R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Date ______ Name Sakhan Lengh + H

Dept./Lab ECE IMSCOR Class VIII B Expt./No. 1

Title Study & Mode curves of Reflex Klyston Source.

Him: To conduct a suitable experiment on outless klystown to plot its mode curves and determine its transit time, electronic tuning determine its transit time, electronic tuning sample, sensitivity, Peak of power for different modes and frequency variation for any one mode.

isolator, prequency meter, variable attenuates x-band detector, wave quide to BNC adaptor and CRO/ VSWR meter.

Tabular Column:

The State of the S				-		
Repeller	ND-B	POWER		foreq	LUEVO	y
Vtg	(v)	(mto))	CQH		A B
	-	- Contract			_	
-245	2.12	89 - 88	3.	9-5	13	1
-240	æ-28	103.9	6	9-58	2.2.	
-235	2-32	107.60	+	9.53	>	Mode
-230	2.28	103-96	3	9.53	3	1
-225	1.96	76.83	34	9-52	9	
-220	1.40	39.2	F	9.528	3	1 3
-215	0.45	4.05		9.528		
-210	0-08	1.56	1	9.528		
-205	0-5	5		9.5235		
-200	0.9	16-2	1	9-528		
- 195	1-28	32.76	-	9-528	- 1	
-190	1.48	43.80	1 3	9.528		
-185	1.72	59-16		7.528		node 2
_180	1.68	56.44		3-528	1	
-175	1.60	51.2	1 3	1-527	1 1	
-170	1.56	48-6		1.527	1	
-165	1-40	39.2		-526	1-	
- 160	1-2	28.8		.526	1	
- 155	1.04	21.63		-526	1	
_150	1.04	21-63		-525		
-145	1025	31-25		-525		-
- 140	103	33.8	900	524 /	mo	de 3
-135	1.25	31.25		523		
-130	0-6	7-2.		523		

COLLEGE OF ENGINEERI

OBSERVATION / DATA SHEET

Name dakhan Singh-H

Class UII 73 Expt./No. 1 pept/Lab ece - murs

Tille kylstron

$$\frac{V_1}{V_2} = \frac{O + 1 \cdot 75}{O + \cdot 75}$$

$$\frac{91}{92} = \frac{0 + 1.75}{0 + .75}$$

$$\frac{185}{140} = \frac{0 + 1.75}{0 + .75}$$

$$\frac{185}{140} = \frac{0 + 1.75}{0 + .75}$$

Jaansit time:

$$t_1 = \frac{0+0.75}{5} = \frac{0.75}{9.508 \times 109} = \frac{0.2886 \text{ risec.}}{9.508 \times 109}$$

Signature of Teacher Incharge

3. Electronic timing sange,

$$tog t_1 = (t_2 - t_1) = 9.508 - 9.506 = 0 MHz$$
 $t_2 = (t_2 - t_1) = 9.504 - 9.503 = 1 MHz$

4. Electronic timing sensitivity,
$$t_1 = \frac{b^2 - b^4}{V^2 - V^4} = \frac{2M}{30} = 66.66KHZ$$

$$t_2 = \frac{b^2 - b^1}{V^2 - V^1} = \frac{IM}{I0} = \frac{100 \, \text{kHz}}{10}$$

xe .

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Name Kakhan Lingh-He

Dept/Lab ECE | MWSP Class VIII B Expt/No. 1

Title kylston

Risult:

Mode	Case 1	case 2.
mansit time	0-1836nsec	0.2887n&c
Electronic turing range	EHM®	BEST BEMHZ.
Electronic turing bensiti	oty. KH₹/V 66-66	KH₹/V.

Signature of Teacher Incharge

output power so rectangular to get mode curves. Also plot the frequency vs.

woltage. Expected graphs are shown in fig 1.2. Also plot the frequency
$$\frac{1}{\lambda^2 s} = \frac{1}{\lambda^2 s} + \frac{1}{\lambda^2 c}$$
 (1.1)

wavelength in free space in m

goided wavelength in waveguide in m cut-off wavelength in waveguide in m

Measure the cut-off wavelength of TE₁₀ mode by λ_c =2a where a is broad dimension of

ge guide wave length is $\lambda_g = 2(d_1 - d_2)$ in m, From eqn 1, the λ_0 is calculated.

frequency inside waveguide is $f_0 = c/\lambda_0$ which can be verified by measured is frequency meter.

MAR COLUMN:

Repeller voltage (V)	Power (dB)	Frequency meter reading (GHz).	Remarks
-245	89.88	9:533	
-340	103:96	9.532	
-835	107-64	9.53	Mode 1
-0.30	103-96	9.53	
5 -305	76.83	9.529	
- 990	39:2	9.528	
-315	4.05	9.508	
1-910	1-56	9-5285	
-005	5	9.5885	
-500	16.2	9.585	
-195	30-76	9-5882	
-190	43.8	9.5382	Mode 3
13 -185	59-16	9-588	Pulled
180	56.44	9.508	
15 -135	51-2	9.527	
-190	48.6	9.507	
13 -165	39-2	9.587	

18	-160	@8-8	9.500	
19	-155	21-63	9:586	
00	-150	21:63	9.598	
21_	-145	31:05	9.585	
22	-14.0	33-8	9.584	Mode 3
23	-135	D1:05	9-583	2
24	-130.	402	9:503	

Even though there should be little danger from microwave radiation hazards in the lab, the fallowing work habits are recommended whenever working with RF or microwave equipment:

- Never look into the open end of a waveguide or transmission line that is connected to
- Do not place any part of your body against the open end of a waveguide or transmission ii.
- Turn off the microwave power source when assembling or disassembling Hi.

Fig 1.2: Expected Mode curves of a klystron

RESULT

Mode No.	Case(1)	Case(2)
Transit time		3/233357
Electronic tuning Range	0-14886 X1598	0-388 X 10-1/3
Electronic tuning sensitivity	am Hz	IMHIZ
	66-6 KHX IV	100 KHZ/V

Observations:

- to occases and peak of power decreases.
- sensitivity increases with mode number
- stage distance with increase in made no
- > variation in ofp power at different modes is observed similarly frequency variation is also observed and each pol is made too mode 1, 2, 3.

	Data shee	t	
1	Problem statement	10	10
2	Design & specifications	10	10
1	Expected output	10	10
	Record		
4	Simulation/ Conduction of the experiment	15	15
5	Analysis of the result	15	15
6	Viva	40	38
7	Total	100	AX.
Scale	down to 10 marks	1	10
Stuff	Signature:		1

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Date	Name Sakhan	Lingh . H.
nest Alab ECE I MOOSR.	Class VII B	Expt./No2
Tille Radiotion chasa	cleaistic 4	pyramidal ostelip Patch (x-band)

semi Jo reasure the antenna parameter, sadiotion pattern, determine half power beamwiller and directivity of hour antenna and cavery out Gain measurement using notherd of comparision.

Equipment suguired: kylstoon power supply, Isolator, frequency meter, variable attenuator, x-band detector, how antenna (2), waveguide to BNC adaptor and oscilloscope, power meter.

overall geometry of pyramidal

Signature of Teacher Incharge

61 B XX plane (te plane) CROSS section # * The normalised radiation pattern of hou FH(0) = 1+0000 +H(0) where, +H(0) & Scot xx'e-it 4-11-plane Fe(0)= 1+coso fe(0) where fe(0) x fe-JB \(R_2^2 + y^2 e^{JB} \)
4 E plane -8/2 * half power beamoidsh

Θε = 54 ×/B ΘΗ = 78 ×/A.

* Gais:

G = 0.51 (47) AB

* Directivity:

D= 41853 000+

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

ite	Name Jakhan	200000
ept./Lab_ECEL_MLOSR_	Clane	Expt./No5
we Microstalp Patch		

pallers of microstrip patch antenna:

ton
$$\epsilon$$
: $-90 \le \phi \le 90$; $\theta = 90$

$$\epsilon(\phi) = \sin(\cosh_2 \cosh) \sin \phi$$

$$\tanh(2 \cosh)$$

 $\frac{\text{for H}: 0 \leq \theta \leq 180; \ \phi = 0.}{\text{E(\theta)} = \sin \left[\frac{\text{koh}}{2} \sin \theta\right]} \sin \left[\frac{\text{koh}}{2} \sin \theta\right] \frac{\sin \left[\frac{\text{koh}}{2} \sin \theta\right]}{\text{koh}} \frac{\sin \left[\frac{\text{koh}}{2} \sin \theta\right]}{\text{koh}}.$

Signature of Teacher Incharge

Block diagram:

6. Jabular column:

	Power	torn o	Pawer		-	Patch	tch Antinno		
		ne (mio)	Pla	ne		cane	+	epiani	
Angle	aft	Right	left	Right	left	Right	left	Right	
0	-05-67	-36.02	-22.85	-23-34					
5	-26-37	-88.87	-85.03	-25.35					
10		-89.89		THE RESERVE AND ADDRESS OF THE PARTY OF THE					
15		-32-39			181	9 3	1		
20	-31,70	- 33.97	-33.15	-33.15	2 1		-		
25	-33-15	-34-89	-33-97	-33.97	-	23 46	233		
30		- 35 - 91							
25	-34-89	-37·07	-35.91	-35.19					
40	- 35-91	- 38-41	-37.07	-37.07			1	1	

v. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

ut:	+eorn	Potch
pagameter.	Andenna	The state of the s
re transmitted power (Pt)	SIKSHANA SAMMER	
he operating to	9-519HZ	
he operating wavelength	3.15cm	
listance 6/10 Tx & Rx (R)	. 6989m	

Signature of Teacher Incharge

Andenna Pagameter	Treochica	
that power beamwidth	17.01	13°
that power beamwidth (Ote)	30.17°	30°
Gain shares	51-67	26.02
Directionity.	78.97	105.

V. COLLEGE OF ENGINEERIN

OBSERVATION / DATA SHEET

Name dakhan Singh te Expt./No. _2 Dept/Lab ECE - MWRS Class VIL B Tille horn antenna

$$\theta = 54 \frac{\lambda}{B} = 17.01^{\circ}$$

$$R = \frac{0d^2}{\lambda} = 0.6989$$

trip nsiv

of Ot

Signature of Teacher Incharge

6. Tabular column:

_		HORN	antenna			PATCH	Antenna	
		er in E lane	Power is	n H plane	Power in	n E plane	Power in	H plane
Angle (degrees)	Left	Right	Left	Right	Left	Right	Left.	Right
0	-35-85	-03:34	-05-67	-26.03				
5	100000000000000000000000000000000000000	-25-35		-28-8A				1000
10	-27-4S	-89-37	-87-13	-29-89				
15	-89-37	-32-39	-30-45	-38.39				
20	- 35-15	-33-15	-31-07	-33:39	1		3. 1	10000
25	-33-97	- 3347	-33.15	-34.89			- 4	1
30	7500	-34-89						
35	PER MALEURA	100		-37-07	44		14.45	100

RESULT

Parameters	HORN Antenna	PATCH Antenna
The transmitted power (Pt)	0.033W	
The Operating frequency	9.519112	
The Operating wavelength	3-15cm	
The separating distance between transmitter and receiver (R)	-6989m	COLUMN TO A SECTION ASSECTION ASSECT
The received power (Pr)	·512mW	no object
Antenna Parameters	Theoretical	Practical
Half power Beamwidth(θ_E)	17-01	(13) 1
Half power Beamwidth(θ _H)	30-17	30 00
Gain	51.67	26.02
Directivity	78,97	105.

OH

Basic precautions to be taken:

- 1. Power flowing out of horn antenna may damage the retina of the eye, do not see directly insign
- 2. Materials present in the vicinity of the experimental setup may be absorbing ones. Keep reflecting objects away from the experimental setup.

- * Distance John Tx and Rx is kept sufficiently large for jan field radiation
- * value of beamwidth is taken face every 5° towards left and suight
- + It is observed if both antenna faces each other, the power received is max to o.
- * If stotate the tx 5° everytime, the power Rx decreases
- * The radiation pallen the is observed is plotted on pelan graph.
- * The transitical ralues and practical rallies are compared is the tabular toom.

SLNo	Criteria	Max Marks	Marks obtained
	Data sheet		
1	Problem statement	10	10
2	Design & specifications	10	10
3	Expected output	10	10
	Record		
+	Simulation/ Conduction of the experiment	15	15
5	Analysis of the result	15	14
9	Viva	40	30
	Total	100	200
cale dow	n to 10 marks	-	91
taff Sign		63	1.

R.V. COLLEGE OF ENGINEERING

MA. OOFFERS
OBSERVATION / DATA SHEET
Date 111/2023 Name Calibran Singh-th
Class VII B Expt./No. 3
Title Characterisation of Ring Resonator, Power divider, directional coupler and Hybrid Ring (stipline type - C bound).
in To characterise the microwave passève components & components & components
meter sing nesonator, power divider.
and coupling ances de coupled with open ended line
and coupling accos:
and Guestine Superior
FIE 04- FOAS- / 1-4
a open ended
Lines 7

05

Signature of Teacher Incharge

Jabulas Columns

161. no	Forequency CGHZ	2	I TR	ecieved 1	Power Car
			Pi	Po	Po-Pi
1	3.8		-579	-40	34.2
2	4.0	901	-5-47	-40	34 -53
3	402		-5.47	-40	34.53
4	4.4		-8-07	-40	31.93
5	4.6		-11-87	-40	28.13
6	4.8		-14-36	-37-87	23-51
Ŧ	→ 5.0		-14-84	-83-43	8-59
8	5.2		-14 -09	The state of the s	
9	5.4		GL. C. S.	-26-72	12.65
10	5.6		-9.27	-34 .59	28-96
11	5.8		-8	-37-96	29-96
	6	1 -	6.59	-40	33-41
12		- 5	5.84	-38.15	34-13
-	THE RESERVE TO SERVE THE PARTY OF THE PARTY	TOWN DATE:	E STATE OF THE PARTY OF		770 - 12

V. COLLEGE OF ENGINEER

OBSERVATION / DATA SHEET

80% Inlenes Name Lakhan Singhott ept/Lab ECE | MOSE Class VII Expt./No. Tille Ring Resonator

result:

2. Pourer develder.

The scattering parameter & this type of the given by:

$$[5] = \begin{cases} 0 & 1/2 & 1/2 \\ 1/2 & 522 & 523 \\ \hline 1/2 & 532 & 533 \end{cases}; \quad 523 = 53$$

The condition

unitary condition,

$$522 = -523$$
 $|522| = |523| = -|523| = 1/2$

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

T	and an and	umm:	AND TOO	W. Julancos
oblino	frequency (Rx power (dla) Rs P2, MatchP3 P1 = ilp	Rx power (dB) To P3. Match P2 P1 = 1/P	Bandan Eccasion Com
1 2 2 4 4 6 4 6 4 6 5 -	3.8 4.3 4.6 4.9 5.5 5.5 5.8 6.1 6.4	-11-87 -11-07 -11-07 -19-43 -20-03 -20-68 -20-07 -13-68 -12-07 -10-87 -11-75	-11.36 -11.16 -10.16 -18.35 -20.52 -20.64 -13.16 -11.75 -11.20 -10.75 -11.36	-14-48 100 -13-95 -13-95 -23-32 000 000 000 000 000 000 000 000 000 0
12	6.4	-12.55	-10.68	-14.75

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Name Lakhan Bingh - H 111 2003 Expt./No. _ 3 PLILAD ECE I MOSE 18 Parallel coupled sinectional coupler. Returns 1066 = 100109 611 Insertion 1058 = - 2010910 [5 41] coupling = - 20109 | 5211

Isolation = - 20109 | 5311

Directivity = Isolation - coupl

Signature of Teacher Incharge Result:

1510 no	Parameter (dB)
1	Insertion loss = -240-79
2	coupling = -29.7
3	Isolation = -31.49
4	Directivity = -1.79

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

10	2023	Name Lakha	n Singh He	
pt. Lab ECE	MSUR	Class VII B	Expt./No3	
e Hybrid	couplex	= 1		
		0		
	(2)	N4 7 22		
	1			
	₹0 XIII	√2₹0→	3×IB)	
	18		1	
	1 3 E	Nu Nu	TRUST	
	10	(a) (b)	0	
Layou	t g à	out orace	hyborid coupler	1
The second secon		TITIO	/	

Flesult:

stono	Powameter (dB)	
1	Insertion Loss:	541=-19.03d8 531=-26.51d8
2	coupling s -25-67	
3	Jaclation: - 28-48	Signature of

Teacher Incharge

To measure return and insertion loss emiles resonant frequency. Pick up the inferostrip Ring Resonant frequency and insertion loss at the resonant frequency and insertion loss at the resonant frequency and insertion loss at the resonant frequency. resonant frequency and insertion loss at the resonant frequency as shown in Fig 3.2. Here we use circuit board from the AMTK and mount the substrate in the test jig as shown in Fig 3.2. Here we use the circuit is now ready for testing only the center pair of input/output SMA connectors. The circuit is now ready for testing.

- Set up the system as snown in Fig. 3.
 Measure the input power fed to the Microstrip ring resonator circuit at a selected VO. 3. Measure the reflected power by noting the reading of the detector connected to the
- directional coupler and the forward power by noting the reading of the detector connected to the Microstrip ring resonator circuit (DUT) at the same frequency settings of the V00 Repeat the above two steps at 5-10 different frequencies by tuning the VCO.
- 5. Plot the transmission loss of the microstrip ring resonator.
- 6. From the plot, determine the resonant frequency of the microstrip ring resonator. From the knowing that ring length= \(\lambda\g\), calculate the effective dielectric constant and the permittive of the substrate used. This should be 3.2.

SI No	Frequency (GHz)	Pi	Received power	Po-P
	3.8	-5.79	-401	34001
2	11-	-5-47	-40	34.5
3	4.3	-5-47	-40	34.5
4	4.4	-8.07	-40	31.93

ommunication Engineering, RV College of Engineering, Bengaluru

5	4.6	-11-87		-	1
6	4.8		-40	28-12	
1	5	14-36	-37-87	03-51	
	5.2	-14-84	-03-43	(8.59)	-
8		-9-07	-06-72	18.65	
9	5-14	-8	-34-59	28.96	
10	5.6	-6.59	-37.96	-	

Expected result:

Power divider:

The layout of a conventional T-junction power divider in microstrip configuration with input port

mached is shown in Fig 3.4.

Fig. 3.4 Layout of a conventional T-junction Power Divider

The scanering parameters of this type of T-junction power divider is given by:

$$[s] = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & S_{22} & S_{23} \\ \frac{1}{\sqrt{2}} & S_{33} & S_{33} \end{bmatrix}; S_{23} \times S_{32}$$

SECTION DISTORTED

Using the same procedure, plot power coupled to port 3 (Match terminate port 2). Terminate port 1 and feed power to port 2 and measure power available at port 3.

Now terminate port 1 with matched load and measure isolation between ports 2 and 3. Determine the power split and isolation at the centre frequency.

Fig. 3.6 Microstrip power divider circuit without resistor in the test jig

an.	No.	Iα	70	CO	Ðи	1773	T3- *
13	D-M	БH	ж.	N/U	B.U	I, S, S, E	n:

The ree 3

SI No	Frequency (GHz)	Received power (dB) in P2, Match P3, P1=input	Received power (dB) in P3, Match P2, P1=input	Received power (dB) in P3, Match P1, P2=input
1	3.8	-II-87	-11:36	-14-48
9	4	-N · 87	-11-16	-13.95
3	4.3	-11-07	-10.16	-13-07
+	4-6	-19-43	-18-35	-83.83
1	4.9	-20.03	-20.52	-&L ·51
	5	- 20.68	-20-64	-33.32
	5.2	- 20.07.	-13.16	-23.12.

Expected result:

n in Fig 3.7.

2. (Ising the same procedure, find power coupled to port 3 (Matched terminate ports 2 and 4) and port 4 (matched terminate ports 2 and 3)

Determine insertion loss, coupling and isolation at the centre frequency.

yarious parameters of the coupling are given by:

Return loss=
$$-20\log_{10}|S_{11}|$$
, Insertion Loss= $-20\log_{10}|S_{41}|$, coupling= $-20\log|S_{21}|$, Isolation= $-20\log|S_{31}|$ 53 - 54 and Directivity=Isolation-Coupling.

ion medium $Z_0 (\approx I/Y_0)$ and port 3 is

Result:

SI No	Parameter(dB)
1	Insertion loss = -24-79 541 = -17 -36,
2	Coupling = - 29°7 521 = -30°87
3	Isolation = -31.49
4	Directivity = -1.79

Hybrid Coupler:

Theory. The layout of a rat race hybrid coupler in microstrip configuration is shown in Fig 3.9.

cional of the ags of

power

y at the

TK and pairs of

rcuit

Fig. 3.9; a) Layout of a rat race hybrid coupler b) Microstrip Rat Race Hybrid Coupler Circuit

from ports 2 and 3 and port 4 is isolated. These signals have 180° phase shift. When used as combiner, signals are fed to ports 2 and 3. Difference signal is available at port 4 (Δ -port) and signal is available at port 1 (Σ -port).

Procedure:

Pick up the Microstrip Rat Race Hybrid Coupler circuit board from the AMTK and mount the assin the test jig as shown in Fig 3.10. Here we use top two pairs of input/output SMA connectors circuit is now ready for testing.

- Set up the system as shown in Fig 3.3.
- Terminate ports 3 and 4 in 50-ohm matched loads.
- Measure the input power fed to port 1 of the Microstrip rat race hybrid coupler circuit selected VCO frequency.
- 4. Measure the reflected power by noting the reading of the detector connected to the director coupler and the forward power by noting the reading of the detector connected to port 2 of a Microstrip rat race hybrid coupler circuit (DUT) at the same frequency settings of the VCD
- 5. Determine the power coupled to port 2 of the microstrip rat race hybrid coupler circuit.
- Using the same procedure, find the power coupled to port 3 (Match terminate ports 2 and and port 4 (match terminate ports 2 and 3).

RESULT:

SI No	Parameter(dB)
1	Insertion loss = - 25.58
	5W19.03
2	541 19 · 03 Coupling = - 25 · 67
	521 19-23
3	150lation = - 28-48 531 = -26-51
4	Directivity - 2-79

Observations:

the sing sesonator are widely used in measuring to a dispension, dielectric constant and a factor st is caucial took as RF designess to know the dielectric constant of material when designing at high freq che and one reliable method is using a sing sesonator.

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Date	Name	Lakhan	bingh . H	
Dept./Lab_ece - MWR5				
Title Chagaderization	od	Michocoave magic Jee,		
Directional coup	slea,	circula	ton, jurable	

isolatore.

Alternations & parameter and plot 5matrix for passive micropave devices such as waveguide & plane, the plane, Magic Tee, Consulation, Directional couples,

Equipment sequired: trystron power supply,
Oscillatos. Isolatos, alternator, july meters.
all above devices, CRO and match load.

Magic Tee:

Port3

Collocar asims

Port2

Part2

Part 4

altenuator and

A magic the is combination of eplane and the plane Tee.

iblino	Pagametea	Value (de
1	531 = 532	
à	541 = 542	-45
3	534 = 543	0

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

e	Name Kakhan	Singh . H
pL/Lab <u>ECE</u> - MCO	RG Class VII B	_ Expt./No 4
e Directional	cooplex.	
dent pe	main waveguide	2 Recitived powers
power 3	Discretion toup	tomoand power
coupling facto	(C) = 10 md 10 (B)	
Directivity C	D = 10 Logio (PUIP	6) dB
Isolation (I)	= 10 togio (Piles	dB
disdalter in	dB = coupling +	factor + Disectority.
A 000 %		

brotoix:

Blono	Parameter	ralue (dB
1	512	-17-8
2	521	-17-7
3	532	O Signature of Teacher Incharge

Block diagram

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

	Name d'ou	khan	singl	itt	_
edulab ECE - MWRS					-
THE CONCULATOR & LAS					

s mataix circulator.

gl no	Posameles	ralue (dB)
1	513 SIKSHANA S	@16.2
8	521	16.2
3	532	16.2

solution: suo post non symmetric scattering matrix and non seciprocal device.

Signature of Teacher Incharge

51 no	Paxameter	Yolu
1	Siz	- 35.8
2	521	The same of the sa

Tec

Equipment's are connected as shown in the Fig 4.3.

- Keep the repeller voltage at maximum, beam voltage at minimum before switching on power supply and also switch on the fan.
- Switch on klystron power supply and increase the beam voltage to 250V. Note down term current.
- Adjust the repeller voltage and detector knob to get maximum output (P_i) on CRO/SWR neter keeping frequency meter detuned.
- Feed the microwave power at the given port and measure the output power at the required port using the CRO while terminating the other ports with matched loads.
- a. The readings are noted and the parameters like insertion loss, isolation and power avision are calculated using necessary equations.
- The input power to any given can be measured by removing the magic tee and connecting the crystal detector and CRO.

perconal Coupler

- 1. The experimental set up is as shown in Fig 4.3.
- 2 Energize the microwave source for particular frequency of operation.
- E. Set any reference level of power on CRO/SWR meter, and note the reading (reference level let P1).
- 4. Measure the power in different ports and calculate coupling, directivity and isolation.

RESULTS:

Smatrix of a magic tee:

Sl No	Parameter	Value (dB)
1	S31=S32	-19-13
2	S41=S42	-45
3	\$34=\$43	0

Satrix of a Directional Coupler

SINo	Parameter	Value (dB)
1	S12	-17-8
2	S21	-14.4
3	832	0

THEORY: A circulator is a ferrite device (ferrite is a class of materials with strange has the control of the control of the circulators are non-reciprocal devices, that is, energy in the circulators are non-reciprocal devices, that is, energy in the circulators are non-reciprocal devices. THEORY: A circulator is a ferrite device (retrite in the properties) with usually three ports circulators are non-reciprocal devices, that is, energy into port 3 exits port 3, and energy into port 3 exits port 3. properties) with usually three ports circulators are non-section of energy into port 3, and energy into port 3 exits port 1, prodominantly exits port 2, energy into port 2 exits port 1 to port 2 would occur. predominantly exits port 2, energy into port 2 exits port 1 to port 1 to port 2 would occur to energy that flows from port 1 to port 2 would occur to energy that flows from port 1. The scattering matrix for an ideal of reciprocal device the same fraction of energy that Hows. The scattering matrix for an ideal firety flowing in the opposite direction, from port 2 to port 1. The scattering matrix for an ideal firety. circulator is

$$[S] = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

S-Matrix of Circulator

Fig 4.4: Circulator

An isolator is a two-port device that transmits microwave or radio frequency power in one director only. It is used to shield equipment on its input side, from the effects of conditions on its output side for example, to prevent a microwave source being detuned by a mismatched load. An isolator is a terminal to the company of the reciprocal device, with a non-symmetric scattering matrix. An ideal isolator transmits all the pose entering port 1 to port 2, while absorbing all the power entering port 2, its S-matrix is

$$[S] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

s-Matrix

Fig 4.5: Isolator

PROCEDURE:

- Connect the components as shown in experimental set up Fig 4.3.
- Structure of a circulator and isolator are shown in the Fig 4.4 and Fig 4.5 respectively.
- Energize the microwave source for particular frequency of operation.
- 4. With the help of variable attenuator and gain control knob of VSWR meter set any power level in the CRO/SWR meter.
- Verify the s-matrix for both circulator, isolator and attenuator.

RESULT

S-matrix of a Circulator:

INo	Parameter	Value (dB)
	S13	-16-12
	S21	-16-12
	S32	- 18:12

\$12=\$23=\$31=0 (To verify)

S-matrix of a Isolator:

SI No	Parameter	Value (dB)
1	S12	-35.8
2	S21	- 16.9

S-matrix of a Attenuator:

SI No	Parameter	Value (dB)
1	S12	-
2	S21	-

Magic Tee, due to symmetric paropearly we get Sij=5ji Also because of zearo paropearly and unitary propearly 631=532 and 541=542.

-> For circulator we observe that power is only available at the port which is circularly next

to PIP P	od.
→ FOR EST	olator
we find	power
is only available	on
particulas	

→ 4 the direction
of power from is
in in companies
to allowed direction
a high isolation
is perovolded.

SLNo	Criteria Max Mark		Marks obtained
	Data she	et	
1	Problem statement	10	
2	Design & specifications	10	
3	Expected output	10	
	Record	1	
4	Simulation/ Conduction of the experiment	15	
5	Analysis of the result	15	
6	Viva	40	
7	Total	100	
Scale de	own to 10 marks		
Staff Sig	gnature:		

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET
Date Name Lakhan Birgh +C
Dept./Lab_ECE - MWRS_ Class_vii B _ Expt./No5
Title Illustration & Radan Range.
detection using x-bound hours antenna tx and Rx with different Rodan Cross section (RCS) MSHANA SAN (B)
Equipment Required: kylounds por x-hand
detectase, from antenna, metal plate, detectase, from antenna, metal plate, waveguide-to-BNC adapter, Oscilloscope, waveguide-to-BNC adapter, Oscilloscope, Power meteology, Tx, tauget, Fix too Geometric according ement of Tx, tauget, Fix too Radan.
Inclose toaget Rivore Toaget
Tx antenna (Pt, qt, Dt, ecdt, (Ph) (Pt) (Pt)
(Pr, Gr, Dr, ecdr, Fr, Pr).

The Arws = ecottecol or Pedecot of An + ()/47 R

- Tex power to ip power.

Pt - ecdt ecds or Dt (Ot. Ot) Dr (Ot, Ot)

-> LOSSEE Focluded.

 $\frac{P_{\tau}}{P_{t}} = e_{cdt} e_{cd\tau} \left(1 - |T_{t}|^{2}\right) \left(1 - |T_{\tau}|^{2}\right) \sigma \underbrace{D_{t} D_{t}}_{4\pi}$ $\times \left(\frac{\lambda}{4\pi R_{t}R_{2}}\right)^{2} |p_{\omega}^{*}|^{2}$

 $\frac{1}{2} \frac{P_0}{P_t} = 0 - \frac{Q_{0t}}{4\pi} \left[\frac{1}{4\pi R_1 R_2} \right]^2$

y, COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Tabular columns

Paxameter	180	Tanget :	1.	Tax
Tx power (Pt) in mw		01971		0 1971
operating (b) in the		9.78	2009	9.78
openaling (x) in m		0.0306		0.0306
Separation 6/10 TX and Radar (RD in m	1	94.11	1	65.35
separation 6/10 Rx and Radar (R2) in m		56	1	54
Recleved Power in min Tx ountenna gain (Gt) in dB	1	0.048×10-5 (30/ma)	(3	15 # 10 5 um w)
Per antenna gour (40) dB		54	5	4
Rodan could section	87	.9	73.	01

Find the receiver power (Pr) of the antenna. Find the radar cross section(σ) of the target by using radar range equation $\frac{Pr}{Pt} = \sigma \frac{G_t G_r}{4\pi} \left[\frac{1}{4\pi R_z R_z} \right]^2$. Here Gt and Gr is practical transmitter and receiver antenna gain.

a Repeat the step 6 to 8 for the different target object.

TABULAR COLUMN

LTS

Parameters	Target 1	Target 2
mesmitted power (Pt) in mW	0-1971	0.19=1
Operating frequency (f) in Hz	9.78	9.78
Operating wavelength (\(\lambda\) in meter	0.0306	0.0306
separating distance between transmitter and target	94-11	85.35
sparating distance between target and receiver	54	54
enceived power (Pr) in mW	BOYOU	1=15 X10(3(mio)
transmitter antenna gain (Gt) in dB	54	54
Proceiver antenna gain (Gt) in dB	54	54
Radar cross section (o) inem ²	87-9.	73.01

ervations:

reprecautions to be taken:

Power flowing out of horn antenna may damage the retina of the eye, do not see directly inside
the horn antenna.

Materials present in the vicinity of the experimental setup may be absorbing ones. Keep reflecting objects away from the experimental setup.

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Dept/Leb ECE | MCORS Class VII B Expt/No. 05

Title Design Simulation of microstrip line and hybrid sing using +ff.88.

sin: To design, simulate and analyse the 5 parameter of 50 s microstrip line and painted hyporial ring @ given frequency sand.

apparatus: 64 60t PC/Laptep. Ansys tess design hit Equation: UP = 6/160

B = KOVEE

Ee = ET+1 + Ex 1 1

 $\frac{\omega}{d} = \begin{cases} \frac{8e^4}{e^2 \cdot A - 2} & \text{for } \omega | d < 2 \\ \frac{3}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \cdot 39 - \frac{61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \cdot 39 - \frac{61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \cdot 39 - \frac{61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \cdot 39 - \frac{61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \cdot 39 - \frac{61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \frac{39 - 61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \frac{39 - 61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \frac{39 - 61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{8\pi - 1}{28} \left\{ \ln \left(8 - 1 \right) + \frac{39 - 61}{67} \right\} \right] \\ + \frac{1}{K} \left[8 - 1 - \ln \left(28 - 1 \right) + \frac{1}{28} \left[\ln \left(8 - 1 \right) + \frac{1}{$

A = 20 (Ex+1) + 60-1 [0.28 + 0.11]

B = 377x [5] = -1/2 [0110]

Signature of Teacher Incharge steps:

1. Insert Hes design.

a. Rasject → Insert Hes design.

a. acasing ground plane for micocochep une

3. Draw - Rectangle - mouse pointer in align (

4. Daaw sectangle with aubitary x & y die 5. Rename the ground plane with ground.

6. Go to Model windows - Rectangle! - Altributes

7. colos - saange - ok.

s. belect the governd plane dimension

9. Model - guound - create rect - x size = 20mm. 9 bize = 40mm

10. Design substrate box.

Daaw+box - postition - usingmouse - augin (0,0,0) x size = 20mm, y size = 40mm = 0k.

11. Rename the box width substante & choose substante material solid = vaccum = Name = substante = material = Edit = search by name = fe4" = select

nodel = solids = FR4 epoxy = substrate = create Box

13. shreets - russaigned - Recl 1 Double click - Name - 55

14. Change dimension & position.

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

-	gate	Name_dakhan	Singh &	
100	Dept/Lab_ECE MUDES	Class VII B	Expt./No	6
1	TITLE MICHOSTALD & HEYBON	ed Ring.		
16.	using dell comme	and belect	both good boundary.	rnd & Use > Perfect e.
17	Assign excitation	ns for pools o	and post	2 .
18.	Draw - Rect - wi microstrip line.	the moute po	inter select	tace of
19.	model > sheets >	to accurate a	dimensions	0
20.	X Size > 3.		1	
ål:	create Radiation model > solids on mouse > 168	n Box.	ialions, Ri	ght click
22		rage Explaner	F-DF 3	
21	s. Distoublion > Ul step size = 0.19- pourieus to chec execution.	near step > Hz, sweep ty k the no.4	pe - fout introvation Significant	click on manufacture of

25. Hiss = validate check if evenous is displayed than

Signature of Teacher Incharge as these boundary, dimensions a excitation of excitations when theck the boundary, dimension to excitations.

as. After validation - Enecute Analyse all.

Has parcedure for hybrid Ring

as for part line:

b= 2-49, Ex=4-4, +l= 1.6mm, 70=5.

for irrea radius:

t= 0.49, Ex=4.4, \$t=1.6mm, \$0. 70.70
L=540. Radius width=1.62mm
Length=105mm

Design parameter:

width (70.72) = 1.62 mmlength (70.72) = 10.5 mmR = 15.9 mm

8= 17-50 rom.

30. Rectangle design: x size = 3mm y size = 24mm position = 1.5, -30,0

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Name Sakhan Singhoth Expt./No. 5 Dept./Lab_ECE- MWRS Class VII B Tille Microstoling & Hyporid surg. . Draw substrate & ground plane beneath hybrid sting. → Route → Axis → Z → Angle 30° → OK - creating ground planse - Docaw siegular polyhedocon centre position = 0,0,0 Ancis = 7 height = Omm 32. Assign port excitation: -> cumped post -> name -> 1/2/3/4 Assign encitation for sunaming posits 33. Delaw box (-50, -50, -50) x = 100 , y = 100, == 100. Desaw material as Air to Box. Increase transpowercy & box. 36. Align Boundary as Radiolion Box.

> Signature of Teacher Incharge

Results:

construct a table & 5 parameter for moter

parameter	producted model
SII	dB
512	-112.3
521	-0-691
522	-0-691
	-33.1

Observations

- * we get on and 622 (i.e (suffection coefficient)

 is less than 200B showing not much suffer
 on designed freq. Hence microstorip wire
 typically can operate 6/10 1 to 209Hz.
 - + Ite 512 04 521 (Islansmussions coefficient) is around 0 to -30dB, which suggest that transmission happens around to suggest that 512 and 521 gradually decrease with Escrease in prequency which suggest less or gradually increasing to higher frequency

Sl.No	Cultouto	Max	Marks obtained
SLINO	Criteria	Marks	12

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Date	Name Lo	khan	Blagh +te
Dept/Labece - MODES	_ Class _VIL_	B	Expt./No 😭
Title Design and Sig	nulation	of	Rectangular Danguide
and Magic Fee	using	E9+	-Rectangular Danguide 55.

Ain: To design, simulate and analyze the Rectangular waveguide and Magic Jee.

Equipment required 64 bit personal computer with 1866

Parocedure:

HIJJS > validation check

HEESS + Analyze all

- + Jools + options + general options
- + Expand teggs boarch
- deft mouse click boundary assignment
- -> we wizard for data ip when creating new boundaring checked
- Duplicate boundanies/mesh operations with geometry checked.

sching tool options

Drawing: Edit properties of sew Teacher Incharge primitives: checked.

I IO E BOO

Count

Expand the display boards Rendering set default Jaanspaaency to of History Jace: select last command on object policy

- start tells and define geometry

→ which + styles + solution type > model

→ belect > modelex > units > mm

- Define geometry: Down Box - click thouse time in main area

- so box peroperties tab - define position Position: -0/2, -6/2,0.

- Define parameter used. unit type: dength

Unit : mm

value for a = 22.86

value for 6 = 10.16

select the value.

x size: a

y あき : 6

Z sixe: d

click Ok.

- pepline it, length & waveguide along & anis, value & L: 60. Ok.

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Pate	-	_ Name_dakho	in Blagh-it	
pept/Lab_ec	E -MURS	Class VII B	Expt/No. 3	-
ntie Reckoun	gular was	ce quide		
	1	V		
copy the	e enner	call diffrat	tion and the	s mode

- to give waveguide thickness.

 > click on box object box L and chil+c and ctrl+v
 in same plane Box 2 28 created.
- Double click on box2,

Name: metal material: coppes

open command tab par this airbox by obuble click create box under copper solid change proposition

Position: -a/2 +th, -6/2-th, 0.

-> Define the value.

onit type: length

Value tox th: 0.2 X Size: a + 2 * th Y Size: b + 2 * th Click ok.

Signature of Teacher Incharge - modeles - Boolean - subtoract.

- an modeled tree, select Box1 and copy p with Not assigned solid, apply

Name: air

Material: air

Transpowent: 1

is modeles tree, select air and copy par with new airs solid, apply

Manse: Radiation

Material: air

Transporent: 1

Position: - a/a-5mm, -6/2-5mm.0

X size: a+10mm Y Size: 6+10mm

-> New assign this box as radiotion boundary modeles true, RC on radiation solld > Assign Boundary > radiation ok.

-> Poulst I to enter face selection mode.

Select x-y plane

face > 158ign excitation > nave posit.

- editor. Une - new line - 300 modeler

V. COLLEGE OF ENG

OBS	SERVATION / DATA SHEET
p-	Name Cakhan Bingh . 18
MILLED ECE - MWH	Class VII B Expt/No 4
me waveguide e	Magic Tee.
. Project manag	ea - smalysts - add solution
setup - advo	mce.
Freq: 109Hz	
Num & pass	
ok.	THE WAY
+ setup 1 - Add	la great courses
someep type :	Discrete
Distail Less	No.
-start : 5 G	HX VO
	*
Step: 0.19+	12

birulation:

> + type > solidation check > smalyge all -> Peroject manager - part field display - mode - model tree , R click on the solid:

Bave field: All frequencies checked.

PLOT field + E - mag E.

Signature of Teacher Incharge

- > tips = field > Edit Bourcos > mode & and observe the change in & field.
 - Remove plot visibility for Mag-c.
 - > model true , R click on Air Bolid:

 Plot field > € > rector_€.
 - → field → Edit sources → activate first mode and observe €-rector.

R click rectas € > arimate.

V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

p	_ Name Lakhan	p singh . He
pulab_ece - MLORS	Class VII B	Expt./No. 4
Magic Jee	All solly a n	Marin Andrews
, polar the bo	ox and its	dimension
0,0,0).	use mouse po	inter , solect as
model = vaccum Position = EINF x = 22.86 y. = 100 \$\frac{7}{2} = 10.16 * Doplicate \$\frac{1}{2}\$ * Pool 2	3: 20-5.00°	ade 60x
Axis: * Angle: 90. Total no: 2	ONTUTION OF THE PARTY OF THE PA	
* Pord		

dreis: Z

Totalsumbea

Doed

Signature of Teacher Incharge

- > Edit > select all
- -> modeles -> Boolean -> britle.
- -> select ctal + select all aums except face,
 -> Right click mouse -> Assign boundary,
 -> Perfect E -> Name -> Perfe.
- integration line new line
- similarly do for all 4 ports.
- Analysis Add solution selve solution by → 10 GHZ → Enter OK.
- Type + linear step. sweep type Interpolation,
- * stood : 69thz ; stop : 159thz, step stize: 0,19th -> High - ralidate check - Analyze all.
- -> Model solution pata support -> Rectangular port - choose & parameter - quantity. SCI,1), SCI,2), (5(22), 5(2,1) click sew report.
- + magic tee > create field overlay > Plot > E + vector. F.
 - similarly & field magnitude (mag-E) plot

0.00098 = -60.17 $0.00093 = -71.05$ $0.00093 = -60.63$
0.00088 = -71.05
0.00090 = -60.63
0.0012 = -58.41
3. 7656. = 11.57
0.00055 = -65-19
0.000555 = -65.19
1. 673 = 4.46
1. 7389 = 4.805
0.00046. = -66.74.

The designed magic the gives high isolation loss

about - 60ds tos designed frequency.

The Observed value & magic tee is in accordance with theopetical expected value of magic Tee.

At given foreg, 109HZ. magic Tee is designed and 5- parameter put was calculated and analysed.

SLNo	Criteria	Max Marks	Marks
	Data she	et	
1	Problem statement	10	
2	Design & specifications	10	
3	Expected output	10	
	Record		
4	Simulation/ Conduction of the experiment	15	
5	Analysis of the result	15	
	Viva	40	
	Total	100	
6 7 Scale do			-

B.V. COLLEGE OF EN

OBSERVATION / DATA SHEET

Name Lakhan Singh +e Dept./Lab ECEL MOURS Class VII B Expt./No. 7 Title Dissign & simulation of patch Antenna & opti metrics using Hyss. sin: Design & simulation of a coaxial. fed sectangular mious strip patch, painted dipole & hours antenna @ a specified resonant frequency with 4865 softwood. opposatus: 64 bit PC. Angres 4965 design Lit. Procedure: " Parobe - jed patch antenna with optimetoics. a Restone suchieve & save optimetrics -> patch1 4. Design monitoble and been feed - pos & patch-length 4. Design réasitable are local variable. 5. stoot paramelaic analysis setup. 6. parameteric Analysis setup - Add sweep 7. SUPC & Analysis options 8. Apr : Analysis configuration - Analyse optimes 9 save validate & malyse Affis Design optimilaic 10. when to parameter nesult of Signature of 11 start optimisation Analysis Teacher Incharge etastup - optimisation

Name: Leed - POS

Include: Debecked

min: 10mm max: 12mm

- 12. open optimization analysis setup Dialog
- 13. optimisation setup, Edit, calution Range,
- 14. optimisation setup Dialogue > vasulables

 optimetrics patch and for patchs
- 15. optimisation Result Lable & optimelaicing
- 17. Analytic desiratives &- pasiameter remin
 - 18. Add tuning plot to 5 parameter.
- Analytic rollerivative: Radiation patter non-Jelace (10/2)
 - > setup a: last adaptive
 - Geometry: Infinite sphere
 - Intrace tab: category: gain quartity; galo total function: de.
- Desirables: Radiation patterns tuning tros nearratives: Radiation pattern tuning plat

Observations:

antenna with convertial antenna. they have more advantages and better pouspects like teght weight, low volume and cast.

patch antenna & dipole antenna were designed and simulated in software.

The 5 parameter ped was obtained & analysed along with the radiation pattern with performant tax radious patch width & feed position value

SLNo	Criteria	Max Marks	Marks obtained
	Data she	et	
1	Problem statement	10	
2	Design & specifications	10	
0	Expected output	10	
-	Record		
•	Simulation/ Conduction of the experiment	15	
	Analysis of the result	10	
	Viva	15	
	Total	40	
	n to 10 marks	100	

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

	Die grand was a	MANY WAST	STEWNS .	
Date	Name Kalkl	ran bin	gh . He	S Black
Dept./Lab <u>ECE - MWR5</u>				
Title Penformance Ana channel model	lysis of	nayleigh	3ad	ing
sin: performance A	nalysis using	MATLAB.	ugh 3	tading
Equipment required	Comput	tea with	MATI	AB.
mattab code:		1		
BJ5k (AWGN Foods	(gn)	RUST		
clc;	1	0		
close all;	Vo.	5/2	00 30	
N = 20000;	NSTITUTAL	De pare		
SNR - Limit = 35;		and Lines		
SNR- dB = -5: 0.5:	SNR-Lemil	Property.		
SNR = 10 ^ CONR _ de	3/10);			
U= sand (1,N);				
M = floar (2 * R	and Ci, N);		
van - 1;				
noted = saget (vas)				
y = (Zerios (1,N))				ture of
Pe-BPSK - Sim =	(Zeros (1, length (sive my	Incharge
	ZEOLDECI.			

```
Pe_DPSK_ sem = (Reduce, CI, Length CENRI)).
   0/0 Generation sayleighranon vacciable
     a= sgat (-(2 + vaa + log (20));
     tigci);
     hist (7,100);
   title ( raleigh random radiable histogra,
    x label (' random raviable R');
    ylabel (' frequency');
    a. Lo:0.01:10];
    R= (alran). + engs (- (a. +a)/(2 + ran);
    feg (2);
    plot (a, R)
   title ( raleigh EDF);
    xlabel ( random raviable),
    legend (rasiance = 12);
   % BPSK simulation
   Pe_BPSK_id= 0.5 *(1-squt (cras+snr)./CHYON,
   1. BF5K semulation
De_BFSK_Ed = 0.5 + (1-squt (rant BNR./(2+vait
```

COLLEGE OF ENGINEER

OBSERVATION / DATA SHEET

Name Lakhan Blagh-H MWRS Class VII B Expt./No. 9 He Rayleigh bading Desk simulation Pe_DPSK_id=0-5./(1+ YOU * 5NR); 1. comparision of sources for Away and rayleigh Pe_BPSK_NF. 0.5 * (ENC (SOUT (SNR))); De_BJSK_NF_0.5 + copc (sque (SNR/2))); Pe_DPSK_NF + 0.5 + exp (-SNR); 一份(3) semilogy (SNR-OB, RE BPSKS TO, "T.-", SNR-OB, BJSK_Ed, 'T* - ', SNR-dB, Pe-DPSK_Ed', 'T -- ', SNR_dB, Pe_BPSK_NF, '6.-', SNR_ dB, BJSK_NF, "6+ - ", SNR-dB, Pe- DPSK-NF, (6--); axis ([-5 5NR_ limit 0.000001 1]); title (performance & BBSK, BFSK, DPSK) Xlabel ('SNR (db)'); ytabel ('prob of eauna); Signature of legend (Pe & BPSK with tading, Teacher Incharge " Pe of BF5k with bading. " Pe Drosk with bading

· Pe & B PSK without tacking, ' Re BASK without tacking);

BPSK;

end

68-NO-dB = 0.5 : 35; NO - Over - 2 = 68+ 10. ~ (-66NO-d8/10) sigma= 1; rag = sigma 12; BER - Zeolos (1, length (CBNO_dB); % calculation course probability: fase (= 1: length (GBNO_dB); no_ escass = 0; no_6its = 0; while no-esses <= 10 u = sand outpha = sigma * sopt (- + log (11)); nothe = saget (No-over - a(1))+ mando; y = alpha + squt (66) + notes; B y = 0 y-d=1; else y-d=0:

I. COLLEGE OF ENGINEERING OBSERVATION / DATA SHEET

Name Lakhan Bligh. H. BLAB ECE - MBLIR Class TIII B EXPLANO 9 ne Bayleigh modelling

no_ bits = no_ bits +1; no-cornas - no-cornas + y-d;

Bex(1)_ no_ counges [ero_ Bits:

1. Colculation & exacts prob using thecastical Tho_6. Co. Mo_ OVER -2+ YOR;)

D2 - 1/2 + (1 - leget (Tho-By/(1+sho-6)));

· lo plot seputts

semilogy (Ets No-dB, BER, '-+', Et No-dB, P2, 1-0) title (mote casalasimulation pa Brok); xlabel (threatage SNR/ Bit (dB)); ylabel (Execus probability); regend c'monte cardo simulation. I Thurstical rolue");

> Signature of Teacher Incharge

BER(i) = no_errors/no_bits ; %estimated error probability

% Calculation of error probabilit using the theoretical formula:

tho b = Eb/No over 2*var;

P2 = 1/2*(1-sqrt(rho_b./(1+rho_b))); %the theoretical value

% Plot the results:

semilogy(EbNo_dB,BER, '-* ',EbNo_dB, P2,'-o')

title('Montecarlosimualtion for Performance of BPSK signal');

xlabel('Average SNR/bit (dB)')

ylabel('Error Probability')

legend('Monte Carlo simulation', Theoretical value')

Observations:

+ Parbability & warm decreases significantly for modulation scheme without fading with someone in signal to noise madio (SNR)

* so possessive of noise and interference (with month carilo simulation), we observe the probability of enno decreases.

+ we observe a peak in rayleigh gandon radiable distribution at stange from 0.5 to 1.5 with peak perobability & exam \$ 0.6.

SLNo	Criteria	Max Marks	Marks
	Data she	et	
	Problem statement	10	
	Design & specifications	10	
	Expected output	10	
	Record	1	
		1 10	
	Simulation/Conduction of the experiment	15	
		15	
	of the experiment		

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Dept. Lab MORS - ECE Class VII B Expt. No. 10

Title Simulation of CEDM transmitter and Reclever.

and Reclever using Mallab software.

Equipments Required Computer with mottab editione

Mattab code:

clear all

: 49 = TEEn

DDSC . 52;

nost persym. 50;

negn = 104; % no. & symbol

EBNOOD = [D:10] 1/2 bit to noise scaling + (FE noise scaling) + (FE noise scaling) + (FE noise scaling) + (FE noise scaling); 1/2 coverting to symbol to species scaling.

for ii = 1: length (EBNOOR)

Signature of Teacher Incharge ipBit = sand (1,0 Bitpeasym * rsynd >0.5; % sandon 1's and 0;

ipmod = 2 * ipBit -1;

Ep Mod = reshape (ipmod, n Bit persym, neym)

1. Assigning modulated symbols to subcase from [-36 to -1, 1 to 36].

XF = [Zeads (reyn. 6) Epmod (:,[inbit peakymle])
Zeads (neym.,1) Epmod (:, [nBit Peakymle])
nBit Peakym]) Zeads (neym.,5)];

xt = (n33T/sgpt (nDsc)) * ifft (ffeshift (xF.')); of appending cylic parfix

xt = [xt (:, [49:64]) xt];

% concating multiple symbols to form long vector xt = subfrage (xt., 1, nsyno +80);

of Gaussian noise of onit radiance, O mean nt = 1/squt(a) * [xando(1, nsym +80)+j+ xando(1, rym +80)];

yt - sqqt (80/64) * xt + 10^ [- EBNORB (ii)/20)* nl;

R.V. COLLEGE OF ENGINEERING

OBSERVATION / DATA SHEET

Dept./Lab ECE - MWRS Class VII B Expt./No. 10

Title OFDM TX F, RX

"/" Reciever

yt = sushape (yt.", 80, 18ym).";

yt = yt (:, [17:80]); / suemowing cyclic puefix.

"/" Converting of pregilinary domain (yt)

yF - (sqst (nDsD/nJJT) * fftshift (yt (yt.")).";

yMod = yF (:, [6+[1:nBst.Peasym/a] 7+[nBst.Peasym/a+1:nBst.peasym]).

% BPSK demodulation

e/. +ve value + 1, -ve value + -1;
ipmodHat = & + floor (real (y mod/2))+1;
ipmodHat = (find (ipmodHat > 1)) = +1;
ipmodHat (find (ipmodHat <-1)) = -1;

% conventing modulated values into bits;

ip Bit that = (ip Mio diffeat +1)/2; Signature of ip Bit that = suchape (ip Bit that ., Teacher Incharge noit persym + roym,1).

```
% counting the execuses,
nesu(ii) = size (find (ipBitteat - ipBit), 2);
SimBea - DESa/Crisyno * DBit Pearsyns);
theavy Bea = (1/2) * eafc (1899et (10. 1 (66NodB/10)
 close all;
 Fig semilogy (CBNOdB, theory Bea, 'BB-', Linewill)
 holdon
 semilogy (CBN odB, BerniBer, 'mx-, 'Lisewider', D);
 gold on
(egend ('theory', 'simulation );
 xiabel (168/No, dB)
 ylabel ('Bit Exacs Rate')
Little (Bit exxas paobability curve for BPSK
```

anery

Spro

```
rill - alrettindilphithat - iphit1,21,
  TOUR - (1/3) *#FEC (sqt (10. *(EbNodB/10)));
  mr - while endymanbitressym);
 allow (Thiods, theorymer, 'be-', 'hinewidth', 21)
milegyithWhite, mimber, 'mx-', "LineWidth', 21:
MINISTER 30 10"-5 111
worntraheory', 'assulation');
Catell'Elifer, day
title! Bit weret probability curve for BPSK using OFDM')
```

CONCLUSIONY

DEDM esignal consist & a no- & closely spaced Observations modulated canalists.

The 'loverse 337 can truspose be used to greatibe the basic of Dro Eignal @ Tx & 337 can be used to secones the symbols @ Rx. The mitigalton effect is which frequently happens

with signal of

SLNo	Criteria	Max Marks	obtained
	Data she	et	
1	Problem statement	10	
2	Design & specifications	10	
3	Expected output	10	
	Record		
4	Simulation/ Conduction of the experiment	15	
	Analysis of the result	15	Marine
	Viva	40	
	Total	100	100

short symbol dua attors in multipath As the no. & sub carrier increases the BER stand to diviate from

Marks