İşaret İşleme Zaman Domaini Analizi-H3CD2

Dr. Meriç Çetin

versiyon111020

Sürekli zamanlı sistemleri tekrar hatırlayalım

In general, relationship between x(t) and y(t) in a linear time-invariant (LTI) differential system is given by (where all coefficients a_i and b_i are constants):

$$\frac{d^{N}y}{dt^{N}} + a_{1}\frac{d^{N-1}y}{dt^{N-1}} + \dots + a_{N-1}\frac{dy}{dt} + a_{N}y(t)$$

$$= b_{N-M}\frac{d^{M}x}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x}{dt^{M-1}} + \dots + b_{N-1}\frac{dx}{dt} + b_{N}x(t)$$

Use compact notation D for operator d/dt,

$$\frac{dy}{dt} \equiv Dy(t) \text{ and } \frac{d^2y}{dt^2} \equiv D^2y(t)$$

We get:
$$(D^N + a_1 D^{N-1} + \dots + a_{N-1} D + a_N) y(t)$$

= $(b_{N-M} D^M + b_{N-M+1} D^{M-1} + \dots + b_{N-1} D + b_N) x(t)$

or
$$Q(D)y(t) = P(D)x(t)$$

$$Q(D) = D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}$$

$$P(D) = b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N}$$

Bir sistemin toplam tepkisi - (Total response)

Remember that for a Linear System

Total response = zero-input response + zero-state response

Sıfır Giriş Cevabı (SGC)-(Zero input response)

In this lecture, we will focus on a linear system's **zero-input response**, y_0 (t), which is the solution of the system equation when input x(t) = 0.

$$(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})y(t) = (b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N})x(t)$$

$$\Rightarrow Q(D)y(t) = P(D)x(t)$$

$$\Rightarrow Q(D)y_{0}(t) = 0$$

$$\Rightarrow (D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})y_{0}(t) = 0$$

SGC için genel çözüm-1

From maths course on differential equations, we may solve the equation:

$$(D^N + a_1 D^{N-1} + \dots + a_{N-1} D + a_N) y_0(t) = 0 \quad \dots$$
 (3.1)

$$y_0(t) = ce^{\lambda t}$$

by letting $y_0(t) = ce^{\lambda t}$, where c and λ are constants

$$Dy_0(t) = \frac{dy_0}{dt} = c\lambda e^{\lambda t}$$

$$D^2 y_0(t) = \frac{d^2 y_0}{dt^2} = c\lambda^2 e^{\lambda t}$$

here c and
$$\lambda$$
 are constants
$$Dy_0(t) = \frac{dy_0}{dt} = c\lambda e^{\lambda t}$$

$$D^2y_0(t) = \frac{d^2y_0}{dt^2} = c\lambda^2 e^{\lambda t}$$

$$\vdots$$

$$D^Ny_0(t) = \frac{d^Ny_0}{dt^N} = c\lambda^N e^{\lambda t}$$

Substitute into (3.1)

SGC için genel çözüm-2

We get:

$$c(\lambda^N + a_1\lambda^{N-1} + \dots + a_{N-1}\lambda + a_N)e^{\lambda t} = 0$$

$$\lambda^N + a_1 \lambda^{N-1} + \dots + a_{N-1} \lambda + a_N = 0$$

This is identical to the polynomial Q(D) with λ replacing D, i.e.

$$Q(\lambda) = 0$$

We can now express $Q(\lambda)$ in factorized form:

$$Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_N) = 0 \qquad (3.2)$$

Therefore λ has N solutions: $\lambda_1, \lambda_2, \ldots, \lambda_N$, assuming that all λ_i are distinct.

Characteristic Polynomial of a system

- $Q(\lambda)$ is called the characteristic polynomial of the system
- $Q(\lambda) = 0$ is the characteristic equation of the system

The **roots** to the characteristic equation $Q(\lambda) = 0$, i.e. $\lambda_1, \lambda_2, \ldots, \lambda_N$, are extremely important.

They are called by different names:

- Characteristic values
- Eigenvalues
- Natural frequencies

The exponentials $e^{\lambda_i t} (i = 1, 2, ..., n)$ are the characteristic modes (also known as natural modes) of the system

Characteristics modes determine the system's behaviour

 $Q(\lambda)$ is called the **characteristic polynomial** of the system

The **roots** to the characteristic equation $Q(\lambda) = 0$, i.e. $\lambda_1, \lambda_2, \ldots, \lambda_N$, are extremely important.

• NOT:

- Sistemin karakteristik polinomuna ait kökler (λ) 3 farklı durumda olabilir.
 - Katsız (tekrar etmeyen) kök
 - Katlı (tekrar eden) kök
 - Kompleks kök
- Her 3 durum için sistemin sıfır giriş cevabı farklı genel çözümlerle bulunur.

SGC için genel çözüm-3

Therefore, equation (3.1):
$$(D^N + a_1 D^{N-1} + \cdots + a_{N-1} D + a_N) y_0(t) = 0$$

has N possible solutions: $c_1e^{\lambda_1t}, c_2e^{\lambda_2t}, \ldots, c_Ne^{\lambda_Nt}$

where c_1, c_2, \ldots, c_N are arbitrary constants.

It can be shown that the **general solution** is the sum of all these terms:

$$y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_N e^{\lambda_N t}$$

Katsız kök olduğunda

In order to determine the N arbitrary constants, we need to have N constraints (i.e. initial or boundary or auxiliary conditions).

• Sistemin karakteristik polinomuna ait kökler (λ_i) Katsız (tekrar etmeyen) kökler olduğunda sistemin sıfır giriş cevabına ait genel çözüm;

$$y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_N e^{\lambda_N t}$$

Bir Örnek;

- This example demonstrates that any combination of characteristic modes can be sustained by the system with no external input.
- Consider this RL circuit:
- The loop equation is: (D+2)y(t) = x(t)
- It has a single characteristic root λ = -2,
 and the characteristic mode is e^{-2t}
- Therefore, the loop current equation is $y(t) = ce^{-2t}$

The loop current is sustained by the RL circuit on its own without any external input.

Sistemin karakteristik polinomuna ait kökler (λ) katlı yani tekrar eden durumda ise sistemin sıfır giriş cevabı için genel çözüm formu değişecektir.

Sıfır Giriş Cevabı Bulunurken Tekrar Eden Kökler Varsa;

- The discussions so far assume that all characteristic roots are distinct. If there are repeated roots, the form of the solution is modified.
- The solution of the equation:

$$(D - \lambda)^2 y_0(t) = 0$$

is given by:

$$y_0(t) = (c_1 + c_2 t)e^{\lambda t}$$

In general, the characteristic modes for the differential equation:

are:

$$(D-\lambda)^r y_0(t) = 0$$

$$e^{\lambda t}$$
, $te^{\lambda t}$, $t^2e^{\lambda t}$, ..., $t^{r-1}e^{\lambda t}$

The solution for y₀(t) is

$$y_0(t) = (c_1 + c_2t + \dots + c_rt^{r-1})e^{\lambda t}$$

Tekrar Eden Kökler için Bir Örnek

Find $y_0(t)$, the zero-input component of the response for a LTI system described by the following differential equation: $(D^2 + 6D + 9) = (3D + 5)x(t)$

when the initial conditions are $y_0(0) = 3$, $\dot{y}_0(0) = -7$.

The characteristic polynomial for this system is:

$$\lambda^2 + 6\lambda + 9 = (\lambda + 3)^2$$

- The repeated roots are therefore λ₁ = -3 and λ₂ = -3.
- The zero-input response is $y_0(t) = (c_1 + c_2 t)e^{-3t}$
- Now, determine the constants using the initial conditions gives c₁ = 3 and c₂ = 2.
- Therefore: $y_0(t) = (3+2t)e^{-3t}$ $t \ge 0$

L2.2 p156

• Sistemin karakteristik polinomuna ait kökler (λ_i) Katlı (tekrar eden) kökler olduğunda sistemin sıfır giriş cevabına ait genel çözüm;

$$y_0(t) = (c_1 + c_2t + \cdots + c_rt^{r-1})e^{\lambda t}$$

Sistemin karakteristik polinomuna ait kökler (λ) kompleks ise sistemin sıfır giriş cevabı için genel çözüm formu değişecektir.

Sıfır Giriş Cevabı Bulunurken Kompleks Kökler Varsa;

- Solutions of the characteristic equation may result in complex roots.
- For real (i.e. physically realizable) systems, all complex roots must occur
 in conjugate pairs. In other words, the coefficients of the characteristic
 polynomial Q(λ) are real.
- In other words, if α + jβ is a root, then there must exists the root α jβ.
- The zero-input response corresponding to this pair of conjugate roots is:

$$y_0(t) = c_1 e^{(\alpha+j\beta)t} + c_2 e^{(\alpha-j\beta)t}$$

- For a real system, the response y₀(t) must also be real. This is possible only if c₁ and c₂ are conjugates too.
- Let
- This gives

$$c_1 = \frac{c}{2}e^{j\theta}$$
 and $c_2 = \frac{c}{2}e^{-j\theta}$

$$y_0(t) = \frac{c}{2} e^{j\theta} e^{(\alpha + j\beta)t} + \frac{c}{2} e^{-j\theta} e^{(\alpha - j\beta)t}$$
$$= \frac{c}{2} e^{\alpha t} \left[e^{j(\beta t + \theta)} + e^{-j(\beta t + \theta)} \right]$$
$$= c e^{\alpha t} \cos(\beta t + \theta)$$

L2.2 p155

Kompleks Kökler için Bir Örnek

Find $y_0(t)$, the zero-input component of the response for a LTI system described by the following differential equation: $(D^2 + 4D + 40) = (D + 2)x(t)$

when the initial conditions are $y_0(0) = 2$, $\dot{y}_0(0) = 16.78$.

The characteristic polynomial for this system is:

$$\lambda^{2} + 4\lambda + 40 = (\lambda^{2} + 4\lambda + 4) + 36 = (\lambda + 2)^{2} + (6)^{2}$$
$$= (\lambda + 2 - j6)(\lambda + 2 + j6)$$

- The complex roots are therefore λ₁ = −2 + j6 and λ₂ = −2 − j6
- The zero-input response in real form is (α = -2, β = 6)

$$y_0(t) = ce^{-2t}\cos(6t + \theta)$$
 (12.1)

Kompleks Kökler için Bir Örnek-devam

- To find the constants c and θ , we use the initial conditions $y_0(0) = 2$, $\dot{y}_0(0) = 16.78$.
- Differentiating equation (12.1) $y_0(t) = ce^{-2t}\cos(6t + \theta)$ gives:

$$\dot{y}_0(t) = -2ce^{-2t}\cos(6t + \theta) - 6ce^{-2t}\sin(6t + \theta)$$

• Using the initial conditions, we obtain: $2 = c \cos \theta$

$$16.78 = -2c\cos\theta - 6c\sin\theta$$

This reduces to: c cos θ = 2

$$c\sin\theta = -3.463$$

Hence

$$c^2 = (2)^2 + (-3.464)^2 = 16 \Longrightarrow c = 4$$
 $\theta = \tan^{-1}\left(\frac{-3.463}{2}\right) = -\frac{\pi}{3}$

Finally, the solution is

$$y_0(t) = 4e^{-2t}\cos\left(6t - \frac{\pi}{3}\right)$$

L2.2 p157

• Sistemin karakteristik polinomuna ait kökler (λ_i) Kompleks olduğunda sistemin sıfır giriş cevabına ait genel çözüm;

The Resonance Behaviour

- Any signal consisting of a system's characteristic mode is sustained by the system on its own.
- In other words, the system offers NO obstacle to such signals.
- It is like asking an alcoholic to be a whisky taster.
- Driving a system with an input of the form of the characteristic mode will cause resonance behaviour.

Tacoma Bridge Disaster

Figure 2.24: Buildup of system response in resonance.

https://www.youtube.com/watch?v=3mclp9QmCGs

- Strange Attractors
- https://www.youtube.com/watch?v=dP3qAq9RNLg

Van der Pol oscillator

Bu ders notu için faydalanılan kaynaklar

Lecture 3

Time-domain analysis: Zero-input Response (Lathi 2.1-2.2)

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

