Lógica Computacional

Aula Teórica 3: Álgebra de Boole, natureza das fórmulas

Ricardo Gonçalves

Departamento de Informática

21 de setembro de 2023

O que se pretende?

Intuição

Semântica informal

- Lógica Proposicional: representação e manipulação de asserções.
- Dada uma fórmula, qual o seu valor de verdade?
 (0 falsa, ou 1 verdadeira).
- É necessário:
 - atribuir valores aos símbolos proposicionais;
 - conectivos propagam os valores de verdade:
 têm carácter funcional a sua interpretação é fixa

Estrutura de interpretação

Valores de verdade

Semântica informal

Seja $\mathcal{B} = \{0, 1\}$ o conjunto dos valores de verdade.

Estrutura de interpretação

Uma estrutura de interpretação (ou valoração) sobre um conjunto de símbolos proposicionais P é uma função $V: P \rightarrow \mathcal{B}$.

- Para cada V:
 - se V(p) = 1 então diz-se que p é verdadeiro em V;
 - se V(p) = 0 então diz-se que p é falso em V.
- Cada V fixa o valor de verdade dos símbolos proposicionais.

Satisfação de fórmulas

Semântica informal

Relação de satisfação

A satisfação de uma fórmula $\varphi \in F_P$ por uma valoração V, denotada por $V \Vdash \varphi$, é definida indutivamente do seguinte modo:

- $V \Vdash p$, se e só se V(p) = 1, para $p \in P$;
- $V \Vdash \neg \varphi$, se e só se $V \not\Vdash \varphi$;
- $V \Vdash \varphi \lor \psi$, se e só se $V \Vdash \varphi$ ou $V \Vdash \psi$;
- $V \Vdash \varphi \land \psi$, se e só se $V \Vdash \varphi$ e $V \Vdash \psi$;
- $V \Vdash \varphi \to \psi$, se sempre que $V \Vdash \varphi$ também $V \Vdash \psi$.

Quando $V \Vdash \varphi$, diz-se que a valoração V satisfaz a fórmula φ . Quando $V \not\Vdash \varphi$, diz-se que a valoração V não satisfaz a fórmula φ .

Problema SAT

Dada $\varphi \in F_P$ decidir se existe V tal que $V \Vdash \varphi$.

Satisfação de fórmulas: como verificar?

Semântica informal

Seja V tal que V(p) = 1 e V(q) = 0

- $V \Vdash p \lor q$, pois $V \Vdash p$, pois V(p) = 1;
- $V \Vdash q \rightarrow p$, pois V(q) = 0 significa que não se tem $V \Vdash q$, saindo vacuosamente o resultado;
- não se tem $V \Vdash p \rightarrow q$, pois apesar de $V \Vdash p$ (i.e., V(p) = 1), ao contrário do exigido, não se tem $V \Vdash q$ (i.e., V(q) = 0);
- não se tem $V \Vdash p \land q$, pois apesar de $V \Vdash p$ (i.e., V(p) = 1), ao contrário do exigido, não se tem $V \Vdash q$ (i.e., V(q) = 0).

A semântica informal não é fácil de usar na prática, sobretudo para estabelecer resultados negativos.

Quer-se uma semântica matematicamente rigorosa que seja mais fácil de usar.

Álgebra de Boole

Semântica informal

George Boole propôs uma semântica para a Lógica Proposicional.

Conjunto dos valores de verdade $\mathcal{B} = \{0, 1\}$, com as operações:

Multiplicação
$$\otimes$$
: $\mathcal{B} \times \mathcal{B} \to \mathcal{B}$ tal que

$$0 \otimes b = 0$$

$$1 \otimes b = b$$

Adição \oplus : $\mathcal{B} \times \mathcal{B} \to \mathcal{B}$ tal que

$$0\oplus b=b$$

$$1 \oplus b = 1$$

Complementar \ominus : $\mathcal{B} \to \mathcal{B}$ tal que

$$\ominus 0 = 1$$

$$\ominus 1 = 0$$

Propriedades básicas

Proposição

Semântica informal

- A multiplicação tem o valor 1 como elemento neutro e o 0 como elemento absorvente.
- 2 A adição tem o valor 0 como elemento neutro e o 1 como elemento absorvente.
- 3 A multiplicação e a adição são comutativas, associativas e mutuamente distributivas.
- $\bullet b \oplus b = b \in b \otimes b = b$
- $\bigcirc \ominus (\ominus b) = b$
- $b \otimes (\ominus b) = 0$
- $b \oplus (\ominus b) = 1$

Propriedades básicas

Provam-se alguns casos da proposição.

$$\ominus(\ominus b)=b$$

Semântica informal

Considere-se que b=0. Então, $\ominus(\ominus 0)=\ominus 1=0$.

O caso b = 1 tem prova semelhante.

$b \otimes b = b$

Considere-se que b = 0. Então, $b \otimes b = 0 \otimes 0 = 0 = b$.

Caso b = 1, então $b \otimes b = 1 \otimes 1 = 1 = b$.

$b\otimes (\ominus b)=0$

Considere-se que b = 0. Então, $0 \otimes (\ominus 0) = 0$.

Caso b=1, então $1\otimes (\ominus 1)=(\ominus 1)=0$.

Prova de algumas propriedades básicas

Comutatividade da adição: $b_1 \oplus b_2 = b_2 \oplus b_1$

Considere-se que $b_1 = 0$. Então, $b_1 \oplus b_2 = 0 \oplus b_2 = b_2$. Logo,

Semântica algébrica

$$b_1 \oplus b_2 = \begin{cases} 0, \text{ se } b_2 = 0 \\ 1, \text{ se } b_2 = 1 \end{cases}$$

Por sua vez

$$b_2 \oplus b_1 = \begin{cases} 0 \oplus b_1 = b_1 = 0, \text{ se } b_2 = 0 \\ 1 \oplus b_1 = 1, \text{ se } b_2 = 1 \end{cases}$$

Logo, em ambos os casos se obtém o mesmo resultado.

Caso $b_1 = 1$ obtém-se o mesmo resultado de forma semelhante.

Prova de algumas propriedades básicas

Associatividade da multiplicação: $b_1 \otimes (b_2 \otimes b_3) = (b_1 \otimes b_2) \otimes b_3$

Considere-se que $b_1 = 0$. Então,

$$b_1\otimes (b_2\otimes b_3)=0\otimes (b_2\otimes b_3)=0$$

Por sua vez

$$(b_1\otimes b_2)\otimes b_3=(0\otimes b_2)\otimes b_3=0\otimes b_3=0$$

Caso $b_1 = 1$. Tem-se agora que

$$b_1\otimes (b_2\otimes b_3)=1\otimes (b_2\otimes b_3)=b_2\otimes b_3$$

Por sua vez

$$(b_1 \otimes b_2) \otimes b_3 = (1 \otimes b_2) \otimes b_3 = b_2 \otimes b_3$$

Propriedades básicas

A partir das provas apresentadas, observam-se os seguintes factos.

Lema

Semântica informal

- **1** $b_1 \otimes b_2 = 0$ se e só se $b_1 = 0$ ou $b_2 = 0$.
- 2 $b_1 \otimes b_2 = 1$ se e só se $b_1 = 1$ e $b_2 = 1$.
- **3** $b_1 \oplus b_2 = 0$ se e só se $b_1 = 0$ e $b_2 = 0$.
- **4** $b_1 \oplus b_2 = 1$ se e só se $b_1 = 1$ ou $b_2 = 1$.
- $\bigcirc b = 1$ se e só se b = 0.

As provas ficam como exercício.

Prova de algumas propriedades básicas

Distributividade do complementar sobre a adição:

$$\ominus(b_1\oplus b_2)=(\ominus b_1)\otimes(\ominus b_2)$$

Prova-se por casos (considerando-se os possíveis valores de cada termo da igualdade).

Semântica algébrica

Considere-se que $\ominus(b_1 \oplus b_2) = 0$. Então, $b_1 \oplus b_2 = 1$. Logo, ou $b_1 = 1$ ou $b_2 = 1$, e portanto, ou $\ominus b_1 = 0$ ou $\ominus b_2 = 0$. Conclui-se que $(\ominus b_1) \otimes (\ominus b_2) = 0$.

Considere-se que $\ominus(b_1 \oplus b_2) = 1$. Então, $b_1 \oplus b_2 = 0$. Logo, $b_1 = 0$ e $b_2 = 0$, e portanto, $\ominus b_1 = 1$ e $\ominus b_2 = 1$. Conclui-se que $(\ominus b_1) \otimes (\ominus b_2) = 1$.

Avaliação de fórmulas

Intuição

• Uma estrutura de interpretação ou valoração apenas indica o valor de verdade dos símbolos proposicionais;

Semântica algébrica

- A avaliação da fórmula depende também dos conectivos lógicos nela presentes.
- A avaliação dos conectivos é fixa (funcional).

Satisfação de fórmulas

Seja V uma valoração sobre P.

A extensão de V ao conjunto F_P é a aplicação $V: F_P \to \mathcal{B}$, definida indutivamente pelas seguintes regras:

Semântica algébrica

- se $\varphi = p$ então $V(\varphi) = V(p)$, para cada $p \in P$
- $V(\bot) = 0$
- $V(\neg \varphi) = \ominus V(\varphi)$
- $V(\varphi \lor \psi) = V(\varphi) \oplus V(\psi)$
- $V(\varphi \wedge \psi) = V(\varphi) \otimes V(\psi)$
- $V(\varphi \to \psi) = (\ominus V(\varphi)) \oplus V(\psi)$

Satisfação de fórmulas

Proposição

$$V \Vdash \varphi$$
 se e só se $V(\varphi) = 1$

Semântica algébrica

Prova: por indução estrutural em φ (exercício).

Corolário

$$V(\neg \varphi) = 1$$
 se e só se $V(\varphi) = 0$

Prova: Fica como exercício, mas é uma consequência simples da definição indutiva da extensão de V ao conjunto F_P .

Terminologia e notação

- Escreve-se $V \not\Vdash \varphi$ quando não se verifica que $V \Vdash \varphi$
 - diz-se que φ não é satisfeita por V, ou que φ é falsa em V
- Dado $\Phi \subseteq F_P$, escreve-se $V \Vdash \Phi$, se $V \Vdash \varphi$ para cada $\varphi \in \Phi$.

Satisfação de fórmulas: exercícios

Sejam $p, q \in P \in V : P \to \mathcal{B}$ tal que $V(p) = 1 \in V(q) = 0$

• $V \Vdash p \lor q$, pois $V(p \lor q) = V(p) \oplus V(q) = 1 \oplus V(q) = 1$;

Semântica algébrica

- $V \not\Vdash p \land q$, pois $V(p \land q) = V(p) \otimes V(q) = 1 \otimes 0 = 0$;
- $V \Vdash p \rightarrow p$, pois $V(p \rightarrow p) = (\ominus V(p)) \oplus V(p) = (\ominus 1) \oplus 1 = 1;$
- $V \Vdash a \rightarrow a$, pois $V(q \rightarrow q) = (\ominus V(q)) \oplus V(q) = (\ominus 0) \oplus 0 = 1 \oplus 0 = 1;$
- $V \Vdash a \rightarrow p$, pois $V(q \rightarrow p) = (\ominus V(q)) \oplus V(p) = (\ominus 0) \oplus 1 = 1;$
- $V \not\Vdash p \rightarrow a$, pois $V(p \rightarrow q) = (\ominus V(p)) \oplus V(q) = (\ominus 1) \oplus 0 = 0 \oplus 0 = 0;$
- $V \not\Vdash \neg p \lor q$, pois $V(\neg p \lor q) = V(\neg p) \oplus V(q) =$ $(\ominus V(p)) \oplus 0 = (\ominus 1) \oplus 0 = 0 \oplus 0 = 0.$

Semântica informal da implicação

Intuição

Uma implicação só não é satisfeita quando o antecedente é verdadeiro mas o consequente falso.

É o caso do mentiroso que promete mas não cumpre: Se ganhar as eleições faço o clube ganhar o campeonato

Intuição

Uma implicação é sempre satisfeita guando o antecedente é falso.

É o caso da "falsa" promessa (vacuosamente verdadeira): Nas aulas ao Domingo venho sempre de fato de banho.

Fórmula possível

Definição

Um fórmula diz-se possível se existir uma valoração que a satisfaça.

Exemplo

Seja $\varphi = p \vee q$:

Para $V_1:P o\mathcal{B}$ tal que $V_1(p)=1$ e $V_1(q)=0$ temos que: $V_1\Vdash p\lor q$, pois $V_1(p\lor q)=V_1(p)\oplus V_1(q)=1\oplus V_1(q)=1$.

Já agora, para $V_2: P \to \mathcal{B}$ tal que $V_2(p) = 0$ e $V_2(q) = 0$ temos que: $V_2 \not\Vdash p \lor q$, pois $V_2(p \lor q) = V_2(p) \oplus V_2(q) = 0 \oplus 0 = 0$.

Fórmula válida

Definição

Um fórmula diz-se válida ou uma tautologia se for satisfeita por qualquer valoração.

Nota

Se uma fórmula é válida, então também é possível.

Exemplo: $(p \lor \neg p)$

Seja V uma valoração qualquer. Temos que:

$$V(p \lor \neg p) = V(p) \oplus V(\neg p) = V(p) \oplus (\ominus V(p)) = 1.$$

Logo $V \Vdash p \lor \neg p$ para toda a valoração V, logo é fórmula válida.

Fórmula contraditória

Definição

Um fórmula diz-se contraditória se não for satisfeita por nenhuma valoração.

Exemplo: $(p \land \neg p)$

Suponhamos que existe V tal que $V \Vdash p \land \neg p$. Então, $V(p \land \neg p) = 1$, isto é, $V(p) \otimes (\ominus V(p)) = 1$. Logo V(p) = 1 e $\ominus (V(p)) = 1$, o que significa que V(p) = 0. Isto é impossível porque V é uma função. Absurdo. Logo não pode existir valoração V que satisfaça $p \land \neg p$.

Fórmula possível, contraditória e válida

Terminologia

A fórmula $\varphi \in F_P$ diz-se:

- possível: se existe valoração V sobre P que a satisfaz;
- válida: se toda a valoração V sobre P a satisfaz;
- contraditória: se nenhuma valoração sobre P a satisfaz;
- fórmula válida diz-se também *tautologia* e escreve-se $\models \varphi$;
- escreve-se $\not\models \varphi$ se φ não é uma tautologia;
- um conjunto de fórmulas $\Phi \subseteq F_P$ diz-se *possível* se existe uma valoração V sobre P que satisfaz todas as fórmulas em Φ ; caso contrário diz-se *contraditório*.

Possível, contraditória e válida: quais as relações entre elas?

A fórmula que não é:

- válida, pode ser possível ou contraditória;
- 2 contraditória, pode ser possível ou válida;
- possível também não pode ser válida, logo é contraditória.

A negação de uma fórmula:

- válida. é contraditória:
- contraditória. é válida:
- 3 possível e não válida, é possível.

Como provar estes resultados?

A negação de uma fórmula válida é contraditória

Prova:

Semântica informal

- Seja φ uma fórmula válida.
- 2 Então qualquer valoração V é tal que $V(\varphi) = 1$.
- 3 Logo $V(\neg \varphi) = \ominus V(\varphi) = \ominus 1 = 0$.
- 4 Logo $V(\neg \varphi) = 0$ para qualquer valoração V.
- **5** Podemos concluir que $\neg \varphi$ é contraditória.

Análise por via semântica

Qual a natureza da fórmula $\varphi = (p \land q) \rightarrow \bot$?

Seja V uma qualquer valoração:

$$V(\varphi) = (\ominus V(p \land q)) \oplus V(\bot) = (\ominus V(p \land q)) \oplus 0 = \ominus V(p \land q).$$

Semântica algébrica

• Seja V_1 tal que $V_1(p) = 0$ e $V_1(q) = 1$

$$V_1(\varphi) = \ominus V_1(p \wedge q) = \ominus (V_1(p) \otimes V_1(q)) = \ominus (0 \otimes 1) = \ominus 0 = 1.$$

Logo $V_1 \Vdash \varphi$.

Podemos concluir que a fórmula φ é possível.

- Será válida ou existe valoração que não a satisfaz?
- Seja V_2 tal que $V_2(p) = 1$ e $V_2(q) = 1$.

$$V_2(\varphi) = \ominus V_2(p \wedge q) = \ominus (V_2(p) \otimes V_2(q)) = \ominus (1 \otimes 1) = \ominus 1 = 0.$$

Podemos concluir que a fórmula φ não é válida.

Qual a natureza da fórmula $\varphi = (p \lor \neg p) \to \bot$?

Seja V uma qualquer valoração:

$$V(\varphi) = (\ominus V(p \lor \neg p)) \oplus V(\bot) = (\ominus V(p \lor \neg p)) \oplus 0 = \ominus V(p \lor \neg p).$$

Semântica algébrica

Mas,
$$V(p \lor \neg p) = V(p) \oplus V(\neg p) = V(p) \oplus (\ominus V(p)) = 1$$

Logo
$$V(\varphi) = \ominus V(p \lor \neg p) = \ominus 1 = 0$$

Nota: $V(\varphi) = 0$ independentemente do valor que V dá a p.

Logo, a fórmula é contraditória.

Análise por via semântica

Semântica informal

Qual a natureza da fórmula $\varphi = \bot \to (p \land q)$?

Seja V uma qualquer valoração:

$$V(\varphi) = (\ominus V(\bot)) \oplus V(p \land q) = (\ominus 0) \oplus V(p \land q) = 1 \oplus V(p \land q) = 1.$$

Nota: $V(\varphi) = 1$ independentemente do valor que V dá a p e a q.

Logo, a fórmula é válida.

Natureza de fórmula - os três casos

Qual a natureza de uma fórmula?

- Válida
 - Logo também é possível
- Contraditória
 - Logo não pode ser nem possível nem válida
- Possível e não válida
 - Dizer apenas "possível" não chega, pois ficamos sem saber se a forma é válida