Evaluating the impact of uncertainty in flame impulse response model on thermoacoustic instability prediction: A dimensionality reduction approach

S. Guo, C. Silva, A. Ghani, W. Polifke

Technische Universität München, Germany

M. Bauerheim

Institut Supérieur de l'Aéronautique et de l'Espace, France

37th International Symposium on Combustion PROCI-D-17-00939

Growth rate contours are approximately parallel straight lines on the phasor plot of F for Rijke tube case

Growth rate contours are approximately parallel straight lines on the phasor plot of F for Rijke tube case

Understanding the distribution pattern of the growth rate contours constitutes the motivation for our current study

Questions:

• What do growth rate contours look like in general?

Presentation overview

- Motivation
- ☐ Visualization: from FIR to the phasor plot of FRF
- ☐ Analytical Results: what do growth rate contours look like
- UQ Strategy & Case Studies
- ☐ Conclusions & Outlook

Flame impulse response is a flexible representation of realistic flame dynamics in time domain

System Identification 1

Flame impulse response identification contains uncertainty, which will influence the growth rate prediction

Results visualization: phasor plot of flame frequency response

Time

Presentation overview

- Motivation
- ☐ Visualization: from FIR to the phasor plot of FRF
- ☐ Analytical Results: what do growth rate contours look like
- □ UQ Strategy & Case Studies
- ☐ Conclusions & Outlook

Analytical derivation: An overview

Analytical derivation: An overview

Goal

$$FTF(\omega - i\sigma) = H(\omega - i\sigma) \quad \omega, \sigma \in \mathbb{R}$$

Assumption

- Uncertainty is not large
- Marginally stable mode

Method

First-order analysis

To first order, the growth rate contours are parallel straight lines on the phasor plot of F

$$G_r^0 = \frac{\partial \mathbf{H_r}}{\partial \omega} \Big|_{\omega^0, \sigma^0} + \sum_{k=1}^L h_k^0 \sin[k\Delta t \omega^0] k\Delta t$$

$$G_i^0 = \frac{\partial \mathbf{H_i}}{\partial \omega} \Big|_{\omega^0, \sigma^0} + \sum_{k=1}^L h_k^0 \cos[k\Delta t \omega^0] k\Delta t$$

This direction is determined by:

- FIR model
- Acoustic transfer function
- Thermoacoustic mode

Analytical results can be leveraged to deliver a dimensionality reduction UQ strategy

$$Y = \sum_{k=1}^{L} (h_k - h_k^0) e^{-i\Delta t\omega^0} \cdot \frac{\boldsymbol{n}}{|\boldsymbol{n}|}$$

Analytical results can be leveraged to deliver a dimensionality reduction UQ strategy

$$Y = \sum_{k=1}^{L} (h_k - h_k^0) e^{-i\Delta t\omega^0} \cdot \frac{\boldsymbol{n}}{|\boldsymbol{n}|}$$

$$\sigma = f(Y) \approx poly(Y)$$

Dimensionality Reduction!

A dimensionality reduction UQ strategy leveraged on the distribution pattern of the growth rate contours

Calculate ω^0 and σ^0

Calculate the gradient direction

$$G_r^0 = \frac{\partial H_r}{\partial \omega} \Big|_{\omega^0, \sigma^0} + \sum_{k=1}^L h_k^0 \sin[k\Delta t\omega^0] k\Delta t$$

$$G_i^0 = \frac{\partial H_i}{\partial \omega} \Big|_{\omega^0,\sigma^0} + \sum_{k=1}^L h_k^0 cos[k\Delta t\omega^0] k\Delta t$$
 Fit a polynomial function

$$Y = \sum_{k=1}^L (h_k - h_k^0) e^{-m{i}\Delta t\omega^0} \cdot rac{m{n}}{|m{n}|}$$
 , $\sigma pprox poly(Y)$

A dimensionality reduction UQ strategy leveraged on the distribution pattern of the growth rate contours

Calculate ω^0 and σ^0

Calculate the gradient direction

$$G_r^0 = \frac{\partial H_r}{\partial \omega} \Big|_{\omega^0, \sigma^0} + \sum_{k=1}^L h_k^0 \sin[k\Delta t\omega^0] k\Delta t$$

$$G_i^0 = \frac{\partial H_i}{\partial \omega} \Big|_{\omega^0, \sigma^0} + \sum_{k=1}^L h_k^0 cos[k\Delta t \omega^0] k\Delta t$$
Fit a polynomial function (5~10 samples)

$$Y = \sum_{k=1}^L (h_k - h_k^0) e^{-m{i}\Delta t\omega^0} \cdot rac{m{n}}{|m{n}|}$$
 , $\sigma pprox poly(Y)$

Monte Carlo simulation

Case study: acoustic network model, impulse response identification and thermoacoustic mode specification

Our UQ strategy replicated the reference Monte Carlo results with 5000 times less computational cost

Computational Cost:

Monte Carlo: 30000 acoustic network calculations

Our strategy: 1+5 acoustic network calculations

Conclusion & Outlook

Conclusion & Outlook

Back-up slides

The assumption of marginal stable mode

$$FTF(\omega - i\sigma) = H(\omega - i\sigma) \quad \omega, \sigma \in \mathbb{R}$$

$$\sum_{k=0}^{L-1} h_k e^{-i(k+1)\Delta t(\omega - i\sigma)} = H(\omega - i\sigma)$$

$$e^{-(k+1)\Delta t\sigma}, k = 0...(L-1)$$

Growth rate contours for BRS burner

For each case, a quadratic function is fitted to link Y to modal growth rate

