Assignment -4

SMS SPAM Classification

Assignment Date	22 October 2022
Student Name	Divya.N
Student Roll Number	211419104071
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Import required library

Solution import nltk import pandas as pd import re

from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense

Q {x}	Import necessary libraries	
	[] import nltk import pandas as pd import re	
	[] from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer	
	[] from sklearn.feature_extraction.text import CountVectorizer	
	[] from sklearn.model_selection import train_test_split	
	from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense	<u> </u>

Question-3:

Read dataset and do pre-processing

Solution

```
data=pd.read_csv('/content/drive/MyDrive/assignment 4/spam.csv',encoding='latin')
nltk.download('stopwords') ps=PorterStemmer() input=[] for i in range(0,5572):
review=data['v2'][i] review=re.sub('[^a-zA-Z]',' ',review)
review=review.lower() review=review.split() review=[ps.stem(word) for word in review
if not word in set(stopwords.words('english'))] review=' '.join(review)
input.append(review) cv=CountVectorizer(max_features=7000)
x=cv.fit_transform(input).toarray() y=data['v1'].values x_train,x_test,y_train,y_test=
train_test_split(x,y,test_size=0.2)
```

```
Read dataset
[ ] data=pd.read_csv('/content/drive/MyDrive/assignment 4/spam.csv',encoding='latin')
Preprocessing
[ ] nltk.download('stopwords')
      [nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Package stopwords is already up-to-date!
[ ] ps=PorterStemmer()
      input=[]
[ ] for i in range(0,5572):
        review=data['v2'][i]
review=re.sub('[^a-zA-Z]',' ',review)
        review=review.lower()
        review-review.split()
review-[ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
        review=' '.join(review)

    Os completed at 8:54 PM

[ ] cv=CountVectorizer(max_features=7000)
[ ] x=cv.fit_transform(input).toarray()
      array([[0, 0, 0, ..., 0, 0, 0],
              [0, 0, 0, ..., 0, 0, 0],
              [0, 0, 0, ..., 0, 0, 0],
             [0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]])
[ ] y=data['v1'].values
      \verb"array" (['ham', 'ham', 'spam', \dots, 'ham', 'ham', 'ham'], \verb"dtype=object")
                                                                                                                                                                 ↑ ↓ © 目 $ ॄ ☐ i :
 ① x.shape
      (5572, 6221)
[ ] x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2)
```

Question-4:

Create Model

Solution

model=Sequential()

Question-5:

Add Layers (LSTM, Dense-(Hidden Layers), Output)

Solution model.add(Dense(units=6221,activation='relu')) model.add(Dense(units=7000,activation='relu')) model.add(Dense(units=1,activation='sigmoid'))

Question-6:

Compile The Model

Solution

model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])

Question-7:

Fit The Model

Solution

model.fit(x_train,y_train,epochs=5)

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

Fit the model

[] model.save('spam.h5')