Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Projeto 2: Simulação duma cena modelada com hierarquia

Realizado por: Guilherme Fernandes nº 60045 Joana Wang nº 60225

Índice

1. Objetivo	3
2. Grafo da cena	3
2.1. Cenário	4
2.1.1. Hospital	4
2.1.2. Heliporto	
2.1.3. Árvores	
2.2. Helicóptero	7
2.2.1. Esqui do helicóptero	8
2.2.2. Cabine do helicóptero	8
2.2.3. Cauda do helicóptero	9
2.2.4. Rotor do helicóptero	9
2.3. Caixa	

1. Objetivo

O objetivo deste trabalho é desenvolver uma aplicação onde permite simular o movimento de um helicóptero no seu respetivo cenário, modelados hierarquicamente.

Nota: o grafo da cena completa está num ficheiro chamada "grafo_cena.htlm",

2. Grafo da cena

A cena é dividida em três subpartes essenciais: cenário, helicóptero e caixas. Iremos explicar cada parte com mais detalhes.

sceneR – rotação inicial de 90º da cena inteira em torno do eixo y.

2.1. Cenário

O cenário está constituído por diversos objetos e detalhes. Iremos explicar as partes essenciais.

2.1.1. Hospital

O hospital é constituído por dois edifícios (Fig.1) idênticos e uma ponte (Fig.2) que interliga esses dois edifícios.

h – variável para preencher janelas (conjuntos de 4) do prédio ao longo do eixo y. Varia entre [5, 29].

Fig.1 - Prédio hospital

Fig.2 - Ponte hospital

2.1.2. Heliporto

heliportPos – posição do heliport igual à posição incial do helicóptero, mas em y = 0, ou seja, no chão.

Fig.3 - Heliporto

2.1.3. Árvores

As árvores são colocadas ao redor do heliporto, sendo as coordenadas do eixo x e z calculados com seno e cosseno a um determinado raio de distância, todos situados na altura y=0.

Nota: adicionamos um novo objeto da biblioteca JavaScript (cone.js), para modelar as folhas das árvores.

Fig.4 – Árvore

2.2. Helicóptero

O helicóptero é constituído principalmente por 4 partes: esqui de repouso, cabine, cauda e rotor (principal e da cauda).

heli.position – posição atual do helicóptero. A coordenada y da variável é incrementada num valor constante assim que o helicóptero descola e levanta voou. Ao descer de altitude, o valor de y vai decrementando. Coordenada y de heli.position varia num intervalo entre [0,60].

heli.rotationAngle – ângulo de rotação do helicóptero em torno do eixo vertical, numa trajetória circular. Inicialmente a 0 e vai aumentando conforme a velocidade do helicóptero. Ou seja, quando a velocidade é nula, o helicóptero não muda de posição (das coordenadas x e z). Esta variável não tem limite máximo, pelo que pode ir até infinito.

heli.inclination – ângulo de inclinação do helicóptero relativamente ao plano horizontal, iniciado a 0. Este ângulo aumenta progressivamente de acordo com o seu movimento na trajetória. Ao abrandar a marcha, o ângulo é ser progressivamente reduzida. Variável compreendido entre [0, 30].

Fig.5 - Helicóptero

2.2.1. Esqui do helicóptero

Fig.6 – Esqui helicóptero

2.2.2. Cabine do helicóptero

Fig.7 - Cabine helicóptero

2.2.3. Cauda do helicóptero

Fig.8 – cauda helicóptero

2.2.4. Rotor do helicóptero

O helicóptero tem no total dois rotores: rotor da cauda (Fig.9) e rotor principal (Fig.10).

heli.rotationV – ângulo de rotação das hélices do helicóptero em torno do eixo z. Este valor começa a 0 e vai aumentando assim que o helicóptero descolar do chão, até infinito. Ao atingir o chão, o valor vai diminuindo, as hélices deixam de rodar e o helicóptero fica em repouso.

Fig.9 – rotor da cauda do helicóptero

Fig.10 – rotor principal do helicóptero

2.3. Caixa

O helicóptero pode largar um número infinito de caixas (Fig.11), guardados num vetor. A posição inicial das caixas é calculada a partir da posição e velocidade do helicóptero quando são largadas. Ao atingir o chão, as caixas desaparecem após 5s.

boxes[i].pos – posição corrente da caixa.

Fig.11 – Caixas largadas pelo helicóptero