LISTA EXERCÍCIOS - REDES

1) Quais os tipos de redes de computadores, segundo a classificação por extensão geográfica? Explique a diferença entre elas.

PAN: Rede de Área Pessoal

- → Rede de computadores muito próximos uns dos outros.
- → Ex: 2 notebooks em uma sala trocando informações entre si ligados a uma impressora, ou redes formadas por dispositivos Bluetooth.

LAN: Rede Local de Computadores

- → Rede que possui uma cobertura limitadas quanto a extensão geográfica que pode atuar
- → Ex: Geralmente composta por computadores conectados entre si (placada de redes, switch, hub..).

MAN: Rede de Área Metropolitana

- → Rede de computadores que compreende um espaço de média dimensão.
- → Associada a interligação de várias LAN's.
- → Ex: Região, cidade, campos..

WAN: Rede de Longa Distância

- → Corresponde a uma rede de computadores que abrange uma grande área geográfica.
- → Comunicação de grande distância.
- → Ex: Um país, continente...

2) Explique os dois tipos de redes de computadores quanto a topologia de redes, trazendo vantagens e desvantagens de cada um dos tipos.

Ponto-a-Ponto:

- → Os computadores trocam informações entre si, compartilhando arquivos e recursos
- → Utilizada em pequenas redes
- → São de implementação fácil e de baixo custo
- → Possuem pouca segurança
- → Apresentam um sistema de cabeamento simples
- → Baixo custo
- → Baixa segurança

Cliente Servidor:

- → Necessidade de criar uma estrutura que centralizasse o processamento em um computador central da rede
- → Possui um ou mais servidores, responsáveis por prover serviços de rede aos demais computadores conectados a ele que são chamados clientes
- → Cada cliente faz solicitação ao servidor da rede
- → Ex: Servidor de aplicativos, serviço de impressão, hospedagem de sites...
- → Segurança Melhorada; Não há tolerância a falhas; Várias tarefas
- → Maior Custo

3) Diferencie comutação de circuitos de comutação de pacotes e diga onde é melhor utilizar cada tipo.

Comutação de Circuitos:

- → Estabelece um caminho dedicado entre a origem e o destino antes da transmissão
- → Recursos, como largura de banda, são alocados durante toda a conexão
- → Melhor utilizado em comunicações contínuas, em tempo real e de baixa latÊncia (chamadas telefônicas)

Comutação de Pacotes:

- → Divide os dados em pacotes independentes para transmissão
- → Podem seguir caminhos diferentes e compartilhar recursos
- → Não tem reserva de recursos
- → Não corrompe os dados
- → Melhor utilizado em compartilhamento eficiente de recursos como navegar na internet

4) Explique a diferença entre o switch e o hub.

Hub:

- → Dispositivo cuja função é interligar os computadores de uma rede local.
- → Repassa o sinal vindo de um computador para todos os computadores ligados a ele.

Switch:

→ Um switch serve de concentrador em uma rede de computadores com a diferença de que recebe um sinal vindo de um computador origem e entrega este sinal somente ao computador destino.

5) Por que existem protocolos de rede? Explique com um exemplo.

Para garantir uma comunicação eficiente e confiável entre dispositivos em uma rede. Estabelecem regras e padrões, para transmitir e receber dados de forma consistente.

Exemplo o protocolo TCP/IP usado na internet. Divide os dados em pacotes, na ordem correta, verifica erros e lida com o estabelecimento e término de conexões.

6) Quais os 4 tipos de atraso de rede? Explique cada um.

Atraso de Propagação:

→ Tempo necessário para um pacote percorrer a distância física entre dispositivos.

Atraso de Transmissão:

→ Tempo necessário para enviar todos os bits de um pacote de rede (prepara).

Atraso de Processamento:

→ Tempo gasto pelos dispositivos de rede para processar e encaminhar os pacotes.

Atraso de Enfileiramento:

→ Tempo gasto pelos pacotes em uma filha de espera antes de serem transmitidos devido ao congestionamento da rede.

7) Por que utiliza-se uma arquitetura em camadas para redes de computadores?

A arquitetura em camadas proporciona uma estrutura organizada e modular para redes de computadores, facilitando o desenvolvimento, a interoperabilidade e o gerenciamento das redes.

Rede dividida em componentes independentes, fornece uma interface abstrata para a camada superior ocultando detalhes de implantação inferiores. Segue padrões definidos

8) Cite as 5 camadas de uma rede de computadores e explique a função de cada uma delas.

Camada de Aplicação: SW

- → Aplicações da rede, organizadas em pacotes.
- → Ex: HTTP: Requisição e transferência de documentos pela web.

SMTP: Transferência de e-mail.

FTP: Transferência de arquivos.

DNS: Tradução de nomes para endereços.

Camada de Transporte: SW

- → Transportar mensagens da camada de aplicação entre cliente e servidor.
- → Organizada em **Segmentos**, e ordena a ordem.
- → Recebe as aplicações em pacotes e os divide em segmentos para enviar a rede.
- → Oferece um serviço eficiente e confiável de transporte de dados.
- → Ex: TCP: Orientado a conexão.

UDP: Não orientado a conexão.

Camada de Rede:

- → Responsável pela movimentação de uma máquina para outra de pacotes da camada de rede chamados **datagramas**.
- → Fornece os meios funcionais e de procedimento de transferência de comprimento variável de dados de sequência de um ponto de rede a outro.
- → Roteamento, Fragmentação e Remontagem
- → 2 componentes: Protocolo, define os campos do datagrama.

Modo como os sistemas finais tratam esses campos.

→ Ex: Protocolo IP.

Camada de Enlace:

- → Organizada em **quadros**.
- → Para a rede levar um datagrama de um nó para outro.
- → Corrige erros que acontecem no nível físico.
- → Ex: Ethernet; PPP

9) Quais os requisitos do serviço de transporte em rede? Explique cada um e dê exemplos.

Perdas:

- \rightarrow Sem perdas
- → Tolerante

Banda:

- → Elástica
- → Áudio: 5Kb-1Mb
- → Vídeo:10Kb-5Mb
- → >alguns Kbps

Sensibilidade temporal:

- → Não
- → Ssim, 100's mseg
- \rightarrow Sim e não

Requisitos do serviço de transporte de aplicações comuns

			Sensibilidade
Aplicação	Perdas	Banda	temporal
transferência de arqs	sem perdas	elástica	não
correio	sem perdas	elástica	não
documentos WWW	sem perdas	elástica	não
áudio/vídeo de tempo real videoconferência	tolerante	áudio: 5Kb-1Mb vídeo:10Kb-5Mb	sim, 100's mseg
áudio/vídeo gravado	tolerante	como anterior	sim, alguns segs
jogos interativos	tolerante	> alguns Kbps	sim, 100's mseg
Mensagem instantânea		elástica	sim e não

A Internet de hoje ainda não provê garantia de Banda e Sensibilidade Temporal

10) Como funciona o HTTP. Qual a diferença entre conexão persistente e não persistente?

É um protocolo que permite a comunicação entre clientes e servidores na web. A diferença está na duração da conexão, com a persistente mantendo a conexão aberta para várias solicitações e respostas, enquanto a não persistente estabelece uma nova conexão para cada solicitação.

11) Explique como funcionam os cookies e cite duas vantagens e duas desvantagens de sua utilização:

Os cookies são pequenos arquivos de textos que são armazenados no seu dispositivo quando você visita um site. Eles desempenham um papel que os sites armazenam informações sobre suas preferências e atividades, trabalha com coleta de informações e armazenamento local.

Personalização com preferências do usuário e melhoria da usabilidade.

Privacidade preocupada e segurança baixa.