

# Fouille de données

**▶** Ensemble methods – Succeding

## together!



2015-2016



UNIVERSITÉ



- Introduction

P. Lenca & S. Lallich



Introduction

- 2 Bootstrap
- Bootstrap aggregating (Bagging)
- A Random Forests
- Boosting
- 6 References

page 2

P. Lenca & S. Lallich

Fouille de données DEnsemble methods



# Condorcet's jury theorem [dC85]

#### Political science theorem

- about the relative probability of a given group of individuals arriving at a correct decision.
- consider a jury of k independent judges which has to choose between two outcomes (k is odd) by majority vote
- the error risk of each judge is p

P. Lenca & S. Lallich

the number of bad decisions has a binomial distribution B(k, p)



 $\hookrightarrow$  The error risk of the jury is equal to  $Pr(B(k,p) > \lceil k/2 \rceil)$ .



## k independent classifiers (k is odd)

- the committee of classifiers reach a decision by majority vote.
- the error risk of each classifier is supposed to be p
- the error risk of the committee is equal to Pr(B(k, p) > [k/2])



- if p < 0.5 (weak classifier), it is advantageous to have several classifiers
- if p = 0.5, it is useless to have multiple classifiers
- if  $p \ge 0.5$  the committee is worse than each classifier! If the classifiers are bad, it is preferable to have one classifier

P. Lenca & S. Lallich

Fouille de données De Ensemble methods



# Error rate of the committee according to pand k

| k  | p | 0,05 | 0,1  | 0,15 | 0,2  | 0,3  | 0,35 | 0,5  | 0,65 | 0,7  | 0,8  | 0,85 | 0,9  | 0,95 |
|----|---|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1  |   | 0,05 | 0,10 | 0,15 | 0,20 | 0,30 | 0,35 | 0,50 | 0,65 | 0,70 | 0,80 | 0,85 | 0,90 | 0,95 |
| 3  |   | 0,01 | 0,03 | 0,06 | 0,10 | 0,22 | 0,28 | 0,50 | 0,72 | 0,78 | 0,90 | 0,94 | 0,97 | 0,99 |
| 5  |   | 0,00 | 0,01 | 0,03 | 0,06 | 0,16 | 0,24 | 0,50 | 0,76 | 0,84 | 0,94 | 0,97 | 0,99 | 1,00 |
| 7  |   | 0,00 | 0,00 | 0,01 | 0,03 | 0,13 | 0,20 | 0,50 | 0,80 | 0,87 | 0,97 | 0,99 | 1,00 | 1,00 |
| 9  |   | 0,00 | 0,00 | 0,01 | 0,02 | 0,10 | 0,17 | 0,50 | 0,83 | 0,90 | 0,98 | 0,99 | 1,00 | 1,00 |
| 11 |   | 0,00 | 0,00 | 0,00 | 0,01 | 0,08 | 0,15 | 0,50 | 0,85 | 0,92 | 0,99 | 1,00 | 1,00 | 1,00 |
| 15 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,05 | 0,11 | 0,50 | 0,89 | 0,95 | 1,00 | 1,00 | 1,00 | 1,00 |
| 19 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,03 | 0,09 | 0,50 | 0,91 | 0,97 | 1,00 | 1,00 | 1,00 | 1,00 |
| 23 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,02 | 0,07 | 0,50 | 0,93 | 0,98 | 1,00 | 1,00 | 1,00 | 1,00 |
| 27 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,01 | 0,05 | 0,50 | 0,95 | 0,99 | 1,00 | 1,00 | 1,00 | 1,00 |
| 31 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,01 | 0,04 | 0,50 | 0,96 | 0,99 | 1,00 | 1,00 | 1,00 | 1,00 |
| 35 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,01 | 0,03 | 0,50 | 0,97 | 0,99 | 1,00 | 1,00 | 1,00 | 1,00 |
| 39 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,03 | 0,50 | 0,97 | 1,00 | 1,00 | 1,00 | 1,00 | 1,00 |
| 43 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,02 | 0,50 | 0,98 | 1,00 | 1,00 | 1,00 | 1,00 | 1,00 |
| 47 |   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,02 | 0,50 | 0,98 | 1,00 | 1,00 | 1,00 | 1,00 | 1,00 |
| 51 |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.50 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |



## **Evaluation & Credidibility Issues**

## Example

To obtain an error risk of the jury less than 0.05:

- p = 0.20: 7 classifieurs are enough
- p = 0.35: 27 classifiers are needed

P. Lenca & S. Lallich

Fouille de données > Ensemble method









### Two types of methods

- Homogeneous: train the same classifier under different contexts (modify the original dataset by resampling (step 2), changing some parameters of the algorithm)
- Heterogeneous: train different type of classifiers on the same dataset (use various classifiers such as neural networks, decision trees,

page 9

P. Lenca & S. Lallich

regression trees, linear regression)

Fouille de données De Ensemble methods







the probability of an example not to be selected after n drawings is  $(1-1/n)^n \sim e^{-1}$  (if n is large enough); the probability of an example to be selected after n drawings is  $1-e^{-1}=0.632$ 

 $\hookrightarrow$  It is very easy to construct automatically many bootstrap samples from the same learning set.

Outline

2 Bootstrap

page 10

P. Lenca & S. Lallich

Fouille de données De Ensemble method





The population is to the original sample as the original sample is to each bootstrap sample.

- bootstrap has the advantage to conserve the covariance structure of the variables
- bootstrap is very useful to simulate sampling fluctuations
- training a classifier on multiple bootstrap samples of the original sample allows to simulate training on multiple samples of the population



Bootstrap aggregating (Bagging)

P. Lenca & S. Lallich page 13

Fouille de données De Ensemble methods





- works well because it reduces variance by voting/averaging
- usually, the more classifiers the better
- is very useful if data are noisy
- works well if the classifier is unstable (neural networks, decision trees, regression trees, linear regression, unlike k-nearest neighbours which is stable); An algorithm is unstable if perturbing the learning set can induce significant changes in the classifier constructed



## Multiple classifiers from an original dataset.

- training: construct each classifier from a bootstrap sample of the data
- prediction:
  - classification (categorical class variable): assign the class according to majority vote of the set of classifiers
  - regression (numerical class variable): make the final prediction by averaging the prediction of the different classifiers
- training a classifier on multiple bootstrap samples of the original sample allows to simulate training on multiple samples of the population

page 14 P. Lenca & S. Lallich Fouille de données > Ensemble method





- Random Forests







#### Multiple decision trees from an original dataset.

- training: construct each tree from a bootstrap sample of the data, split each node of the tree from random subset of attributes [Ho95, AG97, Ho98], without pruning
- prediction:
  - classification (categorical class variable): assign the class according to majority vote of the set of trees
  - regression (numerical class variable): make the final prediction by averaging the prediction of the different trees



P. Lenca & S. Lallich

Fouille de données DEnsemble methods





- The performance of RF is even higher than:
  - each tree classifier is accurate
  - the different tree classifiers are diverse, i.e. they missclassify different examples
- RF performance is as good as the one of boosting, thanks to the random selection of the features at each split
- RF performs sometimes better than boosting because it is relatively robust to outliers and noise
- RF is faster than bagging or boosting. It is simple and can be easily parallelized







**Random Forests** 

#### Out Of the Bag.

In random forests, there is no need for holdout or cross-validation to get an unbiased estimate of the error. This one is estimated internally, during the run, as follows:

- for each tree, about one-third of the cases are left out of the Bootstrap sample and are not used to construct the tree, so, a test set classification is obtained for each case in about one-third of the trees
- the predicted class of a case is the class that got most of the votes every time the case was OOB
- the proportion of times that the predicted class is not equal to the true class averaged over all cases is the OOB error estimate; OOB estimate is generally unbiased, except if









Boosting

P. Lenca & S. Lallich page 21

Fouille de données De Ensemble methods





- compared with bagging, boosting tends to achieve greater accuracy
- but it is sensitive to noisy data and outliers
- it can be less susceptible to the overfitting problem



Combine many weak classifiers to produce a strong ensemble of classifiers (committee)

- iteratively learning weak classifiers with respect to a distribution and adding them to a final strong classifier
- weak classifiers are typically weighted in some way that is usually related to the weak learners' accuracy
- after a weak learner is added, the data is reweighted: misclassified examples gain weight and examples classified correctly lose weight; Thus, future weak learners focus more on the examples that previous weak learners misclassified

 $\hookrightarrow$  The main difference between boosting algorithms is their method of weighting training data points and hypotheses.

P. Lenca & S. Lallich

Fouille de données DEnsemble methods



- 6 References





[AG97] Y. Amit and D. Geman.

Shape quantization and recognition with randomized trees.

Neural Computation, 9(7):1545-1588, 1997.

[Bre94] Leo Breiman.

Bagging predictors.

Technical Report 421, Department of Statistic, University of California, 1994.

[Bre01] L. Breiman.

Random forests.

Machine Learning, 45(1):5-32, 2001.

[dC85] Marquis de Condorcet.

Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des

[Efr79] Bradley Efron.

Bootstrap methods: Another look at the jackknife.

[Fre90] Yoav Freund.

Boosting a weak learning algorithm by majority.

In Mark A. Fulk and John Case, editors, COLT, pages 202-216. Morgan Kaufmann, 1990.



page 25

P. Lenca & S. Lallich

Fouille de données De Ensemble methods





[Ho95] T. K. Ho.

Random decision forest.

In Proceedings of the Third International Conference on Document Analysis and Recognition, pages 278–282, 1995.

[Ho98] T. K. Ho.

The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998.

[Sch89] Robert E. Schapire.
The strength of weak learnability (extended abstract).



P. Lenca & S. Lallich page 26

Fouille de données De Ensemble method