# Math and Physics Cheat Sheet

# Diogo Almeida

August 17, 2024

| Contents |                                                      |        |     | Physics                                                                                                     | 7     |
|----------|------------------------------------------------------|--------|-----|-------------------------------------------------------------------------------------------------------------|-------|
| 1        | Introduction                                         | 1      |     | 5.1 Center of mass                                                                                          | 7     |
| 1        | Introduction                                         | 1      |     | 5.2 Moment of Inertia                                                                                       | 7     |
| 2        | Calculus and Algebra                                 | 2      |     | 5.3 Newton's Law                                                                                            | 7     |
|          | 2.1 Pre-College algebra                              | 2      |     | 5.4 Quantum                                                                                                 | 7     |
|          | 2.2 Sums                                             | 2      |     | 5.4.1 Time invariant one dimensional                                                                        | 7     |
|          | 2.3 Trigonometry                                     | 2      |     | Schrodinger equation                                                                                        | 7     |
|          | 2.4 Hyperbolic Functions                             | 2      |     | 5.5 Maxwell Equations                                                                                       | 7     |
|          | 2.5 Complex Numbers                                  | 2      | 6   | Linear Algrebra                                                                                             | 7     |
|          | 2.6 Differentiation                                  | 3      | Ū   | 6.1 Generalized Eigenvectors                                                                                | 7     |
|          | 2.6.1 Lagrange multipliers                           | 3      |     | Unit Generalized Digenvectors                                                                               | •     |
|          | 2.6.2 Feynman's integration trick                    | 3      | 7   | Probabilities and Statistics                                                                                | 7     |
|          | 2.6.3 Implicit partial differentiation               | 3      |     | 7.1 Random variables                                                                                        | 8     |
|          | 2.6.4 Finding maxima, minima and saddle points       | 3      |     | 7.1.1 Discrete probability distributions                                                                    | 8     |
|          | 2.7 Integration                                      | 3      |     | 7.1.2 Continuous random variables distributions                                                             | 8     |
|          | 2.7.1 The Gamma Function                             | 4      |     | 7.2 Quantiles                                                                                               | 9     |
|          | 2.7.2 Average Value of a Function                    | 4      |     | 7.3 Mean and variance                                                                                       | 9     |
|          | 2.7.3 Jacobians and Change of Variables              | 4      |     | 7.4 Jensen's Inequality                                                                                     | 9     |
|          | 2.8 Differentials                                    | 4      |     | 7.5 Change of Variable Theorem                                                                              | 9     |
|          | 2.9 Operators                                        | 4      |     | 7.6 Moment Generating Function                                                                              | 9     |
|          | 2.10 Vectors                                         | 4      |     | 7.7 Joint distributions                                                                                     | 9     |
|          | 2.11 Tensors                                         | 4      |     | 7.8 Independence of random variables                                                                        | 9     |
|          | 2.12.1 The Dirichlet conditions                      | 4      |     | 7.9 Covariance and Correlation                                                                              | 9     |
|          | 2.12.2 The Fourier coefficients                      | 5      |     | 7.9.1 Covariance                                                                                            | 10    |
|          | 2.12.3 Integration and Differentiation of Fourier    | Ŭ      |     | 7.10 Computations with random variables                                                                     | 10    |
|          | Series                                               | 5      |     | 7.11 Law of Large Numbers                                                                                   | 10    |
|          | 2.12.4 Complex Fourier Series                        | 5      |     | 7.12 Central Limit Theorem                                                                                  | 10    |
|          | 2.12.5 Parseval's theorem                            | 5      |     | 7.13 Stochastic Processes                                                                                   | 10    |
|          | 2.13 Fourier Transform                               | 5      |     | 7.13.1 Simple Random Walk                                                                                   | 10    |
|          | 2.13.1 Delta Functions                               | 5      |     | 7.13.2 Markov Chain                                                                                         | 10    |
|          | 2.13.2 Properties of the Fourier Transform           | 5      |     | 7.13.3 Martingales                                                                                          | 10    |
|          | 2.14 Convolutions                                    | 5      |     | 7.14 Regression Analysis                                                                                    | 10    |
|          | 2.15 Correlation Functions                           | 5      |     | 7.14.1 Ordinary Least Squares                                                                               | 10    |
|          | 2.16 Higher Dimensions of Fourier Series             | 5      |     | 7.14.2 Generalized Least Squares                                                                            | 11    |
|          | 2.17 Laplace Transform                               | 6      |     | 7.14.3 More information on this topic                                                                       | 11    |
|          | 2.17.1 Standard Laplace Transforms                   | 6      |     | 7.14.4 Brownian Motion                                                                                      | 11    |
|          | 2.17.2 Derivatives and Integrals                     | 6      |     | 7.15 Itô's Calculus                                                                                         | 11    |
|          | 2.17.3 Properties of Laplace Transform               | 6      | 8   | Logic                                                                                                       | 11    |
| 3        | Linear Algebra                                       | 6      |     | 208.0                                                                                                       |       |
|          | 3.1 Kronecker product                                | 6      | 9   | Computing                                                                                                   | 11    |
|          |                                                      |        |     | 9.1 Classical Logic Gates                                                                                   | 11    |
| 4        | Differential Equations                               | 6      |     | 9.2 Quantum Computing                                                                                       | 11    |
|          | 4.1 Separation of Variables                          | 6      |     | 9.2.1 Basics                                                                                                | 11    |
|          | 4.2 Exact Equations                                  | 6      |     | 9.2.2 Multiple Quantum Gates                                                                                | 11    |
|          | 4.3 Linear Equations                                 | 6      |     |                                                                                                             |       |
|          | 4.4 Homogeneous Equations                            | 6      | 1   | Tutus Just's                                                                                                |       |
|          | <ul><li>4.5 Constant Coefficient Equations</li></ul> | 7<br>7 | 1   | Introduction                                                                                                |       |
|          | 4.7 Exact Equations                                  | 7      | TI- | o progent notes assemble of moth and indi                                                                   | asts  |
|          | 4.8 Partically known complementary function          |        |     | the present notes accompany my study of math and indiceresting theorems and results that might come in hand |       |
|          | 4.9 Variation of parameters                          |        |     | e future. [?] [?] [?]                                                                                       | y 111 |
|          | *                                                    |        | -   |                                                                                                             |       |

### Calculus and Algebra $\mathbf{2}$

#### 2.1 Pre-College algebra

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$
 (1)

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \tag{23}$$

 $\sin(x)\cos(y) = \frac{1}{2}\left(\sin(x-y) + \sin(x+y)\right)$ 

 $\cos(x)-\cos(y)=-2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$ 

 $2\cos(nx) = e^{nix} + e^{-nix}$ 

#### 2.2 Sums

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) \tag{2}$$

$$\sin(x) - \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \tag{25}$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}(n+1)(2n+1) \tag{3}$$

$$2i\sin(x) = e^{ix} - e^{-ix} \tag{26}$$

$$e^x = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{x^n}{n!} \tag{4}$$

$$2\cos(x) = e^{ix} + e^{-ix} \tag{27}$$

(22)

(24)

(29)

(31)

(38)

(42)

(44)

(48)

$$\sum_{n=1}^{N} u_n = \sum_{n=0}^{N-1} (an+b) = \frac{N}{2} (u_1 + u_N)$$
 (5)

$$2i\sin(nx) = e^{nix} - e^{-nix} \tag{28}$$

$$\sum_{n=1}^{N} u_n = \sum_{n=0}^{N-1} (ar^n) = u_1 \frac{1-r^n}{1-r}$$
 (6)

# **Hyperbolic Functions**

$$\sum_{n=0}^{N-1} (an+b)r^n = \frac{a - [a + (N-1)d]r^N}{1-r} + \frac{rd(1-r^{N-1})}{(1-r)^2}$$
 (7)

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$

$$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$$
(30)

$$\sum Nn^3 = \left(\sum^N n\right)^2 \tag{8}$$

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)} \tag{32}$$

$$\sum_{n=1} Nn^3 = \left(\sum_{n=1}^N n\right) \tag{8}$$

$$\operatorname{csch}(x) = \frac{1}{\sinh(x)} \tag{33}$$

#### 2.3Trigonometry

$$\sin^2(x) + \cos^2(x) = 1 \tag{9}$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} \tag{34}$$

$$\tan^2(x) + 1 = \sec^2(x) \tag{10}$$

$$\coth(x) = \frac{\cosh(x)}{\sinh(x)} \tag{35}$$

$$\cot^2(x) + 1 = \csc^2(x)$$
 (11)

$$\cosh^2(x) - \sinh^2(x) = 1 \tag{36}$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y) \tag{12}$$

$$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$$
 (37)

 $\sinh(x+y) = \cosh(x)\sinh(y) + \sinh(x)\cosh(y)$ 

 $|z|^2 = z\overline{z}$ 

 $\overline{zw} = \overline{w} \cdot \overline{z}$ 

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y) \tag{13}$$

$$\sinh^{-1}(x) = \ln\left(\sqrt{1+x^2} + x\right)$$
 (39)

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)} \tag{14}$$

$$\cosh^{-1}(x) = \ln\left(\sqrt{x^2 - 1} + x\right) \tag{40}$$

# $\sin(2x) = 2\cos(x)\sin(x)$

### 2.5Complex Numbers

(15)

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$
 (16)

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
 (41)

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \tag{17}$$

$$\overline{z+w} = \overline{w} + \overline{z} \tag{43}$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2} \tag{18}$$

$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{w}}{\overline{z}} \tag{45}$$

$$\sin^2(x) = \frac{1 - \cos(2x)}{2} \tag{19}$$

$$e^{in\theta} = \left(e^{i\theta}\right)^n \tag{46}$$

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x-y) + \cos(x+y))$$
 (20)

$$\cos(i\theta) = \cosh(\theta) \tag{47}$$

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$

(21) 
$$\sin(i\theta) = i\sinh(\theta)$$

# 2.6 Differentiation

$$\partial_x x^a = ax^{a-1}$$

 $\partial_x e^x = e^x$ 

$$\partial_x a^x = \ln(a)a^x$$

$$\partial_x \ln(x) = \frac{1}{x}$$

$$\partial_x \log_a(x) = \frac{1}{x \ln(a)}$$

$$\partial_x \sin(x) = \cos(x)$$

$$\partial_x \cos(x) = -\sin(x)$$

$$\partial_x \tan(x) = \sec^2(x)$$

$$\partial_x \cot(x) = -\csc^2(x)$$

$$\partial_x \sec(x) = \sec(x) \tan(x)$$

$$\partial_x \csc(x) = -\csc(x)\cot(x)$$

$$\frac{\mathrm{d}\sin^{-1}(x)}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}\cos^{-1}(x)}{\mathrm{d}x} = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}\tan^{-1}(x)}{\mathrm{d}x} = \frac{1}{1+x^2}$$

$$\frac{\mathrm{d}\sec^{-1}(x)}{\mathrm{d}x} = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{\mathrm{d}\csc^{-1}(x)}{\mathrm{d}x} = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{\mathrm{d}\cot^{-1}(x)}{\mathrm{d}x} = -\frac{1}{x^2 + 1}$$

$$\frac{\mathrm{d}\sinh(x)}{\mathrm{d}x} = \cosh(x)$$

$$\frac{\mathrm{d}\cosh(x)}{\mathrm{d}x} = \sinh(x)$$

$$\frac{\mathrm{d}\tanh(x)}{\mathrm{d}x} = \mathrm{sech}^2(x)$$

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{\mathrm{d}f}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x}$$

$$\frac{\mathrm{d}fg}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}x}f + \frac{\mathrm{d}f}{\mathrm{d}x}g$$

$$\frac{\mathrm{d}\frac{f}{g}}{\mathrm{d}x} = \frac{\frac{\mathrm{d}f}{\mathrm{d}x}g - \frac{\mathrm{d}g}{\mathrm{d}x}f}{g^2}$$

$$f(x) = f(a) + \sum_{n=1}^{\infty} \frac{\mathrm{d}^n f}{\mathrm{d}x^n} |_{x=a} \frac{(x-a)^n}{n!}$$

The following can be generalized to more variables:

(49) 
$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$
 (74)

(50) For a function z, such that z = f(x, y), if z = C

(51) 
$$\frac{\partial x}{\partial y} = \left(\frac{\partial y}{\partial x}\right)^{-1} \tag{75}$$

# (52) 2.6.1 Lagrange multipliers

For a function  $f(\vec{x})$  with restrains  $g(\vec{x}) = c$ , then to find the stationary points, solve:

(54) 
$$\nabla f = \lambda \nabla g \\ g(\vec{x}) = c$$

(55) 2.6.2 Feynman's integration trick

(56) 
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{b} f(x,t) \mathrm{d}t = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t) \mathrm{d}t \tag{77}$$

(57) 
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{v}^{u} f(x,t) dt = f(x,u) \frac{\mathrm{d}u}{\mathrm{d}x} - f(x,v) \frac{\mathrm{d}v}{\mathrm{d}x} + \int_{v}^{u} \frac{\partial}{\partial x} f(x,t) dt$$
(58)

## 2.6.3 Implicit partial differentiation

(59) DON'T TRY TO USE IMPLICIT INTEGRATION WITH PARTIAL DERIVATIVES THE WAY YOU

(60) DO WITH TOTAL DERIVATIVES. IT IS A HUGE MISTAKE. USE DIFFERENTIALS INSTEAD. IT IS ALSO ALWAYS HELPFUL TO THINK IN TERMS

(61) OF OPERATORS.

# 2.6.4 Finding maxima, minima and saddle points

(62) Consider the matrix:

(63) 
$$M_{ij} = \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j} f \tag{79}$$

Then, if the eigenvalues of M are positive, we have a minimum. (64) If the eigenvalues of M are negative, we have a maximum. If the eigenvalues of M have mixed signs, then we have a saddle point.

# 2.7 Integration

(65)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(66) 
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 (80)

$$\int e^x \, \mathrm{d}x = e^x + C \tag{81}$$

$$\int x^a dx = \frac{x^{a+1}}{a} + C \tag{82}$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \tag{83}$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + C \tag{84}$$

$$\int \ln(x) dx = x \ln(x) - x + C \tag{85}$$

$$\int \log_a(x) dx = \frac{x \ln(x) - x}{\ln(a)} + C$$
 (86)

$$\int \sin(x)dx = -\cos(x) + C \tag{87}$$

$$\int \cos(x) dx = \sin(x) + C \tag{88}$$

For more trig integrals refer to the differentiation section.

$$\int \tan(x) dx = -\ln|\cos(x)| + C \tag{89}$$

$$\int \sec(x)dx = \ln|\tan(x) + \sec(x)| + C \tag{90}$$

$$\int \csc(x) dx = -\ln|\cot(x) + \csc(x)| + C \tag{91}$$

$$\int \cot(x) dx = \ln|\sin(x)| + C \tag{92}$$

$$\int \cos^{-1} dx = x \cos^{-1}(x) - \sqrt{1 - x^2} + C$$
 (93)

$$\int \sin^{-1} dx = x \sin^{-1}(x) + \sqrt{1 - x^2} + C \tag{94}$$

Using Feynman's integration trick it is easy to show that:

$$\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2} \tag{95}$$

$$\int_{-\infty}^{+\infty} e^{-x^2} = \sqrt{\pi} \tag{96}$$

$$\int f \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x = \int f \mathrm{d}u \tag{97}$$

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u \tag{98}$$

### 2.7.1 The Gamma Function

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt \text{ for } \alpha > 0$$
 (99)

### 2.7.2 Average Value of a Function

$$\langle f \rangle = \frac{1}{A} \int_{\Omega} f \, \mathrm{d}A \tag{100}$$

(Can be extended to more dimensions)

### 2.7.3 Jacobians and Change of Variables

$$J = \frac{\partial(x, y, z, \dots)}{\partial(u, v, w, \dots)} = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} & \dots \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$
(101)

$$dA_{x,y} = |J|dA_{u,v} \tag{102}$$

$$\frac{\partial(x_1, x_2, \dots)}{\partial(y_1, y_2, \dots)} = \frac{\partial(x_1, x_2, \dots)}{\partial(z_1, z_2, \dots)} \frac{\partial(z_1, z_2, \dots)}{\partial(y_1, y_2, \dots)}$$
(103)

$$\frac{\partial(x_1, x_2, \dots)}{\partial(y_1, y_2, \dots)} = \left(\frac{\partial(y_1, y_2, \dots)}{\partial(x_1, x_2, \dots)}\right)^{-1} \tag{104}$$

### 2.8 Differentials

The formulas in this subsection use Einstein Summation Convention

$$\mathrm{d}f = \frac{\partial f}{\partial x^i} \mathrm{d}x^i \tag{105}$$

$$dA = dxdy = rdrd\theta \tag{106}$$

$$dV = dxdydz = \rho^2 \sin(\phi)d\rho d\phi d\theta \tag{107}$$

A differential Adx + Bdy is exact, iff

$$\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x} \tag{108}$$

# 2.9 Operators

The Laplacian in 2 dimensions:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{\partial^2}{\partial \theta^2}$$
 (109)

### 2.10 Vectors

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} \tag{110}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$
 (111)

$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$$
 (112)

### 2.11 Tensors

Derivitive, with respect to time, of a rank 1 tensor:

$$\frac{d\overline{T}^{\alpha}}{dt} = \frac{dT^{\beta}}{dt} \frac{\partial \overline{x}^{\alpha}}{\partial x^{\beta}} + T^{\beta} \frac{\partial}{\partial x^{\gamma}} \frac{\partial \overline{x}^{\alpha}}{\partial x^{\beta}} \frac{dx^{\gamma}}{dt}$$
(113)

A  $\binom{M}{N}$  tensor is a linear mapping from M one-forms and N vectors to a real number.

$$T^{\alpha}_{\beta} = \mathbf{T}(\tilde{\omega}^{\alpha}, \vec{e}_{\beta}) \tag{114}$$

$$\frac{\partial \overline{x}^{\alpha}}{\partial x^{\beta}} = \Lambda^{\alpha}_{\beta} \tag{115}$$

$$\frac{\partial x^{\beta}}{\partial \overline{x}^{\alpha}} = (\Lambda^{-1})^{\beta}_{\alpha} \tag{116}$$

$$\overline{A}^{\alpha} = \Lambda^{\alpha}_{\beta} A^{\beta} \tag{117}$$

$$\overline{\vec{e}}_{\alpha} = (\Lambda^{-1})^{\beta}_{\alpha} \vec{e}_{\beta} \tag{118}$$

$$\overline{V}_{\alpha} = (\Lambda^{-1})_{\alpha}^{\beta} V_{\beta} \tag{119}$$

$$\overline{\tilde{\omega}}^{\alpha} = \Lambda^{\alpha}_{\beta} \tilde{\omega}^{\beta} \tag{120}$$

$$V_{\alpha} = g_{\alpha\beta} V^{\beta} \tag{121}$$

$$V^{\alpha} = g^{\alpha\beta}V_{\beta} \tag{122}$$

$$\phi_{,\gamma} \to \{\frac{\partial \phi}{\partial x^{\gamma}}\}$$
 (123)

### 2.12 Fourier Series

### 2.12.1 The Dirichlet conditions

- The function must be periodic;
- it must be single-valued and continuous, except possibly at a finite number of finite discontinuities over the period;
- it must have only a finite number of maxima and minima within one period;
- the integral over one period of |f(x)| must converge.

If this conditions are met, then the Fourier series of f converge where f is continuous.

### 2.12.2 The Fourier coefficients

$$f(x) = \frac{a_o}{2} + \sum_{r=1}^{\infty} a_r \cos\left(\frac{2\pi rx}{T}\right) + b_r \sin\left(\frac{2\pi rx}{T}\right)$$
 (124)

$$a_r = \frac{2}{T} \int_{x_0}^{x_0 + T} f(x) \cos\left(\frac{2\pi rx}{T}\right) dx$$
 (125)

$$b_r = \frac{2}{T} \int_{x_0}^{x_0 + T} f(x) \sin\left(\frac{2\pi rx}{T}\right) dx$$
 (126)

Note: When there are discontinuities in the period, the Fourier series for the function does not converge on that point, but halfway.

# 2.12.3 Integration and Differentiation of Fourier Series

One can integrate the series of a function to get its integral and the same for the derivative. In the derivative case, f'(x) must satisfy the Dirichlet conditions. If f(x) is a continuous function of x for all x and f(x) is also periodic then the Fourier series that results from differentiating term by term converges to f'(x), provided that f'(x) itself satisfies the Dirichlet conditions.

### 2.12.4 Complex Fourier Series

One can write the Fourier Series for Complex functions in the following way:

$$f(x) = \sum_{r = -\infty}^{\infty} c_r e^{\frac{2\pi}{T}irx} = \sum_{r = -\infty}^{\infty} c_r \exp\left(\frac{2\pi}{T}irx\right)$$
(127)

where

$$c_r = \frac{1}{T} \int_{x_0}^{x_0 + T} f(x) e^{-\frac{2\pi}{T} i r x} dx$$
 (128)

The relationship between  $a_r$ ,  $b_r$  and  $c_r$  is given by:

$$c_r = \frac{1}{2}(a_r - ib_r)$$

$$c_{-r} = \frac{1}{2}(a_r + ib_r)$$
(129)

There is one more regard worth mentioning. If f is real, then  $c_{-r} = \overline{c_r}$ 

### 2.12.5 Parseval's theorem

$$\frac{1}{T} \int_{x_0}^{x_0+T} |f(x)|^2 dx = \sum_{r=-\infty}^{\infty} |c_r|^2$$
 (130)

### 2.13 Fourier Transform

The Fourier transform is a type of integral transformation given by the following:

$$\tilde{f}(\omega) = \mathcal{F}[f(x)](\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$
 (131)

And its inverse:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i\omega x} d\omega$$
 (132)

### 2.13.1 Delta Functions

$$\delta(t) = 0 \forall t \neq 0 \tag{133}$$

$$\int_{\Omega} f(t)\delta(t-a) = f(a) \text{ if } a \in \Omega$$
 (134)

$$\delta(t) = \delta(-t) \tag{135}$$

$$\delta(at) = \frac{1}{|a|}\delta(t) \tag{136}$$

$$t\delta(t) = 0 \tag{137}$$

$$\int_{-\infty}^{\infty} f(t) \frac{\mathrm{d}\delta(t-a)}{\mathrm{d}t} \mathrm{d}t = -\frac{\mathrm{d}f}{\mathrm{d}t}|_{t=a}$$
 (138)

# 2.13.2 Properties of the Fourier Transform

Here are some of the properties of the Fourier Transform:

$$\mathcal{F}[f'(x)](\omega) = i\omega\tilde{f}(\omega) \tag{139}$$

$$\mathcal{F}\left[\int f(t)dt\right](\omega) = \frac{1}{i\omega}\tilde{f}(\omega) + 2\pi c\delta(\omega)$$
 (140)

$$\mathcal{F}[f(at)](\omega) = \frac{1}{a}\tilde{f}(\frac{\omega}{a}) \tag{141}$$

$$\mathcal{F}[f(t+a)](\omega) = e^{ia\omega}\tilde{f}(\omega) \tag{142}$$

$$\mathcal{F}[e^{\alpha t}f(t)] = \omega + i\alpha \tag{143}$$

### 2.14 Convolutions

$$(f * g)(z) = \int_{-\infty}^{\infty} f(x)g(z - x) dx$$
 (144)

This operation is commutative, associative and distributive.

$$\mathcal{F}[f(x)g(x)](\omega) = \frac{1}{\sqrt{2\pi}} (\tilde{f} * \tilde{g})(\omega)$$
 (145)

$$\mathcal{F}[(f * g)(x)](\omega) = \sqrt{2\pi}\tilde{f}(\omega)\tilde{g}(\omega) \tag{146}$$

# 2.15 Correlation Functions

$$(f \otimes g)(z) = \int_{-\infty}^{\infty} \overline{f(x)} g(x+z) dx$$
 (147)

This operation is associative and distributive, but not commutative. In fact,

$$(f \otimes g)(z) = \overline{(g \otimes f)}(-z) \tag{148}$$

$$\mathcal{F}[(f \otimes g)(x)](\omega) = \sqrt{2\pi} \overline{\tilde{f}(\omega)} \tilde{g}(\omega) \tag{149}$$

$$\mathcal{F}[\overline{f(x)}g(x)] = \frac{1}{\sqrt{2\pi}}((\tilde{f} \otimes \tilde{g})(\omega)) \tag{150}$$

### 2.16 Higher Dimensions of Fourier Series

$$\tilde{f}(\mathbf{w}) = \frac{1}{\sqrt{2\pi^n}} \int_{\mathbb{R}^n} f(\mathbf{x}) e^{-i\mathbf{w} \cdot \mathbf{x}} d^n \mathbf{x}$$
 (151)

$$f(\mathbf{x}) = \frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n} \tilde{f}(\mathbf{w}) e^{i\mathbf{w} \cdot \mathbf{x}} d^n \mathbf{w}$$
 (152)

$$\delta(\mathbf{x}) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\mathbf{w}\cdot\mathbf{x}} d^n \mathbf{w}$$
 (153)

# 2.17 Laplace Transform

$$\overline{f}(s) = \mathcal{L}[f(t)](s) = \int_0^\infty f(t)e^{-st}dt$$
 (154)

## 2.17.1 Standard Laplace Transforms

$$\mathcal{L}[c](s) = \frac{c}{s} \tag{155}$$

$$\mathcal{L}[ct^n](s) = \frac{cn!}{s^{n+1}} \tag{156}$$

$$\mathcal{L}[\sin(bt)](s) = \frac{b}{s^2 + b^2} \tag{157}$$

$$\mathcal{L}[\cos(bt)](s) = \frac{s}{s^2 + b^2} \tag{158}$$

$$\mathcal{L}[e^{at}](s) = \frac{1}{s-a} \tag{159}$$

$$\mathcal{L}[t^n e^{at})](s) = \frac{n!}{(s-a)^{n+1}}$$
 (160)

$$\mathcal{L}[\sinh(at)](s) = \frac{a}{s^2 - b^2} \tag{161}$$

$$\mathcal{L}[\cosh(at)](s) = \frac{s}{s^2 - h^2} \tag{162}$$

$$\mathcal{L}[e^{at}\sin(bt)](s) = \frac{b}{(s-a)^2 + b^2}$$
 (163)

$$\mathcal{L}[e^{at}\cos(bt)](s) = \frac{s-a}{(s-a)^2 + b^2}$$
 (164)

$$\mathcal{L}[t^{\frac{1}{2}}](s) = \frac{1}{2} \left(\frac{\pi}{s^3}\right)^{\frac{1}{2}} \tag{165}$$

$$\mathcal{L}[t^{-\frac{1}{2}}](s) = \left(\frac{\pi}{s}\right)^{\frac{1}{2}} \tag{166}$$

$$\mathcal{L}[\delta(t-a)](s) = e^{-sa} \tag{167}$$

$$\mathcal{L}[H(t-a)](s) = e^{-sa}/s \tag{168}$$

The region of convergence is  $\mathbb{R}^+$  for all, except for (159), (160), (161), (162), (163) and (164). For (161) and (162) it is |a|, for the remaining, it is a.

## 2.17.2 Derivatives and Integrals

$$\mathcal{L}\left[\frac{\mathrm{d}^{n} f}{\mathrm{d}t^{n}}\right](s) = s^{n} \overline{f} - s^{n-1} f(0) - s^{n-2} \frac{\mathrm{d}f}{\mathrm{d}t}(0) - \dots - \frac{\mathrm{d}^{n-1} f}{\mathrm{d}t^{n-1}}(0)$$
(169)

$$\mathcal{L}\left[\int_{0}^{t} f(u) du\right](s) = \frac{1}{s} \mathcal{L}[f(u)](s)$$
 (170)

### 2.17.3 Properties of Laplace Transform

$$\mathcal{L}[e^{at}f(t)](s) = \overline{f}(s-a) \tag{171}$$

$$\mathcal{L}[f(at)](s) = \frac{1}{a}\overline{f}(\frac{s}{a}) \tag{172}$$

$$\mathcal{L}[t^n f(t)](s) = (-1)^n \frac{\mathrm{d}^n \overline{f}}{\mathrm{d} s^n}$$
(173)

$$\mathcal{L}\left[\frac{f(t)}{t}\right](s) = \int_{s}^{\infty} \overline{f}(u) du$$
 (174)

# 3 Linear Algebra

# 3.1 Kronecker product

Here are some interesting properties of the Kronecker product

$$(A \otimes B)^T = A^T \otimes B^T \tag{175}$$

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1} \tag{176}$$

$$|A \otimes B| = |A|^m |B|^n \tag{177}$$

$$trace(A \otimes B) = trace(A)trace(B)$$
 (178)

 $A \otimes B$  is orthogonal if A and B are orthogonal

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD) \tag{179}$$

If  $Au = \lambda u$  and  $Bv = \mu v$ , then if  $X = vu^T$ , then  $BXA^T = \lambda \mu X$ . Therefore  $A \otimes B$  and  $B \otimes A$  have the same eigenvalues, and transposed eigenvectors.

$$(A \otimes B) \operatorname{vec}(C) = \operatorname{vec}(BCA^{T}) \tag{180}$$

# 4 Differential Equations

There are many ways one can solve differential equations in practise.

# 4.1 Separation of Variables

Simple to do. Easy to understand.

# 4.2 Exact Equations

$$A(x,y)dx + B(x,y)dy = 0 (181)$$

Just do what you would do if this was the differential of a multi-variable function.

# 4.3 Linear Equations

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \tag{182}$$

To solve this, multiply both sides by the integrating factor  $\mu(x)$ 

$$\mu(x) = \exp\left[\int P(x) \mathrm{d}x\right] \tag{183}$$

Then you can simplify the LHS to a single integral  $(\frac{\mathrm{d}y\mu(x)}{\mathrm{d}x})$ .

# 4.4 Homogeneous Equations

$$\frac{\mathrm{d}y}{\mathrm{d}x} = F(\frac{y}{x})\tag{184}$$

Make the substitution y = vx and solve by the method of separable equations.

## 4.5 Constant Coefficient Equations

$$\sum_{n=0}^{N} a_n \frac{\mathrm{d}^n y}{\mathrm{d}x^n} = F(x) \tag{185}$$

First solve the equation (find the roots)

$$\sum_{n=0}^{N} a_n z^n = 0 (186)$$

The complementary solution is given by

$$y_c = \sum_{i=1}^{m} \left[ e^{\lambda_i x} \sum_{p=0}^{k_i - 1} c_{ip} x^p \right]$$
 (187)

Where m is the number of roots,  $\lambda_i$  are the different roots and  $k_i$  is the multiplicity of the ith root.

To find the particular solution, try:

- If  $F(x) = ae^{rx}$ , the  $y_p = be^{rx}$ .
- If  $F(x) = a_1 \sin(rx) + a_2 \cos(rx)$ , the  $y_p = b_1 \sin(rx) + b_2 \cos(rx)$ .
- If F is a polynomial, then try a polynomial of the same degree.

# 4.6 Non Constant Coeficient Equations

$$a_n(\alpha x + \beta)^n \frac{\mathrm{d}^n y}{\mathrm{d}x^n} + \dots + a_1(\alpha x + \beta) \frac{\mathrm{d}y}{\mathrm{d}x} + a_0 y = f(x)$$
 (188)

Just make the substitution  $\alpha x + \beta = e^t$ . The equation will simplify to a solvable form.

# 4.7 Exact Equations

Imagine we have an equation of the type:

$$a_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + \dots + a_0(x)y = f(x) \tag{189}$$

Then if

$$a_0(x) - D_x a_1(x) + D_x^2 a_2(x) - \dots + (-1)^n D_x^n a_n(x) = 0$$
 (190)

The equation is called exact, which means that we can factor out a derivative, that is, the equation in (189) can be written as

$$D_x[b_{n-1}(x)\frac{\mathrm{d}^{n-1}y}{\mathrm{d}x^{n-1}} + \dots + b_0(x)y] = f(x)$$
 (191)

The integrate both sides to remove the derivative. Repeat the process if possible.

# 4.8 Partically known complemetary function

If we know u(x) is a solution to a differential equation of the type of (189), then we may make the substitution y = u(x)v(x) and the equation might prove to be solvable.

# 4.9 Variation of parameters

# 5 Physics

# 5.1 Center of mass

$$\bar{x} = \frac{1}{M} \int_{\Omega} x \mathrm{d}M \tag{192}$$

Or, more generally:

$$\bar{\vec{r}} = \frac{1}{M} \int_{\Omega} \vec{r} dM \tag{193}$$

## 5.2 Moment of Inertia

$$I = \int_{\Omega} l^2 \mathrm{d}M \tag{194}$$

## 5.3 Newton's Law

$$\vec{F} = m\vec{a} \tag{195}$$

$$||\vec{F_g}|| = \frac{GM_1M_2}{r^2} \tag{196}$$

$$\vec{F_g} = -\frac{GM_1M_2\vec{r}}{||\vec{r}||^3} \tag{197}$$

# 5.4 Quantum

# 5.4.1 Time invariant one dimensional Schrodinger equation

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V\psi = E\psi \tag{198}$$

# 5.5 Maxwell Equations

$$\nabla \cdot E = \rho \tag{199}$$

$$\nabla \times E = -\frac{\partial B}{\partial t} \tag{200}$$

$$\nabla \cdot B = 0 \tag{201}$$

$$c^2 \nabla \times B = j + \frac{\partial E}{\partial t} \tag{202}$$

# 6 Linear Algrebra

# 6.1 Generalized Eigenvectors

Given two matrices S and M (M is positive definite), we define generalized eigenvectors and generalized eigenvalues:

$$Sx = \lambda Mx \tag{203}$$

The eigenvectors are the ones that solve the following problem:

$$Hy = \lambda y$$
 where  $H = M^{-\frac{1}{2}}SM^{-\frac{1}{2}}$  and  $y = M^{\frac{1}{2}}x$  (204)

# 7 Probabilities and Statistics

Any probability function must satisfy the following conditions (205) and (206):

$$P(\Omega) = 1 \tag{205}$$

$$P(A \cup B) = P(A) + P(B)$$
, for  $A \cap B = \{\}$  (206)

Also, here are De Morgan's laws

$$(A \cup B)^C = A^C \cap B^C \tag{207}$$

$$(A \cap B)^C = A^C \cup B^C \tag{208}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{209}$$

Here is the law of total probability:

For disjoint events  $C_1, ..., C_n$ , such that  $C_1 \cup \cdots \cup C_n = \Omega$ 

$$P(A) = P(A|C_1)P(C_1) + \dots + P(A|C_n)P(C_n)$$
 (210)

For disjoint events  $C_1,...,C_n$ , such that  $C_1 \cup \cdots \cup C_n = \Omega$ 

$$P(C_i|A) = \frac{P(A|C_i)P(C_i)}{P(A|C_1)P(C_1) + \dots + P(A|C_n)P(C_n)}$$
(211)

The event A is independent of B if:

$$P(A|B) = P(A) \tag{212}$$

### 7.1 Random variables

The probability mass function of a discrete random variable X is the function:

$$p_X(x) = P(X = x) \tag{213}$$

The distribution function of a random variable X (<u>not</u> necessarily discrete) is the function  $F_X$ :

$$F_X(x) = P(X \le x) \tag{214}$$

Moreover, for discrete random variables:

$$F_X(a) = \sum_{a_i \le a} p_X(a_i) \tag{215}$$

For *continuous random variables*, we have the probability density function  $f_X$ :

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx \tag{216}$$

One can also write the probability distribution function  $F_X$ :

$$F_X(x) = \int_{-\infty}^x f_X(x) \mathrm{d}x \tag{217}$$

From this one can deduce the following proposition:

$$\frac{\mathrm{d}F_X(x)}{\mathrm{d}x} = f_X(x) \tag{218}$$

### 7.1.1 Discrete probability distributions

### The Bernoulli distribution

 $X \hookrightarrow \operatorname{Ber}(p)$ 

For  $p \in [0,1]$ 

$$p_X(1) = p p_X(0) = 1 - p$$
 (219)

# The Binomial distribution

 $X \hookrightarrow \operatorname{Bin}(n,p)$ 

For  $k \in \{1, 2, 3, \dots, n\}$ 

For  $n \in \mathbb{N}$ 

For  $p \in [0, 1]$ 

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 (220)

### The Geometric distribution

 $X \hookrightarrow \text{Geo}(p)$ 

For  $p \in [0, 1]$ 

For  $k \in \mathbb{N}$ 

$$p_X(k) = (1-p)^{k-1}p (221)$$

### The Poisson distribution

 $X \hookrightarrow \operatorname{Pois}(\mu)$ 

For  $\mu > 0$ 

For  $k \in \mathbb{N}_0$ 

 $f_X(k) = \frac{\mu^k}{k!} e^{-\mu}$  (222)

### 7.1.2 Continuous random variables distributions

There are also many continuous random variable distribution. Remember that, for every distribution, we have that

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1 \tag{223}$$

$$f_X(x) \ge 0 \ \forall x \in \mathbb{R} \tag{224}$$

### The Uniform distribution

 $X \hookrightarrow \mathrm{U}(\alpha,\beta)$ 

For  $\alpha < \beta$ 

For  $x \in [\alpha, \beta]$ 

$$f_X(x) = \frac{1}{\beta - \alpha} \tag{225}$$

## The Exponential distribution

 $X \hookrightarrow \operatorname{Exp}(\lambda)$ 

For  $\lambda > 0$ 

For  $x \ge 0$ 

$$f_X(x) = \lambda e^{-\lambda x} \tag{226}$$

## The Pareto distribution

 $X \hookrightarrow \operatorname{Par}(\alpha)$ 

For  $\alpha > 0$ For  $x \ge 1$ 

$$f_X(x) = \frac{\alpha}{r^{\alpha + 1}} \tag{227}$$

The following distribution is one of the most important in probability and statistics.

### The Normal distribution

 $X \hookrightarrow N(\mu, \sigma^2)$ 

For  $\sigma^2 > 0$ 

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$
 (228)

### The Log-Normal distribution

 $X \hookrightarrow LN(\mu, \sigma^2)$ 

For  $\sigma^2 > 0$ 

For  $x \ge 0$ 

$$f_X(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(\ln(x)-\mu)^2}{\sigma^2}}$$
(229)

There is one special case of the normal distribution with  $\mu = 1$  and  $\sigma^2 = 1$ , which is called the *standard normal distribution*:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \tag{230}$$

$$\Phi(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$
 (231)

### The Gamma distribution

 $X \hookrightarrow \operatorname{Gam}(\alpha, \lambda)$ 

For  $\alpha > 0$ 

For  $\lambda > 0$ 

For  $x \ge 0$ 

$$f_X(x) = \frac{\lambda(\lambda x)^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$
 (232)

## 7.2 Quantiles

Let X be a continuous random variable and let p be a number between 0 and 1. The pth quantile or 100pth percentile of the distribution of X is the smallest number q such that

$$F(q) = P(X \le q) = p$$

. The median of a distribution is its 50th percentile.

## 7.3 Mean and variance

For a discrete random variable

$$\langle X \rangle = \sum_{i} a_i p_X(a_i) \tag{233}$$

For a continuous random variable

$$\langle X \rangle = \int_{-\infty}^{\infty} x f_X(x) dx$$
 (234)

Important remark: The mean may not exist

- The mean of a geometric distribution is  $\frac{1}{p}$
- The mean of an exponential distribution is  $\frac{1}{\lambda}$
- The mean of a normal distribution is  $\mu$
- The mean of a poisson distribution is  $\mu$

$$\langle g(X) \rangle = \sum_{i} g(a_i) p_X(a_i)$$
 (235)

$$\langle g(X) \rangle = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
 (236)

$$Var(X) = \langle (X - \langle X \rangle)^2 \rangle = \langle X^2 \rangle - \langle X \rangle^2$$
 (237)

The variance of a normal distribution is  $\sigma^2$ The variance of a poisson distribution is  $\mu$ 

$$\langle rX + t \rangle = r \langle X \rangle + t$$
 (238)

$$Var(rX+t) = r^2 Var(X)$$
 (239)

For two indepenent random variables,

$$\langle XY \rangle = \langle X \rangle \langle Y \rangle$$

# 7.4 Jensen's Inequality

$$g(\langle X \rangle) \le \langle g(X) \rangle$$

# 7.5 Change of Variable Theorem

Suppose X and Y are random variables such that

$$P(X \le x) = P(Y \le h(x)) \tag{242}$$

Then,

$$f_X(x) = f_Y(h(x)) \frac{\mathrm{d}h}{\mathrm{d}x}$$
 (243)

# 7.6 Moment Generating Function

The h-th moment of a function is given by

$$m_k = \left\langle X^k \right\rangle \tag{244}$$

Its moment generation function is given by

$$M_X(t) = \left\langle e^{tX} \right\rangle \tag{245}$$

On top of that, the k-th derivitive at 0 of the moment generating function is equal to the t-th moment

$$\frac{\mathrm{d}^k M_X}{\mathrm{d}t^k}|_{t=0} = m_k \tag{246}$$

There is also an interesting result regarding the moment generatin function: If two distributions have the same moment generating function, then they have the same distribution.

**Note:** This does not necessarly mean that two distributions with the same h-th moments, then they are the same!

### 7.7 Joint distributions

$$p_{XY}(x,y) = P(X = x, Y = y)$$
 (247)

$$F_{XY}(x,y) = P(X < x, Y < y)$$
 (248)

For a continuous random variable, we have the following:

$$P(a_1 \le X \le a_2, b_1 \le X \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{XY}(x, y) dx dy \quad (249)$$

$$f_{XY}(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x,y)$$
 (250)

$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{XY}(x,y) dxdy$$
 (251)

We can also go from joint probability to marginal probability (from  $f_{XY}$  to  $f_X$  or  $f_Y$ ).

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$
 (252)

$$f_X(x) = \sum_i p_{XY}(x, b_i) \tag{253}$$

# 7.8 Independence of random variables

Two random variables are independence iff

$$F_{XY}(a,b) = F_X(a)F_Y(b) \tag{254}$$

One result worth stating is that of the propagation of independence:

(240) Let  $X_1, X_2, ..., X_n$  be independent random variables. For each  $i, let h_i : \mathbb{R} \longrightarrow \mathbb{R}$  be a function and define the random variable  $Y_i = h_i(X_i)$ .

Then  $Y_1, Y_2, \ldots, Y_n$  are also independent

# (241) 7.9 Covariance and Correlation

For random variables X and Y we have:

$$\langle g(X,Y)\rangle = \sum_{i} \sum_{j} g(a_i, b_j) p_{XY}(a_i, b_i)$$
 (255)

$$\langle g(X,Y)\rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)p_{XY}(x,y)\mathrm{d}x\mathrm{d}y$$
 (256)

Also, the average operator is linear, as we have already seen.

$$\langle rX + sY + t \rangle = r \langle X \rangle + s \langle Y \rangle + t$$
 (257)

### 7.9.1 Covariance

$$Cov(X,Y) = \langle XY \rangle - \langle X \rangle \langle Y \rangle \tag{258}$$

Note: If two random variables are independent, then they are not correlated, therefore,  $\mathbf{Cov}(X,Y)=0$ 

$$Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$$
 (259)

$$Cov(rX + s, tY + u) = rtCov(X, Y)$$
(260)

The correlation coefficient can be written as

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}$$
 (261)

The correlation coefficient is independent of units.

# 7.10 Computations with random variables

For more reference on sum, difference, product and quotient of random variables go check out chapter 11 of [?]

## 7.11 Law of Large Numbers

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n} \tag{262}$$

$$\langle \overline{X}_n \rangle = \langle X_i \rangle \tag{263}$$

$$\operatorname{Var}(\overline{X}_n) = \frac{\operatorname{Var}(X_i)}{n} \tag{264}$$

$$P(|Y - \langle Y \rangle| \ge a) \le \frac{1}{a^2} \operatorname{Var}(Y) \tag{265}$$

Here is the law of large numbers:

$$\lim_{n \to \infty} P(|\overline{X}_n - \langle X \rangle| > \epsilon) = 0 \tag{266}$$

# 7.12 Central Limit Theorem

Let  $X_1, \ldots, X_n$  be independent, identical random variables, with mean  $\mu$  and variance  $\sigma^2$ 

$$Y_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i - \mu \tag{267}$$

The distribution of  $Y_n$  converges to the distribution of  $N(0, \sigma^2)$ 

### 7.13 Stochastic Processes

A stochastic process is a collection of random variables indexed by time. They can be discrete or continuous.

- Discrete:  $X_1, X_2, X_3, ...$
- Continuous:  $\{X_t\}_{t\geq 0}$

There are 3 questions one is interested in studying about stochastic processes.

- 1. What are the dependencies in the sequence of values (can I predict the future);
- 2. What is the long term behaviour? (law of large numbers, central limit theorem);
- 3. What are the boundary events (how often will a stock price drop more that 10% for more that 5 days in a row).

## 7.13.1 Simple Random Walk

A simple random walk is a stochastic process. Let  $Y_1, \ldots$  be random variables such that

$$Y_i = \begin{cases} 1(\text{prob } \frac{1}{2}) \\ -1(\text{prob } \frac{1}{2}) \end{cases}$$

For each t,  $X_t = \sum_{i=1}^t Y_i$ . Then  $X_1, \ldots$  is a simple random walk. Properties of a simple random walk:

- $\mathbb{E}[X_k] = 0$
- If  $t_0 \leq \cdots \leq t_k$ , then  $X_{t_{i+1}} X_{t_i}$  are mutually independent.
- For all  $h \ge 1, k \ge 0$ , the distribution of  $X_{t+h} X_k$  is the same as the distribution of  $X_h$

### 7.13.2 Markov Chain

Stochastic process whose effect of the past on the future is summarized only by the current state. A simple random walk is a markov chain.

$$P(X_{t+1} = s | X_0, \dots, X_t) = P(X_{t+1} = s | X_t)$$
 (268)

If all  $X_i$  values are in S, a finite set, then the information about a markov chain can be summarized into a matrix, the transition probability matrix:

$$P_{ij} = P(X_{t+1} = j | X_t = i) (269)$$

One can multiply the transition probability matrix to get the transition probability matrix of 2 steps, 3 steps, and so on ...

The eigenvector of the eigenvalue 1 of the transition probability matrix is called the stationarmy distribution. It is what the distribution of the random process converges to as  $t \to \infty$ . This eigenvector is garrenteed to exist.

$$P\psi = \psi \tag{270}$$

### 7.13.3 Martingales

A stochastic process is a martingale iff

$$\mathbb{E}[X_{t+1}|X_0, \dots, X_t] = X_t \tag{271}$$

There is an interesting theorem that further shows that martingales model far games:

Given a stochastic process, a non-negative integer random variable  $\tau$ , is called a stopping time, if for all  $k \in \mathbb{N}_0, \tau \leq k$  depends only on  $X_1, \ldots, X_k$ .

Now suppose  $X_1,\ldots$  is a martingale and  $\tau$  is a stopping time. Furthermore, there is a constant T such that  $\tau \leq T$ . Then  $\mathbb{E}[X_{\tau}] = X_0$ 

### 7.14 Regression Analysis

$$Y = X\beta + \epsilon \tag{272}$$

Where Y is a vector random variable and so is  $\epsilon$ . The actual data one gets for y is just a realization of the random vector Y. The  $\epsilon$  are the residuals.

### 7.14.1 Ordinary Least Squares

There are a number of assumptions so that ordinary least squares works right. Those are:

- $\bullet$  X has full column rank
- No collinearity between the predictors;

- The residuals are not auto correlated;
- The residuals must be normally distributed;
- The mean of the residuals must be 0;
- The residuals must be independent;
- The residuals must be of constant variance (Make a predicted-value-residuals plot to check this);

Then, the  $\hat{\beta}$  for OLS is given by:

$$\hat{\beta} = (X^T X)^{-1} X^T y \tag{273}$$

Note:  $\beta$  is a random variable, while  $\hat{\beta}$  is just a realization of that random variable.

One can then use  $\beta$  to estimate the expected values and so get the realization of the residuals.

## 7.14.2 Generalized Least Squares

This version of least squares loosens the requirement that residuals cannot be correlated.

- X has full column rank;
- Expected value of the residuals is 0;
- The residuals can be correlated;

We now define

$$Cov(\epsilon) = \sigma^2 \Sigma \tag{274}$$

The  $\hat{\beta}$  is then given by

$$\hat{\beta} = [X^T \Sigma^{-1} X]^{-1} X^T \Sigma^{-1} Y \tag{275}$$

### 7.14.3 More information on this topic

For a boatload more of this, visiti this site [?]

### 7.14.4 Brownian Motion

Here are the defining properties of Brownian Motion:

- $\forall 0 \le s < t : B(t) B(s) \ N(0, t s)$
- If  $[s_i, t_i]$  are not overlapping, then  $B(t_i) B(s_i)$  are independent random variables
- B(0) = 0

Interesting facts about Brownian motion

- 1. Crosses the t-axis infinitely often
- 2. Does not deviate much from  $t = y^2 \Leftrightarrow y = \pm \sqrt{t}$
- 3. Is nowhere differentiable.

For all t > 0 and a > 0

$$\mathbb{P}(M(t) > a) = 2\mathbb{P}(B(t) > a) \tag{276}$$

where  $M(t) = \max_{s:s \le t} B(s)$ 

# 7.15 Itô's Calculus

# 8 Logic

$$\neg(\forall p:q) \iff \exists p:\neg q \tag{277}$$

$$\neg(p \Longrightarrow q) \iff p \land \neg q \tag{278}$$



Figure 1: Identity gate



Figure 2: Identity with NOT gate

# 9 Computing

# 9.1 Classical Logic Gates

# 9.2 Quantum Computing

### 9.2.1 Basics

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \tag{279}$$

$$\langle \psi | \psi \rangle = 1 \tag{280}$$

For quantum gates, we have the following:

$$U^H U = I \tag{281}$$

Identity gate:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{282}$$

Pauli X gate:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{283}$$

Pauli Y gate:

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \tag{284}$$

Pauli Z gate:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \tag{285}$$

Phase S gate:

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \tag{286}$$

T gate:

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix} \tag{287}$$

Hadamard gate:

$$T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \tag{288}$$

### 9.2.2 Multiple Quantum Gates

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 (289)



Figure 3: AND gate

$$A \longrightarrow A + B$$

Figure 4: OR gate



Figure 5: XOR gate



Figure 6: CNOT gate