









### FRA532 : Mobile Robot Lecture 2 Kinematics of Mobile Robot

Kitti Thamrongaphichartkul

Institute of Field Robotics King Mongkut's University of Technology Thonburi Bangkok, Thailand





#### แผนการสอน

|      |               |         |                                                        |        | LAB / HW   |       |                 |                    |
|------|---------------|---------|--------------------------------------------------------|--------|------------|-------|-----------------|--------------------|
| Week | Date          | Lecture | Topic                                                  | Module | Assign     | Due   | Instructor      | หมายเหต            |
| 1    | 16-Jan-2025   | 1       | Introduction to Mobile Robot (Motivation)              | modulo | , toolight |       | Aj.Nook         | na izini           |
| -    |               | 0U      |                                                        |        |            |       | -               |                    |
| 2    | 23-Jan-2025   | 2       | Kinematics of Mobile Robot                             |        | LAB 1 ▼    |       | Aj.Nook         |                    |
| 3    | 30-Jan-2025   | 3       | Mobile Robot Control                                   |        | •          | •     | Aj.Nook         |                    |
| 4    | 6-Feb-2025    | 4       | 30 ปี ฟิโบ้                                            |        |            |       | Aj.Nook         |                    |
| 5    | 13-Feb-2025   | 5       | State Estimator                                        |        | •          | •     | Aj.Nook         |                    |
| 6    | 20-Feb-2025   |         | EXAM 1                                                 |        | •          | •     |                 |                    |
| 7    | 27-Feb-2025   | 6       | MAP (Slam, Localization)                               |        | LAB 2      | LAB 1 | Aj.Nook         |                    |
| 8    | 4-March-2025  | 7       | EXAM 1 / Hackathon Exam (24 Hour)                      |        | •          | •     | Aj.Nook         | Project : Proposal |
| 9    | 13-March-2025 | 8       | Introduction to motion planning and discrete planning  |        | •          | •     | Aj.Tee          |                    |
| 10   | 20-March-2025 | 9       | Configuration space and sampling-based motion planning |        | •          | LAB 2 | Aj.Tee          |                    |
| 11   | 27-March-2025 | 10      | Motion plannings used in self driving cars             |        | •          | •     | Aj.Tee          |                    |
| 12   | 3-April-2025  |         | EXAM 2                                                 |        | •          | •     |                 |                    |
| 13   | 10-April-2025 | 11      | Project : Update 1                                     |        | •          | •     | Aj.Nook         |                    |
| 14   | 18-April 2025 | 12      | Special Topic I                                        |        | •          | •     | Aj.Nook / Dummy |                    |
| 15   | 24-April 2025 | 13      | EXAM 2 / CBS + Nav2                                    |        | •          | •     | Aj.Nook / Dummy |                    |
| 16   | 1 May 2025    | 14      | Special Topic III                                      |        | •          | •     | Aj.Nook / Dummy |                    |
| 17   | 8 May 2025    | 15      | Project : Update 2                                     |        | •          | •     | Aj.Nook         |                    |
| 18   | 15 May 2025   | -       | •                                                      |        | •          | •     |                 |                    |
| 19   | 22 May 2025   | -       | •                                                      |        | •          | •     |                 |                    |
| 20   | 29 May 2025   | 16      | Project : Demo                                         |        | •          | •     | Aj.Nook         |                    |
|      |               |         |                                                        |        |            |       | 4               |                    |





# เนื้อหา

#### Link: https://github.com/kittinook/MobileRobotics2025/tree/main







#### เป้าหมายของการหาสมการ Kinematics





## ล้อเคลื่อนที่ได้อย่างไร





### ล้อเคลื่อนที่ได้อย่างไร



$$\vec{v} = \vec{\omega} \, x \, \vec{p}$$

$$\vec{v} = \begin{bmatrix} 0 \\ \dot{\phi} \\ 0 \end{bmatrix} x \begin{bmatrix} 0 \\ 0 \\ r \end{bmatrix} = \begin{bmatrix} r\dot{\phi} \\ 0 \\ 0 \end{bmatrix}$$

ความเร็วเชิงเส้นที่จุดกึ่งกลางของล้อ







$$v_i = \omega_{robot} * (...)$$





$$v_i = \omega_{robot} * d_i$$
  $v_i = r\dot{\phi}_i$   $r\dot{\phi}_i = \omega_{robot} * d_i$ 





การหาความเร็วเชิงมุมของหุ่นยนต์



$$v_i = \omega_{robot} * d_i$$
 $v_i = r\dot{\phi}_i$ 
 $r\dot{\phi}_i = \omega_{robot} * d_i$ 

จากรูป

$$r\dot{\phi}_L = -\omega_{robot} * d_R$$
  
 $r\dot{\phi}_R = -\omega_{robot} * (d_R + B)$ 





การหาความเร็วเชิงมุมของหุ่นยนต์



$$r\dot{\phi}_L = -\omega_{robot} * d_R$$
  
 $r\dot{\phi}_R = -\omega_{robot} * (d_R + B)$ 

#### จัดรูปสมการให้เป็น Matrix

$$\omega_{robot} = \frac{-r\dot{\phi}_L + r\dot{\phi}_R}{B}$$

$$\omega_{robot} = \begin{bmatrix} -\frac{r}{B} & \frac{r}{B} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$





การหาความเร็วเชิงเส้นของหุ่นยนต์



$$r\dot{\phi}_{L} = -\omega_{robot} * d_{R}$$

$$r\dot{\phi}_{R} = -\omega_{robot} * (d_{R} + B)$$

$$\frac{r\dot{\phi}_{L} + r\dot{\phi}_{R}}{2} = \omega_{robot}(d_{R} + \frac{B}{2})$$

จัดรูปสมการให้เป็น Matrix

$$v_{robot} = \frac{r\dot{\phi}_L + r\dot{\phi}_R}{2}$$
$$v_{robot} = \begin{bmatrix} \frac{r}{2} & \frac{r}{2} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$





การหาจลนศาสตร์ระหว่างความเร็วล้อและความเร็วของหุ่นยนต์

$$v_{robot} = \begin{bmatrix} \frac{r}{2} & \frac{r}{2} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$
$$\omega_{robot} = \begin{bmatrix} -\frac{r}{B} & \frac{r}{B} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$









การหาจลนศาสตร์ระหว่างความเร็วล้อและความเร็วของหุ่นยนต์ : Forward (Velocity) Kinematics



$$\begin{bmatrix} v_{robot} \\ \omega_{robot} \end{bmatrix} = r \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{B} & \frac{1}{B} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$

จัดรูปสมการให้อยู่ในรูปของ Twist in 2D

$$\zeta^{R} = \begin{bmatrix} v_{\chi} \\ v_{y} \\ \omega_{z} \end{bmatrix} = r \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{B} & \frac{1}{B} \end{bmatrix} \begin{bmatrix} \dot{\phi}_{L} \\ \dot{\phi}_{R} \end{bmatrix}$$

ถ้าทราบความเร็วล้อ -> หาความเร็วหุ่นได้





การหาจลนศาสตร์ระหว่างความเร็วล้อและความเร็วของหุ่นยนต์ : Inverse (Velocity) Kinematics



$$\begin{bmatrix} v_{robot} \\ \omega_{robot} \end{bmatrix} = r \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{B} & \frac{1}{B} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$

สามารถ Inverse Matrix เพื่อคำนวณหาความเร็วล้อ

$$\begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix} = r \begin{bmatrix} \frac{1}{r} & -\frac{B}{2r} \\ \frac{1}{r} & \frac{B}{2r} \end{bmatrix} \begin{bmatrix} v_{robot} \\ \omega_{robot} \end{bmatrix}$$

ถ้าทราบความเร็วหุ่น -> หาความเร็วล้อได้







$$\zeta^G = {}^G_R R \zeta^R$$







$$\zeta^{G} = {}_{R}^{G}R\zeta^{R}$$

$$\begin{bmatrix} v_{\chi}^{G} \\ v_{y}^{G} \\ v_{z}^{G} \end{bmatrix} = \begin{bmatrix} c_{\theta} & -s_{\theta} & 0 \\ s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{\chi}^{R} \\ v_{\chi}^{R} \\ v_{z}^{R} \end{bmatrix}$$







$$\begin{aligned}
\zeta^G &= {}_R^G R \zeta^R \\
\begin{bmatrix} v_x^G \\ v_y^G \\ v_z^G \end{bmatrix} &= \begin{bmatrix} c_\theta & -s_\theta & 0 \\ s_\theta & c_\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x^R \\ v_y^R \\ v_z^R \end{bmatrix}
\end{aligned}$$

$$\begin{bmatrix} v_x^G \\ v_y^G \\ v_z^G \end{bmatrix} = \begin{bmatrix} c_\theta & -s_\theta & 0 \\ s_\theta & c_\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} r \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{B} & \frac{1}{B} \end{bmatrix} \begin{bmatrix} \dot{\phi}_L \\ \dot{\phi}_R \end{bmatrix}$$







$${}_R^G \vec{p}(t) = {}_R^G \vec{p}(t) + \int_{\tau=0}^{\tau=t} \zeta^G(t) d\tau$$





$${}_R^G \vec{p}(t) = {}_R^G \vec{p}(t) + \int_{\tau=0}^{\tau=t} \zeta^G(t) d\tau$$

$$x = x+dx$$
  
 $y = y+dy$   
theta = y+dtheta





#### เป้าหมายของการหาสมการ Kinematics







#### Simple Robot Controller : Point-to-Point Controller





**Q&A** 

#### A Cradle of Future Leaders in Robotics