NAVIGACE VZDUCHOLODI

ONDREJ KUREŠ, MAREK MIKLOŠ, LADISLAV TRNKA

Abstrakt. Řešíme problém navržený (?)

Obsah

1. Úvod

Vzducholoď se pohybuje ve větrném poli \boldsymbol{w} a má za cíl překonat vzdálenost z bodu A do bodu B. V tomto textu se budeme zabývat otázkou jak zvolit její trasu, aby dorazila do cíle v nejkratším možném čase. Točení kormidla vzducholodi budeme charakterizovat jejím směrem letu tedy funkcí $\beta(t)$. Můžeme se ptát, jak točit kormidlem tak, aby vzducholoď dorazila do cíle co nejdříve.

Trajektorii vzducholodi budeme popisovat v kartézských souřadnicích a to v rovině (x, y), zanedbáme popis výšky. Vzducholoď se v bezvětří pohybuje rychlostí V. Pro zjednodušení výpočtů uvažujme konstantní rychlost V, stacionární pole w, cílový bod B jako počátek souřadnic (lze vždy zajistit vhodnou transformací). Dále zanedbáváme zpoždění reakce vzducholodě na stočení kormidla.

OBRÁZEK 1. Nastínění uvažované situace.

Pro okamžitou rychlost vzducholodi platí:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = V \cos \beta(t) + u(x, y),$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = V \sin \beta(t) + v(x, y),$$
(1.1)

kde $\boldsymbol{x}(t) = \begin{bmatrix} x(t) & y(t) \end{bmatrix}^{\mathsf{T}}$ je hledaná trajektorie, $\beta \in (0, 2\pi)$ je směr letu a $\boldsymbol{w} = \begin{bmatrix} u & v \end{bmatrix}^{\mathsf{T}}$ je dané pole větru. Dále známe:

$$x(t_A) = A, (1.2a)$$

$$\boldsymbol{x}(t_B) = B = \begin{bmatrix} 0 & 0 \end{bmatrix}^\mathsf{T},$$
 (1.2b)

kde t_A je čas startu vzducholodi a t_B je čas příletu¹.

2. Variační počet

Náš zájem se proto soustřeďuje na minimalizaci funkcionálu:

$$I(\beta, t_B) =_{\operatorname{def}} \int_{t_A}^{t_B} dt = t_B - t_A, \tag{2.1}$$

při splnění soustavy rovnic (1.1), které kompaktněji přepišme jako:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}, \beta). \tag{2.2}$$

¹Při příletu vzducholoď nebude mít nulovou rychlost.

Chceme tedy minimalizovat cestovní čas a přípustné trajektorie musí splňovat (2.2). Při hledání extremály využijme koncept vázaných extrémů a Lagrangeových multiplikátorů λ . Proto studujme funkcionál:

$$J(\beta, t_B) =_{\text{def}} \int_{t=t_A}^{t_B} \left(1 - \lambda \bullet \left(\frac{\mathrm{d} x}{\mathrm{d} t} - f(x, \beta) \right) \right) \mathrm{d} t, \tag{2.3}$$

kde funkce λ bude upřesněna později. Nyní hledejme Gâteauxovu derivaci $J(\beta, t_B)$:

$$DJ(\beta, t_B)[(\alpha, \tau)] =_{\text{def}} \frac{\mathrm{d}}{\mathrm{d}\varepsilon} J(\beta_{\text{ext}} + \varepsilon \alpha, t_{B, \text{ext}} + \varepsilon \tau) \Big|_{\varepsilon=0}$$

$$=_{\text{def}} \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_A}^{t_{B, \text{ext}} + \varepsilon \tau} \left(1 - \lambda \bullet \left(\frac{\mathrm{d} \boldsymbol{x}_{\varepsilon}}{\mathrm{d}t} - \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta) \right) \right) dt \right] \Big|_{\varepsilon=0},$$
(2.4)

při variaci:

$$\beta = \beta_{\text{ext}} + \varepsilon \alpha, \tag{2.5a}$$

$$t_B = t_{B,\text{ext}} + \varepsilon \tau, \tag{2.5b}$$

kde $\boldsymbol{x}_{\epsilon}$ je korespondující trajektorie k β a $t_B.$ Přičemž stále platí:

$$\boldsymbol{x}_{\epsilon}(t_A) = \boldsymbol{x}_{\text{ext}}(t_A) = A,$$
 (2.6a)

$$\boldsymbol{x}_{\epsilon}(t_{B,\mathrm{ext}} + \varepsilon \tau) = \boldsymbol{x}_{\mathrm{ext}}(t_{B,\mathrm{ext}}) = B = \mathbf{0}.$$
 (2.6b)

Nejdříve upravme (2.4) pomocí integrace per partes na člen $\lambda \bullet \frac{\mathrm{d}x_{\varepsilon}}{\mathrm{d}t}$, některé členy budou dle předchozího nulové a dostáváme:

$$DJ(\beta, t_B)[(\alpha, \tau)] = \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_A}^{t_{B,\mathrm{ext}}} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta) \right) \mathrm{d}t \right] \Big|_{\varepsilon=0} + \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_{B,\mathrm{ext}}}^{t_{B,\mathrm{ext}}+\varepsilon\tau} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta) \right) \mathrm{d}t \right] \Big|_{\varepsilon=0} + \left[1 + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\mathrm{ext}}, \beta_{\mathrm{ext}}) \right] \Big|_{t=t_{B,\mathrm{ext}}} \tau. \quad (2.7)$$

Podle (?) použijeme geniální trik: $x_{\varepsilon} \approx x_{\text{ext}} + \epsilon y + \cdots$, kde zanedbáme členy vyššího řádu a kde y je funkce času. Tím dále můžeme upravit první člen v poslední rovnosti (2.7):

$$\left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\int_{t=t_{A}}^{t_{B,\mathrm{ext}}}\left(1+\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t}\bullet\boldsymbol{x}_{\varepsilon}+\boldsymbol{\lambda}\bullet\boldsymbol{f}(\boldsymbol{x}_{\varepsilon},\boldsymbol{\beta})\right)\mathrm{d}t\right]\Big|_{\varepsilon=0}=\int_{t=t_{A}}^{t_{B,\mathrm{ext}}}\left(\left[\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t}+\frac{\partial\boldsymbol{f}}{\partial\boldsymbol{x}}\Big|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}},\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{ext}}}^{\mathsf{T}}\boldsymbol{\lambda}\right]\bullet\boldsymbol{y}+\boldsymbol{\lambda}\bullet\frac{\partial\boldsymbol{f}}{\partial\boldsymbol{\beta}}\Big|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}},\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{ext}}}\boldsymbol{\alpha}\right)\mathrm{d}t.$$
(2.8)

Nyní můžeme přistoupit k vybrání λ takové, aby bylo splněno:

$$\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} = -\left. \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{x}_{\mathrm{ext}}, \beta = \beta_{\mathrm{ext}}}^{\mathsf{T}} \boldsymbol{\lambda}. \tag{2.9}$$

Po dosazení dostáváme výsledný vztah pro Gâteuxovu derivaci:

$$DJ(\beta, t_B)[(\alpha, \tau)] = \int_{t=t_A}^{t_{B,\text{ext}}} \lambda \bullet \frac{\partial f}{\partial \beta} \Big|_{\boldsymbol{x} = \boldsymbol{x}_{\text{ext}}, \beta = \beta_{\text{ext}}} \alpha dt + [1 + \lambda \bullet f(\boldsymbol{x}_{\text{ext}}, \beta_{\text{ext}})] \Big|_{t=t_{B,\text{ext}}} \tau = 0,$$
 (2.10)

což musí platit pro libovolné α a τ . Tímto dostáváme:

$$\lambda \bullet \frac{\partial f}{\partial \beta}(x_{\text{ext}}, \beta_{\text{ext}}) = 0,$$
 (2.11a)

$$[1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})]|_{t=t_{B \text{ ext}}} = 0.$$
(2.11b)

Pokusme se vypočítat časovou derivaci funkce $1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})$, kam dosadíme z rovnic (2.2), (2.11a) a (2.9):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(1 + \lambda \bullet f(x_{\mathrm{ext}}, \beta_{\mathrm{ext}}) \right) = 0, \tag{2.12}$$

potom funkce $1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})$ se musí rovnat konstantě po celý časový interval letu, ale z rovnice (2.11b) vyplývá, že je rovna nule pro $t \in (t_A, t_B)$. Získáváme systém lineárních algebraických rovnic pro λ :

$$1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}}) = 0, \tag{2.13a}$$

$$\lambda \bullet \frac{\partial f}{\partial \beta}(x_{\text{ext}}, \beta_{\text{ext}}) = 0.$$
 (2.13b)

Řešením této soustavy pro naší pravou stranu (1.1) můžeme získat explicitní vzorec pro λ :

$$\begin{bmatrix} \lambda_x \\ \lambda_y \end{bmatrix} = \frac{1}{V + u(x_{\text{ext}}, y_{\text{ext}}) \cos \beta_{\text{ext}} + v(x_{\text{ext}}, y_{\text{ext}}) \sin \beta_{\text{ext}}} \begin{bmatrix} \cos \beta_{\text{ext}} \\ \sin \beta_{\text{ext}} \end{bmatrix}. \tag{2.14}$$

Odkud lze odvodit Zermelova navigační rovnice² s použitím rovnice (2.9) a užitím skalárního součinu obou stran rovnice s vektorem $\left[-\sin\beta_{\rm ext} \quad \cos\beta_{\rm ext}\right]^{\rm T}$. Na otázku jak se vyvíjí optimální směr letu vzducholodě $\beta_{\rm ext}$, nám právě odpovídá Zermelova navigační rovnice:

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{\partial v}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\sin^2\beta_{\mathrm{ext}} + \left(\frac{\partial u}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) - \frac{\partial v}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\right)\sin\beta_{\mathrm{ext}}\cos\beta_{\mathrm{ext}} - \frac{\partial u}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\cos^2\beta_{\mathrm{ext}}.$$
 (2.15)

 $^{^2}$ Ernst Zermelo - přednáška v Praze 1931

Tímto jsme odvodili všechny evoluční rovnice našeho problému.

Máme zadané rychlostní pole větru w, známe počáteční bod A a koncový bod B letu:

$$\boldsymbol{w} = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}, \tag{3.1}$$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \tag{3.2}$$

$$B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{3.3}$$

Optimální trajektori
i $\boldsymbol{x}_{\mathrm{ext}}$ a nejkratší možný čas letu t_B –
 t_A hledáme řešením diferenciálních rovnic:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}t} = V \cos \beta_{\mathrm{ext}} + u(x_{\mathrm{ext}}, y_{\mathrm{ext}}),$$

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}} + v(x_{\mathrm{ext}}, y_{\mathrm{ext}}),$$
(3.4a)

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}} + v(x_{\mathrm{ext}}, y_{\mathrm{ext}}),\tag{3.4b}$$

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{\partial v}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) \sin^2 \beta_{\mathrm{ext}} + \left(\frac{\partial u}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) - \frac{\partial v}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\right) \sin \beta_{\mathrm{ext}} \cos \beta_{\mathrm{ext}} - \frac{\partial u}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) \cos^2 \beta_{\mathrm{ext}}, \tag{3.4c}$$

pro neznámé $x_{\text{ext}} = \begin{bmatrix} x_{\text{ext}} & y_{\text{ext}} \end{bmatrix}^{\mathsf{T}}$ a β_{ext} při splnění podmínek:

$$\boldsymbol{x}_{\text{ext}}(t_A) = A,\tag{3.5}$$

$$\boldsymbol{x}_{\text{ext}}(t_B; \beta_{\text{ext},0}) = \mathbf{0},\tag{3.6}$$

kde $\beta_{\text{ext}}(t_A) = \beta_{\text{ext},0}$ je počáteční natočení vzducholodě. Neboli abychom mohli řešit soustavu diferenciálních rovnic (??), potřebujeme navíc kromě znalosti (1.2) ještě přidat další počáteční podmínku $\beta_{\text{ext},0}$, pro kterou platí pouze rovnost (??). Jak si ukážeme v další sekci, pro vhodně zadané rychlostní pole větru lze napsat soustavu rovnic mezi $x_{\rm ext}(t_A)$ a $\beta_{\rm ext,0}$.

4. Jednoduché veterné pole

Najjednoduchší prípad veterného poľa, by sme mohli uvažovať bezvetrie. V takom prípade bude pole charakterizované funkciami: u(x,y) = 0, v(x,y) = 0. Potom:

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = 0,\tag{4.1}$$

z toho:

$$\beta_{\text{ext}} = \beta_{\text{ext},0},\tag{4.2}$$

čo znamená, že vzducholoď bude natočená priamo na cieľ.

Uvažujme teraz prípad lineárnej závislosti veterného poľa na polohe. V tomto prípade bude pole charakterizované funkciami:

$$u = -\frac{V}{h}y\tag{4.3}$$

$$v = 0. (4.4)$$

Pre tento špeciálny prípad veterného poľa sa systém diferenciálnych rovíc zjednoduší na:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}t} = V \cos \beta_{\mathrm{ext}} - \frac{V}{h}y,$$

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}},$$

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}},$$
(4.5b)

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V\sin\beta_{\mathrm{ext}},\tag{4.5b}$$

$$\frac{\mathrm{d}t}{\mathrm{d}t} = \frac{V}{h}\cos^2\beta_{\mathrm{ext}} \tag{4.5c}$$

Poslednú rovnicu vieme vyriešiť separáciou premenných:

$$\tan \beta_{\text{ext}} - \tan \beta_{\text{ext},B} = \frac{V}{h}(t - t_B), \tag{4.6}$$

kde sme použili značenie $\beta_{\text{ext},B} =_{\text{def}} \beta_{\text{ext}}|_{t=t_{B,\text{ext}}}$. Nakoľko je funkcia β_{ext} rasttúca funkcia času, môžeme zmeniť premenné a prepísať rovnicu ?? ako $\frac{dy_{\text{ext}}}{d\beta_{\text{ext}}} \frac{d\beta_{\text{ext}}}{dt} = V \sin \beta_{\text{ext}},$ z čoho dostávame:

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}\beta_{\mathrm{ext}}} = h \frac{\sin \beta_{\mathrm{ext}}}{\cos^2 \beta_{\mathrm{ext}}}.\tag{4.7}$$

Z toho jednoducho:

$$y_{\text{ext}}(\beta_{\text{ext}}) = h \left(\frac{1}{\cos \beta_{\text{ext}}} - \frac{1}{\cos \beta_{\text{ext},B}} \right).$$
 (4.8)

Potrebujeme $y_{\text{ext}}(\beta_{\text{ext},B}) = 0$. Nakoniec môžeme uskutočniť rovnakú zmenu premenných v ??, čo dáva:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}\beta_{\mathrm{ext}}} = h \left(\frac{1}{\cos\beta_{\mathrm{ext}}} - \frac{1}{\cos^{3}\beta_{\mathrm{ext}}} + \frac{1}{\cos^{2}\beta_{\mathrm{ext}}\cos\beta_{\mathrm{ext},B}} \right). \tag{4.9}$$

Riešenie v tvare:

$$x_{\text{ext}}(\beta_{\text{ext}}) = \frac{1}{2}h(-\arctan \sin \beta_{\text{ext},B} + \arctan \sin \beta_{\text{ext}} - \sec \beta_{\text{ext},B} \tan \beta_{\text{ext},B} + 2\sec \beta_{\text{ext},B} \tan \beta_{\text{ext}} - \sec \beta_{\text{ext}} \tan \beta_{\text{ext}}), \quad (4.10)$$

potrebujeme aby platilo $x_{\text{ext}}(\beta_{\text{ext},end}) = 0$. Teraz môžeme použiť rovnice ?? a ??. Počiatočné podmienky musia vyhovovať 1.2a, teda dostávame systém rovníc:

$$\boldsymbol{x}(t_A) = \begin{bmatrix} \frac{1}{2}h(-\arctan\sin\beta_{\text{ext},B} + \arctan\sin\beta_{\text{ext}} - \sec\beta_{\text{ext},B} \tan\beta_{\text{ext},B} + 2\sec\beta_{\text{ext},B} \tan\beta_{\text{ext}} - \sec\beta_{\text{ext}} \tan\beta_{\text{ext}}) \\ h\left(\frac{1}{\cos\beta_{\text{ext}}} - \frac{1}{\cos\beta_{\text{ext},B}}\right) \end{bmatrix}$$
(4.11)

Nakoľko poznáme $x(t_A)$, dostávame teda z ?? sústavu dvoch nelineárnych algebraických rovníc pre dve neznáme $\beta_{\text{ext},end}$ a β_{ext} . Akonáhle nájdeme tieto dve hodnoty, môžeme z rovnice ?? vyjadriť konečný čas.

Konečne môžeme konštatovať, že pre výpočet úlohy navigácie lode, potrebujeme pre dané V, h a $\boldsymbol{x}(t_A) =_{\text{def}} \begin{bmatrix} x(t_A) & y(t_A) \end{bmatrix}^{\mathsf{T}}$, vyriešiť systém nelineárnych algebraických rovníc:

$$\begin{bmatrix} x(t_A) \\ y(t_A) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}h(-\arctan \sin \beta_{\text{ext},B} + \arctan \sin \beta_{\text{ext}} - \sec \beta_{\text{ext},B} \tan \beta_{\text{ext},B} + 2\sec \beta_{\text{ext},B} \tan \beta_{\text{ext}} - \sec \beta_{\text{ext}} \tan \beta_{\text{ext}}) \\ h\left(\frac{1}{\cos \beta_{\text{ext}}} - \frac{1}{\cos \beta_{\text{ext},B}}\right) \end{bmatrix}$$
(4.12)

a dostaneme hodnoty β_{ext} a $\beta_{\text{ext},B}$. Z rovnice

$$\tan \beta_{\text{ext},A} - \tan \beta_{\text{ext},B} = \frac{V}{h} (t_A - t_B)$$
(4.13)

nájdeme konečný čas t_B . Optimálna trajektória je daná ako riešenie systému diferenciálnych rovníc prvého stupňa:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}t} = V\cos\beta_{\mathrm{ext}} - \frac{V}{h}y_{\mathrm{ext}},\tag{4.14a}$$

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}},\tag{4.14b}$$

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{V}{h}\cos^2\beta_{\mathrm{ext}},\tag{4.14c}$$

ktoré sa riešia v časovom intervale $t \in (t_A, t_B)$, s ohľadom na počiatočné podmienky:

$$x_{\text{ext}}|_{t=t_A} = x_A,\tag{4.15a}$$

$$y_{\text{ext}}|_{t=t_A} = y_A, \tag{4.15b}$$

$$\beta_{\text{ext}}|_{t=t_A} = \beta_{\text{ext},A} \tag{4.15c}$$

Problém ?? až ?? sa dá vyriešiť numerickými metódami.

5. ZÁVĚR

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nullam sit amet magna in magna gravida vehicula. Nullam eget nisl. In rutrum. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat. Maecenas sollicitudin. Integer malesuada.(?)