Information and Coding Theory (review sheet)

Instructors: Mahdi Cheraghchi, Herbert Wiklicky Autumn 2017, Imperial College London

30 November 2017

Exercise 1. Let \mathcal{C} be an [n,k] Reed-Solomon code over GF(q) for q=n>2 (that is, the evaluation set consists of all elements in GF(q)). Assume q is prime. Show that \mathcal{C}^{\perp} is an [n,n-k] Reed-Solomon code over GF(q).

Hint: You may use the fact that

$$\sum_{k=1}^{q} \alpha_k^m = \sum_{k=1}^{q} \alpha_k$$

for all $0 \le m \le q - 2$, where $GF(q) = \{\alpha_1, \dots, \alpha_q\}$

Model answer. Recall that the (i+1)-th row of the generator matrix of an [n,k] Reed-Solomon code over GF(q) for q=n is $(\alpha_1^i,\alpha_2^i,\ldots,\alpha_n^i)$, where $\alpha_1,\alpha_2,\ldots,\alpha_n$ are the distinct elements of GF(n).

In order to prove the desired statement, it suffices to show that the inner product between $(\alpha_1^i, \alpha_2^i, \dots, \alpha_n^i)$ and $(\alpha_1^j, \alpha_2^j, \dots, \alpha_n^j)$ for $0 \le i \le k-1$ and $0 \le j \le n-k-1$ is 0. We have

$$(\alpha_1^i, \alpha_2^i, \dots, \alpha_n^i) \cdot (\alpha_1^j, \alpha_2^j, \dots, \alpha_n^j)^\top = \sum_{k=1}^n \alpha_k^{i+j}.$$

Observe that $0 \le i + j \le n - 2$ always. As a result, we have that

$$\sum_{k=1}^{n} \alpha_k^{i+j} = \sum_{k=1}^{n} \alpha_k.$$

We know that

$$\sum_{k=1}^{n} \alpha_k = \sum_{k=0}^{n-1} k \equiv \frac{n(n+1)}{2} - n.$$

Since n=q>2 is prime, it holds that n+1 is even, and so the right hand side is divisible by n. We conclude that $\sum_{k=1}^{q} \alpha_k = 0$ in GF(n), which concludes the proof.

Exercise 2. Show that the RM(1, m) code over GF(2) contains the all-zeros codeword $(0, \ldots, 0)$, the allones codeword $(1, \ldots, 1)$, and exactly $2^{m+1} - 2$ codewords of weight exactly 2^{m-1} .

Model answer. Since RM(1, m) is a linear code, it follows that the all-zeros vector is a codeword. The all-ones vector is a codeword because it is the first row of the generator matrix of RM(1, m).

It remains to see that all other $2^{m+1}-2$ codewords have weight exactly 2^{m-1} . Suppose we wish to encode the message (a_0,a_1,\ldots,a_m) , such that $a_i\neq 0$ for some $i\geq 1$, under RM(1,m). Then, the associated codeword consists of the values

$$a_0 + a_1 x_1 + \dots + a_m x_m$$

for all choices of $x_i \in \{0, 1\}$. We will show that

$$V_b = \{(x_1, \dots, x_m) : a_0 + a_1x_1 + \dots + a_mx_m = b\}$$

satisfies $|V_b|=2^{m-1}$ for $b\in\{0,1\}$, which leads to the desired result. In order to see this, note that V_0 is a vector subspace. However, V_1 is not necessarily a vector subspace. Nevertheless, it holds that if $x,x'\in V_1$, then $x-x'\in V_0$, and also that if $x\in V_1$ and $x'\in V_0$, then $x+x'\in V_1$. Furthermore, by the choice of (a_0,a_1,\ldots,a_m) , we know there exists $x\in V_1$. This means that

$$V_1 = x + V_0 = \{x + x' : x' \in V_0\}.$$

We conclude that $|V_0| = |V_1|$. Since $GF(2)^m = V_0 \cup V_1$ and V_0 and V_1 are disjoint, it follows that $|V_0| = |V_1| = 2^{m-1}$.

Exercise 3. Let \mathcal{C} be an $[n,k]_q$ linear code. Show that for each $i \in \{1,\ldots,n\}$ we either have $c_i = 0$ for all $c \in \mathcal{C}$, or there are exactly q^{k-1} codewords $c \in \mathcal{C}$ such that $c_i = \alpha$ for each $\alpha \in \mathsf{GF}(q)$.

Model answer. Fix a linear code $\mathcal C$ with parameters $[n,k]_q$ and some $i\in\{1,\ldots,n\}$. If $c_i=0$ for all $c\in\mathcal C$ the desired statement holds, so assume that there exists $c\in\mathcal C$ such that $c_i\neq 0$. Since $\mathcal C$ is linear, the vector $c'=\alpha\cdot c_i^{-1}\cdot c$ is in $\mathcal C$ and satisfies $c_i'=\alpha$. As a result, we conclude that for each $\alpha\in \mathrm{GF}(q)$ there exists $c\in\mathcal C$ such that $c_i=\alpha$. Consider the vector subspace V of $\mathrm{GF}(q)^n$ defined as

$$V := \{ c \in \mathcal{C} : c_i = 0 \},$$

and define also

$$\mathcal{C}_{\alpha} := \{ c \in \mathcal{C} : c_i = \alpha \}.$$

Our goal is to show that $|\mathcal{C}_{\alpha}| = q^{k-1}$ for all $\alpha \in GF(q)$. Observe that $\mathcal{C}_0 = V$. However, \mathcal{C}_{α} for $\alpha \neq 0$ is not a vector subspace. Nevertheless, note that if $c, c' \in \mathcal{C}_{\alpha}$, then $c - c' \in V$. Moreover, if $c \in \mathcal{C}_{\alpha}$ and $c' \in V$, then $c + c' \in \mathcal{C}_{\alpha}$. Therefore, we can conclude that, for fixed $c_{\alpha} \in \mathcal{C}_{\alpha}$, we have

$$C_{\alpha} = c_{\alpha} + V = \{c_{\alpha} + c : c \in V\}.$$

In particular, we have $|\mathcal{C}_{\alpha}| = |V|$. As a result,

$$q^k = |\mathcal{C}| = \sum_{\alpha} |\mathcal{C}_{\alpha}| = q \cdot |V|.$$

Hence, it holds that $|V| = q^{k-1}$, and so $|\mathcal{C}_{\alpha}| = q^{k-1}$ for all $\alpha \in GF(q)$, as desired.

Exercise 4. Let \mathcal{C} be a binary linear code with parity-check matrix H such that every column of H is distinct from the others and has odd weight. Show that the minimum distance of \mathcal{C} is at least 4.

Model answer. In order to show that the minimum distance of C is at least 4, it suffices to prove that every three columns of H are linearly independent. Let L_1 , L_2 , and L_3 be three distinct columns of H. By hypothesis, we have $L_1 \neq L_2$, $L_1 \neq L_3$, and $L_2 \neq L_3$. Therefore, it suffices to show that we cannot have

$$L_1 + L_2 = L_3.$$

In view of a contradiction, suppose this is the case. Then, we have

$$w(L_3) = w(L_1 + L_2) = w(L_1) + w(L_2) - 2w(L_1 \wedge L_2),$$

where $w(\cdot)$ denotes the Hamming weight, and $L_1 \wedge L_2$ denotes the coordinate-wise AND of the bits of L_1 and L_2 . By hypothesis, all of $w(L_1)$, $w(L_2)$, and $w(L_3)$ are odd. However, under this hypothesis, it holds that

$$w(L_1) + w(L_2) - 2w(L_1 \wedge L_2)$$

is even, which contradicts the assumption that $w(L_3)$ is odd.

Exercise 5. Let C_1 be an $[n, k_1, d_1]_2$ linear code, and let C_2 be an $[n, k_2, d_2]_2$ linear code. Consider the code

$$C_1 \ominus C_2 = \{(c_1, c_1 + c_2) : c_1 \in C_1, c_2 \in C_2\}.$$

- 1. Give a generator matrix for $C_1 \oplus C_2$ as a function of the generator matrices of C_1 and C_2 .
- 2. Show that $C_1 \oplus C_2$ is a $[2n, k_1 + k_2, \min(2d_1, d_2)]_2$ linear code.

Model answer.

1. Suppose the generator matrices of C_1 and C_2 are G_1 and G_2 , respectively. Then, consider the following $2n \times (k_1 + k_2)$ matrix

$$G = \begin{bmatrix} G_1 & G_1 \\ 0 & G_2 \end{bmatrix}.$$

We show that G is a generator matrix for $C_1 \oplus C_2$. First, the fact that G is full-rank follows from the fact that both G_1 and G_2 are full-rank. To see this, let r_{1i} be the i-th row of G_1 , and r_{2i} the i-th row of G_2 . Suppose that there exist c_{1i} and c_{2j} for $i = 1, \ldots, k_1$ and $j = 1, \ldots, k_2$, not all zero, such that

$$\sum_{i=1}^{k_1} c_{1i} \cdot (r_{1i}, r_{1i}) + \sum_{j=1}^{k_2} c_{2j} \cdot (0, r_{2j}) = 0.$$

Then, we must have $\sum_{i=1}^{k_1} c_{1i} \cdot r_{1i} = 0$. By the linear independence of the rows of G_1 , it follows that $c_{1i} = 0$ for all $i = 1, \ldots, k_1$. This implies that we must have $\sum_{j=1} c_{2j} \cdot r_{2j} = 0$. By the linear independence of the rows of G_2 , it must be the case that $c_{2j} = 0$ for all $j = 1, \ldots, k_2$. We can then conclude that the rows of G are linearly independent, and hence G has rank $k_1 + k_2$.

Now, it suffices to see that the rows of G span $C_1 \ominus C_2$. Suppose m_1 and m_2 are such that $m_1G_1 = c_1$ and $m_2G_2 = m_2$. Then, we have

$$[m_1, m_2]G = (m_1G_1, m_1G_1 + m_2G_2) = (c_1, c_1 + c_2).$$

This yields the desired result.

2. The length and alphabet size of $C_1 \ominus C_2$ follow trivially from those of C_1 and C_2 . The dimension follows immediately from the previous item. It remains to see that the minimum distance d satisfies $d = \min(2d_1, d_2)$.

First, we show that $d \leq \min(2d_1, d_2)$. Indeed, let $c_1 \in \mathcal{C}_1$ and $c_2 \in \mathcal{C}_2$ be such that $w(c_1) = d_1$ and $w(c_2) = d_2$. Then, the desired inequality follows from the fact that both (c_1, c_1) and $(0, c_2)$ are in $\mathcal{C}_1 \oplus \mathcal{C}_2$.

Second, we show that $d \ge \min(2d_1, d_2)$. Fix any codeword $(c_1, c_1 + c_2) \in \mathcal{C}_1 \oplus \mathcal{C}_2$. If $c_2 = 0$, we have

$$w(c_1, c_1 + c_2) = w(c_1, c_1) = 2w(c_1) > 2d_1.$$

On the other hand, in general we have

$$w(c_1, c_1 + c_2) = w(c_1) + w(c_1 + c_2) = 2w(c_1) + w(c_2) - 2w(c_1 \land c_2) > w(c_2).$$

Therefore, we conclude that $w(c_1, c_1 + c_2) \ge w(c_2) \ge d_2$ whenever $c_2 \ne 0$. Combining the two cases above shows that $d \ge \min(2d_1, d_2)$, as desired.

Exercise 6. Let \mathcal{C} be a linear code over GF(q) such that \mathcal{C}^{\perp} has minimum distance d^{\perp} . Show that, for every set $\mathcal{I} \subseteq \{1, \ldots, n\}$ with $|\mathcal{I}| = t \leq d^{\perp} - 1$, we have $\mathcal{C}_{\mathcal{I}} = GF(q)^t$, where $\mathcal{C}_{\mathcal{I}}$ denotes the restriction of \mathcal{C} to the entries in \mathcal{I} .

Model answer. Let G be the generator matrix of C. Since G is the parity-check matrix of C^{\perp} , we know that

 $d^{\perp} = 1 + \max\{t : \text{every set of } t \text{ columns of } G \text{ are linearly independent}\}.$

Fix a set $\mathcal{I} \subseteq \{1,\ldots,n\}$ of size $|\mathcal{I}| = t \leq d^{\perp} - 1$, and let $G_{\mathcal{I}}$ denote the submatrix of the generator matrix G which contains the i-th column of G whenever $i \in \mathcal{I}$. By the equality for d^{\perp} above and the fact that $t \leq d^{\perp} - 1$, we know that all columns of $G_{\mathcal{I}}$ are linearly independent, and hence $G_{\mathcal{I}}$ has rank t. Since each row of $G_{\mathcal{I}}$ has length t, this means that the rows of $G_{\mathcal{I}}$ span $\mathrm{GF}(q)^t$. The result now follows by noting that $\mathcal{C}_{\mathcal{I}}$ is spanned by the rows of $G_{\mathcal{I}}$, and hence $\mathcal{C}_{\mathcal{I}} = \mathrm{GF}(q)^t$.

Exercise 7. Let \mathcal{C} be an $[n, k, d]_q$ linear MDS code over GF(q). Show that there are exactly $\binom{n}{d}(q-1)$ codewords of weight d in \mathcal{C} .

Model answer. We show that for every set of d coordinates $\mathcal{I} = \{i_1, \dots, i_d\}$ there exist q-1 codewords $c \in \mathcal{C}$ of weight d such that $c_i \neq 0$ only if $i \in \mathcal{I}$. This yields the desired result as there are $\binom{n}{d}$ possible choices for \mathcal{I} .

Since C is an MDS code, we have d = n - k + 1. Let H denote its parity-check matrix. Recall that we have

 $d = 1 + \max\{t : \text{every set of } t \text{ columns of } H \text{ are linearly independent}\}.$

Combining the previous two statements, we conclude that every n-k columns of H are linearly independent. Moreover, since H has rank n-k, every set of n-k+1 columns of H is linearly dependent. Given a set \mathcal{I} , let $H_{\mathcal{I}}$ denote the sub-matrix of H containing the columns indexed by \mathcal{I} . In our case, it holds that $|\mathcal{I}|=n-k+1$. The previous observations imply that $H_{\mathcal{I}}$ has n-k+1 columns and rank n-k. As a result, we conclude that the kernel of $H_{\mathcal{I}}$ has dimension 1. This means there are q-1 nonzero vectors c' of length n-k+1=d such that $H_{\mathcal{I}}\cdot c'=0$. Because of this, each such vector c' can be uniquely extended to a codeword $c\in\mathcal{C}$ by setting $c_i=0$ for $i\notin\mathcal{I}$ and $c_i=c_i'$ for $i\in\mathcal{I}$. In particular, we have w(c)=w(c'). On the one hand, it must be the case that $w(c)\geq d$ since \mathcal{C} has minimum distance d. On the other hand, we have $w(c)=w(c')\leq d$ since c' has length d. This implies that all such vectors c' yield distinct minimum weight codewords of \mathcal{C} , and so we conclude the proof.