

COMSATS University Islamabad, Lahore Campus

Block-C, Department of Computer Science
OMSATS University Islamabad, Lahore Campus 1.5KM Defence Road, Off Raiwind Road, Lahore

Midterm Examination - Semester Fall 2021

Student's Name Polil Hashmi			Reg. No.	FA19-BSE-110.			110.			
Time Allowed:	20 Milliutes			Maximum Marks:		25				
Semester:	5 th	Batch:	FA19-BSE & BCE	Section:	A&B		Date:	Frida	iy. Nov 19, 202	1
		Nadeem Ghafoor Chaudhry, Zeenat Afzal			Programme Name:		BS SE, BS Comp Eng			
Course Title:	Operating Systems			Cour	se Code:	CSC322		Credit Hours:	3(2.1)	

Important Instructions / Guidelines:

- · Attempt all questions.
- Do not write anything other than your name and registration number on question paper.
- Do not give multiple answers for any question. Clearly cross out what you do not want me to read.
- Give brief but to the point answers, length of your answer is not a good predictor of your expected marks.
- You may attempt questions in order of your liking but answer all parts of a question in sequence, i.e don't write the answer of part d of question #1 after question #3. I will not mark it,

Part A

Q1)

[2*2.5=5 marks]

Give brief answers to the following:

- a) Modern CPUs have two execution modes, i.e kernel mode and user mode, why we need these two modes?
- b) What is a Virtual Machine and what are its benefits, give an example?

Q2)
$$[2 + 8 = 10 \text{ marks}]$$

 a) Anonymous pipes and shared memory are two mechanisms for inter process communication, compare the two.

b) Consider the following five processes

Process	Burst Time (ms)	Priority	Arrival time (ms)		
P1	4	3	0		
P2	9	1	1		
P3	7	4	3		
P4	3	2	4		
P5	5	5	7		

Draw Gantt charts and calculate the average waiting time for First Come First Serve, Shortest Job First, and Priority based (non- preemptive) algorithms. Figure out which algorithm gives the best average waiting time in the above scenario. (Note: All times are in milliseconds.)

Part B

- Q3) [2+1+4+3=10 marks]
 - a) What are the three requirements for solution to critical-section problem? Give brief description of any two.
 - b) Why Peterson's Solution does not work on modern architecture and what is the solution to it?
 - c) Given below is the pseudocode to synchronize processes P1, P2, P3, P4, P5, and P6 by using three semaphores X, Y and Z that are initialized as follow: X=1, Y=1, Z= 0. The Operating System can schedule the processes which are ready to execute in any order. List down at least 4 legal possible orders of execution in which the X-2-1. processes can run.

P1 X	P2	P3	P4 K	P5	P6	110-1-0
Wait(Z) Print P1	Wait(Y) Print P2 Signal(Z)	Wait(X) Print P3 Signal(Y)	Wait(Z) Print P4 Signal(X)	Wait(Y) Print P5 Signal(Y)	Wait(Y) Print P6 Signal(Z)	201:2-1

d) Review the following code and argue if it meets all the requirements of criticalsection solution.

```
7-1-2-1-2-1
2-0-1-0-1
while (true)
 waiting[i] = true;
                                                                      X-1-2-1.
 key = 1;
                                                                      Y-1-0-1-2-1
 while (waiting[i] && key == 1)
                                                                      2-0-1-0-1-0
   key = compare_and_swap(&lock,0,1);
 waiting[i] = false;
 /* critical section */
                                                                   V 1-0-1-0-0
 j = (i + 1) \% n;
 while ((i!=i) \&\& !waiting[j])
                                                                   7.0-1-0-1-0
  j = (j + 1) \% n;
 if(j == i)
  lock = 0;
 else
  waiting[j] = false;
/* remainder section */
```