Табела 2.2: Фуриеови парови на некои елементарни функции

ТАВЕЛА 2.2: ФУРИЕОВИ ПАРОВИ НА НЕКОИ ЕЛЕМЕНТАРНИ ФУНКЦИИ
$$f(t), \quad t \in \mathbb{R} \qquad \iff F(\omega) = \mathcal{F}\{f(t)\}, \quad \omega \in \mathbb{R}$$

$$(1) \quad \delta(t) \qquad \iff 1 \qquad \iff 2\pi\delta(\omega)$$

$$(2) \quad 1 \qquad \iff 2\pi\delta(\omega)$$

$$(3) \quad u(t) = \begin{cases} 0, \quad t < 0 \\ 1, \quad t \geq 0 \end{cases} \qquad \iff \frac{1}{j\omega} + \pi\delta(\omega)$$

$$(4) \quad p_{\tau}(t) = \begin{cases} 1, \quad |t| \leq \tau/2 \\ 0, \quad |t| > \tau/2 \end{cases}, \quad \tau \in \mathbb{R}_{+} \qquad \iff \tau \frac{\sin(\omega\tau/2)}{\omega\tau/2}$$

$$(5) \quad \frac{\sin(\Omega t)}{\pi t}, \quad \Omega \in \mathbb{R}_{+} \qquad \iff p_{2\Omega}(\omega) = \begin{cases} 1, \quad |\omega| < \Omega \\ 0, \quad |\omega| > \Omega \end{cases}$$

$$(6) \quad \mathrm{sgn}(t) = \begin{cases} -1, \quad t < 0 \\ 0, \quad t = 0 \\ 1, \quad t > 0 \end{cases} \qquad \iff \frac{2}{j\omega}$$

$$(7) \quad |t| \qquad \iff -\frac{2}{\omega^{2}}$$

$$(8) \quad \frac{1}{\pi t} \qquad \iff -j \, \mathrm{sgn}(\omega)$$

$$(9) \quad e^{j\omega_{0}t}, \quad \omega_{0} \in \mathbb{R} \qquad \iff 2\pi\delta(\omega - \omega_{0})$$

$$(10) \quad \cos \omega_{0}t, \quad \omega_{0} \in \mathbb{R} \qquad \iff \pi(\delta(\omega + \omega_{0}) + \delta(\omega - \omega_{0}))$$

(12) $\delta_T(t) = \sum_{n=0}^{\infty} \delta(t - nT), \ T \in \mathbb{R} \iff \frac{2\pi}{T} \sum_{n=0}^{\infty} \delta\left(\omega - \frac{2\pi n}{T}\right)$

(11) $\sin \omega_0 t$, $\omega_0 \in \mathbb{R}$

 $\iff j\pi(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$

3.1.2 Properties

3.1.2.1 Properties of Fourier Transform

 TABLE 3.1 Properties of Fourier Transform

TABLE 3.1 Properties of Fourier Transform			
	Operation	f(t)	$F(\omega)$
1.	Transform-direct	f(t)	$\int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$
2.	Inverse transform	$\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega$	$F(\omega)$
3.	Linearity	$af_1(t) + bf_2(t)$	$aF_1(\omega) + bF_2(\omega)$
4.	Symmetry	F(t)	$2\pi f(-\omega)$
5.	Time shifting	$f(t \pm t_o)$	$e^{\pm j\omega t_o}F(\omega)$
6.	Scaling	f(at)	$\frac{1}{ a } F\left(\frac{\omega}{a}\right)$
7.	Frequency shifting	$e^{\pm j\omega_{o}t}f(t)$	$F(\omega \mp \omega_{o})$
8.	Modulation	$\begin{cases} f(t)\cos\omega_o t \\ f(t)\sin\omega_o t \end{cases}$	$\frac{1}{2}[F(\omega + \omega_o) + F(\omega - \omega_o)]$ $\frac{1}{2J}[F(\omega - \omega_o) - F(\omega + \omega_o)]$
9.	Time differentiation	$\frac{d^n}{dt^n} f(t)$	$(j\omega)^n F(\omega)$
10.	Time convolution	$f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau) h(t - \tau) d\tau$	$F(\omega)H(\omega)$
11.	Frequency convolution	f(t)h(t)	$\frac{1}{2\pi} F(\omega) * H(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\tau) H(\omega - \tau) d\tau$
12.	Autocorrelation	$f(t) \bigstar f^*(t) = \int_{-\infty}^{\infty} f(\tau) f^*(\tau - t) d\tau$	$F(\omega) F^*(\omega) = F(\omega) ^2$
13.	Parseval's formula	$E = \int_{-\infty}^{\infty} \left f(t) \right ^2 dt$	$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left F(\omega) \right ^2 d\omega$
14.	Moments formula	$m_n = \int_{-\infty}^{\infty} t^n f(t) dt = \frac{F^{(n)}(0)}{(-j)^n}$ where	$F^{(n)}(0) = \frac{d^n F(\omega)}{d\omega^n}\bigg _{\omega=0}, n=0,1,2\cdots$
15.	Frequency differentiation	$\begin{cases} (-jt) f(t) \\ (-jt)^n f(t) \end{cases}$	$\frac{\frac{dF(\omega)}{d\omega}}{\frac{d^nF(\omega)}{d\omega^n}}$
16.	Time reversal	f(-t)	$F(-\omega)$
17.	Conjugate function	f*(t)	$F*(-\omega)$
18.	Integral $(F(0) = 0)$	$\int_{-\infty}^{t} f(t) dt$	$\frac{1}{j\omega} F(\omega)$
19.	Integral $(F(0) \neq 0)$	$\int_{-\infty}^{t} f(t) dt$	$\frac{1}{j\omega} F(\omega) + \pi F(0) \delta(\omega)$