Question 1

A <u>price taking</u> consumer has an exogenous endowment $\{y_t\}_{t=0}^{\infty}$. They choose consumption to maximize their welfare given a discount rate $\beta \in (0,1)$, and a concave $u(\cdot)$.

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \tag{1}$$

s.t.
$$\sum_{t=0}^{\infty} q_t^0 c_t \le \sum_{t=0}^{\infty} q_t^0 y_t$$
 (2)

where $\{q_t\}_{t=0}^{\infty}$ are the price of one unit of consumption good delivered at time t measured in units of time 0 consumption (i.e., use a $q_0^0 = 1$ normalization of the price level here). Assume the utility has the form,

$$u(c) = \begin{cases} \frac{1}{1-\gamma}c^{1-\gamma} & \text{if } \gamma > 0, \gamma \neq 1\\ \log c & \text{if } \gamma = 1 \end{cases}$$

Note: you will note that the marginal utility, $u'(c) = c^{-\gamma}$ holds for all $\gamma > 0$, including the special log case. This means you will not need to treat it separately.

Assume there is a large number of identical agents in the economy, all with identical processes $y_t = y_0 \delta^t$ for $0 < \delta < 1/\beta$.

Finally, recall that if $q_0^0 = 1$, then r_{0t} is the "yield to maturity on a t-period zero-coupon bond purchased at time 0" through,

$$\frac{q_t^0}{q_0^0} \equiv \frac{1}{(1+r_{0t})^t}$$

- (a) What is the feasibility condition in the economy (i.e. relate c_t and y_t)? (hint: can use a representative agent with a large number of price taking agents).
- (b) Solve for q_t^0 in this model, explaining why q_0^0 can be chosen for convenience. Then use this to find r_{0t} from the definition above.
- (c) In the special case of $\gamma = 1$, compute q_t^0 and r_{0t} . Compute the special case of $\gamma = 1$ and $\delta = 1$.
- (d) Interpret r_{01} if $\gamma = 1$ for the $\delta > 1$ and $\delta < 1$ cases
- (e) Interpret r_{01} for $\gamma > 0$ and $\delta = 1$. In particular, discuss any reliance on γ .

Question 2

Consider a standard setup of the neoclassical growth model in a competitive equilibrium: A representative consumer orders its welfare by^1

$$\sum_{t=0}^{\infty} \beta^t \log(c_t)$$

where $0 < \beta < 1$. Or $\beta \equiv \frac{1}{1+\rho}$ for $\rho > 0$. The technology in the economy is,

$$y_t = f(k_t) = zk_t^{\alpha}$$

for $0 < \alpha < 1$ and z > 0. Labor of mass 1 is supplied inelastically.

Given exogenous government expenditures of real goods, g_t , the feasibility condition is

$$c_t + k_{t+1} + g_t \le y_t + (1 - \delta)k_t$$

In a competitive equilibrium, the government will finance g_t through taxes on capital or lump-sump taxes, $\{\tau_{kt}, \tau_{ht}\}$. Negative taxes are subsidies.

- (a) Find the steady state level of capital and consumption $\{\bar{k}, \bar{c}\}$ if $g_t = \tau_{kt} = \tau_{ht} = 0$.
- (b) Now, assume that while the government will still have $g_t = 0$, they can choose a constant tax $(\bar{\tau}_k > 0)$ or subsidize $(\bar{\tau}_k < 0)$ the return to capital faced by the consumer. Since they have no need for expenditures, then if $\bar{\tau}_k > 0$ the government simply rebates the revenues to consumers as a lump-sum subsidy $(\bar{\tau}_h < 0)$. Similarly, to pay for a capital subsidy the government sets a lump-sum tax. Find the steady state $\{\bar{k}, \bar{c}\}$ for a given $\bar{\tau}_k$ tax (or subsidy).
- (c) The objective of government (A) is to maximize steady state consumption per capita by choosing the $\bar{\tau}_k$. Formulate this as an optimal problem for the government, and solve for its optimal $\bar{\tau}_k$ policy and the corresponding steady state $\{\bar{c}, \bar{k}\}$. What is the sign of $\bar{\tau}_k$, and why?
- (d) Now, a new government (B) comes to power with the objective of maximizing consumer welfare (i.e. our usual objective) by choosing a constant $\bar{\tau}_k$. Find the optimal $\bar{\tau}_k$ policy and the corresponding steady state $\{\bar{c}, \bar{k}\}$. What is the sign of $\bar{\tau}_k$, and why?
- (e) Assuming that government (A) was in power for a long-time and the economy was in a steady state. The new government (B) is elected with no anticipation, and associated new tax policy is immediately changed to the optimal value forever. Draw the dynamics of $\{k_t, c_t\}_{t=0}^{\infty}$ as the economy evolves from the initial steady state of government (A) to the new steady state of government (B).
- (f) Compare the steady states of the two governments to discuss whether $\bar{\tau}_k$ was set too high or too low in government (A).³

¹Let c_t, k_t, y_t , and g_t be in per-capita terms.

²Hint: $\bar{\tau}_h$ adjusts to balance the government's budget and is non-distorting.

³Be explicit on what criteria one should use to make this judgment.