RELAZIONI POSITIVE E NEGATIVE

RELAZIONI POSITIVE E NEGATIVE

Finora abbiamo considerato le relazioni come aventi connotazioni positive

- i collegamenti hanno tipicamente indicato amicizia, collaborazione, condivisione di informazioni,
- enfasi posta sulle connessioni che si formano con i amici, fan,

Nella maggior parte dei contesti di rete, ci sono anche effetti negativi

- alcune relazioni sono amichevoli,
- ma altre sono antagoniste o ostili;

Le interazioni tra persone o gruppi sono regolarmente afflitte da polemiche, disaccordi e, a volte, da veri e propri conflitti.

Come possiamo ragionare sul mix di relazioni positive e negative che si verificano all'interno di una rete?

RELAZIONI POSITIVE E NEGATIVE

Idea: prendere una rete e annotare i suoi collegamenti (cioè i suoi edge) con segni positivi e negativi.

- I legami positivi rappresentano l'amicizia,
- i legami negativi rappresentano l'antagonismo

Problema: comprendere la tensione tra queste due forze.

Lo studio di questo problema fornisce anche una nuova connessione tra

- le proprietà locali e
- le proprietà globali

della rete

cioè come effetti locali - fenomeni che coinvolgono solo pochi nodi alla volta - possono avere conseguenze globali osservabili a livello di rete nel suo complesso.

- Supponiamo di avere un social network in cui tutti conoscono tutti
 - cioè la rete è un grafo completo

[Da Star Wars - Revenge of the Sith, 2005]

- o Supponiamo di avere un social network in cui tutti conoscono tutti
 - cioè la rete è un grafo completo
- Etichettiamo ogni edge con + o -;
 - un + indica che i suoi due estremi sono amici,
 - un indica che i suoi due estremi sono nemici.

Nota: non ci sono due persone che sono indifferenti l'una all'altra, o che non si conoscono.

- → modello adatto ad un gruppo di persone abbastanza piccolo
 - → esempio un'aula, una piccola azienda, una squadra sportiva,
 - → o per un ambiente come quello delle relazioni internazionali, in cui
 - → i nodi sono paesi e
 - → ogni paese ha una posizione diplomatica ufficiale nei confronti di ogni altro.

I principi alla base dell'equilibrio strutturale si basano su teorie di psicologia sociale che risalgono agli anni '40

L'idea cruciale è la seguente.

- Se guardiamo due persone del gruppo, essi sono amici o nemici, ma
- quando guardiamo gruppi di tre persone alla volta, alcune configurazioni di + e sono socialmente e psicologicamente più plausibili di altre.
- Dato un insieme di persone A, B e C,
 avere tre + tra di loro è una situazione molto naturale:
 - corrisponde a tre amici

- Avere un singolo + e due è anche naturale:
 - due dei tre sono amici, e hanno un nemico comune nel terzo.

Le altre due possibili etichettature introducono una certa quantità di "instabilità" psicologica nelle relazioni.

 Un triangolo con due lati positivi e uno negativo corrisponde ad una persona A che è amica di ciascuno di B e C, ma B e C non vanno d'accordo tra loro.
 Ci sarebbero forze implicite che spingono

- · A si allea con B o C contro l'altro
- → cambi di label
- Allo stesso modo, ci sono fonti di instabilità in una configurazione in cui A, B e C sono nemici reciproci: forze che motivano due delle tre persone a "fare squadra" contro la terza (trasformando una delle tre etichette del bordo in un +
 - → cambi di label

Motivazione dei teorici dell'equilibrio strutturale:

i triangoli sbilanciati sono fonti di stress

- → le persone si sforzano di minimizzarli nelle loro relazioni
- → meno numerosi in contesti sociali reali rispetto a triangoli bilanciati.
- L'amico del mio amico è mio amico
- Il nemico del mio nemico è mio amico
- L'amico del mio nemico è mio nemico

In base a questo ragionamento, ci riferiremo a

- triangoli con uno o tre + come equilibrati (in quanto privi di fonti di instabilità)
- o triangoli con zero o due + come sbilanciati.

EQUILIBRIO STRUTTURALE IDI UNA RETE

Proprietà di equilibrio strutturale:

Per ogni insieme di tre nodi, se consideriamo i tre edge che li collegano, o tutti e tre sono etichettati +, oppure esattamente uno di essi è etichettato con +.

Cioè un grafo completo è bilanciato se ogni suo triangolo è bilanciato

Esempio: Il grafo completo di quattro nodi a sinistra è bilanciato, quello a destra no.

Nota. La definizione di reti equilibrate rappresenta un sistema sociale *estremo* che ha eliminato tutti i triangoli bilanciati.

Una definizione più realistica potrebbe richiedere solo un'alta percentuale di triangoli bilanciati, ma la versione con tutti i triangoli in equilibrio è un primo passo fondamentale per studiare queste problematiche.

EQUILIBRIO STRUTTURALE DI UNA RETE

Che aspetto ha una rete bilanciata?

Un modo per far sì che una rete sia bilanciata è che piaccia a tutti, cioè tutti i triangoli hanno tre etichette +.

Nella rete in figura due gruppi di amici (A,B e C,D) hanno relazioni negative con le persone di gruppi diversi.

EQUILIBRIO STRUTTURALE DI UNA RETE

- In generale: supponiamo di avere un grafo in cui i nodi possono essere divisi in due gruppi, X e Y, in modo che
 - ogni coppia di nodi in X si piaccia,
 - ogni coppia di nodi in Y si piaccia, e
 - * tutti in X sono nemici di tutti in Y .

Tale rete è bilanciata:

- un triangolo contenuto interamente in un gruppo o nell'altro ha tre etichette +, e
- un triangolo con due persone in un gruppo e uno nell'altro ha esattamente un'etichetta +

EQUILIBRIO STRUTTURALE DI UNA RETE

Rete bilanciata se

- Tutti i triangoli hanno tre etichette +.
- Formata da due gruppi di amici, nemici tra loro

Questi sono gli unici modi per avere una rete equilibrata!

Teorema dell'equilibrio: Se un grafo completo etichettato è bilanciato, allora o tutte le coppie di nodi sono amici, oppure i nodi possono essere divisi in due gruppi, X e Y, in modo tale che ogni coppia di nodi in X si piaccia, ogni coppia di nodi in Y si piaccia, e tutti in X siano nemici di tutti in Y.

Il Teorema dell'Equilibrio non è affatto un fatto ovvio, una **proprietà locale** (Equilibrio Strutturale) che si applica solo a tre nodi alla volta,

una **proprietà globale**: o tutti vanno d'accordo, o il mondo è diviso in due fazioni in lotta tra loro

Scegliamo un nodo qualsiasi A e siano

- X l'insieme dei nodi amici di A (incluso A stesso)
- Y l'insieme dei nodi nemici di A

(i) Consideriamo altri due nodi qualsiasi in X (chiamiamoli B e C).

Sappiamo che A è amico sia di B che di C, quindi se B e C fossero nemici l'uno dell'altro, allora A, B e C formerebbero un triangolo con due etichette + violando la condizione di equilibrio

- → B e C sono amici.
- → ogni coppia di nodi in X sono amici.

(ii) Consideriamo due nodi qualsiasi in Y (chiamiamoli D ed E)

Sappiamo che A è nemico sia di D che di E, quindi se D ed E fossero nemici l'uno dell'altro, allora A, D ed E formerebbero un triangolo senza etichette + - una violazione della condizione di equilibrio.

- → D ed E sono amici
- → ogni due nodi in Y sono amici.

(iii) consideriamo un nodo B in X e un nodo D in Y

Sappiamo che A è amico di B e nemico di D, quindi se B e D fossero amici, allora a, B e D formerebbero un triangolo con due etichette + - una violazione della condizione di equilibrio.

- → B e D sono nemici.
- → ogni coppia composta da un nodo in X ed uno in Y costituisce una coppia di nemici.

Ciò completa la prova del Teorema di Equilibrio.

APPLICAZIONI

Considereremo due aree in cui le idee di equilibrio strutturale sono rilevanti:

- le relazioni internazionali, dove i nodi sono paesi diversi;
- i siti di social media on-line dove gli utenti possono esprimere opinioni positive o negative

- o Nodi = Nazioni
- Grafo completo
 - (naturale supporre che ogni nazione abbia opinioni (positive o negative) verso ogni altra)
- Etichette +/- indicano alleanze o animosità

La ricerca in scienze politiche ha dimostrato che l'equilibrio strutturale può talvolta fornire una spiegazione efficace del comportamento delle nazioni durante una crisi internazionale.

ARABIA SAUDITA, IRAN E CINA (2023)

Scenario Iniziale (Pre-2023)

Cina ↔ **Arabia Saudita**: Alleanza economica/diplomatica (+).

Cina ↔ **Iran**: Collaborazione strategica (+).

Arabia Saudita ↔ **Iran**: Rivalità storica, nessuna relazione diplomatica (–).

Predizioni della Teoria

Per raggiungere l'equilibrio, una delle seguenti opzioni deve verificarsi:

Arabia Saudita e Iran diventano alleati (tutti +).

Cina prende le distanze da uno dei due (es. Cina-Iran diventa –).

Esito Reale (Marzo 2023)

Mediazione cinese: La Cina facilita un accordo per ripristinare le relazioni diplomatiche tra Arabia Saudita e Iran.

Nuove relazioni:

Arabia Saudita \leftrightarrow Iran: Riapertura di ambasciate (+).

Cina mantiene legami positivi con entrambi.

Triangolo Bilanciato

Alcuni studi utilizzano le alleanze mutevoli che hanno preceduto la prima guerra mondiale come un esempio di equilibrio strutturale nelle relazioni internazionali –

L'evoluzione delle alleanze in europa, 1872-1907 Gran Bretagna GB, Francia FR, Russia RU, Italia IT, Germania GE, Austria-Ungheria AH Edge indicano amicizia, edge punteggiati indicano inimicizia.

Nota: la rete si evolve in un'etichettatura equilibrata - e nella prima guerra mondiale.

Le alleanze prima della Prima guerra mondiale

Contesto (1900–1914): L'Europa era divisa in due blocchi:

- Triplice Alleanza: Germania, Austria-Ungheria, Italia
- Triplice Intesa: Francia, Regno Unito, Russia

L'equilibrio strutturale determina inevitabilmente la pace?

Le alleanze prima della Prima guerra mondiale

Contesto (1900–1914): L'Europa era divisa in due blocchi:

- Triplice Alleanza: Germania, Austria-Ungheria, Italia
- Triplice Intesa: Francia, Regno Unito, Russia

Triangoli stabili

Francia – Regno Unito – Germania:

- •Francia e Regno Unito +, entrambi in ostilità con Germania $\rightarrow (+, -, -) \rightarrow$ equilibrato
- •Germania Austria Italia: tutte positive → equilibrato

Triangoli *fragili*:

- •Italia Francia Austria: Italia ha legami con entrambi ma conflitti latenti
- •UK Russia Germania: relazioni complesse e non sempre coerenti

Un conflitto locale (Serbia – Austria) si espande per effetto domino. L'equilibrio strutturale può creare stabilità temporanea, ma: la rigidità delle alleanze blocca la flessibilità diplomatica.

FIDUCIA, SFIDUCIA E VALUTAZIONI ON-LINE.

Una fonte importante di dati di rete proviene dalle comunità di utenti Web, dove le persone possono esprimere sentimenti positivi o negativi l'una nei confronti dell'altra.

Es.

- il sito di notizie tecnologiche Slashdot, dove gli utenti possono designarsi reciprocamente come "amici" o "nemici"
- siti di valutazione dei prodotti on-line, dove un utente può esprimere valutazioni di prodotti diversi, e anche esprimere fiducia o sfiducia nei confronti degli altri utenti.

Analisi della rete di valutazioni degli utenti su Epinions (non esiste più)

→ la dicotomia fiducia/sfiducia nelle valutazioni on-line presenta *sia somiglianze che differenze* con la dicotomia amico/nemico nella teoria dell'equilibrio strutturale.

Una differenza si basa su una distinzione strutturale: abbiamo considerato l'equilibrio strutturale in grafi non diretti, mentre le valutazioni degli utenti formano un grafo diretto.

Una differenza più sottile tra fiducia/sfiducia e relazioni amico/nemico diventa evidente quando si pensa a come dovremmo aspettarci che si comportino i triangoli su tre utenti di Epinions.

FIDUCIA, SFIDUCIA E VALUTAZIONI ON-LINE.

Es.

o se l'utente A si fida dell'utente B e l'utente B si fida dell'utente C, allora è naturale aspettarsi che A si fidi di C.

(analogia con i triangoli completamente positivi (non orientati) della teoria dell'equilibrio strutturale)

- Ma cosa succede se A diffida di B e B diffida di C: dobbiamo aspettarci che A si fidi o che diffidi di C?
 - argomenti interessanti in entrambe le direzioni:
 - Se pensiamo che la diffidenza sia fondamentalmente una sorta di relazione nemica, allora gli
 argomenti della teoria dell'equilibrio strutturale suggerirebbero che A dovrebbe fidarsi di C:
 altrimenti avremmo un triangolo con tre bordi negativi.
 - Ma, se la diffidenza di A nei confronti di B esprime la convinzione di A di essere più competente di B e se la diffidenza di B nei confronti di C riflette una corrispondente convinzione di B allora ci si potrebbe aspettare che A diffidi di C

Questo suggerisce l'interesse a considerare forme più deboli di bilanciamento

FORMA PIÙ DEBOLE DI EQUILIBRIO STRUTTURALE

Abbiamo assunto che esistono due tipi di strutture su un gruppo di tre persone che sono intrinsecamente sbilanciate

- 1. un triangolo con due edge positivi e uno negativo
- 2. un triangolo con tre edge negativi

in cui le relazioni all'interno del triangolo contenevano una fonte latente di stress che la rete potrebbe tentare di risolvere.

Le argomentazioni nei due casi sono diverse

- 1. In un triangolo con due edge positivi, abbiamo il problema di una persona i cui due amici non vanno d'accordo
- 2. in un triangolo con tre edge negativi, c'è la possibilità che due dei nodi si alleino contro il terzo.

Studi suggeriscono che

in molti contesti, il primo di questi fattori può essere significativamente più forte del secondo:

- 1. amici di amici possono cercare di conciliare le loro differenze
- 2. mentre ci potrebbe essere meno forza nel modificare il secondo caso

Diventa quindi naturale investigare le proprietà strutturali quando

- 1. si escludono solo triangoli con esattamente due edge positivi, mentre
- 2. si permettono triangoli con tre edge negativi di essere presenti nella rete.

Si mostra la seguente caratterizzazione delle reti debolmente bilanciate:

Se un grafo completo è debolmente bilanciato, allora i suoi nodi possono essere divisi in gruppi in modo tale che ogni due nodi appartenenti allo stesso gruppo siano amici, e ogni due nodi appartenenti a gruppi diversi siano nemici.

Risultato: rete divisa in due o più di due fazioni, cioè un numero qualsiasi di gruppi opposti di amici comuni

Caratterizzazione delle reti debolmente bilanciate:

Se un grafo completo è debolmente bilanciato, allora i suoi nodi possono essere partizionati in gruppi $X_1,...,X_r$ (per qualche r>0) in modo tale che ogni due nodi appartenenti allo stesso gruppo X_i siano amici, e ogni due nodi appartenenti a gruppi diversi (X_i e X_j , con $i \neq j$) siano nemici.

Dimostrazione: Partendo da un grafo completo debolmente bilanciato, costruiamo la divisione.

Sia A un nodo qualsiasi, consideriamo l'insieme X_1 costituito da A e da tutti i suoi amici. Per poter fare di X_1 il primo gruppo, dobbiamo stabilire due cose:

- o Tutti gli amici di A sono amici tra loro
 - (→ X_1 è un gruppo di amici comuni).
- A e tutti i suoi amici sono nemici di tutti gli altri nel grafo
 - (→ nodi di X_1 nemici con tutti gli altri gruppi del grafo).

Proviamo: Tutti gli amici di A sono amici tra loro.

Consideriamo due nodi B e C amici di A.

Se B e C fossero nemici l'uno dell'altro, allora il triangolo sui nodi A, B e C avrebbe esattamente due etichette +, che violerebbero l'equilibrio strutturale debole .

Quindi B e C devono essere amici l'uno dell'altro.

Proviamo: A e tutti i suoi amici sono nemici di tutti gli altri nel grafo

Sappiamo che A è nemico con tutti i nodi del grafo al di fuori di X_1 (tutti gli amici di A)

Consideriamo un qualsiasi edge tra un nodo B in X_1 e un nodo D non in X_1 .

Se B e D fossero amici, allora il triangolo su A, B e D avrebbe esattamente due etichette + → violazione

Quindi B e D devono essere nemici.

Quindi le due condizioni valgono per X_1

possiamo rimuovere X_1 dal grafo e dichiararlo come il primo gruppo.

Rimane un grafo completo più piccolo ancora debolmente bilanciato

ITERIAMO sul grafo rimanente (troviamo un secondo gruppo da rimuovere) fino a quando tutti i nodi non siano stati assegnati ad un gruppo.

Poiché ogni gruppo X_i è composto da amici reciproci (prima condizione) E ogni suo nodo ha solo relazioni negative con tutti i nodi al di fuori, cioè appartenenti ad un gruppo X_i con $i \neq j$ (seconda condizione)

abbiamo la caratterizzazione cercata