bruceR `PROCESS()` Function and SPSS `PROCESS` Macro

bruceR `PROCESS()` Function			SPSS	`PROCESS` Macro*	Stats. Model**	
meds	mods	<pre>med.type mod.type</pre>	mod.path	Model	Model Diagram	R Formula
_	1	ı	-	1	<i>Y</i>	Y ~ X <u>*W</u> equivalent to: Y ~ X + W + X:W
_	2	-	-	2	W Z Y	Y ~ X <u>*W1</u> + X <u>*W2</u>
_	2	"3-way"	-	3	<i>X Y</i>	Y ~ X <u>*W1*W2</u>
1+	_	ı	-	4	$X \longrightarrow Y$	M ~ X Y ~ X + M
2~4	_	"serial"	I	6	X Y	M1 ~ X M2 ~ X + M1 Y ~ X + M1 + M2
1+	1~2	_ "2-way" "3-way"	"x-y"	5 (5.2) (5.3)	W M_i Y	M ~ X Y ~ X <u>*W</u> + M
	1	ı		7		M ~ X <u>*W</u> Y ~ X + M + W
1+	2	2 – "x-m"		9	<i>x y z</i>	$M \sim X + W1 + X + W2$ $Y \sim X + M$ + W1 + W2
	2	"3-way"		11	W M _i Y Y Y	M ~ X*W1*W2 Y ~ X + M + W1 + W2

	1	-		8	<i>W M</i> _i <i>Y</i>	M ~ X <u>*W</u> Y ~ X <u>*W</u> + M
1+	2	-	c("x-m", "x-y")	10	W M _I	$M \sim X*W1 + X*W2$ $Y \sim X*W1 + X*W2$ + M
	2	"3-way"		12	<i>W M X Y</i>	M ~ X*W1*W2 Y ~ X*W1*W2 + M
	1	-		14	<i>M</i> ₁ <i>W Y</i>	M ~ X + W Y ~ X + M <u>*W</u>
1+	2	_	"m-y"	16	X Y	$M \sim X + W1 + W2$ $Y \sim X + M*W1 + M*W2$
	2	"3-way"		18	M_i W Z Y	M ~ X + W1 + W2 Y ~ X + M*W1*W2
	1	-		15	<i>M</i> _i <i>W</i>	M ~ X + W Y ~ X <u>*W</u> + M <u>*W</u>
1+	2	-	c("m-y", "x-y")	17	X Y	$M \sim X + W1 + W2$ $Y \sim X*W1 + X*W2$ + M*W1 + M*W2
	2	"3-way"		19	<i>X Y</i>	$M \sim X + W1 + W2$ $Y \sim X + W1 + W2$ $Y \sim X + W1 + W2$ $Y \sim X + W1 + W2$

	1	-	c("x-m", "m-y")	58	W M_{i} X	M ~ X <u>*W</u> Y ~ X + M <u>*W</u>
1+	2	_		75	X Y	M ~ X <u>*W1</u> + X <u>*W2</u> Y ~ X + M <u>*W1</u> + M <u>*W2</u>
	2	"3-way"		72	X Y	M ~ X <u>*W1*W2</u> Y ~ X + M <u>*W1*W2</u>
1+	1	-		59	X Y	M ~ X <u>*W</u> Y ~ X <u>*W</u> + M <u>*W</u>
	2	-	"all"	76	X Y	M ~ X <u>*W1</u> + X <u>*W2</u> Y ~ X <u>*W1</u> + X <u>*W2</u> + M <u>*W1</u> + M <u>*W2</u>
	2	"3-way"		73	X Y	M ~ X <u>*W1*W2</u> Y ~ X <u>*W1*W2</u> + M <u>*W1*W2</u>

Note. By default, med.type is set to "parallel" and allows an infinite number of multiple mediators in parallel. By default, mod.type is set to "2-way". The bruceR::PROCESS() function supports (generalized) linear models and (generalized) linear mixed models, or a mixture of various types of models. For other PROCESS models that are not supported by bruceR::PROCESS(), please use the official SPSS PROCESS macro, the official PROCESS R script "process.R" (currently not an R package), or the R packages "mediation", "interactions", and/or "lavaan".

* The SPSS PROCESS model numbers and diagrams are retrieved from Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach authored by Andrew F. Hayes. Copyright © 2018 The Guilford Press. (for FAQs about PROCESS, see https://www.processmacro.org/faq.html)

** The red part in R formula ("+ W", "+ W1 + W2") are moderator(s) controlled as covariates in the models, which differs from the official PROCESS but is more rigorous and rational. This is a technical limitation related to the mediation::mediate() function, which requires all moderators to be included in both "M" and "Y" models.

Variable Types Supported by bruceR `PROCESS()` and SPSS `PROCESS`

	Software				
Υ	х	Mediator(s)	Moderator(s)	bruceR PROCESS()	SPSS PROCESS
	Continuous	Continuous	Continuous Dichotomous	Yes	Yes
C .:	Dichotomous	Dichotomous		Yes	No
Continuous	Multicategorical	Continuous		No*	Yes
Dichotomous		Dichotomous		No*	No
		Multicategorical	Multicategorical	No	No
Multicategorical				No	No

Note. bruceR::PROCESS() function also supports mediation and/or moderation analyses based on (generalized) linear mixed models (i.e., multilevel mediation/moderation).

Comparing Different Methods for Testing Indirect (Mediational) Effects

	Performance*		Software		
Method	Type I	Dayran	bruceR	SPSS	jamovi
	Error	Power	PROCESS()	PROCESS	jAMM
The "component" approach					
Joint-significance test	Very good	Good	Yes	Yes	Yes
The "index" approach					
Monte Carlo	Good	Good	"mcmc"	Yes	No
Percentile bootstrap	Good	Good	"boot"	Yes	Yes
Bias-corrected percentile bootstrap	Bad	Very good	"bc.boot"	Yes	No
Accelerated bias-corrected bootstrap	Bad	Very good	"bca.boot"	No	Yes

Note. The component approach is to test all component paths ("a" and "b") of an indirect effect. The index approach is to test a single mediation index ("ab") and its confidence interval using any resampling method (e.g., bootstrap). *Yzerbyt, V., Muller, D., Batailler, C., & Judd, C. M. (2018). New recommendations for testing indirect effects in mediational models: The need to report and test component paths. *Journal of Personality and Social Psychology*, 115(6), 929–943. https://doi.org/10.1037/pspa0000132

Please update to the latest version of 'bruceR' (https://CRAN.R-project.org/package=bruceR).

Author of the 'bruceR' package: <u>Han-Wu-Shuang Bao</u>

2021-05-20

^{*} This is a limitation related to the interactions::sim_slopes() function, which does not support factor-type predictor. However, users could manually convert a multicategorical predictor (X) to numeric dummy variables.