Problems. Unit-1 3.) D1: Either Sue is rich or she is poor. Dz: Bill eats peanuts and chicken. D3: Sue eats everything Bill eate. pernoue step words (articles/prononur) Vocabulary = { Sue, rich, , poor, Bill, eats, peanute, chicken, eurything? DI: [Sue rich poor] [Bill eats peanuts chicken] lower case D3? [sue eats enrything Bill eats] sue rich poor bill eat peanets chicken everything DI= [11100000]

P2 = [000 11110] P3 = [10011000]

Part-B 1) TF-IDF Di: All sugrasian restaurants same negetarian food. I ate ugetable fried via from an Indian effectouse. There is a rutaurant near bethis which seems Halian food. TF (term frequency) = No of times word appears in a document IDF (Inverse document frequency) = It measures how rare a word is acros collection of document. IDF = log(mod doa a no of doa) TF = freq of word in document Total no of woods in Remove stop words vegetarian restaurant serve ugetarian food. (5) ate negetable fried rice & indian coffee house (7) restaurant near delhi gerne italian food (6) Vocabulary = & wegetarian, restaurant, sirve, food, ate, vegetable, fried nice, indian, coffee, house, near, delhi, italian? (14) -> (log3 = log10:) word IDF by (3)/ 2/5 ugetarias log (3/2)=0-17 Y6 rustaurant 1/2 0.02 109(3/2)=0-H Yc 1/5 some 109(3/2)=0.17 YL. food 1/5 0-02 69(3/1)=0.47 1/4 ate vegetable 109(3/)=0.14 1/4 0.00 fried 1/4 my 0.47 0.06 रांप 190)= 0.47 1/4 0-06 indian log (3) = 0.47 1/4 0.06 rofflee 1/4 100 (3) o. rx 0-a house 1/4 209(3)=0.47 006

TOF 109 (3/1)=047 1/6 Moon delhi 0 italian 0.03 0-27 0.15 0.42 Total Aug of D1 = 0.15 = 0.0107 P2 = 0.62 = 0.03 L Aug of $D_{3} = \frac{0.27}{16} = 0.0192$ Unit-2 e) si= John plays in the park NN - noun NR IN NNP VB - verb. 32 = Park the car VB PFT NN IN- preposition DT - determner S3 = John will park the car MD- Modal verb NN HD VB DET NN Burt-Bi) a.) Identify corresponding POS tag Jack will park the scotor UB DT - NH MN MD

Jack will park the scooter

Si = John plays in park.

NW VB IN NN

Si = Park the car.

VB DT NN

ss = John will park the corr.
NN HD VB DT NN

lookup table,

	NN	VB.	IN	DT	MD"	
John	2	0	. 6	0	0	
plays	0	,	0	0	6	
, v	0	0	1	0	0	
par k	ı	2	c	0	O	
the	0	0	0	2	6	
caj	2	⁹ O	0	, S	0	
will	0	0	6	0	.)	
Total	5;	3	- 1	,2	1	

Emission probability.

_		เกม	U B	IN	BT	HD
	John	2/5				
	plays		1/3			
	ا میں			1/1		\
	park	Y5	2/3			. \ -
	the				2/2	
	car	2/5				, Y
	liw			. 1	+	1. /1
		4				

Transition probability:

		VB	IN	DT	HP	<e></e>	Total
	NN					9	3
(s>	2/3	V3	•	•		21	5
NN	0	1/5	v	0	1/5	3/5	
			1/3	1 / ₃			3
UB	5	•	13	13		0	1
111	1	0	0	0	c		
DT	1 2/	O	0	ь	0	0	2
HD	/2	1	0	o	0	0	
110	1	,					1

No of hidden states (NNI VB, IN, DT, MD) = 5 No of words (Tack will park the scota) = 5 =) 5 possibilities. Consider park NN John will park the scotes $\left(\frac{2}{3}\right)\left(\frac{2}{5}\right), \left(\frac{1}{5}\right)\left(1\right). o\left(\frac{1}{5}\right) = 0$ Consider park UB the park lliw 2/3 1 V5 1 1 2/3 1 1 NN- $\frac{2.2}{35}$, $\frac{1}{5}$, $\frac{1}{5}$, $\frac{1}{5}$, $\frac{2}{3}$, $\frac{1}{1}$ = 0.01

Part-B
3.) Bi-gram model
I really
31: I really appreciate your help
S2: I am really sorry for not inviting you
53: I really appreciate your hardes work
su: I really like your watch.
Nocabulary (I, really, appreciate, your, help, am, sorry, for, not, inviting, you, hard, work, like, watch)
Vocabulary = 15
$P(\omega_i/\omega_{i-1}) = \frac{\operatorname{count}(\omega_{i-1}, \omega_i)}{\operatorname{count}(\omega_{i-1})}$
P(I/really) = count (really I) = = = 0 c(really)
P(appreciate/really) = count (really app) = = = = = [0.5] Recorn (-cally)
P(sorry (really) = count(really sorry) = 1 = 0.25 ((really)
P(like/neally) = count(neally like) = 1 = 0-25 ((neally)
P(your /really) = count (neally/your) = 0 = 0 ((really)
Ir ally appreciate