МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Ивин Д. Э.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 36 вариантом задания были определены:
 - U_{MAX} = 1,5 В и U_{MIN} : -1,5 В;
 - в соотвествии с заданием $U_{O\Gamma P} = U_{MAX} = 1.5 B;$
 - в соотвествии с вариантом 36 $f_{MIN} = 0.4$ к Γ ц и $f_{MAX} = 4.1$ к Γ ц;
 - в соответсвии с заданием $\Delta_{\text{илоп}} = 0.25 \text{ B}$;

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOH}}$. $N_{MIN}=3$ / 0.25=12

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 16$.

Было определено количество разрядов n в коде. $n = log_2 16 = 4$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375\,$ В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\rm A} \!\! \leq \! 1/2F_{\rm B}$) должна удовлетворять условию $F_{\rm A} \!\! \geq \! 2F_{\rm B}$). $F_{\rm A} = F_{\rm MAX} * 2 = 8,2$ к Γ ц

3.2 При частоте дескритизации 8,2к Γ ц длина одного отсчета будет равна 1000 мс / 8200 гц = 0,11мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,12мс ≈ 8 отсчетов, для 6мс количество отсчетов равняется 48. Было определено Ubx(t), UkB(t), Δ KB(t) и N. Результат представлен в таблице 1.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	1,38	1,41	-0,03	15	1111
2	1,38	1,41	-0,03	15	1111
3	1,20	1,22	-0,02	13	1101
4	0,91	0,94	-0,03	10	1010
5	0,52	0,56	-0,05	6	0110
6	0,10	0,19	-0,09	2	0010
7	0,23	0,28	-0,05	3	0011
8	0,54	0,56	-0,03	6	0110
9	0,69	0,75	-0,06	8	1000
10	0,72	0,75	-0,03	8	1000
11	0,65	0,66	-0,01	7	0111
12	0,43	0,47	-0,04	5	0101
13	0,15	0,19	-0,04	2	0010
14	0,16	0,19	-0,03	2	0010
15	0,45	0,47	-0,02	5	0101
16	0,65	0,66	-0,01	7	0111
17	0,78	0,84	-0,07	9	1001
18	0,75	0,75	0,00	8	1000
19	0,58	0,66	-0,08	7	0111
20	0,31	0,38	-0,06	4	0100
21	0,06	0,09	-0,03	1	0001
22	0,43	0,47	-0,04	5	0101
23	0,81	0,84	-0,03	9	1001
24	1,17	1,22	-0,05	13	1101

25	1,40	1,41	-0,01	15	1111
26	1,40	1,41	-0,01	15	1111
27	1,38	1,41	-0,03	15	1111
28	1,22	1,22	0,00	13	1101
29	0,91	0,94	-0,03	10	1010
30	0,52	0,56	-0,04	6	0110
31	0,11	0,19	-0,08	2	0010
32	0,27	0,28	-0,02	3	0011
33	0,53	0,56	-0,04	6	0110
34	0,72	0,75	-0,04	8	1000
35	0,78	0,84	-0,07	9	1001
36	0,68	0,75	-0,07	8	1000
37	0,68	0,75	-0,07	8	1000
38	0,20	0,28	-0,08	3	0011
39	0,12	0,19	-0,07	2	0010
40	0,41	0,47	-0,06	5	0101
41	0,61	0,66	-0,05	7	0111
42	0,72	0,75	-0,03	8	1000
43	0,69	0,75	-0,06	8	1000
44	0,56	0,56	0,00	6	0110
45	0,32	0,38	-0,06	4	0100
46	0,06	0,09	-0,03	1	0001
47	0,47	0,56	-0,09	6	0110
48	0,83	0,84	-0,02	9	1001

 $3.3~~{
m B}$ соответствии с вариантом задания кодовая последовательность была записана с помощью AMI. Результат приведен на рисунке 2 — 7.

Рисунок 2 — Коды с 1 по 8

Рисунок 3 — Коды с 9 по 16

Рисунок 4 — Коды с 17 по 24

Рисунок 5 — Коды с 25 по 32

Рисунок 6 — Коды с 33 по 40

Рисунок 7 — Коды с 41 по 48

	4 Вывод	ц: было изучено	преобразование	аналогового сигна.	ла в цифровой
сигна	ил.				