1. Übung zur Einführung in die Algebra

Abgabe online in WueCampus bis zum 30.10.2023, 12 Uhr

Aufgabe 1.1 (1+2+1 Punkte)

Sei $G := 2\mathbb{N}^* := \{2n \mid n \in \mathbb{N}^*\}$ die Menge der positiven geraden Zahlen. Wir nennen $a \in G$ zerlegbar, falls sich a als Produkt zweier Elemente aus G schreiben lässt. Ansonsten nennen wir a unzerlegbar. Beispielsweise sind 4 zerlegbar und 6 unzerlegbar. Zeigen Sie:

- (a) *G* ist multiplikativ abgeschlossen.
- (b) Jedes $a \in G$ lässt sich als Produkt unzerlegbarer Elemente aus G schreiben.
- (c) Selbst wenn man die Reihenfolge der Faktoren nicht berücksichtigt, so ist die Zerlegung nach (b) im Allgemeinen nicht eindeutig.

Aufgabe 1.2 (Euklidischer Algorithmus; 1+1+1+1 Punkte)

In dieser Aufgabe stellen wir den *Euklidischen Algorithmus* zur Berechung des größten gemeinsamen Teilers vor. Seien hierzu zwei natürliche Zahlen $a,b\in\mathbb{N}$ mit $b\neq 0$ vorgelegt. Wir setzen $r_0:=a, r_1:=b$ und rekursiv für alle $i\in\mathbb{N}^*$ mit $r_i\neq 0$

 $r_{i+1} := \text{Rest von } r_{i-1} \text{ bei der Division durch } r_i.$

(a) Zeigen Sie, dass es ein $n \ge 2$ mit $r_n = 0$ gibt.

Da die Rekursionsformel für i=n nicht mehr anwendbar ist, bricht die Folge (r_i) der Reste beim Index n ab. Daher gibt es nur genau einen Index $n \ge 2$ mit $r_n = 0$. Beweisen Sie nun:

- (b) Für alle $i \in \{1, 2, 3, \dots, n\}$ gilt $ggT(a, b) = ggT(r_{i-1}, r_i)$.
- (c) Es ist $ggT(a, b) = r_{n-1}$.
- (d) Berechnen Sie ggT(210, 45) mit Hilfe des Euklidischen Algorithmus.

Aufgabe 1.3 (4 Punkte)

Seien p und q zwei ungerade und aufeinanderfolgende Primzahlen, so dass also zwischen p und q keine weiteren Primzahlen existieren. Zeigen Sie, dass p+q ein Produkt von mindestens drei (nicht notwendig verschiedenen) Primzahlen ist.

Aufgabe 1.4 (4 Punkte)

Seien $n \in \mathbb{N}^*$ und $a \in \mathbb{Z}$. Zeigen Sie, dass es genau dann ein $x \in \mathbb{Z}$ mit $ax \equiv 1 \pmod{n}$ gibt, wenn ggT(a, n) = 1 gilt.

Weitere Informationen zur Veranstaltung finden sich online im zugehörigen WueCampus-Kurs.