Đề gồm 01 trang

ĐỀ CHỌN ĐỘI TUYỂN OLYMPIC \mathbf{D} AI SỐ

NĂM HQC: 2024 - 2025

Thời gian làm bài: 150 phút (không kể thời gian phát đề)

Câu 1. Cho đa thức $P(x) = x^n - a_1 x^{n-1} - 2a_2 x^{n-2} - \dots - (n-1)a_{n-1}x - na_n$, trong đó a_i là các số thực không âm và có ít nhất một số khác không.

- (1) Chứng minh rằng đa thức P(x) có duy nhất một nghiệm dương x_0 , là nghiệm đơn, và mọi nghiệm khác của P(x) có môđun không vượt quá x_0 .
- (2) Đặt $a = \sum_{i=1}^n i a_i$, $b = \sum_{i=1}^n i^2 a_i$. Chúng minh rằng $a^a \leq x_0^b$

Câu 2. Gọi $\mathbb{F}[x]$ là \mathbb{F} -không gian véctơ các đa thức với hệ số trong trường \mathbb{F} . Xét các ánh xạ $\mathcal{S}, \mathcal{T} : \mathbb{F}[x] \to \mathbb{F}[x]$ xác định như sau: Với mọi $f(x) = \sum_{i=0}^d a_i x^i \in \mathbb{F}[x]$, ta có

$$S(f) = \sum_{i=0}^{d} \frac{a_i}{i+1} x^{i+1}, \quad T(f) = \sum_{i=1}^{d} i a_i x^{i-1}.$$

- a) Chúng minh S và T là các ánh xạ tuyến tính.
- b) Tính $S_{\circ}\mathcal{T}$ và $\mathcal{T} \circ S$.
- c) Gọi $\mathbb{F}[x]_d$, $d \geq 1$, là tập tất cả các đa thức trong $\mathbb{F}[x]$ có bậc không vượt quá d. Chứng minh rằng $\mathbb{F}[x]$ là một \mathbb{F} -không gian véctơ với cơ sở $\mathfrak{B} = \{1, x, x^2, \dots x^d\}$.

Tìm ma trận của \mathcal{T} đối với cơ sở \mathfrak{B} .

d) Tìm giá trị riêng và không gian con riêng tương ứng của \mathcal{T} .

Câu 3. a) Cho $A = [a_{ij}]$ là một ma trận vuông cấp n và \hat{A} là ma trận phụ hợp của A, nghĩa là: phần tử trên dòng i cột j của \hat{A} là phần bù đại số của phần tử a_{ji} của A. Chứng minh rằng $A\hat{A} = \det(A)I_n$.

- b) Cho a_1, \ldots, a_n là các số (thực hoặc phức). Gọi a là véctơ dòng với thành phần thứ j là $-a_j$. Tính định thức của $A = \begin{bmatrix} 0 & I_{n-1} \\ -a_1 & a \end{bmatrix}$. Xác định điều kiện để A khả nghịch và tìm ma trận nghịch đảo của nó.
- Câu 4. Chứng minh

$$\operatorname{rank} \begin{bmatrix} A & B \\ O & D \end{bmatrix} \ge \operatorname{rank}(A) + \operatorname{rank}(D).$$

Câu 5. Xét phép biến đổi ϕ được cho như sau đây: với bộ 4 số nguyên (x_1, x_2, x_3, x_4) ta đặt

$$\phi(x_1, x_2, x_3, x_4) = (|x_1 - x_2|, |x_2 - x_3|, |x_3 - x_4|, |x_4 - x_1|).$$

Chứng minh rằng, xuất phát từ một bộ số nguyên tuỳ ý, sau hữu hạn bước áp dụng ϕ liên tiếp ta sẽ nhân được một phần tử của tâp hợp

$$S := \{ (u_1, u_2, u_3, u_4) \mid u_1 u_2 u_3 u_4 = 0 \}.$$