Ранг и дефект на линеен оператор.

Нека V е линейно пространство над поле F, а $\varphi \in \text{Hom}(V)$. Множеството

$$\operatorname{Im} \varphi = \{ y \in V | y = \varphi(x) \text{ за някой вектор } x \in V \},$$

състоящо се от образите на всевъзможните вектори $x \in V$ под действието на хомоморфизма φ , се нарича *образ* на φ . Множеството

$$\operatorname{Ker} \varphi = \{ x \in V | \varphi(x) = o \},\$$

състоящо се от онези вектори $x \in V$, които хомоморфизмът φ изпраща в нуле вия вектор o, се нарича $\mathfrak{A}\mathfrak{d}po$ на φ . От свойствата на линейните изображения имаме, че $\varphi(o) = o$ и следователно $\operatorname{Ker} \varphi \neq \emptyset$, т.к. поне нулевият вектор се съдържа в ядрото. $\operatorname{Im} \varphi$ и $\operatorname{Ker} \varphi$ са подпространства на V. Наистина, нека $y_1, y_2 \in \operatorname{Im} \varphi$. Това означава, че съществуват вектори $x_1, x_2 \in V : y_1 = \varphi(x_1)$ и $y_2 = \varphi(x_2)$. Сега имаме

$$y_1 + y_2 = \varphi(x_1) + \varphi(x_2) = \varphi(x_1 + x_2)$$

и следователно $y_1+y_2\in {\rm Im}\, \varphi.$ За произволен скалар $\lambda\in F$ имаме

$$\lambda y_1 = \lambda \varphi(x_1) = \varphi(\lambda x_1)$$

и следователно $\lambda y_1 \in \operatorname{Im} \varphi$. С това $\operatorname{Im} \varphi \leq V$. Нека сега $x_1, x_2 \in \operatorname{Ker} \varphi$. Тогава

$$\varphi(x_1 + x_2) = \varphi(x_1) = \varphi(x_2) = o + o = o$$

и следователно $x_1+x_2\in {\rm Ker}\, \varphi.$ За произволен скалар $\lambda\in F$

$$\varphi(\lambda x_1) = \lambda \varphi(x_1) = \lambda.o = o,$$

което означава, че $\lambda x_1 \in \operatorname{Ker} \varphi$. С това $\operatorname{Ker} \varphi \leq V$.

<u>Уточнение</u>: В общия случай, когато разглеждаме линейно изображение

$$\varphi:V\to V'$$

при $V \neq V'$, т.е. $\varphi \in \text{Hom}(V,V')$, образът и ядрото на φ се дефинират по следния начин:

$$\operatorname{Im}\varphi=\{y\in V'|y=\varphi(x)$$
 за някой вектор $x\in V\}\leq V',$

$$\operatorname{Ker} \varphi = \{ x \in V | \varphi(x) = o' \} \le V.$$

Числото dim Im φ се нарича pans на φ и го бележим с $r(\varphi)$, а числото dim Ker φ се нарича $\partial e \phi e \kappa m$ на φ и го бележим с $d(\varphi)$.

Примери:

За $\varphi=0$ имаме, че 0 изпраща всеки вектор $x\in V$ в нулевия, защото по дефиниция $\mathfrak{O}(x)=o$ за произволен вектор $x\in V$. Тогава $\mathrm{Im}\,\mathfrak{O}=\{o\}$ и $\mathrm{Ker}\,\mathfrak{O}=V$.

За $\varphi = \mathcal{E}$ лесно се вижда, че $\operatorname{Im} \mathcal{E} = V$ и $\operatorname{Ker} \mathcal{E} = \{o\}$.

Нека разгледаме линейното пространство $\mathbb{R}[x]$ на полиномите на една променлива с реални коефициенти. Нека $\varphi: \mathbb{R}[x] \to \mathbb{R}[x]$ е изображението, за което $\varphi(f(x)) = f'(x)$ за произволен полином $f(x) \in \mathbb{R}[x]$. От свойствата на производните имаме, че (f(x) + g(x))' = f'(x) + g'(x) и $(\lambda f(x))' = \lambda f'(x)$ за произволни полиноми $f(x), g(x) \in \mathbb{R}[x]$ и число $\lambda \in F$. Оттук следва, че $\varphi \in \mathrm{Hom}(\mathbb{R}[x])$. Кег φ е множеството, състоящи се от онези полиноми f(x), за които е изпълнено $\varphi(f(x)) = f'(x) = 0$. Ясно е че това е множеството от константните полиноми и тогава Кег $\varphi = \mathbb{R}^1$. От правилата за интегриране лесно се съобразява, че всеки полином може да се разглежда като производна на полином от по-висока степен. По този начин $\mathrm{Im}\,\varphi = \mathbb{R}[x]$.

Ясно е, че ако V е крайномерно линейно пространство и $\dim V = n$, то за произволен линеен оператор $\varphi \in \mathrm{Hom}(\varphi)$ е в сила $0 \leq \mathrm{r}(\varphi) \leq n$ и $0 \leq \mathrm{d}(\varphi) \leq n$.

Твърдение 1. Нека $\varphi \in \text{Hom}(V)$ и A е матрицата на φ спрямо кой да е базис на V. Тогава $\mathbf{r}(\varphi) = \text{rank } A$.

Доказателство. Нека фиксирараме произволен базис e_1, \ldots, e_n на V. Нека $y \in \operatorname{Im} \varphi$. Тогава $y = \varphi(x)$ за вектор $x \in V$. Нека $x = \lambda_1 e_1 + \cdots + \lambda_n e_n$. Тогава $y = \lambda_1 \varphi(e_1) + \cdots + \lambda_n \varphi(e_n)$. Т.к. векторът y е произволно избран, то $\operatorname{Im} \varphi = \ell(\varphi(e_1), \ldots, \varphi(e_n))$. Следователно $\operatorname{r}(\varphi) = \dim \operatorname{Im} \varphi = \dim \ell(\varphi(e_1), \ldots, \varphi(e_n)) = \operatorname{rank}(\varphi(e_1), \ldots, \varphi(e_n)) = \operatorname{pahra}$ на матрицата със стълбове координатите на $\varphi(e_1), \ldots, \varphi(e_n) = \operatorname{rank} A$.

Следствие. Ако A и B са матриците на φ спрямо два базиса на V, то $\operatorname{rank} A = \operatorname{rank} B$. C други думи числото $\operatorname{r}(\varphi)$ не зависи от базиса.

Доказателство. Според Твърдение 1 имаме, че rank $A=\mathrm{r}(\varphi)=\mathrm{rank}\,B.$

Теорема 1 (за ранга и дефекта). Нека V е крайномерно пространство, а $\varphi \in \operatorname{Hom}(V)$ е линеен оператор. Тогава е в сила $\dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi = \dim V$.

Доказателство. Нека $\dim V = n$, $\mathbf{r}(\varphi) = \dim \operatorname{Im} \varphi = r$, а $\mathbf{d}(\varphi) = \dim \operatorname{Ker} \varphi = d$. Нека (при предположение, че $\ker \varphi \neq \{o\}$) векторите a_1, \ldots, a_d са базис на $\ker \varphi$. Т.к. $d \leq n$, то (при d < n) съществуват вектори $a_{d+1}, \ldots, a_n \in V$, такива че векторите a_1, \ldots, a_d ; a_{d+1}, \ldots, a_n образуват базис на V (при d = n няма нужда от това допълване на базиса). Разглеждаме векторите

$$(*)$$
 $\varphi(a_{d+1}), \ldots, \varphi(a_n),$

които са d-n на брой. Очевидно векторите (*) принадлежат на подпространството $\operatorname{Im} \varphi$. За произволен вектор $y \in \operatorname{Im} \varphi$ съществува вектор $x \in V$, такъв че $y = \varphi(x)$. Нека

$$x = \lambda_1 a_1 + \dots + \lambda_d a_d + \lambda_{d+1} a_{d+1} + \dots + \lambda_n a_n.$$

Тогава имаме, че

$$y = \varphi(x) = \lambda_1 \varphi(a_1) = \dots + \lambda_d \varphi(a_d) + \lambda_{d+1} \varphi(a_{d+1}) + \dots + \lambda_n \varphi(a_n),$$

а оттук и

$$y = \lambda_{d+1}\varphi(a_{d+1}) + \dots + \lambda_n\varphi(a_n),$$

понеже векторите $a_1, \ldots, a_d \in \text{Ker } \varphi$. Следователно всеки вектор $y \in \text{Im } \varphi$ е линейна комбинация на векторите $\varphi(a_{d+1}), \ldots, \varphi(a_n)$. Ще докажем, че векторите (*) са линейно независими. Да допуснем, че

$$\mu_{d+1}\varphi(a_{d+1}) + \dots + \mu_n\varphi(a_n) = o$$

за някакви числа $\mu_i \in F$. Това означава, че

$$\varphi(\mu_{d+1}a_{d+1} + \dots + \mu_n a_n) = o,$$

което е еквивалентно на

$$\mu_{d+1}a_{d+1} + \cdots + \mu_n a_n \in \operatorname{Ker} \varphi$$
.

Тогава

$$\mu_{d+1}a_{d+1} + \dots + \mu_n a_n = \nu_1 a_1 + \dots + \nu_d a_d$$

или

$$\nu_1 a_1 + \dots + \nu_n a_n - \mu_{d+1} a_{d+1} - \dots - \mu_n a_n = 0.$$

Т.к. векторите $a_1,\ldots,a_d;a_{d+1},\ldots,a_n$ образуват базис на V, то те са линейно независими и трябва $\nu_1=\cdots=\nu_d=(-\mu_{d+1})=\cdots=(-\mu_n)=0$, откъдето следва и че векторите (*) са линейно независими. От казаното дотук следва, че векторите (*) са базис на $\operatorname{Im}\varphi$. Така $r=\dim\operatorname{Im}\varphi=n-d$, т.е. r+d=n или $\operatorname{r}(\varphi)+\operatorname{d}(\varphi)=n$.

Ще казваме, че линейният оператор $\varphi \in \text{Hom}(V)$ е обратим, ако съществува линеен оператор $\psi \in \text{Hom}(V)$, такъв че $\varphi \psi = \psi \varphi = \mathcal{E}$. Нека φ има матрица A, ψ има матрица B. Знаем, че матрицата на \mathcal{E} е единичната матрица E. Т.к. матрицата на $\varphi \psi$ е AB, то получаваме, че AB = E, което означава, че матрицата A е обратима (и $\det A \neq 0$). В такъв случай $B = A^{-1}$. Матрицата A^{-1} е единствената с това свойство, а "преведено" на операторен език това означава, че и операторът ψ е единствен. Означаваме го с φ^{-1} . Ясно е, че при това положение изображенията φ и φ^{-1} са биективни.

Теорема 2. Нека V е крайномерно линейно пространство $c \dim V = n$, $a \varphi \in \text{Hom}(V)$. Следните условия са еквивалентни:

- 1) φ е обратим линеен оператор,
- 2) матрицата на φ спрямо кой да е базис на V е неособена,
- 3) $r(\varphi) = \dim V$, m.e. $\operatorname{Im} \varphi = V$,
- 4) $d(\varphi) = 0$, m.e. $Ker \varphi = \{o\}$,
- 5) φ преобразува (кой да e) базис на V в (друг) базис на V.

Доказателство. Ще извършим доказателството по схемата 1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4) \Rightarrow 5) \Rightarrow 1).

 $1) \Rightarrow 2)$: Това вече го видяхме по-горе.

- $2)\Rightarrow 3)$: Нека A е матрицата на φ в произволен базис на V. Т.к. A е обратима, то $\det A\neq 0$ и $\operatorname{rank} A=n=\dim V$. Но $\operatorname{r}(\varphi)=\operatorname{rank} A\Rightarrow\operatorname{r}(\varphi)=\dim V$.
- $3)\Rightarrow 4)$: Според Теоремата за ранга и дефекта имаме, че $\mathbf{r}(\varphi)+\mathbf{d}(\varphi)=\dim V$. Сега от $\mathbf{r}(\varphi)=\dim V$ следва, че $\mathbf{d}(\varphi)=0$.
- $4) \Rightarrow 3)$: Нека $\mathrm{d}(\varphi) = 0$ (т.е. $\ker \varphi = \{o\}$). Нека e_1, \ldots, e_n е базис на V и разгледаме векторите $\varphi(e_1), \ldots, \varphi(e_n) \in V$. Да вземем такава линейна комбинация с коефициенти $\lambda_i \in F$, че

$$\lambda_1 \varphi(e_1) + \dots + \lambda_n \varphi(e_n) = o.$$

От свойствата на линейните изображения преобразуваме горното до

$$\varphi(\lambda_1 e_1 + \dots + \lambda_n e_n) = o.$$

Това означава, че векторът

$$\lambda_1 e_1 + \dots + \lambda_n e_n \in \operatorname{Ker} \varphi = \{o\}$$

и единствената възможност е

$$\lambda_1 e_1 + \dots + \lambda_n e_n = o.$$

Понеже e_1, \ldots, e_n са базис и са линейно независими, то $\lambda_1 = \cdots = \lambda_n = 0$, а оттук следва и линейната независимост на векторите $\varphi(e_1), \ldots, \varphi(e_n)$. Т.к. те са n на брой следва, че те също образуват базис на V.

 $5)\Rightarrow 1)$: Нека e_1,\dots,e_n е базис на V и $\varphi(e_1),\dots,\varphi(e_n)$ също е базис на V. Да означим

$$f_1 = \varphi(e_1), \dots, f_n = \varphi(e_n)$$

. Знаем, че съществува единствен линеен оператор $\psi \in \text{Hom}(V)$, такъв че $\psi(f_i) = e_i$ за $\forall i = 1, \ldots, n$. Това означава, че $\psi(\varphi(e_i)) = e_i \Leftrightarrow (\psi\varphi)(e_i) = e_i$ за $\forall i = 1, \ldots, n$. Т.к. e_i са базисни вектори от последното следва, че $(\psi\varphi)(v) = v$ за $\forall v \in V$, т.е. $\psi\varphi = \mathcal{E}$. По аналогичен начин се вижда и че $\varphi\psi = \mathcal{E}$, т.е. операторът φ е обратим.