

AD-A091 511

NAVAL RESEARCH LAB WASHINGTON DC
DESIGN OF A HIGH POWER 240 HGZ GYROMONOTRON. (U).
NOV 80 J D SILVERSTEIN, M E READ, K R CHU
NRL-MR-4357

F/G 9/5

UNCLASSIFIED

NL

1 x 1
40A
91

END
DATE FILMED
12-80
DTIC

AD A091511

Design of a High Power 240 GHz Gyromonotron

J. D. SILVERSTEIN

*Harry Diamond Laboratory
Adelphi, MD*

and

M. E. READ AND K. R. CHU

*Electron Beam Applications Branch
Plasma Physics Division*

November 4, 1980

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

DDC FILE COPY
100

00-00-00059

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NRL Memorandum Report 4357	2. GOVT ACCESSION NO. AD-A091 547	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) DESIGN OF A HIGH POWER 240 GHz GYROMONOTRON	5. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing NRL problem.	
6. AUTHOR(s) J. D. Silverstein, M. E. Read, K. R. Chu	7. CONTRACT OR GRANT NUMBER(s) 16) RR011091	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, DC 20375	9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N, RR01109419 67-0866-0-0	
10. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217	11. REPORT DATE 11) 4 Nov 80	
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 14) NRL-MR-4357	13. NUMBER OF PAGES 25	
14. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
16. DECLASSIFICATION/DOWNGRADING SCHEDULE		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES *Present address: Harry Diamond Laboratory Adelphi, MD		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Gyrotron Millimeter waves Radar		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A second harmonic gyromonotron has been designed to have an output of 4 kilowatts at a frequency of 240 GHz, and to operate with an overall efficiency of 14%. The design method utilized a detailed theory of the gyrotron oscillator and an electron orbit computer code. Particular attention was paid to the problem of mode competition in the oscillator cavity. Although a particular design example is considered, the method is of general interest.		

CONTENTS

I. INTRODUCTION	1
II. DESIGN CONSIDERATIONS	2
III. EFFICIENCY OPTIMIZATION	4
IV. MODE COMPETITION	10
ACKNOWLEDGMENT	13
REFERENCES	14

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Avail and/or	
Dist	Special
P	

DESIGN OF A HIGH POWER 240 GHz GYROMONOTRON

I. Introduction

During the past several years the gyrotron¹ has been shown to be an efficient source (4 to 45 percent) of high power radiation (1 kW to 1MW) at wavelengths less than 1 cm. Although a number of such devices have been operated successfully in the U.S. in the 8 to 10 mm range,^{2,3} the only devices operating in the near-millimeter wave range (\approx 3 mm) are those built in the Soviet Union.^{4,5}

This paper describes results of the design phase of the first known effort in the U.S. to build an efficient, high-power gyrotron oscillator operating with a wavelength near 1 mm. Specifically, the design goals for this gyromonotron (i.e., single-cavity cyclotron resonance maser (CRM)) were 1 to 10 kW (peak) at 1.3 mm and an overall efficiency of 10 to 15 percent. It was to operate at the second harmonic of the cyclotron frequency ($\omega \approx 2\Omega_c$) and with a cavity mode of TE₀₅₁. Although these last two facts allow operation at reduced magnetic field and higher power than would be possible with the fundamental and lower order modes, they greatly increase the problem of mode competition; the circumvention of this complication is one of the main considerations in this design.

Manuscript submitted August 19, 1980.

II. Design Considerations

A schematic of the device is shown in Fig. 1. The design utilized both analytical and numerical methods. For the beam-wave coupling and oscillation start conditions, the linear theory of Chu⁶ was used. Calculation and optimization of the device efficiency required the use of a code initially developed by Drobot,⁷ and modified by the authors.

The desired output of the device was 1 to 10 kW at the frequency of 240 GHz. An operating mode of the class of TE_{one} was considered desirable because of the ease with which other modes can be preferentially damped.⁸ In addition, these modes are well suited to a high power device, since wall losses in the cavity and output waveguides are minimal for modes without azimuthal variations. The value of n was chosen to be 5 to allow a large enough cavity radius to minimize breakdown or heating problems and reduce perturbations caused by machining errors, while allowing operation near cutoff. (The latter is necessary for optimum CRM coupling.¹) It is desirable to operate at as low a cyclotron harmonic as possible in order to minimize mode competition. Since the maximum magnetic field available was 60 kG, the minimum possible cyclotron harmonic, S, and the one chosen, was 2.

The initial ratio of perpendicular to parallel electron momentum, α , important because only the perpendicular energy is available to the cyclotron resonance maser interaction, has an upper limit fixed by present electron-gun technology. A reasonable estimate for this limit, without knowledge of the exact gun design, appeared to be 1.5.⁹ Finally, the beam voltage was chosen to be $V = 30$ kV, a value deemed to be practical for non-laboratory devices.

Fig. 1 — Schematic of 240 GHz gyrotron oscillator and plot of axial magnetic field

The linear theory allowed calculation of the beam-wave coupling, which is inversely proportional to the product of electron beam power P , and cavity Q required for an oscillation to start. The parameters varied in these calculations were L (cavity length), r (mean beam radius), and ℓ (axial eigen-number of the cavity mode). There are several locally optimum values of r . The strongest coupling occurs for the smallest of these values,⁶ $r = 0.19b$, where b is the cavity wall radius. This value therefore requires the lowest starting current and, despite the small beam radius, yielded the smallest spread in velocities due to space charge. As seen in Fig. 2, the mode $\ell = 1$ has stronger coupling than modes for which $\ell > 1$, and the choice for that parameter was so determined.

III. Efficiency Optimization

The optimization of the device efficiency was then carried out by varying the remaining parameters, L , I (beam current), Q_L (leakage Q) and B (external magnetic field), with the boundary conditions as follows:

$$Q_L > 4\pi(L/\lambda)^2, \quad (1)$$

$$I_{th} < I < 2 A, \quad (2)$$

$$\delta\Delta = \delta[(\omega - kv_n - \frac{S\Omega}{\gamma})\tau] \ll 2.5\pi, \text{ and} \quad (3)$$

$$Q_L < Q_{\text{ohmic}}. \quad (4)$$

The authors' output power requirement meant that

$$10^3 W < VI < 10^4 W. \quad (5)$$

The condition in Eq. (1) states that the leakage Q has a lower limit, usually termed the diffraction Q . The condition in Eq. (2) states that I must exceed the minimum current required for start of oscillation and be less than 2 A. The latter upper limit on I is imposed by the predicted dependence of electron

velocity spread on current density at the cathode of the electron gun.¹¹ In the present case this upper limit is less than the maximum allowed by voltage depression due to space charge in the cavity. Eq. (3) is the criterion given by Chu⁶ on the maximum allowed spread in the phase shift, Δ , between cyclotron and electromagnetic (cavity) modes. In this equation $\tau = L/v_{\parallel}$, v_{\parallel} is the velocity parallel to the magnetic field, $k = \pi l/L$, ω and ω_c are the radiation and relativistic cyclotron frequencies, respectively, and γ is the normalized electron energy. Finally, the condition in Eq. (4) must be satisfied in order for the ohmic losses to be small.

The code used for the optimization integrates the electron energy loss along its orbit. It is a single particle, 3 dimensional code, and calculations are made with steady-state cold cavity field profiles. Optimization was accomplished in a three parameter space, the parameters being L , B and QI . The parameters L and B determine the phase shift, Δ , in Eq. (3), and the parameter QI , when combined with n_{CRM} (CRM efficiency) and the cavity mode and geometry, yields a measure of the magnitude of electromagnetic fields in the cavity.

The results of the optimization runs for CRM efficiency, n_{CRM} , versus QI , with Δ as parameter and $L = 8b$ are shown in Fig. 3. We note that the variation of n_{CRM} with field amplitude predicted by the code for small amplitudes is in excellent agreement with that given by the linear theory. The threshold values, $(QI)_{th}$, from the linear theory are indicated by the vertical lines in Fig. 3.

(QP)_{TH} VS L/b

Fig. 2 — Threshold QP for gyrotron oscillator vs. cavity length-to-radius ratios from gyrotron cavity theory. (QP)_{th} for $l = 2, 3, 4, 5$ have nearly the same value so they are represented by the same curve.

Fig. 3 — CRM efficiency vs. QI from electron orbit computer code. The two numbers in the parentheses are, respectively, Δ in radians and B in kG.

The results for maximum CRM efficiency η_{CRM}^{max} , obtained by varying B and QI for various fixed values of L, are shown in Fig. 4. It can be seen that η_{CRM}^{max} has a value of 30 percent for a cavity length $L = 4b$. However, the overall (loaded) efficiency, η_L , unlike η_{CRM} , depends on wall losses. It is therefore limited by the boundary conditions (1) through (5) and the maximum achievable ohmic Q of 20,000 in a copper cavity at room temperature. The result is that the highest value of η_L is achieved with a cavity length $L = 8b$, even though η_{CRM}^{max} for this cavity length is only 22 percent. This cavity length was therefore chosen for the design. From Fig. 3, a QI value of 8.0×10^3 amperes maximizes η_{CRM} . Assuming an achievable Q_L of 7300 (1.3 times the diffraction Q), the total Q of the cavity is 5300, resulting in a required beam current of 1.5 A; η_L is then 16 percent.

Our predictions of efficiency versus QI for this gyromonotron have been compared with those based on data from the theory of Nusinovich and Erm.¹⁰ This theory assumes that the rf electric field in the cavity has a Gaussian dependence on axial distance. Such a field shape is known to result in a higher efficiency than the purely sinusoidal shape of a straight cylindrical cavity. The lowest QI for which a comparison could be made by extrapolating the Nusinovich and Erm data is 1.55×10^4 A. Assuming an ohmic Q of 20,000 as above, a total Q of 7000, and therefore, a current of 2.2 A, those data predict an η_L of 16 percent whereas our simulation code predicts an η_L of 11 percent.

Fig. 4 — Maximum CRM efficiency vs. cavity length-to-radius ratio from electron orbit code

The geometry, beam parameters, and magnetic field determine the phase shift, Δ , given by equation (3). Figure 3 shows that the mechanism is "strong" for $0 < \Delta < 4.5$. This agrees with the analytical theory⁶ that strong coupling occurs within the range $-\pi/2 < \Delta < 2\pi$. It is clear that for the stable operation of a device, the phase shift associated with any electrons should not be outside this range. Preferably, the range should be much less than 2.5π . This puts a limit on the inhomogeneity in the static magnetic field and on the electron gun-dependent beam temperature.

The computer code results of Fig. 3 show that in order for this device to operate within 10 percent of its maximum efficiency, spread in the magnetic field should be no greater than 0.2 percent. Other runs with the computer code were made in which the electron velocity components were varied, with the electron energy, applied magnetic field, and rf field amplitude held constant. Based on these runs, the 22 percent CRM efficiency for zero spread in $v_{||}$ would be reduced to 21 percent for a 10 percent spread in $v_{||}$ and to 20 percent for a 20 percent spread in $v_{||}$.

IV. Mode Competition

Until now it has been assumed that the cavity can only oscillate in the TE_{051} mode. In order to assess the effects of mode competition, $(QI)_{th}$ for other TE_{onl} modes was calculated by means of the linear theory at values of Δ for those modes corresponding to the range in Δ for the TE_{051} , $S=2$ mode in Fig. 3. Values of S ranging from 1 through 3 were scanned. As was expected, $(QI)_{th}$ for a number of TE_{onl} , $S=1$ modes was less than that for the TE_{051} , $S=2$ mode due to the stronger coupling at the first cyclotron harmonic than at the second. However, due to the rather strong dependence of Δ on resonant frequency (see eq. (3)), the only modes with $S=1$ for which the requirement $-\frac{\pi}{2} < \Delta < 2\pi$ was satisfied were those with rather large axial mode number, l . Assuming a coupling scheme in which Q_L has the previously stated value of 7300 for TE_{051} , the value of Q_L for modes with larger l is correspondingly smaller.⁸ The result is

that for the entire range in Δ or B over which the gyrotron would be operated for oscillations in the TE_{051} , $S=2$ mode, the lowest $S=1$ mode threshold power, which occurs for the TE_{028} mode, is still about ten times that of the TE_{051} , $S=2$ mode. The only modes whose threshold power is comparable to that of the TE_{051} , $S=2$ mode are other $TE_{05\ell}$, $S=2$ modes.

The results for P_{th} vs Δ or B are shown in Fig. 5. It is seen that while the TE_{051} mode has the lowest threshold for high magnetic fields, the TE_{052} mode has a lower threshold for $B = 44.86$ kG, the field for which the TE_{051} mode is most efficient, as is evident from Fig. 3. In order to assure stable operation in this mode, a reasonable operating point is probably 44.86 kG. Fig. 3 then shows that η_{CRM} is reduced from 22 percent to 18 percent, leading to a reduction in η_L from 16 percent to 13 percent.

The device parameters resulting from the design are given in Table I.

Fig. 5 — Threshold power for gyrotron oscillation in various TE_{0n1} modes vs. B from gyrotron cavity theory. $Q_L = 7300$ for the TE_{051} mode.

TABLE I
GYROMONOTRON PARAMETERS

Frequency	240 GHz
Cavity mode	TE ₀₅₁
Output power	3.5 kW
Cavity diameter x length	6.6 x 26.2 mm
Beam voltage	30 kV
Beam current	0.9 A
Beam geometry	annular
Mean beam diameter	1.2mm
Initial ratio of electron perpendicular to parallel momentum in cavity	1.5
Beam thickness	0.2mm
Magnetic field	45 kG
Magnetic field homogeneity in cavity	0.2%
Beam temperature:	
Axial component	10%
Transverse component	5%

Acknowledgment

The authors acknowledge the many useful suggestions from and discussions with A. T. Drobot and V. Granatstein during the design of this device.

References

1. V. A. Flyagin, A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, The Gyrotron, IEEE Transactions on Microwave Theory and Techniques MTT-25, No. 6, 514 (1977).
2. M. Read, L. Seftor, R. Lucey, K. R. Chu, and J. D. Silverstein, A High Power 35 GHz Microwave Source for ECRH, Conference Record (Abstracts) of 1978 IEEE International Conference on Plasma Science, p. 302.
3. H. Jory, S. Hegji, J. Shivley, and R. Symons, Gyrotron Developments, Microwave Journal 21, No. 8, 30 (1978).
4. N. I. Zaytsev, T. B. Pankratova, M. I. Petelin, and V. A. Flyagin, Millimeter and Submillimeter-Wave Gyrotrons, Radio Engineering and Electronic Physics 19, No. 5, 103 (1974).
5. A. A. Andronov, V. A. Flyagin, A. V. Gaponov, A. L. Gol'denberg, M. I. Petelin, V. G. Usov, and V. K. Ulpatov, The Gyrotron: High Power Source of Millimetre and Submillimetre Waves, Infrared Physics 18, No. 5/6, 385 (1978).
6. K. R. Chu, Theory of Electron Cyclotron Maser Interactions in a Cavity at the Harmonic Frequencies, Phys. of Fluids 21, 2354-2364 (1978).
7. P. Sprangle and A. T. Drobot, The Linear and Self-Consistent Non-Linear Theory of the Electron Cyclotron Maser Instability, IEEE Transactions on Microwave Theory and Techniques MTT-25, No. 6, 528 (1977).

8. M. Read, R. M. Gilgenbach, R. Lucey, K. R. Chu, J. Silverstein and V. L. Granatstein, Operation of a 35 GHz Gyromonotron, NRL Technical Report, 1979.
9. L. Seftor, A. Drobot, and K. R. Chu, An Investigation of a Magnetron Injection Electron Gun Suitable for Use in a Cyclotron Resonance Maser, NRL Memorandum Report 3697, 1978
10. G. S. Nusinovich and R. E. Erm, Elektron Tekh., Ser. 1, Elektron. SVCh, No. 2, 55 (1972); also A. V. Gaponov, A. L. Gol'denberg, D. P. Grigor'ev, T. B. Pankratova, M. I. Petelin, and V. A. Flyagin, Experimental Investigation of Centimeter-Band Gyrotrons, Radiophysics and Quantum Electronics 18, No. 2, 204-211 (1975).
11. Varian Associates, private communication.

GYROTRON & ECH DISTRIBUTION LIST

- (25) Naval Research Laboratory Code: 4700 - Dr. T. Coffey
 (26) Attn: Name/Code 4740 - Dr. V.L. Granatstein
 4555 Overlook Avenue, S.W. 4740 - Dr. R.K. Parker
 Washington, D.C. 20375 4740 - Dr. K.R. Chu
 4740 - Dr. M.E. Read
 4740 - Dr. C.W. Roberson
 4790 - Dr. P.A. Sprangle
 4790 - Dr. B. Hui
 4790 - Dr. W.M. Manheimer
 6850 - Dr. L.R. Whicker
 6853 - Dr. A. Ganguly
 6805 - Dr. S.Y. Ahn
 6805 - N.R. Vanderplaats
 6875 - Dr. R. Wagner
 4740 - Dr. S. Gold
-
- On-Site Contractors: Code: 4740 - Dr. J.M. Baird (B-K Dynamics)
 4740 - Dr. L. Barnett (B-K Dynamics)
 4740 - Dr. D. Dialetis (SAI)
 4740 - A.J. Dudas (JAYCOR)
 4740 - Dr. R.M. Gilgenbach (JAYCOR)
 4740 - Dr. K.J. Kim (JAYCOR)
 4740 - Dr. Y.Y. Lau (SAI)
 4740 - Dr. J.S. Silverstein (HDL)
 4790 - Dr. A.J. Drobot (SAI)
 4790 - Dr. C.M. Hui (JAYCOR)
 4790 - Dr. J. Vomvoridis (JAYCOR)
 5704S - Dr. S. Smith (LOCUS, Inc.)
-
- (3) Secretary Dr. M. Johnson (G-234)
 Department of Energy Dr. M. Murphy (G-234)
 Attn: Dr. J. Willis (G-234)
 Washington, D.C. 20545
- (1) Air Force Avionics Laboratory
 Attn: W. Friz
 Wright/Patterson AFB, Ohio 45433
- (1) Bell Laboratories
 Attn: Dr. W.M. Walsh, Jr.
 600 Mountain Avenue
 Murray Hill, New Jersey 07971
- (1) Columbia University
 Department of Electrical Engineering
 Attn: Dr. S.P. Schlesinger
 New York, New York 10027
- (1) Dartmouth College
 Physics Department
 Attn: Dr. John Walsh
 Dartmouth, New Hampshire 03755

- (32) Defense Technical Information Center
 Cameron Station
 5010 Duke Street
 Alexandria, Virginia 22314
- (2) Georgia Institute of Technology
 Engineering Experimental Station
 Attn:
 Atlanta, Georgia 30332 Dr. James J. Gallagher
 J. Wiltse
- (3) Hughes Aircraft Co.
 Attn:
 Electron Dynamics Division
 3100 Lomita Boulevard
 Torrance, California 90509 Dr. J.J. Tancredi
 K. Arnold
 K. Amboss
- (1) Los Alamos Scientific Laboratory
 Attn: Dr. Paul Tallerico
 P.O. Box 1663
 Los Alamos, New Mexico 87545
- (1) Massachusetts Institute of Technology
 Research Laboratory of Electronics
 Attn: Dr. G. Bekefi
 Bldg. 36, Rm. 36-225
 Cambridge, Massachusetts 02139
- (3) Massachusetts Institute of Technology
 Plasma Fusion Center
 Attn:
 167 Albany St., N.W. 16-200
 Cambridge, Massachusetts 02139 Dr. R. Davidson
 Dr. M. Porkolab
 Dr. R. Temkin
- (4) Northrop Corporation
 Defense System Department
 Electronics Division
 Attn:
 175 W. Oakton St.
 Des Plaines, Illinois 60018 G. Doehler
 O. Doehler
 R. Espinosa
 R. Moates
- (2) Oak Ridge National Laboratories
 Attn:
 P.O. Box Y
 Oak Ridge, Tennessee 37830 Dr. A. England
 M. Loring
- (1) Princeton University
 Plasma Physics Laboratory
 Attn: Dr. H. Hsuan
 Princeton, New Jersey 08540
- (2) Raytheon Company
 Microwave Power Tube Division
 Attn:
 Willow St.
 Waltham, Massachusetts 02154 R. Edwards
 R. Handy

- (1) Science Applications, Inc.
Attn: Dr. Alvin Trivelpiece
1200 Prospect St.
La Jolla, California 92037
- (1) UKAEA Culham Laboratory
Attn: Dr. A. C. Riviere
Abingdon
Oxfordshire
United Kingdom
- (1) Stanford University
SLAC
Attn: Dr. Jean Lebacqz
Stanford, California 94305
- (1) University of Arizona
Optical Sciences Center
Attn: Dr. W.E. Lamb
Tucson, Arizona 85720
- (1) Varian Associates
Bldg. 1
Attn: Dr. H. Jory
611 Hansen Way
Palo Alto, California 94303
- (1) Yale University
Mason Laboratory
Attn: Dr. J.L. Hirshfield
400 Temple Street
New Haven, Connecticut 06520
- (1) Kings College
University of London
Attn: Dr. P. Lindsay
London, United Kingdom
- (1) Nagoya University
Institute of Plasma Physics
Attn: Dr. H. Ikegami
Nagoya, Japan 464
- (1) National Taiwan University
Dept. of Physics
Attn: Dr. Yuin-Chi Hsu
Taipei, Taiwan, China
- (1) TFR Group
DPH - PFC
Attn: Dr. A. Cavallo
92260 Fontenay-aux Roses
France
- (1) Thompson
C.S.F./DET/TDH
Attn: Dr. G. Mourier
2 Rue Latecoere
78140 Velizy Villa conblay
France

- (3) US Army Electronics Technology And Devices Laboratory
ATTN:
Fort Monmouth, NJ 07703 DELET-DD
DELET-B, I. Reingold
DELET-I, H. Jacobs
- (1) Commander
US Air Force Rome Air Development Center
ATTN: RADC/ETEN, E. Altshuler
L. G. Hanscomb Field
Bedford, MA 01730
- (2) Commander
US Army Atmospheric Sciences Laboratory
ATTN:
White Sands Missile Range, NM 88002 H. Rachelle
DRSEL-BL, Library
- (1) Commander
US Army Foreign Science And Technology Center
220 Seventh Street, NE
ATTN: DRXST-SD, O. R. Harris
Charlottesville, VA 29901
- (3) Commander
US Army Missile Command
ATTN:
Redstone Arsenal, AL 35809 DRSMI-RE, W. Lindberg
DRDMI-TR, R. L. Hartman
DRDMI-TB, Redstone Science Info. Center
- (5) Commander
US Army Night Vision & Electro-Optics Laboratory
ATTN:
Ft Belvoir, Va 22060 DELNV-ACT, W. Ealy
DELNV-VI, J. R. Moulton
DELNV-L, R. Shurtz
DELNV-L, R. C. Buser
Library
- (1) Commander
US Army Rsch & Std Gp (Eur)
ATTN: D. Rheinhard
FPO New York, 09510
- (4) Commander
US Army Materiel Development & Readiness Command
ATTN:
5001 Eisenhower Avenue
Alexandria, VA 22333 DRXAM-TL, HQ Tech Library
DRCDE, Dir Devel & Engr
DRCMD-ST, K.S. Wiseman
VRCLDC, J. Bender

- (1) Commander
US Army Armament Materiel
Readiness Command
ATTN: DRSAR-LEP Technical Library
Rock Island, IL 61299
- (1) Commander
US Army Missile & Munitions
Center & School
ATTN: ATSK-CTD-F
Redstone Arsenal, AL 35809
- (1) Director
US Army Materiel Systems Analysis
Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005
- (5) Director DRDAR-TSB-S (STINFO)
US Army Ballistic Laboratory DRXBR, Director
ATTN: DRDAR-BLB, R. McGee
Aberdeen Proving Ground, MD 21005 DRDAR-BL, H. Reed
DRXBR-TB, F. J. Allen
- (1) Commander
US Army Armaments
Research & Development Command
ATTN: DRDAR-TD, R. E. Weigel
Dover, NJ 07801
- (1) The Ivan A. Getting Lab
The Aerospace Corporation
ATTN: D. T. Hodges
Los Angeles, CA 90009
- (3) Litton Industries, Inc P. Bahr
Electron Tube Division J. Hull
ATTN: J. Munger
1035 Westminster Drive
Williamsport, PA 17701
- (1) Mass Institute of Technology
Francis Bitter National
Magnet Laboratory
ATTN: K. J. Button
170 Albany Street
Cambridge, MA 02139

(3)	Mass Institute of Technology Lincoln Laboratory ATTN: P.O. Box 73 Lexington, MA 02173	C. Blake H. R. Fetterman D. Temme
(3)	Commander US Army Research Office ATTN: Research Triangle Park Durham, NC 27709	DRXDO, H. Robl DRXDO-PH, R. Lontz DRXDO-EL, J. Suttle
(1)	Commander Ballistic Missile Defense Agency ATTN: BMD-ATC-D, C. Johnson Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807	
(2)	Defense Advanced Research Projects Agency ATTN: 1400 Wilson Blvd Arlington, VA 22209	TT0, J. Tengnelia ST0, S. Zakanycz
(1)	NASA/Goddard Space Flight Center ATTN: Code 723, N. McAvoy Greenbelt, MD 20771	
(2)	National Bureau of Standards Boulder, CO 80302	K. M. Evenson R. Phelan
(2)	Raytheon Company Microwave and Power Tube Div. ATTN: Foundry Avenue Waltham, MA 02154	L Clampitt R. Harper
(1)	Standford Research Institute ATTN: J. Watjen 3980 El Camino Road Palo Alto, CA 94306	
(1)	University of Illinois Department of Electrical Engineering--EERL-200 ATTN: P. D. Coleman Urbana, IL 61801	

- (1) Commander
 Electronic Warfare Laboratory
 ATTN: DELEW-D
 Fort Monmouth, NJ 07703
- (2) US Army Electronics Research
 & Development Command
 2800 Powder Mill Road
 Adelphi, MD 20783 DRDEL-CT, Tech Dir
 DRDEL-AP-OA, B. Zarwyn
- (29) Commander
 Harry Diamond Laboratories
 2800 Powder Mill Road
 Adelphi, MD 20783 CO/TD/TSO/Division Dir's
 DELHD-TIA-A, Record Copy
 DELHD-TIA-L, Library, (3 copies)
 DELHD-TIA, WRF (Woodbridge)
 Chairman, Editorial Committee
 DELHD-TIA-R, R. Savage
 DELHD-R-CM-AP, H. Dropkin
 DELHD-R-A-AR, H. Gerlach
 DELHD-RT-CB, J. Nemarich
 DELHD-RT-C, R. McCoskey
 DELHD-RT-CA, R. Leavitt
 C. Morrison
 J. Sattler
 M. Tobin
 D. Wortman
 DELHD-RT-CB, Z. G. Sztankay
 S. Kulpa
 J. Silverstein
 DELHD-RT-AR, K. Sann
 DELHD-RT-CE, Chief
 DELHD-NW-RC, H. Brandt
 A. Bromborsky
 J. Soln
 DELHD-NW-RI, G. A. Huttlin
 DELHD-R, H. Sommer
 DELHD-RT-RS, Chief
- (1) Commander
 Office of Missile Electronic Warfare
 ATTN: DELEW-M-DD
 White Sands Missile Range, NM 88002