

Semana 03

Algoritmos: Introdução

CICOOO4 Algoritmos e Programação de Computadores

Prof. Pedro Garcia Freitas

https://pedrogarcia.gitlab.io/

pedro.garcia@unb.br

Brasilia

Este conjunto de slides não deve ser utilizado ou republicado sem a expressa permissão do autor.

This set of slides should not be used or republished without the author's express permission.

1. Objetivos

Esta aula introduz conceitos básicos para o entendimento e representação de algoritmos.

Última aula:

- Lógica de programação
- Sequência de lógica
- Instruções
- Definição de algoritmos
- Definição de programas

O conceito de algoritmos

• Um algoritmo é formalmente uma sequência finita de passos que levam a execução de uma tarefa com a intenção de atingir um objetivo.

O conceito de algoritmos

- Um algoritmo é formalmente uma sequência finita de passos que levam a execução de uma tarefa com a intenção de atingir um objetivo.
- É o que se manifesta da execução de uma tarefa (como fazer).

O conceito de algoritmos

• Ex: bolo comum | 2. Selectionar tigela;

- 1. Selecionar os ingredientes da receita;
- 3. Colocar farinha, de acordo com a medida:
- 4. Selecionar ovos;
- 5. Colocar manteiga e açúcar a gosto;
- 6. Colocar leite;
- 7. Misturar todos os ingredientes na tigela;
- 8. Despejar a massa na forma;
- 9. Levar ao forno;
- 10. Aguardar 40 minutos;
- 11. Retirar do forno;

• Um conceito central da programação computação e da ciência da computação é o de algoritmo.

 Um algoritmo é a descrição de um padrão de comportamento, expresso em termos de um repertório bem definido e finito de ações "primitivas" (instruções), das quais damos por certo que elas podem ser executadas.

 De forma intuitiva, o algoritmo é a ideia mais abstrata da programação, sendo mais próxima da linguagem natural, sendo que a programação envolve outras etapas que vão transformando essa abstração em operações mais concretas.

4.1. Regras para construção do Algoritmo

Para escrever um algoritmo precisamos descrever a sequência de instruções, de maneira simples e objetiva.

4.1. Regras para construção do Algoritmo

Para isso utilizaremos algumas técnicas:

- Usar somente um verbo por frase;
- Imaginar que você está desenvolvendo um algoritmo para pessoas que não trabalham com informática;

- Usar frases curtas e simples;
- Ser **objetivo**;
- Procurar usar palavras que não tenham sentido dúbio;

4.1. Regras para construção do Algoritmo

Para isso utilizaremos algumas técnicas:

Selecionar os ingredientes da receita;
 Selecionar tigela;
 Colocar farinha, de acordo com a medida;
 Selecionar ovos;
 Colocar manteiga e açúcar a gosto;
 Colocar leite;
 Misturar todos os ingredientes na tigela;
 Despejar a massa na forma;
 Levar ao forno;
 Aguardar 40 minutos;
 Retirar do forno;

4.2. Fases do algoritmo

 Na aula anterior vimos que algoritmo é uma sequência lógica de instruções que podem ser executadas.

4.2. Fases do algoritmo

- Na aula anterior vimos que algoritmo é uma sequência lógica de instruções que podem ser executadas.
- É importante ressaltar que **qualquer tarefa que siga determinado padrão** pode ser descrita por um algoritmo.

4.2. Fases do algoritmo

- É importante ressaltar que **qualquer tarefa que siga determinado padrão** pode ser descrita por um algoritmo.
- Por exemplo:
 - "Como cozinhar canjica."
 - "Como calcular o saldo financeiro de uma conta bancária."

4.2. Fases do algoritmo

 Quando montamos um algoritmo, a primeira etapa é dividir o algoritmo nas três fases fundamentais:

4.2. Fases do algoritmo

 Quando montamos um algoritmo, a primeira etapa é dividir o algoritmo nas três fases fundamentais:

4.2. Fases do algoritmo

Onde temos:

4.2. Fases do algoritmo

Onde temos:

4.2. Fases do algoritmo

Onde temos:

4.2. Fases do algoritmo

4.3. Pseudocódigo

- Como já mencionado na aula anterior, um algoritmo pode ser expresso de muitas maneiras:
 - Pseudocódigo;
 - Diagrama/fluxograma;
 - Linguagem de programação;

4.3. Pseudocódigo

Fluxograma/Diagrama

```
Algoritmo CalculaMedia

LER Nota1

LER Nota2

LER Nota3

media = (Nota1+Nota2+Nota3)/3

SE MEDIA >= 6 ENTÃO

IMPRIME "Aprovado"

SENÃO

IMPRIME "Reprovado"

FIM-SE

IMPRIME "Media = " media

Fim-Algoritmo
```

Pseudocódigo

```
def compute_mean(s):
    return sum(s) / len(s)

n1 = int(input())
n2 = int(input())
n3 = int(input())

compute_mean([n1, n2, n3])
```

Linguagem de Programação

4.3. Pseudocódigo

 No caso do pseudocódigo, este nome é uma alusão à posterior implementação em uma linguagem de programação, ou seja, quando formos programar em uma linguagem de programação (e.g., Python).

4.3. Pseudocódigo

 Os pseudocódigos são, em termos de linguagem, mais próximos da linguagem natural e com menos restrições de sintaxe.

4.3. Pseudocódigo

- Os pseudocódigos são, em termos de linguagem, mais próximos da linguagem natural e com menos restrições de sintaxe.
- Por isso, são **independentes** das linguagens de programação.

4.3. Pseudocódigo

 Portanto, ao contrário de uma linguagem de programação não existe um formalismo rígido de como deve ser escrito o algoritmo.

4.3. Pseudocódigo

- Portanto, ao contrário de uma linguagem de programação não existe um formalismo rígido de como deve ser escrito o algoritmo.
- O pseudocódigo deve representar todas as fases do algoritmo.

4.3. Pseudocódigo: estrutura

Início do algoritmo com o nome correspondente.

4.3. Pseudocódigo: estrutura

```
Algoritmo CalculaMedia

LER Nota1

LER Nota2

LER Nota3

media = (Nota1+Nota2+Nota3)/3

SE MEDIA >= 6 ENTÃO

IMPRIME "Aprovado"

SENÃO

IMPRIME "Reprovado"

FIM-SE

IMPRIME "Media = " media

Fim-Algoritmo

Fim do algoritmo
```

4.3. Pseudocódigo: estrutura

4.3. Pseudocódigo: estrutura

ENTRADA: São os dados de entrada do algoritmo

4.3. Pseudocódigo: estrutura

```
Algoritmo CalculaMedia

LER Nota1

LER Nota2

LER Nota3

media = (Nota1+Nota2+Nota3)/3

SE MEDIA >= 6 ENTÃO

IMPRIME "Aprovado"

SENÃO

IMPRIME "Reprovado"

FIM-SE

IMPRIME "Media = " media

Fim-Algoritmo
```

PROCESSAMENTO:

São os procedimentos utilizados para chegar ao resultado final

4.3. Pseudocódigo: estrutura

```
Algoritmo CalculaMedia

LER Nota1

LER Nota2

LER Nota3

media = (Nota1+Nota2+Nota3)/3

SE MEDIA >= 6 ENTÃO

IMPRIME "Aprovado"

SENÃO

IMPRIME "Reprovado"

FIM-SE

IMPRIME "Media = " media

Fim-Algoritmo

SAÍDA: São os dados já processados
```

4.4. Diagrama/Fluxograma

• Um diagrama é uma forma visual e eficaz para **representar os passos lógicos** de um determinado processamento.

4.4. Diagrama/Fluxograma

- Um diagrama é uma forma visual e eficaz para representar os passos lógicos de um determinado processamento.
- Com o diagrama podemos definir uma sequência de símbolos com significado bem definido afim de facilitar a visualização dos passos de um processamento.

4.4. Diagrama/Fluxograma: Simbologia

 Na literatura, existem diversas convenções e padrões de símbolos para ilustrar os passos de um algoritmo.

- Na literatura, existem diversas convenções e padrões de símbolos para ilustrar os passos de um algoritmo.
- Ao longo da formação de vocês, diversos diagramas serão apresentados nas matérias de <u>processamento de sinais</u>, <u>modelagem</u> <u>orientada a objetos, bancos de dados, etc.</u>

Símbolo	Nome	Função
	Terminal	Indica o INÍCIO ou FIM de um processamento E.g.: Início do algoritmo
	Processamento	Processamento em geral E.g.: Soma de dois números
	Entrada de Dados	Indica entrada de dados (através do Teclado) E.g.: "Digite a nota da primeira prova"
	Saída de Dados	Mostra informações ou resultados (no monitor) E.g.: Mostre o resultado do calculo

4.4. Diagrama/Fluxograma: Simbologia

Dentro do símbolo sempre deve ter algo escrito, pois somente os símbolos não dizem nada. Veja no exemplo a seguir:

4.4. Diagrama/Fluxograma: Simbologia

Dentro do símbolo sempre deve ter algo escrito, pois somente os símbolos não dizem nada. Veja no exemplo a seguir:

"Calcular a média de 3 provas"

4.4. Diagrama/Fluxograma: Simbologia

"Calcular a média de 3 provas"


```
Algoritmo CalculaMedia

LER Nota1

LER Nota2

LER Nota3

media = (Nota1+Nota2+Nota3)/3

IMPRIME "Media = " media

Fim-Algoritmo
```


detalhes nas

próximas aulas

4. Desenvolvendo Algoritmos

4.4. Diagrama/Fluxograma: Simbologia

48

- E1. Desenvolva um <u>algoritmo</u> que:
 - Leia 4 (quatro) números
 - Calcule o quadrado para cada um
 - Somem todos e
 - Mostre o resultado

Represente esse algoritmo em forma de diagrama e pseudocódigo.

E1. Desenvolva um <u>algoritmo</u> que: (1) Leia 4 (quatro) números, (2) Calcule o quadrado para cada um, (3) Somem todos e (4) Mostre o resultado.

Diagrama:

E1. Desenvolva um <u>algoritmo</u> que: (1) Leia 4 (quatro) números, (2) Calcule o quadrado para cada um, (3) Somem todos e (4) Mostre o resultado. Pseudocódigo:

```
Algoritmo SomaQuadrados_v1
LER N1
LER N2
LER N3
LER N4
soma = N1<sup>2</sup> + N2<sup>2</sup> + N3<sup>2</sup> + N4<sup>2</sup>
IMPRIMIR soma
Fim-Algoritmo
```

E1. Desenvolva um <u>algoritmo</u> que: (1) Leia 4 (quatro) números, (2) Calcule o quadrado para cada um, (3) Somem todos e (4) Mostre o resultado. Pseudocódigo:

```
Algoritmo SomaQuadrados_v1
LER N1
LER N2
LER N3
LER N4
soma = N1<sup>2</sup> + N2<sup>2</sup> + N3<sup>2</sup> + N4<sup>2</sup>
IMPRIMIR soma
Fim-Algoritmo
```

```
Algoritmo SomaQuadrados_v2
LER N1
LER N2
LER N3
LER N4
CALCULAR Q1 = N1<sup>2</sup>
CALCULAR Q2 = N2<sup>2</sup>
CALCULAR Q3 = N3<sup>2</sup>
CALCULAR Q4 = N4<sup>2</sup>
SOMAR soma = Q1 + Q2 + Q3 + Q4
IMPRIMIR soma
Fim-Algoritmo
```


Universidade de Brasília

Departamento de Ciências da Computação

Prof. Pedro Garcia Freitas

https://pedrogarcia.gitlab.io/

pedro.garcia@unb.br

Dúvidas?

Prof. Pedro Garcia Freitas

https://pedrogarcia.gitlab.io/

pedro.garcia@unb.br