

Group 5: Kaichen Bian, Longtao Chen, Zeyu He, Siying Chen, Shuhong Cai



# **Stock Picking**



Johnson & Johnson (JNJ): Health Care
- Pharmaceuticals, Medical Devices, and
Consumer Health Products.



Walmart (WMT): Consumer Staples - Retailing (specifically Hypermarkets & Super Centers).

Bank of America.



Bank of America (BAC): Financials -Banks.



Microsoft (MSFT): Information Technology - Software & Services.



## **Contents**





# **Target Customers**





## **Value Proposition**





pre-programmed rules to execute trades automatically



real-time data, historical trends, and complex models







faster, more precise, and removes emotion from the trading process.



## **Dataset Overview**

- Daily Return dataset used in this project contains 5,000 records spanning from 2019-01-01 to 2023-12-29.
- FF5 from 1963-01 to 2024-07
- Financial Statement contains 18 variables from 2019 to 2023

This dataset was sourced from **Bloomberg**, **Yahoo Finance** and **Prof**. **French's site**.





### **Data Cleaning Process**

#### **Removing Missing Values**

Missing values in key columns like Return, Volatility, Revenue, and Net Income were addressed by removing incomplete rows, ensuring a reliable and complete dataset for analysis.

#### **Handling Outliers**

Outliers in metrics such as Revenue, Net Income, and stock returns were removed using the IQR method, maintaining a dataset representative of typical performance.

#### **Normalizing Data Types**

Numeric fields treated as text were converted to proper numeric formats, standardizing data types for consistent and accurate analysis.

```
# Step 1: Removing missing values
def remove_missing_values(df):
    return df.dropna()
# Step 2: Handling outliers (using IQR method)
def remove_outliers(df, columns):
    for column in columns:
        df.loc(:, column) = pd.to_numeric(df(column), errors='coerce')
        01 = df[column].quantile(0.25)
        Q3 = df[column].guantile(0.75)
        IOR = 03 - 01
        lower_bound = 01 - 1.5 * IQR
        upper bound = 03 + 1.5 * IOR
        df = df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
    return df
# Step 3: Normalizing data types
def normalize_data_types(df, columns):
    for column in columns:
        df.loc[:, column] = pd.to_numeric(df[column], errors='coerce')
   return df
# Apply all steps in one process
columns to process = ['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA', 'RF']
# Clean Fama Factors data
cleaned_fama_factors = remove_missing_values(fama_factors_df)
cleaned fama factors no outliers = remove outliers(cleaned fama factors, columns to process)
cleaned fama factors normalized = normalize data types(cleaned fama factors no outliers, columns to process)
# Export the cleaned data to Desktop as Excel
output_path = '/Users/longtaochen/Desktop/Cleaned_Fama_Factors.xlsx' # Replace with your correct path
# Write the cleaned dataset to Excel
cleaned_fama_factors_normalized.to_excel(output_path, sheet_name='Cleaned_Fama_Factors', index=False)
print(f"Fama Factors data has been exported to (output_path)")
```



## **Normalization**

#### 1st Normalization:

- All tables are in a tabular format with atomic (indivisible) values
- E.g: Sector\_id, Sector\_Name in sector

| Sector ID | Sector Name      |
|-----------|------------------|
| HIN       | Heathcare        |
| XLF       | Financial        |
| XLK       | Techonology      |
| XLP       | Consumer Staples |

#### 2nd Normalization:

- The tables satisfy 1NF.
- All non-primary-key attributes in each table are fully dependent on the primary key
- E.g: Composite Key (stock\_id, month)

#### **3rd Normalization:**

- No transitive dependencies exist
- E.g: *sector* and *stock* Table, Foreign key *Sector\_id* in *stocks*







## **Tables Setup**

#### Create new table

```
CREATE TABLE bus211a.bac AS

SELECT

stock_id,
date,
'Bank of America' AS stock_Name,
`Return` AS `daily_return`

FROM bus211a.bac_origin;
```

Clean, delete empty dates

```
DELETE FROM bac WHERE date IS NULL;
```



## **Tables Setup**

Primary Keys and Foreign Keys Setup

```
-- Set primary key and foreign key

ALTER TABLE bac ADD PRIMARY KEY (stock_id, date);

ALTER TABLE jnj ADD PRIMARY KEY (stock_id, date);

ALTER TABLE msft ADD PRIMARY KEY (stock_id, date);

ALTER TABLE wmt ADD PRIMARY KEY (stock_id, date);

ALTER TABLE monthly_return_and_volatility ADD PRIMARY KEY (stock_id, month);

ALTER TABLE yearly_return_and_volatility ADD PRIMARY KEY (stock_id, year);
```

```
ALTER TABLE daily_return_and_volatility
ADD CONSTRAINT fk_stock_id FOREIGN KEY (stock_id) REFERENCES stocks(stock_id);
ALTER TABLE stocks
ADD CONSTRAINT fk_stock_id_daily FOREIGN KEY (stock_id) REFERENCES stocks(stock_id);
```



## **Example: Monthly Return and Volatility**

```
1 -- BAC
2 CREATE TABLE monthly_return_and_volatility AS
3 SELECT
4    stock_id,
5    DATE_FORMAT(date, '%Y-%m') AS month,
6    EXP(SUM(LOG(1 + IFNULL(daily_return, 0)))) - 1 AS monthly_return,
7    STDDEV(IFNULL(daily_return, 0)) * SQRT(21) AS monthly_volatility
8 FROM
9    bus211a.bac
10 GROUP BY
11    stock_id, month;
```

| stock_id | month   | monthly_return        | monthly_volatility |
|----------|---------|-----------------------|--------------------|
| BAC      | 2019-01 | 0.14062520475337337   | 9042463308876678   |
| BAC      | 2019-02 | 0.026637047247844103  | )4510761813959086  |
| BAC      | 2019-03 | -0.051236243696740846 | )6713108235881994  |
| BAC      | 2019-04 | 0.10837042576425526   | .0543844038541513  |
| BAC      | 2019-05 | -0.130148302238147    | 0.064261945954439  |
| BAC      | 2019-06 | 0.09611382932962709   | )6660671537163125  |
| BAC      | 2019-07 | 0.05793210388957326   | )4497778220419794  |
| BAC      | 2019-08 | -0.10332282629671397  | )9622303210019825  |
| BAC      | 2019-09 | 0.06733301782684276   | )6627569827046335  |
| BAC      | 2019-10 | 0.07198958263582611   | )6331440538645572  |
| BAC      | 2019-11 | 0.06555955171235572   | 5922425376636244   |
| BAC      | 2019-12 | 0.06279577326872476   | )4397685662882672  |
| BAC      | 2020-01 | -0.06785918578612504  | )5248099209464408  |
| BAC      | 2020-02 | -0.1318918748216259   | )9998634522585205  |
| BAC      | 2020-03 | -0.25033291601121843  | 18797575407368085  |
| BAC      | 2020-04 | 0.13282890942660486   | 20555111264343076  |
| BAC      | 2020-05 | 0.0029074914608369085 | 7682279611135407   |
| BAC      | 2020-06 | -0.008470859343252313 | 7342478145210605   |
| BAC      | 2020-07 | 0.047581103476182385  | )9823702036653935  |
| BAC      | 2020-08 | 0.03456659309129484   | )6836481041407473  |
| BAC      | 2020-09 | -0.05758356608513948  | )8457191709905555  |
| BAC      | 2020-10 | -0.016189542522978995 | 9092558830769938   |



# Financial data analysis





### **CUMULATIVE RETURN OF 4 COMPANIES AND RF**

(2019 - 2023)



.... JNJ .... WMT .... BAC — MSFT — RF

- Microsoft (MSFT) has significantly outperformed the other three companies, with a cumulative return exceeding 250%.
- Bank of America (BAC), Johnson & Johnson (JNJ), and Walmart (WMT) showed steady but lower cumulative returns, ranging between 40% and 100%.
- The Risk-Free Rate (RF), represented as the baseline, reflects minimal growth over the same period.

So, for a 5-year range, investing in

### AT LEAST ONE OF THESE STOCKS

offers

### **BETTER FINANCIAL GROWTH**

compared to saving money in a bank.

is a financial metric that **quantifies the potential loss in value of an investment or portfolio** over a specified time period, and at a **given confidence level**.

UZ

03

LOSS THRESHOLD

**CONFIDENCE LEVEL** 

**TIME HORIZON** 

Maximum Expected Loss

95%, 99%

2019-2023





### **BAC & JNJ**









### **MSFT**

## --- MSFT ---## VaR 95% (Matched Return): -0.0291 ## VaR 99% (Matched Return): -0.0454

| Company/ Confidence Level | 95%    | 99%    |
|---------------------------|--------|--------|
| MSFT                      | -2.91% | -4.54% |
| BAC                       | -3.2%  | -5.61% |
| JNJ                       | -1.66% | -3.63% |
| WMT                       | -1.88% | -3.25% |

# Expected-Shortfall

also known as **Conditional Value at Risk (CVaR)**, is a risk measure that estimates **the average loss** in the worst-case scenarios beyond a certain Value at Risk (VaR) threshold.

Dollar-Expected-Shortfall

**01**PORTFOLIO VALUE

**U2**AVERAGE LOSS BEYOND
THE THRESHOLD

95%, 99%

# Dollar-Expected-Shortfall



# Dollar-Expected-Shortfall



```
## --- BAC ---
## VaR 95% (Potential Loss): $ 319.83
## VaR 99% (Potential Loss): $ 561.46
## ES 95% (Average Loss Beyond VaR): $ 494.59
## ES 99% (Average Loss Beyond VaR): $ 837.05
##
## --- JNJ ---
## VaR 95% (Potential Loss): $ 166.24
## VaR 99% (Potential Loss): $ 362.56
## ES 95% (Average Loss Beyond VaR): $ 291.51
## ES 99% (Average Loss Beyond VaR): $ 513.75
##
## --- MSFT ---
## VaR 95% (Potential Loss): $ 290.83
## VaR 99% (Potential Loss): $ 454.02
## ES 95% (Average Loss Beyond VaR): $ 424.81
## ES 99% (Average Loss Beyond VaR): $ 674
##
## --- WMT ---
## VaR 95% (Potential Loss): $ 188.41
## VaR 99% (Potential Loss): $ 325.23
## ES 95% (Average Loss Beyond VaR): $ 309.86
## ES 99% (Average Loss Beyond VaR): $ 617.64
```

# Dollar-Expected-Shortfall



```
## --- BAC ---
## VaR 95% (Potential Loss): $ 319.83
## VaR 99% (Potential Loss): $ 561.46
## ES 95% (Average Loss Beyond VaR): $ 494.59
## ES 99% (Average Loss Beyond VaR): $ 837.05
##
## --- JNJ ---
## VaR 95% (Potential Loss): $ 166.24
## VaR 99% (Potential Loss): $ 362.56
## ES 95% (Average Loss Beyond VaR): $ 291.51
## ES 99% (Average Loss Beyond VaR): $ 513.75
## --- MSFT ---
## VaR 95% (Potential Loss): $ 290.83
## VaR 99% (Potential Loss): $ 454.02
## ES 95% (Average Loss Beyond VaR): $ 424.81
## ES 99% (Average Loss Beyond VaR): $ 674
##
## --- WMT ---
## VaR 95% (Potential Loss): $ 188.41
## VaR 99% (Potential Loss): $ 325.23
## ES 95% (Average Loss Beyond VaR): $ 309.86
## ES 99% (Average Loss Beyond VaR): $ 617.64
```



### **Market Sensitivity and Alpha**

#### **CAPM regression model:** Ri–Rf= $\alpha$ + $\beta$ (Rm–Rf)+ $\epsilon$

**Alpha:** Shows a stock's excess return beyond market influence.

**Beta:** Measures a stock's reaction to market changes.

```
## --- Regression Results for Stock: MSFT ---
## --- Regression Results for Stock: BAC ---
                                                                   ## Call:
## Call:
                                                                   ## lm(formula = Y \sim X)
## lm(formula = Y \sim X)
                                                                   ## Residuals:
## Residuals:
                                                                                      10
                                                                                            Median
                  10
                      Median
                                                                   ## -0.083869 -0.033906 -0.004688 0.027679 0.117881
## -0.192782 -0.040665 0.000118 0.041577 0.138530
                                                                   ## Coefficients:
## Coefficients:
                                                                                  Estimate Std. Error t value Pr(>|t|)
              Estimate Std. Error t value Pr(>|t|)
                                                                   ## (Intercept) 0.013701 0.005838
                                                                                                      2.347 0.0224 *
## (Intercept) -0.006135 0.007741 -0.792 0.431
                                                                   ## X
                                                                                  0.824570
                                                                                            0.103535 7.964 7.03e-11 ***
              ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                                                                   ## --- Regression Results for Stock: WMT ---
## --- Regression Results for Stock: JNJ ---
                                                                   ## Call:
## Call:
                                                                   ## lm(formula = Y \sim X)
## lm(formula = Y \sim X)
##
                                                                   ## Residuals:
## Residuals:
                                                                           Min
                                                                                    10 Median
        Min
                   10
                        Median
                                                                   ## -0.15972 -0.02324 0.00197 0.02729 0.11303
## -0.110777 -0.029752 0.002154 0.029014 0.082125
##
                                                                   ##
## Coefficients:
                                                                   ## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                                                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.000467 0.005510 -0.085
                                                                   ## (Intercept) 0.004753
                                                                                            0.005988
                                                                                                      0.794 0.430591
## X
               0.494727 0.097707 5.063 4.46e-06 ***
                                                                   ## X
                                                                                  0.442539 0.106185
                                                                                                      4.168 0.000104 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                                                                   ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



## **Market Sensitivity and Alpha**



BAC (High Beta, 1.38): Reacts strongly to market changes, with large fluctuations. WMT (Low Beta, 0.44): Stable and defensive, with minimal reaction to market movements.



### **Deeper Factor Analysis**

**Mkt\_RF:** Stock sensitivity to market risk

(Positive; Significant)

**SMB:** Size effect; small-cap vs. large-cap sensitivity

(Not significant)

**HML:** Value vs. growth factor

(Negative; Significant)

**RMW:** Profitability effect

(Not significant)

**CMA:** Investment strategy

(Positive; Significant)

```
## Call:
## lm(formula = excess return ~ Mkt RF + SMB + HML + RMW + CMA,
      data = wmt data)
## Residuals:
       Min
                      Median
                                          Max
## -0.14802 -0.01553 -0.00024 0.02894 0.06257
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0008123 0.0057387
                                     0.142
                                              0.888
                                     4.929 8.23e-06 ***
## Mkt RF
               0.5619282 0.1139994
## SMB
              -0.2533236 0.2485259 -1.019
                                              0.313
## HML
              -0.3867582 0.1847434 -2.093
                                              0.041 *
               0.2551931 0.2641824
## RMW
                                     0.966
                                              0.338
## CMA
               0.5293996 0.2628644
                                     2.014
                                              0.049 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04203 on 54 degrees of freedom
## Multiple R-squared: 0.3845, Adjusted R-squared: 0.3276
## F-statistic: 6.748 on 5 and 54 DF, p-value: 5.961e-05
```



## **Sharpe Ratio Analysis and Key Comparisons**

| Comprehensive Comparison Table |               |             |               |               |  |  |  |
|--------------------------------|---------------|-------------|---------------|---------------|--|--|--|
| Metric                         | BAC           | MSFT        | WMT           | JNJ           |  |  |  |
| <b>Financial Statements</b>    | Moderate      | Strong      | Moderate      | Strong        |  |  |  |
| Sharpe Ratio                   | 0.4644        | 1.2525      | 0.7355        | 0.4508        |  |  |  |
| Sharpe Ratio Level             | Low           | High        | Moderate      | Low           |  |  |  |
| Beta                           | 1.38          | 0.82        | 0.44          | 0.49          |  |  |  |
| Alpha                          | Insignificant | Significant | Insignificant | Insignificant |  |  |  |
| VaR (99%)                      | \$561.46      | \$454.02    | \$325.23      | \$362.56      |  |  |  |
| ES (99%)                       | \$837.05      | \$674.00    | \$617.64      | \$513.75      |  |  |  |
| <b>Cumulative Return</b>       | High          | Highest     | Moderate      | Low           |  |  |  |

**MSFT: Strong Buy** – Highest Sharpe Ratio, significant alpha, and best overall returns for growth-oriented investors

**WMT: Buy** – Moderate Sharpe Ratio, defensive traits, and low risk, ideal for stability-focused investors

**JNJ: Hold** – Low Sharpe Ratio with solid defensiveness, but limited growth potential compared to WMT

**BAC:** Sell – Low Sharpe Ratio and high beta signal inconsistent performance and higher risk

### References

- https://corporatefinanceinstitute.com/resources/equities/2010-flash-crash/
- <a href="https://www.marketswiki.com/wiki/Market\_Information\_Data\_Analytics\_System">https://www.marketswiki.com/wiki/Market\_Information\_Data\_Analytics\_System</a>
- <a href="https://www.sec.gov/securities-topics/market-structure-analytics/midas-market-information-data-analytics-system#:~:text=SEC\_gov%20%7C%20MIDAS%3A%20Market%20Information%20Data%20Analytics%20System">https://www.sec.gov/securities-topics/market-structure-analytics/midas-market-information-data-analytics-system#:~:text=SEC\_gov%20%7C%20MIDAS%3A%20Market%20Information%20Data%20Analytics%20System</a>
- <a href="https://www.forbes.com/advisor/investing/modern-portfolio-theory/">https://www.forbes.com/advisor/investing/modern-portfolio-theory/</a>
- https://www.analyticsvidhya.com/blog/2018/10/predicting-stock-price-machine-learningnd-deep-learning-techniques-python/
- https://www.sciencedirect.com/science/article/pii/S0957417423008485
- https://www.simplilearn.com/data-visualization-tools-article#what do the best data visualization tools have in common
- https://www.ibm.com/topics/data-visualization?utm\_content=SRCWW&p1=Search&p4=43700074739286868&p5=p&p9=587
   00008227896143&gclid=Cj0KCQjwgL-3BhDnARIsAL6KZ6-Amw2tXOXhdKaPr\_e3SkgQ2Yi4hGNQ5QTFFdGQGNjQhQX6-NGo2qwaAnW7EALw\_wcB&gclsrc=aw.ds