CSCI317 Database Performance Tuning

Query Processing Plans

Dr Janusz R. Getta

School of Computing and Information Technology - University of Wollongong

1 of 18 25/6/22, 7:07 pm

Outline

Syntax tree

Left/right deep syntax tree

EXPLAIN PLAN statement of SQL

Interpretation of processing plans

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

Syntax tree

Syntax tree is a two dimensional visualization of an expression that consists of operations and arguments

Arithmetic expression (-5 - (4 - 5)/3)

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022 3/18

3 of 18

Outline

Syntax tree

Left/right deep syntax tree

EXPLAIN PLAN statement of SQL

Interpretation of processing plans

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

4/18

4 of 18

Left/right deep syntax tree

Left deep syntax tree is a syntax tree such that the right argument of each operation is an atomic value

Left deep arithmetic expression (-((4 * 5) / 3)) - 5

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

Left/right deep syntax tree

Right deep syntax tree is a syntax tree such that the left argument of each operation is an atomic value

Right deep arithmetic expression
$$5 - (-(3/(4*5)))$$

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

Left/right deep syntax tree

Left/right deep syntax tree is a syntax tree such that the right/left argument of each operation is an atomic value

Left/right deep arithmetic expressin $(-(4 \ / \ (3 * 5))) - 5$

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

Outline

Syntax tree

Left/right deep syntax tree

EXPLAIN PLAN statement of SQL

Interpretation of processing plans

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

EXPLAIN PLAN statement of SQL

EXPLAIN PLAN statement of SQL lists a query processing plan created by a query optimizer for a given SQL statement

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

Outline

Syntax tree

Left/right deep syntax tree

EXPLAIN PLAN statement of SQL

Interpretation of processing plans

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

Interpretation of processing plan

PLAN_TABLE_OUTPUT							A fr	agm	ent of proce	ssing plan
Plan hash value: 79620726										
Id Operation	Name	Rows	1	Bytes	Cost	(%	CPU))	Time	
0 SELECT STATEMENT 1 TABLE ACCESS FULL	 NATION		•	2475 2475	•		-	•	00:00:01 00:00:01	•

Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

11/18

TOP

EXPLAIN PLAN Statement of SQL

```
EXPLAIN PLAN FOR

SELECT *

FROM LINEITEM
WHERE L_ORDERKEY = 7;

Processing plan

Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time |

| 0 | SELECT STATEMENT | 4 | 500 | 4 (0) | 00:00:01 |

| 1 | TABLE ACCESS BY INDEX ROWID BATCHED | LINEITEM | 4 | 500 | 4 (0) | 00:00:01 |

| * 2 | INDEX RANGE SCAN | LINEITEM_PKEY | 4 | 3 (0) | 00:00:01 |

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

2 - access("L_ORDERKEY"=7)
```

Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

12/18

TOP

13/18

TOP

Interpretation of processing plan

Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

13 of 18 25/6/22, 7:07 pm

EXPLAIN PLAN statement of SQL

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

TOP

Interpretation of processing plan

Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

15 of 18 25/6/22, 7:07 pm

EXPLAIN PLAN statement of SQL

Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

16/18

TOP

Interpretation of a plan

```
Processing plan
0 | SELECT STATEMENT | | 1776K | 396M | | 24979 (1) | 00:00:01 |
|* 1 | HASH JOIN | 1776K | 396M | 51M | 24979 (1) | 00:00:01 | |
| 2 | TABLE ACCESS FULL| ORDERS | 450K | 46M | | 1950 (1) | 00:00:01 |
| 3 | TABLE ACCESS FULL| LINEITEM| 1800K | 214M | | 8788 (1) | 00:00:01 |
Predicate Information (identified by operation id):
1 - access("L ORDERKEY"="0 ORDERKEY")
                              SELECT STATEMENT
                         HASH JOIN
                                   ACCESS ("L ORDERKEY"="O ORDERKEY")
                   TABLE ACCESS FULL
                                   TABLE ACCESS FULL
                           ORDERS
                                            LINEITEM
```

TOP Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022

References

Cookbook, How to find SQL processing plans and how to use hints? SQL Tuning Guide, Part III Query Execution Plans

L. Nossov, H. Ernst, V. Chupis, Formal SQL Tuning for Oracle Databases, Springer, 2016 (Available from UOW Library)

Oracle® Database SQL Tuning Guide 19c

G. Harrison Oracle Performance Survival Guide, Prentice Hall, 2010

Created by Janusz R. Getta, CSCI317 Database Performance Tuning, SIM, Session 3, 2022 TOP

18/18

18 of 18