1100ECT303122103

B

Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Examination December 2021 (2019 scheme)

Course Code: ECT303

Course Name: DIGITAL SIGNAL PROCESSING

Duration: 3 Hours Max. Marks: 100

DADTA

		PART A	
		(Answer all questions; each question carries 3 marks)	Marks
1		What are the methods of filtering long sequence? explain.	3
2	€.	Give any three properties of DFT.	3
3		Calculate the 4- point DFT of $cos(\pi n)$	3
4		Find Circular time reversal of [8, 5, 3, 1]	3
5		Explain the design steps of IIR filter using Butterworth Approximation	3
6		What is the advantages of frequency sampling technique in FIR filter design	3
7		What is Cascade implementation of IIR filter?	3
8		What is a linear phase filter? What conditions are to be satisfied by an FIR flter in order to have linear phase?	3
9		Give any three differences between DSP processor and general purpose microprocessors.	3
10	.)	Write down any three applications of DSP Processor.	3
,		PART B	
•		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Using an example elaborate the working of Overlap Save method while filtering a	7
		long sequence with small sequence	
	b)	Differentiate between Overlap methods and normal filtering	7
12	a)	Explain how DFT can be used as a linear Transformation	7
	b)	Calculate the DFT of [3, 19,6 ,15]. Also plot the magnitude and phase response	7
		Module -2	
13	a)	Derive the Decimation in Time algorithm for Fast Fourier transform.	7

1100ECT303122103

	b)	Find the DFT of [3,4,8,1] using the above method	7
14	a)	Illustrate the procedure for finding IDFT using radix-2 FFT algorithm	5
	b)	Find the IDFT of [15,21,2,13] using the above method	9
		Module -3	
15	a)	Design a digital Butter worth lowpass filter satisfying the constraints	10
		$0.707 \le \left H(e^{jw}) \right \le 1 \text{for } 0 \le w \le \frac{\pi}{2}$	
(.		$\left H(e^{jw}) \right \le 0.2$ for $\frac{3\pi}{4} \le w \le \pi$ Using bilinear Transformation, T=1 Sec	
	b)	What is Gibb's phenomenon?	4
16	a)	Design a maximally flat analog filter of order 2 with cut-off frequency 0.6 rad/sec	4
	b)	Design a digital lowpass filter and implement the above question using Impulse Invariance method.	10
		Module -4	
17	a)	Obtain the Direct form-I ,Direct form-II cascade and parallel form realization of $y[n] = -0.1 \ y[n-1] + 0.2 \ y[n-2] + 3 \ x[n] + 3.6 \ x[n-1] + 0.6x[n-2]$	10
	b)	Find the impulse response of a filter given by $H(Z) = 1 - Z^{-1} + 2Z^{-1} + 3Z^{-1} + 5Z^{-1}$. Does this represent a linear phase realization? Comment.	4
18	a)	Represent the output of a signal being upsampled by a factor of 3, then down sampled by a factor of 12 followed by upsampled by a factor of 4	7
	b)	Explain what is aliasing in Multi-rate signal processing. What is the use of Anti-aliasing filter? Explain.	7
		Module -5	
19	a)	In detail, explain the architecture of DSP Processor TMS 320C6713	7
	b)	Illustrate the quantisation noise in ADC.	7
20	a)	List out the advantages and disadvantages of floating point DSP Processors.	7
	b)	Explain the usage of a DSP Processor for any two day to day applications.	7

Page 2 of 2