PRINTABLE VERSION

Quiz 5

You scored 88.89 out of 100

Question 1		
Your answer is CORRECT.		
An outline for a proof of an implication $P \Rightarrow Q$ is provided below:		
Proposition	on. $P\Rightarrow Q$	
Droof Su	$\text{ppose } P \Rightarrow Q \text{ is false}.$	
	prose $P\Rightarrow Q$ is false. as $\neg(P\Rightarrow Q)=P\wedge\neg Q$ is true.	
	teps involving P , $\neg Q$, and any previously established facts	
	0=1 (or some similarly weird conclusion) $\Rightarrow \Leftarrow$.	
What type of proof was described in the outline?		
a) Wait a minute The proof described in this outline isn't a valid proof technique!		
b) A proof by contrapositive is described in this outline.		
c) A direct proof is described in this outline.		
d) A proof by introspection is described in this outline.		
e) A proof by contradiction is described in this outline.		
Question 2		
Your answer is CORRECT.		
Suppose a mathematician wants to prove a statement of the form $P \land Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?		
a) ○ Suppose ¬Q		
b) $©$ Suppose $\neg P \lor \neg Q$.		
c) \bigcirc Suppose $\neg P \land \neg Q$.		
d) \bigcirc Suppose $\neg P$.		
e) \bigcirc Suppose $\neg P \land Q$.		
Question 3		
Your answer is CORRECT.		
Given two sets A and B one can prove $B \subseteq A$ by		
a) \bigcirc First supposing $x \in A$, and then showing $x \in A$	x ∉ B.	
b) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.		
c) \bigcirc First supposing $x \in A$, and then showing $x \in B$.		
d) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.		
e) \odot First supposing $x \in B$, and then showing $x \in A$.		
Question 4		
Your answer is CORRECT.		
Given two sets A and B one can prove $B \subseteq A$	oy	

a) \bigcirc First supposing $x \notin B$, and then showing $x \in A$. **b)** \bigcirc First supposing $x \notin A$, and then showing $x \in B$. c) \bigcirc First supposing $x \notin A$, and then showing $x \notin B$. **d)** \bigcirc First supposing $x \notin B$, and then showing $x \notin A$. e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$. **Question 5** Your answer is CORRECT. A lovely little proof is presented below: Proposition. If the product of two integers is even, then at least one of the integers is even. Proof. Suppose $x, y \in \mathbb{Z}$ and neither x nor y is even. (We will show that xy is not even.) This means x and y are both odd so that x = 2n + 1 and y = 2m + 1 for integers n, m. It follows that xy = (2n+1)(2m+1) = 4nm+2n+2m+1 = 2(2nm+n+m)+1 which is odd since (2nm+n+m)Therefore xy is not even. Determine the type of proof used. a) A proof by indoctrination was used. b) Wait a minute... This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points. c) A direct proof was used. d) A proof by contrapositive was used.

Question 6

Your answer is CORRECT.

e) A proof by contradiction was used.

A proposition and an attempt at its proof are presented below.

Proposition. There do not exist integers a and b that satisfy 27a + 9b = 1.

Proof. (By Contradiction)

- (1) The proposition can be rewritten as $\forall a, b \in \mathbb{Z}, 27a + 9b \neq 1$.
- (2) For the sake of a contradiction we will assume that the negation of this proposition is trure; that is, we will assume $\forall a$
- (3) Dividing the equation above by 3 produces the equation $9a + 3b = \frac{1}{3}$.
- (4) Since $a, b \in \mathbb{Z}$, it follows that $9a + 3b \in \mathbb{Z}$.
- (5) However, $9a + 3b = \frac{1}{3} \notin \mathbb{Z}$.
- (6) Therefore 9a + 3b is an integer, and 9a + 3b is not an integer. $\Rightarrow \Leftarrow$

Identify the mistake, if any, in this proof.

- a) There is an algebraic mistake in Line (3).
- **b)** There is a mistake in Line (2) since the negation of the proposition should use the quantifier \exists , not \forall .
- c) There is a mistake in Line (4) since Z is not closed under addition.
- d) There is a mistake in Line (1); this is not a correct way to rewrite the proposition.
- e) \bigcirc There is a mistake in Line (5) since $1/3 \in \mathbb{Z}$.

Question 7

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. If $A \cup B = B$, then $A \subseteq B$.

Proof. (Direct)

- (1) Suppose $A \cup B = B$. To prove $A \subseteq B$ we also let $x \in A$ and will end the proof by showing $x \in B$.
- (2) Because B is a set $\emptyset \subseteq B$.
- (3) Since $A \subseteq A \cup B$ and $x \in A$ it follows that $x \in A \cup B$.
- (4) Since, by assumption $A \cup B = B$ it also follows that $x \in B$.
- (5) Because $A \cup B = B$ a Venn diagram shows that $A \subseteq B$.
- (6) If $x \notin B$, then there would be a contradiction. \square

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only lines (2) and (5) are not needed. All other lines are needed.
- b) Only; ines (1) and (5) are not needed. All other lines are needed.
- c) Only lines (1) and (2) are not needed. All other lines are needed.
- d) All lines are needed.
- e) Only lines (3) and (4) are not needed. All other lines are needed.

Question 8

Your answer is INCORRECT.

Suppose we want to write a direct proof of the proposition below:

$$\forall x \in \mathbb{Z}, x^3 - x \text{ is a multiple of 3.}$$

Which of the following statements or properties do we need to use when composing this proof?

- a) \odot The fact that if x is a multiple of 3 then 7x is a multiple of 21.
- **b)** Therefore $x^3 x = 3m$
- c) The definition of prime.
- d) \bigcirc The fact that if x is a multiple of 3 then 5x is a multiple of 35.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true.

$$\exists n \in \mathbb{N}, 1+2+\dots+n=\frac{n(n+1)}{2}.$$

Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) \bigcirc We need to show the claim is true for an abitrary natural, saying something like "Let $n \in \mathbb{N}$."
- b) We need only check that the claim is true for one, single natural number.
- c) The proposition is a famous, unsolved problem. No one knows if it is true or false, and so it is not clear how to describe a proof for this.