Отчёт по лабораторной работе №4 Моделирование сетей передачи данных

Эмуляция и измерение задержек в глобальных сетях

Выполнил: Махорин Иван Сергеевич, НПИбд-02-21, 1032211221

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Вывод	39
4	Список литературы. Библиография	40

Список иллюстраций

2.1	исправление прав запуска х-соединения в виртуальнои машине	
	mininet	6
2.2	Создание простейшей топологии	7
2.3	Отображение информации их сетевых интерфейсов и IP-адресов	8
2.4	Проверка подключения между хостами h1 и h2	9
2.5	Добавление задержки в 100 мс к выходному интерфейсу на хосте h1	9
2.6	Проверка	10
2.7	Добавление задержки в 100 мс к выходному интерфейсу на хосте h2	10
2.8	Проверка	10
2.9	Изменение задержки со 100 мс до 50 мс	11
2.10	Проверка	11
2.11	Восстановление конфигураций по умолчанию	11
2.12	Добавление на узле h1 задержки в 100 мс со случайным отклоне-	
	нием 10 мс	12
2.13	Проверка	12
2.14	Восстановление конфигурации интерфейса по умолчанию	12
2.15	Проверка	13
2.16	Восстановление конфигурации интерфейса по умолчанию	13
2.17	Настройка нормального распределения задержки на узле h1 в эму-	
	лируемой сети	14
2.18	Проверка	14
2.19	Восстановление конфигурации интерфейса по умолчанию	14
2.20	Завершение работы mininet в интерактивном режиме	15
2.21	Обновление репозиториев программного обеспечения на втрту-	
	альной машине	16
2.22	Установка пакета geeqie	17
2.23	Создание нового каталога	17
	Создание каталога simple-delay	18
	Создание скрипта lab_netem_i.py для эксперимента	18
	Создание файла ping_plot	19
2.27	Создание скрипта ping_plot для визуализации результатов экспе-	
	римента	19
2.28	Настройка прав доступа к файлу скрипта	19
	Создание файла Makefile	19
	Добавления скрипта в Makefile для управления процессом прове-	
	дения эксперимента	20
2.31	Выполнение эксперимента	21

2.32	Просмотр графика	22
	Удаление первой строчки из файла ping.dat	23
2.34	Повторное построение графика	23
2.35	Просмотр графика	24
	Разработка скрипта для вычисления на основе данных файла	
	ping.dat минимального, среднего, максимального и стандартного	
	отклонения времени приёма-передачи	25
2.37	Добавление правила запуска скрипта в Makefil	26
2.38	Проверка	26
2.39	Воспроизводимый эксперимент по изменению задержки	27
2.40	Воспроизводимый эксперимент по изменению задержки	28
2.41	Просмотр графика	29
2.42	Воспроизводимый эксперимент по изменению джиттера	30
2.43	Воспроизводимый эксперимент по изменению джиттера	31
2.44	Просмотр графика	32
2.45	Воспроизводимый эксперимент по изменению значения корреля-	
	ции для джиттера и задержки	33
2.46	Воспроизводимый эксперимент по изменению значения корреля-	
	ции для джиттера и задержки	34
2.47	Просмотр графика	35
2.48	Воспроизводимый эксперимент по изменению распределения вре-	
	мени задержки в эмулируемой глобальной сети	36
2.49	Воспроизводимый эксперимент по изменению распределения вре-	
	мени задержки в эмулируемой глобальной сети	37
2.50	Просмотр графика	38

1 Цель работы

Основной целью работы является знакомство с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

2 Выполнение лабораторной работы

В виртуальной машине mininet исправим права запуска X-соединения (рис. 2.1):

```
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 f585b6baa8b55811cc508c1bbf690f5c
mininet@mininet-vm:~$ sudo -i
root@mininet-vm:~# xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 f585b6baa8b
55811cc508c1bbf690f5c
root@mininet-vm:~# logout
mininet@mininet-vm:~$
```

Рис. 2.1: Исправление прав запуска X-соединения в виртуальной машине mininet

Зададим простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8 (рис. 2.2):

Рис. 2.2: Создание простейшей топологии

На хостах h1 и h2 введём команду ifconfig, чтобы отобразить информацию, относящуюся к их сетевым интерфейсам и назначенным им IP-адресам. В дальнейшем при работе с NETEM и командой tc будут использоваться интерфейсы h1-eth0 и h2-eth0 (рис. 2.3):

Рис. 2.3: Отображение информации их сетевых интерфейсов и ІР-адресов

Проверим подключение между хостами h1 и h2 с помощью команды ping с параметром -с 6 (рис. 2.4):

```
X "host: h2"@mininet-vm
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=1.96 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.277 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.038 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.054 ms 64 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=0.040 ms
64 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=0.045 ms
--- 10.0.0.1 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5089ms
rtt min/ava/may/mday - 0 039/0 102/1 062/0 702
Thost: h1"@mininet-vm
                                                                             П
                                                                                   ×
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.67 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.091 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.043 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.036 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.041 ms
64 bytes from 10.0.0.2: icmp seq=6 ttl=64 time=0.041 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5115ms
rtt min/avg/max/mdev = 0.036/0.320/1.672/0.604 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.4: Проверка подключения между хостами h1 и h2

На хосте h1 добавим задержку в 100 мс к выходному интерфейсу (рис. 2.5):

Рис. 2.5: Добавление задержки в 100 мс к выходному интерфейсу на хосте h1

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с хоста h1 (рис. 2.6):

```
Thost:h1"@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=102 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5009ms

rtt min/avg/max/mdev = 100.076/100.768/101.502/0.529 ms

root@mininet-vm:/home/mininet# ■
```

Рис. 2.6: Проверка

Для эмуляции глобальной сети с двунаправленной задержкой необходимо к соответствующему интерфейсу на хосте h2 также добавить задержку в 100 миллисекунд (рис. 2.7):

Рис. 2.7: Добавление задержки в 100 мс к выходному интерфейсу на хосте h2

Проверим, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1), повторив команду ping с параметром -с 6 на терминале хоста h1 (рис. 2.8):

```
Thost:h1"@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=200 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=200 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=201 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5010ms
rtt min/avg/max/mdev = 200.318/200.925/201.423/0.362 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.8: Проверка

Изменим задержку со 100 мс до 50 мс для отправителя h1 и для получателя h2 (рис. 2.9):

Рис. 2.9: Изменение задержки со 100 мс до 50 мс

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1 (рис. 2.10):

```
Thost:h1"@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=102 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=100 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5006ms

rtt min/avg/max/mdev = 100.419/100.863/101.842/0.479 ms

root@mininet-vm:/home/mininet# ■
```

Рис. 2.10: Проверка

Восстановим конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса (рис. 2.11):

Рис. 2.11: Восстановление конфигураций по умолчанию

Добавим на узле h1 задержку в 100 мс со случайным отклонением 10 мс (рис. 2.12):

Рис. 2.12: Добавление на узле h1 задержки в 100 мс со случайным отклонением 10 мс

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ± 10 мс, используя в терминале хоста h1 команду ping с параметром -с 6 (рис. 2.13):

```
Thost: h1"@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=99.3 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=110 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=107 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=91.7 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=103 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5007ms

rtt min/avg/max/mdev = 91.735/102.005/110.168/5.918 ms

root@mininet-vm:/home/mininet# ■
```

Рис. 2.13: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 2.14):

Рис. 2.14: Восстановление конфигурации интерфейса по умолчанию

Добавим на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции в 25%. Убедимся, что все пакеты, покидающие устройство h1 на интерфейсе h1- eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от

предыдущего значения на 25%. Используем для этого в терминале хоста h1 команду ping с параметром -c 20 (рис. 2.15):

```
X "host: h1"@mininet-vm
root@mininet-vm:/home/mininet# ping -c 20 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp seq=2 ttl=64 time=91.5 ms
64 bytes from 10.0.0.2: icmp seg=3 ttl=64 time=105 ms
64 bytes from 10.0.0.2: icmp seq=4 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=92.2 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=91.5 ms
64 bytes from 10.0.0.2: icmp seq=7 ttl=64 time=94.0 ms
64 bytes from 10.0.0.2: icmp seq=8 ttl=64 time=93.7 ms
64 bytes from 10.0.0.2: icmp seq=9 ttl=64 time=98.6 ms
64 bytes from 10.0.0.2: icmp seq=10 ttl=64 time=91.2 ms
64 bytes from 10.0.0.2: icmp seq=11 ttl=64 time=93.8 ms
64 bytes from 10.0.0.2: icmp seq=12 ttl=64 time=106 ms
64 bytes from 10.0.0.2: icmp seq=13 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64 time=99.0 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp seq=16 ttl=64 time=98.9 ms
64 bytes from 10.0.0.2: icmp seq=17 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp seq=18 ttl=64 time=110 ms
64 bytes from 10.0.0.2: icmp_seq=19 ttl=64 time=99.6 ms
64 bytes from 10.0.0.2: icmp seq=20 ttl=64 time=104 ms
--- 10.0.0.2 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19036ms
rtt min/avg/max/mdev = 91.248/98.926/110.048/5.324 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.15: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 2.16):

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev hl-eth0 root netem root@mininet-vm:/home/mininet# ■
```

Рис. 2.16: Восстановление конфигурации интерфейса по умолчанию

Зададим нормальное распределение задержки на узле h1 в эмулируемой сети (рис. 2.17):

Рис. 2.17: Настройка нормального распределения задержки на узле h1 в эмулируемой сети

Убедимся, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Используем для этого команду ping на терминале хоста h1 с параметром -с 10 (рис. 2.18):

```
X "host: h1"@mininet-vm
                                                                         П
                                                                              X
root@mininet-vm:/home/mininet# ping -c 10 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=118 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=95.0 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=94.2 ms
64 bytes from 10.0.0.2: icmp seq=4 ttl=64 time=95.7 ms
64 bytes from 10.0.0.2: icmp seq=5 ttl=64 time=131 ms
64 bytes from 10.0.0.2: icmp seq=6 ttl=64 time=90.3 ms
64 bytes from 10.0.0.2: icmp seq=7 ttl=64 time=109 ms
64 bytes from 10.0.0.2: icmp seg=8 ttl=64 time=89.9 ms
64 bytes from 10.0.0.2: icmp seq=9 ttl=64 time=56.6 ms
64 bytes from 10.0.0.2: icmp seq=10 ttl=64 time=111 ms
--- 10.0.0.2 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9012ms
rtt min/avg/max/mdev = 56.628/99.106/131.006/19.093 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.18: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 2.19):

Рис. 2.19: Восстановление конфигурации интерфейса по умолчанию

Завершим работу mininet в интерактивном режиме (рис. 2.20):

Рис. 2.20: Завершение работы mininet в интерактивном режиме

Обновим репозитории программного обеспечения на виртуальной машине (рис. 2.21):

Рис. 2.21: Обновление репозиториев программного обеспечения на втртуальной машине

Установим пакет geeqie для просмотра файлов png (рис. 2.22):

```
mininet@mininet-vm: ~
                                                                           X
mininet@mininet-vm:~$ sudo apt install geeqie
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 acl apg apport apport-symptoms aptdaemon aptdaemon-data avahi-daemon
 avahi-utils bluez bolt cheese-common colord colord-data cracklib-runtime
 cups-bsd cups-client cups-common cups-pk-helper dbus dbus-x11 dconf-cli
 desktop-file-utils dns-root-data dnsmasq-base docbook-xml
  evolution-data-server evolution-data-server-common exiftran exiv2 fprintd
  qcr qdm3 geeqie-common geoclue-2.0 girl.2-accountsservice-1.0 girl.2-atk-1.0
  gir1.2-atspi-2.0 gir1.2-freedesktop gir1.2-gck-1 gir1.2-gcr-3
  gir1.2-gdesktopenums-3.0 gir1.2-gdkpixbuf-2.0 gir1.2-gdm-1.0
  gir1.2-geoclue-2.0 gir1.2-gnomebluetooth-1.0 gir1.2-gnomedesktop-3.0
  gir1.2-graphene-1.0 gir1.2-gtk-3.0 gir1.2-gweather-3.0 gir1.2-ibus-1.0
  gir1.2-json-1.0 gir1.2-mutter-6 gir1.2-nm-1.0 gir1.2-nma-1.0
  gir1.2-notify-0.7 gir1.2-packagekitglib-1.0 gir1.2-pango-1.0
 gir1.2-polkit-1.0 gir1.2-rsvg-2.0 gir1.2-secret-1 gir1.2-soup-2.4 gir1.2-upowerglib-1.0 gir1.2-vte-2.91 gjs gkbd-capplet gnome-control-center
  gnome-control-center-data gnome-control-center-faces gnome-keyring
  gnome-keyring-pkcs11 gnome-menus gnome-online-accounts gnome-session-bin
  gnome-session-common gnome-settings-daemon gnome-settings-daemon-common
  gnome-shell gnome-shell-common gnome-startup-applications gnome-user-docs
  gstreamer1.0-clutter-3.0 gstreamer1.0-gl gstreamer1.0-plugins-good
  qstreamer1.0-pulseaudio qstreamer1.0-x i965-va-driver ibus ibus-data
  ibus-qtk ibus-qtk3 iio-sensor-proxy im-config intel-media-va-driver ippusbxd
  language-selector-common language-selector-gnome libaal libaacs0 libaom0
  libappindicator3-1 libappstream4 libasound2-plugins libass9 libavahi-core7
  libavahi-glib1 libavc1394-0 libavcodec58 libavfilter7 libavformat58
  libavutil56 libbdplus0 libbluetooth3 libbluray2 libboost-thread1.71.0
  libbs2b0 libcaca0 libcamel-1.2-62 libcanberra-gtk3-0 libcanberra-gtk3-module
  libcanberra-pulse libcheese-gtk25 libcheese8 libchromaprint1
  libclutter-1.0-0 libclutter-1.0-common libclutter-gst-3.0-0
```

Рис. 2.22: Установка пакета geeqie

Для каждого воспроизводимого эксперимента expname создадим свой каталог, в котором будут размещаться файлы эксперимента (рис. 2.23):

Рис. 2.23: Создание нового каталога

В виртуальной среде mininet в своём рабочем каталоге с проектами создадим каталог simple-delay и перейдём в него (рис. 2.24):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay

mininet@mininet-vm: ~$ mkdir -p ~/work/lab_netem_i/simple-delay

mininet@mininet-vm: ~$ cd ~/work/lab_netem_i/simple-delay

mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$ ls

mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$ touch lab_netem_i.py

mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$ ls

lab_netem_i.py

mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$
```

Рис. 2.24: Создание каталога simple-delay

Создадим скрипт для эксперимента lab netem i.py (рис. 2.25):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                              [-M--] 4 L:[ 1+ 0
                                             1/ 51] *(4
                                                           /1240b)
!/us<mark>r/bin/env</mark> python
from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
    net = Mininet( controller=Controller, waitConnected=True )
    info( '*** Adding controller\n' )
    net.addController( 'c0')
    info( '*** Adding hosts\n')
    h1 = net.addHost('h1', ip='10.0.0.1')
    h2 = net.addHost('h2', ip='10.0.0.2')
    s1 = net.addSwitch( 's1')
    info( '*** Creating links\n' )
    net.addLink( h1, s1 )
net.addLink( h2, s1 )
    info( '*** Starting network\n')
 net.start()

1 Help 2 Save 3 Mark 4 Replac 5 Copy 6 Move 7 Search 8 Delete 9 Pull Dn 10 Quit
```

Рис. 2.25: Создание скрипта lab netem і.ру для эксперимента

Создадим файл ping plot (рис. 2.26):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.26: Создание файла ping_plot

Затем создадим скрипт для визуализации ping_plot результатов эксперимента (рис. 2.27):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay — — X

/home/mi~ing_plot [-M--] 0 L:[ 1+ 1 2/ 9] *(29 / 163b) 10 0x00A [*][X] ^
#!/usr/bin/gnuplot --persist

set terminal png crop
set output 'ping.png'
set xlabel "Sequence number"
set ylabel "Delay (ms)"
set grid
plot "ping.dat" with lines
```

Puc. 2.27: Создание скрипта ping_plot для визуализации результатов эксперимента

Зададим права доступа к файлу скрипта (рис. 2.28):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ chmod +x ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.28: Настройка прав доступа к файлу скрипта

Создадим файла Makefile (рис. 2.29):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch Makefile
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.29: Создание файла Makefile

Внутри файла Makefile поместим скрипт для управления процессом проведения эксперимента (рис. 2.30):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay

/home/mi~Makefile [-M--] 8 L:[ 1+10 11/ 11] *(141 / 159b) 45 0x02D [*][X] ^
all: ping.dat ping.png

ping.dat:
<---->sudo python lab_netem_i.py
<---->sudo chown mininet:mininet ping.dat

ping.png: ping.dat
<---->/ping_plot

clean:
<---->_rm -f *.dat *.png
```

Рис. 2.30: Добавления скрипта в Makefile для управления процессом проведения эксперимента

Выполним эксперимент (рис. 2.31):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                               X
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make
sudo python lab netem i.py
*** Adding controller
*** Adding hosts
*** Adding switch
*** Creating links
*** Starting network
*** Configuring hosts
h1 h2
*** Starting controller
c0
*** Starting 1 switches
s1 ...
*** Waiting for switches to connect
s1
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
s1
*** Stopping 2 hosts
h1 h2
sudo chown mininet:mininet ping.dat
./ping plot
mininet@mininet-vm:~/work/lab netem i/simple-delay$
```

Рис. 2.31: Выполнение эксперимента

Просмотрим построенный в результате выполнения скриптов график (рис. 2.32):

Рис. 2.32: Просмотр графика

Из файла ping.dat удалим первую строку и заново построим график (рис. 2.33 - рис. 2.34):

Рис. 2.33: Удаление первой строчки из файла ping.dat

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make ping.png
./ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 2.34: Повторное построение графика

Просмотрим заново построенный график (рис. 2.35):

Рис. 2.35: Просмотр графика

Разработаем скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёмапередачи. Также добавим правило запуска скрипта в Makefile (рис. 2.36 - рис. 2.38):

Рис. 2.36: Разработка скрипта для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёма-передачи

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay

/home/mi~Makefile [-M--] 0 L:[ 1+11 12/ 14] *(164 / 191b) 10 0x00A [*][X] ^
all: ping.dat ping.png

ping.dat:
<----->sudo python lab_netem_i.py
<----->sudo chown mininet:mininet ping.dat

ping.png: ping.dat
<---->/ping_plot

stats: ping.dat
<---->python rtt.py

clean:
<----->rm -f *.dat *.png
```

Рис. 2.37: Добавление правила запуска скрипта в Makefil

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$ mcedit rtt.py
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$ mcedit Makefile
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 200.0 ms
Avg time: 203.01 ms
Max time: 406.0 ms
Std dev: 20.405634025925288 ms
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay$
```

Рис. 2.38: Проверка

Очистим каталог от результатов проведения экспериментов.

Самостоятельно реализуем воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Построим графики. Вычислим минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая (рис. 2.39 - рис. 2.50):

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                          X
                                                                  10 0x00A [*][X]
                    [BM--] 67 L:[ 1+38 39/51] *(914 /1239b)
/home/mi~tem_i.py
#!/usr/bin/env python
from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
    net = Mininet( controller=Controller, waitConnected=True )
    info( '*** Adding controller\n' )
    net.addController( 'c0' )
    h1 = net.addHost( 'h1', ip='10.0.0.1')
    h2 = net.addHost('h2', ip='10.0.0.2')
    info( '*** Adding switch\n' )
    s1 = net.addSwitch( 's1' )
    net.addLink( h1, s1 )
net.addLink( h2, s1 )
    info( '*** Starting network\n')
    net.start()
    info( '*** Set delay\n')
    h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms')
   h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms')
    time.sleep(10) # Wait 10 seconds
    info( '*** Ping\n')
    h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\
    info( '*** Stopping network' )
 1Help 2Save 3Mark 4Replac 5Copy 6Move 7Search 8Delete 9PullDn10Quit
```

Рис. 2.39: Воспроизводимый эксперимент по изменению задержки

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                                 X
mininet@mininet-vm:~/work/lab netem i/simple-delay$ mcedit lab netem i.py
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make clean
rm -f *.dat *.png
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make
sudo python lab netem i.py
*** Adding controller
*** Adding hosts
*** Adding switch
*** Creating links
*** Starting network
*** Configuring hosts
h1 h2
*** Starting controller
c0
*** Starting 1 switches
*** Waiting for switches to connect
s1
*** Set delay
*** h1 : ('tc gdisc add dev h1-eth0 root netem delay 50ms',)
*** h2 : ('tc gdisc add dev h2-eth0 root netem delay 50ms',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
s1
*** Stopping 2 hosts
h1 h2
sudo chown mininet:mininet ping.dat
./ping plot
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make stats
python rtt.py
Min time: 100.0 ms
Avg time: 102.13 ms
Max time: 203.0 ms
Std dev: 10.15249230484811 ms
```

Рис. 2.40: Воспроизводимый эксперимент по изменению задержки

mininet@mininet-vm:~/work/lab netem i/simple-delay\$

Рис. 2.41: Просмотр графика

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                                X
                                                                          [B---] 0 L:[ 1+37 38/51] *(779 /1246b)
                                                                  32 0x020 [*][X] ^
#!/usr/bin/env python
from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
   net = Mininet( controller=Controller, waitConnected=True )
   info( '*** Adding controller\n' )
   info( '*** Adding hosts\n')
   h1 = net.addHost( 'h1', ip='10.0.0.1')
   h2 = net.addHost('h2', ip='10.0.0.2')
   info( '*** Adding switch\n' )
   s1 = net.addSwitch( 's1' )
    net.addLink( h2, s1 )
   info( '*** Starting network\n')
   net.start()
   info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 100ms 10ms' )
    h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms' )
   time.sleep(10) # Wait 10 seconds
   info( '*** Ping\n')
   h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\
   info( '*** Stopping network' )
Help 2Save 3Mark 4Replac 5Copy 6Move 7Search 8Delete 9PullDn10Ouit
```

Рис. 2.42: Воспроизводимый эксперимент по изменению джиттера

Рис. 2.43: Воспроизводимый эксперимент по изменению джиттера

Max time: 404.0 ms

Std dev: 21.051885901267852 ms

mininet@mininet-vm:~/work/lab_netem_i/simple-delay\$

Рис. 2.44: Просмотр графика

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                                X
                      [-M--] 74 L:[ 6+32 38/51] *(853 /1250b)
/home/mi~tem i.py
                                                                        39 0x027 [*][X] ^
from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
    net = Mininet( controller=Controller, waitConnected=True )
    info( '*** Adding controller\n' )
net.addController( 'c0' )
    h1 = net.addHost( 'h1', ip='10.0.0.1')
    h2 = net.addHost( 'h2', ip='10.0.0.2')
    info( '*** Adding switch\n')
    s1 = net.addSwitch( 's1')
    info( '*** Creating links\n' )
    net.addLink( h1, s1 )
    net.addLink( h2, s1 )
    info( '*** Starting network\n')
    net.start()
    info( '*** Set delay\n')
    h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25%')
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms')
    time.sleep(10) # Wait 10 seconds
    info( '*** Ping\n')
    h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'(print $5, $7)\
    info( '*** Stopping network' )
    net.stop()
   name == ' main '
setLogLevel( 'info' )
    emptyNet()
                 3Mark 4Replac 5Copy 6Move 7Search 8Delete 9PullDn10Ouit
```

Рис. 2.45: Воспроизводимый эксперимент по изменению значения корреляции для джиттера и задержки

Рис. 2.46: Воспроизводимый эксперимент по изменению значения корреляции для джиттера и задержки

Max time: 408.0 ms

Std dev: 21.35989466266161 ms

mininet@mininet-vm:~/work/lab_netem_i/simple-delay\$

Рис. 2.47: Просмотр графика

Рис. 2.48: Воспроизводимый эксперимент по изменению распределения времени задержки в эмулируемой глобальной сети

```
mininet@mininet-vm: ~/work/lab_netem_i/simple-delay
                                                                                                                    \times
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ mcedit lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make clean
rm -f *.dat *.png
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make
sudo python lab_netem_i.py
*** Adding controller
*** Adding hosts
*** Creating links
*** Starting network
*** Configuring hosts
h1 h2
*** Starting controller
*** Starting 1 switches
*** Waiting for switches to connect
*** Set delay

*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25% distribution normal',)

*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g \' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
s1
h1 h2
sudo chown mininet:mininet ping.dat
./ping plot
mininet@mininet-vm:~/work/lab netem i/simple-delay$ make stats
python rtt.py
Min time: 180.0 ms
Avg time: 203.65 ms
Max time: 413.0 ms
Std dev: 23.55732370198279 ms
mininet@mininet-vm:~/work/lab netem i/simple-delay$
```

Рис. 2.49: Воспроизводимый эксперимент по изменению распределения времени задержки в эмулируемой глобальной сети

Рис. 2.50: Просмотр графика

3 Вывод

В ходе выполнения лабораторной работы познакомились с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получили навыки проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

4 Список литературы. Библиография

[1] Mininet: https://mininet.org/