Lezione N+5 Geometria 2

Federico De Sisti 2025-05-27

0.1 Zenobobi

Definizione 1 (Parametrizzazione di Monge)

$$f: V \to \mathbb{R}$$
 differenziabile aperto di $\mathbb{R}^{n-1} \Rightarrow \varphi: V \to U = Im(\varphi)$
èunaparametrizzazione. $(a_1, \dots, a_{n-1}) \to (a_1, \dots, a_{n-1}), f)$

Teorema 1

 $Sia\ S \subseteq \mathbb{R}^3$

una superficie differenziabile immersa allora \exists una parametrizzazione di Monge per ogni punto di S

Dimostrazione

 $p \in S$

 $\begin{array}{c} \psi: V \to U \\ q \to p \end{array} parametrizzazione$

 $d\psi$ è iniettivo, $q = \psi^{-1}(p)$

ed è dato della matrice Jacobiana

GUARDA 17 25

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$
.

proiezione su (x,y)

 $\pi \circ \psi$ ha differenziale in q che è isomorfismo

 \Rightarrow a meno di restringere l'aperto U abbiamo $\pi \circ \psi: U \to W = \pi(U)$ invertibile con inversa C^{∞}

INSERISCI IMMAGINE 5 28

Otteniamo la parametrizzazione di Mange definita da

$$\tilde{\psi} = \psi \circ (\pi \circ \psi)^{-1} : W \to U$$
$$(x, y) \to (x, y, f(x, y))$$

È C^{∞} sui punti di W componibile con l'inversa della restrizione $\pi|_{U}$

0.2 Applicazioni differenziabile tra superfici

Definizione 2 1. Sia S una superficie differenziabile

Una funzione $f: S \to \mathbb{R}$ si dice differenziabile in $x \in S$ se \exists un interno coordinato U di x è carta $\varphi: U \to V \subseteq \mathbb{R}^2$ tale che $f \circ \varphi^{-1}: V \to \mathbb{R}$ differenziabile in $\varphi(x)$

f si dice differenziabile se è differenziabile in $x \ \forall x \in S$

2. $f: S \to \mathbb{R}^n$

è differenziabile se lo sono tutte le sue componenti

- S₁, S₂ superfici differenziabili
 f: S₁ → S₂ è differenziabile su x§₁ se ∃φ: U → V carta locale intonro ad x
 φ': U' → V' carta locale intorno ad f(x) tale che φ'∘f∘φ⁻¹: V → V'
 è differenziabile
- 4. $f: S_1 \to S_2$ è un diffeomorfismo se è iniettivo, differenziabile e $f^{-1}: S_2 \to S_1$ è differenziabile

Esempi

1.
$$f: S \to \mathbb{R}$$

$$x \to \|x - u\|^2 \text{ differenziabile } S_1 = \{x^2 + y^2 + z^2 = 1\}$$

$$S_2 = \{(x, y, z) \mid x^2 + y^2 = 1\}$$

$$\tilde{S}_1 = S_2 \setminus \{(0, 0, 1), (0, 0, 1)\}$$

$$f: \tilde{S}_1 \to S_2$$

$$(x, y, z) \to (\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, z)$$

Esercizio

Dimostrare che f è differenziabile

Suggerimento

usare la parametrizzazione

$$\psi : V \to \tilde{S}_1$$

$$(\theta, \rho) \to (\cos(\rho)\cos(\theta), (\rho)\sin(\theta)\sin(\rho))^{\cdot}$$

$$\psi^{-1} : V' \to S_2$$

$$(\theta, t) \to (\cos\theta, \sin\theta, t)^{\cdot}$$

Sia $f: A \to \mathbb{R}^m$ differenziabile A aperto di \mathbb{R}^n , $p \in A$ $d_p f: \mathbb{R}^n \to \mathbb{R}^m$ ed è definito $v \to \mathcal{J} f_p \cdot v$, dove \mathcal{J} è la Jacobiana Sia $\alpha: I \to \mathbb{R}^n$ curva con $\alpha(t_0) = p$ e $\alpha'(t_0) = v$ per $t_0 \in I$

Allora $df_p(v) = \beta'(0)$

 $\beta(t) = f(\alpha(t))$