$MTH215 \star \star 2019-20 \star \star ASSIGNMENT - 4$

1. Show that
$$\left|\sum_{d=1}^{n} \frac{\mu(d)}{d}\right| \leq 1$$
.

- 2. Let x, y be positive real numbers. Show that $[x y] \leq [x] [y] \leq [x y] 1$.
- 3. Show that $\sum_{k>1} \left[\frac{n}{2^k} + \frac{1}{2} \right] = n$.
- 4. Let x be a positive real number. Show that $\sum_{k=0}^{n-1} \left[x + \frac{k}{n} \right] = [nx].$
- 5. Let x be a positive real number. Show that $\sum_{k=1}^{n} \frac{[kx]}{k} \leq [nx]$.
- 6. Let $m, n \in \mathbb{N}$ such that $\gcd(m, n) = 1$. Show that $\sum_{k=1}^{n-1} \left[\frac{km}{n} \right] = \frac{(m-1)(n-1)}{2}$.
- 7. Show that $[\sqrt{n} + \sqrt{n+1}] = [\sqrt{n} + \sqrt{n+2}].$
- 8. Let p be a prime of type 4k + 1. Write $p = a^2 + b^2$, where $a, b \in \mathbb{N}$. Assume that a is odd. Show that (a/p) = 1.
- 9. In F_n , show that (1) 0 and 1/n are consecutive (2) (n-1)/n and 1 are consecutive.
- 10. Let a/b, 1/2 and α/β be consecutive terms in F_n in increasing order, where $gcd(a,b) = 1 = gcd(\alpha, \beta)$. Show that $b = \beta = 1 + 2[(n-1)/2]$ and that $a/b + \alpha/\beta = 1$.
- 11. Let a/b, c/d and e/f be three consecutive terms in F_n , in increasing order, where gcd(a,b) = gcd(c,d) = gcd(e,f) = 1. Show that c/d = (a+e)/(b+f).
- 12. Let n > 1. Prove that $\min\{y x \mid x, y \in F_n \text{ are consecutive}, x < y\} = 1/n(n-1)$ and $\max\{y x \mid x, y \in F_n \text{ are consecutive}, x < y\} = 1/n$.
- 13. Let a/b and α/β be rational numbers such that b > 0, $\beta > 0$, $a/b < \alpha/\beta$ and $b\alpha a\beta = 1$. Let $n = \max\{b, \beta\}$. Show that a/b and α/β are consecutive terms in F_n but need not be consecutive terms in F_{n+1} .
- 14. Suppose that F_n has k elements, say $a_1/b_1, \ldots, a_k/b_k$ arranged in increasing order such that $\gcd(a_i, b_i) = 1$ for every $i = 1, \ldots, k$. Show that $\sum_{i=1}^{k-1} 1/b_i b_{i+1} = 1$.
- 15. Let $x \in (0, 1)$ be an irrational number. Show that there exists $a/b \in F_n$ such that $|x a/b| < 1/2b^2$.
- 16. Let $x = (\sqrt{5} + 1)/2$. Let $\lambda > 0$ and $\alpha > 2$ be real numbers. Show that there are only finitely many rational numbers a/b such that $|x a/b| < 1/(\lambda b)^{\alpha}$.
- 17. Let x and $\alpha > 1$ be a real numbers. If there exist infinitely many rational numbers a/b such that $|x a/b| < b^{-\alpha}$ then show that x is irrational.
- 18. Find a rational number a/b such that $|\sqrt{2} a/b| < 1/(\sqrt{5}b^2)$.
- 19. Let $x \in [0, 1]$. Show that there exists $a/b \in F_n$ such that gcd(a, b) = 1 and $|x a/b| \le 1/(b(n+1))$.

- 20. Find a rational a/b such that $|\sqrt{2} a/b| \le 1/10b$.
- 21. Find $x/y, u/v \in F_{1000}$ such that gcd(x,y) = 1 = gcd(u,v) and x/y, 3/10, u/v are consecutive in F_{1000} .
- 22. Let $n \geq 2$ and a_0, a_1, \ldots, a_n be real numbers such that a_1, \ldots, a_n are positive. Show that $\langle a_1, a_2, \ldots, a_n \rangle$ is positive. Hence show that $a_0 < \langle a_0, a_1, \ldots, a_n \rangle < a_0 + 1/a_1$.
- 23. Let a_0, a_1, \ldots, a_n be a sequence of real numbers such that a_1, \ldots, a_n are positive. Let $x = \langle a_0, a_1, \ldots, a_n \rangle$ and $y = \langle a_k, a_{k+1}, \ldots, a_n \rangle$ for some k. Show that $x = \langle a_0, a_1, \ldots, a_{k-1}, y \rangle$.
- 24. Let $a_0, a_1, a_2...$ be a sequence of real numbers such that $a_i \ge 1$ for $i \ge 1$. Let $x = \langle a_0, a_1, a_2, ... \rangle$ and $y = \langle a_k, a_{k+1}, ... \rangle$ for some k. Show that $x = \langle a_0, a_1, ..., a_{k-1}, y \rangle$.
- 25. Find the values of (1, 1, 2, 2, 1, 1, 1, ...) and (1, 2, 3, 1, 2, 3, ...).
- 26. Let a_0, a_1, \ldots, a_n and b_0, b_1, \ldots, b_n be positive integers. Find a condition so that $\langle a_0, a_1, a_2, \ldots, a_n \rangle < \langle b_0, b_1, b_2, \ldots, b_n \rangle$.
- 27. Let a_0, a_1, \ldots, a_n, c be real numbers such that a_1, \ldots, a_n, c are positive. Which one is larger between $\langle a_0, a_1, a_2, \ldots, a_n \rangle$ and $\langle a_0, a_1, a_2, \ldots, a_n + c \rangle$?
- 28. Let x be an irrational number such that $x = \langle a_0, a_1, a_2, \ldots \rangle$, where $a_i \geq 1$ are integers. Suppose that there exists a positive integer n such that $a_i = a_{i+kn}$ for all $i = 0, 1, \ldots, n-1$ and $k \geq 0$. Show that x satisfies a quadratic equation with rational coefficients.
- 29. Let x be an irrational number such that $x = \langle a_0, a_1, a_2, \ldots \rangle$, where a_i 's are integers and $a_i \geq 1$ for $i \geq 1$. Suppose that there exist positive integers n and m such that $a_{n+i} = a_{n+i+km}$ for all $i = 0, 1, 2, \ldots, m-1$ and $k \geq 0$. Show that x satisfies a quadratic equation with rational coefficients.
- 30. Let a_0, a_1, \ldots, a_n be real numbers such that a_1, \ldots, a_n are positive. Define $h_{-2} = 0, h_{-1} = 1, h_i = a_i h_{i-1} + h_{i-2}$ and $k_{-2} = 1, k_{-1} = 0, k_i = a_i k_{i-1} + k_{i-2}$ for $i = 0, \ldots, n$. Show that $k_0, \ldots, k_n > 0$ and $\langle a_0, a_1, \ldots, a_i \rangle = h_i / k_i$ for every $i = 0, 1, \ldots, n$.
- 31. In previous problem show that $k_i/k_{i-1} = \langle a_i, a_{i-1}, \ldots, a_1 \rangle$ for every $i = 0, 1, \ldots, n$. Furthermore, if $a_0 > 0$ then show that $h_i/h_{i-1} = \langle a_i, a_{i-1}, \ldots, a_0 \rangle$ for every $i = 0, 1, \ldots, n$.
- 32. Show that $\sqrt{n^2 + 1} = \langle n, 2n, 2n, \ldots \rangle$, $\sqrt{n^2 + 2} = \langle n, n, 2n, n, 2n, \ldots \rangle$ and $\sqrt{n^2 + 2n} = \langle n, 1, 2n, 1, 2n, \ldots \rangle$.