1 MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 STANDARD APPLICABLE

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)	
	Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	F/1500	30	
1500-15000	/	/	1.0	30	

F = frequency in MHz

^{* =} Plane-wave equipment power density

1.2 MAXIMUM PERMISSIBLE EXPOSURE (MPE) EVALUATION

802.11b (Main)

		Peak Pov	wer Output (dBm)
Frequency	Data Rate	Decrined Limit	
СН	CH (MHz)	1	Required Limit
1	2412	18.98	1 Watt = 30 dBm
6	2437	18.80	1 Watt = 30 dBm
11	2462	18.85	1 Watt = 30 dBm

		Average P	ower Output (dBm)
Frequency	Data Rate	D	
Сн	CH (MHz)	1	Required Limit
1	2412	16.59	1 Watt = 30 dBm
6	2437	16.40	1 Watt = 30 dBm
11	2462	16.39	1 Watt = 30 dBm

^{*}Note: Measured by power meter, cable loss as 11dB that offsets on the power meter.

MPE Prediction (802.11b (Main))

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

-		
Maximum average output power at antenna input	16.59	(dBm)
Maximum average output power at antenna input	45.6036916	(mW)
Duty cycle:	100	(%)
Maximum Pav :	45.6036916	(mW)
Antenna gain (typical):	1.5	(dBi)
Maximum antenna gain:	1.412537545	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2412	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.012822	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.012822mW/cm^2 . This is below the uncontrolled exposure limit of 1mW/cm^2 at 2412 MHz.

802.11g (Main)

		Peak Power Output (dBm)		
Frequency	Data Rate	Do arrived I imit		
СН	(MHz)	6	Required Limit	
1	2412	18.74	1 Watt = 30 dBm	
6	2437	18.85	1 Watt = 30 dBm	
11	2462	18.93	1 Watt = 30 dBm	

		Average Power Output (dBm)	
Frequency	CH Frequency (MHz) Data Rate	Data Rate	Deguined Limit
СН		6	Required Limit
1	2412	8.79	1 Watt = 30 dBm
6	2437	8.97	1 Watt = 30 dBm
11	2462	9.13	1 Watt = 30 dBm

*Note: Measured by power meter, cable loss as 11dB that offsets on the power meter.

MPE Prediction (802.11g (Main))

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	9.13	(dBm)
Maximum average output power at antenna input	8.184647881	(mW)
Duty cycle:	100	(%)
Maximum Pav :	8.184647881	(mW)
Antenna gain (typical):	1.5	(dBi)
Maximum antenna gain:	1.412537545	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2462	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.002301	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.002301 mW/cm2. This is below the uncontrolled exposure limit of 1 mW/cm2 at 2462 MHz.

802.11n_20M (MIMO Chain 0+1)

		Peak Power Output (dBm)	
CII	CH Frequency (MHz)	Data Rate	Degrined Limit
CH		MCS8	Required Limit
1	2412	21.96	1 Watt = 30 dBm
6	2437	21.63	1 Watt = 30 dBm
11	2462	21.93	1 Watt = 30 dBm

		Average P	ower Output (dBm)
CH Frequency (MHz)	Data Rate	D	
	(MHz)	MCS8	Required Limit
1	2412	11.60	1 Watt = 30 dBm
6	2437	11.17	1 Watt = 30 dBm
11	2462	11.35	1 Watt = 30 dBm

^{*}Note: Measured by power meter, cable loss as 14dB that offsets on the power meter.

MPE Prediction (802.11 n_20M (MIMO Chain 0+1))

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	11.60	(dBm)
Maximum average output power at antenna input	14.45439771	(mW)
Duty cycle:	100	(%)
Maximum Pav :	14.45439771	(mW)
Antenna gain (typical):	3	(dBi)
Maximum antenna gain:	1.995262315	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2412	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.005741	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.005741mW/cm2. This is below the uncontrolled exposure limit of 1mW/cm2 at 2412MHz.

$802.11n_40M\ (MIMO\ Chain\ 0+1)$

		Peak Power Output (dBm)	
Frequency	Data Rate	Degrined Limit	
Сп	CH (MHz)	MCS8	Required Limit
1	2422	21.77	1 Watt = 30 dBm
6	2437	21.68	1 Watt = 30 dBm
11	2452	21.96	1 Watt = 30 dBm

		Average Power Output (dBm)	
CH Frequency (MHz)	Data Rate	D! J I !!4	
	(MHz)	MCS8	Required Limit
1	2422	11.08	1 Watt = 30 dBm
6	2437	11.21	1 Watt = 30 dBm
11	2452	11.36	1 Watt = 30 dBm

^{*}Note: Measured by power meter, cable loss as 14dB that offsets on the power meter.

MPE Prediction (802.11 n_40M (MIMO Chain 0+1))

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	11.36	(dBm)
Maximum average output power at antenna input	13.67728826	(mW)
Duty cycle:	100	(%)
Maximum Pav :	13.67728826	(mW)
Antenna gain (typical):	3	(dBi)
Maximum antenna gain:	1.995262315	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2452	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.005432	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.005432mW/cm2. This is below the uncontrolled exposure limit of 1mW/cm2 at 2452MHz.