Comentario del Programa

```
//Leer el radio de un círculo y calcular e imprimir su superficie y su circunferencia.
//Análisis
//Entradas: Radio del circulo (Variable RADIO).
//Salidas: Superficie del circulo (Variable SUPERFICIE) y Circunferencia del circulo (Variable PERIMETRO)
//Variables: RADIO, SUPERFICIE, PERIMETRO de tipo REAL
```

El pseudocódigo podría ser

```
Proceso Circulo
Definir radio, superficie, perimetro como Real;
Escribir "Introduce el radio de la circunferencia:";
Leer radio;
superficie <- PI * radio ^ 2;
perimetro <- 2 * PI * radio;
Escribir "La superficie es ", superficie;
Escribir "El perímetro es ", perimetro;
Fin Proceso
```

El diagrama de flujo

Hacer un pseudocódigo y un diagrama de Flujo y que 10 números y que imprima el ultimo.

a) Pseudocódigo

- 1. Iniciar el proceso
- 2. Definir una variable
- 3. Leer la variable
- 4. Preguntar si X es menor o igual a 10, entonces aumentar a X
- 5. Ir al paso 3
- 6. En caso contario Imprimir X
- 7. Finalizar

b) Diagrama de Flujo

Tabla de Verdad

Son un método para saber si una fórmula molecular (es decir, formada por varias proposiciones) es siempre V o es F. Si los valores son siempre V tenemos una **Tautología**, si siempre son F estamos ante una **contradicción**. Para saber la cantidad de files y columna de la tabla de Verdad, realizamos **2**^x, donde **X** es la cantidad de Variable de la proposición.

Si tenemos un solo elemento (P). Por ejemplo si decimos "El bombillo esta encendido". Hay dos posibilidades: que sea Verdadera o que de falsa

Р
V
F

Si la negamos esta puede ser

Р	~P
V	F
F	V

Si tenemos dos elementos (P) y (Q). Por ejemplo si decimos "Yo soy alto", "yo soy blanco". Hay cuatro posibilidades:

Р	Q
V	V
V	F
F	V
F	F

Si la negamos esta puede ser

Р	Q	~P	~Q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

De acuerdo al resultado esta puede ser:

1.- Conjunción "Y" (A). AND

Р	α	P∧ Q
V	V	V
V	F	F
F	V	F
F	F	F

2.- Disyunción "O" (U). OR

Р	Q	PU Q
V	V	V
V	F	V
F	V	V
F	F	F

3.- Condicional "Si...entonces" (=>). if + simple present, ... will + infinitive

Р	Q	P=>Q
V	V	V
V	F	F
F	V	V
F	F	V

.4.- Bicondicional "Si y solo si" (⇔).

Р	Q	P<=>Q
V	V	V
V	F	F

F	V	F
F	F	V

Conectivos lógicos

 Los conectivos lógicos, llamados también operadores, son símbolos del lenguajes formal que reemplazan a los conectivos gramaticales y al adverbio de negación no.

OPERACIÓN LÓGICA	CONECTIVO LÓGICO	ESQUEMA
Negación	~	~p
Conjunción	^	P ^ q
Disyunción Inclusiva	v	Pvq
isyunción xclusiva	<u>v</u>	P <u>v</u> q
Condicional	→	P→ q
Bicondicional	\longleftrightarrow	P<→ q

Variable dependiente e independiente

