Classical + Quantum Algorithms for Local Max-Cut

Conjectures

Happiness

Let G = (V, E) be a graph of order $n \ge 3$ with degree 2 (a ring). A *cut* is a bitstring $c = (c_0 \dots c_{2^n-1})$. A $v \in V$ is happy for cut c when

$$|\{u \in V \setminus \{v\} : c_u \neq c_v\}| \ge |\{u \in V \setminus \{v\} : c_u = c_v\}| \tag{1}$$

ie when there are at least a many of v's neighbors on the opposite side of the cut as on the same side.

Definition 1. For d=2, define the <u>happiness function</u> $h: \mathbb{Z}_5 \times \{0,1\}^5$ by

$$h(v, \mathbf{c}) = !(c_{v-1} = c_v = c_{v+1})$$
(2)

Should be full n but need to determine how to get a vertex's (second) neighborhood from the bitstring ${\bf c}$

Hamiltonian

The goal is to construct a Hermitian operator $H:\{0,1\}^n\to\mathbb{N}$ that represents how many happy vertices are contained in G for each possible cut. That is, $\langle i|H|i\rangle$ is equal to the amount of happy vertices there are in G for cut i.

Definition 2. For $\mathbf{c} \in \{0,1\}^n$,

$$H(\mathbf{c}) = \sum_{i \in V} h(i, \mathbf{c}) \tag{3}$$

Full Graph Solution

Given access to the full graph G = (V, E), then we can naively construct H by iterating over the possible cuts and counting how many $v \in V$ are happy.

Second Neighborhood Approach

We construct H by decomposing into H_i for all $i \in V$ where H_i counts the number of happy vertices in the neighborhood of i. To determine if i-1 and i+1 are happy, we only need to know the second neighborhood of i. Therefore we are only interested in the 5 slots of the cut that correspond to v's second neighbors.

We define $H_i: \{0,1\}^5 \to \mathbb{N}$ as

$$H_i(\mathbf{c}) = h(i-1,\mathbf{c}) + h(i,\mathbf{c}) + h(i+1,\mathbf{c})$$
(4)

Theorem 1. $H = \frac{1}{3} \sum_{i \in V} H_i$.

Proof: For any cut $c \in \{0,1\}^n$, we have

$$\langle c|\frac{1}{3}\sum_{i\in V}H_i|c\rangle = \frac{1}{3}\sum_{i\in V}\langle c|H_i|c\rangle$$
 Linearity of expectation
$$= \frac{1}{3}\sum_{i\in V}[h(i-1,\mathbf{c})+h(i,\mathbf{c})+h(i+1,\mathbf{c})]$$
 (4)
$$= \sum_{i\in V}h(i,\mathbf{c})$$
 Triple count each $h(j,\mathbf{c})$ above
$$= H$$
 (3)

Permutations

Let $\sigma_n: \{0,1\}^n \to \{0,1\}^n$ be the finite left shift operator:

$$\sigma_n(c_0, c_1, \dots, c_{n-1}) = (c_1, c_2, \dots, c_{n-1}, c_0)$$
(5)

Lemma 1. σ_n is a permutation on $\{0,1\}^n$.

Proof: For any $y = (y_0, \ldots, y_{n-1}) \in \{0, 1\}^n$, we have $\sigma_n(y_{n-1}, y_0, \ldots, y_{n-2}) = y$. Now let $x = (x_0, \ldots, x_{n-1}), y = (y_0, \ldots, y_{n-1}) \in \{0, 1\}^n$ such that $\sigma_n(x) = \sigma_n(y)$. Then $(x_1, \ldots, x_{n-1}, x_0) = (y_1, \ldots, y_{n-1}, y_0)$ which is true iff $x_i = y_i$ for all i and thus x = y. Therefore σ_n is a bijection and since its domain and codomain are equal, it is a permutation.

Lemma 2. All cycles of σ_n are of order n (except for the all 0s and all 1s strings in which σ_n acts as the identity).

Proof: Let
$$x = (x_0, ..., x_{n-1}) \in \{0, 1\}^n$$
. Then $\sigma(x) = (x_1, ..., x_{n-1}, x_0)$, $\sigma^2(x) = (x_2, ..., x_0, x_1)$, etc, to $\sigma^{n-1}(x) = (x_{n-1}, x_0, ..., x_{n-2}) \neq x$. Then

$$\sigma^{n}(x) = \sigma(\sigma^{n-1})(x)$$

$$= \sigma(x_{n-1}, x_0, \dots, x_{n-2})$$

$$= (x_0, \dots, x_{n-1})$$

$$= x$$

Lastly consider the string (x, ..., x) where $x \in \{0, 1\}$. Then $\sigma(x, ..., x) = (x, ..., x)$.

Next define the following function on \mathbb{Z}_{2^n} :

$$\pi_n(i) = \begin{cases} 2i & \text{if } 0 \le i < 2^{n-1} \\ 2i+1 & \text{if } 2^{n-1} \le i < 2^n \end{cases}$$
 (6)

Remember that $i \in \mathbb{Z}_{2^n}$ so if $2i + 1 > 2^n$ then we need to subtract 2^n it.

Lemma 3. π_n is a permutation of \mathbb{Z}_{2^n} .

Proof: Let $y \in \mathbb{Z}_{2^n}$. If y is even, then it can be written as y = 2m for some $m \in \mathbb{Z}_{2^{n-1}}$. Then $\pi_n(m) = y$. If y is odd, then it can be written as y = 2m + 1 for some $m \in \mathbb{Z}_{2^n}$. If $2^{n-1} \le m < 2^n$, then $\pi_n(m) = y$. Otherwise, consider what happens if we replace m with $m' = m + 2^{n-1}$:

$$2m' + 1 = 2(m + 2^{n-1}) + 1 = 2m + 2^n + 1 \equiv 2m + 1 \mod 2^n$$

And so $\pi_n(m') = y$ where $2^{n-1} \leq m' < 2^n$. Therefore π_n is a bijection and since its domain and codomain are equal, it is a permutation.

Now consider the function $f:\{0,1\}^n\to\mathbb{Z}_{2^n}$ given by

$$f_n((x_0, \dots, x_{n-1})) = \sum_{i=0}^{n-1} x_i \cdot 2^i$$
 (7)

Lemma 4. $\{0,1\}^n \cong \mathbb{Z}_{2^n}$ as vector spaces via f_n

(proof omitted, is it necessary?)

Lemma 5. $\pi_n \circ f_n = f_n \circ \sigma_n$

(proof omitted, is it necessary? Can do if needed) This gives us the following commuting diagram

Corollary 1. All cycles of π_n are of order n (except for the all 0s and all 1s strings in which π_n acts as the identity).

Proof: Apply lemmas 2 and 5.

(Attempted proof of conjecture 2): Consider a cut $\mathbf{c} = (c_0, c_1, c_2, c_3, c_4) \in \{0, 1\}^5$. For any $i \in V$ denote its second neighborhood as $\mathbf{c_i} = (c_{i-2}, c_{i-1}, c_i, c_{i+1}, c_{i+2})$ with respect to \mathbf{c} where the indices are in \mathbb{Z}_5 . Let $j \in \mathbb{Z}_5$. Then

$$H_i c_i = h(j-1, c_i) + h(j, c_i) + h(j+1, c_i)$$

$$P_{\pi^{-j}}H_{0}P_{\pi^{j}}c_{i} = P_{\pi^{-j}}H_{0}c_{\pi^{-j}(i)}$$

$$= P_{\pi^{-j}}(h(-1, c_{\pi^{-j}(i)}) + h(0, c_{\pi^{-j}(i)}) + h(1, c_{\pi^{-j}(i)}))$$

$$= h(\pi^{j}(-1), c_{\pi^{j}\pi^{-j}(i)}) + h(\pi^{j}(0), c_{\pi^{j}\pi^{-j}(i)}) + h(\pi^{j}(1), c_{\pi^{j}\pi^{-j}(i)})$$

$$\begin{split} P_{\pi^{-j}}H_0P_{\pi^j}c_{i} &= P_{\pi^{-j}}H_0c_{\pi^{-j}(i)} \\ &= P_{\pi^{-j}}(h(-1,c_{\pi^{-j}(i)}) + h(0,c_{\pi^{-j}(i)}) + h(1,c_{\pi^{-j}(i)})) \\ &= h(-1,c_{i}) + h(0,c_{i}) + h(1,c_{i}) \\ &= h(\pi^j(-1),c_{i}) + h(0,c_{i}) + h(1,c_{i}) \end{split} \quad \text{NOT CLEAR ENOUGH}$$

TODO FINISH. Need to clean up definitions of h and H.

Lemma 6. For all $v \in V$, H_v is a real diagonal matrix so they are Hermitian. This also true for their sum H.

(Proof omitted, necessary?)

Unitaries

Given a Hermition operator H on \mathbb{C}^{2^n} and an angle $\gamma \in [0, 2\pi)$, we have the following definition

$$U_{H,\gamma} = e^{-i\gamma H} \tag{8}$$

Consider the operator $X: \mathbb{C} \to \mathbb{C}$ given by

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{9}$$

(the quantum NOT gate). We can extend this to an operator on an n-dimensional Hilbert space: for each $j \in [n]$, define

$$X_{j} = \left(\bigotimes_{k=1}^{j-1} I\right) \bigotimes X \bigotimes \left(\bigotimes_{k=j+1}^{N} I\right) \tag{10}$$

where I is the 2×2 identity operator. Then X_j is the one qubit operator that acts as a NOT gate on the j^{th} qubit and as the identity on everything else.

Letting $d \equiv 2^n, X_j$ is a $d \times d$ matrix. Lastly, we consider the sum of all the X_j 's:

$$\overline{X_n} = \sum_{j=1}^n X_i \tag{11}$$

Given an angle $\beta \in [0, \pi)$, we also have the following definition

$$U_{\beta} = e^{-i\beta \overline{X_n}} \tag{12}$$

Recursive definition of $\overline{X_n}$? Need to figure out how to use it for something useful. Preferably, the spectrum.

Both $U_{H,\gamma}$ and U_{β} are unitary since they are the matrix exponential of Hermitian matrices.

Conjectures

Conjecture 1. For all $j \in \mathbb{Z}_n$, $H_j = P_{\pi^{-j}}H_0P_{\pi^j}$.

1 is proven for n=5. In order to prove higher dimensions, I think it is sufficient to prove the following conjecture.

Conjecture 2. Let $H_0 \in M_{2^5}$ be the diagonal matrix whose i^{th} entry is the amount of happy vertices in the second neighborhood of 0 and let $H_0^n \in M_{2^n}$ be defined similarly for $n \geq 5$. Then

$$H_0^n = H_0 \otimes \overbrace{I_2 \otimes \cdots \otimes I_2}^{n-1}$$

Conjecture 3. $\langle +|U(H,-\gamma)U(-\beta)HU(\beta)U(H,\gamma)|+\rangle$ can be decomposed into a sum of $\langle +|U(H_0,-\gamma)U(-\beta)H_0U(\beta)U(H_0,\gamma)|+\rangle$ where $U(H_0,\gamma)$ needs information on the second neighborhood of H_0 .

Conjecture 4. There exists an $\alpha \in [0, 2\pi)$ and a $\beta \in [0, \pi)$ such that

$$\langle +|U(H, -\gamma)U(-\beta)HU(\beta)U(H, \gamma)|+\rangle > 0.95$$