GRADO EN INGENIERÍA INFORMÁTICA ESPECIALIDAD: COMPUTACIÓN

APRENDIZAJE AUTOMÁTICO

4º Curso 9 de febrero de 2018

Nombre:			
DNI:			

1. Aprendizaje simbólico

Dado el siguiente conjunto de datos, vamos a tratar de clasificar un conjunto de setas para reconocer si son venenosas o no.

Ejemplo	Láminas (A ₁)	Forma del Sombrero (A ₂)	Color del Sombrero (A ₃)	Clase (C)
1	Sí	Plano	Pardo	Comestible
2	No	Convexo	Pardo	Venenosa
3	Sí	Convexo	Pardo	Venenosa
4	Sí	Convexo	Rojo	Comestible
5	No	Plano	Pardo	Comestible

- a) (2 puntos) Describe todos los elementos y el algoritmo AQ.
- *b*) (1.5 puntos) Buscando la definición de seta venenosa, encuentra la primera regla que generaría el algoritmo.
- c) (0.5 puntos) ¿Generaría más?
- d) (1 punto) Aplica **ID3** y realiza la primera elección de atributo.

2. Redes neuronales

Dado el siguiente conjunto de datos:

	Enti	radas	Salida
	x_1	x_2	t_1
e_1	0	1	1
e_2	1	0	1
e_3	1	1	0
e_4	0	0	0

Perceptrón

- *a*) (0.5 puntos) Demuestra analíticamente si se puede entrenar un perceptrón con función de activación escalón. Si no es posible, explicar por qué y si es posible, dar unos posibles valores de los pesos.
- b) Considerando que el perceptrón tiene una función de activación sigmoide y pesos $\vec{w}=(0.1,0.2,0.3)$
 - 1) (0.5 puntos) Calcula el error cuadrático del perceptrón con pesos \vec{w} sobre el conjunto de entrenamiento D.
 - 2) (0.5 puntos) Calcula el valor del gradiente de la función error $\vec{\nabla} E(\vec{w})$.

Red Multicapa

Si consideramos la siguiente red multicapa con función de activación sigmoide y tasa de aprendizaje a 0.25.

- *a*) (2 puntos)Describe DETALLADAMENTE el proceso de aprendizaje backpropagation para una red perceptrón multicapa
- b) (1.5 puntos) Cómo sería 1 ciclo completo de aprendizaje para la red anterior?