

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                                                                                                                                  |                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 5 :<br><b>C12N 15/12</b>                                                                                                                                                                                                                                                                                                                                                                                                               |  | A1                                                                                                                               | (11) International Publication Number: <b>WO 93/25677</b><br>(43) International Publication Date: <b>23 December 1993 (23.12.93)</b> |
| (21) International Application Number: <b>PCT/AU93/00277</b>                                                                                                                                                                                                                                                                                                                                                                                                                    |  | (74) Agent: <b>F.B. RICE &amp; CO.; 28A Montague Street, Balmain, NSW 2041 (AU).</b>                                             |                                                                                                                                      |
| (22) International Filing Date: <b>11 June 1993 (11.06.93)</b>                                                                                                                                                                                                                                                                                                                                                                                                                  |  | (81) Designated States: <b>AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</b> |                                                                                                                                      |
| (30) Priority data:<br><b>PL 2936 12 June 1992 (12.06.92)</b>                                                                                                                                                                                                                                                                                                                                                                                                                   |  | AU                                                                                                                               | (Published)<br><i>With international search report.</i>                                                                              |
| (71) Applicant ( <i>for all designated States except US</i> ): <b>GARVAN INSTITUTE OF MEDICAL RESEARCH [AU/AU]; St Vincents Hospital, 384 Victoria Street, Darlinghurst, NSW 2010 (AU).</b>                                                                                                                                                                                                                                                                                     |  |                                                                                                                                  |                                                                                                                                      |
| (72) Inventors; and<br>(75) Inventors/Applicants ( <i>for US only</i> ) : <b>PIERCE, Kerrie, Diane [AU/AU]; 52/372 Edgecliff Road, Woolahra, NSW 2023 (AU). TOWNSEND-NICHOLSON, Constance, Andrea [CA/AU]; 15 Gланара Court, Wattle Grove, NSW 2173 (AU). SHINE, John [AU/AU]; 2 Mayfield Avenue, Woolwich, NSW 2110 (AU). FURLONG, Timothy [AU/AU]; 6/2-4 College Street, Drummoyne, NSW 2047 (AU). SELBIE, Lisa [US/AU]; 2/8 Munro Street, McMahons Point, NSW 2060 (AU).</b> |  |                                                                                                                                  |                                                                                                                                      |
| (54) Title: <b>DNA SEQUENCES ENCODING THE HUMAN A1, A2a and A2b ADENOSINE RECEPTORS</b>                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                  |                                                                                                                                      |
| (57) Abstract<br><p>The present invention relates to DNA sequences encoding the human A1, A2a and A2b adenosine receptors. In addition, the present invention relates to the use of these DNA sequences in the production of human A1, A2a and A2b adenosine receptors using recombinant DNA technology.</p>                                                                                                                                                                    |  |                                                                                                                                  |                                                                                                                                      |

09/1992617

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | FR | France                                   | MR | Mauritania               |
| AU | Australia                | GA | Gabon                                    | MW | Malawi                   |
| BB | Barbados                 | GB | United Kingdom                           | NL | Netherlands              |
| BE | Belgium                  | CN | Guinea                                   | NO | Norway                   |
| BF | Burkina Faso             | GR | Greece                                   | NZ | New Zealand              |
| BG | Bulgaria                 | HU | Hungary                                  | PL | Poland                   |
| BJ | Benin                    | IE | Ireland                                  | PT | Portugal                 |
| BR | Brazil                   | IT | Italy                                    | RO | Romania                  |
| CA | Canada                   | JP | Japan                                    | RU | Russian Federation       |
| CF | Central African Republic | KP | Democratic People's Republic<br>of Korea | SD | Sudan                    |
| CC | Congo                    | KR | Republic of Korea                        | SR | Sweden                   |
| CH | Switzerland              | KZ | Kazakhstan                               | SK | Slovak Republic          |
| CI | Côte d'Ivoire            | LI | Liechtenstein                            | SN | Senegal                  |
| CM | Cameroon                 | LK | Sri Lanka                                | SU | Soviet Union             |
| CS | Czechoslovakia           | LU | Luxembourg                               | TD | Chad                     |
| CZ | Czech Republic           | MC | Monaco                                   | TC | Togo                     |
| DE | Germany                  | MG | Madagascar                               | UA | Ukraine                  |
| DK | Denmark                  | ML | Mali                                     | US | United States of America |
| ES | Spain                    | MN | Mongolia                                 | VN | Viet Nam                 |
| FI | Finland                  |    |                                          |    |                          |

- 1 -

DNA Sequences Encoding the Human A1, A2a and A2b  
Adenosine Receptors

Field-of the Invention

The present invention relates to DNA sequences  
5 encoding the human A1, A2a and A2b adenosine receptors.  
In addition, the present invention relates to the use of  
these DNA sequences in the production of the human A1, A2a  
and A2b adenosine receptors using recombinant DNA  
technology.

10 Background of the Invention

Adenosine influences cardiovascular function (by  
slowing heart rate and decreasing blood pressure) and also  
influences nervous system function (through sedative and  
anti-epileptic effects). In addition, adenosine can  
15 induce bronchoconstriction. Adenosine binds specifically  
to at least three receptors, A1 and A2a and A2b.  
Adenosine receptors have been shown to couple to a number  
of second messenger systems. Additional adenosine  
receptor subtypes may exist. As adenosine receptor  
20 agonists and antagonists may have commercial value as  
anti-hypertensive agents, hypnotics, anti-psychotics and  
bronchodilators, the ability to produce adenosine  
receptors by recombinant DNA technology is advantageous.

The present inventors have isolated three related  
25 cDNA fragments encoding the human A1, A2a and A2b  
adenosine receptors from human hippocampal cDNA by using  
either the polymerase chain reaction and unique degenerate  
oligonucleotides to generate specific probes or by using  
specific consensus oligonucleotide probes for cDNA library  
30 screening. Full-length cDNA clones for each of the three  
receptors were isolated from a human hippocampal cDNA  
library. The receptor sequences were identified as the  
human A1, A2a and A2b adenosine receptors by expression in  
mammalian cells and both measurement of the affinity of  
35 the encoded receptors for various adenosine analogues and

- 2 -

the effect of receptor activation on cAMP synthesis. The receptors have homology to cDNA's encoding the dog A1 and A2a adenosine receptors (MAENHAUT, C., VAN SANDE, J., LIBERT, F., ADRAMOWIC, M., PARMENTIER, M.,  
5 VANDERHAEGEN, J., DUMONT, D., VASSART, G. AND SCHIFFMANN, S. (1990); LIBERT, F., SCHUFFMANN, S.M., LEFORT, A., PARMENTIER, M., GERARD, C., DUMONT, J.E., VANDERHAEGHEN J.J., VASSART, G. (1991)) and the rat A2b adenosine receptor (STEHLE, J.H., RIVKEES, S.A.,  
10 LEE, J.J., WEAVER, D.R., DEEDS, J.D. AND REPPERT, S.M. (1992)). These hippocampal cDNA sequences represent novel human receptors which may be of clinical and commercial importance.

Summary of the Invention

15 Accordingly, in a first aspect the present invention consists in a DNA molecule encoding the human A1 adenosine receptor, the DNA molecule having a sequence substantially as shown in Figure 1 or a functionally equivalent sequence.

20 In a second aspect the present invention consists in a DNA molecule encoding the human A2a receptor subtype, the DNA molecule having a sequence substantially as shown in Figure 2 or a functionally equivalent sequence.

25 In a third aspect the present invention consists in a DNA molecule encoding the human A2b adenosine receptor subtype, the DNA molecule having a sequence substantially as shown in Figure 3 or a functionally equivalent sequence.

As used herein the term "functionally equivalent sequence" is intended to cover variations in the DNA sequence which, due to degeneracy of the DNA code, do not result in the sequence encoding a different polypeptide.  
30 Further, this term is intended to cover alterations in the DNA code which lead to changes in the encoded polypeptide, but in which such changes do not affect the biological activity of the polypeptide.

35 As used herein the term "DNA molecule" is intended to

- 3 -

cover both genomic DNA and cDNA.

In a fourth aspect the present invention consists in a method of producing the human A1 adenosine receptor comprising culturing a cell transformed with the DNA molecule of the first aspect of the present invention under conditions which allow expression of the DNA sequence such that the human A1 adenosine receptor is expressed on the cell surface and optionally recovering the human A1 adenosine receptor.

10 In a fifth aspect the present invention consists of a method of producing a human A2a adenosine receptor comprising culturing a cell transformed with the DNA molecule of the second aspect of the present invention under conditions which allow expression of the DNA sequence such that the human A2 adenosine receptor is expressed on the cell surface and optionally recovering the human A2a adenosine receptor.

15 In a sixth aspect the present invention consists of a method of producing a human A2b adenosine receptor comprising culturing a cell transformed with the DNA molecule of the third aspect of the present invention under conditions which allow expression of the DNA sequence such that the human A2 adenosine receptor is expressed on the cell surface and optionally recovering the human A2b adenosine receptor.

20 In further aspects the present invention consists of a method of screening a molecule for adenosine agonist or antagonist activity, comprising contacting the molecule with the human A1, A2a or A2b adenosine receptors produced by the method of the fourth, fifth or sixth aspect of the present invention.

25 In yet a further aspect the present invention consists in oligonucleotides 305, 377 and 376 as hereinafter described.

30 35 The DNA molecules of the present invention represent

- 4 -

novel human receptors. These receptors may be of interest both clinically and commercially as they are expressed in many regions of the body and as adenosine affects a wide number of systems.

5       The isolated full-length DNA clones containing the complete coding region for these receptors can be used to establish mammalian cell lines producing the receptors for use in agonist and antagonist screening. The receptor DNA sequence can be used for additional homology screening to  
10 identify novel members of this receptor family.

In order that the nature of the present invention may be more clearly understood preferred forms thereof will now be described with reference to the following examples and figures in which:-

15       Figure 1 shows the nucleotide and amino acid sequence of the human A1 adenosine receptor cDNA.

Figure 2 shows the nucleotide and amino acid sequence of the human A2a adenosine receptor cDNA.

20       Figure 3 shows the nucleotide and amino acid sequence of the human A2b adenosine receptor cDNA.

Figure 4A shows saturation isotherms of the total (unfilled triangle), specific (filled circle) and non-specific (unfilled square) binding of the A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3 dipropylxanthine) to mammalian CHO.K1 cells expressing the  
25 human A1 adenosine receptor.

Figure 4B shows competition binding curves showing the displacement of CGS-21680 2-p-(2-Carboxyethyl)phenethylamino-5'-N-ethylcarboxyamido  
30 adenosine hydrochloride) by different adenosine agonists and antagonists (NECA = 5'-N-ethylcarboxamido adenosine; CA=2-chloroadenosine; CPA=N<sup>6</sup>-cyclopentyladenosine; XAC=xanthine amine congener; T=8-(p-sulphophenyl)-theophylline) in mammalian HEK 293 cells expressing the  
35 human A2a adenosine receptor.

- 5 -

Figure 5 shows the effects of the different adenosine receptor subtypes, A<sub>1</sub>, A<sub>2a</sub> and A<sub>2b</sub> upon cyclic AMP production. A<sub>1</sub> adenosine receptor activation leads to inhibition of forskolin stimulated cAMP levels.

- 5 Activation of both the A<sub>2a</sub> and A<sub>2b</sub> adenosine receptors (by CGS-21680 and NECA, respectively) leads to stimulation of cAMP levels.

## **METHODS**

## Oligonucleotide Design and Synthesis

- 10 Unique degenerate oligonucleotides corresponding to  
the transmembrane II (TM II) and IV (TM IV) regions of G  
protein-coupled receptors and containing either a 5' EcoRI  
restriction enzyme site (TM II oligonucleotide 377) or a  
3' Hind III restriction enzyme site (TM IV  
15 oligonucleotides 305 and 376) were synthesized on an  
Applied Biosystems automated DNA synthesiser. The  
sequences of the oligonucleotides are as follows:-

305 5' - CCCAATAAGCTTAGICCIATGGCGAAAGACAGGGACCCA-3'

20 A A G G C  
A A

376 5' - GAGTCCGAAGCTTAGTGGGCAAGAGATGGCGAAIGAIAGIACCA-3'

G TA C A G  
T A

377 5' - CAGAACGAATTCAATGTTTATGGGTCTTTGTCITCIACTGA-3'

C G G G G G C A

The DNA sequences included inosine (I) residues. Crude oligonucleotides were then used in the polymerase chain reaction.

## PCR Amplification

- ### 35 Sequences homologous to the G protein-coupled

- 6 -

- receptor oligonucleotides were amplified from human cDNA using PCR and the Hybaid thermocycler. DNA was prepared from a human neuroblastoma (Clontech) cDNA library in lambda gt10 and from a hippocampal (Stratagene) cDNA
- 5 library in lambda ZapII. DNA was prepared by phenol and chloroform extraction of approximately  $10^8$  library phage and ethanol precipitation to recover the DNA. DNA from the cDNA libraries (1-5 $\mu$ g) was incubated with 200 $\mu$ M of each dNTP, 0.5 $\mu$ M oligonucleotide, 0.5 units Tth enzyme
- 10 (Toyobo) in 50mM KCl, 50mM Tris-HCl pH9.0, 1.5mM MgCl<sub>2</sub> (1 x PCR buffer) in a 50 $\mu$ L reaction volume. Samples were layered with 50 $\mu$ L light mineral oil (Sigma).
- Reactions were denatured for 5 minutes at 95°C. The PCR conditions were as follows: Denaturation for 2 minutes at
- 15 92°C, annealing for 2 minutes at 55°C, and extension for 2 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 70°C, repeated five times; then 2 minutes at 95°C, 2 minutes at 45°C, and 2 minutes at 70°C, repeated thirty times.
- 20 Subcloning and Sequencing of Amplified DNA Fragments
- Amplified DNA (20 $\mu$ l) was removed and analysed by gel electrophoresis in 1% agarose and 3% NuSieve (SeaKem). Amplification products 260bp-330bp in length were excised from the gel and purified with Geneclean.
- 25 DNA fragments were then digested with Hind III for one hour at 37°C and EcoRI for one hour at 37°C, the DNA again purified with Geneclean and eluted into 10 $\mu$ l H<sub>2</sub>O. Digested DNA fragments were then subcloned into M13mp19 and sequenced by the Sanger dideoxy
- 30 chain-termination method using the Pharmacia or the Promega DNA sequencing kit. Sequencing reactions were analysed on a 6% acrylamide, 7M urea gel, dried onto Whatman 3M paper, and exposed to X-ray film for sixteen hours (Kodak X-OMAT AR5) at room temperature overnight.
- 35 Sequence Analysis of Novel DNA Sequences

- 7 -

Sequence analysis of the DNA fragments generated from the PCR amplification identified two DNA fragments that had sequences common to other known G protein-coupled receptors. PCR amplification of neuroblastoma cDNA with 5 the degenerate oligonucleotides 377 and 305 produced a cDNA fragment which was designated 3.1. PCR amplification of human hippocampal cDNA with the degenerate oligonucleotides 377 and 376 produced a cDNA fragment with a sequence that was 76% homologous at the nucleotide level 10 to sequence 3.1 and was designated 3.2. The DNA sequences were searched on the GenBank and EMBL databases for comparison to known sequences and were confirmed to be novel sequences with a high level of homology to dog adenosine A1 and A2 receptors.

15 Isolation of Full-Length cDNA Clones

Full-length cDNA clones encoding the A1 receptor as well as receptor sequences corresponding to 3.1 and 3.2 were isolated from a human hippocampal cDNA library (Stratagene).

20 A1 adenosine receptor cDNA isolation

Specific consensus oligonucleotides corresponding to the second extracellular loop (679), and to the third intracellular loop (678) were synthesised on an Applied Biosystems automated DNA synthesiser. The sequences of 25 the oligonucleotides are as follows:-

678 5' - CCCGTAGTACTCTGCGGGTCGCCAGAGGGAGGCGACACCTTCTTGCC-3'

679 5' -GAGGCCAGCGGGCTGGCGGCCAACGGCAGCGGCAGCGAGCCC GTG-3'

30 Approximately  $5 \times 10^5$  plaques were plated on C600 HflA bacterial cells. Plaques were lifted onto Hybond-N+nylon filters (0.45 $\mu$ M, 137mm, Amersham). DNA was denatured on the filters with a 3 minute incubation on 0.5 M NaOH, 1.5M NaCl and neutralised with a 5 minute 35 incubation in 0.5M Tris pH72, 1mM EDTA and 1.5M NaCl. DNA

- 8 -

was fixed to the filters with a 15 minute exposure to 0.4M NaOH. Filters were then rinsed in 2 x SSC (3M NaCl, 0.3M sodium citrate) and allowed to dry before a 30 minute prehybridisation in 40% formamide, 5 x SSC, 5 x 5 Denhardt's, 50mM NaPO<sub>4</sub>, 0.5% sodium dodecyl sulphate (SDS), 0.1mg/ml salmon sperm DNA at room temperature. Oligonucleotides 678 and 679 were pooled and 50 pmoles total were radiolabelled using  $\gamma^{32}$ P-ATP and the DNA 5' end-labelling system (Promega). The filters were 10 hybridised with this radiolabelled probe overnight at 42°C, after which time they were washed once briefly in 2 x SSC at room temperature then twice for 10 minutes each wash in 2 x SSC, 0.1% SDS at room temperature with a final wash in 0.1 x SSC, 0.1% SDS for 15 minutes at 50°C. The 15 filters were then exposed to Kodak X-OMAT AR5 film overnight at -70°C. Over twenty pure phage isolates which hybridised to the radiolabelled 678 and 679 oligonucleotides were obtained. Several of these different cDNAs were sequenced. The sequence of one such 20 cDNA (together with the deduced amino acid sequence) which encodes the human A1 adenosine receptor is shown in Figure 1.

A2a and A2b adenosine receptor cDNA isolation

Approximately 1 x 10<sup>6</sup> plaques were plated on 25 C600HflA bacterial cells. Plaques were lifted onto Hybond-N nylon filters (0.45μM, 137mm, Amersham). DNA was denatured on the filters with a 3 minute incubation on 0.5M NaOH, 1.5M NaCl and neutralised with a 7 minute incubation in 0.5M Tris pH 7.2, 1mM EDTA and 1.5M NaCl. 30 Filters were rinsed in 2 x SSC (20 x SSC is 3M NaCl, 0.3M sodium citrate) and DNA fixed to the filters with a 5 minute exposure to ultraviolet light (312nm). Filters were prehybridised in 5 x SSPE (5 x SSPE=0.5M NaCl, 0.05M NaH<sub>2</sub>PO<sub>4</sub>, 0.0005M EDTA, pH 7.7), 5 x Denhardt's (0.1% 35 (w/v) bovine serum albumin, 0.1% (w/v) Ficoll, 0.1% (w/v)

- 9 -

polyvinylpyrrolidone), 0.5% sodium dodecyl sulphate (SDS), 0.2mg/ml salmon sperm DNA at 65°C for 17 hours. The filters were hybridised with a radiolabelled probe corresponding to the PCR amplified DNA fragment encoding 5 the 300 bp of 3.1 (labelled with ( $\alpha$ -<sup>32</sup>P)-dCTP using the random primers DNA labelling system (Bethesda Research Laboratories)). Following hybridisation of the radiolabelled probe for 20 hours at 65°C, filters were washed with 2 x SSPE; 0.1% SDS at room temperature for 10 minutes, then with 1 x SSPE, 0.1% SDS at room temperature for 10 minutes and exposed to Kodak X-OMAT AR5 film for seven days at -70°C. Two pure phage isolates were hybridised to the radiolabelled 3.1 DNA fragment were obtained. The two DNA inserts were excised from the phage 15 vector using EcoRI digestion and subcloned into M13mp19 for sequencing. Sequence analysis indicated that one cDNA insert of approximately 2.6 kilobases encoded the full-length clone for the 3.2 receptor. The sequence of the cDNA (together with the putative amino acid sequence) 20 insert encoding the 3.1 receptor (the human A2a adenosine receptor) is shown in Figure 2 (together with the deduced amino acid sequence of the human A2a adenosine receptor) whilst the sequence of the cDNA insert encoding the 3.2 receptor (the human A2b adenosine receptor) is shown in 25 Figure 3 (together with the deduced amino acid sequence).

Expression of the cloned A1, A2a and A2b adenosine receptors in mammalian cells

Each cloned full-length cDNA was subcloned into a mammalian cell expression vector (pcDNA1neo for A2a and 30 A2b and pRc/CMV for A1 (Invitrogen)) in such a way as to direct expression of the encoded receptor portion.

Mammalian cell lines (Chinese Hamster Ovary - CHO K1 or Human Embryonic Kidney - HEK 293) were independently transfected with the recombinant expression vectors and 35 cell lines established which had stably integrated the

- 10 -

cloned receptor DNA. The stably transfected cell lines were examined for their ability to bind a range of adenosine analogues as shown in Figure 4. Furthermore, the effect on cyclic AMP (cAMP) levels of receptor 5 activation by adenosine agonists was examined as shown in Figure 5.

These studies demonstrate that cDNA clone 3.1 encodes an adenosine A<sub>2a</sub> receptor, cDNA clone 3.2 encodes an adenosine A<sub>2b</sub> receptor and that the A<sub>1</sub> cDNA encodes an 10 adenosine A<sub>1</sub> receptor. Generation of significant amounts of purified receptor protein, made possible by this invention, can be used as a tool to facilitate the design and chemical synthesis of highly specific agonists and antagonists for each receptor subtype. Knowledge of the 15 primary sequence differences between the related receptor subtypes as determined by this invention provides crucial information for the design of receptor subtype specific agonists and antagonists.

It will be appreciated by persons skilled in the art 20 that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as 25 illustrative and not restrictive.

- 11 -

**CLAIMS:-**

1. A DNA molecule encoding the human A<sub>1</sub> adenosine receptor, the DNA molecule having a sequence substantially as shown in Figure 1 or a functionally equivalent sequence.
- 5 2. A DNA molecule encoding the human A<sub>2a</sub> receptor subtype, the DNA molecule having a sequence substantially as shown in Figure 2 or a functionally equivalent sequence.
3. A DNA molecule encoding the human A<sub>2b</sub> adenosine receptor subtype, the DNA molecule having a sequence substantially as shown in Figure 3 or a functionally equivalent sequence.
- 10 4. A method of producing the human A<sub>1</sub> adenosine receptor comprising culturing a cell transformed with the DNA molecule as claimed in Claim 1 under conditions which allow expression of the DNA sequence such that the human A<sub>1</sub> adenosine receptor is expressed on the cell surface and optionally recovering the human A<sub>1</sub> adenosine receptor.
- 15 5. A method of producing a human A<sub>2a</sub> adenosine receptor comprising culturing a cell transformed with the DNA molecule as claimed in Claim 2 under conditions which allow expression of the DNA sequence such that the human A<sub>2a</sub> adenosine receptor is expressed on the cell surface and optionally recovering the human A<sub>2a</sub> adenosine receptor.
- 20 6. A method of producing a human A<sub>2b</sub> adenosine receptor comprising culturing a cell transformed with the DNA molecule as claimed in Claim 3 under conditions which allow expression of the DNA sequence such that the human A<sub>2b</sub> adenosine receptor is expressed on the cell surface and optionally recovering the human A<sub>2b</sub> adenosine receptor.
- 25 7. A method of screening a molecule for adenosine agonist or antagonist activity, comprising contacting the molecule with the human A<sub>1</sub>, A<sub>2a</sub> and A<sub>2b</sub> adenosine receptors produced by the method as claimed in any one of Claims 3 to 6.

1/12

Sequence Range: 1 to 1290

|                                                                  |     |     |     |     |
|------------------------------------------------------------------|-----|-----|-----|-----|
| 10                                                               | 20  | 30  | 40  |     |
| CGC AGG ATG GTG CCT GCC TCG TGC CCC TTG GTG CCC GTC TGC TGA TGT  |     |     |     |     |
| 50                                                               | 60  | 70  | 80  | 90  |
| GCC CAG CCT GTG CCC GCC ATG CCG CCC TCC ATC TCA GCT TTC CAG GCC  |     |     |     |     |
| Met Pro Pro Ser Ile Ser Ala Phe Gln Ala>                         |     |     |     |     |
| 100                                                              | 110 | 120 | 130 | 140 |
| GCC TAC ATC GGC ATC GAG GTG CTC ATC GCC CTG GTC TCT GTG CCC GGG  |     |     |     |     |
| Ala Tyr Ile Gly Ile Glu Val Leu Ile Ala Leu Val Ser Val Pro Gly> |     |     |     |     |
| 150                                                              | 160 | 170 | 180 | 190 |
| AAC GTG CTG GTG ATC TGG GCG GTG AAG GTG AAC CAG GCG CTG CGG GAT  |     |     |     |     |
| Asn Val Leu Val Ile Trp Ala Val Lys Val Asn Gln Ala Leu Arg Asp> |     |     |     |     |
| 200                                                              | 210 | 220 | 230 | 240 |
| GCC ACC TTC TGC TTC ATC GTC TCG CTG GCG GTG GCT GAT GTG GCC GTG  |     |     |     |     |
| Ala Thr Phe Cys Phe Ile Val Ser Leu Ala Val Ala Asp Val Ala Val> |     |     |     |     |
| 250                                                              | 260 | 270 | 280 |     |
| GGT GCC CTG GTC ATC CCC CTC GCC ATC CTC ATC AAC ATT GGG CCA CAG  |     |     |     |     |
| Gly Ala Leu Val Ile Pro Leu Ala Ile Leu Ile Asn Ile Gly Pro Gln> |     |     |     |     |
| 290                                                              | 300 | 310 | 320 | 330 |
| ACC TAC TTC CAC ACC TGC CTC ATG GTT GCC TGT CGG GTC CTC ATC CTC  |     |     |     |     |
| Thr Tyr Phe His Thr Cys Leu Met Val Ala Cys Pro Val Leu Ile Leu> |     |     |     |     |
| 340                                                              | 350 | 360 | 370 | 380 |
| ACC CAG AGC TCC ATC CTG GGC CTG CTG GCA ATT GCT GTG GAC CGC TAC  |     |     |     |     |
| Thr Gln Ser Ser Ile Leu Ala Leu Leu Ala Ile Ala Val Asp Arg Tyr> |     |     |     |     |
| 390                                                              | 400 | 410 | 420 | 430 |
| CTC CGG GTC AAG ATC CCT CTC CCG TAC AAG ATG GTG GTG ACC CCC CGG  |     |     |     |     |
| Leu Arg Val Lys Ile Pro Leu Arg Tyr Lys Met Val Val Thr Pro Arg> |     |     |     |     |
| 440                                                              | 450 | 460 | 470 | 480 |
| AGG CGG CGG GTG GCC ATA GCC GGC TGC TGG ATC CTC TCC TTC GTG GTG  |     |     |     |     |
| Arg Ala Ala Val Ala Ile Ala Gly Cys Trp Ile Leu Ser Phe Val Val> |     |     |     |     |

FIG.1

SUBSTITUTE SHEET

2/12

|                                                                                                                                     |     |     |     |     |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| 490                                                                                                                                 | 500 | 510 | 520 |     |
| GGA CTG ACC CCT ATG TTT GGC TGG AAC AAT CTG AGT CGG GTG GAG CGG<br>Gly Leu Thr Pro Met Phe Gly Trp Asn Asn Leu Ser Ala Val Glu Arg> |     |     |     |     |
| 530                                                                                                                                 | 540 | 550 | 560 | 570 |
| GCC TGG GCA GCC AAC GGC AGC ATG GGG GAG CCC GTG ATC AAG TGC GAG<br>Ala Trp Ala Ala Asn Gly Ser Met Gly Glu Pro Val Ile Lys Cys Glu> |     |     |     |     |
| 580                                                                                                                                 | 590 | 600 | 610 | 620 |
| TTC GAG AAG GTC ATC AGC ATG GAG TAC ATG GTC TAC TTC AAC TTC TTT<br>Phe Glu Lys Val Ile Ser Met Glu Tyr Met Val Tyr Phe Asn Phe Phe> |     |     |     |     |
| 630                                                                                                                                 | 640 | 650 | 660 | 670 |
| GTG TGG GTG CTG CCC CGC CTT CTC CTC ATG GTC CRC ATC TAC CTG GAG<br>Val Trp Val Leu Pro Pro Leu Leu Leu Met Val Leu Ile Tyr Leu Glu> |     |     |     |     |
| 680                                                                                                                                 | 690 | 700 | 710 | 720 |
| GTC TTC TAC CTA ATC CGC AAG CAG CTC AAC AAG AAG GTG TCG GCC TCC<br>Val Phe Tyr Leu Ile Arg Lys Gln Leu Asn Lys Lys Val Ser Ala Ser> |     |     |     |     |
| 730                                                                                                                                 | 740 | 750 | 760 |     |
| TCC GGC GAC CCG CAG AAG TAC TAT GGG AAG GAG CTG AAG ATC GCC AAG<br>Ser Gly Asp Pro Gln Lys Tyr Tyr Gly Lys Glu Leu Lys Ile Ala Lys> |     |     |     |     |
| 770                                                                                                                                 | 780 | 790 | 800 | 810 |
| TCG CTG GCC CTC ATC CTC TTC CTC TTT GCC CTC AGC TGG CTG CCT TTG<br>Ser Leu Ala Leu Ile Leu Phe Leu Phe Ala Leu Ser Trp Leu Pro Leu> |     |     |     |     |
| 820                                                                                                                                 | 830 | 840 | 850 | 860 |
| CAC ATC CTC AAC TGC ATC ACC CTC TTC TGC CCG TCC TGC CAC AAG CCC<br>His Ile Leu Asn Cys Ile Thr Leu Phe Cys Pro Ser Cys His Lys Pro> |     |     |     |     |
| 870                                                                                                                                 | 880 | 890 | 900 | 910 |
| AGC ATC CTT ACC TAC ATT GCC ATC TTC CTC ACG CAC GGC AAC TCG GCC<br>Ser Ile Leu Thr Tyr Ile Ala Ile Phe Leu Thr His Gly Asn Ser Ala> |     |     |     |     |

FIG.1 (cont'd.)

3/12

|                                                                                                                                     |           |           |           |           |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| 920<br>*                                                                                                                            | 930<br>*  | 940<br>*  | 950<br>*  | 960<br>*  |
| ATG AAC CCC ATT GTC TAT GCC TTC CGC ATC CAG AAG TTC CGC GTC ACC<br>Met Asn Pro Ile Val Tyr Ala Phe Arg Ile Gln Lys Phe Arg Val Thr> |           |           |           |           |
| 970<br>*                                                                                                                            | 980<br>*  | 990<br>*  | 1000<br>* |           |
| TTC CTT AAG ATT TGG AAT GAC CAT TTC CGC TGC CAG CCT GCA CCT CCC<br>Phe Leu Lys Ile Trp Asn Asp His Phe Arg Cys Gln Pro Ala Pro Pro> |           |           |           |           |
| 1010<br>*                                                                                                                           | 1020<br>* | 1030<br>* | 1040<br>* | 1050<br>* |
| ATT GAC GAG GAT CTC CCA GAA GAG AGG CCT GAT GAC TAG ACC CCG CCT<br>Ile Asp Glu Asp Leu Pro Glu Glu Arg Pro Asp Asp ***>             |           |           |           |           |
| 1060<br>*                                                                                                                           | 1070<br>* | 1080<br>* | 1090<br>* | 1100<br>* |
| TCC GCT CCC ACC AGC CCA CAT CCA GTG GGG TCT CAG TCC AGT CCT CAC                                                                     |           |           |           |           |
| 1110<br>*                                                                                                                           | 1120<br>* | 1130<br>* | 1140<br>* | 1150<br>* |
| ATG CCC GCT GTC CCA GGG GTC TCC CTG AGC CTG CCC CAG CTG GGC TGT                                                                     |           |           |           |           |
| 1160<br>*                                                                                                                           | 1170<br>* | 1180<br>* | 1190<br>* | 1200<br>* |
| TGG CTG GGG GCA TGG GGG AGG CTC TGA AGA GAT ACC CAC AGA GTG TGG                                                                     |           |           |           |           |
| 1210<br>*                                                                                                                           | 1220<br>* | 1230<br>* | 1240<br>* |           |
| TCC CTC CAC TAG GAG TTA ACT ACC CTA CAC CTC TGG GCC CTG CAG GAG                                                                     |           |           |           |           |
| 1250<br>*                                                                                                                           | 1260<br>* | 1270<br>* | 1280<br>* | 1290<br>* |
| GCC TGG GAG GGA AGG GTC CTA CGG AGG GAC CAG CTG TCT AGA                                                                             |           |           |           |           |

FIG.1 (cont'd.).

4/12

Sequence Range: 1 to 2575

|                                                                                                                                     |     |     |     |     |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| 10                                                                                                                                  | 20  | 30  | 40  |     |
| *                                                                                                                                   | *   | *   | *   |     |
| CAA TTT TCA GCT GTT CTT TGC TCA ATA ATA ACT TTT TTA TCA CCA AGA                                                                     |     |     |     |     |
| 50                                                                                                                                  | 60  | 70  | 80  | 90  |
| *                                                                                                                                   | *   | *   | *   | *   |
| TAT CTC TCT AAG TTT TTG ACA TAT TCC TCA TTT GTT TTG ATA AAA GTT                                                                     |     |     |     |     |
| 100                                                                                                                                 | 110 | 120 | 130 | 140 |
| *                                                                                                                                   | *   | *   | *   | *   |
| TTC TTA TTT TCT TAG AAA AAT AAG TTA CTA AAA GTC ATA TAT CAT TGT                                                                     |     |     |     |     |
| 150                                                                                                                                 | 160 | 170 | 180 | 190 |
| *                                                                                                                                   | *   | *   | *   | *   |
| ATA TCT TCA AAA TAT TGC TTA AAA CTA GGA CCT GTA TTT AAA TGT TTT                                                                     |     |     |     |     |
| 200                                                                                                                                 | 210 | 220 | 230 | 240 |
| *                                                                                                                                   | *   | *   | *   | *   |
| TTC TTC TTA AAG ACA ATT TGC AGG TGC CCT CAG GAA CCC TGA AGC TGG                                                                     |     |     |     |     |
| 250                                                                                                                                 | 260 | 270 | 280 |     |
| *                                                                                                                                   | *   | *   | *   |     |
| GCT GAG CCA TGA TGC TGC CAG AAC CCC TGC AGA GGG CCT GGT TTC                                                                         |     |     |     |     |
| 290                                                                                                                                 | 300 | 310 | 320 | 330 |
| *                                                                                                                                   | *   | *   | *   | *   |
| AGG AGA CTC AGA GTC CTC TGT GAA AAA GCC CTT GGA GAG CGC CCC AGC                                                                     |     |     |     |     |
| 340                                                                                                                                 | 350 | 360 | 370 | 380 |
| *                                                                                                                                   | *   | *   | *   | *   |
| AGG GCT GCA CTT GGC TCC TGT GAG GAA GGG GCT CAG GGG TCT GGG CCC                                                                     |     |     |     |     |
| 390                                                                                                                                 | 400 | 410 | 420 | 430 |
| *                                                                                                                                   | *   | *   | *   | *   |
| CTC CGC CTG GGC CGG GCT GGG AGC CAG GCG GGC GGC TGG GCT GCA GCA                                                                     |     |     |     |     |
| 440                                                                                                                                 | 450 | 460 | 470 | 480 |
| *                                                                                                                                   | *   | *   | *   | *   |
| AAT GGA CCG TGA GCT GGC CCA GCC CGC GTC CGT GCT GAG CCT GCC TGT                                                                     |     |     |     |     |
| 490                                                                                                                                 | 500 | 510 | 520 | 530 |
| *                                                                                                                                   | *   | *   | *   | *   |
| CGT CTG TGG CC ATG CCC ATC ATG GGC TCC TCG GTG TAC ATC ACG GTG GAG<br>Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu>          |     |     |     |     |
| 540                                                                                                                                 | 550 | 560 | 570 |     |
| *                                                                                                                                   | *   | *   | *   |     |
| CTG GCC ATT GCT GTG CTG GCC ATC CTG GGC AAT GTG CTG GTG TGC TGG<br>Leu Ala Ile Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp> |     |     |     |     |

FIG. 2

SUBSTITUTE SHEET

5/12

|                                                                                                                                     |      |      |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| 580                                                                                                                                 | 590  | 600  | 610  | 620  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GCC GTG TGG CTC AAC AGC AAC CTG CAG AAC GTC ACC AAC TAC TTT GTG<br>Ala Val Trp Leu Asn Ser Asn Leu Gln Asn Val Thr Asn Tyr Phe Val> |      |      |      |      |
| 630                                                                                                                                 | 640  | 650  | 660  | 670  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GTG TCA CTG GCG GCG GCC GAC ATC GCA GTG GGT GTG CTC GCC ATC CCC<br>Val Ser Leu Ala Ala Asp Ile Ala Val Gly Val Leu Ala Ile Pro>     |      |      |      |      |
| 680                                                                                                                                 | 690  | 700  | 710  | 720  |
| *                                                                                                                                   | *    | *    | *    | *    |
| TTT GCC ATC ACC ATC AGC ACC GGG TTC TGC GCT GCC TGC CAC GGC TGC<br>Phe Ala Ile Thr Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cys> |      |      |      |      |
| 730                                                                                                                                 | 740  | 750  | 760  | 770  |
| *                                                                                                                                   | *    | *    | *    | *    |
| CTC TTC ATT GCC TGC TTC GTC CTG GTC CTC ACG CAG AGC TCC ATC TTC<br>Leu Phe Ile Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe> |      |      |      |      |
| 780                                                                                                                                 | 790  | 800  | 810  |      |
| *                                                                                                                                   | *    | *    | *    |      |
| AGT CTC CTG GCC ATC GCC ATT GAC CGC TAC ATT GCC ATC CGC ATC CCG<br>Ser Leu Leu Ala Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile Pro> |      |      |      |      |
| 820                                                                                                                                 | 830  | 840  | 850  | 860  |
| *                                                                                                                                   | *    | *    | *    | *    |
| CTC CGG TAC ATT GGC TTG GTG ACC GGC ACG AGG GCT AAG GGC ATC ATT<br>Leu Arg Tyr Asn Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile Ile> |      |      |      |      |
| 870                                                                                                                                 | 880  | 890  | 900  | 910  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GCC ATC TGC TGG GTG CTG TCG TTT GCC ATC GGC CTG ACT CCC ATG CTA<br>Ala Ile Cys Trp Val Leu Ser Phe Ala Ile Gly Leu Thr Pro Met Leu> |      |      |      |      |
| 920                                                                                                                                 | 930  | 940  | 950  | 960  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GGT TGG AAC AAC TGC GGT CAG CCA AAG GAG GGC AAG AAC CAC TCC CAG<br>Gly Trp Asn Asn Cys Gly Gln Pro Lys Glu Gly Lys Asn His Ser Gln> |      |      |      |      |
| 970                                                                                                                                 | 980  | 990  | 1000 | 1010 |
| *                                                                                                                                   | *    | *    | *    | *    |
| GGC TGC GGG GAG GGC CAA GTG GCC TGT CTC TTT GAG GAT GTG GTC CCC<br>Gly Cys Gly Glu Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro> |      |      |      |      |
| 1020                                                                                                                                | 1030 | 1040 | 1050 |      |
| *                                                                                                                                   | *    | *    | *    |      |
| ATG AAC TAC ATG GTG TAC TTC AAC TTC TTT GCC TGT GTG CTG GTG CCC<br>Met Asn Tyr Met Val Tyr Phe Asn Phe Phe Ala Cys Val Leu Val Pro> |      |      |      |      |
| 1060                                                                                                                                | 1070 | 1080 | 1090 | 1100 |
| *                                                                                                                                   | *    | *    | *    | *    |
| CTG CTG CTC ATG CTG GGT GTC TAT TTG CGG ATC TTC CTG GCG GCG CGA<br>Leu Leu Leu Met Leu Gly Val Tyr Leu Arg Ile Phe Leu Ala Ala Arg> |      |      |      |      |
| 1110                                                                                                                                | 1120 | 1130 | 1140 | 1150 |
| *                                                                                                                                   | *    | *    | *    | *    |
| CGA CAG CTG AAG CAG ATG GAG AGC CAG CCT CTG CCG GGG GAG CGG GCA<br>Arg Gln Leu Lys Gln Met Glu Ser Gln Pro Leu Pro Gly Glu Arg Ala> |      |      |      |      |

FIG. 2 (cont'd.)

6/12

1160            1170            1180            1190            1200  
 \*                \*                \*                \*                \*  
 CCG TCC ACA CTG CAG AAG GAG GTC CAT GCT GCC AAG TCA CTG GCC ATC  
 Arg Ser Thr Leu Gln Lys Glu Val His Ala Ala Lys Ser Leu Ala Ile>  
  
 1210            1220            1230            1240            1250  
 \*                \*                \*                \*                \*  
 ATT GTT GGG CTC TTT GCC CTC TGC TGG CTC CCC CTA CAC ATC ATC AAC  
 Ile Val Gly Leu Phe Ala Leu Cys Trp Leu Pro Leu His Ile Ile Asn>  
  
 1260            1270            1280            1290            1300  
 \*                \*                \*                \*                \*  
 TGC TTC ACT TTC TGC CCC GAC TGC ACC CAC GCC CCT CTC TGG CTC  
 Cys Phe Thr Phe Phe Cys Pro Asp Cys Ser His Ala Pro Leu Trp Leu>  
  
 1310            1320            1330            1340            1350  
 \*                \*                \*                \*                \*  
 ATG TAC CTG GCC ATC GTC CTC TCC CAC ACC AAT TCG GTC GTG AAT CCC  
 Met Tyr Leu Ala Ile Val Leu Ser His Thr Asn Ser Val Val Asn Pro>  
  
 1360            1370            1380            1390            1400  
 \*                \*                \*                \*                \*  
 TTC ATC TAC GCC TAC CGT ATC CGC GAG TTC CGC CAG ACC TTC CGC AAG  
 Phe Ile Tyr Ala Tyr Arg Ile Arg Glu Phe Arg Gln Thr Phe Arg Lys>  
  
 1410            1420            1430            1440            1450  
 \*                \*                \*                \*                \*  
 ATC ATT CGC AGC CAC GTC CTG AGG CAG CAA GAA CCT TTC AAG GCA GCT  
 Ile Ile Arg Ser His Val Leu Arg Gln Gln Glu Pro Phe Lys Ala Ala>  
  
 1460            1470            1480            1490            1500  
 \*                \*                \*                \*                \*  
 GGC ACC AGT GCC CGG GTC TTG GCA GCT CAT GGC AGT GTC GGA GAG CAG  
 Gly Thr Ser Ala Arg Val Leu Ala Ala His Gly Ser Val Gly Glu Gln>  
  
 1510            1520            1530            1540            1550  
 \*                \*                \*                \*                \*  
 GTC AGC CTC CGT CTC AAC GGC CAC CCG CCA GAG GTG TGG GCC AAC GGC  
 Val Ser Leu Arg Leu Asn Gly His Pro Pro Glu Val Trp Ala Asn Gly>  
  
 1560            1570            1580            1590            1600  
 \*                \*                \*                \*                \*  
 AGT GCT CCC CAC CCT GAG CGG AGG CCC AAT GGC TAC GCC CTG GGG CTG  
 Ser Ala Pro His Pro Glu Arg Arg Pro Asn Gly Tyr Ala Leu Gly Leu>  
  
 1610            1620            1630            1640            1650  
 \*                \*                \*                \*                \*  
 GTG AGT GGA GGG AGT GCC CAA GAG TCC CAG GGG AAC ACG GGC CTC CCA  
 Val Ser Gly Gly Ser Ala Gln Glu Ser Gln Gly Asn Thr Gly Leu Pro>  
  
 1660            1670            1680            1690            1700  
 \*                \*                \*                \*                \*  
 GAC GTG GAG CTC CTT AGC CAT GAG CTC AAG AGA GTG TGC CCA GAG CCC  
 Asp Val Glu Leu Leu Ser His Glu Leu Lys Arg Val Cys Pro Glu Pro>  
  
 1710            1720            1730            1740            1750  
 \*                \*                \*                \*                \*  
 CCT GGC CTC GAT GAC CCC CTG GCC CAG GAT GGA GCA GGA GTG TCC TGA  
 Pro Gly Leu Asp Asp Pro Leu Ala Gln Asp Gly Ala Gly Val Ser \*\*\*>  
  
 1760            1770            1780            1790            1800  
 \*                \*                \*                \*                \*  
 TGA TTC ATG GAG TTT GCC CCT TCC TAA G GGA AGG AGA TCT TTA TCT TTC  
 \*\*\* Phe Met Glu Phe Ala Pro Ser \*\*\*>

FIG. 2 (cont'd.)

7/12

|      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |     |
|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1780 | 1790 | 1800 | 1810 | 1820 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| TGG  | TTC  | GCT  | TGA  | CCA  | GTC | ACG | TTC | GGA | GAA | GAG | AAG | GAG | TGC | CAG | GAG |
| 1830 | 1840 | 1850 | 1860 | 1870 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| ACC  | CTG  | AGG  | GCA  | GCC  | GGT | TCC | TAC | TTT | GGA | CTG | AGA | GAA | GGG | AGC | CCC |
| 1880 | 1890 | 1900 | 1910 | 1920 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| AGG  | CTG  | GAG  | CAG  | CAT  | GAG | GCC | CAG | CAA | GAA | GGG | CIT | GGG | TTC | TGA | GGA |
| 1930 | 1940 | 1950 | 1960 | 1970 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| AGC  | AGA  | TGT  | TTC  | ATG  | CTG | TGA | GGC | CIT | GCA | CCA | GGT | GGG | GGC | CAC | AGC |
| 1980 | 1990 | 2000 | 2010 |      |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    |      |     |     |     |     |     |     |     |     |     |     |     |
| ACC  | AGC  | AGC  | ATC  | TTT  | GCT | GGG | CAG | GCC | CCA | GCC | CTC | CAC | TGC | AGA | AGC |
| 2020 | 2030 | 2040 | 2050 | 2060 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| ATC  | TGG  | AAG  | CAC  | CAC  | CIT | GTC | TCC | ACA | GAG | CAG | CIT | GGG | CAC | AGC | AGA |
| 2070 | 2080 | 2090 | 2100 | 2110 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| CTG  | GCC  | TGG  | CCC  | TGA  | GAC | TGG | GGA | GTG | GCT | CCA | ACA | GCC | TCC | TGC | CAC |
| 2120 | 2130 | 2140 | 2150 | 2160 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| CCA  | CAC  | ACC  | ACT  | CTC  | CCT | AGA | CTC | TCC | TAG | GGT | TCA | GGA | GCT | GCT | GGG |
| 2170 | 2180 | 2190 | 2200 | 2210 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| CCC  | AGA  | GGT  | GAC  | ATT  | TGA | CIT | TTT | TTC | CAG | GAA | AAA | TGT | AAG | TGT | GAG |
| 2220 | 2230 | 2240 | 2250 |      |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    |      |     |     |     |     |     |     |     |     |     |     |     |
| GAA  | ACC  | CIT  | TTT  | ATT  | TTA | TTA | CCT | TTC | ACT | CTC | TGG | CTG | CTG | GGT | CTG |
| 2260 | 2270 | 2280 | 2290 | 2300 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| CCG  | TGG  | GTC  | CTG  | CTG  | CTA | ACC | TGG | CAC | CAG | AGC | CTC | TCC | CCC | GGG | AGC |
| 2310 | 2320 | 2330 | 2340 | 2350 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| CTC  | AGG  | CAG  | TCC  | TCT  | CCT | GCT | GTC | ACA | GCT | GCC | ATC | CAC | TTC | TCA | GTC |
| 2360 | 2370 | 2380 | 2390 | 2400 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| CCA  | GGG  | CCA  | TCT  | CIT  | GGA | GIG | ACA | AAG | CTG | GGA | TCA | AGG | ACA | GGG | AGT |
| 2410 | 2420 | 2430 | 2440 | 2450 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| TGT  | AAC  | AGA  | GCA  | GIG  | CCA | GAG | CAT | GGG | CCC | AGG | TCC | CAG | GGG | AGA | GGT |
| 2460 | 2470 | 2480 | 2490 |      |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    |      |     |     |     |     |     |     |     |     |     |     |     |
| TGG  | GGC  | TGG  | CAG  | GCC  | ACT | GGC | ATG | TGC | TGA | GTA | GCG | CAG | AGC | TAC | CCA |
| 2500 | 2510 | 2520 | 2530 | 2540 |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    | *    | *    |     |     |     |     |     |     |     |     |     |     |     |
| GIG  | AGA  | GGC  | CIT  | GTC  | TTA | CTG | CCT | TTC | CIT | CTA | AAG | GGA | ATG | TTT | TTT |
| 2550 | 2560 | 2570 |      |      |     |     |     |     |     |     |     |     |     |     |     |
| *    | *    | *    |      |      |     |     |     |     |     |     |     |     |     |     |     |
| TCT  | GAG  | ATA  | AAA  | TTA  | AAA | CGA | GCC | ACA | G   |     |     |     |     |     |     |

FIG.2 (cont'd.)

8/12

Sequence Range: 1 to 1687

|                                                                  |     |     |     |     |
|------------------------------------------------------------------|-----|-----|-----|-----|
| 10                                                               | 20  | 30  | 40  |     |
| *TC AGC CCC GAG GCT CAG AAG CGG CAG GCG GAG GCG CGG TCC GGG CGC  |     |     |     |     |
| 60                                                               | 70  | 80  | 90  |     |
| *TAT GGC CAT GCC CGG CGG GTC TCA CGC GGC TGC CCC TCG CCC GGC GCG |     |     |     |     |
| 100                                                              | 110 | 120 | 130 | 140 |
| *CCT TCG GTA GGG GGC GCC CGG GGC CCA GCT GGC CGG GCC ATG CTG CTG |     |     |     |     |
| Met Leu Leu>                                                     |     |     |     |     |
| 150                                                              | 160 | 170 | 180 | 190 |
| *GAG ACA CAG GAC GCG CTG TAC GTG GCG CTG GAG CTG GTC ATC GCC GCG |     |     |     |     |
| Glu Thr Gln Asp Ala Leu Tyr Val Ala Leu Glu Leu Val Ile Ala Ala> |     |     |     |     |
| 200                                                              | 210 | 220 | 230 | 240 |
| *CTT TCG GTG GCG GGC AAC GTG CTG GTG TGC GCC GCG GTG GGC ACG GCG |     |     |     |     |
| Leu Ser Val Ala Gly Asn Val Leu Val Cys Ala Ala Val Gly Thr Ala> |     |     |     |     |
| 250                                                              | 260 | 270 | 280 |     |
| *AAC ACT CTG CAG ACG CCC ACC AAC TAC TTC CTG GTG TCC CTG GCT GCG |     |     |     |     |
| Asn Thr Leu Gln Thr Pro Thr Asn Tyr Phe Leu Val Ser Leu Ala Ala> |     |     |     |     |
| 290                                                              | 300 | 310 | 320 | 330 |
| *GCC GAC GTG GCC GTG GGG CTC TTC GCC ATC CCC TTT GCC ATC ACC ACC |     |     |     |     |
| Ala Asp Val Ala Val Gly Leu Phe Ala Ile Pro Phe Ala Ile Thr Ile> |     |     |     |     |
| 340                                                              | 350 | 360 | 370 | 380 |
| *AGC CTG GGC TTC TGC ACT GAC TTC TAC GGC TGC CTC TTC CTC GCC TGC |     |     |     |     |
| Ser Leu Gly Phe Cys Thr Asp Phe Tyr Gly Cys Leu Phe Leu Ala Cys> |     |     |     |     |
| 390                                                              | 400 | 410 | 420 | 430 |
| *TTC GTG CTG GTG CTC ACG CAG AGC TCC ATC TTC AGC CTT CTG GCC GTG |     |     |     |     |
| Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu Ala Val> |     |     |     |     |
| 440                                                              | 450 | 460 | 470 | 480 |
| *GCA GTC GAC AGA TAC CTG GCC ATC TGT GTC CCG CTC AGG TAT AAA AGT |     |     |     |     |
| Ala Val Asp Arg Tyr Leu Ala Ile Cys Val Pro Leu Arg Tyr Lys Ser> |     |     |     |     |
| 490                                                              | 500 | 510 | 520 |     |
| *TTG GTC ACG GGG ACC CGA GCA AGA GGG GTC ATT GCT GTC CTC TGG GTC |     |     |     |     |
| Leu Val Thr Gly Thr Arg Ala Arg Gly Val Ile Ala Val Leu Trp Val> |     |     |     |     |

FIG. 3

SUBSTITUTE SHEET

9/12

|                                                                                                                                     |      |      |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| 530                                                                                                                                 | 540  | 550  | 560  | 570  |
| *                                                                                                                                   | *    | *    | *    | *    |
| CTT GCC TTT GGC ATC GGA TTG ACT CCA TTC CTG GGG TGG AAC AGT AAA<br>Leu Ala Phe Gly Ile Gly Leu Thr Pro Phe Leu Gly Trp Asn Ser Lys> |      |      |      |      |
| 580                                                                                                                                 | 590  | 600  | 610  | 620  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GAC AGT GCC ACC AAC AAC TGC ACA GAA CCC TGG GAT GGA ACC ACG AAT<br>Asp Ser Ala Thr Asn Asn Cys Thr Glu Pro Trp Asp Gly Thr Thr Asn> |      |      |      |      |
| 630                                                                                                                                 | 640  | 650  | 660  | 670  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GAA AGC TGC TGC CCT GTG AAG TGT CTC TTT GAG AAT GTG GTC CCC ATG<br>Glu Ser Cys Cys Leu Val Lys Cys Leu Phe Glu Asn Val Val Pro Met> |      |      |      |      |
| 680                                                                                                                                 | 690  | 700  | 710  | 720  |
| *                                                                                                                                   | *    | *    | *    | *    |
| AGC TAC ATG GTA TAT TTC AAT TTC TTT GGG TGT GTR CTG CCC CCA CTG<br>Ser Tyr Met Val Tyr Phe Asn Phe Phe Gly Cys Val Leu Pro Pro Leu> |      |      |      |      |
| 730                                                                                                                                 | 740  | 750  | 760  |      |
| *                                                                                                                                   | *    | *    | *    |      |
| CTT ATA ATG CTG GTG ATC TAC ATT AAG ATC TTC CTG GTG GCC TGC AGG<br>Leu Ile Met Leu Val Ile Tyr Ile Lys Ile Phe Leu Val Ala Cys Arg> |      |      |      |      |
| 770                                                                                                                                 | 780  | 790  | 800  | 810  |
| *                                                                                                                                   | *    | *    | *    | *    |
| CAG CTT CAG CGC ACT GAG CTG ATG GAC CAC TCG AGG ACC ACC CTC CAG<br>Gln Leu Gln Arg Thr Glu Leu Met Asp His Ser Arg Thr Thr Leu Gln> |      |      |      |      |
| 820                                                                                                                                 | 830  | 840  | 850  | 860  |
| *                                                                                                                                   | *    | *    | *    | *    |
| CGG GAG ATC CAT GCA GCC AAG TCA CTG GCC ATG ATT GTG GGG ATT TTT<br>Arg Glu Ile His Ala Ala Lys Ser Leu Ala Met Ile Val Gly Ile Phe> |      |      |      |      |
| 870                                                                                                                                 | 880  | 890  | 900  | 910  |
| *                                                                                                                                   | *    | *    | *    | *    |
| GCC CTG TGC TGG TTA CCT GTG CAT GCT GTT AAC TGT GTC ACT CCT TTC<br>Ala Leu Cys Trp Leu Pro Val His Ala Val Asn Cys Val Thr Leu Phe> |      |      |      |      |
| 920                                                                                                                                 | 930  | 940  | 950  | 960  |
| *                                                                                                                                   | *    | *    | *    | *    |
| CAG CCA GCT CAG GGT AAA AAT AAG CCC AAG TGG GCA ATG AAT ATG GCC<br>Gln Pro Ala Gln Gly Lys Asn Lys Pro Lys Trp Ala Met Asn Met Ala> |      |      |      |      |
| 970                                                                                                                                 | 980  | 990  | 1000 |      |
| *                                                                                                                                   | *    | *    | *    |      |
| ATT CCT CTG TCA CAT GCC AAT TCA GTR GTC AAT CCC ATT GTC TAT GCT<br>Ile Leu Leu Ser His Ala Asn Ser Val Val Asn Pro Ile Val Tyr Ala> |      |      |      |      |
| 1010                                                                                                                                | 1020 | 1030 | 1040 | 1050 |
| *                                                                                                                                   | *    | *    | *    | *    |
| TAC CGG AAC CGA GAC TTC CGC TAC ACT TTT CAC AAA ATT ATC TCC AGG<br>Tyr Arg Asn Arg Asp Phe Arg Tyr Thr Phe His Lys Ile Ile Ser Arg> |      |      |      |      |
| 1060                                                                                                                                | 1070 | 1080 | 1090 | 1100 |
| *                                                                                                                                   | *    | *    | *    | *    |
| TAT CCT CTC TGC CAA GCA GAT GTC AAG AGT GGG AAT GGT CAG GCT GGG<br>Tyr Leu Leu Cys Gln Ala Asp Val Lys Ser Gly Asn Gly Gln Ala Gly> |      |      |      |      |

FIG.3 (cont'd.)

SUBSTITUTE SHEET

10/12

1110            1120            1130            1140            1150  
 \*                \*                \*                \*                \*  
 GTC CAG CCT GCT CTC GGT GTC GGC CTA TGA TCT AGG CTC TCG CCT CTT  
 Val Gln Pro Ala Leu Gly Val Gly Leu \*\*\*>  
  
 1160            1170            1180            1190            1200  
 \*                \*                \*                \*                \*  
 CCA GGA GAA GAT ACA AAT CCA CAA GAA ACA AAG AGG ACA CGG CTG GTT  
  
 1210            1220            1230            1240  
 \*                \*                \*                \*  
 TTC ATT GTG AAA GAT AGC TAC ACC TCA CAA GGA AAT GGA CTG CCT CTC  
  
 1250            1260            1270            1280            1290  
 \*                \*                \*                \*                \*  
 TTG AGC ACT TCC CTG GAG CTA CCA CGT ATC TAG CTA ATA TGT ATG TGT  
  
 1300            1310            1320            1330            1340  
 \*                \*                \*                \*                \*  
  
 CAG TAG TAG CAC CAA GGA TTG ACA AAT ATA TTT ATG ATC TAT TCA GCT  
  
 1350            1360            1370            1380            1390  
 \*                \*                \*                \*                \*  
 GCT TTT ACT GTG TGG ATT ATG CCA ACA GCT TGA ATG GAT TCT AAC AGA  
  
 1400            1410            1420            1430            1440  
 \*                \*                \*                \*                \*  
 CTC TTT TGT TTT TAA AAG TCT GCC TTG TTT ATG GTG GAA AAT TAC TGA  
  
 1450            1460            1470            1480  
 \*                \*                \*                \*  
 AAC TAT TTT ACT GTG AAA CAG TGT GAA CTC TTA TAA TGC AAA TAC TTT  
  
 1490            1500            1510            1520            1530  
 \*                \*                \*                \*                \*  
 TTA ACT TAG AGG CAA TGG AAA AAT AAA AGT TGA CTG TAC TAA AAA TGT  
  
 1540            1550            1560            1570            1580  
 \*                \*                \*                \*                \*  
 ATA CTT GTT GCC AGG AAG GTG ACC TCA AAA ATT AAA AGT ATA ATT ATT  
  
 1590            1600            1610            1620            1630  
 \*                \*                \*                \*                \*  
 CGG CCG GGC ATG GTG GCT CAC ACC TGT AAT TCC AGC ACT TTG GGA GGC  
  
 1640            1650            1660            1670            1680  
 \*                \*                \*                \*                \*  
 CAA GGC AGG CGG ATC ACG AGG TCA GGA GTT CAA AAC CAG CCT GTC CAA  
  
 TAT AGT G

FIG.3 (cont'd.)



FIG. 4a



FIG. 4b

SUBSTITUTE SHEET

12/12



FIG. 5

SUBSTITUTE SHEET

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/AU 93/00277A. CLASSIFICATION OF SUBJECT MATTER  
Int. Cl.<sup>5</sup> C12N 15/12

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)  
IPC<sup>5</sup>: C12N 15/12Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  
AU: IPC C12N 15/12Electronic data base consulted during the international search (name of data base, and where practicable, search terms used)  
Derwent Database: WPAT - Keywords Adenosin: ADE, Receptor, C12N  
BIOT - Keywords Adenosin: ADE, Receptor  
CASA - Keywords Adenosin: ADE, Receptor, DNA or Gene, A1, A2A or A2B

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                 | Relevant to Claim No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| P,X       | AU,A,21791/92 (THE UNITED STATES OF AMERICA REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES) 10 December 1992 (10.12.92)     | 1-7                   |
| Y         | AU,A,75792/91 (THE UNITED STATES OF AMERICA REPRESENTED BY THE SECRETARY, U.S. DEPARTMENT OF COMMERCE) 31 October 1991 (31.10.91)                  | 1-7                   |
| Y         | GENOMICS 11,225-227 (1991) CHROMOSOMAL MAPPING OF A1 & A2 ADENOSINE RECEPTORS, VIP RECEPTOR, & A NEW SUBTYPE OF SEROTONIN RECEPTOR, Published 1991 | 1-7                   |

 Further documents are listed in the continuation of Box C. See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents :                                                                                                                               | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier document but published on or after the international filing date                                                                                            | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) |     |                                                                                                                                                                                                                                              |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

|                                                                                                                                    |                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Date of the actual completion of the international search<br>26 August 1993 (26.08.93)                                             | Date of mailing of the international search report<br>2 SEP 1993 (2.09.93)                                                 |
| Name and mailing address of the ISA/AU<br>AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION<br>PO BOX 200<br>WODEN ACT 2606<br>AUSTRALIA | Authorized officer<br><br>JOHN ASHMAN |
| Faximile No. (06) 2832364                                                                                                          | Telephone No. (06) 2832364                                                                                                 |

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/AU 93/00277

| C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                   |                       |
|------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|
| Category*                                            | Citation of document, with indication, where appropriate of the relevant passages | Relevant to Claim No. |
| A                                                    | AU,A,52215/90 (MERRELL DOW PHARMACEUTICALS INC)<br>4 October 1990 (04.10.90)      |                       |

**INTERNATIONAL SEARCH REPORT**  
Information on patent family members

International application No.  
**PCT/AU 93/00277**

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

| Patent Document<br>Cited in Search<br>Report | Patent Family Member |
|----------------------------------------------|----------------------|
| WO 92/21701                                  | AU 21791/92          |
| WO 91/16056                                  | AU 75792/91          |
|                                              |                      |
| <b>END OF ANNEX</b>                          |                      |

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**