



Program: III - B.Tech (CS& AI)

Professor(a): Dr. Venkataramana Veeramsetty, Professor

Department: Computer Science and AI Semester: II

Generative AI - Assignment - 6.2

## Instructions:

1. (1 ponto) Design a multilayer ANN architecture according to the requirements shown below. Train, test, save (.h5) and deploy the model to predict the housing price using **Keras** deep learning library

- 2. (1 ponto) Calculate training and testing error metrics
- 3. (1 ponto) Build the application by loading the saved ANN model.

Tabela 1: ANN Architecture

| Layer            | Neurons | Activation Function |  |
|------------------|---------|---------------------|--|
| Hidden Layer - 1 | 15      | relu                |  |
| Hidden Layer - 2 | 20      | relu                |  |
| Hidden Layer - 3 | 25      | relu                |  |
| Hidden Layer - 4 | 20      | relu                |  |
| Hidden Layer - 5 | 15      | relu                |  |

Tabela 2: Training Parameters

| loss function     | epochs | batch size | error metric        | Optimizer |
|-------------------|--------|------------|---------------------|-----------|
| Mean Square Error | 150    | 32         | Mean absolute Error | adam      |

Dataset: https://drive.google.com/file/d/1AcdENlVm5dccNyo\_vgdMbneX8YVvH5R3/view?usp=sharing

- Expected learning Outcomes from this assignment related to python
  - Students are able to build ANN model with python deep learning libraries
  - Students are able to deploy trained ANN model
  - Students are able to measure training and testing performance of trained model

• Last date to submit: 20.02.2025

• Date of activity: 20.02.2025

• Naming convention

- Report File Name: RollNo Week No. Assignment No.

**Date:** 2025-02-19