Tema 5: Introducción al Teletráfico y a la Teoría de Colas

Redes y Servicios de Telecomunicaciones (RSTC) Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación

Jorge Martín Pérez¹

¹Departamento de Ingeniería Telemática, Universidad Politécnica de Madrid

February 27, 2023

Contenido

- Introducción
- Distribución Exponencial
 - Propiedad sin memoria
 - Mínimo de variables exponenciales
 - Comparación de exponenciales
- Procesos de llegada de Poisson
 - Tiempos entre llegadas
 - Conteo
 - Agregado
 - PASTA
- 4 Sistema M/M/1

La teoría de colas modela:

- colas de supermercado;
- colas en gasolineras;
- colas en taquillas; o
- colas de routers.

Nos interesa saber:

- ¿cuánto vamos a esperar?; o
- la probabilidad de que esté llena la cola.

En una cola:

- Ilegan λ [usuarios/sec]
- ullet hay q=4 usuarios encolados;
- hay n=5 usuarios en total; y
- se sirven μ [usuarios/sec].

Problema:

- las llegadas; y
- tiempos de servicio

son aleatorios.

Ejemplo: la persona que nos atiende en caja tarda más o menos dependiendo de como de cansada esté, o de cuánto tarde la pasarela de pago (aleatorio).

Distribución Exponencial

Distribución Exponencial

El tiempo entre los usuarios que llegan a la cola t se puede modelar con la distribución exponencial.

Distribución Exponencial

Definición (Distribución exponencial)

Se dice que una variable aleatoria continua $t \in \mathbb{N}$ sigue una distribución exponencial si su función de densidad es:

$$f_t(\tau) = \mathbb{P}(t=\tau) = \lambda e^{-\lambda \tau}$$
 (1)

donde $\lambda > 0$ es el parámetro que caracteriza la distribución.

Distribución Exponencial: propiedades

- ullet media: $\mathbb{E}[t]=rac{1}{\lambda}$
- varianza: $Var[t] = \frac{1}{\lambda^2}$

Distribución Exponencial: ejemplo gasolinera

Ejemplo: el tiempo medio que pasa un coche en un surtidor es $\mathbb{E}[t]=\frac{1}{\lambda}=2$ [min]. Por tanto $\lambda=\frac{1}{2}$ [coches/min].

Si ya han pasado s [sec], ¿cuál es la probabilidad de que tarde τ [sec] más?:

$$\mathbb{P}(t > s + \tau | t > s) \tag{2}$$

Si ya han pasado s [sec], ¿cuál es la probabilidad de que tarde τ [sec] más?:

$$\mathbb{P}(t > s + \tau | t > s) \tag{2}$$

Por la propiedad sin memoria de una exponencial tenemos que:

$$\mathbb{P}(t > s + \tau | t > s) = \mathbb{P}(t > \tau) \tag{3}$$

Ejemplo: en media el surtidor de una gasolinera está ocupado 5 [min]. Si el surtidor lleva s=1 [min] ocupado, ¿cuál es la probabildad de que esté ocupado $\tau=3$ [min] más?

Por la propiedad sin memoria tenemos:

$$\mathbb{P}(t > s + \tau | t > s) = \mathbb{P}(t > \tau) = \mathbb{P}(t > 3) = \frac{1}{5}e^{-\frac{1}{5}\cdot 3} = 0.11$$

Distribución Exponencial: Mínimo de variables exponenciales

Ejemplo: los compactos llegan a gasolinera con tasa $\lambda_1 = \frac{1}{4}$ [coches/min], y los todoterreno con tasa $\lambda_2 = \frac{1}{8}$ [coches/min].

¿Con qué probabilidad llegua un coche cualquiera en 3 [min]?

Distribución Exponencial: Mínimo de variables exponenciales

Lema (Mínimo de v.a. exponenciales)

Sean las v.a.^a exponenciales t_1 y t_2 , con tasas λ_1 y λ_2 ; la v.a. $t = \min\{t_1, t_2\}$ se distribuye como una v.a. exponencial de tasa $\lambda = \lambda_1 + \lambda_2$.

Demostración:

$$\begin{split} \mathbb{P}(t>\tau) &= \mathbb{P}(t_1>\tau) \mathbb{P}(t_2>\tau) = \left(\int_{\tau}^{\infty} \lambda_1 e^{-\lambda_1 t} \ dt\right) \left(\int_{\tau}^{\infty} \lambda_2 e^{-\lambda_2 t} \ dt\right) \\ &= e^{-\lambda_1 \tau} e^{-\lambda_2 \tau} = e^{-(\lambda_1 + \lambda_2) \tau} = e^{-\lambda \tau} \end{split}$$

^av.a. significa variable aleatoria

Distribución Exponencial: Mínimo de variables exponenciales

Ejemplo: los compactos llegan a gasolinera con tasa $\lambda_1 = \frac{1}{4}$ [coches/min], y los todoterreno con tasa $\lambda_2 = \frac{1}{8}$ [coches/min].

¿Con qué probabilidad llega un coche cualquiera en 3 [min]?

$$1 - \mathbb{P}(t > 1) = 1 - (\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2) \cdot 3}$$
$$= 1 - \left(\frac{1}{4} + \frac{1}{8}\right)e^{-(\frac{1}{4} + \frac{1}{8}) \cdot 3} = 0.12$$

Distribución Exponencial: Comparación de exponenciales

Ejemplo: los compactos llegan a gasolinera con tasa $\lambda_1 = \frac{1}{4}$ [coches/min], y los todoterreno con tasa $\lambda_2 = \frac{1}{8}$ [coches/min].

¿Cuál es la probabilidad de que llegue antes un compacto, es decir, $(t_1 < t_2)$?

Distribución Exponencial: Comparación de exponenciales

Lema (Comparación de v.a. exponenciales)

Sean las v.a. exponenciales t_1 y t_2 , con tasas λ_1 y λ_2 ; se tiene que:

$$\mathbb{P}(t_1 < t_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \tag{4}$$

Demostración:

$$\mathbb{P}(t_1 < t_2) = \int_0^\infty \mathbb{P}(t_1 = t) \mathbb{P}(t_2 > t) \ dt = \int_0^\infty \frac{\lambda_1}{\lambda_1} e^{-\lambda_1 t} e^{-\lambda_2 t} \ dt = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

Distribución Exponencial: Comparación de exponenciales

Ejemplo: los compactos llegan a gasolinera con tasa $\lambda_1 = \frac{1}{4}$ [coches/min], y los todoterreno con tasa $\lambda_2 = \frac{1}{8}$ [coches/min].

¿Cuál es la probabilidad de que llegue antes un compacto, es decir, $(t_1 < t_2)$?

$$\mathbb{P}(t_1 < t_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{8}} = 0.67 \tag{5}$$

Procesos de llegada de Poisson

Procesos de llegada de Poisson: Tiempos entre llegadas

Buscamos una distribución que diga cómo de probable es que lleguen 2 coches en 3 segundos:

Procesos de llegada de Poisson: Tiempos entre llegadas

Si el tiempo entre llegadas es exponencial, sabemos la probabilidad de que lleguen k=0 coches en t=0.8 [min].

$$\mathbb{P}(0 \text{ coches en } 0.8 \text{ min}) = 1 - \mathbb{P}(t > 0.8) = 1 - \lambda 0.8 e^{-\lambda 0.8}$$

Procesos de llegada de Poisson: Conteo

Pero lo que queremos es contar el número de coches N(t)=2 que llegan en t=3 [min], y saber qué probabilidad tiene $\mathbb{P}(N(t)=2)$

Procesos de llegada de Poisson: Conteo

Definición (Distribución de Poisson)

Un proceso de llegadas N(t) con tasa λ es de Poisson si el tiempo entre llegadas se distribuye como una v.a. exponencial de media $\frac{1}{\lambda}$; y su función de densidad es

$$\mathbb{P}(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (6)

Ejemplo:
$$\mathbb{P}(N(3) = 2) = \frac{(\lambda 3)^2 e^{-\lambda 3}}{2!} \underbrace{=}_{\lambda = 2/3} 0.27$$

Procesos de llegada de Poisson: Conteo

Propiedades de la distribución de Poisson:

• **media**: $\mathbb{E}[N(t)] = \lambda t$ usuarios

• varianza: $Var[N(t)] = \lambda t$ usuarios²

¿Cómo se distribuyen las llegadas de A y B juntos?

Vemos que:

- $\lambda_A = \frac{3}{4}$ [coches/min], ya que $N_A(t = 4 \text{min}) = 3$ [coches]
- $\lambda_B = \frac{2}{4}$ [coches/min], ya que $N_B(t = 4 \text{min}) = 2$ [coches]

Lema (Agregado procesos de Poisson)

Sean A y B dos procesos de Poisson independientes con tasas λ_1 y λ_2 ; el agregado es un proceso de Poisson de tasa $\lambda = \lambda_1 + \lambda_2$.

Demostración (caso general n procesos):

$$\mathbb{P}(N(t) = 0) = \prod_{i=1}^{n} \mathbb{P}(N_i(t) = 0) = \prod_{i=1}^{n} e^{-\lambda_i t} = e^{-\sum_{i=1}^{n} \lambda_i t} = e^{-\lambda t}$$
 (7)

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣९○

Teorema (Palm-Khintchine [YMG23])

Sea $\{N_i(t)\}_i^n$ un conjunto de n procesos de llegada independientes con sendas tasas λ_i . La superposición de procesos

$$N(t) = \sum_{i}^{n} N_i(t), t \ge 0$$
(8)

tiende a un **proceso de Poisson** de tasa $\lambda = \sum_{i} \lambda_{i}$ cuando $n \to \infty$, siempre y cuando se cumpla:

- **1** carga finita $\lambda < \infty$; y
- ② ningún proceso domine al agregado $\lambda_i << \lambda$

Ejemplo (tma. Palm-Khintchine): los tiempos de llegada de coches dependen del color, y son independientes del de otros colores. Además:

- tiempo entre coches rojos $\sim U(0,10 \text{ [min]})$
- tiempo entre coches granates $\sim N(\mu=20 \text{ [min]}, \sigma=1 \text{ [min]})$
- ...
- tiempo entre coches fucsia $\sim Geo(p=0.2)$

El agregado será un proceso Poisson de tasa $\lambda = \sum_i \lambda_i = \frac{1}{5} + \frac{1}{20} + \ldots + p$

Procesos de llegada de Poisson: PASTA

"Poisson Arrivals See Time Averages" (PASTA)¹

En media, los valores vistos por llegadas de Poisson es la media temporal $\overline{X}(t)$.

¹Ejemplo de [YMG23, Figura 3.17]

Procesos de llegada de Poisson: PASTA

Lema (PASTA)

Sea X(t) un proceso aleatorio, y Y la v.a. definida como el valor que toman las llegadas de Poisson al muestrear X(t), se tiene que:

$$\overline{X}(t) = \overline{Y} \tag{9}$$

Procesos de llegada de Poisson: PASTA- ejemplo

Media temporal:

$$\overline{X}(t) = \frac{1}{6} \int_0^6 X(t) dt = \frac{1}{6} (2 \cdot 2 + 1 \cdot 2 + 3 \cdot 2) = \frac{8}{6}$$

Llegadas de Poisson:

$$\overline{Y} = 2 \cdot \mathbb{P}([0,2]) + 1 \cdot \mathbb{P}([2,4]) + 3 \cdot \mathbb{P}([4,6]) = 2 \cdot \frac{2}{6} + 1 \cdot \frac{2}{6} + 3 \cdot \frac{2}{6} = \frac{8}{6}$$

con

$$\mathbb{P}([0,\!2]) = \frac{\mathbb{P}(N(0,\!2) = 1) \mathbb{P}(N(2,\!4) = 0) \mathbb{P}(N(4,\!6) = 0)}{\mathbb{P}(N([0,\!6]) = 1)} = \frac{\frac{(2\lambda)^1 e^{-2\lambda}}{1!}}{\frac{(2\lambda)^0 e^{-2\lambda}}{0!}} \frac{(2\lambda)^0 e^{-2\lambda}}{0!}}{\frac{(6\lambda)^1 e^{-6\lambda}}{1!}} = \frac{2}{6}$$

Tema 5

Sistema M/M/1

Referencias I

Pablo Serrano Yáñez-Mingot and José Alberto Hernández Gutiérrez, Una introducción amable a la teoría de colas, 2023.