Abel-konkurransen 1995

FINALE — FASIT

Oppgave 1

a) La f(1) = 1, $f(1) + f(2) + f(3) + \cdots + f(n) = n^2 \cdot f(n)$ for alle naturlige tall n. Hva er da f(1995)?

Bevis: Dersom man regner ut verdiene av f(1), f(2), f(3), etc. ved hjelp av

$$f(n) = \frac{f(1) + f(2) + \cdots + f(n-1)}{n^2 - 1},$$

så finner man at de er f(1) = 1, $f(2) = \frac{1}{3}$, $f(3) = \frac{1}{6}$, $f(4) = \frac{1}{10}$, $f(5) = \frac{1}{15}$, osv. Det er her mulig å se et mønster: nevnerene er lik 1, 1 + 2, 1 + 2 + 3, osv.: dvs. at $f(n) = \frac{2}{n(n+1)}$.

Det er mulig å formulere induksjonbevis for dette på flere forskjellige måter. Det vises lett ved å sette inn n=1 at uttrykket stemmer for nullhypotesen (n=1). En mulig fortsettelse er følgende.

$$f(n) = \frac{f(1) + f(2) + \dots + f(n-1)}{n^2 - 1}$$

$$= \frac{(n-1)^2 f(n-1)}{(n+1)(n-1)}$$

$$= \frac{n-1}{n+1} \cdot f(n-1)$$

$$= \frac{n-1}{n+1} \cdot \frac{2}{(n-1)n}$$

$$= \frac{2}{n(n+1)}$$

Ved induksjon blir da $f(n) = \frac{2}{n(n+1)}$ for alle n og dermed blir $f(1995) = \frac{2}{1995 \cdot 1996}$.

b) Vis at dersom $(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1$, så er x + y = 0.

Bevis: Siden $(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1$, må

$$\begin{array}{rcl} x+\sqrt{x^2+1} & = & \dfrac{1}{y+\sqrt{y^2+1}} \\ & = & \dfrac{\sqrt{y^2+1}-y}{(\sqrt{y^2+1}+y)(\sqrt{y^2+1}-y)} \\ & = & \sqrt{y^2+1}-y. \end{array}$$

Altså blir $x+y=\sqrt{y^2+1}-\sqrt{x^2+1}$. Samme argumentasjon kan gjøres, men med x og y byttet om; denne gir da $x+y=\sqrt{x^2+1}-\sqrt{y^2+1}$. Dersom de to ligningene kombineres finner vi at x+y=-(x+y) og derfor x+y=0.

Oppgave 2

a) To sirkler tangerer en linje l i punktene A og B og hverandre i punktet P. Linjen AP skjærer den andre sirkelen i punktet C. Vis at BC står normalt på l.

Bevis: La S og T være sentrum i de to sirklene. Linjen ST går da gjennom P. Vi har derfor at $\angle APS = \angle CPT$. Siden AS = PS og CT = PT, er trekantene PSA og PTC likebenede. Derfor har vi at $\angle SAP = \angle APS = \angle CPT = \angle TCP$. Siden $\angle SAC = \angle SAP = \angle TCP = \angle TCA$ må linjene SA og CT være paralelle. Linjen SA står normalt på l fordi S er sentrum i sirkelen. Følgelig må også linjen CT stå normalt på l. Normalen fra sentrum T på linjen l må gå igjennom SA samme grunn som SA står normalt på SA. Derfor er SA0 normal på SA1.

b) To sirkler med samme radier skjærer i to forskjellige punkter: P og Q. Trekk en linje gjennom P som ikke tangerer noen av sirklene. I tillegg til P, skjærer linjen (sirklene i punktene A og B. Vis at midtnormalen til AB B går gjennom Q.

Bevis: La oss først bemerke at Q ligger på midtnormalen til AB hvis og bare hvis AQ = BQ. Her bevises at AQ = BQ.

La S og T være sentrum i de to sirklene. Setningen om periferivinkler sier da at $\angle QAP = \frac{1}{2}\angle QSP$ og $\angle PBQ = \frac{1}{2}\angle PTQ$. Vi har at $\angle QSP = \angle PTQ$ og derfor må $\angle QAP = \angle PBQ$. Siden trekanten ABQ har to like vinkler er den også likesidet: QA = QB.

Oppgave 3

Vis at det finnes en ordning av de naturlige tall, dvs. en følge x_i med $i=1,2,3,4,\ldots$ slik at ethvert naturlig tall forekommer nøyaktig én gang i følgen og slik at følgen $\sum_{i=1}^{n} 1/x_i$ for $n=1,2,3,4,\ldots$ inneholder alle naturlige tall. Dvs. at for ethvert naturlig tall m finnes en n slik at $m=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\cdots+\frac{1}{x_n}$.

Bevis: Vi har at $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}$ derfor er $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n} \ge \frac{n}{2} + 1$ som er ubegrenset når $n \not o$ ker.

Start med å velge $x_1 = 1$. Velg så hele tiden x_i som det minste naturlige tall som ikke er valgt tidligere (dvs. blant x_1, \ldots, x_{i-1}) og slik at summen av brøkene ikke 'hopper over' noe heltall: dvs. at det ikke finnes noe naturlig tall m slik at $\frac{1}{x_1} + \cdots + \frac{1}{x_{i-1}} < m < \frac{1}{x_1} + \cdots + \frac{1}{x_{i-1}} + \frac{1}{x_i}$.

Anta at vi ved denne konstruksjonen kommer frem til $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_k} = m-1$, men at den aldri kommer frem til m: $\frac{1}{x_{k+1}} + \frac{1}{x_{k+2}} + \cdots < 1$. Siden vi alltid tar minste mulige tall, vil da $x_{k+1} < x_{k+2} < \cdots$.

La $a = \max\{x_1, x_2, \dots, x_k\}$ og velg l > k slik at $a < x_l < x_{l+1} < \cdots$; siden x'ene stiger efter x_k vil dette alltid være mulig. Herefter vil vi derfor ikke måtte bry oss om hvilke tall som er benyttet tidligere siden vi hele tiden er interessert i tall som er større enn a.

La oss definere p_i og q_i ved at $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_i} = m - \frac{p_i}{q_i}$; $\frac{p_i}{q_i}$ er dermed den 'resten' som mangler for å komme frem til m. Siden $\frac{1}{x_{i+1}} \leq \frac{p_i}{q_i} \iff x_{i+1} \geq \frac{q_i}{p_i}$, vil metoden for å velge x'ene sette $x_{i+1} = \lceil \frac{q_i}{p_i} \rceil$ dersom tallet ikke alt er brukt: $\lceil u \rceil$ er minste heltall som er større enn eller lik u, dvs. u rundet oppover til nærmeste heltall. Dersom $i \geq l$ er eneste mulige hindring imot å benytte denne formelen dersom $\frac{q_i}{p_i} \leq x_i$. Dette ønsker jeg å sikre meg imot.

Dersom $\frac{q_i}{p_i} \le x_i$ vil $x_{i+1} = x_i + 1$ for $i \ge l$. Siden $\frac{1}{x_l} + \frac{1}{x_l + 1} + \frac{1}{x_l + 2} + \cdots$ er ubegrenset kan vi ikke fortsette å sette $x_{l+i} = x_l + i$ i all evighet. La s > l være første slik at $x_{s+1} > x_s + 1$; dvs. at $\frac{q_s}{p_s} > x_s$.

Siden $\frac{q_s}{p_s} > x_s$ blir $x_{s+1} = \lceil \frac{q_s}{p_s} \rceil$. Jeg vil vise at $\frac{q_i}{p_i} > x_i$ for alle $i \geq s$ og at vi derfor har $x_{i+1} = \lceil \frac{q_i}{p_i} \rceil$ for $i \geq s$.

Gitt naturlige tall p og q og la $x=\lceil \frac{q}{p} \rceil$. Da er $\frac{q}{p} \leq x < \frac{q}{p}+1$ hvilket gir 0 < px-q < p. Videre har vi da at

$$rac{p}{q}-rac{1}{x}=rac{px-q}{qx}=rac{p'}{q'}$$

 $\mathrm{der}\ p' = px - q < p\ \mathrm{og}\ q' = qx.\ \mathrm{Siden}\ p' < p\ \mathrm{og}\ q' = qx\ \mathrm{vil}\ \tfrac{q'}{p'} > \tfrac{qx}{p} = x \cdot \tfrac{q}{p}.$

Vi gjør tilsvarende for p_i , q_i og x_{i+1} for $i \geq s$. Dette gjøres induktivt: dvs. først for i = s, derefter i tur for i = s+1, i = s+2, osv. Dette gir at så lenge $\frac{q_i}{p_i} > x_i$ vil $x_{i+1} = \left\lceil \frac{q_i}{p_i} \right\rceil > x_i$, $p_{i+1} = p_i x_{i+1} - q_i < p_i$, $q_{i+1} = q_i x_{i+1}$ og $\frac{q_{i+1}}{p_{i+1}} > x_{i+1} \cdot \frac{q_i}{p_i} > x_{i+1}$. Den siste ulikheten sikrer at induksjonen går videre: kan fortsette for i = s+1, s+2, s+3, osv.

Vi får nå at $p_s > p_{s+1} > p_{s+2} > \cdots$. Siden p'ene alle er naturlige tall kan ikke dette fortsette i det uendelige: før eller siden må den bli null. Dersom p_j blir null vil jo det si at restleddet er blitt null og dermed at vi har fått $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_j} = m$. Siden vi antok at m ikke ville bli nådd har vi oppnådd en selvmotsigelse; det finnes da ikke noen m som ikke blir nådd (reductio ad absurdum).

Siste steg er å vise at den følgen som er plukket inneholder alle naturlige tall. For å vise dette lar vi n_m være slik at $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_{n_m}} = m$. Da vil x_{n_m+1} hele tiden være det minste naturlige tall som ikke er brukt tidligere. Ved induksjon kan da vises at tallene $1, 2, 3, \cdots, m \in \{x_1, x_2, \ldots, x_{n_m}\}$. Dette holder opplagt for m = 1 siden $x_1 = 1$ og $n_1 = 1$. Dersom vi antar at det holder for m vil enten m + 1 være blandt $x_1, x_2, \ldots, x_{n_m}$ eller så vil m + 1 være det minste naturlige tall som ikke er blandt $x_1, x_2, \ldots, x_{n_m}$ og dermed at $x_{n_m+1} = m + 1$ hvilket gir

 $1, 2, \ldots, m+1 \in \{x_1, x_2, \ldots, x_{n_{m+1}}\}$ (fordi $n_{m+1} \geq n_m + 1$). På denne måten kan vi garantere at alle naturlige tall vil komme med i følgen.

Oppgave 4

La n være et naturlig tall og la $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n > 0$. Vis at da er

$$\left(\sum_{i=1}^n (x_i+y_i)^2
ight)\cdot \left(\sum_{i=1}^n rac{1}{x_iy_i}
ight)\geq 4n^2.$$

Dvs. at
$$((x_1 + y_1)^2 + \cdots + (x_n + y_n)^2) \cdot (\frac{1}{x_1y_1} + \cdots + \frac{1}{x_ny_n}) \ge 4n^2$$
.

Bevis: En ulikhet som vil blir mye brukt er $(x-y)^2=x^2+y^2-2xy\geq 0$ hvilket gir $x^2+y^2\geq 2xy$ og dersom $x,y>0,\,\frac{x}{y}+\frac{y}{x}\geq 2$. Dette gir videre at $(x+y)^2=x^2+y^2+2xy\geq 4xy$. Vi har derfor at

$$\sum_{i=1}^n (x_i + y_i)^2 \geq \sum_{i=1}^n 4x_i y_i.$$

La nå $a_i = x_i y_i$. Vi ønsker da å vise at

$$\left(\sum_{i=1}^n a_i
ight)\cdot \left(\sum_{i=1}^n rac{1}{a_i}
ight)\geq n^2.$$

Vi kan her skrive om produktet på venstre side til

$$\begin{split} \left(\sum_{i=1}^{n} a_{i}\right) \cdot \left(\sum_{j=1}^{n} \frac{1}{a_{j}}\right) &= \sum_{i,j=1,2,\dots,n} \frac{a_{i}}{a_{j}} \\ &= \sum_{i=j=1,2,\dots,n} \frac{a_{i}}{a_{j}} + \sum_{1 \leq i < j \leq n} \frac{a_{i}}{a_{j}} + \sum_{1 \leq j < i \leq n} \frac{a_{i}}{a_{j}} \\ &= n + \sum_{1 \leq i < j \leq n} \frac{a_{i}}{a_{j}} + \frac{a_{j}}{a_{i}} \\ &\geq n + \sum_{1 \leq i < j \leq n} 2 \\ &= n^{2} \end{split}$$