

《拓扑学》学习笔记

基于庄晓波老师的教学视频 and 一些不知道从哪里来的

idea

作者:张博涵 组织:张博涵 起著重庄赤奋若

版本: August 3, 2022

Github 地址: www.github.com/BHanZhang

目录

第1章	拓扑空间	1
1.1	拓扑空间,开集	1
1.2	更多的拓扑空间与子空间拓扑	2
1.3	开集的反面,闭集	3
	1.3.1 闭集之刻画	3
	1.3.2 稠密	5
	1.3.3 集合之解体	7
1.4	拓扑空间的砖头—拓扑基	8
2.1	连续映射 连续映射	
第3章	紧性	12
第4章	连通性	13
第5章	符号说明	14
5.1	符号说明	14
5.2	语法说明	14

第1章 拓扑空间

1.1 拓扑空间,开集

定义 1.1 (拓扑空间, 开集)

设X 为一个集合 $\mathscr{F} \in \mathscr{P}(X)$ (把 \mathscr{F} 中的元素称为X 中的**开集**),满足:

- 1. $\emptyset, X \in \mathscr{F}$
- 2. U,V 是开集,那么 $U \cap V$ 是开集
- 3. $U_{\alpha}, \alpha \in I$ 是开集, $\bigcup U_{\alpha}$ 是开集。

则称 \mathscr{F} 为 X 上的一个 $\overline{\mathbf{H}}$, (X,\mathscr{F}) 为一个 $\overline{\mathbf{H}}$ 为空间 。

- $\widehat{\Sigma}$ 注: 有时候这样写:"设 X 为拓扑空间",这就意味着"X 为一个集合,且规定了 X 上的一个拓扑(指定了那些子集为开集)"。
- - 证: 验证其为拓扑空间,就是要验证三条: 1. 第一条显然成立: \emptyset , $\mathbb{R}^n \in \mathscr{F}$;
 - 2. 设 U, V 为 \mathbb{R}^n 中开集, 要证 $U \cap V$ 为开集。任取 $x_0 \in U \cap V$, 就有:
 - (a). $x_0 \in U$, $\uparrow \exists \delta_1, s.t. x_0 \in B(x_0, \delta_1) \subset U$
 - (b). $x_0 \in V$, $\hat{\eta} \exists \delta_2, s.t. x_0 \in B(x_0, \delta_2) \subset V$

择 $\delta \in \min(\delta_1, \delta_2)$, 有 $x_0 \in B(x_0, \delta) \subset U \cap V$, 那么 $U \cap V$ 是开集;

3. 任取 $x_0 \in \bigcup_{\alpha \in I} U_\alpha$,则必 $\exists \alpha_0 \in I \ s.t. \ x_0 \in U_{\alpha_0}$,则 $\exists \delta \ s.t. \ x_0 \in B(x_0, \delta) \subset U_{\alpha_0} \subset \bigcup_{\alpha \in I} U_\alpha$,于是 $\bigcup_{\alpha \in I} U_\alpha$ 是开集。

例 1.2 (平凡拓扑) 设 X 是一个集合, $\mathscr{F} = \{\emptyset, X\}$,则 \mathscr{F} 显然是 X 上一个拓扑,称之为 平凡拓扑。 例 1.3 (离散拓扑) 设 X 是一个集合, $\mathscr{F} = \mathscr{P}(X)$,则 \mathscr{F} 显然是 X 上一个拓扑,称之为 离散拓扑。

通过以后的学习可以知道,平凡拓扑具有较为"刚性"的拓扑结构,而离散拓扑具有较为"柔性"的拓扑结构。

定义 1.2 (度量空间)

设X为一个集合, $\rho: X \times X \to \mathbb{R}$ 满足以下三条:

- 1. $\rho(x,y) = \rho(y,x)$;
- 2. $\rho(x,y) \ge 0, \forall x,y \in X, \rho(x,y) = 0 \iff x = y;$
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y), \forall x,y,z \in X$

¹如果 X,Y 是 T 上的两个拓扑,且 X ⊂ Y 那么就称拓扑 X 弱 于拓扑 Y,反之拓扑 Y 强 于拓扑 X。

那么就称 X, ρ 为一个 度量空间, ρ 为 X 上的一个 度量。

例 1.4(度量空间诱导的拓扑) 设 (X,ρ) 为一个度量空间,定义 X 上开集 U 为:

$$x_0 \in U \iff \forall x_0 \in U, \exists \delta > 0, \ s.t. \ B(x_0, \delta) \subset U$$

定义拓扑 $\mathscr{F} = \mathscr{P}(X)$,则 \mathscr{F} 给出了 X 上的一个拓扑 (称之为 **度量** ρ **诱导的拓扑**)。

注: 这个例子说明了度量可以诱导拓扑,"赋范出度量,天然诱拓扑"。

例 1.5 (\mathbb{R} 上连续函数空间上的连续度量诱导的拓扑) 定义 X = C([a,b]) 上的连续度量 ρ :

$$\rho: C([a,b]) \times C([a,b]) \longrightarrow \mathbb{R}$$

$$(f,g) \longmapsto \rho(f,g) := \max_{x \in [a,b]} |f(x) - g(x)|$$

此时 ρ 诱导了 C([a,b]) 上的一个拓扑。

例 1.6 (除了"最大"和"最小"的拓扑之外,还存在"适中"的拓扑) 设 $X = \{0,1\}$, $\mathscr{F} = \{\emptyset,\{0\},\{0,1\}\}$ 是一个拓扑, (X,\mathscr{F}) 是一个拓扑空间。

1.2 更多的拓扑空间与子空间拓扑

定义 1.3 (子空间拓扑)

设X是一个拓扑空间, $Y \subset X$ 为X的一个子集,则Y上可以如下定义一个拓扑结构:

$$\mathscr{F} = \{ U \cap Y | U \subset_{open} X \}$$

则 $\mathscr P$ 定义了 Y 上的一个拓扑空间结构,此结构成为 X 在 Y 上诱导的拓扑,或称 Y 被赋予 子空 间拓扑。

证: 取大集合为小集合即可,证明显然。

例 1.7 (n 维单位球面) n 维单位球面 $S^n \subset \mathbb{R}^n$ 赋予欧氏拓扑,其中 $S^n = \{x \in \mathbb{R}^n | ||x|| = 1\}$ 。

例 1.8(谈开集一定要说是在哪个拓扑的意义下是开集) 设 $[0,1) \subset \mathbb{R}$,赋予 [0,1) 子空间拓扑,因为 $(-\frac{1}{2},\frac{1}{2})$ 是 \mathbb{R} 中开集, $(\frac{1}{2},1)$ 也是 \mathbb{R} 中开集,那么有以下结论成立:

- $[0,\frac{1}{2}) := (-\frac{1}{2},\frac{1}{2}) \cap [0,1)$ 是开集。
- $(\frac{1}{2},1) := (\frac{1}{2},1) \cap [0,1)$ 是开集。

正如我们在 ℝ 中所规定的那样,上述两个例子分别应该不为开集和为开集,但是在子空间拓扑的意义下均为开集。这就说明了谈开集一定要说在哪个拓扑的意义下是开集。

定义 1.4 (连续性)

若 f 是拓扑空间 $X \longrightarrow Y$ 的映射,如果 $\forall U \subset_{open} Y, f^{-1}(U)$ 为 X 中开集,则称映射 f 是 **连续的** 。即连续映射到达域原像为开集。

例 1.9 (离散拓扑为原像集的映射一定是连续映射) 设 X 为一个集合, $\mathscr{F} = \mathscr{P}(X)$,是 X 上的离散拓扑,假设 $f: X \longrightarrow Y$,那么对于 $\forall U \subset_{open} Y, f^{-1}(U) \subset X$ 而 X 的所有子集都是开集(因为 X 的拓扑 \mathscr{F} 是离散拓扑)。因此我们得知:X 上的任意映射都是连续的。

例 1.10(平凡拓扑上的连续映射只能到平凡拓扑) 设 X 为一个集合, $\mathscr{F} = \{\emptyset, X\}$,是 X 上的平凡拓扑,

设 Y 为一个拓扑空间, $f: X \longrightarrow Y$ 为一个连续映射, $f(X) := \{f(x) | x \in X\} \subset Y$ (此处 f(X) 作为子空间赋予子空间拓扑),则 $f: X \longrightarrow f(X)$ 仍是连续映射。下断言: f(X) **在子空间拓扑下只能为平凡拓扑空间**。

假设 f(X) 不是平凡拓扑空间,那么 $^2\exists U \sqsubset f(X)$,并且 $U \neq \emptyset$ 且为 f(X) 中开集,即 $f^{-1}(U) \subset_{open} X$ 。 但是 X 中开集只有两种可能,即 X 和 \emptyset ,因为 $f: X \longrightarrow f(X)$ 是满射,因此 U 中的任何一点都有原像(但是原像不一定唯一),因此 $f^{-1}(U) \neq \emptyset$ 。因此 $f^{-1}(U) = X$ 。因此 $f(X) = U \sqsubset f(X)$ 相矛盾,因此:若 $f: X \longrightarrow Y$ 是连续映射,则 f(X) 一定为平凡拓扑空间。

1.3 开集的反面, 闭集

定义 1.5 (闭集)

设 X 是拓扑空间, $F \subset X$, 如果 $X \setminus F$ 是 X 中开集,则 F 称为 X 中的 闭集。

根据开集的性质(定义1.1)可立马得到闭集的性质:

命题 1.1 (闭集的性质)

- 1. ∅, X 是闭集
- 2. F,G 是闭集,那么 $F \cup F$ 是闭集
- 3. $F_{\alpha}, \alpha \in I$ 是开集, $\bigcap_{\alpha \in I} F_{\alpha}$ 是闭集。

1.3.1 闭集之刻画

定义 1.6 (极限点)

设 X 是一个拓扑空间, $A \subset X$, $\forall p \in X$, 若 \forall 包含 p 的开集 U 都有:

 $(U\backslash\{p\})\cap A\neq\emptyset$

则称 p 为 A 的一个 极限点。而将集合 $\overline{A} = A \cup \{A$ 的极限点} 称为 A 的 闭包。

例 1.11(欧式空间中有理点的极限点集为欧氏空间) $X = \mathbb{R}^3$, $A \in X$ 中的有理点(即 $A \in \{(x, y, z) | x, y, z \in \mathbb{Q}\}$), 那么 X 就是 A 的极限点集。

例 1.12(欧式空间中整数点的极限点集为空集) $X = \mathbb{R}^3$, $A = \mathbb{Z}$, 那么 A 的极限点集为 \emptyset 。

例 1.13(**点集的极限点**) 设 $X = \{0,1\}$, $\mathscr{F} = \{\{0\},\{0,1\},\emptyset\}$ 则 X 的子集 A 有以下两种情况:

- 1. $A = \{0\}$:
 - 0 :∀ 包含 $\{0\}$ 的开集 U, $(U \setminus \{0\}) \cap A = \emptyset$, 说明 0 不是 A 的极限点。
 - 1 :∀包含 {1} 的开集 $U = \{0,1\}$ (只有这一个), $(U \setminus \{1\}) \cap A \neq \emptyset$,说明 1 是 A 的极限点。 因此 1 为 $A = \{0\}$ 的极限点。
- 2. $A = \{1\}$:
 - 0:取包含 $\{0\}$ 的开集 $U = \{0\}$, $(U \setminus \{0\}) \cap A = \emptyset$, 说明0不是A的极限点。
 - 1 :包含 $\{1\}$ 的 X 中开集 $U = \{0,1\}$, $(U \setminus \{1\}) \cap A = \emptyset$, 说明 1 也不是 A 的极限点。

²这里符号□表示真被包含。

命题 1.2 (闭集的等价刻画)

设X为拓扑空间, $A \subset X$ 则:

A是闭集 $\iff \overline{A} = A$

证: $[\Rightarrow]$ 设 A 是闭集,要证 $\overline{A} = A$,显然 $A \subset \overline{A}$,下只需证 $\overline{A} \subset A$,即证 $X \setminus A \subset X \setminus \overline{A}$,因此对于 $p \in X \setminus A$ 都有 $p \in X \setminus \overline{A}$,因此即证: $\forall p \notin A$,p 不是 A 的极限点。

事实上,A 闭集 \Rightarrow $X \setminus A$ 开集 \iff \exists 开集 $U \subset A \setminus A, p \in U \Rightarrow (U \setminus \{p\}) \cap A = \emptyset \Rightarrow p$ 不是 A 的极限点。

[←] 设 $\overline{A} = A$, 要证A是闭集。只要证 $X \setminus A$ 是开集,即:

$$\forall p \in X \backslash A, \exists \mathcal{H} \not\equiv U, \ s.t. \ p \in U \subset X \backslash A$$

由于 $p \notin A \Rightarrow p \notin \overline{A}$,则 p 不为 A 的极限点。因此 \exists 开集 $U \subset X(p \in U)$ s.t. $(U) \cap A = (U \setminus \{p\}) \cap A = \emptyset$,即 $p \in U \subset X \setminus A$

推论 1.1

A 为一个闭集。

 \bigcirc

证: 只要证 $X \setminus \overline{A}$ 为开集。由于 $\forall p \in X \setminus \overline{A}, p$ 不为A的极限点 则 \exists 开集 $U \subset X$ s.t. $p \in U$ 且由于 $p \notin A$ 则 $U \cap A = (U \setminus \{p\}) \cap A = \emptyset$

 $\mathbb{M}\ p \in U \subset X \backslash A$

则 $\forall q \in U$, U 为包含 q 的开集,又由于 $U \cap A = \emptyset$, 因此 q 不是 A 的极限点,所以 $q \notin \overline{A}$,故 $U \subset X \setminus \overline{A}$ 。

因此 $X\setminus \overline{A}$ 为开集。

推论 1.2

$$\overline{A} = \bigcap_{F \supset_{closed} A} F$$

 $\stackrel{f C}{f Z}$: 由上推论可以知道,任何一个包含 A 的闭集都包含 \overline{A} ,而根据 $\overline{A}=A\cup\{A$ 的所有极限点 $\}$ 。因此 \overline{A} 为包含 A 的最小的闭集。

证: [\supset]: 由于 $\overline{A} \supset_{closed} A$, 那么必然可以取到 $F_0 =_{closed} \overline{A}$, 此时 $\bigcap_{F \supset_{closed} A} F = F_0 \cap \left(\bigcap_{F_0 \neq F \supset_{closed} A} F\right) \subset A$ 。

[\subset]: 只要证 $\forall F \supset_{closed} A$ 都有 $F \supset \overline{A}$,即证 $X \backslash F \subset X \backslash \overline{A}$ 。

只要证 $\forall x \notin F, x$ 不为 A 的极限点。

事实上,F 是闭集,根据命题1.2可知 $F = \overline{F} \Rightarrow x \notin \overline{F}$,因此 x 不为 F 的极限点,而 $F \supset A$ 因此得证。

命题 1.3 (闭包运算的性质)

- 1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 2. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$

证: 额,不知道什么高级方法,于是采用土办法就好了。

1. 只需要证明 $A \cup B$ 的极限点和 A 的极限点或 B 的极限点一致就好,事实上我们有如下的推理3:

$$x_0$$
是 $A \cup B$ 的极限点 $\iff \forall x_0 \in A \cup B, \exists_{open} V(x_0 \in V) \ s.t. \ (V \setminus \{x_0\}) \cap (A \cup B) \neq \emptyset$ $\iff ((V \setminus \{x_0\}) \cap A) \cup ((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\iff ((V \setminus \{x_0\}) \cap A) \neq \emptyset \ \text{或} \ ((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\iff x_0 \in A$ 的极限点,或 B 的极限点

2. 只需要证明 $A \cap B$ 的极限点就是 A 的极限点和 B 的极限点就好, 事实上:

$$x_0$$
是 $A \cap B$ 的极限点 $\iff \forall x_0 \in A \cap B, \exists_{open} V(x_0 \in V) \ s.t. \ (V \setminus \{x_0\}) \cap (A \cap B) \neq \emptyset$ $\iff ((V \setminus \{x_0\}) \cap A) \cap ((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\implies ((V \setminus \{x_0\}) \cap A) \neq \emptyset$ 且 $((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\iff x_0 \in A$ 的极限点,且是 B 的极限点

这一部分不是等号的问题主要出现在倒数第二步,因为两个非空集合的交不一定非空,而两个非空集合的并,一定非空。 □

例 1.14(上命题第二部分不能取等) 若 A = [0,1), B = (1,2] 那么 $\overline{A \cap B} = \emptyset \subset \{1\} = \overline{A} \cap \overline{B}$ 例 1.15(单点集不一定是闭集,稠密)设 $X = \{0,1\}$, $\mathscr{F} = \{\{0\}, \{0,1\}, \emptyset\}$,于是拓扑空间的闭集就是直接取 \mathscr{F} 在 X 中的补集,即 $\{\{1\},\emptyset,\{0,1\}\}$,对比之后明显可以看出来 $A = \{0\}$ 不是闭集(其他几个都是既开又闭)。根据我们前面例1.13的经验, $\{0\}$ 的极限点是 1,因此 $\overline{A} = A \cup \{A$ 的极限点 $\} = \{0,1\} = X$ 。即取了闭包之后就取到全集,这种现象我们称之为**稠密**。

1.3.2 稠密

定义 1.7 (稠密)

设 X 为一个拓扑空间, $A \subset X$,若 $\overline{A} = X$ 则称 A 在 X 中 稠密。如果 $Y \subset X$ 是 X 的拓扑子空间,如果还有 Y 的拓扑子空间 $Z \subset Y$ 那么我们分别记:

 $\overline{Z_Y}$: Z 在 Y 中取闭包。 $\overline{Z_X}$: Z 在 X 中取闭包。

例 1.17(有理数集 $\mathbb Q$ 在实数集 $\mathbb R$ 中稠密) 因为有理数集 $\mathbb Q$ 的极限点集为实数集 $\mathbb R$,因此 $\overline{\mathbb Q} = \mathbb R$ 。 那么很自然就产生疑问,是否取闭包的运算和子空间拓扑存在很多联系? 这就是下面命题所解决的:

命题 1.4

设X 是拓扑空间,Y 是X 的拓扑子空间,Z 是Y 的拓扑子空间。我们有:

$$\overline{Z_Y} = \overline{Z_X} \cap Y$$

证: 验证这一问题,仍然从土方法走:

 $^{^3}$ 这里会利用到集合运算的分配律 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 和 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- [C] 即证 $\forall x \in \overline{Z_Y}$, s.t. $x \in \overline{Z_X} \cap Y$, 首先因为 $x \in \overline{Z_Y}$, 因此 $x \in Y$ 于是只需证 $x \in \overline{Z_Y}$:
 - (a). $x \in Z$ 显然成立
 - (b). $x \notin Z$,此时意味着 $x \to Z$ 在 Y 中的极限点,只需证 $x \in \overline{Z_X}$,即证 $x \to Z$ 在 X 中的极限点。 事实上 $\forall x$ 在 X 中的开邻域 V,有:对于 X 在 Y 中的去心开邻域 $((V \cap Y) \setminus \{x\})$ 有:

$$((V \cap Y) \setminus \{x\}) \cap Z$$
$$= ((V \setminus \{x\}) \cap Z) \cap Y$$
$$\subset (V \setminus \{x\}) \cap Z \neq \emptyset$$

图 1.1: 命题 1.4 之集合关系图

- [\supset] 即证 $\forall x \in \overline{Z_X} \cap Y$, $s.t. x \in \overline{Z_Y}$, 首先明显有 $x \in Y$ 于是仍分类讨论:
 - (a). $x \in Z$ 显然成立
 - (b). $x \notin Z$,此时意味着 x 为 Z 在 X 中的极限点,只需证 $x \in \overline{Z_X}$,即证 x 为 Z 在 Y 中的极限点。事实上,任意在 Y 中的包含 x 的开集,由子空间拓扑,不妨设之为 $V \cap Y$,其中 $V \subset_{open} X(x \in V)$,因为 x 为 Z 在 X 中的极限点,所以 $(V \setminus \{x\}) \cap Z \neq \emptyset$,又由于 $x \in Y$,所以 $(V \setminus \{x\}) \cap Z \cap Y = (V \cap (Y \setminus \{x\})) \cap Z \neq \emptyset$

更进一步,我们问以下的问题:

问题 1.1 设 X 是拓扑空间, $F \subset X$ 稠密, $U \subset X$,问: $F \cap U$ 是否在 U 中稠密?

答案是否定的,因为如果偷鸡取 $U=X\backslash F$ 这件事就算寄了。于是为了排除这个情况,我们必须要求 U 是开集。如下命题:

命题 1.5

设X 是拓扑空间, $F \subset X$ 稠密, $U \subset_{open} X$ 是X 且赋予子空间拓扑, 则 $F \cap U$ 在U 中稠密。

证: 要证 $\overline{(F \cap U)_U} = U$ 根据命题1.4, 即要证 $\overline{(F \cap U)_U} \cap U = U$, 即要证 $U \subset \overline{(F \cap U)_X}$ 。 即对 $\forall x \in U$ 要证 $x \in \overline{(F \cap U)_X}$ 。则分两类讨论:

- 1. x ∈ F ∩ U 显然成立
- 2. $x \notin F \cap U$,又由于 F 在 X 中稠密,那么 x 是 F 的极限点,任取 X 中开集 $V(x \in V)$,由于 U 是 X 中开集,因此 $V \cap U$ 也是 X 中开集,因为 x 是 F 的极限点,所以有:

$$((V \cap U) \setminus \{x\}) \cap F \neq \emptyset$$

 \iff $(V \setminus \{x\}) \cap (F \cap U) \neq \emptyset$

1.3.3 集合之解体

为了更好说话,引入以下概念:

定义 1.8 (内点, 外点, 边界点)

设X为一个拓扑空间, $A \subset X$ 定义:

- 定义 A 的 内点集: $int(A) := \{ p \in A | \exists X \, \text{中开集} V (p \in V), V \subset A \}$
- 定义 A 的 **外点集**: $ext(A) := \{ p \notin A | \exists X \in \mathcal{F}, V(p \in V), V \subset X \setminus A \} \iff int(X \setminus A)$
- 定义 A 的 **边界点集**: $\partial(A) := \{ p \in X | \forall p$ 的开邻域 $V, V \cap A \neq \emptyset, V \cap (X \setminus A) \neq \emptyset \}$

注:根据以上定义、我们显然有:

$$X = int(A) \sqcup ext(A) \sqcup \partial(A)$$

例 1.18 (一些显然的例子)

- 1. 设 $A = [0,1) \subset \mathbb{R}$ 那么: $\partial(A) = \{0,1\}, int(A) = (0,1), ext(A) = (-\infty,0) \cup (1,+\infty)$
- 2. (a). $\exists A = (0,1) \subset [0,1) \ \mathbb{R} \ \Delta \colon \ \partial(A) = \{0\}, int(A) = (0,1), ext(A) = \emptyset$
- 3. 设 $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ 于是:
 - (a). $\partial(D) = S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$
 - (b). int(D) = D
 - (c). $ext(D) = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 > 1\}$

图 1.2: 例 1.18.3 之拓扑空间 D

4. 设 $A = [0,1] \subset \mathbb{R}^2$, 此时 $\partial(A) = A, int(A) = \emptyset, ext(A) = X \setminus A$

图 1.3: 例 1.18.4 之拓扑空间 A

1.4 拓扑空间的砖头—拓扑基

定义 1.9 (拓扑基)

设X是拓扑空间, \mathcal{B} 是一个由一些X中开集构成的集族,如果对 $\forall X$ 中开集U,U均可表为 \mathcal{B} 中一些元素之并,则称 \mathcal{B} 构成了X的一个 $\overline{\mathbf{h}}$ 力基。

例 1.19(\mathbb{R}^1 中的欧氏拓扑可以有不同的拓扑基) 很明显, \mathbb{R}^1 有一个拓扑基为 $\mathcal{B} = \{(a,b)|a < b\}$ 。

 $\diamondsuit \mathcal{B}' = \{(a,b)|a < b,a,b \in \mathbb{Q}\}, \ \mathbb{M} \mathcal{B}'$ 也是 \mathbb{R}^1 的一个拓扑基。

证: $\forall U \subset_{open} \mathbb{R}^1, \forall p \in U$,则存在 $a 使得 <math>(a,b) \subset U$,从而由有理数集的稠密性可知, $\exists (a_p,b_p) \in \mathcal{B}', \ s.t. \ p \in (a_p,b_p) \subset U$ 即 $U = \bigcap_{p \in U} (a_p,b_p)$ 。

图 1.4: 例 1.19 之数轴

☆ 注: 由此可见,一个拓扑空间可以有诸多拓扑基,但是一个拓扑基是否唯一确定一个拓扑空间呢?答案是肯定的,这个结论将由以下讨论给出。

了解了定义,我们就需要探究一个拓扑基 \mathcal{B} 之所以为拓扑基的等价条件。很明显,由拓扑基我们可以知道拓扑基的必要条件,如下面这个命题:

命题 1.6

设X为拓扑空间,B为X的一个拓扑基,那么:

TB1 . $\bigcup_{U=\Sigma} U = X$

TB2 . $\forall U_1, U_2 \in \mathcal{B}$ s.t. $U_1 \cap U_2$ 可以表示为 \mathcal{B} 中一些元素之并。

证: 显然。

这个命题反过来也是正确的,即有以下的命题:

命题 1.7

设X为一个集合, \mathcal{B} 为X的一个由一些子集构成的集族,若 \mathcal{B} 满足以上 $\mathsf{TB1}$ 、 $\mathsf{TB2}$ 两条,则 \mathcal{B} 必为X上某个拓扑 \mathcal{B} 的拓扑基。而且, \mathcal{B} 是唯一的,称之为由拓扑基 \mathcal{B} 生成的拓扑。

证: 定义 $\mathscr{F} = \{\emptyset\} \cup \{\mathcal{B}$ 中若干元素之并 $\} = \{\bigcup_{\alpha \in I} U_{\alpha} | U_{\alpha} \in \mathcal{B}\} \cup \{\emptyset\}$,我们所要证明的是以下两点:

- 1. \mathcal{F} 是 X 上的一个拓扑。事实上,我们有:
 - (a). $\emptyset, X \in \mathcal{F}$ (显然,由定义和条件 TB1 可以保证。)
 - (b). 罗对于任意并封闭是显然的(因为就是这样定义的。)
 - (c). 对于 $\forall \bigcup_{\alpha \in I} U_{\alpha}, \bigcup_{\beta \in J} V_{\beta} \in \mathcal{F}$, 其中 $U_{\alpha}, V_{\beta} \in \mathcal{B}, \forall \alpha \in I, \beta \in J$ 那么有:

$$\left(\bigcup_{\alpha\in I} U_{\alpha}\right) \cap \left(\bigcup_{\beta\in J} V_{\beta}\right) = \bigcap_{\alpha,\beta} (U_{\alpha} \cap V_{\beta}) \in \mathscr{F}$$

2. B为拓扑 罗上的一个拓扑基。

根据定义可知 \mathcal{B} 也确实为拓扑 \mathscr{D} 上的一个拓扑基。从构造来看,我们并没有规定在拓扑基 \mathcal{B} 中的并是哪些,因此 \mathscr{D} 是唯一的,因此命题得证。

例 1.20(\mathbb{R}^2 **的另一拓扑基**) 明显来看,欧氏空间 \mathbb{R}^2 中的开球的全体构成的集合是 \mathbb{R}^2 的一个拓扑基,根据我们在度量空间中所积攒的经验, \mathbb{R}^2 中的开球和邻域是等价的,很自然的我们可以考虑 \mathbb{R}^2 中的开矩体的全体构成的集合 $\mathcal{B}' = \{(a,b) \times (c,d) | a < b,c < d\} \cup \{\emptyset\}$:

图 1.5: 例 1.20 之开矩体

很明显 \mathcal{B}' 是 \mathbb{R}^2 上某拓扑的拓扑基。

为了更好地描述两个拓扑基之间的关系,以便更加方便地研究两个拓扑基生成的拓扑空间之间的关系,我们对拓扑基引入如下的定义:

定义 1.10 (拓扑基之间的等价)

设 \mathcal{B},\mathcal{B}' 满足TB1、TB2,称 \mathcal{B} 与 \mathcal{B}' 是等价的、若:

- 1. $\forall U \in \mathcal{B}, p \in U, \ \text{at} \ \exists U' \in \mathcal{B}', \ s.t. \ p \in U' \subset U$
- 2. $\forall V \in \mathcal{B}', p' \in V'$, $\forall V \in \mathcal{B}', s.t. p \in V \subset V'$

图 1.6: 定义 1.10 的说明

命题 1.8

设 \mathcal{B} 与 \mathcal{B}' 满足 $\mathsf{TB1}$ 、 $\mathsf{TB2}$,且 \mathcal{B} 与 \mathcal{B}' 等价,则 \mathcal{B} 生成的拓扑 \mathscr{F} 与 \mathcal{B}' 生成的拓扑 \mathscr{F}' 相同。

证: 证明很简单, $\forall U \in \mathscr{F} \Rightarrow U = \bigcup_{\alpha \in I} U_{\alpha}, U_{\alpha} \in \mathcal{B}$,又因为两个拓扑基等价,则有:

$$\forall U_{\alpha}, \forall p \in U_{\alpha} \Rightarrow \exists V_{p} \in \mathcal{B}', \ s.t. \ p \in V_{p} \subset U_{\alpha}$$

即: $U_{\alpha} = \bigcup_{p \in U_{\alpha}} V_p \in \mathscr{F}'$,即 $U = \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{F}'$,则 $\mathscr{F} \subset \mathscr{F}'$ 同理, $\mathscr{F} \subset \mathscr{F}'$,因此 $\mathscr{F} = \mathscr{F}'$

为了更好的使用以上拓扑基的等价条件, 我们可以篡改 TP2 为以下的 TP2':

TP2' . $\forall U_1, U_2 \in \mathcal{B}, \forall p \in U_1 \cap U_2, \exists U_p \in \mathcal{B}, \ s.t. \ p \in U_p \subset U_1 \cap U_2$

证: 这个的验证也十分显然。

第2章 连续映射

研究点集拓扑的主要动机就是从更加一般的观点来定义连续性、紧性和连通性。下面三章就是做这个工作。这一章,先研究一般的连续映射。

2.1 连续映射

首先,我们重申连续性的定义:

定义 2.1 (连续映射)

我们有下面这俩显然的命题:

命题 2.1 (连续映射之复合是连续映射)

设 X,Y,Z 是三个拓扑空间,定义连续映射 $f:X\longrightarrow Y,\ g:X\longrightarrow Y,\ 则\ gf:X\longrightarrow Z$ 是连续映射。

证: 对于 $\forall U \subset_{open} Z$, 我们有 $(g \cdot f)^{-1}(U) = f^{-1}(g^{-1}(U))$, 由于 g 是连续映射,则 $g^{-1}(U)$ 是 Y 中的开集;又由 f 是连续映射,所以 $f^{-1}(g^{-1}(U))$ 是 X 中开集。

命题 2.2 (连续映射之限制是连续映射)

设 $f: X \longrightarrow Y$ 是连续映射, $A \subset X$ 并赋予 A 以子空间拓扑, 那么 $f|_A: A \longrightarrow Y$ 是连续映射。

证: $\forall U \subset_{open} Y$, 因为赋予 A 以子空间拓扑,所以有 $(f|_A)^{-1}(U) = A \cap f^{-1}(U)$ 又由于 $f \in X \longrightarrow Y$ 的连续映射,所以 $f^{-1}(U) \in X$ 中开集,所以 $A \cap f^{-1}(U)$ 就为 A 中开集。 \square

2.2 充满整个空间的曲线-Peano¹曲线

¹朱塞佩·皮亚诺(意大利语: Giuseppe Peano; 1858 年 8 月 27 日 - 1932 年 4 月 20 日)是意大利数学家、逻辑学家、语言学家。

第3章 紧性

第4章 连通性

第5章 符号说明

本讲义有以下符号说明,便于我自己看不明白的时候过来回顾一下(

5.1 符号说明

- 1. $O \subset_{open} X$ 的含义是 $O \in X$ 的开子集。
- 2. $F \subset_{closed} X$ 的含义是 $F \in X$ 的闭子集。
- 3. F = closed X 的含义是 F 和 X 相等, 且均为闭集。
- 4. 所有的弯体(比如 ⊂)变直之后就表示更加强的区分效果(比如 ⊏,表示真被包含)。
- 5. 所有的包含采用类似 C 的符号, 若出现 C (一般不会), 表示同一意思。

5.2 语法说明

- 1. 数学逻辑语言同国际标准。
- 2. 外加一些张氏古代汉语和标准中式英语(虽然掺杂一些少量标准英式英语)。