独立和互斥

概念

- 1. 独立是没有任何影响,毫无关系
- 2. 互斥指排斥, 你发生我就不能发生, 两者是有影响的
- 3. 独立两者可以同时发生,排斥不能同时发生
- 4. 独立和互斥两者不能互推

数学语言:

- 1. P(AB) = P(A)P(B),称AB独立
- 2. P(AB)=0 $\Leftrightarrow AB$ 五斥 $\Leftrightarrow AB=\phi$
- 3. $P(AB) = 0 \Rightarrow AB$ 互斥

例: $A = x \leq \frac{1}{2}, B = x \geq \frac{1}{2}, P(AB) = P(x = \frac{1}{2}) = 0, A \cap B \neq \phi$ (连续性随机变量取到任何一个点 的概率都是0)

两者关系

互斥不独立, 独立不互斥

- 由于互斥是有影响的,独立无影响,因此两者只能存在一个
- 理解: 有你没我, 有我没你, 因此你我之间有紧密联系; 你我独立说明互相不认识, 没有任何关系。
- 前提是两者都不是不可能事件(不可能事件与任何事件都互斥且独立)

常见分布

一、离散

(1)二项分布B(n,p)

- 投篮投进概率是p,投n次, $P\{x=k\}$ 为投进k次的概率
- $P\{x=k\} = C_n^k p^k (1-p)^{n-k}$, $k=0,1,2,\ldots,n$
- EX = np, DX = np(1-p)
- n = 1时为0-1分布

(2) 泊松分布 $P(\lambda)$

- $P\{x=k\}=rac{\lambda^k}{k!}e^{-\lambda}, k=0,1,2,\ldots,\lambda>0$ $EX=DX=\lambda$
- 由级数 $\sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \ldots = e^x$ 可知, $P\{x=k\}$ 即此级数中第k项占整体的比例

(3)几何分布

• 一直投篮直到命中为止, $P\{x=k\}$ 为一共投了k次的概率

• $P\{x=k\}=(1-p)^{k-1}p, k=1,2,3,...$ • $EX=\frac{1}{p}, DX=\frac{1-p}{p^2}$ (会推号)

二、连续

(4)均匀分布U(a,b)

•
$$f(x) = egin{cases} rac{1}{b-a}, a < x < b \ 0,$$
 其他 $EX = rac{a+b}{2}, DX = rac{(b-a)^2}{12}$

•
$$EX = \frac{a+b}{2}, DX = \frac{(b-a)^2}{12}$$

• $F(x) = \int_{-\infty}^{x} f(x)dx = \int_{a}^{x} f(x)dx = \frac{x-a}{b-a}, a < x < b$ • 若 $[c,d] \subset (a,b)$,则 $P\{c < x < d\} = \frac{d-c}{b-a}$ (长度之比)

(5)指数分布 $E(\lambda)$

•
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \lambda > 0 \\ 0, 其他 \end{cases}$$

• $F(x) = \begin{cases} 0, x < 0 \\ 1 - e^{-\lambda x}, x \ge 0 \end{cases}$
• $EX = \frac{1}{\lambda}$ (均值为 $\frac{1}{\lambda}$ 或参数为 λ), $DX = \frac{1}{\lambda^2}$

•
$$F(x) = egin{cases} 0, x < 0 \ 1 - e^{-\lambda x}, x \geq 0 \end{cases}$$

• 无记忆性: $P\{X>s+t|X>s\}=P\{X>t\}$ $P\{$ 已经活了60岁,再活30岁 $\} = P\{$ 从出生开始活30岁 $\}$

(6)正态分布 $N(\mu, \sigma^2)$

•
$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}, x\in R$$

• $EX = \mu, DX = \sigma^2$

 $\frac{x-\mu}{\sigma} \sim N(0,1)$ 为标准正态分布(标准化)

•
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

•
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

• $\Phi(0) = \frac{1}{2}, \Phi(1) = 0.841, \Phi(1.645) = 0.95, \Phi(1.96) = 0.975$

•
$$\Phi(-x) = 1 - \Phi(x)$$

•
$$\varphi(x)$$
积不出,但 $\Phi'(x)=\varphi(x)$

•
$$EX = \int_{-\infty}^{+\infty} x \varphi(x) dx = 0 (x \varphi(x)$$
为奇函数)

記:
$$\Phi(1) = 0.8413$$
; $\Phi(1.645) = 0.95$; $\Phi(1.96) = 0.975$

(7)二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

1.
$$f(x,y) = \frac{1}{\sqrt{2\pi}\sigma_1\sqrt{2\pi}\sigma_2\sqrt{1-
ho^2}}e^{-u}, u = \frac{1}{1-
ho^2}[\frac{(x-\mu_1^2)}{2\sigma_1^2} -
ho\frac{x-\mu_1}{\sigma_1}\frac{y-\mu_2}{\sigma_2} + \frac{(y-\mu_2)^2}{2\sigma_2^2}]$$

2.
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

2.
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

3. ρ 是 X 与 Y 的相关系数,即 $\rho = \frac{Cov\{X,Y\}}{\sqrt{DX}\sqrt{DY}} = \frac{Cov\{X,Y\}}{\sigma_1\sigma_2}$
其中 $|\rho| < 1$

5.
$$aX + bY(a \neq 0, b \neq 0)$$
服从正态分布

6.
$$X$$
、 Y 独立的充要条件是 X 与 Y 不相关,即 ρ = (

6. **X**、**Y**独立的充要条件是**X**与**Y**不相关,即
$$\rho=0$$
 此时 $f(x,y)=rac{1}{\sqrt{2\pi}\sigma_1}e^{-rac{(x-\mu_1)^2}{2\sigma_1^2}}rac{1}{\sqrt{2\pi}\sigma_2}e^{-rac{(x-\mu_2)^2}{2\sigma_2^2}}$

(8)二维均匀分布

•
$$f(x,y) = egin{cases} rac{1}{S_G}(oxdot{m}$$
积倒数 $), (x,y) \in G \ 0,$ 其他

数字特征公式

1. 期望和方差

求期望方法

• 期望=函数值*概率的均值

・ 一维:
$$Eg(X)=\sum g(x_i)p_i$$
 $Eg(X)=\int_{-\infty}^{+\infty}g(x)f(x)dx$ 特别地, $EX=\int_{-\infty}^{+\infty}xf(x)dx$

• 二维: 二维变量没有期望, 但二维变量的函数有期望(一维)!!!

$$EZ = Eg(X,Y) = \sum_{-\infty} \sum_{j=0}^{\infty} g(x_i, y_i) p_{ij}$$

 $EZ = Eg(X,Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$

• 特别地, $EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x,y) dx dy$ (由二维密度求边缘期望)

$$egin{aligned} f_X(x) &= \int_{-\infty}^{+\infty} f(x,y) dy \ EX &= \int_{-\infty}^{+\infty} f_X(x) dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x,y) dx dy \end{aligned}$$

2. 协方差和相关系数

协方差

- 1. Cov(X, Y) = E[(X EX)(Y EY)] = EXY EXEY
- 2. Cov(X, X) = DX
- 3. 若X、Y独立,则Cov(X,Y)=0
- 4. $D(aX+bY)=D(aX)+D(bY)+2Cov(aX,bY)=a^2DX+b^2DY+2ab\rho_{XY}\sqrt{DX}\sqrt{DY}$

相关系数

1.
$$ho_{XY} = Cov(\frac{X - EX}{\sqrt{DX}}, \frac{Y - EY}{\sqrt{DY}}) = \frac{Cov(X, Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$$

3. 独立和不相关

若X,Y独立,则

- 1. $EXY = EX \cdot EY$
- 2. $D(X \pm Y) = DX + DY$
- 3. Cov(X, Y) = 0
- 4. $\rho_{XY} = 0$

不相关的充分必要条件

- 1. X, Y不相关,即 $\rho_{XY}=0$
- $2. \Leftrightarrow Cov(X,Y) = 0$
- 3. $\Leftrightarrow EXY = EX \cdot EY$
- $4. \Leftrightarrow D(X \pm Y) = DX + DY$
- 5. X,Y无线性关系

两者关系

- 1. 独立是没有任何关系, 而不相关是没有线性关系 因此独立一定不相关
- 2. 不相关不一定独立(没有线性关系也可能有其他关系)
- 3. $\rho \neq 0 \Rightarrow$ 不独立 ($\rho \neq 0$ 表示有一点线性关系,那必然不独立)
- 4. 对于二维正态分布,独立 ⇔ $\rho = 0$ ⇔ 不相关 (只可能是线性关系)

卷积公式

原理:将X,Y的密度转换成X和Z(或Y和Z)的密度,再用边缘密度的公式求出Z的边缘密度

证明方法:通过暴力求导公式 $\frac{d}{dz}\int_{lpha(z)}^{eta(z)}G(z,x)dx=\int_{lpha(z)}^{eta(z)}G^{'}(z,x)dx+G(z,eta(z))eta^{'}(z)-G(z,lpha(z))lpha^{'}(z)$

下面只转换成X和Z的密度

1. Z = X + Y

 $y=z-x, \quad |y_{z}^{'}|=1$

- $f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx$
- 已知f(x,y)时,只需将y换成z-x就能得到Z的概率密度
- 注意x, y的范围也要改成x, z的范围,并化简

计算步骤

- 1. f(x,y)改写成f(x,z)
- 2. 讨论z的范围
- 3. 定x的限: mz = z的直线, 在取值范围内穿进穿出的点就是x的上下限只要看穿进穿出的点,不是二重积分看面积!!!!!!

例题: 讲义P128 13题

2. $Z = X \cdot Y$

 $y=rac{z}{x},\quad |y_z^{'}|=rac{1}{|x|}$

- $f_Z(z)=\int_{-\infty}^{+\infty}f(x,rac{z}{x})rac{1}{|x|}dx$
- 3. $Z=rac{Y}{X}$

 $y=xz,\quad |y_{z}^{'}|=|x|$

- $f_Z(z) = \int_{-\infty}^{+\infty} f(x, zx) |x| dx$
- 例题:讲义P128 14题

4. $Z = \frac{X}{Y}$

 $y=rac{x}{z}, |y_z^{'}|=rac{|x|}{z^2}$

- $f_Z(z)=\int_{-\infty}^{+\infty}f(x,rac{x}{z})rac{|x|}{z^2}dx$
- 880基础解答6

易混淆

(1) 边缘密度 f(x) 和边缘分布 F(x)

只讨论连续型——只有连续型才讨论密度

- 1. $f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy, f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx$ (固定一个,累加另一个所有取值)
- 2. 若X,Y独立,则 $f(x,y)=f_X(x)f_Y(y)\Leftrightarrow f_{X|Y}(x|y)=f_X(x)$
- 3. $F_X(x) = P\{X \leq x, Y \leq +\infty\} = \lim_{y \to \infty} F(x,y)$
- 4. 若X,Y独立,则 $F(x,y) = F_X(x)F_Y(y)$

特殊古典概型

某事件第i次发生的概率为 p_i ,问前n次中平均发生了多少次? (期望)

- 将每次的概率全部累加即得到期望
- 证明:

记
$$X_n$$
为前 n 次发生的次数, Y_i 为第 i 次发生的次数,则 $Y_i \sim \begin{vmatrix} 0 & 1 \\ 1-p_i & p_i \end{vmatrix}$, $EY_i = p_i$ 且 $X_n = Y_1 + Y_2 + \ldots + Y_n$,则 $EX_n = EY_1 + EY_2 + \ldots + EY_n = \sum p_i$

什么是参数估计

参数估计分为点估计和矩估计

点估计

- 例如估计国家线是60分
- 点估计常用方法: 矩估计法、最大/极大似然估计法、最小二乘法、贝叶斯估计法
- 点估计能明确告知人们"未知参数是多少", 而不能反应估计的可信程度

矩估计 (methods of moments)

- 原理是用样本矩作为相应的总体矩来求出估计量
- 相比于最大似然估计、最小二乘法,效率很低,目前很少使用

区间估计

- 例如估计国家线是50~70分区间内
- 依据抽取的样本,根据一定的正确度和精确度的要求,构造适当的区间,作为总体分布的未知参数或参数 函数的真值所在范围的估计
- 根据给定的概率值估计出来一个区间,这个区间称为置信区间,给定概率值称为置信度或置信水平
- 置信水平就是实际落在置信区间的信心

每章概念

第一章 概率

- 1. 概率中 $A^2 = AA = A \cap A = A$, 即 $P(A^2) = P(A)$
- 2. 多个事件相互独立, 只要字母不重叠, 经过任意运算后都独立 例: A、B、C相互独立, A-C和B-C不独立, 而A-B与C独立

第二章 一维r.v.

- 由分布函数求某一点的密度(离散): $P\{X=x_0\}=P\{X\leq x_0\}-P\{X< x_0\}=F\{x_0\}-F\{x_0-0\}$
- 只有连续型随机变量才有密度函数

分布函数性质

- 1. 单调不减(求参数判断取舍P97例2.2)
- 2. 取值0~1
- 3. 处处右连续

概率密度性质 (充要条件)

- 1. 非负
- 2. $\int_{-\infty}^{+\infty} f(x)dx = 1$ (规范性)

分布函数和概率密度的组合

- 1. $F_1(x)F_2(x)$ 一定是密度函数,是 $max\{F_1(x),F_2(x)\}$ 的分布函数
- 2. $a_1 + a_2 = 1$ 时, $a_1F_1(x) + a_2F_2(x)$ 一定是分布函数
- 3. $a_1 + a_2 = 1$ 时, $a_1 f_1(x) + a_2 f_2(x)$ 一定是密度函数

记公式

1.
$$1+x+\frac{x^2}{2!}+\ldots+\frac{x^n}{n!}+\ldots=e^x$$
2. $1+x+x^2+\ldots+x^n+\ldots=\frac{1}{1-x}$
3. $\int_0^{+\infty}x^ne^xdx=n!(n$ 是自然数)

2.
$$1 + x + x^{2} + \ldots + x^{n} + \ldots = \frac{1}{1-x}$$

3.
$$\int_0^{+\infty} x^n e^x dx = n! (n$$
是自然数)

4.
$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$
(凑正态)

一维连续型

- $X \sim f(x)$, 分布函数为F(x)
- 取任一点的概率都是0

$$P\{a < x < b\} = P\{a < x \le b\} = P\{a \le x < b\} = P\{a \le x \le b\} = F(b) - F(a) = \int_a^b f(x) dx$$
(面积)

随机变量函数的分布

- 1. 求Y=g(X)的分布函数/概率密度,首先应该画图!! (把X做自变量,不用管X是什么)
- 画直线Y=y,找出与图像相交的部分,下方的区域转换为X的范围(积分区间),用X的概率密度计算,得到 $P\{Y\leq y\}$
- 结论: 如果X的分布函数F(x)是连续函数,则有 $Y = F(X) \sim U(0,1)$

第三章 二维r.v.

二维离散型

• 离散型变量一般研究分布函数

边缘分布

- $F_X(x) = P\{X \le x, Y \le +\infty\} = \lim_{y \to \infty} F(x, y)$
- 已知边缘分布, 得不到联合分布
- 求边缘概率即固定一行, 累加求和

二维连续型

• 连续型变量一般研究概率密度, 而不是概率分布

边缘密度和边缘分布

- $f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy, f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx$ (固定一个,累加另一个所有取值) 注意是f不是F!!!
- 若X,Y独立,则 $f(x,y)=f_X(x)f_Y(y)\Leftrightarrow f_{X|Y}(x|y)=f_X(x)$
- $F_X(x) = P\{X \le x, Y \le +\infty\} = \lim_{y \to \infty} F(x, y)$
- 若X,Y独立,则 $F(x,y) = F_X(x)F_Y(y)$

由概率密度求概率分布

• $F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)dudv$,表示点落在 (\mathbf{x},\mathbf{y}) 左下方矩形区域的概率

独立性

若X,Y独立,则

1.
$$f(x,y) = f_X(x)f_Y(y)$$

2. $F(x,y) = F_X(x)F_Y(y)$

(离,连)型求概率

将离散型的取值视为完备事件组,接着用全概公式

第四章 数字特征

数学期望EX

求期望的两个思路

- 1. 用自己的分布求 先求出自己的概率密度,再用定义求期望
- 2. 用别人的分布求

$$EXY = \begin{cases} \sum_{j} \sum_{i} x_{i} y_{j} P\{X = x_{i}, Y = y_{i}\} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f(x, y) dx dy \end{cases}$$

直接用函数值*自变量概率求和/积分

期望性质

- 1. 期望即均值
- 2. 常数的期望为常数 (EX本身也是常数)
- 3. 期望有线性性质

$$E(ax + b) = aEX + b$$

 $E(X \pm Y) = EX \pm EY$

- 4. $E(XY) = EX \cdot EY \Leftrightarrow X, Y$ 不相关 (不相关的充要条件)
- 5. 独立能推出不相关,不相关推不出独立 独立是没有任何关系,而不相关是没有线性关系!!!
- 6. X > a,则EX > a

求U = max(X,Y), V = min(X,Y)的期望

- 1. 可以用(X,Y)的分布求,
- 2. 求出U、V各自的分布后用定义求期望
- 3. 特殊方法:

$$ullet \ U=max(X,Y)=rac{X+Y+|X-Y|}{2}, V=min(X,Y)=rac{X+Y-|X-Y|}{2}$$

•
$$U + V = X + Y, U - V = |X - Y|, U \times V = X \times Y$$

• EU + EV = EX + EY, EU - EV = E|X - Y|, 联立求得EU和EV

若 $X_1, X_2, \ldots X_n$ 独立同分布, $X_i \sim F(x)$,如何求 $U = max(X_1, X_2, \ldots, X_n)$ 和 $V = min(X_1, X_2, \ldots X_n)$ 的期望?

- 只能先求各自的分布函数,再用定义求期望
- $F_U(x) = F^n(x); F_V(x) = 1 [1 F(x)]^n$
- ullet $EU=\int_{-\infty}^{+\infty}uf_U(u)du=\int_{-\infty}^{+\infty}xf_U(x)dx$

方差DX

定义

• $DX = E[X - EX]^2 > 0, \sqrt{DX}$ 称标准差

$$DX = E[X - EX]^2 = E[X^2 - 2EX \cdot X + (EX)^2] = EX^2 - 2EX \cdot EX + (EX)^2 = EX^2 - (EX)^2$$

• $EX^2 > (EX)^2$ (显然: 平方的均值大于均值的平方)

计算

1.
$$DX = EX^2 - (EX)^2$$

2.
$$EX^2=DX+(EX)^2$$
(结合常见分布)
例如,见到 $\int_{-\infty}^{+\infty}x^2e^{-x^2}dx$,想到凑出正态分布,利用某正态分布的方差和均值算此积分

性质

- 1. 方差反应随机变量对中心位置的偏移
- 2. D(C) = 0(常数没有偏移)
- 3. $D(aX + b) = D(aX) = a^2DX$, D(-X) = DX $D|X| = EX^2 - (E|X|)^2 \neq DX$
- 4. X, Y独立 $\rightarrow D(X \pm Y) = DX + DY \Leftrightarrow X, Y$ 不相关
- 5. $D(aX + bY) = \begin{cases} a^2DX + b^2DY + 2cov(aX, bY) \\ E(aX + bY)^2 (E(aX + bY))^2 \end{cases}$

协方差Cov(X,Y)

定义

- Cov(X, Y) = E[(X EX)(Y EY)]
- Cov(X,X) = DX

计算

- $Cov(X,Y) = EXY EX \cdot EY$
- $Cov(X,Y) = \rho_{XY} \sqrt{DX} \sqrt{DY}$
- Cov(X, -Y) = -Cov(X, Y)

性质

- 1. Cov(X, Y) = Cov(Y, X)
- 2. Cov(aX, bY) = abCov(X, Y)
- 3. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- 4. 独立则协方差为0 ($\rho=0$)
- 5. $D(aX + bY) = D(aX) + D(bY) + 2Cov(aX, bY) = a^2DX + b^2DY + 2ab\rho_{XY}\sqrt{DX}\sqrt{DY}$

相关系数 ρ

定义

•
$$\rho_{XY} = Cov(\frac{X - EX}{\sqrt{DX}}, \frac{Y - EY}{\sqrt{DY}}) = \frac{Cov(X, Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$$

性质

- 1. $|\rho_{XY}| \leq 1$
- 2. $\rho_{XY}=0$,称**XY**不相关 (无线性关系)
- 3. $|
 ho_{XY}|=1\Leftrightarrow P\{Y=aX+b,a
 eq0\}=1$ (X,Y是线性关系) $a<0\Rightarrow
 ho=-1; a>0\Rightarrow
 ho=-1$
- 4. 相关系数表示X,Y线性关系的紧密程度

独立和不相关判定

不相关的等价说法

- X,Y不相关,即 $ho_{XY}=0$
- $\Leftrightarrow Cov(X,Y) = 0$
- $\Leftrightarrow EXY = EX \cdot EY$
- $\Leftrightarrow D(X \pm Y) = DX + DY$

• X,Y无线性关系

判断不独立

- 只需要找一个点, 说明 $PXPY \neq PXY$
- 对于连续型,已知联合密度,只要满足取值为正矩形且密度可分离变量,就独立

两者关系

- 独立是没有任何关系,则比没有线性关系 因此独立⇒不相关
- 2. 不相关不一定独立(没有线性关系也可能有其他关系)
- 3. $\rho \neq 0 \Rightarrow$ 不独立 ($\rho \neq 0$ 表示有一点线性关系, 那必然不独立)
- 4. 对于二维正态分布,独立 $\Leftrightarrow \rho = 0 \Leftrightarrow$ 不相关 (只可能是线性关系)

正态分布的问题

一维正态

- 1. $X \sim N(\mu, \sigma^2)$, 则 $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$
- 2. 独立正态的线性组合仍是正态分布(加常数也是线性组合) $aX + bY + C \sim N(a\mu_1 + b\mu_2 + C, a^2\sigma_1^2 + b^2\sigma_2^2)$
 - o 注意必须要独立
 - o 例如X,Y服从正态,但X=-Y,此时X+Y=0(常数)不符合正态分布

二维正态 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

会写概率密度
$$f(x,y)=rac{1}{\sqrt{2\pi}\sigma_1\sqrt{2\pi}\sigma_2\sqrt{1-
ho^2}}e^{-u}, u=rac{1}{1-
ho^2}[rac{(x-\mu_1^2)}{2\sigma^2}-
horac{x-\mu_1}{\sigma_1}rac{y-\mu_2}{\sigma_2}+rac{(y-\mu_2)^2}{2\sigma_2^2}]$$

1. $X\sim N(\mu_1,\sigma_1^2), Y\sim N(\mu_2,\sigma_2^2), |
ho|<1$

$$X,Y$$
独立 $\Leftrightarrow \rho=0 \Leftrightarrow X,Y$ 不相关

- 2. $aX+bY\sim N(a\mu_1+b\mu_2,a^2\sigma_1^2+b^2\sigma_2^2+2ab
 ho\sigma_2\sigma_2)$
 - o X Y 不 雲 要 独 立 ! !

。 X,Y 不需要独立!!
3. 对于
$$\left\{egin{array}{ll} U=a_1X+b_1Y\ V=a_2X+b_2Y \end{array},$$
当 $\left|egin{array}{ll} a_1&b_1\ a_2&b_2 \end{array}
ight|
eq 0$ 时, (U,V) 仍服从二维正态

- o 可逆线性变换把X.Y的关系传递给了U.V
- \circ 如(X+Y,X-Y)服从二维正态
- o 相关系数可能会变!!!!!
- 4. X正态,Y正态,且X,Y独立 \Rightarrow (X,Y)服从二维正态,其中 $\rho=0$

X正态,Y正态,但X,Y不独立 \Rightarrow (X,Y)服从二维正态!!!

X正态,Y正态,X,Y不相关($\rho = 0$),同样推不出(X,Y)服从二维正态!!!

不相关推不出独立, 也推不出二维正态

求EXY

方法: 转换成随机变量函数的期望

•
$$Y = g(X) \Rightarrow EXY = E(Xg(X)) = \int_{-\infty}^{+\infty} xg(x)dx$$

1. X、Y都是连续型

- 直接带进积分
- 2. (离、连)型——讲义P147例4.14
 - 根据Y关于X的取值,将积分分段

第五章 大数定律与中心极限定理

- 1. 切比雪夫不等式
 - $P\{|x EX| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$ $P\{|x - EX| < \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}$
 - 注意有绝对值!!!
 - 越靠近均值, 概率越大
 - 只能用于估计概率, 不能精确计算

2. 大数定律

依概率收敛

- 序列 Y_1,Y_2,\ldots,Y_n 依概率收敛于a,即Y在a附近取值
- 频率 (实际) 依概率收敛与期望 (理论)
- 性质: $X_n \to a, Y_n \to b, 则 X_n, Y_n$ 的函数 $g(X_n, Y_n) \to g(a, b)$

各种大数定律

- 一句话: 算术平均依概率收敛于期望 (很大概率在期望附近取值)
- 例: $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-(\frac{1}{n}\sum_{i=1}^{n}X_{i})^{2}$ 依概率收敛于 $EX_{i}^{2}-(EX_{i})^{2}$
- 3. 中心极限定理
 - 记一句话: 大量r.v的和(近似)服从正态分布
 - 只需要算出期望和方差,就可以当成正态分布来做题

第六章 数理统计概念

一、总体和样本

看到 $X_1, X_2, \ldots X_n$ 是来自总体X的容量为n的简单随机样本,应想到:

- 1. $X_1, X_2, ... X_n$ 相互独立
- 2. X_1, X_2, \ldots, X_n 同分布 (同分布不是相等) 但期望和方差相等: $EX_i = \mu = E(\frac{1}{n}\sum X_i), DX_i = \sigma^2 = D(\sum X_i)/n$

统计量

- 指样本 X_1, X_2, \ldots, X_n 不含总体任何未知参数 的函数 $g(X_1, X_2, \ldots, X_n)$
- 例: 若总体 $X \sim N(\mu, \sigma^2)$, 其中 μ 已知, σ^2 未知, 则

1.
$$maxX_i - \mu$$
是统计量

2.
$$\frac{1}{\sigma^2} \sum (X_i - \mu)^2$$
不是统计量

样本均值 \overline{X} 和样本方差 S^2

• 样本均值
$$\overline{X} = \frac{1}{n} \sum X_i$$

• 样本方差
$$S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2 = \frac{1}{n-1} (\sum X_i^2 - n\overline{X}^2)$$

记公式

总体X,期望 $EX = \mu$,方差 $DX = \sigma^2$

1.
$$E\overline{X} = \mu, D\overline{X} = \frac{\sigma^2}{n}$$

2.
$$ES^2=\sigma^2, E\sum (X_i-\overline{X})^2=(n-1)ES^2=(n-1)\sigma^2$$

3.
$$DS^2 = \frac{2\sigma^4}{n-1}$$

。 由
$$\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$$
得

$$egin{array}{l} \circ \;\; egin{array}{l} egin{array}{l} \circ \;\; egin{array}{l} egin{array}{l} rac{(n-1)S^2}{\sigma^2} &\sim \chi^2(n-1)$$
党 $\ \circ \;\; Drac{(n-1)S^2}{\sigma^2} &= rac{(n-1)^2}{\sigma^4}DS^2 &= 2(n-1) \end{array}$

二、三大分布

考试要求:记住构造、性质、会画密度草图(密度表达式不考)

1. 卡方分布 χ^2

• 构造: X_1, X_2, X_n 独立同分布 $\sim N(0,1)$

$$\chi^2 = X_1^2 + X_2^2 + \ldots + X_n^2 \sim \chi^2(n), n$$
称为自由度—— χ^2 符号是一个整体!!!

- 性质:
 - $(1)X \sim N(0,1)$,则 $X^2 \sim \chi^2(1)$; $EX^2 = 1$, $DX^2 = 2$

$$(2)\chi^2 \sim \chi^2(n)$$
,則 $E\chi^2 = n$, $D\chi^2 = 2n$

(3)可加性:
$$\chi_1^2 \sim \chi_1^2(n_1), \chi_2^2 \sim \chi_2^2(n_2), \exists \chi_1^2, \chi_2^2$$
独立,则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$

• 密度图

0 平方和>0, 因此只在第一象限取值

2. t分布(student分布)

- ・ 构造: $X \sim N(0,1), Y \sim \chi^2(n), X, Y$ 独立 则 $T = rac{X}{\sqrt{rac{Y}{n}}} \sim t(n)$
- ・ 性质: $T \sim t(n)$,则 $T^2 = rac{X^2}{Y/n} \sim F(1,n)$; $rac{1}{T^2} \sim F(n,1)$
- 密度图

3. F分布

- ・ 构造: $X \sim \chi^2(n), Y \sim \chi^2(n), X, Y$ 独立 $F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$ 。 性质: $F \sim F(n_1, n_2), 则 \frac{1}{F} \sim F(n_2, n_1)$

• 密度图

4. 上侧 α 分位点($0 < \alpha < 1$)

适用标准正态N(0,1)、卡方 $\chi(n)$ 、t分布和F分布

设 $U \sim N(0,1)$,对于给定正数 $\alpha, 0 < \alpha < 1$,称满足 $P\{U \geq U_{\alpha}\} = \alpha$ 的点为N(0,1)的上侧 α 分位点

- $U\alpha$ 取值与 α 有关,因此用下标 α 来标记(点 U_{α} 指该点右边面积为 α)
- 一般通过查表来得到 U_{lpha} 的值
- α 与n没关系,n决定分布函数, α 是人为选取的正数

1. 对于标准正态: $\Phi(U_lpha)=P\{X\leq U_lpha\}=1-lpha$

 $\Phi(1.645) = 0.95$, 则 $U_{0.05} = 1.645$. (1.645左边面积是0.95, 则右边面积就是0.05, 即1.645就是 $U_{0.05}$)

$$\circ U_{1-\alpha} = -U_{\alpha}$$

- 2. 对于t分布 $T \sim t(n), P\{T > t_{\alpha}(n)\} = \alpha$
 - 。 与N(0,1)类似, 概率密度都是偶函数 $\Rightarrow t_{1-\alpha} = -t_{\alpha}$
- 3. 对于卡方分布 $\chi^2 \sim \chi^2(n), P\{\chi^2 > \chi^2_{\alpha}(n)\} = \alpha$
 - 。 密度函数不对称, 因此 $\chi^2_{1-\alpha}$ 与 χ^2_{α} 没有对应表达式

• 由图易知
$$P\{\chi_{1-\alpha}^2 < \chi^2 < \chi_{\alpha}^2\} = 1 - 2\alpha$$

4. 对于F分布 $F \sim F(n_1, n_2), P\{F > F_{\alpha}(n_1, n_2)\} = \alpha$

$$ullet$$
 $F_{1-lpha}(n_1,n_2)=rac{1}{F_lpha(n_2,n_1)}$

重要结论: $\chi^2_{lpha}(1)=U^2_{rac{lpha}{2}}; F_{lpha}(1,n)=t^2_{rac{lpha}{2}}(n)$

1.
$$X \sim t(n), X^2 \sim F(1,n)$$
.
$$P\{X > t_{\frac{\alpha}{2}}\} = \frac{\alpha}{2}, P\{X^2 > F_{\alpha}\} = \alpha, 证 t_{\frac{\alpha}{2}} = c$$
 则 $P\{X^2 > c^2\} = P\{X > c\} + P\{X < -c\} = \alpha = P\{X^2 > F_{\alpha}\}$ 于是 $c^2 = F_{\alpha} = t_{\frac{\alpha}{2}}^2 = c^2$

2.
$$X \sim N(0,1), X^2 \sim \chi^2(1)$$

记 $c = U\frac{\alpha}{2}, P\{X^2 > c^2\} = P\{X > c\} + P\{X < -c\} = \alpha = P\{X^2 > \chi^2_{\alpha}\}$ 于是 $c^2 = \chi^2_{\alpha} = U^2_{\frac{\alpha}{2}}$

三、单正态总体下样本均值与样本方差的分布

总体
$$X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$$
为样本. $\overline{X} = \frac{1}{n} \sum X_i, S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$ 记 $S^2_* = \frac{1}{n} \sum (X_i - \overline{X})^2$ $E\overline{X} = \mu, D\overline{X} = \frac{\sigma^2}{n}; ES^2 = \sigma^2$

结论1: 样本均值的分布

由于独立正态的线性组合仍是正态分布,则 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

$$ullet rac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1) \ ullet (rac{\overline{X}-\mu}{\sigma/\sqrt{n}})^2 \sim \chi^2(1)$$

•
$$(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}})^2 \sim \chi^2(1)$$

结论2: 样本与总体均值μ

由
$$\frac{X_i - \mu}{\sigma} \sim N(0, 1),$$
则 $\frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(1),$ 于是

$$ullet rac{\sum (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$$

结论3: 样本方差的分布

•
$$\frac{\sum (X_i-\overline{X})^2}{\sigma^2}=\frac{(n-1)S^2}{\underline{\sigma^2}}=\frac{nS_*^2}{\sigma^2}\sim \chi^2(n-1)$$
(注意自由度是**n-1**不是**n**)
• $i=n$ 时, $X_1-\overline{X}+X_2-\overline{X}+\dots+X_n-\overline{X}=0$,因此只有 $n-1$ 个随机变量

•
$$i=n$$
时 $,X_1-X+X_2-X+\ldots+X_n-X=0$,因此只有 $n-1$ 个随机变量

• 无法证明

结论4: 样本均值与样本方差

$$ullet rac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1); (rac{\overline{X}-\mu}{S/\sqrt{n}})^2 \sim F(1,n-1)$$

・ 特別地,
$$nS_*^2=(n-1)S^2\Rightarrow S_*^2/(n-1)=S^2/n,$$
则 $rac{\overline{X}-\mu}{S_*/\sqrt{n-1}}\sim t(n-1)$

结论**5**: 单正态总体下, \overline{X} 与 S^2 独立

• 注意一定是正态总体

第七章 参数估计

一、矩估计

思想:用样本矩(实际)来估计总体矩(理论)

总体X, 样本 X_1, X_2, \ldots, X_n

1. 总体矩

- EX为X的一阶原点矩
- EX^2 为X的二阶原点矩
- $DX = E(X EX)^2$ 为X的二阶中心矩

2. 样本矩

- $A_1 = \overline{X} = rac{1}{n} \sum X_i$ 为样本的一阶原点矩
- $A_2 = \frac{1}{n} \sum X_i^2$ 为样本的二阶原点矩
- $B_2 = S_*^2 = \frac{1}{n} \sum (X_i \overline{X})^2 = \frac{1}{n} (\sum X_i^2 n \overline{X}^2)$ 为样本的二阶中心矩 • 注意样本方差 $S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$ 不是矩,不能用于矩估计

3. 关系

由大数定律: 算术平均依概率收敛于数学期望

- $A_1 \rightarrow EX$
- ullet $A_2 o EX^2$
- $B_2 o DX$

$$\circ \ EB_2 = \frac{1}{n} (\sum EX_i^2 - n(E\overline{X})^2) = EX^2 - (EX)^2 = DX$$

解题步骤

求θ的矩估计值

1. 列等式,解 θ (由低阶到高阶)—— θ 和X一样,都是随机变量

。 一所:
$$\overline{X}=EX$$

。 二阶: $\frac{1}{n}\sum X_i^2=EX^2$ — 优先用原点矩!
$$\frac{1}{n}(\sum X_i^2-n\overline{X}^2)=DX$$
中心矩后用

2. 考研只考过一阶

二、最大似然估计

让似然函数取到最大值的估计

思想:在未知参数 θ 的取值范围内,让 $L(\theta)$ 取到最大值的 $\hat{\theta}$ 作为 θ 的最大似然估计

1. 似然函数

- 样本 X_i 取到观测值 x_i 的概率 $L(\theta)$,称为似然函数
- θ为待估参数
- 对于离散型, $L(\theta) = P\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\} = \prod P\{X_i = x_i\}$

• 对于连续型,不能取到某个点,因此用取到邻域的概率代替 $P\{X_1 \in U(x_1), \dots, X_n \in U(x_n)\} = f(x_1)\Delta x \cdot f(x_2)\Delta x \dots f(x_n)\Delta x$ 由于 $f(x_i)$ 与 θ 有关, Δx 与 θ 无关,因此取 $L(\theta) = f(x_1; \theta)f(x_2; \theta) \dots f(x_n; \theta)$,即 (X_1, X_2, \dots, X_n) 联合密度的观测值

2. 大题步骤

- 1. 写 $L(\theta)$
- 2. 取对数, 求导, 即令 $\frac{d \ln L(\theta)}{d \theta} = 0$ 解得驻点 $\hat{\theta}$,即为 θ 的最大似然估计
- 3. 若没有驻点,即 $L(\theta)$ 单调 $\left\{ egin{align*} & \hat{ ext{$ \oplus$}} & \hat{ ext{$ \bullet$}} & \hat{ ex$
- 4. 估计量:用X 估计值:用X

三、估计量的评选标准

1.无偏估计

- $E\hat{\theta} = \theta$, $\hat{\theta}$ $\hat{\theta}$
- $\lim_{n\to\infty} E\hat{\theta} = \theta$, 称 $\hat{\theta}$ 为 θ 的渐进无偏估计

结论:

- 1. 无偏估计不唯一
- 2. $E\overline{X} = \mu \Rightarrow \overline{X}$ 是 μ 的无偏估计
- 3. $ES^2 = DX = \sigma^2 \Rightarrow S^2 \not\in \sigma^2$ 的无偏估计

2. 有效性

- 多个无偏估计中, 方差越小的越有效
- 方差反应对中心位置的偏移
- 必须先是无偏估计,才能说有效性

3. 一致性(相合性)

• $\hat{\theta}$ 依概率收敛于 θ , $\hat{\theta}$ 是 θ 的一致/相合估计量

四、区间估计

求置信区间步骤

给定置信度 $1-\alpha$,求未知参数 θ 的置信区间(即求 θ 有 $1-\alpha$ 的概率在什么区间取值)置信区间的左右端点称为 <mark>置信下限和置信上限</mark>

- 1. 选择一个概率密度函数 $T(X_1,X_2,\ldots,X_2, heta)=T(heta)$ (只有heta一个未知参数)
 - o 根据什么参数未知选择对应的分布
- 2. 求 $P\{a < T(\theta) < b\} = 1 \alpha$
- 3. 将上式转化为 $P\{\hat{\theta}_1 < T(\theta) < \hat{\theta}_2\} = 1-\alpha$,即求得置信区间 $(\hat{\theta}_1,\hat{\theta}_2)$

正态总体下 μ , σ^2 的置信区间

1. σ^2 已知, 求 μ 的置信区间—— T中可以出现 σ

。 选
$$T(\mu) = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

$$\circ P\{-U_{rac{lpha}{2}} < T(\mu) \leq U_{rac{lpha}{2}}\}$$

。 反解
$$\mu$$
得置信区间 $(\overline{X} - U_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + U_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$

2. σ^2 未知, 求 μ 的置信区间

。 造
$$T(\mu)=rac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$

3. μ 已知, 求 σ^2 的置信区间—— T中可以出现 μ

。 造
$$T(\mu) = rac{\sum (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$$

4. μ 未知, 求 σ^2 的置信区间

。 选
$$T(\mu)=rac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$$

第八章 假设检验

一、假设检验的概念

1. 假设检验

- 即先假设, 再检验(抽样), 并检验假设对不对
- 依据——小概率原理: 小概率事件在一次抽样下几乎不可能发生

2. 两类错误

记 H_0 为优秀, H_1 为不优秀

- 第一类——弃真:实际上很优秀(真实情况的是 H_0 ,假设了 H_0),但检验时发挥失常(检验结果 H_1),错认为不优秀(拒绝了 H_0 的假设)
- 第二类——存伪: 实际上很菜(真实情况的是 H_1 ,假设了 H_1),但检验时超常发挥(检验结果 H_0),错认为优秀(拒绝了 H_1 的假设)

检验结果 真实情况	接受 H。	接受 H1
接受 H。	判断正确	第一类错误(弃真错误)
接受 H1	第二类错误(存伪错误)	判断正确

3. 显著性检验

- 无法同时使第一类和第二类错误概率都很小
- 此时总是控制第一类错误的概率(尽量不弃真)
- 使第一类错误的概率不大于给定的α, 这种检验就是显著性检验问题
- α称为显著性水平

4. 假设检验的步骤

- 1. 提出原假设 H_0 , 备择假设 H_1
 - 。 带等号的做 H_0
- 2. 构建检验统计量

3. 写出拒绝域W

检验时,用一个统计量T作为检验统计量,T落在区域W时,就拒绝 H_0 的假设,这一区域W称为 H_0 的拒绝域。

W的选取是通过控制第一类错误的概率 α 来决定的。

4. 根据样本观测值, 计算统计量, 进行判断 将假设的参数直接带入,计算得到统计量,判断是否落在接受域,如果落在了拒绝域,就拒绝

二、正态总体下的均值和方差的假设检验

 $X \sim N(\mu, \sigma^2)$,要对 μ 和 σ^2 进行假设和检验

1. 假设

- 根据 μ 和 σ^2 已知和未知,以及假设检验的是 μ 还是 σ^2 ,分为四种情况
- 即上述 μ 和 σ^2 的置信区间四种情况

2. 检验

- 如下表
- 带等号的为假设 (H_0)
- 对于 μ 的假设检验: \overline{X} 依概率收敛与 μ ,即 \overline{X} 很大概率在假设的 μ_0 附近取值,而当 \overline{X} 的检验值离 μ_0 太远,即 \overline{X} 落在了 μ_0 的拒绝域,说明不正常,假设不对,应该拒绝当前的假设

单正态总体:

编号	$H_0 \leftrightarrow H_1$	H。为真时, 检验统计量及其分布	H。的拒绝域 W
1	$\mu = \mu_0 \! \leftrightarrow \! \! \mu \neq \mu_0$	(σ² 已知)	$ U \! \geqslant \! U_{\frac{\sigma}{2}}$
	$\mu\leqslant\mu_0\!\leftrightarrow\!\mu>\mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$U\geqslant U_{a}$
	$\mu\geqslant\mu_0\!\leftrightarrow\!\mu<\mu_0$	σ/\sqrt{n}	$U \leqslant -U_{\scriptscriptstyle a}$
	$\mu = \mu_0 \!$	(σ² 未知)	$\mid T\mid \geqslant t_{\frac{a}{2}}(n-1)$
2	$\mu\leqslant\mu_0\!\leftrightarrow\!\mu>\mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$	$T \geqslant t_a (n-1)$
	$\mu\geqslant\mu_0\leftrightarrow\mu<\mu_0$	S/\sqrt{n}	$T \leqslant -t_{a}(n-1)$
3	$\sigma^2 = \sigma_0^2 \leftrightarrow \sigma^2 eq \sigma_0^2$ $\sigma^2 \leqslant \sigma_0^2 \leftrightarrow \sigma^2 > \sigma_0^2$	(μ 已知)	$\chi^2 \geqslant \chi^2_{\frac{a}{2}}(n)$ 或
		$\chi^2 = rac{\displaystyle\sum_{i=1}^n (X_i - \mu)^2}{\sigma_0^2} \sim \chi^2(n)$	$\chi^2 \leqslant \chi^2_{1-\frac{a}{2}}(n)$
			$\chi^2 \geqslant \chi^2_a(n)$
	$\sigma^2 \geqslant \sigma_0^2 \leftrightarrow \sigma^2 < \sigma_0^2$		$\chi^2 \leqslant \chi^2_{1-a}(n)$
4	$\sigma^2 = \sigma_0^2 \leftrightarrow \sigma^2 eq \sigma_0^2$ $\sigma^2 \leqslant \sigma_0^2 \leftrightarrow \sigma^2 > \sigma_0^2$	$(\mu ext{ 未知})$ $\chi^2 = rac{(n-1)S^2}{\sigma_0^2} \sim$	$\chi^2 \geqslant \chi^2_{\frac{a}{2}}(n-1)$ 或
			$\chi^2 \leqslant \chi^2_{1-\frac{\sigma}{2}}(n-1)$
		σ_0^2 $\chi^2(n-1)$	$\chi^2 \geqslant \chi^2_a(n-1)$
	$\sigma^2 \geqslant \sigma_0^2 \leftrightarrow \sigma^2 < \sigma_0^2$		$\chi^2 \leqslant \chi^2_{1-a} (n-1)$

双正态总体:

编号	$H_0 \leftrightarrow H_1$	H。为真时, 检验统计量及其分布	H。拒绝域 W
5	$\mu_1 = \mu_2 \leftrightarrow \mu_1 \neq \mu_2$	$(\sigma_1^2,\sigma_2^2$ 均未知, \qquad	$\mid T \mid \geqslant t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)$
	$\mu_1 \leqslant \mu_2 \leftrightarrow \mu_1 > \mu_2$	$T = \frac{\overline{X} - \overline{Y}}{\sqrt{1 + 1}}$	$T \geqslant t_a (n_1 + n_2 - 2)$
	$\mu_1 \geqslant \mu_2 \leftrightarrow \mu_1 < \mu_2$	$S_{w} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $\sim t(n_1 + n_2 - 2)$	$T \leqslant -t_a (n_1 + n_2 - 2)$
6	$\sigma_1^2 = \sigma_2^2 \leftrightarrow \sigma_1^2 \neq \sigma_2^2$	$(\mu_1,\mu_2$ 未知) $F = rac{S_1^2}{S_2^2} \sim F(n_1-1,n_2-1)$	$F\geqslant F_{rac{\sigma}{2}}(n_1-1,n_2-1)$ 或 $F\leqslant F_{1-rac{\sigma}{2}}(n_1-1,n_2-1)$
	$\sigma_1^2 \leqslant \sigma_2^2 \leftrightarrow \sigma_1^2 > \sigma_2^2$		$F \geqslant F_a(n_1 - 1, n_2 - 1)$
	$\sigma_1^2 \geqslant \sigma_2^2 \leftrightarrow \sigma_1^2 < \sigma_2^2$		$F \leqslant F_{1-\alpha}(n_1-1,n_2-1)$

无记忆性

• 几何分布和泊松分布都有无记忆性

•
$$P\{X > m + n | X > n\} = P\{x > m\}$$

分布函数服从均匀分布

• 随机变量 $X \sim F(x)$,则 $Y = F(x) \sim U(0,1)$

极值分布

•
$$M = max\{X_1, X_2, \dots X_k\}, N = min\{X_1, X_2, \dots X_k\}$$

•
$$F_M(m) = [F_X(m)]^k, F_N(n) = 1 - [1 - F_X(n)]^k$$

积分表

1.
$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

$$\int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} dx = 0$$

$$\int_{-\infty}^{+\infty} x^2 e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

$$\circ X \sim N(0,1), EX = 1, EX^2 = DX + (EX)^2 = 1 + 0 = 1$$
2.
$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

$$\int_{-\infty}^{+\infty} x e^{-x^2} dx = 0$$

$$\int_{-\infty}^{+\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\circ X \sim N(0, \frac{1}{2}), EX = 0, EX^2 = DX + (EX)^2 = \frac{1}{2}$$
3.
$$\int_{-\infty}^{+\infty} e^{-|x|} dx = 2 \int_{0}^{+\infty} e^{-x} dx = 2$$
4.
$$\int_{-\infty}^{+\infty} e^{-a^2x^2} dx = \frac{\sqrt{\pi}}{a}$$

正态分布绝对值的期望方差

1.
$$X\sim N(0,1),$$
则 $E|X|=\sqrt{rac{2}{\pi}},D|X|=1-rac{2}{\pi}$ 2. $X\sim N(0,\sigma^2),$ 则 $E|X|=\sqrt{rac{2}{\pi}}\sigma,D|X|=(1-rac{2}{\pi})\sigma^2$

两点分布独立等价于不相关

•
$$A$$
、 B 为两随机事件, $X=egin{cases} p,A$ 发生 $1-p,A$ 不发生 $Y=egin{cases} q,B$ 发生 $1-q,B$ 不发生

• 则X、Y不相关 \Leftrightarrow X、Y独立