Задача 9-3

«Между молотом и наковальней»

Газообразные при н.у. вещества **X1** и **Y1** участвуют в химических превращениях (схемы 1 - 4):

1) Нагревание без доступа воздуха:

$$X1 \rightarrow X2 \text{ (TB)} + A(\Gamma a3)$$
 $Y1 \rightarrow Y2 \text{ (TB)} + A(\Gamma a3)$

2) Сгорание в кислороде:

$$X1 + O_2 \rightarrow X3$$
 (газ) + Б(жидк) $Y1 + O_2 \rightarrow Y3$ (тв) + Б(жидк)

3) Поглощение концентрированной азотной кислотой:

$$X1 + HNO_3 \rightarrow X4$$
 (p-p) + B($\Gamma a3$)+ F $Y1 + HNO_3 \rightarrow Y4$ (p-p)+ B($\Gamma a3$)+ F

Если для этих реакций взять одинаковые массы X1 и Y1, а затем оттитровать полученные растворы гидроксидом кальция то из раствора X4 образуется осадок X5, а из раствора Y4 осадок Y5, массы осадков одинаковы. Небольшая разница в массах (6.62% от большей массы) возникает, если полученные осадки прокаливать до температуры выше 250 °С (прекращение выделения воды), с образованием средних солей X6 и Y6.

4) Механическое сжатие веществ под давлением, вплоть до p = 2 млн. атмосфер: $X1 \rightarrow X7 + ???$ $Y1 \rightarrow Y7 + ???$

В условиях синтеза X7 имеет кубическую ячейку с «лёгкими» атомами в серединах всех граней и рёбер, и «тяжёлыми» атомами в центре и вершинах куба. Плотность паров жидкости Y7 равна 9.05 г/л (175К и давлении 101.3кПа). Вещество X7, впервые полученное в 2015 году, обладает уникальной электропроводностью, что стимулировало изучение его аналогов при высоких давлениях. Благоприятная стехиометрия Y1 заставила проверить и его проводимость при высоком давлении в 2019 году.

Вещества **X1-X7** содержат один общий элемент, вещества **Y1-Y7** – другой. Газообразная смесь равных масс **X1** и **Y1** имеет плотность 1.52 г/л при н.у.

Вопросы:

- 1. Определите молекулярные формулы 14 неизвестных веществ: $\mathbf{X1} \mathbf{X7}$ и $\mathbf{Y1} \mathbf{Y7}$, ответ обоснуйте.
- 2. Из какого материала изготовлена «наковальня» для сжатия образцов в схеме 4?

Решение задачи 9-3 (автор: Серяков С.А.)

1. Вещества X1 и Y1 газообразные, а продукты их окисления азотной кислотой являются кислородсодержащими кислотами, поскольку титруются щёлочью. Можно предположить, что элементы, входящие в состав X1 и Y1 являются неметаллами. Судя по схеме 3, жидким продуктом реакции с азотной кислотой является вода $\mathbf{F} = H_2O$, а газообразным $\mathbf{B} = NO_2$. Следовательно $\mathbf{X}\mathbf{1}$ и Y1 содержит водород, поскольку одним из продуктов их сжигания является вода. Речь идёт о водородных соединениях неметаллов (значит $\mathbf{A} = \mathbf{H}_2$), зашифрованных в качестве X1 и Y1. Оценим интервал молярных масс для X1 и **Y1** из плотности смеси: $M_{\text{смеси}} = \rho \cdot 22.4 \approx 34$ г/моль, это значит, что по крайней мере один из элементов имеет атомную массу менее 34 и образует газообразное при н.у. водородное соединение. Такими неметаллами являются: B, C, N, F, Si, P, S. Азот и фтор не дают твердого остатка при нагревании водородных соединений. Различные продукты окисления (как по агрегатному состоянию, так и по составу) азотной кислотой и сжигания на воздухе среди оставшихся элементов даёт только сера, а продукт окисления азотной кислотой, способный титроваться щёлочью среди оставшихся элементов приведенного ряда даёт лишь фосфор. Вспомним что H₂S и PH₃ имеют одинаковые молярные массы (34 г/моль) и расшифруем остальные вещества. **X1** = H₂S и **Y1** = PH₃, продукты их разложения X2 = S или S_8 , Y2 = P или P_4 . При сжигании сероводорода на воздухе образуется $X3 = SO_2$, а в случае фосфина $Y3 = HPO_3$, при окислении сероводорода азотной кислотой образуется $X4 = H_2SO_4$, а при окислении фосфина $Y4 = H_3PO_4$. Осадки с одинаковыми молярными массами, схеме 3 это гипс $X5 = CaSO_4 \cdot 2H_2O$ полученные И преципитат $Y5 = CaHPO_4 \cdot 2H_2O$. По условию осадок отличается от продукта его прокаливания, поэтому в случае соединения серы речь идёт именно о кристаллогидрате, а не о безводной соли. Соответствующие средние соли имеют состав: $X6 = CaSO_4$ и $Y6 = Ca_2P_2O_7$. Разница в молярных массах в расчёте на один атом кальция или фосфора составляет ~9г/моль, что соответствует 6.6% от молярной массы CaSO₄.

Определим количество атомов каждого типа, приходящееся на

элементарную ячейку **X7**. Позиции в серединах рёбер имеют кратность ¼, в центрах граней ½, всего рёбер у куба 12, а граней 6, значит число «лёгких» атомов $n = 12 \cdot \frac{1}{4} + 6 \cdot \frac{1}{2} = 6$ шт. Позиции, целиком расположенные внутри ячейки имеют кратность 1, их в данной структуре 1 (в центре), а расположенные в вершинах позиции имеют кратность 1/8, их в данной ячейке 8, значит «тяжёлых» атомов $m = 1 \cdot 1 + 8 \cdot 1/8 = 2$ шт. m : n = 2 : 6 = 1 : 3. Т.е. состав вещества **X7** это H_3 S. **X7** сохраняет сверхпроводящие свойства вплоть до 203 К под давлением около 1.5 млн. атмосфер, научный прорыв 2015 года привел к тому что буквально за 2020-2021 годы появилось несколько сообщений о достижении сверхпроводимости при комнатной температуре для различных гидридов и исследовании свойств металлического водорода при сверхвысоком давлении.

Найдём молярную массу **Y7** из плотности: $M(\mathbf{Y7}) = \frac{\rho RT}{p} = \frac{9.05 \cdot 8.314 \cdot 175}{101.3} = 130 \, ^{\Gamma}/_{\text{МОЛЬ}}$. Для формулы $P_x H_y$ молярная масса равна 31x+y=130, откуда x=4, y=6, т.е. $\mathbf{Y7}=P_4 H_6$. Интересной особенностью **Y7** является равновесие между линейной и разветвлённой формами.

X1	X2	X3	X4		X5		X6	X7
H_2S	\mathbf{S} или \mathbf{S}_8	SO_2	H_2SO_4		CaSO ₄ ·2	$^{2}\mathrm{H}_{2}\mathrm{O}$	CaSO ₄	H_3S
Y1	Y2	Y3	Y4		Y5	Y6		Y7
PH ₃	Р или Р4	HPO_3	H_3PO_4	CaHl	$PO_4 \cdot 2H_2O$	Ca ₂	P_2O_7	P_4H_6

2. Наковальни для синтеза при сверхвысоком давлении изготавливают из алмаза.

Система оценивания:

1	Вещества Х1-Х7 и Ү1-Ү7 по 1 баллу	14 баллов
2	Указан алмаз в качестве материала наковальни	1 балл
	ИТОГО	15 баллов