ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

Chapter 6: Field-Effect Transistors

Islamic University of Gaza

Dr. Talal Skaik

FETs vs. BJTs

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices. BJTs are current controlled devices.
- FETs have a higher input impedance. BJTs have higher gains.
- FETs are less sensitive to temperature variations and are more easily integrated on ICs.

FET Types

•JFET: Junction FET

•MOSFET: Metal-Oxide-Semiconductor FET

D-MOSFET: Depletion MOSFET

E-MOSFET: Enhancement MOSFET

JFET Construction

There are two types of JFETs

- •n-channel
- •p-channel

The n-channel is more widely used.

There are three terminals:

Drain (D) and Source (S) are connected to the *n*-channel
Gate (G) is connected to the *p*-type material

JFET Operating Characteristics: $V_{GS} = 0 \text{ V}$, V_{DS} some positive value

When $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage:

- The depletion region between pgate and n-channel increases.
- Increasing the depletion region, decreases the size of the nchannel which increases the resistance of the n-channel.
- Even though the n-channel resistance is increasing, the current (I_D) from source to drain through the n-channel is increasing. This is because V_{DS} is increasing.

JFET Operating Characteristics: $V_{GS} = 0 \text{ V}$, V_{DS} some positive value

 I_D versus V_{DS} for $V_{GS} = 0$ V.

JFET Operating Characteristics: Pinch Off

If $V_{GS} = 0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel.

As V_{DS} is increased beyond $|V_P|$, the level of I_D remains the same $(I_D=I_{DSS})$.

 I_{DSS} is the maximum drain current for a JFET and is defined by the conditions V_{GS} =0 and V_{DS} > $|V_P|$.

JFET Operating Characteristics , V_{GS}<0

- •As V_{GS} becomes more negative, the depletion region increases.
- •The more negative V_{GS} , the resulting level for I_D is reduced.
- •Eventually, when $V_{GS}=V_P$ (-ve) $[V_P=V_{GS(off)}]$, I_D is 0 mA. (the device is "*turned off*".
- •The level of V_{GS} that results in I_D =0 mA is defined by V_{GS} = V_P , with V_P being a negative voltage for n-channel devices and a positive voltage for p-channel JFETs.

Application of a negative voltage to the gate of a JFET.

JFET Operating Characteristics

n-Channel JFET characteristics with $I_{DSS} = 8$ mA and $V_P = -4$ V.

JFET Operating Characteristics: Voltage-Controlled Resistor

- •The region to the left of the pinch-off point is called the ohmic region.
- •The JFET can be used as a variable resistor, where V_{GS} controls the drain-source resistance (r_d) . As V_{GS} becomes more negative, the resistance (r_d) increases.

$$\mathbf{r_d} = \frac{\mathbf{r_0}}{\left(1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}}\right)^2}$$

where r_o is the resistance with $V_{GS}=0$ and r_d is the resistance at a particular level of V_{GS} .

p-Channel JFETS

The *p*-channel JFET behaves the same as the *n*-channel JFET, except the voltage polarities and current directions are reversed.

p-Channel JFET Characteristics

As V_{GS} increases more positively

- The depletion zone increases
- I_D decreases $(I_D < I_{DSS})$
- Eventually $I_D = 0 A$

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation: I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

JFET Symbols

JFET symbols: (a) n-channel; (b) p-channel.

(a) $V_{GS} = 0 \text{ V}$, $I_D = I_{DSS}$; (b) cutoff ($I_D = 0 \text{ A}$) V_{GS} less than (more negative than) the pinch-off level; (c) I_D is between 0 A and I_{DSS} for $V_{GS} \le 0 \text{ V}$ and greater than the pinch-off level.

JFET Transfer Characteristics

In a BJT, β indicates the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and I_{D} (output) is a little more complicated (*Shockley's equation*):

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

William Bradford Shockley (1910–1989)

JFET Transfer Curve

This graph shows the value of I_D for a given value of V_{GS} .

Plotting the JFET Transfer Curve

Using I_{DSS} and Vp (V_{GS(off)}) values found in a specification sheet, the transfer curve can be plotted according to these three steps:

Step 1

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

Solving for $V_{GS} = 0V$

$$I_D = I_{DSS}$$

Step 2
$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

Solving for $V_{GS} = V_p (V_{GS(off)}) I_D = 0A$

Solving for
$$V_{GS} = 0V$$
 to V_p $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$

i.e. For
$$V_{GS} = -1 \text{ V}$$
 $I_D = 8mA \left(1 - \frac{-1}{-4}\right)^2 = 4.5 \text{mA}$

Conversely, for a given I_D, V_{GS} can be obtained:

$$V_{GS} = V_{P} \left(1 - \sqrt{\frac{I_{D}}{I_{DSS}}} \right)$$

Example 6.1

Sketch the transfer curve defined by I_{DSS} =12 mA and V_P =-6V.

