Assignment 3

Dipsikha Rano

June 17, 2025

Insights

Through this assignment, I learned how to:

- Preprocess and visualize datasets for training.
- Build and train a basic neural network from scratch for multi-class classification using Keras.
- Use one-hot encoding for categorical target values.
- Evaluate model performance using accuracy metrics.
- Build an image similarity tool using pre-trained feature extraction models and Spotify's Annoy for approximate nearest neighbor search.
- Understand how features from images can be extracted using models like ResNet18 and used for similarity detection efficiently.

Problem 1: Iris Flower Classification

Model Output Screenshot

Accuracy Achieved

Accuracy on test dataset: (Write your accuracy here, e.g., 96.67%)

Figure 1: Model Training and Accuracy Output

Problem 2: Image Similarity Search

Explanation of Feature Detection

Feature detection in this project uses a pre-trained ResNet18 model. This model transforms each image into a high-dimensional vector representation (feature embedding) that captures semantic information. Using Spotify's Annoy library, we build an index of all image features, enabling fast similarity searches. When a query image is passed, its features are extracted using the same model, and the most similar images are retrieved from the index using angular distance.

Output Image

Figure 2: Result of Similar Image Search

Terminal Screenshot

Figure 3: Terminal Output for Similar Image Search

GitHub Repository

The complete code is uploaded here:

https://github.com/Dipsikha30/GanForgeDipsikha.git