receiving an image in a first color space from an RGB (Red, Green, Blue) mosaic, said image including luminosity values captured at said RGB mosaic, said first color space including primary (Green) and secondary (Red, Blue) channels;

while said image is in said first color space, companding the image by mapping the luminosity values captured at said RGB mosaic into a space that is more linear to a human eye;

transferring the companded image to a server computer;

storing information describing a second color space, said second color space including primary and secondary channels, said primary channel of said second color space corresponding to the primary channel of said first color space; and

at the server computer, transforming the image into said second color space, including:

interpolating the primary channel of said second color space to full resolution by interpolating missing Green pixels from said RGB mosaic, and

computing the secondary channels of said second color space as differences from the primary channel of said second color, including performing substeps of:

(i) computing one of said secondary channels of said second color space by differencing Red pixels with co-sited Green pixels interpolated from said RGB mosaic, and

(ii) computing the other of said secondary channels of said second color space by differencing Blue pixels with co-sited Green pixels interpolated from said RGB mosaic.

Please amend claim 26 as follows:



26. (Amended) A method for transforming RGB image information into an efficient color space representation, the method comprising:

receiving an image in a first color space from an RGB (Red, Green, Blue) mosaic, said first color space comprising an RGB color space having a primary channel

Serial No. 09/489,511

comprising Green (G) and secondary channels comprising Red (R) and Blue (B), said image including luminosity values captured at said RGB mosaic;

while said image is in said first color space, companding the image by mapping the luminosity values captured at said RGB mosaic into a space that is more linear to a human eye;

transferring the companded image to a server computer;

storing information describing a second color space having primary and secondary channels, said primary channel of said second color space comprising Green (G); and

at the server computer, transforming the image into said second color space, including:

interpolating the primary channel of said second color space to full resolution by interpolating missing Green pixels from said RGB mosaic, and computing the secondary channels of said second color space as differences from the primary channel of said second color space, by differencing Red pixels with co-sited Green pixels interpolated from said RGB mosaic and differencing Blue pixels with co-sited Green pixels interpolated from said RGB mosaic.

Please cancel claims 41-60, without prejudice to pursue in a continuation application.