Question 2: Enzyme Kinetics

8.1. Using the law of mass action, write down four equations for the rate of changes of the four species, E, S, ES, and P.

For E:
$$\frac{d[E]}{dt} = -k_1[E][S] + (k_2 + k_3)[ES]$$
 For S:
$$\frac{d[S]}{dt} = k_2[ES] - k_1[S][E]$$
 For ES:
$$\frac{d[ES]}{dt} = k_1[S][E] - (k_2 + k_3)[ES]$$
 For P:
$$\frac{d[P]}{dt} = k_3[ES]$$

8.2. Write a code to numerically solve these four equations using the fourthorder Runge-Kutta method. (Please see the code file and readme document)

1	t=0	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
[E]	1.00000	0.17563	0. 22441	0.29984	0.41835	0.59081	0.78331	0.91867	0.97677	0. 99430	0.99869
[S]	10.00000	7. 18588	5. 23052	3. 45418	1.95959	0.88315	0.29720	0.07770	0.01786	0.00395	0.00087
[ES]	0.00000	0.82437	0.77559	0.70016	0.58165	0.40919	0.21669	0.08133	0.02323	0.00570	0.00131
[P]	0.00000	1.98974	3. 99389	5.84566	7. 45877	8.70766	9. 48612	9.84097	9. 95891	9. 99035	9. 99783

8.3

