Problema 5-E4 - Treceri prin zero semnal

Semnalul audio discret este reprezentat de regulă sub forma unor eșantioane ale amplitudinii undelor acustice, stocate într-un vector de valori reale. În sistemele de analiză a conținutului audio, determinarea numărului de treceri prin zero ale semnalului este un parametru important pentru caracterizarea proprietăților temporale ale acestuia.

Cerință

Având la dispoziție un semnal audio reprezentat sub forma unui vector de valori reale nenule, $\mathbf{v}[]$, și o fereastră de analiză, w, ce reprezintă o valoare întreagă corespunzând unui număr de eșantioane consecutive, se vor realiza următoarele operații. Se parcurge vectorul $\mathbf{v}[]$ din w în w valori. Ferestrele de analiză w sunt disjuncte (nu se suprapun). Pentru fiecare set de valori w, se va calcula diferența dintre fiecare valoare din $\mathbf{v}[]$ și media aritmetică a tuturor valorilor din fereastră. După scăderea mediei, pentru fiecare fereastră de analiză w se va determina numărul de treceri prin 0 ale semnalului. Semnalul trece prin 0 dacă își schimbă semnul de la un eșantion la altul. Dacă lungimea semnalului nu se împarte exact la lungimea ferestrei de analiză w, calculul mediei cât și a numărului de treceri prin zero în cadrul ultimei ferestre se va realiza numai pentru eșantioanele rămase. Se vor afișa pe ecran valorile reprezentând numărul de treceri prin 0 pentru fiecare fereastră de analiză.

Date de intrare

Se vor citi de la tastatură (fluxul *stdin*) următoarele date:

- un număr întreg, n, ce reprezintă numărul de eșantioane ale vectorului $\mathbf{v}[]$, urmat de caracterul newline (tasta Enter);
- valorile vectorului **v**[], introduse câte o valoare reală pe o linie, urmată de caracterul *newline* (tasta *Enter*);
- un număr întreg, w, ce reprezintă numărul de valori din fereastra de analiză, urmat de caracterul *newline* (tasta *Enter*).

Date de ieșire

Programul va afișa pe ecran la ieșire, câte o valoare pe linie, reprezentând numărul de treceri prin zero ale semnalului pentru fiecare fereastră de analiză w, terminată cu caracterul newline (tasta *Enter*).

ATENȚIE la respectarea cerinței problemei: afișarea rezultatelor trebuie făcută EXACT în modul in care a fost indicat! Cu alte cuvinte, pe stream-ul standard de ieșire nu se va afișa nimic în plus față de cerința problemei; ca urmare a evaluării automate, orice caracter suplimentar afișat, sau o afișare diferită de cea indicată, duc la un rezultat eronat și prin urmare la obținerea calificativului "Respins".

Restricții și precizări

- 1. Valorile vectorului **v**[], ca și valorile obținute în urma scăderii mediei pe fiecare fereastră, sunt valori reale diferite de 0 (nenule);
- 2. n este un număr întreg, pozitiv, 5 < n < 100;
- 3. w este un număr întreg, pozitiv, 2 < w < 10;
- 4. Atenție: În funcție de limbajul de programare ales, fișierul ce conține codul trebuie să aibă una din extensiile .c, .cpp, .java, sau .m. Editorul web **nu va adăuga automat** aceste extensii și lipsa lor duce la imposibilitatea de compilare a programului!
- 5. Atenție: Fișierul sursă trebuie numit de candidat sub forma: <nume>.<ext> unde nume este numele de familie al candidatului și extensia este cea aleasă conform punctului anterior. Atenție la restricțiile impuse de limbajul Java legate de numele clasei și numele fișierului!

Exemplu

Intrare	Ieşire
11	2
0.1	1
0.3	1
0.1	1
0.5	
0.1	
0.2	
-1.1	
0.1	
1.0	
0.4	
0.3	
3	
Explicație:	
$n=11$, $\mathbf{v}=[0.1\ 0.3\ 0.1\ 0.5\ 0.1\ 0.2\ -1.1\ 0.1\ 1.0\ 0.4\ 0.3]$, $w=3$	
fereastra 1 de analiză: [0.1 0.3 0.1] (3 valori consecutive), medie=0.1667,	
scădere medie: $[-0.0667 \ 0.1333 \ -0.0667]$, număr de treceri prin $0 = 2$ (de $la - la + şi$ de $la + la -$);	
fereastra 2 de analiză: [0.5 0.1 0.2] (3 valori consecutive), medie=0.2667,	

fereastra 3 de analiză: $[-1.1\ 0.1\ 1.0]$ (3 valori consecutive), medie=0, scădere medie: $[-1.1\ 0.1\ 1.0]$, număr de treceri prin 0=1 (de la - la +);

fereastra 4 de analiză: $[0.4 \ 0.3]$ (2 valori consecutive, ultimele rămase), medie=0.35, scădere medie: $[0.05 \ -0.05]$, număr de treceri prin 0 = 1 (de 1a + 1a);

scădere medie: [0.2333 - 0.1667 - 0.0667], număr de treceri prin 0 = 1 (de la + la –);

număr de treceri prin 0 = 2 1 1 1

Timp de lucru: 120 de minute