

How to represent the knowledge into logical form?

- There are two ways to represents the knowledge:
- Propositional Logic
- Predicate Logic

Propositional logic

- Propositional logic (PL) is the simplest form of logic where all the statements are made by propositions.
- A proposition is a declarative statement which is either true or false.
- It is a technique of knowledge representation in logical and mathematical form.

- Example:
 - a) It is Sunday.
 - b) The Sun rises from West (False proposition)
 - c) 3+3= 7(False proposition)
 - d) 5 is a prime number.

Kinds of Proposition

Atomic Propositions:

- Atomic propositions are the simple propositions. It consists of a single proposition symbol. These are the sentences which must be either true or false.
 - 2+2 is 4, it is an atomic proposition as it is a true fact.
 - "The Sun is cold" is also a proposition as it is a false fact.

Compound propositions

- Compound propositions are constructed by combining simpler or atomic propositions, using parenthesis and logical connectives.
 - "It is raining today, and street is wet."
 - "Ankit is a doctor, and his clinic is in Mumbai."

Commonly used connectives

Name	Connective	Symbol
Conjunction	AND	&
Inclusive Disjunction	OR	V
Negation	NOT	~
Material Condition	IMPLIES	\rightarrow
Material Biconditional	IFF	\leftrightarrow
Exclusive Disjunction	XOR	+
Joint Denial	NAND	
Disjoint Denial	NOR	↓

Syntax/Rules of Propositional Logic

- Atomic proposition are represented as A...Z and are known as well form atomic proposition.
- If A and B are well form proposition then, $^{\sim}$ A, (A&B), (AVB), (A->B), (A<->B), (A+B), (A|B), (A↓B) are also well form proposition.
- Nothing else is a well form proposition.

Truth table

Logical Equivalence

- Two propositions are logically equivalence if they have the same truth table for all combinations.
- (A -> B) ⇔ (~A V B)

Table 5.3 Some commonly used logical equivalences

-		is logically equipment to	(A)
1	. А	is logically equivalent to	(~~A) (A & A)
		is logically equivalent to	(A & A)
2	(A&B)	is logically equivalent to	(B & A)
		(a (A 2 A), a (F 2 A)	ATTENDED TO THE PARTY OF THE PA
3.	(AVB)	is logically equivalent to	(B V A)
1 52		sixulage if and only if its asgetten,	((A & B) & C)
4.	(A & (B & C))	is logically equivalent to	((A & B) & C)
	(AV(BVC))	is logically equivalent to	((AVB)VC)
5.	(A & (BVC))	is logically equivalent to	((A & B)V(A & C))
	(AV(B & C))	is logically equivalent to	((AVB) & (AVC))
	(AV(B & C))	(A V B) & ("A & "B).	2.
6.	"(A & B)	is logically equivalent to	(~A V ~B)
	(AVB)	is logically equivalent to	(-A & -B)
		v v	
7.	(A→B)	is logically equivalent to	(~A V B)
66	(A→B)	is logically equivalent to	~(A & ~B)
	(A→B)	is logically equivalent to	(~B → ~A)
		2.5	AND IN A STREET AND LET
8.	(A→(B→C))	is logically equivalent to	((A→B)→C)
	A STATE OF STATE OF	on that	100 mm
9.	(A - B)	is logically equivalent to	(A & B)V(~A &~B)
	(A • B)		(A→B) & (B→A)
0.0	The second second	is logically equivalent to ©Sukanta Ghosh	PARTY AND AND AND ADDRESS OF THE PARTY AND ADD

Tautology and Contradiction

- If the result of a proposition is TRUE for all possible combination, it is known as tautology.
- The dog is either brown, or the dog is not brown.
- (X -> Y) ∨ (Y -> X)
- If the result of a proposition is FALSE for all possible combination, it is known as contradiction.
- ~(X -> Y) ∨ (Y -> X)

Properties of Operators

- Commutativity:
 - $P \land Q = Q \land P$, or
 - P V Q = Q V P.
- Associativity:
 - $(P \land Q) \land R = P \land (Q \land R),$
 - (P ∨ Q) ∨ R= P ∨ (Q ∨ R)
- Identity element:
 - P ∧ True = P,
 - P V True= True.

- Distributive:
 - $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$.
 - $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$.
- DE Morgan's Law:
- Double-negation elimination:
 - $\neg (\neg P) = P.$

Limitations of Propositional logic

- We cannot represent relations like ALL, some, or none with propositional logic. Example:
 - All the girls are intelligent.
 - Some apples are sweet.
- Propositional logic has limited expressive power.
- In propositional logic, we cannot describe statements in terms of their properties or logical relationships.

First-Order Logic or Predicate Logic

- A predicate is defined as a relation that binds two atom together.
- E.g.: Bhaskar like airplane can be written as: LIKES(Bhaskar, airplane)
- Here, LIKES is a predicate and Bhaskar and airplane are atoms.
- So the general form can be written as: LIKES(x,y)
- E.g.: Ravi's father is Rohits's father.FATHER(father(Ravi), Rohit)
- Terms: These are the arguments in a predicate.

Terms can be defined as:

- A constant is a term.
- A variable is a term.
- A function f defined as f(x1, x2...) is also a term.
- It assumes the following things in the world:
 - Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,
 - Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation such as: the sister of, brother of, has color, comes between
 - Function: Father of, best friend, third inning of, end of,

Basic Elements of First-order logic

Constant	1, 2, A, John, Mumbai, cat,
Variables	x, y, z, a, b,
Predicates	Brother, Father, >,
Function	sqrt, LeftLegOf,
Connectives	\land , \lor , \neg , \Rightarrow , \Leftrightarrow
Equality	
Quantifier	∀,∃

Quantifiers

- It is a symbol that permits to declare or identify the range or scope of the variable in a logical expression.
- There are 2 quantifiers:
- Universal Quantifier (∀): a) All a

- b) Each a c) Every a
- Existential Quantifier (∃): a) Some b
- b) at least one b
- c) exists a b

All man drink coffee

 $\forall x \text{ man}(x) \rightarrow \text{drink } (x, \text{ coffee}).$

So in shorthand notation, we can write it as: ©Sukanta Ghosh

Some boys are intelligent

 $\exists x: boys(x) \land intelligent(x)$

Points to remember

- The main connective for universal quantifier \forall is implication \rightarrow .
- The main connective for existential quantifier \exists is and \land .
- In universal quantifier, $\forall x \forall y$ is similar to $\forall y \forall x$.
- In Existential quantifier, ∃x∃y is similar to ∃y∃x.
- $\exists x \forall y \text{ is not similar to } \forall y \exists x.$

Free and Bound Variable

- Free: If its occurrence is outside the scope of quantifier
- Bound: If its occurrence is within the scope of quantifier
- E.g.: $\forall x (A(x) -> B(x))$, change in the x will also effect the values of A(x) and B(x), hence the variable x is a bound variable.
- E.g.: $\forall x (A(x, y) \rightarrow B(x, y))$, change in the x will not effect the values of y, hence the variable y is a free variable but x is bound variable.

Atomic sentences

- Atomic sentences are formed from a predicate symbol followed by a parenthesis with a sequence of terms.
- We can represent atomic sentences as Predicate (term1, term2,, term n).
- Example: Rohit and Rahul are brothers: => Brothers(Ravi, Ajay).

Rita is a cat: => cat (Rita).

Complex Sentences

- Complex sentences are made by combining atomic sentences using connectives.
- First-order logic statements can be divided into two parts:
 - Subject: Subject is the main part of the statement.
 - Predicate: A predicate can be defined as a relation, which binds two atoms together in a statement.
- Consider the statement: "x is an integer.", it consists of two parts, the first part x is the subject of the statement and second part "is an integer," is known as a predicate.

Some Examples

- All birds fly.
- $\forall x \text{ bird}(x) \rightarrow \text{fly}(x)$.

- Every man respects his parent.
- $\forall x \text{ man}(x) \rightarrow \text{respects } (x, \text{ parent}).$

- Some boys play cricket.
- $\exists x \text{ boys}(x) \rightarrow \text{play}(x, \text{cricket}).$

- Not all students like both Mathematics and Science.
- ¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

- Only one student failed in Mathematics.
- ∃(x) [student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) → ¬failed (x, Mathematics)].

