

Discrete mathematics

Solo assignment 4.

Problem 1.

Let's prove the rule that if n is an even integer, then $n^{**}2$ is also even.

To start let n be an even integer,

Now let k be some integer so that n = 2k.

Now we can write the original equation as:

$$(2k)^{**}2 = 4k^{**}2 = 2(2k^{**}2)$$

 $2k^{**}2$ is equal to some integer so we can rewrite it as x and then we get 2x.

2x is the pattern that all even numbers follow and therefore we have proven what we wanted to prove.

Problem 2.

Let's prove the rule that if n is an integer and 5n-1 is even then n is odd using contraposition.

So if n is even then 5n-1 should be odd.

Let's make a new integer k such that n=2k.

Now we get:

$$5(2k)-1 = 10k-1 = 2(5k)-1$$

5k is some integer that can be rewritten to x.

Then we get 2x-1, 2x is the pattern of even numbers so 2x-1 must be odd and therefore we've proven what we wanted to prove.

Problem 3.

Let us prove that the absorption law e.g. $A \cup (A \cap B) = A$ holds true. A union is defined in set builder notation as being:

$$A \cup B = \{x | x \in A \lor x \in B\}$$

meaning a set where x is an element in set A or x is an element in set B, and an intersection is defined as such:

$$A \cap B = \{x | x \in A \land x \in B\}$$

meaning a set where x is an element in both set A and set B.

Now we can rewrite our problem as $\{x | x \in A \lor x \in \{x | x \in A \land x \in B\}\}\$ = $\{x | x \in A\}.$

Meaning create a set where element x is in set A OR in the set where element x is in set A AND in set B.

The inner set of $\{x \mid x \in A \land x \in B\}$ contains no elements that are exclusive to B, cause x must also be included in set A in this new set.

In conclusion, because no elements are exclusive to the set B, if you take all elements that are in $\{x | x \in A \land x \in B\}$ OR in A OR both you will get set A back as a result.

Problem 4.

a)

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$
 $1100 = 370 + 410 + 500 - 200 - 150 - 100 + |A \cap B \cap C|$
 $1100 = 830 + |A \cap B \cap C|$
 $|A \cap B \cap C| = 270 - 200$
 $|A \cap B \cap C| = 70$

b)

$$|A|-|A \cap B|-|A \cap C|+|A \cap B \cap C| = |A|$$

370-200-150+70 = 90

Problem 5.

Let's solve $B \cup !(!A \cap B) = U$ using set identities.

According to De Morgan's laws our equation can be written as such:

$$B \cup (!!A \cup !B) = U$$

According to Complementation law:

$$B \cup (A \cup !B) = U$$

According to Commutative laws:

$$(A \cup !B) \cup B = U$$

According to Associative laws:

$$A \cup (!B \cup B) = U$$

According to Complement laws:

$$A \cup U = U$$

According to Domination laws:

$$U = U$$

And now that proves the proposition true that $B \cup !(!A \cap B) = U$.