OKAWA Electric Design

<u>Top</u> > <u>Ferramentas</u> > <u>Filtros</u> > <u>Ferramenta de Design do Filtro de Entalhe Twin-T</u> > Resultado

Ferramenta de design do filtro de entalhe duplo - Resultado -

Calculou a função de transferência para o filtro de entalhe Twin-T, exibido em gráficos, mostrando diagrama bode, diagrama de Nyquist, resposta de impulso e resposta passo

Função de transferência:

$$G(s) = \frac{s^3 + 312.89111389237s^2 + 97900.849152805s + 31560557.43159}{s^3 + 1583.4186672735s^2 + 501371.01535831s + 31560557.43159}$$

 $R1 = 68k\Omega$ R2 = $68k\Omega$ R3 $= 33k\Omega$ C1 = 0,094uFC2 = 0,047uF C3 = 0,047uF

Frequência de rejeição do centro

 $f_0 = 49,798167425499[Hz]$ $f_0 = 50,547054071128[Hz]$

Polos

p = -84,09863850528 |p| = 13,384714025414[Hz] p = -1181.759418354 |p| = 188,08285297645[Hz] p = -317.56061041417|p| = 50,541340878695[Hz]

Zero(s)

z = 2,3352684231465 +315,2436820381i |z| = 50,173966886377[Hz] z = -317,56165073866 |z| = 50,54150645148[Hz] z = 2,3352684231465-315.2436820381i|z| = 50,173966886377[Hz]

$f_0 = 50$	Hz		
C1 = 94n	F	C2 = 47n	F
C3 = 47n	F		

C1, C2, C3 é opcional. Mas ao definir essas capacitâncias, C1, C2 e C3 de todos são necessários para dar.

Selecione sequência do capacitor: E6 Selecione sequência de resistor: E24

	Análise de frequência
	☑ Bode
	✓ Group atraso
	✓ Nyquist
	diagrama Pole, zero Phase margin
	✓ Oscilação
	Análise na faixa de frequência:
	f1 = [Hz] (opcional)
\	

Análise transitória		
Resposta		
de		
p asso		
Resposta do impulso		
Sobrevoo valor		
final da resposta	de etapa Análise na faixa	
de tempo: 0~ [sec] (opci	onal)	

calcular

(c)okawa-denshi.jp

Zeros

(c)okawa-denshi.jp

Margem de fase

pm = INF[deg] (f=0[Hz])

O sistema não oscila.

Superação (em valor absoluto)

O 1° pico
$$g_{pk}$$
 = 0,12 (t =0,0024[seg])

Valor final da resposta de passo (na condição de que o sistema convergiu quando t vai para o infinito)

$$g(\infty) = 1$$

Análise de frequência

BodeDiagram

(c)okawa-denshi.jp

Obter características no Diagrama do Bode (fornece até 1 minuto)

<u>Características de fase no Diagrama do Bode</u> (fornece até 1 minuto)

<u>Dados de texto do Bode Diagram</u> (fornece até 1 minuto)

NyquistDiagram

0.01Hz

• 100000Hz

(c)okawa-denshi.jp

Análise transitória

StepResponse

(c)okawa-denshi.jp

<u>Dados de texto de resposta</u> de etapa (fornece até 1 minuto)

Caixa de sugestões

mos sua sugestão para melhorar a qualidade do site no futuro.	
	Comentário pós

<u>Disclaimer</u> <u>blogue</u>

 \bigcirc 2004 - 2021 OKAWA Electric Design