Examenul de bacalaureat național 2017

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 z_2 + 2 z_1 + z_2 = (2+3i)(4-6i) + 2(2+3i) + 4-6i =$	2p
	$=8-12i+12i-18i^2+4+6i+4-6i=34$, care este număr real	3 p
2.	g(0)=1	2p
	$(f \circ g)(0) = f(g(0)) = f(1) = 1$	3 p
3.	$x^2 - 4 = 5x - 8 \Rightarrow x^2 - 5x + 4 = 0$	3 p
	x=1, care nu verifică ecuația; $x=4$, care verifică ecuația	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 13 numere naturale de două cifre, multipli de 7, deci sunt 13 cazuri favorabile	2p
		•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{13}{90}$	2p
5.	Dreapta paralelă cu dreapta d are panta egală cu 3	2p
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 3x - 3$	3p
6.	$\sin\left(\frac{\pi}{2} + x\right)\sin x + \cos\left(\frac{\pi}{2} + x\right)\cos x = \cos\left(\frac{\pi}{2} + x - x\right) =$	3p
	$=\cos\frac{\pi}{2}=0$, pentru orice număr real x	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$(2 \ 0 \ 0)$ $ 2 \ 0 \ 0 $	
	$A(2) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = $	2p
	=4	3 p
b)	$A(x) + B(x) = \begin{pmatrix} x & 0 & x \\ 0 & 2x & 0 \\ 2 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(x) + B(x)) = \begin{vmatrix} x & 0 & x \\ 0 & 2x & 0 \\ 2 & 0 & 1 \end{vmatrix} = 2x^2 - 4x^2 =$	3p
	$=-2x^2 = \det(B(x))$, pentru orice număr real x	2p
c)	$A(n)B(p) = \begin{pmatrix} n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & p \\ 0 & p & 0 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & np \\ 0 & np & 0 \\ 2 & 0 & 0 \end{pmatrix}, \ B(3) = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 3 & 0 \\ 2 & 0 & 0 \end{pmatrix}$	2p
	$A(n)B(p) = B(3) \Leftrightarrow np = 3$ şi, cum n şi p sunt numere naturale, obţinem $n = 1$, $p = 3$ sau $n = 3$, $p = 1$	3p
2.a)	$f(1) = 0 \Leftrightarrow 1^3 + a \cdot 1^2 + 8 \cdot 1 + 3 = 0$	2p
	a = -12	3 p

b)	$a = 6 \Rightarrow f = X^3 + 6X^2 + 8X + 3$ şi câtul este $X + 1$	3p	1
	Restul este 0	2p	
	$x_1 + x_2 + x_3 = -a$, $x_1x_2 + x_1x_3 + x_2x_3 = 8 \Rightarrow x_1^2 + x_2^2 + x_3^2 = a^2 - 16$	3p	
	Pentru $a \in (-4,4)$, obținem $a^2 - 16 < 0$, deci $x_1^2 + x_2^2 + x_3^2 < 0$, adică polinomul f nu are toate rădăcinile reale	2p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = (x^{2018})' + (2018x)' + 2' =$	2p
	$=2018x^{2017}+2018=2018\left(x^{2017}+1\right), \ x\in\mathbb{R}$	3p
b)	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 2018x + 2$	3 p
	$2020 = 2018a + 2 \Leftrightarrow a = 1$	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1$	2p
	Cum $\lim_{x \to -\infty} f(x) = +\infty$, $f(-1) = -2015$, $\lim_{x \to +\infty} f(x) = +\infty$, ecuația $f(x) = 0$ are exact două soluții reale distincte	3 p
2.a)	$\int_{0}^{1} \left(x^{2} + 2x + 2 \right) dx = \left(\frac{x^{3}}{3} + 2 \cdot \frac{x^{2}}{2} + 2x \right) \Big _{0}^{1} =$	3 p
	$= \frac{1}{3} + 1 + 2 = \frac{10}{3}$	2p
b)	$I_{n+1} + 2I_n + 2I_{n-1} = \int_0^1 \frac{x^{n+1} + 2x^n + 2x^{n-1}}{x^2 + 2x + 2} dx =$	2p
	$= \int_{0}^{1} \frac{x^{n-1} \left(x^{2} + 2x + 2\right)}{x^{2} + 2x + 2} dx = \int_{0}^{1} x^{n-1} dx = \frac{x^{n}}{n} \Big _{0}^{1} = \frac{1}{n}, \text{ pentru orice număr natural } n, n \ge 2$	3 p
c)	$I_{n+1} - I_n = \int_0^1 \frac{x^n(x-1)}{x^2 + 2x + 2} dx \le 0$, deci $I_{n+1} \le I_n$, pentru orice număr natural nenul n	1p
	$5I_{n+1} \le I_{n+1} + 2I_n + 2I_{n-1} \le 5I_{n-1} \Rightarrow 5I_{n+1} \le \frac{1}{n} \le 5I_{n-1}$, pentru orice număr natural $n, n \ge 2$	2p
	Pentru orice număr natural n , $n \ge 2$, $\frac{n}{5(n+1)} \le nI_n \le \frac{n}{5(n-1)}$, deci $\lim_{n \to +\infty} nI_n = \frac{1}{5}$	2p