Review recall $F_X = free group on X$

given a group G:

S sub G is a generating set
 iff no smaller subgroup of G contains S
 iff the homomorphism F_S to G is surjective

in this case:

R sub F_S is a set of relations wrt S
 iff ker(F_S to G) is the smallest kernel, i.e.,
 normal subgp of F_S, containing R

then we can speak of a presentation of G by generators and relations: $G = \langle S | R \rangle$ if $R = \emptyset$, then $G = F_S$ and we write $G = \langle S \rangle$ Rem any G has an "obvious" gen'ting set S:

[pause: what is it?]

take S = G itself

[usually we prefer to study smaller S]

take G = Zwhat is a one-elt gen'ting set? [pause] $S = \{1\}$ works [but also another:] $S = \{-1\}$ also works

what is a two-elt gen'ting set without ± 1 ? [pause] [e.g.] $S = \{2, 3\}$

Ex last time, saw that if $G = \{e, s\}$ then $G = \langle s \mid s^2 \rangle$ [abusing notation: s should be $\{s\}$, etc.]

```
Ex
          let G = Z^2 [under coordinate-wise +]
          what is a generating set? [pause]
          S = \{(1, 0), (0, 1)\} works
write a = (1, 0) and b = (0, 1)
what is ker(F_S to Z^2)? [pause]
elts of F_S are words in a, b, a^{-1}, b^{-1}
if such a word contains
     Ma's,
     N b's,
     M' a^{-1}'s,
     N' b^{-1}'s
then it is mapped to (M - M', N - N') in \mathbb{Z}^2, so
```

e.g., for any w, v in F_S, it contains
the <u>commutator</u> [w, v] := wvw^{-1}v^{-1}
[here w^{-1} means the group inverse to w]

Fact ([follows from] Munkres 69.3–69.4)

- {[w, v] | w, v in F_S} is a generating set for ker(F_S to Z^2)
- the kernel is the smallest normal subgp containing [a, b]

[defer proof for now]

altogether, get the presentation

$$Z^2 = \langle a = (1, 0), b = (0, 1) \mid aba^{-1}b^{-1}\rangle$$

Free Products [goal: Seifert–van Kampen:] given groups $G_{-}1 = \langle S_{-}1 \mid R_{-}1 \rangle,$ $G_{-}2 = \langle S_{-}2 \mid R_{-}2 \rangle;$

<u>Df 1</u> the free product of G_1 and G_2 is

 $G_1 * G_2 = <S1 \text{ cup } S2 \mid R1 \text{ cup } R2>$

Problem a priori, G_1 * G_2 could depend on how we present G_1 and G_2 [to solve this issue, new defn:]

Df 2 a free product of G_1, G_2 is a group G with maps i_1 : G_1 to G, i_2 : G_2 to G s.t., for any group K, we have a bijection

{pairs of hom's ϕ_1 : G_1 to K, ϕ_2 : G_2 to K} = {hom's Φ : G to K}

given explicitly by $\phi_1 = \Phi \circ I_1$ and $\phi_2 = \Phi \circ I_2$

Thm the free product in definition #2 is unique up to iso [in fact, "unique iso"]

Pf suppose (G, I_1, I_2) , (G', I'_1, I'_2) both work

taking $\phi_k = \iota'_k$ above gives a hom Φ : G to G' s.t. $\iota'_k = \Phi \circ \iota_k$

taking $\phi_k = \iota_k$ above gives a hom Φ' : G' to G s.t. $\iota_k = \Phi' \circ \iota'_k$

substituting, $I_k = \Phi' \circ \Phi \circ I_k$ so under the defining bijection for G, id_G and $\Phi' \circ \Phi$ both correspond to (I_1, I_2) [pause: what next?] so id_G = $\Phi' \circ \Phi$

similarly, id $\{G'\} = \Phi \circ \Phi'$

so Φ and Φ' are each other's two-sided inverses \square

[thm + proof illustrate "category-theoretic" ideas]

<u>Lem</u> $G_1 * G_2$ in defn #1 satisfies defn #2

Pf left as exercise

 \underline{Ex} the free group F_2 is isomorphic to Z * Z

more generally, * is associative:

F_n is isomorphic to Z * Z * ... * Z with n copies

Ex let $G = \{e, s\}$, the two-elt group how to write down elts of G * G? [pause]

need to distinguish two copies of s: say, "s" and "t"

 $G * G = \{e, s, t, st, ts, sts, tst, ...\}$

(Munkres §70) [but slightly changed notation]

 $\frac{Thm}{(Seifert-van Kampen)} \ \ take open inclusions \\ j_1:U_1 \ to \ X, \\ i \ 2:U \ 2 \ to \ X$

s.t. X = U_1 cup U_2, U_1 and U_2 are path connected, U := U_1 cap U_2 is path-connected

let i_1 : U to U_1 and i_2 : U to U_2 be inclusion then for any x in U:

1) the homomorphism $\pi_{-}1(U_{-}1,\,x)*\pi_{-}1(U_{-}2,\,x) \text{ to } \pi_{-}1(X,\,x)$ arising from (j_{1,*}, j_{2,*}) via the defn of free product is <u>surjective</u>

the kernel of the homomorphism is the smallest normal subgp of the domain containing the elts of the form $i_\{1,^*\}([\gamma])^*\{-1\}\ i_\{2,^*\}([\gamma])$ as we run over elts $[\gamma]$ in $\pi_1(U, x)$ [above, $i_\{k,^*\}([\gamma])$ in $\pi_1(U_k, x)$, but then we implicitly embed it into the free product]

Cor $\pi_1(X, x)$ is generated by the union of $\pi_1(U_1, x)$ and $\pi_1(U_2, x)$

if there are open U_1, U_2 sub X s.t.
U_1, U_2 are simply-connected,
X = U_1 cap U_2,
U_1 cap U_2 is path-connected,
then X is simply-connected

<u>Ex</u> take a figure-eight:

[draw]

take open U_1, U_2 s.t.

they deformation retract onto the two loops U_1 cap U_2 def. retracts onto the middle pt

[draw]

then $\pi_1(U_1, x) = \pi_1(U_2, x) = \pi_1(S^1) = Z$ but $\pi_1(U_1 \text{ cap } U_2, x)$ is trivial

so $\pi_1(\text{figure-eight}, x) = Z * Z = F_2$