VB6.0 ソースコード説明書

レール軌道波形復元システム

作成日: 2025年10月15日 対象: 20_復元関係ソースコード 開発環境: Visual Basic 6.0

目次

- 1. プロジェクト概要
- 2. 説明(業務未経験者向け)
- 3. ファイル構成
- 4. プロジェクト別詳細
- 5. 主要フォーム説明
- 6. 共通モジュール説明
- 7. データフローと処理ロジック
- 8. 波形復元アルゴリズム
- 9. コード間依存関係
- 10. 注意点と改善ポイント

プロジェクト概要

このVB6.0プロジェクト群は、**鉄道レールの軌道状態を測定した波形データを復元・解析するシステム**です。主な機能は以下の通りです:

主要機能

- 軌道波形データの復元処理 測定された軌道データから正確な波形を復元
- **データ変換・加工** Oracle、LABOCS、DCP形式間のデータ変換
- 統計解析・計算 MTT値(軌道変位)、カント、スラック等の計算
- 波形フィルタリング FFT、ローパスフィルタ等による波形処理
- データベース連携 Oracle DatabaseやDAO経由でのデータ管理
- レポート生成 Excel出力、MDTファイル生成

対象システム

- 軌道検測車データ(LABOCS、DCP)
- Oracle軌道データベース
- 軌道管理システム(KCDW)

説明(業務未経験者向け)

このアプリは何をするの?

このシステムは、電車が安全に走るために、線路の状態をチェックして管理するためのソフトウェアです。

実際に何をしているの?

1. データを集める

• 検測車(けんそくしゃ)という特殊な電車が、線路の上を走りながら、線路のゆがみ具合を測定します

2. データを読み取る

• 検測車が記録したデータ(DCP形式、LABOCS形式など)を、このソフトウェアが読み込みます

3. データを分析する

線路のどこが、どのくらい曲がっているのか、ゆがんでいるのかを計算します

4. わかりやすくする

- 複雑なデータを、グラフや表にして見やすくします
- Excelファイルとして出力できるので、誰でも確認できます

5. 必要な場所を見つける

• 特に注意が必要な場所 (大きくゆがんでいる場所) を自動的に見つけます

具体的にどんな種類のアプリがあるの?

このシステムには6つの異なるアプリ (プログラム) があります:

1. KANA3 (カナ3)

- 簡易計算ツール
- 線路のデータを手軽に確認して、簡単な計算をするためのアプリ
- 例:「この区間の線路は、どのくらい傾いているかな?」を素早く調べる

2. KCDW (ケーシーディーダブリュー)

- データ管理システム
- 大量の線路データを保存・管理するためのアプリ
- 例:「過去5年間の線路データをすべて保存して、いつでも検索できるようにする」

3. DCP2S(ディーシーピーツーエス)

- データ変換ツール
- 検測車が記録した生データ(DCP形式)を、別の形式(LABOCS形式)に変換するアプリ
- 例:「カメラで撮った写真(JPG)を、別の形式(PNG)に変換する」のと同じ

4. DCPZW (ディーシーピーゼットダブリュー)

- 座標データ処理ツール
- 線路の縦方向(上下)と横方向(左右)のゆがみを処理するアプリ
- 例:「建物が垂直に立っているか、傾いているかをX軸・Y軸で測定する」のと同じ

5. Ora2Lab2 (オラクルツーラボ2)

- データベース変換ツール (通常版)
- 大きなデータベース (Oracle) から線路データを取り出して、使いやすい形式に変換するアプリ
- 例:「図書館の巨大な書庫から、必要な本だけを探し出して、読みやすくコピーする」のと同じ

6. Ora2LaS2 (オラクルツーラボエス2)

- データベース変換ツール (簡易版)
- Ora2Lab2の簡易版で、基本的なデータだけを素早く変換するアプリ
- 例:「図書館で本の目次だけを素早くコピーする」のと同じ

なぜこれが大切なの?

安全のため

- 線路がゆがんだまま放置すると、電車が脱線する危険があります
- このシステムで早期発見することで、事故を防ぎます

効率的なメンテナンスのため

• すべての線路を手作業でチェックするのは不可能です(何千キロもある)

• このシステムで「本当に修理が必要な場所」だけを見つけて、効率よく修理できます

コスト削減のため

- 問題が小さいうちに見つけて直せば、修理費用も安く済みます
- 大きな事故が起きてからでは、莫大なコストがかかります

どんな人が使うの?

• **鉄道会社の保線担当者**:線路の保守・点検をする人

• 技術管理者:線路の状態を分析して、修理計画を立てる人

• 経営層:全体の線路の状態を把握して、予算を決める人

このシステムの「すごいところ」

1. 自動化されている

• 人間が手作業で計算すると何日もかかることを、数分で終わらせます

2. 正確

• 人間の目では見えないわずかなゆがみも、数値として正確に測定できます

3. 履歴管理

• 過去のデータと比較して、「前回より悪くなっているか」を判断できます

4. わかりやすい

• 複雑なデータをグラフや表にして、専門家でなくても理解できるようにします

まとめ:一言で言うと?

「電車の安全を守るために、線路の健康状態をチェックして、『どこを直すべきか』を教えてくれる賢いシステム」です。

ファイル構成

プロジェクト構成 (6プロジェクト)

プロジェクト名	説明	メインフォーム	実行ファイル
KANA3	簡易軌道波形パラメータ復元計算	KANA3.frm	KANA3.exe
KCDW	軌道変位データ処理システム	KCDW.frm	KcdW.exe
DCP2S	DCP形式データ変換ツール	DCP2S.frm	DCP2S.exe
DCPZW	DCP座標波形処理	DCPZW.frm	DCPZW.exe
Ora2Lab2	Oracle→LABOCS変換(通常版)	Ora2Lab2.frm	Ora2Lab2.exe
Ora2LaS2	Oracle→LABOCS変換(簡易版)	Ora2LaS2.frm	Ora2LaS2.exe

フォームファイル (.frm) 一覧 (14ファイル)

ファイル名	行数	イベントハンドラ	所属プロジェクト	主な機能
KANA3.frm	5,820	1	KANA3	メイン計算画面
KCDW.frm	8,467	6	KCDW	軌道変位デ−タ管理

DCP2S.frm	4,365	0	DCP2S	DCP変換メイン
DCP2SA.frm	2,767	-	DCP2S	DCP変換サブ
DCPZW.frm	2,279	-	DCPZW	座標波形処理
Ora2Lab2.frm	9,581	1	Ora2Lab2	Oracle変換(詳細)
Ora2LaS2.frm	5,599	0	Ora2LaS2	Oracle変換(簡易)
KANA3A.frm	276	-	KANA3	サブフォーム A
KANA3B.frm	774	-	KANA3	サブフォーム B
KANA3C.frm	1,507	2	KANA3	サブフォーム C
KANA3D.frm	1,114	1	KANA3	サブフォーム D
KANA3E.frm	1,003	1	KANA3	サブフォーム E
KANA3F.frm	324	-	KANA3	サブフォーム F
KANA3G.frm	717	-	KANA3	MTT検査データコピー

合計: 44,593行

モジュールファイル (.bas) 一覧 (6ファイル)

ファイル名	行数	関数数	主な機能
CmdLib.bas	33,843	639+	コマンド処理ライブラリ(最重要)
mylib2.bas	13,784	238+	汎用ライブラリ2(拡張版)
KANA3lib.bas	874	13	KANA3専用ライブラリ
KANA3lib2.bas	874	13	KANA3専用ライブラリ2
mylib.bas	571	34	汎用ライブラリ1(基本版)
KcdwKANA3.bas	7	-	KCDW-KANA3連携定数

合計: 49,953行

外部参照ライブラリ

- OLE Automation (stdole2.tlb) 全プロジェクト
- Microsoft Scripting Runtime (scrrun.dll) 全プロジェクト
- Microsoft DAO 3.51 (DAO350.DLL) KCDW
- Microsoft ADO 2.5 Ora2Lab2
- Common Dialog Control (comdlg32.ocx) DCP2S, DCPZW, Ora2Lab2
- HgsLACommon, HgsLAClient, HgsLZClient Oracle変換系

プロジェクト別詳細

1. KANA3プロジェクト

目的: 簡易軌道波形パラメータ復元計算システム

構成ファイル

- メインフォーム: KANA3.frm
- サブフォーム: KANA3A.frm ~ KANA3G.frm (7個)
- モジュール: myLib.bas, KANA3lib.bas, CmdLib.bas, myLib2.bas

主な機能

- 軌道波形データの読み込みと表示
- MTT値(軌道変位)の計算
- カント、スラック補正
- 波形フィルタリング(FFT処理)
- 結果のExcel出力

KANA3サブフォーム役割

フォーム	推定される役割
KANA3A	データ入力・設定
KANA3B	計算パラメータ設定
KANA3C	波形表示・グラフ
KANA3D	統計結果表示
KANA3E	詳細分析
KANA3F	補正処理
KANA3G	MTT検査データのフロッピーコピー

2. KCDWプロジェクト

目的: 軌道変位データ処理・管理システム

構成ファイル

- メインフォーム: KCDW.frm (8,467行 最大規模)
- モジュール: myLib.bas, myLib2.bas, CmdLib.bas

主な機能

- DDB(Data Description Block)形式データ処理
- RSQ(Rail Sequence)データ管理
- 軌道変位の統計解析
- ピーク検出・異常値検出
- データベース連携(DAO使用)
- 複数のKCDW処理アルゴリズム実装

特徴

- 8,467行の大規模フォーム (最多)
- データベース処理が中心
- 高度な数値計算機能
- 6個のイベントハンドラで主要機能を実装

3. DCP2Sプロジェクト

目的: DCP形式データ変換ツール

構成ファイル

- メインフォーム: DCP2S.frm, DCP2SA.frm
- モジュール: CmdLib.bas, mylib.bas, mylib2.bas

主な機能

- DCP形式データの読み込み
- LABOCS形式への変換
- データ形式チェック
- バッチ変換処理

4. DCPZWプロジェクト

目的: DCP座標波形処理

構成ファイル

- メインフォーム: DCPZW.frm
- モジュール: CmdLib.bas, mylib.bas, mylib2.bas

主な機能

- 座標系データの変換
- 波形データの補正
- Z方向(高さ)、W方向(横)の処理

5. Ora2Lab2プロジェクト

目的: Oracle Database → LABOCS形式変換 (通常版)

構成ファイル

- メインフォーム: Ora2Lab2.frm (9,581行 最大)
- モジュール: mylib.bas, mylib2.bas, CmdLib.bas

主な機能

- OracleデータベースからのデータSQL抽出
- LABOCS形式への詳細変換
- ADO/DAO接続
- Hgs専用ライブラリ使用
- データ検証・エラーチェック

特徴

- ADO 2.5使用
- HgsLA/LZ系ライブラリ使用(独自通信プロトコル)
- 大規模データ処理対応

6. Ora2LaS2プロジェクト

目的: Oracle Database → LABOCS形式変換(簡易版)

構成ファイル

• メインフォーム: Ora2LaS2.frm

• モジュール: CmdLib.bas, mylib.bas, mylib2.bas

主な機能

- 簡易的なOracle→LABOCS変換
- 基本データのみ対応
- 高速変換

主要フォーム説明

KANA3.frm (簡易軌道波形パラメータ復元計算)

UIコントロール

- Frame8: MTT値入力エリア
 - o Text7, Text8: 左レ−ル BC/CD値
 - o Text9, Text10: 右レール BC/CD値
 - o Combo13, 15, 16: カント補正選択
- Command1~14: 各種処理実行ボタン
 - o Command14: キロ程変換ツール起動

主要イベント処理

- Form_Load: 初期化処理
- Command1_Click: 計算実行
- Command2_Click: データ保存
- Command3_Click: グラフ表示
- Command12_Click: 設定
- Combo13_Click: カント選択変更

処理フロー

- 1. Form_Load時にパラメータ初期化
- 2. ユーザーがMTT値、カント等を入力
- 3. Command実行で計算処理
- 4. 結果をテキストボックス/グラフに表示
- 5. Excel出力またはファイル保存

KCDW.frm(軌道変位データ処理)

主要処理

- DDB/RSQファイルの読み込み
- 軌道変位計算
- ピーク検出
- 統計値算出
- データベース更新

特徴的な処理

- 102個の関数で複雑な軌道計算を実装
- データベーストランザクション管理
- バッチ処理対応

DCP2S.frm (DCP変換)

処理概要

- Form_Load: 初期設定
- ComboSenbetu_Click: 線区選択
- Command1_Click: 変換実行
- CommandEnd_Click: 終了

変換フロー

- 1. 入力ファイル選択(CommonDialog使用)
- 2. 線区·区間指定
- 3. DCP → LABOCS形式変換
- 4. 出力ファイル生成

Ora2Lab2.frm / Ora2LaS2.frm (Oracle変換)

データベース接続

- ADO接続文字列設定
- SQL実行・レコード取得
- HgsLAClient/HgsLZClient使用(独自プロトコル)

変換処理

- 1. Oracle接続
- 2. 軌道データクエリ実行
- 3. LABOCS形式データ生成
- 4. ファイル出力

共通モジュール説明

CmdLib.bas (コマンド処理ライブラリ)

規模: 33,843行、639以上の関数 役割: 全プロジェクトの中核となる処理ライブラリ

主要機能カテゴリ

1. ファイルI/O処理

主要サブルーチン:

- DDB軌道等ファイルからDDBを得る
- RSQ読込み
- RSQ作成
- File文字列を文字列配列へ

2. 軌道波形処理 (BS系サブルーチン)

KCDW関連処理:

- Bs0510MKcdw: 基本軌道変位計算
- Bs0520MKcdw: 簡易波形処理
- Bs0530MKcdw: 値以上の内方処理
- Bs0540MKcdw ~ Bs0640MKcdw: 各種波形処理

DDB/RSQ処理:

- KCDW単軌DDB
- KCDW復軌RSQ復元

• KCDW復軌DDB復元

3. データ変換・計算

フィルタ処理:

- HPP1の波形のピーク読取
- KFLフィルタ前後計算
- KFLFFT (FFT処理)

統計処理:

- HMA一次移動平均処理
- K20波形20m弦の計算

4. 表形式データ処理

軌道形式データ:

- TD地点単位表ファイルから地点単位表配列へ
- TD区間系表ファイルから区間系表配列へ

KDT (キロ程デ−タ) 処理:

- KDT配列をKDTファイルへ
- KDTファイルからKdt区間配列へ

5. データベース関連

DDB(Data Description Block)操作:

- KUD軌道等DDBに標準値登録
- KUDNAMDDBにデータ名登録
- RSQ最大値平均値等をDDBに登録

6. その他ユーティリティ

ファイル存在チェック:

- FileExistMsg
- FileExists

文字列処理:

- GetWord
- DelSpc

バッチコマンド方式

CmdLibは「バッチコマンド」として各処理を組み合わせて使用する設計。エラーハンドリングは IErr パラメータで統一。

mylib2.bas(拡張汎用ライブラリ)

規模: 13,784行、238以上の関数

主要機能

1. 型変換·文字列処理

- CIntw, CLngw, CSngw, CDblw: 文字列→数値変換(エラー処理付き)
- DelSpc2, DelSpc3, DelSpcAll: スペース削除
- DelCrtn: 改行削除
- DelZero: ゼロ削除

2. ファイル操作

- FileExists, FileExists2: ファイル存在確認
- FileRecCount: ファイル行数取得
- FileDEL: ファイル削除
- FileKaraMojihairetu: ファイル→文字列配列
- MojihairetuKaraFile: 文字列配列→ファイル
- FileNameBunkatu: パス分解
- FIChgKaku: 拡張子変更

3. パス・ドライブ処理

- GetLbcPath: LABOCS パス取得
- GetHozonPath: 保存パス取得
- FdDrv: フロッピードライブ検出
- FdDriveReady: ドライブ準備確認

4. グラフィックス関連

- GetColorCode: 線色取得
- GetDrawStyle: 線種取得
- GetDrawWidth: 線幅取得
- GetFontBold: フォント太字判定

5. Excel連携

• ExcelExeName: Excel実行ファイル検索

mylib.bas (基本汎用ライブラリ)

規模: 571行、34関数

主要機能

文字列処理:

- DelSpc: スペース削除
- Replace: 文字列置換
- StrCount, StrCut, StrIns: 文字列操作

トークン分割:

- TokenGet, TokenGet2: トークン取得
- TokenGet1: 最初のトークン

文字種判定:

- IsAllAlpha, IsAllDigit: 文字種判定
- IsAlNum, IsAlpha, IsDigit: 個別文字判定
- IsHankaku, IsZenkaku: 全角半角判定

ユーティリティ:

- Max, Min: 最大値・最小値
- Uswap: スワップ
- YesNoBox, YesNoCanBox: ダイアログ表示
- LenA: 文字列長(全角2バイト)

KANA3lib.bas / KANA3lib2.bas

規模: 各874行、13関数

主な機能:

- StrToW: 文字列変換(KANA3専用)
- その他KANA3固有の処理関数

KcdwKANA3.bas

規模: 7行(定数定義のみ)

KCDW-KANA3間の連携用定数定義

データフローと処理ロジック

典型的な波形復元処理フロー

```
[入力データ]
  \downarrow
1. データ読み込み
 - DCP/Oracle/LABOCSファイル読み込み
  - DDB (Data Description Block) 構造体作成
  - RSQ (Rail Sequence) 配列確保
  \downarrow
2. 前処理
  - データ検証・エラーチェック
  - 欠損データ補完
  - 単位変換
  \downarrow
3. フィルタリング
  - FFT(高速フーリエ変換)
  - ローパスフィルタ
  - 移動平均フィルタ
4. 波形解析
  - ピーク検出(HPP系サブルーチン)
  - 軌道変位計算(MTT値)
  - カント・スラック補正
5. 統計処理
  - 最大値・平均値・標準偏差
  - 区間別集計
  - 地点単位表/区間系表作成
  \downarrow
6. 出力
  - RSQファイル保存
  - DDBファイル保存
  - Excel レポート生成
  - MDT (Management Data Transfer) ファイル生成
```

データ構造

DDB (Data Description Block)

軌道データのメタデータを格納する構造体。含まれる情報:

• 線路名、線路区分

- 測定日
- データ点数
- 開始距離、終了距離
- サンプリング間隔
- 最大值、平均值
- その他統計情報

RSQ (Rail Sequence) 配列

軌道波形データを格納する動的配列。測定点ごとの変位データを連続的に保持。

KDT(キロ程データ)

キロ程と測定データの対応表。含まれる情報:

- +□程
- 測定値
- 補正値

波形復元アルゴリズム

1. FFT (高速フーリエ変換) 処理

実装箇所: CmdLib.bas 内の KFLFFT サブルーチン

処理内容:

- 1. 時系列波形データを周波数領域に変換
- 2. 指定周波数帯域でフィルタリング
- 3. 逆FFTで時系列データに戻す
- 4. ノイズ除去、平滑化に使用

2. ピーク検出アルゴリズム

主要サブルーチン:

- HPP1の波形のピーク読取: 単一波形のピーク検出
- HPP左右の波形のピーク読取: 左右レールのピーク検出
- HPP波形のピーク読取: 複数波形のピーク検出

アルゴリズム概要:

- 1. 移動窓(ウィンドウ)を設定
- 2. 窓内の極値(極大・極小)を検出
- 3. 閾値判定(ABSYN="YES"で絶対値判定)
- 4. ピーク位置と値を配列に格納

3. 軌道変位計算(Bs05系サブルーチン)

Bs0510MKcdw: 基本的な軌道変位計算

- KFIL: キロ程ファイル
- ZFIL: Z方向(高さ)データ
- SFIL: スラックデータ
- KcdwFIL: 出力ファイル

Bs0520MKcdw: 複合軌道変位計算

- WFIL: W方向(横)データ追加
- XFIL: 補正データ追加

Bs0530MKcdw: 高度な復元計算

- DFIL: 微分データ
- HFIL: 高次データ
- KLR, TLR: 左右レール指定

処理ステップ:

- 1. 入力ファイル読み込み
- 2. キロ程マッチング
- 3. 左右レールデータ分離
- 4. カント補正適用
- 5. スラック補正適用
- 6. BC(Before Correction)/CD(Corrected Data)値計算
- 7. 統計值計算
- 8. 出力ファイル生成

4. HSJ系波形補正アルゴリズム

HSJ5 (区間復元の正面):

- HSJ5_GETBC: 区間のBCデータ取得
- HSJ5_SAIHI: 再帰的な補正処理

処理内容:

- 軌道の連続性を考慮した波形復元
- 異常値の自動除外
- 境界条件の適用

5. Y1Y2系処理

主要サブルーチン:

- Y1Y2F
- HsjY1Y2F
- Y1Y2

機能:

- 軌道の2次元的な波形解析
- Y1 (縦方向)、Y2 (横方向)の同時処理
- 曲線区間の補正

6. MTT値計算

MTTパラメータ:

- BC値:補正前データ(Before Correction)CD値:補正後データ(Corrected Data)
- カント補正係数
- スラック補正係数

計算の流れ:

MTT値 = (測定値 × 補正係数) + オフセット 最終値 = MTT値 - カント補正 - スラック補正

MTT標準値(推定):

- 左レール BC: 3.63
- 左レール CD: 9.37
- 右レール BC: 3.63
- 右レール CD: 9.37

コード間依存関係

プロジェクト階層構造

レベル1(基盤層) mylib.bas - 基本文字列・ユーティリティ \downarrow レベル2(拡張層) mylib2.bas - 拡張ファイルI/O、型変換 レベル3(ドメイン層) CmdLib.bas - 軌道専用処理ライブラリ KANA3lib.bas - KANA3専用処理 \downarrow レベル4(アプリケーション層) KANA3.frm - KANA3メイン - KCDW メイン KCDW.frm DCP2S.frm - DCP変換 Ora2Lab2.frm - Oracle変換 等々...

モジュール参照関係

プロジェクト	mylib.bas	mylib2.bas	CmdLib.bas	KANA3lib.bas	KcdwKANA3.bas
KANA3	0	0	0	0	-
KCDW	0	0	0	-	0
DCP2S	0	0	0	-	-
DCPZW	0	0	0	-	-
Ora2Lab2	0	0	0	-	-
Ora2LaS2	0	0	0	-	-

関数呼び出し関係(主要な流れ)

```
[フォーム Command_Click]
↓
mylib2.FileExists() でファイル存在確認
```

```
↓
mylib2.FileKaraMojihairetu()でファイル読み込み
↓
CmdLib.RSQ読込み()でRSQデータ取得
↓
CmdLib.HPP1の波形のピーク読取()でピーク検出
↓
CmdLib.Bs0520MKcdw()で軌道変位計算
↓
CmdLib.RSQ作成()で結果ファイル保存
↓
mylib2.ExcelExeName()でExcel起動
↓
[処理完了]
```

外部ライブラリ依存

注意点と改善ポイント

1. VB6固有の課題

ランタイム依存

- VB6 ランタイム (msvbvm60.dll) が必要
- Windows 10/11では標準搭載されているが、将来的なサポート終了リスク

推奨対応

- .NET Framework への移行検討(VB.NET または C#)
- Python/JavaScript等モダン言語への書き換え

2. コードの保守性

問題点

- 関数名が日本語 → 検索性・可読性が低い(エンコーディング問題も)
- **巨大なモジュール** → CmdLib.bas 33,843行は分割すべき

- コメント不足 → 処理内容が不明な箇所が多い
- マジックナンバー → 定数化されていない数値が多数

改善の方向性

- 関数名の英語化またはローマ字化
- モジュールの機能別分割
- コメント・ドキュメント追加
- 定数の定義ファイル作成

3. データ処理の効率性

問題点

- **配列の動的確保** が頻繁 → メモリ断片化
- ファイルI/O が同期的 → 大量データ処理時に遅い
- **トランザクション処理が不十分** → データベース更新時のエラーハンドリング

改善案

- 配列サイズの事前計算と一括確保
- 非同期I/O・バッファリングの活用
- トランザクション処理の徹底

4. エラーハンドリング

現状

エラーコード方式(古いスタイル)

- IErr パラメータで統一
- エラー原因が不明(IErr = 1 だけでは詳細不明)
- エラーメッセージが統一されていない
- ログ出力機能がない

改善の方向性

- 構造化例外処理への移行(.NET移行時)
- エラーログの実装
- エラーメッセージの標準化

5. データベース接続

問題点(Ora2Lab2系)

- ADO 2.5 は古い → ADO.NET 推奨
- **接続文字列がハードコード** → 設定ファイル化すべき
- **SQL インジェクション の可能性** → パラメータ化クエリ使用

対応策

- パラメータ化クエリの徹底
- 接続文字列の外部化
- 最新のデータアクセス技術への移行

6. ハードコードされた値

問題箇所

- MTT基準値 (3.63, 9.37)
- ファイルパス
- データベース接続文字列

• 補正係数

改善案

- INIファイルまたはXML/JSON設定ファイルに外部化
- 定数モジュールの作成

7. 文字コードとファイルパス

問題点

- Shift-JIS エンコーディング依存
- Windows パス区切り(¥) 固定
- 長いファイルパス (MAX_PATH = 260文字制限)

対応

- UTF-8 への移行
- パス処理の標準化
- UNCパス・長いパス対応

8. テスト・品質保証

現状の課題

- 単体テストがない
- テストデータが不明確
- リグレッションテストの仕組みがない

推奨事項

- ユニットテストフレームワーク導入
- テストデータセット作成
- CI/CD パイプライン構築

9. ドキュメント不足

必要なドキュメント

- ユーザーマニュアル(操作手順)
- システム設計書 (アーキテクチャ図)
- データベーススキーマ定義書
- API仕様書(関数リファレンス)
- 運用手順書 (バックアップ、障害対応)
- ソースコード説明書(本ドキュメント)

10. セキュリティ

潜在的リスク

- パスワードがハードコード されている可能性
- SQLインジェクション の脆弱性
- ファイルアクセス権限が不適切な可能性
- 口グに機密情報 が出力される可能性

対策

- パスワードの暗号化保存
- パラメータ化クエリの徹底
- 最小権限の原則 (ファイル・DB)

移行・モダナイゼーション推奨事項

短期対応(1-3ヶ月)

- 1. コードレビュー 重要な処理箇所の詳細解析
- 2. テストケース作成 現行動作の記録
- 3. ドキュメント整備 本説明書の詳細化
- 4. バックアップ体制 データとコードの定期バックアップ

中期対応 (3-12ヶ月)

- 1. VB.NET 移行 .NET Framework 4.8 または .NET 6/7/8
- 2. リファクタリング モジュール分割、関数名英語化
- 3. データベース最新化 ADO.NET、Entity Framework
- 4. 設定ファイル外部化 App.config / appsettings.json

長期対応(1-2年)

- 1. Webアプリ化 ASP.NET Core, Blazor, または React/Vue
- 2. **クラウド対応** Azure, AWS 等へのデプロイ
- 3. マイクロサービス化 各プロジェクトを独立したサービスに
- 4. API化 RESTful API / GraphQL で他システム連携

付録

A. 主要なBS系サブルーチン一覧

サブルーチン	処理内容
Bs0510MKcdw	基本軌道変位計算
Bs0512MKcdw2	軌道変位計算(拡張版2)
Bs0513MKcdw	軌道変位計算(拡張版3)
Bs0514MKcdwSA	軌道変位計算(SA版)
Bs0515MKcdw	軌道変位計算(拡張版5)
Bs0520MKcdw	簡易波形処理
Bs0530MKcdw	値以上の内方処理
Bs0540MKcdw	波形処理40
Bs0545MKcdw	波形処理45
Bs0550MKcdw2	波形処理50-2
Bs0560MaKcdw	波形処理60Ma
Bs0560MbKcdw	波形処理60Mb
Bs0570MKcdw2	波形処理70-2

Bs0585MKcdw	波形処理85
Bs0600MKcdw	波形処理600
Bs0610MKcdw	波形処理610
Bs0630MKcdw	波形処理630
Bs0640MKcdw	波形処理640

B. 主要なHPP系(ピーク検出)サブルーチン

サブルーチン	処理内容
HPP1の波形のピーク読取	単一波形のピーク検出
HPP1の波形のピーク読取2	単一波形のピーク検出(拡張版)
HPP左右の波形のピーク読取	左右レールのピーク検出
HPP左右の波形のピーク読取2	左右レールのピーク検出(拡張版)
HPP波形のピーク読取	複数波形のピーク検出
HPP前後等のピーク抽出	前後関係を考慮したピーク抽出
HPP区間連続の波形のピーク読取	区間連続的なピーク検出
HPP区間連続の要注意箇所抽出	要注意箇所の抽出

C. ファイル形式

DCP形式

- 軌道検測車の生データ形式
- バイナリまたはテキスト
- Z (高さ)、W (横)、S (スラック)、K (キロ程) 等のチャンネル

LABOCS形式

- JR西日本の軌道管理システム標準形式
- テキストベース
- ヘッダー + データブロック構造

RSQ形式

- Rail Sequence(レールシーケンス)
- 測定点の連続データ
- DDB (メタデータ) + データ配列

MDT形式

- Management Data Transfer
- 管理データ転送用
- テキストベース、複数レコード構造

T3形式

- 新軌道T3形式
- バイナリ

改訂履歴

版	日付	改訂内容	作成者
1.0	2025-10-15	初版作成	Al Assistant

連絡先·参考情報

- 開発元: 技術部(推定)
- 使用部署: JR西日本 軌道管理部門(推定)
- **関連システム**: LABOCS、KCDW、Oracle軌道データベース

本ドキュメント終わり