KALKULUS

BAB 6: INTEGRAL

Anti Turunan

Suatu fungsi F dikatakan **anti turunan** dari f pada I apabila

$$F'(x) = f(x)$$

untuk setiap $x \in I$

Ibaratnya anti turunan ini adalah invers dari turunan, sehingga di dalam anti turunan ini adalah proses untuk mendapatkan f(x).

Contoh 1.

$$F_1(x) = 5x^3 + 3x^2 + 5$$
, maka $F_1'(x) = 15x^2 + 6x$ sehingga $f(x) = 15x^2 + 6x$.

$$F_2(x) = 5x^3 + 3x^2 + 20$$
, maka $F_1'(x) = 15x^2 + 6x$ sehingga $f(x) = 15x^2 + 6x$

 $F_1(x)$ dan $F_2(x)$ merupakan anti turunan dari f(x) pada \mathbb{R} .

Dari contoh di atas, dapat diketahui bahwa anti turunan dari f(x) itu sangat banyak (lebih dari 1)

Contoh 2.

F(x) = C, dimana C adalah konstanta maka F'(x) = 0.

Ini menunjukkan bahea anti turunan dari f(x) = 0 adalah sebuah fungsi konstan.

Contoh 3.

Misalkan dua fungsi f dan g memenuhi hubungan f'(x) = g'(x). Selisih fungsi f dan g dapat dituliskan menjadi h(x) = f(x) - g(x) sehingga didapatkan

$$h'(x) = f'(x) - g'(x) = 0.$$

Dari Contoh 2, hal ini berarti h(x) = C dan C = f(x) - g(x) atau f(x) = g(x) + C

Contoh ini memberi kesimpulan bahwa dua fungsi yang turunannya sama,

maka kedua fungsi tersebut berbeda dalam konstanta (lihat contoh 1).

Integral Tak Tentu

Berdasarkan contoh 1dapat disimpulkan bahwa keluarga fungsi anti turunan dari f(x) adalah **Integral Tak Tentu** dari f(x) dan dilambangkan dengan:

$$\int f(x) \, dx = F(x) + C$$

Keterangan:

f(x) disebut dengan integran

BAB 6: INTEGRAL

dx disebut dengan intergrator

F(x) disebut dengan fungsi primitive

C adalah konstanta dengan nilai sembarang dari −∞ hingga ∞

Contoh 4.

$$\int 15x^2 + 6x \ dx = 5x^3 + 3x^2 + C$$

Teorema dalam Integral Tak Tentu

a.
$$\int dx = x + C$$

b.
$$\int k \cdot f(x) dx = k \int f(x) dx$$
, k adalah konstanta

c.
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$

d.
$$\int x^r dx = \frac{x^{r+1}}{r+1} + C$$
, $r \neq 1$

e.
$$\int \sin x \, dx = -\cos x + C$$

f.
$$\int \cos x \, dx = \sin x + C$$

g.
$$\int \sec^2 x \, dx = \tan x + C$$

h.
$$\int \csc^2 x \, dx = -\cot x + C$$

Contoh 5.

Tentukan hasilnya

a.
$$\int 2dx$$

b.
$$\int 2x^2 dx$$

c.
$$\int \sqrt[5]{x^3} dx$$

Jawaban:

a.
$$\int 2dx = 2 \cdot \frac{x^{0+1}}{0+1} + C = 2x + C$$

b.
$$\int 2x^2 dx = 2 \int x^2 dx = 2 \left[\frac{x^{2+1}}{2+1} \right] + C = \frac{2}{3}x^3 + C$$

c.
$$\int \sqrt[5]{x^3} dx = \int x^{3/5} dx = \left[\frac{x^{\frac{3}{5}+1}}{\frac{3}{5}+1}\right] + C = \frac{x^{\frac{8}{5}}}{\frac{8}{5}} + C = \frac{5}{8} \sqrt[5]{x^8} + C$$

Metode Substitusi

Jika $r \in \mathbb{Q}, r \neq 1$ dan g adalah sebuah fungsi yang mempunyai turunan, maka

$$\int f(g(x)) \cdot g'(x) dx = \int u \ du = F(u) + C = F(g(x)) + C$$

Ingat, Jangan sampai Tertukar!!

Turunan dari sin x adalah $\cos x$ sedangkan anti turunannya adalah $-\cos x + C$

BAB 6: INTEGRAL

Dari persamaan di atas, diketahui bahwa:

$$g(x) \rightarrow u$$

$$g'(x)dx \to du$$

Berdasarkan persamaan di atas, dapat pula dikembangkan menjadi:

$$\int (g(x))^r \cdot g'(x) dx = \int u^r \ du = \frac{u^{r+1}}{r+1} + C = \frac{[g(x)]^{r+1}}{r+1} + C$$

Contoh 6.

Hitunglah:

$$\int (x^2 + 5)^5 \cdot 2x \ dx$$

Jawaban

$$u = (x^2 + 5)$$

$$du = 2x dx$$

$$\int u^5 \ du = \frac{u^{5+1}}{5+1} + C = \frac{[x^2+5]^6}{6} + C$$

Contoh 7.

Tentukan:

$$\int \sqrt{5x-4}dx$$

Jawaban:

Misalkan
$$u = 5x - 4$$
 sehingga $\frac{du}{dx} = 5 \rightarrow du = 5dx$ atau $dx = \frac{1}{5}du$

Berdasarkan pemisalan tersebut, maka bentuk integral dapat disubstitusi menjadi:

$$\int \sqrt{5x - 4} dx = \int \sqrt{u} \cdot \frac{1}{5} du$$

$$= \int u^{\frac{1}{2}} \cdot \frac{1}{5} du = \frac{1}{5} \int u^{\frac{1}{2}} du$$

$$= \frac{1}{5} \left[\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \right] + C = \frac{1}{5} \left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right] + C$$

$$= \frac{1}{5} \cdot \frac{2}{3} (u)^{\frac{3}{2}} + C = \frac{2}{15} \sqrt{(5x - 4)^2} + C$$

KALKULUS

BAB 6: INTEGRAL

Teorema Dasar Kalkulus

Teorema Dasar Kalkulus I

Misalkan f(x) kontinu di [a, b] dan F(x) merupakan anti turunan dari f(x) maka:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Contoh 8.

Selesaikan:

$$\int_{\frac{\pi}{2}}^{\pi} \sin 2x \ dx$$

Jawaban:

Misal
$$u = 2x$$
 sehingga $\frac{du}{dx} = 2 \rightarrow du = 2dx$ atau $dx = \frac{1}{2}du$

Dan untuk batas menjadi:

$$\frac{\pi}{2} \to \pi$$

$$\pi \to 2\pi$$

Integral di atas dapat diubah menjadi:

$$\int_{\frac{\pi}{2}}^{\pi} \sin 2x \ dx = \int_{\frac{\pi}{2}}^{\pi} \sin u \cdot \frac{1}{2} du$$

$$= \frac{1}{2} \int_{\pi}^{2\pi} \sin u \ du = \frac{1}{2} [-\cos u \Big|_{\pi}^{2\pi} = -\frac{1}{2} [(\cos u) \Big|_{\pi}^{2\pi}]$$

$$= -\frac{1}{2} [(\cos 2\pi) - (\cos \pi)] = -\frac{1}{2} (1 - (-1)) = -\frac{1}{2} (2) = -1$$

Contoh 9.

Dapatkan hasilnya dari:

$$\int_{1}^{5} |x-2| \ dx$$

Fungsi di dalam intergral merupakan bentuk mutlak, sehingga kemungkinannya adalah:

BAB 6: INTEGRAL

$$f(x) = |x - 2| = \begin{cases} (x - 2), & x \ge 2\\ -(x - 2), & x < 2 \end{cases}$$

Sehingga bentuk integralnya adalah:

$$\int_{1}^{5} |x - 2| \, dx = \int_{1}^{2} -(x - 2) \, dx + \int_{2}^{5} |x - 2| \, dx$$

$$= -\left(\frac{1}{2}x^{2} - 2x\right) \Big|_{1}^{2} + \left(\frac{1}{2}x^{2} - 2x\right) \Big|_{2}^{5}$$

$$= \left(-\frac{1}{2}x^{2} + 2x\right) \Big|_{1}^{2} + \left(\frac{1}{2}x^{2} - 2x\right) \Big|_{2}^{5}$$

$$= \left[\left(-\frac{1}{2}2^{2} + 2(2)\right) - \left(-\frac{1}{2}1^{2} + 2(1)\right)\right] + \left[\left(\frac{1}{2}5^{2} - 2(5)\right) - \left(\frac{1}{2}2^{2} - 2(2)\right)\right]$$

$$= \left[(-2 + 4) - \left(-\frac{1}{2} + 2\right)\right] + \left[\left(\frac{25}{2} - 10\right) - (2 - 4)\right]$$

$$= \left[2 - \frac{3}{2}\right] + \left[\frac{5}{2} + \frac{4}{2}\right] = \frac{1}{2} + \frac{9}{2} = \frac{10}{2} = 5$$

Teorema Dasar Kalkulus II

Misalkan f(x) kontinu di [a, b] dan x merupakan sebuah titik dalam [a, b], maka:

$$D_x\left(\int_a^x f(t)dt\right) = f(x) = F'(x)$$

Secara umum dapat ditulis menjadi:

$$D_{x}\left(\int_{a}^{u(x)}f(t)dt\right)=f(u(x))\cdot u'(x)$$

Dan

$$D_{x}\left(\int_{u(x)}^{v(x)} f(t)dt\right) = \left[f(v(x)) \cdot v'(x)\right] - \left[f(u(x)) \cdot u'(x)\right]$$

Contoh 10.

Hitunglah G'(x) dari

$$G(x) = \int_{1}^{x} \sqrt{1 + t^3} \, dt$$

Jawaban:

KALKULUS

BAB 6: INTEGRAL

$$f(t) = \sqrt{1+t^3}$$
 $G'(x) = \sqrt{1+x^3}$

Contoh 11.

Dapatkan F'(x) dari

$$F(x) = \int_{4}^{x^2} \sqrt{1+t^3} \, dt$$

Jawaban:

Misal:

$$u(x) = x^2 \to D_x(x^2) = \frac{du}{dx} = 2x$$

sehingga

$$f(t) = \sqrt{1 + t^3} \longrightarrow F'(x) = f(u(x)) \cdot u'(x) = \sqrt{1 + (x^2)^3} \cdot 2x = 2x\sqrt{1 + x^6}$$