Implementing PSO using Lookup Table:-

$$P_{mpp} = 180 \text{ W}$$

$$V_{oc} = 43.64$$

$$I_{sc} = 5.45$$

$$V_{mp} = 36.36$$

$$I_{mp} = 4.95$$

 $D_{mpp} = 0.88$ (calculated from Lookup Table and assuming R_{load})

Step 1: lookup Table is generated

for
$$V = 0.1$$
 to $V = 43.6$,

I is calculated using IV curve.

Hence, Effective R is calculated for every point.

Step 2: Considering Boost Convertor,

$$R_{\rm eff} = R_{\rm load} * (1-d)^2$$

 R_{load} is chosen as 500 Ω .

Step 3: Power vs duty curve is also plotted using above formula (taking $R_{load} = 500 \Omega$).

For PSO ::
$$\begin{split} P^{k+1} &= P^k + V^k \\ V^{K+1} &= w^*V^k + c1^*r^*(P_1 - P^k) + c2^*r^*(P_g - P^k) \end{split}$$

Simulation 1::

Variables =>
$$w=0.1$$

 $C1 = 0.2$
 $C2 = 0.2$
 $R = 0.4$

Particles => D1 = 0.40 (both side of
$$d_{max}$$
)
D2 = 0.60
D3 = 0.95

Result :: Particles converges (within 2% of P_{mpp}) after 43rd Iteration.

Simulation 2::

Variables =>
$$w=0.1$$

 $C1 = 0.2$
 $C2 = 0.2$
 $R = 0.4$

Particles => D1 = 0.40 (Same side of
$$d_{max}$$
)
D2 = 0.60
D3 = 0.80

Result :: failed to converge even after 50 iterations (Pmax reached = 91W)

Simulation 3::

$$Variables => w=0.5 \ (improved \ Parameter \ values)$$

$$C1 = 0.5$$

$$C2 = 0.5$$

$$R = 0.5$$

Particles => D1 = 0.40 (Same side of
$$d_{max}$$
)
D2 = 0.60
D3 = 0.80

Result :: failed to converge even after 50 iterations (Pmax reached = 139.6W, Velocity is very small).

Simulation 4::

Variables =>
$$w=0.5$$

 $C1 = 0.5$
 $C2 = 0.5$
 $R = 5$ (made x10 from the last simulation)

Particles => D1 = 0.40 (Same side of
$$d_{max}$$
)
D2 = 0.60
D3 = 0.80

Result :: failed to converge even after 50 iterations (Same Result as last Simulation)

Simulation 5::

Variables =>
$$w$$
=0.9 (High Value of W)
 $C1 = 0.5$
 $C2 = 0.5$
 $R = 5$

Particles => D1 = 0.40 (Same side of
$$d_{max}$$
)
D2 = 0.60
D3 = 0.80

Result :: Particles got MPP in 11 iterations but keep oscillating around Mpp with big variations

Simulation 6::

$$Variables => w=0.9 \ (High \ Value)$$

$$C1 = 0.5$$

$$C2 = 0.5$$

$$R = 1 \ (Moderate \ Value)$$

Particles => D1 = 0.40 (Same side of
$$d_{max}$$
)
D2 = 0.60
D3 = 0.80

Result :: got MPP in 8 iterations. Failed to converge but oscillations are not large (about 10% of P_{mpp} . May be useful with Shifting MPP).

Simulation 7::

$$Variables => w=0.5$$

$$C1 = 0.5$$

$$C2 = 0.5$$

$$R = 1 \text{ (moderate value)}$$

$$Particles => D1 = 0.40 \text{ (both side of d}_{max}\text{)}$$

$$D2 = 0.60$$

$$D3 = 0.95$$

Result :: converges in 10 iterations. Remain at MPP for next iterations (static)

Simulation 8::

• <u>Test 1</u>

Variables => w=0.5 C1 = 0.5 C2 = 0.5R = 1

> Particles => D1 = 0.91 (chosen Randomly) D2 = 0.18D3 = 0.26

Result :: got MPP in 7 Iterations and all converges in 10 iterations

• <u>Test 2</u>

Variables => w=0.5 C1 = 0.5 C2 = 0.5R = 1

> Particles => D1 = 0.579 (chosen Randomly) D2 = 0.549D3 = 0.144

Result :: failed to find MPP. All got converge in local minima(long flat portion of P-d curve)

• <u>Test 3,4,5... only 50-60% chances of convergence at MPP (always converges at local points)</u>

Simulation 9::

Test 1

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.69 (All random)

D2 = 0.58

D3 = 0.81

Result :: converges in 8 iterations... got MPP in 11 iterations... (remain closely converged)

Test 2

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.756 (All random)

D2 = 0.555

D3 = 0.898

Result :: got MPP in 3rd iteration and converges in 10 iterations...(remain closely converged)

Test 3

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.64 (All random)

D2 = 0.74

D3 = 0.43

Result :: trapped in local max...

Test 4

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.16 (All random)

$$D2 = 0.75$$

$$D3 = 0.87$$

Result :: got MPP in 6th iteration and converges in 11 iterations...(remain closely converged)

Test 5

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.57 (All random)

D2 = 0.17

D3 = 0.95

Result :: got MPP in 7th iteration and converges in 13 iterations...(remain closely converged)

Test 6

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.76 (All random)

D2 = 0.93

D3 = 0.10

Result :: got MPP in 9th iteration and converges in 13 iterations...(remain closely converged)

Test 7

Variables => w=0.5

C1 = random

C2 = random

R = 1 (moderate value)

Particles \Rightarrow D1 = 0.12 (All random)

D2 = 0.26

D3 = 0.25

Result:: trapped at local MPP