**Case Study** 

Edition 1.0 May 2020

#### **Authors**

**Technical Contributors and Reviewers** 

# **Table of Contents**

1. Case Study – Traffic Management System.....8

# **Preface**

# **Profile**

Before You Begin This Case Study

Before you begin this case study, you should have the following qualifications:

• Basic Knowledge on Hibernate Spring Spring Boot and Microservices

# **Case Study – Traffic Management System**

### 1. Business Scenario

Our Bangalore traffic police want to create a Traffic Management System (TMS) that helps in maintaining Offence information. And also help RTO to include new vehicle information, owner information and old/scrapped vehicles.

The scope of this project is limited to offence details. The functionalities include the following:

- The Traffic Policeman should be allowed to add offence details against a vehicle and notify the RTO.
- 2. The Traffic Police Department should be able to clear the offence and notify the RTO.
- 3. This includes generation of reports to display owner and vehicle details as well as reports to show offence history against the vehicle and its owner.
- 4. The project also provides for an efficient notification system for communication between the various actors involved.
- 5. Other functionalities of a typical traffic management system (i.e. seizing/releasing vehicles, etc) do not come under the purview of this project.

#### Team is retained to

- Create a UML Design
- Design the UI Screens
- Implementation of the SRS Given through Java Coding

Please go ahead and read the problem statement below.

#### 2. Business Process in the application:

#### 1. Vehicle

- 6. As the scope of this project is limited to offence details, an XML file containing all information regarding vehicle should be imported, parsed and data should be mapped to the database by RTO officer.
  - a. File can contain information about new vehicle, old and new owner (in case of transfer of vehicle ownership) or scrapped vehicle.

- b. All data in the file should be validated before entering into database like primary key, unique and not null constraints.
- c. When the vehicle has crossed 15 years from the date of manufacture it should be marked as Old or not in use if there is no offence marked against it.
- d. If any offence details found against the vehicle, the transfer should not be allowed and an error should be generated.

#### 2. Offence

#### Addition of new offence

- a. Traffic Police Man should be authorized to select a particular vehicle and add the offence details against it.
- b. He should be allowed to select the offence type only from the predefined offences.
- c. When he selects a particular offence its corresponding penalty should automatically be displayed.
- d. While adding the offence details the owner's details should also be displayed.
- e. RTO should be informed about the offence so that the vehicle is ceased.
- f. Here are the predefined offences and their respective penalty.

| No. | Nature Of offence                      | Type of vehicles | Compounding fee (Rs) |
|-----|----------------------------------------|------------------|----------------------|
| 1   | General offences                       | All vehicles     | 100                  |
| 2   | Driving vehicles without valid licence | All vehicles     | 300                  |
| 3   | Driving at excessive speed             | All vehicles     | 200                  |

| 4 | Driving dangerously                                | All vehicles | 500 |
|---|----------------------------------------------------|--------------|-----|
| 5 | Racing and trials of speed without permission      | All vehicles | 300 |
| 6 | Talking on mobile phone while driving              | All vehicles | 200 |
| 7 | Driving uninsured vehicle                          | All vehicles | 300 |
| 8 | Driving when mentally or physically unfit to drive | All vehicles | 100 |

### Clearing a Offence

- a. When the appropriate fine is paid the traffic police department should clear the offence by marking it paid.
- b. The same detail should be sent to RTO department, so that the vehicle is released.

#### 3. REPORT GENERATION

**RTO REPORT:** The RTO report generated by RTO officer will contain details of owner and vehicle.

<u>OFFENCE REPORT Based On Vehicle</u>: The offence report generated only by clerk will contain the complete offence history against a particular vehicle with its owner details.

<u>OFFENCE REPORT Based On Type of Offences</u>: The offence report generated only by clerk will contain the complete offences based on Type.

<u>OFFENCE REPORT Based On Date Range</u>: The offence report generated only by clerk will contain the complete offences based on Date Range.

## Architecture



# Activities (User wise)



### **DATABASE SCHEMA**

### 1. TM\_VEHICLEDETAILS

| SI.NO | Field Name          | Data Type  | Description      |
|-------|---------------------|------------|------------------|
| 1.    | VEH_ID              | VARCHAR2() | System generated |
| 2.    | VEH_TYPE            | VARCHAR2() | NOT NULL         |
| 3.    | ENGINE_NO           | VARCHAR2() | UNIQUE KEY       |
| 4.    | MODEL_NO            | VARCHAR2() | NOT NULL         |
| 5.    | VEH_NAME            | VARCHAR2() | NOT NULL         |
| 6.    | VEH_COLOR           | VARCHAR2() |                  |
| 7.    | MANUFACTURER_NAME   | VARCHAR2() | NOT NULL         |
| 8.    | DATE_OF_MANUFACTURE | DATE       | NOT NULL         |
| 9.    | NO_OF_CYCLINDERS    | NUMERIC    |                  |
| 10.   | CUIBIC_CAPACITY     | NUMERIC    |                  |
| 11.   | FUEL_USED           | VARCHAR2() |                  |

# 2. TM\_OWNERDETAILS

| SI.NO | Field Name     | Data Type  | Description |
|-------|----------------|------------|-------------|
| 1.    | OWNER_ID       | VARCHAR2() | PRIMARY KEY |
| 2.    | FNAME          | VARCHAR2() | NOT NULL    |
| 3.    | LNAME          | VARCHAR2() | NOT NULL    |
| 4.    | DATEOFBIRTH    | VARCHAR2() | NOT NULL    |
| 5.    | LANDLINE_NO    | NUMERIC    |             |
| 6.    | MOBILE_NO      | NUMERIC    |             |
| 7.    | GENDER         | VARCHAR2() | NOT NULL    |
| 8.    | TEMP_ADDR      | VARCHAR2() |             |
| 9.    | PERM_ADDR      | VARCHAR2() | NOT NULL    |
| 10.   | PINCODE        | NUMERIC()  | NOT NULL    |
| 11.   | OCCUPATION     | VARCHAR2() |             |
| 12.   | PANCARD_NO     | VARCHAR2() | NOT NULL    |
| 13.   | ADD_PROOF_NAME | VARCHAR2() | NOT NULL    |

### ${\bf 3.} \ \ {\bf TM\_REGISTRATIONDETAILS}$

| SI.NO | Field Name       | Data Type  | Description                        |
|-------|------------------|------------|------------------------------------|
| 1.    | APP_NO           | VARCHAR2() | PRIMARY KEY                        |
| 2.    | VEH_NO           | VARCHAR2() | UNIQUE                             |
| 3.    | VEH_ID           | VARCHAR2() | FOREIGN KEY FROM TM_VEHICLEDETAILS |
| 4.    | OWNER_ID         | VARCHAR2() | FOREIGN KEY FROM TM_OWNERDETAILS   |
| 5.    | DATE_OF_PURCHASE | DATETIME   | NOT NULL                           |
| 6.    | DISTRUBUTER_NAME | VARCHAR2() | NOT NULL                           |

### 4. TM\_OFFENCE

| SI.NO | Field Name   | Data Type  | Description      |
|-------|--------------|------------|------------------|
| 1.    | OFFENCE_ID   | VARCHAR2() | SYSTEM GENERATED |
| 2.    | OFFENCE_TYPE | VARCHAR2() | NOT NULL         |
| 3.    | VEH_TYPE     | VARCHAR2() | NOT NULL         |
| 4.    | PENALTY      | NUMERIC    | NOT NULL         |

### 5. OFFENCE\_DETAILS

| SI.NO | Field Name  | Data Type  | Description                    |
|-------|-------------|------------|--------------------------------|
| 1.    | VEH_NO      | VARCHAR2() | FOREIGN KEY FROM TM_REGDETAILS |
| 2.    | TIME        | DATETIME   | NOT NULL                       |
| 3.    | PLACE       | VARCHAR2() | NOT NULL                       |
| 4.    | OFFENCE_ID  | VARCHAR2() | FOREIGN KEY FROM TM_OFFENCE    |
| 5.    | REPORTED_BY | VARCHAR2() | NOT NULL                       |

### 6. TM\_USER

| SI.NO | Field Name | Data Type  | Description                          |
|-------|------------|------------|--------------------------------------|
| 1.    | USERNAME   | VARCHAR2() | PRIMARY KEY                          |
| 2.    | PASSWORD   | VARCHAR2() | NOT NULL                             |
| 3.    | ROLENAME   | VARCHAR2() | NOT NULL , FK Ref to TM_ROLES_MASTER |

## 7. TM\_ROLE

| SI.NO | Field Name | Data Type  | Description |
|-------|------------|------------|-------------|
| 1.    | ROLENAME   | VARCHAR2() | PRIMARY KEY |
| 2.    | ROLEDESC   | VARCHAR2() | NOT NULL    |

# Use Case-Diagram



### 3. Tools to be used for development:

- Visual Studio Code
- Oracle 11g database
- OJET Framework

### 2. Guidelines to the instructors:

### Step 1

After teaching them the basics and UML-Diagram. Let them design an UML-Diagram for the above problem. It might go in cycle and the facilitator helps the participants to design an UML diagram buy giving the comments and feedbacks. Task: Help the participants to design a similar design.

#### Step 2

Once the basic design is approved by the facilitator, The team can go ahead and start the implementation. Components to be monitored

- Creation of Classes
- Creation of Database Structure
- Feed Data
- Create other objects
  - User Interface Designs
  - Implementations of Classes Based on Presentation Layer, Business Layer, And Persistence Layer

Review to be done by the facilitator at this stage (it goes in cycle, till it reaches the expected out cum)

#### Step 3 – Role Play

Let the team present their design.

- Note Down comments/ideas by other team and facilitator
- Keeping these ideas as base, team has to list down the activities that can facilitate the Traffic Management Service.

### Step 4 – Validate

All learning objectives defined above for the Java should have been met. If not revisit and ensure the learning objectives are met for the Java

# 3. Estimated duration for completing the project:

6 hrs