Machine Learning from Data

Lecture 16: Spring 2021

Today's Lecture

- Similarity
- Nearest Neighbor

Ask a 5-year-old what is this?

Measuring Similarity

Nearest Neighbor

Test 'x' is classified using its nearest neighbor.

$$d(\mathbf{x},\mathbf{x}_{[1]}) \leq d(\mathbf{x},\mathbf{x}_{[2]}) \leq \cdots \leq d(\mathbf{x},\mathbf{x}_{[N]})$$

$$g(\mathbf{x}) = y_{[1]}(\mathbf{x})$$

No training needed!

Nearest neighbor Voronoi tesselation

Proving $E_{\text{out}} \leq 2E_{\text{out}}^*$

Assume $\pi(\mathbf{x})$ is continuous and $\mathbf{x}_{[1]} \stackrel{N \to \infty}{\longrightarrow} \mathbf{x}$. Then $\pi(\mathbf{x}_{[1]}) \stackrel{N \to \infty}{\longrightarrow} \pi(\mathbf{x})$.

$$\mathbb{P}[g_{N}(\mathbf{x}) \neq y] = \mathbb{P}[y = +1, y_{[1]} = -1] + \mathbb{P}[y = -1, y_{[1]} = +1],
= \pi(\mathbf{x}) \cdot (1 - \pi(\mathbf{x}_{[1]})) + (1 - \pi(\mathbf{x})) \cdot \pi(\mathbf{x}_{[1]}),
\to \pi(\mathbf{x}) \cdot (1 - \pi(\mathbf{x})) + (1 - \pi(\mathbf{x})) \cdot \pi(\mathbf{x}),
= 2\pi(\mathbf{x}) \cdot (1 - \pi(\mathbf{x})),
\leq 2\min{\{\pi(\mathbf{x}), 1 - \pi(\mathbf{x})\}}.$$

The best you can do is

$$E_{\text{out}}^*(\mathbf{x}) = \min\{\pi(\mathbf{x}), 1 - \pi(\mathbf{x})\}.$$

Nearest Neighbor 'Self-Regularizes'

A simple boundary is used with few data points.

A more complicated boundary is possible *only* when you have more data points.

regularization guides you to simpler hypotheses when data quality/quantity is lower.

k-Nearest Neighbor

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^k y_{[i]}(\mathbf{x})\right).$$

(k is odd and $y_n = \pm 1$).

The Role of k

k determines the tradeoff between fitting the data and overfitting the data.

Theorem. For
$$N \to \infty$$
, if $k(N) \to \infty$ and $k(N)/N \to 0$ then, $E_{\text{in}}(g) \to E_{\text{out}}(g)$ and $E_{\text{out}}(g) \to E_{\text{out}}^*$.

For example
$$k = \lceil \sqrt{N} \rceil$$
.

3 Ways To Choose k

1.
$$k = 3$$
.

$$2. k = \left\lceil \sqrt{N} \right\rceil.$$

3. Validation or cross validation:

k-NN rule hypotheses $g_{\overline{k}}$ constructed on training set, tested on validation set, and best k is picked.

Nearest Neighbor is Nonparametric

NN-rule

no parameters $\begin{array}{c} \text{expressive/flexible} \\ g(\mathbf{x}) \text{ needs data} \\ \\ \text{generic, can model anything} \end{array}$

Linear Model

(d+1) parameters rigid, always linear $g(\mathbf{x})$ needs only weights specialized

Nearest Neighbor Easily Extends to Multiclass

T) di .						
True	_		_		redic			_		_	
	0	1	2	3	4	5	6	7	8	9	
0	13.5	0.5	0.5	1	0	0.5	0	0	0.5	0	16.5
1	0.5	13.5	0	0	0	0	0	0	0	0	14
2	0.5	0	3.5	1	1	1.5	1	1	0	0.5	10
3	2.5	0	1.5	2	0.5	0.5	0.5	0.5	0.5	1	9.5
4	0.5	0	1	0.5	1.5	0.5	1	2	0	1.5	8.5
5	0.5	0	2.5	1	0.5	1.5	1	1	0	0.5	7.5
6	0.5	0	2	1	1	1	1	1	0	1	8.5
7	0	0	1.5	0.5	1.5	0.5	1	3	0	1	9
8	3.5	0	0.5	1	0.5	0.5	0.5	0	0.5	1	8
9	0.5	0	1	1	1	0.5	1	1	0.5	2	8.5
	22.5	14	14	9	7.5	7	7	9.5	2	8.5	100

41% accuracy!

Highlights of k-Nearest Neighbor

- 1. Simple.
- 2. No training.
- 3. Near optimal E_{out} .
- Easy to justify classification to customer.
- Can easily do multi-class.
- Can easily adapt to regression or logistic regression

$$g(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} y_{[i]}(\mathbf{x})$$

$$g(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} \left[y_{[i]}(\mathbf{x}) = +1 \right]$$

Computationally demanding. ← we will address this next

Thanks!