

Objectives

- To describe the benefits of a virtual memory system
- To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames
- To discuss the principle of the working-set model
- To examine the relationship between shared memory and memory-mapped files
- To explore how kernel memory is managed

Background

- Code needs to be in memory to execute, but entire program rarely used
 - Error code, unusual routines, large data structures
- Entire program code not needed at same time
- Consider ability to execute partially-loaded program
 - Program no longer constrained by limits of physical memory
 - Each program takes less memory while running -> more programs run at the same time
 - Increased CPU utilization and throughput with no increase in response time or turnaround time
 - Less I/O needed to load or swap programs into memory -> each user program runs faster

Background (Cont.)

- Virtual memory separation of user logical memory from physical memory
 - Only part of the program needs to be in memory for execution
 - Logical address space can therefore be much larger than physical address space
 - Allows address spaces to be shared by several processes
 - Allows for more efficient process creation
 - More programs running concurrently
 - Less I/O needed to load or swap processes

Background (Cont.)

- Virtual address space logical view of how process is stored in memory
 - Usually start at address 0, contiguous addresses until end of space
 - Meanwhile, physical memory organized in page frames
 - MMU must map logical to physical
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Virtual Memory That is Larger Than Physical Memory

Virtual-address Space

- Usually design logical address space for stack to start at Max logical address and grow "down" while heap grows "up"
 - Maximizes address space use
 - Unused address space between the two is hole
 - No physical memory needed until heap or stack grows to a given new page
- Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc
- System libraries shared via mapping into virtual address space
- Shared memory by mapping pages read-write into virtual address space
- Pages can be shared during fork(), speeding process creation

Shared Library Using Virtual Memory

Demand Paging

- Could bring entire process into memory at load time
- Or bring a page into memory only when it is needed
 - Less I/O needed, no unnecessary I/O
 - Less memory needed
 - Faster response
 - More users
- Similar to paging system with swapping (diagram on right)
- Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory
- Lazy swapper never swaps a page into memory unless page will be needed
 - Swapper that deals with pages is a pager

Basic Concepts

- With swapping, pager guesses which pages will be used before swapping out again
- Instead, pager brings in only those pages into memory
- How to determine that set of pages?
 - Need new MMU functionality to implement demand paging
- If pages needed are already memory resident
 - No difference from non demand-paging
- If page needed and not memory resident
 - Need to detect and load the page into memory from storage
 - Without changing program behavior
 - Without programmer needing to change code

Valid-Invalid Bit

- With each page table entry a valid—invalid bit is associated
 (∨ ⇒ in-memory memory resident, i ⇒ not-in-memory)
- Initially valid—invalid bit is set to i on all entries
- Example of a page table snapshot:

• During MMU address translation, if valid–invalid bit in page table entry is i ⇒ page fault

Page Table When Some Pages Are Not in Main Memory

Page Fault

• If there is a reference to a page, first reference to that page will trap to operating system:

page fault

- 1. Operating system looks at another table to decide:
 - Invalid reference ⇒ abort
 - Just not in memory
- 2. Find free frame
- 3. Swap page into frame via scheduled disk operation
- 4.Reset tables to indicate page now in memory Set validation bit = **v**
- 5. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Aspects of Demand Paging

- Extreme case start process with *no* pages in memory
 - OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault
 - And for every other process pages on first access
 - Pure demand paging
- Actually, a given instruction could access multiple pages -> multiple page faults
 - Consider fetch and decode of instruction which adds 2 numbers from memory and stores result back to memory
 - Pain decreased because of locality of reference
- Hardware support needed for demand paging
 - Page table with valid / invalid bit
 - Secondary memory (swap device with swap space)
 - Instruction restart

Instruction Restart

- Consider an instruction that could access several different locations
 - block move

- auto increment/decrement location
- Restart the whole operation?
 - What if source and destination overlap?

Demand Paging Optimizations

- Swap space I/O faster than file system I/O even if on the same device
 - Swap allocated in larger chunks, less management needed than file system
- Copy entire process image to swap space at process load time
 - Then page in and out of swap space
 - Used in older BSD Unix
- Demand page in from program binary on disk, but discard rather than paging out when freeing frame
 - Used in Solaris and current BSD
 - Still need to write to swap space
 - Pages not associated with a file (like stack and heap) anonymous memory
 - Pages modified in memory but not yet written back to the file system
- Mobile systems
 - Typically don't support swapping
 - Instead, demand page from file system and reclaim read-only pages (such as code)

What Happens if There is no Free Frame?

- Used up by process pages
- Also in demand from the kernel, I/O buffers, etc.
- How much to allocate to each?
- Page replacement find some page in memory, but not really in use, page it out
 - Algorithm terminate? swap out? replace the page?
 - Performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Page Replacement

- Prevent over-allocation of memory by modifying page-fault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory large virtual memory can be provided on a smaller physical memory

Need For Page Replacement

Basic Page Replacement

- 1. Find the location of the desired page on disk
- Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a victim frame
 - Write victim frame to disk if dirty
- 3. Bring the desired page into the (newly) free frame; update the page and frame tables
- 4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

Page Replacement

Page and Frame Replacement Algorithms

- Frame-allocation algorithm determines
 - How many frames to give each process
 - Which frames to replace
- Page-replacement algorithm
 - Want lowest page-fault rate on both first access and re-access
- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
 - String is just page numbers, not full addresses
 - Repeated access to the same page does not cause a page fault
 - Results depend on number of frames available
- In all our examples, the reference string of referenced page numbers is

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm

- Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
- 3 frames (3 pages can be in memory at a time per process)

15 page faults

- Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 - Adding more frames can cause more page faults!
 - Belady's Anomaly
- How to track ages of pages?
 - Just use a FIFO queue

FIFO Illustrating Belady's Anomaly

Optimal Algorithm

- Replace page that will not be used for longest period of time
 - 9 is optimal for the example
- How do you know this?
 - · Can't read the future
- Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

- Use past knowledge rather than future
- Replace page that has not been used in the most amount of time
- Associate time of last use with each page

- 12 faults better than FIFO but worse than OPT
- Generally good algorithm and frequently used
- But how to implement?

LRU Algorithm (Cont.)

- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to find smallest value
 - Search through table needed
- Stack implementation
 - Keep a stack of page numbers in a double link form:
 - Page referenced:
 - move it to the top
 - requires 6 pointers to be changed
 - But each update more expensive
 - No search for replacement
- LRU and OPT are cases of stack algorithms that don't have Belady's Anomaly

Use Of A Stack to Record Most Recent Page References

reference string 4 stack stack before after b a

LRU Approximation Algorithms

- LRU needs special hardware and still slow
- Reference bit
 - With each page associate a bit, initially = 0
 - When page is referenced bit set to 1
 - Replace any with reference bit = 0 (if one exists)
 - We do not know the order, however
- Second-chance algorithm
 - Generally FIFO, plus hardware-provided reference bit
 - Clock replacement
 - If page to be replaced has
 - Reference bit = 0 -> replace it
 - reference bit = 1 then:
 - set reference bit 0, leave page in memory
 - replace next page, subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Enhanced Second-Chance Algorithm

- Improve algorithm by using reference bit and modify bit (if available) in concert
- Take ordered pair (reference, modify)
- 1.(0, 0) neither recently used not modified best page to replace
- 2.(0, 1) not recently used but modified not quite as good, must write out before replacement
- 3.(1, 0) recently used but clean probably will be used again soon
- 4.(1, 1) recently used and modified probably will be used again soon and need to write out before replacement
- When page replacement called for, use the clock scheme but use the four classes replace page in lowest nonempty class
 - Might need to search circular queue several times

Counting Algorithms

- Keep a counter of the number of references that have been made to each page
 - Not common
- Lease Frequently Used (LFU) Algorithm: replaces page with smallest count
- Most Frequently Used (MFU) Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used

Thrashing

- If a process does not have "enough" pages, the page-fault rate is very high
 - Page fault to get page
 - Replace existing frame
 - But quickly need replaced frame back
 - This leads to:
 - Low CPU utilization
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - Another process added to the system
- Thrashing = a process is busy swapping pages in and out

Thrashing (Cont.)

Demand Paging and Thrashing

Why does demand paging work?

Locality model

- Process migrates from one locality to another
- Localities may overlap
- Why does thrashing occur?
 - Σ size of locality > total memory size
 - Limit effects by using local or priority page replacement

Working-Set Model

- Δ = working-set window = a fixed number of page references Example: 10,000 instructions
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent Δ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \Sigma WSS_i \equiv \text{total demand frames}$
 - Approximation of locality
- if $D > m \Rightarrow$ Thrashing
- Policy if *D* > m, then suspend or swap out one of the processes page reference table

Keeping Track of the Working Set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts copy and sets the values of all reference bits to 0
 - If one of the bits in memory = $1 \Rightarrow$ page in working set
- Why is this not completely accurate?
- Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency

- More direct approach than WSS
- Establish "acceptable" page-fault frequency (PFF) rate and use local replacement policy
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame

Working Sets and Page Fault Rates

- Direct relationship between working set of a process and its page-fault rate
- Working set changes over time
- Peaks and valleys over time

Other Issues – Program Structure

- Program structure
 - int[128,128] data;
 - Each row is stored in one page
 - Program 1

```
for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)
data[i,j] = 0;
```

 $128 \times 128 = 16,384$ page faults

• Program 2

```
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)

data[i,j] = 0;
```

128 page faults

