

Sage 9.8 Reference Manual

Q Search

Home - Schemes

Scheme implementation overview

Schemes

The Spec functor

Scheme obtained by gluing two other schemes

Points on schemes

Ambient spaces

Algebraic schemes

Hypersurfaces in affine and projective space

Set of homomorphisms between two schemes

Scheme morphism

Divisors on schemes

Divisor groups

Affine \(n\) space over a ring

Morphisms on affine schemes

Points on affine varieties

Subschemes of affine space

Enumeration of rational points on affine schemes

Hodge-special fourfolds

This module provides support for Hodge-special fourfolds, such as cubic fourfolds and Gushel-Mukai fourfolds.

For more computational details, see the paper at

https://www.tandfonline.com/doi/abs/10.1080/10586458.2023.2184882 and references therein.

Note

For some of the functions provided, you must have Macaulay2 with the package SpecialFanoFourfolds (version 2.7 or later) installed on your computer; see

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/SpecialFanoFourfolds/html/index.html.

AUTHORS:

• Giovanni Staglianò (2023-05-06): initial version

The class of objects created by the function detect_congruence().

```
check(i=1)
```

```
class sage.schemes.hodge_special_fourfolds.sff.Embedded_Projective_Variety(PP, polys=[])
```

Bases: AlgebraicScheme_subscheme_projective

The class of closed subvarieties of projective spaces.

This is a subclass of the class AlgebraicScheme_subscheme_projective. It is designed to provide better support for projective surfaces and fourfolds.

Constructing a closed subvariety of an ambient projective space.

Warning

You should not create objects of this class directly. The preferred method to construct such subvarieties is to use projective_variety().

INPUT:

- PP an ambient projective space
- polys a list of homogeneous polynomials in the coordinate ring of PP

OUTPUT:

The closed subvariety of PP defined by polys

EXAMPLES:

Here is another example using simple functions of the class.

Congruenc Embedded_ codime degree degree descri differ dimens embedd empty(hilber inters is_sub linear parame point(tic() Hodge_Spe detect discri fano m parame surfac Intersect ambien PP() Rational_ ojective_ compos

image(

ON THIS PA

```
sage: K = GF(65521)
sage: P4 = PP(4,K); P4
PP^4
sage: P4.empty()
empty subscheme of PP^4
sage: X = P4.empty().random(2,2,3)
sage: X
curve of degree 12 and arithmetic genus 13 in PP^4 cut out by 3 hypersurfaces of degree
sage: X.describe()
dim:.... 1
codim:..... 3
degree:..... 12
sectional genus:..... 13
generators:..... (2, 2, 3)
\dim \text{ sing. l.:..........-1}
sage: X.dimension()
sage: X.codimension()
3
sage: X.degree()
12
sage: X.sectional_genus()
13
sage: X.ambient()
PP^4
sage: p = X.point()
-- running Macaulay2 function point()... --
-- function point() has terminated. --
sage: p.is_subset(X)
True
```

ambient()

Return the ambient projective space of the variety

This is mathematically equal to the output of the ambient_space() method.

EXAMPLES:

```
sage: X = Veronese(1,3); X
cubic curve of arithmetic genus 0 in PP^3 cut out by 3 hypersurfaces of degree 2
sage: P = X.ambient(); P
PP^3
sage: type(P) is type(X)
True
```

codimension()

Return the codimension of the variety

OUTPUT:

An integer.

EXAMPLES:

```
sage: X = Veronese(1,3); X
cubic curve of arithmetic genus 0 in PP^3 cut out by 3 hypersurfaces of degree 2
sage: X.codimension()
2
```

degree()

Return the degree of the projective variety

OUTPUT:

An integer.

```
sage: X = Veronese(1,3); X
cubic curve of arithmetic genus 0 in PP^3 cut out by 3 hypersurfaces of degree 2
sage: X.degree()
3
```

degrees_generators()

Return the degrees of a minimal set of generators for the defining ideal of the variety.

OUTPUT:

A tuple of integers.

EXAMPLES:

```
sage: X = PP(4).empty().random(1,2,3,1)
sage: X.degrees_generators()
(1, 1, 2, 3)
```

describe()

Print a brief description of the variety.

OUTPUT:

Nothing.

EXAMPLES:

difference(other)

Return the Zariski closure of the difference of self by other.

EXAMPLE:

```
sage: X = Veronese(1,3)
sage: Y = X.ambient().point(False)
sage: Z = X.union(Y)
sage: Z.difference(Y) == X and Z.difference(X) == Y
True
sage: Z - Y == X and Z - X == Y
True
```

dimension()

Return the dimension of the variety

OUTPUT:

An integer.

EXAMPLES:

```
sage: X = Veronese(1,3); X
cubic curve of arithmetic genus 0 in PP^3 cut out by 3 hypersurfaces of degree 2
sage: X.dimension()
```

embedding_morphism(Target=None)

Return the embedding morphism of the variety in its ambient space

OUTPUT:

Rational_Map_Between_Embedded_Projective_Varieties

EXAMPLES:

```
sage: X = Veronese(1,2)
sage: X.embedding_morphism()
morphism defined by forms of degree 1
source: conic curve in PP^2
target: PP^2
image: conic curve in PP^2
```

empty()

Return the empty subscheme of the variety (and of its ambient space)

EXAMPLES:

```
sage: X = PP(3)
sage: X.empty()
empty subscheme of PP^3
```

hilbert_polynomial()

Return the Hilbert polynomial of the projective variety

OUTPUT:

A polynomial over the rationals.

EXAMPLES:

```
sage: X = Veronese(1,3); X
cubic curve of arithmetic genus 0 in PP^3 cut out by 3 hypersurfaces of degree 2
sage: X.hilbert_polynomial()
3*t + 1
```

intersection(other)

Return the scheme-theoretic intersection of self and other in their common ambient space.

EXAMPLES:

```
sage: o = PP(5).empty()
sage: X = o.random(2,2)
sage: Y = o.random(1,3)
sage: X.intersection(Y)
curve of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 12 and arithmetic genus 13 in PP^5 cut out by 4 hypersurfaces of degree 13 in PP^5 cut out by 4 hypersurfaces 13 in PP^5 cut out by 4 in
```

is_subset(Y)

Return True if self is contained in Y, False otherwise.

OUTPUT:

bool

linear_span()

Return the linear span of the variety.

OUTPUT:

Embedded_Projective_Variety

EXAMPLES:

```
sage: X = PP(5).empty().random(1,1,2)
sage: X.linear_span()
linear 3-dimensional subspace of PP^5
sage: X.is_subset(_)
True
```

parametrize(verbose=True)

Try to return a rational parameterization of the variety.

 $\label{local_map_Between_Embedded_Projective_Varieties}, a birational map from \ PP(n) \ to \ self, where \ n \ is the dimension of \ X \, .$

An exception is raised if something goes wrong.

EXAMPLES:

```
sage: S = surface(5, 7, 0, 1);
sage: h = S.parametrize();
sage: h
rational map defined by forms of degree 5
source: PP^2
target: PP^7
image: surface of degree 9 and sectional genus 3 in PP^7 cut out by 12 hypersurface
sage: L = PP(7).empty().random(1,1,1,1)
sage: L.parametrize()
dominant rational map defined by forms of degree 1
source: PP^3
target: linear 3-dimensional subspace of PP^7
sage: p = L.point()
-- running Macaulay2 function point()... --
-- function point() has terminated. --
sage: p.parametrize().source()
PP^0
sage: L.ambient().parametrize()
dominant rational map defined by forms of degree 1
source: PP^7
target: PP^7
sage: Veronese(2,2).parametrize()
-- running Macaulay2 function parametrize()... --
-- function parametrize has successfully terminated. --
rational map defined by forms of degree 4
source: PP^2
target: surface of degree 4 and sectional genus 0 in PP^5 cut out by 6 hypersurface
sage: macaulay2( )
multi-rational map consisting of one single rational map
source variety: PP^2
target variety: surface in PP^5 cut out by 6 hypersurfaces of degree 2
dominance: true
degree: 1
MultirationalMap (birational map from PP^2 to surface in PP^5)
```

point(verbose=True, UseMacaulay2=True)

Pick a random point on the variety defined over a finite field

EXAMPLES:

```
sage: X = Veronese(2,2)
sage: p = X.point()
-- running Macaulay2 function point()... --
-- function point() has terminated. --
sage: type(p) is type(X) and p.dimension() == 0 and p.degree() == 1 and p.is_subsective
True
```

random(*args)

Return a random complete intersection containing the variety.

INPUT:

A tuple of positive integers (a, b, c, ...)

OUTPUT:

An exception is raised if such a complete intersection does not exist.

EXAMPLES:

```
sage: X = Veronese(1,5)
sage: X.random(2,3)
complete intersection of type (2, 3) in PP^5
sage: X.is_subset(_)
True
```

sectional_genus()

Return the arithmetic genus of the sectional curve of the variety

OUTPUT:

An integer.

EXAMPLES:

```
sage: X = Veronese(2,2); X
surface of degree 4 and sectional genus 0 in PP^5 cut out by 6 hypersurfaces of degrage: X.sectional_genus()
0
```

singular_locus()

Return the singular locus of the variety.

OUTPUT:

Embedded_Projective_Variety

EXAMPLES:

```
sage: X = Veronese(1,3)
sage: X.singular_locus()
empty subscheme of PP^3
sage: type(_) is type(X) and _.is_subset(X)
True
```

to_built_in_variety()

Return the same mathematical object but in the parent class

OUTPUT:

AlgebraicScheme_subscheme_projective

EXAMPLES:

```
sage: Veronese(1,3)
cubic curve of arithmetic genus 0 in PP^3 cut out by 3 hypersurfaces of degree 2
sage: _.to_built_in_variety()
Closed subscheme of Projective Space of dimension 3 over Finite Field of size 3333:
x2^2 - x1*x3,
x1*x2 - x0*x3,
x1^2 - x0*x2
```

$topological_euler_characteristic (verbose=True, \ Use \texttt{Macaulay2}=False)$

Return the topological Euler characteristic of the variety

Warning

This uses a probabilistic approach which could give wrong answers (especially over finite fields of small order).

With the input UseMacaulay2=True the computation is transferred to Macaulay2.

OUTPUT:

An integer.

```
sage: X = Veronese(2,2); X
surface of degree 4 and sectional genus 0 in PP^5 cut out by 6 hypersurfaces of degree: X.topological_euler_characteristic()
3
```

union(other)

Return the scheme-theoretic union of self and other in their common ambient space.

EXAMPLE:

```
sage: P = PP(5)
sage: X = P.point(False)
sage: Y = P.point(False)
sage: X.union(Y)
0-dimensional subscheme of degree 2 in PP^5
sage: X.union(Y) == X + Y
True
```

Bases: Embedded_Projective_Variety

The class of Hodge-special fourfolds

This is a subclass of the class $\[\underline{\text{Embedded_Projective_variety}} \]$. An object of this class is just a (smooth) projective variety of dimension 4, although it is better to think of x as a pair (s, x), where x is the fourfold and x is a particular special surface contained in x. Usually there is also a fixed ambient fivefold x where x and x live.

Constructing a Hodge-special fourfold.

Warning

You should not create objects of this class directly. The preferred method to construct such fourfolds is to use fourfold().

INPUT:

- S Embedded_Projective_Variety an irreducible surface.
- X Embedded_Projective_Variety a smooth fourfold containing the surface S.
- V Embedded_Projective_Variety a fivefold where X is a hypersurface (optional).

OUTPUT:

The Hodge-special fourfold corresponding to the pair (s,x).

If the input fourfold x is missing, it will be chosen randomly. So, typically we just specify the surface s. For instance, if s is a surface in PP^5, then fourfold(s) returns a random cubic fourfold containing s; if s is a surface in PP^7, then fourfold(s) returns a random complete intersection of 3 quadrics containing s and contained in a complete intersection s of 2 quadrics.

EXAMPLE:

```
sage: S = surface(5,7,0,1)
sage: X = fourfold(S); X
complete intersection of 3 quadrics in PP^7 of discriminant 47 = 8*16-9^2 containing a
sage: X.surface()
rational surface of degree 9 and sectional genus 3 in PP^7 cut out by 12 hypersurfaces
sage: V = X.ambient_fivefold(); V
complete intersection of type (2, 2) in PP^7
```

ambient_fivefold()

Return the ambient fivefold of the fourfold.

OUTPUT:

 ${\color{red} \textbf{Embedded_Projective_Variety}}, \textbf{the ambient fivefold of self}.$

```
sage: S = surface(3,4)
sage: X = fourfold(S)
sage: X.ambient_fivefold()
pp^5
```

detect_congruence(Degree=None, verbose=True)

Detect and return a congruence of secant curves for the surface of <code>self</code> in the ambient fivefold of <code>self</code>.

In the current version, this runs the Macaulay2 function detectcongruence, documented at https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/SpecialFanoFourfolds See also the paper at https://www.tandfonline.com/doi/abs/10.1080/10586458.2023.2184882 for more computational details.

INPUT:

Degree, an optional integer, the degree of the curves of the congruence, if known.

OUTPUT:

Congruence_of_Secant_Curves_to_Surface, which behaves like a function that sends a point p of the ambient fivefold to the curve of the congruence passing through p.

EXAMPLES:

```
sage: S = surface(3,1,1); S
rational surface of degree 4 and sectional genus 0 in PP^5 cut out by 6 hypersurface
sage: X = fourfold(S)
sage: f = X.detect_congruence(1)
-- running Macaulay2 function detectCongruence()... --
warning: clearing value of symbol x0 to allow access to subscripted variables based
: debug with expression debug 6010 or with command line option --debug 6010
warning: clearing value of symbol x1 to allow access to subscripted variables base
: debug with expression debug 5513 or with command line option --debug 5513
-- function detectCongruence() has terminated. --
sage: f.check()
Congruence of 2-secant lines to surface in PP^5
sage: p = X.ambient_fivefold().point()
-- running Macaulay2 function point()... --
-- function point() has terminated. --
sage: f(p)
line in PP^5
sage: S = surface(5,7,0,1)
sage: X = fourfold(S)
complete intersection of 3 quadrics in PP^7 of discriminant 47 = 8*16-9^2 containing
sage: f = X.detect_congruence()
-- running Macaulay2 function detectCongruence()... --
number lines contained in the image of the quadratic map and passing through a gen
number 1-secant lines = 9
number 3-secant conics = 8
number 5-secant cubics = 1
-- function detectCongruence() has terminated. --
sage: f.check()
Congruence of 5-secant cubic curves to surface in a fivefold in PP^7
sage: p = X.ambient_fivefold().point()
-- running Macaulay2 function point()... --
-- function point() has terminated. --
sage: f(p)
cubic curve of arithmetic genus 0 in PP^7 cut out by 7 hypersurfaces of degrees (1,
```

discriminant(verbose=True)

Return the discriminant of the special fourfold.

OUTPUT:

An integer, the discriminant of self.

In several cases, such as that of cubic fourfolds, this is the discriminant of the saturated lattice spanned by $h \wedge 2$ and s, where s is the class of the surface of x and y denotes the class of a

hyperplane section of x. For theoretical details, we refer to Hassett's papers on cubic fourfolds.

EXAMPLES:

```
sage: S = surface(3,4)
sage: X = fourfold(S)
sage: X.discriminant()
14
```

fano_map(verbose=True)

Return the Fano map from the ambient fivefold.

The surface contained in the fourfold self must admit a congruence of secant curves inside the ambient fivefold. The generic curve of this congruence can be realized as the generic fiber of the returned map. See also detect_congruence().

EXAMPLE:

```
sage: X = fourfold(surface(3,4))
sage: X.fano_map(verbose=false)
rational map defined by forms of degree 2
source: PP^5
target: PP^4
```

parameter_count(verbose=True)

Count of parameters.

This just runs the Macaulay2 function parameter count, documented at https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/SpecialFanoFourfolds See also the paper at https://www.tandfonline.com/doi/abs/10.1080/10586458.2023.2184882 for more computational details.

OUTPUT:

An integer and a tuple of three integers.

```
sage: X = fourfold(surface(3,1,1))
sage: X.parameter count()
-- running Macaulay2 function parameterCount()... --
S: smooth rational normal scroll surface of degree 4 in PP^5
X: smooth cubic hypersurface in PP^5
(assumption: dim Ext^1(I_{S,P^5},0_S) = 0)
h^0(N_{S,P^5}) = 29
h^1(0_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(0_(P^5)(3)) - chi(0_S(3));
in particular, h^0(I_{S,P^5}(3)) is minimal
h^0(N_{S,P^5}) + 27 = 56
h^0(N_{S,X}) = 2
dim{[X] : S \subset X} >= 54
\dim P(H^0(0_(P^5)(3))) = 55
codim{[X] : S \subset X} \le 1
-- function parameterCount() has terminated. --
(1, (28, 29, 2))
sage: X = fourfold(surface(1,ambient=7))
sage: X.parameter count()
-- running Macaulay2 function parameterCount()... --
S: plane in PP^7
X: complete intersection of type (2,2,2) in PP^7
Y: complete intersection of type (2,2) in PP^7
X is a fourfold containing S which is a hypersurface of degree 2 in Y
h^1(N_{S,Y}) = 0
h^0(N_{S,Y}) = 3
h^1(0_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(0_Y(2)) - \cdot (0_S(2));
in particular, h^{\wedge}0(I_{-}\!\{S,Y\}(2)) is minimal
h^0(N_{S,Y}) + 27 = 30
h^0(N_{S,X}) = 0
dim{[X] : S \subset X \subset Y} >= 30
\dim P(H^0(0_Y(2))) = 33
codim{[X] : S \subset X \subset Y} \le 3
[parameterCount in the ambient PP^7: (3, (30, 15, 0))]
-- function parameterCount() has terminated. --
(3, (28, 3, 0))
```

surface()

Return the special surface contained in the fourfold.

OUTPUT:

Embedded_Projective_Variety, the surface of self.

EXAMPLES:

```
sage: S = surface(3,4)
sage: X = fourfold(S)
sage: X.surface() is S
True
```

Bases: Hodge_Special_Fourfold

The class of Hodge-special complete intersections of three quadrics in PP^7.

```
ambient_fivefold()
```

```
sage.schemes.hodge\_special\_fourfolds.sff. \textbf{PP}(KK=Finite Field of size 33331, \ var='x')
```

Projective space of dimension n over KK

```
sage: PP(5,33331,var='t')
PP^5
sage: _.coordinate_ring()
Multivariate Polynomial Ring in t0, t1, t2, t3, t4, t5 over Finite Field of size 33331
sage: PP(5,33331,var='t') is PP(5,GF(33331),var='t')
True
```

class

```
sage.schemes.hodge_special_fourfolds.sff.Rational_Map_Between_Embedded_Projective_Var
ieties(X, Y, polys)
```

 $\textbf{Bases:} \ \textbf{SchemeMorphism_polynomial_projective_space_field}$

The class of rational maps between closed subvarieties of projective spaces.

This is a subclass of the class SchemeMorphism_polynomial_projective_space_field. It is designed to provide better support for maps related to Hodge-special fourfolds.

Constructing a rational map between projective subvarieties.

Warning

You should not create objects of this class directly. The preferred method to construct such maps is to use rational_map().

INPUT:

- x the source variety (optional).
- Y the target variety (optional).
- polys a list of homogeneous polynomials of the same degree in the coordinate ring of x

OUTPUT:

The rational map from X to Y defined by polys.

If x and y are not objects of the class <code>Embedded_Projective_Variety</code>, they will be replaced by projective_variety(X) and projective_variety(Y) (if any exception occurs), see projective_variety().

EXAMPLES:

```
sage: X = PP(4,GF(33331))
sage: Y = PP(5,GF(33331))
sage: x0, x1, x2, x3, x4 = X.coordinate_ring().gens()
sage: f = rational_map(X, Y, [x3^2-x2*x4, x2*x3-x1*x4, x1*x3-x0*x4, x2^2-x0*x4, x1*x2-xational map defined by forms of degree 2
source: PP^4
target: PP^5
sage: g = f.make_dominant(); g
dominant rational map defined by forms of degree 2
source: PP^4
target: quadric hypersurface in PP^5
```

You can also convert such rational maps into Macaulay2 objects.

```
sage: g_ = macaulay2(g); g_
multi-rational map consisting of one single rational map
source variety: PP^4
target variety: hypersurface in PP^5 defined by a form of degree 2

MultirationalMap (rational map from PP^4 to hypersurface in PP^5)
sage: g_.graph().last().inverse()
multi-rational map consisting of 2 rational maps
source variety: hypersurface in PP^5 defined by a form of degree 2
target variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of dominance: true
degree: 1

MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety
```

compose(f)

Return the composition of self with the rational map f.

INPUT:

f Rational_Map_Between_Embedded_Projective_Varieties - a rational map such that
 f.source() == self.target().

Rational_Map_Between_Embedded_Projective_Varieties, the composition of self with f.

EXAMPLE:

```
sage: f = rational_map(Veronese(1,4))
sage: g = rational_map(f.target().point(False))
sage: f.compose(g)
rational map defined by forms of degree 2
source: PP^4
target: PP^4
sage: _.projective_degrees()
[1, 2, 4, 4, 2]
```

image()

Return the (closure of the) image of the rational map.

OUTPUT:

Embedded_Projective_Variety , the closure of the image of self , a subvariety of self.target() .

EXAMPLES:

```
sage: f = veronese(1,4)
sage: f.image()
curve of degree 4 and arithmetic genus 0 in PP^4 cut out by 6 hypersurfaces of degree
```

inverse(check=True, verbose=True, UseMacaulay2=True)

Return the inverse of the birational map

OUTPUT:

Rational_Map_Between_Embedded_Projective_Varieties, the inverse rational map of self if self is birational, otherwise an exception is raised.

EXAMPLE:

```
sage: f = veronese(1,5).make_dominant()
sage: g = f.inverse()
-- running Macaulay2 function inverse()... --
-- function inverse() has successfully terminated. --
sage: f.compose(g) == 1
-- running Macaulay2 operator == between rational maps... --
-- Macaulay2 computation has successfully terminated. --
True
```

With the input UseMacaulay2=True the computation is transferred to Macaulay2.

```
inverse_image(Z, trim=True)
```

Return the (closure of the) inverse image of the variety \overline{z} via the rational map \overline{self} .

INPUT:

• Z Embedded_Projective_Variety — a subvariety of self.target().ambient().

OUTPUT:

Embedded_Projective_Variety , the closure of the inverse image of z via the rational map self , a subvariety of self .source() .

```
sage: self = rational_map(Veronese(1,4)).make_dominant()
sage: Z = self.target().empty().random(1,1,1,1)
sage: self.inverse_image(Z)
0-dimensional subscheme of degree 2 in PP^4

sage: f = self.inverse()
-- running Macaulay2 function inverse()... --
-- function inverse() has successfully terminated. --
sage: W = f.target().empty().random(1,1,1,1)
sage: f.inverse_image(W)
one-point scheme in PP^5
```

is_dominant()

Return True if self is a dominant rational map, False otherwise.

OUTPUT:

```
bool, whether self.image() == self.target()
```

make_dominant()

Return a new rational map with the same source variety and same defining polynomials but with self.target() replaced by self.image()

EXAMPLE:

```
sage: f = veronese(1,4); f
rational map defined by forms of degree 4
source: PP^1
target: PP^4
sage: f.make_dominant()
dominant rational map defined by forms of degree 4
source: PP^1
target: curve of degree 4 and arithmetic genus 0 in PP^4 cut out by 6 hypersurface:
```

projective_degrees()

Return the projective degrees of the rational map

Warning

Currently, this uses a probabilistic approach which could give wrong answers (especially over finite fields of small order).

OUTPUT:

A list of integers.

EXAMPLES:

```
sage: (t0,t1,t2,t3,t4,t5,t6) = PP(6).coordinate_ring().gens()
sage: f = rational_map(matrix([[t0,t1,t2,t3,t4],[t1,t2,t3,t4,t5],[t2,t3,t4,t5,t6]]
rational map defined by forms of degree 3
source: PP^6
target: PP^9
sage: f.projective_degrees()
[1, 3, 9, 17, 21, 15, 5]
```

restriction(X)

Return the restriction of self to the variety x.

INPUT:

• X Embedded_Projective_Variety — a subvariety of self.source().

OUTPUT:

Rational_Map_Between_Embedded_Projective_Varieties, the restriction of self to X.

source()

Return the source of the rational map

Embedded_Projective_Variety , the source variety, which always coincides with
projective_variety(self.domain()) .

EXAMPLES:

```
sage: f = veronese(1,4)
sage: f.source()
PP^1
```

super()

Return the composition of self with the embedding of the target in the ambient space.

Rational_Map_Between_Embedded_Projective_Varieties

EXAMPLES:

```
sage: f = veronese(1,4).make_dominant(); f
dominant rational map defined by forms of degree 4
source: PP^1
target: curve of degree 4 and arithmetic genus 0 in PP^4 cut out by 6 hypersurfaces
sage: g = f.super(); g
rational map defined by forms of degree 4
source: PP^1
target: PP^4
image: curve of degree 4 and arithmetic genus 0 in PP^4 cut out by 6 hypersurfaces
sage: g.super() is g
True
```

target()

Return the target of the rational map

OUTPUT:

 $\label{lem:embedded_Projective_Variety} \ , \ the \ target \ variety, \ which \ always \ coincides \ with \\ projective_variety(self.codomain()) \ .$

EXAMPLES:

```
sage: f = veronese(1,4)
sage: f.target()
pp^4
```

to_built_in_map()

Return the same mathematical object but in the parent class

OUTPUT:

SchemeMorphism_polynomial_projective_space_field

EXAMPLES:

```
class sage.schemes.hodge_special_fourfolds.sff.Rational_Projective_Surface(PP, polys=[])
```

Bases: Embedded_Projective_Variety

The class of objects created by the function surface, see surface().

```
Warning
```

You should not create objects of this class directly. The preferred method to construct such surfaces is to use surface().

Bases: Hodge_Special_Fourfold

The class of Hodge-special cubic fourfolds in PP^5

```
{\bf class}\ sage.schemes.hodge\_special\_fourfolds.sff. {\bf SpecialGushelMukaiFourfold}(S,\ X,\ {\bf V=None},\ check={\bf True})
```

Bases: Hodge_Special_Fourfold

The class of Hodge-special Gushel-Mukai fourfolds in PP^8

```
discriminant()
```

Return the image of the Veronese embedding.

OUTPUT:

Embedded_Projective_Variety

EXAMPLE:

```
sage: Veronese(2,2)
surface of degree 4 and sectional genus 0 in PP^5 cut out by 6 hypersurfaces of degree
```

```
sage.schemes.hodge\_special\_fourfolds.sff. \textbf{fourfold}(S, X=None, V=None, check=True)
```

Construct Hodge-special fourfolds.

```
sage.schemes.hodge_special_fourfolds.sff.projective_variety(I)
```

Construct a projective variety.

INPUT:

I - A homogeneous ideal in a polynomial ring over a field, or the list of its generators.

OUTPUT:

Embedded_Projective_Variety, the projective variety defined by I.

You can also use this function to convert objects of the class

 ${\bf Algebraic Scheme_subscheme_projective} \ \ {\bf into\ objects\ of\ the\ class\ Embedded_Projective_Variety}\ .$

EXAMPLES:

```
sage: (x0,x1,x2,x3) = ProjectiveSpace(3, GF(101), 'x').gens()
sage: I = [x0^2-x1*x2, x1^3+x2^3+x3^3]
sage: X = projective_variety(I); X
curve of degree 6 and arithmetic genus 4 in PP^3 cut out by 2 hypersurfaces of degrees
sage: Y = X.to_built_in_variety(); Y
Closed subscheme of Projective Space of dimension 3 over Finite Field of size 101 definix0^2 - x1*x2,
x1^3 + x2^3 + x3^3
sage: projective_variety(Y)
curve of degree 6 and arithmetic genus 4 in PP^3 cut out by 2 hypersurfaces of degrees
sage: _ == X
True
```

```
sage.schemes.hodge_special_fourfolds.sff.rational_map(*args, **kwargs)
```

Construct a rational map from a projective variety to another.

INPUT:

x – the source variety (optional).

- Y the target variety (optional).
- polys a list of homogeneous polynomials of the same degree in the coordinate ring of x

 $\label{lem:rational_map_Between_Embedded_Projective_Varieties} \mbox{, the rational map from } x \mbox{ to } Y \mbox{ defined by polys} \mbox{.}$

EXAMPLES:

```
sage: x0, x1, x2, x3, x4 = PP(4,GF(33331)).coordinate_ring().gens()
sage: rational_map([x3^2-x2*x4, x2*x3-x1*x4, x1*x3-x0*x4, x2^2-x0*x4, x1*x2-x0*x3, x1^x
rational map defined by forms of degree 2
source: PP^4
target: PP^5
```

If we pass as input a projective variety and an integer <code>begree</code>, we get the rational map defined by the hypersurfaces of degree <code>begree</code> that contain the given variety.

```
sage: X = Veronese(1,4)
sage: rational_map(X,2)
rational map defined by forms of degree 2
source: PP^4
target: PP^5
```

You can also use this function to convert objects of the class

 $Scheme Morphism_polynomial_projective_space_field \ \ into \ objects \ of \ the \ class \\ Rational_Map_Between_Embedded_Projective_Varieties \ .$

```
sage: g = _.to_built_in_map()
sage: rational_map(g)
rational map defined by forms of degree 2
source: PP^4
target: PP^5
```

```
sage.schemes.hodge_special_fourfolds.sff.surface(KK, ambient, nodes, *args)
```

Return a rational surface in a projective space of dimension ambient over the field KK

INPUT:

• a tuple (a,i,j,k,...) of integers.

OUTPUT:

Embedded_Projective_Variety, the rational surface obtained as the image of the plane via the linear system of curves of degree a having i general base points of multiplicity 1, j general base points of multiplicity 2, k general base points of multiplicity 3, and so on.

EXAMPLE:

```
sage: surface(3,1,1)
rational surface of degree 4 and sectional genus 0 in PP^5 cut out by 6 hypersurfaces
```

Return the Veronese embedding.

OUTPUT:

Rational_Map_Between_Embedded_Projective_Varieties

```
sage: veronese(2,3)
rational map defined by forms of degree 3
source: PP^2
target: PP^9
```

Copyright © 2005–2023, The Sage Development Team
Made with Sphinx and ⊚pradyunsg's Furo