(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-190798

(43)公開日 平成8年(1996)7月23日

識別記号	庁内整理番号	FΙ					技術表示	箇所
481				.=./				
		G I	1 C	17/ 00				
	審査請求	未請求	請求項	(の数3	OL		最終頁に網	売く
特願平7-297	,	(71)出	順人	000003	3078			
				株式会	社東芝			
平成7年(1995)1	平成7年(1995)1月5日			神奈川	県川崎	市幸区堀川町	72番地	
		(72)発	明者	丹沢	徹			
		}						株
		(72)発	明者	田中	智晴			
				神奈川	県川崎	市幸区小向東	芝町1番地	株
				式会社	東芝研	究開発センタ	一内	
		(74)代	理人	弁理士	- 鈴江	武彦		
•	5 481 特願平7-297	5 481 審查請求	5 481 G1 審査請求 未請求 特願平7-297 (71)出 平成7年(1995)1月5日 (72)务	5 481 G11C 審査請求 未請求 請求項 特願平7-297 (71)出願人 平成7年(1995)1月5日 (72)発明者 (72)発明者	481 G11C 17/00 審査請求 未請求 請求項の数3 特願平7-297 (71)出願人 000000 株式会 中奈川 (72)発明者 丹沢 神奈川 式会社 (72)発明者 田中 神奈川 式会社	5 481 G11C 17/00 審査請求 未請求 請求項の数3 OL 特願平7-297 (71)出願人 000003078 株式会社東芝 神奈川県川崎 (72)発明者 丹沢 徹 神奈川県川崎 式会社東芝研 (72)発明者 田中 智晴 神奈川県川崎 式会社東芝研	481 G11C 17/00 309 D 510 審査請求 未請求 請求項の数3 OL (全13頁) 特願平7-297 (71)出願人 000003078 株式会社東芝 平成7年(1995)1月5日 (72)発明者 丹沢 徹 神奈川県川崎市幸区小向東 式会社東芝研究開発センタ (72)発明者 田中 智晴 神奈川県川崎市幸区小向東	481 G11C 17/00 309 D 510 審査請求 未請求 請求項の数3 OL (全13頁) 最終頁に組 特願平7-297 (71)出願人 000003078 株式会社東芝 神奈川県川崎市幸区堀川町72番地 (72)発明者 丹沢 徹 神奈川県川崎市幸区小向東芝町1番地 式会社東芝研究開発センター内 (72)発明者 田中 智晴 神奈川県川崎市幸区小向東芝町1番地 式会社東芝研究開発センター内

(54) 【発明の名称】 不揮発性半導体記憶装置

(57)【要約】

【目的】 電源電圧の変動に依存しないのは勿論のこと、製造ばらつきや温度変動にも依存しない昇圧能力を持つ昇圧回路を搭載して、書き込み/消去時における電源パワーの無駄が生じることがない不揮発性半導体記憶装置を提供する。

【構成】 メモリセルアレイ1と、電源電圧の降下により発振周波数が高くなる発振回路9と、発振回路9の駅動により電源電圧を昇圧してアレイ1の書き込み/消去時に必要な電圧を発生する昇圧回路8とを備えた不揮発性半導体記憶装置において、発振回路9を、定電流源,第1の容量素子及び第1の増幅回路からなる第1の遅延回路と、定電流源,第2の容量素子,及び第2の増幅回路からなる第2の遅延回路と、第1の増幅回路の出力と第2の増幅回路の出力の順序論理を出力し、該出力を第1及び第2の遅延回路の入力として与える順序論理回路とから構成すること。

【特許請求の範囲】

【請求項1】不揮発性メモリ機能を有するメモリ本体と、電源電圧の大きさに応じて発振周波数が変化する発振回路と、昇圧能力に駆動周波数依存性を有し、前記発振回路の駆動により電源電圧を昇圧して前記メモリ本体の書き込み/消去時に必要な電圧を発生する昇圧回路と、を有する不揮発性半導体記憶装置であって、

前記発振回路は、一定の電流を発生する定電流源と、入 S構造力信号の反転によって一端が前記定電流源に接続される は n 型 容量素子と、入力信号が反転するまでの前記容量素子の 10 いる。一端の電圧との差が電源電圧の増加とともに増加するような参照電圧を発生する参照電圧源と、前記容量素子の には 2 一端の電圧と前記参照電圧との差を増幅して出力する増幅回路と、から構成される遅延回路を含むことを特徴と いして する不揮発性半導体記憶装置。 【00

【請求項2】前記発振回路は、

一定の電流を発生する第1の定電流源と、入力信号の反転によって一端が第1の定電流源に接続される第1の容量素子と、入力信号が反転するまでの第1の容量素子の一端の電圧との差が電源電圧の増加とともに増加するよのうな参照電圧と第1の容量素子の一端の電圧との差を増幅して出力する第1の増幅回路と、から構成される第1の遅延回路と、

一定の電流を発生する第2の定電流源と、入力信号の反転によって一端が第2の定電流源に接続される第2の容量素子と、前記参照電圧と第2の容量素子の一端の電圧との差を増幅して出力する第2の増幅回路と、から構成される第2の遅延回路と、

第1の増幅回路の出力と第2の増幅回路の出力の順序論理を出力し、該出力を第1及び第2の遅延回路の入力と 30 して与える順序論理回路とを具備してなることを特徴とする請求項1記載の不揮発性半導体記憶装置。

【請求項3】前記定電流源は、ゲートとドレインが接続される第1のMOSトランジスタと、第1のMOSトランジスタと直列接続関係にある抵抗素子と、第1のMOSトランジスタのゲート電圧を出力する前記参照電圧源の出力がゲートに入力され、ソースが第1のMOSトランジスタのソースに接続され、ドレインが第1の電源電圧端子と共に前記容量素子の一端に選択的に接続される第2のMOSトランジスタと、から構成されることを特徴とする請求項1又は2に記載の不揮発性半導体記憶装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電気的書き替え可能な不揮発性半導体記憶装置(EEPROM)に係わり、特に書き込み/消去時に必要な高電圧を発生する昇圧回路を備えた単一電源動作可能な不揮発性半導体記憶装置に関する。

[0002]

【従来の技術】単一電源(例えば、Vcc=5V)により 書き込み/消去が行えるEEPROMの一つとして、例 えばNAND型EEPROMが知られている。これは、 複数のメモリセルをそれらのソース、ドレインを隣接す るもの同士で共有する形で直列接続し、これを一単位と してピット線に接続するものである。メモリセルは通

常、電荷蓄積層と制御ゲートが蓄積されたFETーMO S構造を有している。メモリセルアレイは、p型基板又 はn型基板に形成されたp型ウェル内に集積形成されて

【0003】EEPROMでは、通常書き込み/消去時にはメモリセルに電源電圧より高い電圧を印加し、トンネル電流などによって電荷蓄積層の電荷量をコントロールしてデータを記憶させる。

【0004】このようなNAND型EEPROMのデータ書き込み/消去の動作は次の通りである。データ書き込みは、ビット線から最も離れた位置のメモリセルから順に行う。選択されたメモリセルの制御ゲートには高電圧Vpp (=20V程度)を印加し、それよりビット線側にあるメモリセルの制御ゲート及び選択ゲートには中間電位VppM (=10V程度)を印加し、ビット線にはデータに応じてOV又は中間電位を与える。

【0005】ビット線に0Vが与えられた時、その電位は選択メモリセルのドレインまで伝達されて、ドレインから浮遊ゲートに電子注入が生じる。これにより、選択されたメモリセルのしきい値は正方向にシフトする。この状態を、例えば"1"とする。ビット線に中間電位が与えられた時は電子注入が起らず、従ってしきい値は変化せず、負に止まる。この状態は"0"である。

【0006】データ消去は、NANDセル内の全てメモリセルに対して同時に行われる。即ち、全ての制御ゲート、選択ゲートを0Vとし、ビット線及びソース線を浮遊状態として、p型ウェル及びn型基板に高電圧20Vを印加する。これにより、全てのメモリセルで浮遊ゲートの電子がp型ウェルに放出され、しきい値は負方向にシフトする。

【0007】以上の説明から分かるように、一般に単一電源動作のEEPROMでは、その内部で電源電圧より高い電圧を発生することが必要である。このため、従来から昇圧回路を用いてこの高電圧を発生させるようにしている。昇圧回路の電流供給能力は、一般に電源電圧の降下とともに低下する。また、昇圧回路はリングオシレータで駆動されるが、このリングオシレータの発振周波数も電源電圧の降下とともに低下する。このため、最低の電源電圧値で動作するるように設計された昇圧回路は、例えば最大の電源電圧値では必要以上の電流供給能力を持つことになり電源パワーの無駄を生じる。

【0008】上記の問題を解決するために本発明者らは、電源電圧の降下と共に発振周波数が高くなる発振回 50 路と、昇圧能力に駆動周波数依存性を有し発振回路の駆

助により電源電圧を昇圧してメモリ本体の書き込み・消去時に必要な電圧を発生する昇圧回路を有するEEPROMを既に提案している(特開平5-325578号公報)。これにより、電源電圧の変動に依存しない昇圧電位を得ることができ、書き込み/消去時における電源電圧の変動に伴う電源パワーの無駄を無くすことができた。

【0009】しかしながら、この種の装置にあっても、 次のような問題を避けることはできなかった。即ち、発 振回路を製造する際にトランジスタのコンダクタンスや 10 しきい値を厳密に制御するのは困難であり、多少のばら つきが発生するのは避けられない。そして、このばらつ きによって発振周波数が変わる。また、温度が変化する と上記のコンダクタンスやしきい値も変化するため、温 度変化により発振周波数が変動する。このような周波数 変動は、電源パワーの無駄につながることになる。

[0010]

【発明が解決しようとする課題】このように従来、昇圧回路を持つEEPROMでは、書き込み/消去時に電源電圧の変動によって引き起される昇圧回路の電流供給能力の変動により電源パワーの無駄が生じるという問題があった。さらに、これを解決するために、特開平5-32578号公報のような構成を採用しても、製造ばらつきや温度変動に伴う発振周波数の変動により電源パワーの無駄が生じるという問題があった。

【0011】本発明は、上記の事情を考慮してなされたもので、その目的とするところは、電源電圧の変動に依存しないのは勿論のこと、製造ばらつきや温度変動にも依存しない昇圧能力を持つ昇圧回路を搭載することにより、書き込み/消去時における電源パワーの無駄が生じることがない不揮発性半導体記憶装置を提供することにある。

[0012]

【課題を解決するための手段】上記課題を解決するために本発明は、次のような構成を採用している。即ち本発明は、不揮発性メモリ機能を有するメモリ本体と、電源電圧の大きさに応じて発振周波数が変化する発振回路と、昇圧能力に駆動周波数依存性を有し、前記発振回路の駆動により電源電圧を昇圧して前記メモリ本体の書き込み/消去時に必要な電圧を発生する昇圧回路と、を有する不揮発性半導体記憶装置であって、前記発振回路は、一定の電流を発生する定電流源と、入力信号の反転によって一端が前記定電流源に接続される容量素子と、入力信号が反転するまでの前記容量素子の一端の電圧との差が電源電圧の増加とともに増加するような参照電圧を発生する参照電圧源と、前記容量素子の一端の電圧と前記参照電圧との差を増幅して出力する増幅回路と、から構成される遅延回路を含むことを特徴としている。

【0013】ここで、本発明の望ましい実施態様としては、次のものがあげられる。

(1) メモリ本体は、FET-MOS構造の複数の不揮発性メモリセルを直列接続したNAND型EEPROMであること。

(2)発振回路を、一定の電流を発生する第1の定電流源、入力信号の反転によって一端が第1の定電流源に接続される第1の容量素子,及び入力信号が反転するまでの第1の容量素子の一端の電圧との差が電源電圧の増加とともに増加するような参照電圧と第1の容量素子の一端の電圧との差を増幅して出力する第1の増幅回路からなる第1の遅延回路と、一定の電流を発生する第2の定電流源,入力信号の反転によって一端が第2の定電流源に接続される第2の容量素子,及び参照電圧と第2の定電流源に接続される第2の容量素子,及び参照電圧と第2の容量素子の一端の電圧との差を増幅して出力する第2の増幅回路からなる第2の遅延回路と、第1の増幅回路の出力と第2の増幅回路の出力の順序論理を出力し、該出力を第1及び第2の遅延回路の入力として与える順序論理回路と、から構成すること。

(3) 定電流源を、ゲートとドレインが接続される第1の MOSトランジスタと、第1のMOSトランジスタと直列接続関係にある抵抗素子と、第1のMOSトランジスタのゲート電圧を出力する参照電圧源の出力がゲートに入力され、ソースが第1のMOSトランジスタのソースに接続され、ドレインが第1の電源電圧端子と共に容量素子の一端に選択的に接続される第2のMOSトランジスタと、から構成すること。

[0014]

20

【作用】本発明によれば、昇圧回路の電流供給能力には 電源電圧の降下と共に低下傾向が生じるが、これを駆動 する発振回路の発振周波数が電源電圧の降下と共に高く なって、この低下傾向が打ち消される。これにより、電 源電圧依存性のない電流供給能力を持つ昇圧回路が実現 され、書き込み/消去時に、電源電圧の変動に伴う電源 パワーの無駄が生じることがなくなる。

【0015】これに加えて本発明では、発振回路に定電流源を備え、トランジスタのコンダクタンスやしきい値のばらつきが発振周波数に影響しないようにしているので、製造ばらつきや温度変化に伴う発振周波数の変動を未然に防止することができ、これにより電源パワーの無駄をより確実に無くすことが可能となる。

0 [0016]

【実施例】以下、本発明の実施例を図面を参照して説明 する。図1は、本発明の一実施例に係わるNAND型E EPROMを用いた不揮発性半導体記憶装置の構成を示 すプロック図である。

【0017】メモリ手段としてのメモリセルアレイ1に対して、データ書き込み、読み出しを行うためのピット線制御回路2が設けられている。このピット線制御回路2は、データ入出力バッファ6につながり、アドレスバッファ4からのアドレス信号を受けるカラムコーダ3の出力を入力として受けるようになっている。また、メモ

リセルアレイ1に対して、制御ゲート及び選択ゲートを 制御するためにロウデコーダ5が設けられ、メモリセル アレイ1が形成されるp型基板(又はp型ウェル)の電 位を制御するための基板電位制御回路7が設けられてい ス

【0018】上述のメモリセルアレイ1ないし基板電位制御回路7の各機能を司る回路等によりメモリ本体10が構成されている。昇圧回路8は、発振回路としてのオシレータ9からの駆動信号を受けて電源電圧から昇圧された高電圧を、メモリセルアレイ1の書き込み/消去時にピット線制御回路2、ロウデコーダ5,基板電位制御回路7に供給する。

【0019】図2(a)(b)は、メモリセルアレイ1における一つのNANDセル部分の平面図と等価回路図であり、図3(a)(b)はそれぞれ図2(a)のA-A'及びB-B'断面図である。素子分離酸化膜12で囲まれたp型シリコン基板(又はp型ウェル)11に、複数のNANDセルからなるメモリセルアレイ1が形成されている。一つのNANDセルに着目して説明すると本実施例では、8個のメモリセルM1~M8が直列接続20されて一つのNANDセルを構成している。

【0020】メモリセルはそれぞれ、基板11上にトンネル絶縁膜13を介して浮遊ゲー14(141, 142, …, 148)が形成され、この上にゲート絶縁膜15を介して制御ゲート16(161, 162, …, 168) が形成されて、構成されている。これらのメモリセルのソース・ドレインであるn型拡散層19は、隣接するもの同士共用する形で、メモリセルが直列接続されている。

【0021】NANDセルのドレイン側,ソース側にはそれぞれ、メモリセルの浮遊ゲート,制御ゲートと同時に形成された選択ゲート14 $_{9}$,16 $_{9}$ 及び14 $_{10}$,16 $_{10}$ が設けられている。素子形成された基板上はCVD酸化膜17により覆われ、この上にビット線18が配設されている。ビット線18はNANDセルの一端のドレイン側拡散層19にコンタクトされている。行方向に並ぶNANDセルの制御ゲート16は、共通に制御ゲート線CG1,CG2,…,CG8として配設されている。これら制御ゲート線は、ワード線となる。選択ゲート14 $_{9}$,16 $_{9}$ 及び14 $_{10}$,16 $_{10}$ もそれぞれ行方向に連続的に選択ゲートSG1,SG2として配設されている。

【0022】図4は、このようなNANDセルがマトリクス配列されたメモリセルアレイ1の等価回路を示している。図5に、図1中の昇圧回路8の第1の具体的な構成を示す。図6は昇圧回路8の駆動信号VP1、VP2、VP3、VP4となるオシレータ9の出力信号を示している。

【0023】電圧の昇圧は、DタイプのnチャネルMO 交互に繰り返され、電源電圧の昇圧が行われる。昇圧回 SトランジスタQD1~QD4をキャパシタとして用い、E 50 路8の昇圧能力は、電源電圧の降下とともに低下してい

タイプnチャネルMOSトランジスタQn1~Qn4, Qn1 7 を転送ゲートとして用いることにより行われる。転送ゲートQn1~Qn4のゲート電圧を昇圧してしきい値電圧による電圧降下が生じないようにするため、キャパシタとしてのDタイプnチャネルMOSトランジスタQD5~QD8及び転送ゲートとしてのEタイプnチャネルMOSトランジスタQn5~Qn8が設けられている。

6

【0024】また、EタイプnチャネルMOSトランジスタQn13, Qn14, Qn15、DタイプnチャネルMOSトランジスタQD9, QD10が転送ゲートQn17のゲート電圧を昇圧して上記と同様にしきい値電圧による電圧降下か生じないようにするため設けられている。EタイプチャネルMOSトランジスタQn16は、Qn14のゲート電極と出力電圧Vppとをイコライズするために設けられている。これらのMOSトランジスタQn13, Qn14, Qn15, QD9, QD10からなる部分は、ダミーの昇圧段として動作する。なお、本実施例では、4段昇圧であるが、必要に応じて段数を調整すればよい。

【0025】そして、VP1が"L"で、電源電圧Vcc によりキャパシタQD1, QD3に充電される。VP1が"H"で、転送ゲートQn6, Qn8をそれぞれ通じてキャパシタQD1, QD3の充電電荷がキャパシタQD6, QD8にそれぞれ転送されて充電され、転送ゲートQn2, Qn4のゲート電圧が昇圧される。この状態でVP2が"L", VP4が"H"になると、キャパシタQD1, QD3の充電電荷が転送ゲートQn2, Qn4をそれぞれ通じてキャパシタQD2, QD4に転送されて充電される。

5 もの同士共用する形で、メモリセルが直列接続されて
いる。【0026】このような動作が繰り返されて、電源電圧
Vccを所定値まで昇圧した昇圧電圧Voutが発生する。【0021】NANDセルのドレイン側、ソース側には
それぞれ、メモリセルの浮遊ゲート、制御ゲートと同時
こ形成された選択ゲート14。、16。及び141。、1毎
(VP4の周波数が高くなることにより、この低下傾向は打消される。

【0027】図7に、図1中の昇圧回路8の第2の具体的な構成を示す。図8は、昇圧回路8の駆動信号V1,V2となるオシレータ9の出力信号を示している。電圧の昇圧は、DタイプnチャネルMOSトランジスタQD5~QD8をキャパシタとして用い、EタイプnチャネルMOSトランジスタQn18~Qn21を転送ゲートとして用いることにより行われる。V1が"H"から"L"になり、同時にV2が"L"から"H"になると、Eタイプn チャネルMOSトランジスタQn18、Qn20がオン、Qn19、Qn21がオフするので、キャパシタQD5、QD7の電荷はそれぞれキャパシタQD5、QD8に転送される。

【0028】駆動信号V1, V2の"H・L"が逆になると、転送ゲートQn18~Qn21のオン・オフも逆になるので、キャパシタQD6, QD8の電荷はそれぞれキャパシタQD7、出力Voutに転送される。このような状態が交互に繰り返され、電源電圧の昇圧が行われる。昇圧回路8の見圧能力は、電源電圧の降下とともに低下してい

く傾向にあるが、駆動信号V1 , V2 の周波数が高くな ることによりこの低下傾向は打ち消される。

【0029】図9に、従来の発振回路の一つであるリン グオシレータを示す。入力信号Vinが"L"のときは発 振せず、出力信号VRNGは"H"に固定される。そし て、入力信号Vinが"H"になると、発振が始まる。

【0030】図10に、図1中のオシレータ9の第1の 具体的な構成を示す。キャパシタC1 は、nチャネルM OSトランジスタQn36 とpチャネルMOSトランジス 電圧VccとnチャネルMOSトランジスタQn34 のドレ インとに選択的に接続される。キャパシタC2 も同様 に、nチャネルMOSトランジスタQn37 とpチャネル MOSトランジスタQp10 の共通ゲートの電圧レベルに よって、一端が電源電圧VccとnチャネルMOSトラン ジスタQn35 のドレインとに選択的に接続される。

【0031】nチャネルMOSトランジスタQn27,Qn2 8 とpチャネルMOSトランジスタQp1, Qp2, Qp3 は、nチャネルMOSトランジスタQn33 のゲート,ド レインの電圧 V ref とキャパシタ C1 の一端の電圧 V ca 20 p1とを比較し、それらの差を増幅して出力する第1の増 幅回路を構成している。同じく、nチャネルMOSトラ ンジスタQn29, Qn30 とpチャネルMOSトランジスタ Qp4, Qp5, Qp6は、電圧Vref とキャパシタC2 の一 端の電圧Vcap2とを比較し、それらの差を増幅して出力 する第2の増幅回路を構成している。NORゲートG2 , G3 は、これら2つの増幅回路の出力の順序論理を 出力する順序論理回路を構成している。

【0032】nチャネルMOSトランジスタQn36とp チャネルMOSトランジスタQp9の共通ゲートの電圧レ 30 ベルと、n チャネルMOSトランジスタQn37 とpチャ ネルMOSトランジスタQp10 の共通ゲートの電圧レベ ルとは、この順序論理回路の出力に従って交互に "H・*

> Iref = (Vd - Vref) / R $I cap = I ref \times (g2/g1)$

が成立する。発振周期Tは、上記のとおりVcap1(2)が VccからVref になるまでの時間の2倍に等しいから、

 $T = 2 \times C \times (Vcc - Vref) / Icap$

 $=2\times R\times C\times (g2/g1)$

 \times (Vcc-Vref) / (Vd -Vref) ... (3) となる。こうして、発振周波数 f = 1 / Tは(Vcc - Vref) に反比例することが分かる。

【0035】ここで、(3) 式において、MOSトランジ スタのコンダクタンスg1, g2 は (g2 /g1) の形 で挿入されている。MOSトランジスタのコンダクタン スは製造時の条件で多少ばらつくが、同一チップ内の各 トランジスタのばらつきは同じ方向である。従って、製 造時にコンダクタンスg1, g2 が多少ばらついたとし ても、これらの比(g2 /g1)は一定となる。一方、

*L"にされる。スタンパイ時には、入力信号Vinは "H" になっていて、nチャネルMOSトランジスタQ n26, Qn32, Qn100, Qn101がオン、pチャネルMOSト ランジスタQp1, Qp4がオフしている。従って、Vref , Vcap2, Vosc1は"L"、Vcap1, Vosc2は"H" になっている。

8

【0033】入力信号Vinが"H"から"L"になる と、以下のようにして発振が始まる。nチャネルMOS トランジスタQn30 はオフしているため、ドレイン電圧 タQp9の共通ゲートの電圧レベルによって、一端が電源 10 は "H"になる。このとき、old Vosc1とold Vosc2はそれぞれ 反転し、nチャネルMOSトランジスタQn36、pチャ ネルMOSトランジスタQp10 がオンする。Vcap2はp チャネルMOSトランジスタQp10 によって急速に上昇 し、順序論理回路はリセットされる。Vccにされていた Vcap1は、nチャネルMOSトランジスタQn34に流れ る一定な電流によって時間とともに線形に低下してい く。そして、Vcap1がVref よりも小さくなると増幅回 路の出力は反転し、その結果、順序論理回路によってV osc1とVosc2はそれぞれ反転される。このような状態が 繰り返されて、オシレータ(発振回路)の出力Vosc1と Vosc2は発振する。

> 【0034】以下で、Vccの上昇とともにこのオシレー タの発振周波数 f が低下することを説明する。一定な電 圧Vstがゲートに入力されるnチャネルMOSトランジ スタQn31 のソースには、電源電圧によらない一定の電 圧Vdが出力される。Vrefは抵抗素子R1 の抵抗値R とnチャネルMOSトランジスタQn33 のコンダクタン スg1 によってのみ決まるので、Vccには依存しない。 簡単のため、nチャネルMOSトランジスタQn34 とQ n35 のコンダクタンスがg2 に等しく、またキャパシタ C1 とC2 の容量がCに等しいとする。nチャネルMO SトランジスタQn33 とQn34(Qn35)を流れる電流をそ れぞれ I ref , I cap とすると、

> > ... (1)

... (2)

が、(3) 式においてはしきい値Vtの項は存在していな い。従って、発振周波数は製造ばらつきや温度の変化に 依存しないことが分かる。

【0036】なお、従来装置では、発振周波数の式にM 40 OSトランジスタのコンダクタンスが単独で挿入され、 さらにしきい値Vtが挿入されていたために、製造ばら つきや温度の変化によって発振周波数が変動していたの

【0037】図11に、図1中のオシレータ9の第2の 具体的構成を示す。キャパシタC3は、nチャネルMO SトランジスタQn38 とpチャネルMOSトランジスタ Qp16 の共通ゲートの電圧レベルによって、一端が接地 レベルに等しい電源電圧VssとpチャネルMOSトラン ジスタQp13 のドレインとに選択的に接続される。キャ トランジスタのしきい値Vt は温度によって変化する 50 パシタC4 も同様に、nチャネルMOSトランジスタQ n39 とpチャネルMOSトランジスタQp17 の共通ゲー トの電圧レベルによって、一端が電源電圧Vssとpチャ ネルMOSトランジスタQp14 のドレインとに選択的に 接続される。

【0038】nチャネルMOSトランジスタQn40,Qn4 1, Qn42 とpチャネルMOSトランジスタQp19, Qp20, Qp21 は、pチャネルMOSトランジスタQp12 のゲー ト、ドレインの電圧Vref とキャパシタC3 の一端の電 圧Vcap1とを比較し、それらの差を増幅して出力する第 SトランジスタQn44, Qn45, Qn46 とpチャネルMOS トランジスタQp22, Qp23, Qp24 は、電圧Vref とキャ パシタC4 の一端の電圧Vcap2を比較し、それらの差を 増幅して出力する第2の増幅回路を構成している。ま た、NANDゲートG4, G5 は、これら2つの増幅回 路の出力の順序論理を出力する順序論理回路を構成して いる。

【0039】nチャネルMOSトランジスタQn38とp チャネルMOSトランジスタQp16の共通ゲートの電圧 レベルとnチャネルMOSトランジスタQn39 とpチャ 20 ネルMOSトランジスタQp17 の共通ゲートの電圧レベ ルは、この順序論理回路の出力に従って交互に "H・ L"にされる。

【0040】スタンパイ時には、入力信号Vinは"H" になっていて、nチャネルMOSトランジスタQn43、 pチャネルMOSトランジスタQp11, Qp18, Qp25 がオ ン、nチャネルMOSトランジスタQn42, Qn46 、pチ ャネルMOSトランジスタQp19, Qp20 がオフしてい る。従って、Vref, Vcap2, Vosc1は"H"、Vcap*

I ref = Vd / R

 $I cap = I ref \times (g2 / g1)$

が成立する。発振周期Tは、上記のとおりVcap1(2)が VccからVref になるまでの時間の2倍に等しいから、 $T = 2 \times C \times Vref / Icap$

 $=2\times R\times C\times (g2/g1)\times Vref/Vd \cdots (6)$ となる。こうして、発振周波数 f = 1/TはVccの増加 とともに増加するVrefに反比例することが分かる。

【0043】この場合も、(6) 式にはg1, g2は (g2 /g1) の形で挿入され、さらにしきい値V t の 項は存在しない。従って、図10の回路と同様に、発振 40 周波数は製造ばらつきや温度の変化に依存しないことが 分かる。

【0044】図12に、図5の昇圧回路を駆動する図6 の信号VP1~VP4を出力する回路を示す。一定な電 圧Vstがゲートに入力されるpチャネルMOSトランジ スタQp29 のドレインには、電源電圧によらない一定の 電圧が出力されるため、nチャネルMOSトランジスタ Qn51 とpチャネルMOSトランジスタQp30 で構成さ れるインパータの遅延時間はVccによらない。

【0045】図13に、第1の定電圧発生回路を示す。

*1, Vosc2は "L" になっている。

【0041】入力信号Vinが"H"から"L"になる と、以下のようにして発振が始まる。pチャネルMOS トランジスタQp24 はオフしているため、ドレイン電圧 は "H" になる。このとき、Vosc1とVosc2はそれぞれ 反転し、nチャネルMOSトランジスタQn39、pチャ ネルMOSトランジスタQp16 がオンする。Vcap2はn チャネルMOSトランジスタQn39 によって急速に降下 し、順序論理回路はリセットされる。 Vssにされていた 1の増幅回路を構成している。同じく、n チャネルMO 10 Vcaplは、p チャネルMOS トランジスタQnl3を流れ る一定な電流によって時間とともに線形に低下してい く。そして、Vcap1がVref よりも大きくなると増幅回 路の出力は反転し、その結果、順序論理回路によってV osc1とVosc2それぞれ反転される。このような状態が繰 り返されて、オシレータ(発振回路)の出力Vosc1とV osc2は発振する。

10

【0042】以下で、Vccの上昇とともにこのオシレー タの発振周波数 f が低下することを説明する。一定な電 圧Vstがゲートに入力されるpチャネルMOSトランジ スタQp15 のドレインには、電源電圧によらない一定の 電圧Vdが出力される。Vref は抵抗素子R2 の抵抗値 RとpチャネルMOSトランジスタQp12 のコンダクタ ンスg1 とQp15 のコンダクタンスg2 によって決ま り、Vccの上昇とともに上昇する。簡単のため、pチャ ネルMOSトランジスタQp13 とQp14 のコンダクタン スがg2 に等しく、またキャパシタC3 とC4 の容量が Cに等しいとする。pチャネルMOSトランジスタQp1 2 とQp13(Qp14)を流れる電流をそれぞれ I ref , I ca p とすると、

... (4)

... (5)

出力Vout はnチャネルMOSトランジスタQn48 とQ I1のしきい電圧の差に等しくなる。図14に、発振周波 数が電源電圧の降下とともに高くなるオシレータの出力 によって駆動される昇圧回路の第1のプロック図を示 す。51は図13の定電圧発生回路、52は図10又は 図11の発振回路、53は図7の昇圧回路である。この 構成によって、昇圧能力のVcc依存性は小さくされる。

【0046】図15に、第2の定電圧発生回路と発振周 波数が電源電圧の降下とともに高くなるオシレータの出 カによって駆動される昇圧回路の第2のプロック図を示 す。入力信号 Vonが "L" から "H" になるとオシレー タが動作し始め、定電圧発生のための昇圧回路54と、 書き込み/消去時に高電圧にすべき負荷容量を充電する 昇圧回路53を駆動し始める。遅延時間Td経過するま でpチャネルMOSトランジスタQp36 はオンしている ため、ドレイン電圧VmはVccに等しく、従ってオシレ ータ52の発振周波数は電源電圧の降下とともに低くな る。

【0047】しかしながら、定電圧発生のための昇圧回 50

路53の負荷容量が小さいため、直ぐに出力電圧はツェナーダイオードZD1のプレークダウン電圧Vzにされる。その後、遅延時間Td経過するとpチャネルMOSトランジスタQp36はオフし、ドレイン電圧Vmはプレークダウン電圧Vzの抵抗分割の値になる。この値はもちろんVccによらず、従ってオシレータ53の発振周波数は電源電圧の降下とともに高くなる。こうして、書き込み/消去時に高電圧にすべき負荷容量を充電する昇圧回路の昇圧能力の電源電圧の依存性を小さくできる。

【0048】図16に、第3の定電圧発生回路と発振問 10 波数が電源電圧の降下とともに高くなるオシレータの出力によって駆動される昇圧回路の第3のプロック図を示す。定電圧発生回路は、Vcc依存性の大きいリングオシレータ55(図9)と、その出力信号RNGによって駆動される定電圧発生用昇圧回路54と、ツェナーダイオードZD2と、そのプレークダウン電圧Vzの抵抗分割するR5,R6によって構成される。遅延時間Td経過するまでに、一定電圧がオシレータ52と昇圧回路58(図5)を駆動する信号発生回路57(図12)に入力されるが、回路動作は始まらない。遅延時間Td経過すると、これらの回路が動作し始め書き込み/消去時に高電圧にすべき負荷容量を充電する昇圧回路58が駆動される。こうして、昇圧回路の昇圧能力の電源電圧依存性を小さくできる。

【0049】図21に、図1中のオシレータ9を構成する遅延回路を示す。図22に、その各電圧波形を示す。入力信号Vinが反転するまでは、キャパシタ103の一端の電圧Vcapは第1の電源電圧端子110に接続されている。入力信号Vinが反転すると、Vcapは定電流源102によって時間に対して一定の割合で変化していく。増幅回路101は、Vcapと参照電圧Vrefとを比較し、それらの差を増幅する。従って、増幅回路101は、VcapとVrefが等しくなったところで出力を反転させる。

【0050】第1の電源電圧端子110が電源電圧Vccであるとき、V1はVccに、V2はVrefにそれぞれ等しくVcapの傾きは負である。ここで、VrefはVccの増加とともに減少するか、又はVccによって不変であるようにされている。キャパシタ103の容量をC、定電流をIconstと書くと、入力が反転してから出力が反転40するまでの遅延時間Tdは、原理的に、

Td=C×(Vcc-Vref)/Iconst となり、Vccの増加とともに遅延時間は延びる。

【0051】第1の電源電圧端子110が電源電圧Vss =0Vであるとき、V1はVssに、V2はVrefにそれ ぞれ等しくVcapの傾きは正である。ここで、Vrefは Vccの増加とともに増加するようにされている。キャパシタ103の容量をC、定電流をIconstと書くと、入 力が反転してから出力が反転するまでの遅延時間Td は、原理的に、 Td=C×Vref / I const となり、Vccの増加とともに遅延時間は延びる。

【0052】図17に本実施例における第3のオシレータを示し、図18に各電圧波形を示す。2つの遅延回路1000の出力は順序論理回路105に入力され、その出力はそれぞれの遅延回路1000の入力とされる。VcにされていたVcap1は定電流によって時間とともに線形に低下していく。そして、Vcap1がVrefよりも小さくなると増幅回路の出力は反転し、その結果、順序論理回路によってVout1とVout2はそれぞれ反転される。すると、Vcap1は急速にVccまで充電され、またVccにされていたVcap2は定電流によって時間とともに線形に低下していく。そして、Vcap2がVrefよりも小さくなると増幅回路の出力は反転し、その結果順序論理回路によってVout1とVout2はそれぞれ反転される。

12

【0053】このような状態が繰り返されて、オシレータ(発振回路)の出力Vout1とVout2は発振する。Vca p1とVcap2の振幅はVccの増加とともに増加するのに対して、駆動電流は一定であるため、オシレータの発振周 20 波数はVccの上昇とともに低下する。

【0054】図19に本実施例における第4のオシレータを示し、図20に各電圧波形を示す。図20の定電圧VrefはVccの増加と共に増加する。2つの遅延回路1000の出力は順序論理回路105に入力され、その出力はそれぞれの遅延回路1000の入力とされる。接地されていたVcap1は定電流によって時間とともに線形に上昇していく。そして、Vcap1がVrefよりも大きくなると増幅回路の出力は反転し、その結果、順序論理回路によってVout1とVout2はそれぞれ反転される。すると、Vcap1は急速に接地レベルまで放電され、また接地されていたVcap2は定電流によって時間とともに線形に上昇していく。そして、Vcap1がVrefよりも大きくなると増幅回路の出力は反転し、その結果順序論理回路によってVout1とVout2はそれぞれ反転される。

【0055】このような状態が繰り返されて、オシレータ(発振回路)の出力Vout1とVout2は発振する。Vcap1とVcap2の振幅はVccの増加とともに増加するのに対して、駆動電流は一定であるため、オシレータの発振周波数はVccの上昇とともに低下する。

40 【0056】なお、本発明は上述した実施例に限定されるものではない。メモリセルアレイの構成はNAND型に限るものではなく、NOR型(複数のメモリセルを並列接続したセルユニット及び該ユニットの両端に接続されたセレクトゲートからなるAND型、上記セルユニットと該セルユニットの一端に接続されたセレクトゲートからなるDINOR型)に適用することもできる。さらに、メモリセルは2層ゲートを有するFET-MOS構造に限らず、書き込み/消去時に昇圧電位を必要とするものに適用できる。その他、本発明の要旨を逸脱しない50 範囲で、種々変形して実施することができる。

[0057]

【発明の効果】以上詳述したように本発明によれば、電源電圧の大きさに応じて発振周波数が変化する発振回路、この発振回路の駆動により電源電圧を昇圧する昇圧回路を備えた不揮発性半導体記憶装置において、電源電圧依存性のない電流供給能力を持つ昇圧回路を実現すると共に、トランジスタのコンダクタンスやしきい値のばらつき、更には温度変化に伴う発振周波数の変動を防止して、製造ばらつきや温度変動にも依存しない昇圧能力を持つ昇圧回路を実現し、書き込み/消去時における電 10 源パワーの無駄を確実に無くすことができる。

【図面の簡単な説明】

【図1】本発明の一実施例に係わる不揮発性半導体記憶 装置の構成を示すプロック図。

【図2】実施例におけるNANDセルの構成を示す平面図と等価回路図。

【図3】図2 (a) のA-A′及びB-B′断面図。

【図4】実施例におけるメモリセルアレイの等価回路 図。

【図5】実施例における昇圧回路の第1の構成例を示す 20回路図。

【図6】図5の昇圧回路の駆動信号を示すタイミングチャート。

【図7】実施例における昇圧回路の第2の構成例を示す 回路図。

【図8】図7の昇圧回路の駆動信号を示すタイミングチャート。

【図9】従来の発振回路の一つであるリングオシレータ を示す回路図。

【図10】実施例におけるオシレータの第1の構成例を *30* 示す回路図。

【図11】実施例におけるオシレータの第2の構成例を示す回路図。

【図12】図5の昇圧回路を駆動するための信号を出力する回路の構成を示す回路図。

【図13】実施例における第1の定電圧発生回路の構成を示す回路図。

【図14】第1の定電圧発生回路を用いた昇圧回路のプロック図。

【図15】第2の定電圧発生回路を用いた昇圧回路のブ 40 ロック図。

【図16】第3の定電圧発生回路を用いた昇圧回路のブ ロック図。

【図17】実施例におけるオシレータの第3の構成例を

示す回路図。

【図18】図17のオシレータの主要ノードの電圧波形を示す図。

【図19】実施例におけるオシレータの第4の構成例を 示す回路図。

【図20】図19のオシレータの主要ノードの電圧波形を示す図。

【図21】実施例におけるオシレータを構成している遅延回路を示す図。

0 【図22】図21の遅延回路の主要ノードの電圧波形を 示す図。

【符号の説明】

1…メモリセルアレイ

2…ビット線制御回路

3…カラムデコーダ

4…アドレスバッファ

5…ロウデコーダ

6…データ入出力バッファ

7…基板電位制御回路

8 …昇圧回路

9…オシレータ

10…メモリ本体

11…p型シリコン基板又はp型ウェル

12…素子分離酸化膜

13…トンネル絶縁膜

14…浮遊ゲート

15…ゲート絶縁膜

16…制御ゲート

17…層間絶縁膜

18…ピット線

19…n型拡散層

5 1 …定電圧発生回路

5 2…発振回路

53,54,58…昇圧回路

55…リングオシレータ

5 7 …信号発生回路

100…スイッチ

101…増幅回路

102…定電流源

103…キャパシタ

104…参照電圧源

105…順序論理回路

110…電源電圧端子

1000…遅延回路

【図8】

【図15】 【図18】 電压 Vcap1 Vcap2 Vcc **5**2 PUMP Von—(Td) Vcc 117 √Vin OSC Voscl Vref VSS 配圧 VCC - 時間 zdi 🗘 Vosc2 Vout2 Vout I R4\$ -VCFK I -|ÇQn57 VCLK2 ----- 時間 53 PUMP Vout ٧2 【図17】 【図19】 .1000 1000 1000 110-VCC 100 9 -103 Vcap2 1001 Vss 110 1-110 Vcap2 Vcap1 Vref, 104 Vref IO4 401 -101 1000 順序論理回路 順序論理回路 Vout Vout2 Vout Vout2 【図20】 【図22】 電圧 電圧, -- -VI _≫Vca p -V2 Vcap2 Vèapl Vss 時間 → 時間 電圧 電圧 Yout2 Vout I Vcc Vin Vout

Td

←時間

時間

フロントページの続き

(51) Int. Cl. 6 識別記号 庁内整理番号

FΙ

技術表示箇所

// H 0 1 L 21/8247

29/788 29/792

> H 0 1 L 27/10 434

29/78 3 7 1