Assignment 2

1 Qubit rotations and the Hadamard gate

1) Suppose that $(n_x, n_y, n_z) \in \mathbb{R}^3$ is a unit vector and $\theta \in \mathbb{R}$. Show that

$$e^{-i\frac{\theta}{2}(n_xX + n_yY + n_zZ)} = \cos(\theta/2)I - i\sin(\theta/2)(n_xX + n_yY + n_zZ).$$

2) Find a unit vector $(n_x, n_y, n_z) \in \mathbb{R}^3$ and numbers $\phi, \theta \in \mathbb{R}$ such that

$$H = e^{i\phi} e^{-i\frac{\theta}{2}(n_x X + n_y Y + n_z Z)}.$$

where H denotes the Hadamard gate. What does this mean in terms of the Bloch sphere?

3) Write the Hadamard gate as a product of rotations about the x and y axes. In particular, find $\alpha, \beta, \gamma, \phi \in \mathbb{R}$ such that $H = e^{i\phi} R_y(\gamma) R_x(\beta) R_y(\alpha)$.

2 One-out-of-four search

Let $f: \{0,1\}^2 \to \{0,1\}$ be a black-box function taking the value 1 on exactly one of the four inputs. The goal of the one-out-of-four search problem is to find the unique $(x_1, x_2) \in \{0,1\}^2$ such that $f(x_1, x_2) = 1$.

- 1) How many classical queries are needed to solve one-out-of-four search?
- 2) Suppose f is given as a quantum black box U_f acting as

$$|x_1, x_2, y\rangle \xrightarrow{U_f} |x_1, x_2, y \oplus f(x_1, x_2)\rangle.$$

Determine the output of the following quantum circuit for each possible black-box function f:

$$\begin{array}{c|c} |0\rangle & -\overline{H} \\ |0\rangle & -\overline{H} \\ |1\rangle & -\overline{H} \end{array}$$

3) Show that the four possible outputs obtained in the previous part are pairwise orthogonal. What can you conclude about the quantum query complexity of one-out-of-four search?

3 Swap test

1) Let $|\psi\rangle$ and $|\phi\rangle$ be arbitrary single-qubit states (not necessarily computational basis states), and let SWAP denote the 2-qubit gate that swaps its input qubits (i.e., SWAP $|x\rangle|y\rangle = |y\rangle|x\rangle$ for any $x,y\in\{0,1\}$). Compute the output of the following quantum circuit:

- 2) Suppose the top qubit in the above circuit is measured in the computational basis. What is the probability that the measurement result is 0?
- 3) If the result of measuring the top qubit in the computational basis is 0, what is the (normalized) post-measurement state of the remaining two qubits?
- 4) How do the results of the previous parts change if $|\psi\rangle$ and $|\phi\rangle$ are *n*-qubit states, and SWAP denotes the 2*n*-qubit gate that swaps the first *n* qubits with the last *n* qubits?

4 The Bernstein-Vazirani problem

1) Suppose $f: \{0,1\}^n \to \{0,1\}$ is a function of the form

$$f(x) \equiv x_1 s_1 + x_2 s_2 + \dots + x_n s_n \mod 2$$

for some $s \in \{0,1\}^n$. Given a black box for f, how many classical queries are required to learn s with certainty?

2) Prove that for any *n*-bit string $u \in \{0,1\}^n$,

$$\sum_{v \in \{0,1\}^n} (-1)^{u \cdot v} = \begin{cases} 2^n & \text{if } u = 00 \cdots 0 \\ 0 & \text{otherwise} \end{cases}.$$

3) Let U_f denote a quantum black box for f, acting as $U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle$ for any $x \in \{0,1\}^n$ and $y \in \{0,1\}$. Show that the output of the following circuit is the state $|s\rangle|-\rangle$.

4) What can you conclude about the quantum query complexity of learning s?

5 A fast approximate QFT

In class, we stated that the QFT uses $O(n^2)$ gates. Here we consider a fast approximate version of QFT.

1) Let cR_k denote the controlled- R_k gate, with $cR_k|x,y\rangle = e^{2\pi i xy/2^k}|x,y\rangle$ for $x,y\in\{0,1\}$. Show that

$$E(cR_k, I) \leq 2\pi/2^k$$
,

where I denotes the 4×4 identity matrix, and recall $E(U, V) = \max_{|\psi\rangle} ||U|\psi\rangle - V|\psi\rangle||$.

- 2) Let F denote the exact QFT on n qubits. Suppose that for some constant c, we delete all the controlled- R_k gates with $k > \log_2 n + c$ from the QFT circuit, giving a circuit for another unitary operation, \tilde{F} . Show that $E(F, \tilde{F}) \le \epsilon$ for some ϵ that is independent of n, where ϵ can be made arbitrarily small by choosing c arbitrarily large.
- 3) For a fixed c, how many gates are used by the circuit implementing \tilde{F} ? It is sufficient to give your answer using the big-O notation.