Bases ortonormales

March 4, 2025

1 Bases ortonormales

1.1 Explicacion Matematica

1.1.1 Explicación

Una base ortonormal es, en escencia, un sistema de referencia hecho de vectores unitarios mutuamente perpendiculares. En el espacio \mathbb{R}^3 , un ejemplo de base ortornoaml estándar es

$$e_1, e_2, e_3 = (1, 0, 0), (0, 1, 0), (0, 0, 1)$$

Aquí:

- Cada vector tiene normal $\|e_1\|=\|e_2\|=\|e_3\|=1$
- Son ortogonales entre sí: $\langle e_i, e_j \rangle = 0$ para $i \neq j$

Geometricamente, esto significa que cada vector apunta en una dirección completamente independiente de los otros, formando un ángulo recto. El concepto se generaliza a cualquier dimensión.

1.1.2 Explicación formal

Sea V un espacio vectorial de dimensión finita n sobre \mathbb{R} , con producto interno $\langle *, * \rangle$. Un conjunto de vectores $v_1, v_2, ..., v_n$ es una base ortornoaml si satisface

1- Ortonormalidad:

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Esto significa que cada vector tiene norma 1 (normalidad) y son ortogonales entre sí (ortogonalidad)

2- Base:

El conjunto es base si cualquier vector $v \in \text{se}$ puede escribir como combinación lineal

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

Si el espacio tiene producto interno, los coeficientes son fáciles de calcular

$$c_i = \langle v, v_i \rangle$$

Esto simplifica muchas operaciones, lo cual es una ventaja de trabajar con bases ortonormales.

1.2 Aplicaciones en Ciencias de datos

2 Ejemplo practico: PCA (Análisis de Componentes Principales)

2.1 Objetivo

Reducir la dimensión de un conjunto de datos, manteniendo la mayor cantidad posible de información.

1. Centralizar los datos

Restamos la media de cada característica para que los datos estén centrados en el origen.

2. Calcular la matriz de covarianza

Esta matriz mide cómo varían las características entre sí.

Ejemplo: Si las características son altura y peso, la covarianza mide si al aumentar la altura, también suele aumentar el peso.

3. Descomposición espectral

Se calculan los **autovectores y autovalores** de la matriz de covarianza. Estos autovectores forman una **base ortonormal**.

4. Ordenar por importancia

Los autovalores indican cuánta información (varianza) explica cada autovector. Los autovectores con autovalores más grandes son las direcciones principales (componentes principales).

5. Cambio de base

Proyectamos los datos originales sobre esta base ortonormal de componentes principales. Esto transforma el dataset original a un nuevo espacio donde las coordenadas son independientes entre sí (descorreladas).

6. Reducción

Si solo queremos las 2 o 3 direcciones principales, nos quedamos con los primeros vectores de la base ortonormal y descartamos el resto.

2.2 Ejemplo simple

Si los datos originales son puntos en 3D:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Después de PCA, los datos podrían vivir en 2D:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

3 Ejemplo practico: Normalización de embeddings en NLP

3.1 Objetivo

Al trabajar con vectores de palabras (word embeddings) o embeddings de documentos, muchas veces se normalizan para tener norma 1. Esto es útil para usar métricas como el **coseno** para medir similitud.

1. Obtener embeddings

El modelo convierte cada palabra en un vector:

$$w_i = \begin{bmatrix} w_{i1} \\ w_{i2} \\ \vdots \\ w_{i300} \end{bmatrix}$$

2. Normalización

Cada vector se divide por su norma:

$$w_i^{(norm)} = \frac{w_i}{\|w_i\|}$$

Después de esto, cada vector tiene norma 1.

3. Espacio esférico

Después de normalizar, todos los vectores viven sobre la superficie de una hiperesfera unidad. Este espacio es equivalente a trabajar en una base ortonormal estándar, ya que:

- Cada vector normalizado tiene norma 1.
- El coseno es una proyección en una base ortonormal esférica.

4. Medir similitud

Ahora, la similitud entre dos palabras se mide directamente con:

$$\cos\theta = \langle w_i^{(norm)}, w_j^{(norm)} \rangle$$

Como los vectores están normalizados, este producto interno es exactamente el coseno del ángulo entre los vectores.

3.2 Ejemplo simple

Palabra "perro":

$$w_{perro} = [0.3, 0.4, 0.5]\,$$

$$\|w_{perro}\| = \sqrt{0.3^2 + 0.4^2 + 0.5^2} = \sqrt{0.5} = 0.707$$

$$w_{perro}^{(norm)} = \frac{1}{0.707} \cdot [0.3, 0.4, 0.5]$$

Así garantizas que cada vector vive en la misma esfera.

4 Codigo

```
[8]: import numpy as np
import matplotlib.pyplot as plt

[9]: # Generar datos artificiales (simulación de un dataset 2D)
    np.random.seed(42)
    x = np.random.normal(0, 1, 100)
    y = 2 * x + np.random.normal(0, 0.2, 100)

    data = np.column_stack((x, y))

[10]: # Visualizar datos originales
    plt.figure(figsize=(6, 6))
    plt.scatter(data[:, 0], data[:, 1], label="Datos Originales")
    plt.axhline(0, color='black', lw=0.5)
    plt.axvline(0, color='black', lw=0.5)
    plt.legend()
    plt.title("Datos originales")
    plt.show()
```



```
[11]: # Centrar los datos (restar la media)
    mean = np.mean(data, axis=0)
    data_centrado = data - mean

[12]: # Visualizar datos centrados
    plt.figure(figsize=(6, 6))
    plt.scatter(data_centrado[:, 0], data_centrado[:, 1], label="Datos Centrados")
    plt.axhline(0, color='black', lw=0.5)
    plt.axvline(0, color='black', lw=0.5)
    plt.legend()
    plt.title("Datos centrados")
    plt.show()
```


Autovalores:

[0.00725553 4.05844996]

Autovectores (Base Ortonormal):

```
[[-0.8934227 -0.44921697]
[ 0.44921697 -0.8934227 ]]
```

[14]: # Proyectar datos sobre la nueva base ortonormal

```
data_pca = np.dot(data_centrado, autovectores)

[15]: # Visualizar datos proyectados (en la base PCA)
plt.figure(figsize=(6, 6))
plt.scatter(data_pca[:, 0], data_pca[:, 1], label="Datos en base PCA")
plt.axhline(0, color='black', lw=0.5)
plt.axvline(0, color='black', lw=0.5)
plt.legend()
plt.title("Datos transformados (PCA)")
plt.show()
```



```
[16]: # Visualizar ejes de PCA sobre los datos originales centrados
plt.figure(figsize=(6, 6))
plt.scatter(data_centrado[:, 0], data_centrado[:, 1], label="Datos Centrados")
for i in range(2):
    vector = autovectores[:, i]
    plt.quiver(0, 0, vector[0], vector[1], angles='xy', scale_units='xy',
    scale=1, width=0.005, label=f"PC{i+1}")

plt.axhline(0, color='black', lw=0.5)
plt.axvline(0, color='black', lw=0.5)
plt.legend()
plt.title("Ejes principales (Base Ortonormal)")
plt.show()
```

Ejes principales (Base Ortonormal)

5 Enlaces

 $https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/\\ http://tutorial.math.lamar.edu/Classes/LinAlg/OrthonormalBases.aspx\\ https://www.math.utah.edu/~zwick/Classes/Fall2012_2270/Lectures/Lecture18.pdf\\ https://cs229.stanford.edu/notes2020spring/cs229-notes10.pdf$

 $https://www.tensorflow.org/text/guide/word_embeddings$