Chapter 4: Networking and the Internet

Computer Science: An Overview Tenth Edition

by J. Glenn Brookshear

What is a computer network?

- How many devices? 2 or more
- Connected
- Sharing resources

Element of a computer network

- Sender / Receiver
- Messages (signal)
- Media
- Protocol (rules)

LANs and WANs - Geographical coverage

- LANs (local area networks)
 - A single geographical location, such as office building, school, etc.
 - Typically High speed and cheaper.
- WANs (wide area networks)
 - Spans more than one geographical location often connecting separated LANs
 - Slower
 - Costly hardware, routers, dedicated leased lines and complicated implementation procedures.

Network Topologies

- Topology Physical and logical network layout
 - Physical actual layout of the computer cables and other network devices
 - Logical illustrates how data flows within a network, regardless of its physical design.
 - Common topologies:
 - Bus, ring, star, mesh and wireless
 - Token-based and Shared media

Topology

- Ring
 - Token Ring

http://belajarramerame.blogspot.com/2008/08/protokol-lan.html

Topology

- Bus
 - Ethernet
 - CSMA/CD (Carrier Sense, Multiple Access with Collision Detection)

Topology (logical)

- Star
 - Wireless

CSMA/CA

Carrier Sense,
 Multiple Access
 with Collision
 Avoidance

Hidden terminal problem

Various topologies

Wikipedia

How to build a LAN?

- Ethernet
 - Interface (NIC)
 - Media (coaxial cable, twisted-pair cables or fiber cable)
 - 10BASE-T, 100BASE-TX and 1000BASE-T

Connecting Networks

- Repeater: Extends a network
- Bridge: Connects two compatible networks
- Switch: Connect several compatible networks
- Router: Connects two incompatible networks resulting in a network of networks called an internet

Hub

- the simplest of these devices
- cannot filter data so data packets are sent to all connected devices/computers
- Bandwidth of each port: Total bandwidth / W (numbers of ports)

Switch

- maintains a MAC address table
- filters traffic on the LAN
- looks at the destination of the packet before forwarding
- Each port: Total bandwidth

Figure 4.4 **Building a large bus network from smaller ones**

a. A repeater or bridge connecting two buses

b. A switch connecting multiple buses

Router

- uses the IP address to forward packets
- forward packets based on software
- support different WAN technologies but switches do not
- Wireless Routers have Access Point built in

4-19

Figure 4.5 Routers connecting two WiFi networks and an Ethernet network to form an internet

Inter-process Communication

- Client-server
 - One server, many clients
 - Server must execute continuously
 - Client initiates communication
- Peer-to-peer (P2P)
 - Two processes communicating as equals
 - Peer processes can be short-lived

Protocols

- They define how networks are connected
- They define how computers communicates with each other
- They define the data format of the communication over the network

CSMA/CD vs CSMA/CA

- It is used in Ethernet
- It is used in WLan
- The differences between the two? Why?
- Are they still used today?

The In An inte An Opte Project through a portion

History of the Internet

Internet Architecture

- Internet Service Provider (ISP)
 - Tier-1
 - Tier-2
- Access ISP: Provides connectivity to the Internet
 - Traditional telephone (dial up connection)
 - Cable connections
 - DSL
 - Wireless

Figure 4.7 Internet Composition

Package-shipping example

Internet Software Layers

- Application: Constructs message with address
- Transport: Chops message into packets
- Network: Handles routing through the Internet
- Link: Handles actual transmission of packets

Layered Approach: Why?

- Each task in different layer can be handled more easily without considering the details of the tasks in other layers.
- Methods in different layers can be changed easily.
 - For example, different applications can use the same transport protocol.

Figure 4.14 Following a message through the Internet

Open Systems Interconnection model (OSI)

 A conceptual model that characterizes and standardizes the internal functions of a communication system by partitioning it into abstraction layers.

OSI Model				
Data unit Laye		Layer	Function	
	Data	7. Application	Network process to application	
Host		6. Presentation	Data representation, encryption and decryption, convert machine dependen to machine independent data	
layers		5. Session	Interhost communication, managing sessions between applications	
	Segments	4. Transport	Reliable delivery of segments between points on a network.	
Media	Packet/Datagram	3. Network	Addressing, routing and (not necessarily reliable) delivery of datagrams between points on a network.	
layers	Bit/Frame	2. Data link	A reliable direct point-to-point data connection.	
	Bit	1. Physical	A (not necessarily reliable) direct point-to-point data connection.	

网络协议 应用层

DHCP DNS FTP Gopher HTTP IMAP4 IRC NNTP XMPP POP3 SIP SMT

P SNMP SSH TELNET RPC RTCP RTP RTSP SDP SOAP GTP STU N NTP SSDP 更多

传输层

TCP UDP TLS DCCP SCTP RSVP PPTP 更多

网络层

<u>IP (IPv4 · IPv6) · </u> ICMP ICMPv6 IGMP RIP OSPF BGP IS-IS IPsec 更多

数据链路层

802.11 <u>802.16</u> <u>Wi-Fi</u> <u>WiMAX ARP RARP ATM DTM 令牌环 以太</u> <u>网 FDDI 帧中继 GPRS EVDO HSPA HDLC PPP L2TP ISDN 更多</u>

<u>以太网</u> 调制解调器 PLC(Power Line Communication) SONET/SDH G.709 光导纤

维·同轴电缆·双绞线·更多

物理层

• Questions?

TCP/IP Protocol Suite

- TCP/IP is a family of protocols for communication between computers.
- Transport Layer
 - -TCP
 - UDP
- Network Layer
 - IP (IPv4 and IPv6)

TCP

- Windowing
- vs UDP

IP Address

- An Internet Protocol address (IP address) is a numerical label assigned to each device (e.g., computer, printer) participating in a computer network that uses the Internet Protocol for communication

202.112.0.36

Test Internet Connection

- Find IP address
 - ipconfig /all
- Test Internet connection
 - ping IP address or web address

IPv4 and IPv6

- Two versions of the Internet Protocol (IP):
 IP Version 4 and IP Version 6
- In IPv4 an address consists of 32 bits which limits the address space to 4294967296 (2³²) possible unique addresses.
- This next generation of the Internet Protocol, is. The address size was increased from 32 to 128.

Internet Corporation for Assigned Names & Numbers (ICANN)

- Allocates IP addresses to ISPs who then assign those addresses within their regions.
- Oversees the registration of domains and domain names.

IP地址

• IP地址=网络ID+主机ID

- A类: 1.0.0.0 到126.255.255.255

- B类: 128.0.0.0到191.255.255.255

- C类: 192.0.0.0到223.255.255.255

公有地址-私有地址

- NAT (Network Address Translation)
- 私有地址
 - A类 10.0.0.0 --10.255.255.255
 - B类 172.16.0.0--172.31.255.255
 - C类 192.168.0.0--192.168.255.255

Subnet

- Default Gateway
- DHCP (Dynamic Host Configuration Protocol)
- Subnet Mask

Physical Address	08-ED-B9-35-2F-45
DHCP Enabled	Yes
IPv4 Address	192.168.1.111
IPv4 Subnet Mask	255.255.255.0
Lease Obtained	2014年11月3日 10:02:06
Lease Expires	2014年11月3日 16:14:06
IPv4 Default Gateway	192.168.1.1
IPv4 DHCP Server	192.168.1.1
IPv4 DNS Servers	202.120.190.208

202.120.190.108

IP address classes

<< Back

Class	1 st Octet Decimal Range	1 st Octet High Order Bits	Network/Host ID (N=Network, H=Host)	Default Subnet Mask	Number of Networks	Hosts per Network (Usable Addresses)
Α	1 – 126*	0	N.H.H.H	255.0.0.0	126 (2 ⁷ – 2)	16,777,214 (2 ²⁴ – 2)
В	128 – 191	10	N.N.H.H	255.255.0.0	16,382 (2 ¹⁴ – 2)	65,534 (2 ¹⁶ – 2)
С	192 – 223	110	N.N.N.H	255.255.255.0	2,097,150 (2 ²¹ – 2)	254 (2 ⁸ – 2)
D	224 – 239	1110	Reserved for Multicasting			
E	240 – 254	1111	Experimental; used for research			

Note: Class A addresses 127.0.0.0 to 127.255.255.255 cannot be used and is reserved for loopback and diagnostic functions.

Private IP Addresses

Class	Private Networks	Subnet Mask	Address Range
Α	10.0.0.0	255.0.0.0	10.0.0.0 - 10.255.255.255
В	172.16.0.0 - 172.31.0.0	255.240.0.0	172.16.0.0 - 172.31.255.255
С	192.168.0.0	255.255.0.0	192.168.0.0 - 192.168.255.255

Hosted at Novgorod State University

URL

• Uniform Resource Locator or Universal Resource Locator (URL) is a specific character string that constitutes a reference to an Internet resource

Internet Addressing

- Mnemonic address:
 - Domain names
 - Top-Level Domains
- Domain name system (DNS)
 - Name servers
 - DNS lookup

Internet applications World Wide Web (WWW)

The **World Wide Web** (**WWW** or **W3**) is a system of interlinked hypertext documents accessed via the Internet. With a web browser, one can view web pages that may contain text, images, videos, and other multimedia and navigate between them via hyperlinks.

World Wide Web

- Hypertext and HTTP
- Browser gets documents from Web server
- Documents identified by URLs

HTTP Protocol

The Hypertext Transfer Protocol (HTTP) is a networking protocol for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web

Internet applications

- Email (electronic mail)
 - -POP3
 - SMTP

₫ 🖺 5 =

新建项目

!TUDelft - John's outlook - Outlook

!Project

? D = D X

■ 通讯簿

繁简转繁

Internet applications

- File sharing
 - FTP (File Transfer Protocol)

Internet applications

- Telnet and Secure Shell (SSH)
 - BBS
 - telnet://bbs.tongji.edu.cn 同舟共济站
 - -SSH

More Recent Applications

- Voice Over IP (VoIP)
 - Skype
 - GTalk
- Internet Radio (IPC)
 - N-unicast
 - Multicast

Extensible Markup Language (XML)

- XML: A language for constructing markup languages similar to HTML
 - A descendant of SGML
 - Opens door to a World Wide Semantic Web

动态网站开发平台技术比较

LAMP:Linux+Appache+MySQL+PHP

J2EE: Unix+Tomcat+Oracle+JSP

ASP.net: Windows+IIS+SQL Server+ASP

性能比较	LAMP	J2EE	ASP.NET
运行速度	较快	快	快
开发速度	快	慢	快
运行耗损	一般	较小	较大
难易程度	简单	难	简单
运行平台	Linux/UINX/Windows平 台	绝大多数平台均 可	Windows平台
扩展性	好	好	较差

Encryption

- HTTPs
- Secure Socket Layers (SSL)
- Public key encryption 12.6

Code a Website

Frontend

Backend

https://developer.mozilla.org/en-US/docs/Learn

Questions?