CHAPTER 01: INTRODUCTION

- Simple Introduction to Data Science
- Data Science vs Data Mining
- What is Machine Learning?
 - Types of Machine Learning
 - Some Basic Terms
- Python and Jupyter Installation
- Machine Learning Useful Package
 - NumPy
 - Pandas
 - Matplotlib

CHAPTER 02: DATA PREPROCESSING

- Reading and Modifying a Dataset
- Basic Statistics
- Covariance
- Missing Values
- Outliers
- Concatenating
- Dummy Variables
- Normalization

CHAPTER 03: CLASSIFICATION

- Decision Tree (DT)
- K-nearest neighbor (k-NN)
- Logistic Regression
- Naive Bayes (NB)
- Classification Metrics Model Evaluation

CHAPTER 04: REGRESSION

- Linear Regression and Multiple Linear Regression
- Regression Metric Model Evaluation
- Polynomial Linear Regression (PLR)
- Random Forest Regression
- Support Vector Regression (SVR)

CHAPTER 05: CLUSTERING

- Clustering K-means
- Clustering DBSCAN
- Clustering Hierarchical

CHAPTER 06: HYPERPARAMETER OPTIMIZATION

- What is Parameter Tuning?
- Classification (k-NN)
- Regression (SVR)
- Clustering (K-Means)

ADVANTAGE (QUIZ BASED ON DIFFERENT CHAPTER)

Instructor: Sunil Ghimire

sunilghimire.com.np

Instructor: Sunil Ghimire

sunilghimire.com.np

Instructor: Sunil Ghimire

sunilghimire.com.np

Summary of DS, AI, ML, and DM

DATA SCIENCE

study that combines domain expertise, programming skills, and knowledge of mathematics and statistics to extract meaningful insights from data.

ARTIFICIAL INTELLLIGENCE

ability to learn, understand, imagine the qualities that are naturally found in Humans. Developing a system that has the same or better level of these qualities artificially is termed ad Artificial Intelligence.

MACHINE LEARNING

study of computer
algorithms that comprises
algorithms and statistical
models that allow computer
programs to automatically
improve through experience.

DATA MINING

process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems.

According to Wikipedia, "Data are characteristics or information, usually numerical, that are collected through observation."

Α	В	С	D	E	F
Date/Time	Building Code	Power Consumption (KW)	Heat Consumption(KW)	Power Price(\$/KW)	Head Price (\$/KW)
01/01/21 12:00 PM	6601	450	550	10	4
01/02/21 01:00 PM	6602	480	590	12	5
01/03/21 02:00 PM	6603	500	540	11	7
01/04/21 03:00 PM	6604	550	596	12	3
01/05/21 04:00 PM	6605	670	523	10	4
01/06/21 05:00 PM	6606	-50	488	9	6
01/07/21 06:00 PM	6607	430	610	4	6

Date/Time	Building Code	Power Consumption (KW)	Heat Consumption(KW)	Power Price(\$/KW)	Head Price (\$/KW)
 01/01/21 12:00 PM	6601	450	550	10	4
01/02/21 01:00 PM	6602	480	590	12	5
01/03/21 02:00 PM	6603	500	540	11	7
01/04/21 03:00 PM	6604	550	596	12	3
01/05/21 04:00 PM	6605	670	523	10	4
01/06/21 05:00 PM	6606	-50	488	9	6
01/07/21 06:00 PM	6607	430	610	4	6

Row/ Example/ Sample

	Date/Time	Building Code	Power Consumption (KW)	Heat Consumption(KW)	Power Price(\$/KW)	Head Price (\$/KW)
	01/01/21 12:00 PM	6601	450	550	10	4
	01/02/21 01:00 PM	6602	480	590	12	5
	01/03/21 02:00 PM	6603	500	540	11	7
	01/04/21 03:00 PM	6604	550	596	12	3
	01/05/21 04:00 PM	6605	670	523	10	4
	01/06/21 05:00 PM	6606	-50	488	9	6
	01/07/21 06:00 PM	6607	430	610	4	6
Row/ Example/ Sample Variable/ Attribute/ Feature						-e/

Instructor: Sunil Ghimire

sunilghimire.com.np

DATA SCIENCE VS DATA MINING (01)

DATA SCIENCE VS DATA MINING (02)

Focus

DATA MINING

Business Process

DATA SCIENCE

Scientific Study

DATA SCIENCE VS DATA MINING (03)

Goal

DATA MINING

Make Data more usable

DATA SCIENCE

Building
Data-centric products for an organization

DATA SCIENCE VS DATA MINING (04)

DATA SCIENCE VS DATA MINING (05)

DATA MINING

Finding trends previously not known

Purpose

DATA SCIENCE

Social analysis, building predictive models, unearthing, unknown facts, and more

DATA SCIENCE VS DATA MINING (06)

DATA MINING

Someone with a knowledge of navigating across data and statistical understanding can conduct data mining

DATA SCIENCE

A person needs to understand ML, Programming, info-graphic techniques and have domain knowledge to become a data scientist.

Vocational Perspective

DATA SCIENCE VS DATA MINING (07)

DATA MINING

Data mining can be a subset of Data Science as Mining activities are part of Data Science pipeline.

DATA SCIENCE

Multidisciplinary - Data Science consists of Data Visualizations, computational Social Sciences, Statistics, Data Mining, Natural Language Processing

Extent

DATA SCIENCE VS DATA MINING (08)

DATA MINING

Mostly Structured

Deal with (type of data)

DATA SCIENCE

All forms of data – structured, semi-structured, and unstructured

DATA SCIENCE VS DATA MINING (09)

DATA MINING

Data Archaeology, Information, Harvesting, Information Discovery, Knowledge Extraction DATA SCIENCE

Data-driven Science

Other less popular names

DATA MINING EXAMPLE USE CASE

Consider a scenario where you are a major retailer in Nepal. You have 120 stores operating in 10 major cities in Nepal and you have been operational for 10 years.

Let's say, you want to study the last 8 years' data to find the number of sales of sweets during festive seasons of 3 cities (Kathmandu, Bhaktapur, and Lalitpur). If that's your objective,

I would recommend you employ a person with Data Mining expertise. A Data Miner would probably go through historical information stored in legacy systems and employ algorithms to extract trends.

DATA SCIENCE EXAMPLE USE CASE

If you want to know which sweets have received more positive reviews. In this case, your sources of data may not be limited to databases, they could extend to social websites or customer feedback messages.

In this case, my suggestion to you would be to employ a Data Scientist. A person employed as a Data Scientist is more suited to apply algorithms and conduct this sociocomputational analysis.

What is Machine Learning?

Definition 01

Machine learning is the study of computer algorithms that comprises algorithms and statistical models that allow computer programs to automatically improve through experience

Definition 02

Machine Learning is the science of getting computers to act by feeding them data and letting them learn a few tricks on their own without being explicitly programmed.

MACHINE LEARNING MODELS

SUPERVISED LEARNING

SUPERVISED LEARNING

SUPERVISED LEARNING

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING

REINFORCEMENT LEARNING

CHAPTER 01 Key terms used in Machine Learning

CLASSIFICATION

REGRESSION

CLUSTERING

Instructor: Sunil Ghimire

sunilghimire.com.np

DIMENSIONALITY REDUCTION AND CURSE OF DIMENSIONALITY

Instructor: Sunil Ghimire

sunilghimire.com.np

OVERFITTING AND UNDERFITTING

CHAPTER 01 Machine Learning Useful Package

NUMPY

NumPy is an open-source library that is used for working with arrays

Instructor: Sunil Ghimire

Pandas

Pandas (Panel data) is an open-source a library that is designed for working with Dataframes and series of Data

Pandas Dataframe
is 2D labeled data
with different type
of features

Values
10
20
30
40

Several series could create a Dataframe

Index	Age	Grade1	Grade2
s1	20	10	8
s2	25	8	10
s3	27	5	3
s4	30	9	7

Instructor: Sunil Ghimire

MATPLOTLIB

Matplotlib is an amazing visualization library in Python for 2D plots of arrays

Instructor: Sunil Ghimire

Any Questions?

we are here to support each other

Thank You!

