Protokoll Praktikum EBau Bipolartransistor

Johann Becker Valentin Eder Marc Ostner

19. Juni 2025

Date Performed: 30. Mai 2025 Instructor: Prof. Dr. Alexandru Negut

A Einführung

A.1 Gegenstand des Versuchs

In diesem Versuch sollen Eigenschaften und Anwendungen des Bipolartransistors BD137-16 untersucht werden.

A.2 Notwendige Vorbereitungen

A.2.1 Versuchsablauf

Die dynamische Messung der Transistorkennlinien erfolgt ähnlich zu der Messung von Diodenkennlinien.

A.2.2 Datenblatt

Der BD137-16 ist ein NPN Silizium Transistor. Der 16Änhang steht für die dynamische Stromverstärkung β_{III} , in diesem Fall 100~250.

A.3 Fragen zum Verstärker

Hier nicht ausgeführte Fragen finden sich im Anhang.

a) Welche Aufgabe hat der Kondensator C_k und wie herum muss ein gepolter Elektrolytkondensator an dieser Stelle eingebaut werden?

Der Koppelkondensator C_k trennt den Gleichspannungsanteil vom Signal und lässt nur das Wechselspannungssignal durch. Hierdurch kann ein Transistor Arbeitspunkt unabhängig von der Signalquelle U_{sig} eingestellt werden. Als resultat bleibt der Großsignal Arbeitspunkt bestehen, während die Kleinsignaländerungen von U_{sig} weiterhin bestehen bleiben.

Ein gepolter Elektrolytkondensator muss so eingebaut werden, dass die positive Seite an die höhere Gleichspannung angeschlossen wird.

e) Auf welchen Wert sollte der ausgangsseitige Arbeitspunkt U_{CE} eines Verstärkers in Emitterschaltung sinnvollerweise eingestellt werden?

Der Arbeitspunkt sollte in der SSafe Operation Areaëingestellt werden, um die Verstärkung möglichst wenig zu Verzerren. Also sollte U_{CE} überhablb des Sättigungsbereichs liegen, aber unter der maximalen ableitbaren Leistung. Um eine maximale Verstärkungsamplitude zu gewährleisten, sollte $U_{CE\,AP}$ im Mittel dieser beiden Spannungen $U_{CE\,S\"{attigung}}$ und $U_{CE\,PMax}$ liegen.

B Versuchsdurchführung

B.1 Kennlinien

B.1.1 Ausgangskennlinienfeld

Abbildung 1: Messschaltung zur Aufnahme des Ausgangskennlinienfeldes des BD137-16.

Das Ausgangskennlinienfeld wird jeweils in Schritten von $\Delta I_B = 100 \,\mu\text{A}$ aufgenommen.

B.1.2 Eingangskennlinie

Abbildung 2: Messschaltung zur Aufnahme der Eingangskennlinie des BD137-16.

Für diese Messung ist wichtig, die Spannungsquelle direkt am Kollektor und Emitter anzulegen, um die Spannung so Konstant wie möglich zu halten. Um eine Zerstörung des Transistors bei fehlerhaften Versuchsdurchführung zu verhindern, muss die Strombegrenzung der Spannungsquelle auf 250 mA eingestellt werden. Der Basisstrom wird über den Spannungsabfall an R_B bestimmt.

B.1.3 Temperaturverhalten

B.1.4 Übertragungskennlinie

B.2 Betrieb als Verstärker

B.2.1 Einführung

Abbildung 3: Emitterschaltung zur Spannungsverstärkung.

B.2.2 Spannungsverstärkung

Der Arbeitspunkt für die Spannungsverstärkung wird durch die Schaltung in Abbildung 3 dargestellt.

I_C	2mA	5mA	10mA	15mA	20mA
$\overline{U_{Eingang}}$	1	1	1	1	1
$\overline{U_{Ausgang}}$	1	1	1	1	1

Tabelle 1: Aus und Eingangsamplituden bei Verschiedenen Kollektorströmen-

B.2.3 Bandbreite

Die untere Grenzfrequenz f_{gu} und die obere Grenzfrequenz f_{go} bestimmen die Bandbreite des Verstärkers. Die Bandbreite B ergibt sich zu:

$$B = f_{go} - f_{gu}$$

Dabei ist f_{gu} die Frequenz, bei der die Verstärkung auf $\frac{1}{\sqrt{2}} = -3$ dB ihres Maximalwertes im unteren Frequenzbereich abfällt, und f_{go} entsprechend im oberen Frequenzbereich.

C Formelzeichen

Symbol	Bedeutung
C_s	Sperrschichtkapazität
I_c	Fluß- oder Vorwärtestrom
I_a	Sperrstrom- oder Rückwärtestrom
I_s	Sperrsättigungsstrom
M	Stufenfaktor (grading coefficient)
m	Emissionskoeffizient
N_a	Akzeptordichte
N_0	Donatordichte
R_a	Bahnwiderstand
t_0	Injektionszeit
t_1	Anstiegszeit (Risetime)
t_1	Sperrverzögerungszeit (Reverse Recovery Time)
t_s	Speicherzeit
U_0	Diffusionsspannung
U_c	Fluß- oder Vorwärtsspannung
U_s	Sperr- oder Rückwärtsspannung
U_{s_5mk}	Durchbruchspannung an der Z-Diode bei $I_2 = 5$ mA

