MULTIPLICITY OF P-PARTITION GENERATING FUNCTION

TUNG PHAN

Theorem 1. Removing/adding edges to labeled poset.

- 1. Suppose (Q, τ) is obtained from (P, ω) by deleting edges. If (P, ω) has multiplicity, so does (Q, τ) .
- 2. Suppose (P, ω) is obtained from (Q, τ) by adding more edges. If (Q, τ) is multiplicity-free, so is (P, ω) .

Proof.

- 1. Let (Q, τ) inherit its labelling from (P, ω) . Thus, every linear extension of (P, ω) is also a linear extension of (Q, τ) . Hence, if (P, ω) has multiplicity (at least two linear extensions with the same F-function), (Q, τ) will also have such linear extensions, and thus has multiplicity.
- 2. Let (P,ω) inherit its labelling from (Q,τ) . Thus, the set of linear extension of (P,ω) is a subset of the set of linear extensions of (Q,τ) . If (Q,τ) is mult-free (having no two linear extensions that share the same F-function), then (P,ω) will also have no two linear extensions that share the same F-function, and thus is also mult-free.

Figure 1. Example of deleting edges.

Theorem 2. Involution

We consider some natural involutions we can perform on a labeled poset (P, ω) . First, we can switch strict and weak edges, denoting the result (P, ω) . Secondly, we can rotate the labeled poset 180°, preserving strictness and weakness of edges; we denote the resulting labeled poset $(P, \omega)^*$.

The involutions of (P, ω) will have the same multiplicity-ness as that of (P, ω) .

Theorem 3. Incomparable Elements Rule

Suppose P contains a, b with a imcomparable to b (a||b).

In a linear extension of P either a comes before b or b comes before a. If a comes before b then we draw an edge from a upto b and vice versa.

Then the set of linear extensions of P equals the (disjoint) union of these sets of linear extensions from each of these 2 cases.

TUNG PHAN

2

FIGURE 2. The bar and star involutions.

Let A, B, C be posets. We write A = B + C when B and C are the two cases generated from a pair of incomparable elements in A.

Corollary 3.1. If A is mult-free, then so are B and C.

Corollary 3.2. If B or C is not mult-free, then neiher is A.

Corollary 3.3. If B and C are mult-free, A can be either mult-free or not mult-free.

Not Mult-free Mult-free Mult-free

FIGURE 3. Example of incomparable elements rule.

Theorem 4. (On page I1) Consider (P, ω) . Suppose P has maximal element p such that $\omega(p)$ satisfies either

- (i) $\omega(p) < \omega(q)$ for all maximal elements of $(P p, \omega)$
- (ii) $\omega(p) > \omega(q)$ for all maximal elements of $(P p, \omega)$

Then (P, ω) has multiplicity if $(P - p, \omega)$ does.

Theorem 5. (Extending Theorem from I1, using idea of Bessenrodt and Willigenburg)

If $(P-p,\omega)$ has multiplicity, so does (P,ω) with any other elements added, as long as none of these elements are below some elements of P.

Implication: As long as there exist 2 linear extensions that have the same F-function and have "common" last element (vice versa, first element). We can stick any other elements to it and we will always have a not mult-free poset.

Theorem 6. False Theorem

Suppose (P, ω) contains (Q, τ) as a convex subposet. If (Q, τ) has multiplicity, then so does (P, ω) .

Implication of theorem: False

If poset P contains a 3-element antichain, then P has multiplicity.

Counter-example:

FIGURE 4. Mult-free labeled poset with a 3-element antichain.