Verifying filesystems in the ACL2 theorem prover: an application to FAT32

Mihir Parang Mehta* and Warren A. Hunt, Jr.

University of Texas at Austin, Department of Computer Science,
2317 Speedway, Austin, TX 78712, USA
{mihir,
hunt}@cs.utexas.edu
http://www.cs.utexas.edu

Abstract. We describe an effort to formally verify the FAT32 filesystem, based on a specification put together from Microsoft's published specification and the Linux kernel source code. We detail the proof approach we used and its pros and cons. We describe how this work is applicable to filesystems in general, and enumerate possible future applications of these techniques.

Keywords: interactive theorem proving, filesystems

1 Overview

Filesystems are ubiquitous in computing, and they have been of interest to the formal verification community for nearly as long as it has existed.

Here, we detail an effort to advance the state of the art by means of modelling the FAT32 filesystem at the binary level, and validating this model both through theorem proving and through co-simulation with the kernel implementation of FAT32. We begin with an overview of the model and the properties proved with examples; we proceed to a high-level explanation of the proof techniques used; and further we offer some insights about the low-level issues encountered while working the proofs. We end with some statistics pertaining to the magnitude of the proof effort and the running time of the proofs.

2 The model

At this point in development, we have six models of the filesystem, here referred to as 11 through 16 (see table 1). Each new model *refines* a previous model, adding some features and complexity, and thereby approaching closer

^{*} Please note that the LNCS Editorial assumes that all authors have used the western naming convention, with given names preceding surnames. This determines the structure of the names in the running heads and the author index.

Table 1. Models and their features

- 11 The filesystem is represented as a tree, with leaf nodes for regular files and non-leaf nodes for directories. The contents of regular files are represented as strings stored in the nodes of the tree; the storage available for these is unbounded.
- 12 A single element of metadata, *length*, is stored within each regular file.
- 13 The contents of regular files are divided into blocks of fixed size. These blocks are stored in an external "disk" data structure; the storage for these blocks remains unbounded.
- 14 The storage available for blocks is now bounded. An allocation vector data structure is introduced to help allocate and garbage collect blocks.
- 15 Additional metadata for file ownership and access permissions is stored within each regular file.
- 16 The allocation vector is replaced by a file allocation table, per the official FAT specification.

12 - length

13 - disk

14 - garbage collection

15 - permissions

16 - file allocation table

Fig. 1. Refinement relationships between models

to a model which is binary compatible with FAT32. These refinement relationships are shown in figure 1. Broadly, we characterise the filesystem operations we offer as either *write* operations, which do modify the filesystem, or *read* operations, which do not. In each model, we have been able to prove *read-over-write* properties which show that write operations have their effects made available immediately for reads at the same location, but also that they do not affect reads at other locations.

Springer provides you with a complete integrated LATEX document class (llncs.cls) for multi-author books such as those in the LNCS series. Papers not complying with the LNCS style will be reformatted. This can lead to an increase in the overall number of pages. We would therefore urge you not to squash your paper.

Please always cancel any superfluous definitions that are not actually used in your text. If you do not, these may conflict with the definitions of the macro package, causing changes in the structure of the text and leading to numerous mistakes in the proofs.

If you wonder what LATEX is and where it can be obtained, see the "La-TeX project site" (http://www.latex-project.org) and especially the webpage "How to get it" (http://www.latex-project.org/ftp.html) respectively.

When you use LATEX together with our document class file, llncs.cls, your text is typeset automatically in Computer Modern Roman (CM) fonts. Please do *not* change the preset fonts. If you have to use fonts other than the preset fonts, kindly submit these with your files.

Please use the commands \label and \ref for cross-references and the commands \bibitem and \cite for references to the bibliography, to enable us to create hyperlinks at these places.

For preparing your figures electronically and integrating them into your source file we recommend using the standard LATEX graphics or graphicx package. These provide the \includegraphics command. In general, please refrain from using the \special command.

Remember to submit any further style files and fonts you have used together with your source files.

Headings. Headings should be capitalized (i.e., nouns, verbs, and all other words except articles, prepositions, and conjunctions should be set with an initial capital) and should, with the exception of the title, be aligned to the left. Words joined by a hyphen are subject to a special rule. If the first word can stand alone, the second word should be capitalized.

Here are some examples of headings: "Criteria to Disprove Context-Freeness of Collage Language", "On Correcting the Intrusion of Tracing Non-deterministic Programs by Software", "A User-Friendly and Extendable Data Distribution System", "Multi-flip Networks: Parallelizing GenSAT", "Self-determinations of Man".

4

Lemmas, Propositions, and Theorems. The numbers accorded to lemmas, propositions, and theorems, etc. should appear in consecutive order, starting with Lemma 1, and not, for example, with Lemma 11.

2.1**Figures**

For LATEX users, we recommend using the graphics or graphics package and the \includegraphics command.

Please check that the lines in line drawings are not interrupted and are of a constant width. Grids and details within the figures must be clearly legible and may not be written one on top of the other. Line drawings should have a resolution of at least 800 dpi (preferably 1200 dpi). The lettering in figures should have a height of 2 mm (10-point type). Figures should be numbered and should have a caption which should always be positioned under the figures, in contrast to the caption belonging to a table, which should always appear above the table; this is simply achieved as matter of sequence in your source.

Please center the figures or your tabular material by using the \centering declaration. Short captions are centered by default between the margins and typeset in 9-point type (Fig. 2 shows an example). The distance between text and figure is preset to be about 8 mm, the distance between figure and caption about 6 mm.

To ensure that the reproduction of your illustrations is of a reasonable quality, we advise against the use of shading. The contrast should be as pronounced as possible.

If screenshots are necessary, please make sure that you are happy with the print quality before you send the files.

Fig. 2. One kernel at x_s (dotted kernel) or two kernels at x_i and x_i (left and right) lead to the same summed estimate at x_s . This shows a figure consisting of different types of lines. Elements of the figure described in the caption should be set in italics, in parentheses, as shown in this sample caption.

Please define figures (and tables) as floating objects. Please avoid using optional location parameters like "[h]" for "here".

Remark 1. In the printed volumes, illustrations are generally black and white (halftones), and only in exceptional cases, and if the author is prepared to cover the extra cost for color reproduction, are colored pictures accepted. Colored pictures are welcome in the electronic version free of charge. If you send colored figures that are to be printed in black and white, please make sure that they really are legible in black and white. Some colors as well as the contrast of converted colors show up very poorly when printed in black and white.

2.2 Formulas

Displayed equations or formulas are centered and set on a separate line (with an extra line or halfline space above and below). Displayed expressions should be numbered for reference. The numbers should be consecutive within each section or within the contribution, with numbers enclosed in parentheses and set on the right margin – which is the default if you use the *equation* environment, e.g.,

$$\psi(u) = \int_{o}^{T} \left[\frac{1}{2} \left(\Lambda_{o}^{-1} u, u \right) + N^{*}(-u) \right] dt . \tag{1}$$

Equations should be punctuated in the same way as ordinary text but with a small space before the end punctuation mark.

2.3 Footnotes

The superscript numeral used to refer to a footnote appears in the text either directly after the word to be discussed or – in relation to a phrase or a sentence – following the punctuation sign (comma, semicolon, or period). Footnotes should appear at the bottom of the normal text area, with a line of about 2 cm set immediately above them.¹

2.4 Program Code

Program listings or program commands in the text are normally set in typewriter font, e.g., CMTT10 or Courier.

Example of a Computer Program

¹ The footnote numeral is set flush left and the text follows with the usual word spacing.

end.

```
Factor3 := Factor3 * 1.10;
 WriteLn(Year:5,Factor1:7:3,Factor2:7:3,Factor3:7:3)
until Year = MaxYears
```

(Example from Jensen K., Wirth N. (1991) Pascal user manual and report. Springer,

2.5 Citations

For citations in the text please use square brackets and consecutive numbers: [1], [2], [4] – provided automatically by LATEX's \cite ... \bibitem mechanism.

Page Numbering and Running Heads

There is no need to include page numbers. If your paper title is too long to serve as a running head, it will be shortened. Your suggestion as to how to shorten it would be most welcome.

3 LNCS Online

The online version of the volume will be available in LNCS Online. Members of institutes subscribing to the Lecture Notes in Computer Science series have access to all the pdfs of all the online publications. Non-subscribers can only read as far as the abstracts. If they try to go beyond this point, they are automatically asked, whether they would like to order the pdf, and are given instructions as to how to do so.

Please note that, if your email address is given in your paper, it will also be included in the meta data of the online version.

BibTeX Entries

The correct BibTeX entries for the Lecture Notes in Computer Science volumes can be found at the following Website shortly after the publication of the book: http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

Acknowledgments. The heading should be treated as a subsubsection heading and should not be assigned a number.

The References Section 5

In order to permit cross referencing within LNCS-Online, and eventually between different publishers and their online databases, LNCS will, from now on, be standardizing the format of the references. This new feature will increase the visibility of publications and facilitate academic research considerably. Please base your references on the examples below. References that don't adhere to this style will be reformatted by Springer. You should therefore check your references thoroughly when you receive the final pdf of your paper. The reference section must be complete. You may not omit references. Instructions as to where to find a fuller version of the references are not permissible.

We only accept references written using the latin alphabet. If the title of the book you are referring to is in Russian or Chinese, then please write (in Russian) or (in Chinese) at the end of the transcript or translation of the title.

The following section shows a sample reference list with entries for journal articles [1], an LNCS chapter [2], a book [3], proceedings without editors [4] and [5], as well as a URL [6]. Please note that proceedings published in LNCS are not cited with their full titles, but with their acronyms!

References

- Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences.
 J. Mol. Biol. 147, 195–197 (1981)
- May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)
- Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)
- 4. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)
- Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Technical report, Global Grid Forum (2002)
- 6. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

Appendix: Springer-Author Discount

LNCS authors are entitled to a 33.3% discount off all Springer publications. Before placing an order, the author should send an email, giving full details of his or her Springer publication, to orders-HD-individuals@springer.com to obtain a so-called token. This token is a number, which must be entered when placing an order via the Internet, in order to obtain the discount.

6 Checklist of Items to be Sent to Volume Editors

Here is a	checklist	of everyth	ing the	volume	editor	requires	from	you:
☐ The fi	inal LATE	X source fi	les					

8	Lecture Notes in Computer Science: Authors' Instructions
	A final PDF file
	A copyright form, signed by one author on behalf of all of the authors of the paper.
	A readme giving the name and email address of the corresponding author.