Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Group 1030

Modeller

Introduktion

Rensning af spildevand Problemformulering

System beskrivelse

Løsninger og afgrænsninger

Modeller

Simulering

Struktur

Preissmann Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Rensning af spildevand

Agenda

Group 1030

Rensning af spildevand

Modeller

Agenda

Group 1030

ntroduktion

Rensning af spildevand

Desiring at opticion

System beskrivels

Løsninger og

afgrænsninger

Modellor

Modeller

Simularia

Simulem

Preissmann

Implemente

Kontrol

Linearisering MPC

Resultat

Diskussion/Konklusion

Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.

Agenda

Group 1030

itroduktion

Rensning af spildevand

Problemformuleri

System beskrivels

Løsninger og afgrænsninger

Maritalia

Modeller

Simulerin

Jilliuleilli

Draicem

Implementer

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

- Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Agenda

Group 1030

Rensning af spildevand

Diskussion/Konklusion

- Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier

Agenda

Group 1030

Rensning af spildevand

Diskussion/Konklusion

Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.

- Større udledninger uden varsel
- Problemer for aerobe bakterier
- Andre forstyrrelser

Problemformulering

Agenda

Group 1030

Problemformulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Rensning af spildevar

System beskrivelse

Løsninger og

Modeller

Simularia

Oterulatura

Preissman

Implemente

Kontrol

Linearisering MPC

Resultat

Diskussion/Konklusion

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Rensning af spildevar Problemformulering

System beskrivelse

Løsninger og

Modeller

Simulerin

Charleton

Preissmann

...

Lineariserin

Resultat

Diskussion/Konklusio

Data fra industri

 Flow profiler af beboelse og mindre industri

Løsninger og afgrænsninger

Agenda

Group 1030

ntroduktion

Rensning af spildeva

Problemformuler

System beskrivelse Løsninger og afgrænsninger

afgrænsninger

Modeller

Simulering

Struktur

Implemente

Kontro

Lineariserin

Resultat

Diskussion/Konklusion

► Indsættelse af tank

Løsninger og afgrænsninger

Agenda

Group 1030

ntroduktion

Rensning af spildevar

Problemformule

System beskrivelse Løsninger og afgrænsninger

Modeller

Simulering

Ommulerin

Preissmann

Implemente

Kontro

Lineariserin

Resultat

Diskussion/Konklusion

- Indsættelse af tank
- ► Enkelt kemisk komponent

Løsninger og afgrænsninger

Agenda

Group 1030

ntroduktion

Rensning af spildevar

Problemformule

System beskrivelse Løsninger og afgrænsninger

Modeller

Cinculation

Simulemin

Preissmann

Implemente

Kontro

Lineariserin

Resultat

Diskussion/Konklusion

Indsættelse af tank

Enkelt kemisk komponent

Runde kloakrør

Agenda

Group 1030

System beskrivelse

Modeller

Simulering

Kloakledning

► Transport af koncentrat i kloakledning

Sammenkobling af kloakledninger

Agenda

Group 1030

Modeller

Diskussion/Konklusion

Kloakledning

Saint-Venant

Kontinuitet:
$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial \chi}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right)$$

Transport af koncentrat i kloakledning

Sammenkobling af kloakledninger

Agenda

Group 1030

Modeller

Kloakledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{4A}\frac{\partial Q}{\partial t} + \frac{1}{4A}\frac{\partial}{\partial t}\left(\frac{Q^2}{A}\right)$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

- Afhænger af flow i kloakledning
- Antagelser
- Sammenkobling af kloakledninger

Agenda

Group 1030

Modeller

Kloakledning

Saint-Venant

Antagelser

► Kontinuitet: Impuls:

 $\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$

$$\left(\frac{Q^2}{\Lambda}\right)$$

$$\left(\frac{Q^2}{A}\right) + \frac{\partial P}{\partial x}$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

▶ Transport af koncentrat i kloakledning

Afhænger af flow i kloakledning

Antagelser

Sammenkobling af kloakledninger

Summering af flow og koncentrat

Antagelser

Agenda

Group 1030

Modeller

Kloakledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right)$$

$$\frac{1}{4}\left(\frac{Q^{2}}{A}\right)$$

$$\left(\frac{Q}{A}\right)$$

$$\left(\frac{P}{A}\right) + \frac{\partial n}{\partial x} + S_f - S_f$$

Transport af koncentrat i kloakledning

- Afhænger af flow i kloakledning
- Antagelser
- Sammenkobling af kloakledninger
 - Summering af flow og koncentrat
 - Antagelser
- Tank
 - Ændring i højde og koncentrat
 - Antagelser

Agenda

Group 1030

ntroduktion

Rensning af spildevar

1 Toblemior malering

System beskrivelse

Løsninger og

afgrænsninge

Modeller

Simulering

Struktur

reissmann

Implementering

Implementering

Kontrol

Linearisering MPC

Resultat

Diskussion/Konklusion

► Intialisering

Agenda

Group 1030

ntroduktion

Rensning af spildevar

Problemformuler

System beskrivelse

afgrænsninger

Modeller

Simulering

Struktur

1 1010011101111

mplementerin

Kontrol

Lineariserin

Dogultot

Diskussion/Konklusior

Intialisering

Opsætning af komponenter

Agenda

Group 1030

ntroduktior

Rensning af spildevar

Problemformuler

System beskrivelse

afgrænsninger

Modeller

Simulering Struktur

Diraktar

mplementerin

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- ► System i steady state

Agenda

Group 1030

ntroduktio

Rensning af spildevar

Problemformule

System beskrivelse

afgrænsninge

Modeller

Simulering

Struktur

Preissmann

Implementaring

IIIpioilioilioili

Kontrol

MPC

Resultat

Diskussion/Konklusio

Intialisering

- Opsætning af komponenter
- ► System i steady state
- Simulering

Agenda

Group 1030

Modeller

Struktur

Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

Iterativ beregning af komponenterne

Agenda

Group 1030

ntroduktio

Rensning af spildevar

Problemformulei

System beskriver

afgrænsninge

01...

Struktur

Preissmann

Implementerin

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

► Intialisering

- Opsætning af komponenter
- System i steady state
- Simulering
 - Iterativ beregning af komponenterne
- ► Gennemgang af resultat

Preissmann

Agenda

Group 1030

System beskrivelse

Modeller

Simulering

Preissmann

► Kinematisk bølge approksimation

$$ightharpoonup S_b = S_f$$

► Fyldningsgrads kurve for rør

Group 1030

System beskrivelse

Modeller

Preissmann

Kontrol

Resultat

Preissmann stabilitet

Agenda

Group 1030

ntroduktion

Rensning af spildevan

Problemformuler

System beskrivelse

Løsninger og afgrænsninger

Modeller

. . . .

Simulering

Preissmann

Implementer

Implemente

Lineariserin

Resultat

Diakussian/Kanklusian

Ubetinget stabilitet

Courant's tal

Agenda

Group 1030

ntroduktion

Rensning af spildevar

Problemformule

System beskrivelse

Løsninger og

afgrænsninger

Modeller

Simulering

Struktur

Preissmann

Implementer

Implemente

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusior

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}}} \cdot \Delta t}{\Delta x}$$

Group 1030

Introduktio

Rensning af spildeva

Problemiormuleri

System beskrivels

Løsninger og

Modeller

Cincillania

Ommunom

Preissmann

Implemente

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

Group 1030

Introduktio

Rensning af spildeva

Problemiormulerin

System beskrivels

Løsninger og

Modeller

Cinculation

Preissmann

Implementer

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

Group 1030

System beskrivelse

Modeller

Simulering

Implementering

Resultat

► Implementering

Kontrol

Resultater

Diskussion/Konklusion

Group 1030

atroduktion

Rensning af spildevar

Problemformuler

System beskrivelse

Løsninger og

atgrænsninger

Modeller

Simulering

Struktur

Implementering

Kontrol

Linearisering MPC

Resultat

Diskussion/Konklusion

Group 1030

Implementering

Diskussion/Konklusion

1. Rør

- Længde [m]
- Sektioner
- S_b (Hældning) [‰]
- $\Delta x = Længde/Sektioner [m]$
- Diameter [m]
- Theta
- $ightharpoonup Q_f[m^3/s]$
- Side inflow
- Placering i data

2. Tank

- ▶ Størrelse [m³]
- ► Højde [m]
- ► Areal = Størrelse / Højde [m²]
- ► Maksimum outflow [m³/s]
- Placering i data

Group 1030

ntroduktio

Rensning af spildevand

System beskrivelse

afgrænsninge

aigreonomige

Modeller

Simulerin

Struktur

Implementering

implementering

Kontrol

Linearisering MPC

Resultat

Diekussion/Konklusion

► Steady state

► System opsætning

Fields	type type	□ component	sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	17	207
4	'Tank'	1	1
5	'Pipe'	1	38
6	'Total'	21	282

Group 1030

ntroduktion

Rensning af spildeva

Problemformule

System beskrivels

Løsninger og

Modeller

....

Simulering

Struktur

Preissmann

Implementering

Mandaal

Linearisering

Pocultat

Diskussion/Konklusion

Beregner parameter for hvert tidsskridt

Group 1030

ntroduktio

Rensning af spildevan

System beskrivels

Løsninger og

Modeller

Cian desir

Otroletor

Desiren

Implementering

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusio

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

Linearisering

Resultat

Diskussion/Konklusion

Lineær model til MPC

Linearisering af kontinuitets ligningen

Højde states

Preissmann scheme

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

ntroduktion

Rensning af spildevan

System beskrivels

Løsninger og

argreeneminger

Modeller

Simulem

Struktur

Preissmann

Implemente

Kontro

Linearisering

MPC

Resultat

Diskussion/Konklusion

► Opstilles på state space form

$$\left[\underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{b}\right] \begin{bmatrix} h_{j+1}^{j+1} \\ h_{j+1}^{j+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{c} \underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix}$$

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

atradulation

Rensning af spildevar

Problemformuler

System beskrivels

Løsninger og

Modeller

Cimularia

Simulemi

Olluktu

Implementer

Kontro

Linearisering

Resultat

Diskussion/Konklusion

$$\underbrace{ \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & b_1 & 0 & \cdots & 0 \\ 0 & a_1 & b_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & a_{m-1} & b_m \end{bmatrix}}_{\xi} \underbrace{ \begin{bmatrix} h_0^{i+1} \\ h_1^{i+1} \\ h_2^{i+1} \\ \vdots \\ h_m^{i+1} \end{bmatrix}}_{x(k+1)} = \underbrace{ \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ c_0 & d_1 & 0 & \cdots & 0 \\ 0 & c_1 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & c_{m-1} & d_m \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)} - \underbrace{ \begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}$$

$$\underbrace{\begin{bmatrix} 1 \\ -a_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B} h_0^{i+1} + \underbrace{\begin{bmatrix} \frac{\overrightarrow{aQ}}{\overrightarrow{QQ}} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B_d} d_0^{i+1}$$

Group 1030

Introduktio

Rensning af spildevar

Problemformulering

System beskrivels

Løsninger og

Modeller

Simularia

011011101

Implementer

Kontro

Linearisering

Resultat

► e - Forøgelse af højde i tank(inflow)

► f - Reducering af højde i tank(Outflow)

► g - Inflow i efterfølgende rør

$$\begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix} \underbrace{\begin{bmatrix} h_{1,2}^{l+1} \\ h_{tank}^{l+1} \\ h_{2,0}^{l+1} \\ h_{2,1}^{l+1} \end{bmatrix}}_{\chi(k+1)}$$

$$= \underbrace{\begin{bmatrix} d_{1,2} & 0 & 0 & 0 \\ e & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c_{2,0} & d_{2,1} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} h_{1,2}^{l} \\ h_{2,0}^{l} \\ h_{2,0}^{l} \\ h_{2,1}^{l} \end{bmatrix}}_{\chi(k)} + \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix}}_{B} \begin{bmatrix} h_{0}^{l+1} \\ u_{tank} \end{bmatrix}$$

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktion

Rensning af spildevar

Problemformule

System beskrivelse

Løsninger og afgrænsninge

Modeller

Simulering

Struktur

landaman.

implemente

KOHITO

Linearisering MPC

Resulta

....

Diskussion/Konklusion

► Samligning af ulineær og lineær model for små forstyrrelser

- ► System setup
- Sinus input

Type	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

ntroduktion

Rensning af spildevand

System beskrivels

Løsninger og

Modeller

Simulem

Struktu

Implemente

Kontro

Linearisering

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktion

Rensning af spildevar

Problemformule

System beskrivelse

Løsninger og afgrænsninger

afgrænsninger

Modeller

Simulering

Ominaicini

Struktur

Preissmann

Implementer

Kontro

Lineariserin MPC

D

Resultat

Diskussion/Konklusion

► Cost funktion

- Afgrænset til at minimiere flow variationer
- ▶ Constraints
 - ► Højde
 - Kontrol input
- Prediktions model

Group 1030

ntroduktion

Rensning af spildevand

System beskrivels

afgrænsninge

Modeller

Simulerin

Struktur

Preissman

Implemente

Kontro

MPC

Resultat

Diskussion/Konklusion

 Begrænset i længde af prediktions horisont

- System setup
- ► Forstyrrelses input

Fields	type type	component	⊞ sections
1	'Pipe'	1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

Height [m]

0.32

0,31

0,30

00:00

Group 1030

ntroduktion

Rensning af spildevand

System beskrivels

Løsninger og afgrænsninger

Modeller

Simulering

Omnulcing

Strukt

Implemente

Kontr

Linearise MPC

Resultat

Diskussion/Konklusion

Tank højde

Dept. of Electronic Systems Aalborg University Denmark

ntroduktio

Rensning af spildevand

System beskrivels

Løsninger og

Modeller

01-1-1-1-

Simulerin

Struktur

Implemente

Kontr

Linearise MPC

Resultat

Diskussion/Konklusion

Input højde i rør efter tank

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Rensning af spildevar

Problemformuler

System beskrivelse

afgrænsninger

Modeller

Simularin

Struktur

Implementeri

Kontro

Lineariserin

Resultat

Diskussion/Konklusion

 System setup, efterligning af Fredericia

► Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

ntroduktion

Rensning af spildevand

System beskrivels

Løsninger og

afgrænsninger

Modeller

Simulering

Struktur

Implemente

Kontrol

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Modeller

Simulering

Kontrol

Resultat

Diskussion/Konklusion

Agenda

Group 1030

ntroduktion

Rensning af spildevar

Problemformule

System beskrivelse

afgrænening

Modeller

Simulering

Ominaicini

Droicemann

I reissinanii

Kontro

Linearisering

Resultat

Diskussion/Konklusion 35

- ► Courant's tal
- ► Model reduktion
- Simulering
- ► MPC