Chapter 13

## Influential Points

Chanwoo Yoo, Division of Advanced Engineering, Korea National Open University

## Contents

- 1. Outliers & High Leverage Points
- 2. Identifying High Leverage Points
- 3. Identifying Outliers
- 4. Identifying Influential Data Points
- 5. Dealing with Problematic Data Points

## 1. Outliers & High Leverage Points

#### 1. Outlier

 An outlier is a data point whose response y does not follow the general trend of the rest of the data.

## 2. High Leverage Point

- A data point has high leverage if it has "extreme" predictor x values.
- With a single predictor, an extreme x value is simply one that is particularly high or low.
- With multiple predictors, extreme x values may be particularly high or low for one or more predictors, or may be "unusual" combinations of predictor values.

#### 3. Influential Data Point

- A data point is influential if it unduly influences any part of a regression analysis, such as the predicted responses, the estimated slope coefficients, or the hypothesis test results.
- Outliers and high leverage data points have the potential to be influential, but we generally have to investigate further to determine whether or not they are actually influential.

## 4. Example: Outlier



#### Influence2 data set

 Because the red data point does not follow the general trend of the rest of the data, it would be considered an outlier.

## 4. Example: Outlier



- The plot illustrates two best fitting lines — one obtained when the red data point is included and one obtained when the red data point is excluded.
- The data point is not deemed influential.

## 5. Example: High Leverage



- Influence3 data set
- The red data point does follow the general trend of the rest of the data. Therefore, it is not deemed an outlier here.

## 5. Example: High Leverage



 However, this point does have an extreme x value, so it does have high leverage.

## 5. Example: High Leverage



- The plot illustrates two best fitting lines — one obtained when the red data point is included and one obtained when the red data point is excluded.
- The data point is not deemed influential.

## 6. Example: Influential Data Point



- Influence 4 data set
- The red data point is most certainly an outlier and has high leverage.

## 6. Example: Influential Data Point



- The two best fitting lines are substantially different.
- The red data point is deemed both high leverage and an outlier, and it turned out to be influential too.

# 2. Identifying High Leverage Points

#### 1. Hat Matrix

- $\hat{\mathbf{y}} = X(X^T X)^{-1} X^T \mathbf{y}$ 
  - Hat Matrix  $H: X(X^TX)^{-1}X^T$
- $\hat{\mathbf{y}} = H\mathbf{y}$

#### 2. Leverage

• The leverage,  $h_{ii}$ , quantifies the influence that the observed response  $y_i$  has on its predicted value  $\hat{y}_i$ .

#### 2. Leverage

If  $h_{ii}$  is small, then the observed response  $y_i$  plays only a small role in the value of the predicted response  $\hat{y}_i$ . On the other hand, if  $h_{ii}$  is large, then the observed response  $y_i$  plays a large role in the value of the predicted response  $\hat{y}_i$ . It's for this reason that the  $h_{ii}$  are called the "leverages."

## 3. Properties of Leverage

- The leverage  $h_{ii}$  is a measure of the distance between the x value for the *i*th data point and the mean of the x values for all n data points.
- The leverage  $h_{ii}$  is a number between 0 and 1, inclusive.
- The sum of the  $h_{ii}$  equals p, the number of parameters (regression coefficients including the intercept).

#### 4. Guideline

- Leverages can help us identify x values that are extreme and potentially influential on regression analysis.
- A common rule is to flag any observation whose leverage value,  $h_{ii}$ , is more than 3 times larger than the mean leverage value:

$$\bar{h} = \frac{\sum_{i=1}^{n} h_{ii}}{n} = \frac{p}{n}$$

```
influence3 <- read.table("influence3.txt", header=T)</pre>
attach(influence3)
plot(x, y)
model.1 \leftarrow lm(y \sim x)
lev <- hatvalues(model.1)</pre>
round(lev, 6)
sum(lev)
detach(influence3)
```



```
> round(lev, 6)
0.153481 0.139367 0.116292 0.110382 0.084374 0.077557
                                  10
0.066879 0.063589 0.050033 0.052121 0.047632 0.048156
                        15
                                  16
      13
               14
                                                    18
0.049557 0.055893 0.057574 0.078121 0.088549 0.096634
               20
      19
0.096227 0.110048 0.357535
> sum(lev)
[1] 2
```

$$n = 21, p = 2$$

$$3 \times \frac{p}{n} = 3 \times \frac{2}{21} = 0.286 < 0.357$$

influence4 <- read.table("influence4.txt", header=T)</pre>

```
attach(influence4)

plot(x, y)

model.2 <- lm(y ~ x)
lev <- hatvalues(model.2)
round(lev, 6)

detach(influence3)</pre>
```



```
> round(lev, 6)

1 2 3 4 5 6

0.158964 0.143985 0.119522 0.113263 0.085774 0.078589

7 8 9 10 11 12

0.067369 0.063924 0.049897 0.052019 0.047667 0.048354

13 14 15 16 17 18

0.049990 0.057084 0.058943 0.081446 0.092800 0.101587

19 20 21

0.101146 0.116146 0.311532
```

$$n = 21, p = 2$$

$$3 \times \frac{p}{n} = 3 \times \frac{2}{21} = 0.286 < 0.311$$

#### 7. Summary

- The leverage merely quantifies the potential for a data point to exert strong influence on the regression analysis.
- The leverage depends only on the predictor values.
- Whether the data point is influential or not also depends on the observed value of the reponse  $y_i$ .

## 3. Identifying Outliers

#### 1. Residuals

- The problem with ordinary residuals is that their magnitude depends on the units of measurement, thereby making it difficult to use the residuals as a way of detecting unusual y values.
- We can eliminate the units of measurement by dividing the residuals by an estimate of their standard deviation, thereby obtaining what are known as studentized residuals (or internally studentized residuals)

#### 2. Studentized Residuals

- Studentized Residuals (or Internally Studentized Residuals)
  - Ordinary residual divided by an estimate of its standard deviation

• 
$$r_i = \frac{e_i}{s(e_i)} = \frac{e_i}{\sqrt{MSE(1-h_{ii})}}$$

• 
$$e_i = y_i - \hat{y}_i$$

#### 3. Studentized Residuals: influence2

```
influence2 <- read.table("influence2.txt", header=T)
attach(influence2)</pre>
```

```
plot(x, y)

model.1 <- lm(y ~ x)

sta <- rstandard(model.1)
round(sta, 6)

detach(influence2)</pre>
```



#### 3. Studentized Residuals: influence2

```
> round(sta, 6)

1 2 3 4 5 6

-0.826351 -0.249154 -0.435445 0.998187 -0.581904 -0.574462

7 8 9 10 11 12

0.413791 -0.371226 0.139767 -0.262514 -0.713173 -0.095897

13 14 15 16 17 18

0.252734 -1.229353 -0.683161 0.292644 0.262144 0.731458

19 20 21

-0.055615 -0.776800 3.681098
```

#### 4. Deleted Residuals



#### 4. Deleted Residuals

- $\bullet \quad d_i = y_i \hat{y}_{(i)}$ 
  - $y_i$ : observed response for the *i*th observation
  - $\hat{y}_{(i)}$ : predicted response for the *i*th observation based on the estimated model with the *i*th observation deleted

#### 5. Externally Studentized Residuals

Externally Studentized Residuals (or Studentized Deleted Residuals)

• 
$$t_i = \frac{d_i}{s(d_i)} = \frac{e_i}{\sqrt{MSE_{(i)}(1-h_{ii})}}$$

- Deleted residual divided by its estimated standard deviation
- Ordinary residual divided by a factor that includes the mean square error based on the estimated model with the ith observation deleted,  $MSE_{(i)}$ , and the leverage,  $h_{ii}$

### 5. Externally Studentized Residuals

• If an observation has an externally studentized residual that is larger than 3 (in absolute value) we can call it an outlier.

#### 6. Externally Studentized Residuals: influence2

```
influence2 <- read.table("influence2.txt", header=T)</pre>
attach(influence2)
plot(x, y)
model.1 \leftarrow lm(y \sim x)
stu <- rstudent(model.1)</pre>
round(stu, 6)
detach(influence2)
```



#### 6. Externally Studentized Residuals: influence2

```
> round(stu, 6)

1 2 3 4 5 6

-0.819167 -0.242905 -0.425962 0.998087 -0.571499 -0.564060

7 8 9 10 11 12

0.404582 -0.362643 0.136110 -0.255977 -0.703633 -0.093362

13 14 15 16 17 18

0.246408 -1.247195 -0.673261 0.285483 0.255615 0.722190

19 20 21

-0.054136 -0.768382 6.690129
```

# 4. Identifying Influential Data Points

# 1. DFFITS (Difference in Fits)

$$DFFITS_i = \frac{\hat{y}_i - \hat{y}_{(i)}}{\sqrt{MSE_{(i)} h_{ii}}}$$

- The numerator measures the difference in the predicted responses obtained when the *i*th data point is included and excluded from the analysis.
- The denominator is the estimated standard deviation of the difference in the predicted responses.

#### 1. DFFITS

$$DFFITS_i = \frac{\hat{y}_i - \hat{y}_{(i)}}{\sqrt{MSE_{(i)} h_{ii}}}$$

• The difference in fits quantifies the number of standard deviations that the fitted value changes when the *i*th data point is omitted.

#### 1. DFFITS

 An observation is deemed influential if the absolute value of its DFFITS value is greater than:

$$2\sqrt{\frac{p+1}{n-p-1}}$$

- n: number of observations, p: number of parameters
- This is not a hard-and-fast rule, but rather a guideline.

```
influence2 <- read.table("influence2.txt", header=T)
attach(influence2)</pre>
```

```
plot(x, y)

model.1 <- lm(y ~ x)

dffit <- dffits(model.1)
round(dffit, 6)

detach(influence2)</pre>
```



```
> round(dffit, 6)

1 2 3 4 5 6

-0.378974 -0.105007 -0.162478 0.367368 -0.175466 -0.163769

7 8 9 10 11 12

0.106698 -0.092652 0.030612 -0.058495 -0.160254 -0.021828

13 14 15 16 17 18

0.059879 -0.340354 -0.188345 0.100168 0.097710 0.292757

19 20 21

-0.021884 -0.339696 1.550500
```

■ 
$$n = 21, p = 2$$

$$2\sqrt{\frac{p+1}{n-p-1}} = 2\sqrt{\frac{2+1}{21-2-1}} = 0.82 < |1.55|$$

```
influence4 <- read.table("influence4.txt", header=T)
attach(influence4)</pre>
```

```
plot(x, y)

model.2 <- lm(y ~ x)

dffit <- dffits(model.2)
round(dffit, 6)

detach(influence4)</pre>
```



```
> round(dffit, 6)
                                   0.037612
 -0.402761 \quad -0.243756 \quad -0.205848
                                               -0.131355
                                                      10
 -0.109593 0.040473
                        -0.042401
                                    0.060224
                                                0.009181
                                           14
                                                      15
                    12
                               13
  0.005430
            0.078165
                        0.127828
                                    0.007230
                                                0.073067
                                                      20
        16
                               18
                                           19
  0.280501
             0.323599
                        0.436114
                                    0.308869
                                                0.249206
        21
-11.467011
```

■ 
$$n = 21, p = 2$$

$$2\sqrt{\frac{p+1}{n-p-1}} = 2\sqrt{\frac{2+1}{21-2-1}} = 0.82 < |-11.467|$$

# 4. Cook's Distance

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p \times MSE} \left( \frac{h_{ii}}{(1 - h_{ii})^2} \right)$$

• Cook's distance depends on the residual,  $y_i - \hat{y}_i$ , and the leverage,  $h_{ii}$ .

#### 5. Guideline

- If  $D_i$  is greater than 0.5, then the ith data point is worthy of further investigation as it may be influential.
- If  $D_i$  is greater than 1, then the ith data point is quite likely to be influential.
- Or, if  $D_i$  sticks out like a sore thumb from the other  $D_i$  values, it is almost certainly influential.

```
influence2 <- read.table("influence2.txt", header=T)
attach(influence2)</pre>
```

```
plot(x, y)

model.1 <- lm(y ~ x)

cook <- cooks.distance(model.1)
round(cook, 6)</pre>
```

detach(influence2)



```
> round(cook, 6)

1 2 3 4 5 6 7

0.073076 0.005800 0.013794 0.067493 0.015960 0.013909 0.005954

8 9 10 11 12 13 14

0.004498 0.000494 0.001799 0.013191 0.000251 0.001886 0.056275

15 16 17 18 19 20 21

0.018262 0.005272 0.005021 0.043960 0.000253 0.058968 0.363914
```

```
influence4 <- read.table("influence4.txt", header=T)
attach(influence4)</pre>
```

```
plot(x, y)

model.2 <- lm(y ~ x)

cook <- cooks.distance(model.2)
round(cook, 6)

detach(influence4)</pre>
```



```
> round(cook, 6)

1 2 3 4 5 6 7

0.081718 0.030755 0.021983 0.000746 0.009014 0.006290 0.000863

8 9 10 11 12 12 13 14

0.000947 0.001907 0.000044 0.000016 0.003203 0.008478 0.000028

15 16 17 18 19 20 21

0.002804 0.039575 0.052293 0.091802 0.048085 0.031938 4.048013
```

- Check for obvious data errors:
  - If the error is just a data entry or data collection error, correct it.
  - If the data point is not representative of the intended study population, delete it.
  - If the data point is a procedural error and invalidates the measurement, delete it.

- Consider the possibility that you might have just misformulated your regression model:
  - Did you leave out any important predictors?
  - Should you consider adding some interaction terms?
  - Is there any nonlinearity that needs to be modeled?

- Do not delete data points just because they do not fit your preconceived regression model.
- If you delete any data after you've collected it, justify and describe it in your reports.
- If you are not sure what to do about a data point, analyze the data twice — once with and once without the data point — and report the results of both analyses.

Next

# Chapter 14 Multicollinearity