UE MAT102

Mathématiques outils pour les sciences et l'ingénierie (I)

Eric Blayo et Clément Jourdana, Septembre 2022

Site web de l'UE:

https://chamilo.univ-grenoble-alpes.fr/courses/GBX1MT12

Vidéos pédagogiques : http://tinyurl.com/youtube-mat207

Pour certains chapitres, de courtes séquences appartenant à cette chaine YouTube sont indiquées au fil du document.

Ces notes de cours vous permettront de travailler le cours à l'avance, et seront complétées en séance par des démonstrations, commentaires, exemples et exercices divers. Elles sont donc loin d'être suffisantes à elles seules pour maîtriser les notions qui y sont présentées.

Les chapitres 4 et 5 et les annexes de ces notes de cours sont très largement inspirés de polycopiés rédigés ces dernières années pour d'autres UEs, en collaboration avec Elise Arnaud, Claudine Chaffy, Georges-Henri Cottet, Agnès Hamon, Maëlle Nodet, Régis Perrier et Arthur Vidard.

Table des matières

1	Non	nbres complexes 1
	1.1	Forme algébrique
		1.1.1 Définitions
		1.1.2 Représentation dans le plan
		1.1.3 Opérations usuelles
	1.2	Forme exponentielle
	1.3	Equations du second degré
		1.3.1 Racines carrées d'un nombre complexe non nul
		1.3.2 Résolution d'une équation du second degré dans $\mathbb C$
	1.4	Racines nèmes d'un nombre complexe non nul
	1.5	Complément : nombres complexes et trigonométrie
2	Som	nmes et produits 11
-	2.1	Le symbole \sum
		2.1.1 Définitions et propriétés
		2.1.2 Pour aller plus loin: les sommes doubles ou triples
	2.2	Le symbole ∏
	2.3	Quelques techniques de calcul avec \sum et \prod
		2.3.1 Passages entre \sum et \prod : logarithmes et exponentielles
		2.3.2 Sommes et produits "téléscopiques"
		2.3.3 Changement d'indice
		2.3.4 Réorganiser l'ensemble des indices
	2.4	Formule de Bernoulli - Binôme de Newton
		2.4.1 Formule de Bernoulli
		2.4.2 Binôme de Newton
	2.5	Progressions arithmétiques et géométriques
	2.6	Pour aller plus loin : notion de récurrence
3	Gáo	ométrie et algébre linéaire 21
•		Vecteurs
	5.1	3.1.1 Définition
		3.1.2 Opérations sur les vecteurs
		3.1.3 Base du plan (vectoriel) \mathbb{R}^2 et de l'espace (vectoriel) \mathbb{R}^3
		3.1.4 Produit scalaire et orthogonalité
		3.1.5 Produit vectoriel de 2 vecteurs de \mathbb{R}^3
	3.2	Déterminants
	0.2	3.2.1 Déterminant de 2 vecteurs de \mathbb{R}^2
		3.2.2 Déterminant de 3 vecteurs de \mathbb{R}^3
		3.2.3 Lien avec les systèmes linéaires
	2 2	Géométrio élémentaire en dimensions 2 et 3

TABLE DES MATIÈRES

		3.3.1	Repère cartésien - Coordonnées d'un point	30						
		3.3.2	Géométrie élémentaire dans le plan affine (dimension 2)	30						
		3.3.3	Géométrie élémentaire dans l'espace affine (dimension 3)	\$4						
4	Fond	ctions d	l'une variable réelle 3	7						
Ċ	4.1		ions générales - Vocabulaire							
		4.1.1	Fonctions, applications, images et antécédents							
		4.1.2	Quelques propriétés courantes des fonctions							
		4.1.3	Composition de fonctions							
	4.2		étude d'une fonction							
		4.2.1	Les différentes étapes							
		4.2.2	Représentation graphique							
		4.2.3	Exemple							
	4.3		ons usuelles							
	4.4		de limites							
	4.4	4.4.1	Limites en un point $x_0 \in \mathbb{R}$ et limites en $\pm \infty$							
		4.4.2	•							
			Opérations sur les limites et formes indéterminées							
	4 -	4.4.3	Quelques outils pour traiter les cas indéterminés							
	4.5		uité							
	4.6		Ibilité et tangentes à une courbe							
		4.6.1	Définitions							
		4.6.2	Tangente à la courbe représentative d'une fonction							
		4.6.3	Opérations sur les dérivées							
		4.6.4	Dérivée, sens de variation, extrema							
	4.7		d'une branche infinie : recherche d'une asymptote oblique							
		4.7.1	Définitions							
		4.7.2	Recherche d'une asymptote oblique							
		4.7.3	Exemples							
		4.7.4	Asymptotes et tangentes							
	4.8	Comple	éments : fonctions réciproques	3						
5	Intégrales et Primitives 55									
			mple d'utilisation de la notion d'intégrale							
	5.2		ions et propriétés							
	5.3		les et primitives							
	5.4		des intégrales et primitives							
	0	5.4.1	Intégration par parties							
		5.4.2	Changement de variable							
		5.4.3	Intégration des fractions rationnelles							
Α	nnex	kes	5:	5						
A			des aires et volumes usuels 6							
	A.2	Volume	es	j 2						
В	Que	lques ra	appels sur les polynômes 6	3						
	B.1		mes	3						
	B.2		mes et équations du second degré	; 4						

TABLE DES MATIÈRES

C	Rappels sur les fonctions puissances	65			
	C.1 Fonctions x^n avec $n \in \mathbb{Z}$	65			
	C.2 Fonctions x^{α} avec $\alpha \in \mathbb{R}$	66			
D	Formulaire de trigonométrie				
	D.1 Cercle trigonométrique et angles remarquables	67			
	D.2 Formules de trigonométrie				
E	Fonctions logarithmes et exponentielles	69			
	E.1 Fonctions logarithmes	69			
	E.1.1 Logarithme népérien				
	E.1.2 Logarithme décimal et logarithmes de base quelconque				
	E.2 Fonctions exponentielles				
	E.2.1 Exponentielle "naturelle"				
	E.2.2 Exponentielles de base quelconque				
F	Fonctions trigonométriques inverses : arcsin, arccos, arctan				
	F.1 La fonction Arcsinus	73			
	F.2 La fonction Arccosinus				
	F.3 La fonction Arctangente				
	F.4 De nouvelles connaissances en intégration				
		10			
G	Formulaires sur les dérivées				
	G.1 Opérations sur les dérivées	77			
	G.2 Dérivées des fonctions usuelles	78			
Н	Formulaire de primitives usuelles	79			
ï	Equations différentielles linéaires homogènes d'ordre 1 et 2 à coefficients constants				
	I.1 Equations différentielles linéaires homogènes d'ordre 1 à coefficients constants	81			
	1.2 Equations différentielles linéaires homogènes d'ordre 2 à coefficients constants	81			

Chapitre 1

Nombres complexes

1.1 Forme algébrique

1.1.1 Définitions

Définition On introduit un nombre, noté i (parfois j en physique) et appelé l'unité imaginaire, qui vérifie la propriété $i^2 = -1$.

Ce nombre i ne peut pas être réel puisque tous les nombres réels ont un carré positif. Il s'agit d'un outil mathématique qui a été introduit pour apporter des solutions supplémentaires à certaines équations.

Définition On appelle **nombres complexes** tous les nombres de la forme a + ib, où a et b sont des nombres réels. L'ensemble des nombres complexes est noté \mathbb{C} .

Théorème Tout nombre complexe z admet une unique forme algébrique

$$z = a + ib$$

où a et b sont deux réels. a s'appelle la **partie réelle** de z (notée $\mathcal{R}e(z)$) et b s'appelle la **partie** imaginaire de z (notée $\mathcal{I}m(z)$).

Exemple 3-i, $-\sqrt{2}i$, $-\frac{1}{2}+8i$, 2... sont des nombres complexes. Le nombre $-\sqrt{2}i$ a 0 comme partie réelle et $-\sqrt{2}$ comme partie imaginaire; autrement dit $\mathcal{R}e\left(-\sqrt{2}i\right)=0$ et $\mathcal{I}m\left(-\sqrt{2}i\right)=-\sqrt{2}$.

Remarques:

- Lorsque b=0, z est un réel, ce qui indique que l'ensemble des nombres réels est inclus dans l'ensemble des nombres complexes : $\mathbb{R} \subset \mathbb{C}$.
- Lorsque a = 0, on dit que z est un nombre imaginaire pur.
- 0 est le seul nombre qui soit à la fois réel et imaginaire pur.
- L'unicité de l'écriture algébrique fait que deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire :

$$(z=z') \quad \iff \quad \big(a=a' \quad \text{ et } \quad b=b'\big)$$

1.1.2 Représentation dans le plan

Pour visualiser les nombres complexes, on utilise le **plan complexe**, qui n'est autre que le plan euclidien \mathbb{R}^2 muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

Définition A tout point M de coordonnées (a,b) dans le repère $(O;\vec{\imath},\vec{\jmath})$, on fait correspondre le nombre complexe $z_M=a+ib$ dans le plan complexe. z_M est appelé affixe de M.

De même, au vecteur $\vec{u}=\overrightarrow{OM}$ de composantes (a,b) dans la base $(\vec{\imath},\vec{\jmath})$, on fait correspondre la même affixe $z_{\vec{u}}=a+ib$.

Dans le plan complexe, les nombres réels se trouvent donc sur l'axe des abscisses et les imaginaires purs sur l'axe des ordonnées.

Définition Le module de z, noté |z|, est un réel positif égal à la longueur OM.

Pour tout z non nul, un **argument** de z, noté $\arg(z)$, est un nombre réel égal à une mesure en radians de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$.

Remarques:

- Lorsque z est un réel, son module correspond à sa valeur absolue. C'est la raison pour laquelle la même notation |.| est utilisée.
- Un nombre complexe admet plusieurs arguments puisque la mesure d'un angle en radians est définie à un multiple de 2π près. Le nombre complexe 0 est le seul nombre complexe qui n'a pas d'arguments.

Théorème D'après le théorème de Pythagore, le module de z=a+ib vaut $|z|=\sqrt{a^2+b^2}$.

Exemple Le module de z = 3 - 4i vaut $|z| = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$.

Enfin, on définit une autre transformation propre aux nombres complexes :

Définition Le **conjugué** de z = a + ib, noté \overline{z} , est le nombre complexe $\overline{z} = a - ib$.

Géométriquement, le point d'affixe \overline{z} est le symétrique du point d'affixe z par rapport à l'axe des abscisses. Cela implique évidement que $|z|=|\overline{z}|$, que $\arg(\overline{z})=-\arg(z)$, et que $\overline{\overline{z}}=z$.

2

Exemple Le conjugué de z = 2 - 3i est $\overline{z} = 2 + 3i$.

1.1.3 Opérations usuelles

Soient z = a + ib et z' = a' + ib' deux nombres complexes et λ un nombre réel.

Les règles de calcul entre nombres complexes sont similaires à celles entre nombres réels, en utilisant de plus le fait que $i^2=-1$:

Addition z + z' = (a + ib) + (a' + ib') = (a + a') + i(b + b')

Multiplication par un réel $\lambda z = \lambda(a+ib) = \lambda a + i \lambda b$

Multiplication
$$zz' = (a + ib) \times (a' + ib') = aa' + iab' + iba' + i^2bb' = (aa' - bb') + i(ab' + a'b)$$

Inverse Pour calculer l'inverse d'un nombre complexe z non nul, la méthode consiste à multiplier le numérateur et le dénominateur par \overline{z} pour utiliser le fait que le produit $z\overline{z}=(a+ib)(a-ib)=a^2+b^2=|z|^2$ est un nombre réel :

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2} = \frac{a-ib}{a^2+b^2} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2} \quad \forall z \in \mathbb{C}^*.$$

Ces opérations permettent d'établir les règles suivantes sur la conjugaison et le module. Ces règles simplifient en général les calculs (attention à l'inégalité triangulaire pour la somme des modules, conformément à des longueurs) :

Théorème Soient z et z' deux nombres complexes et soit $n \in \mathbb{N}^*$. Alors,

$$\overline{z+z'} = \overline{z} + \overline{z'} \qquad \overline{z \times z'} = \overline{z} \times \overline{z'} \qquad \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \qquad \overline{z^n} = \overline{z}^n$$
$$|z+z'| \le |z| + |z'| \qquad |z \times z'| = |z| \times |z'| \qquad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \qquad |z^n| = |z|^n$$

Exemple Calculer le module de $(-\sqrt{3} + 3i)^4$.

$$\left| (-\sqrt{3} + 3i)^4 \right| = \left| -\sqrt{3} + 3i \right|^4 = \left(\sqrt{(-\sqrt{3})^2 + 3^2} \right)^4 = \left(\sqrt{3} + 9 \right)^4 = \left(\sqrt{12} \right)^4 = \left(\left(\sqrt{12} \right)^2 \right)^2 = 12^2 = 144$$

1.2 Forme exponentielle

Si l'écriture algébrique est bien adaptée aux calculs de sommes et de différences, les calculs de produits et de quotients sont plus laborieux, comme on l'a vu dans les exemples précédents. Pour ces opérations, une autre écriture est préférable. Il s'agit de la **forme exponentielle** des nombres complexes non nuls.

L'exponentielle complexe est une fonction qui généralise pour les nombres complexes la fonction exponentielle usuelle définie pour les nombres réels. Elle possède des propriétés similaires ($e^0=1$, $e^{z+z'}=e^ze^{z'}...$). Sa définition rigoureuse dépasse le cadre de ce cours et on se limite ici à la formulation suivante :

Définition Pour tout réel θ , l'exponentielle complexe $e^{i\theta}$ est le nombre complexe défini par :

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Comme on peut le voir sur le schéma ci-contre, les parties réelle et imaginaire d'un nombre complexe z=a+ib vérifient $a=|z|\cos(\arg(z))$ et $b=|z|\sin(\arg(z))$.

On en déduit donc l'écriture sous forme exponentielle d'un nombre complexe non nul :

Théorème Tout nombre complexe z non nul peut s'écrire sous forme exponentielle

$$z = \rho e^{i\theta}$$

où $\rho \in \mathbb{R}_+^*$ est le module de z ($\rho = |z|$) et $\theta \in \mathbb{R}$ est l'argument de z ($\theta = \arg(z)$).

Remarque La forme exponentielle d'un nombre complexe n'est pas unique puisque la mesure d'un angle en radians est donnée à $2k\pi$ près $(k \in \mathbb{Z})$. Ainsi, deux nombres complexes $z = \rho e^{i\theta}$ et $z' = \rho' e^{i\theta'}$ sont égaux si et seulement si $\rho = \rho'$ et $\theta = \theta' + 2k\pi$, $k \in \mathbb{Z}$.

Comme annoncé en introduction de ce paragraphe, la forme exponentielle est intéressante pour le calcul de produits et de quotients à cause des règles de calcul suivantes :

Théorème Soient $z = \rho e^{i\theta}$ et $z' = \rho' e^{i\theta'}$ deux nombres complexes non nuls écrits sous forme exponentielle et soit $n \in \mathbb{N}^*$. On a alors :

$$zz' = \rho \rho' e^{i(\theta + \theta')}$$
 $\frac{1}{z} = \frac{1}{\rho} e^{-i\theta}$ $\frac{z}{z'} = \frac{\rho}{\rho'} e^{i(\theta - \theta')}$ $z^n = \rho^n e^{in\theta}$

Littéralement, dans un produit les modules se multiplient et les arguments s'ajoutent, et dans un quotient les modules se divisent et les arguments se soustraient. Ces règles reposent sur les propriétés de l'exponentielle (essentiellement $e^{x+x'}=e^xe^{x'}$ et $e^{-x}=\frac{1}{e^x}$) et sur les règles de calcul relatives au module.

Par ailleurs, en remarquant que $-1=-1+0i=\cos\pi+i\sin\pi=e^{i\pi}$, on établit la relation :

Théorème Soit $z = \rho e^{i\theta}$ un nombre complexe. Alors : $-z = \rho e^{i(\theta + \pi)}$

Pour passer de la forme exponentielle à la forme algébrique Il suffit d'utiliser la définition de la forme exponentielle et de développer l'expression :

$$z = \rho e^{i\theta} = \rho \Big(\cos\theta + i\sin\theta\Big) = \underbrace{\rho\cos\theta}_a + i\underbrace{\rho\sin\theta}_b = a + ib$$

Remarque La forme $\rho(\cos\theta + i\sin\theta)$ est appelée forme trigonométrique du nombre complexe z.

Exemple Ecrire le nombre $z=4\,e^{i\frac{\pi}{6}}$ sous forme algébrique.

On a
$$z = 4e^{i\frac{\pi}{6}} = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 4\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 2\sqrt{3} + 2i.$$

Pour passer de la forme algébrique à la forme exponentielle II faut calculer le module $\rho = \sqrt{a^2 + b^2}$ du nombre complexe non nul, puis le mettre en facteur : $z = a + ib = \rho \left(\frac{a}{\rho} + i\frac{b}{\rho}\right)$ pour obtenir par identification $\cos\theta = \frac{a}{\rho}$ et $\sin\theta = \frac{b}{\rho}$. Connaissant le sinus et le cosinus, on peut alors déterminer un argument.

Remarque Pour déterminer la mesure d'un angle orienté θ (à $2k\pi$ près), on a besoin de son sinus et de son cosinus.

Exemple Ecrire le nombre $z=1+\sqrt{3}i$ sous forme exponentielle. Le module de z vaut $\rho=\sqrt{1+\sqrt{3}^2}=\sqrt{4}=2.$ On a donc $z=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)$, d'où $\cos\theta=\frac{1}{2}$ et $\sin\theta=\frac{\sqrt{3}}{2}$. Ainsi, un argument de z vaut $\theta=\frac{\pi}{3}$. Par conséquent, z s'écrit $z=2e^{i\frac{\pi}{3}}$.

1.3 Equations du second degré

La méthode de résolution que vous connaissez pour trouver les racines réelles des équations du second degré est rappelée en Annexe B.2 (commencez par la relire). Dans ce paragraphe, on va généraliser cette méthode en travaillant dans \mathbb{C} . On trouvera ainsi des solutions complexes, et on traitera également le cas où les coefficients de l'équation sont complexes.

1.3.1 Racines carrées d'un nombre complexe non nul

Avant de résoudre de façon très générale les équations du second degré dans \mathbb{C} , il faut définir les racines carrées d'un nombre complexe.

Soit $Z\in\mathbb{C}^*$ un nombre complexe non nul donné. On cherche à résoudre l'équation $z^2=Z$ dans $\mathbb C$ (c'est-à-dire en considérant que l'inconnue z est un nombre complexe). On va voir que cette équation admet toujours deux solutions dans $\mathbb C$, z et -z, appelées les racines carrées du nombre complexe Z.

Remarques

• Le nombre complexe nul Z=0 admet une seule racine carrée, qui est z=0.

• Cette notion de racine carrée ne doit pas être confondue avec la définition de la racine carrée dans \mathbb{R}_+ , qui elle est unique. Aussi, l'écriture $z=\sqrt{Z}$ est déconseillée dans \mathbb{C} . Par exemple, l'équation $z^2=4$ admet deux solutions qui sont 2 et -2 (autrement dit les racines carrées du nombre complexe Z=4 sont 2 et -2) tandis que $\sqrt{4}=2$ (la racine carrée du nombre réel 4 est 2).

On va présenter deux méthodes pour résoudre l'équation $z^2=Z$, d'abord en utilisant la forme exponentielle de z et Z, puis en utilisant leur forme algébrique.

1.3.1.1 Calcul des racines carrées via la forme exponentielle

Soit $Z=\rho\,e^{i\theta}$ la forme exponentielle de Z. Le module ρ est un nombre réel strictement positif : on peut donc en prendre la racine carrée (au sens usuel). Il est alors immédiat de voir que $\left(\sqrt{\rho}\,e^{i\theta/2}\right)^2=\left(\sqrt{\rho}\right)^2\,\left(e^{i\theta/2}\right)^2=\rho\,e^{i\theta}.$ On en déduit donc :

Théorème Les deux racines carrées de $Z=
ho\,e^{i heta}$ sont $z=\sqrt{
ho}\,e^{i heta/2}$ et $-z=-\sqrt{
ho}\,e^{i heta/2}$.

Exemple Trouver les racines carrées du nombre complexe i.

 $i=0+1i=\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}=1\,e^{i\frac{\pi}{2}}. \text{ Ses deux racines carr\'ees complexes sont donc } \pm\sqrt{1}\,e^{i\frac{\pi}{4}}, \text{ soit } z=e^{i\frac{\pi}{4}} \text{ et } -z=-e^{i\frac{\pi}{4}}=e^{i\pi}\,e^{i\frac{\pi}{4}}=e^{i\frac{5\pi}{4}}.$

1.3.1.2 Calcul des racines carrées via la forme algébrique

Même si le calcul est plus laborieux, on peut bien sûr également calculer les racines carrées d'un nombre complexe écrit sous forme algébrique.

Soit Z=A+iB, $(A,B)\in\mathbb{R}^2\setminus\{(0,0)\}$. En recherchant z sous la forme z=a+ib, on trouve en identifiant la partie réelle et la partie imaginaire de z et de Z que

$$z^2 = Z \iff (a+ib)^2 = A+iB \iff \begin{cases} a^2-b^2 = A & \text{(partie r\'eelle)} \\ 2ab = B & \text{(partie imaginaire)} \end{cases}$$

Pour simplifier la résolution, on peut considérer également une troisième équation (redondante avec les deux précédentes), donnée par l'égalité des modules :

$$z^2 = Z$$
 \Longrightarrow $|z^2| = |Z|$ \Longrightarrow $|z|^2 = |Z|$ \Longrightarrow $a^2 + b^2 = \sqrt{A^2 + B^2}$

Ainsi, on obtient :

$$z^{2} = Z \iff \begin{cases} a^{2} - b^{2} &= A & (1) \\ 2ab &= B & (2) \\ a^{2} + b^{2} &= \sqrt{A^{2} + B^{2}} & (3) \end{cases}$$

En additionnant puis en soustrayant les équations (1) et (3), on trouve

$$2a^2 = A + \sqrt{A^2 + B^2}$$
 et $-2b^2 = A - \sqrt{A^2 + B^2}$

ce qui donne

$$a=\pm\sqrt{\frac{A+\sqrt{A^2+B^2}}{2}} \qquad \text{ et } \qquad b=\pm\sqrt{\frac{-A+\sqrt{A^2+B^2}}{2}}.$$

Parmi les 4 couples possibles, on ne garde que les deux tels que les termes ab et B aient le même signe, cette condition étant imposée par l'équation (2). On obtient alors les deux racines carrées du nombre

complexe Z.

Exemple Trouver les racines carrées du nombre complexe i.

Cela revient à résoudre dans $\mathbb C$ l'équation $z^2=i$. En écrivant z sous forme algébrique z=a+ib (avec a,b réels), on obtient le système

$$\begin{cases} a^2 - b^2 = 0 & (partie r\'{e}elle) \\ 2ab = 1 & (partie imaginaire) \\ a^2 + b^2 = 1 & (module) \end{cases}$$

Après calcul, on trouve $a=\pm\frac{\sqrt{2}}{2}$ $b=\pm\frac{\sqrt{2}}{2}$ ab>0. Les deux couples admissibles sont donc $(a,b)=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ et $(a,b)=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.

En conclusion, les deux racines carrées de i sont $\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ et $-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. On retrouve bien les 2 mêmes racines que dans le calcul de l'exemple précédent, via la forme exponentielle.

1.3.2 Résolution d'une équation du second degré dans C

On va ici résoudre l'équation du second degré à coefficients complexes :

 $az^2 + bz + c = 0$, avec a, b et c trois nombres complexes et $a \neq 0$.

Théorème Soit l'équation du second degré $az^2+bz+c=0$ avec $(a,b,c)\in\mathbb{C}^3$ et $a\neq 0$. On note $\Delta=b^2-4ac$ son discriminant $(\Delta\in\mathbb{C})$, et δ une racine carrée de Δ (c'est-à-dire un nombre complexe vérifiant $\delta^2=\Delta$).

Les solutions complexes de l'équation sont $z_1=rac{-b-\delta}{2a}$ et $z_2=rac{-b+\delta}{2a}.$

De plus, le trinôme $P(z)=az^2+bz+c$ se factorise dans $\mathbb C$ sous la forme $P(z)=a(z-z_1)(z-z_2)$.

Remarque Lorsque $\Delta=0$, on a vu que l'équation $\delta^2=0$ admet une seule solution $\delta=0$. Dans ce cas, $z_1=z_2=-\frac{b}{2a}$. Le trinôme P admet donc une racine dite "double" (ou de multiplicité 2) et se factorise sous la forme $P(z)=a(z-z_1)^2$.

Remarques

- Le résultat énoncé ci-dessus ne nécessite pas de différencier les trois cas habituellement proposés $(\Delta > 0, \ \Delta = 0 \ \text{et} \ \Delta < 0)$ pour une résolution dans \mathbb{R} .
- Lorsque $\Delta \in \mathbb{R}_+^*$, les solutions de l'équation $\delta^2 = \Delta$ sont données par $\delta = \pm \sqrt{\Delta}$, et on retrouve le résultat classique étudié au lycée (Annexe B.2).
- Lorsque a, b et c sont réels, on retrouve bien sûr les résultats étudiés au lycée (Annexe B.2). Dans le cas où le discriminant est négatif ($\Delta \in \mathbb{R}_{-}^{*}$), les solutions dans \mathbb{C} de l'équation $\delta^{2} = \Delta$ sont $\delta = \pm i\sqrt{-\Delta}$. Les solutions complexes de l'équation sont donc $z_{1} = \frac{-b i\sqrt{-\Delta}}{2a}$ et $z_{2} = \frac{-b + i\sqrt{-\Delta}}{2a}$. a, b et Δ étant réels, z_{1} et z_{2} sont donc deux nombres complexes conjugués : $z_{2} = \overline{z_{1}}$.

Exemple Résoudre l'équation $z^2 + (3i - 4)z + 1 - 7i = 0$.

Le discriminant de ce trinôme est $\Delta=(3i-4)^2-4(1-7i)=-9+16-24i-4+28i=3+4i$. Pour résoudre l'équation $\delta^2=\Delta$, on pose $\delta=\alpha+i\beta$. L'équation devient $(\alpha+i\beta)^2=3+4i$ et est équivalente au système

$$\begin{cases} \alpha^2 - \beta^2 &= 3 \text{ (partie réelle)} \\ 2\alpha\beta &= 4 \text{ (partie imaginaire)} \\ \alpha^2 + \beta^2 &= \sqrt{3^2 + 4^2} = 5 \text{ (module)} \end{cases}$$

 $\text{Après calcul, on trouve } \quad \alpha = \pm \sqrt{\frac{3+5}{2}} = \pm 2 \qquad \beta = \pm \sqrt{\frac{5-3}{2}} = \pm 1 \qquad \text{avec } \alpha\beta > 0.$

Ainsi les solutions de l'équation $\dot{\delta}^2 = \Delta$ sont 2+i et $-\dot{2}-i$. Et par conséquent, les solutions de l'équation $z^2+(3i-4)z+1-7i=0$ sont données par

$$z_1 = \frac{-(3i-4)-(2+i)}{2} = 1-2i$$
 et $z_2 = \frac{-(3i-4)+(2+i)}{2} = 3-i$.

Vérification :

$$(z-z_1)(z-z_2) = (z-1+2i)(z-3+i) = z^2 + (-3+i)z + (-1+2i)z + (-1+2i)(-3+i) = z^2 + (3i-4)z + 1-7i$$

Théorème Comme dans le cas dans \mathbb{R} (Annexe B.2), les racines z_1 et z_2 du trinôme $P(z)=az^2+bz+c$ vérifient

$$z_1 + z_2 = -\frac{b}{a} \qquad \text{et} \qquad z_1 z_2 = \frac{c}{a}$$

Réciproquement, deux nombres complexes dont la somme vaut s et le produit p sont les racines du trinôme $Q(z)=z^2+sz+p$.

Exemple Le trinôme P défini par $P(z)=z^2-2iz-2$ a pour racines 1+i et -1+i, ce qui donne la factorisation P(z)=(z-1-i)(z+1-i).

1.4 Racines nèmes d'un nombre complexe non nul

La procédure décrite au $\S 1.3.1.1$ pour résoudre l'équation $z^2=Z$ à partir de la forme exponentielle peut facilement être généralisée pour résoudre dans $\mathbb C$ l'équation

$$z^n = Z$$

avec $n \in \mathbb{N}^*$ et $Z \in \mathbb{C}^*$. Cette équation admet exactement n solutions dans \mathbb{C} , appelées les racines $\mathbf{n}^{\mathsf{èmes}}$ du nombre complexe Z.

En effet, posons $Z=\rho e^{i\theta}$ l'écriture sous forme exponentielle de Z. En recherchant z sous la forme $z=re^{i\alpha}$, on a

$$z^n = Z \quad \iff \quad \left(re^{i\alpha}\right)^n = \rho e^{i\theta} \qquad \iff \quad \left\{ \begin{array}{l} r^n &= & \rho \pmod{n} \\ n\alpha &= & \theta + 2k\pi \,, \, k \in \mathbb{Z} \end{array} \right. \text{ (argument)}$$

$$\iff \quad \left\{ \begin{array}{l} r &= & \sqrt[n]{\rho} = \rho^{\frac{1}{n}} \\ \alpha &= & \frac{\theta + 2k\pi}{n} \,, \, k \in \mathbb{Z} \end{array} \right.$$

Les solutions distinctes correspondent à k = 0, 1, ..., n - 1.

Pour k=n, on a $\theta=\frac{\theta+2n\pi}{n}=\frac{\theta}{n}+2\pi$ et on retrouve donc la même solution que pour k=0. Pour k=n+1, on a $\theta=\frac{\theta+2(n+1)\pi}{n}=\frac{\theta+2\pi}{n}+2\pi$ et on retrouve donc la même solution que pour k=1...

En conclusion, l'équation $z^n=Z$ admet n solutions $z_0,\,z_1,\,\cdots$, z_{n-1} données par

$$z_k = \rho^{\frac{1}{n}} \, e^{i\frac{\theta + 2k\pi}{n}} \qquad \text{pour } k = 0, 1, \cdots, n-1.$$

 $\begin{array}{ll} \textbf{Remarque} & \text{Les n racines $n^{\`{\text{emes}}}$ de Z ayant le même} \\ \text{module et ayant des arguments augmentant de $2\pi/n$,} \\ \text{elles sont régulièrement réparties sur le cercle de centre O et de rayon $\rho^{1/n}$.} \\ \end{array}$

La figure ci-contre illustre cela avec les racines $5^{\mathrm{\`e}mes}$ de 2+i.

Cas particulier : racines nèmes de l'unité

Les n solutions de l'équation $z^n=1$ sont appelées les **racines** $\frac{{\bf n}^{\bf kmes}}{n}$ de l'unité. Elles sont toutes de module 1. En notant $\xi=e^{\frac{2i\pi}{n}}$, elles sont données par

$$z_k = \xi^k, \quad k = 0, 1, \dots, n - 1.$$

On remarque que celles qui ne sont pas réelles sont deux à deux conjuguées :

$$\overline{\xi^k} = \overline{\xi}^k = \frac{1}{\xi^k} = \frac{\xi^n}{\xi^k} = \xi^{n-k}$$

Enfin, on peut montrer que la somme des racines n^{èmes} de l'unité est nulle (en utilisant les propriétés des suites géométriques).

Les 7 racines 7 èmes de 1

1.5 Complément : nombres complexes et trigonométrie

Comme on l'a vu, les nombres complexes sont intimement liés aux fonctions sinus et cosinus. Ils peuvent donc aider à l'étude de fonctions trigonométriques.

Tout d'abord les propriétés de l'exponentielle complexe permettent de retrouver rapidement les formules trigonométriques usuelles (données en Annexe D). Par exemple, puisque $e^{i(\theta+\varphi)}=e^{i\theta}e^{i\varphi}$, on a

$$\cos(\theta + \varphi) + i\sin(\theta + \varphi) = (\cos\theta + i\sin\theta)(\cos\varphi + i\sin\varphi).$$

En identifiant les parties réelles et les parties imaginaires, on retrouve les formules d'addition :

$$\begin{cases} \cos(\theta + \varphi) &= \cos\theta\cos\varphi - \sin\theta\sin\varphi \\ \sin(\theta + \varphi) &= \sin\theta\cos\varphi + \cos\theta\sin\varphi \end{cases}$$

A l'aide de la définition de l'exponentielle complexe, on obtient également :

Théorème Formules d'Euler : pour tout $\theta \in \mathbb{R}$,

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \qquad \text{ et } \qquad \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2}$$

Les formules d'Euler permettent notamment la linéarisation de polynômes en $\cos\theta$ et $\sin\theta$, c'est-à-dire d'exprimer ces polynômes en une combinaison linéaire de divers $\cos(n\theta)$ et $\sin(n\theta)$. Cette linéarisation est utile par exemple pour le calcul de primitives.

Exemple Calculer les primitives de $\cos^3 \theta$.

On linéarise ce polynôme en $\cos\theta$ à l'aide des formules d'Euler :

$$\cos^{3}\theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{3}$$

$$= \frac{1}{2^{3}}\left((e^{i\theta})^{3} + 3(e^{i\theta})^{2}e^{-i\theta} + 3e^{i\theta}(e^{-i\theta})^{2} + (e^{-i\theta})^{3}\right)$$

$$= \frac{1}{8}\left(e^{i3\theta} + 3e^{i\theta} + 3e^{-i\theta} + e^{-i3\theta}\right)$$

$$= \frac{1}{4}\left(\cos(3\theta) + 3\cos\theta\right)$$

$$\textit{Ainsi}, \ \int \cos^3 \theta d\theta = \frac{1}{4} \int \big(\cos(3\theta) + 3\cos\theta\big) d\theta = \frac{1}{4} \Big(\frac{1}{3}\sin(3\theta) + 3\sin\theta\Big) + C, \quad \ C \in \mathbb{R}$$

Une autre formulation de la relation entre les nombres complexes et les fonctions trigonométriques est donnée par :

Théorème Formule de Moivre $\forall \theta \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ \left(\cos \theta + i \sin \theta\right)^n = \cos(n\theta) + i \sin(n\theta)$

La preuve repose sur la propriété de l'exponentielle complexe : $(e^{i\theta})^n=e^{in\theta}.$

Cette formule permet d'exprimer $\cos(n\theta)$ ou $\sin(n\theta)$ comme une combinaison linéaire de puissances de $\cos\theta$ et $\sin\theta$ (opération inverse de la linéarisation). En effet, en identifiant les parties réelles et imaginaires, on trouve

$$\begin{cases} \cos(n\theta) &= \mathcal{R}e\Big((\cos\theta + i\sin\theta)^n\Big) \\ \sin(n\theta) &= \mathcal{I}m\Big((\cos\theta + i\sin\theta)^n\Big) \end{cases}$$

La formule du binôme de Newton (voir §2.4.2), qui est une généralisation des identités remarquables $(a+b)^2=a^2+2ab+b^2$, $(a+b)^3=a^3+3a^2b+3ab^2+b^3$, $(a+b)^4=...$, permet alors de développer $(\cos\theta+i\sin\theta)^n$ en puissances de $\cos\theta$ et $\sin\theta$.

Exemple La linéarisation effectuée à l'exemple précédent aurait pu être trouvée avec la formule de Moivre puisque

$$\cos(3\theta) = \mathcal{R}e\Big((\cos\theta + i\sin\theta)^3\Big) = \cos^3\theta - 3\cos\theta\sin^2\theta = \cos^3\theta - 3\cos\theta(1 - \cos^2\theta) = 4\cos^3\theta - 3\cos\theta.$$

Et donc
$$\cos^3 \theta = \frac{1}{4} \Big(\cos(3\theta) + 3\cos\theta \Big).$$

Chapitre 2

Sommes et produits

2.1 Le symbole \sum

Le symbole \sum est utilisé en langage scientifique pour écrire de façon concise la somme de plusieurs termes.

2.1.1 Définitions et propriétés

Définition Pour $n \in \mathbb{N}^*$ et a_1, a_2, \dots, a_n des nombres réels ou complexes, on note

$$a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

L'indice k parcourt tous les entiers compris entre 1 et n et les différents termes sont sommés entre eux. L'écriture $\sum_{k=1}^n a_k$ se lit "somme des a_k pour k allant de 1 à n".

Exemples

- La moyenne arithmétique \overline{x} de n nombres x_1, x_2, \ldots, x_n s'écrit $\overline{x} = \frac{1}{n} \sum_{k=1}^n x_k$.
- $\sum_{k=1}^{3} (2k+1) = (2 \times 1 + 1) + (2 \times 2 + 1) + (2 \times 3 + 1) = 3 + 5 + 7 = 15$

Cette notation peut être généralisée entre deux valeurs quelconques des indices de la somme :

Définition Soient p et q des entiers relatifs quelconques avec p < q. La notation $\sum_{k=p}^{q} a_k$ désigne la somme des termes a_k lorsque l'indice k parcourt tous les entiers compris entre p et q:

$$\sum_{k=p}^{q} a_k = a_p + a_{p+1} + \dots + a_{q-1} + a_q$$

Cette somme contient q - p + 1 termes (indice maximal - indice minimal + 1).

Exemples

- $\sum_{k=3}^{8} k = 3+4+5+6+7+8=33$. On voit que l'indice k prend 8-3+1=6 valeurs différentes : $k \in \{3,4,5,6,7,8\}$.
- $\sum_{k=4}^{10} a = a + a + a + a + a + a + a + a + a = 7a$. Dans cette somme, le terme à sommer ne dépend pas de l'indice k, c'est donc une constante qui est additionnée 7 fois.

•
$$\sum_{k=-3}^{7} k = (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 = 22$$

On peut encore généraliser cette notation pour faire la somme de termes correspondant à des indices particuliers, appartenant à une même famille :

Définition Soient I une famille finie d'indices appartenant à \mathbb{Z} et $(a_k)_{k\in I}$ une famille de nombres réels ou complexes indexée par I. $\sum_{k\in I} a_k$ désigne la somme des nombres a_k pour k décrivant I.

Exemples

- $\sum_{k=1}^{n} a_k$ peut aussi être écrit $\sum_{k \in \{1,2,\cdots,n\}} a_k$
- Soit I l'ensemble des entiers naturels non nuls, pairs et inférieurs ou égaux à 8. Alors $\sum_{k\in I}k^2=2^2+4^2+6^2+8^2=120$.
- $\sum_{k=1}^{10} (2k+1)^2 = \sum_{p \in I} p^2$ où I désigne les 10 nombres impairs allant de 3 à 21.

Remarque Dans tout ce qui précède, il est important de bien comprendre que l'indice k est une variable muette, puisque le résultat ne dépend pas de celle-ci. Nous pouvons donc changer sa désignation sans changer le résultat du calcul :

$$\sum_{k=1}^{n} a_k = \sum_{l=1}^{n} a_l = \sum_{indice=1}^{n} a_{indice}$$

Par contre $\sum_{k=1}^{n} a_k \neq \sum_{k=1}^{p} a_k$ (sauf si n=p), car il ne s'agit plus là d'une modification de la notation de l'indice, mais de la valeur maximale que prend cet indice.

Les propriétés usuelles de l'addition permettent d'établir le résultat suivant :

Théorème Soient I un ensemble fini d'indices, et $(a_k)_{k\in I}$, $(b_k)_{k\in I}$ et α des réels ou complexes. Alors

$$\sum_{k \in I} (a_k + b_k) = \sum_{k \in I} a_k + \sum_{k \in I} b_k \quad \text{ et } \quad \sum_{k \in I} (\alpha a_k) = \alpha \sum_{k \in I} a_k.$$

Par contre, en général $\sum_{k=1}^{\infty} (a_k \, b_k) \neq \left(\sum_{k=1}^{\infty} a_k\right) \times \left(\sum_{k=1}^{\infty} b_k\right)$.

Pour s'en convaincre, il suffit de constater par exemple que

$$\sum_{k=1}^{3} \underbrace{k}_{a_k} \underbrace{(k+1)}_{b_k} = 1 \times 2 + 2 \times 3 + 3 \times 4 = 2 + 6 + 12 = 20$$

tandis que

$$\left(\sum_{k=1}^{3} k\right) \times \left(\sum_{k=1}^{3} (k+1)\right) = (1+2+3) \times (2+3+4) = 6 \times 9 = 45$$

Pour aller plus loin : les sommes doubles ou triples 2.1.2

L'ensemble d'indices I peut aussi être une partie finie de \mathbb{Z}^2 , auguel cas les indices sont des couples : on a alors une somme double.

Exemple On a ainsi : $\sum_{(k,l)\in\{1,2,3\}\times\{5,6\}}a_{k,l}=a_{1,5}+a_{1,6}+a_{2,5}+a_{2,6}+a_{3,5}+a_{3,6}$

On peut réécrire cette somme des 2 façons suivantes :

$$\begin{cases} (a_{1,5} + a_{1,6}) + (a_{2,5} + a_{2,6}) + (a_{3,5} + a_{3,6}) = \sum_{l=5}^{6} a_{1,l} + \sum_{l=5}^{6} a_{2,l} + \sum_{l=5}^{6} a_{3,l} = \sum_{k=1}^{3} \left(\sum_{l=5}^{6} a_{k,l}\right) \\ (a_{1,5} + a_{2,5} + a_{3,5}) + (a_{1,6} + a_{2,6} + a_{3,6}) = \sum_{k=1}^{3} a_{k,5} + \sum_{k=1}^{3} a_{k,6} = \sum_{l=5}^{6} \left(\sum_{k=1}^{3} a_{k,l}\right) \end{cases}$$

que l'on note en général sans parenthèses : $\sum_{(k,l)\in\{1,2,2\}\vee\{5,6\}}a_{k,l}=\sum_{k=1}^3\sum_{l=5}^6a_{k,l}=\sum_{l=5}^5\sum_{k=1}^3a_{k,l}$

Dans une telle somme double, les bornes de l'un des indices peuvent parfois dépendre de l'autre indice. Par exemple:

$$(1^2) + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots + (1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2) = \sum_{i=1}^{7} \sum_{j=1}^{i} j^2$$

Dans un tel cas, on ne peut plus inverser les sommes, car la notation $\sum_{i=1}^{t} \sum_{j=1}^{t} j^2$ n'a aucun sens : on ferait varier l'indice j de 1 à une valeur i qui n'est pas définie.

Enfin, on peut évidemment définir de la même manière des sommes triples, quadruples...

2.2 Le symbole ∏

On utilise une notation similaire pour désigner le produit de différents termes.

Définition Pour $n \in \mathbb{N}^*$ et a_1, a_2, \ldots, a_n des nombres réels ou complexes, on note

$$a_1 \times a_2 \times \dots \times a_n = \prod_{k=1}^n a_k$$

Plus généralement, pour une famille I d'indices appartenant à \mathbb{Z} et $(a_k)_{k\in I}$ une famille de nombres réels ou complexes indexée par I, $\prod_{k\in I}a_k$ désigne le produit des nombres a_k pour k décrivant I.

Exemples

•
$$\prod_{k=2}^{5} k = 2 \times 3 \times 4 \times 5 = 120$$

•
$$\prod_{i=-2}^{3} (2i+1) = (-3) \times (-1) \times 1 \times 3 \times 5 \times 7 = 315$$

•
$$\prod_{j=2}^{5} 3 = 3 \times 3 \times 3 \times 3 = 3^4 = 81$$

Définition Pour tout $n \in \mathbb{N}^*$, la factorielle de n, notée n!, est le produit des nombres entiers de 1 à n:

$$n! = 1 \times 2 \times \cdots \times (n-1) \times n = \prod_{k=1}^{n} k$$

Par convention, on pose 0! = 1.

A noter la relation $(n+1)! = (n+1) \times n!$ pour tout $n \in \mathbb{N}$ (c'est une relation de récurrence : cf §2.6).

Remarque Le nombre n! correspond au nombre de permutations possibles (c'est-à-dire le nombre de classements possibles) de n objets. Par exemple, on peut fabriquer 4! = 24 mots de 4 lettres différents à partir des lettres A, C, G, T : ACGT, ACTG, AGCT, AGTC, ATCG, ATGC...

Pour finir, en utilisant les propriétés de la multiplication entre réels ou complexes, on obtient les relations suivantes :

Théorème Soient I un ensemble fini et $(a_k)_{k\in I}$ et $(b_k)_{k\in I}$ des réels ou complexes non nuls. On a :

$$\left(\prod_{i\in I} a_i\right) \left(\prod_{k\in I} b_i\right) = \prod_{i\in I} (a_i b_i) \qquad \prod_{i\in I} a_i = \prod_{i\in I} \left(\frac{a_i}{b_i}\right) \qquad \prod_{i=p}^q (\alpha a_i) = \alpha^{q-p+1} \prod_{i=p}^q a_i$$

Pour s'en convaincre, il suffit de constater par exemple que

$$\prod_{k=1}^{3} \left(\underbrace{k}_{a_k} + \underbrace{(2k-1)}_{b_k} \right) = (1+1) \times (2+3) \times (3+5) = 2 \times 5 \times 8 = 80$$

tandis que

$$\left(\prod_{k=1}^{3} k\right) + \left(\prod_{k=1}^{3} (2k-1)\right) = (1 \times 2 \times 3) + (1 \times 3 \times 5) = 6 + 15 = 21$$

Remarque Comme pour les sommes, on peut évidemment étendre la notation du produit pour avoir des produits doubles ou triples.

2.3 Quelques techniques de calcul avec \sum et \prod

Plusieurs techniques sont couramment utilisées pour manipuler des expressions contenant des symboles \sum et \prod .

2.3.1 Passages entre \sum et \prod : logarithmes et exponentielles

Les fonctions logarithme et exponentielle (cf Annexe E) sont caractérisées par le fait de transformer des sommes en produits et vice-versa : $\ln(ab) = \ln a + \ln b$ et $e^{a+b} = e^a e^b$.

On en déduit immédiatement que :

$$\ln\left(\prod_{i\in I}a_i\right) = \sum_{i\in I}\ln a_i \qquad \text{ et } \qquad \exp\left(\sum_{i\in I}a_i\right) = \prod_{i\in I}e^{a_i}$$

2.3.2 Sommes et produits "téléscopiques"

Des sommes ou produits dits **téléscopiques** (ou **en dominos**) sont des sommes ou des produits dont les termes se simplifient de proche en proche. En voici deux exemples ci-dessous.

Exemples

• Une somme téléscopique : $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} = ?$

On peut remarquer que $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ (on revient sur ce type de décomposition au §5.4.3). La somme peut alors être réécrite comme :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

• Un produit téléscopique :

$$\prod_{k=1}^{n} \frac{k}{k+1} = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \dots \times \frac{n-1}{n} \times \frac{n}{n+1} = \frac{1}{n+1}$$

2.3.3 Changement d'indice

Une autre technique utile est le changement d'indice. Cela consiste à définir un nouvel indice l exprimé en fonction de l'ancien indice k, et de remplacer chaque k par son expression en fonction de l.

Exemples

• Décalage d'indice :

Cherchons à calculer
$$\sum_{k=3}^n a_{k-2}$$
. Posons $l=k-2$. Alors $k=l+2$. Donc lorsque k varie de 3 à n , l varie de 1 à $n-2$. D'où $\sum_{k=3}^n a_{k-2} = \sum_{l=1}^{n-2} a_l$.

• Inversion de l'ordre d'énumération :

Posons l=n+1-k. Ainsi, lorsque k varie de 1 à n, l varie de n à 1. On peut utiliser cette astuce pour calculer la somme des n premiers entiers : $\sum_{i=1}^{n} k$.

En effet :
$$\sum_{k=1}^n k = \sum_{l=1}^n (n+1-l) = (n+1) \sum_{l=1}^n 1 - \sum_{l=1}^n l = (n+1)n - \sum_{k=1}^n k.$$
 On a donc $2\sum_{k=0}^n k = n(n+1)$. D'où $\sum_{k=1}^n k = \frac{n(n+1)}{2}$. On retrouvera ce résultat dans le paragraphe § 2.5 sur les suites arithmétiques.

2.3.4 Réorganiser l'ensemble des indices

Une astuce classique consiste à réorganiser les indices de façon à se ramener des résultats connus.

Exemple Calculer
$$\sum_{k=11}^{99} k$$
.

On vient de voir que $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ pour tout $n \in \mathbb{N}^*$. Il suffit donc ici de remarquer que $11+12+\cdots+99=1+2+\cdots+99-(1+2+\cdots+10)$, c'est-à-dire :

$$\sum_{k=11}^{99} k = \sum_{k=1}^{99} k - \sum_{k=1}^{10} k = \frac{99 \times 100}{2} - \frac{10 \times 11}{2} = 99 \times 50 - 11 \times 5 = 4950 - 55 = 4895$$

2.4 Formule de Bernoulli - Binôme de Newton

Ces formules généralisent les identités remarquables $a^2-b^2=(a-b)(a+b)$ et $(a+b)^2=a^2+2ab+b^2$.

2.4.1 Formule de Bernoulli

Théorème Soient
$$a \in \mathbb{C}$$
, $b \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Alors : $a^n - b^n = (a - b) \left(\sum_{k=0}^{n-1} a^{n-k-1} b^k \right)$

Sous forme développée : $a^n - b^n = (a - b) (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$

Cette formule peut être démontrée en remarquant qu'il s'agit d'une somme téléscopique.

Remarques

- Pour n=3, on a la formule classique : $a^3-b^3=(a-b)(a^2+ab+b^2)$
- Pour a=1 et $b \neq 1$, on obtient : $\sum_{k=0}^{n-1} b^k = \frac{1-b^n}{1-b}$. Il s'agit de la somme des n premiers termes d'une suite géométrique de terme initial $u_0=1$ et de raison b, que l'on retrouvera dans le paragraphe §2.5.

2.4.2 Binôme de Newton

Cette formule donne l'expression de $(a+b)^n$ pour toute puissance entière n. Elle nécessite d'introduire les coefficients binomiaux.

2.4.2.1 Coefficients binomiaux

Définition Le coefficient binomial "p parmi n" (avec n et p des entiers tels que $0 \le p \le n$) est le nombre noté $\binom{n}{p}$ (ou parfois C_n^p) et défini par :

$$\binom{n}{p} = \frac{n!}{p! (n-p)!}$$

Ce nombre $\binom{n}{p}$ correspond au nombre de combinaisons possibles pour choisir p objets parmi n objets disponibles.

Exemples

- Avec un jeu de 52 cartes, il y a $\binom{52}{5}$ tirages possibles d'une main de 5 cartes, ce qui fait $\binom{52}{5} = \frac{52!}{5! \ 47!} = \frac{52 \times 51 \times 50 \times 49 \times 48}{5!} = 2 \ 598 \ 960$ possibilités.

En utilisant les propriétés de la factorielle, on peut notamment obtenir la formule de Pascal :

Théorème Pour tout
$$(n,p) \in \mathbb{N}^2$$
, $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$

Du fait de cette propriété, les coefficients binomiaux peuvent être représentés dans un triangle appelé **triangle de Pascal** (figure ci-contre). Chaque coefficient s'obtient comme la somme des deux coefficients qui sont juste au-dessus de lui. Nous obtenons ainsi un algorithme pour calculer les coefficients binomiaux pour des petites valeurs de n.

On remarque en particulier la symétrie par rapport à l'axe central (car $\binom{n}{n-p}=\binom{n}{p}$) et les 1 sur les bords (car $\binom{n}{0}=1$).

Triangle de Pascal

2.4.2.2 Formule du binôme

On peut maintenant énoncer la formule du binôme de Newton :

Théorème Soient $a \in \mathbb{C}$, $b \in \mathbb{C}$ et $n \in \mathbb{N}$. Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Remarque Cette formule généralise les identités remarquables $(a+b)^2 = a^2 + 2ab + b^2$ et $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$. Les coefficients $1 \ 2 \ 1$ et $1 \ 3 \ 3 \ 1$ sont ceux que nous retrouvons sur la troisième et la quatrième ligne du triangle de Pascal. D'une façon générale, les coefficients du développement de $(a+b)^n$ sont sur la ligne n+1 du triangle de Pascal.

2.5 Progressions arithmétiques et géométriques

On note $(u_k)_{k\in\mathbb{N}}$ une suite de nombres (réels ou complexes) $u_0,u_1,u_2...$

Définition Une suite est dite en **progression arithmétique** si et seulement si $u_{k+1} = u_k + r$ pour tout $k \ge 0$, où r est un nombre constant appelé **raison de la suite**.

On montre alors facilement que $u_k = u_0 + k r$ pour tout $k \ge 1$. On en déduit que :

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (u_0 + kr) = \sum_{k=0}^{n} u_0 + r \sum_{k=0}^{n} k = (n+1)u_0 + r \sum_{k=0}^{n} k = (n+1)u_0 + r \frac{n(n+1)}{2}$$

On voit donc le lien avec les résultats établis au §2.1.

Remarque Si la suite commence à u_1 et non pas à u_0 , les résultats précédents deviennent $u_k = u_1 + (k-1)r$ pour tout $k \ge 1$, et $\sum_{k=1}^n u_k = n\,u_1 + r\,\frac{(n-1)n}{2}$.

Définition Une suite est dite en **progression géométrique** si et seulement si $u_{k+1} = q u_k$ pour tout $k \ge 0$, où q est un nombre constant appelé raison de la suite.

On montre alors facilement que $u_k = q^k u_0 = q^{k-1} u_1$ pour tout $k \ge 1$.

On en déduit que $\sum_{k=0}^n u_k = \sum_{k=0}^n q^k \, u_0 = u_0 \, \sum_{k=0}^n q^k = u_0 \, \frac{1-q^{n+1}}{1-q}$ (d'après un résultat établi au §2.4.1 sur la formule de Bernoulli).

Remarque Si la suite commence à u_1 et non pas à u_0 , les résultats précédents deviennent $u_k=q^{k-1}u_1$ pour tout $k\geq 1$, et $\sum_{k=1}^n u_k=u_1\,\frac{1-q^n}{1-q}$.

2.6 Pour aller plus loin : notion de récurrence

Le principe de récurrence repose sur l'axiome suivant :

Si une propriété P est vraie au rang n_0 et si elle est héréditaire (c'est-à-dire : P vraie au rang p $\Longrightarrow P$ vraie au rang p+1) alors P est vraie pour tout entier naturel supérieur ou égal à n_0 .

Par conséquent, une démonstration par récurrence se fait en 3 étapes :

- 1. <u>Initialisation</u> : nous démontrons que la propriété est vraie au rang n_0 .
- 2. <u>Hérédité</u> : nous supposons que la propriété est vraie pour un rang p quelconque $(p \ge n_0)$ et nous démontrons qu'elle est alors vraie au rang p + 1.
- 3. Bilan : nous en déduisons qu'elle est vraie pour tout entier naturel supérieur ou égal à n_0 .

Remarque C'est le même principe que pour tricoter une écharpe. D'abord, il faut savoir monter les mailles, c'est-à-dire faire le premier rang : c'est l'initialisation. Puis il faut savoir tricoter un rang lorsque le rang précédent est tricoté, c'est-à-dire passer d'un rang au suivant : c'est l'hérédité. Bilan : nous pouvons continuer cette écharpe à l'infini (tant qu'il y a de la laine!).

Exemple Montrer que pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$

<u>Initialisation</u>: Montrons que la propriété est vraie au rang initial n=1: D'une part $1^2=1$ et d'autre part, quand n=1, $\frac{n(n+1)(2n+1)}{6}=\frac{1\times 2\times 3}{6}=1$. Ces deux résultats sont égaux, donc la propriété est vraie au rang 1.

 $\frac{\textit{H\'er\'edit\'e}}{\sum_{k=1}^p k^2} = \frac{p(p+1)(2p+1)}{6}, \text{ et montrons que la propriét\'e est alors vraie au rang } p \geq 1 \text{ quelconque, c'est-\`a-dire que } \sum_{k=1}^p k^2 = \frac{p(p+1)(2p+1)}{6}, \text{ et montrons que la propriét\'e est alors vraie au rang } p+1 \text{ (c'est-\`a-dire que } \sum_{k=1}^{p+1} k^2 = \frac{(p+1)\left((p+1)+1\right)\left(2(p+1)+1\right)}{6} \text{)}.$

En sortant le dernier terme de la somme puis en utilisant l'hypothèse de récurrence, nous avons

$$\sum_{k=1}^{p+1} k^2 = \sum_{k=1}^{p} k^2 + (p+1)^2 = \frac{p(p+1)(2p+1)}{6} + (p+1)^2$$

En mettant au même dénominateur, on obtient :

$$\sum_{k=1}^{p+1} k^2 = \frac{p(p+1)(2p+1) + 6(p+1)^2}{6} = \frac{(p+1)\Big(p(2p+1) + 6(p+1)\Big)}{6}$$
$$= \frac{(p+1)(2p^2 + p + 6p + 6)}{6} = \frac{(p+1)(2p^2 + 7p + 6)}{6}.$$

Or, en développant, la relation à démontrer $\frac{(p+1)((p+1)+1)(2(p+1)+1)}{6}$ s'écrit

$$\frac{(p+1)\left((p+1)+1\right)\left(2(p+1)+1\right)}{6} = \frac{(p+1)(p+2)(2p+3)}{6} = \frac{(p+1)(2p^2+7p+6)}{6}$$

qui est bien le résultat trouvé ci-dessus. La propriété est donc héréditaire.

<u>Bilan</u>: La propriété est vraie au rang 1 et est héréditaire. Elle est donc vraie pour tout $n \in \mathbb{N}^*$.

Chapitre 3

Géométrie et algébre linéaire

Ce chapitre est centré sur les outils et manipulations basiques dans \mathbb{R}^2 ("le plan", en 2 dimensions) et \mathbb{R}^3 ("l'espace", en 3 dimensions).

D'un point de vue mathématique : $\mathbb{R}^2 = \{(x,y), x \in \mathbb{R}, y \in \mathbb{R}\}$ et $\mathbb{R}^3 = \{(x,y,z), x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}\}$

3.1 Vecteurs

3.1.1 Définition

Définition Un vecteur \vec{u} (de \mathbb{R}^2 ou de \mathbb{R}^3) est un objet mathématique caractérisé par trois informations :

- une direction
- un sens
- une longueur, appelée norme et notée $\|\vec{u}\|$.

Le **vecteur nul**, noté $\vec{0}$, est l'unique vecteur de norme nulle (il n'a ni direction, ni sens).

Ainsi, deux vecteurs non nuls sont égaux s'ils ont même direction, même sens et même norme.

3.1.2 Opérations sur les vecteurs

Il est possible d'additionner deux vecteurs entre eux, et de multiplier un vecteur par un scalaire (c'est-à-dire un nombre réel).

Addition Soient \vec{u} et \vec{v} deux vecteurs. On construit leur somme $\vec{u}+\vec{v}$ en disposant \vec{u} et \vec{v} tels que l'extrémité de \vec{u} coincide avec l'origine de \vec{v} . Le vecteur $\vec{u}+\vec{v}$ est alors obtenu en reliant l'origine du premier vecteur à l'extrémité du second.

Multiplication par un scalaire Soient $k \in \mathbb{R}$ un réel et \vec{u} un vecteur. Le produit de \vec{u} par k, noté $k \vec{u}$, est le vecteur de norme $||k \vec{u}|| = |k| . ||\vec{u}||$ tel que :

• Si k>0, alors $k\,\vec{u}$ a même direction et même sens que \vec{u}

CHAPITRE 3. GÉOMÉTRIE ET ALGÉBRE LINÉAIRE

- Si k < 0, alors $k \vec{u}$ est de même direction que \vec{u} , mais de sens opposé
- Si k=0, alors $k \vec{u}$ est simplement le vecteur nul $\vec{0}$

Cas particulier k=-1: Lorsque l'on multiplie \vec{u} par -1, on obtient le vecteur $-\vec{u}$, appelé le vecteur opposé de \vec{u} . Il a même direction et même norme, mais son sens est l'opposé du sens de \vec{u} . Comme pour les nombres réels, on soustrait un vecteur à un autre en lui ajoutant son opposé : $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$.

Propriétés Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs et k et l deux réels. On a les propriétés suivantes :

- 1. Commutativité : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 2. Associativité : $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
- 3. Distributivité : $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
- 4. Distributivité : $(k+l)\vec{u} = k\vec{u} + l\vec{u}$

Vecteurs colinéaires Deux vecteurs (non nuls) sont dits **colinéaires** s'ils ont même direction (mais pas forcément même sens ni même norme).

Deux vecteurs (non nuls) \vec{u} et \vec{v} sont colinéaires si et seulement s'il existe un réel k tel que $\vec{u} = k\vec{v}$.

3.1.3 Base du plan (vectoriel) \mathbb{R}^2 et de l'espace (vectoriel) \mathbb{R}^3

Définition Soient $\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_n$ des vecteurs. On appelle **combinaison linéaire** de ces vecteurs tout vecteur de la forme $\sum_{k=1}^n \lambda_k \vec{u}_k$ où $\lambda_1, \lambda_2, \dots, \lambda_n$ sont des réels.

Exemples Soient \vec{u} et \vec{v} deux vecteurs.

- ullet $ec{u}-rac{3}{2}ec{v}$ est une combinaison linéaire de $ec{u}$ et $ec{v}$
- $-4\vec{u}$ est une combinaison linéaire de \vec{u} et \vec{v}
- $\|\vec{u}\| + \|\vec{v}\|$ n'est pas une combinaison linéaire de \vec{u} et \vec{v}

Définition Une base du plan \mathbb{R}^2 (resp. de l'espace \mathbb{R}^3) est une famille de 2 vecteurs (resp. 3 vecteurs) telle que tout vecteur \vec{u} de \mathbb{R}^2 (resp. de \mathbb{R}^3) peut s'écrire de manière unique comme une combinaison linéaire des vecteurs de cette famille. Autrement dit :

$$(\vec{u}_1, \vec{u}_2)$$
 base de \mathbb{R}^2 \iff \forall $\vec{u} \in \mathbb{R}^2$, $\exists ! \ (\lambda_1, \ \lambda_2)$ réels tels que $\vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2$

 λ_1 et λ_2 sont appelées **composantes** ou **coordonnées** de \vec{u} dans la base (\vec{u}_1, \vec{u}_2) et on note $\vec{u} = (\lambda, \mu)$.

De même :

$$(\vec{u}_1,\vec{u}_2,\vec{u}_3) \text{ base de } \mathbb{R}^3 \quad \iff \quad \forall \ \vec{u} \in \mathbb{R}^3, \quad \exists! \ (\lambda_1,\lambda_2,\lambda_3) \text{ réels tels que } \vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$$

Géométriquement, comme dans l'exemple ci-contre, définir $(\vec{\imath}, \vec{\jmath})$ comme une base de \mathbb{R}^2 signifie que l'on peut écrire tout vecteur \vec{u} de \mathbb{R}^2 comme la somme de $\lambda \vec{\imath}$ et de $\mu \vec{\jmath}$. Donc, écrire $\vec{u} = \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$ signifie que, pour aller de l'origine de \vec{u} à son extrémité, on se déplace d'une longueur $|\lambda|||\vec{\imath}||$ dans la direction de $\vec{\imath}$ (dans le même sens que $\vec{\imath}$ si λ est positif et dans le sens inverse si λ est négatif) puis d'une longueur $|\mu|||\vec{\jmath}||$ dans la direction de $\vec{\jmath}$ (dans le même sens que $\vec{\jmath}$ si μ est positif et dans le sens inverse si μ est négatif).

Décomposition du vecteur \vec{u} dans la base $(\vec{\imath}, \vec{\jmath})$

Exemple Sur la figure précédente, on remarque que $\vec{u}=2\vec{\imath}+\vec{\jmath}$. Ainsi, 2 et 1 sont les composantes de \vec{u} dans la base $(\vec{\imath},\vec{\jmath})$ et on peut noter $\vec{u}=(2,1)$ ou $\vec{u}=\begin{pmatrix}2\\1\end{pmatrix}$.

Le fait de définir des vecteurs par leurs composantes dans une base permet de les manipuler plus facilement. Les opérations décrites précédemment peuvent se faire à partir des composantes des vecteurs.

Manipulation des vecteurs via leurs coordonnées Dans une base donnée :

- Deux vecteurs sont égaux si et seulement si leurs composantes sont égales.
- Additionner deux vecteurs revient à additionner leurs composantes.
- Multiplier un vecteur par un scalaire revient à multiplier chacune de ses composantes par ce scalaire.

Exemple Dans \mathbb{R}^2 , soit (\vec{e}_1, \vec{e}_2) une base. Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 ayant respectivement pour composantes (x, y) et (x', y') dans la base (\vec{e}_1, \vec{e}_2) , et soit k un réel. Alors :

$$\left(\vec{u} = \vec{v} \iff x = x' \text{ et } y = y' \right)$$
 $k\vec{u} = (kx, ky)$ $\vec{u} + \vec{v} = (x + x', y + y')$

Définition La base la plus usuelle de \mathbb{R}^2 est souvent notée $(\vec{\imath}, \vec{\jmath})$. $\vec{\imath}$ est un vecteur horizontal de longueur 1 orienté vers la droite, et $\vec{\jmath}$ est un vecteur vertical de longueur 1 orienté vers le haut. Elle s'appelle la base canonique.

On a bien sûr de façon similaire une base canonique dans \mathbb{R}^3 , souvent notée $(\vec{\imath}, \vec{\jmath}, \vec{k})$.

Théorème Soient \vec{u}_1 et \vec{u}_2 deux vecteurs non nuls du plan \mathbb{R}^2 . Le couple (\vec{u}_1, \vec{u}_2) forme une base du plan \mathbb{R}^2 si et seulement si \vec{u}_1 et \vec{u}_2 ne sont pas colinéaires.

Exemples

• Les vecteurs $\vec{u}_1=(1,-1)$ et $\vec{u}_2=(3,-3)$ sont colinéaires puisque $\vec{u}_2=3\vec{u}_1$. Ils ont donc même direction, et toute combinaison linéaire de \vec{u}_1 et \vec{u}_2 aura également cette direction. Ces deux vecteurs ne suffisent donc pas pour décrire l'ensemble des vecteurs du plan : le couple (\vec{u}_1,\vec{u}_2) ne forme pas une base de \mathbb{R}^2 .

• Les vecteurs $\vec{v}_1 = (1, -1)$ et $\vec{v}_2 = (0, 1)$ ne sont pas colinéaires (en effet, il n'existe pas de réel k tel que $k\vec{v}_1 = (k, -k)$ soit égal à $\vec{v}_2 = (0, 1)$). Par conséquent, (\vec{v}_1, \vec{v}_2) forme une base du plan \mathbb{R}^2 . Tout $\vec{u} = (x, y)$ de \mathbb{R}^2 peut s'écrire

$$\vec{u} = (x, y) = (x, -x) + (0, x + y) = x(1, -1) + (x + y)(0, 1) = x\vec{v}_1 + (x + y)\vec{v}_2$$

x et x + y sont les composantes de \vec{u} dans la base $(\vec{v_1}, \vec{v_2})$.

La propriété correspondante dans \mathbb{R}^3 est la suivante :

Théorème Soient \vec{u}_1 , \vec{u}_2 et \vec{u}_3 trois vecteurs non nuls de \mathbb{R}^3 . La famille $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ forme une base de \mathbb{R}^3 si et seulement si les trois vecteurs ne sont pas coplanaires.

3.1.4 Produit scalaire et orthogonalité

On va maintenant définir une opération entre 2 vecteurs, appelée **produit scalaire**, qui est intimement liée aux notions d'orthogonalité et de norme (longueur d'un vecteur).

Définition Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 ayant respectivement pour composantes (x,y) et (x',y') dans la base canonique $(\vec{\imath},\vec{\jmath})$. Le **produit scalaire** entre \vec{u} et \vec{v} , noté $\vec{u}\cdot\vec{v}$ ou $\langle\vec{u},\vec{v}\rangle$, est le réel défini par

$$\vec{u} \cdot \vec{v} = xx' + yy'$$

De même, pour \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^3 ayant respectivement pour composantes (x,y,z) et (x',y',z') dans la base canonique $(\vec{\imath},\vec{\jmath},\vec{k})$, leur produit scalaire est donné par

$$\vec{u} \cdot \vec{v} = xx' + yy' + zz'$$

Les règles de calcul du produit scalaire sont très semblables à celles de la multiplication des nombres réels.

Règles d'utilisation du produit scalaire Soient \vec{u} , \vec{v} et \overrightarrow{w} trois vecteurs et λ un nombre réel.

- Le produit scalaire est **symétrique** (ou commutatif) : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Le produit scalaire est **bilinéaire** : $\vec{u} \cdot (\vec{v} + \overrightarrow{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \overrightarrow{w}$ $(\vec{u} + \vec{v}) \cdot \overrightarrow{w} = \vec{u} \cdot \vec{v} + \vec{u} \cdot \overrightarrow{w}$ $\vec{u} \cdot (\lambda \vec{v}) = (\lambda \vec{u}) \cdot \vec{v} = \lambda (\vec{u} \cdot \vec{v})$

En particulier, le produit scalaire d'un vecteur \vec{u} avec le vecteur nul $\vec{0}$ donne toujours le scalaire 0.

Exemple On peut exprimer $(7\vec{u} - \vec{v}) \cdot (4\vec{u} + 3\vec{v})$ en fonction de $\vec{u} \cdot \vec{u}$, $\vec{v} \cdot \vec{v}$ et $\vec{u} \cdot \vec{v}$:

$$\begin{array}{lll} (7\vec{u} - \vec{v}) \cdot (4\vec{u} + 3\vec{v}) & = & (7\vec{u}) \cdot (4\vec{u} + 3\vec{v}) - \vec{v} \cdot (4\vec{u} + 3\vec{v}) \\ & = & (7\vec{u}) \cdot (4\vec{u}) + (7\vec{u}) \cdot (3\vec{v}) - \vec{v} \cdot (4\vec{u}) - \vec{v} \cdot (3\vec{v}) \\ & = & 28 \, \vec{u} \cdot \vec{u} + 21 \, \vec{u} \cdot \vec{v} - 4 \, \vec{v} \cdot \vec{u} - 3 \, \vec{v} \cdot \vec{v} \\ & = & 28 \, \vec{u} \cdot \vec{u} + 17 \, \vec{u} \cdot \vec{v} - 3 \, \vec{v} \cdot \vec{v} \end{array}$$

Plus généralement, on peut décrire géométriquement le produit scalaire de la façon suivante :

Théorème Soient \vec{u} et \vec{v} deux vecteurs. On note θ une mesure de l'angle orienté entre \vec{u} et \vec{v} (déterminée à un multiple de 2π près). Alors

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \, \|\vec{v}\| \, \cos \theta$$

En particulier, on voit que $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2 \cos 0 = \|\vec{u}\|^2$. Donc la norme d'un vecteur est égale à $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}}$.

Comme une norme est toujours positive, le signe du produit scalaire est le même que celui de $\cos \theta$. Le signe du produit scalaire permet donc de déterminer si l'angle géométrique entre les vecteurs \vec{u} et \vec{v} est aigu $(\cos \theta > 0)$ ou obtus $(\cos \theta < 0)$. On a aussi notamment la propriété suivante :

Théorème Deux vecteurs non nuls \vec{u} et \vec{v} sont **orthogonaux** (directions données par deux droites perpendiculaires, ce qui signifie $\theta = \frac{\pi}{2}$) si et seulement si $\vec{u} \cdot \vec{v} = 0$.

Géométriquement, le produit scalaire est très lié à la notion de **projection orthogonale**. Si l'on remplace \vec{u} et \vec{v} par \overrightarrow{AB} et \overrightarrow{AC} dans la relation $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \, \cos \theta$, on obtient la formuation suivante :

Théorème Soient \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} trois points distincts du plan, et \overrightarrow{H} le projeté orthogonal de C sur la droite (AB). Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$, et

- 1. si H est sur la demi-droite [A,B) (angle aigu), alors on a $\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \|\overrightarrow{AH}\|$
- 2. sinon (angle obtus), on a $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\|\overrightarrow{AB}\| \|\overrightarrow{AH}\|$

Cas 1 : angle aigu (θ <90°)

 θ R H

Cas 2 : angle obtus $(\theta > 90^{\circ})$

Définition Une base de \mathbb{R}^2 ou de \mathbb{R}^3 est dite orthogonale lorsque tous les vecteurs qui la composent sont deux à deux orthogonaux.

Une base orthogonale de \mathbb{R}^2 ou de \mathbb{R}^3 est dite orthonormée lorsqu'en plus tous les vecteurs qui la composent sont de norme 1.

Exemple La base canonique $(\vec{\imath}, \vec{\jmath})$ de \mathbb{R}^2 est une base orthonormée.

En effet, on a $\vec{\imath}=(1,0)$ et $\vec{\jmath}=(0,1)$. Donc $\vec{\imath}\cdot\vec{\jmath}=1\times 0+0\times 1=0$: $(\vec{\imath},\vec{\jmath})$ forme une base orthogonale. De plus $\|\vec{\imath}\|=\sqrt{\vec{\imath}\cdot\vec{\imath}}=\sqrt{1\times 1+0\times 0}=1$ et $\|\vec{\jmath}\|=\sqrt{\vec{\jmath}\cdot\vec{\jmath}}=\sqrt{0\times 0+1\times 1}=1$. Donc $(\vec{\imath},\vec{\jmath})$ est une base orthonormée.

3.1.5 Produit vectoriel de 2 vecteurs de \mathbb{R}^3

Le **produit vectoriel** est une opération qui, à deux vecteurs de \mathbb{R}^3 , associe un troisième vecteur de \mathbb{R}^3 qui a la propriété d'être orthogonal aux deux premiers.

Définition Soient $\vec{u}=(x,y,z)$ et $\vec{v}=(x',y',z')$ deux vecteurs de \mathbb{R}^3 . On appelle **produit** vectoriel de $\vec{u}=(x,y,z)$ et $\vec{v}=(x',y',z')$, noté $\vec{u}\wedge\vec{v}$, de composantes (yz'-zy',zx'-xz',xy'-yx').

Exemple Pour $\vec{u} = (1, 2, 3)$ et $\vec{v} = (2, 2, 1)$, on a donc :

$$\vec{u} \wedge \vec{v} = (2 \times 1 - 3 \times 2, 3 \times 2 - 1 \times 1, 1 \times 2 - 2 \times 2) = (-4, 5, -2)$$

Calcul pratique d'un produit vectoriel : la première composante de $\vec{u} \wedge \vec{v}$ est obtenue en ignorant la première ligne des vecteurs et en faisant le produit en croix des 2 autres (calcul en rouge); la deuxième composante de $\vec{u} \wedge \vec{v}$ est obtenue en ignorant la deuxième ligne des vecteurs et en faisant le produit en croix des 2 autres, en changeant le signe (calcul en mauve); la troisième composante de $\vec{u} \wedge \vec{v}$ est obtenue en ignorant la troisième ligne des vecteurs et en faisant le produit en croix des 2 autres (calcul en bleu).

Règles d'utilisation du produit vectoriel

- Le produit vectoriel est **antisymétrique** : $\vec{v} \wedge \vec{u} = -\vec{u} \wedge \vec{v}$
- Le produit vectoriel est **bilinéaire** : $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$ $(\vec{u} + \vec{v}) \wedge \vec{w} = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$ $\vec{u} \wedge (\lambda \vec{v}) = (\lambda \vec{u}) \wedge \vec{v} = \lambda (\vec{u} \wedge \vec{v})$

Théorème Soient \vec{u} et \vec{v} deux vecteurs. On note θ une mesure de l'angle orienté entre \vec{u} et \vec{v} (déterminée à un multiple de 2π près). Alors

$$\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| |\sin \theta|$$

Propriétés Les définitions et propriétés précédentes impliquent :

- $\vec{u} \wedge \vec{v}$ est orthogonal à \vec{u} et à \vec{v} : $(\vec{u} \wedge \vec{v}) \cdot \vec{u} = (\vec{u} \wedge \vec{v}) \cdot \vec{v} = 0$
- Si \vec{u} et \vec{v} sont deux vecteurs de \mathbb{R}^3 orthogonaux entre eux, alors $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ est une base orthogonale de \mathbb{R}^3 .
- Deux vecteurs \vec{u} et \vec{v} de \mathbb{R}^3 sont colinéaires si et seulement si $\vec{u} \wedge \vec{v} = \vec{0}$.

3.2 Déterminants

Le **déterminant** est un opérateur qui, à n vecteurs de \mathbb{R}^n , associe un nombre réel. Il a la propriété d'être égal à 0 si et seulement si l'un des vecteurs est une combinaison linéaire des autres (on dit aussi : "la famille de n vecteurs est linéairement dépendante", ou "la famille de n vecteurs est linéairement dépendante", ou "la famille de n vecteurs est linéairement dépendante", ou "la famille de n vecteurs est linéairement dépendante".

On ne va traiter ici que le déterminant en dimension 2 et en dimension 3.

3.2.1 Déterminant de 2 vecteurs de \mathbb{R}^2

Définition Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 ayant respectivement pour composantes (x,y) et (x',y') dans la base canonique $(\vec{\imath},\vec{\jmath})$. Alors le **déterminant** entre \vec{u} et \vec{v} , noté $\det(\vec{u},\vec{v})$, est le réel défini par

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx' \qquad \text{("produit en croix" de } \vec{u} \text{ et } \vec{v}\text{)}$$

Règles d'utilisation du déterminant 2×2

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de \mathbb{R}^2 et λ un nombre réel. La définition du déterminant implique les règles suivantes :

- $\det(\vec{u}, \vec{v}) = -\det(\vec{v}, \vec{u})$ (attention : inverser les 2 vecteurs change le signe du déterminant)
- $\det(\vec{u}, \vec{v} + \vec{w}) = \det(\vec{u}, \vec{v}) + \det(\vec{u}, \vec{w})$
- $\bullet \ \det(\vec{u}, \lambda \vec{v}) = \det(\lambda \vec{u}, \vec{v}) = \lambda \det(\vec{u}, \vec{v}) \qquad \text{ (et donc } \det(\lambda \vec{u}, \mu \vec{v}) = \lambda \, \mu \, \det(\vec{u}, \vec{v}) \text{)}$
- **Théorème** Deux vecteurs \vec{u} et \vec{v} de \mathbb{R}^2 sont colinéaires si et seulement si $\det(\vec{u}, \vec{v}) = 0$.

Exemple Soient les vecteurs $\vec{u} = (m,4)$ et $\vec{v} = (1,m)$ où m est un réel. Déterminer à quelle condition sur m les vecteurs sont colinéaires.

Le déterminant entre \vec{u} et \vec{v} vaut $\det(\vec{u},\vec{v}) = \left| \begin{array}{c} m & 1 \\ 4 & m \end{array} \right| = m^2 - 4$. L'équation $\det(\vec{u},\vec{v}) = m^2 - 4 = 0$ admet deux solutions m=2 et m=-2. Ainsi, les vecteurs \vec{u} et \vec{v} sont colinéaires pour m=2 ou m=-2. Dans le premier cas, on a $\vec{u}=2\vec{v}$ et dans le deuxième cas $\vec{u}=-2\vec{v}$. Dans les 2 cas, \vec{u} et \vec{v} sont donc bien proportionnels.

Théorème Soient A, B et C trois points du plan \mathbb{R}^2 . L'aire du triangle ABC vaut $\frac{1}{2} \left| \det(\overrightarrow{AB}, \overrightarrow{AC}) \right|$. (Les formules usuelles d'aire et volume sont rappelées en Annexe A.)

3.2.2 Déterminant de 3 vecteurs de \mathbb{R}^3

Définition Soient \vec{u} de composantes (x,y,z), \vec{v} de composantes (x',y',z') et \vec{w} de composantes (x'',y'',z'')trois vecteurs de \mathbb{R}^3 . Alors le **déterminant** entre \vec{u} , \vec{v} et \vec{w} , noté $\det(\vec{u},\vec{v},\vec{w})$, est le réel défini par :

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$$
$$= xy'z'' + x'y''z + x''yz' - (xy''z' + x'yz'' + x''y'z)$$

Il y a en fait plusieurs possibilités pour exprimer ce déterminant 3×3 en fonction de sous-déterminants 2×2 , mais on aboutit bien sûr toujours à la même expression finale ci-dessus.

On remarque qu'il s'agit d'une somme et différence de produits de 3 termes appartenant chacun à une ligne et une colonne différente. Cette expression finale développée peut être retrouvée grâce à la règle de Sarrus ci-dessous :

Calcul pratique d'un déterminant 3×3 par la règle de Sarrus Moyen mnémotechnique : "SE-NE", c'est-à-dire "sud-est moins nord-est" : on ajoute les produits de 3 termes orientés vers le sud-est, et on retranche les produits de 3 termes orientés vers le nord-est.

Enfin, on peut aussi remarquer que $\det(\vec{u}, \vec{v}, \vec{w}) = (\vec{u} \wedge \vec{v}) \cdot \vec{w}$.

Règles d'utilisation du déterminant 3×3

Soient \vec{u} , \vec{v}' , \vec{v} et \vec{w} trois vecteurs de \mathbb{R}^3 et λ un nombre réel. La définition du déterminant implique les règles suivantes, identiques à celles du déterminant 2×2 :

- inverser 2 vecteurs change le signe du déterminant. Ainsi par exemple $\det(\vec{u}, \vec{v}, \vec{w}) = -\det(\vec{v}, \vec{u}, \vec{w}) = -\det(\vec{v}, \vec{v}, \vec{v}) = -\det(\vec{v}, \vec{v}, \vec{v})$ (il y a à chaque fois une inversion de vecteurs), et $\det(\vec{u}, \vec{v}, \vec{w}) = \det(\vec{v}, \vec{u}, \vec{v}) = \det(\vec{v}, \vec{v}, \vec{v})$ (car ces cas correspondent à 2 inversions successives de vecteurs)
- addition de 2 vecteurs : $\det(\vec{u} + \vec{u}', \vec{v}, \vec{w}) = \det(\vec{u}, \vec{v}, \vec{w}) + \det(\vec{u}', \vec{v}, \vec{w})$
- multiplication d'un des vecteurs par un nombre réel : $\det(\lambda \vec{u}, \vec{v}, \vec{w}) = \lambda \det(\vec{u}, \vec{v}, \vec{w})$

Théorème Trois vecteurs \vec{u} , \vec{v} et \vec{w} de \mathbb{R}^3 sont **coplanaires** (c'est-à-dire linéairement dépendants : on peut exprimer un des vecteurs comme combinaison linéaire des 2 autres) si et seulement si $\det(\vec{u}, \vec{v}, \vec{w}) = 0$.

Exemple Pour
$$\vec{u}=\begin{pmatrix}3\\-3\\7\end{pmatrix}$$
, $\vec{v}=\begin{pmatrix}2\\-1\\3\end{pmatrix}$ et $\vec{w}=\begin{pmatrix}1\\1\\-1\end{pmatrix}$, on a

$$\det(\vec{u},\vec{v},\vec{w}) = \begin{vmatrix} 3 & 2 & 1 \\ -3 & -1 & 1 \\ 7 & 3 & -1 \end{vmatrix} = 3 - 9 + 14 - (-7 + 6 + 9) = 8 - 8 = 0 \qquad \textit{(par la règle de Sarrus)}$$

Le déterminant étant nul, cela indique qu'il existe une combinaison linéaire nulle des 3 vecteurs (c'est-à-dire que l'un des vecteurs peut être exprimé comme combinaison linéaire des deux autres). En effet, on peut remarquer ici que $\vec{u} = 2\vec{v} - \vec{w}$, et donc que les 3 vecteurs sont dans un même plan, comme on peut le voir sur le dessin ci-contre.

Théorème Soient A, B, C et D quatre points de l'espace \mathbb{R}^3 . Le volume du tétraèdre ABCD $\mathsf{vaut} \ \frac{1}{6} \left| \det(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) \right|$

(Les formules usuelles d'aire et volume sont rappelées en Annexe A.)

3.2.3 Lien avec les systèmes linéaires

On a vu que le déterminant de n vecteurs de \mathbb{R}^n est égal à 0 si et seulement si l'un des vecteurs est une combinaison linéaire des autres. Une application de cette propriété concerne les systèmes linéaires.

Théorème Un système linéaire de n équations à n inconnues a une et une seule solution si et seulement si son déterminant est différent de 0. Dans le cas contraire, il admet soit aucune solution, soit une infinité de solutions.

- Considérons le système $\left\{ \begin{array}{ll} 2x-y&=&3&(1)\\ x+3y&=&-2&(2) \end{array} \right. \quad \text{Son déterminant vaut } \left| \begin{array}{ll} 2&-1\\ 1&3 \end{array} \right| = 6-(-1)=7.$ Il est différent de 0, donc le système admet une solution unique. En l'occurence, la combinaison $3 \times (1) + (2)$ donne 7x = 7, donc x = 1. D'où y = 1 en remplaçant x par 1 dans (1) ou (2).

indique que le système n'admet pas une solution unique. En effet, on peut voir que (3) - (1)fournit l'équation x-2y=-2, qui est incompatible avec (2). Il n'y a donc pas de solution à ce système.

3.3 Géométrie élémentaire en dimensions 2 et 3

On va ici s'intéresser au plan affine et à l'espace affine, c'est-à-dire \mathbb{R}^2 et \mathbb{R}^3 vus comme des ensembles de points.

3.3.1 Repère cartésien - Coordonnées d'un point

Définition Un repère cartésien du plan (respectivement : de l'espace) est formé d'un point O (l'origine du repère) et d'une base de \mathbb{R}^2 (respectivement de \mathbb{R}^3).

Dans un repère cartésien $(O; \vec{\imath}, \vec{\jmath})$ du plan, on dit que le point M défini par $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$ a pour coordonnées (x,y), et on note M(x,y).

Dans un repère cartésien $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$ de l'espace, on dit que le point M défini par $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$ a pour coordonnées (x, y, z), et on note M(x, y, z).

Ainsi, nous pouvons déterminer les composantes d'un vecteur à partir des coordonnées des deux points qui définissent ce vecteur :

Théorème Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère cartésien du plan. Soient $A(x_A, y_A)$ et $B(x_B, y_B)$ deux points du plan. Les composantes du vecteur \overrightarrow{AB} dans la base $(\vec{\imath}, \vec{\jmath})$ sont données par

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$$

On a bien sûr la même relation dans \mathbb{R}^3 , avec $A(x_A,y_A,z_A)$, $B(x_B,y_B,z_B)$, et $\overrightarrow{AB}=(x_B-x_A,y_B-y_A,z_B-z_A)$.

Exemple Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère du plan et soient A(1,1), B(4,2), C(5,0) et D(2,-1) quatre points du plan. Les composantes de \overrightarrow{AB} dans la base $(\vec{\imath}, \vec{\jmath})$ sont $\overrightarrow{AB} = (4-1,2-1) = (3,1)$. Les composantes de \overrightarrow{DC} dans la base $(\vec{\imath}, \vec{\jmath})$ sont $\overrightarrow{DC} = (5-2,0-(-1)) = (3,1)$. On remarque que $\overrightarrow{AB} = \overrightarrow{DC}$, ce qui signifie que le quadrilatère ABCD est un parallélogramme.

3.3.2 Géométrie élémentaire dans le plan affine (dimension 2)

3.3.2.1 Vecteur directeur et vecteur normal à une droite

Définition On appelle vecteur directeur d'une droite \mathcal{D} tout vecteur \overrightarrow{AB} où A et B sont deux points distincts de \mathcal{D} . Ainsi un vecteur directeur détermine la direction d'une droite.

Remarque Pour une droite donnée, il existe une infinité de vecteurs directeurs. Tous ces vecteurs directeurs sont colinéaires entre eux.

Définition On appelle **vecteur normal** d'une droite \mathcal{D} tout vecteur directeur \vec{n} d'une droite perpendiculaire à \mathcal{D}

 \vec{n} est donc perpendiculaire à tout vecteur directeur de \mathcal{D} .

Remarque Là encore, pour une droite donnée, il existe une infinité de vecteurs normaux, tous colinéaires entre eux.

3.3.2.2 Equation d'une droite dans le plan

On va expliciter ici les deux façons principales d'exprimer une droite dans le plan affine : par une **équation cartésienne** ou sous une **forme paramétrique**.

Définition Soient α , β et γ trois réels tels que $(\alpha, \beta) \neq (0, 0)$ (i.e. au moins un des deux n'est pas nul). Alors l'ensemble des points du plan \mathbb{R}^2 défini par

$$\mathcal{D} = \{ M(x, y); \ \alpha x + \beta y + \gamma = 0 \}$$

est une droite. On dit que l'équation $\alpha x + \beta y + \gamma = 0$ est une **équation cartésienne** de cette droite.

Notons que cette caractérisation n'est pas unique puisque, par exemple, $2\alpha x + 2\beta y + 2\gamma = 0$ est aussi une équation cartésienne de la même droite.

Remarque Si $\beta=0$ l'équation se ramène à x=r avec $r=-\gamma/\alpha$ (puisque $\alpha\neq 0$) : c'est une droite parallèle à l'axe Oy. Si $\beta\neq 0$, l'équation se ramène à y=ax+b avec $a=-\alpha/\beta$ et $b=-\gamma/\beta$, ce qui une forme très souvent utilisée pour caractériser une droite. L'équation cartésienne a l'avantage de couvrir les 2 cas, sans caractériser différemment les droites parallèles à l'axe des ordonnées.

Théorème Toute droite \mathcal{D} du plan admet une équation cartésienne de la forme $\alpha x + \beta y + \gamma = 0$ où $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, avec $(\alpha, \beta) \neq (0, 0)$.

 $\vec{n} = (\alpha, \beta)$ est un vecteur normal à \mathcal{D} (et donc $\vec{u} = (\beta, -\alpha)$ est un vecteur directeur de \mathcal{D}).

On peut aussi remarquer que pour définir une droite $\mathcal D$ du plan, il suffit en fait d'un point $A(x_A,y_A)$ appartenant à $\mathcal D$ et d'un vecteur directeur $\vec u=(x_{\vec u},y_{\vec u})$ de $\mathcal D$. Ces deux informations permettent notamment d'obtenir une représentation paramétrique de $\mathcal D$:

Théorème Un point M(x,y) appartient à la droite $\mathcal D$ si et seulement si il existe un réel λ (appelé paramètre) tel que

$$\begin{cases} x = x_A + \lambda x_{\vec{u}} \\ y = y_A + \lambda y_{\vec{u}} \end{cases}$$

Exemple Soit \mathcal{D} la droite passant par le point A(2,1) et dont $\vec{u}=(-3,-1)$ est un vecteur directeur. Un point M(x,y) appartient à \mathcal{D} si et seulement si il existe un réel λ tel que

$$\begin{cases} x = 2 - 3\lambda \\ y = 1 - \lambda \end{cases}$$

Autrement dit : $\mathcal{D} = \{M(2-3\lambda,1-\lambda), \lambda \in \mathbb{R}\}$. Cette phrase se lit : "la droite \mathcal{D} est constituée des points M de coordonnées $(2-3\lambda,1-\lambda)$, pour toutes les valeurs possibles du réel λ ".

Remarque Pour une droite donnée, le choix d'un point et d'un vecteur directeur n'est évidemment pas unique. Il existe donc une infinité de représentations paramétriques.

Passage d'une forme à l'autre On peut évidemment facilement passer d'une équation de droite sous forme cartésienne à une équation de droite sous forme paramétrique, et vice versa. Par exemple :

• Considérons la droite $\mathcal D$ d'équation cartésienne : 2x-y+5=0, et cherchons en une forme paramétrique. En x=0, la droite passe par l'ordonnée y=5. Le point A(0,5) appartient donc à $\mathcal D$. Le vecteur $\vec u=(-1,-2)$ est un vecteur directeur de $\mathcal D$. Ainsi un point M(x,y) appartient à $\mathcal D$ si et seulement si il existe un réel λ tel que

$$\begin{cases} x = -\lambda \\ y = 5 - 2\lambda \end{cases}$$

• Considérons la droite $\mathcal D$ définie par la forme paramétrique $\{M(4+\lambda,-1+2\lambda);\lambda\in\mathbb R\}$, et cherchons une équation cartésienne de cette droite : $\alpha x+\beta y+\gamma=0$. $\mathcal D$ admet pour vecteur directeur $\vec u=(1,2)$ (coefficients devant le paramètre λ) et donc pour vecteur normal $\vec n=(-2,1)$. Ainsi nous pouvons choisir $\alpha=-2$ et $\beta=1$. De plus le point A(4,-1) (obtenu en choisissant $\lambda=0$) appartient à $\mathcal D$ donc $\gamma=-\alpha x_A-\beta y_A=-(-2)\times 4-1\times (-1)=9$. Ainsi un point M(x,y) appartient à $\mathcal D$ si et seulement si il vérifie l'équation -2x+y+9=0.

3.3.2.3 Intersection de 2 droites dans le plan

Deux droites \mathcal{D} et \mathcal{D}' peuvent être **sécantes** (elles possèdent alors un seul point commun). Dans le cas contraire, elles sont **parallèles** : elles sont alors **confondues** (et possèdent une infinité de points communs) ou **strictement parallèles** (et n'ont aucun point commun).

Théorème Deux droites sont parallèles si et seulement si l'une des caractérisations suivantes est vérifiée :

- leurs deux vecteurs directeurs sont colinéaires
- leurs deux vecteurs normaux sont colinéaires
- le vecteur directeur de l'une est orthogonal au vecteur normal de l'autre

Pour déterminer le point d'intersection de deux droites sécantes, on est amené à résoudre un système linéaire de deux équations à deux inconnues. Les 3 cas de figures possibles sont exposés dans les exemples ci-dessous.

Exemples

- Intersection de $\mathcal{D}=\{(x,y),x+y=0\}$ et $\mathcal{D}'=\{(x,y)=(2-\lambda,1-\lambda),\lambda\in\mathbb{R}\}.$ On a x+y=0. Or $x=2-\lambda$ et $y=1-\lambda$ donc $(2-\lambda)+(1-\lambda)=0$, qui donne immédiatement $\lambda=\frac{3}{2}$. Ainsi, $x=2-\lambda=\frac{1}{2}$ et $y=1-\lambda=-\frac{1}{2}$. L'unique point d'intersection a pour coordonnées $(\frac{1}{2},-\frac{1}{2})$.
- Intersection de \mathcal{D} : x + 2y + 2 = 0 et \mathcal{D}' : 4x y 1 = 0.

Il faut donc résoudre le système $\left\{ \begin{array}{lll} x+2y&=&-2&(L_1)\\ 4x-y&=&1&(L_2) \end{array} \right.$

Pour éliminer x dans la deuxième équation, on effectue la transformation $(L_2) \leftarrow (L_2) - 4(L_1)$:

$$\begin{cases} x + 2y = -2 & (L_1) \\ -9y = 9 & (L_2) \leftarrow (L_2) - 4(L_1) \end{cases}$$

On trouve alors y=-1. Ce résultat est inséré dans (L_1) qui devient x-2=-2, ce qui donne x=0. Par conséquent, l'unique point d'intersection entre \mathcal{D} et \mathcal{D}' a pour coordonnées (0,-1).

• Intersection de $\mathcal{D} = \{(x,y) = (1-2\lambda,2+\lambda), \ \lambda \in \mathcal{R}\}$ et $\mathcal{D}' = \{(x,y) = (\mu,1+3\mu), \ \mu \in \mathbb{R}\}$ Un point d'intersection M(x,y) de \mathcal{D} et \mathcal{D}' doit vérifier les deux caractérisations, ce qui donne $x = 1-2\lambda = \mu$ et $y = 2+\lambda = 1+3\mu$. On a donc le système linéaire :

$$\begin{cases}
-2\lambda & -\mu = -1 & (L_1) \\
\lambda & -3\mu = -1 & (L_2)
\end{cases}$$

En faisant $(L_1)+2(L_2)$, on élimine λ et on obtient $-7\mu=-3$, soit $\mu=3/7$. D'où $\lambda=-1+3\mu=2/7$. On en déduit alors $x=1-2\lambda=\mu=3/7$ et $y=2+\lambda=1+3\mu=16/7$. L'unique point d'intersection entre $\mathcal D$ et $\mathcal D'$ a pour coordonnées (3/7,16/7).

3.3.2.4 Distance entre deux points dans le plan

Théorème Soient A et B deux points du plan \mathbb{R}^2 . La distance entre ces deux points est égale à la longueur du vecteur \overrightarrow{AB} :

$$d(A,B) = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

3.3.2.5 Projection d'un point sur une droite - distance d'un point à une droite

Définition Soient \mathcal{D} une droite du plan et M un point du plan. On appelle **projeté orthogonal** (ou **projection orthogonale**) de M sur la droite \mathcal{D} le point d'intersection H entre la droite \mathcal{D} et la droite perpendiculaire à \mathcal{D} passant par M.

Définition La distance d'un point M à une droite \mathcal{D} est la distance la plus courte entre M et un point appartenant à \mathcal{D} .

Théorème Le théorème de Pythagore permet d'affirmer que la distance du point M à la droite \mathcal{D} correspond à la distance entre M et son projeté orthogonal H sur \mathcal{D} .

Si l'équation de \mathcal{D} est $\alpha x + \beta y + \gamma = 0$ où $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ et $(\alpha, \beta) \neq (0, 0)$, et si M a pour coordonnées (x_0, y_0) , alors la distance de M à la droite \mathcal{D} vaut :

$$d(M, \mathcal{D}) = \|\overrightarrow{MH}\| = \frac{|\alpha x_0 + \beta y_0 + \gamma|}{\sqrt{\alpha^2 + \beta^2}}$$

3.3.3 Géométrie élémentaire dans l'espace affine (dimension 3)

On va maintenant énoncer des définitions et des résultats similaires à ceux du §3.3.2, mais dans l'espace \mathbb{R}^3 et non plus dans le plan \mathbb{R}^2 .

3.3.3.1 Equation d'un plan dans l'espace \mathbb{R}^3

Un plan dans l'espace affine \mathbb{R}^3 peut être défini sous une forme paramétrique ou sous une forme cartésienne.

Définition Soient α , β , γ et δ quatre réels tels que $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ (i.e. au moins un des trois n'est pas nul). Alors l'ensemble des points de l'espace \mathbb{R}^3 défini par

$$\mathcal{P} = \{M(x, y, z); \ \alpha x + \beta y + \gamma z + \delta = 0\}$$

est un plan. On dit que l'équation $\alpha x + \beta y + \gamma = 0$ est une **équation cartésienne** de ce plan. Notons que cette caractérisation n'est pas unique puisque, par exemple, $2\alpha x + 2\beta y + 2\gamma z + 2\delta = 0$ est aussi une équation cartésienne du même plan.

Théorème Tout plan \mathcal{P} de l'espace \mathbb{R}^3 admet une équation cartésienne de la forme $\alpha x + \beta y + \gamma z + \delta = 0$ où $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$, avec $(\alpha, \beta, \gamma) \neq (0, 0, 0)$.

De plus, $\vec{n} = (\alpha, \beta, \gamma)$ est un vecteur normal à \mathcal{P} .

On peut aussi remarquer que pour définir un plan \mathcal{P} de l'espace \mathbb{R}^3 , il suffit en fait d'un point $A(x_A,y_A,z_A)$ appartenant à \mathcal{P} et de deux vecteurs non colinéaires $\vec{u}=(x_{\vec{u}},y_{\vec{u}},z_{\vec{u}})$ et $\vec{v}=(x_{\vec{v}},y_{\vec{v}},z_{\vec{v}})$ de \mathcal{P} . Ces deux informations permettent notamment d'obtenir une **représentation paramétrique** de \mathcal{P} :

Théorème Un point M(x,y,z) appartient au plan $\mathcal P$ si et seulement si il existe deux réels λ et μ tels que

$$\begin{cases} x = x_A + \lambda x_{\vec{u}} + \mu x_{\vec{v}} \\ y = y_A + \lambda y_{\vec{u}} + \mu y_{\vec{v}} \\ z = z_A + \lambda z_{\vec{u}} + \mu z_{\vec{v}} \end{cases}$$

On peut bien sûr passer d'une forme (cartésienne ou paramétrique) à l'autre, comme on a su le faire pour les droites dans \mathbb{R}^2 .

3.3.3.2 Intersection de deux plans dans l'espace \mathbb{R}^3

Théorème Deux plans \mathcal{P} et \mathcal{P}' sont parallèles si et seulement si leurs vecteurs normaux \vec{n} et $\vec{n'}$ sont colinéaires, c'est-à-dire $\vec{n} \wedge \vec{n'} = \vec{0}$. Ils sont alors **confondus** (et possèdent une infinité de points communs) ou **strictement parallèles** (et n'ont aucun point commun).

Lorsque \mathcal{P} et \mathcal{P}' ne sont pas parallèles, ils possèdent une infinité de points communs : leur intersection est une droite de \mathbb{R}^3 ayant pour vecteur directeur $\vec{n} \wedge \vec{n}'$ (puisque ce vecteur est orthogonal à \vec{n} , donc appartient à \mathcal{P} , et est également orthogonal à \vec{n}' , donc appartient aussi à \mathcal{P}').

3.3.3.3 Intersection d'une droite et d'un plan dans l'espace \mathbb{R}^3

Théorème Un plan \mathcal{P} et une droite \mathcal{D} sont **parallèles** si et seulement si le vecteur directeur \vec{d} de \mathcal{D} est perpendiculaire au vecteur normal \vec{n} de \mathcal{P} , c'est-à-dire $\vec{d} \cdot \vec{n} = 0$. Ils sont alors **strictement parallèles** (et n'ont aucun point commun), ou bien $\mathcal{D} \subset \mathcal{P}$ (et il y a une infinité de points communs : tous les points de \mathcal{D}).

Lorsque le plan \mathcal{P} et la droite \mathcal{D} ne sont pas parallèles, ils possèdent un unique point d'intersection. On peut déterminer ses coordonnées en remarquant qu'elles vérifient simultanément les équations définissant \mathcal{P} et \mathcal{D} (système de 3 équations à 3 inconnues).

3.3.3.4 Distance entre deux points dans l'espace \mathbb{R}^3

Théorème Soient A et \overrightarrow{B} deux points de l'espace \mathbb{R}^3 . La distance entre ces deux points est égale à la longueur du vecteur \overrightarrow{AB} :

$$d(A, B) = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

3.3.3.5 Projection d'un point sur un plan - distance d'un point à un plan

Définition Soient \mathcal{P} un plan de \mathbb{R}^3 et M un point de \mathbb{R}^3 . On appelle **projeté orthogonal** (ou **projection orthogonale**) de M sur \mathcal{P} le point d'intersection H entre le plan \mathcal{P} et la droite perpendiculaire à \mathcal{P} passant par M.

Définition La distance d'un point M à un plan \mathcal{P} est la distance la plus courte entre M et un point appartenant à \mathcal{P} .

Théorème La distance du point M au plan \mathcal{P} correspond à la distance entre M et son projeté orthogonal H sur \mathcal{P} .

Si l'équation de \mathcal{P} est $\alpha x + \beta y + \gamma z + \delta = 0$ où $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ et $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, et si M a pour coordonnées (x_0, y_0, z_0) , alors la distance de M au plan \mathcal{P} vaut :

$$d(M, \mathcal{P}) = \|\overrightarrow{MH}\| = \frac{|\alpha x_0 + \beta y_0 + \gamma z_0 + \delta|}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}$$

Chapitre 4

Fonctions d'une variable réelle

4.1 Définitions générales - Vocabulaire

4.1.1 Fonctions, applications, images et antécédents

Définition Une **fonction** est la description d'une relation entre les éléments de deux ensembles A et B. En général, la notation mathématique utilisée pour définir une fonction est du type :

$$f: A \longrightarrow B$$
$$x \longrightarrow y = f(x)$$

- A est appelé l'ensemble de départ et B l'ensemble d'arrivée.
- y est l'**image** de x par f.
- x est un antécédent de y par f.

Dans la définition ci-dessus, on dit bien "l'image" et non pas "une image", car une fonction associe au plus une image à tout élément de l'ensemble de départ.

On a écrit aussi "un antécédent" et non pas "l'antécédent", car une valeur y dans B peut avoir 0, 1 ou plusieurs antécédents.

Exemple https://www.youtube.com/watch?v=Ys3 On considère la fonction $f(x) = x^2$.

L'image de
$$x=2$$
 par f est $y=4$. $y=0$ a un seul antécédent $x=0$. $y=3$ a deux antécédents $x_1=-\sqrt{3}$ et $x_2=\sqrt{3}$. $y=-2$ n'a pas d'antécédent.

Définition Une **application** est une fonction pour laquelle tout élément de l'ensemble de départ a une et une seule image.

Bien qu'on ait souvent tendance à employer indifféremment les deux termes "fonction" et "application", il y a donc en toute rigueur une différence. Pour une fonction, il peut exister des éléments de l'ensemble de départ qui n'ont pas d'image.

CHAPITRE 4. FONCTIONS D'UNE VARIABLE RÉELLE

Exemple La fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longrightarrow y = 1/x$$

n'est pas une application, car l'élément x=0 n'a pas d'image par f . Par contre, la fonction

$$\begin{array}{cccc} g: & \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ & x & \longrightarrow & y = 1/x \end{array}$$

est une application car chaque élément de l'ensemble de départ a une et une seule image.

Ceci nous amène donc naturellement à la notion de domaine de définition.

Définition Le **domaine de définition** d'une fonction f est l'ensemble des valeurs x pour lesquelles f(x) est définie. Autrement dit, il s'agit des valeurs de x pour lesquelles on peut calculer f(x). Il est souvent noté \mathcal{D}_f .

Pour la plupart des fonctions, déterminer le domaine de définition revient à trouver les valeurs de x pour lesquelles le calcul de f(x) mènerait à l'une des impossibilités suivantes :

- diviser par 0
- prendre la racine carrée d'un nombre strictement négatif (ou plus généralement, prendre la puissance non entière d'un nombre négatif, car on la calcule par la formule $x^{\alpha} = e^{\alpha \ln x}$)
- prendre le logarithme d'un nombre négatif ou nul

Exemple https://www.youtube.com/watch?v=Kg6A-Kct4vo Soit $f(x) = \frac{\ln(2x+1)}{\sqrt{1-x^2}}$.

Ne pas diviser par 0 implique que $1-x^2\neq 0$, c'est-à-dire $x\neq 1$ et $x\neq -1$.

Ne pas prendre la racine carrée d'un nombre strictement négatif implique que $1-x^2 \ge 0$, c'est à dire $x \in [-1;1]$.

Ne pas prendre le logarithme d'un nombre négatif ou nul implique que 2x+1>0, c'est-à-dire $x>-\frac{1}{2}$. Les valeurs de x vérifiant ces 3 conditions forment le domaine de définition $\mathcal{D}_f=]-\frac{1}{2};1[$.

4.1.2 Quelques propriétés courantes des fonctions

Définition On dit qu'une fonction est :

- affine si elle est de la forme f(x) = ax + b où a et b sont des constantes fixées. Sa représentation graphique est une droite, croissante si a > 0, horizontale si a = 0 et décroissante si a < 0. a est la pente ou encore le coefficient directeur.
- linéaire si elle est de la forme f(x) = ax où a est une constante. Sa représentation graphique est une droite passant par l'origine (0,0). C'est un cas particulier de fonction affine.
- polynomiale si elle est de la forme $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x_1+a_0$ où a_n,a_{n-1},\ldots,a_0 sont des coefficients fixés. n est l'ordre du polynôme. Si n=2 (polynôme d'ordre 2), sa représentation graphique est une parabole (comme la fonction $y=x^2$ précédente).
- **trigonométrique** si c'est une combinaison linéaire des fonctions trigonométriques élémentaires $(\sin x, \cos x, \tan x)$.

Définition Une fonction est :

- paire si et seulement si elle vérifie f(-x) = f(x) pour tout $x \in \mathcal{D}_f$. Sa courbe représentative est alors symétrique par rapport à la droite verticale x = 0 (c'est à dire l'axe des ordonnées).
- impaire si et seulement si elle vérifie f(-x) = -f(x) pour tout $x \in \mathcal{D}_f$. Sa courbe représentative est alors symétrique par rapport au point (0,0). En particulier, on a f(0) = 0.
- périodique de période T (on dit aussi T-périodique) si et seulement si elle vérifie f(x+T)=f(x) pour toute valeur x. Sa courbe représentative est alors un motif de largeur T qui se reproduit identiquement à lui-même.

Exemples

- $f(x) = x^2 + 1$ est une fonction paire, car $f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x)$.
- $g(x) = x^3$ est une fonction impaire, car $g(-x) = (-x)^3 = -x^3 = -g(x)$.
- $h(x) = \tan(x)$ est une fonction π -périodique, car

$$h(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin x}{-\cos x} = \frac{\sin x}{\cos x} = \tan x = h(x)$$

De plus, h est impaire car $h(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan(x) = -h(x)$

g(x)

Définition Soit f une application de E vers F. f est :

- **croissante** sur E si et seulement si $\forall x_1 \in E, \forall x_2 \in E, (x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2))$
- strictement croissante sur E si et seulement si $\forall x_1 \in E, \forall x_2 \in E, (x_1 < x_2 \Longrightarrow f(x_1) < f(x_2))$
- décroissante sur E si et seulement si $\forall x_1 \in E, \forall x_2 \in E, \ (x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$)
- strictement décroissante sur E si et seulement si $\forall x_1 \in E, \forall x_2 \in E, (x_1 < x_2 \Longrightarrow f(x_1) > f(x_2))$
- (strictement) monotone sur E si et seulement si elle est (strictement) croissante ou (strictement) décroissante sur E.

Définition Soit f une application de E vers F. f est :

- majorée sur E si et seulement si il existe un réel M tel que $f(x) \leq M$ pour tout $x \in E$. M est un majorant de f sur E.
- minorée sur E si et seulement si il existe un réel m tel que $m \le f(x)$ pour tout $x \in E$. m est un minorant de f sur E.
- bornée sur E si et seulement si elle est majorée et minorée sur E.

4.1.3 Composition de fonctions

Définition Soit f une fonction de l'ensemble A vers l'ensemble B, et g une fonction de l'ensemble B vers l'ensemble $C:A\xrightarrow{f}B\xrightarrow{g}C$

On appelle fonction composée, notée $g\circ f$, la fonction définie par $(g\circ f)(x)=g(f(x))$.

Cette fonction va donc de l'ensemble A vers l'ensemble $C:A\xrightarrow{g\circ f}C$

Exemple Soient les 2 fonctions $f(x) = x^2$ et $g(x) = \sqrt{x}$. Leurs domaines de définition sont $\mathcal{D}_f = \mathbb{R}$ et $\mathcal{D}_q = \mathbb{R}^+ = [0, +\infty[$. Alors :

- $f\circ g$ est définie sur \mathbb{R}^+ et on a $(f\circ g)(x)=(g(x))^2=(\sqrt{x})^2=x$
- $g \circ f$ est définie sur \mathbb{R} (car f est définie sur \mathbb{R} et f(x) est toujours dans \mathbb{R}^+) et on a $(g \circ f)(x) =$ $\sqrt{f(x)} = \sqrt{x^2} = |x|$

igwedge Une erreur fréquente consiste à confondre $f\circ g$, $g\circ f$ et f imes g.

Exemple Soient les 2 fonctions $f(x) = x^2$ et g(x) = 2x + 1, définies sur \mathbb{R} . On a :

- $(f \circ g)(x) = f(g(x)) = (g(x))^2 = (2x+1)^2 = 4x^2 + 4x + 1$
- $(q \circ f)(x) = q(f(x)) = 2f(x) + 1 = 2x^2 + 1$
- $(f \times q)(x) = f(x)q(x) = x^2(2x+1) = 2x^3 + x^2$

Dérivée d'une fonction composée Soit f une fonction définie et dérivable en un point a, et qune fonction définie et dérivable au point f(a). Alors $g \circ f$ est définie et dérivable en a, et

$$(g \circ f)'(a) = g'(f(a)) f'(a)$$

Exemple La fonction $\sqrt{x^2+1}$ est la composée des fonctions $f(x)=x^2+1$ et $g(x)=\sqrt{x}$. Sa dérivée vaut donc

$$\left(\sqrt{x^2+1}\right)' = g'(f(x))f'(x) = \frac{1}{2\sqrt{f(x)}}f'(x) = \frac{x}{\sqrt{x^2+1}}$$

Plan d'étude d'une fonction 4.2

On rappelle ici rapidement la démarche à suivre pour étudier une fonction, et on l'illustre par un exemple simple. Les diverses notions mises en jeu seront détaillées dans la suite du chapitre.

4.2.1 Les différentes étapes

Les étapes de l'étude d'une fonction f sont les suivantes :

- 1. Déterminer le domaine de définition \mathcal{D}_f . Les points à regarder : ne pas diviser par 0, ne pas prendre la racine carrée d'un nombre strictement négatif, ne pas prendre le logarithme d'un nombre négatif ou nul...
- 2. Etudier la parité ou la périodicité de f, et réduire éventuellement le domaine d'étude. Si f est paire ou impaire, il suffit de l'étudier sur la partie positive de \mathcal{D}_f , et on complètera par symétrie. Si f est périodique de période T, il suffit de l'étudier sur un intervalle de longueur T, et on complètera par périodicité.

- 3. Calculer les limites aux bornes du domaine d'étude. Il peut éventuellement y avoir des "formes indéterminées" (cf §4.4.2).
- 4. Calculer la dérivée f' et déterminer son signe. Attention au domaine de définition de f' (le "domaine de dérivabilité"), qui peut éventuellement être plus petit que \mathcal{D}_f s'il existe des points où f n'est pas dérivable.
- 5. Dresser le tableau de variations de f et vérifier qu'il est cohérent. Ce tableau résume les informations sur le domaine de définition, les limites, le signe de la dérivée et les sens de variation de f. Son contenu doit être cohérent.
- 6. S'il y a une ou deux branches infinies, c'est-à-dire si $\lim_{x \to \pm \infty} f(x) = \pm \infty$, étudier l'existence éventuelle d'asymptotes obliques, et le cas échéant la position de \mathcal{C}_f , la courbe représentative de f, par rapport à l'asymptote (cf §4.7).
- 7. Tracer C_f .

4.2.2 Représentation graphique

On place sur la figure les éléments suivants :

- asymptotes éventuelles (verticales, horizontales, obliques);
- tangentes horizontales (c.a.d. là où la dérivée s'annule);
- tangentes verticales (c.a.d. là où la fonction est définie et continue mais où la dérivée n'est pas définie — voir la remarque plus bas);
- quelques points particuliers (par exemple pour x = -1, 0, 1) avec leurs tangentes locales;
- on relie avec soin les points en tenant compte des éléments précédents.

En bref, le dessin doit être un résumé de l'étude de fonction et doit contenir toute l'information étudiée.

Remarque au sujet des tangentes verticales Les tangentes verticales se rencontrent lorsque le domaine de définition de f' n'est pas le même que celui de f, autrement dit s'il existe un ou plusieurs points en lesquels f est continue mais pas dérivable. Par exemple, si on considère la fonction f(x) = $\sqrt{x(x-1)}$, son domaine de définition est $]-\infty;0]\cup[1;+\infty[$. Sa dérivée est $f'(x)=(2x-1)/\sqrt{x(x-1)}$ et f' est définie sur $]-\infty;0[\cup]1;+\infty[$. En 0 et en 1, f est définie (et continue) mais pas dérivable, et en ces points la fonction admet des tangentes verticales.

Tangentes et asymptotes sont deux notions différentes. Voir la remarque à ce sujet au §4.7.4.

4.2.3 **Exemple**

Etude de la fonction $f(x) = \frac{x^3}{(x-1)^2}$ https://www.youtube.com/watch?v=M5Rd_AqzIvY

1. Domaine de définition f(x) est défini dès lors que l'on ne divise pas par 0, c'est-à-dire pour $x-1\neq 0$. Donc :

$$\mathcal{D}_f = \mathbb{R} \setminus \{1\} =]-\infty; 1[\cup]1; +\infty[$$

CHAPITRE 4. FONCTIONS D'UNE VARIABLE RÉELLE

2. Parité, imparité, périodicité $f(-x) = \frac{-x^3}{(-x-1)^2} = -\frac{x^3}{(x+1)^2} \text{ qui est différent de } \pm f(x). \text{ Donc } f \text{ n'est ni paire ni impaire.}$ De plus, elle n'est pas périodique. Le domaine d'étude ne peut donc pas être réduit.

3. Limites aux bornes du domaine d'étude

$$\bullet \ \ f(x) = \frac{x^3}{(x-1)^2} = \frac{x^3}{x^2 \left(1 - \frac{2}{x} + \frac{1}{x^2}\right)} = \frac{x}{1 - \frac{2}{x} + \frac{1}{x^2}}. \ \ \text{Donc} : \lim_{x \to -\infty} f(x) = -\infty \ \ \text{et} \ \lim_{x \to +\infty} f(x) = +\infty$$

• Quand
$$x \to 1$$
, $(x-1)^2 \to 0^+$ et $x^3 \to 1$. Donc $\lim_{x \to 1} f(x) = +\infty$

4. Calcul de la dérivée et détermination de son signe

On calcule $f'(x) = \frac{x^2(x-3)}{(x-1)^3}$. Son signe est déterminé en dressant un tableau de signes :

x	$-\infty$		0		1		3		$+\infty$
x^2		+	0	+		+		+	
x-3		_		_		_	0	+	
$(x-1)^3$		_		_	0	+		+	
f'(x)		+	0	+		_	0	+	

5. Tableau de variations

Les informations précédentes peuvent être résumées dans le tableau ci-dessous. On y ajoute les valeurs particulières f(0) = 0 et f(3) = 27/4.

x	$-\infty$		0		1		3		$+\infty$
f'(x)		+	0	+		_	0	+	
					$+\infty \parallel +\infty$				$+\infty$
f(x)			0	7		V		7	
	$-\infty$	7					27/4		

6. Recherche des asymptotes

La droite x=1 est asymptote verticale.

La fonction f comporte des branches infinies. Pour rechercher les éventuelles asymptotes obliques, on peut transformer l'expression de f (on verra aussi une méthode générale de détermination des asymptotes au $\S 4.7$. On a : $(x-1)^3 = x^3 - 3x^2 + 3x - 1$. Donc $x^3 = (x-1)^3 + 3x^2 - 3x + 1 = (x-1)^3 + 3(x^2 - 2x + 1) + 3x - 2 = (x-1)^3 + 3(x-1)^2 + 3x - 2$. En divisant par $x-1)^2$, on en déduit que $f(x) = x + 2 + \frac{3x-2}{(x-1)^2}$. Puisque $\frac{3x-2}{(x-1)^2}$ tend vers 0 quand x tend vers $\pm \infty$, on peut en conclure que la droite $\mathcal D$ d'équation y = x+2 est asymptote oblique à $\mathcal C_f$ en $\pm \infty$. Pour connaître la position de $\mathcal D$ par rapport à $\mathcal C_f$, on détermine le signe de la différence entre leurs deux équations : $f(x) - (x+2) = \frac{3x-2}{(x-1)^2}$ qui est positif en $+\infty$ et négatif en $-\infty$. Donc $\mathcal C_f$ est au-dessus de $\mathcal D$ en $+\infty$, et en-dessous de $\mathcal D$ en $-\infty$.

7. Représentation graphique

On place sur la figure les deux asymptotes (une verticale et une oblique), les tangentes horizontales en x=0 et x=3, et on trace la courbe de façon cohérente avec le tableau de variations.

4.3 Fonctions usuelles

On désigne par fonctions usuelles les fonctions élémentaires utilisées très fréquemment dans tous les domaines scientifiques : polynômes, fonctions puissance (racine carrée, fonction $1/x\dots$), logarithme et exponentielle, fonctions trigonométriques (sinus, cosinus, tangente). Les différentes propriétés de ces fonctions doivent être parfaitement connues, et leur manipulation doit être maîtrisée.

Des rappels sont disponibles en Annexe B pour les polynômes, Annexe C pour les fonctions puissance, Annexe D pour les fonctions trigonométriques, et Annexe E pour logarithme et exponentielle.

4.4 Calcul de limites

4.4.1 Limites en un point $x_0 \in \mathbb{R}$ et limites en $\pm \infty$

Définition Soit f une fonction à valeurs dans \mathbb{R} , et soit x_0 un point de son domaine de définition, ou une extrémité de son domaine de définition.

- La limite de f en x_0 (ou encore : la limite de f(x) quand x tend vers x_0) est égale à un réel ℓ si et seulement si f(x) se rapproche aussi près de ℓ que l'on veut si l'on prend x suffisamment proche de x_0 . On note alors : $\lim_{x\to x_0} f(x) = \ell$.
- La limite de f en x_0 (ou encore : la limite de f(x) quand x tend vers x_0) est égale à $+\infty$ si et seulement si f(x) devient aussi grand que l'on veut si l'on prend x suffisamment proche de x_0 . On note alors : $\lim_{x\to x_0} f(x) = +\infty$.
- On a de la même façon $\lim_{x\to x_0} f(x) = -\infty$ si et seulement si f(x) devient aussi négatif que l'on veut si l'on prend x suffisamment proche de x_0 .
- Si aucun des cas précédents ne s'applique, f n'admet pas de limite en x_0 .

Exemples

- Courbe noire : $f(x) = x^3 2x + 1$ $\mathcal{D}_f = \mathbb{R}$ et $\lim_{x \to 2} f(x) = 2^3 - 2 \times 2 + 1 = 6$.
- Courbe rouge : $f(x) = x \ln x$ $\mathcal{D}_f =]0; +\infty[$ et on verra que $\lim_{x\to 0} f(x) = 0.$
- Courbe verte : $f(x) = \frac{1}{\sqrt{x}}$ $\mathcal{D}_f =]0; +\infty[$ et $\lim_{x\to 0} f(x) = +\infty.$
- Courbe bleue : $f(x) = \ln x$ $\mathcal{D}_f =]0; +\infty[$ et $\lim_{x\to 0} f(x) = -\infty.$

La notion de limite est également importante au voisinage de l'infini (i.e. quand x tend vers $\pm \infty$).

Définition

- f admet une **limite** ℓ **en** $+\infty$ si et seulement si f(x) se rapproche aussi près de ℓ que l'on veut si l'on prend x suffisamment grand. On note alors : $\lim_{x\to +\infty} f(x) = \ell$. La courbe de f admet donc une asymptote horizontale d'équation $y=\ell$ en $+\infty$.
- On a bien sûr la même chose en $-\infty$.
- On peut également avoir une limite valant $\pm \infty$ quand x tend vers $\pm \infty$.
- Enfin, si aucun des cas précédents ne s'applique, on dit que f n'admet pas de limite en $\pm \infty$.

Exemple

- La fonction $f(x)=\frac{2x^2+\sin x}{x^2+0.1}$ (courbe rouge) vérifie $\lim_{x\to\pm\infty}f(x)=2$.
- La fonction $\sin x$ (courbe bleue) n'a pas de limite en $\pm \infty$.

4.4.2 Opérations sur les limites et formes indéterminées

Théorème Les opérations algébriques usuelles s'appliquent aux limites finies, ce qui signifie que, si $\lim_{x\to a}f(x)=\ell\in\mathbb{R}$ et $\lim_{x\to a}g(x)=\ell'\in\mathbb{R}$ (avec a fini ou infini), alors

$$\lim_{x\to a}\alpha f(x)=\alpha\,\ell\ \, (\forall\alpha\in\mathbb{R})\quad \lim_{x\to a}(f+g)(x)=\ell+\ell'\quad \lim_{x\to a}(f\times g)(x)=\ell\ell'\quad \lim_{x\to a}\frac{f}{g}(x)=\frac{\ell}{\ell'}\;(\mathrm{si}\;\ell'\neq0)$$

Pour des limites infinies (ou pour $\ell'=0$ dans le cas de la division), les mêmes règles s'appliquent mais on rencontre parfois des cas indéterminés. Ce sont les cas du type (en notant symboliquement) :

$$+\infty-\infty$$
, $0\times\infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$, ∞^0 , 1^∞

Exemples

- $\lim_{x \to 0} x \ln x$ est un cas indéterminé du type $0 \times \infty$ (cette limite est en fait égale à 0)
- $\lim_{x \to +\infty} e^x x^2$ est un cas indéterminé du type $+\infty \infty$ (cette limite est en fait égale à $+\infty$)
- $\lim_{x\to 0} \frac{\sin 2x}{x^3}$ est un cas indéterminé du type $\frac{0}{0}$ (cette limite est en fait égale à $+\infty$)
- $\lim_{x \to +\infty} \frac{4x^2 1}{x^2 + x + 1}$ est un cas indéterminé du type $\frac{\infty}{\infty}$ (cette limite est en fait égale à 4)
- ullet $\lim_{x o +\infty} x^{1/x}$ est un cas indéterminé du type ∞^0 (cette limite est en fait égale à 1)
- $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$ est un cas indéterminé du type 1^∞ (cette limite est en fait égale à e)

4.4.3 Quelques outils pour traiter les cas indéterminés

Déterminer si la limite existe, et si oui quelle est sa valeur, dans les cas indéterminés demande toujours un travail spécifique. Bien qu'il n'y ait pas de "recette miracle" pour cela, les méthodes listées ci-dessous permettent de résoudre certains cas fréquents.

Limite d'une fraction rationnelle (c'est-à-dire la division de deux polynômes $f(x) = \frac{P(x)}{O(x)}$):

- si on est dans le cas $\lim_{x\to\infty}\frac{P(x)}{Q(x)}=\frac{\infty}{\infty}$, factoriser P et Q par leurs termes de plus haut degré
- si on est dans le cas $\lim_{x\to x_0} \frac{P(x)}{Q(x)} = \frac{0}{0}$, factoriser P et Q par $(x-x_0)$

Exemple $\lim_{x\to\infty} \frac{x^3-2x^2+1}{x^4-x^2+2}$ est de la forme indéterminée $\frac{\infty}{\infty}$. Si l'on factorise par les termes de plus haut degré :

$$\frac{x^3-2x^2+1}{x^4-x^2+2} = \frac{x^3\left(1-\frac{2}{x}+\frac{1}{x^3}\right)}{x^4\left(1-\frac{1}{x^2}+\frac{2}{x^4}\right)} = \frac{1}{x} \frac{1-\frac{2}{x}+\frac{1}{x^3}}{1-\frac{1}{x^2}+\frac{2}{x^4}} - \cdots > 0 \times \frac{1}{1} = 0 \text{ quand } x \to \infty$$

Multiplication par la quantité conjuguée En cas d'indétermination du type " $+\infty - \infty$ " impliquant des racines carrées, la multiplication par la quantité conjuguée permet souvent de lever l'incertitude.

Rappel : la quantité conjuguée de A+B est A-B, la quantité conjuguée de A-B est A+B. Leur produit vaut donc A^2-B^2 .

Exemple https://www.youtube.com/watch?v=AJDmhjQkDAE

 $\lim_{x \to \infty} \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1}$ est de la forme indéterminée " $+\infty - \infty$ ". Si l'on multiplie et que

l'on divise par la quantité conjuguée, on obtient :

$$\begin{array}{ll} \sqrt{x^2+x+1}-\sqrt{x^2-x+1} &=& \frac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}} \\ &=& \frac{(x^2+x+1)-(x^2-x+1)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}} \\ &=& \frac{2x}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}} \\ &=& \frac{x}{\sqrt{x^2}} \frac{2}{\sqrt{1+1/x+1/x^2}+\sqrt{1-1/x+1/x^2}} \\ &=& \frac{x}{|x|} \frac{2}{\sqrt{1+1/x+1/x^2}+\sqrt{1-1/x+1/x^2}} \\ D'où \lim_{x\to +\infty} \sqrt{x^2+x+1}-\sqrt{x^2-x+1} &=& 1 \quad \text{et } \lim_{x\to -\infty} \sqrt{x^2+x+1}-\sqrt{x^2-x+1} &=& -1. \end{array}$$

Comparaison des fonctions logarithmes, puissances et exponentielles La règle des croissances comparées indique que :

$$\forall \alpha > 0, \, \forall \beta > 0, \qquad \lim_{x \to +\infty} \frac{e^{\beta x}}{x^{\alpha}} = +\infty \quad \lim_{x \to +\infty} x^{\alpha} e^{-\beta x} = 0$$
$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0 \quad \lim_{x \to 0^{+}} x^{\alpha} (\ln x)^{\beta} = 0$$

Exprimé en langage courant : <u>en cas d'indétermination</u> dans le calcul d'une limite, l'exponentielle impose sa limite à la fonction puissance, et la fonction puissance impose sa limite au logarithme.

Exemple

- $\lim_{x\to 0} x \ln x = ?$ Cette limite est de la forme indéterminée $0 \times \infty$. C'est la fonction puissance (c.a.d. ici x) qui va dominer et donner la limite. Donc $\lim_{x\to 0} x \ln x = 0$.
- $\lim_{x \to +\infty} x^3 \ e^{-x} = ? \quad \text{Cette limite est de la forme indéterminée} \ \infty \times 0.$ C'est la fonction exponentielle (c.a.d. ici e^{-x}) qui va dominer et donner la limite. Donc $\lim_{x \to +\infty} x^3 \ e^{-x} = 0.$

Deux erreurs sont fréquemment commises dans l'utilisation de cette règle, en se référant de façon trop approximative à son énoncé "en langage courant".

• Ne pas oublier que cette règle ne s'applique qu'en cas d'indétermination. Il faut donc bien vérifier qu'on est dans un tel cas. Considérons par exemple $\lim_{x\to 0} x^2 e^x$. Cette limite se calcule directement, car il n'y a pas d'indétermination : $x^2\to 0$ et $e^x\to e^0=1$. Donc le produit tend vers $0\times 1=0$. Si l'on avait appliqué (alors que ce n'était pas justifié) la règle de comparaison des fonctions

puissance et exponentielle, on aurait conclu à tort que c'est l'exponentielle qui donne la valeur de la limite, et donc que la limite vaut 1.

• Bien se ramener aux cas indiqués dans le théorème. Ainsi on peut conclure à tort sur la valeur d'une limite en disant que "l'exponentielle l'emporte sur la puissance", alors que le contenu de l'exponentielle est en fait une fonction compliquée. Autrement dit, par exemple en $+\infty$, on n'a pas forcément $\lim_{x\to +\infty} \frac{e^{u(x)}}{x^{\beta}} = +\infty$, même si $u(x)\to +\infty$ quand $x\to +\infty$.

On montre ainsi que $\lim_{x\to +\infty} \frac{\exp{(3\ln(2+\sqrt{x})-1)}}{x^2}=0$, contrairement à ce qu'une utilisation trop "expéditive" de la règle des croissances comparées aurait conclu.

Taux d'accroissement et dérivées On rappelle la définition de la dérivée (on y reviendra au §4.6) d'une fonction f en un point $a:f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$. On peut parfois utiliser cette définition pour trouver la valeur de la limite dans des cas indéterminés du type $\frac{0}{0}$, en remarquant que l'expression dont on cherche la limite est justement un taux d'accroissement, c'est-à-dire de la forme $\frac{f(x)-f(a)}{x-a}$.

Exemples

• $\lim_{x\to 1} \frac{x\sqrt{x}-1}{x-1}$? https://www.youtube.com/watch?v=gqKRwnh9W0c

Cette limite est de la forme $\frac{0}{0}$. Si l'on pose $f(x)=x\sqrt{x}=x^{3/2}$, on reconnait le taux d'accroissement $\frac{f(x)-f(1)}{x-1}$. Donc la limite recherchée vaut f'(1). Ici $f'(x)=\frac{3}{2}x^{1/2}$. Donc finalement : $\lim_{x\to 1}\frac{x\sqrt{x}-1}{x-1}=\frac{3}{2}$

• $\lim_{x \to 0} \frac{x^2 + x}{1 - \cos x}$? Cette limite est de la forme $\frac{0}{0}$.

On a :
$$\frac{x^2+x}{1-\cos x} = (x+1) \frac{x}{1-\cos x} = -(x+1) \frac{x-0}{\cos x - \cos 0}$$
 (car $\cos 0 = 1$). Si l'on pose $g(x) = \cos x$, on a donc $\lim_{x\to 0} \frac{\cos x - \cos 0}{x-0} = g'(0) = -\sin 0 = 0$. D'où $\lim_{x\to 0} \frac{x^2+x}{1-\cos x} = \infty$

On peut noter trois résultats importants qu'on démontre par cette méthode, à connaître par coeur :

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Règle de L'Hôpital Cette règle permet de résoudre des formes indéterminées du type $\frac{0}{0}$ ou $\frac{\infty}{\infty}$. Son énoncé est le suivant :

Théorème Soient f et g deux fonctions définies et dérivables au voisinage de a (mais pas forcément en a), a pouvant être réel ou infini. Si $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ ou $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$, et si $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ existe, alors $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Exemple
$$\lim_{x \to 0} \frac{e^{2x} - \cos x}{3\sin x} = ?$$

En posant $f(x) = e^{2x} - \cos x$ et $g(x) = 3\sin x$, on peut vérifier que les hypothèses du théorème sont bien satisfaites. On a $f'(x) = 2e^{2x} + \sin x$ et $g'(x) = 3\cos x$. Donc la limite recherchée vaut f'(0)/g'(0) = 2/3.

Beaucoup d'étudiants aiment utiliser cette règle quasiment systématiquement. Ne pas oublier que les autres méthodes vues précédemment sont parfois bien plus simples.

Par ailleurs, dans le cas $\frac{0}{0}$ et lorsque a n'est pas infini, cette règle n'est en fait qu'une utilisation directe de la technique des taux d'accroissement. En effet :

$$\frac{f(x)}{g(x)} = \frac{f(x) - 0}{g(x) - 0} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x) - f(a)}{x - a} \ \frac{x - a}{g(x) - g(a)} \ \longrightarrow \ \frac{f'(a)}{g'(a)} \ \mathrm{quand} \ x \longrightarrow a$$

4.5 Continuité

La continuité est une notion assez intuitive. Elle correspond au fait de "tracer sans lever le crayon" la courbe représentative d'une fonction. Sa définition formelle est la suivante :

Définition Une fonction f est continue en un point a de son domaine de définition si et seulement si $\lim_{x\to a} f(x) = f(a)$.

Exemples

- La plupart des fonctions usuelles sont continues en tout point de leur domaine de définition : polynômes, fonctions trigonométriques, logarithmes, exponentielles. . .
- exponentielles. . . . La partie entière d'un réel x, notée E(x), est l'entier relatif immédiatement inférieur ou égal à x (cf dessin ci-contre). Cette fonction est discontinue en tout point $a \in \mathbb{Z}$.
 - Définition Une fonction f est continue sur un intervalle ouvert a, b si et seulement si elle est continue en tout point de cet intervalle.

Théorème Soient deux fonctions f et g, et a un réel.

- Si f est continue en a, alors λf est continue en a, pour tout réel λ .
- Si f et g sont continues en a, alors f+g et $f\times g$ sont continues en a.
- $\bullet \ \ {\rm Si} \ f \ \ {\rm est} \ \ {\rm continue} \ \ {\rm en} \ \ a \ \ {\rm est} \ \ {\rm continue} \ \ {\rm en} \ \ a \ \ {\rm est} \ \ {\rm continue} \ \ {\rm en} \ \ a.$

Avec ce théorème et la continuité des fonction usuelles, on démontre la continuité de la plupart des fonctions que l'on a à étudier.

Exemple On considère la fonction $f(x)=\ln\left(\frac{2|x|}{1+x^2}\right)$, qui est définie sur \mathbb{R}^* . $x\longrightarrow |x|$ est continue sur \mathbb{R}^* , et $x\longrightarrow \frac{1}{1+x^2}$ est continue sur \mathbb{R} (composée de $g_1(x)=1/x$ et de $g_2(x)=1+x^2$ qui ne s'annule pas). Donc (par produit) $x\longrightarrow \frac{2|x|}{1+x^2}$ est continue sur \mathbb{R}^* , et à valeurs dans \mathbb{R}^*_+ . Donc, par composition avec le logarithme qui est continu sur \mathbb{R}^*_+ , $x\longrightarrow \ln\left(\frac{2|x|}{1+x^2}\right)$ est continue sur \mathbb{R}^* .

4.6 Dérivabilité et tangentes à une courbe

4.6.1 Définitions

Définition Soit f continue sur un intervalle I. Soit $x_0 \in I$. f est **dérivable en** x_0 si et seulement si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ existe. Cette limite est notée $f'(x_0)$ et est appelée **dérivée de** f **en** x_0 .

Remarque Les définition suivantes de la dérivée sont équivalentes à la définition précédente :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

Interprétation graphique La dérivée $f'(x_0)$ est la pente de la tangente à la courbe représentative de f en x_0 . Dans le dessin ci-contre, la tangente à \mathcal{C}_f au point A est en rouge, et est la limite quand h tend vers 0 de la droite verte correspondant à la pente $\frac{f(x_0+h)-f(x_0)}{h}$.

Définition f est dérivable sur un intervalle I si et seulement si elle est dérivable en tout point de I.

Une erreur classique est d'affirmer que la continuité implique la dérivabilité. Toute fonction continue mais non dérivable illustre que ceci est faux, comme par exemple la fonction valeur absolue en x=0.

Dérivées successives En dérivant plusieurs fois de suite une même fonction, on définit ses dérivées successives : dérivée seconde, dérivée troisième. . .

$$f'' = (f')'$$
 $f^{(3)} = (f'')'$... $f^{(n)} = (f^{(n-1)})'$

4.6.2 Tangente à la courbe représentative d'une fonction

Soit une fonction f continue et dérivable dans un voisinage d'un point x_0 . On peut facilement déterminer l'équation de la tangente à la courbe représentative de f au point x_0 . En effet, il s'agit d'une droite, donc son équation est de la forme y=ax+b. De plus, on a vu que sa pente est égale à la dérivée en $x_0: a=f'(x_0)$. Enfin, le point $(x_0,f(x_0))$ appartient à cette droite. Donc $f(x_0)=f'(x_0)x_0+b$, d'où la valeur de b.

Finalement, l'équation de la tangente au point x_0 est : $y = f(x_0) + f'(x_0)(x - x_0)$.

4.6.3 Opérations sur les dérivées

Théorème

- Si f et g sont dérivables en a, alors f+g aussi et (f+g)'(a)=f'(a)+g'(a).
- Si f et g sont dérivables en a, alors $f \times g$ aussi et $(f \times g)'(a) = f'(a)g(a) + f(a)g'(a)$.

- La dérivée de la fonction inverse est $\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$
- Si f est dérivable en a et et g est dérivable en f(a), alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = g'(f(a)) f'(a)$.
- $\bullet \ \ \text{Si} \ f \ \text{et} \ g \ \text{sont d\'erivables en} \ a \ \text{et si} \ g(a) \neq 0 \text{, alors} \ \ \left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g^2(a)}.$
- Si f est bijective d'un intervalle I vers un intervalle J, si f est dérivable en $a \in I$ et si $f'(a) \neq 0$, alors f^{-1} est dérivable en b = f(a) et $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$.

Démonstration Tous ces résultats peuvent être démontrés très simplement en revenant à la définition de la dérivée comme limite d'un taux d'accroissement.

Un formulaire sur les dérivées (opérations et fonctions usuelles) est disponible en Annexe G.

4.6.4 Dérivée, sens de variation, extrema

Théorème Soit une fonction f continue sur un intervalle I, et dérivable au point $x_0 \in I$.

- si $f'(x_0) > 0$, alors f est croissante dans un voisinage de x_0
- si $f'(x_0) < 0$, alors f est décroissante dans un voisinage de x_0

Ce résultat bien connu explique l'importance qu'il y a à déterminer le signe de la dérivée lors de l'étude d'une fonction, afin de décrire ses variations.

Théorème Soit f une fonction définie dans un voisinage d'un point a. Si f présente un extremum local en a et si f est dérivable en a, alors f'(a) = 0.

Si f est dérivable en a, f'(a) = 0 est une condition nécessaire pour avoir un extremum, mais ce n'est pas une condition suffisante.

Exemple La fonction $f(x) = x^3$ a pour dérivée $f'(x) = 3x^2$. On a donc f'(0) = 0, mais pourtant 0 n'est pas un extremum.

Une fonction peut admettre un extremum en un point a sans être dérivable en ce point.

Exemple La fonction f(x) = |x| est minimale en x = 0. Pourtant, la dérivée de f n'existe pas en 0.

4.7 Etude d'une branche infinie : recherche d'une asymptote oblique

4.7.1 Définitions

Une asymptote à une fonction f est une droite dont la courbe représentative de f, notée \mathcal{C}_f , se rapproche infiniment près, en général sans jamais l'atteindre. On distingue deux types d'asymptotes : les asymptotes verticales et les asymptotes obliques (qui incluent le cas des asymptotes horizontales).

Définition Soit f une fonction et x_0 un point n'appartenant pas au domaine de définition de f. On dit que la droite d'équation $x=x_0$ est **asymptote verticale** à \mathcal{C}_f si et seulement si $\lim_{x\to x_0} f(x)=\pm\infty$.

Définition Soit f une fonction. On dit que la droite d'équation $y=a\,x+b$ est asymptote oblique à \mathcal{C}_f en $\pm\infty$ si et seulement si $\lim_{x\to\pm\infty}[f(x)-(a\,x+b)]=0$.

Une asymptote horizontale est un cas particulier des asymptotes obliques, correspondant à a=0.

Définition Soit f une fonction. On dit que f, ou que \mathcal{C}_f , présente une **branche infinie** si et seulement si $\lim_{x\to\pm\infty}f(x)=\pm\infty$.

4.7.2 Recherche d'une asymptote oblique

Le cas des asymptotes horizontales est trivial : celles-ci sont identifiées dès lors qu'on calcule $\lim_{x \to \pm \infty} f(x)$. En effet, la droite y = b est asymptote à la courbe \mathcal{C}_f en $\pm \infty$ si et seulement si $\lim_{x \to \pm \infty} f(x) = b$.

On va donc considérer maintenant le cas où la fonction f présente une branche infinie. On cherche alors à savoir si cette branche infinie admet une asymptote oblique, et si oui, on cherche à déterminer la position de C_f par rapport à cette asymptote (au-dessus, en-dessous, ou oscillant autour de l'asymptote).

La démarche est la suivante (on prend ci-dessous l'exemple d'une recherche d'asymptote en $+\infty$, c'est évidemment similaire en $-\infty$) :

- \bullet Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}.$ Si cette limite est infinie, il n'y a pas d'asymptote.
- Si cette limite est finie, on la note a. Il y a alors peut-être une asymptote, et on calcule $\lim_{x\to +\infty} (f(x)-a\,x)$.
 - Si cette limite est infinie, il n'y a pas d'asymptote, mais on dit qu'il y a tout de même une direction asymptotique de pente a.
 - Si cette limite est finie, on la note b. Il y a alors une asymptote d'équation y = ax + b.
- Enfin, s'il y a une asymptote oblique (d'équation y = ax + b), on étudie le signe de f(x) (ax + b) pour déterminer la position de la courbe C_f par rapport à cette asymptote.
 - Si $\lim_{x\to +\infty} f(x) (ax+b) = 0^+$ (c'est-à-dire si $f(x) (ax+b) \ge 0$ pour tout x suffisamment grand), alors la courbe est au-dessus de l'asymptote.

CHAPITRE 4. FONCTIONS D'UNE VARIABLE RÉELLE

- Si $\lim_{x \to +\infty} f(x) (ax + b) = 0^-$ (c'est-à-dire si $f(x) (ax + b) \le 0$ pour tout x suffisamment grand), alors la courbe est en-dessous de l'asymptote.
- Si le signe de f(x) (ax + b) ne se stabilise jamais quand x tend vers l'infini, alors la courbe oscille autour de l'asymptote.

Explication Supposons que f admette une asymptote oblique d'équation y = ax + b en $+\infty$ (le raisonnement est identique en $-\infty$). Ceci signifie que $\lim_{x\to +\infty} [f(x)-(a\,x+b)]=0$. En divisant par x,

on en déduit que : $\lim_{x\to +\infty} \left[\frac{f(x)}{x}-a-\frac{b}{x}\right]=0.$ Or $\lim_{x\to +\infty}\frac{b}{x}=0.$ Donc $\lim_{x\to +\infty}\frac{f(x)}{x}=a.$ Cette égalité permet de trouver a. Et une fois a connu, on peut reformuler la définition de l'asymptote pour trouver $b: \lim_{x \to +\infty} (f(x) - ax) = b.$

4.7.3 **Exemples**

Un premier exemple de calcul d'une asymptote oblique est donné au §4.2.3. Voici un exemple supplémentaire.

https://www.youtube.com/watch?v=ZHbyLGOUotQ

Considérons la fonction $f(x) = 2x + \sqrt{x} - 1 + 3/x$, définie sur $]0,+\infty[.$

On a $\lim_{x\to 0} f(x) = +\infty.$ Donc f admet une asymptote verticale d'équation x=0.

On a $\lim_{x\to +\infty} \frac{f(x)}{x}=2$ et $\lim_{x\to +\infty} (f(x)-2x)=+\infty.$ La fonction f admet donc une direction asymptotique de pente 2, mais pas d'asymptote en $+\infty$.

Ceci est illustré sur le dessin ci-contre, où l'on voit que la courbe s'écarte petit à petit d'une droite qui est pourtant de pente 2.

4.7.4 **Asymptotes et tangentes**

Tangentes et asymptotes sont deux notions différentes.

- Une asymptote est une droite dont la courbe \mathcal{C}_f se rapproche infiniment près quand x tend vers une extrémité ouverte de son domaine de définition ($\pm\infty$ pour une asymptote oblique, une valeur $a \in \mathbb{R}$ borne du domaine de définition de f pour une asymptote verticale).
- Une tangente est une droite dont la valeur et la pente coïncident avec la valeur et la pente de \mathcal{C}_f pour une abscisse donnée x_0 .

Son équation est : $y = f'(x_0)(x - x_0) + f(x_0)$.

On parle donc de tangente à la courbe en x_0 mais pas d'asymptote à la courbe en x_0 (sauf asymptote verticale).

On parle donc d'asymptote à la courbe en $\pm \infty$ mais pas de tangente à la courbe en $\pm \infty$.

4.8 Compléments : fonctions réciproques

Définition Soit f une application de E vers F. On dit que f est **bijective** si et seulement si tout élément de F a un et un seul antécédent dans E.

Autrement dit : $\forall y \in F, \exists ! x \in E / y = f(x)$

Interprétation Déterminer si une fonction est bijective revient, pour y_0 fixé, à compter les antécédents de y_0 par f, c'est-à-dire à chercher combien il y a de solutions x au problème $f(x) = y_0$. Graphiquement, cela revient à compter combien de fois la droite horizontale $y = y_0$ coupe la courbe représentative de f.

Exemple Dans la figure ci-contre, on constate que :

— la fonction $e^{-x}-2$ (courbe verte) est bijective de $\mathbb R$ vers $]-2,+\infty[$: tout $y\in]-2,+\infty[$ a un et un seul antécédent. Autrement dit : la courbe verte coupe une et une seule fois n'importe quelle droite horizontale au-dessus de y=-2. Par contre elle n'est pas bijective par exemple de $\mathbb R$ vers $\mathbb R$, car les valeurs de y inférieures ou égales à -2 n'ont pas d'antécédent (c.a.d. ne sont pas atteintes).

- la fonction $x^3 2x$ (courbe noire) n'est pas bijective de $\mathbb R$ vers $\mathbb R$: on voit que les valeurs de y proches de 0 ont 3 antécédents.
- la fonction $x^3 + x$ (courbe rouge) est bijective de $\mathbb R$ vers $\mathbb R$. tout $y \in \mathbb R$ a un et un seul antécédent. Autrement dit : la courbe rouge coupe une et une seule fois n'importe quelle droite horizontale

Exemples

- Une fonction paire ne peut pas être bijective, car si x est un antécédent de y, alors -x est également un antécédent de y.
- Une fonction périodique de période T n'est pas bijective : si une valeur y admet un antécédent x (i.e. si y = f(x)), alors ..., x 2T, x T, x + T, x + 2T, ... sont aussi des antécédents de y.
- Une application strictement monotone est nécessairement bijective entre son ensemble de départ et son ensemble d'arrivée.

Définition Soit f une application bijective de E vers F. On a donc : $\forall y \in F, \exists ! \ x \in E \ / \ y = f(x)$. On peut aussi noter $x = f^{-1}(y)$, ce qui définit une application f^{-1} de F vers E appelée **application réciproque** (ou **bijection réciproque**) de f. Elle vérifie à l'évidence $f \circ f^{-1} = \operatorname{Id}_F$ (la fonction identité de F) et $f^{-1} \circ f = \operatorname{Id}_E$ (la fonction identité de E).

$$E \stackrel{f}{\underset{f^{-1}}{\longleftarrow}} F$$

Exemple Les fonctions logarithme et exponentielle (cf rappels en Annexe E) sont réciproques l'une de l'autre :

$$]0,+\infty[$$
 $\xrightarrow{\ln}$ \mathbb{R} c' est-à-dire $(y=\ln x) \iff (x=\exp y)$

Exemple https://www.youtube.com/watch?v=cputgBhRT64

 $f(x)=2x^2-4$ est bijective de $[0,+\infty[$ vers $[-4,+\infty[$.

De plus :
$$y=2x^2-4\Longleftrightarrow x^2=\frac{y+4}{2}\iff x=\sqrt{\frac{y+4}{2}}\quad \text{(car }x\geq 0\text{)}$$

 $\begin{array}{cccc} \textit{Donc on a}: f: & [0,+\infty[& \longrightarrow & [-4,+\infty[\\ & x & \longrightarrow & y=2x^2-4 \end{array}$

et
$$f^{-1}: [-4, +\infty[\longrightarrow [0, +\infty[$$
 $y \longrightarrow x = \sqrt{\frac{y+4}{2}}$

D'autres choix d'ensembles de départ et d'arrivée sont possibles. Par exemple, si on considère que f est bijective de $]-\infty,0[$ vers $[-4,+\infty[$, alors $f^{-1}(y)=-\sqrt{rac{y+4}{2}}$

Interprétation graphique : le graphe de la fonction réciproque f^{-1} (notée g sur la figure ci-contre) est le symétrique du graphe de f par rapport à la droite y = x.

Une erreur fréquente consiste à confondre f^{-1} (fonction réciproque de f) et 1/f (fonction inverse de f). Dans l'exemple précédent, 1/f est la fonction qui à x associe $1/(2x^2-4)$.

Dérivée d'une application réciproque Soit f une bijection d'un intervalle I vers un intervalle J. Soient $a\in I$ et b=f(a). Si f est dérivable en a et si $f'(a)\neq 0$, alors f^{-1} est dérivable en b et $(f^{-1})'(b)=\frac{1}{f'(f^{-1}(b))}$.

Exemple La fonction racine carrée étant la réciproque de la fonction carrée, on peut calculer sa dérivée avec cette formule. On pose donc $f(x)=x^2$, et on a $f^{-1}(y)=\sqrt{y}$. Soient a et b tels que b=f(a), c'est-à-dire $b=a^2$. Pour a strictement positif, on a bien $f'(a)=\dot{2}a\neq 0$, et donc :

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{2f^{-1}(b)} = \frac{1}{2\sqrt{b}}$$

On retrouve bien la formule connue pour la dérivée de la racine carrée.

Fonctions trigonométriques inverses Les fonctions sinus, cosinus et tangente (cf Annexe D) sont périodiques, et donc non bijectives. Si l'on se restreint toutefois à une partie bien choisie de leur domaine de définition, leurs restrictions sont continues et strictement monotones, et donc bijectives. On peut donc définir leurs fonctions réciproques, appelées fonctions trigonométriques inverses : arcsinus, arccosinus et arctangente. Ces fonctions sont détaillées en Annexe F.

Chapitre 5

Intégrales et Primitives

5.1 Un exemple d'utilisation de la notion d'intégrale

On considère un mobile se déplaçant sur une trajectoire continue à la vitesse instantanée v(t) (t est le temps). On se pose la question suivante : quelle est la vitesse moyenne du mobile entre t=0 et t=T? Pour cela, une solution consiste à échantillonner le temps en N+1 valeurs t_0,\ldots,t_N , telles que $t_i-t_{i-1}=\Delta t$ (donc $T=N\,\Delta t$). La vitesse est approchée par une valeur constante dans chacune de ces fenêtres de temps. Dans ce cas, la vitesse moyenne peut se calculer de la façon suivante :

$$\bar{v} \simeq \frac{1}{N+1} \sum_{i=0}^{N} v(t_i) = \frac{1}{T} \sum_{i=0}^{N} v(t_i) \, \Delta t$$

Graphiquement, cela revient à calculer l'aire moyenne des rectangles de la figure de gauche ci-dessous. La somme des aires des rectangles est en fait une approximation de l'aire sous la courbe de vitesse (figure de droite). On trouve là la notion d'intégrale.

Cette notion d'intégrale est à la base de tous les bilans en physique, c'est-à-dire de la plupart des lois de la physique (lois de conservation, équations de bilan, etc.).

5.2 Définitions et propriétés

On définit de façon intuitive la notion d'intégrale I d'une fonction f continue positive sur un segment [a,b] comme étant l'aire de la surface délimitée par les droites x=a, x=b, y=0 et la courbe y=f(x) (c'est-à-dire l'aire grisée dans la figure ci-contre).

Pour des fonctions très simples, il est possible d'obtenir géométriquement le résultat. Par exemple, l'aire de la fonction linéaire f(x)=cx sur l'intervalle $[0;\ell]$ est l'aire du triangle de base ℓ et de hauteur $c\,\ell$, soit $c\,\ell^2/2$.

CHAPITRE 5. INTÉGRALES ET PRIMITIVES

Pour des fonction plus compliquées, il faut trouver une autre méthode de calcul d'aire. La théorie mathématique est un peu complexe, mais l'idée générale consiste à approcher I par une somme de rectangles, comme cela a été fait dans l'exemple introductif à la section 5.1, et à en prendre la limite lorsque la largeur des rectangles tend vers 0.

Définition Soit f une fonction continue positive sur un segment [a,b]. On note $I=\int_a^b f(x)\,dx$ la valeur de la surface sous la courbe.

- La notation abrégée $I = \int^b f$ peut également être utilisée.
- La notation se lit intégrale de a à b de la fonction f ou somme de a à b de la fonction f.
- Les valeurs a et b sont appelées les bornes de l'intégrale.

On note $I = \int_a^b f(x) \, dx$ pour la raison suivante : $f(x) \, dx$ désigne l'aire (infinitésimale) du rectangle de hauteur f(x) et de largeur (infiniment petite) dx.

Définition On étend cette définition aux fonctions continues à valeurs tantôt positives et tantôt négatives en comptant l'aire négativement là où f est négative, et positivement là où f est positive.

Remarque $I = \int_a^b f(x) \, dx = \int_a^b f(t) \, dt = \int_a^b f(u) \, du$. La lettre x est une variable "muette" : elle peut être remplacée indifféremment par $t, u \dots$

Propriétés

• Linéarité Pour toutes fonctions f et g continues sur [a,b], on a

$$\begin{cases} \int_a^b (f+g)(x) dx &= \int_a^b f(x) dx + \int_a^b g(x) dx \\ \int_a^b (\lambda f)(x) dx &= \lambda \int_a^b f(x) dx \quad \forall \lambda \in \mathbb{R} \end{cases}$$

• Formule de Chasles

Comme illustré sur la figure ci-contre, on a pour toute fonction f continue sur $\left[a,b\right]$:

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

d'où aussi

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Inégalités

Si $f(x) \leq g(x)$ pour tout $x \in [a, b]$, alors :

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

En particulier, comme $\pm f(x) \le |f(x)| \quad \forall x$:

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

5.3 Intégrales et primitives

Définition F est une **primitive** de f si et seulement si $F'(x) = f(x) \quad \forall x$. On note $F = \int f$.

Si F est une primitive de f, alors toute fonction F+C, où C est une constante, l'est aussi. La primitive est définie à une constante additive près. Il y a donc une infinité de primitives pour une fonction f donnée.

Attention à ne pas confondre la notation $\int f$, qui désigne une primitive de f, avec l'intégrale $\int_a^b f$. La primitive est une fonction, l'intégrale est une valeur numérique (un nombre réel).

Théorème Si F est une primitive d'une fonction continue f, alors $\int_a^b f(x)\,dx = F(b) - F(a)$. On note aussi $\int_a^b f(x)\,dx = F(b) - F(a) = [F(x)]_a^b$

5.4 Calcul des intégrales et primitives

Pour les calculs de primitives et d'intégrales, on dispose de trois outils principaux : le formulaire des **primitives usuelles**, et les techniques d'**intégration par parties** et de **changement de variable**.

Puisque l'on connait les dérivées des fonctions usuelles, en "inversant" ce formulaire, on dispose également d'un formulaire de primitives usuelles. Celui-ci est rappelé en Annexe H.

Pour calculer une primitive, on cherche à se ramener à ces primitives usuelles (les "briques de base" pour réaliser les calculs), notamment grâce à des changements de variable ou des intégrations par parties.

Remarque Calculer une intégrale est équivalent à déterminer les primitives d'une fonction. On ne mettra donc pas forcément les bornes dans la suite de cette section.

5.4.1 Intégration par parties

En intégrant la formule (uv)'=uv'+u'v, on a $\int_a^b (uv)'=[uv]_a^b=\int_a^b uv'+\int_a^b u'v$. D'où les formules d'intégration par parties :

$$\int_a^b uv' = [uv]_a^b - \int_a^b u'v \qquad \text{et} \qquad \int u'v = uv - \int uv'$$

CHAPITRE 5. INTÉGRALES ET PRIMITIVES

Exemples

ullet $\int \ln x \ dx$ — En posant u=x et $v=\ln x$:

$$\int \ln x \ dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - \int dx = x \ln x - x + C$$

• $\int e^x \cos x \ dx$ — En posant $u = e^x$ et $v = \cos x$:

$$\int e^x \cos x \, dx = e^x \cos x + \int e^x \sin x \, dx \quad (1)$$

Puis en posant $u = e^x$ et $v = \sin x$: $(1) = e^x \cos x + e^x \sin x - \int e^x \cos x \, dx$

D'où
$$\int e^x \cos x \, dx = \frac{1}{2} (e^x \cos x + e^x \sin x) + C$$

• Voir aussi https://www.youtube.com/watch?v=tubIp-R7YHk

5.4.2 Changement de variable

Un changement de variable sert à transformer une intégrale pour se ramener à une intégrale plus simple à calculer. Pour calculer $I=\int_a^b f(x)\,dx$, s'il apparait que f(x) peut s'écrire sous la forme $h(g(x))\,g'(x)$, on peut poser u=g(x). On a alors $du=g'(x)\,dx$ et donc $I=\int_{g(a)}^{g(b)} h(u)\,du$.

Exemples

ullet $I = \int_a^b rac{dx}{x \ln x}$ avec 1 < a < b — On pose $u = \ln x$. Alors du = dx/x, d'où :

$$I = \int_{x-a}^{x=b} \frac{dx}{x \ln x} = \int_{u-\ln a}^{u=\ln b} \frac{du}{u} = [\ln |u|]_{\ln a}^{\ln b} = \ln |\ln b| - \ln |\ln a|$$

• $I = \int_a^b x e^{x^2} dx$ — On pose $u = x^2$. Alors du = 2x dx, d'où :

$$I = \int_{x-a}^{x=b} xe^{x^2} dx = \frac{1}{2} \int_{u-a^2}^{u=b^2} e^u du = \frac{1}{2} [e^u]_{a^2}^{b^2} = \frac{e^{b^2} - e^{a^2}}{2}$$

X

Ne pas oublier de faire le changement de variable sur les bornes.

Des changements de variable classiques

• Pour un terme en $\sqrt{a^2-x^2}$, on peut penser au changement de variable $x=a\sin u$.

Par exemple, pour calculer $\int \sqrt{4-x^2}\,dx$: on pose $x=2\sin u$. D'où $dx=2\cos u\,du$ et $u=\arcsin(x/2)$. On a donc :

$$\int \sqrt{4 - 4\sin^2 u} (2\cos u) \, du = 4 \int \cos^2 u \, du = 4 \int \frac{1 + \cos 2u}{2} \, du = 2u + \sin 2u + C$$
$$= 2u + 2\sin u \sqrt{1 - \sin^2 u} + C = 2\arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4 - x^2} + C$$

• Pour une fraction avec des fonctions $\sin x$ et $\cos x$, on peut poser $t = \tan \frac{x}{2}$.

D'où
$$dt = \frac{1}{2} \left(1 + \tan^2 \frac{x}{2} \right) dx$$
, c'est-à-dire $dx = \frac{2 dt}{1 + t^2}$.

On a aussi, grâce aux formules de trigonométrie : $\sin x = \frac{2\,t}{1+t^2}$ et $\cos x = \frac{1-t^2}{1+t^2}$. On va donc transformer la fonction initiale en une fraction rationnelle.

Par exemple :

$$\int \frac{dx}{\sin x} = \frac{1}{\frac{2t}{1+t^2}} \frac{2\,dt}{1+t^2} = \int \frac{dt}{t} = \ln|t| + C = \ln\left|\tan\frac{x}{2}\right| + C$$

5.4.3 Intégration des fractions rationnelles

Définition On appelle fraction rationnelle un quotient de deux polynômes : $\frac{P(x)}{Q(x)}$

Il arrive fréquemment qu'on ait à intégrer des fractions rationnelles, notamment suite à un changement de variable.

Théorème Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle quelconque. On note p et q les degrés respectifs de P et Q.

de P et Q. $\frac{P(x)}{Q(x)} \text{ peut être décomposée sous la forme d'une somme}:$

- d'un polynôme (si et seulement si $p \ge q$),
- de termes de la forme $\frac{a}{(x-b)^n}$ et de termes de la forme $\frac{ax+b}{(x^2+cx+d)^m}$, où a,b,c,d sont des réels, n et m des entiers au moins égaux à 1, et où le trinôme x^2+cx+d n'a pas de racine réelle $(c^2-4d<0)$. Ces termes sont appelés des **éléments simples**.

Cette décomposition en éléments simples est unique.

Il existe une méthode systématique pour décomposer une fraction rationnelle en éléments simples, qui n'est pas au programme de cette UE (on se contentera juste de traiter des cas simples, ou de vous guider pour obtenir cette décomposition). Intégrer la fraction rationnelle revient donc à intégrer son expression sous forme de décomposition en éléments simples, ce qui est beaucoup plus facile, comme on peut le voir sur les exemples ci-après.

Exemples

$$\bullet \int \frac{x^5 + 4x^2 - x}{x^4 - 1} \, dx ?$$

On remarque que $x^5+4x^2-x=x(x^4+4x-1)=x(x^4-1)+4x^2$. Donc $\frac{x^5+4x^2-x}{x^4-1}=x+\frac{4x^2}{x^4-1}$.

De plus, $x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1)$. On peut donc chercher $\frac{4x^2}{x^4 - 1}$ sous

la forme $\frac{\alpha}{x-1} + \frac{\beta}{x+1} + \frac{\gamma x + \delta}{x^2+1}$. En remettant tout au même dénominateur et en identifiant les coefficients, on obtient la décomposition en éléments simples :

$$\frac{4x^2}{x^4 - 1} = \frac{1}{x - 1} - \frac{1}{x + 1} + \frac{2}{x^2 + 1}$$

D'où finalement la primitive :

$$\int \frac{x^5 + 4x^2 - x}{x^4 - 1} dx = \frac{x^2}{2} + \ln|x - 1| - \ln|x + 1| + 2\arctan x + C \quad , \ C \in \mathbb{R}$$

$$\bullet \int \frac{x^4 - 2x^3 + 5x^2 - 3x + 2}{x^3 - x^2 + 2x - 2} \, dx ?$$

On commence, comme dans l'exemple précédent, par faire la division euclidienne du numérateur par le dénominateur : $x^4 - 2x^3 + 5x^2 - 3x + 2 = (x - 1)(x^3 - x^2 + 2x - 2) + 2x^2 + x$. D'où

$$\frac{x^4 - 2x^3 + 5x^2 - 3x + 2}{x^3 - x^2 + 2x - 2} = x - 1 + \frac{2x^2 + x}{x^3 - x^2 + 2x - 2}$$

En factorisant le dénominateur $x^3 - x^2 + 2x - 2 = (x - 1)(x^2 + 2)$, on peut en déduire qu'il faut chercher la décomposition en éléments simples sous la forme

$$\frac{2x^2 + x}{x^3 - x^2 + 2x - 2} = \frac{\alpha}{x - 1} + \frac{\beta x + \gamma}{x^2 + 2}$$

En remettant tout au même dénominateur et en identifiant les coefficients, on obtient :

$$\frac{2x^2 + x}{x^3 - x^2 + 2x - 2} = \frac{1}{x - 1} + \frac{x + 2}{x^2 + 2}$$

On peut intégrer chaque élément :

$$\int \frac{1}{x-1} \, dx = \ln|x-1| + C_1$$

et

$$\int \frac{x+2}{x^2+2} dx = \frac{1}{2} \int \frac{2x}{x^2+2} dx + \int \frac{2}{x^2+2} dx = \frac{1}{2} \ln(x^2+2) + C_2 + \sqrt{2} \int \frac{\frac{dx}{\sqrt{2}}}{\left(\frac{x}{\sqrt{2}}\right)^2 + 1}$$
$$= \frac{1}{2} \ln(x^2+2) + C_2 + \sqrt{2} \arctan \frac{x}{\sqrt{2}} + C_3$$

D'où finalement :

$$\int \frac{x^4-2x^3+5x^2-3x+2}{x^3-x^2+2x-2}\,dx = \frac{x^2}{2}-x+\ln|x-1|+\frac{1}{2}\ln(x^2+2)+\sqrt{2}\arctan\frac{x}{\sqrt{2}}+C \quad , \ C\in\mathbb{R}$$

Annexe A

Formulaire des aires et volumes usuels

A.1 Aires

Carré	a	$A = a^2$	Rectangle	a b	A = ab
Parallélogramme	h b	A = bh	Trapèze	h b	$A = \frac{a+b}{2}h$
Triangle	b	$A = \frac{1}{2}bh$	Disque	d r	$A=\pi r^2$ (périmètre $=2\pi r)$

ANNEXE A. FORMULAIRE DES AIRES ET VOLUMES USUELS

A.2 Volumes

Cube	1 5	$V = s^3$	Parallélépipède	w h	V = lwh
Tétraèdre	h A	$V=rac{1}{3}Ah$ $(A= ext{ aire du triangle})$	Pyramide		$V = \frac{1}{3}s^2h$
Prisme		$V=rac{1}{2}Ah$ $(A= ext{ aire du triangle})$	Cône	<u> </u>	$V = \frac{1}{3}\pi r^2 h$
Cylindre		$V = \pi r^2 h$	Sphère		$V=rac{4}{3}\pi r^3 \ \left(ext{surface} = 4\pi r^2 ight)$

Annexe B

Quelques rappels sur les polynômes

On ne va considérer ici que le cas de polynômes à coefficients réels.

B.1 Polynômes

• Un **polynôme** est une combinaison linéaire de puissances de x, c'est-à-dire une fonction de la forme $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$.

$$P(x)=3x^4-x^2+x-4 \qquad \text{est un polynôme}$$

$$f(x)=x^3-x^2+\frac{1}{x} \quad \text{n'est pas un polynôme}$$

$$Q(x)=\sqrt{5}\,x^3+\frac{4}{3}x^2-\pi \quad \text{est un polynôme}$$

$$g(x)=x^2-\sqrt{x} \quad \text{n'est pas un polynôme}.$$

• Le degré d'un polynôme est la plus haute puissance apparaissant dans son expression.

$$P(x) = 3x^3 + x - 1$$
 est un polynôme de degré 3. $Q(x) = 3$ est un polynôme de degré 0.

- Les racines d'un polynôme P(x) sont les valeurs de x telles que P(x) = 0.
- Si a est une racine du polynôme P, alors P(x) est factorisable par (x-a).
- Un polynôme de degré n a au plus n racines.

$$P(x)=3x^2-3x$$
 On constate facilement que $P(0)=0$ et que $P(1)=0$. Donc P est factorisable par x et par $(x-1)$. Ce qui donne $P(x)=3x(x-1)$.

$$Q(x) = 2x^3 + 3x^2 - 2x - 3 \qquad \text{On a}: Q(x) = (x^2 - 1)(2x + 3) = (x - 1)(x + 1)(2x + 3).$$
 Les racines de Q sont donc $-\frac{3}{2}$, -1 et 1 .

Un polynôme de degré n est factorisable par des polynômes de degré 1 (associés à chaque racine de P) et de degré 2 irréductibles (cf B.2), sous la forme

$$P(x) = a_n (x - x_1)^{m_1} \dots (x - x_r)^{m_r} (x^2 + b_1 x + c_1) \dots (x^2 + b_q x + c_q)$$

- Les réels distincts x_1, \ldots, x_r sont les racines de P. m_i est la **multiplicité** de la racine x_i .
- Si $m_i = 2$, on dit que x_i est une racine double, et x_i est également racine de P'(x).
- Si $m_i = 3$, on dit que x_i est une racine triple, et x_i est également racine de P'(x) et de P''(x).
- Plus généralement, si x_i est une racine de multiplicité $m_i \geq 2$, x_i est également racine de $P'(x), P''(x), \ldots, P^{(m_i-1)}(x)$.

B.2 Polynômes et équations du second degré

Soit $P(x) = ax^2 + bx + c$ un **polynôme du second degré** (donc $a \neq 0$). On dit aussi parfois un **trinôme du second degré**.

Sa courbe représentative est une **parabole**, orientée vers le haut si a>0 et vers le bas si a<0.

Elle peut donc couper l'axe des abscisses (c'est-à-dire valoir 0) pour 0, 1 ou 2 valeurs de x.

Une équation du second degré est une équation pouvant se ramener à la forme

$$ax^2 + bx + c = 0$$
, avec a, b, c des nombres réels et $a \neq 0$

Théorème Soit l'équation du second degré $ax^2 + bx + c = 0$ ($a \neq 0$), et $\Delta = b^2 - 4ac$ (Δ est appelé le discriminant de l'équation).

- Si $\Delta < 0$, l'équation n'a pas de solution réelle.
- Si $\Delta = 0$, l'équation a une seule solution $x_0 = -\frac{b}{2a}$.
- Si $\Delta>0$, l'équation a deux solutions : $x_1=\frac{-b+\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b-\sqrt{\Delta}}{2a}$

Exemple

- $x^2-4x+4=0$: On a $\Delta=0$, d'où $x_0=-\frac{-4}{2}=2$ est l'unique solution.
- $-6x^2 x + 1$: On a $\Delta = 25$, d'où les deux solutions : $x_1 = \frac{1+5}{-12} = -\frac{1}{2}$ et $x_2 = \frac{1-5}{-12} = \frac{1}{3}$.
- $5x^2 + 6x + 2 = 0$: On a $\Delta = -4$. Il n'y a pas de solution réelle.

Théorème Le trinôme $ax^2 + bx + c$ se factorise de la façon suivante :

Si $\Delta > 0$: $ax^2 + bx + c = a(x - x_1)(x - x_2)$, où x_1 et x_2 sont les racines du trinôme.

Si $\Delta = 0$: $ax^2 + bx + c = a(x - x_0)^2$, où x_0 est la racine double du trinôme.

Si $\Delta < 0$, le trinôme n'est pas factorisable dans \mathbb{R} , il est dit irréductible.

Par identification, on voit que la somme et le produit des racines valent

$$x_1 + x_2 = -\frac{b}{a} \qquad x_1 x_2 = \frac{c}{a}$$

Par ailleurs, on voit également que le trinôme est de même signe que le coefficient a, sauf si x est situé entre les racines x_1 et x_2 (dans le cas $\Delta > 0$).

Exemple Si l'on reprend l'exemple ci-dessus, on peut en déduire que :

- $x^2 4x + 4 = (x 2)^2$. If est toujours positif.
- $-6x^2-x+1=-6(x+\frac{1}{2})(x-\frac{1}{3})$, la somme des racines $-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}$ vaut bien $-\frac{b}{a}$, et le produit des racines $-\frac{1}{2}\frac{1}{3}=-\frac{1}{6}$ vaut bien $\frac{c}{a}$. Le trinôme est toujours négatif, sauf pour $x\in]-\frac{1}{2};\frac{1}{3}[$.
- le trinôme $5x^2 + 6x + 2$ est irréductible. Il est toujours positif.

Annexe C

Rappels sur les fonctions puissances

Les fonctions puissances sont les fonctions du type x^{α} .

On rappelle l'identité $a^b=e^{b\ln a}$ pour tous $a>0,b\in\mathbb{R}$ (voir Annexe E). On en déduit en particulier que $x^0=1$ et que $x^{-n}=\frac{1}{x^n}$.

C.1 Fonctions x^n avec $n \in \mathbb{Z}$

- Puissances entières positives : ce sont les fonctions $x, x^2, x^3 \dots$ La fonction x^n est une fonction paire (si n pair) ou impaire (si n impair).
- Puissances entières négatives : $x^{-n} = \frac{1}{x^n}$. Ce sont les fonctions $\frac{1}{x}, \frac{1}{x^2} \dots$ La fonction $\frac{1}{x^n}$ est une fonction paire (si n pair) ou impaire (si n impair).

L'allure des courbes correspondantes est donnée par la figure ci-dessous.

C.2 Fonctions x^{α} avec $\alpha \in \mathbb{R}$

Pour une puissance réelle quelconque, on va utiliser la formule $x^{\alpha}=e^{\alpha \ln x}$. Le domaine de définition de x^{α} est donc celui du logarithme : $]0,+\infty[$.

Le cas particulier où α est l'inverse d'un entier relatif est particulièrement intéressant. En effet $(x^a)^b=e^{b\ln(x^a)}=e^{ab\ln x}=x^{ab}.$ Donc par exemple $(x^{1/2})^2=x$: la fonction $x^{1/2}$ est la fonction racine carrée. Plus généralement, la fonction $x^{1/n}$ est la fonction racine $n^{\text{ème}}$ (pour $n\in\mathbb{N}$).

L'allure des fonctions x^{α} ($\alpha \in \mathbb{R}$) est donnée par le dessin ci-dessous.

Annexe D

Formulaire de trigonométrie

D.1 Cercle trigonométrique et angles remarquables

Soit un repère cartésien (O, Ox, Oy).

Définition Le **cercle trigonométrique** est le cercle de rayon 1 de centre O. Un point de ce cercle correspondant à un angle de x radians a pour coordonnées $(\cos x, \sin x)$.

La tangente est définie par $\tan x = \frac{\sin x}{\cos x}$, pour $x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$

Quelques angles remarquables :

x (en radians)	$\sin x$	$\cos x$	$\tan x$
0	0	1	0
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	∞

On peut lire également sur le cercle trigonométrique les relations suivantes :

ANNEXE D. FORMULAIRE DE TRIGONOMÉTRIE

Les fonctions sinus, cosinus et tangente ont donc les allures suivantes :

A gauche : fonctions $\sin x$ (en bleu) et $\cos x$ (en orange); à droite : fonction $\tan x$

D.2 Formules de trigonométrie

Relation de Pythagore

$$\cos^2 x + \sin^2 x = 1$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x} \quad \text{(en divisant par } \cos^2 x\text{)}$$

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Angles doubles

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$= 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

$$\sin 2a = 2\sin a\cos a$$

Linéarisation

$$\cos^2 a = \frac{1}{2} \left(1 + \cos 2a \right)$$

$$\sin^2 a = \frac{1}{2} \left(1 - \cos 2a \right)$$

Transformation de produit en somme

$$\cos a \cos b = \frac{1}{2} \left[\cos(a-b) + \cos(a+b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

Transformation de somme en produit

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \cos \frac{p+q}{2} \sin \frac{p-q}{2}$$

Transformation en fraction

Si l'on pose $t = \tan x/2$, on a :

$$\sin x = \frac{2t}{1+t^2} \quad \cos x = \frac{1-t^2}{1+t^2} \quad \tan x = \frac{2t}{1-t^2}$$

En pratique Inutile de tout connaître par coeur : la connaissance de la relation de Pythagore $\cos^2 x + \sin^2 x = 1$ et des deux formules d'addition $\cos(a+b) = \cos a \cos b - \sin a \sin b$ et $\sin(a+b) = \sin a \cos b + \cos a \sin b$ permet de retrouver aisément toutes les autres formules.

Annexe E

Fonctions logarithmes et exponentielles

E.1 Fonctions logarithmes

E.1.1 Logarithme népérien

Le logarithme népérien $\ln x$ est défini pour tout x > 0. On a :

• $\ln 1 = 0$

• $(\ln x)' = 1/x$ (d'où : $(\ln u(x))' = u'(x)/u(x)$)

•
$$\forall x, y > 0$$
, $\ln(x/y) = \ln x - \ln y$

•
$$\forall x > 0, \forall n \in \mathbb{Z}, \ln(x^n) = n \ln x$$

$$\bullet \ \lim_{x\to 0} \ln x = -\infty \ \text{et} \ \lim_{x\to +\infty} \ln x = +\infty$$

• On note e le nombre tel que $\ln e = 1$. Sa valeur est environ $e \simeq 2,71828...$

On a aussi les limites remarquables suivantes : $\lim_{x\to 0} x \ln x = 0$ et $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$.

E.1.2 Logarithme décimal et logarithmes de base quelconque

Définition On définit le **logarithme de base** a, pour tout réel a strictement positif et différent de a, par

$$\log_a x = \frac{\ln x}{\ln a}$$

Le logarithme népérien est donc aussi le logarithme de base e.

L'autre logarithme qui sert le plus souvent (notamment en physique et en chimie) est le logarithme de base 10, encore appelé logarithme décimal. En effet, il vérifie la propriété $\log_{10} 10^n = n$ et est utilisé couramment pour décrire des quantités pouvant varier sur de très grandes plages de valeurs.

Exemples

- Pour caractériser l'acidité d'une solution aqueuse, on mesure sa concentration molaire en ions H_3O^+ . Celle-ci varie typiquement entre 10^{-14} et 1. Mais on préfère plutôt utiliser la notion de pH, défini par $pH = -\log_{10}[H_3O^+]$, et qui varie donc entre 0 et 14.
- En sismologie, l'échelle de Richter, utilisée pour caractériser l'ampleur d'un séisme, est définie comme le logarithme décimal d'une amplitude. Par exemple, un séisme de magnitude 5 sur l'échelle de Richter est donc 10 fois plus puissant qu'un séisme de magnitude 4.
- En acoustique, le Bel est égal au logarithme décimal du rapport entre 2 puissances. Autrement dit, un son de 5 Bel, ou plus couramment 50 dB, est 10 fois plus puissant qu'un son de 4 Bel (ou 40 dB).
- Le logarithme décimal est utilisé pour les représentations graphiques dites "en échelle log". Dans ces représentations, la valeur est multipliée par 10 à chaque graduation.

E.2 Fonctions exponentielles

E.2.1 Exponentielle "naturelle"

Définition La fonction exponentielle (encore appelée exponentielle naturelle ou exponentielle de base e), notée $\exp(x)$ ou e^x , est la fonction réciproque du logarithme népérien. \ln étant une fonction de $]0,+\infty[$ vers \mathbb{R} , \exp est donc définie par :

$$\exp: \quad \mathbb{R} \longrightarrow]0, +\infty[$$

$$x \longrightarrow y = \exp(x) \text{ tel que } \ln y = x$$

On déduit donc toutes les propriétés de la fonction exponentielle à partir des propriétés de la fonction \ln .

- $\exp(x)$ est défini sur \mathbb{R} .
- $\exp(0) = 1$ et $\exp(1) = e \simeq 2,71828...$
- $\exp'(x) = \exp(x)$ (d'où : $[\exp(u(x))]' = u'(x) \exp(u(x))$)
- $\forall x, y, \exp(x+y) = \exp(x) \exp(y)$
- $\forall x, y, \exp(x y) = \exp(x)/\exp(y)$
- $\lim_{x \to -\infty} \exp(x) = 0$ et $\lim_{x \to +\infty} \exp(x) = +\infty$

On a aussi les limites remarquables suivantes : $\lim_{x\to -\infty} x \exp(x) = 0 \quad \text{et} \quad \lim_{x\to +\infty} \frac{\exp(x)}{x} = +\infty$

E.2.2 Exponentielles de base quelconque

De la même façon qu'on a défini des logarithmes de base quelconque, on peut définir leurs fonctions réciproques, qui sont appelées **exponentielles de base quelconque**.

Ainsi, pour tout réel a>0 différent de 1, on définit la fonction $\exp_a(x)$, également notée a^x par la relation : $(a^x=y) \Longleftrightarrow (x=\log_a y)$. Or $\log_a y=\ln y/\ln a$. D'où

$$a^x = \exp(x \ln a) = e^{x \ln a}$$

On en déduit que $(a^x)' = a^x \ln a$.

De plus, les fonctions exponentielles de base quelconque vérifient également la propriété de transformation d'une somme en produit : $a^{x+y}=a^x\,a^y$

Les deux valeurs de a les plus utilisées en pratique sont a=10 (fonction 10^x , pour d'innombrables applications) et a=2 (fonction 2^x , notamment dans le contexte de l'informatique).

ANNEXE E. FONCTIONS LOGARITHMES ET EXPONENTIELLES

Annexe F

Fonctions trigonométriques inverses : arcsin, arccos, arctan

On rappelle ici les principaux éléments concernant les **fonctions trigonométriques inverses**, aussi appelées **fonctions circulaires réciproques**.

F.1 La fonction Arcsinus

La fonction sinus est continue et strictement croissante de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ vers [-1, 1]. On peut donc (théorème de la bijection, cf \S ??) définir sa fonction réciproque, appelée **Arcsinus**, par :

$$\begin{array}{cccc} \mathsf{Arcsin}: & [-1,1] & \longrightarrow & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ & y & \longrightarrow & x \ \ \mathsf{tel} \ \mathsf{que} \ \sin x = y \end{array}$$

Ainsi par exemple, puisque $\sin 0 = 0$ et $\sin \frac{\pi}{2} = 1$, on a $\arcsin 0 = 0$ et $\arcsin 1 = \frac{\pi}{2}$.

Dérivée En utilisant la formule de dérivation d'une application réciproque vue au $\S 4.8$, puisque $\sin'\theta = \cos\theta \neq 0$ pour tout $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a donc :

$$(\arcsin)'(x) = \frac{1}{\cos(\arcsin x)} \quad \forall x \in]-1,1[$$

ANNEXE F. FONCTIONS TRIGONOMÉTRIQUES INVERSES : ARCSIN, ARCCOS, ARCTAN

Or $\cos^2 a + \sin^2 a = 1$. Donc $\cos a = \pm \sqrt{1 - \sin^2 a}$. Ici, $a = \arcsin x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Donc $\cos(\arcsin x) \in [0,1]$, et est donc positif. D'où

$$(\arcsin)'(x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}} \qquad \forall x \in]-1,1[$$

On remarque au passage que la fonction \arcsin n'est pas dérivable en ± 1 , ce qui est bien cohérent avec les tangentes verticales que l'on observe sur sa courbe représentative en ces points.

F.2 La fonction Arccosinus

La fonction cosinus est continue et strictement décroissante de $[0,\pi]$ vers [-1,1]. On peut donc définir sa fonction réciproque, appelée **Arccosinus**, par :

$$\begin{array}{cccc} \mathsf{Arccos}: & [-1,1] & \longrightarrow & [0,\pi] \\ & y & \longrightarrow & x \text{ tel que } \cos x = y \end{array}$$

On a donc par exemple : $\arccos(-1) = \pi$, $\arccos(0) = \frac{\pi}{2}$, $\arccos(1) = 0$.

Dérivée Comme pour arcsinus, on montre que $(\arccos)'(x) = \frac{-1}{\sqrt{1-x^2}} \quad \forall x \in]-1,1[$

Remarque On voit que $\forall x \in]-1,1[(\arcsin)'(x)+(\arccos)'(x)=\frac{1}{\sqrt{1-x^2}}+\frac{-1}{\sqrt{1-x^2}}=0.$ Donc la fonction $\arcsin x+\arccos x$ est constante sur]-1,1[. La valeur de cette constante peut être déterminée en évaluant la fonction par exemple en x=0: $\arcsin 0+\arccos 0=0+\frac{\pi}{2}=\frac{\pi}{2}.$ On remarque de plus que l'on obtient le même résultat en x=1 et x=-1. D'où finalement :

$$\arcsin x + \arccos x = \frac{\pi}{2} \qquad \forall x \in [-1, 1]$$

F.3 La fonction Arctangente

La fonction tangente est définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$. Elle est impaire, et π -périodique. Elle est continue et strictement croissante, donc bijective, de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ vers \mathbb{R} . On peut donc définir sa fonction

réciproque, appelée Arctangente, par :

$$\begin{array}{ccc} \mathsf{Arctan}: & \mathbb{R} & \longrightarrow & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ & y & \longrightarrow & x \ \, \mathsf{tel} \ \, \mathsf{que} \ \, \mathsf{tan} \, x = y \end{array}$$

Dérivée Pour tout
$$x \in \mathbb{R}$$
, $(\arctan)'(x) = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$

F.4 De nouvelles connaissances en intégration

Ces fonctions circulaires réciproques nous permettent de calculer de nouvelles primitives et intégrales, en se basant sur les deux propriétés suivantes :

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C \qquad \qquad \int \frac{dx}{1+x^2} = \arctan x + C$$

Exemples

• Calcul de
$$I = \int_0^1 \frac{dt}{\sqrt{4-t^2}}$$

En factorisant par 4 le contenu de la racine carrée, on fait apparaître une quantité de la forme $\sqrt{1-u^2}$ au dénominateur. Ainsi : $I=\int_0^1 \frac{dt}{\sqrt{4-t^2}}=\int_0^1 \frac{dt}{2\sqrt{1-(t/2)^2}}$. En faisant le changement de variable u=t/2 (et donc du=1/2 dt), on a (en faisant bien attention aux modifications des bornes) : $\int_{t=0}^{t=1} \frac{dt}{2\sqrt{1-(t/2)^2}}=\int_{u=0}^{u=1/2} \frac{2\,du}{2\sqrt{1-u^2}}$. D'où finalement :

$$I = \left[\arcsin u\right]_{u=0}^{u=1/2} = \arcsin(1/2) - \arcsin 0 = \frac{\pi}{6}$$

• Calcul des primitives de $f(x) = \frac{1}{\sqrt{2x - x^2}}$

On procède de la même façon, en transformant le terme sous la racine pour le mettre sous la forme $1-u^2$. Ainsi $2x-x^2=1-(1-2x+x^2)=1-(x-1)^2$. D'où, en posant u=x-1 (et donc du=dx) :

$$\int f(x) dx = \int \frac{dx}{\sqrt{2x - x^2}} = \int \frac{du}{\sqrt{1 - u^2}} = \arcsin u + C = \arcsin(x - 1) + C$$

ANNEXE F. FONCTIONS TRIGONOMÉTRIQUES INVERSES : ARCSIN, ARCCOS, ARCTAN

• Calcul de
$$J=\int_{-2\sqrt{3}}^{2\sqrt{3}}\frac{dt}{4+t^2}$$

Comme pour les cas précédents, on va transformer le dénominateur pour se ramener à une primitive connue. Il suffit pour cela de le factoriser par 4 pour faire apparaître un terme de la forme $1+u^2: \int_{-2\sqrt{3}}^{2\sqrt{3}} \frac{dt}{4+t^2} = \int_{-2\sqrt{3}}^{2\sqrt{3}} \frac{dt}{4(1+(t/2)^2)}$. D'où en posant u=t/2:

$$J = \int_{t=-2\sqrt{3}}^{t=2\sqrt{3}} \frac{dt}{4\left(1+(t/2)^2\right)} = \int_{u=-\sqrt{3}}^{u=\sqrt{3}} \frac{2\,du}{4\left(1+u^2\right)} = \frac{2}{4} \left[\arctan u\right]_{-\sqrt{3}}^{\sqrt{3}} = \frac{1}{2} \left(\frac{\pi}{3} - \left(-\frac{\pi}{3}\right)\right) = \frac{\pi}{3}$$

• Calcul des primitives de $g(x) = \frac{1}{x^2 + x + 1}$

Là encore, on va transformer le dénominateur, pour faire apparaître un terme de la forme $1+u^2$:

$$x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} = \frac{3}{4} \left[1 + \frac{4}{3}\left(x + \frac{1}{2}\right)^2\right] = \frac{3}{4}[1 + u^2] \qquad \text{avec } u = \sqrt{\frac{4}{3}}\left(x + \frac{1}{2}\right)^2 = \frac{3}{4}[1 + u^2]$$

D'où finalement (en utilisant le fait que $du=\sqrt{\frac{4}{3}}dx$) :

$$\int \frac{dx}{x^2 + x + 1} = \int \frac{dx}{\frac{3}{4}[1 + u^2]} = \int \frac{\sqrt{\frac{3}{4}} du}{\frac{3}{4}[1 + u^2]} = \frac{2}{\sqrt{3}} \arctan u + C = \frac{2}{\sqrt{3}} \arctan \frac{2}{\sqrt{3}} \left(x + \frac{1}{2}\right) + C$$

Annexe G

Formulaires sur les dérivées

G.1 Opérations sur les dérivées

Soient u et v sont des fonctions dérivables. On a les relations :

$$\begin{array}{rcl} (u+v)' &=& u'+v'\\ (\lambda u)' &=& \lambda u' & \forall \lambda \in \mathbb{R}\\ (uv)' &=& u'v+uv' & \text{d'où par récurrence } (u^n)'=n\,u'\,u^{n-1}\\ \left(\frac{u}{v}\right)' &=& \frac{u'v-uv'}{v^2} & \text{donc en particulier } \left(\frac{1}{u}\right)'=\frac{-u'}{u^2}\\ (u\circ v)' &=& (u'\circ v)\times v' & \text{c'est-à-dire}: [u(v(x))]'=u'(v(x))\times v'(x)\\ \text{d'où } (u(x+a))' &=& u'(x+a)\\ \text{et } (u(\alpha x))' &=& \alpha\,u'(\alpha x) \end{array}$$

G.2 Dérivées des fonctions usuelles

	Fonction		Dérivée	Généralisation
	x^{α}	$(\alpha \in \mathbb{R}^*)$	$\alpha x^{\alpha-1}$	$(u^{\alpha}(x))' = \alpha u'(x) u^{\alpha - 1}(x)$
En particulier :	$\frac{1}{x}$		$-\frac{1}{x^2}$	$\left(\frac{1}{u(x)}\right)' = -\frac{u'(x)}{u^2(x)}$
et	\sqrt{x}		$\frac{1}{2\sqrt{x}}$	$\left(\sqrt{u(x)}\right)' = \frac{u'(x)}{2\sqrt{u(x)}}$
	$\sin x$		$\cos x$	$(\sin u(x))' = u'(x)\cos u(x)$
	$\cos x$		$-\sin x$	$(\cos u(x))' = -u'(x)\sin u(x)$
	$\tan x$		$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$(\tan u(x))' = u'(x)(1 + \tan^2 u(x))$
	$\sinh x$		$\cosh x$	$(\sinh u(x))' = u'(x)\cosh u(x)$
	$\cosh x$		$\sinh x$	$(\cosh u(x))' = u'(x) \sinh u(x)$
	$\tanh x$		$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$	$(\tanh u(x))' = u'(x)(1 - \tanh^2 u(x))$
	$\ln x$		$\frac{1}{x}$	$(\ln u(x))' = \frac{u'(x)}{u(x)}$
	e^x		e^x	$\left(e^{u(x)}\right)' = u'(x) e^{u(x)}$
	$\arcsin x$		$\frac{1}{\sqrt{1-x^2}}$	$(\arcsin u(x))' = \frac{u'(x)}{\sqrt{1 - u^2(x)}}$
	$\arccos x$		$\frac{-1}{\sqrt{1-x^2}}$	$(\arccos u(x))' = \frac{-u'(x)}{\sqrt{1 - u^2(x)}}$
	$\arctan x$		$\frac{1}{1+x^2}$	$(\arctan u(x))' = \frac{u'(x)}{1 + u^2(x)}$

Annexe H

Formulaire de primitives usuelles

Il s'agit en quelque sorte du formulaire "réciproque" de celui des dérivées usuelles (Annexe G.2).

	Fonction		Primitives
	x^{α}	$(\alpha \in \mathbb{R}, \alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1} + C$
et aussi	$(x-a)^{\alpha}$	$(\alpha \in \mathbb{R}, \alpha \neq -1)$	$\frac{(x-a)^{\alpha+1}}{\alpha+1} + C$
	$\frac{1}{x}$		$\ln x + C$
et aussi	$\frac{1}{x-a}$		$\ln x-a +C$
	e^x		$e^x + C$
et aussi	$e^{\alpha x}$	$\alpha \neq 0$	$\frac{1}{\alpha}e^{\alpha x} + C$
	$\cos x$		$\sin x + C$
et aussi	$\cos(\alpha x)$	$\alpha \neq 0$	$\frac{1}{\alpha}\sin(\alpha x) + C$
	$\sin x$		$-\cos x + C$
et aussi	$\sin(\alpha x)$	$\alpha \neq 0$	$\frac{-1}{\alpha}\cos(\alpha x) + C$
	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$		$\tan x + C$
	$\frac{1}{1+x^2}$		$\arctan x + C$
et aussi	$\frac{1}{a^2 + x^2}$	$a \neq 0$	$\frac{1}{a}\arctan\frac{x}{a} + C$

ANNEXE H. FORMULAIRE DE PRIMITIVES USUELLES

	Fonction		Primitives
	$\frac{1}{\sqrt{x^2+1}}$		$\ln(x + \sqrt{x^2 + 1}) + C$
et aussi	$\frac{1}{\sqrt{x^2 + a^2}}$	$a \neq 0$	$\ln(x + \sqrt{x^2 + a^2}) + C$
	$\frac{1}{\sqrt{x^2 - 1}}$		$\ln x + \sqrt{x^2 - 1} + C$
et aussi	$\frac{1}{\sqrt{x^2 - a^2}}$	$a \neq 0$	$\ln x + \sqrt{x^2 - a^2} + C$
	$\frac{1}{\sqrt{1-x^2}}$		$\arcsin x + C$
et aussi	$\frac{1}{\sqrt{a^2 - x^2}}$	$a \neq 0$	$\arcsin \frac{x}{a} + C$
	$\cosh x$		$\sinh x + C$
et aussi	$\cosh(\alpha x)$	$\alpha \neq 0$	$\frac{1}{\alpha}\sinh(\alpha x) + C$
	$\sinh x$		$\cosh x + C$
et aussi	$\sinh(\alpha x)$	$\alpha \neq 0$	$\frac{1}{\alpha}\cosh(\alpha x) + C$
	$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$		$\tanh x + C$

NB Ce tableau permet de calculer un grand nombres de primitives si on le combine avec la formule de composition des dérivées :

$$[f(u(x))]' = u'(x) \times f'(u(x))$$

Exemples

- $\begin{array}{lll} \bullet & \textit{fonction } u' \, u^a, \, a \neq -1 & \longrightarrow & \textit{primitives} : \frac{u^{a+1}}{a+1} + C \\ \bullet & \textit{fonction } u' e^u & \longrightarrow & \textit{primitives} : e^u + C \\ \end{array}$
- $\bullet \ \ \textit{fonction} \ \frac{u'}{u} \quad \longrightarrow \quad \textit{primitives} : \ln |u| + C$

Annexe I

Equations différentielles linéaires homogènes d'ordre 1 et 2 à coefficients constants

Définition Une **équation différentielle** est une équation reliant une fonction et ses dérivées successives. **L'inconnue est donc une fonction**. On peut l'écrire de façon très générale sous la forme $F(x, y, y', y'', \dots, y^{(n)}) = 0$, où y(x) est la fonction inconnue.

On va indiquer ici uniquement les solutions d'équations linéaires homogènes à coefficients constants, c'est-à-dire des équations du type

$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \ldots + a_1 y'(x) + a_0 y(x) = 0$$

où a_0, a_1, \ldots, a_n sont des réels.

I.1 Equations différentielles linéaires homogènes d'ordre 1 à coefficients constants

On considère l'équation différentielle

(E)
$$ay'(x) + by(x) = 0$$
 où $a, b \in \mathbb{R}$, et $a \neq 0$

Théorème Les solutions de cette équation différentielle (E) sont les fonctions $y(x) = K e^{-bx/a}$, où K est un réel quelconque.

1.2 Equations différentielles linéaires homogènes d'ordre 2 à coefficients constants

On considère l'équation différentielle

(E)
$$ay''(x) + by'(x) + cy(x) = 0$$
 où $a, b, c \in \mathbb{R}$, et $a \neq 0$

ANNEXE I. EQUATIONS DIFFÉRENTIELLES LINÉAIRES HOMOGÈNES D'ORDRE 1 ET 2 À COEFFICIENTS CONSTANTS

Définition On appelle équation caractéristique (ou polynôme caractéristique) associé.e l'équation du second degré $aX^2 + bX + c = 0$.

Théorème On note $\Delta=b^2-4ac$ le discriminant du polynôme caractéristique. Les solutions de (E) sont :

- Si $\Delta>0$: $y(x)=A\,e^{r_1x}+B\,e^{r_2x}$ avec r_1,r_2 les 2 racines du polynôme caractéristique, et A,B des réels quelconques.
- Si $\Delta=0$: $y(x)=(Ax+B)\,e^{rx}$ avec r la racine du polynôme caractéristique, et A,B des réels quelconques.
- Si $\Delta < 0$: $y(x) = [A \cos \beta x + B \sin \beta x] e^{\alpha x}$ avec $\alpha = -\frac{b}{2a}$ et $\beta = \frac{\sqrt{-\Delta}}{2a}$ et A, B des réels quelconques.

Autre formulation : α et β sont les nombres réels tels que $r_1=\alpha+i\beta$ et $r_2=\alpha-i\beta$ sont les deux racines du polynôme caractéristique.