USAMTS 2019 -2020 Set 1

Kevin Lu

September 2019

Section 1

Section 2

Lemma 1 (Particular Case of the Rearrangement Inequality). If $a_1 \ge a_2 \ge a_3$ and $b_1 \le b_2 \le b_3$ then $a_1b_1 + a_2b_2 + a_3b_3 \le a_{1b2} + a_2b_3 + a_3b_1$ with equality iff $(a_1 = a_2 \ or \ b_1 = b_2)$ and $(a_1 = a_3 \ or \ b_2 = b_3)$.

Proof. The inequality case is trivialized by the rearrangement inequality but the equality case may require a bit more work. Since $(a_1-a_2)(b_1-b_2) \leq 0 \implies a_1b_1+a_2b_2+a_3b_3 \leq a_1b_2+a_2b_1+a_3b_3$ with equality when $a_1=a_2$ or $b_1=b_2$. Since $(a_1-a_3)(b_3-b_2) \geq 0 \implies a_1b_2+a_2b_1+a_3b_3 \leq a_1b_3+a_2b_1+a_3b_2$ with equality when $a_1=a_3$ or $b_2=b_3$. Thus, we have $a_1b_1+a_2b_2+a_3b_3 \leq a_1b_2+a_2b_1+a_3b_3 \leq a_1b_3+a_2b_1+a_3b_2$ with equality iff $(a_1=a_2 \text{ or } b_1=b_2)$ and $(a_1=a_3 \text{ or } b_2=b_3)$.

Rearranging the given yields the following

$$\sqrt[y]{z} = \sqrt[x]{x}$$
$$\sqrt[z]{x} = \sqrt[y]{y}$$
$$\sqrt[x]{y} = \sqrt[z]{z}$$

Multiplying the three yields

$$\sqrt[z]{x}\sqrt[x]{y}\sqrt[y]{z} = \sqrt[x]{x}\sqrt[y]{y}\sqrt[z]{z} \tag{1}$$

WLOG let $x \ge y \ge z$. Lemma 1 with $\log x \ge \log y \ge \log z$ and $\frac{1}{x} \le \frac{1}{y} \le \frac{1}{z}$ yields

$$\begin{split} \frac{1}{x}\log x + \frac{1}{y}\log y + \frac{1}{z}\log z &\leq \frac{1}{z}\log x + \frac{1}{x}\log y + \frac{1}{y}\log z \\ \log(\sqrt[z]{x}\sqrt[x]{y}\sqrt[y]{z}) &\leq \log\left(\sqrt[x]{x}\sqrt[y]{y}\sqrt[z]{z}\right) \\ &\sqrt[z]{x}\sqrt[x]{y}\sqrt[y]{z} &\leq \sqrt[x]{x}\sqrt[y]{y}\sqrt[y]{z} \end{split}$$

with equality iff $\frac{1}{x} = \frac{1}{y}$ or $\log x = \log y$ (ignoring the second requirement of the "and" since the first is sufficient), either of which implies x = y. Since $x^y = z^x$ and $x, y, z \ge 1$, this implies $x^x = z^x \implies x = z \implies x = y = z$, as required.

Section 3

Let $[X_1X_2\cdots X_n]$ be the area of n-gon $X_1X_2\cdots X_n$. Let O be the center of ω and X and Y the respective projections of O and P on line \overline{IE} . Since $[EOI] = \frac{EI \cdot OX}{2}$, $[EPI] = \frac{EI \cdot PY}{2}$ and $UOE \sim UPY$ by AA with angles $\angle OXU = 90^\circ = \angle UPY$ and $\angle OUE = \angle PUY$,

$$\frac{[EOI]}{[EPI]} = \frac{OX}{PY} = \frac{UO}{UP} = \frac{1}{2} \implies [EOI] = \frac{[EPI]}{2}. \tag{2}$$

Let $\theta = \angle EOU$ and r = 1/2 be the radius of ω . We have

$$[EOI] = \frac{EI \cdot OX}{2} = EX \cdot OX = r \sin \theta \cdot r \cos \theta = \frac{r^2 \sin 2\theta}{2} = \frac{\sin 2\theta}{8}$$
 (3)

Since $\sin 2\theta \le 1$ with equality when $2\theta = 90^{\circ} \implies \theta = 45^{\circ}$, we have $[EPI] = 2[EOI] \le \frac{1}{4}$, with equality when $\angle EOI = 45^{\circ}$.

Section 4

Section 5