REAL ANALYSIS: HOMEWORK SET 6

DUE FRI. NOV. 30

Exercise 1. Let X be a normed vector space. Show that the closure of any subspace is also a subspace.

Exercise 2. Let X be a Banach space.

- (1) Let $T \in L(X,X)$ satisfy ||T I|| < 1. Show that T is invertible and that $\sum_{n} (I T)^{n}$ converges in L(X,X) to T^{-1} .
- (2) Let $T \in L(X, X)$ be invertible. Show that if $S \in L(X, X)$ satisfies $||T S|| < \frac{1}{||T^{-1}||}$ then S is invertible and conclude that the set of invertible operators in L(X, X) is open.

Exercise 3. Let X be a normed infinite dimensional vector space and let $\mathcal{M} \subseteq X$ be a proper closed subspace.

- (1) Show that for every $\epsilon > 0$ there is $x \in X$ with ||x|| = 1 and $\inf\{||x + y|| | |y \in M\} > 1 \epsilon$.
- (2) Show that if \mathcal{M} is finite dimensional then it is closed.
- (3) Show that there is a sequence $(x_j) \subseteq X$ with $||x_j|| = 1$ and $||x_j x_k|| \ge \frac{1}{2}$ for all $j \ne k$.
- (4) Conclude that the unit sphere $\{x \in X | ||x|| = 1\}$ is closed and bounded but not compact.

Exercise 4. Show that a linear functional $f: X \to \mathbb{C}$ on a normed space X is bounded if and only if $f^{-1}(0)$ is closed.

Exercise 5. Let $f, g \in L^p$ for $1 \le p < \infty$. Under what condition do we have equality in Minkowski's inequality $||f + g||_p \le ||f||_p + ||g||_p$? (The answer is different for p = 1 and p > 1).

Exercise 6. Let $\{f_n\} \subseteq L^{\infty}(X)$. Show that $||f_n - f||_{\infty} \to 0$ if and only if there a measurable E with $\mu(E^c) = 0$ such that $f_n \to f$ uniformly on E.

Exercise 7. Suppose $1 \le p < q < \infty$. Show that $L^p(X) \not\subset L^q(X)$ if and only if X contains sets of arbitrarily small measure and that $L^q(X) \not\subset L^p(X)$ if and only if X contains sets of arbitrarily large finite measure.

Exercise 8. Let $1 \leq q < \infty$ and let $f \in L^p \cap L^\infty$. Show that $\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}$

Exercise 9. Let $1 \leq p < \infty$ and let $f_n, f \in L^p$.

- (1) Show that if f_n → f in L^p then f_n → f in measure and hence there is a subsequence f_{nk} → f a.e.
 (2) Show that if f_n → f in measure and |f_n| ≤ g ∈ L^p then f_n → f in L^p.
 (3) Assume that f_n → f a.e and show that f_n → f in L^p iff ||f_n||_p → ||f|| (use the generalized version of the dominated convergence theorem)