2012-2013 学年第二学期《大学物理 I》课内考试(A 卷)

授课班号	年级专业	物联网 12 级	学号	姓名
1X 6100 J			.1 7	λΤ. ΄Π

题号	_		三.1	三.2	三.3	得分	审核
题分	24	34	14	14	14		
得分							

相关常数: 真空中:介电常数 $\epsilon_0 = 8.85 \times 10^{-12} \text{C}^2/\text{N.m}^2$ 磁导率 $u_0 = 4\pi \times 10^{-7} \text{ N}/\text{A}^2$

阅卷	得分	_ <u>.</u>	冼择题	(共24分,	岳 颙 3 分)
		•	Z=1+/Z	()(21)()	4/2011

- 1、对于质点系,以下说法中正确的是()

 - (A) 一对内力所作功之和一定为零 (B) 质点系总动能的改变与内力无关
 - (C) 质点系总动量的改变与内力无关 (D) 一对内力所作功之和一定不为零
- 2、地球绕太阳做椭圆运动,则地球在近日点a及远日点b两个位置时,其速率v及角 动量L的关系为(

$$(A) v_a = v_b, L_a > L_b$$

(B)
$$v_a < v_b, L_a > L_b$$

$$(C) v_a > v_b, L_a = L_b$$

(D)
$$v_a = v_b$$
, $L_a = L_b$

- 3、下列说法中,正确的是()
 - A、作用在定轴转动刚体上的力越大,刚体转动的角加速度越大
 - B、作用在定轴转动刚体上的合力矩越大, 刚体转动的角速度越大
 - C、作用在定轴转动刚体上的合力矩为零, 刚体转动的角速度为零
 - D、作用在定轴转动刚体上的合力矩越大, 刚体转动的角加速度越大
- 4、点电荷放在球形高斯面的中心处,另一点电荷在高斯面外移动过程中,则有()
 - A、通过高斯面的电通量不变
- B、高斯面上电场强度不变
- C、通过高斯面的电通量改变 D、高斯面上电势不变
- 5、如果一点电荷 q 位于立方体中心,则通过任一立方体侧面的电通量为(

A, 0 B,
$$\frac{q}{6\varepsilon_0}$$
 C, $\frac{q}{\varepsilon_0}$ D, $\frac{q}{24\varepsilon_0}$

6、半径为 a_1 的载流圆形线圈与边长为 a_2 的正三角形形载流线圈中通有相同大小的电

5、一有限长均匀带电的细棒中垂线上A点的电势 $V_{\scriptscriptstyle A}=V$,

则图示B点的电势为 $V_{o} =$	
观187ND 息 四 电 等 717 。 —	0

6、一个半径为R、均匀带有Q的电量的圆环,其圆心处的电场强度大小

则在其圆心处产生的磁感应强度大小为。

7、半径为R的导体球原不带电, 在球外右侧放 置一长为L、带电量为+O均匀带电细棒。细棒的中心 离球心距离为 2L(L>R), 球面上感应电荷在球心产 生的电场强度大小为 ______, 方向 为____。

8、将一根无限长的导线弯成如下图形状,其中 通有电流I,那么 $\frac{1}{4}$ 圆弧(半径为R)的圆心O点的 磁感应强度的大小。

9、如图,真空中有一载有电流为I 半径为R 的 $\frac{1}{4}$ 圆弧 ab , 放在磁感应强度为 \vec{B} 匀强磁场中,则作用在圆弧ab上磁作用力大小 为 ______,方向为 _____。

10、感应电场是由_____产生的,它的电场线的特点

是_____。

四、计算题: (共42分)

阅卷	得分

1、(14 分) 将质量为 2m,长为 l 的匀质细棒的一端悬挂于天花板上,且可绕悬挂点 O 在竖直平面内自由转动。现有一质量为 m,以 v_0 的速率水平运动的小球撞击细棒上 A 处。若小

球与细棒之间为完全弹性碰撞 (无能量损失),碰撞后小球水平速度恰好为零。

- ①求小球与细棒碰撞点离悬挂点 OA 的距离; (8分)
- ② 求细棒最大偏转角度 $heta_{\!\scriptscriptstyle 0}$ (设 $v_{\!\scriptscriptstyle 0}$ < \sqrt{gl})。(6分)

阅卷	得分

2、(14分)有一外半径为 $R_1=4R$,内半径 $R_2=2R$ 的金属球

壳,在壳内有一半径为**R均匀带电球体(非导体球)**,球壳和内球

分别带电量q与2q。

①求空间各处的场强; (4分)

②求空间各处的电势; (6分)

③若将外球壳接地,并将带电球体移至距球壳球心 10R 处,求此时金属球壳的内外表面的带电量各是多少。 (4分)

阅卷	得分

3、(14分) 如图所示,一根无限长载流直导线 $L_{\rm l}$ 中有电流I

,另有长为2a、宽为a电阻阻值为R的矩形线圈置于图示

位置。试求:

- ① 矩形线圈处在图示实线位置时与无限长直导线间的互感系数; (10分)
- ② 线圈由实线位置变为虚线位置过程中线圈中流过的电荷Q。(4分)

