Logische und Funktionale Programmierung

Vorlesung 6: Seminarisierung einiger Begriffe aus der Prädikatenlogik

Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro

13. November 2017

TERME

- Terme sind also vollständig geklammerte Ausdrücke, die wir auch als markierte, geordnete Bäume auffassen können.
- Die Knoten sind mit Funktionssymbolen oder Variablen markiert.
- Jeder mit einem Funktionssymbol *f* der Stelligkeit *n* markierte Knoten hat genau *n* Unterbäume, einen für jedes Argument von *f*.

$$\Sigma = (\Omega, \Pi)$$

$$\Omega = \{Jan/0, Vater/1, Mutter/1\}$$

$$\{x, y, z\} \subseteq X$$

Terme:

x Jan

Vater(x) Vater(Jan)

Mutter(x) Mutter(Jan)

Vater(Mutter(x)) Vater(Mutter(Jan))


```
\begin{split} \Sigma &= (\Omega, \Pi) \\ \Omega &= \{0/0, 1/0, succ/1, +/2\} \\ \{x, y, z\} &\subseteq X \\ \textbf{Terme:} \\ x, y, z, 0, 1 \\ succ(x), succ(0), succ(1) \\ x + y, x + z, x + 0, x + 1, (x + (succ(y) + 1)), \dots \end{split}
```


$$\begin{split} \Sigma &= (\Omega, \Pi) \\ \Omega &= \{0/0, 1/0, succ/1, +/2\} \\ \{x, y, z\} &\subseteq X \\ \hline \textbf{Terme:} \\ x, y, z, 0, 1 \\ succ(x), succ(0), succ(1) \\ x + y, x + z, x + 0, x + 1, (x + (succ(y) + 1)), \dots \\ &+ (x, y), + (x, z), + (x, 0), + (x, 1), + (x, + (succ(y), 1)) \end{split}$$

ATOME

Atome (Atomare Formeln) über Σ genügen dieser Syntax:

$$A,B ::= p(s_1,...,s_m)$$
 , $p/m \in \Pi$ $\Big[| (s \approx t)$ (Gleichung) $\Big]$ wobei $s_1,\ldots,s_m,s,t \in T_\Sigma(X)$.

Ist m = 0, so handelt es sich bei p um eine Aussagenvariable.

Atome:

Formeln der Form $p(s_1, \ldots, s_m)$, wobei $p/m \in \Pi$ und $s_1, \ldots, s_m \in T_{\Sigma}(X)$.


```
\Sigma = (\Omega, \Pi)
\Omega = \{Jan/0, Anna/0, Vater/1, Mutter/1\}
\Pi = \{ Mann/1, Frau/1, Bruder/2, \approx /2 \}
\{x, y, z\} \subseteq X
Atome:
Mann(x)
                     Mann(Jan)
                                            Mann(Anna)
Mann(Vater(x))
                     Frau(Vater(Jan))
                                            Mann(Vater(Jan))
Bruder(x, y)
                     Bruder(x, Jan)
                                            Bruder(x, Anna)
Vater(Jan) \approx Vater(Anna)
Vater(x) \approx Mutter(y)
```


$$\Sigma = (\Omega, \Pi)$$

$$\Omega = \{0/0, 1/0, succ/1, +/2\}$$

$$\Pi = \{\leq, \approx, \text{even, odd}\}$$

$$\{x, y, z\} \subseteq X$$

Atome:

$$\begin{split} &x \leq y, \quad z \approx 0, \quad 0 \leq 1 \\ ≻(x) \leq succ(0), \quad succ(1) \approx succ(0) \\ &x + y \leq x + z, \quad x + 0 \approx x + 1 \quad (x + (succ(y) + 1)) \leq z, \dots \end{split}$$
 Infix

even(succ(0)), even(x), even(x + 1), odd(x + (succ(y) + y))

$$\begin{split} \Sigma &= (\Omega, \Pi) \\ \Omega &= \{0/0, 1/0, succ/1, +/2\} \\ \Pi &= \{\leq, \approx, \text{even, odd}\} \\ \{x, y, z\} \subseteq X \\ \textbf{Atome:} \\ x &\leq y, \quad z \approx 0, \quad 0 \leq 1 \\ succ(x) \leq succ(0), \quad succ(1) \approx succ(0) \\ x + y \leq x + z, \quad x + 0 \approx x + 1 \quad (x + (succ(y) + 1)) \leq z, \dots \quad \text{Infix} \\ \text{Präfix:} \\ &\leq (+(x, y), +(x, z)), \quad + (x, 0) \approx +(x, 1), \quad \leq (+(x, +(succ(y), 1)), z) \end{split}$$

even(succ(0)), even(x), even(x + 1), odd(x + (succ(y) + y))

LITERALE

$$L ::= A$$
 (positives Literal)
 $| \neg A$ (negatives Literal)

Beispiele:

$$Mann(Vater(x))$$
 $Vater(Jan) \approx Vater(Anna)$
 $\neg Mann(Vater(x))$ $\neg (Vater(Jan) \approx Vater(Anna))$

$$x \le y$$
 $(x + (succ(y) + 1)) \approx z$
 $\neg x \le y$ $\neg ((x + (succ(y) + 1)) \approx z)$

KLAUSELN

$$C,D$$
 ::= \bot (leere Klausel) $\mid L_1 \lor \ldots \lor L_k, \ k \ge 1$ (nichtleere Klausel)

Beispiele:

$$\perp$$
 $Mann(Vater(x)) \lor \neg(Vater(Jan) \approx Vater(Anna))$
 $\neg Frau(Vater(x))$

$$\neg(x \le y) \quad \lor \quad (x + (succ(y) + 1)) \approx z$$

 $x \le y$
 $\neg(x \le y) \quad \lor \quad \neg(x \le y) \quad \lor \quad (x \le y)$

ZUSAMMENFASSUNG

Syntax

- 1. Logische Symbole:
 - 1.1: Wie in der Aussagenlogik: \top , \bot ; \neg ; \lor , \land , \rightarrow , \leftrightarrow
 - 1.2: Quantoren: ∀, ∃.
- 2. Nichtlogische Symbole: Signatur $\Sigma = (\Omega, \Pi)$,
 - 2.1: Ω Menge von Funktionssymbolen. Notation: f/n: f hat Stelligkeit $n \geq 0$,
 - 2.2: Π Menge von Prädikatensymbolen. Notation: p/m: p hat Stelligkeit $m \ge 0$. (Das Gleichheitsprädikat \approx kann (muss aber nicht) enthalten sein.)

Funktionsssymbole mit Stelligkeit n = 0 heißen Konstanten.

Prädikatensymbole mit Stelligkeit n=0 heißen Aussagenvariablen.

 Variablen: X vorgegebene Menge von abzählbar unendlich vielen Symbolen, die wir für (die Bezeichnung von) Variablen verwenden.

FORMELN

Menge For_{Σ} der Formeln über Σ :

Die kleinste Menge, die

- Alle atomaren Formeln enthält,
- $\top \in \mathsf{For}_{\Sigma}$, $\bot \in \mathsf{For}_{\Sigma}$,
- Wenn $F, G \in For_{\Sigma}$, dann auch $\neg F, F \land G, F \lor G, F \rightarrow G, F \leftrightarrow G \in For_{\Sigma}$,
- Wenn $F \in For_{\Sigma}$ und $x \in X$, dann $\forall x F \in For_{\Sigma}, \exists x F \in For_{\Sigma}$

$$X \; \mathsf{Variablenmenge}, \; x,y,z \in X; \qquad \Sigma = \{\Omega,\Pi\}, \; \mathsf{mit}$$

$$\Omega = \{f/2,g/3,a/0,b/0\} \qquad \mathsf{und} \qquad \Pi = \{\frac{p}{2},\frac{q}{1},\frac{r}{0}\}$$

$$\qquad \qquad | \; \mathsf{Term} \; | \; \mathsf{Atom} \; | \; \mathsf{Literal} \; | \; \mathsf{Klausel} \; | \; \mathsf{Formel} \; | \; \mathsf{Nichts} \; |$$

$$x \\ a \\ f(g(a,y,b),x) \\ g(a,x) \\ p(g(a,y,b),x) \\ p(q(a),b) \\ \neg q(g(a,b,x)) \lor a \\ \neg q(g(a,b,x)) \lor p(a,a) \\ \forall x(p(x,f(x,x))) \\ \forall b(p(b,f(b,b)))$$

X Variablenmenge, $x, y, z \in X$; $\Sigma = \{\Omega, \Pi\}$, mit

 $\Omega = \{f/2, g/3, a/0, b/0\}$ und $\Pi = \{p/2, q/1, r/0\}$

	Term	Atom	Literal	Klausel	Formel	Nichts
x	ja	nein	nein	nein	nein	nein
a	ja	nein	nein	nein	nein	nein
f(g(a, y, b), x)	ja	nein	nein	nein	nein	nein
g(a, x)	nein	nein	nein	nein	nein	ja
p(g(a, y, b), x)	nein	ja	ja	ja	ja	nein
p(q(a), b)	nein	nein	nein	nein	nein	ja
$\neg q(g(a,b,x))$	nein	nein	ja	ja	ja	nein
$\neg q(g(a,b,x)) \lor a$	nein	nein	nein	nein	nein	ja
$\neg q(g(a,b,x)) \lor p(a,a)$	nein	nein	nein	ja	ja	nein
$\forall x(p(x, f(x, x)))$	nein	nein	nein	nein	ja	nein
$\forall b(p(b, f(b, b)))$	nein	nein	nein	nein	nein	ja

BEISPIEL: ARITHMETIK

$$\begin{array}{lll} \Sigma_{PA} &=& (\Omega_{PA}, \ \Pi_{PA}) \\ \Omega_{PA} &=& \{0/0, \ +/2, \ */2, \ s/1\} \\ \Pi_{PA} &=& \{\leq/2, \ _p \ + \end{array}$$

Formelbeispiele über dieser Signatur sind

$$\forall x, y(x \leq y \leftrightarrow \exists z(x + z \approx y))$$

 $\exists x \forall y(x + y \approx y)$
 $\forall x, y(x * s(y) \approx x * y + x)$
 $\forall x, y(s(x) \approx s(y) \rightarrow x \approx y)$
 $\forall x \exists y \ x < y$

GEBUNDENE UND FREIE VARIABLEN

Definitionen:

- In QxF, $Q \in \{\exists, \forall\}$, heißt F der Bindungsbereich des Quantors Qx.
- Ein Auftreten einer Variablen x heißt gebunden, wenn es zum Bindungsbereich eines Quantors Qx gehört.
- Alle anderen Auftreten von Variablen heißen frei.

Formeln ohne freie Variablen heißen Satzformen.

Variablenfreie Formeln heißen Grundformeln.

Bindungsbereich

$$\forall y \quad (\forall x \quad p(x) \rightarrow q(x,y))$$

$$p(z) \rightarrow \forall x (q(x,z) \land \exists z r(y,z))$$

- x gebunden
- y frei
- z frei und gebunden

SUBSTITUTION

Mit F[s/x] bezeichnen wir das Resultat der Substitution aller freien Auftreten von x in F durch den Term s. F[s/x] sei durch strukturelle Induktion über den Aufbau von F wie folgt definiert:

```
x[s/x] = s
x'[s/x] = x' ; \text{ falls } x' \neq x
f(s_1, \dots, s_n)[s/x] = f(s_1[s/x], \dots, s_n[s/x])
\bot[s/x] = \bot
\top[s/x] = \top
p(s_1, \dots, s_n)[s/x] = p(s_1[s/x], \dots, s_n[s/x])
(u \approx v)[s/x] = (u[s/x] \approx v[s/x])
\neg F[s/x] = \neg(F[s/x])
(F\rho G)[s/x] = (F[s/x]\rho G[s/x]) ; \text{ für alle binären Junktoren } \rho \in \{\land, \lor, \rightarrow, \leftrightarrow\}
(QyF)[s/x] = Qz((F[z/y])[s/x]) ; z \text{ neue Variable}
```


Terme:

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

 $x, y, z, u \in X$

$$g(f(x), g(f(x), z)) [g(y, u)/x]$$

= $g(f(g(y, u)), g(f(g(y, u)), z))$

Atome:

$$\Sigma=(\Omega,\Pi), \ {
m mit} \ \Omega=\{f/1,g/2,a/0\}, \ \Pi=\{p/2,pprox/2\}$$
 $x,y,z,u\in X$

$$p(g(f(x), g(f(x), z)), y) [g(y, u)/x]$$

= $p(g(f(g(y, u)), g(f(g(y, u)), z)), y)$

Formeln ohne Quantoren:

$$\Sigma=(\Omega,\Pi)$$
, mit $\Omega=\{f/1,g/2,a/0\}$, $\Pi=\{p/2,pprox/2\}$ $x,y,z,u\in X$

$$\begin{split} & p(g(f(x), g(f(x), z)), \ y) \ \land \ (g(x, y) \approx f(g(z, z))) \ [g(y, u)/x] \\ & = p(g(f(g(y, u)), g(f(g(y, u)), z)), y) \ \land \ (g(g(y, u), y) \approx f(g(z, z))) \end{split}$$

FORMELN MIT QUANTOREN: PROBLEMATIK

$$(QyF)[s/x] = Qz((F[z/y])[s/x])$$
; z neue Variable

Der Grund für die Umbenennung der gebundenen Variablen y in eine neue "unbenutzte" Variable z ist die Vermeidung des Einfangens freier Variablen in s.

Sollte y in s auftreten, wären sonst diese Auftreten nach erfolgter Substitution gebunden.

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z))) [g(y, z)/x]$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z))) [g(y, z)/x]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x] \land \exists z (x \approx g(y, z))[g(y, z)/x]$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z))) [g(y, z)/x]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x] \land \exists z (x \approx g(y, z))[g(y, z)/x]$$

$$=\forall v(p(x,g(f(x),y))[v/x])[g(y,z)/x] \wedge \exists u(((x\approx g(y,z))[u/z])[g(y,z)/x])$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x(p(x,g(f(x),y))) \land \exists z(x \approx g(y,z))) [g(y,z)/x]$$

$$=\forall x(p(x,g(f(x),y)))[g(y,z)/x] \land \exists z(x \approx g(y,z))[g(y,z)/x]$$

$$= \forall v(p(x, g(f(x), y)) [v/x])[g(y, z)/x] \land \exists u(((x \approx g(y, z))[u/z])[g(y, z)/x])$$

$$= \forall v(p(v, g(f(v), y)))[g(y, z)/x] \land \exists u((x \approx g(y, u))[g(y, z)/x])$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z))) [g(y, z)/x]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x] \land \exists z (x \approx g(y, z))[g(y, z)/x]$$

$$= \forall v (p(x, g(f(x), y)) [v/x])[g(y, z)/x] \land \exists u (((x \approx g(y, z))[u/z])[g(y, z)/x])$$

$$= \forall v (p(v, g(f(v), y)))[g(y, z)/x] \land \exists u ((x \approx g(y, u))[g(y, z)/x])$$

$$= \forall v (p(v, g(f(v), y))) \land \exists u (g(y, z) \approx g(y, u))$$

Anwendung einer Substitution auf Terme

$$\Sigma = (\Omega,\Pi)$$
, mit $\Omega = \{f/1,g/2,a/0\}$, $\Pi = \{p/2,pprox/2\}$

$$g(f(x), g(f(x), z)) [g(y, u)/x, f(x)/y, a/z]$$

= $g(f(g(y, u)), g(f(g(y, u)), a))$

Anwendung einer Substitution auf Atome

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$p(g(f(x), g(f(x), z)), y) [g(y, u)/x, f(x)/y, a/z]$$

= $p(g(f(g(y, u)), g(f(g(y, u)), a)), f(x))$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$p(g(f(x), g(f(x), z)), y) \land (g(x, y) \approx f(g(z, z))) [g(y, u)/x, f(x)/y, a/z]$$

= $p(g(f(g(y, u)), g(f(g(y, u)), a)), f(x)) \land (g(g(y, u), f(x)) \approx f(g(a, a)))$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z)))[g(y, z)/x, f(x)/y, a/z]$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z)))[g(y, z)/x, f(x)/y, a/z]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x, f(x)/y, a/z] \land \exists z (x \approx g(y, z))[g(y, z)/x, f(x)/y, a/z]$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z)))[g(y, z)/x, f(x)/y, a/z]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x, f(x)/y, a/z] \land \exists z(x \approx g(y, z))[g(y, z)/x, f(x)/y, a/z]$$

$$= \forall v((p(x, g(f(x), y))[v/x])[g(y, z)/x, f(x)/y, a/z]) \land \exists u(((x \approx g(y, z))[u/z])[g(y, z)/x, f(x)/y, a/z])$$

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x, g(f(x), y))) \land \exists z (x \approx g(y, z)))[g(y, z)/x, f(x)/y, a/z]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x, f(x)/y, a/z] \land \exists z (x \approx g(y, z))[g(y, z)/x, f(x)/y, a/z]$$

$$= \forall v((p(x,g(f(x),y))[v/x])[g(y,z)/x,f(x)/y,a/z]) \land \exists u(((x \approx g(y,z))[u/z])[g(y,z)/x,f(x)/y,a/z])$$

$$= \forall v(p(v, g(f(v), f(x)))) \land \exists u((x \approx g(y, u))[g(y, z)/x, f(x)/y, a/z])$$

Anwendung einer Substitution auf Formeln mit Quantoren

$$\Sigma = (\Omega, \Pi)$$
, mit $\Omega = \{f/1, g/2, a/0\}$, $\Pi = \{p/2, \approx /2\}$

$$(\forall x (p(x,g(f(x),y))) \land \exists z (x \approx g(y,z)))[g(y,z)/x,f(x)/y,a/z]$$

$$= \forall x (p(x, g(f(x), y)))[g(y, z)/x, f(x)/y, a/z] \land \exists z (x \approx g(y, z))[g(y, z)/x, f(x)/y, a/z]$$

$$= \forall v((p(x, g(f(x), y))[v/x])[g(y, z)/x, f(x)/y, a/z]) \land \exists u(((x \approx g(y, z))[u/z])[g(y, z)/x, f(x)/y, a/z])$$

$$= \forall v(p(v, g(f(v), f(x)))) \land \exists u((x \approx g(y, u))[g(y, z)/x, f(x)/y, a/z])$$

$$= \forall v(p(v, g(f(v), f(x)))) \land \exists u(g(y, z) \approx g(f(x), u))$$

Definition.

Eine Σ -Struktur (bzw. Σ -Interpretation bzw. Σ -Modell) ist ein Tripel

$$\mathcal{A} = (U, (f_{\mathcal{A}}: U^n \to U)_{f/n \in \Omega}, (p_{\mathcal{A}} \subseteq U^m)_{p/m \in \Pi})$$

wobei $U \neq \emptyset$ eine Menge, genannt Universum von A.

Oft identifizieren wir U mit \mathcal{A} , wenn die Interpretation der Funktions- und Prädikatensymbole eindeutig aus dem Kontext hervorgeht.

Mit Σ -Str bezeichnen wir die Menge aller Σ -Strukturen.

Beispiel:

$$\Sigma=\left(\{+/2,0/0\},\{\leq,\approx\}\right)$$

$$\mathcal{N} = (\mathbb{N}, \{0_{\mathcal{N}}, +_{\mathcal{N}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}\}, \{\leq_{\mathcal{N}} \subseteq \mathbb{N} \times \mathbb{N}, \approx_{\mathcal{N}}\})$$

$$0_{\mathcal{N}}=0\in\mathbb{N},$$

 $+_{\mathcal{N}}(n_1,n_1)=n_1+n_2\in\mathbb{N}$

$$\leq_{\mathcal{N}} = \{(n_1, n_2) \mid n_1 \leq n_2\}$$

Beispiel:

$$\Sigma=(\{+/2,0/0\},\{\leq,\approx\})$$

Eine andere Σ -Struktur:

$$\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, +_{\mathcal{A}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}\}, \{\leq_{\mathcal{A}} \subseteq \mathbb{N} \times \mathbb{N}, \approx_{\mathcal{N}}\})$$

$$0_{\mathcal{A}} = 1 \in \mathbb{N},$$

$$+_{\mathcal{A}} (n_1, n_2) = \begin{cases} 1 & \text{wenn } n_2 = 0 \\ n_1^{n_2} & \text{wenn } n_2 \neq 0 \end{cases}$$

$$\leq_{\mathcal{A}} = \{(n_1, n_2) \mid n_1 = n_2^2\}$$

Beispiel:

$$\Sigma = (\{+/2, 0/0\}, \{\leq, \approx\})$$

Eine dritte Σ-Struktur:

$$\mathcal{B} = (\{a, b\}, \{0_{\mathcal{B}}, +_{\mathcal{B}}: \{a, b\} \times \{a, b\} \rightarrow \{a, b\}\}, \{\leq_{\mathcal{B}} \subseteq \{a, b\} \times \{a, b\}, \approx_{\mathcal{B}}\})$$

$$0_{\mathcal{B}} = a \in \{a, b\},$$

$$+_{\mathcal{B}}(a, a) = a; \quad +_{\mathcal{B}}(a, b) = b;$$

$$+_{\mathcal{B}}(b, a) = b; \quad +_{\mathcal{B}}(b, b) = b;$$

$$\leq_{\mathcal{B}} = \{(a, a), (a, b), (b, b)\}$$

VALUATIONEN

Variablen für sich haben keine Bedeutung. Hierfür müssen Wertebelegungen (Valuationen) explizit oder implizit aus dem Kontext zur Verfügung stehen.

Definition.

Unter einer (Variablen-) Belegung oder einer Valuation (über einer Σ -Struktur A) versteht man eine Abbildung

$$\beta\colon X\to U.$$

Wert eines Terms in A bzgl. β

Induktive Definition:

$$\mathcal{A}(\beta)(x) = \beta(x), \qquad x \in X$$

$$\mathcal{A}(\beta)(f(s_1, \dots, s_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)), \qquad f/n \in \Omega$$

Wert eines Terms in \mathcal{A} bzgl. β , $\mathcal{A}(\beta)(t)$:

- Falls $t = x \in X$: $A(\beta)(t) = \beta(x)$
- Falls t=c eine Konstante: $\mathcal{A}(eta)(t)=c_{\mathcal{A}}$
- Falls $t = f(t_1, ..., t_n)$: $A(\beta)(t) = f_A(A(\beta)(t_1), ..., A(\beta)(t_n))$

Wert eines Terms in A bzgl. β

Beispiel:

$$\begin{split} & \Sigma = (\{+/2,0/0\}, \{\leq, \approx\}) \\ & \mathcal{N} = (\mathbb{N}, \{0_{\mathcal{N}}, +_{\mathcal{N}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}\}, \{\leq_{\mathcal{N}} \subseteq \mathbb{N} \times \mathbb{N}, \approx_{\mathcal{N}}\}) \end{split}$$

$$0_{\mathcal{N}} = 0 \in \mathbb{N},$$

 $+_{\mathcal{N}}(n_1, n_1) = n_1 + n_2 \in \mathbb{N}$

$$\beta: \{x, y, z\} \rightarrow \mathbb{N} \text{ mit } \beta(x) = 5, \beta(y) = 10, \beta(z) = 3$$

$$\mathcal{N}(\beta)((x + (y + z)) + (z + 0)) =$$
= $(\beta(x) +_{\mathcal{N}} (\beta(y) +_{\mathcal{N}} \beta(z))) +_{\mathcal{N}} (\beta(z) +_{\mathcal{N}} 0_{\mathcal{N}}) =$
= $(5 + (10 + 3)) + (3 + 0) = 21$

Die Menge der Wahrheitswerte sei {0,1}.

 $\mathcal{A}(eta):\mathsf{For}_\Sigma o\{0,1\}$ wird induktiv über Aufbau von F wie folgt definiert:

$$\mathcal{A}(eta)(ot)=0$$

$$\mathcal{A}(eta)(\top)=1$$

$$\mathcal{A}(eta)(p(s_1,\ldots,s_n)) = 1$$
 g.d.w. $(\mathcal{A}(eta)(s_1),\ldots,\mathcal{A}(eta)(s_n)) \in p_\mathcal{A}$ $\mathcal{A}(eta)(spprox t) = 1$ g.d.w. $\mathcal{A}(eta)(s) = \mathcal{A}(eta)(t)$

$$\mathcal{A}(\beta)(\neg F) = 1$$
 g.d.w. $\mathcal{A}(\beta)(F) = 0$
$$\mathcal{A}(\beta)(F\rho G) = \rho_b(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$
 mit ρ_b die ρ zugeordnete Boolesche Funktion

$$\mathcal{A}(\beta)(\neg F) = 1$$
 g.d.w. $\mathcal{A}(\beta)(F) = 0$
$$\mathcal{A}(\beta)(F\rho G) = \rho_b(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$
 mit ρ_b die ρ zugeordnete Boolesche Funktion

Erklärung:

• $\mathcal{A}(\beta)(\neg F) = \neg_b \mathcal{A}(\beta)(F)$, wobei \neg_b die Negation auf den Wahrheitswerten $\{0,1\}$ ist, mit Wahrheitstabelle:

W	$\neg_b w$
0	1
1	0

$$\mathcal{A}(\beta)(\neg F) = 1$$
 g.d.w. $\mathcal{A}(\beta)(F) = 0$
$$\mathcal{A}(\beta)(F\rho G) = \rho_b(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$
 mit ρ_b die ρ zugeordnete Boolesche Funktion

Erklärung:

• $\mathcal{A}(\beta)(F \wedge G) = \mathcal{A}(\beta)(F) \wedge_b \mathcal{A}(\beta)(G)$, wobei \wedge_b die Konjunktion auf den Wahrheitswerten $\{0,1\}$ ist, mit Wahrheitstabelle:

\wedge_b	0	1
0	0	0
1	0	1

$$\mathcal{A}(\beta)(\neg F) = 1$$
 g.d.w. $\mathcal{A}(\beta)(F) = 0$
 $\mathcal{A}(\beta)(F\rho G) = \rho_b(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$

mit ho_b die ho zugeordnete Boolesche Funktion

Erklärung:

 A(β)(F ∨ G) = A(β)(F) ∨_b A(β)(G), wobei ∨_b die Disjunktion auf den Wahrheitswerten {0,1} ist, mit Wahrheitstabelle:

\vee_b	0	1
0	0	1
1	1	1

$$\mathcal{A}(\beta)(\neg F) = 1$$
 g.d.w. $\mathcal{A}(\beta)(F) = 0$
$$\mathcal{A}(\beta)(F\rho G) = \rho_b(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$
 mit ρ_b die ρ zugeordnete Boolesche Funktion

Erklärung:

• $\mathcal{A}(\beta)(F \to G) = \mathcal{A}(\beta)(F) \to_b \mathcal{A}(\beta)(G)$, wobei \to_b die Implikation auf den Wahrheitswerten $\{0,1\}$ ist, mit Wahrheitstabelle:

\rightarrow_b	0	1
0	1	1
1	0	1

$$\mathcal{A}(\beta)(\neg F) = 1$$
 g.d.w. $\mathcal{A}(\beta)(F) = 0$
$$\mathcal{A}(\beta)(F\rho G) = \rho_b(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$
 mit ρ_b die ρ zugeordnete Boolesche Funktion

Erklärung:

• $\mathcal{A}(\beta)(F \leftrightarrow G) = \mathcal{A}(\beta)(F) \leftrightarrow_b \mathcal{A}(\beta)(G)$, wobei \leftrightarrow_b die Äquivalenz auf den Wahrheitswerten $\{0,1\}$ ist, mit Wahrheitstabelle:

\leftrightarrow_b	0	1
0	1	0
1	0	1

$$\begin{split} \Sigma &= (\Omega, \Pi), X &\quad \Omega &= \{0/0, s/1, +/2, */2\} \\ &\quad \Pi &= \{ \leq /2,
$$\mathcal{A} &= (\mathbb{N}, \{ +_{\mathcal{A}}, *_{\mathcal{A}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \\ &\quad n_1 +_{\mathcal{A}} n_2 = n_1 + n_2 \\ &\quad n_1 *_{\mathcal{A}} n_2 = n_1 \cdot n_2 \end{split} \qquad \begin{aligned} &\{ \leq, <_{\mathcal{A}} \subseteq \mathbb{N} \times \mathbb{N} \ \) \\ &\quad (n_1, n_2) \in \leq_{\mathcal{A}} \ \operatorname{iff} \ n_1 \leq n_2 \ \operatorname{in} \ \mathbb{N} \\ &\quad (n_1, n_2) \in <_{\mathcal{A}} \ \operatorname{iff} \ n_1 < n_2 \ \operatorname{in} \ \mathbb{N} \end{aligned}$$

$$s_{\mathcal{A}} : \mathbb{N} \to \mathbb{N}, \qquad \qquad \operatorname{gerade}_{\mathcal{A}}, \operatorname{ungerade}_{\mathcal{A}} \subseteq \mathbb{N} \}$$

$$s(n) = n + 1 \qquad \qquad \operatorname{gerade}_{\mathcal{A}} = \{ 0, 2, 4, \dots, 2k \dots \}$$

$$\operatorname{ungerade}_{\mathcal{A}} = \{ 1, 3, 5, \dots, 2k + 1 \dots \}, \end{aligned}$$$$

Konvention: Auf den nächsten Folien wird der Unterschied zwischen den natürlichen Zahlen 0, 1 und den Wahrheitswerten 0 (falsch) und 1 (wahr) deutlich gemacht, indem wir die Wahrheitswerte in orangener Farbe schreiben.

Nota Bene:

- Der Wert eines Termes t in A bzgl. β ist ein Element in das Universum von A.
- Der Wahrheitswert einer Formel F in A bzgl. β ist ein Wahrheitswert (0 oder 1).

 $\Sigma = (\Omega, \Pi), X \quad \Omega = \{0/0, s/1, +/2, */2\}$

$$\mathcal{A} = (\mathbb{N}, \{+_{\mathcal{A}}, *_{\mathcal{A}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \\ n_1 +_{\mathcal{A}} n_2 = n_1 + n_2 \\ n_1 *_{\mathcal{A}} n_2 = n_1 \cdot n_2 \\ (n_1, n_2) \in \leq_{\mathcal{A}} \text{ iff } n_1 \leq n_2 \text{ in } \mathbb{N} \\ (n_1, n_2) \in \leq_{\mathcal{A}} \text{ iff } n_1 \leq n_2 \text{ in } \mathbb{N} \\ s_{\mathcal{A}} : \mathbb{N} \to \mathbb{N}, \\ s(n) = n + 1 \\ 0_{\mathcal{A}} = 0 \in \mathbb{N} \} \\ \beta : X \to \mathbb{N} \text{ mit } \beta(x) = 1, \beta(y) = 4$$

$$(1) \mathcal{A}(\beta)(\text{gerade}(x)) = 0 \\ (2) \mathcal{A}(\beta))(s(s(x) + s(0)) \approx y) = 1 \text{ Erklärung: } \mathcal{A}(\beta)(s(s(x) + s(0))) = s_{\mathcal{A}}(s_{\mathcal{A}}(\beta(x)) +_{\mathcal{A}}s_{\mathcal{A}}(0_{\mathcal{A}}) \\ = ((1+1) + (0+1)) + 1 = 4 \\ \mathcal{A}(\beta)(y) = 4 \\ \text{und } 4 = 4 \\ (3) \mathcal{A}(\beta))(x \approx y) = 0 \\ \text{Erklärung: } \mathcal{A}(\beta)(x) = 1; \quad \mathcal{A}(\beta)(y) = 4, \quad 1 \neq 4$$

 $\Pi = \{ < /2, < /2, \text{ gerade}/1, \text{ ungerade}/1 \} \text{ mit Gleichheit } \approx .$

$$\mathcal{A}(\beta)(\forall xF) = \min_{a \in U} \{\mathcal{A}(\beta[x \mapsto a])(F)\} = \left\{ \begin{array}{ll} 1 & \text{falls } \mathcal{A}(\beta[x \mapsto a])(F) = 1 \text{ für alle } a \in U \\ 0 & \text{sonst} \end{array} \right.$$

$$\mathcal{A}(\beta)(\exists xF) = \max_{a \in U} \{\mathcal{A}(\beta[x \mapsto a])(F)\} = \left\{ \begin{array}{ll} 1 & \text{falls } \mathcal{A}(\beta[x \mapsto a])(F) = 1 \text{ für mindestens} \\ & \text{ein } a \in U \end{array} \right.$$

$$0 & \text{sonst}$$

Für $x \in X$ und $a \in U$ bezeichne $\beta[x \mapsto a] : X \to U$ die Belegung, mit

$$\beta[x \mapsto a](y) :=
\begin{cases}
a & \text{falls } x = y \\
\beta(y) & \text{sonst}
\end{cases}$$

$$\mathcal{A}(\beta)(\forall xF) = \min_{a \in U} \{\mathcal{A}(\beta[x \mapsto a])(F)\} = \begin{cases} 1 & \text{falls } \mathcal{A}(\beta[x \mapsto a])(F) = 1 \text{ für alle } a \in U \\ 0 & \text{sonst} \end{cases}$$

$$\mathcal{A}(\beta)(\exists xF) = \max_{a \in U} \{\mathcal{A}(\beta[x \mapsto a])(F)\} = \begin{cases} 1 & \text{falls } \mathcal{A}(\beta[x \mapsto a])(F) = 1 \text{ für mindestens} \\ & \text{ein } a \in U \end{cases}$$

$$0 & \text{sonst}$$

Für $x \in X$ und $a \in U$ bezeichne $\beta[x \mapsto a] : X \to U$ die Belegung, mit

$$\beta[x \mapsto a](y) := \begin{cases} a & \text{falls } x = y \\ \beta(y) & \text{sonst} \end{cases}$$

Intuition: \forall : verallgemeinerte Konjunktion (\land_b ist minimum auf $\{0,1\}$)

 \exists : verallgemeinerte Disjunktion (\lor_b ist maximum auf $\{0,1\}$)


```
\Sigma = (\Omega, \Pi), X \qquad \Omega = \{0/0, s/1, +/2, */2\}
                                \Pi = \{ < /2, < /2, \text{ gerade}/1, \text{ ungerade}/1 \} \text{ with equality } \approx .
  \mathcal{A} = (\mathbb{N}, \{+A, *A : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \{<, <A \subset \mathbb{N} \times \mathbb{N}\})
                                                                           (n_1, n_2) \in A iff n_1 < n_2 in \mathbb{N}
                        n_1 + a n_2 = n_1 + n_2
                                                                           (n_1, n_2) \in \langle A \text{ iff } n_1 \langle n_2 \text{ in } \mathbb{N} \rangle
                        n_1 *_A n_2 = n_1 \cdot n_2
                    s_{\Delta}: \mathbb{N} \to \mathbb{N}.
                                                                        gerade _{A}, ungerade _{A} \subseteq \mathbb{N}
                        s(n) = n + 1
                                                                            gerade _{\Delta} = \{0, 2, 4, ..., 2k ...\}
                    0 = 0 \in \mathbb{N}
                                                                            ungerade _{\Delta} = \{1, 3, 5, \dots, 2k + 1 \dots \},
\beta: X \to \mathbb{N} \text{ mit } \beta(x) = 1, \beta(y) = 4
 (7) \mathcal{A}(\beta)(\forall x \operatorname{gerade}(x)) = \min_{x \in \mathbb{N}} \mathcal{A}(\beta[x \mapsto a](\operatorname{gerade}(x))) = 0
 Erklärung:
 Falls a = 2k so \beta[x \mapsto a](x) = a \in \text{gerade}_{A}. Dann \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = 1.
 Falls a = 2k + 1 so \beta[x \mapsto a](x) = a \notin \text{gerade } A. Dann \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = 0.
 Es gibt a \in \mathbb{N} mit \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = 0.
       \min_{a \in \mathbb{N}} \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = \min\{1, 0\} = 0
```



```
\Sigma = (\Omega, \Pi), X \quad \Omega = \{0/0, s/1, +/2, */2\}
                                  \Pi = \{ \leq /2, < /2, \text{ gerade}/1, \text{ ungerade}/1 \} \text{ with equality } \approx .
  \mathcal{A} = (\mathbb{N}, \{+_{\mathcal{A}}, *_{\mathcal{A}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \{<_{\mathcal{A}} \subset \mathbb{N} \times \mathbb{N} \}
                                                                              (n_1, n_2) \in \leq_{\mathcal{A}} \text{ iff } n_1 \leq n_2 \text{ in } \mathbb{N}
                          n_1 + A n_2 = n_1 + n_2
                                                                              (n_1, n_2) \in \langle A \text{ iff } n_1 \langle n_2 \text{ in } \mathbb{N}
                         n_1 * _A n_2 = n_1 \cdot n_2
                     s_A: \mathbb{N} \to \mathbb{N}.
                                                                           gerade_A, ungerade_A \subseteq \mathbb{N}
                         s(n) = n + 1
                                                                                gerade _{A} = \{0, 2, 4, \dots, 2k \dots \}
                     0_A = 0 \in \mathbb{N}
                                                                                ungerade A = \{1, 3, 5, \dots, 2k + 1 \dots \}.
\beta: X \to \mathbb{N} \text{ mit } \beta(x) = 1, \beta(y) = 4
 (8) \mathcal{A}(\beta)(\exists x \operatorname{gerade}(x)) = \max_{z \in \mathbb{N}} \mathcal{A}(\beta[x \mapsto a](\operatorname{gerade}(x)) = 1
  Erklärung:
 Falls a = 2k so \beta[x \mapsto a](x) = a \in \text{gerade}_{A}. Dann \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = 1.
 Falls a=2k+1 so \beta[x\mapsto a](x)=a\not\in \operatorname{gerade}_{\mathcal{A}}. Dann \mathcal{A}(\beta[x\mapsto a](\operatorname{gerade}(x))=0.
  Es gibt a \in \mathbb{N} mit \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = 1.
        \max_{a \in \mathbb{N}} \mathcal{A}(\beta[x \mapsto a](\text{gerade}(x)) = \max\{1, 0\} = 1
```


$$\begin{array}{l} U_{\mathbb{N}} = \{0,1,2,\ldots\} \\ 0_{\mathbb{N}} = 0 \in U_{\mathbb{N}} \\ s_{\mathbb{N}} : U_{\mathbb{N}} \to U_{\mathbb{N}}, \ s_{\mathbb{N}}(n) = n+1 \\ +_{\mathbb{N}} : U_{\mathbb{N}}^2 \to U_{\mathbb{N}}, \ +_{\mathbb{N}}(n,m) = n+m \\ *_{\mathbb{N}} : U_{\mathbb{N}}^2 \to U_{\mathbb{N}}, \ *_{\mathbb{N}}(n,m) = n*m \\ \leq_{\mathbb{N}} = \text{ "kleiner-gleich" } \subseteq U_{\mathbb{N}}^2 \\ <_{\mathbb{N}} = \text{ "kleiner" } \subseteq U_{\mathbb{N}}^2 \end{array}$$
 Mit $\beta(x) = 1, \beta(y) = 3$ ergibt sich beispielsweise:

$$\mathbb{N}(\beta)(s(x) + s(0)) = 3$$

$$\mathbb{N}(\beta)(x + y \approx s(y)) = 1$$

$$\mathbb{N}(\beta)(\forall x, y(x + y \approx y + x)) = 1$$

$$\mathbb{N}(\beta)(\forall z z \leq y) = 0$$

$$\mathbb{N}(\beta)(\forall x \exists y x < y) = 1$$

(1)
$$\mathbb{N}(\beta)(s(x) + s(0)) = s_{\mathbb{N}}(\beta(x)) +_{\mathbb{N}} s_{\mathbb{N}}(0_{\mathbb{N}}) = (1+1) + (0+1) = 3$$

(2)
$$\mathbb{N}(\beta)(x+y\approx s(y))=1$$

Erklärung:

$$\mathbb{N}(\beta)(x+y) = \beta(x) +_{\mathbb{N}} \beta(y) = 1 + 3 = 4$$

$$\mathbb{N}(\beta)(s(y)) = s_{\mathbb{N}}(\beta(y)) = 3 + 1 = 4.$$

(3)
$$\mathbb{N}(\beta)(\forall x, y(x+y\approx y+x)) = \min_{a\in\mathbb{N}} \mathbb{N}(\beta[x\mapsto a])(\forall y(x+y\approx y+x))$$

$$= \min_{a\in\mathbb{N}} \min_{b\in\mathbb{N}} \mathbb{N}(\beta[x\mapsto a, y\mapsto b])(x+y\approx y+x)$$

$$= \min_{a,b\in\mathbb{N}} \mathbb{N}(\beta[x\mapsto a, y\mapsto b])(x+y\approx y+x)$$

$$= 1$$

da für alle $a, b \in \mathbb{N}$:

$$\mathbb{N}(\beta[x\mapsto a,y\mapsto b])(x+y)=a+b=b+a=\mathbb{N}(\beta[x\mapsto a,y\mapsto b])(y+x)$$

(4)
$$\mathbb{N}(\beta)(\forall z \ z \leq y) = \min_{a \in \mathbb{N}} \mathbb{N}(\beta[z \mapsto a])(z \leq y) = 0$$

Erklärung:

Falls
$$a=4$$
, so $\mathbb{N}(\beta[z\mapsto a])(z\le y)=0$, da: $\mathbb{N}(\beta[z\mapsto a])(z)=a=4$ $\mathbb{N}(\beta[z\mapsto a])(y)=\beta(y)=3$ und $(4,3)\not\in\leq_{\mathbb{N}}$.

(5)
$$\mathbb{N}(\beta)(\forall x \exists y \ x < y) = \min_{a \in \mathbb{N}} \mathbb{N}(\beta[x \mapsto a])(\exists y \ x < y)$$

= $\min_{a \in \mathbb{N}} \max_{b \in \mathbb{N}} \mathbb{N}(\beta[x \mapsto a, y \mapsto b])(x < y) = 1$

Erklärung:

Für jede Zahl
$$a \in \mathbb{N}$$
: $\max_{b \in \mathbb{N}} \mathbb{N}(\beta[x \mapsto a, y \mapsto b])(x < y) = 1$, da es gibt $b = a + 1 \in \mathbb{N}$ mit $\mathbb{N}(\beta[x \mapsto a, y \mapsto b])(x < y) = 1$ weil $\mathbb{N}(\beta[x \mapsto a, y \mapsto b])(x) = a$ $\mathbb{N}(\beta[x \mapsto a, y \mapsto b])(y) = b = a + 1$ und $(a, a + 1) \in <_{\mathbb{N}}$.

