5.3 Exercices 106

5.2.6 Approximation d'une loi binomiale par une loi du Poisson

Soit X une variable alétoire discrète suit la loi binomiale $X \sim B(n, p, q)$ avec n grand $(n \ge 30)$ et p petit $(p \le 0.1)$. On peut approximer cette loi par la loi de Poisson de paramètre $\lambda = np$.

Exemple 5.2.6 Dans une population une personne sur cent est un centenaire. On définit la variable alétoire discrète X: nombre des centenaires dans une population de 200 personnes. X suit la loi binomiale de paramètres $n=200,\ p=0,01$ et q=1-p=0,99. Comme n>30 et p<0.1, alors on peut approximer la loi de X par la loi de Poisson $\mathbf{P}(\lambda)$ telle que $\lambda=np=2$.

5.3 Exercices

Exercice 1 : Un candidat se présente à un concours sous forme de QCM de 100 questions, à chaque question, sont proposés 4 réponses, dont une seule est correcte, l'examinateur fait le compte des réponses exactes données par le candidat.

Certains candidats répondent au hasard à chaque question. Soit la variable aléatoire X: «nombre de réponses exactes données par un candidat».

- 1/ Donner la loi de probabilité de X.
- 2/ Calculer son espérance et son écart type.

Exercice 2 : Dans une population une personne sur cent est un centenaire.

- 1/ Quelle est la probabilité de trouver au moins un centenaire parmi 100 personnes choisies au hasard.
- 2/ Même question parmi 200 personnes.

Exercice 3 : Un chercheur a analysé un lot complet de roches volcaniques. Il a compté le nombre de pierres précieuses dans chacune des roches de poids constant 1kg et a obtenu le

5.4 Corrigés 107

tableau suivant:

$Nbr \ pp \ (xi)$						l		l
Nbr rv (ni)	63	19	17	32	5	2	1	1

1/ Pour une roche choisie au hasard parmi les 140 roches analysées, on désigne par X la variable aléatoire qui prend pour valeur le nombre de pierres précieuses trouvées. Calculer les probabilités P(X=xi).

- **2**/ Calculer E(X) et Var(X).
- 3/ En déduire la loi de probabilité de X et ses paramètres.

5.4 Corrigés

Exercice 1 : Comme X : «nombre de réponses exactes données par un candidat», alors

$$X = \{0, 1, 2, \dots, 100\}.$$

1/ <u>La loi de la variable aléatoire X</u>: il est clair que X suit la loi binomiale $\mathcal{B}(n,\ p,\ q)$ telle que

$$n = 100, \ p = \frac{1}{4}, \ q = 1 - p = \frac{3}{4}.$$

2/ L'espérance et l'écart type de la variable X:

$$E(X) = np$$

$$= 100 \times \frac{1}{4}$$

$$= 25.$$

et

$$Var(X) = npq$$

$$= 100 \times \frac{1}{4} \times \frac{3}{4}$$

$$= 18,75.$$

Alors,

$$\sigma_X = \sqrt{Var(X)}$$

$$= \sqrt{18,75}$$

$$= 4,33.$$

5.4 Corrigés 108

Exercice 2: Dans une population une personne sur cent est un centenaire. On définit la variable aléatoire discrète X: nombre des centenaires dans une population de 200 personnes. X suit la loi binomiale de paramètres n = 100, p = 0.01 et q = 1 - p = 0.99.

Comme n > 30 et p < 0.1, alors on peut approximer la loi de X par la loi de Poisson $\mathcal{P}(\lambda)$ telle que $\lambda = np = 1$ et

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Probabilité d'avoir au moins un centenaire

$$P(X \ge 1) = 1 - P(X = 0)$$

= $1 - e^{-1}$
= 0.63.

De manière similaire si n=200, on trouve $\lambda=2$ et

$$P(X \ge 1) = 1 - P(X = 0)$$

= $1 - e^{-2}$
= 0,86.

Exercice 3: On définit la variable aléatoire discrète X: nombre de pierres précieuses trouvées.

* x_i : nombre de pierres précieuses,

* n_i : nombre de roches volcaniques analysées.

La taille de l'echantillon $n = \sum_{i=1}^{8} n_i = 140$ et les probabilités sont calculées comme suit :

$$P(X = x_i) = P_i$$

$$= \frac{n_i}{n}$$

$$= \frac{n_i}{140}.$$

1/ Les probabilités $P(X = x_i)$

x_i	1	2	3	4	5	6	7	8	Total
$P(X=x_i)$	$\frac{63}{140}$	$\frac{19}{140}$	$\frac{17}{140}$	$\frac{32}{140}$	$\frac{5}{140}$	$\frac{2}{140}$	$\frac{1}{140}$	$\frac{1}{140}$	$\sum_{i=1}^{8} P\left(X = x_i\right) = 1$

$$E(X) = \overline{X}$$

$$= \frac{1}{n} \sum_{i=1}^{8} n_i x_i$$

$$= \frac{1}{140} (332)$$

$$= 2.37.$$

5.4 Corrigés 109

$$\overline{X^2} = \frac{1}{n} \sum_{i=1}^{8} n_i x_i^2
= \frac{1}{140} (1114)
= 7,96.$$

$$Var(X) = \overline{X^2} - (\overline{X})^2
= 7,96 - (2,37)^2
= 2,34.$$

3/ On remarque que $E\left(X\right)\simeq Var\left(X\right),$ alors X suit la loi de Poisson de paramètre $\lambda=E\left(X\right)=2,4.$