Multinomial sampling Demo 1, Unit 6B

David Bass

April 13, 2022

Motivation

In this demonstration, we will construct the chi-square test of independence using a random sample X of multinomial data and Wilks' theorem, which gives that, for a likelihood ratio ρ of an observation x, the distribution of $2 \log \rho(x)$ is approximately chi-square.

Defining a table T

Let T be a table with r rows and c columns. T contains $r \cdot c$ cells. each of which is uniquely identified with a row value *j* and a column value k.

	1	 С
1	(1, 1)	 (1, c)
:	:	:
r	(r, 1)	 (r, c)

Motivation for table T

Considering the rows as levels of a factor A and the columns as levels of a factor B, we are interested in testing whether the effects of A and B are independent.

Maximum likelihood ratio test

	1		С
1	(1, 1)		(1, c)
:	:		:
r	(r, 1)	• • •	(r, c)

Equivalently, we are interested in testing whether the joint distribution of A and B equals the product of the marginal distributions of A and B.

Defining a multinomial r.v. X on T

Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be an IID random sample of the cells of T, where

Maximum likelihood ratio test

- each $X_i = (X_{i,1,1}, \dots, X_{i,1,c}, \dots, X_{i,r,1}, \dots, X_{i,r,c}),$
- $X_{i,j,k}$ is the indicator variable that the *i*th observation equals cell (i, k), and
- the probability of choosing cell (j, k) is $\theta_{i,k}$.

Let $\theta = (\theta_{1,1}, \dots, \theta_{1,c}, \dots, \theta_{r,1}, \dots, \theta_{r,c})$, so **X** is a multinomial random variable with parameters n and θ .

Note that, since each $X_i = (X_{i,1,1}, ..., X_{i,1,c}, ..., X_{i,r,1}, ..., X_{i,r,c})$ encodes one observation in our sample, it is a vector containing one 1 and zeros everywhere else.

θ as a parameter of interest

In order to show that the effects of row j and column k are independent, we will test the null hypothesis

$$H_0: \theta_{j,k} = \theta_{j\circ}\theta_{\circ k}$$

	1		С	row total
1	$\theta_{1,1}$		$\theta_{1,c}$	$ heta_{1\circ}$
:	:	• • •	i	:
r	$\theta_{r,1}$		$\theta_{r,c}$	$\theta_{r\circ}$
col. total	θ o1		$\theta_{\circ c}$	1

Note that a dot in the subscript denotes the sum over all values, e.g. $\theta_{10} = \sum_{k=1}^{c} \theta_{1,k}$.

Defining a total count variable **Y**

Let $\mathbf{Y} = (Y_{1,1}, \dots, Y_{1,c}, \dots, Y_{r,1}, \dots, Y_{r,c})$ be the random variable that counts the number of observations of each cell, i.e.

Maximum likelihood ratio test

$$Y_{j,k} = \sum_{i=1}^{n} X_{i,j,k}$$

for each 1 < i < r and 1 < k < c.

Representing X in T

We can represent our sample X in T with components of Y.

	1		С	row total
1	Y _{1,1}		$Y_{1,c}$	<i>Y</i> ₁₀
÷	:	• • •	i	:
r	$Y_{r,1}$		$Y_{r,c}$	$Y_{r\circ}$
col. total	$Y_{\circ 1}$		$Y_{\circ c}$	n

We are again using the dot notation in subscripts to denote the sum over all values, e.g. $Y_{1\circ} = \sum_{k=1}^{c} Y_{1,k}$.

Degrees of freedom of θ in T

Since $\sum_{i=1}^{r} \sum_{k=1}^{c} \theta_{j,k} = 1$, one of the $r \cdot c$ probabilities is determined by the other $r \cdot c - 1$. Thus, the total degrees of freedom for θ are $r \cdot c - 1$.

	1	 С	row total
1	$\theta_{1,1}$	 $\theta_{1,c}$	$ heta_{1\circ}$
:	:	:	
r	$\theta_{r,1}$	 $\theta_{r,c}$	$\theta_{r\circ}$
col. total	$\theta_{\circ 1}$	 $\theta_{\circ c}$	1

Marginal degrees of freedom of θ in T

Similarly, since $\sum_{i=1}^r \theta_{j,k} = \theta_{\circ k}$ and $\sum_{k=1}^c \theta_{j,k} = \theta_{j\circ}$, the degrees of freedom within each row and column of T are c-1 and r-1, respectively.

	1	 С	row total
1	$\theta_{1,1}$	 $\theta_{1,c}$	$ heta_{1\circ}$
:	:	:	• • •
r	$\theta_{r,1}$	 $\theta_{r,c}$	$\theta_{r\circ}$
col. total	θ o1	 $\theta_{\circ c}$	1

The log-likelihood function of X_i

For each
$$X_i = (X_{i,1,1}, \dots, X_{i,1,c}, \dots, X_{i,r,1}, \dots, X_{i,r,c})$$
,

The likelihood function of X_i is

$$f_{\mathbf{X}_{i},\theta}(\mathbf{x}) = \prod_{j=1}^{r} \prod_{k=1}^{c} \theta_{j,k}^{X_{i,j,k}}$$

Maximum likelihood ratio test

Then the log-likelihood function of X_i is

$$\ell(\boldsymbol{\theta}; \mathbf{X}_i) = \log f_{\mathbf{X}_i, \boldsymbol{\theta}}(\mathbf{x}) = \sum_{j=1}^r \sum_{k=1}^c X_{i,j,k} \log \theta_{j,k}$$

Log-likelihood function of X

The likelihood function of $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ is

$$f_{\mathbf{X},\theta}(\mathbf{X}) = \prod_{i=1}^{n} f_{\mathbf{X}_{i},\theta}(\mathbf{x})$$

Maximum likelihood ratio test

Then the log-likelihood function X is

$$\ell(\boldsymbol{\theta}; \mathbf{X}) = \log f_{\mathbf{X}, \boldsymbol{\theta}}(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{r} \sum_{k=1}^{c} X_{i,j,k} \log \theta_{j,k}$$

Recall that $Y_{i,k} = \sum_{i=1}^{n} X_{i,i,k}$, so

$$\ell(\boldsymbol{\theta}; \mathbf{X}) = \sum_{j=1}^{r} \sum_{k=1}^{c} Y_{j,k} \log \theta_{j,k}$$

MLE for θ

The maximum likelihood estimator $\hat{\theta}$ for θ is the component-wise sample proportion $\hat{\boldsymbol{\theta}} = (\hat{\theta}_{1,1}, \dots, \hat{\theta}_{1,c}, \dots, \hat{\theta}_{r,1}, \dots, \hat{\theta}_{r,c})$, where each

$$\hat{\theta}_{j,k} = \frac{1}{n} \sum_{i=1}^{n} X_{i,j,k} = Y_{j,k}/n$$

Maximizing the likelihood under the null hypothesis

Recall the null hypothesis that the effects of the rows and columns are independent

Maximum likelihood ratio test

$$H_0: \theta_{j,k} = \theta_{j\circ}\theta_{\circ k}$$

Under the null hypothesis, the likelihood function $\ell(\theta; \mathbf{X})$ is maximized when $\hat{\theta}_{i,k} = \hat{\theta}_{i\circ}\hat{\theta}_{\circ k} = (Y_{i\circ}/n)(Y_{\circ k}/n) = Y_{i\circ}Y_{\circ k}/n$.

Maximizing the likelihood under the alternative hypothesis

Maximum likelihood ratio test

Consider the alternative hypothesis

$$H_1: \theta_{j,k} \neq \theta_{j\circ}\theta_{\circ k}$$

Under the alternative hypothesis, there is no constraint, so the likelihood function $\ell(\theta; \mathbf{X})$ is maximized when $\hat{\theta}_{i,k} = Y_{i,k}/n^2$.

Log-likelihood ratio

Let ρ be the ratio of the unconstrained likelihood ($\theta \in \Theta_0 \cup \Theta_1$) to the constrained likelihood ($\theta \in \Theta_0$), so

Maximum likelihood ratio test

$$\rho(\mathbf{X}) = \frac{\sup\{f_{\mathbf{X},\theta}(\mathbf{X}) : \theta \in \Theta_0 \cup \Theta_1\}}{\sup\{f_{\mathbf{X},\theta}(\mathbf{X}) : \theta \in \Theta_0\}}$$

Then

$$\begin{split} \log \rho(\mathbf{X}) &= \sup \{\ell(\boldsymbol{\theta}, \mathbf{X}) \ : \ \boldsymbol{\theta} \in \Theta_0 \cup \Theta_1\} - \sup \{\ell(\boldsymbol{\theta}, \mathbf{X}) \ : \ \boldsymbol{\theta} \in \Theta_0\} \\ &= \sum_{j=1}^r \sum_{k=1}^c Y_{j,k} \log \frac{Y_{j,k}}{n} - \sum_{j=1}^r \sum_{k=1}^c Y_{j,k} \log \frac{Y_{j\circ} Y_{\circ k}}{n^2} \\ &= \sum_{j=1}^r \sum_{k=1}^c Y_{j,k} \log \frac{Y_{j,k}}{Y_{j\circ} Y_{\circ k}/n} \end{split}$$

Distribution of the log-likelihood ratio

Wilks' theorem gives that $2 \log \rho(\mathbf{X})$ approximately follows a chi-square distribution with degrees of freedom equal to the difference in the number of free parameters between H_1 and H_0 .

Calculating degrees of freedom of the distribution

Under the alternative hypothesis, there are no constraints, so the degrees of freedom are $\nu_1 = r \cdot c - 1$.

Maximum likelihood ratio test

The constraint of the null hypothesis gives we use the marginal degrees of freedom to get that $\nu_0 = (r-1) + (c-1) = r + c - 2$.

Thus, the degrees of freedom of the chi-square distribution followed by $2 \log \rho(\mathbf{X})$ are $\nu = \nu_1 - \nu_0 = r \cdot c - r - c + 1 = (r - 1)(c - 1)$.

Conclusion

- Described a multinomial random sample X
- Derived $\log \rho(\mathbf{X}) = \sum_{j=1}^r \sum_{k=1}^c Y_{j,k} \log \frac{Y_{j,k}}{Y_{ic}Y_{ok}/n}$
- Applied Wilks' theorem to show that, approximately, $2\log \rho(\mathbf{X}) \sim \chi^2_{(r-1)(c-1)}$
- Constructed the chi-square test of independence