A Brief Tutorial of the R Package vGWAS

Setup

To use the **vGWAS** package, of course, an R environment is required. Visit:

```
http://www.r-project.org
```

and install R for the operating system.

Start R and in the R console, type the following command to install the package:

```
install.packages('vGWAS', repos = 'http://r-forge.r-project.org')
```

If everything works fine, something like the following should show:

```
trying URL ...

Content type ... length ... bytes (... Kb)

opened URL

downloaded ... Kb
```

Now the package is installed in the R library.

Example

In the R console, the command:

```
vignette('vGWAS')
```

opens this PDF document together with the package documentation. An example can be found in the documentation. Type:

```
require(vGWAS)
```

to load the package (two depended packages **hglm** and **dglm** are required to be installed as well), then four main functions in the package are ready to use - brown.forsythe.test, vGWAS, vGWAS.heva, plot (S3 method for vGWAS object) and vGWAS.variance. Run the following commands to load the example data:

```
data(pheno)
data(geno)
data(chr)
data(map)
pheno is a numeric vector of the simulated phenotypic values. By running:
hist(pheno, breaks = 30, density = 15, col = 'darkred')
```

PAGE 1 OF 6 AUTHOR: XIA SHEN

a histogram of the phenotype distribution is produced as Figure 1.

Histogram of pheno

Figure 1: Histogram of the simulated phenotype.

The command:

table(chr)

produces:

chr 1 2 3 4 5 5000 3000 4000 2000 6000

This shows exactly the number of markers on each of the five simulated chromosomes. Now, the *objects* loaded in R are ready for a vGWA scan, which can be done using the single command:

A progress bar will show to indicate the progress of the scan, such like:

| ===

PAGE 2 OF 6 AUTHOR: XIA SHEN

When the scan is finished, all the output statistics will be returned as a *list* into the object vgwa, which belongs to the *class* 'vGWAS'. Any object that has a *structure* belonging to class 'vGWAS' can be directly passed into S3 method function plot. For instance, simply run the following command, we can plot the results in vgwa:

plot(vgwa)

which produces Figure 2. There is a clear peak above the Bonferroni corrected threshold (dashed orange line).

Figure 2: vGWAS results of the simulated data.

Regarding the marker that gave the highest score, the heritability explained by the mean and variance can be split and calculated via:

PAGE 3 OF 6 AUTHOR: XIA SHEN

```
27.66 % variance explained in total: 29.51 %
```

The output can also be stored if assigning the function call to an object.

To correct for population confounding, the package applies the method HEVA (*h*-likelihood-based efficient variance association), described in the reference paper of the package. One may input pre-calculated kinship matrix, e.g. IBD or IBS matrix, and call vGWAS with heva = TRUE, kinship = calculated.kinship. Instead, the inbuilt function vGWAS.heva automatically constructs a simple genomic kinship from the genotype data. Simply, runing:

```
geno.coding <- matrix(0, nrow(geno), ncol(geno))
pb <- txtProgressBar(style = 3)
for (j in 1:ncol(geno)) {
     geno.coding[,j] <- as.numeric(geno[,j] == names(table(geno[,j]))[1])*2 - 1
     setTxtProgressBar(pb, j/ncol(geno))
}
image(tcrossprod(geno.coding))</pre>
```

creates a coded genotype matrix (contains -1 and 1 in this example) shown in Figure 3.

Figure 3: A simple genomic kinship matrix.

PAGE 4 OF 6 AUTHOR: XIA SHEN

vGWAS.heva provides correction for phenotype and also visualization of population stratification. When calling vGWAS.heva or vGWAS as:

Figure 4 is generated simultaneously with the calculation to visualize the stratification in the population via the first two principle components of the kinship matrix.

Figure 4: Visualization of population stratification via principle components.

Plotting the this object as follows will generate a new vGWAS plot in Figure 5. In this example, the difference between the vGWA results with and without HEVA correction is small, but they might differ a lot for some datasets (See the reference paper in the package).

plot(vgwa2)

PAGE 5 OF 6 AUTHOR: XIA SHEN

Figure 5: vGWAS results of the simulated data corrected for population confounding.

Remarks

The package source and further development information are on the R-Forge project page: https://r-forge.r-project.org/projects/vgwas/

PAGE 6 OF 6 AUTHOR: XIA SHEN

Package 'vGWAS'

February 14, 2011

Type Package
Title Variance Genome-wide Association
Version 2011.02.14
Date 2011-02-14
Author Xia Shen
Maintainer Xia Shen <xia.shen@lcb.uu.se></xia.shen@lcb.uu.se>
Description The package provides models and tests for variance genome-wide association study (vGWAS).
License GPL
LazyLoad yes
Depends hglm, dglm
R topics documented:
vGWAS-package
brown.forsythe.test
chr
geno
map
pheno
plot.vGWAS
vGWAS
vGWAS.heva
vGWAS.variance
Index 14

2 vGWAS-package

vGWAS-package

Variance Genome-wide Association

Description

The package provides models and tests for variance genome-wide association study (vGWAS).

Details

brown.forsythe.test 3

Package: vGWAS
Type: Package
Version: 2011.02.14
Date: 2011-02-14
License: GPL
LazyLoad: yes

Depends: hglm, dglm

Author(s)

Xia Shen

Maintainer: Xia Shen <xia.shen@lcb.uu.se>

References

Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O. (2011): Variance Controlling Genes: Significant Contributors to The Missing Genetic Variation for Complex Traits. Submitted.

Ronnegard, L., Shen, X. and Alam, M. (2011): hglm: A Package for Fitting Hierarchical Generalized Linear Models. *The R Journal*, **2**(2), 20-28.

Brown, M. B. and Forsythe, A.B. (1974). **Robust tests for equality of variances.** *Journal of the American Statistical Association*, **69**, 364-367.

Levene, H. (1960). **Robust Tests for Equality of Variances**, *in Contributions to Probability and Statistics*, ed. I. Olkin, Palo Alto, CA: Stanford Univ. Press.

See Also

R package lawstat for other types of nonparametric variance tests.

brown.forsythe.test

Brown-Forsythe's Test of Equality of Variances

Description

The function performs the robust Brown-Forsythe test using the group medians. Instead of the ANOVA statistic, the Kruskal-Wallis ANOVA may also be applied using this function.

Usage

brown.forsythe.test(y, group, kruskal.test=FALSE)

4 brown.forsythe.test

Arguments

y a numeric vector of data values.

group factor of the data.

kruskal.test a logical value specifying whether to use Kruskal-Wallis statistic. The de-

fault option is FALSE, i.e., the usual ANOVA statistic is used in place of Kruskal-

Wallis statistic.

Details

Levene (1960) proposed a test for homogeneity of variances in *k* groups which is based on the ANOVA statistic applied to absolute deviations of observations from the corresponding group mean. The robust Brown-Forsythe version of the Levene-type test substites the group mean by the group median in the classical Levene statistic.

Value

A list with the following numeric components.

statistic the value of the test statistic.

p.value the p-value of the test.

method type of test performed.

data.name a character string giving the name of the data.

Acknowledgement

The authors of package lawstat is acknwnledged for their source code under free GPL license.

Note

Modified from the lawstat package.

Author(s)

Xia Shen

References

Brown, M. B. and Forsythe, A.B. (1974). **Robust tests for equality of variances.** *Journal of the American Statistical Association*, **69**, 364-367.

Levene, H. (1960). **Robust Tests for Equality of Variances**, *in Contributions to Probability and Statistics*, ed. I. Olkin, Palo Alto, CA: Stanford Univ. Press.

```
## Not run:
data(pheno)
data(geno)
brown.forsythe.test(pheno, geno[,911])
## End(Not run)
```

chr 5

chr

Chromosome Indices for The Markers of The Simulated Data

Description

Chromosome indices for the markers of the simulated data

Usage

```
data(chr)
```

Format

A numeric vector of chromosome indices for the 20K simulated markers.

Examples

```
data(chr)
table(chr)
```

geno

The Marker Genotypes of The Simulated Data

Description

The marker genotypes of the simulated data

Usage

```
data(geno)
```

Format

A character matrix of size (number of individuals) times (number of markers in the genome).

Details

Note that there is only one column for each marker.

```
data (geno)
```

6 pheno

map

Map Positions for The Markers of The Simulated Data

Description

Map positions for the markers of the simulated data

Usage

```
data(chr)
```

Format

A numeric vector of chromosomal map positions of the 20K simulated markers.

Examples

```
data(map)
```

pheno

Phenotypic Values for The Markers of The Simulated Data

Description

Phenotypic values for the markers of the simulated data

Usage

```
data(pheno)
```

Format

A numeric vector of the phenotypic values of 93 simulated individuals.

```
data(pheno)
hist(pheno, breaks = 30)
```

plot.vGWAS 7

plot.vGWAS

Variance GWA Manhattan Plot

Description

The function plots the variance GWA result for the giving scan object.

Usage

Arguments

```
a result object from vGWAS scan. It can be any list or data.frame that con-
Х
                 tains chromosome, marker.map, and p. value, with class = 'vGWAS'.
                 See vGWAS.
sig.threshold
                 a numeric value giving the significance threshold for -log (pvalues, 10).
                 If NULL, Bonferroni correction will be used.
                 a numeric value giving the lower limit of the -log (pvalues, 10) to plot.
low.log.p
                 point character. See par.
pch
                 size of points. See par.
cex
col.manhattan
                 two colors as a vector for the Manhattan plot.
col.sig.threshold
                 one color for the significance threshold.
                 not used.
```

Value

a plot for viewing vGWAS result.

Author(s)

Xia Shen

References

Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O. (2011): Variance Controlling Genes: Significant Contributors to The Missing Genetic Variation for Complex Traits. Submitted.

See Also

```
vGWAS-package, vGWAS
```

8 vGWAS

Examples

```
## Not run:
# ---- load data ---- #
data (pheno)
data (geno)
data(chr)
data(map)
# ---- variance GWA scan ---- #
vgwa <- vGWAS (phenotype = pheno, geno.matrix = geno,
              marker.map = map, chr.index = chr)
# ---- visualize the scan ---- #
plot(vgwa)
# ----- calculate the variance explained by strongest the marker ----- #
vGWAS.heritability(phenotype = pheno,
                   marker.genotype = geno[,vgwa$p.value == min(vgwa$p.value)])
# ----- vGWAS via HEVA ----- #
vgwa2 <- vGWAS (phenotype = pheno, geno.matrix = geno, heva = TRUE,
              marker.map = map, chr.index = chr)
plot(vgwa2)
## End(Not run)
```

vGWAS

Variance Genome-wide Association

Description

Variance Genome-wide association for using nonparametric variance test

Usage

```
vGWAS (phenotype, geno.matrix, heva = FALSE, kinship = NULL, kruskal.test = FALSE, marker.map = NULL, chr.index = NULL)
```

Arguments

phenotype a numeric or logical vector of the phenotyic values. See Examples.

geno.matrix a matrix or data.frame with individuals as rows and markers as columns. The marker genotypes for each marker are coded as one column. See Examples.

heva a logical value specifying whether the HEVA method (h-likelihood-based efficient variance association) will be used to correct population stratification in the phenotype. See Examples.

vGWAS 9

kinship	a matrix with size number of individuals times number of individuals, giving the kinship between each pair of the individuals, e.g. IBD or IBS matrix. Only useful when $\texttt{heva} = \texttt{TRUE}$. If \texttt{NULL} , a simple genomic kinship matrix is created using the genotype matrix for HEVA.
kruskal.test	a logical value specifying whether to use Kruskal-Wallis statistic. The default option is ${\tt FALSE}, i.e.,$ the usual ANOVA statistic is used in place of Kruskal-Wallis statistic.
marker.map	a numeric vector giving the marker map positions for each chromosome. See $\ensuremath{\textbf{\textit{Examples}}}.$
chr.index	a numeric vector giving the chromosome index for each marker. See Examples .

Value

a data.frame containing columns of marker names, chromosome indices, marker.map positions, test statistic values, and p.value for each position.

Author(s)

Xia Shen

References

Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O. (2011): Variance Controlling Genes: Significant Contributors to The Missing Genetic Variation for Complex Traits. Submitted.

Ronnegard, L., Shen, X. and Alam, M. (2011): hglm: A Package for Fitting Hierarchical Generalized Linear Models. *The R Journal*, **2**(2), 20-28.

See Also

```
vGWAS-package
```

10 vGWAS.heva

vGWAS.heva

Removing Population Confounding from Phenotype

Description

The function corrects the population stratification using hierarchical generalized linear model (HGLM).

Usage

```
vGWAS.heva(phenotype, geno.matrix = NULL, kinship = NULL, family = gaussian())
```

Arguments

phenotype	a numeric or logical vector of the phenotyic values. See Examples.
geno.matrix	a matrix or data.frame with individuals as rows and markers as columns. The marker genotypes for each marker are coded as one column. See Examples .
kinship	a matrix with size number of individuals times number of individuals, giving the kinship between each pair of the individuals, e.g. IBD or IBS matrix. Only useful when heva = TRUE. If NULL, a simple genomic kinship matrix is created using the genotype matrix for HEVA. See Examples .
family	a family function specifying the distribution of phenotype. See the depended R package hglm for more information.

Value

a numeric vector of corrected phenotype on a continuous scale, which is the studentized deviance residuals of HGLM. See the depended R package **hglm** for more information.

vGWAS.heva

Author(s)

Xia Shen

References

Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O. (2011): Variance Controlling Genes: Significant Contributors to The Missing Genetic Variation for Complex Traits. Submitted.

Ronnegard, L., Shen, X. and Alam, M. (2011): hglm: A Package for Fitting Hierarchical Generalized Linear Models. *The R Journal*, **2**(2), 20-28.

See Also

```
vGWAS, vGWAS-package
```

```
## Not run:
# ---- load data ---- #
data (pheno)
data (geno)
data(chr)
data(map)
# ---- wariance GWA scan ---- #
vgwa <- vGWAS(phenotype = pheno, geno.matrix = geno,</pre>
             marker.map = map, chr.index = chr)
# ---- visualize the scan ---- #
plot(vgwa)
\# ---- calculate the variance explained by strongest the marker ---- \#
vGWAS.variance(phenotype = pheno,
                  marker.genotype = geno[,vgwa$p.value == min(vgwa$p.value)])
# ----- vGWAS via HEVA ----- #
vgwa2 <- vGWAS(phenotype = pheno, geno.matrix = geno, heva = TRUE,
              marker.map = map, chr.index = chr)
plot(vgwa2)
## End(Not run)
```

12 vGWAS.variance

vGWAS.variance

Calculating Variance Explained by A Single Marker

Description

The function calculates and reports the variance explained for a single marker by fitting a double generalized linear model. It gives both the variance explained by the mean and variance parts of model.

Usage

```
vGWAS.variance(phenotype, marker.genotype, only.print = TRUE)
```

Arguments

```
phenotype a numeric vector of the phenotyic values. See Examples.

marker.genotype

a numeric or character or factor vector of the genotypes of a single marker. See Examples.

only.print a logical value. If FALSE, the heritability values will be returned for storage.
```

Details

The Value will only be available if only .print = FALSE.

Value

```
variance.mean
the variance explained by the mean part of model.
variance.disp
the variance explained by the variance part of model.
```

Author(s)

Xia Shen

References

Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O. (2011): Variance Controlling Genes: Significant Contributors to The Missing Genetic Variation for Complex Traits. Submitted.

See Also

```
vGWAS-package, vGWAS, plot.vGWAS
```

vGWAS.variance

Index

```
*Topic GWAS
    vGWAS-package, 2
*Topic datasets
    pheno, 6
*Topic htest
    brown.forsythe.test, 3
brown.forsythe.test, 3
chr, 5
geno, 5
\text{map}, 6
par, 7
pheno, 6
\verb"plot.vGWAS", 7, 12"
vGWAS, 7, 8, 11, 12
\verb|vGWAS-package|, 7, 9, 11, 12|
{\tt vGWAS-package, 2}
\texttt{vGWAS.heva}, \textcolor{red}{10}
vGWAS.variance, 12
```