# Monitorización

Administración de Sistemas

Unai Lopez Novoa unai.lopez@ehu.eus



#### Contenido

- 1. Introducción
- 2. Gestión de recursos
- 3. Registros del sistema (logs)
- 4. Monitorización en GCP
- 5. Rendimiento



 Para asegurar el buen funcionamiento de una aplicación, hay 4 elementos a observar:

Latencias Tráfico

Errores Saturación



#### • Latencia:

- El tiempo necesario para completar una petición.
- Importante distinguir entre peticiones satisfactorias y fallidas.

#### • Tráfico:

- Métrica de la demanda de un sistema.
- Suelen ser específicas de un sistema.
- Ejemplos:
  - Peticiones HTTP / segundo.
  - Transacciones / segundo.



#### • Errores:

- Resultado de peticiones fallidas.
- Pueden ser explícitos o implícitos
- Ejemplo: Al solicitar una web a un servidor:
  - Error explícito: error 404.
  - Error implícito: recuperar una web diferente a la esperada.

#### Saturación:

- Medida de la capacidad de un recurso en uso.
- Importante observar los recursos más limitados.
- Latencia puede ser un indicador de saturación.



Cómo observar cada elemento:

Latencias

Monitorizar logs de aplicación.

Tráfico

Monitorizar logs de aplicación y red.

**Errores** 

Monitorizar logs de aplicación y del sistema.

Saturación

Monitorizar hardware (CPU, memoria, ...) y red.



### Monitorización de CPU

- Comando top
  - Uso de recursos del sistema en tiempo real
- Comando ps
  - Listado de procesos y su uso de recursos
- Comando pstree
  - Árbol de procesos del sistema
- Estos 3 están descritos en el Tema 1, Diapositiva 42



- Prioridades de los procesos
  - El planificador del SSOO asigna intervalos de tiempo a los procesos según su prioridad.
  - Esto se controla según 2 valores:
    - Prioridad (PR): puede tomar valores en el rango -100 a 39.
    - Valor "nice" (NI): puede tomar valores en el rango -20 a 19.
    - Columnas PR y NI en el comando Top.
    - Para ambos, cuanto más negativo el valor, mayor prioridad.
  - En Linux, los procesos se consideran de 2 tipos:
    - Procesos normales (la mayoría de los lanzados por usuarios).
    - Procesos de tiempo real (generalmente, los esenciales para el SSOO).



- Prioridades de los procesos normales
  - Se calcula: PR = 20 + NI
    - P.e. si el valor NI de un proceso es -20, su prioridad es 0
    - P.e. si el valor NI es 19, su prioridad es 39.
  - Los procesos normales ocupan el rango 0-39 de prioridades.
  - Por defecto, el valor "nice" (NI) es 0.
  - Un usuario normal puede modificar el valor NI entre 0 y 19.
    - Puede reducir la prioridad sobre el resto de procesos del sistema
  - El usuario root puede modificar el valor NI -20 y 19.



- Prioridades de los procesos normales
  - Comando nice
    - Lanza un comando con un valor Nice concreto
    - Sintaxis: nice -n valor comando
      - Valor es relativo (define cuánto más o menos)
    - Ejemplo: nice -n 10 ./miScript
  - Comando renice
    - Cambia el valor Nice de un proceso (o grupo) en ejecución
    - Un usuario normal (no root) sólo puede incrementar el valor Nice.
      - Y cada cambio que haga es irreversible
    - Sintaxis: renice -n valor -p PID [-g grupo]
      - Valor es absoluto
    - Ejemplo: renice -n 15 -p 7552



- Prioridades de los procesos en tiempo real
  - Se calcula: **PR** = -1 prioridad\_tiempo\_real.
  - El valor prioridad\_tiempo\_real toma valores entre 1 y 99.
    - P.e. si prioridad\_tiempo\_real es 50, PR vale -51.
    - El valor "nice" no se tiene cuenta.
    - En el comando top, si PR=-100, se muestra como 'rt' (real time).
  - Comando chrt
    - Lanza un proceso con una prioridad de tiempo real
    - Sintaxis: chrt --rr <pri>rioridad\_tiempo\_real> <programa>
    - Ejemplo: chrt --rr 20 ./miPrograma
      - Lanzaría ./miPrograma con PR=-21



- Prioridades de los procesos: comando ps
  - El comando **ps** puede mostrar datos en diferentes formatos
    - Cada formato puede mostrar una misma prioridad con diferentes valores.
  - Formato BSD:
    - Comando: ps al

```
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND ...
0 1000 2033 1104 21 1 7208 2708 - SN+. pts/0 0:00 ping www.ehu.eus
```

- Formato Unix:
  - Comando: ps -u unai -o pid,user,pri,nice,args

```
PID USER PRI NI COMMAND
...
2033 unai 18 1 ping www.ehu.eus
```

Se muestra un valor de prioridad (PRI) diferente para un mismo proceso (PID=2033).



- Comando kill
  - Envía señales a procesos (no sólo matarlos)
  - Sintaxis: kill (opciones) PID
    - Opciones: -l Mostrar las señales disponibles
      - -señal Mandar una señal al proceso
    - Hay 3 formas de indicar una señal:
      - Con su número -19
      - Con el prefijo SIG -SIGSTOP
      - Sin el prefijo SIG -STOP
    - Señales: -STOP Parar el proceso
      - -CONT Reanudar el proceso (parado con STOP)
      - -KILL Matar el proceso

••



- Comando ulimit
  - Limitar el uso de recursos
  - Los límites sirven para la Shell en uso
  - Sintaxis: ulimit -<opción> [límite]
    - Opciones: -a Lista los límites establecidos
      - -f Máximo número de ficheros creados por la Shell
      - -m Máxima memoria disponible
      - -t Máximo tiempo de CPU (segundos)
    - Ejemplo:

```
unai@unai-server:~$ ulimit -a
                         (blocks, -c) 0
core file size
scheduling priority
                                 (-e) 0
                         (blocks, -f) unlimited
file size
pending signals
                                 (-i) 31543
max memory size
                         (kbytes, -m) unlimited
open files
                                 (-n) 1024
POSIX message queues
                          (bytes, -q) 819200
real-time priority
                                 (-r) 0
stack size
                         (kbytes, -s) 8192
                        (seconds, -t) unlimited
cpu time
```



- Fichero /etc/security/limits.conf
  - Permite hacer una configuración permanente de límites
  - Cada línea tiene el siguiente formato: usuario/grupo tipo-de-límite ítem valor
  - Donde:

usuario/grupo Nombre del usuario o grupo (comienza con @)

tipo-de-limite soft/hard

• item Puede ser: cpu, nproc, maxlogins, fsize, ...

valor
 Valor para el ítem definido

• Ejemplos:

@student hard nproc 20 @faculty soft nproc 20 @faculty hard nproc 50 ftp hard nproc 0

Mas información: man limits.conf



#### Comando cpulimit

- Permite limitar el % de uso constante de CPU de un proceso
  - ulimit y limits.conf sólo permiten limitar el tiempo total de uso CPU
  - nice y renice permiten reducir la prioridad pero no fijar un umbral
- Está en los repositorios Debian
- Uso: cpulimit --pid PID --limit (límite)
  - Donde (límite) es el límite de % CPU máximo que queremos permitir
- Más información:
  - https://www.tecmint.com/limit-cpu-usage-of-a-process-in-linux-withcpulimit-tool/



 Se pueden programar tareas para que se ejecuten periódicamente (cron) o una única vez (atd)

 cron y atd leen periódicamente sus ficheros de configuración para ejecutar tareas programadas

• Por defecto, cada minuto

- Algunas tareas programables:
  - · Rotación de logs
  - Borrar la carpeta /tmp
  - Copias de seguridad
  - Actualizar una BBDD



/etc



- Comando crontab
  - Una línea por tarea programada
  - Sintaxis: crontab (opciones)
    - Opciones: -I Mostrar las tareas programadas
      - -e Editar las tareas programadas
      - -r Elimina las tareas programadas
  - · Cada entrada de cron es una línea sigue la estructura:





#### Comando crontab

• Ejemplos:

```
6 17 *** /scripts/copia.sh
***** /scripts/miScript.sh
* 5,17 *** /scripts/api.sh
**/10 *** /scripts/mon.sh
Ejecuta copia.sh los sabados a las 17:00
Ejecuta miScript.sh cada minuto
Ejecuta api.sh a diario a a las 5:00 y 17:00
Ejecuta mon.sh a diario cada 10 minutos
```

#### Más ejemplos en:

https://tecadmin.net/crontab-in-linux-with-20-examples-of-cron-schedule/



- Comando crontab
  - https://crontab.guru/
  - Editor online de entradas cron





#### Comando at

- Controla las tareas a ejecutar por atd
- Para programar una tarea
  - Desde Shell: at HORA (donde HORA es una hora es formato HH:MM)
  - Se abre el Shell de at, escribir el/los comando(s) deseado(s):
    - P.e. Is /home/unai -l
  - Cerrar la Shell de at (Ctrl + D)
  - La salida estándar (stdout) se envía por mail usando sendmail
    - Conviene revisar /var/spool/mail/<usuario>

#### Otras opciones:

• Desde Shell: at -l Listado de tareas pendientes

Desde Shell: at -d (ID)
 Eliminar tarea (obtener ID con -l)



# Ejercicio 1

- Instalar el paquete stress-ng
  - Suite de programas para evaluar el rendimiento
- Ejecutar stress-ng durante 2 minutos con 2 hilos CPU.
   Mientras está en ejecución, cambiar la prioridad de uno de sus procesos a la mínima posible.
  - ¿Qué sucede?
  - Probar a cambiar la prioridad del mismo a la máxima posible.
- Ejecutar stress-ng durante 3 minutos con 1 hilo CPU.
   Mientras está en ejecución, limitar su uso de CPU al 50%.
  - Verificar con top.



### Gestión de memoria

- La mayoría de sistemas operativos modernos utilizan memoria virtual.
  - Utilizan un espacio de disco como extensión de la memoria principal.
    - Espacio de intercambio o Swap.

Se organiza en páginas que se intercambian entre memoria y

disco.





### Gestión de memoria

- La mayoría de sistemas operativos modernos utilizan memoria virtual.
  - Un uso excesivo de Swap puede degradar el rendimiento.
  - Valores referencia de latencias en una jerarquía de memoria1:

| Tipo de memoria | Latencia     |
|-----------------|--------------|
| Caché L1 en CPU | 1 ns         |
| Caché L2 en CPU | 4 ns         |
| RAM             | 100 ns       |
| SSD             | 16.000 ns    |
| HDD             | 2.000.000 ns |



### Gestión de memoria

- Monitorizar la memoria
  - Comando top
    - Utilizar Shitf+m para ordenar por consumo descendente de memoria
  - Comando vmstat
    - Campos relativos a la memoria:

| р | rocs |      | me      | emoria- |         | sv | vap | i  | 0  | -sis | tema- |    |    | cj  |    |    |
|---|------|------|---------|---------|---------|----|-----|----|----|------|-------|----|----|-----|----|----|
| r | b b  | swpd | libre   | búfer   | caché   | si | so  | bi | bo | in   | CS    | us | sy | id  | wa | st |
| 1 | . 0  | 8972 | 1097844 | 776348  | 5687216 | 0  | 0   | 0  | 3  | 1    | 2     | 0  | 0  | 100 | 0  | 0  |
| 0 | 0    | 8972 | 1097712 | 776348  | 5687216 | 0  | 0   | 0  | 0  | 42   | 48    | 0  | 0  | 100 | 0  | 0  |
| 0 | 0    | 8972 | 1097712 | 776348  | 5687216 | 0  | 0   | 0  | 0  | 39   | 48    | 0  | 0  | 100 | 0  | 0  |

swpd: Memoria swap en uso

libre: Memoria libre

**buff**: Memoria usada como buffer **cache**: Memoria usada como cache

si: Memoria swap retirada de disco(Swap In)so: Memoria swap Ilevada a disco (swap out)



# Gestión de discos y ficheros

#### Monitorización

- Comando df
  - Listado de sistemas de ficheros y espacio disponible
  - Sintaxis: df (opciones)
  - Ejemplo: df-h
    - Muestra los tamaños en kB, MB, ... en lugar de en bytes (-h para Human readable)

#### Comando du

- Tamaño de una rama del sistema de ficheros (p.e., de un directorio)
- Sintaxis: du (opciones) directorio
- Ejemplos: du -sh /home
  - Muestra el tamaño total del directorio /home sin listar todo su contenido



# Gestión de discos y ficheros

#### Monitorización

- Comando Isof
  - Muestra los ficheros en uso por los procesos del sistema (list open files)
  - Útil para resolver el error "resource is busy" al desmontar una partición.

#### Comando iostat

 Muestra estadísticas de uso y tasas de transferencia de los dispositivos de almacenamiento.

• Uso: iostat –p ⟨disco⟩

Ejemplo: iostat –p /dev/sda

| Device      | tps<br>2,26 | kB_read/s<br>26.52 | kB_wrtn/s<br><b>258.30</b> | kB_dscd/s<br>127.34 | kB_read<br>438959 | kB_wrtn<br><b>4275565</b> | kB_dscd<br>2107840 |
|-------------|-------------|--------------------|----------------------------|---------------------|-------------------|---------------------------|--------------------|
| sda<br>sda1 | 2.24        | 26.01              | 258.30                     | 127.34              | 430959            | 4275564                   | 2107840            |
| sda14       | 0.00        | 0.02               | 0.00                       | 0.00                | 272               | 0                         | 0                  |
| sda15       | 0.01        | 0.43               | 0.00                       | 0.00                | 7088              | 1                         | 0                  |



### Gestión de red

#### Monitorización

- Comando netstat
  - Muestra información sobre las conexiones y rutas de red
  - Mostrar conexiones activas: netstat -a | more
  - Mostrar tabla de rutas: netstat -r

#### Comando nethogs

- Muestra conexiones y ratio de tráfico enviado/recibido
- Requiere instalar el paquete sysstat

NetHogs version 0.8.6-3

| PID US  | SER | PROGRAM              | DEV  | SENT   | RECEIVED  |        |
|---------|-----|----------------------|------|--------|-----------|--------|
| 2561 ur | nai | wget                 | ens4 | 55.561 | 84852.891 | KB/sec |
| 2312 ur | nai | sshd: unai@pts/2     | ens4 | 1.038  | 0.296     | KB/sec |
| 460 rc  | oot | /usr/bin/google_osco | ens4 | 0.011  | 0.011     | KB/sec |
| ? ro    | oot | unknown TCP          |      | 0.000  | 0.000     | KB/sec |
|         |     |                      |      |        |           |        |
| TOTAL   |     |                      |      | 56.609 | 84853.198 | KB/sec |



### Gestión de red

- Monitorización
  - Comando tcpdump
    - Es un analizador de tráfico para conexiones TCP/IP
    - Uso más común: captura de tráfico para posterior análisis.
    - Comenzar a capturar tráfico y guardar en un fichero
      - Sintaxis: tcpdump -i <interfaz> -Z <usuario> -w <ficheroCaptura>
      - Ejemplo: tcpdump -i ens4 -Z unai -w miCaptura
      - Las interfaces disponibles se pueden mostrar con: ip link
    - Visualizar un fichero de captura de tráfico:
      - Sintaxis: tcpdump -enr (ficheroCaptura)
      - Se puede añadir el parámetro -ttt para incluir la diferencia de tiempo entre cada paquete.



### Gestión de red

- Comando telnet
  - Útil para comprobar si un servicio remoto está a la escucha.
    - Sintaxis: telnet (IP) (puerto)
- Comando netcat
  - Herramienta para leer de y escribir en conexiones de red.
  - Utilidad: Abrir una conexión a la escucha en un puerto.
    - Sintaxis: nc -l <puerto>
  - Utilidad: Conectarse a una IP/puerto y escribir en él.
    - Sintaxis: nc (IP) (puerto)



# Ejercicio 2

- Realizar este ejercicio en parejas, seréis A y B
- A inicia una captura de tráfico con tcpdump en su MV.
  - La captura se debe guardar en un fichero
- B hace ping 10 veces a la máquina virtual de A.
- A para la captura de tráfico.
- Buscad paquetes relacionados con ping en el fichero de captura.
  - ¿Cuántos paquetes encontráis?



# Logs

- El kernel de Linux, los servicios y las aplicaciones generan eventos constantemente:
  - · Información sobre su estado
  - Información sobre fallos/anomalías
  - Errores de arranque
  - Acceso a información (seguridad)
- Una gestión adecuada de esta información es esencial para descubrir y solucionar problemas
- Todos estos eventos suelen estar gestionados por un único servicio
  - En Unix/Linux es syslog



- Es el recolector de eventos empleado por el kernel, servicios y aplicaciones
- Flexible, seguro y fácil de usar
- Está compuesto por los siguientes elementos:





- Partes de syslog:
  - **syslogd**: Servicio del sistema. Recibe los mensajes del resto de servicios y aplicaciones y los añade al registro.
  - openlog: Librerías para usar syslog desde una aplicación.
    - P.e., openlog (C/C++), sys::syslog(openlog(),syslog()) (Perl)
  - logger: Comando del sistema para enviar mensajes a syslog.
  - rsyslogd.conf: Fichero de configuración.
    - Ver siguiente transparencia.







- rsyslogd.conf
  - Listado de acciones a realizar en función de los mensajes recibidos.
  - Tiene una línea por acción, con el formato:
    - entidad.nivel acción
  - Entidad: lista de valores definidos por el sistema
    - P.e.: Kern, user, daemon (otro servicio), auth (login, su, ssh), mail, cron, ...
  - Nivel: tipo de notificación
    - emerg, alert, crit, err, warning, notice, info, debug, \* (todos los niveles)
  - Acción:
    - <nombre-de-fichero> Escribir el mensaje a ese fichero.
    - <nombre-dominio>/<IP> Enviar el mensaje al syslogd del nodo indicado.
    - <nombre-usuario> Enviar mensaje al usuario, si está conectado.
      - \* Enviar mensaje a todo usuario conectado.



- rsyslogd.conf
  - Ejemplo:

```
# First some standard log files. Log by facility.
#
auth,authpriv.* /var/log/auth.log
*.*;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
mail.* -/var/log/mail.log
#user.* -/var/log/user.log

# Logging for the mail system.
#
#mail.info -/var/log/mail.info
#mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err
...
```

• En Ubuntu, por defecto es: /etc/rsyslog.d/50-default.conf



# Syslog

- Syslog escribe en ficheros en /var/log:
  - /syslog Eventos generales, ni críticos ni de depuración
  - /maillog Información de e-mails
  - /cron Registros del proceso cron
  - /boot.log Mensajes e información de inicio del sistema
- Hay ficheros en /var/log/ que no gestiona syslog
  - /wtmp Registra accesos de los usuarios y reinicios
    - Está en formato binario
    - Es utilizado por los comandos last y uptime
  - /lastlog Contiene el último acceso de cada usuario
  - /dmesg Eventos del inicio del sistema
    - Es utilizado por el kernel y proceso init



 Los logs son una herramienta fundamental para el control y reparación del sistema.

Pero...

- · Cuanta más información de logs, mayor uso de disco.
  - Los logs pueden llegar a consumir un espacio significativo.
  - Puede ser costoso buscar información/datos concretos entre miles de líneas.



- Rotación de logs
  - Periódicamente cambiar el fichero donde se escriben los logs, cambiando a escribir en uno nuevo y borrando el más antiguo.



- Se puede hacer de manera manual con un script.
  - Ejemplo:

```
#!/bin/bash
cd /var/log/
mv messages.2 messages.3
mv messages.1 messages.2
mv messages messages.1
cat /dev/null > messages
chmod 600 messages

#Reiniciar syslog
service rsyslog restart
```



- Rotación de logs
  - Se puede implementar la rotación con un servicio del sistema.
    - Evita errores humanos al crear scripts.
  - Servicio logrotate
  - Se configura con los siguientes ficheros:

#### /etc/logrotate.conf Por defecto, para todos los servicios

```
# rotate log files weekly, monthly
weekly
# keep 4 weeks worth of backlogs
rotate 4
# send errors to root
errors root
# compressed log files
compress
...
```

#### /etc/logrotate.d/ Sobrescribe logrotate.conf para un servicio concreto

```
/var/log/dpkg.log {
    monthly
    rotate 12
    compress
    notifempty
    create 0664 root
adm
}
```



#### Analizando logs

- Para depuración:
  - · Útil para obtener más información cuando algo va mal
  - Activar modo verboso de las aplicación
    - P.e. activar flag -d, /etc/init.d/ssh sshd -d
  - Importante: desactivar el modo verboso al volver a producción

#### Para monitorización:

- Problema: abundante información, de la cual mucha puede no ser útil
- Utilizar herramientas para buscar los mensajes relevantes, p.e.:
  - Swatch: Programa Perl que busca patrones en los logs¹
  - · LogWatch: Genera resúmenes para su envío por e-mail.
  - · Soluciones más complejas, p.e., pila ELK.



## Ejercicio 3

- Enviar un mensaje al log del sistema desde el terminal y comprobar que se ha añadido correctamente.
- Añadir una regla a syslog para que los mensajes de usuario de tipo "debug" se escriban en /var/log/user\_debug.log
- Enviar un mensaje de tipo debug y comprobar que se escribe en un /var/log/user\_debug.log
- Devolver syslog a su situación anterior
  - Eliminar la regla recién creada



- GCP provee un sistema de monitorización para los servicios en uso
  - Se accede en la sección "Operaciones"
- Permite obtener métricas en diferentes resoluciones
  - Minutos, horas, días, ...
  - La mayor resolución es 1 minuto.
- Tiene un coste asociado
  - La capa gratuita incluye monitorización básica<sup>1</sup>



- Organiza la información en Dashboards de control
  - Por defecto, incluye varios para los recursos más comunes
    - Sección Dashboards de "Monitoring":



- Permite crear Dashboard personalizados
  - Con diferentes tipos de gráficos:







- Métricas de una VM
  - · Por defecto, se obtienen métricas relativas a uso de recursos y red
  - Se visualizan en forma de gráfica:





- Se pueden crear alertas que envíen notificaciones cuando sucedan eventos concretos.
  - P.e. cuando una métrica supere un umbral, al detectar un fallo, etc.
  - Se gestionan desde la sección "Alertas"



- Para crear alertas personalizadas:
  - Crear una política
    - Elegir la métrica a monitorizar
    - Elegir el umbral de la métrica
    - Elegir el canal de notificación (p.e. e-mail)
    - Revisar y guardar





- Monitorizar el estado de Google Cloud
  - Portal de estado: <a href="https://status.cloud.google.com/">https://status.cloud.google.com/</a>
    - Nivel general:



• Nivel de región:





- Monitorizar el estado de Google Cloud
  - Portal de resumen de incidencias recientes por servicio: https://status.cloud.google.com/summary
  - Incidencias de Google Compute Engine:
    - A fecha 25 de septiembre de 2023.

| Google Compute Engine                                                                                            |             |                     |
|------------------------------------------------------------------------------------------------------------------|-------------|---------------------|
| SUMMARY                                                                                                          | DATE        | DURATION            |
| Google Compute Engine is experiencing elevated error rate with diskTypes.aggregatedList API method               | 16 Sep 2023 | ○ 1 hour, 9 minutes |
| This issue is believed to be affecting a very small number of projects and our Engineering Team is working on it | 13 Sep 2023 |                     |
| Multiple services for Google Cloud Platform are impacted in us-central1-a                                        | 12 Sep 2023 |                     |
| Google Compute Engine is experiencing intermittent errors in multiple regions                                    | 4 Sen 2023  | ↑ hour 29 minutes   |



## Ejercicio 4

- Crear un Dashboard de GCP para monitorizar los siguientes elementos de vuestra MV:
  - Uso ("utilization") de CPU.
  - Nº de bytes recibidos.
- En la MV, descargar la ISO para la última versión de Ubuntu Server.
  - URL: <a href="https://releases.ubuntu.com/22.04.3/ubuntu-22.04.3-live-server-amd64.iso">https://releases.ubuntu.com/22.04.3/ubuntu-22.04.3-live-server-amd64.iso</a>
- Verificar el incremento de Bytes recibidos el gráfico.
  - Puede tardar unos segundos en aparecer



### Rendimiento

 Depende del entorno del trabajo, los usuarios van a utilizar una colección de aplicaciones más o menos variada.

• Es útil caracterizar las máquinas de nuestro entorno para saber cómo van a responder con estas aplicaciones.



### Rendimiento

 Generalmente, una aplicación está limitada por uno de los siguientes:

#### Cómputo

- Operaciones a realizar en la CPU > operaciones con la memoria
- Ejemplos de aplicaciones:
  - Renderizado de gráficos/video, simulaciones químicas, ...

#### Memoria

- Datos a transferir > capacidad de procesado de la CPU
- Ejemplos de aplicaciones:
  - · Análisis de datos, simulaciones de dinámica de fluidos, ...



- Son aplicaciones cuyo objetivo es comprobar el rendimiento de un factor concreto, p.e.
  - CPU, memoria, discos, red, librerías, BBDDs, ...
- Generalmente ejecutan una operación (o pocas) de manera repetida y miden el tiempo necesario
  - En ocasiones el objetivo es validar que un software es estable
- Características que debe un benchmark debe cumplir:
  - Relevante y representativo
  - Repetible
  - Escalable



#### SPEC

- Standard Performance Evaluation Corporation (SPEC) es un consorcio americano dedicado a desarrollar benchmarks
  - Web oficial: https://www.spec.org/benchmarks.html
- SPEC CPU
  - Software comercial (1.210 US\$), última versión: 2017 (anterior 2006)
  - Diferentes versiones: speed, integer, floating point, ...
- SPEC Cloud
  - Software comercial (2.420 US\$), última versión: 2018 (anterior 2016)
- Otros: SPEC ACCEL, SPEC MPI,...



- Firestarter
  - Benchmark open-source de stress CPU.
  - Crea y ejecuta diferentes patrones de carga en intervalos configurables por el usuario.
  - Implementación específica para diferentes arquitecturas:
    - Intel: Sandy Bridge, Broadwell, Skylake, Knights Landing, ...
    - AMD: Zen, Zen+
  - Web oficial: <a href="http://tu-dresden.de/zih/firestarter/">http://tu-dresden.de/zih/firestarter/</a>
    - Última versión: 2.0 (Enero 2021)
    - Ejercicio: descargar Firestarter y ejecutar en PC o máquina virtual



- Firestarter
  - Algunos resultados para comparar:

| Modelo de CPU          | Arquitectura | Lanzamiento | Capacidad          | GFLOP/s |
|------------------------|--------------|-------------|--------------------|---------|
| Intel Xeon E5-2620     | Sandy Bridge | 2012        | 6 cores @ 2.0 GHz  | 33.9    |
| Intel Xeon E5-2695 v4  | Broadwell    | 2016        | 18 cores @ 2.1 GHz | 397.5   |
| Intel Xeon Gold 6148   | Skylake      | 2017        | 20 cores @ 2.4 GHz | 1000.9  |
| Intel Xeon Silver 4216 | Cascade Lake | 2019        | 16 cores @ 2.1 GHz | 398.3   |

• Se utiliza el tipo de instrucción más apropiado para cada chip.



#### STREAM

- Benchmark de evaluación de memoria muy popular
- Realiza diferentes operaciones con 2 vectores:
  - Copy a(i) = b(i)
     Scale a(i) = s\*b(i)
     Add a(i) = b(i)+c(i)
     Triad a(i) = b(i)+s\*c(i)
- El tamaño de los vectores lo define el usuario.
- STREAM mide el tiempo en realizar estas operaciones.
- Es importante compilar y configurar STREAM correctamente para obtener resultados fiables.
- Web oficial: https://www.cs.virginia.edu/stream/



#### STREAM

Algunos resultados para comparar:

| Modelo de CPU         | Memoria                | GB/s  | GFLOP/s |
|-----------------------|------------------------|-------|---------|
| Intel Xeon E5-2620    | 32 GB DDR3 @ 1333 MHz  | 23.61 | 33.9    |
| Intel Xeon E5-2695 v4 | 128 GB DDR4 @ 2400 MHz | 48.10 | 397.5   |
| Intel Xeon Gold 6148  | 384 GB DDR4 @ 2666 MHz | 74.90 | 1000.9  |

- Resultados de la prueba Triad con tamaño de array 2<sup>25</sup>.
- Compilado con GCC v7.3 y flags -O3 y -march



### Rendimiento

 ¿Cómo determinar si nuestra aplicación está limitada por cómputo o memoria?

#### • Utilizar:

- Herramientas de profiling
  - Comerciales: Intel Vtune, ARM MAP, Cray PAT
  - Libres: Linux perf, Linux Trace Toolkit, Valgrind, gprof
- Modelos de rendimiento
  - Descripción matemática que representa una interacción hardware-software
  - Generalmente son específicos a una máquina o aplicación
  - Requieren de un trabajo de configuración
    - A veces, utilizar benchmarks para obtener información del hardware



# Bibliografía

- Pablo Abad Fidalgo, José Ángel Herrero Velasco. "Advanced Linux System Administration", OCW UNICAN, 2018:
  - Topic 8: Resource management
  - Topic 9: Logging
  - Publicado bajo licencia Creative Commons BY-NC-SA 4.0
  - https://ocw.unican.es/course/view.php?id=38
- Dan Sullivan. "Google Cloud Associate Cloud Engineer: Get Certified", Udemy, 2022.
  - <a href="https://www.udemy.com/course/google-certified-associate-cloud-engineer-2019-prep-course/">https://www.udemy.com/course/google-certified-associate-cloud-engineer-2019-prep-course/</a>
- Consultados en julio 2020 y septiembre 2023

