Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

4º Appello — 7 febbraio 2017

Esercizio 1. Siano v_1, v_2, \ldots, v_k vettori linearmente indipendenti in uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_k \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_k, w\}$ sono linearmente indipendenti.

Esercizio 2. Sia $f: V \to W$ una funzione lineare tra due spazi vettoriali. Dimostrare che f è iniettiva se e solo se $Ker(f) = \{0\}$.

Esercizio 3. Mostrare che il sistema lineare AX = B ha soluzioni se e solo se il vettore colonna B è combinazione lineare delle colonne della matrice A.

Esercizio 4. Sono assegnati i seguenti vettori di \mathbb{R}^3 : $v_1 = (1,0,1), v_2 = (-2,3,1), v_3 = (t^2 - 1, -2, 1).$

- (a) Determinare per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **indipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (0, -2, 2), f(v_2) = (t + 2, t 3, 5)$ e $v_3 \in \text{Ker}(f)$.
- (c) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **dipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ come nel punto (b).

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo

$$f(e_3) = 4e_1 - 2e_2 + 5e_3$$
, $f(2e_1 + e_2) = -2e_1 + 3e_2 - 4e_3$, $f(e_2 - 2e_1) = 10e_1 - 5e_2 + 12e_3$,

ove e_1, e_2, e_3 è la base canonica di \mathbb{R}^3 .

- (a) Si scriva la matrice di f rispetto alla base canonica.
- (b) Si stabilisca per quali valori del parametro t il vettore v = (t, -1, 2) è un autovettore di f.
- (c) Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazioni

$$U: \begin{cases} x_1 - 3x_2 + 4x_3 = 0\\ 3x_2 - 2x_3 - x_4 = 0. \end{cases}$$

- (a) Si determini una base di U.
- (b) Si determinino le equazioni cartesiane e una base del sottospazio U^{\perp} , ortogonale di U.
- (c) Dato il vettore v = (0, 4, 1, -1) si determinino due vettori $u \in U$ e $w \in U^{\perp}$ tali che v = u + w.

$$r: \begin{cases} 2x - y + 2z = 0 \\ x + y - 2z + 1 = 0 \end{cases} \qquad s: \begin{cases} x = 1 + t \\ y = -1 - t \\ z = 1 \end{cases}$$

- (a) Si stabilisca se le rette r e s sono incidenti, parallele o sghembe.
- (b) Si calcoli la distanza tra $r \in s$.
- (c) Si determini la retta ℓ passante per il punto P = (1,0,2) e incidente alle rette $r \in s$.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

4º Appello — 7 febbraio 2017

Esercizio 1. Siano v_1, v_2, \ldots, v_k vettori linearmente indipendenti in uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_k \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_k, w\}$ sono linearmente indipendenti.

Esercizio 2. Sia $f: V \to W$ una funzione lineare tra due spazi vettoriali. Dimostrare che f è iniettiva se e solo se $Ker(f) = \{0\}$.

Esercizio 3. Mostrare che il sistema lineare AX = B ha soluzioni se e solo se il vettore colonna B è combinazione lineare delle colonne della matrice A.

Esercizio 4. Sono assegnati i seguenti vettori di \mathbb{R}^3 : $v_1 = (1, 0, -1), v_2 = (1, -2, 3), v_3 = (t^2 + 3t, 1, -2).$

- (a) Determinare per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **indipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (-1, 3, 0), f(v_2) = (-1, -t, t+3)$ e $v_3 \in \text{Ker}(f)$.
- (c) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **dipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ come nel punto (b).

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo

$$f(e_1 + 2e_2) = 8e_1 - 8e_2 + 6e_3$$
, $f(e_1 - 2e_2) = -2e_3$, $f(e_3) = e_1 - 2e_2 + 3e_3$,

ove e_1, e_2, e_3 è la base canonica di \mathbb{R}^3 .

- (a) Si scriva la matrice di f rispetto alla base canonica.
- (b) Si stabilisca per quali valori del parametro t il vettore v = (-2, t, -2) è un autovettore di f.
- (c) Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazioni

$$U: \begin{cases} x_1 - 2x_2 + 3x_4 = 0\\ 2x_2 - x_3 + x_4 = 0. \end{cases}$$

- (a) Si determini una base di U.
- (b) Si determinino le equazioni cartesiane e una base del sottospazio U^{\perp} , ortogonale di U.
- (c) Dato il vettore v = (3, -2, 5, 7) si determinino due vettori $u \in U$ e $w \in U^{\perp}$ tali che v = u + w.

$$r: \begin{cases} 2x + y - z = 0 \\ x + 2y - 2z - 1 = 0 \end{cases} \qquad s: \begin{cases} x = -t \\ y = 3 + 2t \\ z = -1 + t \end{cases}$$

- (a) Si stabilisca se le rette r e s sono incidenti, parallele o sghembe.
- (b) Si calcoli la distanza tra $r \in s$.
- (c) Si determini la retta ℓ passante per il punto P = (0, 2, 1) e incidente alle rette r e s.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

4º Appello — 7 febbraio 2017

Esercizio 1. Siano v_1, v_2, \ldots, v_k vettori linearmente indipendenti in uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_k \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_k, w\}$ sono linearmente indipendenti.

Esercizio 2. Sia $f: V \to W$ una funzione lineare tra due spazi vettoriali. Dimostrare che f è iniettiva se e solo se $Ker(f) = \{0\}$.

Esercizio 3. Mostrare che il sistema lineare AX = B ha soluzioni se e solo se il vettore colonna B è combinazione lineare delle colonne della matrice A.

Esercizio 4. Sono assegnati i seguenti vettori di \mathbb{R}^3 : $v_1 = (0, 2, 1), v_2 = (1, 2, 1), v_3 = (1, t - t^2, -1).$

- (a) Determinare per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **indipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (-2t, 1-t, -1), f(v_2) = (-8, -2, -2)$ e $v_3 \in \text{Ker}(f)$.
- (c) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **dipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ come nel punto (b).

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo

$$f(e_2 + e_3) = -3e_1 + 4e_2 + 4e_3$$
, $f(e_1) = -e_1 + 2e_2 + 2e_3$, $f(e_2 - e_3) = -9e_1 + 10e_2 + 8e_3$,

ove e_1, e_2, e_3 è la base canonica di \mathbb{R}^3 .

- (a) Si scriva la matrice di f rispetto alla base canonica.
- (b) Si stabilisca per quali valori del parametro t il vettore v = (t, 2, 2) è un autovettore di f.
- (c) Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazioni

$$U: \begin{cases} 3x_1 + x_2 - 3x_3 = 0\\ 2x_1 + 4x_3 - x_4 = 0. \end{cases}$$

- (a) Si determini una base di U.
- (b) Si determinino le equazioni cartesiane e una base del sottospazio U^{\perp} , ortogonale di U.
- (c) Dato il vettore v = (9, -4, -3, -3) si determinino due vettori $u \in U$ e $w \in U^{\perp}$ tali che v = u + w.

$$r: \begin{cases} x + 2y + z - 2 = 0 \\ 2x - y - 1 = 0 \end{cases} \qquad s: \begin{cases} x = t \\ y = 3 + 2t \\ z = -1 - 2t \end{cases}$$

- (a) Si stabilisca se le rette r e s sono incidenti, parallele o sghembe.
- (b) Si calcoli la distanza tra $r \in s$.
- (c) Si determini la retta ℓ passante per il punto P=(2,1,0) e incidente alle rette $r \in s$.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

4º Appello — 7 febbraio 2017

Esercizio 1. Siano v_1, v_2, \ldots, v_k vettori linearmente indipendenti in uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_k \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_k, w\}$ sono linearmente indipendenti.

Esercizio 2. Sia $f: V \to W$ una funzione lineare tra due spazi vettoriali. Dimostrare che f è iniettiva se e solo se $Ker(f) = \{0\}$.

Esercizio 3. Mostrare che il sistema lineare AX = B ha soluzioni se e solo se il vettore colonna B è combinazione lineare delle colonne della matrice A.

Esercizio 4. Sono assegnati i seguenti vettori di \mathbb{R}^3 : $v_1 = (0, 1, 1), v_2 = (3, 4, -2), v_3 = (-2, 2t - t^2, 1).$

- (a) Determinare per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **indipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (-2, 0, 2), f(v_2) = (1, t+1, t)$ e $v_3 \in \text{Ker}(f)$.
- (c) Per i valori di t per cui i vettori v_1, v_2, v_3 sono linearmente **dipendenti** si dica se esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ come nel punto (b).

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo

$$f(e_1 + e_3) = 3e_1 + e_2 + e_3$$
, $f(e_1 - e_3) = 7e_1 + 5e_2 - 7e_3$, $f(e_2) = -6e_1 - 4e_2 + 6e_3$

ove e_1, e_2, e_3 è la base canonica di \mathbb{R}^3 .

- (a) Si scriva la matrice di f rispetto alla base canonica.
- (b) Si stabilisca per quali valori del parametro t il vettore v = (2, 2, t) è un autovettore di f.
- (c) Si determinino gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazioni

$$U: \begin{cases} 2x_1 + x_2 - 3x_4 = 0\\ -3x_1 - x_3 + 2x_4 = 0. \end{cases}$$

- (a) Si determini una base di U.
- (b) Si determinino le equazioni cartesiane e una base del sottospazio U^{\perp} , ortogonale di U.
- (c) Dato il vettore v = (6, 1, -4, -5) si determinino due vettori $u \in U$ e $w \in U^{\perp}$ tali che v = u + w.

$$r: \begin{cases} x + 2y - 2 = 0 \\ x - y - 4z + 1 = 0 \end{cases} \qquad s: \begin{cases} x = 2t - 1 \\ y = 2 - t \\ z = t \end{cases}$$

- (a) Si stabilisca se le rette r e s sono incidenti, parallele o sghembe.
- (b) Si calcoli la distanza tra $r \in s$.
- (c) Si determini la retta ℓ passante per il punto P = (0, 2, 1) e incidente alle rette r e s.