光切法测量表面粗糙度的常见 问题与消除方法

北京市计量检测科学研究院 (北京 100029) 张泰县

用光切显微镜测量表面粗糙度时, 目镜视场内成像 质量的好坏,将直接影响测量精度,因此必须对仪器进 行精心调整。本文对仪器调整及测量过程中常见的一些 问题及其消除方法作一介绍、这对于正确使用仪器、提 高测量精度是必需的。

1. 不出现光带

一般人在测量时,边降物镜边用眼睛在目镜上看光 带, 却始终看不到。原因是忘了接通电源, 其结果往往 还会使物镜被零件顶坏。

不出现光带的另一个原因是照明管与观测管和其轴 线夹角未调整相等, 也可能是物镜焦距没有调整好。

焦距的调整应先将臂架上物镜降低到接近被测零件 表面, 然后缓缓上升臂架, 同时用眼睛观察目镜视场, 直至光带出现为止。

2. 物镜选择不当

仪器有四对物镜、每对物镜都有一定的测量范围。 物镜选择不当,就会使表面粗糙度和物镜成像深度不相 适应,产生较大的焦距误差。对于不同的表面粗糙度 值,物镜的选择可参见下表。

物镜的选择

表面粗糙度值 R _z /μm	物镜放大倍数
0.8~1.6	60
0.8~3.2	30
3.2~10	14
10 ~ 80	7

当测量结果接近高一级放大倍数的物镜测量范围 时,则应用高一级放大倍数的物镜进行重测。

3. 光带不清晰

造成光带不清晰的原因,其一是物镜倍数选得太 大,致使成像深度小;其二是使用照明物镜和观测物镜 不可互换的光切显微镜时, 两物镜位置放错, 两物镜焦 距不一致。此时应根据被测表面粗糙度值选用相应物镜 和按出厂证书安放物镜。

4. 光带亮度不一致

光带亮度不一致,是灯丝和光带像不平行所致。可 调整灯泡位置, 使灯泡在照明管中移动, 直至光带照明 亮度一致。

5. 光带位移

调焦机构的齿轮齿条白锁情况不好, 使光管下沉, 焦距改变, 使光带不断向某一方向移动(俗称"光下 沉")。可将两个调焦轮向相反方向拧紧加以清除。

6. 狭缝像残缺不全

狭缝像不全,即所谓"像缺"(如图) 1 所示),是由照明管和观测管两轴线不 在同一垂直平面内造成的。可卸下物镜 重新安装调整,或调整摆动螺钉旁的螺 钉。若物镜边缘损坏,应予更换。

7. 光带不在视场中央

由于调焦不准确, 使狭缝在被测表面上所成的像不 落在焦平面上,引起像的偏移。反映到观测管视场中, 即为光带落在视场边缘。由于视场边缘像差较大,从而 造成测量误差。

正确的调焦方法是, 先用粗调机构升降臂架, 使物 镜和零件表面的距离小于物镜焦距, 然后边用细调机构 上升臂架, 边观察目镜视野直至视场中央出现清晰的狭 缝像, 然后再用微调将狭缝调至最狭窄, 且以下边缘最 清晰为准(因为狭缝两边缘不同时位于同一物平面,不 可能同时清晰)。

8. 测微目镜十字线水平线和光带不平行

由于用测微目镜十字线水平线和光带峰谷相切来测 量读数,因此要求水平线和光带平行。

调整方法是,松开测微目镜的紧固螺钉,转动测微 目镜使目镜十字线水平线与光带平行且在光带中间,然 后固紧测微目镜。

(1)

9. 工作台纵向(或横向)移动轨迹和光带不平行

工作台纵向转动轨迹和光带平行即工作台纵向轴线与 被测面加工痕迹垂直、否则测量的轮廓不在同一截面内。

校验的方法是,在已调清晰的光带上认定一个位于 目镜十字线水平线附近的标记 (亮点或暗点), 并使其 靠近水平线,转动工作台纵向微分筒,观察此标记的移 动轨迹。如果水平线不平行就要转动工作台,直至找到 一个标记的移动轨迹和水平线平行,或纵向移动工作台 5mm, 使狭缝像离开水平线的最大距离, 用目镜千分尺 测量时不超过5个分度。

工作台横向移动轨迹和光带不平行,同样使测量轮 廊不在同一截面。校验方法同调整工作台纵向移动轨迹 与光带平行的情况。

10. 零件安置不妥

根据光切法原理、零件加工痕迹必须和光带垂 直。调整的方法是转动零件而不是旋转工作台。太小 的零件不好转动则应放在辅助工作台上。

11. 调焦不正确

对于圆柱体和圆锥零件, 应在最高母线上对焦。若 焦点偏离最高母线、则零件曲率半径越小和偏离值越大 时, 其测量误差也越大。其表现在于横向移动工作台, 焦距变小,目镜视场内的光带向下跑。此时应微调物镜 使之上升,使光带回到中心位置。再横向移动工作台, 直到光带不再向下跑,说明已在最高母线上对焦。

对于球形零件,找球形最高点的方法是纵向移动工 作台,使弯曲狭缝和目镜水平线相切于视场中央,横向 移动工作台和微量升降臂架,使狭缝像最清晰。

12. 读数不准确

用光切显微镜测量时,正确的取点方法是,用目估 法作一测量基线与轮廓中线相平行后,将测微目镜分划 板十字线水平线尽量调至光带轮廓中线位置上,观察轮 廊峰(谷)的图像形貌,以此判断出轮廓峰高点与轮廓 谷底点, 然后进行瞄准读数。当仪器视场不足一个取样 长度或一个评定长度时,不大可能按定义取点计算,在 此情况下、需要移动工作台、使被测零件测量部位顺次 移入视场进行测量。

但在实际测量时,人们习惯于在被测零件表面轮廓放 大图中, 按取样长度规定值内选择 5 个最高点(峰)和 5 个最低点(谷),用目估法作一测量基线与轮廓中线相平 行,以此基线测量至5个峰高距离 h2~h10和至5个谷底距 离 h₁~h₉, 按式 (1) 计算微观不平度 10 点高度 R_z值。

$$R_z = \frac{(h_2 + h_4 + h_6 + h_8 + h_{10}) - (h_1 + h_3 + h_5 + h_7 + h_9)}{5}$$

式(1)表明, R_z 是在取样长度范围内,

从平行轮廓中线的任一 测量基线起,被测轮廓 的5个最高峰顶与5个 最低谷底之间的平均距

图 2

离 (见图 2)。

按此方法得到的5个最高峰顶点是2、3、4、8、9。 然而取值计算得到 R, 值与定义不符。国家标准采用中 线为基准线评定轮廓的计算制。也就是以中线制评定表 面粗糙度。中线是确定评定参数值的基准线,以它确定 方向,由它开始计算距离,国家标准规定, R, 是指在 取样长度内5个最大的轮廓峰高的平均值与5个最大的 轮廓谷深的平均值之和(见图3)。

 $R_z = \frac{1}{5} \sum_{i=1}^{5} y_{pi} + \frac{1}{5} \sum_{i=1}^{5} y_{vi}$ (2)

式中 y_{pi} ——第 i 个最大的轮廓峰高 γ_{vi}——第 i 个最大的轮廓谷深

由此得出的5个最大轮廓峰高点为2、5、7、8、9、相 比之下式(1)与式(2)取点相差很大,原因在于式 (1) 的取点不是以中线算起。更为严重的是式(1)将 最高峰顶误为轮廓峰高,最低谷底误为轮廓谷深,轮廓 谷6误为轮廓峰显然是不妥的。

须知,轮廓峰是指在取样长度内,轮廓与中线相 交,连接两相邻交点向外(从材料到周围介质)的轮廓 部分;轮廓谷是在取样长度内,轮廓与中线相交,连接 两相邻交点向内(从周围介质到材料)的轮廓部分(见 图4)。而轮廓峰高是指中线至轮廓峰最高点之间的距

万工显立柱垂直性与特殊工件测量时 的关系及其修正方法

兰州炼油化工机械厂 (730060) 丁利生 吴天平

万能工具显微镜(简称万工显)是用途很广的计量光学仪器,在机械工业特别是在精密机械工业上的作用越来越明显。我厂在生产中使用的是 JX13 型万能工具显微镜,它具有一定的万能性和灵活性,可以根据产品形状的不同进行长度、角度的直接测量和复杂样板、成形刀具轮廓的相对测量,可以对各种工件进行复杂的测量。

生产中在万能工具显微镜上测量时,往往会遇到一些 需要进行二次调焦测量的工件。所谓二次调焦,也就是说 在工件某一尺寸的测量过程中要求两次移动中央显微镜来 调整焦距,这种测量叫做一次测量二次调焦。应用这种调 焦的测量方法,在二次移动中央显微镜以调整焦距后掺入 了一个为数可观而在测量过程中不易被发现的系统误差, 给测量带来误差。为了弄清产生错误的原因和提高测量精 度,通过测量工件的实例,进行了一些讨论和分析。

1. 立柱垂直性与特殊工件测量时的关系

在用极坐标测量曲线样板时,第一步是找到工具显 微镜载物台的回转中心,使这回转中心上的十字线和目 镜内米字线的十字中心重合。要达到这一目的,就要把

离;轮廓谷深是指中线至轮廓谷最低点之间的距离。由此可知一个轮廓峰(谷)只能有一个轮廓峰高(谷深), R_z取点应取5个最大的轮廓峰高点和5个最大的轮廓谷深点、注意这里谷深不能取负值。

如果把图 2 轮廓中线画成如图 3 所示,不难看出 2、3、4点同在一个轮廓峰上,轮廓峰高只能取 2 点,尽管 3、4 两点都比 5、7、8、9点高,但 3、4点却不是轮廓峰高点,正确的 5 个最大轮廓峰高点只能是 2、5、7、8、9。

读数时,用目镜十字线的水平线分别与 5 个最大轮廓峰高和 5 个最大轮廓谷深相切,切不可用目镜十字线水平线同时切几个波峰(或波谷),以免读数不准确。为了提高读数准确度,水平线和轮廓像边缘应有一定空隙(约等于水平线宽度的 1/2 而不是完全相切。当光带和轮廓像极不规则时(如图 5),应先用眼估计,使目镜水平线在整个视野范围内与光带的总趋势一致,然后读数。

用光切显微镜计算表面粗糙度 R, 值时, 应考虑不同

物镜放大倍数的仪器常数(测微目镜千分尺刻度值) C、光切原理修正系数 K_1 及测微目镜十字线水平线对准方 法修正系数 K_2 ,注意:用水平线对准时 $K_1 = \sqrt{2}/2$ 、 $K_2 = \sqrt{2}/2$,用十字交叉线对准时 $K_1 = \sqrt{2}/2$ 、 $K_1 = 1$ 。这 时 R,计算公式为

$$R_{z} = CK_{1}K_{2} \frac{\sum_{i=1}^{5} (a_{i} - b_{i})}{5}$$

$$= C\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \frac{\sum_{i=1}^{5} (a_{i} - b_{i})}{5}$$

$$= \frac{C}{2} \frac{\sum_{i=1}^{5} (a_{i} - b_{i})}{5}$$

式中 a_i 、 b_i ——第 i个峰、谷读数

 K_1 、 K_2 ——修正系数

使用中把 K_1 、 K_2 修正系数值考虑进仪器常数 C 中,把 C = C/2 称为仪器常数是不对的。如仪器出厂证书或检定证书给出 C = 0.62 mm,决不能认为仪器常数是 0.31 μ m。

除此之外,还要按评定长度 ln = 5l (l 指取样长度) 求得被测面粗糙度值,当加工表面不均匀时,就要在三个不同部位测量,在每个位置上测量一个评定长度的粗糙度,而每个评定长度内一般取 5 个连续的取样长度,所以整个被测面粗糙度是这三个评定长度上所得数值的平均值。 (收稿日期: 20041220)