PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 18 FEBBRAIO 2010

- 1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia $V_{T1}=V_{T2}=V_{T3}=V_T$ e dai coefficienti β_1 , $\beta_2=\beta_3$.
 - Si dimensioni la resistenza R1 in modo tale che in corrispondenza della soglia logica (vi=vu=v_{LT}) la differenza di potenziale su R1 sia pari a 2.627 V.

Si determinino quindi i margini d'immunità ai disturbi $N_{\text{ML}},$ N_{MH} e N_{M} della rete.

$$V_{dd} = 3.5 \text{ V}, V_T = 0.55 \text{ V}, \beta_1 = 10 \text{ mA/V}^2, \beta_2 = \beta_3 = 0.1 \text{ mA/V}^2.$$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{Ti} e dai coefficienti β_{i} . I segnali di ingresso V_a e V_b sono periodici ed hanno l'andamento mostrato in figura.

Si determini l'andamento di V_{u} , trascurando i fenomeni di transitorio.

Si determini infine la potenza statica media erogata dal generatore V_{dd} .

 $V_{dd} = 3.3 \ V, \ V_{T1} = V_{T5} = 0.4 \ V, \ V_{T2} = V_{T6} = -0.4 \ V, \ V_{T3} = 1.2 \ V, \ V_{T4} = -1.2 \ V, \ \beta_1 = \beta_3 = \beta_5 = 1 \ mA/V2, \ \beta_2 = \beta_4 = \beta_6 = 700 \ \mu A/V2.$

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 30m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 30m). Esame di FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Oss. preliminare: M3 quando on (se vu<vdd-vt) è sat (0<vt).

Dimensionamento di R1. Alla soglia logica vu=vi=v_{LT}. M1lin, M2 lin, M3sat

Alla soglia logica vu=vi=vlt	$idn3sat = \beta_3/2*(vdd-vu-vt)^2$
La differenza di potenziale ai capi di R1 vale vdd-	ir1=(vdd-vu)/r1
vu=vdd-vlt= 2.627 V,	
quindi vlt=0.873 V	Ma ir1+idn3sat=idn2lin+idn1sat
$idn1sat=\beta_1/2*(vi-vt)^2$	Da cui si ricava che R1= 5000.22Ω
$idn2lin=\beta_2*((vdd-vt)*vu-vu^2/2)$	
	Si assume R1=5 k Ω

Regione 1: vi<vt, allora M1 OFF. Suppongo M2 lin(sse vu<vdd-vt=2.95 V), M3 sat.

$idn2lin=\beta_2*((vdd-vt)*vu-vu^2/2)$	Da cui si ricavano i seguenti valori di vu:
$idn3sat=\beta_3/2*(vdd-vu-vt)^2$	vu=1.888 V, vu=6.013 V.
ir1=(vdd-vu)/r1	Delle due soluzioni la prima è quella accettabile:
Ma ir1+idn3sat=idn2lin	1.888 V(=vu) <2.95(=vdd-vt) V e soddisfa le Hp fatte.

Regione 2: vi>vt M1 sat (sse vi<vu+vt da verificare). Inoltre M2 lin e M3 sat.

Cerco se in questa regione esistono punti della caratteristica statica di trasferimento a pendenza –1 (cioè cerco		
i punti tali che dvu/dvi=-1).		
ir1=(vdd-vu)/r1	Risolvendo si ricavano le seguenti coppie di	
$idn1sat = \beta_1/2*(vi-vt)^2$	valori (vi, vu):	
$idn2lin = \beta_2 * ((vdd-vt)*vu-vu^2/2)$	(vi=0.508 V, vu=6.033 V) e,	
$idn3sat = \beta_3/2*(vdd-vu-vt)^2$	(vi=0.592 V, vu=1.867 V).	
Cerco i punti tali che dvu/dvi=-1	Delle due soluzioni quella accettabile è la	
$d(idn1sat)/dvi = \beta_{1*}(vi-vt)$	seconda, quindi:	
$d(idn2lin)/dvi = \beta_2*(-1*(vdd-vt)-vu*-1)$	V_{0HMIN} =1.867 V, e V_{ILMAX} =0.592 V. Tale coppia di valori soddisfa l'Hp di saturazione di M1 [vu (=1.867) > vi-vt (=0.042V)], M2 e	
$d(idn3sat)/dvi = \beta_3*(vdd-vu-vt)*(-1*-1)$		
d(ir1)/dvi = -1/r1*-1		
Ma ir1+idn3sat=idn2lin+idn1sat	M3.	
d(ir1)/dvi+d(idn3sat)/dvi=d(idn2lin)/dvi+d(idn1sat)/dvi		

Regione 3: Suppongo M1 lin (vi>vu+vt da verificare). Inoltre M2 lin e M3 sat. Cerco se in questa regione esistono punti della caratteristica statica di trasferimento a pendenza –1 (cioè cerco

Cerco se in questa regione esistono punti della caratteristica statica di trasferimento a pendenza –1 (cioè cerco		
i punti tali che dvu/dvi=-1).		
ir1=(vdd-vu)/r1	da cui si ricavano le seguenti coppie di valori	
$idn1lin = \beta_1*((vi-vt)*vu-vu^2/2)$	(vi,vu): (vi=-0.083 V, vu=-0.274 V) e	
$idn2lin = \beta_2 * ((vdd-vt)*vu-vu^2/2)$	(vi=1.025 V, vu=0.274 V).	
idn3sat= $\beta_3/2*(vdd-vu-vt)^2$ Cerco i punti tali che dvu/dvi=-1 d(idn1lin)/dvi= $\beta_1*(vu-1*(vi-vt)-vu*-1)$	Delle due soluzioni quella accettabile è la seconda, quindi: V _{IHMIN} =1.025 V, e V _{OLMAX} =0.274 V.	
$d(idn2lin)/dvi = \beta_2*(-1*(vdd-vt)-vu*-1)$ $d(idn3sat)/dvi = \beta_3*(vdd-vu-vt)*(-1*-1)$ $d(ir1)/dvi=-1/r1*-1$	Tale coppia di valori soddisfa l'Hp di linearità di M1 [vu (=0.274) < vi-vt (=0.475 V)] , M2 e M3.	
Ma d(ir1)/dvi+d(idn3sat)/dvi=d(idn2lin)/dvi+d(idn1lin)/dvi ir1+idn3sat=idn2lin+idn1lin	Si ricava allora che: $ NM_H \!\!=\!\! 1.867 \ V \!\!-\! 1.025 \ V \!\!=\!\! 0.842 \ V \ e \\ NM_L \!\!=\!\! 0.592 \ V \!\!-\! 0.274 \ V \!\!=\!\! 0.318 \ V \ (=\!\!NM \). $	

Il segnale V_x è l'uscita di un invertitore CMOS, e ha quindi l'andamento complementare di V_a . V_x è trasferito su V_y attraverso i passtransistor M_3 e M_4 in parallelo. A causa delle limitazioni di escursione nel trasferimento del segnale attraverso i pass transistor, V_y può assumere valori diversi da 0 e V_{dd} , in ingresso all'invertitore CMOS formato da M_5 e M_6 .

Intervallo (1) [0-0.5 ns]

$$V_a = V_b = 0 \rightarrow \begin{cases} V_x = V_{dd} \\ M_3 \text{ off, } M_4 \text{ on} \end{cases} \rightarrow V_y = V_{dd} \rightarrow V_u = 0$$

Intervallo (2) [0.5-1 ns]

$$V_a = V_{dd}, V_b = 0 \rightarrow \begin{cases} V_x = 0 \\ M_3 \text{ off}, M_4 \text{ on} \end{cases} \rightarrow V_y = |V_{T4}| = 1.2 \text{ V}$$

Il transistore M_4 funge da pull-down, trasferendo un valore basso "debole". L'invertitore M_5/M_6 "lavora" quindi in un punto intermedio della propria caratteristica di trasferimento:

$$V_{y} > V_{T5} \rightarrow M_{5} \text{ on (HP: SAT)} \rightarrow I_{D5} = \frac{\beta_{5}}{2} \left(V_{y} - V_{T5} \right)^{2} = \textbf{0.32 mA}$$

$$V_{y} < V_{dd} - |V_{T6}| \rightarrow M_{6} \text{ on (HP: LIN)} \rightarrow I_{D6} = \beta_{6} \left(\left(V_{dd} - V_{y} - |V_{T6}| \right) (V_{dd} - V_{u}) - \frac{(V_{dd} - V_{u})^{2}}{2} \right)$$

$$I_{D5} = I_{D6}$$

$$V_{y} = 0.19 \ V \text{ (non soddisfa HP)}$$

$$V_{u} = \textbf{3.01 V} \text{ (soddisfa HP)}$$

Intervallo (3) [1-1.5 ns]

$$V_a = V_b = V_{dd} \rightarrow \begin{cases} V_x = 0 \\ M_3 \text{ on, } M_4 \text{ off} \end{cases} \rightarrow V_y = 0 \rightarrow V_u = V_{dd}$$

Intervallo (4) [1.5-2 ns]

$$V_a = 0, V_b = V_{dd} \rightarrow \begin{cases} V_x = V_{dd} \\ M_3 \text{ on, } M_4 \text{ off} \end{cases} \rightarrow V_y = V_{dd} - V_{T3} = 2.1 V$$

Il transistore M_3 funge da pull-up, trasferendo un valore alto "debole". L'invertitore M_5/M_6 "lavora" quindi in un punto intermedio della propria caratteristica di trasferimento:

$$V_{y} > V_{T5} \rightarrow M_{5} \text{ on (HP:LIN)} \rightarrow I_{D5} = \beta_{5} \left(\left(V_{y} - V_{T5} \right) V_{u} - \frac{V_{u}^{2}}{2} \right)$$

$$V_{y} < V_{dd} - |V_{T6}| \rightarrow M_{6} \text{ on (HP:SAT)} \rightarrow I_{D6} = \frac{\beta_{6}}{2} \left(V_{dd} - V_{y} - |V_{T6}| \right)^{2} = \mathbf{0.224 \ mA}$$

$$I_{D5} = I_{D6}$$

$$V_{u} = \mathbf{0.137} \ V \ (soddisfa\ HP)$$

Il circuito dissipa potenza statica negli intervalli (2) e (4), nei quali sono simultaneamente accese le reti di pull-up e pull-down dell'invertitore M_5/M_6 . La potenza statica media dissipata vale quindi:

$$P = \frac{1}{T} \int_{0}^{T} V_{dd} \cdot I(V_{dd}) dt = \frac{V_{dd}}{2 \, ns} \left\{ \int_{0}^{0.5 \, ns} 0 \, dt + \int_{0.5 \, ns}^{1.5 \, ns} (0.32 \, mA) \, dt + \int_{1.5 \, ns}^{1.5 \, ns} 0 \, dt + \int_{1.5 \, ns}^{2.05} (0.224 \, mA) \, dt \right\} = \mathbf{448.8} \, \mu \mathbf{W}$$

