# Лабораторная работа №7.

Введение в работу с данными

Тазаева А. А.

Российский университет дружбы народов, Москва, Россия

Цели работы



Основная цель работы — освоение специализированных пакетов для обработки данных.

# Задание

#### Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 7.2.
- 2. Выполните задания для самостоятельной работы (раздел 7.4).

```
Считывание данных
# Обновление окружения:
using Pkg
Pkg.update
# Установка пакетов:
using Pkg
for p in ["CSV", "DataFrames", "RDatasets", "FileIO"]
Pkg.add(n)
end
using CSV, DataFrames, DelimitedFiles, FileIO
@[32m@[im Updating@[22m@[39m registry at `C:\Users\noname\.julia\registries\General.toml` ***
# Считывание данных и их запись в структуру:
P = CSV.File("programminglanguages.csv") |> DataFrame
<div><div style = "float: left;"><span>73×2 DataFrame</span></div><div style = "float: right;"><span st</pre>
# Функция определения по названию языка программирования года его создания:
function language_created_year(P,language::String)
loc = findfirst(P[:,2],==language)
return P[loc.1]
end
language created year (generic function with 1 method)
# Пример вызова функции и определение даты создания языка Python:
language created year(P."Python")
1991
# Пример бызова функции и определение даты создания языка Julia:
language created year(P."Julia")
2012
language created year(P."iulia")
```

MethodError: no method matching getindex(::DataFrame. ::Nothing. ::Int64) ...

#### Считывание данных

```
[9]: # Функция определения по названию языка программирования
       # года его создания (без учёта регистра):
       function language_created_year_v2(P,language::String)
       loc = findfirst(lowercase.(P[:,2]).==lowercase.(language))
       return P[loc,1]
       end
 [9]: language created year v2 (generic function with 1 method)
[18]: # Пример вызова функции и определение даты создания языка julia:
       language_created_year_v2(P,"julia")
[10]: 2012
[11]: # Построчное считывание данных с указанием разделителя:
       Tx = readdlm("programminglanguages.csv", ',')
[11]: 74×2 Matrix{Any}:
            "year" "language"
        1951
                    "Regional Assembly Language"
        1952
                    "Autocode"
        1954
                    "IPL"
        1955
                    "FLOW-MATIC"
        1957
                    "FORTRAN"
        1957
                    "COMTRAN"
        1958
                    "LISP"
                    "ALGOL 58"
        1959
                    "EACT"
        1959
                    "COBOL"
        1959
                    "RPG"
                    "APL"
        1962
                    "Scala"
        2003
        2005
                    "F#"
        2006
                    "PowerShell"
        2007
                    "Cloiure"
        2009
                    "Go"
        2010
                    "Rust"
        2011
                    "Dart"
        2011
                    "Kotlin"
                    "Red"
        2011
                    "Elixir"
```

2012

"Julia"

"Scala"

```
Словари
# Инициализация словаря:
dict = Dict{Integer, Vector{String}}()
Dict{Integer, Vector{String}}()
# Инициализация словаря:
dict2 = Dict()
Dict(Any, Any)()
# Заполнение словаря данными:
for i = 1:size(P,1)
year,lang = P[i,:]
if year in keys(dict)
dict[year] = push!(dict[year],lang)
else
dict[vear] = [lang]
end
end
# Пример определения в словаре языков программирования, созданных в 2003 году:
dict[2003]
2-element Vector{String}:
 "Groovy"
```

#### **DataFrames**

```
DataFrames
 # Подгружаем пакет DataFrames:
  using DataFrames
  # Задаём переменную со структурой DataFrame:
  df = DataFrame(year = P[:,1], language = P[:,2])
73×2 DataFrame
  Row year language
       Int64 String31
    1 1951 Regional Assembly Language
    2 1952 Autocode
    3 1954 IPL
    4 1955 FLOW-MATIC
    5 1957 FORTRAN
    6 1957 COMTRAN
    7 1958 LISP
  # Вывод всех значения столбца year:
  df[1,:year]
  73-element Vector{Int64}: •••
  # Получение статистических сведений о фрейме:
  describe(df)
 2×7 DataFrame
  Row variable mean
                        min
                                 median max
                                                 nmissing eltype
       Symbol
               Union... Any
                                 Union... Any
                                                          DataType
                        1951
                                         2014
                                                        0 Int64
    1 year
                                  1986.0
    2 language
                        ALGOL 58
                                         dBase III
                                                       0 String31
```

#### **RDatasets**

#### **RDatasets**

# Подгружаем пакет RDatasets:
using RDatasets
# Задаём структуру данных д биде набора данных:
iris = dataset("datasets", "iris")

#### - 150×5 DataFrame

| Row | SepalLength | SepalWidth | PetalLength | PetalWidth | Species |  |
|-----|-------------|------------|-------------|------------|---------|--|
|     | Float64     | Float64    | Float64     | Float64    | Cat     |  |
| 1   | 5.1         | 3.5        | 1.4         | 0.2        | setosa  |  |
| 2   | 4.9         | 3.0        | 1.4         | 0.2        | setosa  |  |
| 3   | 4.7         | 3.2        | 1.3         | 0.2        | setosa  |  |
| 4   | 4.6         | 3.1        | 1.5         | 0.2        | setosa  |  |
| 5   | 5.0         | 3.6        | 1.4         | 0.2        | setosa  |  |
| 6   | 5.4         | 3.9        | 1.7         | 0.4        | setosa  |  |
| 7   | 4.6         | 3.4        | 1.4         | 0.3        | setosa  |  |

# Определения muna переменной: typeof(iris)

: DataFrame

# **Missing Values**

missing

```
Работа с переменными отсутствующего типа (Missing Values)
# Отсутствующий тип:
a = missing
typeof(a)
Missing
# Пример операции с переменной отсутствующего типа:
a + 1
missing
# Определение перечня продуктов:
foods = ["apple", "cucumber", "tomato", "banana"]
4-element Vector{String}:
 "apple"
 "cucumber"
 "tomato"
 "banana"
# Определение калорий:
calories = [missing, 47, 22, 105]
4-element Vector{Union{Missing, Int64}}:
    missing
  47
  22
 105
# Определение типа переменной:
typeof(calories)
Vector(Union(Missing, Int64)) (alias for Array(Union(Missing, Int64), 1))
# Подключаем пакет Statistics:
using Statistics
# Определение среднего значения:
mean(calories)
```

| Кла        | стеризация данных. Мето,                                         | д k-средних     |       |         |       |       |       |             |                              |        |          |           |
|------------|------------------------------------------------------------------|-----------------|-------|---------|-------|-------|-------|-------------|------------------------------|--------|----------|-----------|
| usin       | using CSV                                                        |                 |       |         |       |       |       |             |                              |        |          |           |
|            | # Jazpysea domner:<br>house= CSV.file("houses.csv")  > DataFrame |                 |       |         |       |       |       |             |                              |        |          |           |
| 985×1      | 985×12 DataFrame                                                 |                 |       |         |       |       |       |             |                              |        |          |           |
| Row street |                                                                  | city            | zip   | state   | beds  | baths | sqft  | type        | sale_date                    | price  | latitude | longitude |
|            | String                                                           | String15        | Int64 | String3 | Int64 | Int64 | Int64 | String15    | String31                     | Int64  | Float64  | Float64   |
| 1          | 3526 HIGH ST                                                     | SACRAMENTO      | 95838 | CA      | 2     | 1     | 836   | Residential | Wed May 21 00:00:00 EDT 2008 | 59222  | 38.6319  | -121.435  |
| 2          | 51 OMAHA CT                                                      | SACRAMENTO      | 95823 | CA      | 3     | 1     | 1167  | Residential | Wed May 21 00:00:00 EDT 2008 | 68212  | 38.4789  | -121.431  |
| 3          | 2796 BRANCH ST                                                   | SACRAMENTO      | 95815 | CA      | 2     | 1     | 796   | Residential | Wed May 21 00:00:00 EDT 2008 | 68880  | 38.6183  | -121.444  |
| 4          | 2805 JANETTE WAY                                                 | SACRAMENTO      | 95815 | CA      | 2     | 1     | 852   | Residential | Wed May 21 00:00:00 EDT 2008 | 69307  | 38.6168  | -121.439  |
| 5          | 6001 MCMAHON DR                                                  | SACRAMENTO      | 95824 | CA      | 2     | 1     | 797   | Residential | Wed May 21 00:00:00 EDT 2008 | 81900  | 38.5195  | -121.436  |
| 6          | 5828 PEPPERMILL CT                                               | SACRAMENTO      | 95841 | CA      | 3     | 1     | 1122  | Condo       | Wed May 21 00:00:00 EDT 2008 | 89921  | 38.6626  | -121.328  |
| 7          | 6048 OGDEN NASH WAY                                              | SACRAMENTO      | 95842 | CA      | 3     | 2     | 1104  | Residential | Wed May 21 00:00:00 EDT 2008 | 90895  | 38.6817  | -121.352  |
| 8          | 2561 19TH AVE                                                    | SACRAMENTO      | 95820 | CA      | 3     | 1     | 1177  | Residential | Wed May 21 00:00:00 EDT 2008 | 91002  | 38.5351  | -121.481  |
| 9          | 11150 TRINITY RIVER DR Unit 114                                  | RANCHO CORDOVA  | 95670 | CA      | 2     | 2     | 941   | Condo       | Wed May 21 00:00:00 EDT 2008 | 94905  | 38.6212  | -121.271  |
| 10         | 7325 10TH ST                                                     | RIO LINDA       | 95673 | CA      | 3     | 2     | 1146  | Residential | Wed May 21 00:00:00 EDT 2008 | 98937  | 38.7009  | -121.443  |
| 11         | 645 MORRISON AVE                                                 | SACRAMENTO      | 95838 | CA      | 3     | 2     | 909   | Residential | Wed May 21 00:00:00 EDT 2008 | 100309 | 38.6377  | -121,452  |
| 12         | 4085 FAWN CIR                                                    | SACRAMENTO      | 95823 | CA      | 3     | 2     | 1289  | Residential | Wed May 21 00:00:00 EDT 2008 | 106250 | 38.4707  | -121.459  |
| 13         | 2930 LA ROSA RD                                                  | SACRAMENTO      | 95815 | CA      | 1     | 1     | 871   | Residential | Wed May 21 00:00:00 EDT 2008 | 106852 | 38.6187  | -121.436  |
|            |                                                                  |                 |       |         |       |       |       |             |                              |        |          |           |
| 974        | 2181 WINTERHAVEN CIR                                             | CAMERON PARK    | 95682 | CA      | 3     | 2     | 0     | Residential | Thu May 15 00:00:00 EDT 2008 | 224500 | 38.6976  | -120.996  |
| 975        | 7540 HICKORY AVE                                                 | ORANGEVALE      | 95662 | CA      | 3     | 1     | 1456  | Residential | Thu May 15 00:00:00 EDT 2008 | 225000 | 38.7031  | -121.235  |
| 976        | 5024 CHAMBERLIN CIR                                              | ELK GROVE       | 95757 | CA      | 3     | 2     | 1450  | Residential | Thu May 15 00:00:00 EDT 2008 | 228000 | 38.3898  | -121.446  |
| 977        | 2400 INVERNESS DR                                                | LINCOLN         | 95648 | CA      | 3     | 2     | 1358  | Residential | Thu May 15 00:00:00 EDT 2008 | 229027 | 38.8978  | -121.325  |
| 978        | 5 BISHOPGATE CT                                                  | SACRAMENTO      | 95823 | CA      | 4     | 2     | 1329  | Residential | Thu May 15 00:00:00 EDT 2008 | 229500 | 38.4679  | -121.445  |
| 979        | 5601 REXLEIGH DR                                                 | SACRAMENTO      | 95823 | CA      | 4     | 2     | 1715  | Residential | Thu May 15 00:00:00 EDT 2008 | 230000 | 38.4453  | -121.442  |
| 980        | 1909 YARNELL WAY                                                 | ELK GROVE       | 95758 | CA      | 3     | 2     | 1262  | Residential | Thu May 15 00:00:00 EDT 2008 | 230000 | 38.4174  | -121,484  |
| 981        | 9169 GARLINGTON CT                                               | SACRAMENTO      | 95829 | CA      | 4     | 3     | 2280  | Residential | Thu May 15 00:00:00 EDT 2008 | 232425 | 38.4577  | -121.36   |
| 982        | 6932 RUSKUT WAY                                                  | SACRAMENTO      | 95823 | CA      | 3     | 2     | 1477  | Residential | Thu May 15 00:00:00 EDT 2008 | 234000 | 38.4999  | -121.459  |
| 983        | 7933 DAFFODIL WAY                                                | CITRUS HEIGHTS  | 95610 | CA      | 3     | 2     | 1216  | Residential | Thu May 15 00:00:00 EDT 2008 | 235000 | 38.7088  | -121.257  |
| 984        | 8304 RED FOX WAY                                                 | ELK GROVE       | 95758 | CA      | 4     | 2     | 1685  | Residential | Thu May 15 00:00:00 EDT 2008 | 235301 | 38.417   | -121.397  |
| 985        | 3882 VELLOWSTONE IN                                              | EL DORADO HILLS | 95762 | CA      | 2     | 2     | 1362  | Residential | Thu May 15 00:00:00 EDT 2008 | 235738 | 38 6552  | -121.076  |

```
import Pkg
Pkg.add("Plots")
  Resolving package versions...
  No Changes to 'C:\Users\noname\.julia\environments\v1.18\Project.toml'
  No Changes to 'C:\Users\noname\.julia\environments\v1.10\Manifest.toml'
# Построение графика:
using Plots
plot(size=(500,500),leg=false)
<?xml version="1.0" encoding="utf-8"?> • • •
x = houses[!,:sq__ft]
v = houses[!.:price]
scatter(x,y,markersize=3)
                                                                              y1
8.0×10<sup>5</sup>
6.0×10<sup>5</sup>
4.0×10<sup>5</sup>
2.0×10<sup>5</sup>
                      1000
                                   2000
                                                3000
                                                            4000
                                                                         5000
```





Рис. 10: Кластеризация данных. Метод k-средних. Часть 4

## Кластеризация данных. Метод k ближайших соседей.



# Кластеризация данных. Метод k ближайших соседей.



# Кластеризация данных. Метод к ближайших соседей.

```
Обработка данных. Метод главных компонент
1: # флейн с указанием пориоди и неми недвикимости:
   F = filter houses[].[:so ft.:price]]
   v = filter houses[].:price]
1: 814-element Vector/Int64):
     68212
     68880
     69307
     81988
     89921
     00005
     91882
     94985
     98937
    100309
    186258
    186852
    228000
    229877
    230000
    238888
    234000
    235000
   F = Matrix(F)'
]: 1x814 adjoint(::Vector(Int64)) with eltype Int64:
    50222 68212 68888 60387 81088 80021 . 234888 235888 235381 235738
1: # Подключение покета MultivariateStats:
   import Pkg
   Pkg.add("MultivariateStats")
   using MultivariateStats
      Resolving package versions...
     No Changes to 'C:\Users\noname\.iulia\environments\v1.18\Project.toml
     No Changes to 'C:\Users\noname\.julia\environments\v1.10\Manifest.toml
1: # Приведение типов данных к распределению для РСА:
   M . Fit(PCA. F)
1: PCA(indim = 2, outdim = 1, principalratio = 8.9999848784692897)
   Pattern matrix (unstandardized loadings):
             PC1
   1 460.52
   2 1.19826e5
```

# Кластеризация данных. Метод k ближайших соседей.



Рис. 14: Кластеризация данных. Метод главных компонент. Часть 2

# Обработка данных. Линейная регрессия.

# Oбработка данных. Линейная регрессия xvals = repeat(1:0.5:10,inner-2) yvals = 3 .+ xvals + 2\*rand(length(xvals)) .- 1 scatter(xvals,yvals,color=:black,leg=false)

```
function find_best_fit(xvals,yvals)
meanx = mean(xvals)
meany = mean(vvals)
stdx = std(vvals)
stdy = std(yvals)
stdy = std(yvals)
a = r*stdy/stdx
b = meany - a*meanx
return a,b
```

find hest fit (generic function with 1 method)

10

# Обработка данных. Линейная регрессия.

```
a.b = find best fit(xvals.vvals)
vnew - a * xvals .+ b
plot!(xvals.vnew)
                                                                             10
xvals = 1:100000:
xvals = repeat(xvals,inner=3);
yvals = 3 .+ xvals + 2*rand(length(xvals)) .- 1;
Schow size(yyals)
@show size(vvals)
Otine a.b = find best fit(xvals.vvals)
size(xvals) = (300000.)
size(vvals) = (300000.)
0.035450 seconds (20.15 k allocations: 1.315 MiB. 96.12% compilation time)
(1.0000000574192405, 2.998644319261075)
import Pkg
Pkg.add("PvCall")
Pkg.add("Conda")
using PyCall
using Conda
  Resolving package versions...
 No Changes to 'C:\Users\noname\.iulia\environments\v1.10\Project.toml'
 No Changes to 'C:\Users\noname\.julia\environments\v1.10\Manifest.toml'
  Resolving package versions...
 No Changes to 'C:\Users\noname\.iulia\environments\v1.10\Project.toml
```

No Changes to 'C:\Users\noname\.julia\environments\v1.18\Nanifest.toml

# Обработка данных. Линейная регрессия.

```
ру"""
import numpy
def find best fit python(xvals,yvals):
    meanx = numpy.mean(xvals)
    meany = numpy.mean(yvals)
    stdx = numpy.std(xvals)
    stdv = numpv.std(vvals)
    r = numpy.corrcoef(xvals,yvals)[0][1]
    a = r*stdy/stdx
    b = meany - a*meanx
    return a.b
xpy = PyObject(xvals)
vpv = PvObject(vvals)
@time a,b = py"find_best_fit_python"(xpy,ypy)
  0.137126 seconds (65.78 k allocations: 4.622 MiB, 51.55% compilation time)
(1.0000000574192378, 2.998644319399318)
import Pkg
Pkg.add("BenchmarkTools")
using BenchmarkTools
@btime a,b = py"find_best_fit_python"(xvals,yvals)
@btime a.b = find best fit(xvals.vvals)
   Resolving package versions...
  No Changes to `C:\Users\noname\.julia\environments\v1.10\Project.toml
  No Changes to 'C:\Users\noname\.julia\environments\v1.10\Manifest.toml'
  4.701 ms (28 allocations: 976 bytes)
  434.600 µs (1 allocation: 32 bytes)
(1.0000000574192405, 2.998644319261075)
```

Выводы по проделанной работе

# Выводы по проделанной работе

В ходе лабораторной работы мною были освоены специализированные пакеты для обработки данных.