平成 29 年度

大学院入学試験問題

物理学

午前9:00~11:00

注 意 事 項

- 1. 試験開始の合図があるまで、この問題冊子を開かないこと。
- 2. 本冊子に落丁、乱丁、印刷不鮮明の箇所などがあった場合には申し出ること。
- 3. 4問のうち、任意の2問を選んで解答すること。
- 4. 解答用紙2枚が渡される。1問ごとに必ず1枚の解答用紙を使用すること。必要があれば、 解答用紙の裏面を用いてもよい。
- 5. 解答用紙上方の指定された箇所に、受験番号およびその用紙で解答する問題番号を忘れずに 記入すること。また、上方にある「くさび型マーク」のうち、記入した問題番号および修士課 程と博士課程の区別に相当する箇所を、試験終了後に監督者の指示に従い、はさみで正しく 切り取ること。したがって、解答用紙1枚につき2ケ所切り取ることとなる。
- 6. 草稿用白紙は本冊子から切り離さないこと。
- 7. 解答に関係のない記号、符号などを記入した答案は無効とする。
- 8. 解答用紙及び問題冊子は持ち帰らないこと。

受験番号 No.	
----------	--

上欄に受験番号を記入すること。

第1問

長さI,質量Mで太さが無視できる一様な細い剛体棒 AB が,図 1.1 のように,水平面上に鉛直に静止している。棒の端 A の初期位置を原点とし x, y 軸を図のように定義する。棒の上端 B に,x 軸正方向の無視できる微小な速度を与えたところ,棒が倒れ始めた。棒の重心を G,重力加速度をg として以下の問いに答えよ。ただし,水平面からの摩擦や空気抵抗は無視してよい。また,問 I から IV では棒の端 A が水平面から離れないと仮定してよい。

- I. 重心 G を通り xy 平面に直交する軸のまわりの棒の慣性モーメント I が $I = \frac{1}{12} M l^2$ と表せることを示せ。
- II. 棒 AB が y 軸となす角を θ とすると, θ は θ = 0 から時間とともに増加する。棒の並進運動と G まわりの回転運動の方程式を示せ。ただし, A が水平面から受ける垂直抗力を R とせよ。
- III. 角 θ の微分方程式をg, lのみを含む形で示せ。

- IV. 棒の端 B が図の水平面に接する直前の重心まわりの棒の回転角速度と B の速度を求めよ。
- V. 棒の端 B が図の水平面に接するまで、棒の端 A が水平面から離れないことを示せ。

第 2 問

図 2.1 に示すように、半径rの半円状の導体板 2 枚を平行に z_0 だけ離して真空中に置く。真空の誘電率は ε_0 である。上下の導体板をそれぞれ電極 A、電極 B とする。電極 A, B の縁の直線部分の中点を O_A , O_B とする。電極 A は O_A を中心に回転することができ、電極 A、電極 B の縁の二つの直線部分がなす角度を θ とし、上下の電極が全く重なっていない状態を θ =0 とする。本間では電極面に直交する電界のみを考え、電極端部の効果は無視する。以下の問いに答えよ。

- I. 電極間の角度 θ を $\pi/2$ とし、電極 A、電極 B にそれぞれ真電荷Q、-Q(Q>0)を与える。
 - 1. 電極が重なっている部分の電界強度 Eを求めよ。
 - 2. 電極 A の電極 B に対する電位 V_1 を求めよ。
 - 3. 電極 A-B 間の静電容量 C を求めよ。
 - 4. 角度 θ を $\theta = \pi/10$ から $\theta = 19\pi/10$ までゆっくりと増加させた。 電極 A の電極 B に対する電位Vを角度 θ の関数として求め,Vと θ の関係をグラフに示せ。

- II. 電極 A, 電極 B の電荷を 0 に戻し、角度 θ を $\theta = \pi$ とする。図 2.2 に示すように、半径 r、厚み $z_0/2$ 、比誘電率 k の半円状の誘電体 C を電極 B 上に置く。さらに電極 B のみを接地し、誘電体 C の上面に一様な面密度 $\sigma(\sigma>0)$ の真電荷を固定する。このとき誘電体 C は分極を起こし、誘電体内の電界は弱まる。
 - 1. 電気力線と電束線をそれぞれ別の前面図に示せ。作図にあたり k=2 とし、線の密度が $\epsilon_0 E$ と電束密度 D の大きさをあらわすようにせよ。
 - 2. 電極 A, 電極 B上の真電荷 Q_A , Q_B をそれぞれ求めよ。
- III. 前間に引き続き、図 2.3 に示すように、電極 A も接地する。
 - 1. 電極 A, 電極 B に誘起される真電荷をそれぞれ Q'_A , Q'_B , 誘電体 C の上面と電極 A の間の電界強度を E'_A , 誘電体 C 内部の電界強度を E'_B とする。 E'_A , E'_B を Q'_A , Q'_B を用いてそれぞれ示せ。
 - 2. 電界 E'_A , E'_B が満たすべき関係を示し、 Q'_A , Q'_B を求めよ。
 - 3. 電気力線と電束線をそれぞれ別の前面図に示せ。作図にあたりk=2とし、線の密度が ε_0 Eと電束密度Dの大きさをあらわすようにせよ。
 - 4. 次に $\theta=0$ とし、電極 Aを一定の角速度 $\omega(\omega>0)$ でゆっくり回転させる。電極 A に流れ込む電流を時間tの関数 I(t) として求めよ。ただし、 $0<\theta<2\pi$ とせよ。

第 3 問

I. 理想気体では以下の状態方程式が成り立つ。

$$pv = RT \tag{1}$$

ここで、pは圧力、vは単位質量あたりの体積(比体積)、Tは温度であり、Rは気体の種類によって決まる定数である。以下の問いに答えよ。

1. 体積膨張係数 α と等温圧縮率 k_r は,

$$\alpha = \frac{1}{\nu} \left(\frac{\partial \nu}{\partial T} \right)_{p} \tag{2}$$

および

$$k_T = -\frac{1}{\nu} \left(\frac{\partial v}{\partial p} \right)_T \tag{3}$$

で与えられる。理想気体に対し、 α および k_T をそれぞれ式(1)中の状態量のいずれか1つを用いて表せ。ここで、添字p、Tはそれぞれ圧力p、温度Tを一定に保つことを意味する。

2. 理想気体を含む気体一般に対し、定圧比熱 c_p と定積比熱 c_v の差が

$$c_p - c_v = \frac{vT\alpha^2}{k_T} \tag{4}$$

で表されることを示せ。ただし、 c_p と c_v は、それぞれ

$$c_p = T \left(\frac{\partial s}{\partial T} \right)_p \tag{5}$$

$$c_{\nu} = T \left(\frac{\partial s}{\partial T} \right)_{\nu} \tag{6}$$

と表される。なお、sは単位質量あたりのエントロピーであり、 添字vは比体積vを一定に保つことを意味する。また、マクスウェルの関係式

$$\left(\frac{\partial v}{\partial T}\right)_{p} = -\left(\frac{\partial s}{\partial p}\right)_{T} \tag{7}$$

$$\left(\frac{\partial p}{\partial T}\right)_{v} = \left(\frac{\partial s}{\partial v}\right)_{T} \tag{8}$$

および連鎖律の式

$$\left(\frac{\partial p}{\partial v}\right)_{T} \left(\frac{\partial v}{\partial T}\right)_{p} \left(\frac{\partial T}{\partial p}\right)_{y} = -1 \tag{9}$$

を用いよ。

- 3. 理想気体において,ある熱力学的平衡状態 $1(p_1, v_1, T_1)$ から準静的かつ可逆的に他の熱力学的平衡状態 $2(p_2, v_2, T_2)$ に移る系を考え,sの変化を, c_v , v_1 , v_2 , R, T_1 , T_2 を用いて表せ。なお, c_v は一定と仮定する。
- 4. 問 I. 3 において、状態 1 から状態 2 への可逆変化が断熱的である場合、 T_2/T_1 を v_1 、 v_2 および比熱比 $\kappa=c_p/c_v$ を用いて表せ。
- II. 理想気体で行う準静的サイクルの熱効率について考える。ここでは、 q_A 、 q_B 、 q_C 、 q_D は単位質量あたりの供給熱量、 q_E 、 q_F 、 q_C は単位質量あたりの排出熱量とし、定圧比熱 c_P 、定積比熱 c_R は一定と仮定する。以下の問いに答えよ。
 - 1. 図 3.1 の p-v線図で示されるサイクル A は,断熱変化 $1\to 2$,定積変化 $2\to 2'$,断熱変化 $2'\to 4$,定積変化 $4\to 1$ の 4 つの可逆過程からなる。このサイクルの熱効率 $(q_A-q_E)/q_A$ を,圧縮比 $\varepsilon=v_1/v_2$ および比熱比 $\kappa=c_n/c_v$ を用いて表せ。
 - 2. 図 3.2 のサイクル B は,断熱変化 $1\rightarrow 2$,定圧変化 $2\rightarrow 3$,断熱変化 $3\rightarrow 4$,定積変化 $4\rightarrow 1$ の 4 つの可逆過程からなる。このサイクルの熱効率 $(q_B-q_F)/q_B$ を, ε , κ および締切比 $\sigma=v_3/v_2$ を用いて表せ。

- 3. 図 3.3 のサイクル C は、断熱変化 $1\rightarrow 2$ 、定積変化 $2\rightarrow 2'$ 、定圧変化 $2'\rightarrow 3$ 、断熱変化 $3\rightarrow 4$ 、定積変化 $4\rightarrow 1$ の 5 つの可逆過程からなる。このサイクルの熱効率 $(q_c+q_p-q_g)/(q_c+q_p)$ を、 ε 、 κ 、 σ および圧力上昇比 $\rho=p_3/p_2$ を用いて表せ。
- 4. 上で考えた 3 つのサイクル A, B, C のうち, 同じ圧縮比 ε に おいて熱効率の最も大きいサイクル,最も小さいサイクルはそれ ぞれどれか。理由をつけて示せ。ただし, ε >2, κ =4/3, ρ >1, σ =2とし, $2^{1/3}$ =1.26としてよい。

図 3.1

図 3.2

第 4 問

I. 質量 M_0 の原子 N 個が,ばね定数 K_s のばねで環状に結ばれている 1 次元格子での振動を考える。N は十分に大きく,局所的には図 4.1 のように格子は直線状であると考えてよいものとする。平衡位置での原子間の間隔はaとする。以下の問いに答えよ。

- 1. n番目の原子の平衡位置からの変位を u_n とする。運動方程式を M_0 , K_s , u_n , u_{n+1} , u_{n-1} を用いて表せ。ただし,力と変位は図中右向きを正とする。
- 2. 問 I. 1 の運動方程式の一般解は、振動の振幅を u として

$$u_n = u \exp\{-i(\omega t - kna)\}\tag{1}$$

で表される。ただし、 ω は角振動数であり、kは波数である。 この一般解を用いて、 ω とkaの関係を表す式を求めよ。

次に、図 4.2 のように質量 M_1 と M_2 の原子が交互にばね定数 K_s のばねで結ばれている環状の 1 次元格子での振動を考える。格子は局所的には直線状であり、隣接する原子間の平衡位置での間隔はaとする。以下の問いに答えよ。

- 3. n番目の質量 M_1 の原子の平衡位置からの変位を u_n , 質量 M_2 の原子の平衡位置からの変位を v_n とする。2 種類の原子の運動方程式を M_1 , M_2 , K_s , u_n , u_{n+1} , u_{n-1} , v_n , v_{n+1} , v_{n-1} を用いて表せ。ただし,力と変位は図中右向きを正とする。
- 4. この運動方程式の一般解を示せ。ただし、 u_n 、 v_n の振幅をそれぞれ、u、vとせよ。
- 5. $ω^2 ≥ ka$ の関係を表す式を求めよ。
- II. 量子力学では、問 I のような I 次元格子における調和振動は以下のシュレーディンガー方程式

$$\left\{ -\frac{\hbar^2}{2M_0} \frac{d^2}{dx^2} + \frac{1}{2} M_0 \omega^2 x^2 \right\} \varphi(x) = E \varphi(x)$$
 (2)

の解として得られる。ここで、 $\varphi(x)$ は波動関数、xは原子の座標、Eは固有値、 \hbar はプランク定数をhとして $\hbar=h/2\pi$ である。このシュレーディンガー方程式の解における基底状態と第一励起状態は

$$\varphi_0(x) = C_0 \exp\left(-\frac{M_0 \omega}{2\hbar} x^2\right) \tag{3}$$

$$\varphi_{\rm I}(x) = C_1 \sqrt{\frac{M_0 \omega}{\hbar}} x \exp\left(-\frac{M_0 \omega}{2\hbar} x^2\right) \tag{4}$$

で与えられる。ただし、Co, C1は規格化定数である。

- 1. $\varphi_0(x)$ と $\varphi_1(x)$ を用いて、基底状態の固有値 E_0 と第一励起状態の固有値 E_1 を求めよ。
- 2. 基底状態と第一励起状態において原子座標の期待値 $\langle x \rangle$ と運動量の期待値 $\langle p \rangle$ が、ともに 0 となることを示せ。