Produto Vectorial

• A operação *produto vectorial* encontra-se apenas definida entre vectores do espaço \mathbb{R}^3 .

Definição: Sejam os vectores $\vec{a} = (a_1, a_2, a_3)$ e $\vec{b} = (b_1, b_2, b_3)$ do espaço \mathbb{R}^3 . Define-se o *produto vectorial* de \vec{a} por \vec{b} , o vector de \mathbb{R}^3 , representado por $\vec{a} \times \vec{b}$, definido da forma seguinte:

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

Propriedades: Sejam os vectores \vec{a} , \vec{b} e \vec{c} de \mathbb{R}^3 e o escalar $k \in \mathbb{R}$:

- **a**) Propriedade *antisimétrica*: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- **b**) Propriedade *distributiva*: $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- **c**) Propriedade homogénea: $k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b})$
- **d**) Ortogonalidade em relação ao vector \vec{a} : $\vec{a} \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot \vec{a} \times \vec{b} = 0$
- **e**) Ortogonalidade em relação ao vector \vec{b} : $\vec{b} \cdot (\vec{a} \times \vec{b}) = \vec{b} \cdot \vec{a} \times \vec{b} = 0$
- **f**) Identidade de Lagrange: $\|\vec{a} \times \vec{b}\|^2 = \|\vec{a}\|^2 \|\vec{b}\|^2 (\vec{a} \cdot \vec{b})^2$
- Convém notar que a operação produto vectorial não satisfaz as propriedades comutativa e associativa, ou seja,

$$\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$$
 e $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$

Propriedade: Sejam os vectores \vec{a} e \vec{b} de \mathbb{R}^3 e $\theta = \measuredangle(\vec{a}, \vec{b})$. Então:

$$\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \operatorname{sen} \theta$$

- Interpretação *geométrica* para o vector não nulo $\vec{a} \times \vec{b}$:
 - a) O vector $\vec{a} \times \vec{b}$ tem a *direcção ortogonal* às direcções definidas pelos vectores \vec{a} e \vec{b} ;
 - b) A *norma* do vector $\vec{a} \times \vec{b}$ é função das normas dos vectores \vec{a} e \vec{b} e do ângulo $\theta = \measuredangle(\vec{a}, \vec{b})$ por estes formado;
 - c) O *sentido* do vector $\vec{a} \times \vec{b}$ está dependente do tipo de *referencial Oxyz* que for considerado:
 - i) Referencial directo, positivo ou 'dextrorsum': o sentido de $\vec{a} \times \vec{b}$ é definido pela regra da mão direita;
 - ii) Referencial inverso, negativo ou 'sinistrorsum': o sentido de $\vec{a} \times \vec{b}$ é definido pela regra da mão esquerda;
 - d) A *norma do vector* $\vec{a} \times \vec{b}$ tem exactamente o mesmo valor da *área do paralelogramo* determinado pelos vectores \vec{a} e \vec{b} .
- A operação produto vectorial é frequentemente utilizada na determinação da área de polígonos.

Exemplo 1: Relativamente aos vectores coordenados unitários verifica-se:

$$\vec{i} \times \vec{j} = \vec{k}$$
; $\vec{i} \times \vec{k} = \vec{i}$; $\vec{k} \times \vec{i} = \vec{j}$

Exemplo 2: Sejam \vec{a} e \vec{b} vectores do espaço \mathbb{R}^3 , tais que $\|\vec{b}\| = 1$, $\|\vec{a} + \vec{b} - 2\vec{a} \times \vec{b}\| = \sqrt{6} / 2$ e $\theta = \angle(\vec{a}, \vec{b}) = \pi / 4$. Determine $\|\vec{a}\|$.

Solução: $\|\vec{a}\| = \sqrt{2} / 6$.

Teorema: Sejam \vec{a} e \vec{b} vectores do espaço \mathbb{R}^3 . Então o conjunto $S_1 = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$ é *linearmente dependente*, se e só se $\vec{a} \times \vec{b} = \vec{0}$.

Teorema: Sejam \vec{a} e \vec{b} vectores do espaço \mathbb{R}^3 . Se o conjunto $S_1 = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$ é *linearmente independente*, então:

- i) $S = \{\vec{a}, \vec{b}, \vec{a} \times \vec{b}\} \subset \mathbb{R}^3$ é um conjunto *linearmente independente*;
- ii) Qualquer vector $\vec{n} \in \mathbb{R}^3$, tal que $\vec{n} \perp \vec{a}$ e $\vec{n} \perp \vec{b}$ é um vector múltiplo de $\vec{a} \times \vec{b}$, isto é,

$$\vec{n} = k\vec{a} \times \vec{b}$$
, $k \in \mathbb{R}$

Exemplo 3: Considere o conjunto ortogonal $S = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$, com $\|\vec{b}\| = 1$; seja o vector $\vec{d} = \vec{c} + \vec{a} \times \vec{b}$, em que $\vec{c} \in L(S)$. Admitindo que $\|\vec{d}\| = \sqrt{6}$ e que $\theta = \angle(\vec{c}, \vec{d}) = \pi/3$, calcule $\|\vec{a}\|$.

Solução: $\|\vec{a}\| = 3\sqrt{2} / 2$.

- Existe uma *regra prática* para o cálculo do vector $\vec{a} \times \vec{b}$, que envolve os conceitos de *determinante de 2ª ordem* e de *determinante de 3ª ordem* (assuntos abordados no capítulo *Determinantes*).
- Regra prática para o cálculo do vector $\vec{a} \times \vec{b}$:

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\vec{i} - (a_1b_3 - a_3b_1)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Exemplo 4: Determine a área do triângulo definido pelos vectores $\vec{a} = (2,1,-1)$ e $\vec{b} = (1,2,2)$.

Solução:
$$A = \frac{1}{2} \|\vec{a} \times \vec{b}\| = \frac{1}{2} \|(4, -5, 3)\| = \frac{5\sqrt{2}}{2}$$
.

Produto Misto

- A operação *produto misto* aglutina, numa única operação, as operações *produto escalar* e *produto vectorial*, encontrando-se apenas definida entre vectores do espaço \mathbb{R}^3 .
- Sendo $\vec{a}=(a_1,a_2,a_3)$, $\vec{b}=(b_1,b_2,b_3)$ e $\vec{c}=(c_1,c_2,c_3)$ vectores do espaço \mathbb{R}^3 , então

$$\vec{c} \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot \vec{a} \times \vec{b} = (c_1, c_2, c_3) \cdot (a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1)$$
$$\vec{c} \cdot \vec{a} \times \vec{b} = c_1 a_2 b_3 - c_1 a_3 b_2 + c_2 a_3 b_1 - c_2 a_1 b_3 + c_3 a_1 b_2 - c_3 a_2 b_1$$

- Interpretação *geométrica* para o produto misto $\vec{c} \cdot \vec{a} \times \vec{b}$:
 - i) O *módulo* do *produto misto*, $|\vec{c} \cdot \vec{a} \times \vec{b}|$, tem exactamente o mesmo valor do *volume do prisma* determinado pelos vectores \vec{a} , \vec{b} e \vec{c} ;
 - ii) A operação *produto misto* é frequentemente usada na determinação do *volume de poliedros*.
- Existe uma regra prática para o cálculo do produto misto $\vec{c} \cdot \vec{a} \times \vec{b}$, que envolve os conceitos de determinante de 2^a ordem e de determinante de 3^a ordem (assuntos abordados no capítulo Determinantes).

• Regra prática para o cálculo do produto misto $\vec{c} \cdot \vec{a} \times \vec{b}$:

$$\vec{c} \cdot \vec{a} \times \vec{b} = (c_1, c_2, c_3) \cdot (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

$$\vec{c} \cdot \vec{a} \times \vec{b} = c_1(a_2b_3 - a_3b_2) + c_2(a_3b_1 - a_1b_3) + c_3(a_1b_2 - a_2b_1)$$

$$\vec{c} \cdot \vec{a} \times \vec{b} = c_1(a_2b_3 - a_3b_2) - c_2(a_1b_3 - a_3b_1) + c_3(a_1b_2 - a_2b_1)$$

$$\vec{c} \cdot \vec{a} \times \vec{b} = c_1\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - c_2\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + c_3\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

$$\vec{c} \cdot \vec{a} \times \vec{b} = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

 Da aplicação da Regra de Sarrus para o cálculo de determinantes de 3ª ordem resulta:

Exemplo 5: Determine o volume do tetraedro definido pelos vectores $\vec{a} = (2,1,-1)$, $\vec{b} = (1,2,2)$ e $\vec{c} = (-2,2,-2)$.

Solução:
$$V = \frac{1}{6} |\vec{c} \cdot \vec{a} \times \vec{b}| = 4$$
.

J.A.T.B.

Teorema: Sejam \vec{a} , \vec{b} e \vec{c} vectores do espaço \mathbb{R}^3 . Então:

i)
$$\vec{c} \cdot \vec{a} \times \vec{b} = \vec{b} \cdot \vec{c} \times \vec{a}$$
;

ii)
$$\vec{b} \cdot \vec{c} \times \vec{a} = \vec{a} \cdot \vec{b} \times \vec{c}$$
.

• As propriedades expostas no teorema anterior para o produto misto e a propriedade comutativa para o produto escalar, permitem escrever:

Em resumo

$$\vec{a} \cdot \vec{b} \times \vec{c} = \vec{a} \times \vec{b} \cdot \vec{c} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

Teorema: Sejam \vec{a} , \vec{b} e \vec{c} vectores do espaço \mathbb{R}^3 . Então o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^3$ é *linearmente dependente*, se e só se $\vec{a} \cdot \vec{b} \times \vec{c} = 0$.