On-Device Training with Local Sparsity for Federated Learning

Xinchi Oiut, Javier Fernandez-Marques2, Pedro PB Gusmao1, Yan Gao1, Titouan Parcollet3 and Nicholas D. Lane 1 4University of Cambridge, 2University of Oxford, 3Université Avignon,

TL;DR

- accelerate compute. We achieve this by replacing all dense convolutions with sparse-dense convolutions. These can be accelerated for a • We explore training with highly sparse tensors in FL clients to sufficiently high sparsity ratio.
- While sparse training has attracted some attention, it has not be investigated in the context of Federated Learning.
- locations of high magnitude weights remains constant. We introduce a masking mechanism to exploit this observation and save on up-link While the resulting models are not sparse, we identify that the communication

Federated Learning: Background and Challenges

- FL is a form of distributed ML where nodes are commodity devices such as smartphones, wearables or other loT devices.
- The sophistication of the models that FL clients can train is constrained by the compute and memory limitations of the clients and the associated
- These challenges has been partially eased by mechanisms relying on pruning quantisation and distillation. These three techniques have dominated the recent
- Our method replaces all dense convolutions with sparse-dense convolutions in both forward and backward passes
- We adapt SWAT (Raihan & Aamodt, 2020) to the FL setting and note that naively introducing sparsity result in severe degradation compared to centralised training

- Only top-k weights are used during inference
- Non-zero weights at constant locations throughout the training process
 - Only communicate Top-(1-sp+mask ratio) weights for aggregation

EPSRC AVIGNON

Algorithm 1 ZemFL: Let us consider a cluster of N total client with n local data set and each with a learning rate n_t at round t with T the total number of communication rounds. The client has the data set n_k . The number of local epoch is E and the number of clients participating in each round is denoted as K. u_t represent all the weights aggregated at round t and d_t the difference of weights.

Central server does:

for t = 0, ..., T - 1 do Server randomly selects K devices.

Perform TrainLocally (k, w_t) for all k in K do

If Top-K-Weight then $w_{t+1} \leftarrow \sum_{k=0}^{K} \frac{n_k}{n_k} w_{t+1}^{k}$ If Diff on Top-K-Weight then $w_{t+1} \leftarrow w_t + \sum_{k=0}^{K} \frac{n_k}{n_t} d_{t+1}^{k}$ If Top-K Diff then $w_{t+1} \leftarrow w_t + \sum_{k=0}^{K} \frac{n_k}{n_k} d_{t+1}^{k}$.

FrainLocally (k, w_t) :

Do local model training via SWAT with sparsity level sp. $w_e \leftarrow w_{e-1} - \eta_t \bigtriangledown F(w_{e-1})$ for e=1,...,E do

masking mechanisms We consider three

If Top-K-Weight then return top 1-sp+

If Diff on Top-K-Weight then return d_{t+1}^k of top $1-sp+r_{mask}$ weights. If Top-K-Weights Diff then return top $1 - sp + r_{mask}$ of d_{t+1}^k .

- Study the impact of ZeroFL sparse training and masking in both IID and non-IID settings for image classification (CIFAR-10, FEMNIST) and keyword spotting audio classification (Speech Commands)
- Masking balances communication and training/aggregation quality.
- throughout training. By masking small values, the performance of the We observe that high-magnitude weights remain at fixed location global model increases and communication savings are obtained.

non-IID	Sparsity Level	SWAT Full Model	ZeroFL (m=0.2)	File Size (MB)	Comms Save
CITA D	%06	80.62%	81.04%	27.3	1.6x
OI-WELD	%56	74.00%	75.54%	23.0	1.9x
Speech	%06	82.81%	84.90%	27.3	1.6x
Commands	%56	81.12%	82.02%	23.0	1.9x
FEMNIST	%56	83.34%	83.78%	4.4	5.2x