Math 856 Problem Set 4

Starred (*) problems to be handed in Friday, November 13

- (*) **25.** Let $\pi: E \to B$ be an orientable vector bundle, and $f: X \to B$ a smooth map. Show that the pullback $\pi': f^*E \to X$ is an orientable bundle.
 - **26.** If ξ is a vector bundle, show that the Whitney sun of ξ with itself, $\xi \oplus \xi$, is orientable.
 - **27.** Let X_1, \ldots, X_k be linearly independent vector fields on a manifold M with Riemannian metric $\langle \cdot, \cdot \rangle$. Show that the Gram-Schmidt orthonormalization procedure can be applied to the vector fields at every point simultaneously, to give a collection of orthonormal vector fields Y_1, \ldots, Y_k .
 - **28.** [Lee, p.289, problem 11-17] We defined the metric induced by a Riemannian metric $\langle \cdot, \cdot \rangle_a$ to be the infimum of lengths of piecewise smooth curves from p to q. Show that this cannot be a minimum: For $M = \mathbb{R}^2 \setminus (0,0)$ with the usual Riemannian metric from \mathbb{R}^2 , show that no curve in M from (-1,0) to (1,0) has length equal to the distance between the two points. [Also known as: I lied in class....]
 - **29.** (a) Show that an immersion from one *n*-manifold (with<u>out</u> boundary...) to another is an open map.
 - (b) Show that if M and N are n-manifolds, M is compact, N is connected, and $F: M \to N$ is an immersion, then F is onto.
- (*) 30. [Lee, p.171, problem 7-2] Show that under the quotient map $p: S^2 \to \mathbb{R}P^2$ given by $p(x) = \{x, -x\}$ that the map $f: S^2 \to \mathbb{R}^4$ given by $f(x, y, z) = (x^2 y^2, xy, xz, yz)$ descends to a smooth embedding $\overline{f}: \mathbb{R}P^2 \to \mathbb{R}^4$.
- (*) 31. [Lee, p.172, problem 7-9] Show that if $\pi: M \to N$ is a submersion and Y is a vector field on N, then there is a vector field X (called a *lift* of X) on M that is π -related to Y. (Hint: partition of unity!)
 - **32.** If $S \subseteq M$ is a **closed**, embedded submanifold, $U \supseteq S$ is an open neighborhood of S, and $f: S \to \mathbb{R}$ is a smooth function, show that there is a smooth function $F: M \to \mathbb{R}$ with $F|_S = f$ and $\text{supp}(F) \subseteq U$.