NMAM INSTITUTE OF TECHNOLOGY, NITTE

THAT THERAIT (An Autonomous Institution affiliated to VTU, Belagavi)

M Sem B.E. (Credit System) Mid Semester Examinations - II, March 2017

16MA201 - ENGINEERING MATHEMATICS - II

Duration: 1 Hour

ctions : A - G

TH OF TECHN

Max. Marks: 20

Marks BT*

L3

Note: Answer any One full question from each Unit.

Unit - I

1. a)	$Solve \frac{d^2y}{dx^2} + 4y = x^2 + \cos 2x$	5	L*1
b)	By using the method of variation of parameters solve, $(D^2 - 4D + 4)y = \frac{e^{2x}}{x}$	5	L4
2. a)	Solve $(D^2 + 1)y = 2\cos x$, by the method of undetermined coefficients.	5	L3
b)	Solve $x^2 y'' - 2xy' - 4y = x^4 + \frac{1}{x}$	5	L2

3. a) Rewrie the following using unit step function and find their Laplace transforms

$$f(t) = \begin{cases} t - 1, & 0 \le t < 2 \\ 3 - t, & 2 \le t < 3 \\ 0, & t \ge 3 \end{cases}$$
 4 L3

b) Solve the following differential equation using Laplace transform

$$x^{ll}(t) + 4 x(t) = 2t - 8, \quad x(0) = 1, \quad x^{l}(0) = 0$$
 6 L4

4. a) Find
$$L^{-1}\left\{\frac{s+2}{s^2-4\ s+13}\right\}$$
 3 L4

b) Using convolution theorem , find
$$L^{-1}\!\left\{\!\frac{1}{(s^2+1)(s+1)}\right\}$$

c) Find
$$L^{-1} \left\{ \frac{3}{s} - \frac{4 e^{-s}}{s^2} + \frac{4 e^{-3s}}{s^2} \right\}$$

BT* Bloom's Taxonomy, L* Level

18	mi	1 of Technology			
59	ctio	ns: A-G		T	7
3/4		I Sem B. E. (Credit System) Mid Semester Examinations - I, Februar 16MA201 - ENGINEERING MATHEMATICS - II			
Dell	auoi		Max. Marks	5. Zl	,
		Note: Answer any One full question from each Unit.			
1	2)	Unit-1	Marks	ВТ	*
	۵)	Solve $(x^2 + y^2)dx - 2xy dy = 0$	5	L.	3
	b)	If a body originally is at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the temperature of the air being $40^{\circ}C$. Find the temperature of the body after 40 minutes from the original.	5	L	.3
2.	a)	Determine the orthogonal trajectory of the family of curves $r^2 = a^2 \cos 2\theta$.	5	ı	_3
		Solve $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$	5		L4
		Unit – II			
3.	8)	(i) Find $L \left\{ \cos 6t \cos 4t + 2\sin^3 3t + te^{5t-9} \right\}$			
		(ii) Find $L\left\{\int_{0}^{t} e^{-t} \cos^{2} 3t \ dt\right\}$	6		L3
	D)	If $L\{f(t)\}=F(s)$, prove that $L\left\{\frac{f(t)}{t}\right\}=\int\limits_{s}^{\infty}F(s)ds$	4		L4
4.	a)	(i) Find $L\left\{\int_{0}^{t} \frac{e^{5t}\sin t}{t}dt\right\}$, (ii) Find $L\left\{t^{2}\sin 3t + 17t\cos 5t\right\}$		3	L3
	b)	Find the Laplace Transform of			
		f(t) = t ; 0 <t<c = 2c-t; c<t<2c and="" f(t+2c)="f(t)</td"><td></td><td>4</td><td>L4</td></t<2c></t<c 		4	L4
BT*	Bloc	om's Taxonomy, L* Level			