Respuestas a los problemas complementarios

CAPÍTULO 1

maximicese: $z = 28x_1 + 31x_2$ 1.16

con la condición: $3.5x_1 + 4x_2 \le 50$

con: ambas variables no negativas

Nota: No son necesarias restricciones de entero para las variables, ya que los juegos parcialmente terminados pueden concluirse la siguiente semana.

minimicese: $z = 2x_1 + 3x_2 + 5x_3 + 6x_4 + 8x_5 + 8x_6$ 1.17

con las condiciones: $20x_1 + 30x_2 + 40x_3 + 40x_4 + 45x_5 + 30x_6 \ge 70$

 $50x_1 + 30x_2 + 20x_3 + 25x_4 + 50x_5 + 20x_6 \ge 100$

 $4x_1 + 9x_2 + 11x_3 + 10x_4 + 9x_5 + 10x_6 \ge 20$

con: todas las variables no negativas

Nota: Ya que el alimento F no es mejor que el alimento C, el cual es más barato, no se empleará alimento F en la mezcla óptima. Por tanto, puede simplificarse el programa sustituyendo $x_6 = 0$.

maximicese: $z = 6x_1 + 4x_2 + 6x_3 + 8x_4$ 1.18

con las condiciones: $3x_1 + 2x_2 + 2x_3 + 4x_4 \le 480$

 $x_1 + x_2 + 2x_3 + 3x_4 \le 400$

 $2x_1 + x_2 + 2x_3 + x_4 \le 400$

≥ 50

 ≥ 100 $x_2 + x_3$

 $x_4 \leq 25$

con: todas las variables no negativas

1.19 minimicese: $z = 1.50 x_1 + 0.75 x_2 + 2.00 x_3 + 1.75 x_4 + 0.25 x_5$

 x_1

 $0.2x_1 - 0.15x_2 + 0.8x_3 - 0.2x_4 - 0.2x_5 \ge 0$ con las condiciones:

 $-0.1x_3+0.9x_4-0.1x_5\geq 0$

 $-0.05x_1 + 0.15x_2 - 0.05x_3 - 0.05x_4 - 0.05x_5 \ge 0$

 $x_1 +$ $x_5 \ge 500$ $x_2 +$

 x_2

≤400

 ≤ 100 x_3

> ≤ 50 x_4

 $x_5 \leq 800$

 ≤ 200

todas las variables no negativas

1.20 maximicese:
$$z = 20x_1 + 17x_2 + 15x_3 + 15x_4 + 10x_5 + 8x_6 + 5x_7$$

con las condiciones:
$$145x_1 + 92x_2 + 70x_3 + 70x_4 + 84x_5 + 14x_6 + 47x_7 \le 250$$

 $x_i \leq 1 \quad (i=1,2,\ldots,7)$

con: todas las variables no negativas y enteras

1.21 El costo de entregar un módulo de una fábrica a un fabricante es el costo de producción más el costo de embarque.

minimicese:
$$z = (1.10 + 0.11)x_{11} + (1.10 + 0.13)x_{12} + \cdots + (1.03 + 0.15)x_{34}$$

con las condiciones: $x_{11} + x_{12} + x_{13} + x_{14} \le 7500$

 $x_{21} + x_{22} + x_{23} + x_{24} \le 10\,000$

 $x_{31} + x_{32} + x_{33} + x_{34} \le 8100$

 $x_{11} + x_{21} + x_{31} = 4 200$

 $x_{12} + x_{22} + x_{32} = 8300$

 $x_{13} + x_{23} + x_{33} = 6300$

 $x_{14} + x_{24} + x_{34} = 2700$

con: todas las variables no negativas y enteras

1.22 Ya que el relleno es barato, no se empleará más carne de la necesaria en cada producto. Sean x_1 , x_2 y x_3 , respectivamente, el número de libras que se ha de preparar de

minimícese:
$$(200 - 0.2x_1 - 0.1x_3) + (800 - 0.5x_1 - 0.5x_2 - 0.4x_3) + (150 - 0.2x_2 - 0.3x_3)$$

con las condiciones: $0.2x_1$

 $0.2x_1 + 0.1x_3 \le 200$

 $0.5x_1 + 0.5x_2 + 0.4x_3 \le 800$

 $0.2x_2 + 0.3x_3 \le 150$

con: todas las variables no negativas

El objetivo es equivalente a

maximicese:
$$z = 0.7x_1 + 0.7x_2 + 0.8x_3$$

1.23 minimicese:
$$z = 145x_{11} + 122x_{12} + 130x_{13} + \cdots + 80x_{54} + 111x_{55}$$

con las condiciones: $\sum_{i=1}^{5} x_{ij} = 1$ (j = 1, 2, 3, 4, 5)

$$\sum_{i=1}^{5} x_{ij} = 1 \quad (i = 1, 2, 3, 4, 5)$$

con: todas las variables no negativas y enteras

1.24 minimícese:
$$z = 210\,000x_1 + 190\,000x_2 + 182\,000x_3$$

con las condiciones: $40x_1 + 65x_2 \ge 1500$

 $35x_1 + 53x_3 \ge 1100$

 $x_1 \leq 30$

 $x_2 \leq 30$

 $x_3 \leq 30$

con: todas las variables no negativas y enteras

1.25 maximicese:
$$z = 250x_1 + (600 - x_2)x_2$$

con las condiciones: $0.25x_1 + 0.40x_2 \le 500$

 $0.75\,x_1 + 0.60\,x_2 \le 1200$

con: ambas variables no negativas

1.26 La energía gravitacional potencial del sistema es (para un nivel de referencia adecuadamente seleccionado) proporcional a a + b + c y esta energía es un mínimo en equilibrio.

CAPÍTULO 2

2.7 Háganse $x_2 = x_4 - x_5$ y $x_3 = x_6 - x_7$, con cada nueva variable no negativa. Multiplíquese la primera restricción por -1.

$$\mathbf{X} = [x_1, x_4, x_5, x_6, x_7, x_8, x_9]^T \qquad \mathbf{C} = [2, -1, 1, 4, -4, 0, 0]^T$$

$$\mathbf{A} = \begin{bmatrix} -5 & -2 & 2 & 3 & -3 & 1 & 0 \\ 2 & -2 & 2 & 1 & -1 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 7 \\ 8 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_8 \\ x_9 \end{bmatrix}$$

2.8
$$\mathbf{X} = [x_1, x_2, x_3, x_4, x_5]^T \qquad \mathbf{C} = [10, 11, 0, 0, 0]^T$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 3 & 4 & 0 & 1 & 0 \\ 6 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 150 \\ 200 \\ 175 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

2.9
$$\mathbf{X} = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \end{bmatrix}^T \qquad \mathbf{C} = \begin{bmatrix} 10, 11, 0, 0, 0, -M, -M, -M \end{bmatrix}^T$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & 0 & 0 & 1 & 0 & 0 \\ 3 & 4 & 0 & -1 & 0 & 0 & 1 & 0 \\ 6 & 1 & 0 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 150 \\ 200 \\ 175 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_6 \\ x_7 \\ x_8 \end{bmatrix}$$

2.10
$$\mathbf{X} = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \end{bmatrix}^T \qquad \mathbf{C} = \begin{bmatrix} 3, 2, 4, 6, 0, 0, M, M \end{bmatrix}^T$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 1 & -1 & 0 & 1 & 0 \\ 2 & 1 & 3 & 7 & 0 & -1 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1000 \\ 1500 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_7 \\ x_8 \end{bmatrix}$$

2.11
$$\mathbf{X} = [x_1, x_2, x_3, x_4, x_5]^T$$
 $\mathbf{C} = [6, 3, 4, M, M]^T$

$$\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 & 1 & 0 \\ 2 & 3 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 10 \\ 15 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_4 \\ x_5 \end{bmatrix}$$

2.12 Hágase $x_4 = x_5 - x_6$, con cada nueva variable no negativa. Entonces x_3 y x_5 pueden usarse como parte de la solución inicial una vez que se ha dividido entre 2 a la segunda restricción.

$$\mathbf{X} = \begin{bmatrix} x_1, x_2, x_3, x_5, x_6, x_7 \end{bmatrix}^T \qquad \mathbf{C} = \begin{bmatrix} 7, 2, 3, 1, -1, -M \end{bmatrix}^T$$

$$\mathbf{A} = \begin{bmatrix} 2 & 7 & 0 & 0 & 0 & 1 \\ 2.5 & 4 & 0 & 1 & -1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 7 \\ 5 \\ 11 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_7 \\ x_5 \\ x_3 \end{bmatrix}$$

2.13
$$\mathbf{X} = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \end{bmatrix}^T \qquad \mathbf{C} = \begin{bmatrix} 10, 2, -1, 0, 0, 0, 0, M, M, M \end{bmatrix}^T$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 50 \\ 10 \\ 30 \\ 7 \\ 60 \end{bmatrix} \qquad \mathbf{X}_0 = \begin{bmatrix} x_4 \\ x_8 \\ x_6 \\ x_9 \\ x_{10} \end{bmatrix}$$

CAPÍTULO 3

3.16 No; $[1, 2]^T$ no está sobre el segmento línea entre los otros dos puntos.

3.17
$$x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

3.18 (b) y (c) son soluciones factibles básicas; (b) es degenerada.

3.19
$$x_1 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 9 \\ 0 \end{bmatrix}$$

- 3.20 (a), (c) y (d) son soluciones factibles básicas, degeneradas.
- 3.21 Hágase que $f(\mathbf{X}) = \mathbf{c}^T x$ asuma su mínimo, m, en \mathbf{P}_1 y \mathbf{P}_2 . Entonces, para $\beta_1 \ge 0$, $\beta_2 \ge 0$, $\beta_1 + \beta_2 = 1$, $f(\beta_1 \mathbf{P}_1 + \beta_2 \mathbf{P}_2) = \beta_1 f(\mathbf{P}_1) + \beta_2 f(\mathbf{P}_2) = \beta_1 m + \beta_2 m = m$
- 3.22 Si el subconjunto fuera linealmente dependiente, entonces las constantes diferentes de cero que satisfacieron (3.1) para este conjunto también satisfarían (3.1) para todo el conjunto, tomando como cero a todas las constantes extra. Esto implicaría que el conjunto es linealmente dependiente, lo cual es falso.
- **3.23** En (3.1), tómese a la constante frente al vector cero como diferente de cero y a todas las otras constantes como cero.

CAPÍTULO 4

4.9
$$x_1^* = \frac{5}{3}$$
, $x_2^* = \frac{2}{3}$; $z^* = \frac{7}{3}$ **4.11** $x_1^* = \frac{16}{5}$, $x_2^* = \frac{13}{5}$; $z^* = \frac{42}{5}$

4.10
$$x_1^* = \frac{9}{4}$$
, $x_2^* = \frac{3}{2}$; $z^* = \frac{51}{4}$ **4.12** $x_1^* = 1285.7$, $x_2^* = 1857.1$; $z^* = -3142.8$

- 4.13 No existe solución factible.
- 4.14 $x_1^* = 0$, $x_2^* = 700$, $x_3^* = 500$, $x_4^* = 1000$, $x_5^* = 0$, $x_6^* = 0$; $z^* = 27\,600$. (Esta solución no solamente es degenerada, sino que incluye una variable artificial cero entre las variables básicas. Esto puede ocurrir cuando una o más de las restricciones es redundante. En este caso, la última restricción es la suma de las dos primeras restricciones menos la suma de las siguientes dos).
- 4.15 $x_1^* = 23.8095$, $x_2^* = 32.1429$; $z^* = 591.667$.
- **4.16** $x_1^* = 0$, $x_2^* = 423.077$, $x_3^* = 0$, $x_4^* = 153.846$; $z^* = 1769.23$.
- 4.17 No hay máximo.
- 4.18 $x_1^* = 6.66667$, $x_2^* = 0.555556$, $x_3^* = 0$; $z^* = 41.6667$.
- 4.19 $x_1^* = 30, x_2^* = 0, x_3^* = 30; z^* = 270.$
- **4.20** $x_1^* = 69\ 090.9\ \text{bbl}, \quad x_2^* = 17\ 272.7\ \text{bbl}, \quad x_3^* = 2272.73\ \text{bbl}, \quad x_4^* = 2727.27\ \text{bbl}; \quad z^* = $235\ 454.$
- 4.21 $x_1^* = 0.90909$ oz, $x_2^* = 1.81818$ oz, $x_3^* = x_4^* = x_5^* = x_6^* = 0$; $z^* = 7.27273$ ¢.
- 4.22 $x_1^* = 50$, $x_2^* = 0$, $x_3^* = 145$, $x_4^* = 10$; $z^* = 1250 .
- 4.23 $x_1^* = 93.75 \text{ gal}, x_2^* = 125 \text{ gal}, x_3^* = 56.25 \text{ gal}, x_4^* = 0, x_5^* = 225 \text{ gal}; z^* = $403.125.$