Source camera identification based on content-adaptive fusion residual networks

CONTENTS

- 01 Introduction
- **02** Proposed algorithm
- 03 Experiments

01 Introduction

Need to considered for these methods based on SPN

- 1. Quality of SPN extracted from image depends on the image contents
- 2. Detection performance could be decreased with the reduction of image size

Process of generating the digital image

Generator(include SPN), Demosaic, JPEG \rightarrow related with image contents

- Fingerprint left should be not same for the different image contents
- Separate the database into three subsets

Small-size images provide an effective reference for the splicing forgery

→ Propose a solution to identify the source camera of the small-size images

01 Introduction

Content-adaptive fusion residual networks

- Divide the images into three subsets
- Self learned in preprocessing
- FRN
- Transform learning (deal with limited training data)

Validate

- Camera brand identification
- Camera model identification
- Camera device identification

12 Proposed algorithm

In order to capture effective features for the different image contents

→ Fusion residual networks is designed

<Train>

- 1. pre-training
- 2. Divided into three subsets
- 3. Train by transfer learning

<Test>

- 1. Calculate mean, variance
- 2. Feed into the trained model

O2 Proposed algorithm

In order to capture effective features for the different image contents

→ Fusion residual networks is designed

Fusion residual network

3 residual network(parallel)
1 self-learning filter
3 residual blocks

O2 Proposed algorithm

Residual network

SPN is related to the image contents

→ In order to amplify the inter-class difference and reduce the impact of the image contents, using Preprocessing

→ Not the best way to preprocessing the input data using high-pass filter

→ Self-learning better feature representations from the input data

Replace the special filter(HPF) with convolutional layer

02 Proposed algorithm

Table 1The parameters of the fusion residual networks.

Layername	Parameters $64 \times 64 \times 3$				
input					
conv_	3 × 3 × 1 stride:1	5 × 5 × 1 stride:1	7 × 7 × 1 stride:1		
conv1_	$5 \times 5 \times 64$ stride:1	$5 \times 5 \times 64$ stride:1	$5 \times 5 \times 64$ stride:1		
ave_pooling	5×5 stride:2	5×5 stride:2	5×5 stride:2		
res2_	$1 \times 1 \times 64$ stride:1	$1 \times 1 \times 64$ stride:1	$1 \times 1 \times 64$ stride:1		
	$3 \times 3 \times 64$ stride:1	$3 \times 3 \times 64$ stride:1	$3 \times 3 \times 64$ stride:1		
	$1 \times 1 \times 256$ stride:1	1 × 1 × 256 stride:1	1 × 1 × 256 stride:1		
ave_pooling	5 × 5 stride:2	5×5 stride:2	5×5 stride:2		
res3_	$1 \times 1 \times 64$ stride:1	$1 \times 1 \times 64$ stride:1	$1 \times 1 \times 64$ stride:1		
	$3 \times 3 \times 64$ stride:1	$3 \times 3 \times 64$ stride:1	$3 \times 3 \times 64$ stride:1		
	1 × 1 × 256 stride:1	1 × 1 × 256 stride:1	1 × 1 × 256 stride:1		
ave_pooling	5 × 5 stride:2	5 × 5 stride:2	5×5 stride:2		
res4_	$1 \times 1 \times 64$ stride:1	$1 \times 1 \times 64$ stride:1	$1 \times 1 \times 64$ stride:1		
	$3 \times 3 \times 64$ stride:1	$3 \times 3 \times 64$ stride:1	$3 \times 3 \times 64$ stride:1		
	1 × 1 × 256 stride:1	$1 \times 1 \times 256$ stride:1	1 × 1 × 256 stride:1		
global_ave_pooling	8 × 8 stride:1	8 × 8 stride:1	8 × 8 stride:1		
softmax		$1 \times n$			

O2 Proposed algorithm

In pre-training state, all images form the training dataset are used to Pre-training train a fusion residual networks in end-to-end way Fusion Residual Networks Model Divide the image into three subsets rransiorii Learning - saturation, smoothness, others Fusion Residual Networks **Train** Model1 Saturation End-to-end way Transfer learning Var(I) Fusion Residual Networks Smoothness Model2 Dataset Mean(I) Fusion Residual Networks Model3 Others

12 Proposed algorithm

Divide the image into three subsets

- saturation, smoothness, others

In grayscale

$$I_i \in \begin{cases} Subset1 = T_1(m, v) & \text{M: mean} \\ Subset2 = T_2(m, v) & \text{V: variance} \end{cases}$$
 (4)

$$\begin{cases} T_{1}(m, v) & m \in [0, 5] \cup [250, 255], v \in [0, 25] \\ T_{2}(m, v) & m \in [0, 5] \cup [250, 255], v \in [25, 50] \mid | \\ m \in (5, 250), v \in [0, 50] \end{cases}$$

$$T_{3}(m, v) & others$$
 (5)

```
Subset1 → saturation
Subset2 → smoothness
Subset3 → Others
```


Dataset

Dresden database

- Choose 13 devices
- Cut into non-overlapping 64x64
- 4 Train, 1 Test, 1 Validation
- Experiment 1: 2,757,888 patches
- Experiment 2 and 3: 818,748 patches

Table 2The list of camera devices used.

ID	Camera devices	Original resolution
1	Kodak_M1063_0	3664 × 2748
2	Pentax_OptioA40_0	4000×3000
3	Nikon_CoolPixS710_1	4352×3264
4	Sony_DSC-H50_0	3456×2592
5	Olympus_mju_1050SW_2	3648 × 2736
6	Panasonic_DMC-FZ50_1	3648 × 2736
7	Agfa_Sensor530s_0	2560×1920
8	Ricoh_GX100_0	3648 × 2736
9	Samsung_NV15_0	3648 × 2736
10	Sony_DSC-W170_0	3648 × 2736
11	Sony_DSC-T77_0	3648 × 2736
12	Sony_DSC-T77_1	3648 × 2736
13	Sony_DSC-T77_2	3648×2736

Parameter

- (pre-training) Learning rate: 0.01 (decrease 10% for every 10000 iter)
- (transfer learning) learning rate: 0.001, max_iter: 500000, momentum: 0.9
- (Convolutional layers) weights initialization with Gaussian filter[expected value= 0, standard deviation = 0.01]
- (Convolutional layers) learned from the input data using mini-batch gradient descent
- Xavier filler is applied into Softmax layer

Experiment 1 – camera brand identification

Select 9 camera devices

Table 3The detection accuracy for camera brand identification.

Туре	Preprocessing	Ave_acc
CA-CNN	НР	81.62%
	Conv 3 \times 3	87.72%
	Conv 5 \times 5	90.11%
	Conv 7×7	90.68%
GoogleNet [21]	HP	91.60%
ResNet [27]	None	96.20%
RN	Conv 3 \times 3	95.58%
	Conv 5 \times 5	96.21%
	Conv 7×7	96.03%
CAF-CNN [22]	Conv3 5 7	94.17%
FRN	Conv3 5 7	96.26%
CA-FRN	Conv3 5 7(Res)	97.03%

- CA-CNN: preprocessing layer → high pass filter, self learn convolutional kernels
- RN: residual networks
- FRN: paralleled residual networks
- CAF-CNN: three paralleled CA-CNNs
- CA-FRN: proposed
- Googlenet: high-pass filter in preprocessing

Table 4The detection accuracy of content-adaptive fusion residual networks and fusion residual networks. The best results are highlighted in bold.

	Smoothness		Saturation		Others	
	FRN	CA-FRN	FRN	CA-FRN	FRN	CA-FRN
1	99.27%	99.09%	84.16%	80.83%	99.13%	99.57%
2	99.03%	99.76%	27.33%	42.55%	97.90%	99.46%
3	93.99%	97.51%	97.66%	93.92%	96.16%	97.49%
4	96.07%	98.02%	51.44%	66.93%	96.82%	95.11%
5	91.14%	89.95%	61.05%	61.18%	96.38%	97.65%
6	94.25%	96.27%	78.45%	85.63%	96.02%	98.19%
7	97.33%	94.9%	20.42%	97.16%	96.38%	98.15%
8	96.96%	98.27%	11.50%	97.08%	97.11%	97.83%
9	96.66%	96.59%	31.40%	46.61%	98.3%	96.95%
AVE	96.14%	96.73%	68.5%	76.89 %	97.12%	97.8%

CA-CNN (with Laplacian filter)

CAF-CNN (with self learned)

Experiment 2 – camera model identification

Select: Sony_DSC-H50, Sony_DSCW170, Sony_DSC-T77

Finetune the model trained in the first experiment

Accuracy: 87.55%

Experiment 2 – camera device identification

Select: Sony_DSC-T77_0, Sony_DSC-T77_1, Sony_T77_2 Finetune the model trained in the first experiment

Accuracy: 73.27%

Mixed

Different camera brands
Different camera models(same brands)
Different camera devices(same models)

Select: Sony_DSC-T77_0, Sony_DSC-T77_1, Sony_DSC-H50_0, Olympus_mju_1050W_2, Panasonic_DMC-FZ50-1, Agfa_sensor530s+0, Ricoh_GX100_0, Samsung_NV15_0, Kodak_M1063_0

Accuracy: 92%