Naïve Discriminative Learning:

Theoretical and Experimental Observations

Stefan Evert¹ & Antti Arppe²

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany stefan.evert@fau.de

> ²University of Alberta, Edmonton, Canada arppe@ualberta.ca

QITL-6, Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 1 / 53

Naïve Discriminative Learning

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 2 / 53

Naïve Discriminative Learning

Objectives

- Explain the mathematical foundations of Naïve Discriminative Learning (NDL) in one place and in a consistent way
- Highlight the theoretical similarities of NDL with linear/logistic regression and the single-layer perceptron
- Present some empirical simulations of stochastic NDL learners, in light of the theoretical insights

Tübingen, 6 Nov 2015 3 / 53 Tübingen, 6 Nov 2015 4 / 53

Naïve Discriminative Learning

Naïve Discriminative Learning

• Baayen (2011); Baayen et al. (2011)

- Incremental learning equations for direct associations between cues and outcomes (Rescorla and Wagner 1972)
- Equilibrium conditions (Danks 2003)
- Implementation as R package ndl (Arppe et al. 2014)

Naive: cue-outcome associations estimated separately for each outcome (this independence assumption is

similar to a naive Bayesian classifier)

Discriminative: cues predict outcomes based on total activation

level = sum of direct cue-outcome associations

Learning: incremental learning of association strengths

Tübingen, 6 Nov 2015

Naïve Discriminative Learning

Danks (2003) equilibrium conditions

- Presume an ideal stable "adult" state, where all cue-outcome associations have been fully learnt – further data points should then have no impact on the cue-outcome associations
- Provide a convenient short-cut to calculating the final cue-outcome association weights resulting from incremental learning, using relatively simple matrix algebra
- Most learning parameters of the Rescorla-Wagner equations drop out of the Danks equilibrium equation
- Circumvent the problem that a simulation of an R-W learner does usually not converge to a stable state unless the learning rate is gradually decreased

Naïve Discriminative Learning

The Rescorla-Wagner equations (1972)

Represent incremental associative learning and subsequent on-going adjustments to an accumulating body of knowledge.

Changes in cue-outcome association strengths:

- No change if a cue is not present in the input
- Increased if the cue and outcome co-occur
- Decreased if the cue occurs without the outcome
- If outcome can already be predicted well (based on all input cues), adjustments become smaller

Only results of incremental adjustments to the cue-outcome associations are kept - no need for remembering the individual adjustments, however many there are.

Naïve Discriminative Learning

Traditional vs. linguistic applications of R-W

- Traditionally: simple controlled experiments on item-by-item learning, with only a handful of cues and perfect associations
- Natural language: full of choices among multiple possible alternatives - phones, words, or constructions - which are influenced by a large number of contextual factors, and which often show weak to moderate tendencies towards one or more of the alternatives rather than a single unambiguous decision
- These messy, complex types of problems are a key area of interest in modeling and understanding language use
- Application of R-W in the form of a Naïve Discriminative Learner to such linguistic classification problems is sucessful in practice and can throw new light on research questions

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015

Naïve Discriminative Learning

Introduction

An example

Related work

- R-W vs. perceptron (Sutton and Barto 1981, p. 155f)
- R-W vs. least-squares regression (Stone 1986, p. 457)
- R-W vs. logistic regression (Gluck and Bower 1988, p. 234)
- R-W vs. neural networks (Dawson 2008)
- similarities are also mentioned by many other authors ...

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 9 / 53

Simple vs. complex settings – QITL-1 revisited

- Arppe and Järvikivi (2002, 2007)
- Person (FIRST PERSON SINGULAR or not) and Countability (COLLECTIVE or not) of AGENT/SUBJECT of Finnish verb synonym pair miettiä vs. pohtia 'think, ponder':

Forced-choice		Frequency	Acceptability	
Dispreferred	Preferred	(relative)	Unacceptable	Acceptable
Ø	miettiä+SG1 pohtia+COLL	Frequent	Ø	miettiä+SG1 pohtiaä+COLL
miettiä+COLL pohtia+SG1	Ø	Rare	miettiä+COLL	pohtia+SG1

Outline

Introduction

- Naïve Discriminative Learning
- An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression

Insights

- Theoretical insights
- Empirical observations
- Conclusion

An example

QITL-1 through the lens of NDL

Tübingen, 6 Nov 2015 11 / 53

Tübingen, 6 Nov 2015

Introduction An example

QITL-1 through the lens of QITL-6

(courtesy of Dagmar Divjak)

An example

QITL-4 revisited - NDL vs. statistical classifiers

	\	7	200118201
	$\lambda_{prediction}$	$ au_{classification}$	accuracy
Polytomous logistic regression	0.447	0.516	0.646
(One-vs-rest)			
Polytomous mixed logistic regression			
(Poisson reformulation)			
• 1 Register	0.435	0.505	0.638
• 1 Genre	0.433	0.504	0.637
• 1 Lexeme	0.428	0.499	0.634
 1 Register + 1 Lexeme 	0.431	0.502	0.636
Support Vector Machine	0.414	0.487	0.625
Memory-Based Learning	0.287	0.376	0.543
(TiMBL)			
Random Forests	0.445	0.515	0.645
Naive Discriminative Learning	0.442	0.511	0.642

Table: Classification diagnostics for models fitted to the English data set (n = 909).

Simple vs. complex settings – QITL-2 revisited

Tübingen, 6 Nov 2015 14 / 53

The Rescorla-Wagner equations

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

S. Evert & A. Arppe Tübingen, 6 Nov 2015 15 / 53 Tübingen, 6 Nov 2015 16 / 53

The Rescorla-Wagner equations

- Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues C_1, \ldots, C_n
- An event (c, o) is formally described by indicator variables

$$c_i = egin{cases} 1 & ext{if } C_i ext{ is present} \ 0 & ext{otherwise} \end{cases} \quad o = egin{cases} 1 & ext{if } O ext{ results} \ 0 & ext{otherwise} \end{cases}$$

• Given cue-outcome associations $\mathbf{v} = (V_1, \dots, V_n)$ of learner, the activation level of the outcome O is

$$\sum_{j=1}^{n} c_j V_j$$

• Associations $\mathbf{v}^{(t)}$ as well as cue and outcome indicators $(\mathbf{c}^{(t)}, o^{(t)})$ depend on time step t

Tübingen, 6 Nov 2015 18 / 53

The Rescorla-Wagner equations

The Widrow-Hoff rule

• The W-H rule (Widrow and Hoff 1960) is a widely-used simplification of the R-W equations:

$$\Delta V_{i} = \begin{cases} 0 & \text{if } c_{i} = 0 \\ \beta \left(1 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 1 \\ \beta \left(0 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 0 \end{cases}$$
$$= c_{i}\beta \left(o - \sum_{j=1}^{n} c_{j} V_{j}\right)$$

with parameters

target activation level for outcome O $\lambda = 1$

 $\alpha_i = 1$ salience of cue C_i

global learning rate for positive and $\beta_1 = \beta_2$ $=\beta>0$ negative events

Tübingen, 6 Nov 2015

The Rescorla-Wagner equations

 Rescorla and Wagner (1972) proposed the R-W equations for the change in associations given an event (\mathbf{c}, o) :

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \alpha_i \beta_1 \left(\lambda - \sum_{j=1}^n c_j V_j\right) & \text{if } c_i = 1 \land o = 1\\ \alpha_i \beta_2 \left(0 - \sum_{i=1}^n c_i V_i\right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

with parameters

 $\lambda > 0$ target activation level for outcome O

 $\alpha_i > 0$ salience of cue C;

 $\beta_1 > 0$ learning rate for positive ovents (o = 1)

learning rate for negative ovents (o = 0) $\beta_2 > 0$

The Rescorla-Wagner equations

A simple example: German noun plurals

t	word	o pl?	c ₁ -e	c ₂	c ₃	c ₄ umlaut	c ₅	c ₆
1	Bäume	1	1	0	0	1	0	1
2	Flasche	0	1	0	0	0	0	1
3	Baum	0	0	0	0	0	0	1
4	Gläser	1	0	0	0	1	0	1
5	Flaschen	1	0	1	0	0	0	1
6	Latte	0	1	0	0	0	1	1
7	Hütten	1	0	1	0	1	1	1
8	Glas	0	0	0	1	0	0	1
9	Bäume	1	1	0	0	1	0	1
10	Füße	1	1	0	0	1	0	1

The Rescorla-Wagner equations

	Μ	lat	hen

The Rescorla-Wagner equations

A simple example: German noun plurals

t 10	$\begin{array}{c c} \sum c_j V_j \\ .882 \end{array}$	<i>V</i> ₁ .077	V ₂ .217	<i>V</i> ₃ 070	.464	<i>V</i> ₅ −.038	<i>V</i> ₆ .340
Füße	1 0	1	0	0	1	0	1
	0	<i>C</i> ₁	C 2	C 3	C4	C 5	<i>C</i> ₆

The Rescorla-Wagner equations

A stochastic NDL learner

Effect of the learning rate β

A stochastic NDL learner

- A specific event sequence $(\mathbf{c}^{(t)}, o^{(t)})$ will only be encountered in controlled experiments
- For applications in corpus linguistics, it is more plausible to assume that events are randomly sampled from a population of event tokens $(\mathbf{c}^{(k)}, o^{(k)})$ for $k = 1, \dots, m$
 - event types listed repeatedly proportional to their frequency
- I.i.d. random variables $\mathbf{c}^{(t)} \sim \mathbf{c}$ and $o^{(t)} \sim o$
 - $lacktright{f c}$ distributions of ${f c}$ and o determined by population
- NDL can now be trained for arbitrary number of time steps, even if population is small (as in our example)
 - study asymptotic behaviour of learners
 - ► convergence → stable "adult" state of associations

Tübingen, 6 Nov 2015 22 / 53

The Rescorla-Wagner equations

A stochastic NDL learner

Effect of the learning rate β

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 23 / 53

Outline

- - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

The Danks equilibrium

Expected activation levels

$$\mathrm{E}[\Delta V_j^{(t)}] = \beta \cdot \left(\mathrm{Pr}(C_i, O) - \sum_{j=1}^n \mathrm{Pr}(C_i, C_j) \mathrm{E}[V_j^{(t)}] \right)$$

Expected activation levels

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_i^{(t)}]$

$$\mathrm{E}ig[V_{j+1}^{(t)}ig] = \mathrm{E}ig[V_j^{(t)}ig] + \mathrm{E}ig[\Delta V_j^{(t)}ig]$$

$$E[\Delta V_j^{(t)}] = E\left[c_i\beta(o - \sum_{j=1}^n c_j V_j^{(t)})\right]$$
$$= \beta \cdot \left(\Pr(C_i, O) - \sum_{j=1}^n \Pr(C_i, C_j) E[V_j^{(t)}]\right)$$

- ullet c_i and c_j are independent from $V_i^{(t)}$
- indicator variables: $E[c_i o] = Pr(C_i, O)$; $E[c_i c_i] = Pr(C_i, C_i)$

The Danks equilibrium

The Danks equilibrium

ullet If $\mathrm{E}[V_i^{(t)}]$ converges, the asymptote $V_i^* = \lim_{t o \infty} \mathrm{E}[V_i^{(t)}]$ must satisfy the Danks equilibrium conditions $E[\Delta V_i^*] = 0$, i.e.

$$\Pr(C_i,O) - \sum_{j=1}^n \Pr(C_i,C_j) V_j^* = 0 \quad \forall i$$

(Danks 2003, p. 113)

- Now there is a clear interpretation of the Danks equilibrium as the stable average associations reached by a community of stochastic learners with input from the same population
 - allows us to compute the "adult" state of NDL without carrying out a simulation of the learning process

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 27 / 53

The Danks equilibrium

The Danks equilibrium

The Danks equilibrium

Mathematics

The Danks equilibrium

Matrix notation: German noun plurals

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} .3 \\ .2 \\ .0 \\ .5 \\ .1 \\ .6 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \qquad \begin{bmatrix} .5 & .0 & .0 & .3 & .1 & .5 \\ .0 & .2 & .0 & .1 & .1 & .2 \\ .0 & .0 & .1 & .0 & .0 & .1 \\ .3 & .1 & .0 & .5 & .1 & .5 \\ .1 & .1 & .0 & .1 & .2 & .2 \\ .5 & .2 & .1 & .5 & .2 & 1 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Matrix notation

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} \Pr(C_1, O) \\ \vdots \\ \Pr(C_n, O) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \quad \begin{bmatrix} \Pr(C_1, C_1) & \cdots & \Pr(C_1, C_n) \\ \vdots & & \vdots \\ \Pr(C_n, C_1) & \cdots & \Pr(C_n, C_n) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Danks equilibrium: $\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$

Tübingen, 6 Nov 2015 29 / 53

NDL vs. the Perceptron vs. least-squares regression

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Tübingen, 6 Nov 2015 30 / 53

Tübingen, 6 Nov 2015 31 / 53

The single-layer perceptron (SLP)

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs x_1, \ldots, x_n
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

- h = Heaviside step function intraditional SLP
- even simpler model: h(y) = y
- cost wrt. target output z:

$$E(\mathbf{w}, \mathbf{x}, z) = \left(z - \sum_{j=1}^{n} w_j x_j\right)^2$$

inputs weights

Tübingen, 6 Nov 2015 32 / 53

NDL vs. the Perceptron vs. least-squares regression

Batch training

- Neural networks often use batch training, where all training data are considered at once instead of one item at a time
- The corresponding batch training cost is

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} E(\mathbf{w}, \mathbf{x}^{(k)}, z^{(k)})$$
$$= \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$

- Similar to stochastic NDL, batch training computes the expected weights $E[\mathbf{w}^{(t)}]$ for an SLP with stochastic input
- Minimization of $E(\mathbf{w}) = \text{linear least-squares regression}$

SLP training: the delta rule

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= 2\delta x_i \left(z - \sum_{j=1}^n x_j w_j \right)$$

$$= \beta c_i \left(o - \sum_{j=1}^n c_j V_j \right)$$

• Perfect correspondence to W-H rule with

$$V_i = w_i$$
 $c_i = x_i$ $o = z$ $\beta = 2\delta$

NDL vs. the Perceptron vs. least-squares regression

Linear least-squares regression

• Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Minimum of $E(\mathbf{w})$, the L_2 solution, must satisfy $\nabla E(\mathbf{w}^*) = \mathbf{0}$, which leads to the normal equations

$$\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$$

- Normal equations = Danks equilibrium conditions
- Regression theory shows that batch training / stochastic NLP converges to the unique* solution of the L_2 problem

Tübingen, 6 Nov 2015

Theoretical insights

What have we learned?

NDL

stochastic = batch = L_2 regression

These equivalences also hold for the general R-W equations with arbitrary values of α_i , β_1 , β_2 and λ (see paper)

SLP

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 36 / 53

Outline

- - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Theoretical insights

Effects of R-W parameters

 $\beta > 0$: learning rate \rightarrow convergence of individual learners

 $\lambda \neq 1$: linear scaling of associations / activation (obvious)

 $\alpha_i \neq 1$: salience of cue C_i determines how fast associations are learned, but does not affect the final stable associations (same L_2 regression problem)

 $\beta_1 \neq \beta_2$: different positive/negative learning rates do affect the stable associations; closely related to prevalence of positive and negative events in the population

Theoretical insights

What about logistic regression?

Logistic regression is the standard tool for predicting a categorical response from binary features

- can be expressed as SLP with probabilistic interpretation
- uses logistic activation function

$$h(y) = \frac{1}{1 + e^{-y}}$$

inputs weights

• and Bernoulli cost

$$E(\mathbf{w}, \mathbf{x}, z) = \begin{cases} -\log h(y) & \text{if } z = 1\\ -\log(1 - h(y)) & \text{if } z = 0 \end{cases}$$

Tübingen, 6 Nov 2015

Tübingen, 6 Nov 2015 39 / 53

What about logistic regression?

• Gradient descent training leads to delta rule that corresponds to a modified version of the R-W equations

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \beta \left(1 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 1\\ \beta \left(0 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

- Same as original R-W, except that activation level is now transformed into probability h(y)
- But no easy way to analyze stochastic learning process (batch training \neq expected value of single-item training)
- Less robust for highly predictable outcomes → w diverges

Outline

- - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Empirical observations

Empirical observations

Some NDL simulation runs

Convergence vs. non-convergence – artificial data

word form	frequency	outcomes	cues
hand	10	hand_NIL	h_a_n_d
hands	20	hand_PLURAL	h_a_n_d_s
land	8	$land_NIL$	$l_a_n_d$
lands	3	$land_PLURAL$	$l_a_n_d_s$
and	35	$and_{L}NIL$	a_n_d
sad	18	$sad_{L}NIL$	s_a_d
as	35	as_NIL	a_s
lad	102	lad_NIL	l_a_d
lad	54	lad_PLURAL	l_a_d
lass	134	$lass_NIL$	l_a_s_s

Insight

Empirical observations

Insig

Empirical observations

Perfect positive association → convergence

sights Em

Empirical observations

Perfect positive association → convergence

Moderate positive association → non-convergence

Insights

Empirical observations

Moderate negative association → non-convergence

Evert & A. Arppe NDL: Theory & Experi

Tübingen, 6 Nov 2015 47 / 53

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Summary & next steps

L₂ regression stochastic = batch NDL SLP

- How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?
- Are there cases of non-convergence? If yes, why?
- Does NDL accuracy always improve with more cues and more training data? If not, why?
- How does logistic regression behave as incremental learner?
- Which sequences / patterns in the input data lead to significantly different behaviour from stochastic learner?

Conclusion

Conclusion

Acknowledgements 1/2

Follow me on Twitter: @RattiTheRat

The mathematical analysis was fuelled by large amounts of coffee and cinnamon rolls at Cinnabon, Harajuku, Tokyo

Acknowledgements 2/2

The empirical analyses were conducted in the natural environment of Ninase, Saaremaa, Estonia.

Tübingen, 6 Nov 2015 51 / 53

Conclusion

References I

- Arppe, Antti and Järvikivi, Juhani (2002). Verbal synonymy in practice: Combining corpus-based and psycholinguistic evidence. Presentation at the Workshop on Quantitative Investigations in Theoretical Linguistics (QITL-1).
- Arppe, Antti and Järvikivi, Juhani (2007). Every method counts: Combining corpus-based and experimental evidence in the study of synonymy. Corpus Linguistics and Linguistic Theory, **3**(2), 131–159.
- Arppe, Antti; Hendrix, Peter; Milin, Petar; Baayen, R. Harald; Shaoul, Cyrus (2014). ndl: Naive Discriminative Learning. R package version 0.2.16.
- Baayen, R. Harald (2011). Corpus linguistics and naive discriminative learning. Brazilian Journal of Applied Linguistics, 11, 295-328.
- Baayen, R. Harald; Milin, Petar; Đurđević, Dusica Filipović; Hendrix, Peter; Marelli, Marco (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, **118**(3), 438-81.
- Danks, David (2003). Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology, 47, 109–121.
- Dawson, Michael R. W. (2008). Connectionism and classical conditioning. Comparative Cognition & Behavior Reviews, 3.

S. Evert & A. Arppe

Tübingen, 6 Nov 2015 52 / 53

Conclusion

References II

- Gluck, Mark A. and Bower, Gordon H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117(3), 227-247.
- Rescorla, Robert A. and Wagner, Allen R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black and W. F. Prokasy (eds.), Classical Conditioning II: Current Research and Theory, chapter 3, pages 64–99. Appleton-Century-Crofts, New York.
- Rosenblatt, Frank (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.
- Stone, G. O. (1986). An analysis of the delta rule and the learning of statistical associations. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, chapter 11, pages 444-459. MIT Press, Cambridge, MA.
- Sutton, Richard S. and Barto, Andrew G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135-170.
- Widrow, Bernard and Hoff, Marcian E. (1960). Adaptive switching circuits. In IRE WESCON Convention Record, pages 96-104, New York, IRE.

S. Evert & A. Arppe Tübingen, 6 Nov 2015 53 / 53