LOG1810 6 - Dénombrement

Lévis Thériault, Aurel Randolph et Eric Demers Merci à Chris Kauffman

Dernière mise à jour: 2023-10-25

Logistique

Lectures: Rosen

► Maintenant: 6.1 - 6.5, 8.5

► Suivant: 8.1 - 8.4, 8.6

Objectifs

Dénombrement

Calcul combinatoire

Compter des choses

Principes de dénombrement des combinaisons d'objets où

L'ensemble
$$A$$
 a m éléments $|A|=m$
L'ensemble B a n éléments $|B|=n$

Règle du produit Choisir une paire d'éléments de A, B donne $n \cdot m$ possibilités.

Règle de la somme $A \cap B = \emptyset$ (pas d'éléments communs), choisir un seul élément dans l'ensemble A ou B donne n+m possibilités.

Règle de la différence $A \cap B \neq \emptyset$ (quelques éléments communs) choisir un seul élément dans l'ensemble A ou B donne $n + m - |A \cap B|$ possibilités.

La plupart d'entre vous ont déjà une compréhension intuitive de cela, mais nous examinerons quelques exemples, puis nous l'exercerons.

3

Exercice: Dénombrer des numéros de téléphone

- Les anciens numéros locaux de téléphone avaient le format XYZ-ABCD
- Pour chaque chiffre X, Y, ..., D il y a 10 choix : 0,1,2,...,9
- Il y a 7 chiffres dans un numéro de téléphone local
- Nombres de numéros : $\underbrace{10 \times 10 \times \cdots \times 10}_{} = 10^{7}$
- ➤ Selon le North American Telephone Numbering Plan (NATP) original: les chiffres X et Y sont limités à 2,3,...,9 et donc 8 choix
- ► Total de numéros locaux **valides** : $8^2 \cdot 10^5 = 6.400.000$
- Application de la règle du produit

Numéros interurbains

- # interurbains ont la forme QRS-XYZ-ABCD
- ► Sous NATP, Q est 2-9, R est 0-1, S est 0-9
- Combien y a-t-il de # interurbains valides ?

Réponses: Dénombrer des numéros de téléphone

Numéros interurbains

- # interurbains ont la forme QRS-XYZ-ABCD
- Sous NATP, Q est 2−9, R est 0−1, S est 0−9
- Combien y a-t-il de # interurbains valide ?
 - \triangleright 8· 2 · 10 · (8² · 10⁵) = 1,024,000,000

Exercice: Dénombrement de fonctions

- Une fonction de m éléments à n éléments associe chacun des m à l'un des n
- ightharpoonup Donc m choix à faire avec n possibilités pour chacun des choix
- Nombre total de fonctions possibles : $\underbrace{n \cdot n \cdot \dots \cdot n}_{m \text{ fois}} = n^m$
- Si la fonction est **injective** (un-à-un), $m \le n$ et une fois qu'un élément est choisi, impossible de le reprendre
- Mène à $(n) \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-m+1)$
- ► Applications de la règle du produit

Dénombrement de fonctions injectives

- Combien y a-t-il de fonctions injectives à partir de
 - 3 éléments à 7 éléments
 - 8 éléments à 12 éléments
- Dérivez une expression générale en utilisant la notation factorielle

Réponses: Dénombrement de fonctions

Dénombrement de fonctions injectives

- Combien y a-t-il de fonctions injectives à partir de
 - ▶ 3 éléments à 7 éléments: $7 \cdot 6 \cdot 5 = 210$
 - ▶ 8 éléments à 12 éléments: $12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 19,958,400$
- Dérivez une expression générale en utilisant la notation factorielle

$$N = \underbrace{(n) \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-m+1)}_{m \text{ fois}}$$

$$= \underbrace{(n) \cdot (n-1) \cdot \ldots \cdot (n-m+1) \cdot (n-m) \cdot (n-m-1) \cdot \ldots \cdot 2 \cdot 1}_{(n-m) \cdot (n-m-1) \cdot \ldots \cdot 2 \cdot 1}$$

$$= \frac{n!}{(n-m)!}$$

-

Exercice: Choix des projets

 Un programme nécessite un seul projet final de l'une des trois catégories avec des listes de projets différentes

Sujet	Nombre
IA	23 projets
Robotique	15 projets
Vision	19 projets

- Aucun projet n'apparaît sur deux listes
- Possibilités totales : 23 + 15 + 19 = 57
- Application de la règle de la somme

- Pour des crédits supplémentaires, l'étudiant peut réaliser 2 projets à partir de listes différentes
- Possibilités

► IA/Robotique : 23 · 15 = 345

► IA/Vision : 23 · 19 = 437

Robotique/Vision : $15 \cdot 19 = 285$

► Total: 345 + 437 + 285 = 1067

Plus de choix

Combien de possibilités si 2 projets différents

- peuvent venir de la même liste ?
- doivent venir de la même liste ?

Important: Choix des projets (A,B) considéré identique à (B,A) ?

Réponses: Choix du projet

Combien de possibilités si 2 projets différents

Suject	Nombre	
IA	23 projets	
Robotique	15 projets	
Vision	19 projets	

Les deux peuvent venir de la même liste ?

- ▶ 57 projets au total
- 2 choix
 - 1. 57 possibilités
 - 2. 56 possibilités

Deux ordres possibles

ightharpoonup 57 · 56/2 = 3192/2 = 1596

Les deux **doivent** venir de la même liste ?

Choisissez une catégorie, puis choisissez deux projets

IA	$23 \cdot 22/2 = 253$
Robotique	$15 \cdot 14/2 = 105$
Vision	$19 \cdot 18/2 = 171$
Total	(506+210+342) / 2
	= 529

Exercice: Application de règle de la différence

- Une startup publie 2 offres d'emploi : développeur web et administrateur de base de données
- Reçoit les candidats pour les deux emplois avec une certaine redondance

Dév. Web.	220 Candidats
Admin. BD.	147 Candidats
Les deux	57 Candidats

Le nombre total de candidats à évaluer :

$$220 + 147 - 57 = 310$$

Sujet	Nombre	
IA	23 projets	
Robotique	15 projets	
Vision	19 projets	
IA/Robotique	3 en commun	
IA/Vision	8 en commun	
Robotique/Vision	4 en commun	
Tous les sujets	2 en commun	

Combien de possibilités si :

- ► Choisissez 2 projets, le 2^e pas sur la première liste
- ► Choisissez 1 projet dans n'importe quelle liste Attention : Ne pas soustraire deux fois!

Réponses: Application de règle de la différence

Sujet	Nombre	
IA	23 projets	
Robotique	15 projets	
Vision	19 projets	
IA/Robotique	3 en commun	
IA/Vision	8 en commun	
${\sf Robotique/Vision}$	4 en commun	
Tous les sujets	2 en commun	

Combien de possibilités si :

► Choisissez 2 projets uniques, le 2e pas sur la première liste

IA/Robotique

$$23 \cdot (15 - 3)$$
 $= 276$

 IA/Vision
 $23 \cdot (19 - 8)$
 $= 253$

 Robotique/Vision
 $15 \cdot (19 - 4)$
 $= 225$

 Total
 $276 + 253 + 225$
 $= 754$

Choisissez 1 projet dans n'importe quelle liste Total : (23 + 15 + 19) − (3 + 8 + 4)+2 = 44 Le dernier terme rajoute le chevauchement de tous.

Principe d'inclusion/exclusion (Rosen, section 8.5)

- ▶ L'identité suivante est valable pour les ensembles A, B dans le cadre de la règle de la différence : $|A \cup B| = |A| + |B| |A \cap B|$
- ► Ce cas implique 2 ensembles A et B
 - L'intersection est ajoutée deux fois par |A| + |B|
 - La soustraction de cette intersection permet de corriger cela
- ▶ Plus d'ensembles nécessitent un examen plus attentif des chevauchements ajoutés plusieurs fois
- Exemple : La taille de l'union de 3 ensembles donne $|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$

Calcul d'une triple intersection

FIGURE 3 Finding a Formula for the Number of Elements in the Union of Three Sets.

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Exemples d'inclusion/exclusion

- ► Le cas le plus simple : 2 ensembles dont la taille d'intersection est connue
 - ► Combien d'entiers 1 à 1000 sont divisibles par 7 ou 11 ?
 - Appliquez $|A \cup B| = |A| + |B| |A \cap B|$
 - ightharpoonup $\lfloor 1000/7 \rfloor + \lfloor 1000/11 \rfloor \lfloor 1000/(7 \cdot 11) \rfloor$
- Les cas plus complexes à traiter avec soins :
 - Combien d'entiers 1 à 1000 sont divisibles par 7 ou 11 ou 13? Appliquez . . .
 - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$

$$\begin{split} &\lfloor 1000/7 \rfloor + \lfloor 1000/11 \rfloor + \lfloor 1000/13 \rfloor \\ &- (\lfloor 1000/(7 \cdot 11) \rfloor + \lfloor 1000/(7 \cdot 13) \rfloor + \lfloor 1000/(11 \cdot 13) \rfloor) \\ &+ \lfloor 1000/(7 \cdot 11 \cdot 13) \rfloor \end{split}$$

Prédire : divisible par 7, 11, 13 ou 17 ? (intersection de 4 ensembles)

Le principe des tiroirs ou pigeonnier

Le principe des tiroirs

Première version: Si k est un entier positif et que k+1 ou plus d'objets sont placés dans k boîtes, il y a au moins une boîte contenant au moins deux des objets.

Généralisation : Si N objets sont placés dans k boîtes, il y a au moins une boîte contenant $\lceil N/k \rceil$ objets.

Exemples du principe des tiroirs

Exemple: Partage d'espace de laboratoire

Une salle de classe de laboratoire informatique compte 15 ordinateurs de bureau et 17 étudiants.

➤ Si le cours est complet, il y a au moins 1 ordinateur de bureau avec 2 étudiants qui le partagent.

Avez-vous déjà vue des cours complets?

Exemple: Mois de naissance

Dans un groupe de 100 personnes, quel est le nombre **minimum** qui partagent un mois de naissance ?

Par le principe des tiroirs, 100 personnes et 12 tiroirs (mois), donc au moins $\lceil 100/12 \rceil = 9$ doivent avoir le même mois de naissance.

Amis-Ennemis: Un exemple plus délicat

Un groupe de 6 personnes A, B, C, D, E, F, chaque paire de personnes est soit un ami, soit un ennemi. **Prouvez** que le groupe doit avoir au moins

3 amis communs OU 3 ennemis communs

dans le groupe. Par exemple, tous les 6 pourraient être des amis ou tous les 6 pourraient être des ennemis. **Preuve :**

- 1. Considérez la relation de *A* avec les 5 personnes restantes, chacune appartenant à l'un des 2 groupes suivants : ami ou ennemi de *A*.
- 2. Par le principe des tiroirs, l'un de ces deux groupes doit avoir $\lceil 5/2 \rceil = 3$ personnes.
- 3. Sans perte de généralité, supposons que B, C, D sont des amis de A tandis que E, F sont des ennemis.
- 4. Si B, C sont amis, alors A, B, C sont 3 amis communs.
- 5. Si B, D sont amis, alors A, B, D sont 3 amis communs.
- 6. Si C, D sont amis, alors A, C, D sont 3 amis communs.
- 7. Si aucun de (4-6) n'est vrai, alors B, C, D sont 3 ennemis mutuels.
- 8. Par une combinaison de (4-7), nous avons montré qu'il doit y avoir 3 amis communs ou 3 ennemis communs. ■

Combinatoire : permutations et combinaisons

De nombreux problèmes impliquent la sélection et l'ordre des objets, par exemple:

J'ai 7 chemises et 4 pantalons. Combien d'agencement de tenues puis-je prévoir qui ne répètent pas la même tenue dans les 5 prochains jours ?

Les problèmes de cette nature sont assez commun pour avoir une terminologie et des techniques associées

- P(n,r) Permutations Nombre **ordonné** de sélection d'objets r parmi une collection de n objets **sans répétition**
- C(n, r) Combinaisons Nombre **non ordonné** de sélection d'objets r parmi une collection de n objets **sans répétition**

Permutations

$$P(n,r) = \underbrace{(n) \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{r \text{ fois}}$$

$$= \underbrace{\frac{(n) \cdot (n-1) \cdot \dots \cdot (n-r+1) \cdot (n-r) \cdot \dots \cdot 2 \cdot 1}{(n-r) \cdot \dots \cdot 2 \cdot 1}}_{=\frac{n!}{(n-r)!}}$$

- Cela devrait vous sembler familier suite à la discussion précédente
- Ordres des objets r sélectionnés sans répétition à partir de n

Exemple

J'ai 8 chemises et 5 jours de travail. Combien d'arrangements différents de chemises puis-je porter pendant les 5 jours.

- 5 jours à choisir, 8 choix initialement
- 4 jours restants et 7 choix, 3 jours restants et 6 choix...
- \triangleright 8 · 7 · 6 · 5 · 4 = P(8,5) = (8!)/(3!) = 6720 ordres

Combinaisons

$$C(n,r) = \frac{P(n,r)}{r!}$$
$$= \frac{n!}{r!(n-r)!}$$

- \blacktriangleright # sous-ensembles de taille r à partir d'un ensemble de taille n
- L'ordre n'a pas d'importance

Exemple

J'ai 8 chemises et 5 jours de vacances. Combien de combinaisons différentes de chemises peuvent se retrouver dans ma valise.

- 5 jours au choix, 8 choix initialement
- 4 jours restants et 7 choix, 3 jours restants et 6 choix...
- \triangleright 8 · 7 · 6 · 5 · 4 = P(8,5) = (8!)/(3!) = 6720 permutations
- ▶ 5! = 120 permutations de 5 chemises
- C(8,5) = P(8,5)/5! = 56 combinaisons

Exercice: Permutations ou combinaisons?

Donnez les réponses sous forme de permutation/combinaison.

- 1. Combien de chaînes de 16 bits ont exactement 12 un?
- 2. Combien de chaînes de 5 lettres peuvent être formées à partir des lettres A, B, C, D, E, F, G, H?
- 3. Combien de chaînes de 16 bits ont un nombre impair de 1?
- 4. Combien y a-t-il de chaînes de 16 bits?

Réponses: Permutations ou combinaisons?

- 1. Combien de chaînes de 16 bits ont exactement 12 un ?
 - Choisissez 12 indices auxquels mettre les 1, ordre de sélection des indices n'a pas d'importance
 - C(16, 12) = 1820
- 2. Combien de chaînes de 5 lettres peuvent être formées à partir des lettres A, B, C, D, E, F, G, H?
 - L'ordre est important
 - P(8,5) = 6720
- 3. Combien de chaînes de 16 bits ont un nombre impair de 1 ?
 - $C(16,1) + C(16,3) + C(16,5) + \cdots + C(16,15)$
- 4. Combien y a-t-il de chaînes de 16 bits de longueur ?
 - ▶ 0 ou 1 pour chaque chiffre : $\underbrace{2 \cdot 2 \cdot \cdots \cdot 2}_{16 \text{ fois}} = 2^{16}$

Une identité importante sur les combinaisons

$$C(n,r)=C(n,n-r)$$

- Symétrie dans la sélection de combinaison
- Preuve par la définition en utilisant la factorielle

$$C(n,r) = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-(n-r))!} = C(n,n-r)$$

- ▶ Idée intuitive choisir quoi prendre OU quoi laisser
 - ▶ 7 tenues, 5 à mettre dans le bagage pour les vacances
 - ► Choisissez 5 tenues à PRENDRE avec: C(7,5) = 21 OU
 - ▶ Choisissez 2 tenues pour laisser à la maison C(7,2) = 21
 - Même nombre de possibilités dans les deux cas

Coefficients binomiaux et théorème binomial

Convention de notation:

$$C(n,r) \equiv \binom{n}{r}$$

(n/r) appelé les coefficients binomiaux car ils apparaissent sous forme de coefficients binomiaux pour différentes puissances des variables.

$$(x+y)^4 = (x+y)(x+y)(x+y)(x+y)$$

$$= 1x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1y^4$$

$$= {4 \choose 0}x^4 + {4 \choose 1}x^3y^1 + {4 \choose 2}x^2y^2 + {4 \choose 3}x^1y^3 + {4 \choose 4}y^4$$

De manière générale, le théorème binomial s'écrit

$$(x + y)^n = \sum_{i=0}^n \binom{n}{j} x^{n-j} y^j$$

Parfois utile pour prouver les identités de dénombrement

Identité et Triangle de Pascal

Identité de Pascal:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

- Un argument combinatoire ou la manipulation algébrique peuvent le prouver
- Permet une définition récursive des coefficients binomiaux
- Une visualisation des coefficients binomiaux est possible avec le triangle de Pascal

Diapositive suivante

- Notez la belle structure récursive du triangle de Pascal
- ► Cas de base de $\binom{n}{0} = 1$ et $\binom{n}{n} = 1$
- La pointe du triangle est $\binom{0}{0} = 1$, un cas de base
- Chaque élément de ligne est défini en ajoutant deux éléments de la ligne précédente

Triangle de Pascal : (a) Coeff. binomiaux (b) Numérique

Permutations et combinaisons avec répétition

- Combinaisons C(n,r) et permutations P(n,r) permet de compter sans répétition: impossible de sélectionner une tenue deux fois
- ▶ Plusieurs situations où ce n'est pas le cas

Exemple du magasin de biscuits

- Le magasin a n = 4 sortes de biscuits : A, B, C, D
- Le client veut un total de r = 6 biscuits
- Possible de dupliquer des biscuits comme AABBCD
- Combien y a-t-il de possibilités ?
 - Si l'ordre est important ?
 - ▶ Si l'ordre n'est pas important, par ex. AABBCD ≡ ABBCDA ?

Formules pour permutation et combinaison avec répétition

Répétition ordonnée

- Permutations, n^r possibilités
- n = 4 sortes de biscuits, r = 6 choix
- ► 4⁶ = 4096 commandes possibles

TABLE 1 Combinations and Permutations With and Without Repetition.		
Туре	Repetition Allowed?	Formula
r-permutations	No	$\frac{n!}{(n-r)!}$
r-combinations	No	$\frac{n!}{r!\;(n-r)!}$
r-permutations	Yes	n^r
r-combinations	Yes	$\frac{(n+r-1)!}{r! (n-1)!}$

Répétition non ordonnée

 Combinaisons avec répétition, appliquez la formule suivante

$$C(n+r-1,r)$$

pour n éléments et r choix avec répétition

ightharpoonup Avec n=4 et r=6

$$C(4+6-1,6)=84$$