What is claimed is:

- 1. A substrate for an information recording medium, which substrate is made of an alkali-metal-oxide-containing glass, the glass having a glass transition temperature (Tg) of 620° C or higher and satisfying a requirement that the alkali ion elution amount per a unit area when the glass is immersed in water having a temperature of 80° C for 24 hours is $0.2 \ \mu \text{mol/cm}^2$ or less,
- 2. The substrate for an information recording medium as recited in claim 1, wherein the alkali-metal-oxide-containing glass contains SiO_2 , Al_2O_3 , CaO, BaO and K_2O as essential components.
- 3. The substrate for an information recording medium as recited in claim 1, wherein the alkali-metal-oxide-containing glass is formed from SiO_2 , Al_2O_3 , CaO, BaO, K_2O , MgO, SrO, TiO_2 , ZrO_2 , Li_2O , Na_2O and ZnO.
- 4. The substrate for an information recording medium as recited in claim 3, which has no chemically strengthened layer and wherein the alkali-metal-oxide-containing glass substantially contains, by mol%, more than 50 % but not more than 70 % of SiO_2 , 1 to 12 % of Al_2O_3 , 2 to 25 % of CaO_4 , more than 0 % but not more than 15 % of BaO_4 , 3 to 15 % of CaO_4 , 0 to 10 % of CaO_4 , 0 to 10 % of CaO_4 , 0 to 12 % of CaO_4 , 0 to 12 % of CaO_4 , 0 to 12 % of CaO_4 , 0 to 15 % of CaO_4 , 0 to 10 % of CaO_4 , 0 to 12 % of CaO_4 , 0 to 15 % of CaO_4 , 0 to 10 % of CaO_4 , 0 to 15 % of CaO_4 , 0 to 10 % of CaO_4 , 0 to 12 % of CaO_4 , 0 to 15 % of CaO_4 , 0 to 12 % of CaO_4 , 0 to 15 % of CaO_4 , 0 to 15 % of CaO_4 , 0 to 16 % of CaO_4 , 0 to 17 % of CaO_4 , 0 to 18 % of CaO_4 , 0
- 5. The substrate for an information recording medium as recited in claim 3, which has a chemically strengthened layer in a surface thereof and wherein the alkali-metal-oxide-containing glass substantially contains, by mol%, more than 50 % but not more than 70 % of SiO_2 , 1 to 10 % of Al_2O_3 , 2 to 25 % of CaO, 1 to 15 % of BaO, 3 to 15 % of K_2O , 0 to 3 % of MgO, 0 to 15 % of SrO, 0 to 10 % of TiO_2 , more

than 0 % but not more than 12 % of ZrO_2 , 0 to less than 1 % of Li_2O , 1 to 8 % of Na_2O and 0 to 1 % of ZnO, the total content of SiO_2 , Al_2O_3 and ZrO_2 being more than 70 % by weight,

- 6. The substrate for an information recording medium as recited in claim 3, which has a chemically strengthened layer in a surface thereof and wherein the alkali-metal-oxide-containing glass substantially contains, by mol%, more than 50 % but not more than 70 % of SiO_2 , 1 to 10 % of Al_2O_3 , 15 to 25 % of CaO, 1 to 15 % of BaO, 3 to 15 % of K_2O , 0 to 3 % of MgO, 0 to 15 % of SrO_2 , 0 to 10 % of SrO_2 , more than 0 % but not more than 12 % of SrO_2 , 0 to less than 1 % of SrO_2 , 1 to 8 % of SrO_2 0 and 0 to 1 % of SrO_2 0.
- 7. The substrate for an information recording medium as recited in any one of claims 1 to 6, which has an average linear thermal expansion coefficient (α), measured at a temperature of 100 to 300°C, of 70 x 10^{-7} /°C or more.
- 8. The substrate for an information recording medium as recited in any one of claims 1 to 7, wherein the alkalimetal-oxide-containing glass has a specific gravity of 3.5 or less.
- 9. The substrate for an information recording medium as recited in any one of claims 1 to 8, which is a substrate for a perpendicular-magnetic-recording-mode information recording medium.
- 10. An information recording medium comprising an information recording layer formed on the substrate for an information recording medium as recited in any one of the claims 1 to 9.
- 11. The information recording medium as recited in claim 10, which is a perpendicular magnetic recording

medium.

12. A process for producing an information recording medium, comprising the step of forming an information recording layer on a substrate for an information recording medium, the process employing the substrate for an information recording medium as recited in any one of claims 1 to 9 and comprising heating said substrate to 400 to 600°C in said step.