BIOS 662 Fall 2018 Linear Regression, Part III

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Outline

- Multiple linear regression
- Measures of association
- \bullet Parametric/large N
 - Pearson correlation coefficient
- Nonparametric (i.e., rank based)
 - Spearman rank correlation coefficient
 - Kendall's τ

Multiple Linear Regression

Reasons for using multiple linear regression rather than just simple linear regression include:

- Determining the best set of variables with which to predict an outcome variable
- Allowing adjustment for potential confounders when investigating an exposure—disease association
- Investigating potential interactions between exposures associated with a disease
- Using a categorical predictor with more than two categories

Some of these reasons may apply simultaneously

Multiple Linear Regression Model

• Multiple linear regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i,$$

 $i = 1, 2, \dots, N$

- Data are (Y_i, \boldsymbol{X}_i) ; i = 1, 2, ..., N, where \boldsymbol{X}_i is a vector of length k
- Assumptions:
 - 1. Linearity: each X variable is linearly associated with Y
 - 2. The values of each X variable are fixed constants
 - 3. ϵ_i iid $N(0, \sigma^2)$

Multiple Linear Regression Model

Multiple linear regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \epsilon_i,$$

 $i = 1, 2, \ldots, N$

Interpretation of parameters:

- β_j is the change in the expected value of Y when the j^{th} X variable increases by one unit, with all the other X variables being held contact
- If the j^{th} X variable is dichotomous, that is, takes on only values in $\{0,1\}$, this corresponds to the difference between E(Y) when the value of the j^{th} X is 1 versus when it is 0

Matrix Formulation

• Let

$$m{Y} = egin{pmatrix} Y_1 \ Y_2 \ \vdots \ Y_N \end{pmatrix}, \quad m{X} = egin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \ 1 & X_{21} & X_{22} & \dots & X_{2k} \ \vdots & \vdots & \vdots & \vdots & \vdots \ 1 & X_{N1} & X_{N2} & \dots & X_{Nk} \end{pmatrix},$$

$$oldsymbol{\epsilon} = \left(egin{array}{c} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{array}\right), \quad oldsymbol{eta} = \left(egin{array}{c} eta_0 \\ eta_1 \\ eta_2 \\ \vdots \\ eta_k \end{array}\right)$$

Matrix Formulation

• Linear model

$$oldsymbol{Y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

• The least squares estimators are the solutions to the set of equations:

$$X'X\beta = X'Y$$

• Therefore, as in the simple linear regression case:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X'X})^{-1}\boldsymbol{X'Y}$$

• The coefficient of determination is now written as R^2 (rather than r^2); as before it is the proportion of the total variation attributable to regression (that is, explained by all the X variables together)

Analysis of Variance

• ANOVA table:

Source	df	SS	MS	F
Regression	k	SSR	MSR = SSR/k	MSR/MSE
Residual	N-k-1	SSE	MSE = SSE/(N - k - 1)	
Total	N-1	SST		

• The F test is for

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

versus

$$H_A$$
: at least one $\beta_j \neq 0$

• Consider the SBP and age example and suppose we want to investigate whether the association varies with gender

• Let:

 Y_i be the systolic blood pressure of person i

 X_{i1} be the age of person i

 X_{i2} be 1 if person i is male and 0 otherwise

$$X_{i3} = X_{i1} \cdot X_{i2}$$

proc reg;
model sbp = age male;

Dependent Variable: sbp

Number of Observations Read 40
Number of Observations Used 40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	2414.90795	1207.45397	288.31	<.0001
Error	37	154.95563	4.18799		
Corrected Total	39	2569.86358			

Root MSE	2.04646	R-Square	0.9397
Dependent Mean	131.15651	Adj R-Sq	0.9364
Coeff Var	1.56032		

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	107.52982	1.08737	98.89	<.0001
age	1	0.44634	0.02268	19.68	<.0001
male	1	7.44864	0.65488	11.37	<.0001

proc reg;

model sbp = age male agemale;

Dependent Variable: sbp

Number of Observations Read 40

Number of Observations Used 40

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	2445.33277	815.11092	235.64	<.0001
Error	36	124.53081	3.45919		
Corrected Total	39	2569.86358			

Root MSE	1.85989	R-Square	0.9515
Dependent Mean	131.15651	Adj R-Sq	0.9475
Coeff Var	1.41807		

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	109.92861	1.27705	86.08	<.0001
age	1	0.39170	0.02765	14.17	<.0001
male	1	1.81501	1.99065	0.91	0.3680
agemale	1	0.12305	0.04149	2.97	0.0053

```
> fit <- lm(sbp~age+male+agemale)</pre>
> summary(fit)
Call:
lm(formula = sbp ~ age + male + agemale)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.92860 1.27708 86.078 < 2e-16 ***
       0.39170 0.02765 14.168 2.7e-16 ***
age
           1.81503 1.99070 0.912 0.36797
male
           agemale
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1.86 on 36 degrees of freedom
Multiple R-squared: 0.9515, Adjusted R-squared: 0.9475
F-statistic: 235.6 on 3 and 36 DF, p-value: < 2.2e-16
```


Now suppose we use age in 10-year age groups data sbp; set sbp;

```
agegroup=10*floor(age/10);
if 20 le age lt 30 then age2029=1;
  else age2029=0;
if 30 le age lt 40 then age3039=1;
  else age3039=0;
if 40 le age lt 50 then age4049=1;
   else age4049=0;
if 50 le age lt 60 then age5059=1;
   else age5059=0;
if 60 le age lt 70 then age6069=1;
   else age6069=0;
```

```
proc reg;
model sbp = agegroup;
```

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1785.32369	1785.32369	86.47	<.0001
Error	38	784.53989	20.64579		
Corrected Total	39	2569.86358			
Root MSE		4.54376	R-Square	0.6947	
Dependent	Mean	131.15651	Adj R-Sq	0.6867	
Coeff Var		3.46438			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	111.95282	2.18650	51.20	<.0001
agegroup	1	0.46554	0.05006	9.30	<.0001

Assumption here: SBP changes by the same amount from each age group to the next.

proc reg; model sbp = age3039 age4049 age5059 age6069;

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	4	1873.06457	468.26614	23.52	<.0001
Error	35	696.79901	19.90854		
Corrected Total	39	2569.86358			
Root MSE		4.46190	R-Square	0.728	9
Dependent	Mean	131.15651	Adj R-Sq	0.697	9

Coeff Var

3.40197

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	122.01318	1.57752	77.34	<.0001
age3039	1	4.21824	2.54367	1.66	0.1062
age4049	1	6.56457	2.07327	3.17	0.0032
age5059	1	15.76066	2.40970	6.54	<.0001
age6069	1	17.78679	2.11646	8.40	<.0001

proc reg; model sbp = age2029 age3039 age4049 age5059;

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	139.79997	1.41098	99.08	<.0001
age2029	1	-17.78679	2.11646	-8.40	<.0001
age3039	1	-13.56855	2.44388	-5.55	<.0001
age4049	1	-11.22222	1.94954	-5.76	<.0001
age5059	1	-2.02613	2.30411	-0.88	0.3852

```
proc glm;
  class agegroup;
  model sbp = agegroup / solution;
  lsmeans agegroup;
```

The GLM Procedure

Class Level Information

agegroup 5 20 30 40 50 60

Number of Observations Read 40

Number of Observations Used 40

Parameter		Estimate		Standard Error	t Value	Pr > t
Intercept		139.7999661	В	1.41097637	99.08	<.0001
agegroup	20	-17.7867909	В	2.11646455	-8.40	<.0001
agegroup	30	-13.5685533	В	2.44388276	-5.55	<.0001
agegroup	40	-11.2222160	В	1.94954402	-5.76	<.0001
agegroup	50	-2.0261338	В	2.30411476	-0.88	0.3852
agegroup	60	0.0000000	В		•	•

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

The GLM Procedure Least Squares Means

agegroup	sbp LSMEAN
20	122.013175
30	126.231413
40	128.577750
50	137.773832
60	139.799966

ullet The correlation between random variables X and Y is

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

• Note:

$$\rho = \frac{\beta_{y \cdot x} \sigma_X}{\sigma_Y} = \frac{\beta_{x \cdot y} \sigma_Y}{\sigma_X}$$

• Estimate ρ by

$$r = \frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sqrt{\sum_{i} (Y_{i} - \bar{Y})^{2} \sum_{i} (X_{i} - \bar{X})^{2}}} = \frac{[XY]}{\sqrt{[X^{2}][Y^{2}]}}$$

the sample Pearson product moment correlation coefficient

• One can show that

$$r = \hat{\beta}_{y \cdot x} \frac{s_X}{s_Y} = \operatorname{sign}(\hat{\beta}_{y \cdot x}) \sqrt{r^2}$$

where r^2 is as in the first set of notes on regression, i.e., the proportion of total variation attributable to regression

 \bullet The correlation coefficient r has the following properties:

$$-r \in [-1, 1]$$

- -r = 1 iff all observations lie on a straight line with positive slope
- -r = -1 iff all observations lie on a straight line with negative slope
- it is invariant under multiplication and addition of constants to X or Y
- it measures *linear association* between two variables
- it tends to be close to zero if there is no linear association, even if there is a strong non-linear association

Demonstrating Correlation Properties Using R

```
> x <- 1:11
> y <- x
> cor(y,x)
[1] 1
> cor(y,3*x)
[1] 1
> cor(y/100,3*x+10)
[1] 1
> cor(y,x^2)
[1] 0.9739695
> x < -c(-5:5)
> cor(y,x^2)
[1] 0
```

Correlation: Figure 9.11

• The test statistic

$$t = \frac{r}{\sqrt{(1-r^2)/(N-2)}} \sim t_{N-2}$$

can be used to test $H_0: \rho = 0$

- Claim: this test is equivalent to testing $H_0: \beta_{y\cdot x} = 0$
- Proof of claim on next couple of pages

• First note that

$$(N-2)s_{y\cdot x}^2 = SSE = SST - SSR$$

$$= SST \left(1 - \frac{SSR}{SST}\right)$$

$$= [Y^2] \left(1 - \frac{[XY]^2}{[Y^2][X^2]}\right)$$

$$= (N-1)s_V^2(1-r^2)$$

• Next recall that

$$\hat{\beta}_{y \cdot x} = \frac{[XY]}{[X^2]}$$

• Then

$$t = \frac{\hat{\beta}_{y \cdot x}}{s_{y \cdot x} / \sqrt{[X^2]}} = \frac{[XY] / [X^2]}{s_{y \cdot x} / \sqrt{[X^2]}}$$

$$= \frac{[XY] / \sqrt{[X^2]}}{s_{y \cdot x}} = \frac{r \sqrt{[Y^2]}}{s_{y \cdot x}}$$

$$= \frac{r s_Y \sqrt{N - 1}}{\sqrt{(1 - r^2)s_Y^2 (N - 1) / (N - 2)}}$$

$$= \frac{r}{\sqrt{(1 - r^2) / (N - 2)}}$$

• In general,

$$t = \frac{r}{\sqrt{(1-r^2)/(N-2)}} \sim t_{N-2} \tag{1}$$

if

- 1. (X, Y) bivariate normal (Section 9.3.3 of the text), or
- 2. Y|X is normally distributed with constant variance (that is, the usual regression model holds)
- (1) holds approximately for large N (cf. Graybill, 1976, Section 6.10)

Correlation Example

- Cholesterol was measured in 100 spouse pairs
- If there is no environmental effect (e.g., shared diet) on cholesterol we would expect $\rho = 0$
- $H_0: \rho = 0$ vs. $H_A: \rho \neq 0$
- $t_{98,0.975} = 1.98$, so $C_{0.05} = \{t : |t| > 1.98\}$
- Observed r = 0.25, so that

$$t = \frac{r}{\sqrt{(1-r^2)/(N-2)}} = \frac{0.25}{\sqrt{(1-0.25^2)/98}} = 2.556$$

•
$$p = 2 \times \{1 - F_{t_{98}}(2.556)\} = 0.0121$$

Correlation Example: SAS

0.0121

Correlation Using Fisher's Transformation

- R. A. Fisher developed a test of $H_0: \rho = \rho_0$
- He showed that

$$z_r = \frac{1}{2} \log \left(\frac{1+r}{1-r} \right) \sim N \left(\frac{1}{2} \log \left(\frac{1+\rho}{1-\rho} \right), \frac{1}{N-3} \right)$$

• Under $H_0: \rho = \rho_0$

$$z = \frac{\frac{1}{2}\log\left(\frac{1+r}{1-r}\right) - \frac{1}{2}\log\left(\frac{1+\rho_0}{1-\rho_0}\right)}{\sqrt{1/(N-3)}} \sim N(0,1)$$

Correlation: Fisher's Transformation

Using Fisher's Transformation: Example

• Cholesterol example

•
$$N = 100, r = 0.25$$

• $H_0: \rho = 0$

$$z_r = \frac{1}{2}\log\left(\frac{1.25}{0.75}\right) = 0.2554$$

$$z = \frac{0.2554 - 0}{\sqrt{1/97}} = 2.5155$$

$$p = 2 \times \{1 - \Phi(2.515)\} = 0.0119$$

Correlation Using Fisher's Transformation

 \bullet The Fisher transformation can be used for a CI for ρ

$$z_r = \frac{1}{2} \log \left(\frac{1+r}{1-r} \right) \implies e^{2z_r} = \frac{1+r}{1-r} \implies r = \frac{e^{2z_r} - 1}{e^{2z_r} + 1}$$

$$z_L = z_r - z_{1-\alpha/2} \sqrt{1/(N-3)}$$

$$z_U = z_r + z_{1-\alpha/2} \sqrt{1/(N-3)}$$

$$r_L = \frac{e^{2z_L} - 1}{e^{2z_L} + 1}; \quad r_U = \frac{e^{2z_U} - 1}{e^{2z_U} + 1}$$

Using Fisher's Transformation: Example

• 95% CI when r = 0.25 and n = 100

$$(z_L, z_U) = 0.2554 \pm 1.96 / \sqrt{97} = (0.0564, 0.4544)$$

$$r_L = \frac{e^{2 \times 0.0564} - 1}{e^{2 \times 0.0564} + 1} = 0.0563$$

$$r_U = \frac{e^{2 \times 0.4544} - 1}{e^{2 \times 0.4544} + 1} = 0.4255$$

Correlation Using Fisher's Transformation: SAS

```
proc corr fisher(biasadj=no);
  var x y;
```

Pearson Correlation Statistics (Fisher's z Transformation)

	With		Sample	
Variable	Variable	N	Correlation	Fisher's z
х	у	100	0.25000	0.25541

Pearson Correlation Statistics (Fisher's z Transformation)

	With		p Value for
Variable	Variable	95% Confidence Limits	HO:Rho=0
x	У	0.056350 0.425524	0.0119

Correlation Using Fisher's Transformation: R

```
> cor.test(x,y)

Pearson's product-moment correlation

data: x and y
t = 2.556, df = 98, p-value = 0.01212
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.05634962 0.42552363
sample estimates:
    cor
0.2500007
```

Correlation Using Fisher's Transformation

• Comparing two correlations: Two independent samples

$$H_0: \rho_1 = \rho_2 \text{ vs. } H_A: \rho_1 \neq \rho_2$$

 \bullet Compute z_{r_1} and z_{r_2}

$$Var(z_{r_1} - z_{r_2}) = \frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}$$

• Thus under H_0

$$z = \frac{z_{r_1} - z_{r_2}}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}} \sim N(0, 1)$$

Using Fisher's Transformation: Example

- If blood pressure level is inherited, one would expect the correlation between blood pressure of mothers and their natural children to be greater than between mothers and their adopted children
- In a study, 1000 mothers and one of their randomly chosen natural children had their blood pressure measured
- In a separate sample, 100 mothers and their adopted children also had their BP measured

Using Fisher's Transformation: Example cont.

• Let

 ρ_1 = population correlation for natural pairs

 ρ_2 = population correlation for adopted pairs

• Hypotheses

$$H_0: \rho_1 = \rho_2 \text{ vs. } H_A: \rho_1 > \rho_2$$

• Critical region

$$C_{0.05} = \{z : z > 1.645\}$$

Using Fisher's Transformation: Example cont.

$$\bullet r_1 = 0.32; r_2 = 0.06$$

- $z_{r_1} = 0.3316$; $z_{r_2} = 0.0601$
- Thus

$$z = \frac{0.3316 - 0.0601}{\sqrt{\frac{1}{997} + \frac{1}{97}}} = 2.55$$

• So we reject the null hypothesis and conclude that blood pressure levels appear to have an inherited component

Correlation Homogeneity

- \bullet Testing the homogeneity of k correlations
- Fisher's transformation can be used to test the hypothesis that several correlations are equal

$$H_0: \rho_1 = \rho_2 = \dots = \rho_k$$
vs.

 H_A : at least one inequality

Correlation Homogeneity

• Let

$$T_1 = \sum_{i=1}^{k} (n_i - 3) z_{r_i}$$

and

$$T_2 = \sum_{i=1}^{k} (n_i - 3) z_{r_i}^2$$

• Under H_0

$$H = T_2 - \frac{T_1^2}{\sum (n_i - 3)} \sim \chi_{k-1}^2$$

• Cf. Graybill (1976, p. 405)

Correlation Homogeneity: Example

• Does the correlation between LDL-cholesterol and HDL-cholesterol change with age in women not taking hormones?

Age	n	r	z_r
20-29	277	-0.08	-0.0802
30-39	479	-0.25	-0.2554
40-49	508	-0.19	-0.1923
50-59	373	-0.18	-0.1820
60-69	216	-0.15	-0.1511

Correlation Homogeneity: Example cont.

- Null hypothesis $H_0: \rho_1 = \rho_2 = \cdots = \rho_k$
- Critical region $C_{0.05} = \{H : H > 9.49\}$
- Compute test statistic

$$T_1 = 274(-0.0802) + \dots + 213(-0.1511) = -340.200$$

 $T_2 = 274(-0.0802)^2 + \dots + 213(-0.1511)^2 = 68.614$
 $H = 68.614 - \frac{(-340.200)^2}{1838} = 5.65$

• So we do not reject the null hypothesis; the correlation between LDL-cholesterol and HDL-cholesterol does not appear to change with age

Rank Correlation Coefficients

- Using ranks makes statistics robust to outliers
- ullet Spearman rank correlation, Kendall's au
- Nonparametric measures of association

Spearman Rank Correlation

- 1. Ys and Xs are ranked from 1 to N separately
- 2. The correlation of the ranks is then computed

Spearman Correlation: Example

• Ten children are ranked according to their mathematical and musical abilities

Child	Math	Music
A	7	5
В	4	7
C	3	3
D	10	10
E	6	1
F	2	9
G	9	6
Н	8	2
I	1	8
J	5	4

- Let R_{1i} and R_{2i} be the ranks of the Y_i and X_i , respectively
- Spearman correlation coefficient

$$r_{s} = \frac{\sum (R_{1i} - R_{1})(R_{2i} - R_{2})}{\sqrt{\sum_{i}(R_{1i} - \bar{R}_{1})^{2} \sum_{i}(R_{2i} - \bar{R}_{2})^{2}}}$$
$$= 1 - \frac{6\sum_{i} d_{i}^{2}}{N^{3}N}$$

where $d_i = R_{1i} - R_{2i}$

- The form of r_s containing $\sum d_i^2$ is not correct if ties are present
- Note:

$$R_{1i} = R_{2i}$$
 for all $i \Rightarrow d_i = 0$ for all $i \Rightarrow r_s = 1$

- Suppose N is odd and N = 2m + 1
- Then the most extreme discordant rankings are

i	1	2	• • •						N
R_{1i}	1	2	• • •	m	m+1	m+2	• • •	2m	2m + 1
								2	
$\overline{d_i}$	-2m	2-2m	• • •	-2	0	2	• • •	2m-2	2m

• Under this configuration

$$\sum_{i=1}^{N} d_i^2 = 4m^2 + 4(m-1)^2 + \dots + 4(1)^2 + 0$$

$$+ 4(1)^2 + \dots + 4(m-1)^2 + 4m^2$$

$$= 8 \sum_{j=1}^{m} j^2$$

$$= 8m(m+1)(2m+1)/6$$

$$= \left(4 \times \frac{N-1}{2} \times \frac{N+1}{2} \times N\right)/3$$

$$= (N^3 - N)/3$$

• Thus

$$r_s = 1 - \frac{6(N^3 - N)}{3(N^3 - N)} = 1 - 2 = -1$$

- In a similar way, it can be shown that if N is even, the most extreme rankings give $r_s = -1$
- So:

 $r_s = 1$ if perfect agreement in the ranks

 $r_s = -1$ if perfect disagreement in the ranks

Child	Math	Music	d
A	7	5	2
В	4	7	- 3
\mathbf{C}	3	3	0
D	10	10	0
Ε	6	1	5
F	2	9	-7
G	9	6	3
Н	8	2	6
I	1	8	- 7
J	5	4	1

• Spearman correlation

$$r_s = 1 - \frac{6(2^2 + (-3)^2 + \dots + 1^2)}{10^3 - 10} = 1 - \frac{6(182)}{990} = -0.103$$

Spearman Correlation: SAS and R

```
proc corr spearman;
var math music;
```

```
Spearman Correlation Coefficients, N = 10
Prob > |r| under HO: Rho=0
```

	math	music
math	1.00000	-0.10303 0.7770
music	-0.10303	1.00000
	0.7770	

```
> cor(math,music,method="spearman")
[1] -0.1030303
```

• The Spearman correlation coefficient can be used to test the null hypothesis of independence

$$H_0: X \perp Y$$
 vs. $H_A: X \not\perp Y$

that is, $H_A: X$ and Y not independent

- Distribution of r_s under H_0 is derived using a permutation-based argument
- We can list the R_{1i} in ascending order
- There are N! possible orderings of the R_{2i}
- Under H_0 , each of these orderings is equally likely

• Example: N = 3

R_{1i}	1	2	3	$\sum d_i^2$	r_s
R_{2i}	1	2	3	0	1.0
R_{2i}	1	3	2	2	0.5
R_{2i}	2	1	3	2	0.5
R_{2i}	2	3	1	6	-0.5
R_{2i}	3	1	2	6	-0.5
R_{2i}	3	2	1	8	-1.0

 \bullet CDF of r_s

$$\begin{array}{c|cc}
k & \Pr[r_s \le k] \\
\hline
-1.0 & 1/6 \\
-0.5 & 1/2 \\
0.5 & 5/6 \\
1.0 & 1
\end{array}$$

- Text Table A.12, p. 838, gives the two sided critical values for testing $H_0: X \perp Y$
- If N is large (> 10; Neter et al. 1996, page 652),

$$t_s = \frac{r_s \sqrt{N - 2}}{\sqrt{1 - r_s^2}} \sim t_{N - 2}$$

Spearman Correlation: Example

- \bullet Example: math (X) and music (Y)
- N = 10; $r_s = -0.1030$
- From Table A.12, $C_{0.05} = \{r_s : |r_s| > 0.648\}$
- Assume N = 10 is large enough to use the t approximation
- $C_{0.05} = \{t_s : |t_s| > t_{8,0.975} = 2.306 \}$
- $p = 2 \times \Pr[t_8 < -0.2929] = 0.7771$

Spearman Correlation: Ties

- In the presence of ties, ranks are replaced by midranks
- However, critical values in Table A.12 are only approximate
- If N is large, use t_s as before; i.e.,

$$t_{s} = \frac{r_{s}\sqrt{N-2}}{\sqrt{1-r_{s}^{2}}} \sim t_{N-2}$$

- Kendall's τ : Another rank correlation statistic
- Data: (X_i, Y_i) for $i = 1, 2, \dots, N$
- Definitions: Two pairs of observations are

concordant if
$$(X_i - X_j)(Y_i - Y_j) > 0$$

discordant if
$$(X_i - X_j)(Y_i - Y_j) < 0$$

• Let p_c be the probability that a randomly chosen pair of observations is concordant; and p_d the probability that they are discordant; then

$$\tau = p_c - p_d$$

• Note:

$$-1 \le \tau \le 1$$

if X and Y are independent, $\tau = 0$

- There are $\binom{N}{2}$ pairs of observations
- Let P be the number of concordant pairs
- \bullet Let Q be the number of discordant pairs
- The estimate of τ is

$$r_k = \frac{P - Q}{\binom{N}{2}} = 1 - \frac{2Q}{\binom{N}{2}} = \frac{2P}{\binom{N}{2}} - 1$$

- The last two terms assume no ties, so that $P + Q = \binom{N}{2}$
- ullet Replacing Xs and Ys with their ranks does not change au

- $H_0: \tau = 0$ vs. $H_A: \tau \neq 0$
- The distribution of r_k under H_0 is computed using permutation principles
- \bullet As with r_s , there are N! equally likely outcomes
- \bullet Kendall, Rank Correlation Methods, Hafner Publishing, 1962, gives a table of the distribution of $\,P-Q\,$ for $\,4 < N < 10\,$

- ullet Upper one-sided critical values of r_k
- ullet Note that the distribution of r_k is symmetric about 0

N	0.05	0.025
5	0.80	1.00
6	0.73	0.87
7	0.62	0.71
8	0.57	0.64
9	0.50	0.56
10	0.42	0.51

Kendall's τ : Example

• Cigarette consumption and lung cancer mortality in England and Wales, 1930-1969

	\log_{10}	\log_{10} tobacco
Period	mortality	(lb/person)
1930-34	-2.35	-0.26
1935-39	-2.20	-0.03
1940-44	-2.12	0.30
1945-49	-1.95	0.37
1950-54	-1.85	0.40
1955-59	-1.80	0.50
1960-64	-1.70	0.55
1965-69	-1.58	0.55

- $\bullet C_{0.05} = \{r_k : |r_k| \ge 0.64\}$
- Observation 1: (-2.35, -0.26)Observation 2: (-2.20, -0.03) $\{-2.35 - (-2.2)\}\{-0.26 - (-0.03)\} > 0 \Rightarrow \text{concordant}$
- Observation 1 and observation 3:

$$\{-2.35 - (-2.12)\}(-0.26 - 0.3) > 0 \implies \text{concordant}$$

 $\bullet P - Q = 27 \Rightarrow$

$$r_k = \frac{27}{\binom{8}{2}} = \frac{27}{28} = 0.96$$

• If N is sufficiently large (≥ 10), under $H_0: \tau = 0$

$$r_k \sim N\left(0, \frac{2(2N+5)}{9N(N-1)}\right)$$

$$P - Q \sim N\left(0, \frac{N(N-1)(2N+5)}{18}\right)$$

or

$$Z = \frac{P - Q}{\sqrt{\frac{N(N-1)(2N+5)}{18}}} \sim N(0,1)$$

- If there are tied observations, r_k cannot be 1 or -1.
- Let

$$t_x = \frac{1}{2} \sum_{i} t_{xi} (t_{xi} - 1)$$
 and $t_y = \frac{1}{2} \sum_{i} t_{yi} (t_{yi} - 1)$

where t_{zi} denotes the number of observations in the i^{th} set of ties for z = x, y

• Let

$$W = \sqrt{\left(\frac{1}{2}N(N-1) - t_x\right)\left(\frac{1}{2}N(N-1) - t_y\right)}$$

• Define

$$r_{k_b} = \frac{P - Q}{W}$$

This statistic is known as Kendall's τ_b

Kendall's τ : Tobacco Example Revisited

- Recall that N=8 and there was one set of ties (of size 2) for the tobacco variable
- Thus

$$W = \sqrt{\left(\frac{1}{2}8(8-1)\right)\left(\frac{1}{2}8(8-1)-1\right)}$$

Yielding

$$r_{k_b} = \frac{27}{\sqrt{28 \times 27}} = 0.98198$$

Kendall's τ : Tobacco Example cont.

• SAS

```
proc corr kendall;
   var mortality tobacco;
Kendall Tau b Correlation Coefficients, N = 8
         Prob > |tau| under H0: Tau=0
               mortality
                                tobacco
mortality
                 1.00000
                                0.98198
                                 0.0008
tobacco
                 0.98198
                                1.00000
                  0.0008
```

Kendall's τ : Tobacco Example cont.

• R

```
> cor(mortality, tobacco, method="kendall")
[1] 0.9819805
> cor.test(mortality, tobacco, method="kendall")
        Kendall's rank correlation tau
data: mortality and tobacco
z = 3.3662, p-value = 0.000762
alternative hypothesis: true tau is not equal to 0
sample estimates:
      tau
0.9819805
Warning message:
In cor.test.default(mortality, tobacco, method = "kendall") :
  Cannot compute exact p-value with ties
```

• Kendall's score P-Q

$$r_{k_a} = \frac{P - Q}{\binom{N}{2}}$$

and

$$r_{k_b} = \frac{P - Q}{W}$$

- \bullet Tests based on r_{k_a} and r_{k_b} are equivalent
- Asymptotic variance of P-Q under H_0 is given on page 336 of the text

$$Z = \frac{P - Q}{\sqrt{\text{Var}(P - Q)}} \sim N(0, 1)$$

Kendall's τ : Example

• In general, Var(P-Q) equals

$$\frac{N(N-1)(2N+5)}{18} - \sum_{i} \frac{t_{xi}(t_{xi}-1)(2t_{xi}+5)}{18} - \cdots$$

• For tobacco example, Var(P-Q) is

$$\frac{8(8-1)(2\cdot 8+5)}{18} - 0 - \frac{2(2-1)(2\cdot 2+5)}{18} + 0 + 0 = 64.333$$

• Thus

$$z = \frac{27}{\sqrt{64.333}} = 3.366$$

yielding
$$p = 2 \cdot \{1 - \Phi(3.366)\} = 0.0008$$

Correlation: Summary/Remarks

- r is appropriate if (X, Y) bivariate normal; sensitive to outliers, major(?) departures from normality
- ullet Nonparametric alternatives: r_s and r_k
- If (X,Y) bivariate normal with correlation ρ ,

$$r \xrightarrow{p} \rho$$
 $r_s \xrightarrow{p} \frac{6}{\pi} \arcsin(\rho/2)$ $r_k \xrightarrow{p} \frac{2}{\pi} \arcsin(\rho)$

(Kraemer, 1998 "Rank Correlation" Encyclopedia of Biostatistics)

• ARE of r_s and r_k compared to r: $9/\pi^2 = 0.912$ (Conover, 1980 Practical Nonparametric Statistics)