1. (currently amended) A pyridine compound of formula I

at least one of the groups W, X and Y is a group of formula

or at least one of the groups W, X and Y is a condensed C₁₀-C₃₀aryl group <u>selected from the group consisting of</u>, such as naphthyl, as-indacnyl, s-indacenyl, acenaphthyl, fluorenyl, phenalenyl, phenalenyl, anthracenyl, fluoranthenyl, triphenlenyl, chrysenyl, naphthacen, picenyl, perylenyl, pentaphenyl, hexacenyl, orand pyrenyl, any of which can be substituted by one or more groups G; and the other groups are independently of each other an aryl group or a heteroaryl group, especially

a group of formula

wherein

 R^{11} , $R^{11'}$, R^{12} , $R^{12'}$, R^{13} , $R^{13'}$, R^{15} , $R^{15'}$, R^{16} , $R^{16'}$, R^{17} , $R^{17'}$, R^{41} , $R^{41'}$, R^{42} , $R^{42'}$, $R^{44'}$, $R^{44'}$, $R^{45'}$, R^{46} , $R^{46'}$, $R^{47'}$ and $R^{47'}$ are independently of each other H, E, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} aralkyl; or C_7 - C_{18} aralkyl which is substituted by G; or

 $R^{11'}$ and R^{12} , $R^{12'}$ and R^{13} , $R^{15'}$ and R^{16} , $R^{16'}$ and R^{17} , $R^{44'}$ and R^{46} and/or $R^{45'}$ and R^{47} are each a

divalent group L¹ selected from an oxygen atom, an sulfur atom, >CR¹⁸R¹⁹ >SiR¹⁸R¹⁹, or wherein

 R^{18} and R^{19} are independently of each other C_1 - C_{18} alkyl; C_1 - C_{18} alkoxy, C_6 - C_{18} aryl; C_7 - C_{18} aralkyl; or

 R^{11} and $R^{11'}$, R^{12} and $R^{12'}$, R^{13} and $R^{13'}$, $R^{13'}$ and R^{14} , R^{14} and R^{15} , R^{15} and $R^{15'}$, R^{16} and $R^{16'}$, $R^{17'}$ and $R^{17'}$, R^{41} and $R^{41'}$, R^{42} and $R^{42'}$, $R^{42'}$ and R^{43} , $R^{41'}$ and R^{43} , R^{44} and $R^{44'}$, R^{45} and $R^{45'}$, R^{46} and $R^{46'}$, R^{47} and

 $R^{47'}$, $R^{46'}$ and R^{48} and/or $R^{47'}$ and R^{48} are each a divalent group , wherein R^{30} , R^{31} , R^{32} , R^{33} , R^{49} and R^{50} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; E; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by G; R^{14} is H, C_2 - C_{30} heteroaryl, or C_2 - C_{30} heteroaryl, which is substituted by G, -NR⁷⁰R⁷¹; C_6 - C_{30} aryl, or C_6 - C_{30} aryl which is substituted by G, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is substituted by E and/or

interrupted by D; especially-

, wherein R²¹, R²², R²³, R²⁴, R²⁵, R²⁶-and R²⁷-are independently of

each other H, E, C_4 - C_{48} alkyl; C_4 - C_{48} alkyl which is substituted by E and/or interrupted by D; E; C_{2} - C_{48} aralkyl; C_7 - C_{48} aralkyl which is substituted by G;

 R^{43} and R^{48} are independently of each other H, E; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; C_2 - C_{30} heteroaryl; or C_2 - C_{30} heteroaryl, which is substituted by G; -NR⁷⁰R⁷¹, wherein R⁷⁰ and R⁷¹ are independently of each other a C_6 - C_{18} aryl group, which can be substituted by G; C_7 - C_{18} aralkyl; C_7 - C_{18} aralkyl which is substituted by G, or is a condensed C_{10} - C_{30} aryl group, such as selected from the group consisting of naphthyl, as-indacnyl, s-indacenyl, acenaphthyl, fluorenyl, phenalenyl, phenanthrenyl, anthracenyl, fluoranthenyl, triphenlenyl, chrysenyl, naphthacen, picenyl, perylenyl, pentaphenyl, hexacenyl, or and pyrenyl, any of which can be substituted by one or more groups G;

or R⁷⁰ and R⁷¹ together with the nitrogen atom to which they are bonded form a five or six-membered ring,

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; SiR⁶¹R⁶²-; -POR⁵-; -CR⁶³=CR⁶⁴-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; or halogen;

G is E, or C₁-C₁₈alkyl, wherein

 R^5 and R^6 are independently of each other C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

R⁵ and R⁶ together form a five or six membered ring, in particular-

 R^7 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

R⁸ is C₇-C₁₂alkylaryl; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;

 R^{61} and R^{62} are independently of each other C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-, and

 R^{63} and R^{64} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; with the proviso that compounds of

2. (currently amended) A pyridine compound of formula I according to claim 1, wherein W, X and Y are independently of each other a group of formula

 R^{11} , $R^{11'}$, R^{12} , $R^{12'}$, R^{13} , $R^{13'}$, R^{15} , R^{15} , R^{16} , $R^{16'}$, R^{17} and $R^{17'}$ are independently of each other H, C_{6^-} C_{18} aryl; C_{6^-} C_{18} aryl which is substituted by G; E, C_{1^-} C_{18} alkyl; C_{1^-} C_{18} alkyl which is substituted by E and/or interrupted by D; C_{7^-} C_{18} aralkyl; C_{7^-} C_{18} aralkyl which is substituted by G; and-

D, E, R¹⁴, R¹⁸ and R¹⁰ are as defined in claim 1, or

W is a group of the formula -W¹-W²-W³,

X is a group of the formula $-X^1-X^2-X^3$ and

Y is a group of the formula $-Y^1-Y^2-Y^3$, wherein W^1 , W^2 , X^1 , X^2 , Y^1 and Y^2 are independently of each other a group of formula

and W3, X3 and Y3 are independently of each other a

$$-$$
R¹⁴, $-$ R¹⁴, or

group of formula

. , wherein-R¹⁴ is as defined above.

3. (currently amended) The pyridine compound according to claim 1-or-2, wherein R^{11} , $R^{11'}$, $R^{12'}$, $R^{12'}$, $R^{13'}$, $R^{15'}$, $R^{15'}$, $R^{16'}$, $R^{16'}$, $R^{17'}$ and $R^{17'}$, $R^{41'}$, $R^{42'}$, $R^{42'}$, $R^{44'}$, $R^{44'}$, $R^{45'}$, $R^{46'}$, $R^{46'}$, $R^{47'}$, and $R^{47'}$ as well as R^{14} , R^{43} , and R^{48} are independently of each other H, E; or C_1 - C_8 alkyl; wherein E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or F; wherein R⁵ and R⁶ are independently of each other C_6 - C_{12} aryl, or C_1 - C_8 alkyl;

 R^7 is C_7 - C_{12} alkylaryl, or C_1 - C_8 alkyl; and R^8 is C_6 - C_{12} aryl; or C_1 - C_8 alkyl.

4. (currently amended) The pyridine compound according to any of claims 1 to 3 claim 1, wherein

W, X and Y are a group of formula

wherein

R¹³, R¹³, R¹⁵ and R¹⁵ are H and R²⁰ is H, especially or

 R^{13} and R^{15} are H, $R^{13'}$ and $R^{15'}$ are independently of each other H, C_1 - C_8 alkyl, or C_1 - C_8 alkoxy, and R^{20} is H, C_1 - C_8 alkyl, or C_1 - C_8 alkoxy; or

$$\mathbb{R}^{32}$$
 \mathbb{R}^{31} \mathbb{R}^{30} and \mathbb{R}^{20} are

 $\mbox{R}^{\mbox{\scriptsize 13}}\mbox{, }\mbox{R}^{\mbox{\scriptsize 15}}\mbox{ and }\mbox{R}^{\mbox{\scriptsize 15}}\mbox{ are H, and }\mbox{R}^{\mbox{\scriptsize 13}}\mbox{ and }\mbox{R}^{\mbox{\scriptsize 20}}\mbox{ are}$

$$R^{32}$$
 R^{31} R^{30}

R²⁰, R¹⁵ and R¹⁵ are H, and R¹³ and R¹³ are

, wherein

 R^{30} , R^{31} , R^{32} and R^{33} are H, C_1 - C_8 alkyl, or C_1 - C_8 alkoxy.

5. (currently amended) The pyridine compound according to any of claims 1 to 3 claim 1, wherein W, X and Y are independently of each other a group of formula

R¹⁸ and R¹⁹ are independently of each other C₁-C₈alkyl.

6. (currently amended) The pyridine compound according to claim 1, wherein

$$R^{41}$$
 $R^{41'}$ $R^{41'}$ $R^{44'}$ R^{46} $R^{46'}$ $R^{46'}$ R^{41} $R^{41'}$ $R^{41'}$

W and Y are a group of the formula $-W^1$ - $(W^2)_b$ - W^3 , wherein b is 0, or, 1,

W¹ and W² are independently of each other a group of formula

W³ is a group of formula R¹⁷, or –NR⁶⁰R⁶¹, wherein R⁶⁰ and R⁶¹ are independently of

$$R^{52}$$
 R^{53} R^{54} R^{54} R^{54} R^{54} R^{54} R^{55} R^{54} R^{55} R^{54} R^{55} R^{54} R^{55}

each other a group of formula

, wherein R⁵², R⁵³ and R⁵⁴ are independently of each other hydrogen, C₁-C₈alkyl, a hydroxyl group, a mercapto group, C₁-C₈alkoxy, C₁-C₈alkylthio, halogen, halo-C₁-C₈alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group or a siloxanyl group, wherein R¹¹, R¹¹, R¹², R¹², R¹³, R¹³, R¹⁴, R¹⁴, R¹⁶, R¹⁶, R¹⁶, R¹⁶, R¹⁷, R¹⁷, R¹⁸, R¹⁹, R⁴¹, R⁴¹, R⁴², R⁴², R⁴², R⁴⁴, R⁴⁴, R⁴⁵, R⁴⁵, R⁴⁶, R⁴⁶, R⁴⁶, R⁴⁷, and R⁴⁷ are asdefined in claim 1, or X, W and Y are a group of the formula –W¹-(W²)_b-W³, wherein b, W¹, W² and W³ are as defined above.

7. (currently amended) The pyridine compound according to claim 1, wherein

-7-

W and Y or W and X (= Y and X) are independently of each other a group of formula

wherein R^{14} , R^{12} , R^{12} , R^{12} , R^{13} , R^{13} , R^{14} , R^{15} , R^{15} , R^{16} , R^{16} , R^{17} , R^{17} , R^{41} , R^{41} , R^{42} , R^{42} , R^{44} , R^{44} , R^{45} , R^{45} , R^{46} , R^{46} , R^{47} , R^{47} , R^{47} , R^{43} and R^{48} are defined as in claim 1, especially H, C_4 - C_8 alkyl, C_1 - C_8 alkoxy, or phenyl.

8. (currently amended) The pyridine compound according to claim 1, wherein

$$R^{41}$$
 $R^{41'}$
 R^{14}
 R^{14}
 $R^{12'}$
 $R^{12'}$
 R^{42}
 $R^{42'}$
 $R^{42'}$
, or R^{12}
 $R^{12'}$
 R^{42}
 $R^{42'}$

W and Y are a group Ar¹-Ar², wherein

Ar¹ is a group of formula

$$R^{30}$$
 R^{30}
 R^{30}
 R^{34}
 R^{38}
 R^{37}
 R^{36}
 R^{36}

Ar² is a group of formula

 R^{30} , R^{31} , R^{32} , R^{33} , R^{34} , R^{35} , R^{36} , R^{37} and R^{38} are independently of each other H, E, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} aralkyl; or C_7 - C_{18} aralkyl which is substituted by G;

e is an integer 1, or 2, or

X, W and Y are a group Ar¹-Ar², wherein Ar¹ and Ar² are as defined above._, and D, E, G, R¹¹, R¹², R¹², R¹², R⁴¹, R⁴¹, R⁴², R⁴², and R¹⁴ are defined as in claim 1.

9. (currently amended) An electroluminescent device, comprising a pyridine compound of formula I according to claim 1 and/or to any of claims 1 to 8 including compounds of formula I, wherein Y is

- **10. (original)** Electroluminescent device according to claim 9, wherein the electroluminescent device comprises in this order
- (a) an anode
- (b) a hole injecting layer and/or a hole transporting layer
- (c) a light-emitting layer

- (d) optionally an electron transporting layer and
- (e) a cathode.
- **11. (original)** Electroluminescent device according to claim 10, wherein the pyridine compound of formula I forms the light-emitting layer.
- **12.** (currently amended) Use of the pyridine compounds of formula I according to any of claims 1 to 8 for electrophotographic_p_Photoreceptors, photoelectric converters, solar cells, image sensors and, dye lasers and electroluminescent devices, comprising compounds of formula I according to claim 1.
- 13. (new) A pyridine compound of formula I according to claim 1, wherein R¹⁴ is H, or a group

R²¹, R²², R²³, R²⁴, R²⁵, R²⁶ and R²⁷ are independently of each other H, E, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; E; C₇-C₁₈aralkyl; C₇-C₁₈aralkyl which is substituted by G;

and when R⁵ and R⁶ together form a five or six membered ring, the five or six membered ring is

14. (new) A pyridine compound of formula I according to claim 2, wherein R¹⁴ is H, or a group

$$\mathbb{R}^{21}$$
 \mathbb{R}^{22} \mathbb{R}^{23} \mathbb{R}^{24} \mathbb{R}^{23} , or \mathbb{R}^{27} \mathbb{R}^{26} \mathbb{R}^{23} , wherein

 R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} and R^{27} are independently of each other H, E, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; E; C₇-C₁₈aralkyl; C₇-C₁₈aralkyl which is substituted by G.

15. (new) The pyridine compound according to claim 2, wherein R^{11} , R^{11} , R^{12} , R^{12} , R^{13} , R^{13} , R^{15} , R^{15} , R^{16} , R^{16} , R^{17} and R^{17} as well as R^{14} , R^{43} , and R^{48} are independently of each other H, E; or C_1 - C_8 alkyl; wherein E is -OR 5 ; -SR 5 ; -NR 5 R 6 ; -COR 8 ; -COOR 7 ; -CONR 5 R 6 ; -CN; -OCOOR 7 ; or F; wherein R 5 and R 6 are independently of each other C_6 - C_{12} aryl, or C_1 - C_8 alkyl;

 \mbox{R}^{7} is $\mbox{C}_{7}\mbox{-}\mbox{C}_{12}\mbox{alkylaryl, or C_{1}-$C}_{8}\mbox{alkyl; and}$ \mbox{R}^{8} is $\mbox{C}_{6}\mbox{-}\mbox{C}_{12}\mbox{aryl; or C_{1}-$C}_{8}\mbox{alkyl.}$

16. (new) The pyridine compound according to claim 7, wherein

W and Y are independently of each other a group of formula

X is a group of formula