

	Basedon the McClar poper	Kx, j = k - + KT
	HT = K2 = 410-2 5-1	
4		in his notation
		KX,J = K-1 K
	The value of ex the transcription elagathrate	
	isex=25 nt/s Bio#: 112325	Kan
	1 = 1000nt	Ka
		11400 wentluse 1500
	The avg total RIVAP & Jinacell RXT is 150	00 molecules/cell B10#:
		(oth BIO#S acrisoc 101440
	1500 molecu I cell / 1 mol / 109 nm) - 35	3 pmg/, - ,
	$\frac{1500 \text{ molecul}}{600000000000000000000000000000000000$	/ GDW
	Based on the values we use in problem set 2	
	Kx,j ~ 0.6136 MM	
	wenced	
	9 in units of um to agree with the units	- C 14 .
	2 gen 1 cell (1 mm3) (1 mol) (100° umch). Cell 1 mm3 (1×10-152) (6.622×10° moleum) (1 mol)	- 0.0033 MM
1		
	BID: 13000H	
	we can do calculations now with these parameter	3
	K* Ej = exx 1 = 25nt x 1 = 0.025 5-	
	3 1,500	= libmin
	$7x_{i} = \frac{ke^{x} \cdot 1}{kT} = 0.0255^{-1} = 0.625$	-
	KT 4x10 as-1	
	(G, CO334M (Zx, Kx, + (Zx, +1)G) 0,625 x 0,01364M + (1)	= 0.238
	(2x, Kx, + (Zx, +1)gi) 0,625x0,01362m+(1	1,62E) 0.00332m
	$(x, y) = K_{\epsilon} y R_{\times T} (q)$	
	1.5min (G.38malzon) (0,238)	
1		gownin
	rx: 228.	
	0,2	
	$K_{x} = \frac{\Gamma_{x_{j}}}{\Theta_{m_{i}} + \Lambda_{n}} = \frac{2.28}{0.139 \text{min}^{-1} + 0.0173 \text{mn}^{-1}} =$	14.6 nmol/nu

We can auf to the parametes in the infunction (2007) 94-105 ->KI we have m* = Kx T C.J. Wilson et al. / Biophyll chemis 26 Apoper reports (intabel) at [IPT6] = 0 I = 0 , Ft L = 0 ko for IPTG binding to LacI a= k1 wehae the data point 1+K1 0f 2, 8x10-6 M 4 whichis 0.0028 mM @[IPT6]=0 mi =0.0809 nmd/60w fromthis we can Ly weall use this Earthevalue of Ko in the ft L function Solve for K, given the calculated kx 0.0809 = 14.6 × K1 K1=0.0056 See Excell Sheet Pg1 for the requested table We will assume n=1, theresult of assuming only I molecule of IPTG binds the repressor, and the is only I site for the reportability on the DNA Based mall of these porametr I used a non-linear Least squaft to determine an appropriate value of Kz, and excell solver cal culated avalue of 0,0199=kz POLID The model fits the data surprising well, it has the correct shape, the only predominaterics are in the value towhich the calculate concentrations of in* saturate to. All that isneccessay to improve the fit is to fit both to and to tothedata, instead of just Ka, this result conbe seen in the second figure, where both Ka and ko were fit to the data given all other param aine. This is enough to eliminale theofset, Basedorthis I would say the value of to 1sthe paranthatis controlling the fit of the data preventing amore exact fit of the model. The graphs can all be recreateby entathese pom nothe equation for known and plotting in excell See the excell sheet.) (Problim / Excell Wohlbook)

