Thema: Aussagenlogik

Wahr oder falsch? Seien A, B und C Atome. Die Formel $(A \vee \neg B) \vee (B \vee C)$ ist erfüllbar.

Hinweis Eine Formel ist erfüllbar, wenn es eine Bewertung gibt, so dass die Formel die Bewertung I hat.

© FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A, B und C Atome. Die Formel $(A \lor \neg B) \lor (B \lor C)$ ist falsifizierbar.

Bewertung 0 hat. Hinweis Eine Formel ist falsifizierbar, wenn es eine Bewertung gibt, so dass die Formel die

Thema: Aussagenlogik

Wahr oder falsch? Seien A, B und C Atome. Die Formel $(A \vee \neg B) \vee (B \vee C)$ ist tautologisch.

Hinweis Eine Formel ist tautologisch, wenn für jede Bewertung der Atome die Bewertung der Formel 1 ist.

© FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A, B und C Atome. Die Formel $(A \vee \neg B) \vee (B \vee C)$ ist widerspruchsvoll.

tung der Formel 0 ist.

Hinweis Eine Formel ist widerspruchsvoll, wenn für jede Bewertung der Atome die Bewer-

Thema: Aussagenlogik

Falsch. Wenn B die Bewertung 1 hat, dann ist die Bewertung der Formel 1, und wenn B die Bewertung 0 hat, dann ist die Bewertung der Formel ebenfalls 1, weil dann $\neg B$ die Bewertung 1 hat. Es gibt also keine Bewertung, so dass die Formel die Bewertung 0 hat.

Thema: Aussagenlogik

Wahr, denn wenn A,B und C die Bewertung 1 haben, dann ist auch die Bewertung der Formel 1.

Thema: Aussagenlogik

Falsch. Wenn zum Beispiel A, B und C die Bewertung 1 haben, dann ist die Bewertung der Formel 1, also kann sie nicht widerspruchsvoll sein.

Thema: Aussagenlogik

Wahr. Wenn B die Bewertung 1 hat, dann ist die Bewertung der Formel 1, und wenn B die Bewertung 0 hat, dann ist die Bewertung der Formel ebenfalls 1, weil dann $\neg B$ die Bewertung 1 hat. Für jede Bewertung von A, B und C ist also die Bewertung der Formel 1.

[©] FernUniversität in Hagen, 2008

Thema: Prädikatenlogik

Wahr oder falsch? Sei $\alpha = \forall x \forall y (P(x,y) \leftrightarrow P(y,x))$, wobei P ein zweistelliges Prädikatssymbol ist. Dann gibt es eine zu $\Sigma(\alpha)$ syntaktisch passende Interpretation mit Grundmenge \mathbb{N} , so dass die Formel die Bewertung 1 hat.

Hinweis Ohne Hinweis.

Thema: Prädikatenlogik

Wahr oder falsch? Sei $\alpha = \forall x \forall y (P(x,y) \leftrightarrow P(y,x))$, wobei P ein zweistelliges Prädikatssymbol ist. Dann gibt es eine zu $\Sigma(\alpha)$ syntaktisch passende Interpretation mit Grundmenge \mathbb{N} , so dass die Formel die Bewertung 0 hat.

Hinweis Ohne Hinweis.

Thema: Aussagenlogik

Wahr oder falsch? Sei A, B und C Aussagen. Die Formel $\neg(C \leftrightarrow A) \land ((C \to B) \lor (A \land B \to C))$ ist äquivalent zu $\neg((A \to C) \land (\neg C \lor A))$.

Hinweis Wahr.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F:(0,\infty)\longrightarrow \mathbb{R}, x\mapsto 2\sin(\sqrt{x})+17$ ist eine Stammfunktion von $f:(0,\infty)\longrightarrow \mathbb{R}, x\mapsto \frac{\cos(\sqrt{x})}{\sqrt{x}}$.

Thema: Prädikatenlogik

Wahr. Wenn P die Kleiner-Beziehung zwischen natürlichen Zahlen modelliert, also P(x, y) = 1 genau dann, wenn x < y, dann ist die Formel falsch.

Thema: Prädikatenlogik

Wahr. Wenn P die Gleichheit von natürlichen Zahlen modelliert, also P(x,y) = 1 genau dann, wenn x = y ist, dann ist die Formel wahr.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr, denn F'' = f.

Thema: Aussagenlogik

Wahr. Der zweite Teil der ersten Formel, also $((C \to B) \lor (A \land B \to C))$ ist tautologisch. Es hat nämlich $C \to B$ nur dann die Bewertung 0, wenn C die Bewertung 1 und B die Bewertung 0 hat. Dann hat aber - egal, was die Bewertung von A ist - $(A \land B \to C)$ die Bewertung 1. Die erste Formel ist also äquivalent zur Formel $\neg(C \leftrightarrow A)$. Diese ist wieder äquivalent zu $\neg((C \to A) \land (A \to C))$. Ersetzt man nun das erste \to , erhält man die Formel $\neg((\neg C \lor A) \land (A \to C))$. Das Kommutativgesetz liefert jetzt die Äquivalenz zur zweiten Formel.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F:(0,\infty)\longrightarrow \mathbb{R}, x\mapsto 2\sin(\sqrt{x})+17$ ist eine Stammfunktion von $f:(0,\infty)\longrightarrow \mathbb{R}, x\mapsto \frac{\cos(\sqrt{x})}{\sqrt{x}}-6$.

Thema: Aussagenlogik

Wahr oder falsch? Seien A, B und C Aussagen. Dann gilt $(A \lor B) \land C \models B \rightarrow C$.

Thema: Prädikatenlogik

Wahr oder falsch? Sei (a_n) eine reelle Folge, auf die die Aussage $\exists a \in \mathbb{R} \quad \forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad (|a_n - a| < \varepsilon)$ zutrifft. Dann ist (a_n) konvergent.

Hinweis Wahr.

Thema: Prädikatenlogik

Wahr oder falsch? Sei (a_n) eine reelle Folge, auf die die Aussage $\exists a \in \mathbb{R} \quad \exists n_0 \in \mathbb{N} \quad \forall \varepsilon > 0 \quad \forall n \geq n_0 \quad (|a_n - a| < \varepsilon) \text{ zutrifft. Dann ist } (a_n) \text{ konvergent.}$

Hinweis Wahr.

Thema: Aussagenlogik

Wahr. Ist die Bewertung der linken Formel 1, dann ist auf jeden Fall die Bewertung von C auch 1. Dann ist aber die Bewertung von $B \to C$ ebenfalls 1.

Thema: Zusammenhang zwischen Differentiation und Integration

Falsch, denn $F'' \neq f$.

Thema: Prädikatenlogik

Wahr. Die Aussage bedeutet, dass für fast alle Folgenglieder $a_n = a$ gilt. Diese Eigenschaft hat die Konvergenz von (a_n) gegen a zur Folge.

Thema: Prädikatenlogik

Wahr. Die Aussage ist gerade die Definition für Konvergenz gegen a - in Quantorenschreibweise.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \frac{1}{4}\sin^2(2x) + 3$ ist eine Stammfunktion von $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \sin(2x)\cos(2x)$.

Hinweis Wahr.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto -\frac{1}{4}\cos^2(2x) + 3$ ist eine Stammfunktion von $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \sin(2x)\cos(2x)$.

Hinweis Wahr.

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(((A \to B) \to A) \to A)$ ist erfüllbar.

Hinweis Eine Formel ist erfüllbar, wenn es eine Bewertung der Atome gibt, so dass die Bewertung der Formel I ist.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(((A \to B) \to A) \to A)$ ist tautologisch.

.
tsi 1 əmo
t
A resp. $^{\prime}$

Hinweis Eine Formel ist tautologisch, wenn die Bewertung der Formel für jede Bewertung

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr, denn F'' = f.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr, denn F'' = f.

Thema: Aussagenlogik

Wahr, denn für jede Bewertung der Atome ist die Bewertung der Formel 1.

Thema: Aussagenlogik

Wahr. Haben A und B beide die Bewertung 1, dann ist auch die Bewertung der Formel 1.

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(((A \to B) \to A) \to A)$ ist widerspruchsvoll.

tang der Formel 0 ist.

Hinweis Eine Formel ist widerspruchsvoll, wenn für jede Bewertung der Atome die Bewer-

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(((A \to B) \to A) \to A)$ ist falsifizierber.

Hinweis Eine Formel ist falsifizierbar, wenn es eine Bewertung der Atome gibt, so dass die Bewertung der Formel 0 ist.

[©] FernUniversität in Hagen, 2008

 ${\bf Thema} \hbox{: Aussagenlogik}$

Wahr oder falsch? Seine A und B Aussagen. Es gilt $(A \wedge B) \models (A \vee B)$.

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \leftrightarrow B) \land (\neg A \land B)$ ist erfüllbar.

Hinweis Eine Formel ist erfüllbar, wenn es eine Bewertung der Atome gibt, so dass die Bewertung der Formel I ist.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Falsch. Für jede Bewertung von A und B ist die Bewertung der Formel 1. Also ist die Formel nicht falsifizierbar.

Thema: Aussagenlogik

Falsch. Wenn A und B zum Beispiel beide die Bewertung 1 haben, dann hat auch die Formel die Bewertung 1. Sie ist also nicht widerspruchsvoll.

Thema: Aussagenlogik

Falsch. Wenn A und B verschiedene Bewertungen haben, dann ist die Bewertung von $(A \leftrightarrow B)$ gleich 0. Haben sie gleiche Bewertungen, dann ist die Bewertung von $(\neg A \land B)$ gleich 0. Es gibt also keine Bewertung von A und B, so dass die Bewertung der Formel 1 ist.

Thema: Aussagenlogik

Wahr. Die Bewertung von $A \wedge B$ ist genau dann 1, wenn die Bewertungen von A und B beide 1 sind. In diesem Fall ist auch die Bewertung von $A \vee B$ gleich 1.

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \leftrightarrow B) \land (\neg A \land B)$ ist tautologisch.

Hinweis Eine Formel ist tautologisch, wenn für jede Bewertung der Atome die Bewertung der Formel 1 ist.

© FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \leftrightarrow B) \land (\neg A \land B)$ ist falsifizierbar.

Hinweis Eine Formel ist falsifizierbar, wenn es eine Bewertung der Atome gibt, so dass die Bewertung der Formel 0 ist.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \leftrightarrow B) \land (\neg A \land B)$ ist widerspruchsvoll.

tang der Formel 0 ist.

Hinweis Eine Formel ist widerspruchsvoll, wenn für jede Bewertung der Atome die Bewer-

Thema: Prädikatenlogik

Wahr oder falsch? Es gibt keine reelle Folge (a_n) , auf die die Aussage $\forall G \in \mathbb{R} \quad \exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad (|a_n| < G).$

Hinweis Wahr.

Thema: Aussagenlogik

Wahr. Wenn A die Bewertung 1 und B die Bewertung 0 hat, dann ist die Bewertung von $A \leftrightarrow B$ und damit der gesamten Formel 0.

Thema: Aussagenlogik

Falsch. Wenn A die Bewertung 1 und B die Bewertung 0 hat, dann ist die Bewertung von $A \leftrightarrow B$ und damit der gesamten Formel 0. Die Formel ist also nicht tautologisch.

Thema: Prädikatenlogik

Wahr, denn es gilt immer $|a_n| \ge 0$. Ist also G < 0, ist die Formel nicht wahr.

Thema: Aussagenlogik

Wahr. Wenn A und B verschiedene Bewertungen haben, dann ist die Bewertung von $(A \leftrightarrow B)$ gleich 0. Haben sie gleiche Bewertungen, dann ist die Bewertung von $(\neg A \land B)$ gleich 0. Jede Bewertung der Atome führt also zu einer Bewertung der Formel mit 0.

Thema: Prädikatenlogik

Wahr oder falsch? Es gibt keine reelle Folge (a_n) , auf die Aussage $\exists n_0 \in \mathbb{N} \quad \forall G \in \mathbb{R} \quad \forall n \geq n_0 \quad (a_n \leq G)$ zutrifft.

Hinweis Wahr.

 ${\bf Thema} \hbox{: Aussagenlogik}$

Wahr oder falsch? Seien A und B Aussagen. Dann gilt $(A \land B) \models (B \rightarrow A)$.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \frac{1}{2}(x - \sin(x)\cos(x)) + 2$ ist eine Stammfunktion der Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \sin^2(x)$.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \sqrt{x^2 + 1} - 6$, ist eine Stammfunktion von $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \frac{x}{\sqrt{x^2 + 1}}$.

Thema: Aussagenlogik

Wahr. Die einzige Bewertung, für die $A \wedge B$ die Bewertung 1 hat, ist, wenn A und B die Bewertung 1 haben. In diesem Fall ist die Bewertung von $B \rightarrow A$ ebenfalls 1.

Thema: Prädikatenlogik

Wahr. Wenn es ein solches n_0 gäbe, dann würde gelten $a_{n_0} \leq G$ für alle $G \in \mathbb{R}$. Das kann nicht sein.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr, denn F'' = f.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr. Es ist $F''(x) = \frac{1}{2}(1 - \cos^2(x) + \sin^2(x))$. Da $\sin^2(x) + \cos^2(x) = 1$, also $1 - \cos^2(x) = \sin^2(x)$, folgt F'' = f.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \frac{1}{2}\sin^2(x) + 3$, ist eine Stammfunktion von $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \sin(x)\cos(x)$.

Hinweis Wahr.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr oder falsch? Die Funktion $F: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \frac{1}{2}\cos^2(x) + 4$ ist eine Stammfunktion von $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto -\sin(x)\cos(x)$.

Thema: Prädikatenlogik

Wahr oder falsch? Sei (a_n) eine reelle Folge, auf die die Aussage $\forall G \in \mathbb{R} \quad \exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad (|a_n| > G)$ zutrifft. Dann ist (a_n) divergent.

Hinweis Wahr.

Thema: Prädikatenlogik

Wahr oder falsch? Es gibt keine reelle Folge (a_n) , auf die die Aussage $\exists n_0 \in \mathbb{N} \quad \forall G \in \mathbb{R} \quad \forall n \geq n_0 \quad (|a_n| > G)$ zutrifft.

Hinweis Wahr.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr, denn F'' = f.

Thema: Zusammenhang zwischen Differentiation und Integration

Wahr, denn es ist F'' = f.

Thema: Prädikatenlogik

Wahr. Wenn es eine solche Folge (a_n) gäbe, dann gälte für diese Folge $|a_{n_0}| > G$ für jedes $G \in \mathbb{R}$. Das kann nicht sein, denn \mathbb{R} ist unbeschränkt.

Thema: Prädikatenlogik

Wahr, denn die Aussage sagt, dass (a_n) unbeschränkt ist.

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Aussagen. Dann gilt $\neg(A \lor B) \models B \to \neg A$.

Thema: Aussagenlogik

Wahr oder falsch? Die Formel $\neg(C \leftrightarrow A) \land ((C \to B) \lor (A \land B \to C))$ ist äquivalent zu $\neg((C \to A) \to B)$.

Hinweis Zwei Formeln sind äquivalent, wenn sie für jede Bewertung der Atome die gleiche Bewertung haben.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \land B) \leftrightarrow A$ ist tautologisch.

t hat.

Hinweis Eine Formel ist tautologisch, wenn sie für jede Bewertung der Atome die Bewertung

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \wedge B) \leftrightarrow A$ ist erfüllbar.

Hinweis Eine Formel ist erfüllbar, wenn es eine Bewertung der Atome gibt, so dass die Bewertung der Formel I ist.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Falsch. Sind zum Beispiel die Bewertungen von A und B gleich 1 und ist die von C gleich 0, dann ist die Bewertung der ersten Formel 1 und die Bewertung der zweiten Formel 0.

Thema: Aussagenlogik

Wahr. Die Formel auf der linken Seite hat nur dann die Bewertung 1, wenn A und B beide die Bewertung 0 haben. In diesem Fall ist auch die Bewertung der Formel auf der rechten Seite 1.

Thema: Aussagenlogik

Wahr. Wenn A und B beide die Bewertung 1 haben, dann ist auch die Bewertung der Formel 1. Also ist sie erfüllbar.

Thema: Aussagenlogik

Falsch. Hat A die Bewertung 1 und B die Bewertung 0, dann ist die Bewertung der Formel 0. Also ist die Formel nicht tautologisch.

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \wedge B) \leftrightarrow A$ ist falsifizierbar.

Hinweis Eine Formel ist falsifizierbar, wenn es eine Bewertung der Atome gibt, so dass die Bewertung der Formel 0 ist.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr oder falsch? Seien A und B Atome. Die Formel $(A \land B) \leftrightarrow A$ ist widerspruchsvoll.

Hinweis Eine Formel ist widerspruchsvoll, wenn jede Bewertung der Atome eine Bewertung der Formel mit 0 ergibt.

© FernUniversität in Hagen, 2008

Thema: Riemann-Integral

Sei a < b. Was ist eine Partition des Intervalls [a, b]?

Thema: Riemann-Integral

Sei a < b, und sei $f : [a,b] \longrightarrow \mathbb{R}$ beschränkt. Sei t_0, \ldots, t_n eine Partition P von [a,b]. Wie sind die Ober- und die Untersumme von f für P definiert, und welche Beziehung gilt zwischen ihnen?

Hinweis Ohne Hinweis.

Thema: Aussagenlogik

Falsch. Wenn A und B beide die Bewertung 1 haben, dann ist die Bewertung der Formel 1. Sie kann also nicht widerspruchsvoll sein.

Thema: Aussagenlogik

Wahr. Wenn A die Bewertung 1 und B die Bewertung 0 hat, ist die Bewertung der Formel 0. Also ist sie falsifizierbar.

Thema: Riemann-Integral

Für alle $1 \le i \le n$ sei $m_i = \inf\{f(x) \mid t_{i-1} \le x \le t_i\}$ und $M_i = \sup\{f(x) \mid t_{i-1} \le x \le t_i\}$.

Dann ist die Untersumme $U(f,P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$ und die Obersumme ist O(f,P) =

 $\sum_{i=1}^{n} M_i(t_i - t_{i-1}).$ Es gilt immer $U(f, P) \leq O(f, P)$.

Thema: Riemann-Integral

Eine Patition sind endlich viele Punkte t_0, \ldots, t_n mit $a = t_0 < t_1 < \ldots < t_n = b$.

Thema: Riemann-Integral

Wahr oder falsch? Sei a < b, sei P eine Partition von [a, b], und sei Q eine Verfeinerung von P. Dann gilt $U(f, P) \leq U(f, Q)$ und $O(f, P) \leq O(f, Q)$.

 ${\bf Hinweis}$ Eine der beiden Teilaussagen stimmt, die andere ist falsch.

Thema: Riemann-Integral

Sei a < b, und sei $f : [a, b] \longrightarrow \mathbb{R}$ beschränkt. Wann ist f integrierbar auf [a, b]?

 ${\bf Hinweis}$ Das hat etwas mit Ober- und Untersummen zu tun.

Thema: Riemann-Integral

Was ist im Integral $\int_0^5 e^{-t}dt$ die untere Integrationsgrenze, die obere Integrationsgrenze, der Integrand und die Integrationsvariable?

Hinweis Ohne Hinweis.

Thema: Riemann-Integral

Geben Sie ein Beispiel für ein Intervall [a,b] und eine beschränkte Funktion $f:[a,b]\longrightarrow \mathbb{R}$, die nicht integrierbar ist.

Hinweis Dirichlet-Funktion.

Thema: Riemann-Integral

Wenn $\inf\{O(f,P)\mid P \text{ Partition von } [a,b]\}=\sup\{U(f,P)\mid P \text{ Partition von } [a,b]\},$ dann ist f integrierbar.

Thema: Riemann-Integral

Falsch. Es gilt zwar $U(f, P) \leq U(f, Q)$, aber $O(f, P) \geq O(f, Q)$.

Thema: Riemann-Integral

Sei a < b und sei $f : [a, b] \longrightarrow \mathbb{R}$ die Dirichlet-Funktion. Für $x \in [a, b]$ sei also f(x) = 1, falls $x \in \mathbb{Q}$ gilt, und f(x) = 0, falls $x \in \mathbb{R} \setminus \mathbb{Q}$ gilt. Dann ist f beschränkt, aber nicht integriebar, wie wir im Kurstext gezeigt haben.

Thema: Riemann-Integral

Die untere Integrationsgrenze ist 0, die obere Integrationsgrenze ist 5, der Integrand ist die Funktion $f:[0,5] \longrightarrow \mathbb{R}$ mit $f(x)=e^{-x}$, und die Integrationsvariable ist t.

Thema: Riemann-Integral

Ist jede integrierbare Funktion stetig? Ist jede stetige Funktion integrierbar?

Hinweis Eine Antwort ist ja, die andere nein.

Thema: Riemann-Integral

Sei f integrierbar auf dem Intervall [a, b]. Wie ist das unbestimmte Integral von f definiert?

 $\bf Hinweis$ Ohne Hinweis.

Thema: Zusammenhang zwischen Differentiation und Integration

Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. Welche wichtige Eigenschaft hat dann das unbestimmte Integral F von f?

Hinweis Ohne Hinweis.

Thema: Zusammenhang zwischen Differentiation und Integration

Geben Sie ein Beispiel für eine Funktion $f:[a,b] \longrightarrow \mathbb{R}$, die integrierbar ist, und ein $c \in [a,b]$, so dass das unbestimmte Integral F in c nicht differenzierbar ist.

Hinweis Nehmen Sie ein f, das zwar integrierbar, aber nicht stetig ist.

Thema: Riemann-Integral

Das unbestimmte Integral ist die Funktion $F:[a,b]\longrightarrow \mathbb{R}$ mit $F(x)=\int_a^x f(t)dt$.

Thema: Riemann-Integral

Die Funktion $f:[0,2] \longrightarrow \mathbb{R}$ mit f(x)=0 für $0 \le x \le 1$ und f(x)=1 für $1 < x \le 2$ ist ein Beispiel für eine Funktion, die integrierbar, aber nicht stetig ist. Jede stetige Funktion ist integrierbar.

Thema: Zusammenhang zwischen Differentiation und Integration

Sei $f: [-1,1] \longrightarrow \mathbb{R}$ mit f(x) = 0 für $x \le 0$ und f(x) = 1 für $0 < x \le 1$. Dann ist f integrierbar, und das unbestimmte Integral ist $F(x) = \int_{-\pi}^{x} 0 dt = 0$ für $x \leq 0$ und

$$F(x) = \int_{-1}^{x} f(t)dt = \int_{-1}^{0} 0dt + \int_{0}^{x} 1dt = x \text{ für } 0 < x \le 1. \text{ Im Punkt } x = 0 \text{ gilt nun}$$

$$\lim_{x \to \infty} \frac{F(h) - F(0)}{F(h) - F(0)} = \lim_{x \to \infty} \frac{h - 0}{h - 0} = 1 \text{ Also ist } F \text{ in 0 night}$$

 $\lim_{h \to 0} \frac{F(h) - F(0)}{h} = 0 \text{ und } \lim_{h \to 0 \atop h \to 0} \frac{F(h) - F(0)}{h} = \lim_{h \to 0 \atop h \to 0} \frac{h - 0}{h} = 1. \text{ Also ist } F \text{ in } 0 \text{ nicht}$ h < 0differenzierbar.

Thema: Zusammenhang zwischen Differentiation und Integration

Das unbestimmte Integral ist differenzierbar, und es gilt F''(x) = f(x) für alle $x \in [a, b]$.

Thema: Zusammenhang zwischen Differentiation und Integration

Wie lautet der erste Hauptsatz der Differential- und Integralrechnung?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Zusammenhang zwischen Differentiation und Integration

Wie lautet der zweite Hauptsatz der Differential- und Integralrechnung?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Riemann-Integral

Welche Intgrationsregel wird aus der Produktregel der Differentiation abgeleitet?

Hinweis Ohne Hinweis.

Thema: Riemann-Integral

Welche Integrationsregel wird aus der Kettenregel der Differentiation abgeleitet?

Hinweis Ohne Hinweis.

Thema: Zusammenhang zwischen Differentiation und Integration

Ist f auf einem Intervall [a, b] integrierbar und ist g eine Stammfunktion von f auf [a, b], so gilt $\int_a^b f(x)dx = g(b) - g(a)$.

Thema: Zusammenhang zwischen Differentiation und Integration

Sei a < b, und sei $f : [a,b] \longrightarrow \mathbb{R}$ integrierbar. Sei $F : [a,b] \longrightarrow \mathbb{R}$ definiert durch $F(x) = \int_a^x f(t)dt$ für alle $x \in [a,b]$. Ist f in $c \in [a,b]$ stetig, dann ist F in c differenzierbar, und es gilt F''(c) = f(c).

Thema: Riemann-Integral

Die Substitutionsregel.

Thema: Riemann-Integral

Die partielle Integration.

Frage 53	3
Thema:	R

Thema: Riemann-Integral

Wie funktioniert die partielle Integration?

Hinweis Die partielle Integration ist aus der Produktregel bei der Differentiation abgeleitet.

[©] FernUniversität in Hagen, 2008

Thema: Riemann-Integral

Wie lautet die Substitutionsregel?

 $\label{eq:himself} \textbf{Hinweis} \ \ \text{Die Substitutionsregel ist aus der Kettenregel der Differentiation abgeleitet.}$

Thema: Riemann-Integral

Wenn Sie das Integral $\int_1^2 x \ln(x) dx$ mit partieller Integration berechnen sollen, was nehmen Sie als f(x) und was als g''(x)?

g''(x) eine Stammfunktion.

Hinweis Von der Funktion, die Sie als f(x) nehmen, sollten Sie die Ableitung kennen, von

Thema: Riemann-Integral

Wenn Sie das Integral $\int_0^{\pi} \frac{\sin(x)}{2 + \cos(x)} dx$ mit der Substitutionsregel ausrechnen sollen, welche

Funktion nehmen Sie als f(x) und welche als g(x), sodass der Integrand zu f(g(x))g''(x) wird?

Hinweis Ohne Hinweis.

Thema: Riemann-Integral

Sei I ein Intervall, und sei $f:I\longrightarrow \mathbb{R}$ eine stetige Funktion. Sei $g:[a,b]\longrightarrow I$ differenzierbar, und sei g'' stetig. Dann gilt $\int_a^b f(g(x))g''(x)dx=\int_{g(a)}^{g(b)} f(u)du$.

Thema: Riemann-Integral

Sei a < b. Seien $f, g : [a, b] \longrightarrow \mathbb{R}$ differenzierbar, und seien f'' und g'' stetig. Dann gilt $\int_a^b f(x)g''(x)dx = f(x)g(x)|_a^b - \int_a^b f''(x)g(x)dx.$

Thema: Riemann-Integral

Da $-\sin(x)$ die Ableitung von $\cos(x)$ ist, bietet es sich an $f(x) = -\frac{1}{x}$ und $g(x) = 2 + \cos(x)$ zu setzen. Dann ist $f(g(x))g''(x) = -\frac{1}{2 + \cos(x)}(-\sin(x))$.

Thema: Riemann-Integral

Da Sie sicher eine Stammfunktion von x kennen, aber keine von $\ln(x)$, sollten Sie f(x) =

 $\ln(x)$ und g''(x) = x setzten. Der Wert des Integrals ergibt sich dann übrigens als $\int_{-\infty}^{\infty} x \ln(x) dx = 1$

$$\frac{1}{2}x^{2}\ln(x)|_{1}^{2} - \int_{1}^{2} \frac{1}{2}x^{2} \frac{1}{x} dx = \frac{1}{2}x^{2}\ln(x) - \frac{1}{2}\int_{1}^{2} x dx = \frac{1}{2}x^{2}\ln(x) - \frac{1}{4}x^{2}|_{1}^{2} = 2\ln(2) - 1 - \frac{1}{4} = 2\ln(2) - \frac{1}$$

© FernUniversität in Hagen, 2008

Thema: Riemann-Integral

Wenn Sie das Intgral $\int_a^b \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$ mit der Substitutionsregel berechnen sollen, welche Funktion nehmen Sie als f(x) und welche als g(x), so dass der Integrand von der Form f(g(x))g''(x) ist?

dern nur $\cos(\sqrt{x}) = 2f(g(x))^{n/2}$.

Hinweis Man bekommt es nicht genau hin, dass f(g(x))g''(x) den Integranden ergibt, son-

[©] FernUniversität in Hagen, 2008

Thema: Riemann-Integral

Wenn Sie das Integral $\int_a^b \frac{\ln(x)}{x} dx$ mit der Substitutionsregel berechnen sollen, welche Funktion nehmen Sie dann als f(x) und welche als g(x), sodass der Integrand von der Form f(g(x))g''(x) ist?

Hinweis Ohne Hinweis.

Thema: Riemann-Integral

Wenn Sie das Integral $\int_a^b (3x-2)^6 dx$ mit der Substitutionsregel ausrechnen sollen, welche Funktion nehmen Sie dann als f(x) und welche als g(x), so dass der Integrand von der Form f(g(x))g''(x) ist?

Hinweis Man bekommt es nicht genau hin, dass f(g(x))g''(x) den Integranden ergibt, sondern nur $(3-2x)^6=-\frac{1}{2}f(g(x))g''(x)$.

[©] FernUniversität in Hagen, 2008

Thema: Riemann-Integral

Wenn Sie das Integral $\int_0^\pi \sin^3(x)\cos(x)dx$ mit der Substitutionsregel ausrechnen sollen, welche Funktion nehmen Sie dann als f(x) und welche als g(x), so dass der Integrand von der Form f(g(x))g''(x) ist?

Hinweis Ohne Hinweis.

Thema: Riemann-Integral

Für f(x) = x und $g(x) = \ln(x)$ gilt $f(g(x))g''(x) = \ln(x)\frac{1}{x} = \frac{\ln(x)}{x}$.

Thema: Riemann-Integral

Für $f(x) = \cos(x)$ und $g(x) = \sqrt{x}$ ist $f(g(x))g''(x) = \cos(\sqrt{x})\frac{1}{2\sqrt{x}} = \frac{1}{2}\frac{\cos(\sqrt{x})}{\sqrt{x}}$. Es kommt also nicht ganz der Integrand des gesuchten Integrals heraus, aber so kann man zuerst $\frac{1}{2}\int_a^b \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$ berechnen und anschließend mit dem Faktor 2 multiplizieren.

Thema: Riemann-Integral

Für $f(x) = x^3$ und $g(x) = \sin(x)$ ist $f(g(x))g''(x) = \sin^3(x)\cos(x)$.

Thema: Riemann-Integral

Für $f(x)=x^6$ und g(x)=3x-2 ist $f(g(x))g''(x)=(3x-2)^6(-2)$. Das ist nicht genau der Integrand, aber Sie können nun zuerst $-2\int_a^b (3-2x)^6 dx$ berechnen und anschließend mit dem Faktor $-\frac{1}{2}$ multiplizieren.

Thema: Aussagenlogik

Seien α und β aussagenlogische Formeln. Bilden Sie aus diesen beiden Formeln mindestens fünf neue aussagenlogische Formeln.

Hinweis Ein Beispiel für eine solche Formel wäre $\alpha \wedge \beta$.

Thema: Aussagenlogik

Wie sieht die Formel $((\neg A) \land B) \to (C \lor B)$ mit möglichst wenig Klammern aus?

Thema: Aussagenlogik

Sei α die Formel $((A \vee B) \wedge (C \vee D)) \leftrightarrow (\neg C \vee \neg A)$. Was ist atoms (α) ?

Hinweis atoms(α) ist die Menge aller Atome, die in α vorkommen.

Thema: Aussagenlogik

Bestimmen Sie die Bewertung der Formel $((A \vee B) \wedge (C \vee D)) \leftrightarrow (\neg C \vee \neg A)$, wenn $\mathcal{I}(A) = \mathcal{I}(C) = 1$ und $\mathcal{I}(B) = \mathcal{I}(D) = 1$ gilt.

Hinweis Die Bewertung ist 0.

Thema: Aussagenlogik

Lässt man überflüssige Klammern weg, wird $((\neg A) \land B) \rightarrow (C \lor B)$ zu $\neg A \land B \rightarrow C \lor B$.

Thema: Aussagenlogik

Aussagenlogische Formeln sind zum Beispiel $\neg \alpha$, $\neg \beta$, $\alpha \land \beta$, $\alpha \lor \beta$ und $\alpha \leftrightarrow \beta$.

Thema: Aussagenlogik

Die Formel $((A \lor B) \land (C \lor D))$ hat die Bewertung **1**, die Formel $(\neg C \lor \neg A)$ hat die Bewertung **0**. Die Bewertung der Formel ist also insgesamt **0**.

Thema: Aussagenlogik

Es gilt atoms(α) = {A, B, C, D}.

Thema: Aussagenlogik

Was ist die Bewertung der Formel $((\neg A \land B) \to C) \lor (B \to A \land \neg C)$, wenn $\mathcal{I}(A) = \mathcal{I}(B) = 1$ und $\mathcal{I}(C) = 0$ gilt?

Hinweis Die Bewertung der Formel ist 1.

 ${\bf Thema} \hbox{: Aussagenlogik}$

Sei α eine aussagenlogische Formel. Wann heißt α erfüllbar?

 ${\bf Thema} \hbox{: Aussagenlogik}$

Sei α eine aussagenlogische Formel. Wann heißt α tautologisch?

Hinweis Ohne Hinweis.

 ${\bf Thema} \hbox{: Aussagenlogik}$

Sei α eine aussagenlogische Formel. Wann heißt α widerspruchsvoll?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Aussagenlogik

Wenn es eine Bewertung \mathcal{I} mit $\mathcal{I}(\alpha) = 1$ gibt.

Thema: Aussagenlogik

Die Bewertung von $\neg A \land B$ ist **0**, also ist die Bewertung von $((\neg A \land B) \to C)$ gleich **1**. Damit ist schon klar, dass die Bewertung der gesamten Formel **1** ist.

Thema: Aussagenlogik

Wenn α für jede Bewertung \mathcal{I} den Wert $\mathcal{I}(\alpha) = 0$ besitzt.

Thema: Aussagenlogik

Wenn α für jede Bewertung \mathcal{I} den Wert $\mathcal{I}(\alpha) = 1$ besitzt.

 ${\bf Thema} \hbox{: Aussagenlogik}$

Sei α eine aussagenlogische Formel. Wann heißt α falsifizierbar?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Aussagenlogik

Geben Sie ein Beispiel für eine aussagenlogische Formel α , die erfüllbar ist.

Hinweis Es muss eine Bewertung \mathcal{I} mit $\mathcal{I}(\omega)=1$ geben.

Thema: Aussagenlogik

Geben Sie ein Beispiel für eine aussagenlogische Formel α , die tautologisch ist.

 $\mathbf{Hinweis}$ Jede Bewertung der Formel muss 1 ergeben.

Thema: Aussagenlogik

Geben Sie ein Beispiel für eine aussagenlogische Formel α , die widerspruchsvoll ist.

 $\operatorname{\bf Hinweis}$ Jede Bewertung der Formel muss 0ergeben.

Thema: Aussagenlogik

Sei $\alpha = A \vee B$. Dann ist $\mathcal{I}(\alpha) = 1$, wenn $\mathcal{I}(A) = \mathcal{I}(B) = 1$ gilt.

Thema: Aussagenlogik

Wenn es eine Bewertung \mathcal{I} gibt, so dass $\mathcal{I}(\alpha) = 0$ gilt.

Thema: Aussagenlogik

Sei $\alpha = A \wedge \neg A$. Dann gilt für jede Bewertung \mathcal{I} von A, dass $\mathcal{I}(\alpha) = 0$ gilt.

Thema: Aussagenlogik

Sei $\alpha = A \vee \neg A$. Dann gilt für jede Bewertung \mathcal{I} von A, dass $\mathcal{I}(\alpha) = 1$ ist.

Thema: Aussagenlogik

Geben Sie ein Beispiel für eine aussagenlogische Formel α , die falsifizierbar ist.

Hinweis Es muss eine Bewertung \mathcal{I} mit $\mathcal{I}(\omega)=0$ geben.

Thema: Aussagenlogik

Wahr oder falsch? Eine aussagenlogische Formel α ist genau dann tautologisch, wenn sie nicht falsifizierbar ist.

Hinweis Wahr.

Thema: Aussagenlogik

Wahr oder falsch? Eine aussagenlogische Formel α ist genau dann tautologisch, wenn $\neg \alpha$ widerspruchsvoll ist.

Hinweis Wahr.

Thema: Aussagenlogik

Geben Sie mindestens zwei äquivalente Aussagen zu der Aussage: "Die aussagenlogische Formel β ist eine semantische Folgerung aus α ."

Hinweis Eine wäre zum Beispiel, dass $\mathcal{I}(\beta)=1$ für alle Bewertungen \mathcal{I} mit $\mathcal{I}(\alpha)=1$ gilt.

[©] FernUniversität in Hagen, 2008

Thema: Aussagenlogik

Wahr. Wenn α tautologisch ist, dann gilt für jede Bewertung \mathcal{I} , dass $\mathcal{I}(\alpha) = 1$ gilt. Damit gibt es keine Bewertung \mathcal{I} mit $\mathcal{I}(\alpha) = 0$, also ist α nicht falsifizierbar. Ist umgekehrt α nicht falsifizierbar, dann gibt es keine Bewertung \mathcal{I} mit $\mathcal{I}(\alpha) = 0$. Also gilt für jede Bewertung \mathcal{I} , dass $\mathcal{I}(\alpha) = 1$ gilt, und damit ist α tautologisch.

Thema: Aussagenlogik

Sei $\alpha=A\wedge B.$ Dann ist für $\mathcal{I}(A)=0=\mathcal{I}(B)$ die Bewertung $\mathcal{I}(\alpha)=0.$

Thema: Aussagenlogik

- 1. Falls $\mathcal{I}(\alpha) = 1$ gilt, dann folgt auch $\mathcal{I}(\beta) = 1$.
- 2. $\alpha \to \beta$ ist tautologisch.
- 3. $\alpha \wedge \neg \beta$ ist widerspruchsvoll.

Thema: Aussagenlogik

Wahr. Wenn α tautologisch ist, dann ist $\mathcal{I}(\alpha) = 1$ für jede Bewertung \mathcal{I} . Es folgt $\mathcal{I}(\neg \alpha) = 0$ für jede Bewertung \mathcal{I} , also ist $\neg \alpha$ widerspruchsvoll. Wenn umgekehrt $\neg \alpha$ widerspruchsvoll ist, dann ist $\mathcal{I}(\neg \alpha) = 0$ für alle Bewertungen \mathcal{I} . Damit ist $\mathcal{I}(\alpha) = 1$ für alle Bewertungen \mathcal{I} , und α ist tautologisch.

Thema: Aussagenlogik

Wann heißen zwei aussagenlogische Formel
n α und β äquivalent?

Hinweis Ohne Hinweis.

Thema: Aussagenlogik

Wie hängen logische Äquivalenz und semantische Folgerungen zusammen?

Thema: Aussagenlogik

Nennen Sie mindestens zwei Vererbungsregeln.

Hinweis Eine der Vererbungsregeln ist: Wenn $\alpha \approx \beta,$ so gilt $\neg \alpha \approx -\beta.$

Thema: Aussagenlogik

Wie stellt man die Formel $\alpha \to \beta$ nur mit den Junktoren \vee und \neg dar?

Thema: Aussagenlogik

Wenn α und β aussagenlogische Formeln sind, dann gilt $\alpha \leftrightarrow \beta$ genau dann, wenn $\alpha \models \beta$ und $\beta \models \alpha$ gilt.

Thema: Aussagenlogik

Wenn $\mathcal{I}(\alpha) = \mathcal{I}(\beta)$ für alle Bewertungen \mathcal{I} gilt.

Thema: Aussagenlogik

Es gilt $\alpha \to \beta \approx \neg \alpha \lor \beta$.

Thema: Aussagenlogik

Seien $\alpha,\,\beta$ und γ aussagenlogische Formeln. Dann gelten:

- 1. Wenn $\alpha \approx \beta$, so gilt $\neg \alpha \approx \neg \beta$.
- 2. Wenn $\alpha \approx \beta$, so gilt $\gamma \wedge \alpha \approx \gamma \wedge \beta$.
- 3. Wenn $\alpha \approx \beta$, so gilt $\gamma \vee \alpha \approx \gamma \vee \beta$.

Thema: Aussagenlogik

Wie stellt man die Formel $\alpha \wedge \beta$ nur mit den Junktoren \vee und \neg dar?

 ${\bf Thema} \hbox{: Aussagenlogik}$

Wie nennt man die Äquivalenzregel, die besagt, dass $\neg \neg \alpha \approx \alpha$ gilt?

 ${\bf Thema} \hbox{: Aussagenlogik}$

Wie nennt man die Äquivalenzregeln, die besagen, dass $\alpha \vee \alpha \approx \alpha$ und $\alpha \wedge \alpha \approx \alpha$ gilt?

 ${\bf Thema} \hbox{: Aussagenlogik}$

Wie lauten die Regeln von de Morgan?

Hinweis Xu welchen Formel
n sind die Formeln – ($\alpha \wedge \alpha)$ – d
m die Formeln sind die Formeln – die Formel

Thema: Aussagenlogik

Das ist die Negationsregel.

Thema: Aussagenlogik

Es ist $\alpha \wedge \beta \approx \neg(\neg \alpha \vee \neg \beta)$.

Thema: Aussagenlogik

Sind α und β aussagenlogische Formeln, dann gilt $\neg(\alpha \land \beta) \approx \neg \alpha \lor \neg \beta$ und $\neg(\alpha \lor \beta) \approx \neg \alpha \land \neg \beta$.

Thema: Aussagenlogik

Das sind die Idempotenzregeln.

Thema: Aussagenlogik

Wann ist eine aussagenlogische Formel α in Negationsnormalform?

Thema: Aussagenlogik

Ist die Negationsnormalform einer aussagenlogischen Formel eindeutig?

Hinweis Nein.

Thema: Aussagenlogik

Wann ist eine aussagenlogische Formel α in konjunktiver Normalform?

Hinweis Ohne Hinweis.

Thema: Aussagenlogik

Wann ist eine aussagenlogische Formel α in disjunktiver Normelform?

Hinweis Ohne Hinweis.

Thema: Aussagenlogik

Nein. Es sind zum Beispiel $\neg \alpha \lor \beta$ und $\beta \lor \neg \alpha$ Negationsnormalformen ein und derselben Formel.

Thema: Aussagenlogik

Wenn in α nicht die Junktoren \rightarrow und \leftrightarrow vorkommen, und wenn jedes Negationszeichen direkt vor einem Atom steht.

Thema: Aussagenlogik

Wenn α eine Disjunktion von Monomen ist. Dabei ist eine Disjunktion von der Form $\bigvee_{i=1}^{n} \alpha_i$, und ein Monom ist von der Form $\bigwedge_{i=1}^{n} \alpha_i$, wobei die α_i Atome oder negierte Atome sind.

Thema: Aussagenlogik

Wenn α eine Konjunktion von Klauseln ist. Dabei ist eine Klausel von der Form $\bigvee_{i=1}^{n} \alpha_i$, wobei alle α_i Atome oder negierte Atome sind. Eine Konjunktion ist von der Form $\bigwedge_{i=1}^{n} \alpha_i$.

Thema: Aussagenlogik

Was ist eine Negationsnormalform von $\neg (A \lor \neg (B \land C))$?

stepen.

Hinweis In der Negationsnormalform dürfen die Negationszeichen nur vor den Atomen

Thema: Aussagenlogik

Was ist eine Negationsnormalform von $A \leftrightarrow B$?

Thema: Aussagenlogik

Bestimmen Sie eine disjunktive Normalform der Formel $(\neg A \lor B) \land (\neg B \lor A)$.

 ${\bf Thema} \hbox{: Aussagenlogik}$

Bestimmen Sie eine konjunktive Normalform von $(A \wedge B) \vee (\neg A \wedge \neg B)$.

Thema: Aussagenlogik

Mit der Junktorminimierung gilt $A \leftrightarrow B \approx \neg(\neg(\neg A \lor B) \lor \neg(\neg B \lor A))$. Mit den Regeln von de Morgan ist diese Formel äquivalent zu $\neg((\neg \neg A \land \neg B) \lor (\neg \neg B \land \neg A))$. Die Negationsregel besagt, dass die Formel äquivalent ist zu $\neg((A \land \neg B) \lor (B \land \neg A))$. Nun werden wieder die Regeln von de Morgan angewendet: $\neg(A \land \neg B) \land \neg(B \land \neg A)$. Nochmaliges Anwenden der Regeln von der Morgan ergibt $(\neg A \lor \neg \neg B) \land (\neg B \lor \neg \neg A)$. Nun muss noch einmal die Negationsregel angewendet werden, um die doppelten Negationszeichen zu beseitigen, und wir erhalten die Formel $(\neg A \lor B) \land (\neg B \lor A)$ als Negationsnormalform.

Thema: Aussagenlogik

Mit der Regel von de Morgan gilt $\neg(A \lor \neg(B \land C)) \approx \neg A \land \neg \neg(B \land C)$, und mit der Negationsregel gilt $\neg A \land \neg \neg(B \land C) \approx \neg A \land (B \land C)$, und dies ist eine Negationsnormalform.

Thema: Aussagenlogik

Sei $\alpha = (\neg A \land \neg B)$. Die Distributivgesetze angewendet auf $(A \land B) \lor \alpha$ ergeben $(A \lor \alpha) \land (B \lor \alpha)$, also $(A \lor (\neg A \land \neg B)) \land (B \lor (\neg A \land \neg B))$. Nochmalige Anwendung der Distributivgesetze ergibt $((A \lor \neg A) \land (A \lor \neg B)) \land ((B \lor \neg A) \land (B \lor \neg B))$. Ein paar überflüssige Klammern können noch entfernt werden, und wir erhalten die konjunktive Normalform $(A \lor \neg A) \land (A \lor \neg B) \land (B \lor \neg A) \land (B \lor \neg B)$.

Thema: Aussagenlogik

Sei $\alpha = (\neg B \lor A)$. Die Distributivgesetze angewendet auf $(\neg A \lor B) \land \alpha$ ergeben $(\neg A \land \alpha) \lor (B \land \alpha)$, also $(\neg A \land (\neg B \lor A)) \lor (B \land (\neg B \lor A))$. Nochmalige Anwendung der Distributivgesetze ergibt $((\neg A \land \neg B) \lor (\neg A \land A)) \lor ((B \land \neg B) \lor (B \land A))$. Ein paar überflüssige Klammern können noch entfernt werden, und wir erhalten die disjunktive Normalform $(\neg A \land \neg B) \lor (\neg A \land A) \lor (B \land \neg B) \lor (B \land A)$.

Thema: Aussagenlogik

Bei den formalen Beweisen heißt eine Formel der Form $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \to \beta$ ein gültiges Argument, wenn sie eine Tautologie ist. Ist es wahr, dass $\alpha_1 \wedge \cdots \wedge \alpha_n \to \beta$ genau dann ein gültiges Argument ist, wenn $\alpha_1 \wedge \cdots \wedge \alpha_n \models \beta$ bzw. $\alpha_1, \ldots, \alpha_n \models \beta$ gilt?

Hinweis Ja, die Behauptung ist wahr.

Thema: Aussagenlogik

Modellieren Sie die folgenden Aussage: Wenn der Hahn kräht auf dem Mist, dann ändert sich das Wetter oder es bleibt wie es ist. Dabei sei H die Aussage "Der Hahn kräht auf dem Mist" und W die Aussage "Das Wetter ändert sich".

Thema: Aussagenlogik

Modellieren Sie die folgende Aussage: Mai kühl und nass füllt dem Bauern Scheun" und Fass. Dabei sei K die Aussage "Im Mai ist es kühl", N sei die Aussage "Im Mai ist es nass" und E sei die Aussage "Die Ernte ist gut."

Thema: Prädikatenlogik

Sei $M = \mathbb{Z}$. Geben Sie ein Beispiel für eine zweistellige Funktion und eine einstellige Relation auf M.

Hinweis Eine n-stellige Funktion auf einer Menge M ist eine Abbildung $M^n \longrightarrow M$, und eine n-stellige Relation R ist eine Teilmenge von M^n .

Thema: Aussagenlogik

Die Aussage wird zu $H \to W \vee \neg W$.

Thema: Aussagenlogik

Ja, das ist wahr, denn schließlich gilt $\alpha_1 \wedge \cdots \wedge \alpha_n \models \beta$ genau dann, wenn $\alpha_1 \wedge \cdots \wedge \alpha_n \rightarrow \beta$ eine Tautologie ist.

Thema: Prädikatenlogik

Eine zweistellige Funktion ist eine Abbildung $f: \mathbb{Z}^2 \longrightarrow \mathbb{Z}$, also zum Beispiel f(x,y) = xy. Eine einstellige Relation R ist eine Teilmenge von \mathbb{Z} , also zum Beispiel $R = \{z \in \mathbb{Z} \mid z \text{ ist gerade}\}.$

Thema: Aussagenlogik

Die Aussage wird zu $K \wedge N \to E$.

Frage	9'

Thema: Prädikatenlogik

Was sind die wesentlichen Unterschiede zwischen aussagenlogischen und prädikatenlogischen Formeln?

Hinweis In einer aussagenlogischen Formel kommt zum Beispiel kein Existenzquantor vor.

[©] FernUniversität in Hagen, 2008

Thema: Prädikatenlogik

Welche Variablen kommen in der Formel $\forall x P(f(x,y),z) \land \exists y S(h(g(y)))$ frei und welche gebunden vor?

. siəwni
H ənd O $\mathbf{sisweis}.$

Thema: Prädikatenlogik

Es sei P eine zweistellige Relation und f eine einstellige Funktion. Sei $\alpha = \exists x \forall y P(x,y) \lor (\neg (f(x) = f(y)))$. Sei $U = \mathbb{Z}$, $\mathcal{I}(P) = Q$ mit $Q = \{(a,b) \mid a > b\}$ und $\mathcal{I}(f) = g$ mit $g(a) = a^2$. Was ist $\mathcal{I}(\alpha)$?

 $0 = (n) \mathcal{I}$ tlig and siewniH

Thema: Prädikatenlogik

Konstruieren Sie eine Interpretation der Formel $\alpha = \exists x \forall y P(x, y) \lor (\neg (f(x) = f(y)))$, so dass $\mathcal{I}(\alpha) = 1$ gilt.

. siəwni
H ənd O $\mathbf{sisweis}.$

Thema: Prädikatenlogik

Die Variable x ist gebunden, z ist frei, und y kommt im ersten Teil frei und dann gebunden vor.

Thema: Prädikatenlogik

In prädikatenlogischen Fromeln kommen zusätzlich noch Funktionen und Relationen sowie der Existenz- und der Allquantor vor.

Thema: Prädikatenlogik

Es sei $U = \mathbb{N}$ und $\mathcal{I}(P) = Q$ mit $Q = \{(a,b) \mid a = b\}$. Weiter sei $\mathcal{I}(f) = g$ mit g(a) = a. Dann lautet die Formel $\exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ (x = y) \lor (x \neq y)$. Diese Formel ist offensichtlich wahr, also $\mathcal{I}(\alpha) = 1$.

Thema: Prädikatenlogik

Die Formel sieht mit der Interpretation folgendermaßen aus: $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} \ (x > y) \lor (\neg (x^2 = y^2))$. Es gilt also $\mathcal{I}(\alpha) = 0$, denn für jedes $x \in \mathbb{Z}$ gilt für y = x weder x > y noch $x^2 \neq y^2$.

Thema: Prädikatenlogik

Wahr oder falsch? Sei P eine zweistellige Relation und f eine zweistellige Funktion. Die Formel $\alpha = \forall x \exists y P(x, y) \land P(x, f(x, y))$ ist tautologisch.

Hinweis Falsch.

Thema: Prädikatenlogik

Wahr oder falsch? Sei P eine zweistellige Relation und f eine zweistellige Funktion. Die Formel $\alpha = \forall x \exists y P(x, y) \land P(x, f(x, y))$ ist erfüllbar.

Hinweis Wahr.

Thema: Prädikatenlogik

Wahr oder falsch? Sei P eine zweistellige Relation und f eine zweistellige Funktion. Die Formel $\alpha = \forall x \exists y P(x,y) \land P(x,f(x,y))$ ist falsifizierbar.

Hinweis Wahr.

Thema: Prädikatenlogik

Wahr oder falsch? Sei P eine zweistellige Relation und f eine zweistellige Funktion. Die Formel $\alpha = \forall x \exists y P(x,y) \land P(x,f(x,y))$ ist widersprüchlich.

Hinweis Falsch.

Thema: Prädikatenlogik

Wahr. Sei $U = \mathbb{N}$ und $\mathcal{I}(P) = Q$ mit $Q = \{(a,b) \mid a \leq b\}$. Weiter sei $\mathcal{I}(f) = g$ mit g(a,b) = a+b. Dann ist die Formel $\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ (x \leq y) \land (x \leq x+y)$. Diese Aussage ist wahr, wenn man zum Beispiel für jedes $x \in \mathbb{N}$ einfach y = x wählt. Das heißt $\mathcal{I}(\alpha) = 1$. Damit ist α erfüllbar.

Thema: Prädikatenlogik

Falsch. Sei $U=\mathbb{N}$ und $\mathcal{I}(P)=Q$ mit $Q=\{(a,b)\mid a>b\}$. Weiter sei $\mathcal{I}(f)=g$ mit g(a,b)=ab. Dann ist die Formel $\forall x\in\mathbb{N}\ \exists y\in\mathbb{N}\ (x>y)\land(x>xy)$. Für x=1 gibt es jedoch kein $y\in\mathbb{N}$ mit x>y, das heißt $\mathcal{I}(\alpha)=0$. Damit ist α nicht tautologisch.

Thema: Prädikatenlogik

Falsch. Sei $U = \mathbb{N}$ und $\mathcal{I}(P) = Q$ mit $Q = \{(a,b) \mid a \leq b\}$. Weiter sei $\mathcal{I}(f) = g$ mit g(a,b) = a+b. Dann ist die Formel $\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ (x \leq y) \land (x \leq x+y)$. Dann ist diese Aussage wahr, wenn man zum Beispiel für jedes $x \in \mathbb{N}$ einfach y = x wählt. Das heißt $\mathcal{I}(\alpha) = 1$. Damit ist α nicht widersprüchlich.

Thema: Prädikatenlogik

Wahr. Sei $U=\mathbb{N}$ und $\mathcal{I}(P)=Q$ mit $Q=\{(a,b)\mid a>b\}$. Weiter sei $\mathcal{I}(f)=g$ mit g(a,b)=ab. Dann ist die Formel $\forall x\in\mathbb{N}\ \exists y\in\mathbb{N}\ (x>y)\land(x>xy)$. Für x=1 gibt es jedoch kein $y\in\mathbb{N}$ mit x>y, das heißt $\mathcal{I}(\alpha)=0$. Damit ist α falsifizierbar.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Nur Eisbären, die mit der Hand aufgezogen werden, mögen (einige) Menschen. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Säugetiere in deutschen Zoos und die Prädikate:

- 1. E(x): x ist ein Eisbär.
- 2. M(x): x ist ein Mensch.
- 3. H(x): x wurde mit der Hand aufgezogen.
- 4. m(x,y): x mag y.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Eisbären, die mit der Hand aufgezogen werden, mögen keine anderen Eisbären. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Säugetiere in deutschen Zoos und die Prädikate:

- 1. E(x): x ist ein Eisbär.
- 2. H(x): x wurde mit der Hand aufgezogen.
- 3. m(x,y): x mag y.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Zeitschriften und Doktorarbeiten sind nicht ausleihbar. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Printmedien der Universitätsbibliothek und die Prädikate:

- 1. z(x): x ist eine Zeitschrift.
- 2. d(x): x ist eine Doktorarbeit.
- 3. a(x): x ist ausleihbar.

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Nur Monographien, die Lehrbücher sind, sind ausleihbar. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Printmedien der Universitätsbibliothek und die Prädikate:

- 1. m(x): x ist eine Monographie.
- 2. l(x): x ist ein Lehrbuch.
- 3. a(x): x ist ausleihbar.

Thema: Prädikatenlogik

Die Aussage wird zu $\forall x((E(x) \land H(x)) \rightarrow (\forall y(E(y) \rightarrow \neg m(x,y)))).$

Thema: Prädikatenlogik

Die Aussage wird zu $\forall x (E(x) \land (\exists y (M(y) \land m(x,y))) \rightarrow H(x)).$

Thema: Prädikatenlogik

Die Aussage wird zu $\forall x (m(x) \land a(x) \rightarrow l(x)).$

Thema: Prädikatenlogik

Die Aussage wird zu $\forall x(z(x) \lor d(x) \to \neg a(x))$.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Manche Monographien sind Doktorarbeiten, aber Doktorarbeiten sind keine Lehrbücher. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Printmedien der Universitätsbibliothek und die Prädikate:

- 1. m(x): x ist eine Monographie.
- 2. d(x): x ist eine Doktorarbeit.
- 3. l(x): x ist ein Lehrbuch.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Es gibt Hunde, die keine Kaninchen jagen. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Säugetiere und die Prädikate:

- 1. h(x): x ist ein Hund.
- 2. k(x): x ist ein Kaninchen.
- 3. j(x,y): x jagt y.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Nur Hunde jagen Kaninchen. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Säugetiere und die Prädikate:

- 1. h(x): x ist ein Hund.
- 2. k(x): x ist ein Kaninchen.
- 3. j(x,y): x jagt y.

Thema: Prädikatenlogik

Gegeben sei die folgende umgangssprachliche Aussage: Hunde, die Kaninchen jagen, beißen nicht. Formalisieren Sie diese Aussage in Prädikatenlogik. Benutzen Sie als Grundmenge U alle Säugetiere und die Prädikate:

- 1. h(x): x ist ein Hund.
- 2. k(x): x ist ein Kaninchen.
- 3. j(x,y): x jagt y.
- 4. b(x): x beißt.

Thema: Prädikatenlogik

Die Aussage wird zu $\exists x (h(x) \land (\forall y (k(y) \rightarrow \neg j(x,y)))).$

Thema: Prädikatenlogik

Die Aussage wird zu $(\exists x (m(x) \land d(x))) \land (\forall x (d(x) \rightarrow \neg l(x))).$

Thema: Prädikatenlogik

Die Aussage wird zu $\forall x \forall y (h(x) \land k(y) \land j(x,y) \rightarrow \neg b(x)).$

Thema: Prädikatenlogik

Die Aussage wird zu $\forall x (\exists y (k(y) \land j(x,y)) \rightarrow h(x)).$