

A Report on the Course Project of

Engineering Exploration (22ECRP101)

Titled

AUTOMATIC FILLING MACHINE

Ву

ABHISHEK TIMMANAGOUDAR	820
VEERESH DOMANAL	858
RIYA KAKATIKAR	832
SHRUSHTI HULBUTTE	812

Under the guidance of

PROF. NIRANJAN MUCHANDI

Centre for Engineering Education Research

Academic Year 2023-2024, Odd Semester

Centre for Engineering Education Research

CERTIFICATE

This is to certify that the course project entitled "AUTOMATIC FILLING MACHINE" is carried out by the students Abhishek Timmanagoudar (820), Veeresh Domanal (858), Riya Kakatikar (832), Srushti Hulbutte (812) as part of Engineering Exploration Course (15ECRP101), during 1st Semester of B.E program for the academic year 2023-24. The project report fulfils the requirements prescribed by KLE Technological University.

Guide	Division in charge
Prof. Niranjan Muchandi	Prof. Niranjan Pattar
Examiner 1:	Examiner 2:

DECLARATION

We hereby declare that the project work entitled "AUTOMATIC FILLING MACHINE" submitted as a part of Engineering Exploration Course during 1st semester of academic year 2023-2024, is a record of an original work done by us under the guidance of Niranjan Muchandi Sir. The project work and part of this report is not plagiarized to the best of our knowledge.

Date:

Abhishek	Veeresh	Riya Kakatikar Shrushti		
Timmanagoudar	Domanal		Hulbutte	
(820)	(858)	(832)	(812)	

ACKNOWLEDGEMENT

In the culmination of our exploration course project, the Crankshot ,we extend our heart felt acknowledgments to those who have significantly contributed to its realization.

Foremost, we express deep appreciation to our respected Principal Dr. S. F. Patil and Engineering Exploration coordinator Prof. S. B. Kulkarni, whose support and insightful feedback greatly influenced the project's success. We thank our Project Guide, Prof. Niranjan Muchandi, for his invaluable guidance throughout the project's development. We thank our technical support staff, Mr. K. S. Loni and Mr. S. V. Kambi , provided indispensable assistance in practical aspects.

The involvement of all the staff members added valuable external perspectives, whose interdisciplinary insights enhanced the project's scope.

Acknowledgment is extended to our seniors (peer students), whose experiences and advice contributed significantly to our project's development. Personal thanks are due to my family for their unwavering support, and friends, for their encouragement and understanding.

This acknowledgment is tailored to reflect the specific contributions of each individual mentioned in the context of

the Crankshot project at the university, emphasizing the collaborative nature of the endeavour.

Abstract:

Title: Automatic Ground Nut Filling Machine: "PRECISION DISPENSER".

Our model introduces an innovative design for an Automatic Filling Machine, intended to streamline and enhance the efficiency of packaging processes in the industry. The machine cutting-edge technology, employing integrates precision conveyor systems, automated weighing sensors, and mechanisms to accurately fill various types of grains, dry fruits, ground nuts etc, into packaging containers. The system's modular design allows for customization, catering to different product sizes and packaging requirements. Efficiency tests demonstrate a significant reduction in manual labour and packaging time, while maintaining high accuracy and consistency in filling quantities. This innovation holds promise for optimizing the production and packaging workflows within the industry, fostering improved productivity and cost-effectiveness.

An automatic filling machine holds significant importance in the food industry for streamlining production, enhancing efficiency, and ensuring accuracy in the filling process. It minimizes human error, increases productivity, and maintains consistency in the

quantity of filled products. This machine helps reduce operational costs by cutting down on manual labour and optimizing the use of raw materials. Additionally, it meets high hygiene standards crucial in food processing, ensuring clean and safe packaging of dry fruits, thereby improving overall product quality and consumer satisfaction.

In conclusion we can say employing an automatic filling machine, the food industry benefits from heightened efficiency, precise filling, cost-effectiveness, and improved product quality. This conclusion emphasizes the machine's role in enhancing production processes, reducing errors, optimizing resource utilization, maintaining hygiene standards, and ultimately meeting consumer demands for reliable, high-quality products. Overall, its implementation promises a more efficient and competitive landscape within the food processing industry.

Table of Contents:

List of Figures	i		
List of Tables	ii		
1. Problem Definition	1		
1.1. Need Statement	1		
1.2. Questions asked to client / users for arriving at Objectives, Functions and	1		
Constraints			
1.3. Objectives	3		
1.4. Constraints	4		
2. Conceptual Design	7		
2.1. Establishing Functions	7		
2.2. Functions Tree	8		
2.3. Morphological Chart	9		
2.4. Generated Concepts	10		
Conceptual Evaluation and Product Architecture			
	11		
3.1. Pugh Chart			
3.2. Justification for the Scores	12		
3.3. Selected Design	13		
3.4. Product Architecture	14		
3.4.1. Function Clustering			
3.4.2. Interaction between subsystems	15		
4. Implementation	18		
4.1. Sprint 1 Implementation			
4.1.1. 3D model of the sprint 1			
4.1.2. Physical implementation image of the sprint 1 19			
4.2. Sprint 2 Implementation	20		
4.2.1. 3D model of the sprint 2			
4.2.2. Circuit diagram of the sprint 2	21		
4.2.3. Physical implementation image of the sprint 2	22		
4.2.4. Bill of Materials (BOM)			

5.	Statement of Expenditure	26
6.	Limitations of Present work and Future Scope	27

List of Figures

Fig. 1	Function tree	14
Fig. 2	Morphological chart	15
Fig. 3	Generated Concepts	16
Fig. 4	Selected Concept	21
Fig. 5	Function Clustering	19
Fig. 6	3D model of the sprint 1 subsystem	18
Fig. 6	Physical implementation of sprint 1	19
Fig. 6	3D model of the sprint 2 subsystem	20
Fig. 6	Circuit diagram of sprint 2	21
Fig. 6	Physical implementation of sprint 2	22
Fig. 6	Bill of materials	25

List of Tables

Table. 1	Questions asked to client / users for arriving at Objectives, Functions and Constraints	1
Table. 2	Objectives	3
Table. 3	Constraints	4
Table. 4	Functions	8
Table. 5	Establishing Functions	15
Table. 6	Interactions between subsystems	23
Table. 7	Statement of Expenditure	42

1. Problem Definition

1.1. Need Statement

A Belagavi based manufacturing industry requires an Automatic Filling Machine to address challenges related to accuracy and labour costs offering precise filling while reducing labour dependency and maintaining hygiene standards.

1.2. Questions asked to client / users for arriving at Objectives, Functions and Constraint.

SI. No.	Questions	Answers	Obje ctive	Constraint	Func tion
1.	What is budget allocated for acquiring the machine?	Its around 3500.	-	Yes	-

2.	What are the specific products that need to be filled using this machine?	We need to fill various grains.	-	-	yes
3.	What is the expected timeline for implementing the machine?	Within two months.	-	Yes	-
4.	What should be the size of the machine?	Dimensions 1.5ft X 1.5ft X 1.5ft.	-	yes	-
5.	Have we conducted a cost-benefit analysis to determine the potential savings in labour costs?	Yes we can save 30% in labour costs annually with new machine.	-	yes	-

6.	What is the environmental impact of The Automatic Filling Machine?	We are exploring eco-friendly options for machines operation and packaging materials.	-	-	yes
7.	What are the specific technical specification and capabilities you are looking for in this machine?	We need a machine with a speed of at least 2 containers per minute.	-	yes	
8.	Should the machine be fixed?	It should be portable.	yes	-	-
9.	How will we ensure the Automatic Filling Machine	It should facilitate easy cleaning and sanitization to maintain hygiene.	yes	-	-

	meets hygiene standards?				
10.	What's the expected impact on our workforce with the implementati on of the new machine?	Some employees will need to be trained to operate and maintain the machine.	-	-	Yes
11.	What other features are expected?	It should be user friendly and easily transportable.	yes	-	-
12.	What should be the weight of the machine?	Not more than 2 kg.	-	Yes	-
13.	Does the machine require any indications?	Yes it should have an indicator to detect completion of process.	-	-	yes

1.3. Objectives

SI. No	Objectives
1.	Reduce Labour Costs.
2.	Maintain Hygiene Standards.
3.	Improve filling accuracy.
4.	User friendly.

Problem definition 1.1

Design a automatic filling machine. Which is able to do accurate and Hygienic filling process, It should be user friendly.

1.4. Constraints

Sl.No	Constraints
1.	Cost of machine should be within 3,500.
2.	The machine should meet hygiene and safety regulations.
3.	Machine should be able to fill at least 2 bottles per minute.
4.	Machine should made up of non toxic materials.
5.	It should weigh approximately to 2 kg.
6.	It should fill at least 2 container per minute

Problem definition 1.2

Design an automatic filling machine, which is able to do accurate and hygienic filling process, it should be portable and user friendly. It should be able to fill at least one bottle per minute,

budget to build should not exceed Rs. 3,500 and it should work for 3 hours continuously.

1.5. Functions

SI. No	Functions
1.	Filling the bottle.
2.	Filling should be done cleanly.
3.	Indicate that process is completed to user.
4.	It should detect the level of grains filled in bottle.

Problem definition 1.3

Design an Automatic Filling Machine, which is able to do accurate and hygienic filling process, it should be portable and user-friendly. It should be able to fill at least two bottle per minute, budget to build should not exceed Rs.3,500 and it should work for 3 hours continuously. Machine should indicate the user after filling process is complete and Detect the level of grains filled in the bottle.

2.Conceptual Design

2.1. Establishing Functions

SI.	Functions from	Functions from the	
No	user perspective	designer perspective	
1.	Filling the container.	Filling.	
2.	Storing the product.	Contain or Store the input product.	

3. Sense the position of the material. 4. Open and close the lower opening of the input container. 5. Sensing the availability of space. 6. Supplying of the product to the filling machine. 7. Alert after completion of work. 8. Weigh the material while filling. 9. Hold the filled container. 10. Casing of the product. 11. Move the filled containers.

12.	To detect completion of the	
	process.	
13.	Count number of fillings.	

2.2. Functions Tree

AUTOMATIC FILLING MACHINE HANDLING HANDLING INDICATION CONTAINER OF PIPE Sence the Dropping of Display on/off of amount of grains grains machine filled Display the Store grains in Sense amount of amount of grains container grains poured filled Signalling Calculate amount Opening of outlet completion of of grains filled pipe filling process Fill the grains packet

2.3. Morphological Chart

Morphological Chart

i for photogreat Chare					
Serial No.	Sub-functions	Means I	Means 2	Means 3	
		O CONTRACTOR	**	6	
1.	Sense the bottles.	Proximity Sensor	Infrared Sensor	Limit Sensor	
2.	Hold the bottles.	Cylindrical Holder	Conveyer- Screw	Clamp	
3,	Move the bottles.	Conveyer Belt	Star Wheel	Electric rotator	
4.	Stop the bottles.	PLC	Manual stop button	Braking system	
5.	Filling the bottles.	Discharge nozzle	Servo meter	Тар	
		4		annilline.	
6.	Fixing the caps.	Cap fixer	Head screw cap	Spacers	
7.	Holding the liquid and caps	Bottle guide	Hopper	Cap Sorter	
100	оцрз	Dottie galae	Порры	oup contain	

Concept 1

2.4. Generated Concepts

BY:SHRUSHTI HULBUTTE

Concept 3

BY:ABHISHEK TIMMANAGOUDAR

3. Conceptual Evaluation and Product Architecture

3.1. Pugh Chart

Pugh chart for the 4 alternative	designs shown	in figures
----------------------------------	---------------	------------

Design Objectives	Weights	Design 1	Design 2	Design 3
Safety	5	Datum	-	++
Ease of use	8	Datum	+	+
Portability	6	Datum	0	-
Use of standard parts	7	Datum	+	+
Cost	9	Datum	_	0
Score(+)		0	15	25
Score (-)		0	14	6
Total		0	1	19

Objectives	Weights
Safety	5
Ease of use	8
Portability	6

Use of standard parts	7
Cost	9

3.2. Justification for the Scores.

Design		Score	
No.	Objective	Allocated	Justification for the Score
	Power consumption		Datum for comparison.
		0	Datum for comparison.
1	Portability	0	Datum for comparison.
			Datum for comparison.
	Maintenance	0	
	Cost	0	Datum for comparison.
2	Power consumption	5	Consumes more power.
	Ease of Use	8	It can be easily used without any complications.

	Portability	0	It is similar to design one in portability.
	Maintenance	7	High maintenance Annually.
	Cost	9	It costs more then design one.
	Power consumption	6	Consumes more electricity.
	Ease of Use	5	It is complicated to use
3	Portability	6	It is difficult to make portable.
	Maintenance	7	Low maintenance.
	Cost	0	It is expensive due to electronic devices.
	Power consumption	9	Consumes suitable power supply.
4	Ease of Use	8	It has switch buttons therefore easily used.
	Portability	10	Easily carried and not heavy.
	Maintenance	7	Low maintenance due to less electronic devices.
	Cost	9	Cost is less and fits our budget.

3.3 Selected Design

BY:RIYA KAKATIKAR

3.4 Product Architecture

The Sub-systems which are identified from the Function Clustering Chart are as follows

- 1. Handle Container
- 2.Filling
- 3.Indication

3.4.1 Function Clustering

AUTOMATIC FILLING MACHINE

HANDLING HANDLING INDICATION CONTAINER OF PIPE Sence the Dropping of Display on/off of amount of grains grains machine filled Display the Store grains in Sense amount of amount of grains container grains poured filled Signalling Opening of outlet Calculate amount completion of of grains filled pipe filling process Fill the grains packet

3.4.2 Interaction between subsystems

		Filling	Indication
Handling	Material	No	No
Container.	Interaction		
	Data	Yes	Yes
	Interaction		
	Spatial	Yes	No
	Interaction		

Details: In summary, based on the provided information, there is no direct physical handling of the bottles (Material Interaction is "No"), there is interaction related to data (Data Interaction is "Yes"), and there is some form of spatial interaction (Spatial Interaction is "Yes"),

		Handling	Indication
		Container	
Filling.	Material Interaction	Yes	No
	Data Interaction	No	No
	Spatial Interaction	Yes	Yes

Details: In summary, during the filling process, there is direct physical interaction with the materials (Material Interaction is "Yes"), no direct interaction related to data (Data Interaction is "No"), and there is spatial interaction, possibly involving the

arrangement or positioning of bottles (Spatial Interaction is "Yes").

		Handling	Filling
		Container	
Indication	Material Interaction	No	No
	Data Interaction	Yes	Yes
	Spatial Interaction	No	Yes

Details: In summary, during the indication process, there is no direct physical interaction with the materials (Material Interaction is "No"), there is interaction related to data (Data Interaction is "Yes"), and there is no spatial interaction (Spatial Interaction is "No").

4.Implementation

4.1.Sprint 1 Implementation

4.1.1. 3D model of the sprint 1 subsystem

4.1.2. Bill of Materials(BOM) of the sprint 1

Sl.No.	Items	Quantity
01)	Acrylic sheets	1=40cm
	foxbase	W=30cm_
02>	foam sheets	l=30cm
		W=ZOCM
03>	Motor Clamp	2

4.1.3. Circuit diagram of the sprint 1

4.1.5. Physical implementation image of the sprint 4.2. Sprint 2 Implementation

4.2.1. 3D model of the sprint 2

4.2.2. Bill of Materials (BOM) of the sprint

51.NO	TTEMS	QUANTITY
直	Acylic Sheet's for container	2
2	Foam sheet Model Base	1=50Cm W=50Cm
3	1-Clamps	14

4.2.3. Circuit diagram of the sprint 2

4.2.5. Physical implementation image of the sprint 2

4.3.Sprint 3 Implementation

4.3.1. 3D model of the sprint 3 subsystem

4.3.2. Bill of Materials (BOM) of the sprint 3

Sl.No	ITEMS	QUANTITY
1	L-Clamps	4
(2)	Motor-Clamp	1
3	P911ans	6
(4)	Aluminium	ч
. , ,	god.	

4.3.3 Circuit diagram of the sprint 3

4.3.4. Flow chart of the sprint

4.3.5. Physical implementation image of the sprint 3

Bill Of Materials

5. Statement of Expenditure

Sl. No	Item with description	Quantity	Price in Rs.
1	Acrylic Sheets and Foam Sheets		
2	Aluminium rods		
3	Nuts ,Bolts and Clamps		
4	Aurdino Uno		
5	Dc Motor,Servo Motor and IR sensor		
6	Relay, Wires and Bread Board		
Total			

6. Limitations of Present work and Future Scope

While automatic filling machines offer efficiency and consistency, they also have some drawbacks. Initial setup costs can be high, and maintenance expenses might accrue over time. They might require technical expertise for operation and regular maintenance. Also, in some cases, they might not be as flexible or adaptable to changes compared to manual processes. Moreover, they might be designed for specific tasks or products, making them less flexible than human operators who can adapt to various situations. Adjusting the machine for different products or containers might require reconfiguration or additional setup

time, which can be a limitation in industries with frequent product changes.

Lastly, if not properly maintained or operated, automatic filling machines could face technical issues that might require specialized knowledge or expertise to troubleshoot, potentially leading to downtime in production.

The future of automatic filling machines looks promising as industries continue to seek efficient, precise, and high-speed solutions for packaging. Advancements in technology, such as robotics, IoT integration, AI-driven controls, and sustainability-focused designs, are likely to enhance their capabilities further. Additionally, customization options, versatility across various products, and increased automation for seamless integration within production lines could drive their widespread adoption in diverse industries.

References:-

- 1-College Library resources
- 2- College LMS videos of Engineering Exploration Course Project
- 3 -LMS link https://learn.klescet.ac.in/login/index.php

4-Internet - Database like Google Chrome

5- Github Link-

https://github.com/H-DIV-2023-2024-ODD/H11