

Ticarcillin

FIG. 5

COOH

$$\bigcirc -CH - Mezlocillin$$

$$NHCO$$

$$-N SO_2CH_3$$

$$\bigcirc -CH - NHCO$$

$$-N HCO$$

COMPOUND (TRADE NAMES)

$$R_1$$
 R_2

First-Generation Cephalothin (KEFLIN)

 $Cefazolin$ (ANCEF, KEFZOL, others) $N = N$
 $Cefazolin$ (KEFLEX)

 $Cephalexin$ (KEFLEX)

 $Cefadroxil$ (DURICEF, UL TRACEF)

 $Cefamandole$ (MANDOL)

 $Cefaxitin + (MEFOXIN)$
 $Cefaclor$ (Cefaclor (CESCLOR))

 $Cefaclor$ (MEFOXIN)

 $Cefaclor$ (Cefaclor (CESCLOR))

 $Cefaclor$ (CESCLOR)

$$-CH_{2}S$$
 $N-N$
 $N-N$
 $CH_{2}SO = 3$

-CI

$$\begin{array}{c|c}
O & N - \\
H_2NC \\
HOOC
\end{array} = C - S - C - CH_2S - CH_2S$$

Cephem nucleus

COMPOUND (TRADE NAMES)	R ₁	R_2
Second-Generation	CONTINUED	Al Al
Ceforanide (PRECEF)	— сн ₂ — сн ₂ NH ₂	— сн ₂ s
Third-Generation Cefotaxime (CLAFORAN)	H_2N S N OCH_3	—сн ₂ ос ^{€0} сн ₃
Cefpodoxime proxetil** (VANTIN)	H_2N S N OCH_3	—СН ₂ ОСН ₃
Ceftizoxime (CEFTZOX)	$H_2N \downarrow S \downarrow N OCH_3$	—Н
Ceftriaxone (ROCEPHIN)	H_2N S N OCH_3	H_3C_NNOH $-CH_2SNO$
Cefoperazone (CEFOBID)	HO — CH — NHCO	— CH ₂ S N-N CH ₃
	$O \setminus N$ C_2H_5	

FIG. 6B-1

COMPOUND (TRADE NAMES) R_1 R_2 Third-Generation (continued)

Ceftazidime (FORTAZ, others) H_2N S N $OC(CH_3)_2COOH$ Fourth-Generation

Cefepime H_2N S N OCH_3

- + Cefoxitin, a cephamycin, has a -OCH 3 group at position 7 of cephem nucleus.
- $_{+}^{+}$ Cefuroxime axetil is the acetyloxyethyl ester of cefuroxime.
- ++ Loracarbef, a carbacephem, has a carbon instead of sulfur at position 1 of cephem nucleus.
- ** Cefpodoxime proxeul has a $-COOCH(CH_3)OCOOCH(CH_3)_2$ group at position 4 of cephem nucleus.

FIG.6B-2

FIG. 7A

FIG. 8A

Likewise:

Oxacephem—Cephem
Oxacephem—Cepham'
Oxacephem—Penam
Oxacephem—Penem
Oxacephem—Carbopenem
Oxacephem—Carbacephem
Oxacephem—Trinem
Oxacephem—Monobactam
Oxacephem—Monobactam'

Likewise:

Carbacephem — Cephem Carbacephem — Cepham' Carbacephem — Penam Carbacephem — Penem Carbacephem — Carbopenem Carbacephem — Carbocephem Carbacephem — Trinem Carbacephem — Monobactam Carbacephem — Monobactam'

Likewise:

Trinem—Cephem
Trinem—Cepham'
Trinem—Penam
Trinem—Penem
Trinem—Carbopenem
Trinem—Carbocephem
Trinem—Trinem
Trinem—Monobactam
Trinem—Monobactam'

Likewise:

Monobactam—Cephem Monobactam—Cepham' Monobactam—Penam Monobactam—Penem Monobactam—Carbopenem Monobactam—Monobactam Monobactam—Monobactam' Monobactam—Monobactam'

FIG. 8B

FIG. 9

Likewise Glycopeptide Antibiotic Linked to these betalactam Antibiotics:

Oxacephem— Glycopeptide Antibiotic Trinem— Glycopeptide Antibiotic Carbacephem—Glycopeptide Antibiotic Monobactam— Glycopeptide Antibiotic Monobactam— Glycopeptide Antibiotic

FIG.

(0.5 equiv.)

HO

$$OPO(OPh)_2$$
 HS

 $OPO(OPh)_2$ HS

 OPO

Thienamycin (0.5 equiv.)

$$CO_2 - CI - HH_2N$$

Thienamycin (0.5 equiv.)

 $CO_2 - CI - HH_2N$
 $CO_2 - CI - HH_2N$
 $CO_2 - CI - HH_2N$
 $CO_3 - CI - HH_3N$
 $CO_3 - CI$
 CO_3

HO CO2PNB
$$\begin{pmatrix} OPO(OPh)_2 \\ 1. & DIPEA/CH_3CN \\ 2. & H_2/PtO_2 \\ \end{pmatrix}$$

$$\begin{array}{c} & & & & \\ & & &$$

COOH

Cephaclor, commercially available
$$\frac{NH_2}{COOH}$$
 $\frac{HN}{COOH}$ $\frac{COOH}{COOH}$ $\frac{COOH}{COOH}$

Ampicillin, commercially available
$$\frac{NH^2}{CO_2H}$$
 $\frac{HCOH, BH_3}{CO_2H}$ $\frac{NH}{CO_2H}$ $\frac{38}{CO_2H}$ $\frac{38}{CO_2H}$

MeHN

Amoxicillin

HS....
$$C_{MH}^{MH}$$
 OH Boc_{2O} HS.... C_{MBoc}^{NBoc} HO $C_{O_2PNB}^{MH_2}$ HO $C_{$

7G. 21

FIGURE 22