

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

B1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07K 13/00, C12N 5/10 C12Q 1/68		A1	(11) International Publication Number: WO 93/09140 (43) International Publication Date: 13 May 1993 (13.05.93)
(21) International Application Number: PCT/US92/09379		(74) Agent: LOWE, PRICE, LEBLANC & BECKER; 99 Canal Center Plaza, Suite 300, Alexandria, VA 22314 (US).	
(22) International Filing Date: 30 October 1992 (30.10.92)		(81) Designated States: AU, CA, JP.	
(30) Priority data: 783.02 1 November 1991 (01.11.91) US		Published <i>With international search report.</i>	
(71) Applicant: THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; 200 Independence Avenue, S.W., Washington, DC 20201 (US).			
(72) Inventors: VENTER, J., Craig ; FRASER, Claire, M. ; 1718 Nordic Hill Circle, Silver Spring, MD 20906 (US). GIACOBINO, Jean-Paul ; 11 rue Cité, CH-1204 Geneva (CH).			

(54) Title: A FAT CELL SPECIFIC β -ADRENERGIC RECEPTOR

(57) Abstract

The present invention relates to a fat cell specific β -adrenergic receptor that mediates lipolysis. The invention further relates to cloned cells which code for the specific β -adrenergic receptor that mediates lipolysis. Another aspect of the present invention relates to a diagnostic test method for determining decreased levels of fat cell β -adrenergic receptors that mediate lipolysis in order to diagnose obesity caused by less active lipolysis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

A FAT CELL SPECIFIC β -ADRENERGIC RECEPTOR

Technical Field

This application relates to fat cell specific β -adrenergic receptors from brown adipose tissue and clone cells related to the receptor.

5 Background of the Invention

There has long been an interest in the structure of adipose tissue as it relates to a possible role in obesity. Brown adipose tissue is the main effector of cold- and diet-induced thermogenesis in mammals, such 10 as rodents. See Foster et al., Can. J. Physiol., Vol. 56, 110 (1978) or Rothwell et al., Nature (London), Vol. 281, 31 (1979). The process of thermogenesis can represent a major expenditure of energy and play an important role in overall energy balance. Because 15 brown adipose tissue has been demonstrated in humans of all ages and is often atrophied or quiescent in obese animals, much interest has recently been directed towards development of compounds that stimulate the thermogenesis metabolic response as possible anti-obesity agents.

Brown adipose tissue metabolism is primarily controlled by norepinephrine released from the sympathetic nerve terminals that act through β -adrenergic receptors. Both β_1 - and β_2 -adrenergic

receptor subtypes are present in rat brown adipose tissue; however, pharmacological studies with novel thermogenic β -adrenergic agonists have suggested the existence of an atypical β -adrenergic receptor in the brown adipose tissue that mediates lipolysis (breakdown of fat). Parallel studies have also suggested the presence of atypical β -adrenergic receptors with similar pharmacological properties in white adipose tissue, the digestive track, and in skeletal muscle.

Accordingly, there is a need in the art for isolation and understanding of the fat cell β receptor or receptors which are related to the thermogenesis process. Such an isolation of the β -adrenergic receptor(s) would allow for the diagnosis of obesity, the treatment of obesity, the testing of medications for their effectiveness in stimulating the thermogenesis metabolic response in obesity patients.

Disclosure of the Invention

An object of the invention relates to obtaining the sequence of a β -adrenergic receptor polypeptide that mediates lipolysis and which is produced by β -adrenergic fat cell receptor clones.

Another object of the present invention is to produce clone cells coding for fat cell β -adrenergic polypeptide receptors that mediate lipolysis.

A further object of the invention is to choose several clonal cell lines that permanently express the fat cell β receptor, which mediate lipolysis, and choose one of the cell lines for additional pharmacological and biochemical characterization.

A further object of the invention is to provide a diagnostic test for determining decreased levels of the fat cell β -adrenergic receptor that mediates lipolysis in order to diagnose obesity caused by less active 5 lipolysis.

Brief Description of the Figures

Figure 1 relates to a comparison of adrenergic receptor polypeptides of humans and rats. This figure shows human β -2, rat β -2, rat β , human β -1, human β -3 10 and rat β -3 receptor sequences.

Figure 2 relates to the percent of Forskolin-stimulated cAMP production in transfected CHO cells expressing the fat cell β receptor according to the present invention with a rank order of potency of 15 agonists BRL 37344 - isoproterenol - norepinephrine - epinephrine - zinterol - tazolol.

Figure 3 relates to the potency of antagonists (at 10^{-4} M concentrations) for inhibiting BRL 34344-induced 20 cAMP accumulation in transfected CHO cells for several antagonists.

Figure 4 shows the distribution of β -adrenergic receptor sub-types poly(A)⁺ RNAs from various tissues which were isolated and fractionated on a formaldehyde-agarose gel. The tissues were brown adipose tissue 25 (BAT), white adipose tissue (WAT), brain (Brn), heart (Hrt), ileum (Ile), liver (Liv), or lung (Lng).

Figure 5 compares the level of β_1 , β_2 and β_{3A} -adrenergic receptor mRNA levels in brown and white fat of obese rats as compared to lean controls. The dotted 30 line represents 100% as the amount of adrenergic receptor found in the lean rat. The white histogram box represents the β_1 receptor, the diagonally cross-

WO 93/09140

hatched histogram box represents the β_2 receptor and the darkened histogram box represents the level of β_{3A} -adrenergic receptor mRNA.

Figure 6 relates to a polypeptide having a sequence according to SEQ ID NO:1.

5

Description of the Invention Preferred Embodiments

10

The present invention relates to a fat cell specific β -adrenergic receptor that mediates lipolysis. Particularly preferred is a β -adrenergic receptor polypeptide having a sequence according to SEQ ID NO:

1.

The present invention also provides cloned cells encoding for a fat cell β -adrenergic receptor that mediates lipolysis. Further provided is a clone cell which is obtained by cotransfection of CHO cells. More preferred are clone cells which produce a β_{3A} -adrenergic receptor. Even more preferred are clone cells which produce an adrenergic receptor having the sequence according to SEQ ID NO: 1.

20

The invention still further provides a diagnostic test for determining decreased levels of fat cells β -adrenergic receptors that mediate lipolysis in order to diagnose obesity caused by less active lipolysis. More preferred is a diagnostic test for determining decreased levels of a β -adrenergic receptor polypeptide having a sequence according to SEQ ID NO: 1.

25

Experimental

A rat interscapular brown adipose tissue (IBAT) cDNA library was cloned and probed with DNA probes encoding human β_1 - and rat β_2 -adrenergic receptors

30

under conditions of low stringency. Nine positive clones were identified that were demonstrated by restriction mapping to be different from rat β_1 and β_2 adrenergic receptor cDNAs. Sequence analysis of these 5 clones reveal the presence of a single opening reading frame of 1,200 bp encoding a polypeptide of about 400 amino acids with a predicted size of 43,169 daltons.

The adipose tissue β -adrenergic receptor has 49% and 40% identity, respectively to rat β_1 - (C.A. Machida et al, J. Biol. Chem. 265, 12960 (1990)) and β_2 -adrenergic receptors (D.A. Robinson, thesis, State University of New York at Buffalo (1988)) and 80% identity to the human β_3 -adrenergic receptor (L.J. Emorine et al, Science 245, 1118 (1989)) (Figure 1).

15 Sequence identity between β_1 - and β_2 -adrenergic receptors from rats (C.A. Machida et al, J. Biol. Chem. 265, 12960 (1990); D.A. Robinson, Thesis, State University of New York at Buffalo (1988)) and humans (T. Frielle et al, Proc. Natl. Acad. Sci. USA 84, 7920 20 (1987); F.Z. Chung et al, FEBS Lett. 211, 200 (1987)) is extremely high: 90% for β_1 -adrenergic receptors and 87% for β_2 -adrenergic receptors.

25 While the rat adipose tissue β -adrenergic receptor is more closely related to the human β_3 -adrenergic receptor than to either rat β_1 - or β_2 -adrenergic receptor subtypes, the amino acid identity is lower than might be expected for species differences alone. Because of the high homology between this receptor and the human β_3 -adrenergic receptor, its unique pharmacological properties and fat cell specificity, we 30 have defined this novel receptor as a β_{3A} (adipose)-adrenergic subtype.

The β_{3A} -adrenergic receptor exhibits several structural features common to G protein-coupled receptors. It contains seven regions of hydrophobic sequence that are presumed to represent transmembrane spanning domains (Figure 1). There are two putative sites of N-linked glycosylation (N-X-S/T) in the amino terminus and several serine and threonine residues in the COOH terminus and in the third intracellular loop that may serve as sites for regulation by protein kinases.

Furthermore, the β_{3A} -receptor contains several conserved amino acids at positions Asp⁸⁰, Asp¹¹⁴, Asp¹³¹, Cys¹⁰⁷, Cys¹⁸⁶, Cys¹⁹², Cys¹⁹³, Ser²⁰⁹, that have been demonstrated to play important roles in β -adrenergic receptor-ligand interactions and receptor activation by agonists (R.A.F. Dixon et al, Cold Spring Harbor Symp. Quant. Biol. 53, 487 (1988); J.C. Venter et al, Biochem. Pharmacol. 38, 1197 (1989); C.M. Fraser, J. Biol. Chem., 264, 9266 (1989); C.F. Strader, I.S. Sigal and R.A.F. Dixon, FASEB J. 3, 1825 (1989)).

Using a protocol for cotransfection of CHO cells (A 1.5 kb fragment was excised from pBluescript using SacI (present in the multiple cloning site of the vector) and BamHI and inserted into the Sac/BamH/ sites of pSVL (Pharmacie)). CHO-K1 cells were cotransfected with pSVL and pMSVneo (neomycin resistance plasmid) with F.Z. Chung, C.D. Wang, P.C. Potter, J.C. Venter and C.M. Fraser, J. Biol. Chem. 263, 4052 (1988) using the aPO₄ precipitation technique. Stable transfecants were obtained by growth of the cells in culture medium containing Geneticin (500 μ g/ml); colonies derived from single cells were isolated and expanded.

Because atypical β -adrenergic receptors in adipose tissue display low affinity for β -adrenergic antagonists, cell lines were screened for the expression of β -adrenergic receptors by measuring isoproterenol (10^{-6} M)-mediated increases in intracellular cAMP.), we obtained several clonal cell lines that permanently express the fat cell β receptor and chose one for additional pharmacological and biochemical characterization. Membranes from 5 transfected CHO cells display saturable binding of the radioligand, [125 I]-iodocyanopindolol ([125 I]-ICYP) (Transfected cell membranes were prepared by lysis of cells in hypotonic solution containing 5 mM NaPO₄, pH 7.4, 2 mM MgSO₄ followed by centrifugation at 1000 X g 10 for 5 minutes to remove intact cells and cell nuclei. 15 The supernatant was centrifuged at 40,000 X g for 30 minutes to collect the membrane fraction.

Membrane associated β -adrenergic receptors (3-6 μ g protein) were labeled with increasing concentrations of [125 I]-CYP in the presence and absence of 10 μ M IC1 20 118,551 by incubation at 37°C for 30 minutes in Hank's buffer in a final volume of 250 μ l. Incubations were terminated by filtration over Whatman GF/C glass fiber filters using a Brandel cell harvester. Scatchard 25 analysis of saturation isotherms was performed to yield estimates of K_D (equilibrium dissociation constant for [125 I]-CYP) and B_{max} (total number of binding sites). The K_D value was utilized in computer analysis of competition displacement curves.) The calculated 30 equilibrium dissociation constant (K_D) for [125 I]-ICYP binding is 1.3 ± 0.4 nM, a value significantly greater than K_D values for [125 I]-ICYP binding to β_1 -(11pM) (13) and β_2 -adrenergic receptors (30 pM) (D.A.

Robinson, thesis, State University of New York at Buffalo (1988)) but similar to that reported for [¹²⁵I]-ICYP binding to the β_3 -adrenergic receptor (0.5 nM) (L.J. Emorine et al, Science 245, 1118 (1989)).
5 The density of β -adrenergic receptors expressed in this cell line is 1100 \pm 187 fmol/mg membrane protein.

Agonists produce dose-dependent increases in intracellular cAMP concentrations in transfected CHO cells with a rank order of potency of BRL 37344 > isoproterenol > norepinephrine > epinephrine > zinterol > tazolol (Figure 2, Table 1) (21). K_{act} values for BRL 37344 and isoproterenol-mediated increases in intracellular cAMP in transfected CHO cells are in very good agreement with the EC₅₀ values for increases in lipolysis in brown adipocytes as described by Arch et al. (7); i.e., 1.3 and 1.7 nM for BRL 37344 and 4.0 and 8.0 nM for isoproterenol in transfected cells and brown adipocytes, respectively. The greater potency of norepinephrine as compared with epinephrine suggests that receptor activation *in vivo* is most likely mediated through sympathetic innervation. Antagonists (at 10⁻⁴ M concentrations) display an order of potency for inhibition of BRL 37344-induced cAMP accumulation in transfected CHO cells of propranolol (89% inhibition) > betaxolol (80% inhibition) > metoprolol (70% inhibition) > pindolol (61% inhibition) = 118,51 (60% inhibition) > alprenolol (52% inhibition) > atenolol (30% inhibition) (Figure 3).

30 In competition displacement studies (For competition displacement studies, membranes (containing 3-4 fmol [¹²⁵I]-ICYP binding sites were incubated with [¹²⁵I]-CYP or [³H]-CGP 12177 (~1 \times K^D concentration)

plus a range of concentrations of competing ligands. Competition displacement curves were analyzed according to a mass action model for receptor-ligand interactions using a computerized interactive non-linear least squares curve-fitting program (GraphPAD INPLOT, San Diego, CA).

Competition displacement experiments were performed at least 3 times in triplicate. Triplicate values from each experiment were averaged and non-linear regression was performed on data averaged from all competition displacement curves for a given ligand), agonists display a rank order of potency of BRL 37344 (atypical β -adrenergic agonist) >> zinterol (β_2 -adrenergic agonist) > tazolol (β_1 -adrenergic agonist) > (-) isoproterenol > epinephrine > norepinephrine > (+) isoproterenol (Table 1).

The relative affinities of BRL 37344 and (-) isoproterenol for displacement of [3 H]-CGP 12177 are similar to those observed with [125 I]-ICYP. Antagonists display a rank order of potency of alprenolol > propranolol > ICI 118,551 (β_2 -adrenergic selective) > betaxolol (β_1 -adrenergic selective) (Table 1). The β_{3A} -adrenergic receptor exhibits a markedly lower affinity for classical β -adrenergic antagonists than either β_1 or β_2 -adrenergic receptor subtypes.

The pharmacological properties of the β_{3A} -adrenergic receptor differ significantly from those reported by Emorine et al. (Science 245, page 1118 30 (1989) for a human β_3 -receptor expressed in CHO cells. The rank order of agonist potency for inhibition of [125 I]-ICYP binding to the β_3 -adrenergic receptor is BRL 37344 > norepinephrine > (-) isoproterenol >> (+)

isoproterenol > epinephrine (11) as compared with BRL 37344 >> (-) isoproterenol > epinephrine > norepinephrine > (+) isoproterenol for the β_{3A} -adrenergic receptor.

5 The pharmacological profile of the β_{3A} -receptor does not agree with the human β_3 -receptor. (L.J. Emorine et al, Science 245, 1118 (1989)). Also, it does not agree with any known tissue pharmacology, nor is it consistent with the pharmacological definition of a β -adrenergic receptor (isoproterenol more potent than either epinephrine or norepinephrine). In addition, most of the classical non-selective β -adrenergic antagonists do not inhibit [¹²⁵I]-ICYP binding to the β_3 -adrenergic receptor (L.J. Emorine et al, Science 245, 1118 (1989)). Therefore, it is clear that there 10
15 are substantial pharmacological differences between the fat cell β_{3A} -adrenergic receptor and the receptor described by Emorine et al. (L.J. Emorine et al, Science 245, 1118 (1989)).

20 The distribution of β -adrenergic receptor subtypes was determined as follows.

To further investigate the distribution of β -adrenergic receptor subtypes, poly (A)⁺ RNAs from various tissues were isolated and fractionated on a formaldehyde-agarose gel (Figure 4) (Fifteen μ g of poly (A)⁺ RNA from rat IBAT, epididymal white adipose tissue, brain, heart, ileum, liver and lungs were electrophoresed in an agarose gel containing formaldehyde as described [H. Lehrach, D. Diamond, J.M. Wozney, H. Boedtker, Biochem. 16, 4743 (1977)] and transferred to Gene Screen Plus membranes (Dupont/New England Nuclear) by capillary blotting. Rat β_1 -adrenergic receptor (Venter et al, unpublished), rat β - 25
30

adrenergic receptor (J. Gocayne et al, Proc. Natl. Acad. Sci. USA 84, 8296 (1987) and rat β_{3A} -adrenergic receptor cDNAs were labeled by random priming with [α - 32 P]-dCTP (Dupont/New England Nuclear) to specific activities of $\sim 1 \times 10^9$ dpm/ μ g DNA. RNA blots were hybridized overnight at 42°C in 45% formamide and 4X SSC (0.6M NaCl, 0.06M Na citrate) and then washed sequentially in a solution of 0.1X SSC, 0.1% sodium dodecyl sulfate at 55°C for 15 minutes followed by 60°C for 15 minutes.

Size estimates of RNA species were established by comparison with an RNA ladder. An mRNA species is detected at 3.1 kb with the β_1 -adrenergic receptor probe, at 2.3 kb with the β_2 -adrenergic receptor probe and at 2.3 kb with the β_{3A} -adrenergic receptor probe. Minor bands at 2.8, 3.8 and 4.6 kb are also detected with the β_{3A} -adrenergic receptor probe. As a control, an oligo (dT)₁₂₋₁₈ probe was labeled with [γ 32 P]-TTP using T4 polynucleotide kinase. Densitometric analysis of autoradiograms was performed with a high resolution densitometer. The values of the β -adrenergic receptor signals were normalized for the amount of poly (A)⁺RNA on the membranes with the corresponding oligo (dT) signal.

From the above experimentation, the distribution of β -adrenergic receptor subtypes in various tissues is as follows. β_1 -adrenergic receptor mRNA is present in brown and white adipose tissue, brain, heart and lung. β_2 -adrenergic receptor mRNA is also present in these tissues; however, with the exception of the lung, it is present at significantly lower levels. The β_{3A} -adrenergic receptor mRNA is abundant in brown adipose tissue, with no β_{3A} -receptor specific mRNA detectable

in brain, heart, ileum, liver or lung. White adipose tissue from rat (Figure 4) and human (data not shown) also contains an mRNA that hybridizes strongly with the β_{3A} -receptor cDNA probe.

It has been difficult to quantitate the atypical β -adrenergic receptor in adipose tissue since radiolabeled antagonists commonly used display significantly (up to 100-fold) greater affinities for β_1 - and β_2 -adrenergic receptor subtypes than for the atypical β -adrenergic receptor. However, under identical conditions using probes of similar specific activities, it was estimated that the β_{3A} -receptor mRNA is present in a 5-fold and 4-fold excess over β_1 -receptor mRNA in brown and white adipose tissue, respectively, whereas β_2 -receptor mRNA is virtually undetectable (data not shown). Thus, the relative amounts of receptor subtype-specific mRNA species suggest that the β_{3A} -adrenergic receptor, which is presumed to mediate lipolysis (U.R.S. Arch et al, Nature (London) 309, 163 (1984)), is the predominant β -receptor in adipose tissue.

Further to the above experimentation to determine receptor distribution and its effects on obesity, the following relates to normal vs. abnormalities in brown adipose tissue.

Numerous investigations have reported abnormalities in brown adipose tissue of hereditary obese animals (J. Himms-Hagen, Prog. Lip. Res. 28, 67 (1989)). In both obese (ob/ob) mice and (fa/fa) Zucker rats, the thermogenic response of brown adipose tissue to sympathetic stimulation is decreased as compared with lean controls (F. Assimacopoulos-Jeannet, J.P. Giacobino, J. Seydoux, L. Girardier, B. Jeanrenaud,

Endocrinol. 110, 439 (1982); A. Marette, A. Geloen, A. Collett and J. Bukowiecki, Am. J. Physiol. 258, E320 (1990)). In obese (fa/fa) Zucker rats, β -adrenergic stimulation of adenylyl cyclase is also reduced (P. Muzzin, J.P. Revelli, D. Ricquier, M.K. Meier, F. Assimacopoulos-Jeannet, J.P. Giacobino, Biochem. J. 261, 721 (1989)).

Since it is possible that the decrease in tissue responsiveness may reflect changes in β -adrenergic receptor expression, we examined the levels of β -adrenergic receptor mRNA in obese (fa/fa) Zucker rats and lean control (Fa/Fa) animals. Male obese (fa/fa) Zucker and lean (Fa/Fa) control rats (9 weeks old) were isolated and Northern blot analysis was performed. The Student's unpaired t-test was used to determine statistical significance.) . As shown in Figure 5, β_1 and β_2 -adrenergic receptor mRNA levels are unchanged in brown and white fat of obese rats. In contrast, the level of β_{3A} -adrenergic receptor mRNA is decreased by 60% and 71%, respectively, in brown and white fat of obese animals as compared with lean controls. The selective decrease in β_{3A} -adrenergic receptor could account for the observed catecholamine resistance of obese animals (P. Muzzin et al, Biochem. J. 261, 721 (1989)).

Accordingly, the β_{3A} -adrenergic receptor according to the present invention, which is expressed in adipose tissue differs significantly from β_1 -, β_2 -, and β_3 -adrenergic receptors previously described (C.A. Machida et al., J. Biol. hem. 265, 12960 (1990); F.Z. Chung et al., FEBS Lett. 211, 200 (1987)). Identification of this unique β -adrenergic receptor in adipose tissue of rats and humans and the demonstration that receptor

mRNA levels are markedly reduced in an animal model of genetic obesity provide a basis for detection and regulation of this receptor in physiological and pathological conditions in rodents and man.

5 As is clear from the above experimental data and comparisons between the present receptor polypeptide and that of the prior art, the present β_{3A} -adrenergic receptor and its applications are a significant advancement over the prior art. The advancements are
10 very useful to treat or study obesity.

10 The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can by applying current knowledge, readily modify and/or adapt for various
15 applications such specific embodiments without departing from the generic concept and therefore such adaptations are intended to be comprehended within the meaning and range of equivalents of the disclosed
20 embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description only and not of limitation.

-15-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: J. Craig Venter et al
- (ii) TITLE OF INVENTION: A FAT CELL SPECIFIC β -ADRENERGIC RECEPTOR
- (iii) NUMBER OF SEQUENCES: 1
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Lowe, Price, LeBlanc & Becker
 - (B) STREET: Suite 300, 99 Canal Center Plaza
 - (C) CITY: Alexandria
 - (D) STATE: Virginia
 - (E) COUNTRY: USA
 - (F) ZIP: 22314
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: DOS Text File
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/783602
 - (B) FILING DATE: 11/1/91
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: J.G. Mullins
 - (B) REGISTRATION NUMBER: 33073
 - (C) REFERENCE/DOCKET NUMBER: 717-098
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 703 684 1111

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Polypeptide

-16-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Ala Pro Trp Pro His Lys Asn Gly Ser Leu Ala Phe Trp Ser Asp
 1 5 10 15
 Ala Pro Thr Leu Asp Pro Ser Ala Ala Asn Thr Ser Gly Leu Pro Gly
 20 25 30
 Val Pro Trp Ala Ala Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Thr
 35 40 45
 Val Gly Gly Asn Leu Leu Val Ile Thr Ala Ile Ala Arg Thr Pro Arg
 50 55 60
 Leu Gln Thr Ile Thr Asn Val Phe Val Thr Ser Leu Ala Thr Ala Asp
 65 70 75 80
 Leu Val Val Gly Leu Leu Val Met Pro Pro Gly Ala Thr Leu Ala Leu
 85 90 95
 Thr Gly His Trp Pro Leu Gly Ala Thr Gly Cys Glu Leu Trp Thr Ser
 100 105 110
 Val Asp Val Leu Cys Val Thr Ala Ser Ile Glu Thr Leu Cys Ala Leu
 115 120 125
 Ala Val Asp Arg Tyr Leu Ala Val Thr Asn Pro Leu Arg Tyr Gly Thr
 130 135 140
 Leu Val Thr Lys Arg Arg Ala Arg Ala Ala Val Val Leu Val Trp Ile
 145 150 155 160
 Val Ser Ala Thr Val Ser Phe Ala Pro Ile Met Ser Gln Trp Trp Arg
 165 170 175
 Val Gly Ala Asp Ala Glu Ala Gln Glu Cys His Ser Asn Pro Arg Cys
 180 185 190
 Cys Ser Phe Ala Ser Asn Met Pro Tyr Ala Leu Leu Ser Ser Ser Val
 195 200 205
 Ser Phe Tyr Leu Pro Leu Leu Val Met Leu Phe Val Tyr Ala Arg Val
 210 215 220
 Phe Val Val Ala Lys Arg Gln Arg Arg Phe Val Arg Arg Glu Leu Gly
 225 230 235 240
 Arg Phe Pro Pro Glu Glu Ser Pro Arg Ser Pro Ser Arg Ser Pro Ser
 245 250 255
 Pro Ala Thr Val Gly Thr Pro Thr Ala Ser Asp Gly Val Pro Ser Cys
 260 265 270
 Gly Arg Arg Pro Ala Arg Leu Leu Pro Leu Gly Glu His Arg Ala Leu
 275 280 285
 Arg Thr Leu Gly Leu Ile Met Gly Ile Phe Ser Leu Cys Trp Leu Pro
 290 295 300
 Phe Phe Leu Ala Asn Val Leu Arg Ala Leu Val Gly Pro Ser Leu Val
 305 310 315 320
 Pro Ser Gly Val Phe Ile Ala Leu Asn Trp Leu Gly Tyr Ala Asn Ser
 325 330 335
 Ala Phe Asn Pro Leu Ile Tyr Cys Arg Ser Pro Asp Phe Arg Asp Ala
 340 345 350
 Phe Arg Arg Leu Leu Cys Ser Tyr Gly Gly Arg Gly Pro Glu Glu Pro
 355 360 365
 Arg Val Val Thr Phe Pro Ala Ser Pro Val Ala Ser Arg Gln Asn Ser
 370 375 380
 Pro Leu Asn Arg Phe Asp Gly Tyr Glu Gly Glu Arg Pro Phe Pro Thr
 385 390 395 400

Claims

1. A highly accurate and sensitive specific β -adrenergic receptor that mediates lipolysis.
2. A β -adrenergic receptor according to claim 1 having a polypeptide sequence according to SEQ ID NO:1.
3. A cloned cell encoding for a specific fat cell β -adrenergic receptor according to claim 1.
4. A cloned cell according to claim 3 which is obtained by cotransfection of CHO cells.
5. A cloned cell according to claim 4 which produces an adrenergic receptor having the sequence according to SEQ ID NO:1.
5. A diagnostic test for determining decreased levels of fat cell β -adrenergic receptors that mediate lipolysis according to claim 1 comprising detecting the level of a β -adrenergic receptor that mediates lipolysis and comparing it to a lean control host level in order to diagnosis obesity caused by less active lipolysis.
7. A diagnostic test according to claim 6 for determining decreased levels of a β -adrenergic receptor polypeptide having a sequence according to SEQ ID NO:1.

Human	B2	1	M	qQPGNgsaFLL	APNrShAPdHDvtQQRDeVwVVGMgIVMSL
Rat	B2	1	MEP	hGNdSdfLL	APNgSrAPgHDitQeRDEawVVGMaiIMSVI
Rat	B1	1	MGAGaLaLGASEP	CNLSSAAPLPDGAAATAARLLVIA	1
Human	B1	1	MGAGvLvLGASEP	qNLSSAAPLPDGAAATAARLLVPA	SQQWTAGMGLLmALI
Human	B3	1	MAPWPHENSSIAPWPD	1PTLaPntANTSGLP	GVPWeAALAG ALL ALA
Rat	B3	1	MAPWPHKNGSILAfWSD	aPTldPsaANTSGLP	GVPWaAALAG ALL ALA
		*			

Human	B2	44	VLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPPFGAAhILMKMWtFGNFNCFFWTS	
Rat	B2	44	VLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPPFGASHILMKMWnFGNFNCFFWTS	
Rat	B1	69	VLLIVvGNVLVIVIAIKTPRLQTLTNLFIMSLASADLVMGLLvvPFGATIVvWGRWEYGSFFCELWTS	
Human	B1	69	VLLIVaGNVLVIVIAIKTPRLQTLTNLFIMSLASADLVMGLLvvPFGATIVvWGRWEYGSFFCELWTS	
Human	B3	48	VLaTVGGGNLLVIVIAIAwTPRLQTMNTNVFTVTSLAaADLVMGLLvvPPaATLALTGHWPPLGATGCELWTS	
Rat	B3	48	TvGGGNLLVITAIARTPRLQTTINVFVTSLATADLvvGLLvvPPgATLALTGHWPPLGATGCELWTS	
		*		

Human	B2	112	IDVLCVTAISIETLCVIAVDRYfAITSPFKsQSLLTKNKARViILMVWIVSGLTSFLPIQMHWYR	ATH
Rat	B2	112	IDVLCVTAISIETLCVIAVDRYvAITSPFKYQSLLTKNKARVvILMVWIVSGLTSFLPIQMHWYR	ATH
Rat	B1	137	VDVLCVTAISIETLCVIALDRYLAIT1PFRYQSLLTTRARARALVCTVWAISALVSFLPILMHWWRaeSD	
Human	B1	137	VDVLCVTAISIETLCVIALDRYLAITSPFRYQSLLTTRARARGLVCTVWAISALVSFLPILMHWWRaeSD	
Human	B3	116	VDVLCVTAISIETLCAVDRYLAVTNPLRYGalVTKRCARTAVVIVWvvSAavSFAPIMSQWWRVGAD	
Rat	B3	113	VDVLCVTAISIETLCAVDRYLAVTNPLRYGtLVTKRrARAavVIVWivSATvSFAPIMSQWWRVGAD	
		*		

IV

FIG. 1A

III

Human	β2	179	qeAInCYAnETCCDFFTINQAYAIASSIVSFYVPLViMVFVYSRWFQeAKRQLQKIDKSEGRF
Rat	β2	179	kqAIdCYAKETCCDFFTINQAYAIASSIVSFYVPLVVMVFVYSRWFQvAKRQLQKIDKSEGRF
Rat	β1	204	DEARRCYNDPKCCDFVTNRAYAIASSIVSFYVPLCIMAFVYLRFREAQKQVKKIDSCCRFLtGPPR
Human	β1	204	DEARRCYNDPKCCDFVTINRAYAIASSIVSFYVPLCIMAFVYLRFREAQKQVKKIDSCCRFLtGPPR
Human	β3	184	AEAQRCHSNPRCCAFA\$NNMPYVLLSSSVSFYLP\$MLFVYARVFVVATRQ1R11RqELGRF PPEES
Rat	β3	181	AEAQeCHSNPRCCSFANMPYALLSSSVSFYLP\$MLFVYARVFVVAKRQRfFvREELGRF PPEES

[REDACTED]

V

Human	β2	241	QVEQHvQNLSQVEQDGRTGHGLRRS	SnFCLKEHKALKTIGIIMGFTLCLWLP
Rat	β2	241	HaQNLSQVEQDGFSGHGLRRSS	SkFCLKEHKALKTIGIIMGFTLCLWLP
Rat	β1	272	SPGPPRPA	DSLANGRSSKRPSSRLVALREQKALKTIGIIMGFTLCLWLP
Human	β1	272	PPSPSPSPvPAPAPPGGPPRPAaaaatAPLANGRAGKRPSSRLVALREQKALKTIGIIMGFTLCLWLP	VGTCAPPeGVACGRRPARLPLREHRACTLGLIMGTFTLCLWLP
Human	β3	251	PPaPS RS1APAP	[REDACTED]
Rat	β3	248	PrsPS RSpSSPA	tVGTptasdGVPScGRRPARLPLGEHRALETLGLIMGIIfSLCLWLP

[REDACTED]

VI

Human	β2	289	FFIVN IVHVIqANLIRKEVYILLNWIGVNNSqFNPLIYCRSPDFRIAFQELL	LRR SS
Rat	β2	289	FFIVN IVHVIrdNLIPKEVYILLNWLGYVNNSAFNPLIYCRSPDFRIAFQELL	LRR SS
Rat	β1	329	FFLAN VKAF HRdLVPDRLFVFFNWLGYANSAFNPIIYCRSPDFRKAFQrLLCCARRAACRR AaH	RRRhATH
Human	β1	340	FFLAN VKAF HRrLVPDRLFVFFNWLGYANSAFNPIIYCRSPDFRKAFQgLLCCARRAA RRRhATH	rcGRR
Human	β3	308	FFLANVLRALGGPSLVPgpaF1ALNWLGYANSAFNPLIYCRSPDFRSaFRRLLC	syGGR
Rat	β3	305	FFLANVRLVGPSSLVPSqyFiaLNWLGYANSAFNPLIYCRSPDFRDaFRRLLC	[REDACTED]

[REDACTED]

VII**FIG. 1B**

3/9

Human	B2	347	IKAYGNGYSSN	gnTGEQ	YhveQEKENKILCEdI	PGtEdFVghQGTVP	SdnIDSQGRNCsTN
Rat	B2	347	SKTYGNGYSSNsnGrtdyTGEQSAYqlgQEKENELLCEeaPGmEGFVnCQGTVP	S1S1DSQGRNCnTN			
Rat	B1	395	GDRPRASGCLARAaGPPPSPGAPSDDDDD	aGATPPARLIEPWAGCNGGtt	TVDSDSLDEPqrQGFs		
Human	B1	406	GDRPRASGCLARPGPPSPGAaSDDDDDvvGATPPARLIEPWAGCNGG	AaaDSDSLDEPcRpGEa			
Human	B3	367	1PPEPcaaARPAlePS	GvPA	arsspAqprlcqrlLDgvtgaeqP		
Rat	B3	364	9PeEP	RvvtfPaspvassrqnsplnrfdGyegegerpfpt			

Human	B2	409	DS1L
Rat	B2	404	DSPL
Rat	B1	457	SESKV
Human	B1	468	SESKV
Human	B3	402	a
Rat	B3		

FIG. 1C

4/9

FIG. 2

5/9

FIG. 3

6/9

FIG. 4A

FIG. 4B

FIG. 4C

SUBSTITUTE SHEET

7/9

FIG. 5

SUBSTITUTE SHEET

8/9

Met	Ala	Pro	Trp	Pro	His	Lys	Asn	Gly	Ser	Leu	Ala	Phe	Trp	Ser	Asp
1															15
Ala	Pro	Thr	Leu	Asp	Pro	Ser	Ala	Ala	Asn	Thr	Ser	Gly	Leu	Pro	Gly
															20
															25
Val	Pro	Trp	Ala	Ala	Ala	Leu	Ala	Gly	Ala	Leu	Ala	Leu	Ala	Thr	
															30
															35
Val	Gly	Gly	Asn	Leu	Leu	Val	Ile	Thr	Ala	Ile	Ala	Arg	Thr	Pro	Arg
50															40
															45
Leu	Gln	Thr	Ile	Thr	Asn	Val	Phe	Val	Thr	Ser	Leu	Ala	Thr	Ala	Asp
65															55
															60
Leu	Val	Val	Gly	Leu	Leu	Val	Met	Pro	Pro	Gly	Ala	Thr	Leu	Ala	Leu
85															70
															75
Thr	Gly	Gly	His	Trp	Pro	Leu	Gly	Ala	Thr	Gly	Cys	Glu	Leu	Trp	Ser
100															90
															95
Val	Asp	Val	Leu	Cys	Val	Thr	Ala	Ser	Ile	Glu	Thr	Leu	Cys	Ala	Leu
115															105
															110
Ala	Val	Asp	Arg	Tyr	Leu	Ala	Val	Thr	Asn	Pro	Leu	Arg	Tyr	Gly	Thr
130															120
															125
Leu	Val	Thr	Lys	Arg	Arg	Ala	Arg	Ala	Ala	Val	Val	Leu	Val	Trp	Ile
145															135
															140
Val	Ser	Ala	Thr	Val	Ser	Phe	Ala	Pro	Ile	Met	Ser	Gln	Trp	Trp	Arg
165															155
															150
Val	Gly	Ala	Asp	Ala	Glu	Ala	Gln	Glu	Cys	His	Ser	Asn	Pro	Arg	Cys
180															160
															170
Cys	Ser	Phe	Ala	Ser	Asn	Met	Pro	Tyr	Ala	Leu	Leu	Ser	Ser	Ser	Val
195															185
															190
															200
															205

FIG. 6A

9/9

Ser Phe Tyr Leu Pro Leu Leu Val Met Leu Phe Val Tyr Ala Arg Val
 210 215 220
 Phe Val Val Ala Lys Arg Gln Arg Arg Phe Val Arg Arg Glu Leu GLY
 225 230 235 240
 Arg Phe Pro Pro Glu Glu Ser Pro Arg Ser Pro Ser Arg Ser Pro Ser
 245 250 255
 Pro Ala Thr Val GLY Thr Pro Thr Ala Ser Asp GLy Val Pro Ser Cys
 260 265 270
 GLY Arg Arg Pro Ala Arg Leu Leu Pro Leu GLy GLu HIS Arg Ala Leu
 275 280 285
 Arg Thr Leu GLy Leu Ile Met GLy Ile Phe Ser Leu Cys Trp Leu Pro
 290 295 300
 Phe Phe Leu Ala Asn Val Leu Arg Ala Leu Val GLy Pro Ser Leu Val
 305 310 315 320
 Pro Ser Gly Val Phe Ile Ala Leu Asn Trp Leu GLy Tyr Ala Asn Ser
 325 330 335
 Ala Phe Asn Pro Leu Ile Tyr Cys Arg Ser Pro Asp Phe Arg Asp Ala
 340 345 350
 Phe Arg Arg Leu Leu Cys Ser Tyr GLy GLy Arg GLY Pro Glu Glu Pro
 355 360 365
 Arg Val Val Thr Phe Pro Ala Ser Pro Val Ala Ser Arg Gln Asn Ser
 370 375 380 385
 Pro Leu Asn Arg Phe Asp GLy Tyr GLu GLy GLu Arg Pro Phe Pro Thr
 390 395 400

FIG. 6B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US92/09379

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :C07K 13/00; C12N 5/10; C12Q 1/68

US CL :530/350; 435/240.2, 6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 530/350; 435/240.2, 6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cas online, aps, medline, biosis**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	Science, Volume 245, issued 08 September 1989, L. J. Emorine et al., "Molecular Characterization of the Human Beta-3-Adrenergic Receptor", pages 1118-1121, entire document.	1,3-4 —
y	Nature, Volume 309, issued 10 May 1984, J. R. S. Arch et al., "Atypical Beta-adrenoceptor on Brown Adipocytes as Target for Anti-Obesity Drugs", pages 163-165, entire document.	2,5-7 2,5-7

 Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be part of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

04 January 1993

Date of mailing of the international search report

26 JAN 1993

Name and mailing address of the ISA/
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer

KENNETH R. HORLICK

Facsimile No. NOT APPLICABLE

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet)(July 1992)*

