Aufgabe 1

Eine Person schießt mit dem Bogen auf eine Scheibe mit Mittelpunkt (0,0) und Radius 2m und trifft immer. Es interessiert der Auftreffpunkt des Pfeiles.

- a) Geben Sie Ω und dessen Mächtigkeit an.
- b) Beschreiben Sie folgende Ereignisse als Teilmenge von Ω :
 - i) A = Der Treffer hat weniger als 1m Abstand zum Mittelpunkt.
 - ii) B = Der Auftreffpunkt liegt im rechten oberen Viertel der Scheibe.
 - iii) C = Der Auftreffpunkt hat mehr als 0.5m Abstand zum Mittelpunkt.
- c) Wie groß könnten wohl $\mathbb{P}(A)$, $\mathbb{P}(B)$, $\mathbb{P}(C)$ sein, wenn jeder Punkt $x \in \Omega$ mit gleicher Wahrscheinlichkeit getroffen wird?

Aufgabe 2

Es sei \mathbb{P} ein Wahrscheinlichkeitsmaß (also ein normiertes Maß mit $\mathbb{P}(\Omega) = 1$) auf dem Messraum (Ω, \mathcal{F}) und $A, B \in \mathcal{F}$.

- a) Falls $\mathbb{P}(A) = \frac{1}{3}$ und $\mathbb{P}(\bar{B}) = \frac{1}{4}$, können A und B dann disjunkt sein?
- b) Beweisen oder widerlegen Sie: $\mathbb{P}(A) = \mathbb{P}(\bar{B}) \Rightarrow \bar{A} = B$
- c) Beweisen oder widerlegen Sie: $\mathbb{P}(B) = 0 \implies \mathbb{P}(A \cap B) = 0$
- d) Sei $\Omega = \{i | i \in \mathbb{N}_0\}$ mit Elementarereignissen $\omega_i = i$. Außerdem gelte $\mathbb{P}(\{\omega_i\}) = \frac{c}{i!}$. Wie groß ist c?

Aufgabe 3

Beweisen Sie folgende Aussagen:

Sind die Ereignisse A, B, C unabhängig, so sind $A \cup B$ und C unabhängig.

Besprechung von ausgewählter Themen aus der Vorlesung.