

Alignment with Tracks

Jim Pivarski

Alexei Safonov

Texas A&M University

21 June, 2009

- ▶ Reminder of pre-collisions goals, status of procedures and constants
- ▶ What we learned from beam-halo/CRAFT and how it applies to collisions data
- ▶ Timeline of what needs to be done when the beam arrives

- Primary: test and improve all parts of the alignment system, with a strong preference for procedures that will be useful in the colliding-beams era
- Secondary: develop new procedures that are better optimized for cosmic rays, to improve constants more now

	Procedure	*A	Applicable to beam-halo	cosmics	Status
1.	CSC Overlaps	yes	yes	no	validated with data $(ME-2/1, -3/1)$
2.	Tracker-to- muon chambers ("Baseline")	yes	no	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	validated with data, provided constants, sub-mm precision
3.	Tracker-to-CSC disk	yes	no	seems to be possible, but rough	observing first results, provided constants, needs more work
4.	Barrel-to-endcap	no	no	yes	in development

*Depends on track distributions: beamspot-pointing, longitudinal, and mostly vertical

1. CSC Overlaps

1. CSC Overlaps

- ► Extend pairwise chamber alignment around ring; three DOF: $r\phi$, ϕ_v , ϕ_z
- ▶ Demonstrated 270 μ m $r\phi$, 0.35 mrad ϕ_z accuracy by photogrammetry cross-check, in 9 minutes of beam-halo

Implications

- ► This means that we have resolved all *local* issues (with ME2/1, 3/1); remaining issues are track-source and propagation through material
- We can use Overlaps to diagnose Baseline by applying both procedures to the same set of tracks (in collisions)

Jim Pivarski

5/35

Since beam-halo constants are good, why not use them in reconstruction?

- Method requires complete rings
 - ightharpoonup only ME-2/1 and -3/1 were available: combination of high statistics due to being close to the beamline and status of chambers during those 9 minutes in 2008
 - ▶ to benefit from alignment, track would need to pass through exactly these two rings: very rare for CRAFT cosmic rays
- Measurement performed with $\vec{B} = 0$, unclear how much physical motion occured between beam-halo era and CRAFT

And yet...

- ▶ In a sense, we did: one can think of the beam-halo/photogrammetry comparison as validating the *photogrammetry*
- ▶ We uploaded all of the CSC photogrammetry chamber positions: they are being used in reconstruction now

- ▶ Most rings are reliably complete, thanks to 6 months of work
- ▶ Snapshot from June 11 (99322):

Completeness of rings (2/2)

Jim Pivarski 8/35

- Something to be careful about: CFEB inefficiencies
 - since overlaps procedure only requires hits along the edges of CSCs, this is only a problem when first or last CFEB (1 or 5) is inefficient/dead
- ► Armando's list of bad CFEBs includes 3 bad edge CFEBs, all in different rings (+1/2/15.1, +2/2/15.5, +3/2/19.5)
- Overlaps procedure can be modified to fill-in missing information by assuming perfect closure (sum of residuals around ring = 0)
- This is different from a dead chamber, which would remove two overlaps measurements, one from each side

2. Baseline procedure (tracker-to-muon chambers)

2. Baseline procedure

Jim Pivarski 10/35

- ► Method: (1) fit track in tracker, (2) propagate it to muon chamber, (3) align chamber to agree with track
- ▶ In the long run (\gtrsim 50 pb $^{-1}$), all chambers can be aligned like this
- ▶ Cosmic rays illuminate many DT chambers (wheels -1, 0, +1, except stations 1 and 7)
- ▶ Aligning the barrel in CRAFT improved our understanding about the following:
 - how can we disentangle alignment from magnetic field effects when we propagate tracks from the tracker? (resolved)
 - how can we be sure that the tracker is not globally distorted? (we have some techniques, but not completely resolved)
 - also developed much more robust fitting procedures, less sensitive to single-scattering tails
- ▶ These are the "non-local" issues, complimentary to what we learned with beam-halo; most carries over from DT to CSC

Magnetic field effects

 $\vec{B_z} \cdot \vec{p_T}$ and $\vec{B_r} \cdot \vec{p_z}$ both cause $r\phi$ residuals that are antisymmetric in charge

Jim Pivarski 11/35

- Residuals have seperable components when viewed as a function of charge
 - alignment is independent of the tracks' charge
 - ▶ \vec{B} (and dE/dx) errors are antisymmetric in charge
- Alignment residuals (red) have discontinuities at chamber boundaries before alignment and are unaffected by changing the $\vec{B}(\vec{x})$ map
- ► Charge antisymmetric residuals (blue) are insensitive to chamber geometry and change dramatically with new maps (example from February)

- ▶ Alignment information is propagated from the tracker: if the tracker is misaligned, the muon system will be too
- Two classes of distortions:
 - small-scale: all collisions muons for a chamber. point back to the same misaligned region of the tracker (right, from CSA08)

- ▶ global: tracker weak mode gets imprinted onto the muon system, something $\propto \sin \phi$, $\sin 2\phi$, z, z^2 , etc., or combinations
- Muon alignment is much less sensitive to errors in track direction $(\phi \text{ and } \eta)$ than errors in track curvature (p_T)
 - curvature errors grow quadratically as track propagates
- ▶ In cosmic ray alignments, small-scale distortions are "washed out" by the fact that cosmics don't all point to the same spot

Observed global distortion

- ▶ $20 < p_T < 100$ GeV tracks and $100 < p_T < 200$ GeV tracks yield different alignments, with a different overall shape (right)
 - ▶ rotation and twist of the barrel that depends on p_T

Jim Pivarski

Differences in chamber ϕ positions between alignments

13/35

same chambers, opposite stacking order

▶ Magnetic field/material corrections have been applied— this effect in residuals is independent of charge, not a \vec{B} , dE/dx issue (bottom-left)

► High-p_T alignment yields more consistent momentum measurements at all momenta

Tracker curl *hypothesis*

Jim Pivarski 14/35

Tracker curl constraints

Black= MP starting object

Blue= misaligned Red= aligned on top of misalignment

Studies performed in CRAFT data

Zijin Guo, Roberto Castello

- ▶ Left: tracker tracks are sensitive to 300 μ rad curl (blue: adding curl worsens χ^2 and red: re-aligning restores it)
- ightharpoonup Right: also restores wafer positions within 150 μ rad except TEC
 - ▶ TEC not used in muon alignment; not relevant here
 - \blacktriangleright restored chamber positions randomly distributed around zero: no <code>systematic</code> trend on the scale of 86 $\mu{\rm rad}$
- Source of distortion has not been explained: ongoing work...

Redundant binning

Jim Pivarski 16/35

- ▶ To partially distinguish track biases from real misalignments, plot residuals in finer bins than the chamber size
 - global chamber distortions and propagation errors have a smooth effect on residuals
 - misalignments introduce sharp discontinuities at the chamber boundaries (dotted lines) because they are large rigid bodies

(I'll use this again later in the talk, for the endcap)

Extra constraint in the endcap Jim Pivarski 17/35

- ▶ In the endcap, we can run the Baseline and Overlaps procedures with the same tracks
- Orthogonal sets of connectors (relative alignments):
 - chamber positions measured relative to tracker with Baseline
 - relative to next-door ring neighbors from Overlaps
 - should observe nothing more than whole-ring misalignment
- Sensitive to elliptical distortions of the tracker or endcap track-propagation 1. chambers in ring (red connectors)

Improved alignment fits

Jim Pivarski

- ▶ Based on CRAFT experience, we revised our fit model in two ways:
 - expanded residuals to include angular components, to improve resolution on angular alignments
 - one many-parameter fit for alignment and instrumental effects

DT chamber measures 2-D. position and direction: 4-component residuals

18/35

- Access to 6 rigid-body alignment parameters (3 translation, 3 rotation) through a 6×4 matrix instead of the usual 6×2
- ▶ CSC wire groups are too granular for alignment: $\mathcal{O}(cm)$ non-Gaussian
- ▶ Strips measure 1-D position and direction: 2-component residuals
- \blacktriangleright Access to 6-DOF through a 6 \times 2 matrix (instead of 6 \times 1), though in practice only 3 DOF can be resolved with precision

Sample fit results: DT MC

Jim Pivarski 19/35

- Projection of fits (all parameters = 0 other than the one shown) overlaid on simulated cosmic rays (profile plots) for one chamber
- Method works well in Monte Carlo

Sample fit results: DT data

Jim Pivarski

20/35

- ▶ Projection of fits (all parameters = 0 other than the one shown) overlaid on real CRAFT data (profile plots) for the same chamber
- Largely the same behavior in data; studying small discrepancies

Sample fit results: CSC MC

Jim Pivarski 21/35

- Projection of fits (all parameters = 0 other than the one shown) overlaid on simulated collisions (profile plots)
- ▶ Given the level of DT agreement, we don't expect show-stoppers

Why only 3 parameters?

- ▶ Only the red terms are significant; the rest are small because
 - ▶ $\frac{dx}{dz}$ is the non-radial, non-longitudinal component of track direction: only very low p_T tracks would have non-negligible $\frac{dx}{dz}$
 - ► *R* is the distance from the hit to the beamline, large compared to *x* coordinates in the chamber

 $(residuals) = (matrix) \cdot (alignment parameters)$

$$\begin{pmatrix} \Delta r \phi \\ \Delta \frac{dr \phi}{dz} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{x}{R} & -\frac{dx}{dz} & -y\frac{dx}{dz} & x\frac{dx}{dz} & -y \\ 0 & -\frac{dx}{dz}\frac{1}{2R} & 0 & \frac{x}{R} - \frac{dx}{dz}\frac{dy}{dz} & 1 + \left(\frac{dx}{dz}\right)^2 & -\frac{dy}{dz} \end{pmatrix} \begin{pmatrix} \frac{\delta_x}{\delta_y} \\ \frac{\delta_y}{\delta_z} \\ \frac{\delta_{\phi_y}}{\delta_{\phi_z}} \end{pmatrix}$$

- ▶ In-practice accessible parameters are δ_x , δ_{ϕ_y} , and δ_{ϕ_z} , the same as in the Overlaps procedure
- ► Attempts to align others in MC yield poor resolution (but with the right dependence on R)
- Complimentary to hardware's best parameters

Predicted "Baseline" resolution Jim Pivarski 23/35

▶ Putting together all of the updated algorithms, MC alignment accuracy is (for 50 pb $^{-1}$, no tracker misalignment):

	x (μ m)	ϕ_y (mrad)	ϕ_z (mrad)
DT	430	0.21	0.31
ME1/1	350	0.22	0.70
ME1/2	180	0.24	0.37
ME1/3	740	0.93	1.07
ME2,3,4/1	250	0.17	0.47
ME2,3/2	380	0.20	0.35
everything	400	0.33	0.53

Data-driven test of CRAFT p_T Jim Pivarski 24/35

- ▶ Split $p_T \gtrsim 200$ GeV cosmic rays into upper and lower halves, refit each half independently and compare the results
- ▶ Two track-fits for each cosmic ray: any mismatch is instrumental

Before muon alignment

After muon alignment

Comparison with expectations Jim Pivarski

25/35

- \triangleright MC resolution vs. p_T with different alignment scenarios
- Track reconstruction method optimized by p_T (at high p_T , use only first muon station to avoid hit confusion from muon showering)

- MC simulations yield much better results than early estimates
- Cosmic ray splitting is close to MC simulations at 200 GeV

3. Tracker to CSC disks

Method: same tracker-to-muon propagation, but plot versus phi position and fit {const, sine, cosine} to get { $R\phi_z$, x, y} of the disk

- Fewer tracks are needed to align whole disks than individual chambers
- ▶ Necessary as final step after Overlaps (internal ring alignment)
- ▶ The following are first investigations; there are unsolved issues

Comparison with survey (1/2)

Jim Pivarski 28/35

- Strip-only residuals versus phi position
- ▶ Blue scale is the 2-D histogram, black points are bin-by-bin averages
- ► Red line is a fit to the residuals, green line is adjusted survey
- ▶ Important: residuals are relative to tracker and original survey is relative to cavern, so we adjust survey to fit cavern to tracker
 - {YE-2, -1, +1, +2} \times 3 DOF is reduced to 3 \times 3 parameters
 - only meaningful to compare relative differences between rings (next page), rather than one ring alone, because of the fit

ME-3/2 residuals, fitted (red) and compared with survey (green)

(pre-adjustment) survey data from R. Goudard

- Millimeter-level disagreement between residuals and survey
- ▶ But ME-2, -3 and +2, +3 residuals agree with each other: good!

Redundant binning

Jim Pivarski 30/35

- ▶ We also have $d(r\phi)/dz$ angle residuals
- Bin them more finely than the chambers (dashed lines are boundaries)
- \blacktriangleright We do observe some discontinuities, indicating real ϕ_v misalignments between chambers
- Few-mrad is the same misalignment scale that was observed by beam-halo

ME-2/2 "d(rφ)/dz" angular residuals, measures φ of chambers

Comparison with beam-halo

Jim Pivarski 31/35

- ▶ Difficult to actually compare tracker-to-disk and beam-halo directly, because very few cosmic rays connect ME−2/1 with the tracker
- Nevertheless, we can try: these are ϕ_{ν} with beam-halo overlaid

- ► To allow for tracker distortions and propagator errors, we can focus on the discontinuities at the chamber boundaries
- ▶ The discontinuities do not agree in detail with beam-halo: can form an argument that chambers have rotated between $\vec{B} = 0$ and CRAFT

- ▶ Collisions MC (5 pb⁻¹): tracks uniform in ϕ but not more numerous
- ▶ Much easier to fit const + sine + cosine, accurate results
- Roughly the same widths
- ► Cosmic-ray MC (full sample): zero tracks (probably a generator-level cut)

- With \$\phi\$-symmetric collisions, how much data do we need to align the disks?
- ▶ Includes residual misalignments after CSC Overlaps alignment (assuming same resolution as 2008)
- ▶ Independent samples scale with \sqrt{N}

- Now and CRAFT-2009
 - validate cosmic ray tracker-to-disk procedures with CRAFT-2008 and -2009
 - automate all procedures and monitoring for CRAFT-2009, then simply run them
- Month of beam-halo only
 - re-run beam-halo procedure on new samples
 - kludge incomplete rings if necessary
 - any corrections needed for $\vec{B} \neq 0$?
 - one-time layer alignment with full dataset (low-statistics 2008 pilot study on right)
- ► First collisions: 5 pb⁻¹
 - run Overlaps procedure on collisions data, compare with beam-halo result
 - use tracker-to-disk method to connect internally-aligned rings to tracker
- ► Later collisions: 50 pb⁻¹
 - run Baseline procedure with same tracks: do they agree? If not, do track-by-track comparisons to diagnose the problem
 - do collisions alignments agree with cosmic rays in the barrel?
 - when all of these are resolved, we will have a physics-quality alignment!

- ▶ We have used 2008 beam-halo and CRAFT samples to be as prepared as possible for aligning with collisions
- ▶ Beam-halo demonstration vetted our knowledge of local aspects of alignment (such as CSC strip pitch angle); CRAFT wheel -1, 0, +1alignment tests propagation of tracks over long distances through iron and imperfect magnetic fields
- We have produced and uploaded track-based constants for most barrel chambers, and for endcap disk positions, though our understanding of the latter can be significantly improved
- ▶ We know what issues we'll need to work on, at what time, in the LHC start-up process