Unit 1-10 Exercises

2.

1.	Appending	Like-Structured Data	Sets
----	-----------	----------------------	------

a.	Retrieve the starter program p110e01 .
b.	Submit the two PROC CONTENTS steps to compare the variables in the two data sets.
	How many variables are in orion.price_current?
	How many variables are in orion.price_new?
	Does orion.price_new contain any variables that are not in orion.price_current?
c.	Add a PROC APPEND step after the PROC CONTENTS steps to append orion.price_new to orion.price_current. The FORCE option is not needed.
	Why is the FORCE option not needed?
d.	Submit the program and confirm that 88 observations from orion.price_new were added to orion.price_current, which should now have 259 observations (171 original observations plus 88 appended observations).
Ap	pending Unlike-Structured Data Sets
a.	Write and submit two PROC CONTENTS steps to compare the variables in orion.qtr1_2007 and orion.qtr2_2007.
	How many variables are in orion.qtr1_2007?
	How many variables are in orion.qtr2_2007?
	Which variable is not in both data sets?
b.	Write a PROC APPEND step to append orion.qtrl_2007 to a non-existing data set called Work.ytd.
c.	Submit the PROC APPEND step and confirm that 22 observations were copied to Work.ytd.
d.	Write another PROC APPEND step to append orion.qtr2_2007 to Work.ytd. The FORCE option is needed.
	Why is the FORCE option needed?
e.	Submit the second PROC APPEND step and confirm that 36 observations from orion.qtr2_2007 were added to Work.ytd, which should now have 58 observations.

3. Using the Append Statement

- a. Write and submit three PROC CONTENTS steps to compare the variables in orion.shoes_eclipse, orion.shoes_tracker, and orion.shoes.
- **b.** Write a PROC DATASETS step with two APPEND statements to append orion.shoes_eclipse and orion.shoes_tracker to orion.shoes.
 - Documentation on the DATASETS procedure can be found in the SAS Help and Documentation from the Contents tab (SAS Products \Rightarrow Base SAS \Rightarrow Base SAS 9.3 Procedures Guide \Rightarrow Procedures \Rightarrow The DATASETS Procedure).
- c. Submit the PROC DATASETS step and confirm that orion.shoes contains 34 observations (10 original observations plus 14 observations from orion.shoes_eclipse and 10 observations from orion.shoes_tracker).

4. Concatenating Like-Structured Data Sets

a. Write and submit a DATA step to concatenate orion.mnth7_2007, orion.mnth8_2007, and orion.mnth9_2007 to create a new data set called Work.thirdgtr.

How many observations in Work.thirdqtr are from orion.mnth7_2007? _______

How many observations in Work.thirdqtr are from orion.mnth8_2007? ______

How many observations in Work.thirdqtr are from orion.mnth9 2007?

b. Write and submit a PROC PRINT step to create the following report:

Partial PROC PRINT Output (First 10 of 32 Observations)

		Order_			Order_	Delivery_
0bs	Order_ID	Type	Employee_ID	Customer_ID	Date	Date
1	1242691897	2	9999999	90	02JUL2007	04JUL2007
2	1242736731	1	121107	10	07JUL2007	07JUL2007
3	1242773202	3	99999999	24	11JUL2007	14JUL2007
4	1242782701	3	99999999	27	12JUL2007	17JUL2007
5	1242827683	1	121105	10	17JUL2007	17JUL2007
6	1242836878	1	121027	10	18JUL2007	18JUL2007
7	1242838815	1	120195	41	19JUL2007	19JUL2007
8	1242848557	2	99999999	2806	19JUL2007	23JUL2007
9	1242923327	3	99999999	70165	28JUL2007	29JUL2007
10	1242938120	1	120124	171	30JUL2007	30JUL2007

5. Concatenating Unlike-Structured Data Sets

- a. Retrieve the starter program p110e05.
- **b.** Submit the two PROC CONTENTS steps to compare the variables in the two data sets.

What are the names of the two variables that are different in the two data sets?

orion.sales	orion.nonsales

c. Add a DATA step after the PROC CONTENTS steps to concatenate orion.sales and orion.nonsales to create a new data set called Work.allemployees.

Use a RENAME= data set option to change the names of the different variables in orion.nonsales.

Include only the following five variables: **Employee_ID**, **First_Name**, **Last_Name**, **Job_Title**, and **Salary**.

d. Add a PROC PRINT step to create the following report:

Partial PROC PRINT Output (First 10 of 400 Observations)

		First_			
0bs	Employee_ID	Name	Last_Name	Salary	Job_Title
1	120102	Tom	Zhou	108255	Sales Manager
2	120103	Wilson	Dawes	87975	Sales Manager
3	120121	Irenie	Elvish	26600	Sales Rep. II
4	120122	Christina	Ngan	27475	Sales Rep. II
5	120123	Kimiko	Hotstone	26190	Sales Rep. I
6	120124	Lucian	Daymond	26480	Sales Rep. I
7	120125	Fong	Hofmeister	32040	Sales Rep. IV
8	120126	Satyakam	Denny	26780	Sales Rep. II
9	120127	Sharryn	Clarkson	28100	Sales Rep. II
10	120128	Monica	Kletschkus	30890	Sales Rep. IV

6. Interleaving Data Sets

- a. Retrieve the starter program p110e06.
- b. Add a PROC SORT step after the PROC SORT step in the starter program. The PROC SORT step needs to sort orion.shoes_tracker by Product_Name to create a new data set called Work.trackersort.
 - Documentation on the SORT procedure can be found in the SAS Help and Documentation from the Contents tab (<u>SAS Products</u> ⇒ <u>Base SAS</u> ⇒ <u>Base SAS 9.3 Procedures Guide</u> ⇒ <u>Procedures</u> ⇒ <u>The SORT Procedure</u>).
- c. Add a DATA step after the two PROC SORT steps to interleave the two sorted data sets by Product_Name to create a new data set called Work.e_t_shoes.

Include only the following three variables: Product_Group, Product_Name, and Supplier_ID.

d. Add a PROC PRINT step to create the following report:

Partial PROC PRINT Output (First 10 of 24 Observations)

0bs	Product_Group	Product_Name	Supplier_ID
1	Eclipse Shoes	Atmosphere Imara Women's Running Shoes	1303
2	Eclipse Shoes	Atmosphere Shatter Mid Shoes	1303
3	Eclipse Shoes	Big Guy Men's Air Deschutz Viii Shoes	1303
4	Eclipse Shoes	Big Guy Men's Air Terra Reach Shoes	1303
5	Eclipse Shoes	Big Guy Men's Air Terra Sebec Shoes	1303
6	Eclipse Shoes	Big Guy Men's International Triax Shoes	1303
7	Eclipse Shoes	Big Guy Men's Multicourt Ii Shoes	1303
8	Eclipse Shoes	Cnv Plus Men's Off Court Tennis	1303
9	Tracker Shoes	Hardcore Junior/Women's Street Shoes Large	14682
10	Tracker Shoes	Hardcore Men's Street Shoes Large	14682

7. Merging orion.orders and orion.order_item in a One-to-Many Merge

- a. Retrieve the starter program p110e07.
- **b.** Submit the two PROC CONTENTS steps to determine the common variable among the two data sets.
- c. Add a DATA step after the two PROC CONTENTS steps and prior to the PROC PRINT step to merge orion.orders and orion.order_item by the common variable to create a new data set called Work.allorders.
- **d.** Submit the program and confirm that **Work**. **allorders** was created with 732 observations and 12 variables.

8. Merging orion.product_level and orion.product_list in a One-to-Many Merge

- **a.** Write a PROC SORT step to sort **orion.product_list** by **Product_Level** to create a new data set called **Work.product_list**.
- **b.** Write a DATA step to merge **orion.product_level** with the previous sorted data set by the appropriate common variable. Create a new data set called **Work.listlevel**.
- **c.** Write a PROC PRINT step with a VAR statement to create the following report:

Partial PROC PRINT Output (First 10 of 556 Observations)

Obs	Product_ID	Product_Name	Product_ Level	Product_ Level_ Name
1	210200100009	Kids Sweat Round Neck,Large Logo	1	Product
2	210200100017	Sweatshirt Children's O-Neck	1	Product
3	210200200022	Sunfit Slow Swimming Trunks	1	Product
4	210200200023	Sunfit Stockton Swimming Trunks Jr.	1	Product
5	210200300006	Fleece Cuff Pant Kid'S	1	Product
6	210200300007	Hsc Dutch Player Shirt Junior	1	Product

7	210200300052	Tony's Cut & Sew T-Shirt	-	Product
/	210200300052	Tony & out a sew 1-shirt	į.	Product
8	210200400020	Kids Baby Edge Max Shoes	1	Product
9	210200400070	Tony's Children's Deschutz (Bg) Shoes	1	Product
10	210200500002	Children's Mitten	1	Product

9. Joining orion.product_level and orion.product_list in a One-to-Many Merge

- a. Write a PROC SQL step to perform an inner join of orion.product_level and orion.product_list by Product_Level to create a new data set called Work.listlevelsql. The new data set should include only Product_ID, Product_Name, Product_Level, and Product_Level_Name.
 - Documentation on the SQL procedure can be found in the SAS Help and Documentation from the Contents tab ($\underline{SAS \ Products} \Rightarrow \underline{Base \ SAS} \Rightarrow \underline{Base \ SAS \ 9.3 \ Procedures \ Guide} \Rightarrow \underline{Procedures} \Rightarrow \underline{The \ SQL \ Procedure}$).
- **b.** Write a PROC PRINT step to create the following report:

Partial PROC PRINT Output (First 10 of 556 Observations)

			Product_	Product_Level_
0bs	Product_ID	Product_Name	Level	Name
1	210000000000	Children	4	Product Line
2	210100000000	Children Outdoors	3	Product Category
3	210100100000	Outdoor things, Kids	2	Product Group
4	210200000000	Children Sports	3	Product Category
5	210200100000	A-Team, Kids	2	Product Group
6	210200100009	Kids Sweat Round Neck,Large Logo	1	Product
7	210200100017	Sweatshirt Children's O-Neck	1	Product
8	210200200000	Bathing Suits, Kids	2	Product Group
9	210200200022	Sunfit Slow Swimming Trunks	1	Product
10	210200200023	Sunfit Stockton Swimming Trunks Jr.	1	Product

10. Merging Using the IN= Option

- a. Retrieve the starter program p110e10.
- **b.** Add a DATA step after the PROC SORT step to merge **Work.product** and **orion.supplier** by **Supplier_ID** to create a new data set called **Work.prodsup**.
- **c.** Submit the program and confirm that **Work.prodsup** was created with 556 observations and 10 variables.
- **d.** Modify the DATA step to output only observations that are in **Work.product** but not **orion.supplier**. A subsetting IF statement that references IN= variables in the MERGE statement needs to be added.
- **e.** Submit the program and confirm that **Work.prodsup** was created with 75 observations and 10 variables. The supplier information will be missing in the PROC PRINT output.

11. Merging Using the IN= and RENAME= Options

- a. Write a PROC SORT step to sort orion.customer by Country to create a new data set called Work.customer.
- **b.** Write a DATA step to merge the previous sorted data set with **orion.lookup_country** by **Country** to create a new data set called **Work.allcustomer**.

In the orion.lookup_country data set, Start needs to be renamed to Country and Label needs to be renamed to Country_Name.

Include only the following four variables: Customer_ID, Country, Customer_Name, and Country Name.

c. Write a PROC PRINT step to create the following report:

Partial PROC PRINT Output (First 15 of 308 Observations)

0bs	Customer_ID	Country	Customer_Name	Country_Name
1	•	AD		Andorra
2		AE		United Arab Emirates
3		AF		Afghanistan
4	•	AG		Antigua/Barbuda
5		ΑI		Anguilla
6		AL		Albania
7		AM		Armenia
8		AN		Netherlands Antilles
9	•	AO		Angola
10		AQ		Antarctica
11		AR		Argentina
12	•	AS		American Samoa
13		AT		Austria
14	29	AU	Candy Kinsey	Australia
15	41	AU	Wendell Summersby	Australia

- **d.** Modify the DATA step to store only the observations that contain both customer information and country information. A subsetting IF statement that references IN= variables in the MERGE statement needs to be added.
- **e.** Submit the program to create the following report:

Partial PROC PRINT Output (First 7 of 77 Observations)

			Country		
0bs	Customer_ID	Country	Customer_Name	Name	
1	29	AU	Candy Kinsey	Australia	
2	41	AU	Wendell Summersby	Australia	
3	53	AU	Dericka Pockran	Australia	
4	111	AU	Karolina Dokter	Australia	
5	171	AU	Robert Bowerman	Australia	
6	183	AU	Duncan Robertshawe	Australia	
7	195	AU	Cosi Rimmington	Australia	

12. Merging and Outputting to Multiple Data Sets

- a. Write a PROC SORT step to sort orion.orders by Employee_ID to create a new data set called Work.orders.
- b. Write a DATA step to merge orion.staff and Work.orders by Employee_ID.

Create two new data sets: Work.allorders and Work.noorders.

The data set Work.allorders should include all observations from Work.orders, regardless of matches or nonmatches from the orion.staff data set.

The data set **Work.noorders** should include the observations from **orion.staff** that do not have a match in **Work.orders**.

Include only the following six variables: **Employee_ID**, **Job_Title**, **Gender**, **Order_ID**, **Order_Type**, and **Order_Date**.

- **c.** Using the new data sets, write two PROC PRINT steps to create two reports.
- **d.** Submit the program and confirm that **Work.allorders** was created with 490 observations and 6 variables and **Work.noorders** was created with 324 observations and 6 variables.