I. Vecteur et représentants

A. Translation

Définition 1

Soit A et B deux points donnés.

La **translation** qui transforme le point A en B est la transformation géométrique qui, à tout point M, associe l'unique point N tel que les segments [AN] et [BM] ont le même milieu; autrement dit, tel que le quadrilatère ABNM est un parallélogramme (attention à l'ordre des lettres!).

<u> Remarque</u>

Lorsque les points A, B et M sont alignés, le quadrilatère ABNM obtenu est un parallélogramme plat. Les segments [AN] et [BM] ont toujours le même milieu.

Définition 2

La transformation qui transforme A en B est appelée translation de vecteur \overrightarrow{AB} . On la note souvent $t_{\overrightarrow{AB}}$.

B. Représentant d'un vecteur

Définition 3

D'après la définition 1, $t_{\overrightarrow{AB}} = t_{\overrightarrow{MN}}$ donc on dira que les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont égaux. Le vecteur \overrightarrow{AB} possède trois caractéristiques :

sa direction : correspond à la direction de la droite (AB); autrement dit, la direction représente l'*inclinaison* du vecteur;

son sens : correspond au sens de *déplacement* de A vers B donné par la translation qui transforme A en B. Sur un dessin, on l'indique par une flèche.

sa norme: correspond à la longueur du segment [AB], notée AB ou bien $\|\overrightarrow{AB}\|$.

Exemple • Les vecteurs \overrightarrow{AB} et \overrightarrow{BA} ont la même direction et la même norme. En revanche, ils sont de sens contraire. Ils ne sont donc pas égaux. On dit qu'ils sont opposés.

<u>Définition 4</u>

Deux vecteurs qui ont la même direction sont appelés des vecteurs colinéaires.

C. Égalité de vecteurs

Propriété 1 (admise)

 $\overrightarrow{AB} = \overrightarrow{MN} \Leftrightarrow N$ est l'image de M par la translation qui transforme A en B

⇔ [AN] et [BM] ont le même milieu

⇔ ABNM est un parallélogramme

 \Leftrightarrow \overrightarrow{AB} et \overrightarrow{MN} ont le même sens, la même direction et la même norme.

<u>Définition 5</u>

Les vecteurs qui ont les mêmes caractéristiques que le vecteur \overrightarrow{AB} sont appelés des **représentants** du vecteur \overrightarrow{AB} . Il en existe une infinité.

II. Somme de vecteurs

Définition 6

Soient A, B et C trois points.

La somme de deux vecteurs \overrightarrow{AB} et \overrightarrow{BC} est le vecteur associé à la translation obtenue en appliquant successivement $t_{\overrightarrow{AB}}$ et $t_{\overrightarrow{BC}}$.

On écrit alors la **relation de Chasles** : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Étape 1 : On veut représenter $\overrightarrow{u} + \overrightarrow{v}$.

Étape 2: On dessine un représentant de \overrightarrow{v} à l'extrémité de \overrightarrow{u} .

Étape 3 : On utilise la relation de Chasles.

Propriété 2 (en utilisant la relation de Chasles)

On souhaite ajouter deux vecteurs de même origine. $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ tel que ABDC est un parallélogramme.

III. Coordonnées dans un repère

Définition 7

Les coordonnées d'un vecteur \overrightarrow{u} dans un repère (O; I, J)sont les coordonnées de l'unique point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

Propriété 3

Dans un repère, on considère deux points $A(x_A; y_A)$ et $B(x_B; y_B)$. Alors le vecteur \overrightarrow{AB} a pour coordonnées $x_{\overrightarrow{AB}}$ et $y_{\overrightarrow{AB}}$ tels que :

$$x_{\overrightarrow{AB}} = x_B - x_A$$
 et $y_{\overrightarrow{AB}} = y_B - y_A$.

Les coordonnées du vecteur \overrightarrow{AB} correspond aux déplacements horizontal et vertical pour se rendre de A

Ici, A(1; 2) et B(5; 4) donc \overrightarrow{AB}

Propriété 4

Soient $\overrightarrow{u} \begin{pmatrix} x_{\overrightarrow{u}} \\ y_{\overrightarrow{u}} \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x_{\overrightarrow{v}} \\ y_{\overrightarrow{v}} \end{pmatrix}$ deux vecteurs dans un repère. Alors : $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x_{\overrightarrow{u}} + x_{\overrightarrow{v}} \\ y_{\overrightarrow{u}} + y_{\overrightarrow{v}} \end{pmatrix} \quad \text{et} \quad k\overrightarrow{u} \begin{pmatrix} kx_{\overrightarrow{u}} \\ ky_{\overrightarrow{v}} \end{pmatrix}$

$$\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x_{\overrightarrow{u}} + x_{\overrightarrow{v}} \\ y_{\overrightarrow{u}} + y_{\overrightarrow{v}} \end{pmatrix} \quad \text{et} \quad k \overrightarrow{u} \begin{pmatrix} kx_{\overrightarrow{u}} \\ ky_{\overrightarrow{u}} \end{pmatrix}.$$

Propriété 5

 \overrightarrow{u} et \overrightarrow{v} sont colinéraires \Leftrightarrow il existe $k \in \mathbb{R}$ tel que $\overrightarrow{v} = k\overrightarrow{u}$ $\Leftrightarrow x_{\overrightarrow{u}} \times y_{\overrightarrow{v}} - y_{\overrightarrow{u}} \times x_{\overrightarrow{v}} = 0.$

Exemple • A(1;1) B(4;2) C(4;1) D(10;3). Les droites (AB) et (CD) sont-elles parallèles?

On a
$$\overrightarrow{AB} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{CD} \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.

 $3 \times 2 - 1 \times 6 = 0$ donc les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires donc les droites (AB) et (CD) sont

On remarque que $\overrightarrow{CD} = 2\overrightarrow{AB}$.