Решение жесткой системы дифференциальных уравнений Робертсона

Докладчик: Пиневич В. Г. Научный руководитель: Котович А. В.

группа ФН2-61Б

7 июня 2023 г.

Постановка задачи

Задача Робертсона

$$\begin{cases} \dot{y_1} = -0.04y_1 + 10^4 y_2 y_3, \\ \dot{y_2} = 0.04y_1 - 10^4 y_2 y_3 - 3 * 10^7 y_2^2, \\ \dot{y_3} = 3 * 10^7 y_2^2. \end{cases}$$

Требуется найти решение задачи Робертсона, построить фазовые траектории решений, полученных с помощью рассмотренных методов.

Начальные условия

$$\begin{cases} y_1(0) = 1, \\ y_2(0) = 0, \\ y_3(0) = 0. \end{cases}$$

Интервал интегрирования

$$t \in [0; T], T = 40, 100$$

Метод Адамса-Муолтона

Расчетная формула

$$y_{n+2} = y_{n+1} + h\left(\frac{5}{12}f(t_{n+2}, y_{n+2}) + \frac{8}{12}f(t_{n+1}, y_{n+1}) - \frac{1}{12}f(t_n, y_n)\right)$$

Шаг	Разность	Порядок
0.1	1.66E-07	3.00
0.05	2.08E-08	3.00
0.025	2.60E-09	3.00
0.0125	3.25E-10	

Таблица Порядки аппроксимации двухшажного метода Адамса-Моултона

Рис. Область устйочивости двухшажного метода Адамса-Моултона

Метод BDF

Расчетная формула для метода BDF-2

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2})$$

Расчетная формула для метода BDF-4

$$y_{n+4} - \frac{48}{25}y_{n+3} + \frac{36}{25}y_{n+2} - \frac{16}{25}y_{n+1} + \frac{3}{25}y_n = \frac{12}{25}hf(t_{n+4}, y_{n+4})$$

Шаг	Разность	Порядок
0.1	2.57E-06	1.95
0.05	7.36E-07	1.91
0.025	1.96E-07	1.96
0.0125	5.04E-08	

Шаг	Разность	Порядок
0.1	1.27E-10	3.94
0.05	1.02E-11	3.99
0.025	7.06E-13	3.93
0.0125	4.64E-14	

Таблица Порядки аппроксимации метода BDF-2

Таблица Порядки аппроксимации метода BDF-4

Области устойчивости методов BDF

Рис. Область устойчивости метода BDF-2

Рис. Область устойчивости метода BDF-4

Фазовые траектории

Рис. Фазовые траектории при $T=40,\ h=10^{-}3$

Рис. Фазовые траектории при $T = 100, h = 10^{-3}$

Рис. Фазовые траектории при $T=40,\,h=10^-4$

- метод BDF-2
- метод BDF-4
- метод Адамса-Моульона

Графики зависимости y_1 от t

Рис. Зависимость y_1 от t при T=40, $h=10^-3$

Рис. Зависимость y_1 от t при T = 100, $h = 10^-3$

Рис. Зависимость y_1 от t при $T=40,\ h=10^-4$

- метод BDF-2
- метод BDF-4
- метод Адамса-Моульона

Графики зависимости y_2 от t

Рис. Зависимость y_2 от t при T=40, $h=10^-3$

Рис. Зависимость y_2 от t при $T=100,\ h=10^-3$

Рис. Зависимость y_2 от t при $T=40,\ h=10^-4$

- метод BDF-2
- метод BDF-4
- метод Адамса-Моульона

Графики зависимости y_3 от t

Рис. Зависимость y_3 от t при T = 40, $h = 10^-3$

Рис. Зависимость y_3 от t при $T=100,\ h=10^-3$

Рис. Зависимость y_3 от t при $T=40,\ h=10^-4$

- метод BDF-2
- метод BDF-4
- метод Адамса-Моульона

Заключение

В ходе работы получены следующие результаты:

- Метод Адамса-Моултона является плохим выбором при решении жестких задач, так как он не является абсолютно устойчивым.
- В результатах расчетов решение для рассматриваемой задачи методом Адамса-Моултона удалось получить лишь на интервале [0; 40].
- 3 Методы BDF-2 и BDF-4 позволили получить решение на поставленную задачу как на интервале [0; 40], так и на интервале [0; 100].