NERS 590 Homework 3

April 4, 2016

The source code for all parts of this homework can be seen at https://github.com/brbass/hare. Additional references to this repository will be given as needed.

A color copy of this document can be found at https://github.com/brbass/hare/tree/master/doc.

1 Problem 6.1

The Source Iteration method applied to the diamond-differenced form of the transport equations with isotropic scattering and one energy group in S_N can be written (Larsen notes, Eq. 6.8)

$$\begin{split} \frac{\mu_n}{h_j} \left(\psi_{n,j+1/2}^{(\ell)} - \psi_{n,j-1/2}^{(\ell)} \right) + & \Sigma_{t,j} \psi_{n,j}^{(\ell)} = S_{n,j}^{(\ell-1)}, \qquad 1 \leq n \leq N, \quad 1 \leq j \leq J, \\ S_{n,j}^{(\ell-1)} &= \frac{1}{2} \Sigma_{s,0,j} \phi_{0,j}^{(\ell-1)} + \frac{1}{2} Q_j, \qquad 1 \leq n \leq N, \quad 1 \leq j \leq J, \\ \psi_{n,j}^{(\ell)} &= \frac{1}{2} \psi_{n,j+1/2}^{(\ell)} + \frac{1}{2} \psi_{n,j-1/2}^{(\ell)}, \qquad 1 \leq n \leq N, \quad 1 \leq j \leq J, \\ \psi_{n,1/2}^{(\ell)} &= \psi_n^b, \qquad \frac{N}{2} + 1 \leq n \leq N \quad (\mu_n > 0), \\ \psi_{n,J+1/2}^{(\ell)} &= \psi_n^b, \qquad 1 \leq n \leq \frac{N}{2} \quad (\mu_n < 0), \\ \phi_{0,j}^{(\ell)} &= \sum_{n=1}^N \psi_{n,j}^{(\ell)} w_n. \end{split}$$

Solving for $\psi_{n,j+1/2}$ for $\mu_n > 0$ and $\psi_{n,j-1/2}$ for $\mu_n < 0$ gives

$$\psi_{n,j+1/2}^{(\ell)} = \frac{\left[\mu_n - \frac{\sum_{t,j} h_j}{2}\right] \psi_{n,j-1/2}^{(\ell)} + S_j^{(\ell-1)} h_j}{\mu_n + \frac{\sum_{t,j} h_j}{2}},$$

$$\psi_{n,j-1/2}^{(\ell)} = \frac{\left[-\mu_n - \frac{\sum_{t,j} h_j}{2}\right] \psi_{n,j+1/2}^{(\ell)} + S_j^{(\ell-1)} h_j}{-\mu_n + \frac{\sum_{t,j} h_j}{2}}.$$

For the spectral radius, use Larsen Eq. 7.40,

$$\rho \approx \frac{\|\phi^{(\ell)} - \phi^{(\ell-1)}\|}{\|\phi^{(\ell-1)} - \phi^{(\ell-2)}\|},$$

with

$$\left\|\phi^{(\ell)}\right\| = \left[\sum_{j=1}^{J} \left(\phi_{j}^{(\ell)}\right)^{2} \Delta x_{j}\right]^{1/2}.$$

The convergence criterion will be Larsen Eq. 6.10,

$$\max_{1 \le j \le J} \left(\frac{\left| \phi_{0,j}^{(\ell)} - \phi_{0,j}^{(\ell-1)} \right|}{\left| \phi_{0,j}^{(\ell)} \right| + \delta} \right) < \epsilon,$$

with $\epsilon = 10^{-6}$ and $\delta = \epsilon^2 = 10^{-12}$.

The code can be seen at https://github.com/brbass/hare/tree/master/src. The source files include:

- Check
 - Check sizes of data and class invariants, returning any errors
- \bullet FD_Sn_Transport
 - Reads an input file, solves the finite difference Sn equations and writes an output file
- Gauss Legendre
 - Stores low values of ordinates and weights and calculates higher values of ordinates and weights
- Hare
 - The driver for the class: accepts a single input file and delivers that to FD_Sn_Transport
- Timer
 - Simple class to time iterations
- XML Child Value
 - Allows easy parsing of XML data

The code used to make the plots can be found at https://github.com/brbass/hare/tree/master/python. The full results and input files can be seen at https://github.com/brbass/hare/tree/master/problems.

2 Problem 6.2

See Figure 1 for the requested plot. Problem Listing 1 has a sample input file for $\Sigma_s = 0.9$. Table 1 shows ϕ_{av} for each of the Σ_s values. For all the input and output files see https://github.com/brbass/hare/tree/master/problems/p6.2.

Figure 1: Problem 6.2, $\phi_{av}(x)$ with various values of Σ_s

Listing 1: Sample input file for $\Sigma_s = 0.9$

<?xml version="1.0"?>

```
< regions > \\ < number\_of\_regions > 1 < / number\_of\_regions > \\ < region > \\ < cell\_length > 0.2 < / cell\_length > \\ < number\_of\_cells > 50 < / number\_of\_cells > \\ < sigma\_t > 1.0 < / sigma\_t > \\ < sigma\_s > 0.9 < / sigma\_s > \\ < internal\_source > 0.1 < / internal\_source > \\ < / region > \\ < / input > \end{aligned}
```

Cell	Σ_s							
	0.6	0.9	0.95	0.99				
1	0.118	0.295	0.449	1.057				
2	0.153	0.390	0.597	1.416				
3	0.175	0.462	0.715	1.722				
4	0.190	0.521	0.817	2.000				
5	0.202	0.572	0.908	2.260				
6	0.211	0.617	0.991	2.507				
7	0.218	0.657	1.066	2.742				
8	0.224	0.692	1.136	2.968				
9	0.228	0.723	1.200	3.184				
10	0.232	0.752	1.259	3.391				
11	0.235	0.777	1.313	3.590				
12	0.238	0.799	1.364	3.781				
13	0.240	0.820	1.410	3.965				
14	0.242	0.838	1.453	4.141				
15	0.243	0.854	1.493	4.309				
16	0.244	0.869	1.530	4.472				
17	0.245	0.882	1.564	4.627				
18	0.246	0.894	1.596	4.776				
19	0.247	0.904	1.625	4.919				
20	0.247	0.914	1.652	5.055				
21	0.248	0.922	1.677	5.186				
22	0.248	0.930	1.700	5.311				
23	0.249	0.937	1.721	5.430				
24	0.249	0.943	1.741	5.544				
25	0.249	0.949	1.759	5.653				

C-11	Σ_s							
Cell	0.6	0.9	0.95	0.99				
26	0.249	0.954	1.776	5.756				
27	0.249	0.959	1.792	5.854				
28	0.249	0.963	1.806	5.948				
29	0.250	0.966	1.819	6.036				
30	0.250	0.970	1.831	6.120				
31	0.250	0.973	1.843	6.199				
32	0.250	0.975	1.853	6.274				
33	0.250	0.978	1.862	6.344				
34	0.250	0.980	1.871	6.410				
35	0.250	0.982	1.879	6.472				
36	0.250	0.983	1.886	6.529				
37	0.250	0.985	1.893	6.582				
38	0.250	0.986	1.899	6.632				
39	0.250	0.987	1.904	6.677				
40	0.250	0.988	1.909	6.718				
41	0.250	0.989	1.913	6.756				
42	0.250	0.990	1.917	6.789				
43	0.250	0.991	1.921	6.819				
44	0.250	0.991	1.923	6.845				
45	0.250	0.992	1.926	6.867				
46	0.250	0.992	1.928	6.885				
47	0.250	0.993	1.930	6.900				
48	0.250	0.993	1.931	6.911				
49	0.250	0.993	1.931	6.918				
50	0.250	0.993	1.932	6.922				

Table 1: Problem 6.2, ϕ_{av} values with various values of Σ_s

3 Problem 7.1

See Figure 2 for the requested plot. Problem Listing 2 has a sample input file for Z_0 = Table 2 shows ϕ_{av} for each of the Z_0 values. For the full input and output files, see https://github.com/brbass/hare/tree/master/problems/p7.1.

Figure 2: Problem 7.1, $\phi_{av}\left(x\right)$ with various values of Z_{0}

Listing 2: Sample input file for $Z_0 = 6.0$ cm

```
<regions>
   <number of regions>2</number of regions>
   <region>
      <cell length>0.1</cell length>
      <number_of_cells>60</number_of_cells>
      <sigma_t>1.0</sigma t>
      <sigma_s>0.8</sigma_s>
      <internal source>0.1</internal source>
   </region>
   <region>
      <cell length>0.1</cell length>
      <number_of_cells>40</number_of_cells>
      <sigma t>1.0</sigma t>
      <sigma_s>1.0</sigma_s>
      <internal_source>0.\overline{1}</internal_source>
    </region>
 </regions>
</input>
```

G 11			Z_0 (cm)			G 11			Z_0 (cm)		
Cell	5.0	6.0	7.0	8.0	9.0	Cell	5.0	6.0	7.0	8.0	9.0
1	0.207	0.188	0.180	0.177	0.176	51	2.549	1.209	0.749	0.575	0.512
2	0.249	0.227	0.217	0.214	0.212	52	2.735	1.266	0.769	0.582	0.514
3	0.282	0.256	0.245	0.241	0.239	53	2.901	1.327	0.790	0.589	0.516
4	0.310	0.281	0.268	0.264	0.262	54	3.056	1.395	0.813	0.596	0.519
5	0.335	0.302	0.289	0.283	0.282	55	3.205	1.468	0.838	0.604	0.521
6	0.359	0.322	0.307	0.301	0.299	56	3.347	1.549	0.865	0.613	0.523
7	0.380	0.340	0.324	0.317	0.315	57	3.485	1.638	0.893	0.622	0.526
8	0.401	0.357	0.339	0.332	0.329	58	3.619	1.738	0.924	0.632	0.528
9	0.421	0.372	0.353	0.345	0.342	59	3.749	1.852	0.958	0.643	0.531
10	0.440	0.387	0.366	0.357	0.354	60	3.875	1.992	0.994	0.654	0.534
11	0.458	0.401	0.378	0.368	0.365	61	3.998	2.152	1.034	0.667	0.537
12	0.476	0.414	0.389	0.379	0.375	62	4.117	2.302	1.076	0.680	0.540
13	0.494	0.427	0.399	0.388	0.384	63	4.233	2.435	1.123	0.694	0.544
14	0.512	0.439	0.409	0.397	0.393	64	4.346	2.558	1.174	0.709	0.548
15	0.529	0.450	0.418	0.405	0.401	65	4.455	2.675	1.229	0.726	0.552
16	0.547	0.461	0.427	0.413	0.408	66	4.561	2.787	1.290	0.743	0.556
17	0.565	0.472	0.435	0.420	0.415	67	4.664	2.894	1.357	0.763	0.560
18	0.583	0.483	0.443	0.427	0.421	68	4.764	2.997	1.433	0.783	0.565
19	0.601	0.494	0.450	0.433	0.427	69	4.861	3.097	1.520	0.806	0.571
20	0.620	0.505	0.458	0.439	0.433	70	4.954	3.193	1.627	0.830	0.576
21	0.640	0.515	0.465	0.445	0.438	71	5.045	3.285	1.750	0.856	0.582
22	0.660	0.526	0.471	0.450	0.442	72	5.132	3.374	1.865	0.885	0.589
23	0.681	0.537	0.478	0.455	0.447	73	5.216	3.459	1.964	0.916	0.596
24	0.703	0.548	0.485	0.460	0.451	74	5.298	3.542	2.055	0.950	0.604
25	0.726	0.559	0.491	0.464	0.455	75	5.376	3.621	2.141	0.987	0.612
26	0.750	0.570	0.497	0.469	0.458	76	5.451	3.697	2.221	1.028	0.621
27	0.776	0.582	0.504	0.473	0.462	77	5.523	3.770	2.298	1.074	0.630
28	0.803	0.594	0.510	0.477	0.465	78	5.593	3.839	2.370	1.125	0.641
29	0.832	0.607	0.516	0.481	0.468	79	5.659	3.906	2.439	1.185	0.652
30	0.862	0.620	0.523	0.485	0.471	80	5.722	3.969	2.504	1.260	0.664
31	0.894	0.634	0.529	0.488	0.473	81	5.782	4.030	2.566	1.346	0.678
32	0.929	0.649	0.536	0.492	0.476	82	5.839	4.087	2.625	1.425	0.692
33	0.966	0.664	0.543	0.496	0.478	83	5.893	4.142	2.680	1.491	0.708
34	1.005	0.680	0.550	0.499	0.481	84	5.944	4.193	2.732	1.550	0.725
35	1.048	0.698	0.557	0.503	0.483	85	5.992	4.241	2.781	1.604	0.744
36	1.093	0.716	0.565	0.506	0.485	86	6.037	4.286	2.827	1.653	0.766
37	1.142	0.735	0.573	0.510	0.487	87	6.079	4.328	2.870	1.698	0.790
38	1.194	0.756	0.581	0.514	0.489	88	6.118	4.368	2.909	1.740	0.817
39	1.251	0.778	0.590	0.517	0.491	89	6.155	4.404	2.946	1.778	0.849
40	1.312	0.801	0.599	0.521	0.493	90	6.188	4.437	2.979	1.813	0.891
41	1.378	0.827	0.609	0.525	0.494	91	6.218	4.467	3.009	1.845	0.940
42	1.449	0.853	0.619	0.529	0.496	92	6.245	4.494	3.037	1.873	0.982
43	1.527	0.882	0.630	0.533	0.498	93	6.269	4.518	3.061	1.898	1.015
44	1.611	0.913	0.642	0.538	0.500	94	6.290	4.539	3.082	1.920	1.041
45	1.703	0.947	0.654	0.542	0.501	95	6.308	4.557	3.100	1.938	1.063
46	1.803	0.983	0.668	0.547	0.503	96	6.323	4.572	3.116	1.954	1.081
47	1.914	1.021	0.682	0.552	0.505	97	6.335	4.584	3.128	1.966	1.095
48	2.038	1.063	0.697	0.557	0.507	98	6.344	4.593	3.137	1.976	1.106
49	2.180	1.108	0.713	0.563	0.509	99	6.350	4.599	3.143	1.982	1.112
50	2.353	1.156	0.730	0.569	0.510	100	6.353	4.602	3.146	1.985	1.116

Table 2: Problem 7.1, ϕ_{av} values with various values of Z_0