IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Application of: Chen et al.

Group Art Unit: Unassigned

Serial No.: Unassigned

Examiner: Unassigned

Filed: February 16, 2004

Docket No. 251210-1560

For: Method for Determining a Tilt Angle of an Optical Pickup Head

CLAIM OF PRIORITY TO AND SUBMISSION OF CERTIFIED COPY OF REPUBLIC OF CHINA APPLICATION PURSUANT TO 35 U.S.C. §119

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

Sir:

In regard to the above-identified pending patent application and in accordance with 35 U.S.C. §119, Applicants hereby claim priority to and the benefit of the filing date of Republic of China patent application entitled, "Method for Determining a Tilt Angle of an Optical Pickup Head", filed February 27, 2003, and assigned serial number 92104336. Further pursuant to 35 U.S.C. §119, enclosed is a certified copy of the Republic of China patent application

Respectfully Submitted,

THOMAS, KAYDEN, HORSTEMEYER & RISLEY, L.L.P.

By:

Daniel R. McClure, Reg. No. 38,962

100 Galleria Parkway, Suite 1750 Atlanta, Georgia 30339 770-933-9500 ₹<u>></u>>

中華民國經濟部智慧財產局

INTELLECTUAL PROPERTY OFFICE MINISTRY OF ECONOMIC AFFAIRS REPUBLIC OF CHINA

茲證明所附文件,係本局存檔中原申請案的副本,正確無訛,其申請資料如下:

This is to certify that annexed is a true copy from the records of this office of the application as originally filed which is identified hereunder:

申 請 日: 西元 <u>2003</u>年 <u>02</u>月 <u>27</u>日 Application Date

申 請 案 號: 092104336 Application No.

申 請 人: 建興電子科技股份有限公司 Applicant(s)

局

長

Director General

發文日期: 西元 2003 年 5 月 29 日

Issue Date

發文字號: 09220530450

Serial No.

由 - # n + n · · · · · ·	•	IPC分類			
申請日期:		11 0 20 355			
		1			
由华安贴。	•				
申請案號:	• •		••	<u>.</u>	
	•	· ·			

(以上各欄	由本局填	發明專利說明書
_	中文	光碟機光讀寫頭工作取角的方法.
發明名稱	英文	·
	姓 名(中文)	1. 陳漢釗 2. 陳徵君 3. 陳伯睿
÷	姓 名 (英文)	1. 2. 3.
發明人 (共3人)	國籍(中英文)	1. 中華民國 TW 2. 中華民國 TW 3. 中華民國 TW
(共3人)	住居所(中文)	1. 台北市南京東路4段16號6樓 2. 台北市南京東路4段16號6樓 3. 台北市南京東路4段16號6樓
·	住居所 (英 文)	1. 2. 3.
	名稱或 姓 名 (中文)	1. 建興電子科技股份有限公司
三 申請人 (共1人)	名稱或 姓 名 (英文)	
	國 籍 (中英文)	1. 中華民國 TW
	住居所 (營業所) (中 文)	1. 台北市南京東路4段16號6樓 (本地址與前向貴局申請者相同)
	住居所 (營業所) (英 文)	1.
	代表人(中文)	1. 宋恭源
	代表人 (英文)	1.

一種光碟機光讀寫頭工作取角的方法,其應用於光讀寫頭之抖動檢測裝置,該裝置係包括有治具之抖動儀,明顯整該光讀寫頭之傾角,以及設置於不同傾角之抖動儀(Jitter值);其中,該方法係主要利用二次由面公式(自由);其中,為五點,且不需將徑向及功力之傾角分別歸零,即可快速地計算出該光讀寫頭之工作傾角的依據者。

五、(一)、本案代表圖為:第七圖

(二)、本代表圖之元件代表符號簡單說明:

光讀寫頭1抖動檢測裝置2治具24動儀21

六、英文發明摘要 (發明名稱:)

一、本案已向			
國家(地區)申請專利	申請日期	案 號	主張專利法第二十四條第一項優先權
		無	
	·	-	
	•		
二、□主張專利法第二十.	五條之一第一項優	先權:	
申請案號:	•	伍	•
日期:		無	
三、主張本案係符合專利	法第二十條第一項	□第一款但書車	戊□第二款但書規定之期間
日期:			
四、□有關微生物已寄存;	於國外:		
寄存國家:		7 -	
寄存機構:		無	·
寄存日期:			
寄存號碼:			
□有關微生物已寄存;	於國內(本局所指)	定之寄存機構):	
寄存機構: `		l-	
寄存日期:		無	
寄存號碼:			•
□熟習該項技術者易2	於獲得,不須寄存	D	
•			
	•		

五、發明說明(1)

【發明所屬之技術領域】

本發明係有關於一種光碟機光讀寫頭工作取角的方法,尤指一種不需將徑向及切線方向之傾角分別歸零,即可計算出光讀寫頭之最小Jitter值及最佳傾角者。

【先前技術】

按,光碟機之光讀寫頭] a 於製造過程中,常因零件 尺寸及組裝上的誤差,俾造成該光讀寫頭] a 之光路 Optical Path) 不垂直於基準平面2a,而形成一傾角 θ (如第一圖所示);因此,在習知技術中,光讀寫頭之製 造廠則需分別針對徑向(radial)及切線(tangential) 方向,進行量測其抖動值(Jitter值)與傾角之關係,且 從中計算出該光讀寫頭] a 於徑向與切線方向之最佳傾角 者;申言之,Jitter值及其極限值在CD-ROM及DVD(Digital Video Disc) 業界所公佈的標準規範中都有明白的指 定,Jitter值主要有兩個發生現象:一是來自量測介於資 料及時脈間的時間差(T1和T2),其計算方法在CD-ROM播 放器中Jitter=T1-T2,而在DVD播放器中Jitter=(T1-T2)/T1 (如第二圖所示),另一是量測脈寬(或MO的脈 波週期量測),此脈波寬度的量測主要是用來評估光碟儲 存媒體;藉此,從既有之經驗公式來看,Jitter值與傾角 具有以下的關係:Jitter(x)=ax²+bx+c及Jitter(y)=ay² +by+c, 其中x代表徑向之傾角, y代表切線方向之傾角, a 、 b和 c代表未知常數;當計算 Jitter(x)時,切線方向之 傾角需先作歸零動作,而三次量得徑向之傾角,當計算

五、發明說明 (2)

Jitter(y),則徑向之傾角需先作歸零動作,而三次量得切線方向之傾角。

據此,由Jitter(x)=ax²+bx+c及Jitter(y)=ay²+by+c 兩曲線方程式可知,在單一方向(徑向或切線方向)量測 三點即可決定該方向之曲線方程式,且求得該方向之曲線 的最低點(如第三圖及第四圖所示,即可得最小之Jitter 值別,進而得到該方向之最佳傾角,因此若要完成徑的 切線方向之最佳傾角的計算,則需至少量測六個點 量測某一方向之傾角時,即必須先將另一方向之傾角作歸 零動作者。

綜上所述,請參閱第五圖所示,係習知光碟機光讀寫頭工作取角的方法,惟由圖中可知該方法需耗費許多時間和不必要之量測動作者。

是以,本發明人有感上述缺失之可改善,且依據多年來從事此方面之相關經驗,悉心觀察且研究之,乃特潛心研究並配合學理之運用,而提出一種設計合理且有效改善上述缺失之本發明。

【發明內容】

本發明之主要目的,係提供一種光碟機光讀寫頭工作取角的方法,其利用二次曲面之經驗公式,而令量測數量降為五點,且不需將徑向及切線方向之傾角分別歸零,即可快速地計算出該光讀寫頭之最小Jitter值及最佳傾角者

為了達成上述目的,本發明係提供一種光碟機光讀寫

五、發明說明 (3)

頭工作取角的方法,其應用於光讀寫頭之抖動檢測裝置, 該裝置係包括有治具、用以模擬調整該光讀寫頭檢測 寫頭於不同傾角之抖動值;該方法係包括下列步聯語 過數不同傾角之抖動值;該方法係包括下列步內 測裝置進行量測;任意量測五點,而得到五組光報 傾角(x1, y1)、(x2, y2)、(x3, y3)、(x4, y4)和(x5, y5));列出該五組傾角及相對應之Jitter值(Z1、Z2、Z3、 Z4和Z5)的聯立方程式組;解該聯立方程式組,以求得日 、b1、c1、d1和e1;得到曲面方程式為Z=a1x²+b1y²+c1x+ d1y+e1;計算該曲面方程式,而求得該光讀寫頭之 Jitter值及最佳傾角;以及將該最小之Jitter值的依據。

為了使貴審查委員能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。

【實施方法】

請參閱第六圖所示,係本發明用於光讀寫頭之抖動檢測裝置之示意圖,其包括有一治具20,係用以模擬調整該光讀寫頭1之傾角(如第六圖中之日),以及一抖動儀21,係設置於該治具20上,且該抖動儀21係可檢測該光讀寫頭1於不同傾角之抖動值;請參閱第七圖所示,係該

五、發明說明(4)

光碟機光讀寫頭工作取角的方法,其包括下列步驟:

- (1)提供一曲面方程式Z=ax²+by²+cx+dy+e,其中x為徑向傾角,y為切線方向傾角,Z為Jitter(x,y)值,以及a、b、c、d和e為未知常數。
- (2)任意調整該治具角度五次,而得到五組光讀取頭之傾角(x1, y1)、(x2, y2)、(x3, y3)、(x4, y4)和(x5, y5),並同時利用該抖動儀分別量測出相對於該五組傾角之Jitter值(Z1、Z2、Z3、Z4和Z5)。
- (3)分别列出該五組傾角及相對應Jitter值之聯立方程式組,而得到一矩陣方程式,如下所示:

$$\begin{bmatrix} x_1^2 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \\ Z_5 \end{bmatrix}$$

- (4)解該矩陣方程式,以求得al、bl、cl、dl和el為已知常數。
- (5) 將該已知常數al、bl、cl、dl和el代回該曲線方程式 Z=ax²+by²+cx+dy+e中(即a=al、b=bl、c=cl、d=dl和e=e=1),而得到該曲面方程式為Z=alx2+bly2+clx+dly+el。
- (6)利用該曲面方程式Z=alx²+bly²+clx+dly+el,以得到其二次曲面之最低點,亦即最小Jitter值,此最低點就是徑向及切線方向之最佳傾角(如第八圖所示)。

五、發明說明 (5)

(7)將該最小Jitter值資料輸入一條碼中,以作為調整光讀寫頭之工作傾角的依據。

綜上所述,本發明實為一種利用二次曲面之經驗公式,而可令量測數量降為五點,俾使光讀寫頭之生產效率提昇17%,且不需將徑向及切線方向之傾角分別歸零,即可快速地計算出該光讀寫頭之最小Jitter值及最佳傾角;且利用上述聯立方程式組而使Z1=Z2=Z3=Z4=Z5,並設定Jitter值的上限,便可求得各光路曲面方程式的交集,此交集就是各光路系統皆可以正常寫入、讀取的區域。

,以上所述,僅為本發明最佳之一的具體 實施例之 ,惟本發明之特徵並不侷限於 並非用 此 圖式 詳細說明與 圍應以下述之 申 範 本發明之所有 以限制本發明 利 範圍之精 神與 合於本發 明申 請 專 包含於本發明之 中 範 嚋 任何 皆 可輕易思及之變化或修飾 明之領域內, 蓋在以下本案之專利範圍

【圖式簡單說明】

第一圖:係習知光讀寫頭之光路不垂直於基準平面之示意

圖。

第二圖:係習知產生抖動現象之示意圖。

第三圖:係習知徑向傾角之二次曲線之座標圖。

第四圖:係習知切線方向傾角之二次曲線之座標圖。

第五圖:係習知光碟機光讀寫頭工作取角的方法之流程圖

第六圖:係本發明用於光讀寫頭之科動檢測裝置之示意圖

第七圖:係本發明光碟機光讀寫頭工作取角的方法之流程

圖。

第八圖:係本發明徑向及切線方向之二次曲面之座標圖。

【元件符號說明】

光讀寫頭 1

抖動檢測裝置 2

治具 20 抖動儀 21

六、申請專利範圍

- 1、一種光碟機光讀寫頭工作取角的方法,其應用於 光讀寫頭之抖動檢測裝置,該裝置係包括有治具,用以模 擬調整該光讀寫頭之傾角,以及設置於該治具上之抖動儀 ,該抖動儀係可檢測該光讀寫頭於不同傾角之抖動值(Jitter值);該光碟機光讀寫頭工作取角的方法,包括下 列步驟:
- (1)利用二次曲面之經驗公式:Z=ax²+by²+cx+dy+e, 並配合該抖動檢測裝置進行量測;
- (2)任意量測五點,而得到五組光讀取頭之傾角(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)和(x5,y5);
- (3)列出該五組傾角及相對應之Jitter值(Z1、Z2、 Z3、Z4和Z5)的聯立方程式組;
 - (4)解該聯立方程式組,以求得al、bl、cl、dl和el
- (5)將a1、b1、c1、d1和e1代回步驟(1)之經驗公式, 得到曲面方程式為Z=a1x²+b1y²+c1x+d1y+e1;
- (6)計算步驟(5)之曲面方程式,而求得該光讀寫頭之最小Jitter值及最佳傾角;以及
- (7)將該最小Jitter值的資料輸入一條碼中,俾作為調整光讀寫頭之工作傾角的依據。

第一圖

第二圖

圖式

第三圖

第四圖

利用二次曲線之經驗公式 Jitter(x)=ax²+bx+c及 Jitter(y)=ay²+by+c 並配合抖動檢測裝置進行量測 切線方向y作第一次歸零動作 量得徑向X之第一點為(X1,0), 且相對應之Jitter(x1)=Z1 切線方向y作第二次歸零動作 量得徑向x之第二點為(x2,0), 且相對應之Jitter(x2)=Z2 切線方向y作第三次歸零動作 量得徑向X之第三點為(X3,0), 且相對應之Jitter(x3)=Z3 列出三組徑向之傾角(x1,0), (x2,0),(x3,0)及相對應Jitter 值(Z1, Z2, Z3)之聯立方程式組 解聯立方程式組以求得 ai, bi和ci 將a1, b1和C1代回經驗公式 得到曲線方程式 $Jitter(x)=a_1x^2+b_1x+c_1$

得到徑向之最佳傾角, 及最小Jitter(x)值 徑向X作第一次歸零動作 量得切線方向y之第一點為(0, y1), 且相對應之Jitter(y1)=Z1 徑向x作第二次歸零動作 量得切線方向y之第二點為(0, y2), 且相對應之Jitter(y2)=Z2 徑向X作第三次歸零動作 量得切線方向v之第三點為(0, y3), 且相對應之Jitter(y3)=Z3 列出三組切線方向之傾角(0, y1), (0, v₂), (0, v₃)及相對應Jitter值 (Z1, Z2, Z3)之聯立方程式組 解聯立方程式組以求得 ai, bi和ci 將al,bl和cl代回經驗公式 得到曲線方程式 Jitter(y)=a1y²+by1+c1 得到切線方向之最佳傾角 及最小Jitter(y)值 將最小Jitter(x)值與 Jitter(y)值輸入一條碼中, 以作為調整光讀寫頭傾角之依據

第五圖

第六圖

第七圖

