	Jun: But of: R'-> R is wort. at (x, y,) iff for every seq ((x, y,)) converging to (x, y,), we have that lim f(xn, y,) = f(x, y,). n of (xn, y,) = f(x, y,). Level set: \(\left(x, y, c) \): \(x - y = c \right) \) Contour line: \(\left(x, y, c) \): \(x - y = c \right) \) Level fet is lengthy for \(c = -3 - 2 - 1 \) For \(c = 0 \), level fet is \(\left((0, 0) \right) \right) \) Contour line is \(\left((x, y, c) \): \(x^2 + y^2 = c \right) \) Contour line is \(\left((x, y, c) \): \(x^2 + y^2 = c \right) \) Contour line is \(\left((x, y, c) \): \(x^2 + y^2 = c \right) \) Contour line is \(\left((x, y, c) \): \(x^2 + y^2 = c \right) \]
3 (i)	Consider the seq. $(x_n, y_n) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\lim_{n \to \infty} (x_n, y_n) = (0, 0)$ $\lim_{n \to \infty} (x_n, y_n) = \frac{1}{2} = \frac{1}{2}$ $\lim_{n \to \infty} f(x_n, y_n) = \frac{1}{2} \neq f(0, 0)$ $\lim_{n \to \infty} f(x_n, y_n) = \frac{1}{2} \neq f(0, 0)$ $\lim_{n \to \infty} f(x_n, y_n) = \frac{1}{2} \neq f(0, 0)$ $\lim_{n \to \infty} f(x_n, y_n) = \frac{1}{2} \neq f(0, 0)$

Scanned with CamScanner

(ii)	Let (x_n, y_n) le a seq. in \mathbb{R}^2 which converges to $(0,0)$. Then $x_n \to 0$ and $y_n \to 0$.
	$\frac{1}{1} \left(x_n, y_n \right) \neq 0, \text{ then } \left x_n^2 - y_n^2 \right \leq 1$
	$ x_n^{-1}+y_n^{-1} \leq x_ny_n $
(iii)	$= \lim_{n \to \infty} \frac{1}{ x_n - y_n } = 0$ $= \lim_{n \to \infty} \frac{1}{ x_n - y_n } = 0$ $= \lim_{n \to \infty} \frac{1}{ x_n - y_n } = 0$ $= \lim_{n \to \infty} \frac{1}{ x_n - y_n } = 0$ $= \lim_{n \to \infty} \frac{1}{ x_n - y_n } = 0$
	Upe that is a cont. fn.
(i)	$4x(0,0) = \lim_{h\to 0} \frac{1}{h}(h,0) - \frac{1}{h}(0,0)$
	$= \lim_{h \to 0} 0 - 0 = 0$ Similarly, $f_y(0,0) = 0$
(ii)	$\frac{4\pi (0,0) = \lim_{h\to 0} \frac{\sin^2 h}{ h } = 0}{h\to 0} = \lim_{h\to 0} \frac{\sin^2 h}{ h }$
	Let $S_n = 1$ $\forall n$ $\lim_{n \to \infty} \frac{\sin^2 S_n}{S_n S_n } = \lim_{n \to \infty} \frac{\sin^2 S_n}{\sin^2 S_n} = \lim_{n \to$

Cont. is easy to prove (using seq.) $f_{x}(0,0) = \lim_{h\to 0} \frac{h\sin(h)}{h} = \lim_{h\to 0} \sin \frac{1}{h}$, which does does not Similar for fy (0,0) 10) Let (x,y) 7 (0,0) fy to, It(n,y)-{(0,0)|= 1 Nx2+y2 ly y=0, | t(n, y)-1(0,0) = 0 : 17(x,y) - 7(0,0) € √x2+42 0 Now use sequences to prove that of is cont. at (0,0). let u = (u,u), u,2+42=1 It 4270, then Dut = lim t (4, 4, 4) - 1 (0,0) = lim 1 1/2 t /(1,2+42)+2 = lin 1 uzt x |t| = uz | |uxt| x |t| = uz | |uxt| H $u_2=0$) then $Dud = \lim_{t \to 0} \frac{0-0}{t} = 0$

It is diff at 0, the total derivative mul be $\left[\frac{\partial K}{\partial \uparrow}(0,0)\right] = \left[0,0\right] = \left[0,1\right]$ We need to check if $(h,k)\to(0,0)$ | t(h,k) - t(0,0) - [0][h][k]Vh2+k2 For k \$0 , $\lim_{(h,k)\to(0,0)} \left| \frac{k}{|k|} - \frac{k}{\sqrt{h^2 + k^2}} \right|$ let h = 1/n kn=1/n $\lim_{n\to\infty} \left| \frac{k_n}{|k_n|} - \frac{k_n}{\sqrt{h_n^2 + k_n^2}} \right| = 1 - \frac{1}{\sqrt{2}} \neq 0$