DCS 630

Week 8

Assignment 8

Name: Aniruddha Joshi

Date: May 04, 2024

```
#Defining Libraries required for import
In [ ]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from datetime import datetime
        import sklearn as sk
        import textblob as tb
        from nltk.sentiment.vader import SentimentIntensityAnalyzer
        from nltk.stem import PorterStemmer
        import operator
        import unicodedata
        import sys
        import re
        from nltk.corpus import stopwords
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
        from sklearn.metrics import roc_auc_score, confusion_matrix, roc_curve, auc
        from sklearn.svm import LinearSVC
        from sklearn.ensemble import RandomForestClassifier
        import geopandas as gpd
        from geopy.geocoders import Nominatim
```

```
from sklearn.linear model import LinearRegression
from sklearn.metrics import accuracy score, precision score, recall score, f1 score, roc auc score
from sklearn.metrics import confusion_matrix, roc_curve, auc, mean_squared_error, r2_score, classification_report
import seaborn as sns
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.metrics import confusion matrix
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette samples, silhouette score
import matplotlib.cm as cm
import warnings
import plotly.express as px
import plotly.io as pio
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot predict
```

```
In []: # Initial settings
    pio.renderers.default = "notebook"
    warnings.filterwarnings("ignore", category=UserWarning)
```

Questions:

- -Plot the data with proper labeling and make some observations on the graph.
- -Split this data into a training and test set. Use the last year of data (July 2020 June 2021) of data as your test set and the rest as your training set.
- -Use the training set to build a predictive model for the monthly retail sales.
- -Use the model to predict the monthly retail sales on the last year of data.

-Report the RMSE of the model predictions on the test set.

```
In []: #Load the dataset as a Pandas data frame.
    us_retail_sales_df = pd.read_csv('us_retail_sales.csv')

In []: # Set the index column and parse dates
    us_retail_sales_df = us_retail_sales_df.set_index('YEAR')
    #us_retail_sales_df.index = pd.to_datetime(us_retail_sales_df.index, format='%Y')
    print(us_retail_sales_df)
```

	JAN	FEB	MAR	APR	R MAY	JUN	JUL	AUG	\
YEAR									`
1992	146925	147223	146805	148032	149010	149800	150761.0	151067.0	
1993	157555	156266	154752	158979		160127	162816.0	162506.0	
1994	167518	169649	172766	173106		174241	174781.0	177295.0	
1995	182413	179488	181013	181686		186081	185431.0	186806.0	
1996	189135	192266	194029	194744	196205	196136	196187.0	196218.0	
1997	202371	204286	204990	203399	201699	204675	207014.0	207635.0	
1998	209666	209552	210832	213633	214639	216337	214841.0	213636.0	
1999	223997	226250	227417	229037	231235	231903	233948.0	236566.0	
2000	243436	247133	249825	245831	246201	248160	247176.0	247576.0	
2001	252654	252704	250328	254763	255218	254022	252997.0	254560.0	
2002	256307	257670	257059	261333	257573	259786	262769.0	265043.0	
2003	267230	263188	267820	267197	267362	270396	273352.0	277965.0	
2004	278913	280932	286209	282952	288252	284133	287358.0	287941.0	
2005	296696	300557	301308	303760	301776	310989	313520.0	310046.0	
2006	322348	320171	320869	322561	321794	323184	324204.0	325324.0	
2007	327181	327953	330579	329560	334202	331076	332342.0	334169.0	
2008	337412	334584	335193	334843	337947	338311	336771.0	334045.0	
2009	298673	297631	292300	293614	296501	302169	302802.0	309023.0	
2010	308299	308628	316003	318707	315604	314925	315632.0	317408.0	
2011	332357	334710	338007	339884	339303	341600	341373.0	342288.0	
2012	352862	357379	358719	356849	356018	352043	353891.0	358450.0	
2013	367009	372291	369081	367514	369493	371041	373554.0	372489.0	
2014	373033	378581	382601	386689	387100	388106	388359.0	391305.0	
2015	385648	385157	391420	391356	394718	395464	398193.0	398105.0	
2016	394749	398105	396911	398190	400143	404756	403730.0	403968.0	
2017	416081	415503	414620	416889	414540	416505	416744.0	417179.0	
2018	432148	434106	433232	435616	439996	438191	440703.0	439278.0	
2019	440751	439996	447167	448709	449552	450927	454012.0	456500.0	
2020	460586	459610	434281	379892	444631	476343	481627.0	483716.0	
2021	520162	504458	559871	562269	548987	550782	NaN	NaN	
	SE	Р	OCT	NOV	DEC				
YEAR									
1992	152588.	0 15352	1.0 153	583.0	155614.0				
1993	163258.	0 16468	5.0 166	594.0	168161.0				
1994	178787.	0 18056	1.0 180	703.0	181524.0				
1995	187366.	0 18656	5.0 189	055.0	190774.0				
1996	198859.	0 20050	9.0 200	174.0	201284.0				
1997	208326.	0 20807	8.0 208	936.0	209363.0				
1998	215720.	0 21948	3.0 221	134.0	223179.0				

```
1999 237481.0 237553.0 240544.0 245485.0
2000 251837.0 251221.0 250331.0 250658.0
2001 249845.0 267999.0 260514.0 256549.0
2002 260626.0 261953.0 263568.0 265930.0
2003 276430.0 274764.0 278298.0 277612.0
2004 293139.0 295115.0 296177.0 299763.0
2005 310673.0 310479.0 313303.0 313473.0
2006 323236.0 322678.0 323343.0 326849.0
2007 335442.0 337530.0 341133.0 336189.0
2008 328343.0 314830.0 301332.0 294025.0
2009 301033.0 304154.0 306675.0 308413.0
2010 320080.0 323900.0 327745.0 329627.0
2011 345496.0 347924.0 349304.0 349744.0
2012 361470.0 361991.0 362876.0 364488.0
2013 372505.0 373663.0 373914.0 377032.0
2014 389860.0 390506.0 391805.0 388569.0
2015 396248.0 394503.0 396240.0 397052.0
2016 405958.0 407395.0 406061.0 412610.0
2017 426501.0 426933.0 431158.0 433282.0
2018 438985.0 444038.0 445242.0 434803.0
2019 452849.0 455486.0 457658.0 458055.0
2020 493327.0 493991.0 488652.0 484782.0
2021
          NaN
                   NaN
                            NaN
                                     NaN
```

Convert the data to time series dataframe

```
In []: # Melt the DataFrame
    df_melted = us_retail_sales_df.melt(ignore_index=False, var_name='month', value_name='data')

#copy the year in temp column
    df_melted['temp'] = df_melted.index # df_melted['month'] # df_melted.index.to_period('M').astype(str)
    #remove indexing
    df_melted = df_melted.reset_index(drop=True)
    #Concatinate the year and month dataframe
    df_melted['year-month'] = pd.to_datetime(df_melted['temp'].astype(str) + '-' + df_melted['month'])

#sort based on year-month
    df_melted=df_melted.sort_values(by='year-month')

#drop unwated temp/column
    df_melted=df_melted.drop(columns=['temp','month'])
```

```
#remove last empty readings
        df_melted = df_melted.dropna()
        #Check the data
        df_melted.head(5)
Out[]:
                data year-month
          0 146925.0 1992-01-01
         30 147223.0 1992-02-01
         60 146805.0 1992-03-01
         90 148032.0 1992-04-01
        120 149010.0 1992-05-01
In [ ]: #Plot the data
        plt.plot(df_melted['year-month'],df_melted['data'])
        # Labels
        plt.xlabel('Year-Month')
        plt.ylabel('$$$')
        plt.title('Year-Month Vs Prices')
Out[ ]: Text(0.5, 1.0, 'Year-Month Vs Prices')
```


Comments

The graph shows the relationship between Month-year Vs Retail prices.

There increase is prices looks linear however data shows significant dips in 2008 and in 2020/2021. Those dips seem to be related to economic downturn during housing market crash and Covid pandemic.

```
In [ ]: #print the shape of the data
df_melted.shape
```

Out[]: (354, 2)

Split this data into a training and test set. Use the last year of data (July 2020 – June 2021)

```
In []: # Split the training and testing data
length= df_melted.shape[0]
#Get all records except the last 12 records for training data
training_data_df=df_melted[:length-12]

#For test data, get the last 12 rcods
test_data_df =df_melted[length-12:]

#check the test data from July 2020 - June 2021
test_data_df
```

Out[]: data year-month 208 481627.0 2020-07-01 238 483716.0 2020-08-01 268 493327.0 2020-09-01 298 493991.0 2020-10-01 328 488652.0 2020-11-01 358 484782.0 2020-12-01 29 520162.0 2021-01-01 59 504458.0 2021-02-01 89 559871.0 2021-03-01 119 562269.0 2021-04-01 149 548987.0 2021-05-01 179 550782.0 2021-06-01

```
In [ ]: #reset index. Remove indexing to simply graphs
    training_data_df=training_data_df.reset_index(drop=True)
```

training_data_df

Out[]:		data	year-month
	0	146925.0	1992-01-01
	1	147223.0	1992-02-01
	2	146805.0	1992-03-01
	3	148032.0	1992-04-01
	4	149010.0	1992-05-01
	•••	•••	
	337	459610.0	2020-02-01
	338	434281.0	2020-03-01
	339	379892.0	2020-04-01
	340	444631.0	2020-05-01
	341	476343.0	2020-06-01

342 rows × 2 columns

Use the training set to build a predictive model for the monthly retail sales.

```
In []: model = ARIMA(training_data_df['data'], order=(25,3,2)) #
model_fit = model.fit()

#p= 25 values form the past samples
#d=3 The model will perform differencing once to remove any trend in the data before making predictions.
#q=2 The model will use a moving average of one past forecast error to adjust its current prediction.
```

Use the model to predict the monthly retail sales on the last year of data.

```
In [ ]: forecast = model_fit.forecast(steps=12) # Predict the next 12 months
print(forecast)
```

```
342
      494390.324842
343
      498867.052808
344
      499269.687155
      495309,450565
345
346
      493222,256002
347
      492469.333657
348
      490889.369419
      491947.288901
349
350
      493657.088468
351
      498557.218956
352
      502469.223689
      504055.217288
353
Name: predicted_mean, dtype: float64
```

Report the RMSE of the model predictions on the test set.

```
In [ ]: # 2. Calculate RMSE
        rmse = np.sqrt(mean_squared_error(test_data_df['data'], forecast))
        print("RMSE:", rmse)
       RMSE: 34537.01721395114
In [ ]: test_data_df['data']
Out[]: 208
               481627.0
         238
               483716.0
               493327.0
         268
         298
               493991.0
         328
               488652.0
               484782.0
         358
         29
               520162.0
         59
               504458.0
         89
               559871.0
        119
               562269.0
               548987.0
         149
        179
               550782.0
        Name: data, dtype: float64
In [ ]: #plot the graph
        plt.figure(figsize=(10, 6))
        plt.plot(test_data_df['year-month'],forecast, color='red', label='Predicted Values')
```

```
# Optional: Add the original data for comparison
plt.plot(df_melted['year-month'],df_melted['data'], label='Original Data')

plt.xlabel('Time')
plt.ylabel('Values')
plt.title('Predicted Values')
plt.legend()
plt.show()
```

Predicted Values


```
In [ ]: | model = ARIMA(training_data_df['data'], order=(25,5,5)) #
        model_fit = model.fit()
        forecast = model_fit.forecast(steps=12) # Predict the next 12 months
        print(forecast)
        #p= 25 values form the past samples
        #d=3 The model will perform differencing once to remove any trend in the data before making predictions.
        #q=2 The model will use a moving average of one past forecast error to adjust its current prediction.
       342
              478145.336108
       343
              498849,497570
       344
              493957.334594
       345
              482138.391856
       346
              483013.348582
       347
              482294.354315
       348
              484493.621067
       349
              495669.837746
       350
              506116.692604
              519111.682882
       351
       352
              531110.088538
       353
              538252.708994
       Name: predicted mean, dtype: float64
In [ ]: #plot the graph
        plt.figure(figsize=(10, 6))
        plt.plot(test_data_df['year-month'],forecast, color='red', label='Predicted Values')
        # Optional: Add the original data for comparison
        plt.plot(df_melted['year-month'],df_melted['data'], label='Original Data')
        plt.xlabel('Time')
        plt.ylabel('Values')
        plt.title('Predicted Values')
        plt.legend()
        plt.show()
```

Predicted Values


```
In [ ]: # 2. Calculate RMSE
rmse = np.sqrt(mean_squared_error(test_data_df['data'], forecast))
print("RMSE:", rmse)
```

RMSE: 24149.05256437495

Conslusion:

By using time series libraries like ARIMA, we can predict the value for the extended periods based on past performance.

However, the model needs to be tuned appropriately. In this experiment, we used ARIMA model to predict the future timeseries values.