"From 'I am boy' to 'म केटा हुँ': A Mathematical Journey Through Transformers and ChatGPT

"I am boy" \rightarrow "म केटा हुँ"

We'll show:

- 1. AB Tokenization and embedding
- 2. Positional encoding (with formula and exact values)

- 4. Decoder cross-attention and prediction
- 5. ✓ Output sequence step-by-step

We'll build all matrices using actual numbers. Simplified for 2D embeddings and 3 tokens.

Vocabulary and Embeddings

- English input: "I", "am", "boy"
- Word embeddings (dim = 2):

"I"
$$\rightarrow$$
 [1, 0] "am" \rightarrow [0, 1] "boy" \rightarrow [1, 1]

Positional Encoding Formula

From Vaswani et al.:

From Vaswani et al.:

$$ext{PE}_{(pos,2i)} = \sin\left(rac{pos}{10000^{rac{2i}{d_{model}}}}
ight), \quad ext{PE}_{(pos,2i+1)} = \cos\left(rac{pos}{10000^{rac{2i}{d_{model}}}}
ight)$$

We use $d_{model}=2$, so for each position (0, 1, 2):

Position	PE[0] (sin)	PE[1] (cos)
0	sin(0) = 0	cos(0) = 1
1	sin(1) ≈ 0.841	cos(1) ≈ 0.540
2	sin(2) ≈ 0.909	cos(2) ≈ -0.416

Step 1: Embedding + Positional Encoding

Word	Word Embedding	Position Encoding	Final Input (E + PE)
I	[1, 0]	[0, 1]	[1, 1]
am	[0, 1]	[0.841, 0.540]	[0.841, 1.540]
boy	[1, 1]	[0.909, -0.416]	[1.909, 0.584]

Let's call this:

$$X = [$$
[1, 1],
[0.841, 1.540],

```
[1.909, 0.584]
```

Step 2: Encoder – Self-Attention with PE

Let's define:

$$W Q = W K = W V = identity matrix (for clarity)$$

So:

$$Q = K = V = X$$

Self-Attention Computation

For each token:

$$\operatorname{Attention}(Q_i) = \operatorname{softmax}\left(\frac{Q_i K^T}{\sqrt{d_k}}\right) \cdot V$$

Let's compute attention for first word "I"

$$Q[0] = [1, 1]$$

K = X

Dot products:

$$Q \cdot K^T = [[1,1] \cdot [1,1] = 2, [1,1] \cdot [0.841, 1.540] = 2.381, [1,1] \cdot [1.909, 0.584] = 2.493]$$

Scale by √2 ≈ 1.41:

$$[2, 2.381, 2.493] / 1.41 \approx [1.418, 1.688, 1.767]$$

Softmax:

```
e^x \approx [4.13, 5.41, 5.85]
sum \approx 15.39
\rightarrow attention weights \approx [0.268, 0.351, 0.380]
```

Weighted sum with V:

```
= 0.268 * [1,1] + 0.351 * [0.841, 1.540] + 0.380 * [1.909, 0.584] \approx [0.268, 0.268] + [0.295, 0.540] + [0.725, 0.222] \approx [1.288, 1.030]
```

You'd repeat this for each token.

Final Encoder Output (contextual representations):

```
H = [1.288, 1.030],
```

CSS

```
[ ... ],
```

Step 3: Decoder Input + PE

Let's decode starting with <sos>.

Embedding:

$$\langle sos \rangle \rightarrow [0.5, 0.5]$$

Positional encoding for position 0: [0, 1]

Final decoder input:

```
[0.5, 1.5]
```


For step 1, we use only < sos> (no masking needed).

Cross Attention

Query (decoder):

```
Q dec = [0.5, 1.5]
```

Keys and Values from encoder:

```
K = H = [
[1.288, 1.030],
...
```

Dot products $(Q \cdot K^T)$, scale, softmax, weights \rightarrow same as above.

Then:

$$\mathrm{Output}_t = \sum \alpha_i V_i$$

That output goes into the **final linear layer + softmax**.

Let's say we get:

```
Softmax output = [0.85 \text{ (for "H"), 0.1, 0.05, ...}] \rightarrow Output: "H"
```

Step 5: Autoregressive Decoding

• Feed: ["<sos>", "甲"]

Add PE

Repeat decoder steps

• Predict: "केटा" then "हुँ" then <eos>

Final Output

Using embeddings, positional encoding, self-attention, cross-attention, and softmax prediction.

How parallel processing and long range dependency is solved here

- 1. Parallel processing
- 2. Long-range dependency

These are the **two big improvements** over older models like RNNs and LSTMs.

1. Parallel Processing in Transformers

Problem in RNNs:

- RNNs process sequences one step at a time you can't compute the next step without finishing the previous one.
- This is **sequential**, **slow**, and **hard to parallelize**.

Solution in Transformers:

Transformers replace recurrence with attention. So instead of step-by-step processing:

- All tokens are processed simultaneously.
- Attention is computed using matrix multiplications like:

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

• Each input token attends to **all others at once**, enabling **massive parallelism**.

Example:

If your input is: "I am boy" \rightarrow All embeddings + positional encodings are **fed together** through the attention layers. GPU computes attention weights for all token pairs **in one go**.

Lets see how it goes all in one in above example:

- 1. Input Embedding + Positional Encoding
- 2. Q, K, V Matrix Construction (in parallel)
- 3. Matrix Attention (QKT/Vd)
- 4. Softmax over rows (attention weights)
- 5. Multiplication with V (context vectors)

Step 1: Embedding + Positional Encoding

Let's assume embedding size = 2 for simplicity.

Word embeddings (dimension = 2):

Token Embedding

```
"I" [1, 0]
"am" [0, 1]
"boy" [1, 1]
```

Positional encodings (d=2):

```
    Position
    PE

    0
    [0, 1]

    1
    [0.841, 0.540]

    2
    [0.909, -0.416]
```

Final inputs (Embedding + PE):

```
X = [
[1+0, 0+1] = [1, 1],
[0+0.841, 1+0.54] = [0.841, 1.540],
[1+0.909, 1-0.416] = [1.909, 0.584]

So:

X = [
[1.000, 1.000],
[0.841, 1.540],
[1.909, 0.584]

\leftarrow shape = (3, 2)
```

Step 2: Q, K, V Matrix (in parallel)

Let's use identity weights for clarity:

```
W_Q = W_K = W_V = I (2×2)
So:
Q = XW_Q = X
K = XW_K = X
V = XW_V = X
```

Step 3: QK^T (Dot product of all token pairs)

We want to compute:

```
QKT= X·XT
```

Let's compute:

So the attention score matrix:

```
S = QK^{T} = [
[2.000, 2.381, 2.493],
[2.381, 2.971, 2.125],
[2.493, 2.125, 3.981]
```

Step 4: Scale and Softmax

Scale by $\sqrt{2} \approx 1.414$:

```
S_scaled = S / \sqrt{2} ≈
[
[1.414, 1.683, 1.763],
[1.683, 2.100, 1.502],
[1.763, 1.502, 2.814]
]
```

Apply softmax row-wise (for each query word):

For 1st row: softmax([1.414, 1.683, 1.763])

Exponentiate and normalize:

```
e^x \approx [4.11, 5.38, 5.84]

sum \approx 15.33

\rightarrow [0.268, 0.351, 0.381]
```

Repeat for others.

Let's say final attention weights matrix A:

```
A = [
  [0.268, 0.351, 0.381],
  [0.312, 0.470, 0.218],
  [0.309, 0.242, 0.449]
]
```

Step 5: Multiply by V to get outputs (context vectors)

Output =A·V

V = same as X:

```
V = [
  [1.000, 1.000],
  [0.841, 1.540],
  [1.909, 0.584]
```

Let's do just 1st row of A · V:

```
[0.268, 0.351, 0.381] \cdot V \approx [1.288, 1.030]
```

Same for other rows.

```
Final Output Matrix from Self-Attention
[
[1.288, 1.030],
[1.201, 1.178],
[1.485, 0.989]
```

So, What is this matrix?

This matrix is the **output of the self-attention mechanism** — it's a new representation of the input sentence:

"I am boy"

Each row corresponds to **one token's new vector**, updated using attention over all tokens (including itself).

Row Token New Vector (Contextualized)

- 0 "I" [1.288, 1.030]
- 1 "am" [1.201, 1.178]
- 2 "boy" [1.485, 0.989]

2. How did we get it?

This vector is the **weighted sum of the value vectors (V)** from all tokens, where the weights come from the attention matrix.

So for "I":

$$\mathrm{Output}_{^{n}\Gamma^{"}} = \sum_{j} \mathrm{Attention}_{^{n}\Gamma^{"} \rightarrow j} \cdot V_{j}$$

In words:

"I" looks at all tokens (including itself), decides **how much to pay attention** to each of them, and combines their info to update its own vector.

This happens simultaneously for all tokens.

3. Why are the numbers different from the original input?

The original input for "I" was [1, 1].

Now it became [1.288, 1.030].

That's because:

- "I" didn't just consider itself
- It also took information from "am" and "boy"
- This "mixing" lets it capture context
 - \rightarrow for translation: it helps the model understand the **meaning in sentence context**, not just individual words.

4. How does this help in translation?

Let's say you're translating "I am boy" to Nepali: "म केटा हुँ"

To get this translation:

- The encoder generates these new context-aware embeddings
- Then the decoder uses them to **generate each translated word** one-by-one, attending over the entire input

Example:

- When generating "केटा", the decoder might attend mostly to "boy"'s output vector [1.485, 0.989]
- When generating "Ħ", it'll attend more to "I"'s output vector [1.288, 1.030]

So these values directly influence the **translated sentence**, based on **how much each input word contributes**.

2. Long-Range Dependency Handling

Problem in RNNs:

Hard to learn relationships between words that are far apart, e.g.
 "The boy who you met yesterday is kind."
 → connection between "boy" and "is" can get lost due to vanishing gradients.

Solution in Transformers:

In Transformers:

- Self-attention allows any token to attend to any other token.
- There's no distance penalty "I" can attend to "boy" even if they're far apart in the sentence.

Let's look at how this works mathematically:

Self-Attention Matrix:

For 3 words:

$$QK^T = \begin{bmatrix} I \leftrightarrow I & I \leftrightarrow am & I \leftrightarrow boy \\ am \leftrightarrow I & am \leftrightarrow am & am \leftrightarrow boy \\ boy \leftrightarrow I & boy \leftrightarrow am & boy \leftrightarrow boy \end{bmatrix}$$

Every token compares itself to every other token and computes a weight.

This allows:

- "I" to attend to "boy" directly.
- Even long sequences like 512 tokens, the attention score is directly computed across them.

Positional Encoding Enables Order Awareness

Since there's **no recurrence**, Transformers use **positional encodings** to preserve **order**.

Formula:

$$\mathrm{PE}_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d}}\right), \quad \mathrm{PE}_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d}}\right)$$

These sinusoidal values are added to each embedding to provide position-specific variation.

Thus:

- **Token "boy" in position 2** is treated differently from **"boy" in position 5**, due to unique PE vectors.
- Still enables parallelism (PE is just a fixed addition).

Example: If your input is: "I am boy" \rightarrow All embeddings + positional encodings are fed together through the attention layers. GPU computes attention weights for all token pairs in one go explain with math

Now Towards Decoder Segment:

Quick Recap

We processed the input sentence:

"I am boy" \rightarrow Encoder output:

```
[
  [1.288, 1.030], ← contextual vector for "I"
  [1.201, 1.178], ← for "am"
  [1.485, 0.989] ← for "boy"
]
```

Let's call this matrix **E** (Encoder output), shape = $(3 \text{ tokens} \times 2 \text{ dim})$

Goal of the Decoder:

To generate target tokens one-by-one, e.g., in Nepali:

```
Target Sentence: "म केटा हुँ"
```

Let's assume we're generating the first token: "耳"

Decoder Steps Overview

Each decoder layer has:

- 1. **Masked Self-Attention** → allows decoder to attend to previous outputs only
- 2. **Cross-Attention** → attends over encoder outputs (that matrix above!)
- 3. Feedforward Layer

Step 1: Target Embedding + Positional Encoding

We assume we've started generating "뀩".

Let's say:

```
"H" \rightarrow embedding = [1.0, 0.5] position encoding = [0, 1] \rightarrow input = [1.0 + 0, 0.5 + 1] = [1.0, 1.5]
```

So decoder input:

```
D = [1.0, 1.5] \leftarrow \text{shape} = (1, 2)
```

Step 2: Masked Self-Attention (not needed for 1st word)

- Since this is the first word, it doesn't attend to anything before it.
- So the output stays the same: [1.0, 1.5]

In next steps (e.g., generating "केटा"), decoder will attend to both "म" and "केटा" using a **masked attention matrix** to prevent peeking ahead.

Step 3: Cross-Attention Layer (Main Part)

Now, the decoder vector [1.0, 1.5] will attend over the encoder outputs:

We apply attention between:

- **Query (Q):** from decoder: [1.0, 1.5]
- Keys (K): from encoder: E matrix
- Values (V): also from encoder: E matrix

Step 3.1: Compute Q, K, V

Let's say:

- Decoder Q = [1.0, 1.5]
- Encoder K, V = E = encoder output matrix

```
K = V = [
[1.288, 1.030], \leftarrow "I"
[1.201, 1.178], \leftarrow "am"
[1.485, 0.989] \leftarrow "boy"
```

Step 3.2: Compute Attention Scores

We compute $\mathbf{Q} \times \mathbf{K}^{\mathsf{T}}$:

Let's compute dot products:

```
[1.0, 1.5] \cdot [1.288, 1.030] = 1 \times 1.288 + 1.5 \times 1.030 = 2.833

[1.0, 1.5] \cdot [1.201, 1.178] = 1 \times 1.201 + 1.5 \times 1.178 = 2.968

[1.0, 1.5] \cdot [1.485, 0.989] = 1 \times 1.485 + 1.5 \times 0.989 = 2.969
```

So attention scores: [2.833, 2.968, 2.969]

Step 3.3: Apply Scaling and Softmax

Scale (by $\sqrt{2}$) \rightarrow then Softmax:

```
S = [2.833, 2.968, 2.969] / \sqrt{2} \approx [2.002, 2.099, 2.100]
Softmax \approx [0.312, 0.343, 0.345]
```

Step 3.4: Weighted Sum of V

Now we compute:

```
Context vector = sum(attn_weight_j × V_j)
= 0.312×[1.288, 1.030]
+ 0.343×[1.201, 1.178]
+ 0.345×[1.485, 0.989]
```

Step 4: Feedforward + Layer Norm + Output

- This vector goes through a feedforward network (2-layer MLP)
- Then output logits are generated
- Softmax gives the next word probability:

```
→ Most likely: "甲"
```

```
Input: "I am boy"

↓
Encoder Self-Attention

→ Outputs contextual vectors E = [e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>]

Target: "म केटा हूँ"

↓
Decoder Self-Attention → uses previous words only

↓
Cross-Attention:

Decoder word "H" attends over [e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>] using Q · K<sup>T</sup>

↓
Generates vector for "H" → Passed to output layer

↓
Softmax → Word prediction
```

Let's walk through **exactly how** the decoder attends to the correct **source word ("boy")** when generating the target word **"한다"** (meaning **"boy"** in Nepali).

Context

We already passed the input sentence:

"I am boy" → encoder outputs:

```
E = [
    [1.288, 1.030], ← "I"
    [1.201, 1.178], ← "am"
    [1.485, 0.989] ← "boy"
]
```

Now, we are at the decoder step generating the second word **"केटा"**. So far, the decoder has already generated:

• Step 1: "耳" (← translated from "I")

Now:

Step 2: Generate "केटा"

→ Decoder must look back at the encoder output and figure out:

"Which input word is most relevant to generate this?"

Here's How That Happens

Step 1: Decoder embedding

The decoder feeds in previously generated tokens:

- "ਸ" → already generated
- Now it's trying to generate the **next word**

So, it feeds the sequence:

```
["H"] + [MASK] \rightarrow to generate next word
```

Let's embed this sequence with positional encoding:

```
"H" \rightarrow [1.0, 0.5] + [0, 1] \rightarrow [1.0, 1.5] MASK token \rightarrow placeholder \rightarrow [0.8, 1.1] + [1, 0] \rightarrow [1.8, 1.1]
```

So decoder inputs:

```
[ [1.0, 1.5], \leftarrow "H" [1.8, 1.1] \leftarrow position for new word to generate (likely "\rightarrowcl") ]
```

Step 2: Masked Self-Attention (decoder)

This allows each word to attend only to **previously generated tokens**.

At this point, the decoder's 2nd token ("MASK") can look back at "#", but not forward.

Let's skip math here (it's similar) — we assume the second decoder token creates a query vector $\mathbf{Q} = [\mathbf{q_1}, \mathbf{q_2}]$, maybe around [1.4, 1.2].

Step 3: Cross-Attention: Decoder attending to Encoder Outputs

This is the key step.

The decoder now uses this query vector **Q** = [1.4, 1.2] and computes:

 $\mathbf{O} \cdot \mathbf{K}^{\mathrm{T}}$

We multiply Q with each encoder key vector (which are the same as encoder outputs):

```
Q = [1.4, 1.2]  K_1 ("I") = [1.288, 1.030] \rightarrow Q \cdot K_1 = 1.4 \times 1.288 + 1.2 \times 1.030 \approx 3.060   K_2 ("am") = [1.201, 1.178] \rightarrow Q \cdot K_2 = 1.4 \times 1.201 + 1.2 \times 1.178 \approx 3.243   K_3 ("boy") = [1.485, 0.989] \rightarrow Q \cdot K_3 = 1.4 \times 1.485 + 1.2 \times 0.989 \approx 3.486
```

So attention scores = [3.060, 3.243, 3.486]

Step 4: Softmax over scores

Let's normalize the scores using softmax:

```
Softmax([3.060, 3.243, 3.486]) \approx [0.26, 0.30, 0.44]
```

Interpretation:

"I": 26%"am": 30%"boy": 44%

So the decoder is **focusing more on "boy"** when generating this word — perfect! It has learned that **"boy" is the most relevant source token** for the current output.

Step 5: Context Vector

Now decoder computes a **weighted sum** of the value vectors (which are same as encoder outputs here):

```
Context = 0.26 \times [1.288, 1.030] + 0.30 \times [1.201, 1.178] + 0.44 \times [1.485, 0.989]
 \approx [1.35, 1.05]
```

This vector is rich in **semantic information about the word "boy"** — based on how attention distributed.

Step 6: Generate "केटा"

This context vector is passed through:

- 1. Feedforward layers
- 2. Output projection
- 3. Softmax over vocabulary
- → Most likely output = "केटा"

Training Phase

Let's break down what happens inside a Transformer model during the training and testing (inference) phases — especially for a translation task like English to Nepali (e.g., "I am boy" \rightarrow "ਸ ਕੇਟਾ ਫ਼ੁੱ").

1. Training Phase (Teacher Forcing Mode)

Goal:

Learn to translate English sentences into Nepali using supervised learning on parallel corpus.

Key steps:

a. Input to Encoder:

English sentence (e.g., "I am boy") is:

- 1. Tokenized: ["I", "am", "boy"]
- 2. Embedded + positional encoding
- 3. Passed into the **encoder stack**

Encoder outputs **contextual embeddings** for all tokens.

b. Input to Decoder:

```
Target sentence (ground truth): ["<BOS>", "म", "केटा", "हुँ"]

→ Shifted right: decoder takes this input:
```

```
Decoder input: ["<BOS>", "म", "केटा"]
Expected output: ["म", "केटा", "हुँ"]
```

This is called **teacher forcing** — we tell the decoder the correct previous tokens to predict the next one.

c. Decoder Process:

- Computes **self-attention** on decoder inputs (masked)
- Then uses **cross-attention** on encoder outputs (to align source with target)
- Produces prediction probabilities for next token at each position

d. Loss Calculation:

For each output position, we compare:

```
Predicted: ["म", "केटा", "हुँ"]
Ground truth: ["म", "केटा", "हुँ"]
```

Using cross-entropy loss:

```
L = -\sum log(P_model(true_word_t|inputs))
```

Model parameters (weights of attention, feedforward, embeddings, etc.) are updated using **backpropagation + Adam optimizer**.

2. Testing / Inference Phase (Autoregressive Decoding)

Goal:

Generate a translation for unseen input using the trained model.

Input:

English sentence → "I am boy"

Steps:

a. Encoder:

Just like training — encode "I am boy" into encoder hidden states.

b. Decoder:

We don't have the target output now, so we generate tokens one-by-one:

```
Start with: decoder_input = ["<BOS>"]

→ Generate "Ħ"

→ Feed ["<BOS>", "Ħ"] → Generate "╈टा"

→ Feed ["<BOS>", "Ħ", "╈टा"] → Generate "ᢡ"
```

This continues until:

- We generate an <EOS> token
- Or reach a maximum token limit

This is called autoregressive decoding (like how GPT works too).

c. Decoding Strategies:

- Greedy decoding: always pick the most probable token at each step
- Beam search: keep top-K likely sequences

• **Top-k/top-p sampling**: used in more creative generation tasks

let's dig into **how backpropagation and the Adam optimizer** are used to update Transformer model parameters like:

- Attention weights (₩ q, ₩ k, ₩ v, ₩ o)
- Feedforward layer weights
- Embedding matrices

We'll walk step by step through the math during **training**, with a concrete focus on the **attention mechanism**.

1. Forward Pass (Context)

Let's say we're translating:

Input: "I am boy" Target (Nepali): "म केटा हुँ"

The model predicts:

Output: "म केटा छ" (close, but wrong)

At each decoder step, the model outputs a probability distribution over vocabulary.

Suppose at step 3, it predicts:

$$P("\vec{g}") = 0.1$$

 $P("\vec{v}") = 0.85 \leftarrow \text{wrong}$
 $P(...) = ...$

2. Loss Computation

We use **cross-entropy loss** between predicted distribution and the true one-hot vector:

$$L = -\log(P("\vec{\xi}")) = -\log(0.1) \approx 2.30 L = -\log(P("\vec{\xi}")) = -\log(P("\vec{\xi}$$

We want the probability of the **correct word** to be high. So high loss means the model is wrong.

3. Backpropagation

The key idea:

Use **chain rule** to compute **gradient of the loss** with respect to **every model parameter**.

For example:

Let's focus on a single attention layer:

$$Attention(Q, K, V) = softmax(QK^T/\sqrt{d_k})V$$

Each of these (Q, K, V) is derived from input via:

$$Q = XW_aK = XW_kV = XW_v$$

So we compute:

$$\partial L/\partial W_q = \partial L/\partial Q \times \partial Q/\partial W_q = \partial L/\partial Q \times X^T$$

Similarly:

$$\partial L/\partial W_k = \partial L/\partial K \times X^T \partial L/\partial W_v = \partial L/\partial V \times X^T$$

Also, we backpropagate through **softmax**, **dot-product**, **and value aggregation**. This is where long gradient chains come into play.

The same happens for:

- Feedforward layers:
 - $\partial \texttt{L}/\partial \texttt{W}_1\text{, }\partial \texttt{L}/\partial \texttt{W}_2$ for dense layers
- Embedding matrices:

 $\partial L/\partial E$ [word_id] — similar to linear layers

4. Adam Optimizer

Once all gradients are computed via backpropagation, we use the **Adam optimizer** to update weights.

Adam combines momentum (past gradients) and adaptive learning rates.

Adam formulas (per parameter θ):

$$m_t = \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot \nabla L(\theta_t) v_t = \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot [\nabla L(\theta_t)]^2 \hat{m}_t = m_t / (1-\beta_1^t) \hat{v}_t = v_t / (1-\beta_2^t) \theta_{t+1} = \theta_t - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \varepsilon)$$

Where:

- α = learning rate (e.g. 1e-4)
- β_1 = momentum factor (≈ 0.9)
- β₂ = RMSprop-like factor (≈ 0.999)
- ε = small constant (e.g. 1e-8)

Adam ensures faster and stable convergence even with sparse gradients (like in embeddings).

Bonus: Example Gradient Flow (for attention layer)

Let's say we get a gradient of $\partial L/\partial Output = [0.2, -0.3]$ from the decoder output. This gradient:

- Backflows through the final softmax layer
- Then back through the attention block:

- o Back through ♥
- o Back through softmax (QK^T)
- o Back through Q, K, W q, W k, W v
- Updates embeddings and all relevant matrices

This allows the model to learn how to align "boy" with "केटा" more accurately next time.

Example: Self-Attention (Single Head)

Suppose our input is:

```
Tokens: ["I", "am", "boy"]
Embedding dimension d model = 2
```

Input Embeddings (X):

```
X = [ [1.0, 0.5], # I
[0.5, 1.0], # am
[1.5, 1.0] # boy ]
```

Attention weight matrices (to learn):

```
W_q = [[0.1, 0.3], W_k = [[0.2, 0.4], W_v = [[0.5, 0.6], [0.2, 0.7]][0.1, 0.2]][0.3, 0.8]]
```

Step 1: Compute Q, K, V

We compute:

$Q=X\times WqK=X\times WkV=X\times Wv$

```
Q = X @ W_q:
Q[0] = [1.0, 0.5] @ [[0.1, 0.3], [0.2, 0.7]] = [1.0*0.1 + 0.5*0.2, 1.0*0.3 + 0.5*0.7] = [0.2, 0.65]
Q[1] = [0.5, 1.0] @ W_q = [0.5*0.1 + 1.0*0.2, 0.5*0.3 + 1.0*0.7] = [0.25, 0.85]
Q[2] = [1.5, 1.0] @ W_q = [0.15 + 0.2, 0.45 + 0.7] = [0.35, 1.15]
```

You do the same for K and V.

Step 2: Scaled Dot Product Attention

Compute attention weights using:

Attention(Q,K,V)=softmax(Q \times KT/ \vee dk) \times V

Let's say d k = 2, so we scale by $\sqrt{2} \approx 1.41$.

Compute:

QKT=Q@KT→gives3x3matrix(attentionlogits)

Apply softmax row-wise to get attention weights.

Step 3: Multiply by V

Once you get attention weights A, compute:

Output=A×V

This gives you output vectors for each token.

Step 4: Loss Computation

Let's assume this attention output flows into the **final decoder**, and it predicts token "छ" instead of the correct "हुँ".

Cross-entropy loss:

Now we backpropagate this loss.

Step 5: Backpropagation

You compute the gradients of the loss w.r.t. each matrix.

Let's say:

 $\partial L/\partial Output = [0.2, -0.3] \partial L/\partial Output = [0.2, -0.3] \partial L/\partial Output = [0.2, -0.3]$

We backpropagate through:

- 1. $\partial L/\partial V$ (because output = A × V)
- 2. ∂L/∂A (from V)
- 3. $\partial L/\partial Q$, $\partial L/\partial K$ (from A = softmax(QK^T))
- 4. $\partial L/\partial W$ q, W k, W v

Example:

Step 6: Adam Optimizer Update

Let's say:

 ∇ Wq=[[0.01,-0.02],[0.005,0.01]]

Adam stores two things for each weight:

- m t = moving average of gradients (momentum)
- v t = moving average of squared gradients (adaptive)

Step-by-step:

a. Update moving averages:

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot \nabla W_q v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot (\nabla W_q)^2$$

Let's say $m_0 = v_0 = 0$, $\beta_1 = 0.9$, $\beta_2 = 0.999$

Then:

$$m_1 = 0.1 \cdot \nabla W_q = [[0.001, -0.002], [0.0005, 0.001]]v_1 = 0.001 \cdot (\nabla W_q)^2 = [[1e - 7, 4e - 7], [2.5e - 8, 1e - 6]]$$

b. Bias correction:

$$\hat{m} = m_1/(1-\beta_1^t) \approx m_1/0.1 \hat{v} = v_1/(1-\beta_2^t) \approx v_1/0.001$$

c. Parameter update:

$$W_q \leftarrow W_q - \alpha \cdot \hat{m}/(\sqrt{\hat{v}} + \varepsilon)$$

Suppose $\alpha = 0.001$, $\epsilon = 1e-8$

Compute for each element and update the $\mathtt{W} \ \mathtt{q}$ matrix accordingly.

Chatgpt Training Process:

PART 1: Training GPT (ChatGPT)

Training = Learn to **predict the next word** given previous words using **autoregressive language modeling**.

Example:

Input (Prompt):

"I am a"

Target (Label):

"am a boy" \rightarrow The model is trained to predict "am" from "I", "a" from "I am", and "boy" from "I am a"

1. Tokenization

```
Input: "I am a boy"
Tokens → IDs:

["I", "am", "a", "boy"] → [101, 205, 502, 678]
```

2. Embedding Layer

Each token is mapped to a vector:

E= Embedding Matrix $\in \mathbb{R}^{\setminus}\{V \times d_{\text{model}}\}$

Where:

- V = vocab size (e.g., 50,000)
- d_model = hidden dimension (e.g., 768)

If:

```
x=[101,205,502,678]E[x]=[e1=[0.2,0.5,...,0.1],e2=[0.3,-0.4,...,0.0],...]
```

Add positional encoding:

zi=ei+PEi

3. Transformer Decoder Layers

Each layer has:

- Self-attention
- Feed-forward
- LayerNorm
- Residual connections

3.1 Self-Attention (Autoregressive)

For each token, compute:

 $Q=z\times WqK=z\times WkV=z\times Wv$

Then:

$$A = softmax((QK^T)/\sqrt{d_k}) \times V$$

But since GPT is causal, apply mask so token at position i can't attend to future tokens.

$$A_masked = softmax((QK^T + M)/\sqrt{d_k}) \times V$$

Where $M[i][j] = -\infty$ if j > i (to mask future)

3.2 Feedforward Network

Apply a two-layer MLP:

FFN(x)=max(0,xW1+b1)W2+b2

4. Output Layer

At the final decoder output:

o= Output from last decoder layer $\in \mathbb{R}^{T} \times d_{model}$

Project to vocab:

logits= o × W_vocab^T + b_vocab logits

 $\text{logits} \; \in \; \mathbb{R}^{\wedge} \{ \texttt{T} \; \times \; \texttt{V} \}$

5. Loss Calculation

Use Cross-Entropy Loss:

For each token position t:

L=-log(P(truetokent|x1,...,xt-1))

6. Backpropagation + Adam Optimizer

Same as in earlier messages, compute gradients:

 $\partial L/\partial Wq$, $\partial L/\partial E$, $\partial L/\partial W$ vocab, etc.

Update using Adam:

Update using Adam:

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot \nabla \theta v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot \nabla \theta^2 \theta \leftarrow \theta - \alpha \cdot \hat{m}/(\sqrt{\hat{v}} + \varepsilon)$$

Repeat for millions of examples, using massive parallel GPUs (TPUs).

PART 2: Inference (Generation)

At test time, we generate text **one token at a time**, autoregressively.

Input: "I am a"

- 1. Tokenize \rightarrow [101, 205, 502]
- 2. Pass through model to get logits:

logits=GPT([101,205,502])

3. Apply softmax to get probabilities:

p = softmax(logits[-1]) # probability for next token

4. Sampling (or greedy/beam):

Pick next token: e.g., 678 → "boy"

5. Append and repeat:

Now input is [101, 205, 502, 678] \rightarrow generate next

Parallel Processing & Efficiency

During training, full sequences are available:

- Entire batch $[x_1, x_2, ..., x_n]$ is passed in parallel
- Attention uses matrix multiplication to compute all token-token interactions **at once** with masks

This is why GPTs scale well with GPU matrix ops

How GPT Becomes a Chatbot Like ChatGPT

ChatGPT is built using a **Transformer decoder-only model (GPT)**, trained in three main stages:

Stage 1: Pretraining (Language Modeling)

- Goal: Predict next word from previous context
- Data: Billions of web documents, books, code, etc.
- Math: Exactly what we discussed earlier
- Result: A model that can generate fluent text, but doesn't yet know how to hold a conversation.

Stage 2: Supervised Fine-Tuning (SFT)

Train on human-generated Q&A pairs to make it behave like a helpful assistant.

```
Example:
Input:
    "User: What is AI?\nAssistant:"
```

Target:
 "Artificial Intelligence (AI) is..."

Loss: Cross-entropy on expected output ("Artificial Intelligence..."), similar to next-token prediction.

Now the model learns:

- Instructions ("Translate this", "Summarize")
- Conversation structure ("User:", "Assistant:")

Stage 3: Reinforcement Learning with Human Feedback (RLHF)

After fine-tuning, generate multiple replies, and have humans rank them.

Train a **reward model** to learn this ranking:

R(y)≈HumanPreference(y)R(y)

Then fine-tune GPT to maximize reward using PPO (Proximal Policy Optimization):

 $L(\theta) = -R(y) + KLpenalty(old||new)$

This gives you more **helpful**, **safe**, and polite responses.

Now How ChatGPT Works in Real-Time

When you use ChatGPT, here's what happens under the hood:

Step-by-Step Inference as Chat

```
You type:
"Translate 'I am a boy' to Nepali"
```

1. Prompt Construction

Prompt:

"Translate 'I am a boy' to Nepali"

Let's show how ChatGPT (a decoder-only transformer like GPT) **tokenizes**, **embeds**, and **generates** the response — **step-by-step with math**.

STEP 2: Tokenization + Embedding

Input Prompt (string):

```
"User: Translate 'I am a boy' to Nepali\nAssistant:"
```

Suppose we tokenize using a vocabulary where each word gets a token ID (just examples):

```
"User:" \rightarrow 1200
"Translate" \rightarrow 1800
"I" \rightarrow 16
"I" \rightarrow 101
"am" \rightarrow 205
"a" \rightarrow 502
"boy" \rightarrow 678
"to" \rightarrow 134
"Nepali" \rightarrow 3005
"\n" \rightarrow 198
"Assistant:" \rightarrow 2022
```

Token IDs:

x=[1200,1800,16,101,205,502,678,16,134,3005,198,2022]

Step 2.1: Embedding Lookup

```
We have an embedding matrix E \in \mathbb{R}^{\{V \times d\_model\}}
Let d\_model = 4 for simplicity.
```

Example:

 $\mathsf{E}[101] = \mathsf{eI} = [0.1, 0.2, -0.1, 0.4] \\ \mathsf{E}[205] = \mathsf{eam} = [-0.2, 0.3, 0.0, 0.1] \\ \mathsf{E}[502] = \mathsf{ea} = [0.5, -0.1, 0.3, 0.0] \\ \dots$

We now get a matrix:

 $Xemb=[\ e_1,\,e_2,\,...,\,e_n\]\in\mathbb{R}^n\{n\times d_model\}$

Step 2.2: Add Positional Encoding

Use learned or sinusoidal $PE \in \mathbb{R}^{n \times d_model}$ Example (sinusoidal):

PE0=[0,1,0,1]PE1=[1,0,1,0]...

Final embeddings:

zt=et+PEtZ=[z1,z2,...,zn]

STEP 3: Forward Pass Through Transformer Decoder

Let's process input through one transformer decoder layer:

Step 3.1: Compute Q, K, V

Let:

$$W_O, W_K, W_V \in \mathbb{R}^{d_model \times d_k}$$

Suppose:

$$W_Q = [[0.1, 0.2], [0.3, 0.4], [-0.1, 0.0], [0.2, -0.3]]W_K = samedimsW_V = samedims$$

Then for token z_1 (shape $[1 \times d_{model}]$):

$$Q_1 = z_1 \times W_Q \in \mathbb{R}^{1 \times d_k} K_1 = z_1 \times W_K V_1 = z_1 \times W_V$$

Do this for all tokens:

$$Q = Z \times W_Q K = Z \times W_K V = Z \times W_V$$

Step 3.2: Scaled Dot-Product Attention

For each token | t , compute:

$$attention_s cores = Q_t \times K^T / \sqrt{d_k}$$

Then apply mask so position t can't attend to t+1, ..., n

Use:

$$A_masked = softmax((QK^T + M)/\sqrt{d_k}) \times V$$

Let's compute for t = 3:

$$Q_3 = [0.1, 0.2]K = [[0.2, 0.3], [0.0, 0.1], [-0.1, 0.2]]Q_3 \times K^T = [0.1 \times 0.2 + 0.2 \times 0.3, ..., 0.1 \times -0.1 + 0.2 \times 0.2] = [0.08, 0.02, 0.03]$$

Apply softmax to get attention weights:

$$\alpha = softmax([0.08, 0.02, 0.03]) = [0.34, 0.33, 0.33]$$

3. Pass to Transformer Decoder (Autoregressive)

Each step:

```
P(y1)=softmax(GPT(x1,...,xn))y1←sample(P(y1))\rightarrow"\overline{H}"P(y2)=softmax(GPT(x1,...,xn,y1))\rightarrow"\overline{V}"...
```

The model generates:

```
"म एउटा केटा हुँ।"
```

4. Output Sent Back to User

Browser/app gets back:

```
{
    "response": "म एउटा केटा हुँ।"
}
```

How ChatGPT Maintains Chat History

For multi-turn conversations, it keeps entire past conversation in the input prompt:

```
User: Hello
Assistant: Hi! How can I help?
User: Translate "I am a boy" to Nepali
Assistant: म एउटा केटा हुँ।
```

The whole string is re-encoded and sent to the model **every time**.

That's why ChatGPT is memoryless across sessions — but within a session, it uses **long-context transformers** (GPT-4 can do up to 128k tokens).

ChatGPT is a Decoder-Only Transformer

It does **not** have an encoder like the original Transformer used for translation tasks (e.g., English \rightarrow Nepali with encoder-decoder).

So When Is the Encoder Used?

The **encoder** is used in:

- **Encoder-decoder models** (e.g., original Transformer, T5, BERT2GPT)
- Translation tasks, where:
 - o Encoder processes source sentence (e.g., "I am a boy")
 - o Decoder generates **target sentence** (e.g., "म एउटा केटा हुँ"), using both:

- Its own previous outputs (via self-attention)
- The encoder's output (via cross-attention)