_{a}} \alpha_{i} [1 - u_{i} - y_{i} (w^{T} x_{i} + b)] + \sum_{i=m_{a}+1}^{m_{a}+m_{m}} \beta_{i} [1 - u_{i} - y_{i} (w^{T} \bar{x}_{i} + b)] + \sum_{i=m_{a}+1}^{m_{a}+m_{m}} \beta_{i} \gamma_{i} ||\Sigma_{i}^{1/2} w||_{2} - \sum_{i=m_{a}+1}^{m_{a}+m_{m}} \lambda_{i} u_{i} + \theta(||w||_{2} - W)$$

where $\alpha, \beta, \lambda, \theta$ are the Lagrange multipliers.

Deriving the Dual Problem 2

• Deriving the Lagrange Dual Function $g(\alpha, \beta, \lambda, \theta) = \inf_{w,b,u} L(w, b, u, \alpha, \beta, \lambda, \theta)$ as in class, we get:

$$g(lpha,eta,\lambda, heta) = egin{cases} -W heta & ext{if } B \leq heta + \sum_{i=m_a+1}^{m_a+m_m} eta_i ||\Sigma_i^{1/2}||_2 \ -\infty & ext{otherwise} \end{cases}$$

where

$$B = || - \sum_{i=1}^{m_a} \alpha_i y_i x_i - \sum_{i=m_a+1}^{m_a+m_m} \beta_i y_i \bar{x}_i ||_2$$

This is similar to the dual problem of the normal SVM problem.

Deriving the Dual Problem 3

• Finally, we get the dual problem:

maximize
$$||-\sum_{i=1}^{m_{a}}\alpha_{i}y_{i}x_{i}-\sum_{i=m_{a}+1}^{m_{a}+m_{m}}\beta_{i}y_{i}\bar{x}_{i}||_{2}$$
 subject to $1^{T}\alpha=1^{T}\beta=\frac{1}{2}$ (7) $\lambda\succeq0$ $\theta\succeq0$

 We can do sensitivity analysis on how good the classifier is wrt how inseparable and how uncertain we are about the data.

Experimental Results

 From Bhattacharyya, Pannagadatta, Smola's experiments on the public datasets Prima, Heart and Ionosphere:

 Results were mostly verified by hand, will try on more datasets and more graphs will be procured for the final report.