## Computer Assignment 1

CPE 261456 (Introduction to Computational Intelligence)

โดย

นายพีรณัฐ ธารทะเลทอง

รหัสนักศึกษา 550610530

เสนอ

ผศ.ดร. ศันสนีย์ เอื้อพันธ์วิริยะกุล

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

#### วิธีการทำงานของโปรแกรม

โปรแกรมเขียนด้วยภาษา python โดยรับ parameter ผ่าน command line รายละเอียดดังนี้

Parameter -N arg : arg คือ ชื่อโครงสร้าง Neural network เช่น "2-4-1"

parameter -n arg : arg คือ learning rate

parameter -m arg : arg คือ momentum

parameter -e arg : arg คือ จำนวน epoch

parameter -c : ทำ 10% cross validation

parameter -t arg : arg คือ training set file

ตัวอย่างการเรียกใช้โปรแกรม

python ComputerAssignment1.py -N 4-4-1 -n 0.2 -m 0.3 -e 100 -t iris.pat

เริ่มต้นการทำงาน โปรแกรมจะอ่าน input และ desire-output จากไฟล์มาเก็บใน array จากนั้นนำมา shuffle ก่อนนำเข้า neural network เมื่อเริ่มเข้า neural network จะทำการ random init weight ซึ่งค่า อยู่ระหว่าง  $\frac{-1}{\sqrt{fanin}}$  และ  $\frac{1}{\sqrt{fanin}}$  จากนั้นเข้าสู่กระบวนการ train โดยเริ่มจากการทำ feedforward networks โดย output แต่ละ layer ได้จากการ dot product ระหว่าง matrix output ของ layer ก่อน หน้า กับ matrix ของ weight ทุก weight ที่เข้า layer นั้น

จากนั้น ทำ back propagation โดยเริ่มจาก หา error จากสูตร

$$e_j(t) = d_j(t) - y_j(t)$$

เพื่อนำค่า error ไปหาค่า gradients ที่ output layer จากสูตร

$$\delta_j(t) = e_j(t)\varphi_j(v_j(t))$$

จากนั้น หา gradients ใน hidden layer จากสูตร

$$\delta_{j}^{(l)}(t) = \varphi_{j}^{(l)}(v_{j}^{(l)}(t)) \sum_{k} \delta_{k}^{(l+1)}(t) w_{kj}^{(l+1)}(t)$$

เพื่อนำ gradients ที่ได้ของทุก node นำไปปรับ weight จากสูตร

$$\Delta w_{ji}^{(l)}(t) = \alpha \Delta w_{ji}^{(l)}(t-1) + \eta \delta_j^{(l)}(t) y_i^{(l-1)}(t)$$

จากนั้นกลับไปเริ่มต้นใหม่ให้ครบรอบจำนวน epoch ที่รับเข้ามา เพื่อปรับ weight ให้ดีขึ้นเรื่อยๆ

# ทดลองกับปัญหา XOR เพื่อทดสอบความถูกต้องของโปรแกรม

ผลการทดลองครั้งที่ 1 (50 epochs)

| C:\Users>pyt          | hon ComputerAssign | nment1.py -N 2-4-1 -n 0.2 -m 0.3 -e 50 |  |  |
|-----------------------|--------------------|----------------------------------------|--|--|
| Vari                  | able               |                                        |  |  |
| Neural name           | 2-4-1              |                                        |  |  |
| Activation func tanh  |                    |                                        |  |  |
| Learning rate         | Learning rate 0.2  |                                        |  |  |
| Momentum              | 0.3                |                                        |  |  |
| Epoch 5               | 50                 |                                        |  |  |
| TrainingFile          | -                  |                                        |  |  |
|                       |                    |                                        |  |  |
| Trai                  | ning               |                                        |  |  |
| =======               | -=========         | ======100%                             |  |  |
|                       |                    |                                        |  |  |
| Test                  | ting               |                                        |  |  |
| Features              | Output             | Desired class                          |  |  |
| 00                    | [ 0.2285700218]    | 0                                      |  |  |
| 01                    | [ 0.6795426040]    | 1                                      |  |  |
| 10                    | [ 0.5946130258]    | 1                                      |  |  |
| 11                    | [ 0.3343745376]    | 0                                      |  |  |
|                       |                    |                                        |  |  |
| Error AV 0.0538852660 |                    |                                        |  |  |
| Accuracy 100          | 0.0000%            |                                        |  |  |
|                       |                    |                                        |  |  |

## ผลการทดลองครั้งที่ 2 (200 epochs)

| C:\Users>python ComputerAssignment1.py -N 2-4-1 -n 0.2 -m 0.3 -e 200 |   |  |  |  |
|----------------------------------------------------------------------|---|--|--|--|
| Variable                                                             |   |  |  |  |
| Neural name 2-4-1                                                    |   |  |  |  |
| Activation func tanh                                                 |   |  |  |  |
| Learning rate 0.2                                                    |   |  |  |  |
| Momentum 0.3                                                         |   |  |  |  |
| Epoch 200                                                            |   |  |  |  |
| TrainingFile -                                                       |   |  |  |  |
|                                                                      |   |  |  |  |
| Training                                                             |   |  |  |  |
| =======================================                              |   |  |  |  |
|                                                                      |   |  |  |  |
| Testing                                                              |   |  |  |  |
| Features Output Desired class                                        |   |  |  |  |
| 0 0 [ 0.0065803017] 0                                                |   |  |  |  |
| 0 1 [ 0.9336247061] 1                                                |   |  |  |  |
| 1 0 [ 0.9295828521] 1                                                |   |  |  |  |
| 11 [-0.0011971559] 0                                                 |   |  |  |  |
|                                                                      |   |  |  |  |
| Error AV 0.0011761235                                                |   |  |  |  |
| Accuracy 100.0000%                                                   |   |  |  |  |
|                                                                      | ı |  |  |  |

| C:\Users>pytho                          | on ComputerAssigr | nment1.py -N 2-4-1 -n 0.2 -m 0.3 -e 400 |  |  |  |
|-----------------------------------------|-------------------|-----------------------------------------|--|--|--|
| Variak                                  | ole               |                                         |  |  |  |
| Neural name                             | 2-4-1             |                                         |  |  |  |
| Activation func tanh                    |                   |                                         |  |  |  |
| Learning rate 0.2                       |                   |                                         |  |  |  |
| Momentum 0.3                            |                   |                                         |  |  |  |
| Epoch 40                                | Epoch 400         |                                         |  |  |  |
| TrainingFile -                          |                   |                                         |  |  |  |
|                                         |                   |                                         |  |  |  |
| Traini                                  | ng                |                                         |  |  |  |
| ======================================= |                   |                                         |  |  |  |
|                                         |                   |                                         |  |  |  |
| Testin                                  | ng                |                                         |  |  |  |
| Features                                | Output            | Desired class                           |  |  |  |
| 0 0                                     | [ 0.0063966836]   | 0                                       |  |  |  |
| 01                                      | [ 0.9681230407]   | 1                                       |  |  |  |
| 10                                      | [ 0.9625096198]   | 1                                       |  |  |  |
| 11                                      | [ 0.0105083843]   | 0                                       |  |  |  |
|                                         |                   |                                         |  |  |  |
| Error AV 0.0003216266                   |                   |                                         |  |  |  |
| Accuracy 100.0000%                      |                   |                                         |  |  |  |
|                                         |                   |                                         |  |  |  |

| C:\Users>pytho                          | n ComputerAssign | nment1.py -N 2-4-1 -n 0.2 -m 0.3 -e 1000 |  |  |  |
|-----------------------------------------|------------------|------------------------------------------|--|--|--|
| Variab                                  | le               |                                          |  |  |  |
| Neural name                             | 2-4-1            |                                          |  |  |  |
| Activation func                         | tanh             |                                          |  |  |  |
| Learning rate 0.2                       |                  |                                          |  |  |  |
| Momentum 0.3                            |                  |                                          |  |  |  |
| Epoch 100                               | Epoch 1000       |                                          |  |  |  |
| TrainingFile -                          |                  |                                          |  |  |  |
|                                         |                  |                                          |  |  |  |
| Trainin                                 | ng               |                                          |  |  |  |
| ======================================= |                  |                                          |  |  |  |
|                                         |                  |                                          |  |  |  |
| Testing                                 | g                |                                          |  |  |  |
| Features                                | Output           | Desired class                            |  |  |  |
| 00 [                                    | 0.0005324577]    | 0                                        |  |  |  |
| 01 [                                    | 0.9834712507]    | 1                                        |  |  |  |
| 10 [                                    | 0.9806382148]    | 1                                        |  |  |  |
| 11 [                                    | -0.0105726275]   | 0                                        |  |  |  |
|                                         |                  |                                          |  |  |  |
| Error AV 0.0000950178                   |                  |                                          |  |  |  |
| Accuracy 100.0000%                      |                  |                                          |  |  |  |
|                                         |                  |                                          |  |  |  |



จะเห็นได้ว่า เมื่อจำนวน epoch เพิ่มขึ้นจะทำให้ Error เฉลี่ยลดลงไปด้วย จึงสรุปได้ว่า โปรแกรมสามารถ แก้ปัญหา XOR ได้ถูกต้อง

## การทดลองโดยใช้ 10% cross validation กับ Training set iris.pat

#### Neural network 4-4-1

| Var                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                          | iable                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |
| Neural name                                                                                                                                                                                                                                                              | 4-4-1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |
| Activation func                                                                                                                                                                                                                                                          | tanh                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| Learning rate                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| Momentum                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| Epoch                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| TrainingFile                                                                                                                                                                                                                                                             | Iris.pat                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| C                                                                                                                                                                                                                                                                        | ross validation block 1                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| Tes                                                                                                                                                                                                                                                                      | ting                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
|                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |
| Features                                                                                                                                                                                                                                                                 | Output                                                                                                                                                                                                                                                                                                                                                                                                                  | Desired class                                                      |
| 6.1 3.0 4.6 1.4                                                                                                                                                                                                                                                          | [ 2 3757040318]                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                  |
| 5.0 3.4 1.5 0.2                                                                                                                                                                                                                                                          | Output [ 2.3757040318] [ 1.0978691977] [ 2.2322137614]                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                  |
| 5.0 3.4 1.3 0.2                                                                                                                                                                                                                                                          | [ 1.05/00515//]                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                  |
| 5.0 2.0 5.5 1.0                                                                                                                                                                                                                                                          | [ 2.232213/614]                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                  |
| 6.6 3.0 4.4 1.4                                                                                                                                                                                                                                                          | [ 2.2134/03599]                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                  |
| 4.4 2.9 1.4 0.2                                                                                                                                                                                                                                                          | [ 1.1035642629]                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                  |
| 4.4 3.2 1.3 0.2                                                                                                                                                                                                                                                          | [ 2.2322137614]<br>[ 2.2134703599]<br>[ 1.1035642629]<br>[ 1.0833085374]                                                                                                                                                                                                                                                                                                                                                | 1                                                                  |
| 4.4 3.0 1.3 0.2                                                                                                                                                                                                                                                          | [ 1.0831498495]                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                  |
| 6.7 3.1 4.4 1.4                                                                                                                                                                                                                                                          | [ 2.2030891490]                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                  |
| 5.7 4.4 1.5 0.4                                                                                                                                                                                                                                                          | [ 1.0879524515]                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                  |
| 6.9 3.1 5.1 2.3                                                                                                                                                                                                                                                          | [ 2.9601132661]                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                  |
| 67305017                                                                                                                                                                                                                                                                 | [ 2.7385170150]                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| 77306123                                                                                                                                                                                                                                                                 | [ 2.9715773513]                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                  |
| 7.7 3.0 0.1 2.3                                                                                                                                                                                                                                                          | [ 2.9682183977]                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                  |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
|                                                                                                                                                                                                                                                                          | [ 1.0954680542]                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| 4.7 3.2 1.6 0.2                                                                                                                                                                                                                                                          | [ 1.1278493760]                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                  |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| Error AV 0.0074                                                                                                                                                                                                                                                          | 838432                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
| Accuracy 100.00                                                                                                                                                                                                                                                          | 100%                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| _                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| (                                                                                                                                                                                                                                                                        | ross validation block 2                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
| · ·                                                                                                                                                                                                                                                                      | NOSS VALIABETON BLOCK 2                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| Tos                                                                                                                                                                                                                                                                      | ting                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| Tes                                                                                                                                                                                                                                                                      | ting                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
|                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                       | Dosinad class                                                      |
| Features                                                                                                                                                                                                                                                                 | Output                                                                                                                                                                                                                                                                                                                                                                                                                  | Desired class                                                      |
| Features<br>6.0 2.9 4.5 1.5                                                                                                                                                                                                                                              | Output<br>[ 2.6504565969]                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                  |
| Features<br>6.0 2.9 4.5 1.5<br>4.6 3.2 1.4 0.2                                                                                                                                                                                                                           | Output<br>[ 2.6504565969]<br>[ 1.0601635825]                                                                                                                                                                                                                                                                                                                                                                            | 2<br>1                                                             |
| Features<br>6.0 2.9 4.5 1.5<br>4.6 3.2 1.4 0.2<br>6.7 3.3 5.7 2.1                                                                                                                                                                                                        | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090]                                                                                                                                                                                                                                                                                                                                                                  | 2<br>1<br>3                                                        |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8                                                                                                                                                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913]                                                                                                                                                                                                                                                                                                                                                  | 2<br>1<br>3<br>3                                                   |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8                                                                                                                                                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913]                                                                                                                                                                                                                                                                                                                                                  | 2<br>1<br>3<br>3                                                   |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3                                                                                                                                                                                 | Output [ 2.6504565969] 2        [ 1.0601635825] 3        [ 2.9527709090] 4        [ 2.9521485913] 5        [ 2.9530486546]                                                                                                                                                                                                                                                                                              | 2<br>1<br>3<br>3<br>3                                              |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3                                                                                                                                                                 | Output [ 2.6504565969] 2        [ 1.0601635825] 3        [ 2.9527709090] 4        [ 2.9521485913] 5        [ 2.9530486546] 6        [ 2.9533304609]                                                                                                                                                                                                                                                                     | 2<br>1<br>3<br>3<br>3<br>3                                         |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4                                                                                                                                                 | Output [ 2.6504565969] 2                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>1<br>3<br>3<br>3<br>3                                         |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0                                                                                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374]                                                                                                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>3<br>1<br>2                               |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1                                                                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257]                                                                                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2                               |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2                                                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341]                                                                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1                          |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3                                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231]                                                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1<br>3                     |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8                                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968]                                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1<br>3<br>3                |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968] [ 2.9530336939]                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>3<br>1<br>2<br>2<br>2<br>1<br>3<br>3<br>3 |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1                                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968] [ 2.9530336939]                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1<br>3<br>3                |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8                                 | Output  [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968] [ 2.9530336939] [ 2.9523228997]                                                                                                                                                                                 | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>2<br>1<br>3<br>3<br>3      |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8                                 | Output [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968] [ 2.9530336939]                                                                                                                                                                                                  | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>2<br>1<br>3<br>3<br>3      |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8 6.0 2.2 4.0 1.0                 | Output  [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>2<br>1<br>3<br>3<br>3      |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8 6.0 2.2 4.0 1.0 Error AV 0.0042 | Output  [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>2<br>1<br>3<br>3<br>3      |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8 6.0 2.2 4.0 1.0                 | Output  [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968] [ 2.9523228997] [ 2.1530452538]                                                                                                                                                                                 | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1<br>3<br>3<br>3<br>3<br>3 |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8 6.0 2.2 4.0 1.0 Error AV 0.0042 | Output  [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] [ 2.9527261231] | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1<br>3<br>3<br>3<br>3<br>3 |
| Features 6.0 2.9 4.5 1.5 4.6 3.2 1.4 0.2 6.7 3.3 5.7 2.1 6.7 2.5 5.8 1.8 6.9 3.2 5.7 2.3 6.8 3.2 5.9 2.3 5.4 3.9 1.7 0.4 4.9 2.4 3.3 1.0 5.5 2.4 3.8 1.1 5.5 3.5 1.3 0.2 6.4 3.2 5.3 2.3 6.3 2.7 4.9 1.8 7.6 3.0 6.6 2.1 6.3 2.9 5.6 1.8 6.0 2.2 4.0 1.0 Error AV 0.0042 | Output  [ 2.6504565969] [ 1.0601635825] [ 2.9527709090] [ 2.9521485913] [ 2.9530486546] [ 2.9533304609] [ 1.0742566320] [ 2.0825258374] [ 2.1690375257] [ 1.0456407341] [ 2.9527261231] [ 2.9455780968] [ 2.9523228997] [ 2.1530452538]                                                                                                                                                                                 | 2<br>1<br>3<br>3<br>3<br>1<br>2<br>2<br>1<br>3<br>3<br>3<br>3<br>3 |

```
----- Cross validation block 3 -----
 -----Testing-----
Features Output
5.1 2.5 3.0 1.1 [ 2.0177864699]
6.2 2.9 4.3 1.3 [ 2.2673390104]
6.4 2.7 5.3 1.9 [ 2.9813750847]
                                                                              Desired class
                                                                              2
                                                                               3
                               [ 2.9813750847]
[ 2.9747561858]
[ 1.1080817017]
[ 1.1158191764]
[ 2.3984056432]
[ 2.9819187336]
[ 2.9833773647]
[ 2.2300949109]
[ 2.2473315307]
[ 2.9834218456]
[ 2.2525904285]
[ 2.3374689231]
[ 1.1808428580]
 6.0 2.7 5.1 1.6
                                                                               2
 5.0 3.5 1.3 0.3
                                                                               1
 5.2 3.4 1.4 0.2
                                                                              1
 5.5 2.3 4.0 1.3
                                                                              2
 6.1 2.6 5.6 1.4
                                                                              3
 6.3 3.4 5.6 2.4
                                                                               3
 6.1 2.8 4.0 1.3
                                                                              2
 5.6 2.5 3.9 1.1
                                                                              2
 6.5 3.0 5.8 2.2
                                                                              3
                                                                              2
 5.8 2.7 4.1 1.0
5.6 2.7 4.2 1.3 [ 2.3374689231]
5.1 3.8 1.9 0.4 [ 1.1808428580]
                                                                               2
                                                                              1
 Error AV 0.0127624315
 Accuracy 93.3333%
 -----
 ----- Cross validation block 4 -----
 -----Testing-----
Features
4.6 3.6 1.0 0.2
5.7 2.8 4.5 1.3
4.9 3.6 1.4 0.1
5.4 3.9 1.3 0.4
5.7 2.9 4.2 1.3
6.7 3.3 5.7 2.5
6.3 2.5 4.9 1.5
5.7 2.5 5.0 2.0
4.9 3.1 1.5 0.1
5.9 3.0 4.2 1.5
6.6 2.9 4.6 1.3
5.6 3.0 4.1 1.3
5.5 2.6 4.4 1.2
7.7 2.8 6.7 2.0

[ 1.0475393472]
[ 2.6177234255]
[ 2.6177234255]
[ 2.6177234255]
[ 2.6177234255]
[ 2.6177234255]
[ 2.6177234255]
[ 2.6177234255]
[ 2.6177234255]
[ 2.2546247140]
[ 2.29682831981]
[ 2.9682831981]
[ 2.9676160053]
[ 2.9676160053]
[ 2.9676160053]
[ 2.2292285697]
[ 2.2292285697]
[ 2.2126121848]
[ 2.7149844898]
[ 2.7149844898]
[ 2.7149844898]
[ 2.9680254937]
                                                                              Desired class
 Features
                                      Output
                                                                              1
                                                                               2
                                                                               1
                                                                               1
                                                                              2
                                                                              2
                                                                               3
                                                                              1
                                                                              2
                                                                              2
                                                                              1
                                                                               2
                                                                               2
 7.7 2.8 6.7 2.0 [ 2.9680254937] 3
 Error AV 0.0170653996
 Accuracy 93.3333%
 _____
```

```
----- Cross validation block 5
  -----Testing-----
Features
5.5 2.4 3.7 1.0
5.0 3.2 1.2 0.2
5.1 3.5 1.4 0.2
5.9 3.2 4.8 1.8
6.3 2.3 4.4 1.3
5.1 3.8 1.5 0.3
6.3 3.4 1.9 0.2
5.4 3.4 1.5 0.4
7.7 2.6 6.9 2.3
6.7 3.1 4.7 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 3.1 4.9 1.5
6.9 2.2448315480]
                                                                                                                   Desired class
                                                                                                                       2
                                                                                                                       1
                                                                                                                       2
                                                                                                                       2
                                                                                                                       2
                                                                                                                       1
                                                                                                                       1
                                                                                                                       1
                                                                                                                       3
                                                                                                                    2
                                                                                                                        2
                                                                                                                 2
 Error AV 0.0122842391
 Accuracy 93.3333%
   ----- Cross validation block 6 -----
   -----Testing-----
 Features
4.9 3.1 1.5 0.2 [ 1.0625933630]
6.2 2.2 4.5 1.5 [ 2.9578633326]
6.5 3.0 5.5 1.8 [ 2.9664154573]
6.4 2.8 5.6 2.1 [ 2.9687775022]
5.7 3.8 1.7 0.3 [ 1.0557321740]
4.9 2.5 4.5 1.7 [ 2.9669124900]
4.6 3.4 1.4 0.3 [ 1.0441002071]
6.8 3.0 5.5 2.1 [ 2.9680562268]
7.0 3.2 4.7 1.4 [ 2.1302321046]
6.3 2.5 5.0 1.9 [ 2.9679270469]
4.5 2.3 1.3 0.3 [ 1.0762577274]
5.9 3.0 5.1 1.8 [ 2.9649255037]
5.2 2.7 3.9 1.4 [ 2.4178778880]
6.4 3.1 5.5 1.8 [ 2.9657669662]
6.4 2.8 5.6 2.2 [ 2.9689968201]
                                                                                                                        Desired class
                                                                                                                         1
                                                                                                                         3
                                                                                                                  1
3
1
3
2
3
1
3
2
                                                                                                                         3
                                                                                                                         3
   Error AV 0.0094373210
   Accuracy 93.3333%
```

```
----- Cross validation block 7 ------
  -----Testing-----
Features

5.0 2.3 3.3 1.0

[ 2.0871297927]

5.8 2.6 4.0 1.2
[ 2.1809803440]

4.8 3.0 1.4 0.3
[ 1.0576390904]

5.0 3.0 1.6 0.2
[ 1.0908799450]

6.1 3.0 4.9 1.8
[ 2.9498554367]

6.5 3.0 5.2 2.0
[ 2.9561812045]

6.2 3.4 5.4 2.3
[ 2.9581520895]

5.3 3.7 1.5 0.2
[ 1.0536961072]

6.7 3.1 5.6 2.4
[ 2.9580668141]

5.8 2.7 3.9 1.2
[ 2.1432598154]

5.7 2.6 3.5 1.0
[ 2.0889636191]

5.0 3.3 1.4 0.2
[ 1.0510072011]

6.1 2.9 4.7 1.4
[ 2.7496149380]

6.2 2.8 4.8 1.8
[ 2.9454732988]

6.0 2.2 5.0 1.5
[ 2.9561516602]
                                                                                                                Desired class
                                                                                                                2
                                                                                                                2
                                                                                                                1
                                                                                                                 1
                                                                                                                 3
                                                                                                                 3
                                                                                                                 3
                                                                                                                1
                                                                                                                 3
                                                                                                                 2
                                                                                                                2
                                                                                                         1 2
                                                                                                                 3
 6.0 2.2 5.0 1.5 [ 2.9561516602]
                                                                                                                 3
 Error AV 0.0055051035
 Accuracy 100.0000%
  -----
   ----- Cross validation block 8 -----
   -----Testing-----
 Features

6.5 3.2 5.1 2.0

5.4 3.7 1.5 0.2

5.0 3.4 1.6 0.4

5.4 3.4 1.7 0.2

6.7 3.0 5.2 2.3

4.9 3.0 1.4 0.2

5.8 4.0 1.2 0.2

5.5 2.5 4.0 1.3

5.8 2.7 5.1 1.9

4.6 3.1 1.5 0.2

6.1 2.8 4.7 1.2

5.1 3.8 1.6 0.2

7.1 3.0 5.9 2.1

5.1 3.8 6.7 2.2

Output

[ 2.9436674388]

[ 1.0769938243]

[ 1.0982798281]

[ 1.0996054804]

[ 1.0799969404]

[ 1.0799969090]

[ 2.3882956273]

[ 2.3882956273]

[ 2.9609241038]

[ 1.0957528797]

[ 1.0848584403]

[ 2.9613308239]

[ 1.1182398921]

7.7 3.8 6.7 2.2

[ 2.9615273161]
                                                                                                                Desired class
                                                                                                                  3
                                                                                                                  1
                                                                                                                  1
                                                                                                                  1
                                                                                                                  3
                                                                                                                 1
                                                                                                                  1
                                                                                                               1
2
3
1
2
1
3
                                                                                                                  3
                                                                                                                  1
   Error AV 0.0038686439
  Accuracy 100.0000%
```

```
----- Cross validation block 9 ------
  -----Testing-----
Features

5.0 3.5 1.6 0.6

[ 1.1222996871]
5.2 4.1 1.5 0.1
[ 1.0923598016]
6.0 3.4 4.5 1.6
[ 2.3183330762]
4.7 3.2 1.3 0.2
[ 1.0840123290]
6.0 3.0 4.8 1.8
[ 2.9289747958]
6.5 2.8 4.6 1.5
[ 2.4043124368]
6.4 2.9 4.3 1.3
[ 2.2247549416]
5.6 2.8 4.9 2.0
[ 2.9572404560]
6.8 2.8 4.8 1.4
[ 2.3514253750]
5.0 3.6 1.4 0.2
[ 1.0907676366]
7.4 2.8 6.1 1.9
[ 2.9579773892]
6.3 2.8 5.1 1.5
[ 2.9223564123]
6.9 3.1 5.4 2.1
[ 2.9538359134]
5.1 3.7 1.5 0.4
[ 1.1019451589]
6.3 3.3 4.7 1.6
  Features
                                                                            Output
                                                                                                                                                       Desired class
                                                                                                                                                        1
                                                                                                                                                        3
                                                                                                                                                   2
3
2
1
3
3
3
1
2
  Error AV 0.0053959885
  Accuracy 100.0000%
  -----
   ----- Cross validation block 10 -----
  -----Testing-----
                                                                                                                                                      Desired class
  Features Output
7.2 3.6 6.1 2.5 [ 2.9861789839]

      7.2
      3.6
      6.1
      2.5
      [ 2.9861789839]
      3

      6.3
      3.3
      6.0
      2.5
      [ 2.9862146920]
      3

      7.2
      3.0
      5.8
      1.6
      [ 2.8528489351]
      3

      5.8
      2.7
      5.1
      1.9
      [ 2.9858967609]
      3

      4.8
      3.4
      1.6
      0.2
      [ 1.0074597716]
      1

      4.8
      3.1
      1.6
      0.2
      [ 1.0154420269]
      1

      5.6
      2.9
      3.6
      1.3
      [ 1.8421279600]
      2

      4.8
      3.0
      1.4
      0.1
      [ 0.9910592066]
      1

      7.3
      2.9
      6.3
      1.8
      [ 2.9854165220]
      3

      5.6
      3.0
      4.5
      1.5
      [ 2.6598108082]
      2

      5.5
      4.2
      1.4
      0.2
      [ 0.9939292482]
      1

      5.8
      2.8
      5.1
      2.4
      [ 2.8776035137]
      2

      5.1
      3.5
      1.4
      0.3
      [ 0.9852441998]
      1

      7.9
      3.8
      6.4
      2.0
      [ 2.9324514644]
      3

                                                                                                                                           1
1
   Error AV 0.0104858067
  Accuracy 93.3333%
   -----
   Error Average 0.00885529097936
```

```
-----Variable-----
 Neural name 4-3-2-1
 Activation func tanh
 Learning rate 0.2
 Momentum 0.3
                            100
 Epoch
 TrainingFile iris.pat
 ----- Cross validation block 1 ------
 -----Testing-----
Features
6.1 3.0 4.6 1.4
[ 1.9614685609]
5.5 2.3 4.0 1.3
[ 1.9606791996]
5.6 2.5 3.9 1.1
[ 1.9569616866]
6.2 2.2 4.5 1.5
[ 2.4883924841]
4.9 2.4 3.3 1.0
[ 1.9125094848]
6.7 3.0 5.2 2.3
[ 2.9354492065]
5.7 2.8 4.1 1.3
[ 1.9594926923]
5.7 2.8 4.5 1.3
[ 1.9584046759]
6.7 3.1 4.7 1.5
[ 1.9639408863]
5.0 3.2 1.2 0.2
[ 0.9864444196]
4.3 3.0 1.1 0.1
[ 0.9610704441]
7.7 3.0 6.1 2.3
[ 2.9425204951]
5.5 4.2 1.4 0.2
[ 1.0051545992]
6.9 3.2 5.7 2.3
[ 2.9418689245]
                                                                                       Desired class
2
                                                                                         2
                                                                                         2
                                                                                         2
                                                                                         2
                                                                                         2
                                                                                         2
                                                                                         2
                                                                                         1
                                                                                         3
                                                                                         3
                                                                                          1
                                                                                         3
 Error AV 0.0022618110
 Accuracy 100.0000%
 ______
   ----- Cross validation block 2 -----
  -----Testing-----
 Features
5.0 3.5 1.3 0.3
[ 1.0016545280]
7.2 3.2 6.0 1.8
[ 2.6852028137]
5.1 3.5 1.4 0.2
[ 1.0036949630]
6.3 2.7 4.9 1.8
[ 2.5759799523]
4.4 3.0 1.3 0.2
[ 1.0076603973]
6.4 2.7 5.3 1.9
[ 2.9099598010]
6.7 3.1 5.6 2.4
[ 2.9231468588]
5.4 3.0 4.5 1.5
[ 2.0404634887]
5.0 3.4 1.6 0.4
[ 1.0329375152]
7.4 2.8 6.1 1.9
[ 2.9170010088]
4.6 3.4 1.4 0.3
[ 1.0087668244]
6.5 3.0 5.5 1.8
[ 2.8251497298]
5.8 2.7 4.1 1.0
[ 1.9349096330]
5.5 2.4 3.7 1.0
[ 1.9143320981]
4.4 3.2 1.3 0.2
[ 0.9981073277]
                                                                                           Desired class
                                                                                          1
                                                                                           1
                                                                                           1
                                                                                           3
                                                                                           3
                                                                                           2
                                                                                          1
                                                                                           3
                                                                                           1
                                                                                            3
                                                                                            2
                                                                                           2
   Error AV 0.0028734899
   Accuracy 86.6667%
   -----
```

```
----- Cross validation block 3 ------
  -----Testing-----
                                                            Output
                                                                                                                             Desired class
 Features
 4.9 2.5 4.5 1.7

      4.9 2.5 4.5 1.7
      [ 2.9276618873]
      3

      5.7 3.8 1.7 0.3
      [ 1.0215297183]
      1

      6.4 2.9 4.3 1.3
      [ 1.9703662407]
      2

      5.1 3.8 1.6 0.2
      [ 1.0043394673]
      1

      6.7 2.5 5.8 1.8
      [ 2.9317628135]
      3

      4.6 3.6 1.0 0.2
      [ 0.9524685245]
      1

      5.4 3.4 1.7 0.2
      [ 1.0299072985]
      1

      7.2 3.0 5.8 1.6
      [ 2.8274341823]
      3

      6.1 2.8 4.0 1.3
      [ 1.9453146248]
      2

      5.0 2.0 3.5 1.0
      [ 1.9694401720]
      2

      5.7 2.9 4.2 1.3
      [ 1.9678126131]
      2

      6.3 2.8 5.1 1.5
      [ 2.6867824549]
      3

      4.7 3.2 1.6 0.2
      [ 1.0268916143]
      1

      5.2 2.7 3.9 1.4
      [ 1.9637396515]
      2

      4.6 3.2 1.4 0.2
      [ 1.0046690604]
      1

                                                             [ 2.9276618873]
 Error AV 0.0012442309
 Accuracy 93.3333%
   ----- Cross validation block 4 ------
   -----Testing-----
 Desired class
   Error AV 0.0007947381
   Accuracy 93.3333%
```

```
----- Cross validation block 5 -----
 -----Testing-----
                                                                                                                 Desired class
                                                       Output
 Features

      5.9 3.0 5.1 1.8
      [ 2.9405699145]
      3

      5.9 3.2 4.8 1.8
      [ 2.7387833469]
      2

      6.1 2.9 4.7 1.4
      [ 2.0053139708]
      2

      6.6 2.9 4.6 1.3
      [ 2.0220426043]
      2

      6.1 2.8 4.7 1.2
      [ 2.0029295875]
      2

      6.4 2.8 5.6 2.2
      [ 2.9445547985]
      3

      7.2 3.6 6.1 2.5
      [ 2.9440440983]
      3

      6.0 3.0 4.8 1.8
      [ 2.8974029245]
      3

      7.7 2.8 6.7 2.0
      [ 2.9455227148]
      3

      6.0 3.4 4.5 1.6
      [ 1.9771821062]
      2

      6.1 3.0 4.9 1.8
      [ 2.9153510367]
      3

      5.8 2.7 3.9 1.2
      [ 1.9696833854]
      2

      6.0 2.7 5.1 1.6
      [ 2.9415350419]
      2

      5.5 2.5 4.0 1.3
      [ 1.9802630002]
      2

      6.9 3.1 5.1 2.3
      [ 2.9397051267]
      3

                                                       [ 2.9405699145]
 5.9 3.0 5.1 1.8
                                                                                                                   3
 Error AV 0.0122389424
 Accuracy 93.3333%
   ----- Cross validation block 6 -----
   -----Testing-----
 Desired class
   Error AV 0.0024673684
  Accuracy 100.0000%
   ______
```

```
----- Cross validation block 7 ------
  -----Testing-----
                                                                                Output
[ 2.9289382266]
                                                                                                                                                                      Desired class
  Features

      6.9 3.1 5.4 2.1
      [ 2.9289382266]
      3

      5.1 3.8 1.9 0.4
      [ 1.0181003452]
      1

      6.7 3.1 4.4 1.4
      [ 1.9072936803]
      2

      5.5 2.6 4.4 1.2
      [ 2.0717847377]
      2

      5.5 2.4 3.8 1.1
      [ 1.9560654356]
      2

      5.0 3.6 1.4 0.2
      [ 0.9902167208]
      1

      5.7 2.6 3.5 1.0
      [ 1.7599147236]
      2

      6.3 3.3 6.0 2.5
      [ 2.9555791903]
      3

      5.7 2.5 5.0 2.0
      [ 2.9549568487]
      3

      6.3 2.5 4.9 1.5
      [ 2.7982025278]
      2

      6.4 3.2 4.5 1.5
      [ 1.9574508629]
      2

      5.1 3.8 1.5 0.3
      [ 0.9949454278]
      1

      6.5 3.0 5.8 2.2
      [ 2.9554437871]
      3

      5.6 2.9 3.6 1.3
      [ 1.7930357970]
      2

      4.6 3.1 1.5 0.2
      [ 1.0093152009]
      1

  6.9 3.1 5.4 2.1
  Error AV 0.0063888614
  Accuracy 86.6667%
  -----
  ----- Cross validation block 8 -----
  -----Testing-----
Features

6.4 3.1 5.5 1.8

7.7 2.6 6.9 2.3

5.1 3.4 1.5 0.2

6.7 3.3 5.7 2.1

5.4 3.7 1.5 0.2

5.7 4.4 1.5 0.4

5.0 3.5 1.6 0.6

4.5 2.3 1.3 0.3

5.3 3.7 1.5 0.2

1.0055856133]

4.8 3.4 1.6 0.2

6.5 3.2 5.1 2.0

5.4 3.9 1.3 0.4

7.1 3.0 5.9 2.1

4.8 3.1 1.6 0.2

6.0 2.2 4.0 1.0

Output

2.9245246934]

2.9354393146]

2.9290793519]

5.1 0064845664]

5.2 0.9971581746]

5.3 0.5 1.6 0.6

1.0055856133]

1.1274858777]

2.8592667830]

5.4 3.9 1.3 0.4

[ 0.9988845747]

7.1 3.0 5.9 2.1

[ 2.9327646357]

4.8 3.1 1.6 0.2

[ 1.0428476199]

6.0 2.2 4.0 1.0

[ 2.0237717111]
                                                                                                                                                                      Desired class
                                                                                                                                                                         3
                                                                                                                                                                        1
                                                                                                                                                                        1
                                                                                                                                                                        1
                                                                                                                                                                         1
                                                                                                                                                                         1
                                                                                                                                                                        3
                                                                                                                                                                          1
                                                                                                                                                                             2
  Error AV 0.0004979631
  Accuracy 100.0000%
```

|                                                                                                                                                                                                                                                                                                 | lidation block 9                                                                                                                                                                                                                                                       |                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Cross va                                                                                                                                                                                                                                                                                        | ildation block 9                                                                                                                                                                                                                                                       |                                                          |
| Testing                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |                                                          |
| _                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                          |
| Features 6.4 3.2 5.3 2.3 6.2 2.9 4.3 1.3 5.4 3.9 1.7 0.4                                                                                                                                                                                                                                        | Output                                                                                                                                                                                                                                                                 | Desired class                                            |
| 6.4 3.2 5.3 2.3                                                                                                                                                                                                                                                                                 | [ 2.9284811592]                                                                                                                                                                                                                                                        | 3                                                        |
| 6.2 2.9 4.3 1.3                                                                                                                                                                                                                                                                                 | [ 1.9819189414]                                                                                                                                                                                                                                                        | 2                                                        |
| 5.4 3.9 1.7 0.4                                                                                                                                                                                                                                                                                 | [ 1.0176929370]                                                                                                                                                                                                                                                        | 1                                                        |
| 6.0 2.2 5.0 1.5                                                                                                                                                                                                                                                                                 | [ 2.9286848578]                                                                                                                                                                                                                                                        | 3                                                        |
| 5.5 3.5 1.3 0.2                                                                                                                                                                                                                                                                                 | [ 1 0036558855]                                                                                                                                                                                                                                                        | 1                                                        |
| 6.9 3.1 4.9 1.5                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                          |
| 5.1 3.7 1.5 0.4                                                                                                                                                                                                                                                                                 | [ 1.0115032603]                                                                                                                                                                                                                                                        | 1                                                        |
| 5.1 3.7 1.5 0.4<br>5.2 3.5 1.5 0.2                                                                                                                                                                                                                                                              | [ 1.0119092003]                                                                                                                                                                                                                                                        | 1                                                        |
| 6.8 3.0 5.5 2.1                                                                                                                                                                                                                                                                                 | [ 2.9287072060]                                                                                                                                                                                                                                                        | 3                                                        |
| 7.7 3.8 6.7 2.2                                                                                                                                                                                                                                                                                 | [ 2.9298563116]                                                                                                                                                                                                                                                        | 3                                                        |
| 4.7 3.2 1.3 0.2                                                                                                                                                                                                                                                                                 | [ 1.0012512004]                                                                                                                                                                                                                                                        | 1                                                        |
| 4.9 3.1 1.5 0.2                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                          |
| 5 9 3 0 4 2 1 5                                                                                                                                                                                                                                                                                 | [ 1 9691121197]                                                                                                                                                                                                                                                        | 2                                                        |
| 5.9 3.0 4.2 1.5<br>6.3 2.5 5.0 1.9                                                                                                                                                                                                                                                              | [ 2.9286167404]                                                                                                                                                                                                                                                        | 3                                                        |
| 4.8 3.0 1.4 0.1                                                                                                                                                                                                                                                                                 | [ 1.0145104237]                                                                                                                                                                                                                                                        | 1                                                        |
| 4.0 3.0 1.4 0.1                                                                                                                                                                                                                                                                                 | [ 1.0143104237]                                                                                                                                                                                                                                                        | -                                                        |
| Error AV 0.0002351936                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |                                                          |
| Accuracy 100.0000%                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                          |
|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                          |
| Cross va                                                                                                                                                                                                                                                                                        | olidation block 10                                                                                                                                                                                                                                                     |                                                          |
| Cross va                                                                                                                                                                                                                                                                                        | alluacion block 10                                                                                                                                                                                                                                                     |                                                          |
| Testing                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |                                                          |
|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                          |
| Features                                                                                                                                                                                                                                                                                        | Output                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        | Desired class                                            |
| 5.8 4.0 1.2 0.2                                                                                                                                                                                                                                                                                 | [ 0.9724382066]                                                                                                                                                                                                                                                        | Desired class<br>1                                       |
| 5.8 4.0 1.2 0.2                                                                                                                                                                                                                                                                                 | [ 0.9724382066]                                                                                                                                                                                                                                                        | Desired class<br>1<br>2                                  |
| 6.5 2.8 4.6 1.5                                                                                                                                                                                                                                                                                 | [ 2.0455720092]                                                                                                                                                                                                                                                        | 2                                                        |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3                                                                                                                                                                                                                                                              | [ 2.0455720092]<br>[ 0.9898075885]                                                                                                                                                                                                                                     | 2<br>1                                                   |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2                                                                                                                                                                                                                                           | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]                                                                                                                                                                                                                  | 2<br>1<br>2                                              |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2                                                                                                                                                                                                                        | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]                                                                                                                                                                                               | 2<br>1<br>2<br>1                                         |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2                                                                                                                                                                                                     | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]                                                                                                                                                                            | 2<br>1<br>2<br>1                                         |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3                                                                                                                                                                                  | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]                                                                                                                                                         | 2<br>1<br>2<br>1<br>1<br>3                               |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1                                                                                                                                                               | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]                                                                                                                                      | 2<br>1<br>2<br>1<br>1<br>3<br>3                          |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5                                                                                                                                            | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]                                                                                                                   | 2<br>1<br>2<br>1<br>1<br>3<br>3                          |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1                                                                                                                         | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]                                                                                                | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3                     |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5                                                                                                      | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]                                                                             | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3                |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0                                                                                   | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]                                                          | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2           |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2                                                                | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]                                       | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3      |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2<br>6.3 3.4 5.6 2.4                                             | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]<br>[ 2.9235440115]                    | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3<br>1 |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2                                                                | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]<br>[ 2.9235440115]                    | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3      |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2<br>6.3 3.4 5.6 2.4<br>4.4 2.9 1.4 0.2                          | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]<br>[ 2.9235440115]                    | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3<br>1 |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2<br>6.3 3.4 5.6 2.4<br>4.4 2.9 1.4 0.2<br>Error AV 0.0011301283 | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]<br>[ 2.9235440115]                    | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3<br>1 |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2<br>6.3 3.4 5.6 2.4<br>4.4 2.9 1.4 0.2                          | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]<br>[ 2.9235440115]                    | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3<br>1 |
| 6.5 2.8 4.6 1.5<br>5.1 3.5 1.4 0.3<br>5.8 2.6 4.0 1.2<br>5.0 3.0 1.6 0.2<br>5.0 3.3 1.4 0.2<br>6.2 3.4 5.4 2.3<br>7.6 3.0 6.6 2.1<br>6.7 3.3 5.7 2.5<br>6.4 2.8 5.6 2.1<br>5.6 3.0 4.5 1.5<br>7.9 3.8 6.4 2.0<br>5.0 3.4 1.5 0.2<br>6.3 3.4 5.6 2.4<br>4.4 2.9 1.4 0.2<br>Error AV 0.0011301283 | [ 2.0455720092]<br>[ 0.9898075885]<br>[ 1.9913174503]<br>[ 1.0302216132]<br>[ 0.9920640066]<br>[ 2.9224584050]<br>[ 2.9247487419]<br>[ 2.9239018882]<br>[ 2.9240685705]<br>[ 2.3011959109]<br>[ 2.8926552203]<br>[ 0.9950594579]<br>[ 2.9235440115]<br>[ 1.0167205486] | 2<br>1<br>2<br>1<br>1<br>3<br>3<br>3<br>3<br>2<br>3<br>1 |

จะเห็นได้ว่า เมื่อเปลี่ยนจำนวน hidden layer จาก 4-4-1 เป็น 4-3-2-1 ทำให้ค่า error เฉลี่ยลดลง จึงสรุปได้ว่าโครงค่ายที่มีจำนวน hidden layer และ node มากกว่าจะให้ความถูกต้องมากกว่า

#### การทดลองโดยใช้ 10% cross validation กับ Training set cross.pat

Neural network 2-3-2

```
-----Variable-----
Neural name 2-3-2
Activation func tanh
Learning rate 0.2
Momentum 0.3
             1000
Epoch
TrainingFile cross.pat
----- Cross validation block 1 ------
-----Testing-----
Features Output
                                            Desired class
0.0842 0.4683 [ 0.5146610983 0.4360603709] [0 1]
0.5474 0.2817 [ 0.5106900045 0.5321637955]
                                            [0 1]
0.7459 0.2783 [ 0.4921878088 0.5656750004] [1 0]
0.8175 0.2770 [ 0.4835596211 0.5754944296] [1 0]
0.2438 0.1689 [ 0.5020511548 0.4290173069]
                                            [1 0]
0.8239 0.6233 [ 0.4795308392 0.6077925265]
                                            [0 1]
0.4163 0.7219 [ 0.5282030247 0.5645867050]
                                            [0 1]
0.2582 0.0687 [ 0.4939302740 0.4122268578] [1 0]
0.7948 0.5374 [ 0.4844277249 0.5973063167]
                                            [0 1]
0.4005 0.2314 [ 0.5136312785 0.4901919831] [0 1]
0.4777 0.0000 [ 0.5013295346 0.4708129585]
                                            [0 1]
0.9319 0.8400 [ 0.4633460100 0.6344723465]
                                            [1 0]
0.4509 0.0853 [ 0.5059383947 0.4785102972] [0 1]
0.7246 0.2069 [ 0.4943576348 0.5544069764]
                                            [1 0]
0.6031 0.4165 [ 0.5080540293 0.5593059605] [0 1]
0.9788 0.2190 [ 0.4633414678 0.5899864516]
                                            [1 0]
0.8897 0.1033 [ 0.4753080981 0.5674937349] [1 0]
0.3561 0.4977 [ 0.5262878566 0.5222093838] [0 1]
0.2252 0.2299 [ 0.5059345498  0.4354726434] [1 0]
0.7686 0.3057 [ 0.4894623678 0.5718099340] [1 0]
Error AV 0.2550786971
Accuracy 40.0000%
```

```
----- Cross validation block 2 ------
-----Testing------
              Output
                                               Desired class
Features
0.8818 0.8665 [ 0.5164988432 0.7510260699] [1 0]
0.8869 0.2814 [ 0.4740639292 0.6247106100] [1 0]
0.3086 0.5060 [ 0.5334249946 0.5269338544] [0 1]
0.1889 0.8486 [ 0.5557050978 0.6016292750] [1 0]
0.8189 0.2253 [ 0.4782048263 0.5909972525] [1 0]
 0.4470 \ 0.5504 \quad \bar{[} \ 0.5252959269 \quad 0.5860286344] \quad [0\ 1] 
0.8386 0.7856 [ 0.5108909096 0.7309679588] [1 0]
0.7044 0.2208 [ 0.4893024905 0.5567010374] [1 0]
0.9716 0.7389 [ 0.5011107976  0.7410257543] [1 0]
0.3480 0.7506 [ 0.5408543796  0.6185034611] [1 0]
0.7032 0.5949 [ 0.5062147041  0.6650208360] [0 1]
0.0523 0.8042 [ 0.5615531843 0.5429266889] [1 0]
0.3052 0.6927 [ 0.5416923682 0.5882437578] [1 0]
0.3672 0.9987 [ 0.5503430220 0.6894506718] [1 0]
0.2655 0.2685 [ 0.5209784091 0.4227084349] [0 1]
0.0538 0.1519 [ 0.5073960886 0.2928937791] [1 0]
0.9737 0.0683 [ 0.4552475031 0.5846745418] [1 0]
0.8855 0.1773 [ 0.4693559122 0.5943064566] [1 0]
0.1412 0.6891 [ 0.5517167455 0.5337284975] [1 0]
0.8915 0.8043 [ 0.5103285042 0.7417692315] [1 0]
Error AV 0.2715636704
Accuracy 25.0000%
----- Cross validation block 3 -----
-----Testing-----
Features
              Output
                                              Desired class
0.1452 0.3705 [ 0.5457422617 0.4336308790] [1 0]
0.4909 0.5871 [ 0.5199046823 0.5866188345] [0 1]
0.6870 0.8106 [ 0.4965647358  0.6657220501] [1 0]
0.3831 0.8177 [ 0.5260453308 0.6127811877] [1 0]
0.7249 0.8469 [ 0.4952655844 0.6776382960] [1 0]
0.3620 0.8441 [ 0.5277970966 0.6139310767] [1 0]
0.0928 0.8304 [ 0.5604799195 0.5524213212] [1 0]
0.8016 0.5192 [ 0.4871687826  0.6344576797] [0 1]
0.8077 0.7634 [ 0.4899906769  0.6774745302] [1 0]
0.7590 0.3777 [ 0.4932568378 0.5980882717] [1 0]
0.4824 0.9477 [ 0.5120041419 0.6548184648] [0 1]
0.4154 0.6172 [ 0.5283889599 0.5768709676] [0 1]
0.5088 0.5415 [ 0.5190369692 0.5804201440] [0 1]
0.7466 0.8522 [ 0.4945988045 0.6818374031] [1 0]
0.5675 0.2185 [ 0.5189355776 0.5151142267]
                                             [0 1]
0.7772 0.4676 [ 0.4897964056  0.6199944662] [0 1]
0.4509 0.5433 [ 0.5261230460 0.5679062301] [0 1]
0.1830 0.8217 [ 0.5507648822 0.5715509896] [1 0]
               [ 0.4880274024  0.5539508549] [1 0]
0.8590 0.0838
0.4784 0.3855 [ 0.5263804202 0.5359779441] [0 1]
Error AV 0.2628272637
Accuracy 50.0000%
```

```
----- Cross validation block 4 ------
-----Testing-----
Features
              Output
                                              Desired class
1.0000 0.4854 [-0.1742838280 0.9409923972] [0 1]
0.2358 0.5684 [-0.1402883860 0.9494866777] [0 1]
0.3458 0.6498 [-0.0077388910 0.9277471601] [0 1]
0.2956 0.7931 [ 0.7253300877 0.2181175074] [1 0]
0.5313 0.7802 [ 0.7052642181 0.2464703468] [0 1]
0.5359 0.5659 [-0.1656004119 0.9492115843] [0 1]
0.9228 0.6112 [-0.1574937186 0.9446657057] [0 1]
0.0566 0.4951 [-0.1412459361 0.9485528155] [0 1]
0.5640 0.5521 [-0.1734527568 0.9493151561] [0 1]
0.8930 0.2511 [ 0.8539167853 0.0281958832] [1 0]
0.8344 0.5514 [-0.1953215434 0.9488714507] [0 1]
0.3903 0.4089 [ 0.1234295248 0.8949296576] [0 1]
0.1897 0.7067 [ 0.4161058854 0.7452505395] [1 0]
0.6484 0.7466 [ 0.6316137757 0.4089353101] [0 1]
0.4469 0.5430 [-0.1668842144 0.9494418430] [0 1]
0.5952 0.7574 [ 0.6644338491 0.3413423469] [0 1]
0.4107 0.5648 [-0.1560243417 0.9493842008] [0 1]
0.2488 0.4502 [-0.1003428737 0.9391570846] [0 1]
0.6990 0.4454 [-0.0613434207 0.9267152661] [0 1]
0.7559 0.7985 [ 0.7131761008 0.2036828222] [1 0]
Error AV 0.4033088729
Accuracy 80.0000%
-----
 ----- Cross validation block 5 -----
-----Testing-----
Features Output
                                              Desired class
0.1364 0.7663 [ 0.4963339006 0.5067045942] [1 0]
0.7909 0.2158 [ 0.4949778897 0.5052817044] [1 0]
0.4892 0.6156 [ 0.4975266173 0.5079076143] [0 1]
0.8143 0.5887 [ 0.5000902465 0.5105156941]
                                             [0 1]
0.5738 0.1506 [ 0.4921472845 0.5023936382]
                                             [0 1]
0.1337 0.7618 [ 0.4962503143 0.5066191358] [1 0]
0.6155 0.5313 [ 0.4975543465 0.5079294361] [0 1]
0.8428 0.7575 [ 0.5025468573 0.5130291883] [1 0]
0.5119 0.4503 [ 0.4955544987 0.5058868145] [0 1]
0.6064 0.5329 [ 0.4974935486 0.5078676514] [0 1]
0.9551 0.3439 [ 0.4981447156 0.5085163118] [1 0]
0.4343 0.5832 [ 0.4966064288  0.5069681590] [0 1]
0.6330 0.2632 [ 0.4941767791 0.5044694202]
0.5459 0.7060 [ 0.4992216053 0.5096402546]
                                             [1 0]
                                             [0 1]
0.6445 0.8764 [ 0.5023276624 0.5128150688] [1 0]
0.7396 0.1480 [ 0.4936167372 0.5038902081] [1 0]
0.6262 0.5184 [ 0.4974810116 0.5078537826] [0 1]
0.6352 1.0000 [ 0.5038512614 0.5143751287] [0 1]
0.6544 0.4623 [ 0.4969969512 0.5073566162] [0 1]
0.3431 0.5531 [ 0.4953874223 0.5057245079] [0 1]
Error AV 0.2500696630
Accuracy 60.0000%
```

```
----- Cross validation block 6 ------
-----Testing-----
Features
              Output
                                              Desired class
0.2097 0.8957 [ 0.5081801965 0.5410410334] [1 0]
0.0609 0.1103 [ 0.4839765366  0.5158523159] [1 0]
0.4653 0.6214 [ 0.5218991079 0.5551099929] [0 1]
0.7736 0.8976 [ 0.5474290695 0.5813399777] [1 0]
0.4339 0.6054 [ 0.5194262450 0.5525634244] [0 1]
0.2574 0.3660 [ 0.5028342054 0.5354137811] [1 0]
0.1539 0.7021 [ 0.5009281104 0.5335167743] [1 0]
0.1408 0.5054 [ 0.4966634885 0.5290688000] [0 1]
0.5200 0.7388 [ 0.5276069677 0.5609989943] [0 1]
0.5934 0.4977 [ 0.5288851765 0.5622626008] [0 1]
0.4419 0.9173 [ 0.5249974740 0.5583549473] [0 1]
0.1823 0.7609 [ 0.5039714784 0.5366710987] [1 0]
0.3983 0.4703 [ 0.5147023093 0.5476732010] [0 1]
0.3496 0.1067 [ 0.5051916658 0.5377924827] [1 0]
0.1240 0.2975 [ 0.4918946412 0.5240923836] [1 0]
0.8217 0.6893 [ 0.5474878417 0.5813593040] [1 0]
0.6600 0.8513 [ 0.5390259433 0.5727324563] [1 0]
0.8873 0.7189 [ 0.5523278537 0.5863101921] [1 0]
0.4983 0.3113 [ 0.5192155545 0.5522861715] [0 1]
0.2988 0.5136 [ 0.5082852581 0.5410693032] [0 1]
Error AV 0.2528991369
Accuracy 45.0000%
______
----- Cross validation block 7 -----
 -----Testing-----
Features
              Output
                                              Desired class
0.5577 0.9503 [ 0.5104899015 0.5432222895] [0 1]
0.6008 0.7255 [ 0.5110571277 0.5438057125] [0 1]
0.0030 0.9024 [ 0.4817264123 0.5135093511] [1 0]
0.6737 0.5399 [ 0.5133857773 0.5462027494] [0 1]
0.5031 0.5944 [ 0.5052191233 0.5377890827] [0 1]
0.2431 0.1419 [ 0.4886405661 0.5206642850]
                                             [1 0]
0.0901 0.2039 [ 0.4811147635 0.5128731126] [1 0]
0.6119 0.6125 [ 0.5108140067 0.5435549165] [0 1]
0.8510 0.3547 [ 0.5208615378 0.5538916211] [1 0]
0.3461 0.5444 [ 0.4968792909 0.5291821726] [0 1]
0.1556 0.2654 [ 0.4849970995 0.5168940950] [1 0]
0.5411 0.3724 [ 0.5055538961 0.5381334740] [0 1]
0.1472 0.1856 [ 0.4839695011 0.5158298554] [1 0]
0.9834 0.5201 [ 0.5284631262 0.5616985978]
0.7200 0.0997 [ 0.5125945226 0.5453866105]
                                             [0 1]
                                             [1 0]
0.6744 0.7515 [ 0.5149065862 0.5477687666] [1 0]
0.2142 0.2516 [ 0.4879455195 0.5199455844] [1 0]
0.5059 0.4930 [ 0.5046369313 0.5371883669] [0 1]
0.1209 0.7077 [ 0.4864471613 0.5183967144] [1 0]
0.0000 0.1668 [ 0.4760912528 0.5076659578] [1 0]
Error AV 0.2513047332
Accuracy 45.0000%
```

```
----- Cross validation block 8 ------
-----Testing-----
Features
             Output
                                             Desired class
0.3749 0.7395 [ 0.5678923211 0.6054220456] [0 1]
0.7357 0.1887 [ 0.5322565663 0.5503246591] [1 0]
0.8273 0.9289 [ 0.5653886291 0.7182441959] [1 0]
0.8311 0.5247 [ 0.5471868438 0.6480996274] [0 1]
0.8392 0.5134 [ 0.5464516219 0.6472700303] [0 1]
0.2962 0.0697 [ 0.5143254081 0.3804520405] [1 0]
0.4394 0.7473 [ 0.5669389463 0.6206704464] [0 1]
0.9222 0.8117 [ 0.5575585475 0.7126291834] [1 0]
0.5526 0.4095 [ 0.5480038906 0.5645854979] [0 1]
0.7974 0.7302 [ 0.5570247426  0.6811512551] [1 0]
0.7038 0.3263 [ 0.5409170285 0.5784838714] [1 0]
0.7387 0.4991 [ 0.5486820238  0.6258101753] [0 1]
0.7385 0.7779 [ 0.5606715001  0.6804374788] [1 0]
0.0866 0.8116 [ 0.5751536599 0.5562548853] [1 0]
0.1989 0.1818 [ 0.5236731154 0.3889306810] [1 0]
0.5533 0.5493 [ 0.5554242480 0.5993381304] [0 1]
0.5325 0.7068 [ 0.5630716405 0.6304065736] [0 1]
0.7779 0.2660 [ 0.5361574415 0.5801226089] [1 0]
0.5629 0.5807 [ 0.5567251144 0.6086555704] [0 1]
0.0119 0.7999 [ 0.5746989103 0.5337936739] [1 0]
Error AV 0.2666119199
Accuracy 65.0000%
______
----- Cross validation block 9 -----
-----Testing-----
Features
              Output
                                              Desired class
0.3897 0.4966 [ 0.5067644885 0.4932949386] [0 1]
0.3718 0.5199 [ 0.5069322828  0.4934637409] [0 1]
0.1958 0.7386 [ 0.5085450768  0.4950849746] [1 0]
0.5236 0.3460 [ 0.5055825150 0.4921090576] [0 1]
0.6822 0.3444 [ 0.5047447317 0.4912934029] [1 0]
0.1269 0.1416 [ 0.5070073930 0.4934475490] [1 0]
0.4347 0.5128 [ 0.5065802416 0.4931194496] [0 1]
0.8847 0.8514 [ 0.5052929941 0.4919468079] [1 0]
0.4280 0.5098 [ 0.5066058095 0.4931436243] [0 1]
0.6740 0.5383 [ 0.5054064148 0.4919831616] [0 1]
0.2525 0.2539 [ 0.5067092726  0.4931838968] [1 0]
0.1332 0.5733 [ 0.5083498368 0.4948560305] [0 1]
0.2653 0.2286 [ 0.5065612821 0.4930338811] [1 0]
0.4771 0.5672 [ 0.5065308885  0.4930842614] [0 1]
0.3956 0.5292 [ 0.5068371796 0.4933733777] [0 1]
0.4755 0.5915 [ 0.5066163927 0.4931732089] [0 1]
0.3304 0.5528 [ 0.5072534840 0.4937841112] [0 1]
0.5050 0.2814 [ 0.5054735060 0.4919876926] [0 1]
               [ 0.5068045904  0.4932807324] [1 0]
0.2448 0.2711
0.2756 0.9146 [ 0.5086819571 0.4952596020] [1 0]
Error AV 0.2500473283
Accuracy 40.0000%
```

```
----- Cross validation block 10 ------
-----Testing-----
               Output
                                             Desired class
Features
               [ 0.4904395603  0.4356029177]
                                             [1 0]
0.2047 0.2394
0.4692 0.4133
               [ 0.4815495783  0.5303686118]
                                             [0 1]
0.8496 0.8346
               [ 0.4352760150  0.6381584645]
                                             [1 0]
0.2580 0.8219
               [ 0.4946451094  0.5764608010]
                                             [1 0]
0.3932 0.7691
               [ 0.4845092281  0.5861105536]
                                             [0 1]
0.5935 0.5255 [ 0.4706961213 0.5705689911]
                                             [0 1]
0.1931 0.2549 [ 0.4913129015 0.4370470234]
                                             [1 0]
0.1619 0.2285
               [ 0.4909187202  0.4226858322]
                                             [1 0]
0.0902 0.2690
               [ 0.4939802643  0.4167282862]
                                             [1 0]
0.4503 0.6102 [ 0.4817564502 0.5658183917]
                                             [0 1]
0.8188 0.1137 [ 0.4564689810 0.5264262589]
                                             [1 0]
0.5068 0.4199
               [ 0.4788865549  0.5379678675]
                                             [0 1]
0.4285 0.6941
               [ 0.4825424138  0.5778313547]
                                             [0 1]
0.8837 0.6746
               [ 0.4356905724  0.6214480964]
                                             [0 1]
0.8717 0.7477 [ 0.4349855737 0.6294532507]
                                             [1 0]
0.3349 0.8492
               [ 0.4883239171  0.5920759006]
                                             [1 0]
               [ 0.4883966594  0.5324230513]
0.3661 0.5083
                                             [0 1]
0.6844 0.9535
               [ 0.4518243155  0.6416989187]
                                             [1 0]
0.8724 0.4701
               [ 0.4433522455  0.5933361579] [0 1]
0.5370 0.4896 [ 0.4760315709 0.5561608462] [0 1]
Error AV 0.2572391979
Accuracy 70.0000%
Error Average 0.272095048338
```

```
------Variable-----
Neural name
              2-3-3-2
Activation func tanh
Learning rate 0.2
Momentum
              0.3
             1000
Epoch
TrainingFile cross.pat
----- Cross validation block 1 -----
-----Testing-----
Features
              Output
                                            Desired class
0.4909 0.5871
              [ 0.5584567458  0.9361326641]
                                            [0 1]
0.6990 0.4454 [ 0.8695548627 0.0441903078]
                                            [0 1]
0.0842 0.4683 [ 0.8952840072 -0.1082478455]
                                            [0 1]
0.1412 0.6891 [ 0.8952779768 -0.1082425376]
                                            [1 0]
0.2988 0.5136 [ 0.8869818274 -0.0931501928]
                                            [0 1]
0.8273 0.9289 [ 0.8826606639 -0.0609456557]
                                            [1 0]
0.9228 0.6112 [ 0.8832532397 -0.0629172679]
                                            [0 1]
0.8428 0.7575 [ 0.8831331912 -0.0625647764]
                                            [1 0]
0.5577 0.9503 [ 0.5583331480 0.9361819567]
                                            [0 1]
1.0000 0.4854 [ 0.8832525370 -0.0629129159]
                                            [0 1]
0.4469 0.5430 [ 0.5591267596 0.9358908571]
                                            [0 1]
0.6031 0.4165
              [ 0.5663161318  0.9332122339]
                                            [0 1]
0.4107 0.5648 [ 0.5627715013 0.9345283776]
                                            [0 1]
0.7200 0.0997 [ 0.8827773356 -0.0613834647] [1 0]
0.5459 0.7060
              [ 0.5584580073  0.9361351737]
                                            [0 1]
0.7249 0.8469 [ 0.7577950528 0.6940696613]
                                            [1 0]
0.8869 0.2814 [ 0.8832482665 -0.0628986838]
                                            [1 0]
0.3620 0.8441 [ 0.7641188082 0.6717013428]
                                            [1 0]
0.5533 0.5493 [ 0.5587729628 0.9360240511] [0 1]
0.6844 0.9535 [ 0.5697891319 0.9318116584] [1 0]
Error AV 0.4888648939
Accuracy 70.0000%
```

```
----- Cross validation block 2 ------
-----Testing------
                                             Desired class
Features
             Output
0.8855 0.1773 [ 0.8701246758 0.0232319506] [1 0]
0.7974 0.7302 [ 0.9372701057 0.0768045834] [1 0]
0.4824 0.9477 [ 0.8597113129 0.5838023718] [0 1]
0.8077 0.7634 [ 0.9386941118 0.0223490075] [1 0]
0.2358 0.5684 [ 0.9508239130 -0.0535324714] [0 1]
0.3496 0.1067 [ 0.8749576511 0.1005420079] [1 0]
0.4653 0.6214 [-0.0321216485 0.9782191933] [0 1]
0.5640 0.5521 [-0.0321434251 0.9782202843] [0 1]
0.7779 0.2660 [ 0.8697860218 0.0254711529] [1 0]
0.3661 0.5083 [-0.0299984912 0.9781125754] [0 1]
0.3956 0.5292 [-0.0314695006 0.9781864980] [0 1]
0.3831 0.8177 [ 0.7528171072 0.7765923014] [1 0]
0.2252 0.2299 [ 0.8983411219 0.0483584268] [1 0]
0.7396 0.1480 [ 0.8666799878 0.0395856340] [1 0]
0.2756 0.9146 [ 0.9507679020 -0.0528759422] [1 0]
0.8915 0.8043 [ 0.9379982214 -0.0045682334] [1 0]
0.8386 0.7856 [ 0.9382571631 0.0021765425] [1 0]
0.7459 0.2783 [ 0.8688898696 0.0314069007] [1 0]
0.9788 0.2190 [ 0.8703612566 0.0223560453] [1 0]
0.2956 0.7931 [ 0.9507334267 -0.0524597036] [1 0]
Error AV 0.4650424510
Accuracy 85.0000%
----- Cross validation block 3 -----
-----Testing-----
Features
                                             Desired class
              Output
0.0523 0.8042 [ 0.8977605686 0.0109859681] [1 0]
0.1897 0.7067 [ 0.8975969915 0.0110418566] [1 0]
0.8510 0.3547 [ 0.9381493832 0.0464733380] [1 0]
0.5200 0.7388 [-0.0240123544 0.9774078259] [0 1]
0.1989 0.1818 [ 0.9413854743 -0.0118333169] [1 0]
0.4394 0.7473 [-0.0252064204 0.9775190322] [0 1]
0.9737 0.0683 [ 0.9384465982 0.0412511297] [1 0]
0.8873 0.7189 [ 0.8688047797 0.0765450965] [1 0]
0.7357 0.1887 [ 0.9392236080 0.0274722280] [1 0]
0.0902 0.2690 [ 0.9413506208 -0.0111910524] [1 0]
0.4005 0.2314 [ 0.1880892442 0.9467982551] [0 1]
0.3304 0.5528 [ 0.1726207979 0.9571932425]
                                            [0 1]
0.4285 0.6941 [-0.0252389928 0.9775220306] [0 1]
0.3086 0.5060 [ 0.6278720986 0.5967898337] [0 1]
0.4509 0.0853 [ 0.0784127332 0.9682266560] [0 1]
0.8239 0.6233 [ 0.8684457374 0.0764061416] [0 1]
0.3897 0.4966 [-0.0252500135 0.9775229973]
                                            [0 1]
0.4280 0.5098 [-0.0227747014 0.9772909798] [0 1]
0.3903 0.4089 [-0.0195333729 0.9769825198] [0 1]
0.5411 0.3724 [-0.0105457775 0.9761172460] [0 1]
Error AV 0.4615466652
Accuracy 90.0000%
```

```
----- Cross validation block 4 ------
-----Testing-----
              Output
                                              Desired class
Features
0.1539 0.7021 [ 0.8522385532 0.5609975186] [1 0]
0.3672 0.9987 [ 0.7994166035 0.7658571501] [1 0]
0.6822 0.3444 [ 0.9774836890 0.0249106878] [1 0]
0.7736 0.8976 [ 0.9501104469 -0.3061531075] [1 0]
0.7948 0.5374 [ 0.6408150380 0.9548071389] [0 1]
0.5119 0.4503 [ 0.6263899088 0.9711682207] [0 1]
0.1958 0.7386 [ 0.9151098346 -0.0095122771] [1 0]
0.3480 0.7506 [ 0.8191570840 0.7140043406] [1 0]
0.4509 0.5433 [ 0.6237281828  0.9711884719] [0 1] 0.9716 0.7389 [ 0.9268867384  0.0872020982] [1 0]
0.7387 0.4991 [ 0.6710180769 0.9485289128] [0 1]
0.4503 0.6102 [ 0.6092391956 0.9712637883] [0 1]
0.2580 0.8219 [ 0.9251025092 -0.1745399947] [1 0]
0.4771 0.5672 [ 0.6212306910 0.9712029876] [0 1]
0.5474 0.2817 [ 0.6273493714 0.9708758100] [0 1]
0.3052 0.6927 [ 0.7309246315  0.8754202885] [1 0]
0.5059 0.4930 [ 0.6259276118 0.9711739501] [0 1]
0.0566 0.4951 [ 0.6460891807 0.9566535472] [0 1]
0.4343 0.5832 [ 0.6177023429 0.9712197637] [0 1]
0.5088 0.5415 [ 0.6241930668 0.9711857162] [0 1]
Error AV 0.4707116880
Accuracy 95.0000%
_____
----- Cross validation block 5 ------
-----Testing-----
             Output
                                              Desired class
Features
0.9834 0.5201 [ 0.5093939052 0.5033126507] [0 1]
0.1452 0.3705 [ 0.5064725441 0.5003919942] [1 0]
0.4692 0.4133 [ 0.5083452771 0.5022591715] [0 1]
0.5629 0.5807 [ 0.5085004152 0.5024204717] [0 1]
0.6352 1.0000 [ 0.5078487706  0.5017884287] [0 1]
0.8344 0.5514 [ 0.5094489408 0.5033661232] [0 1]
0.2097 0.8957
               [ 0.5050427802  0.4989904742] [1 0]
0.4892 0.6156 [ 0.5080083017 0.5019315626] [0 1]
0.6445 0.8764 [ 0.5082724006 0.5022052644] [1 0]
0.1332 0.5733 [ 0.5056884800 0.4996197478] [0 1]
0.8847 0.8514 [ 0.5095021737 0.5034300186] [1 0]
0.1931 0.2549 [ 0.5071363156 0.5010482920]
                                              [1 0]
0.5236 0.3460 [ 0.5086885525 0.5025988004] [0 1]
0.1269 0.1416 [ 0.5070259443 0.5009337475] [1 0]
0.2574 0.3660 [ 0.5072374634 0.5011535722] [1 0]
0.7590 0.3777 [ 0.5092579344 0.5031692530] [1 0]
0.4419 0.9173 [ 0.5067339879 0.5006750286] [0 1]
0.8724 0.4701 [ 0.5093986345 0.5033139460] [0 1]
0.1240 0.2975 [ 0.5065577119 0.5004737936] [1 0]
0.7686 0.3057 [ 0.5091825118 0.5030920030] [1 0]
Error AV 0.2500049732
Accuracy 50.0000%
```

```
----- Cross validation block 6
-----Testing-----
             Output
                                            Desired class
Features
0.2448 0.2711 [ 0.5054244011 0.5001791976] [1 0]
0.5526 0.4095 [ 0.5066513838 0.5014021724] [0 1]
0.0119 0.7999 [ 0.5018824769 0.4966586250] [1 0]
0.4339 0.6054 [ 0.5057703928 0.5005263321] [0 1]
0.1209 0.7077 [ 0.5031306551 0.4978998957] [1 0]
0.6008 0.7255 [ 0.5063814707 0.5011357794] [0 1]
0.5325 0.7068 [ 0.5060939626  0.5008493095] [0 1]
0.7909 0.2158 [ 0.5065457242 0.5012976182] [1 0]
0.7044 0.2208 [ 0.5067997103 0.5015496650] [1 0]
0.6330 0.2632 [ 0.5068691260 0.5016184566] [1 0]
0.7246 0.2069 [ 0.5067454257 0.5014957370] [1 0]
0.1364 0.7663 [ 0.5030567746  0.4978268564] [1 0]
0.1337 0.7618 [ 0.5030497314 0.4978198109] [1 0]
0.4154 0.6172 [ 0.5056303832 0.5003870420] [0 1]
0.3718 0.5199 [ 0.5056003456 0.5003563546] [0 1]
0.2047 0.2394 [ 0.5052443889  0.4999997501] [1 0]
0.3932 0.7691 [ 0.5050798594 0.4998402640] [0 1]
0.5952 0.7574 [ 0.5063016388 0.5010565250] [0 1]
0.3431 0.5531 [ 0.5053304077 0.5000879094] [0 1]
0.6262 0.5184 [ 0.5067360502 0.5014874478] [0 1]
Error AV 0.2500020959
Accuracy 50.0000%
______
----- Cross validation block 7 ------
-----Testing-----
Features
                                             Desired class
             Output
0.4777 0.0000 [-0.0203697909 0.9415170693] [0 1]
0.1556 0.2654 [ 0.9535008863 -0.0438104444] [1 0]
0.2962 0.0697 [ 0.9535009035 -0.0438102677] [1 0]
0.3983 0.4703 [-0.0247234944 0.9430662151] [0 1]
0.5370 0.4896 [-0.0247226138 0.9430663061] [0 1]
0.8175 0.2770 [ 0.9535009132 -0.0438101683] [1 0]
0.3461 0.5444 [ 0.1678253500 0.8756314225] [0 1]
0.5935 0.5255 [-0.0247229349 0.9430662729]
                                           [0 1]
0.7385 0.7779 [ 0.8611335792 0.0571545544] [1 0]
0.5934 0.4977 [-0.0247228321 0.9430662835] [0 1]
0.5313 0.7802 [-0.0247226935 0.9430662979] [0 1]
0.8717 0.7477 [ 0.8642009565 0.0536523712]
                                           [1 0]
0.6155 0.5313 [-0.0247236284 0.9430658557] [0 1]
0.8496 0.8346 [ 0.8661352828 0.0507236440] [1 0]
0.6744 0.7515 [ 0.7945530154 0.1434726028] [1 0]
0.8392 0.5134 [ 0.8495286676 0.0762957375] [0 1]
0.4470 0.5504 [-0.0247226272 0.9430663047]
                                           [0 1]
0.6870 0.8106 [ 0.8409128390 0.0822480914] [1 0]
0.8143 0.5887 [ 0.8560902142 0.0658734520] [0 1]
0.2438 0.1689 [ 0.9535008826 -0.0438104820] [1 0]
Error AV 0.4579957950
Accuracy 90.0000%
```

```
----- Cross validation block 8 ------
-----Testing-----
                                                Desired class
Features
               Output
0.1619 0.2285 [ 0.5362104870 0.4815654516] [1 0]
0.0928 0.8304 [ 0.5374790212 0.4827647510] [1 0]
0.5031 0.5944 [ 0.5377715685 0.4830413311] [0 1]
0.8311 0.5247 [ 0.5382833261 0.4835252834] [0 1]
0.8837 0.6746 [ 0.5387414622 0.4839586346] [0 1]
0.8217 0.6893 [ 0.5386484393 0.4838706474] [1 0]
0.3458 0.6498 [ 0.5375773520 0.4828576932] [0 1]
0.6064 0.5329 [ 0.5378403158  0.4831063288] [0 1]
0.0609 0.1103 [ 0.5357240553  0.4811057187] [1 0]
0.6484 0.7466 [ 0.5384261825 0.4836604369] [0 1]
0.5068 0.4199 [ 0.5373707860 0.4826623373] [0 1]
0.1472 0.1856 [ 0.5360793787 0.4814415304] [1 0]
0.4163 0.7219 [ 0.5378911551 0.4831544398] [0 1]
0.0901 0.2039 [ 0.5360043565 0.4813706310] [1 0]
0.4347 0.5128 [ 0.5374397643  0.4827275738] [0 1]
0.1408 0.5054 [ 0.5368165817 0.4821384037] [0 1]
0.2488 0.4502 [ 0.5369099479 0.4822266561] [0 1]
0.4755 0.5915 [ 0.5377079708  0.4829811923] [0 1]
0.7032 0.5949 [ 0.5381844015  0.4834317380] [0 1]
0.7772 0.4676 [ 0.5380390329 0.4832942366] [0 1]
Error AV 0.2502984471
Accuracy 30.0000%
-----
 ----- Cross validation block 9 -----
 -----Testing-----
 Features Output
                                                 Desired class
0.8016 0.5192 [ 0.5264565937 0.5115329797] [0 1]
0.8188 0.1137 [ 0.5341363892 0.4893771669] [1 0]
 0.3749 0.7395 [ 0.5146153603 0.4768270642] [0 1]
 0.0866 0.8116 [ 0.5074842808 0.4479624684] [1 0]
 0.2655 0.2685 [ 0.5200798698  0.4366984172]
                                                [0 1]
0.4784 0.3855 [ 0.5228743680 0.4672824590] [0 1]
 0.6544 0.4623 [ 0.5249084208 0.4917829442] [0 1]
 0.7466 0.8522 [ 0.5191062266 0.5247616716] [1 0]
 0.2653 0.2286 [ 0.5206475063 0.4344776819]
                                                [1 0]
0.9551 0.3439 [ 0.5323624576 0.5180092479] [1 0]
0.7559 0.7985 [ 0.5203111509 0.5227248090] [1 0]
 0.8897 0.1033 [ 0.5356193981 0.4966399267] [1 0]
 0.3561 0.4977 [ 0.5184783021 0.4600767618] [0 1]
 0.6740 0.5383 [ 0.5238657000 0.4985395675]
                                                [0 1]
0.7038 0.3263 [ 0.5282659076 0.4891774993]
                                                [1 0]
 0.6737 0.5399 [ 0.5238306150 0.4986017927] [0 1]
 0.5050 0.2814 [ 0.5251526827 0.4641344125] [0 1]
 0.1889 0.8486 [ 0.5089750207 0.4620530460] [1 0]
 0.5359 0.5659 [ 0.5208295969 0.4846451072] [0 1]
 0.9319 0.8400 [ 0.5224128075 0.5431047092] [1 0]
 Error AV 0.2510464663
 Accuracy 35.0000%
```

```
----- Cross validation block 10 -------
-----Testing-----
                                              Desired class
Features Output
0.3349 0.8492 [-0.0602010063 0.9707556472]
                                              [1 0]
0.2142 0.2516 [ 0.9044495887 0.4819365651]
                                              [1 0]
0.0538 0.1519 [ 0.9167533156 0.4192368315]
                                              [1 0]
0.6600 0.8513 [ 0.8891590035 0.0604410962]
                                              [1 0]
0.2582 0.0687 [ 0.8978201324 0.5064489232]
                                              [1 0]
0.8590 0.0838 [ 0.9133395754 -0.0508613679]
                                              [1 0]
0.2431 0.1419 [ 0.9005305017 0.4960843163]
                                              [1 0]
0.1830 0.8217 [ 0.9204801381 0.3696900516]
                                              [1 0]
0.1823 0.7609 [ 0.9202964084 0.3852476533]
                                              [1 0]
0.8930 0.2511 [ 0.9140268804 -0.0493930657]
                                              [1 0]
0.6119 0.6125 [-0.0801317527 0.9782892786]
                                              [0 1]
0.5675 0.2185 [ 0.9073180658 0.0066442236]
                                              [0 1]
0.0000 0.1668 [ 0.9168903644 0.4185696788]
                                              [1 0]
0.8189 0.2253 [ 0.9137646427 -0.0500424945]
                                              [1 0]
0.9222 0.8117 [ 0.8946282597 0.0279200455]
0.4983 0.3113 [-0.1262860964 0.9756518609]
                                              [1 0]
                                              [0 1]
0.0030 0.9024 [ 0.9224934620 0.3543991515]
                                              [1 0]
0.5738 0.1506 [ 0.9089296159 -0.0084783853]
                                              [0 1]
0.8818 0.8665
               [ 0.8948781331  0.0215144468]
                                              [1 0]
0.2525 0.2539 [ 0.8855755699 0.5544533269] [1 0]
Error AV 0.3899632209
Accuracy 85.0000%
Error Average 0.37354766967
```

จะเห็นได้ว่า เมื่อเปลี่ยนจำนวน hidden layer จาก 2-3-2 เป็น 2-3-3-2 ทำให้ค่า error เฉลี่ยเพิ่มขึ้น ซึ่งขัดกับผลการทดลองก่อนหน้า จึงยังสรุปไม่ได้ว่าโครงค่ายที่มีจำนวน hidden layer และ node มากกว่าจะ ให้ความถูกต้องมากกว่า ซึ่งอาจต้องปรับ learning rate และ momentum ให้ดีด้วย

## การทดลองปรับค่า learning rate กับ Training set iris.pat

กำหนด โครงข่าย Neural 4-4-1, Momentum = 0.3, Epoch = 100 ซึ่งทดลองปรับ learning rate เป็น 0.01, 0.05, 0.1, 0.3, 0.5 ตามลำดับ ได้ผลการทดลองดังนี้



จึงสรุปได้ว่าถ้าปรับค่า learning rate น้อยไปหรือมากไป จะทำให้ Error Av เพิ่มขึ้น

## การทดลองปรับค่า Momentum กับ Training set iris.pat

กำหนด โครงข่าย Neural 4-4-1, learning rate = 0.1, Epoch = 100 ซึ่งทดลองปรับ momentum เป็น 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 ตามลำดับ

## ได้ผลการทดลองดังนี้



จึงสรุปได้ว่าถ้าปรับค่า momentum มากไป จะทำให้ Error Av เพิ่มขึ้น

```
Code (<a href="https://github.com/porpeeranut/Computational_Intelligence_Assignment1">https://github.com/porpeeranut/Computational_Intelligence_Assignment1</a>)
# ComputerAssignment1.py
import numpy as np
import math, sys, getopt, os, fileinput, copy, random
# Neural Networks Backpropagation
def usage():
   fileName = os.path.basename(sys.argv[0])
   print "\nusage: ", fileName,
   print "[option]"
   print " -N arg: arg is neural name"
   print " -a arg : arg is activation function \"tanh\" or \"sigmoid\""
   print " -n arg : arg is learning rate"
   print " -m arg : arg is momentum"
   print " -e arg : arg is number of epoch to exit"
   print " -c : to test 10%s cross validation" % ('%')
   #print " -E arg : arg is min average error to exit"
   print " -t arg : arg is training set file"
   print "\nex."
   print fileName, "-N 2-4-1 -a tanh -n 0.2 -m 0.1 -e 10000 -t train.pat"
class NeuralNetwork:
   def init (self, layers, activFunct, learning rate, momentum, epoch, error):
      self.learning_rate = float(learning_rate)
      self.momentum = float(momentum)
      self.epoch = epoch
      self.error = float(error)
```

```
if activFunct == 'sigmoid':
     self.activation = sigmoid
     self.activation derive = sigmoid derivertive
  else:
     self.activation = tanh
     self.activation_derive = tanh_derivertive
  # Init weight
  self.init weights = []
  for i in range(1, len(layers) - 1):
     fanin = layers[i-1]
     weightInit = 1/math.sqrt(fanin)
     cellPrev = layers[i-1]
     cellCurr = layers[i]
     r = np.random.uniform(-1*weightInit, weightInit, [cellPrev + 1, cellCurr + 1])
     self.init weights.append(r)
  fanin = layers[i-1]
  weightInit = 1/math.sqrt(fanin)
  cellOutput = layers[i+1]
  cellPreOutput = layers[i]
  r = np.random.uniform(-1*weightlnit, weightlnit, [cellPreOutput + 1, cellOutput])
  self.init_weights.append(r)
  #print "\nWeights:", self.init weights
def train(self, x, y):
  #print "\n-----"
  # add bias 1 to input layer
  bias = np.atleast_2d(np.ones(x.shape[0]))
  x = np.concatenate((bias.T, x), axis=1)
```

```
self.weights = copy.deepcopy(self.init weights)
      self.old weights = copy.deepcopy(self.weights)
      for e in range(int(self.epoch) + 1):
         # if e % int(int(self.epoch)/13) == 0:
              #print " Epoch", e, "--", e*10 / int(int(self.epoch)/10), '%'
              sys.stdout.write('==')
         # if e == int(self.epoch):
              print "%d%s" % (e*10 / int(int(self.epoch)/10), '%')
         for i in range(int(x.shape[0])):
            y_all = [x[i]]
            v all = [[]]
            # feedforward networks
            for l in range(len(self.weights)):
               v_layer = np.dot(y_all[l], self.weights[l])
               y_layer = self.activation(v_layer)
               v all.append(v layer)
               y all.append(y layer)
            # gradients at output layer
            error = y[i] - y all[-1]
            gradients = [error * self.activation derive(v all[-1])]
            # gradients at hidden layer
            for l in range(len(y all)-2, 0, -1):
               gradients.append(self.activation_derive(v_all[l])*gradients[-
1].dot(self.weights[l].T))
```

```
gradients.reverse()
           # set new weight for back propagation
           self.tmp old weights = copy.deepcopy(self.weights)
           for i in range(len(self.weights)):
              layer = np.atleast_2d(y_all[i])
              gradient = np.atleast 2d(gradients[i])
              delta weight = self.weights[i] - self.old weights[i]
              # print delta weight
              # print
              #self.weights[i] += self.learning rate * layer.T.dot(gradient)
              self.weights[i] += self.momentum * delta weight + self.learning rate *
layer.T.dot(gradient)
           self.old weights = copy.deepcopy(self.tmp old weights)
   def test(self, listX, listY, trainingFile):
     print "\n-----"
     print "\nFeatures",
     if trainingFile == "cross.pat":
         print "\tOutput\t\t\tDesired class"
     else:
        print "\t\tOutput\t\tDesired class"
     EsumSqr = 0
     correct = 0
     i = 0
     np.set printoptions(formatter={'float': '{: 0.10f}'.format})
     for x in listX:
        if trainingFile == "iris.pat":
```

```
print " ".join('%0.1f' % f for f in x), "\t",
         elif trainingFile == "cross.pat":
            print " ".join('%0.4f' % f for f in x), "\t",
         else:
            print " ".join('%d' % f for f in x), "\t\t'",
         # add bias 1 to input layer
         x = np.concatenate((np.ones(1), np.array(x)))
         for l in range(0, len(self.weights)):
            v = np.dot(x, self.weights[l])
            x = self.activation(v)
         error = listY[i] - x[-1]
         Esum = 0;
         if isinstance(error, np.float64):
            Esum += error**2
         else:
            for e in error:
               Esum += e^{**}2
         EsumSqr += Esum/2
         #print "error",error
         desireY = listY[i]
         if trainingFile == "iris.pat":
            out = x*2+1
            desireY = listY[i]*2+1
            if (out < 1.8 and desireY == 1.0) or (out >= 1.8 and out < 2.8 and desireY == 2.0)
or (out \geq 2.8 and desireY == 3.0):
               correct = correct+1
         elif trainingFile == "cross.pat":
            if x[0] > x[1]:
```

```
out = np.array([1, 0])
            else:
                out = np.array([0, 1])
            if (out == listY[i]).all():
                correct = correct+1
            out = x
         else:
            if (x < 0.5 \text{ and } listY[i] == 0) or (x >= 0.5 \text{ and } listY[i] == 1):
                correct = correct+1
            out = x
         print out, "\t",
         if trainingFile == "iris.pat":
            print "%d" % (desireY)
         else:
            print desireY
         i = i+1
      Eav = EsumSqr/len(listX)
      print "\nError AV %.10f" % (Eav)
      print "Accuracy %.4f%s" % (correct/(len(listY)*1.0)*100.0, '%')
      return Eav
def sigmoid(x):
   return 1.0/(1.0 + np.exp(-x))
def sigmoid derivertive(x):
   return sigmoid(x)*(1.0-sigmoid(x))
def tanh(x):
```

```
def tanh_derivertive(x):
  return (1.0/np.cosh(x))**2
def main(argv):
   NNnameList = []
   learning rate = 0.2
   momentum = 0.1
   epoch = 1000
   error = 0.001
   isCrossValid = 0
   activFunct = 'tanh'
  trainingFile = '-'
   try:
      opts, args = getopt.getopt(argv,"chN:a:n:m:e:E:t:")
      if len(sys.argv) == 1:
         usage()
         sys.exit(2)
  except getopt.GetoptError:
      usage()
      sys.exit(2)
  for opt, arg in opts:
      if opt == '-h':
         usage()
         sys.exit()
      elif opt in ("-N"):
         NNname = arg
         NNnameList = arg.split('-')
```

return np.tanh(x)

```
NNnameList = map(int, NNnameList)
   elif opt in ("-a"):
     activFunct = arg
   elif opt in ("-n"):
     learning rate = arg
   elif opt in ("-m"):
     momentum = arg
   elif opt in ("-e"):
     epoch = arg
   elif opt in ("-E"):
     error = arg
   elif opt in ("-c"):
     isCrossValid = 1
   elif opt in ("-t"):
     trainingFile = arg
print "\n-----"
print 'Neural name\t', NNname
print 'Activation func\t', activFunct
print 'Learning rate\t', learning rate
print 'Momentum\t', momentum
print 'Epoch\t\t', epoch
#print 'Min error\t', error
print 'TrainingFile\t', trainingFile
nn = NeuralNetwork(NNnameList, activFunct, learning rate, momentum, epoch, error)
listX = []
listY = []
```

```
shuffleX = []
shuffleY = []
if trainingFile == "cross.pat":
   i = 1
   with open(trainingFile) as f:
   #with open("testcrs.pat") as f:
      for line in f:
         if i % 3 == 2: # features
            tmp = line.split()
            tmp = map(float, tmp)
            listX.append(tmp)
         if i % 3 == 0: # classes
            tmp = line.split()
            tmp = map(int, tmp)
            listY.append(tmp)
         i = i+1
      rdIndex = random.sample(range(len(listX)), len(listX))
      for i in rdIndex:
         shuffleX.append(listX[i])
         shuffleY.append(listY[i])
      inputX = np.array(shuffleX)
      outputY = np.array(shuffleY)
elif trainingFile == "iris.pat":
   i = 1
   with open(trainingFile) as f:
   #with open("testiris.pat") as f:
      for line in f:
         if i != 1:
```

```
tmp = line.split()
            # if int(tmp[4]) == 1:
                 listY.append([1, 0, 0])
            # elif int(tmp[4]) == 2:
            #
                 listY.append([0, 1, 0])
            # elif int(tmp[4]) == 3:
                 listY.append([0, 0, 1])
            # set range y to (0,1)
            listY.append((int(tmp[4])-1)/2.0)
            tmp.pop()
            tmp = map(float, tmp)
            listX.append(tmp)
        i = i+1
     rdIndex = random.sample(range(len(listX)), len(listX))
      for i in rdIndex:
         shuffleX.append(listX[i])
         shuffleY.append(listY[i])
      inputX = np.array(shuffleX)
      outputY = np.array(shuffleY)
else:
   inputX = np.array([[0, 0],
          [0, 1],
          [1, 0],
          [1, 1]])
   outputY = np.array([0, 1, 1, 0])
```

```
# print "\nInput X"
# print inputX
# print "\nDesire output"
# print outputY
if isCrossValid == 1:
   # 10% cross validation
   errorAV = 0.0
   for p in range(0, 10):
     print "\n\n-----" Cross validation block", p+1, "-----"
     block = int(round(len(listX)/10.0, 0))
     end = (p*block+block)-1
     if p == 9:
        end = len(listX)-1
     tmpTestListX = []
     tmpTestListY = []
     trainListX = copy.deepcopy(shuffleX)
     trainListY = copy.deepcopy(shuffleY)
     for i in range(end, p*block-1, -1):
        tmpTestListX.append(trainListX[i])
        tmpTestListY.append(trainListY[i])
        trainListX.pop(i)
        trainListY.pop(i)
     testDataX = np.array(tmpTestListX)
     testDataY = np.array(tmpTestListY)
     trainDataX = np.array(trainListX)
     trainDataY = np.array(trainListY)
      nn.train(trainDataX, trainDataY)
```

```
errorAV = errorAV + nn.test(testDataX, testDataY, trainingFile)
    print "-----"

print "Error Average ", errorAV/10

else:
    nn.train(inputX, outputY)
    nn.test(inputX, outputY, trainingFile)

if __name__ == "__main__":
    main(sys.argv[1:])
```