Examen por suficiencia

Duración: 3 horas

II SEMESTRE, 2007

Puntaje total: 43 puntos

Esta es una prueba de desarrollo, por lo tanto, deben aparecer todos los pasos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara y ordenada, utilizando únicamente bolígrafo azul o negro para resolver la prueba. No se atenderán reclamos de preguntas resueltas con lápiz o que presenten algún tipo de alteración. No se permite el intercambio de instrumentos, el uso de calculadoras programables, ni de teléfonos celulares.

1. Calcule los siguientes límites:

Instrucciones:

(a)
$$\lim_{x\to 0} \frac{\tan x + x}{x + \sin x}$$
 [3 puntos]

(b)
$$\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 2x} \right)$$
 [4 puntos]

(c)
$$\lim_{x \to +\infty} \left(1 + \frac{\alpha}{x}\right)^{c \cdot x}$$
 [4 puntos]

2. Calcule la primera derivada de las siguientes funciones:

(a)
$$f(x) = \frac{2^x}{\operatorname{sen}^3(-x)}$$
 [3 puntos]

(b)
$$g(x) = \ln x \cdot \arctan(\sqrt{x})$$
 [3 puntos]

3. Compruebe que las dimensiones del rectángulo de área máxima que puede ser inscrito dentro de la parábola $f(x) = 12a^2 - x^2$, donde a es una constante real positiva, son 4a y $8a^2$.[4 puntos]

- 4. Una caja rectangular de base cuadrada cambia de tal forma que su altura h disminuye a razón de 2 centímetros por minuto mientras que su volumen permanece constante. ¿Con qué razón aumenta el lado x de su base cuando $x = 30 \ cm \ y \ h = 20 \ cm$? [4 puntos]
- 5. Calcule cada una de las siguientes integrales:

(a)
$$\int_0^3 e^{-\sqrt{x}} dx$$
 [5 puntos]

(b)
$$\int \frac{4x+5}{\left(\sqrt{(x-1)^2+1}\right)^3} dx$$
 [5 puntos]

(c)
$$\int \frac{2u^2 - 4u}{u^2 + 1} du$$
 [4 puntos]

6. Complete el cuadro de variación que se le presenta a continuación sobre una función f. Utilizando la información de dicho cuadro y la información adicional que se le presenta, realice la gráfica de f en un sistema de coordenadas rectangulares. [4 puntos]

-(∞ -	3 -	2 ()	1 2	2	$3 + \infty$
f'(x)	+	_	_	_	_	+	+
f''(x)	_	_	+	_	+	+	_
f							

Además se sabe que:

- (a) Dominio de f es \mathbb{R} .
- (b) f es continua en \mathbb{R} .

$$f(0) = 0 f(-3) = 3$$
(c)
$$f(1) = f(3) = -1 f(2) = -2 f(-2) = 2$$

$$\lim_{x \to +\infty} f(x) = 3 \lim_{x \to -\infty} f(x) = -\infty$$