Lecture 6: Concentration via Optimal Transport

Tianpei Xie

Jan. 24th., 2023

Contents

1	Optimal Transport Basis		2
	1.1	Optimal Transport Problem and its Dual Problem	2
	1.2	Wasserstein Distance	3
	1.3	Dual Formulation of Wasserstein Distance	
2	The	Transportation Method	5
	2.1	Concentration via Transportation Cost Inequality	1
	2.2	Tensorization for Transportation Cost	8
	2.3	Marton's Transportation Inequality	8
	2.4	Talagrand's Gaussian Transportation Inequality	11
	2.5	Transportation Cost Inequalities for Markov Chains	12

1 Optimal Transport Basis

1.1 Optimal Transport Problem and its Dual Problem

• **Definition** (*Pushforward Measure*) [Peyr and Cuturi, 2019] Let $(\mathcal{X}, \mathcal{B}_X)$ and $(\mathcal{Y}, \mathcal{B}_Y)$ be two topological measurable spaces. Denote the spaces of *general* (*Radon*) measures on \mathcal{X}, \mathcal{Y} as $\mathcal{M}(\mathcal{X})$ and $\mathcal{M}(\mathcal{Y})$. Also let $\mathcal{C}(\mathcal{X})$ be space of continuous functions on \mathcal{X} . For a *continuous* map $T: \mathcal{X} \to \mathcal{Y}$, the <u>push-forward operator</u> is defined as $T_{\#}: \mathcal{M}(\mathcal{X}) \to \mathcal{M}(\mathcal{Y})$ that satisfies

$$\forall h \in \mathcal{C}(\mathcal{X}), \quad \int_{\mathcal{Y}} h(y) \ d(T_{\#}\alpha) (y) = \int_{\mathcal{X}} h(T(x)) \ d\alpha(x). \tag{1}$$

or equivalently,
$$(T_{\#}\alpha)(B) := \alpha(\{x : T(x) \in B \subset \mathcal{Y}\}) = \alpha(T^{-1}(B))$$
 (2)

where the **push-forward measure** $\beta := T_{\#}\alpha \in \mathcal{M}(\mathcal{Y})$ of some $\alpha \in \mathcal{M}(\mathcal{X})$, $T^{-1}(\cdot)$ is the pre-image of T.

• Remark (Density Function of Pushforward Measure)
Assume that (α, β) have densities $(\rho_{\alpha}, \rho_{\beta})$ with respect to a fixed measure, and $\beta = T_{\#}\alpha$. We see that $T_{\#}$ acts on a density ρ_{α} linearly to a density ρ_{β} as a change of variable, i.e.

$$\rho_{\alpha}(\boldsymbol{x}) = \left| \det(T'(\boldsymbol{x})) \right| \rho_{\beta}(T(\boldsymbol{x}))$$

$$\left| \det(T'(\boldsymbol{x})) \right| = \frac{\rho_{\alpha}(\boldsymbol{x})}{\rho_{\beta}(T(\boldsymbol{x}))}$$
(3)

• Definition (Optimal Transport Problem, Monge Problem) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

Let $(\mathcal{X}, \mathcal{B}_X)$ and $(\mathcal{Y}, \mathcal{B}_Y)$ be two measurable spaces, where \mathcal{X} and \mathcal{Y} are complete separable metric spaces. Denote $\mathcal{P}(\mathcal{X})$ and $\mathcal{P}(\mathcal{Y})$ as the space of probability measures on \mathcal{X} and \mathcal{Y} . Define a cost function $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ as non-negative real-valued measurable functions on $\mathcal{X} \times \mathcal{Y}$. The optimal transport problem by Monge (i.e. Monge Problem) is defined as follows: given two probability measures $\mathbb{P} \in \mathcal{P}(\mathcal{X})$ and $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$, find a continuous measurable map $T: \mathcal{X} \to \mathcal{Y}$ so that

$$\inf_{T} \int_{\mathcal{X}} c(x, T(x)) d\mathbb{P}(x)$$

s.t. $\mathbb{Q} = T_{\#}\mathbb{P}$

The optimal solution T is also called an *optimal transportation plan*.

• Definition (Optimal Transport Problem, Kantorovich Relaxation) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

<u>The optimal transport problem</u> by Kantorovich (i.e. <u>Kantorovich Relxation</u>) is defined as follows: given two probability measures $\mathbb{P} \in \mathcal{P}(\mathcal{X})$ and $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$, find a *joint probability measure* $\gamma \in \Pi(\mathbb{P}, \mathbb{Q})$ so that

$$\begin{split} &\inf_{\gamma} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\gamma(x,y) \\ \text{s.t. } &\gamma \in \Pi(\mathbb{P},\mathbb{Q}) := \{ \gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) : \pi_{\mathcal{X},\#} \gamma = \mathbb{P}, \ \pi_{\mathcal{Y},\#} \gamma = \mathbb{Q} \} \end{split}$$

where $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is the space of joint probability measure on $\mathcal{X} \times \mathcal{Y}$, $\pi_{\mathcal{X}}$ and $\pi_{\mathcal{Y}}$ are the coordinate projection onto \mathcal{X} and \mathcal{Y} . $\pi_{\mathcal{X},\#}\gamma = \mathbb{P}$ means that \mathbb{P} is the marginal distribution of γ on \mathcal{X} . Similarly \mathbb{Q} is the marginal distribution of γ on \mathcal{Y} .

Equivalently, let X and Y are random variables taking values in \mathcal{X} and \mathcal{Y} . The joint distribution of (X,Y) is γ with marginal distribution of X and Y being \mathbb{P} and \mathbb{Q} . Then the problem is

$$\min_{\gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{\gamma} \left[c(X, Y) \right]$$

The joint distribution $\gamma \in \Pi(\mathbb{P}, \mathbb{Q})$ such that $X_{\#}\gamma = \mathbb{P}$ and $Y_{\#}\gamma = \mathbb{Q}$ is called **a coupling**.

- Proposition 1.1 (Existance of Solution) [Santambrogio, 2015] Let \mathcal{X}, \mathcal{Y} be complete separable spaces, $\mathbb{P} \in \mathcal{P}(\mathcal{X})$, $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$ and $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ be lower semi-continuous function. Then the Kantorovich relaxation of optimal transport problem admits a solution.
- **Definition** (*Dual Problem of Kantorovich Problem*) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

The **dual problem** of Kantorovich problem is described as below:

$$\mathcal{L}_{c}(\mathbb{P}, \mathbb{Q}) = \max_{(\varphi, \psi) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \varphi(x) d\mathbb{P}(x) + \int_{\mathcal{Y}} \psi(y) d\mathbb{Q}(y)$$
s.t. $\varphi(x) + \psi(y) \leq c(x, y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y},$

Here, (φ, ψ) is a pair of *continuous functions* on \mathcal{X} and \mathcal{Y} respectively and they are also the **Kantorovich potentials**. The feasible region is

$$\mathcal{R}(c) := \{ (\varphi, \psi) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) : \varphi \oplus \psi \leq c \}$$

where $(\varphi \oplus \psi)(x,y) = \varphi(x) + \psi(y)$.

In other words, the dual optimization problem is

$$\max_{(\varphi,\psi)\in\mathcal{R}(c)} \mathbb{E}_{\mathbb{P}}\left[\varphi(X)\right] + \mathbb{E}_{\mathbb{Q}}\left[\psi(Y)\right]$$

• Proposition 1.2 (Strong Duality) [Santambrogio, 2015] Let \mathcal{X}, \mathcal{Y} be complete separable spaces, and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ be lower semi-continuous and bounded from below. Then the optimal value of primal and dual problems are the same

$$\min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E}\left[c(X, Y)\right] = \mathcal{L}_c(\mathbb{P}, \mathbb{Q}) = \max_{(\varphi, \psi) \in \mathcal{R}(c)} \mathbb{E}_{\mathbb{P}}\left[\varphi(X)\right] + \mathbb{E}_{\mathbb{Q}}\left[\psi(Y)\right].$$

1.2 Wasserstein Distance

• Definition (Wasserstein Distance)

Let $((\mathcal{X}, d), \mathcal{B})$ be a metric measurable space with Borel σ -algebra induced by metric d. Let X, Y be two random variables taking values in \mathcal{X} with distribution \mathbb{P} and \mathbb{Q} . **The Wasserstein distance** between probability distributions \mathbb{P} and \mathbb{Q} induced by d is defined as

$$W_1(\mathbb{P}, \mathbb{Q}) \equiv W_d(\mathbb{P}, \mathbb{Q}) := \min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E}\left[d(X, Y)\right]$$
(4)

In general, for $p \in [1, \infty)$, we can define **Wasserstein** p-distance as

$$\mathcal{W}_p(\mathbb{P}, \mathbb{Q}) \equiv \mathcal{W}_{p,d}(\mathbb{P}, \mathbb{Q}) := \left(\min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E} \left[(d(X, Y))^p \right] \right)^{1/p}. \tag{5}$$

• Remark Not to confuse the 2-Wasserstein distance with the Wasserstein distance induced by L₂ norm:

$$\begin{split} \mathcal{W}_{\|\cdot\|_2}(\mathbb{P},\mathbb{Q}) &\equiv \mathcal{W}_{1,\|\cdot\|_2}(\mathbb{P},\mathbb{Q}) := \min_{X \sim \mathbb{P},Y \sim \mathbb{Q}} \mathbb{E}\left[\|X - Y\|_2\right] \\ \mathcal{W}_2(\mathbb{P},\mathbb{Q}) &\equiv \mathcal{W}_{2,d}(\mathbb{P},\mathbb{Q}) := \sqrt{\min_{X \sim \mathbb{P},Y \sim \mathbb{Q}} \mathbb{E}\left[d(X,Y)^2\right]} \end{split}$$

- Remark (Wasserstein p-Distance is a Metric in $\mathcal{P}(\mathcal{X})$)

 The Wasserstein p-distance $\mathcal{W}_{p,d}(\mathbb{P},\mathbb{Q}) := (\min_{X \sim \mathbb{P},Y \sim \mathbb{Q}} \mathbb{E}\left[(d(X,Y))^p\right])^{1/p}$ is a well-defined metric in $\mathcal{P}(\mathcal{X})$: for all $\mathbb{P},\mathbb{Q},\mathbb{M} \in \mathcal{P}(\mathcal{X})$,
 - 1. (Non-Negativity): $W_{p,d}(\mathbb{P},\mathbb{Q}) \geq 0$.
 - 2. (Definiteness): $W_{p,d}(\mathbb{P},\mathbb{Q}) = 0$ iff $\mathbb{P} = \mathbb{Q}$
 - 3. (Symmetric): $\mathcal{W}_{n,d}(\mathbb{P},\mathbb{Q}) = \mathcal{W}_{n,d}(\mathbb{Q},\mathbb{P})$
 - 4. (Triangular inequality): $W_{p,d}(\mathbb{P},\mathbb{Q}) \leq W_{p,d}(\mathbb{P},\mathbb{M}) + W_{p,d}(\mathbb{M},\mathbb{Q})$
- Remark The Wasserstein distance, or Optimal Transport (OT), $W_d(\alpha, \beta)$ depends on the distance definition d on the base measurable space \mathcal{X} . In other word, OT can be seen as automatically "lifting" a ground metric d in \mathcal{X} to a metric between measures on \mathcal{X}
- Remark ($Convergence\ in\ Wasserstein\ Space \Leftrightarrow Weak\ Convergence$) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

One of most *important* properly of *Wasserstein distance* is that it is a *weak distance*, i.e. it allows one to compare singular distributions (for instance, discrete ones) whose **supports** *do not overlap* and to quantify the spatial shift between the supports of two distributions.

In fact, W_p is a way to quantify the <u>weak* convergence</u> or convergence in distribution (in law) [Villani, 2009]:

Definition On a compact domain \mathcal{X} , $(\alpha_k)_k$ converges **weakly** to α in $\mathcal{M}^1_+(\mathcal{X})$ (denoted $\alpha_n \stackrel{d}{\to} \alpha$) if and only if for any **continuous** function $g \in \mathcal{C}(\mathcal{X})$, $\int_{\mathcal{X}} g d\alpha_k \to \int_{\mathcal{X}} g d\alpha$. One needs to add additional decay conditions on g on noncompact domains.

This notion of weak convergence corresponds to the **convergence in the distribution** of random vectors. Note the any random variable X_n is a continous function on Ω , and its distribution is the push-forward measure $\alpha_n = X_{n\#}\mathbb{P}$. Therefore, $\alpha_n \rightharpoonup \alpha$ is equivalent to $X_n \stackrel{d}{\to} X$. This convergence can be shown (see [Villani, 2009, Santambrogio, 2015]) to be equivalent to

$$\alpha_n \rightharpoonup \alpha \Leftrightarrow \mathcal{W}_p(\alpha_n, \alpha) \to 0.$$

Thus we can also write the weak convergance as $\alpha_n \xrightarrow{\mathcal{W}_d} \alpha$.

1.3 Dual Formulation of Wasserstein Distance

• Theorem 1.3 (Kantorovich-Rubenstein Duality) [Villani, 2009] Let \mathcal{X} be a Polish space, i.e. \mathcal{X} a complete separable metric space equipped with a Borel σ algebra induced by metric d, and \mathbb{P} and \mathbb{Q} be probability measures on \mathcal{X} . For fixed $p \in [1, \infty)$,
let Lip_1 be the space of all 1-Lipschitz function with respect to metric d such that

$$||f||_L := \sup_{x,y \in \mathcal{X}} \left\{ \frac{|f(x) - f(y)|}{d(x,y)} \right\} \le 1.$$

Then

$$\mathcal{W}_d(\mathbb{P}, \mathbb{Q}) \equiv \mathcal{W}_{1,d}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in Lip_1} \left\{ \mathbb{E}_{\mathbb{P}} \left[f(X) \right] - \mathbb{E}_{\mathbb{Q}} \left[f(Y) \right] \right\}. \tag{6}$$

- **Remark** This theorem only applies for Wasserstein 1-distance, i.e. p = 1.
- Example (Total Variation as W_d with respect to Hamming distance d_H) When $d(x,y) = \sum_i \mathbb{1} \{x_i \neq y_i\} = d_H(x,y)$ Hamming distance, the $W_{1,d}$ becomes

$$\begin{aligned} \mathcal{W}_{1,d_H}(\mathbb{P}, \mathbb{Q}) &= \min_{\gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \gamma \left\{ X \neq Y \right\} \\ &= \sup_{f: \mathcal{X} \to [0,1]} \int_{\mathcal{X}} f \left(d\mathbb{P} - d\mathbb{Q} \right) \\ &= \sup_{A \subset \mathcal{X}} |\mathbb{P}(A) - \mathbb{Q}(A)| := \|\mathbb{P} - \mathbb{Q}\|_{TV} \end{aligned}$$

• Example $(W_1 \text{ in } 1\text{-dimensional space } \mathbb{R})$ When d(x,y) = |x-y| in \mathbb{R} , and F_{α}, F_{β} are cumulative distribution function of α, β , then W_1 distance becomes

$$\mathcal{W}_{1}(\alpha, \beta) = \|F_{\alpha} - F_{\beta}\|_{1} := \int_{-\infty}^{\infty} \|F_{\alpha}(x) - F_{\beta}(x)\|_{1} dx$$
$$= \int_{-\infty}^{\infty} \left| \int_{-\infty}^{x} d(\alpha - \beta) \right|$$

which shows that W_1 on \mathbb{R} is a **norm**. An optimal Monge map T such that $T_{\#}\alpha = \beta$ is then defined by

$$T = F_{\beta}^{-1} \circ F_{\alpha}$$

where $F_{\beta}^{-1} = \inf\{t : F_{\beta} \ge t\}.$

2 The Transportation Method

2.1 Concentration via Transportation Cost Inequality

• Lemma 2.1 (Transportation Lemma) [Boucheron et al., 2013] Let X be a real-valued integrable random variable. Let φ be a convex and continuously differentiable function on a (possibly unbounded) interval [0,b) and assume that $\phi(0) = \phi'(0) = 0$. Define, for every $x \ge 0$, the Legendre transform $\phi^*(x) = \sup_{\lambda \in (0,b)} (\lambda x - \phi(\lambda))$, and let, for every $t \ge 0$, $\phi^{*-1}(t) = \inf\{x \ge 0 : \phi^*(x) > t\}$, i.e. the the generalized inverse of ϕ^* . Then the following two statements are equivalent:

1. for every $\lambda \in (0,b)$,

$$\psi_{X-\mathbb{E}[X]}(\lambda) \le \phi(\lambda)$$

where $\psi_X(\lambda) := \log \mathbb{E}_{\mathbb{P}} \left[e^{\lambda X} \right]$ is the logarithm of moment generating function;

2. for any probability measure \mathbb{Q} absolutely continuous with respect to \mathbb{P} such that $\mathbb{KL}(\mathbb{Q} \parallel \mathbb{P}) < \infty$,

$$\mathbb{E}_{\mathbb{Q}}[X] - \mathbb{E}_{\mathbb{P}}[X] \le \phi^{*-1}(\mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})). \tag{7}$$

In particular, given $\nu > 0$, X follows a sub-Gaussian distribution, i.e.

$$\psi_{X-\mathbb{E}[X]}(\lambda) \le \frac{\nu\lambda^2}{2}$$

for every $\lambda > 0$ if and only if for any probability measure \mathbb{Q} absolutely continuous with respect to \mathbb{P} such that $\mathbb{KL}(\mathbb{Q} \parallel \mathbb{P}) < \infty$,

$$\mathbb{E}_{\mathbb{Q}}[X] - \mathbb{E}_{\mathbb{P}}[X] \le \sqrt{2\nu \mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})}.$$
 (8)

• Remark (Concentration via Transportation Methods)

Let $\mathbb{P} = \bigotimes_{i=1}^n \mathbb{P}_i$ be the product measure for $Z := (Z_1, \ldots, Z_n)$ on \mathcal{X}^n and $f : \mathcal{X}^n \to \mathbb{R}$ be 1-Lipschitz function. Consider a probability measure \mathbb{Q} on \mathcal{X}^n , absolutely continuous with respect to \mathbb{P} and let Y be a random variable (defined on the same probability space as \mathcal{X}) such that Y has distribution \mathbb{Q} .

The lemma above suggests that one may prove sub-Gaussian concentration inequalities for $X = f(Z_1, \ldots, Z_n)$ by proving a "transportation" inequality as above. The key to achieving this relies on coupling. In particular, the Kantorovich-Rubenstein duality for $W_{1,d}$ suggests that

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(Z)\right] \le \min_{\gamma \in \Pi(\mathbb{O}, \mathbb{P})} \mathbb{E}_{\gamma}\left[d(Y, Z)\right] := \mathcal{W}_{1, d}(\mathbb{Q}, \mathbb{P})$$

Thus, it suffices to upper bound the 1-Wasserstein distance between \mathbb{Q} and \mathbb{P} .

• Definition (d-Transportation Cost Inequality) [Wainwright, 2019] Let (\mathcal{X}, d) be a metric space with metric d, and $(\mathcal{X}, \mathcal{B})$ be a measurable space, where \mathcal{B} is the Borel σ -algebra induced by metric d, the probability measure \mathbb{P} is said to satisfy a d-transportation cost inequality with parameter $\nu > 0$ if

$$W_{1,d}(\mathbb{Q}, \mathbb{P}) \le \sqrt{2\nu \mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})}$$
(9)

for all probability measure $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{B} .

• Theorem 2.2 (Isoperimetric Inequality via Transportation Cost)[Wainwright, 2019] Consider a metric measure space $(\mathcal{X}, \mathcal{B}, \mathbb{P})$ with metric d, and suppose that \mathbb{P} satisfies the d-transportation cost inequality with parameter $\nu/2 > 0$ in (9) Then its concentration function satisfies the bound

$$\alpha_{\mathbb{P},(\mathcal{X},d)}(t) \le \exp\left(-\frac{(t-t_0)_+^2}{2\nu}\right), \text{ for } t \ge t_0$$
 (10)

where $t_0 := \sqrt{2\nu \log 2}$. Moreover, for any $Z \sim \mathbb{P}$ and any L-Lipschitz function $f : \mathcal{X} \to \mathbb{R}$, we have the **concentration inequality**

$$\mathbb{P}\left\{|f(Z) - \mathbb{E}\left[f(Z)\right]| \ge t\right\} \le 2\exp\left(-\frac{t^2}{2\nu L^2}\right). \tag{11}$$

Proof: We begin by proving the bound (10). For any set A with $\mathbb{P}(A) \geq 1/2$ and a given t > 0, consider the set

$$A_t^c = \{x \in \mathcal{X} : d(x, A) \ge t\}.$$

If $\mathbb{P}(A_t) = 1$, then the proof is complete, so that we may assume that $P(A_t^c) > 0$. By construction, we have $d(A, A_t^c) := \inf_{x \in A_t^c} \inf_{y \in A} d(x, y) \ge t$. On the other hand, let $\mathbb{P}_A := \mathbb{P}(\cdot|A)$ and $\mathbb{P}_{A_t} := \mathbb{P}(\cdot|A_t^c)$ denote the distributions of \mathbb{P} conditioned on A and A_t^c , and let γ denote any *coupling* of this pair. Since the marginals of γ are supported on A and A_t^c , respectively, we have

$$d(A, A_t^c) \le \int_{\mathcal{X} \times \mathcal{X}} d(x, x') d\gamma(x, x').$$

Taking the *infimum* over all *couplings*, we conclude that

$$t \leq d(A, A_t^c) \leq \inf_{\gamma \in \Pi(\mathbb{P}_A, \mathbb{P}_{A_t^c})} \int_{\mathcal{X} \times \mathcal{X}} d(x, x') d\gamma(x, x') := \mathcal{W}_{1, d}(\mathbb{P}_A, \mathbb{P}_{A_t^c})$$

Now applying the triangle inequality, we have

$$t \leq \mathcal{W}_{1,d}(\mathbb{P}_{A}, \mathbb{P}_{A_{t}^{c}}) \leq \mathcal{W}_{1,d}(\mathbb{P}_{A}, \mathbb{P}) + \mathcal{W}_{1,d}(\mathbb{P}, \mathbb{P}_{A_{t}^{c}})$$
$$\leq \sqrt{2\nu \mathbb{KL}(\mathbb{P}_{A} \parallel \mathbb{P})} + \sqrt{2\nu \mathbb{KL}(\mathbb{P}_{A_{t}^{c}} \parallel \mathbb{P})}$$

It remains to compute the Kullback-Leibler divergences. For any measurable set C, we have

$$\mathbb{P}_{A}(C) = \frac{\mathbb{P}(C \cap A)}{\mathbb{P}(A)}$$

$$g = \frac{d\mathbb{P}_{A}}{d\mathbb{P}} = \frac{1}{\mathbb{P}(A)} \mathbb{1} \{A\}$$

$$\mathbb{KL} (\mathbb{P}_{A} \parallel \mathbb{P}) = \int \log \left(\frac{d\mathbb{P}_{A}}{d\mathbb{P}}\right) d\mathbb{P}_{A} = \log \frac{1}{\mathbb{P}(A)}$$

Similarly, we have $\mathbb{KL}\left(\mathbb{P}_{A_t^c} \parallel \mathbb{P}\right) = \log \frac{1}{\mathbb{P}(A_t^c)}$. Combining the pieces, we have

$$t \leq \mathcal{W}_{1,d}(\mathbb{P}_A, \mathbb{P}_{A_t^c}) \leq \sqrt{2\nu \log \frac{1}{\mathbb{P}(A)}} + \sqrt{2\nu \log \frac{1}{\mathbb{P}(A_t^c)}}$$

Denote $u = \sqrt{2\nu \log \frac{1}{\mathbb{P}(A)}}$, we have

$$(t-u)_{+} \leq \sqrt{2\nu \log \frac{1}{\mathbb{P}(A_{t}^{c})}}$$
$$\mathbb{P}(A_{t}^{c}) \leq \exp\left(-\frac{(t-u)_{+}^{2}}{2\nu}\right), \text{ for } t \geq u.$$

Since $\mathbb{P}(A) \geq 1/2$ so $u \leq \sqrt{2\nu \log 2}$. Thus for $t \geq \sqrt{2\nu \log 2}$, the concentration function

$$\alpha_{\mathbb{P},(\mathcal{X},d)}(t) = \sup_{A \subset \mathcal{X}: \mathbb{P}(A) \ge 1/2} \mathbb{P}(A_t^c) \le \exp\left(-\frac{\left(t - \sqrt{2\nu \log 2}\right)_+^2}{2\nu}\right),$$

which proves (10).

To show (11), we see that for L-Lipschitz function:

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(Z)\right] \leq L \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \mathbb{E}_{\gamma}\left[d(Y, Z)\right] = L \ \mathcal{W}(\mathbb{Q}, \mathbb{P}) \leq \sqrt{2L^{2}\nu\mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right)}$$

where the first inequality follows the Kantorovich-Rubenstein duality and the second inequality follows the assumption. By the transportation lemma,

$$\psi_{f(Z)-\mathbb{E}[f(Z)]}(\lambda) = \mathbb{E}_{\mathbb{P}}\left[e^{\lambda(f(Z)-\mathbb{E}[f(Z)])}\right] \le \frac{\nu L^2 \lambda^2}{2}$$

The upper tail bound thus follows by the Chernoff bound. The same argument can be applied to -f, which yields the lower tail bound.

2.2 Tensorization for Transportation Cost

• Proposition 2.3 (Tensorization for Transportation Cost) [Boucheron et al., 2013] Suppose that, for each k = 1, 2, ..., n, the univariate distribution \mathbb{P}_k satisfies a d_k -transportation cost inequality with parameter ν_k . Then the product distribution $\mathbb{P} = \bigotimes_{k=1}^n \mathbb{P}_k$ satisfies the transportation cost inequality

$$W_{1,d}(\mathbb{Q}, \mathbb{P}) = \sqrt{2 \left(\sum_{k=1}^{n} \nu_k \right) \mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})}, \quad \text{for all distributions } \mathbb{Q} \ll \mathbb{P}$$
 (12)

where the Wasserstein metric is defined using the distance $d(x,y) := \sum_{k=1}^{n} d_k(x_k,y_k)$.

2.3 Marton's Transportation Inequality

• Theorem 2.4 (Marton's Transportation Inequality) [Boucheron et al., 2013] Let $\mathbb{P} = \bigotimes_{k=1}^n \mathbb{P}_k$ be a product probability measure on \mathcal{X}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y =$ (Y_1, \ldots, Y_n) in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\} \leq \frac{1}{2} \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$
(13)

• Proof: (Proof of Bounded Difference Inequality)
Any function with bounded difference property is Lipschitz function with respect to Hamming distance. This implies that for all $x, y \in \mathcal{X}^n$,

$$f(y) - f(x) \le \sum_{i=1}^{n} L_i \mathbb{1} \{x_i \ne y_i\} \equiv d_{H,L}(x,y).$$

Note that for coupling $\gamma \in \Pi(\mathbb{Q}, \mathbb{P})$ where $Y \sim \mathbb{Q}$ and $X \sim \mathbb{P}$,

$$\mathbb{E}_{\mathbb{Q}}[f(Y)] - \mathbb{E}_{\mathbb{P}}[f(X)] = \mathbb{E}_{\gamma}[f(Y) - f(X)]$$

$$\leq \sum_{i=1}^{n} L_{i} \mathbb{E}_{\gamma} [\mathbb{1} \{X_{i} \neq Y_{i}\}]$$

$$\leq \left(\sum_{i=1}^{n} L_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} (\mathbb{E}_{\gamma} [\mathbb{1} \{X_{i} \neq Y_{i}\}])^{2}\right)^{1/2}$$

We want to prove the concentration using transportation cost inequality. That is, to bound the term

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} (\mathbb{E}_{\gamma} \left[\mathbb{1} \left\{ X_i \neq Y_i \right\} \right])^2 = \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \gamma^2 \left\{ X_i \neq Y_i \right\}.$$

We have shown that

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \gamma \left\{ X \neq Y \right\} = \mathcal{W}_{1, d_H}(\mathbb{Q}, \mathbb{P}) = \sup_{A \in \mathcal{X}} |\mathbb{Q}(A) - \mathbb{P}(A)| \equiv \|\mathbb{Q} - \mathbb{P}\|_{TV}.$$

For each independent variable X_i, Y_i , and their marginal distribution $\mathbb{P}_i, \mathbb{Q}_i$ where $\mathbb{Q}_i \ll \mathbb{P}_i$, by Pinsker's inequality,

$$\min_{\gamma \in \Pi(\mathbb{Q}_{i}, \mathbb{P}_{i})} \gamma \left\{ X_{i} \neq Y_{i} \right\} \leq \sqrt{\frac{1}{2} \mathbb{KL} \left(\mathbb{Q}_{i} \parallel \mathbb{P}_{i} \right)}$$
$$\min_{\gamma \in \Pi(\mathbb{Q}_{i}, \mathbb{P}_{i})} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\} \leq \frac{1}{2} \mathbb{KL} \left(\mathbb{Q}_{i} \parallel \mathbb{P}_{i} \right)$$

Thus by induction lemma,

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\} \leq \frac{1}{2} \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$

which is the Marton's transportation inequality. Finally, we have

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(X)\right] \le \left(\sum_{i=1}^{n} L_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} (\mathbb{E}_{\gamma}\left[\mathbb{1}\left\{X_{i} \neq Y_{i}\right\}\right])^{2}\right)^{1/2}$$
$$\le \sqrt{\frac{\left(\sum_{i=1}^{n} L_{i}^{2}\right)}{2}} \mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right).$$

Then we can apply the transportation lemma with $\nu := \frac{1}{4} \sum_{i=1}^{n} L_i^2$, which proves the bounded difference inequality.

• Theorem 2.5 (Marton's Conditional Transportation Inequality) [Boucheron et al., 2013]

Let $\mathbb{P} = \bigotimes_{k=1}^n \mathbb{P}_k$ be a product probability measure on \mathcal{X}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \mathbb{E}_{\gamma} \left[\sum_{i=1}^{n} (\gamma^{2} \{ X_{i} \neq Y_{i} | X_{i} \} + \gamma^{2} \{ X_{i} \neq Y_{i} | Y_{i} \}) \right] \leq 2 \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right) \tag{14}$$

• Proposition 2.6 (Concentration of Lipschitz Function with Function Weighted Hamming Distance) [Boucheron et al., 2013]

Let $f: \mathcal{X}^n \to \mathbb{R}$ be a measurable function and let Z_1, \ldots, Z_n be independent random variables taking their values in \mathcal{X} . Define $X = f(Z_1, \ldots, Z_n)$. Assume that there exist **measurable functions** $c_i: \mathcal{X}_n \to [0, \infty)$ such that for all $x, y \in \mathcal{X}^n$,

$$f(y) - f(z) \le \sum_{i=1}^{n} c_i(z) \mathbb{1} \{ y_i \ne z_i \}.$$

Setting

$$u = \mathbb{E}\left[\sum_{i=1}^{n} c_i^2(Z)\right] \qquad and \qquad \nu_{\infty} = \sup_{z \in \mathcal{X}^n} \sum_{i=1}^{n} c_i^2(z)$$

for all $\lambda > 0$, we have

$$\psi_{X-\mathbb{E}[X]}(\lambda) \leq \frac{\nu\lambda^2}{2}$$
 and $\psi_{-X+\mathbb{E}[X]}(\lambda) \leq \frac{\nu_{\infty}\lambda^2}{2}$

In particular, for all t > 0,

$$\mathbb{P}\left\{X \ge \mathbb{E}\left[X\right] + t\right\} \le \exp\left(-\frac{t^2}{2\nu}\right)$$

$$\mathbb{P}\left\{X \le \mathbb{E}\left[X\right] - t\right\} \le \exp\left(-\frac{t^2}{2\nu_{\infty}}\right). \tag{15}$$

- Remark The condition in above proposition covers
 - 1. Lipschitz functions such as functions with bounded difference,
 - 2. self-bounding functions including configuration functions: Let f be such a configuration function. For any $z \in \mathcal{X}^n$, fix a maximal sub-sequence $(z_{i,1}, \ldots, z_{i,m})$ satisfying property Π (so that f(z) = m). Let $c_i(z)$ denote the indicator that z_i belongs to the sub-sequence $(z_{i,1}, \ldots, z_{i,m})$. Thus,

$$\sum_{i=1}^{n} c_i^2(z) = \sum_{i=1}^{n} c_i(z) = f(z).$$

It follows from the definition of a configuration function that for all $z, y \in \mathcal{X}^n$,

$$f(y) \ge f(z) - \sum_{i=1}^{n} c_i(z) \mathbb{1} \{ z_i \ne y_i \}$$

So g = -f satisfies the condition in above proposition.

- 3. weakly self-bounding functions
- 4. convex distance function

$$d_T(z, A) := \sup_{\alpha \in \mathbb{R}^n_+: \|\alpha\|_2 = 1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbb{1} \{ z_i \neq y_i \}$$

Denote by $c(z) = (c_1(z), \ldots, c_n(z)) = \alpha^*$ the vector of nonnegative components in the unit ball for which the supremum is achieved. Thus

$$d_{T}(z, A) - d_{T}(y, A) \leq \inf_{z' \in A} \sum_{i=1}^{n} c_{i}(z) \mathbb{1} \left\{ z_{i} \neq z'_{i} \right\} - \inf_{y' \in A} \sum_{i=1}^{n} c_{i}(z) \mathbb{1} \left\{ y_{i} \neq y'_{i} \right\}$$
$$\leq \sum_{i=1}^{n} c_{i}(z) \mathbb{1} \left\{ z_{i} \neq y_{i} \right\}$$

2.4 Talagrand's Gaussian Transportation Inequality

• Theorem 2.7 (Talagrand's Gaussian Transportation Inequality) [Boucheron et al., 2013]

Let \mathbb{P} be be the standard Gaussian probability measure on \mathbb{R}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\mathcal{W}_{2,d}(\mathbb{Q}, \mathbb{P}) := \sqrt{\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \mathbb{E}_{\gamma} \left[(X_{i} - Y_{i})^{2} \right]} \leq \sqrt{2\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)}$$

$$\Leftrightarrow \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \mathbb{E}_{\gamma} \left[(X_{i} - Y_{i})^{2} \right] \leq 2\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$

$$(16)$$

• Remark (Gaussian Transportation Inequality \Rightarrow Gaussian Concentration Inequality) [Boucheron et al., 2013]

Talagrand's Gaussian transportation inequality implies the Tsirelson-Ibragimov-Sudakov inequality (i.e. the dimension-free concentration of Lipschitz function of Gaussian vectors), which we proved based on the Gaussian logarithmic Sobolev inequality and Herbst's argument.

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is a *Lipschitz function* with respect to *Euclidean distance*, that is, for all $x, y \in \mathbb{R}^n$,

$$f(y) - f(x) \le L \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Then, by Jensen's inequality, for every coupling $\gamma \in \Pi(\mathbb{P}, \mathbb{Q})$, one has

$$\mathbb{E}_{\mathbb{Q}}[f(Y)] - \mathbb{E}_{\mathbb{P}}[f(X)] = \mathbb{E}_{\gamma}[f(Y) - f(X)]$$

$$\leq L\mathbb{E}_{\gamma}\left[\left(\sum_{i=1}^{n}(X_{i} - Y_{i})^{2}\right)^{1/2}\right]$$

$$\leq L\left(\sum_{i=1}^{n}\mathbb{E}_{\gamma}\left[(X_{i} - Y_{i})^{2}\right]\right)^{1/2} = L \mathcal{W}_{2}(\mathbb{Q}, \mathbb{P})$$

$$\leq \sqrt{2L^{2}\mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})} \quad \text{by Gaussian Transportation Inequality}$$

By transportation lemma, we show that $f(X) - \mathbb{E}[f(X)]$ is sub-Gaussian distributed with parameter L^2 . This implies the Gaussian concentration inequality.

2.5 Transportation Cost Inequalities for Markov Chains

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Gabriel Peyr and Marco Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019. ISSN 1935-8237.

Filippo Santambrogio. Optimal transport for applied mathematicians, volume 55. Springer, 2015.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.