Summer School on Hashing'14

Locality Sensitive Hashing

Alex Andoni

(Microsoft Research)

Nearest Neighbor Search (NNS)

Preprocess: a set D of points

• Query: given a query point q, report a point $p \in D$ with the smallest distance to q

Approximate NNS

c-approximate

• r-near neighbor: given a new point q, report a point $p \in D$ s.t. $||p - q|| \le cr$ if there exists a point at distance $\le r$

 Randomized: a point p returned with 90% probability

Heuristic for Exact NNS

c-approximate

r-near neighbor: given a new point q, report a set C with

- all points p s.t. $||p q|| \le r$ (each with 90% probability)
- may contain some approximate neighbors p s.t. $||p q|| \le cr$
- Can filter out bad answers

Locality-Sensitive Hashing

[Indyk-Motwani 98]

• Random hash function g on \mathbb{R}^d s.t. for any points p, q:

• Close when $||p - q|| \le r$

$$P_1 = \Pr[g(p) = g(q)]$$
 is "not-so-small"

• Far when ||p - q|| > cr

$$P_2 = \Pr[g(p) = g(q)]$$
 is "small"

Use several hash

tables: n^{ρ} , where

$$\rho = \frac{\log 1/P_1}{\log 1/P_2}$$

Locality sensitive hash functions

- Hash function *g* is usually a concatenation of "primitive" functions:
 - $g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$
- Example: Hamming space $\{0,1\}^d$
 - $h(p) = p_i$, i.e., choose j^{th} bit for a random j
 - g(p) chooses k bits at random
 - $\Pr[h(p) = h(q)] = 1 \frac{Ham(p,q)}{d}$
 - $P_1 = 1 \frac{r}{d} \approx e^{-r/d}$
 - $P_2 = 1 \frac{cr}{d} \approx e^{-cr/d}$
 - $\rho = \frac{\log 1/P_1}{\log 1/P_2} = \frac{r/d}{cr/d} = \frac{1}{c}$

Full algorithm

- Data structure is just $L = n^{\rho}$ hash tables:
 - Each hash table uses a fresh random function $g_i(p) = \langle h_{i,1}(p), ..., h_{i,k}(p) \rangle$
 - Hash all dataset points into the table

Query:

- Check for collisions in each of the hash tables
- until we encounter a point within distance cr

Guarantees:

- Space: $O(nL) = O(n^{1+\rho})$, plus space to store points
- Query time: $O(L \cdot (k+d)) = O(n^{\rho} \cdot d)$ (in expectation)
- 50% probability of success.

Analysis of LSH Scheme

- Choice of parameters k, L?
 - L hash tables with $g(p) = \langle h_1(p), ..., h_k(p) \rangle$

• Pr[collision of far pair] $= P_2^k = 1/n$

- Pr[collision of close pair] = $P_1^k = (P_2^\rho)^k = 1/n^\rho$
- Hence $L = Q(n^{\rho})$ "repetitions" (tables) suffice!

Analysis: Correctness

- Let p^* be an r-near neighbor
 - If does not exists, algorithm can output anything
- Algorithm fails when:
 - near neighbor p^* is not in the searched buckets $g_1(q), g_2(q), ..., g_L(q)$
- Probability of failure:
 - Probability q, p^* do not collide in a hash table: $\leq 1 P_1^k$
 - Probability they do not collide in L hash tables at most

$$(1 - P_1^k)^L = \left(1 - \frac{1}{n^\rho}\right)^{n^\rho} \le 1/e$$

Analysis: Runtime

- Runtime dominated by:
 - Hash function evaluation: $O(L \cdot k)$ time
 - Distance computations to points in buckets
- Distance computations:
 - Care only about far points, at distance > cR
 - In one hash table, we have
 - Probability a far point collides is at most $P_2^k = 1/n$
 - Expected number of far points in a bucket: $n \cdot \frac{1}{n} = 1$
 - Over L hash tables, expected number of far points is L
- Total: $O(Lk) + O(Ld) = O(n^{\rho}(\log n + d))$ in expectation

NNS for Euclidean space [Datar-Immorlica-Indyk-Mirrokni'04]

- Hash function g is a concatenation of "primitive" functions:
 - $g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$
- LSH function h(p):
 - pick a random line ℓ, and quantize
 - project point into ℓ

•
$$h(p) = \left\lfloor \frac{p \cdot \ell}{w} + b \right\rfloor$$

- ℓ is a random Gaussian vector
- *b* random in [0,1]
- w is a parameter (e.g., 4)

•
$$\rho = 1/c$$

Optimal* LSH [A-Indyk'06]

- Regular grid → grid of balls
 - p can hit empty space, so take more such grids until p is in a ball
- Need (too) many grids of balls
 - Start by projecting in dimension t

Proof idea

• Claim: $\rho \approx 1/c^2$, i.e.,

$$P(r) \ge P(cr)^{1/c^2}$$

- P(r)=probability of collision when ||p-q||=r
- Intuitive proof:
 - Projection approx preserves distances [JL]
 - P(r) = intersection / union
 - P(r)≈random point u beyond the dashed line
 - Fact (high dimensions): the x-coordinate of u has a nearly Gaussian distribution

$$\rightarrow P(r) \approx \exp(-A \cdot r^2)$$

$$P(r) = \exp(-Ar^2) = [\exp(-A(cr)^2]^{1/c^2} = P(cr)^{1/c^2}$$

LSH Zoo

- Hamming distance
 - h: pick a random coordinate(s) [IM98]
- Manhattan distance:
 - *h*: random grid [Al'06]
- Jaccard distance between sets:
 - $J(A,B) = \frac{A \cap B}{A \cup B}$
 - h: pick a random permutation π on the universe

$$h(A) = \min_{a \in A} \pi(a)$$

min-wise hashing [Bro'97,BGMZ'97]

Angle: sim-hash [Cha'02,...]

 π =be,to,Simons,or,not

LSH in the wild

- If want exact NNS, what is *c*?
 - Can choose any parameters L, k
 - Correct as long as $(1 P_1^k)^L \le 0.1$
 - Performance:
 - trade-off between # tables and false positives
 - will depend on dataset "quality"
 - Can tune L, k to optimize for given dataset

Time-Space Trade-offs

space

low

query time

Space	Time	Comment	Reference
$\approx n$	n^{σ}	$\sigma = 2.09/c$	[Ind'01, Pan'06]
		$\sigma = O(1/c^2)$	[Al'06]

medium

medium

high

$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	[IM'98]
		$\rho = 1/c^2$	[DIIM'04, Al'06]
		$ \rho \ge 1/c^2 $	[MNP'06, OWZ'11]
$n^{1+o(1/c^2)}$	ω(1) memory lookups		[PTW'08, PTW'10]

high

low

1	mem lookup	•
n^{4/ϵ^2}	$O(d \log n) c = 1 + \epsilon$	[KOR'98, IM'98, Pan'06]
$n^{o(1/\epsilon^2)}$	ω(1) memory lookups	[AIP'06]

LSH is tight...

leave the rest to cell-probe lower bounds?

Data-dependent Hashing!

[A-Indyk-Nguyen-Razenshteyn'14]

• NNS in Hamming space (ℓ_1) with $n^{\rho} \cdot d$ query time, $n^{\rho} + nd$ space and preprocessing for

•
$$\rho \approx \frac{7/8}{c} + 0\left(\frac{1}{c^{3/2}}\right) + o(1)$$

• optimal LSH: $\rho = \frac{1}{c}$ of [IM'98]

• NNS in Euclidean space (ℓ₂) with:

•
$$\rho \approx \frac{7/8}{c^2} + O\left(\frac{1}{c^3}\right) + o(1)$$

• optimal LSH: $\rho \approx \frac{1}{c^2}$ of [Al'06]

A look at LSH lower bounds

- LSH lower bounds in Hamming space
 - Fourier analytic [O'Donnell-Wu-Zhou'11]
- [Motwani-Naor-Panigrahy'06]
 - *H* distribution over hash functions $h: \{0,1\}^d \to U$
 - Far pair: p, q random, distance = d/2 ϵd
 - Close pair: p, q random at distance = $\frac{d/2}{c}$ $\frac{\epsilon d}{c}$
 - Get $\rho \ge 0.5/c$ $\rho \ge 1/c$

Why not NNS lower bound?

- Suppose we try to generalize [OWZ'11] to NNS
 - Pick random *q*
 - All the "far point" are concentrated in a small ball of radius ϵd
 - Easy to see at preprocessing: actual near neighbor close to the center of the minimum enclosing ball

Intuition

- Data dependent LSH:
 - Hashing that depends on the entire given dataset!

- Two components:
 - "Nice" geometric configuration with $\rho < 1/c^2$
 - Reduction from general to this "nice" geometric configuration

Nice Configuration: "sparsity"

• All points are on a sphere of radius $cr/\sqrt{2}$

• Random points are at distance cr

- "Proof":
 - Obtained via "cap carving"
 - Similar to "ball carving" [KMS'98, Al'06]
- Lemma 1': $\rho \approx \left(1 \frac{1}{4\eta^2}\right) \frac{1}{c^2}$ for radius = ηcr

Reduction: into spherical LSH

- Idea: apply a few rounds of "regular" LSH
 - Ball carving [Al'06]
 - as if target approx. is $5c => query time n^{1/25c^2}$
- Intuitively:
 - far points unlikely to collide
 - partitions the data into buckets of small diameter \approx 5cr
 - find the minimum enclosing ball
 - finally apply spherical LSH on this ball!

Two-level algorithm

- n^{ρ} hash tables, each with:
 - hash function $g = (h_1, h_2, ... h_l, s_1, ... s_m)$
 - h_i 's are "ball carving LSH" (data independent)
 - s_i's are "spherical LSH" (data dependent)
- Final ρ is an "average" of ρ from levels 1 and 2

Details

- Inside a bucket, need to ensure "sparse" case
 - 1) drop all "far pairs"
 - 2) find minimum enclosing ball (MEB)
 - 3) partition by "sparsity" (distance from center)

1) Far points

- In level 1 bucket:
 - Set parameters as if looking for approximation $\tau c/\sqrt{2}$
 - Probability a pair survives:
 - At distance $\tau c: n^{-2}$
 - At distance $c: n^{-2/\tau^2}$
 - At distance 1: n^{-2/τ^2c^2}
 - Expected number of collisions for distance τc is constant
 - Throw out all pairs that violate this

2) Minimum Enclosing Ball

- Use Jung theorem:
 - A pointset with diameter τc has a MEB of radius $\tau c/\sqrt{2}$

3) Partition by "sparsity"

- Inside a bucket, points are at distance **at most** $R = \tau c$
- "Sparse" LSH does not work in this case
 - Need to partition by the distance to center
 - Partition into spherical shells of width 1

Practice of NNS

- Data-dependent partitions...
- Practice:
 - Trees: kd-trees, quad-trees, ball-trees, rp-trees, PCA-trees, sp-trees...
 - often no guarantees

- Theory?
 - assuming more about data: PCA-like algorithms "work" [Abdullah-A-Kannan-Krauthgamer'14]

Finale

- LSH: geometric hashing
- Data-dependent hashing can do better!
 - Better upper bound?
 - Multi-level improves a bit, but not too much
 - $\rho = \frac{0.5}{c^2}$ for ℓ_2 ?
- Best partitions in theory and practice?
- LSH for other metrics:
 - Edit distance, Earth-Mover Distance, etc.
- Lower bounds (cell probe?)

Open question:

- Practical variant of ball-carving hashing?
- Design space-partition of \Re^t that is
 - efficient: point location in poly(t) time
 - qualitative: regions are "sphere-like"

[Prob. needle of length 1 is not cut]

2

[Prob needle of length c is not cut]

