Algorithmic Recourse: from Counterfactual Explanations to Interventions

By Kamiri, Schölkopf, and Valera

Presentation by Catherine Huang, Christina Xiao, Kelly Zhang

Algorithmic Recourse

- Increasingly algorithms are used to make consequential decisions for individuals
- Recourse: "Systematic process of reversing unfavorable decisions made by algorithms and bureaucracies"
 - Promoting agency and trust

Paper's Main Contributions

- 1. Insufficiencies of previous problem formulations
 - → Motivates causal approach to recourse (Kelly)
- 2. Structural Causal Model approach to recourse (Catherine)
- 3. Discuss examples motivated by real-world problems and future directions (Christina)

Nearest Counterfactual Explanations

- For a person with features
 x^F who was denied a loan,
 find the "nearest neighbor"
 x who was granted a loan
- Difference between x^F and
 x is an "explanation" for the loan denial for x^F

Nearest Counterfactual Explanation (CFE)

$$x^{*CFE} \in \underset{x}{argmin} \quad \operatorname{dist}(x, x^{F}) \quad \text{s.t.} \quad h(x) \neq h(x^{F}), x \in \mathcal{P},$$

- Finding nearest counterfactual explanation as an optimization problem
 - x*CFE is the Counter Factual Explanation
 - Function h is the classifier

- Distance metrics
 - Lp norm; L1 norm divided by median absolute deviation; etc

Why are counterfactual **explanations** not ideal for **recommendations** for recourse?

Counterfactual Explanations provide understanding but do not necessarily lead to optimal action recommendations

Why are counterfactual **explanations** not ideal for **recommendations** for recourse?

- 1. Don't account for person's difficulty or "cost" of changing dimensions of \mathbf{x}^{F} (addressed by Ustun et al.)
- 2. Don't account for downstream "causal" impact of taking actions (addressed by this work)

Accounting for the "Cost" of Actions (Ustun et al.)

$$\delta^* \in argmin \ cost(\delta; x^F)$$
 s.t. $h(x^{CFE}) \neq h(x^F)$, δ
$$x^{CFE} = x^F + \delta,$$
 $x^{CFE} \in \mathcal{P}, \ \delta \in \mathcal{F},$

- δ^* restricted to the set of "feasible changes"
- Consider linear impact of changes δ
- Non-trivial to choose costs that reflect people's' true objective functions

Insufficiencies of Ustun et al. Formulation

$$\delta^* \in argmin \ cost(\delta; x^F)$$
 s.t. $h(x^{CFE}) \neq h(x^F)$, $x^{CFE} = x^F + \delta$, $x^{CFE} \in \mathcal{P}, \ \delta \in \mathcal{F}$,

- 1. Marginal cost of changing a feature is constant
 - Example: Cost of going from salary \$0 to \$100k equals cost to go from salary \$800k to \$900k

Insufficiencies of Ustun et al. Formulation

- 2. Doesn't consider downstream "causal" impact of actions
 - Example: Loan decision for individual changed if "salary" reaches 100k (+33%) or "bank balance" reaches 30k (+20%).
 20% change seems easier.
 - However, best action recommendation is to increase salary by 14% when 30% of salary automatically saved to bank.

Actions as Interventions: Structured Causal Model (SCM)

Setup

- $M(M \in \Pi) = \langle F, X, U \rangle$: SCM
- *X*: endogenous (observed) variables
- U: exogenous (unobserved) variables
- $F: U \rightarrow X$, structural equations
- A $(\Pi \rightarrow \Pi)$: structural interventions, i.e. transformations between SCMs
 - of the form A := $do({X_i := a_i}_{i \in I})$

Structural Interventions

- M: true world model
- observation: $M_1 \neq M_2 \neq M_3$

Actions as Interventions: Structural Counterfactuals

What will individual x^F 's feature vector be after the individual performs action set A in world M?

Assumptions: (1) no hidden confounders (true SCM), (2) full access to invertible *F*

Idea: once we know F, X (endogenous variables) can be uniquely determined given U (exogenous variables)

Compute $F^{-1}(x^F)$

Takeaway: we can compute any structural counterfactual query for individual x^{F} :

$$x^{SCF} = F_A(F^{-1}(x^F)).$$

Limitations of CFE-Based Recourse: Formalism

Setup: x^F (individual features), δ^* action recommendation (Ustun et al. solution), I (set of indices of acted-upon observed variables: $I = \{i \mid \delta^*_i \neq 0\}$)

Definition (CFE-Based Actions): a set of structural interventions $A^{CFE} := do(\{X_i := x_i^F + \delta^*\}_{i \in I})$

gives rise to

Proposition: $A^{CFE} \rightarrow x^{SCF} = x^{*CFE} := x^F + \delta^*$ (i.e. recourse is guaranteed) if and only if *I*'s descendants = {}.

Corollary: if the true world M is independent—if all the observed features are root-nodes of G—then CFE-based actions always guarantee recourse.

Algorithmic Recourse via Minimal Interventions: Setup

Formulation

```
\mathbf{A}^* \in \underset{\mathbf{A}}{argmin} \quad \mathbf{cost}(\mathbf{A}; \mathbf{x}^{\mathsf{F}})
s.t. h(\mathbf{x}^{\mathsf{SCF}}) \neq h(\mathbf{x}^{\mathsf{F}})
\mathbf{x}^{\mathsf{SCF}} = \mathbb{F}_{\mathbf{A}}(\mathbb{F}^{-1}(\mathbf{x}^{\mathsf{F}}))
\mathbf{x}^{\mathsf{SCF}} \in \mathcal{P}, \quad \mathbf{A} \in \mathcal{F},
```

Remarks

- finding minimal shift of features →
 finding minimal cost action set that
 yields favorable label
- $A^* \in \mathcal{F}$ = set of feasible actions with minimally costly recourse
- cost(\square x^{F}): $\mathcal{F} \times X \to \mathbb{R}_+$
- $\mathbb{L}^{\mathsf{SCF}}$: $F_{\mathsf{A}^*}(F^{-1}(\mathbb{H}))$: resulting counterfactual
- ☐ CFE (from Ustun et al.)!

Algorithmic Recourse via Minimal Interventions: Formalism

(from the last slide)

```
\mathbf{A}^* \in \underset{\mathbf{A}}{argmin} \quad \operatorname{cost}(\mathbf{A}; \mathbf{x}^{\mathsf{F}})
\text{s.t.} \quad h(\mathbf{x}^{\mathsf{SCF}}) \neq h(\mathbf{x}^{\mathsf{F}})
\mathbf{x}^{\mathsf{SCF}} = \mathbb{F}_{\mathbf{A}}(\mathbb{F}^{-1}(\mathbf{x}^{\mathsf{F}}))
\mathbf{x}^{\mathsf{SCF}} \in \mathcal{P}, \quad \mathbf{A} \in \mathcal{F},
```

Proposition:

- ACFE: Counter Factual Explanation-based action
- A*: Minimal Intervention Solution (blue box above)

$$cost(A^*;x^F) \leq cost(A^{CFE};x^F)$$

Algorithmic Recourse via Minimal Interventions: MINT

- Recourse through Minimal Interventions (MINT) idea:
 - Required: that we can compute structural counterfactual of an individual in the world given any feasible action
 - Focus on the case where the SCM is an additive noise model
 - ⇒ Abduction-action-prediction technique (Pearl et al.) to compute x^{SCF} : $F_A(F^{-1}(x^F))$

Abduction-Action-Prediction to obtain x^{SCF}

 $\{U_i\}_{i=1}^4$: mutually independent, exogenous

 $\{f_i\}_{i=1}^4$: structural equations

 $x = [x_1^F, x_2^F, x_3^F, x_4^F]^T$: observed factual features

(1) Abduction: compute exogenous variables $u_1 = x_1^F$, $u_2 = x_2^F$, $u_3 = x_3^F - f_3(x_1^F, x_2^F)$, $u_4 = x_4^F - f_4(x_3^F)$.

- (2) Action: modify SCM with interventions $X_1 := [1 \in I] \cdot a_1 + [1 \notin I] \cdot U_1,$ $X_2 := [2 \in I] \cdot a_2 + [2 \notin I] \cdot U_2,$ $X_3 := [3 \in I] \cdot a_3 + [3 \notin I] \cdot (f_3(X_1, X_2) + U_3),$ $X_4 := [4 \in I] \cdot a_4 + [4 \notin I] \cdot (f_4(X_3) + U_4),$
- (3) Prediction: recursively compute endogenous variables based on (1) and (2) $x_1^{\mathsf{SCF}} \coloneqq [1 \in I] \cdot a_1 + [1 \notin I] \cdot (u_1),$ $x_2^{\mathsf{SCF}} \coloneqq [2 \in I] \cdot a_2 + [2 \notin I] \cdot (u_2),$ $x_3^{\mathsf{SCF}} \coloneqq [3 \in I] \cdot a_3 + [3 \notin I] \cdot (f_3(x_1^{\mathsf{SCF}}, x_2^{\mathsf{SCF}}) + u_3),$

 $x_4^{\text{SCF}} := [4 \in I] \cdot a_4 + [4 \notin I] \cdot (f_4(x_3^{\text{SCF}}) + u_4).$

General Formulation and Solving the Optimization Problem

General Formulation

$$\mathbf{A}^* \in \underset{\mathbf{A}}{argmin} \quad \operatorname{cost}(\mathbf{A}; \mathbf{x}^{\mathsf{F}})$$
s.t.
$$h(\mathbf{x}^{\mathsf{SCF}}) \neq h(\mathbf{x}^{\mathsf{F}})$$

$$x_i^{\mathsf{SCF}} = [i \in I] \cdot (x_i^{\mathsf{F}} + \delta_i) + [i \notin I] \cdot (x_i^{\mathsf{F}} + f_i(\operatorname{pa}_i^{\mathsf{SCF}}) - f_i(\operatorname{pa}_i^{\mathsf{F}})).$$

$$\mathbf{x}^{\mathsf{SCF}} \in \mathcal{P}, \quad \mathbf{A} \in \mathcal{F},$$

Remarks

- $x_i^{\rm F} + \delta_i$: intervention
- $f_i(\mathbf{pa_i}^F)$: factual values of x_i 's parents
- $f_i(pa_i^{SCF})$: counterfactual values of x_i 's parents
- new closed-form expression for $F_{A^*}(F^{-1}(x^E)) \Rightarrow$ use optimization methods

Experimental Setup

Synthetic setting:

Generate data following causal generative process

Real-world setting:

Use existing German credit dataset to learn structural causal model equations, by fitting a linear regression

Cost for both is ℓ_1 norm over normalized feature change

Experimental Setup: Synthetic Setting

Casual Generative Process

Experimental Results: Synthetic Setting

[annual salary, bank balance]

Χ ^F		[\$75000, \$25000] ^T
Karimi et al.'s formulation	A *	$do(X_1 := X_1^F + \$10000)$
	X*SCF	[\$85000, \$28000] ^T
Prior formulation	δ*	[\$0, +\$5000] ^T
	X*CFE	[\$75000, \$30000] ^T

Experimental Results: Synthetic Setting

[annual salary, bank balance]

X	=	[\$75000, \$25000] ^T
Karimi et al.'s formulation	X*SCF	[\$85000, \$28000] ^T
Prior formulation	X*CFE	[\$75000, \$30000] ^T

x*SCF further dist from xF than x*CFE

BUT

 $cost(\delta^*; \mathbf{x}^F) \approx 2 cost(\mathbf{A}^*; \mathbf{x}^F)$

Experimental Setup

Synthetic setting:

Generate data following causal generative process

Real-world setting:

Use existing German credit dataset to learn structural causal model equations, by fitting a linear regression

Cost for both is ℓ_1 norm over normalized feature change

Experimental Setup: Real-World Setting

Structural Causal Model

Experimental Results: Real-World Setting

[gender, age, credit given, credit repayment duration]

Χ ^F		[Male, 32, \$1938, 24] [⊤]
Karimi et al.'s formulation	A *	$do({X_2 := x_2^F + 1, X_3 := x_3^F - \$800})$
	X*SCF	[Male, 33, \$1138, 22] [⊤]
Prior formulation	δ*	[N/A, +6, \$0, 0] [⊤]
	X* ^{CFE}	[Male, 38, \$1938, 24] [⊤]

Experimental Results: Real-World Setting

[gender, age, credit given, credit repayment duration]

X	=	[Male, 32, \$1938, 24] [⊤]
Karimi et al.'s formulation	X* ^{SCF}	[Male, 33, \$1138, 22] [⊤]
Prior formulation	X*CFE	[Male, 38, \$1938, 24] [⊤]

42% decrease in cost using Karimi et al.'s formulation

Averaged over 50 test individuals, 39 ± 24% and 65 ± 8% decrease in cost, for *h* as logistic regression and decision tree, respectively

Forms

- Structural/hard (actions in Karimi et al.): unconditionally sever all edges incident on intervened node
- Additive/soft: do not sever incident edges

$$x_i^{\mathsf{SCF}} = [i \in I] \cdot \delta_i + (x_i^{\mathsf{F}} + f_i(\mathbf{pa}_i^{\mathsf{SCF}}) - f_i(\mathbf{pa}_i^{\mathsf{F}})).$$

Forms

- Structural/hard (actions in Karimi et al.): unconditionally sever all edges incident on intervened node
- Additive/soft: do not sever incident edges

$$x_i^{\mathsf{SCF}} = [i \in I] \cdot \delta_i + (x_i^{\mathsf{F}} + f_i(\mathbf{pa}_i^{\mathsf{SCF}}) - f_i(\mathbf{pa}_i^{\mathsf{F}})).$$

Feasibility

Can encode as constraints to amend to $A \in F$

- Immutable: closed under ancestral relationships; $[i \notin I] = 1$ recursively necessitates fulfillment of $[j \notin I] = 1$ for all $j \in pa_i$
- Mutable but non-actionable: $[i \notin I] = 1$ is sufficient
- Actionable and mutable: contingent on (a)
 pre-intervention value of variable (b) preintervention value of other variables (c) postintervention value of variable (d) postintervention value of other variables

Forms

- Structural/hard (actions in Karimi et al.): unconditionally sever all edges incident on intervened node
- Additive/soft: do not sever incident edges

$$x_i^{\mathsf{SCF}} = [i \in I] \cdot \delta_i + (x_i^{\mathsf{F}} + f_i(\mathbf{pa}_i^{\mathsf{SCF}}) - f_i(\mathbf{pa}_i^{\mathsf{F}})).$$

Scopes

- Karimi et al. assumes action = intervention on endogenous variable
- Fat-hand/non-atomic: confounded/correlated interventions

Feasibility

Can encode as constraints to amend to $A \in F$

- Immutable: closed under ancestral relationships; $[i \notin I] = 1$ recursively necessitates fulfillment of $[j \notin I] = 1$ for all $j \in pa_i$
- Mutable but non-actionable: $[i \notin I] = 1$ is sufficient
- Actionable and mutable: contingent on (a)
 pre-intervention value of variable (b) preintervention value of other variables (c) postintervention value of variable (d) postintervention value of other variables

Future Work: Current Limitations

Reliance on true causal model of the world

Future Work: Current Limitations

Reliance on true causal model of the world

Future Work: Current Limitations

Reliance on true causal model of the world

True for any approach suggesting actions to be performed in the real world?

Study potential inefficiencies from partial/imperfect causal model

Concluding Thoughts

- Overall an interesting work bridging counterfactual explanations (previous week's papers) and algorithmic recourse (next week's papers), clarifying their differences
- Tradeoff between generalizability of setting and hardness of optimization problem
 - Ustun et al. pursue algorithmic recourse in a specific linear setting
 - Karimi et al. pursue algorithmic recourse in general settings, require true causal model of world
 - Open question: where do we stand on this tradeoff? Consider the origins of counterfactual explanations in Wachter et al.