EAIiIB	Autor 1: Rafał Mazur		Rok II	Grupa 5	Zespół 3	
	Autor 2	: Jakub Ficoń	TOOK II	Grapa o	Lesper	
Temat:			Numer ćwiczenia:			
Współczynnik załamania światła dla ciał stałych			51			
Data wykonania	Data oddania	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena	

1 Cel ćwiczenia

Wyznaczanie współczynnika załamania światła dla płytki szklanej i pleksiglasowej metodą pomiaru grubości pozornej płytki przy pomocy mikroskopu.

2 Wstęp teoretyczny

W załącznikach na końcu sprawozdania

4 Opracowanie wyników pomiarów

Wzór na współczynnik załamania

$$n = \frac{d}{h} \tag{1}$$

Gdzie: n-współczynnik załamania, d- grubość rzeczywista, h- grubość pozorna.

4.1 Płytka z pleksiglasu:

Grubość rzeczywista d=3.84[mm]

Niepewność u(d)=0.01[mm]

Średnia grubość pozorna h=2.56[mm]

Niepewność u(h)=0.016[mm]

Korzystając ze wzoru (1) wyznaczam wartość współczynnika załamania dla płytki z pleksiglasu:

$$n = \frac{3.84}{2.56} = 1.501$$

4.2 Płytka szklana:

Grubość rzeczywista d=3.76[mm]

Niepewność u(d)=0.01[mm]

Średnia grubość pozorna h=2.47[mm]

Niepewność u(h)=0.020[mm]

Korzystając ze wzoru (1) wyznaczam wartość współczynnika załamania dla płytki szklanej:

$$n = \frac{3.76}{2.47} = 1.520$$

4.3 Płytka szklana z filtrem niebieskim:

Grubość rzeczywista d=3.76[mm]

Niepewność u(d)=0.01[mm]

Średnia grubość pozorna h=2.51[mm]

Niepewność u(h)=0.016[mm]

Korzystając ze wzoru (1) wyznaczam wartość współczynnika załamania dla płytki szklanej:

$$n = \frac{3.76}{2.51} = 1.496$$

4.4 Płytka szklana z filtrem zielonym:

Grubość rzeczywista d=3.76[mm]

Niepewność u(d)=0.01[mm]

Średnia grubość pozorna h=2.49[mm]

Niepewność u(h)=0.016[mm]

Korzystając ze wzoru (1) wyznaczam wartość współczynnika załamania dla płytki szklanej:

$$n = \frac{3.76}{2.49} = 1.510$$

4.5 Płytka szklana z filtrem czerwonym:

Grubość rzeczywista d=3.76[mm]

Niepewność u(d)=0.01[mm]

Średnia grubość pozorna h=2.50[mm]

Niepewność u(h)=0.018[mm]

Korzystając ze wzoru (1) wyznaczam wartość współczynnika załamania dla płytki szklanej:

$$n = \frac{3.76}{2.50} = 1.502$$

5 Obliczenie niepewności:

Wzór na niepewność złożoną współczynnika załamania:

$$u(n) = \sqrt{\left[\frac{1}{h}u(d)\right]^2 + \left[\frac{-d}{h^2}u(h)\right]^2} \tag{2}$$

	u(d)	u(h)	u(n)
Pleksiglas	0.01	0.016	0.011
Szkło	0.01	0.020	0.013
Szkło z filtrem niebieskim	0.01	0.016	0.010
Szkło z filtrem zielonym	0.01	0.016	0.011
Szkło z filtrem czerwonym	0.01	0.018	0.012

Tabela 1: Tabela przed zaokrągleniem

6 Zestawienie wyników

Materiał	n zmierzone	n tablicowe	u(n)	u(n) rozszerzone	Równe?
Pleksiglas	1.501	1.489	0.011	0.022	TAK
Szkło	1.520	1.500	0.013	0.026	TAK
Szkło z filtrem niebieskim	1.496	1.500	0.010	0.020	TAK
Szkło z filtrem zielonym	1.510	1.500	0.011	0.022	TAK
Szkło z filtrem czerwonym	1.502	1.500	0.012	0.024	TAK

Tabela 2: Zestawienie wyników

7 Wnioski

Z wykonanych obliczeń wynika, że metoda wyznaczania współczynnika załamania metodą pomiaru grubości pozornej płytki przy pomocy mikoskopu jest dobrym sposobem wyznaczania tej wartości, gdyż wszystkie obliczone wartości pokrywają się z wartościami tablicowymi w granicach niepewności rozszerzonej. Wykorzystanie kolorowych filtrów światła pokazało, że kolor światła nie wpływa na współczynnik załamania, nie można jednak stwierdzić tego z pewnością gdyż różnice pomiędzy pomiarami są zbyt małe. Niewielkie rozbieżności w wynikach mogą wynikać z subiektywności postrzegania obrazu za ostry. Nie można było dokładnie sprawdzić zgodności szkła z wartością tablicową gdyż nie można było stwierdzić rodzaju szkła więc przyjęta została wartość średnia dla tego materiału czyli n=1.500