EE25BTECH11003 - Adharvan Kshathriya Bommagani

Question:

Equations of the lines through the point (3,2) and making an angle of 40° with the line x - 2y = 3 are.

Solution:

First, we express the given point and line using column vectors.

The line passes through the point (3,2). We can represent this with a position vector \mathbf{h} :

$$\mathbf{h} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

The given line is x - 2y = 3. From the formula $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$, we can identify the **normal** vector to this line, which we'll call \mathbf{n}_1 :

$$\mathbf{n_1} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

The **direction vector** of a line, $\mathbf{m_1}$, is orthogonal to its normal vector, meaning $\mathbf{m_1}^{\mathsf{T}}\mathbf{n_1} = 0$. A simple choice is:

$$\mathbf{m_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

We need to find the direction vectors, $\mathbf{m_2}$ and $\mathbf{m_3}$, for the new lines by rotating the known direction vector $\mathbf{m_1}$ by both +40° and -40°. The rotation matrix $R(\theta)$ is:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

For the first line (rotation by $+40^{\circ}$):

$$\mathbf{m_2} = R(40^\circ)\mathbf{m_1} = \begin{pmatrix} \cos(40^\circ) & -\sin(40^\circ) \\ \sin(40^\circ) & \cos(40^\circ) \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2\cos(40^\circ) - \sin(40^\circ) \\ 2\sin(40^\circ) + \cos(40^\circ) \end{pmatrix}$$

For the second line (rotation by -40°):

$$\mathbf{m_3} = R(-40^\circ)\mathbf{m_1} = \begin{pmatrix} \cos(40^\circ) & \sin(40^\circ) \\ -\sin(40^\circ) & \cos(40^\circ) \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2\cos(40^\circ) + \sin(40^\circ) \\ -2\sin(40^\circ) + \cos(40^\circ) \end{pmatrix}$$

We use the vector equation of a line, $\mathbf{x} = \mathbf{h} + \kappa \mathbf{m}$, and convert it to Cartesian form.

1

The normal form is $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$, where $c = \mathbf{n}^{\mathsf{T}}\mathbf{h}$. A normal vector \mathbf{n} can be obtained from a direction vector $\mathbf{m} = \begin{pmatrix} u \\ v \end{pmatrix}$ as $\mathbf{n} = \begin{pmatrix} -v \\ u \end{pmatrix}$.

First Line in Normal Form:

The normal vector $\mathbf{n_2}$ from $\mathbf{m_2}$ is:

$$\mathbf{n_2} = \begin{pmatrix} -(2\sin(40^\circ) + \cos(40^\circ)) \\ 2\cos(40^\circ) - \sin(40^\circ) \end{pmatrix}$$

The constant $c_2 = \mathbf{n_2}^{\mathsf{T}} \mathbf{h}$ is:

$$c_2 = \left[-(2\sin(40^\circ) + \cos(40^\circ)), \quad 2\cos(40^\circ) - \sin(40^\circ) \right] \begin{pmatrix} 3\\2 \end{pmatrix}$$

= $-3(2\sin(40^\circ) + \cos(40^\circ)) + 2(2\cos(40^\circ) - \sin(40^\circ))$
= $\cos(40^\circ) - 8\sin(40^\circ)$

The equation is:

$$\begin{pmatrix} -(2\sin(40^\circ) + \cos(40^\circ)) \\ 2\cos(40^\circ) - \sin(40^\circ) \end{pmatrix}^\top \begin{pmatrix} x \\ y \end{pmatrix} = \cos(40^\circ) - 8\sin(40^\circ)$$

Second Line in Normal Form:

The normal vector $\mathbf{n_3}$ from $\mathbf{m_3}$ is:

$$\mathbf{n_3} = \begin{pmatrix} -(-2\sin(40^\circ) + \cos(40^\circ)) \\ 2\cos(40^\circ) + \sin(40^\circ) \end{pmatrix} = \begin{pmatrix} 2\sin(40^\circ) - \cos(40^\circ) \\ 2\cos(40^\circ) + \sin(40^\circ) \end{pmatrix}$$

The constant $c_3 = \mathbf{n_3}^{\mathsf{T}} \mathbf{h}$ is:

$$c_3 = [2\sin(40^\circ) - \cos(40^\circ), \quad 2\cos(40^\circ) + \sin(40^\circ)] \binom{3}{2}$$

= 3(2\sin(40^\circ) - \cos(40^\circ)) + 2(2\cos(40^\circ) + \sin(40^\circ))
= \cos(40^\circ) + 8\sin(40^\circ)

The equation is:

$$\begin{pmatrix} 2\sin(40^\circ) - \cos(40^\circ) \\ 2\cos(40^\circ) + \sin(40^\circ) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x \\ y \end{pmatrix} = \cos(40^\circ) + 8\sin(40^\circ)$$

Plot of the Lines:

Fig. 0: Figure for 4.9.5