# Speed Running Calculus

# Minh Nguyen

November 11, 2023

# Contents

| 1 | Propositional Logic |                             |   |  |  |  |  |
|---|---------------------|-----------------------------|---|--|--|--|--|
|   | 1.1                 | Propositional Equivalencies | 2 |  |  |  |  |
|   |                     | Predicates and Quantifiers  |   |  |  |  |  |
|   | 1.3                 | Inference Rules and Proofs  | 5 |  |  |  |  |
| 2 | Set                 | Theory                      | 8 |  |  |  |  |
|   | 2.1                 | Cardinality                 | 8 |  |  |  |  |
|   | 2.2                 | Set Operations              | 8 |  |  |  |  |
|   | 2.3                 | Functions                   | 8 |  |  |  |  |
|   | 2.4                 | Floor and Ceiling Functions | 8 |  |  |  |  |
| 3 | Algo                | orithms                     | 8 |  |  |  |  |

# Author's Notes

This actually isn't the first copy of my discrete math notes...I had an earlier copy that got corrupted, so now I'm just going to constantly upload to GitHub because I'm afraid of them getting wiped again 😭

These notes are based off of the textbook  $Discrete\ Mathematics\ and\ Its\ Applications$  by  $Kenneth\ H.\ Rosen$ , as well as from the lectures of  $Serdar\ Erbatur$  from the  $Fall\ 2023$  semester.

If you have any complaints, or suggestions regarding these notes, please email me at  $\rm mdn220004@utdallas.edu$ 

# 1 Propositional Logic

#### Definition Proposition

Declarative statements that are either true or false

Table 1: Examples of propositions

| Statement                | Proposition? |
|--------------------------|--------------|
| 1+1=2                    | <b>V</b>     |
| What class are ya takin? |              |
| I am happy               | <b>V</b>     |

Propositions can be combined to form another proposition with the use of logical operators

#### Note

Common labels for propositions in discrete mathematics include letters like  $P,Q,R,S\dots$ 

Table 2: Logical Operators in Discrete Mathematics

| Symbol            | Meaning                    | Expression     |
|-------------------|----------------------------|----------------|
|                   | negation / not             | $\neg P$       |
| $\wedge$          | conjunction / and          | $P \wedge Q$   |
| V                 | disjunction / or           | $P\vee Q$      |
| $\oplus$          | exclusive disjunction/ xor | $P\oplus Q$    |
| $\Longrightarrow$ | implication / conditional  | $P \implies Q$ |
| $\iff$            | biconditional              | $P \iff Q$     |

#### Note Logical Operator Precedence

Order matters when it comes to evaluating logical operators:

- 1. negaiton
- 2. conjunction
- 3. disjunctions
- 4. conditionals

Where negation is evaluated first, and conditionals last.

# Theorem More on Conditionals

Conditionals can also be expressed in three other ways:

Contrapositive:  $\neg Q \implies \neg P$ 

Converse:  $Q \implies P$ 

Inverse:  $\neg P \implies \neg Q$ 

### Example

Conditional: If it is raining, then I am not going to  $\overline{\text{town}}$ 

Contrapositive: If  $\underline{I \text{ go to town}}$ , then it is not raining

Converse: If I do not go to town, then it is raining

Inverse: If it is not raining, then I am going to town

### Definition Truth Table

They are used as a way of seeing all possible values of a proposition

Table 3: Truth Table of  $P \implies Q$ 

| P            | Q            | $P \implies Q$ |
|--------------|--------------|----------------|
| F            | F            | Т              |
| F            | $\mathbf{T}$ | Т              |
| $\mathbf{T}$ | $\mathbf{F}$ | F              |
| Τ            | $\mathbf{T}$ | Т              |

## 1.1 Propositional Equivalencies

#### Definition Equivalencies

A proposition is a...

- Tautology if it is true in every case
- Contradiction / Fallacy if it is false in every case
- Contingency if *neither* is the case

Table 4: Example of Tautology and Contradiction

| P            | $\neg P$ | $P \vee \neg P$ | $P \wedge \neg P$ |
|--------------|----------|-----------------|-------------------|
| $\mathbf{T}$ | F        | Т               | $\mathbf{F}$      |
| F            | Т        | ${ m T}$        | $\mathbf{F}$      |

## Definition Logical Equivalency (≡)

Compound propositions P and Q are logically equivalent if  $P \iff Q$  is a tautology. This is expressed as

$$P \equiv Q$$

Below is a table of useful logical equivalencies

Table 5: Logical Equivalencies

| Name            | Equivalence                                                 |  |
|-----------------|-------------------------------------------------------------|--|
| Identity        | $P \wedge T \equiv P$                                       |  |
| иеницу          | $P\vee\mathcal{F}\equiv P$                                  |  |
| Idempotent      | $P \wedge P \equiv P$                                       |  |
|                 | $P \lor P \equiv P$                                         |  |
| Domination      | $P \vee T \equiv T$                                         |  |
|                 | $P \wedge F \equiv F$                                       |  |
| Negation        | $P \vee \neg P \equiv \mathbf{T}$                           |  |
|                 | $P \land \neg P \equiv \mathbf{F}$                          |  |
| Double Negation | $\neg(\neg P) \equiv P$                                     |  |
| Commutative     | $P \wedge Q \equiv Q \wedge P$                              |  |
|                 | $P \lor Q \equiv Q \lor P$                                  |  |
| Associative     | $(P \wedge Q) \wedge R \equiv P \wedge (Q \wedge R)$        |  |
|                 | $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$                |  |
| Distributive    | $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$ |  |
|                 | $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$     |  |
| De Morgan's     | $\neg(P \land Q) \equiv \neg P \lor \neg Q$                 |  |
|                 | $\neg (P \lor Q) \equiv \neg P \land \neg Q$                |  |
| Absorption      | $P \wedge (P \vee Q) \equiv P$                              |  |
|                 | $P \vee (P \wedge Q) \equiv P$                              |  |

The use of showing the equivalencies between two compound propositions is called a  $conditional-disjunction\ equivalence$ 

Example Conditional-Disjunction Equivalence

$$P \implies Q \equiv \neg P \vee Q$$

This can be proven with the use of a truth table  $\stackrel{\text{\tiny cel}}{\rightleftharpoons}$ 

#### Continued on Next Page...

Table 6: Conditional-Disjunction Equivalence Proof

| P            | Q            | $\neg P$ | $\neg P \vee Q$ | $P \implies Q$ |
|--------------|--------------|----------|-----------------|----------------|
| F            | F            | Т        | Т               | Т              |
| F            | $\mathbf{T}$ | Т        | Т               | ${ m T}$       |
| Τ            | F            | F        | F               | F              |
| $\mathbf{T}$ | Τ            | F        | ${ m T}$        | ${ m T}$       |

### 1.2 Predicates and Quantifiers

#### Note

So far, propositional logic can only handle singular subjects. It can't handle statements such as:

- All computer science students can program well
- $3x + 4 \ge 0$

#### Definition | Predicate Logic

When you have a proposition that contains a variable. It is typically written as a propositional function, P(x), where x is the subject for the predicate P

#### Example

- F(x) = "x > 3"
- P(x) = "x looks beautiful!"

#### Note Multi-variable Propositional Functions

Propositional functions may also contain more than just one argument:

#### Definition Quantifiers

They define the range of which a proposition holds true, and can be nested to produce nested quantifiers

Table 7: Quantifiers in Discrete Mathematics

| Quantifier             | Expression          | In English                                     |
|------------------------|---------------------|------------------------------------------------|
| Universal Quantifier   | $\forall x. P(x)$   | P(x) is true for every $x$ in its domain       |
|                        | $\exists x. P(x)$   | There exists $x$ where $P(x)$ is true          |
| Existential Quantifier | $ \exists x. P(x) $ | There does not exist $x$ where $P(x)$ is true  |
|                        | $\exists ! x. P(x)$ | There exists only one $x$ where $P(x)$ is true |

 $\forall x.P(x)$  may also be written as  $\forall xP(x)$ , and the same holds for the other quantifiers

## Example Nested Quantifiers

$$\forall x \exists y. (x + y = 0)$$

Translates to: "For every x there exists a y such that x + y = 0"

#### 1.3 Inference Rules and Proofs

# Definition Argument

A sequence of statements that have a conclusion

#### Definition Valid

The conclusion, the final statement of the argument, must follow from its premises

(i.e. premises  $\implies$  conclusion)

## Definition Premise

The preceeding statements of a mathematical argument that lead to a conclusion

### Definition Fallacy

Incorrect reasoning in discrete mathematics that leads to an invalid argument

## Example Argumentative Form

Arguments may be written as this:  $((P \implies Q) \land P) \implies Q$ , or in argumentative form:

$$P \implies Q$$

The next page contains a table of inference rules

Table 8: Rules of Inference

| Rule                   | Expression                                                                          | Tautology                                                                                   |
|------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Modus ponens           | $P \longrightarrow Q$ $\therefore Q$                                                | $\big(P \land (P \implies Q)\big) \implies Q$                                               |
| Modus tollens          | $ \begin{array}{c} \neg Q \\ P \Longrightarrow Q \\ \therefore \neg P \end{array} $ | $\left(\neg Q \land (P \implies Q)\right) \implies \neg P$                                  |
| Hypothetical syllogism | $P \implies Q$ $Q \implies R$ $\therefore P \implies R$                             | $((P \Longrightarrow Q) \land (Q \Longrightarrow R)) \Longrightarrow (P \Longrightarrow R)$ |
| Disjunctive syllogism  |                                                                                     | $\big((P \vee Q) \wedge \neg P\big) \implies Q$                                             |
| Addition               | $P \longrightarrow P \lor Q$                                                        | $P \implies (P \vee Q)$                                                                     |
| Simplification         | $P \wedge Q$ $P$                                                                    | $(P \land Q) \implies P$                                                                    |
| Conjunction            | $P$ $Q \\ P \wedge Q$                                                               | $\big((P) \land (Q)\big) \implies P \land Q$                                                |
| Resolution             | $P \lor Q$ $\neg P \lor R$ $\therefore Q \lor R$                                    | $((P \lor Q) \land (\neg P \lor R)) \implies (Q \lor R)$                                    |

Table 9: Rules of Inference for Quantified Statements

| Rule                       | Expression                                                      |
|----------------------------|-----------------------------------------------------------------|
| Universal Instantiation    | $\frac{\forall x. P(x)}{P(c)}$                                  |
| Universal Generalization   | $\frac{P(c) \text{ for an arbitrary } c}{\forall x. P(x)}$      |
| Existential Instantiation  | $\exists x. P(x)$ $\therefore P(c) \text{ for some element } c$ |
| Existential Generalization | $\frac{P(c) \text{ for an arbitrary } c}{\forall x. P(x)}$      |

#### Definition Proof

Valid arguments that establish the truth of mathematical statements

#### Definition Theorem

A statement or claim that can be proven using:

- definitions
- other theorems
- axioms
- inference rules

They are also referred to as "Lemma", "Proposition", or "Corollary"

There's many different ways of proving a theorem. Let's assume a conditional statement  $P \implies Q...$ 

#### Definition Direct Proof

When the first step is the assumption that P is true and the following steps that lead up to Q is also true

#### Definition Indirect Proof

Proofs that do not start with the premimses and end with conclusion (the opposite of a direct proof). Ways of doing direct proofs involve proof by contraposition, proof by contradiction, and much more...

# Example Proof by Contraposition

 $P \Longrightarrow Q$  can be proved true if  $\neg Q \Longrightarrow P$ , its contraposition, can also be proved. This is because a contraposition and a conditional proposition are tautologies

# Example Proof by Contradicition

To prove P, you must assume  $\neg P$  and derive that  $\neg P$  is false. If  $\neg P$  is false, then that must mean that  $\neg \neg P$ , or P, must be true

- 2 Set Theory
- 2.1 Cardinality
- 2.2 Set Operations
- 2.3 Functions
- 2.4 Floor and Ceiling Functions
- 3 Algorithms