COMP 3311: Database Management Systems

Lecture 16 Exercises **Query Processing: Join Operation**

Exercise 1: Use the following information about the relations to estimate the page I/O cost to compute the query result using the stated join strategies.

Sailor(sailorId, sName, rating, age) Reserves(sailorld, boatld, rDate) Page size: 1000 bytes Query: Find the names of sailors who have reservations. buffer size M: 100 pages select sName Each attribute/pointer: 20 bytes from Sailor, Reserves Sailor: 10,000 tuples; 12 tuples/page where Sailor.sailorId=Reserves.sailorId; Reserves: 40,000 tuples: 16 tuples/page 4 reservations/sailor on average a) block nested-loop join i. using Sailor as the outer relation ii. using Reserves as the outer relation b) indexed nested-loop join with hash index on Reserves.sailorld (assume no overflow) c) merge join d) hash join (assume no overflow)

Name: (1)	Last/Family (PRINT)		Student#: (1)	
Namo: (2)	Last/Family (PRINT)		Student#: (2)	
			ill be given if done without	
	COMF	9 3311: Datal	oase Management Sy	stems
Lecture 16 Exercises Query Processing: Join Operation				
Exercise 2:	The relations	R ₁ (A, B, C) and R ₂ ((C, D, E) have the following pro	operties:
R₁ hasR₂ has	s 20,000 tuples s 45,000 tuples	25 tuples30 tuples	s of R_1 fit on one page $-$ s of R_2 fit on one page $-$	R ₁ requires 800 pages R ₂ requires 1500 pages
		00 pages of memong join strategies	ory available for processing a for R_1 JOIN R_2 .	a join, estimate the page I/O
a) nested-lo i. using l	oop join R ₁ as the outer	relation		
ii. using l	R_2 as the outer	relation		
,	sted-loop join R ₁ as the outer	rolation		
i. using i	N as the outer	Telation		
ii. using l	R_2 as the outer	relation		
c) merge jo i. sorting o	•	it the relations are	e <u>not</u> sorted initially)	
ii. merge o	cost:			
iii. total co	ost:			
d) hash joir	ı (assume no o	verflow occurs)		