2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: hu-HU

Vakáció

Jian-Jia vakációján tajvani városokat látogat meg. Az n város egy út mentén helyezkedik el, a városokat 0-tól n-1-ig sorszámozzuk. Az i. szomszédja (0 < i < n-1) az i-1. és az i+1. város. A 0-nak csak az 1., az n-1-nek csak az n-2. a szomszédja.

Minden városban van valahány látványosság, Jian-Jia úgy akar városokat meglátogatni, hogy a lehető legtöbb látványosságot nézze meg. Eldöntötte, hogy melyik városban kezdi a szabadságát. Minden nap két lehetőség közül választhat: megnézi az adott városban az összes látványosságot vagy átmegy egy szomszédos városba. (Amit egyszer megnézett, azt többször már nem nézheti meg.) Segíts Jian-Jia-nak kiszámítani a megnézendő látványosságok maximális számát!

Példa

Jian-Jia 7 napot nyaral, 5 város van (a táblázatbeli látványosságokkal), a 2. városból indul. Az első napon megnéz 20 látványosságot a 2. városban. A második napon átmegy a 3. városba, a harmadik napon megnéz 30 látványosságot a 3. városban. A következő 3 napon átmegy a 3. városból az 0.-ba, majd a hetedik napon megnézi az ott levő 10 látványosságot. Tehát a látványosságok maximális száma, amit meg tud nézni 7 nap alatt a 2. városból indulva: 20 + 30 + 10 = 60.

város	látványosságok száma	
0	10	
1	2	
2	20	
3	30	
4	1	

nap	tevékenység		
1	megnézi a 2. város látványosságait		
2	átmegy a 2. városból a 3ba		
3	megnézi a 3. város látványosságait		
4	átmegy a 3. városból a 2ba		
5	átmegy a 2. városból az 1be		
6	átmegy az 1. városból a 0ba		
7	megnézi a 0. város látványosságait		

Feladat

A findMaxAttraction függvényt kell megírnod, amely kiszámítja a megnézendő látványosságok

maximális számát!

- findMaxAttraction(n, start, d, attraction)
 - n: a városok száma.
 - start: a kezdő város sorszáma.
 - d: a napok száma.
 - lacktriangledown attraction[i] az i. városban levő látványosságok száma ($0 \le i \le n-1$).
 - a megnézendő látványosságok maximális számát kell visszadnia eredményül!

Részfeladatok

Minden tesztesetben $0 \le d \le 2n + \lfloor n/2 \rfloor$.

Korlátok:

ré s z fe ladat	pont	n	látványosságok száma (t)	kezdő város
1	7	$2 \leq n \leq 20$	$0 \le t \le 1,000,000,000$	nincs korlát
2	23	$2 \leq n \leq 100,000$	$0 \le t \le 100$	0. város
3	17	$2 \leq n \leq 3,000$	$0 \le t \le 1,000,000,000$	nincs korlát
4	53	$2 \leq n \leq 100,000$	$0 \le t \le 1,000,000,000$	nincs korlát

Megvalósítás

A holiday.c, holiday.cpp vagy holiday.pas fájlt kell beküldened! Ebben kell megvalósítanod a megoldó függvényt! Include-old a holiday.h-t!

A findMaxAttraction eredménye nagyon nagy lehet, használj 64-bites egész számot!

C/C++ program

```
long long int findMaxAttraction(int n, int start, int d,
int attraction[]);
```

Pascal program

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

Minta értékelő

A minta értékelő a bemenetet az alábbi formában várja:

- 1. sor: n, start, d.
- 2. sor: attraction[0], ..., attraction[n-1].

A minta értékelő kiírja a findMaxAttraction értékét.