评阅教师	得分			

一、单项选择题(本大题共15小题,每小题1分,共15分)

提示: 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在 下表中。错选、多选或未选均无分。

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15					

- 1. 下列语句中是真命题的是(C)。
 - A、我正在说谎。 B、如果图的邻接矩阵是对称阵,那么该图为无向图。
 - C、如果 1+2=5,那么雪是黑的。 D、如果 1+2=3,那么雪是黑的。
- 2. 下面关于集合等势正确的说法是(C)。
 - A、一个集合不可能和它的真子集等势; B、(0,1) 和自然数集合等势;
 - C、 $(-\infty,\infty)$ 和 $(100,\infty)$ 等势; D、素数集合与有限集合等势

注: 试题字迹务必清晰,书写工整。 本题共9页,本页为第1页 教务处试题编号: 311-

3.	判断下列命题哪个为真?(A)
	A、 $A-B=B-A \Rightarrow A=B$ B、空集是任何集合的真子集
	C、空集只是非空集合的子集 D、 若 A 的一个元素属于 B,则 A=B
4.	设 A={1, 2, 3, 4}, 下列关系中(B)为等价关系。
	A, R1={<1, 1>, <1, 2>, <2, 1>, <3, 3>};
	B, R2={<1, 1>, <1, 3>, <2, 2>, <3, 1>, <3, 3>, <4, 4>};
	C, R3={<1, 3>, <2, 2>, <3, 3>, <4, 4>};
	D, R4={<1, 1>, <1, 3>, <3, 2>, <4, 4>}.
5.	设 G 、 H 是一阶逻辑公式, p 是一个谓词, $G = \exists xp(x)$, $H = \forall xp(x)$,则一阶逻辑公式
	$G \rightarrow H$ 是(\mathbb{C}).
	A、永真式 B、永假式 C、可满足式 D、前束范式
6.	设集合 $A=\{1,2,3,,10\}$,下面定义的哪种运算关于集合 A 是不封闭的? (D)
	$A \cdot x^*y = \max\{x,y\}$
	$B_{x} = \min\{x,y\}$
	C、 x*y=GCD(x,y), 即 x,y 的最大公约数
	D、 x*y=LCM(x,y), 即 x,y 的最小公倍数
7.	含有3个命题变元,2个命题常元的命题公式有(A))种不同的解释。
	A, 2^3 ; B, 3^2 ; C, 2^{2^3} ; D, 2^{3^2}
	8. 已知 R 是二元关系,且满足 $R = R^3$,则下列(B)关系具有可传递性
	A, R ; B, R^2 ; C, R^3 ; D, R^4 ;
9.	设命题公式 $G \Leftrightarrow \neg (P \to Q), H \Leftrightarrow P \to (Q \to \neg P)$,则 $G 与 H$ 的关系是(D)

A, $Q \rightarrow H$ B, $H \rightarrow G$ C, $H \Rightarrow G$ D, $G \Rightarrow H$

10. 若 A-B= Φ ,则下列哪个结论不可能正确? (D)

注: 试题字迹务必清晰,书写工整。

11. 右图描述的偏序集中,子集 $\{b,e,f\}$ 的下界为

(**C**)。

A, d,e;

B, e, f, d;

C, d;

D、无下界。

12. 有向图G中有8个顶点,连通分支数为3,该图对应的关联

矩阵的秩为(C)。

A, 3

B, 4

C, 5

D, 7

14. 一个含有 3 个命题变元公式,该公式相应的主析取范式有 8 项极小项,那么该公式为

(**B**).

A、矛盾式; B、永真式;

C、不可满足式; D、A,B,C均不正确。

15. 设 $A = \{1,2,8,10,16,23\}$,定义在A上的一个等价关系R为模 3 同余,则R产生A上的一 个划分共有(**B**)个分块。

A, 1

B₂ 2

C、3

D、无法确定

评阅教师	得分		

二、多项选择题(本大题共5小题,每小题2分,共10分)

提示: 在每小题列出的五个备选项中有二个至五个是符合题目要求的,请将其代码填 写在下表中。错选、多选、少选或未选均无分。

1	2	3	4	5	

1. 设 $A = \{1,2,3\}$,则右图所示A上的关系具有(BDE)。

A、自反性 B、反自反和传递性

C、自反性和反对称性 D、反对称性和传递性

- E、传递性

2. 下列命题公式中, (A, B, C, D, E) 在解释{P, ~Q, R}下为真。

٨	$(P \land Q)$. D
A_{λ}	$(\Gamma / \setminus \bigcup)$	\rightarrow r

$$B \cdot (P \lor Q) \rightarrow R$$

$$C \cdot (R \leftrightarrow Q) \rightarrow P$$

$$D \cdot P \rightarrow (Q \rightarrow R)$$

E,
$$\sim$$
(P \land Q) \rightarrow R

- 3. A,B 均为合式公式,且 $A \Leftrightarrow B$,则(A,E)。
 - A、 $A \rightarrow B$ 为重言式;
- B、A的对偶式为 A^* , $A^* \rightarrow A$ 为重言式;
- $C \setminus B$ 的对偶式为 B^* , $B \to B^*$ 为矛盾式 ; $D \setminus A$ 的对偶式 $A^* \Rightarrow B$;
- E、 $A \leftrightarrow B$ 为重言式。
- 4. 设有如下具体命题: A: 如果地上有水,则天上下雨; B: 如果天上下雨,则地上有水;

C:如果地上没有水,则天上不下雨; D:如果天上不下雨,则地上没有水; 哪些命题等

价的(

B D

)。

- A、A)与B)等价; B、A)与D)等价;
- C、 A)与 C)等价; D、 B)与 C)等价; E、 B)与 C)等价
- 5. A.B.C 为任意集合, Ø 为空集,下列结论中正确的是(BDE
 - $A, \emptyset \in \emptyset$
- B, $\varnothing \subseteq \varnothing$ C, $2A \cap 2B = 2A \cap B$
- D, $(A \cap B) = (A \cap C) \Rightarrow B = C$ E, $A \oplus B = A \oplus C \Rightarrow B = C$

三、填空题(本大题共15空,每空1分,共15分)。

1. 一个连通平面图有 20 个顶点,每个顶点都为 3 度,那么这个平面图可

被分割为(12)个面。

2. 若集合A,|A|≥1,那么A上有()个既是自反的又是对称的关系,A上有

) 个反对称关系。

- 3. 设R 是 $A = \{1,2,3,4,6,8,9\}$ 上的整除关系,子集 $B_1 = \{4,6\}$ 关于整除的最大下界(2),最 小上界 ($\frac{\pi}{2}$); 子集 $B_2 = \{2,3,6\}$ 关于整除的最大元 ($\frac{\pi}{6}$),最小元 ($\frac{\pi}{2}$)
- 4. 设A, B是集合,若 $A \cap B = \Phi$,|A| = n, |B| = m,则 $|2^A \cup 2^B| = (2^m + 2^n 1)$)。
- 5. 谓词公式 $\forall x P(x,y) \land \forall y Q(x,y)$ 的前東范式为 $(\forall x \forall y (P(x,z) \land Q(h,y))$
- 6. 设个体域为整数集,公式∀x∃y(x+y=0)的真值为(

7. 集合 $A = \{a,b,c\}$, A 上关系 $R = \{\langle a,a \rangle, \langle a,c \rangle, \langle a,b \rangle, \langle b,c \rangle\}$, 关于R 的传递关系 $t(R) = (\{\langle a, a \rangle, \langle a, c \rangle, \langle a, b \rangle, \langle b, c \rangle\})_{\circ}$

8. 一幅标准的 52 张扑克牌中,至少摸出(9) 张才能保证色选出的牌中至少有 3 张 是同样花色的。

9. 实数集 R 上有二元运算: a*b=a+b-ab, 运算*的零元是(1), 运算*的 幂等元是 (**0** 1)。

10. 设命题公式 $S = \neg (P \rightarrow (Q \land R))$,则使公式 S 为真的解释有((1,0,0), (1,0,1), (1,1,0))。)。

评阅教师	得分

四、分析及演算题(本大题共 4 小题,1-4 小题每题 5 分,5 小题 10 分共30分)

1.用邻接矩阵求右图长度为7的通路(含回路)总数。

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

(1分)

$$A^{2} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 4 & 8 & 4 & 4 \\ 4 & 8 & 4 & 4 \\ 2 & 4 & 2 & 2 \\ 2 & 4 & 2 & 2 \end{bmatrix}$$

$$A^{7} = \begin{bmatrix} 32 & 64 & 32 & 32 \\ 32 & 64 & 32 & 32 \\ 14 & 32 & 16 & 16 \\ 16 & 32 & 16 & 16 \end{bmatrix}$$

(2分)

$$32 \times 8 + 64 \times 2 + 16 \times 6 = 480$$

(2分)

2、设无向图 $G=\langle V.E\rangle$,|E|=12。已知有 6 个 3 度顶点,其他顶点的度数均小于 3。问 G 中 至少有多少个顶点?

解:设 G 中度数小于 3 的顶点有 k 个,由欧拉握手定理 $24=\sum deg(v)$

(2分)

知, 度数小于3的顶点度数之和为6。

(1分)

故当其余的顶点度数都为2时,G的顶点最少。

(1分)

即 G 中至少有 9 个顶点。

(1分)

3、某地有 5 个风景点,若每个风景点均有两条道路与其他点相通,问有人可否经过每个风景 点恰好一次而且游完这 5 处。

解:将5个风景点看成是有5个结点的无向图,

(1分)

两风景点间的道路看成是无向图的边,因为每处均有两条道路与其他结点相通,

(1分)

故每个结点的度数均为2,从而任意两个结点的度数之和等于4,正好为总结点数减1。

(2分)

故此图中存在一条哈密顿道路, 因此本题有解。

(1分)

4. 设 $S = Q \times Q$, Q 为有理数集合,*为 S 上的二元运算: 对任意 $(a,b),(c,d) \in S$,有 (a,b)*(c,d)=(ac,ad+b) ,求出 S 关于二元运算*的单位元,以及当 $a \neq 0$ 时,(a,b) 关于*的逆元。

解:

设 S 关于*的单位元为(a, b)。根据*和单位元的定义,对 \forall (x, y) \in S, 有

$$(a, b)*(x, y)=(ax, ay+b)=(x, y),$$

(1分)

$$(x, y)*(a, b)=(ax, xb+y)=(x, y)$$
.

(1分)

即 ax=x, ay+b=y, xb+y=y 对 $\forall x, y \in Q$ 都成立。解得 a=1, b=0。

(1分)

当 a ≠ 0 时,设 (a, b) 关于*的逆元为(c, d)。根据逆元的定义,有

(a, b)*(c, d) = (ac, ad+b) = (1, 0)

$$(c, d)*(a, b) = (ac, cb+d) = (1, 0)$$

(1分)

即 ac=1, ad+b=0, cb+d=0。解得 c=
$$\frac{1}{a}$$
, d= $-\frac{b}{a}$ 。

(1分)

5.下图表示一开发商所设计房屋的平面图,缺口处表示门的位置。如果希望从户外进入该房屋,穿过每个门一次并且恰好一次,再回到户外,目前的设计能实现这个愿望吗?如果不能,应该如何修改设计,通过增加最少的门来实现这个愿望?

设每个房间对应一个顶点(户外也是一个顶点),每个门对应两个顶点(即该所连接的两个房屋)之间的一条边,于是得到一个连通图,所以希望的走法就是这个图的一条欧拉回路。这个愿望能够实现当且仅当每个顶点的度数都是偶数。 (4分)

由于房屋B,C,D和户外这4个顶点都是奇数度的,所以目前的设计还不能实现上述愿望。(2分)

至少需要在B,C,D和户外这4个顶点之间增加两条边(即增加两个门)。由于C和D之间没有公共的墙,

不能在C和D之间加边,所以只能在C和B之间,D和户外之间加边。 (2分)

因此至多增多2个门就能实现所希望的走法,即在房间C和B之间加开第二个门, (1分)

并且在房间 D 和户外之间加开第二个门 (1分)

得分

五、证明题(本大题共4小题,每题5,共20分)

1、运用 CP 规则证明: $P \rightarrow \neg Q$, $\neg P \rightarrow R$, $R \rightarrow \neg S \Longrightarrow S \rightarrow \neg Q$

证明:

2.设简单平面图 G 中顶点数 n=7, 边数 m=15。证明: G 是连通的。

证明:设 G 具有 k 个连通分支 G_1 , G_2 , \cdots , G_k 。设 G_i 的顶点数为 n_i , 边数为 m_i , $i=1,2,\cdots$, k。

先证每个连通分支的顶点数都大于 1。否则说明 G 中有孤立结点。由于 G 是简单图,从而使 G 的边数是 15,

则 G 只有两个连通分支,其中一个是由孤立结点导出的,另一个是 K6。 (1分)

但 K₆不是平面图, 故要每个连通分支的顶点数都大于 1。 (1分)

同理可证,每个连通分支的顶点数都大于2。

由此可得, G 的每个连通分支至少有 3 个顶点。从而

 $S \rightarrow \neg Q$ CP, (1), (7)

 $m_i \leq 3n_i - 6$

(8)

即
$$\mathbf{m} = \sum_{i=1}^{k} m_i \le \sum_{i=1}^{k} (3n_i - 6) = 3n - 6k$$
 (2分)

注: 试题字迹务必清晰,书写工整。

(1分)

课程名称:

任课教师:

学号:

姓名:

从而 $15 \le 21$ -6k,即 k ≤ 1 。从而 k=1,故 G 是连通图。

(1分)

3. 设 e 和 0 是关于 A 上二元运算*的单位元和零元,如果|A|>1,则 $e\neq 0$ 。

证明:用反证法证明。假设e=0。

(1分)

对 A 的任一元素 a, 因为 e 和 0 是 A 上关于二元运算*的单位元和零元,

(1分)

则 a=a*e=a*0=0。

(1分)

即 A 的所有元素都等于 0,

(1分)

这与已知条件|A|>1矛盾。从而假设错误。即 e≠0。

(1分)

4.设 9 阶无向图G 中,每个顶点的度数不是 5 就是 6,证明G 中至少有 5 个 6 度顶点或至少有 6 个 5 度顶点。

证明:

设G有x个5度顶点,9-x个6度顶点,由握手定理可知,

(1分)

5x+6(9-x)=54-x 为偶数,

(1分)

x 为偶数, 即为 0, 2, 4, 6, 8.

(1分)

当x = 0, 2, 4时,6度顶点的个数9-x分别为9,7,5。所以6度顶点的个数至少为5个; (1分)

当x = 6.8时,5度顶点的个数至少为6个

(1分)

评阅教师	得分		

六、设计题(本大题共1小题,共10分)

求出顶点 v_i 到各顶点的最短距离、 $d_i = \max\{d_{ii}\}$

	1	2	3	4	5	6	7	d	分数
1	0	1	2	3	6	7	13	13	1
2	1	0	3	4	6	8	13	13	1
3	2	3	0	5	4	5	11	11	1
4	3	4	5	0	9	4	12	12	1

5	6	6	4	9	0	9	7	9	1
6	7	8	5	4	9	0	8	9	1
7	13	13	11	12	7	8	0	13	1

中心医院可设在 v_5 或 v_6 所代表的小区中

1分

(b)

1分

1分