Breaking Down the Blue Wall in Pennsylvania

Visualizing the factors that led to a Republican victory in the state in the 2016 presidential election

Two-Party Voting Shifts in Pennsylvania Counties (2004–2016)

Every Pennsylvania county experienced major shifts in voting preferences from 2012 to 2016 compared to previous election cycles, regardless of party affilition

Third Party Voting Shifts in Pennsylvania Counties (2004–2016)

The same counties that experienced a large two–party shift in 2016 also experienced a comparatively large third party vote presence in 2016 than in previous election years.

Mapping Republican Vote Share Increase from 2012 to 2016

Republican vote share increased primarily in non-metropolitian counties and, on average, at a higher magnitude than did Democratic vote share anywhere. The Pocono Mountain region experienced the highest increase.

Increase in Republican Vote Share from 2012 to 2016 (%)

Data source: Harvard Dataverse

Infographic Project Draft

Andrew Shih Style Guide: tidyverse

2024-10-12

```
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
pa_election_df <- read.csv("~/Documents/MADS/Fa24/36-613 (Data Visualization)/Infographic Pro
  filter(state == "PENNSYLVANIA") |>
  filter(party == "DEMOCRAT" | party == "REPUBLICAN") |>
  group_by(year, state, county_name, office, candidate, party) |>
  summarize(
   new_candidatevotes = sum(candidatevotes),
   new_totalvotes = sum(totalvotes)
  ) |>
  select(
    year,
   state,
   county_name,
    party,
   new_candidatevotes,
    new_totalvotes
  ) |>
```

```
mutate(percentage_of_vote = new_candidatevotes * 100 / new_totalvotes) |>
arrange(state, county_name, party, year) |>
group_by(state, county_name, party) |>
mutate(previous_percentage = lag(percentage_of_vote)) |>
mutate(swing = percentage_of_vote - previous_percentage)
```

`summarise()` has grouped output by 'year', 'state', 'county_name', 'office', 'candidate'. You can override using the `.groups` argument.

Adding missing grouping variables: `office`, `candidate`

```
pa_election_df_swing <- pa_election_df |>
    select(
    year, state, county_name, party,
    percentage_of_vote, previous_percentage, swing
) |>
    group_by(county_name, year) |>
    summarize(two_party_swing = (sum(swing[party == "REPUBLICAN"], na.rm = TRUE) +
    sum(swing[party == "DEMOCRAT"], na.rm = TRUE)) / 2)
```

`summarise()` has grouped output by 'county_name'. You can override using the `.groups` argument.

```
pa_election_df_swing_avg <- pa_election_df_swing |>
  filter(year != 2000) |>
  group_by(county_name) |>
  summarize(avg = mean(abs(two_party_swing)))
```

```
library(gghighlight)
```

Loading required package: ggplot2

```
library(ggrepel)

county_list <- c(
    "LANCASTER",
    "MONTOUR",
    "ERIE",
    "CAMBRIA",</pre>
```

```
"FAYETTE",
  "BEDFORD"
)
plot_1 <- pa_election_df_swing |>
  filter(!year %in% c(2000, 2020)) |>
  filter(county_name != "CAMERON") |>
  ggplot() +
  geom_line(aes(x = year, y = abs(two_party_swing), color = county_name),
    size = 0.75, alpha = 1
  ) +
  gghighlight(
    county_name %in% county_list,
    label_params = list(size = 2),
    unhighlighted_params = list(size = 0.5, alpha = 0.3)
  ) +
  labs(
    title = "Two-Party Voting Shifts in Pennsylvania Counties (2004-2016)",
    subtitle = "Every Pennsylvania county experienced major shifts in voting
    preferences from 2012 to 2016 compared to previous election cycles,
   regardless of party affilition",
    x = "Election Year",
    y = "Magnitude of Shift Between the
    Major Parties (%)",
    caption = "Data source: Harvard Dataverse"
  ) +
  scale_x_continuous(
    breaks = seq(2004, 2016, by = 4),
    labels = c(
      "2004\n(Bush)", "2008\n(Obama)",
      "2012\n(Obama)", "2016\n(Trump)"
    ),
    limits = c(2004, 2016),
    expand = expansion(mult = c(0, 0.05))
  theme_classic() +
  theme(
    plot.title = element_text(
      margin = margin(b = 5),
      hjust = 0.5,
      face = "bold",
      size = 11.5
```

```
),
plot.subtitle = element_text(hjust = 0.5, size = 9.5),
plot.caption = element_text(size = 6),
plot.margin = margin(l = 120),
legend.position = "none",
panel.grid.major.y = element_line(color = "gray", size = 0.15),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
axis.text.x = element_text(color = c("red", "blue", "blue", "red")),
axis.title = element_text(size = 7.5)
)
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

Warning: Tried to calculate with group_by(), but the calculation failed. Falling back to ungrouped filter operation...

label_key: county_name

Warning: Vectorized input to `element_text()` is not officially supported. i Results may be unexpected or may change in future versions of ggplot2.

Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0. i Please use the `linewidth` argument instead.

plot_1

Two-Party Voting Shifts in Pennsylvania Counties (2

Every Pennsylvania county experienced major shifts in vot preferences from 2012 to 2016 compared to previous election regardless of party affilition

Data source: Harvard Dataverse

```
library(maps)
pa_election_df_rep <- pa_election_df |>
  filter(year %in% c(2012, 2016)) |>
  filter(party == "REPUBLICAN") |>
  select(-one_of(c("previous_percentage", "swing"))) |>
  group_by(county_name) |>
  summarize(inc_rep_vote_share = (sum(percentage_of_vote[year == 2016]) -
    sum(percentage of vote[year == 2012])))
pa_election_df_third <- read.csv("~/Documents/MADS/Fa24/36-613 (Data Visualization)/Infograp
  # filter(year %in% c(2012, 2016)) |>
  filter(state == "PENNSYLVANIA") |>
  filter(!party %in% c("DEMOCRAT", "REPUBLICAN")) |>
  group_by(year, state, county_name, office, candidate, party) |>
  summarize(
    new_candidatevotes = sum(candidatevotes),
    new_totalvotes = sum(totalvotes)
  ) |>
  select(
    year,
    state,
    county_name,
```

```
party,
 new_candidatevotes,
 new_totalvotes
) |>
group_by(county_name, year) |>
mutate(
 new_candidatevotes = sum(new_candidatevotes),
 new_totalvotes = first(new_totalvotes)
) |>
filter(!(year == 2000 & candidate == "OTHER")) |>
arrange(county_name, year, county_name) |>
mutate(percentage of vote = new_candidatevotes * 100 / new_totalvotes) |>
group_by(state, county_name) |>
mutate(previous_percentage = lag(percentage_of_vote)) |>
mutate(swing = percentage_of_vote - previous_percentage) |>
mutate(party = "THIRD")
```

`summarise()` has grouped output by 'year', 'state', 'county_name', 'office', 'candidate'. You can override using the `.groups` argument.

Adding missing grouping variables: `office`, `candidate`

```
plot_2 <- pa_election_df_third |>
  filter(!year %in% c(2000, 2020)) |>
  filter(county_name != "CAMERON") |>
  ggplot() +
  geom_line(aes(x = year, y = swing, color = county_name),
   size = 0.75, alpha = 1
  ) +
  gghighlight(
   county_name %in% county_list,
   label_params = list(size = 2),
   unhighlighted_params = list(size = 0.5, alpha = 0.3)
  geom_hline(yintercept = 0, linetype = "dashed") +
  labs(
    title = "Third Party Voting Shifts in Pennsylvania Counties (2004-2016)",
   subtitle = "The same counties that experienced a large two-party shift in
   2016 also experienced a comparatively large third party
   vote presence in 2016 than in previous election years.",
   x = "Election Year",
   y = "Third Party Swing (%)",
```

```
caption = "Data source: Harvard Dataverse"
) +
scale_x_continuous(
 breaks = seq(2004, 2016, by = 4),
 labels = c(
   "2004\n(Bush)", "2008\n(Obama)",
   "2012\n(Obama)", "2016\n(Trump)"
 ),
 limits = c(2004, 2016),
 expand = expansion(mult = c(0, 0.05))
) +
theme_classic() +
theme(
 plot.title = element_text(
   margin = margin(b = 5),
   hjust = 0.5,
   face = "bold",
   size = 11.5
 ),
 plot.subtitle = element_text(hjust = 0.5, size = 9.5),
 plot.caption = element_text(size = 6),
 plot.margin = margin(1 = 60),
 legend.position = "none",
 panel.grid.major.y = element_line(color = "gray", size = 0.15),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_blank(),
 panel.grid.minor.x = element_blank(),
 axis.text.x = element_text(color = c("red", "blue", "blue", "red")),
 axis.title = element_text(size = 7.5)
```

Warning: Tried to calculate with group_by(), but the calculation failed. Falling back to ungrouped filter operation...

label_key: county_name

Warning: Vectorized input to `element_text()` is not officially supported. i Results may be unexpected or may change in future versions of ggplot2.

Third Party Voting Shifts in Pennsylvania Counties (2004–2

The same counties that experienced a large two–party shift in 2016 also experienced a comparatively large third party vote presence in 2016 than in previous election years.

Data source: Harvard Dataverse

```
avg_coords <-
    map_data("county") |>
    filter(region == "pennsylvania") |>
    mutate(subregion = toupper(subregion)) |>
    group_by(subregion) |>
    summarize(
        avg_long = mean(long),
        avg_lat = mean(lat)
    )

pa_election_df_rep_rank <- pa_election_df_rep |>
    mutate(rank = rank(-inc_rep_vote_share))

joined <- avg_coords |>
    left_join(pa_election_df_rep_rank, by = c("subregion" = "county_name"))
```

```
library(ggplot2)
pa_county_borders <- map_data("county") |>
  mutate(subregion = toupper(subregion)) |>
  filter(region == "pennsylvania") |>
```

```
left_join(pa_election_df_rep_rank, by = c("subregion" = "county_name")) |>
  left_join(avg_coords, by = c("subregion" = "subregion"))
pa_cities <- data.frame(</pre>
  city = c("Philadelphia", "Pittsburgh", "Harrisburg", "State College"),
  lat = c(39.9526, 40.4406, 40.2732, 40.7934),
 long = c(-75.1652, -79.9959, -76.8841, -77.8612)
)
plot_3 <- pa_county_borders |>
  ggplot() +
  geom_polygon(aes(x = long, y = lat, group = group, fill = inc_rep_vote_share),
    color = "gray27", size = 0.25
  ) +
  geom_point(
   data = pa_cities,
   aes(x = long, y = lat),
   color = "black",
    size = 0.25
  ) +
  geom_text(
    data = pa_cities, aes(
     x = long,
     y = lat,
     label = city
    ), size = 2,
   nudge_x = 0.1,
   nudge_y = 0.1,
   fontface = "bold"
  ) +
  scale_fill_gradient2(
    low = "blue", mid = "white", high = "red", midpoint = 0,
    limits = c(-15, 15)
  ) +
  theme_void() +
  coord_map("polyconic") +
  labs(
    fill = "Increase in Republican Vote Share\nfrom 2012 to 2016 (%)",
    title = "Mapping Republican Vote Share Increase from 2012 to 2016",
    subtitle = "Republican vote share increased primarily in
       non-metropolitian counties and, on average, at a higher
       magnitude than did Democratic vote share anywhere. The Pocono
```

```
Mountain region experienced the highest increase.",
    caption = "Data source: Harvard Dataverse"
  ) +
  annotate("rect",
    xmin = -75.3, xmax = -76.9, ymin = 40.5, ymax = 41.8,
    alpha = 0.15, fill = NA, color = "yellow"
  ) +
  annotate("text",
    x = -76.1, y = 41.63, label = "Pocono Mountain\nregion",
    fontface = "bold", size = 2
  ) +
  theme_void() +
  theme(
    axis.ticks = element_blank(),
    axis.text.x = element_blank(),
    axis.text.y = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    plot.title = element_text(
     margin = margin(b = 8, r = 100, l = 100),
      hjust = 0.5, face = "bold", size = 11.5
    ),
    plot.subtitle = element_text(
      margin = margin(r = 90, l = 100),
     hjust = 0.5, size = 9.5
    ),
    plot.caption = element_text(
      margin = margin(r = 125, 1 = 500),
      hjust = 0.5, size = 6
    ),
    plot.margin = margin(r = 175, l = 125),
    legend.position = "bottom",
    legend.justification = "center",
    legend.title = element_text(size = 8),
    legend.text = element_text(size = 7),
    legend.key.size = unit(0.5, "cm")
plot_3
```

Mapping Republican Vote Share Increase from 2012 to 2016

Republican vote share increased primarily in non-metropolitian counties and, on average, at a higher magnitude than did Democratic vote share anywhere. The Pocono Mountain region experienced the highest increase.

Data source: Harvard Dataver

```
library(patchwork)
combined_plot <- (plot_1 / plot_spacer() / plot_2 / plot_spacer() / plot_3) +</pre>
  plot annotation(
    title = "Breaking Down the Blue Wall in Pennsylvania",
    subtitle = paste(
      "Visualizing the factors that led to a",
      "Republican victory in the state in the 2016 presidential",
      "election"
    ),
    theme = theme(
      plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
      plot.subtitle = element_text(
        margin = margin(b = 20),
        hjust = 0.65, size = 10
      )
    )
  ) +
  plot_layout(heights = c(1, 0.1, 1, 0.1, 1))
ggsave("infographic.pdf",
  plot = combined_plot, device = pdf(),
  width = 10, height = 12.5, units = "in"
```

)