2(b) Given:

$$J_{reg}(\theta) = \frac{\lambda}{2} \left[\sum_{i,j} W_{ij}^{2} + \sum_{i,j} U_{ij}^{2} \right]$$

$$J_{full}(\theta) = J(\theta) + J_{reg}(\theta)$$
(1)

$$\frac{\partial J_{fidl}}{\partial \mathbf{U}} = \frac{\partial J}{\partial \mathbf{U}} + \frac{\partial J_{reg}}{\partial \mathbf{U}}$$

$$\frac{\partial J}{\partial \mathbf{U}} = \mathbf{h}^{\mathbf{T}} (\hat{\mathbf{y}} - \mathbf{y}) \text{ from 2(a)}$$

$$\frac{\partial J_{reg}}{\partial \mathbf{U}} = \lambda \mathbf{U}$$

$$\frac{\partial J_{fidl}}{\partial \mathbf{U}} = \mathbf{h}^{\mathbf{T}} (\hat{\mathbf{y}} - \mathbf{y}) + \lambda \mathbf{U}$$
(3)

$rac{\partial oldsymbol{J}_{\mathit{full}}}{\partial \mathbf{W}} =$	$rac{\partial J}{\partial \mathbf{W}} + rac{\partial J}{\partial \mathbf{W}}$	(5)
$\frac{\partial J}{\partial \mathbf{W}} =$	$\mathbf{x}^{(t)\mathbf{T}} \left(\frac{\partial J}{\partial \mathbf{h}} \odot \tanh'(\mathbf{x}^{(t)}\mathbf{W} + \mathbf{b_1}) \right) \text{ from 2(a)}$	(6)
$rac{\partial oldsymbol{J}_{reg}}{\partial \mathbf{W}} =$	$\lambda \mathbf{W}$	(7)
$rac{\partial oldsymbol{J}_{\mathit{full}}}{\partial \mathbf{W}} =$	$\mathbf{x}^{(t)\mathrm{T}} \left(\frac{\partial J}{\partial \mathbf{h}} \odot \tanh'(\mathbf{x}^{(t)}\mathbf{W} + \mathbf{b_1}) \right) + \lambda \mathbf{W}$	(8)