Decentralized Optimization and Learning

Current Research Trends

Mingyi Hong
University Of Minnesota

M. Hong would like to thank Dr. Prashant Khanduri for helping prepare the slides.

Outline

- Communication Efficient Decentralized Optimization
 - Motivation
 - o Problem
 - o Distributed: QSGD, Sparsification
 - Decentralized: Choco-Gossip based approaches
- Optimization in the presence of Adversaries
 - Motivation
 - Types of Byzantine Attacks
 - o ByzantineSGD
 - o Literature
- Other Issues

Communication Efficient Decentralized Optimization

Motivation

- ullet Let us consider a distributed or decentralized architecture with m nodes
- Goal: To solve:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \sum_{i=1}^m f_i(\boldsymbol{x}) \quad \text{with} \quad f_i(\boldsymbol{x}) = \mathbb{E}_{\xi_i}[g_i(\boldsymbol{x}, \xi_i)] \tag{1.1}$$

- Typical protocol at each node
 - \circ Forwards an n-dimensional vector
 - Receives an n-dimensional vector
 - Update its iterate and repeat until convergence

Problem

- **Issue:** In each iteration, every node communicates an *n*-dimensional vector to its neighbors (or the FC)
 - \circ Dimension n can be potentially very large
 - Gradients are dense for deep learning applications
 - Results in network congestion because of high communication requirements
- Solution: Each node communicates a compressed gradient
 - Quantization: Quantize each entry of the vector into fixed levels
 - Sparsification: Only send some entries (prominent ones or randomly selected) of the vector

Example

- Suppose each node uses a 32-bit arithmetic
 - Uncompressed Communication: Each node communicates (and receives) 32n bits per iteration
 - Quantization: 1-bit quantization
 - ullet Only n-bits compared to 32n-bits
 - \circ **Sparsification:** Sending only k out of n entries
 - 32k-bits instead of 32n-bits
- Trade-off: Communication vs Convergence
 - \circ Compression \Rightarrow increased variance \Rightarrow worse convergence
 - \circ Compression \Rightarrow faster communication \Rightarrow improved convergence

Question: Can compression lead to overall faster convergence?

Quantized SGD (QSGD)¹

Parallel implementation

- \circ Complete graph with m nodes to solve (1.1)
- Homogeneous Data: Each node have access to data from same distribution, i.e.,

$$f(\boldsymbol{x}) = f_i(\boldsymbol{x}) = \mathbb{E}_{\xi_i}[g_i(\boldsymbol{x}, \xi_i)]$$
 with $\xi_i \in \mathcal{D}$ $\forall i \in [m]$

- When all the nodes have access to a common database
- Each node receives quantized stochastic gradient vectors from other nodes

¹Alistarh et al., QSGD: Communication-efficient SGD via gradient quantization and encoding, Advances in Neural Information Processing Systems, 2017.

Algorithm: QSGD

Quantized Stochastic Gradient Descent (QSGD)

- For each iteration k do
- Compute stochastic gradient: $abla g_i(m{x}^k, \xi_i^k)$
- ullet Perform gradient compression: $M_i^k \leftarrow \mathsf{Encode}(\nabla g_i(oldsymbol{x}^k, \xi_i^k))$
- Broadcast M_i^k to other nodes
- **For** each node ℓ
- Receive M^k_ℓ from ℓ th node
- ullet Decode received gradients: $\widehat{
 abla g_\ell(oldsymbol{x}^k)} = \mathsf{Decode}(M_\ell^k)$
- End
- Update iterate: $m{x}^{k+1} = m{x} rac{lpha^k}{m} \sum_{\ell=1}^m \widehat{
 abla g_\ell(m{x}^k)}$

Same as SGD other that the Encode and Decode steps

Assumptions

Assumption 1

The function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, convex, L-smooth, and unknown. The algorithm only has access to the stochastic gradients of f, i.e., $\nabla g(x, \xi_i)$.

Assumption 2

The stochastic gradient satisfies:

- Unbiased: $\mathbb{E}[\nabla g(x, \xi_i)] = \nabla f(x)$ (We assumed $\xi_i \sim \mathcal{D} \ \forall i \in [m]$)
- **②** Bounded Second Moment: The stochastic gradient has second moment at most B if $\mathbb{E}[\|\nabla g(\boldsymbol{x}, \xi_i)\|^2] \leq B$ for all $\boldsymbol{x} \in \mathbb{R}^n$
- **3** Bounded Variance: The stochastic gradient has bounded variance if $\mathbb{E}[\|\nabla f(x;\xi_i) \nabla f(x)\|^2] \leq \sigma^2$ for all $x \in \mathbb{R}^n$

Quantization Scheme

- Quantization function: $Q_s(oldsymbol{v})$
 - $\circ \ s \geq 1$ uniformly distributed levels between 0 and 1
 - Unbiased quantization and introduces minimal variance

Quantization with s=5 levels

- Efficient Coding of Gradients $Q_s(v) = (\|v\|, \sigma, s \cdot \zeta)$
 - $\circ \| oldsymbol{v} \| \colon$ 32-bit representation
 - \circ σ : Sign of individual elements: 1-bit representation
 - o $s \cdot \zeta$: Integer quantization levels: Use Elias codes²

²Elias, Universal codeword sets and representations of the integers, IEEE Transactions on Information Theory, 1975.

Stochastic Quantization

ullet For any $oldsymbol{v} \in \mathbb{R}^n$ with $oldsymbol{v}
eq 0$, $Q_s(oldsymbol{v})$ is defined as

$$Q_s(v_i) = \|\boldsymbol{v}\| \cdot \operatorname{sgn}(v_i) \cdot \zeta_i(\boldsymbol{v}, s)$$
 for $i \in [n]$

where $sgn(v_i)$ is the sign function and $\zeta_i(v, s)$'s are independent random variables defined as:

• Let $0 \le \ell < s$ be s.t. $|v_i|/||v|| \in [\ell/s, (\ell+1)/s]$, then

$$\zeta_i(\boldsymbol{v},s) = \begin{cases} \ell/s & \text{w.p.} \quad 1 - p \bigg(\frac{|\boldsymbol{v}_i|}{\|\boldsymbol{v}\|},s\bigg) \\ (\ell+1)/s & \text{otherwise} \end{cases}$$

with
$$p(a,s) = as - \ell$$
 for any $a \in [0,1]$. $Q(\boldsymbol{v},s) = 0$ if $\boldsymbol{v} = 0$

Distribution of $\zeta_i(\boldsymbol{v},s)$ has minimal variance over distributions with support $\{0,1/s,\dots,1\}$ and $\mathbb{E}[\zeta_i(\boldsymbol{v},s)] = |v_i|/\|\boldsymbol{v}\|$

Main Result

Theorem 1.1

• Under Assumptions 1 and 2, and $\alpha^k = 1/(L + \sqrt{m}/\gamma)$ and to achieve $\mathbb{E}\Big[f\Big(\frac{1}{K}\sum_{k=1}^K \boldsymbol{x}^k\Big)\Big] - f^* \leq \epsilon$, QSGD requires K iterations with

$$K = O\left(R^2 \cdot \max\left\{\frac{2B'}{m\epsilon^2}, \frac{L}{\epsilon}\right\}\right).$$

with
$$\gamma=\frac{1}{\sigma}\sqrt{\frac{2}{K}}$$
, $R^2=\sup_{\boldsymbol{x}\in\mathbb{R}^n}\|\boldsymbol{x}-\boldsymbol{x}^0\|$, $\sigma=B'$, $B'=\min\{n/s^2,\sqrt{n}/s\}B$

• Moreover, if we take $s = \sqrt{n}$, QSGD requires 2.8n + 32 bits per iteration compared to 32n required by SGD

Comparison to SGD

Network	Dataset	Params.	Init. Rate	Top-1 (32bit)	Top-1 (QSGD)	Speedup (8 GPUs)
AlexNet	ImageNet	62M	0.07	59.50%	60.05 % (4bit)	2.05 ×
ResNet152	ImageNet	60M	1	77.0%	76.74% (8bit)	1.56 ×
ResNet50	ImageNet	25M	1	74.68%	74.76 % (4bit)	1.26 ×
ResNet110	CIFAR-10	1M	0.1	93.86%	94.19 % (4bit)	1.10 ×
BN-Inception	ImageNet	11M	3.6	-	-	1.16× (projected)
VGG19	ImageNet	143M	0.1	-	-	2.25× (projected)
LSTM	AN4	13M	0.5	81.13%	81.15 % (4bit)	2× (2 GPUs)

Speed-up achieved by **QSGD** compared to **SGD** while training different networks with the percentages indicating the percentage of time consumed in communication process

SignSGD³

- **SignSGD:** 1-bit compression
 - Transmitting just the sign of each stochastic gradient
- SignSGD works well when
 - Gradients are as dense
 - Both gradients and noise are dense in deep learning problem
- Homogeneous Data: Each node have access to data from same distribution, i.e.,

$$f(\boldsymbol{x}) = f_i(\boldsymbol{x}) = \mathbb{E}_{\xi_i}[g_i(\boldsymbol{x}, \xi_i)] \text{ with } \xi_i \sim \mathcal{D} \ \forall i \in [m]$$

Non-Convex functions

³Bernstein et al., SignSGD: Compressed Optimisation for Non-Convex Problems, Thirty-fifth International Conference on Machine Learning, 2018

Algorithm: SignSGD

SignSGD

- Input Learning rate α , initial iterate x^0
- For k=0 to K do
- Compute Stochastic Gradient: $abla g(m{x}^k, \xi^k)$ with $|\xi^k| = b_k$
- $\bullet \qquad \text{Update: } \boldsymbol{x}^{k+1} = \boldsymbol{x}^k \alpha \ \text{sign}(g(\boldsymbol{x}^k, \boldsymbol{\xi}^k))$
- End For

Algorithm: SignSGD with Majority Vote

Distributed SignSGD with Majority Voting (MV)

- Input Learning rate α , initial iterate x^0 , m nodes each with gradient estimate $\nabla g_i(x^k, \xi_i^k)$ for $i \in [m]$ and with $|\xi_i^k| = b_k$
- For k=0 to K-1 do
- on Central Node
- **pull** $\operatorname{sign}(\nabla g_i(\boldsymbol{x}^k, \xi_i^k))$ **from** each node
- **push** $sign\left[\sum_{i=1}^{m} sign(\nabla g_i(\boldsymbol{x}^k, \xi_i^k))\right]$ **to** each node (MV)
- on each worker update:

$$oldsymbol{x}^{k+1} = oldsymbol{x}^k - lpha \ ext{sign} igg[\sum_{i=1}^m ext{sign} (
abla g_i(oldsymbol{x}^k, \xi_i^k)) igg]$$

End For

Assumptions

Assumption 3 (Smooth)

The function f is non-convex and for all $oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n$ we have

$$\|\nabla f_i(\boldsymbol{y}) - \nabla f_i(\boldsymbol{x})\| \le L_i \|\boldsymbol{y} - \boldsymbol{x}\|$$

for a vector of non-negative constants $\vec{L} = [L_1, \dots, L_n]$

Assumption 4 (Variance Bound)

The stochastic gradient computed at each $j \in [m]$ for each dimension $i \in [n]$ satisfies

$$\mathbb{E}[\|\nabla g_j(\boldsymbol{x},\xi_j)_i - \nabla g_j(\boldsymbol{x})_i\|] \le \sigma_i^2$$

for a vector of non-negative constants $\vec{\sigma} = [\sigma_1, \dots, \sigma_n]$

Main Results: SignSGD

Theorem 1.2

For iterations 1 to K under Assumptions 3 and 4, with $\alpha=1/\sqrt{\|L\|_1K}$ and mini-batch size $b_k=K$. Let N be the cumulative number of stochastic gradient calls up to step K, i.e., $N=O(K^2)$. Then for **SignSGD** we have

$$\mathbb{E}\left[\frac{1}{K}\sum_{k=0}^{K-1}\|\nabla f(\boldsymbol{x}^k)\|_1\right]^2 \leq \frac{1}{\sqrt{N}}\left[\sqrt{\|\vec{L}\|_1}\left(f_0 - f^* + \frac{1}{2}\right) + 2\|\vec{\sigma}\|_1\right]^2$$

Note that the norms are ℓ_1 -norms!

Main Results: SignSGD with Majority Voting

Theorem 1.3

- SignSGD with Majority Vote with m workers converges at least as fast as SignSGD
- Further Assuming that the noise in each component of the stochastic gradient is unimodal and symmetric about the mean we have for SignSGD with Majority Vote

$$\mathbb{E}\left[\frac{1}{K}\sum_{k=0}^{K-1}\|\nabla f(\boldsymbol{x}^{k})\|_{1}\right]^{2} \\ \leq \frac{1}{\sqrt{N}}\left[\sqrt{\|\vec{L}\|_{1}}\left(f_{0}-f^{*}+\frac{1}{2}\right)+\frac{2}{\sqrt{m}}\|\vec{\sigma}\|_{1}\right]^{2}$$

Comparison of SignSGD to SGD

• Define:

- \circ Density of a vector: $\phi(m{v}) = \frac{\|m{v}\|_1^2}{n\|m{v}\|_2^2}$
- \circ Lower bound on gradient density: $\phi(\nabla g)$
- $\circ~R_1=\frac{\sqrt{\phi(\vec{L})}}{\phi(\nabla g)}$ and $R_2=\frac{\phi(\vec{\sigma})}{\phi(\nabla g)}$ with
- Convergence of **SignSGD** can be rephrased as:

$$\mathbb{E}\left[\frac{1}{K}\sum_{k=0}^{K-1}\|\nabla f(\boldsymbol{x}^k)\|_2\right]^2 \le \frac{2}{\sqrt{N}}\left[R_1L\left(f_0 - f^* + \frac{1}{2}\right)^2 + 4R_2\sigma^2\right]$$

with
$$\sigma^2 = \| \vec{\sigma} \|_2^2$$
 and $L = \| \vec{L} \|_{\infty}$

• For **SGD**

$$\mathbb{E}\left[\frac{1}{K} \sum_{k=0}^{K-1} \|\nabla f(\boldsymbol{x}^k)\|_2^2\right] \le \frac{1}{\sqrt{N}} [2L(f_0 - f^*) + \sigma^2]$$

Comparison of SignSGD to SGD

- $R_1\gg 1$ and $R_2\gg 1$
 - SGD is better suited than SignSGD
 - Curvature and the stochasticity are much denser than the typical gradient
- $\mathsf{NOT}[R_1 \gg 1]$ and $\mathsf{NOT}[R_2 \gg 1]$
 - SignSGD is as fast or faster than SGD
 - Neither curvature nor stochasticity are much denser than the gradient

SGD vs SignSGD

Toy example with $f(x) = \frac{1}{2} ||x||_2^2$ for $x \in \mathbb{R}^{100}$.

Literature

- Lossy compression: Low precision arithmetic⁴
- Sparsification⁵
- Three levels⁶

⁴Abadi et al., Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv 2016.

⁵De Sa, Christopher M., et al. "Taming the wild: A unified analysis of hogwild-style algorithms." Advances in neural information processing systems. 2015.

⁶Wen et al., Terngrad: Ternary gradients to reduce communication in distributed deep learning, NeurIPS 2017.

Compression for Decentralized Optimization: Choco-Gossip⁷

- Decentralized networks
- General compression
 - Quantize or Sparsify, Biased or unbiased
- Choco-Gossip: Decentralized consensus with compression
 - o Achieves exact consensus while converging to the true solution
- Past Approaches: Only neighborhood convergence or required fairly accurate compression
- Choco-SGD: Decentralized SGD based on Choco-Gossip

⁷Koloskova et al., Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication, 36th International Conference on Machine Learning, 2019.

Model

- Goal: Solve (1.1) over a decentralized network
- Network: Undirected network $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$ with $|\mathcal{V}|=m$ nodes and $|\mathcal{E}|$ edges
 - Matrix $W = [w_{ij}] \in [0,1]^{m \times m}$ is symmetric doubly stochastic
 - $\circ~$ Denote by $\delta>0$ the spectral gap of W
 - $\circ \ \ \mathsf{Denoting} \ \beta = \|I W\|_2 \in [0,2]$
- Heterogeneous Data: Each node have access to data from potentially different distributions, i.e.,

$$f_i(\boldsymbol{x}) = \mathbb{E}_{\xi_i}[g_i(\boldsymbol{x}, \xi_i)]$$
 with $\xi_i \sim \mathcal{D}_i \ \forall i \in [m]$

Compression

A general notion of compression operator Q:

Assumption 5 (Compression Operator)

We assume the compression operator $Q: \mathbb{R}^n \to \mathbb{R}^n$ satisfies for all $x \in \mathbb{R}^n$

$$\mathbb{E}_{Q} \|Q(x) - x\|^{2} \le (1 - \omega) \|x\|^{2}$$

for $\omega>0$. Here, \mathbb{E}_Q is the expectation over the randomness of Q

- QSGD discussed earlier satisfies Assumption 5
- Sparsification satisfies Assumption 5

Choco-SGD: Based on Choco-Gossip

Algorithm: Choco-SGD

- Initialize: Initial iterate $x_i^0 \in \mathbb{R}^n \ \forall i \in [m]$, consensus step-size γ , SGD step-size α^k , Graph \mathcal{G} , W, initialize $\hat{x}_i^0 = 0 \ \forall i \in [m]$
- For k=0 to K-1 do
- Compute stochastic gradient $m{d}_i^k =
 abla g_i(m{x}_i^k, \xi_i^k)$
- $\bullet \qquad \boldsymbol{x}_i^{k+\frac{1}{2}} = \boldsymbol{x}_i^k \alpha^k \boldsymbol{d}_i^k$
- $\bullet \qquad \boldsymbol{q}_i^k = Q(\boldsymbol{x}_i^{k+\frac{1}{2}} \hat{\boldsymbol{x}}_i^k)$
- Send q_i^k and receive q_j^k from neighbours
- ullet Maintain: $\hat{oldsymbol{x}}_j^{k+1} = oldsymbol{q}_j^k + \hat{oldsymbol{x}}_j^k$ for all $j \in \mathcal{N}_i$
- $x_i^{k+1} = x_i^{k+\frac{1}{2}} + \gamma \sum_{j:\{i,j\} \in \mathcal{E}} w_{ij} (\hat{x}_j^{k+1} \hat{x}_i^{k+1})$
- End For

Intuition: Choco-SGD

- Note that at every iteration $k \in [K]$ each node $i \in [m]$
 - \circ Maintains a **compressed estimate** of $oldsymbol{x}_{j}^{k}$ denoted as:

$$\hat{\boldsymbol{x}}_j^k \ \text{ for } \ j:\{i,j\} \in \mathcal{E} \ \ (\text{including}\{i\} \in \mathcal{E})$$

This is accomplished by receiving compressed error estimate

$$\boldsymbol{q}_{j}^{k} = Q(\boldsymbol{x}_{i}^{k+\frac{1}{2}} - \hat{\boldsymbol{x}}_{i}^{k}) \ \text{ for } \ j:\{i,j\} \in \mathcal{E} \ \ (\text{including}\{i\} \in \mathcal{E})$$

at each $k \in [K]$

• Idea behind Choco-SGD: Note that averaging the update equation across all $i \in [m]$, yields the standard SGD update

$$\bar{\boldsymbol{x}}^{k+1} = \bar{\boldsymbol{x}}^{k+\frac{1}{2}} = \bar{\boldsymbol{x}}^k - \alpha^k \bar{\boldsymbol{d}}^k$$

where $ar{x}^k = rac{1}{m} \sum_{i=1}^m x_i^k$ and $ar{d}^k$ is defined in a similar fashion

Assumptions

Assumption 6

Each $f_i: \mathbb{R}^n \to \mathbb{R}$ for $i \in [m]$ is assumed to be L-smooth and μ -strongly convex and variance of each node $i \in [m]$ is bounded for all $x \in \mathbb{R}^n$ as

$$\mathbb{E}_{\xi_i} \|\nabla f_i(\boldsymbol{x}, \xi_i) - \nabla f_i(\boldsymbol{x})\|^2 \le \sigma_i^2$$

$$\mathbb{E}_{\xi_i} \|\nabla f_i(\boldsymbol{x}, \xi_i)\|^2 \le G^2$$

where \mathbb{E}_{ξ_i} denotes expectation over $\xi_i \sim \mathcal{D}_i$. Moreover, we denote

$$\bar{\sigma}^2 = \frac{1}{m} \sum_{i=1}^m \sigma_i^2$$

Main Result

Theorem 1.4

Under Assumptions 6 and 5 the algorithm **Choco-SGD** with step-sizes $\alpha^k=\frac{4}{\mu(a+k)}$ with $a\geq \max\{410/\delta^2\omega,16\kappa\}$ for $\kappa=L/\mu$ and $\gamma=\frac{\delta^2\omega}{16\delta+\delta^2+4\beta^2+2\delta\beta^2-8\delta\omega}$ converges with a rate

$$f(\boldsymbol{x}_{\mathrm{avg}}^K - f^*) = O\left(\frac{\bar{\sigma}^2}{\mu m K}\right) + O\left(\frac{\kappa G^2}{\mu \omega^2 \delta^4 K^2}\right) + O\left(\frac{G^2}{\mu \omega^3 \delta^6 K^3}\right)$$

where
$$m{x}_{ extsf{avg}}^K = rac{1}{S_K} \sum_{k=0}^{K-1} w_k ar{m{x}}^k$$
 and $S_K = \sum_{k=0}^{K-1} w_k$

For large K , the term $O\left(\frac{\bar{\sigma}^2}{\mu m K}\right)$ dominates recovering the rate of SGD

Comparison: Choco-SGD vs SGD, ECD and DCD⁸

Comparison of **Choco-SGD** with Plain **SGD** with **ECD-SGD** and **DCD-SGD** proposed in [Tang et al. 2018] with rand $_{1\%}$ sparsification and top $_{1\%}$ for Choco-SGD for RCV1 dataset

⁸Tang et al., Decentralized training over decentralized data, ICML 2018

Extensions

- Non-Convex functions⁹
- Push-Sum + Choco-Gossip¹⁰
- Gradient Descent for Strongly Convex function¹¹

⁹Singh, et al., SPARQ-SGD: Event-Triggered and Compressed Communication in Decentralized Stochastic Optimization." arXiv 2019.

¹⁰Taheri, et al., Quantized Decentralized Stochastic Learning over Directed Graphs." arXiv 2020.

¹¹Liu et al., Linear Convergent Decentralized Optimization with Compression." arXiv 2020.

Optimization in the Presence of Adversaries

The Byzantine Generals Problem¹²

- Adversaries also referred to as Byzantines
- Byzantine army communicating only by messages
- One or more generals may be traitors who will try to confuse the other generals

Goal: The algorithm must ensure that the generals agree upon a common battle plan

¹²Lamport et al., The Byzantine Generals Problem", ACM 1982

Optimization in Presence of Byzantines

- Byzantine nodes: A fraction of multiple WNs might be adversarial
 - Forward arbitrary vectors instead of gradients to the server
 - o Can collaborate and adversely effect the algorithm's performance

Problem: To design optimization algorithms which are resilient to Byzantine attacks

• Next: Types of Byzantine attacks

Classic Byzantine Attacks

- A fraction of WNs are Byzantines¹³
 - o The set of Byzantine nodes is fixed
- A fraction of WNs are Byzantines, however, the set of Byzantine nodes is not fixed¹⁴
 - Nodes can change alliances

Classical Byzantine Attacks

¹³Alistarh et el., Byzantine Stochastic Gradient Descent, NeurIPS, 2018.

¹⁴Blanchard et al., Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, NeurIPS, 2017.

Generalized Byzantine Attacks

- Dimensional Byzantine Attacks¹⁵
 - o The attacker only affects certain dimensions of a node's vector

Dimension based attacks

¹⁵Xie et el., Generalized Byzantine-tolerant SGD, arxiv, 2018.

Byzantine SGD¹⁶

- **Problem:** Solve (1.1) in a distributed fashion
- Model:
 - \circ Number of nodes: m out of which β -fraction are Byzantines
 - Nodes interact via a server node (star network)
 - Each node forwards their stochastic gradient to the server and receives a aggregated direction
 - Server filters the alleged Byzantine nodes
 - Classical Byzantine attack model
- Goal: The algorithm must ensure convergence in the presence of Byzantines!
 - By designing effective filtering rule

¹⁶Alistarh et al., Byzantine Stochastic Gradient Descent, NeurIPS, 2018.

Notations

 Homogeneous Data: Each node have access to data from same distribution, i.e.,

$$f(\boldsymbol{x}) = f_i(\boldsymbol{x}) = \mathbb{E}_{\xi_i}[g_i(\boldsymbol{x}, \xi_i)]$$
 with $\xi_i \sim \mathcal{D} \ \forall i \in [m]$

- ullet The set of good nodes: ${\cal G}$
 - $\circ \ \mathcal{G}$ is not known to the server
- Estimate of the good set at each iteration: \mathcal{G}^k for $k \in [K]$

Assumptions

Assumption 7

For differentiable $f: \mathbb{R}^n \to \mathbb{R}$ we have

- f is μ -strongly convex
- ullet f is L-Lipschitz smooth
- f is B-Lipschitz continuous (Gradient of f is bounded)

At each iteration, each node $i \in [m]$ computes $\nabla_i^k \in \mathbb{R}^n$ as

Assumption 8

At each iteration $k \in [K]$ for every $i \in \mathcal{G}$, we have

- $\nabla_i^k = \nabla g_i(\boldsymbol{x}^k, \xi_i^k)$ for a random sample $\xi_i^k \sim \mathcal{D}$
- $\|\nabla_i^k \nabla f(\boldsymbol{x}^k)\| \le \mathcal{V}$

For each $k \in [K]$ and $i \notin \mathcal{G}$ the vector ∇_i^k can be adversarially chosen

Filtering Rule

 Let us first define two statistics the central node maintains for filtering the Byzantine nodes

$$\circ A_i = \sum_{t=1}^k \langle \nabla_i^k, \boldsymbol{x}^t - \boldsymbol{x}^1 \rangle
\circ B_i = \sum_{t=1}^k \nabla_i^t$$

- Note that A_i and B_i accumulate over time
 - o The filtering rule relies on the Martingale concentration
 - \circ Relies on the fact the for $i \in \mathcal{G}$ and $k \in [K]$ the stochastic gradients ∇^k_i are chosen independently
- **Vector Median:** Finally, we define vector median of a set of vectors v_1, \ldots, v_m as any vector v_i such that

$$|\{j \in [m] : ||v_j - v_i|| \le \mathfrak{T}_v\}| > m/2$$

where $\mathfrak{T}_v > 0$ is the diameter of the norm-ball

Algorithm: Byzantine SGD

Input: Learning rate α , Initial iterate x^1 , constants \mathfrak{T}_A , $\mathfrak{T}_B > 0$

- $\mathcal{G}^1 \leftarrow [m]$
- For k=1 to K do
- Receive $\nabla_i^k \in \mathbb{R}^n$ from $i \in [m]$
- Maintain statistics A_i and B_i
- Compute $A_{\mathsf{med}} = \mathsf{median}\{A_1, \dots, A_m\}$
- Compute B_{med} from B_i 's with diameter \mathfrak{T}_B (see previous slide)
- ullet Compute $abla_{\mathrm{med}}$ from $abla_i^k$,s with diameter $2\mathcal{V}$ (see previous slide)
- Filtering Rule:

$$\mathcal{G}^k \leftarrow \{i \in \mathcal{G}^{k-1} : |A_i - A_{\mathsf{med}}| \le \mathfrak{T}_A \cap ||B_i - B_{\mathsf{med}}|| \le \mathfrak{T}_B \\ \cap ||\nabla_i^k - \nabla_{\mathsf{med}}|| \le 4\mathcal{V}\}$$

•
$$\boldsymbol{x}^{k+1} = \underset{\boldsymbol{y}: \|\boldsymbol{y} - \boldsymbol{x}^1\| \leq D}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{x}^k\|^2 + \alpha \left\langle \frac{1}{m} \sum_{i \in \mathcal{C}^k} \nabla_i^k, \boldsymbol{y} - \boldsymbol{x}^k \right\rangle \right\}$$

End For

Main Result

Theorem 1.5

Under Assumption 7 with $\mu=0$ (convex function) and with β -fraction of Byzantine nodes with $\beta<1/2$, the ByzantineSGD finds a point x with $f(x)-f^*\leq \epsilon$ in K iterations where

$$K = \tilde{O}\left(\frac{1}{\epsilon} + \frac{1}{\epsilon^2 m} + \frac{\beta^2}{\epsilon^2}\right)$$

or

$$K = \tilde{O}\left(\frac{1}{\mu} + \frac{1}{\mu\epsilon m} + \frac{\beta^2}{\mu\epsilon}\right)$$
 if $f(x)$ is μ -strongly convex

Note that $\beta=0$ leads to the guarantees of standard parallel SGD!

Past: Deterministic Optimization Approaches

• Byzantine Gradient Descent¹⁷

 Classical Byzantine model, Strongly convex functions, Median based aggregation

• Approximate Gradient Descent¹⁸

 Classical Byzantine model, Strongly convex functions, Direction with most spread

• Robust Distributed Gradient Descent¹⁹

 Generalized Byzantine model, Strongly convex, convex and non-convex functions, Coordinate wise median and trimmed mean

¹⁷Chen et al., Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent, Proc. ACM 2017.

¹⁸Su et al., Securing Distributed Machine Learning in High Dimensions, arxiv 2018.

¹⁹Yin et al., Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates, ICML 2018.

Past: Stochastic Gradient Descent

• Krum Based Approaches²⁰

 Classical Byzantine model, Non-convex functions, Geometric median based aggregation

• Phocas²¹

- Generalized Byzantine model, Non-convex and strongly convex functions, Coordinate wise trimmed mean
- Robust Gradient Aggregation (RSA)²²
 - Classical Byzantine model, Strongly convex functions, Model based aggregation, Heterogeneous data

²⁰Blanchard et al.,Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, NeurIPS, 2017

²¹Xie et al., "Phocas: dimensional Byzantine-resilient stochastic gradient descent", arxiv 2018

²²Li et al., RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets, AAAI, 2019.

Past: Decentralized Gradient Decent

- BRIDGE²³ and ByRDiE²⁴
 - Generalized Byzantine models, Strongly convex and convex functions resp., Distance based aggregation
- Recent Survey²⁵

 $^{^{23}}$ Yang et al., BRIDGE: Byzantine-resilient decentralized gradient descent, arXiv 2019.

²⁴Yang et al., ByRDiE: Byzantine-resilient distributed coordinate descent for decentralized learning, IEEE Transactions on Signal and Information Processing over Networks 2019.

²⁵Yang et al., Adversary-resilient distributed and decentralized statistical inference and machine learning: An overview of recent advances under the Byzantine threat model, IEEE Signal Processing Magazine 2020.