Einstein's theory of relativity

Helga Holmestad

University of Oslo

26/10-2018

Special relativity

- ► The ether and Maxwell's equations
- Einstein's two postulates
 - Laws of physics are the same in all inertial reference frames
 - Speed of light is constant
- Ground-breaking new ideas
 - Space and time is not independent (spacetime)
 - Simultaneous depends upon reference frames

Special relativity

- ► The ether and Maxwell's equations
- Einstein's two postulates
 - Laws of physics are the same in all inertial reference frames
 - Speed of light is constant
- Ground-breaking new ideas
 - Space and time is not independent (spacetime)
 - Simultaneous depends upon reference frames

Special relativity

- ► The ether and Maxwell's equations
- Einstein's two postulates
 - Laws of physics are the same in all inertial reference frames
 - Speed of light is constant
- Ground-breaking new ideas
 - Space and time is not independent (spacetime)
 - Simultaneous depends upon reference frames

Simultaneous is not what you think..

Simultaneous is not what you think..

Simultaneous is not what you think..

Lorentz transformation

The transformations between two inertial reference frames moving with a relative velocity v. At t'=t=0 the origins of the two cordinates systems are the same.

$$t'=\gamma(t-vx/c^2)$$
 $x'=\gamma(x-vt)$ where : $c= ext{Speed of light}$ $\gamma=rac{1}{\sqrt{(1-v^2/c^2)}}$

v = 0.87c

~ - 2

 $x_1 = \mathsf{Back}$ of the carpe

 $x_2 =$ Front of the carpet

v = 0.87c

~ - 2

 $x_1 = \mathsf{Back}$ of the carpe

 x_2 = Front of the carpet

v = 0.87c

- - 2

 $x_1 = \text{Back of the carr}$

 $x_2 =$ Front of the carpet

$$\begin{cases} x_2' - x_1' = \gamma(x_2 - vt_2) - \gamma(x_1 - vt_1) \\ \Delta x = \frac{\Delta x'}{\gamma} \end{cases}$$

v = 0.87c

~ - 2

 $x_1 = \text{Back of the ca}$

 x_2 = Front of the carpet

$$x_2' - x_1' = \gamma(x_2 - vt_2) - \gamma(x_1 - vt_1)$$
$$\Delta x = \frac{\Delta x'}{\gamma}$$

v = 0.87c

 ~ -2

 $x_1 = Back of the carpet$

 $x_2 =$ Front of the carpe

 $t_1 = Start of flight$

 $t_2 = End of flight$

$$x_2' - x_1' = \gamma(x_2 - vt_2) - \gamma(x_1 - vt_1)$$
$$\Delta x = \frac{\Delta x'}{\gamma}$$

$$\begin{cases} t_2' - t_1' = \gamma(t_2 - v\frac{x_2}{c^2}) - \gamma(t_1 - v\frac{x_1}{c^2}) \\ \Delta t = \gamma \Delta t' \end{cases}$$

v = 0.87c

 ~ -2

 $x_1 = Back of the carpet$

 $x_2 =$ Front of the carpe

 $t_1 = \text{Start of flight}$ $t_2 = \text{End of flight}$

$$x'_2 - x'_1 = \gamma(x_2 - vt_2) - \gamma(x_1 - vt_1)$$

$$\Delta x = \frac{\Delta x'}{2}$$

$$\begin{cases} t_2' - t_1' = \gamma(t_2 - v\frac{x_2}{c^2}) - \gamma(t_1 - v\frac{x_1}{c^2}) \\ \Delta t = \gamma \Delta t' \end{cases}$$

v = 0.87c

 ~ -2

 $x_1 = \text{Back of the carpet}$

 x_2 = Front of the carpet

 $t_1 = \mathsf{Start} \ \mathsf{of} \ \mathsf{flight}$

 $t_2 = \text{End of flig}$

$$x_2' - x_1' = \gamma(x_2 - vt_2) - \gamma(x_1 - vt_1)$$
$$\Delta x = \frac{\Delta x'}{\gamma}$$

$$\begin{cases} t_2' - t_1' = \gamma(t_2 - v\frac{x_2}{c^2}) - \gamma(t_1 - v\frac{x_1}{c^2}) \\ \Delta t = \gamma \Delta t' \end{cases}$$

In the real world

- ► Atomic clocks in flights
- Muons actually reach the earth
- ► Particle accelerators

Picture by Dave L. Jones

In the real world

- ► Atomic clocks in flights
- Muons actually reach the earth
- ► Particle accelerators

Figure by K.Bernkör

In the real world

- ► Atomic clocks in flights
- Muons actually reach the earth
- Particle accelerators

Photo by K.Sjøbæk

General relativity

- ► In 1907 Einstein had the "happiest thought of his life"
- ► Equivalence principle
- Continuation of the the universality of free fall

- ► In 1907 Einstein had the "happiest thought of his life"
- ► Equivalence principle
- Continuation of the the universality of free fall

- ► In 1907 Einstein had the "happiest thought of his life"
- ► Equivalence principle
- Continuation of the the universality of free fall

- ► In 1907 Einstein had the "happiest thought of his life"
- Equivalence principle
- Continuation of the the universality of free fall

- ► The equivalence principle is only valid locally
- ► Globally there is tidal forces
- Can gravity be a geometrical effect

- ► The equivalence principle is only valid locally
- Globally there is tidal forces
- Can gravity be a geometrical effect

- The equivalence principle is only valid locally
- Globally there is tidal forces
- Can gravity be a geometrical effect

- The equivalence principle is only valid locally
- Globally there is tidal forces
- Can gravity be a geometrical effect

- General relativity describes spacetime as a manifold
- ► A manifold can describe a space that locally is flat, but is curved on larger scale
- ► The surface of a sphere:
 - Curved on larger scale
 - ► Locally flat
- Spacetime according to general relativity
 - Locally it a free falling coordinate system, the weak equivalence principle holds
 - Curved spacetime on larger scale
- Describing spacetime as a manifold gave the theory a mathematical framework (tensor analysis)

- General relativity describes spacetime as a manifold
- ► A manifold can describe a space that locally is flat, but is curved on larger scale
- ▶ The surface of a sphere:
 - Curved on larger scale
 - ▶ Locally flat
- Spacetime according to general relativity
 - Locally it a free falling coordinate system, the weak equivalence principle holds
 - Curved spacetime on larger scale
- Describing spacetime as a manifold gave the theory a mathematical framework (tensor analysis)

- General relativity describes spacetime as a manifold
- ► A manifold can describe a space that locally is flat, but is curved on larger scale
- ► The surface of a sphere:
 - Curved on larger scale
 - ▶ Locally flat
- Spacetime according to general relativity
 - Locally it a free falling coordinate system, the weak equivalence principle holds
 - Curved spacetime on larger scale
- ▶ Describing spacetime as a manifold gave the theory a mathematical framework (tensor analysis)

- General relativity describes spacetime as a manifold
- ► A manifold can describe a space that locally is flat, but is curved on larger scale
- The surface of a sphere:
 - Curved on larger scale
 - Locally flat
- Spacetime according to general relativity
 - Locally it a free falling coordinate system, the weak equivalence principle holds
 - Curved spacetime on larger scale
- Describing spacetime as a manifold gave the theory a mathematical framework (tensor analysis)

Field equations

- Content of space on right side
- ▶ The metric = $g_{\mu_{\nu}}$
- Only analytically solvable in special cases, for instance the Schwarzschild solution

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + g_{\mu\nu} \Lambda = \frac{8\pi G}{c^4} T_{\mu\nu}$$

 $R_{\mu\nu} = \text{Ricci curvature tensor}(f(g_{\mu\nu}))$

 $g_{\mu\nu}=$ The metric

 $\Lambda = \mathsf{Cosmological}\ \mathsf{constant}$

 $T_{\mu\nu} = \text{Stress-energy tensor}$

Field equations

$$R_{\mu\nu} - rac{1}{2} g_{\mu\nu} R + g_{\mu\nu} \Lambda = rac{8\pi G}{c^4} T_{\mu\nu}$$

- $R_{\mu
 u} = {
 m Ricci\ curvature\ tensor}(f(g_{\mu
 u}))$
- $g_{\mu\nu}=$ The metric
 - $\Lambda = Cosmological constant$
- $T_{\mu
 u} = {\sf Stress\text{-}energy tensor}$

- Curvature of space on left side
- Content of space on right side
- ▶ The metric $= g_{\mu_{\nu}}$
- Only analytically solvable in special cases, for instance the Schwarzschild solution

Field equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$$

$$Curvature of space on left$$

- $R_{\mu
 u} = {
 m Ricci} \; {
 m curvature} \; {
 m tensor}(f(g_{\mu
 u}))$
- $g_{\mu\nu} = \text{The metric}$
 - $\Lambda = Cosmological constant$
- $T_{\mu
 u} = ext{Stress-energy tensor}$

▶ The metric $= g_{\mu_{\nu}}$

side

side

 Only analytically solvable in special cases, for instance the Schwarzschild solution

Content of space on right

The geodesic equation

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\beta\alpha} \frac{d^2x^{\alpha}}{ds^2} \frac{d^2x^{\beta}}{ds^2} = 0$$

$$\Gamma^{\mu}_{\beta\alpha} = \text{Christoffel symbol}(f(g_{\mu\nu}))$$

Field equations

- Content of space on right side
- ▶ The metric = $g_{\mu_{\nu}}$
- Only analytically solvable in special cases, for instance the Schwarzschild solution

$$R_{\mu\nu} - rac{1}{2} g_{\mu\nu} \, R + g_{\mu\nu} \Lambda = rac{8\pi G}{c^4} \, T_{\mu\nu}$$

 $R_{\mu\nu} = \text{Ricci curvature tensor}(f(g_{\mu\nu}))$

 $g_{\mu\nu}=$ The metric

 $\Lambda = Cosmological constant$

 $T_{\mu\nu}=$ Stress-energy tensor

The geodesic equation

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}{}_{\beta\alpha} \frac{d^2x^{\alpha}}{ds^2} \frac{d^2x^{\beta}}{ds^2} = 0$$

 $\Gamma^{\mu}_{\beta\alpha} = \text{Christoffel symbol}(f(g_{\mu\nu}))$

Gravity and light

 Light is being bent by gravitational fields

Gravity and light

► Light is being bent by gravitational fields

- Bending of light by the sun might alter the apparent position of stars
- ▶ Solar eclipse 1919 was the ultimate test
- ► Three possible outcome
 - No bending
 - ► Newton bending
 - Bending of light predicted by general relativity
- ► Turned out that Einstein was right

- Bending of light by the sun might alter the apparent position of stars
- ▶ Solar eclipse 1919 was the ultimate test
- ► Three possible outcome
 - No bending
 - ► Newton bending
 - Bending of light predicted by general relativity
- ► Turned out that Einstein was right

- Bending of light by the sun might alter the apparent position of stars
- ▶ Solar eclipse 1919 was the ultimate test
- ► Three possible outcome
 - No bending
 - Newton bending
 - Bending of light predicted by general relativity
- ► Turned out that Einstein was right

- Bending of light by the sun might alter the apparent position of stars
- ▶ Solar eclipse 1919 was the ultimate test
- ► Three possible outcome
 - No bending
 - Newton bending
 - Bending of light predicted by general relativity
- ▶ Turned out that Einstein was right

Photo credit: LIGO / Caltech / MIT

Conclusion

- Alter how we see the world
- ▶ The equivalence principle is central
- Well tested theory