## INTEGRATED CIRCUITS

## DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# **74HC/HCT365**Hex buffer/line driver; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990





## **74HC/HCT365**

#### **FEATURES**

Non-inverting outputs

· Output capability: bus driver

• I<sub>CC</sub> category: MSI

The 74HC/HCT365 are hex non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable inputs  $(\overline{OE}_1, \overline{OE}_2)$ .

A HIGH on  $\overline{\text{OE}}_n$  causes the outputs to assume a high impedance OFF-state.

The "365" is identical to the "366" but has non-inverting outputs.

#### **GENERAL DESCRIPTION**

The 74HC/HCT365 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

#### **QUICK REFERENCE DATA**

GND = 0 V;  $T_{amb} = 25 \, ^{\circ}C$ ;  $t_r = t_f = 6 \, \text{ns}$ 

| SYMBOL                              | PARAMETER                                | CONDITIONS                                  | TYP | UNIT |      |  |
|-------------------------------------|------------------------------------------|---------------------------------------------|-----|------|------|--|
| STIVIBUL                            | PARAMETER                                | CONDITIONS                                  | НС  | нст  | ONII |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>nA to nY            | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 9   | 11   | ns   |  |
| Cı                                  | input capacitance                        |                                             | 3,5 | 3,5  | pF   |  |
| C <sub>PD</sub>                     | power dissipation capacitance per buffer | notes 1 and 2                               | 40  | 40   | pF   |  |

#### **Notes**

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f<sub>i</sub> = input frequency in MHz

f<sub>o</sub> = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ 

C<sub>L</sub> = output load capacitance in pF

V<sub>CC</sub> = supply voltage in V

2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ 

For HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5 \text{ V}$ 

#### **ORDERING INFORMATION**

See "74HC/HCT/HCU/HCMOS Logic Package Information".

## 74HC/HCT365

## **PIN DESCRIPTION**

| PIN NO.             | SYMBOL                                | NAME AND FUNCTION                 |
|---------------------|---------------------------------------|-----------------------------------|
| 1, 15               | $\overline{OE}_1$ , $\overline{OE}_2$ | output enable inputs (active LOW) |
| 2, 4, 6, 10, 12, 14 | 1A to 6A                              | data inputs                       |
| 3, 5, 7, 9, 11, 13  | 1Y to 6Y                              | data outputs                      |
| 8                   | GND                                   | ground (0 V)                      |
| 16                  | V <sub>CC</sub>                       | positive supply voltage           |







## 74HC/HCT365



## **FUNCTION TABLE**

|                 | OUTPUT |    |    |  |
|-----------------|--------|----|----|--|
| ŌE <sub>1</sub> | ŌĒ₂    | nA | nY |  |
| L               | L      | L  | L  |  |
| L               | L      | Н  | Н  |  |
| Х               | Н      | X  | Z  |  |
| Н               | X      | X  | Z  |  |

## **Notes**

- 1. H = HIGH voltage level
  - L = LOW voltage level
  - X = don't care
  - Z = high impedance OFF-state



Philips Semiconductors Product specification

## Hex buffer/line driver; 3-state

74HC/HCT365

## DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I<sub>CC</sub> category: MSI

## **AC CHARACTERISTICS FOR 74HC**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

|                                     | PARAMETER                                          | T <sub>amb</sub> (°C) |                |                 |           |                 |            |                 |      | TEST CONDITIONS        |            |
|-------------------------------------|----------------------------------------------------|-----------------------|----------------|-----------------|-----------|-----------------|------------|-----------------|------|------------------------|------------|
| SYMBOL                              |                                                    | 74HC                  |                |                 |           |                 |            |                 |      |                        | WAVEFORMS  |
|                                     |                                                    | +25                   |                |                 | −40 to+85 |                 | -40 to+125 |                 | UNIT | V <sub>CC</sub><br>(V) | WAVE OKING |
|                                     |                                                    | min.                  | typ.           | max.            | min.      | max.            | min.       | max.            |      | (.,                    |            |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>nA to nY                      |                       | 30<br>11<br>9  | 95<br>19<br>16  |           | 120<br>24<br>20 |            | 145<br>29<br>25 | ns   | 2.0<br>4.5<br>6.0      | Fig.6      |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time $\overline{OE}_n$ to nY |                       | 47<br>17<br>14 | 150<br>30<br>26 |           | 190<br>38<br>33 |            | 225<br>45<br>38 | ns   | 2.0<br>4.5<br>6.0      | Fig.7      |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time OE <sub>n</sub> to nY  |                       | 61<br>22<br>18 | 150<br>30<br>26 |           | 190<br>38<br>33 |            | 225<br>45<br>38 | ns   | 2.0<br>4.5<br>6.0      | Fig.7      |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                             |                       | 14<br>5<br>4   | 60<br>12<br>10  |           | 75<br>15<br>13  |            | 90<br>18<br>15  | ns   | 2.0<br>4.5<br>6.0      | Fig.6      |

Philips Semiconductors Product specification

## Hex buffer/line driver; 3-state

74HC/HCT365

#### DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I<sub>CC</sub> category: MSI

## Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT           | UNIT LOAD COEFFICIENT |  |  |  |  |  |  |
|-----------------|-----------------------|--|--|--|--|--|--|
| ŌE <sub>1</sub> | 1.00                  |  |  |  |  |  |  |
| OE <sub>2</sub> | 0.90                  |  |  |  |  |  |  |
| nA              | 1.00                  |  |  |  |  |  |  |

## **AC CHARACTERISTICS FOR 74HCT**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

|                                     | PARAMETER                                                             | T <sub>amb</sub> (°C) |       |           |      |            |      |      |                        | TEST CONDITIONS |           |
|-------------------------------------|-----------------------------------------------------------------------|-----------------------|-------|-----------|------|------------|------|------|------------------------|-----------------|-----------|
| CVMDOL                              |                                                                       |                       | 74HCT |           |      |            |      |      |                        |                 | WAVEFORMS |
| SYMBOL                              |                                                                       | +25                   |       | −40 to+85 |      | -40 to+125 |      | UNIT | V <sub>CC</sub><br>(V) | WAVEFORWIS      |           |
|                                     |                                                                       | min.                  | typ.  | max.      | min. | max.       | min. | max. |                        | (-,             |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>nA to nY                                         |                       | 14    | 25        |      | 31         |      | 38   | ns                     | 4.5             | Fig.6     |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time<br>$\overline{\text{OE}}_{\text{n}}$ to nY |                       | 18    | 35        |      | 44         |      | 53   | ns                     | 4.5             | Fig.7     |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time $\overline{\text{OE}}_{\text{n}}$ to nY   |                       | 23    | 35        |      | 44         |      | 53   | ns                     | 4.5             | Fig.7     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                                                |                       | 5     | 12        |      | 15         |      | 18   | ns                     | 4.5             | Fig.6     |

74HC/HCT365

## **AC WAVEFORMS**





## **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".