

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE
Bureau international

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : G01N 33/542, 33/58		A1	(11) Numéro de publication internationale: WO 99/15896 (43) Date de publication internationale: 1er avril 1999 (01.04.99)
(21) Numéro de la demande internationale: PCT/FR98/01976 (22) Date de dépôt international: 16 septembre 1998 (16.09.98)		(81) Etats désignés: JP, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Données relatives à la priorité: 97/11721 19 septembre 1997 (19.09.97) FR		Publiée <i>Avec rapport de recherche internationale.</i>	
(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): CLS BIO INTERNATIONAL [FR/FR]; R.N. 306, F-91400 Saclay (FR).			
(72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>): MATHIS, Gérard [FR/FR]; 17, impasse de la Capelle des Ladres, F-30200 Bagnols sur Cèze (FR). TRINQUET, Eric [FR/FR]; Chemin Columbia, F-30150 Pont Saint Esprit (FR). PREAUDAT, Marc [FR/FR]; Cidex 1200, F-30330 Connaux (FR).			
(74) Mandataires: GILLARD, Marie-Louise etc.; Cabinet Beau de Loménie, 158, rue de l'Université, F-75340 Paris Cedex 07 (FR).			
(54) Titre: HOMOGENEOUS METHOD FOR DETECTING AND/OR DETERMINING PHOSPHORYLATING ACTIVITY IN A BIOLOGICAL MATERIAL			
(54) Titre: MÉTHODE HOMOGENE POUR LA DETECTION ET/OU LA DETERMINATION DE L'ACTIVITÉ PHOSPHORYLANTE D'UN MATERIEL BIOLOGIQUE			
(57) Abstract			
<p>The invention concerns a novel homogeneous method for detecting and/or determining the phosphorylation (or phosphorylating activity) of a biological material with respect to a substrate containing tyrosine and/or serine and/or threonine, and a kit for implementing said method.</p>			
(57) Abrégé			
<p>L'invention concerne une nouvelle méthode homogène pour la détection et/ou la détermination de l'activité de phosphorylation (ou activité phosphorylante) d'un matériel biologique à l'égard d'un substrat contenant de la tyrosine et/ou de la sérine et/ou de la thréonine, ainsi qu'un kit pour la mise en oeuvre de cette méthode.</p>			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lithuanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GB	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BP	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
RJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NB	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CC	Congo	KR	Kenya	NO	Norvège	VU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

Méthode homogène pour la détection et/ou la détermination de l'activité phosphorylante d'un matériel biologique.

L'invention concerne une nouvelle méthode homogène pour la détection et/ou la détermination de l'activité de phosphorylation (ou activité phosphorylante) d'un matériel biologique à l'égard d'un substrat contenant de la tyrosine et/ou de la sérine et/ou de la thréonine, ainsi qu'un kit pour la mise en œuvre de cette méthode.

La phosphorylation de molécules biologiques telles que des peptides ou des protéines par des kinases est un mécanisme biologique majeur de régulation du métabolisme cellulaire.

La plupart des enzymes possédant une activité de phosphorylation ont un K_m (constante de Michaelis) très élevé (généralement compris entre 10^{-3} et 10^{-5} M) et un très faible rendement de conversion (entre 5% et 0,001% des sites actifs du substrat sont phosphorylés).

Dans ces conditions, la détection de la phosphorylation d'un substrat n'est possible que si les sites actifs sont présents en large excès pendant la réaction. Ce large excès en sites actifs peut être obtenu soit en utilisant des concentrations élevées en substrat (si celui-ci a peu de sites actifs), soit en choisissant un substrat possédant de nombreux sites de phosphorylation.

Les mécanismes de phosphorylation ont jusqu'à maintenant été généralement étudiés par des méthodes de détection hétérogènes radioactives ou enzymatiques.

Dans ce type de méthodes, la détection de la phosphorylation du substrat fixé sur une phase solide se fait soit par la mesure de l'incorporation de ^{32}P dans le substrat enzymatique, soit par l'utilisation d'un anticorps marqué (traceur isotopique, enzymatique ou fluorescent) dirigé contre le site de phosphorylation.

Ce type d'essai permet la fixation d'une grande quantité de substrat sur la phase solide et donc la détection de la phosphorylation même lorsque le substrat ne possède qu'un faible nombre de sites actifs, mais présente néanmoins des inconvénients majeurs, à savoir :

- l'utilisation fréquente de marqueurs isotopiques,
- la nécessité de processus de séparation entre les différentes étapes de l'essai pour éliminer les réactifs en excès, et

- la nécessité de maîtriser les processus de « capture » du substrat (comme par exemple lorsqu'on utilise une plaque comportant de l'avidine avec un substrat biotine).

Dans le cas d'une méthode homogène, il est souvent nécessaire que la 5 concentration du substrat soit élevée pour générer suffisamment de substrat phosphorylé à détecter. Il devient alors difficile de capturer la totalité du substrat car cela nécessiterait une quantité importante de réactif, ce qui, si le réactif est fluorescent, présente l'inconvénient de générer un bruit de fond spécifique élevé.

10 On a maintenant trouvé qu'il était possible de détecter la phosphorylation d'un substrat à l'aide d'une méthode homogène dans laquelle on utilise une molécule porteuse luminescente à laquelle sont couplés de manière covalente une pluralité de substrats. Après la réaction enzymatique de phosphorylation, la quantité de substrat phosphorylé est révélée par la mesure 15 du signal émis par la molécule porteuse luminescente et générée par transfert d'énergie d'un récepteur spécifique du substrat phosphorylé marqué par une molécule luminescente.

Cette méthode est particulièrement utile pour mesurer la phosphorylation de molécules d'intérêt biologique, telles que par exemple des 20 peptides, des polypeptides, des protéines ou des nucléotides, dans des processus naturels ou pathologique, ou lors de procédés de synthèse comme par exemple la synthèse d'acides nucléiques ou de protéines.

Dans un premier aspect, l'invention a donc pour objet une méthode 25 homogène pour la détection et/ou la détermination de l'activité phosphorylante d'un matériel biologique à l'égard d'un substrat contenant de la tyrosine et/ou de la sérine et/ou de la thréonine, caractérisée en ce que ledit matériel biologique est mis en contact avec une pluralité de peptides ou de polypeptides contenant de la tyrosine et/ou de la sérine et/ou de la thréonine, identiques ou différents, liés de manière covalente à une molécule porteuse, en présence d'une source 30 de phosphate non radiomarqué et des récepteurs spécifiques desdits peptides ou polypeptides phosphorylés, et en ce que la détection et/ou la détermination de l'activité phosphorylante est effectuée par mesure d'un signal d'émission,

ledit signal d'émission résultant d'une interaction entre ladite molécule porteuse constituée par une molécule luminescente ou une molécule non luminescente liée à au moins un marqueur luminescent ou un modulateur du signal d'émission et lesdits récepteurs spécifiques liés à au moins un marqueur luminescent ou un modulateur du signal d'émission.

Par « marqueur luminescent », on entend une molécule luminescente utilisée pour détecter l'interaction entre la molécule porteuse et le récepteur spécifique.

Par « modulateur du signal d'émission », on entend une molécule qui, lorsqu'elle est présente à proximité d'une molécule luminescente, modifie les caractéristiques du signal d'émission de celle-ci.

Selon les molécules utilisées respectivement comme molécule porteuse et comme récepteur spécifique et selon le mécanisme de leur interaction, un même composé luminescent peut jouer le rôle de marqueur luminescent ou de modulateur du signal d'émission.

Ledit modulateur peut être une molécule luminescente, par exemple une molécule luminescente donneur ou accepteur, ou une molécule non luminescente, par exemple un atome de nombre atomique élevé ou une molécule contenant un tel atome comme décrit par exemple dans la demande EP 0 232 348, ou encore des composés marqueurs de spin.

La molécule porteuse peut être :

- soit une molécule luminescente ayant un poids moléculaire élevé, de l'ordre de plusieurs dizaines de kdaltons, comme par exemple une molécule fluorescente telle que l'alophycyanine ou la C phycocyanine ;
- soit une molécule non luminescente, comme par exemple la thyroglobuline, liée à au moins un marqueur luminescent ou à au moins un modulateur du signal d'émission ;
- soit un solide dispersé luminescent ayant une surface suffisante pour fixer une pluralité de peptides ou polypeptides substrats ;
- soit un solide dispersé non luminescent ayant une surface suffisante pour fixer une pluralité de peptides ou polypeptides substrats, lié à au moins un marqueur luminescent ou à au moins un modulateur du signal d'émission.

La molécule porteuse peut donc être soit une molécule luminescente accepteur, soit une molécule non luminescente liée à au moins un marqueur luminescent ou à au moins un modulateur du signal d'émission.

Dans la suite de la description, on emploiera sans distinction les termes
5 « molécule » ou « composé » pour qualifier les marqueurs luminescents ou les modulateurs liés à la molécule porteuse ou au récepteur spécifique.

Dans un aspect avantageux, la molécule porteuse est soit une molécule fluorescente accepteur, soit une molécule fluorescente donneur, soit
10 une molécule non fluorescente liée à au moins un composé fluorescent accepteur, ou à au moins un composé fluorescent donneur.

Avantageusement, le marqueur luminescent ou le modulateur du signal d'émission lié à chacun des récepteurs spécifiques du ou des peptide(s) ou polypeptide(s) phosphorylé(s) peut être une molécule fluorescente donneur ou accepteur.

15 Dans un aspect préféré, la détection et/ou la détermination de l'activité de phosphorylation est effectuée par mesure du signal d'émission résultant du transfert d'énergie non radiatif entre la molécule porteuse et les marqueurs luminescents ou les modulateurs du signal d'émission liés aux récepteurs spécifiques des peptides ou polypeptides phosphorylés.

20 Ainsi, le signal d'émission lumineuse permettant la détection et/ou la détermination de l'activité phosphorylante recherchée peut être généré soit par transfert d'énergie non radiatif des marqueurs luminescents ou des modulateurs du signal d'émission liés aux récepteurs spécifiques à la molécule porteuse, soit inversement par transfert d'énergie non radiatif des marqueurs luminescents ou
25 des modulateurs du signal d'émission de la molécule porteuse aux marqueurs luminescents liés aux récepteurs spécifiques.

Par "transfert d'énergie entre la molécule porteuse et les molécules luminescentes marqueurs ou les modulateurs du signal d'émission liés aux récepteurs spécifiques des peptides ou polypeptides phosphorylés", on entend
30 donc les 2 types de mécanismes ci-dessus.

Le transfert d'énergie non radiatif, dont le principe est notamment décrit dans G.Mathis et al., Clin. Chem., 1993, 39, 1953-1959 est réalisé lorsque les conditions suivantes sont remplies :

- d'une part, le composé accepteur possède un spectre d'absorption qui recouvre au moins partiellement le spectre d'émission du donneur et présente une absorbance molaire élevée dans cette zone de recouvrement, et un spectre d'émission dans une gamme de longueur d'ondes où le donneur présente une émission intrinsèque faible ;
- d'autre part, l'accepteur et le donneur se situent à proximité l'un de l'autre.

La quantité de peptides ou de polypeptides liés de manière covalente à la molécule luminescente porteuse peut être d'environ 2 à 1000 par molécule luminescente porteuse.

Les récepteurs spécifiques des peptides ou polypeptides phosphorylés peuvent être par exemple choisi parmi les anticorps monoclonaux ou polyclonaux.

Dans un aspect préféré, le composé luminescent lié au récepteur spécifique du ou des peptide(s) ou polypeptide(s) phosphorylé(s) ou à la molécule porteuse, en tant que marqueur luminescent ou de modulateur du signal d'émission selon le mécanisme de l'interaction entre ladite molécule porteuse et ledit récepteur spécifique, est un chelate, un cryptate ou un complexe macrocyclique d'ion terre rare.

Dans la suite de la description, les termes "chelate", et "cryptate" ainsi que la nomenclature des macrocycles et polycycles utilisables sont tels que définis par J.M.Lehn dans Struct. Bonding (Berlin), 16, 1 1973 et dans Acc. Chem. Res., 11, 49 (1979).

Ledit composé fluorescent donneur est de préférence un cryptate de terre rare choisi de préférence parmi les cryptates de terbium, d'europtium, de samarium ou de dysprosium.

Selon un aspect préféré, ledit cryptate de terre rare est constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique de formule

dans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents **(A)**, **(B)** et **(C)**, sont indépendamment l'un
 5 de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un hétéromacrocycle, au moins l'un des radicaux **(A)**, **(B)** et **(C)** comportant de plus au moins un motif moléculaire ou étant essentiellement constitué par un motif moléculaire, ledit motif moléculaire possédant une énergie de triplet supérieure
 10 à celle du niveau émissif de l'ion de terre rare complexé.

De préférence, il s'agit d'un cryptate de formule (I) ci-dessus dans laquelle le motif moléculaire est choisi parmi la phénanthroline, l'anthracène, le benzène, le naphtalène, les bi- et ter-phényle, l'azobenzène, l'azopyridine, la pyridine, les bipyridines, les bisquinoléines et les composés de formules ci-
 15 après :

- C₂H₄ - X₁ - C₆H₄ - X₂ - C₂H₄ -
- C₂H₄ - X₁ - CH₂ - C₆H₄ - CH₂ - X₂ - C₂H₄ -

X₁ et X₂ pouvant être identiques ou différents désignent l'oxygène, l'azote ou le soufre,

X étant l'oxygène ou l'hydrogène.

- Dans un aspect avantageux, le composé fluorescent est un cryptate de terre rare constitué de l'ion terbium ou europium complexé par l'un des 5 composés macrocycliques ci-après :
- (22)phénanthroline ; (22)phénanthroline amide ; (22)anthracène ;
 (22)anthracène amide ; (22)bi-isoquinoléine ; (22)biphényl-bis-pyridine ;
 (22)bipyridine ; (22)bi-pyridine amide ; les macropolycycles tris-bipyridine, tris-phénanthroline, phénanthroline-bis-bipyridine, bi-isoquinoléine-bis-bipyridine,
 10 bis-bipyridine diphénylbipyridine.

Un composé fluorescent particulièrement avantageux est le cryptate d'europium Eu tris bipyridine.

De tels composés sont par exemple décrits dans le brevet EP 180 492.

- On peut également utiliser des composés macrocycliques complexant 15 des ions de terre rare dans lesquels le motif moléculaire est choisi parmi les bipyrazines, les bipyrimidines et les hétérocycles azotés comportant des groupes N-oxydes.

Des composés macrocycliques à unités bipyrazines sont décrits dans F. Bodar-Houillon et al., New J. Chem., 1996, 20, 1041-1045.

Des composés macrocycliques à unités bipyrimidines sont décrits dans J. M. Lehn et al., Helv. Chim. Acta, 1992, 75, 1221.

Des composés macrocycliques comprenant des hétérocycles azotés comportant des groupes N-oxydes sont décrits dans J.M. Lehn et al., Helv. 5 Chim. Acta, 1991, 74, 572 et dans le brevet EP 0 601 113.

Le cryptate de terre rare utilisé comme composé fluorescent donneur peut également être constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique répondant à l'une des formules II ou III ci-après :

II

III

10

dans lesquels :

- le cycle de formule

est l'un des cycles suivants :

5

- Y est un groupe ou un bras d'espacement qui est constitué par un radical organique bivalent, choisi parmi les groupes alkylène linéaires ou ramifiés en C₁ à C₂₀ contenant éventuellement une ou plusieurs doubles liaisons ou triples liaisons et/ou étant éventuellement interrompus par un ou plusieurs hétéroatomes tels que l'oxygène, l'azote, le soufre ou le phosphore, parmi les groupes cycloalkylène en C₅ à C₈ ou parmi les groupes arylène en C₆ à C₁₄. lesdits groupes alkylène, cycloalkylène ou arylène étant éventuellement substitués par des groupes alkyle, aryle ou sulfonate ;

- Z est un groupe fonctionnel susceptible de se lier de façon covalente avec une substance biologique ;

- R est un groupe méthyle ou représente le groupe -Y-Z ;

- R' est l'hydrogène ou un groupe -COOR" dans lequel R" est un groupe alkyle en C₁ à C₁₀ et représente de préférence le groupe méthyle, éthyle ou tertiobutyle ou bien R' est un groupe -CO-NH-Y-Z.

De tels composés sont décrits par exemple dans le brevet EP 321 353.

5 Dans la méthode selon l'invention, ledit composé fluorescent peut être lié au récepteur spécifique ou à la molécule porteuse soit directement, soit par l'intermédiaire d'un bras d'espacement.

Ce bras d'espacement est par exemple constitué par un radical organique bivalent, choisi parmi les groupes alkylène linéaires ou ramifiés en 10 C₁-C₂₀, contenant éventuellement une ou plusieurs doubles liaisons et/ou éventuellement interrompus par un ou plusieurs hétéroatomes, tels que l'oxygène, l'azote, le soufre ou le phosphore ; les groupes carbamoyle et carboxamido ; les groupes cycloalkylène en C₅-C₈ et les groupes arylène en C₆-C₁₄, lesdits groupes alkylène, cycloalkylène ou arylène étant éventuellement 15 substitués par des groupes alkyle, aryle ou sulfonate.

Dans un aspect préféré, on utilisera en tant que composé fluorescent donneur lié au récepteur spécifique un cryptate d'europium et, en tant que molécule porteuse ou composé fluorescent accepteur lié à la molécule porteuse, l'allophycocyanine, l'allophycocyanine B, un dérivé d'allophycocyanine 20 chimiquement modifié, la C phycocyanine, la R phycocyanine et les cyanines.

Dans un autre aspect avantageux, on utilisera en tant que composé fluorescent donneur lié au récepteur spécifique un cryptate de terbium et en tant que molécule porteuse ou composé fluorescent accepteur lié à la molécule porteuse, les rhodamines, la thionine, la R phycocyanine, la 25 phyoerythrocyanine, la C phycoerythrine, la B phycoerythrine, la R phycoerythrine et les cyanines.

Des composés fluorescents utilisables également comme composés accepteurs sont les complexes phycobiliprotéine-peptide de liaison décrits dans la demande WO96/42016.

30 Selon un autre de ses aspects, l'invention concerne également un kit pour la détection et/ou la détermination de l'activité phosphorylante d'un matériel biologique à l'égard d'un substrat contenant de la et/ou de la sérine et/ou de la

thréonine, caractérisé en ce qu'il contient au moins une molécule porteuse à laquelle sont fixés de manière covalente une pluralité de peptides ou de polypeptides, identiques ou différents, et au moins un récepteur spécifique desdits peptides ou polypeptides phosphorylés, ledit récepteur étant lié à au moins un marqueur luminescent ou un modulateur du signal d'émission.

La molécule porteuse est telle que définie plus haut, c'est-à-dire qu'elle peut être luminescente de manière intrinsèque ou par liaison à au moins un marqueur luminescent ou un modulateur du signal d'émission.

Avantageusement, la molécule porteuse et le marqueur luminescent ou le modulateur du signal d'émission lié au récepteur spécifique de ce kit sont des composés fluorescents.

Dans un aspect préféré, le composé luminescent (marqueur luminescent ou modulateur du signal d'émission) lié au récepteur spécifique et la molécule porteuse sont respectivement des composés fluorescents donneur et accepteur.

Le composé luminescent lié au récepteur spécifique dans le kit selon l'invention peut être le cryptate d'europium Eu trisbipyridine ou le cryptate de terbium Tb trisbipyridine.

Avantageusement, le kit selon l'invention contient en outre un milieu tampon approprié, une source de phosphate non radiomarqué et des instructions pour la mise en œuvre de la méthode de détection et/ou de la détermination de l'activité phosphorylante d'un matériel biologique décrite plus haut.

L'invention est illustrée par l'exemple ci-après.

25 **Exemple 1 : Détection de la phosphorylation du peptide SRC**

Le peptide SRC est un substrat de la tyrosine kinase du récepteur du facteur de croissance épidermique, également dénommé EGF pour "Epidermal Growth Factor". C'est un peptide de 11 acides aminés contenant un seul motif tyrosine et présentant la structure suivante :

Les abréviations utilisées ci-après sont les suivantes :

DTT = dithiotreitol

EuTBP = cryptate d'euroeuropium Eu trisbipyridine diamine

BSA = sérum albumine bovine

5 IgG = immunoglobuline G

MHS = maléimidohexanoyl-N-hydroxy-succinimidester

SPDP = N-succinimidyl 3(2-pyridylidithio)propionate

Sulfo-SMCC = sulfosuccinimidyl 4-n-maléimidométhyl)cyclohexane.

10 1) Conjugaison de la molécule luminescente porteuse luminescente avec le peptide substrat

On utilise un dérivé d'allophycocyanine chimiquement modifié (XL₆₆₅, Cis bio international) dont le poids moléculaire élevé autorise son marquage par de nombreux peptides possédant chacun un site de phosphorylation.

15

a) Activation de XL₆₆₅ par SPDP

A 6 mg d' XL₆₆₅ à 3,45 mg/ml dans un tampon phosphate 100 mM pH 7,0, on ajoute une solution de 80 mM de SPDP dans l'éthanol absolu dans une préparation de 60 moles d'activateur par mole de XL₆₆₅.

20 Après 30 minutes d'activation à température ambiante on ajoute une solution de 200 mM de DTT dans un tampon phosphate 100 mM pH 7,0 dans une proportion de 5 moles de réducteur par mole d'activateur.

Après 15 minutes à température ambiante, les produits réactionnels indésirables sont éliminés par chromatographie d'exclusion-diffusion sur 25 colonne gel G25 superfine dans un tampon phosphate 100 mM pH 6,5, EDTA 5 Mm.

Le produit est conservé à 4°C avant couplage.

b) Activation du peptide par le MHS

A 4 mg de peptide (2,6 pmoles), on ajoute une solution 220 mM de MHS dans l'acétonitrile dans une proportion de 4 moles d'activateur par mole de peptide.

- 5 Après 30 minutes à température ambiante, les produits réactionnels indésirables sont éliminés par chromatographie d'exclusion-diffusion sur colonne gel Superdex 30 ® (PHARMACIA) dans un tampon phosphate 100 mM pH 7,0.

10 c) Couplage peptide-maléimide / XL₆₆₅-SH

De façon similaire à celle décrite plus haut, on fait réagir les fonctions maléimides avec les fonctions thiols fixées sur la XL₆₆₅ dans des proportions molaires de 100 peptide par XL₆₆₅.

- 15 Après 18 heures d'incubation à 40°C et blocage des groupements thiols (éventuellement restés libres) par N-éthylmaléimide, le peptide non couplé est éliminé par chromatographie d'exclusion-diffusion sur colonne TSK 3000 SW (MERCK) en tampon phosphate 100 mM pH 7,0.

On obtient un conjugué comportant entre 20 et 40 peptides par molécule XL₆₆₅.

20

2) Préparation du conjugué anticorps anti-phosphotyrosine/cryptate d'Europium Eu trisbipyridine

a) Activation des IgG PY20 par le SPDP

- 25 5 mg d'IgG PY20 (Transduction Laboratories) à raison de 10 mg/ml dans un tampon phosphate 100 mM, pH 7,0 sont activés par l'ajout d'une solution de SPDP (Pierce, USA) à raison de 6,4 mM dans du dioxane dans un rapport molaire de 7,5 SPDP par IgG P420.

- 30 Après 35 min d'activation à température ambiante, l'IgG pyridine-2-thione est purifiée sur colonne G25 superfine dans un tampon phosphate 100 mM, EDTA 5mM, pH 6,5.

Les protéines sont concentrées et les groupes 2-pyridyl disulfides sont réduits par une solution de DTT (Sigma, USA) ayant une concentration finale de 19 mM pendant 15 min à température ambiante. Le DTT et la pyridine-2-thione sont éliminés par purification sur colonne G25 superfine en tampon phosphate 5 100 mM, EDTA 5 mM, pH 6,5. La concentration en IgG-SH est déterminée à 280 nm avec un $\epsilon_{280\text{nm}}$ de $210\,000\text{ M}^{-1}\text{ cm}^{-1}$.

b) Préparation des conjugués IgG PY20-EuTBP

A 5 mg ($5\,10^{-6}$ moles) de Eu TBP (cryptate d'Europium Eu trisbipyridine 10 diamine préparé comme décrit dans le brevet EP 321 353, exemples 3 et 4 ?) est ajoutée une solution à 25 mM de sulfo-SMCC, en tampon phosphate 20 mM, diméthylformamide 10 % (v/v pH 7,0) dans une proportion de 2,5 moles d'activateur par mole de Eu TBP.

Après 45 min d'activation à température ambiante, le milieu réactionnel 15 est filtré à 0,8 µm afin d'éliminer le précipité éventuellement formé. Les produits réactionnels indésirables (sulfo-SMCC, N-hydroxysuccinimide, acide (N-maléimidométhyl)carboxylique) sont éliminés par chromatographie échangeuse d'ions sur colonne Mono Q (Pharmacia, Suède) en tampon phosphate 20 mM diméthylformamide 10 % (v/v), pH 7,0 sous choc de NaCl. La 20 concentration en Eu TBP maléimide est déterminée à 307 nm avec un $\epsilon_{307\text{nm}}$ de $25\,000\text{ M}^{-1}\text{ cm}^{-1}$ ainsi que le rapport $A_{307\text{nm}}/A_{280\text{nm}}$.

De façon similaire à celle décrite plus haut, on fait réagir les fonctions maléimides avec les fonctions thiols fixés sur l'anticorps, dans des proportions molaires variant de 10 à 30 Eu TBP maléimide par IgG PY20-SH.

25 Après 18 heures d'incubation à 4°C et blocage des groupements thiols (éventuellement restés libres) par N-éthylmaléimide, le Eu TBP non couplé est éliminé par dialyse en tampon phosphate 100 Mm pH 7,0 à 4°C jusqu'à épuisement (plus de fluorescence dans les bains de dialyse).

Les caractéristiques du conjugué sont déterminées par ses absorptions 30 à 307 nm et à 280 nm en utilisant les valeurs suivantes en tenant compte de l'absorption propre du cryptate déterminée par le rapport $A_{307\text{nm}}/A_{280\text{nm}}$.

Eu TBP-maléimide :

$$\epsilon_{307\text{nm}} = 25\,000 \text{ M}^{-1} \text{ cm}^{-1}$$

$A_{307\text{nm}}/A_{280\text{nm}}$ = déterminée expérimentalement.

IgG PY20-SH :

5 $\epsilon_{280\text{nm}} = 210\,000 \text{ M}^{-1} \text{ cm}^{-1}$

3) Phosphorylation

Des cellules A431 (SIGMA) contenant un récepteur de l'EGF sont préactivées 10 min à température ambiante par de l'EGF. Le tampon de phosphorylation est un tampon TRIS/MES 60 mM, pH 7,4 contenant 30 μM d'ATP, 50 mM de Mg^{++} et 10 mM de Mn^{++} .

On ajoute successivement dans les puits « essais » d'une microplaque à 96 puits :

- 10 μl de cellules A431 préactivées,
15 - 10 μl de conjugué XL₆₆₅-peptides SRC
- 30 μl de tampon de phosphorylation.

Dans les puits « blancs » servant de contrôle, on introduit 10 μl de conjugué tampon XL₆₆₅-peptides et 40 μl de tampon de phosphorylation. On incube ensuite 30 min à température ambiante.

20

4) Révélation

On ajoute successivement dans chaque puits de la microplaque :

- 50 μl d'anticorps/anti-phosphotyrosine marqué au cryptate Eu trisbipyridine
- 100 μl de tampon phosphate 0,1 M ; pH 7 ; KF 0,4 M ; BSA 0,1 %.

25 Après incubation 30 min à température ambiante, la lecture de la fluorescence est effectuée à 620 nm et 665 nm à l'aide d'un fluorimètre à laser prototype, décrit ci-après :

Un laser pulsé à azote (LASER SCIENCE INC., modèle LS1-337ND) est utilisé comme source d'excitation (longueur d'onde à 337,1 nm). La durée des pulsations est spécifiée à 3 nanosecondes et est répétée sous une fréquence

de 10 Hertz. Le faisceau passe à travers un filtre (CORNING) afin d'éliminer toute lumière parasite à l'excitation autre que 337 nm.

Après être rentré dans la chambre de mesure, le faisceau est réfléchi par un filtre dichroïque, placé à 45 degrés, qui a la propriété de réfléchir les 5 ultraviolets et de pouvoir transmettre la lumière visible.

Le faisceau réfléchi par le filtre dichroïque est focalisé sur le puits à mesurer d'une microplaquette par une lentille en silice fondu. L'émission de fluorescence est collectée selon un angle solide de 20 degrés, collimatée par la même lentille, et passe directement à travers le filtre dichroïque (fluorescence 10 en lumière visible).

Un filtre interférentiel de caractéristiques définies selon la longueur d'onde de fluorescence à détecter, permet de se débarrasser des lumières pouvant parasiter le signal, dont l'intensité est ensuite mesurée par un photomultiplicateur (HAMAMATSU R2949).

15 Le compteur de photons utilisé est un SR-400 (STANFORD RESEARCH SYSTEMS), dont les opérations et la synchronisation avec le laser sont contrôlées par un ordinateur de type IBM PC-AT via une sortie RS 232. Les pulsations provenant du photomultiplicateur sont enregistrées pendant une fenêtre de temps (t_g) et après un délai (t_d) déterminés à condition qu'elles 20 soient supérieures à un niveau discriminant sélectionné par le compteur de photons afin d'optimiser le rapport signal/bruit du photomultiplicateur.

Une table X-Y, pilotée par l'IBM PC-AT, permet les différents positionnements de la microplaquette de mesure par des moteurs pas à pas, incluant les manœuvres de chargement, de positionnement sous le faisceau 25 excitant, de lecture automatique en séquentiel des 96 puits, et de sortie.

La fluorescence émise par le conjugué XL₆₆₅-peptides SRC est mesurée à l'aide du fluorimètre prototype équipé d'un filtre à 665 nm de 10 nm de largeur à mi-hauteur, pendant 400 µs et avec un délai de 50 µs.

Les résultats sont représentés sur le graphe de la figure 1, dans lequel 30 l'axe des ordonnées donne le taux de phosphorylation et l'axe des abscisses donne la concentration en conjugué XL₆₆₅-peptides SRC.

Le taux de phosphorylation est exprimé par la variable DR = $R_{\text{échantillon}} - R_{\text{blanc}}$, R étant le rapport des signaux d'émission à 665 nm et à 620 nm.

La concentration en conjugué XL₆₆₅-peptides SRC est exprimée en nM de XL₆₆₅.

- 5 Les résultats montrent que l'augmentation du taux de phosphorylation est corrélée à l'augmentation de la concentration de conjugué XL₆₆₅-peptides SRC.

REVENDICATIONS

1. Méthode homogène pour la détection et/ou la détermination de l'activité phosphorylante d'un matériel biologique à l'égard d'un substrat contenant de la tyrosine et/ou de la sérine et/ou de la thréonine, caractérisée en ce que ledit matériel biologique est mis en contact avec une pluralité de peptides ou de polypeptides contenant de la tyrosine et/ou de la sérine et/ou de la thréonine, identiques ou différents, liés de manière covalente à une molécule porteuse, en présence d'une source de phosphate non radiomarqué et des récepteurs spécifiques desdits peptides ou polypeptides phosphorylés, et en ce que la détection et/ou la détermination de l'activité phosphorylante est effectuée par mesure d'un signal d'émission, ledit signal d'émission résultant d'une interaction entre ladite molécule porteuse constituée par une molécule luminescente ou une molécule non luminescente liée à au moins un marqueur luminescent ou un modulateur du signal d'émission et lesdits récepteurs spécifiques liés à au moins un marqueur luminescent ou un modulateur du signal d'émission.
2. Méthode selon la revendication 1, caractérisée en ce que la détection et/ou la détermination de l'activité phosphorylante est effectuée par mesure du signal d'émission résultant du transfert d'énergie entre les marqueurs luminescents ou les modulateurs du signal d'émission liés aux récepteurs spécifiques des peptides ou polypeptides phosphorylés et la molécule porteuse.
3. Méthode selon l'une des revendications 1 ou 2 caractérisée en ce que la molécule porteuse luminescente est une molécule fluorescente ou une molécule non fluorescente liée à au moins un marqueur fluorescent ou à au moins un modulateur du signal d'émission.
4. Méthode selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le marqueur luminescent ou le modulateur du signal d'émission lié au récepteur spécifique est un composé fluorescent.
5. Méthode selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le récepteur spécifique est lié à un composé fluorescent donneur et la molécule porteuse est une molécule fluorescente accepteur ou est liée à un composé fluorescent accepteur.

6. Méthode selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le récepteur spécifique est lié à un composé fluorescent accepteur et la molécule porteuse luminescente est une molécule fluorescente donneur ou est liée à un composé fluorescent donneur.
- 5 7. Méthode selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la quantité de peptides ou polypeptides liés de manière covalente à la molécule porteuse luminescente est de 2 à 1000.
8. Méthode selon l'une quelconque des revendications 1 à 7, caractérisée en ce que le récepteur spécifique est lié à un chélate, un cryptate ou un 10 complexe macrocyclique d'ion terre rare.
9. Méthode selon la revendication 8, caractérisée en ce que le récepteur spécifique est lié à un chélate, un cryptate ou un complexe macrocyclique d'europtium, de terbium, de dysprosium, de samarium ou de néodymium.
10. Méthode selon la revendication 9, caractérisée en ce que le récepteur spécifique est lié à un cryptate de terre rare constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique de formule

- dans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente 20 l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents (A), (B) et (C), sont indépendamment l'un de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un hétéromacrocycles, au moins l'un des radicaux (A), (B) et (C) comportant de plus 25 au moins un motif moléculaire ou étant essentiellement constitué par un motif moléculaire, ledit motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé.

11. Méthode selon la revendication 10, caractérisée en ce que le composé fluorescent lié au récepteur spécifique est un cryptate de terre rare constitué de l'ion terbium ou europium complexé par l'un des composés macrocycliques ci-après :
 - 5 (22)phénanthroline ; (22)phénanthroline amide ; (22)anthracène ; (22)anthracène amide ; (22)bi-isoquinoléine ; (22)biphényl-bis-pyridine ; (22)bipyridine ; (22)bi-pyridine amide ; les macropolycycles tris-bipyridine, tris-phénanthroline, phénanthroline-bis-bipyridine, bi-isoquinoléine-bis-bipyridine, bis-bipyridine diphénylbipyridine.
- 10 12. Méthode selon la revendication 11, caractérisée en ce que ledit composé fluorescent est le cryptate deuropium Eu trisbipyridine.
13. Méthode selon l'une quelconque des revendications 1 à 12, caractérisée en ce qu'on utilise un cryptate deuropium en tant que composé fluorescent donneur lié au récepteur spécifique et en tant que molécule porteuse ou
- 15 14. Méthode selon l'une quelconque des revendications 1 à 12, caractérisée en ce qu'on utilise un cryptate de terbium en tant que composé fluorescent donneur lié au récepteur spécifique et, en tant que molécule porteuse ou composé fluorescent accepteur lié à la molécule porteuse, l'allophycocyanine, l'allophycocyanine B, les dérivés dallophycyanine chimiquement modifiés, la C phycocyanine, la R phycocyanine et les cyanines.
- 20 15. Méthode selon l'une quelconque des revendications 1 à 14, caractérisée en ce que le composé fluorescent donneur lié au récepteur spécifique est le cryptate deuropium Eu trisbipyridine ou le cryptate de terbium Tb trisbipyridine.
- 25 16. Méthode selon l'une quelconque des revendications 1 à 15, caractérisée en ce que les récepteurs spécifiques sont choisis parmi les anticorps polyclonaux et monoclonaux.
- 30 17. Kit pour la détection et/ou la détermination de l'activité phosphorylante d'un matériel biologique à l'égard d'un substrat contenant de la et/ou de la sérine et/ou de la thréonine, caractérisé en ce qu'il contient au moins une

molécule porteuse à laquelle sont fixés de manière covalente une pluralité de peptides ou de polypeptides, identiques ou différents, et au moins un récepteur spécifique desdits peptides ou polypeptides phosphorylés, ledit récepteur étant lié à au moins un marqueur ou un modulateur du signal d'émission.

- 5 18. Kit selon la revendication 17, caractérisé en ce que la molécule porteuse et la molécule luminescente marqueur du récepteur spécifique sont des molécules fluorescentes.
- 10 19. Kit selon la revendication 18, caractérisé en ce que le marqueur luminescent ou le modulateur du signal d'émission lié au récepteur spécifique et la molécule porteuse sont respectivement des molécules fluorescentes donneur et accepteur.
- 15 20. Kit selon l'une quelconque des revendications 17 à 19, caractérisé en ce que le composé luminescent lié au récepteur spécifique est le cryptate d'europium Eu trisbipyridine ou le cryptate de terbium Tb trisbipyridine.
21. Kit selon l'une quelconque des revendications 17 à 20, caractérisé en ce qu'il contient en outre un milieu tampon approprié, une source de phosphate non radiomarqué et des instructions pour la mise en oeuvre de la méthode selon l'une quelconque des revendications 1 à 16.

1/1

FIGURE 1

RAPPORT DE RECHERCHE INTERNATIONALE

Den à Internationale No

PCT/FR 98/01976

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 6 G01N33/542 G01N33/58

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 G01N

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	US 5 439 797 A (TSIEN ROGER Y ET AL) 8 août 1995	1-7, 17, 18, 21
Y	voir exemples I-IV	8-16, 19-21
Y	GADELLA T W J JR ET AL: "Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy: A stereochemical model for tyrosine kinase receptor activation." JOURNAL OF CELL BIOLOGY 129 (6). 1995. 1543-1558. ISSN: 0021-9525, XP002065454 voir le document en entier	1-7, 17, 18, 21
		-/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constitutif de base de l'invention
- *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- *Y* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *Z* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

10 novembre 1998

Date d'expédition du présent rapport de recherche internationale

07/12/1998

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentbuurt 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Fonctionnaire autorisé

Wells, A

RAPPORT DE RECHERCHE INTERNATIONALE

Dem. Internationale No
PCT/FR 98/01976

C (suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec le cas échéant, l'indication des passages pertinents	no. des revendications visées
Y	BROODY V C ET AL: "Analysis of c-kit receptor dimerization by fluorescence resonance energy transfer." BLOOD 91 (3). 1998. 898-906. ISSN: 0006-4971, XP002065455 voir le document en entier	1-7, 17, 18, 21
Y	HORROCKS W D JR ET AL: "MEASUREMENT OF DISTANCE BETWEEN FLUORESCENT AMINO-ACID RESIDUES AND METAL ION BINDING SITES QUANTITATION OF ENERGY TRANSFER BETWEEN TRYPTOPHAN AND TERBIUM III OR EUROPIUM III IN THERMO LYSIN EC-3.4.24.4." BIOCHEM BIOPHYS RES COMMUN 100 (1). 1981. 111-117. CODEN: BBRCA9 ISSN: 0006-291X, XP002065456 voir le document en entier	1-21
P, X	WO 98 09169 A (TULARIK INC) 5 mars 1998 voir revendication 1	1
P, X	WO 98 02571 A (UNIV CALIFORNIA ;TSIEN ROGER Y (US); CUBITT ANDREW B (US)) 22 janvier 1998 voir revendication 1	1
Y	WO 93 05049 A (CIS BIO INT) 18 mars 1993 cité dans la demande voir le document en entier & EP 0 601 113 A	8-16, 19-21
Y	US 5 279 943 A (MATHIS GERARD ET AL) 18 janvier 1994 cité dans la demande voir le document en entier & EP 0 232 348 A	8-16, 19-21
Y	EP 0 180 492 A (COMMISSARIAT ENERGIE ATOMIQUE) 7 mai 1986 cité dans la demande voir le document en entier	8-16, 19-21
Y	WO 96 00901 A (UNIV CALIFORNIA) 11 janvier 1996 voir le document en entier	8-16, 19-21
A	WO 96 42016 A (CIS BIO INT ;MATHIS GERARD (FR)) 27 décembre 1996 cité dans la demande voir le document en entier	1

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Document brevet cité

Date Internationale No

PCT/FR 98/01976

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US 5439797 A	08-08-1995	AT 170980 T DE 69130171 D EP 0537270 A WO 9200388 A	15-09-1998 15-10-1998 21-04-1993 09-01-1992
WO 9809169 A	05-03-1998	US 5759787 A AU 4091497 A	02-06-1998 19-03-1998
WO 9802571 A	22-01-1998	AU 3801997 A	09-02-1998
WO 9305049 A	18-03-1993	FR 2680787 A AT 147391 T AU 2568092 A DE 69216621 D DE 69216621 T EP 0601113 A ES 2099280 T JP 6510296 T US 5457184 A	05-03-1993 15-01-1997 05-04-1993 20-02-1997 24-07-1997 15-06-1994 16-05-1997 17-11-1994 10-10-1995
US 5279943 A	18-01-1994	FR 2585836 A AU 595821 B AU 6147386 A CA 1279260 A EP 0232348 A WO 8700927 A IE 59302 B JP 7058291 B JP 63500399 T	06-02-1987 12-04-1990 05-03-1987 22-01-1991 19-08-1987 12-02-1987 09-02-1994 21-06-1995 12-02-1988
EP 0180492 A	07-05-1986	FR 2570703 A CA 1329593 A CA 1339200 A DE 3587380 D DE 3587380 T JP 1997833 C JP 6199858 A JP 7014935 B JP 1997834 C JP 6184151 A	28-03-1986 17-05-1994 05-08-1997 08-07-1993 05-01-1994 08-12-1995 19-07-1994 22-02-1995 08-12-1995 05-07-1994

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Den. à Internationale No

PCT/FR 98/01976

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP 0180492 A		JP 7015471 B JP 1925883 C JP 6055741 B JP 61087680 A US 5220012 A US 4927923 A US 5432101 A	22-02-1995 25-04-1995 27-07-1994 06-05-1986 15-06-1993 22-05-1990 11-07-1995
WO 9600901 A	11-01-1996	US 5622821 A AU 688928 B AU 2956795 A CA 2193501 A EP 0767912 A JP 10505820 T US 5656433 A US 5639615 A	22-04-1997 19-03-1998 25-01-1996 11-01-1996 16-04-1997 09-06-1998 12-08-1997 17-06-1997
WO 9642016 A	27-12-1996	FR 2735238 A EP 0830601 A	13-12-1996 25-03-1998

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No
PCT/FR 98/01976

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G01N33/542 G01N33/58

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 439 797 A (TSIEN ROGER Y ET AL) 8 August 1995	1-7, 17, 18, 21
Y	see examples I-IV	8-16, 19-21
Y	GADELLA T W J JR ET AL: "Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy: A stereochemical model for tyrosine kinase receptor activation." JOURNAL OF CELL BIOLOGY 129 (6). 1995. 1543-1558. ISSN: 0021-9525, XP002065454 see the whole document	1-7, 17, 18, 21

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *U* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *A* document member of the same patent family

Date of the actual completion of the international search

10 November 1998

Date of mailing of the international search report

07/12/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3018

Authorized officer

Wells, A

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.
PCT/FR 98/01976

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Y	BROUDY V C ET AL: "Analysis of c-kit receptor dimerization by fluorescence resonance energy transfer." BLOOD 91 (3). 1998. 898-906. ISSN: 0006-4971, XP002065455 see the whole document	1-7,17, 18,21
Y	HORROCKS W D JR ET AL: "MEASUREMENT OF DISTANCE BETWEEN FLUORESCENT AMINO-ACID RESIDUES AND METAL ION BINDING SITES QUANTITATION OF ENERGY TRANSFER BETWEEN TRYPTOPHAN AND TERBIUM III OR EUROPIUM III IN THERMO LYSIN EC-3.4.24.4." BIOCHEM BIOPHYS RES COMMUN 100 (1). 1981. 111-117. CODEN: BBRCA9 ISSN: 0006-291X, XP002065456 see the whole document	1-21
P,X	WO 98 09169 A (TULARIK INC) 5 March 1998 see claim 1	1
P,X	WO 98 02571 A (UNIV CALIFORNIA ;TSIEN ROGER Y (US); CUBITT ANDREW B (US)) 22 January 1998 see claim 1	1
Y	WO 93 05049 A (CIS BIO INT) 18 March 1993 cited in the application see the whole document & EP 0 601 113 A	8-16, 19-21
Y	US 5 279 943 A (MATHIS GERARD ET AL) 18 January 1994 cited in the application see the whole document & EP 0 232 348 A	8-16, 19-21
Y	EP 0 180 492 A (COMMISSARIAT ENERGIE ATOMIQUE) 7 May 1986 cited in the application see the whole document	8-16, 19-21
Y	WO 96 00901 A (UNIV CALIFORNIA) 11 January 1996 see the whole document	8-16, 19-21
A	WO 96 42016 A (CIS BIO INT ;MATHIS GERARD (FR)) 27 December 1996 cited in the application see the whole document	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 98/01976

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5439797	A 08-08-1995	AT 170980 T DE 69130171 D EP 0537270 A WO 9200388 A		15-09-1998 15-10-1998 21-04-1993 09-01-1992
WO 9809169	A 05-03-1998	US 5759787 A AU 4091497 A		02-06-1998 19-03-1998
WO 9802571	A 22-01-1998	AU 3801997 A		09-02-1998
WO 9305049	A 18-03-1993	FR 2680787 A AT 147391 T AU 2568092 A DE 69216621 D DE 69216621 T EP 0601113 A ES 2099280 T JP 6510296 T US 5457184 A		05-03-1993 15-01-1997 05-04-1993 20-02-1997 24-07-1997 15-06-1994 16-05-1997 17-11-1994 10-10-1995
US 5279943	A 18-01-1994	FR 2585836 A AU 595821 B AU 6147386 A CA 1279260 A EP 0232348 A WO 8700927 A IE 59302 B JP 7058291 B JP 63500399 T		06-02-1987 12-04-1990 05-03-1987 22-01-1991 19-08-1987 12-02-1987 09-02-1994 21-06-1995 12-02-1988
EP 0180492	A 07-05-1986	FR 2570703 A CA 1329593 A CA 1339200 A DE 3587380 D DE 3587380 T JP 1997833 C JP 6199858 A JP 7014935 B JP 1997834 C JP 6184151 A		28-03-1986 17-05-1994 05-08-1997 08-07-1993 05-01-1994 08-12-1995 19-07-1994 22-02-1995 08-12-1995 05-07-1994

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte...nal Application No

PCT/FR 98/01976

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0180492	A	JP 7015471 B JP 1925883 C JP 6055741 B JP 61087680 A US 5220012 A US 4927923 A US 5432101 A	22-02-1995 25-04-1995 27-07-1994 06-05-1986 15-06-1993 22-05-1990 11-07-1995
WO 9600901	A 11-01-1996	US 5622821 A AU 688928 B AU 2956795 A CA 2193501 A EP 0767912 A JP 10505820 T US 5656433 A US 5639615 A	22-04-1997 19-03-1998 25-01-1996 11-01-1996 16-04-1997 09-06-1998 12-08-1997 17-06-1997
WO 9642016	A 27-12-1996	FR 2735238 A EP 0830601 A	13-12-1996 25-03-1998