Chapter 5: Classification Problems

5.1 Classification Overview

5.3 Credit Classification

```
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
credit_df = pd.read_csv( "German Credit Data.csv" )
credit df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):
checkin_acc
                     1000 non-null object
duration
                     1000 non-null int64
credit_history
                   1000 non-null object
                     1000 non-null int64
amount
savings_acc
                     1000 non-null object
present_emp_since 1000 non-null object
inst rate
                     1000 non-null int64
personal_status residing since
                     1000 non-null object
                     1000 non-null int64
residing_since
                     1000 non-null int64
                     1000 non-null object
inst plans
num_credits
                     1000 non-null int64
                     1000 non-null object
job
                     1000 non-null int64
status
dtypes: int64(7), object(7)
memory usage: 109.5+ KB
```

<pre>credit_df.iloc[0:5,1:7]</pre>

	duration	credit_history	amount	savings_acc	present_emp_since	inst_rate
0	6	A34	1169	A65	A75	4
1	48	A32	5951	A61	A73	2
2	12	A34	2096	A61	A74	2
3	42	A32	7882	A61	A74	2
4	24	A33	4870	A61	A73	3

credit_df.iloc[0:5,7:]

	personal_status	residing_since	age	inst_plans	num_credits	job	status
0	A93	4	67	A143	2	A173	0
1	A92	2	22	A143	1	A173	1
2	A93	3	49	A143	1	A172	0
3	A93	4	45	A143	1	A173	0
4	A93	4	53	A143	2	A173	1

```
credit_df.status.value_counts()
0
     700
1
     300
Name: status, dtype: int64
X_features = list( credit_df.columns )
X_features.remove( 'status' )
X features
['checkin acc',
 'duration',
 'credit history',
 'amount',
 'savings_acc',
 'present emp since',
 'inst_rate',
 'personal status',
 'residing_since',
 'age',
 'inst_plans',
 'num credits',
 'job']
```

5.3.1 Encoding Categorical Features

```
list(encoded credit df.columns)
['duration',
 'amount',
 'inst rate',
 'residing since',
 'age',
 'num credits',
 'checkin acc A12',
 'checkin acc A13',
 'checkin acc A14',
 'credit history A31',
 'credit history A32',
 'credit history A33',
 'credit_history_A34',
 'savings acc A62',
 'savings acc A63',
 'savings acc A64',
 'savings acc A65',
 'present emp since A72',
 'present_emp_since_A73',
 'present_emp_since_A74',
 'present emp since A75',
 'personal status A92',
 'personal status A93',
 'personal_status_A94',
 'inst plans A142',
 'inst plans A143',
 'job_A172',
 'job A173',
 'job_A174']
encoded credit df[['checkin acc A12',
                    'checkin acc A13',
```

	·	·	
	checkin_acc_A12	checkin_acc_A13	checkin_acc_A14
0	0	0	0
1	1	0	0
2	0	0	1
3	0	0	0

'checkin acc A14']].head(5)

0

```
import statsmodels.api as sm

Y = credit_df.status
X = sm.add_constant( encoded_credit_df )
```

5.3.2 Splitting into Train and Validation Sets

0

4 0

5.3.3 Building Logistic Regression Model

```
import statsmodels.api as sm
logit = sm.Logit(y_train, X_train)
logit_model = logit.fit()
```

Optimization terminated successfully.

Current function value: 0.488938

Iterations 6

5.3.4 Printing Model Summary

logit_model.summary2()

Model:	Logit	Pseudo R-squared:	0.198
Dependent Variable:	status	AIC:	744.5132
Date:	2019-04-23 21:07	BIC:	881.0456
No. Observations:	700	Log-Likelihood:	-342.26
Df Model:	29	LL-Null:	-426.75
Df Residuals:	670	LLR p-value:	1.0630e-21
Converged:	1.0000	Scale:	1.0000
No. Iterations:	6.0000		

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
const	-0.1511	1.1349	-0.1331	0.8941	-2.3754	2.0733
duration	0.0206	0.0104	1.9927	0.0463	0.0003	0.0409
amount	0.0001	0.0000	2.3765	0.0175	0.0000	0.0002
inst_rate	0.3064	0.0986	3.1083	0.0019	0.1132	0.4996
residing_since	0.0967	0.0920	1.0511	0.2932	-0.0836	0.2771
age	-0.0227	0.0103	-2.2131	0.0269	-0.0428	-0.0026
num_credits	0.2854	0.2139	1.3342	0.1821	-0.1338	0.7045
checkin_acc_A12	-0.4126	0.2391	-1.7260	0.0843	-0.8812	0.0559
checkin_acc_A13	-0.9053	0.4338	-2.0868	0.0369	-1.7556	-0.0550
checkin_acc_A14	-1.6052	0.2586	-6.2073	0.0000	-2.1120	-1.0983
credit_history_A31	0.1532	0.5795	0.2643	0.7916	-0.9827	1.2890
credit_history_A32	-0.4960	0.4411	-1.1245	0.2608	-1.3604	0.3685
credit_history_A33	-0.8881	0.5022	-1.7683	0.0770	-1.8724	0.0962
credit_history_A34	-1.4124	0.4528	-3.1190	0.0018	-2.2999	-0.5249
savings_acc_A62	-0.0496	0.3208	-0.1545	0.8772	-0.6782	0.5791
savings_acc_A63	-0.6640	0.4818	-1.3779	0.1682	-1.6084	0.2804
savings_acc_A64	-1.1099	0.6019	-1.8439	0.0652	-2.2896	0.0699
savings_acc_A65	-0.6061	0.2745	-2.2080	0.0272	-1.1441	-0.0681
present_emp_since_A72	0.0855	0.4722	0.1810	0.8564	-0.8401	1.0110
present_emp_since_A73	-0.0339	0.4492	-0.0754	0.9399	-0.9142	0.8465
present_emp_since_A74	-0.3789	0.4790	-0.7910	0.4289	-1.3178	0.5600
present_emp_since_A75	-0.2605	0.4554	-0.5721	0.5673	-1.1532	0.6321
personal_status_A92	-0.0069	0.4841	-0.0142	0.9887	-0.9557	0.9419
personal_status_A93	-0.4426	0.4764	-0.9291	0.3528	-1.3762	0.4911
personal_status_A94	-0.3080	0.5554	-0.5546	0.5792	-1.3967	0.7806
inst_plans_A142	-0.2976	0.5157	-0.5772	0.5638	-1.3084	0.7131

				<u> </u>		
inst_plans_A143	-0.4458	0.2771	-1.6086	0.1077	-0.9889	0.0974
job_A172	-0.0955	0.7681	-0.1243	0.9011	-1.6009	1.4100
job_A173	-0.0198	0.7378	-0.0269	0.9786	-1.4658	1.4262
job_A174	-0.0428	0.7371	-0.0581	0.9537	-1.4876	1.4019

5.3.5 Model Dignostics

```
def get_significant_vars( lm ):
    var_p_vals_df = pd.DataFrame( lm.pvalues )
    var_p_vals_df['vars'] = var_p_vals_df.index
    var_p_vals_df.columns = ['pvals', 'vars']
    return list( var p vals df[var p vals df.pvals <= 0.05]['vars'] )</pre>
significant vars = get_significant_vars( logit_model )
significant vars
['duration',
 'amount',
 'inst rate',
 'age',
 'checkin acc A13',
 'checkin acc A14',
 'credit history A34',
 'savings acc A65']
final logit = sm.Logit( y train,
            sm.add constant( X train[significant vars] ) ).fit()
Optimization terminated successfully.
         Current function value: 0.511350
         Iterations 6
```

final_logit.summary2()

Model:	Logit	Pseudo R-squared:	0.161
Dependent Variable:	status	AIC:	733.8898
Date:	2019-04-23 21:07	BIC:	774.8495
No. Observations:	700	Log-Likelihood:	-357.94
Df Model:	8	LL-Null:	-426.75
Df Residuals:	691	LLR p-value:	7.4185e-26
Converged:	1.0000	Scale:	1.0000
No. Iterations:	6.0000		

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
const	-0.8969	0.4364	-2.0551	0.0399	-1.7523	-0.0415
duration	0.0197	0.0098	2.0033	0.0451	0.0004	0.0390
amount	0.0001	0.0000	2.3205	0.0203	0.0000	0.0002
inst_rate	0.2811	0.0929	3.0264	0.0025	0.0991	0.4632
age	-0.0216	0.0089	-2.4207	0.0155	-0.0392	-0.0041
checkin_acc_A13	-0.8038	0.4081	-1.9697	0.0489	-1.6037	-0.0040
checkin_acc_A14	-1.5452	0.2187	-7.0649	0.0000	-1.9738	-1.1165
credit_history_A34	-0.8781	0.2319	-3.7858	0.0002	-1.3327	-0.4235
savings_acc_A65	-0.5448	0.2581	-2.1108	0.0348	-1.0507	-0.0389

5.3.6 Predicting on Test Data

y_pred_df.sample(10, random_state = 42)

	actual	predicted_prob
557	1	0.080493
798	0	0.076653
977	0	0.345979
136	0	0.249919
575	0	0.062264
544	0	0.040768
332	1	0.833093
917	1	0.370667
678	0	0.388392
363	0	0.088952

	actual	predicted_prob	predicted
557	1	0.080493	0
798	0	0.076653	0
977	0	0.345979	0
136	0	0.249919	0
575	0	0.062264	0
544	0	0.040768	0
332	1	0.833093	1
917	1	0.370667	0
678	0	0.388392	0
363	0	0.088952	0

5.3.7 Creating a Confusion Matrix

```
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
from sklearn import metrics
```


5.3.8 Measuring Accuracies

		precision	recall	f1-score	support
	0	0.76 0.59	0.90 0.33	0.82 0.42	209 91
	_	0.33	0.33	0.12	71
micro	avg	0.73	0.73	0.73	300
macro	avg	0.67	0.61	0.62	300
weighted	avg	0.70	0.73	0.70	300

5.3.9 ROC & AUC

```
def draw_roc( actual, probs ):
    fpr, \
    thresholds = metrics.roc curve( actual,
                                    probs,
                                    drop_intermediate = False )
    auc score = metrics.roc auc score( actual, probs )
    plt.figure(figsize=(8, 6))
    plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score )
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
    plt.ylabel('True Positive Rate')
    plt.legend(loc="lower right")
    plt.show()
    return fpr, tpr, thresholds
```


5.3.10 Finding Optimal Cutoff

5.3.10.1 Youden's index

	fpr	thresholds	tpr	diff
160	0.397129	0.221534	0.846154	0.449025
161	0.401914	0.216531	0.846154	0.444240
162	0.406699	0.215591	0.846154	0.439455
159	0.397129	0.223980	0.835165	0.438036
166	0.421053	0.207107	0.857143	0.436090

		precision	recall	f1-score	support
		-			
	0	0.90	0.60	0.72	209
	1	0.48	0.85	0.61	91
micro	avg	0.68	0.68	0.68	300
macro	avg	0.69	0.72	0.67	300
weighted	avg	0.77	0.68	0.69	300

5.3.10.2 Cost Based Approach

```
def get_total_cost( actual, predicted, cost_FPs, cost_FNs ):
    cm = metrics.confusion_matrix( actual, predicted, [1,0] )
    cm_mat = np.array( cm )
    return cm_mat[0,1] * cost_FNs + cm_mat[1,0] * cost_FPs
```

```
cost_df = pd.DataFrame( columns = ['prob', 'cost'])
```

cost_df.sort_values('cost', ascending = True)[0:5]

	prob	cost
4 0.14		150.0
12	0.22	153.0
2	0.12	154.0
10	0.20	154.0
9	0.19	156.0

```
y_pred_df['predicted_using_cost'] = y_pred_df.predicted_prob.map(
    lambda x: 1 if x > 0.14 else 0)
```


5.4 Gain Chart and Lift Chart

5.4.1 Loading and Preparing the Dataset

```
import pandas as pd
bank_df = pd.read_csv( 'bank.csv' )
bank_df.head( 5 )
```

```
housing-
                                                                      personal-
                                                                                   curre
                     marital | education | default | balance
  age
                                                                            Ioan campai
                                                                loan
0 30
       unemployed
                     married
                              primary
                                          no
                                                  1787
                                                                      no
                                                                                 1
                                                            no
1
  33
       services
                     married secondary
                                          no
                                                   4789
                                                            yes
                                                                      yes
                                                                                 1
2
 35
       management
                     single
                              tertiary
                                          no
                                                   1350
                                                            yes
                                                                      no
                                                                                 1
3
  30
                                                  1476
                                                                                 4
       management
                     married
                              tertiary
                                          no
                                                            yes
                                                                      yes
                                                  0
                                                                                  1
  59
       blue-collar
                     married
                              secondary
                                          no
                                                            yes
                                                                      no
```

```
bank df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 11 columns):
age
                     4521 non-null int64
job
                     4521 non-null object
marital
                     4521 non-null object
                     4521 non-null object
education
default
                     4521 non-null object
balance
                     4521 non-null int64
housing-loan
                     4521 non-null object
personal-loan
                     4521 non-null object
current-campaign
                     4521 non-null int64
                     4521 non-null int64
previous-campaign
subscribed
                     4521 non-null object
dtypes: int64(4), object(7)
memory usage: 388.6+ KB
X_features = list( bank_df.columns )
X features.remove( 'subscribed' )
X features
['age',
 'job',
 'marital',
 'education',
 'default',
 'balance',
 'housing-loan',
 'personal-loan',
 'current-campaign',
 'previous-campaign']
encoded bank df = pd.get dummies( bank df[X features],
                                  drop_first = True )
Y = bank df.subscribed.map( lambda x: int( x == 'yes') )
```

X = encoded bank df

5.4.2 Building the Logistic Regression Model

```
logit_model = sm.Logit( Y, sm.add_constant( X ) ).fit()
```

Optimization terminated successfully.

Current function value: 0.335572

Iterations 7

logit_model.summary2()

Model:	Logit	Pseudo R-squared:	0.061	
Dependent Variable:	subscribed	AIC:	3082.2384	
Date:	2019-04-23 21:07	BIC:	3236.2341	
No. Observations:	4521	Log-Likelihood:	-1517.1	
Df Model:	23	LL-Null:	-1615.5	
Df Residuals:	4497	LLR p-value:	1.4866e-29	
Converged:	1.0000	Scale:	1.0000	
No. Iterations:	7.0000			

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
const	-1.7573	0.3799	-4.6251	0.0000	-2.5019	-1.0126
age	0.0078	0.0058	1.3395	0.1804	-0.0036	0.0191
balance	-0.0000	0.0000	-0.2236	0.8231	-0.0000	0.0000
current-campaign	-0.0905	0.0238	-3.8042	0.0001	-0.1371	-0.0439
previous-campaign	0.1414	0.0212	6.6569	0.0000	0.0998	0.1830
job_blue-collar	-0.3412	0.2000	-1.7060	0.0880	-0.7331	0.0508
job_entrepreneur	-0.2900	0.3161	-0.9175	0.3589	-0.9096	0.3295
job_housemaid	-0.0166	0.3339	-0.0497	0.9603	-0.6711	0.6379
job_management	-0.0487	0.1984	-0.2455	0.8061	-0.4375	0.3401
job_retired	0.5454	0.2503	2.1794	0.0293	0.0549	1.0360
job_self-employed	-0.2234	0.2895	-0.7715	0.4404	-0.7909	0.3441
job_services	-0.2248	0.2245	-1.0012	0.3167	-0.6648	0.2152
job_student	0.3888	0.3181	1.2223	0.2216	-0.2346	1.0122
job_technician	-0.2101	0.1874	-1.1213	0.2622	-0.5773	0.1571
job_unemployed	-0.3723	0.3336	-1.1162	0.2643	-1.0261	0.2815
job_unknown	0.3193	0.4620	0.6913	0.4894	-0.5861	1.2248
marital_married	-0.4012	0.1440	-2.7857	0.0053	-0.6835	-0.1189
marital_single	-0.0463	0.1676	-0.2763	0.7823	-0.3749	0.2822
education_secondary	0.2128	0.1680	1.2670	0.2052	-0.1164	0.5420
education_tertiary	0.3891	0.1935	2.0103	0.0444	0.0098	0.7684
education_unknown	-0.1956	0.2927	-0.6682	0.5040	-0.7693	0.3781
default_yes	0.2286	0.3670	0.6228	0.5334	-0.4908	0.9479
housing-loan_yes	-0.5355	0.1024	-5.2273	0.0000	-0.7362	-0.3347
personal-loan_yes	-0.7139	0.1689	-4.2268	0.0000	-1.0449	-0.3829

```
significant_vars = get_significant_vars( logit_model )
significant vars
['const',
 'current-campaign',
 'previous-campaign',
 'job_retired',
 'marital married',
 'education_tertiary',
 'housing-loan yes',
 'personal-loan yes']
X features = ['current-campaign',
               'previous-campaign',
               'job retired',
               'marital_married',
               'education_tertiary',
               'housing-loan yes',
               'personal-loan yes']
logit model 2 = sm.Logit( Y, sm.add constant( X[X features] ) ).fit()
Optimization terminated successfully.
         Current function value: 0.337228
         Iterations 7
```

logit_model_2.summary2()

Model:	Logit	Pseudo R-squared:	0.056
Dependent Variable:	subscribed	AIC:	3065.2182
Date:	2019-04-23 21:07	BIC:	3116.5501
No. Observations:	4521	Log-Likelihood:	-1524.6
Df Model:	7	LL-Null:	-1615.5
Df Residuals:	4513	LLR p-value:	8.1892e-36
Converged:	1.0000	Scale:	1.0000
No. Iterations:	7.0000		

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
const	-1.4754	0.1133	-13.0260	0.0000	-1.6974	-1.2534
current-campaign	-0.0893	0.0236	-3.7925	0.0001	-0.1355	-0.0432
previous-campaign	0.1419	0.0211	6.7097	0.0000	0.1004	0.1833
job_retired	0.8246	0.1731	4.7628	0.0000	0.4853	1.1639
marital_married	-0.3767	0.0969	-3.8878	0.0001	-0.5667	-0.1868
education_tertiary	0.2991	0.1014	2.9500	0.0032	0.1004	0.4978
housing-loan_yes	-0.5834	0.0986	-5.9179	0.0000	-0.7767	-0.3902
personal-loan_yes	-0.7025	0.1672	-4.2012	0.0000	-1.0302	-0.3748

```
num_per_decile = int( len( sorted_predict_df ) / 10 )
print( "Number of observations per decile: ", num_per_decile)
```

Number of observations per decile: 452

```
def get_deciles( df ):
    df['decile'] = 1

idx = 0

for each_d in range( 0, 10 ):
        df.iloc[idx:idx+num_per_decile, df.columns.get_loc('decile')] = each_d
        idx += num_per_decile

df['decile'] = df['decile'] + 1

return df
```

```
deciles_predict_df = get_deciles( sorted_predict_df )
```

deciles predict df[0:10]

	predicted_prob	actual	decile
3682	0.864769	0	1
97	0.828031	0	1
3426	0.706809	0	1
1312	0.642337	1	1
3930	0.631032	1	1
4397	0.619146	0	1
2070	0.609129	0	1
3023	0.573199	0	1
4080	0.572364	0	1
804	0.559350	0	1

```
gain_lift_df
```

	decile	gain	gain_percentage
0	1	125	23.992322
1	2	83	39.923225
2	3	73	53.934741
3	4	53	64.107486
4	5	31	70.057582
5	6	46	78.886756
6	7	37	85.988484
7	8	28	91.362764
8	9	25	96.161228
9	10	20	100.000000

```
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
```


Calculating Lift

gain_lift_df

	decile	gain	gain_percentage	lift
0	1	125	23.992322	2.399232
1	2	83	39.923225	1.996161
2	3	73	53.934741	1.797825
3	4	53	64.107486	1.602687
4	5	31	70.057582	1.401152
5	6	46	78.886756	1.314779
6	7	37	85.988484	1.228407
7	8	28	91.362764	1.142035
8	9	25	96.161228	1.068458
9	10	20	100.000000	1.000000

```
plt.figure( figsize = (8,4))
plt.plot( gain_lift_df['decile'], gain_lift_df['lift'], '-' )
plt.show()
```


5.5 Decision Trees

5.5.1 Split the dataset

5.5.2 Building Decision Tree classifier using Gini Criteria

5.5.3 Measuring Test Accuracy

splitter='best')

```
tree_predict = clf_tree.predict( X_test )
metrics.roc_auc_score( y_test, tree_predict )
```

0.5835743204164258

5.5.4 Displaying the Tree

5.5.5 Understanding Gini Impurity

```
gini_node_1 = 1 - pow(491/700, 2) - pow (209/700, 2)
print( round( gini_node_1, 4) )

0.4189

X_test.shape
(300, 29)
```

5.5.6 Building Decision Tree using Entropy Criteria

Calculating entropy impurity

```
import math
entropy_node_1 = - (491/700) * math.log2(491/700) - (209/700) * math.log2(209/70
0)
print( round( entropy_node_1, 2) )
```

0.88

Measuring test accuracy

```
tree_predict = clf_tree_entropy.predict( X_test )
metrics.roc_auc_score( y_test, tree_predict )
```

0.5763972869236027

5.5.7 Finding optimal criteria and max_depth

```
from sklearn.model selection import GridSearchCV
tuned parameters = [{'criterion': ['gini', 'entropy'],
                      'max depth': range(2,10)}]
clf tree = DecisionTreeClassifier()
clf = GridSearchCV(clf tree,
                 tuned parameters,
                 cv=10,
                 scoring='roc auc')
clf.fit(X train, y train )
/Users/manaranjan/anaconda/lib/python3.5/site-packages/sklearn/model
selection/ search.py:841: DeprecationWarning: The default of the `i
id` parameter will change from True to False in version 0.22 and wil
1 be removed in 0.24. This will change numeric results when test-set
sizes are unequal.
  DeprecationWarning)
GridSearchCV(cv=10, error score='raise-deprecating',
       estimator=DecisionTreeClassifier(class weight=None, criterion
='gini', max depth=None,
            max features=None, max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min_samples_leaf=1, min_samples_split=2,
            min weight fraction leaf=0.0, presort=False, random stat
e=None,
            splitter='best'),
       fit params=None, iid='warn', n jobs=None,
       param grid=[{'max depth': range(2, 10), 'criterion': ['gini',
'entropy']}],
       pre dispatch='2*n jobs', refit=True, return train score='war
n',
       scoring='roc auc', verbose=0)
clf.best_score_
0.6824299319727891
clf.best params
{'criterion': 'gini', 'max_depth': 2}
```