Outline

- Timeline
- Parallel graph algorithms
 - Applications
 - Designing parallel graph algorithms: DFS, BFS
 - Case studies:
 - A)Shortest Paths: Classic, Delta-stepping
 - B)Maximal Independent Sets: Luby's algorithm
 - C)Graph traversals: Breadth-first search
 - D)Strongly Connected Components

Graph reminder

- Define: Graph G = (V,E): a set of vertices V and a set of edges E between vertices
- n=|V| (number of vertices)
- m=|E| (number of edges)
- D=diameter (max #hops between any pair of vertices)
- Edges can be directed or undirected, weighted or not.
- They can even have attributes (i.e. semantic graphs)
- Sequences of edges $< u_1, u_2 >$, $< u_2, u_3 >$, ..., $< u_{n-1}, u_n >$ is a *path* from u_1 to u_n . Its *length* is the sum of its weights.

Many types of graphs

- Lines and trees
- Completely regular grids
- Planar graphs (no edges need cross)
- Low-dimensional Euclidean
- Power law graphs

• ...

Algorithms are not one-size-fits-all!

Applications (1)

- Routing in transportation networks (route planning with costs)
- Internet and the WWW
 - The world-wide web can be represented as a directed graph
 - Web search and crawl: traversal
 - Link analysis, ranking: Page rank
 - Document classification and clustering
 - Internet topologies (router networks) are naturally modeled as graphs

Applications (2): Large Graphs in Scientific Computing

- Graph partitioning: Dynamic load balancing in parallel simulations
- Problem size: as big as the sparse linear system to be solved or the simulation to be performed

Applications (3): Large-scale data analysis

- Graph abstractions are very useful to analyze complex data sets.
- Sources of data: simulations, experimental devices, the Internet, sensor networks
- Challenges: data size, heterogeneity, uncertainty, data quality
- Examples:
 - Astrophysics: massive datasets, temporal variations
 - Bioinformatics: data quality, heterogeneity
 - Social Informatics: new analytics challenges, data uncertainty

Applications (4): Large Graphs in Biology

- Graph Theoretical analysis of Brain Connectivity
- Whole genome assembly
 - 26 billion (8B of which are non-erroneous) unique k-mers (vertices) in the hexaploit wheat genome W7984 for k=51

Graph representations

Compressed sparse rows (CSR) = cache-efficient adjacency lists

Index into adjacency	1	3	3	4	6
array			7	1	-
Adjacencies	1	3	2	2	4
Weights	12	26	19	14	7

(row pointers in CSR)

(column ids in CSR) (numerical values in CSR)

Distributed graph representations

- Each processor stores the entire graph ("full replication")
- Each processor stores n/p vertices and all adjacencies out of these vertices ("1D partitioning")
 - How to create these "p" vertex partitions?
 - Graph partitioning algorithms: recursively optimize for conductance (edge cut/size of smaller partition)
 - Randomly shuffling the vertex identifiers ensures that edge count/processor are roughly the same

2D checkerboard distribution

- Consider a logical 2D processor grid ($p_r * p_c = p$) and the matrix representation of the graph
- Assign each processor a sub-matrix (i.e, the edges within the sub-matrix)

		х			х		х	
						х		
х			х					
		Х		х			х	
			х			х		х
Х								х
	х			х				х
Х			Х					х
				х	Х	Х	Х	

Memory Bandwidth Problems

- Many graph operations are
 - Computationally cheap (per node or edge)
 - Bad for locality
- Consider:
 - 323 million in US (fits in 32-bit int)
 - About 350 Facebook friends each
 - Compressed sparse row: about 450 GB
- What representation?

Memory Bandwidth Issues

- Adjacency Matrix
 - Pro: efficient for dense graphs
 - Con: wasteful for sparse case...
- Coordinates: Tuples: (i,j,w_{ij})
 - Pro: Easy to update
 - Con: Slow for multiply
- Adjacency list: Linked lists of adjacent nodes
 - Pro: Still easy to update
 - Con: May cost more to store than coordinates?

Distributed Graph Algorithm Design

- DFS and BFS components
- Distribute to processors
- Minimize communication

Graph traversal: Depth-first search (DFS)

```
procedure DFS(vertex v)
  v.visited = true
  previsit (v)
  for all v s.t. (v, w) ∈ E
    if (!w.visited) DFS(w)
  postvisit (v)
```

Graph traversal: Parallel Depth-first search (DFS)

- Each processor maintains a frontier of vertices
- As in sequential DFS, a frontier stores the subset of visited vertices, whose outgoing edges have not yet been explored.
- When a processor discovers a new vertex, it attempts to visit the vertex by using an atomic read-modify-write operation and, if it succeeds, adds the vertex to its frontier.
- Must perform load balancing to keep all the processors busy.
- A naive approach to this end would be to generate one thread for each vertex in the frontier.

Graph traversal: Serial Breadth-first search (BFS)

Push seed node onto queue and mark

While queue nonempty:

Pop node from queue

Visit node

Push unmarked neighbors on queue

Mark all neighbors

Graph traversal: Parallel Breadth-first search (BFS)

- Expand current frontier (level-synchronous approach, suited for low diameter graphs)
 - O(D) parallel steps

 Adjacencies of all vertices in current frontier are visited in parallel

Graph traversal: Parallel Breadth-first search (BFS)

- Stitch together multiple concurrent traversals (Ullman-Yannakakis approach, suited for high-diameter graphs)
 - path-limited searches from "super vertices"
 - All-pairs shortest path between "super vertices"

Serial BFS: Bottom up

- Classical (top-down) algorithm is optimal in worst case, but pessimistic for low-diameter graphs
- Direction Optimization:
 - Switch from top-down to bottom-up search
 - When the majority of the vertices are discovered.
- Top down: For all v in frontier attempt to ``parent" all neighbors(v)
- Bottom up: For all v in unvisited find any parent (neighbor(v) in frontier)

Serial BFS: Bottom up

```
Set d[v]=\infty for all vertices

Set d[s]=0 for seed s

Until d stops changing

For each u \in V

d[u]=min(d[u],min_{w \in N(u)}d[w]+1)
```

Graph Algorithm Case Studies

- Shortest Paths: Delta-stepping, Floyd-Warshall
- Maximal Independent Sets: Luby's algorithm
- Graph traversals: Breadth-first search
- Strongly Connected Components

Parallel Single-source Shortest Paths (SSSP) algorithms

- Famous serial algorithms:
 - Bellman-Ford : label correcting works on any graph
 - Dijkstra : label setting requires nonnegative edge weights
- No known PRAM algorithm that runs in sublinear time and O(m+n log n) work
- Ullman-Yannakakis randomized approach
- Meyer and Sanders, Δ stepping algorithm

Classic Dijkstra

- Dequeue closest point to frontier, expand frontier
- Update priority queue of distances (in parallel)
- Repeat

Classic Bellman-Ford

 Initialize d[u] with distance over-estimates to source

$$d[s]=0$$

Repeatedly relax $d[u]:=min_{(v,u)\in E}d[v]+w(v,u)$

 Converges (eventually) as long as all nodes visited repeatedly, updates are atomic

Δ - stepping algorithm

- Label-correcting algorithm: Can relax edges from unsettled vertices also
- "approximate bucket implementation of Dijkstra"
- For random edge weighs [0,1], runs in $O(n + m + D \cdot L)$ where L = max distance from source to any node
- Vertices are ordered using buckets of width Δ
- Each bucket may be processed in parallel
- Basic operation: Relax (e(u,v)):
 - $d(v) = min \{ d(v), d(u) + w(u, v) \}$
- Δ < min w(e) : Degenerates into Dijkstra
- Δ > max w(e) : Degenerates into Bellman-Ford

Maximal Independent Sets (MIS)

- Graph with vertices V = {1,2,...,n}
- A set S of vertices is independent if no two vertices in S are neighbors.
- An independent set S is *maximal* if it is impossible to add another vertex and stay independent
- An independent set S is maximum if no other independent set has more vertices
- Finding a maximum independent set is intractably difficult (NP-hard)
- Finding a maximal independent set is easy, at least on one processor.

Sequential (Greedy) Maximal Independent Set Algorithm

```
S = empty set;
for vertex v = 1 to n
if (v has no neighbor in S)
add v to S
```

Luby's Parallel Algorithm

```
S = \text{empty set}; C = V;
while C is not empty
  label each v in C with a random r(v);
  for all v in C in parallel
     if r(v) < min(r(neighbors of v))
        move v from C to S;
        remove neighbors of v from C
```

"Probably" finishes in O(log n) rounds

Strongly Connected Components

- Strongly connected components (SCCs): all maximal strongly connected sub-graphs in a large directed graph.
- Sequential algorithm: use depth-first search (Tarjan); work=O(m+n) for m=|E|, n=|V|, but DFS seems to be inherently sequential.
- Parallel algorithm: divide-and-conquer and BFS (Fleischer et al.); worst-case span O(n) but good in practice on many graphs.

Fleischer/Hendrickson/Pinar algorithm

- Partition the given graph into three disjoint subgraphs
- Each can be processed independently/recursively
- FW(v): vertices reachable from vertex v (ForWard).
- BW(v): vertices from which v is reachable (BackWard).

Fleischer/Hendrickson/Pinar algorithm

- 1)Select maximally connected node, called the *pivot*
- 2)Find all vertices that can be reached from the pivot (descendant (D))
- 3)Find all vertices that can reach the pivot (predecessor (P))
- 4)Intersection of those two sets is an SCC (S = P \cap D)
- 5)Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)
 - V\X denotes the subset of vertices in V which are not in a subset X

Fleischer/Hendrickson/Pinar algorithm

```
procedure FW-BW(V )
  if V = \emptyset then return \emptyset
  Select a pivot u \in V
  D \leftarrow BFS(G(V, E(V)), u)
  P \leftarrow BFS(G(V, E'(V)), u)
  R \leftarrow (V \setminus (P \cup D))
  S \leftarrow (P \cap D)
  new task do FW-BW(D \setminus S)
  new task do FW-BW(P \setminus S)
  new task do FW-BW(R)
```