$\sqrt{1} = 1$	$\sqrt{4}=2$	$\sqrt{9} = 3$	$\sqrt{16} = 4$	$\sqrt{25} = 5$
$\sqrt{36} = 6$	$\sqrt{49} = 7$	$\sqrt{64} = 8$	$\sqrt{81} = 9$	$\sqrt{100} = 10$
$\sqrt{121} = 11$	$\sqrt{144} = 12$	$\sqrt{169} = 13$	$\sqrt{196} = 14$	$\sqrt{225} = 15$
$\sqrt{256} = 16$	$\sqrt{289} = 17$	$\sqrt{324} = 18$	$\sqrt{361} = 19$	$\sqrt{400} = 20$
$\sqrt{441} = 21$	$\sqrt{484} = 22$	$\sqrt{529} = 23$	$\sqrt{576} = 24$	$\sqrt{625} = 25$
$\sqrt{676} = 26$	$\sqrt{729} = 27$	$\sqrt{784} = 28$	$\sqrt{841} = 29$	$\sqrt{900} = 30$

	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto
Heoretizio 1	come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$,
ESCICIZIO I	isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i
	coefficienti
	Calcolare il det di una 2x2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo
C	orlarla, calcoliamo il det della 3x3 e dobbiamo farlo per tutte le possibili 3x3
Esercizio 2	a partire da quella $2x2$, le λ in comune sono quelle che $\mathrm{rk}(A)=2$, tutte le altre
	rk(A) = 3

Qui ci andranno gli esercizi già fatti