Тема 6. Функции и пределы

Содержание

иа 6. Функции и пределы	1
.1. Функции и их графики	
6.1.1. Определение функции	
6.1.2. График функции	
6.1.3. Четность, нечетность и периодичность функции	
6.1.4. Сложная функция. Элементарные функции	
6.1.5. Монотонная, обратная и ограниченная функция	
6.1.6. Гиперболические функции	
6.1.7. Неявные и параметрически заданные функции	

6.1. Функции и их графики

6.1.1. Определение функции

Везде далее в этом параграфе под множествами будут пониматься числовые множества, т.е. множества, состоящие из действительных чисел.

Множество всех действительных чисел будет обозначаться буквой R.

 \Rightarrow Пусть каждому числу x из некоторого множества X поставлено в соответствие одно и только одно число y. Тогда говорят, что на множестве X задана функция.

Способ (правило), с помощью которого устанавливается соответствие, определяющее данную функцию, обозначают той или иной буквой: f, g, h, φ, \ldots Если, например, выбрана буква f, то пишут y = f(x).

Переменная x при этом называется независимой переменной (или аргументом), а переменная y — зависимой.

Множество X называется областью определения данной функции и обозначается D(f), а множество всех чисел y, соответствующих различным числам $x \in X$, — областью значений этой функции и обозначается E(f).

 \Rightarrow Если числу x_0 из области определения функции f(x) соответствует некоторое число y_0 из области значений, то y_0 называется значением функции в точке x_0 (или при $x=x_0$).

6.1.2. График функции

 \Rightarrow Пусть заданы прямоугольная система координат Oxy и функция y = f(x). Графиком функции f(x) называется множество всех точек плоскости с координатами (x; f(x)), где $x \in D(f)$.

Множество точек на координатной плоскости является графиком некоторой функции в том и только в том случае, когда каждая вертикальная (т. е. параллельная оси Oy) прямая пересекает его не более чем в одной точке.

График функции y=f(x) зачастую можно построить с помощью преобразований (сдвиг, растяжение) графика некоторой уже известной функции.

В частности:

- 1. График функции y = f(x) + a получается из графика функции y = f(x) сдвигом вдоль оси Oy на |a| единиц (вверх, если a > 0, и вниз, если a < 0);
- 2. График функции y = f(x b) получается из графика функции y = f(x) сдвигом вдоль оси Ox на |b| единиц (вправо, если b > 0, и влево, если b < 0);
- 3. График функции y = kf(x) получается из графика функции y = f(x) растяжением (сжатием) вдоль оси Oy в k раз (1/k раз), если k > 1 $(k \in (0,1))$;
- 4. График функции y = f(mx) получается из графика функции y = f(x) сжатием (растяжением) по оси Ox в m раз (1/m раз), если m > 1 $(m \in (0,1))$;
- 5. График функции y = -f(x) получается из графика функции y = f(x) симметричным отражением относительно оси Ox;
- 6. График функции y = f(-x) получается из графика функции y = f(x) симметричным отражением относительно оси Oy.

6.1.3. Четность, нечетность и периодичность функции

- ⇒ Функция называется четной, если:
 - 1) множество D(f) симметрично относительно нуля (т. е. $\forall x \in D(f) \Longrightarrow -x \in D(f)$);
 - 2) для любого $x \in D(f)$ справедливо равенство f(-x) = f(x).

График четной функции симметричен относительно оси Оу.

- \Rightarrow Функция f(x) называется нечетной, если:
 - 1) множество D(f) симметрично относительно нуля;
 - 2) для любого $x \in D(f)$ справедливо равенство f(-x) = -f(x).

График нечетной функции симметричен относительно начала координат.

Функция, не являющаяся ни четной, ни нечетной, называется $\phi y n \kappa - u e u$ общего вида.

- \Rightarrow Функция f(x) называется nepuoduческой, если существует число $T \neq 0$, что для любого $x \in D(f)$ справедливы условия:
 - 1) $x + T \in D(f), x T \in D(f);$
 - 2) f(x+T) = f(x).

Число T называется nepuodom функции f(x). Если T — период функции f(x), то числа $\pm T$, $\pm 2T$, $\pm 3T$, . . . также являются периодами этой функции. Как правило, под периодом функции понимают наименьший из ее положительных периодов (ocnoshoй nepuod), если таковой существует.

Если функция f(x) периодическая с периодом T, то ее график переходит сам в себя при сдвиге вдоль оси Ox на T единиц влево или вправо.

 \Rightarrow Пусть область значений функции y = f(x) содержится в области определения функции g(y). Тогда функция

$$z = g(f(x)), x \in D(f)$$

называется сложной функцией или композицией функций f и g и обозначается $g \circ f$.

Основными (или простейшими) элементарными функциями называются: постоянная функция y=c; степенная функция $y=x^{\alpha}, \ \alpha \in \mathbb{R}$; показательная функция $y=a^x, \ a>0$; логарифмическая функция $y=\log_a x, \ a>0, \ a\neq 1$; тригонометрические функции $y=\sin x, \ y=\cos x, \ y=\operatorname{tg} x, \ y=\operatorname{ctg} x, \ y=\sec x \ \Big(\text{где }\sec x=\frac{1}{\cos x}\Big), \ y=\operatorname{cosec} x \ \Big(\text{где }\csc x=\frac{1}{\sin x}\Big)$; обратные тригонометрические функции $y=\arcsin x, \ y=\operatorname{arccos} x, \ y=\operatorname{arctg} x, \ y=\operatorname{arcctg} x.$

На рисунках 68,a и $68,\delta$ приведены соответственно графики функций $y=\arcsin x$ и $y=\arctan x$.

Рис. 68

⇒ Элементарными функциями называются функции, которые получаются из основных элементарных функций с помощью конечного числа арифметических операций (+, -, ·, :) и композиций (т. е. образования сложных функций).

6.1.5. Монотонная, обратная и ограниченная функция

- \Rightarrow Функция f(x) называется неубывающей (невозрастающей) на множестве $X\subseteq D(f)$, если для любых значений $x_1,x_2\in X$ таких, что $x_1< x_2$, справедливо неравенство $f(x_1)\leqslant f(x_2)$ (соответственно, $f(x_1)\geqslant f(x_2)$).
- \Rightarrow Функция f(x) называется монотонной, если она невозрастающая или неубывающая.
- \Rightarrow Функция f(x) называется возрастающей (убывающей) на множестве $X \subseteq D(f)$, если для любых значений $x_1, x_2 \in X$ таких, что $x_1 < x_2$, справедливо неравенство $f(x_1) < f(x_2)$ (соответственно, $f(x_1) > f(x_2)$).
- \Rightarrow Функция f(x) называется стающая или убывающая.
- \Rightarrow Пусть для любых различных значений $x_1, x_2 \in D(f)$ справедливо, что $f(x_1) \neq f(x_2)$. Тогда для любого $y \in E(f)$ найдется только одно значение $x = g(y) \in D(f)$, такое, что y = f(x). Функция x = g(y), определенная на E(f), называется обратной для функции f(x).

Отметим, что E(g) = D(f).

Если функция f(x) имеет обратную функцию, то каждая горизонтальная прямая y=c пересекает ее график не более чем в одной точке.

Пусть функция x = g(y) (иногда ее обозначают $x = f^{-1}(y)$) — обратная для функции y = f(x). Если обозначить аргумент этой функции через x, то ее можно записать в виде y = g(x). Тогда

$$g(f(x)) = x$$
 для всех $x \in D(f)$, $f(g(x)) = x$ для всех $x \in E(f)$.

Иными словами, если функция g(x) — обратная для функции f(x), то функция f(x) — обратная для функции g(x); поэтому обе эти функции называют еще взаимообратными.

Пусть функция y = f(x) вырастает (убывает) на отрезке [a;b]. Тогда на отрезке [f(a);f(b)] (соответственно, [f(b);f(a)]) определена возрастающая (убывающая) функция g(x), обратная для функции f(x).

График функции g(x), обратной для функции f(x), симметричен графику f(x) относительно прямой y=x.

- \Rightarrow Функция y = f(x) называется ограниченной сверху (снизу) на множестве $X \subseteq D(f)$, если существует такое число M, что $f(x) \leqslant M$ ($f(x) \geqslant M$) для всех $x \in X$.
- \Rightarrow Функция y = f(x) называется ограниченной на множестве $X \subseteq D(f)$, если существует такое число M > 0, что

$$|f(x)| \leq M$$
 для всех $x \in X$.

6.1.6. Гиперболические функции

Гиперболическими функциями называются следующие четыре функции:

- 1) гиперболический синус $y = \sinh x$, где $\sinh x = \frac{e^x e^{-x}}{2}$ (график этой нечетной возрастающей функции изображен на рис. 69,a);
- 2) гиперболический косинус $y = \operatorname{ch} x$, где $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$ (график этой четной функции см. на рис. 69,6);
- 3) гиперболический тангенс $y = \operatorname{th} x$, где $\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x e^{-x}}{e^x + e^{-x}}$ (график этой нечетной возрастающей функции см. на рис. 69,e);
- 4) гиперболический котангенс $y=\coth x$, где $\coth x=\frac{\cot x}{\sin x}=\frac{e^x+e^{-x}}{e^x-e^{-x}}$ (график этой нечетной убывающей функции см. на рис. 69,г).

Рис. 69

Справедливы формулы:

$$\mathrm{ch}^2 x - \mathrm{sh}^2 x = 1$$
, $\mathrm{ch} 2x = \mathrm{ch}^2 x + \mathrm{sh}^2 x$, $\mathrm{ch}(x \pm y) = \mathrm{ch} x \, \mathrm{ch} y \pm \mathrm{sh} x \, \mathrm{sh} y$, $\mathrm{sh}(x \pm y) = \mathrm{sh} x \, \mathrm{ch} y \pm \mathrm{ch} x \, \mathrm{sh} y$ и т. д.

6.1.7. Неявные и параметрически заданные функции

Формула y = f(x) определяет явный способ задания функции. Однако во многих случаях приходится использовать неявный способ задания функции.

- \Rightarrow Пусть данная функция определена на множестве D. Тогда, если каждое значение $x \in D$ и соответствующее ему значение функции y удовлетворяют некоторому (одному и тому же) уравнению F(x;y) = 0, то говорят, что эта функция задана неявно уравнением F(x;y) = 0. Сама функция в этом случае называется неявной функцией.
- \Rightarrow Графиком уравнения F(x;y) = 0 называется множество всех точек координатной плоскости Oxy, координаты которых удовлетворяют этому уравнению.

Пусть на некотором множестве $X\subset R$ заданы две функции x=x(t) и y=y(t). Тогда множество всех точек на плоскости Oxy с координатами (x(t),y(t)), где $t\in X$, называется кривой (или линией), заданной параметрически.

Если кривая, заданная параметрически, является графиком некоторой функции y = f(x), то эта функция также называется функцией, заданной параметрически (или параметрически заданной).