Analysis 3 - Übung Nr. 10

Ida Hönigmann

December 15, 2022

1 Sätze

Transformationsformel Gauß'sche Integralsatz

2 Beispiele

TODO: Grafik Zylinder + Normalvektor in Bsp 1 TODO: Grafik in Bsp 2

Beispiel 1

Angabe. Sei $F(x, y, z) := (xy, yz, x^2 + y^2)^{\top}$. Betrachte den Zylindermantel

$$M := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, 0 < z < 1\}$$

Berechnen Sie den Fluss des Vektorfeldes \mathbf{F} durch die Fläche M:

$$\int_{M} \boldsymbol{F}^{\top} \cdot \boldsymbol{\nu} d\mathcal{H}^{2}$$

wobei ν den nach außen gerichteten normierten Normalvektor auf M bezeichnet. Tun Sie das auf zwei Arten:

- (i) direkt
- (ii) mithilfe des Gauß'schen Integralsatzes.
- (i) direkt:

In jedem Punkt $(x, y, z) \in M$ gilt, dass der normierte Normalvektor

$$\boldsymbol{\nu} = \frac{1}{||\boldsymbol{\nu}||} \begin{pmatrix} \frac{\partial}{\partial x} x^2 + y^2 - 1\\ \frac{\partial}{\partial y} x^2 + y^2 - 1\\ \frac{\partial}{\partial z} x^2 + y^2 - 1 \end{pmatrix} = \underbrace{\frac{1}{\sqrt{4x^2 + 4y^2}}}_{x^2 + y^2 - 1} \begin{pmatrix} 2x\\ 2y\\ 0 \end{pmatrix} = \begin{pmatrix} x\\ y\\ 0 \end{pmatrix}.$$

Es gilt also $\int_M \mathbf{F}^\top \boldsymbol{\nu} d\mathcal{H}^2 = \int_M x^2 y + y^2 z d\mathcal{H}^2$. Wir wollen nun zur Berechnung die Transformationsformel anwenden.

$$D := [0, 2\pi) \times (0, 1) \qquad \phi : D \to \mathbb{R}^2, (\theta, z) \mapsto (\cos(\theta), \sin(\theta), z)$$

$$d\phi = \begin{pmatrix} -\sin(\theta) & 0 \\ \cos(\theta) & 0 \\ 0 & 1 \end{pmatrix} \qquad \det(d\phi^{\top} d\phi) = \det\begin{pmatrix} \sin^2(\theta) + \cos^2(\theta) & 0 \\ 0 & 1 \end{pmatrix} = 1$$

1

Offenbar gilt $\phi(D) = M$ und ϕ ist injektiv und eine C^1 -Abbildung.

$$\int_{M} \boldsymbol{F}^{\top} \boldsymbol{\nu} d\mathcal{H}^{2} = \int_{\phi(D)} x^{2} y + y^{2} z d\mathcal{H}^{2} = \int_{D} \cos^{2}(\theta) \sin(\theta) + \sin^{2}(\theta) z d\lambda^{2}(\theta, z) = \int_{0}^{2\pi} \int_{0}^{1} \cos^{2}(\theta) \sin(\theta) dz d\theta + \int_{0}^{2\pi} \int_{0}^{1} \sin^{2}(\theta) z dz d\theta = \underbrace{\int_{0}^{2\pi} \cos^{2}(\theta) \sin(\theta) d\theta}_{=0} + \underbrace{\frac{z^{2}}{2}}_{=\pi}^{1} \underbrace{\int_{0}^{2\pi} \sin^{2}(\theta) d\theta}_{=\pi} = \frac{\pi}{2}$$

(ii) mit Gauß'schem Integralsatz:

Wir betrachten zuerst $A:=\{(x,y,0)^{\top}\in\mathbb{R}^3:x^2+y^2<1\}=B_1^2(0)$ (der Boden des Zylinders) und $B:=\{(x,y,1)^{\top}\in\mathbb{R}^3:x^2+y^2<1\}=B_1^2(0)+(0,0,1)^{\top}$ (der Deckel des Zylinders). Offenbar gilt für $(x,y,0)\in A$, dass der Normalvektor $\boldsymbol{\nu}=(0,0,-1)^{\top}$ und für $(x,y,1)\in B$, dass $\boldsymbol{\nu}=(0,0,1)^{\top}$. Da \boldsymbol{F} in der dritten Komponente nicht von z abhängt gilt nun, dass sich die Summe der folgenden beiden Integrale aufhebt:

$$\int_{A} \mathbf{F}^{\top} \cdot \boldsymbol{\nu} d\mathcal{H}^{2} + \int_{B} \mathbf{F}^{\top} \cdot \boldsymbol{\nu} d\mathcal{H}^{2} = \int_{B_{1}^{2}(0)} -(x^{2} + y^{2}) d\mathcal{H}^{2} + \int_{B_{1}^{2}(0) + (0,0,1)^{\top}} x^{2} + y^{2} d\mathcal{H}^{2} = -\int_{B_{1}^{2}(0)} x^{2} + y^{2} d\mathcal{H}^{2} + \int_{B_{1}^{2}(0)} x^{2} + y^{2} d\mathcal{H}^{2} = 0$$

Damit erhalten wir, dass wenn wir mit $Z = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1, 0 < z < 1\}$ den Zylinder bezeichnen, gilt

$$\int_{\partial Z} \mathbf{F}^{\top} \cdot \boldsymbol{\nu} d\mathcal{H}^2 = \int_{M} \mathbf{F}^{\top} \cdot \boldsymbol{\nu} d\mathcal{H}^2$$

Um den Integralsatz von Gauß anwenden zu können müssen wir überprüfen ob

- Z eine offene, beschränkte Teilmenge des \mathbb{R}^3 ist; was klarerweise gilt
- $\mathcal{H}^2(\partial_s Z) = 0$ was gilt da $\partial_s Z = \{(x,y,0) : x^2 + y^2 = 1\} \cup \{(x,y,1) : x^2 + y^2 = 1\}$ und beide diese Mengen haben endliches eindimensionales Hausdorffmaß (genauer $\mathcal{H}^1(\text{Kreisrand}) = 2\pi$) und somit zweidimensionales Hausdorffmaß Null haben müssen ($\mathcal{H}^2(\text{Kreisrand}) = 0$).
- $\mathbf{F}: \bar{Z} \to \mathbb{R}^3 \in C(\bar{Z}) \cap C^1(Z)$, da \mathbf{F} offenbar stetig ist und

$$D\mathbf{F} = \begin{pmatrix} y & x & 0 \\ 0 & z & y \\ 2x & 2y & 0 \end{pmatrix}$$

ist stetig.

Also gilt nun

$$\int_{\partial z} \mathbf{F}^{\top} \cdot \nu d\mathcal{H}^2 = \int_{Z} div \mathbf{F} d\lambda^3 = \int_{Z} \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} d\lambda^3 = \int_{Z} y + z d\lambda^3$$

Zur Berechnung verwenden wir wieder den Transformationssatz

$$D := (0,1) \times [0,2\pi) \times (0,1) \qquad \phi : D \to \mathbb{R}^3, (r,\theta,z) \mapsto (r\cos(\theta), r\sin(\theta), z)^\top \qquad \det d\phi = r$$

wobei D ist eine offene Teilmenge des \mathbb{R}^3 , ϕ ist eine injektive C^1 -Abbildung und $Z = \phi(D)$. Damit folgt

$$\int_{\phi(D)} y + z d\lambda^3 = \int_D (r \sin(\theta) + z) r d\lambda^3 = \int_0^1 \int_0^{2\pi} \int_0^1 r^2 \sin(\theta) dz d\theta dr + \int_0^1 \int_0^{2\pi} \int_0^1 rz dz d\theta dr = \int_0^1 r^2 (-\cos(\theta)) \Big|_0^{2\pi} dr + 2\pi \int_0^1 r \frac{z^2}{2} \Big|_0^1 dr = 0 + 2\pi \int_0^1 \frac{1}{2} r dr = \pi \frac{r^2}{2} \Big|_0^1 = \frac{\pi}{2}.$$

Beispiel 2

Angabe. Sei $F(x, y, z) := (xz, xy, z^2 - x)^{\top}$. Betrachte das Gebiet

$$\Omega := \{ (x, y, z) \in \mathbb{R}^3 : 0 < x < 1, 0 < y < x + 1, 0 < z < x + y \}.$$

Berechnen Sie den Fluss des Vektorfeldes \mathbf{F} durch den Rand von Ω .

Gesucht ist

$$\int_{\partial\Omega} \boldsymbol{F}^{\top} \cdot \boldsymbol{\nu} d\mathcal{H}^2$$

weshalb wir den Gauß'schen Integralsatz verwenden wollen. Daher prüfen wir zuerst die Bedingungen:

- Ω ist offen und beschränkt: offen ist aus der Definition klar, Beschränktheit folgt aus $\Omega \subseteq (0,1) \times (0,2) \times (0,3)$.
- $\mathcal{H}^2(\partial_s\Omega) = 0$, da $\partial_s\Omega$ aus 12 Kanten (und 7 Ecken) besteht (siehe Grafik TODO) und diese alle endliches eindimensionales Hausdorffmaß besitzen und daher $\mathcal{H}^2(\partial_s\Omega) = 0$.
- $F: \overline{\Omega} \to \mathbb{R}^3 \in C(\overline{\Omega}) \cap C^1(\Omega)$, da F offenbar stetig ist und

$$D\mathbf{F} = \begin{pmatrix} z & 0 & x \\ y & x & 0 \\ 2x & -2y & 0 \end{pmatrix}$$

ist stetig.

Gemeinsam mit $div \mathbf{F} = \sum_{i=1}^{3} \partial f_i / \partial x_i = x + z$ und dem Gauß'schen Integralsatz ergibt sich

$$\int_{\partial\Omega} \mathbf{F}^{\top} \nu d\mathcal{H}^{2} = \int_{\Omega} div \mathbf{F} d\lambda^{3} = \int_{0}^{1} \int_{0}^{x+1} \int_{0}^{x+y} x + z dz dy dx$$

$$\int_{0}^{1} \int_{0}^{x+1} \int_{0}^{x+y} x dz dy dx = \int_{0}^{1} x \int_{0}^{x+1} x + y dy dx = \int_{0}^{1} x \left(x(x+1) + \frac{y^{2}}{2} \Big|_{0}^{x+1} \right) dx =$$

$$\int_{0}^{1} x \left(x^{2} + x + \frac{(x+1)^{2}}{2} \right) dx = \int_{0}^{1} x^{3} + x^{2} + \frac{x}{2} (x^{2} + 2x + 1) dx = \int_{0}^{1} \frac{3}{2} x^{3} + 2x^{2} + \frac{1}{2} x dx = \frac{31}{24}$$

$$\int_{0}^{1} \int_{0}^{x+1} \int_{0}^{x+y} z dz dy dx = \int_{0}^{1} \int_{0}^{x+1} \frac{(x+y)^{2}}{2} dy dx = \frac{1}{2} \int_{0}^{1} \int_{x}^{2x+1} u^{2} du dx = \frac{1}{2} \int_{0}^{1} \frac{u^{3}}{3} \Big|_{x}^{2x+1} dx =$$

$$\frac{1}{6} \int_{0}^{1} (2x+1)^{3} - x^{3} dx = \frac{1}{6} \left(\int_{1}^{3} \frac{v^{3}}{2} dv - \frac{x^{4}}{4} \Big|_{0}^{1} \right) = \frac{1}{6} \left(\frac{1}{2} \frac{v^{3}}{4} \Big|_{1}^{3} - \frac{1}{4} \right) = \frac{13}{8}$$

$$\implies \int_{\partial\Omega} \mathbf{F}^{\top} \nu d\mathcal{H}^{2} = \frac{31}{24} + \frac{13}{8} = \frac{35}{12}$$

Beispiel 3

Angabe. Verifizieren Sie den Gauß'schen Integralsatz für das Gebiet

$$\Omega := \{(x, y, z) \in \mathbb{R}^3 : 0 < z < 1 - x^2 - y^2\}$$

und das Vektorfeld

$$F(x, y, z) := (x, x + y, x^2 + z)^{\top},$$

d.h., berechnen Sie die beiden Integrale und überprüfen Sie deren Gleichheit.

TODO