Lecture 3: September 11

Project Planning: Discovery & Research

Agenda

- Lecture: Discovery & Research
- Assignment: Draft Project Proposal
- Tech Labs

Agenda

- Lecture: Discovery & Research
- Assignment: Draft Project Proposal
- Tech Labs

Product Development Lifecycle

Discovery Phase

DISCOVERY

1. Ideation 2. Product Defined 3. Prototyping 4. Validate & Test 5. Launch Explore idea Define Use Cases Build iterative and Ensuring the Feature complete generation demo-able pieces of product works Estimate LOE and Begin GTM the project/solution Brainstorm with levelopment plan Validating in eyes of execution team steps and tasks) users Fxit Criteria: xit Criteria: Fxit Criteria: Fxit Criteria: Fxit Criteria: Problem roduct Alpha and Beta **Product quality is** Product is Statement Defined demonstrated launched to users equirements and releases roject plan made

DEVELOPMENT

LAUNCH

Industry approaches to product discovery

Top-down

Leadership sets Objectives or "Top Projects" and team executes on solutions to those objectives / project ideas

Pros: Often aligns with broader business goals, more strategic

Cons: Can be disconnected from on-the-ground realities or actual user needs

Bottoms-up

Product team pitches roadmaps to leadership and priorities are set based on those ideas

Pros: Tends to be more user-centric, can uncover unique opportunities, often more agile

Cons: Risks being too narrow or not aligning with broader strategy

These approaches aren't necessarily exclusive

Key Questions to Begin Discovery

Problem-centric Questions

User-centric Questions

Market-centric Questions

Problem-centric Questions

Questions

What problem are we solving? Who faces this problem?

Top-down:

Senior leadership or stakeholders identify a broad issue or market opportunity, and teams work to define the specifics. Often relies on market trends or competitive pressures.

Bottom-up:

Teams or individuals identify problems through their own experiences or insights. Can be more grassroots, originating from customer feedback or frontline observations.

User-centric Questions

Questions

Who are our users?
What are their needs, habits, and pain points?

Top-down:

Use broad market segments or personas defined by corporate strategy or marketing insights.

Bottom-up:

Gathered from direct user engagement (user interviews, feedback, ethnographic research). Often more granular and specific.

Market-centric Questions

Questions

What are the existing solutions? What is the market opportunity?

Top-down:

Driven by market research reports, competitive analyses, and larger industry trends. May involve third-party consultants / research firms.

Bottom-up:

Grounded in direct observations of user behavior, competitor product analysis, and grassroots market feedback.

September Goal

What are you building and why?

Answer the question:

Discovery and Research Methods

If we have a product, what can our product already tell us about the problems?

If we don't have a product, how can we learn more about the problems?

Goal: ensure product decisions are user-centric, data-driven, and aligned with market needs

Research Methods:

- Qualitative approaches: focus on the why (user behavior)
- Quantitative approaches: focus on the what (patterns in data)

Qualitative vs Quantitative approaches

Qualitative

- Deals with descriptions & interpretations
- Offers insights into user behavior & motivations
- Understand the "why"

Quantitative

- Deals with measurable data to formulate facts & uncover patterns
- Provides broad, measurable insights
- Understand the "what"

Discovery and Research Methods

Qualitative Tests

- Usability Testing
- User Interviews
- Conferences, Social Events
- Competitive Research

Quantitative Research

- User surveys
- User billing, segmentation data
- Product data
- A/B Testing

Considerations when choosing research methods:

- Market size, Customer population size
- Type of product
- Cost

Research tradeoffs by customer

B₂B

- Small customer pool
- Intimate convos
- Higher value per customer

B₂C

- Large customer pool
- More quantitative methods used
- Lower value per customer

Research

More explicit user groups

B2B2C, B2G, and more...

Role: UX Researcher

Who? Roles and Responsibilities?

- Uncovers user behaviors, needs and motivations to make products, services and websites more intuitive and enjoyable for users
- Uses qualitative and quantitative methods, they conduct comprehensive research
- Share the insights from research with the UX designers
- Works with Product Managers, Designers, and Engineers

Role: UX Designer

Who? Roles and Responsibilities?

- Builds out UX ideas, prototypes, and designs based on the product's problem to be solved and success criteria
- Collaborates with Product team in order to enable engineers to build technical solution
- Works with Product Managers, Engineers, and other project/product team members

Role: Data Scientist / Analyst

Who? Roles and Responsibilities?

- Find patterns and trends in datasets to uncover insights
- Create algorithms and data models to forecast outcomes
- Deploy data tools
- Share insights with org and team
- *Scientist*: Works to create data vision and strategy for organizations
- Analyst: Usually works with a team to help uncover findings based on team's needs

Agenda

- Lecture: Discovery & Research
- Assignment: Draft Project Proposal
- Tech Labs

Draft Project proposal (due 9/15)

- Team submission
- 3 slides minimum
 - Overview of the project: what are you building, and why?
 - Algorithmic challenges
 - Technical challenges/technologies used
- No need for diagrams/images, slides are just a way to structure your thoughts
- Submit through blackboard

Agenda

- Lecture: Discovery & Research
- Assignment: Draft Project Proposal
- Tech Labs

Tech Labs - Requirements

- 1. You can work on these labs together, but each student must submit their own code
- 2. Each team must complete at least 2 different tutorials (not everyone can work on the same thing)
- 3. You can choose one of the suggested topics, or choose your own

Tech Labs - Topics

- 1. Backends:
 - a. Python backend web app (django, flask, fastapi)
 - b. Node.js / Express.js
- 2. Frontends:
 - a. React
 - b. iOS
 - c. Android
- 3. ML
 - a. Google Colab
 - b. Pytorch
 - c. sklearn
- 4. IoT, Raspberry Pi, Arduino

Tech Labs - Python Web Apps

Common python frameworks for creating backends

1. Django

- Full-featured all-in-one web framework. Includes ORM, authentication, admin UI, etc
- Suitable for complex web applications, but comes with a steep learning curve

2. Flask

- Lightweight library good for rapid development
- Lacks a ton of built-in features, relies on additional extension libraries

3. FastAPI

- Modern, asynchronous python framework good for rapid prototyping
- Relies on type annotations for I/O interface, self-documenting
- Relatively new, might lack mature solutions

Tech Labs - Python Web Apps

Choose a framework and complete at least the first tutorial

- 1. Django
 - https://docs.djangoproject.com/en/5.0/intro/tutorial01/ (parts 1-4)
 - https://code.visualstudio.com/docs/python/tutorial-django
- 2. Flask
 - https://flask.palletsprojects.com/en/3.0.x/tutorial/
 - https://code.visualstudio.com/docs/python/tutorial-flask
- 3. FastAPI
 - https://fastapi.tiangolo.com/tutorial/ (basic & advanced tutorial)
 - https://www.tutorialspoint.com/fastapi/index.htm
 - https://code.visualstudio.com/docs/python/tutorial-fastapi

Tech Labs - Node.js / Express.js

If you're familiar with javascript, you can write your backend in javascript as well

Node.js: javascript runtime allowing developers to run javascript server-side

Express.js: a minimal, flexible web app framework for Node.js

Choose one of the following (do both if you have time)

- https://codexam.vercel.app/docs/project/xt/xt1
- https://codexam.vercel.app/docs/project/mernchat (fullstack + db + react)

Tech Labs - Front Ends

- **React**: common front end for web-apps, written in javascript

- **iOS**: mobile operating system in the Apple ecosystem. Defines a framework for developing mobile apps, written in Swift. Used for frontend, can also be used for backend.

- **Android**: mobile operating system from Google. Defines a framework for developing mobile apps. Used for frontend, can also be used for backend.

Tech Labs - Front Ends

- **React**: (choose one, do both if you have time)
 - https://react.dev/learn/tutorial-tic-tac-toe
 - https://www.freecodecamp.org/news/react-tutorial-build-a-project/
 - https://codexam.vercel.app/docs/project/mernchat (fullstack + db + react)
- iOS: (complete the first, get as far as you can in the second)
 - https://www.swift.org/getting-started/swiftui/ (focused on swift ui)
 - https://developer.apple.com/tutorials/app-dev-training (thorough but very long, won't finish)
- Android:
 - https://developer.android.com/get-started/overview

Tech Labs - ML

Complete the intro to Google Colab tutorial. Then choose at least one of the pytorch tutorials OR the sklearn tutorials. Export the notebook and upload to github.

- Google Colab: web-based jupyter notebook that provides free access to gpu compute
 - https://colab.research.google.com/# (intro to colab)
- Sklearn: library providing non-deep learning ml algorithms + training utilities
 - https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.02-Introducing-Scikit-Learn.ipynb
- PyTorch: library for deep learning commonly used in industry
 - https://pytorch.org/tutorials/beginner/basics/intro.html
 - https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
 - https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/blob/master/docs/tutorial_notebooks/tutorial_notebooks/blob/master/docs/tutorial_notebooks/blob/ma
- Datascience handbook: useful resource on ml & datascience as a whole
 - https://github.com/jakevdp/PythonDataScienceHandbook/tree/master

Tech Labs - IoT / Raspberry Pi / Arduino / etc

- Any tutorials with a hardware component. Bring your own hardware and we're happy to help!
 - Arduino: https://docs.arduino.cc/built-in-examples/
 - Raspberry Pi: https://tutorials-raspberrypi.com/
- ROS: robotic operating system used as part of the RTX projects
 - https://www.youtube.com/watch?v=979IZWOXC_0&list=PL8MgID9MCju0GMQDTWzYmfiU3w
 Y_ZdjI5
 - https://www.youtube.com/playlist?list=PLy9nLDKxDN683GqAiJ4IVLquYBod_2oA6

For Next Week

- [Individual] push progress from tech lab to github 9/11
- [Individual] fill out weekly status update
- [Team] Submit draft project proposal 9/15 (blackboard)
- [**Team**] Schedule first mentor meeting next week

Tech Lab Submission

- Join Github Assignment to create repo: https://classroom.github.com/a/PnF2mA90
- 2. Push all code from tech lab to main branch before end of lab.
 - a. If you are doing an ML tutorial with google colab, export the notebook and copy it into your repo.
- 3. Add a README.md explaining which tutorial(s) you chose. If you found your own tutorials, link out to them & add a description of what they were.

