Data Mining

Homework 1

Description

Homework 1 (Association Rule Mining)

Given the following database, use the Apriori algorithm to find all association rules

with minimum support = 50% and minimum confidence = 70%.

TID	Items
	ink, pen,cheese,bag
1002	milk,pen,juice,cheese
1003	milk,juice
1004	juice,milk,cheese

Data Mining Homework 1 Solution

Homework 1 Solution (Association Rule Mining)

Given the following database, find all association rules with minimum support = 50% and minimum confidence = 70%.

TID	Items
1001	ink, pen,cheese,bag
1002	milk,pen,juice,cheese
1003	milk,juice

Min. support 50% Min. confidence 70%

1004 juice, milk, cheese

itemset sup. a C_1 $\begin{array}{c|cccc}
\hline & & & & & a \\
\hline & & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & &$

D

TID	Items
1001	ink, pen,cheese,bag
1002	milk,pen,juice,cheese
1003	milk,juice
1004	juice,milk,cheese

Only the following association rules have confidence >= 70%: {pen} =>{cheese}

```
{milk}=>{juice}

{juice}=>{milk}

{cheese juice}=>{milk}

{milk cheese}=>{juice}
```

Data Mining

Homework 2

Description

Homework 2 (Decision Tree Induction)

- Given is the training dataset on the following slide.
- Show the decision tree learned from the training dataset and all classification rules extracted from the tree.

Training Dataset "subscribe car magazine"

Income	Marital_Status	Living_Area	Car_Type	Subscribe
Medium	Single	Ŋ	Sports	Yes
High	Married	NJ	Sedan	No
Low	Single	NY	Sedan	No
Medium	Single	СТ	Sedan	Yes
Medium	Married	NJ	Van	No
Low	Married	NJ	Van	Yes
Medium	Single	NY	Sports	Yes
High	Married	СТ	Van	No
Medium	Married	СТ	Van	No
Low	Single	NJ	Sedan	Yes
Medium	Married	Ŋ	Sedan	No
High	Single	NY	Sedan	No
High	Single	NY	Sports	Yes
Medium	Single	NJ	Sedan	No
Low	Single	NY	Sports	Yes

Data Mining Homework 2 Solution

Training Dataset "subscribe car magazine"

Income	Marital_Status	Living_Area	Car_Type	Subscribe
Medium	Single	NJ	Sports	Yes
High	Married	NJ	Sedan	No
Low	Single	NY	Sedan	No
Medium	Single	СТ	Sedan	Yes
Medium	Married	NJ	Van	No
Low	Married	NJ	Van	Yes
Medium	Single	NY	Sports	Yes
High	Married	СТ	Van	No
Medium	Married	СТ	Van	No
Low	Single	NJ	Sedan	Yes
Medium	Married	NJ	Sedan	No
High	Single	NY	Sedan	No
High	Single	NY	Sports	Yes
Medium	Single	NJ	Sedan	No
Low	Single	NY	Sports	Yes

Output: A Decision Tree for

"subscribe car magazine"

Attribute Selection by Information Gain Computation

- Class P: change_plan = "yes"
- Class N: change_plan = "no"
- Compute the expected information needed to classify a given sample:

Information Gain Computation (1) In come

Income	p _i	n _i	$I(p_i, n_i)$
High	1	3	0.811
Medium	3	4	0.985
Low	3	1	0.811

$$E(Income) = \frac{4}{15}I(1,3) + \frac{7}{15}I(3,4) + \frac{4}{15}I(3,1) = 0.892$$

Gain (Income) =
$$I(p,n) - E(Income)$$

= $0.997 - 0.892 = 0.105$

Information Gain Computation (2) Mirital Status

M_Status	pi	n _i	$I(p_i, n_i)$
Single	6	3	0.917
Married	1	5	0.65

$$E(M - Status) = \frac{9}{15}I(6,3) + \frac{6}{15}I(1,5) = 0.810$$

Gain
$$(M _ Status) = I(p,n) - E(M _ Status)$$

= 0.997 - 0.810 = 0.187

Information Gain Computation (3) Living Area

L_Area	pi	n _i	$I(p_i, n_i)$
NJ	3	4	0.985
NY	3	2	0.971
CT	1	2	0.919

$$E(L_Area) = \frac{7}{15}I(3,4) + \frac{5}{15}I(3,2) + \frac{3}{15}I(1,2) = 0.967$$

Gain
$$(L _ Area) = I(p,n) - E(L _ Area)$$

= 0.997 - 0.967 = 0.030

Information Gain Computation (4) Car Type

C_Type	pi	n _i	$I(p_i, n_i)$
Sports	4	0	0
Sedan	2	5	0.864
Van	1	3	0.811

$$E(C _Type) = \frac{4}{15}I(4,0) + \frac{7}{15}I(2,5) + \frac{4}{15}I(1,3) = 0.620$$

Gain
$$(C _Type) = I(p, n) - E(C _Type)$$

= 0.997 - 0.620 = 0.377

Information Gain Computation

■ Select Highest Gain

```
Gain (Income ) = 0.105

Gain (Marital _ Status ) = 0.187

Gain (Living _ Area ) = 0.030

Gain (Car _ Type ) = 0.377
```


Partitioned Training Data Set by "Car Type"

Car_Type?

Sports

Income	Status	Area	class
Med	Single	NJ	Yes
Med	Single	NY	Yes
High	Single	NY	Yes
Low	Single	NY	Yes

Van

Income	Status	Area	class
Med	Married	NJ	No
Low	Married	NJ	Yes
High	Married	СТ	No
Med	Married	СТ	No

Income	Status	Area	class
High	Married	NJ	No
Low	Single	NY	No
Med	Single	CT	Yes
Low	Single	NJ	Yes
Med	Married	NJ	No
High	Single	NY	No
Med	Single	NJ	No

Sedan

Partitioned Training Data Set by "Car Type"

Income	Status	Area	class
High	Married	NJ	No
Low	Single	NY	No
Med	Single	СТ	Yes
Low	Single	NJ	Yes
Med	Married	NJ	No
High	Single	NY	No
Med	Single	NJ	No

Partitioned Training Data Set by "Car Type"

Income	Status	Area	class
High	Married	NJ	No
Low	Single	NY	No
Med	Single	CT	Yes
Low	Single	NJ	Yes
Med	Married	NJ	No
High	Single	NY	No
Med	Single	NJ	No

Low

Yes

Area class

NJ

NJ

CT

No

Yes

No

No

Income	Status	Area	class
High	Married	NJ	No
Low	Single	NY	No
Med	Single	CT	Yes
Low	Single	NJ	Yes
Med	Married	NJ	No
High	Single	NY	No
Med	Single	NJ	No

Information Gain Computation for Sedan (1) Income

$$I(p,n) = I(2,5) = -\frac{2}{7}\log_{2}\frac{2}{7} - \frac{5}{7}\log_{2}\frac{5}{7} = 0.864$$

Income	pi	n _i	I(p _i , n _i)
High	0	2	0
Med	1	2	0.919
Low	1	1	1

$$E(Income) = \frac{2}{7}I(0,2) + \frac{3}{7}I(1,2) + \frac{2}{7}I(1,1) = 0.680$$

$$Gain (Income) = I(p, n) - E(Income)$$

= $0.864 - 0.680 = 0.184$

Information Gain Computation for Sedan (2) Marital Status

M_Status	pi	n _i	$I(p_i, n_i)$
Single	2	3	0.971
Married	0	2	0

$$E(M _Status) = \frac{5}{7}I(2,3) + \frac{2}{7}I(0,2) = 0.693$$

$$Gain (M _Status) = I(p, n) - E(M _Status)$$

= $0.864 - 0.693 = 0.171$

Information Gain Computation for Sedan (3) Li ring Area

L_Area	pi	n _i	$I(p_i, n_i)$
NJ	1	3	0.811
NY	0	2	0
СТ	1	0	0

$$E(L_Area) = \frac{4}{7}I(1,3) + \frac{2}{7}I(0,2) + \frac{1}{7}I(1,0) = 0.463$$

$$Gain (L _ Area) = I(p, n) - E(L _ Area)$$

= $0.864 - 0.463 = 0.401$

Information Gain Computation for Sedan

■ Select Highest Gain

```
Gain (Income ) = 0.184

Gain (Marital _ Status ) = 0.171

Gain (Living _ Area ) = 0.401
```


Income	Status	Area	class
High	Married	NJ	No
Low	Single	NY	No
Med	Single	СТ	Yes
Low	Single	NJ	Yes
Med	Married	NJ	No
High	Single	NY	No
Med	Single	NJ	No

Final Decision Tree

Extracting Classification Rules from Tree

```
IF car_type = "Sports"
   THEN subscribe_car_magazine = "Yes"

IF car_type = "Sedan" AND area = "NJ" AND income="High"
   THEN subscribe_car_magazine = "No"

IF car_type = "Sedan" AND area = "NJ" AND income="Medium"
   THEN subscribe_car_magazine = "No"

IF car_type = "Sedan" AND area = "NJ" AND income="Low"
   THEN subscribe_car_magazine = "Yes"

IF car_type = "Sedan" AND area = "NY"
   THEN subscribe_car_magazine = "No"

IF car_type = "Sedan" AND area = "CT"
   THEN subscribe_car_magazine = "Yes"
```

Extracting Classification Rules from Tree (cont.)

```
IF car_type = "Van" AND income="High"
  THEN subscribe_car_magazine = "No"

IF car_type = "Van" AND income="Medium"
  THEN subscribe_car_magazine = "No"

IF car_type = "Van" AND income="Low"
  THEN subscribe_car_magazine = "Yes"
```

Data Mining Homework 3

Description

Homework 3

(The Hierarchical Agglomerative Clustering Method)

- Given are ten 2-dimensional points as shown in the figure on the next slide. The coordinates of the points can be seen from the figure.
- Divide the points into 2 clusters using the hierarchical agglomerative clustering method.

Hierarchical Agglomerative Clustering

Data Mining Homework 3 Solution

Agglomerative Clustering

$$A = \sqrt{3^2 + 1^2} = 3.16$$

$$B = 4$$

$$C = \sqrt{4^2 + 1^2} = 4.12$$

$$D = \sqrt{3^2 + 3^2} = 4.24$$

Agglomerative Clustering

$$A = 4$$

$$B = \sqrt{4^2 + 1^2} = 4.12$$

$$C = \sqrt{3^2 + 3^2} = 4.24$$

$$D = \sqrt{4^2 + 2^2} = 4.47$$

$$A = \sqrt{4^2 + 1^2} = 4.12$$

$$B = \sqrt{3^2 + 3^2} = 4.24$$

$$C = \sqrt{4^2 + 2^2} = 4.47$$

$$D = \sqrt{4^2 + 3^2} = 5$$

$$A = \sqrt{3^2 + 3^2} = 4.24$$

$$B = \sqrt{4^2 + 2^2} = 4.47$$

$$C = \sqrt{4^2 + 3^2} = 5$$

$$A = \sqrt{4^2 + 2^2} = 4.47$$

$$B = \sqrt{4^2 + 3^2} = 5$$

$$C = \sqrt{5^2 + 3^2} = 5.83$$

$$A = \sqrt{4^2 + 3^2} = 5$$

$$B = \sqrt{5^2 + 3^2} = 5.83$$

$$C = \sqrt{6^2 + 1^2} = 6.08$$

$$D = \sqrt{6^2 + 1^2} = 6.08$$

$$A = \sqrt{5^2 + 3^2} = 5.83$$

$$B = \sqrt{6^2 + 1^2} = 6.08$$

$$C = \sqrt{6^2 + 1^2} = 6.08$$

$$D = \sqrt{6^2 + 2^2} = 6.32$$

$$A = \sqrt{6^2 + 1^2} = 6.08$$

$$B = \sqrt{6^2 + 1^2} = 6.08$$

$$C = \sqrt{6^2 + 2^2} = 6.32$$

Data Mining

Homework 4

Description

Homework 4

(Text Mining)

Given the database of documents shown in the next slide,

find all association rules

with minimum support = 2 and

minimum confidence = 80%.

Database D

DID	Keywords
D1	Behavior, Child, Therapy
D2	Dream, Psychology
D3	Child, Psychology, Therapy
D4	Behavior, Dream, Psychology
D5	Child, Dream, Psychology, Therapy
D6	Dream,Therapy
D7	Behavior,Child,Psychology

Data Mining Homework 4 Solution

Scan D

Database D

C_{-1}	L_1
c_1 ,	\boldsymbol{L}_I

 D1 Behavior, Child, Therapy D2 Dream, Psychology D3 Child, Psychology, Therapy D4 Behavior, Dream, Psychology D5 Child, Dream, Psychology, Therapy D6 Dream, Therapy 	DID	Keyword
D3 Child,Psychology,Therapy D4 Behavior,Dream,Psychology D5 Child,Dream,Psychology,Therapy D6 Dream,Therapy	D1	Behavior, Child, Therapy
D4 Behavior, Dream, Psychology D5 Child, Dream, Psychology, Therapy D6 Dream, Therapy	D2	Dream,Psychology
D5 Child, Dream, Psychology, Therapy D6 Dream, Therapy	D3	Child,Psychology,Therapy
D6 Dream,Therapy	D4	Behavior, Dream, Psychology
. •	D5	Child, Dream, Psychology, Therapy
D7 Dalassias Obild Davakalass	D6	Dream,Therapy
D7 Benavior, Child, Psychology	D7	Behavior, Child, Psychology

Keywordset	Sup
{Behavior}	3
{Child}	4
(Dream)	4
{Psychology}	5
{Therapy}	4

 C_2

Keywordset

{Behavior,Child}

{Behavior,Dream}

{Behavior,Psychology}

{Behavior,Therapy}

{Child,Dream}

{Child,Psychology}

{Child,Therapy}

{Dream,Psychology}

{Dream,Therapy}

{Psychology,Therapy}

 C_2

	Keywordset	Sup	
	{Behavior,Child}	2	
Scan D	{Behavior,Psychology}	2	
	{Child,Psychology}	3	
	{Child,Therapy}	3	
	{Dream,Psychology}	3	
	{Dream,Therapy}	2	
	{Psychology,Therapy}		 \

 L_2

Keywordset	Sup
{Behavior,Child}	2
{Behavior,Psychology}	2
{Child,Psychology}	3
{Child,Therapy}	3
{Dream,Psychology}	3
{Dream,Therapy}	2
{Psychology,Therapy}	2

 C_3

Keywordset	
{Behavior, Child, Psychology}	
{Child,Psychology,Therapy}	
{Dream,Psychology,Therapy}	

 C_3

Keywordset	Sup
{Child,Psychology,Therapy}	2

 L_3

Keywordset	Sup
{Child,Psychology,Therapy}	2

Association Rules

Psychology, Therapy © Child (Support =2, confidence = 100%)

Data Mining

Homework 5

Description

Homework 5

(Connectivity Analysis)

Given is the table of linked web pages shown in the next slide, which forms a neighborhood graph.

- (a) Find the authority in the neighborhood graph using six Iterations of the HITS algorithm.
- (b) Find the hub in the neighborhood graph using six iterations of the HITS algorithm.

To answer the above questions, you need to calculate and show $\alpha(\rho)$ and $\lambda(\rho)$ for each web page ρ after the 6th iteration of the HITS algorithm.

There is no need to consider normalization or convergence problems in this homework.

Web page	Linked to the web pages
Α	C, E, F, G
В	C, F
С	A, D, F, G
D	B, C
E	A, D, G
F	C, E, G
G	A, B, C, F

Data Mining Homework 5 Solution

Key for Homework 5

Site	Linked to the sites
A	CEFG
В	C F
С	A D F G
D	ВС
E	A D G
F	CEG
G	A B C F

Initialization

ρ	α(ρ)	λ(ρ)
Α	1	1
В	1	1
С	1	1
D	1	1
E	1	1
F	1	1
G	1	1

First Iteration

$$\alpha(A) = \lambda(C) + \lambda(E) + \lambda(G)$$

$$= 1+1+1=3$$

$$\alpha(B) = \lambda(D) + \lambda(G)$$

$$= 1+1=2$$

$$\alpha(C) = \lambda(A) + \lambda(B) + \lambda(D) + \lambda(F) + \lambda(G)$$

$$= 1+1+1+1=5$$

$$\alpha(D) = \lambda(C) + \lambda(E)$$

$$= 1+1=2$$

$$\alpha(C) = \lambda(A) + \lambda(E)$$

$$\alpha(D) = \lambda(C) + \lambda(E)$$

$$\alpha(E) = \lambda(A) + \lambda(F)$$

$$\alpha(E) = \lambda(A) + \lambda(F)$$

$$\alpha(E) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(G)$$

$$\alpha(E) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(G)$$

$$\alpha(E) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(C)$$

$$\alpha(E) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(C)$$

$$\alpha(E) = \alpha(A) + \alpha(C) + \alpha(C)$$

$$\alpha(E) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(C)$$

$$\alpha(E) = \alpha(A) + \alpha(C) + \alpha(C) + \alpha(C)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(C)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(C)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(C)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(C)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(B) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(A) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E) + \alpha(E)$$

$$\alpha(E) = \alpha(E) + \alpha(E)$$

Second Iteration

$$\alpha(A) = \lambda(C) + \lambda(E) + \lambda(G) \qquad \lambda(A) = \alpha(C) + \alpha(E) + \alpha(F) + \alpha(G)$$

$$= 4+3+4 = 11 \qquad = 5+2+4+4 = 15$$

$$\alpha(B) = \lambda(D) + \lambda(G) \qquad \lambda(B) = \alpha(C) + \alpha(F)$$

$$= 2+4 = 6 \qquad = 5+4 = 9$$

$$\alpha(C) = \lambda(A) + \lambda(B) + \lambda(D) + \lambda(F) + \lambda(G) \qquad \lambda(C) = \alpha(A) + \alpha(D) + \alpha(F) + \alpha(G)$$

$$= 4+2+2+3+4 = 15 \qquad \qquad 3+2+4+4 = 13$$

$$\alpha(D) = \lambda(C) + \lambda(E) \qquad \lambda(D) = \alpha(B) + \alpha(C)$$

$$= 4+3 = 7 \qquad \qquad = 2+5 = 7$$

$$\alpha(E) = \lambda(A) + \lambda(F) \qquad \lambda(E) = \alpha(A) + \alpha(D) + \alpha(G)$$

$$= 4+3 = 7 \qquad \qquad = 3+2+4 = 9$$

$$\alpha(F) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(G) \qquad \lambda(F) = \alpha(C) + \alpha(E) + \alpha(G)$$

$$= 4+2+4+4 = 14 \qquad \qquad = 5+2+4 = 11$$

$$\alpha(G) = \lambda(A) + \lambda(C) + \lambda(E) + \lambda(F) \qquad \lambda(G) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(F)$$

$$= 4+4+3+3 = 14 \qquad \qquad = 3+2+5+4 = 14$$

Third Iteration

$$\alpha(A) = \lambda(C) + \lambda(E) + \lambda(G) \qquad \lambda(A) = \alpha(C) + \alpha(E) + \alpha(F) + \alpha(G)$$

$$= 13 + 9 + 14 = 36 \qquad = 15 + 7 + 14 + 14 = 50$$

$$\alpha(B) = \lambda(D) + \lambda(G) \qquad \lambda(B) = \alpha(C) + \alpha(F)$$

$$= 7 + 14 = 21 \qquad = 15 + 14 = 29$$

$$\alpha(C) = \lambda(A) + \lambda(B) + \lambda(D) + \lambda(F) + \lambda(G) \qquad \lambda(C) = \alpha(A) + \alpha(D) + \alpha(F) + \alpha(G)$$

$$= 15 + 9 + 7 + 11 + 14 = 56 \qquad = 11 + 7 + 14 + 14 = 46$$

$$\alpha(D) = \lambda(C) + \lambda(E) \qquad \lambda(D) = \alpha(B) + \alpha(C)$$

$$= 13 + 9 = 22 \qquad = 6 + 15 = 21$$

$$\alpha(E) = \lambda(A) + \lambda(F) \qquad \lambda(E) = \alpha(A) + \alpha(D) + \alpha(G)$$

$$= 15 + 11 = 26 \qquad = 11 + 7 + 14 = 32$$

$$\alpha(F) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(G) \qquad \lambda(F) = \alpha(C) + \alpha(E) + \alpha(G)$$

$$= 15 + 9 + 13 + 14 = 51 \qquad = 15 + 7 + 14 = 36$$

$$\alpha(G) = \lambda(A) + \lambda(C) + \lambda(E) + \lambda(F) \qquad \lambda(G) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(F)$$

$$= 15 + 13 + 9 + 11 = 48 \qquad = 11 + 6 + 15 + 14 = 46$$

Fourth Iteration

$$\alpha(A) = \lambda(C) + \lambda(E) + \lambda(G) \qquad \lambda(A) = \alpha(C) + \alpha(E) + \alpha(F) + \alpha(G)$$

$$= 46 + 32 + 46 = 124 \qquad = 56 + 26 + 51 + 48 = 181$$

$$\alpha(B) = \lambda(D) + \lambda(G) \qquad \lambda(B) = \alpha(C) + \alpha(F)$$

$$= 21 + 46 = 67 \qquad = 56 + 51 = 107$$

$$\alpha(C) = \lambda(A) + \lambda(B) + \lambda(D) + \lambda(F) + \lambda(G) \qquad \lambda(C) = \alpha(A) + \alpha(D) + \alpha(F) + \alpha(G)$$

$$= 50 + 29 + 21 + 36 + 46 = 182 \qquad = 36 + 22 + 51 + 48 = 157$$

$$\alpha(D) = \lambda(C) + \lambda(E) \qquad \lambda(D) = \alpha(B) + \alpha(C)$$

$$= 46 + 32 = 78 \qquad = 21 + 56 = 77$$

$$\alpha(E) = \lambda(A) + \lambda(F) \qquad \lambda(E) = \alpha(A) + \alpha(D) + \alpha(G)$$

$$= 50 + 36 = 86 \qquad = 36 + 22 + 48 = 106$$

$$\alpha(F) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(G) \qquad \lambda(F) = \alpha(C) + \alpha(E) + \alpha(G)$$

$$= 50 + 29 + 46 + 46 = 171 \qquad = 56 + 26 + 48 = 130$$

$$\alpha(G) = \lambda(A) + \lambda(C) + \lambda(E) + \lambda(F) \qquad \lambda(G) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(F)$$

$$= 50 + 46 + 32 + 36 = 164 \qquad = 36 + 21 + 56 + 51 = 164$$

Fifth Iteration

$$\alpha(A) = \lambda(C) + \lambda(E) + \lambda(G) \qquad \lambda(A) = \alpha(C) + \alpha(E) + \alpha(F) + \alpha(G) \\ = 157 + 106 + 164 = 427 \qquad = 182 + 86 + 171 + 164 = 603 \\ \alpha(B) = \lambda(D) + \lambda(G) \qquad \lambda(B) = \alpha(C) + \alpha(F) \\ = 77 + 164 = 241 \qquad = 182 + 171 = 353 \\ \alpha(C) = \lambda(A) + \lambda(B) + \lambda(D) + \lambda(F) + \lambda(G) \qquad \lambda(C) = \alpha(A) + \alpha(D) + \alpha(F) + \alpha(G) \\ = 181 + 107 + 77 + 130 + 164 \qquad = 124 + 78 + 171 + 164 = 537 \\ = 659 \qquad \alpha(D) = \lambda(C) + \lambda(E) \qquad \lambda(D) = \alpha(B) + \alpha(C) \\ = 157 + 106 = 263 \qquad \qquad \lambda(E) = \alpha(A) + \alpha(D) + \alpha(G) \\ = 181 + 130 = 311 \qquad \qquad \lambda(E) = \alpha(A) + \alpha(D) + \alpha(G) \\ = 181 + 130 = 311 \qquad \qquad \lambda(F) = \alpha(C) + \alpha(E) + \alpha(G) \\ = 181 + 107 + 157 + 164 = 609 \qquad \qquad \lambda(F) = \alpha(C) + \alpha(E) + \alpha(G) \\ = 182 + 86 + 164 = 432 \\ \alpha(G) = \lambda(A) + \lambda(C) + \lambda(E) + \lambda(F) \qquad \lambda(G) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(F) \\ = 181 + 157 + 106 + 130 = 574 \qquad \qquad = 124 + 67 + 182 + 171 = 544$$

Sixth Iteration

$$\alpha(A) = \lambda(C) + \lambda(E) + \lambda(G)$$

$$= 537 + 366 + 544 = 1447$$

$$= 659 + 311 + 609 + 574 = 2153$$

$$\alpha(B) = \lambda(D) + \lambda(G)$$

$$= 249 + 544 = 793$$

$$\alpha(C) = \lambda(A) + \lambda(B) + \lambda(D) + \lambda(F) + \lambda(G)$$

$$= 603 + 353 + 249 + 432 + 544$$

$$= 2181$$

$$\alpha(D) = \lambda(C) + \lambda(E)$$

$$= 537 + 366 = 903$$

$$\alpha(E) = \lambda(A) + \lambda(F)$$

$$= 603 + 432 = 1035$$

$$\alpha(F) = \lambda(A) + \lambda(B) + \lambda(C) + \lambda(G)$$

$$= 603 + 353 + 537 + 544 = 2037$$

$$\alpha(G) = \lambda(A) + \lambda(C) + \lambda(E) + \lambda(F)$$

$$= 603 + 537 + 366 + 432 = 1938$$

$$\lambda(A) = \alpha(C) + \alpha(E) + \alpha(G)$$

$$= 659 + 311 + 609 + 574 = 2168$$

$$\lambda(C) = \alpha(A) + \alpha(D) + \alpha(G)$$

$$= 427 + 263 + 574 = 1264$$

$$\lambda(F) = \alpha(C) + \alpha(E) + \alpha(G)$$

$$= 659 + 311 + 574 = 1544$$

$$\lambda(G) = \alpha(A) + \alpha(B) + \alpha(C) + \alpha(F)$$

$$= 427 + 241 + 659 + 609 = 1936$$

After Six Iterations

ρ	α(ρ)	λ(ρ)
Α	1447	2153
В	793	1268
С	2181	1873
D	903	900
Е	1035	1264
F	2037	1544
G	1938	1936