Notas de Aula Cálculo II para Economia

Professora: Yunelsy N Alvarez

5. Limite e Continuidade

Objetivos

- Entender a noção de limite de uma função de várias variáveis quando nos aproximamos de um ponto específico no domínio.
- Compreender a definição formal de limite em termos de ε - δ .
- Explorar as propriedades dos limites, incluindo as regras de soma, produto, constante e quociente.
- Compreender o conceito de limite ao longo de caminhos e como eles são relevantes na definição de limites de funções de várias variáveis.
- Entender a definição de continuidade de uma função f(x, y) em um ponto (a, b), envolvendo a existência do limite no ponto.
- Identificar diferentes tipos de descontinuidades, como descontinuidades removíveis e não removíveis.

Suponha que queiramos estudar a demanda por empréstimos bancários. Nesse contexto, a quantidade de empréstimos demandada (Q) depende da taxa de juros dos empréstimos (r) e da renda disponível (I) dos tomadores de empréstimos.

Queremos analisar como pequenas variações em cada uma dessas variáveis influenciam a quantidade de empréstimos demandada. Por exemplo:

- Se a taxa de juros aumentar levemente, como isso afetará a quantidade de empréstimos demandada? Podemos calcular o valor de Q quando r assume um valor ligeiramente maior e compará-lo com o valor original de Q. Isso nos dá uma ideia de como a demanda por empréstimos responde a variações na taxa de juros.
- Se a renda disponível dos tomadores aumentar um pouco, como isso influenciará a demanda por empréstimos? Novamente, podemos calcular Q quando I assume um valor ligeiramente maior e comparar os resultados.

Vejamos a seguir um exemplo muito particular.

Exemplo 5.1 (Demanda por empréstimos bancários).

Suponha que a quantidade de empréstimos demandada seja dada pela função:

$$Q(r,I) = \frac{100}{r} \cdot I^{0,5},$$

onde r representa a taxa de juros dos empréstimos e I a renda disponível dos tomadores. Vamos analisar o comportamento da função quando a taxa de juros se aproxima de 5% (isto é, r=0.05) e a renda disponível se aproxima de 3000 reais.

Considere a seguinte matriz, que apresenta os valores de Q(r,I) para diferentes combinações de (r,I) próximas a (0.05,3000):

 $^{^{1}}$ Observe que, em cenários reais, Q depende do tempo. No entanto, como o tempo não é uma variável contínua neste exemplo, não o consideraremos.

rI	2600	2800	3000	3200	3400
0,03	18257,82	20000,00	21821,89	23734,98	25757,92
0,04	14142,14	15491,91	16970,56	18596,68	20389,09
0,05	11547,68	12649,11	13856,88	15172,59	16598,76
0,06	9718,58	10606,60	11547,68	12534,09	13559,46
0,07	8288,62	9064,03	9898,98	10777,14	11693,75

A tabela mostra que os valores de Q(r, I) ao redor de (0,05,3000) são relativamente próximos de Q(0,05,3000) = 13856,88.

O exemplo anterior ilustra como pequenas variações nas variáveis r e I afetam a quantidade de empréstimos demandada. Para descrever esse comportamento de forma precisa e generalizável, utilizamos o conceito de limite. Assim como no cálculo de uma variável, o limite nos permite entender como uma função se comporta quando suas variáveis independentes se aproximam de determinados valores.

5.1 Limite

Definição 5.1 (Limite de funções de várias variáveis).

Dizemos que o *limite de uma função* $f:D\subset\mathbb{R}^n\to\mathbb{R}$ quando $\mathbf{x}\in D$ se aproxima de $\mathbf{x}_0\in D$ é L, e escrevemos

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=L,$$

se, para qualquer $\varepsilon > 0$, existe um número $\delta > 0$ tal que, para todo $\mathbf{x} \in B(\mathbf{x}_0, \delta) \cap D$, temos que $f(\mathbf{x}) \in (L - \varepsilon, L + \varepsilon) \subset \mathbb{R}$.

Em outras palavras, $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L$, se

$$\forall \varepsilon > 0 \ \exists \delta > 0; \ \|\mathbf{x} - \mathbf{x}_0\| < \delta \implies |f(\mathbf{x}) - L| < \varepsilon.$$

A figura a seguir ilustra a ideia de limite em duas variáveis: para qualquer intervalo de tamanho 2ε ao redor do valor L que escolhermos, existe uma bola de raio δ ao redor de (x_0,y_0) no domínio de f tal que a imagem de qualquer ponto nessa vizinhança cai dentro do intervalo inicial.

Figura 5.1

Vamos mostrar um exemplo prático de como escolher δ em função de ε .

Exemplo 5.2.

Queremos calcular o limite de $f(x, y) = x^2 + y^2$ quando (x, y) se aproxima de (0,0). Ou seja, estamos interessados em

$$\lim_{(x,y)\to(0,0)} f(x,y).$$

Pela definição de limite, precisamos propor um candidato L. Note que $f(x,y) = x^2 + y^2$ é exatamente o quadrado da distância de (x,y) à origem. Assim, quando (x,y) se aproxima de (0,0), essa distância diminui para 0. Portanto, o valor natural a ser considerado como limite é

$$L = 0$$
.

Seja, então, $\varepsilon > 0$ qualquer. Para nosso exemplo temos,

$$|f(x,y) - L| = |x^2 + y^2 - 0| = x^2 + y^2 = ||(x,y) - (0,0)||^2$$
.

Escolhendo $\delta = \sqrt{\varepsilon}$, temos que, se

$$||(x,y)-(0,0)|| < \delta = \sqrt{\varepsilon}$$

então

$$|f(x,y) - L| < ||(x,y) - (0,0)||^2 < (\sqrt{\varepsilon})^2 = \varepsilon,$$

mostrando que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Exercício 5.1.

Use a ideia do exemplo anterior para calcular $\lim_{x\to O} \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$, onde O é a origem.

Exemplo 5.3.

Vamos provar, usando a definição formal de limite, que

$$\lim_{(x,y)\to(0,0)} \frac{\operatorname{sen}(x^2 + y^2)}{x^2 + y^2} = 1.$$

Note que a função

$$f(x,y) = \frac{\text{sen}(x^2 + y^2)}{x^2 + y^2}$$

está bem definida para todo $(x,y) \neq (0,0)$, e queremos saber se o limite existe na origem e, se existir, qual é o seu valor.

Seja $\varepsilon > 0$. Seja $r = \sqrt{x^2 + y^2}$. Note que $r \to 0$ implica que $(x, y) \to (0, 0)$. Então:

$$\left| \frac{\operatorname{sen}(x^2 + y^2)}{x^2 + y^2} - 1 \right| = \left| \frac{\operatorname{sen}(r^2)}{r^2} - 1 \right|.$$

Mas sabemos do cálculo em uma variável que:

$$\lim_{t \to 0} \frac{\operatorname{sen} t}{t} = 1.$$

Logo, existe $\delta > 0$ tal que, se $0 < |r^2| < \delta$, então:

$$\left|\frac{\mathrm{sen}(r^2)}{r^2} - 1\right| < \varepsilon.$$

Como $r^2 = x^2 + y^2$, basta escolher $\delta > 0$ tal que $0 < x^2 + y^2 < \delta$ implica

$$\left| \frac{\operatorname{sen}(x^2 + y^2)}{x^2 + y^2} - 1 \right| < \varepsilon.$$

Portanto, pela definição de limite, concluímos que:

$$\lim_{(x,y)\to(0,0)} \frac{\operatorname{sen}(x^2 + y^2)}{x^2 + y^2} = 1.$$

Observação 5.2.

Sempre que a função for definida por uma única fórmula e essa fórmula estiver bem definida no ponto considerado, podemos usar a definição de limite para provar que o valor do limite é simplesmente o valor da função no ponto. Esse seria o caso do Exemplo 5.2, e o leitor pode mostrar esse fato usando a definição de limite.

Por outro lado, no caso em que a função não estiver definida no ponto no qual estivermos calculando o limite, ou estiver definida por mais de uma expressão e esse ponto for uma transição entre as definições, não podemos concluir o valor do limite apenas avaliando a expressão. Nesses casos, é necessário fazer uma análise diferente do comportamento da função em torno do ponto.

No Exemplo 5.3, usamos recursos conhecidos (como uma identidade trigonométrica fundamental e uma substituição de variáveis) para investigar o comportamento da função e determinar a existência do limite.

A seguir, continuamos com uma série de resultados que nos dão ferramentas importantes para determinar limites de funções de várias variáveis e também nos ajudam a identificar situações em que esses limites não existem.

Teorema 5.3 (Unicidade do limite).

Se o limite de uma função $f: D \subset \mathbb{R}^n \to \mathbb{R}$ no ponto $\mathbf{x}_0 \in \mathbb{R}^n$ existe, então ele é único.

Prova.

Suponha que existam dois limites distintos L_1 e L_2 de f em \mathbf{x}_0 . Pela definição de limite, para todo $\varepsilon > 0$, existem $\delta_1, \delta_2 > 0$ tais que:

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta_1 \implies |f(\mathbf{x}) - L_1| < \frac{\varepsilon}{2},$$

e

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta_2 \implies |f(\mathbf{x}) - L_2| < \frac{\varepsilon}{2}$$
.

Tomando $\delta = \min\{\delta_1, \delta_2\}$, temos que, para todo $\mathbf{x} \in \mathbb{R}^n$ tal que $\|\mathbf{x} - \mathbf{x}_0\| < \delta$,

$$|L_1 - L_2| = |L_1 - f(\mathbf{x}) + f(\mathbf{x}) - L_2| \le |L_1 - f(\mathbf{x})| + |f(\mathbf{x}) - L_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, segue que $|L_1 - L_2| = 0$, isto é, $L_1 = L_2$. Portanto, o limite é único.

O teorema anterior garante que, se o limite de uma função de várias variáveis existe em um ponto, então o limite dessa função ao longo de qualquer curva que passe por esse ponto também existe e é igual ao valor do limite.

Para reforçar essa conclusão de forma mais formal, suponha que temos um candidato a limite L para uma função f no ponto $\mathbf{x}_0 \in \mathbb{R}^n$. Esse valor pode, por

exemplo, ser sugerido ao restringirmos f a um determinado caminho que leva até \mathbf{x}_0 , como uma reta ou parábola em \mathbb{R}^2 , e observarmos que o limite ao longo desse caminho é igual a L.

No entanto, suponha agora que, ao considerarmos um *segundo caminho* contendo também \mathbf{x}_0 , verificamos que existe um $\varepsilon > 0$ tal que $|f(x,y) - L| \ge \varepsilon$ para todos os pontos (x,y) suficientemente próximos de \mathbf{x}_0 ao longo desse segundo caminho. Ou seja, por menor que seja o raio $\delta > 0$ considerado, sempre haverá pontos sobre esse caminho cujas imagens estão a uma distância maior ou igual a ε de L.

Isso viola a definição formal de limite. Logo, L não pode ser o limite de f no ponto \mathbf{x}_0 , e concluímos que o limite de f nesse ponto não existe.

Vejamos exemplos da aplicação desse fato.

Exemplo 5.4.

Vamos mostrar que não existe

$$\lim_{(x,y)\to(0,0)} \frac{x^2(x-1)\cos y + y^3\cos x}{x^2 + y^2}.$$
 (5.1)

Pelo raciocínio anterior, basta achar dois caminhos para os quais o limite da função

$$f(x,y) = \frac{x^2(x-1)\cos y + y^3\cos x}{x^2 + y^2}$$

ao longo deles seja diferente. Podemos escolher nos aproximarmos da origem primeiramente ao longo do eixo x, que é o conjunto $\{(x,0) \in \mathbb{R}^2\}$.

Restringindo a função a esse conjunto temos,

$$f(x,0) = \frac{x^2(x-1)\cos 0 + 0^3\cos x}{x^2 + 0^2} = \frac{x^2(x-1)}{x^2} = x - 1,$$

que é uma função de uma variável. Logo,

$$\lim_{(x,0)\to(0,0)} f(x,0) = \lim_{x\to 0} x - 1 = -1.$$

Agora, podemos nos acercar da origem ao longo do eixo y, que é o caminho $\{(0,y) \in \mathbb{R}^2\}$. Temos,

$$f(0,y) = \frac{0^2(0-1)\cos y + y^3\cos 0}{0^2 + y^2} = \frac{y^3}{y^2} = y.$$

Dai,

$$\lim_{(0,y)\to(0,0)} f(0,y) = \lim_{y\to 0} y = 0.$$

Pelo teorema anterior (unicidade do limite) não pode existir o limite (5.1).

Exemplo 5.5.

Vamos mostrar que não existe

$$\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2 + y^2}.$$
 (5.2)

Novamente, basta achar dois caminhos para os quais o limite da função

$$f(x,y) = \frac{xy}{3x^2 + y^2}$$

ao longo deles seja diferente. Podemos escolher nos aproximarmos da origem primeiramente ao longo do eixo x, que é o caminho $\{(x,0) \in \mathbb{R}^2\}$. Neste caso temos,

$$\lim_{(x,0)\to(0,0)} f(x,0) = \lim_{x\to 0} \frac{x\cdot 0}{3x^2 + 0^2} = 0.$$

Agora, se nos acercarmos da origem ao longo do eixo y, que é o caminho $\{(0,y) \in \mathbb{R}^2\}$. Temos

$$\lim_{(0,y)\to(0,0)} f(0,y) = \lim_{y\to 0} \frac{0 \cdot y}{3 \cdot 0^2 + y^2} = 0.$$

Embora esses dois limites sejam iguais, isso não diz nada sobre a existência do limite da função em si, pois podem existir outros caminhos para os quais o limite da função restrito a eles sejam diferentes. De fato, se nos acercamos da origem ao longo da reta de equação y = x, por exemplo, que é conjunto $\{(x,x) \in \mathbb{R}^2\}$, temos

$$\lim_{(x,x)\to(0,0)} f(x,x) = \lim_{x\to 0} \frac{x\cdot x}{3\cdot x^2 + x^2} = \lim_{x\to 0} \frac{x^2}{4x^2} = \frac{1}{4},$$

que é diferente do limite da função ao longo dos eixos coordenados (ou seja, diferente de 0). Logo, não existe o limite (5.2) como queríamos mostrar.

É natural questionar se, analogamente ao que ocorre com limites laterais em funções de uma variável, a coincidência dos limites ao longo de todas as retas que passam por um ponto seria suficiente para garantir a existência do limite de uma função de duas variáveis. A resposta é negativa, como ilustra o exemplo a seguir.

Exemplo 5.6.

Queremos determinar se existe

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}.$$

Vamos calcular esse limite ao longo de todas as retas possíveis que passam pela origem que são os conjuntos:

$$R_m = \{(x, mx) \in \mathbb{R}^2\}, m \in \mathbb{R}, e \{(0, y) \in \mathbb{R}^2\}.$$

Avaliemos $f(x,y) = \frac{x^2y}{x^4+y^2}$ sobre R_m . Temos:

$$f(x,mx) = \frac{x^2(mx)}{x^4 + (mx)^2} = \frac{mx^3}{x^4 + m^2x^2} = \frac{mx}{x^2 + m^2}.$$

Tomando o limite quando $x \rightarrow 0$:

$$\lim_{(x,mx)\to(0,0)} f(x,mx) = \lim_{x\to 0} \frac{mx}{x^2 + m^2} = 0.$$

Portanto, ao longo de qualquer reta y = mx, o limite é zero.

No caso da reta de equação x = 0, temos f(0, y) = 0, logo o limite ao longo dessa reta também é zero.

Por outro lado, consideremos a aproximação da origem ao longo da parábola de equação $y = x^2$, isto é, sobre o conjunto:

$$\{(x, x^2) \in \mathbb{R}^2\}.$$

Temos:

$$f(x, x^2) = \frac{x^2 \cdot x^2}{x^4 + x^4} = \frac{x^4}{2x^4} = \frac{1}{2},$$

portanto:

$$\lim_{(x,x^2)\to(0,0)} f(x,x^2) = \frac{1}{2} \neq 0.$$

Assim, o limite de f(x, y) quando $(x, y) \rightarrow (0, 0)$ não existe. Isso mostra que a coincidência dos limites ao longo de todas as retas não é suficiente para garantir a existência do limite total.

Assim como no cálculo de uma variável, os limites de funções de várias variáveis obedecem a certas propriedades algébricas. Essas propriedades nos permitem calcular limites de expressões compostas a partir dos limites das partes que as compõem, facilitando bastante a resolução de problemas. A seguir, listamos as principais propriedades que usaremos ao longo do curso.

Propriedades 5.4 (Propriedades dos limites).

Sejam f, g e h funções definidas em um subconjunto $D \subset \mathbb{R}^n$. Suponha que, para $\mathbf{x}_0 \in D$, existam os limites:

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = L_1 \quad \text{e} \quad \lim_{\mathbf{x}\to\mathbf{x}_0} g(\mathbf{x}) = L_2.$$

Então, valem as seguintes propriedades:

- Soma: $\lim_{\mathbf{x} \to \mathbf{x}_0} [f(\mathbf{x}) + g(\mathbf{x})] = L_1 + L_2;$
- **Produto:** $\lim_{\mathbf{x} \to \mathbf{x}_0} [f(\mathbf{x}) \cdot g(\mathbf{x})] = L_1 \cdot L_2;$
- Quociente: $\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{L_1}{L_2}$ desde que $L_2 \neq 0$;
- Multiplicação por constante: $\lim_{\mathbf{x} \to \mathbf{x}_0} (c \cdot f(\mathbf{x})) = c \cdot L_1$, para todo $c \in \mathbb{R}$;
- Valor absoluto: $\lim_{\mathbf{x} \to \mathbf{x}_0} |f(\mathbf{x})| = |L_1|$.

Prova.

Soma:

Seja $\varepsilon > 0$. Como $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L_1$, existe $\delta_1 > 0$ tal que, se $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_1$, então

$$|f(\mathbf{x}) - L_1| < \frac{\varepsilon}{2}.$$

Analogamente, como $\lim_{\mathbf{x}\to\mathbf{x}_0} g(\mathbf{x}) = L_2$, existe $\delta_2 > 0$ tal que, se $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_2$, então

$$|g(\mathbf{x})-L_2|<\frac{\varepsilon}{2}.$$

Definimos $\delta = \min\{\delta_1, \delta_2\}$. Assim, se $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta$, então valem simultaneamente as duas desigualdades acima. Logo,

$$\begin{aligned} |[f(\mathbf{x}) + g(\mathbf{x})] - (L_1 + L_2)| &= |(f(\mathbf{x}) - L_1) + (g(\mathbf{x}) - L_2)| \\ &\leq |f(\mathbf{x}) - L_1| + |g(\mathbf{x}) - L_2| \quad \text{(Designal dade triangular)} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Portanto, pela definição de limite,

$$\lim_{\mathbf{x}\to\mathbf{x}_0}[f(\mathbf{x})+g(\mathbf{x})]=L_1+L_2.$$

Valor absoluto:

Seja $\varepsilon > 0$. Como $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L$, existe $\delta > 0$ tal que, se $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta$, então:

$$|f(\mathbf{x}) - L| < \varepsilon$$
.

Agora, pela desigualdade do valor absoluto, temos:

$$||f(\mathbf{x})| - |L|| \le |f(\mathbf{x}) - L| < \varepsilon.$$

Assim, pela definição de limite,

$$\lim_{\mathbf{x}\to\mathbf{x}_0}|f(\mathbf{x})|=|L|.$$

As demais propriedades podem ser demonstradas de forma análoga.

Exemplo 5.7 (Limite do produto de funções).

Queremos calcular

$$\lim_{(x,y)\to(0,0)} \frac{(x+y+1) \sin (x^2+y^2)}{x^2+y^2}.$$

Da Observação 5.2, temos que

$$\lim_{(x,y)\to(0,0)} (x+y+1) = 1.$$

No Exemplo 5.3, mostramos que

$$\lim_{(x,y)\to(0,0)} \frac{\sin\left(x^2 + y^2\right)}{x^2 + y^2} = 1.$$

Assim,

$$\lim_{(x,y)\to(0,0)} \frac{(x+y+1)\sin\left(x^2+y^2\right)}{x^2+y^2} = \left(\lim_{(x,y)\to(0,0)} (x+y+1)\right) \cdot \left(\lim_{(x,y)\to(0,0)} \frac{\sin\left(x^2+y^2\right)}{x^2+y^2}\right)$$
$$= 1 \cdot 1 = 1.$$

Exemplo 5.8 (Limite do quociente de funções).

Queremos calcular

$$\lim_{(x,y)\to(0,0)} \frac{(x^2+y^2)^2}{\mathrm{sen}(x^2+y^2)}.$$

A função pode ser reescrita como o seguinte quociente:

$$f(x,y) = \frac{x^2 + y^2}{\frac{\sin(x^2 + y^2)}{x^2 + y^2}}.$$

Dos Exemplos 5.2 e 5.3, temos que:

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) = 0 \quad \text{e} \quad \lim_{(x,y)\to(0,0)} \frac{\sin\left(x^2 + y^2\right)}{x^2 + y^2} = 1.$$

Logo,

$$\lim_{(x,y)\to(0,0)} \frac{(x^2+y^2)^2}{\operatorname{sen}(x^2+y^2)} = \lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\frac{\operatorname{sen}(x^2+y^2)}{x^2+y^2}} = \frac{0}{1} = 0.$$

Observemos que, na Propriedade 5.4, assumimos como hipótese que os limites das funções que estamos operando entre si existem. Por outro lado, isso **não implica** que, se o limite de uma delas não existir, o limite da operação também não existirá. Vejamos um exemplo.

Exemplo 5.9 (Soma com limites individuais indefinidos).

Considere as funções

$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
 e $g(x,y) = \frac{y^2}{x^2 + y^2}$.

Observe que:

$$f(x,y) + g(x,y) = \frac{x^2 + y^2}{x^2 + y^2} = 1$$
 com $(x,y) \neq (0,0)$.

Assim,

$$\lim_{(x,y)\to(0,0)} [f(x,y) + g(x,y)] = 1.$$

No entanto, os limites de f(x,y) e g(x,y), individualmente, **não existem** quando $(x,y) \rightarrow (0,0)$, pois:

• Se tomarmos o eixo x (y = 0), temos

$$f(x,0) = \frac{x^2}{x^2} = 1$$
, $g(x,0) = 0$.

• Se tomarmos o eixo y (x = 0), temos

$$f(0,y) = 0$$
, $g(0,y) = \frac{y^2}{y^2} = 1$.

Ainda assim, a soma das funções tem limite constante igual a 1.

Teorema 5.5 (Limite da composição de funções).

Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função tal que $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L$, e seja $g: \mathbb{R} \to \mathbb{R}$ uma função tal que $\lim_{t \to L} g(t) = M$. Então, o limite da composição $g(f(\mathbf{x}))$ existe e é dado por

$$\lim_{\mathbf{x}\to\mathbf{x}_0}g(f(\mathbf{x}))=M.$$

Prova.

Queremos mostrar que

$$\lim_{\mathbf{x}\to\mathbf{x}_0}g(f(\mathbf{x}))=M,$$

assumindo que

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L \quad \mathbf{e} \quad \lim_{t \to L} g(t) = M.$$

Seja $\varepsilon > 0$, como $\lim_{t \to L} g(t) = M$, existe $\eta > 0$ tal que,

$$|t - L| < \eta \implies |g(t) - M| < \varepsilon.$$
 (5.3)

Por outro lado, como $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L$, existe $\delta > 0$ tal que,

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta \implies |f(\mathbf{x}) - L| < \eta.$$

Então, fazendo $t = f(\mathbf{x})$ em (5.3), obtem-se

$$|g(f(\mathbf{x})) - M| < \varepsilon.$$

Logo, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta \implies |g(f(\mathbf{x})) - M| < \varepsilon$$

como desejado.

Exemplo 5.10 (Limite de uma composição).

No Exemplo 5.3 mostramos que

$$\lim_{(x,y)\to(0,0)} \frac{\operatorname{sen}(x^2 + y^2)}{x^2 + y^2} = 1.$$
 (5.4)

A "substituição radial" usada ali é precisamente tomar

$$t = \sqrt{x^2 + y^2} = ||(x, y)||.$$

Vejamos agora a opção de aplicar o Teorema do Limite da Composição.

Defina

$$f(x,y) = x^2 + y^2$$
 e $g(t) = \frac{\sin t}{t}$, $(t \neq 0)$.

Então

$$\frac{\text{sen}(x^2 + y^2)}{x^2 + y^2} = g(f(x, y)).$$

Como

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 \qquad \text{e} \qquad \lim_{t\to 0} g(t) = 1,$$

segue do Teorema do Limite da Composição que

$$\lim_{(x,y)\to(0,0)} \frac{\operatorname{sen}(x^2 + y^2)}{x^2 + y^2} = 1,$$

isto é, (5.4).

Exemplo 5.11.

Queremos calcular

$$\lim_{(x,y)\to(0,0)} \ln(1-x^2-y^2).$$

Escrevemos F como uma composição:

$$f(x,y) = 1 - x^2 - y^2$$
, $g(t) = \ln(t)$ $(t > 0)$,

de modo que

$$F(x,y) = g(f(x,y)).$$

Observemos que, em uma vizinhança do ponto (0,0), vale $1-x^2-y^2>0$, pois x^2+y^2 é pequeno e positivo, logo o argumento do logaritmo é bem definido.

Pelo Exemplo 5.2 e Observação 5.2,

$$\lim_{(x,y)\to(0,0)} f(x,y) = 1.$$

Do cálculo em uma variável,

$$\lim_{t \to 1^+} g(t) = \ln(1) = 0.$$

Aplicando o Teorema do Limite da Composição, obtemos

$$\lim_{(x,y)\to(0,0)} \ln(1-x^2-y^2) = 0.$$

Teorema 5.6 (Teorema do Confronto).

Se $h(\mathbf{x}) \le f(\mathbf{x}) \le g(\mathbf{x})$ para todos os $\mathbf{x} \in B(\mathbf{x}_0, \delta)$, exceto possivelmente em \mathbf{x}_0 em si, e se $\lim_{\mathbf{x} \to \mathbf{x}_0} h(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = L$, então $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = L$.

Prova.

Seja $\varepsilon > 0$. Como $\lim_{\mathbf{x} \to \mathbf{x}_0} h(\mathbf{x}) = L$, existe $\delta_1 > 0$ tal que

$$0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_1 \implies |h(\mathbf{x}) - L| < \varepsilon$$

isto é,

$$L - \varepsilon < h(\mathbf{x}) < L + \varepsilon$$
.

De modo análogo, como $\lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = L$, existe $\delta_2 > 0$ tal que

$$0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_2 \implies |g(\mathbf{x}) - L| < \varepsilon$$

isto é,

$$L - \varepsilon < g(\mathbf{x}) < L + \varepsilon$$
.

Pela hipótese do enunciado, existe $\delta_0 > 0$ tal que

$$\mathbf{x} \in B(\mathbf{x}_0, \delta_0) \setminus {\mathbf{x}_0} \implies h(\mathbf{x}) \le f(\mathbf{x}) \le g(\mathbf{x}).$$

Defina

$$\delta = \min\{\delta_0, \delta_1, \delta_2\}.$$

Então, para todo \mathbf{x} com $0 < ||\mathbf{x} - \mathbf{x}_0|| < \delta$, valem simultaneamente:

$$L - \varepsilon < h(\mathbf{x}) \le f(\mathbf{x}) \le g(\mathbf{x}) < L + \varepsilon.$$

Logo,

$$|f(\mathbf{x}) - L| < \varepsilon$$
.

Como $\varepsilon > 0$ é arbitrário, concluímos que

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = L.$$

Exemplo 5.12.

Queremos calcular

$$\lim_{(x,y)\to(0,0)} \left(1 + (x^2 + y^2) \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right)\right).$$

Sabemos que, para todo t real,

$$-1 \le \operatorname{sen}(t) \le 1$$
.

Logo, para $(x,y) \neq (0,0)$,

$$-(x^2+y^2) \le (x^2+y^2) \operatorname{sen}(\frac{1}{x^2+y^2}) \le (x^2+y^2).$$

Somando 1 em todos os termos:

$$\underbrace{1 - (x^2 + y^2)}_{h(\mathbf{x})} \le \underbrace{1 + (x^2 + y^2) \operatorname{sen}(\frac{1}{x^2 + y^2})}_{f(\mathbf{x})} \le \underbrace{1 + (x^2 + y^2)}_{g(\mathbf{x})}.$$

Agora,

$$\lim_{(x,y)\to(0,0)} \left(1 - (x^2 + y^2)\right) = \lim_{(x,y)\to(0,0)} \left(1 + (x^2 + y^2)\right) = 1.$$

Pelo Teorema do Confronto, segue que

$$\lim_{(x,y)\to(0,0)} \left(1 + (x^2 + y^2) \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right)\right) = 1.$$

Corolário 5.7 (Consequência do Teorema do Confronto).

Seja $f: \mathbb{R}^n \to \mathbb{R}$ definida em uma vizinhança perfurada de \mathbf{x}_0 e suponha que f seja limitada nessa vizinhança, isto é, existe M > 0 tal que

$$|f(\mathbf{x})| \le M$$
 para todo $\mathbf{x} \ne \mathbf{x}_0$.

Se $g: \mathbb{R}^n \to \mathbb{R}$ é uma função tal que

$$\lim_{\mathbf{x}\to\mathbf{x}_0}g(\mathbf{x})=0,$$

então

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) g(\mathbf{x}) = 0.$$

Prova.

Se M=0, então $|f(\mathbf{x})| \le 0$ e, portanto, $f\equiv 0$ na vizinhança perfurada; nesse caso, $f(\mathbf{x})g(\mathbf{x})\equiv 0$ e o resultado é trivial. Suponhamos, portanto, que M>0. Seja $\varepsilon>0$. Como $\lim_{\mathbf{x}\to\mathbf{x}_0}g(\mathbf{x})=0$, existe $\delta_1>0$ tal que

$$0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_1 \implies |g(\mathbf{x})| < \frac{\varepsilon}{M}.$$

Por hipótese, f é limitada em alguma vizinhança perfurada de \mathbf{x}_0 , digamos em $B(\mathbf{x}_0, \delta_2)$. Definindo $\delta = \min\{\delta_1, \delta_2\}$, temos que, para todo \mathbf{x} com $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta$,

$$|f(\mathbf{x})g(\mathbf{x})| \le |f(\mathbf{x})||g(\mathbf{x})| \le M|g(\mathbf{x})| < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

Assim, para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta \implies |f(\mathbf{x})g(\mathbf{x})| < \varepsilon,$$

o que mostra que

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) g(\mathbf{x}) = 0.$$

Exemplo 5.13.

Queremos calcular

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2}.$$

Escreva

$$\frac{x^3}{x^2 + y^2} = \underbrace{x}_{g(x,y)} \cdot \underbrace{\frac{x^2}{x^2 + y^2}}_{f(x,y)}.$$

Temos que f é limitada pois

$$0 \le \frac{x^2}{x^2 + y^2} \le 1$$
 para $(x, y) \ne (0, 0)$.

Por outro lado,

$$\lim_{(x,y)\to(0,0)} x = 0.$$

Pelo corolário anterior,

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2} = 0.$$

5.2 Continuidade

O conceito de continuidade está diretamente ligado ao de limite. Já no Cálculo I vimos que uma função de uma variável é contínua em um ponto quando o limite da função, ao nos aproximarmos desse ponto, coincide com o valor que ela assume nele. Em termos do gráfico, isso significa que não há buracos: o ponto onde avaliamos a função faz parte do mesmo comportamento que se observa ao redor.

П

Um exemplo clássico em uma variável é

$$f(x) = \begin{cases} \frac{\text{sen } x}{x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$$

onde a definição f(0) = 1 elimina o buraco no gráfico, tornando a função contínua em x = 0. Veremos situações análogas em duas variáveis.

Em funções de várias variáveis a ideia é a mesma: exigimos que o valor da função no ponto coincida com o limite da função quando nos aproximamos dele por qualquer direção. Dessa forma, dizemos que o gráfico da função não apresenta buracos naquele ponto.

Definição 5.8 (Função contínua).

Dizemos que uma função $f: D \subset \mathbb{R}^n \to \mathbb{R}$ é contínua no ponto $\mathbf{x}_0 \in D$ se

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0).$$

Resumindo, f é contínua em \mathbf{x}_0 se o limite existir e coincidir com o valor da função no ponto. Caso f seja contínua em todo ponto de D, dizemos que f é contínua em D.

Observação 5.9.

A definição anterior é, na verdade, apenas uma reformulação do conceito de limite: dizer que o limite de $f(\mathbf{x})$ em \mathbf{x}_0 existe e é igual a $f(\mathbf{x}_0)$ equivale a afirmar que para cada $\varepsilon > 0$, existe $\delta > 0$ tal que, para todo $\mathbf{x} \in B(\mathbf{x}_0, \delta) \cap D$, vale

$$|f(\mathbf{x}) - f(\mathbf{x}_0)| < \varepsilon.$$

Em termos intuitivos, isso significa que, se fizermos uma pequena perturbação no ponto \mathbf{x}_0 , o valor da função diferirá muito pouco de $f(\mathbf{x}_0)$. Essa ideia será ilustrada em exemplos a seguir.

Exemplo 5.14.

Determine onde a função a seguir é contínua:

$$f(x,y) = \frac{x^2y}{x^2 + y^2}.$$

A função está bem definida em $\mathbb{R}^2 \setminus \{(0,0)\}$. Nesses pontos, a função é dada por uma única expressão e o denominador não zera; portanto, pelos fatos já estabelecidos sobre limites (Observação 5.2), o limite coincide com a avaliação e f é contínua em todo $(x,y) \neq (0,0)$.

Na origem, f não está definida, logo f não é contínua na origem.

Exemplo 5.15.

Diga se

$$g(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

é contínua na origem.

Segue diretamente do Teorema do Confronto que

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0 = f(0,0),$$

Logo, g é contínua na origem.

Teorema 5.10 (Álgebra da continuidade).

Sejam $D \subset \mathbb{R}^n$ e $f,g:D \to \mathbb{R}$ funções contínuas em $\mathbf{x}_0 \in D$. Então valem:

- Soma: f + g é contínua em \mathbf{x}_0 .
- Multiplicação por constante: c f é contínua em \mathbf{x}_0 para todo $c \in \mathbb{R}$.

- **Produto:** $f \cdot g$ é contínua em \mathbf{x}_0 .
- Quociente: Se $g(\mathbf{x}_0) \neq 0$, então $\frac{f}{g}$ é contínua em \mathbf{x}_0 (em particular, no que diz respeito ao domínio onde $g \neq 0$).
- Composição: Se $h: \mathbb{R} \to \mathbb{R}$ é contínua em $L = f(\mathbf{x}_0)$, então $h \circ f$ é contínua em \mathbf{x}_0 .

Prova.

Segue diretamente das regras de limite (soma, produto, quociente e composição) combinadas com a definição de continuidade.

Exemplo 5.16 (Soma de funções contínuas).

Considere

$$f(x,y) = \ln(1-x^2-y^2)$$
 e $g(x,y) = \sqrt{1-x^2+y^2}$.

Temos:

$$Dom(f) = B(O,1)$$
 e $Dom(g) = \overline{B(O,1)}$.

Ambas funções são contínuas nos seus domínios. Logo f + g é contínua no domínio interseção que é B(O,1).

Exemplo 5.17 (Produto de funções contínuas).

Sejam

$$h(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$
 e $p(x,y) = x + y + 1.$

Temos

$$\lim_{(x,y)\to(0,0)} h(x,y) = 1$$

de modo que h é contínua em (0,0) e em todo ponto de \mathbb{R}^2 . Como p também é contínua, o produto $p \cdot h$ é contínuo em \mathbb{R}^2 .

Exemplo 5.18 (Quociente com denominador não nulo).

Considere

$$q(x,y) = \frac{e^{x+y}}{\sqrt{1 - x^2 - y^2}},$$

definida para $x^2 + y^2 < 1$.

O numerador e o denominador são contínuos no disco aberto $x^2 + y^2 < 1$, e o denominador não se anula nesse conjunto. Portanto, q é contínua em todo ponto com $x^2 + y^2 < 1$. (Observe que q não está definida na fronteira $x^2 + y^2 = 1$.)

5.2.1 Tipos de descontinuidade

No Exemplo 5.15, observe que a f do Exemplo 5.14 "virou" contínua na origem pelo simples fato de definirmos

$$g(0,0) = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0.$$

Ou seja, quando o limite existe (como número real) mas o valor da função não está definido no ponto ou está definido com outro valor podemos *costurar* o valor do limite no ponto para obter continuidade ali.

Definição 5.11 (Ponto removível de descontinuidade).

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ e $\mathbf{x}_0 \in \overline{D}$. Dizemos que \mathbf{x}_0 é um *ponto removível de descontinuidade* de f se existe o limite

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=L\in\mathbb{R},$$

mas ou (i) $\mathbf{x}_0 \notin D$, ou (ii) $\mathbf{x}_0 \in D$ e $f(\mathbf{x}_0) \neq L$.

Exercício 5.2 (Extensão por continuidade (removível)).

Seja $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e $\mathbf{x}_0\in\overline{D}$ um ponto removível de descontinuidade. Defina $\tilde{f}:(D\cup\{\mathbf{x}_0\})\to\mathbb{R}$ por

$$\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \mathbf{x} \in D \setminus \{\mathbf{x}_0\}, \\ L, & \mathbf{x} = \mathbf{x}_0. \end{cases}$$

Mostre que \tilde{f} é contínua em \mathbf{x}_0 e coincide com f em $D \setminus \{\mathbf{x}_0\}$.

Definição 5.12 (Descontinuidade não removível).

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ e $\mathbf{x}_0 \in \overline{D}$. Dizemos que f tem uma descontinuidade não removível em \mathbf{x}_0 quando não existe um limite finito

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})\in\mathbb{R}.$$

Isso pode ocorrer, por exemplo, se (i) o valor "explode" ($|f(\mathbf{x})| \to +\infty$), (ii) há *oscilação* sem valor-limite, ou (iii) em várias variáveis, o limite *depende do caminho* de aproximação. Nesses casos, não é possível "costurar" um valor em \mathbf{x}_0 que torne f contínua ali.

Observação 5.13.

Compare com o caso *removível*: se o limite $L = \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x})$ existe e é finito mas f não está definida em \mathbf{x}_0 (ou $f(\mathbf{x}_0) \neq L$), então redefinindo $f(\mathbf{x}_0) := L$ obtemos continuidade em \mathbf{x}_0 . Já nas situações acima, isso é impossível.

Exemplo 5.19 (Dependência do caminho (não removível)).

Considere

$$f(x,y) = \frac{x^2}{x^2 + y^2}, \quad (x,y) \neq (0,0).$$

Ao longo de y = 0, f(x,0) = 1; ao longo de x = 0, f(0,y) = 0. Como os limites ao aproximar (0,0) por caminhos diferentes são distintos, o limite $n\tilde{a}o$ existe. Assim, a descontinuidade em (0,0) é $n\tilde{a}o$ removível.

Exemplo 5.20 (Explosão do valor (não removível)).

Considere

$$f(x,y) = \frac{1}{x^2 + y^2}, \quad (x,y) \neq (0,0).$$

Escreva $h(x,y) = x^2 + y^2$ e $g(t) = \frac{1}{t}$ para t > 0. Então

$$f(x,y) = g(h(x,y)).$$

Pelo Cálculo I, $\lim_{t\to 0^+} \frac{1}{t} = +\infty$. Como $h(x,y)\to 0^+$ quando $(x,y)\to (0,0)$, segue por composição que $f(x,y)\to +\infty$. Logo, não há limite finito em (0,0) e a descontinuidade é **não removível**.

Exemplo 5.21 (Oscilação sem limite (não removível)).

Considere

$$f(x,y) = \text{sen}\left(\frac{1}{x^2+y^2}\right), \quad (x,y) \neq (0,0).$$

Defina $h(x,y) = x^2 + y^2$ e $g(t) = \operatorname{sen}\left(\frac{1}{t}\right)$ para t > 0. Assim,

$$f(x,y) = g(h(x,y)).$$

Em Cálculo I, sabe-se que o limite $\lim_{t\to 0^+} \operatorname{sen}\left(\frac{1}{t}\right)$ não existe devido à oscilação: para quaisquer $\delta>0$ e $a\in\mathbb{R}$, existem pontos t com $0< t<\delta$ tais que $\operatorname{sen}(1/t)=1$ e também pontos com $\operatorname{sen}(1/t)=-1$. Logo, para qualquer vizinhança de t=0 (equivalentemente, para qualquer vizinhança de (0,0) em (x,y)), os valores de f tomam 1 e -1. Pela definição de limite (Cálculo I), isso impede a existência de um limite em (0,0). Concluímos que a descontinuidade é **não removível**.

5.2.2 Teorema do Valor Extremo ou de Weierstrass

A seguir introduzimos um teorema fundamental para problemas de otimização (que estudaremos adiante). Em Economia, ele garante a existência de soluções de maximização e minimização sempre que o conjunto viável for *compacto* e a função objetivo for contínua. Por exemplo, com preços $p \gg 0$ e renda m > 0, o conjunto orçamentário

$$D(p,m) = \{x \in \mathbb{R}^n_+: \ p \cdot x \le m \}$$

é compacto; assim, toda utilidade contínua $u: D(p,m) \to \mathbb{R}$ (e.g., $u(x) = \sqrt{x_1} + \sqrt{x_2}$) atinge um máximo em D(p,m). De modo análogo, funções de custo contínuas atingem mínimos em conjuntos viáveis fechados e limitados (por exemplo, quando há limites de capacidade).

Teorema 5.14 (Teorema do Valor Extremo ou de Weierstrass).

Se $K \subset \mathbb{R}^n$ é compacto e $f: K \to \mathbb{R}$ é contínua, então f atinge um valor máximo e um valor mínimo em K, isto é, existem $\mathbf{x}, \mathbf{y} \in K$ tais que

$$f(\mathbf{x}) \le f(\mathbf{z}) \le f(\mathbf{y})$$
 para todo $\mathbf{z} \in K$.

A demonstração completa do Teorema do Valor Extremo apoia-se em resultados como Bolzano-Weierstrass ou Heine-Borel que são tópicos que fogem do

FGV EPGE

escopo deste texto; por isso, omitiremos a prova e adotaremos o teorema como fato a partir daqui.

Exemplo 5.22.

Seja

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$
.

Defina

$$B = \overline{B(O,1)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Temos $\operatorname{Dom}(f) = B$, que é compacto (fechado e limitado), e $\operatorname{Graf}(f)$ é a semiesfera superior de equação $z = \sqrt{1 - x^2 - y^2}$ sobre B. Como o radicando é não negativo em B e as operações envolvidas (soma, produto por -1, raiz para $t \geq 0$) preservam continuidade, concluímos que f é contínua em B. Pelo Teorema do Valor Extremo, f atinge um máximo e um mínimo em B. Neste exemplo, os valores extremos se identificam diretamente pela leitura geométrica do gráfico: $\operatorname{Graf}(f)$ é a semiesfera superior de raio 1 apoiada no plano z=0. A maior altura ocorre no topo da semiesfera, exatamente acima do centro do disco B, isto é, em (0,0), onde f(0,0)=1. A menor altura ocorre na "saia" da semiesfera, onde ela encontra o plano z=0, isto é, na fronteira ∂B ($\operatorname{com} x^2 + y^2 = 1$), onde f(x,y)=0. Portanto,

$$\max_{B} f = 1 \text{ (em } (0,0))$$
 e $\min_{B} f = 0 \text{ (em toda a fronteira } \partial B).$