3

L3-CALCMF

Tuanaki, Kaupae 3, 2020

9.30 i te ata Rāhina 23 Whiringa-ā-rangi 2020

TE PUKAPUKA O NGĀ TIKANGA TĀTAI ME NGĀ TŪTOHI mō 91577M, 91578M me 91579M

Tirohia tēnei pukapuka hei whakatutuki i ngā tūmahi o ō Pukapuka Tūmahi, Tuhinga hoki.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2–7 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

KA TAEA TĒNEI PUKAPUKA TE PUPURI HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

TE PĀNGARAU – ĒTAHI TURE WHAI HUA

TE TAURANGI

Ngā Whārite Pūrua

Mēnā
$$ax^2 + bx + c = 0$$

kāti $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Ngā Taupū Kōaro

$$y = \log_b x \Leftrightarrow x = b^y$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(x^n) = n\log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Ngā Tau Matatini

$$z = x + iy$$

$$= r \operatorname{cis} \theta$$

$$= r(\cos \theta + i \sin \theta)$$

$$\overline{z} = x - iy$$

$$= r \operatorname{cis} (-\theta)$$

$$= r(\cos \theta - i \sin \theta)$$

$$r = |z| = \sqrt{z\overline{z}} = \sqrt{(x^2 + y^2)}$$

$$\theta = \arg z$$

ina
$$\cos \theta = \frac{x}{r}$$

$$\bar{a}$$
, $\sin \theta = \frac{y}{r}$

Te Ture a De Moivre

Mēnā he tau tōpū a n, kāti, $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis} (n\theta)$

TE ĀHUAHANGA TAUNGA

Te Rārangi Torotika

Wharite $y - y_1 = m(x - x_1)$

TE TUANAKI

Kimi Pāronaki

y = f(x)	$\frac{dy}{dx} = f'(x)$
$\ln x$	$\frac{1}{x}$
e ^{ax}	ae ^{ax}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
sec x	$\sec x \tan x$
cosec x	$-\csc x \cot x$
cot x	$-\csc^2 x$

Ngā Tikanga Pāwhaitua

f(x)	$\int f(x) \mathrm{d}x$
x^n	$\frac{x^{n+1}}{n+1} + c$ $(n \neq -1)$
$\frac{1}{x}$	$\ln x + c$
$\frac{f'(x)}{f(x)}$	$\left \ln \left f(x) \right + c \right $

Te Pānga Tawhā

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

MATHEMATICS - USEFUL FORMULAE

ALGEBRA

Quadratics

If
$$ax^2 + bx + c = 0$$

then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Logarithms

$$y = \log_b x \Leftrightarrow x = b^y$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(x^n) = n\log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Complex numbers

$$z = x + iy$$
$$= r \operatorname{cis} \theta$$

$$= r(\cos\theta + i\sin\theta)$$

$$\overline{z} = x - iy$$

$$= r \operatorname{cis} (-\theta)$$

$$= r(\cos \theta - i \sin \theta)$$

$$r = |z| = \sqrt{z\overline{z}} = \sqrt{(x^2 + y^2)}$$

 $\theta = \arg z$

where
$$\cos \theta = \frac{x}{r}$$

and
$$\sin \theta = \frac{y}{r}$$

De Moivre's Theorem

If *n* is any integer, then $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis} (n\theta)$

COORDINATE GEOMETRY

Straight Line

Equation $y - y_1 = m(x - x_1)$

CALCULUS

Differentiation

y = f(x)	$\frac{dy}{dx} = f'(x)$
$\ln x$	$\frac{1}{x}$
e ^{ax}	ae ^{ax}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
sec x	sec x tan x
cosec x	$-\csc x \cot x$
$\cot x$	$-\csc^2 x$

Integration

f(x)	$\int f(x) dx$
x^n	$\frac{x^{n+1}}{n+1} + c$ $(n \neq -1)$
$\frac{1}{x}$	$\ln x + c$
$\frac{f'(x)}{f(x)}$	$\left \ln \left f(x) \right + c \right $

Parametric Function

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

Te Ture mō te Otinga Whakarau¹

$$(f.g)' = f.g' + g.f'$$
 mēnā rānei $y = uv$ kāti $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Te Ture mō te Otinga Wehe

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2} \quad \text{menā rānei} \quad y = \frac{u}{v} \quad \text{kāti } \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

Te Ture Pānga Hiato, te Ture Mekameka rānei

$$(f(g))' = f'(g).g'$$

mēnā rānei y = f(u) ā, u = g(x) kāti $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

NGĀ TIKANGA TAU

Te Ture Taparara

$$\int_{a}^{b} f(x) \, dx \approx \frac{1}{2} h \Big[y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}) \Big]$$
ina $h = \frac{b-a}{n}$ $\bar{a}, y_r = f(x_r)$

Te Ture a Simpson

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \Big[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \Big]$$
ina $h = \frac{b-a}{n}$, $y_r = f(x_r)$, \bar{a} , he taurua te n .

1 whakarea

Product Rule

$$(f.g)' = f.g' + g.f'$$
 or if $y = uv$ then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient Rule

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$
 or if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Composite Function or Chain Rule

$$(f(g))' = f'(g).g'$$

or if $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

NUMERICAL METHODS

Trapezium Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h \Big[y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}) \Big]$$
where $h = \frac{b - a}{n}$ and $y_r = f(x_r)$

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \Big[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \Big]$$
where $h = \frac{b-a}{n}$, $y_r = f(x_r)$ and n is even.

TE PĀKOKI

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Te Ture Aho

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Te Ture Whenu

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Ngā Whārite ka Pono Ahakoa ngā Uara Ka Whakaurua Atu

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

Ngā Otinga Whānui

Mēnā $\sin \theta = \sin \alpha \text{ kāti } \theta = n\pi + (-1)^n \alpha$

Mēnā cos θ = cos α kāti θ = 2 $n\pi \pm \alpha$

Mēnā tan $\theta = \tan \alpha$ kāti $\theta = n\pi + \alpha$

ko te *n*, he tau tōpū ahakoa

Ngā Koki Hiato

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

 $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Ngā Koki Rearua

 $\sin 2A = 2\sin A\cos A$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Ngā Otinga Whakarau

 $2\sin A\cos B = \sin(A+B) + \sin(A-B)$

 $2\cos A\sin B = \sin(A+B) - \sin(A-B)$

 $2\cos A\cos B = \cos(A+B) + \cos(A-B)$

 $2\sin A\sin B = \cos(A-B) - \cos(A+B)$

Ngā Otinga Tāpiri

$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

TE INE

Te Tapatoru

Horahanga = $\frac{1}{2}ab\sin C$

Te Taparara

Horahanga = $\frac{1}{2}(a+b)h$

Te Pewanga

Horahanga = $\frac{1}{2}r^2\theta$

Te roa o te pewa = $r\theta$

Te Rango

 $R\bar{o}rahi = \pi r^2 h$

Horahanga mata kōpiko = $2\pi rh$

Te Koeko

 $R\bar{o}rahi = \frac{1}{3}\pi r^2 h$

Horahanga mata kopiko = πrl ina ko te l te teitei o te tītaha

Te Poi

 $R\bar{o}rahi = \frac{4}{3}\pi r^3$

Horahanga mata = $4\pi r^2$

TRIGONOMETRY

$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

General Solutions

If $\sin \theta = \sin \alpha$ then $\theta = n\pi + (-1)^n \alpha$

If $\cos \theta = \cos \alpha$ then $\theta = 2n\pi \pm \alpha$

If $\tan \theta = \tan \alpha$ then $\theta = n\pi + \alpha$

where n is any integer

Compound Angles

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Double Angles

 $\sin 2A = 2\sin A\cos A$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$

Products

 $2\sin A\cos B = \sin(A+B) + \sin(A-B)$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

Sums

$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

MEASUREMENT

Triangle

Area =
$$\frac{1}{2}ab\sin C$$

Trapezium

$$Area = \frac{1}{2}(a+b)h$$

Sector

Area =
$$\frac{1}{2}r^2\theta$$

Arc length = $r\theta$

Cylinder

Volume = $\pi r^2 h$

Curved surface area = $2\pi rh$

Cone

$$Volume = \frac{1}{3}\pi r^2 h$$

Curved surface area = πrl where l = slant height

Sphere

$$Volume = \frac{4}{3}\pi r^3$$

Surface area = $4\pi r^2$

English translation of the wording on the front cover

Level 3 Calculus, 2020

9.30 a.m. Monday 23 November 2020

FORMULAE AND TABLES BOOKLET for 91577, 91578 and 91579

Refer to this booklet to answer the questions in your Question and Answer booklets.

Check that this booklet has pages 2–7 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.