平成24年度日本留学試験(第2回)

試験問題

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、探点されません。

^^^^^^^^^^

計算には次の数値を用いること。また、体積の単位リットル(liter)はLで表す。

標準状態 (standard state): 0° C, 1.0×10^{5} Pa (= 1.0 atm)

標準状態における理想気体 (ideal gas) のモル体積 (molar volume): 22.4 L/mol

気体定数 (gas constant): $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数 (Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数 (Faraday constant): $F = 9.65 \times 10^4$ C/mol

原子量 (atomic weight): H:1.0 C:12 N:14 O:16

問1 次の①~⑤に示した原子(atom)またはイオン(ion)に関する二つの数が**互いに**

異なるものを、一つ選びなさい。

| 1 |

- ① 12Cの陽子 (proton) の数と中性子 (neutron) の数
- ② ¹²C の陽子の数と ¹³C の陽子の数
- ③ Ca²⁻の最外殻電子 (outermost shell electron) の数と F⁻の最外殻電子の数
- ④ ²Hの中性子の数と ⁴Heの中性子の数
- ⑤ He の電子 (electron) の総数 (total number) と Li の電子の総数

問 2 元素 (element) の周期表 (periodic table) を次の図のように(a) \sim (h)の領域に分けた。下の記述 $\mathbb{D}\sim$ 6のうち,**正しくないもの**を一つ選びなさい。

- ① (b)の領域にある元素はアルカリ金属(alkali metal)と呼ばれる。
- ② Ca. Mg は両方とも(c)の領域にある。
- ③ Fe, Sn は両方とも(d)の領域にある。
- ④ (e)の領域にある元素はすべて典型元素 (main group element) である。
- ⑤ (f), (g)の領域にある元素はすべて非金属元素 (nonmetallic element) である。
- ⑥ (g)の領域にある元素はハロゲン (halogen) と呼ばれる。
- 問3 水分子に関する次の記述①~⑤のうち、正しくないものを一つ選びなさい。
- 3
 - ① 分子内で共有結合 (covalent bond) にかかわる電子 (electron) の数は 4 である。
 - ② 非共有電子対 (unshared electron pair) を二つもっている。
 - ③ 分子構造 (molecular structure) は直線形である。
 - ④ 極性分子 (polar molecule) である。
 - ⑤ フッ化水素 HF やメタノール CH₃OH と水素結合 (hydrogen bond) をつくる。
- 問 4 水に $3.4 \, \mathrm{g}$ のアンモニア $\mathrm{NH_3}$ を溶かして $25 \, \mathrm{mL}$ のアンモニア水溶液を得た。この水溶液の濃度 $[\mathrm{mol/L}]$ として最も近い値を、次の \mathbb{O} \mathbb{O} の中から一つ選びなさい。

4 mol/L

- ① 0.20
- ② 0.50
- ③ 0.80
- **4** 2.0
- **⑤** 5.0
- 6 8.0

問5 次の分子(a) \sim (g)の中に二重結合 (double bond) をもつものが二つある。それらの組み合わせとして正しいものを、下の① \sim ⑥の中から一つ選びなさい。

- (a) $P ext{t} ext{T} ext{V} ext{)} ext{ } C_2 ext{l} ext{l}_2$
- (b) アンモニア NH₃
- (c) エチレン (エテン) C₂H₄
- (d) 塩化水素 HCI

(e) 塩素 Cl₂

(f) 窒素 N₂

- (g) 二酸化炭素 CO2
- ① a, c
- ② a, g
- ③ b, d
- 4 b, f
- ⑤ c, g
- 6 e, f

6

問6 理想気体 (ideal gas) 1 mol を、圧力 P_1 [Pa] または P_2 [Pa] に保ったまま、温度 t [$\mathbb C$] を変化させた。 P_1 < P_2 としたとき、tと気体の体積 V [L] の関係を表したグラフとして最も適当なものを、次の①~⑥の中から一つ選びなさい。

 2

3

4

t [℃]

(5)

6

理科-24

問7 二酸化炭素 CO_2 , エタノール C_2H_5OH およびグルコース $C_6H_{12}O_6$ の生成熱 (heat of formation) は, それぞれ次の熱化学方程式 (thermochemical equation) で表される。

$$C$$
 (固) + O_2 (気) = CO_2 (気) + 394 kJ
 $2C$ (固) + $3H_2$ (気) + $\frac{1}{2}O_2$ (気) = C_2H_5OH (液) + 277 kJ
 $6C$ (固) + $6H_2$ (気) + $3O_2$ (気) = $C_6H_{12}O_6$ (固) + 1273 kJ

次の熱化学方程式で表されるグルコースからエタノールと二酸化炭素を生成する反応 において、Qの値として最も適当なものを、下の①~⑥の中から一つ選びなさい。

7 kJ

 $C_6H_{12}O_6$ (固) = $2C_2H_5OH$ (液) + $2CO_2$ (気) + QkJ

- ① 32
- ② 35
- ③ 47
- **4** 60
- ⑤ 69
- 6 95

問8 アンモニア NH₃は水溶液中では次のように電離 (electrolytic dissociation) して平衡 状態 (equilibrium state) になっている。

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$

- ① C₂H₅OH
- ② CH₃COOH
- 3 NaCl
- 4 NaOH
- ⑤ NH₄Cl

問9 0.40 mol/L の塩酸 HCl aq 50 mL に, 0.10 mol/L の水酸化ナトリウム水溶液 NaOH aq 100 mL を加えると、0.56 kJ の熱が発生した。0.40 mol/L の塩酸 50 mL に, 0.30 mol/L の水酸化ナトリウム水溶液 100 mL を加えた場合、何 kJ の熱が発生するか。最も適当な値を、次の①~⑥の中から一つ選びなさい。

- ① 0.51
- ② 0.72
- ③ 1.1
- 4 1.6
- **⑤** 2.1
- ⑥ 3.2

問 10 鉛蓄電池 (lead storage battery) を充電 (charge) すると,正極 (cathode) と負極 (anode) の質量 (mass) はそれぞれどのように変化するか。最も適当な組み合わせを, 次表の①~⑤の中から一つ選びなさい。

	正極	負極
①	増える	増える
2	増える	減る
3	減る	減る
4	減る	増える
5	変わらない	変わらない

問 11 金属の性質に関する次の記述①~⑤のうち、最も適当なものを一つ選びなさい。

11

- ① 銀 Ag は、濃硝酸 conc. HNO3 に溶けない。
- ② アルミニウム Al は、水酸化ナトリウム水溶液 NaOH aq に溶けない。
- ③ 金 Au は、濃硫酸 conc. H₂SO₄ に溶ける。
- ④ 銅 Cu は, 希塩酸 dil. HCI に溶ける。
- ⑤ 鉄 Fe は、濃硝酸に溶けない。

問 12 次表の A 欄に示した水溶液中のイオン (ion) を検出するために, B 欄の操作をした。

12

C欄に示した結果が正しくないものを、次の①~⑤の中から一つ選びなさい。

	A	В	С
1)	Ag	塩酸 HClaq を加えた	白色の沈殿 (precipitate) を 生じた
2	Fe ³⁺	少しずつ水酸化ナトリウム水溶液 NaOH aq を加えた	赤褐色 (reddish brown) の沈殿 を生じ、その後、その沈殿 が溶解(dissolution)した
3	MnO ₄ -	硫酸酸性溶液 (acidified with sulfuric acid) でシュウ酸水溶液 (COOH)2 aqを加えて加熱した	脱色 (decolorization) した
4	Na ⁺	炎色反応(flame reaction)を行った	炎が黄色になった
(5)	SO ₄ ²⁻	硝酸バリウム水溶液 Ba(NO₃)₂ aq を加えた	白色の沈殿を生じた

問 13 次表の①~④のうち、それぞれの操作でおこる化学反応を反応式 (reaction formula) で示したものとして正しいものを、一つ選びなさい。

	操作	反応式
1	硫酸銅(Ⅱ)水溶液に水酸化ナトリウム水溶液を加える	$CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$
2	炭酸水素ナトリウムを熱分解する	NaHCO ₃ → NaOH + CO ₂
3	硝酸銀の水溶液に過剰のアンモニ ア水を加える	$2AgNO_3 + 2NH_3 + H_2O$ $\longrightarrow Ag_2O + 2NH_4NO_3$
4	塩化アンモニウムに水酸化カルシ ウムを加えて加熱する	$2NH_4Cl + Ca(OH)_2 \longrightarrow 2NH_4OH + CaCl_2$

注)硫酸銅(II)水溶液(aqueous copper(II) sulfate), 水酸化ナトリウム水溶液(aqueous sodium hydroxide), 炭酸水素ナトリウム (sodium hydrogencarbonate), 硝酸銀 (silver nitrate), アンモニア水 (aqueous ammonia), 塩化アンモニウム (ammonium chloride), 水酸化カルシウム (calcium hydroxide)

問 14 次の反応①~⑤のうち、酸化還元反応 (oxidation-reduction reaction) であるものを一つ選びなさい。

①
$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

②
$$FeCl_3 + 3NaOH \longrightarrow Fe(OH)_3 + 3NaCl$$

③
$$Na_2O + H_2O \longrightarrow 2NaOH$$

$$\textcircled{4} \quad 2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$$

$$\bigcirc$$
 SO₂ + 2H₂S \longrightarrow 3S + 2H₂O

問 15 アンモニア NH₃ から硝酸 HNO₃ を工業的に合成するオストワルト法 (Ostwald process) は、次の化学反応式 (reaction formula) で表される。

$$NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$$

この反応で、17 kg のアンモニアから何 kg の硝酸が得られるか。最も近い値を、次の \mathbb{O} \mathbb{O} の中から一つ選びなさい。

① 17 ② 33 ③ 50 ④ 63 ⑤ 86

1	酢酸 (acetic acid)	ホルムアルデヒド (formaldehyde)
2	酢酸	ギ酸 (formic acid)
3	アセトン (acetone)	酢酸エチル (ethyl acetate)
4	アセチルサリチル酸(acetylsalicylic acid)	サリチル酸メチル (methyl salicylate)
\$	エチレングリコール (1,2-エタンジオール) (ethylene glycol (1,2-ethanediol))	グリセリン (1,2,3-プロパントリオール) (glycerin (1,2,3-propanetriol))

理科-28

問 17 次の化合物①~⑤のうち、分子中の原子がすべて一つの平面 (plane) 上にある 17 ものを一つ選びなさい。

① 酢酸 (acetic acid)

- ② ベンゼン (benzene)
- ③ シクロヘキサン (cyclohexane) ④ ジエチルエーテル (diethyl ether)
- ⑤ メタン (methane)

問 18 分子式 C₄H₈O₂のエステル (ester) 0.264 g を完全燃焼 (complete combustion) させ たとき、二酸化炭素 CO_2 と水 H_2O はそれぞれ何 g 生成するか。最も適当な組み合 18 わせを, 次表の①~⑥の中から一つ選びなさい。

	二酸化炭素〔g〕	水 [g]	
①	0.336	0.192	
2	0.528	0.192	
3	0.528	0.216	
4	0.672 0.216		
(5)	0.672 0.384		
6	1.056	0.432	

問 19 次に示す反応経路において、 $(A)\sim(D)$ の反応はそれぞれ何と呼ばれるか。最も 適当な組み合わせを、下表の $\mathbb{D}\sim\mathbb{G}$ の中から一つ選びなさい。

	Α	В	С	D
①	縮合	置换	縮合	還元
2	縮合	付加	付加	酸化
3	縮合	付加	付加	還元
4	付加	縮合	置换	酸化
5	付加	縮合	置换	還元
6	付加	置換	縮合	酸化

注) 縮合 (condensation), 付加 (addition), 置換 (substitution), 還元 (reduction), 酸化 (oxidation)

理科-30

- 問 20 安息香酸 (benzoic acid) とフェノール (phenol) をジエチルエーテル (diethyl ether) に溶解 (dissolution) し、分液漏斗 (separatory funnel) に入れ、次の(a) または(b)の水溶液を加えて激しく振り混ぜた後に静置したところ、液は2層に分かれた。安息香酸とフェノールはそれぞれ上層 (upper layer)、下層 (lower layer) のどちらにおもに含まれるか。その組み合わせとして正しいものを、下表の①~⑥の中から一つ選びなさい。
 - (a) 水酸化ナトリウム水溶液 NaOH aq
 - (b) 炭酸水素ナトリウム水溶液 NaHCO3 aq

	а		b	
	安息香酸	フェノール	安息香酸	フェノール
1	上層	上層	上層	上層
2	上層	上層	上層	下層
3	上層	下層	上層	下層
4	下層	上層	下層	上層
5	下層	下層	下層	下層
6	下層	下層	下層	上層

化学の問題はこれで終わりです。解答欄の **21** ~ **75** はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。