Gradient Descent in Hilbert Space

Carson James

November 29, 2021

Outline

- 1. Banach Spaces
 - bounded linear maps
 - Frechet differentiation
- 2. Calculus
 - tools
 - results
- 3. Hilbert Spaces
 - Riesz representation theorem
 - gradients
- 4. Convex Analysis
 - results for Frechet differentiable functions
- 5. Reproducing Kernel Hilbert Spaces
 - representer theorem
- 6. Applications to Gaussian Processes
 - predictive posterior

Banach Spaces

Definition

Let X, Y be a normed vector spaces and $T: X \to Y$ a linear map. Then T is said to be **bounded** if there exists $C \ge 0$ such that for each $x \in X$,

$$||Tx|| \le C||x||$$

We define

$$L(X, Y) = \{T : X \rightarrow Y : T \text{ is linear and bounded}\}\$$

Definition

Let X_1, \cdots, X_n and Y be a normed vector spaces and

 $T:\prod\limits_{j=1}^{n}X_{j}
ightarrow Y$ a multilinear linear map. Then T is said to be

bounded if there exists $C \ge 0$ such that for each $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j$,

$$||T(x_1,\dots,x_n)|| \leq C||x_1||\dots||x_n||$$

We define

$$L^n\left(\prod_{j=1}^n X_j,Y\right)=\{T:X o Y:T \text{ is multilinear and bounded}\}$$

If $X_1, \dots, X_n = X$, we write $L^n(X, Y)$ in place of $L^n(\prod_{i=1}^n X_i, Y)$.

Remark

Let X and Y be normed vector spaces. We may identify $L(X,L(X,\cdots,L(X,Y))\cdots)$ and $L^n(X,Y)$ via the isometric isomorphism given by $\phi\mapsto\psi_\phi$ where

$$\psi_{\phi}(x_1,x_2,\cdots,x_n)=\phi(x_1)(x_2),\cdots,(x_n)$$

Definition

Let X be a normed vector space over \mathbb{R} . We define the **dual space** of X, denoted X^* , by $X^* = L(X, \mathbb{R})$. Let $T: X \to \mathbb{R}$. Then T is said to be a **bounded linear functional on** X if $T \in X^*$.

Definition

Let X be a normed vector space. Then X is said to be a **Banach** space if X is complete.

Definition

Let X, Y be a banach spaces, $A \subset X$ open, $f : A \to Y$ and $x_0 \in A$. Then f is said to be **Frechet differentiable at** x_0 if there exists $Df(x_0) \in L(X, Y)$ such that,

$$f(x_0 + h) = f(x_0) + Df(x_0)(h) + o(||h||)$$
 as $h \to 0$

If f is Frechet differentiable at x_0 , we define the **Frechet** derivative of f at x_0 to be $Df(x_0)$. We say that f is **Frechet** differentiable (or 1-st order Frechet differentiable) if for each $x_0 \in A$, f is Frechet differentiable at x_0 .

If f is Frechet differentiable, we define the **Frechet derivative** of f, denoted $Df: A \rightarrow L(X, Y)$, by

$$x \mapsto Df(x)$$

Definition

Let X, Y be a banach spaces, $A \subset X$ open, $f : A \to Y$. We define n-th order Frechet differentiablility inductively. Since f

Calculus

Remark

The various tools used to obtain the main calculus results are the following:

- Frechet derivative
- ► Hahn-Banach theorem (not introduced)
- ► Bochner Integral (not introduced)

Convex Analysis

Result

The various tools used to obtain the main convex analysis results are the following:

- Frechet derivative
- ► Hahn-Banach theorem (not introduced)
- Bochner Integral (not introduced)