Python Parallelization

Summer 2025

Research Computing Services
IS & T

Download files:

https://scv.bu.edu/examples/python/tutorials/PythonPar/

Start Spyder

- Your own computer:
 - Start Anaconda Navigator
 - Find Spyder and launch it.

- On SCC OnDemand:
 - Under Interactive Apps choose Spyder.
 - Load python3/3.12.4 and select 4 cores, then click the Launch button.

Introduction

- Many programs can perform simultaneous operations, given multiple processors to perform the work.
- Generally speaking, the burden of managing this lies on the programmer.
- In this tutorial we'll go over a variety of ways to achieve parallelism in Python code.

Limits on Program Speed

- Input/Output (I/O): The rate at which data can be read from a disk, a network file server, a remote server, a sensor, a user's physical inputs, etc. limits the performance of the program.
- Memory: The quantity of memory on the system limits performance.
- **CPU** (or compute): The speed of the processor is the limit on performance.
 - This is most commonly the case for scientific computing.

Types of Parallelization

- On the SCC: queue parallelization.
 - You have N files to process. Submit N jobs.
 - Or, one <u>job array</u> that launches N jobs.
 - This often requires little to no changes to your code...

Multiple Processes

 Your program launches several copies of itself (or other programs) to solve the computational problem.

Multiple Threads

 Your program creates threads, which are parts of the same program that can execute independently of each other.

Parallel Libraries

Use a library that internally implements some kind of parallelization.

Performance Considerations

- Not every part of a program can benefit from parallelization.
- Some parts of program are inherently serial.
- Even for a function that can be done in parallel...
 - Is it worth the programming effort?
 - Is it worth the reduction in readability and ability to debug?
 - Does the function use up enough program time to make parallel computation worth the overhead?
- Parallelization is a form of optimization. Profile your code.
 - For more on profiling see our Python Optimization tutorial.

Amdahl's Law

The speedup ratio S is the ratio of time between the serial code (T₁) and the time when using N workers (T_N) :

$$S = \frac{T_1}{T_N} = \frac{T_1}{\left(f + \frac{1 - f}{N}\right)T_1}$$

N = number of threads or processes

f = fraction of program that is serial

This is the theoretical best speedup achievable with parallelization.

Figure from Wikipedia.

A word of caution

 When using the Python multiprocessing library, always use the "if __name__" convention in your main script:

 This will make your script work in interactive Python like Spyder.

```
import multiprocessing
# python script here with functions
# defined
def script function():
    # do python stuff here
    with multiprocessing. Pool (4) as p:
        # code block etc ...
            == ' main ':
if
     name
      script function()
```

 It is <u>required</u> on Windows even in Jupyter notebooks.

How many cores should Python use?

- The example file get_n_cores.py provides a function that checks how many cores have been assigned to an SCC job.
 - Based on the common Python library psutil
- It will also work on your own computers and will choose the number of installed cores.
- Feel free to use this in your own code.

Let's Try!

- In Spyder, open the file lin_alg.py
- The computation: a linear algebra matrix-matrix multiplication.
 - Completely CPU-bound, scales well to multiple threads.

- How does your computation scale with the number of threads?
- It plots the speedup ratio. What did you expect? What if you change the size of the matrices?

Logical, Physical, and Efficiency Cores

- Intel Core i7-1165G7
 - 4 real cores, 4 logical cores

The Python *psutil* library can't yet <u>auto-detect efficiency cores</u>. It will report them as physical cores.

- Macbook Pro (from 2021)
 - Apple M1 Pro CPU
 - 6 performance cores, 2 efficiency
 - About This Mac → More Info → System Report
 - get_n_cores() → reports 8 cores

Python Language Parallelism

- Python provides a number of ways to perform parallel (aka concurrent) computations.
- Read the <u>official docs</u>.

Library	Common Usage
threading and asyncio	I/O-bound programs. Example: web server, network service
multiprocessing	CPU-bound parallel execution.
concurrent.futures	Modern-style wrapper on top of threading & multiprocessing. Useful for GUIs or porting code to Python that uses this approach.
subprocess	Launching external processes.

The Global Interpreter Lock

- The GIL limits the amount of multi-threading in the Python interpreter.
 - Originally introduced as part of Python's memory management system.
 - For more details, see <u>this explanation</u>.
- Pure Python code runs in one thread only.
 - This is unlike languages like Java, C#, C++, Fortran, Matlab, or R where threads are easily used by the programmer.
- Multi-threaded code in Python is mostly implemented in external libraries.

Python Threading

- The Python threading library allows for multiple threads to be created.
- Only 1 can actually execute at a time: do not use this for CPU-bound problems.
- This works well for I/O-bound problems.
- Each thread runs as soon as it has received data
 - Most of the threads are waiting for data from the disk, the network, the user, etc.
 - Application examples: Python web servers, file servers, network service, calling a web server API...

Python Multiprocessing

- For CPU-bound problems multiple Python processes can be launched to do computations in parallel.
 - If you just want to parallelize a for loop, start here.
- The multiprocessing library handles inter-process communication automatically.
- Most convenient interface: the **Pool**, which provides a set of Python processes that divide work between them.

Convert a loop

```
def xyz(x):
    ''' here we do something that takes
        some time OR gets called a lot
        of times '''
    # this is a regular function,
    # nothing special
    result = etc...
    return result.
# somewhere else in your program:
results = [1]
# This loop takes a long time to
# run:
for elem in big list:
    results.append(xyz(elem))
```

- xyz() can be easily parallelized much of the time.
- Watch for problems:
 - Printing to the screen → randomly interleaved output to the screen
 - Writing to a file → Same as the screen issue...don't parallel write to the same file!
 - Memory allocations → if the input & outputs use a lot of memory maybe limit parallelism to avoid excess memory usage.

```
import multiprocessing as mp

# Replace the loop with a Pool and a map
with mp.Pool(processes=nprocs) as pool:
    results = pool.map(xyz, big_list)

# xyz() now runs in parallel over the
# elements of big_list.
```


How the Pool.map() Works

- A function is <u>pickle</u>d and sent to each pool worker.
- The collection of data is split up, pickled, and sent to each worker.
- Each worker unpickles the function & data, runs the function on each element of the collection, pickles the result, and sends it back.
- The main process unpickles the results and puts them into a list.

Example

Open pool_basics.py

• This calculates the value of π

multiprocessing.pool.Pool.map() options

- The Pool is the simplest way to add parallelism to Python code.
- Arguments: map(function, iterable, chunksize)
- function: the function to be applied to each element of the iterable
- iterable: a list, set, generator, dictionary, i.e. something that can be looped over
- **chunksize**: "This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be specified by setting *chunksize* to a positive integer."

Your turn to parallelize a problem...

- Open the file my_pool.py
 - The problem: count the characters in 1M English words
 - You'll implement a Pool to parallelize the solution.

Multiple iterables – Pool.starmap()

 To pass multiple arguments use starmap()

If you have 1 object and a list, try this to create a list for starmap:

```
def xyz(a,b):
    return a+b

vals = [(1,2), (3,4)]

with mp.Pool(processes=2) as pool:
    sums = pool.starmap(xyz,vals)

# 2 function calls happen in parallel:
    xyz(1,2)
    xyz(3,4)
```

```
import itertools
a='arg1'
b=range(3)

list(zip(b,itertools.repeat(a)))
# --> [(0, 'arg1'),
# (1, 'arg1'),
# (2, 'arg1')]
```


Pool.imap() and Pool.imap_unordered()

- map() has a disadvantage in that the iterable must be fully in memory before it can be distributed.
- imap() is lazier. It will assign chunks of work to each worker and pull them as needed from the iterable.
 - Generators can be used to save RAM in the main process.
- imap_unordered() is similar but it does not guarantee the output order matches the input order.
 - Good for when computations take a varying amount of time.

imap()

```
def xyz(a,b):
    return a+b

# A generator function
def gen_vals(N):
    for i in range(N):
        # yield evens and odds
        yield 2 * i, 2 * i + 1

with mp.Pool(processes=2) as pool:
        sums = pool.imap(xyz,gen_vals(1000),chunksize = 4)
```

- For pool worker 1, 4 calls to gen_vals() are completed $\rightarrow [(0,1),(2,3),(4,5),(6,7)]$
- This list is sent to worker 0.
 - Worker 0 calls xyz(0,1),then xyz(2,3) etc and returns the results in a list to the main Python process.
- Four more calls are done and that list goes to worker 1.
- When worker 0 is completed another 4 calls to gen_vals() are done to create the next chunk, etc.
- The generator gen_vals() never creates all 1000 sets of numbers in memory.

Using map, starmap, imap, imap_unordered

If:

- You have function calls being applied to some iterable (e.g. list of data objects, set of files, sets
 of simulation parameters, etc.)
- The function call is computationally expensive it takes a while to run.
- Each function call is independent of the others.
 - Ex. Each input file in a list is read and processed separately.

Then:

The multiprocessing. Pool is worth investigating for your code.

Else:

 Try the multiprocessing. Process code. This can be used to build more sophisticated parallelization strategies. Or investigate some other libraries...

More complex algorithms

- multiprocessing.Pool applies easily to for-loop parallelization. What about more complex patterns?
- Other tools in multiprocessing:
 - Start & stop processes that execute functions.
 - pipes,queues → send data between processes
 - Shared memory → processes access data without it being copied to them
 - locks, semaphores → protect serial-only resources from parallel access
 - Writing to a common file, updating shared memory, etc.

A pipeline where multiple images go through a series of filters. 2 images get copied to a separate set of filters. The *output* stage aggregates these results.

- Create Queue() objects for data transfer (q0...q6)
- Launch Process() objects to run functions (p0...p5)
 - Queues are connected in the Process() call
- Add data to the queues → processing starts
- Wait for data to return from the "output" process
- Shut down processes, destroy queues.

- This can all be accomplished in your Python code with the multiprocessing library.
 - How would you scale this to more cores?
 - How about fewer?
- It's a lot of work.
 - External libraries make this significantly easier.

For extensive tutorials on the many ways to use the multiprocessing library see: https://superfastpython.com/category/multiprocessing/

Parallelization with External Libraries

- When to look outside of standard Python:
 - Your dataset is greater than the amount of RAM you have available
 - You are dealing with large Pandas dataframes, numpy arrays, CSV files, database fetches, etc.
 - You have numpy-centered numeric calculations
 - Ex. A custom image processing algorithm
 - You want to scale past a single compute node
 - mp is causing problems due to RAM usage or poor scaling due to its multi-process nature
 - You want to implement more complex parallel algorithms

Pandas in Parallel

- Modin
 - Implements ~90% of the Pandas DataFrame API.
 - Autoscales Pandas calculations onto available cores.
 - Developed by UC Berkeley since 2018
- parallel-pandas
 - A simpler auto-parallelizing library for DataFrames.
- Dask DataFrames
 - Can autoscale and use available cores.
 - Built on top of Pandas.
- "Polars is a lightning fast DataFrame library/in-memory query engine."
 - 2-20x faster than Pandas, for many operations
 - Efficiently uses memory and multiple cores
 - This is a relatively recent library, developed at RPI in 2020.
 - This is **not** compatible with your existing Pandas code. Using it requires a re-write of your code.

Dask

Dask supports parallelism beyond Pandas.

- Includes efficient shared-memory access to these arrays
- Dask Bag: parallelize generic functions like map or groupby on large collections
 - Example: read a file where each line is a JSON string. Convert to a format that can be be converted to a DataFrame.
- <u>Dask Delayed</u>: parallelize things that don't work with the other approaches.
 - For example, the image processing graph from a few slides ago.
- RCS is offering a Dask tutorial this summer see the tutorial schedule.

Ray Core

- Ray is a system for scaling up and parallelizing machine learning applications.
- Ray Core is its underlying distributed, parallel computation system.
 - You can use Ray Core to implement a wide variety of <u>parallel patterns</u>.
 - They have an example of using Ray to compute π using the same algorithm we used earlier.
 - This is very useful if you're interested in concurrent programming
 - more generalized parallel programming
 - different parts of your program perform tasks in parallel
 - Example: your text editor auto-saves your file while running a spelling check while displaying text as you type.

Common Parallel Libraries

Python Library	Application	Underlying Library	Threading Lib.
numpy	Numeric algorithms	BLAS/LAPACK or MKL (C, usually)	OpenMP or MKL
cv2	Image processing	OpenCV (C++)	OpenMP or pthreads
Tensorflow, PyTorch, Jax	Machine learning	CUDA or OpenCL	OpenMP, pthreads, or GPU threads
numba	Compile/accelerate Python functions	numba C++ libs	Intel TBB
numexpr	Compile numpy code (older, not common)	numexpr libs	OpenMP

 Using Python for scientific computing naturally leads to the use of several libraries that support parallel computation using multiple threads. Those are built on top of a small set of threading libraries. Lots of other Python libraries use these "behind the scenes".

Glossary

- BLAS: Basic Linear Algebra Subprograms
- LAPACK: <u>Linear Algebra Package</u>
- MKL: Intel <u>Math Kernel Library</u>
- TBB: Intel Thread Building Blocks

BLAS

- The <u>Basic Linear Algebra</u>
 <u>Subprograms library provides a variety</u> of functions for linear algebra type calculations.
- This underlies a staggering number of algorithms and computations including much of numpy and scipy.
- High performance threaded BLAS libraries continue to be an active area of computer science research.

Numpy BLAS library

Anaconda, Windows

```
In [4]: np.show config()
blas mkl info:
    libraries = ['blas', 'cblas', 'lapack', 'blas', 'cblas', 'lapack']
   library dirs = ['D:\\bld\\numpy 1595523081734\\ h env\\Library\\lib']
    define macros = [('SCIPY MKL H', None), ('HAVE CBLAS', None)]
    include dirs = ['D:\\bld\\numpy 1595523081734\\ h env\\Library\\include']
blas opt info:
    libraries = ['blas', 'cblas', 'lapack', 'blas', 'cblas', 'lapack', 'blas', 'cblas', 'lapack']
   library_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\lib']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\include']
lapack mkl info:
    libraries = ['blas', 'cblas', 'lapack', 'blas', 'cblas', 'lapack']
    library_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\lib']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\include']
lapack opt info:
    libraries = ['blas', 'cblas', 'lapack', 'blas', 'cblas', 'lapack', 'blas', 'cblas', 'lapack']
    library_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\lib']
    define macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include dirs = ['D:\\bld\\numpy 1595523081734\\ h env\\Library\\include']
```

 You can see the exact libraries that Numpy is using with the command. The output will depend on the Python installation:

```
numpy.show_config()
```


python3/3.10.12 module on SCC

```
>>> np.show config()
blas armpl info:
 NOT AVAILABLE
blas mkl info:
 NOT AVAILABLE
blis info:
  libraries = ['blis', 'blis']
    library dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
    define macros = [('HAVE CBLAS', None)]
    include dirs = ['/share/pkg.8/blis/0.9.0/install/include/blis']
    language = c
    runtime library dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
blas opt info:
    libraries = ['blis', 'blis']
   library_dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
    define macros = [('HAVE CBLAS', None)]
    include dirs = ['/share/pkg.8/blis/0.9.0/install/include/blis']
    language = c
    runtime library dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
lapack armpl info:
  NOT AVAILABLE
lapack mkl info:
 NOT AVAILABLE
ppenblas lapack info:
  NOT AVAILABLE
openblas clapack info:
 NOT AVAILABLE
flame info:
 NOT AVAILABLE
accelerate info:
 NOT AVAILABLE
lapack info:
   libraries = ['lapack', 'lapack']
    library_dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
    language = f77
    runtime library dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
    extra link args = ['-L/share/pkg.8/blis/0.9.0/install/lib', '-llapack']
lapack opt info:
    libraries = ['lapack', 'lapack', 'blis', 'blis']
    library dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
    language = c
    runtime library dirs = ['/share/pkg.8/blis/0.9.0/install/lib']
    extra link args = ['-L/share/pkg.8/blis/0.9.0/install/lib', '-llapack']
    define macros = [('HAVE CBLAS', None), ('NO ATLAS INFO', 1)]
    include dirs = ['/share/pkg.8/blis/0.9.0/install/include/blis']
Supported SIMD extensions in this NumPy install:
    baseline = SSE,SSE2,SSE3,SSSE3,SSE41,POPCNT,SSE42,AVX
    found = F16C,FMA3,AVX2,AVX512F,AVX512CD,AVX512 SKX,AVX512 CLX
    not found = AVX512 CNL, AVX512 ICL
```

Enabling Threaded Libraries on the SCC

- Many libraries on the SCC that use multiple cores are built on the OpenMP or MKL threading libraries.
- The SCC disables this threading by default when you load Python or miniconda modules by setting environment variables.
 - Why? Because most jobs are single-threaded, and automatic threading leads to jobs using more cores than they should...and then the jobs are killed by the process reaper.
- In a compute job or at the command line you can enable these threads and they will automatically be used.

Threading Environment Variables on the SCC

Variable	Threading Library
OMP_NUM_THREADS	OpenMP, MKL, numexpr
MKL_NUM_THREADS	MKL
NUMBA_NUM_THREADS	numba
NUMEXPR_NUM_THREADS	numexpr

- Setting these variables to a value >1 will enable automatic threading for code that uses the matching threading library.
- These should be set before running Python.
- Some libraries have their own internal mechanism can be used in place of the variable.
 - OpenCV example: cv2.setNumThreads(integer val)

Enable OpenMP Threading in a Job

- Request a multi-core job:
 - qrsh -pe omp 4
- SCC jobs automatically set the variable NSLOTS to the number of requested cores.
- Environment variables can be set in various ways on different operating systems. Here is a guide for Windows, Linux, and Mac OSX.

Example qsub script:

```
#!/bin/bash -1
# Ask for 4 cores.
#$ -pe omp 4
module load python3/3.10.5
# This sets the number of
# allowed threads to 4.
export OMP NUM THREADS=$NSLOTS
# Run your Python script, as
# this uses a lot of numpy code
 and might benefit from threads:
python myscript.py
#...did it run faster?
```


numba

- numba: auto-compiler for Python code.
 - Can compile code for GPU execution.
- Supports <u>auto-parallelization</u>. Their <u>prange</u> function creates a parallelized loop.
- This lets you do low-level threading via Python.

Thread control variable:

NUMBA_NUM_THREADS

- Numba can also compile Python code so it is callable from C or C++.
- Read the <u>User Manual</u> and the Reference Manual
- Check out the assortment of <u>environment</u> <u>variables</u> that can be set to influence Numba behavior.

numba usage

- Use the decorators
 @numba.jit or @numba.njit
- There are 2 modes:
 - object: Python types are used. numba must call out to Python to retrieve values.
 - nopython no Python types are used, numba accesses values directly.
 - This is faster. Try to do this.


```
@numba.njit(parallel=True, fastmath=True)
def numba_jit_loop(mat):
    ''' A parallel double for loop over
        a 2D numpy ndarray '''
    rows,cols = mat.shape
    for i in numba.prange(rows):
        for j in numba.prange(cols):
            mat[i,j] = 2.0 * mat[i,j] - 1.0
    return mat
```

- @numba.jit(nopython=True)
- @numba.njit
 - These force nopython mode.
- fastmath=True: allows the compiler to use special CPU instructions.

numba usage

- In general, use numpy ndarrays and functions with numba for the best performance.
 - Avoid calls to Python functions and sub-libraries
- numba'd functions should only call other numba'd functions
- This is a large library test, profile, read the docs!

Let's calculate π with Python and numba

Open *numba_pi.py*

When is this useful?

- If your Python code heavily uses numpy data structures then it may benefit from automatic threading or compilation from numba.
- numba has been implementing a growing number of Python data types, see their docs for the latest.

Read the Numba docs.

- Numba is under continuous rapid development new features appear all the time.
- Experiment! more threads is not always better.
 - The overhead of launching threads and distributing work can easily exceed the parallel execution speedup for small problems.

End-of-course Evaluation Form

- Please visit this page and fill in the evaluation form for this course.
- Your feedback is highly valuable to the RCS team for the improvement and development of tutorials.
- If you visit this link later please make sure to select the correct tutorial name, time, and location.

http://scv.bu.edu/survey/tutorial_evaluation.html

