Machine Learning - Midterm

msasnur@kent.edu (mailto:msasnur@kent.edu)

See spec(...) for full column specifications.

31/10/2019

```
#Machine Learning - Midterm Assignment#
#Email: msasnur@kent.edu#
#Date:31/10/2019#
library(readr)
library(ISLR)
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.2.1 --
## v ggplot2 3.2.1 v purrr 0.3.2
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 0.8.3 v stringr 1.4.0
## v ggplot2 3.2.1 v forcats 0.4.0
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(factoextra)
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFC
univ<-read_csv("Universities.csv")</pre>
## Parsed with column specification:
## cols(
   .default = col_double(),
     `College Name` = col_character(),
  State = col_character()
## )
```

```
#Question 1
#Removing all records with missing measurements from the dataset
univ1<-na.omit(univ)
View(univ1)

#Question 2
# Scaling the data frame (z-score)
uni<-univ1[,c(-1,-2,-3)]
uni<-scale(uni)
distance <- get_dist(uni)
fviz_dist(distance)</pre>
```


To find the best K value using Elbow Method and Silhouette Method
fviz_nbclust(uni,kmeans,method = "wss")

From above two methods we have found out that the Best K value for cluster analysis is 3.
To run kmeans clustering analysis
k3<- kmeans(uni, centers = 3, nstart = 25)
k3\$centers #summary of cluster analysis</pre>

```
##
    # appli. rec'd # appl. accepted # new stud. enrolled
       -0.35953828
                     -0.34918455
## 1
## 2
        0.05140256
                     -0.04367128
                                          -0.1683551
## 3
        1.98179657
                      2.22992267
                                           2.4447222
    % new stud. from top 10% % new stud. from top 25% # FT undergrad
## 1
                 -0.5020886
                                       -0.5128195
                                                     -0.2952142
## 2
                 0.8795798
                                        0.8620961
                                                     -0.2324464
## 3
                  0.1334215
                                        0.2545856
                                                      2.5228452
## # PT undergrad in-state tuition out-of-state tuition
                                                          room
## 1
       -0.1217682
                     -0.4036544 -0.5263964 -0.3588740
## 2
        -0.3130216
                        1.0620416
                                          1.1158839 0.6698444
                       -1.0500277
## 3
        1.7486849
                                         -0.4918168 -0.0388330
        board add. fees estim. book costs estim. personal $ % fac. w/PHD
##
## 1 -0.3938990 -0.05832646 -0.06621454
                                              0.05935933 -0.5322257
## 2 0.7756859 -0.04496556
                              0.07122705
                                             -0.39665857 0.7659627
                              0.16358567
                                              0.93858632 0.6840794
## 3 -0.1745795 0.49531762
## stud./fac. ratio Graduation rate
        0.2810858 -0.4171456
## 1
## 2
         -0.7036167
                        0.8426062
## 3
         0.6139980
                       -0.2538234
```

k3\$size #Size of each cluster

```
## [1] 275 150 46
```

k3\$cluster[99] # To see which Cluster does 99th record belong to

```
## [1] 3
```

fviz_cluster(k3, data = uni) #Drawing cluster graph

0 Dim1 (30.4%)

3

-15 -

-3

```
#Question 3
# As seen above from summary of k3$centers, we can observe the values for three different clu
sters.
# In cluster 3,
# Columns (Application Rejected,
             Application Accepted,
#
             New Student Enrolled,
             Full Time underGrad,
#
#
             Part Time underGrad,
#
             Additional fees,
#
             book costs,
#
             estimated personal expenses,
#
             student to faculty ratio)
             have higher values and we can discern this pattern in cluster 3.
#In cluster 2,
# Columns (New student from 10%,
           New student from top 25%,
#
          in-state tution,
#
           out-of-station tution,
           Room,
#
#
           Board,
#
           Percentage of faculty with PhD,
           Graduation Rate)
#
           have higher values and we can discern that in Cluster 2.
#In cluster 1,
# Columns (Application Rejected,
             Application Accepted,
#
             New Student Enrolled,
             New student from 10%,
#
#
             New student from top 25%,
#
             Full Time underGrad,
             Part Time underGrad,
#
#
             in-state tution,
#
             out-of-station tution,
#
             Room,
#
             Board,)
             have lower values and we can discern that in Cluster 1.
#Ouestion 4
cat<-cbind(univ1[,c(1,2,3)],k3$cluster)</pre>
head(cat)
```

College Name <chr></chr>	State <chr></chr>	Public (1)/ Private (2) <dbl></dbl>	k3\$cluster <int></int>
1 Alaska Pacific University	AK	2	1
2 University of Alaska Southeast	AK	1	1
3 Birmingham-Southern College	AL	2	2
4 Huntingdon College	AL	2	1
5 Talladega College	AL	2	1

College Name <chr></chr>	State <chr></chr>	Public (1)/ Private (2) <dbl></dbl>	k3\$cluster <int></int>
6 University of Alabama at Birmingham	AL	1	1
6 rows			

```
cat<-as.data.frame(cat)</pre>
cat$`Public (1)/ Private (2)`<-factor(univ1$`Public (1)/ Private (2)`, levels=c("1","2"), lab</pre>
els = c("Public", "Private"))
Cluster1 <- cat[cat$`k3$cluster` == 1,]</pre>
View(Cluster1)
Cluster2 <- cat[cat$`k3$cluster` == 2,]</pre>
View(Cluster2)
Cluster3 <- cat[cat$`k3$cluster` == 3,]</pre>
View(Cluster3)
#After binding the categorical columns with clusters, we observe that
# Cluster 1 has data of both Public and Private Universities
# Cluster 2 has data belonging to Private universities
# Cluster 3 has data belonging to Public Universities mostly
# Using Pivot table we can get detailed information on number of universities belonging to ea
ch cluster,
# represented according to states. Separated by Public and Private Universities.
# We can also see the total number of Public and Private universities in each state.
library(pivottabler)
pt<-PivotTable$new()</pre>
pt$addData(cat)
pt$addColumnDataGroups('Public (1)/ Private (2)')
pt$addColumnDataGroups('k3$cluster')
pt$addRowDataGroups('State')
pt$defineCalculation(calculationName= 'Total', summariseExpression = 'n()')
pt$renderPivot()
```

	Public				Private				Total
	1	2	3	Total	1	2	3	Total	
AK	1			1	1			1	2
AL	1			1	2	1		3	4
AR					4			4	4
ΑZ			2	2					2
CA		1	1	2	3	9	1	13	15
СО	5			5		1		1	6
СТ	2		1	3	1	6		7	10
DC						4		4	4
DE					1		1	2	2
FL			1	1	3	4		7	8
GA			1	1	4	2		6	7
HI	1			1					1
IA	1			1	15	2		17	18
ID					2			2	2
IL	2		2	4	5	6		11	15
IN	1			1	7	7		14	15
KS					7			7	7

KY	1			1	3	2		5	6
LA	1		1	2	1	2		3	5
MA	4		1	5	3	12	2	17	22
MD	1		1	2		1		1	3
ME	3			3	1	2		3	6
МІ	1		2	3	6	4		10	13
MN	2		1	3	4	4		8	11
МО	2		1	3	10	2		12	15
MS	3			3	2			2	5
МТ	1			1	1			1	2
NC	6		4	10	10	3		13	23
ND	4			4	1			1	5
NE	2		1	3	3	1		4	7
NH	1		1	2	3	1		4	6
NJ	6		1	7	3	3		6	13
NM					2			2	2
NY	10		2	12	8	18		26	38
ОН			4	4	13	7		20	24
ок	2		1	3	3			3	6
OR					1	4		5	5
PA	4		3	7	15	20		35	42
RI			1	1	1	2		3	4
sc	2			2	5	2		7	9
SD	2			2	2			2	4
TN			1	1	11	3		14	15
TX	4		3	7	10	2	1	13	20
UT			1	1	1			1	2
VA	2	1	3	6	6	3		9	15
VT	3	1		4	2	1		3	7
WA						2		2	2
WI	2			2	3	4		7	9
wv					2			2	2
WY	1			1					1
Total	84	3	41	128	191	147	5	343	471

#Question 5

Using cluster.stats() function, we can get statastics of the all the clusters.

This Statistics include Number of Cluster, Cluster Size, Diameter of each cluster, distance, Separation.

library(fpc)

cluster.stats(distance,k3\$cluster)

```
## $n
## [1] 471
##
## $cluster.number
## [1] 3
## $cluster.size
## [1] 275 150 46
## $min.cluster.size
## [1] 46
##
## $noisen
## [1] 0
##
## $diameter
## [1] 15.72735 10.83931 17.38478
##
## $average.distance
## [1] 4.102453 4.113867 6.235578
## $median.distance
## [1] 4.019750 3.907029 5.489743
##
## $separation
## [1] 1.054636 1.054636 2.106758
## $average.toother
## [1] 6.102039 5.977532 7.918952
## $separation.matrix
            [,1]
                    [,2]
## [1,] 0.000000 1.054636 2.106758
## [2,] 1.054636 0.000000 2.769109
## [3,] 2.106758 2.769109 0.000000
##
## $ave.between.matrix
            [,1]
                    [,2]
                             [,3]
## [1,] 0.000000 5.598819 7.742976
## [2,] 5.598819 0.000000 8.241575
## [3,] 7.742976 8.241575 0.000000
## $average.between
## [1] 6.344849
##
## $average.within
## [1] 4.314419
##
## $n.between
## [1] 60800
##
## $n.within
## [1] 49885
##
## $max.diameter
## [1] 17.38478
##
```

```
## $min.separation
## [1] 1.054636
##
## $within.cluster.ss
## [1] 5031.914
## $clus.avg.silwidths
##
           1
## 0.2503594 0.2484554 0.1560818
## $avg.silwidth
## [1] 0.2405454
##
## $g2
## NULL
##
## $g3
## NULL
##
## $pearsongamma
## [1] 0.4736057
##
## $dunn
## [1] 0.06066437
##
## $dunn2
## [1] 0.897883
##
## $entropy
## [1] 0.9057607
## $wb.ratio
## [1] 0.6799877
##
## $ch
## [1] 137.5604
##
## $cwidegap
## [1] 8.247873 6.747930 9.655971
##
## $widestgap
## [1] 9.655971
##
## $sindex
## [1] 1.523979
## $corrected.rand
## NULL
##
## $vi
## NULL
```

```
#Question 6
# Replacing the NA value
univ$`# PT undergrad`[is.na(univ$'# PT undergrad')] <- mean(univ$'# PT undergrad',na.rm = TRU
E)
tuftuni<-univ[476,]
summary(univ$`# PT undergrad`)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 136.5 487.5 1081.5 1286.0 21836.0
```

```
x<- rbind(univ1,tuftuni) #Binding the Tuft University record to our Dataset without NA values
y<- scale(x[,c(-1,-2,-3)]) #Normalizing the dataset
k.tuft<-kmeans(y,centers = 3,nstart = 25) #Performing Cluster Analysis on Dataset
k.tuft$cluster</pre>
```

k.tuft\$centers

```
##
    # appli. rec'd # appl. accepted # new stud. enrolled
## 1
        -0.36178481
                        -0.35072087
                                              -0.3183527
        1.97905301
## 2
                         2.23008958
                                               2.4457813
## 3
        0.05598931
                        -0.04063498
                                              -0.1652911
    % new stud. from top 10% % new stud. from top 25% # FT undergrad
##
## 1
                  -0.5046909
                                           -0.5153888
                                                          -0.2959828
## 2
                   0.1294809
                                            0.2505136
                                                           2.5249258
## 3
                   0.8796945
                                            0.8623066
                                                          -0.2301411
    # PT undergrad in-state tuition out-of-state tuition
##
                                                                room
## 1
        -0.1222831
                         -0.4065412
                                              -0.5289356 -0.36118215
## 2
         1.7500917
                         -1.0512232
                                              -0.4944827 -0.04124618
         -0.3104396
                          1.0606299
                                               1.1139304 0.67034712
## 3
##
         board
                add. fees estim. book costs estim. personal $ % fac. w/PHD
## 1 -0.3964868 -0.05911977
                                -0.06694360
                                                               -0.5347161
                                                     0.0605963
## 2 -0.1774061 0.49504158
                                  0.16307690
                                                     0.9404620
                                                                  0.6797982
## 3 0.7761229 -0.04313891
                                  0.07223809
                                                    -0.3968559
                                                                  0.7667298
    stud./fac. ratio Graduation rate
##
## 1
           0.2831120
                          -0.4197344
## 2
           0.6160664
                          -0.2566056
## 3
          -0.7032771
                           0.8425881
```

 $\label{lem:which} \begin{tabular}{ll} which (grepl("Tufts University",x\$`College Name`)) $\# To find the index of Tuft University record d \\ \end{tabular}$

[1] 472

k.tuft\$cluster[472] #To find cluster value in which Tuft University belongs to, using the ind ex value

[1] 3

From above results, we can see that Tufts University belongs to Cluster 3 and its indexed a t 472nd record.