Topic 3.3 Public key cryptography – Diffie–Hellman key exchange

Douglas Stebila CO 487/687: Applied Cryptography Fall 2024

Map of cryptographic primitives

Key establishment problem

- Recall that in symmetric-key cryptography, two parties need to establish a shared secret key.
- Establishing shared secret keys is a hard problem.
- · Possible solutions:
 - 1. Use *public-key cryptography*, which does not require shared secret keys.
 - 2. Use a *key-exchange protocol*, which is a protocol specifically designed to establish shared secret keys from scratch.

Outline

Diffie-Hellman key exchange

Elgamal encryption: Public key encryption built from Diffie-Hellman

Diffie-Hellman key exchange

W. Diffie and M. Hellman, "New directions in cryptography," IEEE Transactions on Information Theory **22** (6), pp. 644–654, 1976.

This article contains several new ideas, any one of which would have been a major breakthrough:

- · Formulates the definition of public-key cryptography
- Formulates the definition of digital signatures
- · Describes a practical key-exchange protocol

Mathematical notation

- $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$
- $\cdot \mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n : \gcd(x, n) = 1 \}$
- Equivalently, $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : x^{-1} \text{ exists}\}$
- · Examples:
 - $\mathbb{Z}_{2}^{*} = \{1\}$
 - $\mathbb{Z}_3^* = \{1, 2\}$
 - $\mathbb{Z}_{4}^{*} = \{1, 3\}$
 - $\mathbb{Z}_5^* = \{1, 2, 3, 4\}$
 - $\mathbb{Z}_{c}^{*} = \{1, 5\}$
- When n = p is prime, $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$

Note that \mathbb{Z}_n^* is **closed under multiplication**:

If $x \in \mathbb{Z}_n^*$ and $y \in \mathbb{Z}_n^*$, then $xy \in \mathbb{Z}_n^*$

Order and generators

Definition

The order of an element $x \in \mathbb{Z}_n^*$ is defined to be the smallest positive integer t such that $x^t = 1$ in \mathbb{Z}_n^* .

Definition

An element g of \mathbb{Z}_n^* is defined to be a generator of \mathbb{Z}_n^* if every y in \mathbb{Z}_n^* can be written as $y = g^x$ for some integer x.

Generators

Definition

An element g of \mathbb{Z}_n^* is defined to be a generator of \mathbb{Z}_n^* if every y in \mathbb{Z}_n^* can be written as $y = g^x$ for some integer x.

Example

 $3 \in \mathbb{Z}_{17}^*$ is a generator of \mathbb{Z}_{17}^* :

 $2 \in \mathbb{Z}_{17}^*$ is not a generator of \mathbb{Z}_{17}^* :

Facts about order and generators

\mathbb{Z}_n^* for general n

- Every element has order that divides $\varphi(n)$
- · If n is composite, then \mathbb{Z}_n^* is not cyclic and does not have a generator

\mathbb{Z}_p^* for prime p

- \mathbb{Z}_p^* is a cyclic group
- Every generator of \mathbb{Z}_n^* has order $\varphi(p) = p 1$

Groups

A group is a set *G* with an operation * such that:

- a*(b*c)=(a*b)*c for all $a,b,c\in G$ (associative law),
- There exists $\mathcal{O} \in G$ such that $a * \mathcal{O} = \mathcal{O} * a = a$ for all $a \in G$,
- For all $a \in G$ there exists $a^{-1} \in G$ with $a * a^{-1} = a^{-1} * a = \mathcal{O}$.

A commutative or abelian group satisfies the additional property:

- a * b = b * a for all $a, b \in G$ (commutative law).
- G is cyclic group if it can be generated by a generator g, in which case we write $G = \langle g \rangle$.

Groups

Examples of (abelian) groups:

- The set of integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ under the addition operation $(\mathcal{O} = 0)$.
- The set of integers mod p: $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$ under the addition operation $(\mathcal{O} = 0)$.
- The set of nonzero integers mod a prime p: $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$ under the multiplication operation ($\mathcal{O} = 1$).

Diffie-Hellman notation

Notation

- p is a prime
- \mathbb{Z}_p^* is the set $\{1, 2, \dots, p-1\}$
- $g \in \mathbb{Z}_p^*$ is an element of \mathbb{Z}_p^* of large prime order q
 - · g is not a generator of \mathbb{Z}_p^* , but does generate a subgroup \mathbb{Z}_p^* of prime order q

Diffie-Hellman key exchange

Diffie-Hellman key exchange allows two people to establish a shared secret, without *transmitting* any secret information.

Pick a prime p and an element $g \in \mathbb{Z}_p^*$ of large prime order q

Pick $a \in \mathbb{Z}_q$ at random.

Send $g^a \mod p$ to Bob. \longrightarrow

 $g^a \bmod p$

$$g^b \bmod p \qquad \longleftarrow \quad \text{Pick } b \in \mathbb{Z}_q \text{ at random}.$$

$$G^b \bmod p \qquad \longleftarrow \quad \text{Send } g^b \bmod p \text{ to Alice}.$$

Both Alice and Bob can compute $g^{ab} \equiv (g^a)^b \equiv (g^b)^a \mod p$.

Square and multiply algorithm

To compute $g^a \mod p$:

- 1. Write a in binary,
- 2. Use repeated squaring to compute g^{2^i} , for $i \geq 0$,
- 3. Multiply together the g^{2^i} values corresponding to the 2^i values appearing in the binary representation of a.

Square and multiply algorithm

Algorithm 1 Sequential algorithm for computing $g^a \mod p$.

Given: $g, a, p \in \mathbb{N}$

- 1: $k \leftarrow \lceil \log_2 a \rceil$
- 2: $y_0 \leftarrow g$
- 3: **for** i = 1, ..., k: $y_i \leftarrow y_{i-1}^2 \mod p$
- 4: Write $a = a_k a_{k-1} \dots a_1 a_0$ in binary
- 5: $z \leftarrow 1$
- 6: for $i = 0, \ldots, k$: if $a_i = 1$ then $z \leftarrow z \cdot y_i \mod p$
- 7: return z

Square and multiply algorithm

Algorithm 2 Recursive algorithm for computing $g^a \mod p$.

- Given: $g, a, p \in \mathbb{N}$
 - 1: if a = 0 then output 1
 - 2: **else if** a is even **then** output $(g^{\frac{a}{2}} \mod p)^2 \mod p$
- 3: **else if** a is odd **then** output $(g^{a-1} \mod p) \cdot (g \mod p)$

Algorithm 3 Iterative algorithm for computing $g^a \mod p$. Given: $q, a, p \in \mathbb{N}$

- 1: $y \leftarrow 1$, $b \leftarrow a$, $x \leftarrow g$
 - $\leftarrow a, x \leftarrow 1$
 - 2: while b>1 do 3: if b is odd then $y \leftarrow x \cdot y$, $b \leftarrow b-1$
 - 4: $x \leftarrow x^2$, $b \leftarrow b/2$
 - 5: **return** $x \cdot y$

Diffie-Hellman assumption

(All quantities except a and b are assumed to be taken mod p.)

Security:

- · Recall that **no** secret information is transmitted.
- Since q^a and q^b are transmitted, they aren't secret.
- But g^{ab} is supposed to be secret. Hence we assume:

Computational Diffie-Hellman assumption (CDH)

Let $a, b \in_R \mathbb{Z}_q$. Given g, g^a, g^b , it is computationally infeasible to determine g^{ab} .

Decisional Diffie-Hellman assumption (DDH)

Let $a, b \in_R \mathbb{Z}_q$. Given g, g^a, g^b , and either g^{ab} or g^c for a random $c \in_R \mathbb{Z}_q$, it is computationally infeasible to determine whether you were given g^{ab} or g^c .

Discrete logarithm assumption

(All quantities except a and b are assumed to be taken mod p.)

If we could compute a from g and g^a , then we could (trivially) break Diffie-Hellman.

Discrete logarithm assumption (DLOG)

Let $a \in_R \mathbb{Z}_q$. Given g and g^a , it is computationally infeasible to determine a.

Theorem (U. Maurer & S. Wolf, 1999)

For almost all values of p, the CDH assumption and the DLOG assumption are equivalent.

Diffie-Hellman vs. RSA

· Diffie-Hellman:

- Published in 1976. (Malcolm Williamson, GCHQ: 1974)
- · Key exchange only: Can exchange shared secret keys, but not arbitrary messages.
- · Interactive: Both parties must be online simultaneously.
- Forward secrecy: Compromising one key exchange does not compromise future key exchanges.

· RSA:

- · Published in 1978. (Clifford Cocks, GCHQ: 1973)
- Public-key cryptosystem: Can exchange any message chosen by the sender.
- · Non-interactive: An encrypted message can be decrypted later.
- · No forward secrecy: A compromised private key exposes all previous ciphertexts.

Things to remember

Public key primitives

Diffie-Hellman key exchange

Alice		Bob
$x \in_{R} \mathbb{Z}_{q}$		$y \in_R \mathbb{Z}_q$
$X \leftarrow g^{x}$	send $X \rightarrow$	$Y \leftarrow g^y$
	← send Y	
$k \leftarrow Y^x = g^{xy}$		$k \leftarrow X^y = g^{xy}$

Building block for confidentiality.

- Only secure against passive attacks, need to add authentication to protect against man-in-the-middle attacks.
- Secure options as of 2024:
 - · Not post-quantum:
 - Elliptic curve DH in cryptographically secure groups like nistp256 or curve25519
 - Post-quantum:
 - ML-KEM (Kyber)

16

Outline

Diffie-Hellman key exchange

Elgamal encryption: Public key encryption built from Diffie-Hellman

Elgamal public key encryption

Taher Elgamal, "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms," IEEE Transactions on Information Theory **31** (4), pp. 469–472, 1985.

- · Setup:
 - · Choose a single, globally public prime p.
 - Choose a single, globally public element $g \in \mathbb{Z}_p^*$ of large prime order q.
- · Key generation:
 - Choose $x \in_R \mathbb{Z}_q$
 - Set $k_{\text{pubkey}} = g^x \mod p$ and $k_{\text{privkey}} = x$.
- Encryption: Given $m \in \mathbb{Z}_p^*$,
 - Choose $r \in_R \mathbb{Z}_q$
 - Set $E(m) = (g^r, m \cdot (g^x)^r) \mod p$
- Decryption: Given a ciphertext $(c_1, c_2) \in (\mathbb{Z}_p^*)^2$, compute $D(c_1, c_2) = c_2 \cdot (c_1^{-1})^x \mod p$.

Elgamal design principles

Basic idea:

- Publish one half of the Diffie–Hellman key exchange as the public key.
- · Include the other half of the key exchange as the first half of the ciphertext.
- Encrypt the plaintext under the shared secret key as the second half of the ciphertext.

In other words, Elgamal is the public-key encryption analogue of Diffie-Hellman.

Interestingly, the encryption operation in Elgamal is randomized, whereas in RSA it was deterministic.