

COEP Technological University

A Unitary Public University of Government of Maharashtra

(MA-20001) Ordinary	Differential	Equations and	Multivariate	Calculus
---------------------	--------------	---------------	--------------	----------

Program: S.Y.B.Tech. Sem. III

Examination: Test 1 (SET-1)

Date: 17/09/2023

Branch:

Academic Year: 2023-24

Maximum Marks: 20

Time: 11.00 am - 12.00 noon

Student MIS Number:

Name and Signature of the Invigilator:

Q.1	Q.2	Q.3	Q.4	Total	Signature

Attempt All the Questions.

Question [I](5 marks)

(1) Write true or false and justify your answer: $y''' + yy'' - 2y \sin x = 0$ is a homogeneous linear differential equation. (mrks such)

Answer: Falso, : . egiven . D. E is . homo. Non-linear . D. E . as . gy" occurs in the D. E .

(2) Find the linear differential equation whose linearly independent solutions are 1, sin 3x, cos 3x. [CO3][3] Detailed Answer: Above are soll of Homo LDE with const. coeffs whose sol aise of the form you) = et 2 where

· 1=0, +32

Question [II] (5 marks)

1 = 0, ± 32 1(1+32)(1-32) = 0, $e \neq 0$. 1(1+32)(1-32) = 0, $e \neq 0$. 1(1+32)(1-32) = 0, $e \neq 0$. 1(1+32)(1-32) = 0. 1(1+32)(1-32) = 0. 1(1+32)(1-32) = 0. 1(1+32)(1-32) = 0. 1(1+32)(1-32) = 0.

(1) Find orthogonal trajectories of the family of curves $4x^2 + 9y^2 = k$, where k is a constant. [CO2][2] Detailed Answer:

4x2+942=K 8 x de + 1844 = 0 - 5 m y' → - 1 - 1m 4x + 94 (-1) = 0

$$4x + 9y(-\frac{1}{y'}) = 0$$

$$4\frac{dy}{y} = 9\frac{dx}{x}$$

$$4\ln y = 9\ln x + \ln c^{*}$$

(2) Solve the differential equation $y'' = 1 + (y')^2$.

Detailed Answer:

$$y'' = 1 + (y')^2 - (I)$$

1et $y' = Z$
 $y'' = Z'$
 $y'' = Z'$
 $\frac{dZ}{1 + Z^2} = dx$
 $\frac{dZ}{1 + Z^2} = dx$
 $\frac{dZ}{1 + Z^2} = 8e + C$
 $\frac{dY}{2} = 4an(k+c) - \frac{1}{2}m$
 $\frac{dY}{dx} = 4an(k+c)$

$$dy = +an(x+c) dx$$

$$| y = loge|sec(x+c)| + K$$

$$| loge|sec(x+c)| + K$$

(3) Fill in the blank. The set $\{x^2, \frac{1}{x^2}, 0\}$ is linearly . dependent / dependent / dependent) over $(0, \infty)$. [CO1][1]

Question [III](5 marks)

(1) Let M(x,y) and N(x,y) be continuous and have continuous first partial derivatives. If M(x,y) dx + N(x,y) dy = 0 is an exact differential equation then prove that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. Detailed Answer:

Since
$$M(n,y) dn + N(n,y) dy = 0$$
, is conting is an exact DE, we have $\frac{\partial^2 y}{\partial n^2 y} = \frac{\partial^2 y}{\partial n^2$

(2) Solve
$$\frac{dy}{dx} = \frac{y(2y^3 + x)}{6x^2}$$
.

(1) Solve: $(16D^4 + 24D^2 + 9I)y = 0$ Detailed Answer:

Given eqn is 4th order HLDE with constant coefficients.

$$16y' + 24y'' + 9y = 0 \rightarrow (\frac{1}{2})$$

It's AE is

16 14 + 24 12 + 9 = 04

$$\Rightarrow (4\lambda^2+3)(4\lambda^2+3)=0$$

$$\Rightarrow \lambda^2 = -\frac{3}{4}, \lambda^2 = -\frac{3}{4}$$

$$\vdots y_1(x) = \cos\left(\frac{13}{2}x\right), \frac{2}{3} \text{ coundese}$$

$$y_2(2) = \sin\left(\frac{13}{2}x\right),$$

$$y_3(x) = x \cos(\frac{13}{2}x)$$

 $y_4(x) = x \sin(\frac{13}{2}x)$

$$\int \frac{1}{2x} dx \quad [CO3][3],$$

$$\therefore 4.5. is + \sqrt{x} = \int \sqrt{x} (-\frac{1}{x^2}) dx$$

$$\Rightarrow \int \sqrt{3} \sqrt{x} = -\int \sqrt{x} dx + c$$

$$\Rightarrow \int \sqrt{3} \sqrt{x} = -\frac{2}{\sqrt{x}} + c$$

$$\Rightarrow \int \sqrt{x} = 4 + c$$

$$\Rightarrow \int \sqrt{x} = 4 + c$$

[CO3][2]

... General solo of given one is: $y(x) = c_1 \cos(\frac{13}{2}x) + c_2 \sin(\frac{13}{2}x)$ $+ c_3 x \cos(\frac{13}{2}x) + c_4 x \sin(\frac{13}{2}x)$ where c_4, c_2, c_3 and c_4 are arbitary consts,

(2) Find the current in the RL circuit with a 4-ohm resistor, a 0.1-henry inductor, and a 20-volt e.m.f, if initial current in the circuit is zero. [CO5][3]

Detailed Answer:

Given data
$$R=4$$
, $L=0.1$, $E=20$
 $L = 20\%$ e

 $L = 20\%$

ROUGH WORK (Will Not Be Assessed)