

General information

Designation

Sequoia sempervirens (L)

Typical uses

Siding; sash; doors; blinds; finish; casket stock; containers; cooling towers; tanks; silos; wood-stave pipe; outdoor furniture; agricultural equipment; bridges; trestles; posts; fences; veneer; decorative plywood.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O

Material family Natural

Base material Wood (softwood)

Renewable content 100 %

Composition detail (polymers and natural materials)

Wood 100 %

Price

* 0.304 - 0.608 USD/lb

Physical properties

Density 0.0145 - 0.0177 lb/in^3

Mechanical properties

Young's modulus	* 1.32	-	1.62	10^6 psi
Yield strength (elastic limit)	* 5.35	-	6.54	ksi
Tensile strength	* 8.37	-	10.2	ksi
Elongation	* 1.7	-	2.08	% strain
Compressive strength	5.54	-	6.76	ksi
Flexural modulus	1.2	-	1.48	10^6 psi
Flexural strength (modulus of rupture)	9.01	-	11	ksi
Shear modulus	* 0.0972	-	0.12	10^6 psi
Shear strength	0.841	-	1.03	ksi
Bulk modulus	* 0.0406	-	0.045	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.2			
Hardness - Vickers	* 2.44	-	2.98	HV
Hardness - Brinell	* 5.6	-	6.86	ksi
Hardness - Janka	* 549	-	670	lbf
Fatigue strength at 10^7 cycles	* 2.7	-	3.31	ksi
Mechanical loss coefficient (tan delta)	* 0.0078	-	0.0096	
Differential shrinkage (radial)	0.09	-	0.1	%
Differential shrinkage (tangential)	0.17	-	0.21	%
Radial shrinkage (green to oven-dry)	2.3	-	2.9	%
Tangential shrinkage (green to oven-dry)	4	-	4.8	%
Volumetric shrinkage (green to oven-dry)	6.1	-	7.5	%

Impact & fracture properties

Fracture toughness * 2.64 - 3.28 ksi.in^0.5

Thermal properties

Work to maximum strength

0.517

0.632

ft.lbf/in^3

Redwood (sequoia sempervirens (old)) (I)

Glass temperature	171	-	216	°F
Maximum service temperature	248	-	284	°F
Minimum service temperature	* -99.4	-	-9.4	°F
Thormal conductivity	* 0 116		0.420	DTIL

Thermal conductivity

* 0.116 - 0.139 BTU.ft/hr.ft^2.°F

Specific heat capacity

0.396 - 0.408 BTU/lb.°F

Thermal expansion coefficient

* 1.11 - 6.11 µstrain/°F

Electrical properties

Electrical resistivity	* 6e13	-	2e14	µohm.cm
Dielectric constant (relative permittivity)	* 4.65	-	5.68	
Dissipation factor (dielectric loss tangent)	* 0.051	-	0.062	
Dielectric strength (dielectric breakdown)	* 10.2	-	15.2	V/mil

Optical properties

Transparency Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

Durability

Water (fresh) Limited use Water (salt) Limited use Weak acids Limited use Strong acids Unacceptable Weak alkalis Acceptable Strong alkalis Unacceptable Organic solvents Acceptable Unacceptable Oxidation at 500C UV radiation (sunlight) Good

Flammability Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production 4.51e3 - 4.99e3 BTU/lb

Sources

2.5 MJ/kg (Ximenes, 2006); 3.4 MJ/kg (Ximenes, 2006); 5.7 MJ/kg (Ximenes, 2006); 5.88 MJ/kg (Hammond and Jones, 2008); 6.1 MJ/kg (Ximenes, 2006); 6.5 MJ/kg (Ximenes, 2006); 6.5 MJ/kg (Ximenes, 2006); 7.1 MJ/kg (Ximenes, 2006); 7.37 MJ/kg (Athena Sustainable Materials Institute, 2009 (5)); 7.72 MJ/kg (Puettmann, Bergman, Hubbard, Johnson, Lippke, Oniel and Wagner, 2010); 8.17 MJ/kg (Bergman and Bowe, 2010); 8.6 MJ/kg (Ximenes, 2006); 9.05 MJ/kg (Puettmann, Bergman, Hubbard, Johnson, Lippke, Oniel and Wagner, 2010); 9.19 MJ/kg (Joseph and Tretsiakova-McNally, 2010); 9.96 MJ/kg (Puettmann, Bergman, Hubbard, Johnson, Lippke, Oniel and Wagner, 2010); 13.3 MJ/kg (Ximenes, 2006); 13.4 MJ/kg (Lenzen and Treloar, 2002); 14 MJ/kg (Ximenes, 2006); 17.5 MJ/kg (Ximenes, 2006); 19.3 MJ/kg (Ximenes, 2006); 24 MJ/kg (Ecoinvent v2.2); 25.9 MJ/kg (Ximenes, 2006); 27.6 MJ/kg (Ecoinvent v2.2); 25.9 MJ/kg (Ximenes, 2006); 2000

CO2 footprint, primary production 0.348 - 0.384 lb/lb

Sources

0.174 kg/kg (Joseph and Tretsiakova-McNally, 2010); 0.199 kg/kg (Ecoinvent v2.2); 0.271 kg/kg (Athena Sustainable Materials Institute, 2009 (5)); 0.296 kg/kg (Puettmann, Wagner and Johnson, 2010); 0.476 kg/kg (Ecoinvent v2.2); 0.564 kg/kg (Bergman and Bowe, 2010); 0.579 kg/kg (Hammond and Jones, 2008)

 NOx creation
 0.00257 - 0.00284 lb/lb

 SOx creation
 0.00656 - 0.00725 lb/lb

 Water usage
 * 1.84e4 - 2.03e4 in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 593	-	656	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.104	-	0.114	lb/lb
Fine machining energy (per unit wt removed)	* 4.1e3	-	4.53e3	BTU/lb

Redwood (sequoia sempervirens (old)) (I)

Fine machining CO2 (per unit wt removed)	* 0.715	-	0.79	lb/lb
Grinding energy (per unit wt removed)	* 7.99e3	-	8.83e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.39	-	1.54	lb/lb
Recycling and end of life				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.89e3	-	9.52e3	BTU/lb
Combustion CO2	* 1.76	-	1.85	lb/lb
Landfill	✓			
Biodegrade	✓			
Eco-indicators for principal component				
Eco-indicator 95	2.99			millipoints/lb
EPS value	62.7	-	69.3	•

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse

Reference

Shape