alme

Accurate rare disease diagnostics for every child

Problem

Children with rare diseases often receive no diagnosis due to lack of data

Currently, **70%** of the children with rare diseases **don't receive** the **correct diagnosis**, and therefore **no treatment**

Why?

Data is **saved in local databases** and therefore **not accessible** to other hospitals

This is due to **privacy and security concerns** regarding patient data and a **lack of digitalization**

Our Solution in Short

AIME helps doctors to diagnose rare diseases accurately and gives them access to the contact information of doctors who treated similar cases

1. Accurate diagnosis tool

2. Advisory for possible treatments

3. Interconnection of hospitals treating similar cases

Current Situation

online repository

Our Final Solution

Our Final Solution

Tech - Datastructure

Data of lab events and diagnoses are mixed

Tree like structure

Tech – Most Confident Solution

Problem: large variance in very little data

Solution -> modular architecture:

- Optional autoencoder, produces pretrained encoder
- Optional activation of parent nodes
- Optional classification on ICD-9

Market Analysis

There is a **strongly growing market** for our solution

40% 9-year CAGR²

Social Impact

We use **20%** of our yearly **revenue** to **empower hospitals in developing countries**

Our yearly expected revenue is 19M USD

20% of yearly expected revenue comes up to 3.8M USD

The cost of equipping a hospital in a developing country with our system is about 100,000 USD

Therefore we can support 38 hospitals in developing countries annually

Social Impact

Guaranteed social impact through mutual benefits and helping children with rare diseases to get the right diagnosis

Increases amount of accessible data

Competitor analysis

Our secure interconnected diagnosis tool puts us ahead of competition

Companies

Product

Type

Accurate diagnosis tool

Working with genes and hemogram

Data security solution

Interconnection of hospitals

& contact to doctors who treated similar cases

Start-Up

rare disease diagnosis based on: genetic newborn screening, digital technologies

Project

automatically and quickly suggest a list of genes for interpretation

University research

rapid diagnosis of rare disorders in critically ill children

University research

Roadmap

Accurate rare disease diagnostics for every child

Robin Al

Malte Tech

Flo Product

JakobBusiness

Backup

Current Situation

online repository

Part 1: Local Al Assistant

Part 2: Local Al Assistant with training

Part 3: Securely Connected Al Assistant

Our Final Solution

Tech - Datastructure

Data of lab events and diagnoses are mixed

Tree like structure

Tech - 1st Iteration

First preselection of possible diagnoses

Architecture: Fully Connected Neural Network, multi-hot encoding as I/O vector

Tech - 2nd Iteration

Optional selection of parent nodes in in/output

Architecture: Fully Connected Neural Network, multi-hot encoding as I/O vector

Tech – 3rd Iteration

Optional pretrained encoder

Architecture: autoencoder -> encoder + Fully Connected Neural Network

Tech – 4th Iteration

Optional final classification on ICD-9 data

Architecture: autoencoder -> encoder + Fully Connected Neural Network

Tech – Most Confident Solution

Problem: large variance in very little data

Solution -> modular architecture:

- Optional autoencoder, produces pretrained encoder
- Optional activation of parent nodes
- Optional classification on ICD-9

Tech – Future Possibilities

Utilize power on Convolutional Neural Networks

Architecture:

- Transformation of graph in structured adjacency matrix U-Net with residual connection to minimize information loss

Utilize power on Graph Neural Network

- Convolutional Graph Neural Network
- Edge to Node and Node to Edge updates
- Relationship of neighbouring nodes is trained

User Profile - Doctors

With our solution, we cater to multiple needs of doctors

Doctors who **struggle with the diagnosis** of a rare disease

Doctors who need **advice** on **how to treat** a specific rare **disease**

Doctors who want to **pool their knowledge** with others and **improve** their own **judgments**

Customer Profile and Benefits - Hospitals

We target hospitals that are best prepared for the adoption of digital solutions

Key customer benefits

Support for hospitals to make accurate diagnoses for rare diseases

Access collective knowledge of rare diseases in neural network while maintaining data security

Possibility to treat more patients

Our customers benefit from global knowledge access while keeping the data of their patients secure because the hemogram and the other genetic data never leaves the local hospital

Why now?

Strong legislative tailwind in Germany makes it the right time to enter this promising market

Krankenhauszukunftsgesetz

Enforces strong uptake of investments by hospitals into digital infrastructure

High growth market

The 9-year CAGR of the Al market in healthcare is estimated to be 40%

Business Model Canvas

Partners

NGO (Care-For-Rare, GA4GH)

Hospitals (paying & non paying)

Doctors

Activities

Provide accurate diagnoses

Connect hospitals in a data secure way

Resources

Hospitals training data

Middleware software

Value Prop.

Accurate diagnosis

Treatment proposals

Connect hospitals

Data security

Relationships

IT service team

Consulting

Channels

Referral through the NGO

Biz. dev. through social impact

Customers

Paying Hospitals

Developing country hospitals

NGO (Care-For-Rare, GA4GH)

Costs

Development, IT setup & service

Revenues

Hospital size according fee model

Company and Revenue Structure

