Math 222a Lecture Notes, Fall 2020 Partial Differential Equations

Professor: Daniel Tataru Vishal Raman

Contents

September 1st, 2020	3
1.1 Introduction	3
1.2 Classification of PDE's	3
	4
	5
1.5 Fluid Classification	5
September 3rd, 2020	7
	7
	9
September 8th. 2020	10
	_
September 10th, 2020	13
	13
September 15th, 2020	18
5.1 Fully Nonlinear PDEs	_
	1.2 Classification of PDE's 1.3 Initial Value Problems 1.4 Boundary Value Problems 1.5 Fluid Classification September 3rd, 2020 2.1 Picard-Lindeloff Theorem 2.2 Contraction Principle 2.3 Bootstrap Argument September 8th, 2020 3.1 Observations regarding Picard-Lindelof 3.2 Linearization of an ODE 3.3 Our First Partial Differential Equation September 10th, 2020 4.1 Linear, Variable Coefficients 4.2 Semilinear Equations 4.3 Quasilinear Equations 4.4 Classical model problem: Burgers' Equation September 15th, 2020

§1 September 1st, 2020

§1.1 Introduction

Partial differential equations apply to functions $u : \mathbb{R}^n \to \mathbb{R}(\mathbb{C})$, where u refers to the space dimension. Usually, $n \geq 2(n = 1 \text{ corresponds to ODEs})$.

We present the following notation:

- $\frac{\partial}{\partial x_i}u = \partial_i u$
- There is also multi-index notation, where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\partial^{\alpha} u = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \dots \partial_n^{\alpha_n} u$. The size of α is given by $|\alpha| = \sum_{i=1}^n \alpha_i$.
- $C(\mathbb{R}^n)$, continuous functions in \mathbb{R}^n .
- $C(\Omega)$, $\Omega \subset \mathbb{R}^n$, continuous functions in Ω .
- $C^1(\mathbb{R}^n), C^1(\Omega)$, continuously differentiable functions.
- $C^k(\mathbb{R}^n), C^k(\Omega), k$ -times differentiable.
- $C^{\infty}(\mathbb{R}^n) = \bigcap_{k=0}^{\infty} C^k(\mathbb{R}^n).$

We consider an example PDE,

$$F(u, \partial u, \partial^2 u, \dots, \partial^k u) = 0.$$

In the above, $k \geq 1$ and k is the **order** of the equation. We also have the shorthand $F(\partial^{\leq k} u) = 0$.

§1.2 Classification of PDE's

Definition 1.1 (Linear PDE). The PDE is a linear function of its arguments. We can apply multi-index notation, as follows:

$$\sum_{|\alpha| < k} c_{\alpha} \partial^{\alpha} u = f(x).$$

If f(x) = 0, the PDE is **homogeneous**, otherwise it is **inhomogeneous**.

This can be separated into linear PDEs with constant coefficients, $c_{\alpha} \in \mathbb{R}, \mathbb{C}$ and variables coefficients, $c_{\alpha} = c_{\alpha}(x)$. [In this class, we focus on constant coefficient PDEs, but many of the techniques can be extended to variable coefficient PDEs.]

Definition 1.2 (Nonlinear PDE). We look at a function $F = F(u, \partial u, \dots, \partial^k u)$. The highest order terms are take the *leading role*.

• Semilinear PDE's: F is linear, with constant or variable coefficients in $\partial^k u$:

$$\sum_{|\alpha|=k} c_{\alpha}(x)\partial^{\alpha} u = N(\partial^{\leq k-1} u).$$

The LHS is called the principal part, and the RHS is the perturbative role.

• Quasilinear PDE's:

$$\sum_{|\alpha|=k} c_{\alpha}(\partial^{\leq k-1}u)\partial^{\alpha}u = N(\partial^{\leq k-1}u).$$

• Fully Nonlinear PDE's: $F(\partial^{\leq k}u) = 0$, with a nonlinear dependence on $\partial^k u$.

Some examples:

• Linear, homogeneous, variable coefficients, order 1:

$$\sum_{k=1}^{u} c_k(x)\partial_k(u) = 0.$$

• Define $\Delta = \partial_1^2 + \cdots + \partial_n^2$, the Laplacian operator. We have a linear, constant coefficients, inhomogeneous, order 2:

$$\Delta u = f$$
.

• Semilinear, order 2:

$$\Delta u = u^3$$
.

[Note that translation invariance makes homogeneous vs inhomogeneous not useful for classification in the case of nonlinear PDE's.]

• Harmonic Map Equation:

$$\Delta u = u|\nabla u|^2.$$

It is still semilinear, but with a stronger nonlienarity.

• Monge Ampere Equation:

$$\mathbb{R}^2, \partial_1^2 u \partial_2^2 u - (\partial_1 \partial_2 u)^2 = 0.$$

It is a fully nonlinear equation.

§1.3 Initial Value Problems

We have various types of problems:

• (Stationary Problems) With $u: \mathbb{R}^n \to \mathbb{R}$,

$$F(\partial^{\leq k} u) = 0,$$

might describe an equilibrium configuration of a physical system.

• (Evolution Equations) With $u : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, u(t,x) describes the state at time t. We can think about the order in x or in t.

Definition 1.3 (Initial Value Problem/Cauchy Problem). A PDE with initial conditions.

Example 1.4

Consider the heat equation:

$$\partial_t u = \Delta_x u,$$

$$u(t=0,x) = u_o(x).$$

The equation is first order in t, but second order in x.

Example 1.5

In $[\mathbb{R} \times \mathbb{R}]$, the vibrating string:

$$\partial_t^2 u = \partial_x^2 u,$$

$$u(t=0,x) = u_0(x),$$

$$\partial_t u(t=0,x) = u_1(x).$$

Note that this equation is second order in time, and requires 2 pieces of initial data. An easier problem: Compute the Taylor series of u at some point $(0, x_0)$. It requires $\partial_t^{\alpha} \partial_x^{\beta} u(0, x_0)$.

- This is obvious if we have no time derivative or exactly 1.
- Second order time derivatives come from the equation.
- Third order or higher time derivatives come from differentiating the equation:

$$\partial_t^3 u = \partial_x^2 \partial_t u.$$

§1.4 Boundary Value Problems

We begin with an example.

Example 1.6

Take $\Delta u = f$ in $\Omega \subset \mathbb{R}^3$, which represents equilibrium for temperature in a solid. To solve, we need information about the boundary of Ω . For example,

$$\Delta u = f \in \Omega$$
,

$$u = q \in \partial \Omega$$
.

§1.5 Fluid Classification

We take $u: \mathbb{R}^n \to \mathbb{R}(\mathbb{C})$, and

$$F(\partial^{\leq k} u) = 0.$$

This is considered to be a scalar equation.

We could also take a **system** of equations, where $u : \mathbb{R}^n \to \mathbb{R}^m(\mathbb{C}^m)$, where $u = [u_i]$ a column of equations. These are often more difficult than scalar equation. We should have

$$F(\partial^{\leq k} u) = 0,$$

but $F: \mathbb{R}^{(\cdot)} \to \mathbb{R}^m(\mathbb{C}^m)$.

Example 1.7

A 2-system:

$$\Delta u = v$$

$$\Delta v = -u$$
.

We can often reduce the order of a scalar equation by turning it into a system:

Example 1.8

Consider the vibrating string,

$$\partial_t^2 u = \partial_x^2 u.$$

If we take $v = \partial_t u$, the it suffices to solve the system,

$$\partial_t u = v,$$

$$\partial_t v = \partial_x^2 u.$$

We van reduce it further by saying $u_1 = \partial_x u, u_2 = \partial_t u$ for the system,

$$\partial_t u_1 = \partial_x u_2,$$

$$\partial_t u_2 = \partial_x u_1.$$

§2 September 3rd, 2020

§2.1 Picard-Lindeloff Theorem

Consider the example, $x' = f(x), x(0) = x_0, x : \mathbb{R} \to \mathbb{R}^n$. We ask for existence, uniqueness, continuous dependence on initial data.

Definition 2.1 (Locally Lipschitz). A **Lipschitz** continuous function f is one that satisfies,

$$|f(x) - f(y)| \le c|x - y|.$$

A function is **Locally Lipschitz** if for each R, there exists c(R) such that

$$|f(x) - f(y)| \le c(r)|x - y|, x, y \in Ball(0, R).$$

As examples, f(x) = x is Lipschitz, $f(x) = x^2$ is not Lipschitz, but is locally Lipschitz.

Definition 2.2 (Locally well-posed). For each $x_0 \in \mathbb{R}^n$, there exists T > 0 (lifespan) and a unique solution $u \in C^1[0,T;\mathbb{R}^n]$ with the property that $u_0 = x_0$ and the solution has a Lipschitz dependence on the data: x_0, y_0 initial data, $T = T(x_0)$. For $T_1 < T$, there exists $\epsilon > 0$ such that if $|y_0 - x_0| \le \epsilon$ then $T(y) > T_1$ and

$$\sup_{t \in [0,T_1]} |x(t) - y(t)| \le \tilde{C}|x_0 - y_0|.$$

Theorem 1 (Picard-Lindelof)

Assume that f is locally Lipschitz continuous. Then the ODE is locally well-posed.

§2.2 Contraction Principle

We will use the "Contraction principle" - recall the following definitions:

Definition 2.3 (Fixed-point Problem). Let X be a Banach space, let $D \subset X$ be a closed subset of X, and let $F: D \to D$. Question: Can we solve the equation F(u) = u where $u \in D$.

Definition 2.4 (Contraction).

$$||F(u) - F(v)||_X \le L||u - v||,$$

where L < 1.

If F is a contraction, then it has a unique fixed point. The existence proof follows an iterative construction: start with an arbitrary element $u_0 \in D$ and define $u_{n+1} = F(u_n)$. We would show $\{u_n\}$ is a Cauchy sequence, so it converges.

We now prove the theorem. We have $x' = f(x), x(0) = x_0$, so

$$x(t) = x_0 + \int_0^t f(x(s))ds, t \in [0, T].$$

We choose $X = C[0,T;\mathbb{R}^n]$, $F(x)(t) = x_0 + \int_0^t f(x(s))ds$. Then x solves the ODE in (0,T) if F(x) = x.

We have to choose R, T. Then

$$D = \{x \in X : ||x - x_0||_X \le R\}.$$

Let $R = |x_0|$. Next, we choose T so that $F: D \to D$ is Lipschitz. For $F: D \to D$, we estimate the size of $F(x) - x_0$.

$$F(x)(t) - x_0| = \left| \int_0^t f(x(s))ds \right|$$

$$\leq \left| \int_0^t f(x_0(s))ds \right| + \left| \int_0^t f(x) - f(x_0)ds \right|$$

$$\leq T|f(x_0)| + CT||x - x_0||_X$$

Hence,

$$||F(x) - x_0|| \le T(|f(x_0)| + CR).$$

Thus, we choose T such that $T(|f(x_0)| + CR) \leq R$.

Now look at differences: For $x, y \in D$,

$$|F(x)(t) - F(y)(t)| \le \int_0^t |f(x(s)) - f(y(s))| ds$$

 $\le TC \sup_{s \in [0,T]} |x(s) - y(s)|$

thus,

$$||F(x) - F(y)||_X \le CT||x - y||_X$$

so we can choose T so that $CT||x-y||_X < 1$.

By the contraction principle, there exists a unique solution $x \in D$.

To prove uniqueness of a solution, we have to show that any solution has to stay in D, up to time T.

Suppose a solution \tilde{x} leave the ball before time T. We repeat the above computation up to the exit time T_0 . Then, $T_0(|f(x_0) + CR|) < T$, since $T_0 < T$. This is a contradiction since T_0 is the exit time.

§2.3 Bootstrap Argument

Consider a bootstrap argument: try to solve an equation and show that the solution x satisfies some bound $||x||_T \leq R$. The difficulty is that a priori, we do not know any bound on $||x||_T$. The solution: make a bootstrap assumption, $||x||_T \leq 2R$ and show that $||x||_T \leq R$ under this assumption.

So far, we know uniqueness in [0,T], where $T=T(x_0)$ given by the contraction argument. We now show global uniqueness: Suppose we have a solution x_0 with maximal lifespan $T_{max}(x_0)$. Suppose y is another solution. We look at the maximal T so that x=y in [0,T). We now think of T as the initial time. We x(T)=y(T) from continuity. Then, the solution is unique up to some time $T+T_0$, so x=y in $[T,T+T_0]$, contradicting the maximality of T. This is called a "continuity argument".

Next, we compare two solutions: We have $x(0) = x_0, x : [0,T) \to \mathbb{R}^n$. We choose $T_1 < T$. Then $x : [0,T_1] \to \mathbb{R}^n$. We compare x with a "nearby" solution $y(0) = y_0$ close to x_0 . We have $||x||_{X_{T_1}} \le R$ since we have continuity on a compact set. We claim the following: if $|y_0 - x_0| < \epsilon$, then x, y stay close. We make a bootstrap assumption $||y||_{X_{T_1}} \le 2R$.

$$\frac{d}{dt}|x-y|^2 = 2(x-y)(f(x) - f(y)) \le 2C|x-y|^2.$$

This is the *Gronwall Inequality*. It follows that

$$|x - y|^2(t) \le e^{2ct}|x - y|^2(0) = e^{2ct}|x_0 - y_0|^2$$
.

To close the bootstrap:

$$||y||_{X_{T_1}} \le ||x||_{X_{T_1}} + ||x - y||_{X_{T_1}} \le R + e^{cT_1}||x_0 - y_0|| \le \frac{3R}{2},$$

which is better than the bootstrap assumption.

§3 September 8th, 2020

Last lecture, we discussed the ordinary differential equation x' = f(x) in \mathbb{R}^n with $x(0) = x_0$. We proved the Pircard-Lindelof theorem: if f is locally Lip. then this problem is locally well-posed and the solution has a local Lip. dependence on the initial data. We proved this by the contraction principle, using Picard iterations.

§3.1 Observations regarding Picard-Lindelof

We note the following observations:

- 1. The result is local, so it can blow up in finite time. For example, take $x' = x^2$, $x(0) = x_0 > 0$. The positive solutions to the ODE are $x(t) = \frac{1}{T-t}$, $T \ge 0$, where T is the blow up time. In this case, it is $T = \frac{1}{x_0}$.
- 2. If f is not Lipschitz, then uniqueness might fail. Take $x' = \sqrt{x}$, x(0) = 0. An obvious solution is x = 0. Other solutions are like $x(t) = ct^2$. We can generate infinitely many solutions from here.

But solutions might still exist:

Theorem 2 (Peano)

If f is continuous, then a local solution exists.

The proof uses Schauder's fixed point theorem.

3. What if $f \in C^1_{loc}$, the space of differentiable functions on a compact set?

Theorem 3

If $f \in C^1_{loc}$, then the flow map $x_0 \mapsto x(t, x_0) = \Phi(t, x_0)$ is of class C^1 .

Proof. We give a sketch. Take x_0, x_0^h and assume $\frac{d}{dh}x_0^h(0)$ exists and show that $\frac{d}{dh}x^h$ exists. The linearized equation about h = 0 is $\dot{y} = Df(x_0)y, y_0 = \frac{d}{dh}x_0^h$. We expect that

$$x^h(t) = x(t) + hy(t) + o(h).$$

Let $\tilde{x}^h(t) = x(t) + hy(t)$. We claim that this is an "approximate solution", in the sense that

$$\dot{\tilde{x}}^h(t) = f(\tilde{x}^h(t)) + o(h).$$

Furthermore, we have close initial data in the sense that

$$|x_0^h - \tilde{x}_0^h| \le o(h).$$

We repeat the difference bound for one exact and one approximate solution and show that

$$|x^h(t) - \tilde{x}^h(t)| \le o(h)$$

This implies that the Flow map is a group of local diffeomorphisms:

$$\Phi(t) \circ \Phi(s) = \Phi(t+s).$$

§3.2 Linearization of an ODE

The leads us to the notion of the linearization of the ODE: If we consider $x_0 \to x_0^h$, a one parameter family of data, assume this is C^1 in h. The corresponding solution $x_0^h \to x^h(t)$ also in C^1 in h.

What can we say about

$$y^h(t) = \frac{d}{dh}x^h(t)?$$

We have $\dot{x}^h = f(x^h), x^h(0) = x_0$. If we differentiate with respect to h, we have $\dot{y}^h = Df(x^h)y^h, y^h(0) = \frac{d}{dh}x_0^h$, where $Df(x^h)$ is the differential of f, $\left(\frac{\partial f_i}{\partial x_j}\right)_{n \times m}$. This is a linear ODE with variable coefficients.

Proposition 3.1

If the linearized equation is well-posed, then we have Lip. dependence of solutions on the initial data.

§3.3 Our First Partial Differential Equation

Our first example is scalar first order equations in \mathbb{R}^n ,

$$F(x, u, Du) = 0 \in \mathbb{R}^n, y : \mathbb{R}^n \to \mathbb{R}.$$

Today, we look at the case of linear, constant coefficients:

$$\sum a^i \partial_i u = f(x).$$

We will write this as $a^i \partial_i u$ following the Einstein summation convention. Take $A = (a_1, \ldots, a_n)$, so we have $A \cdot Du = f(x)$, with $A \neq 0$. This can be interpreted as a directional derivative of u in the direction A.

$$\frac{d}{dt}u(x(t)) = A \cdot Du(x(t)) = f(x(t)).$$

Note the fundamental theorem of calculus,

$$u(x(t)) = u(x_0) + \int_0^t f(x(t))dx.$$

Suppose we have a C^1 surface Σ and we are asked to solve a PDE with inidial data $u = u_0$ on Σ .

But things can go wrong. If Σ is a circle, we'd could have two intersection points. Furthermore, we could miss the circle entirely and have no solutions. Our solution in this case would be to assume that each line intersects Σ exactly once. However, if solutions are tangent, perturbations of the surface cause problems.

To solve all these issues, we assume that A is always transversal to Σ . This can be written in terms of N, the normal vector to Σ , namely,

$$A \cdot N \neq 0$$
.

Definition 3.2 (Noncharacteristic Surface). If $A \cdot N \neq 0$, then we say the surface Σ is noncharacteristic.

We can have solutions that solve the equation at every point but not differentiable everywhere. We learn 2 lessons from this example:

- 1. We need to enlarge the notion of what is a solution, this leads to the theory of distributions.
- 2. There are solutions to our PDE with a jump discontinuity along characteristic surfaces. (Γ in the picture)

After applying a change of coordinates, we have a Cauchy problem:

$$u_t + AD_x u = f, u(t=0) = u_0,$$

where u_t is nonzero, corresponding to the condition that the surface is noncharacteristic.

§4 September 10th, 2020

Last time:

- We began discussing first order scalar equations.
 - Linear, Constant Coefficients,

$$a^j \partial_j u = f.$$

- We interpret the equation as a directional derivative, so solving the equation reduces to integration along straight lines.
- For initial data, $u = u_0$ on Σ , for the problem to be well poser, we need Σ to be **noncharacteristic**, namely

$$A \cdot N \neq 0$$
,

where $A = (a_j)$, N is the normal vector to the surface.

- Our model problem was an evolution in (t, x), where

$$u_t + a^j \partial_i u = f, u(t=0) = u_0.$$

§4.1 Linear, Variable Coefficients

We have equations of the form

$$a^{j}(x)\partial_{j}u = f,$$

the Transport equation.

Now, we have integration on curves instead of straight lines. We think about this as ode's along curves γ so that A is tangent to γ at every point:

$$\dot{x} = A(x), x(0) = x_0, x(t) = \Phi(t, x_0).$$

We can rewrite this in the form

$$\frac{d}{dt}u(\Phi(t,x_0)) = f(\Phi(t,x_0)),$$

which reduces to the fundamental theorem of calculus in 2 steps:

- 1. Solve the ode
- 2. Integrate

We can also add Cauchy data, $u = u_0$ on Σ . For the problem to be well-posed, we need Σ to be noncharacteristic, $A \cdot N \neq 0$.

Theorem 4

Assume that $A \in C^1_{loc}$, Σ is a C^1 noncharacteristic surface. Then the problem

$$\begin{cases} A \cdot Du = f \in C \\ u = u_0 \in C \text{ on } \Sigma \end{cases}$$

admits a unique continuous solution. Note that if $(f, u_0) \in C$, then we can get $u \in C$ and if $(f, u_0) \in C^1$, then we can get $u \in C^1$.

Having a local diffeomorphism is equivalent to showing Σ is noncharacteristic. We show this by showing the differential is nonzero.

Take a change of coordinates

$$x = \Phi(x_0, t).$$

In the new coordinates, the equation becomes

$$\frac{\partial u}{\partial t} = f, u_{t=0} = u_0,$$

which reduces completely to the fundamental theorem of calculus.

§4.2 Semilinear Equations

We have equations of the form

$$a^{j}(x)\partial_{j}u = f(x,u).$$

We can still interpret this as a directional derivative, with an ODE:

$$\begin{cases} x' = A(x) \\ x(0) = x_0 \end{cases}$$

with a Flow map $(x_0, t) = \varphi(x_0, t)$. We still require our surface Σ to be noncharacteristic. The equation along characteristics is

$$\begin{cases} \frac{\partial}{\partial t} u(\varphi(x_0, t)) = f(\varphi(x_0, t), u(\varphi(x_0, t))) \\ u(\varphi(x_0, 0)) = u_0(x_0). \end{cases}$$

Then, we solve for the characteristics, and solve the ode along the characteristics.

§4.3 Quasilinear Equations

We have equations of the form

$$\begin{cases} a^{j}(x, u)\partial_{j}u = f(x, u) \\ u = u_{0} \text{ on } \Sigma \end{cases}$$

A priori, we can no longer draw the vector field, since a given point will depend on the solution u.

Suppose we already have a solution $u \in C^1$. Then, we have a well-defined vector field A = A(x, u). We can also consider the flow of A.

Given initial data $x(0) = x_0, u(0) = u_0(x_0)$, we have a Cauchy problem. From this, we conclude that a good strategy for the problem is the following:

• Given x_0 on Σ , solve the above system for x, u.

$$X = \varphi(t, x_0, u_0), u = U(t, x_0, u_0).$$

• Define the candidate solution u as

$$u(\varphi(t, x_0, u_0)) = U(t, x_0, u_0).$$

Remark: We still want Σ to be noncharacteristic: $A(x_0, u_0(x_0)) \cdot N(x_0) \neq 0$. In this case, we say the problem is noncharacteristic, since it depends on the initial data.

Theorem 5

Let $a^j(x,u), f(x,u)$ be C^1 functions, $u_0 \in C^1(\Sigma)$ and Σ noncharacteristic. Then, the problem

$$\begin{cases} a^{j}(x, u)\partial_{j}u = \delta(x, u) \\ u = u_{0} \text{ on } \Sigma \end{cases}$$

has a unique local solution.

Proof. We outline the steps.

1. Solve the characteristic ode:

$$\begin{cases} \dot{x} = A(x, u) \\ \dot{u} = f(x, u) \\ x(0) = x_0 \in \Sigma \\ u(0) = u_0(x_0) \end{cases}$$

This gives us a local diffeomorphism:

$$(x_0, u_0(x_0), t) \to (x, u).$$

2. Define the candidate solution

$$u(\varphi(x_0, u_0(x_0, t))) = U(x_0, u_0(x_0), t).$$

- 3. Verify that the solution is C^1 , which comes from C^1 dependence for ODE's and for the local diffeomorphism.
- 4. Verify that the solution is unique. [Suppose we have two solutions u_1, u_2 with the same initial data. Then if their characteristic ode's have the same data, they have the same solutions, which implies that the characteristics are the same and $u_1 = u_2$ on characteristics.]

The key observation is that solutions given by the theorem are local solutions.

§4.4 Classical model problem: Burgers' Equation

Consider the Burgers Equation: we use coordinates $(t, x) \in \mathbb{R} \times \mathbb{R}$.

$$\begin{cases} u_t + u \cdot u_x = 0 \\ u(t=0) = u_0(x) \end{cases}$$

If we choose a point x_0 , the characteristic system: denote by s the parameter along characteristics.

$$\begin{cases} \dot{t} = 1, t(0) = 0 \\ \dot{x} = u, x(0) = x_0 \\ \dot{u} = 0, u(0) = u_0(x_0) \end{cases}$$

Our first equation is t = s, which tells us that t is the natural parameter along characteristics. The third equation gives us that $u = u_0(x_0)$, which is constant along characteristics. Then, $x(t) = x_0 + tu_0(x_0)$. In particular, characteristics are straight lines.

Characteristics can intersect, which loses the C^1 well-posedness. To find the first C^1 blow-up time, we look at the first point where $x_0 \to x$ is no longer a diffeomorphism.

$$\frac{\partial x}{\partial x_0} = 1 + t u_0'(x_0),$$

so we encounter a singularity when $tu_0'(x_0) + 1 = 0 \Rightarrow t = -\frac{1}{u_0'(x_0)}$

§5 September 15th, 2020

§5.1 Fully Nonlinear PDEs

We have an equation $F(x, u, Du) = 0 \in \mathbb{R}^n$, where $Du = (\partial_1 u, \dots, \partial_n u)$. So far, we've been able to interpret the equation as a directional derivative in the direction of u. Naively, it isn't clear how to apply that approach to this system.

First, we compute the linearized equation: We have u(h), a one parameter family of solutions, and take $V = \frac{d}{dh}u(h)|_{h=0}$. The h=0 corresponds to the original solution. We get that

$$F_u(x, u, Du) \cdot v + F_{Du}(x, u, Du) \cdot Dv = 0.$$

We improve the notation by noting that $F: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, and we denote p = Du for convenience.

We can rewrite the equation as

$$F_u(x, u, Du)v + F_p(x, u, Du) \cdot Dv = F_u(x, u, Du)v + F_{p_i}(x, u, Du) \cdot \partial_i v = 0.$$

The key observation is that the linearized equation is a transport equation. The vector field is $F_p(x, u, Du)$. Then, we have the ordinary differential equation:

$$\dot{x}(s) = F_p(x, u, Du),$$

which are the integral curves of the vector field. If we have a solution, we can compute it using the chain rule:

$$\dot{u} = F_n(x, u, Du) \cdot Du.$$

We also need $(\dot{D}u)$. We can compute this directly with chain rule, or we can simply differentiate the original equation:

$$\frac{\partial F}{\partial x_i} + \frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial x_i} + \frac{\partial F}{\partial p_i} \cdot \frac{\partial^2 u}{\partial x_i x_k} = 0.$$

Interpreting this as a directional derivative of $\frac{\partial u}{\partial x_j}$, we have

$$F_p \cdot D \frac{\partial u}{\partial x_j} = -F_i \cdot \frac{\partial u}{\partial x_j} - F_x,$$

$$\left(\frac{\dot{\partial u}}{\partial x_j}\right) = -F_u \frac{\partial u}{\partial x_j} - F_x.$$

We think of the three equations as a system of ODEs:

$$\begin{cases} \dot{x} = F_p(x, u, p) \\ \dot{u} = F_p(x, u, Du) \cdot Du \\ \dot{p} = -F_u \cdot p - F_x \end{cases}$$

Lemma 5.1

Suppose u is a C^2 solution to our PDE. Consider the solution to (x, u, p) to the characteristic system above, with initial data $x(0) = x_0, u(0) = u(x_0), p(0) = Du(x_0)$. Then,

$$u(x(s)) = u(s),$$

$$Du(x(s)) = p(s).$$

The goal is to use this property in order to construct solutions.

Add to the ODE an initial solution $u = u_0$ on a surface Σ . Can we solve (locally) the initial value problem?

$$\begin{cases} F(x, u, Du) = 0 \\ u = u_0 \in \Sigma \end{cases} .$$

To compute characteristics starting at x_0 , we need $x_0, u(x_0), Du(x_0)$. We have the first two, since $u(x_0) = u_0(x_0)$. However, $Du(x_0)$ is not immediately obvious, since u_0 is only on Σ , in n-1 variables. In other words, we can't compute derivatives in the normal direction to Σ .

In a frame of x_0 where $\Sigma = \{x_n = 0\}$, we are given $\frac{\partial u}{\partial x'} = \frac{\partial u_0}{\partial x'}$, the tangential derivatives, but not $\frac{\partial u}{\partial x_n}$.

We use the equation at x_0 :

$$F(x_0, u_0(x_0), Du(x_0)) = 0.$$

We think the above as an equation for $\partial_u u(x_0)$. Either we cannot solve it, in which case there is no solution to the PDE, or we can solve it, with some issues, namely:

- The solution might not be unique, in which case we make a choice that is consistent around x_0 .
- The outcome $\partial_n u(x_0) = G(x_0, u_0(x_0), D'u_0(x_0))$, which we want to solve smoothly. Using the "Implicit Function theorem", this happens if $F_{p_n}(x_0, u_0(x_0), p) \neq 0$.

Theorem 6

Consider the PDE:

$$\begin{cases} F(x, u, Du) = 0 \\ u|_{\Sigma} = u_0 \end{cases}.$$

Let $x_0 \in \Sigma$, and p_0 so that

- $F(x, u_0, p_0) = 0$
- $p_0 \cdot T = Du_0 \cdot T$, where T is tangential
- $F_p(x_0, u_0, p_0) \cdot N \neq 0$.
- $F_p(x_0, u_0, p_0) \cdot N \neq 0$, the noncharacteristic condition.

(Notice that the third and fourth conditions are the same! They come from two different places, the implicit function theorem, and our conditions on initial data.) Then, there exists a unique C^2 solution of our PDE "near" x_0 .

Remark: The solution might be only local because characteristics may intersect. Remark: We work in \mathbb{C}^2 for convenience, but the theorem holds in \mathbb{C}^1 .

Proof. The proof has 3 key steps:

- The construction of the solution.
- The verification of the equation.

- Verify uniqueness.
- We would also like continuous/Lipschitz dependence on the initial data, but this part is omitted. [It uses the linearized equation]

We begin with the construction. We use the method of characteristics.

$$\begin{cases} \dot{x} = F_p(x, z, p) \\ \dot{z} = F_p(x, z, p) \cdot Du \\ \dot{p} = -F_u \cdot p - F_x \end{cases}$$

Find initial data for this system on $\Sigma : x(0) = x_0, z(0) = u_0(x_0), p(0) = p_0$, which is obtained by solution $F(x_0, u_0(x_0), p_0) = 0$. Recall that p_0 is broken into $p_T = Du_0(x_0)$ tangential, and p_N , normal. We can solve this smoothly with the Implicit Function Theorem by the noncharacteristic condition.

We solve the characteristic system with the initial data, and the outcome is a pair of functions

$$x(s, x_0), z(s, x_0), p(s, x_0),$$

which is defined for x_0 is a neighborhood of the original point, s in a neighborhood of 0. We want to define one solution u: We set $u(x(s,x_0)) = z(s,x_0)$. Instead, we want u as a function of x,

$$(s, x_0) \to x$$

needs to be invertible, i. e. a local diffeomorphism.

This equivalent to having

$$\det\left[\frac{\partial x(s,x_0)}{\partial (s,x_0)}\right] \neq 0,$$

which is equivalent to the noncharacteristic condition (we showed this before). \Box