Illinois Institute of Technology

CS330 Activities for Lecture 15 *

6.1 Linear Recurrence Relations

In a divide and conquer recurrence relation T(n) = a T(n/b) + f(n)"a" represents "f(n)" represents "f(n)" represents

Linear Homogeneous Recurrence Relation

- We'll study how to solve one class of recurrence relations, the linear homogeneous ones. In this kind of relation, each number in a sequence is a linear combination of numbers that occur earlier in the sequence.
- Specifically, a linear homogeneous recurrence relation of degree k has the following form: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$, where c_1, c_2, \ldots are constants that do not depend on n and $c_k \neq 0$.
 - The "linear" part of the definition refers to only using constants as coefficients.
 - The "homogeneous" part of the definition refers to only using previous terms in the equation.
- Some examples:

• $a_n = 1.02 \ a_{n-1}$ Linear (constant coefficients), homogenous, degree 1

• $a_n = 1.02 a_{n-1} + 2^{n-1}$ Linear, non-homogenous (due to term 2^{n-1}), degree 1

• $a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2^{n-3}$ Linear, non-homogenous (due to term 2^{n-3}), degree 3

• $a_n = n \, a_{n-1} + n \, a_{n-2} + a_{n-1} \, a_{n-2}$ Nonlinear (due to non-constant coefficient a_{n-1}), homogenous, degree 2

- To summarize, the special form we will be solving has constant coefficients, is homogeneous and has some degree k.
 - $\bullet \qquad a_n = c_1 \, a_{n-1} + c_2 \, a_{n-2} + \dots + c_k \, a_{n-k}$
- The solution uses exponentials: We assume $a_n = b^n$ for some b. Treating b as a variable, we get a polynomial and solve it for b. We find the constants $c_1, c_2, ...$ with the help of the initial conditions.

Solution Process

1. Put all a_i 's on the left side of the equation, everything else on the right. If right side is not "= 0", the recurrence is non-homogeneous: stop.

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - \dots - c_k a_{n-k} = 0$$

2. Assume a solution of the form $a_n = b^n$ and substitute the solution into the equation.

$$b^{n} - c_{1} b^{n-1} - c_{2} b^{n-2} - \dots - c_{k} b^{n-k} = 0$$

3. Factor out the lowest power of b and eliminate it to obtain the *characteristic polynomial*.

$$b^{n-k} (b^k - c_1 b^{k-1} - c_2 b^{k-2} - \dots - c_k) = 0$$

$$b^k - c_1 b^{k-1} - c_2 b^{k-2} - \dots - c_k = 0$$

- 4. The characteristic polynomial has degree k. Find its k roots, r_1, r_2, \ldots, r_k (we assume they are all reals).
- 5. If the roots are distinct, the general solution is $a_n = c_1 r_1^n + c_2 r_2^n + ... + c_k r_k^n$
- 6. The coefficients $c_1, c_2, ..., c_k$ are found by enforcing the initial conditions.

Example 1: $a_{n+2} = 3$ a_{n+1} , $a_0 = 4$

- Bring subscripted variables to one side; we get a_{n+2} 3 a_{n+1} = 0
- Substitute $a_n = b^n$ to get $b^{n+2} 3b^{n+1} = 0$ and factor out b^{n+1} to get $b^2 3 = 0$
- Find the root of the characteristic polynomial; we get $r_1 = 3$
- Compute the general solution: $a_n = c 3^n$

^{*} Some material from MATH230 Dr. Robert Ellis IIT-AMAT, zyBooks Disc. Math., and Disc. Math. and its Appl., Rosen (7th Ed.) is included under the academic/nonprofit Fair Use exception of US Copyright Law. This document must NOT be distributed beyond participants in IIT's CS330.

- Find the constant based on the initial conditions: $a_0 = 4$ and $a_0 c 3^0$, so c = 4
- Produce the specific solution: $a_n = 4(3^n)$

Multiple roots

- We've seen that distinct roots produce different terms, as in $c_1 r_1^n + c_2 r_2^n$
- If a root r has multiplicity m, then we still get m terms but they become linear combinations of r^n , $n r^n$, $n^2 r^n$, ..., $n^{m-1} r^n$.
- E.g. for the characteristic polynomial $(x-5)^3$, we get $a_n = c_1 5^n + c_2 n 5^n + c_3 n^2 5^n$.

Example 2:
$$a_n = 6a_{n-1} - 9a_{n-2}$$
, $a_0 = a_1 = 1$

- Recurrence system: a_n 6 a_{n-1} + 9 a_{n-2} = 0
- Find roots of characteristic polynomial $b^2 6b + 9 = 0$: $(b-3)^2 = 0$
- Roots are equal: $b_1 = b_2 = 3$
- General solution is $a_n = c_1 3^n + c_2 n 3^n$
- Solve for coefficients:
 - $a_0 = 1 = c_1 + 0$
 - $a_0 = 1 = c_1 + 0$ $c_1 = -1$ $a_1 = 1 = 1(3^1) + c_2(1)(3^1)$ $c_2 = -\frac{2}{3}$
- Solution: $a_n = (-1)3^n + (-2/3) n 3^n$
- 1. What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2$ and $a_1 = 7$?

2. What is the solution of the recurrence relation $a_n = 6 a_{n-1} - 9 a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

3. What is the solution of the recurrence relation $a_n = 6$ $a_{n-1} - 11$ $a_{n-2} + 6$ a_{n-3} with $a_0 = 2$, $a_1 = 5$, and $a_2 = 15$?