Confidence Intervals

Reading

- Section 8.1
- Section 8.3

Practice Problems

8.1 (Page 444) 1-22

Notes

Confidence Intervals

When we take a sample from a population, there two kinds of questions we aim at answering. The first of these is the idea of confidence intervals.

Confidence Interval Question

We have taken a sample from a population, and have computed its sample mean \bar{x} and other information. What can we say about the population mean μ ?

Given the randomness of the sample, we should expect a certain degree of uncertainty in our answer. Confidence intervals make this more precise.

The idea of confidence intervals goes as follows:

• Once we have verified some conditions, we can say that \bar{x} follows a normal distribution:

$$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

- We decide on a percentage C that we will call the confidence level C (e.g. 90%).
- We locate the range in the normal distribution that covers C of the cases. We do this by computing a number m such that C of the cases are between $\mu-m$ and $\mu+m$. Note that μ is actually an unknown, but we will be able to know m.
- This means that C of the possible samples out there produce a \bar{x} in the range between $\mu-m$ and $\mu+m$.
- So now make the assumption that the sample we took is in fact one of those C of them. We have a C chance of being correct in that assumption.

- With that assumption in place, the \bar{x} from the sample, which we have computed, is within m from μ .
- Turning that around, we can say that μ must be within m from \bar{x} .

Let us summarize all this:

Confidence Interval for population mean

- Decide on a **confidence level C** (often 95%).
- Compute z^* .
 - This is the value in the standard normal distribution N(0,1) such that C of the distribution is between $-z^*$ and z^* .
 - You can find the power endpoint as the z with $p = \frac{1-C}{2}$.
 - Or the upper endpoint as the z with $p = \frac{1+C}{2}$.
- Compute the margin of error:

$$m = z^* \frac{\sigma}{\sqrt{n}}$$

- Then we say that we have for the population mean μ the **confidence** interval $(\bar{x} m, \bar{x} + m)$, with confidence level C.
- What this means is this: We are claiming that the population mean μ is somewhere in the range $(\bar{x}-m,\bar{x}+m)$, and we are C confident of this fact, because we followed a process that has a C chance of being correct.

This last point is important: There are two sources of indeterminacy, if you like:

- We are claiming μ is somewhere in a range, rather than an exact value. The width of that range is controlled by m, and is a measure of the **accuracy** of our prediction.
- There is a chance we will be wrong. This is measured by C (or rather 1-C, and is a measure of our **confidence** in our prediction.

We will see in a moment that there is a tradeoff involved: We can increase our accuracy if we are willing to reduce our confidence, and vice versa.

Controlling the Margin of Error

A key quantity in a confidence interval is the margin of error m. We want it to be as small as possible, but it comes at a cost.

To reduce the margin of error

$$m = z^* \frac{\sigma}{\sqrt{n}}$$

we can:

- Make z^* smaller. This means making C smaller. Cost: less confidence in our answer.
- Make σ smaller. We unfortunately do not have much control over σ , it is the population standard deviation. We can however try some techniques like *stratified sampling* that might result in a smaller σ at parts of the computation.

Cost: Much more complicated sampling process and analysis phase.

• Make n larger. Because of the presence of the square root, you often need a disproportionate increase in the sample size (e.g. 100-fold increase in n for a 10-fold decrease in m).

Cost: Considerable resource cost increase. Calling 4000 people rather than 40 is a lot more expensive, and might even be impossible depending on the population size.

As an example, suppose that $\sigma=1$ and n=50. Let us try to achieve a confidence level of C=90%. To find z^* , we will look up $p=\frac{1+0.9}{2}=0.95$ in the table, and find $z^*=1.645$. Therefore we find a margin of error:

$$m = 1.645 \times \frac{1}{\sqrt{40}} = 0.26$$

In other words, we will be predicting that the population mean μ is within 0.26 of whatever value our sample mean \bar{x} has.

Suppose we want to achieve a margin of 0.1. Let us look at our options. Suppose first that we want to keep our confidence level fixed, and therefore z^* fixed. Then the only other thing we really have control over is n.

The sample size needed to achieve a given margin of error is:

$$n = \left(\frac{z^*\sigma}{m}\right)^2$$

In our case this means $n = \left(\frac{1.645 \times 1}{0.1}\right)^2 = 270.6$, so 271 samples, almost 7 times more than what we started with.

The other alternative would be to reduce our confidence level. Let us compute what z^* should be:

$$0.1 = z^* \frac{1}{\sqrt{40}} = 0.158 \times z^*$$

Therefore $z^* = 0.633$. The corresponding p value is 0.737. Turning that into a C value would require $p = \frac{1+C}{2}$. We would get C = 2p - 1 = 0.474. So to achieve that margin of error we would need to drop down to a 47.5% confidence level. That is very low.