

Ayudantía 7 Estructuras Algebraicas

Profesor: Pedro Montero Ayudante: Sebastián Fuentes

2 de mayo de 2023

Problema 1. Sea A = C([0,1]) el anillo de todas las funciones continuas $f:[0,1] \to \mathbb{R}$, y para cada $c \in [0,1]$ sea $I_c = \{ f \in A \mid f(c) = 0 \}$

- 1. Pruebe que I_c es un ideal maximal para cada $c \in [0,1]$.
- 2. Demuestre que si I es un ideal maximal de A, entonces existe un número real $c \in [0,1]$ tal que $I = I_c$.
- 3. Muestre que si b y c son puntos distintos en [0,1] entonces $I_b \neq I_c$.
- 4. Pruebe que I_c no es igual al ideal principal generado por x-c.
- 5. Demuestre que I_c no es un ideal generado finitamente.

Problema 2. Sea A un anillo, Nil(A) su nilradical. Demuestre que los siguientes hechos son equivalentes:

- 1. A tiene exactamente un ideal primo.
- 2. cada elemento de A es una unidad o nilpotente.
- 3. A/Nil(A) es un cuerpo.

Problema 3. Sean $I, J \subseteq \mathbb{C}[X_1, \dots, X_n]$ ideales y considere los conjuntos algebraicos afines X := V(I), Y := V(J)de \mathbb{A}^n .

- 1. Pruebe que $V(I) = V(\sqrt{I})$ y $V(J) = V(\sqrt{J})$.
- 2. Utilice el Hilbert Nullstellensatz para demostrar que

$$\sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$$
 y $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$