DS5: Électricité – corrigé

Exercice 1 : CIRCUIT RLC SÉRIE

I - Réponse à un échelon de tension

- 1. Pour t < 0 on est en régime permanent, la bobine se comporte comme un fil donc $u_L(0^-) = 0$ et le condensateur se comporte comme un interrupteur ouvert donc $i(0^-) = 0$. On en déduit que $u_R(0^-) = Ri(0^-) = 0$ et donc la loi des mailles donne $u_C(0^-) = 0$.
- 2. La continuité de l'intensité qui traverse la bobine impose $i(0^+) = i(0^-) = 0$ donc $u_R(0^+) = 0$ et la continuité de la tension aux bornes du condensateur impose $u_C(0^+) = u_C(0^-) = 0$. La loi des mailles donne enfin $u_L(0^+) = E$.
- 3. On applique la loi des mailles : $E = u_R + u_C + u_L$, la loi d'Ohm : $u_R = Ri$, du condensateur : $i = C \frac{\mathrm{d} u_C}{\mathrm{d} t}$ et de la bobine $u_L = L \frac{\mathrm{d} i}{\mathrm{d} t}$. En combinant les trois (en partant de la loi de la bobine) on obtient l'équation différentielle :

$$\frac{\mathrm{d}^2 u_L}{\mathrm{d} t^2} + \frac{R}{L} \frac{\mathrm{d} u_L}{\mathrm{d} t} + \frac{1}{LC} u_L = 0$$

- 4. La pulsation propre du circuit est $\omega_0 = \frac{1}{\sqrt{LC}}$ et le facteur de qualité est $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$.
- 5. D'après le graphique on trouve $E \simeq 4 \, \text{V}$, $\omega_0 = 2\pi f \simeq 10^5 \, \text{rad/s}$ et $Q \simeq 10$. On donne ci-dessous l'évolution de la tension $u_L(t)$ pour t > 0. Déterminer à partir de ce graphique une estimation des valeurs numériques de E, ω_0 et Q.
- 6. On a $\omega_0^2 \simeq 10^{10} \, \mathrm{s}^{-2} = \frac{1}{LC}$. On peut donc par exemple prendre $L = 0.1 \, \mathrm{mH}$ et $C = 1 \, \mathrm{\mu F}$. Dans ces conditions on a $R = \frac{1}{Q} \sqrt{\frac{L}{C}} = \frac{1}{10} \sqrt{\frac{0.1}{1 \times 10^{-3}}} = 1$.

II - Régime sinusoïdal forcé

- 7. $e(t) = Ee^{j(\omega t + \varphi)}$.
- 8. On a un pont diviseur de tension formé par l'impédance Z_L en série avec Z_C et Z_R . On a donc

$$\underline{u}_L = \underline{e} \frac{Z_L}{Z_L + Z_R + Z_C} = \underline{e} \frac{jL\omega}{jL\omega + \frac{1}{jC\omega} + R}$$

Avec les expressions de ω_0 et Q données on trouve bien :

$$\underline{u}_{L} = \underline{\mathbf{e}} \frac{jQ\frac{\omega}{\omega_{0}}}{1 + jQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

9. On a:

$$U(\omega) = |\underline{u}_L| = E \frac{Q \frac{\omega}{\omega_0}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

On a $U(\omega_0) = QE$

- 10. Lorsque le facteur de qualité est grand, on a $U(\omega_0) > E$ il se produit un phénomène de résonance
- 11. Le déphasage est $\varphi = \arg(\underline{u}_L) \arg(\underline{e})$ soit :

$$\varphi = \arg \left(\frac{jQ\frac{\omega}{\omega_0}}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \right) = \frac{\pi}{2} - \arctan\left(Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right)$$

Lorsque $\omega = \omega_0, \, \varphi = \frac{\pi}{2}$.

Exercice 2 : DIPÔLE INCONNU

- 1. On trouve graphiquement $U_m = 5 \text{ V}$ et $V_m = 3.5 \text{ V}$.
- 2. La période du signal est $T=6.3\times 10^{-2}\,\mathrm{s}$ et donc la pulsation est $\omega=\frac{2\pi}{T}=100\,\mathrm{rad/s}$.
- 3. La tension v augmente avant la tension u donc elle est en avance et φ est positif.
- 4. Graphiquement on trouve $\Delta t = 0.8 \times 10^{-2} \,\mathrm{s}$ et le déphasage est $\varphi = 2\pi \frac{0.8}{6.3} \simeq 0.8 \,\mathrm{rad}$.
- 5. La loi d'Ohm donne directement $\underline{u} = R\underline{i}$.
- 6. Aux bornes du dipôle D on a $\underline{v} = \underline{Z}i$. En utilisant l'expression de \underline{i} de la question précédente, on obtient : $\underline{Z} = R \frac{\underline{v}}{u}$.
- 7. La question précédente donne directement $|\underline{Z}| = R \frac{|\underline{v}|}{|\underline{u}|} = R \frac{V_m}{U_m} = 70 \Omega$. Et $\arg(\underline{Z}) = \arg(R) + \arg(\underline{v}) \arg(\underline{u}) = \arg(\underline{v}) \arg(\underline{u}) = \varphi$.
- 8. On a $X=Z\cos\varphi=48.8\,\Omega$ et $Y=Z\sin\varphi=50.2\,\Omega$. Pour fabriquer ce dipôle on peut utiliser une résistance de $48.8\,\Omega$ en série avec une bobine d'inductance L telle que $L\omega=50.2\,\Omega$ soit $L\simeq0.5\,\mathrm{H}$ (C'est une grosse bobine!).

Exercice 3: ATTÉNUATEUR

- 1. Si le condensateur C_2 est absent et Z_1 est une résistance R_1 , on a un pont diviseur de tension et $v_s = \frac{R_2}{R_1 + R_2} v_e$. Donc $k = \frac{R_2}{R_1 + R_2}$ et on trouve finalement $R_1 = \frac{1 - k}{k} R_2$
- 2. Si on garde $Z_1=R_1$. L'impédance Z_2 équivalente au dipôle formé par R_2 et C_2 en parallèle est $Z_2=\frac{R_2}{1+jR_2C_2\omega}$. On a toujours un pont diviseur de tension formé par Z_1 et Z_2 et $v_s=\frac{Z_2}{R_1+Z_2}v_e=\frac{R_2}{R_1+R_2+jR_1R_2C_2\omega}v_e$. L'atténuation de la tension d'entrée dépend donc de la pulsation ω (quelle que soit la valeur de R_1).
- 3. Lorsque $\omega \to 0$ on retrouve le résultat de la première question : $v_s = \frac{R_2}{R_1 + R_2} v_e$ (On s'y attend, car à basse fréquence le condensateur se comporte comme un interrupteur ouvert, tout se passe comme s'il était absent). Lorsque $\omega \to \infty$, $v_s \to 0$. On a donc un filtre passe-bas.
- 4. L'impédance du dipôle Z_1 est $Z_1 = \frac{R_1}{1 + jR_1C_1\omega}$.

 Pont diviseur de tension : $v_s = \frac{Z_2}{Z_1 + Z_2}v_e = kv_e$ donc $k = \frac{Z_2}{Z_1 + Z_2}$.

 De manière similaire à la question 1 on trouve $Z_1 = \frac{1 k}{k}Z_2$, ou $\frac{1}{Z_1} = \frac{k}{1 k}\frac{1}{Z_2}$ soit $\frac{1}{R_1} + jC_1\omega = \frac{k}{1 k}\left(\frac{1}{R_2} + jC_2\omega\right)$

En identifiant les parties réelles et imaginaires, on trouve le résultat demandé soit : $R_1 = \frac{1-k}{k}R_2$ et $C_1 = \frac{k}{1-k}C_2$.