21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

10- Wednesday September 21, 2011.

Definition 10.1: If N and H are two groups, a *semi-direct product* of N and H is a group denoted $G = N \times_{\psi} H$ obtained by choosing an homomorphism ψ of H into Aut(N), the group of automorphisms of N, and defining on the product $N \times H$ the operation \star_{ψ} by $(n_1, h_1) \star_{\psi} (n_2, h_2) = (n_1 \psi_{h_1}(n_2), h_1 h_2)$, where one writes ψ_h for $\psi(h)$.

Lemma 10.2: With the notation of Definition 10.2, G is a group, with identity $e = (e_N, e_H)$, and the inverse of (n, h) is $(\psi_{h^{-1}}(n^{-1}), h^{-1})$.

 $\widetilde{N} = \{(n, e_H) \mid n \in N\}$ is a normal subgroup of G isomorphic to N, $\widetilde{H} = \{(e_N, h) \mid h \in H\}$ is a subgroup of G isomorphic to H, and one has $\widetilde{N} \cap \widetilde{H} = \{e\}$. Moreover, there exists an homomorphism χ from G into \widetilde{H} , which when restricted to \widetilde{H} is the identity, and whose kernel is \widetilde{N} , namely $\chi : (n, h) \mapsto (e_N, h)$.

This group is non-Abelian, except if ψ is the trivial homomorphism (with kernel H), in which case the group is the usual product of groups, which is Abelian if and only if both N and H are Abelian. Proof: The operation \star_{ψ} is associative: $((n_1, h_1) \star_{\psi} (n_2, h_2)) \star_{\psi} (n_3, h_3) = (n_1 \psi_{h_1}(n_2), h_1 h_2) \star_{\psi} (n_3, h_3) = (n_1 \psi_{h_1}(n_2), h_2 h_3) \star_{\psi} (n_3, h_3) = (n_1 \psi_{h_2}(n_2), h_3 h_3) \star_{\psi} (n_3, h_3) = (n_1 \psi_{h_2}(n_2), h_3 h_3) \star_{\psi} (n_3, h_3) + (n_1 \psi_{h_2}(n_2), h_3 h_3) \star_{\psi} (n_3, h_3) + (n_2 \psi_{h_2}(n_2), h_3 h_3) \star_{\psi} (n_3, h_3) + (n_3 \psi_{h_2}(n_2), h_3 h_3) + (n_3 \psi_{h_2}(n_2), h$

Proof: The operation \star_{ψ} is associative: $((n_1, h_1) \star_{\psi} (n_2, h_2)) \star_{\psi} (n_3, h_3) = (n_1 \psi_{h_1}(n_2), h_1 h_2) \star_{\psi} (n_3, h_3) = (n_1 \psi_{h_1}(n_2) \psi_{h_1 h_2}(n_3), h_1 h_2 h_3)$, and then $(n_1, h_1) \star_{\psi} ((n_2, h_2) \star_{\psi} (n_3, h_3)) = (n_1, h_1) \star_{\psi} (n_2 \psi_{h_2}(n_3), h_2 h_3) = (n_1 \psi_{h_1}(n_2 \psi_{h_2}(n_3)), h_1 h_2 h_3)$, which are equal because $\psi_{h_1}(n_2 \psi_{h_2}(n_3)) = \psi_{h_1}(n_2) \psi_{h_1}(\psi_{h_2}(n_3))$ since $\psi_{h_1} \in Aut(N)$, and because $\psi_{h_1} \circ \psi_{h_2} = \psi_{h_1 h_2}$ since ψ is an homomorphism. The identity is (e_N, e_H) , since $(e_N, e_H) \star_{\psi} (n, h) = (e_N \psi_{e_H}(n), h)$ and $(n, h) \star_{\psi} (e_N, e_H) = (n \psi_h(e_N), h)$, which are equal to (n, h) because $\psi_{e_H} = id_N$ and $\psi_h(e_N) = e_N$ for all $h \in H$. The inverse of (n, h) is $(\psi_{h^{-1}}(n^{-1}), h^{-1})$, since $(n, h) \star_{\psi} (\psi_{h^{-1}}(n^{-1}), h^{-1}) = (n \psi_h(\psi_{h^{-1}}(n^{-1})), e_H)$ and $(\psi_{h^{-1}}(n^{-1}), h^{-1}) \star_{\psi} (n, h) = (\psi_{h^{-1}}(n^{-1}), \psi_{h^{-1}}(n), e_H)$, which are equal to (e_N, e_H) because $\psi_h \circ \psi_{h^{-1}} = \psi_{e_H} = id_N$ and $\psi_{h^{-1}}(n^{-1}) \psi_{h^{-1}}(n) = \psi_{h^{-1}}(e_N) = e_N$ for all $h \in H$.

N is a subgroup of G isomorphic to N because $(n_1, e_H) \star_{\psi} (n_2, e_H) = (n_1 n_2, e_H)$ for all $n_1, n_2 \in N$. It is a normal subgroup because for all $n' \in N$ and all $(n, h) \in G$ one has $(n, h) \star_{\psi} (n', e_N) = (n'', e_N) \star_{\psi} (n, h)$ with $n'' = n \psi_h(n') n^{-1}$ (since $n \psi_h(n') = n'' n = n'' \psi_{e_N}(n)$).

 \widetilde{H} is a subgroup of G isomorphic to H because $(e_N,h_1)\star_{\psi}(e_N,h_2)=(e_N,h_1h_2)$ for all $h_1,h_2\in H$.

Since $\chi((n,h)) = (e_N,h)$ for all $n \in N, h \in H$, and the second components in the operation \star_{ψ} use the product in H, χ is an homomorphism, and it is the identity if one restricts it to \widetilde{H} since it consists of using $n = e_N$, and its kernel is the set of (n,h) with $h = e_H$, i.e. \widetilde{N} .

If $N \times_{\psi} H$ is Abelian, then using $n_1 = n_2 = e_N$ shows that H is Abelian, and then one must have $n_1\psi_{h_1}(n_2) = n_2\psi_{h_2}(n_1)$ for all $h_1, h_2 \in H, n_1, n_2 \in N$; using $h_1 = h_2 = e_H$ shows that N is Abelian, and then using $h_1 = e_H$ gives $n_1n_2 = n_2\psi_{h_2}(n_1)$, i.e. $n_1 = \psi_{h_2}(n_1)$ for all $h_2 \in H, n_1 \in N$, or $\psi_{h_2} = id_N$ for all $h_2 \in H$, so that ψ is the trivial homomorphism of H into Aut(N).

Remark 10.3: Since a semi-direct product uses an homomorphism ψ from H into Aut(N), it is useful to know if a non-trivial ψ exists, since a trivial ψ gives the direct product.

For example, if $H = \mathbb{Z}_p$ for a prime p, a nontrivial ψ exists if and only if there exists an element of order p in Aut(N), and in the case where N is finite, it is equivalent to p dividing the order of Aut(N), by Cauchy's theorem.

One has seen that $Aut(\mathbb{Z}_n)$ is isomorphic to \mathbb{Z}_n^* , which has order $\varphi(n)$, so that for p=2 it is always possible if $n \geq 3$ (since 1 and 2 are the only values n for which $\varphi(n)$ is odd), and we shall see below that $\mathbb{Z}_n \times_{\psi} \mathbb{Z}_2$ is isomorphic to the dihedral group D_n . Actually, there is a non-trivial homomorphism from \mathbb{Z}_2 into Aut(N) for any Abelian group N, since there is a natural element of order 2 in Aut(N), which is inversion inv, i.e. $n \mapsto inv(n) = n^{-1}$, because $inv \circ inv = id_N$, there is then an homomorphism ψ of \mathbb{Z}_2 in Aut(N), given by $\psi(0) = id_N$ and $\psi(1) = inv$, hence one can then construct the non-Abelian group $N \star_{inv} \mathbb{Z}_2$, which has twice the number of elements of N if N is finite.

Lemma 10.4: If p < q are (distinct) primes, and $q \neq 1 \pmod{p}$, every group G of order pq is isomorphic to \mathbb{Z}_{pq} , but if $q = 1 \pmod{p}$, there exists a non-Abelian group G of order pq of the form $\mathbb{Z}_q \times_{\psi} \mathbb{Z}_p$.

¹ For a non-Abelian group G, the mapping $g \mapsto g^{-1}$ is not an homomorphism, which would require the inverse of a b to be $a^{-1}b^{-1}$, and it is not the case for at least one pair $a, b \in G$.

Proof: By Sylow's theorem, as seen for the case of |G| = 15, there is one (normal) Sylow q-subgroup H_q isomorphic to \mathbb{Z}_q , and if $q \neq 1 \pmod{p}$ there is one (normal) Sylow p-subgroup H_p isomorphic to \mathbb{Z}_p , so that G is isomorphic to $H_p \times H_q \cong \mathbb{Z}_{pq}$, but if $q = 1 \pmod{p}$ there is the possibility that there are q Sylow p-subgroup K_1, \ldots, K_q (isomorphic to \mathbb{Z}_p), and indeed such a non-Abelian group can be constructed in the form $\mathbb{Z}_q \times_\psi \mathbb{Z}_p$ for a non-trivial homomorphism ψ from \mathbb{Z}_p into $Aut(\mathbb{Z}_q)$, since $Aut(\mathbb{Z}_q)$ has order q-1, which is a multiple of p.

Remark 10.5: Since $Aut(\mathbb{Z}_q)$ is isomorphic to \mathbb{Z}_q^* , and it was mentioned that \mathbb{Z}_q^* is cyclic, it is isomorphic to \mathbb{Z}_{q-1} . For any n, it was shown that for any divisor d of n, \mathbb{Z}_n has exactly one subgroup of order d (and $\varphi(d)$ elements of order d), so that if p divides q-1 there is exactly one subgroup of order p of $Aut(\mathbb{Z}_q)$, so that there is no choice for the image $\psi(\mathbb{Z}_p)$ if ψ is a non-trivial homomorphism from \mathbb{Z}_p into $Aut(\mathbb{Z}_q)$, but there are as many different ψ than elements in $Aut(\mathbb{Z}_p)$, i.e. p-1.

For p = 3, q = 7, ψ must send 1 onto an element of order 3 in \mathbb{Z}_7^* , and these are the quadratic residues different from 1, i.e. 2 and 4: one semi-direct product then consists in putting on $\mathbb{Z}_7 \times \mathbb{Z}_3$ the operation $(n_1, h_1) \star (n_2, h_2) = (n_1 2^{h_1} n_2, h_1 h_2)$, and the other semi-direct product consists in putting on $\mathbb{Z}_7 \times \mathbb{Z}_3$ the operation $(n_1, h_1) \star (n_2, h_2) = (n_1 4^{h_1} n_2, h_1 h_2)$, where the first components are taken modulo 7 and the second components are taken modulo 3.

Example 10.6: The dihedral group D_n is the group of symmetries of a regular polygon with n sides, and such a polygon can considered as the set of nth root of unity in \mathbb{C} , i.e. if $\omega = e^{\frac{2i\pi}{n}}$, the polygon is $\{1, \omega, \ldots, \omega^{n-1}\}$. If a denotes the multiplication by ω , i.e. a rotation of $\frac{2\pi}{n}$ and b is complex conjugation, then $D_n = \{e, a, \ldots, a^{n-1}, b, b, a, \ldots, b, a^{n-1}\}$. Since ba applied to $z \in \mathbb{C}$ gives $\overline{\omega z} = \overline{\omega} \overline{z}$, which is $a^{-1}b$ applied to z (since $\overline{\omega} = \frac{1}{\omega}$), one deduces that $ba = a^{-1}b$. Then, $ba^{k+1} = baa^k = a^{-1}ba^k$, and one finds by induction that $ba^k = a^{-k}b$ for all non-negative integers k; if k < 0, then $k + mn \ge 0$ for some $m \in \mathbb{N}$, so that using $a^n = e$ one deduces that $ba^k = ba^{k+mn} = a^{-k-mn}b = a^{-k}b$.

In this example $a^n = b^2 = e$, so that $b^{-1} = b$, but without using this information one has $(b a^k)^{-1} = (a^{-k}b)^{-1}$ for all $k \in \mathbb{Z}$, i.e. $b^{-1}a^k = a^{-k}b^{-1}$, so that one may push b or b^{-1} to the right through any power of a and change the sign of the exponent of a; by induction, one deduces that $b^\ell a^k = a^{(-1)^\ell k}b^\ell$ for all $k, \ell \in \mathbb{Z}$; then $(a^\alpha b^\beta)(a^\gamma b^\delta) = a^\alpha (b^\beta a^\gamma)b^\delta = a^{\alpha+(-1)^\beta\gamma}b^{\beta+\delta}$, and in the case of D_n the sum of exponents for a is taken in \mathbb{Z}_n , and the sum of exponent of b is taken in \mathbb{Z}_2 .

One recognizes here a semi-direct product with $\psi_h(a^{\gamma}) = a^{(-1)^{\beta}\gamma}$ for $h = b^{\beta}$, i.e. $\psi_h = inv^{\beta}$, so that it is an example of the procedure mentioned for $N \times_{inv} \mathbb{Z}_2$.

² From a geometrical point of view, if one wants to send 1 onto ω^k , either one keeps orientation and one uses a rotation of angle $\frac{2k\pi}{n}$, i.e. a^k , or one changes orientation, in which case one uses complex conjugation before using a rotation of angle $\frac{2k\pi}{n}$, i.e. a^kb .