Ron Rothblum

Technion

The Fiat-Shamir Transform [FS86]

<u>In a nutshell:</u> Awesome technique for minimizing interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

* Original goal was transforming ID schemes into signature schemes.

Interactive Argument [BCC88]

result

Completeness: *P* convinces

Computational Soundness

cheating prover can convince ν to accept $x \not\subset L$ (except with negligible probability).

Public-Coin Interactive Argument

Non-Interactive Argument

Public-Coin Interactive Argument

Non-Interactive Argument

Public-Coin Interactive Argument

Non-Interactive Argument

Extremely influential methodology.

<u>Powerful:</u> We know that interaction buys a lot.FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs, (zk-)SNARGs, STARKs...

Fiat Shamir – Security?

Central question in cryptography:

Do there exist hash functions for which the Fiat-Shamir transform is secure?

Answer: we don't (quite) know 🕾.

Still, would like to understand and so we'll analyze security assuming an *ideal* hash function.

The Random Oracle Model [BR93]

The random oracle model simply means that all parties are given blackbox access to a fully random function $R: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$.

Security should hold whp over the choice of R.

Q: How should we view protocols secure in ROM?

A: TBD.

FS in the ROM

Public-Coin Interactive Argument

Non-Interactive Argument

FS in the ROM

Thm [PS96,Folklore]: for every constant-round interactive argument Π with negl. soundness, whp over R, the protocol Π_R is secure.

Tightness

Claim: \exists multi-round protocol Π with negl. soundness error s.t. Π_{FS} is *not* sound (even in ROM).

<u>Proof:</u> Take any constant-round protocol with constant soundness and repeat sequentially.

Tightness

Public-Coin Interactive Argument Non-Interactive Argument

FS in the ROM

Thm [PS96,Folklore]: for every constant-round interactive argument Π with negl. soundness, whp over R, the protocol Π_R is secure.

(Actually extends to some multi-round protocols.)

We will see the proof in detail, but for simplicity focus on 3-message protocol.

FS in ROM

Public-Coin Interactive Protocol Non-Interactive Argument

FS in ROM

Need to show:

- Completeness.
- Soundness.
- Zero knowledge.

FS in ROM: Soundness

Suppose $\exists x \notin L$ and P_{FS}^* that runs in time T and makes V_{FS} accept x wp $\geq \epsilon$.

Will construct P^* s.t. V accepts x w.p. poly $\left(\epsilon, \frac{1}{T}\right)$.

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X,Y)] \ge \epsilon$$
.

Then, for at least $\epsilon/2$ fraction of x's it holds that

$$(*) \Pr_{Y|x}[A(x,Y)] \ge \epsilon/2.$$

Proof: Markov's inequality.

Fact: suppose (X, Y) are jointly distributed RVs s.t. $Pr[A(X, Y)] \ge \epsilon$.

Then, for at least $\epsilon/2$ fraction of x's it holds that

$$(*) \Pr_{Y|x}[A(x,Y)] \ge \epsilon/2.$$

Proof:

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X,Y)] \ge \epsilon$$
.

Then, for at least $\epsilon/2$ fraction of x's it holds that

$$(*) \Pr_{Y|x}[A(x,Y)] \ge \epsilon/2.$$

$$\Pr[A(X,Y)] =$$

Fact: suppose (X, Y) are jointly distributed RVs s.t. $Pr[A(X, Y)] \ge \epsilon$.

Then, for at least $\epsilon/2$ fraction of x's it holds that

$$(*) \Pr_{Y|x}[A(x,Y)] \ge \epsilon/2.$$

$$Pr[A(X,Y)] = Pr[X \text{ good}] \cdot Pr[A(X,Y)|X \text{ good}] + Pr[X \text{ bad}] \cdot Pr[A(X,Y)|X \text{ bad}]$$

Fact: suppose (X, Y) are jointly distributed RVs s.t. $Pr[A(X, Y)] \ge \epsilon$.

Then, for at least $\epsilon/2$ fraction of x's it holds that

$$(*) \Pr_{Y|x}[A(x,Y)] \ge \epsilon/2.$$

$$Pr[A(X,Y)] = Pr[X \text{ good}] \cdot Pr[A(X,Y)|X \text{ good}] +$$

$$Pr[X \text{ bad}] \cdot Pr[A(X,Y)|X \text{ bad}]$$

$$< \frac{\epsilon}{2} \cdot 1 + 1 \cdot \frac{\epsilon}{2}$$

Fact: suppose (X, Y) are jointly distributed RVs s.t. $Pr[A(X, Y)] \ge \epsilon$.

Then, for at least $\epsilon/2$ fraction of x's it holds that

$$(*) \Pr_{Y|x}[A(x,Y)] \ge \epsilon/2.$$

$$Pr[A(X,Y)] = Pr[X \text{ good}] \cdot Pr[A(X,Y)|X \text{ good}] +$$

$$Pr[X \text{ bad}] \cdot Pr[A(X,Y)|X \text{ bad}]$$

$$< \frac{\epsilon}{2} \cdot 1 + 1 \cdot \frac{\epsilon}{2}$$

$$= \epsilon$$

FS in ROM: Soundness

Suppose $\exists x \notin L$ and P_{FS}^* that runs in time T and makes V_{FS} accept x wp $\geq \epsilon$.

Will construct P^* s.t. V accept x w.p. poly $\left(\epsilon, \frac{1}{T}\right)$.

Soundness Analysis

Denote oracle queries by Q_1, \dots, Q_T .

Wlog all Q_i 's distinct and $\alpha \in \{Q_1, ..., Q_T\}$.

Claim: $\exists i^* \in [T]$ s.t. P_{FS}^* wins w.p. ϵ/T conditioned on $Q_{i^*} = \alpha$.

Proof: by contradiction.

"The Forking Lemma"

Key Lemma: for $\frac{\epsilon}{2T}$ fraction of $(q_1, ..., q_{i^*})$ it holds that P_{FS}^* wins w.p. $\frac{\epsilon}{2T}$ conditioned on $Q_{i^*} = \alpha$ and $Q_i = q_i$ for all $i \leq i^*$.

Proof: by useful fact.

Breaking Soundness of V

- 1. Start running P_{FS}^* up to it's i^* th query, using random answers.
- 2. Let $\alpha = Q_{i^*}$ be the i^* th query. Send α (and get β).
- 3. Continue running P_{FS}^* while answering Q_{i^*} with β and other queries uniformly at random.
- 4. Eventually P_{FS}^* outputs $(\alpha', \beta', \gamma')$.
- 5. If $\alpha = \alpha'$ and $\beta = \beta'$ send $\gamma = \gamma'$.

Breaking Soundness of V: Analysis

Rely on forking lemma:

Forking Lemma: for $\frac{\epsilon}{2T}$ fraction of (q_1, \dots, q_{i^*}) it holds that P_{FS}^* wins w.p. $\frac{\epsilon}{2T}$ conditioned on $Q_{i^*} = \alpha$ and $Q_i = q_i$ for all $i \leq i^*$.

Get that wp $\frac{\epsilon}{2T}$ over choice of $(Q_1, ..., Q_i)$ it holds that wp $\frac{\epsilon}{2T}$ over all remaining coin tosses that P_{FS}^* wins and $\alpha' = \alpha$.

 \Rightarrow our P^* wins wp $\left(\frac{\epsilon}{2T}\right)^2$, which is non-negligible.

FS in ROM: ZK

Have not defined ZK in the ROM and as there are multiple definitions (and issues).

Intuitively though, beyond seeing (α, β, γ) (which can be generated from x by (HV)-ZK), the verifier has obtained oracle access to a random function R such that $R(x, \alpha) = \beta$.

Could it have obtained such a function by itself?

Short answer: kind of...

Long answer: depends on the definition. ©

FS in ROM

<u>Conclusion:</u> FS is sound in ROM (and ZK for some suitable definitions).

But we cannot use hash functions that take 2^{λ} bits to describe!

So, is the Fiat-Shamir transform secure?

Bad news [CHG98]: I protocols secure in ROM but totally broken using any instantiation.

Fiat Shamir – Security?

Given negative result, how to interpret ROM proof of security?

Optimist's view:

- Counterexamples are contrived.
- ROM analysis ⇒ strong indication FS is secure in real-life.
- ROM analysis = good heuristic. Can help both in terms of feasibility and efficiency.

Pessimist's view:

 Basing security on an assumption that we do not understand, and have a negative indication for, is undesirable if not flat out dangerous.

Instantiating Fiat Shamir with Explicit Hash function

A Basic Question

Can we instantiate the heuristic securely using an explicit hash family?

<u>Def:</u> a hash family H is FS-compatible for a Π if $FS_H(\Pi)$ is "secure".

$$P_{FS}$$

$$\beta = h(x, \alpha)$$
 h
 M_{FS}

$$h \in H$$

FS using Explicit Family

Need to consider soundness & zero-knowledge.

Start with zero-knowledge.

<u>Def:</u> H is <u>programmable</u> if can sample random $h \in H$ conditioned on $h(x, \alpha) = \beta$.

ZK for FS

Claim: if H is programmable and Π is HVZK $\Rightarrow \Pi_{FS}(h)$ is ZK.

Proof: construct simulator.

- 1. Sample (α, β, γ) .
- 2. Sample H conditioned on $H(x, \alpha) = \beta$.
- 3. Output $(H, (\alpha, \beta, \gamma))$.

Exercise: show dist. identical.

Soundness for FS

Thm [B01,GK03]: \exists protocols which are not FS-compatible for any H.

Hope? Those counterexamples are arguments! Maybe sound if we start with a proof?

[BDGJKLW13]: no blackbox reduction to a falsifiable assumption, even for proofs.

Fiat Shamir for Proofs?

Stay tuned for afternoon talk.

 Closely related to the question of parallel composition of ZK [DNRS03].

Thanks!