Han Zhang

Sep 22, 2020

Outline

Logistics

Prediction: Evaluation

Prediction: Algorithms

Prediction: Train/Test Split

Use Twitter Texts to Predict Polling

Logistics

- Move to mixed-mode teaching next week
 - LSK 1033 for lecture
 - LSK 1011 for tutorial
- How many people will appear in classroom?
- Are everyone able to find a group?

Feedback

- Some questions raised in the poll from last week:
- Too many discussions?
 - As I mentioned in the class, there will be more knowledge from the third week
 - But, knowledge is something you can google/read by yourself
 - In-class discussions teach you how to ask the right question
- Reading is too difficult?
 - Be sure to read it before the class; I will talk about key points in lectures
 - And this is a skill you will need to learn: quickly understanding the key ideas from

Feedback

- Not very practical?
 - More to come next:)
- Too simple?

Logistics

- These contents can be taught in several CS/data science courses; if you want more math/stat things, come to me and I can suggest you some books/CS courses you can read by yourself
- Practice is always the best way to learn;

How to compare predictions?

- "Soviet Union will collapse one day"
 - There is only one prediction; our prediction is ultimately either right or wrong
 - It's nearly always to be true (because there is no time constraint!)
- In computational social sciences/modern data sciences, usually the prediction goals are precise and falsifiable (Hofman, Sharman and Duncan, 2017)
- One way to make falsifiable is to add scope conditions
- E.g., we make 10 predictions, adding constraint of time:
 - Will Societ Union collapse in 1980? Yes or No?
 - . . .
 - Will Societ Union collapse in 1989? Yes or No?
- With a falsifiable prediction, we can calculate prediction error/accuracy
- And then we can precisely compare two predictions

Prediction difficulty vary by prediction goals

- Jake M. Hofman, Amit Sharma, and Duncan J. Watts, Prediction and explanation in social systems, Science 355 (2017), no. 6324, 486–488
- Given 852 million tweets, here is a list of things you can predict
- Predict whether each tweet will have more than 5 retweets: easier
- Predict the exact number of retweets for each tweet: harder
- Predict the size of cascades (number of retweets, retweets of retweets,..): hardest

Prediction evaluations for continuous outcomes

- It's common to use \hat{Y} as the predicted value of Y
- For continuous outcomes:
- R²: what you get from regression models; focusing on variances predictable from your X
 - The larger the R², the better the model
- MSE (mean squared error): $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$
 - The smaller the MSE, the better the model
 - Sometimes we also use RMSE = \sqrt{MSE}
- MAE (mean absolute error): $\sum_{i=1}^{n} |Y_i \hat{Y}_i|$

Prediction evaluations for categorical outcomes

- For categorical outcomes, evaluation is more complex
- Let us work with the simpliest example of binary outcomes
- Say we has an algorithm predicting COVID infection (positive = 1 vs. negative = 0)
- We found that 99% of our predictions are correct. Yeah!
- But wait, is that good enough?

Prediction evaluations for categorical outcomes

- In fact, for any classification task, one of the simpliest baseline is to predict every data point as belonging to the majority class
- Here, we know most people are not affected
- So the trivial prediction here just predict that every one is negative (0)
- What's the accuracy for this trivial prediction?
- Let us assume that there are 10,000 students/employees at HKUST, and there are 10 infected cases
- So the error rate is 10/10000, and accuracy = 1 10/10000 = 99.9%
- If class is imbalanced, it is very easy to achieve a high accuracy by predicting the majority class all the time
 - But it's not useful at all! Not falsifiable

Prediction: Evaluation 0000000000000000

Prediction evaluations for categorical outcomes

		1/positive	0/negative
Prediction	1/positive	True Positive (TP)	False Positive (FP)
	0/ negative	False Negative (FN)	True Negative (TN)

- It's better to use confusion matrix
- $accuracy = \frac{TP+TN}{TP+TN+FP+FN}$
- precision = $\frac{TP}{TP \perp FP}$
 - Interpretation: what proportion of predicted positives are
- actual positive? recall = $\frac{TP}{TP+FN}$
 - interpretation: what proportion true positives are identified by predictions?

Case 1: high precision/ low recall

		1/positive	0/negative
Prediction	1/positive	True Positive (n = 5)	False Positive (n =0)
	0/negative	False Negative (n = 5)	True Negative (n = 9990)

• Accuracy:
$$\frac{TP+TN}{TP+TN+FP+FN}$$

• $\frac{9+9986}{10000} = 99.95\%$
• precision = $\frac{TP}{TP+FP}$
• $\frac{5}{5+0} = 100\%$

- recall = $\frac{TP}{TP+FN}$ • $\frac{5}{5+5} = 50\%$
- So every predicted infected case is indeed infected
- But we missed 50% of actual infected cases

Case 2: high recall/low precision

		1/positive	0/negative
Prediction	1/positive	True Positive (n = 9)	False Positive (n = 4)
	0/negative	False Negative (n = 1)	True Negative (n = 9986)

- We lower the threshold to be considered as infection case
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
 - $\frac{9+9986}{10000} = 99.95\%$; the same
- precision = $\frac{TP}{TP+FP}$
 - $\frac{9}{9+4} = 69.23\%$
- recall = $\frac{TP}{TP+FN}$
 - $\frac{9}{9+1} = 90\%$
- Our prediction captures 90% of actual infected cases
- But less than 70% predicted cases are actually infected; false

Prediction: Evaluation 0000000000000000

Trivial prediction: Majority Class

		1/positive	0/negative
Prediction	1/positive	True Positive (n = 0)	False Positive (n = 0)
	0/negative	False Negative (n = 10)	True Negative (n = 9900)

- Predict the majority class (no one is affected)
- Accuracy: $\frac{9+9986}{10000} = 99.9\%$; slightly worse
- Better measures should tell us that this is a trivial prediction
- Precision: not defined
- Recall: $\frac{9}{9+1} = 0\%$
- Even though accuracy is high, precision/recall is not satisfactory

- In evaluting perdiction performances for categorical outcome, do not use accuracy
- Instead, use precision and recall
- Depending on tasks, we may emphasize one or the other
- [in class activities]: can you think of examples we should focus one or the other?
- Ideally, we want both precision and recall to be high
- In reality, it's often that one comes at the cost of another
- F-1 score: balancing precision and recall

- We can find a trade-off by using precision-recall curve
- If predicted probability of Y=1 is larger than a threshold ϕ , $\hat{Y}=1$
 - otherwise $\hat{Y} = 0$

Prediction: Evaluation

- Large threshold ϕ -> high precision
- Small threshold ϕ -> high recall
- Algorithm 2 is better than 1

ROC curve

Another common measure is called ROC curve

Actual

	1/positive 0/negative	
1/positive	True Positive (TP)	False Positive (FP)
0/ negative	False Negative (FN)	True Negative (TN)

Prediction

- True positive rate (i.e., recall): $\frac{TP}{TP+FN}$
- False positive rate: $\frac{FP}{FP+TN}$

ROC curve

- AUC: area under the curve
- Bigger AUC -> better prediction performance

ROC vs Precision/Recall

- Use ROC curve, if you care both positive and negatives
- Use Precision/recall curve, if you care positive class more than negative class

Summary of evaluation characteristics

 Jake M. Hofman, Amit Sharma, and Duncan J. Watts, Prediction and explanation in social systems, Science 355 (2017), no. 6324, 486–488

Various regression models you may have learned

- Linear regression: for continuous outcome Y
 - $Y = \beta X$
- Logistic regression: for binary outcome Y
 - $Y = logit^{-1}\beta X$
- Multinomial/ordered logistic regression: categorical/ordinal outcome Y

- When data dimension is high (e.g., K > N), usually most variables are not relevant
- We need variable selection
 - LASSO regression: force the coefficient of some variables to be 0
 - Controlled by a parameter λ₁; bigger λ₁ forces more coefficients to be 0
 - Ridge regression: force the coefficient of some variables to be very small
 - Controlled by a parameter λ₂; bigger lambda₂ forces more coefficients to be small

LASSO and Ridge: math

Prediction: Algorithms 000000000

- We have p variables
- Linear regression:

$$\hat{\beta}_{OLS} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^{(1)}$$

 Lasso estimator (Tibshirani, 1996, Least Absolute Shrinkage) and Selection Operator):

$$\hat{\beta}_{LASSO} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$
 (2)

Ridge estimator (Hoerl and Kennard, 1970; Turgenev, 1943):

$$\hat{\beta}_{Ridge} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \sum_{i=1}^{p} \beta_j^2$$
 (3)

Elastic Net

- Combine LASSO and Ridge
- With weights λ_1 for LASSO and λ_2 for Ridge

Decision Tree Example

Intuitively, decision tree visualizes one's sequential decisions process (Y), based on some predictors (variables)

- Decisions (outcomes) Y are located at leaves
- The rightmost branch has a triple interaction

Decision Tree Example

https://archive.nytimes.com/www.nytimes.com/imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html?emc=polb1&nl=pol

Decision Tree: The Obama-Clinton Divide

Estimating a tree with software

- Modern statistical software can help you to fit a tree automatically
 - R users: randomForest package

0000000000

 Python users: sklearn package; use RandomForestClassifier or RandomForestRegressor

From One Tree to Many Trees

- Bagging tree (or ensemble of trees): averaging the predictions of many trees
 - From the original training data, draw a sample with replacement of equal size
 - 2. Fit a tree for each sample
 - 3. Repeate 1 and 2 for some times
- Take the mean of estimates of each tree to produce a single estimate for each test data point

Random Forest

- Random Forests further extend the idea of bagging
- The key innovation of random forests:
- For each sample from the original training data, randomly select m variables (not using all p variables), and grow a tree;
 - A common choice: $m = \sqrt{p}$
- In other words, we just force p m predictors to be non-relevant each time
- Why? High-dimensional data!

Tree, Forests and GLM

- Random forests are usually among one of the best predictors you can get; typically better than regression models
- But ultimately, you should choose based on performances on out-of-sample tests!

Prediction based on outcome is not useful

- We have 10 observed data points (X, Y)
- An easiest way to make perfect prediction:
- For every X, we predict its outcome to be Y
- It's error will be 0, but there is no way to make predictions if we have a new X
- Why? We are predicting based on outcomes
 - It's like cheating
 - It may fits the observed data perfectly
 - But does not generalize to unseen data

Train/test split

- It's important to do honest prediction, by splitting your data into two parts
- One part is training data
- The other is (out-of-sample) test data
- Train your model only with training data
- And evaluate your model with test data

Google Flue Trends Example

- Training data: CDC counts and search queries from 2003 to 2007
 - Training Procedure:
 - 1. Select a model: e.g., linear regression, CDC counts $\sim \beta \times$ (Google search queries)
 - 2. Training (fitting) model: obtain the value of regression coefficient β
- Test data: CDC counts and search queries in 2008
 - Evaluating procedures:
 - 1. calculate predicted CDC counts, based on β and search gueries in 2018
 - 2. compare actual CDC counts in 2008, and predicted CDC counts from the above

Train/validation/test split

- If we do not have test data, how can we internally compare our algorithms?
- Say LASSO has different choices of λ
- Further split your training data into:
 - Training data
 - Validation data
- And internally, train your algorithms on the new training data
- And evaluate on the validation data

Train/validation/test split

Three eras of survey research

- Matthew Salganik, Bit by Bit: Social Research in the Digital Age, Princeton University Press, 2019
- Chapter 3, Table 3.1

Table 3.1: Three Eras of Survey Research Based on Groves (2011)

	Sampling	Interviewing	Data environment
First era	Area probability sampling	Face-to-face	Stand-alone surveys
Second era	Random-digit dialing (RDD) probability sampling	Telephone	Stand-alone surveys
Third era	Non-probability sampling	Computer-administered	Surveys linked to big data sources

Traditional Surveys: probability sampling

- Why social scientists trust probability sampling more than non-probability sampling?
- Probability sampling on a smaller sample outperforms non-probability sampling on a much larger sample

Problems of traditional surveys

- Rising non-response rate
- Matthew Salganik, Bit by Bit: Social Research in the Digital Age, Princeton University Press, 2019
- Chapter 3, Figure 3.6

Problems of traditional surveys

Use Twitter Texts to Predict Polling

- Trade-off between cost and heterogeneity
- Nicholas Beauchamp, Predicting and Interpolating State-Level Polls Using Twitter Textual Data, American Journal of Political Science 61 (2017), no. 2, 490–503
 - some states are poorly polled
 - some days, and sub-state regions, are not polled

Using social media texts to assist election polls

- Nicholas Beauchamp, Predicting and Interpolating State-Level Polls Using Twitter Textual Data, American Journal of Political Science 61 (2017), no. 2, 490–503
- Argument: there are many work (especially by computer scientists) stating that social media texts can be used to predict election polls
- But policy researchers still heavily rely on polls
- Can Twitter texts ben used to predict vote share for Obama in 2012?

- Raw data: 40M tweets between Sep 1, 2012 to Nov 4, 2012 (the election day)
- Each tweet contain at least one political words:

obama, romney, pelosi, reid, biden, mc- connell, cantor, boehner, liberal, liberals, conservative, conservatives, republican, republicans, democrat, democrats, democratic, politics, political, president, election, voter, voters, poll, polls, mayor, governor, congress, congressional, representatives, senate, senator, rep., sen., (D),

- And each tweet was geolocated using keywords (e.g., they contain location words)
- Resulted in 850GB raw data

Turning Text into Variables

- Beauchamp further reduced the data dimension
- By selecting 10,000 most common words
- And calculate the word percentage, w_{kjt}, for word k at state j
 at day t
 - Number of tweets containing word k for state j at day t
 - Divided by number of total tweets for state j at day t
- End up with 500 MB data; 50 states \times 67 days \times 10,000 variables
- Turning text into variables is the key to most machine learning using text data;
 - More on this in next two weeks

- Training data: for each day t, training data are
 - 3 previous weeks's vote share for Obama based on polling
 - And/or day t's tweets
- Test data:
 - vote share for Obama on day t
 - across 42 days before the election and in 24 states
 - Other states have a few polls; shortcoming of polls if you want to study some detailed patterns

- 9 different models for training
- Simpler regression based models: (M1 M5)
 - Fixed effects: each state has its' own intercept β_i
 - Time trends: capture time changes (if there is any)
 - Words: each words has its own coefficient.
 - but only maintain the coefficient if its p value < 0.001

$$p_{jt} = \beta_j + \tau t + \beta_k w_{kjt} + \epsilon_{kjt}, \text{ for } k \text{ in } [1...10, 000],$$
(1)

Selecting models

TABLE 1 Accuracy in Matching Out-of-Sample Text-Predicted Polls to True Polls

	M1	M2	М3	M4		Random Forest	SVM	Elastic Net ^c	
					М5			$\lambda_1 = 0.001$	$\lambda_1 = 0.1$
Twitter text	×		×		×	×	×	×	×
State fixed effects Time trend		×	×	×	×	×	×	×	×

- The elastic net reduces to LASSO regression since they set $\lambda_2=0$
- Random forests, SVM, and elastic net are generally regarded as better than simpler regression models

Prediction Performances: visualization of predictions from M1

- Triangles: states with better polls
- Circles: states with worse polls
- Is this good enough?

Selecting error evaluation criteria

Use Twitter Texts to Predict Polling

- RMSE
- R²
 - pooled: variance explained across all cases
 - within: variance explained within states
- And visualization! Simple but powerful

Prediction Performances: quantitative measures

TABLE 1 Accuracy in Matching Out-of-Sample Text-Predicted Polls to True Polls

	M1	M2	М3	M4			SVM	Elastic Net ^c	
						Random		$\lambda_1 = 0.001$	$\lambda_1 = 0.1$
					M5	Forest			
Twitter text	×		×		×	×	×	×	×
State fixed effects		×	×	×	×	×	×	×	×
Time trend				×	×	×	×	×	×
MAE (smoothed)a	1.91	0.60	0.53	0.54	0.51	1.53	3.53	0.88	3.76
MAE (real) ^a	2.16	1.38	1.32	1.30	1.27	1.81	2.76	1.53	3.21
R ² Pooled ^b	0.77	0.98	0.98	0.98	0.98	0.90	0.19	0.95	0.01
R ² Within ^b	0.03	0.19	0.36	0.37	0.40	0.09	0.07	0.08	0.22

Findings

Use Twitter Texts to Predict Polling

- Simply using Twitter texts (M1) are worse than simpler regression models (M2, M4)
- Best model (M5) combines Twitter texts and considers the cross-section times-series nature of the data
- Simply taking some machine learning models may not be the best
- But ultimately, draw your conclusions based on prediction evaluation metrics, based on out-of-sample algorithms

Summary

- To make good predictions:
 - Try different algorithms
 - Be honest and don't cheat; use train/test split
 - Choose an appropriate evaluation metric to allow comparison between models
- These steps should be carried out for any prediction tasks