Applicant: Mark J. Jaroszeski et al. Serial No. 09/939,518 Filing Date: 08/24/2001 Practitioner's Docket No.: 1372,34 Group Art: 1635 Examiner: Jon E. Angell

AMENDMENT TO THE CLAIMS: " ...

(Currently Amended) A method for facilitating the delivery of a desired molecule into a target tissue comprising the steps of:

introducing a molecule into a target tissue comprising a cell; and

applying a substantially continuous low level an electric field to thetarget tissue for a duration sufficient the application of the electric field consisting of a single continuous low-level electric field applied for a duration of 100ms to 20 minutes to effect a change in porosity of the cell of the target tissue sufficient to facilitate entry of a desired molecule into an interior of the cell.

- (Currently Amended) The method recited in Claim 1, wherein the duration
 of the applying step eemprises a duration of at least 100m seconds is in a range
 of 100ms to 100 sec.
- (Cancelled)
 - 4. (Original) The method recited in Claim 1, wherein the low-level electric field has a field strength comprising 200V/cm or less.
 - 5. (Cancelled)
 - 6. (Original). The method recited in Claim 1, wherein the electric-field comprises a pulse selected from a group of waveforms consisting of square, rectangular, exponentially decaying, exponentially increasing, bipolar, and-sinusoidal; waveforms having a nongeometrically characterizable shape; waveforms characterizable by a mathematical function; waveforms characterizable by a mathematical approximation; waveforms with at least one-

THE SECRET OF THE PROPERTY OF THE SECRET SECTION SECTI

Applicant: Mark J. Jaroszeski et al. Serial No. 09/939,518 Filing Date: 08/24/2001 Practitioner's Docket.No.: 1372.34 Group Art: 1635 Examiner: Jon E. Angell

of an AC or a DC offset signal; and waveforms without an AC or a DC offset signal.

- . (Cancelled)
- Original) The method recited in Claim 1, wherein the introducing-step comprises the step selected from a group consisting of syringe injection, jet injection, oral dosing, transdermal delivery, infusion into tissue, and infusion into a blood vessel.
- 9. (Cancelled)

10

15

- 10. (Original) The method recited in Claim 1, wherein the target tissue is-selected from a group consisting of skin, tumor, muscle, blood, blood vessel, brain, lymph, liver, pancreas, bone, colon, cardiac, lung, breast, testes, cordea, prostate, and intestine.
- 11. (Currently Amended) A system for facilitating the delivery of a desired molecule into a target tissue comprising:
- a molecule introducer adapted to introduce a molecule into a target tissue comprising a cell; and
- an applicator for applying at least one substantially continuous an electric field to the target tissue, wherein the application of the electric field consists of applying a single continuous low-level electric field for a duration of 100ms to 20 minutes sufficient to effect a change in porosity of the cell of the target tissue sufficient to facilitate an entry of a desired molecule into the interior of the cell.

Applicant: Mark J. Jaroszeski et al. Serial No. 09/939,518 Filing Date: 08/24/2001 Practitioner's Docket No.: 1372.34 Group Art: 1635 🚕

- 12. (Currently Amended) The system recited in Claim 11, wherein the applicator applies the electric field emphising a duration of at least 100ms for a duration of 100ms to 100 sec.
- 13. (Cancelled)
- 14. (Original) The system recited in Claim 11, wherein the low-level electric field has a field strength comprising 200V/cm or less.
- 15. (Cancelled)
- 16. (Original) The system recited in Claim 11, wherein the electric field comprises a pulse selected from a group consisting of square, rectangular, exponentially decaying, exponentially increasing, bipolar, and sinusoidal; waveforms having a nongeometrically characterizable shape; waveforms characterizable by a mathematical function; waveforms characterizable by a mathematical approximation; waveforms with at least one of an AC or a DC offset signal; and waveforms without an AC or a DC offset signal.
- 17. (Cancelled)
- 18. (Previously Amended) The system recited in Claim 11, wherein the molecule introducer is selected from a group consisting of a syringe, a jet injector, an oral dosage, a transdermal deliverer, a tissue infuser, and a blood vessel infuser.
- 19. (Cancelled)
 - 20. (Previously Amended) The system recited in Claim 11, wherein the target tissue is selected from a group consisting a skin, tumor, muscle, blood, blood

Applicant: Mark J. Jaroszeski et al. Serial No. 09/939,518 Filing Date: 08/24/2001 Practitioner's Docket No.: 1372.34 Group Art: 1635 Examiner: Jon B.-Angell

vessel, brain, lymph, liver, pancreas, bone, colon, cardiac, lung, breast, testescomea, prostate and intestine

21. (New) A method for facilitating the delivery of a desired molecule into a target tissue comprising the steps of:

introducing a molecule into a target tissue comprising a cell; and

applying a continuous low-level electric field to the target tissue for a duration of 200ms to 20 minutes to effect a change in porosity of the cell of the target tissue sufficient to facilitate entry of a desired molecule into an interior of the cell.

- 22. (New) The method recited in Claim 21, wherein the duration of the applying step comprises a duration of at least 100m seconds is in a range of 100ms to 100 sec.
- 23. (New) The method recited in Claim 21, wherein the low-level-electric field has a field strength comprising 200V/cm or less.
- 24. (New) The method recited in Claim 21, wherein the applying step comprises applying a plurality of substantially continuous low-level electric pulses to the target tissue, wherein the duration of each substantially continuous low-level electric field is sufficient to effect a change is porosity of the cell of the target tissue sufficient to facilitate entry of a desired molecule into an interior of the cell.
- 25. (New) The method recited in Claim 21, wherein the electric field comprises a pulse selected from a group of waveforms consisting of square, rectangular, exponentially decaying, exponentially increasing, bipolar, and sinusoidal; waveforms having a nongeometrically characterizable shape;

20

Applicant: Mark J. Jaroszeski et al. Serial No. 09/939,518 Filing Date: 08/24/2001

- 10

Group Art: 1635 Examiner: Jon E. Angell

waveforms characterizable by a mathematical function; waveforms characterizable by a mathematical approximation; waveforms with at least-ofic of an AC or a DC offset signal; and waveforms without an AC or a DC offset signal.

- 26. (New) The method recited in Claim 25, wherein the electric field comprises a pulse comprising a combination of at least two of the pulses selected from the group of waveforms.
- 27. (New) The method recited in Claim 21, wherein the introducing step comprises the step selected from a group consisting of syringe injection, jet injection, oral dosing, transdermal delivery, infusion into tissue, and infusion into a blood vessel.
- 28. (New) The method recited in Claim 21, wherein the target tissue is selected from a group consisting of skin, numor, muscle, blood, blood vessel, brain, lymph, liver, pancreas, bone, colon, cardiac, lung, breast, testes, comea, prostate, and intestine.
- 29. (New) A system for facilitating the delivery of a desired molecule-into a target tissue comprising:
- a molecule introducer adapted to introduce a molecule into a target tissue comprising a cell; and
- an applicator for applying a continuous low-level electric field to the target tissue-for a duration of 200ms to 20 minutes to effect a change in porosity of the cell of the target tissue sufficient to facilitate an entry of a desired molecule into the interior of the cell.

Applicant: Mark J. Jaroszeski et al. Serial No. 09/939,518 Filing Date: 08/24/2001 Practitioner's Docket No.: 1372.34 Examiner: Jon B. Angell

- 30. (New) The system recited in Claim-29, wherein the applicator applies the electric field for a duration of 100ms to 100 sec.
- 31. (New) The system recited in Claim 29, wherein the low-level electric field has a field strength comprising 200V/cm or less.
- 32. (New) The system recited in Claim 29, wherein the applicator applies the low-level electric field in a series of electric pulses.
- 33. (New) The system recited in Claim 29, wherein the electric field comprises a pulse selected from a group consisting of square, rectangular, exponentially decaying, exponentially increasing, bipolar, and sinusoidal; waveforms having a nongeometrically characterizable shape; waveforms characterizable by a mathematical function; waveforms characterizable by a mathematical approximation; waveforms with at least one of an AC or a DC offset signal; and waveforms without an AC or a DC offset signal.
- 34. (New) The system recited in Claim 33, wherein the electric field comprises a pulse comprising a combination of at least two of the pulses selected from the group of waveforms.
- 35. (New) The system recited in Claim 29, wherein the molecule introducer is selected from a group consisting of a syringe, a jet injector, an oral dosage, a transdermal deliverer, a tissue infuser, and a blood vessel infuser.
- 36. (New) The system recited in Claim 29, wherein the target-tissue is selected from a group consisting a skin, tumor, muscle, blood, blood vessel, brain, lymph, liver, pancreas, bone, colon, cardiac, Jung, breast, testes, comeaprostate and intesting.