Ajtai commitment and its proof of opening

Recall SIS

Definition 4.1.1 (Short Integer Solution (SIS_{n,q,β,m})). Given m uniformly random vectors $\mathbf{a}_i \in \mathbb{Z}_q^n$, forming the columns of a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a nonzero integer vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $\|\mathbf{z}\| \leq \beta$ such that

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \sum_{i} \mathbf{a}_{i} \cdot z_{i} = \mathbf{0} \in \mathbb{Z}_{q}^{n}.$$
 (4.1.1)

CRHF

DEFINITION 2 A family of collision resistant hash functions (CRHF) is a sequence $\{\mathcal{F}_n\}_{n=1}^{\infty}$, where each \mathcal{F}_n is a family of functions $f: \{0,1\}^{m(n)} \to \{0,1\}^{k(n)}$, with the following properties.

- 1. There exists an algorithm that given any $n \geq 1$ outputs a random element of \mathcal{F}_n in time polynomial in n.
- 2. Every function $f \in \mathcal{F}_n$ is efficiently computable.
- 3. For any c > 0, there is no polynomial-time algorithm that with probability at least $\frac{1}{n^c}$, given a random $f \in \mathcal{F}_n$ outputs x, y such that $x \neq y$ and f(x) = f(y) (i.e., there is no polynomial-time algorithm that with non-negligible probability finds a collision).

Collision resistant functions from the SIS problem The key space $\mathcal{K} = \mathbb{Z}_q^{n \times m}$, is the set of all $n \times m$ matrices with coefficients in \mathbb{Z}_q . Set $\mathcal{M} = \{0,1\}^m$ and $\mathcal{H} = \mathbb{Z}_q^n \approx \{0,1\}^{n \log_2 q}$. For key **A** and input message $x \in \mathcal{M}$, set

$$f_{\mathbf{A}}(\mathbf{x}) := \mathbf{A}\mathbf{x} \bmod q$$
.

Lemma 10 Is $SIS_{m,n,q,1}$ is hard, then $f: \mathcal{K} \times \mathcal{M} \to \mathcal{H}$ is hard.

PROOF: Let $\mathbf{A} \in \mathcal{K}$. Suppose we are able to find two $\mathbf{m}_1 \neq \mathbf{m}_2 \in \mathcal{M}$ such that $f_{\mathbf{A}}(\mathbf{m}_1) = f_{\mathbf{A}}(\mathbf{m}_2)$. Let $\mathbf{x} = \mathbf{m}_1 - \mathbf{m}_2$. Then $\mathbf{A}\mathbf{x} = 0$, with $\|\mathbf{x}\|_{\infty} \leq 1$. So any algorithm that finds a collision of f., solves SIS. \square

4.3 Construction of a commitment scheme from SIS

An example of a lattice-based commitment scheme can be obtained by considering SIS-related function $f_{\mathbf{A}} = \mathbf{A}\mathbf{x} \mod q$. One obtains such a scheme by putting the triple of functions Keygen, Commit and Verif as follows.

The key generating function KeyGen takes as input 1^n and outputs a matrix (that serves as public key) $\mathbf{A} =: pk$ uniformly random from $\mathbb{Z}_q^{n \times m}$, where m is a parameter whose value will be decided later. For the random set R and its distribution D, put $R = \mathbb{Z}^{m-1}$ and $D = D_{\mathbb{Z}^{m-1},\sigma}$ the discrete Gaussian distribution on \mathbb{Z}^{m-1} , where $\sigma \in \operatorname{poly}(n)$.

The commitment function is defined as follows: $\mathtt{Commit}(pk = \mathbf{A}, \mu, r) := \mathbf{A} \cdot \begin{pmatrix} \mu \\ \mathbf{r} \end{pmatrix} \bmod q$, where $\mu \in \{0,1\}$. Here, $\begin{pmatrix} \mu \\ \mathbf{r} \end{pmatrix}$ is the vector that is obtained by concatenating; $(\mu | \mathbf{r})$.

To verify the commitment on input (pk, μ, r, c) , check whether $\mathbf{A} \cdot \begin{pmatrix} \mu \\ \mathbf{r} \end{pmatrix} = c \mod q$ and $\| \begin{pmatrix} \mu \\ \mathbf{r} \end{pmatrix} \| \leq \beta$. If this is both true, set $\mathrm{Verif}(pk, \mu, r, c) = 1$, otherwise 0.

Lemma 7 For appropriate parameters, above scheme is correct, statistically hiding and computationally binding, assuming that the $SIS_{n,m,q,2\beta}$ is hard.

- (Computationally binding) Suppose a probabilistic polynomial time algorithm is able to find (on input $\bf A$) a triple $({\bf r}_0,{\bf r}_1,c)$ such that $\bf A \begin{pmatrix} 0 \\ {\bf r}_0 \end{pmatrix} = c = {\bf A} \begin{pmatrix} 1 \\ {\bf r}_1 \end{pmatrix}$ mod q with nonnegligible probability. Then the vector ${\bf v} = \begin{pmatrix} 1 \\ {\bf r}_0 {\bf r}_1 \end{pmatrix}$ is a SIS_{$n,m,q,2\beta$} solution. Therefore, this adversary solves SIS with these parameters, which is a contradiction, as we assumed that this was hard.
- (Statistically hiding) The goal is to prove that $\tilde{\forall} \mathbf{A} = pk \leftarrow \texttt{KeyGen}(1^n)$ holds $\texttt{Commit}(pk, 0, r) \approx_s \texttt{Commit}(pk, 1, r)$, i.e., that the statistical distance is negligible. Decompose A into a first column \mathbf{a}_0 and the rest of the matrix \mathbf{A}' : $\mathbf{A} = (\mathbf{a}_0 | \mathbf{A}')$. Our aim is to prove that

$$\Delta = \frac{1}{2} \sum_{c \in \mathcal{C}} |\mathbb{P}[\mathbf{A}'r = c] - \mathbb{P}[\mathbf{A}'r + a_0 = c]| \le \text{negl}(n).$$

Define $\Lambda_q^{\perp c} = \{ \mathbf{x} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{x} \equiv c \mod q \}$. Then, by construction

$$\mathbb{P}_{r \leftarrow D_{\mathbb{Z}^{m-1}, \sigma}}[\mathbf{A}r = c] = \frac{\rho_{\sigma}(\Lambda_q^{\perp c}(\mathbf{A}'))}{\rho_{\sigma}(\mathbb{Z}^{m-1})}$$

If $\sigma \geq \eta_{\varepsilon}(\Lambda_{q}^{\perp c}(\mathbf{A}))$, the smoothing parameter of $\Lambda_{q}^{\perp c}(\mathbf{A}')$, then we know that (informally) the cumulative weight of the Gaussians of any coset of $\Lambda_{q}^{\perp c}(\mathbf{A}')$ is the same, up to a factor $(1 \pm \varepsilon)$ [Lecture 8, Lemma 5]. In particular, $\rho_{\sigma}(\Lambda_{q}^{\perp (c-a_{0})}(\mathbf{A}')) \in [1 - \varepsilon, 1 + \varepsilon] \cdot \rho_{\sigma}(\Lambda_{q}^{\perp c}(\mathbf{A}'))$. Therefore

$$\Delta = \frac{1}{2} \sum_{c \in \mathcal{C}} |\mathbb{P}[\mathbf{A}'r = c] - \mathbb{P}[\mathbf{A}'r + a_0 = c]| = \frac{1}{2\rho_{\sigma}(\mathbb{Z}^{m-1})} \sum_{c \in \mathcal{C}} |\rho_{\sigma}(\Lambda_q^{\perp (c - a_0)}(\mathbf{A}')) - \rho_{\sigma}(\Lambda_q^{\perp c}(\mathbf{A}'))|$$

$$\leq \frac{1}{2\rho_{\sigma}(\mathbb{Z}^{m-1})} \sum_{c \in \mathcal{C}} \varepsilon \cdot \rho_{\sigma}(\Lambda_q^{\perp c}(\mathbf{A}')) \leq \varepsilon/2$$

In order to know the parameter choice for σ , we need to estimate $\eta_{\varepsilon}(\Lambda_q^{\perp c}(\mathbf{A}))$ with $\varepsilon \in \text{negl}(n)$. This is because σ needs to be larger than the smoothing parameter.

LYU SIGNATURE

Prove the knowledge of a SIS secret

```
Signing Key: \mathbf{S} \stackrel{\$}{\leftarrow} \{-d, \dots, 0, \dots, d\}^{m \times k}

Verification Key: \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}, \mathbf{T} \leftarrow \mathbf{AS}

Random Oracle: \mathbf{H} : \{0,1\}^* \to \{\mathbf{v} : \mathbf{v} \in \{-1,0,1\}^k, \|\mathbf{v}\|_1 \le \kappa\}

Sign(\mu, \mathbf{A}, \mathbf{S})

1: \mathbf{y} \stackrel{\$}{\leftarrow} D_\sigma^m

2: \mathbf{c} \leftarrow \mathbf{H}(\mathbf{A}\mathbf{y}, \mu)

3: \mathbf{z} \leftarrow \mathbf{Sc} + \mathbf{y}

4: output (\mathbf{z}, \mathbf{c}) with probability min \left(\frac{D_\sigma^m(\mathbf{z})}{MD_{\mathbf{Sc},\sigma}^m(\mathbf{z})}, 1\right)
```

Fig. 1. Signature Scheme.

Zero-Knowledge

Theorem 4.6. Let V be a subset of \mathbb{Z}^m in which all elements have norms less than T, σ be some element in \mathbb{R} such that $\sigma = \omega(T\sqrt{\log m})$, and $h: V \to \mathbb{R}$ be a probability distribution. Then there exists a constant M = O(1) such that the distribution of the following algorithm A:

```
1: \mathbf{v} \overset{\$}{\leftarrow} h

2: \mathbf{z} \overset{\$}{\leftarrow} D^{m}_{\mathbf{v},\sigma}

3: output (\mathbf{z}, \mathbf{v}) with probability min \left(\frac{D^{m}_{\sigma}(\mathbf{z})}{MD^{m}_{\mathbf{v},\sigma}(\mathbf{z})}, 1\right)
```

is within statistical distance $\frac{2^{-\omega(\log m)}}{M}$ of the distribution of the following algorithm \mathcal{F} :

```
1: \mathbf{v} \overset{\$}{\leftarrow} h

2: \mathbf{z} \overset{\$}{\leftarrow} D_{\sigma}^{m}

3: output (\mathbf{z}, \mathbf{v}) with probability 1/M
```

Moreover, the probability that A outputs something is at least $\frac{1-2^{-\omega(\log m)}}{M}$.

More concretely, if $\sigma = \alpha T$ for any positive α , then $M = e^{12/\alpha + 1/(2\alpha^2)}$, the output of algorithm \mathcal{A} is within statistical distance $\frac{2^{-100}}{M}$ of the output of \mathcal{F} , and the probability that \mathcal{A} outputs something is at least $\frac{1-2^{-100}}{M}$.

Soundness

Definition 2.3 (Relaxed Binding Commitment [ALS20; ACK21; Ajt96; PR06; LM06]). Fix $q = q(\lambda), \kappa = \kappa(\lambda)$, $m = m(\lambda)$, bound $b \in \mathbb{N}$ and a set $S \subseteq R_q^*$ with invertible elements. We say that a randomly sampled linear function $\mathbf{A} \stackrel{\mathbb{R}}{\leftarrow} R_q^{\kappa \times m}$ is (b, \mathcal{S}) -relaxed binding if for all expected polynomial-time adversary \mathcal{A} ,

$$\Pr\left[\begin{array}{c|c} 0<\|\mathbf{z}_1\|_{\infty},\|\mathbf{z}_2\|_{\infty}< b \wedge s_1, s_2 \in \mathcal{S} \wedge \\ \mathbf{A}\mathbf{z}_1s_1^{-1}=\mathbf{A}\mathbf{z}_2s_2^{-1} \wedge \\ \mathbf{z}_1s_1^{-1}\neq \mathbf{z}_2s_2^{-1} \end{array} \right| \begin{array}{c} \mathbf{A} \xleftarrow{\mathbb{R}} R_q^{\kappa \times m} \\ (\mathbf{z}_1,\mathbf{z}_2 \in R_q^m, s_1, s_2) \leftarrow \mathcal{A}(\mathbf{A}) \end{array}\right] = \mathsf{negl}(\lambda) \,.$$

It is clear that if the (b, \mathcal{S}) -relaxed binding property doesn't hold, then we can find $\mathbf{x} := s_2\mathbf{z}_1 - s_1\mathbf{z}_2 \neq \mathbf{0} \in \mathbb{R}^m$ such that $\mathbf{A}\mathbf{x} = 0 \mod q$. Here $s_2\mathbf{z}_1 - s_1\mathbf{z}_2$ is computed over R by first lifting $s_1, s_2, \mathbf{z}_1, \mathbf{z}_2$ to R. Moreover, $\|\mathbf{x}\|_{\infty} < B := 2b\|\mathcal{S}\|_{\text{op}}$, thus we can reduce the (b, \mathcal{S}) -relaxed binding property to the MSIS assumption $\text{MSIS}_{a,\kappa,m,B}^{\infty}$.

If we don't care ZK...