

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME & EBNF

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 06.11.2020

VIDEOEMPFEHLUNG

Prof. Dr. Markus Krötzsch hat im vergangenen Wintersemester 2020/21 die Vorlesung "Formale Systeme" (3. Semester) in Form von YouTube-Videos gehalten. Diese Vorlesung beschäftigt sich vertieft mit formalen Sprachen.

Die Einleitung entspricht ungefähr dem Inhalt der ersten Übung:

► https://youtu.be/Lma6jaPnD-I

Syntaxdiagramme

SYNTAXDIAGRAMME

Beispiel eines Syntaxdiagrammsystems mit Startdiagramm *S*:

- 🖪 . . . Nichtterminalsymbol = syntaktische Variable
- ② ... Terminalsymbol

RÜCKSPRUNGALGORITHMUS

Rücksprungalgorithmus

- Ziel: Nachweis von Zugehörigkeit eines Wortes zu einer Sprache
- jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt

Hauptaugenmerk:

Protokollierung von Wortentstehung & Markenkeller

- jede Zeile entspricht dem Aufenthalt in einem Syntaxdiagramm
- ▶ jede Zeile führt eine Operation auf dem Markenkeller durch

AUFGABE 1

Gegeben sei das folgende Syntaxdiagrammsystem \mathcal{U} mit Startdiagramm S:

Beispiele für Wörter, die das System \mathcal{U} erzeugt:

- ► a accb b
- ► a a accb b b
- ► a a accb d b
- ► a a a accb d d b
- ► a a a accb b d b

AUFGABE 1 — TEIL (B)

Protokollierungszeitpunkte:

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	32131
aaaaccb	2131
aaaaccbd	1/31
aaaaccbdb	31
aaaaccbdb	1
aaaaccbdbb	_

GRUNDKONSTRUKTION VON SYNTAXDIAGRAMMEN

$$L = L_A \cdot L_B$$
 S:

kleine Tricks:

$$ightharpoonup a^{2n} = (a^2)^n = (aa)^n$$

$$ightharpoonup a^{2n+1} = a a^{2n} = a (aa)^n$$

AUFGABE 1 — TEIL (C)

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$

$$S: \qquad A \qquad B$$

$$A: \qquad A \qquad b \qquad b \qquad b$$

$$C \qquad B \qquad d \qquad d$$

$$B: \qquad C \qquad B \qquad d$$

Extended Backus-Naur-Form

EBNF-DEFINITION

- ► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.
- ► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

Definition: EBNF-Term

Seien V eine endliche Menge (syntaktische Variablen) und Σ eine endliche Menge (Terminalsymbole) mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die *kleinste* Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$

ÜBERSETZUNG EBNF ↔ SYNTAXDIAGRAMME

Sei $v \in V$ und $w \in \Sigma$. trans(v) = v; trans(w) = wSei $\alpha \in T(\Sigma, V)$ ein EBNF-Term.

$$ightharpoonup$$
 trans($\hat{[} \alpha \hat{]}$) = $\frac{\text{trans}(\alpha)}{}$

▶
$$trans(\hat{\alpha}) = trans(\alpha)$$

Seien $\alpha_1, \alpha_2 \in T(\Sigma, V)$ zwei EBNF-Terme.

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{S, A, B\} \quad \text{und} \quad R = \Big\{S ::= A \ \hat{i} \ B \ \hat{j},$$

$$A ::= aA \ \hat{i} \ bc \ \hat{i} \ d \ \hat{j},$$

$$B ::= \hat{i} \ B \ \hat{j} \ b \qquad \Big\}$$

Übersetzung in ein Syntaxdiagrammsystem:

AUFGABE 2 — TEIL (B)

Gegeben sei die Sprache

$$L = \left\{ (ab)^n c^{m+1} d^k b^{n+m} : n, m \ge 0, k \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ (ab)^n c^{m+1} d^k b^m b^n : n, m \ge 0, k \ge 1 \right\}$$

EBNF-Definition:
$$\mathcal{E} = (V, \Sigma, S, R) \text{ mit } \Sigma = \{a, b, c, d\},$$

$$V = \{S, A\} \quad \text{und} \quad R = \left\{S ::= \left(abSb \mid A\right), A ::= \left(cAb \mid cd \mid d\right)\right\}$$