Computer Science & IT

Data Structure & Programming

Graph & Hashing

Lecture No. 03

Recap of Previous Lecture

Topics to be Covered

Slide

How many different insertion sequences of the key values using the same hash function and linear probing will result in the hash table 4element

shown above?

(A)	0
(A)	 u
(,

(B)
$$20$$

_		_	-	52	33	
	1.1					

0	
1	
2	42
3	23
4	34
5	52
6	46
7	
8	
9	

How many different insertion sequences of the key values using the same hash function and linear probing will result in the hash table

shown above?

(A) 10

(B) 20

(C)30

(D) 40

	1	1	0 3
54.	4	0	'33
	V)	

3	•	6
		O

_	3	7 :	6 6	5 !	1 :	3	2 .)
		33	46	52	34	23	42	

Topic: Primary Clustering

Primary clustering is the tendency for a collision resolution scheme such as linear probing to create *long runs of filled slots* near the hash position of keys.

If the primary hash index is x, subsequent probes go to x + 1, x + 2, x + 3 and so on, this results in Primary Clustering.

Once the *primary cluster forms*, the bigger the cluster gets, the *faster* it grows. And it reduces the performance.

Key - x	$h(x) = x \bmod 13$	
18	5	k
41	2	ı
22	9	١
44	5	
59	7	-
32	6	r
31	5	ľ
73	8	
70	5	K

	0
	1
41	2
	3
	4
18	5
44	6
59	7
32	8
22	9
31	10
73	1.1
70	12
	18 44 59 32 22 31 73

Ine or probing

Leys are lated excumulated in single place.

Linear probing Suffers problem of primary clusters Cluster is Long roun of filled slot once the cluster from bigger it gets faster it grows performance of Hashing: Search time 2 Insertion 4 ime Increases

Key-x	$h(x,i) = (h(x),i^2) \bmod 20$
96	96mod20=16
48	48 mod 20 = 8
63	63 mod20 = 3
29	29 mod 20 = 9
87	67 mod 20 = 7
77	77 mud 20 = 17
47	47 mod 20 = 7
73	
70	
86	
166	

Drobe1	
= h(k)+1	2
7+12	
occ	upied

probez = h(k)-	
=7+22	
= 7+4=(1)	

	0
	1
	2
63	3
	4
	5
	6
87	7
87 48 V	8
29	9
	10
47	11
	12
	13
	14
	15
26	16
77	17
	18
	19

Key - x	$h(x,i) = (h(x),i^2) \bmod 20$
96	96mod20=16
48	48 mod 20 = 8
63	63 mod20 = 3
29	29 mod 20 = 9
87	67 mod 20 = 7
77	77 mud 20 = 17
47	47 mod 20 = 7
73	73 mod 20 = 13
70	70 mod 20 = 10
86	86 mod20 = 6
166	166 mod 20=6

-find-the
in which 166 will be mapped
probles = 6+12 = 7
Occupied 10
proble2:6+22=10
probeg = 6+32=15

{96, 48, 63, 29, 87, 77, 47, 73, 70, 86, 166}.

Key - x	$h(x,i) = (h(x),i^2) \bmod 20$
96	96mod20=16
48	48 mod 20 = 8
63	63 mod20 = 3
29	29 mod 20 = 9
87	67 mod 20 = 7
77	77 mud 20 = 17
47	47 mod 20 = 7
73	73 mod 20 = 13
70	70 mod 20 = 10
86	86 mod20 = 6
166	166 mod 20=6

Insert 146
2 - find the
Slot in which
146 will be
Inserted?

Key - x	$h(x,i) = (h(x),i^2) \bmod 20$
96	96mod20=16
48	48 mod 20 = 8
63	63 mod20 = 3
29	29 mod 20 = 9
87	67 mod 20 = 7
77	77 mud 20 = 17
47	47 mod 20 = 7
73	73 mod 20 = 13
70	70 mod 20 = 10
86	86 mod20 = 6
166	166 mud 20=6

146 mod 20	
= 6	
probe1 = 6+12=7	
mulea = 6+22=10	
pooleg = 6+32=15	
provbe4 = 6+42	
22	
=(22 mod 20)	
= (2)	

{96, 48, 63, 29, 87, 77, 47, 73, 70, 86, 166}.

Key - x	$h(x,i) = (h(x),i^2) \bmod 20$
96	96mod20=16
48	48 mod 20 = 8
63	63 mod20 = 3
29	29 mod 20 = 9
87	67 mod 20 = 7
77	77 mud 20 = 17
47	47 mod 20 = 7
73	73 mod 20 = 13
70	70 mod 20 = 10
86	86 mod20 = 6
166	166 mod 20=6

Insert 67

find the slot

No. in which

it will be inserted

probeo = 7

180be1= 7+12=8

probez = 7+2=11

500bez = 7482 = 16

probes = 7+4= 23% =3

	0
	1
146	3
146 63	3
	4
	5
86	6
87	7
87 48 V	8
29	9
70	10
47	11
67	12
73	13
	14
166	15
26	16
77	17
	18
	19

Key - x	$h(x,i) = (h(x),i^2) \mod 20$
96	
48	
63	
29	
87	
77	
47	
73	
70	
86	
166	

0
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0	Ĺ
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

Key - x	$h(x,i) = (h(x),i^2) \mod 20$
96	i = 0, (h(96), 0) mod 20 = 16
48	i = 0, (h(48), 0) mod 20 = 8
63	i = 0, (h(63), 0) mod 20 = 3
29	i = 0, (h(29), 0) mod 20 = 9
87	i = 0, (h(87), 0) mod 20 = 7
77	i = 0, (h(77), 0) mod 20 = 17
47	$i = 0, (h(47), 0) \mod 20 = 0.1$
73	i = 0, (h(73), 0) mod 20 = 13
70	i = 0, (h(70), 0) mod 20 = 10
86	i = 0, (h(86), 0) mod 20 = 6
166	ii = 3),((b((1666)),4))mmil20) = 16

	0
	1
	2
63	3
	4
	5
86	6 Occupies
87	7 Occupies
48	8 Occupies
29	9
70	10 Occupied
47	11
	12
73	13
	14
166	15
96	16
77	17
	18
	19

Cycle through the list

Key	$h(x,i) = (h(x),i^2) \mod 10$	I
2	2 mud 10 =	D
3	3mod10=3	r
6	6 mod 10 = 6	I
8	8 mod 10 = 8	p
7	7 mucl 10 = 7	
11	11 mod 10 = 1	P
12	12 mod 10 = 2 (h(K))	
		1

probleg = h(k)+12:	-3	
moles: 2+2=6		0
	11	1
probe3: 2+32=11	2	2
Il modio:	3	3
18/010=8		4
		5
probes = 2+52=27 27%16=7	6	6
	7	7
12666 = 2162 = 38 38/10=8	8	8
20/110		9
	J. B.	

Some element may cycle-through the list

Double Hashing

Two hash functions are present

pointage hash function, h, (k): probeo

Secondary hash function, ha(k): offset

0	44
1	
8) 2	41
probleo=5 3	
probet =	
5+4: 9 5	18
4 occupied 6	
probes 7	
9+4=13	0.0
139/013 =0 10	22
13 /013 -0 10	
11	
	111/11

1	D	1
1	V	V

Key – x	$h_1(x) = x \bmod 13$	$h_2(x) = 8 - (x \bmod 8)$
18	5	6
41	2	7
22	9	2
44	5	4
59	7	5
32	6	8
31	5	1
73	8	7

0
1
Occupi
ed
4
5
-
Occupi
Occupi
Occupi
Occupi ed
12

Consider a double hashing scheme in which the primary has function is h, (k) = k mod 23, and the secondary hash function is $h_{k}(k) = 1 + (k \mod 19)$. Assume that the table size is 23. Then the address returned by probe 1 in the probe sequence (assume that the probe sequence begins at probe 0) for

$$= 21 \quad h_2(90) = 1 + 90 \mod 19$$

$$= 1 + 14 = 15$$

$$36\%23 = 13$$

Consider a double hashing scheme in which the primary hash function is h, $(k) = k \mod 10$, and the secondary hash function is h, $(k) = 7 - (k \mod 7)$. Assume that the table size is 10. Then the address returned by probe 1 in the probe sequence (assume that the probe sequence begins at probe 0)

for key value k = 49 is

Consider a double hashing scheme in which the primary hash function is h, $(k) = k \mod 10$, and the secondary hash function is h, $(k) = 7 - (k \mod 7)$. Assume that the table size is 10. Then the address returned by probe 1 in the probe sequence (assume that the probe sequence begins at probe 0) for key value k = 49 is 6

2 mins Summary

Topic

quadratic probling

Topic

Double Hashing

Topic

Topic

Topic

Slide

THANK - YOU