Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3221	К работе допущен
Студент <u>Рязанов Д. Трутнева А.</u>	Работа выполнена
Преподаватель Хуснутдинова Н.Р.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника.

- 2. Задачи, решаемые при выполнении работы.
- -) Измерение периода затухающих колебаний.
- -) Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- -) Определение зависимости периода колебаний от момента инерции физического маятника.
- -) Определение преобладающего типа трения.
- -) Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.
- 3. Объект исследования.

Физический маятник.

4. Метод экспериментального исследования.

Многократные измерения времени колебания маятника с разным моментом инерции.

5. Рабочие формулы и исходные данные.

$$\begin{split} T = & \frac{\overline{t}}{N} \qquad A(t = nT) = A_0 - 4 \, n \, \Delta \, \phi_{\scriptscriptstyle 3} \qquad R = l_1 + (n-1) \, l_0 + b/2 \qquad l_{\scriptscriptstyle \it 2p} = m_{\scriptscriptstyle \it 2p} \left(R_{\scriptscriptstyle \it Bepx}^2 + R_{\scriptscriptstyle \it HUJK}^2 + 2 \, R_{\scriptscriptstyle \it BOK}^2 \right) \\ T = & 2 \, \pi \sqrt{\frac{I}{mql}} \qquad l_{\scriptscriptstyle \it np} = \frac{I}{ml} = \frac{I_0}{ml} + l \end{split}$$

6. Измерительные приборы.

 о. измерительные приооры.					
№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Секундомер	Электронный	0-4 мин	5 мс	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Параметры установки

Наименование	Значение	Погрешность	Единицы измерения
Масса грузов на крестовиние	408	± 0,5	Γ
Расстояние первой риски от оси	57	± 0,5	ММ
Расстояние между рисками	25	± 0,2	ММ
Диаметр ступицы	46	± 0,5	мм
Диаметр груза на крестовине	40	± 0,5	мм
Высота груза на крестовине	40	± 0,5	ММ

Рис. 4. Стенд лаборатории механики (общий вид)

Работа выполняется на универсальном стенде (рис. 4).В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

$$t_1 = 18.20\,c$$
 -) Время десяти колебаний маятника $t_2 = 18.00\,c$ (6-ой пункт измерений) $t_3 = 17.97\,c$ $\overline{t} = 18.06\,c$ $T = 1.806\,c$

-) (7-ой пункт измерений)

Амплитуда отклонения Время	25°	20°	15°	10°	5°
t_1, c	35,59	71,69	109,13	153,79	192,84
t_2, c	34,03	66,39	98,34	134,17	165,03
t_3 , c	34,36	68,73	99,68	135,58	167,22
\overline{t} , c	34,66	68,94	102,38	141,18	175,03

-) (8-9 пункты измерений)

Положение боковых грузов	t ₁ , c	t ₂ , c	t_3, c	\overline{t} , c	Т,с
1 риска	16,16	16,16	16,15	16,16	1,62
2 риски	16,96	17,03	17,06	17,02	1,7
3 риски	18,03	18,06	18,12	18,07	1,81
4 риски	19,25	19,25	19,28	19,26	1,93
5 рисок	20,57	20,56	20,66	20,6	2,06
6 рисок	21,90	21,97	21,97	21,95	2,2

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

По графику зависимости амплитуды от времени (см. 10 пункт отчета) можно сделать вывод что в затухании колебаний главную роль играет сухое трение.

Тогда
$$A(t=nT)=A_0-4n\Delta\phi_3$$

$$n_{25} = \frac{34.66}{1.81} \approx 19 \Rightarrow \Delta \phi_3 = 0.06$$

$$n_{20} = \frac{68.94}{1.81} \approx 38 \Rightarrow \Delta \phi_3 = 0.06$$

$$T = 1.81 c = \frac{t}{n} \Rightarrow n = \frac{t}{T} \Rightarrow n_{15} = \frac{102.38}{1.81} \approx 57 \Rightarrow \Delta \phi_3 = 0.06$$

$$n_{10} = \frac{141.18}{1.81} = 78 \Rightarrow \Delta \phi_3 = 0.06$$

$$n_5 = \frac{175.03}{1.81} \approx 96 \Rightarrow \Delta \phi_3 = 0.06$$

Колебания прекратятся, когда А будет равно 0.06

$$0.06 = 30 - 4n * 0.06 \Rightarrow n = 124.75 \approx 125$$

Риски	1	2	3	4	5	6
$R_{\it sepx}$, M			0.0)77		
$R_{\scriptscriptstyle HU \mathcal{H}}$, M			0.2	202		
$R_{ m for}$, M	0.077	0.102	0.127	0.152	0.177	0.202
<i>I_{гр}</i> , Н*м	0.024	0.028	0.032	0.038	0.045	0.052
<i>I</i> , H*м	0.032	0.036	0.04	0.046	0.053	0.06
$l_{np ext{экcn}}$, М	0.649	0.72	0.814	0.922	1.054	1.197
l_{npmeop} , M	0.64	0.72	0.8	0.92	1.06	1.2

Найдем аппроксимацию для графика $T^2(I)$ (см. 10 пункт отчета)

$$I_{cp} = 0.045$$
 $T_{cp}^2 = 3.593$

$$b = \frac{\sum (I_i - I_{cp})(T_i^2 - T_{cp}^2)}{\sum (I_i - I_{cp})^2} \approx 78.419 \quad a = T_{cp}^2 - bI_{cp} \approx 0.064$$

Найдем ml по угловому коэффициенту аппроксимации

$$T^{2}(I) = 4 \pi^{2} \frac{I}{qml} = bI \Rightarrow b = \frac{4 \pi^{2}}{qml} \Rightarrow ml = \frac{4 \pi^{2}}{bq} \approx 0.05$$

Найдем расстояние от оси до центра масс

$$l_{meop} = \left| \frac{(R_{eepx} - R_{huse})}{2} \right| = 0.0625 \text{ M}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

-) (6-ой пункт измерений)

$$t_{1}=18.20 c \\ t_{2}=18.00 c \\ t_{3}=17.97 c$$

$$\overline{t}=18.06 c \quad S_{\overline{t}}=\sqrt{\frac{\Sigma(t_{i}-\overline{t})^{2}}{n(n-1)}}=0,072 \quad \Delta_{\overline{t}}=t_{\alpha,n}S_{\overline{t}}=0.31 \quad \Delta_{t}=\sqrt{\Delta_{\overline{t}}^{2}+\frac{2}{3}\Delta_{ut}^{2}}=0.31$$

$$\varepsilon_{t}=\frac{\Delta_{t}}{\overline{t}}100\%=1,72\%$$

-) (7-ой пункт измерений)

Амплитуда отклонения град	Абсолютная погрешность с	Относительная погрешность %
25	2.04	5.89
20	6.6	9.57
15	14.61	14.27
10	27.18	19.26
5	38.41	21.95

-) (8-9 пункт измерений)

Положение боковых грузов	Абсолютная погрешность с	Относительная погрешность %
1 риска	0.01	0.09
2 риски	0.13	0.75
3 риски	0.11	0.63
4 риски	0.04	0.22
5 рисок	0.14	0.66
6 рисок	0.1	0.48

11. Графики (перечень графиков, которые составляют Приложение 2).

График зависимости амплитуды от времени A(t) (по таблице 2).

График зависимости квадрата периода от момента инерции и его аппроксимация

12.Окончательные результаты.

Время за которое маятник совершит 10 колебаний (6-ой пункт измерений)

$$t = (18.06 \pm 0.31) c$$

Время за которое амплитуда будет равна 25, 20, 15, 10, 5 градусов

t, c	34.66 ± 2.04	68,94 ± 6.6	102,38 ± 14.61	141,18 ± 27.18	175,03 ± 38.41	
------	--------------	-------------	----------------	----------------	----------------	--

Время за которое маятник совершит 10 колебаний

1 риска	16.16 ± 0.01
2 риски	17.02 ± 0.13
3 риски	18.07 ± 0.11
4 риски	19.26 ± 0.04
5 рисок	20.6 ± 0.14
6 рисок	21.95 ± 0.1

Количество колебаний, после которых маятник остановится n = 125

Риски	1	2	3	4	5	6
I , H*M	0.032	0.036	0.04	0.046	0.053	0.06
$l_{np m экcn}$, М	0.649	0.72	0.814	0.922	1.054	1.197
l_{npmeop} , M	0.64	0.72	0.8	0.92	1.06	1.2

13. Выводы и анализ результатов работы.

При выполнении работы было изучено движение физического маятника, было установлено, что преобладающим типом трения является сухое трение. Экспериментальным и теоретическим путем были определены приведенные длины маятника при его разных конфигурациях.

14. Дополнительнь	ie задания.
15. Выполнение до	полнительных заданий.
16. Замечания прег также помещают	подавателя (исправления, вызванные замечаниями преподавателя в этот пункт).
Примечание:	 Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения. Необходимые исправления выполняют непосредственно в протоколе-отчете. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.

4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.