

Sequence Listing

<110> Kyung Jin Kim
Anan Chuntharapai
Ji Lu

<120> Monoclonal Antibodies to IFNAR2

<130> P1092R1

<141> 1998-10-05

<150> US 60/061,185

<151> 1997-10-06

<160> 26

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-30

<223>

<400> 1

gatcggaaaa gggaaaccga aactgaagcc 30

<210> 2

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-30

<223>

<400> 2

gatcggcttc agttcggtt tccctttccc 30

<210> 3

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-5

<223>

<400> 3
Asp Tyr Thr Asp Glu
1 5

<210> 4
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 4
Ala Tyr Thr Ala Ala
1 5

<210> 5
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 5
Glu Leu Lys Asn His
1 5

<210> 6
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 6
Ala Leu Ala Asn Ala
1 5

<210> 7
<211> 6
<212> PRT

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-6

<223>

<400> 7

Lys Pro Glu Asp Leu Lys
1 5 6

<210> 8

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-6

<223>

<400> 8

Ala Pro Ala Ala Leu Ala
1 5 6

<210> 9

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-5

<223>

<400> 9

Asp Leu Thr Asp Glu
1 5

<210> 10

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-5

<223>

<400> 10

Ala Leu Thr Ala Ala

1

5

<210> 11
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 11
Arg Ser Thr His Glu
1 5

<210> 12
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 12
Ala Ser Thr Ala Ala
1 5

<210> 13
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 13
Asp Met Ser Phe Glu
1 5

<210> 14
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence

<222> 1-5
<223>

<400> 14
Ala Met Ser Phe Ala
1 5

<210> 15
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-7
<223>

<400> 15
Glu Glu Glu Leu Gln Phe Asp
1 5 7

<210> 16
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-7
<223>

<400> 16
Ala Ala Ala Leu Gln Phe Ala
1 5 7

<210> 17
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 17
Glu Glu Gln Ser Glu
1 5

<210> 18
<211> 5

<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 18
Ala Ala Gln Ser Ala
1 5

<210> 19
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 19
Lys Lys His Lys Pro
1 5

<210> 20
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 20
Ala Ala His Ala Pro
1 5

<210> 21
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 21

Glu Ile Lys Gly Asn
1 5

<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-5
<223>

<400> 22
Ala Ile Ala Gly Asn
1 5

<210> 23
<211> 6
<212> PRT
<213> Artificial Sequence

<220>

<221> Artificial Sequence
<222> 1-6
<223>

<400> 23
Glu His Ser Asp Glu Ala
1 5 6

<210> 24
<211> 6
<212> PRT
<213> Artificial Sequence

<220>

<221> Artificial Sequence
<222> 1-6
<223>

<400> 24
Ala Ala Ser Ala Ala Gln
1 5 6

<210> 25
<211> 6152
<212> DNA
<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-6152

<223>

<400> 25

gaattcctaa aaatagcaaa gatgctttg agccagaatg ctttcatcg 50
cagatcactt aatttgggtc tcatggtgta tatcagcctc gtgtttggta 100
tttcatatga ttgcctgtat tacacagatg aatcttgcac tttcaagata 150
tcattgcgaa atttccggtc catcttatca tggaaattaa aaaaccactc 200
cattgtacca actcactata cattgctgtt tacaatcatg agtaaaccag 250
aagatttcaa ggtggtaag aactgtgcaaa ataccacaagg atcattttgt 300
gacctcacag atgagtggag aagcacacac gaggcctatg tcaccgtcct 350
agaaggattc agcggaaaca caacgttgtt cagttgtca cacaatttct 400
ggctggccat agacatgtct tttgaaccac cagagtgttga gattgttggt 450
tttaccaacc acattaatgt gatggtaaaa tttccatcta ttgttgagga 500
agaattacag tttgatttat ctctcgatcat tgaagaacag tcagaggaa 550
ttgttaagaa gcataaaccg gaaataaaaag gaacatgttag tggaaatttc 600
acctatatca ttgacaaggaa aattccaaac acgaactact gtgtatctgt 650
ttatTTAGAG cacagtgtatg agcaaggactt aataaagtct cccttaaaat 700
gcaccctcct tccacctggc caggaatcag aatcagcaga atctgccgac 750
aaaactcaca catccccacc gtgcccagca cctgaaCTCC tggggggacc 800
gtcagtcttc ctctcccccc caaaacccaa ggacaccctc atgatctccc 850
ggacccctga ggtcacatgc gtgggtgg acgtgagcca cgaagaccct 900
gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatccaa 950
gacaaagccg cgggaggagc agtacaacag cacgtaccga gtggtcagcg 1000
tcctcaccgt cctgcaccag gactggctga atggcaagga gtacaagtgc 1050
aaggcttcca acaaaggccc cccagcccccc atcgagaaaa ccatctccaa 1100
agccaaaggg cagccccgag aaccacaggt gtacaccctg ccccatccc 1150

gggaagagat gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc 1200
ttctatccca gcgacatcg cgtggagtgg gagagcaatg ggcagccgga 1250
gaacaactac aagaccacgc ctcccgtgct ggactccgac ggctccttct 1300
tcctctacag caagctcacc gtggacaaga gcaggtggca gcagggaaac 1350
gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacgca 1400
gaagagccctc tccctgtctc cgggtaaatg agtgcgacgg ccctagagtc 1450
gacctgcaga agcttagaac cgagggccg ccatggccca acttgtttat 1500
tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa 1550
ataaaggcatt ttttcactg cattctagtt gtggttgtc daaactcatc 1600
aatgtatott atcatgtctg gatcgatcg gattaattc ggcgcagcac 1650
catggcctga aataacctct gaaagaggaa cttaggttagg taccttctga 1700
ggcggaaaaga accagctgtg gaatgtgtgt cagtttaggt gtggaaagtc 1750
cccaggctcc ccagcaggca gaagtatgca aagcatgcat ctcaattagt 1800
cagcaaccag gtgtggaaag tccccaggct cccagcagg cagaagtatg 1850
caaagcatgc atctcaatta gtcagcaacc atagtcccgcc ccctaactcc 1900
gcccatcccg cccctaactc cgcccaggttc cgccattct ccgccccatg 1950
gctgactaat ttttttatt tatgcagagg ccgaggccgc ctcggcctct 2000
gagctattcc agaagtagtg aggaggctt ttggaggcc taggctttg 2050
caaaaaagctg ttaacagctt ggactggcc gtcgtttac aacgtcgtga 2100
ctggaaaaac cctggcgta occaactaa tcgccttgca gcacatcccc 2150
ctttcgcccag ctggcgtaat agcgaagagg cccgcaccga tcgcccattcc 2200
caacagttgc gtagcctgaa tggcgaatgg cgctgatgc ggtattttct 2250
ctttacgcatt ctgtgcggta tttcacacccg catacgtcaa agcaaccata 2300
gtacgcgccc tgttagcggcg cattaagcgc ggccgggtgtg gtggttacgc 2350
gcagcgtgac cgctacactt gccagcggcc tagcgcccgcc tccttcgct 2400
ttcttccctt ctttctcgcc cacgttcgcc ggcttcccc gtcaagctct 2450

aaatcgaaaa ctcctttag gttccgatt tagtgctta cgacccctcg 2500
accccaaaaa acttgattt ggtgatggtt cacgtagtgg gccatcgccc 2550
tgtatagacgg ttttcgccc tttgacgttg gagtccacgt tcttaatacg 2600
tggactcttgc ttccaaactg gaacaacact caaccctatc tcgggttatt 2650
cttttgattt ataaggatt ttgccgattt cgccctattt gttaaaaaat 2700
gagctgattt aacaaaaatt taacgcgaat tttaacaaaa tattaacgtt 2750
tacaattttt tggtgcactc tcagtacaat ctgctctgat gcccatacg 2800
taagccaact ccgctatcgc tacgtgactg ggtcatggct gcgcggcggac 2850
acccgccaac acccgctgac gcgcctgac gggcttgcgt ctcccgca 2900
tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2950
gttttcacccg tcatcaccga aacgcgcgag gcagtattcc tgaagacgaa 3000
agggcctcgt gatacgccta ttttatagg ttaatgtcat gataataatg 3050
gtttcttaga cgtcaggtgg cactttcgg ggaaatgtgc gcggaaacccc 3100
tatttgttta ttttctaaa tacattcaaa tatgtatccg ctcatgagac 3150
aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt 3200
attcaacatt tccgtgtcgc ctttattccc tttttgcgg catttgcct 3250
tcctgtttt gtcacccag aaacgctggt gaaagtaaaa gatgtgaag 3300
atcagttggg tgcacgagtg gtttacatcg aactggatct caacagcggt 3350
aagatccttgc agagtttcg ccccgaaagaa cgtttccaa tggatgac 3400
ttttaaagtt ctgctatgtg ggcgggtatt atccgtat gacgcggggc 3450
aagagcaact cggtcgccc atacactatt ctcagaatga cttgggttag 3500
tactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga 3550
attatgcagt gctgccataa ccatgagtga taacactgcg gccaacttac 3600
ttctgacaac gatcgagggc ccgaaggagc taaccgctt tttgcacaac 3650
atgggggatc atgtaactcg cttgatcgt tgggaaccgg agctgaatga 3700

agccatacca aacgacgagc gtgacaccac gatgccagca gcaatggcaa 3750
caacgttgcg caaactatta actggcgAAC tacttactct agcttcccgg 3800
caacaattaa tagactggat ggaggcggat aaagttgcag gaccacttot 3850
gCGCTCGGCC CTTCCGGCTG GCTGGTTAT TGCTGATAAA TCTGGAGCCG 3900
gtgagcgtgg gtctcgcggt atcattgcag cactggggcc agatggtaag 3950
ccctcccgta tcgttagttat ctacacgacg gggagtcaGG caactatggA 4000
tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaaggcatt 4050
ggtaactgtc agaccaagtt tactcatata tacTTAGAT tgattaaaa 4100
cttcatttt aattttaaaAG gatcttagtg aagatccTT ttgataatct 4150
catgaccaaaa atcccttaac gtgagTTTC gttccactga gcgtcagacc 4200
ccgtagaaaa gatcaaAGGA tcttcttGAG atcTTTTT tctgcgcgta 4250
atctgctgct tgcaaACAAA AAAACCACCG ctaccAGG tggTTTGTtT 4300
GCCGGATCAA gagtaccaa CTCTTTCC GAAGGTAACT ggTTCAgca 4350
gagcgcagat accaaatact gtcTTCTAG TGTAGCCGCA GTTAgGCCAC 4400
cacttcaaga actctgtAGC accgcctACA tacCTCGCTC TGCTAATCCT 4450
gttaccagtG gctgctGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG 4500
actcaagacg atagttaccg gataaggcgc agcggTCGGG CTGAACGGGG 4550
gttTCGTGCA cacagccccAG CTTGGAGCGA acgacctaca ccgaactgag 4600
atacctacAG cgtgagcatt gagaaAGCGC cacgCTTCCC gaAGGGAGAA 4650
aggcggacAG gtatccggta AGCGGCAGGG tcggAACAGG agagcgcACG 4700
agggagCTTC cagggggaaa CGCCTGGTAT CTTATAGTC CTGTCGGTT 4750
tcGCCACCTC tgacttgAGC GTCGATTtT GTGATGCTG TCAGGGGGC 4800
ggAGCCTATG gaaaaACGCC AGCAACGCGG CCTTTTACG GTTCCCTGGCC 4850
ttttgctggc CTTTGCTCA catgttctt CCTGCGTTAT CCCCTGATTc 4900
tgtggataac cgtattaccg CCTTGTAGTG agctgatacc GTCGCCGCA 4950
GCCGAACGAC CGAGCGCAGC gagTCAGTGA GCGAGGAAGC GGAAGAGCGC 5000

ccaatacgca aaccgcctct ccccgcggt tggccgattc attaatccag 5050
ctggcacgac aggttcccg actggaaagc gggcagttag cgcaacgcaa 5100
ttaatgttag ttacactact cattaggcac cccaggcttt acactttatg 5150
cttccggctc gtatgttg tggaatttgt agcggataac aatttcacac 5200
aggaaacagc tatgaccatg attacgaatt aattcgagct cgccccacat 5250
tgattattga ctagttatta atagtaatca attacgggt cattagttca 5300
tagcccatat atggagttcc gcgttacata acttacggta aatggccgc 5350
ctggctgacc gccccacgac ccccgcccat tgacgtcaat aatgacgtat 5400
gttcccatag taacgccaat agggacttcc cattgacgtc aatgggtgga 5450
gtatTTacgg taaactgccc acttggcagt acatcaagtg tatcatatgc 5500
caagtacgcc ccctattgac gtcaatgacg gtaatggcc cgccctggcat 5550
tatgcccagt acatgacctt atgggacttt octacttggc agtacatcta 5600
cgtattagtc atcgcttata ccatggtgat gcggttttgg cagtagatca 5650
atgggcgtgg atagcggtt gactcacggg gatttccaaag tctccacccc 5700
attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc 5750
aaaatgtcgt aacaactccg ccccatggac gcaaattggc ggtaggcgtg 5800
tacggtgaaa ggtctatata agcagagctc gtttagtgaa ccgtcagatc 5850
gcctggagac gccatccacg ctgtttgac ctccatagaa gacaccggga 5900
ccgatccagc ctccgcggcc gggAACGGTG cattggAACG CGGATTCCCC 5950
gtgccaagag tgacgtaagt accgcctata gagtctatag gcccaccccc 6000
ttggctcggtt agaacgcggc tacaattaat acataacctt atgtatcata 6050
cacatacgat ttaggtgaca ctatagaata acatccactt tgcctttctc 6100
tccacaggtg tccactccca ggtccaaactg caggccatgg cggccatcga 6150

tt 6152

<210> 26
<211> 443

<212> PRT

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-443

<223>

<400> 26

Ile	Ser	Tyr	Asp	Ser	Pro	Asp	Tyr	Thr	Asp	Glu	Ser	Cys	Thr	Phe
1									10					15
Lys	Ile	Ser	Leu	Arg	Asn	Phe	Arg	Ser	Ile	Leu	Ser	Trp	Glu	Leu
			20						25					30
Lys	Asn	His	Ser	Ile	Val	Pro	Thr	His	Tyr	Thr	Leu	Leu	Tyr	Thr
				35					40					45
Ile	Met	Ser	Lys	Pro	Glu	Asp	Leu	Lys	Val	Val	Lys	Asn	Cys	Ala
				50					55					60
Asn	Thr	Thr	Arg	Ser	Phe	Cys	Asp	Leu	Thr	Asp	Glu	Trp	Arg	Ser
				65					70					75
Thr	His	Glu	Ala	Tyr	Val	Thr	Val	Leu	Glu	Gly	Phe	Ser	Gly	Asn
				80					85					90
Thr	Thr	Leu	Phe	Ser	Cys	Ser	His	Asn	Phe	Trp	Leu	Ala	Ile	Asp
				95					100					105
Met	Ser	Phe	Glu	Pro	Pro	Glu	Phe	Glu	Ile	Val	Gly	Phe	Thr	Asn
				110					115					120
His	Ile	Asn	Val	Met	Val	Lys	Phe	Pro	Ser	Ile	Val	Glu	Glu	Glu
				125					130					135
Leu	Gln	Phe	Asp	Leu	Ser	Leu	Val	Ile	Glu	Glu	Gln	Ser	Glu	Gly
				140					145					150
Ile	Val	Lys	Lys	His	Lys	Pro	Glu	Ile	Lys	Gly	Asn	Met	Ser	Gly
				155					160					165
Asn	Phe	Thr	Tyr	Ile	Ile	Asp	Lys	Leu	Ile	Pro	Asn	Thr	Asn	Tyr
				170					175					180
Cys	Val	Ser	Val	Tyr	Leu	Glu	His	Ser	Asp	Glu	Gln	Ala	Val	Ile
				185					190					195
Lys	Ser	Pro	Leu	Lys	Cys	Thr	Leu	Leu	Pro	Pro	Gly	Gln	Glu	Ser
				200					205					210

Glu Ser Ala Glu Ser Ala Asp Lys Thr His Thr Cys Pro Pro Cys
215 220 225

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
230 235 240

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
245 250 255

Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys
260 265 270

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
275 280 285

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
290 295 300

Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
305 310 315

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Asp Pro Ile Glu Lys
320 325 330

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
335 340 345

Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
350 355 360

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
365 370 375

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr
380 385 390

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
395 400 405

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
410 415 420

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
425 430 435

Ser Leu Ser Leu Ser Pro Gly Lys
440 443