

#### UNIVERSIDADE FEDERAL DE SÃO CARLOS

Campus de Sorocaba

# Laboratório de Arquitetura de Computadores

Profa. Yeda

Aula 2 – Introdução à Arquitetura de Processadores



# Introdução

- Linguagem de alto nível x linguagem assembly x linguagem de máquina: (P1.2\*)
  - C = A + B linguagem C
  - add C, A, B linguagem assembly
  - **000000001100001000100000100000** ling.Máquina
- Princípio da simplicidade e regularidade: operações simples, básicas e padronizadas (P2.2\*)
  - Ex.: soma e subtração sempre possuem 3 operandos
  - Então como faz D = A + B + C?
    - add D, A, B
    - add D, D, C

\* Seção do livro do Patterson

00611020 Hexa



# Introdução

- Organização básica de computadores
  - processador (ULA + controle), memória e I/O (P4.1\*)

Inicio

- Como funciona?
  - instruções em sequência (P4.1\*)
    - Ler instrução: busca na memória a próxima instrução
    - Decodificar: interpretá-la e gerar os sinais de controle necessários para sua execução
    - Executar: efetivamente concluir sua execução.



Combinacional x Sequencial?

\* Seção do livro do Patterson



#### Introdução



Circuitos sequenciais síncronos possuem elementos de estado (registradores/FF), acionados pelo clock, e lógica combinacional.



### Processador MIPS Simplificado



- Blocos Operacionais
  - Registrador Contador de Programa (PC)
  - Endereça memória de programa com PC,
  - Calcula endereço da próxima instrução:
    - PC+1: instrução na sequência (next word).





Figure 14.4 Block Diagram of MIPS Fetch Unit.





Diagrama de blocos das estruturas básicas do MIPS