Problem 1.

In the following Q denotes a real $n \times n$ matrix.

- (a) Prove that if Q_1 and Q_2 are orthogonal then so is the product Q_1Q_2 .
- (b) Prove that if Q is orthogonal then $det Q = \pm 1$.

From now on suppose n=2.

- (c) Let Q_1 and Q_2 be 2×2 matrices representing counter-clockwise rotations by angle θ_1 and θ_2 , respectively. What mappings do the products Q_1Q_2 and Q_2Q_1 represent?
 - (d) Do all 2×2 orthogonal matrices commute? Justify your answer.
- (e) Suppose Q is a 2×2 orthogonal matrix with $\det Q = 1$. Can you determine what kind of mapping Q represents and why?
- (f) Suppose Q is a 2×2 orthogonal matrix with $\det Q = -1$. Can you determine what kind of mapping Q represents and why?
- (g) Let Q_1 be a 2×2 reflection matrix and let Q_2 be a 2×2 rotation matrix. What mappings do the products Q_1Q_2 and Q_2Q_1 represent and why?
- (h) Let Q_1 and Q_2 be 2×2 reflection matrices. What mapping does the product Q_1Q_2 represent and why?

Problem 2.

Given a set of n linearly independent vectors $\{\mathbf{v}_1 \ \mathbf{v}_2 \dots \mathbf{v}_n\}$ in \mathbb{R}^m , the Gram-Schmidt process creates a set of **orthonornal** vectors $\{\mathbf{u}_1 \ \mathbf{u}_2 \dots \mathbf{u}_n\}$ with span $\{\mathbf{u}_1 \ \mathbf{u}_2 \dots \mathbf{u}_n\}$ = span $\{\mathbf{v}_1 \ \mathbf{v}_2 \dots \mathbf{v}_n\}$. The process is the following:

$$\begin{split} & step \ 1: u_1 = v_1/\|v_1\|_2 \\ & step \ 2: u_2 = \left[v_2 - < v_2, u_1 > u_1\right]/\|v_2 - < v_2, u_1 > u_1\|_2 \end{split}$$

$$\mathbf{step} \; \mathbf{k} : \mathbf{u}_k = \left[\mathbf{v}_k - \sum_{j=1}^{k-1} < \mathbf{v}_k, \mathbf{u}_j > \mathbf{u}_j
ight] / \|\mathbf{v}_k - \sum_{j=1}^{k-1} < \mathbf{v}_k, \mathbf{u}_j > \mathbf{u}_j \|_2$$

-

$$\mathbf{step} \ \mathbf{n} : \mathbf{u}_n = \left[\mathbf{v}_n - \sum_{j=1}^{n-1} <\mathbf{v}_n, \mathbf{u}_j > \mathbf{u}_j\right] / \|\mathbf{v}_n - \sum_{j=1}^{n-1} <\mathbf{v}_n, \mathbf{u}_j > \mathbf{u}_j\|_2$$

(a) Show that $\mathbf{v}_k = \sum_{j=1}^k \beta_{kj} \mathbf{u}_j$ for some coefficients β_{kj} , $1 \leq k \leq n$, $1 \leq j \leq k$. Give precise formulas for β_{kj} .

(b) Show that the Gram-Schmidt process leads to a decomposition

$$V = QR$$
,

where V is the $m \times n$ matrix $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n]$, Q is the $m \times n$ matrix $Q = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_n]$ (with **orthonormal columns**), and R is an **upper triangular** $n \times n$ matrix. This is referred to as the QR-decomposition of V.

(c) Give the formula for the entries of R in terms of the coefficients β_{kj} from (a).