CONSTANT APPROXIMATION ALGORITHM FOR NODE-WEIGHTED PRIZE-COLLECTING STEINER FOREST ON PLANAR GRAPHS

Mateusz Lewandowski

Supervisor: Carsten Moldenhauer

input
$$=$$
 a planar graph $G = (V, E)$

- a planar graph G = (V, E)
 non-negative costs of vertices c_v

- a planar graph G = (V, E) non-negative costs of vertices c_v

 - demands between some pairs of vertices with penalties $\pi_{i,j}$

- a planar graph G = (V, E)
 non-negative costs of vertices c_v

 - demands between some pairs of vertices with penalties $\pi_{i,j}$

- a planar graph G = (V, E) non-negative costs of vertices c_v

 - demands between some pairs of vertices with penalties $\pi_{i,j}$

- a planar graph G = (V, E) non-negative costs of vertices c_v

 - demands between some pairs of vertices with penalties $\pi_{i,j}$

- a planar graph G = (V, E)input
 - non-negative costs of vertices c_v
 - demands between some pairs of vertices with penalties $\pi_{i,j}$
 - buy vertices => connect demands

- a planar graph G = (V, E)input
 - non-negative costs of vertices c_v
 - demands between some pairs of vertices with penalties $\pi_{i,j}$
 - buy vertices => connect demands

- a planar graph G = (V, E)input
 - non-negative costs of vertices c_v
 - demands between some pairs of vertices with penalties $\pi_{i,j}$
 - buy vertices => connect demands

- a planar graph G = (V, E)input
 - non-negative costs of vertices c_v
 - demands between some pairs of vertices with penalties $\pi_{i,j}$
 - buy vertices => connect demands

- a planar graph G = (V, E)input
 - non-negative costs of vertices c_v
 - demands between some pairs of vertices with penalties $\pi_{i,j}$
 - buy vertices => connect demands

- a planar graph G = (V, E)input
 - non-negative costs of vertices c_{v}
 - demands between some pairs of vertices with penalties $\pi_{i,j}$
 - buy vertices => connect demands
 - pay a penalty for not connected demands

output

Problem: minimize cost of nodes + penalties

Problem: minimize cost of nodes + penalties

My result: 4 approximation

$$\min \qquad \sum_{v} c_{v} x_{v} + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$

$$s.t.$$

$$\sum_{v \in \Gamma(S)} x_{v} + z_{i,j} \ge 1 \qquad \forall \ demand(i,j)$$

$$\forall \ S \bigcirc (i,j)$$

$$x_{v} \in \{0,1\}$$

$$z_{i,j} \in \{0,1\}$$

$$min \qquad \sum_{v} c_{v} x_{v} + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$

s.t.

$$\sum_{v \in \Gamma(S)} x_v + z_{i,j} \ge 1$$

$$x_v \in \{0,1\}$$

$$z_{i,j} \in \{0,1\}$$

 \forall demand(i,j) \forall $S \bigcirc (i,j)$

nodes

$$min \qquad \sum_{v} c_{v} x_{v} + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$

 $z_{i.i} \in \{0,1\}$

$$\sum_{v \in \Gamma(S)} x_v + z_{i,j} \ge 1$$

$$x_v \in \{0,1\}$$

$$\forall$$
 demand(i,j)
 \forall $S \odot (i,j)$

min
$$\sum_{v}^{\text{nodes}} c_v x_v + \sum_{(i,j)}^{\text{penalties}} \pi_{i,j} z_{i,j}$$

s.t.

$$\sum_{v \in \Gamma(S)} x_v + z_{i,j} \ge 1$$

$$x_v \in \{0,1\}$$

$$z_{i,j} \in \{0,1\}$$

 \forall demand(i,j) \forall $S \bigcirc (i,j)$

penalties

Integer programming formulation

nodes

min

$$\sum_{v} c_v x_v + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$

s.t.

$$\sum_{v \in \Gamma(S)} x_v + z_{i,j} \ge 1$$

$$x_v \in \{0,1\}$$

$$z_{i,j} \in \{0,1\}$$

 \forall demand(i, j) $\forall S \odot (i,j)$

Dual of the linear relaxation

$$\max \sum_{S \subseteq V} \sum_{(i,j): S \odot (i,j)} y_{s_{i,j}}$$

$$\sum_{\substack{S: \ v \in \Gamma(S) \\ S \odot (i,j)}} y_{S_{i,j}} \le c_v \qquad \forall \ v \in V$$

$$\sum_{S: S \odot(i,j)} y_{S_{i,j}} \leq \pi_{i,j} \qquad \forall \ demand \ (i,j)$$

$$y_{s_{i,j}} \ge 0$$

$$\forall$$
 demand (i, i)

Dual of the linear relaxation

 $\sum_{S\subseteq V} \sum_{(i,j): S\odot(i,j)} y_{S_{i,j}}$ max Problem:

Many different dual v $\sum_{S: v \in \Gamma(S)} y_{Si,j} \leq c_v \qquad \forall v \in V$ s.t. Many different dual variables $S \odot (i,j)$ $\sum_{S: S \odot (i,j)}^{1} y_{S_{i,j}} \leq \pi_{i,j} \qquad \forall \ demand \ (i,j)$ $y_{s_{i,i}} \ge 0$

$$max \qquad \sum_{S \subseteq V} y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\sum_{S \in \mathcal{F}} y_S \le \mathsf{g}(\mathcal{F})$$

$$y_S \ge 0$$

$$\forall v \in V$$

$$\forall \mathcal{F} \in 2^{2^V}$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

$$\max \sum_{S\subseteq V} y_S$$

Problem simplified

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall \ v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F})$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

max

Problem simplified

$$\sum_{S: n \in \Gamma(S)} y_S \le c_v$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F})$$

$$y_S \ge 0$$

$$\forall v \in V$$

$$\forall \mathcal{F} \in 2^{2^V}$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

max

Problem simplified

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le \mathsf{g}(\mathcal{F})$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

$$\mathcal{F} = \{S_1, S_2, S_3\}$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

max

$$\sum_{S\subseteq V} y_S$$

Problem simplified

s.t.

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall v \in V$$

$$\sum_{S \in \mathcal{T}} y_S \le g(\mathcal{F})$$

$$\forall \mathcal{F} \in 2^{2^V}$$

 $y_S \ge 0$

New problem:
Double exponential numer of constraints

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

$$\max \sum_{S\subseteq V} y_S$$

Problem simplified

s.t.

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall \ v \in V$$

$$\sum_{S \in \mathcal{T}} y_S \le g(\mathcal{F})$$

$$\forall \mathcal{F} \in 2^{2^V}$$

 $y_{\rm S} \geq 0$

New problem: Double exponential numer of constraints

Can be resolved (see later)

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

Primal-Dual Moat Growing

max

$$\sum_{S\subseteq V}y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v \qquad \forall v \in V$$

$$\forall v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i, i) \in S}} \pi_{i, j}$$

 $\forall \ v \in V$

max

$$\sum_{S\subseteq V}y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i, i) \in S}} \pi_{i, j}$$

max

$$\sum_{S\subseteq V} y_S$$

$$\sum_{S: \, v \in \Gamma(S)} y_S \le c_v$$

$$\forall v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i, i) \in S}} \pi_{i, j}$$

max

$$\sum_{S\subseteq V} y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \leq c_v$$

$$\forall v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i, i) \in S}} \pi_{i, j}$$

max

$$\sum_{S \subseteq V} y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i, i) \in S}} \pi_{i, j}$$

max

$$\sum_{S \subseteq V} y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall \ v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i, i) \in S}} \pi_{i, j}$$

max

$$\sum_{S\subseteq V}y_S$$

$$\sum_{S: v \in \Gamma(S)} y_S \le c_v$$

$$\forall \ v \in V$$

$$\sum_{S \in \mathcal{F}} y_S \le g(\mathcal{F}) \qquad \forall \, \mathcal{F} \in 2^{2^V}$$

$$\forall \mathcal{F} \in 2^{2^V}$$

$$y_S \ge 0$$

where
$$g(\mathcal{F}) = \sum_{\substack{S \in \mathcal{F} \\ (i,j) \odot S}} \pi_{i,j}$$

$$SOLUTION = \sum_{v}^{\text{nodes}} c_{v} x_{v} + \sum_{(i,j)}^{\text{penalties}} \pi_{i,j} z_{i,j}$$

$$SOLUTION = \sum_{v} c_v x_v + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$
 Lemma 1 $| \wedge \rangle$ $| \wedge \rangle$ Lemma 2 $| \wedge \rangle$ $|$

$$SOLUTION = \sum_{v} c_v x_v + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$
 Lemma 1 $| \wedge \rangle$ $| \wedge \rangle$ Lemma 2 $| \wedge \rangle$ $|$

$$SOLUTION \leq 4 \sum_{S \subseteq V} y_S$$

$$SOLUTION = \sum_{v} c_v x_v + \sum_{(i,j)} \pi_{i,j} z_{i,j}$$

$$Lemma 1 \quad | \wedge \qquad | \wedge \qquad Lemma 2$$

$$3 \sum_{S \subseteq V} y_S \qquad \sum_{S \subseteq V} y_S$$

$$SOLUTION \leq 4 \sum_{S \subseteq V} y_S \leq 4 \ OPT$$

$$weak \ duality$$

Lemma 1 (nodes)

$$\sum_{v} c_v x_v \le 3 \sum_{S \subseteq V} y_S$$

Node-Weighted Steiner Forest on Planar Graphs 3 approximation (C. Moldenhauer, 2011)

Lemma 1 (nodes)

$$\sum_{v} c_{v} x_{v} \le 3 \sum_{S \subseteq V} y_{S}$$

Node-Weighted Steiner Forest on Planar Graphs 3 approximation (C. Moldenhauer, 2011)

Lemma 2 (penalties)

$$\sum_{(i,j)} \pi_{i,j} z_{i,j} \le \sum_{S \subseteq V} y_S$$

Edge-Weighted Prize-Collecting Steiner Forest 3 approximation (M. Hajiaghayi, K. Jain, 2006)

More on this

Implementation (c++)

```
n – number of vertices
```

k – number of demands

M(a,b) - complexity of max-flow with a vertices and b edges

Complexity
$$O(n \cdot k \cdot M(n + k, n \cdot k)) \approx O(n^2k^2)$$

Open questions

- Improve 4 approximation
 - $\approx 2,93$ with threshold rounding (but requires solving LP)
- Node-Weighted Prize-Collecting Steiner <u>Tree</u> on planar graphs maybe even PTAS?

Bibliography

- M. Bateni, M. Hajiaghayi, V. Liaghat.
 Improved Approximation Algorithms for (Budgeted) Node-weighted
 Steiner Problems in ICALP 2013
- 2. M. Hajiaghayi, K. Jain.
 The Prize-Collecting Generalized Steiner Tree Problem Via A New
 Approach Of Primal-Dual Schema in SODA '06
- 3. E. D. Demaine, M. Hajiaghayi, P. N. Klein.

 Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs
 in ICALP 2009
- 4. C. Moldenhauer,
 Primal-dual Approximation Algorithms for Node-Weighted
 Steiner Forest on Planar Graphs in ICALP 2011
- 5. M. Hauptmann and M. Karpinski

 A Compendium on Steiner Tree Problems

Merry Christmas!

