PRINCIPLES OF EE1 HW

Deadline: 8:00, 30 JUNE 2024

INSTRUCTIONS: Students scan and upload answer into Blackboard

Q1.

Find the steady state for $i_o(t)$ in the circuit if $v_s = 20\cos(2000t)V$

Q2. (9.31)

Find the steady state for $v_o(t)$ if $i_g = 20\cos(45000t)mA$

Given $I_b = 25 \angle 0^{\circ} mA$

- a) Find $\mathbf{I}_a, \mathbf{I}_c, \mathbf{I}_g$
- b) If $\omega = 1500 \, rad \, / \, s$, write expression for $i_a(t), i_b(t), i_g(t)$

Q4.

Find the Thévenin equivalent circuit with respect to the terminals a,b of the circuit

Q5.

Find \mathbf{V}_o

- a) Use the node-voltage
- b) Use the mesh-current

Q6.

$$i_g = 5\cos(2500t)A; v_g = 20\cos(2500t + 90^\circ)V$$

Find i_o

- a) Use the node-voltage
- b) Use the mesh-current

Find $\mathbf{I}_a, \mathbf{I}_b, \mathbf{I}_c$

- a) Use the node-voltage
- b) Use the mesh-current

Q8

$$v_1 = 20\cos(2000t - 36.87^\circ)V$$
$$v_2 = 10\cos(5000t + 16.26^\circ)V$$

Find the steady-state expression $v_o(t)$

$$v_g = 168\cos(800t)V$$

- a) Find i_g, i_L
- b) Find the coefficient of coupling $k = \frac{M}{\sqrt{L_1 L_2}}$
- c) Find the energy stored in the magnetically coupled coils at $t = 625\pi (\mu S)$

(hint: apply
$$W = \frac{1}{2} L_1 i_g^2 + \frac{1}{2} L_2 i_L^2 + M i_g i_L$$
)

Q10.

Find the average power delivered by the ideal current source in the circuit if $i_g = 4\cos(5000t)mA$

Q11.

 $i_g = 6\cos(20000t)A$

Find the average power dissipated in the 30Ω resistor Q12.

 $v_g = \cos(1000t)V$

The op amp is ideal. Calculate the average power delivered to the $1K\Omega$ resistor

Q13.

Determine the load impedance for the circuit that will result in maximum average power being transferred to the load if $\omega = 8000 \text{rad/s}$

Determine the maximum average power delivered to the load if $v_g = 10\cos(8000t)V$