DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

ICML 2017

V. Flunkert, D. Salinas, J. Gasthaus Amazon Development Center

Paper Review by Doyeon Yoon

February 25, 2019

Contents

Introduction

Related Work

Model

Architecture Likelihood model Training Scale handling Prediction

Experiments

Conclusion

Contents

Introduction

Related Work

Mode

Architecture
Likelihood model
Training
Scale handling
Prediction

Experiments

Conclusion

Introduction: Motivation

Classical forecasting model

- ► ARIMA (Autoregressive Integrated Moving Average)
- Exponential smoothing

A New type of forecasting problem

Forecasting thousands or millions of related time series

Introduction: Motivation

Figure 1: Log-log histogram of the number of items versus number of sales for the 500K time series of ec, showing the scale-free nature (approximately straight line) present in the ec dataset (axis labels omitted due to the non-public nature of the data).

There are two problems

- Magnitudes of the time series differ widely
- √ Distribution of the magnitudes is strongly skewed

Divide the data set into sub-groups of time series?

- √ Each velocity sub-group would have a similar skew
- √ Velocities will be vastly different within each group

Introduction: Contribution

1. Propose RNN architecture for probabilistic forecasting

- √ Incorporating a Negative Binomial likelihood for count data
- √ Special treatment for the case when the magnitudes of the time series vary widely
- Demonstrate this model produces accurate probabilistic forecasts.
 - $\sqrt{\ }$ across a range of input characteristic, on several real-world data sets.
 - √ in contrast to common belief

Introduction: Key Advantages

- √ Minimal feature engineering
- √ Probabilistic forecasting
- √ Forecast for new items or no history
 - a case where traditional single-item forecasting methods fail
- √ Not assume Gaussian noise
 - allowing the user to choose one that is appropriate for the statistical properties of the data.

Contents

Introduction

Related Work

Mode

Architecture
Likelihood model
Training
Scale handling
Prediction

Experiments

Conclusion

Related Work

Forecasting individual time series

- ARIMA models
- exponential smoothing methods

Demand forecasting domain

- data preprocessing methods often do not alleviate these conditions
- incorporated more suitable likelihood functions (zero-inflated Poisson, Negative binomial,)

Sharing information across time series

- can improve the forecast accuracy
 - ⇒ difficult to accomplish in practice
 - ⇒ hierarchical structure

Contents

Introduction

Related Work

Model

Architecture
Likelihood model
Training
Scale handling
Prediction

Experiments

Conclusion

Model: Notation(Input layer)

Definition

$$Z_{i,1:T} := [z_{i,1}, ..., z_{i,t_0-1}, z_{i,t_0}, ..., z_{i,T}]$$

Definition (Covariates)

covariates are assumed to be known for all time points, denoted by

$$\mathbf{X}_{i,1:T} := [x_{i,1}, x_{i,2}, ..., x_{i,T}]$$

Model: Architecture

Figure: Training(Left) and Prediction(Right)

Goal is to model the conditional distribution $P(z_{i,t_o:T}|z_{i,1:t_o-1},x_{i,1:T})$ of the future of each time series $z_{i,t_o:T}$ given its past $z_{i,1:t_o-1}$

Two choices

Gaussian likelihood: real-valued data

•
$$\ell_G(z|\mu,\sigma) = (2\pi\sigma^2)^{-\frac{1}{2}} exp(-(z-\mu)^2/(2\sigma^2))$$

Negative Binomial likelihood: positive count data

$$\mu(h_{i,t}) = log(1 + exp(\mathbf{W}_{\mu}^{T} h_{i,t} + b_{\mu}))$$

$$\sqrt{\alpha} \in \mathbb{R}^+$$
 : shape parameter

Binomial distribution VS Negative Binomial Distribution

Binomial : $X \sim B(n, p)$ (trial n, probability p)

- ► Count the number of success
- Fixed number of trial
- ▶ $np \rightarrow \lambda, n \rightarrow \infty$

Binomial distribution VS Negative Binomial Distribution

Binomial : $X \sim B(n, p)$ (trial n, probability p)

- Count the number of success
- Fixed number of trial
- ▶ $np \rightarrow \lambda, n \rightarrow \infty$
 - \Rightarrow Poisson distribution : $X \sim Pois(\lambda)$
 - Given number of events on a fixed interval.

Negative Binomial : $X \sim NB(\mu, \alpha)$ (number of success μ , probability α)

- Count the number of trial
- ► Fixed number of success

Binomial distribution VS Negative Binomial Distribution

Binomial : $X \sim B(n, p)$ (trial n, probability p)

- Count the number of success
- Fixed number of trial
- ▶ $np \rightarrow \lambda, n \rightarrow \infty$
 - ⇒ Poisson distribution : $X \sim Pois(\lambda)$
 - Given number of events on a fixed interval.

Negative Binomial : $X \sim NB(\mu, \alpha)$ (number of success μ , probability α)

- Count the number of trial
- ► Fixed number of success

Related works: Estimating negative binomial demand for retail inventory management with unobservable lost sales(1996)

Input

- ▶ Past values : $z_1, z_2, ..., z_{t_0-1}$
- ► Covariates : $x_1, x_2, ..., x_T$!! Length of $x_{1,T} = t_0 + T$

Output

$$P(z_{t_o}, z_{t_o+1}, ..., z_{t_o+T})$$

Input

- ▶ Past values : $z_1, z_2, ..., z_{t_0-1}$
- ► Covariates : $x_1, x_2, ..., x_T$!! Length of $x_{1,T} = t_0 + T$

Output

$$P(z_{t_o}, z_{t_o+1}, ..., z_{t_o+T})$$

Input

- ▶ Past values : $z_1, z_2, ..., z_{t_0-1}$
- ► Covariates : $x_1, x_2, ..., x_T$!! Length of $x_{1,T} = t_0 + T$

Output

$$P(z_{t_o}, z_{t_o+1}, ..., z_{t_o+T})$$

Input

- ▶ Past values : $z_1, z_2, ..., z_{t_0-1}$
- ► Covariates : $x_1, x_2, ..., x_T$!! Length of $x_{1,T} = t_0 + T$

Output

$$P(z_{t_o}, z_{t_o+1}, ..., z_{t_o+T})$$

Input

- ▶ Past values : $z_1, z_2, ..., z_{t_0-1}$
- ► Covariates : $x_1, x_2, ..., x_T$!! Length of $x_{1,T} = t_0 + T$

Output

$$P(z_{t_o}, z_{t_o+1}, ..., z_{t_o+T})$$

Log Maximum Likelihood:

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{t=t_0}^{T} log \ell(z_{i,t} | \theta(\mathbf{h}_{i,t}))$$

Figure: Encoder

Likelihood function $\mathcal{L}(\theta|x)$ is defined by probability of x when the parameter θ is given.

$$\Rightarrow \mathcal{L}(\theta|x) = P(x|\theta)$$

Model: Scale handling

Nonlinearity of the networks

- Adjust before and after input / output so as not to be affected by nonlinearity of the networks.
- ex Negative binomial distribution
 - $\qquad \qquad \mu = v_i \log(1 + \exp(o_\mu)), \, \alpha = \log(1 + \exp(o_\alpha)) / \sqrt{v_i}$
 - ► Scale $V_i = 1 + \frac{1}{t_0} \sum_{t=1}^{t_0} z_{i,t}$

Pick training instance uniformly ⇒ underfitting

The probability of selecting a window with scale v_i is proportional to v_i

Figure: Training(Left) and Prediction(Right)

Figure: Training(Left) and Prediction(Right)

Generating one sampling trace

Figure: Decoder

Generating one sampling trace

Figure: Decoder

Representing the joint predicted distribution

Contents

Introduction

Related Work

Mode

Architecture
Likelihood model
Training
Scale handling
Prediction

Experiments

Conclusion

Experiments

Environments

► laptop: 1AWS p2.xlarge instance:4CPU + 1GPU

framework: MXNetnetwork: LSTM

Datasets

	parts	electricity	traffic	ec-sub	ec
# time series	1046	370	963	39700	534884
time granularity	month	hourly	hourly	week	week
domain	N	R+	[0, 1]	\mathbb{N}	N
encoder length	8	168	168	52	52
decoder length	8	24	24	52	52
# training examples	35K	500K	500K	2M	2M
item input embedding dimension	1046	370	963	5	5
item output embedding dimension	1	20	20	20	20
batch size	64	64	64	512	512
learning rate	1e-3	1e-3	1e-3	5e-3	5e-3
# LSTM layers	3	3	3	3	3
# LSTM nodes	40	40	40	120	120
running time	5min	7h	3h	3h	10h

Experiments

Example time series of ec

- ► Blue line : The p50
- Shaded : The 80% confidence interval

Experiments: comparison

$\rho\text{-risk}$: normalized sum of $\rho\text{-quantile losses}$

(L,S)	0.5-risk				0.9-risk				average
	(0,1)	(2, 1)	(0, 8)	all(8)	$\begin{array}{c} {\tt parts} \\ (0,1) \end{array}$	(2, 1)	(0,8)	all(8)	average
Snyder (baseline)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rnn-gaussian	1.17	1.49	1.15	1.56	1.02	0.98	1.12	1.04	1.19
rnn-negbin	0.95	0.91	0.95	1.00	1.10	0.95	1.06	0.99	0.99
DeepAR	0.98	0.91	0.91	1.01	0.90	0.95	0.96	0.94	0.94
	1				ec-sub				
(L, S)	(0, 2)	(0, 8)	(3, 12)	all(33)	(0, 2)	(0, 8)	(3, 12)	all(33)	average
ISSM (baseline)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rnn-gaussian	1.03	1.19	1.24	0.85	0.91	1.74	2.09	0.67	1.21
rnn-negbin	0.90	0.98	1.11	0.85	1.23	1.67	1.83	0.78	1.17
DeepAR	0.64	0.74	0.93	0.73	0.71	0.81	1.03	0.57	0.77
	1				ec				
(L, S)	(0, 2)	(0, 8)	(3, 12)	all(33)	(0, 2)	(0, 8)	(3, 12)	all(33)	average
ISSM (baseline)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rnn-gaussian	0.89	0.91	0.94	1.14	0.90	1.15	1.23	0.90	1.01
rnn-negbin	0.66	0.71	0.86	0.92	0.85	1.12	1.33	0.98	0.93
DeepAR	0.59	0.68	0.99	0.98	0.76	0.88	1.00	0.91	0.85

Figure: Accuracy metrics relative to the strongest previously published method

Experiments: comparison

$\rho\text{-risk}$: normalized sum of $\rho\text{-quantile losses}$

	0.5-risk				0.9-risk				average
(L,S)	(0, 1)	(2, 1)	(0, 8)	all(8)	$\begin{array}{c} {\tt parts} \\ (0,1) \end{array}$	(2, 1)	(0,8)	all(8)	average
Snyder (baseline)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rnn-gaussian	1.17	1.49	1.15	1.56	1.02	0.98	1.12	1.04	1.19
rnn-negbin	0.95	0.91	0.95	1.00	1.10	0.95	1.06	0.99	0.99
DeepAR	0.98	0.91	0.91	1.01	0.90	0.95	0.96	0.94	0.94
	I				ec-sub				
(L, S)	(0, 2)	(0, 8)	(3, 12)	all(33)	(0, 2)	(0, 8)	(3, 12)	all(33)	average
ISSM (baseline)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rnn-gaussian	1.03	1.19	1.24	0.85	0.91	1.74	2.09	0.67	1.21
rnn-negbin	0.90	0.98	1.11	0.85	1.23	1.67	1.83	0.78	1.17
DeepAR	0.64	0.74	0.93	0.73	0.71	0.81	1.03	0.57	0.77
	I				ec				
(L, S)	(0, 2)	(0, 8)	(3, 12)	all(33)	(0, 2)	(0, 8)	(3, 12)	all(33)	average
ISSM (baseline)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rnn-gaussian	0.89	0.91	0.94	1.14	0.90	1.15	1.23	0.90	1.01
rnn-negbin	0.66	0.71	0.86	0.92	0.85	1.12	1.33	0.98	0.93
DeepAR	0.59	0.68	0.99	0.98	0.76	0.88	1.00	0.91	0.85

Figure: Accuracy metrics relative to the strongest previously published method

Experiments: comparison

Contents

Introduction

Related Work

Model

Architecture
Likelihood model
Training
Scale handling
Prediction

Experiments

Conclusion

Conclusion

 \surd Forecasting approaches based on modern deep learning techniques can drastically improve forecast accuracy.

√ DeepAR

- ► Effectively learns a global model
- handles widely-varying scales through rescaling
- generates calibrated probabilistic forecasts with high accuracy
- learn complex patterns such as seasonality and uncertainty growth over time from the data

