Problem R-99N ( $C_5H_5Br_2CI_6O_3P$ )

90 MHz <sup>1</sup>H NMR spectrum

Source: Synth. React. Inorg. Met.-Org Chem., 1979, 9, 479



(a) Analyze and assign the signals at  $\delta$  5.8.

(b) Analyze the signals from  $\delta$  4.6-5.1. Draw a coupling tree, and report the J and  $\delta$  values below.

Problem R-99N ( $C_5H_5Br_2CI_6O_3P$ ) 90 MHz  $^1H$  NMR spectrum

Source: Synth. React. Inorg. Met.-Org Chem., 1979, 9, 479



(a) Analyze and assign the signals at  $\delta$  5.8.

This is the Br<sub>2</sub>C-H proton 
$$\delta$$
 5.8,  $^2J_{\text{H-P}}$  = 2 Hz

(b) Analyze the signals from  $\delta$  4.6-5.1. Draw a coupling tree, and report the J and  $\delta$  values below.

This is the AB part of an ABX pattern, diastereotopic  $CH_2$  group,  $X = {}^{31}P$ 

$$\delta_{\rm A}$$
 ca 4.91,  $J_{\rm AX}$  = 8.5 Hz  $\delta_{\rm B}$  ca 4.82,  $J_{\rm BX}$  = 8.5 Hz