

APR 06, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.eq2ly7rzwlx9/v1

Protocol Citation: Stefan J. Haugen, Gregg T. Beckham, Kelsey J. Ramirez 2023. Aromatic Monomer Analysis by UHPLC-MS/MS.

protocols.io

https://dx.doi.org/10.17504/protocols.io.eq2ly7rzwlx9/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Apr 05, 2023

Last Modified: Apr 06, 2023

PROTOCOL integer ID: 80071

Keywords: electrospray ionization, tandem mass spectrometry, aromatic monomers, lignin monomers

Aromatic Monomer Analysis by UHPLC-MS/MS

Stefan J. Haugen¹, Gregg T. Beckham¹, Kelsey J. Ramirez¹

¹Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory

NREL

Tech. support email: stefan.haugen@nrel.gov

Kelsey J. Ramirez

ABSTRACT

An analysis method was developed to allow for quantitation of aromatic compounds by ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection. This was achieved by using reverse phase chromatography and multiple reaction monitoring (MRM) in negative ion mode using electrospray ionization (ESI).

GUIDELINES

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

MATERIALS

Working Solution Preparations:

Acetone Merck MilliporeSigma (Sigma-Aldrich) Catalog #270725

Milli-Q Water Contributed by users

Internal Standard:

⋈ 4-Hydroxybenzoic-2356-d4 acid **Contributed by users Catalog #662763**

Aromatic Analytes:

4-Hydroxybenzoic acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #240141

- **☒** 3-5-Dimethoxy-4-hydroxyacetophenone **Contributed by users**
- Ferulic Acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #1270311
- X Vanillic Acid Merck MilliporeSigma (Sigma-Aldrich)
- Syringaldehyde Merck MilliporeSigma (Sigma-Aldrich) Catalog #08319
- Syringic Acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #63627
- X Acetovanillone Merck MilliporeSigma (Sigma-Aldrich)
- p-Coumaric acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #55823

Analytical Column:

Equipment	
Kinetex Phenyl-Hexyl	NAME
Analytical Column	TYPE
Phenomenex	BRAND
00D-4500-AN	SKU
https://www.phenomenex.com/products/kinetex-hplc-column/kphenyl-hexyl#order	kinetex- LINK
2.1 mm x 100mm (1.7μm pore size)	SPECIFICATIONS

Instrumentation:

Equipment	
6470 Triple Quad LC/MS	NAME
LC-QQQ System	TYPE
Agilent Technologies	BRAND
G6470A	SKU

Equipment	
1290 Infinity UHPLC	NAME
Ultra-high performance liquid chromatography system	TYPE
Agilent Technologies	BRAND
1290 Infinity UHPLC	SKU
https://www.agilent.com/en/product/liquid-chromatography/hplc-systems/analytical-hplc-systems	LINK

SAFETY WARNINGS

4. All chemicals used for this procedure are hazardous. Read the Safety Data Sheet (SDS) for all chemicals and follow all applicable chemical handling and waste disposal procedures. Manufacturer specific SDS information can be found by following the CAS numbers of compounds in 'Materials' list.

BEFORE START INSTRUCTIONS

All solvents, analytes, and chemicals used in this protocol are listed in the 'Materials' section. They are excluded from in-line referencing to keep steps clear and concise.

Internal Standard Preparation

- This analysis uses 4-Hydroxybenzoic-2,3,5,6- d_4 acid (d_4 -4HBA) as an internal standard. Prepare a 500 µg/mL internal standard working solution into 50:50 Acetone / MilliQ Water. Plan to prepare enough solution volume to allow for addition of d_4 -4HBA to each sample or standard volume at a 1:100 volumetric ratio.
- 1.1 For example, a 500 μ g/mL concentration of internal standard working solution was used for a 10 μ L spike into 1000 μ L sample volume. In this scheme, the 5 μ g/mL concentration added will need to be accounted for in data processing.

Preparation of Standards

- 2 By weight, create individual 20,000 μg/mL stock solutions of all monomers (listed in Materials section) and use 50:50 Acetone / MilliQ Water as a diluent.
- 3 Combine the stock solutions to create a 100 μ g/mL mixed standard working solution in 50:50 Acetone / MilliQ Water.
- 3.1 For example, to prepare 10 mLs of mixed standard working solution of aromatic monomers (distinguished in Materials section), add 50 μ L of each of the 20,000 μ g/mL stock solutions (10 analytes) and add 9500 mL 50:50 Acetone / MilliQ Water.
- 4 Using the mixed standard working solution at 100 μ g/mL, create a calibration curve with a minimum of five points using 50:50 Acetone / MilliQ Water as the diluent.
- Add 10 μ L of the 500 μ g/mL d₄-4HBA internal standard working solution per every 1000 μ L of calibration standard.

5.1

Calibration Level	Concentration (µg/mL)	Volume of 100 μg/mL Mixed Standard Working Solution (μL)	Volume of 50:50 Acetone / MilliQ Water (μL)	Volume of Internal Standard Working Solution (μL)
1	0.5	5	995	10
2	1	10	990	10
3	3	30	970	10
4	5	50	950	10
5	10	100	900	10
6	25	250	750	10
7	50	500	500	10
8	75	750	250	10
9	100	1000	0	10

example calibration level preparation

Sample Preparation

- 6 Ensure samples to be analyzed are suspended in a matrix compatible with your instrumentation. Analytes of interest in samples should be expected between 1 μg/mL and 100 μg/mL concentrations, otherwise dilution should be carefully performed to achieve concentrations in this calibration range.
- **6.1** If dilutions are required, add internal working solution (ISWS) at a 1:100 (ISWS volume / final sample volume) scheme.
- Add 10 μ L of the 500 μ g/mL d₄-4HBA internal standard working solution per every 1000 μ L of sample volume. This is best done when sample volume is normalized, either following dilution or by pulling precise volumes of sample into a new sample analysis vial.

UHPLC-MS/MS Analysis

8 Prepare an Agilent 1290 UHPLC system according to the following parameters:

Binary Pump Configuration

Flow Rate	0.5 mL/min
Maximum Pressure	1200 bar
Mobile Phase A	0.1% Formic Acid in Water (v/v)
Mobile Phase B	0.1% Formic Acid in Methanol (v/v)

Gradient Configuration

ordaneme cominguratio		
Time (min)	Composition A (%)	Composition B (%)
0.0	99.0	1.0
1.0	99.0	1.0
7.0	70.0	30.0
7.5	70.0	30.0
9.0	40.0	60.0
9.0	40.0	60.0
9.0	99.0	1.0
12.0	99.0	1.0

Multisampler Parameters

Injection Volume	0.5 μL
Draw Speed	200 μL/min
Eject Speed	200 μL/min
Wait time after draw	0 sec
Bottom Sensing	enabled

Column Compartment Parameters

Temperature	40°C
-------------	------

Use the analytical column listed here:

Equipment	
Kinetex Phenyl-Hexyl	NAME
Analytical Column	TYPE
Phenomenex	BRAND
00D-4500-AN	SKU
https://www.phenomenex.com/products/kinetex-hplc-column/kinetex-phenyhexyl#order	 - LINK
2.1 mm x 100mm (1.7μm pore size)	SPECIFICATIONS

Analyze samples using an Agilent 6470A Triple Quadrupole Mass Spectrometer equipped with dual Agilent jet stream electrospray ionization (AJS ESI) per the method parameters listed below:

Analyte Name	Precursor Ion	Ion	MRM quantifying transition	CE (V)	Fragmentor (V)	MRM qualifying transition	CE (V)
I-Hydroxybenzoic-2,3,5,6- d4 acid (ISTD)	141.1	[M-H] ⁻	14 <mark>1.1 → 97.0</mark>	16	60	141.1 → 69.1	36
4-Hydroxybenzoic Acid	137	[M-H] ⁻	137.0 → 93.0	16	70	137.0 → 65.1	36
4-Hydroxybenzaldehyde	121	[M-H] ⁻	121.0 → 92.0	28	98	1 21.0 → 1 20.0	20
Vanillic Acid	167	[M-H] ⁻	167.0 → 152.0	12	89	167.0 → 108.0	20
Vanillin	151	[M-H] ⁻	151.0 → 136.0	12	65	151.0 → 92.0	20
Syringic Acid	197	[M-H]	197.0 → 182.0	12	98	197.0 → 123.0	24
Syringaldehyde	181.1	[M-H]	181.1 → 166.0	12	93	181.1 → 151.0	20
p-Coumaric Acid	163	[M-H] ⁻	163.0 → 119.0	16	74	163. <mark>0 →</mark> 93.0	36
Ferulic Acid	193.1	[M-H] ⁻	193.1 → 134.0	16	89	193.1 → 178.0	12
Acetovanillone	165.1	[M-H] ⁻	165.1 → 150.0	16	65	165.1 → 122.0	28
Acetosyringone	195.1	[M-H] ⁻	195.1 → 180.0	12	190	195.1 → 164.9	20

Optimized multiple reaction monitoring (MRM) transitions for quantification of aromatic monomers as listed in 'Materials'. Fragmentor voltages (V) and corresponding collision energies (CE) for LC-MS/MS analysis are supplied for quantifier and qualifier transitions respectively.

9

Mass Spectrometer Parameters

Ion Source

Time Segments (min)	Scan Type
0.0	To Waste
1.2	Dynamic MRM
12.0	Stop Time

Source Parameters	Value	
Gas Temp (°C)	300	
Gas Flow (L/min)	7	
Nebulizer (psi)	35	
Sheath Gas Temp (°C)	350	
Sheath Gas Flow (L/min)	11	
Capillary (V)	3000	
Nozzle Voltage (V)	2000	

Data analysis utilizes Agilent Quantitative Analysis for QQQ Build Version B.08.

Analytical Quality Control

11 Several strategies are utilized when performing this analysis to ensure instrument stability and reproducibility.

AJS ESI

11.1 Calibration Curves

All compounds must have a correlation coefficient (r^2) of 0.995 or greater using a quadratic calibration fit.

11.2 Calibration Verification Standards (CVS)

A calibration verification standard (CVS) is a standard from the calibration curve that is reanalyzed every 20 or fewer samples to ensure instrument drift remains within the determined acceptance criteria. Acceptable CVS recoveries for this analysis are within 15% of the expected amount. Acceptance criteria may differ between instruments and should be determined experimentally.