Ponte de Wheatstone em Equilíbrio e Fora do Equilíbrio

Inês Castro Quevedo Pereira

Departamento de Física e Astronomia da Faculdade de Ciências da Universidade do Porto

7 de Junho de 2022

Resumo

Esta atividade tem como propósito medir resistências e verificar as leis de associação em série e em paralelo com a ponte em equilíbrio, tendo sido provado que estas eram válidas devido aos erros baixos de 0,55% para R_{serie} e 0,47% para $R_{paralelo}$. Também foi determinado o comportamento térmico da resistência de um termómetro de platina com a ponte de Wheatstone fora de equilíbrio.

1 Introdução

1.1 Determinação de resistências com a ponte de Wheatstone em equilíbrio[1][2]

A ponte de Wheatstone é um circuito, cujo conceito foi desenvolvido por Charles Wheatstone, e que pode ser usado para medir com precisão valores de resistência desconhecidos, ou como meio de calibrar instrumentos de medição como: voltímetros, amperímetros, etc., através da utilização de uma resistência variável e uma fórmula matemática simples.

Embora hoje os multímetros digitais forneçam a maneira mais simples de medir uma resistência. A ponte de Wheatstone pode ser usada para comparar uma resistência desconhecida com uma resistência conhecida para determinar o seu valor, permitindo que valores muito baixos de resistências sejam medidos.

A ponte de Wheatstone não é nada mais do que dois arranjos simples de resistências em série e paralelo conectadas entre uma fonte de tensão e a terra, produzindo uma diferença de potencial nula entre os dois ramos paralelos quando a ponte está em equilíbrio.

A figura 1 mostra o circuito elétrico característico da ponte de Wheatstone que serve para medir a resistência R_3 . As resistências R_1 e R_2 são escolhidas numa caixa de resistências e R_4 noutra caixa de resistências. V é um voltímetro ao centro e ε_s a fonte de tensão de corrente contínua.

Figura 1: $V \to \text{Voltímetro}$; $\varepsilon_s \to \text{Fonte de tensão de corrente contínua}$; $R_1, R_2, R_3, R_4 \to \text{Resistências}$ (sendo R_4 variável).

Da aplicação das leis de Kirchhoff ao circuito esquematizado na figura 1 e na hipótese de ser nula a intensidade da corrente que percorre o ramo onde se encontra o voltímetro, resulta a relação seguinte entre as resistências:

$$R_3 = \frac{R_1}{R_2} R_4 \tag{1}$$

1.2 Ponte fora do equilíbrio[1]

A figura 2 mostra o circuito elétrico utilizado para o estudo do comportamento em temperatura da resistência $R_3, R_3(\theta)$, de um termómetro de platina. Durante a experiência, R_1, R_2 e R_4 são mantidas fixas e de valor igual.

Figura 2: $V \to \text{Voltímetro}$; $\varepsilon_s \to \text{Fonte de tensão de corrente contínua}$; $R_1, R_2, R_3(\theta), R_4 \to \text{Resistências}(\text{sendo } R_3(\theta) \text{ variável})$.

No caso de a fonte de corrente contínua ser ideal $(R_{\varepsilon_s} \approx 0)$, o voltímetro teria uma resistência interna que poderia ser considerada infinita $(R_V \approx \infty)$, e que as resistências da ponte têm valores R_1, R_2, R_3 e R_4 . Se inicialmente tivermos $R_1 = R_2$ e $R_3 = R_4$, a diferença de potencial V entre os pontos C e D da figura 2 é nula, uma vez que a ponte está equilibrada. Supondo que se aquece a resistência R3 de modo que o valor desta passe a ser $R_3 = R + \Delta R$.

Dado que R_V tem um valor muito elevado e que a intensidade de corrente no voltímetro é desprezável, a aplicação das leis de Kirchhoff ao circuito da figura 2 resulta nas seguintes expressões:

$$\begin{cases} \varepsilon_s &= i_1(R_1 + R_2) \\ \varepsilon_s &= i_2(R_3 + R_4) \end{cases} \Leftrightarrow \begin{cases} i_1 &= \frac{\varepsilon_s}{R_1 + R_2} \\ i_2 &= \frac{\varepsilon_s}{R_3 + R_4} \end{cases}$$
 (2)

Ao aquecer a resistência R_3 a ponte deixa de estar em equilíbrio e o voltímetro acusa uma diferença de potencial dada por:

$$\Delta V = R_2 i_1 - R_4 i_2 = \frac{(R_2 R_3 + R_2 \Delta R - R_1 R_4) \varepsilon_s}{R_1 R_3 + R_2 R_3 + R_1 R_4 + R_2 R_4 + (R_1 + R_2) \Delta R}$$
(3)

Se tivermos inicialmente a ponte equilibrada $(R_1 = R_2 \ e \ R_3 = R_4)$, a equação simplifica-se para:

$$\Delta V = \frac{\Delta R \,\varepsilon_s}{4R_4 + 2\Delta R} \tag{4}$$

Para ΔR pequeno comparado com R_4 , esta equação pode escrever-se de forma aproximada, considerando-se apenas o primeiro termo do desenvolvimento em série de Taylor, isto é,

$$\Delta V = \frac{\Delta R \,\varepsilon_s}{4R_4} \tag{5}$$

O erro na diferença de potencial entre as duas equações é inferior a 1% desde que $\frac{\Delta R}{R_4}$ seja menor que 0,02. Assim o circuito da ponte de Wheatstone permite obter um sinal de tensão ΔV aproximadamente proporcional à variação da resistência ΔR por um fator de calibração $\frac{\varepsilon_s}{4R_*}$.

Este processo é usado na leitura de sensores resistivos, termómetros resistivos, sensores de tensão mecânica, etc..

2 Procedimento

2.1 Determinação de resistências com a ponte de Wheatstone em equilíbrio

- Ligámos o voltímetro e o ohmímetro para estabilizarem a temperatura de funcionamento e só os desligámos no fim do trabalho. Tivemos o cuidado de garantir que o zero estava ajustado escolhendo uma escala sensível;
- Registámos os valores das resistências da placa de resistências (placa em acrílico), tal como são dados pelo código de $cores(R_a, R_b, R_c)$ e também utilizando um ohmímetro (R_a, R_b, R_c) ;
- Montámos o circuito da figura 1 escolhendo o par de valores (R_1, R_2) mais favoráveis para a determinação de R_3 (como $R_3 < R_{max} \rightarrow R_1 = R_2 = 1000\Omega$) (Tivemos o cuidado de verificar que não excedíamos 5V na fonte de tensão);
- Procurámos o valor em que se anula a diferença de potencial entre C e D recorrendo aos botões da caixa de resistências que determina R_4 e começando pelo valor mais elevado(10000 Ω);
- Repetimos o processo anterior para as outras resistências da placa e para associação de resistências em série e em paralelo;
- Calculámos R₃ para cada situação utilizando a equação 1;
- Calculámos para cada caso a incerteza e a exatidão considerada como valor de referência os valores medidos com o ohmímetro;

2.2 Determinação do comportamento térmico da resistência de um termómetro de platina

2.2.1 Material

- 2 termómetros de resistências de platina, Pt 1000 de classe B;
- Bloco de alumínio, onde se encontra inserida uma resistência de aquecimento que permite aquecer os dois termómetros de platina nele embutidos;
- Tabela de conversão de resistência de platina em graus centígrados, para controlo da evolução da temperatura(Figura 10);
- 2 multímetros: um como voltímetro e outro como ohmímetro para medição da resistência de um dos termómetros de platina;
- 2 fontes de tensão: uma para alimentar a ponte de Wheatstone e outra para alimentar o aquecedor do bloco de alumínio;
- Placa-suporte do bloco de alumínio, com terminais de ligação para os dois termómetros de platina e para a resistência de aquecimento.

2.2.2 Procedimento

- Montámos o esquema da figura 2;
- Escolhemos $R_1 = R_2 = 1000\Omega$ e ligámos os terminais de resistência de aquecimento à fonte de tensão variável:
- Verificámos que os termómetros de platina estavam devidamente inseridos no orifício do bloco metálico criado para esse fim;
- Ligámos os terminais do outro termómetro ao multímetro que funciona como ohmímetro;
- Registámos o valor da diferença de potencial ε_s aplicada entre os pontos A e B(ε_s ;1V);
- Antes de iniciar o aquecimento optámos por utilizar a ponte em desequilíbrio com uma tensão de aquecimento de ≈ 30 V e registámos pontos numa gama de $\approx 5^{\circ}$ C(tivemos o cuidado de não ultrapassar os 40° C para evitar acidentes);
- Certificámo-nos que a tensão estava ajustada para 30 V antes de ligar a fonte;
- Registámos periodicamente valores de t, ΔV e $R_3(\theta)$ em que:
 - t é o instante do registo;
 - $-\Delta V$ é a tensão lida no voltímetro(V);
 - $-R_3(\theta)$ é a resistência do termómetro de platina indicada pelo ohmímetro;
- Registámos os dados experimentais num gráfico de ΔV em função de $R_3(\theta)$;
- Comparámos, no mesmo gráfico, o comportamento experimental com os previstos pelas equações 4 e 5.

3 Resultados e análise

3.1 Determinação de resistências com a ponte de Wheatstone em equilíbrio

	R3 (codigo de cores) (Ω)	R3 (ohmimetro) (Ω)	u(R3) (ohmimetro) (Ω)	R4(Ω)	u(R4) (Ω)
R_a	1200	1194	1	1198.8	12.1
R _b	2200	2120	10	2200.0	22.0
R _c	3300	3240	10	3300.0	33.0
R _{serie}	///////	6590	10	6651.1	66.5
R _{paralelo}	///////	621	1	625.0	6.3

Figura 3: Valores de R_3 medidos através do código de cores e de um ohmímetro, com as respetivas incertezas. Valores de R_4 para as voltagens mais próximas de 0V e respetivas incertezas.

R3(exp) (Ω)	u(R3(exp)) (Ω)	u(R3) (%)	Erro %	Voltagem(mV)
1198.8	20.8	1.74%	0.40%	0.03
2200.0	38.1	1.73%	3.77%	5.28
3300.0	57.2	1.73%	1.85%	2.34
6651.1	71.8	1.08%	0.93%	0.01
625.0	10.5	1.69%	0.64%	0.09

Figura 4: Continuação da figura 3. Valores calculados para $R_3(exp)$ e respetivo erro relativamente a $R_3(ohmimetro)$

O valor máximo de R_4 que era possível obter era de 10000Ω . Através do código de cores verificou-se que todas as resistências estavam na ordem de $10^3\Omega$ ou inferior, pelo que se pode aplicar $R_1 = R_2 = 1000\Omega$. A precisão da ponte é de 1%, pelo que, $u(R_1) = u(R_2) = 1000 * 1\% = 10\Omega$.

A partir da observação da figura 3 e sabendo que R_3 foi medido numa escala de $2k\Omega$ para R_a e $R_{paralelo}$ e com uma escala de $20k\Omega$ para R_b, R_c e R_{serie} , temos que:

$$u(R_a) = u(R_{paralelo}) = 0.001 * 10^3 = 1\Omega$$
 (6)

$$u(R_b) = u(R_c) = u(R_{serie}) = 0.01 * 10^3 = 10\Omega$$
 (7)

A incerteza de R_4 na figura 3 foi obtida usando a precisão da caixa de resistências, ou seja, 1% para escalas de 10^3 , 10^2 e 10^1 e 2% para escalas de 10^0 e 10^{-1} .

Para R_4 de R_a temos:

$$u(R_4) = 1000 * 1\% + 100 * 1\% + 90 * 1\% + 8 * 2\% + 0.8 * 2\% \approx 12,10$$
(8)

Na figura 4, para $R_3(exp)$, os valores de R_a , R_b e R_c foram calculados a partir da equação 1, e como $R_1 = R_2$, temos $R_3 = R_4$, cujas incertezas são calculadas pela fórmula:

$$u(R_3) = \sqrt{\left(\frac{\partial R_3}{\partial R_1} * u(R_1)\right)^2 + \left(\frac{\partial R_3}{\partial R_2} * u(R_2)\right)^2 + \left(\frac{\partial R_3}{\partial R_4} * u(R_4)\right)^2} =$$

$$= \sqrt{\left(\frac{R_4}{R_2} * u(R_1)\right)^2 + \left(-\left(\frac{R_4}{R_2^2}\right) * u(R_2)\right)^2 + \left(\frac{R_1}{R_2} * u(R_4)\right)^2}$$
(9)

As leis de associação de resistências em série e em paralelo são respetivamente:

$$R_{serie} = R_a + R_b + R_c \tag{10}$$

$$\frac{1}{R_{paralelo}} = \frac{1}{R_a} + \frac{1}{R_b} + \frac{1}{R_c} \Leftrightarrow \frac{1}{R_{paralelo}} = \frac{R_b R_c + R_a R_c + R_a R_b}{R_a R_b R_c} \Leftrightarrow
\Leftrightarrow R_{paralelo} = \frac{R_a R_b R_c}{R_b R_c + R_a R_c + R_a R_b}$$
(11)

Os valores obtidos utilizando estas equações foram: $R_{serie}=655,4~\Omega$ e $R_{paralelo}=618,1~\Omega$. Os erros percentuais foram calculados através da expressão:

$$E_r(\%) = \frac{|R(Ohmimetro) - R(lei)|}{R(lei)} * 100\%$$
(12)

Assim, temos que $E_r(R_{serie})(\%) = 0.55\%$ e $E_r(R_{paralelo})(\%) = 0.47\%$.

Como os erros são inferiores a 1%, podemos confirmar a validade das leis de associação de resistências.

Para calcular as incertezas propagadas de $R_3(exp)$ para R_{serie} e $R_{paralelo}$ recorreu-se às fórmulas:

$$u(R_{serie}) = \sqrt{\left(\frac{\partial R_{serie}}{\partial R_a} * u(R_a)\right)^2 + \left(\frac{\partial R_{serie}}{\partial R_b} * u(R_b)\right)^2 + \left(\frac{\partial R_{serie}}{\partial R_c} * u(R_c)\right)^2} =$$

$$= \sqrt{u(R_a)^2 + u(R_b)^2 + u(R_c)^2} \approx 71,8\Omega$$
(13)

$$u(R_{paralelo}) = \sqrt{\left(\frac{\partial R_{paralelo}}{\partial R_a} * u(R_a)\right)^2 + \left(\frac{\partial R_{paralelo}}{\partial R_b} * u(R_b)\right)^2 + \left(\frac{\partial R_{paralelo}}{\partial R_c} * u(R_c)\right)^2} \approx 6,80$$
(14)

Para o cálculo do erro percentual na figura 4, o valor de $R_3(Ohmimetro)$ foi considerado o valor teórico. Isto deve-se ao facto de o valor medido com o ohmímetro ser mais exato, isto é, o mais próximo do valor real, pois as resistências já tinham sido sujeitas a uso, logo, o valor do código de cores será alterado. Além disso, tendo em conta a tolerância de 5% do código de cores, a incerteza do código de cores pode ser superior à incerteza do ohmímetro, o que acontece.

No geral, quanto mais afastada a ponte de Wheatstone estiver do equilíbrio, menor é a exatidão do valor de R_3 obtido, correspondendo a um maior erro relativo. Podemos verificar, ainda assim, que todos os erros obtidos são relativamente baixos(<4%).

Também é possível afirmar que o $R_3(exp)$ apresenta grande precisão, uma vez que as incertezas percentuais estão próximas de 2%.

3.2 Determinação do comportamento térmico da resistência de um termómetro de platina

Figura 5: ΔV em função de ΔR_3 para o método experimental e ambas as equações teóricas(equação 4 e 5)

Ajuste	Ajuste linear							
1.08E-04	1.16E-02							
1.09E-07	1.16E-06							
0.99994	5.03E-06							
969986.9	56							
2.45E-05	1.41E-09							

Figura 6: Ajuste linear de ΔV em função de ΔR_3 experimental

Na figura 7(Anexo), foram retirados valores de ΔV e R_3 de 30 em 30 segundos.

Para $R_1 = R_2$ e $R_3 = R_4$ inicialmente, ΔV seria 0V estando a ponte em equilíbrio. No entanto, o R_3 inicial medido corresponde a $1101,7\Omega$, apresentando um diferença de aproximadamente 10% com o valor de R_4 , encontrando-se a ponte de Wheatstone em desequilíbrio. Isto originou uma grande diferença de ΔV em relação às equações teóricas. Isto poderia ter sido evitado se a ponte estivesse em equilíbrio, uma vez que a temperatura do laboratório era aproximadamente 26° , o que influenciou o valor de R_3 inicial.

Apesar disto, podemos concluir que o ajuste realizado a ΔV em função de ΔR_3 foi adequado, pois os resíduos(figura 8) não apresentam qualquer tendência.

Uma vez que a equação 2 não demonstra uma relação linear, mas a equação 3 já e esta é uma aproximação de Taylor da equação 2, podemos comparar o declive obtido com o da equação 3.

Na figura 5, as linhas das equações 2 e 3 estão basicamente sobrepostas devido ao erro entre os valores de ΔV ser de aproximadamente 1%.

Comparando os declives da equação 3 e dos valores experimentais temos que:

$$E_r(\%) = \frac{|m_{exp} - m_{teo}|}{m_{teo}} * 100\% \approx 10\%$$
 (15)

Uma vez que o valor da ordenada na origem foi bastante superior a 0, não podemos afirmar que os dados recolhidos são exatos. No entanto, dado o erro relativo entre os declives ser baixo, podemos afirmar que os valores são precisos.

O aumento de ΔV com o aumento do valor da resistência demonstra o afastamento da ponte do equilíbrio com o aumento da temperatura.

4 Conclusão

Podemos concluir que a ponte de Wheatstone em equilíbrio é um método fiável para a determinação de resistências, dado a precisão e exatidão dos resultados obtidos para R_3 e os baixos erros das incertezas percentuais.

Verificou-se que ambas as leis de associação de resistências são válidas dado a proximidade com os valores mais próximos dos reais(valores retirados com o ohmímetro).

Por último, apesar da ponte não ter estado em equilíbrio, isso não impediu que os valores retirados fossem precisos, observando-se na mesma um aumento da temperatura com o aumento da resistência e o afastamento da ponte do equilíbrio com o aumento da diferença de potencial, estudando-se, assim, o comportamento térmico da resistência do termómetro de platina.

Referências

- [1] Docentes da unidade curricular FIS1005 FCUP. Trabalho 7b ponte de wheatstone em equilíbrio e fora do equilíbrio. pages 1–8, 2022.
- [2] https://www.electronics-tutorials.ws/blog/wheatstone-bridge.html, acedido: 11.06.2022.

Anexo

t (s)	ΔV (mV)	ΔV (V)	u(ΔV) (V)	R3(θ) (kΩ)	R3(θ) (Ω)	ΔR3 (Ω)	θ (ºC)	ΔV (eq5)	ΔV (eq6)	Fit	Resíduos
0	11.59	1.16E-02	1.00E-05	1.1017	1101.7	0.0	26.1	0.00E+00	0.00E+00	1.16E-02	-7.62E-06
30	11.59	1.16E-02	1.00E-05	1.1017	1101.7	0.0	26.1	0.00E+00	0.00E+00	1.16E-02	-7.62E-06
60	11.6	1.16E-02	1.00E-05	1.1017	1101.7	0.0	26.1	0.00E+00	0.00E+00	1.16E-02	2.38E-06
90	11.61	1.16E-02	1.00E-05	1.1018	1101.8	0.1	26.2	1.19E-05	1.19E-05	1.16E-02	1.62E-06
120	11.62	1.16E-02	1.00E-05	1.1020	1102.0	0.3	26.2	3.57E-05	3.57E-05	1.16E-02	-9.92E-06
150	11.64	1.16E-02	1.00E-05	1.1021	1102.1	0.4	26.3	4.76E-05	4.76E-05	1.16E-02	-6.82E-07
180	11.66	1.17E-02	1.00E-05	1.1023	1102.3	0.6	26.3	7.14E-05	7.14E-05	1.17E-02	-2.21E-06
210	11.69	1.17E-02	1.00E-05	1.1026	1102.6	0.9	26.4	1.07E-04	1.07E-04	1.17E-02	-4.51E-06
240	11.72	1.17E-02	1.00E-05	1.1028	1102.8	1.1	26.4	1.31E-04	1.31E-04	1.17E-02	3.95E-06
270	11.75	1.18E-02	1.00E-05	1.1031	1103.1	1.4	26.5	1.66E-04	1.67E-04	1.17E-02	1.65E-06
300	11.78	1.18E-02	1.00E-05	1.1034	1103.4	1.7	26.6	2.02E-04	2.02E-04	1.18E-02	-6.46E-07
330	11.81	1.18E-02	1.00E-05	1.1037	1103.7	2.0	26.7	2.38E-04	2.38E-04	1.18E-02	-2.95E-06
360	11.85	1.19E-02	1.00E-05	1.1040	1104.0	2.3	26.7	2.73E-04	2.74E-04	1.18E-02	4.76E-06
390	11.88	1.19E-02	1.00E-05	1.1044	1104.4	2.7	26.8	3.21E-04	3.21E-04	1.19E-02	-8.31E-06
420	11.92	1.19E-02	1.00E-05	1.1047	1104.7	3.0	26.9	3.56E-04	3.57E-04	1.19E-02	-6.10E-07
450	11.95	1.20E-02	1.00E-05	1.1050	1105.0	3.3	27.0	3.92E-04	3.93E-04	1.20E-02	-2.91E-06
480	12	1.20E-02	1.00E-05	1.1054	1105.4	3.7	27.1	4.39E-04	4.40E-04	1.20E-02	4.03E-06
510	12.04	1.20E-02	1.00E-05	1.1058	1105.8	4.1	27.2	4.87E-04	4.88E-04	1.20E-02	9.60E-07
540	12.08	1.21E-02	1.00E-05	1.1061	1106.1	4.4	27.3	5.22E-04	5.24E-04	1.21E-02	8.66E-06
570	12.12	1.21E-02	1.00E-05	1.1065	1106.5	4.8	27.4	5.70E-04	5.71E-04	1.21E-02	5.59E-06
600	12.16	1.22E-02	1.00E-05	1.1069	1106.9	5.2	27.5	6.17E-04	6.19E-04	1.22E-02	2.53E-06
630	12.21	1.22E-02	1.00E-05	1.1074	1107.4	5.7	27.6	6.76E-04	6.78E-04	1.22E-02	-1.30E-06
660	12.25	1.23E-02	1.00E-05	1.1078	1107.8	6.1	27.7	7.24E-04	7.26E-04	1.23E-02	-4.37E-06
690	12.3	1.23E-02	1.00E-05	1.1082	1108.2	6.5	27.8	7.71E-04	7.74E-04	1.23E-02	2.56E-06
720	12.35	1.24E-02	1.00E-05	1.1086	1108.6	6.9	27.9	8.18E-04	8.21E-04	1.23E-02	9.50E-06
750	12.38	1.24E-02	1.00E-05	1.1090	1109.0	7.3	28.0	8.66E-04	8.69E-04	1.24E-02	-3.57E-06
780	12.43	1.24E-02	1.00E-05	1.1094	1109.4	7.7	28.1	9.13E-04	9.16E-04	1.24E-02	3.37E-06
810	12.47	1.25E-02	1.00E-05	1.1098	1109.8	8.1	28.2	9.60E-04	9.64E-04	1.25E-02	3.02E-07
840 870	12.51	1.25E-02 1.26E-02	1.00E-05 1.00E-05	1.1102	1110.2 1110.5	8.5 8.8	28.3	1.01E-03 1.04E-03	1.01E-03 1.05E-03	1.25E-02 1.25E-02	-2.76E-06 4.94E-06
900	12.59	1.26E-02	1.00E-05	1.1109	1110.9	9.2	28.5	1.09E-03	1.09E-03	1.26E-02	1.87E-06
930	12.63	1.26E-02	1.00E-05	1.1113	1111.3	9.6	28.6	1.14E-03	1.14E-03	1.26E-02	-1.20E-06
960	12.67	1.27E-02	1.00E-05	1.1116	1111.6	9.9	28.7	1.17E-03	1.18E-03	1.27E-02	6.51E-06
990	12.71	1.27E-02	1.00E-05	1.1120	1112.0	10.3	28.8	1.22E-03	1.23E-03	1.27E-02	3.44E-06
1020	12.74	1.27E-02	1.00E-05	1.1123	1112.3	10.6	28.9	1.25E-03	1.26E-03	1.27E-02	1.14E-06
1050	12.79	1.28E-02	1.00E-05	1.1127	1112.7	11.0	29.0	1.30E-03	1.31E-03	1.28E-02	8.07E-06
1080	12.83	1.28E-02	1.00E-05	1.1131	1113.1	11.4	29.1	1.35E-03	1.36E-03	1.28E-02	5.01E-06
1110	12.87	1.29E-02	1.00E-05	1.1135	1113.5	11.8	29.2	1.40E-03	1.40E-03	1.29E-02	1.94E-06
1140	12.91	1.29E-02	1.00E-05	1.1139	1113.9	12.2	29.3	1.44E-03	1.45E-03	1.29E-02	-1.12E-06
1170	12.95	1.30E-02	1.00E-05	1.1143	1114.3	12.6	29.4	1.49E-03	1.50E-03	1.30E-02	-4.19E-06
1200	13	1.30E-02	1.00E-05	1.1147	1114.7	13.0	29.5	1.54E-03	1.55E-03	1.30E-02	2.75E-06
1230	13.03	1.30E-02	1.00E-05	1.1150	1115.0	13.3	29.6	1.57E-03	1.58E-03	1.30E-02	4.46E-07
1260	13.08	1.31E-02	1.00E-05	1.1154	1115.4	13.7	29.7	1.62E-03	1.63E-03	1.31E-02	7.38E-06
1290	13.12	1.31E-02	1.00E-05	1.1158	1115.8	14.1	29.8	1.67E-03	1.68E-03	1.31E-02	4.31E-06
1320	13.16	1.32E-02	1.00E-05	1.1162	1116.2	14.5	29.9	1.71E-03	1.73E-03	1.32E-02	1.25E-06
1350	13.2	1.32E-02	1.00E-05	1.1166	1116.6	14.9	30.0	1.76E-03	1.77E-03	1.32E-02	-1.82E-06
1380	13.24	1.32E-02	1.00E-05	1.1170	1117.0	15.3	30.1	1.81E-03	1.82E-03	1.32E-02	-4.88E-06
1410	13.27	1.33E-02	1.00E-05	1.1173	1117.3	15.6	30.2	1.84E-03	1.86E-03	1.33E-02	-7.18E-06
1440	13.3	1.33E-02	1.00E-05	1.1176	1117.6	15.9	30.3	1.88E-03	1.89E-03	1.33E-02	-9.48E-06
1470	13.34	1.33E-02	1.00E-05	1.1179	1117.9	16.2	30.3	1.91E-03	1.93E-03	1.33E-02	-1.78E-06
1500	13.38	1.34E-02	1.00E-05	1.1182	1118.2	16.5	30.4	1.95E-03	1.96E-03	1.34E-02	5.92E-06
1530	13.41	1.34E-02	1.00E-05	1.1185	1118.5	16.8	30.5	1.98E-03	2.00E-03	1.34E-02	3.62E-06
1560	13.44	1.34E-02	1.00E-05	1.1189	1118.9	17.2	30.6	2.03E-03	2.05E-03	1.34E-02	-9.45E-06
1590 1620	13.49 13.52	1.35E-02 1.35E-02	1.00E-05 1.00E-05	1.1192	1119.2 1119.6	17.5 17.9	30.7	2.06E-03 2.11E-03	2.08E-03 2.13E-03	1.35E-02 1.35E-02	8.26E-06
1650	13.56	1.35E-02 1.36E-02	1.00E-05	1.1196	1119.6	18.3	30.8	2.11E-03 2.16E-03	2.13E-03 2.18E-03	1.35E-02	-4.81E-06 -7.88E-06
1680	13.61	1.36E-02	1.00E-05	1.1204	1120.0	18.7	31.0	2.20E-03	2.23E-03	1.36E-02	-9.42E-07
1710	13.65	1.37E-02	1.00E-05	1.1204	1120.4	19.1	31.1	2.25E-03	2.27E-03	1.37E-02	-4.01E-06
1/10	13.03	4.37E-02	1.00E-03	1.1200	1120.0	15.1	31.1	2.23E-03	2.27E-03	1.37E-02	4.01E-00

Figura 7: Valores de t
, ΔV e de $R_3(\theta)$ recolhidos com valores de θ correspondentes de acordo com a equação $\theta=10^{-5}R_3(\theta)^2+0,2358R_3(\theta)-245,77$. Determinação de ΔR_3 . Cálculo de ΔV a partir da equação 2 e 3. Ajuste e respetivos resíduos de ΔV .

Figura 8: Resíduos da figura 5.

Figura 9: R_a, R_b e R_c pela respetiva ordem de cima para baixo.

Figura 10: Tabela de relação entre a temperatura e a resistência da platina.