Basic Training on the Global InMAP Model: A Workshop

Dr. Sumil Thakrar, University of Minnesota

Dr. Vikram Ravi, NREL

10th – 11th March 2022

Background Quiz

How many excess deaths were associated with air pollution exposure in ASEAN countries in 2019?

- Tens of thousands (~10,000)
- Hundreds of thousands (~100,000)
- Millions (~1,000,000)

How many excess deaths were associated with air pollution exposure in ASEAN countries in 2019?

- Tens of thousands (~10,000)
- Hundreds of thousands (~100,000)
- Millions (~1,000,000)

McDuffie et al. (2021) estimate 130,000 - 320,000 excess deaths from ambient $PM_{2.5}$ exposure in ASEAN countries in 2019.

Deaths from ambient air pollution are mostly from fine particles ($PM_{2.5}$) followed by ozone. How many times more excess deaths in ASEAN countries were caused by ambient $PM_{2.5}$ than by ozone in 2019?

- Around 5 ×
- Around 10 ×
- Around 50 ×

Deaths from ambient air pollution are mostly from fine particles ($PM_{2.5}$) followed by ozone. How many times more excess deaths in ASEAN countries were caused by ambient $PM_{2.5}$ than by ozone in 2019?

- Around 5 ×
- Around 10 ×
- Around 50 ×

The Global Burden of Disease estimate \sim 9,000 deaths from ambient ozone exposure, 44 × less than from ambient PM_{2.5}.

(3) Of the \sim 300,000 excess deaths associated with ambient PM_{2.5} exposure in ASEAN countries, what percentage are attributable to the power sector?

- Around 10%
- Around 20%
- Around 25%

(3) Of the \sim 300,000 excess deaths associated with ambient PM_{2.5} exposure in ASEAN countries, what percentage are attributable to the power sector?

- Around 10%
- Around 20%
- Around 25%

6% from coal and 4% from non-coal energy (McDuffie et al., 2021).

~10,000 - 40,000 deaths each year

Background Summary

- Long-term exposure to ambient PM_{2.5} is the most important environmental health risk
- Understanding how policies change human health through changes in pollutant emissions is key to alleviating health risks
- Air quality models such as Global InMAP are necessary for this purpose

Workshop Summary

Workshop Overview

- Module 1 (10th March): Installing Global InMAP and understanding everything necessary for configuring and running it
- Module 2 (11th March): Preparing emissions, running Global InMAP, and exploring the model outputs

Module 1: Introduction to Global InMAP and model set-up

- Today, we will:
 - Learn to prepare emissions for input into Global InMAP
 - Learn how to run Global InMAP to estimate changes in pollutant concentrations

Basic Global InMAP workflow

- We will discuss each of these briefly now, including the model configuration in detail
- Tomorrow, we will run through the whole process

Input emissions inventory

Emissions inputs are in the ESRI Shapefile format:

The .dbf file stores the feature attributes

The .prj file describes the shapefile projection

The *.shp* file describes feature geometry (points, lines, areas)

The .shx file describes feature index (The .qml file describes imaging style)

- The inputs are in units of ton/year, kg/year, or μg/s
- For each primary pollutant (PM_{2.5}, SO_x, NO_x, NMVOC, and NH₃) there is 1 attribute
- There are also attributes for stack parameters (height, diameter, temperature, velocity) of elevated emissions

Output changes in concentrations

- Global InMAP results are saves as an ESRI Shapefile
- The results give annual average changes in PM_{2.5} concentrations across space
- Also: speciated PM_{2.5} concentrations and mortality

Model configuration and simulation

The basic command we will be running is the following:

inmap run steady -s --config=sampleConfig.toml

"inmap" calls the executable. In this workshop, we will download a release of InMAP, so it will be called something like "inmap-v1.9.5-darwin-amd64"

"run steady -s" tells
InMAP to run in a mode
where the grid is already
saved out in a .gob file
specified in the
configuration. This is
faster for our purposes.

"sampleConfig.toml" is the path to the configuration file that describes the Global InMAP set-up, including the emissions input files, and the grid.

Installing Global InMAP on your local machine

First download a copy of the input data:

- 1. https://github.com/SumilThakr/asean_workshop
- 2. https://z.umn.edu/asean

Then, install the latest release for your machine:

3. https://github.com/spatialmodel/inmap/releases

Overview of the configuration file sampleConfig.toml

Please use a text editor that does not use Rich Text Formatting (e.g., Notepad is good, Microsoft Word is not good)

The Configuration File

- The configuration file is in the TOML format, and tells Global InMAP everything it needs to know to run your simulation
- We will be looking at sampleConfig.toml and talking about 5 main parameters in turn:
 - VariableGridData: The path to the computational grid.
 - EmissionsShapefiles: The path to the emission inputs.
 - EmissionUnits: The units of the emissions.
 - OutputFile: The path to where InMAP results go.
 - OutputVariables: The desired attributes for the InMAP results.

VariableGridData

- 5 # VariableGridData is the path to the location of the variable-resolution gridded
- 6 # InMAP data, or the location where it should be created if it doesn't already
- 7 # exist. The path can include environment variables.
- 8 VariableGridData = "test_grid.gob"

EmissionsShapefiles

```
10 EmissionsShapefiles = [
11 "./test_emis.shp"
12 ]
```

EmissionUnits

14 # EmissionUnits gives the units that the input emissions are in.
15 # Acceptable values are 'tons/year' and 'kg/year'.
16 EmissionUnits = "tons/year"

OutputFile

```
20 # OutputFile specifies the path to the desired output shapefile location. It can
21 # include environment variables.
22 OutputFile = "inmap_test_results.shp"
```

OutputVariables

```
57 # OutputVariables specifies which model variables should be included in the
58 # output file. Each output variable is defined by the desired name and an
59 # expression that can be used to calculate it
60 # (in the form VariableName = "Expression"). These expressions can utilize
61 # variables built into the model, user-defined variables, and functions.
62 # Available functions include:
63 # 'exp(x)' which applies the exponetional function e^x.
64 \# \log(x) which applies the natural logarithm function \log(e).
65 \# \log 10(x)' which applies the base-10 logarithm function \log 10(e).
66 # Note: Environment variables can be used in both variable names and expressions.
67 [OutputVariables]
68 \text{ TotalPM25} = \text{"PrimaryPM25} + \text{pNH4} + \text{pS04} + \text{pN03} + \text{S0A"}
69 TotalPop = "TotalPop"
70 AllCause = "AllCause"
71 PS04 = "pS04"
72 \text{ PNO3} = "pNO3"
73 PNH4 = "pNH4"
74 \text{ SOA} = "SOA"
75 \ S0x = "S0x"
76 \text{ NH3} = "\text{NH3}"
77 \text{ NOx} = "\text{NOx"}
78 BasePM25 = "BaselineTotalPM25"
```

Time for Questions

