Exploratory Data Analysis (EDA) Report

Dataset: cardio_data_processed.csv

Records: 68,205 rows × 14+ columns

Goal: To prepare a clean, structured, and insightful dataset for cardiovascular risk

prediction.

1. Data Loading & Initial Overview

1.1 Libraries Used

We used the following Python libraries:

- NumPy, pandas for data manipulation
- Matplotlib, Seaborn, Plotly for visualizations

1.2 Data Import & Structure

The dataset was read from a **tab-delimited CSV file**, ensuring that any merged columns were split so each feature had a dedicated field.

Data shape: 68,205 rows × 14+ columns

Column categories include:

- Demographics (age, gender, height, weight)
- Clinical measures (blood pressure readings)
- Lifestyle indicators (smoking, alcohol intake, activity)
- Target variable (cardio) indicating cardiovascular disease

Significance:

The large sample size increases the reliability of statistical estimates, though even small proportions of missing or incorrect data may affect analysis outcomes.

2. Data Quality Checks

2.1 Missing Values

We computed the percentage of missing values per column. Result:

- No major missing data.
- Most columns were 100% populated, indicating high data integrity.

2.2 Duplicate Records

- Initial checks revealed no exact duplicate rows.
- Conclusion: Full dataset retained for analysis to preserve representativeness

3. Data Type Consistency & Conversions

- Height and Weight columns were converted to numeric types.
- Binary fields (smoking, alcohol, active, gender) cast 0/1 integers

4. Outlier Detection & Treatment

4.1 Height

- Detected outliers: < 120 cm or > 210 cm
- Action: Replaced with median height (~165 cm)
- Result: More realistic height distribution

4.2 Weight

- Non-convertible values dropped
- Flagged outliers: < 30 kg or > 300 kg
- Action: Replaced with median weight (~75 kg)

4.3 Blood Pressure (ap_hi, ap_lo)

- Verified ap_hi ≥ ap_lo
- **Dropped** inconsistent records (**ap_hi < 50**, implausible ranges)