Università degli Studi di Verona
DIPARTIMENTO DI INFORMATICA
Analisi di Sistemi informatici
Riassunto dei principali argomenti
Autore: Davide Bianchi

Indice

1	Introduzione	2
	Preliminari matematici	2
	2.1 Ordini parziali	
	2.2 Reticoli	4
	2.3 Teoremi di punto fisso	
3	Interpretazione astratta	6

1 Introduzione

Argomenti contenuti:

- Interpretazione astratta
- Analisi statica
- Analisi dinamica

2 Preliminari matematici

- 2.1 Ordini parziali
- 2.2 Reticoli
- 2.3 Teoremi di punto fisso

3 Interpretazione astratta

Lo scopo è quello di trovare un'approssimazione di una semantica $\langle P \rangle$ di $[\![P]\!]$ tale per cui valgano:

- correttezza: $[\![P]\!] \subseteq \langle P \rangle;$
- $decidibilità: \langle P \rangle \subseteq Q$ è decidibile (Q è un insieme di semantiche che soddisfa la proprietà di interesse).

Se entrambe le proprietà sono soddisfatte, allora vale che

$$(\langle P \rangle \subseteq Q) \Rightarrow (\llbracket P \rrbracket \subseteq Q)$$

La semantica è data da una coppia $\langle D, f \rangle$ dove D è una coppia $\langle D, \leq_D$ rappresentante un dominio semantico e $f: D \to D$ è una funzione di trasferimento con una soluzione a punto fisso.

Dato un oggetto concreto, definiamo:

- un **oggetto astratto** come una rappresentazione matematica sovra-approssimata del corrispondente concreto;
- un dominio astratto come un insieme di oggetti astratti con delle operazioni astratte, che approssimano quelle concrete;
- una funzione di astrazione α che mappa oggetti concreti in oggetti astratti;
- una funzione di concretizzazione γ che mappa oggetti astratti in oggetti concreti.

La caratteristica peculiare delle astrazioni è che solo alcune proprietà vengono osservate con esattezza, le altre vengono solo approssimate. In sostanza, dato un dominio astratto A, gli elementi di A sono osservati con esattezza, gli altri sono approssimati o l'informazione è persa del tutto.

Proprietà. L'insieme delle proprietà $P(\Sigma)$ di oggetti in Σ è l'insieme di elementi che gode di quella proprietà. Questo insieme di proprietà costituisce un reticolo completo

$$\langle P(\Sigma), \subseteq, \emptyset, \cup, \cap, \neg \rangle$$

dove:

- $\bullet \ \subseteq$ è l'implicazione logica;
- Σ è true;
- \cup è la disgiunzione (oggetti che godono di P o di Q appartengono a $P \cup Q$);
- \cap è la congiunzione (oggetti che godono di P e di Q appartengono a $P \cap Q$);
- \neg è la negazione (oggetti che non godono di P stanno in $\Sigma \setminus P$).