Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

11 11 11 11 11 11

Minimisation sans contraint

Analyse 1: Optimisation sans contrainte

Joseph Salmon

Septembre 2014

Plan du cours

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contraint

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contrainte

Mines-Télécom

Exemples de problèmes d'optimisation en apprentissage / statistiques

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

- les moyennes (pondérées ou non)
- les moindres carrées (contraints ou non)
- ▶ la plus grande valeur propre d'une matrice symétrique : lien avec l'analyse en composante principale (PCA)
- ▶ les classifieurs classiques : le perceptron, les Support Vector Machine (SVM), la régression logistique

L'optimisation : minimisation

Minimisation

Tout problème d'optimisation peut se ramener à l'étude de la **minimisation** d'une fonction.

- Si l'on a un problème de maximisation d'une fonction g, on passe à un problème de minimisation de fonction en considérant f=-g.
- ► Dans la suite on ne parlera donc que de problème de minimisation.
- ▶ On appelle **minimum** de *f* un point qui atteint la plus petite valeur de *f*, et l'on écrit le problème de la manière suivante :

$$x^* \in \operatorname*{arg\,min}_{x \in K} f(x)$$

où $K \subset \mathbb{R}^d$ est un espace de contraintes. Quand un tel x^* est unique on note $x^* = \arg\min_{x \in K} f(x)$

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Joseph Salmon

Optimisation, apprentissage et statistique

La moyenne comme problème d'optimisation

Prenons x_1, \ldots, x_n qui sont n vecteurs de \mathbb{R}^d . Le vecteur moyen noté \bar{x}_n est la solution du problème d'optimisation :

$$\bar{x}_n = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \left(\sum_{i=1}^n \|x_i - x\|^2 \right)$$

<u>Rem</u>: Dans ce cas on connaît la solution; on verra que l'on peut l'exprimer de manière explicite (on retrouve la définition usuelle) :

$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Analyse 1: Optimisation sans contrainte

Optimisation

Lien avec l'analyse numérique matricielle

Résolution de systèmes sous forme matricielle

- ► Méthodes classiques pour la résolution d'un système linéaire du type Ax = b, avec $A \in \mathbb{R}^{n \times d}$ et $x \in \mathbb{R}^d$: le pivot de Gauss (cf. par exemple Golub et van Loan (1996))
- Point de vue itératif : résolution du système linéaire Ax = béquivalent à trouver le minimum de la fonction $|x \mapsto ||Ax - b||$ ou plus simplement de $x \mapsto ||Ax - b||^2$

Rem: On inverse rarement une matrice en pratique; on résout plutôt le système associé : Ax = b

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contrainte

Condition d'existence d'un minimum l

Théorème de coercivité

Si une fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ est continue et vérifie $\lim_{\|x\| \to \infty} f(x) = +\infty$ (i.e., coercive) alors il existe un point x^* qui atteint le minimum $: x^* \in \arg\min_{x \in \mathbb{R}^d} f(x)$

Analyse 1: Optimisation sans contrainte

Optimisation

Minimisation sans contrainte

Minimum local, minimum global

Définition: minimum local

On dit qu'une fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ admet un **minimum local** en un point x^* si x^* est le minimum de la restriction de f sur un voisinage de x^*

Rem: : un minimum global est donc aussi un minimum local

Cas convexe : local = global

Théorème : équivalence local/global dans le cas convexe

Si une fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ est une fonction convexe, alors tout minimum local de f est aussi un minimum global de f.

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Cas convexe : local = global

Théorème : équivalence local/global dans le cas convexe

Si une fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ est une fonction convexe, alors tout minimum local de f est aussi un minimum global de f.

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Convexe: 1 minimum global

Cas convexe : local = global

Théorème : équivalence local/global dans le cas convexe

Si une fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ est une fonction convexe, alors tout minimum local de f est aussi un minimum global de f.

Analyse 1: Optimisation sans contrainte

Optimisation

Convexe: 1 minimum global

Non-convexe: 2 min. locaux / 1 global

Convexité et minimum

Divers types de comportements pour des fonctions convexes :

▶ un minimum global *e.g.*, quadratique, etc.

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contrainte

Joseph Salmon

Convexité et minimum

Divers types de comportements pour des fonctions convexes :

- ▶ un minimum global e.g., quadratique, etc.
- ▶ plusieurs minima e.g., affine par morceaux

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Convexité et minimum

Divers types de comportements pour des fonctions convexes :

- un minimum global e.g., quadratique, etc.
- ▶ plusieurs minima *e.g.*, affine par morceaux
- ► Sans minimum, borne inférieure finie e.g., exponentielle

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Analyse 1: Optimisation sans contrainte

Optimisation

Minimisation sans contrainte

Convexité et minimum

Divers types de comportements pour des fonctions convexes :

- ▶ un minimum global e.g., quadratique, etc.
- ▶ plusieurs minima e.g., affine par morceaux
- ► Sans minimum, borne inférieure finie e.g., exponentielle
- \blacktriangleright Sans minimum, borne inférieure infinie e.g., affine ou $-\log(\cdot)$

Analyse 1: Optimisation sans

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contrainte

Condition du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local x^* alors le gradient de f est nul en x^* , i.e., $\nabla f(x^*) = 0$

Rem: Attention ce n'est pas une condition suffisante

Mines-Télécom

Analyse 1: Optimisation sans

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contrainte

Condition du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local x^* alors le gradient de f est nul en x^* , i.e., $\nabla f(x^*) = 0$

Rem: Attention ce n'est pas une condition suffisante

Analyse 1: Optimisation sans

contrainte

Optimisation

Minimisation sans contrainte

Condition du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local x^* alors le gradient de f est nul en x^* , i.e., $\nabla f(x^*) = 0$

Rem: Attention ce n'est pas une condition suffisante

Retour sur les exemples classiques

La moyenne comme problème d'optimisation

Prenons x_1, \ldots, x_n qui sont n vecteurs de \mathbb{R}^d . Le vecteur moyen noté \bar{x}_n est la solution du problème d'optimisation :

$$\bar{x}_n = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{2} \left(\sum_{i=1}^n ||x_i - x||^2 \right)$$

En utilisant le gradient de la fonction coercive (strictement convexe) $f_i: x \mapsto \|x - x_i\|^2/2$, $\nabla f_i(x) = (x - x_i)$ la CNO devient

$$\sum_{i=1}^{n} (\bar{x}_n - x_i) = 0 \Leftrightarrow \bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Retour sur la moyenne : visualisation

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Retour sur la moyenne : visualisation

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Références I

Analyse 1: Optimisation sans contrainte

Optimisation

Motivation

Lien avec l'analyse numérique matricielle

Minimisation sans contrainte

G. H. Golub and C. F. van Loan.

Matrix computations.

Johns Hopkins University Press, Baltimore, MD, third edition, 1996.

