Universidade de São Paulo Campus São Carlos

Introdução ás redes neurais

Classificação de vinhos em relação à análises químicos

Aluno: Jeffri Erwin Murrugarra Llerena Aluno: Jahir Gilbert Medina Garcia Professora: Roseli Aparecida Romero

Conteúdo

1	Resumo	1
2	Apresentação	1
3	Descrição de atividades	1
4	Análise dos Resultados	3

1 Resumo

O objetivo deste projeto é classificar o vinho em três grupos, levando em conta dados de análises químicos

2 Apresentação

O conjunto de dados do vinho contém os resultados de uma análise química de vinhos cultivados em uma área específica da Itália. Três tipos de vinho estão representados nas 178 amostras, com os resultados de 13 análises químicas registradas para cada amostra.

- Álcool
- Ácido málico
- Cinza
- Alcalinidade da cinza
- Magnésio
- Fenólicos totais
- flavonóides
- Fenólicos não flavonóides
- Phoantocianinas
- Intensidade de Cor
- Matiz
- OD280/OD315 de vinhos diluídos
- Prolina

3 Descrição de atividades

O objetivo é classificar em 3 classes, para isso foi feito dois arquitecturas de uma red multicamada.

Primera Arquitectura:

• Camada de entrada: 13 neurônios

• Camada Oculta: 2 neurônios

• Camada de saída: 3 neurônios

Figura 1: Arquitectura 13-2-3

Segunda Arquitectura:

• Camada de entrada: 13 neurônios

• Primeira Camada Oculta: 4 neurônios

• Segunda Camada Oculta: 2 neurônios

• Camada de saída: 3 neurônios

Figura 2: Arquitectura 13-4-2-3

Nas duas arquiteturas, o algoritmo de backprogation foi usado para atualizar os pesos.

Proceso de treinamento e test:

• A rede foi construida con uma das arquitecturas explicadas

- Se particiono a data dos vinhos, en um conjunto de treinamento, test
- A rede foi treinada con o algoritmo de backpropagation temdo em conta
 - Criterio de parada(Número de ciclos)
 - Parâmetro momentum
 - Parâmetro velocidade de aprendizaje
- Uma vez terminado o treinamento foi avaliado a acurácia no conjunto de test e treinamento

4 Análise dos Resultados

Os resultados apresentados foram obtidos variando os parâmetros momentum (0,0.25,0.55,0.8), variável de aprendizado (0.1,0.4,0.7,0.9), tipo de arquitetura, tamanho da partição (0.65,0.7,0.75) e número de ciclos utilizados no treinamento (70,100,140).

A metrica de avaliação para este caso é a acurácia, que foi obtida para os conjuntos de treinamento e teste.

Resultados na arquitectura 13-2-35

Número de iteraçoes		
30	Acuracia(treinamento)	64.36664285
	Acuracia(test)	61.26432981
70	Acuracia(treinamento)	70.4047175
	Acuracia(test)	70.45194004
100	Acuracia(treinamento)	70.10352516
	Acuracia(test)	69.33641975

Tabela 1: Promedio de resultados de número de iterações

Tamanho de particão		
0.65	Acuracia(treinamento)	66.19565217
	Acuracia(test)	66.13756614
0.7	Acuracia(treinamento)	67.65793011
	Acuracia(test)	65.00771605
0.75	Acuracia(treinamento)	71.02130326
	Acuracia(test)	69.90740741

Tabela 2: Promedio de resultados de tamanho de partição

Parâmetro momentum		
0	Acuracia(treinamento)	65.4946137
	Acuracia(test)	66.9638448
0.25	Acuracia(treinamento)	68.8666614
	Acuracia(test)	68.79482657
0.55	Acuracia(treinamento)	68.98204634
	Acuracia(test)	67.85714286
0.8	Acuracia(treinamento)	65.82318788
	Acuracia(test)	62.45443857

Tabela 3: Promedio de resultados de parâmetro momentum

Parâmetro de aprendizado		
0.1	Acuracia(treinamento)	37.0178031
	Acuracia(test)	35.5555556
0.4	Acuracia(treinamento)	76.97236605
	Acuracia(test)	73.97854203
0.7	Acuracia(treinamento)	76.50427641
	Acuracia(test)	76.09935332
0.9	Acuracia(treinamento)	82.6720685
	Acuracia(test)	82.43680188

Tabela 4: Promedio de resultados de parâmetro de aprendizado

Resultados na arquitectura 13-4-2-3

Número de iteraçoes		
30	Acuracia(treinamento)	68.52398132
	Acuracia(test)	67.40740741
70	Acuracia(treinamento)	72.32734822
	Acuracia(test)	72.1957672
100	Acuracia(treinamento)	75.40815354
	Acuracia(test)	73.40939153

Tabela 5: Promedio de resultados de número de iterações

Tamanho de particão		
0.65	Acuracia(treinamento)	67.22826087
	Acuracia(test)	65.90608466
0.7	Acuracia(treinamento)	74.10954301
	Acuracia(test)	73.95833333
0.75	Acuracia(treinamento)	74.9216792
	Acuracia(test)	73.14814815

Tabela 6: Promedio de resultados de tamanho de partição

Parâmetro momentum		
0	Acuracia(treinamento)	69.55652045
	Acuracia(test)	69.19312169
0.25	Acuracia(treinamento)	69.77420614
	Acuracia(test)	66.77542622
0.55	Acuracia(treinamento)	73.35845604
	Acuracia(test)	73.1452087
0.8	Acuracia(treinamento)	75.6567948
	Acuracia(test)	74.90299824

Tabela 7: Promedio de resultados de parâmetro momentum

Observação: Aproximadamente 1000 iterações, podemos obter um sucesso de 99% a 100% no conjunto de testes e treinamento

Parâmetro de aprendizado		
0.1	Acuracia(treinamento)	37.24640464
	Acuracia(test)	35.85684891
0.4	Acuracia(treinamento)	79.5683224
	Acuracia(test)	78.34950029
0.7	Acuracia(treinamento)	85.03025914
	Acuracia(test)	85.00293945
0.9	Acuracia(treinamento)	86.50099126
	Acuracia(test)	84.8074662

Tabela 8: Promedio de resultados de parâmetro de aprendizado $% \left\{ 1,2,...,2,...\right\}$