Indian Institute of Technology Patna Mathematics - I (MA101)

B. Tech 1st Year (Autumn) 2016 - 17 Mid Semester Examination

Max Time 2 Hours

Maximum Marks 60

Weightage 30%

Name and ID:

- (a) This question paper consists of a total 10 questions. All are compulsory.
- (b) Write your name and id on the question paper.
- (c) \mathbb{R} is set of reals, \mathbb{N} is set of naturals.
- (d) Other notations have their usual meaning.
 - 1. Find sup and inf of the set

$$A = \left\{ \frac{m}{n} + \frac{4n}{m} : m, n \in \mathbb{N} \right\}.$$

Justify your answer.

[6] 2. Let S be a bounded nonempty subset of \mathbb{R} and define $a + S = \{a + x : x \in S\}$ for some $a \in \mathbb{R}$. Then

$$\sup(a+S) = a + \sup(S).$$

[6]

- 3. Use $\epsilon \delta$ definition of continuity to prove that $f(x) = x^2 + 20$ is continuous on \mathbb{R} .
- [6] 4. Use $\epsilon - \delta$ definition to check whether function $f(x) = \frac{1}{x^4}$ is uniformly continuous on $[1, \infty)$? [6]
- 5. Let f be continuously differentiable on [a, b] and twice differentiable on (a, b) and suppose that f(a) = 0, f'(a) = 0 and f(b) = 0. Prove that there is $x_1 \in (a, b)$ such that $f''(x_1) = 0$. [6]
- 6. Lat a > 0, $x_1 > 0$, and

$$x_{n+1} = \frac{1}{3} \left(2x_n + \frac{a}{x_n^2} \right).$$

Show that the sequence $\{x_n\}$ is monotone and converges. Justify.

[8]

7. Let $\alpha > 0$, $\beta > 0$ and

$$a_n = \frac{(1+\alpha)^n + n^{\beta}}{(1+\alpha)^{n+1}}.$$

Does the sequence $\{a_n\}$ converge or diverge? If it converges find its limit.

[4]

- 8. Two sequences $\{x_n\}$ and $\{y_n\}$ are defined by $x_{n+1} = \frac{1}{2}(x_n + y_n)$ and $y_{n+1} = \sqrt{x_n y_n}$ for $n \ge 1$ and $x_1 > 0, y_1 > 0$. Prove that both the sequences $\{x_n\}$ and $\{y_n\}$ converge and they converge to the same [8]
- 9. Let $y \in (0, 1)$. Discuss the convergence of $\sum_{n=1}^{\infty} [(n+1)y^n + \sin n]$. [4]
- 10. Determine all values of y for which

$$\sum_{n=1}^{\infty} \frac{(y-1)^{2n}}{3^n n^2}$$

converges.

[6]