COMP 543: Tools & Models for Data Science Intro to Modeling 2

Chris Jermaine & Risa Myers

Rice University

Models Are Parameterized

- Normal: μ , σ
 - \blacksquare μ is the center of the distribution
 - \bullet σ determines the width

$$f_{\text{Normal}}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Exponential: λ

$$f_{Exp}(x|\lambda) = \lambda e^{-\lambda x}$$

Key question: how to choose parameters?

Models Are Parameterized

- Normal: μ , σ
 - \blacksquare μ is the center of the distribution
 - \bullet σ determines the width

$$f_{\text{Normal}}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Exponential: λ

$$f_{Exp}(x|\lambda) = \lambda e^{-\lambda x}$$

- Key question: how to choose parameters?
 - Typically chosen to "fit" the model to example data
 - To make the model a good explanation for the data
 - Also called "learning" in ML

Approaches to Learning a Model

- Are many, including:
 - Optimization based (ex: least squares)
 - Probabilistic: MLE (Maximum Likelihood Estimation)
 - Probabilistic: Bayesian
 - Deep Learning

Choosing an Approch to Learning a Model

- Nature of the problem
- Amount of data available
- Tools available
- Requirements of the model
 - Interpretability
 - Availability
 - Familiarity
 - Experimentation
 - Accuracy

Optimization-Based

- Goal is to reduce some error metric on example/training data
 - Error tells us how well the model fits the TRAINING data
- No direct probabilistic motivation
- Common approach

Classic Example: Least Squares Regression

Example

- I observe ⟨18,22,45,49,86⟩
- At time ticks $\langle 1, 2, 3, 4, 5 \rangle$
- ? How can I predict the next item?

Example: Least Squares Regression

- I observe ⟨18,22,45,49,86⟩
- At time ticks $\langle 1, 2, 3, 4, 5 \rangle$
- How can I predict the next item?
- \blacksquare *i*th observation is x_i , tick is t_i
 - Might fit a line to the data
 - So, $x_i \approx f(t_i) = m \times t_i$
 - \blacksquare Where m is the slope of the line
 - Observation at time tick i is a function of t
 - \blacksquare t_i is the *i*th time tick
 - Here $t_i = i$ our data is evenly spaced

Overlap of Approaches

- Approaches may overlap
- Compare Least Squares to the PDF for the Normal distribution
 - Includes a term with $e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - $(x-\mu)^2$ Looks a lot like Least Squares

Computing Least-Squares Fit

- Loss function is the sum of the squares of the residuals
- Defn: A residual is the difference between the observed value and the model computed value
- This loss function is "convex"

What is a Convex Function?

Intuition

- Continuous function
- The line connecting any two points is on or above the function
- The function isn't "wavy"
- Strictly convex → 2nd derivative is always positive

Examples

- Quadratic function x^2
- **Exponential function** e^x

Benefits

- Strictly convex functions have at most one minimum
- Differentiable

Computing Least-Squares Fit

- Choose unique m where l'(m) = 0
- That is, where the derivative of the loss function = 0

Computing Least-Squares Fit

$$l(m) = \sum_{i} (f(t_i) - x_i)^2$$

$$= \sum_{i} (m \times t_i - x_i)^2$$

$$l'(m) = \sum_{i} 2t_i (m \times t_i - x_i)$$

$$= \sum_{i} 2mt_i^2 - 2t_i x_i$$

$$= 2m(1 + 4 + 9 + 16 + 25) - 2(18 + 44 + 135 + 196 + 430)$$

$$= 110m - 1646$$

- Define loss function
- Sub in defn of *m*
- Take the first derivative (chain rule)
- Simplify
- Plug in values
- Solve for *m*

- So loss minimized at m = 14.96
- Recall $f(t_i) = m \times t_i$
- ? Value at time tick 6?

Next Value?

- Recall $f(t_i) = m \times t_i$
- Value at time tick 6?
- $f(6) = 14.96 \times 6 = 89.8$

Advantages and Disadvantages of Least Squares

1

Advantages and Disadvantages of Least Squares

Advantages

- Penalizes values as our predictions move further and further away from the observations
- Mathematical convenience
- Disadvantages
 - Very sensitive to outliers
 - May require pre-processing / "cleaning" before it can be used

Other Loss Functions

- View the list of prediction errors $(f(t_i) x_i)$ as a vector
- Can have many loss functions, corresponding to norms
- Given a vector of errors $\langle \varepsilon_1, \varepsilon_2, ..., \varepsilon_n \rangle$, l_p norm defined as:

$$||l||_p = \left(\sum_{i=1}^n |arepsilon_i|^p
ight)^{1/p}$$

- Norm maps a vector to a non-negative scalar
- Reflect different "distance" measures

Other Loss Functions

- Common loss functions correspond to various norms:
 - \blacksquare l_1 corresponds to mean absolute error
 - Used in LASSO
 - *l*₂ to mean squared error/least squares
 - \blacksquare l_{∞} corresponds to minimax, the max absolute value of the dimensions

Maximum Likelihood

- Often we have a proper stochastic model
- Ex: observed {18,22,45,49,86}
- Model is Exponential, unknown λ
- How to estimate?
 - Most commonly: perform MLE
 - Ignoring time ticks (for now)
- You choose the parameters to maximize the likelihood of getting the observed data

Likelihood

- First, need the notion of a "likelihood function"
- Best illustrated with an example
 - In our case, $f(x_i|\lambda) = \lambda e^{-\lambda x_i}$
 - Recall that $f(x_i|\lambda)$ is the probability density of the *i*th point
 - So $f(x_1, x_2, ..., x_n | \lambda) = \prod_i \lambda e^{-\lambda x_i}$
 - Assume iid, so the density is a product.
 - This is a PDF

Likelihood

- A "likelihood function" simply turns the parametrization around
 - Instead of $f(x_i|\lambda)$, we have $f(\lambda|x_i)$
 - So $L(\lambda|x_1,x_2,...,x_n) = \prod_i \lambda e^{-\lambda x_i}$
 - Now L measures the goodness of the parameter λ
 - And NOT how likely $x_1, x_2, ..., x_n$ are given the model

Maximum Likelihood Estimation - MLE

- Given $L(\Theta^1|D)$ (Θ is set of model params, D is data)...
 - The MLE $\hat{\Theta}$ for Θ is defined as the value such that

$$\forall \hat{\Theta}', L(\hat{\Theta}'|D) \leq L(\hat{\Theta}|D)$$

- lacksquare In other words: $\hat{\Theta}$ is the best possible set of parameters, given the available data
- Note: closely related to least squares, for normally distributed data
- ? Why do we like it?

¹⊕ is commonly used to denote a set of parameters

MLE

- Given $L(\Theta|D)$ (Θ is set of model params, D is data)...
 - The MLE $\hat{\Theta}$ for Θ is defined as the value such that

$$\forall \hat{\Theta}', L(\hat{\Theta}'|D) \leq L(\hat{\Theta}|D)$$

- Note: closely related to least squares!!
- Why do we like it?
 - Under many conditions, it is the Minimum-variance unbiased estimator ("MVUE")
 - Under many conditions, error is asymptotically normal
 - This allows us to talk about confidence bounds

Minor Digression: Sources of Error

- Two most concerning ones
- Bias
 - "Expected error"
 - How far off your are on Expectation
 - e.g. Guess a number, many times
 - If my average error is +2, this is an example of bias
- Variance
 - "Spread"
 - How far from correct your mean guess is

MLE Example

- Want to find the decay parameter in an exponential distribution
- Might start with an unbiased estimator with low variance
- Classic estimators are often unbiased, due to asymptotic properties
- Are these the best to use?
 - Often not
 - However, they are easy to use
 - And produce reasonable results

RICE 2:

Example MLE

- Ex: observed {18,22,45,49,86}
- Assume iid, so take the product of the likihoods
 - $L(\lambda | x_1, x_2, ..., x_n) = \prod_i \lambda e^{-\lambda x_i}$
 - Typically, we maximize the log likelihood (LLH) instead:

$$\log\left(\prod_{i}\lambda e^{-\lambda x_{i}}\right) = \sum_{i}\log(\lambda e^{-\lambda x_{i}}) = \sum_{i}\log(\lambda) + \log(e^{-\lambda x_{i}}) = \sum_{i}\left(\log(\lambda) - \lambda x_{i}\right)$$

Again, this is convex:

$$L'(\lambda) = \sum_{i} (\lambda^{-1} - x_i)$$
$$= 5\lambda^{-1} - 220$$

Why log?

- The math is easier
- It turns products into sums
 - Handy for functions of the form $e^{something}$
- It handles really small numbers well
- The ordering of doesn't change
 - If we have f(x) and we choose an x that maximizes f
 - The same x will maximize $\log(f(x))$

Example MLE

■ Setting the derivative equal to zero,

$$0 = 5\lambda^{-1} - 220$$
$$\frac{220}{5} = \lambda^{-1}$$
$$\lambda = \frac{5}{220} = 0.0227$$

- Recall from last lecture, we want to predict how many students will turn in their assignments at least 1 hour before the deadline
- {18,22,45,49,86} are the known assignment completion times
- Only 5/10 finished at time 100
- We did this before, right?
- What's a problem we ignored last time?
 - 5 people not done, but they contribute information
 - ? How to model?

- {18,22,45,49,86} are the known assignment completion times
- Only 5/10 finished at time 100
- What's a problem with the last model?
 - 5 people not done, but they contribute information
 - How to model?
- Recall that the exponential distribution is good for modeling arrival times
- It's also has a really nice CDF: $1 e^{-\lambda x}$
- Each of 5 who have not yet submitted have $x_i \ge 100$
 - So for $i \ge 6$, $Pr[no submission] = 1 (1 e^{-\lambda 100})$
 - Now, $L(\overline{\lambda}|x_1, x_2, ..., x_n) = \prod_{i=1}^{5} (\lambda e^{-\lambda x_i}) \times \prod_{i=6}^{10} e^{-\lambda 100}$
 - ? Where does the first term come from?

- Ex: observed {18,22,45,49,86}
- $L(\lambda|.) = \prod_{i=1}^{5} \lambda e^{-\lambda x_i} \times \prod_{i=6}^{10} e^{-\lambda 100}$
- LLH instead: $L(\lambda|.) = \sum_{i=1}^{5} \left(-\lambda x_i + \log(\lambda)\right) + \sum_{i=6}^{10} -\lambda 100$
 - Now, minimizing:

$$L'(\lambda) = \sum_{i=1}^{5} \left(-x_i + \frac{1}{\lambda} \right) - \sum_{i=6}^{10} 100$$
$$= \sum_{i=1}^{5} \left(-x_i + \frac{1}{\lambda} \right) - 500$$
$$= -220 + \frac{5}{\lambda} - 500$$
$$= \frac{5}{\lambda} - 720$$

Setting to zero, we have

$$0 = \frac{5}{\lambda} - 720$$

$$720 = \frac{5}{\lambda}$$

$$\lambda = \frac{5}{720}$$

- This is 0.00694
 - So now, probability that a given person (who hasn't turned in) submits within the next 67 hours is 0.372
 - $Pr[submission] = 1 e^{-\lambda x} = 1 *e^{-0.0064*167} = 0.372$
 - Before, it was 0.781

Interpreting the Results

- Before, we were more certain that someone who hadn't submitted the assignment would
- Now we are less certain
- The probability has dropped about in half

Goin' Bayesian

- Complaint regarding MLE approach:
- "It assumes zero knowledge about the parameter(s) you are trying to estimate"
- Do we ever have zero knowledge?
- Bayesians say we always know something
 - Scores so far: {99,92,94,94,88}
 - Is the mean best estimated as (99+92+94+94+88)/5?
 - Not according to a Bayesian
 - What if I'd never given an assignment with an average > 90 in my career?

Goin' Bayesian

- To a Bayesian:
 - "Learning" is all about updating one's prior opinions in response to evidence
 - It's not about guessing parameters
- "Prior opinions" formally given in the form of a "prior distribution"
 - Pretend I'm a really tough professor
 - The average score on assignments is around 50
 - Highest ever was 65
 - Lowest ever was 35
 - So I choose Normal(50,25) as the "prior" on the mean assignment score, μ
 - Why variance of 25?
 - Here, 50 is mean, 5 is standard deviation
 - \blacksquare Standard deviation of 5 chosen as 99.7% of mass of Normal is ± 3 std. devs. from mean
 - 50 ± 5 just covers lowest ever, highest ever

Bayes' Rule

- \blacksquare A Bayesian uses data X to update the prior on the parameter set Θ
 - Resulting distribution— $P(\Theta|X)$ is called the "posterior"
- Update is accomplished via "Bayes' Rule"

$$P(\Theta|X) = \frac{P(\Theta)P(X|\Theta)}{P(X)}$$

$$P(\Theta|X) = \frac{\text{Prior on } \Theta \times \text{Likelihood}}{\text{Normalizing constant}}$$

 \blacksquare Can usually drop P(X) as a constant, so we have

$$P(\Theta|X) \propto P(\Theta)P(X|\Theta)$$

Notes on Bayes' Rule

- ? Why can we drop P(X)?
 - We are asking: What is the posterior distribution, given **fixed** data?
 - Since the data are fixed (observed), P(X) doesn't change the relative ordering
- Change the notation to ∞ since there is some constant needed for equality
- P(X) is usually very difficult to compute
- Must integrate over all possible values of the parameters

$$P(X) = \int P(X|\Theta)$$

- Scores so far: {99,92,94,94,88}
 - Mean score $\mu \sim \text{Normal}(50,25)$
 - Each score $x_i \sim \text{Normal}(\mu, 16)$
 - Note: 16 chosen arbitrarily (in practice, maybe this is the historical per-score standard deviation)
 - Could also replace 16 with a prior (but don't here, for simplicity)
 - Applying Bayes' rule:

$$P(\mu|\text{data}) \propto \text{Normal}(\mu|50, 25) \prod_{i} \text{Normal}(x_i|\mu, 16)$$

Note: this is a function of 1 variable!

$$P(\mu|\text{data})$$

$$\propto \text{Normal}(\mu|50,25) \prod_{i} \text{Normal}(x_i|\mu,4)$$

$$= 5^{-1} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}(\mu-50)^2 5^{-2}} \prod_{i} 4^{-1} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}(\mu-x_i)^2 4^{-2}}$$

$$\propto e^{-\frac{1}{2}(\mu - 50)^2 5^{-2}} \prod_{i} e^{-\frac{1}{2}(\mu - x_i)^2 4^{-2}}$$
 (2)

$$=e^{-\frac{1}{2}\left((\mu-50)^25^{-2}+\sum_i(\mu-x_i)^24^{-2}\right)}$$
(3)

$$=e^{-\frac{1}{2}\left(5^{-2}\mu^2-100\times5^{-2}\mu+2500\times5^{-2}+\sum_{i}4^{-2}\mu^2-2\times4^{-2}\mu x_i+4^{-2}x_i^2\right)}$$
 (4)

- Plug in distributions
- 2 Drop constants
- 3 Apply exponent product rule
- 4 Expand

(1)

More math...

$$=e^{-\frac{1}{2}\left(5^{-2}\mu^2-100\times5^{-2}\mu+2500\times5^{-2}+\sum_i 4^{-2}\mu^2-2\times4^{-2}\mu x_i+4^{-2}x_i^2\right)} \quad (5)$$

$$\propto e^{-\frac{1}{2}\left(5^{-2}\mu^2 - 4\mu + \sum_{i} 4^{-2}\mu^2 - 2 \times 4^{-2}\mu x_i\right)}$$
 (6)

$$=e^{\left(2+\frac{1}{16}\sum_{i}x_{i}\right)\mu-\left(\frac{1}{50}+\frac{5}{32}\right)\mu^{2}}$$
(7)

$$=e^{a\mu^2+b\mu} \text{ where } a = -\frac{1}{50} - \frac{5}{32}, b = 2 + \frac{1}{16} \sum_{i} x_i$$
 (8)

Now things look relatively simple...

- From the last slide
- 6 Simplify & drop constant terms
- Do some more math
- 8 Apply exponential quadratic function

- We have $P(\mu|\text{data}) \propto e^{a\mu^2 + b\mu}$, where:
- $a = -\frac{1}{50} \frac{5}{32} = -0.17625$
- $b = 2 + \frac{1}{16} \sum_{i} x_i = 31.1875$
 - By definition, this is $\propto \text{Normal}(-b/(2a), -1/(2a))$
 - Plug in our data to get values for a and b
 - Or, Normal(88.475,2.89)
- Recall: Questioning if the mean was best estimated as (99+92+94+94+88)/5 = 93.4
- Took into account historical data about scores on assignments

Conjugate Priors

- That was a LOT of work!!
- Easier to use a table of conjugate priors
- What is THAT?
 - When you have $\Theta \sim f(\theta_{\text{prior}})$
 - And you have $X \sim g(.)$
 - And you can prove $P(\Theta|X) = f(\Theta|\theta_{post})$
 - lacktriangle That is, the posterior for Θ is the same family as the prior
 - Then we say f is a "conjugate prior" for g
- There are lots of conjugate priors
- Key tool in Bayesian's toolbox

Conjugate Priors

- Why useful?
- Usually simple rules for computing θ_{post} from X, θ_{prior}
- Ex: Google search "Wikipedia conjugate prior"... first result
- Find row under "continuous distributions"
 - When g(.) (likelihood) is Normal with known variance σ_l^2
 - And $f(\theta_{\text{prior}})$ is Normal (μ_p, σ_p^2)
 - Observed n data points
 - Then posterior is easy!
 - In θ_{post} , we have:

$$\mu = \left(\frac{\mu_p}{\sigma_p^2} + \frac{\sum x_i}{\sigma_l^2}\right) / \left(\frac{1}{\sigma_p^2} + \frac{n}{\sigma_l^2}\right) = \left(\frac{50}{25} + \frac{467}{16}\right) / \left(\frac{1}{25} + \frac{5}{16}\right)$$
$$\sigma^2 = \left(\frac{1}{\sigma_p^2} + \frac{n}{\sigma_l^2}\right)^{-1} = \left(\frac{1}{25} + \frac{5}{16}\right)^{-1}$$

- Gives the same result, much less fuss!!
- Often drives choice of distribution

Questions?