TRIGONOMETRIC FORMULAS

> RIGHT TRIANGLE

Assume that:

$$0 < \theta < \frac{\pi}{2}$$
 or $0^{\circ} < \theta < 90^{\circ}$

Adjacent

$$\sin \theta = \frac{opp}{hyp} \qquad \qquad \csc \theta = \frac{hyp}{opp}$$

$$\cos \theta = \frac{adj}{hyp}$$
 $\sec \theta = \frac{hyp}{adj}$

$$\tan \theta = \frac{opp}{adj}$$

$$\cot \theta = \frac{adj}{opp}$$

> UNIT CIRCLE

$$\sin \theta = \frac{y}{1}$$
 $\csc \theta = \frac{1}{y}$

$$\cos \theta = \frac{x}{1}$$
 $\sec \theta = \frac{1}{x}$

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Assume that θ can be any angle.

> IDENTITIES AND FORMULAS

1. Tangent and Cotangent Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

2. Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\csc \theta = \frac{1}{\sin \theta}$ $\cot \theta = \frac{1}{\cot \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

3. Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$