## (9) BUNDESREPUBLIK **DEUTSCHLAND**

## Offenlegungsschrift ⊕ DE 3917179 A1

(51) Int. Cl. 4: A61 B 5/02



PATENTAMT

(21) Aktenzeichen: P 39 17 179.5 26. 5.89 (22) Anmeldetag: (43) Offenlegungstag: 21, 12, 89

(3) Unionspriorität: (2) (3) (3)





08.06.88 DD WP A 61 B/316519 08.06.88 DD WP A 61 B/316520

(71) Anmelder:

VEB Meßgerätewerk Zwönitz, DDR 9417 Zwönitz, DD

(72) Erfinder:

Niederlag, Wolfgang, Dr.rer.nat., DDR 8020 Dresden, DD; Schindler, Hartmut, Dipl.-Ing.; Wunderlich, Eckard, Dr.sc.nat., DDR 8010 Dresden, DD; Kunze, Hans Gerd, Dipl.-Phys., DDR 9417 Zwönitz, DD; Schulze, Kathrin, DDR 9400 Aue, DD; Preidel, Berndt, Dipl.-Phys., DDR 9417 Zwönitz, DD; Lutzner, Norbert, Dipl.-Ing., DDR 8038 Dresden, DD; Schmidt, Paul Karl Heinz, Prof. Dr.sc.med., DDR 8047 Dresden, DD; Lippold, Andreas, Dipl.-Ing., DDR 9417 Zwönitz,

(54) Kathetersystem für die kardiologische Diagnostik

Aufgabe ist ein Kathetersystem, das eine hochauflösende artefaktfreie intrakardiale Druckmessung realisiert, bei der Durchführung der Thermodilution eine schnellere Kälteinjektion gestattet und eine Verringerung des Katheterdurchmessers ermöglicht.

Erfindungsgemäß ist an der Katheterspitze ein Miniaturdruckmeßwandler auf der Basis einer in Silizium integrierten piezoresistiven Widerstandsstruktur angeordnet, der mit einem thermosensitiven elektrischen Element eine konstruktive Einheit bildet. Der Katheter besteht aus einem dünnen schwemmfähigen Schlauchmaterial, über das Anschlußdrähte und gasförmige Medien gleichzeitig zuführbar sind. Weiterhin sind ein Hülsenkatheter und ein proximal an diesen angesetzter absperrbarer Y-Konnektor vorhanden, die zur Injektion des Kältebolus dienen.

Bei der Erfindung handelt es sich um ein Kathetersystem für die kardiologische Diagnostik, insbesondere für die Erfassung des intrakardialen Druckes, des Herzminutenvolumens und des pulmonellen Verschlußdruckes.



Beschreibung

Bei der Erfindung handelt es sich um ein Kathetersystem für die kardiologische Diagnostik, insbesondere minutenvolumens und des pulmonellen Verschlußdruk-

Volumen- und Druckparameter sind für die Beurteilung der kardiologischen Leistungsfähigkeit von außerordentlicher Bedeutung. Katheter, über die der intra- 10 kardiale Druck und das Herzminutenvolumen (HMV) aufgenommen werden können, sind bekannt und kommerziell verfügbar. Diese sogenannten SWAN-GANZ-Katheter erfassen das HMV mit der Thermodilution, indem ein Kältebolus über ein im Katheter befindliches 15 freies Lumen in das rechte Atrium injiziert und die Temperaturantwort in der Ausflußbahn des rechten Ventrikels (A. pulmonalis) mittels eines an der Katheterspitze befindlichen Thermistors als Grundlage für die Berechnung des HMV erfaßt wird.

Der intrakardiale Druck wird über ein weiteres freies Lumen, das distal endet, aufgenommen und über ein flüssiges Koppelmedium zu einer externen Druckmeßeinrichtung geleitet und dort gemessen.

Druckmessung ergeben sich eine ganze Reihe von Meßfehlern und Störeinflüssen, wobei die wichtigsten folgende sind:

- stalen Endes des Katheters
- Schlechte Druckdynamik durch ungünstige Compliance des Übertragungssystems (u. a. Katheterlumen)
- Probleme bei der Wahl des hydrostatischen 35 thermosensitives elektrisches Element integriert ist. Nullpunktes, besonders bei kleinen Druckwerten.

Besonders die Existenz von Schleuderartefakten macht eine Druckauswertung mit diesem Kathetersystem oft unmöglich. Aus der Druckkurve abgeleitete 40 Größen, wie z. B. die Druckänderungsgeschwindigkeit, sind mit diesen Kathetern grundsätzlich nicht zu gewin-

Außerdem sind diese Katheter relativ dick (>2,3 mm), wodurch ihre Schwemmfähigkeit im Blut 45 Erstreckungsrichtung des Katheters einen Winkel von stark eingeschränkt und eine Plazierung ohne zusätzliche Plazierungshilfen unmöglich ist. Insgesamt haben die vorliegenden Lösungen u. a. folgende Mängel:

- ter ist in der Regel problematisch, sie wird insbesondere durch Schleuderartefakte und durch schlechte Übertragungseigenschaften oft so gestört, daß ihr Informationsgehalt gering ist.
- Die Katheter besitzen einen zu großen Außen- 55 durchmesser. Dadurch wird die Plazierung erschwert, außerdem werden bei Passage der Herzklappen und des rechten Ventrikels Rhythmusstörungen provoziert. Die Belastung des Patienten und das Einsatzrisiko werden damit vergrößert.
- Das Lumen für die Injektion der Kältelösung ist relativ klein, wodurch die Injektion nur sehr langsam und nicht als Bolus erfolgen kann, dadurch entstehen Meßfehler.
- der rechtsventrikulären Druckänderungsgeschwindigkeit als Maß für die Kontraktions- bzw. Relaxationseigenschaften der Ventrikelmuskulatur nicht

möglich.

Das Ziel der Erfindung besteht in der Verbesserung der kardiologischen Diagnostik durch Messung intrafür die Erfassung des intrakardialen Druckes, des Herz- 5 kardialer Druck- und Volumenparameter mittels eines einzigen Kathetersystems, das medizinisch zuverlässige Meßwerte mit hohem Informationsgehalt liefert, über bessere Plazierungseigenschaften verfügt und für den Patienten weniger belastend und risikoärmer ist.

Aufgabe der Erfindung ist ein Kathetersystem, das eine hochauflösende artefaktfreie intrakardiale Druckmessung realisiert, bei der Durchführung der Thermodilution eine schnellere Kälteinjektion gestattet und eine Verringerung des Katheterdurchmessers ermöglicht.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß an der Katheterspitze ein Miniaturdruckmeßwandler auf der Basis einer in Silizium integrierten piezoresistiven Widerstandsstruktur angeordnet ist, der mit einem thermosensitiven elektrischen Element eine konstruktive Einheit bildet. Der Katheter besteht aus einem dünnen schwemmfähigen Schlauchmaterial, über das Auschlußdrähte und gasförmige Medien gleichzeitig zuführbar sind. Weiterhin sind ein Hülsenkatheter und ein proximal an diesen angesetzter absperrbarer Y-Kon-Gerade durch diese Form der Druckübertragung und 25 nektor vorhanden, die zur Injektion des Kältebolus die-

Für die Realisierung der konstruktiven Einheit von Miniaturdruckmeßwandler und thermosensitivem Element gibt es mehrere Möglichkeiten. Eine bevorzugte -- Artefakte durch Schleuderbewegungen des di- 30 Variante besteht darin, daß der Miniaturdruckmeßwandler einen Umhüllungskörper aus Silikonkautschuk aufweist, in dem ein Mikrothermistor eingebettet ist.

Eine weitere Variante besteht darin, daß in den Siliziumgegenkörper des Miniaturdruckmeßwandlers ein

Weiterhin besteht auch die Möglichkeit, die Temperaturabhängigkeit der als Brückenschaltung ausgestalteten piezoresistiven Widerstandsstruktur des Miniaturdruckmeßwandlers zur Temperaturmessung zu nutzen.

Vorzugsweise ist das distale Ende des Katheters mit einer Krümmung versehen, die einen Radius von ca. 2... 4 cm aufweist, die Form eines Kreissegments besitzt und an der geradlinig auslaufenden Katheterspitze mit der Verlängerung der vor der Krümmung vorhandenen ca. 110° einschließt.

Vorzugsweise besteht der Katheter aus zweilumigen Schlauchmaterial, wobei über ein Lumen die Anschlußdrähte und der Referenzdruck für den Miniaturdruck- Die Druckmessung über SWAN-GANZ-Kathe- 50 meßwandler und über das andere Lumen die Anschlußdrähte für das thermosensitive Element sowie ein gasförmiges Medium zum Füllen bzw. Entleeren eines aufblasbaren Ballons am distalen Ende des Katheters zuge-

Wird auf die Messung des pulmonellen Verschlußdruckes verzichtet, kann der Katheter aus einlumigem Schlauchmaterial bestehen, wobei über das Lumen die Anschlußdrähte und der Referenzdruck für den Miniaturdruckmeßwandler sowie die Anschlußdrähte für das 60 thermosensitve Element zugeführt sind.

Die Einführung des Katheters in das Gefäßsystem erfolgt über den Hülsenkatheter, der vorher in üblicher Seldinger-Technik gelegt wurde.

Von diesem Hülsenkatheter aus, der mit seinem dista- Bei SWAN-GANZ-Kathetern ist die Messung 65 len Ende im rechten Atrium liegen muß, wird der Katheter unter Druckkontrolle bis in die A. pulmonalis, dem Zielort geschwemmt. Die angegebene Krümmung des distalen Endes des Katheters erweist sich dabei als optimale Plazierungshilfe. Durch den Hülsenkatheter wird vom Y-Konnektor aus gleichzeitig auch die Kälteinjektion vorgenommen.

Das erfindungsgemäße Kathetersystem ermöglicht die Messung des intrakardialen Druckes, des Herzminutenvolumens und des pulmonellen Verschlußdruckes bei folgenden Vorteilen gegenüber bisherigen Kathetersystemen:

 Aufgrund der guten dynamischen Eigenschaften 10 110° auf. des Miniaturdruckwandlers ist die Erfassung der Druckänderungsgeschwindigkeit als Voraussetzung für die Bestimmung von Kontraktilitäts- und Relaxationsparametern möglich.

- Da der Hülsenkatheter gleichzeitig auch als Ein- 15 führungskatheter verwendet wird, kann die Punktionsöffnung wesentlich kleiner als bei herkömmlichen SWAN-GANZ-Kathetern gehalten werden.

- Durch die Verwendung von lediglich zwei Luthetermaterial möglich, wodurch die Belastung des Patienten und das Einsatzrisiko reduziert werden.

 Die über den Hülsenkatheter erfolgende Injektion des Kältemittels kann sehr schnell und damit igkeit bei der Bestimmung des Herzminutenvolumens wesentlich erhöht wird.

 Über den H
ülsenkatheter kann eine Infusion von Pharmaka oder eine Aspiration von Blut vorgenommen werden.

Das erfindungsgemäße Kathetersystem soll an Hand von Ausführungsbeispielen näher erläutert werden. In den Zeichnungen zeigt

Fig. 1 eine Prinzipdarstellung des Kathetersystems in 35 der Ausführungsform mit Ballon,

Fig. 2 den Y-Konnektor zur Zuführung des Ballongases im Schnitt,

Fig. 3 eine Schnittdarstellung des distalen Endes des Katheters in der Ausführungsform mit Ballon,

Fig. 4 eine Schnittdarstellung des Hülsenkatheters und des nachfolgenden Y-Konnektors zur Zuführung des Kältemittels,

Fig. 5 einen senkrechten Schnitt durch das in Fig. 3 dargestellte distale Ende des Katheters zur Verdeutli- 45 chung der Anordnung von Miniaturdruckmeßwandler and Mikrothermistor,

Fig. 6 eine Prinzipdarstellung des Kathetersystems in der Ausführungsform ohne Ballon,

Fig. 7 eine Schnittdarstellung des distalen Endes des 50 Katheters in der Ausführungsform ohne Ballon.

Gemäß Fig. 1 besteht der Katheter 1 in der Ausführungsform mit Ballon aus einem dünnen, im Blut schwemmfähigen, zweilumigen Schlauchmaterial, z. B. Weichpolyäthylen, PVC. Am distalen Ende des Kathes 55 ters 1 ist ein Miniaturdruckmeßwandler 2 angesetzt, der ein thermosensitives elektrisches Element beinhaltet. Im vorliegenden Ausführungsbeispiel handelt es sich um einen Mikrothermistor 19, dessen konstruktive Anordnung im Miniaturdruckmeßwandler 2 aus Fig. 3 ersicht- 60 6 und Y-Konnektor 5 und Katheter 1. lich ist. Dicht hinter dem Miniaturdruckmeßwandler 2 ist ein aufblasbarer Latexballon 3 angebracht, der über ein Lumen 9 des Katheters 1 und den Y-Konnektor 4 gefüllt bzw. entleert werden kann. Das für die Durchführung der Thermodilution erforderliche Kältemittel wird 65 über einen weiteren Y-Konnektor 5 und einen Hülsenkatheter 6 in das Gefäßsystem des Patienten eingebracht. Der mittels üblicher Seldinger-Technik gelegte

Hülsenkatheter 6 liegt dabei mit seinem distalen Ende im rechten Atrium. Wird der Zugang über die V. subclavia gewählt, ist eine Länge des Hülsenkatheters 6 von 25 ... 30 cm ausreichend. Am proximalen Ende des Kathe-5 ters 1 befindet sich der Anschlußstecker 7 zur Anschaltung an die übliche Verarbeitungselektronik. Das distale Ende des Katheters 1 weist eine Krümmung in Form eines Kreissegments mit einem Krümmungsradius r = ca. 2... 4 cm und einen Krümmungswinkel  $\alpha = ca.$ 

Fig. 2 zeigt den Y-Konnektor 4 zur Zuführung des Ballongases im Schnitt, der den Katheter 1 abdichtend einschließt und über eine Öffnung 8 in der Katheterwand den Zugang zum Lumen 9 ermöglicht. In diesem Lumen 9 sind gleichfalls die Anschlußdräte 10 für den Mikrothermistor 19 verlegt. Im zweiten Lumen 11 ist die Verlegung der Anschlußdrähte 12 des Miniaturdruckmeßwandlers 2 erkennbar. Durch das Lumen 11 wird gleichzeitig der Referenzdruck für den Miniaturmen ist der Einsatz von sehr dünnem flexiblem Ka- 20 druckmeßwandler 2 zugeführt. Das Einfüllen bzw. Ablassen des Ballongases erfolgt über den Absperrhahn 13.

Aus Fig. 3 ist die konstruktive Gestaltung des distalen Endes des Katheters 1 ersichtlich, das mit dem angesetzten Miniaturdruckmeßwandler 2 abschließt. Hauptbeals echter Bolus erfolgen, wodurch die Meßgenau- 25 standteil des Miniaturdruckmeßwandlers 2 ist in Siliziumchip 4, das eine ausgeätzte Druckmembran 15 und eine darauf integrierte piezoresistive Widerstandsstruktur aufweist und das gemeinsam mit dem ebenfalls ausgeätzten Gegenkörper 16 die Referenzdruckkammer 17 umschließt. Die Referenzdruckkammer 17 steht über den Kanal 18 mit dem Lumen 11 des Katheters 1 in Verbindung. Auf dem Gegenkörper 16 ist als thermosensitives Element ein Mikrothermistor 19 aufgeklebt, dessen Anschlußdrähte 10 über das Lumen 9 geführt sind. Die erforderliche Abdichtung des Lumens 9 zur Verhinderung eines Gasaustausches bzw. Druckausgleichs zwischen Lumen 9 und 11 erfolgt mittels der Dichtungsvergußmasse 20. Die mechanische Festigkeit des Miniaturdruckwandlers 2 wird mittels einer Metallhülse 21 erzielt, die im Bereich der Druckmembran 15 beiderseitig aufgeschliffen ist und damit eine Druckankopplung von zwei gegenüberliegenden Seiten ermöglicht. Der Katheter 1 ist auf einen Katheterstutzen 29 aus Messing aufgeschoben.

In Fig. 5 ist ein Schnitt senkrecht zu der in Fig. 3 dargestellten Ebene aufgezeigt. Das Siliziumchip 14, der Gegenkörper 16 und der Mikrothermistor 19 sind vollständig in einem Umhüllungskörper 22 aus Silikonkautschuk eingebettet, der die Druckankopplung realisiert und gleichzeitig einen hohen Schutz gegen mechanische und chemische Einflüsse bietet. Die einseitige Einspannung des Siliziumchips 14 und die mechanische Stabilität der Spitze des Miniaturdruckmeßwandlers 2 sind durch die Epoxydharzformstücke 23, 24 gewährleistet.

Fig. 4 zeigt den Hülsenkatheter 6 mit angesetztem Y-Konnektor 5 für die Injektion des Kältemittels. Das Kältemittel wird über den Absperrhahn 28 zugeführt. Die Abdichtkappen 25, 26 und der Dichtring 27 sorgen für die Dichtheit des Systems zwischen Hülsenkatheter

Zur Realisierung einer konstruktiven Einheit von Miniaturdruckmeßwandler 2 und einem thermosensitiven elektrischen Element sind weitere Ausführungsformen möglich.

Eine vorteilhafte Ausführungsform besteht darin, daß direkt in den Gegenkörper 16 des Siliziumchips 14 ein thermosensitives Element als integrierte Struktur aufgebracht ist.

25

30

35

45

50

In einer weiteren vorteilhaften Ausführungsform ist die piezoresistive Widerstandsstruktur auf dem Siliziumchip 14 als Brückenschaftung ausgestaftet, wobei der temperaturabhängige Brückeneingangswiderstand zur Temperaturmessung genutzt wird.

Fig. 6 zeigt eine Prinzipdarstellung des Kathetersystems in der Ausführungsform ohne Ballon. Wie im Vergleich mit Fig. 1 ersichtlich ist, kann in diesem Fall natürlich der Y-Konnektor 4 entfallen. Der Katheter 1 besteht aus dünnem, im Blut schwemmfähigen, einlumigen Schlauchmaterial. In Fig. 7 ist verdeutlicht, daß über dieses eine Lumen 30 sowohl die Anschlußdrähte 12 und der Referenzdruck für den Miniaturdruckmeßwandler 2 sowie die Anschlußdrähte 10 für den Mikrothermistor 19 zugeführt sind. Die Referenzdruckkammer 17 steht dabei über den Kanal 18 mit dem Lumen 30 in Verbindung. Bei dieser Ausführungsform ist eine weitere Verringerung des Katheterdurchmessers bei Verzicht auf die Meßbarkeit des pulmonellen Verschlußdruckes realisierbar.

## Verwendete Bezugszeichen

Katheter
 Miniaturdruckmeßwandler

3 Latex-Ballon

4,5 Y-Konnektor 6 Hülsenkatheter

7 Anschlußstecker

8 Öffnung

9,11 Lumen

10, 12 Anschlußdrähte

13 Absperrhahn

14 Siliziumchip

15 Druckmembran

16 Gegenkörper

17 Referenzdruckkammer

18 Kanal

19 Mikrothermistor

20 Dichtungsvergußmasse

21 Metalihülse

22 Umhüllungskörper

23.24 Epoxydharzformstücke

25, 26 Abdichtkappen

27 Dichtring

28 Absperrhahn

29 Katheterstutzen

30 Lumen

r Krümmungsradius

α Krümmungswinkel

## Patentansprüche

1. Kathetersystem für die kardiologische Diagnostik, insbesondere für die Erfassung intrakardialer Druck- und Volumenparameter, das einen mindestens einlumigen Katheter, Mittel zur Injektion eines Kältebolus, ein thermosensitives elektrisches Element am distalen Ende des Katheters und eine Druckmeßeinrichtung aufweist, dadurch gekennzeichnet, daß an der Katheterspitze ein Miniaturdruckmeßwandler (2) auf der Basis einer in Silizium integrierten piezoresistiven Widerstandsstruktur angeordnet ist, der mit dem thermosensitiven elektrischen Element (19) eine konstruktive Einheit bildet, daß der Katheter (1) aus einem dünnen, schwemmfähigen Schlauchmaterial besteht, über das Anschlußdrähte (10, 12) und gasförmige Me-

dien gleichzeitig zuführbar sind, und daß ein Hülsenkatheter (6) und ein proximal an diesen angesetzter Y-Konnektor (5) vorhanden sind, die zur Einführung des Katheters (1) ins Gefäßsystem und zur Injektion des Kättebolus dienen.

2. Kathetersystem nach Anspruch I, dadurch gekennzeichnet, daß der Miniaturdruckmeßwandler (2) einen Umhüllungskörper (22) aus Silikonkautschuk aufweist, in dem ein Mikrothermistor (19)

eingebettet ist.

3. Kathetersystem nach Anspruch 1, dadurch gekennzeichnet, daß in den Siliziumchipgegenkörper (16) des Miniaturdruckmeßwandlers (2) ein thermosensitives elektrisches Element integriert ist.

4. Kathetersystem nach Anspruch 1, dadurch gekennzeichnet, daß die Temperaturabhängigkeit der als Brückenschaltung ausgestalteten piezoresistiven Widerstandsstruktur des Miniaturdruckmeßwandlers (2) zur Temperaturmessung benutzt wird. 5. Kathetersystem nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das distale Ende des Katheters (1) mit einer Krümmung versehen ist, die ein Radius (r) von ca. 2 . . . 4 cm aufweist, die Form eines Kreissegments besitzt und an der geradlinig auslaufenden Katheterspitze mit der Verlängerung der von der Krümmung vorhandenen Erstrekkungsrichtung des Katheters (1) einen Winkel (α) von ca. 110° einschließt.

6. Kathetersystem nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der Katheter (1) aus zweilumigem Schlauchmaterial besteht, wobei über ein Lumen (11) die Anschlußdrähte (12) und der Referenzdruck für den Miniaturdruckmeßwandler (2) und über das andere Lumen (9) die Anschlußdrähte (10) für das thermosensitive Etement (19) sowie ein gasförmiges Medium zum Füllen bzw. Entleeren eines aufblasbaren Ballons (3) am distalen Ende des Katheters (1) zugeführt sind.

7. Kathetersystem nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der Katheter (1) aus einlumigem Schlauchmaterial besteht, wobei über das Lumen (30) die Anschlußdrähte (12) und der Referenzdruck für den Miniaturdruckmeßwandler (2) sowie die Anschlußdrähte (10) für das thermosensitive Element (19) zugeführt sind.



- Leerseite -



Nummer: Int. Cl.4: Anmeldetag: Offenlegungstag: **39 17 179 A 61 B 5/02**26. Mai 1989
21. Dezember 1989



908 851/452









X



3917179

15+



-1g. 7