SubsetMex

Problem Name	Subset Mex
Input file	standard input
Output file	standard output
Time limit	1 second
Memory limit	256 megabytes

En *multimängd* är som en mängd fast varje element kan vara med flera gånger. Till exempel är följande en multimängd:

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

Givet en multimängd S definierad på de icke-negativa heltalen, och ett icke-negativt heltals-värde n sådant att n inte är i S, så är ditt mål att lägga till n i S genom att använda följande 3-stegs-operation, upprepade gånger:

- 1. Välj en (möjligtvis tom) delmängd *T* av *S*. Här är *T* en mängd med distinkta element som finns i *S*.
- 2. Ta bort elementen i T från S. (Ta bara bort en kopia av varje element.)
- 3. Lägg till **mex**(*T*) i *S*, där **mex**(*T*) är det minsta icke-negativa heltal som inte finns i *T*. Namnet **mex** står för "minsta exkluderade" värde.

Din uppgift är att hitta det minsta antalet operationer att utföra så att *n* är i *S*.

Eftersom S kan vara stor, så kommer S vara givet i formatet av en lista $(f_0, ..., f_{n-1})$ av storlek n, där f_i representerar antalet gånger som talet i finns med i S. (Kom ihåg att n är heltalet vi försöker lägga till i S).

Indata

Den första raden innehåller ett heltal t (1 \leq t \leq 200) — antalet testfall. Varje testfall beskrivs av två rader:

- Den första raden av varje testfall innehåller ett heltal n (1 $\leq n \leq$ 50), som representerar talet som ska läggas till i S.
- Den andra raden av varje testfall innehåller n heltal $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$), som representerar multimängden S som beskrivet ovan.

Utdata

För varje testfall, skriv ut en rad som innehåller det minsta antalet operationer som behövs för att uppfylla målet.

Poängsättning

Subtask #1 (5 poäng): $n \le 2$

Subtask #2 (17 poäng): $n \le 20$

Subtask #3 (7 poäng): $f_i = 0$

Subtask #4 (9 poäng): $f_i \le 1$

Subtask #5 (20 poäng): $f_i \le 2000$

Subtask #6 (9 poäng): $f_0 \le 10^{16}$ och $f_i = 0$ (för alla $j \ne 0$)

Subtask #7 (10 poäng): Det finns ett värde i sådant att $f_i \le 10^{16}$ och $f_j = 0$ (för alla $j \ne i$)

Subtask #8 (23 poäng): Inga ytterligare begränsningar.

Exempel

standard input		standard output
2		4
4		10
0 3	0 3	
5		
4 1	0 2 0	

Notera

I första exemplet, så är $S = \{1, 1, 1, 3, 3, 3\}$ i början och vårt mål är att 4 ska vara i S. Vi kan göra följande:

1. välj
$$T = \{\}$$
 så S blir $\{0, 1, 1, 1, 3, 3, 3\}$

2. välj
$$T = \{0, 1, 3\}$$
 så S blir $\{1, 1, 2, 3, 3\}$

3. välj
$$T = \{1\}$$
 så S blir $\{0, 1, 2, 3, 3\}$

4. välj
$$T = \{0, 1, 2, 3\}$$
 så S blir $\{3, 4\}$