

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

卷积的性质

$$\mathscr{F}[f_1 * f_2] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(\tau) f_2(t - \tau) \, d\tau \cdot e^{-i\omega t} \, dt$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(\tau) e^{-i\omega \tau} \cdot f_2(t - \tau) e^{-i\omega(t - \tau)} \, dt \, d\tau$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(\tau) e^{-i\omega \tau} \cdot f_2(t) e^{-i\omega t} \, dt \, d\tau$$

$$= \int_{-\infty}^{+\infty} f_1(\tau) e^{-i\omega \tau} \, d\tau \int_{-\infty}^{+\infty} f_2(t) e^{-i\omega t} \, dt = \mathscr{F}[f_1] \mathscr{F}[f_2].$$

由函数的乘法性质可知卷积满足如下性质:

- $f_1 * f_2 = f_2 * f_1$, $(f_1 * f_2) * f_3 = f_1 * (f_2 * f_3)$;
- $f_1 * (f_2 + f_3) = f_1 * f_2 + f_1 * f_3$;
- $f * \delta = f$;
- $(f_1 * f_2)' = f_1' * f_2 = f_1 * f_2'$.