ML/DL for Everyone Season2

04 - Multi-variable linear regression

다변수 선형 회기 Lecturer: 이승준 plusjune@financedata.kr

Recap

Hypothesis

Cost function

Gradient descent

Recap

Hypothesis

$$H(x) = Wx + b$$

Gradient descent

$$W := W - lpha rac{1}{m} \sum_{i=1}^m \left(W(x_i) - y_i
ight) x_i$$

Predicting exam score:

regression using one input (x)

One-variable (One-feature)

x (hours)	y (score)
10	90
9	80
3	50
2	60
11	40

Predicting exam score:

regression using three inputs (x1, x2, x3)

Multi-variable (Multi-feature)

x ₁ (quiz 1)	x ₂ (quiz 2)	x ₃ (midterm 1)	y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

Hypothesis

$$H(x) = Wx + b$$

Hypothesis

$$H(x) = Wx + b$$

$$H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3+b_1$$

변수가 늘어난 개수만큼 가중치(x)의 개수도 늘어나

Cost function

$$H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3+b$$

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_1, x_2, x_3) - y_i)^2$$

Multi-variable

$$H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3+b$$

$$H(x_1,x_2,x_3,\ldots,x_n)=w_1x_1+w_2x_2+w_3x_3+\ldots+w_nx_n+b$$

Matrix

$$w_1x_1 + w_2x_2 + w_3x_3 + \ldots + w_nx_n$$

Matrix multiplication

$$w_1x_1 + w_2x_2 + w_3x_3 + \ldots + w_nx_n$$

$$egin{pmatrix} \left(egin{array}{ccc} x_1 & x_2 & x_3 \end{array}
ight) \cdot \left(egin{array}{c} w_1 \ w_2 \ w_3 \end{array}
ight) = \left(egin{array}{c} x_1 w_1 + x_2 w_2 + x_3 w_3 \end{array}
ight)$$

$$H(X) = XW$$

일반적으로 메트릭스는 대문자

행과 열을 연산하기 때문에 X가 앞에 온다

X ₁	X ₂	X ₃	у
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

$$H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3$$

Test Scores for General Psychology

X ₁	X ₂	X ₃	у
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

$$H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3$$

$$egin{pmatrix} \left(egin{array}{ccc} x_1 & x_2 & x_3 \end{array}
ight) \cdot \left(egin{array}{c} w_1 \ w_2 \ w_3 \end{array}
ight) = \left(egin{array}{c} x_1 w_1 + x_2 w_2 + x_3 w_3 \end{array}
ight)$$

$$H(X) = XW$$

Many x instances

X ₁	X ₂	X ₃	у
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

$$egin{pmatrix} \left(egin{array}{ccc} x_1 & x_2 & x_3 \end{array}
ight) \cdot \left(egin{array}{c} w_1 \ w_2 \ w_3 \end{array}
ight) = \left(egin{array}{c} x_1 w_1 + x_2 w_2 + x_3 w_3 \end{array}
ight)$$

Test Scores for General Psychology

X ₁	X ₂	X ₃	у
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

매트릭스를 사용하면 데이터의 개수가 많든 적든 상관 없다

$$w_1x_1 + w_2x_2 + w_3x_3 + \ldots + w_nx_n$$

$$egin{pmatrix} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \ x_{31} & x_{32} & x_{33} \ x_{41} & x_{42} & x_{43} \ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot egin{pmatrix} w_1 \ w_2 \ w_3 \end{pmatrix} = egin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

$$H(X) = XW$$

$$egin{pmatrix} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \ x_{31} & x_{32} & x_{33} \ x_{41} & x_{42} & x_{43} \ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot egin{pmatrix} w_1 \ w_2 \ w_3 \end{pmatrix} = egin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$
 $egin{pmatrix} [5, 3] & [3, 1] & [5, 1] \end{bmatrix}$
 $egin{pmatrix} [5, 1] & [5, 1] \end{bmatrix}$

$$\begin{pmatrix} \mathbf{X} \end{pmatrix} \times \begin{pmatrix} \mathbf{W} \end{pmatrix} = \begin{pmatrix} \mathbf{H}(\mathbf{X}) \end{pmatrix}$$

$$[5, 3] \quad [?, ?] \quad [5, 1]$$

$$H(X) = XW$$

$$egin{pmatrix} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \ x_{31} & x_{32} & x_{33} \ x_{41} & x_{42} & x_{43} \ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot egin{pmatrix} w_1 \ w_2 \ w_3 \end{pmatrix} = egin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

$$[n,3]$$
 $[3,1]$ $[n,1]$ $H(X)=XW$

Hypothesis using matrix (n output)

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \qquad = \begin{pmatrix} x_{11}w_{11} + x_{12}w_{21} + x_{13}w_{31} & x_{11}w_{12} + x_{12}w_{22} + x_{13}w_{32} \\ x_{21}w_{11} + x_{22}w_{21} + x_{23}w_{31} & x_{21}w_{12} + x_{22}w_{22} + x_{23}w_{32} \\ x_{31}w_{11} + x_{32}w_{21} + x_{33}w_{31} & x_{31}w_{12} + x_{32}w_{22} + x_{33}w_{32} \\ x_{41}w_{11} + x_{42}w_{21} + x_{43}w_{31} & x_{41}w_{12} + x_{42}w_{22} + x_{43}w_{32} \\ x_{51}w_{11} + x_{52}w_{21} + x_{53}w_{31} & x_{51}w_{12} + x_{52}w_{22} + x_{53}w_{32} \end{pmatrix}$$

Weight의 크기는 입력 데이터의 column 개수와 출력 데이터와 column 개수에 따라 결정

변수(feature)의 개수, 출력의 개수
$$H(X)=XW$$

Hypothesis using matrix (n output)

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{pmatrix} = \begin{pmatrix} x_{11}w_{11} + x_{12}w_{21} + x_{13}w_{31} & x_{11}w_{12} + x_{12}w_{22} + x_{13}w_{32} \\ x_{21}w_{11} + x_{22}w_{21} + x_{23}w_{31} & x_{21}w_{12} + x_{22}w_{22} + x_{23}w_{32} \\ x_{31}w_{11} + x_{32}w_{21} + x_{33}w_{31} & x_{31}w_{12} + x_{32}w_{22} + x_{33}w_{32} \\ x_{41}w_{11} + x_{42}w_{21} + x_{43}w_{31} & x_{41}w_{12} + x_{42}w_{22} + x_{43}w_{32} \\ x_{51}w_{11} + x_{52}w_{21} + x_{53}w_{31} & x_{51}w_{12} + x_{52}w_{22} + x_{53}w_{32} \end{pmatrix}$$

[n, 3] [3, 2] [n, 2]

$$H(X) = XW$$

입력 개수와 출력 개수에 상관없이 우리의 가설(H(x))은 항상 XW로 변함이 없다

WX vs XW

Lecture (theory)

$$H(x) = Wx + b$$

 $h_{ heta}(x)=rac{2lpha_0}{ heta_1x+ heta_0}$ f(x)=ax+b

Implementation (TensorFlow)

$$H(X) = XW$$

텐서플로우 코드에서는 matrix의 곱으로 XW로 씀

What's Next?

Logistic (Regression) Classification