

Exercícios de Álgebra Linear e Geometria Analítica

6 - Valores e vectores próprios. Diagonalização.

- 6.1 Considere a aplicação linear $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por f(x,y,z) = (ax+3y,-2y+4z,-x+y+2z).
 - (a) Determine todos os valores reais de a para os quais 1 é valor próprio de f.
 - (b) Considere a = -1. Prove que o vector (-3, -3, -3) é vector próprio de f e calcule o valor próprio associado.
- 6.2 Considere o endomorfismo g de \mathbb{R}^3 definido por g(x,y,z)=(x-y,y+z,x+z).
 - (a) Calcule os valores e vectores próprios de *g*.
 - (b) Determine os subespaços próprios de g.
- 6.3 Seja $M_T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$ a matriz canónica de uma transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$.
 - (a) Prove que existe uma base de \mathbb{R}^3 constituida por vectores próprios de T.
 - (b) Indique uma matriz de *T* que seja uma matriz diagonal.
 - (c) Quantas matrizes diagonais semelhantes a M_T existem?
- 6.4 Considere a função linear $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por h(x,y,z) = (x-2z,0,-2x+4z).
 - (a) Determine uma base de \mathbb{R}^3 de tal forma que a matriz de h escrita em relação a esta base é uma matriz diagonal.
 - (b) Indique a matriz de h em relação à base encontrada na alínea anterior.
- 6.5 Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x,y,z) = (2x+2y+z,y+z,4y-2z).
 - (a) Prove que 2 é valor próprio de *T* e calcule a sua multiplicidade geométrica.
 - (b) Prove que T não é diagonalizável.
- 6.6 Seja $A = \begin{bmatrix} 2 & 4 \\ d & 1 \end{bmatrix}$. Determine d de modo que:
 - (a) -3 seja um valor próprio de A.
 - (b) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ seja um vector próprio de A.
- 6.7 Seja f o endomorfismo de \mathbb{R}^2 cuja matriz canónica é

$$M_f = \begin{bmatrix} 3 & 0 \\ a & b \end{bmatrix}.$$

1

Determine a e b sabendo que $\overrightarrow{v}_1 = (1,1)$ e $\overrightarrow{v}_2 = (-2,1)$ são vectores próprios de f.

- 6.8 Seja g um automorfismo de \mathbb{R}^2 tal que g(1,3)=(2,6). Mostre que (1,3) é um vector próprio de g^{-1} associado ao valor próprio $\lambda=1/2$.
- 6.9 Seja h um automorfismo de um espaço vectorial real E. Mostre que, se \overrightarrow{v} é um vector próprio de h, associado ao valor próprio λ , então \overrightarrow{v} é também vector próprio de h^{-1} , associado ao valor próprio λ^{-1} .
- 6.10 Considere o endomorfismo T de \mathbb{R}^3 cuja matriz canónica é:

$$M_T = egin{bmatrix} 1 & 0 & 2 \ 0 & -3 & 0 \ 2 & 0 & 1 \end{bmatrix}.$$

- (a) Por observação da matriz M_T , e sem efectuar cálculos, indique um valor próprio de T e um vector próprio associado ao mesmo.
- (b) Determine os restantes valores próprios e todos os subespaços próprios de *T*.
- (c) Será T bijectiva? Justifique.
- (d) Determine uma matriz diagonal D e uma matriz invertível P tais que $D = P^{-1}M_TP$.
- 6.11 Determine a matriz $A \in \mathbb{R}^{2\times 2}$ que tem valores próprios $\lambda_1 = 5$, $\lambda_2 = 1$ e tal que $\overrightarrow{v}_1 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ e $\overrightarrow{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ são vectores próprios associados a λ_1 e λ_2 , respectivamente.
- 6.12 Determine a matriz $A \in \mathbb{R}^{3\times 3}$ que tem valores próprios $\lambda_1 = 4$, $\lambda_2 = 2$, $\lambda_3 = 2$, com vectores próprios associados $\overrightarrow{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\overrightarrow{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ e $\overrightarrow{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, respectivamente.
- 6.13 Determine a matriz A que tem valores próprios 1 e 1 e tal que

$$E_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^{3 \times 1} : x = 0 \land y - z = 0 \right\},$$

$$E_{-1} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^{3 \times 1} : y + z = 0 \right\}.$$

6.14 Seja $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ a aplicação linear cujo espectro é $\mathcal{E}=\{0,1\}$ e cujos subespaços próprios são:

$$E_0 = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\},\$$

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}.$$

- (a) Determine o polinómio caracaterístico de f.
- (b) Mostre que f é diagonalizável e determine uma base de \mathbb{R}^3 relativamente à qual a matriz de f é diagonal D e, relativamente a essa base, exiba a matriz D.
- 6.15 Seja A uma matriz real, quadrada de ordem 4 tal que $r(A I_4) = 2$, $r(A + 3I_4) = r(A 2I_4) = 3$. Determine, justificando, os valores próprios de A e mostre que a matriz é diagonalizável.
- 6.16 Seja $A_{6\times 6}$ uma matriz com polinómio característico $p(\lambda)=\lambda^2(\lambda-1)(\lambda-2)^3$. Indique, justificando:
 - (a) As multiplicidades algébricas e as possíveis multiplicidades geométricas dos valores próprios de A.
 - (b) As dimensões dos subespaços próprios de *A* de modo a que *A* seja diagonalizável.

6.17 Determine as multiplicidades algébricas e geométricas dos valores próprios das seguintes matrizes. Indique quais, de entre elas, são diagonalizáveis e, para essas, determine a matriz diagonalizante e a matriz diagonal:

(a)
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ (d) $D = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ (e) $E = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.