# **MILIND**

#### Softwareentwickler



## ÜBER

Leidenschaft für skalierbare, effiziente Softwarelösungen mit modernen Entwicklungsmetodologien

### **BILDUNG**

Künstliche Intelligenz für smarte Sensoren und Aktuatoren (Master of Engineering)

**Deggendorf Institute of Technology** 

**1** 03.2022 - 03.2025

**♀** 93413 Cham

Maschinenbau (Bachelor of Technology)

**Vellore Institute of Technology** 

**1** 07.2016 - 06.2020

♥ Vellore, Tamil Nadu, India

# **ERFAHRUNG**

#### **Qt-Anwendungsentwickler**

#### **Persystems**

**1** 01.10.2024 - 28.02.2025

- ♥ Franz-Mayer-Straße 1, 93053 Regensburg
- Entwicklung von Virtual Testbench, einer Simulations-Windows-Anwendung für industrielle und automotive elektrische Komponenten, mit C++ und dem Qt-Framework. Virtual TestBench ist eine leichte Alternative zu MATLAB/Simulink.
- Implementierung eines Lizenzprüfungsdienstes in der Virtual Testbench.

#### Werkstudent Qt-Anwendung

#### **Persystems**

**1** 01.07.2024 - 01.10.2024

- Franz-Mayer-Straße 1, 93053 Regensburg
- Erstellung eines visuellen Knotensystems, in dem Benutzer verschiedene elektronische Simulationskomponenten per Drag-and-Drop verbinden können, um Simulationen mit der Qt-Nodes-Bibliothek durchzuführen.
- Verwendung von Qt Creator als integrierte Entwicklungsumgebung (IDE) für die Entwicklung.
- Iterative Optimierung der Benutzeroberfläche (UI) und Benutzererfahrung (UX) für einen besseren Benutzerfluss mit MVC-Architektur.

#### Masterarbeit in ADAS-virtueller Validierung

#### **AVL Software and Functions GmbH**

**1** 01.11.2023 - 01.05.2024

- **♀** Im Gewerbepark B29 93059 Regensburg
- Entwicklung einer Co-Simulationsplattform für die Verifikation von AV-ADAS und Verbesserung des FMU-Generierungstools von AVL auf FMI 3.0 mit C++ für die Integration mit Carla und esmini, unter Einhaltung der ASAM-Standards.

#### Werkstudent

#### **AVL Software and Functions GmbH**

**15.02.2023 - 31.10.2023** 

- **♀** Im Gewerbepark B29 93059 Regensburg
- Entwicklung von C++-Anwendungen und Tools für ADAS-Digitalisierung, Demonstration von SOA mit Adaptive AUTOSAR, Analyse von Middleware wie ROS 2 und Optimierung von RT-Linux über Yocto für effiziente Echtzeit-Automobilsysteme mit Azure DevOps.

## **FÄHIGKEITEN**

C / C++
Qt Framework / QML
Python
STM32 / STM32CubeIDE
UART / I2C / SPI
ARM / Xilinx Zynq
Google Protobuf
TCP/UDP/MQTT/OPC-UA
Linux / Unix
RTOS / QNX
Yocto Project
SQL
CI / CD
Git



**10.2024** 

### **PROJEKT**

Gesundheits-IoT-Gerät

Entwickelte einen tragbaren Gesundheits-IoT-Prototyp mit STM32-Mikrocontroller, der Sensoren (Körpertemperatur, Blutsauerstoff, Herzfrequenz, Luftfeuchtigkeit, Temperatur, Bewegung) über I2C/SPI ansteuert. UART für STM32-ESP-WiFi-Kommunikation zur drahtlosen Datenübertragung an einen Server mit Web-GUI. Firmware in STM32CubeIDE entwickelt, steuert Sensordaten, Protokolle, GPIO für LEDs und Notfallknopf. GUI zeigt Echtzeit-/historische Daten im Browser. Optimiert für 5h Akkulaufzeit mit

#### **HOBBYS**

Videospiele Radfahren

Klassischer und Hard Rock

STM32-Energiesparmodi.

### **SPRACHEN**

Englisch Deutsch

