电路基础实验报告

实验 1 线性与非线性元件伏安特性的测绘

实验 2 基尔霍夫定律的验证

2411545 邱凯锐

2025. 3. 19

1 实验目的

- 1.1 线性与非线性元件伏安特性的测绘
 - 1. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。
 - 2. 学习恒电源、直流电压表、电流表的使用方法。
- 1.2 基尔霍夫定律的验证
- 2 实验原理

2.1 线性与非线性元件伏安特性的测绘

任一两端电阻元件的特性可用该元件上的端电压 U 与通过该元件的电流 I 之间的函数关系 U=f(I) 来表示,即用 U-I 平面上的一条曲线来表征,这条曲线称为该电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分两大类: 线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如 Figure 2.1 中(a)所示,该直线的斜率只由电阻元件的电阻值 R 决定,其阻值为常数,与元件两端的电压 U 和通过该元件的电流 I 无关;非线性电阻元件的伏安特性是一条经过坐标原点的曲线,其阻值 R 不是常数,即在不同的电压作用下,电阻值是不同的,常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性如 Figure 2.1 中(b)、(c)、(d)。在 Figure 2.1 中,U>0 的部分为正向特性,U<0 的部分为反向特性。

绘制伏安特性曲线通常采用逐点测试法,即在不同的端电压作用下,测量 出相应的电流,然后逐点绘制出伏安特性曲线,根据伏安特性曲线便可计算其 电阻值。

Figure 2.1: 各元件伏安特性曲线

2.2 基尔霍夫定律的验证

3 **实验设备**

3.1 线性与非线性元件伏安特性的测绘

- 1. 直流电压、电流表
- 2. 恒压源
- 3. 电阻 R=1000Ω
- 4. 半导体二极管 1N-4007、稳压二极管 2CW51 (1N4728)

3.2 基尔霍夫定律的验证

4 实验内容及数据

Table 1: 支路电流数据

支路电流 (mA)	I_1	I_2	I_3	
计算值	1.9256	5. 988	-7. 913	
测量值	1. 9554	6.005	-7. 930	
相对误差	1.55%	0. 28%	0. 21%	

Table 2: 各元件电压数据

各元件电压 (V)	U_{S_1}	U_{S_2}	U_{R_1}	U_{R_2}	U_{R_3}	U_{R_4}	U_{R_5}
计算值	6	12	0.98	5. 99	-4.04	0.98	1.98
测量值	6.06	12.06	1.00	6.01	-4.06	1.00	1.96
相对误差	1.00%	0.50%	1.83%	0. 37%	0.60%	1.83%	0.81%