Practical Invalid Curve Attack Using Quadratic Twist

Pierre Chrétien

February 2025

Abstract

We present the common structure of the attack and give some insight to efficiently exploit quadratic twists. This paper has primarily an expository role.

1 Introduction

The so called *Invalid curve attack* is a real threat for cryptographic protocols based on elliptic curves. The attack has first been presented in [2] and the use of twists was described in [4]. OpenPGP.js prior to 4.2.0 was found to be vulnerable¹. Bluetooth was proved to be vulnerable to a "Fixed Coordinate" variant [3]. Edwards model has also been examined in [5]. The SafeCurves website and the associated paper [1] point out as

An ECC implementor can stop an invalid-curve attack by checking whether the input point Q satisfies the correct curve equation; [...] But this creates a conflict between simplicity and security. An implementation that does not include this check is simpler and more likely to be produced, and will pass typical functionality tests.

As a side note, it is also at heart of many Capture The Flag and cryptographic challenges on dedicated platforms.

The rest of the paper is organized as follows. Section 2 recalls the basics mathematical concepts used in the sequel, we recall basics facts about discrete logarithm problem (DLP) and twists of elliptic curves. Section 3 presents the general setting of the attack and ways to exploit poor implementation and weak curves. Section 4 is a complete walktrhought an example. This paper has primarily an expository role.

2 Background Material

Notations: We will denote by \mathbb{F}_q the finite field with $q = p^n$ elements where $p \ge 5$ and $n \in \mathbb{N} - \{0\}$. We will denote by E/\mathbb{F}_q an elliptic curve defined over \mathbb{F}_q . The reader is assumed to be familiar with basic theory of elliptic curves.

Short Weierstrass equations. Since $p \geq 5$, every elliptic curve E/\mathbb{F}_q may be written as

$$E: y^2 = x^3 + ax + b, \ a, b \in \mathbb{F}_q.$$

This is a so called short Weierstrass form of the curve E defined over \mathbb{F}_q .

Remark 1. 1. The condition $p \ge 5$ is not a restriction in our context since p will usually be a large prime.

2. A short Weierstrass form is not unique. This will be completed in the subsection about twists.

Automorphisms. Let E_1/\mathbb{F}_q and E_2/\mathbb{F}_q be elliptic curves. These curves may be seen over $\overline{\mathbb{F}_q}$ that is, the coefficients of their equation may be seen as lying in $\overline{\mathbb{F}_q}$ instead of in \mathbb{F}_q . Every geometric isomorphism of elliptic curve ϕ from $E_1/\overline{\mathbb{F}_q}$ to $E_2/\overline{\mathbb{F}_q}$ has an affine part of the form

$$\phi(x,y) = (u^2x + r, u^3y + su^2x + t). \tag{1}$$

for $u \in \overline{\mathbb{F}_q}^*$, $r, s, t \in \overline{\mathbb{F}_q}$. We will denote geometric isomorphism as $\phi/\overline{\mathbb{F}_q}$. The isomorphism ψ is said to be defined over \mathbb{F}_q or rational if $u, r, s, t \in \mathbb{F}_q$, we will denote it by ψ/\mathbb{F}_q .

For a sake of clarity we will stick to the notation ϕ for geometric isomorphism and ψ for rational isomorphisms.

Proposition 1. Let E_i/\mathbb{F}_q , $i \in \{1, 2\}$ be elliptic curves given by short Weierstrass equations.

$$E_i: y^2 = x^3 + a_i x + b_i, \ a_i, b_i \in \mathbb{F}_q.$$

A geometric isomorphism ϕ has the form

$$\phi(x,y) = (u^2x, u^3y).$$

 $^{^{1}}$ https://www.cve.org/CVERecord?id=CVE-2019-9155

Proof. This is included as a first step to fully understand isomorphisms in the quadratic twist case. Let $(x, y) \in E_1$ and ϕ as given by (1). Applying ϕ to the equation of E_1 and expanding yields

$$y^{2} = x^{3} + a_{1}x + b_{1}$$

$$\Leftrightarrow (u^{3}y + su^{2}x + t)^{2} = (u^{2}x + r)^{3} + a_{1}(u^{2}x + r) + b_{1}$$

$$\Leftrightarrow u^{6}y^{2} + s^{2}u^{4}x^{2} + t^{2} + 2u^{5}sxy + 2u^{3}ty + 2tsu^{2}x = u^{6}x^{3} + 3ru^{4}x^{2} + 3r^{2}u^{2}x + r^{3} + a_{1}u^{2}x + a_{1}r + b_{1}(*)$$

Identifying coefficients of xy and y with those of $y^2 = x^3 + a_2x + b_2$ yields s = 0, t = 0 (recall that $u \neq 0$ and $p \neq 2$).

$$(*) \Leftrightarrow u^6 y^2 = u^6 x^3 + 3ru^4 x^2 + 3r^2 u^2 x + r^3 + a_1 u^2 x + a_1 r + b_1$$

Then, identifying the coefficient of x^2 with the short equation of E_2 yields r=0 (here we use $p\neq 3$). Thus $\phi(x,y)=(u^2x,u^3y)$. We conclude with the following computations that will be used in the sequel.

$$u^{6}y^{2} = u^{6}x^{3} + a_{1}u^{2}x + b_{1}$$

$$\Leftrightarrow y^{2} = x^{3} + \frac{a_{1}}{u^{4}}x + \frac{b_{1}}{u^{6}}$$

$$\Leftrightarrow \frac{a_{1}}{u^{4}} = a_{2}, \quad \frac{b_{1}}{u^{6}} = b_{2}(**)$$

Proposition 2. Let E/\mathbb{F}_q be an elliptic curves given by short Weierstrass equations.

$$E_i: y^2 = x^3 + ax + b, \ a, b \in \mathbb{F}_q.$$

The j-invariant of E is defined to be

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Let E_1/\mathbb{F}_q , E_2/\mathbb{F}_q be elliptic curves, there exists an isomorphism $\phi/\overline{\mathbb{F}_q}$ from E_1 to E_2 if and only if $j(E_1)=j(E_2)$.

Remark 2. 1. We insist that the j-invariant classifies **geometric** isomorphism classes of elliptic curves over \mathbb{F}_q .

2. Thanks to $p \geq 5$, E has a short equation and j(E) a special form in this case. Thus $j(E) \notin \{0, 1728\} \Leftrightarrow a, b \in \mathbb{F}_q^*$.

2.1 Twists of Elliptic Curves

Twists. Non trivial twists of E/\mathbb{F}_q are elliptic curves E'/\mathbb{F}_q being isomorphic to E when viewed over $\overline{\mathbb{F}_q}$ but not isomorphic to E when viewed over \mathbb{F}_q .

Definition 1. Le E/\mathbb{F}_q be an elliptic curve. A twist of E is an elliptic curve E_t/\mathbb{F}_q such that there is a geometric isomorphism $\phi/\overline{\mathbb{F}_q}$ of elliptic curves $\phi: E \simeq E_t$. A twist E_t of E is trivial if there exists an isomorphism ψ of elliptic curve **defined over** \mathbb{F}_q .

Quadratic Twists. Let E/\mathbb{F}_q be an elliptic curve in short Weierstrass equation $y^2 = x^3 + ax + b$. Recall that $q = p^n$ and $p \ge 5$, so it is possible to write such an equation for E.

Definition 2. Let $d \in \mathbb{F}_q^*$. The twist E_d of E by d is the elliptic curve given in short Weierstrass equation

$$E_d: y^2 = x^3 + d^2ax + d^3b.$$

Remark 3. We did not specify that E_d is a non trivial twist of E. Proposition 3 recalls when E_d is trivial. Actually, let δ be a square root of d in $\overline{\mathbb{F}_q}$ i.e. $\delta^2 = d$, then

$$\phi: E \to E_d$$

$$(x,y) \mapsto \left(\frac{x}{d}, \frac{y}{d\delta}\right)$$

is a geometric isomorphism from E to E_d . It matches the relations (**) concluding proof of Proposition 1 with $a_1 = a, b_1 = b, a_2 = ad^2, b_2 = bd^3$ and $d = \frac{1}{n}$.

Proposition 3. Assume that $j(E) \neq 0,1728$. The twist E_d is trivial if and only if $d \in (\mathbb{F}_q^*)^2$.

Proof. (\Rightarrow) Assume that there exists a rational isomorphism ψ from E to E_d . According to Proposition 1, there exists $u \in \mathbb{F}_q^*$

$$\psi(x,y) = (u^2x, u^3y)$$

According to (**), $\frac{a}{u^4} = ad^2$ and $\frac{b}{u^6} = bd^3$. Recall that since $p \geq 5$, the assumption about j(E) is equivalent to $a, b \neq 0$. Thus $\frac{1}{u^4} = d^2$, $\frac{1}{u^6} = d^3$ and $d = \frac{d^3}{d^2} = \frac{1}{u^2} \in (\mathbb{F}_q^*)^2$. (\Leftarrow) Conversely, let $\delta \in \mathbb{F}_q^*$ such that $\delta^2 = d$. Then

$$\psi(x,y) = \left(\frac{x}{d}, \frac{y}{d\delta}\right)$$

is a rational isomorphism from E to E_d .

Proposition 4. Assume that E/\mathbb{F}_q has $j(E) \neq 0,1728$. Then a twist E_t/\mathbb{F}_q of E/\mathbb{F}_q is either trivial or E_d for some $d \in (\mathbb{F}_q^*) \setminus (\mathbb{F}_q^*)^2$.

Proof. Assume that E_t/\mathbb{F}_q is a non trivial twist of E/\mathbb{F}_q with isomorphism $\phi: E \to E_t$ given by $\phi(x,y) = (u^2x, u^3y)$, $u \notin \mathbb{F}_q$. Let $E_t: y^2 = x^3 + a_tx + b_t$, $a_t, b_t \in \mathbb{F}_q$, thus (**) yields

$$a_t = \frac{a}{u^4}, b_t = \frac{b}{u^6}$$

Then $u^2 = \frac{ba_t}{ab_t} \in \mathbb{F}_q$, i.e. $u \notin \mathbb{F}_q$ but $u^2 \in \mathbb{F}_q$. This means that $u \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Let $d := \frac{1}{u^2}$, then $a_t = d^2a, b_t = d^3b$ and $\phi(x,y) = \left(\frac{x}{d}, \frac{uy}{d}\right)$.

Remark 4. Proposition 3 is wrong if p < 5. For example, let p = q = 3, $E : y^2 = x^3 + x + 1$ and d = 2. In this case, E is isomorphic to $E_d : y^2 = x^3 + x + 2$ with ψ given by constants (u, r, s, t) = (2, 2, 0, 0). So E_d is a trivial twist of E but d is non square modulo 3. Note that the definition for the j-invariant when p = 3 gives here j(E) = 0.

Order of group of rational points. The group of rational points $E(\mathbb{F}_q)$ has order $\sharp E(\mathbb{F}_q) = q+1-t$ where t is the Trace of Frobenius. An extensive description of the Frobenius endomorphism is out scope for this paper, we only need some basics facts we recall below.

Proposition 5. 1. (Hasse Bound) One has $|t| \leq 2\sqrt{q}$.

- 2. One has $\sharp E_d(\mathbb{F}_q) = q + 1 + t$.
- Remark 5. 1. In particular $|\sharp E_d(\mathbb{F}_q) \sharp E(F_q)| \le 4\sqrt{q}$, so $\sharp E_d(\mathbb{F}_q)$ and $\sharp E(F_q)$ are of the same order of magnitude. But even if $\sharp E(\mathbb{F}_q) = hp$ with p prime and h a small cofactor (a classical situation in cryptographic applications) then $\sharp E_d(\mathbb{F}_q)$ might have a factorization many small primes (such numbers are called smooth). For example brainpoolP256t1 curve
 - 2. dans la remarque sur j différent de 0,1728. Dire que a ou b = 0 est peut commun pour l'usage crypto (courbes anormales ou supersing)

2.2 Discrete Logarithm Problem

Definition 3. Let G be a group in multiplicative notation. The **Discrete Logarithm Problem** (DLP) is : given $b, h \in G$ find $a \in \mathbb{Z}$ such that $h = b^a$.

- **Remark 6.** 1. The group law on an elliptic curve being usually written in additive notation, DLP for elliptic curves is rephrased as: given $P, B \in E(\mathbb{F}_q)$ find $a \in \mathbb{Z}$ such that P = aB.
 - 2. The DLP has a solution if and only if P is in the subgroup $\langle B \rangle$ generated by B.

The following discussion gives the necessaries notions when dealing with generic methods to solve the DLP that will be used in the last section. The generic discrete_log method from Sage uses a combination of Pohlig-Hellman, Baby step giant step, Pollard's kangaroo (i.e. Pollard's Lambda), and Pollard's Rho.

- The Pohlig-Helmann method. Let n be the order of a point $B \in E/\mathbb{F}_q$ and $n = \prod_{i=1}^m p_i^{n_i}$ be its prime factorization. The subgroup H generated by B is cyclic of order n, thus has a unique cyclic subgroup H_i of order $p_i^{n_i}$ for each $i \in [|1; m|]$. By means of the Chinese Remainder Theorem (CRT), solving the DLP in H boils down to solve it in each H_i . The subgroups H_i have order a prime power, which may still be quite large. One can reduce the DLP from H_i to subgroups \tilde{H}_i of order **exactly** p_i . We restrict ourselves to solving the DLP in the \tilde{H}_i 's.
- BSGS method is a collision finding algorithm to solve DLP that requires $\mathcal{O}(\sqrt{p_i})$ running time and $\mathcal{O}(\sqrt{p_i})$ storage. This gives an bound on the size of the p_i 's for which we can hope to solve the DLP with this method.
- Pollard's Rho (resp. Lambda) algorithm is solving the DLP and has $\mathcal{O}(\sqrt{p_i})$ (resp. $\mathcal{O}(\sqrt{p_i})$) time complexity but $\mathcal{O}(1)$) (resp. $\mathcal{O}(\ln p_i)$) space complexity.

3 Invalid Curve Attack

3.1 General Setting

Position du problème : les algo de multiplication d*P n'utilisent que le coeff a de E, on peut passer (x,y) n'étant pas sur E.

- DLP peut etre trop dur sur E à cause de d'un ordre pas assez smooth.
- Si on peut faire calculer k*T pour T sur une autre courbe E' on peut trouver T modulo les premiers de l'ordre de E'.
- si le twist a un ordre avec d'autres facteurs premier que E alors on connait k modulo de nouveaux premiers.
- cela peut suffire à retrouver k (CRT)
- Expliquer que connaître d modulo "suffisament" de premiers peut suffire, pas modulo "tous" les premiers.

3.2 Exploiting Ladders and twists

- L'importance des ladders cf Safe Curves
- L'importance des multiplications où on ne passe que le x.

References

- Daniel J. Bernstein and Tanja Lange. Safe curves for elliptic-curve cryptography. Cryptology ePrint Archive, Paper 2024/1265, 2024.
- [2] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on elliptic curve cryptosystems. In Mihir Bellare, editor, *Advances in Cryptology CRYPTO 2000*, pages 131–146, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
- [3] Eli Biham and Lior Neumann. Breaking the bluetooth pairing the fixed coordinate invalid curve attack. Cryptology ePrint Archive, Paper 2019/1043, 2019.
- [4] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack on Elliptic Curve with Montgomery Ladder Implementation. In FDTC '08. 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 92–98. IEEE-CS Press, August 2008.
- [5] Samuel Neves and Mehdi Tibouchi. Degenerate curve attacks. Cryptology ePrint Archive, Paper 2015/1233, 2015.