More Dynamic Programming: Matrix Chain Multiplication

Problem Statement

- Given a chain of matrices to be multiplied together, determine a parenthesizing of the chain that minimizes the total number of steps required to complete the multiplication
- Matrix Multiplication
 - Given $A_{p \times q}$ and $B_{q \times r}$
 - AB requires par total element-wise multiplications
 - (and a similar number of additions, but we will ignore these)
 - Example: $A_1 10 \times 100$, $A_2 100 \times 5$, $A_3 5 \times 50$
 - \mathcal{P} (A₁ A₂) A₃ requires 10 x 100 x 5 + 10 x 5 x 50 = 7500
 - \mathcal{A}_1 (A_2 A_3) requires 100 x 5 x 50 + 10 x 100 x 50 = 75000

Example

- A_1 : 10 × 100
- A_2 : 100 x 5
- A_3 : 5 x 50
 - $(A_1 A_2) A_3$ requires $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
 - A_1 (A_2 A_3) requires $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$

How Many Ways P(n) of Parenthesizing are Possible for $A_1A_2A_3...A_n$?

- For n = 1, P(n) = 1
- For n > 1, the final product is the product of two fully parenthesized matrix subproducts, where the split can occur anywhere after matrix 1,2,...,n-1

$$P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)$$

- $P(n) = \Omega(4^n / n^{3/2})$
 - Exponential time to check all possible parentheses placements

Dynamic Programming Solution

- Optimal substructure
 - Total number of multiply operations needed for a given split:
 - Multiplications needed for optimal solution to subproduct 1
 - Multiplications needed for optimal solution to subproduct 2
 - Multiplications needed to combine subproducts 1 and 2
 - The optimal solution will be the best choice among all possible splits

Dynamic Programming Solution

- Suppose we have n matrices: $A_1 \times A_2 \times ... \times A_n$
 - The dimensions of all the matrices can be completely specified with $a_0,\,a_1,\,a_2,\,...,\,a_n$
 - A_i has dimensions $a_{i-1} \times a_i$
 - Interior dimensions of neighboring matrices are the same

First Try

- S[n] := minimum number of multiplications needed to combine the first n matrices
 - $S[n] = \min_{k=1,2,...,n-1} (a_0 a_k a_n + S[k] + S[?])$
 - Need a subproblem corresponding to the optimal solution for multiplying $A_{k+1} \times ... \times A_n$

Dynamic Programming Solution: Second Try

- $S[L][R] := minimum number of multiplications needed to combine matrices <math>A_L$ through A_R
 - $S[L][R] = \min_{k=L,L+1,...,R-1} (a_{L-1}a_ka_R + S[L][k] + S[k+1][R])$ for $1 \le L < R \le n$
 - S[L][L] = 0
- How is the matrix filled in?
 - From diagonal outward, using increasing size of [L,R] interval

Dynamic Programming Solution:

- Complexity: O(n³)
 - Three nested loops each iterating over at most n items

```
MATRIX-CHAIN-MULTIPLICATION (a_0, ..., a_n)
1. for L=1 to n do S[L][L] = 0
2. for d=1 to n-1 do
                                        d loops over the size of interval
3.
       for L=1 to n-d do
                                         L loops over possible left endpoints
4. R = L+d
5. S[L][R] = \infty
6.
          for k=L to R-1
             tmp = S[L][k]+S[k+1][R]+a_{L-1}.a_k.a_R
7.
8.
             if S[L][R] > tmp then S[L][R] = tmp
9. return S[1][n]
```