CS 知的システム演習

強化学習による ライントレーサー(光-色-光) のプログラム

松吉 俊

- (1) 状態を定義する
- (2) 報酬関数を定義する
- (3) Q 学習のアルゴリズムを適用する
- (4) 十分な学習を行ったのちに最適政策が得られる(はずな)ので、それに従って行動する

- (1) 状態を定義する
- (2) 報酬関数を定義する
- (3) Q 学習のアルゴリズムを適用する
- (4) 十分な学習を行ったのちに最適政策が得られる(はずな)ので、それに従って行動する

状態と行動を定義する

- 状態:
 - 光センサーの値: WHITE or BLACK
 - 色センサーの値: WHITE or BLACK or BLUE
 - まずは、センサー3つの値の組み合わせを 状態とすると良い
 - 2 x 3 x 2 = 12の状態
- 行動: 光-光-光の時と同様

- (1) 状態を定義する
- (2) 報酬関数を定義する
- (3) Q 学習のアルゴリズムを適用する
- (4) 十分な学習を行ったのちに最適政策が得られる(はずな)ので、それに従って行動する

報酬関数を定義する

- 報酬の例:
 - ゴール: プラスの値
 - ライン上: プラスの値
 - マークの上: プラスの値
 - ライン外: マイナスの値

- (1) 状態を定義する
- (2) 報酬関数を定義する
- (3) Q 学習のアルゴリズムを適用する
 - > 光-光-光の時と同様
- (4) 十分な学習を行ったのちに最適政策が得られる(はずな)ので、それに従って行動する
 - > 光-光-光の時と同様

光-色-光に対応したシミュレーター

- 修正版のシミュレータープログラムを配布
 - 色センサーに対応
 - getColor(LIGHT_B) が3値: WHITE, BLACK, BLUE
 - 後退すると、Runが増加する
 - backward()時にRun増加
 - センサーの値を常に画面の左上に表示
 - LはLIGHT_Aに、RはLIGHT_Cに対応

修正版シミュレーターの画面

雛形プログラム

ソースファイル

Simulator.java

Model.java

View.java

ControlToolBar.java

Robot.java

MyRobot.java

起動用のクラス

シミュレーションデータを管理するクラス

描画を担当するクラス

実行制御用のツールバー

抽象ロボットクラス

サンプルロボットクラス

このクラスと QLearning.javaを 利用する

マップデータ (適当な箇所にマーク付き)

○ sample/map1-rect.png ~ map9-amida.pngまでの9種類

その他

○ ロボットやアイコンなどの画像データ6つ

雛形プログラムのダウンロード

- 1. Moodleから、linetracerLCL-template.tar.gz をダウンロードする (LCL = Light-Color-Light)
- 2. 適当なディレクトリに保存する
- 3. 圧縮ファイルを解凍する % tar xvzf linetracerLCL-template.tar.gz

雛形プログラムのコンパイルと実行

コンパイル

% javac *.java

←─── すべての.javaファイルから、 .classファイルが生成されます

● 実行

% java Simulator MyRobot sample/map1-rect.png

マップの名前。 独自にマークを付けたマップも 元のファイルと同じファイル名を 付けること

シミュレーターは、マップ名からロボットの初期位置と初期の向きを決定している (そのファイルがどのディレクトリにあるかは見ていない)

クラスRobotの概要

- init()
- delay()
- forward(double cm)
- backward(double cm)
- rotate(double angle)
- rotateRight(double angle)
- rotateLeft(double angle)
- getColor(int lightNo)

ロボットを開始位置に戻す

速度調整&描画用のメソッド

ロボットを指定距離だけ前進させる

ロボットを指定距離だけ後進させる

ロボットを指定角度だけ回転させる

(正の角度は右回転、負は左回転)

ロボットを指定角度だけ右回転させる

ロボットを指定角度だけ左回転させる

指定センサーから色を読み取る

センサー: LIGHT_A、LIGHT_B、LIGHT_C

Bの値: WHITEとBLACKとBLUEの3色

AとCの値: WHITEとBLACKの2色

ゴールに到達すると true を返す

isOnGoal()

第5回の出席確認

- 実装できたところまでで良いので、Q学習によるライントレーサー(光-色-光)のプログラムをMoodle上で提出する
 - tar.gz形式のファイルを提出する
 - マークを付けたマップもmyMark/ディレクトリに 含める
 - 最終評定には直接関係しません

課題

- Q学習によるライントレーサー(光-色-光)のプログラムを完成させ、関連ファイルー式をMoodle上で提出する
 - tar.gz形式のファイルを提出する
 - マークを付けたマップも、マークを付けずに利用したマップも myMark/ディレクトリに含める
 - 必ずたくさんのコメントを書く
- 上記に加え、以下を記述したレポートもMoodle上で 提出する (PDF形式)
 - ○「状態」と「報酬」の説明
 - 工夫した点と苦労した点
 - レポートの先頭に、学籍番号と名前を書く

Special thanks:

- 山本 泰生先生
- 鍋島 英知先生