Math 872 Algebraic Topology

Problem Set # 9

Starred (*) problems due Tuesday, April 24

- **44.** Compute the (cellular) homology groups of the quotient spaces $\mathbb{R}P^n/\mathbb{R}P^m$ for m < n. (Here we take $\mathbb{R}P^m$ to be the image of $S^n \cap (\mathbb{R}^{m+1} \times \{0\}) \subseteq \mathbb{R}^{n+1}$ under the antipodal map.)
- **45.** Show that if $A \subseteq X$ both have $\bigoplus_i H_i(A), \bigoplus_i H_i(X)$ finitely generated, and A has an open neighborhood that deformation retracts to it, then $\bigoplus_i H_i(X/A)$ is finitely generated and $\chi(X) = \chi(A) + \chi(X/A) 1$.
- (*) 46. Show that $\widetilde{H}_i(S^n \setminus X) \cong \widetilde{H}_{n-i-1}(X)$ when X is homeomorphic to a finite commected graph. (Hint: prove it first for the case that X is a tree, then (inductively) add one edge at a time.)
 - **47.** For X a finite CW-complex and F a field, show that the Euler characteristic of X can be computed as $\chi(X) = \sum_i (-1)^i \dim_F(H_i(X;F))$.
- (*) 48. Show that if X is a space with $H_k(X; \mathbb{Z}) \cong \mathbb{Z}_n$, then $H_{k+1}(X; \mathbb{Z}_n) \neq 0$. (Hint: look at the LEHS induced by the SES of coefficient groups

$$0 \to \mathbb{Z} \stackrel{\times n}{\to} \mathbb{Z} \to \mathbb{Z}_n \to 0$$
.)