Time Series Analysis: Microsoft Stock

Forecasting Microsoft Stock Price Using ARIMA

Dataset Introduction

This dataset contains daily stock trading data for Microsoft Corporation, starting from April 1st, 2015.

- Date: the date of the stock record
- Open: the stock's opening price
- High and Low: the highest and lowest prices during the day
- Close: the closing price, which is also the value we're trying to forecast
- Volume: the number of shares traded on that day

×	Date	0pen	High	Low	Close	Volume
0	4/1/2015 16:00:00	40.60	40.76	40.31	40.72	36865322
1	4/2/2015 16:00:00	40.66	40.74	40.12	40.29	37487476
2	4/6/2015 16:00:00	40.34	41.78	40.18	41.55	39223692
3	4/7/2015 16:00:00	41.61	41.91	41.31	41.53	28809375
4	4/8/2015 16:00:00	41.48	41.69	41.04	41.42	24753438

Problem Statement

- Predicting stock prices is crucial for informed financial decisions
- Microsoft (MSFT) is a globally important, high-volume stock
- Goal: Use historical data to forecast short-term closing prices
- Approach: Apply time series models (ARIMA, Prophet)
- Evaluate model accuracy for practical forecasting use

Exploratory Data Analysis(1)

- Microsoft stock has shown a strong upward trend from 2015 to 2021, with noticeable acceleration after 2019
- Despite price growth, the trading volume remained relatively volatile, with occasional spikes during major events

Exploratory Data Analysis(2)

- Strong positive correlation observed among Open, High, Low, and Close prices (correlation ≈ 1.0)

Volume has weak correlation with price-based features, suggesting it behaves

independently

Feature Engineering

- The 7-day and 30-day moving averages captured short- and mid-term trends, clearly showing upward momentum with occasional dips.
- Daily returns revealed higher volatility during early 2020, likely reflecting market reaction to COVID-19.

Time Series Modeling(1)

- Performed Augmented Dickey-Fuller (ADF) test to check stationarity
- ADF Statistic: 1.68
- P-value: 0.998. Since P-value > 0.05 Failed to reject the null hypothesis
- Conclusion: The time series is non-stationary and requires differencing

ADF Statistic: 1.6830285474635915 p-value: 0.9980864714246888

Time Series Modeling(2)

- Model Configuration
 - Model type: ARIMA(5,1,0) on Close price
 - Observations: 1,482
 - Covariance type: OPG
- Model Fit & Criteria
 - AIC: 6662.12
 - BIC: 6693.93
 - HQIC: 6673.98

SARIMAX Results							
Dep. Variable Model: Date: Time: Sample: Covariance Ty	Т	ARIMA(5, 1 hu, 24 Jul 04:5	, 0) Log	Observations: Likelihood		1482 -3325.062 6662.124 6693.927 6673.980	
	coef	======= std err 	======= Z 	P> z	[0.025	======= 0.975] ======	
ar.L1 ar.L2 ar.L3 ar.L4 ar.L5 sigma2	-0.2705 0.0213 0.0503 -0.0138 -0.0127 5.2192	0.012 0.012 0.014 0.014 0.013 0.081	-23.380 1.705 3.481 -0.972 -1.002 64.475	0.000 0.088 0.001 0.331 0.316 0.000	-0.293 -0.003 0.022 -0.042 -0.038 5.061	-0.248 0.046 0.079 0.014 0.012 5.378	
Ljung-Box (L1) (Q): Prob(Q): Heteroskedasticity (H): Prob(H) (two-sided): ====================================			0.06 0.81 22.71 0.00	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	7885.27 0.00 -0.47 14.26	

Time Series Modeling(3)

- Significant Coefficients
 - AR(1): -0.2705, p < 0.001
 - AR(3): 0.0503, p < 0.01
 - Other lags (AR2, AR4, AR5) are not statistically significant
- Residual Diagnostics
 - Ljung-Box Q (p = 0.81): No autocorrelation
 - Heteroskedasticity Test (p < 0.01): Heteroskedasticity exists
 - Jarque-Bera p = 0.00:
 Residuals not normally distributed

SARIMAX Results							
Dep. Variabl		ARIMA(5, 1,	0) Log	Observations: Likelihood		1482 -3325.062	
Date:	Th	u, 24 Jul 2				6662.124	
Time: Sample:		04:50 - 1	0 HQIC			6693.927 6673.980	
Covariance T	ype:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.2705	0.012	-23.380	0.000	-0.293	-0.248	
ar.L2	0.0213	0.012	1.705	0.088	-0.003	0.046	
ar.L3	0.0503	0.014	3.481	0.001	0.022	0.079	
ar.L4	-0.0138	0.014	-0.972	0.331	-0.042	0.014	
ar.L5	-0.0127	0.013	-1.002	0.316	-0.038	0.012	
sigma2	5.2192 	0.081 	64.475	0.000	5.061	5.378	
Ljung-Box (L1) (Q): Prob(Q):			0.06 0.81	Jarque-Bera Prob(JB):	(JB):	7885.27 0.00	
Heteroskedasticity (H):			22.71	Skew:		-0.47	
Prob(H) (two	-sided):		0.00	Kurtosis:		14.26	

Time Series Modeling(4)

- The ARIMA model overestimated the stock price during the last 30 business days.
- Predicted values are consistently higher than actual observations.
- This indicates the model may not fully capture recent short-term volatility.

Time Series Modeling(5)

- The ARIMA(5,1,0) model forecasts a slightly upward trend in the near future.
- Forecast line (in red) shows a flattening pattern, suggesting limited short-term growth.
- The forecast continues from a historical strong upward momentum seen since 2015.
- No strong volatility is projected in the forecast range.

Time Series Modeling(6)

- Root Mean Squared Error (RMSE): 10.61
- Mean Absolute Error (MAE): 9.91
- Indicates the model's average prediction error is around \$9–10 per day over the test period.
- Relatively low error given the price range (~\$200+), but still room for refinement.
- RMSE > MAE suggests presence of larger occasional errors (outliers).

RMSE: 10.61 MAE: 9.91

Result/Conclusion

- Successfully implemented ARIMA(5,1,0) to forecast stock closing prices.
- Forecast captures short-term trend reasonably well for the next 30 business days.
- Evaluation metrics indicate low average error:
 - RMSE = 10.61, MAE = 9.91
- Forecasted values are slightly overestimated compared to actual test values.
- ARIMA model performs well on stable time series, but may underperform during volatile periods.