Deep Neural Network

Sidharth Baskaran

July 2021

Deep L-layer neural network

- Logistic regression is shallow model, and a deeper network has more hidden layers
- Notation
 - L number of layers in network
 - $-n^{[l]}$ number of units in layer l

$$n^{[0]} = n_x$$

 $n^{[0]} = n_x$
 $n^{[l]} = g^{[l]}(z^{[l]})$
 $n^{[0]} = x, a^{[L]} = \hat{y}$

Forward propagation

- Steps
 - $-z^{[l]} = w^{[l]}a^{[l-1]} + b^{[l]}$ $-a^{[l]} = q^{[l]}(z^{[l]})$
- Vectorized across m examples
 - $-Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$ where $X = A^{[0]}$
 - Z,A,X are stacked columnwise, i.e. $Z^{1},\dots,Z^{[L](m)}$

Matrix Dimension Debugging

• Forward propagation step

$$\begin{split} z^{[l]} &= W^{[l]} a^{[l-1]} + b^{[l]} \\ (n^{[l]}, 1) &= (n^{[l]}, n^{[l-1]}) (n^{[l-1]}, 1) + (n^{[l]}, 1) \end{split}$$

• If vectorized, must modify

$$\begin{split} Z^{[l]} &= W^{[l]} A^{[l-1]} + b^{[l]} \\ (n^{[l]}, m) &= (n^{[l]}, n^{[l-1]}) (n^{[l-1]}, m) + \underbrace{(n^{[l]}, 1)}_{\text{broadcasted}} \end{split}$$