Lecture 07

Chapter 3 Vector Spaces

- 3.2 Subspaces
- 3.3 Linear Independence

3.2 Subspaces

Construct new vector spaces from a given vector space V.

Example 1. Let
$$S = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_2 = 2x_1 \right\} \subset \mathbb{R}^2$$
.

(1) If
$$\binom{c}{2c} \in S$$
 and α is any scalar, then $\alpha \binom{c}{2c} = \binom{\alpha c}{2\alpha c} \in S$.

(2) If
$$\binom{a}{2a}$$
, $\binom{b}{2b} \in S$, their sum $\binom{a+b}{2a+2b} = \binom{a+b}{2(a+b)} \in S$.

By the definition of vector space, the mathematical system consisting of the set S together with the operations induced from \mathbb{R}^2 , is itself a vector space.

Definitions

Definition 1. If S is a nonempty subset of a vector space V and S satisfies the following conditions:

- (1) $\alpha x \in S$ whenever $x \in S$ and for any scalar α ;
- (2) $x + y \in S$ whenever $x \in S$ and $y \in S$;

then S is said to be a subspace [子空间] of V.

Remark (closure properties [封闭性])

- (1): S is closed under scalar multiplication;
- (2): S is closed under addition.

If we do arithmetic using operations from V and elements of S, we will always end up with elements of S. A subspace of V, is a subset S that is closed under the operations of V.

Remark. In a vector space V, it is easy to verify that $\{0\}$ and V are subspaces of V.

- Subspaces {0} and **V** are called **trivial subspaces** [平凡子空间] of vector space **V**.
- All other subspaces are referred to as **proper subspaces** [真子 空间].
- The subspace {0} is also called zero subspace [零子空间].

Example 2. Let
$$S = \{(x_1, x_2, x_3)^T | x_1 = x_2\} \subset \mathbb{R}^3$$
.

The subset **S** is nonempty since $\mathbf{x} = (1,1,0)^T \in \mathbf{S}$.

(1) If
$$\mathbf{x} = (a, a, b)^T \in \mathbf{S}$$
, then $\alpha \mathbf{x} = (\alpha a, \alpha a, \alpha b)^T \in \mathbf{S}$.

(2) If
$$(a, a, b)^T$$
 and $(c, c, d)^T \in S$, then
$$(a, a, b)^T + (c, c, d)^T = (a + c, a + c, b + d)^T \in S.$$

Since S is nonempty and satisfies the two closure conditions, it follows that S is a subspace of \mathbb{R}^3 .

Example 3. Let
$$W = \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix} \middle| x \text{ is a real number} \right\} \subset \mathbb{R}^2$$
.

The subset W is not a subspace of \mathbb{R}^2 . In this case, both conditions fail:

- (1) W is not closed under scalar multiplication since $\alpha {x \choose 1} \notin S$ unless $\alpha = 1$.
 - (2) W is not closed under addition,

since
$$\binom{x}{1} + \binom{y}{1} = \binom{x+y}{2} \notin S$$
.

Example 4. Let
$$S = \{A \in \mathbb{R}^{2 \times 2} | a_{12} = -a_{21} \} \subset \mathbb{R}^{2 \times 2}$$
.

The set **S** form a subspace of $\mathbb{R}^{2\times 2}$, since

(1) If $A \in S$, then A must be of the form

$$A = \begin{pmatrix} a & b \\ -b & c \end{pmatrix}$$
 and hence $\alpha A = \begin{pmatrix} \alpha a & \alpha b \\ -\alpha b & \alpha c \end{pmatrix}$.

Since the (2,1) entry of αA is the negative of the (1,2) entry, $\alpha A \in S$.

(2) If $A, B \in S$, then they must be of the form

$$A = \begin{pmatrix} a & b \\ -b & c \end{pmatrix}, \qquad B = \begin{pmatrix} d & e \\ -e & f \end{pmatrix}.$$

It follows that
$$A + B = \begin{pmatrix} a + d & b + e \\ -(b + e) & c + f \end{pmatrix} \in S$$
.

Example 5. Let $C^1[a, b]$ be the set of all functions f that have a continuous derivative on [a, b]. Then $C^1[a, b]$ is a proper subspace of C[a, b].

Example 6. Let S be the set of all polynomials of degree less than n with the property that p(0) = 0. Then S is a proper subspace of P_n .

Nullspace of a Matrix

Definition 2. The nullspace [零空间] or kernel [核] of an $m \times n$ matrix A, denoted by N(A), is defined as the set of all solutions to the homogeneous system Ax = 0.

$$N(A) = \{ \boldsymbol{x} \in \mathbf{R}^n | A\boldsymbol{x} = \mathbf{0} \}.$$

- Since $\mathbf{0} \in N(A)$, N(A) is nonempty.
- If $x \in N(A)$ and α is a scalar, then $A(\alpha x) = \alpha Ax = \alpha \mathbf{0} = \mathbf{0}$, and hence $\alpha x \in N(A)$.
- If $x, y \in N(A)$, then $A(x + y) = Ax + Ay = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Therefore $x + y \in N(A)$.

The nullspace N(A) is a subspace of \mathbb{R}^n .

Example 7. Determine N(A) if

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}.$$

Solution. Using Gauss-Jordan reduction to solve Ax = 0, we obtain

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & 1 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 0 \\ 0 & -1 & -2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 \end{pmatrix}.$$

The reduced row echelon form involves two free variables, x_3 and x_4 .

$$x_1 = x_3 - x_4,$$

$$x_2 = -2x_3 + x_4.$$

Example 7. Determine N(A) if

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}.$$

Solution. (continue) Thus if we set $x_3 = \alpha$ and $x_4 = \beta$, then

$$\mathbf{x} = \begin{pmatrix} \alpha - \beta \\ -2\alpha + \beta \\ \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

is a solution to Ax = 0. The vector space N(A) consists of vectors of the form

$$\alpha(1,-2,1,0)^T + \beta(-1,1,0,1)^T$$

where α and β are arbitrary scalars. Finish.

The Span of vectors

Definition 3. Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ be vectors in a vector space V. A sum of the form

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n},$$

where $\alpha_1, \alpha_2, ..., \alpha_n$ are scalars, is called a **linear combination** [线性组合] of $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$.

The set of all linear combinations of $v_1, v_2, ..., v_n$ is called the **span [张成的集合]** of $v_1, v_2, ..., v_n$. The span of $v_1, v_2, ..., v_n$ will be denoted by $Span\{v_1, v_2, ..., v_n\}$.

In **Example 7**, the nullspace of *A* is the span of the vectors

$$(1,-2,1,0)^T$$
, $(-1,1,0,1)^T$.

Example 8. In \mathbb{R}^3 , the span of $\mathbf{e_1}$ and $\mathbf{e_2}$ is the set of all vectors

of the form
$$\alpha \mathbf{e_1} + \beta \mathbf{e_2} = \begin{pmatrix} \alpha \\ \beta \\ 0 \end{pmatrix}$$
.

Verify that $Span\{e_1, e_2\}$ is a subspace of \mathbb{R}^3 .

Theorem 1. If $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ are elements of a vector space V, then $\mathsf{Span}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$

is a subspace of **V**.

Proof. We know that $Span\{v_1, v_2, ..., v_n\}$ is a subset of V.

• Let $\mathbf{v} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} \in \text{Span}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ and β be a scalar.

$$\beta \mathbf{v} = (\beta \alpha_1) \mathbf{v_1} + (\beta \alpha_2) \mathbf{v_2} + \dots + (\beta \alpha_n) \mathbf{v_n}$$

 \in \text{Span}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}.

• Let $\mathbf{v} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n}$ and $\mathbf{w} = \beta_1 \mathbf{v_1} + \beta_2 \mathbf{v_2} + \dots + \beta_n \mathbf{v_n}$. $\mathbf{v} + \mathbf{w} = (\alpha_1 + \beta_1) \mathbf{v_1} + (\alpha_2 + \beta_2) \mathbf{v_2} + \dots + (\alpha_n + \beta_n) \mathbf{v_n}$ $\in \text{Span}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}.$

Therefore, Span $\{v_1, v_2, ..., v_n\}$ is a subspace of V.

Question: Given a vector space V, can we find vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ such that they span V?

Definition 4. The set $\{v_1, v_2, ..., v_n\}$ is a spanning set [生成集] for the vector space V if and only if every vector in V can be written as a linear combination of $v_1, v_2, ..., v_n$.

Example 9. For any vector $x \in \mathbb{R}^2$,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

Therefore, $\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$ is a spanning set for the vector space \mathbb{R}^2 .

A. $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, (1,2,3)^T\}$;

B. $\{(1,1,1)^T, (1,1,0)^T, (1,0,0)^T\};$

C. $\{(1,0,1)^T, (0,1,0)^T\};$

D. $\{(1,2,4)^T, (2,1,3)^T, (4,-1,1)^T\}$.

To determine whether a set of vectors spans \mathbb{R}^3 , we must determine whether an arbitrary vector $(a, b, c)^T$ in \mathbb{R}^3 can be written as a linear combination of the vectors in the set.

A.
$$\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, (1,2,3)^T\}$$
;

Solution. It is easily seen that $(a, b, c)^T$ can be written as $(a, b, c)^T = a\mathbf{e_1} + b\mathbf{e_2} + c\mathbf{e_3} + 0(1,2,3)^T$

so that A is a spanning set for \mathbb{R}^3 .

B.
$$\{(1,1,1)^T, (1,1,0)^T, (1,0,0)^T\};$$

Solution. (continue) In part (B), we must determine whether it is possible to find constants α_1 , α_2 , α_3 such that

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

This leads to the system of equations

$$\alpha_1 + \alpha_2 + \alpha_3 = a$$

$$\alpha_1 + \alpha_2 = b$$

$$\alpha_1 = c$$

B.
$$\{(1,1,1)^T, (1,1,0)^T, (1,0,0)^T\};$$

Solution. (continue)
$$\alpha_1 + \alpha_2 + \alpha_3 = a$$

 $\alpha_1 + \alpha_2 = b$
 $\alpha_1 = c$

Since the coefficient matrix of the system is nonsingular, the system

has a unique solution. In fact, we find that $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} c \\ b-c \\ a-b \end{pmatrix}$. Thus

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + (b - c) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + (a - b) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

So the three vectors in B span \mathbb{R}^3 .

C.
$$\{(1,0,1)^T, (0,1,0)^T\};$$

Solution. (continue)

The span of the vectors in C is the set of vectors of the form

$$\begin{pmatrix} \alpha \\ \beta \\ \alpha \end{pmatrix}$$
, $\alpha, \beta \in \mathbf{R}$,

which is clearly not the entire \mathbb{R}^3 , since the vector $(1,0,0)^T$ is not in the span.

Part D is left as an exercise.

Remark. The last example shows that

- the spanning set of a vector space V may **not** be unique, since the vector sets in A, B are both spanning set of \mathbb{R}^3 ;
- the number of vectors of a spanning set of *V* may also be **not** unique, because in A, B the number of vectors is four and three respectively.

Example 11. Show that the vector set

$$S = \left\{ E_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

is a spanning set of the vector space $\mathbf{R}^{2\times 2}$.

Proof. See the textbook.

Example 12. Show that the vectors $1 - x^2$, x + 2, x^2 span P_3 .

Proof. Any vector p in P_3 can be written as

$$p(x) = ax^2 + bx + c.$$

It is enough to show that p can be represented as a linear combination of the given vectors, i.e. to find constants $\alpha_1, \alpha_2, \alpha_3$ such that

$$ax^{2} + bx + c = \alpha_{1}(1 - x^{2}) + \alpha_{2}(x + 2) + \alpha_{3}x^{2}$$
.

This leads to the following system

$$\alpha_3 - \alpha_1 = a, \qquad \qquad \alpha_1 = c - 2b$$
 $\alpha_2 = b, \qquad \Longrightarrow \qquad \alpha_2 = b, \qquad \qquad \alpha_3 = a + c - 2b$

Therefore, the three vectors span P_3 .

Linear System revisited

Let S be the solution set to the linear system Ax = b, where A is $m \times n$, $b \in \mathbb{R}^m$.

- If b = 0, then S = N(A) is a subspace of \mathbb{R}^n .
- If $b \neq 0$, then S is not a subspace of \mathbb{R}^n .

Theorem. Assume that the linear system Ax = b is consistent and x_0 is a particular solution. Then a vector y is in the solution set S if and only if

$$y=x_0+z,$$

where $z \in N(A)$.

Linear System revisited

