Trabajo Práctico N° 5

Canales para la transmisión de información

Medios de transmisión. Canales de información. Protocolos. Probabilidades asociadas a un canal. Entropías a-priori y a-posteriori. Equivocación de un canal. Información mutua. Propiedades de la información mutua.

- 1. Un canal recibe mensajes construidos con un alfabeto de tres símbolos A = { a, b, c } y genera una salida mediante un alfabeto de dos símbolos B = { 0,1 }. La entrada del canal se caracteriza por la siguiente secuencia: abcacaabbcacaabcacaabcaca, que genera la siguiente secuencia de salida: 01010110011001000100010011. Determinar las probabilidades a priori y la matriz del canal.
- 2. Codificar una función en Python que reciba como parámetros dos cadenas de caracteres que contengan secuencias de entrada y de salida de un canal y retorne la matriz que representa dicho canal.
- 3. Dadas las siguientes secuencias de entrada y sus respectivas salidas, las cuales describen el comportamiento de los canales, calcular las probabilidades a priori y la matriz del canal.

	Canal 1	Canal 2
Entrada	1101011001101010010101010100011111	110101100110101100110101100111110011
Salida	10011111111000111011010101111110110	110021102110022010220121122100112011

- 4. Dado un canal binario con entradas equiprobables y cuyas salidas siempre son iguales a las entradas, obtener las probabilidades de salida, a posteriori y de los eventos simultáneos. Analizar los resultados obtenidos.
- 5. Volver a realizar los cálculos del ejercicio anterior, pero considerando las probabilidades a priori P(0) = 0.2 y P(1) = 0.8. Comparar los resultados obtenidos.
- 6. Considerar un canal que recibe mensajes de un alfabeto A = { a, b, c }, con probabilidades P = { 0.3, 0.3, 0.4 }, y entrega mensajes con un alfabeto B = { 1, 2, 3 }, caracterizado por la siguiente matriz de probabilidades condicionales:

- a. Calcular las probabilidades de los símbolos de salida
- b. Obtener las probabilidades a posteriori del canal
- c. Determinar las probabilidades de los eventos simultáneos

- 7. Realizar funciones en Python que reciban como parámetros: una lista con las probabilidades a priori y la matriz de probabilidades condicionales del canal, y devuelvan:
 - a. Una lista con las probabilidades de los símbolos de salida
 - b. Una matriz con las probabilidades a posteriori del canal
 - c. Una matriz con las probabilidades de los eventos simultáneos
- 8. Obtener las probabilidades de los símbolos de salida de los canales propuestos en los ejercicios 1 y 3. Comparar los resultados obtenidos de dos maneras distintas: a partir de las secuencias de salida y utilizando las probabilidades a priori y la matriz del canal.
- 9. Calcular las probabilidades a posteriori y de los eventos simultáneos de los canales propuestos en los ejercicios 1 y 3.
- 10. Determinar las entropías a priori y a posteriori de los siguientes canales binarios:

Canal	Probabilidades a priori	Matriz del canal
C1	{ 2/5, 3/5 }	3/5 2/5 1/3 2/3
C2	{ 3/4, 1/4 }	2/3 1/3 1/10 9/10

- 11. Desarrollar una función en Python que reciba como parámetros: una lista con las probabilidades a priori y la matriz de probabilidades condicionales del canal, y retorne una lista con las entropías a posteriori.
- 12. Obtener las entropías a priori y a posteriori de los canales de los ejercicios 1, 3 y 6.
- 13. Calcular las entropías a priori y a posteriori de los siguientes canales:

Canal	Probabilidades a priori	Matriz del canal
C1	{ 0.14, 0.52, 0.34 }	0.50 0.30 0.20 0.00 0.40 0.60 0.20 0.80 0.00
C2	{ 0.25, 0.25, 0.50 }	0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.50 0.50 0.00 0.50 0.00
С3	{ 0.12, 0.24, 0.14, 0.50 }	0.25 0.15 0.30 0.30 0.23 0.27 0.25 0.25 0.10 0.40 0.25 0.25 0.34 0.26 0.20 0.20

14. Dados los siguientes canales:

Canal	Probabilidades a priori	Matriz del canal
C1	{ 0.70, 0.30 }	0.7 0.3 0.4 0.6
C2	{ 0.50, 0.50 }	0.3 0.3 0.4 0.3 0.3 0.4
C3	{ 0.25, 0.50, 0.25 }	1.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 1.0
C4	{ 0.25, 0.25, 0.25, 0.25 }	1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

- a. Determinar la entropía a priori y la de la salida
- b. Obtener la equivocación o ruido y la pérdida
- c. Calcular la entropía afín a través de sus relaciones
- d. Analizar los resultados obtenidos en cada caso
- e. Verificar la reciprocidad de la información mutua
- 15. Implementar funciones en Python que reciban como parámetros: una lista con las probabilidades a priori y la matriz de probabilidades condicionales del canal, y calculen por definición (es decir, a partir de las probabilidades, no de sus relaciones):
 - a. La equivocación o ruido
 - b. La pérdida
 - c. La entropía afín
 - d. La información mutua
- 16. Para los canales de los ejercicios 13 y 14, calcular los siguientes valores y verificar sus relaciones:
 - a. Entropía a priori
 - b. Entropía de la salida
 - c. Equivocación o ruido
 - d. Pérdida
 - e. Entropía afín
 - f. Información mutua

Resultados:

1. P(a) = 13/26

P(b) = 5/26

P(c) = 8/26

 0
 1

 a
 7/13
 6/13

 b
 3/5
 2/5

 c
 5/8
 3/8

3.

Canal 1

$$P(0) = 0.44$$

$$P(1) = 0.56$$

Canal 2

P(0) = 0.39

$$P(1) = 0.61$$

	0	1	2
0	0.43	0.07	0.50
1	0.23	0.64	0.14

4.

$$P(0) = 0.5$$

$$P(1) = 0.5$$

P(ai/bj)	0	1
0	1.0	0.0
1	0.0	1.0

5.
$$P(0) = 0.2$$

$$P(1) = 0.8$$

P(ai/bj)	0	1
0	1.0	0.0
1	0.0	1.0

P(ai, bj)	0	1
0	0.2	0.0
1	0.0	0.8

6. P(1) = 0.33

$$P(2) = 0.34$$

$$P(3) = 0.33$$

P(ai/bj)	1	2	3
а	0.36	0.35	0.18
b	0.27	0.18	0.45
С	0.36	0.47	0.36

P(ai, bj)	1	2	3
а	0.12	0.12	0.06
b	0.09	0.06	0.15
С	0.12	0.16	0.12

8. P(0) = 0.5769P(0) = 0.3235 P(1) = 0.4231

()

P(1) = 0.6765

$$P(0) = 0.3056$$

P(1) = 0.4167

P(2) = 0.2778

9.

P(ai/bj)	0	1
а	0.4667	0.5455
b	0.2000	0.1818
С	0.3333	0.2727

P(ai, bj)01a0.26920.2308b0.11540.0769c0.19230.1154

	P(ai/bj) 0 1	P(ai, bj) 0 1
	0 0.5455 0.3913	0 0.1765 0.2647
	1 0.4545 0.6087	1 0.1471 0.4118
	P(ai/bj) 0 1	P(ai, bj) 0 1
		000 0 0.1667 0.0278 0.1944
		000 1 0.1389 0.3889 0.0833
10.		Canal 1
	H(A) = 0.9710 bits H	(A/b1) = 0.9940 bits $H(A/b2) = 0.8631 bits$
		Canal 2
	H(A) = 0.8113 bits	(A/b1) = 0.2762 bits $H(A/b2) = 0.9980 bits$
12.	H(A) = 1.4806 bits	(A/0) = 1.5058 bits $H(A/1) = 1.4354 bits$
	H(A) = 0.9900 bits	(A/0) = 0.9940 bits $H(A/1) = 0.9656 bits$
	H(A) = 0.9641 bits $H(A/0) = 0.9981$	940 bits $H(A/1) = 0.3534$ bits $H(A/2) = 0.8813$ bits
	$H(A) = 1.5710 \text{ bits} \qquad H(A/1) = 1.5710 \text{ bits}$	726 bits $H(A/2) = 1.4837$ bits $H(A/3) = 1.4949$ bits
13.		Canal 1
		H(A) = 1.4169 bits
	H(A/b1) = 0.9998 bits	(A/b2) = 1.3115 bits $H(A/b3) = 0.4104 bits$
		Canal 2
		H(A) = 1.5000 bits
	H(A/b1) = 1.2516 bits	H(A/b2) = 1.00000 bits
	H(A/b3) = 0.7219 bits	H(A/b4) = 0.9183 bits
		Canal 3
		H(A) = 1.7583 bits
	H(A/b1) = 1.4621 bits	H(A/b2) = 1.7343 bits
	H(A/b3) = 1.8585 bits	H(A/b4) = 1.8585 bits
14.		Canal 1
	a. $H(A) = 0.8813$ bits	, ,
	b. $H(A/B) = 0.8247$ bi	, ,
	C.	H(A, B) = 1.7895 bits
	e. I(/	A, B) = I(B, A) = 0.0566 bits
	2 H(A) = 1,0000 bits	Canal 2
	a. $H(A) = 1.0000 \text{ bits}$ b. $H(A/B) = 1.0000 \text{ bits}$	• •
	C.	H(A, B) = 2.5710 bits
		A, B = I(B, A) = 0.0000 bits
	C. 1(/	$A_{ij} = A_{ij} = 0.0000$ bits

H(B) = 2.0000 bits

Canal 3

a.
$$H(A) = 1.5000 \text{ bits}$$

b.
$$H(A/B) = 0.0000 \text{ bits}$$
 $H(B/A) = 0.5000 \text{ bits}$

c.
$$H(A, B) = 2.0000 \text{ bits}$$

e.
$$I(A, B) = I(B, A) = 1.5000 \text{ bits}$$

Canal 4

a.
$$H(A) = 2.0000 \text{ bits}$$
 $H(B) = 1.5000 \text{ bits}$

b.
$$H(A/B) = 0.5000 \text{ bits}$$
 $H(B/A) = 0.0000 \text{ bits}$

c.
$$H(A, B) = 2.0000 \text{ bits}$$

e.
$$I(A, B) = I(B, A) = 1.5000 \text{ bits}$$

16. **Canal 1**

b.
$$H(B) = 1.4130$$
 bits

c.
$$H(A/B) = 0.9621$$
 bits

d.
$$H(B/A) = 0.9583$$
 bits

e.
$$H(A, B) = 2.3752$$
 bits

f.
$$I(A, B) = 0.4547$$
 bits

Canal 2

a.
$$H(A) = 1.5000$$
 bits

b.
$$H(B) = 1.8829$$
 bits

c.
$$H(A/B) = 0.9921$$
 bits

d.
$$H(B/A) = 1.3750$$
 bits

e.
$$H(A, B) = 2.8750$$
 bits

f.
$$I(A, B) = 0.5079$$
 bits

Canal 3

a.
$$H(A) = 1.7583$$
 bits

b.
$$H(B) = 1.9958$$
 bits

c.
$$H(A/B) = 1.7184$$
 bits

d.
$$H(B/A) = 1.9559$$
 bits

e.
$$H(A, B) = 3.7142$$
 bits

f.
$$I(A, B) = 0.0399$$
 bits