MIDTERM: Car-Truck Classification

Nguyễn Quốc Khánh - 21011495 Đỗ Trọng Hiệp - 21011492

Mục lục

- 1. Giới thiệu bài toán
- 2. Thu thập xử lý dữ liệu
- 3. Huấn luyện mô hình
- 4. Kết quả và thảo luận

1. Giới thiệu bài toán

- Xử lý bài toán phân biệt xe ô tô con (car) và xe đầu kéo (truck).
- Có thể xử lý một khâu trong các bài toán lớn hơn như ứng dụng nhận diện xe đi sai làn,...
- Sử dụng tất cả kiến thức đã học trong môn Deep Learning để xử lý bài toán.

2. Thu thập và xử lý dữ liệu

- Hai bộ data: Kaggle_Car_Truck lấy từ Kaggle và CarTruck tự thu thập từ Internet.
- Data được chia thành 3 phần Train/Validation/Test theo các tỷ lệ tương ứng.
- Code được triển khai và đăng trên github: <u>DeepLearning University (github.com)</u>

2. Thu thập và xử lý dữ liệu

Bộ data Kaggle_Car_Truck tự thu thập với 633 ảnh mỗi class.

2. Thu thập và xử lý dữ liệu

Bộ data CarTruck tự thu thập với 2200 ảnh mỗi class.

3. Xây dựng mô hình

 Ånh được đưa về cùng một kích thước (64x64x3) sau đó duỗi thành một vector (12288x1)

 Mô hình cuối cùng được xây dựng với 7 layers fully connected được triển khai chủ yếu từ numpy và math.

 Hàm kích hoạt được sử dụng chủ yếu là ReLU, ở layer cuối cùng sử dụng hàm Sigmoid để có output cho bài toán phân loại nhị phân.

3. Xây dựng mô hình

Phòng ngừa hiện tượng Overfitting:

Regularization

Drop out

$$J_{regularized} = \underbrace{-rac{1}{m}\sum_{i=1}^{m}\left(y^{(i)}\log\left(a^{[L](i)}
ight) + (1-y^{(i)})\log\left(1-a^{[L](i)}
ight)}_{ ext{cross-entropy cost}} + \underbrace{rac{1}{m}rac{\lambda}{2}\sum_{l}\sum_{k}\sum_{j}W_{k,j}^{[l]2}}_{ ext{L2 regularization cost}}$$

4. Huấn luyện mô hình

Sau khi điều chỉnh các siêu tham số, kết quả cuối cùng được lưu ở trên laptop có thông số

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz

Installed RAM 8.00 GB (7.70 GB usable)

Device ID 473FD581-7732-4407-A617-18BA9DC17830

Product ID 00327-36336-55658-AAOEM

System type 64-bit operating system, x64-based processor

5. Kết quả và thảo luận

Mặc dù loss của mô hình huấn luyện chỉ đạt được là 0.641405 nhưng kết quả đưa ra lại khá tốt

5. Kết quả và thảo luận

Sau khi đã huấn luyện, chúng em thực hiện đánh giá mô hình dựa theo các 4 độ đo Accuracy, Precision, Recall và F1 score. Những tiêu chí này đều được tính toán dựa trên một Confusion matrix.

Trong đó, ở các vùng của Confusion matrix:

Dựa trên Confusion matrix chúng ta thu được kết quả:

Accuracy: 0.79

Precision: 0.77

Recall: 0.83

F1_score: 0.8080

Cảm ơn vì đã lắng nghe!!