HW08 - Dynamic Programming

Logan Zweifel September 26, 2021

1 Binomial Coefficient

Use the equation

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

to show

$$\binom{n}{k} = \begin{cases} 1 & \text{if } k = 0 \text{ or } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{if } 0 < k < n \end{cases}$$

For k = 0,

$$\frac{n!}{k!(n-k)!} = \frac{n!}{0!(n-0)!}$$

$$= \frac{n!}{1(n)!}$$

$$= \frac{n!}{n!}$$

$$= 1$$

For k = n,

$$\frac{n!}{k!(n-k)!} = \frac{n!}{n!(n-n)!}$$

$$= \frac{n!}{n!(0)!}$$

$$= \frac{n!}{n!}$$

$$= 1$$

For 0 < k < n, $\binom{n-1}{k-1}$ per the definition of $\binom{n}{k}$ can be simplified to

$$\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k-2)!} * \frac{k}{k} = \frac{k*(n-1)!}{k!(n-k-2)!}$$

and $\binom{n-1}{k}$ can be simplified to

$$\binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$$

Then the following can be done.

$$\frac{k*(n-1)!}{k!(n-k-2)!} + \frac{(n-1)!}{k!(n-k-1)!} = \frac{(n-1)!}{k!} \left[\frac{k}{(n-k-2)!} + \frac{1}{(n-k-1)!} \right]$$

$$= \frac{(n-1)!}{k!} \left[\frac{k}{(n-k-2)!} + \frac{1}{(n-k-1)(n-k-2)!} \right]$$

$$= \frac{(n-1)!}{k!(n-k-2)!} \left[k + \frac{1}{n-k-1} \right]$$

$$= \frac{(n-1)!}{k!(n-k-2)!} * \frac{k+n-k-1}{n-k-1}$$

$$= \frac{(n-1)!}{k!(n-k-2)!} * \frac{n-1}{n-k-1}$$

$$= \frac{n!}{k!(n-k)!}$$

Therefore verifying the recurrence for $\binom{n}{k}$.

2 Shortest Paths

Suppose Floyd's algorithm is executed on the graph below

a) Show the contents of the matrix W

v_{j}											
	X	0	1	2	3	4	5	6	7		
v_i	0	0	21	∞	5	∞	13	∞	∞		
	1	4	0	1	5	∞	∞	∞	∞		
	2	∞	∞	0	∞	5	∞	∞	16		
	3	∞	∞	∞	0	$ \begin{array}{c} 4 \\ \infty \\ \infty \\ 5 \\ 19 \\ 0 \\ \infty \end{array} $	5	3	∞		
	4	∞	∞	6	∞	0	∞	∞	2		
	5	9						4	∞		
	6	∞	∞	∞	∞	2	6	0	4		
	7	∞	∞	10	∞	$2 \\ \infty$	∞	∞	0		
W											

b) Show the contents of the Matrix D

v_{j}										
	X	0	1	2	3	4	5	6	7	
	0	0	21	16	5	10	10	8	12	
v_i	1	4	0	1	5	6	10	8	12	
	2	∞	∞	0	∞	5	∞	∞	7	
	3	14	35	11	0	5	5	3	7	
	4	∞	∞	6	∞	0	∞	∞	2	
	5	9	30	12	14	6	0	4	8	
	6	15	36	8	20	2	6	0	4	
	7	∞	∞	10	∞	15	∞	∞	∞	
D										

In this table, ∞ represents paths that aren't possible for the given graph because vertexes 2, 4 and 7 are in a permanent cycle and have no way/path to reach other vertices.

c) What is the shortest path from v_0 to v_2

The shortest path from v_0 to v_2 is $[v_0, v_3, v_6, v_4, v_2]$ with a length/weight of 16.