전기회로 (가, 다)

Chapter 4: Circuit Theorems

2017. 1학기

윤영식 교수 글로벌브레인홀 204호 ysyoun@ssu.ac.kr

4.1 Introduction

- Nodal/mesh analysis + Ohm's law & KCL, KVL → good analysis method
- 아주 복잡하고 큰 회로에 대해서는 어떨까?
- 부하가 변경되는 경우는 그 때마다 다시 분석해야 할까?
- 좀 더 단순화할 수는 없을까?
- 몇 가지 방법 제시
 - 선형성
 - 중첩
 - 전원변환
 - Thevenin의 정리
 - Norton의 정리

4.2 Linearity (선형성)

o 선형성

- 비례성 (scaling, homogeneity)
 - 입력이 어떤 비율로 증가하면 출력도 같은 비율로 증가

$$v = iR \rightarrow (전류가 k배 커지면) \rightarrow v' = (ki)R = kv$$

- 가산성 (additivity)
 - 입력의 합에 대한 응답은 각 입력에 대한 응답의 합

$$v_1 = i_1 R$$
, $v_2 = i_2 R \rightarrow v' = (i_1 + i_2)R = v_1 + v_2$

각각
$$i_s = 30A$$
, $i_s = 45A$ 일 때, v_0 는?

 $I_0 = 1$ A 라고 가정하고, 선형성을 이용하여, I_0 의 실제값을 구하라

4.3 Superposition (중첩)

o 중첩의 원리 (Superposition principle)

선형회로에서 어떤 소자의 전압 및 전류는 각각의 독립전원에 의한 출력의 대수적인 합과 같다.

o 활용

- 하나의 전원을 남기고 나머지 전원 OFF
- 그 전원에 대한 출력 계산
- 나머지 전원에 대해서도 하나씩 위의 과정 반복
- 모든 각각의 출력을 대수적으로 더함.

4.3 Superposition (중첩)

• 독립전원 제거의 의미

• 전압원 제거 → oV 공급 → Short or Open?

• 전류원 제거 → oA 공급 → Short or Open?

o (주의) 종속전원은 제거하지 않고 그대로 두어야! Why?

중첩의 원리를 이용하여 v_{χ} 를 구하라

12 V

중첩의 원리를 이용하여 /를 구하라

4.4 Source Transformation (전원변환)

• 등가회로(Equivalent circuit)란?

원래의 회로와 v-i 특성이 동일한 회로

- 예
 - 직렬저항의 등가저항
 - 병렬저항의 등가저항
 - 와이-델타 변환
 - 전원변환
 - Thevenin 등가회로
 - Norton 등가회로

4.4 전원 변환

o 전원 변환

• 전압원 + 직렬저항 ←→ 전류원 + 병렬저항

[3 extreme cases]

1) 전원 OFF : a-b에서 본 저항 = R

2) a-b 단락(short) : a-b에 흐르는 전류 = $(i_s = v_s/R)$

3) a-b 개방(open) : a-b에 걸리는 전압 = $(v_s = i_s R)$

$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$

4.4 전원변환

o 종속전원에 대해서도 마찬가지로 적용

전원 변환을 이용하여 i_0 를 구하라

o 전류원 → 전압원 또는 전압원 → 전류원?

- o 다음 수업시간까지 다음 5문제 풀이 제출
 - Problem 4.3, 4.7, 4.12, 4.27, 4.32 (5문제)
- o Quiz#2 실시
 - 5문제
 - 범위 HW#4, HW#5, HW#6

#1. Problem 4.3

- (a) 다음 회로에서 $v_s = 1V$ 일 때, v_o 와 i_o 를 구하라
- (b) $v_s = 10V$ 일 때, v_o 와 i_o 를 구하라
- (c) 각각의 1Ω 저항을 10Ω 으로 교체하고, $v_s=10V$ 일 때, v_o 와 i_o 를 구하라

#2. Problem 4.7

다음 회로에서 $V_{\chi}=1V$ 라 가정하고, 선형성을 이용하여 V_{χ} 를 구하여라

#3. Problem 4.12

다음 회로에서 중첩의 원리를 이용하여 v_o 를 구하여라

#4. Problem 4.27

다음 회로에서 전원 변환을 이용하여 v_χ 를 구하여라

#5. Problem 4.32

다음 회로에서 전원 변환을 이용하여 i_{χ} 를 구하여라

4.5 Thevenin's Theorem

o 테브닌의 정리란?

복잡한 회로를 하나의 전압원과 하나의 직렬저항으로 표현

4.5 Thevenin's theorem

o 어떻게 V_{th} 와 R_{th} 를 구할 것인가?

독립전원을 모두 OFF했을 때의 저항

(*) 종속전원은 OFF하면 안 됨.

4.5 Thevenin's theorem

o 종속전원이 있는 경우

- V_{th} : Same!
- R_{th} :

• $R_L = 6, 16, 36\Omega$

- -mesh analysis
- -nodal analysis

 \bullet V_{th} , R_{th} , I?

4.6 Norton's Theorem

o 노턴의 정리란?

복잡한 회로를 하나의 전류원과 하나의 병렬 저항으로 표현

테브닌 등가회로 & 노턴 등가회로 ← 전원변환의 관계

$$R_N = R_{Th}$$

$$I_N = \frac{V_{Th}}{R_{Th}}$$

4.6 Thevenin-Norton Transformation

sources set equal

to zero

단락전류 i_{sc} 개방전압 v_{oc} 입력저항 R_{in}

셋 중에 둘만 알면 등가회로 구성 가능

$$egin{aligned} V_{Th} &= v_{oc} \ I_N &= i_{sc} \ R_{Th} &= rac{v_{oc}}{i_{sc}} = R_N \end{aligned}$$

o Norton 등가회로?

4.8 Maximum Power Transfer

 R_L

If the entire circuit is replaced by its <u>Thevenin equivalent</u> except for the load, the power delivered to the load is:

P =
$$i^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2 R_L$$

$$\frac{\partial P}{\partial R_L} = 0$$

 R_{Th}

 p_{max}

0

For maximum power dissipated in R_L :

$$R_L = R_{TH} \implies P_{\text{max}} = \frac{V_{Th}^2}{4R_L}$$

Two resistors are matched!!!

• Find R_L for maximum power transfer!

최대 전력이 전달 되도록 R_L 의 값을 구하라

