Pronóstico de emisiones de CO2 derivadas del consumo de proteína animal

Alba Sentís - CodeOp Final Project

Según la FAO "El sector ganadero contribuye significativamente al total de emisiones humanas de gases de efecto invernadero (GEI)"

- Selección del dataset
- ☆ Visualización de datos
- Análisis de correlaciones
- Modelos de predicción

Selección del dataset

	Country	Year	Population
0	Afghanistan	1961	9214082
1	Afghanistan	1962	9404411
2	Afghanistan	1963	9604491
3	Afghanistan	1964	9814318
4	Afghanistan	1965	10036003

	Country	Year	Population	Grams_animal_protein	Grams_veg_protein
0	Afghanistan	1961	9214082	13.782217	72.710620
1	Afghanistan	1962	9404411	13.739926	70.840126
2	Afghanistan	1963	9604491	14.483050	64.174194
3	Afghanistan	1964	9814318	14.623308	70.575584
4	Afghanistan	1965	10036003	15.252143	70.359955

Company	Brief Description	Protein Category	B2B/B2C	Company Focus	Company type	Technology Focus	Product Type	Animal-Type Analog	Ingredient Ty
0 [Mock]	UK-based producer of chef- quality, whole-cut, 	Plant-based	B2C	Meat	Specialized (focused on alternative proteins)	End product formulation and manufacturing	Whole muscle meat/seafood	Beef/veal,Mutton/lamb,Chicken	Nā
1Ness 1 Foods Pvt Ltd	India-based producer of plant-based dairy alte	Plant-based	B2C,B2B	Dairy	Specialized (focused on alternative proteins)	End product formulation and manufacturing,Ingr	Milk,Cheese,Other	NaN	Cashew,Almond,P
	U.Kbased								

Dataset principal

	Entity	Code	Year	Fish and seafood 00002960 Food available for consumption 0674pc grams of protein per day per capita	Meat, poultry 00002734 Food available for consumption 0674pc grams of protein per day per capita	Meat, pig 00002733 Food available for consumption 0674pc grams of protein per day per capita	Meat, beef 00002731 Food available for consumption 0674pc grams of protein per day per capita	Meat, sheep and goat 00002732 Food available for consumption 0674pc grams of protein per day per capita	Meat, Other 00002735 Food available for consumption 0674pc grams of protein per day per capita	All egg products 00002744 Food available for consumption 0674pc grams of protein per day per capita	Milk - Excluding Butter 00002848 Food available for consumption 0674pc grams of protein per day per capita
0	Afghanistan	AFG	1961	0.010186	0.224101	NaN	2.027096	3.167975	0.366711	0.285220	6.346136
1	Afghanistan	AFG	1962	0.010193	0.234435	NaN	2.109914	3.068040	0.377134	0.305785	6.268587
2	Afghanistan	AFG	1963	0.010199	0.234585	NaN	2.131660	3.131195	0.458970	0.305980	6.813153
3	Afghanistan	AFG	1964	0.010205	0.244912	NaN	2.122574	3.224680	0.438801	0.316345	6.857546
4	Afghanistan	AFG	1965	0.010209	0.255223	NaN	2.103040	3.338321	0.469611	0.326686	7.319804

Maddison Project Database 2023

The Maddison Project Database provides information on comparative economic growth and income levels over the very long run. The 2023 version of this database covers 169 countries and the period up to 2022. The new estimates are presented and discussed

in Bolt and Van Zanden (2024), "Maddison style estimates of the evolution of the world economy: A new 2023 update", Journal of Economic Surveys, 1–41. For questions not covered in the documentation, please contact ggdc@rug.nl.

	Country ISO code	Country name	Regional grouping	Country class
0	ABW	Aruba	Rest Central America	Developing
1	AFG	Afghanistan	India +	Developing
2	AGO	Angola	Southern_Africa	Developing
3	AIA	Anguilla	Rest Central America	Developing
4	AIR	Int. Aviation	Int. Aviation	0

	Code	Country	Region	Year	Gdp_pc_\$	Population Thousands
0	AFG	Afghanistan	South and South East Asia	1961	1309.0	10043.0
1	AFG	Afghanistan	South and South East Asia	1962	1302.0	10267.0
2	AFG	Afghanistan	South and South East Asia	1963	1298.0	10501.0
3	AFG	Afghanistan	South and South East Asia	1964	1291.0	10744.0
4	AFG	Afghanistan	South and South East Asia	1965	1290.0	10998.0

	Food Type	kgCO₂_p100gr
0	Apples	14.333333
1	Bananas	9.555556
2	Beef (beef herd)	49.889669
3	Beef (dairy herd)	16.869301
4	Berries & Grapes	15.300000

Dificultades

- Nombres de los países
- Países que ya no existen o no existían en algunas fechas
- Gestión de los valores faltantes

```
['Africa',
 'Africa (FAO)',
'Americas (FAO)',
 'Asia',
 'Asia (FAO)',
'Belgium-Luxembourg (FAO)',
'Caribbean (FAO)',
'Central America (FAO)',
'Central Asia (FAO)',
 'China (FAO)',
 'Eastern Africa (FAO)',
'Eastern Asia (FAO)',
 'Eastern Europe (FAO)',
 'Europe',
 'Europe (FAO)',
 'European Union (27)',
 'European Union (27) (FAO)',
'High-income countries',
'Land Locked Developing Countries (FAO)',
'Least Developed Countries (FAO)',
'Low Income Food Deficit Countries (FAO)',
'Low-income countries',
'Lower-middle-income countries',
 'Micronesia (FAO)',
'Middle Africa (FAO)',
'Net Food Importing Developing Countries (FAO)',
'North America',
'Northern Africa (FAO)',
'Northern America (FAO)'
```

```
Code
Country x
Region
Year
Gdp pc $
Population Thousands
Country Class
                               1971
Country v
                              1971
Fish & Seafood
                              1971
Poultry Meat
                              1971
Pig Meat
                              1971
Beef Meat
                              1971
Lamb & Mutton
                              1971
Other Meat
                              1971
Eggs
                              1971
Dairy
                              1971
Total Protein (capita/day)
                              1971
dtvpe: int64
```

```
def ussr_gdp(df, list):
    """Takes the NaN rows of the dataframe gdp column and replaces it for the USSR value if it's in the Eastern Countries list """
    ussr_gdp_dict = df[df["Country"] == "Former USSR"][["Year", "Gdp_pc_$"]].set_index("Year").to_dict()["Gdp_pc_$"]
    excluded countries = ["United Arab Emirates"]
    for i, row in df.iterrows():
        if row["Country"] in list and pd.isna(row["Gdp_pc_$"]):
             year = row["Year"]
             if year in ussr gdp dict:
                 df.at[i, "Gdp_pc_$"] = ussr_gdp__#Create list of country names
    return df
                                                     list maddison = sorted(maddison_project_df["Country"].unique().tolist())
                                                     list animals = sorted(animal protein df["Country"].unique().tolist())
new df = ussr gdp(maddison project df, eastern e
new df
                                                     #Define a function that finds country names that are similar but not exactly the same
                                                     def similar names(list1, list2, length):
                                                         """ Finds country names in two lists that have similar names but are not exactly the same.
                                                         Length is the minimum length of the matching substring."""
      'Bolivia (Plurinational State of)',
      'Brazil',
                                                         def has common substring(str1, str2, length):
      'Barbados',
                                                             for i in range(len(str1) - length + 1):
      Botswana',
                                                                if str1[i:i + length] in str2:
      'Central African Republic',
                                                                    return True
      'Canada',
                                                             return False
      'Switzerland',
      'Chile',
                                                         similar countries = []
      'China',
                                                         for country1 in list1:
      "Côte d'Ivoire",
                                                            for country2 in list2:
      'Cameroon',
                                                                if country1 != country2 and has common substring(country1, country2, length):
      'D.R. of the Congo',
```

return similar countries

'Congo',

similar countries.append((country1, country2))

Visualización de datos

GDP vs Total Protein Intake by Region

Global Animal Protein Trends by Type

Comparison of Total Protein per Capita vs Total CO2 per Capita

Selección de características

Gdp_pc_\$	Population Thousands	Country Class	Fish & Seafood	Poultry Meat	Pig Meat	Beef Meat	Lamb & Mutton	Other Meat	Eggs	 Total Protein (capita/day)	Total CO2 (capita/day)	Region_East Asia	Region_Eastern Europe	Region_L Ame
1309.0	10043.0	0	0.010186	0.224101	0.0	2.027096	3.167975	0.366711	0.285220	 12.427424	2.310778	0	0	
1302.0	10267.0	0	0.010193	0.234435	0.0	2.109914	3.068040	0.377134	0.305785	 12.374089	2.325837	0	0	
1298.0	10501.0	0	0.010199	0.234585	0.0	2.131660	3.131195	0.458970	0.305980	 13.085742	2.404555	0	0	
1291.0	10744.0	0	0.010205	0.244912	0.0	2.122574	3.224680	0.438801	0.316345	 13.215063	2.424113	0	0	
1290.0	10998.0	0	0.010209	0.255223	0.0	2.103040	3.338321	0.469611	0.326686	 13.822893	2.484903	0	0	

Region_South and South East Asia	Region_Sub Saharan Africa	Region_Western Europe	 Dairy	Total Protein (capita/day)	Fish & Seafood CO2	Poultry Meat CO2	Pig Meat CO2	Beef Meat CO2	Lamb & Mutton CO2	Eggs CO2	Dairy CO2	Total CO2 (capita/day)
1	0	0	 0.150364	0.097473	0.000282	0.006385	0.000000	0.044969	0.101635	0.035967	0.150364	0.084463
1	0	0	 0.148524	0.096963	0.000282	0.006679	0.000000	0.046834	0.098429	0.038561	0.148524	0.085085
1	0	0	 0.161446	0.103772	0.000282	0.006683	0.000000	0.047324	0.100455	0.038585	0.161446	0.088336
1	0	0	 0.162500	0.105009	0.000282	0.006978	0.000000	0.047119	0.103455	0.039892	0.162500	0.089143
1	0	0	 0.173469	0.110824	0.000282	0.007271	0.000000	0.046679	0.107100	0.041196	0.173469	0.091654

```
# Ordenar los datos por año
merged_df = merged_df.sort_values(by='Year')

# Determinar el punto de corte para el 80% de los años
unique_years = merged_df['Year'].unique()
cutoff_year = unique_years[int(len(unique_years) * 0.8)]

# Crear conjuntos de entrenamiento y prueba basados en el año
train_df = merged_df[merged_df['Year'] <= cutoff_year]
test_df = merged_df[merged_df['Year'] > cutoff_year]
```


from sklearn.model_selection import TimeSeriesSplit, cross_val_score
Usar TimeSeriesSplit para respetar la secuencia temporal
tscv = TimeSeriesSplit(n_splits=5)
cross_val_scores = cross_val_score(model, X, y, cv=tscv, scoring='r2')

	Gdp_pc_\$	Population Thousands	Country Class	Fish & Seafood	Poultry Meat	Pig Meat	Beef Meat	Lamb & Mutton	Other Meat	Eggs	Dairy	Total Protein (capita/day)	Total CO2 (capita/day)
0	1309.0	10043.0	0	0.010186	0.224101	0.0	2.027096	3.167975	0.366711	0.285220	6.346136	12.427424	2.310778
1	1302.0	10267.0	0	0.010193	0.234435	0.0	2.109914	3.068040	0.377134	0.305785	6.268587	12.374089	2.325837
2	1298.0	10501.0	0	0.010199	0.234585	0.0	2.131660	3.131195	0.458970	0.305980	6.813153	13.085742	2.404555
3	1291.0	10744.0	0	0.010205	0.244912	0.0	2.122574	3.224680	0.438801	0.316345	6.857546	13.215063	2.424113
4	1290.0	10998.0	0	0.010209	0.255223	0.0	2.103040	3.338321	0.469611	0.326686	7.319804	13.822893	2.484903


```
# Import different models
from sklearn.linear_model import Ridge, Lasso
from sklearn.tree import DecisionTreeRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
# Create pipelines with different models
ridge_pipeline = Pipeline([
   ('scaler', StandardScaler()),
   ('ridge', Ridge())
lasso pipeline = Pipeline([
   ('scaler', StandardScaler()),
   ('lasso', Lasso())
rf pipeline = Pipeline([
    ('rf', RandomForestRegressor())
# Evaluate Ridge model
ridge cv scores = cross val score(ridge pipeline, X, y, cv=5
ridge mse scores = -ridge cv scores
ridge_mean_mse = ridge_mse_scores.mean()
ridge_mean_rmse = np.sqrt(ridge_mean_mse)
```

```
Ridge Mean MSE: 1.6934788604053307e-07
Ridge Mean RMSE: 0.0004115189983956185
Ridge Std MSE: 1.3769596257742221e-07
Lasso Mean MSE: 1.448050762449726
Lasso Mean RMSE: 1.2033498088460088
Lasso Std MSE: 0.0
Random Forest Mean MSE: 0.23482873115016506
Random Forest Mean RMSE: 0.48459130321350696
Random Forest Std MSE: 0.1952946922849877
```

```
from sklearn.model selection import RandomizedSearchCV
# Define parameter distribution for RandomForestRegressor
param dist = {
    'rf__max_depth': [None, 10, 20, 30, 40, 50],
    'rf_ min_samples_split': [2, 5, 10],
    'rf__min_samples_leaf': [1, 2, 4],
    'rf__max_features': [None, 'sqrt', 'log2']
# Create RandomizedSearchCV object
random_search = RandomizedSearchCV(rf_pipeline, param_dist, n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)
# Fit the random search
random_search.fit(X, y)
# Get the best parameters and best score
best params random = random search.best params
best_score_random = -random_search.best_score_
# Display the best parameters and best score
print(best params random)
print(best_score_random)
{'rf_min_samples_split': 5, 'rf_min_samples_leaf': 1, 'rf_max_features': None, 'rf_max_depth': 20}
0.24015373058290948
```


Valores Verdaderos

Aprendizajes

Mejorar la selección de características

Probar con más modelos

A Más pruebas con temporalidad

Gracias

Alba Sentís - CodeOp Final Project