

GABARITO QUÍMICA

Questão 49

Assinale a alternativa com o número total de isômeros (constitucionais e estereoisômeros) com fórmula molecular C_4H_9N .

A() 11

B() 13

C() 15

D() 17

E() 19

Gabarito: E

Gabarito!

Questão 50

Considere as proposições.

- 1. A configuração eletrônica do sódio é [Ne] 3s¹, e não [Ne] 3p¹, devido à maior penetrabilidade do orbital 3s, que torna a blindagem dos elétron com número quântico principal n=2 menos efetiva.
- 2. Para elementos de um mesmo período n da tabela periódica, a energia dos orbitais ns e np diminui com o aumento do número atômico, entretanto, a energia dos orbitais ns cai mais rapidamente com o aumento do número atômico que a dos orbitais np.
- 3. Para elementos de um mesmo grupo da tabela periódica, é esperado que o número de oxidação mais comum seja maior para os elementos com maior número atômico.
- 4. O raio atômico dos lantanídios é aproximadamente igual, variando apenas em alguns picômetros entre todos os quatorze elementos.

Assinale a alternativa que relaciona as proposições corretas.

 $\mathbf{A}(\)\ \mathbf{1} \in \mathbf{2}$

B() 1 e 4

C() 2 e 4

D() 1, 2 e 4 **E**() 1, 2, 3 e 4

Gabarito: D

Gabarito!

Questão 51

O diagrama de fases para a mistura de água e 1,4-dioxano é apresentado a seguir.

Considere as proposições.

- 1. Água e dioxano formam um azeótropo de ponto de ebulição mínimo quando a fração molar de água é 20%.
- 2. A mistura de água e dioxano ocorre com liberação de energia.
- 3. Em 20 °C, a pressão de vapor da água é 20 Torr e a do dioxano é 30 Torr. A pressão de vapor de uma mistura equimolar de água e dioxano em 20 °C é menor que 25 Torr.
- 4. Uma mistura contendo 80% de água e 20% de dioxano em base molar em $70\,^{\circ}\mathrm{C}$ é aquecida até o início da ebulição. O vapor coletado é resfriado de volta a $70\,^{\circ}\mathrm{C}$ resultando em um líquido contendo 40% de água em base molar.

Assinale a alternativa que relaciona as proposições corretas.

A() 1

B() 4

C() 1 e 4

D() 1, 2 e 4 **E**() 1, 3 e 4

Gabarito: C

Etapa 1. O eixo das abscissas é a fração molar, mas a espécie não está indicada. Identifique qual é a espécie.

Quando a fração molar dessa espécie é zero, a temperatura de ebulição é 100 °C, temperatura de ebulição da água. Assim, eixo das abscissas representa a fração molar de dioxano.

Etapa 2. (1) Identifique o ponto de azeótropo no diagrama de fases.

No ponto de azeótropo a composição do vapor é a mesma do líquido em ebulição. O diagrama de fases possui um azeótropo quando a fração molar de dioxano é 80% (e a fração molar de água é 20%) com temperatura de ebulição mínima (80 °C).

Etapa 3. (2) Identifique o tipo de desvio da lei de Raoult.

A mistura de água e dioxano provoca a diminuição da temperatura de ebulição, caracterizada pelo azeótropo de mínimo. Assim, o par água e dioxano apresenta desvio positivo da lei de Raoult e o processo de

mistura ocorre com absorção de energia.

Etapa 4. (3) Calcule a pressão de vapor da mistura ideal usando a lei de Raoult.

Em uma mistura equimolar, $x_{\rm H_2O} = x_{\rm dioxano} = 0.5$.

$$P_{\text{vap,ideal}} = x_{\text{H}_2\text{O}}P_{\text{H}_2\text{O}}^{\star} + x_{\text{dioxano}}P_{\text{dioxano}}^{\star} = (0.5) \times (20\,\text{Torr}) + (0.5) \times (30\,\text{Torr}) = \boxed{25\,\text{Torr}}$$

Como a mistura apresenta desvio positivo da lei de Raoult, a pressão de vapor total deve ser maior do que a prevista pela lei de Raoult, isto é, **deve ser maior que** 25 Torr.

Etapa 5. (4) Identifique os pontos correspondentes às etapas do processo de destilação do diagrama de fases.

Quando uma mistura contendo 80% de água e 20% de dioxano em base molar em 70 °C é aquecida até 90 °C ela entra em ebulição, possibilitando a marcação do ponto A que representa o líquido α .

O ponto B representa o vapor β gerado pela vaporização do líquido α . Quando o vapor β é condensado o líquido resultante tem 40% de água em base molar.

Questão 52

A ação de uma solução alcalina de iodo sobre o raticida varfarina, $C_{19}H_{16}O_4$ resulta na formação de uma molécula de iodofórmio, CHI_3 , para cada molécula do composto reagido. A análise da varfarina pode então ser baseada na reação entre o iodofórmio e cátions prata:

$$\mathrm{CHI_3(aq)} + 3\,\mathrm{AgNO_3(aq)} + \mathrm{H_2O(l)} \longrightarrow 3\,\mathrm{AgI(s)} + 3\,\mathrm{HNO_3(aq)} + \mathrm{CO(g)}$$

Uma amostra de 6,16 g de um raticida comercial contendo varfarina foi tratada com uma solução alcalina de iodo. O iodofórmio produzido foi coletado em $100\,\mathrm{mL}$ de uma solução contendo $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ de cátions ferro(III). A solução resultante foi tratada com $25\,\mathrm{mL}$ de nitrato de prata, $0,03\,\mathrm{mol}\,\mathrm{L}^{-1}$ e então foi titulada com $3\,\mathrm{mL}$ de tiocianato de potássio $0,05\,\mathrm{mol}\,\mathrm{L}^{-1}$.

Considere as proposições.

1. O iodofórmio não pode ser titulado diretamente com a prata devido à dificuldade de identificação do ponto de equivalência. Nesse caso foi empregado o método de titulação indireta por retrotitulação, sendo os cátions ferro(III) adicionados para identificar o ponto de equivalência na titulação da prata com o tiocianato.

- 2. Os íons nitrato e os cátions ferro(III) são íons espectadores das reações de titulação.
- 3. A amostra continha cerca de 10% de varfarina em massa.
- 4. Se a solução de nitrato de prata fosse adicionada diretamente à solução resultante da primeira etapa do processo, haveria interferência dos íons hidróxido e a fração mássica de varfarina calculada incorretamente seria superior ao valor correto.

Assinale a alternativa que relaciona as proposições *corretas*.

A() 1, 2 e 3 B() 1, 2 e 4 C() 1, 3 e 4

 ${f D}\,(\)\ {f 2,\, 3} \in {f 4} \qquad \qquad {f E}\,(\)\ {f 1,\, 2,\, 3} \in {f 4}$

Gabarito: E

Etapa 1. (1) Escreva as equações iônicas simplificadas das reações de precipitação.

Etapa 2. (2) Escreva as equações iônicas simplificadas das reações de precipitação.

$$\mathrm{CHI_3(aq)} + 3\,\mathrm{Ag^+(aq)} + \mathrm{H_2O(l)} \longrightarrow 3\,\mathrm{AgI(s)} + 3\,\mathrm{H^+(aq)} + \mathrm{CO(g)}$$

 $\mathrm{Ag^+(aq)} + \mathrm{SCN^-(aq)} \longrightarrow \mathrm{AgSCN(s)}$

Os íons nitrato e os cátions ferro(III) são íons espectadores já que não participam das reações de titulação.

Etapa 3. (3) Calcule a quantidade adicionada de Ag⁺ e SCN⁻.

$$\begin{split} n_{\rm Ag^+} &= n_{\rm AgNO_3} = c_{\rm AgNO_3} V_{\rm AgNO_3} = (0.03\,\frac{\rm mol}{\rm L}) \times (25\,\rm mL) = 0.75\,\rm mmol \\ n_{\rm SCN^-} &= n_{\rm KSCN} = c_{\rm KSCN} V_{\rm KSCN} = (0.05\,\frac{\rm mol}{\rm L}) \times (3\,\rm mL) = 0.15\,\rm mmol \end{split}$$

Etapa 4. Use as relações estequiométricas para converter a quantidade de Ag⁺ nas quantidades de SCN⁻ e

$$n_{\rm Ag^+} = 3n_{\rm CHI_3} + n_{\rm SCN^-}$$

logo,

$$n_{\text{CHI}_3} = \frac{1}{3} \Big\{ 0.75 \, \text{mmol} - 0.15 \, \text{mmol} \Big\} = 0.2 \, \text{mmol}$$

Etapa 5. Converta a quantidade de CHI₃ na quantidade de varfarina.

Como cada molécula de varfarina libera uma molécula de iodofórmio.

$$n_{\text{varfarina}} = 0.2 \,\text{mmol}$$

Etapa 6. Converta a quantidade de varfarina, C₁₉H₁₆O₄, em massa.

$$m_{\mathrm{varfarina}} = n_{\mathrm{varfarina}} M_{\mathrm{varfarina}} = (0.2\,\mathrm{mmol}) \times (308\,\frac{\mathrm{g}}{\mathrm{mol}}) = 61.6\,\mathrm{mg}$$

Etapa 7. Calcule a fração mássica de varfarina na amostra.

$$f_{\text{varfarina}} = \frac{m_{\text{varfarina}}}{m_{\text{amostra}}} = \frac{61.6 \text{ mg}}{6.16 \text{ g}} = \boxed{10\%}$$

Etapa 8. (4) Verifique a possibilidade de reações indesejadas com o íon hidróxido.

Os íons hidróxido podem reagir com a prata formando um precipitado insolúvel:

$$Ag^{+}(aq) + 2OH^{-}(aq) \longrightarrow Ag_{2}O(s) + H_{2}O(l)$$

Quando parte da prata é consumida devido à formação de hidróxido de prata, a quantidade de tiocianato necessária para atingir o ponto de equivalência é menor e a massa de iodofórmio calculada é maior. Assim, a fração mássica de varfarina calculada incorretamente seria **superior** ao valor correto.

Questão 53

oi

Questão 54

V

Questão 55

oi

Questão 56

oi

Questão 57

oi

Questão 58

oi

Questão 59

Um engenheiro projetou uma planta para separação de um efluente industrial aquoso contendo massas iguais de uma mistura de nitrato de cobre(II), nitrato de chumbo(II) e nitrato de prata, na concentração total de $60\,\mathrm{g/L}$.

O Misturador 1 recebe a entrada de efluente na vazão de $100\,\mathrm{L\,s^{-1}}$, que é misturada com $100\,\mathrm{L\,s^{-1}}$ de uma solução de sulfato de amônio $20\,\mathrm{g\,L^{-1}}$. O Misturador 2 recebe o material passante do Filtro 1, $100\,\mathrm{L\,s^{-1}}$ de uma solução aquosa de carbonato de sódio de concentração $40\,\mathrm{g\,L^{-1}}$ e pequena quantidade de uma solução de hidróxido de sódio objetivando o ajuste do pH de precipitação para, em seguida, proceder a filtração.

Considere as proposições.

- 1. A saída de sólida do filtro 2 é uma mistura heterogênea.
- 2. Olá
- 3. três
- 4. quatro

Assinale a alternativa que relaciona as proposições corretas.

A() 1

B() 2

C() 1 e 2

 $\mathbf{D}()$ 1 e 3

 ${f E}(\)\ {f 1} \in {f 4}$

Gabarito: A

Gabarito!

Questão 60

As três primeiras energias de ionização do átomo de alumínio são $6,0\,\mathrm{eV},\ 19\,\mathrm{eV}$ e $28\,\mathrm{eV}$ e a afinidade eletrônica do átomo de bromo é $3,4\,\mathrm{eV}$.

Dados em 298 K	Al(g)	Br(g)	$AlBr_3(s)$
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over m mol}$	+326	+112	-530

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de alumínio em 298 K.

 \mathbf{A} () 1,2 MJ mol⁻¹

 $\mathbf{B}(\)\ 2.7\,\mathrm{MJ\,mol}^{-1}$

C() 4,1 MJ mol⁻¹

D() 5,3 MJ mol⁻¹

 \mathbf{E} () 8,4 MJ mol⁻¹

Gabarito: D

Etapa 1. Calcule a energia de ionização do Al a Al³⁺.

$$I = I_1 + I_2 + I_3 = (6.0 \,\text{eV}) + (19 \,\text{eV}) + (28 \,\text{eV}) = 53 \,\text{eV}$$

Etapa 2. Converta os dados de elétrons-volt pra kJ mol⁻¹.

$$1\,\mathrm{eV} = (1.6\cdot 10^{-19}\,\mathrm{J}) \times (6\cdot 10^{21}\,\mathrm{mol}^{-1}) = 96.5\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

logo,

$$\begin{split} \Delta H_{I,\mathrm{Al}}^{\circ} &= (+53) \times (96,5\,\tfrac{\mathrm{kJ}}{\mathrm{mol}}) = +5114\,\tfrac{\mathrm{kJ}}{\mathrm{mol}} \\ \Delta H_{AE,\mathrm{Br}}^{\circ} &= (-3,4) \times (96,5\,\tfrac{\mathrm{kJ}}{\mathrm{mol}}) = -328\,\tfrac{\mathrm{kJ}}{\mathrm{mol}} \end{split}$$

Etapa 3. Escreva a reação desejada como uma combinação das reações fornecidas.

$$\begin{array}{cccc} \operatorname{Al}(\operatorname{s}) &\longrightarrow \operatorname{Al}(\operatorname{g}) & \Delta H_{\mathrm{f,Al}(\operatorname{g})}^{\circ} \\ \operatorname{Al}(\operatorname{g}) &\longrightarrow \operatorname{Al}^{3+}(\operatorname{g}) + 3\operatorname{e}^{-}(\operatorname{g}) & \Delta H_{I,\operatorname{Al}}^{\circ} \\ &\frac{3}{2}\operatorname{Br}_{2}(\operatorname{l}) &\longrightarrow 3\operatorname{Br}(\operatorname{g}) & 3\Delta H_{\mathrm{f,Br}(\operatorname{g})}^{\circ} \\ 3\operatorname{Br}(\operatorname{g}) + 3\operatorname{e}^{-}(\operatorname{g}) &\longrightarrow 3\operatorname{Br}^{-}(\operatorname{g}) & 3\Delta H_{AE,\operatorname{Br}}^{\circ} \\ && -\Delta H_{f,\operatorname{AlBr}_{3}(\operatorname{s})}^{\circ} & -\Delta H_{f,\operatorname{AlBr}_{3}(\operatorname{s})}^{\circ} \\ && & -\Delta H_{f,\operatorname{AlBr}_{3}(\operatorname{g})}^{\circ} \end{array}$$

$$\begin{array}{c} \operatorname{AlBr}_{3}(\operatorname{s}) &\longrightarrow \operatorname{Al}^{3+}(\operatorname{g}) + \operatorname{Br}^{-}(\operatorname{g}) & \Delta H_{\operatorname{rede}}^{\circ} \end{array}$$

A entalpia da reação desejada é dada por:

$$\Delta H_{\rm rede}^{\circ} = \Delta H_{\rm f,Al\,(g)}^{\circ} + \Delta H_{I,\rm Al}^{\circ} + 3\Delta H_{\rm f,Br\,(g)}^{\circ} + 3\Delta H_{AE,\rm Br}^{\circ} - \Delta H_{\rm f,AlBr_3(s)}^{\circ}$$

logo,

$$\Delta H_{\rm r}^{\circ} = \left\{ (+326) + (+5114) + 3(+112) + 3(-328) - (-530) \right\} \frac{\rm kJ}{\rm mol} = \boxed{5322\,\rm kJ\,mol^{-1}}$$