

Obiettivi

- Predire il consumo di ogni ora delle domeniche dell'anno successivo agli anni dati
- Realizzare una funzione che restituisca la previsione corrispondente all'ora e al giorno dell'anno (che deve essere una domenica) ricevuti in input

Nell'identificazione vengono considerati solo i consumi relativi alle domeniche. Si nota infatti che questi seguono un andamento diverso rispetto agli altri giorni:

Media dei consumi di ogni giorno della settimana

Media dei consumi sulle 24 ore

CONSUMI DOMENICALI

INDIVIDUAZIONE DEL TREND

Disponendo di dati relativi ad un periodo di soli due anni, ci limitiamo a stimare il trend con un modello lineare di primo ordine.

DETRENDIZZAZIONE

L'identificazione viene effettuata su dati detrendizzati rispetto all'anno di identificazione.

In fase di **validazione** la stima viene confrontata con i dati di validazione detrendizzati rispetto al trend dell'anno di validazione.

```
MWatt
Consumi in
                  consumi originali
                    50
                                 100
                                                            200
                                                                           250
                                               150
                                                                                        300
                                                                                                      350
                                                                                                                    400
                                                  Giorni dell' anno
```

```
phi1 = [ones(n, 1), giorni];
[thetals1, devthetals1] = lscov(phi1, consumi);
trend_identificazione = phi1 * thetals1;
consumi_detrend = consumi - trend_identificazione;
```

PRIMO APPROCCIO: MODELLI POLINOMIALI

In prima analisi abbiamo utilizzato modelli polinomiali di vario ordine.

MODELLI CON OVERFITTING

I modelli di ordine superiore al quarto tendono a overfittare i dati di identificazione

MODELLO DEL 4° ORDINE

PLOT MODELLO QUARTO ORDINE

SECONDO APPROCCIO: MODELLI DI FOURIER

I modelli polinomiali sembrano non seguire in maniera efficace gli andamenti periodici dei consumi.

Si passa quindi a considerare modelli basati sulle serie di Fourier.

MODELLO DI FOURIER

Dopo aver minimizzato il valore degli ssr di validazione al variare del numero di armoniche, il numero ottimo di armoniche risulta:

8 armoniche per le ore, 7 armoniche per i giorni

stima_consumiFourier = phiFourier * thetalsFourier + stima_trend;

PLOT MODELLO DI FOURIER

TERZO APPROCCIO: SOMMA DI MODELLI

Abbiamo considerato un modello per l'andamento dei consumi durante le 24 ore della giornata e uno per l'andamento dei consumi durante le 52 domeniche dell'anno.

Il modello complessivo è ottenuto sommando questi ed aggiungendo il trend previsto.

RISULTATO

L'ssr di validazione ottenuto con questo modello è migliore solo del 3% rispetto al modello di Fourier

OSSERVAZIONE

Gli andamenti orari nell'arco di una giornata risultano essere diversi in base alla stagione. Considerare le stagioni potrebbe portare ad un miglioramento della precisione rispetto al modello precedente.

QUARTO APPROCCIO: SOMMA MODELLI CON STAGIONALITÀ

L'andamento sulle 24 ore dei consumi è stato stimato separatamente per le quattro stagioni. Il modello dei consumi giornalieri delle 52 domeniche rimane uguale a quello precedente.

MODELLO GIORNALIERO

```
w3 = 2 * pi / 365;
phiFGiorni = [ cos(w3*domeniche'), sin(w3*domeniche'), ...
                cos(2*w3*domeniche'), sin(2*w3*domeniche'), ...
                cos(3*w3*domeniche'), sin(3*w3*domeniche'), ...
                cos(4*w3*domeniche'), sin(4*w3*domeniche'), ...
                cos(5*w3*domeniche'), sin(5*w3*domeniche')
               ];
                      6000
                      4000
                      2000
                     -2000
                     -4000
                     -6000
                     -8000
                                         20
                                                 30
                                 10
                                                         40
                                                                  50
```

MODELLO ORARIO

```
w2 = 2 * pi / 24;
phiF = [cos(w2*ore), sin(w2*ore),
     cos(2*w2*ore), sin(2*w2*ore),
     cos(3*w2*ore), sin(3*w2*ore),
     cos(4*w2*ore), sin(4*w2*ore),
                                                    10
     cos(5*w2*ore), sin(5*w2*ore),
     cos(6*w2*ore), sin(6*w2*ore),
                                                  Media oraria estiva
     cos(7*w2*ore), sin(7*w2*ore),
     cos(8*w2*ore), sin(8*w2*ore),
     cos(9*w2*ore), sin(9*w2*ore)
    ];
                                                    10
                                                          15
```


Si calcolano i quattro stimatori utilizzando la stessa **matrice di sensitività** (phiF) e per ciascuno i dati relativi alla stagione considerata.

Media oraria invernale

OSSERVAZIONE

Nella fase di individuazione del modello abbiamo scelto di identificare sul primo anno e di validare sul secondo. Invece, per la stima del terzo anno l'identificazione viene effettuata sul secondo anno piuttosto che sul primo o sulla media tra i due, poiché è più probabile che i consumi del terzo anno siano più simili a quelli del secondo rispetto che a quelli del primo.

SCELTA DEL NUMERO DI ARMONICHE

Primo anno validazione, secondo anno identificazione

Primo anno identificazione, secondo anno validazione

Armoniche ore	Armoniche giorni	SSR validazione	Armoniche ore	Armoniche giorni	SSR validazione
9	5	3.5977*10 ⁹	10	6	3.3668*109
8	5	3.6045*10 ⁹	10	5	3.2715*10 ⁹
10	5	3.5967*10 ⁹	10	4	3.3077*109
11	5	3.5927*109	9	5	3.2710*109
12	5	3.5929*10 ⁹	11	6	3.2783*10 ⁹
11	6	3.5950*10 ⁹			
11	4	3.8832*10 ⁹			

OSSERVAZIONE

Nella prima tabella l'SSR aumenta di poco passando da 11 a 9 armoniche per le ore, si sceglie quindi questo secondo caso. Scelta finale: 9 armoniche per le ore, 5 per i giorni.

STIMA

Come anticipato, si sommano i due modelli precedenti e, ad essi, si somma il trend previsto.

INDICATORI DI PERFORMANCE

```
n= 52*24;
previsioneStagionaleVal = consumiDetrendModelStagionale + trendVal;
epsilonValStagionale = consumiDomenicaliVal - previsioneStagionaleVal;
ssrValStagionale = epsilonValStagionale' * epsilonValStagionale;
mseValStagionale = ssrValStagionale /n;
rmsdValStagionale = sqrt(mseValStagionale);
range = (max(consumiDomenicaliVal)-min(consumiDomenicaliVal));
nrmsd_mediaValStagionale = (rmsdValStagionale / range ) *100;
nrmsd_rangeValStagionale = (rmsdValStagionale / (mean(consumiDomenicaliVal))) *100;
maeValStagionale= mean(abs(epsilonValStagionale));
```

INDICATORE	VALORE
SSR	3.27*10 ⁹
MSE	3.19*106
RMSD	1.79*10 ³
NRMSD (media)	6.23%
NRMSD (range)	3.64%
MAE	1.29*10 ³

MODELLO DEFINITIVO: IMPLEMENTAZIONE DI RETE NEURALE

Abbiamo utilizzato una rete neurale con uno strato nascosto da 11 neuroni, dando come dati di training i consumi del primo anno e come target i consumi del secondo anno, entrambi detrendizzati.

Non essendo disponibile un terzo anno su cui effettuare la validazione si è cercato un modello che minimizzasse l'SSR per i dati di target mantenendolo basso anche per i dati di training, in modo da non overfittare il target.

RETE NEURALE E TRAINING


```
input = [consumi1, giorni1, ore1]';

net = feedforwardnet(11);

net.divideParam.trainRatio = 0.7;
net.divideParam.valRatio = 0.2;
net.divideParam.testRatio = 0.3;

[net,tr] = train(net,input,consumi2);
output = net(input);
```

INDICATORI DI PERFORMANCE

TRAINING:

INDICATORE	VALORE
SSR	2.28*10 ⁹
MSE	2.23*106
RMSD	1.49*10 ³
NRMSD (media)	3.41%
NRMSD (range)	5.11%
MAE	1.04*10 ³

TARGET:

INDICATORE	VALORE
SSR	2.23*10 ⁹
MSE	2.18*106
RMSD	1.48*10 ³
NRMSD (media)	3.11%
NRMSD (range)	5.14%
MAE	1.01*10 ³

ISTOGRAMMI DEGLI ERRORI

STIMA FINALE

CONFRONTO FINALE

MODELLO	SSR DI VALIDAZIONE
POLINOMIALE	1.32*1010
FOURIER	4.06*10 ⁹
SOMMA DI MODELLI (ORARIO + ANNUALE)	3.93*109
SOMMA DI MODELLI CON STAGIONALITÁ	3.27*109
RETE NEURALE	2.28*10°