

High performance digital XENSIV[™] MEMS microphone

Description

The IM69D130 is designed for applications where low self-noise (high SNR), wide dynamic range, low distortions and a high acoustic overload point is required.

Infineon's Dual Backplate MEMS technology is based on a miniaturized symmetrical microphone design, similar as utilized in studio condenser microphones, and results in high linearity of the output signal within a dynamic range of 105dB. The microphone distortion does not exceed 1% even at sound pressure levels of 128dBSPL. The flat frequency response (28Hz low-frequency roll-off) and tight manufacturing tolerance result in close phase matching of the microphones, which is important for multi-microphone (array) applications.

With its low equivalent noise floor of 25dBSPL (SNR 69dB(A)) the microphone is no longer the limiting factor in the audio signal chain and enables higher performance of voice recognition algorithms.

The digital microphone ASIC contains an extremely low-noise preamplifier and a high-performance sigma-delta ADC. Different power modes can be selected in order to suit specific current consumption requirements.

Each IM69D130 microphone is calibrated with an advanced Infineon calibration algorithm, resulting in small sensitivity tolerances (\pm 1dB). The phase response is tightly matched (\pm 2°) between microphones, in order to support beamforming applications.

Features

- Dynamic range of 105dB
 - Signal to noise ratio of 69dB(A) SNR
 - <1% total harmonic distortions up to 128dBSPL
 - Acoustic overload point at 130dBSPL
- Sensitivity (± 1dB) and phase (± 2° @1kHz) matched
- Flat frequency response with low frequency roll off at 28Hz
- Very fast analog to digital conversion speed (6μs latency @1kHz
- Power optimized modes determined by PDM clock frequency
- Package dimensions: 4mm x 3mm x 1.2mm
- PDM output
- Omnidirectional pickup pattern

Typical applications

- Devices with Voice User Interface (VUI)
 - Smart speakers
 - Home automation
 - IOT devices
- Active Noise Cancellation (ANC) headphones and earphones
- High quality audio capturing
 - Conference systems
 - Cameras and camcorders
- Industrial or home monitoring with audio pattern detection

High performance digital XENSIVTM MEMS microphone

Use cases

Use cases

- Below 1% total harmonic distortion
 - Voice command during music from the loud speaker
 - Effective active noise cancellation even close to loud noise source
 - Recordings in a discotheque or at a rock
- High Signal to noise ratio
 - Far field audio signal pick-up
 - Low volume audio and whispered voice capturing
 - Microphone noise is no longer limiting the audio chain

- Sensitivity and phase matching
 - Full utilization of voice algorithms capability
 - Audio beam forming
 - High and precise attenuation of background noise
- Power optimized modes
 - Low current consumption for always on applications
 - Long operating time of battery powered devices

Block diagram

Figure 1 IM69D130 block diagram

Product validation

Technology qualified for industrial applications.

Ready for validation in industrial applications according to the relevant tests of IEC 60747 and 60749 or alternatively JEDEC47/20/22.

High performance digital XENSIVTM MEMS microphone

Table of contents

Table of contents

	Description	1
	Features	1
	Typical applications	1
	Use cases	2
	Block diagram	2
	Product validation	2
	Table of contents	3
1	Typical performance characteristics	4
2	Acoustic characteristics	5
2.1	Free field frequency response	6
3	Electrical parameters and characteristics	7
3.1	Absolute maximum ratings	
3.2	Electrical parameters	7
3.3	Electrical characteristics	8
4	Typical stereo application circuit	10
5	Reliability specifications	11
6	Package information	12
7	Footprint and stencil recommendation	13
8	Packing	14
	Revision history	15
	Disclaimer	16

Typical performance characteristics

1 Typical performance characteristics

Test conditions: $V_{DD} = 1.8V$, $f_{CLK} = 3.072MHz$, no load on DATA

Figure 2 Typical freefield frequency response

Figure 4 Typical phase response vs frequency

Figure 6 Typical I_{DD} vs V_{DD}

Figure 3 Typical THD vs SPL

Figure 5 Typical group delay vs frequency

Figure 7 Typical noise floor (unweighted)

High performance digital XENSIVTM MEMS microphone

Acoustic characteristics

2 Acoustic characteristics

Test conditions (unless otherwise specified in the table): V_{DD} = 1.8V, f_{CLK} = 3.072MHz, T_A = 25°C, 55% R.H., audio bandwidth 20Hz to 20kHz, select pin grounded, no load on DATA, T_{edge} = 9ns

Table 1 IM69D130 acoustic specifications

Parameter		Symbol		Values		Unit	Note or Test condition
			Min. Typ. Max.		Max.		
Sensitivity			-37	-36	-35	dBFS	1kHz, 94 dBSPL, all operating modes
Acoustic Ove	rload Point	AOP		130		dBSPL	THD = 10%, all operating modes
Signal to	f _{clock} =3.072MHz	SNR		69		dB(A)	A-Weighted
Noise Ratio	f _{clock} =2.4MHz			68			
	f _{clock} =1.536MHz			66			
	f _{clock} =768kHz			64			20Hz to 8kHz bandwidth, A-Weighted
Noise Floor	f _{clock} =3.072MHz			-105		dBFS(A)	A-Weighted
	f _{clock} =2.4MHz			-104			
	f _{clock} =1.536MHz			-102			
	f _{clock} =768kHz			-101			20Hz to 8kHz bandwidth, A-Weighted
Total	94dBSPL	THD		0.5		%	Measuring 2nd to 5th harmonics; 1kHz, all operating modes
Harmonic Distortion	128dBSPL			1.0			
Distortion	129dBSPL			2.0		_	
	130dBSPL			10.0			
Low Frequen	cy Cutoff Point	f _{C LP}		28		Hz	-3dB point relative to 1kHz
Group Delay	250Hz			70		μs	
	600Hz			15			
	1kHz			6			
	4kHz			1			
Phase	75Hz			19		0	
Response	1kHz			2			
	3kHz			-1			
Directivity			Omnidirectional			Pickup pattern	
Polarity			densit pressure	pressure i by of 1's, ne decrease s in data o	egative s density		

Acoustic characteristics

2.1 Free field frequency response

Figure 8 IM69D130 free field frequency response

Table 2 IM69D130 free field frequency response, normalized to 1kHz sensitivity value

Frequency (Hz)	Upper Limit (dB)	Lower Limit (dB)
25	-2	-5
60	+0.5	-1.5
800	+1	-1
1000	0	0
1200	+1	-1
6000	+1	-2
8000	+4	-2
15000	+9	-2

1.0

High performance digital XENSIVTM MEMS microphone

Electrical parameters and characteristics

3 Electrical parameters and characteristics

3.1 Absolute maximum ratings

Stresses at or above the listed maximum ratings may affect device reliability or cause permanent device damage. Functional device operation at these conditions is not guaranteed.

Table 3 Absolute maximum ratings

Parameter	Symbol	Values		Unit	Note / Test Condition
		Min.	Max.		
Voltage on any Pin	V _{max}		4	V	
Storage Temperature	T _S	-40	125	°C	
Ambient Temperature	T _A	-40	70	°C	V _{DD} >3.0V
		-40	100	°C	

3.2 Electrical parameters

Table 4 Electrical parameters and digital interface input

Parameter		Symbol		Values		Unit	Note / Test Condition
			Min.	Тур.	Max.		
Supply Voltage		V _{DD}	1.62		3.6	V	A 100nF bypass capacitor should be placed close to the microphone's VDD pin to ensure best SNR performance
Clock	Operating	f_{clock}	2.9	3.072	3.3	MHz	
Frequency Range	Modes		2.1	2.4	2.65		
runge			1.05	1.536	1.9		
			400	768	950	kHz	
	Standby Mode				250		DATA = high-Z
V _{DD} Ramp-u	p Time				50	ms	Time until V _{DD} ≥ V _{DD_min}
PDM Clock F	requency	f_{clock}	0.4		3.3	MHz	
Clock Duty C	Cycle		40		60	%	f _{clock} <2.65MHz
			48		52	%	f _{clock} ≥2.9MHz
Clock Rise/Fall Time					13	ns	
Input Logic Low Level		V _{IL}	-0.3		0.35xV _{DD}	V	
Input Logic High Level		V _{IH}	0.65xV _{DD}		V _{DD} +0.3	V	
Output Load DATA	l Capacitance on	C _{load}			200	pF	

High performance digital XENSIVTM MEMS microphone

Electrical parameters and characteristics

3.3 Electrical characteristics

Test conditions (unless otherwise specified in the table): V_{DD}= 1.8V, T_A=25°C, 55% R.H.

 Table 5
 General electrical characteristics

Parameter		Symbol		Values	;	Unit	Note / Test Condition
			Min.	Тур.	Max.		
Current	f _{clock} =3.072MHz	I _{DD}		980	1300	μΑ	No load on DATA
Consumption	f _{clock} =2.4MHz			800	1050		
	f _{clock} =1.536MHz			620	800		
	f _{clock} =768kHz			300	380		
	Standby Mode	I _{standby}		25	50		
	Clock Off Mode	I _{clock_off}			1	-	CLOCK pulled low
Short Circuit C	Current		1		20	mA	Grounded DATA pin
Power Supply Rejection		PSR _{1k_NM}		-80		dBFS	100mV _{pp} sine wave on V _{DD} swept from 200Hz to 20kHz
		PSR _{217_NM}		-86		dBFS(A)	$100 \mathrm{mV}_{\mathrm{rms}}$, $217 \mathrm{Hz}$ square wave on V_{DD} . Aweighted
Startup Time	±0.5dB sensitivity accuracy				20	ms	Time to start up in all operating modes after
	±0.2dB sensitivity accuracy				50		V _{DD_min} and CLOCK have been applied
Mode Switch Time	±0.5dB sensitivity accuracy				20	ms	Time to switch between operating modes. V _{DD}
	±0.2dB sensitivity accuracy				50		remains on during the mode switch
Hysteresis Wic	lth	V _{hys}	0.1xV _{DD}		0.29xV _{DD}	V	
Output Logic I	ow Level	V _{OL}			0.3xV _{DD}	V	I _{out} = 2mA
Output Logic High Level		V _{OH}	0.7xV _{DD}				I _{out} = 2mA
Delay Time for DATA Driven		t _{DD}	40		80	ns	Delay time from CLOCK edge (0.5xV _{DD}) to DATA driven
Delay Time for	r DATA High-Z ¹⁾	t _{HZ}	5		30	ns	Delay time from CLOCK edge (0.5xV _{DD}) to DATA high impedance state

 $^{^{1}}$ t_{hold} is depended on C_{load}

High performance digital XENSIVTM MEMS microphone

Electrical parameters and characteristics

 Table 5
 General electrical characteristics (continued)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Delay Time for DATA Valid ²⁾	t _{DV}			100	ns	Delay time from CLOCK edge (0.5xV _{DD}) to DATA valid (<0.3xV _{DD} or >0.7xV _{DD})

Figure 9 Timing diagram

 $^{^2}$ Load on data: $C_{load} \text{=} 100 pF, \, R_{load} \text{=} 100 k\Omega$

Typical stereo application circuit

Typical stereo application circuit 4

Figure 10 **IM69D130 stereo mode configuration**

Note:

For best performance it is strongly recommended to place a 100nF ($C_{\text{VDD_typical}}$) capacitor between $V_{\rm DD}$ and ground. The capacitor should be placed as close to $V_{\rm DD}$ as possible. A termination resistor(R_{TERM}) of about 100 Ω may be added to reduce the ringing and overshoot on the output signal.

High performance digital XENSIVTM MEMS microphone

Reliability specifications

5 Reliability specifications

The microphone sensitivity after stress must deviate by no more than 3dB from the initial value.

Table 6 Reliability tests

Test	Test Condition	Standard
Vibration	20Hz to 2000Hz with a peak acceleration of 20g in X, Y, and Z for 4 minutes each, total 4 cycles	MIL-STD-883J
High Temperature Storage	T _a =+125°C, 1000 hours	JESD22 A-103E
Low Temperature Storage	T _a =-40°C, 1000 hours	JESD22-A119A
High Temperature Operation	T _a =+125°C, VDD=2.5V, 1000 hours	JESD22 A-108D
Cold Temperature Operation	T _a =-40°C, VDD=3.2V, 1000 hours	JESD22 A-108D
Temperature/Humidity Bias	T _a =+85°C, R.H = 85%, VDD=3.2V, 1000 hours	JESD22-A101D
Mechanical Shock	10000g/0.1msec direction ±x,y,z, 5 shocks in each direction, 30 shocks in total	IEC 60068-2-27
Thermal cycle	1000 cycles, -40°C to +125°C, 30 minutes per cycle	JESD22.A104E
Reflow Solder	3 reflow cycles, peak temperature = +260°C	IPC-JEDEC J-STD-020D-01
ESD-SLT	3 contact discharges of ±8kV to lid while V _{dd} and f _{clock} are supplied according to the operational modes; (V _{dd} and f _{clock} ground is separated from earth ground)	IEC-61000-4-2
ESD-HBM	1 pulse of ±2kV between all I/O pin combinations	JS001
Latch up	Trigger current from ±150mA	JESD 78E

Package information

6 Package information

Figure 11 IM69D130 package drawing

Table 7 IM69D130 pin configuration

Pin Number	Name	Description
1	DATA	PDM data output
2	V _{DD}	Power supply
3	CLOCK	PDM clock input
4	SELECT	PDM left/right select
5	GND	Ground

$\textbf{High performance digital XENSIV}^{\text{TM}} \ \textbf{MEMS microphone}$

Footprint and stencil recommendation

7 Footprint and stencil recommendation

The acoustic port hole diameter in the PCB should be larger than the acoustic port hole diameter of the MEMS Microphone to ensure optimal performance. A PCB sound port size of radius 0.4 mm (diameter 0.8mm) is recommended.

The board pad and stencil aperture recommendations shown in *Figure 12* are based on Solder Mask Defined (SMD) pads. The specific design rules of the board manufacturer should be considered for individual design optimizations or adaptations.

Figure 12 IM69D130 footprint and stencil recommendation

Note: Dimensions are in millimeters unless otherwise specified

Packing

8 Packing

For shipping and assembly the Infineon microphones are packed in product specific tape-and-reel carriers. A detailed drawing of the carrier can be seen in *Figure 13*

Figure 13 IM69D130 tape dimensions

Note: For further information about Packing, please confer the Packing document which is available on the Infineon Technologies web page or contact your local sales, application, or quality engineer.

High performance digital XENSIVTM MEMS microphone

Revision history

Revision history

Major changes since previous revision

Document version	Date of release	Description of changes
1.0	19.12.2017	Initial Datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-12-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-qko1485967505603

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury