Name:	
CWID:	

Part II: Attempt all questions [70 pts].

Database Context:

Consider the following database schema (**EmployeeProject***DB*) to answer the questions that follow.

FirstName	LastName	Dept	Salary
riistivaille	Lastivallie	Бері	Salaiy
John	Smith	Sales	50000
Mary	Johnson	HR	55000
Robert	Brown	HR	48000
Susan	Davis	IT	60000
Marx	Prince	Sales	64500
David	Lee	HR	52000
Peter	Kelly	Sales	70000
Kaya	Lui	Sales	45000
Son	Xue	HR	55000
Tim	Terry	IT	80000

ProjectName	Dept	Manager
Project A	Sales	John Smith
Project B	HR	Mary Johnson
Project C	HR	Robert Brown
Project D	Sales	Peter Kelly
Project E	Sales	Kayla Lui

Project table

Employee table

JobID	Job	ProjectName
J001	Survey	Project B
J002	Inspection	Project B
J003	Excavation	Project B
J004	Development	Project A

Estimate the result sizes (in # bytes) of the queries below: (**Assume:** FirstName = 8 bytes of string; LastName = 10 bytes of string; Dept = 6 bytes of string; Salary = 9 bytes of integer; ProjectName = 6 bytes of string; Manager = 10 bytes of string; JobID = 4 bytes; and Job = 8 bytes of string)

Note: Points will be awarded for stating the correct formulas.

1. Query 1

SELECT FirstName, LastName, Dept FROM Employee WHERE Dept != "IT";

Name:	
CWID:	

2. Query 3

SELECT *
FROM Employee
WHERE Dept ="Sales" OR Salary < 50000;

3. Query 3

SELECT *
FROM Project P
INNER JOIN Job J
ON P.ProjectName = J.ProjectName;

Name:	
CWID:	

4. Query 4

SELECT *
FROM Employee, Job;

5. Query 5

SELECT *
FROM Employee
NATURAL JOIN Project
NATURAL JOIN Job;

Name:	
CWID:	Final Exam Fall 2024
	CS525: Advanced Database Organization
	

6. Assume that each B+-tree node can hold a maximum of two (2) keys. Construct the B+-trees resulting from the insertion and deletion operations of the key sequence provided below

(a) Insert 11, 20, 40, 13, 45, 18, 1, 29, 38, 60, 4, 9, 5, 12, 70, 30 [show individual tree at each insertion] [8 pts].

IIT.edu

Name:		
CWID:		

Final Exam Fall 2024
CS525: Advanced Database Organization

(b) Deletion: Consider the tree after inserting 30 in part (a).

Delete 4, 12, 9, 13, 45, 18, 40, 70, 38, 5, 1 [show individual tree at each deletion]

[12 pts].

IIT.edu

Name:		
CWID:		

[cont'd: Show individual trees at each deletion].

Name:	
CWID:	

1. Consider the following schedules (S1 and S2) with two transactions T1 and T2 as shown below.

Schedule 1 (S1)

Instructions T1 Т2 Read (A) 2 Read (A) 3 A = A + 20Write (A) 4 5 Read (B) 6 B = B - 207 Write (B) 8 commit2 9 A = A + 1010 Write (A) 11 Read (B) B = B - 1012 13 Write (B) commit1

Schedule 2 (S2)

Instructions	T1	T2
1	Read (A)	
2	A = A + 10	
3	Write (A)	
4	Read (B)	
5	B = B - 10	
6	Write (B)	
7	commit1	
8		Read (A)
9		A = A + 20
10		Write (A)
11		Read (B)
12		B = B - 20
13		Write (B)
14		Commit2

a. Are S1 and S2 serializable schedules? Please explain along with any form of evidence or proof. Assume an initial value: A = B = 100 [10 pts]

Name:	
CWID:	Final Exam Fall 2024
	CS525: Advanced Database Organization

2. Check whether schedule S is conflict serializable or not. If S is conflict serializable, give all possible schedules equivalent to Schedule S [15 pts]

Schedule S: W1(A), W1(B), R2(B), W2(C), R3(C), W3(D), R4(D), R2(C), W4(A), R5(B), W5(E), R6(E), W6(D), R5(E).

Good luck