1 Let f be a 3 times differentiable function f satisfying $f'(x_0) = 0$ and $f''(x_0) > 0$. Using the Lagrange Remainder Theorem, prove that f has a local minimum at $x = x_0$ (i.e. there is an open interval I containing x_0 such that $f(x) \ge f(x_0)$ for all $x \in I$).

Since $f'(x_0) = 0$, the 1st degree Taylor polynomial for f is $p_1(x) = f(x_0)$.

Because f'' is differentiable, it is continuous. Hence pick an interval I around x_0 for which $f''(x_0) \ge 0$. For $x \in I$, LRT tells us that

$$f(x) = f(x_0) + \frac{f''(c)}{2}(x - x_0)^2$$

for some c between x_0 and x (and therefore $c \in I$). Hence the remainder term is nonnegative on I, so that x_0 is a local min.

2 Find the Taylor series for 1/t about $t_0 = 1$ and also find all t > 0 for which the Taylor series converges.

We can compute the first few terms to see that

$$p(x) = 1 - (x - 1) + (x - 1)^2 + \dots = \sum_{n=0}^{\infty} (1 - x)^n.$$

This is a geometric series which converges whenever |x-1| < 1. That is, it converges for $x \in (0,2)$ (we can check the values x = 0, 2 explicitly to see that the series does not converge there).

3 A method of estimating π .

Show that the third Taylor polynomial $p_3(x)$ about $x_0 = 0$ for the function $\arctan(x)$ is given by

$$p_3(x) = x - x^3/3.$$

Hint: The first derivative of arctan is $\frac{1}{1+x^2}$.

Since $\arctan(1) = \pi/4$, $4p_3(1) = 8/3$ gives a (not very good) approximation for π . Better approximations are obtained using p_n with larger n.

The derivatives for arctan are

$$\frac{1}{1+x^2}$$
, $-\frac{2x}{(1+x^2)^2}$, $-\frac{2(1+x^2)^2-8x^2(1+x^2)}{(1+x^2)^4}$.

At $x_0 = 0$, they evaluate to 1,0, and -2 respectively. This allows us to compute

$$p_3(x) = x - \frac{2}{3!}x^3 = x - \frac{x^3}{3}.$$

1

- **4** Let g, h be continuous functions with $h \ge 0$.
- (a) Using the extreme value theorem, monotonicity of integrals and the intermediate value theorem, prove that there exists a $c \in (a, b)$ such that

$$\int_{a}^{b} g(x)h(x)dx = g(c)\int_{a}^{b} h(x)dx.$$

(b) Use the first part to prove that the Cauchy Integral Remainder Theorem implies the Lagrange Remainder Theorem. That is, assuming

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt,$$

then there exists a c strictly between x and x_0 such that

$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(c) (x - x_0)^{n+1}.$$

(a) Suppose that h(c) > 0 for some c. Then we can find an interval $I \ni c$ for which $h(x) > \frac{1}{2}h(c)$. So then

$$\int_{a}^{b} h(x) \ge \int_{I} h(x) \ge \int_{I} \frac{1}{2} h(c) > 0.$$

Hence, if $\int_a^b h(x) = 0$, we must have h(x) = 0 on all of [a, b]. Then the LHS is $\int_a^b 0 = 0$, and the RHS is clearly 0. So the identity is true.

Now suppose $\int_a^b h(x) \neq 0$. It must be strictly positive, because again we have $h(x) \geq 0$.

From the EVT, pick $y, z \in [a, b]$ so that $g(y) \leq g(x) \leq g(z)$ for all $x \in [a, b]$. Then

$$g(y)h(x) \le g(x)h(x) \le g(z)h(x)$$

(because $h(x) \ge 0$) for all $x \in [a, b]$, so the monotonicity of integrals shows that

$$\int_a^b g(y)h(x) \le \int_a^b g(x)h(x) \le \int_a^b g(z)h(x).$$

Dividing by $\int_a^b h(x) \neq 0$ gives

$$g(y) \le \frac{\int_a^b g(x)h(x)}{\int_a^b h(x)} \le g(z).$$

By the IVT, there is a $c \in [y, z] \subset [a, b]$ so that

$$g(c) = \frac{\int_a^b g(x)h(x)}{\int_a^b h(x)}.$$

But then

$$g(c) \int_{a}^{b} h(x) = \int_{a}^{b} g(x)h(x),$$

as desired.

(b) Let $x > x_0$. Then $(x-t)^n \ge 0$ for $t \in [x_0, x]$, so applying part (a) to the CIRT gives

$$R(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n$$

$$= \frac{f^{(n+1)}(c)}{n!} \int_{x_0}^x (x-t)^n$$

$$= \frac{f^{(n+1)}(c)}{n!} \frac{(x-x_0)^{n+1}}{n+1},$$

for some $c \in [x_0, x]$, which is the LRT form of the remainder.

Note that the proof for part (a) also works if we assume instead that $h(x) \leq 0$ (in this case we have to flip the inequalities twice; once when we multiply by h(x) and once when we divide by $\int_a^b h(x)$, but the end result is identical). So part (b) also works if $x < x_0$, since $(x - t)^n$ will be either nonnegative or nonpositive (depending on n). If $x = x_0$ then of course the result is trivial.

5 Bonus Question: Does $f'(x_0) = f''(x_0) = 0$ necessarily imply f has a local minimum at x_0 ? Either prove or give a counter-example.

The claim is false.

For a counterexample, let $f(x) = x^3$ with $x_0 = 0$. **NB:** A constant function such as f(x) = 5 does not work, since $f(x_0)$ will be a local min (that is, it's true that $f(x_0) \le f(x)$ for x in some interval around x_0).

6 Bonus Question: Estimate the error of the approximation of π above, by estimating $R_3(1)$.

The 4th derivative of arctan is

$$\frac{24x(1-x^2)}{(x^2+1)^4}.$$

Note that this quantity is nonnegative on [0,1]. Using LRT, we have, for some $c \in [0,1]$,

$$R_3(1) = \frac{\arctan^{(4)}(c)}{24} (1 - 0)^4$$

$$= \frac{c(1 - c^2)}{(c^2 + 1)^4}$$

$$< c(1 - c^2)$$

$$< \frac{2\sqrt{3}}{9}$$

$$\approx 38$$

The second inequality is from finding the critical point at $x_0 = \frac{1}{\sqrt{3}}$.

The actual error, is, of course,

$$\frac{\pi}{4} - \frac{2}{3} \approx .12$$

3