Uniform bounds on symbolic powers in regular rings

Takumi Murayama (Princeton)

31. Symbolic powers and

the containment problem

& 2. The proof in equal characteristic zero

§ 3. I dear in the proof of Main Theorem

31. Symbolic powers and

the containment problem

Ex R= &[x,y,z]/(xy-z2)

Krull (28] Vou can en large p² so it is p-primary! Def R=Noeth. ring I = i de al nth symbolic power of I T("):= (I"RpnR) p t Ar (RII) Note · p prime => p(n) :s p-primary $I = I^{(1)}$ · Inc I (w) . T(h) = T(nti) =.

Containment Problem When do we have $I^{(m)} \subseteq I^{n}$? Thm [Zariski 151] R=Noeth. domain s.t. Rep domain 7-p prime ∀p, ∀n, ∃m s.t. p[m] ⊆p" In other words, the topologies defined by Epn3 and Ep(n)3 are equivalent ! [Schenzel 185/186] Chactented when EInJand [I"3 are equivalent.

Thm [Swanson '00] R = Noeth.
{In3 and EI(n)3 are equivalent
(=>] R s.t. I(Pn) C In Hn>1.
Quhatisk?
Does it always depend on I'.
Answers for regular rings:
Thun [Ein-Lazarsfeld-Smith '01;
Hochster-Huneke 102]
R=regular of equal char.
Ul d'édim(R) I = ideal
=> Ildn) CIn Huy,1

Rem d can be replaced by: bight(1):= max {ht(p)} 4 EAG(F12) := largest analytic speed of IRp for peAss(R[I). Q[HH'02] Doer this thin hold in mixed char.? [Ma-schwede 18] Yes, for vadical ideals in excellent regular vings of mised char. LM-I Yes, in general

/ new when \
— not nec'ly excellent Main Thm [M-] K=regular L to not nectly radical I=ideal =) I [hn) C In Yn>1 Complete ausurto [HH102]! Cor R=regular of finite Krull dim. => R satisfier the uniform symbolic topologies property of [Huneke-Katz-Validasht: 'Ir] More generally,

Thm[M-] R = regular Si, .-, Su & 17,0 Ul I = ideal 5= 2 5: @ I Lstnh) = TI I (b) If R=(R,m) is local, then I (stuhti) c m TT I (siti) When Risof equal char: @ HH'02; Johnson 14

D HH107; Takagin Yosh: La '08; Johnson 114

@ Application to Grifo's asymptotic version of Harbourne way.

(Related to Eizenbud-Mazur conj.

How? New vertion of perfectived big
Cohen-Macaulay test ideals
- Recent developments in mixed
char. CA+AGI.
82 Proof in equal char. tero
Main Thum [M-]
R=regular
U l
I=ideal
=) I [hm) C In Yn>1
Pf when R=Q[ELS'01; M-]
· Reduce to complete local case
Reduce to complete bocal case. Use multiplier iteals -allow taking
g(R,It), t6Q30 Notrat

Idea [Hara 'OS; Ma-Schude' 18; M-] Define testideals T(R, -) to replace J pol. chor: Frobenius I mixed chon: perfectoid geometry g[R,-) [MI118] need I radical in 4 to conjute ~ (I(hn)) /n) (assurption on excellence it needed to)
wake sure I stays radical when
completing Need something new!

What will we need for @? (4a) Localization (in equal char. 0) $y(R, I^{e}) \cdot R_{p} = g(R_{p}, I R_{p}^{e})$ (4b) Skoda's Thin If J S I is gen. by

Existing revisor of Eastideals in mixed chan

(R,m) regular cl v UI (f₁,...,f_n) = I

	[M5118]	[MS'21; Pérez-RG'21; Sato-Takag:]	[Hawn- Lanarche- Schwede]
	Flt, [f](1)	LB (K'It)	r. (r, It)
1) not too small	✓		
(2) unambiguity	✓	/	/
3 subadditivity	✓	3.3.	2,7
40 localization	7.7.	3 3	puncipal ox for If (R,D)
4D Shoda's thru	3.5	२, २ <u>.</u>	/

Noue of these are sufficient to pure Main Thin alone! Idea[M-] Find a new vertion of test ideals that combines the advantages of all of these wo TB (R, [f]t) satisfying (~ (4) 53 Ideas in post of Main Thom We will prove all cases of Main Thin, although the proof of (3) does split up into cases. Keypt Big Cohen-Macaulay algebraido! Why Homological conj.'s (incl. Direct summand cogj.)

Def[Hochster '75; Sharp '81] (R,m) = North. Iscal, dim d B=R-alq, Bis (balanced) big Cohen-Macaulay (BCM)
if every s.o.p. x.,...xd on R fewomer
a regular requence on B.

Thm [HH192; Dietz-R.G. 19; André 18/20; Shimomoto 18]

Every Noeth, local domain (Rim) has a BCM Rt-alg.

Rt:= int. closur of Rin Frac(R)

Thm [HH'92; Blatt]

R'=p-adir completion of Rt

is a BCM Rt-alg for Noeth. al

domains of seridice char. p>0.

Compard la [MI'18]:

- 1 No almost math.
- 6) mt 1170 (not just p-poueur)
 - 1) no perturbations
- 4 works in all char.

Also: Key compasion [M-] B=Rt in rel-chor. p70 TR+(R, [£]e) S S Lylk, the diva(g))
m=1 g eIm C re(R, IE) — [HLI] A we can try to minic stratezy in than o by switching to Ze in the comet place!

Thm[M-] IB st. ZB(R, [f] In) e I Pf If R=Q, (f)=I(hn) YB(R,[£JE) C J(R, [Chn])E) so equal char. Jess prof applies. In res. chr. p?0: STS: after localising at every peA11(P[I). Instead re localite at XFR-195.f. · I Jek gen. by helfs r.l. JRx = IRx · I (hn) Rx = Ihn Rx