Introduction to Machine Learning

Gradient Boosting: Concept

- Understand idea of forward stagewise modelling
- Understand fitting process of gradient boosting for regression problems

FORWARD STAGEWISE ADDITIVE MODELING

Assume a regression problem for now (as this is simpler to explain); and assume a space of base learners \mathcal{B} .

We want to learn an additive model:

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]}).$$

Hence, we minimize the empirical risk:

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) = \sum_{i=1}^{n} L\left(y^{(i)}, \sum_{m=1}^{M} \alpha^{[m]} b(\mathbf{x}^{(i)}, \boldsymbol{\theta}^{[m]})\right)$$

FORWARD STAGEWISE ADDITIVE MODELING

Why is gradient boosting a good choice for this problem?

- Because of the additive structure it is difficult to jointly minimize $\mathcal{R}_{emp}(f)$ w.r.t. $\left(\left(\alpha^{[1]}, \boldsymbol{\theta}^{[1]}\right), \ldots, \left(\alpha^{[M]}, \boldsymbol{\theta}^{[M]}\right)\right)$, which is a very high-dimensional parameter space (though this is less of a problem nowadays, especially in the case of numeric parameter spaces).
- Considering trees as base learners is worse as we would have to grow M trees in parallel so they work optimally together as an ensemble.
- Stagewise additive modeling has nice properties, which we want to make use of, e.g. for regularization, early stopping, ...

FORWARD STAGEWISE ADDITIVE MODELING

Hence, we add additive components in a greedy fashion by sequentially minimizing the risk only w.r.t. the next additive component:

$$\min_{\alpha,\theta} \sum_{i=1}^{n} L\left(y^{(i)}, \hat{t}^{[m-1]}\left(\mathbf{x}^{(i)}\right) + \alpha b\left(\mathbf{x}^{(i)}, \theta\right)\right)$$

Doing this iteratively is called **forward stagewise additive modeling**.

Algorithm Forward Stagewise Additive Modeling.

- 1: Initialize $\hat{f}^{[0]}(\mathbf{x})$ with loss optimal constant model
- 2: for $m = 1 \rightarrow M$ do

3:
$$(\alpha^{[m]}, \hat{\boldsymbol{\theta}}^{[m]}) = \arg\min_{\alpha, \boldsymbol{\theta}} \sum_{i=1}^{n} L\left(y^{(i)}, \hat{\boldsymbol{f}}^{[m-1]}\left(\mathbf{x}^{(i)}\right) + \alpha b\left(\mathbf{x}^{(i)}, \boldsymbol{\theta}\right)\right)$$

- 4: Update $\hat{f}^{[m]}(\mathbf{x}) \leftarrow \hat{f}^{[m-1]}(\mathbf{x}) + \alpha^{[m]} b\left(\mathbf{x}, \hat{\boldsymbol{\theta}}^{[m]}\right)$
- 5: end for

The algorithm we just introduced is not really an algorithm, but rather an abstract principle. We need to find the new additive component $b\left(\mathbf{x}, \boldsymbol{\theta}^{[m]}\right)$ and its weight coefficient $\alpha^{[m]}$ in each iteration m. This can be done by gradient descent, but in function space.

Thought experiment: Consider a completely non-parametric model f whose predictions we can arbitrarily define on every point of the training data $\mathbf{x}^{(i)}$. So we basically specify f as a discrete, finite vector.

$$\left(f\left(\mathbf{x}^{(1)}\right),\ldots,f\left(\mathbf{x}^{(n)}\right)\right)^{\top}$$

This implies n parameters $f\left(\mathbf{x}^{(i)}\right)$ (and the model would provide no generalization...).

Furthermore, we assume our loss function $L(\cdot)$ to be differentiable.

Aim: Define a movement in function space so we can push our current function towards the data points.

Given: Regression problem with one feature x and target variable y.

Initialization: Set all parameters to the optimal constant value (e.g., the mean of y for L2).

PSEUDO RESIDUALS

How do we have to distort this function to move it towards the observations and drive loss down?

We minimize the risk of such a model with gradient descent (yes, this makes no sense, suspend all doubts for a few seconds).

So, we calculate the gradient at a point of the parameter space, that is, the derivative w.r.t. each component of the parameter vector (which is 0 for all terms with $i \neq j$):

$$\tilde{r}^{(i)} = -\frac{\partial \mathcal{R}_{\mathsf{emp}}}{\partial f\left(\mathbf{x}^{(i)}\right)} = -\frac{\partial \sum_{j} L(y^{(j)}, f(\mathbf{x}^{(j)}))}{\partial f\left(\mathbf{x}^{(i)}\right)} = -\frac{\partial L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)}{\partial f\left(\mathbf{x}^{(i)}\right)}.$$

Reminder: The pseudo-residuals $\tilde{r}(f)$ match the usual residuals for the squared loss:

$$-\frac{\partial L(y, f(\mathbf{x}))}{\partial f(\mathbf{x})} = -\frac{\partial 0.5(y - f(\mathbf{x}))^2}{\partial f(\mathbf{x})}$$
$$= y - f(\mathbf{x})$$

BOOSTING AS GRADIENT DESCENT

Combining this with the iterative additive procedure of "forward stagewise modeling", we are at the spot $f^{[m-1]}$ during minimization. At this point, we now calculate the direction of the negative gradient or also called pseudo-residuals $\tilde{r}^{[m](i)}$:

$$\tilde{r}^{[m](i)} = -\left[\frac{\partial L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)}{\partial f(\mathbf{x}^{(i)})}\right]_{t=t^{[m-1]}}$$

The gradient descent update for each vector component of *f* is:

$$f^{[m]}(\mathbf{x}^{(i)}) = f^{[m-1]}(\mathbf{x}^{(i)}) - \alpha \frac{\partial L\left(\mathbf{y}^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)}{\partial f^{[m-1]}(\mathbf{x}^{(i)})}.$$

This tells us how we could "nudge" our whole function *f* in the direction of the data to reduce its empirical risk.

Iteration 1:

Let's move our function $f(\mathbf{x}^{(i)})$ a fraction towards the pseudo-residuals with a learning rate of $\alpha = 0.6$.

Iteration 2:

Let's move our function $f(\mathbf{x}^{(i)})$ a fraction towards the pseudo-residuals with a learning rate of $\alpha=0.6$.

To parameterize a model in this way is pointless, as it just memorizes the instances of the training data.

So, we restrict our additive components to $b\left(\mathbf{x}, \boldsymbol{\theta}^{[m]}\right) \in \mathcal{B}.$

The pseudo-residuals are calculated exactly as stated above, then we fit a simple model $b(\mathbf{x}, \theta^{[m]})$ to them:

$$\hat{\boldsymbol{\theta}}^{[m]} = \operatorname{arg\,min}_{\boldsymbol{\theta}} \sum_{i=1}^n \left(\tilde{r}^{[m](i)} - b(\mathbf{x}^{(i)}, \boldsymbol{\theta}) \right)^2.$$

So, evaluated on the training data, our $b(\mathbf{x}, \theta^{[m]})$ corresponds as closely as possible to the negative loss function gradient and generalizes over the whole space.

In a nutshell: One boosting iteration is exactly one approximated gradient descent step in function space, which minimizes the empirical risk as much as possible.

Iteration 1:

Instead of moving the function values for each observation by a fraction closer to the observed data, we fit a regression base learner to the pseudo-residuals (right plot).

Iteration 2:

This base learner is then added to the current state of the ensemble weighted by the learning rate (here: $\alpha=0.4$) and for the next iteration again the pseudo-residuals of the adapted ensemble are calculated and a base learner is fitted to them.

Iteration 3:

GRADIENT BOOSTING ALGORITHM

Algorithm Gradient Boosting Algorithm.

1: Initialize
$$\hat{f}^{[0]}(\mathbf{x}) = \arg\min_{\theta_0 \in \mathbb{R}} \sum_{i=1}^n L(y^{(i)}, \theta_0)$$

2: for
$$m = 1 \rightarrow M dc$$

2: **for**
$$m = 1 \to M$$
 do
3: For all i : $\tilde{r}^{[m](i)} = -\left[\frac{\partial L(y, f)}{\partial f}\right]_{f = \hat{t}^{[m-1]}(\mathbf{x}^{(i)}), y = y^{(i)}}$

Fit a regression base learner to the vector of pseudo-residuals $\tilde{r}^{[m]}$: 4:

5:
$$\hat{\boldsymbol{\theta}}^{[m]} = \operatorname{arg\,min}_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\tilde{r}^{[m](i)} - b(\mathbf{x}^{(i)}, \boldsymbol{\theta}))^2$$

6: Set $\alpha^{[m]}$ to α being a small constant value or via line search

7: Update
$$\hat{f}^{[m]}(\mathbf{x}) = \tilde{f}^{[m-1]}(\mathbf{x}) + \alpha^{[m]}b(\mathbf{x}, \hat{\theta}^{[m]})$$

9: Output
$$\hat{f}(\mathbf{x}) = \hat{f}^{[M]}(\mathbf{x})$$

Note that we also initialize the model in a loss-optimal manner.

LINE SEARCH

The learning rate in gradient boosting influences how fast the algorithm converges. Although a small constant learning rate is commonly used in practice, it can also be replaced by a line search.

Line search is an iterative approach to find a local minimum. In the case of setting the learning rate, the following one-dimensional optimization problem has to be solved:

$$\hat{\alpha}^{[m]} = \operatorname{arg\,min}_{\alpha} \sum_{i=1}^{n} L(y^{(i)}, f^{[m-1]}(\mathbf{x}) + \alpha b(\mathbf{x}, \hat{\boldsymbol{\theta}}^{[m]}))$$

Optionally, an (inexact) backtracking line search can be used to find the $\alpha^{[m]}$ that minimizes the above equation.

