

Mahatma Gandhi Mission's College of Engineering and Technology Kamothe, Navi Mumbai

Branch: ALL Academic Year: 2020-21

Course Code:FEC 201 Course Name: Engineering Mathematics II [Choice Based]

Assignment 1

Ques. No.	Question	Module	Level*	PI	СО
1	Choose the correct answer from the options below:	1	1	1.1.1	1
	(a) Determine the order and degree of the differential equation $2x \frac{d^4y}{dy^4} + 5x^2 \left(\frac{dy}{dx}\right)^3 - xy = 0$				
	(i) Fourth order, first degree				
	(ii).Third order, first degree				
	(iii) First order, fourth degree				
	(iv) First order, third degree.				
	(b)Which of the following equations is an exact DE?	1	1	1.1.1	1
	(i) $(x^2 + 1) dx - xy dy = 0$ (ii). $x dy + (3x - 2y) dx = 0$ (iii) $2xy dx + (2 + x^2) dy = 0$ (iv) $x^2y dy - y dx = 0$ (c) For exact differential Equation of the form $M(x, y)dx + N(x, y)dy = 0$ $a \cdot \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ $b \cdot \frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$	1	1	1.1.1	1
	c. $\frac{\partial M}{\partial y} = 0$ d. $\frac{\partial M}{\partial y} / \frac{\partial N}{\partial x} = 1$				
	(d) $[\tan(y) + x] dx + [xsec^2y - 3y]dy = 0$ is	1	1	1.1.1	1
	D.E.				
	(i)Non-exact (ii)Linear D.E.				
	(ii) Bernoulli's D.E. (iv)Exact D.E.				

2	Match the following	1	1	1.1.1	1
	A B				
	i) $[dx/dy] + Px = Q x^n$ is a) Exact D.E.				
	ii) For $Mdx+Ndy=0$ is b)Integrating Factor				
	$\partial M/\partial x - \partial N/\partial y = 0$ c)Linear D.E.				
	iii)[dx/dy] + Px = Q is d)Bernoulli's D.E.				
	iv) For D.E $.Mx+Ny \neq 0$				
	then $\frac{1}{Mx+Ny}$				
3	Fill in the blanks	1	1	1.1.1	1
	i)The general solution of the equation [dy/dx] + Py =	=			
	Q is given by				
	iii) For what values of a, b the equation $[y + x^3]dx$ $[ax + by^3]dy = 0$ is exact.	+			
	(i)a=1,b=1 (ii) $a=1$, all values of b				
	(iii) for all values of a, b= 1 (iv) none of the above	1	1	1.1.1	1
4	Define the following		1	1.1.1	1
	i)Degree of Differential Equation				
	ii)Order of Differential Equation				
	iii)Exact differential equation				
	iv)Bernoullis differential equation				
5.	State True or False	1	1	1.1.1	1
	1. The I.F. of the equation $(1 + x + xy^2)dy + (y + y^3)dx$ = 0 is function of y	X			
	2. The equation $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$ is				

	non-exact D.E.				
	3. Solution of the equatin $(x^2 + y^2 + 1) dx - 2xy dy$ = 0 is $\mathbf{x} - \frac{y^2}{x} - \frac{1}{x} = \mathbf{C}$.				
6	a)Solve	1	2	1.1.1	1
	$\left[y\left(1+\frac{1}{x}\right)+\cos y\right]dx+(x+\log x-x\sin y)dy=0$				
	b) Solve $[2y^2 - 4x + 5]dx = [y - 2y^2 - 4xy]dy$	1	2	1.1.1	1
	c) Solve $[2 \text{ xlogx } - \text{xy}] \text{ dy} + 2\text{ydy} = 0$	1	2	1.1.1	1
	d)solve $[x^4 + y^4]dx - xy^3dy = 0$	1	2	1.1.1	1
7	a)Solve Solve $y^4 dx = \left(x^{\frac{-3}{4}} - y^3 x\right) dy$ [Hint: eqn can be written as $\frac{dx}{dy} + \frac{x}{y} = \frac{x^{\frac{3}{4}}}{y^4}$]	1	2	1.1.1	1
	b)Solve $\frac{dy}{dx} = -\frac{x^2y^3 + 2y}{2x - 2x^3y^2}$	1	2	1.1.1	1
	c)Solve $y(x + y) dx - x(y - x) dy = 0$	1	2	1.1.1	1
	d)Solve $\left[\log(x^2 + y^2) + \frac{2x^2}{x^2 + y^2}\right] dx + \left(\frac{2xy}{x^2 + y^2}\right) dy = 0$	1	2	1.1.1	1
	e)Solve $xy(1 + xy^2)\frac{dy}{dx} = 1$. [Hint: equation can be written as $\frac{dy}{dx} - xy = x^3y^3$]	1	2	1.1.1	1
8	My Ideas: Explain how you will use differential equation in your daily life.	1	3	1.1.1	1