Distributed storage and dissemination service based on floating content

Mihai Ciocan, Ciprian Dobre

Automatic Control and Computers Faculty, University Politehnica of Bucharest

July, 2014

1 Introduction

2 Modelul aplicatiei

3 Simulare si Evaluare

Actualitate

- Se estimeaza ca numarul de utilizatori de device-uri mobile in anul 2014 va ajunge la 1.75 miliarde
- Principalele aplicatii utilizate pe device-uri sunt cele sociale (Twitter, Facebook, etc.), de comunicatie (WhatsApp, Facebook Messenger) si de localizare si afisare a obiectivelor din proximitate precum si de ghidare spatiala(Google Maps, Waze)
- Majoritatea aplicatiilor sunt dependente de serviciile din infrastructura de retea pentru corecta functionare

Posibile probleme

- Probleme de conectivitate:
 - Preturi roaming foarte mari
 - Conectivitate slaba
 - Servicii de date fara acoperire
- Probleme in managementul datelor transferate:
 - Relevanta geografica
 - Relevanta temporala
 - Identificarea detinatorului
 - Utilizarea unui serviciu central de gestiune a datelor

Alternativa

- Serviciu pentru distribuirea informatiilor efemere dependent in totalitate de device-uri mobile din vecinatate
- Fiecare user poate genera informatii caracteristice pentru o anumita locatie, pentru o perioda limitata de timp
- Potrivit pentru comunicatia intre vehicule pentru imbunatatirea experientei de conducere
- Starea vremii, a carosabilului si a traficului printre informatiile care pot imbunatatii experienta de conducere a soferului

Comportamentul serviciului

- Informatia generata va fi distribuita numai vecinilor din raza de valabilitate r
- Informatia este stearsa din memorie atunci cand vehiculul se departeaza la o distanta mai mare decat a fata de origine
- Informatia va "pluti" (float) atat timp cat exista un numar semnificativ de device-uri in raza de valabilitate pentru a participa la stocare si replicare

Floating Content Protocol

- Nodurile trimit mesaje de descoperire a vecinilor (beacons) la un anumit interval de timp (300s in simulare)
- 2 La primirea unui astfel de mesaj, nodul trimite lista proprie de elemente valabile pentru replicare
- 3 Dupa primirea listei, nodul cere un subset de date, a caror distanta de valabilitate este mai mare decat pozitia nodului fata de origine (nodul se afla in raza de valabilitate)
- Informatiile cerute se transfera pana cand nodurile pierd contactul sau transferul se termina complet
- **5** se repeta pasii incepand de la pasul 1.

Tool-uri pentru simulare

- Am utilizat framework-ul
 Veins bazat pe 2 simulatoare
- Simulation of Urban Mobility (road traffic simulator)
- OMNeT++ simulator de retele
- Cele 2 comunica in timpul simularii prin conexiune TCP

Criterii de fezabilitate - Conditia de criticalitate

- ullet v o frecventa cu care un nod intra in contact cu vecinii sai
- $N \rightarrow$ populatia din zona de valabilitate; numarul de perechi este $\frac{1}{2}N(N-1)\approx \frac{1}{2}N^2$; numarul total de contacte este $\frac{1}{2}N^2v$
- 2p(1-p) din numarul de contacte transfera informatie noua unui nod; totalul acestor evenimente va fi $p(1-p)N^2v$; aceasta este frecventa spre care populatia totala ce contine informatia tinde sa creasca;
- $1/\mu \rightarrow$ timpul unui nod aflat in zona de valabilitate; frecventa de iesire din zona este $N\mu$; frecventa de iesire a nodurilor cu informatie este $Np\mu$
- frecventa de crestere este $N \frac{d}{dt} p = N^2 p (1-p) v N p \mu$
- exista unei solutii pozitive $p^* > 0$ necesita:

$$N rac{v}{\mu} > 1 \, o \,$$
 criticality condition

Criterii de fezabilitate - Modelul epidemic SIR

- $S \rightarrow$ noduri susceptibile (noduri fara informatie), $I \rightarrow$ noduri infectate (detin informatia), $R \rightarrow$ noduri "vindecate" (au sters informatia), N = S + I + R
- ullet $rac{dS}{dt} = -rSI
 ightarrow$ rata de micsorare a numarului de susceptibili
- lacktriangledown $rac{dI}{dt} = rSI aI
 ightarrow ext{rata}$ de crestere a numarului de infectati
- $\frac{dR}{dt} = aI \rightarrow \text{rata de crestere a numarului de noduri "vindecate"}$
- - \blacksquare $\frac{a}{r} = \mu \rightarrow epidemy threshold$
 - lacksquare $S_0 > \mu
 ightarrow ext{epidemy occurs}$
 - lacksquare $S_0 < \mu \rightarrow \text{no epidemy can occur}$

Colectarea datelor - SanFrancisco

Conditia de criticalitate - San Francisco

Evolutia numarului de replici a unui element cu r = 500m

Evolutia numarului de replici in functie de raza

