Orden del Tema

Métodos de Región de Confianza Introducción: Idea General Punto de Cauchy

Definición

El Punto de Cauchy es el minimizador del modelo m_k a lo largo de la dirección del máximo descenso de la funcion f, i.e., $-\nabla f(x_k)$, sujeto a la región de confianza.

Alternativa para hallar el paso

La alternativa de solución del problema de optimización para hallar el paso recibe el nombre del Método Dogleg (Próxima clase) y está basada en el cáculo de el Punto de Cauchy .

 Para hallar el paso, se resuelve el problema de opimimización con restricciones:

$$p_k^* = \arg\min_p m_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T B_k p,$$

s.t. $||p|| \le \Delta_k.$

Donde Δ_k es el radio de la región de confianza.

 Aunque en principio uno busca la solución del problema anterior, en la práctica, es suficiente encontrar una aproximación de p_k en la región de confianza que de un suficiente descenso del modelo para garantizar una convergencia del método.

 Para hallar el paso, se resuelve el problema de opimimización con restricciones:

$$p_k^* = \arg\min_p m_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T B_k p,$$

s.t. $||p|| \le \Delta_k$.

Donde Δ_k es el radio de la región de confianza.

• Aunque en principio uno busca la solución del problema anterior, en la práctica, es suficiente encontrar una aproximación de p_k en la región de confianza que de un suficiente descenso del modelo para garantizar una convergencia del método.

 Para hallar el paso, se resuelve el problema de opimimización con restricciones:

$$p_k^* = \arg\min_p m_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T B_k p,$$

s.t. $||p|| \le \Delta_k.$

Donde Δ_k es el radio de la región de confianza.

• El Punto de Cauchy, denotado como p_k^C , nos permite cuantificar el suficiente descenso del modelo.

Algoritmo: Punto de Cauchy

• Encontrar el punto p_k^S que resuelve la versión lineal:

$$\mathbf{p}_{k}^{S} = \arg\min_{p} f(x_{k}) + \nabla f(x_{k})^{T} p$$
, s.t. $||p|| \leq \Delta_{k}$

• Encontrar el parámetro $\tau_k > 0$ que minimiza $m_k(\tau_k p_k^S)$ en la región de confianza, i.e.,

$$\tau_k = \arg\min_{\tau > 0} m_k(\tau p_k^S), \text{ s.t. } \|\tau p_k^S\| \leq \Delta_k$$

• Calcular el Punto de Cauchy haciendo $p_k^C = \tau_k p_k^S$.

Algoritmo: Paso a Paso (Paso 1)

$$\mathbf{p}_{\mathbf{k}}^{\mathbf{S}} = \arg\min_{p} f(x_{\mathbf{k}}) + \nabla f(x_{\mathbf{k}})^{T} p$$
, s.t. $\|p\| \le \Delta_{\mathbf{k}}$

- La función decrece a lo largo de $-\nabla f(x_k)^T$, luego $p_k^S = -\lambda \nabla f(x_k)$ con $\lambda > 0$
- Como $\|p_k^S\| \leq \Delta_k$, entonces $\lambda \leq \frac{\Delta_k}{\|\nabla f(x_k)\|}$
- El máximo descenso se obtiene para $\lambda = \frac{\Delta_k}{\|\nabla f(x_k)\|}$, por lo que $p_k^S = -\frac{\Delta_k}{\|\nabla f(x_k)\|} \nabla f(x_k)$

Algoritmo: Paso a Paso (Paso 1)

$$\mathbf{p}_{\mathbf{k}}^{\mathbf{S}} = \arg\min_{p} f(x_{\mathbf{k}}) + \nabla f(x_{\mathbf{k}})^{T} p$$
, s.t. $\|p\| \le \Delta_{\mathbf{k}}$

- La función decrece a lo largo de $-\nabla f(x_k)^T$, luego $p_k^S = -\lambda \nabla f(x_k)$ con $\lambda>0$
- Como $\|p_k^S\| \leq \Delta_k$, entonces $\lambda \leq \frac{\Delta_k}{\|\nabla f(x_k)\|}$
- El máximo descenso se obtiene para $\lambda = \frac{\Delta_k}{\|\nabla f(x_k)\|}$, por lo que $p_k^S = -\frac{\Delta_k}{\|\nabla f(x_k)\|} \nabla f(x_k)$

Algoritmo: Paso a Paso (Paso 1)

$$\mathbf{p}_{\mathbf{k}}^{S} = \arg\min_{p} f(x_{k}) + \nabla f(x_{k})^{T} p, \text{ s.t. } \|p\| \leq \Delta_{k}$$

- La función decrece a lo largo de $-\nabla f(x_k)^T$, luego $p_k^S = -\lambda \nabla f(x_k)$ con $\lambda > 0$
- Como $\|p_k^S\| \leq \Delta_k$, entonces $\lambda \leq \frac{\Delta_k}{\|\nabla f(x_k)\|}$
- El máximo descenso se obtiene para $\lambda = \frac{\Delta_k}{\|\nabla f(x_k)\|}$, por lo que $p_k^S = -\frac{\Delta_k}{\|\nabla f(x_k)\|} \nabla f(x_k)$

Algoritmo: Paso a Paso (Paso 1)

$$\mathbf{p}_{\mathbf{k}}^{S} = \arg\min_{p} f(x_{\mathbf{k}}) + \nabla f(x_{\mathbf{k}})^{T} p$$
, s.t. $\|p\| \leq \Delta_{\mathbf{k}}$

- La función decrece a lo largo de $-\nabla f(x_k)^T$, luego $p_k^S = -\lambda \nabla f(x_k)$ con $\lambda > 0$
- Como $\|p_k^S\| \leq \Delta_k$, entonces $\lambda \leq \frac{\Delta_k}{\|\nabla f(x_k)\|}$
- El máximo descenso se obtiene para $\lambda = \frac{\Delta_k}{\|\nabla f(x_k)\|}$, por lo que $p_k^S = -\frac{\Delta_k}{\|\nabla f(x_k)\|} \nabla f(x_k)$

Algoritmo: Paso a Paso (Paso 2)

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

- Para hallar una fórmula cerrada para τ_k se consideran 2 casos:
 - $\nabla f(x_k)^T B_k \nabla f(x_k) \le 0$
 - $\nabla f(x_k)^T B_k \nabla f(x_k) > 0$

Algoritmo: Paso a Paso (Paso 2)

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

- Para hallar una fórmula cerrada para τ_k se consideran 2 casos:
 - $\nabla f(x_k)^T B_k \nabla f(x_k) \leq 0$
 - $\nabla f(x_k)^T B_k \nabla f(x_k) > 0$

Algoritmo: Paso a Paso (Paso 2)

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

- Para hallar una fórmula cerrada para τ_k se consideran 2 casos:
 - Si $\nabla f(x_k)^T B_k \nabla f(x_k) \leq 0$ entonces $m_k(\tau_k p_k^S)$ decrece a lo large de p_k^S , i.e., del $-\nabla f(x_k)$, y se toma a τ como el mayor valor posible, es decir $\tau=1$.

Algoritmo: Paso a Paso (Paso 2)

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

- Para hallar una fórmula cerrada para τ_k se consideran 2 casos:
 - Si $\nabla f(x_k)^T B_k \nabla f(x_k) \leq 0$ entonces $m_k(\tau_k p_k^S)$ decrece a lo largo de p_k^S , i.e., del $-\nabla f(x_k)$, y se toma a τ como el mayor valor posible, es decir $\tau=1$.

Algoritmo: Paso a Paso (Paso 2)

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

- Para hallar una fórmula cerrada para τ_k se consideran 2 casos:
 - Si $\nabla f(x_k)^T B_k \nabla f(x_k) > 0$ entonces $m_k(\tau_k p_k^S)$ es una cuadrática covexa en τ . Si el mínimo se alcanza en el interior de la región de confianza, entonces $\tau = \|\nabla f(x_k)\|^3/(\Delta_k \nabla f(x_k)^T B_k \nabla f(x_k))$, en caso contrario la solución está en la frontera, $\tau = 1$ similar al caso anterior

Algoritmo: Paso a Paso (Paso 2)

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

- Para hallar una fórmula cerrada para τ_k se consideran 2 casos:
 - Si $\nabla f(x_k)^T B_k \nabla f(x_k) > 0$ entonces $m_k(\tau_k p_k^S)$ es una cuadrática covexa en τ . Si el mínimo se alcanza en el interior de la región de confianza, entonces $\tau = \|\nabla f(x_k)\|^3/(\Delta_k \nabla f(x_k)^T B_k \nabla f(x_k))$, en caso contrario la solución está en la frontera, $\tau = 1$ similar al caso anterior.

Algoritmo: Paso a Paso (Paso 2)

• Encontrar el parámetro $\tau_k > 0$ que minimiza $m_k(\tau_k p_k^S)$ en la región de confianza, i.e.,

$$\underline{\tau_k} = \arg\min_{\tau \ge 0} m_k(\tau \underline{p_k^S}), \text{ s.t. } \|\tau \underline{p_k^S}\| \le \Delta_k$$

• Resumiendo: $p_k^C = -\tau_k \frac{\Delta_k}{\|\nabla f_k\|} \nabla f_k$.

$$\tau_k \quad = \quad \begin{cases} 1, & \text{si } \nabla f_k^T B_k \nabla f_k \leq 0 \\ \min\left(1, \frac{\|\nabla f_k\|^3}{\Delta_k \nabla f_k^T B_k \nabla f_k}\right), & \text{e.o.c.} \end{cases}$$

Representación gráfica: Paso de Cauchy

Figura: Punto de Cauchy

Punto de Cauchy: Otra forma de calcularlo

El Punto de Cauchy es el minimizador del modelo $m_k(p)$ a lo largo de de la dirección del máximo descendo, i.e., $p_k = -\lambda_k g_k$ sujeto a la región de confianza.

$$h(\lambda) := m_k(-\lambda g_k) = f_k - g_k^T g_k \lambda + \frac{1}{2} \lambda^2 g_k^T B_k g_k; \ \lambda \ge 0$$

Como $||p|| \leq \Delta_k$ entonces

$$\|-\lambda g_k\| \le \Delta_k \implies \lambda \le \frac{\Delta_k}{\|g_k\|} =: \bar{\lambda}$$

$$\lambda_k = \arg\min_{\lambda \in [0,\bar{\lambda}]} h(\lambda)$$

La solucion del problema anterior es

$$\begin{array}{lll} \lambda_k & = & \begin{cases} \bar{\lambda}, & \text{si } g_k^T B_k g_k \leq 0 \\ \min\left(\bar{\lambda}, \frac{\|g_k\|^2}{g_k^T B_k g_k}\right), & \text{e.o.c.} \end{cases} \\ & = & \bar{\lambda} \begin{cases} 1, & \text{si } g_k^T B_k g_k \leq 0 \\ \min\left(1, \frac{\|g_k\|^3}{\Delta_k g_k^T B_k g_k}\right), & \text{e.o.c.} \end{cases} \\ & = & \bar{\lambda} \tau_k \end{array}$$

Resumiendo:
$$p_k^C = -\lambda_k g_k$$
. Luego $p_k^C = -\bar{\lambda}\tau_k g_k = -\tau_k \frac{\Delta_k}{\|g_k\|} g_k$