Градиентные методы оптимизации для решения некоторых обратных задач математической физики

Плетнев Никита Вячеславович

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем Научный руководитель: д. ф.-м. н. А. В. Гасников

16 июня 2021 г.

Исходная задача

Задача Коши для уравнения Гельмгольца

$$\Delta u + k^2 u = 0,$$
 $(x, y) \in \Omega = (0, 1) \times (0, 1),$ $u|_{x=0} = f(y),$ $u_x|_{x=0} = g(y),$ $u|_{y=0} = u|_{y=1} = 0.$

Проблема и путь решения

Задача Коши для эллиптического уравнения поставлена некорректно.

Корректной она станет, если добавить условие: $u|_{x=1} = q(y)$. Таким образом, задача сводится к обратной.

Обратная задача

$$\Delta u + k^2 u = 0,$$
 $(x, y) \in \Omega = (0, 1) \times (0, 1),$ $u_x|_{x=0} = g(y),$ $u|_{y=0} = u|_{y=1} = 0,$ $u|_{x=1} = g(y).$

Найти q(y) по известной $f(y) = u|_{x=0}$.

Цели работы

Проверка различных градиентных методов в данном подходе

Необходимо проверить эффективность используемого подхода к решению задачи Коши.

Поскольку для функционала и градиента возможно только приближённое вычисление, погрешность вычислений тоже влияет на качество.

Установление концепции шума

аддитивный шум	относительный шум	
$ \widetilde{\nabla} J(q) - \nabla J(q) \leq \delta$	$ \widetilde{\nabla}J(q) - \nabla J(q) \le \alpha \nabla J(q) $	
погрешность накапливается,	сходимость замедляется,	
невязка растёт	наклонная прямая	
	в логарифмическом масштабе	

Эксперименты позволяют определить, какая из концепций имеет место.

Постановка задачи

Оператор

Функция q — элемент гильбертова пространства $H=\{q\in L_2(0,1): q(0)=q(1)=0\}.$ Определим оператор $A:H\to H$ следующим образом: $(Aq)(y)=u(0,y)\quad \forall y\in (0,1),$ где u — решение соответствующей краевой задачи.

Операторное представление

Задача принимает вид Aq = f, или

$$J(q) = \frac{1}{2}||Aq - f||_H^2 \to \min_{q \in H}.$$

Для данной оптимизационной задачи применяются метод сопряжённых градиентов (Флетчера-Ривса) и ускоренный метод подобных треугольников.

Вычисление градиента

$$abla J(q) = A^*(Aq - f)$$
, где A^* — сопряжённый оператор.

Обозначение: $\Gamma[a(y),b(y)](x,y)$ — решение v(x,y) задачи

$$\begin{cases} v_{xx} + v_{yy} + k^2 v = 0, & (x, y) \in (0, 1) \times (0, 1) \\ v|_{x=1} = a(y), & y \in [0, 1] \\ v_{x|_{x=0}} = b(y), & y \in [0, 1] \\ v|_{y=0} = v|_{y=1} = 0, & x \in [0, 1] \end{cases}$$

Gradient Precise Oracle

Вход: $q(y) \in H$; f(y), g(y), k — параметры задачи

- **1** вычислить $u(x,y) = \Gamma[q(y), g(y)](x,y);$
- **2** вычислить $\psi(x,y) = \Gamma[0,u(0,y)-f(y)](x,y);$
- **3** вычислить $\nabla J(q)(y) = \psi_{\mathsf{x}}(1,y)$.

Выход: $\nabla J(q)(y)$.

Используемый градиентный метод

Similar Triangle Method (из статьи [Васин, Гасников, Спокойный])

Вход: $f:Q \to \mathbb{R}$, $x_{start} \in Q$, L=1, N.

1
$$\tilde{x}_0 = x_{start}$$
; $A_0 = \frac{1}{L}$; $\alpha_0 = \frac{1}{L}$; $z_0 = \tilde{x}_0 - \alpha_0 \widetilde{\nabla} f(\tilde{x}_0)$; $x_0 = z_0$;

② for k = 1...N:

$$\tilde{\mathbf{x}}_k = \frac{A_{k-1} \mathbf{x}_{k-1} + \alpha_k \mathbf{z}_{k-1}}{A_k};$$

Выход: x_N .

Теорема:
$$f(x_N) - f(x^*) \le \frac{4LR^2}{N^2} + 3\tilde{R}\delta + \frac{N\delta^2}{2L}$$
.

Приближённое вычисление градиента на сетках

Обозначение: $\Gamma_h[a_m,b_m]_{n,m}$ — решение $v_{n,m}$ задачи

$$\begin{cases} \frac{v_{n+1,m}-2v_{n,m}+v_{n-1,m}}{h^2} + \frac{v_{n,m+1}-2v_{n,m}+v_{n,m-1}}{h^2} + k^2v_{n,m} = 0, & 1 \leq n, m \leq N-1 \\ v_{N,m} = a_m, & 1 \leq m \leq N-1 \\ \frac{v_{1,m}-v_{0,m}}{h} = b_m, & 1 \leq m \leq N-1 \\ v_{n,0} = v_{n,N} = 0, & 0 \leq m \leq N \end{cases}$$

Gradient Approximate Oracle

Вход: $q(y) \in H$; $f_m = f(mh), g_m = g(mh), k$ — параметры задачи, $h = \frac{1}{N}$ — шаг сетки

- **1** вычислить $u_{n,m} = \Gamma_h[q_m, g_m]_{n,m}$;
- **2** вычислить $\psi_{n,m} = \Gamma_h[0, u_{0,m} f_m]_{n,m};$
- \mathfrak{J} вычислить $\widetilde{
 abla} J(q)_m = rac{\psi_{N,m} \psi_{N-1,m}}{h}.$

Выход: $\widetilde{\nabla} J(q)_m$.

7/18

Эксперименты на сетках

Эффективность вычислений на сетках

Результаты экспериментов

h	time per iteration, s	function, min
0.1	0.34	0.4465
0.05	0.43	0.3448
0.02	1.74	0.2523

Оценка шума

Если используется n промежуточных точек, то $h=\frac{1}{n}$, шум аддитивный с $\delta=O\left(\frac{1}{n}\right)$.

Теорема о вычислительной эффективности (Плетнев, 2021)

Применение N итераций STM с приближённым вычислением градиента путём решения разностных задач требует $O(n^6N)$ арифметических операций и обеспечивает невязку по функционалу $O\left(\frac{R^2}{N^2}+\frac{\tilde{R}}{n}+\frac{N}{n^2}\right)$

Приближённое вычисление градиента — Фурье

$\Gamma[a(y),b(y)](x,y)$ через ряды Фурье

$$a(y) = \sum_{n=1}^{\infty} \alpha_n \sin \pi ny$$
, $b(y) = \sum_{n=1}^{\infty} \beta_n \sin \pi ny$.

$$\Gamma[a(y),b(y)](x,y)=\sum\limits_{n=1}^{\infty}X_n(x)\sin\pi ny$$
, где $X_n(x)$ — решение задачи

$$\begin{cases} X_n''(x) + (k^2 - \pi^2 n^2) X_n(x) = 0, & x \in (0, 1) \\ X_n(1) = \alpha_n \\ X_n'(0) = \beta_n \end{cases}$$

Градиент через ряды Фурье

$$q(y) = \sum_{n=1}^{\infty} q_n \sin \pi ny; \ f(y) = \sum_{n=1}^{\infty} f_n \sin \pi ny, \ g(y) = \sum_{n=1}^{\infty} g_n \sin \pi ny.$$

$$\nabla J(q)(y) = \sum_{n=1}^{\infty} \frac{1}{\operatorname{ch}^2 \gamma_n} \left(q_n - g_n \frac{\operatorname{sh} \gamma_n}{\gamma_n} - f_n \operatorname{ch} \gamma_n \right) \sin \pi n y.$$

◆□▶ ◆□▶ ◆■▶ ◆■ りへぐ

Эксперименты с рядами Фурье

Эффективность вычислений с рядами Фурье

Результаты экспериментов

Fourier summands	time per iteration, s	function, min
10	0.87×10^{-3}	0.1984
100	$0.91 imes 10^{-3}$	0.1993
1000	1.75×10^{-3}	0.1993

Оценка шума

Если используется n слагаемых и p промежуточных точек при интегрировании, то шум аддитивный с $\delta = O\left(\frac{1}{n} + \frac{1}{p}\right)$.

Теорема о вычислительной эффективности (Плетнев, 2021)

Применение N итераций STM с использованием рядов Фурье для приближённого вычисления градиента требует O((N+p)n) арифметических операций и обеспечивает невязку по функционалу $O\left(\frac{R^2}{N^2}+\frac{\tilde{R}}{n}+\frac{N}{n^2}\right)$.

Эксперименты с рядами Фурье

Модельный случай с точным решением

$$k = \pi$$
, $f(y) = \sin \pi y + \frac{\sin 3\pi y}{\cosh \sqrt{8}}$, $g(y) = \frac{\pi\sqrt{3}}{\sinh \pi\sqrt{3}}\sin 2\pi y$.
 $q^*(y) = \sin \pi y + \sin 2\pi y + \sin 3\pi y$.

Определение концепции шума

Погрешность не накапливается, но стабилизируется. Отдельные локальные снижения.

Выводы

- Аддитивная концепция более адекватно описывает шум в задаче.
- Применение рядов Фурье ускоряет вычисления в тысячу раз и даёт меньшую невязку функционала.

Рестарты при аддитивном шуме

Лемма (Плетнев, 2021)

Если верхняя оценка шума удовлетворяет неравенству $\delta \leq \min\left\{\frac{f(x_0)-f(x^*)}{24R}, \frac{\sqrt[4]{L\mu}\sqrt{f(x_0)-f(x^*)}}{4\sqrt[4]{2}}\right\}$, то $N=\sqrt{\frac{32L}{\mu}}$ шагов метода подобных треугольников гарантируют уменьшение невязки функционала вдвое: $f(x_N)-f(x^*)\leq \frac{1}{2}\left(f(x_0)-f(x^*)\right)$.

Теорема (Плетнев, 2021)

Если градиент выпуклой функции f(x) вычисляется с аддитивной неточностью δ , и $\varepsilon \geq \max\left\{24R\delta, \frac{16\sqrt{2}\delta^2}{\sqrt{L\mu}}\right\}$, то достичь выполнения условия $f(x)-f(x^*)<\varepsilon$ можно за не более, чем $\sqrt{\frac{32L}{\mu}}\log_2\frac{f(x_0)-f(x^*)}{\varepsilon}$ итераций при использовании STM с рестартами при уменьшении функционала вдвое.

 x_0 — начальная точка, x^* — точка минимума, $R=||x_0-x^*||$, L — константа Липшица градиента, μ — (локальная) константа сильной выпуклости.

Рестарты: эксперименты

Эксперименты показывают, что применение рестартов не улучшает сходимость. Это подтверждает тот факт, что задача не является сильно выпуклой.

Результаты, выносимые на защиту

- Алгоритм решения поставленной задачи оптимизации в гильбертовом пространстве с использованием STM и разложений в ряды Фурье, а также оценка его вычислительной эффективности;
- Вывод об аддитивном характере неточности градиента в задаче;
- Вычислительные эксперименты, подтверждающие выкладки;
- Оценки сходимости STM с рестартами для оракула с аддитивным шумом.

Данные результаты планируются к публикации и обобщению на другие некорректно поставленные задачи.

Использованные источники

- Alexander Gasnikov, Sergey Kabanikhin, Ahmed Mohammed, Maxim Shishlenin: Convex optimization in Hilbert space with applications to inverse problems, https://arxiv.org/abs/1703.00267
- Sergey Igorevich Kabanikhin, M. A. Shishlenin, D. B. Nurseitov, A. T. Nurseitova, and S.E.Kasenov: Comparative Analysis of Methods for Regularizing an InitialBoundary Value Problem for the Helmholtz Equation, http://dx.doi.org/10.1155/2014/786326
- Ф. П. Васильев: Методы оптимизации, часть вторая: Оптимизация в функциональных пространствах.
 Регуляризация. Аппроксимация, ISBN 978-5-94057-708-9
- Artem Vasin, Alexander Gasnikov, Vladimir Spokoiny: Stopping rules for accelerated gradient methods with additive noise in gradient, https://arxiv.org/abs/2102.02921