Trí Tuệ Nhân Tạo

(Artificial Intelligence)

Lê Thanh Hương

Viện Công nghệ thông tin và Truyền thông Trường Đại Học Bách Khoa Hà Nội

Nội dung môn học

- Chương 1. Tổng quan
- Chương 2. Tác tử thông minh
- Chương 3. Giải quyết vấn đề
- Chương 4. Tri thức và suy diễn
 - Giới thiệu về logic
 - Logic định đề
 - Logic vị từ

Chương 5. Học máy

Giới hạn của Logic định đề

- Hãy xét ví dụ sau đây:
 - Tuấn là một sinh viên của HUST
 - Mọi sinh viên của HUST đều học môn Đại số
 - Vì Tuấn là một sinh viên của HUST, nên Tuấn học môn Đại số
- Trong logic định đề:
 - Định đề p: "Tuấn là một sinh viên của HUST"
 - Định đề q: "Mọi sinh viên của HUST đều học môn Đại số"
 - Định đề r. "Tuấn học môn Đại số"
 - Nhưng: (trong logic định đề) r không thể suy ra được từ p và q!

Logic vị từ (FOL): Ví dụ

- Ví dụ nêu trên có thể được biểu diễn trong logic vị từ bởi các biểu thức (logic vị từ) sau
 - □ HUST Student (Tuan): "Tuấn là một sinh viên của HUST"
 - □ $\forall x$: HUST_Student(x) \rightarrow Studies_Algebra(x): "Mọi sinh viên của HUST đều học môn Đại số"
 - □ Studies_Algebra (Tuan): "Tuấn học môn Đại số"
- Trong logic vị từ, chúng ta có thể chứng minh được:

```
{HUST_Student(Tuan), \forall x:HUST_Student(x) \rightarrow Studies Algebra(x)} \vdash Studies Algebra(Tuan)
```

- Với ví dụ trên, trong logic vị từ:
 - □ Các ký hiệu *Tuan*, *x* được gọi là các **phần tử** (*Tuan* là hằng, *x* là biến)
 - □ Các ký hiệu HUST_Student và Studies_Algebra là các vị từ
 - □ Ký hiệu ∀ là lượng từ với mọi
 - □ Các phần tử, các vị từ và các lượng từ cho phép biểu diễn các biểu thức

FOL: Ngôn ngữ (1)

- 4 kiểu ký hiệu (symbols)
 - Hằng (Constants): Các tên của các đối tượng trong một lĩnh vực bài toán cụ thể (ví dụ: *Tuan*)
 - Biến (Variables): Các ký hiệu mà giá trị thay đổi đối với các đối tượng khác nhau (ví dụ: x)
 - Ký hiệu hàm (Function symbols): Các ký hiệu biểu diễn ánh xạ (quan hệ hàm) từ các đối tương của miền (domain) này sang các đối tượng của miền khác (ví dụ: plus)
 - Các vị từ (Predicates): Các quan hệ mà giá trị logic là đúng hoặc sai (ví dụ: HUST_Student and Studies_Algebra)
- Mỗi ký hiệu hàm hoặc vị từ đều có một tập các tham số
 - Ví dụ: HUST_Student và Studies_Algebra là các vị từ có 1 tham số
 - Ví dụ: plus là một ký hiệu hàm có 2 tham số

FOL: Ngôn ngữ (2)

- Một phần tử (term) được định nghĩa (truy hồi) như sau
 - Một hằng số là một phần tử
 - Một biến là một phần tử
 - □ Nếu $t_1, t_2,...,t_n$ là các thành phần và f là một <u>ký hiệu hàm có n</u> tham số, thì $f(t_1,t_2,...,t_n)$ là một phần tử
 - Không còn gì khác là một phần tử
- Các ví dụ của phần tử (term)
 - 🛘 Tuan
 - **-** 2
 - □ friend(Tuan)
 - \Box friend(x)
 - \square plus (x,2)

FOL: Language (3)

Các nguyên tử (Atoms)

- □ Nếu $t_1, t_2, ..., t_n$ là các thành phần (terms) và p là một v_1 từ có n tham số, thì $p(t_1, t_2, ..., t_n)$ là một nguyên tử (atom)
- □ **Ví dụ**: HUST_Studies (Tuan), HUST_Studies (x), Studies Algebra (Tuan), Studies (x)

Các biểu thức (Formulas) được định nghĩa như sau

- Một nguyên tử (atom) là một biểu thức
- □ Nếu ϕ và ψ là các biểu thức, thì $-\phi$ và $\phi \wedge \psi$ là các biểu thức
- □ Nếu ϕ là một biểu thức và x là một biến, thì $\forall x: \phi(x)$ là một biểu thức
- Không còn gì khác là một biểu thức
- Lưu ý: $\exists x : \phi(x)$ được định nghĩa bằng $\neg \forall x : \neg \phi(x)$

FOL: Ngữ nghĩa (1)

- Một **phép diễn giải (interpretation)** của một biểu thức ϕ được biểu diễn bằng cặp $<\mathcal{D},I>$
- ullet Miền giá trị (Domain) ${\mathcal D}$ là một tập khác rỗng
- Hàm diễn giải (Interpretation function) I là một phép gán giá trị đối với mỗi hằng, ký hiệu hàm, và ký hiệu vị từ – sao cho:
 - lacksquare Đối với hằng c: $I(c) \in \mathcal{D}$
 - □ Đối với ký hiệu hàm (có n tham số) f: I(f): $\mathcal{D}^{n} \to \mathcal{D}$
 - □ Đối với ký hiệu vị từ (có n tham số) P: I(P): $\mathcal{D}^n \to \{\text{true}, \text{false}\}$

FOL: Ngữ nghĩa (2)

- Diễn giải đối với một biểu thức logic vị từ. Giả sử ϕ , ψ và λ là các biểu thức vị từ
 - □ Nếu ϕ là $\neg \psi$, thì $I(\phi)$ =sai nếu $I(\psi)$ =đúng, và $I(\phi)$ =đúng nếu $I(\psi)$ =sai
 - □ Nếu ϕ là $(\psi \land \lambda)$, thì $I(\phi)$ =sai nếu $I(\psi)$ hoặc $I(\lambda)$ là sai, và $I(\phi)$ =true nếu cả $I(\psi)$ và $I(\lambda)$ là đúng
 - □ Giả sử $\forall x : \phi(x)$ là một biểu thức, thì $I(\forall x : \phi(x))$ =đúng nếu $I(\phi)$ (d)=đúng với mọi giá trị d∈ D

FOL: Ngữ nghĩa (3)

- Một biểu thức ϕ là **thỏa mãn được (satisfiable)** nếu và chỉ nếu tồn tại một phép diễn giải $<\mathcal{D}$, I> sao cho $I(\phi)$ Chúng ta ký hiệu là: $\models_I \phi$
- Nếu $\models_I \phi$, thì chúng ta nói rằng I là một **mô hình** (model) của ϕ . Nói cách khác, I thỏa mãn (satisfies) ϕ
- Một biểu thức là không thể thỏa mãn được (unsatisfiable) nếu và chỉ nếu không tồn tại bất kỳ phép diễn giải nào
- Một biểu thức ϕ là **đúng (valid)** nếu và chỉ nếu mọi phép diễn giải I đều thỏa mãn ϕ Chúng ta ký hiệu là: $\models \phi$

Lượng tử logic Với mọi

- Cú pháp của lượng tử logic Với mọi (universal quantifier): ∀<Biến₁,...,Biếnₙ>: <Mệnh đề>
- Ví dụ: Tất cả (mọi) sinh viên đang ngồi học trong lớp K4 đều chăm chỉ

```
\forall x: Ngoi\_trong\_lop(x,K4) \Rightarrow Cham\_chi(x)
```

- Mệnh đề (∀x: P) là đúng trong một mô hình m, khi và chỉ khi P đúng với x là mỗi (mọi) đối tượng trong mô hình đó
- Tức là, mệnh đề (∀x: P) tương đương với sự kết hợp (và) của tất cả các trường hợp của P

```
Ngoi\_trong\_lop(Hue,K4) \Rightarrow Cham\_chi(Hue)
\land Ngoi\_trong\_lop(Cuong,K4) \Rightarrow Cham\_chi(Cuong)
\land Ngoi\_trong\_lop(Tuan,K4) \Rightarrow Cham\_chi(Tuan)
```

Lượng tử logic Tồn tại

- Cú pháp của lượng tử logic Tồn tại (existential quantifier): ∃<Biến₁,...,Biến₂>: <Mệnh đề>
- Ví dụ: Tồn tại (có) sinh viên đang ngồi học trong lớp K4, và là sinh viên chăm chỉ:
- $\exists x: Ngoi_trong_lop(x,K4) \land Cham_chi(x)$
- Mệnh đề (∃x: P) là đúng trong một mô hình m, khi và chỉ khi P là đúng với x là một đối tượng trong mô hình đó
- Tức là, mệnh đề (∃x: P) tương đương với phép tuyển (hoặc) của các trường hợp của P

```
Ngoi_trong_lop(Hue,K4) ∧ Cham_chi(Hue)
```

- ∨ Ngoi_trong_lop(Cuong,K4) ∧ Cham_chi(Cuong)
- ∨ Ngoi_trong_lop(Tuan,K4) ∧ Cham_chi(Tuan)
- V ...

Các đặc điểm của các lượng từ logic

- Tính hoán vị:
 - \Box ($\forall x \forall y$) là tương đương với ($\forall y \forall x$)
 - □ (∃x ∃y) là tương đương với (∃y ∃x)
- Tuy nhiên, (∃x ∀y) không tương đương với (∀y ∃x)
 - □ ∃x ∀y: Yeu(x,y) "Trên thế giới này, tồn tại (có) một người mà người đó yêu quý tất cả mọi người khác"
 - □ ∀y ∃x: Yeu(x,y) "Trên thế giới này, mọi người đều được ít nhất một người khác yêu thích"
- Mỗi lượng từ logic (∃ hoặc ∀) đều có thể được biểu diễn bằng lượng từ kia
 - □ (∀x: Thich(x,Kem)) là tương đương với (¬∃x: ¬Thich(x,Kem))
 - □ (∃x: Thich(x,BongDa)) là tương đương với (¬∀x: ¬Thich(x,BongDa))

Sử dụng logic vị từ

Biểu diễn các phát biểu trong ngôn ngữ tự nhiên

"x là anh/chị/em của y" tương đương với "x và y là anh em ruột"

```
\forall x,y: Anh\_chi\_em(x,y) \Leftrightarrow Anh\_em\_ruot(x,y)
```

"Mẹ của c là m" tương đương với "m là phụ nữ và m là bậc cha mẹ của c"

```
\forall m,c: Me(c) = m \Leftrightarrow (Phu\_nu(m) \land Cha\_me(m,c))
```

Quan hệ "anh em ruột" có tính chất đối xứng ∀x,y: Anh_em_ruot(x,y) ⇔ Anh_em_ruot(y,x)

Chuyển đổi các phát biểu sau sang logic vị từ:

- 1. Tất cả các sinh viên đều chăm học
- Có một số sinh viên
- 3. Một số sinh viên chăm học
- 4. Mỗi sinh viên đều thích một sinh viên nào đó
- 5. Mỗi sinh viên đều thích một sinh viên khác
- 6. Có một sinh viên được tất cả sinh viên khác thích

Chuyển đổi các phát biểu sau sang logic vị từ:

- 1. Tất cả các sinh viên đều chăm học
- Có một số sinh viên
- 3. Một số sinh viên chăm học
- 4. Mỗi sinh viên đều thích một sinh viên nào đó
- 5. Mỗi sinh viên đều thích một sinh viên khác
- 6. Có một sinh viên được tất cả sinh viên khác thích

Các phép biến đối tương đương

1. Loại bỏ dấu suy ra

$$\alpha \leftrightarrow \beta \Rightarrow (\alpha \to \beta) \land (\beta \to \alpha)$$
$$\alpha \to \beta \Rightarrow \neg \alpha \lor \beta$$

2. Chuyển phủ định vào trong ngoặc

$$\neg(\alpha \lor \beta) \Rightarrow \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta$$
$$\neg\neg\alpha \Rightarrow \alpha$$
$$\neg\forall x, \alpha \Rightarrow \exists x, \neg\alpha$$
$$\neg\exists x, \alpha \Rightarrow \forall x, \neg\alpha$$

3. Đặt tên các biến khác nhau

$$\forall x, \exists y, (\neg P(x) \lor \exists x, Q(x,y)) \Rightarrow \forall x_1, \exists x_2, (\neg P(x_1) \lor \exists x_3, Q(x_3,y_2))$$

Ví dụ

a. John owns a dog

 $\exists x. D(x) \land O(J,x)$

D(Fido) A O(J, Fido)

 b. Anyone who owns a dog is a lover-of-animals

 $\forall x. (\exists y. D(y) \land O(x,y)) \rightarrow L(x)$

 $\forall x. (\neg \exists y. (D(y) \land O(x,y)) \lor L(x)$

 $\forall x. \forall y. \neg(D(y) \land O(x,y)) \lor L(x)$

 $\forall x. \forall y. \neg D(y) v \neg O(x,y) v L(x)$

 $\neg D(y) \lor \neg O(x,y) \lor L(x)$

 c. Lovers-of-animals do not kill animals

 $\forall x. L(x) \rightarrow (\forall y. A(y) \rightarrow \neg K(x,y))$

 $\forall x. \neg L(x) v (\forall y. A(y) \rightarrow \neg K(x,y))$

 $\forall x. \neg L(x) \lor (\forall y. \neg A(y) \lor \neg K(x,y))$

 $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$

Phép gán trị

VD: Định lý đường trung bình:

 r_1 : trđ(U,XY) \wedge trđ(V,XZ) \Rightarrow ss(UV,YZ)

Phép gán trị $\theta = \{A/X, B/Z, D/Y, L/U, I/V\}$:

• $r_1\theta$: trđ(L,AD) \wedge trđ(I,AB) \Rightarrow ss(LI,DB)

Hợp giải Robinson cho logic vị từ

- Viết mỗi GT_i, ⊣KL trên 1 dòng
- 2. Đưa GT_i, ⊸KL về dạng chuẩn CNF

$$\forall x_1 \forall x_2 ... \forall x_n \ [p_1(...) \lor ... \lor p_n(...)] \land [q_1(...) \lor ... \lor q_m(...)] \qquad (*)$$

Tách mỗi dòng (*) thành các dòng con:

$$\begin{array}{ll} \forall x_1 \forall x_2 ... \forall x_n & [p_1(\ldots) \lor \ldots \lor p_n(\ldots)] \\ \forall x_1 \forall x_2 ... \forall x_n & [q_1(\ldots) \lor \ldots \lor q_m(\ldots)] \\ \text{tất cả đều với } \forall \end{array}$$

4. Hợp giải:

u)
$$\neg p(x_1, x_2, ..., x_n) \lor q(...)$$
 \Rightarrow w) $q(...) \lor r(...)$ với phép gán trị v) $p(y_1, y_2, ..., y_n) \lor r(...)$ $\theta = \left\{\frac{z_1}{x_1}, \frac{z_1}{y_1}, ..., \frac{z_n}{x_n}, \frac{z_n}{y_n}\right\}$

- 5. Vô lý xảy ra khi
- i) $\neg p(x_1, x_2, \dots, x_n)$
- ii) $p(y_1, y_2, ..., y_n)$ với phép gán trị $\theta = \left\{ \frac{z_1}{x_1}, \frac{z_1}{v_1}, \dots, \frac{z_n}{x}, \frac{z_n}{v} \right\}$

Ví dụ về bước 4

Sử dụng phép gán trị nào để hợp giải P(a,x,b), và ¬P(y,z,z)

Phép gán trị
$$\theta = \left\{ \frac{a}{y}, \frac{b}{z}, \frac{b}{x} \right\}$$

- P(a,b,b)
- ¬P(a,b,b)

Ví dụ về bước 4 (tiếp)

Sử dụng phép gán trị nào để hợp giải
 P(a,x,x,b), và
 ¬P(y,y,z,b)

Ví dụ về bước 4 (tiếp)

- Cho các sự kiện p(a,b), p(c,d), q(d,c,c) đúng
- Cho luật $p(x,y) \wedge q(y,x,x) \Rightarrow r(x,y)$
- Sử dụng các phép gán trị với luật trên, hãy đưa ra các sự kiện mới đúng.
- Gợi ý:
 - □ Thử với $p(x,y) \equiv p(a,b)$ hoặc $p(x,y) \equiv p(c,d)$

Ví dụ về hợp giải

$$\forall x \quad P(x) \rightarrow Q(x)$$

$$\forall x \neg P(x) \rightarrow R(x)$$

$$\forall x \quad Q(x) \rightarrow S(x)$$

$$\forall x \quad R(x) \rightarrow S(x)$$

Chuyển về dạng chuẩn

$$1. \neg P(x) \lor Q(x)$$

$$2. P(x) \vee R(x)$$

$$3. \neg Q(x) \lor S(x)$$

$$4. \neg R(x) \lor S(x)$$

Hợp giải 1 và 3

$$5.\neg P(x) \lor S(x)$$

Hợp giải 2 và 5

$$6.R(x) \vee S(x)$$

Hợp giải 4 và 6

Bài toán khỉ - chuối

- 1. tại(C,1)
- 2. tại(B,3)
- 3. tại(A,4)
- 4. tại(D,2)
- 5. $tai(A,x) \Rightarrow tai(A,y)$
- 6. $tai(A,x) \wedge tai(O,x) \Rightarrow tai(A,y) \wedge tai(O,y)$
- 7. $tai(A,x) \wedge tai(O,x) \Rightarrow trên(A,O)$
- 8. $tai(A,x) \wedge tai(O1,x) \wedge tai(O2,x) \Rightarrow trên(O1,O2)$

KL: $tai(B,2) \land trên(C,B) \land trên(A,C) \land trên(D,A)$

 $\neg KL: \neg tai(B,2) \lor \neg trên(C,B) \lor \neg trên(A,C) \lor \neg trên(D,A)$

- Cho tập các phát biểu:
 - John owns a dog
 - Anyone who owns a dog is a lover of animals
 - Lovers of animals do not kill animals
- Chứng minh:
 - John does not kill animals.

- Nếu xem một ai đó lừa dối người khác là kẻ bịp bợm và
- Bất kỳ ai đồng tình với kẻ bịp bợm cũng là kẻ bịp bợm.
- Trong tập thể có một người nhút nhát đồng tình với kẻ lừa dối
- thì chắc chắn có 1 tên bịp bợm tính tình nhút nhát.

- 1. Fred là con chó giống Collie.
- 2. Sam là chủ của nó.
- 3. Hôm nay là thứ bảy.
- 4. Thứ bảy trời lạnh.
- 5. Fred là con chó được huấn luyện.
- Chó spaniel và (chó collie được huấn luyện) là chó tốt.
- 7. Nếu một con chó tốt và có ông chủ thì nó sẽ đi cùng ông chủ.
- 8. Nếu thứ bảy và ấm thì Sam ở công viên.
- 9. Nếu thứ bảy và không ấm thì Sam ở viện bảo tàng.
- Hỏi fred ở đâu? ∃X loc(fred,X)

- 1. Fred là con chó giống Collie.
- 2. Sam là chủ của nó.
- 3. Hôm nay là thứ bảy.
- 4. Thứ bảy trời lạnh.
- 5. Fred là con chó được huấn luyện.
- 6. Chó spaniel và (chó collie được huấn luyện) là chó tốt.
- 7. Nếu một con chó tốt và có ông chủ thì nó sẽ đi cùng ông chủ.
- 8. Nếu thứ bảy và ấm thì Sam ở công viên.
- 9. Nếu thứ bảy và không ấm thì Sam ở viện bảo tàng.
- Hỏi fred ở đâu? ∃X loc(fred,X)
- 1. collie(Fred).
- 2. owner(Sam, Fred).
- day(sat).
- 4. cold(sat).
- 5. trained(Fred).
- spaniel(X) \vee (collie(X) \wedge trained(X)) \rightarrow gooddog(X).
- 7. gooddog(X) ∧ owner(Y,X) ∧ $loc(Y,Z) \rightarrow loc(X,Z)$.
- 8. day(sat) $\land \neg cold(sat) \rightarrow loc(Sam, park)$.
- 9. $day(sat) \land cold(sat) \rightarrow loc(Sam, museum)$.