1. Below is the block diagram and the function table of a 2-to-1 2-bit generic multiplexer with enuble input.

Implement this multiplexer using the following PAL without using any additional gates. Note that PAL outputs are inverted.

SOLUTION .

$$Y_i = E_i(S.A_i + S.B_i)$$
 $A_i = B_i$
 $A_i = B_i$
 $A_i = B_i$
 $A_i = B_i$
 $A_i = B_i$

2. Implement a 1-bit full culder using a generic 4-to-1 2-bit multiplexer using no more than one additional gate.

SOLUTION

MUX:

s, s	o F	FI
0	OA	A,
0	1 B	o BI
1 1	0 0	o CI
í	1 / 2	Do DI

FULL ADDER :

X	′ (-IN	2	Cour
0		0	0	0
0		0	1	0
0	í	1	0	
1	0	0	0	0
i	1	0	0	1
l	l	1	1	1

FULL ADDER :

S, So	Fo	F_{l}	
00	CIN	0	CIN AO
0 1	Cin	CIN	80-A,
10	CIN	CIN CIN	β_0
1 1	CIN	ì	B_1 F_2 Z
	1		Co FI COUT
			CI
			Do
			I Di Si So
			× ×

- 3. Consider the following synchronous machine.
 - a) Draw the state diagram with the following state assignment

Q,	Q_{ω}	Stute
0	0	A
U	i	B
i	U	0
1	i	D

b) Assuming Q = Q = D initially, find the state sequence corresponding to the following input sequence.

X: 0000001110010 State: ABCDADCBCDCD

SOLUTION .

Q, Q, X	$J_i = K_i$	$J_o = K_o$	9, 00
000	D	1	01
001	1	1	1 1
010	1	1	10
011	0	1	00
100	0	1	1 1
101	1	/	01
110	1	1	00
111	0	1	10

4. Design a Mealey machine with one input X and one output Y such that Y=1 if the present input is the same as the input two clock periods before, and Y=0 otherwise. Use only two D-flip flops. Assume that the initial state is $Q_i=Q_0=0$. A typical input, output sequence is given below.

X:00010010110000 Y:**1010011010101

SOLUTION :

States :

$$S_{00}: Prev. two inputs are 00
 $S_{01}: " " " 01$

$$S_{10}: " " " 10$$

$$S_{11}: " " " 11$$$$

State Diagram:

Next State | Dutput Table :

Q_{i}	Po	X	Q,	Qo	Y
0	0	0	0	0	1
D	0	<i>i</i>	0	1	D
0	1	D	1	D	ĺ
0	1	1	ı	i	0
i	0	0	0	O	0
į	0	1	v	1	1
1	1	D	T	D	0
l	l	1	1	1	1

$$\Delta_{o} = Q_{o}^{*} = X$$

$$\Delta_{i} = Q_{i}^{*} = Q_{o}$$

$$Y = (X \oplus Q_{i})^{i}$$

