University of Toronto

Department of Electrical and Computer Engineering

Faculty of Applied Science and Engineering

Final Examination - December 10, 1997

Second Year - Programs 7 and 9

Examiners: S.D. Brown and J.S. Rose

ECE241 - Digital Systems

EXAM Type: D

			EXAMINER'S REPORT 1	
Last Name:	First Name:	Student Number:	Duration: 2.5 Hours You should answer ALL questions except question 5b, which is a bonus question. All answers should be on these sheets. No aids permitted. See Instructions on page 2.	

Page 1 of 30

_ /100

TOTAL:

Instructions

- READ ALL QUESTIONS CAREFULLY BEFORE ANSWERING.
- Attempt all questions.
- If you need to make any assumptions, state them clearly with your answers.
- Write your answers neatly. Messy work is very hard to read and may cause you to lose marks.
- For questions that specify minterms using the notation in the example below

$$f(x_1, x_2, x_3) = \sum m(1, 3, 5)$$

the minterms are to be interpreted as used in class. Specifically, minterm m_1 represents $x_1x_2x_3=001$, minterm m_3 represents $x_1x_2x_3=011$, and so on. Answers that fail to interpret the minterms in this way will be considered incorrect.

Page 2 of 30

Page 4 of 30 Page 3 of 30

b. Use one 4-to-1 multiplexer and NOT gates to implement the following function:	$f(x_1, x_2, x_3) = \sum m(3, 5, 6)$	

c. The function $f(A, B, C) = \sum m(3, 4, 6)$ can be implemented using **one** 2-input multiplexer, **one** 2-input AND gate, and **one** NOT gate. Design the circuit using exactly these gates.

Page 5 of 30

Question 2 — Short answers II [22 marks]

a. In class you learned about carry-lookahead adders. For an 8-bit carry-lookahead adder with inputs called x ₂ ,,x ₀ and y ₂ ,,y ₀ , you are to derive the equation for the carry-lookahead carry-out from the second stage of the adder, c ₂ . Assume that the carry-in to the adder is called c ₂ . Draw a block diagram of the first two stages of the adder and label all of the signals, including generate and propagate. Derive the expression for c ₂ in terms of x ₁ , y ₁ , x ₀ , y ₀ and c ₀ . Show the steps in your derivation.
y-lookahead adders. For an 8- y ₀ , you are to derive the eq of fihe adder, c ₂ . Assume that the first two stages of the add e. Derive the expression for c ₂ n.

Derive the expression for c_2 in this space

Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space					
Draw the block diagram with signal labels in this space	ه ا				
Draw the block diagram with signal labels in this sp	%				
Draw the block diagram with signal labels in this	5	†			
Draw the block diagram with signal labels in th	.⊻				
Draw the block diagram with signal labels in	1				
Draw the block diagram with signal labels i	=				
Draw the block diagram with signal label	1.2				
Draw the block diagram with signal lab	و ا				
Draw the block diagram with signal I	1.5				
Draw the block diagram with signa	-1-				
Draw the block diagram with sig	2				
Draw the block diagram with s	1.2	p.			
Draw the block diagram wift	1 2				
Draw the block diagram w	一连				
Draw the block diagram	3				
Draw the block diagra	18				
Draw the block diag	2				
Draw the block di	6	0			
Draw the block	١÷				
Draw the bloc	بد ا				
Draw the bl	16				
Draw the	=				
Draw tf	1 0	1			
Draw	1=	1			
	3				
	15				
	10	l			
	_				

Page 7 of 30

Page 8 of 30

- **b.** Represent the following numbers in 2's complement notation. Use the least number of bits possible for each number:
- **i.** 37

ii. -52

iii. -128

Page 10 of 30

c. Show how the following function can be implemented using 3-input lookup tables (LUTs).

$$^{2}(x_{1},x_{2},x_{3},x_{4}) = \sum m(1,2,4,7,8,11,13,14)$$

Use the least number of lookup tables that you can. Draw the circuit containing the LUTS, and indicate the function of each LUT by showing the logic expression that it implements. For example, if a LUT implements the function $g=A\overline{B}C+AB\overline{C}$, then you would draw this LUT in your circuit as shown below:

Show your answer in this space. Use the space on the next page for rough work.

Space for rough work for Question 2c. A truth table is provided for your convenience only.

بو											

d. You are to design a circuit with three inputs and two outputs. The inputs are called x₂x₁x₀ and represent a 3-bit positive integer. The output is called x₁x₀, and represents the number of bits in x₂x₁x₀ that are equal to 1. What basic circuit that you have seen in class can implement this function?
Answer:

Page 12 of 30 Page 11 of 30

Question 3 — Word problem [22 marks]

- **a.** You are to design a circuit that has four inputs called a_1, a_0, b_1, b_0 , and produces four outputs called $P = p_3, p_2, p_1, p_0$. Each pair of input represents a 2-bit positive integer (i.e. $A = a_1a_0$ and $B = b_1b_0$) and the outputs represent the 4-bit arithmetic product (i.e., $P = A \times B$) of those integers.
- i. Fill in the truth table below that shows the four outputs.

	_															
p_0																
p_I																
<i>p</i> ₂																
<i>p</i> 3																
$a_1 a_0 b_1 b_0$	0000	0001	0010	0011	0100	0101	0110	01111	1000	1001	1010	1011	1100	1101	11110	1111

Page 13 of 30

ii. Derive a minimal sum-of-products expression for each of p_3 p_2 , p_1 and p_0 , using the K-maps given below.

K-map for p_3 : b_1b_0	Minimum-cost expression for p_3 :	K-map for p_2 : b_1b_0	Minimum-cost expression for p_2 :

Page 14 of 30

Page 16 of 30 Page 15 of 30

b. For this part you are to design another combinational circuit. The inputs to the circuit are p₃, p₂, p₁ and p₀ directly from the outputs of the circuit of part a. The circuit has one output, called f. The function f should be logic 1 only if p₃p₂p₁p₀ have the value 0001, 0100, or 1001. Design a circuit for f using the minimum number of NOR gates. You can use only NOR gates, but they can be of any size. Use the K-map given below. Use the space on the following page for any rough work.

Page 17 of 30

Question 4 — Sequential Circuits [18 marks]

a. A logic circuit has two inputs, clock and start, and two outputs, f and g. The behavior of the circuit is described by the timing diagram below. When a pulse is received on the start input, the circuit produces pulses on the f and g outputs as shown in the timing diagram. Design a suitable circuit using only the following components: 3-bit resettable positive-edge triggered synchronous counter, and basic logic gates. Assume that the delays through all logic gates and the counter are negligible.

Page 18 of 30

ta.	
uestion 2	
ð	
Ē	
work	
rough	
for	
Sace	

Note that the corresponding ENTITY declaration is not shown, but it would define signals e, clock, Resem, and Presem as inputs, and signals $q\theta$, qI, and q2 as outputs. The tff module is a positive-edge-triggered T flip-flop. The meaning of the statement

t=>q0, clk=>clock, clm=>Resetn, pm=>Presetn, q=>q1); tff_2: tff PORT MAP (

b. Consider the VHDL architecture body shown below.

ARCHITECTURE Structure OF example IS SIGNAL x: STD_LOGIC; BEGIN

t=>x, clk=>clock, clm=>Resetn, prn=>Presetn, q=>q2); x <= NOT(NOT q0 OR NOT q1); END Structure;

is to create a T flip-flop with the following connections to signals: the t input is connected to the e signal, cIk is connected to the clock signal, cIm to Resem, pm to Presem, and q to $q\theta$.

 $\label{eq:control} $$tf_0$. tf_0. tf_0.$

i. In the space below, draw the circuit represented by the VHDL code.

Page

Page 19 of 30

Page 20 of 30

Answer:	a. Consider a Moore-type finite-state machine with one input, x , and one output, z . The machine should produce the output $z = 1$ if the values of x on successive clock cycles have the following pattern: 10101. Otherwise, z should be 0.
	Draw a state diagram for the machine. Use the least possible number of states.
iii. Assume the following timing parameters: propagation delay through a logic gate is 2 ns, time from clock edge to change of flip-flop output is 1 ns, and flip-flop setup time is 2 ns. What is the maximum clock frequency for which the circuit will work properly?	
Answer:	

Question 5 — Finite State Machine [20 marks]

ii. What is the purpose of this circuit (i.e., what does the circuit do)?

Answer:

Page 21 of 30

Page 22 of 30

b. The state table given below represents a Moore-type finite-state machine.

Output	z	0	0	0	0	1
Next State	x = 1	В	В	D	田	В
Next	x = 0	A	C	A	C	C
Present State		A	В	C	D	Э

i. Using a sequential state assignment, fill in the state-assigned table below. By sequential state assignment, we mean that state A is encoded as 000, state B as 001, state C as 010, and so on. Note that the state flip-flop outputs are called y_1, y_2 and y_3 .

ii. Use the K-maps given below to derive minimal expressions (sum-of-products) for the state flip-flops and output to implement the machine. Make use of don't-cares if they exist.

K-map for Y_j : $y_2 y_3$	Minimum-cost expression for Y_I :	K-map for Y_2 : $y_2 y_3$	Minimum-cost expression for Y ₂ :

Page 23 of 30

K-map for z:

 y_3 y_1 y_2

Minimum-cost expression for Y_3 :

iii. Draw the complete circuit for the finite-state machine.

K-map for Y_3 :

y₂ y₃ x y₁

Answer to Question 5b, part ii continued

Page 25 of 30

Minimum-cost expression for z

Page 26 of 30

Page 28 of 30

c. BONUS QUESTION. You do not have to do this question, but extra marks will be given for it if you do. The state table below defines a finite-state machine that has one input, x, and one output, z. Using the formal procedure described in class, determine if the number of states in the machine can be reduced. Show your steps to derive the minimum possible number of states.

Present	Next	Next State	Output
State	x = 0	x = 1	2
Α	A	В	0
В	Α	C	0
C	D	C	0
Д	Α	Э	1
Э	٧	ц	0
ц	D	Н	0

Answer (use the back of this page for rough work if extra space is needed.):

Page 27 of 30

EXTRA SPACE — USE ONLY IF NEEDED