Løsningsalgoritme for oppgaver om kraft på kontrollvolum

Simen Å. Ellingsen

18. februar 2014

5-punkts algoritme

- 1. Velg et fornuftig kontrollvolum (CV). Tegn tydelig figur!
 - Helst enten \perp eller \parallel til alle hastigheter.
 - CS legges der strømnnigen er enkel og kjent. Unngå områder med komplisert strømning.
 - Legges slik at alle krefter en er interessert i virker gjennom CS (bortsett fra gravitasjon).
- 2. "Glem" hva som er inne i CV: bare overflaten CS skal brukes herfra!
- 3. Bestem hvilke ytre krefter som virker på CV for å finne et uttrykk for $\sum \mathbf{F}_{\text{ytre}}$. Mulige kandidater er
 - (Netto) trykk-krefter
 - Gravitasjon
 - Friksjonskrefter/skjærkrefter
 - Kontaktkrefter (f.ex. for å holde systemet i ro).
- 4. Beregn $\sum \mathbf{F}_{\text{ytre}}$ ved å bruke kraftloven (impulssatsen).
- 5. Sett uttrykkene for $\sum \mathbf{F}_{ytre}$ fra punkt 3 og 4 like hverandre og løs for ukjente.

Andre tips

- Ofte må vi benytte massebevarelse for å finne det vi trenger under punkt 3 og 4.
- Husk: hastighetene som inngår i fluksfaktorene $(\mathbf{v}_r \cdot \mathbf{n})$ er relativt til CS. Alle andre størrelser er målt relativt til koordinatsystemet.
- Kontrollvolumregning er ikke vanskelig om en er systematisk. Den som slenger i vei kan imidlertid lett rote seg bort!
- Om CV ikke er gitt i oppgaven, *skal* det tegnes figur på eksamen, fordi det å velge CV er en del av oppgaven.
- En god figur er et ypperlig virkemiddel til sjøl å skjønne hva en driver med. Det finnes mange eksempler på studenter som blir lurt av sin egen slurvete figur.