My Data Science Notes

Michael Foley

2020-02-20

Contents

Intro				
1	Infe	erence	7	
2	Experiments			
	2.1	Example one	9	
	2.2	Example two	9	
3	Reg	gression	11	
4	Generalized Linear Models			
	4.1	Logistic Regression	14	
	4.2	Poisson Regression	24	
5	Cla	$\operatorname{ssification}$	31	
6	Cla	ssification	33	
7	Dec	cision Trees	35	
	7.1	Classification Tree	36	
	7.2	Regression Trees	61	
	7.3	Bagging	75	
	7.4	Random Forests	75	
	7.5	Gradient Boosting	89	
	7.6	Summary	152	
	7.7	Reference	154	

4	CONTENTS
4	CONTENTS

8	Regularization	157
9	Non-linear Models	159
	9.1 Splines	159
	9.2 MARS	160
	9.3 GAM	162
10	Support Vector Machines	165
	10.1 Maximal Margin Classifier	165
	10.2 Support Vector Classifier	166
	10.3 Support Vector Machines	167
	10.4 Example	168
	10.5 Using Caret	178
11	Principal Components Analysis	181
12	2 Clustering	183
13	3 Text Mining	185
\mathbf{A}	ppendix	187
	Publishing to BookDown	187
	Shiny Apps	187
	Packages	187

Intro

These notes are pulled from various classes, tutorials, books, etc. and are intended for my own consumption. If you are finding this on the internet, I hope it is useful to you, but you should know that I am just a student and there's a good chance whatever you're reading here is mistaken. In fact, that should probably be your null hypothesis... or your prior. Whatever.

6 CONTENTS

Inference

Experiments

Some significant applications are demonstrated in this chapter.

- 2.1 Example one
- 2.2 Example two

Regression

Generalized Linear Models

These notes are primarily from PSU Online course Analysis of Discrete Data which uses Alan Agresti's **Categorical Data Analysis** (which I have not yet purchased) (Agresti, 2013). I also reviewed:

Penn State University, STAT 501, "Lesson 15: Logistic, Poisson & Nonlinear Regression". https://newonlinecourses.science.psu.edu/stat501/lesson/15

"Generalized Linar Models in R". DataCamp. https://www.datacamp.com/courses/generalized-linear-models-in-r.

"Multiple and Logistic Regression". DataCamp. https://www.datacamp.com/courses/multiple-and-logistic-regression.

Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2019. https://christophm.github.io/interpretable-ml-book/.

In generalized linear models (GLMs), the modeled response is a function of the mean of y. There are three components to a GLM. The random component is the probability distribution of the response variable (normal, binomial, Poisson, etc.). The systematic component is the explanatory variables $X\beta$. The link function η specifies the link between random and systematic components. The link function converts the response value from a range [0,1] in logistic and probit and $[0,+\infty]$ for Poisson to a value ranging from $[-\infty,+\infty]$, and creates a linear relationship with the predictor variables.

For a standard linear regression, the link function is the identity function,

$$f(\mu_Y) = \mu_Y$$
.

The standard linear regression is thus a special case of the GLM. For a logistic regression, the link function is

$$f(\mu_Y) = \ln(\frac{\pi}{1-\pi})$$

where π is the event probability. For a probit regression, the link function is

$$f(\mu_Y) = \Phi^{-1}(\pi).$$

The difference between logistic and probit link function is theoretical - the practical significance is slight. Logistic regression has the advantage that it can be back-transformed from log odds to odds ratios. For a Poisson regression, the link function is

$$f(\mu_Y) = \ln(\lambda)$$

where λ is the expected event rate.

GLM uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to estimate the parameters, and thus relies on large-sample approximations.

In R, specify a GLM just like an linear model, but with the glm() function, specifying the distribution with the family parameter.

- family = "gaussian": linear regression
- family = "binomial": logistic regression
- family = binomial(link = "probit"): probit regression
- family = "poisson": Poisson regression

4.1 Logistic Regression

Logistic regression estimates the probability of a particular level of a categorical response variable given a set of predictors. The response levels can be binary, nominal (multiple categories), or ordinal (multiple levels).

The binary logistic regression model is

$$y_i = logit(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = X_i\beta$$

where π_i is the "success probability" that observation i is in a specified category of the binary y variable. You can solve for π to get

$$\pi = \frac{\exp(X\beta)}{1 + \exp(X\beta)}.$$

The model predicts the *log odds* of the response variable. The maximum likelihood estimator maximizes the likelihood function

$$L(\beta;y,X) = \prod_{i=1}^n \pi_i^{y_i} (1-\pi_i)^{(1-y_i)} = \prod_{i=1}^n \frac{\exp(y_i X_i \beta)}{1+\exp(X_i \beta)}.$$

There is no closed-form solution, so GLM estimates coefficients with interatively reweighted least squares.

Example

Dataset leuk contains response variable REMISS indicating whether leukemia remission occurred (1|0) and several explanatory variables.

SMEAR = col_double(),

##

```
data_dir <- "C:/Users/mpfol/OneDrive/Documents/Data Science/Data/"</pre>
leuk <- read_tsv(paste(data_dir, "leukemia_remission.txt", sep = "/"))</pre>
## Parsed with column specification:
     REMISS = col_double(),
##
     CELL = col_double(),
##
##
     SMEAR = col_double(),
    INFIL = col_double(),
##
    LI = col_double(),
    BLAST = col_double(),
##
    TEMP = col_double()
##
## )
str(leuk)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 27 obs. of 7 variables:
   $ REMISS: num 1 1 0 0 1 0 1 0 0 0 ...
   $ CELL : num 0.8 0.9 0.8 1 0.9 1 0.95 0.95 1 0.95 ...
   $ SMEAR : num 0.83 0.36 0.88 0.87 0.75 0.65 0.97 0.87 0.45 0.36 ...
   $ INFIL : num 0.66 0.32 0.7 0.87 0.68 0.65 0.92 0.83 0.45 0.34 ...
            : num 1.9 1.4 0.8 0.7 1.3 0.6 1 1.9 0.8 0.5 ...
   $ BLAST : num 1.1 0.74 0.18 1.05 0.52 0.52 1.23 1.35 0.32 0 ...
##
   $ TEMP : num 1 0.99 0.98 0.99 0.98 0.99 1.02 1 1.04 ...
##
##
   - attr(*, "spec")=
##
     .. cols(
##
         REMISS = col_double(),
         CELL = col double(),
```

TEMP

```
##
          INFIL = col_double(),
          LI = col_double(),
##
     . .
##
          BLAST = col_double(),
          TEMP = col_double()
##
     ..)
##
Fit a logistic regression in R using glm(formula, data, family = binomial)
where family = binomial specifies a binomial error distribution.
m1 <- glm(REMISS ~ ., family = binomial, data = leuk)</pre>
##
## Call: glm(formula = REMISS ~ ., family = binomial, data = leuk)
##
## Coefficients:
##
   (Intercept)
                       CELL
                                    SMEAR
                                                  INFIL
                                                                  LI
                                                                             BLAST
      64.25808
                   30.83006
                                 24.68632
                                              -24.97447
                                                             4.36045
                                                                          -0.01153
##
##
          TEMP
##
    -100.17340
##
## Degrees of Freedom: 26 Total (i.e. Null); 20 Residual
## Null Deviance:
                         34.37
## Residual Deviance: 21.59
                                 AIC: 35.59
summary(m1)
##
## Call:
## glm(formula = REMISS ~ ., family = binomial, data = leuk)
##
## Deviance Residuals:
##
        Min
                   1Q
                                        3Q
                                                  Max
                          Median
## -1.95404 -0.66259 -0.02516
                                   0.78184
                                              1.57465
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
                 64.25808 74.96480
                                        0.857
                                                  0.391
## (Intercept)
## CELL
                 30.83006
                             52.13520
                                        0.591
                                                  0.554
## SMEAR
                 24.68632
                             61.52601
                                        0.401
                                                  0.688
## INFIL
                -24.97447
                             65.28088
                                      -0.383
                                                  0.702
## LI
                  4.36045
                              2.65798
                                        1.641
                                                  0.101
## BLAST
                 -0.01153
                              2.26634 -0.005
                                                  0.996
```

-100.17340 77.75289 -1.288

0.198

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 34.372 on 26 degrees of freedom
## Residual deviance: 21.594 on 20 degrees of freedom
## AIC: 35.594
##
## Number of Fisher Scoring iterations: 8
```

The predicted value \hat{y} is the estimated \log odds of the response variable,

$$\hat{y} = X\hat{\beta} = \ln(\frac{\pi}{1-\pi}).$$

Suppose each predictor equals its mean value, then the log odds of REMISS is -2.684.

Log odds are not easy to interpet, but it is convenient for updating prior probabilities in Bayesian analyses. *See this article in Statistics How To.* Exponentiate the log odds to get the more intuitive **odds**.

$$\exp(\hat{y}) = \exp(X\hat{\beta}) = \frac{\pi}{1 - \pi}.$$

The odds of having achieved remission when each predictor equals its mean value is $\exp(\hat{y}) = 0.068$.

```
exp(pred)
```

```
## 1
## 0.06826334
```

You might express that more commonly as 1 / 0.068 = 15:1. So a person with average values of the predictors has an odds of "15 to 1" of having achieved remission.

```
1/exp(pred)
```

```
## 1
4.64915
```

Or, solve for π to get the **probability**.

$$\pi = \frac{\exp(X\beta)}{1 + \exp(X\beta)}$$

The probability of having achieved remission when each predictor equals its mean value is $\pi = 0.064$. The predict() function for a logistic model returns log-odds, but can also return π by specifying parameter type = "response".

It is common to express the results in terms of the **odds ratio**. The *odds ratio* is the ratio of the odds before and after an increment to the predictors. It tells you how much the odds would be multiplied after a $X_1 - X_0$ unit increase in X.

$$\theta = \frac{\pi/(1-\pi)|_{X=X_1}}{\pi/(1-\pi)|_{X=X_0}} = \frac{\exp(X_1\hat{\beta})}{\exp(X_0\hat{\beta})} = \exp((X_1-X_0)\hat{\beta}) = \exp(\delta\hat{\beta})$$

For example, increasing LI by .01 increases the odds of remission by a factor of $\exp(0.1\cdot 4.36)=1.547$ (from 15:1 to 23:1).

```
exp(.1 * m1$coefficients)
```

```
## (Intercept) CELL SMEAR INFIL LI BLAST
## 6.175799e+02 2.182391e+01 1.180628e+01 8.229480e-02 1.546579e+00 9.988476e-01
## TEMP
## 4.461948e-05
```

You can calculate an odds ratio using oddsratio::or_glm().

```
## # A tibble: 6 x 5
## predictor oddsratio `CI_low (2.5)` `CI_high (97.5)` increment
                           <dbl>
##
   <chr> <dbl>
                                         <dbl> <chr>
            1.36
1.28
0
                          0.747
## 1 CELL
                                       4.64e 0 0.01
                        0.537
## 2 SMEAR
                                     5.15e 0 0.01
## 3 INFIL
                           0
                                       1.09e152 5
             1.55
0.989
                        1.04
## 4 LI
                                       2.99e 0 0.1
## 5 BLAST
                          0.009
                                       9.10e 1 1
## 6 TEMP
                                       1.10e 3 0.3
                           0
```

The predicted values can also be expressed as the probabilities π . This produces the familiar signmoidal shape of the binary relationship.

Whereas in linear regression the the coefficient p-values use the t test (t statistic), logistic regression coefficient p-values use the $Wald\ test\ ^{**}Z^{*}$ -statistic).

$$Z = \frac{\hat{\beta}_i}{SE(\hat{\beta}_i)}$$

round((z <- m1\$coefficients / summary(m1)\$coefficients[,"Std. Error"]), 3)</pre> (Intercept) ## CELL SMEAR INFIL LI BLAST ## 0.857 0.591 0.401 -0.383 1.641 -0.005 ## TEMP ## -1.288 round(pnorm(abs(z), lower.tail = FALSE) (Intercept) CELL BLAST ## SMEAR INFIL LI ## 0.391 0.554 0.688 0.702 0.101 0.996 ## TEMP ## 0.198

Evaluate a logistic model fit with an analysis of deviance. Deviance is defined as -2 times the log-likelihood $-2l(\beta)$. The null deviance is the deviance of the null model and is analagous to SST in ANOVA. The residual deviance is analagous to SSE in ANOVA.

```
logLik(glm(REMISS ~ ., data = leuk, family = "binomial")) * (-2)
## 'log Lik.' 21.59385 (df=7)
anova(m1)
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: REMISS
## Terms added sequentially (first to last)
##
##
        Df Deviance Resid. Df Resid. Dev
## NULL
                          26
                                 34.372
## CELL
             2.5800
                          25
                                 31.792
        1
## SMEAR 1 0.5188
                         24
                                 31.273
## INFIL 1 0.2927
                         23
                                 30.980
## LI
           6.7818
                          22
                                 24.199
## BLAST 1
           0.3271
                          21
                                 23.871
## TEMP 1 2.2775
                          20
                                 21.594
m1
##
## Call: glm(formula = REMISS ~ ., family = binomial, data = leuk)
##
## Coefficients:
## (Intercept)
                     CELL
                                 SMEAR
                                             INFIL
                                                             LI
                                                                      BLAST
                30.83006
##
     64.25808
                              24.68632
                                        -24.97447
                                                      4.36045
                                                                   -0.01153
##
         TEMP
## -100.17340
## Degrees of Freedom: 26 Total (i.e. Null); 20 Residual
## Null Deviance:
                       34.37
## Residual Deviance: 21.59
                              AIC: 35.59
summary(m1)
##
## Call:
```

```
## glm(formula = REMISS ~ ., family = binomial, data = leuk)
## Deviance Residuals:
##
        Min
                    1Q
                                         3Q
                          Median
                                                  Max
##
   -1.95404
             -0.66259
                       -0.02516
                                    0.78184
                                              1.57465
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  64.25808
                             74.96480
                                         0.857
                                                   0.391
## CELL
                  30.83006
                             52.13520
                                         0.591
                                                  0.554
## SMEAR
                 24.68632
                             61.52601
                                         0.401
                                                  0.688
## INFIL
                 -24.97447
                             65.28088
                                        -0.383
                                                  0.702
## LI
                   4.36045
                              2.65798
                                         1.641
                                                  0.101
## BLAST
                  -0.01153
                              2.26634
                                        -0.005
                                                  0.996
## TEMP
               -100.17340
                             77.75289
                                        -1.288
                                                  0.198
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 34.372
                               on 26
                                       degrees of freedom
## Residual deviance: 21.594
                               on 20
                                       degrees of freedom
## AIC: 35.594
##
## Number of Fisher Scoring iterations: 8
```

The deviance of the null model (no regressors) is 34.372. The deviance of the full model is 26.073.

```
glance(m1)
## # A tibble: 1 x 7
     null.deviance df.null logLik
                                      AIC
                                             BIC deviance df.residual
##
             <dbl>
                      <int>
                              <dbl> <dbl> <dbl>
                                                    <dbl>
                                                                 <int>
## 1
              34.4
                         26
                             -10.8
                                     35.6
                                           44.7
                                                     21.6
                                                                    20
```

Use the GainCurvePlot() function to plot the gain curve (background on gain curve at Data Science Central from the model predictions. The x-axis is the fraction of items seen when sorted by the predicted value, and the y-axis is the cumulative summed true outcome. The "wizard" curve is the gain curve when the data is sorted by the true outcome. If the model's gain curve is close to the wizard gain curve, then the model sorted the response variable well. The grey area is the gain over a random sorting.

```
augment(m1) %>% data.frame() %>%
  GainCurvePlot(xvar = ".fitted", truthVar = "REMISS", title = "Logistic Model")
```


REMISS equals 1 in 9 of the 27 responses.

- The wizard curve shows that after sorting the responses it encounters all 9 1s (100%) after looking at 9 of the 27 response (33%).
- The bottom of the grey diagonal shows that after making random predictions and sorting the predictions, it encounters only 3 1s (33%) after looking at 9 of the 27 responses (33%). It has to look at all 27 responses (100%) to encounter all 9 1s (100%).
- The gain curve encounters 5 1s (55%) after looking at 9 of the 27 responses (33%). It has to look at 14 responses to encounter all 9 1s (100%).

Another way to evaluate the predictive model is the ROC curve. It evaluates all possible thresholds for splitting predicted probabilities into predicted classes. This is often a much more useful metric than simply ranking models by their accuracy at a set threshold, as different models might require different calibration steps (looking at a confusion matrix at each step) to find the optimal classification threshold for that model.

```
library(caTools)
colAUC(m1$fitted.values, m1$data$REMISS, plotROC = TRUE)
```


[,1] ## 0 vs. 1 0.8950617

4.2 Poisson Regression

Poisson models count data, like "traffic tickets per day", or "website hits per day". The response is an expected *rate* or intensity. For count data, specify the generalized model, this time with family = poisson or family = quasipoisson.

Recall that the probability of achieving a count y when the expected rate is λ is distributed

$$P(Y = y | \lambda) = \frac{e^{-\lambda} \lambda^y}{y!}.$$

The poisson regression model is

$$\lambda = \exp(X\beta).$$

You can solve this for y to get

$$y = X\beta = \ln(\lambda).$$

That is, the model predicts the log of the response rate. For a sample of size n, the likelihood function is

$$L(\beta;y,X) = \prod_{i=1}^n \frac{e^{-\exp(X_i\beta)} \exp(X_i\beta)^{y_i}}{y_i!}.$$

The log-likelihood is

$$l(\beta) = \sum_{i=1}^n (y_i X_i \beta - \sum_{i=1}^n \exp(X_i \beta) - \sum_{i=1}^n \log(y_i!).$$

Maximizing the log-likelihood has no closed-form solution, so the coefficient estimates are found through interatively reweighted least squares.

Poisson processes assume the variance of the response variable equals its mean. "Equals" means the mean and variance are of a similar order of magnitude. If that assumption does not hold, use the quasi-poisson. Use Poisson regression for large datasets. If the predicted counts are much greater than zero (>30), the linear regression will work fine. Whereas RMSE is not useful for logistic models, it is a good metric in Poisson.

Example

Dataset fire contains response variable injuries counting the number of injuries during the month and one explanatory variable, the month mo.

```
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 300 obs. of 4 variables:
## $ ID : num 1 2 3 4 5 6 7 8 9 10 ...
```

```
## $ dt : POSIXct, format: "2005-01-10" "2005-01-11" ...
## $ injuries: num 1 1 1 5 2 1 1 1 1 1 ...
## $ mo : num 1 1 1 1 1 2 2 2 4 ...
```

In a situation like this where there the relationship is bivariate, start with a visualization.

```
ggplot(fire, aes(x = mo, y = injuries)) +
  geom_jitter() +
  geom_smooth(method = "glm", method.args = list(family = "poisson")) +
  labs(title = "Injuries by Month")
```

Injuries by Month

[1] 1.020468

Fit a poisson regression in R using glm(formula, data, family = poisson). But first, check whether the mean and variance of injuries are the same magnitude? If not, then use family = quasipoisson.

```
mean(fire$injuries)

## [1] 1.36

var(fire$injuries)
```

They are of the same magnitude, so fit the regression with family = poisson.

```
m2 <- glm(injuries ~ mo, family = poisson, data = fire)
summary(m2)
##
## Gall</pre>
```

```
## Call:
## glm(formula = injuries ~ mo, family = poisson, data = fire)
## Deviance Residuals:
      Min 1Q
                    Median
                                  3Q
                                         Max
## -0.3987 -0.3473 -0.3034 -0.2502
                                       4.3185
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22805
                                           0.0296 *
                          0.10482
                                    2.176
               0.01215
                          0.01397
                                    0.870
                                           0.3844
## mo
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 139.87 on 299
                                    degrees of freedom
## Residual deviance: 139.11 on 298
                                    degrees of freedom
## AIC: 792.08
##
## Number of Fisher Scoring iterations: 5
```

The predicted value \hat{y} is the estimated \log of the response variable,

$$\hat{y} = X\hat{\beta} = \ln(\lambda).$$

Suppose mo is January (mo =), then the log ofinjuries is $\hat{y}=0.323787$. Or, more intuitively, the expected count of injuries is $\exp(0.323787)=1.38$

```
predict(m2, newdata = data.frame(mo=1))

##     1
## 0.2401999

predict(m2, newdata = data.frame(mo=1), type = "response")

##     1
## 1.271503
```

Here is a plot of the predicted counts in red.

Poisson Fitted Line Plot

Evaluate a logistic model fit with an analysis of deviance.

[1] 0.005413723

```
(perf <- glance(m2))</pre>
## # A tibble: 1 x 7
     null.deviance df.null logLik
##
                                      AIC
                                            BIC deviance df.residual
##
              <dbl>
                      <int> <dbl> <dbl> <dbl>
                                                    <dbl>
                                                                 <int>
## 1
              140.
                        299 -394. 792. 799.
                                                     139.
                                                                   298
(pseudoR2 <- 1 - perf$deviance / perf$null.deviance)</pre>
```

The deviance of the null model (no regressors) is 139.9. The deviance of the full model is 132.2. The psuedo-R2 is very low at .05. How about the RMSE?

```
RMSE(pred = predict(m2, type = "response"), obs = fire$injuries)
```

[1] 1.006791

The average prediction error is about 0.99. That's almost as much as the variance of injuries - i.e., just predicting the mean of injuries would be almost as good! Use the GainCurvePlot() function to plot the gain curve.

Poisson Fitted vs Actual


```
augment(m2) %>% data.frame() %>%
  GainCurvePlot(xvar = ".fitted", truthVar = "injuries", title = "Poisson Model")
```


It seems that mo was a poor predictor of injuries.

Classification

Classification

Decision Trees

Decision trees, also known as classification and regression tree (CART) models, are tree-based methods for supervised machine learning. Simple *classification trees* and *regression trees* are easy to use and interpret, but are not competitive with the best machine learning methods. However, they form the foundation for **bagged trees**, **random forests**, and **boosted trees** models, which although less interpretable, are very accurate.

CART models segment the predictor space into K non-overlapping terminal nodes (leaves), A_1, A_2, \ldots, A_K . Each node is described by a set of rules which can be used to predict new responses. The predicted value \hat{y} for each node is the mode (classification), or mean (regression).

CART models define the nodes through a top-down greedy process called recursive binary splitting. The process is top-down because it begins at the top of the tree with all observations in a single region and successively splits the predictor space. It is greedy because at each splitting step, the best split is made at that particular step without consideration to subsequent splits.

The best split is the predictor variable and cutpoint that minimizes a cost function. For a regression tree, the most common cost function is the sum of squared residuals,

$$RSS = \sum_{k=1}^K \sum_{i \in A_k} \left(y_i - \hat{y}_{A_k} \right)^2.$$

For a classification tree, the most common cost functions are the Gini index,

$$G = \sum_{c=1}^{C} \hat{p}_{kc} (1 - \hat{p}_{kc}),$$

or the entropy

$$D = -\sum_{c=1}^{C} \hat{p}_{kc} \log \hat{p}_{kc}$$

where \hat{p}_{kc} is the proportion of training observations in node k node that are class c. A completely *pure* node in a binary tree will have $\hat{p} \in [0,1]$ and G = D = 0. A completely impure node in a binary tree will have $\hat{p} = 0.5$ and $G = 0.5^2 \cdot 2 = 0.25$ and $D = -(0.5 \log(0.5)) \cdot 2 = 0.69$.

CART repeats the splitting process for each of the child nodes until a *stopping criterion* is satisfied, usually when no node size surpasses a predefined maximum, or continued splitting does not improve the model significantly. CART may also impose a minimum number of observations in each node.

The resulting tree likely over-fits the training data and therefore does not generalize well to test data, so CART prunes the tree, minimizing the cross-validated prediction error. Rather than cross-validating every possible subtree to find the one with minimum error, CART uses cost-complexity pruning. Cost-complexity is the tradeoff between error (cost) and tree size (complexity) where the tradeoff is quantified with cost-complexity parameter c_p . In the equation below, the cost complexity of the tree $R_{c_p}(T)$ is the sum of its risk (error) plus a "cost complexity" factor c_p multiple of the tree size |T|.

$$R_{c_p}(T) = R(T) + c_p |T| \label{eq:reconstruction}$$

 c_p can take on any value from $[0..\infty],$ but it turns out there is an optimal tree for ranges of c_p values, so there are only a finite set of interesting values for c_p (James et al., 2013) (Therneau and Atkinson, 2019) (Kuhn and Johnson, 2016). A parametric algorithm identifies the interesting c_p values and their associated pruned trees, T_{c_p} .

CART uses cross-validation to determine which c_p is optimal.

7.1 Classification Tree

A simple classification tree is rarely performed on its own; the bagged, random forest, and gradient boosting methods build on this logic. However, it is good to start here to build understanding. I'll learn by example. Using the ISLR::OJ data set, I will predict which brand of orange juice, Citrus Hill (CH) or Minute Maid = (MM), customers Purchase using from the 17 feature variables. Load the libraries and data.

```
library(ISLR) # OJ dataset
library(rpart) # classification and regression trees
library(caret) # modeling workflow
library(rpart.plot) # better formatted plots than the ones in rpart
library(plotROC) # ROC curves
library(ROCR)
library(tidyverse)
library(skimr) # neat alternative to glance & summary

oj_dat <- OJ
#skim_with(numeric = list(p0 = NULL, p25 = NULL, p50 = NULL, p75 = NULL,
# p100 = NULL, hist = NULL))
#skim(oj_dat)</pre>
```

I'll split oj_dat (n = 1,070) into oj_train (80%, n = 857) and oj_test (20%, n = 213). I'll fit a simple decision tree with oj_train, then later a bagged tree, a random forest, and a gradient boosting tree. I'll compare their predictive performance with oj_test.

```
set.seed(12345)
partition <- createDataPartition(y = oj_dat$Purchase, p = 0.8, list = FALSE)
oj_train <- oj_dat[partition, ]
oj_test <- oj_dat[-partition, ]</pre>
```

Function rpart::rpart() builds a full tree, minimizing the Gini index G by default (parms = list(split = "gini")), until the stopping criterion is satisfied. The default stopping criterion is

- only attempt a split if the current node as at least minsplit = 20 observations.
- only accept a split if each of the two resulting nodes have at least minbucket = round(minsplit/3) observations, and
- only accept a split if the resulting overall fit improves by cp = 0.01 (i.e., $\Delta G <= 0.01$).

```
set.seed(123)
oj_model_1 <- rpart(
  formula = Purchase ~ .,
  data = oj_train,
  method = "class" # "class" for classification, "anova" for regression
  )
print(oj_model_1)</pre>
```

```
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
##
    1) root 857 334 CH (0.61026838 0.38973162)
##
      2) LoyalCH>=0.48285 537 94 CH (0.82495345 0.17504655)
##
        4) LoyalCH>=0.7648795 271 13 CH (0.95202952 0.04797048) *
##
        5) LoyalCH< 0.7648795 266 81 CH (0.69548872 0.30451128)
         10) PriceDiff>=-0.165 226 50 CH (0.77876106 0.22123894) *
##
##
         11) PriceDiff< -0.165 40
                                    9 MM (0.22500000 0.77500000) *
##
      3) LoyalCH< 0.48285 320 80 MM (0.25000000 0.75000000)
##
        6) LoyalCH>=0.2761415 146 58 MM (0.39726027 0.60273973)
##
         12) SalePriceMM>=2.04 71
                                   31 CH (0.56338028 0.43661972) *
##
         13) SalePriceMM< 2.04 75  18 MM (0.24000000 0.76000000) *
##
        7) LoyalCH< 0.2761415 174 22 MM (0.12643678 0.87356322) *
```

The output starts with the root node. The predicted class at the root is CH and this prediction produces 334 errors on the 857 observations for a success rate of 0.61026838 and an error rate of 0.38973162. The child nodes of node "x" are labeled 2x) and 2x+1), so the child nodes of 1) are 2) and 3), and the child nodes of 2) are 4) and 5). Terminal nodes are labeled with an asterisk (*).

Surprisingly, only 3 of the 17 features were used the in full tree: LoyalCH (Customer brand loyalty for CH), PriceDiff (relative price of MM over CH), and SalePriceMM (absolute price of MM). The first split is at LoyalCH = 0.48285. Here is what the full (unpruned) tree looks like.

```
rpart.plot(oj_model_1, yesno = TRUE)
```


The boxes show the node classification (based on mode), the proportion of observations that are not CH, and the proportion of observations included in the node.

 ${\tt rpart}$ () not only grew the full tree, it identified the set of cost complexity parameters, and measured the model performance of each corresponding tree using cross-validation. ${\tt printcp}$ () displays the candidate c_p values. You can use this table to decide how to prune the tree.

```
printcp(oj_model_1)
```

```
##
## Classification tree:
## rpart(formula = Purchase ~ ., data = oj_train, method = "class")
## Variables actually used in tree construction:
## [1] LoyalCH
                   PriceDiff
                               SalePriceMM
##
## Root node error: 334/857 = 0.38973
##
## n= 857
##
##
           CP nsplit rel error xerror
## 1 0.479042
                   0
                       1.00000 1.00000 0.042745
## 2 0.032934
                   1
                       0.52096 0.54192 0.035775
```

```
## 3 0.013473 3 0.45509 0.47006 0.033905
## 4 0.010000 5 0.42814 0.46407 0.033736
```

There are 4 c_p values in this model. The model with the smallest complexity parameter allows the most splits (nsplit). The highest complexity parameter corresponds to a tree with just a root node. rel error is the error rate relative to the root node. The root node absolute error is 0.38973162 (the proportion of MM), so its rel error is 0.38973162/0.38973162 = 1.0. That means the absolute error of the full tree (at CP = 0.01) is 0.42814 * 0.38973162 = 0.1669. You can verify that by calculating the error rate of the predicted values:

Finishing the CP table tour, xerror is the relative cross-validated error rate and xstd is its standard error. If you want the lowest possible error, then prune to the tree with the smallest relative CV error (xerror) ($c_p = 0.01$, CV error = 0.1809). If you want to balance predictive power with simplicity, prune to the smallest tree within 1 SE of the one with the smallest relative error. The CP table is not super-helpful for finding that tree. I'll add a column to find it.

The simplest tree using the 1-SE rule is $c_p = 0.01347305$, CV error = 0.1832. Fortunately, plotcp() presents a nice graphical representation of the relationship between xerror and cp.

```
plotcp(oj_model_1, upper = "splits")
```


The dashed line is set at the minimum xerror + xstd. The top axis shows the number of splits in the tree. I'm not sure why the CP values are not the same as in the table (they are close, but not the same). The figure suggests I should prune to 5 or 3 splits. I see this curve never really hits a minimum - it is still decreasing at 5 splits. The default tuning parameter value cp = 0.01 may be too small, so I'll set it to cp = 0.001 and start over.

```
set.seed(123)
oj_model_1b <- rpart(
  formula = Purchase ~ .,
  data = oj_train,
  method = "class",
  cp = 0.001
  )
print(oj_model_1b)</pre>
```

```
## n= 857
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 857 334 CH (0.61026838 0.38973162)
```

```
##
      2) LoyalCH>=0.48285 537 94 CH (0.82495345 0.17504655)
        4) LoyalCH>=0.7648795 271 13 CH (0.95202952 0.04797048) *
##
##
        5) LoyalCH< 0.7648795 266 81 CH (0.69548872 0.30451128)
         10) PriceDiff>=-0.165 226 50 CH (0.77876106 0.22123894)
##
           ##
##
           21) ListPriceDiff< 0.255 111 39 CH (0.64864865 0.35135135)
             42) PriceMM>=2.155 19
                                   2 CH (0.89473684 0.10526316) *
##
##
             43) PriceMM< 2.155 92 37 CH (0.59782609 0.40217391)
##
               86) DiscCH>=0.115 7
                                   0 CH (1.00000000 0.00000000) *
               87) DiscCH< 0.115 85 37 CH (0.56470588 0.43529412)
##
##
                ##
                175) ListPriceDiff< 0.215 40    18 MM (0.45000000 0.55000000)
##
                  350) LoyalCH>=0.527571 28 13 CH (0.53571429 0.46428571)
##
                   700) WeekofPurchase< 266.5 21
                                                 8 CH (0.61904762 0.38095238) *
##
                   701) WeekofPurchase>=266.5 7
                                                 2 MM (0.28571429 0.71428571) *
##
                  351) LoyalCH< 0.527571 12
                                            3 MM (0.25000000 0.75000000) *
         11) PriceDiff< -0.165 40
                                  9 MM (0.22500000 0.77500000) *
##
##
      3) LoyalCH< 0.48285 320 80 MM (0.25000000 0.75000000)
        6) LoyalCH>=0.2761415 146 58 MM (0.39726027 0.60273973)
##
         12) SalePriceMM>=2.04 71 31 CH (0.56338028 0.43661972)
##
##
           24) LoyalCH< 0.303104 7
                                   0 CH (1.00000000 0.00000000) *
##
           25) LoyalCH>=0.303104 64 31 CH (0.51562500 0.48437500)
##
             50) WeekofPurchase>=246.5 52 22 CH (0.57692308 0.42307692)
              100) PriceCH< 1.94 35 11 CH (0.68571429 0.31428571)
##
##
                200) StoreID< 1.5 9
                                    1 CH (0.88888889 0.11111111) *
                201) StoreID>=1.5 26 10 CH (0.61538462 0.38461538)
##
##
                  402) LoyalCH< 0.410969 17
                                            4 CH (0.76470588 0.23529412) *
##
                  403) LoyalCH>=0.410969 9
                                           3 MM (0.33333333 0.66666667) *
                                    6 MM (0.35294118 0.64705882) *
              101) PriceCH>=1.94 17
##
##
             51) WeekofPurchase< 246.5 12
                                          3 MM (0.25000000 0.75000000) *
##
         13) SalePriceMM< 2.04 75  18 MM (0.24000000 0.76000000)
##
           26) SpecialCH>=0.5 14
                                  6 CH (0.57142857 0.42857143) *
##
           27) SpecialCH< 0.5 61 10 MM (0.16393443 0.83606557) *
        7) LoyalCH< 0.2761415 174 22 MM (0.12643678 0.87356322)
##
##
         14) LoyalCH>=0.035047 117 21 MM (0.17948718 0.82051282)
           28) WeekofPurchase< 273.5 104 21 MM (0.20192308 0.79807692)
##
##
             56) PriceCH>=1.875 20
                                   9 MM (0.45000000 0.55000000)
##
              112) WeekofPurchase>=252.5 12
                                            5 CH (0.58333333 0.41666667) *
              113) WeekofPurchase< 252.5 8
                                           2 MM (0.25000000 0.75000000) *
##
             57) PriceCH< 1.875 84 12 MM (0.14285714 0.85714286) *
##
##
           ##
         15) LoyalCH< 0.035047 57
                                  1 MM (0.01754386 0.98245614) *
```

This is a much larger tree. Did I find a cp value that produces a local min?

```
plotcp(oj_model_1b, upper = "splits")
```


Yes, the min is at CP = 0.011 with 5 splits. The min + 1 SE is at CP = 0.021 with 3 splits. I'll prune the tree to 3 splits.

```
oj_model_1b_pruned <- prune(
    oj_model_1b,
    cp = oj_model_1b$cptable[oj_model_1b$cptable[, 2] == 3, "CP"]
)
rpart.plot(oj_model_1b_pruned, yesno = TRUE)</pre>
```


The most "important" indicator of Purchase appears to be LoyalCH. From the rpart vignette (page 12),

"An overall measure of variable importance is the sum of the goodness of split measures for each split for which it was the primary variable, plus goodness (adjusted agreement) for all splits in which it was a surrogate."

Surrogates refer to alternative features for a node to handle missing data. For each split, CART evaluates a variety of alternative "surrogate" splits to use when the feature value for the primary split is NA. Surrogate splits are splits that produce results similar to the original split.

A variable's importance is the sum of the improvement in the overall Gini (or RMSE) measure produced by the nodes in which it appears. Here is the variable importance for this model.

oj_model_1b_pruned\$variable.importance

##	LoyalCH	PriceDiff	${\tt SalePriceMM}$	StoreID We	eekofPurchase
##	150.237336	20.843067	11.567443	9.965419	8.386282
##	DiscMM	${\tt PriceMM}$	PctDiscMM	PriceCH	${\tt SalePriceCH}$
##	7.081470	7.065493	6.252920	3.055594	1.042153

##

```
oj_model_1b_pruned$variable.importance %>%
   data.frame() %>%
   rownames_to_column(var = "Feature") %>%
   rename(Overall = '.') %>%
   ggplot(aes(x = fct_reorder(Feature, Overall), y = Overall)) +
   geom_pointrange(aes(ymin = 0, ymax = Overall), color = "cadetblue", size = .3) +
   theme_minimal() +
   coord_flip() +
   labs(x = "", y = "", title = "Variable Importance with Simple Classication")
```

Variable Importance with Simple Classication

LoyalCH is by far the most important variable, as expected from its position at the top of the tree, and one level down.

You can see how the surrogates appear in the model with the summary() function.

```
summary(oj_model_1b_pruned)

## Call:
## rpart(formula = Purchase ~ ., data = oj_train, method = "class",
## cp = 0.001)
## n= 857
##
```

xerror

xstd

CP nsplit rel error

```
## 1 0.47904192
                     0 1.0000000 1.0000000 0.04274518
## 2 0.03293413
                     1 0.5209581 0.5419162 0.03577468
## 3 0.01347305
                     3 0.4550898 0.4700599 0.03390486
## Variable importance
##
          LoyalCH
                       PriceDiff
                                     SalePriceMM
                                                        StoreID WeekofPurchase
##
               67
                               9
                                               5
                                                               4
##
           DiscMM
                         PriceMM
                                       PctDiscMM
                                                        PriceCH
##
                3
                                3
                                               3
##
## Node number 1: 857 observations,
                                        complexity param=0.4790419
     predicted class=CH expected loss=0.3897316 P(node) =1
##
##
       class counts:
                       523
                             334
##
      probabilities: 0.610 0.390
##
     left son=2 (537 obs) right son=3 (320 obs)
##
     Primary splits:
##
         LovalCH
                       < 0.48285
                                    to the right, improve=132.56800, (0 missing)
##
         StoreID
                       < 3.5
                                    to the right, improve= 40.12097, (0 missing)
##
                       < 0.015
                                    to the right, improve= 24.26552, (0 missing)
         PriceDiff
                                    to the right, improve= 22.79117, (0 missing)
##
         ListPriceDiff < 0.255
##
         SalePriceMM
                       < 1.84
                                    to the right, improve= 20.16447, (0 missing)
##
     Surrogate splits:
##
         StoreID
                        < 3.5
                                     to the right, agree=0.646, adj=0.053, (0 split)
##
         PriceMM
                        < 1.89
                                     to the right, agree=0.638, adj=0.031, (0 split)
##
         WeekofPurchase < 229.5
                                     to the right, agree=0.632, adj=0.016, (0 split)
                                     to the left, agree=0.629, adj=0.006, (0 split)
##
         DiscMM
                        < 0.77
##
         SalePriceMM
                        < 1.385
                                     to the right, agree=0.629, adj=0.006, (0 split)
##
                                        complexity param=0.03293413
## Node number 2: 537 observations,
     predicted class=CH expected loss=0.1750466 P(node) =0.6266044
##
##
                       443
                              94
       class counts:
##
      probabilities: 0.825 0.175
##
     left son=4 (271 obs) right son=5 (266 obs)
##
     Primary splits:
                       < 0.7648795 to the right, improve=17.669310, (0 missing)
##
         LoyalCH
                                    to the right, improve=15.475200, (0 missing)
##
         PriceDiff
                       < 0.015
##
         SalePriceMM
                       < 1.84
                                    to the right, improve=13.951730, (0 missing)
##
         ListPriceDiff < 0.255
                                    to the right, improve=11.407560, (0 missing)
##
         {\tt DiscMM}
                        < 0.15
                                    to the left, improve= 7.795122, (0 missing)
##
     Surrogate splits:
##
         WeekofPurchase < 257.5
                                     to the right, agree=0.594, adj=0.180, (0 split)
##
         PriceCH
                        < 1.775
                                     to the right, agree=0.590, adj=0.173, (0 split)
                                     to the right, agree=0.587, adj=0.165, (0 split)
##
         StoreID
                        < 3.5
##
         PriceMM
                        < 2.04
                                     to the right, agree=0.587, adj=0.165, (0 split)
##
         SalePriceMM
                        < 2.04
                                     to the right, agree=0.587, adj=0.165, (0 split)
##
```

```
## Node number 3: 320 observations
##
     predicted class=MM expected loss=0.25 P(node) =0.3733956
##
       class counts:
                        80
                             240
##
      probabilities: 0.250 0.750
##
## Node number 4: 271 observations
     predicted class=CH expected loss=0.04797048 P(node) =0.3162194
##
       class counts:
                       258
                              13
##
      probabilities: 0.952 0.048
##
## Node number 5: 266 observations,
                                       complexity param=0.03293413
     predicted class=CH expected loss=0.3045113 P(node) =0.3103851
##
##
       class counts:
                       185
                              81
##
      probabilities: 0.695 0.305
##
     left son=10 (226 obs) right son=11 (40 obs)
##
     Primary splits:
         PriceDiff
                       < -0.165
                                   to the right, improve=20.84307, (0 missing)
##
##
         ListPriceDiff < 0.235
                                   to the right, improve=20.82404, (0 missing)
##
         SalePriceMM
                       < 1.84
                                   to the right, improve=16.80587, (0 missing)
##
                       < 0.15
                                   to the left, improve=10.05120, (0 missing)
         DiscMM
##
         PctDiscMM
                       < 0.0729725 to the left, improve=10.05120, (0 missing)
##
     Surrogate splits:
##
         SalePriceMM
                        < 1.585
                                    to the right, agree=0.906, adj=0.375, (0 split)
##
                                    to the left, agree=0.895, adj=0.300, (0 split)
         DiscMM
                        < 0.57
##
         PctDiscMM
                        < 0.264375 to the left, agree=0.895, adj=0.300, (0 split)
##
         WeekofPurchase < 274.5
                                    to the left, agree=0.872, adj=0.150, (0 split)
##
         SalePriceCH
                        < 2.075
                                    to the left, agree=0.857, adj=0.050, (0 split)
##
## Node number 10: 226 observations
##
     predicted class=CH expected loss=0.2212389 P(node) =0.2637106
##
       class counts:
                       176
                              50
##
      probabilities: 0.779 0.221
##
## Node number 11: 40 observations
##
     predicted class=MM expected loss=0.225 P(node) =0.04667445
##
       class counts:
##
      probabilities: 0.225 0.775
```

The last step is to make predictions on the validation data set. For a classification tree, set argument type = "class".

```
oj_model_1b_preds <- predict(oj_model_1b_pruned, oj_test, type = "class")
```

I'll evaluate the predictions and record the accuracy (correct classification percentage) for comparison to other models. Two ways to evaluate the model are the confusion matrix, and the ROC curve.

7.1.1 Confusion Matrix

Print the confusion matrix with caret::confusionMatrix() to see how well does this model performs against the test data set.

```
oj_model_1b_cm <- confusionMatrix(data = oj_model_1b_preds, reference = oj_test$Purcha
oj_model_1b_cm
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
           CH 113
                   13
##
          MM 17 70
##
                  Accuracy : 0.8592
##
                    95% CI : (0.8051, 0.9029)
##
##
       No Information Rate: 0.6103
##
       P-Value [Acc > NIR] : 1.265e-15
##
                     Kappa : 0.7064
##
##
##
   Mcnemar's Test P-Value: 0.5839
##
               Sensitivity: 0.8692
##
               Specificity: 0.8434
##
            Pos Pred Value: 0.8968
##
##
            Neg Pred Value: 0.8046
##
                Prevalence: 0.6103
##
            Detection Rate: 0.5305
##
      Detection Prevalence : 0.5915
##
         Balanced Accuracy: 0.8563
##
##
          'Positive' Class : CH
##
```

The confusion matrix is at the top. It also includes a lot of statistics. It's worth getting familiar with the stats. The model accuracy and 95% CI are calculated from the binomial test.

```
binom.test(x = 113 + 70, n = 213)
##
## Exact binomial test
```

```
##
## data: 113 + 70 and 213
## number of successes = 183, number of trials = 213, p-value < 2.2e-16
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.8050785 0.9029123
## sample estimates:
## probability of success
## 0.8591549</pre>
```

The "No Information Rate" (NIR) statistic is the class rate for the largest class. In this case CH is the largest class, so NIR = 130/213 = 0.6103. "P-Value [Acc > NIR]" is the binomial test that the model accuracy is significantly better than the NIR (i.e., significantly better than just always guessing CH).

```
binom.test(x = 113 + 70, n = 213, p = 130/213, alternative = "greater")
```

```
##
## Exact binomial test
##
## data: 113 + 70 and 213
## number of successes = 183, number of trials = 213, p-value = 1.265e-15
## alternative hypothesis: true probability of success is greater than 0.6103286
## 95 percent confidence interval:
## 0.8138446 1.0000000
## sample estimates:
## probability of success
## 0.8591549
```

The "Accuracy" statistic indicates the model predicts 0.8590 of the observations correctly. That's good, but less impressive when you consider the prevalence of CH is 0.6103 - you could achieve 61% accuracy just by predicting CH every time. A measure that controls for the prevalence is Cohen's kappa statistic. The kappa statistic is explained here. It compares the accuracy to the accuracy of a "random system". It is defined as

$$\kappa = \frac{Acc - RA}{1 - RA}$$

where

$$RA = \frac{ActFalse \times PredFalse + ActTrue \times PredTrue}{Total \times Total}$$

is the hypotheical probability of a chance agreement. ActFalse will be the number of "MM" (13 + 70 = 83) and actual true will be the number of "CH" (113 + 17 = 130). The predicted counts are

```
table(oj_model_1b_preds)
```

```
## oj_model_1b_preds
## CH MM
## 126 87
```

So, $RA = (83*87 + 130*126)/213^2 = 0.5202$ and $\kappa = (0.8592 - 0.5202)/(1 - 0.5202) = 0.7064$. The kappa statistic varies from 0 to 1 where 0 means accurate predictions occur merely by chance, and 1 means the predictions are in perfect agreement with the observations. In this case, a kappa statistic of 0.7064 is "substantial". See chart here.

The other measures from the confusionMatrix() output are various proportions and you can remind yourself of their definitions in the documentation with ?confusionMatrix.

Visuals are almost always helpful. Here is a plot of the confusion matrix.

```
plot(oj_test$Purchase, oj_model_1b_preds,
    main = "Simple Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
```

Simple Classification: Predicted vs. Actual

By the way, how does the validation set accuracy ()

```
oj_model_1b_train_preds <- predict(oj_model_1b_pruned, oj_train, type = "class")
oj_model_1b_train_cm <- confusionMatrix(data = oj_model_1b_train_preds, reference = oj_train$Purc
oj_model_1b_train_cm$overall</pre>
```

```
## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 8.226371e-01 6.323113e-01 7.953840e-01 8.476497e-01 6.102684e-01
## AccuracyPValue McnemarPValue
## 1.859617e-41 4.258396e-02
```

The accuracy on the training data set was a little lower than on the test data set. I though it would be higher, not lower.

7.1.2 ROC Curve

Another measure of accuracy is the ROC (receiver operating characteristics) curve (Fawcett, 2005). The ROC curve is a plot of the true positive rate (TPR, sensitivity) versus the false positive rate (FPR, 1 - specificity) for a set of thresholds. By default, the threshold for predicting the default classification is 0.50, but it could be any threshold. The ROC curves varies the thresholds. (I'll use the geom_roc geom from plotROC.

You can also use ${\tt prediction()}$ and ${\tt plot.prediction()}$ from the ${\tt ROCR}$ package.

```
pred <- prediction(predict(oj_model_1b_pruned, newdata = oj_test, type = "prob")[, 2],
plot(performance(pred, "tpr", "fpr"))
abline(0, 1, lty = 2)</pre>
```


Hmm, not quite the same...

A few points on the ROC space are helpful for understanding how to use it.

- The lower left point (0, 0) is the result of *always* predicting "negative" or in this case "MM" if "CH" is taken as the default class. Sure, your false positive rate is zero, but since you never predict a positive, your true positive rate is also zero.
- The upper right point (1, 1) is the results of *always* predicting "positive" (or "CH" here). You catch all the positives, but you miss all the negatives.
- The upper left point (0, 1) is the result of perfect accuracy. You catch all the positives and all the negatives.
- The lower right point (1, 0) is the result of perfect imbecility. You made the exact wrong prediction every time.
- The 45 degree diagonal is the result of randomly guessing positive (CH) X percent of the time. If you guess positive 90% of the time and the prevalence is 50%, your TPR will be 90% and your FPR will also be 90%, etc.

From the last bullet, it is evident that any point below and to the right of the 45 degree diagonal represents an instance where the model would have been better off just predicting entirely one way or the other. The goal is for all nodes to bunch up in the upper left.

Points to the left of the diagonal with a low TPR can be thought of as "conservative" predicters - they only make positive (CH) predictions with strong

evidence. Points to the left of the diagnonal with a high TPR can be thought of as "liberal" predicters - they make positive (CH) predictions with weak evidence.

7.1.3 Caret Approach

I can also fit the model with caret::train(). There are two ways to tune hyperparameters in train():

- set the number of tuning parameter values to consider by setting tuneLength, or
- set particular values to consider for each parameter by defining a tuneGrid.

I'll build the model using 10-fold cross-validation to optimize the hyperparameter CP. If you don't have any idea what the tuning parameter ought to look like, use tuneLength to get close, then fine-tune with tuneGrid. That's what I'll do. I'll create a training control object that I can re-use in other model builds.

```
oj_trControl = trainControl(
  method = "cv",  # k-fold cross validation
  number = 10,  # 10 folds
  savePredictions = "final",  # save predictions for the optimal tuning paramete
  classProbs = TRUE  # return class probabilities in addition to predicted values
# summaryFunction = twoClassSummary  # computes sensitivity, specificity and the are
  )
```

Now fit the model.

```
set.seed(1234)
oj_model_2 = train(
   Purchase ~ .,
   data = oj_train,
   method = "rpart",
   tuneLength = 5,
   metric = "Accuracy",
   trControl = oj_trControl
)
```

caret built a full tree using rpart's default parameters: gini splitting index, at least 20 observations in a node in order to consider splitting it, and at least 6 observations in each node. Caret then calculated the accuracy for each candidate value of α . Here is the results.

```
print(oj_model_2)
## CART
##
## 857 samples
## 17 predictor
    2 classes: 'CH', 'MM'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 772, 771, 770, 771, 771, ...
## Resampling results across tuning parameters:
##
##
                Accuracy
                           Kappa
    ср
##
    0.005988024 0.8085999 0.5931149
    ##
##
    0.013473054 0.8051657 0.5885521
##
    0.032934132 0.7841798 0.5371171
    0.479041916 0.6603904 0.1774773
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.008982036.
```

The second cp (0.008982036) produced the highest accuracy. I can drill into the best value of cp using a tuning grid. I'll try that now.

```
set.seed(1234)
oj_model_3 = train(
   Purchase ~ .,
  data = oj_train,
  method = "rpart",
  tuneGrid = expand.grid(cp = seq(from = 0.001, to = 0.010, length = 11)),
  metric='Accuracy',
  trControl = oj_trControl
   )
print(oj_model_3)
## CART
##
## 857 samples
## 17 predictor
##
   2 classes: 'CH', 'MM'
##
## No pre-processing
```

```
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 772, 771, 770, 771, 771, ...
## Resampling results across tuning parameters:
##
##
    ср
            Accuracy
                       Kappa
##
    0.0010 0.8004874 0.5753480
    0.0019 0.8016502 0.5785232
##
##
    0.0028 0.8039758 0.5845653
##
    0.0037
            0.8085999 0.5955198
##
    0.0046 0.8039351 0.5851273
##
    0.0055 0.8085863 0.5937949
##
    0.0064 0.8085999 0.5931149
##
    0.0073
            0.8120883 0.6011446
##
    0.0082 0.8120883 0.6011446
    0.0091 0.8086267 0.5943277
##
    0.0100 0.8086540 0.5953150
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0082.
```

The beset model is at cp = 0.009. Here are the rules in the final model.

```
oj_model_3$finalModel
```

```
## n = 857
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
##
     1) root 857 334 CH (0.61026838 0.38973162)
##
       2) LoyalCH>=0.48285 537 94 CH (0.82495345 0.17504655)
##
         4) LoyalCH>=0.7648795 271 13 CH (0.95202952 0.04797048) *
##
         5) LoyalCH< 0.7648795 266 81 CH (0.69548872 0.30451128)
##
          10) PriceDiff>=-0.165 226 50 CH (0.77876106 0.22123894) *
##
          11) PriceDiff< -0.165 40
                                     9 MM (0.22500000 0.77500000) *
##
       3) LoyalCH< 0.48285 320 80 MM (0.25000000 0.75000000)
##
         6) LoyalCH>=0.2761415 146 58 MM (0.39726027 0.60273973)
          12) SalePriceMM>=2.04 71 31 CH (0.56338028 0.43661972)
##
##
            24) LoyalCH< 0.303104 7
                                      0 CH (1.00000000 0.00000000) *
            25) LoyalCH>=0.303104 64 31 CH (0.51562500 0.48437500)
##
##
              50) WeekofPurchase>=246.5 52 22 CH (0.57692308 0.42307692)
##
               100) PriceCH< 1.94 35 11 CH (0.68571429 0.31428571) *
##
               101) PriceCH>=1.94 17
                                       6 MM (0.35294118 0.64705882) *
##
              51) WeekofPurchase< 246.5 12
                                             3 MM (0.25000000 0.75000000) *
          13) SalePriceMM< 2.04 75  18 MM (0.24000000 0.76000000) *
##
```

7) LoyalCH< 0.2761415 174 22 MM (0.12643678 0.87356322) *

Here is the tree.

```
rpart.plot(oj_model_3$finalModel)
```


Here is the ROC curve.

```
library(plotROC)
ggplot(oj_model_3$pred) +
    geom_roc(
    aes(
        m = MM,
        d = factor(obs, levels = c("CH", "MM"))
    ),
    hjust = -0.4, vjust = 1.5
    ) +
    coord_equal()
```

Warning in verify_d(data\$d): D not labeled 0/1, assuming CH = 0 and MM = 1!

Here are the cross-validated Accuracy for each candidate cp value.

plot(oj_model_3)

Evaluate the model by making predictions with the test data set.

```
oj_model_3_preds <- predict(oj_model_3, oj_test, type = "raw")
```

The confusion matrix shows the true positives and true negatives.

```
oj_model_3_cm <- confusionMatrix(</pre>
   data = oj_model_3_preds,
   reference = oj_test$Purchase
)
oj_model_3_cm
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
##
           CH 115 18
           MM 15 65
##
##
##
                  Accuracy : 0.8451
##
                    95% CI: (0.7894, 0.8909)
##
       No Information Rate: 0.6103
       P-Value [Acc > NIR] : 6.311e-14
##
##
##
                     Kappa: 0.6721
##
##
   Mcnemar's Test P-Value: 0.7277
##
##
               Sensitivity: 0.8846
               Specificity: 0.7831
##
##
            Pos Pred Value: 0.8647
            Neg Pred Value: 0.8125
##
##
                Prevalence: 0.6103
            Detection Rate: 0.5399
##
##
      Detection Prevalence : 0.6244
##
         Balanced Accuracy: 0.8339
##
##
          'Positive' Class : CH
##
```

The accuracy metric is the slightly worse than in my previous model. Here is a graphical representation of the confusion matrix.

Finally, here is the variable importance plot.

plot(varImp(oj_model_3), main="Variable Importance with Simple Classication")

Variable Importance with Simple Classication

Looks like the manual effort faired best. Here is a summary the accuracy rates of the three models.

7.2 Regression Trees

A simple regression tree is built in a manner similar to a simple classification tree, and like the simple classification tree, it is rarely invoked on its own; the bagged, random forest, and gradient boosting methods build on this logic. I'll learn by example again. Using the ISLR::Carseats data set, I will predict Sales using from the 10 feature variables. Load the data.

I'll split careseats_dat (n=400) into carseats_train (80%, n=321) and carseats_test (20%, n=79). I'll fit a simple decision tree with carseats_train, then later a bagged tree, a random forest, and a gradient boosting tree. I'll compare their predictive performance with carseats_test.

```
set.seed(12345)
partition <- createDataPartition(y = carseats_dat$Sales, p = 0.8, list = FALSE)
carseats_train <- carseats_dat[partition, ]
carseats_test <- carseats_dat[-partition, ]</pre>
```

The first step is to build a full tree, then perform k-fold cross-validation to help select the optimal cost complexity (cp). The only difference here is the rpart() parameter method = "anova" to produce a regression tree.

```
set.seed(1234)
carseats_model_1 <- rpart(
  formula = Sales ~ .,
  data = carseats_train,
  method = "anova",</pre>
```

```
xval = 10.
   model = TRUE # to plot splits with factor variables.
)
print(carseats_model_1)
## n= 321
##
## node), split, n, deviance, yval
##
         * denotes terminal node
##
##
    1) root 321 2567.76800 7.535950
##
      2) ShelveLoc=Bad, Medium 251 1474.14100 6.770359
##
        4) Price>=105.5 168 719.70630 5.987024
##
          8) ShelveLoc=Bad 50 165.70160 4.693600
##
           16) Population< 201.5 20
                                      48.35505 3.646500 *
##
           17) Population>=201.5 30
                                      80.79922 5.391667 *
##
          9) ShelveLoc=Medium 118 434.91370 6.535085
##
           18) Advertising< 11.5 88 290.05490 6.113068
##
             36) CompPrice< 142 69
                                   193.86340
                                               5.769420
##
               72) Price>=132.5 16
                                     50.75440
                                               4.455000 *
               73) Price< 132.5 53
                                    107.12060
##
                                               6.166226 *
##
             37) CompPrice>=142 19
                                     58.45118
                                               7.361053 *
##
           19) Advertising>=11.5 30
                                      83.21323 7.773000 *
        5) Price< 105.5 83 442.68920 8.355904
##
         10) Age>=63.5 32 153.42300 6.922500
##
##
           20) Price>=85 25
                              66.89398 6.160800
##
             40) ShelveLoc=Bad 9
                                   18.39396 4.772222 *
##
             41) ShelveLoc=Medium 16
                                       21.38544 6.941875 *
##
           21) Price< 85 7
                             20.22194 9.642857 *
##
         11) Age< 63.5 51 182.26350 9.255294
##
           22) Income < 57.5 12
                                 28.03042 7.707500 *
           23) Income>=57.5 39 116.63950 9.731538
##
##
             46) Age>=50.5 14
                                21.32597 8.451429 *
##
             47) Age< 50.5 25
                                59.52474 10.448400 *
##
      3) ShelveLoc=Good 70 418.98290 10.281140
##
        6) Price>=107.5 49 242.58730 9.441633
##
         12) Advertising< 13.5 41 162.47820 8.926098
##
           24) Age>=61 17
                            53.37051 7.757647 *
##
           25) Age< 61 24
                            69.45776 9.753750 *
##
         13) Advertising>=13.5 8
                                   13.36599 12.083750 *
##
        7) Price< 107.5 21
                             61.28200 12.240000 *
```

The output starts with the root node. The predicted Sales at the root is the mean Sales for the training data set, 7.535950 (values are \$000s). The deviance at the root is the SSE, 2567.768. The child nodes of node "x" are labeled 2x)

and 2x+1), so the child nodes of 1) are 2) and 3), and the child nodes of 2) are 4) and 5). Terminal nodes are labeled with an asterisk (*).

The first split is at ShelveLoc = [Bad, Medium] vs Good. Here is what the full (unpruned) tree looks like.

```
rpart.plot(carseats_model_1, yesno = TRUE)
```


The boxes show the node predicted value (mean) and the proportion of observations that are in the node (or child nodes).

rpart() not only grew the full tree, it also used cross-validation to test the performance of the possible complexity hyperparameters. printcp() displays the candidate cp values. You can use this table to decide how to prune the tree.

```
printcp(carseats_model_1)
```

```
##
## Root node error: 2567.8/321 = 7.9993
##
## n= 321
##
##
            CP nsplit rel error
                                 xerror
                                              xstd
## 1
      0.262736
                     0
                         1.00000 1.00635 0.076664
## 2
      0.121407
                     1
                         0.73726 0.74888 0.058981
## 3
      0.046379
                     2
                         0.61586 0.65278 0.050839
      0.044830
## 4
                     3
                         0.56948 0.67245 0.051638
## 5
      0.041671
                     4
                         0.52465 0.66230 0.051065
## 6
      0.025993
                     5
                         0.48298 0.62345 0.049368
## 7
      0.025823
                     6
                         0.45698 0.61980 0.048026
                     7
## 8
     0.024007
                         0.43116 0.62058 0.048213
## 9
     0.015441
                     8
                         0.40715 0.58061 0.041738
## 10 0.014698
                    9
                         0.39171 0.56413 0.041368
## 11 0.014641
                         0.37701 0.56277 0.041271
                    10
## 12 0.014233
                    11
                         0.36237 0.56081 0.041097
## 13 0.014015
                    12
                         0.34814 0.55647 0.038308
## 14 0.013938
                    13
                         0.33413 0.55647 0.038308
## 15 0.010560
                    14
                         0.32019 0.57110 0.038872
## 16 0.010000
                    15
                         0.30963 0.56676 0.038090
```

There are 16 possible cp values in this model. The model with the smallest complexity parameter allows the most splits (nsplit). The highest complexity parameter corresponds to a tree with just a root node. rel error is the SSE relative to the root node. The root node SSE is 2567.76800, so its rel error is 2567.76800/2567.76800 = 1.0. That means the absolute error of the full tree (at CP = 0.01) is 0.30963 * 2567.76800 = 795.058. You can verify that by calculating the SSE of the model predicted values:

sse ## 1 795.0525

Finishing the CP table tour, xerror is the cross-validated SSE and xstd is its standard error. If you want the lowest possible error, then prune to the tree with the smallest relative SSE (xerror). If you want to balance predictive power with simplicity, prune to the smallest tree within 1 SE of the one with the smallest relative SSE. The CP table is not super-helpful for finding that tree. I'll add a column to find it.

```
##
             CP nsplit rel.error
                                                 xstd xerror_cap
                                                                       eval
                                    xerror
## 1 0.26273578
                     0 1.0000000 1.0063530 0.07666355 0.5947744
## 2 0.12140705
                     1 0.7372642 0.7488767 0.05898146 0.5947744
## 3 0.04637919
                     2 0.6158572 0.6527823 0.05083938 0.5947744
## 4 0.04483023
                     3 0.5694780 0.6724529 0.05163819 0.5947744
## 5 0.04167149
                     4 0.5246478 0.6623028 0.05106530
                                                       0.5947744
## 6 0.02599265
                     5 0.4829763 0.6234457 0.04936799 0.5947744
                     6 0.4569836 0.6198034 0.04802643 0.5947744
## 7 0.02582284
                     7 0.4311608 0.6205756 0.04821332 0.5947744
## 8 0.02400748
## 9 0.01544139
                     8 0.4071533 0.5806072 0.04173785 0.5947744
                                                                  under cap
## 10 0.01469771
                     9 0.3917119 0.5641331 0.04136793 0.5947744
                                                                  under cap
## 11 0.01464055
                    10 0.3770142 0.5627713 0.04127139 0.5947744
                                                                  under cap
## 12 0.01423309
                    11 0.3623736 0.5608073 0.04109662 0.5947744
                                                                  under cap
## 13 0.01401541
                    12 0.3481405 0.5564663 0.03830810 0.5947744 min xerror
## 14 0.01393771
                    13 0.3341251 0.5564663 0.03830810 0.5947744
                                                                  under cap
## 15 0.01055959
                    14 0.3201874 0.5710951 0.03887227
                                                       0.5947744
                                                                  under cap
## 16 0.01000000
                    15 0.3096278 0.5667561 0.03808991 0.5947744
                                                                  under cap
```

Okay, so the simplest tree is the one with CP = 0.01544139 (8 splits). Fortunately, plotcp() presents a nice graphical representation of the relationship between xerror and cp.

```
plotcp(carseats_model_1, upper = "splits")
```


The dashed line is set at the minimum $\mathtt{xerror} + \mathtt{xstd}$. The top axis shows the number of splits in the tree. I'm not sure why the CP values are not the same as in the table (they are close, but not the same). The smallest relative error is at 0.0140154, but the maximum CP below the dashed line (one standard deviation above the minimum error) is at CP = .019 (8 splits). Use the prune() function to prune the tree by specifying the associated cost-complexity cp.

```
carseats_model_1_pruned <- prune(
    carseats_model_1,
    cp = carseats_model_1$cptable[carseats_model_1$cptable[, 2] == 8, "CP"]
)
rpart.plot(carseats_model_1_pruned, yesno = TRUE)</pre>
```


The most "important" indicator of Sales is ShelveLoc. Here are the importance values from the model.

```
carseats_model_1_pruned$variable.importance %>%
  data.frame() %>%
  rownames_to_column(var = "Feature") %>%
  rename(Overall = '.') %>%
  ggplot(aes(x = fct_reorder(Feature, Overall), y = Overall)) +
  geom_pointrange(aes(ymin = 0, ymax = Overall), color = "cadetblue", size = .3) +
  theme_minimal() +
  coord_flip() +
  labs(x = "", y = "", title = "Variable Importance with Simple Regression")
```


The most important indicator of Sales is ShelveLoc, then Price, then Age, all of which appear in the final model. CompPrice was also important.

The last step is to make predictions on the validation data set. The root mean squared error $(RMSE = \sqrt{(1/2)\sum(actual-pred)^2})$ and mean absolute error $(MAE = (1/n)\sum|actual-pred|)$ are the two most common measures of predictive accuracy. The key difference is that RMSE punishes large errors more harshly. For a regression tree, set argument type = "vector" (or do not specify at all).

```
carseats_model_1_preds <- predict(
   carseats_model_1_pruned,
   carseats_test,
   type = "vector"
)

carseats_model_1_pruned_rmse <- RMSE(
   pred = carseats_model_1_preds,
   obs = carseats_test$Sales
)

carseats_model_1_pruned_rmse</pre>
```

[1] 2.388059

The pruning process leads to an average prediction error of 2.388 in the test

data set. Not too bad considering the standard deviation of Sales is 2.801. Here is a predicted vs actual plot.

```
plot(carseats_test$Sales, carseats_model_1_preds,
    main = "Simple Regression: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
abline(0, 1)
```

Simple Regression: Predicted vs. Actual

The 6 possible predicted values do a decent job of binning the observations.

7.2.1 Caret Approach

I can also fit the model with caret::train(), specifying method = "rpart".

I'll build the model using 10-fold cross-validation to optimize the hyperparameter CP.

```
carseats_trControl = trainControl(
  method = "cv",  # k-fold cross validation
  number = 10,  # 10 folds
  savePredictions = "final"  # save predictions for the optimal tuning parameter
)
```

Sales ~ .,

I'll let the model look for the best CP tuning parameter with tuneLength to get close, then fine-tune with tuneGrid.

```
set.seed(1234)
carseats_model_2 = train(
   Sales ~ .,
   data = carseats_train,
   method = "rpart", # for classification tree
   tuneLength = 5, # choose up to 5 combinations of tuning parameters (cp)
   metric = "RMSE", # evaluate hyperparamter combinations with RMSE
   trControl = carseats_trControl
)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
print(carseats_model_2)
## CART
##
## 321 samples
   10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 289, ...
## Resampling results across tuning parameters:
##
##
                 RMSE
                           Rsquared
                                      MAE
##
    0.04167149 2.209383 0.4065251 1.778797
    0.04483023 2.243618 0.3849728 1.805027
##
##
    0.04637919 2.275563 0.3684309 1.808814
    0.12140705 2.400455 0.2942663 1.936927
##
     0.26273578 2.692867 0.1898998 2.192774
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.04167149.
The first cp (0.04167149) produced the smallest RMSE. I can drill into the best
value of cp using a tuning grid. I'll try that now.
myGrid <- expand.grid(cp = seq(from = 0, to = 0.1, by = 0.01))
carseats_model_3 = train(
```

```
data = carseats_train,
  method = "rpart",  # for classification tree
  tuneGrid = myGrid,  # choose up to 5 combinations of tuning parameters (cp)
  metric = "RMSE",  # evaluate hyperparameter combinations with RMSE
  trControl = carseats_trControl
)
print(carseats_model_3)
```

```
## CART
##
## 321 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 288, 289, ...
## Resampling results across tuning parameters:
##
##
    ср
          RMSE
                    Rsquared
                               MAE
##
    0.00 2.131814 0.4578761 1.725960
##
    0.01 2.203111 0.4294647 1.790050
##
    0.02 2.240209 0.3948080 1.834786
##
    0.03 2.206168 0.4139717 1.762170
    0.04 2.274313 0.3686176 1.795154
    0.05 2.309746 0.3405228 1.830556
##
##
    0.06 2.246757 0.3703977 1.780266
    0.07 2.253725 0.3679986 1.794485
##
##
    0.08 2.253725 0.3679986 1.794485
##
    0.09 2.253725 0.3679986 1.794485
##
    0.10 2.253725 0.3679986 1.794485
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.
```

It looks like the best performing tree is the unpruned one.

```
plot(carseats_model_3)
```


Lets's see the final model.

rpart.plot(carseats_model_3\$finalModel)

What were the most important variables?

plot(varImp(carseats_model_3), main="Variable Importance with Simple Regression")

Variable Importance with Simple Regression

Evaluate the model by making predictions with the test data set. $\,$

```
carseats_model_3_preds <- predict(carseats_model_3, carseats_test, type = "raw")
data.frame(Actual = carseats_test$Sales, Predicted = carseats_model_3_preds) %>%
ggplot(aes(x = Actual, y = Predicted)) +
    geom_point() +
    geom_smooth() +
    geom_abline(slope = 1, intercept = 0) +
    scale_y_continuous(limits = c(0, 15)) +
    labs(title = "Simple Regression: Predicted vs. Actual")
```

```
## geom_smooth() using method = 'loess' and formula 'y ~ x'
```


Looks like the model over-estimates at the low end and undestimates at the

high end. Calculate the test data set RMSE.

```
carseats_model_3_pruned_rmse <- RMSE(
   pred = carseats_model_3_preds,
   obs = carseats_test$Sales
)
carseats_model_3_pruned_rmse</pre>
```

[1] 2.298331

Caret faired better in this model. Here is a summary the RMSE values of the two models.

```
## 1 Manual ANOVA 2.38806
## 2 Caret 2.29833
```

7.3. BAGGING 75

7.3 Bagging

Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the variance of a statistical learning method. The algorithm constructs B regression trees using B bootstrapped training sets, and averages the resulting predictions. These trees are grown deep, and are not pruned. Hence each individual tree has high variance, but low bias. Averaging these B trees reduces the variance. For classification trees, bagging takes the "majority vote" for the prediction. Use a value of B sufficiently large that the error has settled down.

To test the model accuracy, the out-of-bag observations are predicted from the models that do not use them. If B/3 of observations are in-bag, there are B/3 predictions per observation. These predictions are averaged for the test prediction. Again, for classification trees, a majority vote is taken.

The downside to bagging is that it improves accuracy at the expense of interpretability. There is no longer a single tree to interpret, so it is no longer clear which variables are more important than others.

Bagged trees are a special case of random forests, so see the next section for an example.

7.4 Random Forests

Random forests improve bagged trees by way of a small tweak that de-correlates the trees. As in bagging, the algorithm builds a number of decision trees on bootstrapped training samples. But when building these decision trees, each time a split in a tree is considered, a random sample of mtry predictors is chosen as split candidates from the full set of p predictors. A fresh sample of mtry predictors is taken at each split. Typically $mtry \sim \sqrt{b}$. Bagged trees are thus a special case of random forests where mtry = p.

7.4.0.1 Bagging Classification Example

Again using the OJ data set to predict Purchase, this time I'll use the bagging method by specifying method = "treebag". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret has no hyperparameters to tune with this model.

```
trControl = trainControl(
    method = "cv", # k-fold cross validation
    number = 10, # k=10 folds
    savePredictions = "final", # save predictions for the optimal t
        classProbs = TRUE, # return class probabilities in addition to
        summaryFunction = twoClassSummary # for binary response variabl
    )
    )
oj.bag
```

```
## Bagged CART
##
## 857 samples
## 17 predictor
   2 classes: 'CH', 'MM'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 771, 772, 771, 771, 771, 772, ...
## Resampling results:
##
##
    ROC
               Sens
                          Spec
## 0.8524038 0.8165094 0.7217469
```

```
#plot(oj.bag$)
oj.pred <- predict(oj.bag, oj_test, type = "raw")
plot(oj_test$Purchase, oj.pred,
    main = "Bagging Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")</pre>
```

Bagging Classification: Predicted vs. Actual


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
##
           CH 110 17
##
           MM 20 66
##
##
                  Accuracy : 0.8263
                    95% CI: (0.7686, 0.8746)
##
##
       No Information Rate : 0.6103
       P-Value [Acc > NIR] : 7.121e-12
##
##
##
                     Kappa : 0.6372
##
##
   Mcnemar's Test P-Value: 0.7423
##
##
               Sensitivity: 0.8462
               Specificity: 0.7952
##
##
            Pos Pred Value : 0.8661
            Neg Pred Value: 0.7674
##
                Prevalence : 0.6103
##
```

```
## Detection Rate : 0.5164
## Detection Prevalence : 0.5962
## Balanced Accuracy : 0.8207
##
## 'Positive' Class : CH
##

oj.bag.acc <- as.numeric(oj.conf$overall[1])
rm(oj.pred)
rm(oj.conf)
#plot(oj.bag$, oj.bag$finalModel$y)
plot(varImp(oj.bag), main="Variable Importance with Simple Classication")</pre>
```

Variable Importance with Simple Classication

7.4.0.2 Random Forest Classification Example

Now I'll try it with the random forest method by specifying method = "ranger". I'll stick with tuneLength = 5. Caret tunes three hyperparameters:

- mtry: number of randomly selected predictors. Default is sqrt(p).
- splitrule: splitting rule. For classification, options are "gini" (default) and "extratrees".
- min.node.size: minimal node size. Default is 1 for classification.

and min.node.size = 1.

```
oj.frst = train(Purchase ~ .,
              data = oj_train,
              method = "ranger",
                                  # for random forest
              tuneLength = 5, # choose up to 5 combinations of tuning parameters
              metric = "ROC", # evaluate hyperparamter combinations with ROC
              trControl = trainControl(
                method = "cv", \# k\text{-fold } cross \ validation
                number = 10, # 10 folds
                savePredictions = "final",
                                                 # save predictions for the optimal tuning parameters
                classProbs = TRUE, # return class probabilities in addition to predicted values
                summaryFunction = twoClassSummary # for binary response variable
                )
              )
oj.frst
## Random Forest
##
## 857 samples
## 17 predictor
    2 classes: 'CH', 'MM'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 771, 772, 770, 772, 772, ...
## Resampling results across tuning parameters:
##
##
                      ROC
    mtry splitrule
                                 Sens
                                            Spec
##
     2
                      0.8603930 0.8719158 0.6946524
          gini
          extratrees 0.8499806 0.8814586 0.6287879
##
     2
##
     5
                      0.8683505 0.8470247 0.7246881
          gini
##
     5
          extratrees 0.8642275 0.8584543 0.6886809
##
     9
                      gini
##
     9
          extratrees 0.8670702 0.8451379
                                            0.6858289
##
    13
          gini
                      0.8642114 0.8297896 0.7361854
##
     13
          extratrees 0.8680705 0.8298258
                                            0.7064171
##
     17
                      0.8642378 0.8145501
                                            0.7423351
          gini
          extratrees 0.8634162 0.8260160 0.7093583
##
     17
##
\#\# Tuning parameter 'min.node.size' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were mtry = 9, splitrule = gini
```

```
plot(oj.frst)
```



```
oj.pred <- predict(oj.frst, oj_test, type = "raw")
plot(oj_test$Purchase, oj.pred,
    main = "Random Forest Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")</pre>
```

Random Forest Classification: Predicted vs. Actual


```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction CH MM
##
          CH 109 16
##
          MM 21 67
##
##
                 Accuracy : 0.8263
                    95% CI: (0.7686, 0.8746)
##
       No Information Rate: 0.6103
##
##
       P-Value [Acc > NIR] : 7.121e-12
##
##
                     Kappa: 0.6387
##
##
   Mcnemar's Test P-Value: 0.5108
##
##
              Sensitivity: 0.8385
              Specificity: 0.8072
##
##
           Pos Pred Value : 0.8720
            Neg Pred Value: 0.7614
##
               Prevalence : 0.6103
##
```

3

4

```
## Detection Rate : 0.5117
## Detection Prevalence : 0.5869
## Balanced Accuracy : 0.8228
##
## 'Positive' Class : CH
##

oj.frst.acc <- as.numeric(oj.conf$overall[1])
rm(oj.pred)
rm(oj.conf)
#plot(oj.bag$, oj.bag$finalModel$y)
#plot(varImp(oj.frst), main="Variable Importance with Simple Classication")</pre>
```

The model algorithm explains "ROC was used to select the optimal model using the largest value. The final values used for the model were mtry = 9, splittule = extratrees and min.node.size = 1." You can see the results of tuning grid combinations in the associated plot of ROC AUC vs mtry grouped by splitting rule.

The bagging (accuracy = 0.80751) and random forest (accuracy = 0.81690) models faired pretty well, but the manual classification tree is still in first place. There's still gradient boosting to investigate!

7.4.0.3 Bagging Regression Example

Random Forest 0.82629

Bagging 0.82629

Again using the Carseats data set to predict Sales, this time I'll use the bagging method by specifying method = "treebag". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret has no hyperparameters to tune with this model.

```
method = "treebag", # for bagging
tuneLength = 5, # choose up to 5 combinations of tuning parameters
metric = "RMSE", # evaluate hyperparameter combinations with RMSE
trControl = trainControl(
    method = "cv", # k-fold cross validation
    number = 10, # 10 folds
    savePredictions = "final" # save predictions for the optimal tuning parame(
    )
)
carseats.bag
```

```
## Bagged CART
##
## 321 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 1.709371 0.6532837 1.374155
```

Bagging Regression: Predicted vs. Actual

[1] 1.932792

```
rm(carseats.pred)
plot(varImp(carseats.bag), main="Variable Importance with Regression Bagging")
```


7.4.0.4 Random Forest Regression Example

Now I'll try it with the random forest method by specifying method = "ranger". I'll stick with tuneLength = 5. Caret tunes three hyperparameters:

- mtry: number of randomly selected predictors
- splitrule: splitting rule. For regression, options are "variance" (default), "extratrees", and "maxstat".
- min.node.size: minimal node size

Random Forest

```
##
## 321 samples
## 10 predictor
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 288, ...
## Resampling results across tuning parameters:
##
##
    mtry splitrule RMSE
                               Rsquared
                                          MAE
##
    2
          variance 1.806943 0.6957452 1.446420
##
     2
          extratrees 1.905011 0.6466527
                                          1.539096
                     1.600763 0.7288625
##
     4
          variance
                                          1.266868
##
     4
          extratrees 1.702009 0.6862545 1.357981
##
        variance 1.541675 0.7336448 1.217061
##
     6
          extratrees 1.639248 0.6966549 1.302159
##
          variance 1.542806 0.7236085 1.221671
##
    8
          extratrees 1.601484 0.7053834 1.269484
##
   11
          variance 1.555271 0.7168108 1.230252
##
          extratrees 1.589152 0.7058982 1.255090
    11
##
## Tuning parameter 'min.node.size' was held constant at a value of 5
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were mtry = 6, splitrule = variance
## and min.node.size = 5.
```



```
carseats.pred <- predict(carseats.frst, carseats_test, type = "raw")
plot(carseats_test$Sales, carseats.pred,
    main = "Random Forest Regression: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
abline(0, 1)</pre>
```

Random Forest Regression: Predicted vs. Actual

[1] 1.758112

```
rm(carseats.pred)
#plot(varImp(carseats.frst), main="Variable Importance with Regression Random Forest")
```

The model algorithm explains "RMSE was used to select the optimal model using the smallest value. The final values used for the model were mtry=11, splittule = variance and min.node.size=5." You can see the results of tuning grid combinations in the associated plot of ROC AUC vs mtry grouped by splitting rule.

The bagging and random forest models faired very well - they took over the first and second place!

model RMSE

```
## 1 Random Forest 1.75811
## 2 Bagging 1.93279
## 3 ANOVA w.tuneGrid 2.29833
## 4 Manual ANOVA 2.38806
```

7.5 Gradient Boosting

Boosting is a method to improve (boost) the week learners sequentially and increase the model accuracy with a combined model. There are several boosting algorithms. One of the earliest was AdaBoost (adaptive boost). A more recent innovation is gradient boosting.

Adaboost creates a single split tree (decision stump) then weights the observations by how well the initial tree performed, putting more weight on the difficult observations. It then creates a second tree using the weights so that it focuses on the difficult observations. Observations that are difficult to classify receive increasing larger weights until the algorithm identifies a model that correctly classifies them. The final model returns predictions that are a majority vode. (I think Adaboost applies only to classification problems, not regressions).

Gradient boosting generalizes the AdaBoost method, so that the object is to minimize a loss function. In the case of classification problems, the loss function is the log-loss; for regression problems, the loss function is mean squared error. The regression trees are addative, so that the successive models can be added together to correct the residuals in the earlier models. Gradient boosting constructs its trees in a "greedy" manner, meaning it chooses the best splits based on purity scores like Gini or minimizing the loss. It is common to constrain the weak learners by setting maximum tree size parameters. Gradient boosting continues until it reaches maximum number of trees or an acceptible error level. This can result in overfitting, so it is common to employ regularization methods that penalize aspects of the model.

Tree Constraints. In general the more constrained the tree, the more trees need to be grown. Parameters to optimize include number of trees, tree depth, number of nodes, minimum observations per split, and minimum improvement to loss.

Learning Rate. Each successive tree can be weighted to slow down the learning rate. Decreasing the learning rate increases the number of required trees. Common growth rates are 0.1 to 0.3.

The gradient boosting algorithm fits a shallow tree T_1 to the data, $M_1 = T_1$. Then it fits a tree T_2 to the residuals and adds a weighted sum of the tree to the original tree as $M_2 = M_1 + \gamma T_2$. For regularized boosting, include a learning rate factor $\eta \in (0..1)$, $M_2 = M_1 + \eta \gamma T_2$. A larger η produces faster learning, but risks overfitting. The process repeats until the residuals are small enough, or until it reaches the maximum iterations. Because overfitting is a risk, use

cross-validation to select the appropriate number of trees (the number of trees producing the lowest RMSE).

7.5.0.1 Gradient Boosting Classification Example

Again using the OJ data set to predict Purchase, this time I'll use the gradient boosting method by specifying method = "gbm". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret tunes the following hyperparameters (see modelLookup("gbm")).

- n.trees: number of boosting iterations
- interaction.depth: maximum tree depth
- shrinkage: shrinkage
- n.minobsinnode: mimimum terminal node size

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2789	nan	0.1000	0.0273
##	2	1.2286	nan	0.1000	0.0245
##	3	1.1929	nan	0.1000	0.0175
##	4	1.1613	nan	0.1000	0.0148
##	5	1.1263	nan	0.1000	0.0146
##	6	1.0991	nan	0.1000	0.0105
##	7	1.0752	nan	0.1000	0.0102
##	8	1.0579	nan	0.1000	0.0087
##	9	1.0433	nan	0.1000	0.0047
##	10	1.0280	nan	0.1000	0.0082
##	20	0.9233	nan	0.1000	0.0026
##	40	0.8226	nan	0.1000	0.0010
##	60	0.7809	nan	0.1000	-0.0001
##	80	0.7595	nan	0.1000	-0.0002

##	100	0.7506	nan	0.1000	-0.0008
##	120	0.7407	nan	0.1000	-0.0005
##	140	0.7317	nan	0.1000	-0.0005
##	160	0.7277	nan	0.1000	-0.0009
##	180	0.7232	nan	0.1000	-0.0004
##	200	0.7181	nan	0.1000	-0.0007
##	220	0.7115	nan	0.1000	-0.0008
##	240	0.7096	nan	0.1000	-0.0010
##	250	0.7081	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2695	nan	0.1000	0.0319
##	2	1.2150	nan	0.1000	0.0260
##	3	1.1702	nan	0.1000	0.0225
##	4	1.1260	nan	0.1000	0.0186
##	5	1.0913	nan	0.1000	0.0147
##	6	1.0586	nan	0.1000	0.0160
##	7	1.0276	nan	0.1000	0.0146
##	8	1.0045	nan	0.1000	0.0109
##	9	0.9836	nan	0.1000	0.0099
##	10	0.9624	nan	0.1000	0.0068
##	20	0.8337	nan	0.1000	0.0027
##	40	0.7525	nan	0.1000	-0.0005
##	60	0.7240	nan	0.1000	-0.0005
##	80	0.7063	nan	0.1000	-0.0006
##	100	0.6879	nan	0.1000	-0.0011
##	120	0.6751	nan	0.1000	-0.0018
##	140	0.6605	nan	0.1000	-0.0012
##	160	0.6477	nan	0.1000	-0.0013
##	180	0.6359	nan	0.1000	-0.0010
##	200	0.6274	nan	0.1000	-0.0018
##	220	0.6166	nan	0.1000	-0.0005
##	240	0.6078	nan	0.1000	-0.0011
##	250	0.6014	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2548	nan	0.1000	0.0377
##	2	1.1905	nan	0.1000	0.0294
##	3	1.1343	nan	0.1000	0.0258
##	4	1.0935	nan	0.1000	0.0180
##	5	1.0529	nan	0.1000	0.0168
##	6	1.0172	nan	0.1000	0.0159
##	7	0.9824	nan	0.1000	0.0151
##	8	0.9534	nan	0.1000	0.0127
##	9	0.9277	nan	0.1000	0.0109
##	10	0.9066	nan	0.1000	0.0088

##	20	0.7870	nan	0.1000	0.0023
##	40	0.7150	nan	0.1000	-0.0008
##	60	0.6799	nan	0.1000	-0.0023
##	80	0.6520	nan	0.1000	-0.0012
##	100	0.6298	nan	0.1000	-0.0005
##	120	0.6117	nan	0.1000	-0.0024
##	140	0.5973	nan	0.1000	-0.0016
##	160	0.5849	nan	0.1000	-0.0023
##	180	0.5670	nan	0.1000	-0.0015
##	200	0.5548	nan	0.1000	-0.0006
##	220	0.5440	nan	0.1000	-0.0024
##	240	0.5290	nan	0.1000	-0.0020
##	250	0.5228	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2554	nan	0.1000	0.0399
##	2	1.1847	nan	0.1000	0.0346
##	3	1.1321	nan	0.1000	0.0199
##	4	1.0823	nan	0.1000	0.0224
##	5	1.0392	nan	0.1000	0.0208
##	6	1.0067	nan	0.1000	0.0145
##	7	0.9768	nan	0.1000	0.0139
##	8	0.9462	nan	0.1000	0.0123
##	9	0.9238	nan	0.1000	0.0095
##	10	0.8966	nan	0.1000	0.0090
##	20	0.7681	nan	0.1000	0.0007
##	40	0.6937	nan	0.1000	-0.0004
##	60	0.6552	nan	0.1000	-0.0017
##	80	0.6202	nan	0.1000	-0.0018
##	100	0.5887	nan	0.1000	-0.0027
##	120	0.5653	nan	0.1000	-0.0012
##	140	0.5434	nan	0.1000	-0.0017
##	160	0.5275	nan	0.1000	-0.0008
##	180 200	0.5068	nan	0.1000	-0.0012
##		0.4935	nan	0.1000	-0.0016 -0.0018
##	220 240	0.4801 0.4665	nan	0.1000	-0.0010
## ##	250	0.4603	nan	0.1000 0.1000	-0.0010
##	250	0.4003	nan	0.1000	-0.0012
##	Iter	TrainDeviance	ValidDeviance	StepSize	Tmnmarra
	1	1.2513		0.1000	Improve
##	2	1.1795	nan nan	0.1000	0.0375 0.0320
##	3	1.1264		0.1000	0.0320
##	4	1.0742	nan	0.1000	0.0234
##	5	1.0742	nan nan	0.1000	0.0225
##	6	0.9888		0.1000	0.0190
##	0	0.9000	nan	0.1000	0.0111

##	7	0.9547	nan	0.1000	0.0136
##	8	0.9303	nan	0.1000	0.0103
##	9	0.9008	nan	0.1000	0.0121
##	10	0.8803	nan	0.1000	0.0073
##	20	0.7563	nan	0.1000	0.0003
##	40	0.6715	nan	0.1000	-0.0012
##	60	0.6253	nan	0.1000	-0.0016
##	80	0.5868	nan	0.1000	-0.0021
##	100	0.5538	nan	0.1000	-0.0015
##	120	0.5285	nan	0.1000	-0.0034
##	140	0.5070	nan	0.1000	-0.0025
##	160	0.4872	nan	0.1000	-0.0012
##	180	0.4736	nan	0.1000	-0.0023
##	200	0.4566	nan	0.1000	-0.0015
##	220	0.4407	nan	0.1000	-0.0011
##	240	0.4262	nan	0.1000	-0.0013
##	250	0.4186	nan	0.1000	-0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2743	nan	0.1000	0.0307
##	2	1.2220	nan	0.1000	0.0240
##	3	1.1885	nan	0.1000	0.0165
##	4	1.1522	nan	0.1000	0.0177
##	5	1.1186	nan	0.1000	0.0136
##	6	1.0912	nan	0.1000	0.0111
##	7	1.0693	nan	0.1000	0.0106
##	8	1.0492	nan	0.1000	0.0089
##	9	1.0309	nan	0.1000	0.0093
##	10	1.0172	nan	0.1000	0.0069
##	20	0.9206	nan	0.1000	0.0030
##	40	0.8357	nan	0.1000	-0.0002
##	60	0.7936	nan	0.1000	-0.0000
##	80	0.7764	nan	0.1000	-0.0009
##	100	0.7682	nan	0.1000	-0.0004
##	120	0.7620	nan	0.1000	-0.0008
##	140	0.7582	nan	0.1000	-0.0011
##	160	0.7536	nan	0.1000	-0.0005
##	180	0.7501	nan	0.1000	-0.0006
##	200	0.7448	nan	0.1000	-0.0008
##	220	0.7409	nan	0.1000	-0.0006
##	240	0.7385	nan	0.1000	-0.0011
##	250	0.7368	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2697	nan	0.1000	0.0323
##	2	1.2121	nan	0.1000	0.0276

##	3	1.1636	nan	0.1000	0.0251
##	4	1.1220	nan	0.1000	0.0166
##	5	1.0826	nan	0.1000	0.0131
##	6	1.0537	nan	0.1000	0.0134
##	7	1.0269	nan	0.1000	0.0104
##	8	1.0061	nan	0.1000	0.0084
##	9	0.9858	nan	0.1000	0.0082
##	10	0.9678	nan	0.1000	0.0066
##	20	0.8429	nan	0.1000	0.0024
##	40	0.7685	nan	0.1000	-0.0010
##	60	0.7422	nan	0.1000	-0.0006
##	80	0.7228	nan	0.1000	-0.0009
##	100	0.7073	nan	0.1000	-0.0013
##	120	0.6937	nan	0.1000	-0.0024
##	140	0.6836	nan	0.1000	-0.0014
##	160	0.6703	nan	0.1000	-0.0022
##	180	0.6607	nan	0.1000	-0.0009
##	200	0.6529	nan	0.1000	-0.0011
##	220	0.6438	nan	0.1000	-0.0017
##	240	0.6370	nan	0.1000	-0.0015
##	250	0.6311	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2569	nan	0.1000	0.0361
##	2	1.1946	nan	0.1000	0.0301
##	3	1.1386	nan	0.1000	0.0266
##	4	1.0954	nan	0.1000	0.0205
##	5	1.0524	nan	0.1000	0.0204
##	6	1.0186	nan	0.1000	0.0149
##	7	0.9847	nan	0.1000	0.0126
##	8	0.9618	nan	0.1000	0.0086
##	9	0.9344	nan	0.1000	0.0114
##	10	0.9135	nan	0.1000	0.0095
##	20	0.8003	nan	0.1000	0.0027
##	40	0.7353	nan	0.1000	-0.0011
##	60	0.7042	nan	0.1000	-0.0027
##	80	0.6800	nan	0.1000	-0.0017
##	100	0.6602	nan	0.1000	-0.0008
##	120	0.6393	nan	0.1000	-0.0017
##	140	0.6231	nan	0.1000	-0.0016
##	160	0.6077	nan	0.1000	-0.0028
##	180	0.5977	nan	0.1000	-0.0012
##	200	0.5863	nan	0.1000	-0.0014
##	220	0.5749	nan	0.1000	-0.0013
##	040	0 5040		0 1000	
	240 250	0.5618 0.5577	nan	0.1000 0.1000	-0.0022 -0.0022

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2495	nan	0.1000	0.0419
##	2	1.1884	nan	0.1000	0.0265
##	3	1.1279	nan	0.1000	0.0248
##	4	1.0820	nan	0.1000	0.0208
##	5	1.0426	nan	0.1000	0.0166
##	6	1.0089	nan	0.1000	0.0146
##	7	0.9799	nan	0.1000	0.0126
##	8	0.9474	nan	0.1000	0.0140
##	9	0.9225	nan	0.1000	0.0079
##	10	0.9066	nan	0.1000	0.0048
##	20	0.7815	nan	0.1000	0.0014
##	40	0.7028	nan	0.1000	-0.0019
##	60	0.6661	nan	0.1000	-0.0011
##	80	0.6386	nan	0.1000	-0.0006
##	100	0.6075	nan	0.1000	-0.0005
##	120	0.5861	nan	0.1000	-0.0019
##	140	0.5674	nan	0.1000	-0.0020
##	160	0.5467	nan	0.1000	-0.0016
##	180	0.5318	nan	0.1000	-0.0020
##	200	0.5200	nan	0.1000	-0.0025
##	220	0.5050	nan	0.1000	-0.0009
##	240	0.4930	nan	0.1000	-0.0020
##	250	0.4883	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2558	nan	0.1000	0.0336
##	2	1.1856	nan	0.1000	0.0326
##	3	1.1172	nan	0.1000	0.0305
##	4	1.0713	nan	0.1000	0.0222
##	5	1.0313	nan	0.1000	0.0171
##	6	0.9965	nan	0.1000	0.0164
##	7	0.9613	nan	0.1000	0.0156
##	8	0.9354	nan	0.1000	0.0103
##	9	0.9089	nan	0.1000	0.0111
##	10	0.8859	nan	0.1000	0.0059
##	20	0.7690	nan	0.1000	0.0006
##	40	0.6889	nan	0.1000	-0.0004
##	60	0.6452	nan	0.1000	-0.0021
##	80	0.6127	nan	0.1000	-0.0021
##	100	0.5811	nan	0.1000	-0.0032
##	120	0.5557	nan	0.1000	-0.0011
##	140	0.5332	nan	0.1000	-0.0012
##	160	0.5118	nan	0.1000	-0.0014
##	180	0.4879	nan	0.1000	-0.0012

##	200	0.4737	nan	0.1000	-0.0020
##	220	0.4591	nan	0.1000	-0.0024
##	240	0.4460	nan	0.1000	-0.0030
##	250	0.4386	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2717	nan	0.1000	0.0320
##	2	1.2209	nan	0.1000	0.0250
##	3	1.1751	nan	0.1000	0.0208
##	4	1.1404	nan	0.1000	0.0149
##	5	1.1056	nan	0.1000	0.0119
##	6	1.0782	nan	0.1000	0.0125
##	7	1.0569	nan	0.1000	0.0081
##	8	1.0356	nan	0.1000	0.0098
##	9	1.0176	nan	0.1000	0.0080
##	10	1.0042	nan	0.1000	0.0066
##	20	0.9023	nan	0.1000	0.0021
##	40	0.8156	nan	0.1000	0.0006
##	60	0.7793	nan	0.1000	0.0004
##	80	0.7609	nan	0.1000	-0.0014
##	100	0.7514	nan	0.1000	-0.0006
##	120	0.7448	nan	0.1000	-0.0005
##	140	0.7406	nan	0.1000	-0.0008
##	160	0.7353	nan	0.1000	-0.0007
##	180	0.7329	nan	0.1000	-0.0008
##	200	0.7281	nan	0.1000	-0.0014
##	220	0.7239	nan	0.1000	-0.0008
##	240	0.7211	nan	0.1000	-0.0011
##	250	0.7203	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2647	nan	0.1000	0.0368
##	2	1.2060	nan	0.1000	0.0275
##	3	1.1558	nan	0.1000	0.0232
##	4	1.1207	nan	0.1000	0.0178
##	5	1.0787	nan	0.1000	0.0172
##	6	1.0478	nan	0.1000	0.0141
##	7	1.0178	nan	0.1000	0.0117
##	8	0.9963	nan	0.1000	0.0099
##	9	0.9749	nan	0.1000	0.0107
##	10	0.9514	nan	0.1000	0.0095
##	20	0.8341	nan	0.1000	0.0029
##	40	0.7601	nan	0.1000	-0.0015
##	60	0.7335	nan	0.1000	-0.0010
##	80	0.7131	nan	0.1000	-0.0011
##	100	0.7006	nan	0.1000	-0.0018

##	120	0.6886	nan	0.1000	-0.0008
##	140	0.6740	nan	0.1000	-0.0014
##	160	0.6628	nan	0.1000	-0.0017
##	180	0.6522	nan	0.1000	-0.0010
##	200	0.6423	nan	0.1000	-0.0005
##	220	0.6353	nan	0.1000	-0.0020
##	240	0.6251	nan	0.1000	-0.0017
##	250	0.6211	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2533	nan	0.1000	0.0369
##	2	1.1914	nan	0.1000	0.0304
##	3	1.1304	nan	0.1000	0.0280
##	4	1.0808	nan	0.1000	0.0214
##	5	1.0411	nan	0.1000	0.0177
##	6	1.0095	nan	0.1000	0.0131
##	7	0.9791	nan	0.1000	0.0118
##	8	0.9487	nan	0.1000	0.0146
##	9	0.9234	nan	0.1000	0.0114
##	10	0.9050	nan	0.1000	0.0081
##	20	0.7868	nan	0.1000	-0.0018
##	40	0.7190	nan	0.1000	-0.0002
##	60	0.6929	nan	0.1000	-0.0013
##	80	0.6706	nan	0.1000	-0.0012
##	100	0.6511	nan	0.1000	-0.0008
##	120	0.6313	nan	0.1000	-0.0028
##	140	0.6161	nan	0.1000	-0.0010
##	160	0.6016	nan	0.1000	-0.0019
##	180	0.5875	nan	0.1000	-0.0013
##	200	0.5754	nan	0.1000	-0.0021
##	220	0.5613	nan	0.1000	-0.0011
##	240	0.5456	nan	0.1000	-0.0014
##	250	0.5423	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2526	nan	0.1000	0.0406
##	2	1.1845	nan	0.1000	0.0346
##	3	1.1309	nan	0.1000	0.0246
##	4	1.0809	nan	0.1000	0.0250
##	5	1.0380	nan	0.1000	0.0205
##	6	1.0017	nan	0.1000	0.0164
##	7	0.9661	nan	0.1000	0.0146
##	8	0.9372	nan	0.1000	0.0130
##	9	0.9115	nan	0.1000	0.0105
##	10	0.8921	nan	0.1000	0.0084
##	20	0.7698	nan	0.1000	0.0014

##	40	0.6902	nan	0.1000	-0.0016
##	60	0.6501	nan	0.1000	-0.0019
##	80	0.6200	nan	0.1000	-0.0006
##	100	0.5995	nan	0.1000	-0.0026
##	120	0.5766	nan	0.1000	-0.0019
##	140	0.5576	nan	0.1000	-0.0020
##	160	0.5428	nan	0.1000	-0.0027
##	180	0.5276	nan	0.1000	-0.0026
##	200	0.5091	nan	0.1000	-0.0011
##	220	0.4954	nan	0.1000	-0.0014
##	240	0.4801	nan	0.1000	-0.0028
##	250	0.4748	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2578	nan	0.1000	0.0379
##	2	1.1876	nan	0.1000	0.0342
##	3	1.1214	nan	0.1000	0.0297
##	4	1.0650	nan	0.1000	0.0254
##	5	1.0182	nan	0.1000	0.0188
##	6	0.9812	nan	0.1000	0.0172
##	7	0.9484	nan	0.1000	0.0116
##	8	0.9182	nan	0.1000	0.0116
##	9	0.8929	nan	0.1000	0.0068
##	10	0.8704	nan	0.1000	0.0085
##	20	0.7522	nan	0.1000	0.0002
##	40	0.6778	nan	0.1000	-0.0019
##	60	0.6318	nan	0.1000	-0.0015
##	80	0.5982	nan	0.1000	-0.0011
##	100	0.5669	nan	0.1000	-0.0032
##	120	0.5451	nan	0.1000	-0.0012
##	140	0.5224	nan	0.1000	-0.0002
##	160	0.5005	nan	0.1000	-0.0027
##	180	0.4834	nan	0.1000	-0.0015
##	200	0.4693	nan	0.1000	-0.0009
##	220	0.4530	nan	0.1000	-0.0016
##	240	0.4419	nan	0.1000	-0.0035
##	250	0.4324	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2761	nan	0.1000	0.0283
##	2	1.2243	nan	0.1000	0.0231
##	3	1.1816	nan	0.1000	0.0192
##	4	1.1477	nan	0.1000	0.0158
##	5	1.1174	nan	0.1000	0.0122
##	6	1.0930	nan	0.1000	0.0116
##	7	1.0704	nan	0.1000	0.0102

##	8	1.0499	nan	0.1000	0.0083
##	9	1.0340	nan	0.1000	0.0078
##	10	1.0167	nan	0.1000	0.0082
##	20	0.9152	nan	0.1000	0.0021
##	40	0.8226	nan	0.1000	0.0007
##	60	0.7895	nan	0.1000	0.0000
##	80	0.7690	nan	0.1000	-0.0008
##	100	0.7612	nan	0.1000	-0.0010
##	120	0.7541	nan	0.1000	-0.0004
##	140	0.7491	nan	0.1000	-0.0012
##	160	0.7443	nan	0.1000	-0.0006
##	180	0.7405	nan	0.1000	-0.0009
##	200	0.7369	nan	0.1000	-0.0009
##	220	0.7329	nan	0.1000	-0.0007
##	240	0.7287	nan	0.1000	-0.0014
##	250	0.7268	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2642	nan	0.1000	0.0359
##	2	1.2066	nan	0.1000	0.0279
##	3	1.1624	nan	0.1000	0.0237
##	4	1.1213	nan	0.1000	0.0202
##	5	1.0853	nan	0.1000	0.0162
##	6	1.0560	nan	0.1000	0.0116
##	7	1.0275	nan	0.1000	0.0125
##	8	1.0040	nan	0.1000	0.0109
##	9	0.9823	nan	0.1000	0.0077
##	10	0.9612	nan	0.1000	0.0105
##	20	0.8409	nan	0.1000	0.0026
##	40	0.7578	nan	0.1000	-0.0007
##	60	0.7294	nan	0.1000	-0.0007
##	80	0.7095	nan	0.1000	-0.0026
##	100	0.6965	nan	0.1000	-0.0012
##	120	0.6857	nan	0.1000	-0.0022
##	140	0.6751	nan	0.1000	-0.0004
##	160	0.6650	nan	0.1000	-0.0018
##	180	0.6581	nan	0.1000	-0.0017
##	200	0.6520	nan	0.1000	-0.0009
##	220	0.6436	nan	0.1000	-0.0011
##	240	0.6351	nan	0.1000	-0.0009
##	250	0.6312	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2577	nan	0.1000	0.0367
##	2	1.1908	nan	0.1000	0.0288
##	3	1.1314	nan	0.1000	0.0257

##	4	1.0832	nan	0.1000	0.0231
##	5	1.0473	nan	0.1000	0.0147
##	6	1.0104	nan	0.1000	0.0174
##	7	0.9743	nan	0.1000	0.0139
##	8	0.9460	nan	0.1000	0.0113
##	9	0.9236	nan	0.1000	0.0105
##	10	0.9026	nan	0.1000	0.0077
##	20	0.7942	nan	0.1000	0.0009
##	40	0.7292	nan	0.1000	-0.0018
##	60	0.6933	nan	0.1000	-0.0013
##	80	0.6650	nan	0.1000	-0.0008
##	100	0.6458	nan	0.1000	-0.0020
##	120	0.6252	nan	0.1000	-0.0018
##	140	0.6106	nan	0.1000	-0.0010
##	160	0.5953	nan	0.1000	-0.0009
##	180	0.5810	nan	0.1000	-0.0014
##	200	0.5683	nan	0.1000	-0.0016
##	220	0.5544	nan	0.1000	-0.0009
##	240	0.5425	nan	0.1000	-0.0010
##	250	0.5367	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2542	nan	0.1000	0.0373
##	2	1.1874	nan	0.1000	0.0310
##	3	1.1277	nan	0.1000	0.0279
ш.ш	4	1.0765	nan	0.1000	0.0231
##			nan		
##	5	1.0393	nan	0.1000	0.0179
	5 6	1.0393 1.0012		0.1000 0.1000	0.0179 0.0141
##	5 6 7	1.0393 1.0012 0.9658	nan	0.1000 0.1000 0.1000	0.0179 0.0141 0.0139
## ## ## ##	5 6 7 8	1.0393 1.0012 0.9658 0.9421	nan nan	0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101
## ## ## ##	5 6 7 8 9	1.0393 1.0012 0.9658 0.9421 0.9187	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088
## ## ## ## ##	5 6 7 8 9 10	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095
## ## ## ## ##	5 6 7 8 9 10 20	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019
## ## ## ## ## ##	5 6 7 8 9 10 20 40	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019
## ## ## ## ## ##	5 6 7 8 9 10 20 40 60	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017
## ## ## ## ## ## ##	5 6 7 8 9 10 20 40 60 80	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010
## ## ## ## ## ## ##	5 6 7 8 9 10 20 40 60 80 100	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015
## ###################################	5 6 7 8 9 10 20 40 60 80 100 120	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019
## ## ## ## ## ## ##	5 6 7 8 9 10 20 40 60 80 100 120 140	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019
## # # # # # # # # # # # # # # # # # #	5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019 -0.0018
## ## ## ## ## ## ## ## ##	5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019 -0.0016 -0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0015 -0.0028 -0.0019 -0.0016 -0.0016
######################################	5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0015 -0.0028 -0.0019 -0.0018 -0.0016 -0.0016 -0.0016
######################################	5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212 0.5055 0.4926	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0015 -0.0028 -0.0019 -0.0016 -0.0016 -0.0016 -0.0016
######################################	5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.0393 1.0012 0.9658 0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0179 0.0141 0.0139 0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0015 -0.0028 -0.0019 -0.0018 -0.0016 -0.0016 -0.0016

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2523	nan	0.1000	0.0397
##	2	1.1844	nan	0.1000	0.0301
##	3	1.1269	nan	0.1000	0.0263
##	4	1.0773	nan	0.1000	0.0216
##	5	1.0310	nan	0.1000	0.0211
##	6	0.9902	nan	0.1000	0.0176
##	7	0.9582	nan	0.1000	0.0119
##	8	0.9338	nan	0.1000	0.0106
##	9	0.9054	nan	0.1000	0.0120
##	10	0.8869	nan	0.1000	0.0083
##	20	0.7620	nan	0.1000	-0.0001
##	40	0.6734	nan	0.1000	-0.0010
##	60	0.6333	nan	0.1000	-0.0004
##	80	0.5982	nan	0.1000	-0.0023
##	100	0.5685	nan	0.1000	-0.0013
##	120	0.5436	nan	0.1000	-0.0024
##	140	0.5196	nan	0.1000	-0.0012
##	160	0.5010	nan	0.1000	-0.0031
##	180	0.4832	nan	0.1000	-0.0032
##	200	0.4677	nan	0.1000	-0.0014
##	220	0.4504	nan	0.1000	-0.0016
##	240	0.4333	nan	0.1000	-0.0013
##	250	0.4273	nan	0.1000	-0.0022
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2726	nan	0.1000	0.0321
##	2	1.2186	nan	0.1000	0.0259
##	3	1.1770	nan	0.1000	0.0190
##	4 5	1.1350	nan	0.1000	0.0186
##	6	1.1017 1.0810	nan	0.1000 0.1000	0.0147 0.0096
##	7	1.0570	nan	0.1000	0.0096
##	8	1.0375	nan nan	0.1000	0.0098
##	9	1.0188	nan	0.1000	0.0030
##	10	1.0020	nan	0.1000	0.0072
##	20	0.9034	nan	0.1000	0.0072
##	40	0.8070	nan	0.1000	-0.0001
##	60	0.7671	nan	0.1000	-0.0003
##	80	0.7500	nan	0.1000	-0.0007
##	100	0.7415	nan	0.1000	-0.0008
##	120	0.7349	nan	0.1000	-0.0008
##	140	0.7282	nan	0.1000	-0.0006
##	160	0.7222	nan	0.1000	-0.0006
##	180	0.7190	nan	0.1000	-0.0003
	200	0.7160	nan	0.1000	-0.0013
##					

##	220	0.7128	nan	0.1000	-0.0008
##	240	0.7092	nan	0.1000	-0.0012
##	250	0.7066	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2597	nan	0.1000	0.0362
##	2	1.2019	nan	0.1000	0.0279
##	3	1.1504	nan	0.1000	0.0230
##	4	1.1084	nan	0.1000	0.0168
##	5	1.0702	nan	0.1000	0.0184
##	6	1.0378	nan	0.1000	0.0136
##	7	1.0090	nan	0.1000	0.0131
##	8	0.9848	nan	0.1000	0.0115
##	9	0.9632	nan	0.1000	0.0078
##	10	0.9410	nan	0.1000	0.0094
##	20	0.8215	nan	0.1000	0.0037
##	40	0.7478	nan	0.1000	-0.0001
##	60	0.7184	nan	0.1000	-0.0008
##	80	0.6985	nan	0.1000	-0.0007
##	100	0.6799	nan	0.1000	-0.0013
##	120	0.6660	nan	0.1000	0.0002
##	140	0.6534	nan	0.1000	-0.0009
##	160	0.6423	nan	0.1000	-0.0016
##	180	0.6325	nan	0.1000	-0.0016
##	200	0.6226	nan	0.1000	-0.0011
##	220	0.6139	nan	0.1000	-0.0010
##	240	0.6043	nan	0.1000	-0.0017
##	250	0.6016	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2549	nan	0.1000	0.0413
##	2	1.1843	nan	0.1000	0.0345
##	3	1.1274	nan	0.1000	0.0245
##	4	1.0809	nan	0.1000	0.0213
##	5	1.0418	nan	0.1000	0.0178
##	6	1.0056	nan	0.1000	0.0128
##	7	0.9797	nan	0.1000	0.0122
##	8	0.9562	nan	0.1000	0.0083
##	9	0.9288	nan	0.1000	0.0116
##	10	0.9070	nan	0.1000	0.0088
##	20	0.7819	nan	0.1000	0.0013
##	40	0.7119	nan	0.1000	-0.0008
##	60	0.6706	nan	0.1000	-0.0013
##	80	0.6482	nan	0.1000	-0.0018
##	100	0.6271	nan	0.1000	-0.0027
##	120	0.6065	nan	0.1000	-0.0013

##	140	0.5901	nan	0.1000	-0.0021
##	160	0.5709	nan	0.1000	-0.0009
##	180	0.5563	nan	0.1000	-0.0005
##	200	0.5427	nan	0.1000	-0.0025
##	220	0.5333	nan	0.1000	-0.0012
##	240	0.5239	nan	0.1000	-0.0015
##	250	0.5186	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2503	nan	0.1000	0.0405
##	2	1.1806	nan	0.1000	0.0343
##	3	1.1211	nan	0.1000	0.0276
##	4	1.0676	nan	0.1000	0.0242
##	5	1.0226	nan	0.1000	0.0193
##	6	0.9842	nan	0.1000	0.0164
##	7	0.9549	nan	0.1000	0.0120
##	8	0.9274	nan	0.1000	0.0125
##	9	0.8994	nan	0.1000	0.0100
##	10	0.8810	nan	0.1000	0.0068
##	20	0.7641	nan	0.1000	0.0015
##	40	0.6902	nan	0.1000	-0.0013
##	60	0.6497	nan	0.1000	-0.0026
##	80	0.6225	nan	0.1000	-0.0020
##	100	0.5898	nan	0.1000	-0.0009
##	120	0.5662	nan	0.1000	-0.0014
##	140	0.5460	nan	0.1000	-0.0015
##	160	0.5293	nan	0.1000	-0.0029
##	180	0.5142	nan	0.1000	-0.0018
##	200	0.5021	nan	0.1000	-0.0021
##	220	0.4850	nan	0.1000	-0.0025
##	240	0.4738	nan	0.1000	-0.0010
##	250	0.4697	nan	0.1000	-0.0025
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2510	nan	0.1000	0.0400
##	2	1.1788	nan	0.1000	0.0356
##	3	1.1185	nan	0.1000	0.0284
##	4	1.0652	nan	0.1000	0.0255
##	5	1.0228	nan	0.1000	0.0209
##	6	0.9819	nan	0.1000	0.0175
##	7	0.9467	nan	0.1000	0.0146
##	8	0.9149	nan	0.1000	0.0133
##	9	0.8872	nan	0.1000	0.0105
##	10	0.8681	nan	0.1000	0.0067
##	20	0.7435	nan	0.1000	0.0013
##	40	0.6620	nan	0.1000	-0.0012

##	60	0.6096	nan	0.1000	-0.0011
##	80	0.5775	nan	0.1000	-0.0017
##	100	0.5491	nan	0.1000	-0.0016
##	120	0.5248	nan	0.1000	-0.0030
##	140	0.5082	nan	0.1000	-0.0016
##	160	0.4873	nan	0.1000	-0.0022
##	180	0.4700	nan	0.1000	-0.0020
##	200	0.4543	nan	0.1000	-0.0013
##	220	0.4388	nan	0.1000	-0.0031
##	240	0.4269	nan	0.1000	-0.0013
##	250	0.4237	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2737	nan	0.1000	0.0306
##	2	1.2188	nan	0.1000	0.0241
##	3	1.1752	nan	0.1000	0.0184
##	4	1.1384	nan	0.1000	0.0168
##	5	1.1052	nan	0.1000	0.0134
##	6	1.0800	nan	0.1000	0.0103
##	7	1.0601	nan	0.1000	0.0106
##	8	1.0416	nan	0.1000	0.0097
##	9	1.0234	nan	0.1000	0.0070
##	10	1.0079	nan	0.1000	0.0055
##	20	0.9090	nan	0.1000	0.0034
##	40	0.8145	nan	0.1000	0.0004
##	60	0.7708	nan	0.1000	0.0003
##	80	0.7528	nan	0.1000	-0.0009
##	100	0.7433	nan	0.1000	-0.0010
##	120	0.7366	nan	0.1000	-0.0002
##	140	0.7317	nan	0.1000	-0.0007
##	160	0.7262	nan	0.1000	-0.0009
##	180	0.7217	nan	0.1000	-0.0005
##	200	0.7172	nan	0.1000	-0.0013
##	220	0.7141	nan	0.1000	-0.0012
##	240	0.7102	nan	0.1000	-0.0002
##	250	0.7086	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2660	nan	0.1000	0.0361
##	2	1.2076	nan	0.1000	0.0275
##	3	1.1575	nan	0.1000	0.0247
##	4	1.1197	nan	0.1000	0.0178
##	5	1.0845	nan	0.1000	0.0173
##	6	1.0529	nan	0.1000	0.0131
##	7	1.0259	nan	0.1000	0.0123
##	8	0.9969	nan	0.1000	0.0117

##	9	0.9748	nan	0.1000	0.0082
##	10	0.9535	nan	0.1000	0.0076
##	20	0.8305	nan	0.1000	0.0033
##	40	0.7475	nan	0.1000	-0.0002
##	60	0.7207	nan	0.1000	-0.0018
##	80	0.7037	nan	0.1000	-0.0017
##	100	0.6882	nan	0.1000	-0.0014
##	120	0.6802	nan	0.1000	-0.0010
##	140	0.6709	nan	0.1000	-0.0015
##	160	0.6613	nan	0.1000	-0.0014
##	180	0.6523	nan	0.1000	-0.0004
##	200	0.6449	nan	0.1000	-0.0011
##	220	0.6367	nan	0.1000	-0.0014
##	240	0.6286	nan	0.1000	-0.0013
##	250	0.6233	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2551	nan	0.1000	0.0346
##	2	1.1931	nan	0.1000	0.0315
##	3	1.1316	nan	0.1000	0.0272
##	4	1.0872	nan	0.1000	0.0204
##	5	1.0437	nan	0.1000	0.0187
##	6	1.0098	nan	0.1000	0.0139
##	7	0.9818	nan	0.1000	0.0107
##	8	0.9579	nan	0.1000	0.0111
##	9	0.9321	nan	0.1000	0.0129
##	10	0.9121	nan	0.1000	0.0066
##	20	0.7838	nan	0.1000	0.0022
##	40	0.7153	nan	0.1000	-0.0001
##	60	0.6832	nan	0.1000	-0.0011
##	80	0.6612	nan	0.1000	-0.0019
##	100	0.6415	nan	0.1000	-0.0020
##	120	0.6252	nan	0.1000	-0.0020
##	140	0.6084	nan	0.1000	-0.0017
##	160	0.5936	nan	0.1000	-0.0009
##	180	0.5834	nan	0.1000	-0.0021
##	200	0.5669	nan	0.1000	-0.0009
##	220	0.5568	nan	0.1000	-0.0011
##	240	0.5467	nan	0.1000	-0.0027
##	250	0.5422	nan	0.1000	-0.0015
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2574	nan	0.1000	0.0391
##	2	1.1858	nan	0.1000	0.0330
##	3	1.1308	nan	0.1000	0.0237
##	4	1.0768	nan	0.1000	0.0205

##	5	1.0311	nan	0.1000	0.0203
##	6	0.9934	nan	0.1000	0.0175
##	7	0.9643	nan	0.1000	0.0121
##	8	0.9342	nan	0.1000	0.0118
##	9	0.9061	nan	0.1000	0.0104
##	10	0.8869	nan	0.1000	0.0078
##	20	0.7608	nan	0.1000	0.0000
##	40	0.6861	nan	0.1000	-0.0012
##	60	0.6452	nan	0.1000	-0.0007
##	80	0.6147	nan	0.1000	-0.0020
##	100	0.5919	nan	0.1000	-0.0015
##	120	0.5685	nan	0.1000	-0.0015
##	140	0.5516	nan	0.1000	-0.0007
##	160	0.5322	nan	0.1000	-0.0024
##	180	0.5188	nan	0.1000	-0.0013
##	200	0.5045	nan	0.1000	-0.0011
##	220	0.4913	nan	0.1000	-0.0012
##	240	0.4791	nan	0.1000	-0.0021
##	250	0.4735	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2526	nan	0.1000	0.0413
##	2	1.1759	nan	0.1000	0.0342
##	3	1.1130	nan	0.1000	0.0286
##	4	1.0692	nan	0.1000	0.0198
##	5	1.0244	nan	0.1000	0.0208
##	6	0.9858	nan	0.1000	0.0160
##	7	0.9512	nan	0.1000	0.0156
##	8	0.9230	nan	0.1000	0.0086
##	9	0.8945	nan	0.1000	0.0128
##	10	0.8741	nan	0.1000	0.0071
##	20	0.7489	nan	0.1000	0.0012
##	40	0.6645	nan	0.1000	-0.0017
##	60	0.6174	nan	0.1000	-0.0018
##	80	0.5875	nan	0.1000	-0.0022
##	100	0.5620	nan	0.1000	-0.0009
##	120	0.5374	nan	0.1000	-0.0026
##	140	0.5202	nan	0.1000	-0.0017
##	160	0.5003	nan	0.1000	-0.0014
##	180	0.4829	nan	0.1000	-0.0021
##	200	0.4660	nan	0.1000	-0.0024
##	220	0.4560	nan	0.1000	-0.0024
##	240	0.4425	nan	0.1000	-0.0020
##	250	0.4349	nan	0.1000	-0.0021
##	T+	Too in Dani	V-1:4D:	C+ C -	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve

##	1	1.2722	nan	0.1000	0.0322
##	2	1.2256	nan	0.1000	0.0203
##	3	1.1806	nan	0.1000	0.0216
##	4	1.1444	nan	0.1000	0.0179
##	5	1.1141	nan	0.1000	0.0147
##	6	1.0890	nan	0.1000	0.0118
##	7	1.0707	nan	0.1000	0.0085
##	8	1.0493	nan	0.1000	0.0108
##	9	1.0332	nan	0.1000	0.0069
##	10	1.0157	nan	0.1000	0.0086
##	20	0.9131	nan	0.1000	0.0039
##	40	0.8200	nan	0.1000	0.0010
##	60	0.7820	nan	0.1000	0.0004
##	80	0.7654	nan	0.1000	-0.0014
##	100	0.7561	nan	0.1000	-0.0009
##	120	0.7476	nan	0.1000	-0.0011
##	140	0.7412	nan	0.1000	-0.0003
##	160	0.7365	nan	0.1000	-0.0004
##	180	0.7340	nan	0.1000	-0.0005
##	200	0.7299	nan	0.1000	-0.0007
##	220	0.7266	nan	0.1000	-0.0008
##	240	0.7237	nan	0.1000	-0.0008
##	0.0	0.7004			
##	250	0.7234	nan	0.1000	-0.0005
##	250		nan		-0.0005
	250 Iter	0.7234 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0005
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 1.2651	ValidDeviance nan	StepSize 0.1000	Improve 0.0334
## ## ## ##	Iter 1 2 3 4	TrainDeviance 1.2651 1.2070	ValidDeviance nan nan	StepSize 0.1000 0.1000	Improve 0.0334 0.0269
## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.2651 1.2070 1.1557	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231
## ## ## ## ##	Iter	TrainDeviance 1.2651 1.2070 1.1557 1.1153	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155
## ## ## ## ## ##	Iter	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130
## ## ## ## ## ## ##	Iter	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573 0.7333	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011
######################################	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011
######################################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011
###################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008 -0.0016
#####################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 -0.0001 -0.0011 -0.0006 -0.0011 -0.0008 -0.0016 -0.0012
########################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573 0.7333 0.7105 0.6966 0.6815 0.6641 0.6482	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008 -0.0016

##	240	0.6160	nan	0.1000	-0.0011
##	250	0.6111	nan	0.1000	-0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2637	nan	0.1000	0.0352
##	2	1.1913	nan	0.1000	0.0330
##	3	1.1333	nan	0.1000	0.0254
##	4	1.0844	nan	0.1000	0.0231
##	5	1.0391	nan	0.1000	0.0195
##	6	1.0021	nan	0.1000	0.0152
##	7	0.9729	nan	0.1000	0.0118
##	8	0.9513	nan	0.1000	0.0086
##	9	0.9272	nan	0.1000	0.0096
##	10	0.9064	nan	0.1000	0.0085
##	20	0.7931	nan	0.1000	0.0041
##	40	0.7237	nan	0.1000	-0.0004
##	60	0.6981	nan	0.1000	-0.0012
##	80	0.6718	nan	0.1000	-0.0026
##	100	0.6529	nan	0.1000	-0.0016
##	120	0.6396	nan	0.1000	-0.0010
##	140	0.6233	nan	0.1000	-0.0013
##	160	0.6101	nan	0.1000	-0.0011
##	180	0.5932	nan	0.1000	-0.0015
##	200	0.5794	nan	0.1000	-0.0010
##	220	0.5645	nan	0.1000	-0.0011
##	240	0.5498	nan	0.1000	-0.0018
##	250	0.5448	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2583	nan	0.1000	0.0380
##	2	1.1835	nan	0.1000	0.0345
##	3	1.1231	nan	0.1000	0.0268
##	4	1.0730	nan	0.1000	0.0218
##	5	1.0329	nan	0.1000	0.0173
##	6	0.9952	nan	0.1000	0.0161
##	7	0.9630	nan	0.1000	0.0130
##	8	0.9348	nan	0.1000	0.0126
##	9	0.9109	nan	0.1000	0.0108
##	10	0.8940	nan	0.1000	0.0058
##	20	0.7714	nan	0.1000	0.0009
##	40	0.6915	nan	0.1000	-0.0022
##	60	0.6527	nan	0.1000	-0.0006
##	80	0.6232	nan	0.1000	-0.0011
##	100	0.6008	nan	0.1000	-0.0018
##	120	0.5783	nan	0.1000	-0.0017
##	140	0.5562	nan	0.1000	-0.0023

##	160	0.5375	nan	0.1000	-0.0014
##	180	0.5165	nan	0.1000	-0.0019
##	200	0.5043	nan	0.1000	-0.0021
##	220	0.4907	nan	0.1000	-0.0022
##	240	0.4783	nan	0.1000	-0.0019
##	250	0.4728	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2435	nan	0.1000	0.0421
##	2	1.1748	nan	0.1000	0.0315
##	3	1.1147	nan	0.1000	0.0294
##	4	1.0672	nan	0.1000	0.0236
##	5	1.0265	nan	0.1000	0.0188
##	6	0.9873	nan	0.1000	0.0165
##	7	0.9555	nan	0.1000	0.0151
##	8	0.9289	nan	0.1000	0.0100
##	9	0.9030	nan	0.1000	0.0085
##	10	0.8836	nan	0.1000	0.0077
##	20	0.7615	nan	0.1000	0.0016
##	40	0.6861	nan	0.1000	-0.0016
##	60	0.6393	nan	0.1000	-0.0017
##	80	0.6022	nan	0.1000	-0.0021
##	100	0.5787	nan	0.1000	-0.0023
##	120	0.5532	nan	0.1000	-0.0024
##	140	0.5303	nan	0.1000	-0.0017
##	160	0.5079	nan	0.1000	-0.0015
##	180	0.4894	nan	0.1000	-0.0017
##	200	0.4716	nan	0.1000	-0.0019
##	220	0.4537	nan	0.1000	-0.0017
##	240	0.4389	nan	0.1000	-0.0007
##	250	0.4327	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2786	nan	0.1000	0.0297
##	2	1.2244	nan	0.1000	0.0249
##	3	1.1873	nan	0.1000	0.0203
##	4	1.1524	nan	0.1000	0.0140
##	5	1.1216	nan	0.1000	0.0141
##	6	1.0961	nan	0.1000	0.0125
##	7	1.0730	nan	0.1000	0.0103
##	8	1.0536	nan	0.1000	0.0086
##	9	1.0376	nan	0.1000	0.0067
##	10	1.0208	nan	0.1000	0.0083
##	20	0.9191	nan	0.1000	0.0025
##	40	0.8304	nan	0.1000	0.0006
##	60	0.7967	nan	0.1000	-0.0009

##	80	0.7809	nan	0.1000	-0.0007
##	100	0.7724	nan	0.1000	-0.0012
##	120	0.7661	nan	0.1000	-0.0004
##	140	0.7613	nan	0.1000	-0.0012
##	160	0.7558	nan	0.1000	-0.0004
##	180	0.7511	nan	0.1000	-0.0004
##	200	0.7460	nan	0.1000	-0.0006
##	220	0.7421	nan	0.1000	-0.0013
##	240	0.7388	nan	0.1000	-0.0007
##	250	0.7365	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2662	nan	0.1000	0.0324
##	2	1.2096	nan	0.1000	0.0223
##	3	1.1565	nan	0.1000	0.0234
##	4	1.1199	nan	0.1000	0.0184
##	5	1.0844	nan	0.1000	0.0144
##	6	1.0520	nan	0.1000	0.0153
##	7	1.0254	nan	0.1000	0.0130
##	8	1.0023	nan	0.1000	0.0091
##	9	0.9789	nan	0.1000	0.0100
##	10	0.9608	nan	0.1000	0.0074
##	20	0.8450	nan	0.1000	0.0015
##	40	0.7728	nan	0.1000	-0.0010
##	60	0.7478	nan	0.1000	-0.0011
##	80	0.7312	nan	0.1000	-0.0005
##	100	0.7193	nan	0.1000	-0.0008
##	120	0.7053	nan	0.1000	-0.0015
##	140	0.6952	nan	0.1000	-0.0006
##	160	0.6855	nan	0.1000	-0.0007
##	180	0.6758	nan	0.1000	-0.0013
##	200	0.6663	nan	0.1000	-0.0011
##	220	0.6599	nan	0.1000	-0.0008
##	240	0.6511	nan	0.1000	-0.0015
##	250	0.6471	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2605	nan	0.1000	0.0359
##	2	1.1990	nan	0.1000	0.0295
##	3	1.1393	nan	0.1000	0.0250
##	4	1.0933	nan	0.1000	0.0198
##	5	1.0564	nan	0.1000	0.0142
##	6	1.0189	nan	0.1000	0.0153
##	7	0.9922	nan	0.1000	0.0114
##	8	0.9677	nan	0.1000	0.0095
##	9	0.9451	nan	0.1000	0.0105

##	10	0.9247	nan	0.1000	0.0070
##	20	0.8103	nan	0.1000	0.0028
##	40	0.7386	nan	0.1000	-0.0008
##	60	0.7043	nan	0.1000	-0.0029
##	80	0.6768	nan	0.1000	-0.0006
##	100	0.6509	nan	0.1000	-0.0012
##	120	0.6340	nan	0.1000	-0.0015
##	140	0.6159	nan	0.1000	-0.0020
##	160	0.6042	nan	0.1000	-0.0015
##	180	0.5892	nan	0.1000	-0.0009
##	200	0.5800	nan	0.1000	-0.0015
##	220	0.5693	nan	0.1000	-0.0015
##	240	0.5583	nan	0.1000	-0.0014
##	250	0.5545	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2535	nan	0.1000	0.0373
##	2	1.1854	nan	0.1000	0.0315
##	3	1.1321	nan	0.1000	0.0243
##	4	1.0809	nan	0.1000	0.0232
##	5	1.0425	nan	0.1000	0.0193
##	6	1.0039	nan	0.1000	0.0155
##	7	0.9741	nan	0.1000	0.0124
##	8	0.9470	nan	0.1000	0.0120
##	9	0.9198	nan	0.1000	0.0119
##	10	0.9026	nan	0.1000	0.0068
##	20	0.7913	nan	0.1000	0.0012
##	40	0.7186	nan	0.1000	-0.0003
##	60	0.6837	nan	0.1000	-0.0016
##	80	0.6483	nan	0.1000	-0.0009
##	100	0.6236	nan	0.1000	-0.0014
##	120	0.5982	nan	0.1000	-0.0024
##	140	0.5790	nan	0.1000	-0.0015
##	160	0.5596	nan	0.1000	-0.0035
##	180	0.5411	nan	0.1000	-0.0007
##	200	0.5267	nan	0.1000	-0.0020
##	220	0.5139	nan	0.1000	-0.0012
##	240	0.4973	nan	0.1000	-0.0021
##	250	0.4919	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2535	nan	0.1000	0.0388
##	2	1.1840	nan	0.1000	0.0318
##	3	1.1232	nan	0.1000	0.0262
##	4	1.0698	nan	0.1000	0.0244
##	5	1.0285	nan	0.1000	0.0185

##	6	0.9955	nan	0.1000	0.0134
##	7	0.9661	nan	0.1000	0.0146
##	8	0.9362	nan	0.1000	0.0139
##	9	0.9138	nan	0.1000	0.0090
##	10	0.8958	nan	0.1000	0.0069
##	20	0.7770	nan	0.1000	0.0004
##	40	0.7015	nan	0.1000	-0.0011
##	60	0.6610	nan	0.1000	-0.0024
##	80	0.6300	nan	0.1000	-0.0035
##	100	0.5995	nan	0.1000	-0.0016
##	120	0.5673	nan	0.1000	-0.0024
##	140	0.5459	nan	0.1000	-0.0038
##	160	0.5245	nan	0.1000	-0.0029
##	180	0.5053	nan	0.1000	-0.0016
##	200	0.4902	nan	0.1000	-0.0012
##	220	0.4748	nan	0.1000	-0.0026
##	240	0.4577	nan	0.1000	-0.0022
##	250	0.4513	nan	0.1000	-0.0027
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2725	nan	0.1000	0.0315
##	2	1.2219	nan	0.1000	0.0246
##	3	1.1809	nan	0.1000	0.0195
##	4	1.1501	nan	0.1000	0.0136
##	5	1.1172	nan	0.1000	0.0151
##	6 7	1.0930	nan	0.1000	0.0122
## ##	8	1.0669 1.0449	nan	0.1000 0.1000	0.0116 0.0093
##	9	1.0285	nan	0.1000	0.0093
##	10	1.0180	nan nan	0.1000	0.0038
##	20	0.9148	nan	0.1000	0.0034
##	40	0.8255	nan	0.1000	-0.0002
##	60	0.7874	nan	0.1000	0.0002
##	80	0.7699	nan	0.1000	-0.0002
##	100	0.7627	nan	0.1000	-0.0013
##	120	0.7552	nan	0.1000	-0.0003
##	140	0.7490	nan	0.1000	-0.0009
##	160	0.7430	nan	0.1000	-0.0010
##	180	0.7382	nan	0.1000	-0.0008
##	200	0.7349	nan	0.1000	-0.0005
##	220	0.7314	nan	0.1000	-0.0013
##	240	0.7268	nan	0.1000	-0.0007
##	250	0.7253	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2623	nan	0.1000	0.0345

##	2	1.2026	nan	0.1000	0.0294
##	3	1.1548	nan	0.1000	0.0218
##	4	1.1129	nan	0.1000	0.0177
##	5	1.0812	nan	0.1000	0.0157
##	6	1.0509	nan	0.1000	0.0147
##	7	1.0280	nan	0.1000	0.0099
##	8	1.0037	nan	0.1000	0.0104
##	9	0.9810	nan	0.1000	0.0097
##	10	0.9609	nan	0.1000	0.0089
##	20	0.8459	nan	0.1000	0.0019
##	40	0.7693	nan	0.1000	-0.0002
##	60	0.7363	nan	0.1000	-0.0008
##	80	0.7162	nan	0.1000	-0.0023
##	100	0.7052	nan	0.1000	-0.0015
##	120	0.6917	nan	0.1000	-0.0028
##	140	0.6756	nan	0.1000	-0.0020
##	160	0.6652	nan	0.1000	-0.0003
##	180	0.6557	nan	0.1000	-0.0014
##	200	0.6468	nan	0.1000	-0.0006
##	220	0.6353	nan	0.1000	-0.0006
##	240	0.6277	nan	0.1000	-0.0007
##	250	0.6244	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.2566	ValidDeviance nan	StepSize 0.1000	Improve 0.0386
##		1.2566 1.1937			_
## ##	1	1.2566	nan	0.1000	0.0386
## ## ##	1 2	1.2566 1.1937	nan nan	0.1000 0.1000	0.0386 0.0297
## ## ## ##	1 2 3 4 5	1.2566 1.1937 1.1355	nan nan nan	0.1000 0.1000 0.1000	0.0386 0.0297 0.0258
## ## ## ##	1 2 3 4 5 6	1.2566 1.1937 1.1355 1.0909	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201
## ## ## ## ##	1 2 3 4 5	1.2566 1.1937 1.1355 1.0909 1.0509	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179
## ## ## ## ##	1 2 3 4 5 6 7 8	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088
## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013
###################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974 0.5833	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0002 -0.0002
#####################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974 0.5833 0.5666	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0011 -0.0013 -0.0002 -0.0002 -0.0002 -0.00010 -0.0011
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974 0.5833	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0002 -0.0002

## ##	250	0.5372	nan	0.1000	-0.0015
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2498	nan	0.1000	0.0417
##	2	1.1832	nan	0.1000	0.0281
##	3	1.1271	nan	0.1000	0.0244
##	4	1.0777	nan	0.1000	0.0218
##	5	1.0407	nan	0.1000	0.0151
##	6	1.0058	nan	0.1000	0.0141
##	7	0.9753	nan	0.1000	0.0148
##	8	0.9445	nan	0.1000	0.0133
##	9	0.9192	nan	0.1000	0.0115
##	10	0.9036	nan	0.1000	0.0060
##	20	0.7800	nan	0.1000	0.0017
##	40	0.7027	nan	0.1000	-0.0018
##	60	0.6571	nan	0.1000	-0.0015
##	80	0.6285	nan	0.1000	-0.0028
##	100	0.6088	nan	0.1000	-0.0028
##	120	0.5816	nan	0.1000	-0.0033
##	140	0.5649	nan	0.1000	-0.0020
##	160	0.5430	nan	0.1000	-0.0012
##	180	0.5294	nan	0.1000	-0.0016
##	200	0.5109	nan	0.1000	-0.0021
##	220	0.4943	nan	0.1000	-0.0027
##	240	0.4793	nan	0.1000	-0.0010
##	250	0.4732	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2514	nan	0.1000	0.0374
##	2	1.1825	nan	0.1000	0.0323
##	3	1.1249	nan	0.1000	0.0244
##	4	1.0758	nan	0.1000	0.0248
##	5	1.0288	nan	0.1000	0.0205
##	6	0.9950	nan	0.1000	0.0151
##	7	0.9607	nan	0.1000	0.0120
##	8	0.9307	nan	0.1000	0.0132
##	9	0.9071	nan	0.1000	0.0100
##	10	0.8828	nan	0.1000	0.0094
##	20	0.7598	nan	0.1000	0.0013
##	40	0.6744	nan	0.1000	-0.0017
##	60	0.6343	nan	0.1000	-0.0018
##	80	0.5947	nan	0.1000	-0.0013
##	100	0.5667	nan	0.1000	-0.0019
##	120	0.5457	nan	0.1000	-0.0029
##	140	0.5235	nan	0.1000	-0.0024
##	160	0.5036	nan	0.1000	-0.0019

##	180	0.4856	nan	0.1000	-0.0030
##	200	0.4678	nan	0.1000	-0.0020
##	220	0.4534	nan	0.1000	-0.0023
##	240	0.4412	nan	0.1000	-0.0018
##	250	0.4336	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2803	nan	0.1000	0.0300
##	2	1.2282	nan	0.1000	0.0252
##	3	1.1859	nan	0.1000	0.0212
##	4	1.1515	nan	0.1000	0.0150
##	5	1.1195	nan	0.1000	0.0146
##	6	1.0928	nan	0.1000	0.0127
##	7	1.0679	nan	0.1000	0.0107
##	8	1.0480	nan	0.1000	0.0092
##	9	1.0320	nan	0.1000	0.0078
##	10	1.0185	nan	0.1000	0.0060
##	20	0.9144	nan	0.1000	0.0035
##	40	0.8227	nan	0.1000	0.0009
##	60	0.7776	nan	0.1000	-0.0003
##	80	0.7595	nan	0.1000	-0.0005
##	100	0.7498	nan	0.1000	-0.0002
##	120	0.7441	nan	0.1000	-0.0002
##	140	0.7392	nan	0.1000	-0.0006
##	160	0.7347	nan	0.1000	-0.0004
##	180	0.7323	nan	0.1000	-0.0013
##	200	0.7259	nan	0.1000	-0.0003
##	220	0.7226	nan	0.1000	-0.0003
##	240	0.7204	nan	0.1000	-0.0004
##	250	0.7180	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2639	nan	0.1000	0.0365
##	2	1.2041	nan	0.1000	0.0277
##	3	1.1555	nan	0.1000	0.0224
##	4	1.1135	nan	0.1000	0.0190
##	5	1.0741	nan	0.1000	0.0174
##	6	1.0444	nan	0.1000	0.0128
##	7	1.0172	nan	0.1000	0.0120
##	8	0.9928	nan	0.1000	0.0114
##	9	0.9698	nan	0.1000	0.0105
##	10	0.9523	nan	0.1000	0.0071
##	20	0.8290	nan	0.1000	0.0023
##	40	0.7563	nan	0.1000	-0.0012
##	60	0.7274	nan	0.1000	-0.0011
##	80	0.7078	nan	0.1000	-0.0014

##	100	0.6940	nan	0.1000	-0.0008
##	120	0.6795	nan	0.1000	-0.0015
##	140	0.6698	nan	0.1000	-0.0008
##	160	0.6585	nan	0.1000	-0.0011
##	180	0.6453	nan	0.1000	-0.0002
##	200	0.6358	nan	0.1000	-0.0007
##	220	0.6313	nan	0.1000	-0.0019
##	240	0.6263	nan	0.1000	-0.0020
##	250	0.6222	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2566	nan	0.1000	0.0352
##	2	1.1939	nan	0.1000	0.0309
##	3	1.1369	nan	0.1000	0.0252
##	4	1.0871	nan	0.1000	0.0217
##	5	1.0427	nan	0.1000	0.0188
##	6	1.0083	nan	0.1000	0.0132
##	7	0.9772	nan	0.1000	0.0138
##	8	0.9496	nan	0.1000	0.0146
##	9	0.9264	nan	0.1000	0.0103
##	10	0.9027	nan	0.1000	0.0097
##	20	0.7804	nan	0.1000	0.0026
##	40	0.7150	nan	0.1000	-0.0014
##	60	0.6814	nan	0.1000	-0.0023
##	80	0.6575	nan	0.1000	-0.0021
##	100	0.6395	nan	0.1000	-0.0021
##	120	0.6198	nan	0.1000	-0.0014
##	140	0.6030	nan	0.1000	-0.0016
##	160	0.5852	nan	0.1000	-0.0013
##	180	0.5747	nan	0.1000	-0.0017
##	200	0.5616	nan	0.1000	-0.0014
##	220	0.5461	nan	0.1000	-0.0019
##	240	0.5350	nan	0.1000	-0.0025
##	250	0.5289	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2508	nan	0.1000	0.0399
##	2	1.1799	nan	0.1000	0.0327
##	3	1.1202	nan	0.1000	0.0267
##	4	1.0681	nan	0.1000	0.0230
##	5	1.0267	nan	0.1000	0.0188
##	6	0.9903	nan	0.1000	0.0144
##	7	0.9579	nan	0.1000	0.0146
##	8	0.9311	nan	0.1000	0.0122
##	9	0.9093	nan	0.1000	0.0100
##	10	0.8920	nan	0.1000	0.0071

##	20	0.7669	nan	0.1000	0.0027
##	40	0.6912	nan	0.1000	-0.0021
##	60	0.6458	nan	0.1000	-0.0026
##	80	0.6124	nan	0.1000	-0.0004
##	100	0.5870	nan	0.1000	-0.0014
##	120	0.5656	nan	0.1000	-0.0013
##	140	0.5518	nan	0.1000	-0.0023
##	160	0.5341	nan	0.1000	-0.0011
##	180	0.5194	nan	0.1000	-0.0010
##	200	0.5076	nan	0.1000	-0.0026
##	220	0.4978	nan	0.1000	-0.0018
##	240	0.4803	nan	0.1000	-0.0012
##	250	0.4720	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2479	nan	0.1000	0.0415
##	2	1.1762	nan	0.1000	0.0296
##	3	1.1123	nan	0.1000	0.0268
##	4	1.0657	nan	0.1000	0.0197
##	5	1.0210	nan	0.1000	0.0199
##	6	0.9815	nan	0.1000	0.0159
##	7	0.9479	nan	0.1000	0.0105
##	8	0.9197	nan	0.1000	0.0126
##	9	0.8955	nan	0.1000	0.0088
##	10	0.8742	nan	0.1000	0.0090
##	20	0.7586	nan	0.1000	0.0012
##	40	0.6843	nan	0.1000	-0.0018
##	60	0.6355	nan	0.1000	-0.0027
##	80	0.5939	nan	0.1000	-0.0014
##	100	0.5648	nan	0.1000	-0.0014
##	120	0.5434	nan	0.1000	-0.0016
##	140	0.5223	nan	0.1000	-0.0021
##	160	0.5026	nan	0.1000	-0.0021
##	180	0.4889	nan	0.1000	-0.0021
##	200	0.4758	nan	0.1000	-0.0012
##	220	0.4520	nan	0.1000	-0.0008
##	240	0.4417	nan	0.1000	-0.0027
##	250	0.4358	nan	0.1000	-0.0023
##	т.	ш . ъ .		a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2643	nan	0.1000	0.0332
##	2	1.2100	nan	0.1000	0.0272
##	3	1.1593	nan	0.1000	0.0240
##	4	1.1180	nan	0.1000	0.0196
##	5	1.0825	nan	0.1000	0.0170
##	6	1.0508	nan	0.1000	0.0135

```
##
        7
                  1.0219
                                                0.1000
                                                           0.0112
                                       nan
        8
##
                  0.9984
                                                0.1000
                                                           0.0118
                                       nan
        9
##
                  0.9778
                                       nan
                                                0.1000
                                                           0.0072
##
       10
                  0.9565
                                                0.1000
                                                           0.0096
                                       nan
##
       20
                  0.8389
                                       nan
                                                0.1000
                                                           0.0025
##
       40
                  0.7624
                                       nan
                                                0.1000
                                                         -0.0009
##
                                                0.1000
                                                         -0.0006
       50
                  0.7453
                                       nan
```

oj.gbm

```
## Stochastic Gradient Boosting
##
## 857 samples
   17 predictor
    2 classes: 'CH', 'MM'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 770, 771, 771, 772, 771, ...
## Resampling results across tuning parameters:
##
##
    interaction.depth n.trees
                                           Sens
                                                      Spec
##
                        50
                                                      0.7245098
    1
                                0.8869715 0.8720247
##
    1
                       100
                                0.8889466
                                           0.8738389
                                                      0.7302139
##
    1
                       150
                                0.8850612
                                           0.8680697
                                                      0.7303030
##
    1
                       200
                                0.8838868
                                           0.8738026 0.7213012
##
    1
                       250
                                0.8805090
                                           0.8622642 0.7275401
##
    2
                        50
                                0.8895139
                                           0.8719521 0.7451872
    2
##
                       100
                                0.8832208
                                           0.8623367 0.7334225
##
    2
                       150
                                           0.8679971
                                                      0.7394831
                                0.8838687
    2
##
                       200
                                0.8811028
                                           0.8642598
                                                      0.7245989
##
    2
                       250
                                           0.8489840
                                0.8780432
                                                      0.7336898
##
    3
                        50
                                0.8833620
                                           0.8700290
                                                      0.7245989
##
    3
                       100
                                0.8785063
                                           0.8604862 0.7454545
##
    3
                       150
                                0.8744782
                                           0.8470972 0.7156863
##
    3
                       200
                                0.8723217
                                           0.8414731 0.7246881
##
    3
                       250
                                0.8722653
                                           0.8337446 0.7217469
##
    4
                        50
                                0.8854180
                                           0.8604862 0.7605169
##
    4
                       100
                                0.8794721
                                           0.8413280 0.7336898
##
    4
                                           0.8432511 0.7308378
                       150
                                0.8741609
##
    4
                       200
                                0.8710638
                                           0.8470972 0.7249554
##
    4
                       250
                                0.8674771
                                           0.8490203 0.7218360
##
    5
                        50
                                0.8868076
                                           0.8585994 0.7574866
    5
##
                       100
                                0.8786285
                                           0.8471698 0.7486631
##
    5
                                150
```

```
plot(oj.gbm)
```



```
oj.pred <- predict(oj.gbm, oj_test, type = "raw")
plot(oj_test$Purchase, oj.pred,
    main = "Gradient Boosing Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")</pre>
```

Gradient Boosing Classification: Predicted vs. Actual


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
##
           CH 117 18
##
          MM 13 65
##
##
                  Accuracy : 0.8545
                    95% CI: (0.7998, 0.8989)
##
##
      No Information Rate : 0.6103
##
      P-Value [Acc > NIR] : 4.83e-15
##
##
                     Kappa: 0.6907
##
##
   Mcnemar's Test P-Value: 0.4725
##
##
               Sensitivity: 0.9000
               Specificity: 0.7831
##
##
            Pos Pred Value: 0.8667
            Neg Pred Value: 0.8333
##
                Prevalence : 0.6103
##
```

```
## Detection Rate : 0.5493
## Detection Prevalence : 0.6338
## Balanced Accuracy : 0.8416
##
## 'Positive' Class : CH
##

oj.gbm.acc <- as.numeric(oj.conf$overall[1])
rm(oj.pred)
rm(oj.conf)
#plot(oj.bag$, oj.bag$finalModel$y)
#plot(varImp(oj.gbm), main="Variable Importance with Gradient Boosting")</pre>
```

7.5.0.2 Gradient Boosting Regression Example

Again using the Carseats data set to predict Sales, this time I'll use the gradient boosting method by specifying method = "gbm". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret tunes the following hyperparameters.

- n.trees: number of boosting iterations (increasing n.trees reduces the error on training set, but may lead to over-fitting)
- interaction.depth: maximum tree depth (the default six node tree appears to do an excellent job)
- shrinkage: learning rate (reduces the impact of each additional fitted base-learner (tree) by reducing the size of incremental steps and thus penalizes the importance of each consecutive iteration. The intuition is that it is better to improve a model by taking many small steps than by taking fewer large steps. If one of the boosting iterations turns out to be erroneous, its negative impact can be easily corrected in subsequent steps.)
- n.minobsinnode: mimimum terminal node size

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.6155	nan	0.1000	0.3126
##	2	7.3677	nan	0.1000	0.2471
##	3	7.1383	nan	0.1000	0.1559
##	4	6.8796	nan	0.1000	0.3000
##	5	6.6084	nan	0.1000	0.2696
##	6	6.3846	nan	0.1000	0.1575
##	7	6.1551	nan	0.1000	0.2016
##	8	5.9837	nan	0.1000	0.1171
##	9	5.7969	nan	0.1000	0.1558
##	10	5.6503	nan	0.1000	0.1243
##	20	4.5758	nan	0.1000	0.0472
##	40	3.3276	nan	0.1000	0.0043
##	60	2.6161	nan	0.1000	0.0154
##	80	2.1215	nan	0.1000	-0.0029
##	100	1.7822	nan	0.1000	-0.0166
##	120	1.5354	nan	0.1000	-0.0016
##	140	1.3313	nan	0.1000	0.0067
##	160	1.2074	nan	0.1000	-0.0030
##	180	1.0966	nan	0.1000	0.0005
##	200	1.0083	nan	0.1000	-0.0019
##	220	0.9572	nan	0.1000	-0.0008
##	240	0.9048	nan	0.1000	-0.0052
##	250	0.8922	nan	0.1000	-0.0051
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4939	nan	0.1000	0.5303
##	2	6.9609	nan	0.1000	0.4503
##	_		non	0 4000	
шш	3	6.5646	nan	0.1000	0.3312
##	3 4	6.5646 6.2135	nan	0.1000	0.3312 0.2836
##					
	4	6.2135	nan	0.1000	0.2836
##	4 5	6.2135 5.9347	nan nan	0.1000 0.1000	0.2836 0.2472
## ##	4 5 6	6.2135 5.9347 5.6654	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045
## ## ##	4 5 6 7	6.2135 5.9347 5.6654 5.3757	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134
## ## ## ##	4 5 6 7 8	6.2135 5.9347 5.6654 5.3757 5.1883	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810
## ## ## ## ## ##	4 5 6 7 8 9 10 20	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.0052
## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195 0.7664	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.0052 -0.0075
## ## ## ## ## ## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195 0.7664 0.7243	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.0052 -0.0075 -0.0036
## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140	6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195 0.7664	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.0052 -0.0075

##	220	0.6123	nan	0.1000	-0.0035
##	240	0.5897	nan	0.1000	-0.0038
##	250	0.5767	nan	0.1000	-0.0050
##	200	0.0707	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.3122	nan	0.1000	0.5956
##	2	6.7737	nan	0.1000	0.4295
##	3	6.3033	nan	0.1000	0.4215
##	4	5.9081	nan	0.1000	0.2966
##	5	5.5342	nan	0.1000	0.3320
##	6	5.1666	nan	0.1000	0.2748
##	7	4.9365	nan	0.1000	0.1688
##	8	4.6557	nan	0.1000	0.2144
##	9	4.4412	nan	0.1000	0.1072
##	10	4.2075	nan	0.1000	0.1861
##	20	2.7722	nan	0.1000	0.0107
##	40	1.4659	nan	0.1000	0.0203
##	60	1.0163	nan	0.1000	-0.0055
##	80	0.8430	nan	0.1000	-0.0074
##	100	0.7427	nan	0.1000	-0.0031
##	120	0.6731	nan	0.1000	-0.0078
##	140	0.6151	nan	0.1000	-0.0080
##	160	0.5814	nan	0.1000	-0.0074
##	180	0.5452	nan	0.1000	-0.0054
##	200	0.5023	nan	0.1000	-0.0071
##	220	0.4697	nan	0.1000	-0.0058
##	240	0.4340	nan	0.1000	-0.0022
##	250	0.4207	nan	0.1000	-0.0088
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.3508	nan	0.1000	0.7012
##	2	6.7011	nan	0.1000	0.5533
##	3	6.1585	nan	0.1000	0.5138
##	4	5.7274	nan	0.1000	0.3542
##	5	5.2438	nan	0.1000	0.3597
##	6	4.9357	nan	0.1000	0.2545
##	7	4.6359	nan	0.1000	0.2195
##	8	4.3960	nan	0.1000	0.2294
##	9	4.1786	nan	0.1000	0.1539
##	10	3.9850	nan	0.1000	0.1414
##	20	2.4927	nan	0.1000	0.0532
##	40	1.2882	nan	0.1000	0.0112
##	60	0.8551	nan	0.1000	-0.0074
##	80	0.6752	nan	0.1000	-0.0044
##	100	0.5795	nan	0.1000	-0.0097
##	120	0.4983	nan	0.1000	-0.0038

##	140	0.4440	nan	0.1000	-0.0032
##	160	0.4044	nan	0.1000	-0.0056
##	180	0.3666	nan	0.1000	-0.0076
##	200	0.3337	nan	0.1000	-0.0065
##	220	0.3066	nan	0.1000	-0.0022
##	240	0.2736	nan	0.1000	-0.0039
##	250	0.2608	nan	0.1000	-0.0038
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2719	nan	0.1000	0.7029
##	2	6.5623	nan	0.1000	0.5180
##	3	6.0426	nan	0.1000	0.4144
##	4	5.5613	nan	0.1000	0.4419
##	5	5.1070	nan	0.1000	0.2878
##	6	4.7641	nan	0.1000	0.2383
##	7	4.4677	nan	0.1000	0.2141
##	8	4.2399	nan	0.1000	0.0706
##	9	3.9751	nan	0.1000	0.1927
##	10	3.7100	nan	0.1000	0.1701
##	20	2.2565	nan	0.1000	0.0859
##	40	1.1000	nan	0.1000	-0.0080
##	60	0.7464	nan	0.1000	-0.0020
##	80	0.5790	nan	0.1000	-0.0024
##	100	0.4941	nan	0.1000	-0.0054
##	120	0.4290	nan	0.1000	-0.0030
##	140	0.3723	nan	0.1000	-0.0052
##	160	0.3330	nan	0.1000	-0.0042
##	180	0.2951	nan	0.1000	-0.0056
##	200	0.2627	nan	0.1000	-0.0038
##	220	0.2336	nan	0.1000	-0.0018
##	240	0.2089	nan	0.1000	-0.0017
##	250	0.1964	nan	0.1000	-0.0029
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.8758	nan	0.1000	0.1611
##	2	7.4638	nan	0.1000	0.4117
##	3	7.1509	nan	0.1000	0.2868
##	4	6.8550	nan	0.1000	0.2921
##	5	6.6144	nan	0.1000	0.2482
##	6	6.4519	nan	0.1000	0.1654
##	7	6.3108	nan	0.1000	0.0792
##	8	6.1631	nan	0.1000	0.1260
##	9	6.0160	nan	0.1000	0.1119
##	10	5.8043	nan	0.1000	0.1567
##	20	4.6275	nan	0.1000	0.0715
##	40	3.4435	nan	0.1000	-0.0080

##	60	2.6905	nan	0.1000	0.0048
##	80	2.1544	nan	0.1000	0.0127
##	100	1.7772	nan	0.1000	-0.0062
##	120	1.4927	nan	0.1000	-0.0058
##	140	1.3013	nan	0.1000	0.0010
##	160	1.1609	nan	0.1000	0.0023
##	180	1.0670	nan	0.1000	-0.0058
##	200	0.9890	nan	0.1000	-0.0088
##	220	0.9407	nan	0.1000	0.0000
##	240	0.9016	nan	0.1000	-0.0042
##	250	0.8853	nan	0.1000	-0.0037
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.6412	nan	0.1000	0.5298
##	2	7.0819	nan	0.1000	0.4917
##	3	6.5521	nan	0.1000	0.3297
##	4	6.1791	nan	0.1000	0.2744
##	5	5.9412	nan	0.1000	0.1842
##	6	5.6434	nan	0.1000	0.2504
##	7	5.3703	nan	0.1000	0.2167
##	8	5.1224	nan	0.1000	0.1739
##	9	4.9715	nan	0.1000	0.1184
##	10	4.7654	nan	0.1000	0.1615
##	20	3.3795	nan	0.1000	0.0636
##	40	2.0395	nan	0.1000	0.0080
##	60	1.4605	nan	0.1000	-0.0029
##	80	1.1344	nan	0.1000	-0.0025
##	100	0.9495	nan	0.1000	-0.0087
##	120	0.8562	nan	0.1000	-0.0037
##	140	0.7855	nan	0.1000	-0.0043
##	160	0.7298	nan	0.1000	-0.0057
##	180	0.6813	nan	0.1000	-0.0010
##	200	0.6441	nan	0.1000	-0.0027
##	220	0.6118	nan	0.1000	-0.0040
##	240	0.5838	nan	0.1000	-0.0071
##	250	0.5734	nan	0.1000	-0.0007
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.4922	nan	0.1000	0.6088
##	2	6.9029	nan	0.1000	0.5644
##	3	6.4669	nan	0.1000	0.4526
##	4	5.9980	nan	0.1000	0.4160
##	5	5.5505	nan	0.1000	0.2603
##	6	5.2643	nan	0.1000	0.2640
##	7	5.0169	nan	0.1000	0.1944
##	8	4.8024	nan	0.1000	0.1732
	•	1.0021	11311	5.1000	0.1.02

##	9	4.5720	nan	0.1000	0.1124
##	10	4.3508	nan	0.1000	0.1700
##	20	2.8015	nan	0.1000	0.0839
##	40	1.5058	nan	0.1000	0.0041
##	60	1.0433	nan	0.1000	-0.0028
##	80	0.8409	nan	0.1000	-0.0038
##	100	0.7262	nan	0.1000	-0.0091
##	120	0.6504	nan	0.1000	-0.0011
##	140	0.5944	nan	0.1000	-0.0082
##	160	0.5390	nan	0.1000	-0.0053
##	180	0.5004	nan	0.1000	-0.0058
##	200	0.4655	nan	0.1000	-0.0034
##	220	0.4306	nan	0.1000	-0.0051
##	240	0.4014	nan	0.1000	-0.0052
##	250	0.3922	nan	0.1000	-0.0045
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.5384	nan	0.1000	0.6216
##	2	6.8492	nan	0.1000	0.5668
##	3	6.2425	nan	0.1000	0.4236
##	4	5.7761	nan	0.1000	0.4459
##	5	5.3374	nan	0.1000	0.3815
##	6	5.0229	nan	0.1000	0.2852
##	7	4.7392	nan	0.1000	0.2818
##	8	4.4323	nan	0.1000	0.1682
##	9	4.2010	nan	0.1000	0.2173
##	10	3.9190	nan	0.1000	0.1539
##	20	2.3973	nan	0.1000	0.0126
##	40	1.2163	nan	0.1000	0.0078
##	60	0.8634	nan	0.1000	-0.0088
##	80	0.7010	nan	0.1000	-0.0174
##	100	0.6125	nan	0.1000	-0.0047
##	120	0.5409	nan	0.1000	-0.0043
##	140	0.4880	nan	0.1000	-0.0087
##	160	0.4416	nan	0.1000	-0.0077
##	180	0.4022	nan	0.1000	-0.0087
##	200	0.3700	nan	0.1000	-0.0066
##	220	0.3326	nan	0.1000	-0.0048
##	240	0.3010	nan	0.1000	-0.0020
##	250	0.2897	nan	0.1000	-0.0057
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4641	nan	0.1000	0.6228
##	2	6.7842	nan	0.1000	0.6612
##	3	6.2574	nan	0.1000	0.5100
##	4	5.6693	nan	0.1000	0.5417

##	5	5.2506	nan	0.1000	0.3664
##	6	4.8195	nan	0.1000	0.3499
##	7	4.4803	nan	0.1000	0.2959
##	8	4.1807	nan	0.1000	0.1964
##	9	3.9058	nan	0.1000	0.1460
##	10	3.6831	nan	0.1000	0.1246
##	20	2.1373	nan	0.1000	0.0659
##	40	1.0923	nan	0.1000	0.0073
##	60	0.7575	nan	0.1000	-0.0129
##	80	0.6127	nan	0.1000	-0.0132
##	100	0.5130	nan	0.1000	-0.0123
##	120	0.4313	nan	0.1000	-0.0060
##	140	0.3732	nan	0.1000	-0.0102
##	160	0.3229	nan	0.1000	-0.0040
##	180	0.2862	nan	0.1000	-0.0015
##	200	0.2556	nan	0.1000	-0.0035
##	220	0.2289	nan	0.1000	-0.0049
##	240	0.2066	nan	0.1000	-0.0024
##	250	0.1957	nan	0.1000	-0.0030
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	8.0133	nan	0.1000	0.2136
##	2	7.6170	nan	0.1000	0.3813
##	3	7.2757	nan	0.1000	0.3566
##	4	6.9741	nan	0.1000	0.2780
##	5	6.7490	nan	0.1000	0.2272
##	6	6.6030	nan	0.1000	0.0955
##	7	6.3914	nan	0.1000	0.1949
##	8	6.2217	nan	0.1000	0.1345
##	9	6.0156	nan	0.1000	0.1629
##	10	5.8483	nan	0.1000	0.1217
##	20	4.7672	nan	0.1000	0.0084
##	40	3.5325	nan	0.1000	0.0072
##	60	2.7373	nan	0.1000	0.0204
##	80	2.2393	nan	0.1000	0.0177
##	100	1.8533	nan	0.1000	-0.0056
##	120	1.5588	nan	0.1000	-0.0006
##	140	1.3684	nan	0.1000	-0.0059
##	160	1.2137	nan	0.1000	-0.0029
##	180	1.0929	nan	0.1000	0.0053
##	200	1.0225	nan	0.1000	-0.0018
##	220	0.9612	nan	0.1000	-0.0014
##	240	0.9268	nan	0.1000	-0.0089
##	250	0.9073	nan	0.1000	-0.0005
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve

##	1	7.6769	nan	0.1000	0.4910
##	2	7.1336	nan	0.1000	0.4624
##	3	6.7130	nan	0.1000	0.3977
##	4	6.3914	nan	0.1000	0.2512
##	5	6.0813	nan	0.1000	0.3267
##	6	5.8205	nan	0.1000	0.1912
##	7	5.5575	nan	0.1000	0.1760
##	8	5.3300	nan	0.1000	0.1566
##	9	5.1406	nan	0.1000	0.0895
##	10	4.9999	nan	0.1000	0.0993
##	20	3.4990	nan	0.1000	0.1416
##	40	2.1301	nan	0.1000	0.0205
##	60	1.4553	nan	0.1000	-0.0010
##	80	1.1386	nan	0.1000	-0.0129
##	100	0.9532	nan	0.1000	-0.0062
##	120	0.8461	nan	0.1000	-0.0020
##	140	0.7941	nan	0.1000	-0.0103
##	160	0.7479	nan	0.1000	-0.0069
##	180	0.7076	nan	0.1000	-0.0046
##	200	0.6764	nan	0.1000	-0.0034
##	220	0.6375	nan	0.1000	-0.0039
##	240	0.6118	nan	0.1000	-0.0084
44.44	050				
##	250	0.5967	nan	0.1000	-0.0038
##	250	0.5967	nan	0.1000	-0.0038
	250 Iter	0.5967 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0038
##	Iter 1				
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 7.5573	ValidDeviance nan	StepSize 0.1000	Improve 0.6889
## ## ## ##	Iter	TrainDeviance 7.5573 6.9522 6.4789 6.1178	ValidDeviance nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990
## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137
## ## ## ## ##	Iter	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935
## ## ## ## ##	Iter	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212	ValidDeviance nan nan nan nan nan nan	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435	ValidDeviance nan nan nan nan nan nan nan	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080 -0.0050
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158 0.5707	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080 -0.0050 -0.0019
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158 0.5707 0.5336	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080 -0.0050 -0.0019 -0.0046
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158 0.5707	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080 -0.0050 -0.0019

##	240	0.4323	nan	0.1000	-0.0052
##	250	0.4196	nan	0.1000	-0.0041
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.4906	nan	0.1000	0.6789
##	2	6.9506	nan	0.1000	0.3624
##	3	6.3953	nan	0.1000	0.4020
##	4	5.9823	nan	0.1000	0.3891
##	5	5.5966	nan	0.1000	0.2061
##	6	5.1879	nan	0.1000	0.2865
##	7	4.8319	nan	0.1000	0.2808
##	8	4.5432	nan	0.1000	0.2153
##	9	4.2635	nan	0.1000	0.2355
##	10	3.9960	nan	0.1000	0.1091
##	20	2.4108	nan	0.1000	0.1056
##	40	1.2650	nan	0.1000	0.0002
##	60	0.8721	nan	0.1000	0.0013
##	80	0.6979	nan	0.1000	-0.0035
##	100	0.5984	nan	0.1000	-0.0062
##	120	0.5296	nan	0.1000	-0.0059
##	140	0.4772	nan	0.1000	-0.0068
##	160	0.4300	nan	0.1000	-0.0125
##	180	0.3866	nan	0.1000	-0.0057
##	200	0.3463	nan	0.1000	-0.0064
##	220	0.3136	nan	0.1000	-0.0027
##	240	0.2853	nan	0.1000	-0.0041
##	250	0.2719	nan	0.1000	-0.0052
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.4823	nan	0.1000	0.6726
##	2	6.8225	nan	0.1000	0.6054
##	3	6.2303	nan	0.1000	0.4431
##	4	5.7262	nan	0.1000	0.3136
##	5	5.2917	nan	0.1000	0.3020
##	6	4.9481	nan	0.1000	0.2905
##	7	4.5620	nan	0.1000	0.2910
##	8	4.3225	nan	0.1000	0.1791
##	9	4.0699	nan	0.1000	0.2349
##	10	3.8179	nan	0.1000	0.1849
##	20	2.3059	nan	0.1000	0.0418
##	40 60	1.1688	nan	0.1000	-0.0035
##	80	0.7851	nan	0.1000	0.0072
## ##	100	0.6170	nan	0.1000 0.1000	-0.0038 -0.0026
##	120	0.5177 0.4381	nan	0.1000	-0.0026 -0.0056
##	140	0.3801	nan	0.1000	-0.0036
##	140	0.3001	nan	0.1000	0.0000

##	160	0.3340	nan	0.1000	-0.0031
##	180	0.2933	nan	0.1000	-0.0080
##	200	0.2558	nan	0.1000	-0.0058
##	220	0.2289	nan	0.1000	-0.0028
##	240	0.2021	nan	0.1000	-0.0050
##	250	0.1882	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4102	nan	0.1000	0.3839
##	2	7.0494	nan	0.1000	0.3040
##	3	6.8614	nan	0.1000	0.1707
##	4	6.6267	nan	0.1000	0.2365
##	5	6.4159	nan	0.1000	0.2192
##	6	6.2072	nan	0.1000	0.1818
##	7	5.9995	nan	0.1000	0.1441
##	8	5.8238	nan	0.1000	0.1470
##	9	5.6784	nan	0.1000	0.0881
##	10	5.5111	nan	0.1000	0.1191
##	20	4.4453	nan	0.1000	0.0629
##	40	3.2797	nan	0.1000	0.0303
##	60	2.5893	nan	0.1000	0.0080
##	80	2.1025	nan	0.1000	-0.0054
##	100	1.7328	nan	0.1000	0.0016
##	120	1.5056	nan	0.1000	0.0039
##	140	1.3304	nan	0.1000	-0.0021
##	160	1.2081	nan	0.1000	-0.0085
##	180	1.1043	nan	0.1000	0.0002
##	200	1.0182	nan	0.1000	0.0011
##	220	0.9519	nan	0.1000	-0.0138
##	240	0.9161	nan	0.1000	-0.0036
##	250	0.9019	nan	0.1000	-0.0080
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.3296	nan	0.1000	0.5238
##	2	6.8236	nan	0.1000	0.4935
##	3	6.4024	nan	0.1000	0.3814
##	4	6.0460	nan	0.1000	0.3352
##	5	5.7799	nan	0.1000	0.2079
##	6	5.5073	nan	0.1000	0.2249
##	7	5.2509	nan	0.1000	0.1626
##	8	5.0841	nan	0.1000	0.0927
##	9	4.8799	nan	0.1000	0.1436
##	10	4.7477	nan	0.1000	0.0329
##	20	3.3287	nan	0.1000	0.0705
##	40	2.0283	nan	0.1000	0.0048
##	60	1.3816	nan	0.1000	0.0072

##	80	1.0728	nan	0.1000	-0.0016
##	100	0.9094	nan	0.1000	0.0076
##	120	0.8114	nan	0.1000	-0.0058
##	140	0.7446	nan	0.1000	-0.0069
##	160	0.7042	nan	0.1000	-0.0008
##	180	0.6679	nan	0.1000	-0.0038
##	200	0.6315	nan	0.1000	-0.0026
##	220	0.6063	nan	0.1000	-0.0076
##	240	0.5797	nan	0.1000	-0.0034
##	250	0.5662	nan	0.1000	-0.0046
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2648	nan	0.1000	0.6118
##	2	6.7163	nan	0.1000	0.5338
##	3	6.2474	nan	0.1000	0.4288
##	4	5.8703	nan	0.1000	0.2640
##	5	5.5532	nan	0.1000	0.3193
##	6	5.2463	nan	0.1000	0.3198
##	7	4.9416	nan	0.1000	0.1943
##	8	4.6990	nan	0.1000	0.1722
##	9	4.4949	nan	0.1000	0.1469
##	10	4.2995	nan	0.1000	0.1804
##	20	2.7721	nan	0.1000	0.0861
##	40	1.4803	nan	0.1000	0.0123
##	60	1.0423	nan	0.1000	-0.0095
##	80	0.8424	nan	0.1000	0.0072
##	100	0.7137	nan	0.1000	-0.0079
##	120	0.6440	nan	0.1000	-0.0074
##	140	0.5827	nan	0.1000	-0.0044
##	160	0.5432	nan	0.1000	-0.0097
##	180	0.5079	nan	0.1000	-0.0044
##	200	0.4749	nan	0.1000	-0.0006
##	220	0.4448	nan	0.1000	-0.0068
##	240	0.4197	nan	0.1000	-0.0041
##	250	0.4073	nan	0.1000	-0.0040
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.1301	nan	0.1000	0.6518
##	2	6.4611	nan	0.1000	0.5540
##	3	5.8979	nan	0.1000	0.4264
##	4	5.4531	nan	0.1000	0.3997
##	5	5.0649	nan	0.1000	0.2551
##	6	4.7495	nan	0.1000	0.2099
##	7	4.4799	nan	0.1000	0.2317
##	8	4.1899	nan	0.1000	0.2269
##	9	4.0084	nan	0.1000	0.0679

##	10	3.8183	nan	0.1000	0.0965
##	20	2.3118	nan	0.1000	0.0409
##	40	1.2467	nan	0.1000	0.0054
##	60	0.8880	nan	0.1000	-0.0007
##	80	0.7226	nan	0.1000	-0.0048
##	100	0.6209	nan	0.1000	-0.0051
##	120	0.5444	nan	0.1000	-0.0087
##	140	0.4935	nan	0.1000	-0.0049
##	160	0.4445	nan	0.1000	-0.0053
##	180	0.3989	nan	0.1000	-0.0063
##	200	0.3638	nan	0.1000	-0.0079
##	220	0.3337	nan	0.1000	-0.0052
##	240	0.3055	nan	0.1000	-0.0048
##	250	0.2926	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.1126	nan	0.1000	0.7800
##	2	6.4349	nan	0.1000	0.5736
##	3	5.8711	nan	0.1000	0.5557
##	4	5.4355	nan	0.1000	0.3727
##	5	5.0058	nan	0.1000	0.2490
##	6	4.5813	nan	0.1000	0.2892
##	7	4.2200	nan	0.1000	0.3013
##	8	3.8990	nan	0.1000	0.2893
##	9	3.6677	nan	0.1000	0.1964
##	10	3.4290	nan	0.1000	0.1762
##	20	2.1135	nan	0.1000	0.0418
##	40	1.0761	nan	0.1000	-0.0015
##	60	0.7465	nan	0.1000	-0.0119
##	80	0.6002	nan	0.1000	-0.0082
##	100	0.4915	nan	0.1000	-0.0042
##	120	0.4217	nan	0.1000	-0.0055
##	140	0.3558	nan	0.1000	-0.0027
##	160	0.3103	nan	0.1000	-0.0039
##	180	0.2649	nan	0.1000	-0.0052
##	200	0.2323	nan	0.1000	-0.0017
##	220	0.2076	nan	0.1000	-0.0018
##	240	0.1858	nan	0.1000	-0.0025
##	250	0.1740	nan	0.1000	-0.0033
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.3456	nan	0.1000	0.2909
##	2	7.1114	nan	0.1000	0.1263
##	3	6.7570	nan	0.1000	0.2751
##	4	6.5482	nan	0.1000	0.1337
##	5	6.3257	nan	0.1000	0.2345

##	6	6.1206	nan	0.1000	0.1383
##	7	5.9301	nan	0.1000	0.1914
##	8	5.7797	nan	0.1000	0.1295
##	9	5.6019	nan	0.1000	0.1135
##	10	5.4685	nan	0.1000	0.0847
##	20	4.4722	nan	0.1000	0.0460
##	40	3.3338	nan	0.1000	0.0101
##	60	2.6477	nan	0.1000	0.0048
##	80	2.1648	nan	0.1000	0.0153
##	100	1.7916	nan	0.1000	-0.0011
##	120	1.5267	nan	0.1000	0.0018
##	140	1.3281	nan	0.1000	-0.0029
##	160	1.1995	nan	0.1000	-0.0011
##	180	1.1018	nan	0.1000	0.0001
##	200	1.0288	nan	0.1000	-0.0059
##	220	0.9667	nan	0.1000	-0.0033
##	240	0.9174	nan	0.1000	-0.0045
##	250	0.8974	nan	0.1000	-0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.1892	nan	0.1000	0.5473
##	2	6.7512	nan	0.1000	0.4586
##	3	6.4426	nan	0.1000	0.2760
##	4	6.1358	nan	0.1000	0.2140
##	5	5.8079	nan	0.1000	0.2639
##	6	5.5512	nan	0.1000	0.2127
##	7	5.3613	nan	0.1000	0.1317
##	8	5.0590	nan	0.1000	0.2354
##	9	4.9117	nan	0.1000	0.1361
##	10	4.7130	nan	0.1000	0.1626
##	20	3.4020	nan	0.1000	0.0257
##	40	2.0751	nan	0.1000	0.0224
##	60	1.4101	nan	0.1000	-0.0005
##	80	1.1014	nan	0.1000	0.0065
##	100	0.9405	nan	0.1000	-0.0067
##	120	0.8391	nan	0.1000	-0.0066
##	140	0.7718	nan	0.1000	-0.0054
##	160	0.7291	nan	0.1000	-0.0095
##	180	0.6810	nan	0.1000	-0.0036
##	200	0.6457	nan	0.1000	-0.0071
##	220	0.6189	nan	0.1000	-0.0034
##	240	0.5895	nan	0.1000	-0.0023
##	250	0.5794	nan	0.1000	-0.0084
##	т.	ш . ъ .	17 1 · 1D ·	a. a.	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.1359	nan	0.1000	0.6309

##	2	6.5967	nan	0.1000	0.4591
##	3	6.1698	nan	0.1000	0.4132
##	4	5.7599	nan	0.1000	0.3928
##	5	5.4519	nan	0.1000	0.3237
##	6	5.1401	nan	0.1000	0.2872
##	7	4.9050	nan	0.1000	0.1392
##	8	4.6196	nan	0.1000	0.2846
##	9	4.3738	nan	0.1000	0.1828
##	10	4.1835	nan	0.1000	0.1700
##	20	2.8099	nan	0.1000	0.0580
##	40	1.6151	nan	0.1000	-0.0065
##	60	1.1301	nan	0.1000	0.0002
##	80	0.8944	nan	0.1000	-0.0077
##	100	0.7517	nan	0.1000	-0.0139
##	120	0.6730	nan	0.1000	-0.0085
##	140	0.6057	nan	0.1000	-0.0038
##	160	0.5547	nan	0.1000	-0.0097
##	180	0.5094	nan	0.1000	-0.0103
##	200	0.4766	nan	0.1000	-0.0066
##	220	0.4450	nan	0.1000	-0.0040
##	240	0.4151	nan	0.1000	-0.0027
##	250	0.4013	nan	0.1000	-0.0047
##					
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 7.0294	ValidDeviance nan	StepSize 0.1000	Improve 0.7373
##				=	-
## ##	1	7.0294	nan	0.1000	0.7373
## ## ##	1 2	7.0294 6.4316	nan nan	0.1000 0.1000	0.7373 0.6149
## ## ## ##	1 2 3	7.0294 6.4316 5.9113	nan nan nan	0.1000 0.1000 0.1000	0.7373 0.6149 0.3359
## ## ## ##	1 2 3 4 5 6	7.0294 6.4316 5.9113 5.5546	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535
## ## ## ## ##	1 2 3 4 5 6 7	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893
## ## ## ## ## ##	1 2 3 4 5 6 7	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0078
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233 0.3867	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0078 -0.0076
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233 0.3867 0.3531	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0076 -0.0076 -0.0040
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233 0.3867	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0078 -0.0076

## ##	250	0.2843	nan	0.1000	-0.0029
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.0098	nan	0.1000	0.5845
##	2	6.3343	nan	0.1000	0.4158
##	3	5.8514	nan	0.1000	0.3832
##	4	5.3437	nan	0.1000	0.4617
##	5	4.9793	nan	0.1000	0.3545
##	6	4.6111	nan	0.1000	0.3660
##	7	4.2957	nan	0.1000	0.2518
##	8	3.9570	nan	0.1000	0.2273
##	9	3.7320	nan	0.1000	0.1854
##	10	3.5140	nan	0.1000	0.1503
##	20	2.1057	nan	0.1000	0.0764
##	40	1.0592	nan	0.1000	0.0046
##	60	0.7323	nan	0.1000	-0.0010
##	80	0.5881	nan	0.1000	-0.0058
##	100	0.4956	nan	0.1000	-0.0051
##	120	0.4248	nan	0.1000	-0.0025
##	140	0.3718	nan	0.1000	-0.0073
##	160	0.3294	nan	0.1000	-0.0062
##	180	0.2819	nan	0.1000	-0.0026
##	200	0.2497	nan	0.1000	-0.0034
##	220	0.2233	nan	0.1000	-0.0058
##	240	0.1990	nan	0.1000	-0.0018
##	250	0.1871	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.5868	nan	0.1000	0.4115
##	2	7.2833	nan	0.1000	0.2331
##	3	7.0345	nan	0.1000	0.2570
##	4	6.8101	nan	0.1000	0.1071
##	5	6.5893	nan	0.1000	0.1563
##	6	6.3092	nan	0.1000	0.1664
##	7	6.1025	nan	0.1000	0.1476
##	8	5.9663	nan	0.1000	0.0749
##	9	5.7474	nan	0.1000	0.1445
##	10	5.5960	nan	0.1000	0.0876
##	20	4.4901	nan	0.1000	0.0532
##	40	3.2925	nan	0.1000	0.0364
##	60	2.6190	nan	0.1000	0.0090
##	80	2.1208	nan	0.1000	0.0132
##	100	1.7732	nan	0.1000	-0.0007
##	120	1.5132	nan	0.1000	0.0046
##	140	1.3283	nan	0.1000	0.0031
##	160	1.1925	nan	0.1000	-0.0002

##	180	1.0847	nan	0.1000	-0.0013
##	200	0.9981	nan	0.1000	-0.0003
##	220	0.9475	nan	0.1000	-0.0035
##	240	0.9021	nan	0.1000	-0.0047
##	250	0.8843	nan	0.1000	-0.0029
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.3282	nan	0.1000	0.5172
##	2	6.9512	nan	0.1000	0.3872
##	3	6.5318	nan	0.1000	0.3539
##	4	6.1978	nan	0.1000	0.2757
##	5	5.9066	nan	0.1000	0.2460
##	6	5.6366	nan	0.1000	0.2517
##	7	5.3731	nan	0.1000	0.1878
##	8	5.1982	nan	0.1000	0.1405
##	9	5.0115	nan	0.1000	0.1659
##	10	4.8495	nan	0.1000	0.1095
##	20	3.3891	nan	0.1000	0.1033
##	40	2.0749	nan	0.1000	0.0310
##	60	1.4400	nan	0.1000	0.0118
##	80	1.1141	nan	0.1000	0.0030
##	100	0.9360	nan	0.1000	0.0034
##	120	0.8234	nan	0.1000	-0.0051
##	140	0.7648	nan	0.1000	-0.0025
##	160	0.7108	nan	0.1000	-0.0075
##	180	0.6698	nan	0.1000	-0.0052
##	200	0.6366	nan	0.1000	-0.0069
##	220	0.6020	nan	0.1000	-0.0060
##	240	0.5770	nan	0.1000	-0.0049
##	250	0.5640	nan	0.1000	-0.0035
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2616	nan	0.1000	0.6773
##	2	6.8094	nan	0.1000	0.2167
##	3	6.3219	nan	0.1000	0.4713
##	4	5.9148	nan	0.1000	0.3566
##	5	5.5959	nan	0.1000	0.2337
##	6	5.2724	nan	0.1000	0.3200
##	7	4.9638	nan	0.1000	0.1900
##	8	4.7283	nan	0.1000	0.1678
##	9	4.5198	nan	0.1000	0.1260
##	10	4.3024	nan	0.1000	0.1451
##	20	2.7404	nan	0.1000	0.0379
##	40	1.5392	nan	0.1000	-0.0055
##	60	1.0399	nan	0.1000	0.0123
##	80	0.8192	nan	0.1000	0.0004

##	100	0.7016	nan	0.1000	-0.0083
##	120	0.6325	nan	0.1000	-0.0080
##	140	0.5744	nan	0.1000	-0.0063
##	160	0.5259	nan	0.1000	-0.0054
##	180	0.4819	nan	0.1000	-0.0111
##	200	0.4502	nan	0.1000	-0.0055
##	220	0.4164	nan	0.1000	-0.0031
##	240	0.3874	nan	0.1000	-0.0056
##	250	0.3749	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.4180	nan	0.1000	0.3827
##	2	6.7805	nan	0.1000	0.4994
##	3	6.2576	nan	0.1000	0.4550
##	4	5.8389	nan	0.1000	0.2288
##	5	5.4627	nan	0.1000	0.3687
##	6	5.1119	nan	0.1000	0.3303
##	7	4.7963	nan	0.1000	0.3248
##	8	4.5143	nan	0.1000	0.2401
##	9	4.2403	nan	0.1000	0.1986
##	10	4.0630	nan	0.1000	0.1325
##	20	2.4827	nan	0.1000	0.0652
##	40	1.2766	nan	0.1000	0.0153
##	60	0.8585	nan	0.1000	-0.0103
##	80	0.6931	nan	0.1000	-0.0009
##	100	0.5966	nan	0.1000	-0.0085
##	120	0.5283	nan	0.1000	-0.0111
##	140	0.4718	nan	0.1000	-0.0106
##	160	0.4263	nan	0.1000	-0.0058
##	180	0.3870	nan	0.1000	-0.0051
##	200	0.3533	nan	0.1000	-0.0027
##	220	0.3194	nan	0.1000	-0.0032
##	240	0.2922	nan	0.1000	-0.0019
##	250	0.2785	nan	0.1000	-0.0040
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.1462	nan	0.1000	0.6854
##	2	6.5338	nan	0.1000	0.3961
##	3	6.0020	nan	0.1000	0.4159
##	4	5.5196	nan	0.1000	0.3879
##	5	5.0940	nan	0.1000	0.3601
##	6	4.7927	nan	0.1000	0.2963
##	7	4.4249	nan	0.1000	0.2827
##	8	4.1084	nan	0.1000	0.2133
##	9	3.8253	nan	0.1000	0.1881
##	10	3.6343	nan	0.1000	0.1233

##	20	2.1522	nan	0.1000	0.0354
##	40	1.0580	nan	0.1000	0.0161
##	60	0.7191	nan	0.1000	0.0018
##	80	0.5670	nan	0.1000	-0.0057
##	100	0.4832	nan	0.1000	-0.0050
##	120	0.4124	nan	0.1000	-0.0054
##	140	0.3602	nan	0.1000	-0.0078
##	160	0.3179	nan	0.1000	-0.0036
##	180	0.2778	nan	0.1000	-0.0047
##	200	0.2450	nan	0.1000	-0.0059
##	220	0.2183	nan	0.1000	-0.0040
##	240	0.1929	nan	0.1000	-0.0048
##	250	0.1839	nan	0.1000	-0.0040
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.4540	nan	0.1000	0.3641
##	2	7.1373	nan	0.1000	0.3291
##	3	6.8416	nan	0.1000	0.2730
##	4	6.5864	nan	0.1000	0.1830
##	5	6.3867	nan	0.1000	0.1603
##	6	6.1413	nan	0.1000	0.2019
##	7	5.9610	nan	0.1000	0.1395
##	8	5.8194	nan	0.1000	0.1027
##	9	5.6546	nan	0.1000	0.0827
##	10	5.4631	nan	0.1000	0.0971
##	20	4.3922	nan	0.1000	0.0188
##	40	3.2426	nan	0.1000	0.0345
##	60	2.5668	nan	0.1000	0.0223
##	80	2.0713	nan	0.1000	0.0088
##	100	1.7438	nan	0.1000	-0.0065
##	120	1.4921	nan	0.1000	0.0043
##	140	1.3219	nan	0.1000	0.0085
##	160	1.1951	nan	0.1000	0.0011
##	180	1.1011	nan	0.1000	-0.0045
##	200	1.0331	nan	0.1000	-0.0013
##	220	0.9765	nan	0.1000	-0.0020
##	240	0.9362	nan	0.1000	-0.0053
##	250	0.9130	nan	0.1000	0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.2752	nan	0.1000	0.5651
##	2	6.7895	nan	0.1000	0.4457
##	3	6.4533	nan	0.1000	0.2484
##	4	6.1292	nan	0.1000	0.3299
##	5	5.8643	nan	0.1000	0.2757
##	6	5.6456	nan	0.1000	0.1455

##	7	5.3780	nan	0.1000	0.2465
##	8	5.1363	nan	0.1000	0.1833
##	9	4.9400	nan	0.1000	0.1011
##	10	4.7344	nan	0.1000	0.1801
##	20	3.2834	nan	0.1000	0.0459
##	40	2.0454	nan	0.1000	0.0186
##	60	1.4428	nan	0.1000	0.0008
##	80	1.0931	nan	0.1000	0.0050
##	100	0.9245	nan	0.1000	-0.0066
##	120	0.8152	nan	0.1000	-0.0040
##	140	0.7456	nan	0.1000	-0.0028
##	160	0.6979	nan	0.1000	-0.0052
##	180	0.6573	nan	0.1000	-0.0035
##	200	0.6239	nan	0.1000	-0.0037
##	220	0.5949	nan	0.1000	-0.0042
##	240	0.5695	nan	0.1000	-0.0039
##	250	0.5578	nan	0.1000	-0.0039
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2004	nan	0.1000	0.5575
##	2	6.6875	nan	0.1000	0.5080
##	3	6.1988	nan	0.1000	0.4364
##	4	5.7727	nan	0.1000	0.3191
##	5	5.4082	nan	0.1000	0.3497
##	6	5.1722	nan	0.1000	0.1589
##	7	4.8592	nan	0.1000	0.1847
##	8	4.6133	nan	0.1000	0.2159
##	9	4.3824	nan	0.1000	0.2002
##	10	4.1895	nan	0.1000	0.1182
##	20	2.7390	nan	0.1000	0.0733
##	40	1.5162	nan	0.1000	-0.0008
##	60	1.0207	nan	0.1000	0.0026
##	80	0.8292	nan	0.1000	-0.0016
##	100	0.7057	nan	0.1000	-0.0089
##	120	0.6346	nan	0.1000	-0.0085
##	140	0.5675	nan	0.1000	-0.0056
##	160	0.5176	nan	0.1000	-0.0074
##	180	0.4752	nan	0.1000	-0.0050
##	200	0.4333	nan	0.1000	-0.0054
##	220	0.4032	nan	0.1000	-0.0070
##	240	0.3743	nan	0.1000	-0.0022
##	250	0.3642	nan	0.1000	-0.0062
##	T4	Tanadan Darrida ara	V-1:4D	C+ C	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.1706	nan	0.1000	0.6334
##	2	6.5472	nan	0.1000	0.5452

##	3	5.9610	nan	0.1000	0.4332
##	4	5.5223	nan	0.1000	0.3950
##	5	5.1475	nan	0.1000	0.2716
##	6	4.8185	nan	0.1000	0.2069
##	7	4.5333	nan	0.1000	0.2125
##	8	4.2886	nan	0.1000	0.2125
##	9	4.0286	nan	0.1000	0.1507
##	10	3.8317	nan	0.1000	0.1457
##	20	2.3895	nan	0.1000	0.0665
##	40	1.2552	nan	0.1000	0.0223
##	60	0.8795	nan	0.1000	0.0039
##	80	0.7069	nan	0.1000	-0.0107
##	100	0.6120	nan	0.1000	-0.0067
##	120	0.5331	nan	0.1000	-0.0065
##	140	0.4731	nan	0.1000	-0.0091
##	160	0.4256	nan	0.1000	-0.0038
##	180	0.3789	nan	0.1000	-0.0053
##	200	0.3447	nan	0.1000	-0.0045
##	220	0.3123	nan	0.1000	-0.0067
##	240	0.2807	nan	0.1000	-0.0018
##	250	0.2696	nan	0.1000	-0.0060
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.1181	nan	0.1000	0.6333
##	2	6.4637	nan	0.1000	0.5209
##	3				
	3	5.8982	nan	0.1000	0.5202
##	4	5.8982 5.4003	nan nan	0.1000 0.1000	0.5202 0.3026
##					
	4	5.4003	nan	0.1000	0.3026
##	4 5	5.4003 4.9882	nan nan	0.1000 0.1000	0.3026 0.2926
## ##	4 5 6	5.4003 4.9882 4.6393	nan nan nan	0.1000 0.1000 0.1000	0.3026 0.2926 0.2601
## ## ##	4 5 6 7	5.4003 4.9882 4.6393 4.3294	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207
## ## ## ##	4 5 6 7 8	5.4003 4.9882 4.6393 4.3294 4.0488	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276
## ## ## ##	4 5 6 7 8 9	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489
## ## ## ## ##	4 5 6 7 8 9	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313
## ## ## ## ##	4 5 6 7 8 9 10 20	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913 0.4891	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047
## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005
## ## ## ## ## ## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005 -0.0051
## ## ## ## ## ## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935 0.2561	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005
# # # # # # # # # # # # # # # # # # #	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	5.4003 4.9882 4.6393 4.3294 4.0488 3.7542 3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935 0.2561 0.2280	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.3026 0.2926 0.2601 0.2207 0.2276 0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005 -0.0051

##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.9913	nan	0.1000	0.3761
##	2	7.7852	nan	0.1000	0.1808
##	3	7.4353	nan	0.1000	0.3342
##	4	7.2002	nan	0.1000	0.1743
##	5	6.8764	nan	0.1000	0.3014
##	6	6.7249	nan	0.1000	0.1377
##	7	6.5608	nan	0.1000	0.0969
##	8	6.3857	nan	0.1000	0.1119
##	9	6.2081	nan	0.1000	0.2099
##	10	6.0676	nan	0.1000	0.0350
##	20	4.8481	nan	0.1000	0.0326
##	40	3.5311	nan	0.1000	0.0243
##	60	2.7637	nan	0.1000	-0.0042
##	80	2.2298	nan	0.1000	0.0035
##	100	1.8541	nan	0.1000	0.0040
##	120	1.5720	nan	0.1000	-0.0142
##	140	1.3723	nan	0.1000	0.0089
##	160	1.2296	nan	0.1000	-0.0073
##	180	1.1206	nan	0.1000	-0.0095
##	200	1.0353	nan	0.1000	-0.0009
##	220	0.9629	nan	0.1000	-0.0014
##	240	0.9290	nan	0.1000	-0.0011
##	250	0.9156	nan	0.1000	-0.0036
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.7709	nan	0.1000	0.4607
##	2	7.2930	nan	0.1000	0.4519
##	3	6.7154	nan	0.1000	0.2983
##	4 5	6.4052	nan	0.1000	0.2385
##	6	6.0937	nan	0.1000 0.1000	0.2545 0.2344
##	7	5.7996 5.6159	nan	0.1000	0.2344
##	8	5.4356	nan nan	0.1000	0.1033
##	9	5.2146		0.1000	0.1413
##	10	5.0671	nan nan	0.1000	0.1220
##	20	3.5111	nan	0.1000	0.1222
##	40	2.0860	nan	0.1000	0.0249
##	60	1.4474	nan	0.1000	0.0088
##	80	1.1308	nan	0.1000	-0.0062
##	100	0.9648	nan	0.1000	0.0020
##	120	0.8736	nan	0.1000	-0.0089
##	140	0.8043	nan	0.1000	-0.0064
##	160	0.7498	nan	0.1000	-0.0083
##	180	0.7018	nan	0.1000	0.0001
	100	0.,010	nan	5.1000	0.0001

##	200	0.6598	nan	0.1000	-0.0037
##	220	0.6329	nan	0.1000	-0.0035
##	240	0.6049	nan	0.1000	-0.0068
##	250	0.5905	nan	0.1000	-0.0046
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.5947	nan	0.1000	0.5713
##	2	6.9919	nan	0.1000	0.5903
##	3	6.5417	nan	0.1000	0.4225
##	4	6.0968	nan	0.1000	0.3213
##	5	5.7124	nan	0.1000	0.3371
##	6	5.3694	nan	0.1000	0.2772
##	7	5.0464	nan	0.1000	0.2062
##	8	4.7692	nan	0.1000	0.2608
##	9	4.6153	nan	0.1000	0.0811
##	10	4.4195	nan	0.1000	0.0977
##	20	2.9502	nan	0.1000	0.1132
##	40	1.5511	nan	0.1000	0.0204
##	60	1.0570	nan	0.1000	0.0142
##	80	0.8503	nan	0.1000	-0.0047
##	100	0.7300	nan	0.1000	-0.0177
##	120	0.6452	nan	0.1000	-0.0077
##	140	0.5915	nan	0.1000	-0.0082
##	160	0.5400	nan	0.1000	-0.0058
##	180	0.5009	nan	0.1000	-0.0040
##	200	0.4669	nan	0.1000	-0.0059
##	220	0.4400	nan	0.1000	-0.0040
##	240	0.4131	nan	0.1000	-0.0079
##	250	0.4039	nan	0.1000	-0.0059
##	т.	m . p .	17 1 · 1D ·	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1 2	7.6580	nan	0.1000	0.6541
##	3	7.0177	nan	0.1000	0.5653
## ##	4	6.4657	nan	0.1000 0.1000	0.5278
##	5	5.9869 5.5715	nan	0.1000	0.4523 0.3559
##	6	5.1874	nan	0.1000	0.3339
##	7	4.8558	nan nan	0.1000	0.2317
##	8	4.5402	nan	0.1000	0.2317
##	9	4.3011		0.1000	0.1610
##	10	4.0022	nan nan	0.1000	0.1010
##	20	2.4352	nan	0.1000	0.2233
##	40	1.2432	nan	0.1000	0.0032
##	60	0.8629	nan	0.1000	-0.0032
##	80	0.7137	nan	0.1000	-0.0020
##	100	0.6171	nan	0.1000	-0.0102
	100	0.0111	11011	0.1000	0.0102

##	120	0.5389	nan	0.1000	-0.0066
##	140	0.4772	nan	0.1000	-0.0067
##	160	0.4290	nan	0.1000	-0.0091
##	180	0.3873	nan	0.1000	-0.0116
##	200	0.3411	nan	0.1000	-0.0052
##	220	0.3122	nan	0.1000	-0.0030
##	240	0.2868	nan	0.1000	-0.0020
##	250	0.2726	nan	0.1000	-0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4799	nan	0.1000	0.8543
##	2	6.8255	nan	0.1000	0.5990
##	3	6.2454	nan	0.1000	0.4987
##	4	5.7558	nan	0.1000	0.3832
##	5	5.3790	nan	0.1000	0.3350
##	6	5.0578	nan	0.1000	0.2406
##	7	4.7324	nan	0.1000	0.1941
##	8	4.3901	nan	0.1000	0.2642
##	9	4.0528	nan	0.1000	0.2389
##	10	3.7874	nan	0.1000	0.2426
##	20	2.1952	nan	0.1000	0.0768
##	40	1.1025	nan	0.1000	-0.0081
##	60	0.7689	nan	0.1000	-0.0002
##	80	0.6122	nan	0.1000	-0.0061
##	100	0.5200	nan	0.1000	-0.0109
##	120	0.4400	nan	0.1000	-0.0069
##	140	0.3837	nan	0.1000	-0.0055
##	160	0.3328	nan	0.1000	-0.0034
##	180	0.2920	nan	0.1000	-0.0077
##	200	0.2544	nan	0.1000	-0.0035
##	220	0.2241	nan	0.1000	-0.0036
##	240	0.1988	nan	0.1000	-0.0047
##	250	0.1865	nan	0.1000	-0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2748	nan	0.1000	0.3849
##	2	6.9549	nan	0.1000	0.3086
##	3	6.6188	nan	0.1000	0.2131
##	4	6.3662	nan	0.1000	0.2414
##	5	6.1655	nan	0.1000	0.1744
##	6	5.9621	nan	0.1000	0.1800
##	7	5.7756	nan	0.1000	0.1729
##	8	5.6347	nan	0.1000	0.1348
##	9	5.5429	nan	0.1000	0.0634
##	10	5.3761	nan	0.1000	0.0928
##	20	4.3688	nan	0.1000	0.0591

##	40	3.2068	nan	0.1000	0.0402
##	60	2.5475	nan	0.1000	0.0114
##	80	2.0354	nan	0.1000	0.0023
##	100	1.7011	nan	0.1000	-0.0072
##	120	1.4362	nan	0.1000	-0.0015
##	140	1.2570	nan	0.1000	-0.0034
##	160	1.1369	nan	0.1000	0.0021
##	180	1.0223	nan	0.1000	-0.0062
##	200	0.9563	nan	0.1000	-0.0038
##	220	0.8991	nan	0.1000	-0.0058
##	240	0.8598	nan	0.1000	-0.0059
##	250	0.8460	nan	0.1000	-0.0086
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.1432	nan	0.1000	0.5851
##	2	6.7241	nan	0.1000	0.4090
##	3	6.2802	nan	0.1000	0.3640
##	4	5.9965	nan	0.1000	0.1559
##	5	5.7218	nan	0.1000	0.2864
##	6	5.4669	nan	0.1000	0.2326
##	7	5.1666	nan	0.1000	0.2190
##	8	4.9344	nan	0.1000	0.2265
##	9	4.7538	nan	0.1000	0.1466
##	10	4.5570	nan	0.1000	0.1311
##	20	3.2524	nan	0.1000	0.1132
##	40	1.9609	nan	0.1000	0.0491
##	60	1.3733	nan	0.1000	-0.0028
##	80	1.0764	nan	0.1000	-0.0083
##	100	0.8912	nan	0.1000	-0.0043
##	120	0.7917	nan	0.1000	-0.0084
##	140	0.7298	nan	0.1000	-0.0027
##	160	0.6894	nan	0.1000	-0.0061
##	180	0.6543	nan	0.1000	-0.0077
##	200	0.6175	nan	0.1000	-0.0009
##	220	0.5885	nan	0.1000	-0.0089
##	240	0.5540	nan	0.1000	-0.0036
##	250	0.5386	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.0286	nan	0.1000	0.5874
##	2	6.5422	nan	0.1000	0.4614
##	3	6.0807	nan	0.1000	0.4788
##	4	5.6220	nan	0.1000	0.3139
##	5	5.3339	nan	0.1000	0.1849
##	6	4.9990	nan	0.1000	0.2584
##	7	4.7023	nan	0.1000	0.2324

##	8	4.4521	nan	0.1000	0.2002
##	9	4.2254	nan	0.1000	0.1721
##	10	4.0158	nan	0.1000	0.1061
##	20	2.5603	nan	0.1000	0.0649
##	40	1.4633	nan	0.1000	0.0221
##	60	1.0126	nan	0.1000	0.0040
##	80	0.8089	nan	0.1000	-0.0011
##	100	0.6913	nan	0.1000	-0.0016
##	120	0.6212	nan	0.1000	-0.0039
##	140	0.5555	nan	0.1000	0.0013
##	160	0.5178	nan	0.1000	-0.0070
##	180	0.4779	nan	0.1000	-0.0062
##	200	0.4357	nan	0.1000	-0.0056
##	220	0.4076	nan	0.1000	-0.0034
##	240	0.3838	nan	0.1000	-0.0051
##	250	0.3724	nan	0.1000	-0.0045
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.0052	nan	0.1000	0.7357
##	2	6.3136	nan	0.1000	0.6391
##	3	5.8579	nan	0.1000	0.3395
##	4	5.4261	nan	0.1000	0.4118
##	5	5.0380	nan	0.1000	0.2541
##	6	4.7502	nan	0.1000	0.2364
##	7	4.5107	nan	0.1000	0.1393
##	8	4.2559	nan	0.1000	0.2325
##	9	4.0139	nan	0.1000	0.1431
##	10	3.7788	nan	0.1000	0.1690
##	20	2.2976	nan	0.1000	0.0670
##	40	1.1641	nan	0.1000	0.0258
##	60	0.7945	nan	0.1000	-0.0042
##	80	0.6385	nan	0.1000	-0.0010
##	100	0.5468	nan	0.1000	-0.0065
##	120	0.4711	nan	0.1000	-0.0070
##	140	0.4186	nan	0.1000	-0.0051
##	160	0.3792	nan	0.1000	-0.0062
##	180	0.3426	nan	0.1000	-0.0072
##	200	0.3149	nan	0.1000	-0.0066
##	220	0.2897	nan	0.1000	-0.0081
##	240	0.2642	nan	0.1000	-0.0020
##	250	0.2526	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.0074	nan	0.1000	0.6779
##	2	6.3049	nan	0.1000	0.6277
##	3	5.7428	nan	0.1000	0.5037
	J	0.1120	11011	3.1000	5.0001

##	4	5.3843	nan	0.1000	0.2738
##	5	4.9412	nan	0.1000	0.4013
##	6	4.5370	nan	0.1000	0.2175
##	7	4.2296	nan	0.1000	0.2194
##	8	3.9306	nan	0.1000	0.2566
##	9	3.6976	nan	0.1000	0.1642
##	10	3.4742	nan	0.1000	0.1155
##	20	2.0717	nan	0.1000	0.0554
##	40	1.0961	nan	0.1000	0.0158
##	60	0.7387	nan	0.1000	-0.0071
##	80	0.5947	nan	0.1000	-0.0086
##	100	0.4878	nan	0.1000	-0.0035
##	120	0.4191	nan	0.1000	-0.0069
##	140	0.3558	nan	0.1000	-0.0047
##	160	0.3193	nan	0.1000	-0.0029
##	180	0.2757	nan	0.1000	-0.0060
##	200	0.2412	nan	0.1000	-0.0011
##	220	0.2154	nan	0.1000	-0.0022
##	240	0.1911	nan	0.1000	-0.0019
##	250	0.1798	nan	0.1000	-0.0025
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.5373	nan	0.1000	0.3255
##	2	7.2302	nan	0.1000	0.3081
##	3	7.0287	nan	0.1000	0.0792
##	4	6.8235	nan	0.1000	0.1648
##	5	6.5846	nan	0.1000	0.2528 0.2142
##			nan	0.1000	0.2142
шш	6	6.3572			
##	7	6.2170	nan	0.1000	0.0731
##	7 8	6.2170 6.0241	nan	0.1000 0.1000	0.0731 0.1693
## ##	7 8 9	6.2170 6.0241 5.8911	nan nan	0.1000 0.1000 0.1000	0.0731 0.1693 0.1379
## ## ##	7 8 9 10	6.2170 6.0241 5.8911 5.7890	nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396
## ## ## ##	7 8 9 10 20	6.2170 6.0241 5.8911 5.7890 4.6672	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610
## ## ## ##	7 8 9 10 20 40	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241
## ## ## ## ##	7 8 9 10 20 40 60	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076
## ## ## ## ##	7 8 9 10 20 40 60 80	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027
## ## ## ## ##	7 8 9 10 20 40 60	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076
## ## ## ## ## ##	7 8 9 10 20 40 60 80 100	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027
## ## ## ## ## ##	7 8 9 10 20 40 60 80 100	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823 1.5329	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027 -0.0038 0.0083
## ## ## ## ## ## ##	7 8 9 10 20 40 60 80 100 120	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823 1.5329 1.3371	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027 -0.0038 0.0083 -0.0004
## ## ## ## ## ## ##	7 8 9 10 20 40 60 80 100 120 140	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823 1.5329 1.3371 1.1999	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035
## ## ## ## ## ## ##	7 8 9 10 20 40 60 80 100 120 140 160 180	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035
## ## ## ## ## ## ##	7 8 9 10 20 40 60 80 100 120 140 160 180 200	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969 1.0178	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001 -0.0020
## ## ## ## ## ## ## ##	7 8 9 10 20 40 60 80 100 120 140 160 180 200	6.2170 6.0241 5.8911 5.7890 4.6672 3.3823 2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969 1.0178 0.9601	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0731 0.1693 0.1379 0.0396 0.0610 0.0241 0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001 -0.0020 -0.0065

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.3367	nan	0.1000	0.5068
##	2	6.8403	nan	0.1000	0.4133
##	3	6.4575	nan	0.1000	0.3430
##	4	6.1040	nan	0.1000	0.2802
##	5	5.9071	nan	0.1000	0.1333
##	6	5.6534	nan	0.1000	0.2078
##	7	5.4050	nan	0.1000	0.2252
##	8	5.2113	nan	0.1000	0.1294
##	9	4.9828	nan	0.1000	0.1934
##	10	4.8171	nan	0.1000	0.1146
##	20	3.3732	nan	0.1000	0.0232
##	40	2.0529	nan	0.1000	0.0254
##	60	1.4630	nan	0.1000	0.0107
##	80	1.1301	nan	0.1000	-0.0184
##	100	0.9347	nan	0.1000	-0.0020
##	120	0.8346	nan	0.1000	-0.0053
##	140	0.7561	nan	0.1000	-0.0116
##	160	0.7038	nan	0.1000	-0.0083
##	180	0.6608	nan	0.1000	-0.0050
##	200	0.6231	nan	0.1000	-0.0062
##	220	0.5885	nan	0.1000	-0.0053
##	240	0.5666	nan	0.1000	-0.0073
##	250	0.5537	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	7.3914	ValidDeviance nan	0.1000	0.5561
## ## ##	1 2	7.3914 6.7379		0.1000 0.1000	0.5561 0.5924
## ## ## ##	1 2 3	7.3914 6.7379 6.1931	nan	0.1000 0.1000 0.1000	0.5561 0.5924 0.3638
## ## ## ##	1 2 3 4	7.3914 6.7379 6.1931 5.7353	nan nan	0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706
## ## ## ## ##	1 2 3 4 5	7.3914 6.7379 6.1931 5.7353 5.4272	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604
## ## ## ## ##	1 2 3 4 5 6	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462
## ## ## ## ## ##	1 2 3 4 5 6 7	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086 0.8744	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165 -0.0020
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086 0.8744 0.7519	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165 -0.0020 -0.0066
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086 0.8744 0.7519 0.6638	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165 -0.0020 -0.0066 -0.0039
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086 0.8744 0.7519 0.6638 0.5997	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165 -0.0020 -0.0066 -0.0039 -0.0044
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086 0.8744 0.7519 0.6638 0.5997 0.5553	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165 -0.0020 -0.0066 -0.0039 -0.0044 -0.0082
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	7.3914 6.7379 6.1931 5.7353 5.4272 5.1269 4.9406 4.7122 4.5181 4.3030 2.8485 1.6130 1.1086 0.8744 0.7519 0.6638 0.5997	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.5561 0.5924 0.3638 0.2706 0.2604 0.1462 0.0649 0.1369 0.1104 0.1313 0.0934 -0.0081 -0.0165 -0.0020 -0.0066 -0.0039 -0.0044

##	220	0.4566	nan	0.1000	-0.0051
##	240	0.4234	nan	0.1000	-0.0047
##	250	0.4103	nan	0.1000	-0.0062
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.3959	nan	0.1000	0.5344
##	2	6.7840	nan	0.1000	0.6032
##	3	6.2042	nan	0.1000	0.5214
##	4	5.7561	nan	0.1000	0.3567
##	5	5.3542	nan	0.1000	0.3154
##	6	5.0748	nan	0.1000	0.2697
##	7	4.6856	nan	0.1000	0.3381
##	8	4.4209	nan	0.1000	0.2125
##	9	4.1834	nan	0.1000	0.1959
##	10	3.9558	nan	0.1000	0.1757
##	20	2.5107	nan	0.1000	0.0757
##	40	1.3385	nan	0.1000	0.0197
##	60	0.9193	nan	0.1000	0.0067
##	80	0.7247	nan	0.1000	-0.0105
##	100	0.6080	nan	0.1000	-0.0060
##	120	0.5370	nan	0.1000	-0.0086
##	140	0.4808	nan	0.1000	-0.0094
##	160	0.4331	nan	0.1000	-0.0018
##	180	0.3896	nan	0.1000	-0.0076
##	200	0.3487	nan	0.1000	-0.0060
##	220	0.3156	nan	0.1000	-0.0044
##	240	0.2857	nan	0.1000	-0.0023
##	250	0.2735	nan	0.1000	-0.0045
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.2002	nan	0.1000	0.7128
##	2	6.5508	nan	0.1000	0.5996
##	3	5.9803	nan	0.1000	0.5293
##	4	5.5269	nan	0.1000	0.4154
##	5	5.1301	nan	0.1000	0.3923
##	6	4.7897	nan	0.1000	0.2007
##	7	4.4224	nan	0.1000	0.2482
##	8	4.1528	nan	0.1000	0.1840
##	9	3.8740	nan	0.1000	0.1938
##	10	3.6367	nan	0.1000	0.1894
##	20	2.1725	nan	0.1000	0.0933
##	40	1.0934	nan	0.1000	0.0063
##	60	0.7734	nan	0.1000	-0.0003
##	80	0.6267	nan	0.1000	-0.0113
##	100	0.5248	nan	0.1000	-0.0115
##	120	0.4509	nan	0.1000	-0.0086

##	140	0.3909	nan	0.1000	-0.0042
##	160	0.3417	nan	0.1000	-0.0095
##	180	0.2979	nan	0.1000	-0.0010
##	200	0.2641	nan	0.1000	-0.0051
##	220	0.2324	nan	0.1000	-0.0048
##	240	0.2065	nan	0.1000	-0.0029
##	250	0.1944	nan	0.1000	-0.0033
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.5853	nan	0.1000	0.4622
##	2	7.2268	nan	0.1000	0.2276
##	3	6.9725	nan	0.1000	0.2317
##	4	6.7255	nan	0.1000	0.1945
##	5	6.5310	nan	0.1000	0.1967
##	6	6.3548	nan	0.1000	0.1452
##	7	6.1331	nan	0.1000	0.1877
##	8	6.0205	nan	0.1000	0.0816
##	9	5.8651	nan	0.1000	0.1151
##	10	5.7272	nan	0.1000	0.0983
##	20	4.5797	nan	0.1000	0.0457
##	40	3.3805	nan	0.1000	0.0281
##	60	2.6821	nan	0.1000	-0.0024
##	80	2.1887	nan	0.1000	0.0083
##	100	1.8328	nan	0.1000	0.0108
##	120	1.5572	nan	0.1000	-0.0039
##	140	1.3454	nan	0.1000	0.0011
##	160	1.2090	nan	0.1000	-0.0017
##	180	1.0998	nan	0.1000	0.0009
##	200	1.0155	nan	0.1000	-0.0061
##	220	0.9510	nan	0.1000	-0.0040
##	240	0.9159	nan	0.1000	-0.0058
##	250	0.8952	nan	0.1000	-0.0036

 ${\tt carseats.gbm}$

```
## Stochastic Gradient Boosting
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 289, ...
## Resampling results across tuning parameters:
##
## interaction.depth n.trees RMSE Rsquared MAE
## 1 50 1.853439 0.6550573 1.4985804
## 1 100 1.547356 0.7484921 1.2635775
```

```
##
     1
                        150
                                 1.359464 0.7941783
                                                     1.1116649
                        200
                                 1.263360 0.8152576
##
    1
                                                      1.0273078
##
    1
                        250
                                 1.216972 0.8238354 0.9842987
    2
##
                        50
                                 1.559349 0.7549692
                                                     1.2703898
##
    2
                        100
                                 1.295349 0.8121515
                                                      1.0550231
##
    2
                        150
                                 1.225522 0.8259530 0.9949898
##
    2
                        200
                                 1.219263 0.8282347
                                                      0.9847772
    2
##
                        250
                                 1.222610 0.8269006 0.9882843
    3
##
                        50
                                 1.434103 0.7828979
                                                      1.1618345
##
    3
                        100
                                 1.265869 0.8154077
                                                      1.0207212
##
    3
                        150
                                 1.242808 0.8187860 0.9946575
##
    3
                        200
                                 1.263512 0.8139170
                                                      1.0132197
    3
##
                        250
                                 1.266998 0.8123660
                                                      1.0169904
##
    4
                        50
                                 1.387541 0.7897254
                                                      1.1230060
##
    4
                        100
                                 1.279528 0.8095927
                                                      1.0299009
    4
##
                        150
                                 1.297827 0.8045587
                                                      1.0399179
##
    4
                        200
                                 1.316687 0.7979882
                                                      1.0556691
    4
##
                        250
                                 1.321038 0.7972775
                                                      1.0621347
##
    5
                                          0.7980728
                        50
                                 1.348922
                                                      1.0974910
##
    5
                        100
                                 1.277990
                                           0.8108521
                                                      1.0389748
##
    5
                        150
                                 1.286355
                                           0.8066147
                                                      1.0393349
##
    5
                        200
                                 1.292184 0.8042104
                                                      1.0372671
##
                        250
                                 1.314433 0.7973539
                                                     1.0572041
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
\#\# RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 250, interaction.depth =
```

1, shrinkage = 0.1 and n.minobsinnode = 10.

Gradient Boosing Regression: Predicted vs. Actual


```
## [1] 1.402428
```

```
rm(carseats.pred)
#plot(varImp(carseats.qbm), main="Variable Importance with Gradient Boosting")
```

7.6 Summary

Okay, I'm going to tally up the results! For the classification division, the winner is the manual classification tree! Gradient boosting made a valiant run at it, but came up just a little short.

7.6. SUMMARY 153

```
## model Acc
## 1 Manual Class 0.85915
## 2 Gradient Boosting 0.85446
## 3 Class w.tuneGrid 0.84507
## 4 Bagging 0.82629
## 5 Random Forest 0.82629
```

And now for the regression division, the winnner is... gradient boosting!

```
rbind(data.frame(model = "Manual ANOVA", RMSE = round(carseats_model_1_pruned_rmse, 5)),
      data.frame(model = "ANOVA w.tuneGrid", RMSE = round(carseats_model_3_pruned_rmse, 5)),
      data.frame(model = "Bagging", RMSE = round(carseats.bag.rmse, 5)),
      data.frame(model = "Random Forest", RMSE = round(carseats.frst.rmse, 5)),
      data.frame(model = "Gradient Boosting", RMSE = round(carseats.gbm.rmse, 5))
) %>% arrange(RMSE)
##
                 model
                          RMSE
## 1 Gradient Boosting 1.40243
## 2
         Random Forest 1.75811
## 3
               Bagging 1.93279
## 4 ANOVA w.tuneGrid 2.29833
## 5
          Manual ANOVA 2.38806
```

Here are plots of the ROC curves for all the models (one from each chapter) on the same graph. The ROCR package provides the prediction() and performance() functions which generate the data required for plotting the ROC curve, given a set of predictions and actual (true) values. The more "up and to the left" the ROC curve of a model is, the better the model. The AUC performance metric is literally the "Area Under the ROC Curve", so the greater the area under this curve, the higher the AUC, and the better-performing the model is.

```
library(ROCR)
# List of predictions
oj.class.pred <- predict(oj_model_3, oj_test, type = "prob")[,2]
oj.bag.pred <- predict(oj.bag, oj_test, type = "prob")[,2]
oj.frst.pred <- predict(oj.frst, oj_test, type = "prob")[,2]
oj.gbm.pred <- predict(oj.gbm, oj_test, type = "prob")[,2]
preds_list <- list(oj.class.pred, oj.bag.pred, oj.frst.pred, oj.gbm.pred)
#preds_list <- list(oj.class.pred)

# List of actual values (same for all)
m <- length(preds_list)
actuals_list <- rep(list(oj_test$Purchase), m)</pre>
```

Test Set ROC Curves

7.7 Reference

Penn State University, STAT 508: Applied Data Mining and Statistical Learning, "Lesson 11: Tree-based Methods". https://newonlinecourses.science.psu.edu/stat508/lesson/11.

Brownlee, Jason. "Classification And Regression Trees for Machine Learning", Machine Learning Mastery. https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/.

Brownlee, Jason. "A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning", Machine Learning Mastery. https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/.

7.7. REFERENCE 155

DataCamp: Machine Learning with Tree-Based Models in R

An Introduction to Statistical Learning by Gareth James, et al.

SAS Documentation

StatMethods: Tree-Based Models

Machine Learning Plus

GBM (Boosted Models) Tuning Parameters from Listen Data

Harry Southworth on GitHub

Gradient Boosting Classification with GBM in R in DataTechNotes

Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2019. https://christophm.github.io/interpretable-ml-book/.

Regularization

Non-linear Models

Linear methods can model nonlinear relationships by including polynomial terms, interaction effects, and variable transformations. However, it is often difficult to identify how to formulate the model. Nonlinear models may be preferable because you do not need to know the the exact form of the nonlinearity prior to model training.

9.1 Splines

A regression spline fits a piecewise polynomial to the range of X partitioned by knots (K knots produce K+1 piecewise polynomials) **James et al** (James et al., 2013). The polynomials can be of any degree d, but are usually in the range [0, 3], most commonly 3 (a cubic spline). To avoid discontinuities in the fit, a degree-d spline is constrained to have continuity in derivatives up to degree d-1 at each knot.

A cubic spline fit to a data set with K knots, performs least squares regression with an intercept and 3+K predictors, of the form

$$y_i = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 h(X,\xi_1) + \beta_5 h(X,\xi_2) + \dots + \beta_{K+3} h(X,\xi_K)$$

where ξ_1,\dots,ξ_K are the knots are truncated power basis functions $h(X,\xi)=(X-\xi)^3$ if $X>\xi,$ else 0.

Splines can have high variance at the outer range of the predictors. A **natural spline** is a regression spline additionally constrained to be linear at the boundaries.

How many knots should there be, and Where should the knots be placed? It is common to place knots in a uniform fashion, with equal numbers of points

between each knot. The number of knots is typically chosen by trial and error using cross-validation to minimize the RSS. The number of knots is usually expressed in terms of degrees of freedom. A cubic spline will have K+3+1 degrees of freedom. A natural spline has K+3+1-5 degrees of freedom due to the constraints at the endpoints.

A further constraint can be added to reduce overfitting by enforcing smoothness in the spline. Instead of minimizing the loss function $\sum (y-g(x))^2$ where g(x) is a natural spline, minimize a loss function with an additional penalty for variability:

$$L = \sum (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt.$$

The function g(x) that minimizes the loss function is a *natural cubic spline* with knots at each x_1, \ldots, x_n . This is called a **smoothing spline**. The larger g is, the greater the penalty on variation in the spline. In a smoothing spline, you do not optimize the number or location of the knots – there is a knot at each training observation. Instead, you optimize λ . One way to optimize λ is cross-validation to minimize RSS. Leave-one-out cross-validation (LOOCV) can be computed efficiently for smoothing splines.

9.2 MARS

Multivariate adaptive regression splines (MARS) is a non-parametric algorithm that creates a piecewise linear model to capture nonlinearities and interactions effects. The resulting model is a weighted sum of *basis* functions $B_i(X)$:

$$\hat{y} = \sum_{i=1}^k w_i B_i(x)$$

The basis functions are either a constant (for the intercept), a hinge function of the form $\max(0,x-x_0)$ or $\max(0,x_0-x)$ (a more concise representation is $[\pm(x-x_0)]_+$), or products of two or more hinge functions (for interactions). MARS automatically selects which predictors to use and what predictor values to serve as the *knots* of the hinge functions.

MARS builds a model in two phases: the forward pass and the backward pass, similar to growing and pruning of tree models. MARS starts with a model consisting of just the intercept term equaling the mean of the response values. It then assesses every predictor to find a basis function pair consisting of opposing sides of a mirrored hinge function which produces the maximum improvement in the model error. MARS repeats the process until either it reaches a predefined limit of terms or the error improvement reaches a predefined limit.

9.2. MARS 161

MARS generalizes the model by removing terms according to the generalized cross validation (GCV) criterion. GCV is a form of regularization: it trades off goodness-of-fit against model complexity.

The earth::earth() function (documentation) performs the MARS algorithm (the term "MARS" is trademarked, so open-source implementations use "Earth" instead). The caret implementation tunes two parameters: nprune and degree. nprune is the maximum number of terms in the pruned model. degree is the maximum degree of interaction (default is 1 (no interactions)). However, there are other hyperparameters in the model that may improve performance, including minspan which regulates the number of knots in the predictors.

Here is an example using the Ames housing data set (following this tutorial.

```
library(tidyverse)
library(earth)
library(caret)
# set up
ames <- AmesHousing::make_ames()</pre>
set.seed(12345)
idx <- createDataPartition(ames$Sale_Price, p = 0.80, list = FALSE)
ames_train <- ames[idx, ] %>% as.data.frame()
ames_test <- ames[-idx, ]</pre>
m <- train(
  x = subset(ames_train, select = -Sale_Price),
  y = ames_train$Sale_Price,
 method = "earth",
 metric = "RMSE",
 minspan = -15,
  trControl = trainControl(method = "cv", number = 10),
  tuneGrid = expand.grid(
    degree = 1:3,
    nprune = seq(2, 100, length.out = 10) %>% floor()
  )
)
```

The model plot shows the best tuning parameter combination.

```
plot(m, main = "MARS Parameter Tuning")
```

MARS Parameter Tuning

m\$bestTune

```
## nprune degree
## 25 45 3
```

How does this model perform against the holdout data?

```
caret::postResample(
  pred = log(predict(m, newdata = ames_test)),
  obs = log(ames_test$Sale_Price)
)
```

```
## RMSE Rsquared MAE
## 0.16515620 0.85470300 0.09319503
```

9.3 GAM

Generalized additive models (GAM) allow for non-linear relationships between each feature and the response by replacing each linear component $\beta_j x_{ij}$ with a nonlinear function $f_j(x_{ij})$. The GAM model is of the form

9.3. *GAM* 163

$$y_i = \beta_0 + \sum f_j(x_{ij}) + \epsilon_i.$$

It is called an additive model because we calculate a separate f_j for each X_j , and then add together all of their contributions.

The advantage of GAMs is that they automatically model non-linear relationships so you do not need to manually try out many different transformations on each variable individually. And because the model is additive, you can still examine the effect of each X_j on Y individually while holding all of the other variables fixed. The main limitation of GAMs is that the model is restricted to be additive, so important interactions can be missed unless you explicitly add them.

Support Vector Machines

These notes rely on (James et al., 2013), (Hastie et al., 2017), and (Kuhn and Johnson, 2016). I also reviewed the material in PSU's Applied Data Mining and Statistical Learning (STAT 508), and the e1071 Support Vector Machines vignette.

The Support Vector Machines (SVM) algorithm finds the optimal separating hyperplane between members of two classes using an appropriate nonlinear mapping to a sufficiently high dimension. The hyperplane is defined by the observations that lie within a margin optimized by a cost hyperparameter. These observations are called the *support vectors*.

SVM is an extension of the *support vector classifier* which in turn is a generalization of the simple and intuitive *maximal margin classifier*.

10.1 Maximal Margin Classifier

The maximal margin classifier is the optimal hyperplane defined in the (rare) case where two classes are linearly separable. Given an $n \times p$ data matrix X with binary response variable defined as $y \in [-1,1]$ it may be possible to define a p-dimensional hyperplane $h(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \cdots + \beta_p X_p = x_i^T \beta + \beta_0 = 0$ such that all observations of each class fall on opposite sides of the hyperplane. This "separating hyperplane" has the property that if β is constrained to be a unit vector, $||\beta|| = \sum \beta^2 = 1$, then the product of the hyperplane and response variables are positive perpendicular distances from the hyperplane, the smallest of which may be termed the hyperplane margin, M,

$$y_i(x_i^{'}\beta + \beta_0) \ge M.$$

The maximal margin classifier is the hyperplane with the maximum margin. That is, $\max\{M\}$ subject to $||\beta||=1$. A separating hyperplane rarely exists. In fact, even if a separating hyperplane does exist, its resulting margin is probably undesirably narrow.

10.2 Support Vector Classifier

The maximal margin classifier can be generalized to non-separable cases using a so-called "soft margin". The generalization is called the *support vector classifier*. The soft margin allows some misclassification in the interest of greater robustness to individual observations. The support vector classifier optimizes

$$y_{i}(x_{i}^{'}\beta + \beta_{0}) \geq M(1 - \xi_{i})$$

where the ξ_i are positive slack variables whose sum is bounded by some constant tuning parameter $\sum \xi_i \leq constant$. The slack variable values indicate where the observation lies: $\xi_i = 0$ observations lie on the correct side of the margin; $\xi_i > 0$ observation lie on the wrong side of the margin; $\xi_i > 1$ observations lie on the wrong side of the hyperplane. The constant sets the tolerance for margin violation. If constant = 0, then all observations must reside on the correct side of the margin, as in the maximal margin classifier. The constant controls the bias-variance trade-off. As the constant increases, the margin widens and allows more violations. The classifier bias increases but its variance decreases.

The support vector classifier is usually defined by dropping the $||\beta|| = 1$ constraint, and defining $M = 1/||\beta||$. The optimization problem then becomes

$$\min ||\beta|| \ s.t. \ \begin{cases} y_i(x_i^T\beta + \beta_0) \geq 1 - \xi_i, \ \forall i \\ \xi_i \geq 0, \ \sum \xi_i \leq constant. \end{cases}$$

This is a quadratic equation with linear inequality constraints, so it is a convex optimization problem which can be solved using Lagrange multipliers. Reexpress the optimization problem as

$$\min_{\beta_0,\beta} \frac{1}{2} ||\beta||^2 = C \sum_{i=1}^N \xi_i s.t. \\ \xi_i \geq 0, \quad y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i, \quad \forall i = 0, \quad \forall i$$

where the "cost" parameter C replaces the constant and penalizes large residuals. This optimization problem is equivalent to *another* optimization problem, the familiar loss + penalty formulation:

$$\min_{\beta_0,\beta} \sum_{i=1}^{N} [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} ||\beta||^2$$

where $\lambda=1/C$ and $[1-y_if(x_i)]_+$ is a "hinge" loss function with $f(x_i)=sign[Pr(Y=+1|x)-1/2].$

The parameter estimates can be written as functions of a set of unknown parameters (α_i) and data points. The solution to the optimization problem requires only the inner products of the observations, represented as $\langle x_i, x_i \rangle$,

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$

The solution has the interesting property that only observations on or within the margin affect the hyperplane. These observations are known as support vectors. As the constant increases, the number of violating observations increase, and thus the number of support vectors increases. This property makes the algorithm robust to the extreme observations far away from the hyperplane.

The parameter estimators for α_i are nonzero only for the support vectors in the solution—that is, if a training observation is not a support vector, then its α_i equals zero.

The only shortcoming with the algorithm is that it presumes a linear decision boundary.

10.3 Support Vector Machines

Enlarging the feature space of the support vector classifier accommodates nonlinar relationships. Support vector machines do this in a specific way, using kernals. The kernal is a generalization of the inner product with form $K(x_i, x_i')$. So the linear kernal is simply

$$K(x_{i},x_{i}^{'})=\langle x,x_{i}\rangle$$

and the solution is

$$f(x) = \beta_0 + \sum_{i=1}^n \alpha_i K(x_i, x_i^{'})$$

K can take onother form instead, such as polynomial

$$K(x, x') = (\gamma \langle x, x' \rangle + c_0)^d$$

or radial

$$K(x, x') = \exp\{-\gamma ||x - x'||^2\}.$$

10.4 Example

Here is a data set of two classes $y \in [-1, 1]$ described by two features X1 and X2.

```
library(tidyverse)
set.seed(1)
x <- matrix(rnorm (20*2), ncol=2)
y <- c(rep(-1, 10), rep(1, 10))
x[y==1, ] <- x[y==1, ] + 1
train_data <- data.frame(x, y)
train_data$y <- as.factor(y)</pre>
```

A scatter plot reveals whether the classes are linearly separable.

```
ggplot(train_data, aes(x = X1, y = X2, color = y)) +
  geom_point(size = 2) +
  labs(title = "Binary response with two features") +
  theme(legend.position = "top")
```

Binary response with two features

No, they are not linearly separable. Now fit a support vector machine. The e1071 library implements the SVM algorithm. svm(..., kernel="linear") fits a support vector classifier. Change the kernal to c("polynomial", "radial") for SVM. Try a cost of 10.

10.4. EXAMPLE 169

```
library(e1071)
m <- svm(
    y ~ .,
    data = train_data,
    kernel = "linear",
    type = "C-classification", # (default) for classification
    cost = 10, # default is 1
    scale = FALSE # do not standardize features
)
plot(m, train_data)</pre>
```

SVM classification plot

The support vectors are plotted as "x's". There are seven of them.

```
m$index
```

```
## [1] 1 2 5 7 14 16 17
```

The summary shows adds additional information, including the distribution of the support vector classes.

```
summary(m)
```

##

```
## Call:
\#\# svm(formula = y ~ ., data = train_data, kernel = "linear", type = "C-classification"
       cost = 10, scale = FALSE)
##
##
## Parameters:
   SVM-Type: C-classification
## SVM-Kernel: linear
##
         cost: 10
##
## Number of Support Vectors: 7
   (43)
##
##
##
## Number of Classes: 2
## Levels:
## -1 1
```

The seven support vectors are comprised of four in one class, three in the other. What if we lower the cost of margin violations? This will increase bias and lower variance.

```
m <- svm(
y ~ .,
data = train_data,
kernel = "linear",
type = "C-classification",
cost = 0.1,
scale = FALSE
)
plot(m, train_data)</pre>
```

10.4. EXAMPLE 171

SVM classification plot

There are many more support vectors now. (In case you hoped to see the linear decision boundary formulation, or at least a graphical representation of the margins, keep hoping. The model is generalized beyond two features, so it evidently does not worry too much about supporting sanitized two-feature demos.)

Which cost level yields the *best* predictive performance on holdout data? Use cross validation to find out. SVM defaults to 10-fold CV. I'll try seven candidate values for cost.

```
set.seed(1)
m_tune <- tune(
    svm,
    y ~ .,
    data = train_data,
    kernel ="linear",
    ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100))
)
summary(m_tune)</pre>
```

```
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
```

Levels: ## -1 1

```
##
   cost
##
    0.1
##
## - best performance: 0.05
##
## - Detailed performance results:
     cost error dispersion
## 1 1e-03 0.55 0.4377975
## 2 1e-02 0.55 0.4377975
## 3 1e-01 0.05 0.1581139
## 4 1e+00 0.15 0.2415229
## 5 5e+00 0.15 0.2415229
## 6 1e+01 0.15 0.2415229
## 7 1e+02 0.15 0.2415229
```

The lowest cross-validation error rate is 0.10 with cost = 0.1. tune() saves the best tuning parameter value.

```
m_best <- m_tune$best.model</pre>
summary(m_best)
##
## Call:
## best.tune(method = svm, train.x = y \sim ., data = train_data, ranges = list(cost = c(
       0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
##
##
##
## Parameters:
##
      SVM-Type: C-classification
    SVM-Kernel: linear
##
          cost: 0.1
##
## Number of Support Vectors: 16
##
   (88)
##
##
##
## Number of Classes: 2
##
```

There are 16 support vectors, 8 in each class. This is a pretty wide margin.

10.4. EXAMPLE 173

```
plot(m_best, train_data)
```

SVM classification plot

What if the classes had been linearly separable? Then we could create a maximal margin classifier.

```
train_data_2 <- train_data %>%
  mutate(
    X1 = X1 + ifelse(y==1, 1.0, 0),
    X2 = X2 + ifelse(y==1, 1.0, 0)
)

ggplot(train_data_2, aes(x = X1, y = X2, color = y)) +
  geom_point(size = 2) +
  labs(title = "Binary response with two features, linearly separable")
```


Specify a huge cost = 1e5 so that no support vectors violate the margin.

```
m2 <- svm(
  y ~ .,
  data = train_data_2,
  kernel = "linear",
  cost = 1e5,
  scale = FALSE # do not standardize features
)
plot(m2, train_data_2)</pre>
```

10.4. EXAMPLE 175

SVM classification plot

summary(m2)

```
##
## Call:
\#\# svm(formula = y \sim ., data = train_data_2, kernel = "linear", cost = 1e+05,
##
       scale = FALSE)
##
##
## Parameters:
##
      SVM-Type:
                 C-classification
##
    SVM-Kernel:
                 linear
                 1e+05
##
          cost:
##
## Number of Support Vectors: 3
##
##
    (12)
##
##
## Number of Classes: 2
##
## Levels:
## -1 1
```

This model will have very low bias, but very high variance. To fit an SVM, use a different kernel. You can use kernal = c("polynomial", "radial",

"sigmoid"). For a polynomial model, also specify the polynomial degree. For a radial model, include the gamma value.

```
set.seed(1)
m3_tune <- tune(
    svm,
    y ~ .,
    data = train_data,
    kernel ="polynomial",
    ranges = list(
       cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100),
       degree = c(1, 2, 3)
    )
)
summary(m3_tune)</pre>
```

```
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
   cost degree
##
      1
##
## - best performance: 0.1
##
## - Detailed performance results:
##
      cost degree error dispersion
## 1 1e-03
            1 0.55 0.4377975
## 2
     1e-02
               1 0.55
                        0.4377975
## 3 1e-01
              1 0.30 0.2581989
## 4 1e+00
               1 0.10 0.2108185
## 5 5e+00
               1 0.10 0.2108185
## 6
     1e+01
               1 0.15 0.2415229
## 7 1e+02
              1 0.15 0.2415229
## 8 1e-03
               2 0.70 0.4216370
## 9 1e-02
              2 0.70 0.4216370
               2 0.70 0.4216370
## 10 1e-01
## 11 1e+00
              2 0.65 0.2415229
## 12 5e+00
              2 0.50 0.3333333
## 13 1e+01
               2 0.50 0.3333333
## 14 1e+02
               2 0.50 0.3333333
## 15 1e-03
              3 0.65 0.3374743
           3 0.65 0.3374743
## 16 1e-02
```

10.4. EXAMPLE 177

```
## 17 1e-01 3 0.50 0.3333333

## 18 1e+00 3 0.40 0.3162278

## 19 5e+00 3 0.35 0.3374743

## 20 1e+01 3 0.35 0.3374743

## 21 1e+02 3 0.35 0.3374743
```

The lowest cross-validation error rate is 0.10 with cost = 1, polynomial degree 1.

```
m3_best <- m3_tune$best.model
summary(m3_best)</pre>
```

```
##
## Call:
## best.tune(method = svm, train.x = y \sim ., data = train_data, ranges = list(cost = c(0.001,
       0.01, 0.1, 1, 5, 10, 100), degree = c(1, 2, 3)), kernel = "polynomial")
##
##
## Parameters:
##
      SVM-Type: C-classification
##
   SVM-Kernel: polynomial
##
         cost: 1
##
       degree: 1
       coef.0: 0
##
##
## Number of Support Vectors: 12
##
## (66)
##
##
## Number of Classes: 2
##
## Levels:
## -1 1
```

There are 12 support vectors, 6 in each class. This is a pretty wide margin.

```
plot(m3_best, train_data)
```


10.5 Using Caret

The model can also be fit using **caret**. I'll used LOOCV since the data set is so small. Normalize the variables to make their scale comparable.

```
library(caret)
library(kernlab)
train_data_3 <- train_data %>%
  mutate(y = factor(y, labels = c("A", "B")))
m4 <- train(
  у~.,
  data = train_data_3,
  method = "svmPoly",
  preProcess = c("center", "scale"),
  trControl = trainControl(
   method = "cv",
   number = 5,
    summaryFunction = twoClassSummary, # Use AUC to pick the best model
    classProbs=TRUE
  )
)
```

```
m4$bestTune
```

```
## degree scale C
## 8 1 0.1 0.5
```

#plot(m4)

Principal Components Analysis

Clustering

Text Mining

Appendix

Here are miscellaneous skills, knowledge, and technologies I should know.

Publishing to BookDown

The **bookdown** package, written by Yihui Xie, is built on top of R Markdown and the **knitr** package. Use it to publish a book or long manuscript where each chapter is a separate file. There are instructions for how to author a book in his bookdown book (Xie, 2019). The main advantage of **bookdown** over R Markdown is that you can produce multi-page HTML output with numbered headers, equations, figures, etc., just like in a book. I'm using **bookdown** to create a compendium of all my data science notes.

The first step to using **bookdown** is installing the **bookdown* package with install.packages("bookdown").

Next, create an account at bookdown.org, and connect the account to RStudio. Follow the instructions at https://bookdown.org/home/about/.

Finally, create a project in R Studio by creating a new project of type Book Project using Bookdown.

After creating all of your Markdown pages, knit the book or click the **Build Book** button in the Build panel.

Shiny Apps

Packages

R Packages (Wickham, 2015) by Hadley Wickham is a good manual on packages, but it does not include a full tutorial. The Developing R Packages Data Camp course is also helpful. I will set up my own exercise and present it here.

I will create a package for my pretend organization, "MF". The package will include the following:

- R Markdown template. My template will integrate code, output, and commentary in a single R Markdown. The template will produce a familiar work product containing standard content (summary, data management, exploratory analysis, methods, results, conclusions), and a standard style (colors, typeface, size, logo).
- Functions. Common I/O functions for database retrieval, writing to Excel. Common graphing functions for ggplot styling.

I am mostly copying the logic and code from the ggthemes economist. R script.

Create a package

1. In the RStudio IDE, click File > New Project. Select "New Directory". Select "R Package". You can also use devtools::create("mfstylr"). This will create the minimum items for an R package.

- + R directory: R scripts with function definitions.
- + man directory: documentation
- + NAMESPACE file: information about imported functions and functions made available (m.
- + DESCRIPTION file: metadata about the package

- 2. Write functions in R scripts in R directory. Document with tags readable by roxygen2 package.
- 3. Select XYZ > Install and Restart.

13.0.1 Document Functions with roxygen

Add roxygen documentation with #' characters. The first three lines are always the title, Description, and Details. They don't need any tags, but you need to separate them with blank lines.

Create Data

Add an RData file to your package with use_data()

Create Vignette

Add a directory and template vignette with use_vignette(name, title).

```
use_vignette("Creating-Plots-with-mfstylr", "Creating Plots with mfstylr")
```

Step 2: Create an R Markdown template

I relied on this blog at *free range statistics* for a lot what follows. There is also good information about R Markdown and templates in Yihui Xie's **R Markdown:** The Definitive Guide (Xie et al., 2019).

Use usethis::use_rmarkdown_template() to create an Rmd template. I will create a "Kaggle Report" template. In the Console (or a script), enter

```
usethis::use_rmarkdown_template(
  template_name = "Kaggle Report",
  template_dir = "kaggle_report",
  template_description = "Template for creating Kaggle reports in RMarkdown.",
  template_create_dir = FALSE
)
```

Since my project directory is $C:\Users\mpfol\OneDrive\Documents\GitHub\mfstylr$, use_rmarkdown_template() creates subdirectories .\inst\rmarkdown\templates\kaggle_report\skeleton with three files

• .\inst\rmarkdown\templates\kaggle_report\template.yaml

 $\bullet \ . \verb|\inst\rmarkdown\templates\kaggle_report\skeleton\.Rmd|$

My kaggle report template will include a logo. Looks like there are two ways to embed an image in your document. One is a direct image loading reference !(), but I don't think you can control the attributes this way. A second way is adding html tags.

```
![](logo.png)
# or for more control
<img src="logo.png" style="position:absolute;top:0px;right:0px;" />
```

Bibliography

- Agresti, A. (2013). Categorical Data Analysis. Wiley, 3rd edition. ISBN 978-0470463635.
- Fawcett, T. (2005). An introduction to ROC analysis. ELSEVIER.
- Hastie, T., Tibshirani, R., and Friedman, J. (2017). The Elements of Statistical Learning. Springer, New York, NY, 2nd edition. ISBN 978-0387848570978-0387848570.
- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer, New York, NY, 1st edition. ISBN 978-1461471370.
- Kuhn, M. and Johnson, K. (2016). *Applied Predictive Modeling*. Springer, New York, NY, 1st edition. ISBN 978-1-4614-6848-6.
- Therneau, T. and Atkinson, E. (2019). An Introduction to Recursive Partitioning Using the RPART Routines. Chapman and Hall/CRC, Boca Raton, Florida.
- Wickham, H. (2015). R Packages. O'Reilly Media, Inc., Sebastopol, California.
- Xie, Y. (2019). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN 978113870010.
- Xie, Y., Allaire, J. J., and Grolemund, G. (2019). *R Markdown: The Definitive Guide*. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN 9781138359338.