Vorbereitungsblatt 0

Zettel bearbeiten bis: 17.04.2024

Inhalte des Vorbereitungsblatts:

Definitionen: deterministische Turingmaschine, Entscheidungsproblem, O-Notation

Literaturstellen: Sipser (3rd edition) S. 165–168, S. 176–179, S. 277–278

Erklärvideo: (3 Minuten)

Link: https://youtu.be/Sx6ME5ZBCp8

Titel: Formale Beschreibung einer Turingmaschine

Definition: Deterministische Turingmaschine

$$M = (Z, \Gamma, \delta, z_0, A, V),$$

wobei

 \bullet Z: Menge der Zustände,

 \bullet Γ : Menge der Bandsymbole,

• $\delta \colon Z \times \Gamma \to Z \times \Gamma \times \{L, R, N\}$

• z_0 : Startzustand,

• A: Menge der akzeptierenden Zustände,

ullet V: Menge der verwerfenden Zustände.

DTM akzeptiert Eingabe gdw. δ -Folge führt zu $z \in A$. Beachte: Sie verwirft, wenn die Folge zu $z \in V$ führt.

Wir betrachten in dieser Vorlesung immer eine x-Band Turingmaschine mit einem Eingabeband (read-only) und x vielen Arbeitsbändern.

Definition: Entscheidungsproblem

Eine Sprache $L \subseteq \Sigma^*$ wird von einer TM $M = (Z, \Gamma, \delta, z_o, A, V)$ entschieden, wenn bei allen Eingaben $w \in \Sigma^*$ gilt:

M akzeptiert $w \iff w \in L$.

Erklärvideo:

(6 Minuten)

Link: https://www.youtube.com/watch?v=dbunHuH-ixg

Titel: Simulation einer Turingmaschine am Beispiel: Anagramme

Erklärvideo: (3 Minuten)

Link: https://www.youtube.com/watch?v=Uh2SiUMcz80

Titel: Die Landau-Symbole O und o

Definition: O-Notation

Seien $f, g, h \colon \mathbb{N} \to \mathbb{N}$ drei Funktionen und $e \in \mathbb{N}$ eine Konstante. Dann ist: $f \in O(g)$, falls es $c, n_0 \in \mathbb{N}$ gibt, sodass für alle $n \geq n_0$ gilt:

$$f(n) \le c \cdot g(n)$$
.

 $f \in h \cdot e^{O(g)},$ falls es $c, n_0 \in \mathbb{N}$ gibt, sodass für alle $n \geq n_0$ gilt:

$$f(n) \le h(n) \cdot e^{c \cdot g(n)}$$
.

 $f \in O(e^{O(g)})$, falls es $d \in \mathbb{N}$ gibt, so dass gilt:

$$f \in d \cdot e^{O(g)}$$
.

Es gilt $f \in o(g)$, falls es für alle $c \in \mathbb{N}$ ein $n_0 \in \mathbb{N}$ gibt, sodass für alle $n \ge n_0$ gilt:

$$f(n) < c \cdot g(n)$$
.

Definition: Rechenregeln für O-Notation und log-Funktion

Summe, Produkt und Potenzierung von O-Klassen geschieht komponentweise:

$$h \in O(f) + O(g) \Leftrightarrow h \in \{f' + g' \mid f' \in O(f), g' \in O(g)\}$$

$$h \in O(f) - O(g) \Leftrightarrow h \in \{f' - g' \mid f' \in O(f), g' \in O(g)\}$$

$$h \in O(f) \cdot O(g) \Leftrightarrow h \in \{f' \cdot g' \mid f' \in O(f), g' \in O(g)\}$$

$$h \in O(f)^{O(g)} \Leftrightarrow h \in \{f'^{g'} \mid f' \in O(f), g' \in O(g)\}$$

Wir definieren $\log(x) := \lceil \log_2(x) \rceil$.

Beobachtung: Limes Definition für O und o

Es gilt $f \in O(g)$, falls

$$\lim \sup_{n \to \infty} \frac{f(n)}{g(n)} < \infty,$$

sowie $f \in o(g)$, falls

$$\lim\sup_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Falls der Grenzwert existiert, genügt es also zu zeigen:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty,$$

bzw.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$