Словарик

Группа *действует* на множестве X, если задано отображение $\varphi : \mathcal{G} \to \operatorname{Sym}(X)$, где $\operatorname{Sym}(X)$ — группа всех перестановок множества X. То есть каждый элемент группы $g \in \mathcal{G}$ переводит элементы из X в элементы из X какой-то перестановкой.

Задачки

- 1. Группа D_4 действует на множестве вершин квадрата $\{1, 2, 3, 4\}$.
 - (а) Сколько орбит у этого действия?
 - (b) Найдите стабилизатор вершины 1. Какой группе он изоморфен?
 - (c) Проверьте, что $|\mathcal{D}_4| = |\operatorname{Stab}(1)| \cdot |\operatorname{Orb}(1)|$.
- 2. Группа S_3 действует на многочлене $P(x_1, x_2, x_3) = x_1^2 + x_2 x_3$, переставляя переменные. Найдите орбиты этого действия. Какой стабилизатор у P?
- 3. Группа $\mathcal{G} = \mathbb{Z}/(4)$ действует на множестве $\mathcal{X} = \{1, 2, 3, 4\}$ циклическими сдвигами. Запишите соответствующий гомоморфизм $\varphi \colon \mathcal{G} \to \mathcal{G}_4$. Чему равно $\ker \varphi$?
- 4. Группа $\mathbb{Z}/(6)$ действует на множестве $X = \{A, B, C\}$ по правилу

$$k \cdot A = A$$
, $k \cdot B = C$, $k \cdot C = B$, $\forall k \in \mathbb{Z}/(6)$.

Найдите орбиты и стабилизаторы элементов X.