INTRODUCCIÓN AL MUNDO SISTÉMICO

Ningún ser humano es una isla en sí mismo; cualquier ser humano forma parte del todo.

La muerte de cualquier persona me disminuye porque yo tengo un vínculo con la humanidad, así pues, no preguntes por quién doblan las campanas; doblan por ti.

Jhon Donne

Para introducirnos en el mundo de los sistemas, vamos a realizar un ejercicio. Primero, veamos fijamente la imagen representada en la figura 1 y respondamos las preguntas que se presentan a continuación:

1. ¿Qué podemos decir con respecto a lo que estamos viendo?

Figura 1

- 2. ¿Es claro lo que allí se representa?
- 3. ¿Cuáles son las posibles causas que impiden la claridad de la imagen?

No es fácil definir la figura 1, y aunque parece ser que entre aquellas piezas se encuentra una mariposa, es más el resultado de la percepción y el conocimiento adquirido del observador, que la imagen misma la que lleva a dicha conclusión. Algo definitivo en esta imagen, es la falta de claridad, pues si bien llegamos a definir que es una mariposa, resulta evidentemente complejo el describirla, dado que los elementos que en este caso vienen a ser las piezas no se encuentran organizados apropiadamente y por lo tanto, las relaciones existentes entre ellos, no están bien definidas, lo cual impide una visión completa y clara del conjunto. He aquí entonces un ejemplo de lo que podríamos llamar conglomerado, que tal como lo define Johansen¹, es una totalidad desprovista de sinergia² o mejor aún, es un conjunto en el cual la suma de los elementos es igual al todo.

Para continuar con el tema, tomemos ahora uno de los elementos de la figura 1 y pensemos en la posibilidad de explicar el conjunto a partir de aquel.

¿A partir de este elemento, es posible describir los otros y el conjunto?

En vista de la ausencia de relaciones fuertes y bien definidas, podríamos acercarnos mucho a la descripción de los otros elementos a partir de este, pues todos ellos son cuadrículas, que poseen un mismo tamaño, una misma forma y tienen unos colores que a primera vista no representan nada en particular. Considerado así, hemos logrado una descripción, al menos general, de los demás elementos del conjunto. Por lo tanto, toma más fuerza la afirmación referente a la falta de sinergia del conglomerado, pues en un sistema en el que haya sinergia, no es posible explicar el todo a partir de las partes.

Realicemos un experimento más con nuestra figura. Extraigamos ahora algunas de sus partes y miremos qué tanto afecta a la totalidad (el conjunto) este proceso.

¹ Johansen Bertoglio Oscar. Introducción a la teoría general de sistemas. Limusa, México. 2002.

² Este concepto se desarrollará de manera más profunda en un apartado posterior de este documento.

Siendo honestos, la extracción de estos elementos no representa un cambio dramático en la figura (como se puede apreciar en la figura 2), pues aunque el espacio vacío es evidente y llama la atención de inmediato, el conjunto en sí mismo no ha perdido sus características iniciales; además, si tomásemos algunos elementos de otra parte para sustituir aquellos que fueron extraídos, el efecto final no traerá un gran desajuste a la figura inicial, tal como lo podemos apreciar en la figura 3.

Si se hubiese eliminado la columna final (compuesta por los dos últimos elementos de la figura 2) y ampliáramos la figura para que cubriera el recuadro completo, sería

Figura 2

Figura 3

realmente difícil apreciar el cambio, a menos por supuesto que nos tomásemos la molestia de contar las piezas y nos diéramos cuenta que en lugar de 80 cuadrículas tenemos solamente 64.

Antes de enunciar alguna conclusión al respecto, miremos la figura 4, la cual presenta los mismos elementos de la figura 1 pero esta vez, parece que existe una pequeña diferencia, dado que las relaciones entre las partes están definidas y la totalidad aparece provista de sinergia.

En este caso, cuando tenemos una totalidad provista de sinergia, es decir, que la suma de sus partes es diferente al todo, podemos hablar de un sistema, y es claro en esta figura, que los elementos constituyen un todo diferente y en este caso mayor que cada uno de ellos como partes individuales.

Si repetimos el ejercicio anterior y extraemos uno de los elementos de la figura 4 con el fin de describir a los otros y el conjunto, ya no será posible, porque si bien, las partes individualmente no han cambiado, el sistema que conforman, va más allá de una

Figura 4

simple suma de ellas, no se trata ya de 80 piezas cuadradas que tienen en sí unos colores e imágenes ininteligibles, sino que todas ellas representan un todo mayor y diferente, el cual no se encuentra presente en las partes, sino que se nos revela cuando aquellas se interrelacionan y es en ese momento cuando emerge de esa unión un resultado nuevo y diferente y para nuestro caso, hermoso y colorido.

Cuando encontramos que el sistema presenta propiedades o características que no se encuentran en las partes, estamos hablando de emergencia³ o como algunos autores le denominan, las propiedades emergentes del sistema⁴.

Continuando con el experimento, ¿qué pasará si extraemos algunos elementos de la figura 4? ¿Continuará siendo el mismo sistema que tenemos?, ¿habrá cambios dramáticos en él?, o igual que con la figura 1, ¿simplemente se notará la ausencia, pero el resultado final no tendrá un impacto significativo con esta operación? Veamos la figura 5.

Si tomamos otras partes de este mismo sistema para reemplazar las que fueron extraídas, ¿será muy notorio el efecto en el sistema inicial?, ¿seguirá siendo el mismo sistema?

Figura 5

³ Igual que el concepto de sinergia, este será abordado de manera más profunda en un apartado posterior.

⁴O'Connor Joseph y McDermott Ian. Introducción al Pensamiento Sistémico. Recursos esenciales para la creatividad y la resolución de problemas. Ediciones Urano, Barcelona. 1998.

Al observar la figura 6, es evidente que el sistema inicial ha desaparecido, nuestra imagen ha cambiado y ahora, dicho cambio se puede considerar dramático, puesto que el resultado actual es claramente diferente. El sistema que teníamos ha desaparecido porque los elementos y las relaciones existentes han sido modificados. En este momento, podemos comenzar a concluir acerca del pensamiento sistémico y el enfoque de sistemas.

Gracias al ejemplo desarrollado, algunas ideas empiezan a tornarse claras. Según lo observado, podemos decir que un sistema es un conjunto de elementos que funcionan relacionados, y cuyo resultado conjunto es diferente del resultado individual de cada

Figura 6

una de las partes.

También, podemos concluir, que en un sistema, cuando uno de los elementos es retirado o eliminado, el sistema completo se afecta, ya que entre los elementos existen relaciones fundamentales para la existencia del sistema. Más allá, no es necesario retirarlo o eliminarlo, simplemente al afectar uno de los elementos, el sistema es afectado completamente dadas las relaciones existentes en él.

El pensamiento sistémico entonces, consiste en acercarnos a la realidad considerándola como un todo, es decir, los elementos, las relaciones y el entorno en el cual se encuentran. No podemos continuar nuestro estudio de la realidad a partir del enfoque reduccionista, donde tomamos un problema y lo llevamos a su mínima expresión, buscando resolver las partes por separado, para finalmente tener una solución del todo. Esto no es posible ya que al dividir, estamos perdiendo de vista las relaciones existentes en los elementos del sistema, y como se pudo observar, las relaciones son fundamentales para entender el sistema en conjunto.

A continuación, se presenta una revisión de los principales acontecimientos alrededor de la teoría general de sistemas dentro de la cual se ha enmarcado el pensamiento sistémico.

PÁGINA EN BLANCO EN LA EDICIÓN IMPRESA

TEORÍA GENERAL DE SISTEMAS Un poco de Historia

Dado que el carácter fundamental de la materia viva es su organización, la investigación usual de las partes y los procesos aislados no pueden arrojar una completa explicación del fenómeno vital. Esta investigación no nos da ninguna información sobre la coordinación de las partes de los procesos.

Lwdinvg V. Bertalanfy¹

Cuando se habla acerca del origen de la Teoría General de Sistemas (TGS) debemos inmediatamente mencionar a Lwdinvg Vogn Bertalanfy, pionero en esta área de estudio y a quién se le atribuye el haberla enunciado.

Bertalanfy, biólogo de profesión, encontraba que no era suficiente el paradigma reduccionista para explicar fenómenos de los seres vivos, por lo cual empezó a realizar estudios a partir de la organización existente en dichos seres, contemplando entonces la idea de sistema como un conjunto organizado de elementos donde era tan importante la organización como los elementos mismos. Para él, era vital la consideración del organismo como un todo o sistema y consideraba que el objetivo principal de las ciencias biológicas era el descubrimiento de los principios de organización en los diversos niveles².

Estas ideas, fueron presentadas finalmente después de la Segunda Guerra Mundial, y como el mismo Bertalanfy indica, fue una sorpresa para él, que aquellas ideas

¹Bertalanfy Ludwig Von. Teoría General de los Sistemas. Fundamentos, desarrollos, aplicaciones. Fondo de Cultura Económica, México. 1995.

² Ibid.

coincidieran con líneas de pensamiento que venían desarrollando otros científicos de la época. De manera que, la teoría general de sistemas no era entonces una tendencia aislada y propia de dicho autor, sino que se venía convirtiendo en una nueva corriente del pensamiento moderno³.

Según Bertalanfy, «existen modelos, principios y leyes aplicables a sistemas generalizados o a sus subclases, sin importar su particular género, la naturaleza de sus elementos componentes y las relaciones o "fuerzas" que imperen entre ellos. Parece legítimo pedir una teoría no ya de sistemas de clase más o menos especial, sino de principios universales aplicables a los sistemas en general»⁴ De aquí, podríamos decir, que surgió la Teoría General de Sistemas como nueva disciplina, buscando encontrar los principios existentes en los sistemas que pueden ser aplicados a todos ellos.

A partir de esto, varios interesados en el tema conformaron lo que ellos denominaron la Sociedad para la Investigación General de los Sistemas, promovida por Rapaport, Ralph Gerard, Boulding y Bertalanfy, quienes se encontraron en el primer año del *Center for Advanced Study in the Behavioral Sciencies* (Palo Alto) y además, ya venían trabajando en ideas similares acerca de una teoría que definiera el comportamiento general de los diferentes sistemas.

Para fortalecer tal concepción de un sistema general, han surgido algunos avances que es importante mencionar:

•.....

La cibernética, ciencia que estudia los mecanismos de comunicación y control existentes en las personas y las máquinas. A partir de los mecanismos de realimentación, estudia el comportamiento auto controlado de los sistemas.

Según Heinz von Foerster «lo que distingue la noción de cibernética de otras, es el hecho fascinante de que en ella se piensa circularmente, no linealmente»⁵.

• La teoría de la información, que estudia la información y todo lo relacionado con ella: canales, comprensión de los datos, criptografía y otros. La información

³ Ibid.

⁴ Ibid.

⁵ Foerster Heinz von. Sistémica elemental desde un punto de vista superior. Colección bordes de vida. Fondo editorial Universidad EAFIT. Medellín. 2002.

es tratada como magnitud física y para caracterizar la información de una secuencia de símbolos se utiliza la entropía. Se parte de la idea de que los canales no son ideales, aunque muchas veces se idealicen las no linealidades, para estudiar distintos métodos para enviar información o la cantidad de información útil que se puede enviar a través de un canal⁶.

• La teoría de los juegos, cuyo objetivo es el análisis de los comportamientos estratégicos de los jugadores. En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al igual que en los juegos, su resultado depende de la conjunción de decisiones de diferentes agentes o jugadores. Se dice de un comportamiento que es estratégico cuando se adopta teniendo en cuenta la influencia conjunta sobre el resultado propio y ajeno de las decisiones propias y ajenas.

La Teoría de Juegos ha alcanzado un alto grado de sofisticación matemática y ha mostrado una gran versatilidad en la resolución de problemas⁷.

- La teoría de la decisión, referida al estudio de los procesos de toma de decisiones desde una perspectiva racional. En este contexto, todos los seres vivos se enfrentan al problema de toma de decisiones; pero a medida que aumenta la complejidad del ser vivo, aumenta la complejidad de las decisiones que debe tomar; por tanto, el nivel mayor de complejidad en la toma de decisiones estará en las organizaciones sociales⁸.
- La topología o matemáticas relacionales, se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad,

⁶ Tomado de http://es.wikipedia.org/wiki/Teoria de la informacion. Julio 13 de 2005.

⁷ Introducción a la teoría de juegos, disponible en http://www.eumed.net/cursecon/juegos/Julio 13 de 2005.

⁸ Las organizaciones sociales se consideran en un nivel mayor de complejidad que el ser humano, dado que éstas están conformadas por las personas y las relaciones que se dan entre ellas. Este punto se mencionará cuándo se presente la jerarquía de los sistemas.

y lo que se requiere es que la transformación y su inversa sean ambas continuas. También se incluye el análisis de grafos y de nudos⁹.

• El análisis factorial, es una técnica que consiste en resumir la información contenida en una matriz de datos con V variables. Para ello se identifican un reducido número de factores F, siendo el número de factores menor que el número de variables. Los factores representan a las variables originales, con una pérdida mínima de información.

El modelo matemático del análisis factorial es parecido al de la regresión múltiple. Cada variable se expresa como una combinación lineal de factores no directamente observables¹⁰.

• La teoría general de los sistemas, que busca en el sentido más estricto, derivar, partiendo de una definición general de «sistema» como complejo de componentes interactuantes, conceptos característicos de totalidades organizadas, tales como interacción, suma, mecanización, centralización, competencia, finalidad y otros¹¹ y aplicarlos a fenómenos concretos.¹²

Todas estas disciplinas han contribuido y fortalecido los conceptos iniciales enunciados por Bertalanfy en la búsqueda de una Teoría General de los Sistemas.

Este apartado no pretende agotar todos los acontecimientos y aportes en el campo de la TGS, por el contrario, es solamente un abrebocas en el desarrollo histórico de la misma, pero para efectos del presente documento, no se continuará ahondando en este particular. A continuación, se presentan los conceptos más importantes relacionados con los sistemas.

⁹ Macho Stadler Marta. Qué es la topología. Revista Sigma No 20, pp 63-77. 2003.

¹⁰ Cuesta M y Herrero F. Introducción al Análisis Factorial. www.psico.uniovi.es Dpto_Psicologia/metodos/tutor.1/indice.html. Julio 13 /2005.

¹¹ Estos conceptos se tratarán en el siguiente apartado.

¹² Ibid.

CONCEPTOS BÁSICOS DE LA TEORÍA DE SISTEMAS

No puedes solucionar el problema con el mismo nivel de pensamiento que creó el problema. Albert Einstein

Los conceptos que se presentan a continuación, son muy importantes para adentrarnos en el pensamiento sistémico:

Sistema: es fundamental entrar a definir sistema, puesto que se le han dado muchas interpretaciones y significados, que van desde el clásico conjunto de partes interdependientes que tienen un objetivo común, hasta señalar que «un sistema es un grupo de partes y objetos que interactúan y que forman un todo o que se encuentran bajo la influencia de fuerzas en alguna relación definida»¹.

Podemos también decir, que un sistema es un todo, una totalidad que presenta propiedades diferentes a las propiedades individuales de los elementos que le componen, y que por tanto, está provista de sinergia.

Lo interesante de la definición anterior, es que implica directamente el concepto de sinergia, que es la propiedad de los sistemas que les diferencia de un montón o conglomerado. Vale la pena mirar lo que O'connor² considera como diferencias entre sistema y montón:

¹Johansen Bertoglio Oscar. Introducción a la teoría general de sistemas. Limusa, México. 2002.

² O'Connor Joseph y McDermott Ian. Introducción al Pensamiento Sistémico. Recursos esenciales para la creatividad y la resolución de problemas. Ediciones Urano, Barcelona. 1998.

Sistema	Montón
Partes interconectadas que funcionan como un todo	Serie de partes
Cambia si se quitan o añaden piezas	Sus propiedades esenciales no se alteran al quitar o añadir piezas
La disposición de los elementos es fundamental	La disposición de las piezas no es importante
Las partes están conectadas y funcionan todas juntas	Las partes no están conectadas y funcionan por separado
Su comportamiento depende de la estructura global. Al cambiar la estructura cambia el comportamiento	Su comportamiento depende de su tamaño o número de piezas (si se puede decir que tiene comportamiento)

Con estas diferencias, se aclara más el concepto de sistema. Veamos ahora otros conceptos importantes para entender el mundo sistémico.

CLASES DE SISTEMAS

Desde el punto de vista de la interacción con el medio, se puede hablar de sistemas abiertos y cerrados. Si se considera su origen, podemos hablar de sistemas naturales o artificiales y si se consideran sus elementos, hablaremos de sistemas concretos y abstractos.

Sistemas abiertos: se considerará un sistema abierto, cuando tenga interacción con el ambiente, es decir, que intercambia energía (recursos, información) con el medio externo; importa estos recursos, realiza sobre ellos algún proceso de transformación y exporta al medio el resultado de dicho proceso.

El concepto de sistema abierto es fundamental, porque en la práctica todos los sistemas son abiertos, ya que no existe un sistema aislado en sí mismo, que no tenga interacción con el ambiente.

Sistema cerrado: por el contrario, un sistema cerrado es aquel que no tiene interacción con su ambiente. Este sistema es más una consideración teórica que práctica, ya que solamente se puede concebir para efectos de estudio, pero en la realidad es muy complejo (por no decir imposible) pensar en un sistema totalmente aislado.

Sistema natural: corresponden a esta clasificación los sistemas existentes en la naturaleza, los cuales no han sido intervenidos por el hombre, tales como un bosque tropical, un panal de abejas o un cardumen de peces.

Sistemas artificiales: en estos, contrario a los anteriores, es evidente la intervención del hombre, es decir, estos son sistemas creados por el hombre y no existirían de no ser por su intervención, todas las máquinas entran en esta clasificación.

Sistemas concretos: aquellos en los cuales sus elementos componentes son tangibles, apreciables por medio de los sentidos.

Sistemas abstractos: que pertenecen al mundo de las ideas y generalmente obedecen a modelos mentales del grupo o individuo que lo estudia.

También podemos hablar de sistemas determinísticos y sistemas probabilísticos³.

Sistemas determinísticos: la estructura del sistema obedece a leyes bien establecidas que garantizan un desempeño uniforme en el tiempo. A entradas iguales, se obtendrán salidas iguales.

Sistemas probabilísticos: no se conoce con exactitud la relación existente entre las partes, por lo tanto, un estado no puede ser determinado con exactitud con base en resultados anteriores. A entradas iguales pueden corresponder salidas diferentes.

Otra definición que cabe incluir aquí, es la que presenta Murillo al hablar de los sistemas según su definición y los define como reales, ideales y modelos. Mientras los primeros presumen una existencia independiente por parte del observador (quien los puede descubrir), los segundos vienen a ser construcciones simbólicas, como el caso de la lógica y la matemática, mientras que el tercer tipo corresponde a abstracciones de

³ Latorre Emilio. Teoría General de Sistemas aplicada a la solución integral de problemas. Editorial Universidad del Valle, Colombia. 1996.

la realidad, en donde se combina lo conceptual con las características de los objetos⁴.

ELEMENTOS DEL SISTEMA

Según Johansen, los elementos más importantes de un sistema abierto son: sus entradas, sus procesos, sus salidas y la retroalimentación como mecanismo de control.

Entradas: a través de las entradas, el sistema recibe los elementos necesarios para funcionar y mantenerse⁵. Se consideran como entradas los insumos, energía e información que el sistema recibe del medio y que utiliza para producir sus resultados mediante los procesos de transformación.

Salidas: de igual manera, las salidas corresponden a lo que el sistema entrega al medio, bien sea como resultado directo o indirecto de su proceso de transformación. En este sentido, podemos considerar salidas a los productos o servicios principales y secundarios del sistema, así como los desechos que este entrega al ambiente, y por supuesto, también se considera una salida la información que el sistema entrega al medio.

Procesos: se refiere a las actividades que desarrolla el sistema con los elementos de entrada, para obtener las salidas. En general, se habla de procesos de transformación, dado que las entradas se transforman en salidas mediante las operaciones que el sistema efectúa en ellas.

Retroalimentación del sistema: «la comunicación de retroalimentación es la información que indica cómo lo está haciendo el sistema en la búsqueda de su objetivo, y que es introducido nuevamente al sistema con el fin de que se lleven a cabo las correcciones necesarias para lograr su objetivo». Considerándose entonces como un mecanismo de control en el proceso de alcanzar la meta⁶. La figura 7 presenta estos elementos.

Otros conceptos importantes en la teoría de sistemas⁷

Además de los conceptos mencionados, se presentan a continuación otros importantes elementos conceptuales, necesarios para el estudio de los sistemas.

⁴ Murillo Alfaro Félix ¿Qué es la Teoría General de Sistemas? Instituto Nacional de Estadística e Informática. Perú. Disponible en http://www.inei.gob.pe/biblioineipub/bancopub/inf/lib5102/libro.pdf. Junio 28 de 2005.

⁵ Johansen Bertoglio Oscar. Introducción a la teoría general de sistemas. Limusa, México. 2002. ⁶ Ibid.

Ambiente: es el área de condiciones y sucesos que influyen en el comportamiento del sistema. El sistema que se estudia siempre se encuentra inmerso en un ambiente, y dado el carácter de sistemas abiertos, siempre hay influencias del ambiente sobre el sistema, tanto en sus elementos como en las relaciones. Por supuesto, que dicha influencia difiere en intensidad de un sistema a otro.

Atributo: se denomina así a las características y propiedades estructurales y/o funcionales del sistema.

Circularidad: este concepto se refiere a los procesos de autocausación. Es decir, que en un sistema es posible encontrar que un evento o elemento X genere otro Y que a su vez genere un Z y éste finalmente genere a X. Es una propiedad muy importante de los sistemas, y es clave en el pensamiento sistémico, pues rompe el paradigma reduccionista de la causa y el efecto lineales en el tiempo y el espacio.

Complejidad: se asocia a la cantidad de elementos del sistema (complejidad cuantitativa), a sus potenciales interacciones (conectividad) y al número de estados posibles que se producen a través de éstos (variedad, variabilidad). En cuanto a la complejidad, es importante destacar que existen grados, y que existe mayor complejidad asociada a las relaciones posibles de los elementos más que al número de los elementos como tal.

Para este tema, considérese un rompecabezas de 1000 piezas y una partida de

⁷ Marcelo Arnold y Osorio Francisco, M.A. Introducción a los Conceptos Básicos de la Teoría General de Sistemas. Departamento de Antropología. Universidad de Chile. Cinta de Moebio: Revista electrónica de epistemología de ciencias sociales, No. 3, 1998.

ajedrez. Es claro, que ambos sistemas son sistemas complejos. La complejidad del rompecabezas radica en el número de piezas que lo componen, pero si se contemplan las relaciones existentes entre las piezas, se notará que dichas relaciones están limitadas a la vecindad y por tanto, cada una de las piezas tendrá a lo sumo cuatro relaciones con las otras piezas.

Por su parte, en la partida de ajedrez, en la que solamente existen 32 elementos (las piezas de ambos jugadores), el entramado de relaciones entre ellas es prácticamente infinito, ya que a un movimiento determinado de una de las piezas puede venir una gran variedad de alternativas de las otras piezas, y se convierte así en un problema combinatorio, con un número muy grande de posibles relaciones. Por tanto, podemos concluir que es más compleja la partida de ajedrez que el rompecabezas.

Obsérvese también que el rompecabezas puede ser armado por varias personas al mismo tiempo, cada uno de los interesados puede elegir un sector en especial para ir construyendo la imagen, mientras que la idea de jugar una partida de ajedrez entre varias personas al mismo tiempo no promete un buen resultado. He allí otro argumento para concluir que el sistema será más complejo entre más relaciones se puedan establecer entre sus elementos, así el número de ellos no sea muy grande.

Conglomerado: es una totalidad desprovista de sinergia. La suma de las partes es igual al todo. Se considerará conglomerado si las posibles relaciones entre los objetos que lo forman no afectan a los otros. Esta última afirmación es interesante, puesto que en algún momento podremos considerar un sistema como conglomerado, dado el interés de nuestro estudio.

Elemento: son las partes o componentes que constituyen el sistema. Los elementos pueden ser objetos o procesos que se efectúan al interior del sistema.

Energía: está considerada dentro de los elementos de entrada y salida del sistema, además en los sistemas se aplica la ley de conservación de la energía por lo cual podemos decir que la cantidad de energía de un sistema es igual a la cantidad de energía importada por éste menos la cantidad de energía exportada al ambiente.

Entropía: es la segunda ley de la termodinámica, la ley del desorden, establece que los sistemas cerrados están irremediablemente condenados a desaparecer. En un sistema, en el cual no exista intercambio con el ambiente, el desorden tiende a aumentar,

y por tanto, el sistema tiende a desaparecer como se le conocía.

Equifinalidad: hablamos de ella, cuando en un caso encontramos que a partir de distintas condiciones iniciales se llega a un mismo fin.

Equilibrio: se refiere a mantenerse el sistema en el mismo estado en el tiempo; esto por supuesto, implica necesariamente la importación de recursos del ambiente, dado que la entropía no permite dicho equilibrio sin interacción con el medio.

Emergencia: es una de las características más importantes de los sistemas; consiste en que los elementos que componen el sistema al interactuar, generan propiedades que no existen en ellos, pero están presentes en su interacción. Al analizar esta propiedad de manera más profunda, se encuentra que podemos encontrar sistemas cuyas propiedades o cualidades no se pueden distinguir en ninguno de sus elementos de manera aislada, por lo cual, es imposible pensar que se puede entender dicho sistema si nos acercamos a él de una manera diferente a la visión holística y totalizadora.

Esta propiedad choca fuertemente con el paradigma reduccionista, y es fundamental considerarla en los procesos de estudio de sistemas complejos, tales como las organizaciones, puesto que no obtendremos ningún resultado interesante de las partes individuales, pues las propiedades fundamentales están presentes por la interacción de los elementos.

Estructura: se refiere a las interrelaciones más o menos estables entre las partes o componentes del sistema

Frontera: se utiliza para delimitar el sistema y poder identificar lo que pertenece y no pertenece a él. Realmente, la frontera es más abstracta que concreta, pues no es fácil identificar la frontera de un sistema complejo tal como una organización, sin embargo, es muy importante definirla ya que a partir de ella se determinarán los elementos que pertenecen y no pertenecen al sistema, puesto que los elementos que se encuentren de la frontera hacia dentro, serán definidos como parte del sistema, por el contrario los que se encuentren de la frontera hacia fuera se considerarán parte del entorno.

Homeostasis: es una de las principales características de los sistemas abiertos, la cual busca mantener el estado original. Según Latorre, es la principal característica de los sistemas autorregulados. Un sistema así, reacciona a toda perturbación de origen

interno o que proviene del entorno, por medio de mecanismos reguladores que buscan llevarlo nuevamente al estado original⁸.

Neguentropía: existe en contraposición a la entropía, la neguentropía. Es la energía que el sistema importa para mantener su organización y es gracias a ésta, que el sistema no se degenera. Por eso, se dice que un sistema cerrado está condenado irremediablemente al desorden, porque no tiene la capacidad de importar neguentropía del entorno.

Información: es la más importante corriente neguentrópica de los sistemas. Precisamente, cuando se posee información confiable y oportuna, el sistema funciona bien, es decir, no hay lugar a indecisiones, dudas o acciones erróneas, por el contrario, cuando no se posee información tiende a reinar el desorden.

Organización: considerada como el patrón de relaciones que definen los estados posibles de un sistema. Recuérdese que Bertalanfy decía que la característica más importante de la materia viva es su organización, y de allí desprende sus estudios sobre la teoría general de sistemas.

Modelo: representación del sistema para efectos de su estudio. Un modelo representa la realidad de manera simplificada, incluyéndose en él, solamente las variables que son de interés para el estudio. Si se busca que el modelo incluya todas las variables de la realidad, perderá su función, ya que en ese momento será tan complejo y difícil de operar, que no será realmente de ayuda para quien estudia el sistema.

Recursividad: según Johansen, podemos entender la recursividad como el hecho que un sistema esté compuesto por partes que poseen características que los convierten a su vez en sistemas. Es decir, podemos hablar de sistemas y subsistemas o mejor aún, de suprasistemas, sistemas y subsistemas, donde cada uno puede ser visto como una totalidad en sí mismo⁹. Es el concepto unificador de la realidad y de los objetos.

Retroalimentación: este principio es fundamental en los sistemas y está asociado a la propiedad que ellos tienen para introducir sus resultados en ellos mismos y definir a partir de éstos, las acciones futuras. A partir de un resultado del sistema, se obtendrá el mismo resultado amplificado (realimentación de refuerzo) o se logrará nuevamente

⁸Latorre Emilio. Teoría General de Sistemas aplicada a la solución integral de problemas. Editorial Universidad del Valle, Colombia. 1996.

el estado inicial (realimentación de compensación)¹⁰.

Resiliencia: capacidad para resistir cambios producidos por el entorno. Existen sistemas que son muy susceptibles al entorno, por tanto, cuando se presenta algún cambio significativo en éste, el sistema desaparece. Podría pensarse aquí en algunas de las pequeñas empresas Colombianas que sucumbieron cuando se dio el proceso de apertura económica. O pensando a futuro, solamente las empresas resilentes podrán enfrentar exitosamente el tratado de libre comercio.

Sinergia: aunque ha sido mencionada anteriormente, la sinergia no ha sido definida completamente como concepto. Podemos entonces decir que los objetos presentan una característica de sinergia cuando la suma de sus partes es menor o diferente del todo. También, podemos decir que existe sinergia en un sistema, cuando al examinar individualmente a las partes que lo componen, no podemos llegar a explicar el comportamiento del conjunto y mucho menos a predecirlo.

La sinergia entonces, es inherente a los sistemas, puesto que por definición, solamente se considerará sistema si la posee. Ya se ha mencionado, que un conjunto desprovisto de sinergia será denominado conglomerado.

Concluyendo, los objetos presentan una característica de sinergia cuando la suma de sus partes es menor o diferente del todo, o bien cuando el examen de alguna de ellas no explica la conducta del todo. Lo cual lleva a afirmar que para explicar la conducta global de ese objeto, es necesario analizar y estudiar todas sus partes y si se logra establecer las relaciones que existen entre ellos, se podrá predecir la conducta de dicho objeto al aplicarle un estímulo particular, que no será el resultado de la suma de los efectos en cada una de las partes¹¹.

Subsistema: conjuntos de elementos y relaciones que responden a estructuras y funciones especializadas dentro de un sistema mayor. Como ya se mencionó al hablar de recursividad, el subsistema puede verse como un sistema dentro de un sistema mayor.

Variabilidad: indica el máximo de relaciones (hipotéticamente) posibles entre los

⁹ Johansen Bertoglio Oscar. Introducción a la teoría general de sistemas. Limusa, México. 2002.

¹⁰ Los conceptos de realimentación de refuerzo y compensación se tratarán de manera profunda en un apartado posterior.

elementos que constituyen el sistema. Según esto, podríamos hablar aquí de complejidad dinámica.

Variedad: comprende el número de elementos discretos en un sistema. En este sentido, aporta a la complejidad estática del sistema.

No se ha pretendido agotar todos los conceptos en este apartado, se ha buscado sí, presentar los más importantes y mencionados en el estudio de los sistemas.

A continuación, se presenta un capítulo en el cual se desarrollará el concepto de pensamiento sistémico como un pensamiento en círculos, rompiendo el esquema actual del pensamiento lineal y causal. Vamos entonces hacia un cambio de paradigma.

¹¹Johansen Bertoglio Oscar. Introducción a la teoría general de sistemas. Limusa, México. 2002.