	• ,	TA T	\sim
HV1	neriment	$N \cap$	ં⊀
$L\Lambda$	periment	110.	J

Apply Decision Tree Algorithm on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance:

Date of Submission:

Department of Computer Engineering

Aim: Apply Decision Tree Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: To perform various feature engineering tasks, apply Decision Tree Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score. Improve the performance by performing different data engineering and feature engineering tasks.

Theory:

Decision Tree is the most powerful and popular tool for classification and prediction. A Decision tree is a flowchart-like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Department of Computer Engineering

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

Department of Computer Engineering

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Code:

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

 $adult_dataset_path = "../input/adult_dataset.csv"$

 $def\ load_adult_data(adult_path=adult_dataset_path):$

csv_path = os.path.join(adult_path)

return pd.read_csv(csv_path)

Department of Computer Engineering

df = load_adult_data()

df.head(3)

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week
0	90	7	77053	HS-grad	9	Widowed	7	Not-in- family	White	Female	0	4356	40
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in- family	White	Female	0	4356	TÉ
2	66	7	186061	Some- college	10	Widowed	9	Unmarried	Black	Female	0	4356	40

df = df[df['workclass'] !='?']

df.head()

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week
1	82	Private	132870	HS-grad	9	Widowed	Exec- managenal	Not-in- family	White	Female	0	4356	38
3	34	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40
4	31	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	40
5	34	Private	216864	H5-grad	9	Divorced	Other- service	Unmarried	White	Female	0	3770	45
6	38	Private	150601	1009	6	Separated	Adm-	Unmarried	White	Male	0	3770	40

df = df[df['occupation'] !='?']

df = df[df['native.country'] !='?']

from sklearn import preprocessing

df_categorical = df.select_dtypes(include=['object'])

$df_categorical.head()$

	workclass	education	marital.status	occupation	relationship	race	sex	native.country	income
1	Private	HS-grad	Widowed	Exec-managerial	Not-in-family	White	Female	United-States	<=50K
3	Private	7th-8th	Divorced	Machine-op-inspct	Unmarried	White	Female	United-States	<=50K
4	Private	Some-college	Separated	Prof-specialty	Own-child	White	Female	United-States	<=50K
5	Private	HS-grad	Divorced	Other-service	Unmarried	White	Female	United-States	<=50K
6	Private	10th	Separated	Adm-clerical	Unmarried	White	Male	United-States	<=50K

Department of Computer Engineering

le = preprocessing.LabelEncoder()

df_categorical = df_categorical.apply(le.fit_transform)

df_categorical.head()

	workclass	education	marital.status	occupation	relationship	race	sex	native.country	income
1	2	11	6	3	1	4	0	38	0
3	2	5	0	6	4	4	0	38	0
4	2	15	5	9	3	4	0	38	0
5	2	11	0	7	4	4	0	38	0
6	2	0	5	0	4	4	1	38	0

df = df.drop(df_categorical.columns,axis=1)

df = pd.concat([df,df_categorical],axis=1)

df.head()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass	education	marital.status	accupation	relationship	race	sex	nati
1	82	132870	9	0	4356	18	2	11	6	3	1	4	0	
3	54	140359	4	. 0	3900	40	2	. 5	0	6	4	. 4	0	
4	41	264663	10	0	3900	40	2	15	5	9	3	4	0	
5	34	216864	9	0	3770	45	2	11	0	7	4	4	0	
6	38	150601	6	0	3770	40	2	0	5	0	4	4	1	

df['income'] = df['income'].astype('category')

from sklearn.model_selection import train_test_split

X = df.drop('income',axis=1)

y = df['income']

X.head(3)

Department of Computer Engineering

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass	education	marital.status	occupation	relationship	race	sex	nati
1	82	132870	9	0	4356	18	2	11	6	3	1	4	0	
3	54	140359	4	0	3900	40	2	5	.0	6	4	4	0	
4	41	264663	10	0	3900	40	2	15	5	9	3	4	0	

X_train, X_test, y_train, y_test =

train_test_split(X,y,test_size=0.30,random_state=99)

from sklearn.tree import DecisionTreeClassifier

dt_default = DecisionTreeClassifier(max_depth=5)

dt_default.fit(X_train,y_train)

from sklearn.metrics import

classification_report,confusion_matrix,accuracy_score

y_pred_default = dt_default.predict(X_test)

print(classification_report(y_test,y_pred_default))

	precision	recall	f1-score	support
0	0.86 0.78	0.95 0.52	0.91 0.63	6867 2182
accuracy macro avg weighted avg	0.82 0.84	0.74 0.85	0.85 0.77 0.84	9049 9049 9049

print(confusion_matrix(y_test,y_pred_default))

print(accuracy_score(y_test,y_pred_default))

^{[[6553 314]} [1038 1144]] 0.8505912255497845

Department of Computer Engineering

from IPython.display import Image

from sklearn.externals.six import StringIO

from sklearn.tree import export_graphviz

import graphviz

features = list(df.columns[1:])

features

```
['fnlwgt',
  'education.num',
  'capital.gain',
  'capital.loss',
  'hours.per.week',
  'workclass',
  'education',
  'marital.status',
  'occupation',
  'relationship',
  'race',
  'sex',
  'native.country',
  'income']
```

Tuning max_depth

from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

```
n_folds = 5
```

parameters = {'max_depth': range(1, 40)}

dtree = DecisionTreeClassifier(criterion = "gini",random_state = 100)

Department of Computer Engineering

tree = GridSearchCV(dtree, parameters,cv=n_folds,scoring="accuracy")
tree.fit(X_train, y_train)

Tuning min_samples_leaf

from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

 $n_{folds} = 5$

parameters = {'min_samples_leaf': range(5, 200, 20)}

dtree = DecisionTreeClassifier(criterion = "gini",random_state = 100)

tree = GridSearchCV(dtree, parameters cv=n_folds, scoring="accuracy")

tree.fit(X_train, y_train)

Tuning min_samples_split

from sklearn.model_selection import KFold

 $from \ sklearn.model_selection \ import \ GridSearchCV$

 $n_folds = 5$

parameters = {'min_samples_split': range(5, 200, 20)}

 $dtree = DecisionTreeClassifier(criterion = "gini", random_state = 100)$

tree = GridSearchCV(dtree, parameters, cv=n_folds, scoring="accuracy")

CDL/01. Machine Learning Lac

Department of Computer Engineering

tree.fit(X_train, y_train)

Grid Search to Find Optimal Hyperparameters

```
param_grid = {
  'max_depth': range(5, 15, 5),
  'min_samples_leaf': range(50, 150, 50),
  'min_samples_split': range(50, 150, 50),
  'criterion': ["entropy", "gini"]
}
n_{folds} = 5
dtree = DecisionTreeClassifier()
grid_search = GridSearchCV(estimator = dtree, param_grid = param_grid,cv =
n_{folds}, verbose = 1)
grid_search.fit(X_train,y_train)
print("best accuracy", grid_search.best_score_)
print(grid_search.best_estimator_)
best accuracy 0.8514659214701843
```


Department of Computer Engineering

model with optimal hyperparameters

```
clf_gini = DecisionTreeClassifier(criterion = "gini",
random_state = 100, max_depth=10,
min_samples_leaf=50, min_samples_split=50)
clf_gini.fit(X_train, y_train)
clf_gini.score(X_test,y_test)
Accuracy: 0.850922753895458
clf gini = DecisionTreeClassifier(criterion = "gini", random state = 100,
max_depth=3, min_samples_leaf=50, min_samples_split=50)
clf_gini.fit(X_train, y_train)
print(clf_gini.score(X_test,y_test))
0.8393192617968837
dot_data = StringIO()
export_graphviz(clf_gini,
out_file=dot_data,feature_names=features,filled=True,rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
```


Department of Computer Engineering

#Decision Tree Considering max_depth = 3

from sklearn.metrics import classification_report,confusion_matrix

y_pred = clf_gini.predict(X_test)

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.85	0.96	0.90	6867
1	0.77	0.47	0.59	2182
accuracy			0.84	9049
macro avg	0.81	0.71	0.74	9049
weighted avg	0.83	0.84	0.82	9049

print(confusion_matrix(y_test,y_pred))

[[6564 303] [1151 1031]]

Department of Computer Engineering

Conclusion:

- 1. How categorical attributes have been dealt with during data pre-processing?
- ➤ Since those models (being mathematical equations) can process only numeric variables. Categorical values cannot be directly used. We need to encode the categorical variables into a standard format so that sklearn can understand them and build the tree. We'll do that using the LabelEncoder() class, which comes with sklearn.preprocessing.
- 2. Hyper-Parameter tunning done based on the decision tree.
- ➤ Hyperparameter tuning (or hyperparameter optimization) is the process of determining the right combination of hyperparameters that maximizes the model performance. It works by running multiple trials in a single training process. In this implementation it done on max_depth, min_samples_leaf and min_samples_split.
- 3. Accuracy, confusion matrix, precision, recall and F1 score obtained.

	precision	recall	f1-score	support
0	0.85	0.96	0.90	6867
1	0.77	0.47	0.59	2182
accuracy			0.84	9049
macro avg	0.81	0.71	0.74	9049
weighted avg	0.83	0.84	0.82	9049