Also30 / EE5817: PROBABILITY AND STOCHASTIC PROCESSES HOMEWORK 02 SOLUTIONS

ALGEBRAS, σ -ALGEBRAS

Solutions Prepared By: K.A. Midhunkumar & Deekshith Rathod K.

- 1. (a) Let $\Omega = \{1, \ldots, 6\}$. For each $i \in \{1, 2, 3, 4\}$, construct a σ -algebra \mathscr{F}_i of subsets of Ω such that $|\mathscr{F}_i| = 2^i$.
 - (b) Let Ω be a finite sample space with $|\Omega|=n$ for some $n\in\mathbb{N}$. Let \mathscr{F} be a σ -algebra of subsets of Ω . Show that $|\mathscr{F}|=2^k$ for some $1\leq k\leq n$.

Solution:

(a) Following are some example σ -algebras with desired sizes:

$$\begin{split} \mathscr{F}_1 &= \{\emptyset, \Omega\}, \\ \mathscr{F}_2 &= \{\emptyset, \Omega, \{1, 2, 3\}, \{4, 5, 6\}\}, \\ \mathscr{F}_3 &= \{\emptyset, \Omega, \{1, 2\}, \{3, 4\}, \{5, 6\}, \{1, 2, 3, 4\}, \{1, 2, 5, 6\}, \{3, 4, 5, 6\}\}, \\ \mathscr{F}_4 &= \{\emptyset, \Omega, \{1, 2\}, \{3, 4\}, \{5\}, \{6\}, \{1, 2, 3, 4\}, \{1, 2, 5\}, \{1, 2, 6\}, \\ &\qquad \qquad \{3, 4, 5\}, \{3, 4, 6\}, \{5, 6\}, \{1, 2, 3, 4, 5\}, \{1, 2, 3, 4, 6\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\}\}. \end{split}$$

(b) For each $x \in \Omega$, define

$$A_x = \bigcap_{A \in \mathscr{F}: x \in A} A \quad \text{where, } A \subseteq \Omega$$

By construction $\forall x \in A_x$, and $A_x \in \mathscr{F}$ since \mathscr{F} is closed under countable intersections.

<u>Claim:</u> A_x is an atom, i.e., if $B \subseteq A_x$ and $B \in \mathscr{F}$, then either $B = A_x$ or $B = \emptyset$.

Proof. Given,

$$B \subseteq A_x \Rightarrow x \in B$$
 by definition $\Rightarrow A_x \subseteq B$

This gives $B = A_x$.

If instead $B \not\subseteq A_x$ and $x \notin B$, then B cannot be a non-empty proper subset of A_x in \mathscr{F} .

$$B \not\subseteq A_x, \ x \notin B \quad \Rightarrow A_x \setminus B \in \mathscr{F} \qquad \qquad \text{(closure under complements)} \ \Rightarrow A_x \setminus B \subset A_x, \quad x \in A_x \setminus B \quad \text{(since } x \notin B \text{ but } x \in A_x\text{)} \ \text{contradicts minimality of } A_x \ \Rightarrow B = \emptyset.$$

Thus $B = \emptyset$.

Hence A_x is an atom.

If A_x and A_y are two atoms

$$A_x \cap A_y \neq \emptyset \Rightarrow A_x \cap A_y = A_y$$

So $A_x=A_y$. Thus, distinct atoms are disjoint.

Therefore, the collection of atoms forms a partition of Ω . Let the atoms be B_1, B_2, \ldots, B_k .

Now take any $A \in \mathscr{F}$. Then

$$A = A \cap \Omega = A \cap \left(\bigsqcup_{i=1}^k B_i\right) = \bigsqcup_{i=1}^k (A \cap B_i) = \bigsqcup_{i:A \cap B_i \neq \emptyset} B_i.$$

HOMEWORK 02 SOLUTIONS

Thus A equals the union of those atoms B_i that intersect A.

Since each $B_i \in \mathscr{F}$ and finite unions of atoms belong to \mathscr{F} , every $A \in \mathscr{F}$ can be expressed as a union of atoms. Hence the number of distinct sets in \mathscr{F} is bounded by

$$|\mathscr{F}| \le 2^k. \tag{1}$$

But also, for every subset $I \subseteq [k]$, the union $\bigcup_{i \in I} B_i \in \mathscr{F}$, and there are exactly 2^k such unions. Hence

$$|\mathscr{F}| \ge 2^k. \tag{2}$$

Combining (1) and (2), we conclude

$$|\mathscr{F}| = 2^k$$
.

- 2. Let Ω be an arbitrary set (finite, countably infinite, or uncountable).
 - (a) Let \mathscr{A} be a collection of subsets of Ω satisfying the following properties:
 - $\Omega \in \mathscr{A}$.
 - If $A, B \in \mathscr{A}$, then $A \cap B^{\complement} \in \mathscr{A}$.

Show that $\mathscr A$ must be an algebra (of subsets of Ω).

- (b) Suppose \mathscr{F} is a collection of subsets of Ω satisfying the following properties:
 - $\Omega \in \mathscr{F}$.
 - If $A \in \mathcal{F}$, then $A^{\complement} \in \mathcal{F}$ (closure under complements).
 - If A, B are two **disjoint** subsets of Ω , then $A \cup B \in \mathscr{F}$ (closure under finite **disjoint** unions).

Construct an explicit example to demonstrate that \mathcal{F} need not be an algebra.

Solution.

- (a) By definition, we have $\Omega \in \mathscr{A}$. Setting $A = B = \Omega$ and using the property that $A \cap B^{\complement} \in \mathscr{A}$, we get that $\Omega \cap \Omega^{\complement} = \emptyset \in \mathscr{A}$. Next, we show that \mathscr{A} is closed under complements. Suppose that $B \in \mathscr{A}$. Then, choosing $A = \Omega$, and noting that $A \cap B^{\complement} \in \mathscr{A}$, we get that $\Omega \cap B^{\complement} = B^{\complement} \in \mathscr{A}$. This proves that \mathscr{A} is closed under complements. Finally, to show that \mathscr{A} is closed under finite unions, suppose that $B_1, B_2 \in \mathscr{A}$. Taking $A = B_1^{\complement}$ and $B = B_2$, and using the fact that $A \cap B^{\complement} \in \mathscr{A}$, we get that $B_1^{\complement} \cap B_2^{\complement} \in \mathscr{A}$. Because \mathscr{A} is closed under complements, it follows that $(B_1^{\complement} \cap B_2^{\complement})^{\complement} = B_1 \cup B_2 \in \mathscr{A}$. This establishes closure under finite unions, and thereby the fact that \mathscr{A} is an algebra of subsets of Ω .
- (b) Let $\Omega = \{1, 2, 3, 4, 5, 6\}$. Consider the collection

$$\mathscr{F} = \{\emptyset, \Omega, \{1, 2\}, \{2, 3\}, \{3, 4, 5, 6\}, \{1, 4, 5, 6\}\}.$$

Clearly ${\mathscr F}$ is a collection of subsets of Ω that satisfy the given properties. However,

$$\{1,2\} \cup \{2,3\} = \{1,2,3\} \notin \mathscr{F}.$$

Thus, it follows that \mathcal{F} is not closed under finite unions, and hence not an algebra.

- 3. Let Ω be an arbitrary set (finite, countably infinite, or uncountable).
 - (a) Let \mathcal{F}_1 denote the collection of all finite subsets of Ω , i.e.,

$$\mathscr{F}_1 \coloneqq \Big\{ A \subseteq \Omega : |A| \in \mathbb{N} \Big\}.$$

Is \mathcal{F}_1 an algebra?

(b) Let \mathscr{F}_2 denote the collection of all finite subsets of Ω , plus all subsets of Ω whose complement is finite, i.e.,

$$\mathscr{F}_2 := \bigg\{ A \subseteq \Omega: \ A \text{ is finite or } (\Omega \setminus A) \text{ is finite or both} \bigg\}.$$

Show that \mathscr{F}_2 is an algebra.

Construct an example to demonstrate that \mathscr{F}_2 need not necessarily be a σ -algebra.

(c) Let \mathscr{F}_3 denote the collection of all countable subsets of Ω , plus all subsets of Ω whose complement is countable, i.e.,

$$\mathscr{F}_3 := \bigg\{ A \subseteq \Omega: \ A \text{ is countable or } (\Omega \setminus A) \text{ is countable or both} \bigg\}.$$

Show that \mathscr{F}_3 is a σ -algebra.

Note: Countable means finite or countably infinite.

Solution.

- (a) If Ω is either countably infinite or uncountable, then $\Omega \notin \mathscr{F}_1$, in which case \mathscr{F}_1 is not an algebra. However, if Ω is finite, then $\mathscr{F}_1 = 2^{\Omega}$ and hence trivially an algebra.
- (b) (i) $\Omega \in \mathscr{F}_2$, since $|\Omega^{\complement}| = |\emptyset| = 0$.
 - (ii) Closure under complements. Let $A \in \mathscr{F}_2$. Then either A is finite or A^{\complement} is finite. Hence $A^{\complement} \in \mathscr{F}_2$.
 - (iii) Closure under finite unions. Let $A, B \in \mathscr{F}_2$. We check all possibilities.
 - 1. A, B finite. Then $A \cup B$ is finite, hence in \mathscr{F}_2 .
 - 2. A finite, B co-finite (i.e., B^{\complement} finite). In this case,

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}.$$

Here A^{\complement} is co-finite and B^{\complement} is finite, so $A^{\complement} \cap B^{\complement}$ is finite. Hence $(A \cup B)^{\complement}$ is finite, i.e. $A \cup B$ is co-finite, thus $A \cup B \in \mathscr{F}_2$.

- 3. A co-finite, B finite. Symmetric to case 2.
- 4. A, B co-finite. Then A°, B° are finite, and

$$(A \cup B)^{\mathbf{C}} = A^{\mathbf{C}} \cap B^{\mathbf{C}}$$

is an intersection of two finite sets, hence finite. Thus $A \cup B$ is co-finite, so $A \cup B \in \mathscr{F}_2$.

Therefore, \mathscr{F}_2 is closed under finite unions. Combining (i), (ii) & (iii), it follows that \mathscr{F}_2 is an algebra on Ω .

Counterexample to show \mathscr{F}_2 is not a σ -algebra:

Let $\Omega = \mathbb{N}$. All singletons belong to \mathscr{F}_2 , since they are finite. Consider the set

$$A = \bigcup_{k \in \mathbb{N}} \{2k - 1\}.$$

Clearly, both A (the set of odd numbers) and A^{\complement} (the set of even numbers) are countably infinite, thus implying that $A \notin \mathscr{F}_2$. This demonstrates that \mathscr{F}_2 is not closed under countable unions, and hence not a σ -algebra.

- (c) We show that \mathscr{F}_3 is a σ -algebra on Ω by verifying the three defining properties:
 - i. $\Omega \in \mathscr{F}_3$:

 \emptyset is countable, hence $\emptyset \in \mathscr{F}_3$. Also $\Omega^{\complement} = \emptyset$ is countable, so Ω is co-countable; thus $\Omega \in \mathscr{F}_3$.

ii. Closed under complements: If $A \in \mathscr{F}_3$, then $A^{\complement} \in \mathscr{F}_3$.

There are two cases by definition of \mathcal{F}_3 .

- If A is countable, then A^{\complement} is co-countable; hence $A^{\complement} \in \mathscr{F}_3$.
- If A^{\complement} is countable, then $(A^{\complement})^{\complement}=A$ is co-countable; in particular $A^{\complement}\in\mathscr{F}_3$ directly by assumption.

Thus \mathscr{F}_3 is closed under complements.

iii. Closed under countable unions: If $A_1,A_2,\dots\in\mathscr{F}_3$, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{F}_3$.

Partition the indices. Let

$$I:=\{\,n\in\mathbb{N}:A_n \text{ is countable}\,\}\qquad ext{and}\qquad J:=\left\{\,n\in\mathbb{N}:A_n^{\,\complement} \text{ is countable}\,
ight\}.$$

Since each $A_n \in \mathscr{F}_3$, $\mathbb{N} = I \cup J$ (disjoint union).

Step 1 (the I-part is countable). We know, the union of countably many countable sets is countable:

$$U_I := \bigcup_{n \in I} A_n$$
 is countable.

Step 2 (the J-part is co-countable). Consider

$$U_J := \bigcup_{n \in J} A_n.$$

Its complement is

$$U_J^{\complement} = \bigcap_{n \in I} A_n^{\complement}.$$

Each A_n^{\complement} is countable for $n \in J$. Since an intersection is a subset of each operand,

$$\bigcap_{n\in I}A_n^{\complement}\subseteq A_{n_0}^{\complement}\quad \text{for any fixed }n_0\in J,$$

hence U_J^{\complement} is a subset of a countable set and therefore countable by. Thus U_J is co-countable, i.e., $U_J \in \mathscr{F}_3$. (If $J=\emptyset$, then $U_J=\emptyset$ is countable, so again $U_J\in \mathscr{F}_3$.) Step 3 (combine the two parts). We have

$$\bigcup_{n\in\mathbb{N}} A_n = U_I \cup U_J.$$

If $J=\emptyset$, then the union is U_I , which is countable and hence in \mathscr{F}_3 . If $J\neq\emptyset$, then U_J is co-countable and U_I is countable. In that case

$$(U_I \cup U_J)^{\complement} = U_I^{\complement} \cap U_J^{\complement} \subseteq U_J^{\complement},$$

and U_J^{\complement} is countable, so $(U_I \cup U_J)^{\complement}$ is countable; hence $U_I \cup U_J$ is co-countable. Therefore $\bigcup_{n \in \mathbb{N}} A_n \in \mathscr{F}_3$. Properties (i), (ii) & (iii) prove that \mathscr{F}_3 is a σ -algebra on Ω .

4. Let $\Omega = \mathbb{R}$. Let \mathscr{P} denote the collection

$$\mathscr{P} \coloneqq \Big\{ [a,b): \ a,b \in \mathbb{R}, \ a < b \Big\}.$$

Clearly, \mathscr{P} consists of uncountably infinitely many subsets of Ω .

In Lecture 6, we saw that $\sigma(\mathscr{P}) = \mathscr{B}(\mathbb{R})$, i.e., \mathscr{P} is a generating class for $\mathscr{B}(\mathbb{R})$.

In this exercise, we will see an alternative construction of $\mathscr{B}(\mathbb{R})$ starting from a **countably infinite** collection of subsets of Ω .

Consider the collection $\mathscr C$ given by

$$\mathscr{C} := \bigg\{ [a,b) : a \leq b, \ \ a,b \text{ are dyadic rational numbers} \bigg\}.$$

Note: A dyadic rational number is of the form $m/2^n$ for some $m \in \mathbb{Z}$ and $n \in \mathbb{N} \cup \{0\}$.

(a) Given $x \in \mathbb{R}$, express $\{x\}$ in terms of sets in $\mathscr C$ using countable set operations.

Hint: Note that $\lfloor 2^n x \rfloor \leq 2^n x \leq \lceil 2^n x \rceil$ for all $n \in \mathbb{N}$. Therefore,

$$\frac{\lfloor 2^n x \rfloor}{2^n} \le x \le \frac{\lceil 2^n x \rceil}{2^n} \qquad \forall n \in \mathbb{N}.$$

- (b) Given $a, b \in \mathbb{R}$ with a < b, express [a, b] in terms of sets in \mathscr{C} using countable set operations.
- (c) Using the result in part (b), what can you say about the relationship between \mathscr{P} and $\sigma(\mathscr{C})$?
- (d) What can you say about the relationship between \mathscr{C} and $\sigma(\mathscr{P})$?
- (e) Using the results of parts (c), (d), what can you say about the relationship between $\sigma(\mathscr{C})$ and $\sigma(\mathscr{P})$?

Solution.

(a) Expressing $\{x\}$ in terms of sets in \mathscr{C} :

Case 1: $x \in \mathbb{R}$ is dyadic. Define

$$A_n = \left[x, x + \frac{1}{2^n}\right), \quad n \in \mathbb{N}.$$

Clearly, $A_n \in \mathscr{C}$ for all $n \in \mathbb{N}$.

We claim:

$$\bigcap_{n\in\mathbb{N}} A_n = \{x\}.$$

Proof: By definition, $x \in A_n$ for every $n \in \mathbb{N}$, so $x \in \cap_n A_n$. Suppose $y \neq x$ with $y \in \cap_n A_n$. Let $|y-x| = \varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $\varepsilon < \frac{1}{2^N}$. But then $A_N = [x, \ x + \frac{1}{2^N})$ does not contain y, a contradiction. Hence, $\cap_n A_n = \{x\}$.

Case 2: $x \in \mathbb{R}$ is non-dyadic. We know

$$\frac{\lfloor 2^n x \rfloor}{2^n} < x < \frac{\lceil 2^n x \rceil}{2^n}, \quad n \in \mathbb{N}.$$

Define

$$A_n = \left\lceil \frac{\lfloor 2^n x \rfloor}{2^n}, \frac{\lceil 2^n x \rceil}{2^n} \right), \quad n \in \mathbb{N}.$$

Then $x \in A_n$ for every n, and since $\lceil 2^n x \rceil - \lfloor 2^n x \rfloor = 1$, the interval A_n shrinks around x as $n \to \infty$. Hence,

$$\bigcap_{n\in\mathbb{N}} A_n = \{x\}.$$

Thus, in both cases, $\{x\}$ can be expressed as a countable intersection of sets in \mathscr{C} .

(b) Expressing [a, b) in terms of sets in \mathscr{C} :

If a, b are dyadic, then $[a, b) \in \mathscr{C}$.

If not, let

$$A_n = \left\lceil \frac{\lceil 2^n a \rceil}{2^n}, \frac{\lfloor 2^n b \rfloor}{2^n} \right\rceil$$

Then

$$[a,b) = \bigcup_{n \in \mathbb{N}} A_n \cup \{a\}.$$

Hence, [a, b) is expressed as a countable union of sets in \mathscr{C} .

(c) Relation between \mathscr{P} and $\sigma(\mathscr{C})$:

The class \mathscr{P} contains all sets of the form [a,b) with $a \leq b, a,b \in \mathbb{R}$. From part (b), any such set can be expressed using countable unions of sets in \mathscr{C} . Hence,

$$\mathscr{P} \subseteq \sigma(\mathscr{C}).$$

(d) Relation between \mathscr{C} and $\sigma(\mathscr{P})$:

Clearly, $\mathscr{C} \subseteq \mathscr{P}$. Hence,

$$\sigma(\mathscr{C}) \subseteq \sigma(\mathscr{P}).$$

(e) Final conclusion:

Combining (c) and (d), we obtain

$$\sigma(\mathscr{C}) = \sigma(\mathscr{P}).$$

But we know $\sigma(\mathscr{P}) = \mathscr{B}(\mathbb{R})$. Therefore,

$$\sigma(\mathscr{C}) = \mathscr{B}(\mathbb{R}),$$

i.e. \mathscr{C} is a countable generating class for $\mathscr{B}(\mathbb{R})$.

- 5. Let Ω be an arbitrary set (finite, countably infinite, or uncountable).
 - (a) Let $\mathscr C$ denote the collection of all singleton subsets of Ω . What is $\sigma(\mathscr C)$?

Hint: See Question 3c.

(b) Fix two elementary outcomes $a,b\in\Omega$. Let $\mathscr{E}_{a,b}$ denote the collection of all those subsets of Ω which either contain both a and b or do not contain both. Let $\mathscr{F}=\sigma(\mathscr{E}_{a,b})$. Show that every set in \mathscr{F} has the same property as the sets in $\mathscr{E}_{a,b}$.

Solution

(a) **Case 1:** Ω is **countable.** For any $A\subseteq \Omega$ we can write $A=\bigcup_{x\in A}\{x\}$ as a *countable* union of singletons. Hence $A\in \sigma(\mathscr{C})$. Therefore

$$\sigma(\mathscr{C}) = \mathcal{P}(\Omega).$$

Case 2: Ω is uncountable. Define the countable-co-countable family

$$\mathscr{A} := \Big\{ A \subseteq \Omega: \ A \text{ is countable or } A^{\complement} \text{ is countable} \Big\}.$$

Claim 1: \mathscr{A} is a σ -algebra.

Indeed, if $(A_n)_{n\in\mathbb{N}}\subseteq\mathscr{A}$, then either some A_n is co-countable, in which case $\bigcup_n A_n$ is co-countable, or else every A_n is countable, and $\bigcup_n A_n$ is a countable union of countable sets, hence countable. Thus $\bigcup_n A_n\in\mathscr{A}$. Therefore \mathscr{A} is a σ -algebra.

Claim 2: $\mathscr{C} \subseteq \mathscr{A}$. Every singleton is countable; hence $\mathscr{C} \subseteq \mathscr{A}$ and by minimality of $\sigma(\mathscr{C})$ we obtain

$$\sigma(\mathscr{C}) \subseteq \mathscr{A}$$
.

Claim 3: $\mathscr{A} \subseteq \sigma(\mathscr{C})$. If $A \in \mathscr{A}$ is countable, then $A = \bigcup_{x \in A} \{x\}$ is a countable union of elements of \mathscr{C} , hence $A \in \sigma(\mathscr{C})$. If $A \in \mathscr{A}$ is co-countable, then A^{\complement} is countable, and can be expressed as a countable union of singletons, hence implying that $A^{\complement} \in \sigma(\mathscr{C})$. But because $\sigma(\mathscr{C})$ is a σ -algebra and hence closed under complements, we must have $(A^{\complement})^{\complement} = A \in \sigma(\mathscr{C})$.

From Claims 2–3 we conclude $\sigma(\mathscr{C}) = \mathscr{A}$.

(b) We first show that $\mathscr{E}_{a,b}$ is a σ -algebra on Ω . Then $\mathscr{F} = \sigma(\mathscr{E}_{a,b}) = \mathscr{E}_{a,b}$, which immediately implies that every set in \mathscr{F} has the same property as sets in $\mathscr{E}_{a,b}$.

$$\mathscr{E}_{a,b} = \{ A \subseteq \Omega : A \cap \{a,b\} \in \{\phi, \{a,b\}\} \}$$

We show $\mathscr{E}_{a,b}$ is a σ -algebra

(1) $\Omega \in \mathscr{E}_{a,b}$: To see this, observe that

$$\Omega \subset \Omega$$
, $\Omega \cap \{a,b\} = \{a,b\} \in \{\phi,\{a,b\}\}.$

(2) Closure under complements. Let $A \in \mathscr{E}_{a,b}$. There are two cases:

$$\text{(i) } a,b \in A \Rightarrow a,b \notin A^{\complement} \quad \text{or} \quad \text{(ii) } a,b \notin A \Rightarrow a,b \in A^{\complement}.$$

In case (i), $a, b \notin A^{\complement}$; in case (ii), $a, b \in A^{\complement}$. Thus in either case $A^{\complement} \in \mathscr{E}_{a,b}$. Since,

$$A^{\complement} \subseteq \Omega, \quad A^{\complement} \cap \{a,b\} \in \{\phi,\{a,b\}\} \implies A^{\complement} \in \mathscr{E}_{a,b}$$

(3) Closure under countable unions. Let $A_1, A_2, \ldots \in \mathscr{E}_{a,b}$. Then,

$$a \in \bigcup_{i \in \mathbb{N}} A_i \iff \exists j \in \mathbb{N}: \ a \in A_j \iff b \in A_j \iff b \in \bigcup_{i \in \mathbb{N}} A_i.$$

Hence

$$\bigcup_{i\in\mathbb{N}} A_i \in \mathscr{E}_{a,b}.$$

From (1)–(3), $\mathscr{E}_{a,b}$ is a σ -algebra, so $\sigma(\mathscr{E}_{a,b})=\mathscr{E}_{a,b}$. Consequently, every set in \mathscr{F} either contains both points or contains neither.

6. Consider the collection

$$\mathscr{D} := \bigg\{ (a,b] \cup [-b,-a): \ a,b \in \mathbb{R}, \ a \leq b \bigg\}.$$

Show that $\sigma(\mathcal{D}) \subseteq \mathcal{B}(\mathbb{R})$ by constructing a non-empty set $B \in \mathcal{B}(\mathbb{R}) \setminus \sigma(\mathcal{D})$.

Solution

We want to study the collection

$$\mathscr{D} := \{(a, b] \cup [-b, -a) : a, b \in \mathbb{R}, a \le b\},\$$

and show that the σ -algebra it generates satisfies

$$\sigma(\mathcal{D}) \subseteq \mathcal{B}(\mathbb{R}),$$

where $\mathscr{B}(\mathbb{R})$ is the Borel σ -algebra on \mathbb{R} . The idea is to show that every set in $\sigma(\mathscr{D})$ is symmetric about 0, whereas $\mathscr{B}(\mathbb{R})$ also contains asymmetric sets.

Reflection operator and symmetric sets. For $A \subseteq \mathbb{R}$, define the reflection

$$-A := \{-x : x \in A\}.$$

We say that A is symmetric about 0 if A = -A. Let

$$\mathcal{S} := \{ A \subseteq \mathbb{R} : -A = A \}$$

denote the collection of all symmetric sets.

Claim 1: $\mathscr{D} \subseteq \mathcal{S}$. Take $E = (a, b] \cup [-b, -a) \in \mathscr{D}$. Reflection swaps the two halves:

$$-(a,b] \rightarrow [-b,-a)$$
 and $-[-b,-a) \rightarrow (a,b],$

so indeed -E = E. Hence E is symmetric, and therefore $\mathscr{D} \subseteq \mathcal{S}$.

Claim 2: S is a σ -algebra. We verify the defining properties:

(i) $\Omega = \mathbb{R}$. Clearly $-\mathbb{R} = \mathbb{R}$, so \mathbb{R} is symmetric, $\therefore \mathbb{R} \in \mathcal{S}$.

(ii) Closure under complements. Let $A \in \mathcal{S}$, so A = -A. For any $x \in \mathbb{R}$,

$$x \in -(A^{\complement}) \iff -x \in A^{\complement} \iff -x \notin A \iff x \notin -A \iff x \notin A \iff x \in A^{\complement}.$$

Thus $-(A^{\complement})=A^{\complement}$, so A^{\complement} is symmetric. Therefore $A^{\complement}\in\mathcal{S}$.

(iii) Closure under countable unions. Let $A_1, A_2, \dots \in \mathcal{S}$. For any $x \in \mathbb{R}$,

$$x \in -\Big(\bigcup_{n=1}^{\infty} A_n\Big) \iff -x \in \bigcup_{n=1}^{\infty} A_n \iff \exists n \text{ such that } -x \in A_n.$$

Since each A_n is symmetric, this is equivalent to $\exists n$ with $x \in A_n$. Hence

$$-\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \bigcup_{n=1}^{\infty} A_n.$$

So the union is symmetric.

Together, (i),(ii) &(iii) show that S is a σ -algebra.

Since S is a σ -algebra containing \mathcal{D} , by the minimality of $\sigma(\mathcal{D})$ we have

$$\sigma(\mathscr{D})\subseteq\mathcal{S}$$
.

Therefore every set in $\sigma(\mathcal{D})$ is symmetric about 0.

Consider the Borel set $B:=(0,\infty)$. It is not symmetric, since

$$-B = (-\infty, 0) \neq (0, \infty).$$

Thus $B \notin \mathcal{S}$, and so $B \notin \sigma(\mathcal{D})$. On the other hand $B \in \mathcal{B}(\mathbb{R})$.