CO3096/7096 Compression Methods for Multimedia

Rajeev Raman

Logistics

- Module convenor: Prof Rajeev Raman
 - Room F33, x3894, <u>r.raman@leicester.ac.uk</u>
 - Open door policy.
- Plan:
 - 29 classroom lectures + 2 e-lectures + 18 problem class/ surgery
- BSc pre-requisites: CO1012.
 - Helpful: CO1016, CO2011, CO2016.
- General basic maths, including binary numbers, simple probability calculations.

Assessment

- Exam 50%, continuous 50%.
 - Continuous
 - 3 "part unseen" class tests of equal weight.
 - Based upon worksheets 1-8.
 - 7096: we take best 2 of 3 class tests.
- Exam 2 hours.
 - will not test learning outcomes already tested in class tests.
 - 2 questions. 20% of Exam will be "challenging".

CO3096/7096 Compression Methods for Multimedia

Planned Content of Meetings (Actual Content May Vary)

WB	Week#	TT Week	Mon 0900	Mon 1000	Tue 1000	Thu 1400	Fri 1200
15-Jan-17	14	26				LEC (C1, Intro)	LEC (C1, Intro)
22-Jan-17	15	27	LEC (C1, Intro)	LEC (C2, Fund)	LEC (C2, Fund)	Sur; Logs, WS1	Sur; WS1, WS2
29-Jan-17	16	28	LEC (C2, Fund)	LEC (C2, Fund)	LEC (C3, MLS)	Sur; WS2, WS3	Sur; WS3
05-Feb-17	17	29	LEC (C3, MLS)	LEC (C3, MLS)	LEC (C3, MLS)	Sur; WS3	CLASS TEST 1
12-Feb-17	18	30	LEC (C4, RLE)	LEC (C4, Dictionary)	LEC (C4, Dictionary)	Sur; WS4	Sur; WS4
19-Feb-17	19	31	LEC (C5, BWT)	LEC (C5, BWT)	LEC (C5, BWT)	Sur; WS5	Sur; WS5
26-Feb-17	20	32	MATRIX REFRESHER	LEC (C7, Image)	LEC (C7, Image)	Sur; WS4*	CLASS TEST 2
05-Mar-17	21	33	LEC (C7, Image)	LEC (C7, Image)	LEC (C7, Image)	Sur; WS6	Sur; WS7
12-Mar-17	22	34	LEC (C8, Video)	LEC (C8, Video)	LEC (C8, Video)	Sur; WS7	Sur; WS8
19-Mar-17	23	35	LEC (C8, Video)	Revision/overflow	Revision/overflow	Sur; WS4*	CLASS TEST 3
26-Mar-17	24	36	Revision/overflow	Revision/overflow	Revision/overflow		

There are two e-lectures. Both should be read before 5th March

Materials

- Course notes: photocopies at start of week 3 for anyone who wants them.
 - PDFs available.
- Course slides: will NOT be photocopied.
- Books:
 - Li and Drew: Recommended, not essential.
 - Hoffmann, Sayood, others: Reference.
- Other materials on website and online. E.g.
 - "Data compression explained", online book by Matt Mahoney.

Aims of Course

- To study methods for compression of symbolic data as well as diffuse data.
- To gain an appreciation of the ubiquity and importance of compression technologies.

Data Compression

- What is it?
- Motivation for compression.
- History of compression.
- Compression concepts
 - Terminology
 - Modelling versus coding

What is it?

- Data compression means changing a redundant data representation to a succinct one, and recovering the original data from the succinct one (de-compression).
- Data compression means changing a redundant data representation to a succinct one, and recovering the original data from the succinct one (de-compression)

Is this compression?

- Data compression means changing a redundant data representation to a succinct one, and recovering the original data from the succinct one (de-compression).
- (x2)

Motivations for compression

Efficient use of storage

- Many storage media have fixed size:
 - CD-ROM: 650MB, DVDs: 8GB, BD: 50GB
 - b = bits, B = bytes, k/K \approx x 10³, M \approx x 10⁶, G \approx x 10⁹.
 - 10 min of raw HDTV video ~80GB.
- Portable devices have little memory:
 - Smartphones: 4GB RAM (+flash).
 - Smart cards: <128Kb.
- Memory can be expensive and raises power consumption.
- Cloud-based storage charge per GB/TB
 - Compression saves on data center costs.

Efficient Transmission

- Bandwidth is cheap! (Lay another fibre-optic cable.)
 - 'Last mile' problem: not economical to lay fibre-optic cables to individual subscribers so 'last mile' is still copper.
 - ADSL (20 Mbps, upload speed?).
 - Kbps = 1000 bits per second.
 - 56Kbps (GPRS), <5Mbps (3G, stationary customer moving, lower).
- Pay per volume:
 - Network operator costs est. €1.50/GB [Nokia Siemens, 2 Orange mobile broadband 5p/MB to £6/MB (international roaming). 4G.
- Storage media data transfer rates:
 - "up to" 8MBps (48X CD-ROM), 22MBps (16X DVD), 40MBps (8x BD), 125MBps (7200rpm HDD).
 - Data rate for raw HDTV video ~ 200MBps.
- Compression essential for real-time transmission.

Related to Machine Learning

- Compression's foundations: information theory.
 - How much information there is in data.
 - How to describe data to computers (algorithmic information theory).
 - How much one piece of data helps you to understand another piece of data (mutual information).
 - In machine learning:
 - "one piece": training data.
 - "another piece": test data.

Related to Machine Learning

- Links go deep (but the maths is beyond the scope of the module).
- Direct uses:
 - Use of compression algorithms for predicting sequences [Gueniche et al. PAKDD'15]
 - Use of "minimum description length" to choose between different explanations of the same data.
 - "Occam's razor"

A History of Compression

- 1st cent. BC—1930: Shorthand, Braille, Morse code, Analog compression.
- late '40s '50s: Information theory, Huffman codes.
- '70s: Arithmetic coding, dictionary-based compression (Lempel-Ziv methods).
- early '80s: FAX, Videoconferencing, still images (JPEG).
- late '80s, early '90s: Motion video compression (MPEG).
- '90s: Disk compression, Satellite TV, Digital TV (HDTV), DVD, MP3, MP4.
- 00's: Streaming video, portability, "convergence", XML compression, working with compressed data, "compressed sensing".
- 10's: Mobile video, interactive video/games, working with compressed data.

Basic Notions

Keywords

- Compression = Coding.
- De-compression = De-coding.
- "Codec"
- "Redundancy"
- Raw data = uncompressed data.
- Compression ratio: size of raw data / size of compressed data = x > 1 (?).
 - Expressed as x: 1. (simple example slide about 2:1).
 - b = bits, B = bytes, k/K ≈ x 10³, M ≈ x 10⁶, G ≈ x 10⁶, Mbps, GBps etc.

Lossless compression

 Reconstruct the original exactly from the compressed version.

Raw data X

Compressed file

Raw data X

- Applied to so-called symbolic data such as: character text, numeric data, computer source code and binaries and icons.
- Relatively low compression ratios (2:1 to 6:1).

Lossless essential when is essential

 When compressing text (or else meaning is lost or changed).

```
... pay Bob 5,000 quid ...

Compressed file

pay Rob 5,000 quid ...
```

Lossless compression is essential

 When compressing source code or executables (otherwise program behaviour can change)

Lossless essential when

- Archiving medical images and images preserved or legal purposes (any alteration is unacceptable).
- http://www.theregister.co.uk/2013/08/06/ xerox_copier_flaw_means_dodgy_numbers_and_dangero us_designs/

Reconstruct the original approximately from the compressed version.

Raw data X

Compressed file

Raw data X'

X and X' are "similar" but not identical.

- Trade-off compression vs. approximation.
- Approximation criteria
 - 'Appears similar' to humans.
 - Numerical criteria like 'mean-squared error' etc.
- Applied to diffuse data such as image, video and audio data.
- Ratios of 100:1 can be achieved while preserving a reasonable approximation.

• Original 124KB; left 3.4KB; right 17.4KB.

Conclusion

- You have understood:
 - Compression/decompression
 - Compression ratio
 - Lossless/lossy