

Contents

1. Glo	obal Definitions	2
1.1.	Parameters	2
1.2.	Variables	3
1.3.	Shared Properties	4
2. Co	omponent 1	5
2.1.	Definitions	5
2.2.	Geometry 1	7
2.3.	Secondary Current Distribution	
2.4.	Global ODEs and DAEs	24
2.5.	Mesh 1	26
3. Stu	udy 1	31
3.1.	Parametric Sweep	31
3.2.	Stationary	31
3.3.	Solver Configurations	32
4. Re	esults	51
4.1.	Datasets	51
4.2.	Derived Values	52
4.3.	Tables	53
4.4.	Plot Groups	64

1 Global Definitions

GLOBAL SETTINGS

Name	Untitled 1.mph
Path	C:\Users\haghi\Desktop\Untitled_1.mph
Version	COMSOL Multiphysics 6.1 (Build: 282)
Unit system	SI

USED PRODUCTS

COMSOL Multiphysics
Corrosion Module

COMPUTER INFORMATION

CPU	AMD64 Family 25 Model 80 Stepping 0, 6 cores, 15.31 GB RAM
Operating system	Windows 10

1.1 PARAMETERS

CONSTANTS

Name	Expression	Value	Description
R_z	8.314[J/(mol*K)]	8.314 J/(mol·K)	
Т	298[K]	298 K	Temperature
F	96485[C/mol]	96485 C/mol	Faraday constant
c_bulk	1[mM]	1 mol/m³	Bulk concentration
D_ox	1e-9[m^2/s]	1E-9 m ² /s	Diffusion coeff (oxidised)
D_red	1e-9[m^2/s]	1E-9 m ² /s	Diffusion coeff (reduced)
k0	1e-4[m/s]	1E-4 m/s	Standard rate constant
EO	0[V]	0 V	Standard potential vs ref
alpha	0.5	0.5	Transfer coefficient
scan_rate	0.1[V/s]	0.1 V/s	Scan rate
E_start	-0.4[V]	-0.4 V	Starting potential
E_vertex	0.4[V]	0.4 V	Vertex potential
n	1	1	electrons (MB ~1)
sigma_elec	1.5[S/m]	1.5 S/m	S/m, PBS ~150 mM (adjustable)
rElec	1e-3[m]	0.001 m	m (1 mm radius)
rDom	5e-3[m]	0.005 m	m (5 mm domain radius)
Cdl	2e-2[F/m^2]	0.02 F/m ²	F/m² (20 μF/cm² typical Au in PBS)
alpha_a	0.5	0.5	anodic transfer coef

Name	Expression	Value	Description
alpha_c	0.5	0.5	cathodic transfer coef
Еарр	-0.23[V]	-0.23 V	V applied bias for BV linearisation (≈E0)
Gamma_MB	1e-11*1e4[mol/m^2]	1E-7 mol/m ²	$mol/m^2 (1 \times 10^{-11} mol/cm^2 \rightarrow m^2)$
k_on	10[m^3/(mol*s)]	10 m³/(s·mol)	1/(M·s)
k_off	0.02[1/s]	0.02 1/s	1/s
beta	1.1e10[1/m]	1.1E10 1/m	1/m (1.1 Å ⁻¹)
d0	3.2e-9[m]	3.2E-9 m	m (reference distance ~closed)
d_open	6.5e-9[m]	6.5E-9 m	m
d_closed	3.2e-9[m]	3.2E-9 m	m
k0et	500[1/s]	500 1/s	1/s (nominal pre-exponential)
f	50[1/s]	50 1/s	Hz
Ctarget	0.1[mol/m^3]	0.1 mol/m ³	note 10 μM = 10e-6 M

1.2 VARIABLES

1.2.1 Aptamer_vars

SELECTION

Geometric entity level | Entire model

Name	Expression	Unit	Description
theta_open_ss	(k_off)/(k_off + k_on*Ctarget)		Steady-state open fraction
theta_closed_ss	1 - theta_open_ss		Bound (closed) fraction
ket_open	k0et*exp(-beta*(d_open - d0))	1/s	ET rate in open conformation
ket_closed	k0et*exp(-beta*(d_closed - d0))	1/s	ET rate in closed conformation
ket	theta_open_ss*ket_open + theta_closed_ss*ket_closed	1/s	Weighted average ET rate
omega	2*pi*f	1/s	Angular frequency
ket_eff	(ket*omega)/(omega + ket)	1/s	Frequency-dependent effective ET
i0_raw	n*F*Gamma_MB*ket_eff	A/m²	Unattenuated exchange current density (A/m²)
Rct	(R_z*T)/(n*F*i0_raw)	Ω·m²	Area-specific charge-transfer resistance (BV linearisation) $(\Omega \cdot m^2)$
atten	1/sqrt(1 + (omega*Rct*Cdl)^2)		Double-layer RC attenuation
iO	i0_raw*atten	A/m²	Final effective exchange current density (A/m²)

1.3 SHARED PROPERTIES

1.3.1 Default Model Inputs

Tag cminpt

2 Component 1

SETTINGS

Description	Value
Unit system	SI (global system)
Geometry shape function	Automatic

SPATIAL FRAME COORDINATES

First	Second	Third
r	phi	Z

MATERIAL FRAME COORDINATES

First	Second	Third
R	PHI	Z

GEOMETRY FRAME COORDINATES

First	Second	Third
Rg	PHIg	Zg

MESH FRAME COORDINATES

First	Second	Third
Rm	PHIm	Zm

2.1 **DEFINITIONS**

2.1.1 Selections

Electrode Boundary

Selection type
Explicit

SelectionBoundary 2

Electrode Boundary

Insulation Boundary

Selection type

Explicit

Selection

Boundaries 2, 4

Insulation Boundary

2.1.2 Coordinate Systems

Boundary System 1

Coordinate system type	Boundary system
Tag	sys1

COORDINATE NAMES

First	Second	Third
t1	to	n

SETTINGS

Description	Value
Axis	phi

2.2 GEOMETRY 1

Geometry 1

UNITS

Length unit	m
Angular unit	deg

GEOMETRY STATISTICS

Description	Value
Space dimension	2
Number of domains	1
Number of boundaries	5

Description	Value
Number of vertices	5

2.2.1 Rectangle 1 (r1)

POSITION

Description	Value
Position	{0, 0}

SIZE

Description	Value
Width	rDom
Height	rDom

2.2.2 Partition Edges 1 (pare1)

SETTINGS

Relative arc length parameters
0.8

2.3 SECONDARY CURRENT DISTRIBUTION

USED PRODUCTS

Secondary Current Distribution

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

$$\begin{aligned} \nabla \cdot \mathbf{i}_{l} &= Q_{l}, \quad \mathbf{i}_{l} = -\sigma_{l} \nabla \phi_{l} \\ \nabla \cdot \mathbf{i}_{s} &= Q_{s}, \quad \mathbf{i}_{s} = -\sigma_{s} \nabla \phi_{s} \\ \phi_{l} &= \text{phil}, \quad \phi_{s} = \text{phis} \end{aligned}$$

2.3.1 Interface Settings

Discretization

SETTINGS

Description	Value
Electrolyte potential	Linear
Compute boundary fluxes	On
Apply smoothing to boundary fluxes	On
Electric potential	Linear
Compute boundary fluxes	On
Apply smoothing to boundary fluxes	On

SETTINGS

Description	Value
Equation form	Study controlled

SETTINGS

Description	Value	
Current distribution type	Secondary	

Cathodic Protection

SETTINGS

Description	Value
Enable cathodic protection features	Off

Physics vs. Materials Reference Electrode Potential

SETTINGS

Description	Value
Physics vs. materials reference electrode potential	0 V

2.3.2 Variables

Name	Expression	Unit	Description	Selection	Details
domflux.philr	2*cd.llr*pi*r*cd.d	A/m	Domain flux, r- component	Domain 1	
domflux.philz	2*cd.llz*pi*r*cd.d	A/m	Domain flux, z- component	Domain 1	
domflux.phisr	2*cd.lsr*pi*r*cd.d	A/m	Domain flux, r- component	Domain 1	
domflux.phisz	2*cd.lsz*pi*r*cd.d	A/m	Domain flux, z- component	Domain 1	
cd.d	1	1	Out-of-plane geometry extension	Global	
cd.bndflux_phil	if(r>0.001/sqrt(sqrt(mean(emetric2))),- 0.5*dflux_spatial(phil)/(pi*r),NaN)	A/m²	Boundary flux	Boundaries 1– 5	
cd.nll	cd.bndflux_phil/cd.d	A/m²	Normal electrolyte current density	Boundaries 2– 5	
cd.nR	dnR	1	Normal vector, R-component	Boundaries 1– 5	
cd.nPHI	0	1	Normal vector, PHI-component	Boundaries 1– 5	
cd.nZ	dnZ	1	Normal vector, Z-component	Boundaries 1– 5	
cd.nil	0	A/m²	Inward electrolyte current density	Domain 1	+ operation
cd.nis	0	A/m²	Inward electrode current density	Domain 1	+ operation
cd.Qsi	0	A/m³	Current source	Domain 1	+ operation
cd.mulstopcond	1	1	Multiplicative stop condition	Global	* operation
cd.stopcond	cd.mulstopcond	1	Solver stop condition	Global	
cd.Ect	NaN	V	Electrode potential	Domain 1	
cd.nr	nr		Normal vector, r-component	Boundaries 1– 5	Meta
cd.nphi	root.nphi		Normal vector, phi-component	Boundaries 1– 5	Meta
cd.nz	nz		Normal vector, z-	Boundaries 1–	Meta

Name	Expression	Unit	Description	Selection	Details
			component	5	
cd.nrmesh	nrmesh		Normal vector (mesh), r- component	Boundaries 1– 5	Meta
cd.nphimesh	root.nphimesh		Normal vector (mesh), phi- component	Boundaries 1– 5	Meta
cd.nzmesh	nzmesh		Normal vector (mesh), z- component	Boundaries 1–	Meta

2.3.3 Electrolyte (PBS)

Electrolyte (PBS)

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

$$\sum_{i} \mathbf{i}_{l} = Q_{l}, \quad \mathbf{i}_{l} = -\sigma_{l} \nabla \phi_{l}$$

Electrolyte

SETTINGS

Description	Value	Unit
Electrolyte conductivity	User defined	
Electrolyte conductivity	sigma_elec	S/m

11

Coordinate System Selection

SETTINGS

Description	Value
Coordinate system	Global coordinate system

Variables

Name	Expression	Unit	Description	Selection	Details
cd.sigmalrr	sigma_elec	S/m	Electrolyte conductivity, rr- component	Domain 1	
cd.sigmalphir	0	S/m	Electrolyte conductivity, phircomponent	Domain 1	
cd.sigmalzr	0	S/m	Electrolyte conductivity, zr- component	Domain 1	
cd.sigmalrphi	0	S/m	Electrolyte conductivity, rphicomponent	Domain 1	
cd.sigmalphiphi	sigma_elec	S/m	Electrolyte conductivity, phiphi- component	Domain 1	
cd.sigmalzphi	0	S/m	Electrolyte conductivity, zphi-component	Domain 1	
cd.sigmalrz	0	S/m	Electrolyte conductivity, rz-component	Domain 1	
cd.sigmalphiz	0	S/m	Electrolyte conductivity, phiz-component	Domain 1	
cd.sigmalzz	sigma_elec	S/m	Electrolyte conductivity, zz-component	Domain 1	
cd.Qh	-cd.llr*philr- cd.llz*philz	W/m³	Total power dissipation density	Domain 1	+ operation
cd.llMag	sqrt(realdot(cd.llr,c d.llr)+realdot(cd.llp hi,cd.llphi)+realdot(cd.llz,cd.llz))	A/m²	Electrolyte current density magnitude	Domain 1	
cd.Qli	0	A/m³	Current source	Domain 1	+ operation

Name	Expression	Unit	Description	Selection	Details
cd.tEr	-philTr	V/m	Tangential electric field, r-component	Boundaries 1–	
cd.tEphi	0	V/m	Tangential electric field, phicomponent	Boundaries 1–	
cd.tEz	-philTz	V/m	Tangential electric field, z- component	Boundaries 1–	
cd.Er	-philr	V/m	Electric field, r- component	Domain 1	
cd.Ephi	0	V/m	Electric field, phi- component	Domain 1	
cd.Ez	-philz	V/m	Electric field, z- component	Domain 1	
cd.ilr	-cd.sigmalrr*philr- cd.sigmalrz*philz	A/m²	Electrolyte current density, r- component	Domain 1	+ operation
cd.ilphi	- cd.sigmalphir*philr - cd.sigmalphiz*philz	A/m²	Electrolyte current density, phi-component	Domain 1	+ operation
cd.ilz	-cd.sigmalzr*philr- cd.sigmalzz*philz	A/m²	Electrolyte current density, z- component	Domain 1	+ operation
cd.llr	cd.ilr	A/m²	Electrolyte current density vector, r- component	Domain 1	
cd.llphi	cd.ilphi	A/m²	Electrolyte current density vector, phi- component	Domain 1	
cd.llz	cd.ilz	A/m²	Electrolyte current density vector, z- component	Domain 1	
cd.phil	phil	V	Electrolyte potential	Domain 1	
cd.sigmaleffrr	cd.sigmalrr	S/m	Electrolyte conductivity, rr- component	Domain 1	

Name	Expression	Unit	Description	Selection	Details
cd.sigmaleffphir	cd.sigmalphir	S/m	Electrolyte conductivity, phir-component	Domain 1	
cd.sigmaleffzr	cd.sigmalzr	S/m	Electrolyte conductivity, zr-component	Domain 1	
cd.sigmaleffrphi	cd.sigmalrphi	S/m	Electrolyte conductivity, rphicomponent	Domain 1	
cd.sigmaleffphiphi	cd.sigmalphiphi	S/m	Electrolyte conductivity, phiphi-component	Domain 1	
cd.sigmaleffzphi	cd.sigmalzphi	S/m	Electrolyte conductivity, zphi-component	Domain 1	
cd.sigmaleffrz	cd.sigmalrz	S/m	Electrolyte conductivity, rz-component	Domain 1	
cd.sigmaleffphiz	cd.sigmalphiz	S/m	Electrolyte conductivity, phiz-component	Domain 1	
cd.sigmaleffzz	cd.sigmalzz	S/m	Electrolyte conductivity, zz-component	Domain 1	

Shape functions

Name	Shape function	Unit	Description	Shape frame	Selection
phil	Lagrange (Linear)	V	Electrolyte potential	Spatial	Domain 1

Weak Expressions

Weak expression	Integration order	Integration frame	Selection
2*(cd.llr*test(philr)+cd.llz*test(philz)+c d.Qli*test(phil))*cd.d*pi*r	2	Spatial	Domain 1

2.3.4 Axial Symmetry 1

Axial Symmetry 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: All boundaries

2.3.5 Insulation 1

Insulation 1

_		
\P	ect	ınn

Geometry geom1: Dimension 1: All boundaries

EQUATIONS

$$-\mathbf{n}\cdot\mathbf{i}_{l}=0,\quad -\mathbf{n}\cdot\mathbf{i}_{s}=0$$

2.3.6 Initial Values 1

Initial Values 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

SETTINGS

Description	Value	Unit
Electric potential	0	V
Electrolyte potential	0	V

2.3.7 Electrode Surface 1

Electrode Surface 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundary 2

EQUATIONS

$$\mathbf{n} \cdot \mathbf{i}_{l} = i_{\mathsf{total}}$$
$$i_{\mathsf{total}} = \sum_{m} i_{\mathsf{loc},m}$$

Dissolving-Depositing Species

SETTINGS

Description	Value
Species	
Solve for surface concentration variables	On

Adsorbing-Desorbing Species

SETTINGS

Description	Value	Unit
Density of sites	1E-5	mol/m²
Adsorbing-desorbing species		

Species	Site occupancy number
1	

Film Resistance

SETTINGS

Description	Value
Film resistance	No film resistance

Equilibrium Potential Handling (Primary Condition)

SETTINGS

Description	Value
Equilibrium potential based on	Average of all reactions

Harmonic Perturbation

SETTINGS

Description	Value	Unit
Perturbation amplitude	0	V

Electrode Phase Potential Condition

SETTINGS

Description	Value	Unit
Electrode phase potential condition	Electrode potential	
Electrode potential vs. reference	Eapp	V
Electric reference potential	User defined	
Electric reference potential	0	V

Constraint Settings

SETTINGS

Description	Value
Constraint method	Elemental

Variables

Name	Expression	Unit	Description	Selection	Details
cd.nil	cd.itot	A/m²	Inward electrolyte current density	Boundary 2	+ operation
cd.Ect	cd.phisext-phil	V	Electrode potential	Boundary 2	
cd.Gamma_es1	1.0E-5[mol/m^2]	mol/m²	Density of sites	Boundary 2	
cd.Evsref0	Eapp	V	Electrode potential vs. reference	Boundary 2	

Name	Expression	Unit	Description	Selection	Details
cd.phisext	0[V]+cd.Evsref0	V	External electric potential	Boundary 2	
cd.phis_es1	cd.es1.int(cd.phisext* cd.dvolfactor*cd.d)/c d.Area_es1	V	Electric potential	Global	
cd.dvolfactor	2*pi*r	m	Differential volume factor	Boundary 2	Meta
cd.Area_es1	cd.es1.int(cd.dvolfact or*cd.d)	m²	Area	Global	
cd.itotavg_es1	cd.es1.int(cd.itot*cd. dvolfactor*cd.d)/cd.A rea_es1	A/m²	Average total interface current density	Global	
cd.Temp	cd.es1.minput_tempe rature	К	Temperature	Boundary 2	
cd.Evsref	cd.phisext-phil	V	Electrode potential vs. adjacent reference	Boundary 2	
cd.Ectmat	cd.Ect	V	Electrode potential	Boundary 2	
cd.ltot_es1	cd.es1.int(cd.itot*cd. dvolfactor*cd.d)	А	Total current	Global	
cd.itot	0	A/m²	Total interface current density	Boundary 2	+ operation
cd.rhos	8960	kg/m³	Density	Boundary 2	
cd.Ms	0.06355	kg/mol	Molar mass	Boundary 2	
cd.Sigma	1	1	Site occupancy number	Boundary 2	

Electrode Reaction 1

Electrode Reaction 1

SELECTION

Geometric entity level	Boundary
Name	Electrode Boundary
Selection	Named sel1: Geometry geom1: Dimension 1: Boundary 2

EQUATIONS

$$\eta = E_{\text{ct}} - E_{\text{eq}}, \quad E_{\text{ct}} = \phi_{\text{s,ext}} - \phi_{\text{l}}$$

Equilibrium Potential

SETTINGS

Description	Value	Unit
Equilibrium potential	User defined	
Equilibrium potential	EO	V

Electrode Kinetics

SETTINGS

Description	Value	Unit
Local current density expression	From kinetics expression	
Kinetics expression type	Butler - Volmer	
Exchange current density	iO	A/m²
Anodic transfer coefficient	alpha_a	1
Cathodic transfer coefficient	alpha_c	1

20

Description	Value	Unit
Limiting current density	Off	

Heat of Reaction

SETTINGS

Description	Value	Unit
Specify	Temperature derivative	
Temperature derivative of equilibrium potential	User defined	
Temperature derivative of equilibrium potential	0	V/K

Model Input

SETTINGS

Description	Value	Unit
Temperature	User defined	
Temperature	Т	K

Variables

Name	Expression	Unit	Description	Selection	Details
cd.itot	cd.iloc_er1	A/m²	Total interface current density	Boundary 2	+ operation
cd.Eeq_er1	EO	V	Equilibrium potential, Electrode Reaction 1	Boundary 2	
cd.i0_er1	iO	A/m²	Exchange current density	Boundary 2	
cd.alphaa_er1	alpha_a	1	Anodic transfer coefficient	Boundary 2	
cd.alphac_er1	alpha_c	1	Cathodic transfer coefficient	Boundary 2	
cd.iloc_er1	cd.i0_er1*(exp(cd.al phaa_er1*F_const*c d.eta_er1/(R_const* cd.es1.er1.minput_t emperature))-exp(-cd.alphac_er1*F_const*cd.eta_er1/(R_const*cd.es1.er1.min put_temperature)))	A/m²	Local current density	Boundary 2	
cd.es1.er1.iloc	cd.iloc_er1	A/m²	Local current density, Electrode Reaction 1	Boundary 2	

Name	Expression	Unit	Description	Selection	Details
cd.Qirrev_er1	cd.iloc_er1*cd.eta_e r1	W/m²	Irreversible heat flux	Boundary 2	
cd.Qrev_er1	cd.iloc_er1*cd.es1.e r1.minput_temperat ure*cd.dEeqdT_er1	W/m²	Reversible heat flux	Boundary 2	
cd.es1.er1.Qb	cd.Qrev_er1+cd.Qir rev_er1	W/m²	Electrochemical reaction boundary heat source	Boundary 2	
cd.Qbtot	cd.es1.er1.Qb	W/m²	Electrochemical reaction boundary heat source	Boundary 2	+ operation
cd.eta_er1	cd.Ect-cd.Eeq_er1	V	Overpotential	Boundary 2	
cd.dEeqdT_er1	0	V/K	Temperature derivative of equilibrium potential	Boundary 2	

Weak Expressions

Weak expression	Integration order	Integration frame	Selection
2*cd.iloc_er1*cd.d*test(phil)*pi*R	2	Material	Boundary 2

Double Layer Capacitance 1

Double Layer Capacitance 1

|--|

Selection Geometry geom1: Dimension 1: All boundaries

EQUATIONS

 $i_{dl} = 0$

Double Layer Capacitance

SETTINGS

Description	Value	Unit
Electrical double layer capacitance	e Cdl	F/m ²

Variables

Name	Expression	Unit	Description	Selection	Details
cd.itot	cd.idl	A/m²	Total interface current density	Boundary 2	+ operation
cd.Cdl	Cdl	F/m²	Electrical double layer capacitance	Boundary 2	
cd.idl	0	A/m²	Double layer current density	Boundary 2	

Weak Expressions

Weak expression	Integration order	Integration frame	Selection
2*cd.idl*cd.d*test(phil)*pi*R	2	Material	Boundary 2

2.3.8 Electrolyte Potential 1

Electrolyte Potential 1

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundary 3

EQUATIONS

Electrolyte Potential

SETTINGS

Description	Value	Unit
Boundary electrolyte potential	0	٧

Constraint Settings

SETTINGS

Description	Value
Apply reaction terms on	All physics (symmetric)
Use weak constraints	Off
Constraint method	Elemental

Variables

Name	Expression	Unit	Description	Selection
cd.philbnd	0[V]	V	Boundary electrolyte potential	Boundary 3

Constraints

Constraint	Constraint force	Shape function	Selection	Details
cd.philbnd- phil	test(cd.philbnd-phil)	Lagrange (Linear)	Boundary 3	Elemental

2.4 GLOBAL ODES AND DAES

USED PRODUCTS

COMSOL Multiphysics

SELECTION

Geometric entity level | Entire model

2.4.1 Interface Settings

SETTINGS

Description	Value
Equation form	Study controlled

2.4.2 Variables

Name	Expression	Unit	Description	Selection
ge.omega	2*pi*ge.freq	rad/s	Angular frequency	Global
ge.freq	freq	Hz	Frequency	Global
ge.iomega	ge.omega*i	rad/s	Complex angular frequency	Global

2.4.3 Global Equations 1

SELECTION

Geometric entity level	Entire model
· · · · · · · · · · · · · · · · ·	

Global Equations

Name	f(u,ut,utt,t)	Initial value (u_0)	Initial value (u_t0)	Description
theta_open	d(theta_open,t) - (k_off*(1 - theta_open) - k_on*Ctarget*theta_open)	1	1	

Discretization

SETTINGS

Description	Value
Value type when using splitting of complex variables	Complex

Units

Dependent variable quantity	Unit
none	
	1

Source term quantity	Unit
dimensionless	

Shape functions

Name	Shape function	Unit	Description	Shape frame	Selection
theta_open	ODE	1	State variable theta_open		Global

2.5 MESH 1

Mesh 1

MESH STATISTICS

Description	Value
Status	Complete mesh
Mesh vertices	1348
Triangles	2266
Quads	141
Number of elements	2407
Minimum element quality	1.551E-5
Average element quality	0.8845
Element area ratio	5.4296E-7
Mesh area	2.5E-5 m ²

2.5.1 Size (Baseline) (size)

SETTINGS

Description	Value
Maximum element size	1.85E-4
Minimum element size	6.25E-7
Curvature factor	0.25
Maximum element growth rate	1.25
Predefined size	Finer

2.5.2 Size 1 (size1)

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundary 2

Size 1

SETTINGS

Description	Value
Maximum element size	3.35E-5
Minimum element size	1.5E-6
Curvature factor	0.3
Maximum element growth rate	1.3
Custom element size	Custom

2.5.3 Free Triangular 1 (ftri1)

Geometric entity level	Domain
Selection	Remaining

Free Triangular 1

SETTINGS

Description	Value
Number of iterations	4
Maximum element depth to process	4
Last build time	0
Built with	COMSOL 6.1.0.282 (win64) 2025 - 10 - 09T17:02:12.673352400

2.5.4 Boundary Layers 1 (bl1)

Geometric entity level	Domain
Selection	Geometry geom1

Boundary Layers 1

SETTINGS

Description	Value
Number of iterations	4
Maximum element depth to process	6
Last build time	0
Built with	COMSOL 6.1.0.282 (win64) 2025 - 10 - 09T17:02:12.710520500

Boundary Layer Properties (blp)

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundary 2

Boundary Layer Properties

SETTINGS

Description	Value
Number of layers	5
Thickness specification	All layers
Total thickness	2.345E-9

3 Study 1

COMPUTATION INFORMATION

Computation time 6 s

3.1 PARAMETRIC SWEEP

Parameter name	Parameter value list	Parameter unit
f	10^(range(1, (3-1)/24, 3))*1[Hz]	1/s
Ctarget	10^(range(-7, (-4 - (-7))/14, -4))*1[mol/m^3]	mol/m^3

STUDY SETTINGS

Description	Value
Sweep type	All combinations
Parameter name	{f, Ctarget}
Unit	{1/s, mol/m^3}

PARAMETERS

Parameter name	Parameter value list	Parameter unit
f (Hz)	10^(range(1, (3-1)/24, 3))*1[Hz]	1/s
Ctarget (note 10 µM = 10e-6 M)	10^(range(-7, (-4 - (-7))/14, - 4))*1[mol/m^3]	mol/m^3

3.2 STATIONARY

STUDY SETTINGS

Description	Value
Include geometric nonlinearity	Off

PHYSICS AND VARIABLES SELECTION

Physics interface	Solve for	Equation form
Secondary Current Distribution (cd)	On	Automatic (Stationary)
Global ODEs and DAEs (ge)	On	Automatic (Stationary)

MESH SELECTION

Component	Mesh
Component 1	Mesh 1

3.3 SOLVER CONFIGURATIONS

3.3.1 **Solution 1**

Compile Equations: Stationary (st1)

STUDY AND STEP

Description	Value
Use study	Study 1
Use study step	Stationary

Dependent Variables 1 (v1)

GENERAL

Description	Value			
Defined by study step	Stationary			

INITIAL VALUE CALCULATION CONSTANTS

Constant name	Initial value source
f	10^(range(1, (3-1)/24, 3))*1[Hz]
Ctarget	10^(range(-7, (-4 - (-7))/14, -4))*1[mol/m^3]

Electrolyte potential (comp1.phil) (comp1_phil)

GENERAL

Description	Value
Field components	comp1.phil
Internal variables	{comp1.uflux.phil, comp1.dflux.phil}

SCALING

Description	Value
Method	Manual
Scale	1

State variable theta_open (comp1.ODE1) (comp1_ODE1)

GENERAL

Description	Value
State components	comp1.theta_open

Stationary Solver 1 (s1)

GENERAL

Description	Value
Defined by study step	<u>Stationary</u>
Relative tolerance	1E-4

RESULTS WHILE SOLVING

Description	Value
Probes	None

LOG

1 11	1.9e-11	3.5e-06	1.0000000	0.003	766	266	532	2.1e-10	5.7e-
Parameter $f = 215.443$.									
Iter	er Ctarget : SolEst	= 1.3895e-05 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	3.5e-10	3.8e-06	1.0000000	0.0049	769	267	534	1.7e-10	6.2e-
Parameter $f = 215.443$. Parameter Ctarget = $2.27585e-05$.									
Iter			Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	6.5e-09	3e-06	1.0000000	0.0081	772	268	536	1.2e-10	6.6e-
Paramet	er f = $215.$	443.							
	-	= 3.72759e-0							
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	1.1e-07	4.2e-05	1.0000000	0.013	775	269	538	2.2e-10	5.9e-
	er f = 215.								
	er Ctarget : SolEst	= 6.1054e-05 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
S									
1 11	1.8e-06	0.0017	1.0000000	0.022	778	270	540	3.4e-10	6e-
Paramet	er f = 215.	443.							
	er Ctarget :								
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	2.4e-05	14	1.0000000	0.037	780	271	542	2.7e-10	5.7e-
	9.4e-11	3.8e-06	1.0000000	2.5e-05	782	272	544	3e-10	6.8e-
Paramet	er f = 261.	016.							
	er Ctarget								
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 15	1.9e-17	3.7e-06	1.0000000	3.5e-05	785	273	546	4.1e-10	5.5e-
	er f = 261.								
Paramet Iter	er Ctarget : SolEst	= 1.63789e-0 ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
S									
1 14	9.5e-18	4.1e-06	1.0000000	5.8e-05	788	274	548	4.2e-10	4.8e-
Paramet	er $f = 261$.	016.	7						

Parameter Ctarget = 2.6827e-07.

Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 14	4.1e-17	2.5e-06	1.0000000	9.5e-05	791	275	550	2.5e-10	3.6e-
Parameter f = 261.016. Parameter Ctarget = 4.39397e-07. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinE								T. i. a. D. a.	
Iter s 1	SolEst 3e-17	ResEst						3.8e-10	
14									
	er f = 261. er Ctarget		1 <i>7</i>						
Iter s	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 13	2e-16	3e-06	1.0000000	0.00025	797	277	554	5.7e-11	8.7e-
	er f = 261. er Ctarget		06.						
Iter	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	1.4e-16	3.5e-06	1.0000000	0.00042	800	278	556	4.6e-10	3.4e-
Paramet	er $f = 261$.	016.							
	er Ctarget								
Iter s	Solest	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 12	2.1e-15	3.4e-06	1.0000000	0.00068	803	279	558	3.4e-10	2.4e-
Paramet	er $f = 261$.	016.							
Paramet Iter	er Ctarget : SolEst		06. Damping	Stongiso	#Pos	# Tag	#501	TinErr	LinRe
S									
1 11	3.2e-14	2.9e-06	1.0000000	0.0011	806	280	560	1.6e-10	3.7e-
Paramet	er f = 261.	016.							
	er Ctarget	= 5.17947e-0 ResEst	Damping	Ctonaino	#D00	# To a	#001	LinErr	TinDo
Iter s	SolEst	Resist	Dalliping	stepsize	#Res	#Jac	#501	TILETT	LinRe
1 11	5.6e-13	3.3e-06	1.0000000	0.0018	809	281	562	1.9e-10	5.9e-
	er f = 261.								
Paramet Iter	er Ctarget : SolEst			Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s									
1 11	1.1e-11	3.2e-06	1.0000000	0.003	812	282	564	9.1e-11	6.1e-
Paramet	er f = 261.	016.	-						

Parameter Ctarget = 1.3895e-05.

Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	2e-10	3.6e-06	1.0000000	0.0049	815	283	566	1.9e-10	6.1e-
Parameter $f = 261.016$. Parameter Ctarget = 2.27585e-05.									
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	3.7e-09	3.3e-06	1.0000000	0.0081	818	284	568	8.1e-11	5.9e-
	er f = 261.	016. = 3.72759e-0	05.						
Iter	_		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	6.6e-08	2e-05	1.0000000	0.013	821	285	570	6.1e-11	6.3e-
	er $f = 261$.	016. = 6.1054e-05							
Iter			Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	1.1e-06	0.00083	1.0000000	0.022	824	286	572	7.8e-11	5.8e-
	er f = 261.								
Paramet Iter	er Ctarget : SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	1.5e-05	10	1.0000000	0.037	826	287	574	1.4e-10	6.1e-
11 2	3.1e-11	3.2e-06	1.0000000	1.5e-05	828	288	576	4e-10	7.1e-
11	0.1.6	000							
	er f = 316. er Ctarget :								
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 15	1.9e-17	2.5e-06	1.0000000	3.5e-05	831	289	578	5.8e-10	1.2e-
	er f = 316.								
Paramet Iter	er Ctarget : SolEst	= 1.63789e-0 ResEst	07. Damping	Stensize	#Res	#Jac	#Sol	LinErr	LinRe
S				_					
1 14	6.5e-18	4.4e-06	1.0000000	5.8e-05	834	290	580	5.3e-10	2.3e-
	er $f = 316.3$	228. = 2.6827e-07	,						
Iter	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 14	3.9e-17	3.3e-06	1.0000000	9.5e-05	837	291	582	3.9e-10	3.2e-

	er f = 316.								
Paramete		= 4.39397e-							
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
S									
1	2.1e-17	3.5e-06	1.0000000	0.00016	840	292	584	5.7e-10	1.5e-
14									
	er f = 316.								
	-	= 7.19686e-							
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
S							= 0.0		
	2.8e-17	3.3e-06	1.0000000	0.00025	843	293	586	3.8e-10	8.6e-
14									
	5 216	000							
	er f = 316.		0.0						
	_	= 1.17877e-		Q+ :	II D	U T	II CI - 3	T in Days	T
	SolEst	ResEst	Damping	Stepsize	#Kes	#Jac	#501	LinErr	LinRe
S	1 (- 16	2 4- 06	1 000000	0 00040	0.4.6	204	F 0 0	2 1 - 10	0 6-
	1.6e-16	3.4e-06	1.0000000	0.00042	846	294	588	3.1e-10	2.6e-
13									
Da	5 - 216	220							
	er f = 316.		6						
Iter		= 1.9307e-0 ResEst		Ctonoiso	#D00	# 700	#001	TinEnn	LinRe
	SOIESU	Resist	Damping	stepsize	#Res	#JaC	#501	TIHETT	ттике
s 1	3 00-16	3 20-06	1.0000000	0 00069	010	205	500	90-11	3.7e-
13	3.9e-16	3.2e-06	1.0000000	0.00000	049	293	390	0e-11	3.7e-
13									
Paramete	er f = 316	228							
	er f = 316.		0.6						
Paramete	er Ctarget	= 3.16228e-		Stensize	#Res	#.Tac	#So1	LinErr	LinRe
Paramete Iter	er Ctarget	= 3.16228e-	06. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
Paramete Iter s	er Ctarget SolEst	= 3.16228e- ResEst	Damping						
Paramete Iter s	er Ctarget SolEst	= 3.16228e-	Damping					LinErr	
Paramete Iter s	er Ctarget SolEst	= 3.16228e- ResEst	Damping						
Paramete Iter s 1	er Ctarget SolEst	= 3.16228e- ResEst 3e-06	Damping						
Parameters 1 11 Parameters	er Ctarget SolEst 1.6e-14 er f = 316.	= 3.16228e- ResEst 3e-06	Damping 1.0000000						
Parameters 1 11 Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget	= 3.16228e- ResEst 3e-06	Damping 1.0000000	0.0011	852	296	592	9.8e-11	1.8e-
Parameters 1 11 Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget	= 3.16228e- ResEst 3e-06	Damping 1.0000000	0.0011	852	296	592	9.8e-11	1.8e-
Parameters 1 11 Parameters Parameters Iter s	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst	Damping 1.0000000	0.0011 Stepsize	852 #Res	296 #Jac	592 #Sol	9.8e-11	1.8e-
Parameters 1 11 Parameters Parameters Iter s	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst	Damping 1.0000000 06. Damping	0.0011 Stepsize	852 #Res	296 #Jac	592 #Sol	9.8e-11	1.8e-
Parameters 1 11 Parameters Parameters Iter s 1	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst	Damping 1.0000000 06. Damping	0.0011 Stepsize	852 #Res	296 #Jac	592 #Sol	9.8e-11	1.8e-
Parameters 1 11 Parameters Parameters Iter s 1 11	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06	Damping 1.0000000 06. Damping	0.0011 Stepsize	852 #Res	296 #Jac	592 #Sol	9.8e-11	1.8e-
Parameters 11 Parameters 1an Parameters 1an Parameters 1an Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize	852 #Res	296 #Jac	592 #Sol	9.8e-11	1.8e-
Parameters 11 Parameters 1an Parameters 1an Parameters 1an Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	1.8e- LinRe 5.7e-
Parameters 111 Parameters 1a1 Parameters 1a1 Parameters 1an Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	1.8e- LinRe 5.7e-
Parameters Iter s 1 11 Parameters Iter s 1 11 Parameters Iter s 1 11 Parameters Iter	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	LinRe 5.7e-
Parameters Iter s 1 11 Parameters Iter s 1 11 Parameters Iter s 1 11 Parameters Iter s reparameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	LinRe 5.7e-
Parameters Iter s 1 11	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	LinRe 5.7e-
Parameter Iter s 1 11	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst 3.7e-06	Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	LinRe 5.7e-
Parameters Iter s 1 11 Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst 6e-12	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst 3.7e-06	Damping 1.0000000 06. Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018	852 #Res 855	296 #Jac 297	592 #Sol 594	9.8e-11 LinErr 7.7e-11	LinRe 5.7e-
Parameters Iter s 1 11 Parameters	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst 6e-12 er f = 316. er Ctarget	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst 3.7e-06	Damping 1.0000000 06. Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018 Stepsize 0.003	#Res 855 #Res 858	296 #Jac 297 #Jac 298	#Sol 594 #Sol 596	9.8e-11 LinErr 7.7e-11 LinErr 1.3e-10	1.8e- LinRe 5.7e- LinRe 5.9e-
Parameters Iter s 1 11	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst 6e-12 er f = 316. er Ctarget	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst 3.7e-06	Damping 1.0000000 06. Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018 Stepsize 0.003	#Res 855 #Res 858	296 #Jac 297 #Jac 298	#Sol 594 #Sol 596	9.8e-11 LinErr 7.7e-11 LinErr 1.3e-10	1.8e- LinRe 5.7e- LinRe 5.9e-
Parameter Iter s 1 11 Parameter Iter Iter s 1 Iter	er Ctarget SolEst 1.6e-14 er f = 316. er Ctarget SolEst 3.2e-13 er f = 316. er Ctarget SolEst 6e-12 er f = 316. er Ctarget SolEst	= 3.16228e- ResEst 3e-06 228. = 5.17947e- ResEst 2.7e-06 228. = 8.48343e- ResEst 3.7e-06	Damping 1.0000000 06. Damping 1.0000000 06. Damping 1.0000000	0.0011 Stepsize 0.0018 Stepsize 0.003	#Res 855 #Res 858	296 #Jac 297 #Jac 298	#Sol 594 #Sol #Sol	9.8e-11 LinErr 7.7e-11 LinErr 1.3e-10	LinRe 5.7e- LinRe 5.9e-

	SolEst	228. = 2.27585e- ResEst 3.5e-06	Damping	-				LinErr	
Paramete Iter s	SolEst	228. = 3.72759e- ResEst 9.4e-06	Damping	-					
Paramete Iter s	SolEst	= 6.1054e-0	Damping	_					
11 Paramete	er f = 316.	228.	Damping					LinErr	
	9.2e-06 9.6e-12	7.2 3.6e-06							
Paramete Iter s	er f = 383. er Ctarget = SolEst 1.9e-17	= 1e-07.	Damping 1.0000000	-				LinErr	
Paramete Iter s	SolEst	119. = 1.63789e- ResEst 3.4e-06	Damping	_				LinErr	
	SolEst	= 2.6827e-0 ResEst	7. Damping 1.0000000	_				LinErr	
	er f = 383. er Ctarget : SolEst	= 4.39397e-	07. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe

1 14	3.1e-17	2.8e-06	1.0000000	0.00016	886	308	616	5.7e-11	4.7e-
Paramete	er f = 383	.119.							
	_	= 7.19686e-		Q b a a a d a a	D	U T	Q - 1	T do Book	T i - D -
Iter s	SolEst	ResEst	Damping	Stepsize	#Kes	#Jac	#SOI	LinErr	LinRe
1 13	6.7e-17	2.9e-06	1.0000000	0.00025	889	309	618	3.2e-10	2.2e-
Paramete	er f = 383	.119.							
	_	= 1.17877e-							
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1	5e-16	3.5e-06	1.0000000	0.00042	892	310	620	4.8e-10	1.2e-
Paramete	er f = 383	.119.							
		= 1.9307e-0	6.						
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	6.4e-16	3e-06	1.0000000	0.00068	895	311	622	2.4e-10	6.2e-
Daramoto	er f = 383	11Ω							
		$= 3.16228e^{-1}$	06.						
Iter	_			Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	9 80-15	4.5e-06	1 0000000	0.0011	202	312	624	1.2e-10	1 20-
11	J.00 15	1.36 00	1.0000000	0.0011	030	512	024	1.26 10	1.20
Daramoto	er f = 383	110							
		$= 5.17947e^{-1}$	06.						
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	1 86-13	3.1e-06	1.0000000	0.0018	901	313	626	2.5e-10	6 20-
11	1.00 15	3.16 00	1.0000000	0.0010	JU1	313	020	2.56 10	0.26
Daramoto	er f = 383	110							
		$= 8.48343e^{-1}$	06.						
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	3.4e-12	4e-06	1.0000000	0.003	904	314	628	9.7e-11	6e-
11									
Paramete	er f = 383	.119.							
Paramete	er Ctarget	= 1.3895e-0	5.						
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	6.4e-11	2.8e-06	1.0000000	0.0049	907	315	630	3.8e-10	5.9e-
11									
	er f = 383								
Paramete Iter	er Ctarget SolEst	= 2.27585e-ResEst	05. Damping	Stancian	#Ros	#.Ta.c	#901	LinErr	LinRe
s	COTESC	T(COHO)	Damping	pccpsize	111.63	" oac	HOOT	T-11111 L	TITING

1 1.2e-09 4.1e-06 1.0000000 0.0081 910 316 632 6.1e-11 6.2e-11 Parameter f = 383.119. Parameter Ctarget = 3.72759e-05. SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 1 2.1e-08 5.2e-06 1.0000000 0.013 913 317 634 8.6e-11 6.3e-11 Parameter f = 383.119. Parameter Ctarget = 6.1054e-05. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 1 3.6e-07 0.0002 1.0000000 0.022 916 318 636 4.2e-11 6e-11 Parameter f = 383.119. Parameter Ctarget = 0.0001. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 5.5e-06 5.1 1.0000000 0.036 918 319 638 7.4e-11 5.5e-11 2.9e-12 3.7e-06 1.0000000 5.5e-06 920 320 640 8.7e-11 6.8e-2 11 Parameter f = 464.159. Parameter Ctarget = 1e-07. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 1.9e-17 3.5e-06 1.0000000 3.5e-05 923 321 642 3.1e-10 3.7e-15 Parameter f = 464.159. Parameter Ctarget = 1.63789e-07. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 6.4e-18 3.2e-06 1.0000000 5.8e-05 926 322 644 1.9e-10 2e-14 Parameter f = 464.159. Parameter Ctarget = 2.6827e-07. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 1 3.1e-17 3.8e-06 1.0000000 9.5e-05 929 323 646 1.6e-10 1e-14 Parameter f = 464.159. Parameter Ctarget = 4.39397e-07. Iter SolEst ResEst Damping Stepsize #Res #Jac #Sol LinErr LinRe 1 4e-17 3.3e-06 1.0000000 0.00016 932 324 648 3.4e-10 7.6e-14 Parameter f = 464.159.

Parameter Ctarget = 7.19686e-07.

Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	5.4e-17	3.1e-06	1.0000000	0.00025	935	325	650	6.1e-10	2.1e-
	er f = 464. er Ctarget	159. = 1.17877e-0	06.						
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1	9.4e-17	3.2e-06	1.0000000	0.00042	938	326	652	4.9e-10	2e-
	er $f = 464$.	159. = 1.9307e-0	5						
Iter	_		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	8.8e-16	3.1e-06	1.0000000	0.00068	941	327	654	4.6e-10	8.7e-
	er $f = 464$.	159. = 3.16228e-0	06.						
	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	7.7e-15	4.3e-06	1.0000000	0.0011	944	328	656	3.5e-10	9.8e-
	er $f = 464$.		2.5						
Iter	_	= 5.17947e-0 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	1e-13	2.7e-06	1.0000000	0.0018	947	329	658	2.7e-10	6.3e-
	er $f = 464$.								
Paramet Iter		= 8.48343e-0 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	1.9e-12	3e-06	1.0000000	0.003	950	330	660	2.1e-10	5.9e-
11	6 4.6.4	1.50							
	er $f = 464$. er Ctarget	= 1.3895e-05							
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	3.6e-11	3.3e-06	1.0000000	0.0049	953	331	662	2.9e-10	6.2e-
	er $f = 464$.								
Iter	er Ctarget SolEst	= 2.27585e-(ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	6.7e-10	2.3e-06	1.0000000	0.0081	956	332	664	2.5e-10	5.4e-
Paramet	er $f = 464$.	159.							

Parameter Ctarget = 3.72759e-05.

Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	1.2e-08	4.5e-06	1.0000000	0.013	959	333	666	4e-10	6.1e-
Paramet	er f = 464.	159.							
Paramete	er Ctarget	= 6.1054e-0	5.						
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	2.1e-07	9.3e-05	1.0000000	0.022	962	334	668	4e-10	6.6e-
	er f = 464.								
	er Ctarget								
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	3.2e-06	3.6	1.0000000	0.036	964	335	670	1.3e-10	6.1e-
2 11	8.5e-13	3e-06	1.0000000	3.2e-06	966	336	672	1.5e-10	6.9e-
	er $f = 562$.								
	er Ctarget								
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 15	1.9e-17	2.8e-06	1.0000000	3.5e-05	969	337	674	4.5e-10	2.4e-
	er f = 562.								
	_	= 1.63789e-0		a			"~ 3		
Iter s	SolEst		Damping						
1 15	5.9e-18	4e-06	1.0000000	5.8e-05	972	338	676	4.5e-10	8.8e-
Paramet	er $f = 562$.	341.							
	_	= 2.6827e-0							
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 15	3.1e-17	3.6e-06	1.0000000	9.5e-05	975	339	678	2.3e-10	5.9e-
Paramet	er f = 562.	341.							
Paramet	_	= 4.39397e-0							
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 14	2.3e-17	3.3e-06	1.0000000	0.00016	978	340	680	5e-11	1.8e-
	er f = 562.								
	_	= 7.19686e-0							
Iter s	SolEst	ResEst	Damping						LinRe
1 14	1.7e-17	3.1e-06	1.0000000	0.00025	981	341	682	5e-10	6e-

	er f = 562.3 er Ctarget =		06.						
Iter	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	1.6e-16	3.4e-06	1.0000000	0.00042	984	342	684	1.8e-10	3.7e-
	er f = 562.3								
Paramete Iter s	r Ctarget = SolEst		5. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	6.9e-17	3.7e-06	1.0000000	0.00068	987	343	686	4.3e-10	7.2e-
Paramete	er f = 562.3	341.							
Paramete Iter	r Ctarget = SolEst		06. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s									
1 12	3.4e-15	3.7e-06	1.0000000	0.0011	990	344	688	9.7e-11	4.1e-
	er f = 562.3								
	r Ctarget = SolEst		06. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	5.7e-14	3 30-06	1.0000000	0.0018	993	345	690	6.1e-11	6 50-
11	J./6 14	3.3e 00	1.0000000	0.0010	993	343	090	0.16 11	0.56
	er f = 562.3								
Paramete Iter	er Ctarget = SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
S	1 1- 10	2 0- 06	1.0000000	0 003	0.0.6	246	602	1.7e-10	7 0-
1 11	1.1e-12	2.96-06	1.0000000	0.003	996	340	692	1./e-10	7.2e-
Paramete	er f = 562.3	341.							
	r Ctarget =		Damping	Stensize	#RAS	#.Tac	#801	LinErr	LinRe
s									
1 11	2e-11	3.2e-06	1.0000000	0.0049	999	347	694	1.7e-10	6.2e-
Paramete	er f = 562.3	341.							
Paramete Iter	er Ctarget = SolEst			Stepsize	#Res	#.Tac	#801	LinErr	LinRe
s				-					TIIIVE
1 11	3.8e-10	3.6e-06	1.0000000	0.0081	1002	348	696	9e-11	6.4e-
	er f = 562.3								
Paramete Iter	r Ctarget = SolEst	3.72759e-0 ResEst	Damping	Stensize	#Res	#Jac	#So1	LinErr	LinRe
s				-					
1 11	6.9e-09	3.1e-06	1.0000000	0.013	1005	349	698	1.1e-10	6e-

	er f = 562.	341. = 6.1054e-05							
	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	1.2e-07	4.5e-05	1.0000000	0.022	1008	350	700	7.2e-11	5.8e-
Paramete	er f = 562.	341.							
	r Ctarget		Daniel I i i	Q+	D	U T	II Q - 1	T do Book	T i - D -
Iter s	SolEst	ResEst	Damping	Stepsize	#Kes	#Jac	#SOI	LinErr	LinRe
1 11	1.9e-06	2.5	1.0000000	0.036	1010	351	702	2.2e-10	6.3e-
2 11	2.4e-13	2.7e-06	1.0000000	1.9e-06	1012	352	704	1e-10	6.4e-
Paramete	er f = 681.	292.							
	er Ctarget				""		"	- · -	T ' D
Iter s			Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 15	1.9e-17	3e-06	1.0000000	3.5e-05	1015	353	706	1.7e-10	1.1e-
	er f = 681.	292. = 1.63789e-0	17						
Iter			Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	7.1e-18	4.2e-06	1.0000000	5.8e-05	1018	354	708	2.5e-10	2.8e-
14									
	er f = 681.	292. = 2.6827e-07	7 .						
Iter			Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	3.1e-17	3.7e-06	1.0000000	9.5e-05	1021	355	710	3.7e-10	2.9e-
15									
	er f = 681.	292. = 4.39397e-0	17						
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	2.3e-17	3.1e-06	1.0000000	0.00016	1024	356	712	4.6e-10	2.3e-
14									
	er f = 681.	292. = 7.19686e-0)7.						
Iter	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	4.2e-17	3.7e-06	1.0000000	0.00025	1027	357	714	3.7e-10	1.2e-
13									
	er f = 681.		16						
Iter	SolEst	= 1.17877e-0 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
S									

1 13	7.9e-17	3.3e-06	1.0000000	0.00042	1030	358	716	5.6e-10	1.6e-
	er f = 681.								
Paramet Iter s	er Ctarget SolEst	= 1.9307e-06 ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
-	1.3e-16	4e-06	1.0000000	0.00068	1033	359	718	2.4e-10	1.6e-
	er f = 681.		26						
Iter s	SolEst	= 3.16228e-0 ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
_	3.7e-15	2.9e-06	1.0000000	0.0011	1036	360	720	4.1e-10	5.2e-
	er f = 681.								
Iter	er Ctarget SolEst	= 5.17947e-(ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	3.2e-14	2.9e-06	1.0000000	0.0018	1039	361	722	9.9e-11	5.8e-
Paramet	er f = 681.	292.							
Paramet Iter	_	= 8.48343e-0 ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	6e-13	3.7e-06	1.0000000	0.003	1042	362	724	2e-10	6.1e-
Paramet	er $f = 681$.	292.							
Paramet Iter	_	= 1.3895e-05 ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	1.1e-11	3.1e-06	1.0000000	0.0049	1045	363	726	6.3e-11	6.1e-
	er f = 681.	292.							
		= 2.27585e-0	05.						
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 11	2.1e-10	4.2e-06	1.0000000	0.0081	1048	364	728	1e-10	6e-
	er f = 681.								
Paramet Iter	er Ctarget SolEst	= 3.72759e-(ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	3.9e-09	3.6e-06	1.0000000	0.013	1051	365	730	9.6e-11	5.7e-
11									
Paramet	er $f = 681$.	292.							
	_	= 6.1054e-05		Stonoi	#D ~ ~	# T ~ ~	#0.1	TinEn-	TimDa
Iter s	SolEst	ResEst	Damping	scepsize	#KeS	#JaC	#20T	LinErr	LinRe

1 11	6.8e-08	2.2e-05	1.0000000	0.022	1054	366	732	9.3e-11	6.3e-
	er f = 681.2 er Ctarget =	= 0.0001.							
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	1.1e-06	1.7	1.0000000	0.036	1056	367	734	4.3e-10	5.7e-
	6.8e-14	3.6e-06	1.000000	1.1e-06	1058	368	736	1.8e-10	2.5e-
	er f = 825.4								
Iter	er Ctarget = SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	1.9e-17	3.8e-06	1.0000000	3.5e-05	1061	369	738	4.7e-10	2.3e-
	er f = 825.4 er Ctarget =		07.						
Iter	-		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 14	7e-18	2.6e-06	1.0000000	5.8e-05	1064	370	740	4.5e-10	2.8e-
Paramete	er f = 825.4	404.							
Paramete Iter	er Ctarget = SolEst		7. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 15	3.1e-17	3.4e-06	1.0000000	9.5e-05	1067	371	742	2e-10	3.5e-
	er f = 825.4		7.7						
Iter	er Ctarget = SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 15	2e-17	2.8e-06	1.0000000	0.00016	1070	372	744	3.9e-10	9.8e-
	er f = 825.4		7.7						
Iter s	er Ctarget = SolEst	= 7.19686e-0 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 14	2.6e-17	3.9e-06	1.0000000	0.00025	1073	373	746	2.8e-10	7.4e-
	er f = 825.4 er Ctarget =		06.						
Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	1e-16	3.8e-06	1.0000000	0.00042	1076	374	748	2.3e-10	2.1e-
Paramete	er f = 825.4	104.	-						

46

Parameter Ctarget = 1.9307e-06.

Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	1.9e-16	3.2e-06	1.0000000	0.00068	1079	375	750	2.9e-10	1.8e-
	er f = 825. er Ctarget	404. = 3.16228e-0	06.						
Iter s	_		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 12	1.7e-15	3.4e-06	1.0000000	0.0011	1082	376	752	2.1e-10	2e-
	er $f = 825$.	404. = 5.17947e-0	16						
	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	1.9e-14	2.9e-06	1.0000000	0.0018	1085	377	754	2.1e-10	6.2e-
	er f = 825.	404. = 8.48343e-0	16						
	_		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	3.4e-13	3.1e-06	1.0000000	0.003	1088	378	756	5.3e-11	7e-
	er $f = 825$.		=						
Iter	_	= 1.3895e-05 ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	6.4e-12	3.5e-06	1.0000000	0.0049	1091	379	758	1.6e-10	5.6e-
	er f = 825.								
Paramet Iter	er Ctarget SolEst	= 2.27585e-(ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	1.2e-10	2.6e-06	1.0000000	0.008	1094	380	760	5.9e-11	6.1e-
	er f = 825.								
Paramet Iter	er Ctarget SolEst	= 3.72759e-(ResEst		Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	2.2e-09	3.3e-06	1.0000000	0.013	1097	381	762	9.5e-11	6.1e-
	er f = 825. er Ctarget	404. = 6.1054e-05	ā.						
Iter	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
-	3.9e-08	1e-05	1.0000000	0.022	1100	382	764	3.8e-10	6.6e-
Paramet	er f = 825.	404.							

Parameter Ctarget = 0.0001.

Iter	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 11	6.3e-07	1.2	1.0000000	0.036	1102	383	766	1.6e-10	5.6e-
2	1.9e-14	3.4e-06	1.0000000	6.3e-07	1104	384	768	6.2e-10	1.1e-
	er f = 1000. er Ctarget =								
Iter	SolEst		Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	1.9e-17	2.8e-06	1.0000000	3.5e-05	1107	385	770	5.5e-10	2.3e-
	er f = 1000.		0.5						
Paramet Iter s	er Ctarget = SolEst		07. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
	6.1e-18	3.1e-06	1.0000000	5.8e-05	1110	386	772	4e-10	1.4e-
Paramet	er f = 1000.								
	er Ctarget = SolEst		7. Damping	Stensize	#Res	#.Tac	#501	LinErr	LinRe
S				_					
1 15	3.1e-17	2.6e-06	1.0000000	9.5e-05	1113	387	774	9.7e-11	7e-
	er f = 1000.								
Paramet Iter	er Ctarget = SolEst		07. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1	2.7e-17	3 00 06	1.000000	0 00016	1116	200	776	4.6e-10	1 60
14	2./e-1/	3.9e-06	1.0000000	0.00018	1116	300	776	4.66-10	4.0e-
	er f = 1000.	T 1000	0.7						
Iter	er Ctarget = SolEst		07. Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
s 1 13	2.5e-17	2.8e-06	1.0000000	0.00025	1119	389	778	4e-10	1.3e-
Paramet	er $f = 1000$.								
	er Ctarget =		06.						
Iter s	SolEst	ResEst	Damping	Stepsize	#Res	#Jac	#Sol	LinErr	LinRe
1 13	8e-17	3.6e-06	1.0000000	0.00042	1122	390	780	2.3e-10	1.6e-
Paramet	er f = 1000.								
Paramet Iter	er Ctarget = SolEst	1.9307e-0 ResEst	6. Damping	Stonaisa	#P00	# Ta a	#0~1	LinErr	LinRe
S									
1 13	2.4e-16	3.4e-06	1.0000000	0.00068	1125	391	782	2e-10	3.2e-

Paramete Iter s	r f = 1000. r Ctarget = SolEst 1.8e-15	ResEst	Damping	Stepsize			
Paramete Iter s	r f = 1000. r Ctarget = SolEst 1.1e-14	ResEst	Damping	_		LinErr	
Paramete Iter s		ResEst	Damping	-		LinErr	
Paramete Iter s	r f = 1000. r Ctarget = SolEst 3.6e-12	ResEst		-			
Paramete Iter s		ResEst	-05. Damping 1.0000000	_		LinErr	
Paramete	r f = 1000. r Ctarget = SolEst 1.2e-09	ResEst	Damping			LinErr	
Paramete Iter s	r f = 1000. r Ctarget = SolEst 2.2e-08	ResEst		Stepsize		LinErr	
Paramete Iter s	r f = 1000. r Ctarget = SolEst 3.6e-07	ResEst				LinErr	

2 5.2e-15 2.8e-06 1.0000000 3.6e-07 1150 400 800 3e-10 3.5e-

Parametric 1 (p1)

GENERAL

Description	Value
Defined by study step	Parametric Sweep
Sweep type	All combinations
Run continuation for	No parameter

PARAMETERS

Parameter name	Parameter value list	Parameter unit
f	10^(range(1, (3-1)/24, 3))*1[Hz]	1/s
Ctarget	10^(range(-7, (-4 - (-7))/14, -4))*1[mol/m^3]	mol/m^3

CONTINUATION

Description	Value
Predictor	Constant

Fully Coupled 1 (fc1)

GENERAL

Description	Value
Linear solver	Direct (cd) (merged)

METHOD AND TERMINATION

Description	Value
Minimum damping factor	1E-6
Maximum number of iterations	50

4 Results

4.1 DATASETS

4.1.1 Study 1/Solution 1

SOLUTION

Description	Value
Solution	Solution 1
Component	Component 1 (comp1)

Dataset: Study 1/Solution 1

4.1.2 Revolution 2D 1

DATA

Description	Value
Dataset	Study 1/Solution 1

AXIS DATA

Description	Value
Axis entry method	Two points
Points	{{0, 0}, {0, 1}}

REVOLUTION LAYERS

Description	Value
Start angle	-90

Description	Value
Revolution angle	225

ADVANCED

Description	Value
Define variables	On
Space variables	{rev1x, rev1y, rev1z}

Dataset: Revolution 2D 1

4.2 DERIVED VALUES

4.2.1 Global Evaluation 1

DATA

Description	Value
Dataset	Study 1/Solution 1

EXPRESSIONS

Expression	Unit	Description
theta_open	1	State variable theta_open

4.2.2 Line Integration 1

OUTPUT

DATA

Description	Value
Dataset	Study 1/Solution 1

EXPRESSIONS

Expression	Unit	Description	
cd.iloc_er1	Α	Local current density	
cd.nll	Α	Normal electrolyte current density	
cd.ltot_es1	m^2*A	Total current	

INTEGRATION SETTINGS

Description	Value
Integration order	4
Compute surface integral	On

4.3 TABLES

4.3.1 Table 1

Line Integration 1

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
10	1E-7	-4.9842E-10	4.9842E-10	-1.5658E-15
10	1.6379E-7	-1.3363E-9	1.3363E-9	-4.1981E-15
10	2.6827E-7	-3.581E-9	3.581E-9	-1.125E-14
10	4.394E-7	-9.5887E-9	9.5887E-9	-3.0124E-14
10	7.1969E-7	-2.5635E-8	2.5635E-8	-8.0534E-14
10	1.1788E-6	-6.8315E-8	6.8315E-8	-2.1462E-13
10	1.9307E-6	-1.8083E-7	1.8083E-7	-5.6811E-13
10	3.1623E-6	-4.7162E-7	4.7162E-7	-1.4816E-12
10	5.1795E-6	-1.1908E-6	1.1908E-6	-3.7409E-12
10	8.4834E-6	-2.8164E-6	2.8164E-6	-8.8481E-12
10	1.3895E-5	-5.9801E-6	5.9801E-6	-1.8787E-11
10	2.2758E-5	-1.1138E-5	1.1138E-5	-3.499E-11
10	3.7276E-5	-1.8464E-5	1.8464E-5	-5.8006E-11
10	6.1054E-5	-2.8014E-5	2.8013E-5	-8.801E-11
10	1E-4	-3.9552E-5	3.9552E-5	-1.2426E-10
12.115	1E-7	-4.1146E-10	4.1146E-10	-1.2926E-15
12.115	1.6379E-7	-1.1033E-9	1.1033E-9	-3.466E-15
12.115	2.6827E-7	-2.9571E-9	2.9571E-9	-9.2899E-15

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
12.115	4.394E-7	-7.9207E-9	7.9207E-9	-2.4884E-14
12.115	7.1969E-7	-2.119E-8	2.119E-8	-6.657E-14
12.115	1.1788E-6	-5.6551E-8	5.6551E-8	-1.7766E-13
12.115	1.9307E-6	-1.5015E-7	1.5015E-7	-4.7172E-13
12.115	3.1623E-6	-3.943E-7	3.943E-7	-1.2387E-12
12.115	5.1795E-6	-1.0105E-6	1.0105E-6	-3.1745E-12
12.115	8.4834E-6	-2.4604E-6	2.4604E-6	-7.7297E-12
12.115	1.3895E-5	-5.4611E-6	5.4611E-6	-1.7156E-11
12.115	2.2758E-5	-1.0666E-5	1.0666E-5	-3.3509E-11
12.115	3.7276E-5	-1.8346E-5	1.8346E-5	-5.7637E-11
12.115	6.1054E-5	-2.8547E-5	2.8545E-5	-8.9682E-11
12.115	1E-4	-4.1085E-5	4.1085E-5	-1.2907E-10
14.678	1E-7	-3.3966E-10	3.3966E-10	-1.0671E-15
14.678	1.6379E-7	-9.1082E-10	9.1082E-10	-2.8614E-15
14.678	2.6827E-7	-2.4416E-9	2.4416E-9	-7.6707E-15
14.678	4.394E-7	-6.5419E-9	6.5419E-9	-2.0552E-14
14.678	7.1969E-7	-1.751E-8	1.751E-8	-5.5011E-14
14.678	1.1788E-6	-4.678E-8	4.678E-8	-1.4696E-13
14.678	1.9307E-6	-1.2449E-7	1.2449E-7	-3.9111E-13
14.678	3.1623E-6	-3.2856E-7	3.2856E-7	-1.0322E-12
14.678	5.1795E-6	-8.5147E-7	8.5147E-7	-2.675E-12
14.678	8.4834E-6	-2.1214E-6	2.1214E-6	-6.6645E-12
14.678	1.3895E-5	-4.8963E-6	4.8963E-6	-1.5382E-11
14.678	2.2758E-5	-1.0037E-5	1.0037E-5	-3.1532E-11
14.678	3.7276E-5	-1.7999E-5	1.7998E-5	-5.6544E-11
14.678	6.1054E-5	-2.8823E-5	2.8822E-5	-9.0551E-11
14.678	1E-4	-4.2338E-5	4.2338E-5	-1.3301E-10
17.783	1E-7	-2.8039E-10	2.8039E-10	-8.8086E-16
17.783	1.6379E-7	-7.5192E-10	7.5192E-10	-2.3622E-15
17.783	2.6827E-7	-2.0159E-9	2.0159E-9	-6.3332E-15
17.783	4.394E-7	-5.4024E-9	5.4024E-9	-1.6972E-14
17.783	7.1969E-7	-1.4466E-8	1.4466E-8	-4.5447E-14
17.783	1.1788E-6	-3.8679E-8	3.8679E-8	-1.2151E-13
17.783	1.9307E-6	-1.0311E-7	1.0311E-7	-3.2392E-13
17.783	3.1623E-6	-2.7313E-7	2.7313E-7	-8.5806E-13

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
17.783	5.1795E-6	-7.1367E-7	7.1367E-7	-2.2421E-12
17.783	8.4834E-6	-1.8098E-6	1.8098E-6	-5.6856E-12
17.783	1.3895E-5	-4.3168E-6	4.3168E-6	-1.3562E-11
17.783	2.2758E-5	-9.2703E-6	9.2703E-6	-2.9123E-11
17.783	3.7276E-5	-1.7401E-5	1.7401E-5	-5.4667E-11
17.783	6.1054E-5	-2.8809E-5	2.8808E-5	-9.0507E-11
17.783	1E-4	-4.3277E-5	4.3277E-5	-1.3596E-10
21.544	1E-7	-2.3145E-10	2.3145E-10	-7.2712E-16
21.544	1.6379E-7	-6.2072E-10	6.2072E-10	-1.95E-15
21.544	2.6827E-7	-1.6643E-9	1.6643E-9	-5.2287E-15
21.544	4.394E-7	-4.461E-9	4.461E-9	-1.4014E-14
21.544	7.1969E-7	-1.1949E-8	1.1949E-8	-3.7539E-14
21.544	1.1788E-6	-3.1968E-8	3.1968E-8	-1.0043E-13
21.544	1.9307E-6	-8.5325E-8	8.5325E-8	-2.6806E-13
21.544	3.1623E-6	-2.2665E-7	2.2665E-7	-7.1203E-13
21.544	5.1795E-6	-5.9583E-7	5.9583E-7	-1.8718E-12
21.544	8.4834E-6	-1.5312E-6	1.5312E-6	-4.8105E-12
21.544	1.3895E-5	-3.7508E-6	3.7508E-6	-1.1784E-11
21.544	2.2758E-5	-8.4038E-6	8.4038E-6	-2.6401E-11
21.544	3.7276E-5	-1.6549E-5	1.6549E-5	-5.1989E-11
21.544	6.1054E-5	-2.8465E-5	2.8464E-5	-8.9426E-11
21.544	1E-4	-4.3863E-5	4.3863E-5	-1.378E-10
26.102	1E-7	-1.9105E-10	1.9105E-10	-6.0021E-16
26.102	1.6379E-7	-5.124E-10	5.124E-10	-1.6098E-15
26.102	2.6827E-7	-1.374E-9	1.374E-9	-4.3166E-15
26.102	4.394E-7	-3.6833E-9	3.6833E-9	-1.1571E-14
26.102	7.1969E-7	-9.8684E-9	9.8684E-9	-3.1002E-14
26.102	1.1788E-6	-2.6414E-8	2.6414E-8	-8.2982E-14
26.102	1.9307E-6	-7.0568E-8	7.0568E-8	-2.217E-13
26.102	3.1623E-6	-1.8783E-7	1.8783E-7	-5.9008E-13
26.102	5.1795E-6	-4.96E-7	4.96E-7	-1.5582E-12
26.102	8.4834E-6	-1.2874E-6	1.2874E-6	-4.0446E-12
26.102	1.3895E-5	-3.2201E-6	3.2201E-6	-1.0116E-11
26.102	2.2758E-5	-7.4847E-6	7.4847E-6	-2.3514E-11
26.102	3.7276E-5	-1.5459E-5	1.5459E-5	-4.8567E-11

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
26.102	6.1054E-5	-2.7756E-5	2.7755E-5	-8.7198E-11
26.102	1E-4	-4.4051E-5	4.4051E-5	-1.3839E-10
31.623	1E-7	-1.577E-10	1.577E-10	-4.9544E-16
31.623	1.6379E-7	-4.2298E-10	4.2298E-10	-1.3288E-15
31.623	2.6827E-7	-1.1343E-9	1.1343E-9	-3.5635E-15
31.623	4.394E-7	-3.041E-9	3.041E-9	-9.5535E-15
31.623	7.1969E-7	-8.1491E-9	8.1491E-9	-2.5601E-14
31.623	1.1788E-6	-2.182E-8	2.182E-8	-6.855E-14
31.623	1.9307E-6	-5.8338E-8	5.8338E-8	-1.8327E-13
31.623	3.1623E-6	-1.5551E-7	1.5551E-7	-4.8855E-13
31.623	5.1795E-6	-4.1201E-7	4.1201E-7	-1.2944E-12
31.623	8.4834E-6	-1.0774E-6	1.0774E-6	-3.3847E-12
31.623	1.3895E-5	-2.738E-6	2.738E-6	-8.6018E-12
31.623	2.2758E-5	-6.5614E-6	6.5614E-6	-2.0613E-11
31.623	3.7276E-5	-1.4177E-5	1.4176E-5	-4.4537E-11
31.623	6.1054E-5	-2.6659E-5	2.6658E-5	-8.3751E-11
31.623	1E-4	-4.3784E-5	4.3784E-5	-1.3755E-10
38.312	1E-7	-1.3018E-10	1.3018E-10	-4.0896E-16
38.312	1.6379E-7	-3.4915E-10	3.4915E-10	-1.0969E-15
38.312	2.6827E-7	-9.3636E-10	9.3636E-10	-2.9417E-15
38.312	4.394E-7	-2.5106E-9	2.5106E-9	-7.8872E-15
38.312	7.1969E-7	-6.7288E-9	6.7288E-9	-2.1139E-14
38.312	1.1788E-6	-1.8022E-8	1.8022E-8	-5.6618E-14
38.312	1.9307E-6	-4.821E-8	4.821E-8	-1.5146E-13
38.312	3.1623E-6	-1.2866E-7	1.2866E-7	-4.042E-13
38.312	5.1795E-6	-3.4172E-7	3.4172E-7	-1.0735E-12
38.312	8.4834E-6	-8.9845E-7	8.9845E-7	-2.8225E-12
38.312	1.3895E-5	-2.311E-6	2.311E-6	-7.2602E-12
38.312	2.2758E-5	-5.6749E-6	5.6749E-6	-1.7828E-11
38.312	3.7276E-5	-1.2766E-5	1.2766E-5	-4.0105E-11
38.312	6.1054E-5	-2.5179E-5	2.5179E-5	-7.9103E-11
38.312	1E-4	-4.3007E-5	4.3007E-5	-1.3511E-10
46.416	1E-7	-1.0745E-10	1.0745E-10	-3.3757E-16
46.416	1.6379E-7	-2.8821E-10	2.8821E-10	-9.0544E-16
46.416	2.6827E-7	-7.7295E-10	7.7295E-10	-2.4283E-15

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
46.416	4.394E-7	-2.0726E-9	2.0726E-9	-6.5113E-15
46.416	7.1969E-7	-5.5556E-9	5.5556E-9	-1.7453E-14
46.416	1.1788E-6	-1.4883E-8	1.4883E-8	-4.6757E-14
46.416	1.9307E-6	-3.9831E-8	3.9831E-8	-1.2513E-13
46.416	3.1623E-6	-1.0639E-7	1.0639E-7	-3.3423E-13
46.416	5.1795E-6	-2.8308E-7	2.8308E-7	-8.8933E-13
46.416	8.4834E-6	-7.473E-7	7.473E-7	-2.3477E-12
46.416	1.3895E-5	-1.9396E-6	1.9396E-6	-6.0935E-12
46.416	2.2758E-5	-4.8546E-6	4.8546E-6	-1.5251E-11
46.416	3.7276E-5	-1.1304E-5	1.1304E-5	-3.5512E-11
46.416	6.1054E-5	-2.336E-5	2.3359E-5	-7.3387E-11
46.416	1E-4	-4.1672E-5	4.1672E-5	-1.3092E-10
56.234	1E-7	-8.8694E-11	8.8694E-11	-2.7864E-16
56.234	1.6379E-7	-2.379E-10	2.379E-10	-7.4739E-16
56.234	2.6827E-7	-6.3805E-10	6.3805E-10	-2.0045E-15
56.234	4.394E-7	-1.711E-9	1.711E-9	-5.3752E-15
56.234	7.1969E-7	-4.5867E-9	4.5867E-9	-1.441E-14
56.234	1.1788E-6	-1.229E-8	1.229E-8	-3.861E-14
56.234	1.9307E-6	-3.2901E-8	3.2901E-8	-1.0336E-13
56.234	3.1623E-6	-8.7938E-8	8.7938E-8	-2.7627E-13
56.234	5.1795E-6	-2.3431E-7	2.3431E-7	-7.3611E-13
56.234	8.4834E-6	-6.2041E-7	6.2041E-7	-1.9491E-12
56.234	1.3895E-5	-1.6211E-6	1.6211E-6	-5.0928E-12
56.234	2.2758E-5	-4.117E-6	4.117E-6	-1.2934E-11
56.234	3.7276E-5	-9.862E-6	9.862E-6	-3.0982E-11
56.234	6.1054E-5	-2.1282E-5	2.1281E-5	-6.6858E-11
56.234	1E-4	-3.9763E-5	3.9763E-5	-1.2492E-10
68.129	1E-7	-7.321E-11	7.321E-11	-2.3E-16
68.129	1.6379E-7	-1.9637E-10	1.9637E-10	-6.1692E-16
68.129	2.6827E-7	-5.2669E-10	5.2669E-10	-1.6546E-15
68.129	4.394E-7	-1.4124E-9	1.4124E-9	-4.4372E-15
68.129	7.1969E-7	-3.7866E-9	3.7866E-9	-1.1896E-14
68.129	1.1788E-6	-1.0148E-8	1.0148E-8	-3.188E-14
68.129	1.9307E-6	-2.7173E-8	2.7173E-8	-8.5367E-14
68.129	3.1623E-6	-7.2665E-8	7.2665E-8	-2.2828E-13

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
68.129	5.1795E-6	-1.9382E-7	1.9382E-7	-6.089E-13
68.129	8.4834E-6	-5.1435E-7	5.1435E-7	-1.6159E-12
68.129	1.3895E-5	-1.3507E-6	1.3507E-6	-4.2432E-12
68.129	2.2758E-5	-3.4683E-6	3.4683E-6	-1.0896E-11
68.129	3.7276E-5	-8.4981E-6	8.4981E-6	-2.6698E-11
68.129	6.1054E-5	-1.9053E-5	1.9053E-5	-5.9858E-11
68.129	1E-4	-3.7307E-5	3.7307E-5	-1.172E-10
82.54	1E-7	-6.0429E-11	6.0429E-11	-1.8984E-16
82.54	1.6379E-7	-1.6209E-10	1.6209E-10	-5.0923E-16
82.54	2.6827E-7	-4.3475E-10	4.3475E-10	-1.3658E-15
82.54	4.394E-7	-1.1659E-9	1.1659E-9	-3.6628E-15
82.54	7.1969E-7	-3.126E-9	3.126E-9	-9.8206E-15
82.54	1.1788E-6	-8.3781E-9	8.3781E-9	-2.6321E-14
82.54	1.9307E-6	-2.244E-8	2.244E-8	-7.0496E-14
82.54	3.1623E-6	-6.0031E-8	6.0031E-8	-1.8859E-13
82.54	5.1795E-6	-1.6025E-7	1.6025E-7	-5.0343E-13
82.54	8.4834E-6	-4.2597E-7	4.2597E-7	-1.3382E-12
82.54	1.3895E-5	-1.1228E-6	1.1228E-6	-3.5273E-12
82.54	2.2758E-5	-2.9071E-6	2.9071E-6	-9.1329E-12
82.54	3.7276E-5	-7.2499E-6	7.2499E-6	-2.2776E-11
82.54	6.1054E-5	-1.679E-5	1.679E-5	-5.2748E-11
82.54	1E-4	-3.4391E-5	3.4391E-5	-1.0804E-10
100	1E-7	-4.9879E-11	4.9879E-11	-1.567E-16
100	1.6379E-7	-1.338E-10	1.338E-10	-4.2033E-16
100	2.6827E-7	-3.5886E-10	3.5886E-10	-1.1274E-15
100	4.394E-7	-9.6242E-10	9.6242E-10	-3.0235E-15
100	7.1969E-7	-2.5806E-9	2.5806E-9	-8.1071E-15
100	1.1788E-6	-6.9169E-9	6.9169E-9	-2.173E-14
100	1.9307E-6	-1.8529E-8	1.8529E-8	-5.821E-14
100	3.1623E-6	-4.9584E-8	4.9584E-8	-1.5577E-13
100	5.1795E-6	-1.3244E-7	1.3244E-7	-4.1607E-13
100	8.4834E-6	-3.5251E-7	3.5251E-7	-1.1074E-12
100	1.3895E-5	-9.3173E-7	9.3173E-7	-2.9271E-12
100	2.2758E-5	-2.4275E-6	2.4275E-6	-7.6263E-12
100	3.7276E-5	-6.1366E-6	6.1366E-6	-1.9279E-11

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
100	6.1054E-5	-1.4595E-5	1.4595E-5	-4.5851E-11
100	1E-4	-3.1153E-5	3.1153E-5	-9.787E-11
121.15	1E-7	-4.1171E-11	4.1171E-11	-1.2934E-16
121.15	1.6379E-7	-1.1044E-10	1.1044E-10	-3.4695E-16
121.15	2.6827E-7	-2.9622E-10	2.9622E-10	-9.306E-16
121.15	4.394E-7	-7.9444E-10	7.9444E-10	-2.4958E-15
121.15	7.1969E-7	-2.1302E-9	2.1302E-9	-6.6923E-15
121.15	1.1788E-6	-5.7102E-9	5.7102E-9	-1.7939E-14
121.15	1.9307E-6	-1.5299E-8	1.5299E-8	-4.8062E-14
121.15	3.1623E-6	-4.095E-8	4.095E-8	-1.2865E-13
121.15	5.1795E-6	-1.0943E-7	1.0943E-7	-3.4378E-13
121.15	8.4834E-6	-2.9155E-7	2.9155E-7	-9.1592E-13
121.15	1.3895E-5	-7.7222E-7	7.7222E-7	-2.426E-12
121.15	2.2758E-5	-2.0214E-6	2.0214E-6	-6.3503E-12
121.15	3.7276E-5	-5.1631E-6	5.1631E-6	-1.622E-11
121.15	6.1054E-5	-1.2543E-5	1.2543E-5	-3.9404E-11
121.15	1E-4	-2.7759E-5	2.7759E-5	-8.7209E-11
146.78	1E-7	-3.3983E-11	3.3983E-11	-1.0676E-16
146.78	1.6379E-7	-9.1158E-11	9.1158E-11	-2.8638E-16
146.78	2.6827E-7	-2.4451E-10	2.4451E-10	-7.6815E-16
146.78	4.394E-7	-6.5577E-10	6.5577E-10	-2.0602E-15
146.78	7.1969E-7	-1.7585E-9	1.7585E-9	-5.5243E-15
146.78	1.1788E-6	-4.714E-9	4.714E-9	-1.4809E-14
146.78	1.9307E-6	-1.2631E-8	1.2631E-8	-3.9681E-14
146.78	3.1623E-6	-3.3815E-8	3.3815E-8	-1.0623E-13
146.78	5.1795E-6	-9.0398E-8	9.0398E-8	-2.8399E-13
146.78	8.4834E-6	-2.4102E-7	2.4102E-7	-7.5719E-13
146.78	1.3895E-5	-6.3941E-7	6.3941E-7	-2.0088E-12
146.78	2.2758E-5	-1.6796E-6	1.6796E-6	-5.2768E-12
146.78	3.7276E-5	-4.3241E-6	4.3241E-6	-1.3585E-11
146.78	6.1054E-5	-1.0681E-5	1.0681E-5	-3.3557E-11
146.78	1E-4	-2.4374E-5	2.4374E-5	-7.6574E-11
177.83	1E-7	-2.805E-11	2.805E-11	-8.8122E-17
177.83	1.6379E-7	-7.5243E-11	7.5243E-11	-2.3638E-16
177.83	2.6827E-7	-2.0182E-10	2.0182E-10	-6.3405E-16

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
177.83	4.394E-7	-5.413E-10	5.413E-10	-1.7005E-15
177.83	7.1969E-7	-1.4515E-9	1.4515E-9	-4.5601E-15
177.83	1.1788E-6	-3.8914E-9	3.8914E-9	-1.2225E-14
177.83	1.9307E-6	-1.0428E-8	1.0428E-8	-3.2759E-14
177.83	3.1623E-6	-2.7921E-8	2.7921E-8	-8.7717E-14
177.83	5.1795E-6	-7.4663E-8	7.4663E-8	-2.3456E-13
177.83	8.4834E-6	-1.9919E-7	1.9919E-7	-6.2576E-13
177.83	1.3895E-5	-5.2907E-7	5.2907E-7	-1.6621E-12
177.83	2.2758E-5	-1.3935E-6	1.3935E-6	-4.3779E-12
177.83	3.7276E-5	-3.609E-6	3.609E-6	-1.1338E-11
177.83	6.1054E-5	-9.0314E-6	9.0314E-6	-2.8373E-11
177.83	1E-4	-2.1134E-5	2.1134E-5	-6.6395E-11
215.44	1E-7	-2.3153E-11	2.3153E-11	-7.2737E-17
215.44	1.6379E-7	-6.2107E-11	6.2107E-11	-1.9511E-16
215.44	2.6827E-7	-1.6659E-10	1.6659E-10	-5.2336E-16
215.44	4.394E-7	-4.468E-10	4.468E-10	-1.4037E-15
215.44	7.1969E-7	-1.1982E-9	1.1982E-9	-3.7642E-15
215.44	1.1788E-6	-3.2123E-9	3.2123E-9	-1.0092E-14
215.44	1.9307E-6	-8.6084E-9	8.6084E-9	-2.7044E-14
215.44	3.1623E-6	-2.3053E-8	2.3053E-8	-7.2423E-14
215.44	5.1795E-6	-6.166E-8	6.166E-8	-1.9371E-13
215.44	8.4834E-6	-1.6457E-7	1.6457E-7	-5.1701E-13
215.44	1.3895E-5	-4.3753E-7	4.3753E-7	-1.3746E-12
215.44	2.2758E-5	-1.1548E-6	1.1548E-6	-3.6279E-12
215.44	3.7276E-5	-3.0044E-6	3.0044E-6	-9.4385E-12
215.44	6.1054E-5	-7.5941E-6	7.5941E-6	-2.3857E-11
215.44	1E-4	-1.8135E-5	1.8135E-5	-5.6974E-11
261.02	1E-7	-1.9111E-11	1.9111E-11	-6.0038E-17
261.02	1.6379E-7	-5.1264E-11	5.1264E-11	-1.6105E-16
261.02	2.6827E-7	-1.3751E-10	1.3751E-10	-4.3199E-16
261.02	4.394E-7	-3.688E-10	3.688E-10	-1.1586E-15
261.02	7.1969E-7	-9.8903E-10	9.8903E-10	-3.1071E-15
261.02	1.1788E-6	-2.6516E-9	2.6516E-9	-8.3304E-15
261.02	1.9307E-6	-7.1064E-9	7.1064E-9	-2.2325E-14
261.02	3.1623E-6	-1.9033E-8	1.9033E-8	-5.9792E-14

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
261.02	5.1795E-6	-5.0916E-8	5.0916E-8	-1.5996E-13
261.02	8.4834E-6	-1.3594E-7	1.3594E-7	-4.2707E-13
261.02	1.3895E-5	-3.6169E-7	3.6169E-7	-1.1363E-12
261.02	2.2758E-5	-9.561E-7	9.561E-7	-3.0037E-12
261.02	3.7276E-5	-2.4962E-6	2.4962E-6	-7.8419E-12
261.02	6.1054E-5	-6.3585E-6	6.3585E-6	-1.9976E-11
261.02	1E-4	-1.5432E-5	1.5432E-5	-4.8482E-11
316.23	1E-7	-1.5774E-11	1.5774E-11	-4.9556E-17
316.23	1.6379E-7	-4.2314E-11	4.2314E-11	-1.3293E-16
316.23	2.6827E-7	-1.135E-10	1.135E-10	-3.5657E-16
316.23	4.394E-7	-3.0442E-10	3.0442E-10	-9.5636E-16
316.23	7.1969E-7	-8.1638E-10	8.1638E-10	-2.5647E-15
316.23	1.1788E-6	-2.1888E-9	2.1888E-9	-6.8764E-15
316.23	1.9307E-6	-5.8663E-9	5.8663E-9	-1.843E-14
316.23	3.1623E-6	-1.5713E-8	1.5713E-8	-4.9362E-14
316.23	5.1795E-6	-4.204E-8	4.204E-8	-1.3207E-13
316.23	8.4834E-6	-1.1228E-7	1.1228E-7	-3.5273E-13
316.23	1.3895E-5	-2.989E-7	2.989E-7	-9.3901E-13
316.23	2.2758E-5	-7.9108E-7	7.9108E-7	-2.4852E-12
316.23	3.7276E-5	-2.0709E-6	2.0709E-6	-6.5058E-12
316.23	6.1054E-5	-5.3069E-6	5.3069E-6	-1.6672E-11
316.23	1E-4	-1.3046E-5	1.3046E-5	-4.0984E-11
383.12	1E-7	-1.302E-11	1.302E-11	-4.0904E-17
383.12	1.6379E-7	-3.4926E-11	3.4926E-11	-1.0972E-16
383.12	2.6827E-7	-9.3684E-11	9.3684E-11	-2.9432E-16
383.12	4.394E-7	-2.5127E-10	2.5127E-10	-7.894E-16
383.12	7.1969E-7	-6.7386E-10	6.7386E-10	-2.117E-15
383.12	1.1788E-6	-1.8068E-9	1.8068E-9	-5.6761E-15
383.12	1.9307E-6	-4.8425E-9	4.8425E-9	-1.5213E-14
383.12	3.1623E-6	-1.2971E-8	1.2971E-8	-4.075E-14
383.12	5.1795E-6	-3.471E-8	3.471E-8	-1.0904E-13
383.12	8.4834E-6	-9.272E-8	9.272E-8	-2.9129E-13
383.12	1.3895E-5	-2.4694E-7	2.4694E-7	-7.758E-13
383.12	2.2758E-5	-6.542E-7	6.542E-7	-2.0552E-12
383.12	3.7276E-5	-1.7161E-6	1.7161E-6	-5.3914E-12

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
383.12	6.1054E-5	-4.4183E-6	4.4183E-6	-1.388E-11
383.12	1E-4	-1.0971E-5	1.0971E-5	-3.4467E-11
464.16	1E-7	-1.0747E-11	1.0747E-11	-3.3762E-17
464.16	1.6379E-7	-2.8828E-11	2.8828E-11	-9.0567E-17
464.16	2.6827E-7	-7.7328E-11	7.7328E-11	-2.4293E-16
464.16	4.394E-7	-2.0741E-10	2.0741E-10	-6.5159E-16
464.16	7.1969E-7	-5.5623E-10	5.5623E-10	-1.7474E-15
464.16	1.1788E-6	-1.4914E-9	1.4914E-9	-4.6853E-15
464.16	1.9307E-6	-3.9973E-9	3.9973E-9	-1.2558E-14
464.16	3.1623E-6	-1.0708E-8	1.0708E-8	-3.364E-14
464.16	5.1795E-6	-2.8656E-8	2.8656E-8	-9.0025E-14
464.16	8.4834E-6	-7.6562E-8	7.6562E-8	-2.4053E-13
464.16	1.3895E-5	-2.0398E-7	2.0398E-7	-6.4084E-13
464.16	2.2758E-5	-5.4079E-7	5.4079E-7	-1.6989E-12
464.16	3.7276E-5	-1.4209E-6	1.4209E-6	-4.464E-12
464.16	6.1054E-5	-3.6716E-6	3.6716E-6	-1.1535E-11
464.16	1E-4	-9.1898E-6	9.1898E-6	-2.8871E-11
562.34	1E-7	-8.8705E-12	8.8705E-12	-2.7868E-17
562.34	1.6379E-7	-2.3795E-11	2.3795E-11	-7.4755E-17
562.34	2.6827E-7	-6.3828E-11	6.3828E-11	-2.0052E-16
562.34	4.394E-7	-1.712E-10	1.712E-10	-5.3783E-16
562.34	7.1969E-7	-4.5912E-10	4.5912E-10	-1.4424E-15
562.34	1.1788E-6	-1.231E-9	1.231E-9	-3.8674E-15
562.34	1.9307E-6	-3.2996E-9	3.2996E-9	-1.0366E-14
562.34	3.1623E-6	-8.8393E-9	8.8393E-9	-2.7769E-14
562.34	5.1795E-6	-2.3657E-8	2.3657E-8	-7.4321E-14
562.34	8.4834E-6	-6.3216E-8	6.3216E-8	-1.986E-13
562.34	1.3895E-5	-1.6847E-7	1.6847E-7	-5.2927E-13
562.34	2.2758E-5	-4.4691E-7	4.4691E-7	-1.404E-12
562.34	3.7276E-5	-1.1758E-6	1.1758E-6	-3.6937E-12
562.34	6.1054E-5	-3.0467E-6	3.0467E-6	-9.5715E-12
562.34	1E-4	-7.6738E-6	7.6738E-6	-2.4108E-11
681.29	1E-7	-7.3218E-12	7.3218E-12	-2.3002E-17
681.29	1.6379E-7	-1.9641E-11	1.9641E-11	-6.1703E-17
681.29	2.6827E-7	-5.2684E-11	5.2684E-11	-1.6551E-16

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
681.29	4.394E-7	-1.4131E-10	1.4131E-10	-4.4393E-16
681.29	7.1969E-7	-3.7897E-10	3.7897E-10	-1.1906E-15
681.29	1.1788E-6	-1.0161E-9	1.0161E-9	-3.1923E-15
681.29	1.9307E-6	-2.7237E-9	2.7237E-9	-8.5566E-15
681.29	3.1623E-6	-7.2966E-9	7.2966E-9	-2.2923E-14
681.29	5.1795E-6	-1.953E-8	1.953E-8	-6.1354E-14
681.29	8.4834E-6	-5.2192E-8	5.2192E-8	-1.6397E-13
681.29	1.3895E-5	-1.3913E-7	1.3913E-7	-4.3708E-13
681.29	2.2758E-5	-3.6924E-7	3.6924E-7	-1.16E-12
681.29	3.7276E-5	-9.7239E-7	9.7239E-7	-3.0548E-12
681.29	6.1054E-5	-2.5254E-6	2.5254E-6	-7.9336E-12
681.29	1E-4	-6.3924E-6	6.3924E-6	-2.0082E-11
825.4	1E-7	-6.0434E-12	6.0434E-12	-1.8986E-17
825.4	1.6379E-7	-1.6212E-11	1.6212E-11	-5.093E-17
825.4	2.6827E-7	-4.3486E-11	4.3486E-11	-1.3661E-16
825.4	4.394E-7	-1.1664E-10	1.1664E-10	-3.6643E-16
825.4	7.1969E-7	-3.1281E-10	3.1281E-10	-9.8271E-16
825.4	1.1788E-6	-8.3874E-10	8.3874E-10	-2.635E-15
825.4	1.9307E-6	-2.2482E-9	2.2482E-9	-7.063E-15
825.4	3.1623E-6	-6.0231E-9	6.0231E-9	-1.8922E-14
825.4	5.1795E-6	-1.6122E-8	1.6122E-8	-5.0648E-14
825.4	8.4834E-6	-4.3089E-8	4.3089E-8	-1.3537E-13
825.4	1.3895E-5	-1.1488E-7	1.1488E-7	-3.6091E-13
825.4	2.2758E-5	-3.05E-7	3.05E-7	-9.582E-13
825.4	3.7276E-5	-8.0388E-7	8.0388E-7	-2.5255E-12
825.4	6.1054E-5	-2.0914E-6	2.0914E-6	-6.5704E-12
825.4	1E-4	-5.315E-6	5.315E-6	-1.6698E-11
1000	1E-7	-4.9883E-12	4.9883E-12	-1.5671E-17
1000	1.6379E-7	-1.3381E-11	1.3381E-11	-4.2038E-17
1000	2.6827E-7	-3.5893E-11	3.5893E-11	-1.1276E-16
1000	4.394E-7	-9.6274E-11	9.6274E-11	-3.0245E-16
1000	7.1969E-7	-2.5819E-10	2.5819E-10	-8.1114E-16
1000	1.1788E-6	-6.9231E-10	6.9231E-10	-2.175E-15
1000	1.9307E-6	-1.8557E-9	1.8557E-9	-5.83E-15
1000	3.1623E-6	-4.9717E-9	4.9717E-9	-1.5619E-14

f (1/s)	Ctarget (mol/m^3)	Local current density (A)	Normal electrolyte current density (A)	Total current (m^2*A)
1000	5.1795E-6	-1.3308E-8	1.3308E-8	-4.1809E-14
1000	8.4834E-6	-3.5572E-8	3.5572E-8	-1.1175E-13
1000	1.3895E-5	-9.4855E-8	9.4855E-8	-2.9799E-13
1000	2.2758E-5	-2.5191E-7	2.5191E-7	-7.914E-13
1000	3.7276E-5	-6.6436E-7	6.6436E-7	-2.0872E-12
1000	6.1054E-5	-1.7309E-6	1.7309E-6	-5.4378E-12
1000	1E-4	-4.4127E-6	4.4127E-6	-1.3863E-11

4.4 PLOT GROUPS

4.4.1 Electrolyte Potential (cd)

Surface: Electrolyte potential (V) Streamline: Electrolyte current density vector

4.4.2 Electrolyte Potential, 3D (cd)

 $f=1000\ 1/s$, Ctarget=1E-4 mol/m 3 Multislice: Electrolyte potential (V) Streamline: Electrolyte current den

Multislice: Electrolyte potential (V) Streamline: Electrolyte current density vector

4.4.3 Electrolyte Current Density (cd)

f=1000 1/s, Ctarget=1E-4 mol/m³ Streamline: Electrolyte current den

Streamline: Electrolyte current density vector Line: abs(cd.itot) (A/m²)

4.4.4 Electrolyte Current Density, 3D (cd)

f=1000 1/s, Ctarget=1E-4 mol/m 3 Streamline: Electrolyte current den Surface: abs(cd.itot) (A/m 2)

Streamline: Electrolyte current density vector Surface: abs(cd.itot) (A/m²)

4.4.5 Electrode Potential with Respect to Ground (cd)

Line: External electric potential (V)

4.4.6 Electrode Potential with Respect to Ground, 3D (cd)

f=1000 1/s, Ctarget=1E-4 mol/m³ Surface: External electric potential

Surface: External electric potential (V)

4.4.7 Electrode Potential vs. Adjacent Reference (cd)

Streamline: Electrolyte current density vector Line: Electrode potential vs. adjacent reference (V)

4.4.8 Electrode Potential vs. Adjacent Reference, 3D (cd)

f=1000 1/s, Ctarget=1E-4 mol/m³ Streamline: Electrolyte current den Surface: Electrode potential vs. adj

Streamline: Electrolyte current density vector Surface: Electrode potential vs. adjacent reference (V)

4.4.9 1D Plot Group 9

Global