UML

Unified Modeling Language

www.uml.org

www.omg.org

UML

DIAGRAME

de CLASSES

Exemple de classe :

```
Rectangle
-P1: Point[1]
-P2: Point[1]
+couleur: Color[0..1]
                <<constructors>>
+Rectangle(in p1:Point, in p2:Point)
+Rectangle(in p:Point, in dx=0:reel, in dy:reel=0)
                    <query>>
+surface():reel
+largeur():reel
                  <<up><<up><<up><<up>
+redimensionne(in dx:reel, in dy:reel)
+deplace(in p:Point)
```


Attributs:

<u>visibilité nom : type[multiplicité] = valeur {contrainte}</u>

- a) Conceptualisation
 - => Notation UML2 indépendante du langage
- b) Pour générer le code
 - => Notation UML en adéquation avec langage
- c) Phase étude : diagramme préliminaire
 - => Toutes les informations ne sont pas définies

Attributs:

visibilité nom : type[multiplicité] = valeur {contrainte}

visibilité + Public - Privé

† Protégé ~ Package

! Définition dans UML2 Variations selon langage utilisé

nom soulignement → statique

Attributs:

<u>visibilité nom : type[multiplicité] = valeur {contrainte}</u>

type

Restriction sur le format

! Formats défini dans UML

null String | Boolean | Integer | Real | unlimitedNatural Date

Multiplicité des attributs :

<u>visibilité nom : type[multiplicité] = valeur {contrainte}</u>

attribut optionnel 0

attribut obligatoire borne mini ≥ 1

attribut monovalué borne sup = 1

attribut multivalué borne mini > 1 ou *

Remarque : Pas de multiplicité discontinue dans UML 2

Multiplicité des attributs :

<u>visibilité nom : type[multiplicité] = valeur {contrainte}</u>

Expression

Structure d'arbre

x xor b

feuille / opérande

plus(x,1)

String expression

Chaîne de caractères

Opaque expression

Langage externe

 $\{OCL\}\ i > j \ and \ self.size > i$

average hours worked per week

Multiplicité des attributs :

<u>visibilité nom : type[multiplicité] = valeur {contrainte}</u>

contrainte Mot-clé

OCL

Langage externe

ex : - nom : String [1] = "Durand" {readOnly}

Exemple de contraintes:

Mots clé : {ordered} liste ordonnée

{noUnique} doublons autorisés

{readOnly} lecture seule

{frozen} "gelé"

{notEmpty} non vide

{subset} sous-ensemble

{union} regroupement

• • •

Expression graphique de la contrainte :

Bank account

+ client : String

+ balance : Number

{ client → notEmpty() and balance >= 0 }

Date: type primitif?

Commande

+dateRéception: Date[0..1]

+estPrépayée: Boolean[1]

+lignes: LigneCommande[*] {ordonné}

ou association?

Opérations:

visibilité nom (arguments) : type retour {propriété}

```
visibilité +|-|#|~ public / privé ...
```

nom identifiant (chaine car.)

arguments liste des paramètres

direction nom: type = defaut

direction: in, out, inout

defaut : valeur par défaut

retour format

propriété propriétés supplémentaires

Association bidirectionnelle:

Par défaut : une association est bidirectionnelle

Association:

Précise un sens de navigabilité

Navigabilité uni-directionnelle:

Notations équivalentes

Expression des multiplicités :

valeur stricte

1..1

ou

1

0 ou plus

0..*

ou

*

plus de 1

1..*

Expression des multiplicités :

contrainte	isOrdered	isUnique
{set}	false	true
{orderedSet}	true	true
{bag}	false	false
{sequence}	true	false

Association:

Association n-aire:

Mutiplicité:

Si =1, alors toutes les combinaisons ont au moins 1 relation avec élément!

! notation inversée des multiplicités

Association – Equivalences de notation :

Association qualifiée :

Qualificateur : Permet de restreindre la multiplicité de l'association

Généralisation:

Particulier carteBancaire Client nom[1] adresse[0..1] Professionnel solvabilité():Chaine crédit nomContact factureMensuelle(entier) rappeler()

Dépendance:

Mots clés

call create derive instantiate permit realize refine substitute

use

trace

Dépendance:

call Appelle une opération de cible

create Crée une instance de cible

derive Source est dérivé de cible

instantiate Source est une instance de cible

permit Cible autorise l'accès privé à source

realize Implémente une spécification ou interface de cible

refine Relation entre niveaux sémantiques distincts

substitute Source peut se substituer à cible

trace Réalise un suivi d'exécution de cible (track)

use Cible est requis pour implémenter source

Contrainte:

27 S.HERAUVILLE

Responsabilités:

Relation de composition:

Relation d'agrégation :

Agrégation ou Composition

La suppression A entraine la suppression de $B ? \rightarrow C$

B est-il utilisé en dehors de A ? → A

A et B sont-ils indépendants ? \rightarrow A

A: Agrégation C: Composition

Propriété dérivée :

Commande

dateRéception : Date

dateLivraison : Date

/délai : entier

délai = dateRéception

- dateLivraison

Interface et classe abstraite :

Notation des interfaces:

Objet	Exemple	Comparaison
référence	Client	par référence objet
valeur	Date	des attributs

type de données << dataType >>

mot clé << value >> << struct >>

Classification: Généralisation / Spécialisation

Contrainte de classification:


```
Contrainte de complétude { complete } 

↔ { incomplete }
```

```
Contrainte de chevauchement { disjoint } ↔ { overlapping }
```

```
Combinaisons: {complete, disjoint }
```


Association

Contrainte sur relation

OR

XOR

AND

Association

Contrainte sur relation

Classe paramétrable:

Enumération:

<< enumeration >> Couleur rouge vert bleu

Classe active:

Processeur de commande

Instance autonome gérant ses propres threads et contrôles Ses méthodes sont activées dans un thread ...: ex \rightarrow shell

Résumé des liens :

——— Association : navigabilité (bidirectionnelle)

Association : navigabilité unidirectionnelle

− → Dépendance / Association ponctuelle

Composition

—— Généralisation (Héritage)

− − → Implémentation

