Metrische Räume

Norm

- **Definition**: Abbildung $||\cdot||: V \to \mathbb{R}_{\geq 0}$ sodass $\forall v, w \in V, \lambda \in \mathbb{R}$:
 - \circ Definitheit: $||v|| = 0 \iff v = 0$
 - Absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
 - Dreiecksungleichung: $||v + w|| \le ||v|| + ||w||$ $(\mathbb{R}\text{-Vektorraum }V)$

Metrik

- **Definition**: $d: X \times X \to \mathbb{R}_{\geq 0}$ (Menge X) sodass $\forall x, y, z \in X$:
 - \circ Positivität: $d(x, y) = 0 \Leftrightarrow x = y$
 - Symmetrie: d(x, y) = d(y, x)
- Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z)$
- · Wichtige Metriken:
- Triviale Metrik: $d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$
- Euklidische Metrik: $X = \mathbb{R}^n$, $d_e(x,y) \coloneqq \sqrt{\sum_{i=1}^n (x_i y_i)^2} = \|x y\|$
- Induzierte Metrik: $d(v, w) := ||v w|| \text{ (Norm } ||\cdot||)$
- Winkelmetrik: $d_W(x, y) := \arccos(\langle x, y \rangle)$
- Pseudometrik: Metrik, aber $d(x, y) = 0 \Rightarrow x = y$ gilt nicht
- Metrischer Raum: (X, d) (Menge X, Metrik d auf X)

Konstruktionen

- Einheitssphäre: $S_1^n \coloneqq \left\{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \right\} n$ -te Einheitssphäre
- Abgeschlossener Ball: abgeschlossener r-Ball um x

$$\overline{B_r(x)} := \{ y \in X : d(x,y) \le r \}$$

- Offener Ball: offener r-Ball um x

$$B_r(x) \coloneqq \{ y \in X : d(x,y) < r \}$$

• Abstandserhaltende Abbildung: $f: X \to Y$ sodass $\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$

(metrische Räume (X, d_X) , (Y, d_Y))

- · Isometrie: bijektive abstandserhaltende Abbildung
- $\rightarrow X, Y$ isometrisch $\iff \exists$ Isometrie $f: (X, d_X) \rightarrow (Y, d_Y)$

Längenmetriken

Graphen

- Graph: G = (E, K)
- Eckenmenge E
- \circ Kantenmenge $K \subseteq \{\{u, v\} : u \neq v \in E\}$
- Erreichbarkeit: $p,q \in E$ erreichbar $\iff \exists$ Kantenzug zwischen p und q
- Zusammenhängend ⇔ alle Ecken von beliebiger, fester Ecke aus erreichbar
- $\rightarrow d(p,q)$ = kürzester Kantenzug zwischen p und q definiert Metrik

Euklidische Metrik

- Kurvenmenge: $\Omega_{pq}(X\subseteq \mathbb{R}^n)$ Menge der stetig db. Kurven zwischen p und q
- Euklidische Länge: $L_{\text{euk}}(c) = \int_a^b ||c'(t)|| dt \ (c \in \Omega_{pq}(\mathbb{R}^2))$
- o unabhängig von Kurvenparametrisierung
- o invariant unter Translationen, Drehungen, Spiegelungen
- Euklidische Metrik auf \mathbb{R}^2 -Kurven: $d_{\text{euk}}(p,q) \coloneqq \inf L_{\text{euk}}(c)$ $(p,q\in\mathbb{R}^2,c\in$ Menge der stetig differenzierbaren Kurven zwischen p und $q)\to (\mathbb{R}^2,d_{\mathrm{euk}})=(\mathbb{R}^2,d_e)$

Sphärische Geometrie

- Sphärische Länge: $L_S(c) \coloneqq \int_a^b \|c'(t)\| dt = \int_a^b \sqrt{x'_1^2 + x'_2^2 + x'_3^2} dt$ (für $c : [a,b] \ni t \mapsto (x_1(t),x_2(t),x_3(t)) \in S_R^2 \subset \mathbb{R}^3$)
 invariant unter \mathbb{R}^2 -Rotationen
- **Großkreis**: Schnitt von S_R^2 und und 2-dimensionalen UVR des \mathbb{R}^2
- Sphärenmetrik: $d_S(p,q) \coloneqq \inf L_s(c) (c \in \Omega_{pq}(S_R^2))$
- \circ Großkreise sind kürzeste Verbindungkurven zwischen Punkten in S_R^2
- (S_R^2, D_S) ist metrischer Raum und isometrisch zu $(S_R^2, R \cdot d_W)$

Grundbegriffe allg. Topologie

Topologische Räume

- Topologie: $\mathcal{O} \subseteq \mathcal{P}(X)$ (Menge X) sodass
 - $\circ X \varnothing \in \mathcal{O}$
 - \circ Durchschnitte endlich & Vereinigungen beliebig vieler Mengen aus $\mathcal O$ in $\mathcal O$
- Topologischer Raum: (X, \mathcal{O})
 - \circ Offene Teilmengen von X: Elemente von $\mathcal O$
- o Abgeschlossene Teilmengen $A \subset X$: $X \setminus A$ offen
- · Wichtige Topologien:
- \circ Triviale Topologie: $\mathcal{O}_{\text{trivial}} \coloneqq \{X, \emptyset\}$
- \circ Diskrete Topologie: $\mathcal{O}_{diskret} \coloneqq \mathcal{P}(X)$
- $\textit{Standard-Topologie} \text{ auf } \mathbb{R} \text{: } \mathcal{O}_s \coloneqq \{I \in \mathbb{R} : I = \text{ Vereinigung offener Intervalle} \}$
- $\mathit{Zariski-Topologie} : \mathcal{O}_Z \coloneqq \{O \in \mathbb{R} : O = \mathbb{R} \setminus E, E \in \mathbb{R} \text{ endlich}\} \cup \{\emptyset\}$
- Induzierte Topologie (Metrik):
 - $-U \in X \text{ d-offen} \Leftrightarrow \forall p \in U \exists \varepsilon = \varepsilon(p) > 0 : B_{\varepsilon}(p) \in U$
 - d-offene Mengen bilden induzierte Topologie
- \circ Teilraum-Topologie: $\mathcal{O}_Y \coloneqq \{U \subseteq Y : \exists V \in \mathcal{O}_X : U = V \cap Y\}$ (Topologischer Raum (X, \mathcal{O}_X) , Teilmenge $Y \subseteq X$)
- o Produkttopologie: Topologische Räume (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y)
- $W \subseteq X \times Y$ offen in Produkttopologie $\iff \forall (x,y) \in W \; \exists \; \text{Umgebung} \; U \; \text{von} \; x$ in X und V von y in Y, so dass $U \times V \subseteq W$
- o $\mbox{\it Quotiententopologie:}\ (X,\mathcal{O})$ topologischer Raum, $\pi:X\ni x\mapsto [x]\in X/\sim$ kanonische Projektion
 - $\rightarrow U \subset X / \sim \text{ ist offen } \Leftrightarrow \pi^{-1}(U) \text{ ist offen in } X.$
- Basis für Topologie \mathcal{O} : $\mathcal{B} \subset \mathcal{O}$ sodass für jede offene Menge $\emptyset \neq V \in \mathcal{O}$ gilt $V = \bigcup V_i, \quad V_i \in \mathcal{B}$
- Umgebung $U \subset X$ von $A \subset X$, falls $\exists O \in \mathcal{O} : A \subset O \subset U$ (Topologischer Raum (X, \mathcal{O}))
- Innerer, äußerer Punkt $p \in X$ von $A \subset X$, falls A (bzw. $X \setminus A$) Umgebung
- \rightarrow Inneres von $A \subset X$: Menge \mathring{A} der inneren Punkte von A
- **Abgeschlossene Hülle** von A: Menge $\overline{A} \subset X$, die nicht äußere Punkte sind
- Triangulierbar: falls \exists Simplizialkomplex K und Homö $K \to X$ $\circ \chi(X) \coloneqq \chi(K)$

Hausdorffsches Trennungsaxiom

- Hausdorffsch (top. Raum (X, \mathcal{O})): $\forall p \neq q \in X \exists U \ni p, V \ni q : U \cap V = \emptyset$ (Umgebungen U, V)
- · Hausdorffsche Räume:
 - o Metrische Räume (über Dreiecks-Ugl.)
 - \circ (\mathbb{R} , \mathcal{O}_s), weil \mathcal{O}_s von Metrik induziert wird
 - o Teilraum von Hausdorff-Raum
- Produkt von Hausdorff-Räumen bzgl. Produkttopologie

Stetigkeit

- Stetigkeit (zwischen top. Räumen (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y)): $f: X \to Y$ stetig falls Urbilder offener Mengen in Y offen sind in X
- Homöomorphismus (zw. top. Räumen): $f: X \to Y$ bijektiv mit f, f^{-1} stetig
- $\rightarrow X, Y \text{ homomorph}, \text{ falls } \exists \text{ Homo } f: X \rightarrow Y \text{ (schreibe } X \cong Y)$
- o Homöomorphismengruppe: Identität, Verkettungen, Inverse von Homö sind Homö → Gruppe
- · Wichtige Homöomorphismen:
- $\circ \ [0,1] \cong [a,b] (a < b \in \mathbb{R})$
- $\circ S^n \setminus \{(0, \dots, 0, 1)\} \cong \mathbb{R}^n \text{ (also } S^n \text{ ohne "Nordpol")}$

Zusammenhang

- **Definition**: (X, \mathcal{O}) zusammenhängend, falls \emptyset und X die einzigen offenabgeschlossenen Teilmengen sind
- ⇔ X ist nicht disjunkte Vereinigung von 2 offenen, nichtleeren Mengen
- · Eigenschaften:
- o A zusammenhängend $\Rightarrow \overline{A}$ ist zusammenhängend
- o A, B zusammenhängend, $A \cap B \neq \emptyset \Rightarrow A \cup B$ zusammenhängend

Zusammenhangskomponente

- **Definition**: Z(x) = Vereinigung aller zusammenhängender Teilmengen, die xenthalten
- · Eigenschaften:
- o Z(X) = disjunkte Zerlegung von X
- Elemente von Z(X) = zusammenhängend

Weg-Zusammenhang

 Definition: (X, O) weg-zusammenhängend $\Leftrightarrow \forall p, q \in X \exists \text{Weg } \alpha : [0, 1] \to X : \alpha(0) = p \land \alpha(1) = q$

· Eigenschaften:

o X weg-zusammenhängend $\Rightarrow X$ zusammenhängend

o Stetige Bilder von (weg-)zusammenhängenden Räumen sind es auch

o Ein (nicht) zusammenhängender Raum kann nur zu einem (nicht) zusammenhängenden Raum homöomorph sein

Kompaktheit

• **Definition**: (X, \mathcal{O}) kompakt \Leftrightarrow jede offene X-Überdeckung besitzt endliche Teilüberdeckung:

 $X = \bigcup U_i, U_i \text{ offen } \Rightarrow \exists i_1, \dots, i_k \in I : X = U_{i_1} \cup \dots \cup U_{i_k}$

- Lokal kompakt: Jeder Punkt von X besitzt kompakte Umgebung

o Man kann von lokale auf globale Eigenschaften schließen

 $\to X$ kompakt, $f: X \to \mathbb{R}$ lokal beschränkt $\Rightarrow f$ beschränkt

o Stetige Bilder kompakter Räume sind kompakt

o Abgeschlossene Teilräume kompakter Räume sind kompakt

o Produkte kompakter Räume sind kompakt

o Kompakte Mengen in Hausdorff-Räumen sind abgeschlossen

Spezielle Topologien

Topologische Mannigfaltigkeit

- **Definition**: topologischer Raum M mit

1. lokal euklidisch: $\forall p \in M \exists$ offene Umgebung U von p und Homöomorphismus $\varphi:U \to \varphi(U) \subset \mathbb{R}^n$ mit festem n

 \rightarrow Karte (φ, U)

 \rightarrow Atlas $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) : \alpha \in A\} \text{ (mit } \bigcup_{\alpha \in A} U_{\alpha} = M)$

2. M ist hausdorffsch

3. M-Topologie besitzt abzählbare Basis

· Eigenschaften:

• Geschlecht der Mannigfaltigkeit = Anzahl

o Offene Teilmengen einer Mannigfaltigkeit sind auch Mannigfaltigkeiten

• Produkt-Mannigfaltigkeit: Produkt zweier MF ist auch MF

o Dimension Produkt-MF = Summe der Dimensionen der beiden MF

Differenzierbare Mannigfaltigkeit

· Kartenwechsel: Homöomorphismus

• Kartenweensel: Homoomorphish
$$\psi \circ \varphi^{-1} : \underbrace{\varphi(D)}_{\subset \mathbb{R}^n} \to \underbrace{\psi(D)}_{\subset \mathbb{R}^n}$$
 (topologische MF $M, p \in M$)
• C^{∞} -Atlas \mathcal{A} von M : alle möglich

• $C^{\tilde{\infty}}$ -Atlas $\mathcal A$ von M: alle möglichen Kartenwechsel sind C^{∞} -Abbildungen $(\mathbb R^n)$ • C^{∞} -Struktur: maximaler C^{∞} -Atlas für topologische MF

- Differenzierbare Mannigfaltigkeit: topologische MF mit \boldsymbol{C}^{∞} -Struktur

o $\mathit{orientierbar}, \mathsf{falls} \; \exists \; \mathsf{Atlas} \; S, \mathsf{sodass} \; \mathsf{alle} \; \mathsf{Kartenwechsel} \; \mathsf{positive} \; \mathsf{Funktional determinents}$

• Punkt-Differenzierbarkeit: $F: M^m \to N^n$ differenzierbar in $p \in M$, falls $\psi \circ F \circ \varphi^{-1} : \underbrace{\varphi(U)}_{\subset \mathbb{R}^m} \to \underbrace{\psi(V)}_{\subset \mathbb{R}^n}$ ist C^{∞} in $\varphi(p)$

 $(\boldsymbol{M}^m$, \boldsymbol{N}^n d-bare M; Fstetig; (U,φ) , (V,ψ) Karten um p und F(p)

• Differenzierbarkeit: F differenzierbar, falls F in allen $p \in M$ d-bar ist

- Diffeomorphismus zwischen dMF: F bijektiv, F d-bar, F^{-1} d-bar

• Fläche: 2-dimensionale MF

• Produkt-Mannigfaltigkeit: M^m , N^n dMF-en $\rightarrow M \times N$ ist (m + n)dimensionale dMF

- Lie-Gruppe: Gruppe mit C^{∞} -Mannigfaltigkeitsstruktur, sodass $G \times G \to G$, $(g,h) \mapsto gh^{-1}$ in C^{∞} ist

o Abgeschlossene Untergruppen von Lie-Gruppen sind auch Lie-Gruppen

Simplizialkomplexe

• Simplex (k-dimensional): konvexe Hülle von k+1 Punkten in \mathbb{R}^n :

$$s(v_0,\ldots,v_k) = \left\{ \sum_{i=0}^n \lambda_i v_i : \forall \lambda_i \geq 0, \sum_{i=0}^k \lambda_i = 1 \right\}$$

$$(v_0-v_1,\ldots,v_0-v_k \text{ linear unabhängig})$$

- Teilsimplex, Seite: konvexe Hülle einer Teilmenge von $\{v_0,\ldots,v_k\}$

- Simplizialkomplex: endliche Menge K von Simplices in \mathbb{R}^n , sodass

1. Für jeden Simplex enthält K auch alle Teilsimplices

2. Durchschnitt zweier Simplices ist Ø oder gemeinsamer Teilsimplex

o Dimension: maximale Dimension seiner Simplices

• Euler-Charakteristik: $\chi(K) = \sum_{i=0}^{k} (-1)^{i} \alpha_{i} (\alpha_{i} = \#i\text{-Simplices in } K)$

• Endlicher Graph: endlicher, 0- oder 1-dimensionaler Simplizialkomplex

o zusammenhängend: $\forall p, p' \in G \exists p = p_0, p_1, \dots, p_n = p'$, sodass p_{i-1} und p_i durch Kante verbunden sind

Baum: zusammenhängender Graph T, sodass für jeden 1-Simplex $s \in T$: $T \setminus \mathring{s}$ ist nicht zusammenhängend (\mathring{s} = Kante ohne Endpunkte, offener 1-Simplex)

• Euler-Charakteristik: $\chi(G) = \#$ Ecken - #Kanten

 \circ Baum: $\chi(T) = 1$

o Zusammenhängender Graph: $\chi(G) = 1 - n$ (n = # Kanten, die man aus Gentfernen kann, sodass G zusammenhängend bleibt)

· Spannender Baum (von zusammenhängendem Graph): Komplement aller Kanten, die man entfernen kann, sodass G zusammenhängend bleibt

• Ebener Graph: realisiert durch Punkte und Geraden in \mathbb{R}^2 , sodass Kanten sich nicht schneiden

• Seiten: Zusammenhangskomponenten von $\mathbb{R}^2 \setminus G$

· Planarer Graph: Graph, der isomorph zu einem ebenen Graphen ist

- Euler-Formel: für zusammenhängende, ebene Graphen G gilt:

$$\chi(G) = e(G) - k(G) + s(G) = 2$$

• Polyeder: $P \subset \mathbb{R}^3$ mit

1. P ist Durchschnitt endlich vieler affiner Halbräume von \mathbb{R}^3 (affine Halbräume gegeben durch $a_i x + b_i y + c_i z \ge d_i$, $i = 1, \dots, k$)

2. P ist beschränkt und nicht in einer Ebene enthalten

o Rand: Gegeben durch (Seiten-)Flächen, Kanten und Ecken

o 1-Skelett: Menge der Ecken und Kanten, ist Graph in \mathbb{R}^3

o Schlegel-Diagramm: Projektion von Punkt nahe bei einem Seitenmittelpunkt auf geeignete Ebene; 1-Skelett → ebener Graph

• Eulersche Polyeder-Formel: e(P) - k(P) - s(P) = 2

1. alle Seitenflächen kongruente reguläre n-Ecke sind und

2. in jeder Ecke m solcher n-Ecke zusammentreffen

Verkleben

• Verklebung: X, Y topologische Räume, $A \subset X$ Teilraum, $f : A \to Y$. Äquivalenz
relation auf $X \cup Y$ via f:

$$x x' \stackrel{\text{Def}}{\rightleftharpoons} \begin{cases} x = x' \\ \text{oder} \quad f(x) = x' \quad (x \in A) \\ \text{oder} \quad f(x') = x \quad (x' \in A) \\ \text{oder} \quad f(x) = f(x') \quad (x, x' \in A) \end{cases}$$

 \Rightarrow Quotientenraum $X \cup_f Y = X \cup Y / \sim$ ist Verklebung von X an Y via f

• Selbstverklebung: Topologischer Raum X, Teilraum $A \subset X$, $f : A \rightarrow X$, $X_f := X / \sim \text{mit Äquivalenzrelation wie oben}$

Flächengeometrie

Reguläre \mathbb{R}^3 -Flächen

• Reguläre Fläche: $S \subset \mathbb{R}^3$ (mit Teilraum-Topologie von \mathbb{R}^3), falls $\forall p \in S$ eine Umgebung V von p und eine Abbildung $F: \underset{\text{offen}}{U} \subset \mathbb{R}^2 \to \underset{\text{offen}}{V} \cap S \subset \mathbb{R}^3$

$$F: \underset{\text{offen }}{U} \subset \mathbb{R}^2 \to \underset{\text{offen }}{V} \cap \underset{\text{TM von S}}{S} \subset \mathbb{R}^3$$
$$(u, v) \mapsto (x(u, v), y(u, v), z(u, v))$$

existiert, sodass

1. F ist differenzierbarer Homöomorphismus

2. das Differenzial (Jacobi-Matrix) von ${\cal F}$, $dF_q: \mathbb{R}^2 \supseteq T_q U \to T_{F(q)} \mathbb{R}^3 \cong \mathbb{R}^3$ ist injektiv (hat Rang 2) ($\forall q \in U$)

- Lokale Parametrisierung von reg. Fläche $S{:}\;F$ von der regulären Fläche

• Vektorprodukt: $a \land b = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$

 \circ $(a \land b) \perp a$, $(a \land b) \perp b$

 $\circ ||a \wedge b|| = ||a|| \cdot ||b|| \cdot \sin \alpha$

• Tangential raum in $p \in \mathbb{R}^3$: affiner Unterraum $T_p\mathbb{R}^3 = \{p\} \times \mathbb{R}^3$

• Tangentialebene für $p = x(u, v) \in S$ (reguläre Fläche):

$$T_p S = \mathrm{d}x_{(u,v)}(T_{(u,v)}\mathbb{R}^2) = \{p\} \times [x_u(u,v), x_v(u,v)] \subset T_p \mathbb{R}^3$$

Erste Fundamentalform

• Erste Fundamentalform einer regulären Fläche S:

$$\begin{pmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{pmatrix}$$
 mit

$$E(u,v) = \langle x_u(u,v), x_u(u,v) \rangle$$

$$F(u,v) = \langle x_u(u,v), x_v(u,v) \rangle$$

$$G(u,v) = \langle x_v(u,v), x_v(u,v) \rangle$$
 • Längen: Flächenkurve $x : [\alpha,\beta] \ni t \mapsto x(u(t),v(t)) =: c(t) \in S.$
$$L(c) = \int_{\alpha}^{\beta} \sqrt{E(u,v)(u')^2 + F(u,v)2u'v' + G(u,v)(v')^2} \mathrm{d}t$$
 • Winkel: Flächenkurven

$$\begin{aligned} c_1: (-\varepsilon, \varepsilon) \ni t \mapsto (u_1(t), v_1(t)) \in S, \\ c_2: (-\varepsilon, \varepsilon) \ni t \mapsto (u_2(t), v_2(t)) \in S, \\ c_1(0) &= c_2(0). \cos \measuredangle(c_1'(0), c_2'(0)) = \\ &= \underbrace{Eu_1'u_2' + F(u_1'v_2' + v_1'u_2') + Gv_1'v_2'}_{\sqrt{Eu_1^{2'} + 2Fu_1'v_1' + Gv_1^{2'}}} \underbrace{\sqrt{Eu_2^{2'} + 2Fu_2'v_2' + Gv_2^{2'}}}_{\bullet \text{ Flächeninhalt}} \text{ von } x(U) \in S \in \mathbb{R}^2: \\ A(x(U)) &= \iint_{U} \sqrt{\det \mathbf{I}} \, \mathrm{d}u \mathrm{d}v \end{aligned}$$

(Lokale) Flächenisometrien

- Reguläre Fläche = metrischer Raum: Längenmetrik auf S durch $d_S(p,q) = \inf L(c)$
- (Flächen-) Isometrie $f:S \to \tilde{S}$, falls
- 1. f ist Diffeomorphismus und
- 2. $\forall (c: I \rightarrow S): L(f \circ c) = L(c)$ ("f ist längenerhaltend")
- Lokale Isometrie $f:S\to \tilde{S}$, falls $\forall p\in S\; \exists$ offene Umgebungen A von p und B von f(p), sodass f Isometrie von A nach B ist
- Kriterium lokale Isometrie: $x:U\to x(U)\subset S, \tilde x:U\to \tilde x(U)\subset \tilde S$ sodass $\forall (u,v)\in U:\left(\begin{smallmatrix} E&F\\F&G\end{smallmatrix}\right)(u,v)=\left(\begin{smallmatrix} \widetilde E&\widetilde F\\F&\widetilde G\end{smallmatrix}\right)(u,v),$ so sind x(U) und $\tilde x(U)$ isometrisch

Zweite Fundamentalform

- Normalenvektor: für Parametrisierung $x:U\ni (u,v)\mapsto x(u,v)\in S$ $n(p)=n(x(u,v))=n(u,v)=\frac{x_u(u,v)\land x_v(u,v)}{\|x_u(u,v)\land x_v(u,v)\|}$ ist Einheitsvektor senkrecht zu T_pS $(\forall p\in x(U)\in S)$

• Zweite Fundamentalform für Parametrisierung $x: U \to S$: $\begin{pmatrix} L(u,v) & M(u,v) \\ M(u,v) & N(u,v) \end{pmatrix} \coloneqq \begin{pmatrix} \langle x_{uu}, n \rangle & \langle x_{uv}, n \rangle \\ \langle x_{vu}, n \rangle & \langle x_{vv}, n \rangle \end{pmatrix}$

Gauß-Krümmung

- Gauß-Krümmung: $K:S\ni p\mapsto K(p)=\frac{\det\Pi_p}{\det I_p}$
 -
 $\circ \ K$ ist Größe der inneren Geometrie von
 S

• Bertrand-Puiseux ($p \in S$): Für hinreichend kleine r > 0 ist $S_r(p) = \{ q \in S : d(p,q) = r \}$ eine geschlossene, d-bare Kurve, Länge $L(S_r(p))$. Dann gilt: $K(p) = \lim_{r \to 0} \frac{3}{\pi r^3} (2\pi r - L(S_r(p)))$

Gauß-Bonnet - lokal

• Kovariante Ableitung von a nach u:

 $D_u a = a_u - \langle n, a_u \rangle n \ (= a_u + \langle n_u, a \rangle n)$ (lokale Parametrisierung $x: U \to S$, tangentiales Vektorfeld $a: U \to \mathbb{R}^3$ auf S) \Rightarrow Komponente von a_u in Tangentialrichtung

- Geodätische Krümmung $\kappa_q(s)$: Krümmung der in Tangentialebene projizierten Kurve

 $c''(s) = 0 \cdot c'(s) + \kappa_g(s)(n(s) \wedge c'(s)) + \alpha(s)n(s)$ • Satz von Gauß-Bonnet — lokal: $\int_{\delta G} \kappa_g(s) \mathrm{d}s + \iint_G K \mathrm{d}A = 2\pi$

1. S reguläre Fläche

2. $x: U \to S$ lokale Parametrisierung

3. $G \subseteq x(U) \subset S$ einfach zusammenhängendes Gebiet mit d-barem Rand δG 4. $s \mapsto (u(s), v(s))$ beschreibe $x^{-1}(\delta G) \subset U$

• **Geodätische**: Flächenkurve mit $\kappa_q = 0$ ("Gerade" auf krummer Fläche)

Gauß-Bonnet — mit Ecken

$$\iint_G K dA + \int_{\delta G} \kappa_g ds = \pi (2 - m) + \sum_{i=1}^m \alpha_i$$

Gauß-Bonnet — global

- Klassifikationssatz für 2-MF: Kompakte randlose 2-MF ist homöomorph zu 1. einer Sphäre S^2 oder
- 2. einer zusammenhängenden Summe von g Tori (falls M orientierbar) oder
- 3. einer zusammenhängenden Summe von g projektiven Ebenen (sonst)

- Geschlecht: g von oben
- Euler-Charakteristik von M-Triangulierung: $\chi_T(M) = \# \text{Ecken} - \# \text{Kanten} + \# \text{Flächen}$
- $\chi(M) = \chi_T(M)$ unabhängig von Triangulierung
- $\circ \chi_T(M) = 2 2g$
- Globaler Satz von Gauß-Bonnet:

$$\iint_{S} K dA = 2\pi \chi(S)$$

 $(S \subset \mathbb{R}^3$ kompakte randlose orientierbare Fläche)

Hyperbolische Ebene

Obere Halbebene

- **Definition**: $H^2 = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 > 0\}$
- Punkte: Elemente in \boldsymbol{H}^2
- $\circ~$ Halbkreise mit Zentrum auf x_1 -Achse und
- \circ Parallelen zur x_2 -Achse

Riemannsche Metrik

- Tangentialraum: T_pM = Menge von Äquivalenzklassen von d-baren Kurven
- **Riemannsche Metrik** auf d-barer MF: Familie von Skalarprodukten $\langle \cdot, \cdot \rangle_p$ auf T_pM , die d-bar von p abhängt

Ebene hyperbolische Geometrie

• Modell: $H^2 = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ mit hyperbolischer riemannscher Metrik $g_{ij} = \begin{pmatrix} \frac{1}{y^2} & 0 \\ 0 & \frac{1}{y^2} \end{pmatrix}$ • Hyperbolische Länge (mit $c(t) = z(t) = x(t) + \mathrm{i} y(t)$): $L_h(c) = \int_a^b \left\| c' \right\|_H \mathrm{d}t = \int_a^b \frac{\sqrt{x'(t)^2 + y'(t)^2}}{y(t)} \mathrm{d}t$

$$L_{h}(c) = \int_{a}^{b} \left\| c' \right\|_{H} dt = \int_{a}^{b} \frac{\sqrt{x'(t)^{2} + y'(t)^{2}}}{y(t)} dt$$

$$= \int_{a}^{b} \frac{\left| z'(t) \right|}{y(t)}$$
• Möbius-Transformation von $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(n, \mathbb{R})$:
$$T_{A} : H^{2} \ni z \mapsto \frac{az + b}{cz + d} \in H^{2}$$
• hyperbolische Länge einer d-baren H^{2} -Kurve ist invari

$$T_A: H^2 \ni z \mapsto \frac{az+b}{cz+d} \in H^2$$

- \circ hyperbolische Länge einer d-baren H^2 -Kurve ist invariant unter MT
- Hyperbolische Längenmetrik: (Ω_{pq} stückw. db Kurven in H^2 zw p und q) $d_h(p,q) = \inf_{c \in \Omega} L_k(c)$
- o (\boldsymbol{H}^2, d_h) ist metrischer Raum

- Möbius-Transformationen $\{T_A: A \in SL(2, \mathbb{R})\}$ sind Isom. von (H^2, d_h) (H^2, d_h) ist homogen: $\forall p, q \in H^2 \exists \text{ Iso } T_A: T_A(p) = q$ Streckungen sind Isometrien in H^2 (mit $A = \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \frac{1}{\sqrt{\lambda}} \end{pmatrix}$) $\Rightarrow d_h(z, w) = d_h(\lambda z, \lambda w)$

Geodätische

- Geodätische zwischen Punkten in H^2, d_h : parametrisierte Halbkreise und Geraden orthogonal zur reellen Achse \Rightarrow Halbkreise haben Zentrum auf reeller Achse $\forall\,p,q\ \in\ H^2$ können durch eindeutige Geodätische verbunden werden;
- $d_h(p,q)$ = hyp. Länge dieser Geodätischen

Gauß-Bonnet

• Hyperbolischer Flächeninhalt für
$$A \in H^2$$
:
$$\mu(a) = \iint_A \sqrt{\det(g_{ij}(z))} \mathrm{d}x\mathrm{d}y = \iint_A \frac{1}{y^2} \mathrm{d}x\mathrm{d}y \leq x$$
 • Flächeninhalt invariant unter Isometrien (also Möbius-Transformationen)

- Hyperbolisches Polygon mit n Seiten: Abgeschlossene Teilmenge von $\overline{H^2} = H^2 \cup (\mathbb{R} \cup \{\infty\})$
- o Seiten: geodätische Segmente, die Polygon begrenzen
- o Ecken: Stelle, an der sich genau zwei Seiten schneiden
- Hyperbolische Winkelmessung: wie im Euklidischen
- Gauß-Bonnet: Flächeninhalt eines hyp. △ ist durch Winkel vollständig bestimmt: $\mu(\triangle) = \pi - \alpha - \beta - \gamma \le \pi$

Krümmung

• Einheitsscheibe: $D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} = \{z \in \mathbb{C} : |z| < 1\}$

$$M: H^2 \ni z \mapsto \frac{\mathrm{i}z+1}{z+\mathrm{i}} \in D^2$$

$$d_h^*(z, w) = d_h(M^{-1}(z), M^{-1}(w))$$

$$K(p) = \lim_{\rho \to 0} \frac{3}{\pi p^3} (2\pi \rho - L(S_{\rho}(0)))$$

 $\text{o } \textit{Metrik} \text{ auf } D^2 \text{ mit} \\ M: H^2 \ni z \mapsto \frac{\mathrm{i}z+1}{z+\mathrm{i}} \in D^2 \\ \text{durch} \\ d_h^*(z,w) = d_h(M^{-1}(z),M^{-1}(w)) \\ \text{• Krümmung für Längenraum:} \\ K(p) = \lim_{\rho \to 0} \frac{3}{\pi p^3} (2\pi \rho - L(S_\rho(0))) \\ \text{• Krümmung von } D^2 \text{ (und damit auch } H^2 \text{) ist konstant } -1 \text{ (nutzt } L_h^*(S_\rho(0)) = 2\pi \sinh(\rho) \text{ für hyp. Kreis mit Radius } \rho, \text{Zentrum 0)}$