Lemma 1. Let $E \to X$ and $F \to X$ be vector bundles over X. Then there is a sheaf isomorphism

$$\tau: \mathcal{E}(E) \otimes_{\mathcal{E}} \mathcal{E}(F) \to \mathcal{E}(E \otimes F)$$

where $\mathcal{E}(E)$ and $\mathcal{E}(F)$ are sheaves induced from sections of vector bundles.

Proof. For every $x \in X$, pick $U \subseteq X$ containing x small enough such that $E|_U \to U$ and $F|_U \to U$ are trivial bundles. Let

$$\mathcal{T}(-) = \mathcal{E}(E)(-) \otimes_{\mathcal{E}(-)} \mathcal{E}(F)(-)$$

be the tensor product of presheaves. We will construct the map t and show that the diagram below commutes

$$\mathcal{T}(U) \xrightarrow{t} \mathcal{E}(E \otimes F)(U)
\downarrow r_V^U \qquad \qquad \downarrow r_V^U
\mathcal{T}(V) \xrightarrow{t} \mathcal{E}(E \otimes F)(V)$$

Let $e = \{e_1, e_2, ..., e_m\}$ and $f = \{f_1, f_2, ..., f_n\}$ be frames of E and F on U. Then, every element $\xi \in \mathcal{T}(U)$ can be written as

$$\xi = \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_{ij} (e_i \otimes_{\mathcal{E}(U)} f_j)$$

where $\xi_{ij} \in \mathcal{E}(U)$. And every element $\eta \in \mathcal{E}(E \otimes F)(U)$ can be written as

$$\eta(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} \eta_{ij}(x) (e_i(x) \otimes f_i(x))$$

where $\eta_{ij} \in \mathcal{E}(U)$. Hence, there exists a natural isomorphism of sheaves from $\mathcal{T}|_U = \mathcal{T}^{sh}|_U$ to $\mathcal{E}(E \otimes F)|_U$ defined on $U \subseteq X$.

Lemma 2. If \mathcal{F} and \mathcal{G} be two sheaves on X and there exists an open cover $\{U_i\}_{i\in I}$ for X such that $\tau_i: \mathcal{F}|_{U_i} \to \mathcal{G}|_{U_i}$ is an isomorphism of sheaves for all $i\in I$, then there exists an isomorphism of sheaves $\tau: \mathcal{F} \to \mathcal{G}$

Proof. Let V be open, without loss of generality, we can assume that there exists an open cover $\{U_i\}_{i\in I}$ for V such that for each $U_i \in \{U_i\}_{i\in I}$, $\tau_i : \mathcal{F}|_{U_i} \to \mathcal{G}|_{U_i}$ is an isomorphism of sheaves. Let $U \in \{U_i\}$,

$$\begin{array}{ccc}
\mathcal{F}(V) & \xrightarrow{r_U^V} & \mathcal{F}(U) \\
\tau_V \downarrow & & \downarrow \tau_U \\
\mathcal{G}(V) & \xrightarrow{r_U^V} & \mathcal{G}(U)
\end{array}$$

Let $f \in \mathcal{F}(U)$, define

$$q_U = \tau_U r_U^V f$$

For any $U_i, U_j \in \{U_i\}_{i \in I}$ with $U_i \cap U_j \neq \emptyset$, the diagram below commutes

Hence, by commutativity, we have

$$r_{U_i\cap U_j}^{U_i}g_{U_i}=r_{U_i\cap U_j}^{U_j}g_{U_j}$$

By definition of sheaf, there exists a unique map $\tau_V : \mathcal{F}(V) \to \mathcal{G}(V)$ that makes the diagram commutes. Similarly, we can construct a unique map $\tau_V^{-1} : \mathcal{G}(V) \to \mathcal{F}(V)$. It can be verified that τ defines a natural isomorphism between two functors \mathcal{F} and \mathcal{G}

Back to the proof, use the lemma, we can construct a natural isomorphism

$$\tau: \mathcal{E}(E) \otimes_{\mathcal{E}} \mathcal{E}(F) \to \mathcal{E}(E \otimes F)$$

2