

Ch10.2 Graph Terminology and Special Types of Graphs (Week 13)

Basic Terminology

- Two vertices u and v in an undirected graph G are called *adjacent* (or *neighbors*) in G if u and v are endpoints of an edge e of G. Such an edge e is called *incident with* the vertices u and v and e is said to *connect* u and v.
- The set of all neighbors of a vertex v of G=(V,E), denoted by N(v), is called the neighborhood of v. If A is a subset of V, we denote by N(A) the set of all vertices in G that are adjacent to at least one vertex in A. So, $N(A)=\bigcup_{v\in A}N(A)$.
- The *degree* of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).
- Isolated: A vertex of degree zero
- **Pendant:** A vertex *iff* has degree one
- The Handshaking Theorem Let G=(V,E) be an undirected graph with m edges. Then $2m=\sum_{v\in V}\deg(v)$. (Note that this applies even if multiple edges and loops are present.)
- Theorem 2 An undirected graph has an even number of vertices of odd degree.
- When (u, v) is an edge of the graph G with directed edges, u is said to be *adjacent to* v and v is said to be *adjacent from* u. The vertex u is called the *initial vertex* of (u, v), and v is called the *terminal* or *end vertex* of (u, v). The initial vertex and terminal vertex of a loop are the same.
- In a graph with directed edges the *in-degree* of a vertex v, denoted by $\deg^-(v)$, is the number of edges with v as their terminal vertex. The *out-degree* of v, denoted by $\deg^+(v)$, is the number of edges with v as their initial vertex. (Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex._

1

- Theorem 3 Let G=(V,E) be a graph with directed edges. Then $\sum_{v\in V}\deg^-(v)=\sum_{v\in V}\deg^+(v)=\mid \mathrm{E}\mid$.
- Underlying undirected graph: results from ignoring directions of edges

Complete Graphs

Cycles

Wheels

n-Cubes

Some Applications of Special Types of Graphs

Local Area Networks

(a) Star Topology (b) Ring Topology (c) Hybrid Topology

P(0,0) P(0,1) P(0,2) P(0,3) P(1,0) P(1,1) P(1,2) P(1,3) P(2,0) P(2,1) P(2,2) P(2,3) P(3,0) P(3,1) P(3,2) P(3,3)

P_1 P_2 P_3 P_4 P_5 P_6

Interconnection Networks for Parallel Computation

- **Serial:** algorithms written to solve problems one step at a time
- Parallel processing/algorithms: break a problem into a number of subproblems that can be solved concurrently

New Graphs from Old

- A subgraph of a graph G=(V,E) is a graph H=(W,F), where $W\subseteq V$ and $F\subseteq E$. A subgraph H of G is a proper subgraph of G if H
 eq G.
- Let G=(V,E) be a simple graph. The **subgraph induced** by a subset W of the vertex set V is the graph (W,F), where the edge set F contains an edge in E iff both endpoints of this edge are in W.

Removing or Adding Edges or a Graph

Edge Contractions

- removes an edge e with endpoints u and v and merges u and w into a new single vetex w

Removing Vertices from a Graph

• remove a vertex $v \rightarrow \operatorname{subgraph} G - v$

Graph Unions

The *union* of two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ is the simple graph with vertex set $V_1\cup V_2$ and edge set $E_1\cup E_2$. The union of G_1 and G_2 is denoted by $G_!\cup G_2$.

