Homework:

- (1) Describe the EM algorithm for estimating a Gaussian mixture model. Run GMMexample.m and discuss the effectiveness of the algorithm by comparing the true model and results.
- (2) Modify GMM example.m to estimate a Gaussian mixture model based on $1000~{\rm data}$ points data samples drawn from

$$p(\mathbf{x}) = \frac{1}{8\pi} \exp\left(-\frac{(x_1 - 2)^2}{2}\right) \exp\left(-\frac{(x_2 - 2)^2}{2}\right)$$
$$\frac{3}{8\pi} \exp\left(-\frac{(x_1 - 3)^2}{2}\right) \exp\left(-\frac{(x_2 + 1)^2}{2}\right)$$

(3) Suppose that we are given a data set consisting of points $x_{i,j}$ from two classes respectively, where j=1,2, denotes class label, and i denotes the data index. (a) Determine the class label for a new data point x=1.5 using a probabilistic neural network, with the Gaussian function as window function and $\sigma=1$. (b) How do you find the classification decision boundary of the probabilistic neural network used in (a)? The data set is as follows:

Class 1: $\{1, 2, 0.5\}$

Class 2: $\{2, 3, 3.5\}$

- (4) Run pnn2D.m and describe the results given by the figures, in relation to the data set.
- (5) Given $\boldsymbol{w} = [1, 2]^{\mathrm{T}}$, $w_0 = 0.5$, find $g(x) = \boldsymbol{x}^{\mathrm{T}} + w_0$ for (a) $\boldsymbol{x} = [-1, 2]^{\mathrm{T}}$; (b) $\boldsymbol{x} = [-1, 1]^{\mathrm{T}}$ and (c) $\boldsymbol{x} = [1, -1]^{\mathrm{T}}$ respectively. Plot $g(\boldsymbol{x}) = 0$. Indicate two half planes with $g(\boldsymbol{x}) > 0$, and $g(\boldsymbol{x}) < 0$.
- (6) Describe procedure of Fisher Linear discriminant method. Run FisherEx.m several times and explain the results.

1