序言

感谢您使用本公司的高性能通用型交流变频器。

本手册提供给使用者安装、参数设定、故障诊断、排除及日常维护本变频器相关注意事项。

为了确保能够正确地安装及操作本变频器,请在装机之前详细阅读使用手册,并妥善保存及交由该机的使用者。

如对变频器的使用存在疑难或有特殊要求,请随时 联系本公司所在地区办事处或代理商,也可以直接与本 公司售后服务中心联系。

本手册如有变动,恕不另行通知。

目 录

目 录	2
第一章 安全信息	4
1.1 安全信息的标志及定义	4
1.2 使用范围	
1.3 安装环境	
1.4 安装安全事项	5
1.5 使用安全事项	
第二章 产品标准规格	
2.1 技术规范	
2.2 变频器型号说明	
2.3 机箱及键盘尺寸	
2.4 额定电流输出表	
2.5 制动电阻选用表	
第三章 储存及安装	13
3.1 储存	
3.2 安装场所与环境	
3.3 安装空间及方向	
第四章 配线	
4.1 主回路配线图	
4.2 接线端子图	
4.2.1 主回路端子的功能说明如下:	14
4.2.2 控制回路的端子	
4.2.3 主控板跳线设置	
4.3 基本配线图	16
4.4 配线注意事项	
4.4.1 主回路配线	17
4.4.2 控制回路配线(信号线)	18
4.4.3 接地线	18
4.5 具体应用注意事项	18
4.5.1 选型	18
4.5.2 电机使用注意事项	19
第五章 操作与显示	20
5.1 操作面板说明	20
5.1.1 操作面板图示	20
5.1.2 按键说明	20
5.1.3 功能指示灯说明	20
5.2 操作流程	21
5.2.1 参数设置	
5.2.2 故障复位	21
5.2.3 电机参数自学习	
第六章 功能参数表	22
第七章 参数详解	42
F0 组 系统管理参数	42
F1 组 电机参数	46
F2 组 电机矢量控制参数	
F3 组 VF 控制参数	
F4 组 输入端子	
F5 组 输出端子	
F6 组 起停控制	65

高性能电流矢量变频器					
	古州	台比 叶コン	太上上	ᆂᄀᅜᅹᅜ	可位
	100 1/1-	Hv III. 7	M. 7 1	日 〈今. 小川	75

67
69
71
75
80
83
87
88
91
92
95
95
95
95
95
95
95
95
96
96
97
97
99
100
110
111

第一章 安全信息

1.1 安全信息的标志及定义

本用户手册中所述安全条款十分重要,可保证您安全地使用变频器,防止自己或周围人员受到伤害及工 作区域的财产受到损害,请完全熟悉下列图标及意义,并务必遵守所标明的注意事项,然后继续阅读本用户 手册。

本符号表示如不按要求操作,有可能造成死亡或重伤事故。

本符号表示如不按要求操作, 将会造成中等程度的人身伤害或轻伤及一定的物质损失。

本符号表示在操作或使用中需要注意的事项。

本符号向用户提示一些有用的信息。

下列两种图标是对以上标志的补充说明:

表示绝对不可做的事情。

表示一定要做的事情。

1.2 使用范围

本变频器适用于一般的工业用三相交流异步电动机。

- 在因变频器故障或工作错误可能威胁生命或危害人体的设备(核动力控制设备、宇航设备、交通工具用设备、生命支持系统、安全设备、武器系统等)中不可使用本变频器,如需作特殊用途,请事先向本公司咨询。
- 本产品是在严格的质量管理体系监督下制造出来的,但用于重要设备时,必须有安全防护措施,以防止变频器故障时扩大事故范围。

1.3 安装环境

- ●安装在室内、通风良好的场所,一般应垂直安装以确保最佳的冷却效果。卧式安装时,可能需要加额外的通风装置。
 - ●环境温度要求在-10~40℃的范围内,如温度超过 40℃,请取下上面面盖,如超过 50℃需外部强迫散

热或者降额使用。建议用户不要在如此高温的环境中使用变频器,因为这样将会极大降低变频器的使用寿命。

- ●环境湿度要求低于90%, 无水珠凝结。
- ●安装在振动小于 0.5G 的场所,以防坠落损坏。不允许变频器遭受突然的撞击。
- •安装在远离电磁场、无易燃易爆物质的环境中。

1.4 安装安全事项

- ●严禁用潮湿的手进行作业。
- •严禁在电源没有完全断开的情况下进行配线作业。
- ●变频器在通电运行过程中,请勿打开面盖或进行配线作业,否则有触电的危险。
- ●实施配线、检查等作业时,须在关闭电源 10 分钟后进行,否则有触电的危险。

- •请勿安装使用元件损坏或缺失的变频器,以防发生人身意外及财产损失。
- ●主回路端子与电缆必须牢固连接, 否则因接触不良可能造成变频器的损坏。
- ●为了安全起见,变频器的接地端子必须可靠接地,为了避免接地共阻抗干扰的影响, 多台变频器的接地要采用一点接地方式,如图 1-1 所示。

●严禁将交流电源接到变频器的输出端子 U、V、W 上, 否则将会造成变频器的损坏, 如图 1-2 所示 。

Ed. 2

ullet 在变频器的输入电源侧,请务必配置电路保护用的无熔丝断路器,以防止因变频器故障而引起的事故扩大化。

●变频器的输出侧不宜装设电磁接触器, 这是因为接触器在电动机运行时通断,将产生操作过电压,对 变频器造成损害。但对于以下三种情况仍有必要配置:

用于节能控制的变频调速器,系统时常工作于额定转速,为实现经济运行,需切除变频器时。参与重要的工艺流程,不能长时间停运,需切换于各种控制系统之间,以提高系统可靠性时。一台变频器控制多台电机时。用户需注意在变频器有输出时,接触器不得动作!

1.5 使用安全事项

- ●严禁用潮湿的手进行操作。
- ●存贮时间超过 1 年以上的变频器,上电时应先用调压器逐渐升压至额定值,否则有触电和爆炸的危险。
- ●上电后不要触及变频器内部, 更不要把棒材或其他物体放入变频器内,否则会导致触电死亡或变频器 无法正常工作。
 - ●变频器在通电过程中,请勿打开面盖, 否则有触电的危险。
 - •慎用停电再起动功能,否则有可能造成人身伤亡事故。

- ●若超过 50Hz 运行,必须确保电机轴承及机械装置使用时的速度范围。
- ●减速箱及齿轮等需要润滑的机械装置不宜长期低速运行,否则将降低其使用寿命甚至损坏设备。
- ●普通电机在低频运行时,由于散热效果变差,必须降额使用,若为恒转矩负载,则必须采用电机强迫 散热方式或采用变频专用电机。
- ●长时间不使用的变频器请务必将输入电源切断,以免因异物进入或其它原因导致变频器损坏,甚至引起火灾。
- ●由于变频器的输出电压是 PWM 脉冲波,因此在其输出端请不要安装电容或浪涌电流吸收器(如压敏电阻),否则将会导致变频器出现故障跳闸,甚至功率元器件的损坏。如已有安装的,请务必拆除。见图 1-3 所示。

注意

- ●电机在首次使用或长时间放置后的再使用之前,应做电机绝缘检查,并保证测得的绝缘电阻不小于 5ΜΩ。
 - ●如需在允许工作电压范围外使用变频器,需配置升压或降压装置进行变压处理。
- ●在海拔高度超过 1000 米的地区,由于空气稀薄,变频器的散热效果会变差,此时需降额使用。一般的,每升高 1000m 需降额 10%左右。降额曲线参见图 1-4。

第二章 产品标准规格

2.1 技术规范

	100100							
	额定电压,	三相 AC380V;50/60Hz						
输	频率	单相 AC220V;50/60Hz						
入	电压允许	三相 AC360V~450V						
	变动范围	单相 AC190V~250V						
	电压	0∼460V						
输	į	0∼260V						
出	频率	低频模式: 0~300Hz 高频						
ш	过载能力	G型机:110% 长期 120% 1	分钟 150% 5 秒					
		P型机:105% 长期 120% 1						
控制	制方式	V/F 控制、高级 V/F 控制、	V/F 分离控制、电流矢量控制					
	频率设定	模拟端输入	最大输出频率的 0.1%					
	分辨率	数字设定	0.01Hz					
	- 频率精度	模拟输入	最大输出频率的 0.2% 以内					
	<u> </u>	数字输入	设定输出频率的 0.01% 以内					
控		V/F 曲线(电压频率特性)	基准频率在 5~600Hz 任意设定,多点 V/F 曲线任意					
制			设定,亦可选择恒转矩、低减转矩 1、低减转矩 2、					
特			平方转矩等多种固定曲线					
性		转矩提升	手动设定: 额定输出的 0.0~30.0%					
	V/F 控制		自动提升:根据输出电流并结合电机参数自动确定提					
			升转矩					
		自动限流与限压	无论在加速、减速或稳定运行过程中,皆自动侦测电					
			机定子电流和电压,依据独特算法将其抑制在允许的 范围内,将系统故障跳闸的可能性减至最小					
		电压频率特性	根据电机参数和独特算法自动调整输出压频比					
			起动转矩:					
			3.0Hz 时 150% 额定转矩 (VF 控制)					
			0.5Hz 时 180%额定转矩(无 PG 电流矢量控制,磁通					
		*** ** *** ***	矢量控制)					
		转矩特性	0.05Hz 时 180%额定转矩(有 PG 电流矢量控制)					
控制	无感矢量控制		运行转速稳态精度: ≤±0.2%额定同步转速 速度波动: ≤±0.5%额定同步转速					
特								
性			制、磁通矢量控制≤20ms					
II		 电机参数自测定	不受任何限制,在电机静态及动态下均可完成参数的					
		电机多数自例足	自动检测,以获得最佳控制效果					
			全程电流闭环控制、完全避免电流冲击,具备完善的					
			过流过压抑制功能					
	运行中	□ 2. 元过压抑制功能 □ 特别针对低电网电压和电网电压频繁波动的用户,即使在低于允许的电压范围内						
	欠压抑制		P残能分配策略,维持最长可能的运行时间					
	多段速与		多种运行模式可选。摆频运行: 预置频率、中心频率可					
典	摆频运行	调,断电后的状态记忆和恢						
型型	PID 控制		页率)。标准配置 RS485 通信功能, 多种通信协议可选,					
功	RS485 通讯	具备联动同步控制功能。						
能			直流电压 0~10V, 直流电流 0~20mA(上、下限可					
	频率设定	模拟输入 选)						
	•	•	•					

	- 116 - 121016	<u> </u>	22\ HH	<u> </u>							
			数字输入	操作面板设定, RS485 接口设定, UP/DW 端子控制, 也可以与模拟输入进行多种组合设定							
			数字输出	2 路 OC 输出和一路故障继电器输出(TA, TB, TC), 多达 16 种意义选择							
	输出信号	号	2 路模拟信号输出,输出范围在 0~20mA 或 0~10V 模拟输出 之间灵活设置,可实现设定频率、输出频率等物理 量的输出								
	自动稳压	玉运行	根据需要可选择动态稳压、静 果	态稳压、不稳压三种方式,以获得最稳定的运行效							
	加、减过时间设定	_	0.1s~3600min 连续可设定,9	5型、直线型模式可选							
	能耗制动		能耗制动起始电压、回差电压	能耗制动起始电压、回差电压及能耗制动率连续可调整							
	制动	直流制动		停机直流制动起始频率: 0.00~【F0.11】上限频率 制动时间: 0.0~100.0s; 制动电流: 0.0%~150.0%额定电流							
		磁通制动	0~100 0: 无效								
	低噪音	运行	载波频率 1.0KHz~16.0KHz 连续可调,最大限度降低电机噪声								
	转速追距 再启动项		可实现运转中电机的平滑再启动及瞬停再启动功能								
	计数器		内部计数器一个,方便系统集成								
	运行功能	iš.	上、下限频率设定,频率跳跃运行,反转运行限制,转差频率补偿,RS485 通讯,频率递增、递减控制,故障自恢复运行等								
显示	操作面板显示	运行 状态 报警	PID 设定,反馈量,模拟输入	z故障跳闸时的输出频率、设定频率、输出电流、输							
保护	户功能	111	过电流、过电压、快乐温度等0项运行参数记录过电流,过电压、大压,模块故障,电子热继电器,过热,短路,输入及输出缺相,电机参数调谐异常,内部存储器故障等								
	周围温度		-10℃~+40℃ (环境温度在 40℃~50℃,请降额使用)								
环	周围湿力	· · · · · · · · · · · · · · · · · · ·	5%~95%RH, 无水珠凝结								
境				易燃气体, 无油雾、尘埃等)							
	海拔		1000米以上降额使用,每升高								
结	防护等统	没	IP20								
构	冷却方	-	风冷,带风扇控制								
	安装方式		壁挂式,柜式								
	21.74.74	•									

2.2 变频器型号说明

2.3 机箱及键盘尺寸

机箱尺寸:

型号	A (mm)	B (mm) 尺寸	H (mm)	W (mm) 外围尺 [、]	D (mm)	安装孔 (mm)	
	<u> </u>	E) C 1		УГЩ/С	J		
0.75KW-2.2K W	89	140	151	100	133	5	
4.0KW-7.5K W-11KW	131 229		239 140		177	5	
15KW-22KW	189	306	320	205	205	6	
30KW-37KW	235	447	463	285	228	8	
45KW-55KW	235	485	510	320	248	8	
75KW-110K W	240	635.5	655	377	267	8	
132KW-160K W	320	730	750 495		325	10	

第 9 页 共 112 页

键盘安装尺寸:

外引键盘安装尺寸

2.4 额定电流输出表

- 山口:	单相	三相					
电压	220V	220V(240V)	380V(415V)				
功率(KW)	电流(A)	电流(A)	电流(A)				
0.4	2.3	2.3	-				
0.75	4	4	2.1				
1.5	7	7	3.8				
2.2	9.6	9.6	5.1				
4	17	17	8.5				
5.5	25	25	13				
7.5	-	-	16				
11	-	-	24				
15	-	-	32				
18.5	-	-	36				
22	-	-	44				
30	-	-	58				
37	-	-	70				
45	-	-	90				
55	-	=	110				
75	-	=	152				
93	-	=	172				
1 10	-	=	205				
132	-	-	253				
160	-	-	304				
200	-	-	380				
220	-	-	426				
250	-	-	465				
280	-	-	520				

第 10 页 共 112 页

315	-	=	585
355	-	-	650
400	-	-	725
450	=	=	820

2.5 制动电阻选用表

中压00	变频器功率	制动电阻	且规格	制动转矩
电压(V)	(KW)	W	欧姆	10%ED
	0.4	80	200	125
	0.75	80	150	125
单相 220 系列	1.5	100	100	125
	2.2	100	70	125
	4.0	300	50	125
	0.75	100 100 1 100 70 1 300 50 1 150 110 1 250 100 1 300 65 1 400 45 1 800 22 1 1000 16 1 100 750 1 300 400 1 300 250 1 400 150 1 500 100 1 1000 75 1	125	
	1.5	250	100	125
一担 220 至利	2.2	300	65	125
三相 220 系列	4	400	45	125
	5.5	800	22	125
	7.5	1000	16	125
	0.75	100	750	125
	1.5	300	400	125
	2.2	300	250	125
	4	400	150	125
	5.5	500	100	125
	7.5	1000	75	125
	11	3000	43	125
	15	3000	32	125
	18.5	3000	25	125
	22	4000	22	125
	30	5000	16	125
	37	6000	13	125
	45	6000	10	125
三相 380 系列	55	6000	10	125
	75	7500	6.3	125
	93	9000	9.4/2	125
	110	11000	9.4/2	125
	132	13000	6.3/2	125
	160	16000	6.3/2	125
	200	20000	2.5	125
	220	22000	2.5	125
	250	25000	2.5/2	125
	280	28000	2.5/2	125
	315	32000	2.5/2	125
	355	34000	2.5/2	125
	400	42000	2.5/3	125
	450	45000	2.5/3	125

注意:

1、请选择本公司所规定的电阻值。

- 2、若使用非本公司所提供的刹车电阻,而导致变频器或其它设备损坏,本公司不负担任何责任。
- 3、刹车电阻的安装务必考虑环境的安全性,易燃性,距离变频器至少 100mm。
- 4、表中参数仅供参考,不作为标准。

第三章 储存及安装

3.1 储存

本产品在安装之前必须放置于包装箱内,若暂不使用,储存时请注意下列几项:

- ●必须置于无尘垢, 干燥的位置:
- ●储存环境温度-20℃到+65℃范围内;
- ●储存环境相对湿度在 0%到 95%范围内, 且无结露;
- ●储存环境中不含腐蚀性气、液体;

●最好放置在架子上,并包装好存放变频器最好不要长时间存放, 长时间存放会导致电解电容的劣化,如需长期存放,必须保证在半年内通电一次,通电时间至少 5 个小时以上,输入时电压必须用调压器缓缓升高至额定电压值。

3.2 安装场所与环境

注意: 安装场所的环境情况,将影响变频器的使用寿命。请将变频器安装于下列场所:

- ●周围温度: -5 ~40℃ ℃且通风情况良好;
- ●无滴水及气温低的场所:
- ●无日光照射,高温及严重落尘的场所;
- ●无腐蚀性气体及液体的场所:
- •较少尘埃,油气及金属粉屑的场所;
- ●无振动, 保养、检查容易的场所;
- ●无电磁杂讯干扰的场所;

3.3 安装空间及方向

- ●为了维护方便起见,变频器周围需留有足够的空间。如图所示。
- •为使冷却效果好,必须将变频器垂直安装,并保证空气流通顺畅。
- ●安装如果有不牢的情形。在变频器底座下置一平板后再安装,安装在松脱的平面上,应力可能会造成 主回路零件损坏,因而损坏变频器:
 - •安装的壁面,应使用铁板等不燃性材质。
- ●多台变频器安装于同一柜子里,采用上下安装时,在注意间距的同时,请在中间加导流隔板或上下错位安装。

第四章 配线

4.1 主回路配线图

4.2 接线端子图

4.2.1 主回路端子的功能说明如下:

端子名称	功能说明
R、S、T	三相电源输入端子
(+), (-)	外接制动单元预留端子
P、PB	外接制动电阻预留端子(0.4KW~7.5KW)
(+)、PB	外接制动电阻预留端子(11KW~18.5KW)
P1、(+)	外接直流电抗器预留端子
(-)	直流负母线输出端子
U、V、W	三相交流输出端子
(b)	接地端子

第 14 页 共 112 页

4.2.2 控制回路的端子

10V	GN	D	AC)1	485	5+	485-	X2/R	EV	X4	X6		COM	Y	2					
	AI1	A	12	GN	D	AO2	X1.	FWD	X	3	X5	X	7	Y1		24V	TA	ТВ	TC	

控制回路端子功能说明

类 别	端子标号	功 能 说 明	规格		
	X1				
	X2				
	Х3	X(X1、X2、X3、X4、X5、X6、X7) ~COM 之间短接时有效,其功能分别由参数			
多功能数	Х4	F4.00~F4.06 设定,(公共端: COM)。			
字输入端	Х5		INPUT, 0~24V 电平信号, 低电 平有效, 5mA.		
子	Х6				
	Х7	X7 除可作为普通多功能端子使用外,还可编程作为高速脉冲输入端口,详见F4.06 功能说明。			
	AI1	AI1 接收模拟电压/电流量输入,电压、电流由跳线 JP3 选择,出厂默认输入电压,如果要输入的是电流,只要把跳线帽调到 Cin 位置; AI2 只接收电压量输	INPUT, 输入电压范围: 0~ 10V(输入阻抗: 100KΩ), 输 入电流范围: 0~20mA(输入阳		
	AI2	相侧到 CIII 位直; AI2 只接收电压重栅入。量程范围设定见功能码 F4.13~ F4.21 说明。(参考地: GND)	大电流视图: 0~20mA (和入阻 抗: 500Ω).		
模拟输入输出端子	AO1	A01 提供模拟电压/电流量的输出,可表示 14 种物理量,输出电压、电流由跳线 JP4 选择,出厂默认输出电压,如果要	OUTPUT, 0~10V 直流电压。 AO1、AO2 端子的输出电压是来		
	A02	输出电流量,只需将跳线帽跳到 Co1 位置;详见功能码 F5.04、F5.05 说明。(参考地: GND)	自中央处理器的 PWM 波形。输出电压的大小与 PWM 波形的宽度成正比.		
	TA	可编程定义为多功能的继电器输出端	TA-TB:常闭; TA-TC:常开。触		
继电器输 出端子	TB	子,可达99种。详见F5.02出端子功能	点容量: 250VAC/2A(COSΦ =1);250VAC/1A(COSΦ		
TI slid 2	TC	介绍。	=0. 4), 30VDC/1A.		

	+24V	24V 是数字信号输入端子的电路共同电源	最大输出电流 200mA
电源接口	+10V	10V 是模拟输入输出端子的电路共同电源	最大输出电流 20mA
电侧按口	COM	数字信号和+24V 电源参考地	内部与 GND 隔离
	GND	模拟信号和+10V 电源参考地	内部与 COM 隔离
通讯接口	485+	RS485 信号+端	标准 RS485 通讯接口,与 GND 不隔离,请使用双绞线或屏蔽
	485-	RS485 信号-端	作隔两, 谓使用从纹纹纹屏蔽线.

4.2.3 主控板跳线设置

	TDO
	JP2
0FF 挡	表示 485 通讯上匹配的电阻不接入
ON 挡	表示 485 通讯上匹配的电阻接入
	JP3
Cin 挡	表示 AI1 输入电流信号, 4-20mA
Vin 挡	表示 AI1 输入电压信号, 0-10V
	JP4
Vol 档	表示 A01 输出电压信号,0-10V
Co1 挡	表示 A01 输出电流信号,4-20mA
	JP5
Vo2 档	表示 AO2 输出电压信号,0-10V
Co2 挡	表示 AO2 输出电流信号,4-20mA

4.3 基本配线图

变频器配线部份分为主回路和控制回路。用户可将外壳的盖子掀开,此时可看到主回路端子和控制回路端子,用户必须依照下列的配线回路准确连接。

基本运行配线图

4.4 配线注意事项

4.4.1 主回路配线

- •配线时,配线线径规格的选定,请依照电工法规的规定施行配线,以确保安全。
- •电源配线最好请使用隔离线或线管,并将隔离层或线管两端接地;
- ●请务必在电源与输入端子(R、S、T)之间装空气断路开关 NPB。(如使用漏电断路开关时,请使用带高频对策的断路开关)。

- •动力线与控制线请分开布置,不可置于同一线槽中。
- ●请勿将交流电源接至变频器输出端(U、V、W);
- •输出配线不可碰到变频器外壳金属部分,否则可能造成接地短路。
- ●变频器的输出端不可使用移相电容器、LC、RC 杂讯滤波器等元件。
- •变频器主回路配线必须远离其它控制设备。
- ●当变频器与电动机之间的配线超过 50 米(220V 系列), (380V 级 100 米)时,在马达的线圈内部将产生很高的 dv/dt,这对马达的层间绝缘将产生破坏,请改用变频器专用的交流马达或加装电抗器于变频器侧。
- ●变频器与电机间距离较长时,请降低载波频率,因载波越大,其电缆线上的高次谐波漏电流越大,漏电流会对变频器及其它设备产生不利影响。

4.4.2 控制回路配线(信号线)

信号线不可与主回路配线置于同一线槽中,否则可能会产生干扰。信号线请使用屏蔽线,并单端接地, 线径尺寸为 0.5-2mm², 控制线建议使用 1 的屏蔽线。根据需要正确使用控制面板上的控制端子。

4.4.3 接地线

接地线端子 E 请以第三种接地(100Ω以下)方式接地,接地线的使用,请依照电气设备技术基本长度与尺寸使用,绝对避免与电焊机、动力机械等大电力设备共用接地极,接地线应尽量远离大电力设备动力线;多台变频器的接地配线方式,请以下图(a)方式使用,避免造成(b)或(c)之回路。

- •接地配线必须越短越好。
- ●接地端子 E 请正确接地,绝对不可接到零线上。

4.5 具体应用注意事项

4.5.1 选型

(1) 电抗器的安装

将变频器连接到大容量的电源变压器(600kVA 以上)上或进行进相电容器的切换时,电源输入回路会产生过大的峰值电流,有可能损坏转换器部分的元件。为防止这种情况的发生,请安装 DC 电抗器或 AC 电抗器。这也有助于改善电源侧的功率因数。另外,当同一电源系统连接有直流驱动器等晶闸管变换器时,无论电源条件如何,必须设置 DC 电抗器或 AC 电抗器。

电抗器的安装条件

(2)变频器容量

运行特殊电机时,请确认电机额定电流不高于变频器额定输出电流。另外,将多台感应电机与 1 台变频器并联运行时,选择变频器的容量时应使电机额定电流合计的 1.1 倍小于变频器的额定输出电流。

(3)起动转矩

利用变频器驱动的电机的起动、加速特性受到组合后的变频器过载额定电流的限制。与一般商用电源的起动相比,转矩特性较小。如需要较大的起动转矩时,请将变频器的容量加大一级或同时增加电机及变频器的容量。

(4)紧急停止

虽然变频器发生故障时保护功能会动作,输出会停止,但此时不能使电机突然停止。因此,请在需要 紧急停止的机械设备上设置机械式停止、保持结构。

(5)专用选购件

端子 PB(+)、P1(+)为连接专用选购件的端子。请勿连接专用选购件以外的机器。

(6)与往复性负载相关的注意事项

当变频器用于往复性负载(起重机、电梯、冲床、洗衣机等)的用途时,如果反复流过 150%或超过该值的电流,变频器内部的 IGBT 会因热疲劳而导致使用寿命缩短。作为大致标准,在载波频率为 4kHz 且峰值电流为 150%时,起动/停止次数约为 800 万次。

尤其是不要求低噪音时,请降低载波频率。另外,请通过降低负载、延长加减速时间或者将变频器容量提高 1 级等手段,将往复时的峰值电流降低至低于 150%(在进行这些用途的试运行时,请务必确认往复时的峰值电流,并根据需要进行调整)。另外,用于起重机时,由于微动时的起动/停止动作较快,故建议进行如下的选择,以确保电机转矩并降低变频器的电流。变频器的容量应能确保其峰值电流低于 150%。变频器的容量应比电机容量大 1 级以上。

4.5.2 电机使用注意事项

(1)用于现有标准电机

低速域

使用变频器驱动标准电机与使用商用电源驱动相比,产生的损耗会有若干增加。在低速域时冷却效果会变差,电机的温度将会升高。因此,在低速域时,请降低电机的负载转矩。本公司标准电机的容许负载特性如图所示。另外,在低速域需要 100% 连续的转矩时,请探讨是否使用变频器专用电机。

本公司标准电机的容许负载特性

(2)用于特殊电机时的注意事项

变极电机变极电机的额定电流与标准电机不同,请确认电机的最大电流,选择相应的变频器。请务必在电机停止后进行极数切换。如果在旋转中进行切换,则再生过电压或过电流保护回路将动作,电机自由运行停止。

带制动器的电机

使用变频器驱动带制动器的电机时,如果将制动器回路直接连接到变频器的输出侧,则将由于起动时 电压变低而导致制动器无法打开。请使用制动器电源独立的带制动器的电机,将制动器电源连接到变频器 的电源侧。一般情况下,使用带制动器的电机时,在低速范围内的噪声可能会变大。

(3) 动力传动结构(减速机、皮带、链条等)

在动力传动系统中使用油润滑方式的齿轮箱及变速机、减速机等时,若仅在低速域连续运行,则油润滑效果将会变差,敬请注意。另外,进行 60Hz 以上的的高速运行时,会产生动力传动结构的噪声、寿命、因离心力而引起的强度等方面的问题,请充分予以注意。

第五章 操作与显示

5.1 操作面板说明

5.1.1 操作面板图示

5.1.2 按键说明

12	•	
按键符号	名称	功能说明
PRG	编程键	菜单进入或退出,参数修改
ENTER	确定键	进入菜单、确认参数设定
A	递增键	数据或功能码的递增
▼	递减键	数据或功能码的递减
>>	移位键	选择参数修改位及显示内容
RUN	运行键	键盘操作方式下运行操作
STOP/RESET	停止/复位键	停止/复位操作。
FUNC	多功能快捷键	根据功能切换选择

5.1.3 功能指示灯说明

指示灯名称	说明
REV	变频器反转指示灯,灯亮时表示反转运行状态。
FWD	变频器正转指示灯,灯亮时表示正转运行状态。
ALM	故障指示灯,灯快烁表示处于故障状态。
Hz	频率单位
Α	电流单位
V	电压单位

5.2 操作流程

5.2.1 参数设置

三级菜单分别为:

- 1、功能码组号(一级菜单);
- 2、功能码标号(二级菜单);
- 3、功能码设定值(三级菜单)。

说明:在三级菜单操作时,可按 PRG 或 ENTER 返回二级菜单。两者的区别是:按 ENTER 将设定参数 存入控制板,然后再返回二级菜单,并自动转移到下一个功能码;按 PRG 则直接返回二级菜单,不存储参数,并保持停留在当前功能码。

举例: 将功能码 F3-02 从 10.00Hz 更改设定为 15.00Hz 的示例。(粗体字表示闪烁位)

在第三级菜单状态下, 若参数没有闪烁位, 表示该功能码不能修改, 可能原因有:

- 1) 该功能码为不可修改参数。如实际检测参数、运行记录参数等。
- 2) 该功能码在运行状态下不可修改,需停机后才能进行修改。

5.2.2 故障复位

变频器出现故障以后,变频器会提示相关的故障信息。用户可以通过键盘上的 STOP/RESET 键或者端子 功能进行故障复位,变频器故障复位以后,处于待机状。如果变频器处于故障状态,用户不对其进行故障 复位,则变频器处于运行保护状态,变频器无法运行。

5.2.3 电机参数自学习

选择矢量控制运行方式,在变频器运行前,必须准确输入电机的铭牌参数,变频器据 此铭牌参数匹配标准电机参数;矢量控制方式对电机参数依赖性很强,要获得良好的控制性能,必须获得被控电机的准确参数。

第六章 功能参数表

功能表中符号说明如下

- ×:表示该参数的设定值在变频器处于停机、运行状态中,均可更改;
- 〇:表示该参数的设定值在变频器处于运行状态时,不可更改;
- ◆:表示该参数的数值是实际检测记录值,不能更改;
- ◇:表示该参数是"厂家参数",仅限于制造厂家设置,禁止用户进行操作;

功能码	名称	设定范围	出厂值	更改		
	F0 组-基本运行参数					
F0. 00	G/P 类型显示	0: G型(恒转矩负载机型) I: P型(风机、水泵类负载机型) 注1: 设置为P型机后,电机参数自动刷新,无须 更改任何参数即可作为大一档的风机水泵专用变 频器使用 注2: 本参数不能被初始化,请手动修改	0	×		
F0. 01	控制方式	0: 普通 V/F 控制(手动转矩提升) 1: 高级 V/F 控制(自动转矩提升) 2: 开环电流矢量控制(SVC) 3: 分离型 V/F 控制 注: 本参数不能被初始化,请手动修改	机型定	X		
F0. 02	运行命令通道选择	0: 操作面板运行命令通道 1: 端子运行命令通道 2: 通讯运行命令通道	0	0		
F0. 03	主频率源 A 选择	0: 数字给定 1(面板▲/▼键、编码器+F0.06) 1: 数字给定 2(端子 UP/DOWN 调整+F0.07) 2: AI1 模拟给定(0~10V/20mA) 3: AI2 模拟给定(0~10V) 4: 面板电位器 5: 脉冲给定(0~50KHZ) 6: 多段速运行设定 7: 简易 PLC 设定 8: PID 控制设定 9: 数字给定 3(通讯设定)	4	0		
F0. 04	辅助频率源 B 选择	0: 数字给定 1 (面板▲/▼键、编码器+F0.06) 1: 数字给定 2 (端子 UP/DOWN 调整+F0.07) 2: AI1 模拟给定 (0~10V/20mA) 3: AI2 模拟给定 (0~10V) 4: 面板电位器 5: 脉冲给定 (0~50KHZ) 6: 多段速运行设定 7: 简易 PLC 设定 8: PID 控制设定 9: 数字给定 3 (通讯设定)	2	0		
F0. 05	频率源给定方式	0: 主频率源 A 1: A+K*B 2: A-K*B 3: A-K*B 4: MAX (A, K*B) 5: MIN (A, K*B) 6: 由 A 切换到 K*B (A 优先于 K*B) 7: 由 A 切换到 (A+K*B) (A 优先于 A+K*B) 8: 由 A 切换到 (A-K*B) (A 优先于 A-K*B) 1: 频率切换需通过端子配合实现 1: 频率切换需通过端子配合实现 1: 据频控制拥有更	0	0		

第 22 页 共 112 页

마마마	<u> 电加入重义</u> 颁制	//	// 午 /	21110 5 3
功能码	名称	设定范围	出厂值	更改
		高优先级		
F0.06	频率源数字1设定	0.00Hz~【F0.11】上限频率	50.00	0
F0. 07	频率源数字 2 设定	0.00Hz~【F0.11】上限频率	50.00	0
F0. 08	辅助频率源权系数 K 设定	0.01~10.00	1.00	0
F0. 09	运转方向设定	0: 正转 1: 反转 2: 反转防止	0	×
F0. 10	最大输出频率	低频段: MAX {50.00, 【F0.11】} ~ 300.00 高頻段: MAX {50.0, 【F0.11】} ~ 3000.0	50.00	×
F0. 11	上限频率	【F0. 12】 ∼ 【F0. 10】	50.00	×
F0. 12	下限频率	0.00Hz∼【F0.11】	0.00	×
F0. 13	载波频率设置	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	机型定	0
F0. 14	加速时间 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	机型定	0
F0. 15	减速时间1	37. 0 ~ 132. 0KW 30. 0S 160. 0 ~ 630. 0KW 60. 0S	机型定	0
F0. 16	数字给定 1 控制	LED 个位: 掉电存储 0: 存储 1: 不存储 LED 十位: 停机保持 0: 保持	000	0
F0. 17	数字给定 2 控制	1: 不保持 LED 百位: ▲/▼键、UF/DOWN 频率负调节 0: 无效 1: 有效 LED 千位: 保留	000	0
F0. 18	频率输出模式选择	LED 个位: 高低频模式选择 0: 低频模式(0.00~300.00Hz) 1: 高频模式(0.0~3000.0Hz) LED 百位: 加减速基准选择 0: 以最大输出频率为基准 1: 以目标输出频率为基准 LED 百位: 保留 LED 千位: 保留 注: 高频模式仅对 VF 控制有效	00	×
		F1 组-电机参数		
F1. 00	电机类型选择	0:交流异步电机 1:永磁同步电机(保留) 注1:本参数不能被初始化,请手动修改	0	×
F1. 01	电机额定功率	0.4~999.9KW	机型定	×
F1. 02	电机额定频率	0.01Hz~【F0.10】最大频率	50.00	×
F1. 03	电机额定转速	0~60000RFM	机型定	×
F1. 04	电机额定电压	0~999V	机型定	×
F1. 05	电机额定电流	0. 1∼6553. 5A	机型定	×
F1. 06	异步电机定子电阻	$0.001{\sim}20.000\Omega$	机型定	×

16117116	也加入主义外前	232		/11102/2
功能码	名称	设定范围	出厂值	更改
F1. 07	异步电机转子电阻	$0.001{\sim}20.000\Omega$	机型定	×
F1. 08	异步电机定,转子电感	$0.1{\sim}6553.5 \mathrm{mH}$	机型定	×
F1. 09	异步电机定,转子互感	$0.1{\sim}6553.5\mathrm{mH}$	机型定	×
F1. 10	异步电机空载电流	0. 01~655. 35A	机型定	×
F1. 11-F 1. 15	保留	_	0	•
F1. 16	电机调谐选择	0: 不动作 1: 静态调谐 2: 空载完整调谐	0	×
		F2 组-电机矢量控制参数		
F2. 00	速度环(ASR1)比例增益	0.000~6.000	1.000	0
F2. 01	速度环(ASR1)积分时间	0.000~32.000S	1.000	0
F2. 02	ASR1 滤波时间常数	0.000~0.100S	0.000	0
F2. 03	切换低点频率	0.00Hz∼【F2.07】	5. 00	0
F2. 04	速度环(ASR2)比例增益	0.000~6.000	1.000	0
F2. 05	速度环(ASR2)积分时间	0.000~32.000S	0.050	0
F2. 06	ASR2 滤波时间常数	0. 000∼0. 100S	0.000	0
F2. 07	切换高点频率	【F2.03】~【F0.11】上限频率	10.00	0
F2. 08	矢量控制正转差补偿系数(电动状态)	50.0%~200.0%*额定转差频率	100.0%	0
F2. 09	矢量控制负转差补偿系数(制动状态)	50.0%~200.0%*额定转差频率	100.0%	0
F2. 10	速度与转矩控制选择	0: 速度 1: 转矩 2: 条件有效(端子切换)	0	×
F2. 11	速度与转矩切换延时	0.01~1.00S	0.05	×
F2. 12	转矩指令选择	0: 键盘数字给定 1: AI1 2: AI2 3: 通讯给定	0	0
F2. 13	键盘数字设定转矩	-200.0%~200.0%*电机额定电流	0.0%	0
F2. 14	转矩控制模式之速度限 定通道选择1(正向)	0: 键盘数字给定 1 1: AI1 2: AI2	0	0
F2. 15	转矩控制模式之速度限 定通道选择1(反向)	0: 键盘数字给定 2 1: AII 2: AI2	0	0
F2. 16	键盘数字限定速度1	0.0~100.0%*【F0.10】最大频率	100.0%	0
F2. 17	键盘数字限定速度 2	0.0~100.0%*【F0.10】最大频率	100.0%	0
F2. 18	转矩上升时间	0.0~10.0S	0. 1	0
F2. 19	转矩下降时间	0.0~10.0S	0. 1	0
F2. 20	矢量模式之电动转矩限 定	G型: 0.0%~200.0%*电机额定电流 160.0% P型: 0.0%~200.0%*电机额定电流 120.0%	机型定	0

功能码	名称	设定范围	出厂值	更改
F2. 21	矢量模式之制动转矩限 定	G 型: 0.0%~200.0%*电机额定电流 160.0% P 型: 0.0%~200.0%*电机额定电流 120.0%	机型定	0
F2. 22	转矩检出动作选择	0: 检出无效 1: 恒速中检出过转矩后继续运行 2: 运行中检出过转矩后继续运行 3: 恒速中检出过转矩后切断输出 4: 运行中检出过转矩后切断输出 5: 恒速中检出不足转矩后切断统运行 6: 运行中检出不足转矩后继续运行 7: 恒速中检出不足转矩后增继	0	×
F2. 23	转矩检出水平	G 型: 0.0%~200.0%*电机额定电流 150.0% P 型: 0.0%~200.0%*电机额定电流 110.0%	机型定	×
F2. 24	转矩检出时间	0.0~10.0S	0.0	×
F2. 25	静摩擦系数截止频率	0.00∼300.00Hz	10.00	0
F2. 26	静摩擦系数设定	0.0~200.0	0.0	0
F2. 27	静摩擦系数维持时间	0.00~600.00s	0.00	×
		F3 组-VF 控制参数		
F3. 00	V/F 曲线设定	0: 线性曲线 1: 降转矩曲线 1 (1.3 次幂) 2: 降转矩曲线 2 (1.5 次幂) 3: 降转矩曲线 3 (1.7 次幂) 4: 平方曲线 5: 用户设定 V/F 曲线 (由 F3.03~F3.08 确定)	0	×
F3. 01	转矩提升设置	0.0~30.0%*电机额定电压【F1.02】 注: 0.0代表转矩提升值为0,而不是自动提升	机型定	×
F3. 02	转矩提升截止频率	0.00~电机额定频率	15.00	X
F3. 03	V/F 频率值 F1	0.00~频率值 F2	12.50	×
F3. 04	V/F 电压值 V1	0.0~电压值 V2	25.0%	×
F3. 05	V/F 频率值 F2	频率值 F1~频率值 F3	25. 00	×
F3. 06	V/F 电压值 V2	电压值 V1~电压值 V3	50.0%	×
F3. 07	V/F 频率值 F3	频率值 F2~【F1.04】电机额定频率	37. 50	X
F3. 08	V/F 电压值 V3	电压值 V2~100.0%*【F1.02】电机额定电压	75. 0%	×
F3. 09	V/F 控制转差频率补偿	0.0~200.0%*额定转差	0.0%	0
F3. 10	V/F 控制转差补偿滤波 系数	1~10	3	0
F3. 11	V/F 控制转矩补偿滤波 系数	0~10	机型定	0
F3. 12	分离型 V/F 控制选择	0: VF 半分离模式,电压开环输出 1: VF 完全分离模式,电压开环输出	0	×
F3. 13	电压给定通道	0: 数字给定 1: AI1 2: AI2	0	0
F3. 14	数字设定输出电压值	$0.0\sim200.0\%$ *电机额定电压 注: 开环输出模式下,最大输出电压为 100.0% 电机 额定电压	100.0%	0
F3. 15	半分离模式之 VF 曲线最大电压	0.0~100.0%*电机额定电压 注:此电压代表变频器的输出电压	80.0%	×
F3. 16	电压上升时间	0.1~3600.0S	10.0	0

功能码	名称	设定范围	出厂值	更改
F3. 17	电压下降时间	注:本参数仅对完全分离后的电压开环输出方式有效	10.0	0
		F4 组-输入端子		
F4. 00	输入端子 X1 功能(FA. 21 为非 0 值时,默认 58 号 功能)	0: 控制端闲置 1: 正转运行 (FWD) 2: 反转运行 (REV) 3: 三线式运转控制 4: 正转点动控制 5: 反转停机控制 6: 自由停机控制 7: 外部复位信号输入(RST)	1	×
F4. 01	输入端子 X2 功能(FA. 21 为非 0 值时,默认 59 号 功能)	18. 外部设备故障常开输入 9. 外部设备故障常闭输入 10. 紧急停车功能(以最快速度刹车) 11. 外部停机控制 12. 频率递增指令 13. 频率递减指令 14. UP/DOWN端子频率清零 15. 多段速选择 1 16. 多段速选择 2 17. 多段速选择 3 18. 多段速选择 4	2	×
F4. 02	输入端子 X3 功能(FA. 21 为非 0 值时,默认 60 号 功能)	19: 加减速时间选择 TT1 20: 加减速时间选择 TT2 21: 运行命令通道选择 I 22: 运行命令通道选择 2 23: 变频器运行禁止指令 24: 变频器运行禁止指令 25: 运行命令切换至面板 26: 运行命令切换至通讯	4	×
F4. 03	输入端子 X4 功 (FA. 21 为非 0 值时,默认 61 号 功能)	28: 辅助频率清零 29: 频率源 A 与 K*B 切换 30: 频率源 A 与 A + K*B 切换 31: 频率源 A 与 A - K*B 切换 32: 保留 33: PID 控制投入 34: PID 控制哲停 35: 摆频控制暂停 36: 摆频控制暂停 37: 摆频状态复位	7	×
F4. 04	输入端子 X5 功能(FA. 21 为非 0 值时,默认 62 号 功能)	41: 计数器清零信号输入 42: 计数器触发信号输入 43: 定时触发输入 44: 定时清零输入	8	×
F4. 05	输入端子 X6 功能(FA. 21 为非 0 值时,默认 63 号 功能)	45: 外部脉冲频率输入(仅对 X6 有效) 46: 长度清零 47: 长度计数输入(仅对 X6 有效) 48: 速度与转矩控制切换 49: 转矩控制禁止 50~57: 保留 58: 启动/停 59: 运行允许	0	×
F4. 06	输入端子 X7 功能 (高速 脉冲输入)	60: 联锁 1 61: 联锁 2 62: 联锁 3 63: PFC 启/停 64: A 频率切 B 上并运行 65: 第 1 组 PID 切换到第 2 组 PID	45	×

功能码	名称	设定范围	出厂值	更改
->3132113	. 11.14	66~99: 保留	ш, ш	~~
F4. 07	保留	_	0	•
F4. 08	开关量滤波次数	1~10 1: 代表 2MS 扫描时间单位	5	0
F4. 09	上电时端子功能检测选 择	0: 上电时端子运行命令无效 1: 上电时端子运行命令有效	0	0
F4. 10	输入端子有效逻辑设定 (X1~X7)	0~7FH 0表示正逻辑,端子与公共端连通有效,断开无效 1表示反逻辑,端子与公共端连通无效,断开有效	00	×
F4. 11	FWD/REV 端子控制模式	0: 二线式控制模式 1 1: 二线式控制模式 2 2: 三线式控制模式 1 3: 三线式控制模式 2	0	×
F4. 12	UF/DOWN 端子频率修改速率	0.01~50.00Hz/S 注: 当 F0.18=1 (高频模式) 时,该功能码的取值 上限为 500.0Hz/S	1.00	0
F4. 13	AII 输入下限	0.00V/0.00mA~10.00V/20.00mA	0.00	0
F4. 14	AI1 下限对应物理量设定	-200.0%~200.0% 注: 范围与 F4.28 关联	0.0%	0
F4. 15	AI1 输入上限	0.00V/0.00mA~10.00V/20.00mA	10.00	0
F4. 16	AI1 上限对应物理量设定	-200.0%~200.0% 注: 范围与 F4.28 关联	100.0%	0
F4. 17	AI1 输入滤波时间	0.00S~10.00S	0.05	0
F4. 18	AI2 输入下限	0.00V~10.00V	0.00	0
F4. 19	AI2 下限对应物理量设定	-200.0%~200.0% 注: 范围与 F4.29 关联	0.0%	0
F4. 20	AI2 输入上限	0.00V~10.00V	10.00	0
F4. 21	AI2 上限对应物理量设定	-200.0%~200.0% 注: 范围与 F4.29 关联	100.0%	0
F4. 22	AI2 输入滤波时间	0.00S~10.00S	0.05	0
F4. 23	外部脉冲输入下限	0. 00∼50. 00kHz	0.00	0
F4. 24	外部脉冲下限对应物理 量设定	-200.0%~200.0% 注: 范围与 F4.30 关联	0.0%	0
F4. 25	外部脉冲输入上限	0.00∼50.00kHz	50.00	0
F4. 26	外部脉冲上限对应物理 量设定	-200.0%~200.0% 注: 范围与 F4.30 关联	100.0%	0
F4. 27	外部脉冲输入滤波时间	0.00S~10.00S	0.05	0
F4. 28	AI1 输入对应物理量	0: 速度指令(输出频率,-100.0%~100.0%) 1: 转矩指令(输出转矩,-200.0%~200.0%) 2: 电压指令(输出电压, 0.0%~200.0%*电机额定电压)	0	×
F4. 29	AI2 输入对应物理量	0: 速度指令(输出频率,-100.0%~100.0%) 1: 转矩指令(输出转矩,-200.0%~200.0%) 2: 电压指令(输出电压, 0.0%~200.0%*电机额 定电压)	0	×
F4. 30	外部脉冲输入对应物理 量	0: 速度指令(输出频率,-100.0%~100.0%) 1: 转矩指令(输出转矩,-200.0%~200.0%)	0	×
F4. 31	模拟量输入防抖偏差极限	0.00V~10.00V	0.00	0
F4. 32	零频运行阀值	零频回差~50.00Hz 注: 当 F0.18=1 (高频模式)时,该功能码的取值	0.00	0

功能码	名称	设定范围	出厂值	更改
		上限为 500.0Hz		
F4. 33	零频回差	0.00~零频运行阀值	0.00	0
F4. 34	AI 多点曲线选择	LED 个位: AI1 多点曲线选择 0: 禁止, 1: 有效 LED 十位: AI2 多点曲线选择 0: 禁止, 1: 有效 LED 百位: 保留, LED 千位: 保留	00	×
F4. 35	AII 曲线最小输入	0.00∼ 【F4.37】	0.00	0
F4. 36	AI1 曲线最小输入对应 设定	-200. 0%~200. 0% 注: 范围与 F4. 28 关联	0.0%	0
F4. 37	AI1 曲线拐点 1 输入	【F4. 35】 ∼ 【F4. 39】	3.00	0
F4. 38	AI1 曲线拐点 1 输入对应 设定	-200. 0%~200. 0% 注: 范围与 F4. 28 关联	30.0%	0
F4. 39	AI1 曲线拐点 2 输入	【F4. 37】 ∼ 【F4. 41】	6.00	0
F4. 40	AI1 曲线拐点 2 输入对应 设定	注: 范围与 F4.28 关联	60.0%	0
F4. 41	AII 曲线最大输入	【F4. 39 】 ∼10. 00	10.00	0
F4. 42	AII 曲线最大输入对应 设定	-200. 0%~200. 0% 注: 范围与 F4. 28 关联	100.0%	0
F4. 43	AI2 曲线最小输入	0.00∼【F4.45】	0.00	0
F4. 44	AI2 曲线最小输入对应 设定	-200. 0%~200. 0% 注: 范围与 F4. 29 关联	0.0%	0
F4. 45	AI2 曲线拐点 1 输入	【F4. 43】 ∼ 【F4. 47】	3.00	0
F4. 46	AI2 曲线拐点 1 输入对应 设定	-200.0%~200.0% 注: 范围与 F4.29 关联	30.0%	0
F4. 47	AI2 曲线拐点 2 输入	【F4. 45】 ∼ 【F4. 49】	6.00	0
F4. 48	AI2 曲线拐点 2 输入对应 设定	-200.0%~200.0% 注: 范围与 F4.29 关联	60.0%	0
F4. 49	AI2 曲线最大输入	【F4. 47】 ∼10. 00	10.00	0
F4. 50	AI2 曲线最大输入对应 设定	−200. 0%~200. 0% 注: 范围与 F4. 29 关联	100.0%	0
F4. 51	保留	_	0	•
F4. 52	AI1输入电压保护上限	0.00V/0.00mA~10.00V/20.00mA	6.80	0
F4. 53	AI1输入电压保护下限	0.00V/0.00mA~10.00V/20.00mA	3. 10	0
	THE ASSESSMENT OF THE PROPERTY OF THE PROPERT	F5 组−输出端子		
F5. 00	开路集电极输出端子 Y1 设定	0: 无输出 1: 变频器正转运行	0	×
F5. 01	开路集电极输出端子 Y2 设定	2: 变频器反转运行 3: 故障输出	0	×
F5. 02	可编程继电器 R1 输出	4: 频率/速度水平检测信号 (FDT1)	3	×
F5. 03	可编程继电器 R2 输出	 5: 频率/速度水平检测信号(FDT2) 6: 频率/速度到达信号(FAR) 7: 变频器零转速运行中指示 8: 输出频率到达上限 9: 输出频率到达下限 10: 运行时设定频率下限值到达 11: 变频器过载报警信号 	0	×

功能码	名称	设定范围	出厂值	更改
		12: 计数器检测信号输出 13: 计数器器位信号输出 14: 变频器程多段速运行一个周期完成 16: 可编程多段速运行一个周期完成 16: 可编程多段速阶段运行完成 17: 摆频上下限限制 18: 限流动作中 19: 过压失速动作中 20: 欠压封锁停机 21: 休眠中 22: 变频器告警信号(PID断线、RS485通讯失败、面板等) 23: AII>AI2 24: 长度时间到达 25: 定时相间到达 26: 能耗制动动作 27: 直流制动动作 28: 磁通制动动作 27: 直流制动动作 29: 转矩限定中 30: 过转矩指示 31: 辅助电机1 32: 辅助电机1 32: 辅助电机1 32: 辅助电机2 33: 累计运行时间到达 34~49: 多段速或简易PLC运行段数指示 50: 运行指达指示 51: 温度频器 51: 温变频器 54: 保留 55: 通预器运行准备就绪2 57: AI1输入超限 58~99: 保留		
F5. 04	端子功能选择	0: 输出频率(转差补偿前) 1: 输出频率(转差补偿后) 2: 设定频率	0	0
F5. 05	A02 多功能模拟量输出 端子功能选择	3: 电机转速(估算值) 4: 输出电流	4	0
F5. 06	DO 多功能脉冲量输出端 子功能选择	5:输出电压 6:母线电压 PID 给定量 8:PID 反馈量	11	0
F5. 07	A01 输出下限对应物理 量	-200. 0%~200. 0%	0.0%	0
F5. 08	A01 输出下限	0.00~10.00V	0.00	0
F5. 09	A01 输出上限对应物理 量	-200. 0%~200. 0%	100.0%	0

功能码	名称	设定范围	出厂值	更改	
F5. 10	A01 输出上限	0.00~10.00V	10.00	0	
F5. 11	A02 输出下限对应物理量	-200.0%~200.0%	0.0%	0	
F5. 12	A02 输出下限	0.00~10.00V	0.00	0	
F5. 13	A02 输出上限对应物理量	-200. 0%~200. 0%	100.0%	0	
F5. 14	A02 输出上限	0.00~10.00V	10.00	0	
F5. 15	DO 输出下限对应物理量	-200. 0%~200. 0%	0.0%	0	
F5. 16	DO 输出下限	0. 00∼50. 00kHz	0.00	0	
F5. 17	DO 输出上限对应物理量	-200. 0%~200. 0%	100.0%	0	
F5. 18	DO 输出上限	0. 00∼50. 00kHz	50.00	0	
F5. 19	输出端子有效逻辑设定 (Y1~Y2)	0~3H 0:表示正逻辑,即 Yi 端子与公共端连通有效,断开 无效 1:表示反逻辑,即 Yi 端子与公共端连通无效,断开 有效	0	×	
F5. 20	Y1 输出延迟时间	0. 0∼100. 0s	0.0	×	
F5. 21	Y2 输出延迟时间	0. 0∼100. 0s	0.0	×	
F5. 22	R1 输出延迟时间	0. 0∼100. 0s	0.0	×	
F5. 23	R2 输出延迟时间	0.0~100.0s	0.0	×	
F5. 24	Y1 断开延迟时间	0. 0∼100. 0s	0.0	×	
F5. 25	Y2 断开延迟时间	0.0~100.0s	0.0	×	
F5. 26	R1 断开延迟时间	0. 0∼100. 0s	0.0	×	
F5. 27	R2 断开延迟时间	0. 0∼100. 0s	0.0	×	
F6 组-起停控制					
F6. 00	起动方式	0: 起动频率起动 1: 直流制动+起动频率起动 2: 转速跟踪起动	0	×	
F6. 01	起动频率	0.00~50.00Hz 注: 当 F0.18=1(高频模式)时,起动频率的取值 上限为 500.0Hz	1.00	0	
F6. 02	起动频率保持时间	0. 0∼100. 0s	0.0	0	
F6. 03	起动直流制动电流	0.0~150.0%*电机额定电流	0.0%	0	
F6. 04	起动直流制动时间	0. 0∼100. 0s	0.0	0	
F6. 05	加减速方式	0: 直线加减速, 1: S 曲线加减速	0	×	
F6. 06	S曲线起始段时间比例	10.0~50.0%	20.0%	0	
F6. 07	S 曲线结束段时间比例	10.0~50.0%	20.0%	0	
F6. 08	停机方式	0: 减速停机,1: 自由停机	0	×	
F6. 09	停机直流制动起始频率	0.00~【F0.11】上限频率	0.00	0	
F6. 10	停机直流制动等待时间	0.0~100.0s	0.0	0	
F6. 11	停机直流制动电流	0.0~150.0%*电机额定电流	0.0%	0	
F6. 12	停机直流制动时间	0. 0∼100. 0s	0.0	0	
	F7 组-面板功能设置及参数管理				

功能码	名称	设定范围	出厂值	更改	
が形的	12/17/	反た礼田 0: JOG(点动控制)	山/追	史以	
F7. 00	M-FUNC 键功能选择	0: 月06(点幼花前) 1: 正反转切换 2: 清除面板▲/▼键设定频率 3: 本地操作与远程操作切换(保留) 4: 反转	0	×	
F7. 01	STOF/RST 键功能选择	0: 只对面板控制有效 1: 对面板和端子控制同时有效 2: 对面板和通讯控制同时有效 3: 对所有控制模式都有效	3	0	
F7. 02	运行状态监控参数选择 1(主显示)	0~57	0	0	
F7. 03	运行状态监控参数选择 2(辅助显示)	0~57	5	0	
F7. 04	停机状态监控参数选择 1(主显示)	0~57	1	0	
F7. 05	停机状态监控参数选择 2(辅助显示)	0~57	13	0	
F7. 06	闭环显示系数	0.01~100.00	1.00	0	
F7. 07	负载转速显示系数	0.01~100.00	1.00	0	
F7. 08	线速度系数	0.01~100.00	1.00	0	
F7. 09	STOF 键+RUN 键急停功能	0: 无效, 1: 自由停车	1	0	
F7. 10	编码器调节速率	1~100	70	0	
F7. 11	参数显示模式选择	LED 个位: 功能参数显示模式选择 0: 显示全部功能参数 1: 仅显示与出厂值不同的参数 2: 仅显示最后一次上电后修改的参数(保留) LED 十位: 监控参数显示模式选择 0: 仅显示主监控参数 1: 主辅交替显示 (间隔时间 1S) LED 百位: 调节频率显示选择 0: 显示频率,1: 仅显示状态监控参数 LED 千位: 面板▲/▼键调节使能 0: 有效 ,1: 无效	0000	0	
F7. 12	参数初始化	0: 无操作 1: 除电机参数外的所有用户参数恢复出厂设定 2: 所有用户参数恢复出厂设定 3: 清除故障记录	0	×	
F7. 13	参数写保护	0:允许修改所有参数(运行中有些参数不能修改)1:仅允许修改频率设定 F0.06、F0.07 和本功能码2:除本功能码外所有参数禁止修改注:以上限制对本功能码及 FE.23 无效	0	0	
F7. 14	参数拷贝功能	0: 无操作 1: 参数上传至面板 2: 所有功能码参数下载到变频器 3: 除电机参数外的所有功能码参数下载到变频器 注1: 选择参数下载时,软件会判断变频器功率规格是否一致,若不一致,则与机型相关的参数一律杯	0	×	
F7. 15	LCD 语言选择(仅对 LCD 面板有效)	0:中文。1:英文,2:保留	0	0	
F8 组-辅助功能					
F8.00	加速时间 2	0.1 ~ 3600.0S	机型定	0	

功能码	名称	设定范围	出厂值	更改
F8. 01	减速时间 2	$0.4 \sim 4.0$ KW 7.5 S	机型定	0
F8. 02	加速时间3	5.5 ~ 30.0KW 15.0S 37.0 ~ 132.0KW 40.0S	机型定	0
F8. 03	减速时间3	160.0~ 630.0KW 60.0S	机型定	0
F8. 04	加速时间4		机型定	0
F8. 05	减速时间4		机型定	0
F8. 06	加减速时间单位选择	0: 秒 1: 分 2: 0.1 秒	0	0
F8. 07	点动正转运行频率设定	0.00~【F0.11】上限频率	5. 00	0
F8. 08	点动反转运行频率设定	0.00~【F0.11】上限频率	5. 00	0
F8. 09	点动加速时间设定	0.1 ~ 3600.0S	机型定	0
F8. 10	点动减速时间设定	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	机型定	0
F8. 11	点动间隔时间设定	0.0~100.0s	0.1	0
F8. 12	跳跃频率 1	0.00~上限频率	0.00	0
F8. 13	跳跃频率1范围	0.00~上限频率	0.00	0
F8. 14	跳跃频率 2	0.00~上限频率	0.00	0
F8. 15	跳跃频率 2 范围	0.00~上限频率	0.00	0
F8. 16	跳跃频率 3	0.00~上限频率	0.00	0
F8. 17	跳跃频率 3 范围	0.00~上限频率	0.00	0
F8. 18	设定频率低于下限频率 时动作	0: 以下限频率运行 1: 经延迟时间后零频运行(启动时无延时) 2: 经延迟时间后停机(启动时无延时)	0	×
F8. 19	频率低于下限频率时停 机延迟时间(简易休眠)	0. 0∼3600. 0s	10.0	0
F8. 20	零频制动电流	0.0~150.0%*电机额定电流	0.0	X
F8. 21	正反转死区时间	0. 0∼100. 0s	0.0	0
F8. 22	正反转切换模式	0: 过零频切换, 1: 过起动频率切换	0	X
F8. 23	紧急停车备用减速时间	0. 1∼3600. 0s	1.0	0
F8. 24	停机直流制动电流维持 时间	0. 0∼100. 0s	0.0	0
F8. 25	频率到达 FAR 检测宽度	0.0~100.0%*【F0.10】最大频率	10.0%	0
F8. 26	FDT1 检出方式	0: 速度设定值,1: 速度检测值	0	0
F8. 27	FDT1 水平设定	0.00Hz~【F0.11】上限频率	50.00	0
F8. 28	FDT1 滞后值	0.0~100.0%* [F8.27]	2.0%	0
F8. 29	FDT2 检出方式	0: 速度设定值,1: 速度检测值	0	0
F8. 30	FDT2 水平设定	0.00Hz~【F0.11】上限频率	25. 00	0
F8. 31	FDT2 滞后值	0.0~100.0%* 【F8.30】	4.0%	0
F9 组-保护参数				
F9. 00	电机过载保护选择	0: 禁止 1: 普通电机(电子热继电器方式,低速带补偿) 2: 变频电机(电子热继电器方式,低速不补偿)	1	×
F9. 01	电机过载保护系数	20.0%~120.0%	100.0%	X

151 17 110	<u> 电机八重义频服</u>	//3/	/ 1 平 - 1	27 115 25 3
功能码	名称	设定范围	出厂值	更改
F9. 02	欠压保护动作选择	0:禁止,1:允许(欠压视为故障)	0	×
F9. 03	欠压保护水平	220V: 180~280V 200V 380V: 330~480V 350V	机型定	×
F9. 04	过压限制水平	220V: 350~390V 370V 380V: 600~780V 660V	机型定	×
F9. 05	减速电压限制系数	0~100 0: 过压失速保护无效	机型定	×
F9. 06	电流限制水平(仅 VF 模式有效)	G型: 80%~200%*变频器额定电流 160% P型: 80%~200%*变频器额定电流 120%	机型定	×
F9. 07	弱磁区电流限制选择	0:由 F9.06 的电流限制水平来限制 1:由 F9.06 折算的电流限制水平来限制	0	×
F9. 08	加速电流限制系数	0~100 0: 加速电流限制无效	机型定	×
F9. 09	恒速电流限制使能	0: 无效, 1: 有效	1	X
F9. 10	掉载检出时间	0. 1S~60. 0S	5.0	0
F9. 11	掉载检出水平	0~100%*变频器额定电流 0: 掉载检测无效	0%	0
F9. 12	过载预报警水平	G型: 20%~200%*变频器额定电流 160% P型: 20%~200%*变频器额定电流 120%	机型定	0
F9. 13	过载预报警延时	0.0~30.0s	10.0	0
F9. 14	温度检测阀值	0.0℃~90.0℃	65.0℃	×
F9. 15	输入输出缺相保护选择	0: 均禁止 1: 输入禁止, 输出允许 2: 输入允许, 输出禁止 3: 均允许	机型定	×
F9. 16	输入缺相保护延迟时间	0.0∼30.0s	1.0	0
F9. 17	输出缺相保护检测基准	0%~100%*变频器额定电流	50%	X
F9. 18	输出电流不平衡检测系 数	1.00~10.00 1.00: 不平衡检测无效 注: 输出电流不平衡检测与输出缺相检测共用检测 基准参数 F9.17 及故障代码 E-13	1.00	×
F9. 19	保留	_	0	•
F9. 20	PID 反馈断线处理	0: 不动作 1: 告警并以断线时刻频率维持运行 2: 保护动作并自由停车 3: 告警并按设定的模式减速至零速运行	0	×
F9. 21	反馈断线检测值	0.0~100.0%	0.0%	0
F9. 22	反馈断线检测时间	0. 0∼3600. 0S	10.0	0
F9. 23	保留	_	0	•
F9. 24	RS485 通讯异常动作选 择	0:保护动作并自由停机 1:告警并维持现状继续运行 2:报警并按设定的停机方式停机	1	×
F9. 25	RS485 通讯超时检出时间	0.0:表示不检测 0.1~100.0s 注: 停机时不做通讯超时检测	5. 0	0
F9. 26	面板通讯异常动作选择	0:保护动作并自由停机 1:告警并维持现状继续运行 2:保护动作并按设定的停机方式停机	1	×
F9. 27	面板通讯超时检出时间	0. 0∼100. 0s	1.0	0
F9. 28	EEFROM 读写错误动作选择	0: 保护动作并自由停机 1: 告警并继续运行	0	×

功能码	名称	设定范围	出厂值	更改
F9. 29-F 9. 35	保留	_	0	•
FA 组-PID 控制参数				
FA. 00	PID 运行投入方式	0: 自动 1: 通过定义的多功能端子手动投入	0	×
FA. 01	PID 给定通道选择	0: 数字给定 1: AI1 2: AI2 3: 脉冲给定 4: RS485 通讯 5: 压力给定(MPa、Kg) 6: 面板电位器给定	0	0
FA. 02	给定数字量设定	0.0~100.0%	50.0%	0
FA. 03	PID 反馈通道选择	0: AI1 1: AI2 2: AI1+AI2 3: AI1-AI2 4: MAX {AI1, AI2} 5: MIN {AI1, AI2} 6: 脉冲给定 7: RS485 通讯	0	0
FA. 04	PID 控制器高级特性设置	LED 个位: PID 极性选择 0: 正 1: 负 LED 十位: 比例调节特性 (保留) 0: 恒定比例积分调节,1: 自动变比例积分调节 LED 百位: 积分调节特性 0: 频率到达上下限时,停止积分调节 1: 频率到达上下限时,继续积分调节 LED 千位: 保留	000	×
FA. 05	比例增益 KP1	0.01~100.00	5. 00	0
FA. 06	积分时间 Ti1	0.01~10.00s	0.05	0
FA. 07	微分时间 Td1	0. 01~10. 00s 0. 0: 无微分	0.00	0
FA. 08	采样周期 T	0.01~10.00s 0.00:自动	0.10	0
FA. 09	偏差极限	0.0~100.0%	0.0%	0
FA. 10	闭环预置频率	0.00~上限频率	0.00	0
FA. 11	预置频率保持时间	0. 0∼3600. 0s	0.0	X
FA. 12	睡眠模式	0: 无效 1: 反馈压力超过或低于睡眠阀值时睡眠 2: 反馈压力和输出频率稳定时睡眠	1	×
FA. 13	睡眠停机方式选择	0: 减速停机,1: 自由停机	0	0
FA. 14	进入睡眠时的反馈与设 定压力之偏差	0.0~10.0% 注:本功能参数仅对第二种睡眠模式有效	0. 5%	0
FA. 15	睡眠阀值	0.0~200.0% 注:该阀值是给定压力的百分比,本功能参数仅对 第一种睡眠模式有效	100.0%	0
FA. 16	苏醒阀值	0.0~200.0% 注: 该阀值是给定压力的百分比	90.0%	0
FA. 17	睡眠延迟时间	0. 0∼3600. 0s	100.0	0
FA. 18	苏醒延迟时间	0. 0∼3600. 0s	5. 0	0
FA. 19	加泵延迟时间	0.0∼3600.0s	10.0	0

功能码	名称	设定范围	出厂值	更改
FA. 20	减泵延迟时间	0. 0∼3600. 0s	10.0	0
FA. 21	供水使能(FA. 21-FA. 24 需外部扩展硬件支持)	0: 无效 1: PFC 有效 2: SPFC 有效	0	×
FA. 22	端子接入断开延时	0.0~6000.0s	0. 1	0
FA. 23	轮询时间	0.0~6000.0h	48.0	0
FA. 24	减泵下限频率	0.0∼600.00HZ	35. 00	×
FA. 25	传感器量程	0.00~60.00 (MPa, Kg)	10.00	0
FA. 26	压力设定	0.00∼【FA.25】 (MPa、Kg)	5.00	0
FA. 27	主泵启动延时	0. 0∼3600. 0s	0.3	0
FA. 28	辅泵启动方式选择	0: 直启, 1: 软启	0	×
FA. 29	比例增益 KP2	0.01~100.00	1.00	0
FA. 30	积分时间 Ti2	0.01~10.00s	0.10	0
FA. 31	微分时间 Td2	0.01~10.00s 0.0: 无微分	0.00	0
FA. 32	PID 上限截止频率	【FA. 33】 ∼300.00Hz	50.00	×
FA. 33	PID下限截止频率	−300.00Hz~【FA.32】 注: 频率低于−99.99Hz 时,需设置 F0.18 个位为 1	0.00	×
FA. 34	睡眠频率	0.00Hz∼【F0.11】	0.00	×
		FB 组-摆频、定长、计数和定时		
FB. 00	摆频控制	0: 禁止, 1: 有效	0	×
FB. 01	摆频运行投入方式	0: 自动, 1: 通过定义的多功能端子手动投入	0	×
FB. 02	摆幅控制	0: 固定摆幅, 1: 变摆幅	0	×
FB. 03	摆频停机起动方式选择	0: 按停机前记忆的状态起动 1: 重新开始起动	0	×
FB. 04	摆频状态掉电存储	0: 存储, 1: 不存储	0	×
FB. 05	摆频预置频率	0.00Hz~上限频率	10.00	0
FB. 06	摆频预置频率等待时间	0. 0∼3600. 0s	0.0	×
FB. 07	摆频幅值	0.0~100.0%	0.0%	0
FB. 08	突跳频率	0.0~50.0%(相对摆频幅值)	0.0%	0
FB. 09	摆频上升时间	0. 1∼3600. 0s	5. 0	0
FB. 10	摆频下降时间	0. 1∼3600. 0s	5. 0	0
FB. 11	保留	_	0	•
FB. 12	定长控制	0: 禁止, 1: 有效	0	×
FB. 13	设定长度	0.000~65.535 (KM)	0.000	0
FB. 14	实际长度	0.000~65.535 (KM)	0.000	0
FB. 15	长度倍率	0.100~30.000	1.000	0
FB. 16	长度校正系数	0.001~1.000	1.000	0
FB. 17	测量轴周长	0.10∼100.00CM	10.00	0
FB. 18	轴每转脉冲数(X7)	1~65535	1024	0
FB. 19	计数到达处理	0: 停止计数,停止输出 1: 停止计数,继续输出	3	×

功能码	名称	设定范围	出厂值	更改
		2: 循环计数, 停止输出		
		3: 循环计数,继续输出		
FB. 20	计数起动条件	0: 上电即一直起动, 1: 运行状态时起动,停机状态时停止	1	×
FB. 21	计数器复位值设定	【FB. 22】 ∼65535	0	0
FB. 22	计数器检测值设定	0∼ 【FB. 21】	0	0
FB. 23	定时到达处理	0: 停止定时,停止输出 1: 停止定时,继续输出 2: 循环定时,停止输出 3: 循环定时,继续输出	3	×
FB. 24	定时起动条件	0: 上电即一直起动 1: 运行状态时起动,停机状态时停止	1	×
FB. 25	定时时间设定	0~65535S	0	0
FC. 00	PLC 运行模式选择	0: 单循环后停机 1: 单循环后保持最终值运行 2: 有限次连续循环 3: 连续循环	0	×
		FC 组-简易 PLC、多段速		
FC. 01	PLC 运行投入方式	0: 自动, 1: 通过定义的多功能端子手动投入	0	×
FC. 02	PLC 运行掉电记忆	0: 不记忆, 1: 记忆掉电时刻的阶段, 频率	0	×
FC. 03	PLC 起动方式	0: 从第一段开始重新起动 1: 从停机(故障)时刻的阶段开始起动 2: 从停机(故障)时刻的阶段、频率开始起动	0	×
FC. 04	有限次连续循环次数	1~65535	1	0
FC. 05	PLC 运行时间单位选择	0; s 1: m	0	×
FC. 06	多段速频率 0	-上限频率~上限频率	5.00	0
FC. 07	多段速频率1	-上限频率~上限频率	10.00	0
FC. 08	多段速频率 2	-上限频率~上限频率	15.00	0
FC. 09	多段速频率 3	-上限频率~上限频率	20.00	0
FC. 10	多段速频率 4	-上限频率~上限频率	25.00	0
FC. 11	多段速频率 5	-上限频率~上限频率	30.00	0
FC. 12	多段速频率 6	-上限频率~上限频率	40.00	0
FC. 13	多段速频率 7	-上限频率~上限频率	50.00	0
FC. 14	多段速频率 8	-上限频率~上限频率	0.00	0
FC. 15	多段速频率 9	-上限频率~上限频率	0.00	0
FC. 16	多段速频率 10	-上限频率~上限频率	0.00	0
FC. 17	多段速频率 11	-上限频率~上限频率	0.00	0
FC. 18	多段速频率 12	-上限频率~上限频率	0.00	0
FC. 19	多段速频率 13	-上限频率~上限频率	0.00	0
FC. 20	多段速频率 14	-上限频率~上限频率	0.00	0
FC. 21	多段速频率 15	-上限频率~上限频率	0.00	0
FC. 22	第0段速加减速时间	0~3	0	0
FC. 23	第0段速运行时间	0. $0 \sim 6$ 5 5 3. 5 S(M)	0.0	0
FC. 24	第1段速加减速时间	0~3	0	0

101 17 110	同口比电机八里文/奶苗					
功能码	名称	设定范围	出厂值	更改		
FC. 25	第1段速运行时间	0. 0 ~ 6 5 5 3.5S(M)	0.0	0		
FC. 26	第2段速加减速时间	0~3	0	0		
FC. 27	第2段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 28	第3段速加减速时间	0~3	0	0		
FC. 29	第3段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 30	第4段速加减速时间	0~3	0	0		
FC. 31	第4段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 32	第5段速加减速时间	0~3	0	0		
FC. 33	第5段速运行时间	0. 0 ~ 6 5 5 3. 5 S(M)	0.0	0		
FC. 34	第6段速加减速时间	0~3	0	0		
FC. 35	第6段速运行时间	0. 0 ~ 6 5 5 3. 5 S(M)	0.0	0		
FC. 36	第7段速加减速时间	0~3	0	0		
FC. 37	第7段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 38	第8段速加减速时间	0~3	0	0		
FC. 39	第8段速运行时间	0. 0 ~ 6 5 5 3 . 5 S(M)	0.0	0		
FC. 40	第9段速加减速时间	0~3	0	0		
FC. 41	第9段速运行时间	0. 0 ~ 6 5 5 3 . 5 S(M)	0.0	0		
FC. 42	第 10 段速加减速时间	0~3	0	0		
FC. 43	第 10 段速运行时间	0. 0 ~ 6 5 5 3 . 5 S(M)	0.0	0		
FC. 44	第 11 段速加减速时间	0~3	0	0		
FC. 45	第 11 段速运行时间	0. 0 ~ 6 5 5 3 . 5 S(M)	0.0	0		
FC. 46	第 12 段速加减速时间	0~3	0	0		
FC. 47	第 12 段速运行时间	0. 0 ~ 6 5 5 3 . 5 S(M)	0.0	0		
FC. 48	第13段速加减速时间	0~3	0	0		
FC. 49	第 13 段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 50	第 14 段速加减速时间	0~3	0	0		
FC. 51	第 14 段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 52	第 15 段速加减速时间	0~3	0	0		
FC. 53	第 15 段速运行时间	$0. \ 0 \sim 6 \ 5 \ 5 \ 3 \ . \ 5 \ S(M)$	0.0	0		
FC. 54	保留	_	0	•		
		 Fd 组−RS485 通讯参数				
Fd. 00	协议选择	0: MODBUS, 1: 自定义	0	×		
Fd. 01	本机地址	0: 广播地址 1~247: 从站	1	×		
Fd. 02	通讯波特率设置	0: 2400BPS 1: 4800BPS 2: 9600BPS 3: 19200BPS 4: 38400BPS 5: 115200BPS	3	×		
Fd. 03	数据格式	0: 无校验 (N, 8, 1) for RTU 1: 偶校验 (E, 8, 1) for RTU 2: 奇校验 (0, 8, 1) for RTU	1	×		

功能码	功能码 名称 设定范围			更改
->411014-4	- HAM	3: 无校验 (N, 8, 2) for RTU	出厂值	~~
		4: 偶校验 (E, 8, 2) for RTU 5: 奇校验 (0, 8, 2) for RTU		
		ASCII 模式暂时保留		
Fd. 04	本机应答延时	$0\sim200$ ms	5	X
Fd. 05	传输回应处理	0: 写操作有回应, 1: 写操作不回应	0	X
Fd. 06	比例连动系数	0.01~10.00	1.00	0
Fd. 07	通讯模式选择	0: 通用模式, 1: MD380 模式	0	×
		FE 组-高级功能及性能参数		
FE. 00	能耗制动功能设定	0: 无效 1: 全程有效 2: 仅减速时有效	1	×
FE. 01	能耗制动起始电压	220V: 340~380V 360V 380V: 660~760V 680V	机型定	0
FE. 02	能耗制动回差电压	220V: 10~100V 5V 380V: 10~100V 10V	机型定	0
FE. 03	能耗制动动作比例	10~100%	100%	0
FE. 04	停电再起动设置	0: 禁止 1: 从起动频率处起动 2: 转速追踪起动	0	×
FE. 05	停电再起动等待时间	0. 0∼60. 0s	5. 0	×
FE. 06	故障自动复位次数	0~100 设定为 100 表示次数不限制,即无数次	0	×
FE. 07	故障自动复位间隔时间	0.1~60.0s	3. 0	×
FE. 08	冷却风扇控制	0: 自动控制模式,1: 通电过程一直运转	0	0
FE. 09	运行限制功能密码	0~65535 注 1: 密码设置成功, 需等待 3 分钟才能生效 注 2: 本功能参数不能被初始化	0	0
FE. 10	运行限制功能选择	0: 禁止, 1: 有效 注: 本功能参数不能被初始化	0	0
FE. 11	限制时间	0~65535(h) 注: 本功能参数不能被初始化	0	×
FE. 12	瞬间掉电降频点	220V:180~330V 250V 380V:300~550V 450V	机型定	×
FE. 13	瞬间掉电频率下降系数	0: 瞬停不停功能无效 1~100	0	0
FE. 14	下垂控制	0.00~10.00Hz 注:该值为0.00时无效;当F0.18=1(高频模式) 时,该功能码的取值上限为100.0Hz	0.00	×
FE. 15	转速追踪等待时间	0. 1~5. 0S	1.0	×
FE. 16	转速追踪电流限幅水平	80%~200%*变频器额定电流	100%	×
FE. 17	转速追踪快慢	1~125	25	×
FE. 18	PWM 模式	LED 个位: PWM 合成方式 0: 全频七段, 1: 七段转五段 LED 十位: PWM 温度关联 0: 无效, 1: 有效 LED 百位: PWM 频率关联 0: 均无效, 1: 低频调整,高频调整 2: 低频不调整,高频调整	0001	×

功能码	名称	设定范围	出厂值	更改
		3: 低频调整,高频不调整 LED 千位: 柔性 PWM 功能 0: 无效, 1: 有效		
FE. 19	电压控制功能	LED 个位: AVR 功能 0: 无效, 1: 全程有效, 2: 仅减速时无效 LED 十位: 过调制选择 0: 无效, 1: 有效 LED 百位: 死区补偿选择 0: 无效, 1: 有效 LED 千位: 震荡抑制选择 0: 无效, 1: 震荡抑制选择 0: 无效, 1: 震荡抑制模式 1, 2: 震荡抑制模式 2 3: 震荡抑制模式 3	1102	×
FE. 20	振荡抑制起始频率	0.00~300.00Hz	机型定	0
FE. 21	磁通制动选择	0~100 0: 无效	0	0
FE. 22	节能控制系数	0~100 0: 无效, 1: 自动节能运行 注: 节能运行只对普通 V/F 控制有效	0	0
FE. 23	多段速优先级使能	0: 无效, 1: 多段速优先于 F0.03 给定	0	X
FE. 24	点动优先级使能	0: 无效 , 1: 变频器运行时, 点动优先级最高	0	×
FE. 25	特殊功能	LED 个位: A02 与 D0 输出选择 0: A02 有效, 1: D0 有效 LED 十位: IPM 故障设置 0: 屏蔽该故障, 1: 该故障有效 LED 百位: 输入缺相故障复位选择 0: 不能复位, 1: 电源正常后可以复位 LED 千位: 保留	010	×
FE. 26	振荡抑制上限频率	0.00~300.00Hz	50.00	0
FE. 27	振荡抑制系数	1~500	50	0
FE. 28	振荡抑制电压	0.0~25.0%*电机额定电压	5.0	0
FE. 29	用户密码	0~65535 注 1: 0~9: 无密码保护 注 2: 密码设置成功,需等待 3 分钟才能生效 注 3: 写保护对本参数无效且不能被初始化	0	0
FE. 30	控制软件版本号	1.00~99.99	1.01	*
FE. 31	面板软件版本号	1.00~99.99	1.00	*
FE. 32	逐波限流与防过压动作选择	LED 个位: 逐波限流加速中选择 0: 无效 1: 有效 LED 十位: 逐波限流减速中选择 0: 无效 1: 有效 LED 百位: 逐波限流恒速中选择 0: 无效 1: 有效 LED 千位: 防过压动作选择 0: 无效 1: 有效	0011	0
FE. 33	变频器额定功率	0.4~999.9KW (G/P)	机型定	•
		FF 组-厂家参数		
FF. 00	厂家密码	0~65535 注:密码设置成功,需等待3分钟才能生效	0	0

功能码	名称	设定范围	出厂值	更改
FF. 01	保留	_	0	♦
		D 组-监控参数组及故障记录		
d-00	输出频率	0.00~最大输出频率【F0.10】	0	•
d-01	设定频率	0.00~最大输出频率【F0.10】	0	•
d-02	电机估算频率	0.00~最大输出频率【F0.10】注: 由电机估算速度折算出的电机运行频率	0	*
d-03	主设定频率	0.00~最大输出频率【F0.10】	0	*
d-04	辅助设定频率	0.00~最大输出频率【F0.10】	0	*
d-05	输出电流	0.0~6553.5A	0	*
d-06	输出电压	0~999V	0	*
d-07	输出转矩	-200. 0~+200. 0%	0	*
d-08	电机转速(RPM/min)	0~36000 (RPM/min)	0	*
d-09	电机功率因数	0.00~1.00	0	*
d-10	运行线速度(m/s)	$0.01 \sim 655.35 (\text{m/s})$	0	*
d-11	设定线速度(m/s)	0.01~655.35(m/s)	0	*
d-12	母线电压(V)	0~999V	0	*
d-13	输入电压(V)	0~999V	0	*
d-14	PID 设定值(V)	0.00~10.00V	0	*
d-15	PID 反馈值(V)	0.00~10.00V	0	*
d-16	模拟输入 AI1(V/mA)	0.00~10.00V	0	*
d-17	模拟输入 AI2(V)	0.00~10.00V	0	*
d-18	脉冲频率输入(KHz)	0.00~50.00kHz	0	*
d-19	模拟输出 AO1 (V/mA)	0.00~10.00V	0	*
d-20	模拟输出 AO2(V)	0.00~10.00V	0	*
d-21	输入端子状态	0~7FH 注: 展开为二进制后表示由高到低依次为 X7/X6/X5/X4/X3/X2/X1	0	•
d-22	输出端子状态	0~FH 注:展开为二进制后表示由高到低依次为R2/R1/Y2/Y1	0	•
d-23	变频器运行状态	0~FFFFH BIT0: 运行/停机 BIT1: 反转/正转 BIT2: 零接运行 BIT3: 保留 BIT4: 加速中 BIT5: 减速中 BIT6: 恒速运行中 BIT7: 预励磁中 BIT8: 电机参数调谐中 BIT9: 过流限制中 BIT10: 过压限制中 BIT11: 转矩限幅中 BIT11: 速度控制 BIT12: 速度控制 BIT13: 课度控制 BIT15: 保留	0	•
d-24	多段速当前段数	0~15	0	♦
d-25	脉冲频率输出(Hz)	0∼50000Hz	0	*
d-26	保留	-	0	♦
d-27	当前计数值	0~65535	0	•

功能码	名称	设定范围	出厂值	更改
d-28	设定计数值	0~65535	0	♦
d-29	当前定时值(S)	0∼65535S	0	*
d-30	设定定时值(S) 0~65535S (0	•
d-31	当前长度	0.000∼65.535 (KM)	0	*
d-32	设定长度	0.000~65.535 (KM)	0	*
d-33	散热器温度 1	0.0°C∼+110.0°C	0	•
d-34	散热器温度 2	0.0°C∼+110.0°C	0	•
d-35	大机果和运行时间 (小		0	•
d-36	本机累积通电时间(小时)	0∼65535H	0	•
d-37	风扇累积运行时间(小时)	0∼65535H	0	•
d-38	累积用电量 (低位)	0∼9999KWH	0	*
d-39	累积用电量 (高位)	0∼9999KWH (*10000)	0	*
d-40	PID 压力反馈	0.00∼60.00 (MPa、Kg)	0.00	•
d-41	输出功率	0.0∼6553.5KW	0.0	♦
d-42	专用机型监控参数(保留)	_	0	•
d-43	专用机型监控参数(保留)	_	0	•
d-44	专用机型监控参数(保留)		0	•
d-45	专用机型监控参数(保留)	_	0	•
d-46	专用机型监控参数(保留)	_	0	•
d-47	专用机型监控参数(保留)	_	0	*
d-48	前三次故障类型	0~27	0	*
d-49	前二次故障类型	0~27	0	*
d-50	前一次故障类型	0~27	0	*
d-51	当前故障类型	0~27	0	*
d-52	当前故障时的运行频率	0.00~【F0.11】上限频率	0	*
d-53	当前故障时的输出电流	0. 0∼6553. 5A	0	*
d-54	当前故障时的母线电压	0~999V	0	•
d-55	当前故障时的输入端子 状态	0~7FH 注: 展开为二进制后表示由高到低依次为 X7/X6/X5/X4/X3/X2/X1	0	•
d-56	当前故障时的输出端子 状态	为二进制后表示由高到低依次为 R2/R1/Y2/Y1	0	*
d-57	当前故障时的变频器运 行状态	0∼FFFFH	0	•

第七章 参数详解

F0 组 系统管理参数

F0.00	变频器机型选择	0~1	0

0: G型(恒转矩负载机型)

1: P型(风机、水泵类负载机型)

本变频器中,G/P 机型合并处理,即低一档功率的 G 型机可作为高一档功率的 P 型机使用。但前提是本功能码须设置为相对应的数值。

F0.01 控制方式 0~3 机型设定

0: 普通 V/F 控制

在需要用单台变频器驱动一台以上电机时,在无法正确进行电机参数自学习或无法通过其他途径获取被 控电机参数时,选择的控制方式。本控制方式是最常用的电机控制方式,在任何对电机控制性能要求不高的 场合,均可采用此种控制方式。

1: 高级 V/F 控制

此种控制模式引入磁通闭环控制的思想,能在全频段大幅度提升电机控制的转矩响应,增强低频下电机的转矩输出能力,同时又不至于像磁场定向矢量控制那样对电机参数过于敏感,在某些对起动转矩有一定要求的场合(如拉丝机、球磨机等)此种控制模式尤为适用。

2: 开环电流矢量控制(电机参数较敏感方式)

真正的电流矢量控制方式,该控制方式除具备磁通控制方式的高转矩输出性能外,还兼有柔性转矩输出效果,可谓刚柔并济,但是此种控制方式对电机参数较敏感,最好启用电机参数动态自学习后再使用,否则效果不佳。

3: 分离型 V/F 控制

此种控制模式下变频器的输出电压和频率均可独立控制,而不再是简单的满足于 V/F 恒定的关系, 一般可用于变频电源、EPS 等领域。

注: 55KW 以下出厂默认为 1, 75KW 以上出厂默认为 0.

(22.	m, m, (v (v v -)		
F0. 02	运行命令通道选择	0~2	0

本功能码选择变频器接受运行和停止等操作命令的物理通道。

0: 操作面板运行命令通道

由操作面板上的按键实施运行控制。

1: 端子运行命令通道

由定义为 FWD、REV、JOG 正转、JOG 反转等功能的多功能端子实施运行控制。

2: 通讯运行命令通道

由上位机通过通讯方式实施运行控制。

F0. 03	主频率源 A 选择	0~9	4	

0: 数字给定 1 (面板 ▲/▼)、编码器)

1: 数字给定 2 (UP/DOWN 端子调整)

频率设置初值为 FO. 07,由外部定义为 UP/DOWN 功能的多功能端子的通断来改变运行频率 (详见 F4 组 X 端子的频率递增递减项功能号),当 UP 端子与 COM 端闭合时,频率上升; DOWN 端子与 COM 端闭合时,频率下降; UP/DOWN 端子同时与 COM 端闭合或断开时,频率维持不变。如设置频率掉电存储,则修改后的频率值在掉电后会存储到 FO. 07 中。 UP/DOWN 端子修改运行频率的速率可通过功能码 F4. 12 来设定。

□ 提示:

无论是面板 (▲/▼)键调节还是端子 UP/DOWN 调节, 其设定值都是在 F0.06 或 F0.07 的基础上叠加一个调节量, 最终频率输出值为下限频率到最大输出频率,端子 UP/DOWN 调节的调节量可以通过 X 端子选择 "UP/DOWN 端子频率清 0"来清除。

2: AI1 模拟给定 (0~10V/20mA)

频率设置由 AI1 端子模拟电压/电流确定,输入范围: DC 0 \sim 10V/20mA 相关设定见功能 F4. 13 \sim F4. 17 定义。

3: AI2 模拟给定(0~10V)

频率设置由 AI2 端子模拟电压/电流确定,输入范围: DC $0\sim10V$ 相关设定见功能码 F4. $18\sim$ F4. 22 定义。

4: 面板电位器设定

通过操作键盘上的电位器来调节运行频率,电位器调节频率的范围固定为0~最大输出频率【F0.10】。

5: 脉冲给定

频率设置由端子脉冲频率确定(只能由 X6 输入,见 F4.05 定义),输入脉冲信号规格:高电平范围 $15\sim30V$;频率范围 $0\sim50kHz$ 。相关设定见功能码 $F4.23\sim F4.27$ 定义。

6: 多段谏运行设定

选择此种频率设定方式,变频器以多段速方式运行。需要设置 F4 组 "X 端子为多段速选择"和 FC 组 "多段速频率"功能码来确定给定的多段速段数和给定频率的对应关系。

7: 简易PLC设定

选择简易 PLC 给定频率模式,需要设置功能码 FC. 00~FC. 05;功能码 FC. 06~FC. 21 来确定 PLC 各阶段运行频率,功能码 FC. 22~FC. 53 分别定义 PLC 各阶段加减速时间和阶段运行时间。

8: PID 控制设定

选择此种频率设定方式则变频器运行模式为过程 PID 控制。此时,需要设置 FA 组"过程 PID 参数"和模拟给定以及脉冲给定相关功能码。变频器运行频率为 PID 作用后的频率值。具体设置请参考 FA 组功能详细说明。

9: 数字给定3(通讯设定)

通过串行口频率设置命令来改变设定频率,详见 Fd 组通讯参数。

F0.04 辅助频率源 B 选择 0~9 (同主频率通道选择) 2

- 0: 数字给定 1 (面板 ▲/▼)、编码器)
- 1: 数字给定 2 (UP/DOWN 端子调整)
- 2: AI1 模拟给定 (0~10V/20mA)
- 3: AI2 模拟给定(0~10V)
- 4: 面板电位器设定
- 5: 脉冲给定 (0~50KHZ)
- 6: 多段速运行设定
- 7: 简易PLC设定
- 8: PID 控制设定
- 9: 数字给定3(通讯设定)

辅助频率给定通道各项含义与主频率给定通道各项含义相同,请参考 FO.03 详细说明。

F0.05 频率源组合算法 0~9 0

0: 主频率源 A

1: A+K*B

主频率给定通道 A 频率与辅助频率给定通道 B 频率,乘以权系数 K 后,再将两频率相加,作为变频器的最终给定频率。

2: A-K*B

主频率给定通道 A 频率与辅助频率给定通道 B 频率,乘以权系数 K 后,再将两频率相减,作为变频器的最终给定频率。

3: | A-K*B |

主频率给定通道 A 频率与辅助频率给定通道 B 频率,乘以系数 K 后,再将两频率相减,取绝对值后,作为变频器的最终给定频率。

4: MAX (A, K*B)

主频率给定通道 A 频率与辅助频率给定通道 B 频率乘以权系数 K 后,再将两频率相比较,取较大者作为变频器的最终给定频率。

5: MIN (A, K*B)

主频率给定通道 A 频率与辅助频率给定通道 B 频率乘以权系数 K 后,再将两频率相比较,取较小者作为变频器的最终给定频率。

6: 由 A 切换到 K*B

该功能与 F4 组参数中 X1~X7 功能的第 29 号功能项配合使用, 当 F0.05 =6, 并且 X 端子功能选择 29 时, X 端子有效, 频率给定源从 A 切换到 K*B: X 端子无效时, 频率源又回到 A。

7: A与(A+K*B)切换

该功能与 F4 组参数中端子 $X1\sim X7$ 功能的第 30 号功能项配合使用,当 F0.05=7,并且 X 端子功能选择 30 时,X 端子有效,频率给定源从 A 切换到(A+K*B); X 端子无效时,频率源又回到 A。 8: A 与(A-K*B)切换

该功能与 F4 组参数中端子 $X1 \sim X7$ 功能的第 31 号功能项配合使用,当 F0.05 =8,并且 X 端子功能选择 31 时,X 端子有效,频率给定源从 A 切换到(A-K*B),X 端子无效时,频率源又回到 A。

⚠注意:

给定后的频率大小仍受起动频率,上下限频率等的限制,频率的正负决定变频器的运行方向。 其中 K 为辅助频率源 B 的权系数,具体设置请参考 FO. 08 功能码详细说明。

F0.06	频率源数字给定1设定	0.00Hz~【F0.11】上限频率	50.00

当频率通道定义为数字给定1(主频率源为和辅助频率源为0)时,该功能参数为变频器面板数字频率给定的初始设定频率。

1117 -114 847 11 247 -2771			
F0. 07	频率源数字给定 2 设定	0.00Hz~【F0.11】上限频率	50.00

当频率通道定义为数字给定 2 (主频率源和辅助频率源为 1) 时,该功能参数为变频器端子给定频率的 初始设定频率。

F0. 08	辅助频率源权系数 K 设定	0.01~10.00	1.00
K 为辅助频率源权系数, 当 F0.05 为 1~8 时有效。			
F0. 09	运转方向设定	0~2	0

0: 正转

选择本方式时,变频器的实际输出相序与系统默认相序一致。此时,面板上的 RUN 及 FWD 端子功能均变为正转控制。

1: 反转

选择本方式时,变频器的实际输出相序将与系统默认相序相反。此时,面板上的 RUN 键及 FWD 端子功能均变为反转控制。

2: 反转防止

任何情况下,电机只能正转运行。该功能适用于反转运行可能会带来危险或财产损失的场合。给定反转命令,变频器以零速运行。

□ 提示:

此功能码设置对所有运行命令通道的运行方向控制都有效。

	最大输出频率		
F0. 10	低频段: MAX {50.00, 【F0.11】	} ∼ 300.00	50, 00
	高频段: MAX {50.0, 【F0.11】	} ∼ 3000.0	50.00
F0. 11	上限频率	【F0. 12】 ~ 【F0. 10】	50.00
F0. 12	下限频率	【F0. 12】 ~ 【F0. 10】	0.00

最大输出频率是变频器允许输出的最高频率,是加减速时间设定的基准,如下图所示的 fmax;基本运行频率是变频器输出最高电压时对应的最小频率,一般是电机的额定频率,如下图所示的 fb;最大输出电压 Vmax是变频器输出基本运行频率时,对应的输出电压,一般是电机的额定电压;如下图所示的 Vmax;fH、fL 分别定义为上限频率和下限频率,如图 F0-1 所示:

第 44 页 共 112 页

图 F0-1 电压与频率示意图

⚠注意:

- 1. 最大输出频率、上限频率和下限频率应根据实际被控电机的铭牌参数和运行工况的需求谨慎设置,否则可能造成设备损坏。.
- 2. 上限频率的限制范围,对点动(JOG)运行限制有效,下限频率的限制范围,对点动(JOG)运行无效。
- 3. 除上限频率、下限频率的限制外,变频器运行时的输出频率还受起动频率、停机直流制动起始频率、跳跃频率等参数设定值的限制。
- 4. 最大输出频率、上限频率、下限频率的关系如上图 F0-1 所示,设置时请注意大小顺序。
- 5. 上下限频率用来限制电机实际输出的频率值,若设定频率高于上限频率,则以上限频率运行;若设定频率低于下限频率则以下限频率运行(设定频率低于下限频率时的运行状态,还与功能码 F8.18 的设置有关);若设定频率小于起动频率,则起动时以零频运行。

F0. 13	载波频率设置		
	1.0∼16.0KHz		机型设定
0.4∼4.0KW		6.0KHz	1.0∼16.0KHz
5.5∼30KW		4.5KHz	1.0∼16.0KHz
37∼132KW		3. 0KHz	1.0∼10.0KHz
160∼630KW		1.8KHz	1.0∼5.0 KHz

本功能码用于设置变频器输出 PWM 波的载波频率。载波频率会影响电机运行时的噪音,对需要静音运行的场合,可以适当提高载波频率达到要求。但提高载波频率会使变频器的发热量增加,同时对外界的电磁干扰增大。

载波频率超过出厂设定值时,变频器需降额使用。一般情况下载波每提高 $1 \mathrm{KHz}$,变频器电流需降额 $5 \mathrm{M}$ $5 \mathrm{M}$ $5 \mathrm{M}$ $5 \mathrm{M}$

⚠注意:

1: 可通过功能码 F0.13 进行载波方式选择。

F0. 14	加速时间1	0.1~3600.0S	机型设定
F0. 15	减速时间1	0. 1∼3600. 0S	机型设定

加速时间是指变频器从零频加速到最大输出频率所需时间,如下图所示的 t1。减速时间是指变频器从最 大输出频率减速至零频所需时间,如下图所示的 t2。

本系列变频器的加、减速时间参数共有四组,另三组的加减速时间在功能码 F8.00~F8.05 中定义,出厂默认的加减速时间由机型确定,如要选择其它加减速时间组,请通过多功能端子进行选择(请参考 F4.00~F4.06 功能码)。点动运行时的加、减速时间,在 F8.09、F8.10 中单独定义。

F0. 16	数字频率给定 1 控制	000~111	000

LED 个位: 掉电存储

- 0:存储:变频器上电时,面板和端子频率增量初始化为上一次掉电时 EEPROM 中保存的值。
- 1: 不存储: 变频器上电时, 面板和端子频率增量初始化为 0。
- LED 十位: 停机保持
- 0: 停机保持:变频器停机时,频率设定值为最终修改值。
- 1: 不保持: 变频器停机时,设定频率恢复到 F0.06
- LED 百位: (▲/▼) UP/DOWN 负频率调节
- 0: 无效.1: 有效

选择有效时,操作键盘(▲/▼)键、端子 UP/DOWN 可以实现频率的正负调节。

F0.17 数字频率给定 2 控制 000~111 000

LED 个位: 掉电存储

0:存储: 变频器上电时,面板和端子频率增量初始化为上一次掉电时 EEPROM 中保存的值。

1: 不存储: 变频器上电时, 面板和端子频率增量初始化为 0。

LED 十位: 停机保持

- 0: 停机保持:变频器停机时,频率设定值为最终修改值。
- 1: 不保持变频器停机时,设定频率恢复到 F0.07。
- LED 百位: ▲/▼ 键、UP/DOWN 负频率调节
- 0: 无效.1: 有效

选择有效时,操作键盘(▲/▼)键、端子 UP/DOWN 可以实现频率的正负调节。

F0. 18	频率输出模式选择	0000~0011	0000

- LED 个位: 高低频输出模式选择
- 0: 低频模式 (0.00~300.00HZ)
- 1: 高频模式 (0.0~3000.0HZ)
- LED 十位:加减速基准选择
- 0: 以最大输出频率为基准
- 1: 以目标输出频率为基准
- LED 百位: 保留
- LED 千位: 保留

高频模式仅对 V/F 控制有效

F1 组 电机参数

F1. 0	电机类型选择	0~1	0

- 0:交流异步电机
- 1: 永磁同步电机(保留)

同步电机暂时只接受闭环矢量控制。

F1. 01	电机额定功率	0.4~999.9KW	机型设定
F1. 02	电机额定频率	0.01Hz~【F0.10】最大输出频率	50.00
F1. 03	电机额定转速	0∼60000RPM	机型设定
F1. 04	电机额定电压	0∼999V	机型设定
F1. 05	电机额定电流	0. 1∼6553. 5A	机型设定

/ 注意:

以上功能码务必按照电机铭牌参数进行设置,请按变频器的功率配置相对应的电机,若功率相差过大,则变频器的控制性能明显下降。

F1. 06	异步电机定子电阻	0. 001~20. 000 Ω	机型设定
F1. 07	异步电机转子电阻	0. 001~20. 000 Ω	机型设定
F1. 08	异步电机定,转子电感	0.1∼6553.5mH	机型设定
F1. 09	异步电机定,转子互感	0.1∼6553.5mH	机型设定
F1. 10	异步电机空载电流	0.01∼655.35A	机型设定

以上各电机参数的具体含义如图 F1-1 所示。

图 F1-1 异步电机稳态等效电路图

图 F1-1 中的 R1、X11、R2、X21、Xm、Io 分别代表:定子电阻、定子漏感抗、转子电阻、转子漏感抗、互感抗、空载电流。

如进行电机调谐,则在调谐结束后,F1.06~F1.10的设定值将被更新。

更改异步电机额定功率 F1.01 后, F1.03~F1.10 参数自动更新为相应功率的异步电机默认参数 (F1.02 为电机额定频率,不属于异步电机默认参数范围,需要用户根据铭牌来设置)。

F1. 11	同步电机定子电阻(保留)	0. 001~20. 000 Ω	机型设定
F1. 12	同步电机 D 轴电感(保留)	0.1∼6553.5mH	机型设定
F1. 13	同步电机 Q 轴电感 (保留)	0.1∼6553.5mH	机型设定
F1. 14	同步电机反电势常数(保留)	1~1000V/1000rpm	150
F1. 15	同步电机辨识电流(保留)	0%~30%电机额定电流	10%

F1.16

- 0: 不动作
- 1: 静态调谐

电机处于静止状态下的参数测量模式,此模式适用于电机与负载不能脱离的场合。

2: 完整调谐

电机完整的参数测量模式,在电机与负载能脱离的情况下,尽量采用这种方式。

□□提示:

- 1: 当设定 F1.16 为 2 时,在调谐过程中若出现过流、调谐故障,需要检查是否输出缺相,机型是否匹配
- 2: 当设定 F1.16 为 2 时,进行完整调谐时,应将电机轴脱离负载,禁止电机带负载进行完整调谐;
- 3: 在起动电机参数调谐前应确保电机处于停止状态,否则调谐不能正常进行;
- 4: 在某些场合(比如电机无法与负载脱离等情况下)不便于进行完整调谐或者用户对电机控制性能要求不高时,可进行静止调谐。
- 5: 如果无法进行调谐, 并且用户已知道准确的电机参数, 此时用户可直接输入电机铭牌参数 $(F1.01 \sim F1.14)$, 照样能发挥出变频器的优越性能。调谐不成功,保护动作并显示 E-21

F2 组 电机矢量控制参数

F2. 00	速度环(ASR1)比例增益	0.000~6.000	1.000
F2. 01	速度环(ASR1)积分时间	0.000~32.000S	1.000
F2. 02	ASR1 滤波时间常数	0.000∼0.100S	0.000
F2. 03	切换低点频率	0.00Hz∼【F2.07】	5.00
F2. 04	速度环(ASR2)比例增益	0~6.000	1.000
F2. 05	速度环(ASR2)积分时间	0. 00∼32. 000S	0.050
F2. 06	ASR2 滤波时间常数	0.000∼0.100S	0.000
F2. 07	切换高点频率	【F2.03】~【F0.11】上限频率	10.00

功能码 F2.00~F2.07 在无 PG 矢量控制方式下有效。

在矢量控制方式下,通过设定速度调节器的比例增益 P 和积分时间 I,从而改变矢量控制的速度响应特性。

速度调节器 (ASR) 的构成如图 F2-1 所示。图中 KP 为比例增益 P, TI 为积分时间 I。

图 F2-1 速度调节器简化图

F2. 08	矢量控制正转差补偿系数(电动状态)	50.0%~200.0%*额定转差频率	100.0%
F2. 09	矢量控制负转差补偿系数(制动状态)	50.0%~200.0%*额定转差频率	100.0%

在矢量控制方式下,以上功能码参数用来调整电机的稳速精度,当电机重载时,速度偏低,则加大该参数,反之则减小该参数。

其中正转差系数对电机转差率为正时的速度进行补偿,反之,负转差系数则对电机转差率为负时的速度 进行补偿。

F2. 10	速度与转矩控制选择	0~2	0
--------	-----------	-----	---

0: 速度控制

无 PG 电流矢量控制时的控制对象为速度控制。

1: 转矩控制

无 PG 电流矢量控制时的控制对象为转矩控制,相关参数设置请参考 F2.12~F2.24。

2: 条件有效 (端子切换)

无 PG 电流矢量控制时的控制对象,由定义为速度与转矩控制切换的开关量输入端子控制,请参考 F4 组 开关量输入端子功能的第 48 号功能说明。

图 F2-2 转矩控制简化框图

F2. 11	速度与转矩切换延时	0.01~1.00S	0.05
本功能码定义	了转矩、速度切换时的延时时间。		
F2. 12	转矩指令选择	0~3	0

本功能码设定转矩控制时的转矩给定物理通道。

0: 键盘数字给定

转矩指令由键盘数字给定。设定值详见F2.13设置。

1: AI1

转矩指令由模拟输入 AI1 设定。AI1 输入的正负对应正反方向的转矩指令值。

用户在使用该功能时,需设置 AI1 输入对应的物理量为转矩指令,还要设置 AI1 设定对应曲线和 AI1 输入滤波时间。请参考功能码 F4. $13\sim$ F4. 17 说明。

2: AI2

转矩指令由模拟输入 AI2 设定。AI2 输入的正负对应正反方向的转矩指令值。

用户在使用该功能时,需设置 AI2 输入对应的物理量为转矩指令,还要设置 AI2 设定对应曲线和 AI2 输入滤波时间。请参考功能码 F4. $18\sim$ F4. 18

3: RS485 通讯给定

转矩指令由 RS485 通讯给定。

F2. 13	键盘数字设定转矩	-200.0%~	~200.0%*	电机额定电流	0.0%
本功能码设定值对应转矩指令选择为键盘数字给定时的转矩设定值。					
F2.14 转矩控制模式之速度限定通道选择1(正向) 0~2 0				0	

本功能码设置转矩控制时的正向速度限定通道。

0: 键盘数字给定 1:详见 F2.16 设定。

1: AT1

转矩控制时的正向速度限定通道由 AI1 给定。请参考功能码 F2.00~F2.05 说明。

2: AI2

转矩控制时的正向速度限定通道由 AI2 给定。请参考功能码 F2.06~F2.11 说明。

F2.15 转矩控制模式之速度限定通道选择 2 (反向) 0~2 0

本功能码设置转矩控制时的反向速度限定通道。

- 0: 键盘数字给定 2: 详见 F2.17 设定。
- 1: AI1

转矩控制时的反向速度限定通道由 AI1 给定。请参考功能码 F2. 00~F2. 05 说明。

2: AI2

转矩控制时的反向速度限定通道由 AI2 给定。请参考功能码 F2.06~F2.11 说明。

147030013131313	NAME OF THE PROPERTY OF THE PR			
F2. 16	键盘数字限定速度1	0.0	0~100.0%*【F0.10】最大频率	100.0%
键盘数字限定证	速度1的限定值相对于最大输出频率。	本具	功能码对应 F2.14=0 时正向速度降	艮定值的大小。
F2. 17	键盘数字限定速度 2	0.0	0~100.0%*【F0.10】最大频率	100.0%
键盘数字限定法	速度2的限定值相对于最大输出频率。	本工	功能码对应 F2.15=0 时反向速度降	艮定值的大小。
F2. 18	转矩上升时间		0.0S~10.0S	0.1
F2. 19	转矩下降时间		0.0S~10.0S	0.1

转矩上升/下降时间定义了转矩从0上升到最大值或从最大值下降到0时的时间

F2. 20	矢量模式之电动转矩限定	G型: 160.0% 0.0%~200.0%* 电机额定电流 P型: 120.0% 0.0%~200.0%*电机额定电流	机型设定
F2. 21	矢量模式之制动转矩限定	G型: 160.0% 0.0%~200.0%*电机额定电流 P型: 120.0% 0.0%~200.0%*电机额定电流	机型设定

以上功能码定义了矢量控制时,对转矩限定值的大小

	F2. 22	转矩检出动作选择	0~8	0
	F2. 23	转矩检出水平	G型: 150.0% 0.0%~200.0%*电机额定电流 P型: 110.0% 0.0%~200.0%*电机额定电流	机型设定
Ī	F2. 24	转矩检出时间	0.0~10.0S	0.0

当实际转矩在 F2. 24(转矩检出时间)内,持续大于 F2. 23(转矩检出水平)时,变频器将根据 F2. 22的设置做出相应动作。转矩检出水平设定值为 100%时对应电机的额定转矩。

0: 检出无效

不进行转矩检测。

- 1: 恒速中检出过转矩后继续运行
 - 只在恒速运行过程中检测是否过转矩,且检出过转矩后变频器继续运行。
- 2: 运行中检出过转矩后继续运行

在整个运行过程中检出过转矩后, 变频器继续运行。

3: 恒速中检出过转矩后切断输出

只在恒速运行过程中检测是否过转矩, 且检出过转矩后变频器停止输出, 电机自由滑行停车。

4: 运行中检出过转矩后切断输出

在整个运行过程中检出过转矩后,变频器停止输出,电机自由滑行停车。

5: 恒速中检出不足转矩后继续运行

只在恒速运行过程中检测是否不足转矩,且检出不足转矩后,变频器继续运行。

6: 运行中检出不足转矩后继续运行

在整个运行过程中检出不足转矩后, 变频器继续运行。

7: 恒速中检出不足转矩后切断输出

只在恒速运行过程中检测是否不足转矩,且检出不足转矩后变频器停止输出,电机自由滑行停车。

8: 运行中检出不足转矩后切断输出

在整个运行过程中检出不足转矩后, 变频器停止输出, 电机自由滑行停车。

F2. 25	静摩擦系数截止频率	0.00~300.00Hz	10.00
F2. 26	静摩擦系数设定	0.0~200.0	0.0
F2. 27	静摩擦系数维持时间	0.00~600.00s	0.0

由于电机起动转矩不够,增加 F2. 26 的设定值, 可以增加起动转矩量, 当速度超过 F2. 25 的设定值时, 增加的转矩量在 F2. 27 的设定时间内慢慢降至给定转矩。

F3 组 VF 控制参数

F3. 00	V/F 曲线设定	0~5	0

该组功能码定义了电机的 V/F 曲线设定方式,以满足不同的负载特性要求。根据 F3.00 的定义可以选择 5 种固定曲线和一种自定义曲线。

0:线性曲线

线性曲线适用于普通恒转矩型负载,输出电压与输出频率成线性关系。如图 F3-1 中的直线 0。

1: 降转矩曲线 1 (1.3 次幂)

降转矩曲线 1,输出电压与输出频率成 1.3 次幂关系。如图 F3-1 中的曲线 1。

2: 降转矩曲线 2 (1.5 次幂)

降转矩曲线 2,输出电压与输出频率成 1.5 次幂关系。如图 F3-1 中的曲线 2。

3: 降转矩曲线 3(1.7次幂)

降转矩曲线 3,输出电压与输出频率成 1.7 次幂关系。如图 F3-1 中的曲线 3。

4: 平方曲线

平方曲线适用于风机、水泵等平方转矩型负载,以达到最佳节能效果,输出电压与输出频率成平方曲线 关系。如图 F3-1 中的曲线 4。

图 F3-1 V/F 曲线示意图

第 50 页 共 112 页

5: 用户设定 V/F 曲线(由 F3.03~F3.08 确定)

当 F3.00 选择 5 时,用户可通过 F3.03~F3.08 自定义 V/F 曲线,采用增加(V1, F1)、(V2, F2)、(V3, F3) 以及原点和最大频率点折线方式完义 V/F 曲线,以适用干燥碎的负费特性,加图 F3-2 所示

(10) 10) (6)/(1)	5.55个我人类干点打线刀式足入 1/1	画线, 处矩川 1 州州的火铁市正。知	3110 2 ///1/10
F3. 01	转矩提升设置	0.0~30.0%电机额定电压	机型设定
F3, 02	转矩提升截止频率	0.0~由机额完功率	15, 00

为了补偿低频转矩特性,可对输出电压作一些提升补偿。本功能码设为 0.0%时为自动转矩提升,设为任意一个不为 0.0%的量则为手动转矩提升方式,F3.02 定义了手动转矩提升时的提升截止频率点 fz,如图 F3-3 所示。

Vb-手动转矩提升量,fz-转矩提升截止频率 图 F3-3 转矩提升示意图

△注意:

- 1: 普通 V/F 控制模式下,自动转矩提升模式无效。
- 2: 自动转矩提升仅在高级 V/F 控制模式下有效。

F3. 03	V/F 频率值 F1	0.00~频率值 F2	12.50
F3. 04	V/F 电压值 V1	0.0~电压值 V2	25.0%
F3. 05	V/F 频率值 F2	频率值 F1~频率值 F3	25. 00
F3. 06	V/F 电压值 V2	电压值 V1~电压值 V3	50.0%
F3. 07	V/F 频率值 F3	频率值 F2~电机额定频率	37. 50
F3. 08	V/F 电压值 V3	电压值 V2~100.0%*电机额定电压	75.0%

电压与频率示意图如下:

图 F3-4 用户设定 V/F 曲线示意图

F3. 09	V/F 控制转差频率补偿	0.0~200.0%*额定转差	0.0%
异步电机带载后会	会导致转速下降,采用转差补偿可值	吏电机转速接近其同步速度,从 ī	而使电机转速控制精度
更高。			
F3. 10	V/F 控制转差频率滤波系数	1~10	3

该参数用来调节转差频率补偿的响应速度,此值设置越大,响应速度越慢,电机转速越稳定。

F3. 11	V/F 控制转矩频率补偿滤波系数	0~10	机型设定

自由转矩提升时,该参数用来调节转矩补偿的响应速度,此值设置越大,响应速度越慢,电机转速越稳

0: VF 半分离模式, 电压开环输出

此种控制模式下,变频器按正常的 V/F 曲线起动,到达设定频率点后再调整电压至设定目标电压值。此模式下,电压不带反馈,目标电压值为开环设定。如图所示:

图 F3-5 电压控制模式 0

f0——设定频率, V0——设定频率对应的额定电压, U*/U1*——F3.13 给定通道的设定值。

如上图所示,在 a 点频率稳定后,开始调整电压,根据目标电压值及输入电压的大小,电压点可能向 b 点(增大)或 c 点(减小)移动,直到达到目标值。

1: VF 完全分离模式, 电压开环输出

此种模式下,变频器的输出频率和电压完全独立,频率按照定义的加减速时间加减,而电压则按照 F3.16、F3.17 定义的上升/下降时间调整至目标值。如图所示,此种控制模式主要应用于某些变频电源的设计。

F3. 13 电压给定通道	0~2	0
---------------	-----	---

0:数字给定

通过功能码 F3.14 来设定目标电压值。

1: AT1

通过模拟量 AI1 给定目标电压值,注意 AI1 对应物理量即 F4.28 应设为 2(电压指令)。

2: AI2

通过模拟量 AT2 给定目标电压值,注意 AT2 对应物理量即 F4.29 应设为 2(电压指令)。

是是於1%至1110 日本區,在2011年11日 11日 2011年11日 11日 11日 11日 11日 11日 11日 11日 11日 1				
F3. 14	数字设定输出电压值	0.0~200.0%*电机额定电压	100%	
F3. 15	半分离模式之 VF 曲线最大电压	0.0~100.0%*电机额定电压	80.0%	

本功能定义了设备起动时,按电压与频率曲线起动时的最大电压点,合理设置本功能可有效防止起动时的电压过冲,以保障设备的可靠工作。

-				
	F3, 16	电压上升时间	0, 1~3600, 0S	10.0

F3. 17	电压下降时间	0.1~3600.0S	10.0

本功能码定义了 V、F 完全分离的控制模式下即模式 1, 电压上升、下降的时间。

F4 组 输入端子

1047 - 11			
F4.00	输入端子 X1 功能 (FA. 21 为非 0 值时, 默认 58 号功能)	0~99	1
F4. 01	输入端子 X2 功能 (FA. 21 为非 0 值时, 默认 59 号功能)	0~99	2
F4. 02	输入端子 X3 功能 (FA. 21 为非 0 值时, 默认 60 号功能)	0~99	4
F4. 03	输入端子 X4 功 (FA. 21 为非 0 值时, 默认 61 号功能)	0~99	7
F4. 04	输入端子 X5 功能 (FA. 21 为非 0 值时, 默认 62 号功能)	0~99	8
F4. 05	输入端子 X6 功能 (FA. 21 为非 0 值时, 默认 63 号功能)	0~99	0
F4. 06	输入端子 X7 功能 (高速脉冲输入)	0~99	45
F4. 07	保留	0~99	0

0: 控制端闲置

1: 正转运行 (FWD)

端子与 COM 短接, 变频器正转运行, 仅当 FO. 02=1 时有效。

2: 反转运行(REV)

端子与 COM 短接, 变频器反转运行, 仅当 FO. 02=1 时有效

3: 三线式运转控制

参考 F4.11 的运转模式 2、3 (三线式控制模式 1、2) 的功能说明。

4: 正转点动控制

端子与 COM 短接, 变频器正转点动运行, 仅当 FO. 02=1 时有效。

5: 反转点动控制

端子与 COM 短接, 变频器反转点动运行, 仅当 FO. 02=1 时有效。

6: 自由停机控制

该功能与 F6.08 中定义的自由运行停车意义一样,但这里是用控制端子实现,方便远程控制用。

7: 外部复位信号输入(RST)

当变频器发生故障后,通过该端子,可以对故障复位。其作用与 (\$10P/RESET) 键功能一致。任何命令通道下该功能均有效。

- 8: 外部设备故障常开输入
- 9: 外部设备故障常闭输入

通过该端子可以输入外部设备的故障信号,便于变频器对外部设备进行故障监视。变频器在接到外部设备故障信号后,显示"E-19"即外部设备故障报警,故障信号可以采用常开和常闭两种输入方式。

10: 紧急停车功能(以最快速度刹车)

该功能用于紧急停车的场合,端子与 COM 短接,以紧急备用减速时间(F8.23)减速停车。

- 11: 保留
- 12: 频率递增指令

端子与 COM 短接, 频率递增, 仅当频率给定通道为数字给定 2 (端子 UP/DOWN 调节) 时有效。

13: 频率递减指令

端子与 COM 短接,频率递减,仅当频率给定通道为数字给定 2 (端子 UP/DOWN 调节) 时有效。

14: UP/DOWN 端子频率清零

通过端子对数字频率 2 (UP/DOWN 端子调节频率) 增量进行清零操作。

- 15: 多段谏选择 1
- 16: 多段速选择 2
- 17: 多段谏选择3
- 18: 多段谏选择 4

通过选择这些功能端子的 ON/OFF 组合,最多可选择 16 段速度。具体如下表所示:

多段速选择 SS4	多段速 选择 SS3	多段速 选择 SS2	多段速 选择 SS1	速度
OFF	0FF	OFF	OFF	0

OFF	OFF	0FF	ON	1
OFF	OFF	ON	0FF	2
0FF	OFF	ON	ON	3
0FF	ON	OFF	0FF	4
0FF	ON	OFF	ON	5
OFF	ON	ON	OFF	6
OFF	ON	ON	ON	7
ON	OFF	OFF	OFF	8
ON	OFF	OFF	ON	9
ON	OFF	ON	OFF	10
ON	OFF	ON	ON	11
ON	ON	OFF	OFF	12
ON	ON	0FF	ON	13
ON	ON	ON	OFF	14
ON	ON	ON	ON	15

图 F4-1 多段速运行示意图

- 19: 加减速时间选择 TT1
- 20: 加减速时间选择 TT2

过选择这些功能端子的 ON/OFF 组合,最多可选择 4 种加减速时间。具体如下表所示:

加减速时间选	加减速时间选	加速或减速时间选择
择端子 2	择端子1	
OFF	OFF	加速时间 1/减速时间 1
OFF	ON	加速时间 2/减速时间 2
ON	OFF	加速时间 3/减速时间 3

第 54 页 共 112 页

ON	ON	加速时间 4/减速时间 4

21: 运行命令通道选择 1

22: 运行命令通道选择 2

通过选择这些功能端子的 0N/0FF 组合,最多可选择 3 种运行命令通道,四种方式。具体如下表所示:

运行命令通道选	运行命令通道选	运行命令通道
择端子 2	择端子1	
OFF	OFF	由功能码 F0.02 确定
OFF	ON	0: 操作面板运行命令通道
ON	OFF	1: 端子运行命令通道
ON	ON	2: 通讯运行命令通道

23: 变频器加减速禁止指令

该端子有效时,变频器将不受外来信号的影响(停机命令除外),维持当前频率运行。

24: 变频器运行禁止指令

该端子有效时,运行中的变频器则自由停车,待机状态则禁止起动。主要用于需要安全联动的场合

25: 运行命令切换至面板

该端子有效时,运行命令从当前通道强制转化为面板控制,断开端子,重新回到之前的运行命令通道。

26: 运行命令切换至端子

该端子有效时,运行命令从当前通道强制转化为端子控制,断开端子,重新回到之前的运行命令 通道。

27: 运行命令切换至通讯

该端子有效时,运行命令从当前通道强制转化为通讯控制,断开端子,重新回到之前的运行命令通道。

28: 辅助频率清零

仅对数字辅助频率有效(F0.04=0,1、2),该功能端子有效时将辅助频率给定量清零,设定频率完全由主给定确定。

29: 频率源 A 与 K*B 切换

该端子有效,如果 F0.05 (频率组合算法) 选择 6,则频率给定通道强制切换为频率源 B,无效后频率给定通道恢复为 A。

30: 频率源 A 与 A + K* B 切换

该端子有效,如果 F0.05 (频率组合算法)选择 7,则频率给定通道强制切换为频率源(A+K*B),无效后频率给定通道恢复为 A。

31: 频率源 A 与 A - K* B 切换

该端子有效,如果F0.05(频率组合算法)选择8,则频率给定通道强制切换为频率源(A-K*B),无效后频率给定通道恢复为A。

32: 保留

33: PID 控制投入

当频率给定通道为 PID 给定,同时 PID 投入方式为手动投入时,该端子有效,则进入 PID 运行。详细功能码请参考 FA 组参数设置。

34: PID 控制暂停

用于对运行中的 PID 实现暂停控制,该端子有效则 PID 调节停止,变频器频率停在当前频率运行。该端子无效后继续 PID 调节,运行频率随调节量的改变而改变。

35: 摆频控制投入

摆频起动方式为手动投入时,该端子有效则摆频功能有效。无效则以摆频预置频率运行。请参考 FB. 00~FB. 10 组功能说明。

36: 摆频控制暂停

端子与 COM 短接, 变频器暂停摆频的运行方式, 变频器频率停在当前频率运行; 该端子无效后继续摆频运行。

37: 摆频状态复位

选择该功能时,无论是自动还是手动投入方式,闭合该端子,将清除变频器内部记忆的摆频状态信息。断开该端子后,摆频重新开始(有预置频率先运行预置频率)。请参考 FB. 00~FB. 10 组功能说明 38:: PLC 控制投入

当 PLC 投入方式选择通过定义的多功能端子手动投入时,该端子有效,且有运行命令到达时,PLC 正常运行;如果该端子无效,运行命令到达时,以零频运行。

39. PLC 暂信

用于对运行中的 PLC 过程实现暂停控制,该端子有效则变频器以零频运行,PLC 不计时;该端子无效后变频器以转速跟踪方式起动,继续 PLC 运行。请参考 FC. $00\sim$ FC. 53 组功能说明。

40: PLC 复位

在 PLC 运行模式的停机状态下,该功能端子有效时将清除 PLC 停机记忆的 PLC 运行阶段、运行时间、运行频率等信息,功能端子无效后,重新开始运行。请参见 FC 组功能码说明

41: 计数器清零信号输入

端子与 COM 短接,对内部计数器进行清零操作,与 42 号功能配合使用。

42: 计数器触发信号输入

内部计数器的计数脉冲输入口,接收到一个脉冲,计数器的计数值就增加1(如果计数方式为向下计数,则减1),计数脉冲最高频率为200Hz。详见功能码FB.19~FB.22说明。

43 定时触发输入

内部定时器的触发端口。详见功能码 FB. 23~FB. 25 说明

44: 定时清零输入

端子与 COM 短接, 对内部定时器进行清零操作, 与 43 号功能配合使用。

45: 外部脉冲频率输入(仅对 X6 有效)

主频率通道 A 选择脉冲给定时的脉冲输入口, 仅对 X6 有效, 配合 F0.03 设置。

46: 长度清零

该功能端子有效时,将清除 FB. 14(实际长度)数据,为重新计算长度作准备。参考 FB. 12 \sim FB. 18 组功能参数。

47: 长度计数输入(仅对 X6 有效)

仅对多功能输入端子 X6 有效,该功能端子接收脉冲信号作为长度给定,输入的信号脉冲个数与长度的 关系,参考 FB. $13 \sim FB.$ 18 组功能参数说明。

48: 速度与转矩控制切换

当速度与转矩控制选择条件有效(端子切换)时,该端子有效,则为转矩控制;该端子无效,则为速度控制,相关功能码设置请参考 $F2.10 \sim F2.11$ 说明,其中 F2.11 为速度与转矩切换的延迟时间。

49: 转矩控制禁止

禁止变频器讲行转矩控制方式

50~55: 保留

56~57: 保留

58: 启动/停止(手动)

该端子有效时,频率由 AI1 给定,不进行 PID 控制,受联锁信号控制,联锁信号先投入的先起动,一起投入的起小号。

59: 运行允许(X2)

该端子用来控制变频器的起停,一般接外部缺水或高压信号控制。

60: 联锁 1 (X3)

该端子接入后,对应继电器 R2 输出。

61: 联锁 2 (X4)

该端子接入后,对应继电器 R3 输出。

62: 联锁 3 (X5)

该端子接入后,对应继电器 R4 输出。

63: PFC 启/停(X6)

该端子有效时,进行 PID 控制,受联锁信号控制,联锁信号先投入的先起动,一起投入的起小号。

64: A 频率切 B 上并运行

65: 第1组 PID 切换到第2组 PID

66~99: 保留

F4.08 开关量滤波次数 1~10 5

用于设置输入端子的灵敏度。若数字输入端子易受到干扰而引起误动作,可将此参数增大,则抗干扰能力增强,但设置过大将导致输入端子的灵敏度降低。

F4. 09	上电时端子功能检测选择	0~1	0

0: 上电时端子运行命令无效

在上电过程中,即使变频器检测到运行命令端子有效(闭合),变频器也不起动,只有端子断开后再次闭合时,变频器才可以起动。

1: 上电时端子运行命令有效

在上电过程中, 变频器检测到端子运行命令端子有效(闭合), 变频器即可起动。

,	2 422 1111 1 2 4 1 4 1 4 1 4 1 4 1 4 1 4		
F4. 10	输入端子有效逻辑设定(X1~X7)	0∼7FH	00

- 0:表示正逻辑,即 Xi 端子与公共端连通有效,断开无效
- 1: 表示反逻辑,即 Xi 端子与公共端连通无效,断开有效

F4. 11	FWD/REV 端子控制模式	0~3	0
--------	----------------	-----	---

该功能码定义了通过外部端子控制变频器运行的四种不同方式。

0: 二线式控制模式1

Xm: 正转命令(FWD), Xn: 反转命令(REV), Xm、Xn表示 X1-X7 中分别定义为 FWD、REV 功能的任意两个端子。此种控制方式下, K1、K2 均可独立控制变频器的运行及方向

K2₽	K1₽	运行指令。
0₽	0₽	停止↩
0₽	1₽	正转↩
1₽	0€	停止₽
1₽	1₽	反转₽

图 F4-2 二线式控制模式 1 示意图

1: 二线式控制模式 2

Xm: 正转命令(FWD), Xn: 反转命令(REV), Xm、Xn表示 X1-X7 中分别定义为 FWD、REV 功能的任意两个端子。此种控制方式下, K1 为运行、停止开关, K2 为方向切换开关。

K2¢	K1₽	运行指令。	+
0₽	043	停止₽	+
0↔	1₽	正转↩	*
1₽	043	停止↩	*
1€	10	反转₽	+

图 F4-3 二线式控制模式 2 示意图

2: 三线式控制模式1

Xm: 正转命令(FWD), Xn: 反转命令(REV), Xx: 停机命令, Xm、Xn、Xx 表示 X1-X7 中分别定义为 FWD、REV、三线式运转控制功能的任意 3 个端子。K3 未接入前,接入的 K1、K2 是无效的。当 K3 接入后,触发 K1, 变频器正转;触发 K2, 变频器反转;断开 K3, 变频器停机。

图 F4-4 三线式控制模式 1 示意图

3: 三线式控制模式 2

Xm: 运行命令, Xn: 运行方向选择, Xx: 停机命令, Xm、Xx 表示 X1-X8 中分别定义为 FWD、REV、三线式运转控制功能的任意 3 个端子。K3 未接入前,接入的 K1、K2 是无效的。当 K3 接入时,触发 K1,变频器正转;单独触发 K2,无效;在 K1 触发运行后,再触发 K2,变频器运行方向切换;断开 K3,变频器停机.

K2₽	K1₽	运行指令。	4
0₽	0 € ³	停止₽	
0⇔	10	正转₽	4
1↔	00	停止	4
1₽	1₽	反转	4

图 F4-5 三线式控制模式 2 示意图

⚠注意:

在三线式控制模式 2 正转运行时,定义为 REV 的端子长闭才能稳定反转,断开又会回到正转。

F4. 12	UP/DOWN 端子频率修改速率	0.01∼50.00Hz/S	1.00

该功能码是设置 UP/DOWN 端子设定频率时的频率修改速率,即 UP/DOWN 端子与 COM 端短接一秒钟,频率改变量的大小; 当 FO. 18=1 (高频模式)时,该功能码的取值上限为 500. 0Hz/S。

F4. 13	AI1 输入下限	0.00V/0.00mA~10.00V/20.00mA	0.00
F4. 14	AI1 下限对应物理量设定	-200.0%~200.0%	0.0%
F4. 15	AI1 输入上限	0.00V/0.00mA~10.00V/20.00mA	10.00
F4. 16	AI1 上限对应物理量设定	-200.0%~200.0%	100.0%
F4. 17	AI1 输入滤波时间	0.00S~10.00S	0.05
F4. 18	AI2 输入下限	0.00V~10.00V	0.00
F4. 19	AI2 下限对应物理量设定	-200.0%~200.0%	0.0%
F4. 20	AI2 输入上限	0.00V~10.00V	10.00
F4. 21	AI2 上限对应物理量设定	-200.0%~200.0%	100.0%
F4. 22	AI2 输入滤波时间	0.00S~10.00S	0.05
F4. 23	外部脉冲输入下限	0.00∼50.00kHz	0.00
F4. 24	外部脉冲下限对应物理量设定	-200.0%~200.0%	0.0%
F4. 25	外部脉冲输入上限	0.00∼50.00kHz	50.00
F4. 26	外部脉冲上限对应物理量设定	-200.0%~200.0%	100.0%
F4. 27	外部脉冲输入滤波时间	0.00S~10.00S	0.05
F4. 28	AI1 输入对应物理量	0~2	0

- 0: 速度指令(输出频率,-100.0%~100.0%)
- 1: 转矩指令(输出转矩, -200.0%~200.0%)
- 2: 电压指令 (输出电压, 0.0%~100.0%*电机额定电压)

F4. 29	AI2 输入对应物理量	0~2	0

- 0: 速度指令(输出频率,-100.0%~100.0%)
- 1: 转矩指令(输出转矩, -200.0%~200.0%)
- 2: 电压指令 (输出电压, 0.0%~100.0%*电机额定电压)

F4. 30	外部脉冲输入对应物理量	0~1	0

- 0: 速度指令(输出频率,-100.0%~100.0%)

1: 转矩指令 (输出转矩, -200.0%~200.0%)					
F4. 31	模拟量输入防抖偏差极限	0.00V~10.00V	0.00		
当模拟输入信号在给定值附近出现频繁波动时,可以通过设置 F4.31 来抑制此波动导致的频率波动。					
F4. 32	零频运行阀值	零频回差~50.00Hz	0.00		
当 FO. 18=1 (青	当 FO. 18=1 (高频模式) 时,该功能码的取值上限为 500. 0Hz。				
F4. 33	零频回差	0.00~零频运行阀值	0.00		

这两个功能码用于设定零频回差控制功能。以模拟 AI1 电流给定通道为例, 见图 F4-6。 起动过程:

运行命令发出后,只有当模拟 AI1 电流输入到达或超过某值 Ib, 其所对应的设定频率到达 fb 时,电机 才开始起动,并按加速时间加速到模拟 AI1 电流输入对应的频率。 停机过程:

运行过程中当 AI1 的电流值减小到 Ib 时,变频器并不会立即停机,只有 AI1 电流继续减小到 Ia,对应 的设定频率为 fa 时,变频器才停止输出。这里 fb 定义成零频运行阀值,由 F4. 32 定义,fb-fa 的值定义为 零频回差,由功能码 F4.33 定义。

利用此功能可以完成休眠功能,实现节能运行,并通过回差的宽度避免变频器在阀值频率频繁起动。

fb: 零频运行阀值 fa: fb - 零频回差 图 F4-6 零频功能示意图

F4. 34	AI 多点曲线选择	0000~0011	0000

LED 个位: AI1 多点曲线选择

0: 禁止, 1: 有效

LED 十位: AI2 多点曲线选择

0: 禁止, 1: 有效 LED 百位: 保留 LED 壬位: 保留

LED 下位: 保留			
F4. 35	AI1 曲线最小输入	0.00∼【F4.37】	0.00
F4. 36	AI1 曲线最小输入对应设定	-200.0%~200.0% 注:范围与 F2.28 关联	0.0%
F4. 37	AI1 曲线拐点 1 输入	【F4. 35】 ∼ 【F4. 39】	3.00
F4. 38	AI1 曲线拐点 1 输入对应设定	-200.0%~200.0% 注:范围与 F2.28 关联	30.0%
F4. 39	AI1 曲线拐点 2 输入	【F4. 37】 ∼ 【F4. 41】	6.00
F4. 40	AI1 曲线拐点 2 输入对应设定	-200.0%~200.0% 注:范围与 F2.28 关联	60.0%
F4. 41	AI1 曲线最大输入	【F4. 39 】 ∼10. 00	10.00
F4. 42	AI1 曲线最大输入对应设定	-200.0%~200.0% 注:范围与 F2.28 关联	100.0%
F4. 43	AI2 曲线最小输入	0.00∼【F4.45】	0.00
F4. 44	AI2 曲线最小输入对应设定	-200.0%~200.0% 注:范围与 F4.29 关联	0.0%
F4. 45	AI2 曲线拐点 1 输入	【F4. 43】 ∼ 【F4. 47】	3.00
F4. 46	AI2 曲线拐点 1 输入对应设定	-200.0%~200.0% 注:范围与 F4.29 关联	30.0%
F4. 47	AI2 曲线拐点 2 输入	【F4. 45】 ∼ 【F4. 49】	6.00
F4. 48	AI2 曲线拐点 2 输入对应设定	-200.0%~200.0% 注:范围与 F4.29 关联	60.0%

第 60 页 共 112 页

F4. 49	AI2 曲线最大输入	【F4. 47】 ∼10. 00	10.00
F4. 50	AI2 曲线最大输入对应设定	-200.0%~200.0% 注:范围与 F4.29 关联	100.0%
F4. 51	保留	_	0

AI1、AI2 多点曲线通过 F4.34 选择, 具体设置对应关系见图 F4-7 所示。

图 F4-7 多点曲线示意图

F4. 52	AI1 输入电压保护上限	0.00V/0.00mA~10.00V/20.00mA	6.80
F4. 53	AI1 输入电压保护下限	0.00V/0.00mA~10.00V/20.00mA	3.10

当模拟量输入 AI1 的值大于 F4.52, 或 AI1 输入小于 F4.53 时,变频器 Y 端子或继电器 R 输出 "AI1 输入超限" ON 信号,用于指示 AI1 的输入电压是否在设定范围内。

F5 组 输出端子

F5. 00	开路集电极输出端子 Y1 设定	0~99	0
F5. 01	开路集电极输出端子 Y2 设定	0~99	0
F5. 02	可编程继电器 R1 输出	0~99	3
F5. 03	可编程继电器 R2 输出	0~99	0

0: 无输出

1: 变频器正转运行

当变频器处于正转运行状态时,输出的指示信号。

2: 变频器反转运行

当变频器处于反转运行状态时,输出的指示信号。

3: 故障输出

当变频器出现故障时,输出的指示信号。

4: 频率/速度水平检测信号 (FDT1)

参考 F8, 26~F8, 27 参数功能说明。

5: 频率/速度水平检测信号 (FDT2)

参考 F8. 29~F8. 31 参数功能说明。

6: 频率/速度到达信号 (FAR)

参考 F8.25 参数功能说明。

7: 变频器零转速运行中指示

变频器的输出频率为 0.00Hz, 但此时仍处于运行状态时所输出的指示信号。

8:输出频率到达上限

当变频器输出频率到达上限频率时,输出的指示信号。

9:输出频率到达下限

当变频器输出频率到达下限频率时,输出的指示信号。

10: 运行时设定频率下限值到达

变频器运行时,如果设定频率≤下限频率,输出指示信号。

11: 变频器过载预报警信号

当变频器的输出电流超过过载预报警水平(F9.12)时,经过报警延时时间(F9.13)后输出的指示信号。常用于过载预报警。

12: 计数器检测信号输出

当计数检测值到达时,输出指示信号,直到计数复位值到达时才清除。请参考功能码 FB. 22 说明。

13: 计数器复位信号输出

当计数复位值到达时,输出指示信号,请参考功能码 FB. 21 说明。

14: 变频器运行准备就绪1

当变频器上电准备就绪时,即变频器无故障、母线电压正常、变频器禁止运行端子无效、可以直接接受运行指令起动,则端子输出指示信号。

15: 可编程多段速运行一个周期完成

可编程多段速(PLC)一个周期运行完成后,输出一个有效的脉冲信号,信号宽度为500mS。

16: 可编程多段速阶段运行完成

可编程多段速(PLC)当前阶段运行完成后,输出一个有效的脉冲信号,信号宽度为500mS。

17: 摆频上下限限制

选择摆频功能后若以中心频率计算所得摆频的频率波动范围超过上限频率 F0.11 或低于下限频率 F0.12 时将输出指示信号。如下图所示。

图 F5-1 摆频幅度限制示意图

18: 限流动作中

当变频器处于限流动作中时输出的指示信号。限流保护设置请参考功能码 F9.06~F9.08 说明。

19: 过压失速动作中

当变频器处于过压失速动作中时输出的指示信号。过压失速保护设置请参考功能码 F9.04 说明。

20: 欠压封锁停机

当直流母线电压低于欠压限制水平时,输出指示信号。

⚠注意:

停机时母线欠压,数码管显示"PoFF";运行时母线欠压,F9.02=0,则数码管显示"PoFF",若F9.02=1,则数码管显示"E-07"故障,同时警告指示灯亮。

21 休眠中

当变频器处于休眠状态时,输出的指示信号。

22: 变频器告警信号

当变频器出现 PID 断线、RS485 通讯失败、面板通讯失败、EEPROM 读写失败、编码器断线等告警时,输出指示信号。

23: AI1>AI2

当模拟量输入 AI1>AI2 时,输出指示信号。

24: 长度到达输出

当实际长度(FB. 14)≥设定长度(FB. 13)时,输出指示信号。长度计数端子 X6设置为 47号功能。

25: 定时时间到达

当实际定时时间≥FB, 25(设定定时时间)时,输出指示信号。

26: 能耗制动动作

当变频器能耗制动动作时,输出指示信号。能耗制动功能设置请参考功能码 FE. 00~FE. 03 说明。

27: 直流制动动作

当变频器直流制动动作时,输出指示信号。直流制动设置请参考功能码 F6.00~F6.12 说明。

28: 磁通制动动作中

当变频器磁通制动动作时,输出指示信号。磁通制动设置请参考功能码 FE. 21 说明。

29: 转矩限定中

当控制方式转矩控制时,输出指示信号。转矩控制详见 F2.10~F2.23 组参数说明。

30: 过转矩指示

变频器根据 F2. 22~F2. 24 设置,输出相应指示信号。

- 31: 辅助电机 1
- 32: 辅助电机 2

辅助电机 1 与 2 端子功能配合过程 PID 功能模块可实现简易一拖三恒压供水功能。

33: 累计运行时间到达

当变频器运行限制时间(FE.11)到达时,输出指示信号。

34~49: 多段速或简易 PLC 运行段数指示

输出端子功能的 $34\sim49$ 项分别对应多段速或简易 PLC 的 $0\sim15$ 段,当输出端子设置的相应段数到达时,输出指示信号。

50: 变频器运行指示

当变频器处于正反转运行状态时,输出的指示信号。

51: 温度到达指示

当实际温度(d-33~d-34)高于温度检测阀值(F9.14)时,输出指示信号。

52: 变频器停机或零速运行中指示

53~54: 保留

55: 通讯设定

请参考通讯协议。

56: 变频器运行准备就绪 2

与上述 14 号(变频器运行准备就绪 1) 功能相同,就多了变频器运行时,输出指示信号。

57: AII 输入超限

当模拟量输入 AI1 的值大于 F4.52 (AI1 输入电压保护上限) 或小于 F4.53 (AI1 输入电压保护下限) 时,输出指示信号。

58~99: 保留

F5. 04	A01 多功能模拟量输出端子功能选择	0-14	0
F5. 05	A02 多功能模拟量输出端子功能选择	0-14	4
F5. 06	DO 多功能脉冲量输出端子功能选择	0-14	11

以上功能码确定了多功能模拟量输出端子 AO 及脉冲输出端子 DO, 与各个物理量的对应关系, 具体如下表所示:

项目	AO	项目范围
输出频率(转差	OV/OmA~AO 上限值	0~最大输出频率
补偿前)	2V/4mA~AO 上限值	0~最大输出频率
输出频率(转差	OV/OmA~AO 上限值	0~最大输出频率
补偿后)	2V/4mA~AO 上限值	0~最大输出频率

设定频率	OV/OmA~AO 上限值	0~最大输出频率
	2V/4mA~A0 上限值	0~最大输出频率
电机转速	OV/OmA~AO 上限值	0~电机同步转速
电机积速	2V/4mA~AO 上限值	0~电机同步转速
	OV/OmA~AO 上限值	0~2倍额定电流
输出电流	2V/4mA~AO 上限值	0~2倍额定电流
松山中田	OV/OmA~AO 上限值	0~1.2 倍额定输出电 压
输出电压	2V/4mA~AO 上限值	0~1.2 倍额定输出电 压
DA A II	OV/OmA~AO 上限值	0~800V
母线电压	2V/4mA~AO 上限值	0~800V
PID 给定量	OV/OmA~AO 上限值	0V/0mA~10V/20mA
110 47亿至	2V/4mA~AO 上限值	0V/0mA~10V/20mA
PID 反馈量	OV/OmA~AO 上限值	0V/0mA~10V/20mA
FID及映里	2V/4mA~AO 上限值	0V/0mA~10V/20mA
AT1	OV/OmA~AO 上限值	0V/0mA~10V/20mA
All	2V/4mA~AO 上限值	0V/0mA~10V/20mA
AT2	OV/OmA~AO 上限值	0V/0mA~10V/20mA
A1Z	2V/4mA~AO 上限值	0V/0mA~10V/20mA
to) 时心中压力	OV/OmA~AO 上限值	0∼50KHZ
输入脉冲频率	2V/4mA~AO 上限值	0∼50KHZ
转矩电流	OV/OmA~AO 上限值	0~2倍额定电流
	2V/4mA~AO 上限值	0~2 倍额定电流
磁通电流	OV/OmA~AO 上限值	0~2 倍额定电流
10公世 七/儿	2V/4mA~AO 上限值	0~2倍额定电流
通讯设定	OV/OmA~AO 上限值	0%~100%*A0 上限值
. 週讯 改定	2V/4mA~A0 上限值	0%~100%*A0 上限值

F5. 07	A01 输出下限对应物理量	-200.0%~200.0%	0.0%
F5. 08	A01 输出下限	0.00~10.00V	0.00
F5. 09	A01 输出上限对应物理量	-200.0%~200.0%	100.0%
F5. 10	A01 输出上限	0.00~10.00V	10.00
F5. 11	AO2 输出下限对应物理量	-200.0%~200.0%	0.0%
F5. 12	AO2 输出下限	0.00~10.00V	0.00
F5. 13	AO2 输出上限对应物理量	-200.0%~200.0%	100.0%
F5. 14	AO2 输出上限	0.00~10.00V	10.00
F5. 15	DO 输出下限对应物理量(保留)	-200.0%~200.0%	0.0%
F5. 16	DO 输出下限 (保留)	0.00∼50.00kHz	0.00
F5. 17	DO 输出上限对应物理量(保留)	-200.0%~200.0%	100.0%
F5. 18	DO 输出上限(保留)	0.00∼50.00kHz	50.00
F5. 19	输出端子有效逻辑设定(Y1~Y2)	0∼3H	0

Bit0:Y1 端子有效逻辑定义

Bit1:Y2 端子有效逻辑定义

- 0: 表示正逻辑,即 Yi 端子与公共端连通有效,断开无效
- 1: 表示反逻辑,即 Yi 端子与公共端连通无效,断开有效

当 F5. 19=0 时, Y1、Y2 端子与公共端连通有效, 断开无效

当 F5. 19=1 时, Y1 端子与公共端连通无效,断开有效;Y2 端子与公共端连通无效,断开有效.

当 F5. 19=2 时, Y1 端子与公共端连通有效,断开无效;Y2 端子与公共端连通无效,断开有效.

当 F5. 19=3 时, Y1、Y2 端子与公共端连通无效, 断开有效.

F5. 20	Y1 输出延迟时间	0.0∼100.0S	0.0
F5. 21	Y2 输出延迟时间	0.0∼100.0S	0.0
F5. 22	R1 输出延迟时间	0.0∼100.0S	0.0
F5. 23	R2 输出延迟时间	0.0∼100.0S	0.0
F5. 24	Y1 断开延迟时间	0.0∼100.0s	0.0
F5. 25	Y2 断开延迟时间	0.0∼100.0s	0.0
F5. 26	R1 断开延迟时间	0.0∼100.0s	0.0
F5. 27	R2 断开延迟时间	0.0∼100.0s	0.0

该功能码定义了开关量输出端子和继电器状态发生改变到输出产生变化的延时。

F6 组 起停控制

F6. 00	起动方式	0~2	0
--------	------	-----	---

0: 起动频率起动

按照设定的起动频率(F6.01)和起动频率保持时间(F6.02)起动。

1: 直流制动+起动频率起动

先直流制动(参见 F6.03、F6.04), 然后再按照方式0起动。

2: 转速跟踪起动

停电后再上电时,若满足起动条件则变频器等待 FE. 15 定义的时间后,变频器将自动以转速追踪方式起动运行。

F6. 01	起动频率	0.00∼50.00Hz	1.00
F6. 02	起动频率保持时间	0.0∼10.0s	0.0

起动频率是指变频器起动时的初始频率,如下图所示的 fs,对于某些起动力矩比较大的系统,设置合理的起动频率能有效的克服起动困难的问题。起动频率保持时间是指变频器在起动过程中,在起动频率下保持运行的时间,如下图所示的 t1。启动频率示意图如下:

图 F6-1 启动频率示意图

□□提示: 启动频率不受下限频率的限制。点动频率不受下限频率限制但受起动频率限制。

2、当 F0.18=1 (高频模式) 时, 起动频率的取值上限为 500.0Hz。

l	F6. 03	起动直流制动电流	0.0~150.0%*电机额定电流	0.0%
	F6. 04	起动直流制动时间	0.0∼100.0s	0.0

起动直流制动电流的设定是相对于变频器额定输出电流的百分比。 起动直流制动时间为 0.0s 时,无直流制动过程。具体如下图所示。

图 F6-2 起动直流制动示意图

F6. 05	加减速方式	0~1	0
--------	-------	-----	---

0: 直线加减速

输出频率与时间关系按照恒定斜率递增或递减,如下图所示。

1: S 曲线加减速

输出频率与时间关系按照 S 形曲线递增或递减,在加速开始时与速度到达时,及减速开始时与速度到达时,使速度设定值为 S 曲线状态。这样可以使加速及减速动作平滑,减小了对负载的冲击。S 曲线加减速方式,适合于搬运传递负载的起停,如电梯、传送带等。如下图所示: t1 为加速时间,t2 为减速时间,ts 为 S 曲线起始段时间,te 为 S 曲线结束段时间,F6.06=ts/t1,F6.07=te/t2。

图 F6-3 直线与 S 曲线加减速示意图

F6. 06	S曲线起始段时间比例	10.0~50.0%	20.0%		
F6. 07	S曲线结束段时间比例	10.0~50.0%	20.0%		
见 F6.05 中 S 曲线加减速项说明。					
F6. 08	停机方式	0~1	0		

0: 减速停机

变频器接到停机命令后,按照减速时间逐渐减少输出频率,频率降为零后停机。如果停机直流制动功能有效,则到达停机直流制动起始频率(根据 F6.09 设置,可能还要等待一个停机直流制动等待时间)后,将会执行直流制动过程,然后再停机。

1: 自由停机: 变频器接到停机命令后, 立即终止输出, 负载按照机械惯性自由停止。

F6. 09	停机直流制动起始频率	0.00~【F0.11】上限频率	0.00
F6. 10	停机直流制动等待时间	0.0∼100.0s	0.0
F6. 11	停机直流制动电流	0.0~150.0%*电机额定电流	0.0%

F6. 12	停机直流制动时间	0.1~100.0s (为0时不制动)	0.0

停机直流制动电流的设定值是相对于变频器额定电流的百分比。停机制动时间为 0.0s 时,无直流制动过程。如下图所示。

图 F6-4 停机直流制动示意图

F7 组 面板功能设置及参数管理

F7. 00	MF. K 键盘多功能选择	0~4	0

0: JOG (点动控制)

MF. K 键为点动控制,默认方向由 FO. 21 确定。

1: 正反转切换

在运行状态下, MF. K 键相当于方向切换键, 停机状态下按此键无效。此切换仅对面板运行命令通道有效。

- 2: 清除面板(▲/▼) 键设定频率
- 3: 本地操作与远程操作切换(保留)
- 4: 反转

此时 MF. K 键可直接作为反转键来控制电机反转运行。

F7. 01	STOP/RST 键功能选择	0~3	3

0: 只对面板控制有效

仅当 F0.02=0 时,该键才能控制变频器停机。

1: 对面板和端子控制同时有效

仅当 FO. 02=0 或 1 时,该键才能控制变频器停机,通讯控制运行模式下,此键无效。

2: 对面板和通讯控制同时有效

仅当 FO. 02=0 或 2 时,该键才能控制变频器停机,端子控制运行模式下,此键无效。

3: 对所有控制模式都有效

在任何运行命令通道模式下, 该按键均能控制变频器停机。

□ 提示: 在任何运行命令通道模式下,复位功能均有效。

F7. 02	运行状态监控参数选择1	0~57	0
F7. 03	运行状态监控参数选择 2	0~57	3

通过改变以上功能码的设定值,可改变主监控界面的监控项目,例如:设置 F7.02=5,即选择输出电流d-05,则运行时,主监控界面的默认显示项目即为当前输出电流值。

774-14 4:			
F7. 04	停机状态监控参数选择1	0~57	1
F7. 05	停机状态监控参数选择 2	0~57	12

通过改变以上项功能码的设定值,可改变主监控界面的监控项目,例如:设置 F7.04=6,即选择输出电压 d-06,则停机时,主监控界面的默认显示项目即为当前输出电压值。

F7.06 闭环显示系数 0.01~100.00 1.00

本功能码用于闭环控制时校正实际物理量(压力、流量等)与给定或反馈量(电压、电流)之间的显示 22 对闭环调节沿有影响

庆左,村内卢明 巨汉有影响。				
F7. 07	负载转速显示系数	0.01~100.00	1.00	
本功能码用于校正转速刻度显示误差,对实际转速没有影响。				
F7. 08	线速度系数	0.01~100.00	1.00	
本功能码用于校正线速度刻度显示误差,对实际转速没有影响。				
F7. 09	STOP 键+RUN 键急停功能	0~1	1	

0: 无效

1: 自由停车

同时按下 RUN 键 及 STOP 键, 变频器将自由停机。

F7. 10	编码器调节速率	编码器调节速率	70
F7. 11	参数显示模式选择	00~1011	0000

LED 个位: 功能参数显示模式选择

- 0: 显示全部功能参数
- 1: 仅显示与出厂值不同的参数
- 2: 仅显示最后一次上电后修改的参数 (保留)
- LED 十位: 监控参数显示模式选择
- 0: 仅显示主监控参数
- 1: 主辅交替显示 (间隔时间 1S)
- LED 百位: 保留
- LED 千位: 面板▲/▼键调节使能
- 0: 有效,1: 无效

F7.12 参数初始化 0~3 0

0: 无操作

变频器处于正常的参数读、写状态。功能码设定值能否更改,与用户密码的设置状态和变频器当前所处的工作状态有关。

1: 除电机参数外的所有用户参数恢复出厂设定

电机参数不恢复,其他用户参数按机型恢复出厂设定值。

2: 所有用户参数恢复出厂设定

所有用户参数按机型恢复出厂设定值。

3: 清除故障记录

对故障记录(D-48~D-57)的内容作清零操作。

操作完成后,本功能码自动清0。

14th 26/4/17 - 1-/2 18th 2 11-/2 11			
F7. 13	参数写保护	0~2	0

- 0: 允许修改所有参数(运行中有些参数不能修改)
- 1: 仅允许修改频率设定参数 F0.06、F0.07 和本功能码
- 2: 除本功能码外所有参数禁止修改

F7. 14	参数拷贝功能	0~3	0

0: 无操作

1:参数上传至面板

设置为 1,并确认后,面板显示 CP-1,变频器将控制板中的所有功能码参数上传到操作面板的 EEPROM 中存储。

2: 所有功能码参数下载至到变频器

设置为 2, 并确认后, 面板显示 CP-2, 变频器将操作面板中的除厂家参数外所有功能码参数全部下载至主控制板内存, 并将 EEPROM 予以刷新。

3: 除电机参数外的所有功能码参数下载到变频器

设置为 3, 并确认后, 面板显示 CP-3, 变频器将操作面板中的所有功能码参数下载至主控制板内存(电机参数组和厂家参数组除外), 并将 EEPROM 予以刷新。

F7. 15	LCD 语言选择(LCD 面板)	0~2	0
--------	------------------	-----	---

0: 中文

1: 英文

2: 保留

F8 组 辅助功能

F8.00	加速时间 2	0.1~3600.0	机型设定
F8. 01	减速时间 2	0.1~3600.0	机型设定
F8. 02	加速时间 3	0.1~3600.0	机型设定
F8. 03	减速时间 3	0.1~3600.0	机型设定
F8. 04	加速时间 4	0.1~3600.0	机型设定
F8. 05	减速时间 4	0.1~3600.0	机型设定

可以定义四种加减速时间,并可通过控制端子的不同组合来选择变频器运行过程中的加减速时间 $1\sim4$,请参见 $F4.00\sim F4.06$ 中加减速时间端子功能的定义。

□ 提示: 加减速时间 1 在 F0. 14 和 F0. 15 中定义。

F8. 06	加减速时间单位选择	0~2	0

0: 秒 ,1: 分 ,2: 0.1 秒

本功能码定义了加减速时间的单位。

F8. 07	点动正转运行频率设定	0.00~【F0.11】上限频率	5.00
F8. 08	点动反转运行频率设定	0.00~【F0.11】上限频率	5.00
F8. 09	点动加速时间设定	0.1~3600.0s	机型设定
F8. 10	点动减速时间设定	0.1~3600.0s	机型设定
F8. 11	点动间隔时间设定	0.1~100.0s	0.1

 $F8.07 \sim F8.11$ 定义点动运行时的相关参数。如图 F8-1 所示,t1、t3 为实际运行的点动加速和减速时间;t2 为点动时间;t4 为点动间隔时间(F8.11); f1 为正转点动运行频率(F1.20); f2 为反转点动运行频率(F8.08)。实际运行的点动加速时间 t1 按照下式确定;

t1=F8.07*F8.09/F0.10

同理,实际运行的点动减速时间 t3 也可如此确定:

t3=F8, 08*F8, 10/F0, 10

其中 F0.10 为最大输出频率。

图 F8-1 点动运行图

F8. 12	跳跃频率 1	0.00~上限频率	0.00
F8. 13	跳跃频率 1 范围	0.00~上限频率	0.00
F8. 14	跳跃频率 2	0.00~上限频率	0.00
F8. 15	跳跃频率 2 范围	0.00~上限频率	0.00
F8. 16	跳跃频率 3	0.00~上限频率	0.00
F8. 17	跳跃频率 3 范围	0.00~上限频率	0.00

上功能码是为了让变频器的输出频率避开机械负载的共振频率点而设置的功能。变频器的设定频率按照 下图的方式可以在某些频率点附近作跳跃式给定,其具体涵义是变频器的频率始终不会在跳跃频率范围内稳 定运行,但加减速过程中会经过这个范围。

图 F8-2 跳跃频率示意图

F8. 18	设定频率低于下限频率时动作	0~2	0

0: 以下限频率运行

当设定频率低于下限频率设定值(F0.12)时,变频器以下限频率运行。

1: 经延迟时间后零频运行

当设定频率低于下限频率设定值(F0.12)时, 经延迟时间(F8.19)后,变频器以零频运行。

2: 经延迟时间后停机

当设定频率低于下限频率设定值(F0.12)时, 经延迟时间(F8.19)后,变频器停机。

	ヨ以足刎竿以	了下欧洲华以足值(FU.12)时, 红些心时间	引(10.13) 归,又则命序机。		
F	8. 19	频率低于下限频率时停机延迟时间	0.0∼3600.0s	10.0	
	详见 F8. 18 参数说明.				
F	8. 20	零频制动电流	0.0~150.0%	0.0	
F	8. 21	正反转死区时间	0.0∼100.0s	0.0	

变频器由正向运转过渡到反向运转,或者由反向运转过渡到正向运转的等待时间,如下图所示的 t1。其切换过渡等待频率还与 F8.22 的设置有关。

图 F8-3 正反转死区时间示意图

F8. 22	减速时间 4	0~1	0
0: 过零频切换			
1, 过起动频率切换			

0.1~3600.0S

1.0

F8. 24	停机直流制动电流维持时间	0.0~100.0S	0.0
F8. 25	频率到达 FAR 检测宽度	0.0~100.0%*【F0.10】最大频率	100.0%

该功能是对功能码 F5.00~F5.03 的第 6 号功能的补充说明, 当变频器的输出频率在设定频率的正负检出宽度内, 端子输出有效信号(集电极开路信号, 电阻上拉后为低电平)。如下图所示。

图 F8-4 频率到达示意图

F8. 26	FDT1 检出方式	0~1	0

0: 速度设定值

1: 速度检测值

F8. 27	FDT1 水平设定	0.00Hz~【F0.11】上限频率	50.00
F8. 28	FDT1 滞后值	0.0∼100.0% *【 F8.27】	2.0%
F8. 29	FDT2 检出方式	0~1	0

0: 速度设定值

1: 速度检测值

F8. 30	FDT2 水平设定	0.00Hz~【F0.11】上限频率	25. 00
F8. 31	FDT2 滞后值	0.0~100.0%* [F8.30]	4.0%

以上功能码(F8.26~F8.31)是对功能码 F5.00~F5.03的第4,5号功能的补充说明,当变频器输出频率上升超过高于 FDT 电平设定设定值时,输出有效信号(集电极开路信号,电阻上拉后为低电平),当输出频率降到低于 FDT 信号(设定值-滞后值)时,输出无效信号(高阻态)。如下图所示:

图 F8-5 频率水平检测示意图

F9 组 保护参数

$ [F9.00] $ 电机过载保护选择 $ [0\sim 2] $ $ [1] $	F9. 00	中小ルス・年に1本1/2014		1
--	--------	-----------------	--	---

0: 禁止

没有电机过载保护(谨慎使用)。

1: 普通电机(电子热继电器方式,低速补偿)

由于普通电机在低速运行下的散热效果变差,相应的电机热保护值也应作适当调整,这里所说的带低速补偿特性,就是把运行频率低于 30Hz 的电机过载保护阀值下调。

2: 变频电机(电子热继电器方式,低速不补偿)

由于变频专用电机的散热不受转速影响,不需要进行低速运行时的保护值调整。

E 1 2 3 7 1 6 6 6 6 6 7 1 2 1 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1			·10 E 1/11 - 0			
	F9. 01	电机过载保护系数	20.0%~120	.0%	100.0%	

为了对不同型号负载电机实施有效的过载保护,需要合理设置电机的过载保护系数,限制变频器允许输出的最大电流值。电机过载保护系数为电机额定电流值对变频器额定输出电流值的百分比。

当变频器驱动功率等级匹配的电机时,电机过载保护系数可以设定为100%。如下图所示:

图 F9-1 电机过载保护曲线

当变频器容量大于电机容量时,为了对不同规格的负载电机实施有效的过载保护,需合理设置电机的过载保护系数如下图所示:

图 F9-2 电机过载保护系数设定示意图

电机过载保护系数可由下面的公式确定:

电机过载保护系数=允许最大负载电流/变频器额定输出电流×100%,一般情况下,最大负载电流是指负载电机的额定电流。行时的保护值调整。

A STANDANCE SON: 14.4 HANGE EAGE.				
F9. 02	欠压保护动作选择	0~1	0	

0: 禁止

1: 允许(欠压视为故障)

	是工程均少至	00011 100 00011	00011	
PO 00	欠压保护水半	220V: 180∼280V	200V	机刑设定
F9. 03		380V: 330∼480V	350V	机型设定

本功能码规定了当变频器正常工作的时候,直流母线允许的下限电压。

⚠注意:

0.0%

电网电压过低时,电机的输出力矩会下降。对于恒功率负载和恒转矩负载的场合,过低的电网电压将增加变频器输入输出电流,从而降低变频器运行的可靠性。因此,当在低电网电压下长期运行的时候,变频器功率需降额使用。

7平而件恢义/7。			
F9. 04	过压限制水平	220V: 350~390V 370V 380V: 550~780V 660V	机型设定
过压限制水平泵	定义了电压失速保护时的动作电压。		
F9. 05	减速电压限制系数	0~100 0: 过压失速保护无效	机型设定
减速过程中,此	值越大,抑制过压能力越强。		
F9. 06	电流限制水平(仅 V/F 模式有效)	G型: 80%~200%*变频器额定 电流 160% P型: 80%~200%*变频器额定 电流 120%	机型设定

电流限幅水平定义了自动限流动作的电流阀值,其设定值是相对于变频器额定电流的百分比。

⚠注意:

普通 VF 模式下,加速和恒速运行时用 F9.06 限幅;矢量 VF 模式下,加速运行时用 F9.06 限幅,恒速运行时无限幅处理;在矢量模式下,恒速运行中限幅只与 F2.20~F2.21 有关。

F9. 07	弱磁区电流限制选择	0~1	0	

0:由 F9.06的电流限制水平来限制

输出频率在 50Hz 以内时, 由 F9.06 来限幅。

1: 由 F9.06 折算的电流限制水平来限制

输出频率大于 50Hz 时,由 F9,06 折算的电流来限幅。

掉载检出水平

F9. 08	加速电流限制系数	0~100 0: 加速电流限制无效	机型设定
加速过程中,	此值越大,抑制过流能力越强。		
F9. 09	恒速电流限制使能	0~1	1
0: 无效			
1: 有效			
FQ 10	持裁於中时间	0.15~60.05	5.0

F9.11 0: 掉载检测无效

掉载检出水平(F9.11)定义了掉载动作的电流阀值,其设定值是相对于变频器额定电流的百分比。

0.0~100.0%*变频器额定电流

掉载检出时间(F9.10)定义了变频器输出电流持续小于掉载检出水平(F9.11)超过一定时间后,输出掉载信号。

掉载状态有效即变频器工作电流小于掉载检出水平并且保持的时间超过掉载检出时间。

图 F9-3 掉载检出示意图

		G型: 20%~200%*变频器额定	
FO 10	计 ++ 3	电流 160%	4n 垂山2几 <i>台</i>
F9. 12	过载预报警水平	P型: 20%~200%*变频器额定	机型设定
		电流 120%	

过载预报警主要对变频器过载保护动作前过载状况的监控。过载预报警水平定义了过载预报警动作的电流阀值,其设定值是相对与变频器额定电流的百分比。

过载预报警延时 $0.0 \sim 300 s$ 10.0

过载预报警延时定义了变频器输出电流从持续大于过载预报警水平幅度(F9.12),到输出过载预报警信号 间的延迟时间。

/ 注意: 通过对参数 F9.12、F9.13 的设定,变频器的输出电流大于过载预报警水平幅度(F9.12)时,

经过延时(F9.13)处理,变频器输出预报警信号,即操作面板显示"A-09"。

THE PARTY OF THE P				
F9. 14	温度检测阀值	0.0℃~90.0℃	65.0℃	
详见参数 F5.00~F5.03 中的 51 号功能说明。				
F9. 15	输入输出缺相保护选择	0~3	机型设定	

0: 均禁止

- 1: 输入禁止,输出允许
- 2: 输入允许,输出禁止
- 均允许 7.5KW 以内出厂默认选项 1,11KW 以上出厂默认选项 3.

F9. 16	输入缺	相保护延迟时间		0. 0S∼30. 0S		1.0	
选择输入缺相值	呆护有效,	并出现输入缺相故障时,	变版	5器经过 F9. 16 定义的时间后,	保护	动作 "E-12"	

并自由停机。 F9. 17 输出缺相保护检测基准 0%~100%*变频器额定电流

当电机实际输出电流大于额定电流*【F9.17】时,如果输出缺相保护有效,则经过 5S 的延迟时间后,

变频器保护动作[E-13],并自由停机。

■ 输出电流不平衡检测系数 $1.00 \sim 10.00$ 1.00

如果三相输出电流中的最大值与最小值的比值大于此系数,并且持续时间超过10秒钟时,变频器报输出 电流不平衡衡故障 E-13。F9.08=1.00 时,输出电流不平衡检测无效。

F9. 19	保留	保留	0
F9. 20	PID 反馈断线处理	0~3	0

- 0: 不动作
- 1: 告警并以断线时刻频率维持运行
- 2: 保护动作并自由停车
- 3. 告警并按设定的模式减速至零速运行

	Der 1771 C 1		
F9. 21	反馈断线检测值	0.0~100.0%	0.0%

以 PID 给定量的最大值做为反馈断线检测值的上限值。在反馈断线检测时间内,当 PID 的反馈值持续小 于反馈断线检测值时,变频器将根据 F9.20 的设置,作出相应的保护动作。

1 X X 4 X E X E X 7 X X E Y K E Y X E Y Y E Y X E Y Y E Y Y Y Y Y Y Y			
F9. 22	反馈断线检测时间	0. 0∼3600. 0S	10.0

反馈断线发生后,保护动作前的持续时间。

图 F9-4 闭环反馈丢失检出时序图

F9. 23	保留	保留	0
F9. 24	RS485 通讯异常动作选择	0~2	1

- 0: 保护动作并自由停机
- 1: 告警并维持现状继续运行
- 2: 告警并按设定的停机方式停机

F9. 25	RS485 通讯超时检出时间	0.0~100.0s	1 :	5.0	
如果 RS485 诵 i	R.在超过本功能码定义的时间间隔内.:	没有接到正确的数据信号,	. 则认为 RS48	5 通讯异常	

如果 RS485 通讯在超过本功能码定义的时间间隔内,没有接到正确的数据信号,则认为 RS485 通讯异常变频器将按 F9.24 的设置来作出相应的动作。此值设置为 0.0 时不做 RS485 通讯超时检出。

F9. 26	面板通讯异常动作选择	0~2	1
--------	------------	-----	---

- 0: 保护动作并自由停机
- 1: 保护动作并维持现状继续运行
- 2: 保护动作并按设定的停机方式停机

F9. 27 面板通讯超时检出时间	0.0~100.0s	1.0
-------------------	------------	-----

如果面板通讯在超过本功能码定义的时间间隔内,没有接到正确的数据信号,那么认为面板通讯异常,变频器将按 F9.26 的设置来作出相应的动作。

F9. 28	EEPROM 读写错误动作选择	0~1	0
--------	-----------------	-----	---

- 0: 保护动作并自由停机
- 1: 告警并继续运行

F9. 29	上电时输出接地保护选择(保留)	0~1	0
0 工法			

- 0: 无效
- 1: 有效

11 11/%			
F9. 30	过速度保护动作选择(保留)	0~2	2

- 0: 保护动作并自由停机
- 1: 告警并减速停机
- 2: 告警并继续运行

F9. 31	过速度检测值(保留)	0.0~50.0%*【F0.10】最大频率	0.0%
F9. 32	过速度检测时间(保留)	0. 0∼100. 0S	5.0
F9. 33	速度偏差过大保护动作选择(保留)	0~2	0

- 0: 保护动作并自由停机
- 1: 告警并减速停机
- 2: 告警并继续运行

F9. 34	速度偏差过大检测值 (保留)	0.0~50.0%∗【F0.10】最大频率	0.0%
F9. 35	速度偏差过大检测时间(保留)	0.0∼100.0S	0.5

FA 组 PID 控制参数

通过本参数组的设置,可组成一个完整的模拟反馈控制系统。

模拟反馈控制系统: 给定量用 AI1 输入,将受控对象物理量转换为 4~20mA 的电流经变频器的 AI2 输入,经过内置 PI 调节器组成模拟闭环控制系统,如下图所示:

图 FA-1 模拟反馈控制系统示意图

PID 调节作用如下:

图 FA-2 PID 调节示意图

FA. 00	PID 运行投入方式	0~1	0			
0: 自动						
1. 通过完义的名册	能提子毛动投 λ					

 $0 \sim 6$ 0 FA. 01 PID 给定通道选择

- 0: 数字给定: PID 给定量由数字给定,并由功能码 FA. 02 设定。 PID 给定量由外部模拟信号 AI1 (0~10V/0-20mA) 给定。 1: AI1:
- PID 给定量由外部模拟信号 AI2(0~10V) 给定。 2: AI2:
- 3: 脉冲给定: PID 给定量由外部脉冲信号给定。
- 4: RS485 通讯:PID 给定量由通讯给定。 5: 压力给定 (MPa):详见 FA. 25~FA. 26。
- 6. 面板由位界绘定

o. mw-cmarc .				
FA. 02	给定数字量设定	0.0~100.0%	50.0%	

当采用模拟量反馈时,该功能码实现了用操作面板来设定闭环控制的给定量,仅当闭环给定通道选择数 字给定(FA.01为0)时,本功能有效。

例:在恒压供水闭环控制系统中,此功能码的设置应充分考虑远传压力表的量程和其输出反馈信号的关 系,例如压力表的量程为 $0\sim10$ MPa,对应 $0\sim10$ V 电压输出,我们需要 6MPa 的压力,那么就可以将给定的数 字量设定为 6.00V, 这样当 PID 调节稳定时, 需要的压力就是 6MPa。

FA. 03 PID 反馈通道选择 $0 \sim 7$ 0

- 0: AI1: PID 反馈量由外部电模拟信号 AI1 给定。
- 1: AI2: PID 反馈量由外部模拟信号 AI2 给定。
- 2: AI1+AI2: PID 的反馈值由 AI1 与 AI2 的和决定。
- 3: AI1-AI2: PID 的反馈值由 AI1 与 AI2 的差值决定, 当差值为负时, PID 的反馈值默认为 0。
- 4: MAX {AI1, AI2}
- 5: MIN {AI1, AI2}
- 6: 脉冲给定
- 7: RS485 通讯

FA. 04	PID 控制器高级特性设置	0000~1001	000

LED 个位: PID 调节特性

0: 正作用

当反馈信号大于 PID 的给定量,要求变频器输出频率下降(即减小反馈信号),才能使 PID 达到平衡时, 则为正特性。如收券的张力控制,恒压供水控制等。

1: 负作用

当反馈信号大于 PID 的给定量,要求变频器输出频率上升(即减小反馈信号),才能使 PID 达到平衡时, 则为负特性。如放卷的张力控制,中央空调控制等。

- LED 个位:比例调节特性(保留)
- 0: 恒定比例积分调节
- 1: 自动变比例积分调节
- LED 百位: 积分调节特性
- 0: 频率到达上下限时, 停止积分调节
- 1: 频率到达上下限时, 继续积分调节

对于要求快速响应的系统,建议取消继续积分调节

LED 千位: 保留

FA. 05	比例增益 KP1	0.01~100.00s	5.00
FA. 06	积分时间 Ti1	0.01~10.00s	0.05
FA. 07	微分时间 Td1	0.01~10.00s	0.00

0.00: 无微分调节

比例增益(Kp):

决定整个 PID 调节器的调节强度, P越大,调节强度越大。但过大,容易产生振荡。

当反馈与给定出现偏差时,输出与偏差成比例的调节量,若偏差恒定,则调节量也恒定。比例调节可以快速响应反馈的变化,但单纯用比例调节无法做到无差控制。比例增益越大,系统的调节速度越快,但若过大会出现振荡。调节方法为先将积分时间设很长,微分时间设为零,单用比例调节使系统运行起来,改变给定量的大小,观察反馈信号和给定量的稳定的偏差(静差),如果静差在给定量改变的方向上(例如增加给定量,系统稳定后反馈量总小于给定量),则继续增加比例增益,反之则减小比例增益,重复上面的过程,直到静差比较小(很难做到一点静差没有)就可以了。

积分时间(Ti):

决定 PID 调节器对偏差进行积分调节的快慢。

当反馈与给定出现偏差时,输出调节量连续累加,如果偏差持续存在,则调节量持续增加,直到没有偏差。积分调节器可有效的消除静差。积分调节器过强则会出现反复的超调,使系统产生振荡。积分时间参数的调节一般由大到小,逐步调节积分时间,同时观察系统调节的效果,直到系统稳定的速度达到要求。微分时间(Td):

决定 PID 调节器对偏差的变化率进行调节的强度。

当反馈与给定的偏差变化时,输出与偏差变化率成比例的调节量,该调节量只与偏差变化的方向和大小有关,而与偏差本身的方向和大小无关。微分调节的作用是在反馈信号发生变化时,根据变化的趋势进行调节,从而抑制反馈信号的变化。微分调节器请谨慎使用,因为微分调节容易放大系统的干扰,尤其是变化频率较大的干扰。

FA. 08 采样周期 T	0.01~100.00s	0.10
---------------	--------------	------

0.00: 自动

采样周期是对反馈量的采样周期,在每个采样周期内调节器运算一次,采样周期越大则响应越慢,但对干扰信号的抑制效果越好,一般情况下不必设置。

FA. 09	偏差极限	0.0~100.0%	0.0%	
ウンロカリアルー		7.11. H	T-11 DID 'H-1	4.0

偏差极限为系统反馈量与给定量的偏差的绝对值与给定量的比值,当反馈量在偏差极限范围内时,PID调节不动作,如下图所示,设置合理的偏差极限可防止系统在目标值附近频繁调节,有助于提高系统的稳定性。

图 FA-3 偏差极限示意图

0

90.0%

FA. 10	闭环预置频率	0.00~上限频率	0.00
FA. 11	预置频率保持时间	0.0∼3600.0s	0.0

本功能码定义当 PID 控制有效时,在 PID 投入运行前变频器运行的频率和运行时间。在某些控制系统中,为了使被控制对象快速达到预定数值,变频器根据本功能码设定,强制输出某一频率值 FA. 10 及频率保持时间 FA. 11。即当控制对象接近于控制目标时,才投入 PID 控制器,以提高响应速度。如下图所示;

图 FA-4 闭环预置频率运行示意图

FA. 12 睡眠模式	0~2	1
-------------	-----	---

0: 无效

FA. 13

FA. 16

1: 反馈压力超过或低于睡眠阀值时睡眠

该模式为PID的第一种睡眠模式,如图FA-5所示。

睡眠停机方式选择

苏醒阀值

2: 反馈压力和输出频率稳定时睡眠

该模式为 PID 的第二种睡眠模式,有以下两种情况(如图 FA-6 所示):

- 1) 若反馈值小于给定值且大于给定值*(1-设定偏差【FA.14】)的同时,输出频率的变化在6%范围以内,维持睡眠延迟时间【FA.17】后进入睡眠。
- 2) 若反馈值上升至给定值以上时,维持睡眠延迟时间【FA.17】后进入睡眠。反之,如果反馈值下降至苏醒阀值【FA.16】以下时,立即苏醒。

0~1

 $0.00 \sim 200.0\%$

0: 减速停机			
1: 自由停机			
FA. 14	进入睡眠时的反馈与设定压力偏差	0.0~10.0%	0.5%
本功能参数仅对	第二种睡眠模式有效。		
FA. 15	睡眠阀值	0.00~200.0%	100.0%
该阀值是给定压力的百分比,本功能参数相对于设定仅对第一种睡眠模式有效。			

FA. 15 定义了变频器从工作状态进入睡眠状态时的反馈限值。如果实际反馈值大于该设定值,并且变频器输出的频率到达下限频率的时候,变频器经过 FA. 17 定义的延时等待时间后,进入睡眠状态(即零转速运行中)。

FA. 16 定义了变频器从睡眠状态进入工作状态的反馈极限。当 PID 极性选择正特性时,如果实际的反馈值小于该设定值时(或当 PID 极性选择负特性时,如果实际的反馈值大于该设定值时),变频器经过 FA. 18 定义的延时等待时间后,脱离睡眠状态,开始工作。

图 FA-5 第一种睡眠模式示意图

图 FA-6 第二种睡眠模式示意图

FA. 17	睡眠延迟时间	0.0~6000.0S	100.0
FA. 18	苏醒延迟时间	0.0∼6000.0S	5.0
FA. 19	加泵延迟时间	0.0∼6000.0S	10.0
FA. 20	减泵延迟时间	0.0∼6000.0S	10.0

 FA. 19~FA. 20 是 "一拖三恒压供水"中的加減泵时间,详见 FA. 18~FA. 21 中的 31 号与 32 号功能。

 FA. 21
 供水使能
 0~2
 0

- 0: 无效
- 1: PFC 有效
- 2: SPFC 有效

注,功能码 FA. 21~FA. 24 需硬件支持。

注: 切能码 FA.	21~FA. 24			
FA. 22	端子接入断开延时	0.0~6000.0s	0.1	
水泵投入断	f开延迟时间。			
FA. 23	轮询时间	0.0~6000.0h	48.0	
轮询时间就	i是定时切换变频泵的时间,该时	间只在单泵工作时有效。		
FA. 24	减泵下限频率	0.0∼600.00HZ	35. 00	
当反馈压力高于设定压力时,频率下降到减泵下限频率时,经过减泵延迟时间后减泵。				
FA. 25	传感器量程	0.000∼60.000MPa	10.000	
FA. 26	压力设定(MPa)	0.000∼【FA.25】	5.000	

0.00

0.00

若 FA. 01=5 时,根据现场情况,选择传感器量程(FA. 25)、给定压力(FA. 26)。

FA. 27	主泵启动延时	0. 0∼3600. 0S	0.3
该参数用在"一	·拖三恒压供水"时,主辅泵切换后,主	泵启动延时。	
FA. 28	辅泵启动方式选择	0~1	0
0: 直启: 该方式主要用于 7.5KW 以下的水泵, 当压力不够时直接工频启动。			_
1: 软启: 该方式主要用于一拖二时,两台水泵分别低频启动。			
FA. 29	比例增益 KP2	0.01~100.00s	5.00
FA. 30	积分时间 Ti2	0.01~10.00s	0.05
FA. 31	微分时间 Td2	0.01~10.00s	0.00
FA. 32	PID 上限截止频率	【F8.33】 ∼300.00Hz	50.00

-300.00Hz∼【FA.32】

0.00Hz∼【F0.11】

FB 组 摆频、定长、计数和定时

睡眠频率

PID 下限截止频率

FB. 00	摆频控制	0~1	0
0: 禁止,1: 有效			
FB. 01	摆频运行投入方式	0~1	0

0: 白动

FA. 33

FA. 34

1: 通过定义的多功能端子手动投入

FB. 01 选择 1, 当多功能 X 端子选择 35 号功能, 在运行时摆频投入, 否则摆频无效。

FB. 02 摆幅控制 0~1 0

- 0: 固定摆幅:摆幅参考值为最大输出频率 F0.10。
- 1: 变摆幅:摆幅参考值为给定通道频率。

ı	FB. 03	摆频停机起动方式选择	0~1	0
(): 按停机前记忆的	状态起动, 1: 重新开始起动		_
П	ED 04	押塔伊子拉中艺体	Λ. 1	0

0: 存储, 1: 不存储

掉电时存储摆频状态参数,该功能只有在选择"按停机前记忆的状态起动"方式下有效。

FB. 05	摆频预置频率	0.00Hz~上限频率	10.00
FB. 06	摆频预置频率等待时间	0. 0∼3600. 0s	0.0

以上功能码定义了变频器在进入摆频运行方式之前或者在脱离摆频运行方式时的运行频率和在此频率 点运行的时间。如果设定功能码 FB. 06≠0(摆频预置频率等待时间),那么变频器在起动以后直接进入摆频预 置频率运行,并且在经过了摆频预置频率等待时间后,进入摆频模式。

直刎平色门,开旦任廷廷子岳刎汉直刎平寺时时间后,近八岳刎侯氏。						
FB 07	埋	0.0~100.0%	0.0%			

摆频幅值由 FB. 02 决定其参考量,如果 FB. 02=0,那么摆幅 AW =最大输出频率*FB. 07 如果 FB. 02=1,那么摆幅 AW=给定通道频率*FB. 07。

□□提示:

1:摆频运行频率受上、下限频率约束,若设置不当,则摆频工作不正常。

2:点动,PID控制模式,摆频自动失效。

FB. 08 突跳频率	0.0~50.0%(相对摆频幅值)	0.0%
-------------	-------------------	------

本功能码是指在摆频过程中,当频率到达摆频上限频率之后快速下降的幅度,当然也是指频率达到摆频下限频率后,快速上升的幅度。设为 0.0%则无突跳频率。

FB. 09	摆频上升时间	0.1∼3600.0s	5.0
FB. 10	摆频下降时间	0.1∼3600.0s	5.0

本功能码定义了摆频运行时从摆频下限频率到达摆频上限频率的运行时间和摆频运行时从摆频上限频率到达摆频下限频率的运行时间。

摆频控制适用于纺织、化纤等行业及需要横动、卷绕功能的场合,其典型工作如图 F9-6 所示。

0

通常摆频过程如下:先按照加速时间加速到摆频预置频率(FB.05),并等待一段时间(FB.06),再按加减速时间过渡到摆频中心频率,然后按设定的摆频幅值(FB.07)、突跳频率(FB.08)、摆频上升时间(FB.09)和摆频下降时间(FB.10)循环运行,直到有停机命令按减速时间减速停机为止。

图 FB-1 摆频示意图

□ 提示:

FB. 11

- 1: 中心频率可以由数字给定频率、模拟量,脉冲,PLC或多段速等给定。
- 2: 点动及闭环运行时自动取消摆频。

保留

3: PLC 与摆频同运行,在 PLC 段间切换时摆频失效,按 PLC 阶段加减速设置过渡到 PLC 设定频率后开始摆频,停机则按 PLC 阶段减速时间减速。

保留

FB. 12	定长控制	0~1	0			
0: 禁止,1: 有效	0: 禁止,1: 有效					
FB. 13	设定长度	0.000∼65.535(KM)	0.000			
FB. 14	实际长度	0.000∼65.535(KM)	0.000			
FB. 15	长度倍率	0.100~30.000	1.000			
FB. 16	长度校正系数	0.001~1.000	1.000			
FB. 17	测量轴周长	0.10∼100.00CM	10.00			
FB. 18	轴每转脉冲数(X6)	$1\sim65535$	1000			
FB. 14 FB. 15 FB. 16 FB. 17 FB. 18	实际长度 长度倍率 长度校正系数 测量轴周长	0.000~65.535 (KM) 0.100~30.000 0.001~1.000 0.10~100.00CM	0.000 1.000 1.000 10.00			

该组功能用于实现定长停机功能。变频器从端子(X6 定义为功能 53)输入计数脉冲,根据测速轴每转的脉冲数(FB. 18)和轴周长(FB. 17)得到计算长度。

计算长度=计数脉冲数÷每转脉冲数×测量轴周长

并通过长度倍率(FB. 15)和长度校正系数(FB. 16)对计算长度进行修正,得到实际长度。

实际长度=计算长度×长度倍率÷长度校正系数

当实际长度(FB. 14) \geqslant 设定长度(FB. 13)后,变频器自动发出停机指令停机。再次运行前需将实际长度(FB. 14)清零或修改实际长度(FB. 14)
〈设定长度(FB. 13),否则无法起动。

□ 提示:

可用多功能输入端子来清除实际长度(输入端子定义为46功能,长度计数清零),该端子有效,则清除之前的长度计数值,该端子断开后才能正常计数及计算实际长度。

实际长度 FB. 14, 掉电时自动存储。

设定长度 FB. 13 为 0 时定长停机功能无效,但长度计算依然有效。

定长停机功能应用举例:

图 FB-2 长停机功能举例图

图 FB-2 中变频器驱动电机,电机通过传送带驱动纱锭轴转动,测速轴接触纱锭,从而将纱锭的线速度 检测出来以脉冲的形式通过计数端子传递给变频器,变频器检测脉冲,并计算出实际长度,当实际长度≥设 定长度时,变频器自动给出停机。

2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -					
	FB. 19	计数到达处理	0~3	3	

- 0: 停止计数, 停止输出
- 1: 停止计数,继续输出
- 2: 循环计数, 停止输出
- 3: 循环计数,继续输出

当计数器的计数值到达功能码 FB. 21 设定的数值时,变频器相应执行的动作。

FB. 20	计数起动条件	0~1	1
--------	--------	-----	---

- 0: 上电即一直起动
- 1: 运行状态时起动, 停机状态时停止,

以上前提是有计数脉冲输入

FB. 21	计数器复位值设定	【FB. 22】 ∼65535	0
FB. 22	计数器检测值设定	0∼【FB. 21】	0

本功能码定义了计数器的计数复位值和检测值。当计数器的计数值到达功能码 FB. 21 所设定的数值时,相应的多功能输出端子(计数器复位信号输出)输出有效信号,并且对计数器清零。

当计数器的计数值到达功能码 FB. 22 设定的数值时,在相应的多功能输出端子(计数器检测信号输出)输出有效信号。如果继续计数而且超过了功能码 FB. 21 设定的数值,在计数器清零的时候,该输出有效信号撤销。

如下图所示:将可编程继电器输出设为复位信号输出,开路集电极输出 Y1 设为计数器检测输出,FB. 21 设为 8,FB. 22 设为 5。当检测值为 "5"时,Y1 输出有效信号并一直维持;当到达复位值 "8"时,继电器输出一个脉冲周期的有效信号并将计数器清零,同时 Y1,继电器均撤销输出信号。

0

图 FB-2 计数器复位设定和计数器检测设定示意图

FB. 23 定时到达处	₫ 0~3	3	
--------------	-------	---	--

- 0: 停止定时, 停止输出
- 1: 停止定时,继续输出
- 2: 循环定时, 停止输出
- 3: 循环定时,继续输出

当计数器的计数值到达功能码 FB. 25 设定的数值时,变频器相应执行的动作。

FB. 24	定时起动条件	0~1	1	
0: 上电即一直起动				
1: 运行状态时起动	,停机状态时停止			

 $0 \sim 65535S$

FC 组 简易 PLC、多段速

定时时间设定

FC. 00	PLC 运行模式选择	0~3	0	

0: 单循环后停机

FB. 25

变频器完成一个单循环后自动停机,此时需要再次给出运行命令才能起动。若某一阶段的运行时间为 0,则运行时跳过该阶段直接进入下一阶段。如下图所示:

图 FC-1 PLC 单循环后停机示意图

1: 单循环后保持最终值运行

变频器完成一个单循环后自动保持最后一段的运行频率、方向维持运行。如下图所示:

图 FC-2 PLC 单循环后保持示意图

2: 有限次连续循环

变频器根据 FC. 04 设定的有限次连续循环次数,决定 PLC 运行的循环次数,到达循环运行次数后停机。 FC. 04=0,变频器不运行。

3: 连续循环

变频器完成一个循环后自动开始进行下一个循环,直到有停机命令时才会停机。如下图所示:

图 FC-3 PLC 连续循环示意图

	A T T T T T T T T T T T T T T T T T T T				
FC. 01		PLC 运行投入方式	0~1	0	
0: 自动, 1: 通过定义的多功能端子手动投入					
FC. 02		PLC 运行掉电记忆	0~1	0	

0: 不记忆

掉电时不记忆 PLC 运行状态,上电后再起动从第一段开始运行。

1: 记忆掉电时刻的阶段、频率

掉电时记忆 PLC 运行状态,包括掉电时刻阶段、运行频率、已运行的时间。上电后再起动,自动进入该阶段,以该阶段定义的频率继续剩余时间的运行。

0: 从第一段开始重新起动

运行中停机(由停机命令、故障或掉电引起),再起动后从第一段开始运行。

1: 从停机(故障)时刻的阶段开始起动

运行中停机(由停机命令、故障或掉电引起),变频器自动记录当前阶段已运行的时间,再启动后自动进入该阶段,以该阶段定义的频率继续剩余时间运行,如下图所示:

图 FC-4 PLC 起动方式 1

2: 从停机(故障)时刻的阶段、频率开始起动

多段速频率 2

运行中停机(由停机命令、故障或掉电引起),变频器不仅自动记录当前阶段已运行的时间而且还记录停机时刻的运行频率,再起动后先恢复到停机时刻的运行频率,频率余下阶段的运行,如下图所示:

图 FC-5 PLC 起动方式 2

□ 注意:

FC. 08

方式 1、2 的区别在于方式 2 比方式 1 多记忆了一个停机时刻的运行频率,而且再起动后从该频率继续运行。

FC. 04	有限次连续循环次数	1~65535	1
FC. 05	PLC 运行时间单位选择	0~1	0
0: s , 1: m			
FC. 06	多段速频率 0	一上限频率~上限频率	5.00
FC. 07	多段速频率1	一上限频率~上限频率	10.00

第 85 页 共 112 页

一上限频率~上限频率

15.00

FC. 09	多段速频率 3	—上限频率~上限频率	20.00
FC. 10	多段速频率 4	一上限频率~上限频率	25. 00
FC. 11	多段速频率 5	—上限频率~上限频率	30.00
FC. 12	多段速频率 6	一上限频率~上限频率	40.00
FC. 13	多段速频率 7	一上限频率~上限频率	50.00
FC. 14	多段速频率 8	一上限频率~上限频率	0.00
FC. 15	多段速频率 9	一上限频率~上限频率	0.00
FC. 16	多段速频率 10	一上限频率~上限频率	0.00
FC. 17	多段速频率 11	一上限频率~上限频率	0.00
FC. 18	多段速频率 12	一上限频率~上限频率	0.00
FC. 19	多段速频率 13	一上限频率~上限频率	0.00
FC. 20	多段速频率 14	一上限频率~上限频率	0.00
FC. 21	多段速频率 15	—上限频率~上限频率	0.00

多段速的符号决定运转的方向,负表示反方向运行。频率输入方式由 F0.03=7 设定,起停命令由 F0.02设定。

设 定。			
FC. 22	第0段速加减速时间	0~3	0
FC. 23	第0段速运行时间	0.0∼6553.5S(M)	0.0
FC. 24	第1段速加减速时间	0~3	0
FC. 25	第1段速加减速时间	0.0∼6553.5S(M)	0.0
FC. 26	第2段速运行时间	0~3	0
FC. 27	第2段速运行时间	0.0∼6553.5S(M)	0.0
FC. 28	第3段速加减速时间	0~3	0
FC. 29	第3段速运行时间	0.0∼6553.5S(M)	0.0
FC. 30	第4段速加减速时间	0~3	0
FC. 31	第4段速运行时间	0.0∼6553.5S(M)	0.0
FC. 32	第5段速加减速时间	0~3	0
FC. 33	第5段速运行时间	0.0∼6553.5S(M)	0.0
FC. 34	第6段速加减速时间	0~3	0
FC. 35	第6段速运行时间	0.0∼6553.5S(M)	0.0
FC. 36	第7段速加减速时间	0~3	0
FC. 37	第7段速运行时间	0.0∼6553.5S(M)	0.0
FC. 38	第8段速加减速时间	0~3	0
FC. 39	第8段速运行时间	0.0~6553.5S(M)	0.0
FC. 40	第9段速加减速时间	0~3	0
FC. 41	第9段速运行时间	0.0~6553.5S(M)	0.0
FC. 42	第10段速加减速时间	0~3	0
FC. 43	第 10 段速运行时间	0.0~6553.5S(M)	0.0
FC. 44	第 11 段速加减速时间	0~3	0
FC. 45	第 11 段速运行时间	0.0~6553.5S(M)	0.0
FC. 46	第 12 段速加减速时间	0~3	0
FC. 47	第 12 段速运行时间	0.0~6553.5S(M)	0.0
FC. 48	第 13 段速加减速时间	0~3	0
FC. 49	第 13 段速运行时间	0.0~6553.5S(M)	0.0
FC. 50	第 14 段速加减速时间	0~3	0
FC. 51	第 14 段速运行时间	0.0~6553.5S(M)	0.0
FC. 52	第 15 段速加减速时间	0~3	0
FC. 53	第 15 段速运行时间	0.0∼6553.5S(M)	0.0

上述功能码用来设置可编程多段速的加减速时间和运行时间。16 段速加减速时间可以由第 $1\sim4$ 段加减速时间分别设定;16 段运行时间可以由第X 段运行时间分别设定。

16 段速加减速时间设为 0, 代表加减速时间 1 (F0.14~F0.15); 设为 1, 2, 3 分别代表加减速时间 2 (F8.00 \sim F8.01) 、3(F8.02 \sim F8.03)、4 (F8.04 \sim F8.05) 。 (X 取 0 \sim 15) 。

□注意:

- 1: PLC 某一阶段运行时间设置为 0 时,该段无效。
- 2: 通过端子可以对 PLC 过程进行投入、暂停、复位等控制,请参考 F4 组端子功能定义。
- 3: PLC 阶段运行方向由频率正负以及运行命令共同决定。电机实际运行方向可由外部方向命令实时更改。

FC. 54 保留 保留 0

RS485 通讯参数 Fd 组

Fd. 00	协议选择	0~1	0
通讯协议选择			

0: MODBUS , 1: 自定义

Fd. 01 本机地址 $0 \sim 247$ 1

0:广播地址

1~247: 从站在 485 通讯时, 该功能码用来标识本变频器的地址。

/ 注意:

Fd. 01 设置 0 为广播地址, 只能接收和执行上位机的命令, 而不会应答上位机。

Fd. 02	通讯波特率设置	0~5	3

- 0: 2400BPS
- 1: 4800BPS
- 2: 9600BPS
- 3: 19200BPS
- 4: 38400BPS
- 5: 115200BPS

本功能码用来定义上位机与变频器之间的数据传输速率,上位机与变频器设定的波特率应一致,否则通 讯无法进行,波特率设置越大,数据通讯越快,但设置过大会影响通讯的稳定性。

Fd. 03 数据格式

- 0: 无校验 (N, 8, 1) for RTU
- 1: 偶校验 (E, 8, 1) for RTU
- 2: 奇校验 (0, 8, 1) for RTU
- 3: 无校验 (N, 8, 2) for RTU
- 4: 偶校验 (E, 8, 2) for RTU
- 5: 奇校验 (0, 8, 2) for RTU
- 注意: ASCII 模式暂时保留

上位机与变频器设定的数据格式应一致,否则无法正常通讯。

Fd. 04 本机应答延时 $0 \sim 200 \text{ms}$

本功能码定义变频器数据帧接收结束,并向上位机发送应答数据帧的中间时间间隔,如果应答时间小于 系统处理时间,则以系统处理时间为准。如果延时大于系统处理时间,则系统处理数据后,要延时等待,直 到应答延迟时间到,才向上位机发送数据。

传输回应处理 Fd. 05 $0 \sim 1$ 0

0: 写操作有回应

变频器对上位机的读写命令全都有回应。

1: 写操作不回应

变频器对上位机的读命令全都有回应,对写命令无回应,以提高通讯效率。

Fd. 06 比例连动系数 $0.01 \sim 10.00$ 1.00

本功能码用来设定变频器作为从机通过 RS485 接口接收到的频率指令的权系数,本机的实际运行频率等 于本功能码值乘以通过 RS485 接口接收到的频率设定指令值。在连动控制中,本功能码可以设定多台变频器 运行频率的比例。

= 14 (0) 1 (14) = 14			
Fd. 07	通讯模式选择	0~1	0

- 0: 通用模式,
- 1: MD380 模式

该模式直接可与汇川 MD380 通讯。

FE 组 高级功能及性能参数

FE. C	00 能耗制动	功能设定 0~2	2	
-------	---------	----------	---	--

- 0: 无效
- 1: 全程有效
- 2: 仅减速时有效

FE. 01	能耗制动起始电压	220V: 340~380V 360V 380V: 660~760V 680V	机型设定
FE. 02	能耗制动回差电压	220V: 10~100V 5V 380V: 10~100V 10V	机型设定
FE. 03	能耗制动动作比例	10~100%	100%

以上功能码用来设置变频器内置制动单元动作的电压阀值、回差电压值及制动单元使用率。如果变频器内部直流侧电压高于能耗制动起始电压,内置制动单元动作。如果此时接有制动电阻,将通过制动电阻释放变频器内部泵升电压能量,使直流电压回落。当直流侧电压下降到某一数值(起始电压-制动回差)时,内置制动单元关闭。

FE. 04 停电再起动设置	0~2	0
----------------	-----	---

- 0:禁止:停电后再上电时,变频器不会自动运行。
- 1: 从起动频率处起动:停电后再上电时,若满足起动条件则变频器等待 FE. 05 定义的时间后,变频器将自动从起动频率点开始起动运行。
- 2: 转速追踪起动: 停电后再上电时,若满足启动条件则变频器等待 FE. 05 定义的时间后,变频器将自动以转速跟踪方式起动运行。

图 FE-1 能耗制动示意图

FE. 05	停电再起动等待时间	0.0∼60.0S	5.0

在再起动的等待时间内,输入任何运行指令都无效。如输入停机指令,变频器则自动解除转速跟踪再起动状态,回到正常的停机状态。

企注意

- 1: 停电再起动有效还与 F9.02 的设置有关,此时须将 F9.02 设置为 0。
- 2: 本参数会导致非预期的电机起动,可能会对设备及人员带来潜在伤害,请务必谨慎使用。

FE. 06	故障自动复位次数	0~100	0
FE. 07	故障自动复位间隔时间	0.1~60.0S	3.0

100: 表示次数不限制,即无数次

在运行过程中出现故障后,变频器停止输出,并显示故障代码。经过 FE. 07 设定的复位间隔后,变频器自动复位故障并根据设定的起动方式重新起动运行。

故障自动复位的次数由 FE. 06 设定。故障复位次数设置为 0 时,无自动复位功能,只能手动复位,FE. 06 设定为 100 时,表示次数不限制,即无数次。

对于 IPM 故障、外部设备故障等,变频器不允许进行自复位操作。

 FE. 08
 冷却风扇控制
 0~1
 0

0: 自动控制模式

1: 通电过程一直运转

1: 旭电过程—且总表						
FE. 09	运行限制功能密码	0~65535	0			

默认情况下,该密码为 0,可以进行 FE. 10, FE. 11 项设置;当有密码时,必须密码验证正确后,才能进行 FE. 10, FE. 11 项设置。

无需运行限制密码功能时,该功能码设置为0。

设置运行限制密码时,输入五位数,按LENTER 键确认,一分钟后密码自动生效。

需要更改密码时,选择 FE. 09 功能码,按下 (ENTER) 键进入密码验证状态,密码验证成功后,进入修改状态,输入新密码,并按 (ENTER) 键确认,密码更改成功,一分钟后,密码自动生效;清除密码,运行限制密码设为"00000"即可

FE. 10	运行限制功能选择	0~1	0
--------	----------	-----	---

0: 禁止

1: 有效

限制运行时,只要变频器累积运行的时间超过 FE. 11 设定的时间,变频器保护动作并自由停机,操作面板显示 E-26 (RUNLT)。要想清除该故障,只要正确验证 FE. 09(运行限制密码),再将 FE. 10(运行限制功能选择)设置成"0"(无效),即可清除运行限制故障。

FE. 11	限制时间	0∼65535h	0			
注:本功能参数不能	注: 本功能参数不能被初始化详见 FC. 09 说明					
FE. 12	瞬间掉电降频点	220V: 180V~330V 250V 380V: 300V~550V 450V	机型设定			

如果变频器母线电压下降到低于 FE. 12*额定母线电压值,并且瞬停不停控制有效时,瞬停不停开始动作。

FE. 13	瞬间掉电频率下降系数	1~100 0: 瞬停不停功能无效	0
FE. 14	下垂控制	0.00∼10.00HZ	0.00

0.00: 下垂控制功能无效。

当多台变频器驱动同一负载时,因速度不同造成负荷分配不均衡,使速度较大的变频器承受较重负载。 下垂控制特性为随着负载增加使速度下垂变化,可以使负荷均衡分配;此参数调整速度下垂的变频器的频率 变化量。

当 F0.18=1 (高频模式) 时,该功能码的取值上限为 100.0Hz。

The state of the s					
FE. 15	转速追踪等待时间	0.1~5.0S	1.0		
在变频器转速追踪开始之前,经过该延时后再开始追踪。					
DD 10	# \	000/ 0000/ 本括明婚台中次	1.000/		

FE. 17	转速追踪快慢	1~125	25
转速追踪再起	动时,选择转速追踪的快慢。参数越小,	追踪速度越快。但过快可能引起过	自踪不可靠。
FE 18	PWM 模式	0000~1311	0001

LED 个位: PWM 合成方式

0: 全频七段

电流输出平稳,全频段功率管发热量较大。

1: 七段转五段

电流输出平稳, 低频段功率管发热量较大, 高频段功率管发热量较小。

LED 十位: PWM 温度关联

0: 无效,1: 有效

该功能选择有效,若散热器温度达到警戒值(50℃)时,变频器将自动降低载波频率,直到散热器温度不再超过警戒值为止。

LED 百位: PWM 频率关联

- 0: 均无效
- 1: 低频调整, 高频调整
- 2: 低频不调整, 高频调整
- 3: 低频调整, 高频不调整

PWM 温度关联时,散热器温度达到警戒值(50°C)后,若低频和高频不调整,载波频率保持不变,若低频和高频调整,变频器将自动降低载波频率。

LED 千位: 柔性 PWM 功能

0: 无效,1: 有效

该功能选择有效时,通过改变 PWM 的实现方式来降低电磁干扰,减小电机噪声。

FE. 19	电压控制功能	0000~3112	1102

LED 个位: AVR 功能

0: 无效

- 1: 全程有效
- 2: 仅减速时无效

AVR 即电压自动调节功能。当变频器的输入电压和额定值有偏差时,通过该功能来保持变频器的输出电压的恒定,以防止电机工作于过电压状态。该功能在输出指令电压大于输入电源电压时无效。在减速过程中,如果 AVR 不动作,则减速时间短,但运行电流较大;AVR 动作,电机减速平稳,运行电流较小,但减速时间较长。

LED 十位: 过调制选择

0: 无效, 1: 有效

过调制功能是指变频器通过调整母线电压利用率,来提高输出电压,过调制有效时,输出谐波会增加。如果长期低压重载运行或高频(超过 50HZ)运行力矩不够,可以打开此功能。

LED 百位: 死区补偿选择

0: 无效,1: 有效

若选择有效时,在所有的控制方式下,全频死区补偿。此功能主要用于厂家调试,不建议客户设置。 LED 千位:震荡抑制选择

- 0: 无效
- 1: 震荡抑制模式1
- 2: 震荡抑制模式 2
- 3: 震荡抑制模式3

模式 1 作用时,PWM 模式强制为五段式;模式 2 作用时,保持原来的模式不变,这两种模式可通过震荡抑制系数(FE. 27)来调节。

遇到特殊场合,若前两种模式抑制不了震荡,就用模式 3,通过参数 FE. 27(震荡抑制系数)与 FE. 28(震荡抑制电压)一起调节。

图 FE-2 AVR 功能示意图

FE. 20 振荡抑制起始频率 0.00~300.00 机型设定	Ź
--	---

FE. 21 磁通制动选择 0~100 0

该参数用于调节变频器在减速过程中磁通制动的能力。此值越大,磁通制动能力越强。在一定程度上减速时间越短,该参数一般不需要设置,此值为0时,表示该功能无效。

过压限制水平设置较低时,开启该功能可适当缩短减速时间。过压限制水平设置较高时,不需要开启该功能。 FE. 22 节能控制系数 0~100 0

此参数设置越大,节能效果越显著,但可能会带来运行不稳定因素。本功能仅对普通 V/F 控制有效,设置为 0 时无效。

T-/3 0 113/15/20					
FE. 23	多段速优先级使能	0~1	0		
D: 无效, 1: 多段速优先于 FO. 03 给定					
FE. 24	点动优先级使能	0~1	0		
0: 无效 , 1: 变频器运行时, 点动优先级最高					
FE. 25	特殊功能	0000~0001	10		

LED 个位: A02 与 D0 输出选择

0: A02 有效, 1: D0 有效

LED 十位: IPM 故障设置

0: 屏蔽该故障, 1: 该故障有效

LED 百位: 输入缺相故障复位选择

0: 不能复位 , 1: 电源正常后可以复位

LED 千位: 保留

1 Lat 1/1-H				
FE. 26	振荡抑制上限频率	0.00∼300.00Hz	50.00	
FE. 27	振荡抑制系数	1~500	50	
FE. 28	振荡抑制电压	0.0~25.0%*电机额定电压	5.0	
FE. 27~FE. 28 详见 FE. 19 说明				
FF 29	田户家码	0~65535	0	

用户密码设定功能用于禁止非授权人员查阅和修改功能参数。

为了避免误操作,小于10的用户密码无效。

设置用户密码时,输入不小于 10 的任意数,按 ENTER 键确认,3 分钟后密码自动生效。

需要更改密码时,选择 FE. 29 功能码,按下 (ENTER) 键进入密码验证状态,密码验证成功后,进入修改状态,输入新密码,并按 (ENTER) 键确认,密码更改成功,3分钟后,密码自动生效。

密码请务必妥善保管,如果遗忘,请向厂家寻求服务。

□ 提示:

用户请保存好密码,如有遗失请向厂家咨询。

7.47 14 71 14 74				
FE. 30	控制软件版本号	1.00~99.99	1.01	
FE. 31	面板软件版本号	1.00~99.99	1.00	

以上功能码用于指示变频器的相关信息,只可查看,不可修改。

FE. 32	逐波限流与防过压动作选择	0000~1111	0011
--------	--------------	-----------	------

LED 个位:逐波限流加速中选择

0: 无效, 1: 有效

LED 十位:逐波限流减速中选择

0: 无效, 1: 有效

LED 百位:逐波限流恒速中选择

0: 无效, 1: 有效

LED 千位: 防过压动作选择

0: 无效, 1: 有效

 FE. 33
 变频器额定功率
 0. 4~999. 9KW (G/P)
 机型设定

本功能码用于指示变频器的相关信息,只可查看,不可修改。

FF 组 厂家参数

FF. 00	厂家密码	0~65535	0
FF. 01	保留	保留	0

FF. 02	变频器型号	0~30	机型设定
FF. 03	变频器额定功率	0.4~999.9注: 只可查看	机型设定
FF. 04	变频器额定电压	0∼999V	380
FF. 05	变频器额定电流	0. 1∼6553. 5A	机型设定
FF. 06	死区时间	3. 2~10. 0 μ S	机型设定
FF. 07	软件过压点	220V: 0V~450V 400V 380V: 0~850V 800V	机型设定
FF. 08	软件欠压点	220V: 0V~280V 180V 380V: 0~440V 320V	机型设定
FF. 09	软件过流点	50.0~250.0%	220.0%
FF. 10	电压校正系数	80.0~120%	100.0%
FF. 11	电流校正系数	50.0~150.0%	100.0%
FF. 12	温度检测方式选择	0~1	0
FF. 13	第一路温度传感器保护阀值	50.0℃~90.0℃	85.0
FF. 14	第二路温度传感器保护阀值	50.0℃~90.0℃	85.0
FF. 15	特殊信息清除功能	0~4	0

0:禁止

1:清除累积运行时间

清除监控参数 D-35 内容。

2:清除累积通电时间

清除监控参数 D-36 内容。

3:清除风扇累积运行时间

清除监控参数 D-37 内容。

4: 清除累积用电量

清除监控参数 D-38、D-39 内容。

FF. 16	机器出厂条码 1	0~65535	0
FF. 17	机器出厂条码 2	0~65535	0
FF. 18	机器出厂日期(月,日)	0~1231	0
FF. 19	机器出厂日期(年)	2010~2100	2013
FF. 20	软件升级日期(月,日)	0~1231	0622
FF. 21	软件升级日期(年)	2010~2100	2017

监控参数

d-00	输出频率(转差补偿前)	0.00~最大输出频率【F0.10】	0.00
d-01	输出频率(转差补偿后)	0.00~最大输出频率【F0.10】	0.00
d-02	输出频率(转差补偿后)	0.00~最大输出频率【F0.10】	0.00
d-03	输出频率(转差补偿后)	0.00~最大输出频率【F0.10】	0.00
d-04	输出频率(转差补偿前)	0.00~最大输出频率【F0.10】	0.00
d-05	输出电流	0. 0∼6553. 5A	0.00
d-06	输出电压	0~999V	0.00
d-07	输出转矩	-200.0~+200.0%	0.0%
d-08	电机转速	0~36000RPM/min	0.00
d-09	电机功率因数	0.00~1.00	0.00
d-10	运行线速度	0.01∼655.35m/s	0.00
d-11	设定线速度	0.01~655.35m/s	0.00
d-12	母线电压	0~999V	0
d-13	输出电压(V)	0~999V	0
d-14	PID 设定值(V)	0.00~10.00V	0.00
d-15	PID 反馈值(V)	0.00~10.00V	0.00

d-16	模拟输入 AI1	0.00~10.00V	0.00
d-17	模拟输入 AI2	0.00~10.00V	0.00
d-18	脉冲频率输入	0.0∼50.0kHz	0.00
d-19	模拟输出 A01	0.00~10.00V	0.00
d-20	模拟输出 A02	0.00~10.00V	0.00
d-21	输入端子状态	0∼FH	0
d-22	输出端子状态	0∼FH	0
d-23	变频器运行状态	0∼FFFFH	0

 $0\sim$ FFFFH

BITO: 运行/停机 BIT1: 反转/正转 BIT2: 零速运行 BIT3: 保留 BIT4: 加速中 BIT5: 减速中 BIT6: 恒速运行中 BIT7: 预励磁中 BIT8: 电机参数调谐中

BIT9: 过流限制中 BIT10: 过压限制中 BIT11: 转矩限幅中

BIT12: 速度限幅中 BIT13: 速度控制

BIT14: 转矩控制

BIT15. 保留

BIT15: 保留			
d-24	多段速当前段数	0~15	0
d-25	保留	_	0
d-26	保留		0
d-27	当前计数值	0~65535	0
d-28	设定计数值	0~65535	0
d-29	当前定时值(S)	0∼65535S	0
d-30	设定定时值(S)	0∼65535S	0
d-31	当前长度	0.000~65.535(KM)	0.000
d-32	设定长度	0.000∼65.535(KM)	0.000
d-33	散热器 (IGBT) 温度 1	0.0℃~+110.0℃	0.0
d-34	散热器 (IGBT) 温度 2	0.0℃~+110.0℃	0.0
d-35	本机累积运行时间(小时)	0∼65535H	0
d-36	本机累积通电时间(小时)	0∼65535H	0
d-37	风扇累积运行时间(小时)	0∼65535H	0
d-38	累积用电量(低位)	0∼9999KWH	0
d-39	累积用电量 (高位)	0∼9999KWH (*10000)	0
d-40	PID 压力反馈	0.00∼60.00 (MPa, Kg)	0.00
d-41	输出功率	0.0∼6553.5KW	0.0
d-42	专用机型监控参数(保留)	保留	0
d-43	专用机型监控参数(保留)	保留	0
d-44	专用机型监控参数(保留)	保留	0
d-45	专用机型监控参数(保留)	保留	0
d-46	专用机型监控参数(保留)	保留	0
d-47	专用机型监控参数(保留)	保留	0
d-48	前三次故障类型	0~30	0

d-49	前二次故障类型	0~30	0
d-50	前一次故障类型	0~30	0
d-51	当前故障类型	0~30	0
d-52	当前故障时的运行频率	0.00~【F0.11】上限频率	0.00
d-53	当前故障时的输出电流	0. 0∼6553. 5A	0.00
d-54	当前故障时的母线电压	0∼999V	0
d-55	当前故障时的输入端子状态	0∼FFH	0
d-56	当前故障时的输出端子状态	0∼FFH	0
d-57	当前故障时的变频器运行状态	0∼FFH	0

第八章 EMC(电磁兼容性)

8.1 定义

电磁兼容是指电气设备在电磁干扰的环境中运行,不对电磁环境进行干扰而且能稳定实现其 功能的能力。

8.2 EMC 标准介绍

根据国家标准 GB/T12668.3 的要求,变频器需要符合电磁干扰及抗电磁干扰两个方面的要求。

我司现有产品执行的是最新国际标准: IEC/EN61800-3: 2004 (Adjustable speed electrical power drive systems part 3:EMC requirements and specific test methods),等同国家标准 GB/T12668.3。

IEC/EN61800-3 主要从电磁干扰及抗电磁干扰两个方面对变频器进行考察,电磁干扰主要 对变频器的辐射干扰、传导干扰及谐波干扰进行测试(对应用于民用的变频器有此项要求)。抗 电磁干扰主要对变频器的传导抗扰度、辐射抗扰度、浪涌抗扰度、快速突变脉冲群抗扰度、ESD 抗扰度及电源低频端抗扰度(具体测试项目有:

- 1、输入电压暂降、中断和变化的抗扰性试验;
- 2、换相缺口抗扰性试验:
- 3、谐波输入抗扰性试验;
- 4、输入频率变化试验:
- 5、输入电压不平衡试验:
- 6、输入电压波动试验)进行测试。依照上述 IEC/EN61800-3 的严格要求进行测试,我司产品按照 7.3 所示的指导进行安装使用,在一般工业环境下将具备良好的电磁兼容性。

8.3 EMC 指导

8.3.1 谐波的影响:

电源的高次谐波会对变频器造成损坏。所以在一些电网品质比较差的地方,建议加装交流输入电抗器。

8.3.2 电磁干扰及安装注意事项:

电磁干扰有两种,一种是周围环境的电磁噪声对变频器的干扰,另外一种干扰是变频器所产生的对周围设备的干扰。

安装注意事项:

- 1) 变频器及其它电气产品的接地线应良好接地;
- 2) 变频器的动力输入和输出线及弱电信号线(如:控制线路)尽量不要平行布置,有条件时垂直布置:
- 3) 变频器的输出动力线建议使用屏蔽电缆,或使用钢管屏蔽动力线,且屏蔽层要可靠接 地,对于受干扰设备的引线建议使用双绞屏蔽控制线,并将屏蔽层可靠接地;
 - 4) 对于电机电缆长度超过 100m 的,要求加装输出滤波器或电抗器。

8.3.3 周边电磁设备对变频器产生干扰的处理方法:

- 一般对变频器产生电磁影响的原因是在变频器附近安装有大量的继电器、接触器或电磁制动器。当变频器因此受到干扰而误动作时,建议采用以下办法解决:
 - 1) 产生干扰的器件上加装浪涌抑制器;
 - 2) 变频器输入端加装滤波器,具体参照 7.3.6,进行操作;
 - 3) 变频器控制信号线及检测线路的引线用屏蔽电缆并将屏蔽层可靠接地。

8.3.4 变频器对周边设备产生干扰的处理办法:

这部分的噪声分为两种:一种是变频器辐射干扰,而另一种则是变频器的传导干扰。这两种干扰使得周边电气设备受到电磁或者静电感应。进而使设备产生了误动作。针对几种不同的干扰 情况,参考以下方法解决:

- 1) 用于测量的仪表、接收机及传感器等,一般信号比较微弱,若和变频器较近距离或在 同一个控制 柜内时,易受到干扰而误动作,建议采用下列办法解决:尽量远离干扰 源;不要将信号线与动力线平行布 置特别不要平行捆扎在一起;信号线及动力线用屏 蔽线,且接地良好;在变频器的输出侧加铁氧体磁环(选择抑制频率在 30~1000MHz 范围内),并同方向绕上 2~3 匝,对于情况恶劣的,可选择加装 EMC 输出滤波器;
- 2) 当受干扰设备和变频器使用同一电源时,会造成传导干扰,如果以上办法还不能消除干扰,则应该在变频器与电源之间加装 EMC 滤波器(具体参照 7.3.6 进行选型操作):
 - 3) 外围设备单独接地,可以排除共地时因变频器接地线有漏电流而产生的干扰。

8.3.5 漏电流及处理:

使用变频器时漏电流有两种形式:一种是对地的漏电流;另一种是线与线之间的漏电流。

1) 影响对地漏电流的因素及解决办法:

导线和大地间存在分布电容,分布电容越大,漏电流越大;有效减少变频器及电机间距离以减少分布电容。载波频率越大,漏电流越大。可降低载波频率来减少漏电流。但降低载波频率会 导致电机噪声增加,请注意,加装电抗器也是解决漏电流的有效办法。

漏电流会随回路电流增大而增大, 所以电机功率大时, 相应漏电流大。

2) 引起线与线之间漏电流的因素及解决办法:

变频器输出布线之间存在分布电容,若通过线路的电流含高次谐波,则可能引起谐振而产生 漏电流。此时若使用热继电器可能会使其误动作。

解决的办法是降低载波频率或加装输出电抗器。在使用变频器时,建议变频器与电机之间不 加装热继电器,使用变频器的电子过流保护功能。

8.3.6 电源输入端加装 EMC 输入滤波器注意事项:

- 1) ①注意:使用滤波器时请严格按照额定值使用;由于滤波器属于 I 类电器,滤波器金属外 壳地应该 大面积与安装柜金属地接触良好,且要求具有良好导电连续性,否则将有触 电危险及严重影响 EMC 效果;
- 2) 通过 EMC 测试发现,滤波器地必须与变频器 PE 端地接到同一公共地上,否则将严重影 响 EMC 效果。
 - 3) 滤波器尽量靠近变频器的电源输入端安装。

第九章 故障诊断及对策

9.1 故障报警及对策

在运行过程中,如果发生异常,则变频器立即封锁 PWM 输出,进入故障保护状态。同时键盘上由闪烁显示的故障代码指示当前故障信息。同时,故障指示灯 ALM 点亮。此时需按本节提示方法进行检查故障原因和相应的处理方法,如果依然无法解决问题则请直接与我司联系。 相应解决方法请参考表 9-1 故障诊断及排除。

故障码	名 称	故障可能原因	故障对策	
		加速时间太短(包括调谐过程)	延长加速时间	
E-01	加速运行中过流	对旋转中的电机进行再起动	设置为直流制动后起动或转 速追踪起动	
	7	变频器功率偏小	选用功率等级大的变频器	
		V/F 曲线或转矩提升设置不当	调整 V/F 曲线或转矩提升量	
		减速时间太短(包括调谐过程)	延长减速时间	
E-02	减速运行中过流	变频器功率偏小	选用功率等级大的变频器	
		负载惯性过大	外接制动电阻或制动单元	
		电网电压偏低	检查输入电源	
E-03	恒速运行中过流	负载发生突变或异常	检查负载或减小负载突变	
		变频器功率偏小	选用功率等级大的变频器	
		输入电压异常(包括调谐过程)	检查输入电源	
E-04	加速运行中过压	对旋转中的电机进行再起动	设置为直流制动后起动或转 速追踪起动	
		特殊势能负载	外接制动电阻或制动单元	
E-05		减速时间太短(包括调谐过程)	延长减速时间	
	减速运行中过压	负载惯性过大	外接制动电阻或制动单元	
		输入电压异常	检查输入电源	
F 00		输入电压异常	检查输入电源	
E-06	恒速运行中过压	特殊势能负载	外接制动电阻或制动单元	
E-07	母线欠压	输入电压异常或接触器(继电器)未吸合	检查电源电压或向厂家寻求 服务	
		V/F 曲线或转矩提升设置不当	调整 V/F 曲线和转矩提升量	
E-08	4+4.4+4	电网电压过低	检查电网电压	
E-08	电机过载	电机堵转或负载突变过大	检查负载	
		电机过载保护系数设置不正确	正确设置电机过载保护系数	
		V/F 曲线或转矩提升设置不当	调整 V/F 曲线和转矩提升量	
E 00	4キ 뉴스 명의 급실 고등	电网电压过低	检查电网电压	
E-09	变频器过载	加速时间太短	延长加速时间	
		电机负载过重	选择功率更大的变频器	
E-10	变频器掉载	输出电流小于掉载检测值	检查负载	
E-11	功率模块故障	变频器输出短路或接地	检查电机接线	

第 97 页 共 112 页

TT 110 . T 1/10 / C	主人/八冊		7070 P KIT 10 BID	
故障码	名 称	故障可能原因	故障对策	
		变频器瞬间过流	参见过流对策	
		风道堵塞或风扇损坏	疏通风道或更换风扇	
		控制板异常或干扰严重	向厂家寻求服务	
		功率器件损坏	向厂家寻求服务	
E-12	输入侧缺相	电源输入缺相	检查电源及连线	
E-13	输出侧缺相或电 流不平衡	输出 U、V、W 有缺相	检查输出配线	
E-14	输出对地短路 故障	保留	保留	
E-15	散热器过热1	环境温度过高	降低环境温度	
		风扇损坏	更换风扇	
E-16	散热器过热 2	风道堵塞	疏通风道	
		与上位机波特率不匹配	调整波特率	
E-17	RS485 通讯故障	RS485 信道干扰	检查通讯连线是否屏蔽,配 线是否合理,必要的话需考 虑并接滤波电容	
		通讯超时	重试	
E-18	键盘通讯故障	键盘与控制板连接线损坏	更换键盘与控制板的连接线	
E-19	外部设备故障	外部设备故障输入端子闭合	断开外部设备故障输入端 并清除故障(注意检查原	
		霍尔器件或放大电路故障		
E-20	电流检测错误	辅助电源故障	向厂家寻求服务	
		霍尔或功率板连线接触不良		
		电机参数设置错误	重新设置电机参数	
E-21	电机调谐故障	变频器与电机功率规格严重 不匹配	向厂家寻求服务	
		调谐超时	检查电机连线	
E-22	EEPROM 读写故障	EEPROM 故障	向厂家寻求服务	
		变频器参数上传到操作面板时 数据错误	检查操作面板线连接情况	
E-23	参数拷贝出错	参数从操作面板下载到变频器 时数据错误	检查操作面板线连接情况	
		未进行参数拷贝上传直接进行 参数下载	先进行参数上传,再下载	
E-24	PID 反馈断线	PID 反馈线路松动	检查反馈连线	
L 21	110 次映画家	反馈量小于断线检测值	调整检测输入阀值	
E-25	电压反馈断线	反馈量小于断线检测值	调整检测输入阀值	
E-26	运行限制时间 到达	运行限制时间到达	向代理商寻求服务	
E-27	协处理器通讯 故障	保留	保留	
E-28	编码器断线故障	保留	保留	
E-29	速度偏差过大 故障	保留	保留	

故障码	名 称	故障可能原因	故障对策	
E-30	过速度故障	保留	保留	

9.2异常处理

变频器在运行中,常见异常现象和对策见表 9-2:

	异常现象	可能的原因和对策				
	键盘无显示	检查是否停电,输入电源是否缺相,输入电源线是否接错				
电	键盘无显示, 但机内充电指 示灯亮	检查与键盘相关的接线、插座等是否存在问题,测量机内各控制电源电压,以此确认开关电源是否正常工作,若开关电源工作不正常,检查开关电源进线(+、-)插座是否接好,起振是否损坏或稳压管是否正常。				
机	电机有嗡嗡声	电机负载太重,设法降低负载				
不转	未发现异常	确认是否处于跳闸状态或跳闸后没复位,是否处于掉电再启动状态,键盘是否重新设定过,是否进入程序运行状态、多段速度运行状态、特定的运行状态或非运行状态,可试用恢复出厂值的办法。				
	水及処开市	确认运行指令是否给出				
		检查运转频率是否设定为0				
		加减速时间设定的不合适,增大加减速时间				
		电流限幅值设定的太小,提升限幅值				
		减速时过电压保护动作,增大减速时间				
	载波频率设定的不合适, 负载过重或出现振荡					
速	电机不能顺利加减 负载过重,力矩不够。V/F模式下加大转矩提升值,如果依然不能满足速 求,可改用自动转矩提升模式(A880默认就是这种方式),此时注意 机参数需与实际值相符合,如果还是不能满足要求,则建议改用磁通量控制方式,此时依然要注意电机参数与实际值是否一致,同时最好行电机参数调谐。					
	电机功率与变频器功率不匹配。请将电机参数设置为实际值					
	一拖多台电机。请将转矩提升方式改为手动提升方式					
		频率上下限设定不合适				
电机	1.虽能旋转但不	频率设定偏低,或频率增益设定的太小				
能调	调速 检查使用的调速方式是否与设定的频率给定相吻合					
		检查负载是否过重,是否处于过压失速或过流限幅状态				
		负载波动频繁,尽量减小其变化				
	1在运转中转速	变频器与电机额定值严重不符。请电机参数设置为实际值				
变动	J	频率设定电位器接触不良或频率给定信号波动。改为数字频率给定方式 或者增大模拟输入信号的滤波时间常数				
٠٠ سال	1 44 34 44 32 43 19	调整输出端子U、V、W的相序				
电 ^利 反	1的旋转方向相	设置运转方向(F0.09=1)为反转即可				
		输出缺相导致的方向不确定性,请立即检查电机接线				

附录: Modbus 通讯协议

1、RTU 模式及格式

控制器以 RTU 模式在 Modbus 总线上进行通讯时,信息中的每 8 位字节分成 2 个 4 位 16 进制的字符,该

模式的主要优点是在相同波特率下其传输的字符的密度高于 ASCII 模式,每个信息必须连续传输。

(1) RTU 模式中每个字节的格式

编码系统: 8 位二进制,十六进制 0-9, A-F.

数据位: 1 位起始位, 8 位数据(低位先送), 停止位占 1 位, 奇偶校验位可以选择。(参考 RTU 数据帧为序图)

错误校验区:循环冗余校验(CRC)。

(2) RTU 数据帧位序图

带奇偶校验

14 - 3 11 3 15 4 3					_					
Start	1	2	3	4	5	6	7	8	FAr	Stop
无奇偶校验										
Start	1	2	3		4	5	6	7	8	Stop

2、系列变频器的寄存器地址及功能码

(1) 支持的功能代码

功能码	功能说明
03	读多个寄存器
06	写单个寄存器
10	连续写多个寄存器
13	读单个参数

(2) 寄存器地址

寄存器功能	地 址			
控制命令输入	0x2000			
监控参数读取	$0xD000 (0x1D00) \sim 0xD039 (0x1D39)$			
MODBUS 频率设定	0x2001			
MODBUS 转矩设定	0x2002			
MODBUS PID 频率给定	0x2003			
MODBUS PID 反馈设定	0x2004			
MODBUS 模拟输出 AO1 控制	0x2005(0~7FFF 表示 0%~100%)			
MODBUS 模拟输出 AO2 控制	0x2006(0~7FFF 表示 0%~100%)			
MODBUS 脉冲 DO 输出控制(保留)	0x2007(0~7FFF 表示 0%~100%)			
MODBUS 数字输出端子控制	0x2008			
参数设置	0x0000~0x0F15			

(3) 03H 读多个参数(最多连续读 8 项)

Inquiry information frame format (发送帧):

Address	01H
Function	03H
Starting data address	00H
	01H
Number of Data(Byte)	00H

	02H
CRC CHK High	95H
CRC CHK Low	СВН

此段数据分析:

01H 为变频器地址

03H 为读功能码

0001H 为起始地址类同控制面板的 F0.01 项

0002H 为读菜单的项数,及 F0.01 和 F0.02 两项

95CBH 为 16 位 CRC 效验码

Response information frame format (返回帧)

01H
03H
04H
00H
64H
00H
64H
BAH
07H

此段数据分析:

01H 为变频器地址

03H 为读功能码

04H 为是读取项*2的积

0064H 为读取 F0.01 项的数据

0064H 为读取 F0.02 项的数据

BA07H 为 16 位 CRC 校验码

实例:

天沙!:	
名 称	帧 格 式
读取 F0.01 和 F0.02 两项的数据	发送帧: 01H 03H 0001H 0002H 95CBH
	返回帧: 01H 03H 04H 0064H 0064H BA07H
*** F2 04 F5 66 *** H2	发送帧: 01H 03H 0201H 0001H D472H
读取 F2.01 项的数据	返回帧: 01H 03H 02H 000FH F840H
	发送帧: 01H 03H D000H 0001H BCCAH
读取 d-00 项的监控参数(地址 D000H 与	返回帧: 01H 03H 02H 1388H B512H
1D00H 通用)	发送帧: 01H 03H 1D00H 0001H 8266H
	返回帧: 01H 03H 02H 1388H B512H
读取变频器在停机时的状态(地址 A000H 与 1A00H 通用,参考后面变频器运行状态	发送帧: 01H 03H A000H 0001H A60AH
	返回帧: 01H 03H 02H 0040H B9B4H
以明)	发送帧: 01H 03H 1A00H 0001H 8312H
θĽ θΊ, 7	返回帧: 01H 03H 02H 0040H B9B4H
	发送帧: 01H 03H E000H 0001H B3CAH
读取故障代码 E-19 (地址 E000H 与 1E00H	返回帧: 01H 03H 02H 0013H F989H
通用,参考后面变频器故障代码表)	发送帧: 01H 03H 1E00H 0001H 8222H
	返回帧: 01H 03H 02H 0013H F989H
	发送帧: 01H 03H E001H 0001H E20AH
读取预告警码 A-18(地址 E001H 与 1E01	返回帧: 01H 03H 02H 0012H 3849H
通用,参考后面变频器预告警码表)	发送帧: 01H 03H 1E01H 0001H D3E2H
	返回帧: 01H 03H 02H 0012H 3849H

(4) 06H 写单个参数

Inquiry information frame format (发送帧):

Address	01H
Function	06H
Starting data address	20H
	00H
Data(2Byte)	00H
	01H
CRC CHK Low	43H
CRC CHK High	CAH

此段数据分析:

01H 为变频器地址

06H 为写功能码

2000H 为控制命令地址

0001H 为正转命令

43A1H 为 16 位 CRC 效验码

Response information frame format (返回帧):

Address	01H
Function	06H
Charting data address	20H
Starting data address	00H
Number of Data(Byte)	00H
	01H
CRC CHK High	43H
CRC CHK Low	CAH

此段数据分析: 如果设置正确,返回相同的输入数据 实例:

名 称	帧 格 式
正转	发送帧: 01H 06H 2000H 0001H 43CAH
	返回帧: 01H 06H 2000H 0001H 43CAH
反 转	发送帧: 01H 06H 2000H 0009H 420CH
及权	返回帧: 01H 06H 2000H 0009H 420CH
 	发送帧: 01H 06H 2000H 0003H C20BH
13.10	返回帧: 01H 06H 2000H 0003H C20BH
自 由 停 机	发送帧: 01H 06H 2000H 0004H 83C9H
日田庁が	返回帧: 01H 06H 2000H 0004H 83C9H
复位	发送帧: 01H 06H 2000H 0010H 43CAH
及 匹	返回帧: 01H 06H 2000H 0010H 43CAH
正 转 点 动	发送帧: 01H 06H 2000H 0002H 03CBH
上 表 点 切	返回帧: 01H 06H 2000H 0002H 03CBH
反 转 点 动	发送帧: 01H 06H 2000H 000AH 020DH
人 4 点 30	返回帧: 01H 06H 2000H 000AH 020DH
设置 F8.00 项的参数为 1	发送帧: 01H 06H 0800H 0001H 4A6AH
	返回帧: 01H 06H 0800H 0001H 4A6AH
MODBUS 给定频率为 40HZ	发送帧: 01H 06H 2001H 0FA0H D642H

	返回帧:	01H	06H	2001H	0FA0H	D642H
MODBUS PID 给定值为 5V	发送帧:	01H	06H	2003H	01F4H	721DH
	返回帧:	01H	06H	2003H	01F4H	721DH
MODBUS PID 反馈值为 4V	发送帧:	01H	06H	2004H	0190H	C237H
MODBOS FID 及顷值为 4V	返回帧:	01H	06H	2004H	0190H	C237H
MODBUS 转矩设定为 80%	发送帧:	01H	06H	2002H	0320H	22E2H
MODBO3 将程以定为 80%	返回帧:	01H	06H	2002H	0320H	22E2H
	发送帧:	01H	06H	AD00H	I 0001F	1 68A6H
效验用户密码(地址 AD00H 与 1C00H 通用)	返回帧:	01H	06H	AD00H	I 0001F	1 68A6H
次整用/ 品尚(地址 AD00H ⇒ 1€00H 起用)	发送帧:	01H	06H	1C00H	0001H 4	IF9AH
	返回帧:	01H	06H	1C00H	0001H 4	1F9AH
效验运行限制功能密码(地址 AD01H 与 1C01H	发送帧:	01H	06H	AD01H	0002F	1 7967H
	返回帧:	01H	06H	AD01H	0002H	1 7967H
通用)	发送帧: 01H 06H 1C01H 0002H 5E5BH					E5BH
	返回帧:	01H	06H	1C01H	0002Н 8	E5BH
MODRUS 模拟绘山 AO1 控制绘山 SV	发送帧:	01H	06H	2005H	3FFFH	C3BBH
MODBUS 模拟输出 AO1 控制输出 5V	返回帧:	01H	06H	2005H	3FFFH	C3BBH
LACE THE MAKE A LONG TO THE MAKE A LONG	发送帧:	01H	06H	2006H	7FFFH	027BH
MODBUS 模拟输出 AO2 控制输出 10V	返回帧:	01H	06H	2006H	7FFFH	027BH
LICENIA III NO ANALISMANA IN CENT	~				,,,,,,,	
MODBLIC 股油 DO 绘山校制绘山 25VII-	发送帧:		06H	2007H	3FFFH	627BH
MODBUS 脉冲 DO 输出控制输出 25KHz		01H	06H 06H			627BH 627BH
MODBUS 脉冲 DO 输出控制输出 25KHz MODBUS 数字输出端子 Y1 控制输出	发送帧:	01H 01H		2007H	3FFFH	

(5) 10H 连续写多个参数

Inquiry information frame format (发送帧):

y information frame format (及因軟).		
Address	01H	
Function	10H	
Starting data address	01H	
	00H	
Number of Data(Byte)	00H	
	02H	
DataNum*2	04H	
Data1(2Byte)	00H	
	01H	
Data2(2Byte)	00H	
	02H	
CRC CHK High	2EH	
CRC CHK Low	3EH	

此段数据分析:

01H 为变频器地址

10H 为写功能码

0100H 为起始地址类同控制面板的 F1.00 项

0002H 为寄存器的数目

04H 为总的字节数(2*寄存器的数目)

0001H 为 F1.00 项的数据

0002H 为 F1.01 项的数据

第 103 页 共 112 页

2E3EH 为 16 位 CRC 效验码

Response information frame format (返回帧):

Address	01H
Function	10H
Starting data address	01H
	00H
Number of Data(Byte)	00H
	02H
CRC CHK High	40H
CRC CHK Low	34H

此段数据分析:

01H 为变频器地址

10H 为写功能码

0100H 为写 F1.00 项的数据

0002H 为写菜单的项数,及 F1.00 和 F1.01 两项

4034H 为 16 位 CRC 校验码

实例:

名 称					帧 格	式			
设置 F1.00、F1.01	发送帧:	01H	10H	0100H	0002H	04H	0001H	0002H	2E3EH
的参数为1和0.02	返回帧:	01H	10H	0100H	0002H	4034	——— Н		
正转并通讯给定 频率为	发送帧:	01H	10H	2000H	0002H	04H	0001H	1388H	36F8H
50HZ	返回帧:	01H	10H	2000H	0002H	4A08	Н		
设置 F1.00 项的参	发送帧:	01H	10H	0100H	0001H	02H	0001H	7750H	
数为 1	返回帧:	01H	10H	0100H	0001H	0035	Н		

(6) 13H 读单个参数(包括属性、最小值、最大值)

Inquiry information frame format (发送帧):

Address	01H
Function	13H
Charting data address	00H
Starting data address	0CH
Nivershau of Data (Duta)	00H
Number of Data(Byte)	04H
CRC CHK High	45H
CRC CHK Low	СВН

此段数据分析:

01H 为变频器地址

13H 为读功能码

000CH 为起始地址类同控制面板的 F0.12 项

0004H 为寄存器的数目

45CBH 为 16 位 CRC 效验码

Inquiry information frame format (返回帧):

Address	01H
Function	13H

6 1.	00H
Starting data address	12H
Data1(2Byta)	13H
Data1(2Byte)	88H
D-+-2/2B:+-)	03H
Data2(2Byte)	22H
Data 2/2By (a)	00H
Data3(2Byte)	00H
Data 4/2Byta)	13H
Data4(2Byte)	88H
CRC CHK High	28H
CRC CHK Low	31H

此段数据分析:

01H 为变频器地址

13H 为写功能码

000CH 为起始地址类同控制面板的 F0.12 项

1388H 为参数值

0322H 为属性值

0000H 为最小值

1388H 为最大值

2831H 为 16 位 CRC 校验码

实例:

大 <i>い</i> は	
名 称	帧 格 式
读取 F0.12 项的参数值	发送帧: 01H 13H 000CH 0001H 85CAH
以取 FU.12 坝的参数恒	返回帧: 01H 13H 02H 1388H B1D2H
读取 F0.12 项的参数值	发送帧: 01H 13H 000CH 0002H C5CBH
+	返回帧: 01H 13H 04H 1388H 0322H FCE4H
属性值	
读取 F0.12 项的参数值	发送帧: 01H 13H 000CH 0003H 040BH
+	返回帧: 01H 13H 06H 1388H 0322H 0000H 628BH
属性值+最小值	
读取 F0.12 项的参数值	发送帧: 01H 13H 000CH 0004H 45CBH
+属性值+最小值+最大 值	返回帧: 01H 13H 08H 1388H 0322H 0000H 1388H 2831H

3、其它寄存器地址功能说明:

功能说明	地址定义	数据意义说明		
		字节	位	含义
			Bit7	0:无动作
			DITT	1:过载预告警
				0:INV_220V
			Bit6∼Bit5	1:INV_380V
			DITO DITO	2:INV_660V
				3:INV_1140V
			Bit4	0: 无动作
		Byte1	D1 (4	1:掉电存储

	7 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			113.344 11.10 01.10 11.00
变频器运	A000H(1A00H)		Bit3	0:无动作 1:复位
行状态			Bit2∼Bit1	0: 无动作 1: 静态调谐 2: 动态调谐
			Bit0	0:操作面板运行命令通道
		Byte0	Bit7	1:端子运行命令通道 2:通讯运行命令通道 3:保留
			Bit6	0:无动作 1:母线电压已正常
		Byte0	Bit5	0:无动作 1:欠压
变频器运	A000H(1A00H)		Bit4	0:无动作 1:点动
行状态			Bit3	0:正转 1:反转
			Bit2∼Bit1	1:加速运行 2:减速运行 3:匀速运行
			Bit0	0: 停机状态 1: 运行状态
读取变频 器故障码	E000H(1E00H)	地址 E000H 与 1E00H 通用(见故障代码表、读功能码 03H 实例))		
读取变频 器故障告 警码	E001H(1E01H)	地址 E001H 与 1E01H 通用(见预告警代码表、读功能码 03H 实例)		
用户密码 效验	AD00H(1C00H)	地址 AD00H 与 1C00H 通用(见写功能码 06H 实例)		
运行限制 密码效验	AD01H(1C01H)	地址 AD00H 与 1C00H 通用(见写功能码 06H 实例)		

4、变频器故障代码表:

*、 又则而以降认问仪:		
故障代码	键盘显示内容	故障信息
0000H		无故障
0001H	E-01	加速运行中过流
0002H	E-02	减速运行中过流
0003H	E-03	恒速运行中过流
0004H	E-04	加速运行中过压
0005H	E-05	减速运行中过压
0006H	E-06	恒速运行中过压
0007H	E-07	母线欠压
0008H	E-08	电机过载
0009H	E-09	变频器过载
000AH	E-10	变频器掉载
000BH	E-11	功率模块故障
000CH	E-12	输入侧缺相
000DH	E-13	输出侧缺相或电流不平衡
000EH	E-14	输出对地短路故障
000FH	E-15	散热器过热1

0010H	E-16	散热器过热2
0011H	E-17	RS485通讯故障
0012H	E-18	键盘通讯故障
0013H	E-19	外部设备故障
0014H	E-20	电流检测错误
0015H	E-21	电机调谐故障
0016H	E-22	EEPROM 读写故障
0017H	E-23	参数拷贝出错
0018H	E-24	PID 反馈断线
0019H	E-25	电压反馈断线
001AH	E-26	运行限制时间到达
001BH	E-27	协处理器通讯故障
001CH	E-28	编码器断线故障
001DH	E-29	速度偏差过大故障
001EH	E-30	过速度故障

5、变频器预告警代码表:

· ~/// *** *//	14.44.	
告警代码	键盘显示内容 故障信息	
0000H		无故障
0009H	A-09 变频器过载预告警	
0011H	A-17	RS485通讯故障告警
0012H	A-18	键盘通讯故障告警
0015H	A-21	电机调谐告警
0016H	A-22	EEPROM 读写故障告警
0018H	A-24	PID 反馈断线告警

6、控制命令字格式(见写功能码 06H 实例):

地址	位	含义
	Bit7∼Bit5	保留
	Bit4	0: 无动作
	biter	1: 复位
	Bit3	0: 正转
2000H	D 103	1: 反转
		100: 自由停机
	Bit2∼Bit0	011: 停机
		010: 点动运行
		001: 运行
	Bit7∼Bit4	保留
	Bit3	保留
2008H(按位置 1 为输出,按位置 0 为关闭)	Bit2	可编程继电器 R 输出
	Bit1	开路集电极输出端子 Y2
	Bit0	开路集电极输出端子 Y1

7、参数属性表:

位	含义
Bit15	保留

高性能电流矢量变频器

Bit14	菜单			
Bit13	进制			
Bit12	恢复出厂值覆	恢复出厂值覆盖		
Bit11	EEPROM			
Bit10 [^] Bit9	"○":01 "×":10 "◆":11 "◇":00	"×":10 "•":11		
Bit8	符号			
Bit7~Bit3	1:00000 V:00001 A:00010 rpm:00011 HZ:00100 %:00110 S:01000	KHZ:01100 KW:01010 om:01110 ms:01001 MA:01011 KM:01101 CM:01111	us:10001 HZ/S:10000 mh:10010 C:10011 m/s:10100 H:10101 KWH:10110	
Bit2~Bit0	小数点			

8、从机回应异常信息的错误码含义:

一次的自己为 16 自己的 4 次 5 百 次 5		
错误码	说明	
01H	非法功能码	
02H	非法地址	
03H	非法数据	
04H	非法寄存器长度	
05H	CRC 校验错误	
06H	参数运行中不可修改	
07H	参数不可修改	
08H	上位机控制命令无效	
09H	参数受密码保护	
0AH	密码错误	

9、系列变频器所有参数对应的通讯地址:

功能码	通讯地址
F0.00~F0.22	0000H∼0016H
F1.00~F1.37	0100H∼0125H
F2.00~F2.17	0200H∼0211H
F3.00~F3.08	0300H∼0308H
F4.00~F4.27	0400H∼041BH
F5.00~F5.24	0500H∼0518H
F6.00∼F6.52	0600H∼0634H
F7.00~F7.36	0700H∼0724H
F8.00~F8.33	0800H∼0821H
F9.00~F9.73	0900H∼0949H
FA.00~FA.35	0A00H∼0A23H
FB.00∼FB.07	0B00H∼0B07H
FC.00~FC.28	0C00H∼0C1CH
FE.00∼FE.15	0E00H~0E0FH
FF.00~FF.22	0F00H∼0F16H
d-00∼d-57	D000H (1D00H) ~D039H (1D39H)

注意:

- 1、上述所举例子中,变频器的地址都选择 01,是为了便于说明,变频器为从机时,地址在 1~247 范围内设置,如果改变了帧格式中任意一个数据,则校验码也要重新计算,可以在网上下载 CRC16 位校验码计算工具。
- 2、监控项起始地址为 D000,每项在此地址基础上相应偏移对应的 16 进制值,然后与起始地址相加。例如:监控起始项为 d-00,对应的起始地址为 D000H(1D00H),现在读取监控项 d-18,18-00=18,18 转成 16 进制为 12H,那么 d-18 的读取地址为 D000H+12H = D012H(1D00H+12H = 1D12H),地址 D000H 和 1D00H 通用。3、从机回应信息发生异常时的帧格式:变频器地址 + (80H+功能码)+错误码+16 位 CRC 校验码;如果从机返回帧为 01H + 83H + 04H + 40F3H;01H 是从机地址,83H 是 80H+03H,表示读错误,04H 表示非法数据长度,40F3H 为 16 位 CRC 校验码。

保修协议

- 1 本产品保修期为十二个月(以机身条型码信息为准),保修期内按照使用说明书正常使用情况下,产品发生故障或损坏,我公司负责免费维修。
- 2 保修期内, 因以下原因导致损坏, 将收取一定的维修费用:
- A、因使用上的错误及自行擅自修理、改造而导致的机器损坏;
- B、由于火灾、水灾、电压异常、其它天灾及二次灾害等造成的机器损坏;
- C、购买后由于人为摔落及运输导致的硬件损坏;
- D、不按我司提供的用户手册操作导致的机器损坏:
- E、因机器以外的障碍(如外部设备因素)而导致的故障及损坏;
- 3 产品发生故障或损坏时,请您正确、详细的填写《产品保修卡》中的各项内容。
- 4 维修费用的收取,一律按照我公司最新调整的《维修价目表》为准。
- 5 本保修卡在一般情况下不予补发,诚请您务必保留此卡,并在保修时出示给维修人员。
- 6 在服务过程中如有问题,请及时与我司代理商或我公司联系。

产品保修卡

	单位地址:				
客户信息	单位名称:	联系人:			
	即以外,	联系电话:			
	产品型号:				
	机身条码(粘贴在此处):				
产品信息	代理商名称:				
	(维修时间与内容):				
故障信息	维修人:				