This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

JP 10136171 A

TITLE: MAGNIFICATION CONTROLLER

PUBN-DATE: May 22, 1998

INVENTOR-INFORMATION: NAME

SAKURAI, TETSUO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

RICOH CO LTD

N/A

APPL-NO: JP08290460

APPL-DATE: October 31, 1996

INT-CL (IPC): H04N001/113;B41J002/485;G03G015/041

ABSTRACT:

PROBLEM TO BE SOLVED: To improve the operating convenience of the user in the case of magnification through fine-adjustment of it in a step of e.g. 0.1% or below.

SOLUTION: Each of 'fine-adjustment zoom mode' and 'magnification correction mode' is selected on a menu of an LCD, the user controls a display menu of the LCD to allow a system controller 302 to generate a magnification adjustment signal of 0.1% step, and the system controller 302 gives magnification adjustment data to a write drive control circuit 504. The write drive control circuit 504 and a laser driver circuit 502 both change number of revolutions of a polygon mirror and a write clock of a laser diode 503 based on the magnification adjustment data.

COPYRIGHT: (C)1998, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-136171

(43)公開日 平成10年(1998) 5月22日

(51) Int.CL.6		識別記号	ΡI		
H04N	1/113		H04N	1/04	104A
B41J	2/485		B41J	3/12	L
G03G	15/041		G03G	15/04	117

		審査請求	未請求	讃求項の数4	OL	(全	9 頁)		
(21)出顧番号	特顧平8-290460	(71)出顧人	(000006747 株式会社リコー 東京都大田区中馬込1丁目3番6号 賃 桜井 微男 東京都大田区中馬込1丁目3番6号 株式 会社リコー内						
(22)出顧日	平成8年(1996)10月31日	(72)発明者							
		(74)代理人		武 顯次郎	G12 4	各)			

(54) 【発明の名称】 倍率制御装置

(57)【要約】

【課題】 例えば 0.1%以下のステップで倍率を微調整して変倍する場合にユーザにとって使い勝手を向上させる。

【解決手段】 「微調整ズーム」と「倍率補正」の各モードの切り換えはLCD410の画面上で行い、0.1%ステップの倍率調整信号はユーザがLCD410の表示画面を操作することによりシステム制御装置302により生成され、倍率調整データがシステム制御装置302から書き込み駆動制御回路504とレーザドライバ回路502はこの倍率調整データに基づいてポリゴンミラー11の回転数とLD503の書き込みクロックを共に変化させる。

【特許請求の範囲】

【請求項1】 画像を比較的粗い倍率ステップで変倍す る第1の変倍手段と、

ポリゴンミラーの回転数と書き込み基準クロック周波数 を複写倍率とは無関係に一定のステップ毎に変化させる ことにより前記第1の変倍手段より細かい倍率ステップ で変倍する第1の変倍手段と、

ポリゴンミラーの回転数と書き込み基準クロック周波数 を1/M (Mは複写倍率) ステップ毎に変化させること により前記第1の変倍手段より細かい倍率ステップで変 10 倍する第2の変倍手段と、

ユーザが前記第2又は第3の変倍手段を選択する選択手 段と、を備えた倍率制御装置。

【請求項2】 前記第1の変倍手段は比較的粗い倍率ス テップで変倍する複数の変倍モードを有し、更に、前記 複数の変倍モードの内、特定のモードが選択された場合 に前記第2又は第3の変倍手段を自動的に選択する制御 手段を備えたことを特徴とする請求項1記載の倍率制御 装置。

【請求項3】 前記特定のモードは、原稿の長さとコピ 20 ーされる長さが指定された場合にその倍率を計算して比 較的粗い倍率ステップで変倍するモードであることを特 徴とする請求項2記載の倍率制御装置。

【請求項4】 前記特定のモードは、固定の倍率が指定 された場合に比較的狙い倍率ステップで変倍するモード であることを特徴とする請求項2または3記載の倍率制 御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、デジタル複写機、 ファクシミリ、プリンタ等において画像を変倍する際の 倍率制御装置に関する。

[0002]

【従来の技術】アナログやデジタル方式のデジタル複写 機における変倍ステップは1%ステップが一般的であ る。1%ステップの変倍方法としては、

O寸法入力変倍(原稿の長さとコピーされる長さが指定 された場合にその倍率を計算して1%ステップで変倍) ②固定倍率変倍(JISのA-Bサイズ間変倍に使用さ れる100%、86%、82%、71%、50%、25 40 率値」を求め、再度コピーする。例えば50%でコピー %, 115%, 122%, 141%, 200%, 400 %等)

③ズーム変倍(1%ステップで倍率が選択可能、倍率範 囲が25~400%であれば376ステップ)

④用紙指定変倍(用紙の大きさが選択されると、原稿サ イズを検知して変倍率を計算し、1%ステップで変倍す る) が知られている。

【0003】また、倍率を0.1%ステップで微調整す る従来方法としては、例えば特開昭60-120658 感光体に対する書き込み時におけるポリゴンミラーの回 転数と書き込み用基準クロックを微小変化させる方法 と、画像処理部による主走査方向の間引き(縮小の場 合)、水増し(拡大の場合)を0.1%まで拡大すると 共に副走査方向についてはスキャナの速度制御を0.1 %単位の精度に上げる方法が知られている。上記後者の 方法では、前者の方法と比べて画像処理部の負担が大き く、周辺回路が増加し、また、スキャナの精度、分解能 の改善を必要とするので、前者の方法が一般的である。 [0004]

【発明が解決しようとする課題】しかしながら、0.1 %ステップで微調整する方法として、感光体に対する書 き込み時に読み取り時の倍率とは無関係に微調整する方 法(以下、「倍率補正」)と、複写倍率に応じて微調整 する方法(以下、「ズーム変倍」、「微調整ズーム」) では実際の倍率が異なる。

【0005】例えば400%変倍を行う場合、書き込み 時に「倍率補正」により+0.1%の微調整を行うと、 原稿に対する倍率は、

 $4(1+0.001)\times100\%=400.4\%$ となる。これに対し、「ズーム変倍」では原稿を基準と するので、0.1%増加すると400.1%になる。同 様に、書き込み時に0.1%増加すると原稿換算では4 04%となる。逆に縮小する場合には、例えば50%変 倍のときには

0. $5(1+0.001)\times100\%=50.05\%$ となるが、「ズーム変倍」では50.1%になる。 【0006】これを操作上から考えると、次の2つのケ ースが考えられる。

【0007】の拡大又は縮小する原稿の長さがわかって 30 おり、拡大又は縮小後の寸法もわかっている場合には 「ズーム変倍」を行う。これにより、変倍率の端数が小 数点1桁まで吸収することができる。

【0008】②JISのA-Bサイズ間変倍に使用され $\delta A3 \rightarrow A4 (71\%) A3 \rightarrow A5 (50\%) A4$ →B5 (86%) 、B4→A4 (82%) 等のように予 め決まっている固定倍率で一度コピーしたが、用紙の縮 み等の理由により所望の寸法にならなかったときには、 コピー後の寸法を測り、所望の寸法と比較して「補正倍 したが、300mmが149mmに縮小された場合、

300×0.5/149≒1.007

であるので、+0.7%補正する。このケースは「倍率 補正」が使いやすく、また、原稿上の寸法を測る必要が ない。

【0009】また、①寸法入力変倍モードにおいて原稿 と用紙の各大きさが入力して倍率を計算する場合、入力 数値に依っては端数が生じるが、1%以下の端数は四捨 五入により丸めると、細かい図形や表などをある決めら 号公報、特開昭62-161270号公報に示すように 50 れた大きさの場所に嵌め込む作業を正確に行うことがで

3

きなくなる。例えば190mmの長さの図形を115m mに縮小する場合、115/190=0.6053とな るが、1%ステップの変倍方法では61%又は60%し か選択できないので、61%では115.9mm、60 %では114mmとなり、1mmのずれが生じる。ま た、線長が長くなるとこの誤差は更に大きくなる。ここ で、「ズーム変倍」又は「倍率補正」の微調整モードを 組み合わせると、誤差をO. 1mm程度まで小さくする ことができる。

【0010】20固定倍率変倍においても、1%ステップ 10 のデジタル複写機では1%以下の端数は丸めるので正確 に変倍することができない。例えばA3をA4に縮小す る場合、実際には

 $1/2^{1/2} = 0.7071$

であるが71%に丸めているので0.3%の誤差が生じ る。また、A4をA3に拡大する場合、実際には $2^{1/2} = 1.4142$

であるが141%に丸めているので0.4%の誤差が生 じる。また、A4をB5に縮小する場合、実際には $(1.5/2)^{1/2} = 0.866$

であるが86%に丸めているので0.6%の誤差が生じ る。この端数を「ズーム変倍モード」と「倍率補正モー ド」により相補うことにより誤差を少なくすることがで きる。

【0011】本発明は上記問題点に鑑み、例えば0.1 %以下の細かい倍率ステップで倍率を微調整して変倍す る場合にユーザにとって使い勝手の良い倍率制御装置を 提供することを目的とする。

[0012]

【課題を解決するための手段】第1の手段は上記目的を 30 達成するために、画像を比較的粗い倍率ステップで変倍 する第1の変倍手段と、ポリゴンミラーの回転数と書き 込み基準クロック周波数を複写倍率とは無関係に一定の ステップ毎に変化させることにより前記第1の変倍手段 より細かい倍率ステップで変倍する第1の変倍手段と、 ポリゴンミラーの回転数と書き込み基準クロック周波数 を1/M (Mは複写倍率) ステップ毎に変化させること により前記第1の変倍手段より細かい倍率ステップで変 倍する第2の変倍手段と、ユーザが前記第2又は第3の 変倍手段を選択する選択手段とを備えたことを特徴とす 40

【0013】第2の手段は、第1の手段において前記第 1の変倍手段は比較的粗い倍率ステップで変倍する複数 の変倍モードを有し、更に、前記複数の変倍モードの 内、特定のモードが選択された場合に前記第2又は第3 の変倍手段を自動的に選択する制御手段を備えたことを 特徴とする。

【0014】第3の手段は、第2の手段において前記特 定のモードが、原稿の長さとコピーされる長さが指定さ

で変倍するモードであることを特徴とする。

【0015】第4の手段は、第2、第3の手段において 前記特定のモードが、固定の倍率が指定された場合に比 較的粗い倍率ステップで変倍するモードであることを特 徴とする。

[0016]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態を説明する。図1は本発明に係る倍率制御装置 の一実施形態が適用されたデジタル複写機を示すブロッ ク図、図2は図1のスキャナを示す構成図、図3はレー ザ書き込み系を示す構成図、図4は図1の複写装置を示 す構成図、図5は図1の操作パネルを示す構成図、図6 は図5のLCDの表示画面を示す説明図、図7及び図8 は微調整変倍時のポリゴンミラーの回転数と書き込みク ロック周波数を示す説明図、図9は書き込みクロック周 波数発生回路の一例を示すブロック図、図10は書き込 みクロック周波数発生回路の他の例を示すブロック図、 図11は図9のVCOの制御電圧と微調整倍率データを 示すグラフである。

- 20 【0017】図1において、この複写機は概略的に、原 稿の画像データを読み取る読み取り装置 (スキャナ) 1 00と、スキャナ100により読み取られた画像データ を用紙上に複写する複写装置200を有する。複写装置 200は概略的に、スキャナ100により読み取られた 画像データを記憶する画像メモリ300と、画像メモリ 300から読み出された画像データを記録紙に複写する 複写装置(プリンタ)500と、オペレータが各種の複 写モード等を設定したり、オペレータに対して各種の表 示を行うための操作装置400を有する。
 - 【0018】画像メモリ300は画像メモリ部301 と、複写機全体の制御、特に変倍制御を行うシステム制 御装置302を有し、操作装置400は操作制御回路4 01と図5、図6に示すような操作パネル402を有す る。複写装置500はラインドライバ回路501と、レ ーザドライバ回路502と、LD(レーザダイオード) 503と、書き込み制御回路504と、図3に示すよう なレーザ書き込み系や図4に示すような電子写真プロセ ス機構を駆動する駆動装置505を有する。システム制 御装置302は読み取り制御回路106と、書き込み制 御回路504と操作制御回路401との間でそれぞれ、 RS422規格の信号線L1、L2、L3を介してシリ アルデータ伝送を行う。

【0019】図2に示すスキャナ100は一例として原 稿移動型であり、原稿は中央を基準として搬送ローラ対 1によりコンタクトガラス2上を搬送される。 コンタク トガラス2上の原稿面は光源4により照明され、その反 射光がレンズ5により結像されてCCD6によりアナロ グの画像信号に変換される。

【0020】このCCD6から出力される信号は、図1 れた場合にその倍率を計算して比較的粗い倍率ステップ 50 に示すように同期制御回路105及び読み取り制御回路

106の制御に基づいて、増幅回路101により増幅さ れた後A/D変換回路102によりディジタルの画像デ ータに変換される。この画像データはシェーディング補 正回路103によりCCD6の感度むらや、光源4の光 量むらやレンズ5の光量分布誤差が補正され、ついで画 像処理回路104によりMTF補正、変倍処理、2値化 などの種々の画像処理を施された後、画像メモリ301

【0021】画像メモリ部301から読み出された画像 データは、書き込み駆動制御回路504の制御に基づい 10 てトグルバッファを有するラインドライバ回路501、 レーザドライバ回路502を介してLD503に転送さ れ、LD503の出射光が画像データに応じて濃度の淡 い部分は弱く、濃い部分は強くなるように変調される。 【0022】レーザ書き込み系では図3に詳しく示すよ うに、LD503の出射光が6面のポリゴンミラー11 により等角速度偏向され、次いでシリンドリカルレンズ 12により面倒れが補正され、次いで $f - \theta$ レンズ13により等速度偏向に補正され、次いで図4に示すように 第1ミラー14、第2ミラー15、第3ミラー15によ 20 り反射され、予め帯電されている感光体ドラム17上に 照射され、これにより感光体ドラム17上に潜像が形成 される。また、このときLD503の出射光がミラー5 07により反射され、同期検知素子508により受光さ れて主走査方向の同期検知信号が生成される。

【0023】ここで、レーザ書き込み系ではポリゴンミ ラー11はポリゴンモータ18により回転し、ポリゴン モータ18の回転数は書き込み駆動制御回路504と回 転制御回路506により制御される。また、LD503 の書き込みクロックはレーザドライバ回路502により 30 制御される。

【0024】図4において、感光体ドラム17上の潜像 は現像ユニット20によりトナーで現像され、このトナ ー像が転写器25により用紙に転写される。 用紙はロー ル紙21の形態で予めセットされており、送り出しロー ラ22により給紙される。この用紙はカッタ23により 適宜の長さで切断された後、感光体ドラム17上のトナ 一像と一致するようにレジストローラ24により搬送さ れ、トナー像が転写器25により転写されると定着ロー ラ26により定着され、次いで排紙トレイ27上に排出 40 される。

【0025】操作パネル402には図5に示すように、 複写機として一般的なキー及び表示器を有し、特に用紙 サイズキー403と、1%単位の変倍率表示器404、 ズームアップキー405及びズームダウンキー406 と、拡大キー407と、縮小キー408と、0.1%ス テップで変倍する場合に図6に示すような画面を表示す るタッチパネル式のLCD410を有する。

【0026】このような構成において1%単位の変倍を

査速度を変更すると共に、主走査方向については画像処 理回路104により電気的に行われる。画像メモリ部3 01はスキャナ100からの読み取り同期信号WLSY NCと、ポリゴンミラー11の1面と同期して得られる 同期信号RLSYNCとの差を吸収するために用いられ る。

【0027】ここで、0.1%ステップで最大1%の微 調整変倍を行うと、同期信号WLSYNC、RLSYN Cの差が1%発生するので画像メモリ部301はこの差 を吸収するためのものであり、1ページ分の容量は必要 はないが、差を十分吸収できる容量を必要とする。例え ば最大書き込みサイズをA1とし、プロセス速度を20 Omm/秒とすると、400DPIの場合には25Mビ ットの容量で±1%分のずれを吸収することができる。 画像メモリ部301は0. 1%ステップの微調整変倍を 行わない場合には特に設ける必要はない。

【0028】6面のポリゴンミラー11はポリゴンモー タ18により31496rpmで回転し、このとき書き 込み駆動制御回路504からの回転数に応じた駆動クロ ック (この例では1049, 869Hz) で制御されて いる。書き込み駆動制御回路504はこの駆動クロック をシステム制御装置302からの微調整コマンドに基づ いて+1~-1%範囲内の0.1%ステップで変更する ように構成されている。

【0029】また、同期検知素子508により検知され る同期検知信号によりLD503の書き込みタイミング が決定される。LD503の書き込みクロックは書き込 み駆動制御回路504内のPLL回路により33MHz が生成され、また、0.1%ステップで最大±2%可変 である。ここで、書き込みクロックの周波数が変化する と書き込み開始位置が変化するので、感光体17の中心 から左右に振り分けて書き込まれるように書き込み開始 位置を制御している。

【0030】0. 1%ステップの倍率調整信号は、ユー ザが図5、図6に示すLCD410の表示画面を操作す ることによりシステム制御装置302により生成され る。この場合、LCD410には図6(a)に示すよう に「微調整ズーム」と「倍率補正」のソフトキーが表示 され、「微調整ズームキー」が押下されると図6(b) に示すように0.1%ステップの指定倍率及び+キー、 -キーが表示され、他方、「倍率補正キー」が押下され ると図6(c)に示すように縦(副走査方向)及び横 (主走査方向)の0.1%ステップの指定倍率及び+キ ー、-キーが表示される。この表示によりユーザは+ 1.0~-1.0の範囲で0.1%ステップで倍率を指 定することができる。

【0031】このような倍率指定を行った後、原稿がス キャナ100にセットされると、倍率調整データがシス テム制御装置302から書き込み駆動制御回路504に 行う場合、副走査方向についてはスキャナ100の副走 50 送られ、書き込み駆動制御回路504ではこの倍率調整 10

データに基づいてポリゴンミラー11の回転数とLD5 03の書き込みクロックを共に変化させる。

【0032】ここで、主走査方向(横)の変倍は、書き 込みクロックのみを0.1%ステップで変化させること ができるが、副走査方向を変倍するためにポリゴンミラ -11の回転数を変化させるとミラー1面当たりの走査 時間が変化するので主走査方向の倍率も同じだけ変化さ せる。例えば副走査方向の倍率を+0.1%上げて10 0.1%に拡大する場合、ポリゴンミラー11の回転数 は

31496rpm $\times 0.999=31464.504$ r

に変更するが、このため主走査方向の倍率も-0.1% 変化する。これをキャンセルするために書き込みクロッ クを+0.1%上げ、

 $33MHz\times1.001=33.033MHz$ に変更する必要がある。

【0033】また、例えば副走査方向を+0.5%微調 整すると、主走査方向が一0.5%になるので、元の倍 する。逆に、副走査方向を一0.1%補正するために は、ポリゴンミラー11の回転数を上げる必要があり、 31496rpm $\times 1$. 001=31527. 496r рm

に変更する。このとき、書き込みクロックは 33MHz/1.001=32.967MHzに変更する。この関係を図7、図8に示す。

【0034】「微調整ズーム」と「倍率補正」の各モー ドの切り換えはLCD410の画面上で行い、上位画面 の「1%倍率モード」が選択されると、図示省略されて 30 いるが「用紙指定変倍」、「寸法入力変倍」、「偏変 倍」、「微調整」が選択可能な画面となる。「用紙指定 変倍」モードでは、原稿と用紙の各大きさが順次入力 し、入力が終了した時点で倍率が少数点第1位まで演算 される。この場合、自動的に「微調整」モードに移行す

【0035】「用紙指定変倍」の設定後の画面において LCD画面上の「微調整キー」(図示省略)が押下され ると図6 (a) に示すように「微調整ズーム」と「倍率 補正」のモードが選択可能な画面に変化する。そして、 各モードが選択されるとそれぞれ図6(b)(c)に示 すような画面となる。

【0036】「偏変倍」時には縦、横の各々の倍率につ いて「微調整ズーム」が可能である。「固定倍率」時に は図5に示す拡大キー407、縮小キー408が押下さ れると、それぞれ拡大側、縮小側の固定倍率が選択され ると共に図6(a)に示す画面を表示し、これにより必 要に応じて倍率値を微調整することができる。この「固 定倍率」の選択時には、1%単位の倍率と少数点第1位

302に対して送られ、次いでシステム制御装置302 から書き込み駆動制御回路504に送られてポリゴンミ ラー11の回転数とLD503の書き込みクロック周波 数が変更される。

【0037】「微調整ズーム」時には複写倍率をMとし て、1/Mに補正する変換が行われる。ポリゴンミラー 11の回転数とLD503の書き込みクロック周波数を 1/Mで変化させる方式としては幾つかの方法が考えら れるが、書き込みクロック発生回路としては図9に示す ようにVCO(電圧制御発振器)511を用いる方法 と、図10に示すように2段にカスケード接続したPL L回路514、515が考えられる。なお、図10に示 すようにPLL回路を2段にカスケード接続しても所望 の書き込みクロック周波数を近似することができるが、 端数を丸めるために誤差が発生する。但し、ポリゴンミ ラー11の回転数は基準周波数が書き込みクロック周波 数より低いので1段のPLL回路により十分な分解能を 得ることができる。

【0038】図11は図9に示すVCO511の制御電 率が必要な場合には書き込みクロックを+0.5%補正 20 圧に対する倍率微調整データの関係を示している。ここ で、VCO511の制御電圧の中心値はVCO511の 特性に応じて異なるが、5V程度でよい。図9に示す構 成ではシステム制御装置302内のCPUからの400 ~25%の10ビットの倍率データをD/A変換器51 2により基準電圧に変換し、次いでこの基準電圧をCP Uからの5ビットの微調整倍率データに基づいてD/A 変換器513によりVCO511の制御電圧に変換す る。D/A変換器513の出力は制御中心を仮に5Vと すると、5 Vを中心に+方向、一方向に変化する。

> 【0039】なお、D/A変換器512、513の間、 及びD/A変換器513とVCO511の間に、必要に 応じてオペアンプ等を用いて増幅、レベルシフトを行う ことにより制御中心周波数 (33 MHz) に維持して上 下に変化させることができる。「倍率補正」の場合には CPUから100%の倍率データを与えて固定する。ま た、ポリゴンミラー11の回転数も同様に、100%の 固定倍率データを与えて微調整することができる。

【0040】したがって、上記実施形態によれば、1% 変倍処理と、0.1%の「倍率補正」、「微調整ズー 40 ム」を選択可能であるので、使い勝手を向上させること ができる。例えば「1%ズーム変倍」と0.1%微調整 変倍の両方を選択することにより、「1%ズーム変倍」 により1度コピーした後、所望のサイズと異なる場合に は「0.1%倍率補正」を選択することによりずれを補 正することができる。

[0041]

【発明の効果】以上説明したように請求項1記載の発明 によれば、ポリゴンミラーの回転数と書き込み基準クロ ック周波数を複写倍率とは無関係に一定のステップ毎に 以下の補正倍率が操作装置400からシステム制御装置 50 変化させる変倍処理と、ポリゴンミラーの回転数と書き 込み基準クロック周波数を1/M (Mは複写倍率)ステ ップ毎に変化させる変倍処理をユーザが選択可能である ので、ユーザにとって使い勝手の良い変倍操作を実現す ることができる。

【0042】請求項2記載の発明によれば、比較的粗い 倍率ステップで変倍する複数の変倍モードの内、特定の モードが選択された場合に細かい倍率ステップの変倍処 理に自動的に移行するので、ユーザにとって使い勝手の 良い変倍操作を実現することができる。

【0043】請求項3記載の発明によれば、原稿の長さ 10 込みクロック周波数を示す説明図である。 とコピーされる長さが指定された場合にその倍率を計算 して比較的粗い倍率ステップで変倍するモードが選択さ れた場合に細かい倍率ステップの変倍処理に自動的に移 行するので、ユーザにとって使い勝手の良い変倍操作を 実現することができる。

【0044】請求項4記載の発明によれば、固定の倍率 が指定された場合に比較的粗い倍率ステップで変倍する モードが選択された場合に細かい倍率ステップの変倍処 理に自動的に移行するので、ユーザにとって使い勝手の 良い変倍操作を実現することができる。

【図面の簡単な説明】

【図1】本発明に係る倍率制御装置の一実施形態が適用

されたデジタル複写機を示すブロック図である。

【図2】図1のスキャナを示す構成図である。

【図3】レーザ書き込み系を示す構成図である。

【図4】図1の複写装置を示す構成図である。

【図5】図1の操作パネルを示す構成図である。

【図6】図5のLCDの表示画面を示す説明図である。

1.0

【図7】微調整変倍時のポリゴンミラーの回転数と書き 込みクロック周波数を示す説明図である。

【図8】微調整変倍時のポリゴンミラーの回転数と書き

【図9】書き込みクロック周波数発生回路の一例を示す ブロック図である。

【図10】書き込みクロック周波数発生回路の他の例を 示すブロック図である。

【図11】図9のVCOの制御電圧と微調整倍率データ を示すグラフである。

【符号の説明】

11 ポリゴンミラー

502 レーザドライバ回路

20 503 LD (レーザダイオード)

504 書き込み駆動制御回路

【図1】

【図10】

【図10】

【図5】

[2 5]

【図7】

Ø 主走査 0.2 0.1 --1.0 6.9 0.8 --1.8 0.7 --1.7 0.6 --1.6 0.5 -1.9 0.5 -0.9 0.5 -0.8 -0.7 0.3 -0.6 0.2 1.0 -03 12 -08 11 -Q8 L1 -**0**.9 -08 64 -07 07 -0.8 1.9 -0.8 0.9 -07 08 -06 07 -07 -07 11 10 -06 -06 -06 14 09 -05 -05 88 -04 -04 07 -03 07 06 -02 -02 05 05 -0.7 0.9 -0.6 0.9 -0.5 -86 LI 05 1.4 05 13 0.4 12 -05 15 -04 14 88 -85 84 -84 03 -0.5 0 -04 09 -0.4 0.6 -0.3 0.5 -0.2 -04 04 -**Q**4 0 -03 0.9 -02 0.5 RRE -83 82 -82 81 -03 -03 -03 -03 무주 작곡 -03 1.1 -02 1.0 -0.1 -0.1 63 62 67 -02 12 -02 09 -02 -01 0.2 -Q1 05 -01 04 -0.) 0.3 -01 Q1 -Q1 0 15

上段:ポリゴンモータ回転数 下段: 書込みクロック周波数設定値

豆

【図8】

-41 02 02 05 04 62 63 63 64 63 63 03 0J 03 06 64 04 63 02 05 05 65 05 84 03 62 01 0.5 0.5 -12 0.5 0.5 0.5 0.2 0.1 0 07 07 07 01 0 -01 0.7 -0.2 0.8 -0.3 0.7 0.3 0.7 0.2 03 0.8 0.9 0 -0.1 -0.2 09 01 09 69 09 -01 -02 -03 69 -84 0.9 0 69 -15 1.0 -02 10 L0 -03 -04 10 -05 1.0 -0.1 上段:ポリゴンモータ回転数 下段:普込みクロック周波教設定値

【図11】

[**3**] 1 1 1

