Hands-on Tutorial of Machine Learning in Python

中央研究院資訊科學所資料洞察實驗室 張鈞閔

2017.07.26

Flow Chart of Predictive Modeling

Today we will focus on ...

Scikit-learn: a powerful Python library in the field of machine learning

Overview

Scikit-learn: Machine Learning in Python

The content of this lecture partially comes from

- (1) https://github.com/jakevdp/sklearn_tutorial
- (2) http://scikit-learn.org/stable/documentation.html
- (3) https://blog.keras.io/

Let's do it!

What is Machine Learning?

About building programs with tuneable parameters that are adjusted automatically to improve their performance by adapting to previously seen data.

Categorize into 3 classes

- Supervised Learning
 - ⇒ Data with **explicit** labels
- Unsupervised Learning
 - ⇒ Data without labels
- Reinforcement Learning
 - ⇒ Data with **implicit** labels

Supervised Learning

- In supervised learning, we have a dataset consisting of both
 features (input variables) and labels (output variables)
- The task is to construct an **estimator** (model) which enables to predict the labels of an instance given the set of features
- Two categories: Classification and Regression
 - Classification: the label is discrete
 - Regression: the label is continuous
- Split into training and testing datasets

Training and Testing Dataset

- To validate the generalization of a trained model, splitting a whole dataset into training and testing datasets
- Based on the training dataset, we fit and optimize predictive models
- Use testing datasets to evaluate the performance of trained models to ensure the model generalization

Generalization

- We hope that a model trained on the basis of a training dataset can seamlessly apply to unseen testing dataset
 - → Generalization to unseen data
- If the model overfits the training dataset, its performance on testing dataset will be worse
- Higher model complexity, easier to overfitting

Classification

For example, k-Nearest Neighbor for iris classification problem:

Common Metrics of Classification

Confusion matrix

	Predicted 0	Predicted 1
Actual 0	True Negative (TN)	False Positive (FP)
Actual 1	False Negative (FN)	True Positive (TP)

■ Accuracy =
$$\frac{TN+TP}{ALL=(TN+TP+FN+FP)}$$

More Metrics

Recall =
$$\frac{TP}{FN+TP}$$
 Precision = $\frac{TP}{TP+FP}$

```
array([[ 7, 0, 0],
      [0, 8, 4],
       [0, 1, 10]])
metrics.accuracy score(y test,y pred)
0.8333333333333333
metrics.precision score(y test,y pred,average="weighted")
0.85079365079365077
metrics.recall score(y test,y pred,average="weighted")
0.83333333333333333
metrics.f1 score(y pred=y pred,y true=y test,average="weighted")
0.83142857142857152
print(metrics.classification report(y test,y pred))
            precision
                       recall f1-score
                                            support
                 1.00
                           1.00
                                     1.00
                                                  7
         0
         1
                 0.89
                          0.67
                                     0.76
                                                 12
         2
                 0.71
                           0.91
                                     0.80
                                                 11
avg / total
                           0.83
                 0.85
                                     0.83
                                                 30
```

from sklearn import metrics

metrics.confusion matrix(y test,y pred)

Regression

■ For example, fit a line to the data

Common Metrics in Regression

- Mean absolute error (MAE)
- Mean square error (MSE)
- R squared

```
metrics.r2_score(y_pred=y_pred,y_true=y_test)

0.82031173595813334

metrics.mean_absolute_error(y_pred=y_pred,y_true=y_test)

0.67860317120632041

metrics.mean_squared_error(y_pred=y_pred,y_true=y_test)

0.62402155001086912
```

Unsupervised Learning

- The data has no labels but we are interested in
 (1) describing hidden structure from instances
 (2) finding similarity among instances
- Unsupervised learning comprises tasks such as dimensionality reduction and clustering

Dimensionality Reduction

 For example, conduct PCA to visualize the iris dataset in two dimensions

Clustering

 For example, K-means clustering for data compression

Scikit-learn's Estimator Interface

- Available in all estimators
 - model.fit(): fit training data, X: data, Y: label Supervised: model.fit(X, Y) ⇔ Unsupervised: model.fit(X)
- Available in **supervised estimators**
 - model.predict(): predict the label of a new set of data by model
 - model.predict proba(): for classification problems, some estimators provides this method to return probability of each class
- Available in **unsupervised estimators**
 - model.transform(): transform new data into new basis by model
 - model.fit_transform(): some estimators implement this method to 19 efficiently perform a fit and transform on the same input data

Supervised Learning In-depth

Do have the labels ©

Model-based learning

- Linear regression
- Regression with Regularization
- Logistic regression
- Support vector machine
- Decision Tree
- Random Forests
- XGBoost

Instance-based learning

- Naive Bayesian model
- K-nearest neighbor (KNN)

Unsupervised Learning In-depth

Have no idea about labels 🕾

Dimension reduction

Principal component analysis

Clustering

- K-means clustering
- Hierarchical clustering
- DBSCAN

進行流程

- 1. 介紹主題
- 2. 說明如何使用 Python 完成
- 3. 範例說明 (example/)
- 4. 動手練習 (exercise/)

Supervised Learning In-depth

Do have the labels ©

Model-based learning

- Linear regression
- Regression with Regularization
- Logistic regression
- Support vector machine
- Decision Tree
- Random Forests
- XGBoost

Instance-based learning

- Naive Bayesian model
- K-nearest neighbor (KNN)

Supervised Learning In-depth

Do have the labels ©

Model-based learning

- Linear regression
- Regression with regularization
- Logistic regression
- Support vector machine
- Decision Tree
- Random Forests
- XGBoost

Instance-based learning

- Naive Bayesian model
- K-nearest neighbor (KNN)

Linear Regression

Based on the assumption that a **linear** relationship exists between input (x_i) and output variables (y)

$$y = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

- Linear models are still powerful because input variables can be arbitrarily transformed
 - For example, polynomial regression

$$x_1 = v, x_2 = v^2, ..., and x_n = v^n$$

Linear Model in Python

```
from sklearn.linear model import LinearRegression, Lasso, Ridge
def example regression(data,power,plot dict,reg type,alpha=0):
   # define estimator object
   type dict = {'Linear' : LinearRegression(normalize=True),
                 'Lasso' : Lasso(alpha = alpha, normalize=True),
                 'Ridge' : Ridge(alpha = alpha, normalize=True)}
   # generate X of different powers
   X = ['x']
   if power >= 2:
       X.extend(['x %d' %i for i in range(2,power+1)])
   # fit the model
   if reg type in type dict:
       model = type dict[reg type]
   model.fit(data[X],data['y'])
   y pred = model.predict(data[X])
```

Example

example/01_linear_model.ipynb

 Here we start from a toy example: fitting a sine curve with additional noise

```
x = np.array([i*np.pi/180 for i in range(60,300,4)])
np.random.seed(100)
y = np.sin(x) + np.random.normal(0,0.15,len(x))
```

 Our goal is to estimate this function using polynomial regression with powers of x form 1 to 15

Results (linear regression)

As the model complexity increases, the models tends to fit even smaller deviations in the training data set.

When Model Complexity Increases

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10
pow_1	3.7	2	-0.65	NaN								
pow_2	3.7	1.9	-0.54	-0.017	NaN							
pow_3	1.1	-1.4	3.4	-1.4	0.15	NaN						
pow_4	1.1	-1.1	2.9	-1.1	0.087	0.0051	NaN	NaN	NaN	NaN	NaN	NaN
pow_5	1	0.7	-0.86	1.8	-0.97	0.18	-0.012	NaN	NaN	NaN	NaN	NaN
pow_6	1	-6.1	16	-15	7.4	-2	0.28	-0.016	NaN	NaN	NaN	NaN
pow_7	0.98	-19	54	-61	36	-13	2.5	-0.26	0.011	NaN	NaN	NaN
pow_8	0.94	-66	2.1e+02	-2.9e+02	2.1e+02	-93	26	-4.2	0.39	-0.015	NaN	NaN
pow_9	0.94	-70	2.3e+02	-3.1e+02	2.4e+02	-1.1e+02	31	-5.5	0.57	-0.03	0.00054	NaN
pow_10	0.88	-4.6e+02	1.9e+03	-3.4e+03	3.5e+03	-2.3e+03	9.9e+02	-2.9e+02	57	-7.3	0.53	-0.017
pow_11	0.88	-5.4e+02	2.3e+03	-4.2e+03	4.4e+03	-3e+03	1.4e+03	-4.3e+02	93	-13	1.2	-0.062
pow_12	0.88	-9.9e+02	4.6e+03	-9.4e+03	1.1e+04	-9.2e+03	5.1e+03	-2.1e+03	5.9e+02	-1.2e+02	18	-1.7
pow_13	0.88	-1.4e+03	6.8e+03	-1.5e+04	2e+04	-1.7e+04	1.1e+04	-4.8e+03	1.6e+03	-3.9e+02	70	-8.9
pow_14	0.87	2.5e+03	-1.7e+04	4.9e+04	-8.3e+04	9.5e+04	-7.6e+04	4.4e+04	-1.9e+04	6.1e+03	-1.5e+03	2.6e+02
pow_15	0.87	1.8e+03	-1.2e+04	3.5e+04	-5.9e+04	6.6e+04	-5.1e+04	2.8e+04	-1.1e+04	3.3e+03	-6.9e+02	94

Generalization

- If coefficient magnitude is large, a small input deviation would lead to large output deviation
- For example

For better generalization, we usually add weight regularization

Ridge Regression

 Perform L2-regularization, i.e. add penalty to the square of the magnitude term into the cost function

$$Cost = Prediction error + \alpha \sum (weights)^2$$

Result (Ridge Regression)

Weight Regularization

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10
pow_1	3.7	2	-0.65	NaN								
pow_2	3.7	1.8	-0.53	-0.019	NaN							
pow_3	2.7	1.3	0.24	-0.31	0.032	NaN						
pow_4	1.6	0.71	0.68	-0.28	-0.03	0.0091	NaN	NaN	NaN	NaN	NaN	NaN
pow_5	1.3	0.61	0.63	-0.19	-0.034	-0.00049	0.0015	NaN	NaN	NaN	NaN	NaN
pow_6	1.3	0.68	0.5	-0.15	-0.028	-0.002	0.0004	0.00019	NaN	NaN	NaN	NaN
pow_7	1.3	0.73	0.44	-0.14	-0.025	-0.0018	0.00022	0.0001	1.8e-05	NaN	NaN	NaN
pow_8	1.3	0.74	0.43	-0.14	-0.024	-0.0018	0.00022	9.9e-05	1.7e-05	3.3e-07	NaN	NaN
pow_9	1.3	0.72	0.45	-0.14	-0.025	-0.0	0.00019	0.0001	2.1e-05	2e-06	-4.2e-07	NaN
pow_10	1.2	0.69	0.47	-0.13	-0.026	-0.0 4	0.00012	0.0001	2.4e-05	3.6e-06	1.3e-07	-1.4e-07
pow_11	1.2	0.67	0.48	-0.13	-0.026	-0.0 7	3.1e-05	8.6e-05	2.4e-05	4.4e-06	5e-07	-2.1e-08
pow_12	1.2	0.66	0.47	-0.12	-0.026	-0.0	-4.6e-05	7e-05	2.2e-05	4.5e-06	6.9e-07	5.5e-08
pow_13	1.1	0.67	0.46	-0.12	-0.025	-0.0	-0.0001	5.5e-05	2e-05	4.3e-06	7.4e-07	9.4e-08
pow_14	1.1	0.68	0.44	-0.11	-0.024	-0.0029	-0.00014	4.4e-05	1.7e-05	4e-06	7.3e-07	1.1e-07
pow_15	1.1	0.69	0.43	-0.11	-0.024	-0.0029	-0.00015	3.6e-05	1.5e-05	3.6e-06	6.9e-07	1.1e-07

Magnitude of coefficients do not increase significantly

Lasso Regression

Perform L1-regularization, i.e. add penalty to the absolute value of the magnitude term into the cost function

$$Cost = Prediction error + \alpha \sum |weights|$$

LASSO stands for
 Least Absolute Shrinkage and Selection Operator

Result (Lasso Regression)

Effectively reduce the model complexity

Sparsity → **Feature Selection**

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10
pow_1	3.7	2	-0.64	NaN								
pow_2	3.7	1.9	-0.54	-0.016	NaN							
pow_3	3.7	1.9	-0.54	-0.016	-0	NaN						
pow_4	3.1	1.5	-0.2	-0.11	-0	0.0015	NaN	NaN	NaN	NaN	NaN	NaN
pow_5	2.4	1.4	-0	-0.15	-0	0	0.00042	NaN	NaN	NaN	NaN	NaN
pow_6	2.2	1.4	-0	-0.15	-0	-0	0	7.8e-05	NaN	NaN	NaN	NaN
pow_7	2	1.3	-0	-0.13	-0.0025	-0	-0	0	1.6e-05	NaN	NaN	NaN
pow_8	1.9	1.3	-0	-0.12	-0.0043	-0	-0	0	0	3.1e-06	NaN	NaN
pow_9	1.8	1.3	-0	-0.12	-0.0044	-0	-0	0	0	0	5.9e-07	NaN
pow_10	1.9	1.3	-0	-0.12	-0.0025	-0	-0	0	0	0	0	1.1e-07
pow_11	1.9	1.3	-0	-0.13	-0.00044	-0	-0	0	0	0	0	0
pow_12	1.9	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0
pow_13	1.9	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0
pow_14	1.9	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0
pow_15	1.9	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0

Why Lasso Leads to Sparsity

When L1 regularization is adopted, it is more likely to converge at the corner

The Effect of α

- Change the magnitude of α to see what's going on
- \blacksquare For Lasso regression, larger α leads to higher sparsity

Exercise (15 mins)

exercise/ex01_linear_model.ipynb

- Boston house price prediction
- Hints
 - Consider nonlinear transformations of current features
 - Regression with regularization

Short Summary

- Increasing model complexity causes the weight explosion, and this may result in bad generalization
- Regularization helps limit the growth of model complexity
 - Lasso: add L1 regularization, especially beneficial to select features due to the property of sparsity
 - Ridge: add L2 regularization

Supervised Learning In-depth

Do have the labels ©

Model-based learning

- Linear regression
- Regression with Regularization
- Logistic regression
- Support vector machine
- Decision Tree
- Random Forests
- XGBoost

Instance-based learning

- Naive Bayesian model
- K-nearest neighbor (KNN)

Logistic Regression (LR)

- Logistic regression is a linear model for classification
- NOT require a linear relationship between the input and output variables
- Can handle all sorts of relationships because there is non-linear log transformation applied to the prediction
- Output range = (0,1)

Mathematical Formulation of LR

 For a pair of input (x) and output (y), assume that the probability model

$$P(y|x) = \frac{1}{1 + e^{-yw^T x}}$$

LR finds w by maximizing the likelihood

$$\max_{w} \prod_{i=1}^{k} P(y_i|x_i),$$

$$i = 1, ..., k \ (k \ training \ instances)$$

Formulation in Scikit-Learn

Take log on likelihood

$$\max_{w} \prod_{i=1}^{k} P(y_{i}|x_{i}) = \max_{w} \sum_{i=1}^{k} \log(P(y_{i}|x_{i}))$$

$$= \max_{w} \sum_{i=1}^{k} -\log(1 + e^{-y_{i}w^{T}x_{i}})$$

$$= \min_{w} \sum_{i=1}^{k} \log(1 + e^{-y_{i}w^{T}x_{i}})$$

Can add L1 or L2 regularization

Regularized Logistic Regression

■ For example, L2 penalized logistic regression

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i=1}^{k} log(1 + e^{-y_{i} w^{T} x_{i}})$$

- Unlike the previous linear models, here adjust the weight of error term by C
- Solvers: liblinear, lbfgs, newton-cg, sag

Solver Selection

Case	Solver
Small dataset or L1 penalty	liblinear
Multinomial or large dataset	lbfgs, sag or newton-cg
Very Large dataset	sag

Only liblinear solver support L1 penalization

Logistic Regression in Python

```
from sklearn.linear model import
LogisticRegression
logreg = LogiticRegression(
       # {newton-cq, lbfqs, liblinear, saq}
       solver = 'liblinear',
       # 'l1' only for liblinear solver
       penalty = '12',
       # {'ovr', 'multinomial'}
       multi class = 'ovr',
       # smaller values, stronger regularization
       C = 1.0
```

Example

example/02_logistic_multiclass.ipynb

Two options to address multiclass problem:
 multinomial and One-vs-Rest

example/02_logistic_iris.ipynb

Change the value of C to observe the results

Exercise (15 mins)

exercise/ex02_logistic_regression.ipynb

Classification of handwritten digits

Support Vector Machine (SVM)

- A powerful method for both classification and regression
- Construct a hyper-plane or set of hyper-planes in a high dimensional space
- The hyper-plane has the largest distance (margin) to the nearest training data points of any classes
- Different Kernel functions can be specified for the decision function

An Example in 2D

Which one line better separates the data points?

Intuition of SVM: Maximal Margin

The middle fit clearly has the largest margin (perpendicular distance between data points)

Mathematical Formulation of SVM

$$w^{T}x + b = \begin{bmatrix} +1\\0\\-1 \end{bmatrix}$$

$$\begin{cases} w^{T}x_{i} + b \ge 1, \text{ if } y_{i} = 1\\ w^{T}x_{i} + b \le -1, \text{ if } y_{i} = -1 \end{cases}$$

$$y_i(w^T x_i + b) \ge 1$$

The decision function, $f(x) = sign(w^Tx + b)$

Mathematical Formulation of SVM

■ Distance between $w^Tx + b = 1$ and $w^Tx + b = -1$

$$D = \frac{2}{||w||} = \frac{2}{\sqrt{w^T w}}$$

- Maximizing D is equivalent to minimizing $w^T w$
- The primal problem of the SVM

$$\min_{w,b} \frac{1}{2} w^T w$$
subject to $y_i(w^T x_i + b) \ge 1$,
$$i = 1, ..., k$$

Not Always Linearly Separable

Tolerate training error but try to minimize it

$$\min_{w,b} \frac{1}{2} w^T w + C \sum_{i=1}^{k} \varepsilon_i$$
subject to $y_i(w^T (x_i) - b) \ge 1 - \varepsilon_i$,
$$\varepsilon_i \ge 0,$$

$$i = 1, ..., k$$

Project to a high dimensional feature space

$$x \to \phi(x)$$

but $\phi(x)$ may be very complex

From The Dual Problem of SVM

- Use Lagrange relexation to derive the dual problem of SVM (skip the details here, please check [1])
- The dual problem of SVM

maximize
$$L_D = \sum_{i=1}^k \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y \phi(x_i)^T \phi(x_j)$$
subject to $\sum_{i=1}^k \alpha_i y_i = 0$, $\forall \alpha_i \geq 0$
maybe easier than $\phi(x_i)$

Radial Basis Function (RBF)

■ The RBF kernel on two feature vectors x_i and x_j , is defined as

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

The feature space of kernel has an infinite number of dimensions

Example

Transform by the radial basis function

Linear kernel versus RBF kernel

Linear kernel

SVM in Python

```
from sklearn import svm
clf = svm.SVC(
       # {linear, poly, rbf}
       kernel = 'linear',
       # used only if kernel='poly'
       degree = 3,
       # enable predict prob()
       probability = True,
       # smaller values, stronger regularization
       C = 1.0
```

Example - Support Vector

example/04_svm_support_vector.ipynb

- Support vectors, in actual, is a subset of training points in the decision function
- Obtain class probability by using probability = True

Example - Kernel Tricks

example/04_svm_kernel_trick.ipynb

- 'linear': linear kernel
- 'poly': polynomial kernel function (controlled by the parameter degree)
- 'rbf': radial basis function (default setting)
 - → Project to an **infinite** feature space

Exercise (15 mins)

exercise/ex03_svm_iris.ipynb

- Try to visualize the decision functions
- Try to circle out the support vectors
- Try to compare different kernel functions

Apply SVM on the handwritten digits dataset in ex02

Supervised Learning In-depth

Do have the labels ©

Model-based learning

- Linear regression
- Regression with Regularization
- Logistic regression
- Support vector machine
- Decision Tree
- Random Forests
- XGBoost

Instance-based learning

- Naive Bayesian model
- K-nearest neighbor (KNN)

Decision Tree

- Used for both classification and regression
- Decided by a series of splits, and a split implies a
 binary cut on one dimension
- Each split should maximize the **information gain**
- Decision tree use impurity measure instead
 - Maximizing information gain
 - = minimizing impurity measure

Decision Tree

Simple to interpret and visualize

No need to data normalization

Splitting Criteria

Assumed that Class 1, 2, ..., C and current node t

$$P(i|t) = \frac{\text{# of class i samples at node t}}{\text{# of total samples at node t}}$$

Gini impurity	Entropy
$I_G(t) = \sum_{i=1}^{C} P(i t)(1 - P(i t))$	$I_E(t) = -\sum_{i=1}^{C} P(i t)log(P(i t))$

For a split (binary cut) to maximize the gain

Gain = I(parent) – I(Left child) – I (right child)

For example (Gini)

$$I_{P} = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 0.5$$

$$I_{L} = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 0.5$$

$$I_{R} = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 0.5$$

$$Gain = \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} = 0$$

$$I_{P} = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$

$$I_{L} = \frac{2}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3} = \frac{4}{9}$$

$$I_{R} = 0 + 1 = 1$$

$$Gain = \frac{1}{2} - \frac{3}{4} \times \frac{4}{9} - \frac{1}{4} = \frac{1}{6}$$
70

Feature Importance

 The importance of a feature is computed as the total reduction of the criteria brought by that feature

Sum of importance of all features is equal to 1

In practice, we often use feature importance provided by a tree model to rank and select features

Decision Tree in Python

```
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(
       criterion = 'gini',
       max depth = None,
       min samples split = 2,
       min samples leaf = 1,
# feature importance
clf.feature importances
```

Example

example/05_decision_tree.ipynb

- criteria = {'gini', 'entropy'}
- max_depth = the maximum depth of a tree
 - If None, nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples
- min_sample_split: the minimum number of samples required to split
- min_sample_leaf: the minimum number of samples required to be at a leaf node

Tree Ensemble

- Aggregate multiple weak learners to a strong learner
- This strong learner should have better generalization and prevent overfitting

 Voting mechanism (classification) or taking average of all prediction values (regression)

74

Ensemble Method - Bagging

- Sample a subset of the training dataset to train a weak learner
- Each learner is independent and this bagging process
 can be parallelized
- Random Forests

Ensemble Method - Boosting

- Instead of sampling the input features, sample the training data
- At each iteration, the data that is wrongly classified will have its weight increased
- AdaBoost, Gradient Boosting Tree

Decision Tree and Random Forests

example/06_randomforests_classification.ipynb

Grid Search of Hyper-parameter

Gradient Boosting Tree

example/07_gradient_boosting_regression.ipynb

- Compare among decision tree, random forests, and gradient boosting tree
- Apply on a regression problem
- Grid search

Exercise

exercise/ex04_random_forest_digits_classification.ipy

XGBoost

- Similar with Gradient Boosting Tree
- Add regularization in loss function
- Use 1st and 2nd derivative in learning
- Adopt feature sampling (like random forests)

Installation

- Windows: http://www.jianshu.com/p/5b3e0489f1a8
- Mac/Linux: pip install xgboost

Example

example/11_xgboost.ipynb

Unsupervised Learning In-depth

Have no idea about labels ⊗

Dimension reduction

Principal Component Analysis (PCA)

Clustering

- K-means clustering
- Hierarchical clustering
- DBSCAN

Principal Component Analysis (PCA)

 PCA is to use orthogonal transformation to convert a set of data of a possible correlated variables into a set of values of linearly uncorrelated variables

 A new variable is one of linear combinations of the original variables **Linear Combination of Variables**

■ The original variables is noted as $x_1, x_2, ..., x_n$, and the new variables can be represented as

$$z_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$z_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$z_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n}$$
Uncorrelated

Covariance Matrix (symmetric)

Can be viewed as $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ $z = A^T x \qquad A^T = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$

■ The transformed and uncorrelated variables implies that the co-variance matrix is diagonal

$$\Sigma_{z} = E(zz^{T}) = AE(xx^{T})A^{T} = A\Sigma_{x}A^{T} = \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{n}^{2} \end{bmatrix}$$

Assumption on Project Matrix

- Assumed that the project matrix is orthonormal
 - \rightarrow $A^TA = I$ (identity matrix)

$$\Sigma_{x} = A^{T} \Sigma_{z} A = A^{T} \begin{bmatrix} \sigma_{1}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{n}^{2} \end{bmatrix} A$$

 Spectral theorem: a real symmetric matrix can be "diagonalized" by an orthogonal matrix

Approximating Covarince Matrix

- Rank the orthogonal eigenvectors according to its eigenvalues
- The eigenvector with the largest eigenvalue is the first principal component
- Use top principal components to approximate the original covariance matrix

PCA in Python

```
from sklearn.decomposition import PCA
pca = PCA(
       n components = 2,
       whiten = True,
       svd solver = 'auto'
# principal axes in feature space
pca.components
# explained variance
pca.explained variance ratio
```

Example

example/07_PCA.ipynb

- An example of 2D data
- Visualize PCA components
- Determine the number of components

Exercise

exercies/ex05_PCA.ipynb

Unsupervised Learning In-depth

Have no idea about labels ⊗

Dimension reduction

Principal Component Analysis

Clustering

- K-means clustering
- Hierarchical clustering
- DBSCAN

K-Means Clustering

 Unsupervised clustering based on "distance" among data points (usually, squared Euclidean distance)

 The goal is to minimize the within-cluster sum of squared errors (cluster inertia)

Should be careful of the range of each feature

Procedure of K-means Clustering

- 1. Randomly pick K data points as initial cluster centers
- 2. Assign other data points to the closest centers
- 3. Re-calculate the center of each cluster
- 4. Repeat step 2 and 3 until the assignments of all data points are unchanged, the stopping criteria is satisfied (for example, maximal number of iterations)

K-means Clustering in Python

 n_init = 10 means K-means clustering will perform 10 times using different initial centers and adopt the clustering with minimal SSE

How to determine the best K

- Summation of with-cluster sum of squared error over all clusters
- Stored in attribute inertia_

Silhouette Analysis

- Used to quantify the quality of clustering
- For every data point:
- Calculate the average distances of all points in the same cluster, a
- Calculate the average distance of all points in the closest cluster, b
- 3. Calculate silhouette coefficient, s

$$s = \frac{b - a}{\max(b, a)}$$

Quantification of Clustering Quality

Example

example/09_kmeans_clustering.ipynb

Exercise

exercise/kmeans_clustering_color_compression.ipynb

Use MiniBatchKmeans instead for efficiency

Unsupervised Learning In-depth

Have no idea about labels ⊗

Dimension reduction

Principal Component Analysis

Clustering

- K-means clustering
- Hierarchical clustering
- DBSCAN

Hierarchical Clustering

- No need to specify the number of clusters in advance
- Procedures
- 1. Each data point is viewed as an individual cluster
- 2. Calculate the distance between any two clusters
- 3. Merge two closest clusters into one cluster
- 4. Repeat 2 and 3 until all data points are merged into one cluster

Agglomerative clustering

Example

example/10_hierarchical_clustering.ipynb

- A toy example to go through the procedure of hierarchical clustering step by step
- Visualize the dendrogram in Python

Unsupervised Learning In-depth

Have no idea about labels 🕾

Dimension reduction

Principal Component Analysis

Clustering

- K-means clustering
- Hierarchical clustering
- DBSCAN

DBSCAN

- Density-based Spatial Clustering of Applications with Noise
- Density: number of samples in range of ε

3 Types of Data Points

- A data point is a core point if there are at least
 MinPts neighboring data points in range of ε
- A data point is a border point if it is in range of a core point and contains less than MinPts neighboring data points
- A data point is a noise point if it is neither a core point nor a border point

Procedure of DBSCAN

- Two core points are connected if the distance between them less than ε
- An individual core point or a connected core point is a cluster
- Assign each border points to the corresponding clusters of core points

Example

Difference among Clustering Methods

 Unlike K-means clustering, DBSCAN does not assume the spherical variance of clusters

Unlike hierarchical clustering, DBSCAN allows to ignore noise points

Example

example/11_DBSCAN_and_review.ipynb

 Compare different clustering algorithms in a special case of moon-like data distribution

Exercise

exercise/ex08_plot_cluster_comparison.ipynb

 Show characteristics of different clustering algorithms on many interesting datasets

Recap: Supervised Learning

- Linear regression
- Regression with Regularization
- Logistic regression
- Support vector machine
- Decision Tree
- Random Forests
- XGBoost

Recap: Unsupervised Learning

Dimension reduction

Principal component analysis

Clustering

- K-means clustering
- Hierarchical clustering
- DBSCAN

Thank you!

If any questions, please feel free to contact cmchang@iis.sinica.edu.tw

中央研究院資訊科學所資料洞察實驗室