弾・粘塑性有限要素解析の入力パラメーター決定における 一軸圧縮強度の利用

UTILIZATION OF UNCONFINED COMPRESSIVE STRENGTH IN DETERMINING INPUT PARAMETERS OF ELASTO-VISCOPLASTIC FINITE ELEMENT ANALYSIS

太田秀樹*・鍋谷雅司**・藤井信二**・山本松生**
By Hideki OHTA, Masashi NABETANI, Shinji FUJII and Matsuo YAMAMOTO

This paper investigates procedures to determine soil parameters used in elastoviscoplastic analysis based on the standard laboratory tests.

Some parameters of elasto-viscoplastic constitutive model are found to be related to unconfined compressive strength and oedometer test results.

Using the parameters obtained by interpreting these test results, finite element computations are carried out analysing trial embankments on soft ground. Applicability of the procedure to engineering practice is verified by comparing the computed results with measured field performance of soft foundations.

Keywords: unconfined compressive strength, elasto-viscoplastic analysis, input soil parameters

1. はじめに

弾・粘塑性構成式を用いて、軟弱地盤の応力-変形-圧 密に関する連成問題を有限要素法により解析する場合, 多数の入力パラメーターが必要となる. 本来. これらの パラメーターは、精密な力学試験により決定されるべき であるが、現実問題として、そのような土質試験が実施 される例は多くない. そこで比較的入手しやすいデータ の1つである塑性指数を中心とした簡易的なパラメー ターの決定方法が Iizuka and Ohta¹⁾により提案されて いる. しかし、塑性指数から土質の力学定数を推定する のは,血液型から個々人の性格を判断しようとするよう なもので、全く資料がない場合にやむなく使われるべき 推定法である、日本で行われる土質調査では、通常、液 塑性限界試験だけではなく,一軸圧縮試験,標準圧密試 験もあわせて実施されることが少なくない.一軸圧縮強 度 qu は, Kimura and Saitoh2)によれば, 応力解放を伴 うため,残留間隙水圧の挙動が複雑であることから,力 学的な解釈が難しい. また, サンプリングや供試体の整 形および載荷の際に生じる種々の誤差要因が昔から指摘されており、それらの影響が無視できない程度に大きいことがわかっている(たとえば西垣・三笠³). 一方、 q_u は、粘性土地盤の円弧すべりを考えるような慣用の安定解析には数多くの実績があり、その信頼性は経験的に確かめられている. 事実、数多くの盛土の破壊例と q_u とを比較すると、 $PI \ge 25\%$ の粘土については、 q_u から計算された安全率が1 に近い値になる例が多いことが太田 0 により示されている.

このように、 q_u は数々の問題点を内蔵しながらも、その誤差は全くランダムなわけではなく、土の種類によってある一定の規則性をもっているため、結果としてそれなりに土の力学的性質をうまく表わしている指標であるといえよう。そこでこの q_u を弾・粘塑性構成式による FEM 解析のパラメーター推定に利用できれば、満足すべき精度の解析結果が得られるのではないかと期待される。

本論文では、Sekiguchi and Ohta⁵⁾による弾塑性構成式から得られる非排水せん断強度と、従来から知られている q_u の傾向的特徴を利用して、弾・粘塑性構成式のパラメーターを推定する方法を示す。次に、腐植土と沖積粘土層からなる軟弱地盤上の盛土工を対象とした挙動解析を行い、この q_u を利用したパラメーター推定方法

^{*} 正会員 工博 金沢大学教授 工学部土木建設工学科 (〒920 金沢市小立野 2-40-20)

^{**} 正会員 佐藤工業(株)中央技術研究所 (〒243-02 厚木市三田 47-3)

の適用性について述べる. なお,解析に用いたプログラム DACSAR^{1),6)}は、Biot⁷⁾の多次元圧密理論に Sekiguchi and Ohta⁵⁾、Ohta and Sekiguchi⁸⁾による弾・粘塑性構成式を取り入れ、赤井・田村⁹⁾による定式化をもとに作成されたものである. なお、用いた構成式は、正規圧密状態および過圧密状態にある粘土に対して適用可能である.

2. 非排水せん断強度に関する理論式

(1) 軸対称 K₀ 圧密条件下の非排水せん断強度

関口・太田による弾塑性構成式における降伏関数 f は式 (1) で定義される。

$$f = \frac{\lambda - x}{1 + e_0} \ln \frac{p'}{p'_0} + D\eta^* \cdots (1)$$

$$\eta^* = \sqrt{\frac{3}{2} \left(\frac{s_{ij}}{p'} - \frac{s_{ij0}}{p'_0} \right) \left(\frac{s_{ij}}{p'} - \frac{s_{ij0}}{p'_0} \right)}$$

ここで,D は柴田 10 によるダイレイタンシーに関する定数,e, p', s_{ij} は,それぞれ間隙比,平均有効主応力,偏差応力テンソルであり,添字0 は K_0 圧密終了時の値であることを示す。 λ , κ は,それぞれ圧縮,膨潤時におけるe \sim $\ln p'$ 関係の勾配である。なお, η * は一言でいえば,せん断応力の増加に伴って大きくなるスカラー量である。式(1)を用いて非排水せん断破壊時における条件式が次のように表わされる。

a) 非排水条件(体積ひずみが0)

$$\frac{\lambda}{D(1+e_0)} \ln \frac{p'}{p'_0} + \eta^* = 0 \cdots (2)$$

b) 破壊条件(せん断ひずみが無限大)

$$\frac{\lambda - \varkappa}{D(1 + e_0)} - \frac{3}{2 \eta^*} \left(\frac{s_{ij}}{p'} - \frac{s_{ij0}}{p'_0} \right) \frac{s_{ij}}{p'} = 0 \cdots (3)$$

等方圧密された粘土 $(s_{ij0}=0)$ に対しては、次式となる。

$$\frac{\lambda - \kappa}{D(1 + e_0)} - \frac{1}{p'} \sqrt{\frac{3}{2} s_{ij} s_{ij}} = 0 \cdots (4)$$

Ohta and Nishihara¹¹⁾は式(2),(3)から各種応力状態における非排水強度式を導いており、軸対称 K_0 正規圧密非排水圧縮試験(以後、 CK_0UC 試験とよぶ)の非排水せん断強度 S_u は次式のように示される.ここで、 σ'_{20} は有効上載圧である.

$$\left(\frac{S_u}{\sigma'_{v0}}\right)_{CK_0UC} = \frac{1+2}{3} \frac{K_0}{2} \exp\left(-\Lambda + \frac{\Lambda}{M} \eta_0\right) \cdots (5)$$

ここで,

$$M = \frac{\lambda - \kappa}{D(1 + e_0)} \qquad \Lambda = \frac{\lambda - \kappa}{\lambda} = 1 - \frac{\kappa}{\lambda}$$

$$\eta_0 = \frac{3(1 - K_0)}{1 + 2 K_0}$$

なお、M は Cam-Clay 系の構成式において破壊基準を 表わすパラメーターであり、 $p'\sim q$ 平面上の破壊線の勾

Critical State Parameter 図—1 非排水強度とせん断抵抗角の関係

配として定義される. 式 (5) に, 以下の式 (6), (7) を代入して整理すると式 (8) が得られる.

$$K_0 = 1 - \sin \phi'$$
 (Jáky)¹²⁾······(6)

$$M = 6 \sin \phi' / (3 - \sin \phi') \cdots (7)$$

$$\left(\frac{S_u}{\sigma'_{v0}}\right)_{c\kappa_0 uc} = \frac{M}{2} \frac{6-M}{6+M} \exp\left(-\Lambda \frac{3-M}{6-M}\right) \cdots (8)$$

式(8)は、軽部13)により、すでに導かれている.

式(8)において、 Λ に0.4、0.6、0.8、1.0を与えたときの(S_u/σ'_{vo}) c_{KoUC} とMの関係を図—1に示す。図—1は、 CK_oUC 試験における非排水強度とMの関係を表わしており、この図により、 $(S_u/\sigma'_{vo})c_{KoUC}$ と Λ が与えられれば、Mが推定できることになる。

(2) 一軸圧縮強度と CK₀UC 試験における非排水せん 所強度の関係

中瀬・勝野・小林14)は、砂分を多く含む粘土の一軸圧 縮強度 q_u について,補正法を提案している.また,正 垣・松尾・野村・小林¹⁵⁾は塑性指数 PI≤15% の粘土で は三軸圧縮試験と一軸圧縮試験のせん断強度の差が大き くなる旨を述べている. 龍岡16)は、東京湾粘土を例に、 原位置せん断強度 S_u と、一軸圧縮強度による $g_u/2$ と の差に影響を及ぼす諸要因について考察しており、PI が小さく深度の大きな粘土ほど乱れによる影響が無視で きないと述べている. これ以外にも, 多くの問題点が指 摘されているが、一軸圧縮強度から求められるせん断強 度と CK₀UC 試験におけるせん断強度(以後これらをそ れぞれ添字 UC、CK。UCで区別して表わす)の概略的 な関係を調べるために、塑性指数をパラメーターとして 両者の比較を行う. これには, 過去に発表されている CK₀UC 試験の実験結果と一軸圧縮試験によるせん断強 度を比べればよい. しかし, 本論文の目的は両者の実験 結果の比較そのものにあるのではなく、一軸圧縮試験の 結果を用いて関口・太田により提案された構成式のため のパラメーターを求めることにあるのであるから、ここ

図-2 -軸圧縮試験と CK。UC 試験の非排水強度

では構成式から推定される CK₀UC 試験の非排水せん断 強度と一軸圧縮試験結果とを比較する.

図-2は,数多くの-軸圧縮試験結果から求められた $(S_u/\sigma'_w)_{vc}$ の範囲を PI に対して示したものであり,破線は,その平均的な値を表わしている.

 $(S_u/\sigma'_{vo})_{c\kappa_o vc}$ の理論式は式(5)で与えられており、式(5)に、式(7)と、以下の式(9)、(10)、(11)を代入して得られる非排水強度を PI に対して求めると、図-2中の実線となる.

$$K_0$$
=0.44+0.42 $PI/100$ (Massarsch)¹⁷⁾······(9)
 $\sin \phi'$ =0.81-0.233 $\log PI$ (Kenney)¹⁸⁾······(10)
 $\Lambda = M/1.75$ (軽部)¹³⁾······(11)

仮に、これらの経験式が正しいとすると、図-2中の実線は CK_0UC 試験における理論強度と PI の関係を表わしていることになる.これによれば、PI の低下に伴い、 CK_0UC 試験における非排水強度は増加する傾向を示すが、 q_u から求めた非排水強度は減少する傾向がみられる.そこで、式(12)に示す補正係数 μ を考えると、 μ は PI に対して図-3 のような値をとる.

$$\mu = \frac{(S_u/\sigma'_{vi})_{CK_0UC}}{(S_u/\sigma'_{v0})_{UC}} \cdots \cdots (12)$$

図-3によれば、 $PI \ge 40\%$ の粘土では、 $(S_u/\sigma'_{v0})_{vc}$ を $(S_u/\sigma'_{v0})_{c\kappa_0vc}$ として用いてもよいが、 $PI \le 40\%$ の粘土では、補正係数 μ を乗じる必要があることになる.

正垣・松尾・野村・小林 $^{(5)}$ は、 q_u から求めたせん断強度と三軸 UU 試験におけるせん断強度の関係を求め

図-3 試験条件の違いによる非排水強度の補正係数

ている。それによると、 $PI \ge 15\%$ の粘土では両者に差はないが、 $PI \le 15\%$ では q_u から求まるせん断強度の低下が著しくなると報告している。この報告は条件が異なるので、図-3 と直接比較してよいわけではないが、同様の傾向が示されている。

(3) 過圧密粘土の非排水せん断強度

これまでは、正規圧密粘土に関する非排水強度について述べてきたが、実際の地盤に適用するには、過圧密粘土の非排水強度特性との関係を明らかにする必要性がある。Ohta and Nishihara¹¹⁾は、異方過圧密粘土(OCA)と異方正規圧密粘土(NCA)の非排水強度の関係が式(13)で与えられることを導いている。

ここで、 \overline{n} 、 $\overline{\Lambda}$ は平均有効主応力ではなく、有効上載圧 $\sigma'v$ で整理した過圧密比 $(\overline{n}=\sigma'vo/\sigma'vl)$ 、非可逆比 $(\overline{\Lambda}=1-\overline{x}/\lambda)$ である。 \overline{x} は平均有効主応力 p' で整理した場合と比べて若干の相違がある。式(13)は Mitachi and Kitago¹⁹⁾がすでに述べており、中瀬・小林・勝野²⁰⁾によって与えられた関係式の特殊な場合に該当する。この式(13)を先行圧密応力 $\sigma'vo$ で整理し、過圧密粘土 (OCA) が過去に正規圧密粘土 (NCA) であったときにもっていたと考えられる非排水強度を表わす式に書き直すと、式(14)となる。

式(14)により、過圧密地盤の非排水強度を、過去において正規圧密状態であったときの非排水強度に換算することができる。これまでに紹介した予備的な考察に基づいて、次節に弾塑性パラメーター推定における一軸圧縮強度の利用について議論を進める。

3. 一軸圧縮強度を利用したパラメーター推定 手順

2. では、構成式から導かれた CK_0UC 試験における非排水強度と Λ , M の関係、一軸圧縮試験と CK_0UC 試験という試験方法の違いによる非排水強度の違い、過圧密粘土と正規圧密粘土の非排水強度の関係について述べた。これらにより、一軸圧縮強度 q_u を利用して破壊に関するパラメーター M を推定する手順を示したのが図一4 である。以下に、図一4 について説明する.

M を推定するために必要な土質定数は、 q_u のほかに、地盤の単位体積重量と地下水位により決定される有効上載圧 σ'_{vi} 、標準圧密試験から求まる先行圧密圧力 σ'_{vo} 、圧縮指数 C_s 、膨潤指数 \overline{C}_s と塑性指数 PI である.

①式では,解析対象地盤が過圧密状態である場合,不 攪乱試料に対する q_u から求めた非排水強度 $(q_u/2 \sigma'_{vo})_{oc}$

をその粘土がかつて正規圧密状態であったときの非排水 強度 $(q_u/2 \sigma'_{vo})_{NC}$ に変換している.①式中右辺の $(q_u/2$ σ'_{vo}) $_{oc}$ は不攪乱試料の $g_u/2$ を先行圧密圧力 σ'_{vo} で割っ たものであるから、式 (14) の $(S_u/\sigma'_{vo})_{oca}$ に相当して おり、標準圧密試験結果の σ'_{10} , C_c , \overline{C}_s により過圧密比 $OCR(=\sigma'_{10}/\sigma'_{10})$ と非可逆比 $\overline{\Lambda}(=1-\overline{C}_s/C_c)$ を与えれ ば、その粘土がかつて Ko 正規圧密されていたときの非 排水強度 $(q_u/2 \sigma'_{vo})_{NC}$ が求まる. なお, 対象地盤が正規 圧密地盤の場合は、①式の変換を行う必要はない. ①式 (本文中の式(14)と同じ)は、本来 Ko 圧密された正 規圧密粘土と過圧密粘土の軸対称三軸試験での非排水強 度の関係を示したものであり、同じ関係が一軸圧縮強度 に対しても成り立つ保証はない. 一軸圧縮試験がもつ 種々の問題点の物理的意味合いがつまびらかにされない と、これ以上の議論はできないのであるが、ここでは実 務的な側面を重視して仮に①式が一軸圧縮強度に対して もほぼ成立すると仮定して議論を進めることにする.

②式では塑性指数の低い粘土の場合、 q_u から求めた非排水強度は、 CK_0UC 試験における非排水強度よりも小さくなるため、その補正を行っている。Fig. (a) (図一3 と同じ) から、PI に対する補正係数 μ を求め、 $(q_u/2 \sigma'_v)_{NC}$ に乗じることにより CK_0UC 試験における

図―4 一軸圧縮強度を利用したせん断抵抗角 M の推定手順

非排水強度 $(S_u/\sigma'_{v0})_{CK_0UC}$ を得る.

最後に、Fig.(b)(図-1と同じ)には、 $\Lambda=0.4\sim1.0$ に対する CK_0UC 試験の非排水強度と M の関係が示されている.ここで、平均有効主応力で整理した非可逆比 $\Lambda(=1-C_s/C_c)$ は次のように求める. K_0 -圧密(膨潤)において、有効上載圧で整理した \overline{C}_s と平均有効主応力で整理した C_s との間には式(15)の関係がある.

$$\frac{\overline{C_s}}{C_s} = 1 - \frac{\log \beta}{\log OCR}, \quad \beta = \frac{1+2 K_t}{1+2 K_0} \dots (15)$$

ここで、 K_0 、 K_t はそれぞれ K_0 -圧密終了時および膨潤時の静止土圧係数である。 K_0 は式 (9)、 K_t は $Alpan^{21}$ による次の式 (16) を用いて推定できる。

4. 盛土基礎地盤の弾・粘塑性挙動解析

(1)解析条件

解析の対象は、下総台地によくみられる洪積層の侵食谷部に堆積した沖積粘土層と、排水不良により生成された腐植土層からなる軟弱地盤上の試験盛土工である。基礎地盤の土質層序と各層の性状を表一1 に、また、各層の代表的な物性値を表一2 に示す。試験盛土は、地盤改良などの事前処理を行わない軟弱地盤上で No.1~6までの6か所実施した。これら試験盛土のうち、土質条件が似ており、計測項目の多い No.1、3、6 について解析を実施する。図一5 に、基本的な盛土形状と、それぞれの盛土基礎地盤の各土層の層厚を示す。なお、No.1 盛土は、約130 日の放置期間後1 m の追加盛土を行っている。また、盛土基礎地盤の土質断面を図一6 に示す。

試験盛土 No.1, 3,6の解析に必要な土質定数の深度 分布を図-7に示す、1 m 以浅の表土層についても,現 地においてサンプリングを実施し,室内試験を行うこと

表一1 盛土基礎地盤の土質層序および性状

Depth	Strati-	Classifi-	Call Deceded			
[m]	graphy	cation	Soil Description			
0. 0 } 0. 5	X	Ts	Top Soil, Soft dark brown CLAY with grass roots and occasional sand			
0. 5 } 2. 5	Y Y Y Y Y Y Y	Apt (Pt)	Compressible black HUMUS (organic soil) with grass roots and bits of wood chips occasional layers of sand, ALLUVIUM			
2.5 \$ 14.0		Ac (CH~MH)	Soft dark gray silty CLAY with broken shells occasional pockets of sand becoming silty with depth, ALLUVIUM			
14. 0 \$ 15. 0		Asc (ML~MH)	Medium dark gray clayey SAND with sandy silt and silty sand, ALLUVIUM			
15, 0 \$		Dc	Stiff CLAY, N-Values 5-50, Diluvial Deposit			

によりデータを求めている, 地盤は、上層部ほど過圧密 比が大きく、腐植土層で OCR=4~8、粘土層で OCR =2~5 程度の過圧密状態である、

試験盛土 No.1 の解析モデルは図―8 のように設定 し, 試験盛土 No.3, 6 に対しても, 類似のモデルを適 用する. また,盛立て速度は実施工程に合わせ、盛土荷 重は単位体積重量 18.6 [kN/m3] の要素自重として与 える.

(2) 入力パラメーターの決定

関口・太田による構成式を適用した弾・粘塑性解析に 必要な入力パラメーターと、それを直接求めるための室 内試験を表-3に示す。Iizuka and Ohta¹⁾が提案してい る PI を中心としたパラメーター決定法を基本に、一軸 圧縮試験と標準圧密試験の結果を利用して新たに作成し たパラメーター決定チャートが図─9である. 図中□印 は入力パラメーターであり,○印は各種土質定数である. また, 二重の枠で囲ってあるものは、標準圧密試験結果 より得られる定数である. 今回の解析に用いる入力パラ メーターは、基本的に図―9のチャートに従い決定する.

a) 破壊に関するパラメーター M の推定

事—2	成十事	装砂地粉	の主	た物性化	古
4XZ	ᄴᄯᆚᄺ		ソノモ	は 1001エ 1	щ

		Unit	Natural	Plasticity	Unconfined	Pre-con-	Comp-
Depth		Weight	Water	Index	Compressive	solidation	ression
	Layer		Content		Strength	Pressure	Index
		Υt	Wn	PI	qu	σýο	Cc
[m]		[KN/m³]	[%]	[%]	[KN/m²]	[KN/m²]	
0.0	Topsoil		144		16.7		
5	(Ts)	13, 2	S	_	5	-	-
0,5			150		26.3		
0, 5	Humus	10, 2	341		6, 86	10.8	1,90
5	(Apt)	S	\$	NP	5	S	S
2, 5		11, 2	798		27.1	29.4	9.50
2, 5	Silty	13, 1	57	23	3, 92	23, 5	0, 54
1	Clay	5	S	5	1 1	S	5
14.0	(Ac)	16, 1	139	89	68.6	90.2	1.64
14.0	Clayey	15, 6	41	11	18.6	45, 1	0.38
3	Sand	S	5	5	1	S	S
15.0	(Asc)	17, 4	73	35	59.8	94. 1	0,58

図-5 盛土形状および各盛土基礎地盤の層厚

図-6 基礎地盤の土質断面図

図-8 試験盛土 No.1 の有限要素モデル

Depth (m)	Stratigra	Preconsolidation pressure Ovi. Ovo [kN/m²] 20 40 60 80	Unconfined compressive strength qu [kN/m²] 20 40 60	Normalized strength Qu 20 vo 0, 2 0, 4 0, 6	Void ratio at preconsolidation pressure eo 2 4 6 8	Plasticity Index Pl [%] 20 40 60 80	Compression index Cc 2, 0 4, 0 6, 0 8, 0	Swelling index Cs 0, 2 0, 4 0, 6 0, 8 1, 0	Secondary compression index Ca (×10-2) 10 20 30 40	Permeability index (Slope of e∼logk) Ck 1.02,03,04,0
	X	•••	÷	•	1 2 3 4	N P	1.01,2*1,41,6	0, 05 0, 10 0,15 0, 20	2 4 6 8	0,40,60,81,0
4			•	• •	•	•	•	•	•••	••
6		\ ~	••	••	• •••	• •••	• •• •	•••	•• •	• •••
1107			•	•	•			**	•• •	• •
12		\ •	•	•	•	•	•	•	•	•
14		● Űvo Oedometer — Űvi Υt·Z – Pw		0 from Oedometer	eo from Oedometer tests		Cc from Oedometer	Cs from Oedometer tests	$C_{\alpha} = \Delta e / \Delta \log t$ from Oedometer	$C_K = \Delta e/\Delta \log k$ from Oedometer

図-7 各物性値の深度分布

図-9中、 q_u から M を推定する手順は 3. および図 **一4** で詳細に述べている. 粘土層について, 図─4 の決 定チャートに必要な十質定数の深度分布は**図─7** から得 られる. このチャートに従い M を推定すると、M は深 部ほど大きくなり、 $M=1.0\sim1.6$ 程度となる。同様に、 粘土層下部の粘土質砂層の M を求める. 実測値から $q_u/2 \sigma'_{v0} = 0.29$, $\Lambda = 0.89$, PI = 35%, OCR は 2 程度 である. $(q_u/2 \sigma'_{vo})$ を①式により、正規圧密状態であっ たときの強度に変換すると、 $(q_u/2 \sigma'_{m})_{NC}=0.31$ となる. PI に対する補正係数 μ を, Fig. (a) の平均値を採用し、 $\mu=1.1$ とすると、②式により、 $(S_u/\sigma'_{v0})_{CK_0UC}=0.34$ とな る. この値と計算値 Λ=0.86 を用いて、Fig.(b) より M=1.58 を得る. 粘土層上部の腐植土層は、自然含水 比が $w=341\sim798$ % と非常に大きいうえに、塑性指数 が測定不能であり、 M の推定が非常に難しい土層であ る. 実測値から腐植土の $q_u/2 \sigma_{vo}'$ の平均値は 0.45, Λ の平均値は 0.85 である. OCR が 4~8 程度と大きいた め、①式の変換を行うと $(q_u/2 \sigma'_{vo})_{NC}$ が Fig. (b) の範囲 より大きくなり、M は2.6を越えてしまう. 仮に、腐 植土層が正規状態にあり、Fig.(b) の補正係数 μ が腐 植土層に対しては1.0であると仮定すると, Fig.(b) から M は約2.5となる. 山口・森・大平・小暮²²⁾や及 川・宮川23)らによれば泥炭の強度パラメーター値は、粘 土に比べて非常に大きく、粘土の場合 $\phi'=30^{\circ}$ (M=1.2) 程度であるのに対して, 泥炭では, 等方圧密状態で ø' $=50^{\circ}$ (M=2.06) 以上, K_0 圧密状態では $\phi'=60^{\circ}$ (M=2.43) 以上にも達すると報告している. 正規圧密され た泥炭が過圧密になっても,一軸圧縮試験によって求め られたせん断強度があまり小さくならないかどうか、著 者らは具体的なデータを持ち合わせていないが、通常、 泥炭のM(または ϕ)は、粘土に比べてかなり大きい ことがわかっているので、ここでは、腐植土層の Mを 上述の計算から求められたとおり M=2.5 とすること にする. 粘土に関して一般的に当てはまる議論が, 泥炭 に対しては必ずしも当てはまらないことが多く、パラ メーター推定に関しても問題が多いが、今後の研究に待 つ以外, 今のところ決め手がないのが実情である.

b) 透水係数 k とその変化率 λ_k

標準圧密試験から得られる各層の C_v-log σ_v m_v -log σ_v 関係から、先行荷重に対する C_v , m_v を求め、 $k = C_v \cdot m_v \cdot \Upsilon_w$ (ここで Υ_w は水の単位体積重量) とし て透水係数を求める. 透水試験から直接求めた鉛直方向 透水係数は、圧密試験から求めた鉛直方向透水係数の1 ~10 倍大きいことが、Mesri and Tavenas²⁴⁾により指摘 されている. 弾・粘塑性構成式を用いて, 応力-変形-圧 密連成解析を多くの現場に適用してみた著者らの経験か らも、圧密試験から得られた透水係数を10倍程度にし

表-3 入力パラメーターとその試験方法1)

L	aı	nalysis parameter	main laboratory test	remarks				
	٨	irreversibility ratio	triaxial consolidation test	۸=۱- ^۲ ۵/۱۱				
ies	М	critical state parameter	triaxial CU test	M = 6sinø*				
bec	D	coefficient of dilatancy	triaxial CD(p'=const.) test	D = A - X "				
ă	v.	effective poisson ratio	triaxial CU test	G 2)				
material properties	α	coefficient of secondary compression	triaxial consolidation test	$\alpha = \frac{dy}{d(\ln t)}$				
Ē	v _o	initial volumetric strain rate	triaxial consolidation test	ν ₀ = α/1c 3)				
SS	α ^ν °	preconsolidation vertical pressure	oedometer test					
preconsol	Ко	coefficient of earth pressure at rest	triaxial Ko-consolidation test					
S G	σ _{vi}	effective overburden pressure	unit weight test	σ _{vi} = Y z 4)				
initial	κį	coefficient of in-situ earth pressure at rest	triaxial Ko-swelling test					
	k	coefficient of permeability	permeability test	k=Y _w m _v c _v				
stres	stress parameter $\eta^{2}\sqrt{\frac{3}{2}(\eta_{ij}-\eta_{ijo})(\eta_{ij}-\eta_{ijo})}$, $\eta_{ij}=\frac{\sin(p')}{2}$, $\eta_{ij}=\frac{\sin(p')}{2}$, $\eta_{ij}=\frac{\sin(p')}{2}$, $\eta_{ij}=\frac{\sin(p')}{2}$							

- λ 0 · 434 Ce, × 0 434 Cs
- 4) z : depth from ground surface 5) of effective stress lensor
- 2) G: elastic shear modulus
 3) t_c: time at the end of primary consolidation
- **Determination Procedure of Parameters** Atterberg Kol ν limit test Kı unconfined (12)comp. test (10) (11) q, SQAP, NC M piezometer (7)đ ĸ h (13)D (18)tc oedometer Ÿ٥ test (17) α e α
 - $K_0 = 0.44 + 0.42 \times 10^{-2} PI$ Massarsch (1979) (1)
 - (2) $\nu' = \text{Ko}/(1+\text{Ko})$
 - (3) $\sin \phi' = 0.81 - 0.233 \log PI$ Kenney (1959)
 - (4)σvi'= γt·Z-Pw
 - (5) OCR = Ovo'/Ovi
 - $K_i = Ko(\overline{OCR})^{0.54exp(-Pi/122)}$ (6) Alpan (1967)
 - (7) K = Cs/ln 10, 1/ln 10 = 0.434
 - (8) $\lambda = Cc/\ln 10$
 - (9) $\Lambda = 1 - \kappa / \lambda$
 - (10) $(q_u/2\sigma vo')_{NC} = 1/(OCR)^{\bar{\Lambda}-1}(q_u/2\sigma vo')_{OC}$
 - $(Su/\sigma vo')_{CKoUC} = \mu (q_{\overline{u}}/2\sigma vo')_{NC}, \mu \text{ from Fig.(a)}^{*2}$ (1.1)
 - (12)M determined using $(Su/Ovo')_{CKoUC}$, Λ and Fig.(b) $M = 6 \sin \phi' / (3 - \sin \phi')$
 - (13) $D = \lambda \Lambda / [M(1+e_0)]$
- Ohta (1971)
- (14)K = Mv Cv Tw
- $t_c = t_{90} = H^2 T_V(U=90\%)/C_V^{*5)}$ (15)
- (16)α = Ca/In10
- (17) $\alpha = \alpha_e/(1+e_0)$
- (18) $\dot{v}_0 = \alpha / t_c$
- Sekiguchi (1977) Sekiguchi (1977)
- (19) $\lambda k = Ck/\ln 10$

notes

- *1) NC: normally consolidated condition.
 - OC: over consolidated condition.
- *2) CKoUC: Ko-consolidated undrained compression test.
- +3) H: drainage distance.

図-9 入力パラメーターの決定チャート

て解析すると,実測値と解析値がよく合うことがわかっ ている. また. 水平方向透水係数が. 鉛直方向透水係数 よりかなり大きいことも従来から指摘されているので, これらのことから、圧密試験から求めた透水係数を10 倍した値を解析に用いる.

標準圧密試験結果を整理すると,間隙比(e)と透水 係数の常用対数 $(\log k)$ の関係は $\mathbf{2}$ —10 のようになる. この勾配が透水係数の変化率 $C_k (= \Delta e / \Delta \log k)$ であ る. なお、 λ_k は自然対数で整理したときの変化率 (λ_k $=\Delta e/\Delta \ln k$) であり、 C_k との間に $\lambda_k = C_k/\ln 10$ なる 関係がある. 各試料の C_k と C_c の関係を図-11 に示す. 従来からいわれているように $C_c = C_k$ とはならず, C_k は C。より 30% 程度小さい.

C) 粘性に関するパラメーター α , \dot{v}_0

関口・太田が提案したモデルにおける二次圧密係数 α は、 $\alpha = dv/d (\ln t) (v:$ 体積ひずみ、t:二次圧密経過 時間)として定義される. 本解析では, 標準圧密試験の $e-\log t$ 関係における直線部分の勾配として C_{α} (= $\Delta e/\Delta \log t$) を決定し、図-9中、式(16)、(17) を用 いて α を求める. Iizuka and Ohta¹⁾が提案する決定 チャートでは、Mesri and Godlewski²⁵⁾が示す次の関係 式を用いている.

$$C_{\alpha}/C_{c}=0.05\pm0.02$$
 (for clay)
 $C_{\alpha}/C_{c}=0.07\pm0.02$ (for peat)(17)

図-12 は標準圧密試験から求めた C_c と C_α の関係を表 わしたものであり、図中の直線は Mesri らが示した C_c $\sim C_{\alpha}$ の範囲である. 粘土層の C_{α} は Mesri らが与えた 範囲内であるが、腐植土層の C_{α} は泥炭に対する下限値 付近となっている. なお、Mesri らの推定式により決定 した α を用いた場合についても解析したが、沈下、そ の他の解析値に大きな差は生じなかった. したがって, 二次圧密部分のデータが入手できない場合には、Mesri らが与えた C_{α}/C_{c} の値を用いて C_{α} を推定しても大き な問題は生じないものと思われる.

初期体積ひずみ速度 \dot{v}_0 は、 $\dot{v}_0 = \alpha/t_c$ (t_c は一次圧密 終了時間)として定義される。 t_c は沈下の実測データ および層厚換算法と、図-9中式(15)から求められる

図-11 圧縮指数と透水係数の変化率の関係

各層の 90% 圧密に要する時間 tgg を参考に求めた. 試 験盛土 No.1 では、腐植土層で t_c =100 日、粘土層およ び粘土質砂層で t_c =200 日としている. なお, すでに述 べたとおり、過去の経験から標準圧密試験から得た C_v を10倍にして用いている.

d) 弾性材料(盛土, 表土層)の入力パラメーター 解析では、盛土と表土層を線形弾性体として扱ってお り、必要なパラメーターは、弾性係数 E、有効ポアソ ン比 ν' , 有効上載圧 σ'_{vi} , 静止土圧係数 K_i , 透水係数 k, 初期間隙比 e, である.

① 表土層

図─10 各層の e~log k の関係

図─12 圧縮指数と二次圧密係数の関係

表土層は粘土を主体とした耕作土である。この層については、事前の土質調査が実施されていないので、現地においてサンプリングを行い、室内実験を実施した。一軸圧縮試験結果,透水試験、物理試験結果から $E=E_{50}$ = 490 [kN/m²]、 $k=8.64\times10^{-4}$ [m/day]、 $e_i=3.52$ となる。静止土圧係数、ポアソン比はそれぞれ、 $K_0=0.6$ 、 $\nu'=0.33$ と仮定する。

② 盛土材

盛土材は、岩屑が用いられたが、その物性に関しては不明である。パラメーターは、他の締固め材料の物性値を参考にして、 $E=9~800~[kN/m^2]$ 、 $\nu'=0.33$ 、 $\sigma'_{\nu i}=9.8~[kN/m^2]$ 、 $K_i=0.5$ 、 $k=10\times10^{-4}~[m/day]$ 、 $e_i=0.5$ と仮定した。

(3) 解析結果

図-9 に従って決定した入力パラメーターによる, 試験盛土 No.1, 3, 6の弾・粘塑性有限要素解析結果および実測値との比較を図-13 および図-14 に示す.

図―13 は、試験盛土 No.1 の盛土中央部における地表面沈下量と腐植土層および粘土層の圧縮量、のり尻部地表の水平変位量、腐植土層(要素番号 163)および粘土層(要素番号 94)の過剰間隙水圧について、解析結果と実測値の経時変化を盛立て工程とともに示したものである。図中、解析結果を実線、実測値を●印で示す。なお、のり尻部地表面の水平変位は盛土外側方向への変位を正とする。要素番号については、図―8 を参照.

図―14 は、試験盛土 No.3 と No.6 の解析結果と実測値の経時変化を同時に示したものである。図の内容は試験盛土 No.1 の場合と同様であり、試験盛土 No.3 の解析結果を実線、実測値を●印、No.6 の解析結果を破線、実測値を○印で表わしている。

a) 沈下量および各層の圧縮量

図―13,14より,盛土中央部地表面沈下量の経時変化は,どの試験盛土の場合も実測値と解析結果は比較的よい対応を示している.次に,各土層の圧縮量の経時変化について実測値と解析結果を比較すると,腐植土層はすべての盛土でよく一致している.粘土層では,腐植土層に比べ層厚が大きいために,実測値と解析値に若干の差異が認められる.

b) のり尻部地表面の水平変位量

盛土のり尻部地表面の水平変位量の経時変化は、試験盛土 No.1 については、実測値と解析結果はよい一致をみているが、No.3、No.6 については、解析結果は実測値を1.4 倍程度過大に評価している。これは、のり尻の側方変位に影響を及ぼすと考えられる盛土の弾性係数、表土層、腐植土層の静止土圧係数やポアソン比の評価に問題があるのであろう。

c) 盛土中央下の過剰間隙水圧

図-13 試験盛土 No.1 の実測値と解析結果

図-14 試験盛土 No. 3, 6 の実測値と解析結果

盛土中央下における腐植土層内(要素 No.163)の過剰間除水圧は,試験盛土 No.6 の消散が計算上早くなっている点を除き,解析結果は実測値の傾向をよく説明している.次に,粘土層内(要素 No.94)の過剰間除水圧の経時変化は,どの盛土の場合も盛立て終了後は解析結果が実測値より過大である.しかし,放置期間前半部の解析結果は実測値よりも消散が遅れているものの,最終的にはよい対応をみせている.これは,解析では,圧密試験において先行圧密応力を載荷したときの透水係数(降伏時の m, v, C_v により決定)を採用しているので,過圧密状態にある原地盤の特性を完全に表現できなかったものと考えられる.

(4) PIとM, Aの関係を利用した解析との比較

(3)では、図-9に示す入力パラメーター決定法を用いた、弾・粘塑性有限要素解析の適用性を検討した。ここでは、粘土層の入力パラメーター M と Λ を今回提案する決定法により推定した場合と、PI により推定した場合について比較してみる。 lizuka and Ohta¹⁾の提案するパラメーター決定法において、M および Λ は、式 (7)、(10)、(11) により PI から推定される。このM、 Λ を M_{PI} 、 Λ_{PI} とすると、粘土層では M_{PI} =0.8 \sim 1.0、 Λ_{PI} =0.5 \sim 0.6 となる。一方、本論文では M、 Λ を、 q_u と標準圧密試験結果から求めており、これを M_{qu} 、 Λ_{oea} とする。これらの値は (2) で求められており、 M_{qu} =

図―15 決定方法の違いによるパラメーターの比較

図-16 粘土層の圧縮量の経時変化

 $1.0\sim1.6$, $\Lambda_{oed}=0.85\sim0.92$ である。図-15 に PI, OCR, $\Lambda_{PI}/\Lambda_{oed}$, M_{PI}/M_{qu} の深度分布を示す。図-15 によると, Λ は上層部,M は下層部ほど推定方法の違いによる差が著しい。推定方法の違いによってこのような差が生じる原因はまだ明確ではない。その原因の1 つとして, Λ_{PI} と Λ_{oed} の比が,過圧密の度合いの小さい深部では1.0 に近づいていることから,OCR が関係するのではないかと推測されるが,今後の研究課題としたい。

次に,他の解析条件は全く同一とし,粘土層の M と Λ をそれぞれの方法により推定した場合について,試験盛土 No. 1,3,6 を対象に同様の解析を行った。 M_{Qu} , Λ_{Oed} による解析をケース 1, M_{Pl} , Λ_{Pl} による解析をケース 2 とする.

図―16 は、各盛土における粘土層の圧縮量の経時変化について、ケース1を実線、ケース2を破線、実測値を・印で示したものである。試験盛土 No.1では、ケース2の解析結果は、ケース1より圧縮量を過大に評価している。No.3、No.6においては、長期における圧縮量ではケース1の解析結果の方がよく一致しているが、盛立て後100日程度までは、逆にケース2の方が実測値をうまく説明している。

5. 結 論

本論文では,関口・太田による弾塑性構成式から導かれる非排水せん断強度と,通常,現場において実施される一軸圧縮試験結果とを関連づけることにより,破壊に関するパラメーター M を推定する方法を提案した. さらに,この方法と標準圧密試験結果および塑性指数を有効に利用したパラメーター決定チャートを作成した.

この決定手順に基づいて,実際の軟弱基礎地盤上における試験盛土工の挙動解析を実施したところ,以下の結論を得た.

- (1) 解析結果は、軟弱地盤の挙動を、比較的精度よく表現することができた。
- (2) 粘土層の入力パラメーター M, Λ を PI により 推定し、解析を行ったところ、今回対象とした過圧密地 盤では、実測値に比べ最終沈下量を過大に評価する傾向 がみられた。
- (3) 弾・粘塑性解析における入力パラメーターの決定に一軸圧縮強度 q_u を用いる方法が有効であることが確認された.

最後に、本研究を実施するにあたり、京都大学飯塚 敦氏にご協力いただき、一部に、文部省科学研究費(試 験研究(2)62850092)の補助を受けたことを付記して 謝意を表します。

参考文献

- Iizuka, A. and Ohta, H.: A determination procedure of input parameters in elasto-viscoplastic finite element analysis, Soils and Foundations, Vol. 27, No. 3, pp. 71 ~87, 1987.
- Kimura, T. and Saitoh, K.: The influence of disturbance due to sample preparation on the undrained strength of saturated cohesive soil, Soils and Foundations, Vol. 22, No. 4, pp. 109~120, 1982.
- 3) 西垣好彦・三笠正人:一軸圧縮試験,土質調査試験結果の解釈と適用例 第一回改訂版,土質工学会,pp.175~213,1979.
- 4) 太田秀樹:室内・原位置試験結果の安定解析への適用, 土の強さと地盤の破壊入門,土質工学会,pp.235~261, 1987
- Sekiguchi, H. and Ohta, H.: Induced anisotropy and time dependency in clays, 9th ICSMFE, Tokyo, Proc. Specialty session 9, pp. 229~238, 1977.
- 6) 太田秀樹・飯塚 敦: DACSAR マニュアル,京都大学 工学部土木工学科土木施工学研究室レポート,1983.
- Biot, M.A.: General theory of three-dimensional Consolidation, Journ. Appl. Phys., Vol. 12, pp. 155~164, 1941.
- Ohta, H. and Sekiguchi, H.: Constitutive equations considering anisotropy and stress reorientation in clay, Proc. 3 rd Int. Conf. Numerical Method in Geomechanics, pp. 475~484, 1979.
- 9) 赤井浩一・田村 武:弾塑性構成式による多次元圧密の 数値解析,土木学会論文報告集,第269号,pp.95~104, 1978.
- 10) 柴田 徹:粘土のダイラタンシーについて,京都大学防 災研究所年報,第6号,pp.128~134,1963.
- Ohta, H. and Nishihara, A.: Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions, Soils and Foundations, Vol. 25, No. 2, pp. 73~86, 1985.
- Jáky, J.: Tarajmechanika, J. Hungarian Arch. & Engs., Budapest, pp. 355~358, 1944.
- 13) 軽部大蔵:規格以外の三軸圧縮試験方法とその問題点,

- 第20回土質工学シンポジウム, pp. 45~60, 1975.
- 14) 中瀬明男・勝野 克・小林正樹:砂分の多い粘性土の一軸圧縮強さ,港湾技術研究所報告,第11巻,第4号,pp.83~102,1972.
- 15) 正垣孝晴・松尾 稔・野村真一・小林秀一:中間土の一軸および三軸 UU 試験の比較,第22回土質工学研究発表会講演集,pp.441~442,1987.
- 16) 龍岡文夫:土質試験の課題と試験結果の評価,最近の土質基礎に関する講習会講演資料,土質工学会,pp.21~70, 1985.
- 17) Massarsch, K.R.: Lateral earth pressure in normally consolidated clay, Design Parameters in Geotechnical Engineering, 7th Eur. Conf. Soil Mechanics and Foundation Engineering, Vol. 2, pp. 245~249, 1979.
- 18) Kenney, T.C.: Discussion on "Geotechnical properties of glacial lake clays", Proc. ASCE, Vol. 85, SM 3, pp. 67~79, 1959.
- 19) Mitachi, T. and Kitago, S.: Change in undrained shear strength characteristics of saturated remolded clay due to swelling, Soils and Foundations, Vol. 16, No. 1, pp. 45 ~58, 1976.
- 20) 中瀬明男・小林正樹・勝野 克:圧密および膨張による 飽和粘土のせん断強度の変化,港湾技術研究所報告,第 8巻,第4号,pp.103~143,1969.
- Alpan, I.: The empirical evaluation of the coefficient K₀ and K₀₈, Soils and Foundations, Vol. 7, No. 1, pp. 31~40, 1967.
- 22) 山口晴幸・森 茂・大平至徳・木暮敬二:不攪乱泥炭の異方的せん断特性,土木学会論文報告集,第364号/ Ⅲ-4,pp.189~198,1985.
- 23) 及川 洋・宮川 勇:乱さない泥炭の非排水せん断特性 について, 土質工学会論文報告集, Vol. 20, No. 3, pp. 91~100, 1980.
- 24) Mesri, G. and Tavenas, F.: Discussion, Proc. ASCE, Vol. 109, No. 6, pp. 873-878, 1983.
- 25) Mesri, G. and Godlewski, P.M.: Time-and stress-compressibility interrelationship, Proc. ASCE, Vol. 103, GT 5, pp. 417~430, 1977.

(1987.10.29・受付)