

Exame 1ª chamada 19 de Janeiro de 2007

Classificação mínima: 40%. Sem consulta. Duração: 2h30m. Por favor, responda a cada parte em conjuntos de folhas separados.

Parte I

1 (1 valor)

- a) Quais os nomes dos blocos utilizados no Arena, para Saída e Entrada das entidades no sistema?
- **b)** No *Arena*, deverá ter utilizado a expressão EXPO (eventualmente na caracterização de módulos de ŒEATE). O que é, nesse contexto, a EXPO? Caracterize a sua forma ou explique, por palavras suas, em que circunstâncias é indicado o seu uso.
 - c) O que representam os rectângulos nos DCAs (Diagramas de Ciclo de Actividades)?
- **d)** Num DCA, quando se coloca um rúmero (inteiro) sobre uma seta de uma fila para uma actividade, qual o significado desse número?

2 (1 valor)

Observe o extracto de um relatório final de uma simulação no Arena.

- a) Indique o nome da fila onde há mais entidades à espera e onde se espera mais tempo. Justifique a sua resposta, fazendo referência aos valores da tabela observados. (unidade de tempo: minuto).
- **b)** Que modificações se podem geralmente efectuar num sistema para reduzir a demora numa fila de espera?

Waiting Time	Average	Minimum Value	Maximum Value
A.Queue	9.9451	0.00	57.3377
B.Queue	17.2772	0.00	87.3996
C.Queue	47.1766	0.00	189.70
Number Waiting	Average	Minimum Value	Maximum Value
Number Waiting A.Queue			
	Average	Value	Value

3 (1 valor)

Construa o DCA (Diagrama de Ciclo de Actividades) do sistema "Restaurante CantinàManeira", considerando apenas dois tipos de entidades: Cliente e Mesa.

Os clientes *entram* no restaurante*, *aguardam* por uma mesa *livre*, *ocupam* uma mesa durante algum tempo**, e regressam finalmente à *rua*, voltando então a mesa a ficar *livre*.

Nota: Para controlar as entradas no restaurante poderá utilizar uma entidade fictícia auxiliar.

- *O tempo entre chegadas de clientes ao restaurante, pode ser descrito por uma distribuição exponencial negativa de média 2 minutos.
- **O tempo de ocupação de mesa, pode ser descrito por uma distribuição normal de média 30 e desvio padrão 10 (minutos).

Parte II

4 (2 valores)

Considere a preparação da realização de um acto eleitoral numa Mesa de Voto. De acordo com o número de eleitores e com o histórico das eleições no mesmo local, estimou-se que chegará um eleitor em cada 8 minutos à Mesa de Voto e que, em média, um eleitor demorará 5 minutos a votar. Considere ainda que o pressuposto de se tratar de um sistema de filas de espera de Markov é aceitável.

a)

Qual a percentagem de pessoas que esperarão mais de 5 minutos na fila?

b)

Qual o ganho em termos de tempo esperado, se forem colocadas duas mesas de voto com fila única? E se forem colocadas duas mesas de voto com filas independentes?

c)

É possível determinar o número esperado de clientes na fila num sistema de filas de espera M/M/1 com r=2? Justifique sucintamente.

5 (2 valores)

a)

Na resolução de um modelo de transportes foi utilizado o *Solver* do *Excel*, tal como mostrado na figura. Indique quais as fórmulas que deverão constar nas células referenciadas na caixa de diálogo "Solver Parameters".

	Α	В	C	D	E	F	G	H	1	J	K	L	M	N
1		D1	D2	D3				Solver Para	matare					? ×
2	01					93	6	Solver Par	illeters		10			-12
3	02					=	12	Set Target	Cell:	\$E\$14				Solve
4	03					=	13	Equal To:	C May	€ Min	C Value of	0	_	
5	04	7	-			=	9	By Changi		-	Talue of	1		Close
6								The second second	7/15/16			-	- 1	
7		=:	=:	=: 1				\$8\$2;\$D\$	5			<u>€</u>	ess	
8		10	11	19				Subject to	the Constra	ints:			- 6	Options
9			110000					The second second		The state of the s		-	- NO 8	Options
10		D1	D2	D3				\$5\$6;\$D\$	6 = \$B\$8:\$1 5 = \$G\$2:\$1	3\$5		A	dd	
11	01	2	3	4				11272.72	40,000			Cha	inge	
12	02	1	3	4								9.0	-	Reset All
13	03	5	7	9								√ <u>D</u> e	ete	
14	04	2	6	8	ė							_	- N	<u>H</u> elp
15								1					-	

b)

Obtenha a solução óptima e o seu valor utilizando o algoritmo de transportes. Utilize a seguinte solução inicial: as 6 unidades de O1 são transportadas para D2; as 12 unidades de O2 são transportadas para D3; 1 unidade de O3 é transportada para D1; 5 unidades de O3 são transportadas para D2; 7 unidades de O3 são transportadas para D3 e as 9 unidades de O4 são transportadas para D1.

6 (2 valores)

a)

Uma determinada instituição abriu um concurso para financiamento de projectos de investigação. O número de projectos concorrentes foi de cinco. Na tabela seguinte são dados os orçamentos e os proveitos esperados da realização de cada projecto. Pretende-se determinar quais os projectos que deverão ser aprovados de forma ao proveito global ser o maior possível, sem, no entanto, ultrapassar o montante disponível que é de 50 Unidades Monetárias.

Projecto	1	2	3	4	5
Orçamento (U.M.)	10	20	30	30	50
Proveito (Escala de 0 a 200)	40	60	120	100	150

Apresente um modelo de rede para este problema.

b)

Quais são as diferenças entre os modelos de afectação, de transportes e de fluxo de custo mínimo?

7 (1 valor)

Um determinado *Campus* Universitário é constituído por sete edifícios entre os quais existem diversos caminhos pedonais. Tendo em vista ser possível ir de um qualquer edifício para qualquer outro sempre por caminhos cobertos, foi tomada a decisão de construir coberturas em alguns desses caminhos.

Dados os elevados custos de construção, foi estipulado que o comprimento total de caminho coberto deveria ser o menor possível.

Na tabela seguinte são dados os comprimentos (em metros) dos diversos caminhos existentes entre os vários edifícios. O sinal "-" indica que não há um caminho directo entre os dois edifícios em causa. Por exemplo, o comprimento do caminho entre o edifício A e o edifício B é de 100 metros.

	Α	В	С	D	E	F	G
Α	_	100	200	300	_	_	_
В	100	_	160	-	210	-	-
С	200	160	_	90	150	120	-
D	300	-	90	-	-	130	-
Ε		210	150	-	-	-	350
F	_	_	120	130	-	-	100
G	_	_	_	_	350	100	_

Quais os caminhos que devem ser cobertos e qual o comprimento total?

Considere o mesmo *Campus* Universitário da questão 7. Uma pessoa pretende visitar cada um dos sete edifícios uma e uma só vez e regressar ao edifício de onde partiu.

a)

Aplique a heurística do vizinho mais próximo tendo como edifício inicial o edifício A.

b)

Repita a mesma heurística mas iniciando-a em C. Tem a garantia de que a solução que obteve é a melhor solução possível? Justifique sucintamente.

Formulário

$$\mathbf{p}_{0} = \mathbf{l} - \mathbf{r}$$

$$\mathbf{p}_{0} = \mathbf{l} - \mathbf{r}$$

$$\mathbf{p}_{n} = \mathbf{r}^{n} \mathbf{p}_{0} = \mathbf{r}^{n} (1 - \mathbf{r}), n \ge 1$$

$$L_{q} = \frac{\mathbf{r}^{2}}{1 - \mathbf{r}}$$

$$L_{s} = \mathbf{r}$$

$$L = \frac{\mathbf{r}}{1 - \mathbf{r}}$$

$$W_{q} = \frac{\mathbf{r}}{\mathbf{m}(1 - \mathbf{r})}$$

$$W_{s} = \mathbf{l} / \mathbf{m}$$

$$W = \frac{1}{\mathbf{m}(1 - \mathbf{r})}$$

$$W_{q}(t) = \begin{cases} \mathbf{r}, parat = 0 \\ \mathbf{r}e^{-\mathbf{m}(1 - \mathbf{r})t}, parat \ge 0 \end{cases}$$

$$W_{q}(t) = \begin{cases} \mathbf{r}, parat = 0 \\ \mathbf{r}e^{-\mathbf{m}(1 - \mathbf{r})t}, parat \ge 0 \end{cases}$$

$$W_{q}(t) = \begin{cases} \mathbf{r}, parat = 0 \\ \mathbf{r}e^{-\mathbf{m}(1 - \mathbf{r})t}, parat \ge 0 \end{cases}$$

$$W_{q}(t) = \begin{cases} \mathbf{r}, parat = 0 \\ \mathbf{r}e^{-\mathbf{m}(1 - \mathbf{r})t}, parat \ge 0 \end{cases}$$

$$W_{q}(t) = \begin{cases} \mathbf{r}, parat = 0 \\ \mathbf{r}e^{-\mathbf{m}(1 - \mathbf{r})t}, parat \ge 0 \end{cases}$$