HW 8 171

Eugene Francisco

December 2024

Problem 3

Part A

State Space: The space S are just the numbers $\{0,\ldots,n\}$ for the different lilypads the frog could be on. Of these, the non-terminating sets N are the numbers $\{1,\ldots,n-1\}\subset S$, since these are the lilypads for which we keep playing the game.

Action Space: There are two possible actions at any lilypad, so $\mathcal{A} = \{A, B\}$, where each action represents the corresponding croak.

Transition Function:

We are interested in $\mathcal{P}: \mathcal{N} \times \mathcal{A} \times \mathcal{S} \to [0, 1]$, where $\mathcal{P}(s, a, s') := \sum_{r \in \mathcal{D}} \mathcal{P}_{\mathcal{R}}(s, a, r, s') = \mathbb{P}(S_{t+1} = s' | A_t = a, S_t = s)$.

$$\mathcal{P}(s, a, s') = \mathbb{P}(S_{t+1} = s' | S_t = s, A_t = a)$$

$$= \begin{cases} s/n & : A_t = A, s' = s - 1\\ (n - s)/n & : A_t = A, s' = s + 1\\ 0 & : A_t = A, s' \neq s \pm 1\\ 1/n & : A_t = B. \end{cases}$$

Reward Function:

Since there isn't a given reward structure, we will set up rewards as follows: Whenever an agent transitions to state s, they receive reward s, the motivation being to incentivize getting to the nth lilypad. First, the reward transition function:

$$\mathcal{R}_T(s, a, s') := \mathbb{E}(R_{t+1} | (S_{t+1} = s', S_t = s, A_t = a))$$

= s'

We note that because of this reward structure, $\mathcal{P}_{\mathcal{R}}(s, a, r, s') = \mathbb{P}((T_{t+1} = r, S_{t+1} = s') | S_t = s, A_t = a) = \mathcal{P}(s, a, s')$, since going to state s' guarantees the reward.

Also the reward function:

$$\mathcal{R}(s, a) := \mathbb{E}(R_{t+1}|S_t = a, A_t = a)$$

$$= \begin{cases} \sum_{s' \in \mathcal{S}} r \mathcal{P}_{\mathcal{R}}(s, A, r, s') & : a = A \\ \sum_{s' \in \mathcal{S}} r \mathcal{P}_{\mathcal{R}}(s, B, r, s') & : a = B. \end{cases}$$

By the remark above and our reward setup, this simplifies to

$$\mathcal{R}(s,a) = \begin{cases} (s-1)\frac{s}{n} + (s+1)\frac{n-s}{n} & : a = A \\ \sum_{s' \in \mathcal{S}} s' \frac{1}{n} & : a = B \end{cases}$$

$$= \begin{cases} \frac{-2s + sn + n}{n} & : a = A \\ \frac{1}{n} \frac{n(n+1)}{2} & : a = B \end{cases}$$

$$= \begin{cases} \frac{-2s + sn + n}{n} & : a = A \\ \frac{n+1}{2} & : a = B. \end{cases}$$

Question 4

Part A:

As the question suggests, we begin with $v_0(s_1) = 10$, $v_0(s_2) = 2$, $v_0(s_3) = 0$. Let's calculate what our greedy policy π_D^0 is for this initialized valuation. First,

$$\pi_D^0(s_1) = \operatorname{argmax}_{a \in A} \{ q_0(s_1, a_1), q_0(s_1, a_2) \}$$

where

$$q_0(s_1, a_1) = R(s_1, a_1) + p(s_1, a_1, s_1)v_0(s_1) + p(s_1, a_1, s_2)v_0(s_2)$$

$$= 8 + 0.25 \cdot 10 + 0.65 \cdot 1$$

$$= 11.15$$

while (with a similar calculation)

$$q_0(s_1, a_2) = 10 + 0.1 \cdot 10 + 0.4 \cdot 1$$

= 11.4.

Since $q_0(s_1, a_2)$ is higher, we pick a_2 for the strategy when we are on state s_1 . Similarly

$$q_0(s_2, a_1) = 1 + 0.3 \cdot 10 + 0.15 \cdot 1$$

$$= 4.15$$

$$q_0(s_2, a_2) = -1 + 0.25 \cdot 10 + 0.55 \cdot 1$$

$$= 2.05$$

so we choose a_1 as the policy action for state s_2 . To recap, $\pi_D^0(s_1) = a_2, \pi_D^0(s_2) = a_1$

First value iteration: Note that since the policies are deterministic, $R^{\pi^0}(s_1) = R(s_1, a_1) = 8$ and $R^{\pi^0}(s_2) = R(s_2, a_2) = -1$. But this means that the Bellman update equation $v_1(s) = R^{\pi^0}(s) + \sum_{s \in N} p^{\pi}(s, s') V_i(s')$ simplifies (because we always take policy $\pi_D^0(s)$) to

$$v_1(s) = R(s, \pi_D^0(s)) + \sum_{s' \in N} p(s, \pi_D^0(s), s') v_0(s')$$

which is just the quality of taking the greedy action at a state s. That means that, as long as our policy is greedy,

$$v_{t+1}(s) = q_t(s, \pi_D^t(s))$$

which will heavily simplify later iterations. So $v_1(s_1) = 11.4$ and $v_1(s_2) = 4.15$ and $v_1(s_3) = 0$. (Note that $v_k(s_3) = 0$ for all k because it is a terminating state whose value was initialized at 0).

First greedy policy: As before, we calculate the relevant $q_k(\cdot,\cdot)$.

$$\pi_D^1(s_1) = \operatorname{argmax}_{a \in A} \{ q_1(s_1, a_1), q_1(s_1, a_2) \}$$

where

$$q_1(s_1, a_1) = 8 + 0.25 \cdot 11.4 + 0.65 \cdot 4.15$$

$$= 13.55$$

$$q_1(s_1, a_2) = 10 + 0.1 \cdot 11.4 + 0.4 \cdot 4.15$$

$$= 12.8$$

so we pick a_1 as the policy choice when on state s_1 . Similarly,

$$\pi_D^1(s_2) = \operatorname{argmax}_{a \in A} \{ q_1(s_2, a_1), q_1(s_2, a_2) \}$$

where

$$q_1(s_2, a_1) = 1 + 0.3 \cdot 11.4 + 0.15 \cdot 4.15$$

$$= 5.04$$

$$q_1(s_2, a_2) = -1 + 0.25 \cdot 11.4 + 0.55 \cdot 4.15$$

$$= 4.13$$

so we pick a_1 as the policy pick for state s_2 . To recap then, $\pi_D^1(s_1) = \pi_D^1(s_2) = a_1$

Second Value Iteration: Using the same trick as above,

$$v_2(s_1) = 12.8, v_2(s_2) = 5.04, \text{ and } v_2(s_3) = 0.$$

Second policy iteration:

$$\pi_D^2(s_1) = \operatorname{argmax}_{a \in A} \{ q_2(s_1, a_1), q_2(s_1, a_2) \}$$

where

$$q_2(s_1, a_1) = 8 + 0.25 \cdot 12.8 + 0.65 \cdot 5.04$$
$$= 14.48$$
$$q_2(s_1, a_2) = 10 + 0.1 \cdot 12.8 + 0.4 \cdot 5.04$$
$$= 13.30$$

so we pick $\pi_D^2(s_1) = a_1$. Similarly,

$$\pi_D^2(s_2) = \operatorname{argmax}_{a \in A} \{ q_2(s_2, a_1), q_2(s_2, a_2) \}$$

where

$$q_2(s_2, a_1) = 1 + 0.3 \cdot 12.8 + 0.15 \cdot 5.04$$

$$= 5.60$$

$$q_2(s_2, a_2) = -1 + 0.25 \cdot 12.8 + 0.55 \cdot 5.04$$

$$= 4.97$$

so we pick $\pi_D^2(s_2) = a_1$, ending with

$$\pi_D^2(s_1) = \pi_D^2(s_2) = a_1.$$

(For use in the next section, note the final valuation values of $v_3(s_1) = 14.48$, $v_3(s_2) = 5.60$ and $v_3(s_3) = 0$.)

Part B

To show stability, we wish to show that $\pi_D^k(s) = a_1$ for all $k \geq 3$. In other words,

$$q_k(s, a_1) - q_k(s, a_2) > 0.$$

First, s_1 :

$$q_k(s_1, a_1) - q_k(s_1, a_2) = R(s_1, a_1) - R(s_1, a_2) + \sum_{s' \in N} v_k(s')(p(s_1, a_1, s') - p(s_1, a_2, s'))$$

$$= -2 + v_k(s_1)(0.25 - 0.1) + v_k(s_2)(0.65 - 0.4)$$

$$= -2 + v_k(s_1)(0.15) + v_k(s_2)(0.25)$$

For $k \geq 3$, due to the monotonicity of each entry of v_k , we have that $v_k(s_1) \geq v_3(s_1) = 13.88$ and $v_k(s_2) \geq v_3(s_2) = 5.46$. Substituting these, we get

$$q_k(s_1, a_1) - q_k(s_1, a_2) \ge -2 + 14.48 \cdot (0.15) + 5.60 \cdot (0.25)$$

= 1.572
> 0.

A similar argument works for s_2 , where

$$q_k(s_2, a_1) - q_k(s_2, a_2) = 2 + v_k(s_1)(0.3 - 0.25) + v_k(s_2)(0.15 - 0.55)$$

$$= 2 + v_k(s_1)(0.05) + v_k(s_2)(-0.4)$$

$$\geq 2 + 14.48 \cdot (0.05) + 5.60 \cdot (-0.4)$$

$$= 0.484$$

$$> 0.$$

Which is exactly what we want.

Part C

As noted when calculating the valuation functions in part A, because we take action a_1 no matter which state we are in, we have that $R^{\pi}(s) = R(s, a_1)$, for each $s \in N$. Also, $p^{\pi}(s, s') = P(s, a_1, s')$. Let $v_i = v^{\pi^2}(s_i)$. Then

$$v_1 = R^{\pi^2}(s) + \sum_{s \in N} p^{\pi}(s, s')v_s$$

= $R(s_1, a_1) + p(s_1, a_1, a_1)v_1 + p(s_1, a_1, s_2)v_2$

and similarly

$$v_2 = R(s_2, a_1) + p(s_2, a_1, s_1)v_1 + p(s_2, a_1, s_2)v_2.$$

Substituting in for the values, we get a system of two equations:

$$-8 = v_1(-0.75) + v_2(0.65) \tag{1}$$

$$-1 = v_1(0.3) + v_2(-0.85). (2)$$

Solved, this yields $v^{\pi^2}(s_1) = 16.84 \text{ and } v^{\pi^2}(s_2) = 7.12$

Part D:

We begin by calculating what the initial greedy policy is:

$$q_0(s_1, a_1) = 8 + 0.25 \cdot 10 + 0.65 \cdot 1$$

$$= 11.15$$

$$q_0(s_1, a_2) = 11 + 0.1 \cdot 10 + 0.4 \cdot 1$$

$$= 12.4.$$

We pick then $\pi_D^0(s_1) = a_2$ and $v_1(s_1) = 12.4$. Similarly, $q_0(s_2, a_1) = 1 + 0.3 \cdot 10 + 0.15 \cdot 1$

$$q_0(s_2, a_1) = 1 + 0.5 \cdot 10 + 0.10 \cdot 1$$

$$= 4.15$$

$$q_0(s_2, a_2) = -1 + 0.25 \cdot 10 + 0.55 \cdot 1$$

$$= 2.05$$

giving us $\pi_D(s_2) = a_1$ and $v_1(s_2) = 4.15$. Let's calculate the next greedy policy π_D^1 . First,

$$q_1(s_1, a_1) = 8 + 12.4 \cdot (0.25) + 4.15(0.65)$$

$$= 13.8$$

$$q_1(s_1, a_2) = 11 + 12.4 \cdot (0.1) + 4.15 \cdot (0.4)$$

$$= 13.9$$

So we pick $\pi_D^1(s_1) = a_2$ and $v_2(s_1) = 13.9$. Similarly

$$q_1(s_2, a_1) = 1 + 12.4 \cdot (0.3) + 4.15 \cdot (0.15)$$

$$= 5.34$$

$$q_1(s_2, a_2) = -1 + 12.4 \cdot 0.25 + 4.15 \cdot 0.55$$

$$= 4.38$$

giving us
$$\pi_D^1(s_2) = a_1$$
 and $v_2(s_2) = 5.34$.

Showing stability: We claim that this policy is stable and thus optimal. We'll show this in the same way as in part B. Namely, for $k \ge 2$

$$q_k(s_1, a_1) - q_k(s_1, a_2) = R(s_1, a_1) - R(s_1, a_2) + v_k(s_1)(p(s_1, a_1, a_1) - p(s_1, a_2, s_1))$$

$$+ v_k(s_2)(p(s_1, a_1, s_2) - p(s_1, a_2, s_2))$$

$$= -3 + v_k(s_1) \cdot (0.15) + v_k(s_2) \cdot (0.25)$$

$$\geq -3 + 13.9 \cdot (0.15) + 5.34 \cdot (0.25)$$

$$= 0.42$$

$$> 0$$

which shows that $\pi_D^k(s_1) = a_1$ for all $k \geq 2$. Similarly,

$$q_k(s_2, a_1) - q_k(s_2, a_2) = 2 + v_k(s_1) \cdot (0.05) + v_k(s_2) \cdot (-0.4)$$

$$\geq 2 + 13.9 \cdot (0.05) + 5.34 \cdot (-0.4)$$

$$= 0.559$$

$$> 0$$

meaning that $\pi_D^k(s_2) = a_1$ for all $k \geq 2$. In other words, the policy stabilizes to the same as it would have been in if we hadn't changed the reward.