SAT, 3-SAT PERTENCEM A NP-Completo

Prof. Daniel Kikuti

Universidade Estadual de Maringá

SAT

O problema

Consiste em determinar se uma fórmula booleana ϕ é satisfazível, isto é, se existe uma atribuição de valores verdade para as variáveis tal que ϕ seja verdadeira.

Instância

- ightharpoonup n variáveis booleanas: x_1, x_2, \ldots, x_n ;
- ▶ m conectivos lógicos tais como: \land (e), \lor (ou), \neg (negação), \rightarrow (condicional), \leftrightarrow (bicondicional);
- ► Parênteses (sem redundância).

Linguagem

 $SAT = \{ \langle \phi \rangle : \phi \text{ \'e uma f\'ormula booleana satisfaz\'ivel} \}.$

Exemplo

A fórmula ϕ a seguir é satisfazível?

$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

- Como funcionaria um algoritmo força bruta para este problema?
- Qual a complexidade deste algoritmo?
- Mostraremos que este é um problema NP-Completo.

Exemplo

A fórmula ϕ a seguir é satisfazível?

$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

Sim. A atribuição $x_1 = F$, $x_2 = F$, $x_3 = T$ e $x_4 = T$ satisfaz ϕ .

- Como funcionaria um algoritmo força bruta para este problema? Tabela verdade e substituição na fórmula.
- ▶ Qual a complexidade deste algoritmo? Custo $O(2^n \times eval(\phi))$.
- Mostraremos que este é um problema NP-Completo.

$Sat \in \mathbf{NP}\text{-}\mathbf{Completo}$

1 - Mostrar que $\mathrm{SAT} \in \mathbf{NP}$

- Mostrar um algoritmo polinomial não determinístico que resolve SAT.
- ▶ Mostrar um algoritmo verificador para o problema SAT que executa em tempo polinomial.

2 - Escolher um problema NP-Completo

- ► Usaremos o problema CIRCUIT-SAT: "Dado um circuito composto por portas ∧, ∨, ¬, existe uma atribuição de valores verdade na entrada tal que sua saída seja 1?"
- O tamanho de um circuito é o número de portas lógicas mais o número de trilhas.
- ► CIRCUIT-SAT = $\{\langle C \rangle : C \text{ \'e um circuito satisfaz\'ivel}\}.$

$SAT \in NP$ -Completo

3 - Mostrar que CIRCUIT-SAT $\leq_p SAT$

Como reduzir qualquer instância de ${\rm CIRCUIT\text{-}SAT}$ para uma instância de ${\rm SAT}$ em tempo polinomial?

$SAT \in NP$ -Completo

3 - Mostrar que CIRCUIT-SAT $\leq_p SAT$

Como reduzir qualquer instância de $\operatorname{CIRCUIT-SAT}$ para uma instância de SAT em tempo polinomial?

- Primeira tentativa: usar indução para expressar qualquer circuito combinatório booleano como uma fórmula booleana. Verifique a porta que produz a saída para o circuito e expresse indutivamente cada uma das portas de entrada como fórmulas em função de suas entradas.
- ▶ O Exercício 34.4-1 do Cormen pede para você mostrar que, para algumas instâncias de C, esta redução é exponencial.

$Sat \in \mathbf{NP}\text{-}\mathbf{Completo}$

Exemplo

Uma redução polinomial

- ▶ Para cada trilha x_i em C, associar uma variável em ϕ .
- Representar como cada porta opera por meio de uma pequena fórmula envolvendo as variáveis de entrada e saída.
- ▶ Por exemplo: a operação da porta AND de saída será $x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)$.

$Sat \in \mathbf{NP}\text{-}\mathbf{Completo}$

$$\phi = x_{10} \land (x_4 \leftrightarrow \neg x_3) \land (x_5 \leftrightarrow (x_1 \lor x_2)) \land (x_6 \leftrightarrow \neg x_4) \land (x_7 \leftrightarrow (x_1 \land x_2 \land x_4)) \land (x_8 \leftrightarrow (x_5 \lor x_6)) \land (x_9 \leftrightarrow (x_6 \lor x_7)) \land (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

$SAT \in NP$ -Completo

Proposição: C é satisfazível se e somente se ϕ é satisfazível.

- \Rightarrow C possui uma atribuição tal que a saída é 1 (cada trilha também possui um valor definido). Assim, quando atribuímos os valores das trilhas para as variáveis em ϕ , cada subfórmula representando as portas lógicas que inserimos em ϕ torna-se verdadeira e, a conjunção de todas produz verdadeiro.
- \Leftarrow Se uma atribuição satisfaz ϕ , então o circuito também é satisfazível por um argumento análogo.

3-SAT

- Um literal é uma variável booleana ou sua negação.
- ▶ Uma **cláusula** é uma fórmula composta por vários literais conectados por 'V's. Exemplo: $(x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4)$.
- ▶ Uma fórmula está na **forma normal conjuntiva** (FNC) se compreende várias cláusulas conectadas por '∧'s. Exemplo: $(x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (x_3 \lor \neg x_5 \lor x_6) \land (x_3 \lor x_6)$.
- Uma fórmula é 3FNC se todas as cláusulas possuem três literais. Exemplo:

$$(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_3 \vee x_5 \vee x_6) \wedge (x_3 \vee \neg x_6 \vee x_4) \wedge (x_4 \vee x_5 \vee x_6).$$

O problema

3-SAT é o problema de determinar se uma fórmula ϕ em 3FNC é satisfazível.

3-Sat \in NP-Completo

1 - Mostrar que $3\text{-}\mathrm{SAT} \in \mathbf{NP}$

Mesma demonstração usada para provar que $SAT \in \mathbf{NP}$.

2 - Escolher um problema NP-Completo

Usaremos SAT.

3 - Sat
$$\leq_p$$
 3-Sat

Precisamos mostrar que é possível reduzir instâncias de $\rm SAT$ para instâncias de 3-SAT em tempo polinomial.

Sat \leq_p 3-Sat

Descrevendo ϕ por meio de árvore binária

Considere a seguinte fórmula:

$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2.$$

A árvore a seguir representa esta fórmula.

SAT \leq_p 3-SAT

Árvore representando ϕ

Mesma ideia da redução de CIRCUIT-SAT

$$\phi' = y_1 \wedge (y_1 \leftrightarrow (y_2 \wedge \neg x_2))$$

$$\wedge (y_2 \leftrightarrow (y_3 \vee y_4))$$

$$\wedge (y_3 \leftrightarrow (x_1 \rightarrow x_2))$$

$$\wedge (y_4 \leftrightarrow \neg y_5)$$

$$\wedge (y_5 \leftrightarrow (y_6 \vee x_4))$$

$$\wedge (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3)).$$

Observe que ϕ' é uma conjunção de subfórmulas, mas ainda não está na 3FNC.

SAT \leq_p 3-SAT

Obtendo FNC para cada subfórmula booleana

- 1. Para cada subfórmula ϕ'_i , faça a tabela verdade.
- 2. Em cada linha onde a fórmula tem valor verdade 1, insira uma cláusula disjuntiva equivalente.

Exemplo para a subfórmula $\phi_1' = (y_1 \leftrightarrow (y_2 \land \neg x_2))$

y_1	y_2	x_2	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$\phi_1'' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor \neg y_2 \lor x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor y_2 \lor \neg x_2).$$

Sat \leq_p 3-Sat

Cada cláusula de ϕ'' terá no máximo 3 variáveis.

ϕ'' está na FNC, mas não em 3FNC

- ▶ Se C_i de ϕ'' possui três literais, então simplesmente inclua C_i de ϕ'' em ϕ''' .
- ▶ Se C_i de ϕ'' possui dois literais distintos $(C_i = (l_1 \lor l_2))$, então inclua $(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$ como cláusulas de ϕ''' . Independentemente do valor de p, uma das cláusulas terá valor 1 (valor identidade para o \land) e a outra terá valor $l_1 \lor l_2$.
- ▶ Se C_i de ϕ'' possui apena um literal l, então inclua $(l \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)$ como cláusulas de ϕ''' . Independentemente dos valores de p e q, uma das quatro cláusulas é equivalente a l, e as outras três terão valor 1.

SAT \leq_p 3-SAT

Equivalência lógica

Como as transformações efetuadas nos passos mantém a equivalência lógica das fórmulas, concluímos que ϕ''' é satisfazível se e somente se ϕ é satisfazível.

Redução em tempo polinomial

Nos três passos, cada transformação foi feita em tempo polinomial.

- A construção de ϕ' a partir de ϕ introduz no máximo uma variável e uma cláusula por conectivo em ϕ .
- ▶ A construção de ϕ'' a partir de ϕ' pode introduzir no máximo oito cláusulas em ϕ' por cada cláusula em ϕ' , pois cada cláusula em ϕ' possui no máximo três variáveis, e a tabela verdade para cada cláusula possui no máximo $2^3=8$ linhas.
- A construção de ϕ''' a partir de ϕ'' introduz no máximo quatro cláusulas em ϕ''' por cláusula em ϕ'' .

Portanto, o tamanho resultante da fórmula ϕ''' é polinomial no tamanho da fórmula original.

Referências

- ▶ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. **Introduction to Algorithms**, Third Edition. The MIT Press. Chapter 34.
- ► Kleinberg J., and Tardos E. **Algorithm Design**. 2005. Pearson. Chapter 8.