Versuch 213 15. März 2022

Kreisel

Physikalisches Anfängerpraktikum II

Juan Provencio Betreuer/in: Marcel Fischer

Inhaltsverzeichnis

T	Ziel des Versuches	2
2	Grundlagen	2
	2.1 Kreisel	2
3	Versuchsaufbau	5
	3.1 Materialen und Geräte	5
	3.2 Aufbau	5
4	Messung und Auswertung	6
	4.1 Messprotokoll	6
	4.2 Auswertung	8
5	Zusammenfassung und Diskussion	14
	5.1 Zusammenfassung	14
	5.2 Diskussion	15
6	Quellen	17
7	Anhang	18

1 Ziel des Versuches

Mit diesem Versuch werden wir anhand des Kreisels die Phänomenen der Präzession und Nutation untersuchen. Wir werden dafür den Einfluss der Reibung auf den Kreisel analysieren und mithilfe dieser zwei charakteristischen Bewegung in einem Kreisel auch das Trägheitsmoment bestimmen, was als Anwendung der berechneten und gesammelten Daten wirken wird.

2 Grundlagen

2.1 Kreisel

Wir bezeichnen ganz viele physikalische Systeme als ein Kreisel. Voraussetzung dafür ist ein starrer Körper, welcher um einen Punkt rotiert. Darunter erkennen wir drei Achsen: die Figurenachse \mathbf{F} , diese entspricht der Symmetrieachse des Körpers, die raumfeste Drehimpulsachse \mathbf{L} , da wir von der Drehimpulserhaltung ausgehen und die Richtung der Drehachse $\boldsymbol{\omega}$ durch die Winkelgeschwindigkeit.

2.1.1 Freier, symmetrischer Kreisel

Zusätzlich betrachten wir verschiedene Arten von Kreiseln, insbesondere interessiert uns der kräftefreie Kreisel, in diesem Fall wird er im Schwerpunkt gelagert und die Gewichtskraft übt kein äußeres Drehmoment auf ihn aus. Die Figurenachsen werden an diesem Beispiel auf Abbildung 1 dargestellt.

Abbildung 1: Bewegung des kräftefreien symmetrischen Kreisels

Wenn man den Kreisel einen leichten Schlag gibt und ihn aus seiner "Ruhelage" (Abbildung 1 links) stoßt, so tretet eine komplizierte Nutationsbewegung (ω_N) auf (mitte). Gleichzeitig führt der Körper eine eigene Rotation um die Figurenachse durch (ω_F). Die gesamte Rotation kann durch eine Überlagerung dieser zwei Rotationen beschrieben werden

$$\omega = \omega_N + \omega_F. \tag{1}$$

Wir können gemäß Abbildung 2 die Verhältnisse zwischen den verschiedenen vektoriellen Größen $\omega_{N,F}$ herleiten:

$$\omega_x = \omega_N \sin \theta \tag{2}$$

und unter Ausnutzung der Beziehungen $L_x = L \sin \theta = I_x \omega_x$ heißt das

$$\omega_N = \frac{L}{I_x}. (3)$$

Unter der Annahme, dass der Kreisel nur leicht aus seiner senkrechten Position abgelenkt wird dürfen wir den obigen Ausdruck vereinfachen durch $L \approx I_z \omega \approx I_z \omega_F$ zu

$$\omega_N \approx \frac{I_z}{I_x} \omega_F. \tag{4}$$

Mittels der Kreisfrequenz Ω können wir auch folgendes Verhältnis darstellen

$$\Omega = \frac{I_x - I_z}{I_z} \omega_F \tag{5}$$

was sich sinnvoll umformen lässt zu

$$I_x = I_z \left(\frac{1}{\frac{\Omega}{\omega_F} - 1} + 1 \right) \tag{6}$$

Abbildung 2: Geometrie der Nutationsbewegung

2.1.2 Schwerer, symmetrischer Kreisel

Beim schweren Kreisel verschieben wir den Unterstützungspunkt mithilfe von Massen, die wir dran hängen. Dadurch wirkt die Gewichtskraft ein zusätzliches Drehmoment auf den Kreisel. Wir untersuchen den Fall ohne Nutation und schauen uns die Präzessionsbewegung genauer an. Hier gilt

$$\omega_P = \dot{\varphi} = \frac{\dot{L}}{L \sin \alpha} \qquad |L = I_z \omega_F \qquad (7)$$

$$= \frac{mgl}{I_z \omega_F} \qquad (8)$$

Abbildung 3: Schwerer Kreisel

3 Versuchsaufbau

3.1 Materialen und Geräte

• Stahlkugel mit Aluminiumstab (m=4,164 kg incl. Stab, Kugelradius r=5,08 cm) als Kreisel gelagert in einer Luftkissenpfanne

- 2 Gewichte ($r_a = 0,725$ cm, $r_i = 0,325$ cm, h = 1,1 cm, m = 9,85 g)
- Farbscheibe, Scheibe mit konzentrischen Ringen
- Stroboskop
- Stoppuhr
- Motor mit Netzgerät
- Gyroskop zur Demonstration der Kreiseleigenschaften

3.2 Aufbau

Abbildung 4: Aufbau nach Praktikumsskript

4 Messung und Auswertung

4.1 Messprotokoll

Mas brown	213 Weisel	
15.03.2022		
Maximilian Mi	Nor	
Mike Brandt		
Tuan Provencio		
Teilanfqabe 2: D	ampfung das Kreisels	
Dor Wroisel wied	mit 2 Gewichten am Stabenda auf 600-9	00 mi
be schleurust and	12 min larg jede 2 min die Drenfrequent	dolar
mentieut:		
Tabelle 1: Drenfo	5 raves	
Zeit t [min]		
tat t Limin's	Dientrequent f [min-1] Af [min-1]	
0	671	
2	618 530 5	
6	525	
8	486	
10	450	
42.	416	
Teilaufgabe 3: Pr	ā 28.50ia 0	
Es wird ein fi	ewicht im Abstand von 20 cm and Stab gel	254
and mix etua	500 min's gedrent and maglicust notation	sfrei
and mix etua	south in Abstand von 20 cm and stab get soo mint gedrent and maglicust notation eln wind die Prazerion, dover gemesten.	egt sfrei
nord mix etua unter three Winter	500 min's gedrent and maglicust notation	egt sfrei
rond mit etwa unter drei Wink Tabelle 2: Praze	soo mint gedreht und möglichst notation ein wind die Präzestion, daver gemessen. stions dever als Funktion des Winkels	egt sfrei
rond mit etwa unter Urei Wink Tabelle 2: Praze Winkel O [°]	soo mint gedreht und möglichst notation aln wind die Präzestion, daver gemesten. Brions daver als Funktion des Winkels Präzestions daver To [S] DT. [s]	est sfrei
rond mit etwa unter drei Wink Tabelle 2: Praze Winkel O []	soo mint gedreht und möglichst notation aln wind die Präzestion, daver gemesten. Brions dever als Funktion des Winkels Präzestions dever To [5] DT. [6]	est strei
vond mit etwa unter drei Wink Tabelle 2: Praze Winkel 0 [] ~ 60 ~ 40	soo mint gedreht und möglichst notation aln wind die Präzestion, dawer gemesten. spions daver als Funktion des Winkels Präzestions daver To [S] DT. [s] 70 84	est efrei
nond mit etwa unter drei Wink Tabelle 2: Praze Winkel O []	soo mint gedreht und möglichst notation aln wind die Präzestion, daver gemesten. Brions dever als Funktion des Winkels Präzestions dever To [5] DT. [6]	est efrei
nond mit etwa onter drei Wink Tabelle 2: Praze Winkel 0 ["] ~ 60 ~ 40 ~ 5) Es werden Massen	soo mint gedreht und möglichst notation aln wind die Präzestion, dower gemesten. Brions dever als Function des Winkels Präzestions dever To [S] DT. [s] 70 84 74	afrei
nond mit etwa onter threi Wink Tabelle 2: Praze Winkel 0 ["] ~ 60 ~ 40 ~ 5 Es werden Massen gelegt und bei	soo mint gedrent and magicust notation all wind doe Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [S] DT. [s] 70 84 34 in versolviedenen Finstellungen auf den Sieuwiss vier Frequenten 280 min 4 4 700 min	afrei
nord mit etwa onter drei Wink Tabelle 2: Praze Winkel 0 ["] ~ 60 ~ 60 ~ 40 ~ 5	soo mint gedrent and magicust notation all wind doe Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [S] DT. [s] 70 84 34 in versolviedenen Finstellungen auf den Sieuwiss vier Frequenten 280 min 4 4 700 min	afrei
nond mit etwa unter drei Wink Tabelle 2: Praze Winkel 0 []	soo mint gedrent and magicust notation all wind doe Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [S] DT. [s] 70 84 34 in versolviedenen Finstellungen auf den Sieuwiss vier Frequenten 280 min 4 4 700 min	afrei
nord mit etwa unter drei Wink Tabelle 2: Praze Winkel 0 []	soo mint gedreht and maglicust notation all wind due Prazestions dower openessen. stions dower als Funktion des Winkels Prazestions dover To [s] \$\Delta T_{\text{t}}\$ [s] 70 84 74 in versoniedenen Einstellungen auf den sijeweils vier Frequenzen 250 min (cf 200 m) gemessen ions dower als Funktion der Drehfrequenz	tab
nond mit etwa unter drei Winker Chrei Winker Winker Winker Praze Winker & GO & G	soo mint a gedreht and maglicust notation all wind die Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [s] \$\Delta T_{\text{to}} [s]\$ 70 84 74 in verschiedenen Einstellungen auf den sijeweils vier Frequenzen 250 min (cf = 700 m) gemessen ions dower als Funktion der Dreh frequenz Frequent f [mint] Prazestions dower To	tab
nond mit etwa onter drei Wink Tabelle 2: Praze Winkel O []	soo mint address and magicust notation all wind doe Prazestion, dower openesses. Brions dever als Function des Winkels Prazestions dever To [S] DT, [S] 70 84 74 in versoniedenen Einstellungen auf den sijeweits vier Frequenten 250 min 4 cf c 700 min gemeesen ions dever als Funktion der Dren frequent Frequent f [mint] Prazestions dever To 1 940 260 659 122	tab
nord mit etwa unter drei Wink Tabelle 2: Praze Winkel 0 []	soo mint address and magicust notation all wind due Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [s] DT, [s] 70 84 74 in versoniedenen Binstellungen auf den si jeweils vier Frequenten 250 min 1 < 9 < 700 m	tab
nond mit etwa onter drei Wink Tabelle 2: Praze Winkel O []	soo mint gedreht and magicust notation all wind die Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [s] \$\Delta T_{\text{to}} [s] 70 84 74 in verschiedenen Einstellungen auf den sijeweils vier Frequenzen 280 min 2 cf c 700 m gemessen ions dower als Funktion der Dreh frequenz Frequent f [mint] Prazestions dower To 442 802 799 58	tab
onter threi Wink onter threi Wink onter threi Wink Tabelle 2: Praze Winkel 0 ["] « 60 « 40 » 5 Es werden Massen oplegt und bei die Prazestions dave die Prazestions dave Tabelle 8: Prazes Gewicht anordnung Ein Gewichts- et wa 15 cm	soo mint address and magicust notation all wind de Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [5] DT. [5] 70 84 74 in verschiedenen Binstellungen auf den si jeweils vier Frequenzen 280 min 4 f 4 700 m gemessen ions dower als Funktion der Dreh frequenz Frequent f [mint] Prazessions dover To 142 442 302 449 480 91 370 797 797 797 797 797 797 797	tab
onter threi Wink onter threi Wink onter threi Wink Tabelle 2: Praze Winkel O ["] « 60 « 40 » 5 Es werden Massen oplegt und bei die Prazestions dave die Prazestions dave Tabelle 8: Prazes Gewicht anordnung Ein Gewichts- et wa 15 cm Ein Gewichts-	soo mint address and magicust notation all wind de Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [5] DT. [5] 70 84 74 in verschiedenen Einstellungen auf den signesis vier Frequenten 280 min 4 f 4 700 m gemessen ions daver als Funktion der Drehfrequent Frequent f [mint] Pratessions daver To 442 302 440 480 91 370 73	tab
nond mit etwa onter three Winter three Winter three Winter Winter Tabelle 2: Praze Winked 0 ["] # 60 # 60 # 5 Es werden Massen opelegt und bei die Diazestions dave die Diazestions dave Tabelle 8: Prazest Gewicht anordnung Fin Grewichts office bei etwa 15 cm	soo mint address and magiciant notation all wind doe Prazestion, dower openesses. Brions dever als Function des Winkels Prazestions dever To [S] DT. [S] 70 84 74 in versolviedenen Binstellungen auf den sijewists vier Frequenten 250 min 4 4 700 m gemessen ions dever als Funktion der Drok frequent Frequent f [min 1] Prazestions dower To 442 302 440 480 91 370 380 630 92	tab
onter threi Wink onter threi Wink onter threi Wink Tabelle 2: Praze Winkel O ["] « 60 « 40 » 5 Es werden Massen oplegt und bei die Prazestions dave die Prazestions dave Tabelle 8: Prazes Gewicht anordnung Ein Gewichts- et wa 15 cm Ein Gewichts-	soo mint address and magicust notation all wind de Prazestion, dower openessen. Brions dever als Funktion des Winkels Prazestions dever To [5] DT. [5] 70 84 74 in verschiedenen Einstellungen auf den signesis vier Frequenten 280 min 4 f 4 700 m gemessen ions daver als Funktion der Drehfrequent Frequent f [mint] Pratessions daver To 442 302 440 480 91 370 73	tab

Abbildung 5: Messprotokoll

	Zwei Gewichts-	680	66
	sticke bei etwa	545	52
	15 cm	402	40
		260	26
	¿ wei Crewichts-	695	52
	stücke bei etua	5 3 5	38
	20 cm	390	18
2			
	Teilan Egabe 4: Unlan	if dec momenta	non Drehachte um die Figura
3	a) Umbufrichtung:		
3	on despressions.		11 . C . (000 min 1) Air a
	6) Es und für 10	Frequenzen	300 min 1 < f < 600 min 1 die 2 nentanen Diehachte genessen
3	t es, no un	aute dur "d"	
	Tabelle 3: Umlawfdo	wer in Abhan	gigkeit der Frequene
3		10 · 1 [5] .	
ŤШ	T Chan		
1	6 5 2	40 14	
3	5 80	16	
	4 95	19	
	4 30	21	
4	3 40	24	
	299 444	20	
	402	25	
1	346 809	26	
	teilaufgabe 5: Who	tion	
3			
-4	Der Kreisel wird in	Nutation ve	restell and 10 westernage for
	w, F gemesten.		
	Tabelle 5: Nutatio	ns und Figure	en frequent
4-	we [min-1]	wa [min]	
4++		WN LINCK 1	
	4 10 3 80 3 80 4 70 4 70	440 380	
	380	370	
	120	360	
	450	450	
	340	320	
	320	300	
	340 320 310 300	320 300 270 280	1000
1111	290	300 300 270 480 270	Win Tr
			(507)
			1

Abbildung 6: Messprotokoll

4.2 Auswertung

Im Folgenden wird bei der Fehleranalyse wenn nicht anders explizit angegeben die Gaußsche Fehlerfortpflanzung benutzt um die Fehlern der Größen zu bestimmen. Diese wird explizit in der digitalen Auswertung durch Python und wird in trivialen Fällen nicht nochmal bei der Ausarbeitung vorkommen.

4.2.1 Vorversuch

Beim Vorversuch haben wir den Kreisel eingestellt und zu diversen Situationen Beobachtungen aufgeschrieben.

Als erstes wurde der Kreisel kräftefrei eingestellt und wir haben den Metallring des Kugellagers mit einem Finger zur Seite gedrückt. Dabei leistet der Kreisel einen Widerstand gegen diese Bewegung, denn im Optimalfall würden im kräftefreien Kreisel die Achsen aufeinander zusammenfallen, so dass diese vertikal ausgerichtet sind.

Zunächst wurde eine Nutationsbewegung eingestellt und an der Farbscheibe erkennt man in der Mitte einen Punkt, bei welchem die Farbe unvermischt erscheint. Dieser Punkt rotiert gemäß der Drehrichtung auch die Farbe.

Nun wurde die Scheibe mit den konzentrischen Kreisen, bei welcher der Mittelpunkt seitlich vom Zentrum steht auf den Kreisel gelegt und dieser wurde zuerst ohne Nutation beobachtet. Dort entstehen konzentrische Kreise um den Stab. Mit der Scheibe wo das Zentrum der Kreisen auch im Zentrum liegt beobachtet man nachdem der Kreisel in Nutation versetzt wird ein Punkt seitlich vom Stab sichtbar, der zwischen schwarz und weiß alterniert. Dieser Fixpunkt dreht sich ebenfalls in Kreis.

Schließlich ändern wir die Lage des Schwerpunkts durch die Farbscheiben und zusätzliche Massen am Ende des Stabes. Im ersten Fall liegt der Schwerpunkt unterhalb Kugelmitte. Hier erfolgt die Drehung immer im entgegengesetzten Sinn zur Präzession. Liegt der Schwerpunkt allerdings oberhalb der Kugelmitte indem man ein Masse am Stab hängt, so stimmen Drehungs- und Präzessionsrichtung miteineander überein.

4.2.2 Dämpfung des Kreisels

Die Dämpfung des Kreisels folgt einem üblichen exponentiellen Verlauf der Form

$$\omega = \omega_0 e^{-\delta t} \tag{9}$$

Wird die Frequenz gegen die Zeit auf einem Diagramm aufgetragen, so können wir durch eine Kurvenanpassung die Faktoren ω_0 und δ berechnen. Diese Dämpfungskonstante wird

uns später insbesondere wichtig sein. Der Einfachheit halber wurde nicht die Kreisfrequenz ω , sondern die Frequenz f, dies beeinflusst aber die Ergebnisse nicht.

Diagramm 1: Dämpfung des Kreisels

Wir erhalten hier eine Dämpfung von

$$\delta = 6,65(4) \cdot 10^{-4} \cdot s^{-1} \tag{10}$$

und eine Halbwertszeit von

$$T_{1/2} = 1042(6) \,\mathrm{s} \tag{11}$$

4.2.3 Präzession

Teil a)

An dieser Stelle sollten wir grob überprüfen, dass die Präzessionsdauer nicht vom Winkel abhängt und wurde dafür für drei verschiedene Winkeln die aufgeschrieben:

Tabelle 6: Präzessionsdauer für verschiedene Winkeln

Winkel [°]	Präzessionsdauer T_P [s]
≈ 60	70(5)
≈ 40	84(5)
≈ 5	74(5)

Der Fehler der Zeit wurde hier sehr großzügig abgeschätzt, denn wir nur eine Beziehung zum Winkel ausschließen wollten.

Teil b)

Nun haben wir für verschiedene Massenanordnungen die Frequenz und die Präzessionsdauer jeweils 4 Mal gemessen (für verschiedene Frequenzen) und auf einem Diagramm aufgetragen. Die erste Messung war mit einer Masse in einem Abstand von 15 cm zum Kugelzenturm, bei der zweiten war eine Masse 20 cm, dann 2 Massen 15 cm und als letztes 2 Massen 20 cm entfernt. Hier wurde auf die Genauigkeit der Durchführung besser aufgepasst und der Fehler der Zeitmessung auf etwa $\Delta T_P = 2$ s abgeschätzt. In den Fehler spielt natürlich die Reaktionszeit eine Rolle, aber insbesondere die genaue Bestimmung des Anfangs und Ende der Präzessionsbewegung, als Referenz war ein Stab am Versuchsaufbau befestigt, womit man die Position des Kreisels nach einer Umdrehung vergleichen konnte, wenn man währenddessen ganz in Ruhe in der selben Position geblieben ist. Aus diesen Daten haben wir mit der Dämpfungskonstante (10) gemäß unseres Modells die Frequenz am Ende der Präzession bestimmt. Aus diesem Endpunkt und Anfangspunkt wurde dann ein Mittelwert gebildet. Zur Bestimmung dieses Mittelwertes war als erstes die Überlegung über die Periode zu integrieren und den Erwartungswert bestimmen gemäß

$$\langle \omega_f \rangle = \frac{1}{T_P} \int_0^{T_P} \omega_A \cdot e^{-\delta t} t$$
 (12)

$$=\frac{\omega_A - \omega_E}{\delta T_P} \tag{13}$$

zu bestimmen. Allerdings ergibt diese Formel insbesondere für kleine Präzessionsdauern T_P absurd große Fehlern, weshalb wir uns für den arithmetischen Mittel entschieden haben und die mittlere Frequenz gemäß

$$\overline{\omega}_F = \frac{\omega_A + \omega_E}{2} \tag{14}$$

$$\Delta \overline{\omega}_F = \frac{\sqrt{(\Delta \omega_A)^2 + (\Delta \omega_E)^2}}{2} \tag{15}$$

ausgerechnet wurde. Ein Vergleich zwischen beiden Zeiten lieferte vernachlässigbare Unterschiede. Dies ist im Anhang unter der Berechnung der σ -Abweichungen zu finden. Als Sanity Check haben wir nur den Fehler des arithmetischen Mittelwertes benutzt, denn der andere Mittelwert mit absurden Fehlern behaftet war. Dies lieferte trotzdem sehr zufriedenstellende Ergebnisse.

Nun haben wir die Präzessionsdauer gegen die mittlere Kreisfrequenz geplottet und

darüber lineare Anpassungen durchgeführt.

Diagramm 2: Präzessionsdauer in Abhängigkeit der Frequenz

Gemäß (8) lässt sich durch die Steigung s_i dieser Geraden auch das Trägheitsmoment bestimmt durch

$$I_{z_i} = \frac{mgl}{2\pi} s_i. (16)$$

Den Fehler haben wir mittels des relativen Fehlers ausgerechnet als

$$\Delta I_{z_i} = I_{z_i} \cdot \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta s_i}{s_i}\right)^2} \tag{17}$$

wobei wir einen Fehler in der Länge l von $\Delta l=0,002\,\mathrm{m}$ abgeschätzt haben. Für die Masse haben wir den Wert aus dem Skript $m=9,85\,\mathrm{g}$.

Die Steigung der jeweiligen Geraden und die zugehörige Trägheitsmomente sind in folgender Tabelle aufgeschrieben

Tabelle 7: Steigung und Trägheitsmoment bei verschiedenen Massenanordnungen

	Steigung s_i [s ²]	Trägheitsmoment $I_{z_i} [10^{-3} \cdot \text{kg m}^2]$
1 Masse, 15 cm	1,851(7)	4,27(6)
1 Masse, 20 cm	1,422(11)	3,28(5)
2 Massen, 15 cm	0,945(8)	5,81(8)
2 Massen, 20 cm	0,708(11)	4,35(8)

Aus dem Mittelwert und dem zugehörigen Fehler des Mittelwertes dieser Trägheitsmomente folgt

$$\overline{I}_z = 4,4(5) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$$
 (18)

Als Vergleichswert nehmen wir das Trägheitsmoment einer homogenen Kugel nach Angaben der Größen aus dem Praktikumsskript:

$$I_{z \text{lit}} = \frac{2}{5} mr^2 = 4, 3 \cdot 10^{-3} [\text{kg m}^2]$$
 (19)

Dies sollte nicht exakt mit dem experimentellen Wert übereinstimmen, denn durch den Stab die Kugel nicht homogen verteilt ist. Die Annahme hierfür ist, dass der Stab kaum einen Beitrag zum Trägheitsmoment gibt, denn die Figuren- und die Rotationsachse "nahe" von einander sind und deshalb der senkrechte Radius, welcher zum Trägheitsmoment miteinwirkt klein genug ist. Es gibt keine Angabe, wie man hier den Fehler der Annahme mitberücksichtigen soll. Wir gehen einfachheitshalber von keinem Fehler aus. Dies wird ausführlicher in der Diskussion erläutert.

4.2.4 Umlauf der momentanen Drehachse um die Figurenachse

Teil a)

Wir beobachten aus (4), dass es ein proportionales Verhältnis zwischen ω_N/ω_F und I_z/I_x , und aus unseren Beobachtungen ist die Nutationsfrequenz ω_N kleiner als die Figurenfrequenz ω_F , woraus folgt dass I_z ebenfalls kleiner bzw. gleich groß sein muss wie I_x . Im Fall von Gleichheit ist keine Nutation vorhanden.

Teil b)

Als erstes wandeln wir unsere Messdaten leicht massiert um sie vernünftig gegeneinander graphisch aufzutragen. Hierfür haben wir die Winkelfrequenz Ω aus der Umlaufzeit für 10 Umdrehungen bestimmt durch

$$\Omega = \frac{2\pi \cdot 10}{T_{P,10}}.\tag{20}$$

Aus unseren Messwerten wurden zwei Datenpaare rausgenommen, die sehr stark von den anderen abweichen. Diese sind im Diagramm 3 gekennzeichnet aber werden bei der Anpassung der Kurve nicht mitberücksichtigt. Wir gehen davon aus, dass bei der Bemessung der Periodendauer einmal zu viele und einmal zu wenige Wechseln beobachtet wurden.

Diagramm 3: Kreisfrequenz Ω gegen Winkelgeschwindigkeit ω_f

Die Steigung dieser Gerade entspricht genau $\frac{\omega_F}{\Omega}$, was wir mittels Gleichung (6) benutzen können um das Trägheitsmoment I_x zu bestimmen.

$$I_{x_4} = 4,7(6) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2.$$
 (21)

4.2.5 Nutation

Als nächstes tragen wir die Nutationsfrequenz gegen die Figurenfrequenz auf.

Diagramm 4: Nutationsfrequenz gegen Figurenfrequenz

Aus dieser Steigung bestimmen wir gemäß (4) wieder das Trägheitsmoment I_x .

$$I_{x_5} = 4,7(6) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2.$$
 (22)

5 Zusammenfassung und Diskussion

5.1 Zusammenfassung

In diesem Versuch haben wir uns genau die Phänomenen der Nutation und Präzession angeschaut und dadurch auch die Trägheitsmomente des Kreisels berechnet. Als erstes wurde ein Vorversuch durchgeführt, welcher nützlich war um später die Messmethoden schnell hinzukriegen. In diesem Vorversuch haben wir qualitativ die Nutations und Präzessionsbewegung untersucht und durch verschiedene Farb- und Ringscheiben die optischen Effekten die zur Messung hilfreich waren beobachtet.

Im zweiten Teil haben wir die Dämpfung des Kreisels untersucht und dafür die Frequenz in Abhängigkeit der Zeit gemessen um daraus die Dämpfungskonstante δ zu bestimmen. Diese Dämpfungskonstante würde in der nächsten Aufgabe gebraucht werden.

Als nächstes haben wir die Präzessionsbewegung des Kreisels beobachtet indem wir für verschiedene Massenanordnungen am Ende des Stabes, die den kräftefreien Zustand

unterbrochen und dadurch die Präzession erlaubt haben, die Präzessionsdauer gemessen haben. Man konnte hier mittels einer anfänglichen Frequenzmessung und mit der Dämpfungskonstante die Frequenz am Ende des Umlaufs einen Mittelwert bilden, welchen wir gegen die Präzessionsdauer aufgetragen haben. Aus diesem Diagramm erhielten wir die Steigung eines linearen Fits, womit man das Trägheitsmoment I_z bestimmen konnte.

In der nächsten Teilaufgabe haben wir bei dem Umlauf der momentanen Drehahachse um die Figurenachse das Trägheitsmoment I_x bestimmt, indem wir die Kreisfrequenz Ω gegen die Winkelgeschwindigkeit ω_F aufgetragen haben. Die Steigung dieser Gerade sollte für die Berechnung des Trägheitsmoments benutzt werden.

Schließlich haben wir zum Vergleich wieder das Trägheitsmoment I_x bestimmt, dieses Mal über die Nutationsfrequenz ω_N und die Winkelgeschwindigkeit ω_F .

5.2 Diskussion

Als Vergleichsgrößen haben wir nun 2 verschiedene Trägheitsmomente $I_{z,x}$ berechnet. Bevor wir mit der Diskussion darüber anfangen wollen wir chronologisch über unsere Methodologie gehen. Zu jeder Kurvenanpassung haben wir mittels die χ^2 -Methode die Fitwahrscheinlichkeit bestimmt und sind über all die Ergebnisse sehr zufrieden. Bei Diagramm 1 erhalten wir eine Fitwahrscheinlichkeit von 100%, was sich nicht auf zu groß abgeschätzte Fehler zurückführen lässt, denn diese prozentuell meistens kleiner oder ungefähr 1% beträgt. Für die Dämpfungskonstante haben wir keinen Vergleichswert, die Bestimmung dieser war rein für die weitere Arbeit gedacht. Ebenfalls für die Halbwertszeit lässt sich kein weiterer Vergleich machen. Die Vergleiche der Trägheitsmomente werden mittels folgender Formel durchgeführt werden:

$$\frac{|I_1 - I_2|}{\sqrt{(\Delta I_1)^2 + (\Delta I_2)^2}}. (23)$$

Nun bei der Präzession, insbesondere bei Teilaufgabe b) kommen wir zu wichtigen Entscheidung die wir bei der Auswertung zum größten Teil schon gerechtfertigt haben. Insbesondere bei der Bestimmung des Mittelwertes der Kreisfrequenz hätte man über die kontinuierliche Bestimmung des Mittelwertes laut (13) den genaueren Mittelwert angeben können. Allerdings mit der Formel für den Mittelwert entstehen absurd große Fehlern wenn man das nach der Gaußschen Fehlerfortpflanzung berechnet, weshalb wir den arithmetischen Mittel genommen haben. Diese Entscheidung begründen wir anhand der Tatsache, dass in diesem Fall der arithmetische Mittel und der kontinuierliche Mittel im

extremen Fall, wo wir den Fehler des kontinuierlichen Mittels auf 0 setzen bei allen bis auf eine Messung eine σ -Abweichung von unter 0,1 besitzen. Diese Analyse ist im Anhang unter "Sigmas" Abschnitt 7 zu sehen. Bei dieser Methode erhalten wir für die vier Anpassungen Fitwahrscheinlichkeiten im Bereich von 82-95%, was für Praktikumsstandards sehr befriedigend ist. Wir vergleichen als nächstes das mithilfe dieser Steigung berechnete mittlere Trägheitsmoment mit dem Literaturwert. Die Benutzung dieses Literaturwertes wurde ebenfalls in der Auswertung kurz begründet.

Tabelle 8: Vergleich des Trägheitsmomentes I_z

Wir sind hier von einem Fehler des Literaturwerts von 0 ausgegangen um die großtmögliche Abweichung zu erhalten. Immerhin haben wir ein sehr gutes Ergebnis von 0,25 σ -Bereiche von Abweichung erhalten. Allerdings ist zu bemerken, dass der relative Fehler des experimentellen Wertes schon sehr groß ist und die Messung hätte an einigen Stellen genauer sein können oder der Fehler kleiner abgeschätzt.

Mit den nächsten zwei Teilaufgaben haben wir das Trägheitsmoment I_x bestimmt. Hierzu wollen wir kommentieren, dass die bestimmten Werten mit der Behauptung im Einklang sind, dass dieser größer als I_z sein muss. Dies ist insbesondere logisch wenn wir daran denken, dass eine größere Masse durch den Stab längs der z-Achse gelagert ist, weshalb diese für das Trägheitsmoment I_z nur eine kleine Rolle, aber für die anderen eine größere Rolle spielt. Bei der Diskussion werden wir weitere signifikante Nachkommastellen in Betracht ziehen, weil beide Werte bis auf die in der Auswertung berücksichtigte Stelle identisch sind. Wir erhalten mittels der zwei Aufgaben folgende Werte:

Tabelle 9: Vergleich des Trägheitsmomentes I_x

Zur Bestimmung dieser Werten haben wir allerdings Messdaten aus unserer Anpassung rausgenommen. Diese weichen sehr stark vom Fit ab und wurden deswegen als Messfehlern gekennzeichnet. Die Ergebnisse sind sehr gut und es lassen sich beide Messmethoden gut für die Bestimmung des Trägheitsmomentes anwenden. Allerdings ist es wichtig zu erwähnen, dass beide Werte von sehr großen Fehlern behaftet waren. Zum Einen wurden

diese Fehlern vom fehlerbehafteten \overline{I}_z übertragen, welcher für die Ausrechnung benutzt wurde. Dies in sich selbst stellt schon einen systematischen Fehler dar, der sich aber durch diese Messmethoden nur schwer beheben lässt, denn eine Bekanntheit über das Trägheitsmoment I_z vorausgesetzt wird. Dafür hätte entweder der andere Versuchsteil sorgfältiger durchgeführt oder ein Vergleichswert angegeben werden.

Ein weiterer Fehler in den Messungen stellt zum Beispiel die Grenze von "leichter" Nutation dar. Bei einer schwachen Nutation sollen einige Annahmen möglich sein, allerdings lassen sich Effekte wie der wie feste Farbe in der Kreisscheibe nur schwer beobachten, und noch schlimmer mehrere Male nacheinander, wenn die Augen schon müde und verwirrt sind. Bei der zweiten Messmethode mithilfe des Stroboskops hätte auch die Messung der Frequenzen $\omega_{N,F}$ schneller durchgeführt werden, aber manchmal war es schwierig beide Frequenzen schnell nacheinander abzulesen und diese sind dementsprechend von großen Fehlern behaftet.

6 Quellen

Wagner, J., Universität Heidelberg (2021). Physikalisches Praktikum PAP 2.1 für Studierende der Physik B.Sc..

Experiment Kreisel

28. März 2022

7 Anhang

```
[1]: import matplotlib.pyplot as plt
     import matplotlib.mlab as mlab
     %matplotlib inline
     import numpy as np
     from numpy import exp, sqrt, log, pi
     from scipy.optimize import curve_fit
     from scipy.stats import chi2
     from scipy import odr
     from scipy.integrate import quad
     from scipy.signal import find_peaks
     def fehler(name, G, sig_G, G_lit, sig_G_lit):
         print(name)
         print('Relativer Fehler: ', sig G / G * 100)
         print('Rel. Fehler (Vergleich):', sig_G_lit / G_lit * 100)
        print('Absoluter Fehler: ', G - G lit)
         print('Verhältnis:', G / G_lit)
         print('Sigma-Abweichung: ', np.abs(G - G_lit) / sqrt(sig_G ** 2
                                                               + sig_G_lit **_
      \rightarrow 2), ' n')
     def fehler_small(name, G, sig_G):
         print(name)
```

```
print('Relativer Fehler: ', sig_G / G * 100)
def ergebnis(name, G, sig_G, komma, einheit):
   print(name + ' =', np.round(G, komma), '+/-', np.round(sig G,__
 →komma), einheit)
def ergebnis large(name, G, sig G, komma, einheit):
   print(name + ' =', np.round(G, komma))
   print('+/-'.rjust(len(name) + 2), np.round(sig G, komma), einheit)
def fitparameter(name, G, sig_G, komma, einheit):
   return name + ' = ' + str(np.round(G, komma)) + '$\pm$' + str(np.
→round(sig_G, komma)) + einheit
def chi_sq(test_func, x_val, y_val, sig_y_val, popt, number):
    chi2_ = np.sum((test_func(x_val, *popt) - y_val) ** 2
                   / sig y val ** 2)
    dof = len(y val) - number
    chi2\_red = chi2\_ / dof
   print("chi2 =", chi2_)
   print("chi2_red =",chi2_red)
   prob = np.round(1 - chi2.cdf(chi2_,dof), 2) * 100
    print("Wahrscheinlichkeit =", prob, "%\n")
```

*

Dämpfung des Kreisels

```
[2]: # Messwerte
t = np.array([0, 2, 4, 6, 8, 10, 12]) * 60 # s
sig_t = np.ones(len(t)) * 3
```

```
f = np.array([671, 618, 570, 525, 486, 450, 416]) / 60 # s^-1
sig_f = 5 / 60
# Fit
def expo(t, a, delta):
   return a * exp(- t * delta)
popt 1, pcov 1 = curve fit(expo, t, f, sigma = sig t, p0 = [0, 0])
a = popt_1[0]
sig a = sqrt(pcov 1[0, 0])
delta = popt_1[1]
sig_delta = sqrt(pcov_1[1, 1])
x = np.linspace(0, 12 * 60, 100)
# Plot
plt.figure(figsize = (12, 7))
plt.errorbar(t, f, xerr = sig_t, yerr = sig_f, fmt = '.', capsize = 2,
            label = 'Messungen')
plt.plot(x, expo(x, *popt_1), label = 'Bester Fit')
# Fitparameter
plt.text(500, exp(2.3), 'Fitparameter: $y = a \\cdot e^{(\\delta \\cdot_
→t)}$')
plt.text(500, exp(2.27), fitparameter('a', a, sig_a, 3, ' [s$^{-1}$]'))
plt.text(500, exp(2.24), fitparameter('$\\delta$', delta, sig delta, 6,_
→' [s$^{-1}$]'))
plt.title('Frequenz als Funktion der Zeit', size = 16)
plt.xlabel('Zeit t [s]', size = 14)
plt.ylabel('Frequenz f [$s^{-1}$]', size = 14)
plt.yscale('log')
plt.legend(loc = 'best')
plt.savefig('images/213/V213Diagramm1.png')
```



```
[3]: # chi^2 Analys
chi_sq(expo, t, f, sig_f, popt_1, 2)
chi2 = 0.36191811658481965
```

chi2_red = 0.07238362331696394

Wahrscheinlichkeit = 100.0 %

```
[4]: # Dämpfungskonstante
ergebnis('Dämpfungskonstante delta', delta, sig_delta, 6, '[s^{-1}]')
# Halbwertszeit
T_12 = log(2) / delta
sig_T_12 = log(2) * sig_delta / (delta ** 2)
ergebnis('Halbwertszeit T_12', T_12, sig_T_12, 0, '[s]')
```

Dämpfungskonstante delta = 0.000665 +/- 4e-06 [s^{-1}] Halbwertszeit T_12 = 1042.0 +/- 6.0 [s]

Präzession

Mittleres w F

```
[5]: # Messwerte 3a
     # Winkel 60, 45, 5
    T_P = np.array([70, 84, 74]) # s
    sig T P a = 5
[6]: # Messwerte 3b
    f 3b = np.array([np.array([659, 302, 480, 370]), # 1 x 15 cm
                     np.array([630, 555, 340, 255]), # 1 x 20 cm
                     np.array([680, 545, 402, 260]), # 2 x 15 cm
                     np.array([695, 535, 390, 248])]) / 60 # 2 x 20 cm
    w_3b = 2 * pi * f_3b # s^{-1}
    sig_w_3b = 2 * pi * 2 / 60 * np.ones(len(w_3b))
    T_P_{3b} = np.array([np.array([122, 58, 91, 70]),
                       np.array([92, 80, 50, 36]),
                       np.array([66, 52, 40, 26]),
                       np.array([52, 38, 28, 18])])
    sig_T_P = 2
     # Endwert w E
    def w E(w A, T):
        return w_A * exp(-delta * T)
    def sig_w_E(w_A, sig_w_A, T, sig_T):
        return sqrt( (sig_w_A * exp(-delta * T)) ** 2
                     + (w_A * T * sig_delta * exp(- delta * T)) ** 2
                     + (w_A * delta * sig_T * exp(- delta * T)) ** 2)
    w_3b_E = w_E(w_3b, T_P_3b)
    sig_w_3b_E = sig_w_E(w_3b, sig_w_3b, T_P_3b, sig_T_P)
```

```
w_{mean\_test} = (w_3b - w_3b_E) / (delta * T_P_3b)
sig_w_mean_test = sqrt( (sig_w_3b / (delta * T_P_3b)) ** 2
                       + (sig_w_3b_E / (delta * T_P_3b)) ** 2
                       + ((w_3b - w_3b_E) * sig_delta / (delta ** 2 *_
→T P 3b) ) ** 2
                       + ((w_3b - w_3b_E) * sig_T_P / (delta * T_P_3b_
→** 2) ) ** 2 )
w_F_{mean} = (w_3b + w_3b_E) / 2
sig_w_F_mean = sqrt((sig_w_3b ** 2 + sig_w_3b_E)) / 2
# Drücke Mittelwert aus
print('Mittelwerte: w_F_mean')
for i in range(len(w 3b)):
    ergebnis_large('w_F_mean_' + str(i), w_F_mean[i], sig_w_F_mean[i],_
4,
                   ' [s^-1]\n')
# Fit
def line(x, a):
   return a * x
x = np.linspace(0, 80, 200)
popt_3b = np.array([])
pcov_3b = np.array([])
for i in range(len(w 3b)):
   popt_i, pcov_i = curve_fit(line, w_F_mean[i], T_P_3b[i], sigma =_
→sig_w_F_mean[i],
                               p0 = [0])
   popt_3b = np.append(popt_3b, popt_i)
   pcov_3b = np.append(pcov_3b, pcov_i)
```

```
# Vorbereitung für Plot
name = np.array(['1 Masse, 15 cm', '1 Masse, 20 cm', '2 Massen, 15 cm',
                  '2 Massen, 20 cm'])
col = np.array(['dodgerblue', 'orange', 'green', 'red'])
# Plot
plt.figure(figsize = (12, 7))
plt.title('Präzessionsdauer in Abhängigkeit der Kreisfrequenz', size = _
 →16)
for i in range(len(w_3b)):
    plt.errorbar(w_F_mean[i], T_P_3b[i], xerr = sig_w_F_mean[i], yerr =_
 \rightarrowsig_T_P,
                 fmt = '.', capsize = 2, label = name[i], color = col[i])
    plt.plot(x, line(x, popt_3b[i]), #label = 'Bester Fit: ' + name[i],
             color = col[i], linestyle = '--')
    ergebnis('Steigung ' + name[i] + ': s_' + str(i), popt_3b[i],_
 \rightarrowsqrt(pcov_3b[i]), 3, '[s^2]')
plt.xlabel('Kreisfrequenz w [s$^{-1}$]', size = 14)
plt.ylabel('Präzessionsdauer T_P [s]', size = 14)
plt.legend(loc = 'best')
plt.savefig('images/213/V213Diagramm2.png')
Mittelwerte: w_F_mean
w_F_{mean_0} = [66.3197 \ 31.0267 \ 48.7887 \ 37.8646]
         +/- [0.2535 0.2498 0.2508 0.25 ] [s^-1]
w_F_{mean_1} = [64.0145 56.6129 35.0221 26.3875]
         +/- [0.2543 0.2531 0.2508 0.2507] [s^-1]
w_F_{mean_2} = [69.6795 56.1017 41.5445 26.9936]
```

```
+/- [0.2572 0.2547 0.2525 0.2514] [s^-1]
```

```
w_F_{mean_3} = [71.5425 55.3256 40.4637 25.8159] +/- [0.2585 0.2553 0.2531 0.2518] [s^-1]
```

Steigung 1 Masse, 15 cm: $s_0 = 1.851 + -0.007$ [s^2] Steigung 1 Masse, 20 cm: $s_1 = 1.422 + -0.011$ [s^2] Steigung 2 Massen, 15 cm: $s_2 = 0.945 + -0.008$ [s^2] Steigung 2 Massen, 20 cm: $s_3 = 0.708 + -0.011$ [s^2]


```
[7]: # chi^2 Analyse
for i in range(len(w_3b)):
    print(name[i] + ':')
    chi_sq(line, w_F_mean[i], T_P_3b[i], sig_T_P, np.
    →array([popt_3b[i]]), 1)
```

```
1 Masse, 15 cm:
chi2 = 0.3462392602008266
chi2_red = 0.11541308673360888
Wahrscheinlichkeit = 95.0 %
```

```
1 Masse, 20 cm:
chi2 = 0.8890425987064264
chi2_red = 0.29634753290214216
Wahrscheinlichkeit = 83.0 %
2 Massen, 15 cm:
chi2 = 0.4611971798198711
chi2_red = 0.15373239327329036
Wahrscheinlichkeit = 93.0 %
2 Massen, 20 cm:
chi2 = 0.9212290670614741
chi2_red = 0.307076355687158
Wahrscheinlichkeit = 82.0 %
```

```
[8]: # Trägheitsmoment
     m_g = 0.00985 \# kg
     g = 9.81 \# m s^{-2}
     1 = \text{np.array}([0.15, 0.15, 0.2, 0.2]) \# m
     sig_1 = 0.002
     m = np.array([1, 1, 2, 2]) * m_g
     I_z = m * g * 1 / (2 * pi) * popt_3b
     sig_I_z = I_z * sqrt( (sig_1 / 1) ** 2 + (sqrt(pcov_3b) / popt_3b) ** 2)
     ergebnis_large('I_z', I_z, sig_I_z, 5, '[kg m^2]')
     I z mean = np.mean(I z)
     sig_I_z_{mean} = 1 / sqrt(len(I_z) - 1) * np.std(I_z)
     # Trägheitsmoment des Kreisels
     ergebnis('I_z_mean', I_z_mean, sig_I_z_mean, 4, '[kg m^2]')
     # Trägheitsmoment Literatur
     m_k = 4.164 \# kg
     r_k = 0.0508 \# m
```

```
I_z_lit = 2 / 5 * m_k * r_k ** 2

print('I_z_lit =', np.round(I_z_lit, 4), '[kg m^2]')

I_z = [0.00427 0.00328 0.00581 0.00435]
    +/- [6.e-05 5.e-05 8.e-05 8.e-05] [kg m^2]

I_z_mean = 0.0044 +/- 0.0005 [kg m^2]

I_z_lit = 0.0043 [kg m^2]
```

Umlauf der momentanen Drehachse

```
[9]: # Messwerte
     f_4 = np.array([652, 580, 540, 495, 430, 380, 340, 444, 402, 309]) / 60_
     →# s^-1
     f_4_mf = f_4[[8, 9]]
     mask = np.ones(len(f_4), dtype = bool) # Problematische Messungen_
     \rightarrow ent fernen
    mask[[8, 9]] = False
     f_4 = f_4[mask, ...]
     w_4 = 2 * pi * f_4
     w_4_mf = 2 * pi * f_4_mf
     sig_w_4 = 2 * pi * 5 / 60
     Omega_10 = np.array([14, 16, 17, 18, 21, 24, 27, 20, 25, 26]) / 10 # s
     #(Umlaufdauer, falsch benannt aber jetzt zu spät)
     Omega_10_mf = Omega_10[[8, 9]]
     Omega 10 = Omega 10[mask, ...]
     sig Omega 10 = 0.3 / 10
     Omega = 2 * pi / Omega 10
     Omega_mf = 2 * pi / Omega_10_mf
     sig_Omega = sqrt(2 * pi * sig_Omega_10 / Omega_10 ** 2)
     sig_Omega_mf = sqrt(2 * pi * sig_Omega_10 / Omega_10_mf ** 2)
```

```
# Fit
popt_4b, pcov_4b = curve_fit(line, w_4, Omega, absolute_sigma = True,_
 -p0 = [0])
a_4 = popt_4b[0]
sig a 4 = sqrt(pcov 4b[0, 0])
x = np.linspace(30, 70, 100)
# Plot
plt.figure(figsize = (12, 7))
plt.errorbar(w_4, Omega, xerr = sig_w_4, yerr = sig_Omega, fmt = '.',
            capsize = 2, label = 'Messwerte')
plt.errorbar(w_4_mf, Omega_mf, xerr = sig_w_4, yerr = sig_Omega_mf, fmt_
 \Rightarrow = 1.1
            capsize = 2, label = 'Messfehler', color = 'red')
plt.plot(x, line(x, *popt 4b), label = 'Bester Fit')
plt.text(40, 4, 'Fitparameter: $y = a \\cdot x$')
plt.text(40, 3.8, fitparameter('$a_4$', a_4, sig_a_4, 3, ''))
plt.title('Umlaufdauer in Abhängigkeit der Winkelgeschwindigkeit', size_
→= 16)
plt.xlabel('Winkelgeschwindigkeit $\\omega_f$ [s$^{-1}$]', size = 14)
plt.ylabel('Kreisfrequenz $\\omega_n$ [s$^{-1}$]', size = 14)
plt.legend(loc = 'best')
plt.savefig('images/213/V213Diagramm3.png')
```



```
[10]: # chi^2 Analyse
chi_sq(line, w_4, Omega, sig_Omega, popt_4b, 1)
```

chi2 = 0.34370714549490805
chi2_red = 0.04910102078498686
Wahrscheinlichkeit = 100.0 %

```
[20]: # Trägheitsmoment

I_x4 = I_z_mean * (1 + 1 / (1 / a_4 - 1))

sig_I_x4 = sqrt( (sig_I_z_mean * (1 + 1 / (1 / a_4 - 1))) ** 2

+ (I_z_mean * sig_a_4 / ((1 / a_4 - 1) ** 2 * a_4 **_

→2)) ** 2)

ergebnis('I_x4', I_x4, sig_I_x4, 5, '[kg m^2]')
```

 $I_x4 = 0.00474 +/- 0.00056 [kg m^2]$

Nutation

```
[12]: # Messwerte
     f F5 = np.array([410, 390, 380, 470, 450, 340, 320, 310, 300, 290]) /_
      →60 # s^-1
     f F5 mf = f F5[[4, 7]]
     f_N5 = np.array([390, 370, 360, 450, 440, 320, 300, 270, 280, 270]) /_
      →60 # s^-1
     f N5 mf = f N5[[4, 7]]
     sig f 5 = 5 / 60
     mask = np.ones(len(f F5), dtype = bool) # Problematische Messungen_
      \rightarrow ent fernen
     mask[[4, 7]] = False
     f_F5 = f_F5[mask, ...]
     f_N5 = f_N5[mask, ...]
     w F5 = 2 * pi * f F5
     w F5 mf = 2 * pi * f F5 mf
     w_N5 = 2 * pi * f_N5
     w_N5_mf = 2 * pi * f_N5_mf
     sig_w_5 = 2 * pi * sig_f_5
      # Fit
     poopt_5, pcov_5 = curve_fit(line, w_F5, w_N5, absolute_sigma = True,
                                  sigma = sig w 5 * np.ones(len(w F5)))_
      →# hehe
     a_5 = poopt_5[0]
     sig_a_5 = sqrt(pcov_5[0, 0])
     x = np.linspace(30, 50, 100)
     plt.figure(figsize = (12, 7))
     plt.title('Nutationsfrequenz über Figurenfrequenz', size = 16)
     plt.xlabel('Figurenfrequenz $\\omega_F$ [s$^{-1}$]', size = 14)
     plt.ylabel('Nutationsfrequenz $\\omega_F$ [s$^{-1}$]', size = 14)
```



```
[19]: # Trägheitsmomente

I_x5 = I_z_{mean} / a_5

sig_I_x5 = sqrt( (sig_I_z_{mean} / a_5) ** 2 + (I_z_{mean} * sig_a_5 / a_5]

\rightarrow **2) **2)

#I_x5 = I_z_{mean} * (1 + 1 / (1 / a_5 - 1))

#sig_I_x5 = sqrt( (sig_I_z_{mean} * (1 + 1 / (1 / a_5 - 1))) ** 2

# + (I_z_{mean} * sig_a_5 / ((1 / a_5 - 1) ** 2 * a_5 **]

\rightarrow 2)) ** 2)
```

```
ergebnis('I_x5', I_x5, sig_I_x5, 5, '')

I_x5 = 0.00468 +/- 0.00055

[14]: # chi^2 Analyse
    chi_sq(line, w_F5, w_N5, sig_w_5, poopt_5, 1)

chi2 = 3.1299183370452397
    chi2_red = 0.4471311910064628
    Wahrscheinlichkeit = 87.0 %
```

Sigmas

```
[15]: # Präzessionszeiten

fehler('T_P: 60-45', T_P[0], sig_T_P_a, T_P[1], sig_T_P_a)

fehler('T_P: 60-5', T_P[0], sig_T_P_a, T_P[2], sig_T_P_a)

fehler('T_P: 45-5', T_P[1], sig_T_P_a, T_P[2], sig_T_P_a)
```

T_P: 60-45

Relativer Fehler: 7.142857142857142

Rel. Fehler (Vergleich): 5.952380952380952

Absoluter Fehler: -14

Sigma-Abweichung: 1.979898987322333

T_P: 60-5

Relativer Fehler: 7.142857142857142

Rel. Fehler (Vergleich): 6.756756756756757

Absoluter Fehler: -4

Sigma-Abweichung: 0.565685424949238

T P: 45-5

Relativer Fehler: 5.952380952380952

Rel. Fehler (Vergleich): 6.756756756757

Absoluter Fehler: 10

Sigma-Abweichung: 1.414213562373095

```
[16]: # Mittlere Kreisfrequenz: arithmetisch und kontinuierlich
     for i in range(len(w_F_mean)):
          fehler('w_mean_' + str(i), w_F_mean[i], sig_w_F_mean[i],
                 w mean test[i], 0) # Fehler des Test Mittelwertes wird auf_
       \rightarrow 0 gesetzt
     w_mean_0
     Relativer Fehler:
                        [0.3822406 0.8049968 0.5139914 0.6602593]
     Rel. Fehler (Vergleich): [0. 0. 0. 0.]
     Absoluter Fehler:
                        [0.03640306 0.00385113 0.01490406 0.00684537]
     Sigma-Abweichung:
                        [0.14360137 0.0154191 0.05943327 0.027381 ]
     w_{mean_1}
     Relativer Fehler:
                        [0.39729177 0.44713098 0.71624003 0.94988776]
     Rel. Fehler (Vergleich): [0. 0. 0. 0.]
     Absoluter Fehler:
                        [0.01998726 0.013367
                                                0.0032307 0.00126194]
     Sigma-Abweichung:
                        [0.07858963 0.05280609 0.01287939 0.00503465]
     w_{mean_2}
     Relativer Fehler:
                        [0.36912916 0.45390905 0.60784638 0.93129681]
     Rel. Fehler (Vergleich): [0. 0. 0. 0.]
                        [0.01119879 0.00559748 0.00245281 0.00067337]
     Absoluter Fehler:
                        [0.04353992 0.02198102 0.00971309 0.0026786 ]
     Sigma-Abweichung:
     w_{mean_3}
     Relativer Fehler:
                        [0.36130459 0.46152157 0.62556983 0.9753786 ]
     Rel. Fehler (Vergleich): [0. 0. 0. 0.]
                                                0.00117065 0.00030867]
     Absoluter Fehler:
                        [0.00713807 0.002948
     Sigma-Abweichung:
                        [0.02761488 0.01154541 0.00462474 0.00122582]
[17]: \# Trägheitsmoment I_z
     fehler('I z', I z mean, sig I z mean, I z lit, 0)
     I_z
     Relativer Fehler: 11.777299166022564
     Rel. Fehler (Vergleich): 0.0
```

33 von 34

Absoluter Fehler: 0.00013033143724419573

Sigma-Abweichung: 0.24988061574493717

```
[21]: # Trägheitsmoment I_x fehler('I_x', I_x4, sig_I_x4, I_x5, sig_I_x5)
```

 I_x

Relativer Fehler: 11.800147127737853

Rel. Fehler (Vergleich): 11.788295793975136 Absoluter Fehler: 6.066033029899359e-05 Sigma-Abweichung: 0.07719777922767168

[]: