Inference about a mean vector and hypothesis testing

Woojoo Lee

Basic framework for hypothesis testing

Hypothesis testing for a normal mean:

$$H_0: \mu = \mu_0 \text{ and } H_1: \mu \neq \mu_0$$

Recalling the univariate case.

$$t = \frac{x - \mu_0}{s / \sqrt{n}}$$
where $\bar{x} = \frac{1}{n} \sum_i x_i$ and $s^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$

- \rightarrow t-statistic follows a student t-distribution with n-1 df.
- \rightarrow reject H_0 if observed |t| exceeds $t_{n-1}(\alpha/2)$.
- \rightarrow The same conclusion will be followed if $t^2 \ge t_{n-1}^2(\alpha/2)$.

$$\rightarrow$$
 The $100(1-\alpha)\%$ confidence interval for μ is given by $\left\{\mu \left| \left(\frac{\bar{x}-\mu}{s/\sqrt{n}}\right)^2 \le t_{n-1}^2(\alpha/2)\right.\right\}$

Hotelling's T^2

Hypothesis testing for a normal population mean vector:

$$H_0: \mu = \mu_0 \text{ and } H_1: \mu \neq \mu_0$$

$$t^2 = (\bar{x} - \mu_0)(s^2/n)^{-1}(\bar{x} - \mu_0) \to T^2 = (\bar{\mathbf{x}} - \mu_0)^T (S/n)^{-1}(\bar{\mathbf{x}} - \mu_0)$$

Gaussian- (scaled) chi-square - Gaussian

 \rightarrow reject H_0 if observed T^2 is sufficiently large.

Q) How large is large?

$$T^2 \sim \frac{(n-1)p}{n-p} F_{p,n-p} \text{ (if } n > p)$$

 \rightarrow reject H_0 if observed T^2 exceeds $\frac{(n-1)p}{n-p}F_{p,n-p}(\alpha)$ because $P(T^2 > \frac{(n-1)p}{n-p}F_{p,n-p}(\alpha)) = \alpha$.

Example: Table 5.1 (Sweat data)

> data

	Sweat	rate	Socium	Potassium	
1		3.7	48.5	9.3	
2		5.7	65.1	8.0	$H_0: \mu_0 = (4, 50, 10)^T \text{ vs } H_1: \text{Not} H_0$
3		3.8	47.2	10.9	
4		3.2	53.2	12.0	
5		3.1	55.5	9.7	
6		4.6	36.1	7.9	
7		2.4	24.8	14.0	What is our main assumption?
8		7.2	33.1	7.6	
9		6.7	47.4	8.5	
1	0	5.4	54.1	11.3	
1	1	3.9	36.9	12.7	
1	2	4.5	58.8	12.3	
1	3	3.5	27.8	9.8	
1	4	4.5	40.2	8.4	

Invariant property of T^2 : $\mathbf{y} = C\mathbf{x} + d$ where C is non-singular.

Compute T^2 by using \mathbf{y} .

Confidence regions

confidence interval(univ) \rightarrow confidence region (multi)

Note that the region R(X) is said to be a $100(1-\alpha)\%$ confidence region if

$$P(R(X))$$
 will cover the true $\theta = 1 - \alpha$

For the mean of a p-dim'l Gaussian distribution,

$$P(n(\bar{\mathbf{x}} - \mu)^T S^{-1}(\bar{\mathbf{x}} - \mu) \le \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)) = 1 - \alpha$$

 \rightarrow A 100(1 - α)% confidence region for the mean of a p-dim'l Gaussian distribution is the ellipsoid determined by all μ such that

$$n(\bar{\mathbf{x}} - \mu)^T S^{-1}(\bar{\mathbf{x}} - \mu) \le \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$$

Ex: Radiation data (Table 4.1 and 4.5)

```
radation(close) radiation(open)
          0.6223330 0.7400828
[1,]
[2,]
        0.5477226 0.5477226
[3,] 0.6513556 0.7400828
[4,] 0.5623413 0.5623413
[5,] 0.4728708 0.5623413
[6,]
         0.5885662 0.5885662
> mean
              [,1]
radation(close) 0.5642575
radiation(open) 0.6029812
> cov
           radation(close) radiation(open)
radation(close)
              0.01435023 0.01171547
radiation(open)
           0.01171547 0.01454530
                > res<-eigen(cov)
                > res$values
                 [1] 0.026163638 0.002731895
                > res$vectors
                           [,1] [,2]
                 [1.1 0.7041574 -0.7100439
                 [2,] 0.7100439 0.7041574
```

Simultaneous comparisons of component means

What if we are interested in μ_i or $\mu_i - \mu_j$?

In general, how can we make the confidence statement about $\mathbf{a}^T \mu$? When $\mathbf{x}_i \sim N_p(\mu, \Sigma)$ and fix \mathbf{a} ,

$$\frac{\sqrt{n}(\mathbf{a}^T\bar{\mathbf{x}} - \mathbf{a}^T\mu)}{\sqrt{\mathbf{a}^TS\mathbf{a}}} \sim t_{n-1}$$

Then, $100(1-\alpha)\%$ confidence interval for $\mathbf{a}^T \mu$ is given by

$$\left[\mathbf{a}^T \bar{\mathbf{x}} - t_{n-1}(\alpha/2) \frac{\sqrt{\mathbf{a}^T S \mathbf{a}}}{\sqrt{n}}, \mathbf{a}^T \bar{\mathbf{x}} + t_{n-1}(\alpha/2) \frac{\sqrt{\mathbf{a}^T S \mathbf{a}}}{\sqrt{n}}\right].$$

Clearly, we could make several confidence statements about the components of μ .

- \rightarrow We may adopt the attitude that all of the separate confidence statements should hold simultaneously.
- \rightarrow A price must be paid for the "simultaneous" confidence.

Note that

$$\max_{\mathbf{a}} \frac{n(\mathbf{a}^T(\bar{\mathbf{x}} - \mu))^2}{\mathbf{a}^T S \mathbf{a}} = n(\bar{\mathbf{x}} - \mu)^T S^{-1}(\bar{\mathbf{x}} - \mu) = T^2$$

Result. Let \mathbf{x}_i be a random sample from $N_p(\mu, \Sigma)$. Then, simultaneously for all \mathbf{a} , the following interval

$$\mathbf{a}^T \bar{\mathbf{x}} \pm \sqrt{\frac{p(n-1)}{n(n-p)}} F_{p,n-p}(\alpha) \mathbf{a}^T S \mathbf{a}$$

will contain $\mathbf{a}^T \mu$ with prob $1 - \alpha$. For the proof, note that

$$n(\overline{\mathbf{x}} - \mu)^T S^{-1}(\overline{\mathbf{x}} - \mu) \le c^2$$

is equivalent to

$$\frac{n(\mathbf{a}^T(\bar{\mathbf{x}} - \mu))^2}{\mathbf{a}^T S \mathbf{a}} \le c^2 \text{ for every } \mathbf{a}.$$

Q) Construct the $100(1-\alpha)\%$ simultaneous confidence intervals for μ_1, \dots, μ_p .

A comparison of simultaneous confidence intervals with one at a time intervals

Consider the confidence intervals of individual means.

One-at-a-time confidence intervals are

$$\bar{x}_1 - t_{n-1}(\alpha/2)\sqrt{\frac{s_{11}}{n}} \le \mu_1 \le \bar{x}_1 + t_{n-1}(\alpha/2)\sqrt{\frac{s_{11}}{n}}$$

$$\bar{x_p} - t_{n-1}(\alpha/2)\sqrt{\frac{s_{pp}}{n}} \le \mu_p \le \bar{x_p} + t_{n-1}(\alpha/2)\sqrt{\frac{s_{pp}}{n}}$$

Q)If x_i are independent, what is P(All the one-at-a-time intervals contain μ_i)? and discuss its implication in practice.

Bonferroni method of multiple comparisons

Let C_i denote a confidence statement about μ_i with

$$P(C_i \text{ is true}) = 1 - \alpha_i$$

$$P(\text{all } C_i \text{ true})=1-P(\text{at least one } C_i \text{ false})$$

P(at least one
$$C_i$$
 false) $\leq \sum_i P(C_i \text{ false})$
= $(1 - P(C_1 \text{true})) + \dots + (1 - P(C_m \text{true}))$

Q) Is Bonferroni correction valid regardless of the correlation structure?

Consider the following individual intervals

$$\bar{x}_i \pm t_{n-1}(\alpha/2m)\sqrt{\frac{s_{ii}}{n}}.$$

Then,

$$P(\bar{x}_i \pm t_{n-1}(\alpha/2m)\sqrt{\frac{s_{ii}}{n}} \text{ contains } \mu_i \text{ for all } i)$$

= Apply the Bonferroni method here!

Ex: Radiation data (Table 4.1 and 4.5)

It would be interesting to compare the length of Bonferroni interval(LB) with the length of T^2 -interval (LT).

$$\frac{LB}{LT} = \frac{t_{n-1}(\alpha/2p)}{\sqrt{(n-1)pF_{p,n-p}(\alpha)/(n-p)}}.$$

Remark) See Table 5.4. This tells that the Bonferroni method provides shorter intervals when m = p.

Large sample inference on mean vector

When the sample size is large, tests of hypotheses and confidence regions for μ can be constructed without the Gaussian assumption.

Suppose that $\mathbf{x}_1, \dots, \mathbf{x}_n$ be a random sample with mean μ and positive definite covariance matrix Σ .

All large-sample inferences about μ are based on a χ^2 -distn (in this book).

$$P(n(\bar{\mathbf{x}} - \mu)^T S^{-1}(\bar{\mathbf{x}} - \mu) \le \chi_p^2(\alpha)) \approx 1 - \alpha$$

Thus, $H_0: \mu = \mu_0$ is rejected at a level of significance approximately α if

$$n(\bar{\mathbf{x}} - \mu)^T S^{-1}(\bar{\mathbf{x}} - \mu) > \chi_p^2(\alpha)$$

Remark) Compare $(n-1)pF_{p,n-p}(\alpha)/(n-p)$ and $\chi_p^2(\alpha)$.

Result. Let \mathbf{x}_i be a random sample with mean μ and covariance Σ . If n >> p, then

$$\mathbf{a}^T \bar{\mathbf{x}} \pm \sqrt{\chi_p^2(\alpha)} \sqrt{\frac{\mathbf{a}^T S \mathbf{a}}{n}}$$

will contain $\mathbf{a}^T \mu$, for every \mathbf{a} with prob $1 - \alpha$ approximately.

Remark) When n is large, compare the above result with the Bonferroni simultaneous confidence intervals for individuals means.

Remark) It is a good practice to check the normality of the observations. Although small-to-moderate departures from normality do not cause substantial difficulties for large sample size, extreme deviations could cause problems.