1,9,21 Calc 3 Opt Product a voteo when orthogenal 12.4° Cross product

* Everything today is in B³

Goal-Given two vectors, construct a third

(ideally orthogonal to both) To find a vector perpendicular to the plane, we find one perpendicular to the two vectors on the plane. 1-low? 1 Let it=(u, u, u, u,), v=(v, va, v3) and desired vector w= (w, wz wz). 0= w. it = wutwustwas 0=0, = W/+ my /2 my/3 Multiply eq. 1 by v, and eq. 2 by uz to get two new expressions

0 = w, (u, v3) + w2(u2v2) + w2(u3v3)

0 = w, (v, tou,) + w2(u3v2) + w2(u3v3)

Subtracting 2 from 1* 0= V3(1, 1)- u3(1, 1) 0=w, (u, v3-u3v1) + w2(u2v3-u3v2) = - W, (-u, v3+u3v,)+w2(u2v3-u3v2) Solution: W= U2V3#-U3V2
Wa=-(U, V3#U3V) Aside Jeasicst solution Plugging in to initial problem to -ax+ by=0 is yhelds w= 4, v= u2v, x=6, y=a

The solution assumes uz #0 $\vec{W} = (w_1 w_2 + w_3 w_3) - (u_1 w_3 - u_2 v_1), \quad u_1 v_2 - u_2 v_1)$ Exercise > To verify, wheat if dot products = 0 Det. The determinant of a 2x2 meetrix's and-be 6 Oct of a 3x3 moskix is ex. [1-2] det [-1-1] [det (-1-1)] = (-1+2) = 1vector is a symbolic determinant ijk Ū→ u, u24, → i (u2v3-v2u3)-j(u1v3-v1u3) V+ v2 v3 + k(u1 v2- u3 V1) ((u2 v3-u3 v2),-(u1 v3-v1 u3), (u1 v2-u3 v1) Cross palvet of Twith vis? and there is orthogonal to both vectors.

Cross product uses two vectors in IR3 to produce a vector in IR3 Properties of the cross product

Let is, v, is eR3, and ceR

Ouxv=-(vxi)

(ci)xv=c(ūxv)

(xx(x+i)=ixv+ixi

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi+ib

(xxi)xi=ixi-ixi

(xxi)xi

(xxi) Geometric properties O Ūχν is orthogonal to both vectors

B I Ūχν is lùl·lvisin(θ)

3) parallel if cross product = 0