Bits over cables....

Communication Technologies @ 14.0

M. Laeger, T. Sauter, and J. Jasperneite, The Future of Industrial Communication, IEEE Industrial Electronics Magazine, 2017

Industrial Communication Technologies – Market Share

Wireless is Gaining Momentum

Wired connectivity (Ethernet, field bus technology, etc.) is just fine for IIoT but wireless is on the hype

 $ON\ World/ISA\ Survey, Nov. 2016\ -180\ industrial\ end\ users, systems\ integrators, and\ service\ providers$

Fieldbus Generalities

- Mainly targeting the interconnection of control devices and field devices (sensors/actuators)
- Short frequently-exchanged messages
- Tigth requirements in terms of delay and determinism

Semantics of the specific service

How the physical link are accessed

What links are used

Short Digression on Channel Access

- ☐ Problem
 - To share a single communication medium (in our case a IEEE 802.15.4 frequency channel)
- □ Solutions
 - Scheduled access ("I Tell You when to Talk")
 - Transmissions on the channel are sequential with no conflicts
 - Polling schemes
 - Centralized scheduling schemes
 - Random access ("You Decide when to Talk but be Wise in Recovering from Collisions")
 - Transmission are partially uncoordinated and can overlap (collision)
 - ☐ Conflicts are resolved using distributed procedures based on random retransmission delay

Scheduled vs Random Access

- ☐ Scheduled Access (e.g., GSM, Bluetooth, Wifi PCF)
 - PROs:
 - "guaranteed" performance (bounded delay/throughput)
 - CONs:
 - Coordination required (central node, synchronization, etc.)
- Random Access (e.g., WiFi DCF, Ethernet)
 - PROs:
 - Easy to implement
 - Opportunistic access to the resources
 - CONs:
 - Only "Statistical" guarantees on performance
 - Poor performance under heavy traffic (collisions kick in)

Fieldbus Example: the CAN Bus

- Connectivity based on shared physical bus
- ☐ Everybody receives everything transmitted on the BUS

Application programs and devices Sensor 1 Sensor 3 PLC Application layer and device profiles Sensor 2 Actuator 1 (CANopen, DeviceNet, SDS, SAE J1939) Logical Link Control (LLC) CAN Data-link layer SOF CRC 11 bit O-8 byte ACK (CAN controller) EOF Medium Access Control (MAC) **IDENTIFIER FIELD DATA FIELD FIELD** CAN Physical layer (CAN transceivers and connectors) CSMA to arbitrate collisions CAN bus

Rate: 1 [Mb/s]

Fieldbus Example: The CAN bus

□ Carrier Sensing Multiple Access

sense the BUS before transmitting; if BUS free transmit otherwise refrain and try later

Collissions

BUS Arbitration

- Each message has a priority (Lower identifier field means higher priority)
- Each station monitors its own transmission and the status of the BUS
- If a transmitting station overhears another transmission on the channel at higher priority, then quits (e.g., B in the figure)

Other Fieldbus technologies - PROFIBUS

Slave

Slave

Slave

Ethernet Timeline

1976: Physical shared bus Xerox (1976), then ratified within IEEE 802.3 WG, coax cables, 1Mb/s

☐ 1990-2000: Star-like topologies with hub/repeatrer (90′-00′), twisted pairs, up to 1Gb/s

2000-Now: Fully switched/Full Duplex topologies, twisted pairs, fibers, up to 100Gb/s

Ethernet

Ethernet Frame

- ☐ Synch preamble-Sync (x7 *10101010*)
- ☐ Frame Delimiter- FD (10101011)
- ☐ 48-bits Addresses
- ☐ Type: multiplexing field (e.g., IP has Type=0800)
- Data field
- ☐ Frame Check Sequence FCS for error checking

MAC Addresses

- Used for filtering purposes
- ☐ First 3 bytes set the manufacturer
- Last 3 bytes identify the interface
- «All-ones» address used for broadcast

48-bit MAC address

00	0C	42	28	79	45
00000000	00001100	01000010	00101000	01111001	01000101

broadcast

FF:FF:FF:FF:FF

CSMA/CD

- ☐ Carrier Sensing Multiple Access
 - sense the BUS before transmitting; if BUS free transmit otherwise refrain and try later
- Collision Detect

If collision detected all the transmissions are aborted after a while

Hub and Switches

Fully Switched LANs

- ☐ No more collisions
- ☐ No more CSMA-CD

Ethernet @ Industry 4.0

M. Wollschlaeger, T. Sauter, J. Jasper, *The Future of Industrial Communications*, IEEE Industrial Electronics Magazine, 2017

Bits in the Air...

The Race to the Smart object

- Mobile Radio Networks
 - RAN and CN Evolutions **೨**
- Cellular IoT Operators
 - Low Power Long Range Technology
- Capillary Multi-hop Networks
 - Short/medium range + backhauling

Connectivity Offer

