

A* Graph Search

Informed Search – A* graph search

Credits: most material borrowed from AIMA or Dan Klein and Pieter Abbeel

Reading for this week

(same as last week)

- Chapter 3, Sections 3.5 to 3.6 of AIMA
 - Russell and Norvig Textbook:
 Artificial Intelligence, a Modern Approach
 3rd edition

Today's Menu

- Recap
- Informed Search Methods
 - A* Graph Search

Recap: State Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the problem graph.

We construct both on demand – and we construct as little as possible.

Don't confuse these two!

Recap: sequence of actions search

- Search problem
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test
- Search tree
 - Nodes: represent plans for reaching states
 - Plans have costs
 (sum of action costs)
- Search algorithm
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds cheapest plans (aka sequence of actions)

Recap from Week 02

Fringe and Frontier are synonyms

Graph search (Fig 3.7 in AIMA)

 We augment the tree search algorithm with a set explored, which remembers every state that has been goal tested negatively.

```
function Graph-Search(problem) returns a solution, or failure
frontier ← problem.initial state
explored ← empty set # initial empty set of explored states
while frontier not empty:
   node ← frontier.pop()
                                                    Recall from Week 3
   if problem.goal test(node.state):
                                                       Graph Search
     return node
   explored.add(node.state)
   frontier.extend(child for child in node.expand(problem)
                  if child.state not in explored and child not in frontier)
```

return None

```
def best first graph search(problem, f):
  Search the nodes with the lowest f scores first.
  You specify the function f(node) that you want to minimize; for example,
  if f is a heuristic estimate to the goal, then we have greedy best
  first search; if f is node.depth then we have breadth-first search.
  node = Node(problem.initial)
  if problem.goal test(node.state):
      return node
                                                     A* graph search
  frontier = PriorityQueue(f=f)
                                               is 'best first graph search'
  frontier.append(node)
  explored = set() # set of states
                                                         with f=g+h
 while frontier:
      node = frontier.pop()
      if problem.goal_test(node.state):
          return node
      explored.add(node.state)
      for child in node.expand(problem):
          if child.state not in explored and child not in frontier:
              frontier.append(child)
          elif child in frontier:
              # frontier[child] is the f value of the
              # incumbent node that shares the same state as
              # the node child. Read implementation of PriorityQueue
              if f(child) < frontier[child]:</pre>
                  del frontier[child] # delete the incumbent node
                  frontier.append(child) #
  return None
```

A* Graph Search Gone Wrong?

State space graph

Search tree

When B(1+1) is expanded C(3+1) is added to the frontier. This prevents the addition of C(2+1) to the frontier when A(1+4) when is expanded.

A* Graph Search Gone Wrong?

State space graph

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

A* graph search is optimal

Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal

Optimality of A* Graph Search

(more details)

Let's show that

On a path
$$n_1 \rightarrow n_2 \rightarrow ... \rightarrow n_k$$
 We have $f(n_1) \leq f(n_2) \leq ... \leq f(n_k)$

As *h* is consistent,

$$h(n_{i-1}) \leq c(s_{i-1}, s_i) + h(s_i)$$

Therefore, we have

$$f(n_{i-1}) = g(n_{i-1}) + h(n_{i-1}) \le g(n_{i-1}) + c(s_{i-1}, s_i) + h(s_i)$$

By construction,

$$g(n_i) = g(n_{i-1}) + c(s_{i-1}, s_i)$$

We conclude that

$$f(n_{i-1}) \le g(n_{i-1}) + c(s_{i-1}, s_i) + h(s_i) = g(n_i) + h(s_i) = f(n_i)$$

Optimality of A* Graph Search

(more details)

Recall that on a path $n_1 \rightarrow n_2 \rightarrow ... \rightarrow n_k$ We have $f(n_1) \leq f(n_2) \leq ... \leq f(n_k)$

Loop invariant

The node x removed from the frontier is such that g(x) is the cheapest cost from the initial state to s_x where s_x is the state associated to x

Proof by contradiction, let assume that there is a cheaper path

$$f(x') = g(x') + h(s_{x'}) < g(x) + h(s_x) = f(x)$$

Because $s_x = s_x$ we have $h(s_x) = h(s_x)$

Therefore x' will be removed from the frontier before x

Optimality Summary

Tree search:

- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems