Tarea 4 Comunicaciones industriales

Daniel Felipe Pinilla Daza Julian Sebastian Alvarado Monroy

1. VIGILANCIA TECNOLÓGICA DE PROTOCO-LOS INDUSTRIALES

1.1. MODBUS

Protocolo maestro-esclavo establecido desde 1979, ampliamente utilizado en la industria. Su evolución hacia Modbus TCP/IP permite integración con redes Ethernet estándar. Tendencias actuales incluyen implementación en IoT industrial, desarrollo de Modbus Secure para ciberseguridad, y aplicaciones en energía renovable, edificios inteligentes y mantenimiento predictivo.

1.2. AS-Interface (AS-I)

AS-i 3.0 permite conectar hasta 62 esclavos por segmento. La innovación AS-i Safety at Work integra funciones de seguridad (IEC 61508) en el mismo bus. Tendencias: implementación en sensores inteligentes de bajo costo, reducción de costos de instalación, compatibilidad con Industria 4.0, y uso en líneas de producción flexible.

1.3. Ethernet Industrial (Nuevas Categorías)

Ethernet/IP: Basado en CIP sobre TCP/IP, amplia adopción en Norteamérica, comunicación en tiempo real con sincronización precisa.

EtherCAT: Velocidades ultrarrápidas (¡100 μs), procesamiento .ºn the fly", ideal para control de movimiento y robótica.

POWERLINK: Código abierto, determinismo estricto, usado en maquinaria de alta precisión en Europa.

TSN (Time-Sensitive Networking): Estándares IEEE 802.1 para Ethernet determinista. Permite convergencia OT/IT, fundamental para Industria 4.0, 5G industrial y aplicaciones de latencia ultrabaja.

Figura 1: Arquitectura TSN: Convergencia de redes OT e IT

2. DISPOSITIVOS Y PROTOCOLOS EN LA UNI-VERSIDAD

2.1. MODBUS

Descripción: Protocolo maestro-esclavo desarrollado por Modicon (Schneider Electric) en 1979 para comunicación con PLCs.

Características:

- Hasta 247 dispositivos esclavos
- Velocidades: 9600-115200 bps (serial)
- Variantes: RTU (binario), ASCII, TCP/IP (puerto 502)
- Funciones: lectura/escritura de coils y registros
- Verificación: CRC-16 (RTU), LRC (ASCII)

Dispositivos típicos: PLCs (Allen-Bradley, Siemens, Schneider), medidores de energía, variadores de frecuencia, sistemas SCADA.

Figura 2: Arquitectura Modbus: Comunicación maestro-esclavo

2.2. AS-Interface (AS-I)

Descripción: Bus de campo para sensores y actuadores simples, desarrollado en los a \tilde{n} os 90.

Características:

- Cable de 2 hilos (alimentación 24V DC + datos)
- Hasta 62 esclavos (AS-i 3.0)
- Distancia: 100m (extensible a 300m)
- Tiempo de ciclo: 5ms
- Velocidad: 167 kbps
- Seguridad: AS-i Safety at Work (SIL 3)

Dispositivos típicos: Sensores digitales, fotocélulas, botones, electroválvulas, lámparas indicadoras.

Figura 3: AS-Interface: Cable de 2 hilos con topología flexible

2.3. PROFIBUS

Descripción: Estándar alemán (DIN 19245) para comunicación industrial, desarrollado en los años 80.

Características:

- Arquitectura multi-maestro con tokens
- Velocidades: 9.6 Kbps 12 Mbps
- Variantes: DP (manufactura), PA (procesos)
- Hasta 126 dispositivos por segmento
- Medio físico: RS-485 (DP), MBP-IS (PA)

Dispositivos típicos: PLCs Siemens S7-300/400, transmisores, variadores, válvulas de control.

Figura 4: Red PROFIBUS con terminaciones resistivas

2.4. PROFINET

Descripción: Evolución de PROFIBUS basada en Ethernet industrial (IEC 61158/61784). Características:

■ Base: TCP/IP y Ethernet IEEE 802.3

• Clases: TCP/IP, RT (Real-Time), IRT (Isochronous RT)

■ Velocidad: 100 Mbps/1 Gbps

Topología flexible con switches integrados

• Redundancia: MRP (Media Redundancy Protocol)

• Seguridad: PROFISAFE integrado

Dispositivos típicos: PLCs Siemens S7-1200/1500, HMIs, drives Sinamics, robots industriales, switches SCALANCE.

Figura 5: Topología PROFINET con switches integrados y redundancia MRP

2.5. ETHERNET

Descripción: Tecnología LAN desarrollada por Xerox (años 70), estandarizada IEEE 802.3 (1983).

Características:

Velocidades: 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps

■ Topología estrella con switches

■ Cableado: UTP (Cat5e/Cat6/Cat7), fibra óptica

■ Alcance: 100m (UTP), kilómetros (fibra)

■ Modo: Full-duplex

Dispositivos típicos: Switches industriales, computadores, PLCs con Ethernet, cámaras IP, DCS.

2.6. RS-485

Descripción: Estándar de comunicación serial diferencial (TIA/EIA-485), desarrollado en 1983.

Características:

- Transmisión diferencial (2 líneas A y B)
- Hasta 32 nodos (extensible a 256)
- Velocidad máxima: 10 Mbps (¡12m)
- Distancia máxima: 1200m (100 kbps)
- Voltaje: ± 200 mV mínimo, ± 1.5 V a ± 5 V típico
- Topología: Bus lineal con terminaciones 120
- Excelente inmunidad al ruido

Dispositivos típicos: Sensores inteligentes, medidores, variadores, sistemas DAQ, convertidores USB/Ethernet.

Figura 6: Conexión diferencial RS-485 con líneas A y B

3. IPv4 E IPv6: CARACTERÍSTICAS Y DIFEREN-CIAS

3.1. IPv4 (Internet Protocol version 4)

Características principales:

- Dirección: 32 bits (4 bytes), notación decimal (192.168.1.1)
- **Espacio:** $2^{32} = 4,294,967,296$ direcciones
- Encabezado: Variable (20-60 bytes)
- Clases:
 - Clase A: 1.0.0.0-126.255.255.255 (/8)
 - Clase B: 128.0.0.0-191.255.255.255 (/16)
 - Clase C: 192.0.0.0-223.255.255.255 (/24)
 - Clase D: Multicast (224.0.0.0-239.255.255.255)
- Direcciones privadas (RFC 1918):
 - 10.0.0.0/8
 - 172.16.0.0/12

• 192.168.0.0/16

Especiales: Loopback (127.0.0.1), Broadcast (255.255.255.255)

Configuración: Manual o DHCPFragmentación: Por routers y hosts

• Seguridad: IPSec opcional

Figura 7: Estructura de dirección IPv4 y clases

3.2. IPv6 (Internet Protocol version 6)

Características principales:

■ Dirección: 128 bits (16 bytes), notación hexadecimal (2001:db8::1)

• Espacio: $2^{128} = 340$ undecillones de direcciones

■ Encabezado: Fijo (40 bytes)

■ Tipos de direcciones:

• Global Unicast: 2000::/3 (público, enrutable)

• Link-Local: fe80::/10 (no enrutable)

• ULA: fc00::/7 (privado, equivalente RFC 1918)

• Multicast: ff00::/8 (reemplaza broadcast)

• Anycast: Entrega al nodo más cercano

• Especiales: Loopback (::1), Sin especificar (::)

■ Autoconfiguración: SLAAC o DHCPv6

• Fragmentación: Solo por host origen

Seguridad: IPSec obligatorio (especificación)

• Sin checksum: Delegado a capas superiores

■ NDP: Reemplaza ARP

Ejemplo:

Figura 8: Estructura de dirección IPv6 de 128 bits

3.3. Comparación IPv4 vs IPv6

Característica	IPv4	IPv6
Longitud dirección	32 bits	128 bits
Espacio	4.3 mil millones	340 undecillones
Notación	Decimal (192.168.1.1)	Hexadecimal (2001:db8::1)
Encabezado	Variable (20-60 bytes)	Fijo (40 bytes)
Checksum	Sí	No
Fragmentación	Routers y hosts	Solo hosts
Broadcast	Sí	No (usa multicast)
Configuración	DHCP/manual	SLAAC/DHCPv6/manual
IPSec	Opcional	Obligatorio
NAT	Común	Innecesario
Resolución	ARP	NDP (ICMPv6)
MTU mínimo	576 bytes	1280 bytes
Movilidad	Mobile IP	MIPv6 (nativo)

3.4. Ventajas de IPv6

Espacio de direcciones: Soluciona agotamiento de IPv4, suficiente para IoT masivo. Eliminación de NAT: Conectividad end-to-end real, simplifica aplicaciones P2P, VoIP y juegos.

Autoconfiguración (SLAAC): Dispositivos se configuran automáticamente sin servidor DHCP.

Rendimiento: Encabezado fijo permite procesamiento más rápido en routers.

Seguridad: Diseñado con IPSec integrado desde el inicio.

Movilidad: Mobile IPv6 nativo, fundamental para 5G.

QoS: Flow Label y Clase de tráfico mejoran priorización.

Multicast eficiente: Reduce tráfico innecesario, scope definido.

3.5. Mecanismos de Transición

- 1. Dual Stack: Dispositivos ejecutan IPv4 e IPv6 simultáneamente. Máxima compatibilidad pero mayor complejidad.
 - 2. Tunneling: Encapsula IPv6 en paquetes IPv4.
 - 6in4: Túnel manual punto a punto
 - **6to4:** Túnel automático (2002::/16)
 - Teredo: Atraviesa NATs usando UDP
 - 3. Traducción: Convierte entre protocolos.
 - NAT64/DNS64: Clientes IPv6 acceden servidores IPv4
 - 464XLAT: Aplicaciones IPv4 en redes IPv6

Figura 9: Mecanismos de transición: Dual Stack, Tunneling y NAT64

3.6. Implementación

Planificación: Obtener asignación (/48 o /56), diseñar jerarquía de subredes (/64 por segmento).

Infraestructura: Verificar compatibilidad de equipos, actualizar firmware, configurar dual-stack.

Seguridad: Actualizar firewalls, filtrado ICMPv6, proteger contra ataques específicos IPv6.

Adopción actual: Google reporta $\sim 40\,\%$ usuarios vía IPv6. Países líderes: India $(70\,\%)$, EE.UU. $(50\,\%)$. IPv6 será dominante en 5-10 años.

4. REFERENCIAS BIBLIOGRÁFICAS

- 1. AS-International Association. (2023). AS-Interface: The Automation Solution.
- 2. Bolton, W. (2015). Programmable Logic Controllers (6th ed.). Newnes.
- 3. Deering, S. & Hinden, R. (1998). RFC 2460 Internet Protocol, Version 6 Specification.
- 4. Felser, M. (2010). Real-Time Ethernet Industry Prospective". *Proceedings of the IEEE*, 93(6).
- 5. IEEE Standards Association. (2018). IEEE 802.3 Ethernet Standard.
- 6. MODBUS Organization. (2012). MODBUS Application Protocol Specification V1.1b3.

- 7. Park, J. & Mackay, S. (2003). Practical Data Communications for Instrumentation and Control. Newnes.
- 8. Postel, J. (1981). RFC 791 Internet Protocol.
- 9. PROFIBUS & PROFINET International. (2021). PROFINET System Description.
- 10. PROFIBUS International. (2020). PROFIBUS Technology and Application.
- 11. Rehg, J. & Sartori, G. (2009). *Industrial Electronics*. Pearson Education.
- 12. RFC 1918. (1996). Address Allocation for Private Internets.
- 13. RFC 3056. (2001). Connection of IPv6 Domains via IPv4 Clouds.
- 14. RFC 4380. (2006). Teredo: Tunneling IPv6 over UDP through NATs.
- 15. RFC 8200. (2017). Internet Protocol, Version 6 Specification.
- 16. Tanenbaum, A. & Wetherall, D. (2011). Computer Networks (5th ed.). Pearson.
- 17. Zurawski, R. (2014). *Industrial Communication Technology Handbook* (2nd ed.). CRC Press.