Graph and Subgraph Isomorphism Using GNNs

An overview of the essential concepts in Stanford CS224W (Lectures 9 and 12) with only oversimplified examples

Ng Yen Kaow

Graph Isomorphism

- Complexity of graph isomorphism is unknown
- Weisfeiler-Lehman graph kernel traditionally used to obtain graph-level embedding

WL color-refinement algorithm

- 1. Assign initial color $c^{(0)}(v)$ to each node v
- 2. Iteratively refine node colors by

$$c^{(k+1)}(v) = \mathsf{HASH}\left(c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right)$$

- HASH function maps input to distinct values (colors)
- After K steps, $c^{(K)}(v)$ summarizes the structure of the K-hop neighborhood
- To run as GNN, need to implement HASH as AGG
 - Need notion of distinguishing node embeddings

Distinguishing node embeddings

- Consider the task of keeping embeddings feature distinguishable
- Two factors affect embedding
 - (Initial) feature
 - Feature representation will affect whether features can be converted into each other
 - If $\begin{bmatrix} 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \end{bmatrix}$ represent three distinct features, then the sum of $\begin{bmatrix} 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \end{bmatrix}$ would become $\begin{bmatrix} 1 & 1 \end{bmatrix}$, the third feature
 - To simplify this discussion assume that each distinct feature corresponds to one distinct dimension in the feature vector
 - Neighborhood structure
- Nodes with the same (initial) feature and neighborhood structure should be assigned the same embedding, and vice versa

C A B B D D F

Computing node embeddings

□ Recall that given a GCN of 2 layers, the embedding of A is computed through the computation graph as follows

Computation graph of A's embedding

- Let AGG=sum, then for the GCN of 2 layers, the embeddings are as follows
 - Let $h_{A}^{0} = \boxed{100000}$, $h_{B}^{0} = \boxed{010000}$, $h_{C}^{0} = \boxed{001000}$, $h_{C}^{0} = \boxed{001000}$, and let AGG be **sum**. Then

Similarly,
$$h_{\rm B}^2 = 2 \ 4 \ 2 \ 2 \ 2 \ 2$$

$$h_{\rm C}^2 = 3 \ 2 \ 4 \ 3 \ 2 \ 1$$

$$h_{\rm D}^2 = 3 \ 2 \ 3 \ 4 \ 1 \ 2$$

$$h_E^2 = 2 \ 2 \ 2 \ 1 \ 3 \ 1$$

$$h_F^2 = 2 \ 2 \ 1 \ 2 \ 1 \ 3$$

Distinct embeddings

 Let AGG=sum, then for the GCN of 2 layers, the embeddings are as follows

- By induction on the respective distinct feature dimension, the embeddings will be distinct for subsequent iterations
- □ If every node has distinct feature, then they have distinct embeddings under sum regardless of neighborhood structure or iterations (with the exception of the graph of only two nodes A C)

- If some nodes have the same features?
 - Let $h_A^0 = h_B^0 = \boxed{100}$, $h_C^0 = h_D^0 = \boxed{010}$, $h_E^0 = h_F^0 = \boxed{001}$, and let AGG be **sum**. Then, as can be seen from the following example

- Two nodes with the same feature will have the same embedding under sum if they have the same neighborhood structure
 - However different features and neighborhood structure cannot guarantee distinct embeddings

- If some nodes have the same features?
 - Different features and neighborhood structure cannot guarantee distinct embeddings for various reasons
 - Complementary neighborhood structure

Hard-to-predict cases

Will A and B ever become the same again after the first step?

- If some nodes have the same features?
 - Different features and neighborhood structure cannot guarantee distinct embeddings for various reasons
 - Complementary neighborhood structure

Hard-to-predict cases

- Using mean as AGG results in even less desirable behavior
 - For instance, node A in both graphs below would give the same embedding under mean with one iteration

- Using mean as AGG results in even less desirable behavior
 - The following example shows sum to result in more consistent embeddings than mean

Injective function for isomorphism

- An injective function will output distinguishable embeddings for nodes of distinct feature and neighborhood structure
 - sum, mean, and max are not injective
- **Theorem** (Xu et al. 2019). Any **injective** AGG function can be expressed as $\Phi(\sum_{x \in S} f(x))$ for some nonlinear Φ and linear f
- Since MLP is able to approximate any function, we can learn Φ and f with non-linear MLP $_{\Phi}$ and linear MLP $_{f}$

$$AGG = MLP_{\Phi} \left(\sum_{x \in S} MLP_f(x) \right)$$

⇒ Graph Isomorphism Network (GIN)

Subgraph Isomorphism

- Subgraph isomorphism is NP-complete
 - ⇒ Compare neighborhood around each node
- \square The k-hop neighborhood around node $u \in Q$ is
 - 1. All the nodes within k hops from u, and
 - 2. All the edges in between those nodes
 - Such a neighborhood is a subgraph of Q
 - □ However, not every subgraph of Q is a neighborhood of some node $u \in Q$
 - At most k|V| neighborhoods for each k
- □ If P is a subgraph of Q, then every neighborhood of P is a subgraph of some neighborhood of Q

Order embedding space

□ Idea: We want an d-dimensional embedding space z such that for every neighborhoods $p \in P$ and $q \in Q$

$$q \subseteq p \Leftrightarrow \forall_{i=1}^d z_q[i] \le z_p[i]$$

 With embedding space, we can test subgraph isomorphism through the following

For each neighborhood $p \in P$ and $q \in Q$ If $(\exists i) [z_q[i] \leq z_p[i]]$, return false

Return true

Order embedding space

□ Idea: We want an d-dimensional embedding space z such that for every neighborhoods $p \in P$ and $q \in Q$

$$q \subseteq p \Leftrightarrow \forall_{i=1}^d z_q[i] \le z_p[i]$$

- Whether such an embedding space exist depends on D and the class of graphs
 - Even for substring relation (≼) with only alphabet {A, B}, a 2D embedding space is insufficient for

$$q \leqslant p \Leftrightarrow \forall_{i=1}^2 z_q[i] \le z_p[i]$$

- AAB needs to cover the dotted box (since it includes both AA and AB)
- On the other hand, BA cannot be brought out of the dotted box (otherwise it would cover AA or AB)

Order embedding space

- 2D embedding space example for graph
 - needs to cover the dotted box (since it must cover both triangle and square) but that would cover
 - □ On the other hand, cannot be brought out of the dotted box (otherwise it would cover △ or □)
 - Toggling hexagon and square will allow to be placed, but now cannot be placed

 Assume that d is sufficiently large for reasonable embeddings

Training order embedding space

- Use a node embedding space of k-hop
- \square Denote the embedding of a node u as z_u
- Use the loss function

$$loss(u, v) = \sum_{i=1}^{d} \max(0, z_u[i] - z_v[i])^2$$

It is clear that

- $loss(u, v) = 0 \text{ when } \forall_{i=1}^{d} (z_u[i] \leq z_v[i])$
- $\log \log(u, v) > 0$ otherwise
- □ Generate random pair of graphs P, Q and train GNN such that embeddings of $u_P \in P$ and $u_Q \in Q$ has
 - $| loss(u_O, u_P) = 0$ when $u_O \subseteq u_P$, and
 - $\log \log(u_O, u_P) > 0$ otherwise