Aayush Arya

(Submitted: September 18, 2021)

PHY366 Lab Report

Practical: 2 Registration No.: 11912610 Section: G2903

Aim

To design a non-inverting amplifier circuit an Op-Amp.

Methods

We simulate an operational amplifier circuit on the MULTISIM platform¹. It was configured to operate in a non-inverting fashion (see Figure 1).

Figure 1: circuit diagram

Theeoretically, the output voltage of an Op-Amp is

$$V_{out} = A_{cl}V_{in}$$

where, for our configuration, the closed loop gain A_{cl} is

$$A_{cl} = 1 + \frac{R_2}{R_1}$$

We check the validity of this result by varying the resistance R_2 .

 $^{^{1}} Circuit\ available\ publicly\ at\ https://www.multisim.com/content/7ZP2r5NA3vzK7DU9bVdrfT/phy366-op-amp-non-inverting/open/$

Results and Discussion

For resistances at input $(R_1 = 1 \ k\Omega)$ and output $(R_2 = 1 \ k\Omega)$ kept constant, we report the different output DC voltages obtained in Table 1 obtained by varying the input voltage.

V_{in} (V)	V_{out} (V)
0.1	0.198
0.5	0.998
2.0	3.998
4.0	7.998
10.0	19.998
25.0	50.000

Table 1: Variation of output potential V_{out} as R_2 is varied.

Note that the output is short of the theoretical expectations due to minor losses. A plot between input and output voltage is shown in Figure 2.

Figure 2: V_{out} plotted against input voltage V_{in} for constant $R_2/R_1 = 1$, corresponding to $A_{cl} = 2$.

The result is therefore, consistent with the straight-line V_{out} expected from the theoretical relation.