Problem 1.1 - Uncertainty Analysis (Case A)

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$-\frac{c_{\text{Hg}} \, m_{\text{Hg}} \, (T_{2,\text{Hg}} - T_{1,\text{Hg}})}{c_{\text{H2O}} \, (T_{2,\text{Hg}} - T_{1,\text{H2O}})} \\ \mapsto \begin{pmatrix} c_{\text{Hg}} & 0.14 \pm 0.005 & \text{Uniform} \mathcal{D} \\ c_{\text{H2O}} & 4.19 \pm 0.005 & \text{Uniform} \mathcal{D} \\ m_{\text{Hg}} & 0.200 \pm 0.0005 & \text{Uniform} \mathcal{D} \\ T_{2,\text{Hg}} & \left(25 + 273.15\right) \pm 0.5 & \text{Uniform} \mathcal{D} \\ T_{1,\text{Hg}} & \left(80 + 273.15\right) \pm 0.5 & \text{Uniform} \mathcal{D} \\ T_{1,\text{H2O}} & \left(15 + 273.15\right) \pm 0.5 & \text{Uniform} \mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = -\frac{\mathbf{x}_1 \ \mathbf{x}_3 \ (\mathbf{x}_4 - \mathbf{x}_5)}{\mathbf{x}_2 \ (\mathbf{x}_4 - \mathbf{x}_6)}$$

Variable		Uncertainty Interval	Distribution	∂f/∂x _i
x ₁	CHg	$(1.40 \pm 0.05) \times 10^{-1}$	Uniform	2.6253 × 10 ⁻¹
x ₂	C _{H2O}	$(4.190 \pm 0.005) \times 10^{\circ}$	Uniform	8.77188×10^{-3}
x ₃	m _{Hg}	$(2.000 \pm 0.005) \times 10^{-1}$	Uniform	1.83771×10^{-1}
X 4	T _{2,Hg}	$(2.982 \pm 0.005) \times 10^{2}$	Uniform	4.34368×10^{-3}
x ₅	$\mathbf{T}_{1,\mathrm{Hg}}$	$(3.532 \pm 0.005) \times 10^{2}$	Uniform	6.68258×10^{-4}
x ₆	T _{1,H20}	$(2.882 \pm 0.005) \times 10^{2}$	Uniform	3.67542×10^{-3}

У	0.0367541766109785	
Ymin Ymax	0.0315170657709394 0.0432247444577194	= y - 0.00523711 = y + 0.00647057
ε_{max} y ± ε_{max}	0.00579206942316346 (3.7 ± 0.6) × 10 ⁻²	= 15.8% = $3.7(6) \times 10^{-2}$
u _c y ± u _c	0.00182017483569375 $(3.7 \pm 0.2) \times 10^{-2}$	= 4.95% = $3.7(2) \times 10^{-2}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
0.0367541766109785 \pm 0.00579207
\in [0.030962; 0.042546]
\approx (3.7 \pm 0.6) \times 10^{-2} = 3.7(6) \times 10^{-2}
```

Combined Standard Uncertainty

$$\mathbf{u}_{c} = \left(\sum_{i=1}^{n} \left(\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]\right)^{2} \mathbf{u}_{i}^{2}\right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_{c} // \text{QUCA}$$

```
0.0367541766109785 \pm 0.00182017
\in [0.034934; 0.038574]
\simeq (3.7 \pm 0.2) \times 10^{-2} = 3.7(2) \times 10^{-2}
```

Monte Carlo Simulation

```
Block[{data, trials = 10<sup>6</sup>},
data = f@@Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
Mean[data] ± StandardDeviation[data]] // QUCA

0.0368204342273103 ± 0.00182958

\( \inc [0.034991; 0.03865] \)
\( \times (3.7 ± 0.2) \times 10<sup>-2</sup> = 3.7(2) \times 10<sup>-2</sup>
```