

SEQUENCE LISTING

<110> STEINBUCHEL, Alexander
LIEBERGESELL, Matthias
VALENTIN, Henry
PRIES, Andreas

<120> Process For Manufacturing Polyhydroxylic Fatty Acids, And Recombinant Bacterial Strains For Carrying Out The Process

<130> MOBT:152-2 - 11899.0152.DVUS01

<150> US 09/420,119

<151> 1999-10-18

<150> US 08/809,286

<151> 1997-07-03

<150> WO 96/08566

<151> 1995-09-15

<160> 3

<170> PatentIn version 3.0

<210> 1

<211> 2849

<212> DNA

<213> Thiocapsa pfennigii

<400> 1

ggatccttgtt cgcgagcgcg ccgcccagcc acctgcggc gcgccccgcc gggaccgctc 60

gaggacgcct cgcgaaggct ctaggggctg tatottcaag agtctacgcc cctttgttgc 120

agtgcacaaa tttccgtgt agttcatgc tatcacgccc cagacgagga agattcaccg 180

tgaacgatac ggccaacaag accagcgact ggctggacat ccaacgcaag tactggaga 240

cctggtcgga gctcgccgc aagaccttgg gtctggagaa gaccccgcc aatccttggg 300

ccggcgccct cgatcattgg tggcagacgg tctcgccgc cgcccccaac gacctggttc 360

gcgacttcat ggagaagctc gccgagcagg gcaaggcctt ctgcggctc accgactact 420

tcacgaagggg cctcgccgc agtagcggta cgcaaggctg ggacaccctc tcgaagacca 480

tcgacgacat gcaaaaggcc ttgcgcageg gccggatcga aggccacgag accttccgcc 540

gcctgatggc cttctggag atgcgcctcg acaactggca ggcgcaccatg tcctcgctgt 600

ccccgggtgcc cggcgacctg ctgcgcaca tgccgcacga ccaagtcaagg gacagcgtcg 660

accgcacccct ctgcgcaccc gggctcggtt acacgcgcga ggagcaggcc cgctaccagg 720

atctgatccg ccgctcgctg gagtaccagt cggccctgaa cgaataacaac ggcttctcg 780

gccagctcggttgtcaagtcc ctcgagcgga tgcgcgcctt cctgcaggaa caggccgaga 840

agggcgtcg	catcgagtgc	gcgcgaccc	tctacgacgc	ctgggtcg	tgctgcgaag	900
aggcttatgc	cgaggagg	tcgactcccg	actacgcgca	catccacggc	cgcctcgta	960
acgcccagat	ggccctcaag	cagcgatgt	cgaccatgg	cgacgagg	ctcgccg	1020
tgccgctgcc	gaccgc	gagctgc	cgctccag	tcggctcc	gagtcgc	1080
gcgagg	gcccag	caagagat	agacgctgaa	gcggcagg	gcggc	1140
ccggcgg	ccagcccg	ccccagg	ccgcccag	cagcaccc	cccgc	1200
cgacgg	ggcggcg	gcccgc	agcgcag	cacgacc	cgcaag	1260
ccaagcccac	caccggcc	tgatgtcg	cgcccg	tcgccc	gagagat	1320
cgtgtcccc	ttcccgat	acatccgg	cgacaag	accgagg	tgctgg	1380
cagccgcaag	ctcggcg	gtatgc	cctgctca	gccgacc	tcgacac	1440
cgtcaccc	aaggacgt	tccaccgc	ggacaag	gtcctctacc	gctaccgg	1500
cccggc	gtggcg	agacgat	gctgctg	gtctacg	tcgtcaat	1560
gccctacatg	accgacat	aggaggat	ctcgacg	aaggcc	tcgccc	1620
tcaggacgt	tatctgat	actgggg	cccgat	gccgacc	cgctgacc	1680
cgtgactac	atcaacgg	acatcgac	ctggtcg	tacctgc	agacccac	1740
cgtcgacc	gtcaac	tcggat	ccagggc	gcctcag	tctgtac	1800
ggccctgcac	tccgaga	tcaaaa	cgtcaccat	gtcacgc	tcgactt	1860
gacccgg	aacctg	cggc	ccagaac	gacgtcg	tggccgt	1920
caccatgg	aacatccc	gcgaa	caactgg	ttctgtcg	tcaagcc	1980
cagcctgacc	ggccaga	acgtca	ggtcgac	ctcgac	aggacaag	2040
caagaactt	ctg	ggatgg	agaagtgg	cttcgac	ccggacc	2100
cttccg	ttcatca	agg	acttctac	gca	tcg	2160
gatcggc	gat	caggagg	acctgc	catccg	ccgg	2220
gatgcagg	ac	ccatgg	cgccggat	ctccaagg	ctcg	2280
cgaggact	ac	ggagct	ccttcccc	cgggcac	ttac	2340
ggcgcagg	aa	ggagt	ccgcgat	ccgctgg	ttac	2400
gtcgacc	cc	cc	ccgctcg	ggcgcgg	ttac	2460
tgagccat	cc	cc	ccgac	ccgatcg	ttac	2520
ccgcgg	ctgg	cgtaca	ttcg	gagcg	ccatcg	2580
catgggc	gacc	ccaac	tgctgg	gtacgac	gtacgac	2640

ccaccgcggc ctcttcgaca tgcgccgt gctcgaggac atcttcgccc gcctgcggc	2700
ctgcggcacc ctcctcgacc tggctgcgg cgccgggag ccgtgcgcgc gcgccttcct	2760
cgaccgcggc tggcgggtga cgggggtgga cttctgcccc gccatgctcg ccctgcggc	2820
gcgctacgtc cccgagatgg agcggatcc	2849

<210> 2
<211> 367
<212> PRT
<213> Thiocapsa pfennigii

<400> 2

Val Asn Asp Thr Ala Asn Lys Thr Ser Asp Trp Leu Asp Ile Gln Arg			
1	5	10	15
Lys Tyr Trp Glu Thr Trp Ser Glu Leu Gly Arg Lys Thr Leu Gly Leu			
20	25	30	
Glu Lys Thr Pro Ala Asn Pro Trp Ala Gly Ala Leu Asp His Trp Trp			
35	40	45	
Gln Thr Val Ser Pro Ala Ala Pro Asn Asp Leu Val Arg Asp Phe Met			
50	55	60	
Glu Lys Leu Ala Glu Gln Gly Lys Ala Phe Phe Gly Leu Thr Asp Tyr			
65	70	75	80
Phe Thr Lys Gly Leu Gly Gly Ser Ser Gly Thr Gln Gly Trp Asp Thr			
85	90	95	
Leu Ser Lys Thr Ile Asp Asp Met Gln Lys Ala Phe Ala Ser Gly Arg			
100	105	110	
Ile Glu Gly Asp Glu Thr Phe Arg Arg Leu Met Ala Phe Trp Glu Met			
115	120	125	
Pro Leu Asp Asn Trp Gln Arg Thr Met Ser Ser Leu Ser Pro Val Pro			
130	135	140	
Gly Asp Leu Leu Arg Asn Met Pro His Asp Gln Val Arg Asp Ser Val			
145	150	155	160
Asp Arg Ile Leu Ser Ala Pro Gly Leu Gly Tyr Thr Arg Glu Glu Gln			
165	170	175	
Ala Arg Tyr Gln Asp Leu Ile Arg Arg Ser Leu Glu Tyr Gln Ser Ala			
180	185	190	
Leu Asn Glu Tyr Asn Gly Phe Phe Gly Gln Leu Gly Val Lys Ser Leu			
195	200	205	
Glu Arg Met Arg Ala Phe Leu Gln Gly Gln Ala Glu Lys Gly Val Ala			
210	215	220	

Ile Glu Ser Ala Arg Thr Leu Tyr Asp Ala Trp Val Gly Cys Cys Glu
225 230 235 240

Glu Val Tyr Ala Glu Glu Val Ser Ser Ala Asp Tyr Ala His Ile His
245 250 255

Gly Arg Leu Val Asn Ala Gln Met Ala Leu Lys Gln Arg Met Ser Thr
260 265 270

Met Val Asp Glu Val Leu Gly Ala Met Pro Leu Pro Thr Arg Ser Glu
275 280 285

Leu Arg Thr Leu Gln Asp Arg Leu Gln Glu Ser Arg Gly Glu Gly Lys
290 295 300

Arg Gln Arg Gln Glu Ile Glu Thr Leu Lys Arg Gln Val Ala Ala Leu
305 310 315 320

Ala Gly Gly Ala Gln Pro Ala Pro Gln Ala Ser Ala Gln Pro Ser Thr
325 330 335

Arg Pro Ala Pro Ala Thr Ala Pro Ala Ala Ser Ala Ala Pro Lys Arg
340 345 350

Ser Thr Thr Thr Arg Arg Lys Thr Thr Lys Pro Thr Thr Gly Gln
355 360 365

<210> 3

<211> 357

<212> PRT

<213> Thiocapsa pfennigii

<400> 3

Val Ser Pro Phe Pro Ile Asp Ile Arg Pro Asp Lys Leu Thr Glu Glu
1 5 10 15

Met Leu Glu Tyr Ser Arg Lys Leu Gly Glu Gly Met Gln Asn Leu Leu
20 25 30

Lys Ala Asp Gln Ile Asp Thr Gly Val Thr Pro Lys Asp Val Val His
35 40 45

Arg Glu Asp Lys Leu Val Leu Tyr Arg Tyr Arg Arg Pro Ala Gln Val
50 55 60

Ala Thr Gln Thr Ile Pro Leu Leu Ile Val Tyr Ala Leu Val Asn Arg
65 70 75 80

Pro Tyr Met Thr Asp Ile Gln Glu Asp Arg Ser Thr Ile Lys Gly Leu
85 90 95

Leu Ala Thr Gly Gln Asp Val Tyr Leu Ile Asp Trp Gly Tyr Pro Asp
100 105 110

Gln Ala Asp Arg Ala Leu Thr Leu Asp Asp Tyr Ile Asn Gly Tyr Ile
115 120 125

Asp Arg Cys Val Asp Tyr Leu Arg Glu Thr His Gly Val Asp Gln Val

130

135

140

Asn Leu Leu Gly Ile Cys Gln Gly Gly Ala Phe Ser Leu Cys Tyr Thr
145 150 155 160

Ala Leu His Ser Glu Lys Val Lys Asn Leu Val Thr Met Val Thr Pro
165 170 175

Val Asp Phe Gln Thr Pro Gly Asn Leu Leu Ser Ala Trp Val Gln Asn
180 185 190

Val Asp Val Asp Leu Ala Val Asp Thr Met Gly Asn Ile Pro Gly Glu
195 200 205

Leu Leu Asn Trp Thr Phe Leu Ser Leu Lys Pro Phe Ser Leu Thr Gly
210 215 220

Gln Lys Tyr Val Asn Met Val Asp Leu Leu Asp Asp Glu Asp Lys Val
225 230 235 240

Lys Asn Phe Leu Arg Met Glu Lys Trp Ile Phe Asp Ser Pro Asp Gln
245 250 255

Ala Gly Glu Thr Phe Arg Gln Phe Ile Lys Asp Phe Tyr Gln Arg Asn
260 265 270

Gly Phe Ile Asn Gly Gly Val Leu Ile Gly Asp Gln Glu Val Asp Leu
275 280 285

Arg Asn Ile Arg Cys Pro Val Leu Asn Ile Tyr Pro Met Gln Asp His
290 295 300

Leu Val Pro Pro Asp Ala Ser Lys Ala Leu Ala Gly Leu Thr Ser Ser
305 310 315 320

Glu Asp Tyr Thr Glu Leu Ala Phe Pro Gly Gly His Ile Gly Ile Tyr
325 330 335

Val Ser Gly Lys Ala Gln Glu Gly Val Thr Pro Ala Ile Gly Arg Trp
340 345 350

Leu Asn Glu Arg Gly
355

PATENT

APPLICATION FOR UNITED STATES LETTERS PATENT

for

**PROCESS FOR THE PRODUCTION OF POLY(HYDROXY FATTY ACIDS) AS
WELL AS RECOMBINANT BACTERIAL STRAINS FOR CARRYING OUT
THE PROCESS**

by

Alexander Steinbüchel

Matthias Liebergesell

Henry Valentin and

Andreas Pries