Drawing Large Graphs Using Divisive Hierarchical k-means

Barbara Ikica

22. 11. 2012

▶ Idea behind the algorithm

- ▶ Idea behind the algorithm
- Implementation

- ▶ Idea behind the algorithm
- ► Implementation
 - ▶ Hierarchical clustering (Divisive Hierarchical *k*-means)

- ▶ Idea behind the algorithm
- ► Implementation
 - ► Hierarchical clustering (Divisive Hierarchical *k*-means)
 - Graph representation

- ▶ Idea behind the algorithm
- Implementation
 - Hierarchical clustering (Divisive Hierarchical k-means)
 - Graph representation
 - Identifying connected components

- ▶ Idea behind the algorithm
- Implementation
 - Hierarchical clustering (Divisive Hierarchical k-means)
 - Graph representation
 - Identifying connected components
 - Diffusion kernels on graphs

- ▶ Idea behind the algorithm
- ► Implementation
 - Hierarchical clustering (Divisive Hierarchical k-means)
 - Graph representation
 - Identifying connected components
 - Diffusion kernels on graphs
 - Drawing

- ▶ Idea behind the algorithm
- ► Implementation
 - Hierarchical clustering (Divisive Hierarchical k-means)
 - Graph representation
 - Identifying connected components
 - Diffusion kernels on graphs
 - Drawing
 - Time complexity

- ▶ Idea behind the algorithm
- ► Implementation
 - Hierarchical clustering (Divisive Hierarchical k-means)
 - Graph representation
 - Identifying connected components
 - Diffusion kernels on graphs
 - Drawing
 - Time complexity
 - Random projections

Objective: Arrangement of the (sets of the) vertices of a graph G = (V(G), E(G)) at the level of hierarchy n

Objective: Arrangement of the (sets of the) vertices of a graph $G=\big(V(G),E(G)\big)$ at the level of hierarchy n

1. Determining the partition of V(G): $\mathcal{P}_n = \{M_i\}_{i=1}^m$

Objective: Arrangement of the (sets of the) vertices of a graph $G=\big(V(G),E(G)\big)$ at the level of hierarchy n

- 1. Determining the partition of V(G): $\mathcal{P}_n = \{M_i\}_{i=1}^m$
- 2. Determining the drawing area for each $M_i \in \mathcal{P}_n$

k-means clustering

$$M := \{v_i\}_{i=1}^n, \quad v_i \in \mathbb{R}^d \quad \forall i, \quad 1 \le i \le n.$$

We aim to partition the set M into k clusters $\mathcal{P} = \{S_1, S_2, \dots, S_k\}$ so as to minimize the within-cluster sum of squares

$$\boxed{\min_{\mathcal{P}} \sum_{i=1}^{k} \sum_{v_j \in S_i} \left\| v_j - \mu_i \right\|^2},$$

where $\mu_i := \frac{1}{|S_i|}(\sum_{v_j \in S_i} v_j)$ is the *centroid vector* of the cluster S_i .

k-means clustering

▶ NP-hard problem

k-means clustering

- NP-hard problem
- ▶ If k and d are fixed, the problem can be exactly solved in $O(n^{dk+1}\log n)$ steps.

k-means clustering

Recall that:

We aim to partition the set M into k clusters $\mathcal{P} = \{S_1, S_2, \dots, S_k\}$ so as to minimize the within-cluster sum of squares

$$\min_{\mathcal{P}} \sum_{i=1}^{k} \sum_{v_j \in S_i} \left\| v_j - \mu_i \right\|^2.$$

Corollary 1

$$\min_{z \in \mathbb{R}^d} \sum_{v \in S} \|v - z\|^2 = \sum_{v \in S} \|v - \mu\|^2$$

k-means clustering

Lemma 1

Choose arbitrary $S \subset \mathbb{R}^d$ and $z \in \mathbb{R}^d$. Then

$$\sum_{v \in S} \|v - z\|^2 = \sum_{v \in S} \|v - \mu\|^2 + |S| \|z - \mu\|^2,$$

where μ is the centroid vector of the cluster S, i.e. $\mu = \frac{1}{|S|} \sum_{v \in S} v$.

Corollary 1

$$\min_{z \in \mathbb{R}^d} \sum_{v \in S} \|v - z\|^2 = \sum_{v \in S} \|v - \mu\|^2$$

k-means clustering

Lemma 1

Choose arbitrary $S \subset \mathbb{R}^d$ and $z \in \mathbb{R}^d$. Then

$$\sum_{v \in S} \|v - z\|^2 = \sum_{v \in S} \|v - \mu\|^2 + |S| \|z - \mu\|^2,$$

where μ is the centroid vector of the cluster S, i.e. $\mu = \frac{1}{|S|} \sum_{v \in S} v$.

Lemma 2

Let X denote an arbitrary random variable with values in \mathbb{R}^d . For any $z \in \mathbb{R}^d$ the following holds:

$$E(\|X - z\|^2) = E(\|X - E(X)\|^2) + \|z - E(X)\|^2.$$

k-means clustering – iterative algorithm

▶ Randomly pick k vectors from $M=\{v_1,v_2,\ldots,v_n\}$ as the centroids $\mu_i^{(0)}$ for each $i=1,2,\ldots,k$.

k-means clustering – iterative algorithm

- ▶ Randomly pick k vectors from $M=\{v_1,v_2,\ldots,v_n\}$ as the centroids $\mu_i^{(0)}$ for each $i=1,2,\ldots,k$.
- For $t = 0, 1, 2, \ldots$ repeat (for each $i = 1, 2, \ldots, k$)

1.
$$S_i^{(t)} = \left\{ v_p : \left\| v_p - \mu_i^{(t)} \right\|^2 \le \left\| v_p - \mu_j^{(t)} \right\|^2 \quad \forall \ j : 1 \le j \le k \right\}$$

k-means clustering – iterative algorithm

- ▶ Randomly pick k vectors from $M=\{v_1,v_2,\ldots,v_n\}$ as the centroids $\mu_i^{(0)}$ for each $i=1,2,\ldots,k$.
- ▶ For t = 0, 1, 2, ... repeat (for each i = 1, 2, ..., k)
 - 1. $S_i^{(t)} = \left\{ v_p : \left\| v_p \mu_i^{(t)} \right\|^2 \le \left\| v_p \mu_j^{(t)} \right\|^2 \quad \forall \ j : 1 \le j \le k \right\}$ and
 - 2. $\mu_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{v_j \in S_i^{(t)}} v_j$

k-means clustering – iterative algorithm

- ▶ Randomly pick k vectors from $M=\{v_1,v_2,\ldots,v_n\}$ as the centroids $\mu_i^{(0)}$ for each $i=1,2,\ldots,k$.
- For $t = 0, 1, 2, \ldots$ repeat (for each $i = 1, 2, \ldots, k$)
 - 1. $S_i^{(t)} = \left\{ v_p : \left\| v_p \mu_i^{(t)} \right\|^2 \le \left\| v_p \mu_j^{(t)} \right\|^2 \quad \forall \ j : 1 \le j \le k \right\}$ and
 - 2. $\mu_i^{(t+1)} = \frac{1}{\left|S_i^{(t)}\right|} \sum_{v_j \in S_i^{(t)}} v_j$

until there is no further change in the assignments of the vectors to the clusters $S_i^{(t)}$ (for each i) in the partition V.

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t-1)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \tag{1}$$

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t-1)}} \left\| v_j - \mu_i^{(t)} \right\|^2, \text{ since}$$
 (1)

$$S_i^{(t)} = \left\{ v_p : \left\| v_p - \mu_i^{(t)} \right\|^2 \leq \left\| v_p - \mu_j^{(t)} \right\|^2 \quad \forall \ j : 1 \leq j \leq k \right\}.$$

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \tag{2}$$

k-means clustering — iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_i \in S_z^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2, \text{ since}$$
 (2)

$$\mu_i^{(t+1)} = rac{1}{\left|S_i^{(t)}
ight|} \sum_{v_i \in S^{(t)}} v_j$$
 and

$$\mu_i^{(t+1)} = \frac{1}{\left|S_i^{(t)}\right|} \sum_{v \in S^{(t)}} v_j \quad \text{and} \quad \min_{z \in \mathbb{R}^d} \sum_{v \in S} \|v - z\|^2 = \sum_{v \in S} \|v - \mu\|^2.$$

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

Proof. Thus

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t-1)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \tag{1}$$

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$$
 (2)

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

Proof. Thus

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t+1)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \tag{1}$$

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2 \tag{2}$$

k-means clustering – iterative algorithm

Lemma 3

The value of the expression $\sum_{i=1}^k \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2$ decreases monotonically during iteration.

Proof. Thus

$$\sum_{i=1}^{k} \sum_{v_j \in S_i^{(t+1)}} \left\| v_j - \mu_i^{(t+1)} \right\|^2 \le \sum_{i=1}^{k} \sum_{v_j \in S_i^{(t)}} \left\| v_j - \mu_i^{(t)} \right\|^2.$$

Hierarchical clustering

M

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Figure: Schematic representation of the hierarchical partition of the set ${\cal M}.$

Figure: Schematic representation of the hierarchical partition of the set ${\cal M}.$

Figure: Schematic representation of the hierarchical partition of the set ${\cal M}.$

Figure: Schematic representation of the hierarchical partition of the set ${\cal M}.$

Figure: Schematic representation of the hierarchical partition of the set ${\cal M}.$

Input (graph data)

0 2

1 3

1 5

3 8

•

3 9

4 7

6 7

9 10

Input (graph data)

Input (graph data)

) 2

. .

1 5

- 0

3 8

3 9

17

_ _

9 10

9 10

Input (graph data)

3 8

3 9

9 10

Adjacency matrix $M^{\it G}$

$$[M^G]_{ij} = \begin{cases} 1; & v_i \sim v_j, \\ 0; & otherwise. \end{cases}$$

Adjacency matrix M^G

$$[M^G]_{ij} = \begin{cases} 1; & v_i \sim v_j, \\ 0; & otherwise. \end{cases}$$

Example

Adjacency matrix $M^{\it G}$

$$[M^G]_{ij} = \begin{cases} 1; & v_i \sim v_j, \\ 0; & otherwise. \end{cases}$$

Example

Adjacency matrix $M^{\it G}$

$$[M^G]_{ij} = \begin{cases} 1; & v_i \sim v_j, \\ 0; & otherwise. \end{cases}$$

Example

 $\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 2 & 2 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 2 & 2 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 2 & 0 & 0 & 2 & 2 & 2 & 2 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 & 1 & 2 & 3 & 2 & 3 & 3 & 2 & 2 & 2 & 2 \end{bmatrix}$

Hierarchical clustering on the row vectors of the adjacency matrix ${\cal M}^G$:

$$S_1 = \{1, 2\}$$

$$S_2 = \{0, 3\}$$

Hierarchical clustering on the row vectors of **?**:

$$S_1 = \{0, 1, 2\}$$

The adjacency matrix ${\cal M}^{\cal G}$ has the following property:

 $[(M^G)^k]_{ij}=\#$ of all paths of length up to k between vertices i and j

The adjacency matrix ${\cal M}^{\cal G}$ has the following property:

 $[(M^G)^k]_{ij}=\#$ of all paths of length up to k between vertices i and j

We modify the algorithm by replacing M^G with the **kernel matrix** K^G :

$$K^G := \sum_{k=0}^{\infty} \frac{\alpha^k (M^G)^k}{k!} = \exp(\alpha M^G).$$

• $k: \Omega \times \Omega \to \mathbb{R}$ is a similarity measure if: k(x,y) characterizes the similarities of $x,y \in \Omega$.

- $k: \Omega \times \Omega \to \mathbb{R} \text{ is a similarity measure if:} \\ k(x,y) \text{ characterizes the similarities of } x,y \in \Omega.$
- $k: \Omega \times \Omega \to \mathbb{R}$ is a kernel if:
 - 1. $k(x, y) = k(y, x), \forall x, y \in \Omega$,
 - 2. *k* is positive semidefinite:

```
the kernel matrix K \in \mathbb{R}^{n \times n}, [K]_{ij} = k(x_i, x_j), is positive semidefinite for all x_1, x_2, \ldots, x_n \in \Omega.
```

- $k: \Omega \times \Omega \to \mathbb{R} \text{ is a similarity measure if:} \\ k(x,y) \text{ characterizes the similarities of } x,y \in \Omega.$
- $k: \Omega \times \Omega \to \mathbb{R}$ is a kernel if:
 - 1. $k(x,y) = k(y,x), \forall x, y \in \Omega$,
 - 2. k is positive semidefinite:

the kernel matrix $K \in \mathbb{R}^{n \times n}$, $[K]_{ij} = k(x_i, x_j)$, is positive semidefinite for all $x_1, x_2, \ldots, x_n \in \Omega$.

▶ Given a kernel k, there exist a Hilbert space \mathcal{H}_k and a map $\phi: \Omega \to \mathcal{H}_k$ such that

$$\langle \phi(x), \phi(y) \rangle_{\mathcal{H}_k} = k(x, y) \text{ for all } x, y \in \Omega.$$

$$K^G := \sum_{k=0}^\infty \frac{\alpha^k (M^G)^k}{k!} = \exp(\alpha M^G)$$
 indeed is a kernel matrix,

$$K^G = \exp(\alpha M^G)$$

$$K^G := \sum_{k=0}^{\infty} \frac{\alpha^k (M^G)^k}{k!} = \exp(\alpha M^G)$$
 indeed is a kernel matrix,

$$K^G = \exp(\alpha M^G) = \exp(\alpha UDU^T)$$

$$K^G := \sum_{k=0}^\infty \frac{\alpha^k (M^G)^k}{k!} = \exp(\alpha M^G)$$
 indeed is a kernel matrix,

$$K^G = \exp(\alpha M^G) = \exp(\alpha \mathit{UDU}^T) = \alpha \mathit{U} \exp(\mathit{D}) \mathit{U}^T$$

$$K^G := \sum_{k=0}^\infty \frac{\alpha^k (M^G)^k}{k!} = \exp(\alpha M^G)$$
 indeed is a kernel matrix,

since

$$K^G = \exp(\alpha M^G) = \exp(\alpha UDU^T) = \alpha U \exp(D)U^T$$

 $\implies K^G$ is a symmetric positive semidefinite matrix

Example

"1#1"

"2#11"

"1#2"

"2#211"

"3#11"

"2#12"

.....

"3#2"

"3#12"

"2#221"

"2#212"

"2#2221"

Example

"1#1"

"2#11"

"1#2"

"2#211"

"3#11"

"<mark>2</mark>#12"

"3#2"

"3#12"

O#12

"<mark>2</mark>#221"

"<mark>2</mark>#212"

"2#2221"

Example

"1#1"

"2#11"

"1#2"

"2#211"

"3#11"

"2#12"

.....

"3#2"

"3#12"

"2#221"

"2#212"

"2#2221"

Example

```
"1#1"
```

"2#11"

"1#2"

"2#211"

"3#11"

0... _ _

"2#12"

"3#2"

"3#12"

"2#221"

"2#212"

"2#2221"

Example

"1#1"

"2#11"

"1#2"

"2#211"

"3#11"

"2#12"

"3#2"

"3#12"

"2#221"

"2#212"

"2#2221"

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_2 .

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_3 .

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_3 .

 A_2

 A_{22}

 A_{21}

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_3 .

Implementation – Drawing

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_3 .

Implementation – Drawing

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_3 .

Implementation – Drawing

Figure: Determining the drawing area for the sets in the partition \mathcal{P}_3 .

Efficient computation of $K^G = \exp(\alpha M^G)$

Computation of ${\cal K}^{\cal G}$ si needed in the algorithm:

- lacktriangle to determine the centroids μ_j ,
- lacksquare to minimize $\|v_i \mu_j\|^2$

Efficient computation of $K^G = \exp(\alpha M^G)$

Computation of K^G si needed in the algorithm:

- \blacktriangleright to determine the centroids μ_j ,
- ▶ to minimize $||v_i \mu_j||^2$:

$$||v_i - \mu_j||^2 = \langle v_i - \mu_j, v_i - \mu_j \rangle = \langle v_i, v_i \rangle - 2\langle v_i, \mu_j \rangle + \langle \mu_j, \mu_j \rangle.$$

Efficient computation of $K^G = \exp(\alpha M^G)$

Computation of K^G si needed in the algorithm:

- ▶ to determine the centroids μ_j ,
- ▶ to minimize $||v_i \mu_j||^2$:

$$||v_i - \mu_j||^2 = \langle v_i - \mu_j, v_i - \mu_j \rangle = \langle v_i, v_i \rangle - 2\langle v_i, \mu_j \rangle + \langle \mu_j, \mu_j \rangle.$$

The question is thus:

▶ How to efficiently multiply the matrix K^G with an arbitrary vector and how to efficiently compute the inner products $\langle v_i, v_i \rangle = \|v_i\|^2$?

Multiplying the matrix $K^{\mathcal{G}}$ with an arbitrary vector v

$$K^G v = Iv + \frac{\alpha}{1} M^G v + \frac{\alpha^2}{2!} (M^G)^2 v + \frac{\alpha^3}{3!} (M^G)^3 v + \dots$$

$$K^{G}v = Iv + \frac{\alpha}{1}M^{G}v + \frac{\alpha^{2}}{2!}(M^{G})^{2}v + \frac{\alpha^{3}}{3!}(M^{G})^{3}v + \dots =$$

$$= v + \frac{\alpha}{1}(M^{G}v) + \frac{\alpha}{2}M^{G}(\frac{\alpha}{1}(M^{G}v)) + \frac{\alpha}{3}M^{G}(\frac{\alpha}{2}M^{G}(\frac{\alpha}{1}(M^{G}v))) + \dots$$

$$K^{G}v = Iv + \frac{\alpha}{1}M^{G}v + \frac{\alpha^{2}}{2!}(M^{G})^{2}v + \frac{\alpha^{3}}{3!}(M^{G})^{3}v + \dots =$$

$$= v + \frac{\alpha}{1}(M^{G}v) + \frac{\alpha}{2}M^{G}(\frac{\alpha}{1}(M^{G}v)) + \frac{\alpha}{3}M^{G}(\frac{\alpha}{2}M^{G}(\frac{\alpha}{1}(M^{G}v))) + \dots$$

$$K^G v = Iv + \frac{\alpha}{1} M^G v + \frac{\alpha^2}{2!} (M^G)^2 v + \frac{\alpha^3}{3!} (M^G)^3 v + \dots =$$

$$= v + \frac{\alpha}{1} (M^G v) + \frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v)\right) + \frac{\alpha}{3} M^G \left(\frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v)\right)\right) + \dots$$

$$\begin{split} K^G v &= Iv + \frac{\alpha}{1} M^G v + \frac{\alpha^2}{2!} (M^G)^2 v + \frac{\alpha^3}{3!} (M^G)^3 v + \dots = \\ &= v + \frac{\alpha}{1} (M^G v) + \frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v) \right) + \frac{\alpha}{3} M^G \left(\frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v) \right) \right) + \dots \end{split}$$

Multiplying the matrix K^G with an arbitrary vector \boldsymbol{v}

$$\begin{split} K^G v &= Iv + \frac{\alpha}{1} M^G v + \frac{\alpha^2}{2!} (M^G)^2 v + \frac{\alpha^3}{3!} (M^G)^3 v + \ldots = \\ &= v + \frac{\alpha}{1} (M^G v) + \frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v)\right) + \frac{\alpha}{3} M^G \left(\frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v)\right)\right) + \ldots \end{split}$$

Multiplying the matrix $K^{\mathcal{G}}$ with an arbitrary vector \boldsymbol{v}

$$\begin{split} K^G v &= Iv + \frac{\alpha}{1} M^G v + \frac{\alpha^2}{2!} (M^G)^2 v + \frac{\alpha^3}{3!} (M^G)^3 v + \ldots = \\ &= v + \frac{\alpha}{1} (M^G v) + \frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v)\right) + \frac{\alpha}{3} M^G \left(\frac{\alpha}{2} M^G \left(\frac{\alpha}{1} (M^G v)\right)\right) + \ldots \end{split}$$

Implementation – Random projections

Random projections

Corollary of the Johnson-Lindenstrauss lemma:

Theorem 1

Let P be an arbitrary set of n points in \mathbb{R}^d , represented as an $n \times d$ matrix $A \in \mathbb{R}^{n \times d}$. Given $\varepsilon > 0$, $\beta > 0$ let $k_0 = \frac{4+2\beta}{\varepsilon^2/2-\varepsilon^3/3}\log n$. For integer $k \geq k_0$, let $R \in \mathbb{R}^{d \times k}$ be a random matrix with elements r_{ij} , where r_{ij} are independent random variables from either one of the following two probability distributions:

$$r_{ij}: \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad r_{ij}: \begin{pmatrix} 1 & 0 & -1 \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \end{pmatrix}.$$

Let $E=rac{1}{\sqrt{k}}AR$ and let $f:\mathbb{R}^d o \mathbb{R}^k$ map the i-th row of A to the i-th row of E.

Then

$$(1 - \varepsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \varepsilon) \|u - v\|^2$$

holds for all $u, v \in P$ with probability at least $1 - n^{-\beta}$.

Implementation – Random projections

Random projections

Corollary of the Johnson-Lindenstrauss lemma:

Theorem 1

Let P be an arbitrary set of n points in \mathbb{R}^d , represented as an $n \times d$ matrix $A \in \mathbb{R}^{n \times d}$. Given $\varepsilon > 0$, $\beta > 0$ let $k_0 = \frac{4+2\beta}{\varepsilon^2/2-\varepsilon^3/3}\log n$. For integer $k \geq k_0$, let $R \in \mathbb{R}^{d \times k}$ be a random matrix with elements r_{ij} , where r_{ij} are independent random variables from either one of the following two probability distributions:

$$r_{ij}: \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad r_{ij}: \begin{pmatrix} 1 & 0 & -1 \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \end{pmatrix}.$$

Let $E = \frac{1}{\sqrt{k}} AR$ and let $f: \mathbb{R}^d \to \mathbb{R}^k$ map the i-th row of A to the i-th row of E.

Then

$$(1 - \varepsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \varepsilon) \|u - v\|^2$$

holds for all $u, v \in P$ with probability at least $1 - n^{-\beta}$.

