NuCypher

<fname Iname>, <title>

<event>, <dd Mon yyyy>

Problem

Data Breaches

Source:

Public Key Encryption (PKE)

Limitations

- Decryption required before sharing
- Not scalable
- Complex access revocation

Public Key Encryption (PKE)

Limitations

- Decryption required before sharing
- Not scalable
- Complex access revocation

What is proxy re-encryption (PRE)

Solution

Proxy Re-encryption + KMS

Advantages

- Data not decrypted to facilitate sharing
- Scalable and performant
- Access revocation through re-encryption key deletion

Centralized KMS using PRE

Encryption

Centralized KMS using PRE

Access delegation

Centralized KMS using PRE

Decryption

Decentralized KMS using PRE

Using threshold split-key re-encryption (Umbral)

Decentralized KMS: Token

Purpose

- Splitting trust between re-encryption nodes (more tokens = more trust and more work)
- Proof of Stake for minting new coins according to the mining schedule
- Security deposit to be at stake against malicious behavior of nodes

Multi-tenant, Multi-source Encrypted Data Lake

Encrypted Data Lake

<fname> NuCypher <dd Mon yyyy

Encrypted file sharing

Encrypted multi-user chats

Decentralized Access-Controlled Content

Early Users

Decentralized Marketplaces

Decentralized Databases

Medical Data Sharing

Other

ØRIGIN

Competing Technology

Data Masking and Tokenization

- Less secure for data with underlying patterns
- Reduce the value of data by obfuscating it

Multi-Party Computation

Slow Performance

Fully Homomorphic Encryption

- Slow Peformance
 - NuCypher has made investments in this area

Investors

AMINO Capital

Coin Fund

compound

FIRST MATTER

POLYCHAIN CAPITAL

Satoshi•Fund

semantic capital

Team

Founders

Advisors

Why Thales & Cyber @ Station F

- Collaboration opportunities for data privacy and compliance
- Potential integration with Thales' HSMs
- Expand customer base in Europe
- Explore new industry verticals

More Information

Website: https://nucypher.com

Whitepaper: https://www.nucypher.com/whitepapers/english.pdf

Github: https://github.com/nucypher Discord: https://discord.gg/7rmXa3S

Email: derek@nucypher.com

Appendix: Umbral - Threshold Proxy Re-Encryption

Designed by: David Nuñez, University of Malaga, NICS Lab

- "Umbral" is Spanish for "threshold"
- PRE properties: Unidirectional, single-hop, non-interactive
- It follows a KEM/DEM approach:
 - UmbralKEM provides the threshold re-encryption capability
 - ► The DEM can be any authenticated encryption (currently ChaCha20-Poly1305)
- IND-PRE-CCA security
- Verification of re-encryption correctness through Non-Interactive ZK Proofs
- Code: https://github.com/nucypher/pyUmbral/
- Documentation (WIP): https://github.com/nucypher/umbral-doc