(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-311970

(43)公開日 平成11年(1999)11月9日

(51) Int.Cl.6

G 0 9 G 3/20

識別記号

641

 \mathbf{F} I

G 0 9 G 3/20

641D

審査請求 未請求 請求項の数10 〇L (全 16 頁)

(21)出願番号	特顯平10-121221	(71)出願人	000002185
(22)出願日	平成10年(1998) 4月30日	(79) 於明子	ソニー株式会社 東京都品川区北品川6丁目7番35号
		(72)発明者	参木 芳男 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内
		(74)代理人	弁理士 小池 晃 (外2名)

(54) 【発明の名称】 電流型表示素子のマトリクス駆動方法及び電流型表示素子のマトリクス駆動装置

(57)【要約】

【課題】 走査電極と信号電極との交差部に生じる浮遊 容量の影響を抑える。

【解決手段】 複数の走査電極ScE(ScE₁,Sc E₂, ···ScE_v)と複数の信号電極SiE(SiE $_1$, SiE_2 , · · · · SiE_x) との各交差部に電流型表 示素子をマトリクス状に配置し、走査電極ScEを選択 して信号電極SiEに表示信号を供給することによっ て、各電流型表示素子を駆動するにあたり、信号電極S i Eへの表示信号の供給に先立って、交差部の容量につ いてプリチャージするプリチャージ手段3を備える。

【特許請求の範囲】

【請求項1】 複数の走査電極と複数の信号電極との各 交差部に電流型表示素子をマトリクス状に配置し、上記 走査電極を選択して上記信号電極に表示信号を供給する ことによって、各電流型表示素子を駆動する電流型表示 素子のマトリクス駆動方法であって、

上記信号電極への表示信号の供給に先立って、上記交差 部の容量についてプリチャージすることを特徴とする電 流型表示素子のマトリクス駆動方法。

【請求項2】 上記信号電極への表示信号の供給に先立って、上記交差部に配置された電流型表示素子の発光閾値電圧を印加することを特徴とする請求項1記載の電流型表示素子のマトリクス駆動方法。

【請求項3】 上記信号電極への表示信号の供給に先立って、選択された走査電極と各信号電極との交差部の容量についてプリチャージすることを特徴とする請求項1 記載の電流型表示素子のマトリクス駆動方法。

【請求項4】 上記信号電極への表示信号の供給に先立って、選択された走査電極に対してはGNDレベルの電位を与え、選択されない走査電極に対しては上記信号電極に与えられる電位以上の電位を与えることを特徴とする請求項1記載の電流型表示素子のマトリクス駆動方法。

【請求項5】 複数の走査電極と複数の信号電極との各 交差部に電流型表示素子をマトリクス状に配置し、上記 走査電極を選択して上記信号電極に表示信号を供給する ことによって、各電流型表示素子を駆動する電流型表示 素子のマトリクス駆動装置であって、

上記信号電極への表示信号の供給に先立って、上記交差 部の容量についてプリチャージするプリチャージ手段を 備えることを特徴とする電流型表示素子のマトリクス駆 動装置。

【請求項6】 上記プリチャージ手段は、上記交差部に 配置された電流型表示素子の発光閾値電圧を印加することを特徴とする請求項5記載の電流型表示素子のマトリ クス駆動装置。

【請求項7】 各信号電極について選択する信号電極選択手段と、選択した信号電極に対して上記表示信号を供給する表示信号供給手段とを有する信号電極駆動手段と、

各走査電極について選択する走査電極選択手段を有する 走査電極駆動手段とを備えることを特徴とする請求項5 記載の電流型表示素子のマトリクス駆動装置。

【請求項8】 上記プリチャージ手段は、上記走査電極 駆動手段の走査電極選択手段によって選択された走査電 極と各信号電極との交差部の容量についてプリチャージ することを特徴とする請求項7記載の電流型表示素子の マトリクス駆動装置。

【請求項9】 上記走査電極駆動手段は、上記走査電極 選択手段によって選択した走査電極に対してはGNDレ ベルの電位を与え、選択しない走査電極に対しては上記信号電極に与えられる電位以上の電位を与えることを特徴とする請求項7記載の電流型表示素子のマトリクス駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、LED (Light Emitting Diode), ECD (Electrochromic Display), EL (Electro Luminescence)等の電流で駆動される電流型表示素子を駆動するためのマトリクス駆動方法及びマトリクス駆動装置に関する。

[0002]

【従来の技術】表示素子を駆動するための単純XYマトリクス型駆動装置(以下、単にマトリクス型駆動装置という。)は、互いにその方向が直角となすように設けられた複数の走査電極(Scanning Electrode)と複数の信号電極(Signal Electrode)からなる2組の帯状電極群の交差部に表示素子を挟み、これらの帯状電極にそれぞれ接続された駆動回路によって、上記交差部での電圧等を変化させることにより表示素子を駆動する。

【0003】ここで、マトリクス型駆動装置の駆動方式は、その入力(電圧または電流など)と、表示素子の出力(発光、透過率、反射率)との関係により決定される。例えば表示素子が液晶の場合には、マトリクス型駆動装置の駆動は、走査電極を線順次で選択する線順次走査方式を用いて、液晶に印加される実効電圧(液晶がツイストネマチック(TN)型の場合)または電圧の極性(液晶が強誘電性(FLC)の場合)を変化させることにより行う。

[0004]

【発明が解決しようとする課題】一方、表示素子がLE D (Light Emitting Diode),ECD (Electrochromic Display),EL (Electro Luminescence)等の電流で駆動される電流型表示素子の場合には、例えば図7に示すマトリクス型駆動装置100は、図7に示すように、複数の走査電極ScE(ScE1,ScE2,・・・ScEy)と複数の信号電極SiE(SiE1,SiE2,・・・SiEx)とが互いに方向が直角となすように設けられ、これら2組の帯状電極群の交差部に上述した電流型表示素子が挟持され、さらに走査電極ScEに走査電極駆動回路101が、信号電極SiEに信号電極駆動回路102がそれぞれ接続されて構成される

【0005】走査電極駆動回路101は、図7に示すように、各走査電極 ScE_1 , ScE_2 ,・・・ ScE_y に対して選択スイッチL(L_1 , L_2 ,・・・ L_y)が接続されており、図示しない制御部からの制御信号で各選択スイッチLのON/OFFを切り換えることにより、選択した走査電極ScEの電位をGNDレベルにする。

【0007】ところで、このようなマトリクス型駆動装置100においては、走査電極ScEと信号電極SiEとの交差部に浮遊容量と呼ばれる容量成分が生じることから、以下のような問題が生じた。

【0008】すなわち、マトリクス型駆動装置100に

おいては、線順次駆動を行う際に、電流型表示素子に電 流源CSからの電流(表示信号)を供給しようとする と、この浮遊容量に対する充電が行われることとなる。 これにより、マトリクス型駆動装置100によれば、図 8に示すように、電流型表示素子の表示(発光)に要す る閾値電圧Vtに到達するまでは表示に寄与する電流が 流れないため、1 走査線の選択時間の間に「無効時間」 が発生することになる。そして、マトリクス型駆動装置 100においては、この無効時間の発生により、1走査 線の選択時間の間に効率良く表示が行えないという問題 が生ずることとなる。なお、このときの電流型表示素子 の輝度低下率は、図8からも分かるように、発光時間/ 1 走査線選択時間×100(%)で表すことができる。 【0009】マトリクス型駆動装置100におけるこの 無効時間の影響は、特に階調表現を行う場合に顕著とな る。例えば、マトリクス型駆動装置100においてPW M (Pulse Width Modulation:パルス幅変調)により 8:4:2:1の比で階調表現しようとすると、1 走査 線選択時間が決められていることから、図9に示すよう に、階調数が制限され、或いは画質の劣化を生じさせ る、という問題があった。具体的には、マトリクス型駆 動装置100によれば、1走査線選択時間内で、上述の 無効時間を考慮して8:4:2:1の比を維持するよう に階調表現を行うと、図9(A)に示すように、例えば 16グレイスケール (grayscale) が4グレイスケール に減少してしまい、階調数が不足してしまう。一方、無 効時間を無視して線順次駆動により8:4:2:1の比 で階調表現を行うと、図9(B)に示すように、表示し ている期間a, b, c, dにおいて8:4:2:1の比 が正しく確保できず、階調の非線形化(ガンマ特性劣 化)が発生し階調が正しく得られない、という問題が生 じた。

【0010】本発明は、このような実情に鑑みて提案さ

れたものであって、走査電極と信号電極との交差部に生 じる浮遊容量の影響を抑えることのできる電流表示素子 のマトリクス駆動方法及びマトリクス駆動装置を提供す ることを目的とする。

[0011]

【課題を解決するための手段】本発明は、上記課題を解決するため、複数の走査電極と複数の信号電極との各交差部に電流型表示素子をマトリクス状に配置し、走査電極を選択して信号電極に表示信号を供給することによって、各電流型表示素子を駆動する電流型表示素子のマトリクス駆動方法であって、信号電極への表示信号の供給に先立って、交差部の容量についてプリチャージする。

【0012】電流型表示素子のマトリクス駆動方法においては、信号電極への表示信号の供給に先立って、交差部の容量についてプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積される。

【0013】また、本発明は、上記課題を解決するため、複数の走査電極と複数の信号電極との各交差部に電流型表示素子をマトリクス状に配置し、走査電極を選択して信号電極に表示信号を供給することによって、各電流型表示素子を駆動する電流型表示素子のマトリクス駆動装置であって、信号電極への表示信号の供給に先立って、交差部の容量についてプリチャージするプリチャージ手段を備える。

【0014】電流型表示素子のマトリクス駆動装置においては、プリチャージ手段が信号電極への表示信号の供給に先立って交差部の容量についてプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積される。

【0015】

【発明の実施の形態】本発明の実施の形態につき図面を参照しながら詳細に説明する。本発明を適用した電流型表示素子を駆動するための単純XYマトリクス型駆動装置(以下、単にマトリクス型駆動装置という。)10 は、図1に示すように、複数の走査電極S c E (S c E $_1$, S c E $_2$, · · · S c E $_3$) と複数の信号電極S i E (S i E $_1$, S i E $_2$, · · · · S i E $_3$) とが互いに方向が直角となすように設けられ、これら2組の電極群の交差部に電流型表示素子が挟持され、走査電極S c E に走査電極駆動回路E 1 E に信号電極駆動回路E 2 E 及びプリチャージ回路E 3 がそれぞれ接続されることにより構成される。

【0016】このマトリクス型駆動装置10は、走査電極ScEが金属により帯状に形成されたカソード電極となり、信号電極SiEが透明部材により帯状に形成されたアノード電極となることにより、全体としてP-chのデバイスを形成している。

【0017】走査電極駆動回路1は、図1に示すように、走査電極 $ScE(ScE_1, ScE_2, \cdots ScE$

y)に対して接続される選択スイッチL(L_1 , L_2 , · · · L_y)を備えている。走査電極駆動回路 1 は、図示しない制御部からの制御信号で各選択スイッチLのON/OFFを切り換えることにより、走査電極 $S \in E$ にの選択/非選択を決定し、選択した走査電極 $S \in E$ についてその電位を $G \in E$ いたいにする。

【0018】一方、信号電極駆動回路2は、信号電極SiE(SiE_1 , SiE_2 , \cdots SiE_x) に対して接続される選択スイッチS(S_1 , S_2 , \cdots S_x), 選択スイッチS(S_1 , S_2 , \cdots S_x) に対して接続される電流源CS(CS_1 , CS_2 , \cdots CS_x), 各電流源CSの電源となる電源部4を備えている。電源部4は、電圧Vを電流源CSに出力することによって、電流源CSから各表示素子を表示用として十分発光させるのに必要な電流 I_0 を出力させる。信号電極駆動回路2においては、図示しない制御部からの制御信号で各選択スイッチSのON/OFFを切り換えることにより、信号電極SiEの選択/非選択が決定され、選択した信号電極SiEに対して電流源CSからの電流 I_0 が表示信号として供給される。

【0019】ここで、各走査電極ScEと各信号電極SiEとの交差部に挟持される電流型表示素子としては、例えば緑色に発光する有機EL(Electro Luminescence)が用いられる。この有機ELの電圧-電流特性図を図2に示す。この図2に示されるように、マトリクス型駆動装置10で駆動する有機ELは、発光を開始する閾値電圧Vt=10(ボルト)、十分な発光に必要な電流 $I_0=8$ (mA/cm^2)、電流源CSが電流 I_0 を流すために必要な信号電極駆動回路2の電源部4の出力電圧V=11(ボルト)という特性となっている。

【0020】プリチャージ回路3は、図1に示すように、各信号電極S i $E_1 \sim S$ i E_x と接続される選択スイッチ $C_1 \sim C_x$ 及びこれら各選択スイッチ $C_1 \sim C_x$ を介して各信号電極S i E i

【0021】プリチャージ回路3は、走査電極駆動回路 1の上記選択スイッチ $L_1 \sim L_y$ によって走査電極 $S \circ E$ $_1 \sim S \circ E_y$ の選択/非選択の切り換えを行う際に、走査電極 $S \circ E$ と信号電極 $S \circ E$ との交差部に生じる浮遊容量に対して予め有機 $E \circ E$ しの閾値電圧 $V \circ E$ しなっている。具体的には、プリチャージ回路3は、図示しない制御部からの制御信号で各選択スイッチ $C_1 \sim C_x \circ ON/OFF$ を切り換えることにより、各信号電極 $S \circ E$ に対する電圧 $V \circ E$ がよっている。

【0023】そして、T₁のプリチャージ期間が終わる と、プリチャージ回路3が各選択スイッチC1~CxをO FFにして、続いて信号電極駆動回路2が信号電極Si Eについての各選択スイッチ $S_1 \sim S_x$ のON/OFFを 切り換えて、各有機ELについて点灯/非点灯について の選択を行う。この時に、選択スイッチSがONなら、 対応する有機ELに対して信号電極駆動回路2からの出 力電圧Vが印加されるので、図2で説明した電流 Ioが 流れることにより図3に示す T_0 の期間の後に当該有機 ELが発光する。一方、選択スイッチSがOFFなら ば、対応する有機ELに対して信号電極駆動回路2から の出力電圧Vが印加されずに、プリチャージしたときの 電圧Vtのままになっているので、当該有機ELは発光 しない状態となる。そして、マトリクス型駆動装置10 においては、順次次の走査電極ScEを選択し、同様の 処理を行うことによって、有機ELを発光させて画像等 の表示を行うことができる。

【0024】なお、図3に示すように、 T_0 の期間に変動する電圧幅V-V t が小さく、ほとんど零にできるため、有機E L の発光に要する期間はほぼプリチャージ期間 T_1 だけで決定されることになる。また、プリチャージの電圧を大きくすることでプリチャージ期間 T_1 を短くできるため、図3 に示すように、一走査時間内で有機 E L を発光させる時間(表示期間) T_2 の比率を高めることが可能となる。これにより、マトリクス型駆動装置1 0 においては、図9 で説明したような階調数の制限、或いは画質の劣化等の発生がなくなり、信号電極駆動回路2 からの表示信号を忠実に再現することが可能となる。

【0025】次に、マトリクス型駆動装置10の他の構成例について、図4を参照して説明する。図4に示すこのマトリクス型駆動装置10Aは、図1に示すマトリクス型駆動装置10と比較して、プリチャージ回路の構成が異なっている。

【0026】すなわち、マトリクス型駆動装置10Aにおけるプリチャージ回路3Aは、図4に示すように、各信号電極S i $E_1 \sim S$ i E_x と接続されたダイオード $D_1 \sim D_x$ 及びこれら各ダイオード $D_1 \sim D_x$ を介して各信号

電極S i E i

【0027】このようなプリチャージ回路3Aを備えたマトリクス型駆動装置10Aにおいては、走査電極駆動回路1の各選択スイッチ上による走査電極ScED選択と同時に、当該選択された走査電極ScELの全ての有機ELに対して電源部5Aからの閾値電圧Vtが印加される。これにより、マトリクス型駆動装置10Aによれば、図1のマトリクス型駆動装置10におけるプリチャージ回路3の各選択スイッチCによって発生する図3に示したプリチャージ期間 T_1 と表示期間 T_2 の切り換えがなくなり、各有機ELをより迅速に発光させることが可能となる。

【0028】次に、走査電極駆動回路1の他の構成例について図5を参照して説明する。図5に示す走査電極駆動回路1Aは、走査電極ScE(Sc E_1 , Sc E_2 , · · · Sc E_y) に対して接続される選択スイッチK(K_1 , K_2 , · · · K_y) 及び各選択スイッチ Kを介して各走査電極ScEに電源を供給する電源部6を備えている

【0029】この走査電極駆動回路1Aにおいては、各選択スイッチKにつき非選択側端子aと選択側端子bの2つの端子が設けられており、各走査電極ScEと接続された選択スイッチKがこの2つの端子のいずれかと接続するようになっている。この走査電極駆動回路1Aにおいては、図5に示すように、各非選択側端子aがそれぞれ電源部6と接続されており、選択側端子bがそれぞれ接地されている。ここで、電源部6は、信号電極SiE側の電源部4からの電位V或いはVより大きい電圧を各走査電極ScEに出力するようになっている。

【0030】走査電極駆動回路1Aは、図示しない制御部からの制御信号で各選択スイッチKの選択(端子a)/非選択(端子b)を切り換える。これにより、各選択スイッチKによって選択された走査電極ScEの電位がGNDレベルとなり、選択されない走査電極ScEの電位がU(ボルト)となる。

【0031】走査電極選択部をこのような構成としたマトリクス型駆動装置10,10Aによれば、走査電極ScEの非選択時に、対応する有機ELに対して電流が流れないことから、クロストークの影響が低減される。

【0032】次に、信号電極駆動回路2をIC化する場

合の回路構成例について、図6を参照して説明する。図6に示す信号電極駆動回路2Aは、電圧/電流供給部11と、各信号電極Si Eに対して接続されたユニットセルUC(UC $_1$,UC $_2$,UC $_x$)からなる。電圧/電流供給部11は、各ユニットセルUCに対して定電圧Vを印加する定電圧源12と、各ユニットセルUCに対して定電圧Vを印加する定電圧 V_0 ボルトを印加する可変電圧源 V_0 大の V_0

【0033】各ユニットセルUCは、図6に示すよう に、3つのN-chのMOSトランジスタM1, M2, M4と、2つのP-chのMOSトランジスタM3, M5 により構成されている。MOSトランジスタM1は、そ のゲートが外部ブロックからの1(High)/O(Low) による入力信号が供給される入力端子Xと接続され、ソ ースが接地され、ドレインがMOSトランジスタM3の ゲート及びMOSトランジスタM2のソースと接続され ている。MOSトランジスタM2は、そのゲートが定電 圧源13と接続され、ドレインがMOSトランジスタM 3のソース、MOSトランジスタM4のドレイン及びゲー トと接続されている。MOSトランジスタM3は、その ドレインがMOSトランジスタM5のソースと接続され ている。そして、各ユニットセルUCにおいては、MO SトランジスタM5のドレインとMOSトランジスタM4 のソースとが接続され、ここから上述した電流 I₀が表 示信号として出力されるようになっている。

【0034】なお、MOSトランジスタM4は、ダイオード接続したものであり、Out端子にVの電圧を印加することができる。ここで、MOSトランジスタには1/smの抵抗による電流制限があるため、デバイスの最大許容電流に応じてできるだけ大きい電流になるよう、MOSトランジスタM4のサイズ(幅W/長さLの比を大きくする)を決定するようにする。

【0035】この信号電極駆動回路 2 Aにおいては、M OSトランジスタMaとMOSトランジスタMbとでカレントミラーを構成しており、各ユニットセルUCにおけるMOSトランジスタM5とMOSトランジスタM4から出力される電流 I_0 (以下、表示電流 I_0 という。)は、可変電圧源 1 4の出力電圧 V_0 の値を調整することによって決定される。また、MOSトランジスタM1とMOSトランジスタM2は、インバータを構成しており、M OSトランジスタM2のバイアスがVbで、このMOSトランジスタM2は負荷抵抗となる。

【0036】そして、入力端子Xから1(High:表示する、電流を流す)の入力信号が入力された時には、MO

SトランジスタM1がONとなり、MOSトランジスタM3のゲートがLowになり、またMOSトランジスタM5のソース側が定電圧源12によるVの電圧になり、MOSトランジスタMaを流れる電流と同じ電流がMOSトランジスタM5に流れ、表示電流 I_0 が出力されるようになる。なお、このときのMOSトランジスタM3での電圧降下(抵抗)がMOSトランジスタMbと同様となるようにする。

【0037】一方、入力端子Xから0(Low:表示しない、電流を流さない)の入力信号が入力された時には、MOSトランジスタM1はONせず、MOSトランジスタM2の1/gmの抵抗で定電圧源12に接続された形となり、P-choMOSトランジスタM3のゲートがHighになり、COMOSトランジスタM3はOFFになる。このため、COMOSトランジスタM5にバイアスが印加されず、この場合にはCOSトランジスタCOSの場合に流れず、表示電流COSの場合にない。

【0038】このように、信号電極駆動回路2Aによれば、各ユニットセルUCの入力端子Xに1(ON)または0(OFF)の入力信号を与えることにより、各ユニットセルUCから各信号電極 $SiE_1 \sim SiE_x$ に表示電流 I_0 を流したり、流さなかったりすることが可能となる。

【0039】このように、本発明においては、各信号電極SiEへの表示信号の供給に先立って、走査電極ScEと信号電極SiEとの交差部に生じる浮遊容量についてプリチャージすることとしたので、1走査線の選択時間の間に効率良く表示を行うことが可能となり、単純マトリクス型の電流により駆動される表示デバイスの当該浮遊容量から生じる画質劣化の問題が大幅に改善される。プリチャージを行う構成としては、上述した選択スイッチCによるプリチャージ回路3Aのどちらでも同等に画質劣化を防止することが可能であり、回路を集積化する場合には、設計上ダイオードDによるプリチャージ回路3Aの方が実現容易である。

【0040】なお、上述した実施の形態では、信号電極SiEを透明な電極によるアノードとし、走査電極ScEを金属によりカソードとするP-chの構成としたが、本発明はこれに限られず、走査電極ScE側をアノードとし、信号電極SiE側をカソードとするN-chの構成としてもよい。この場合には、信号電極SiEの透明な電極について低抵抗化を図る必要があるが、N-chの構成とすることによって、消費電力の低減を図ることが可能となる。

[0041]

【発明の効果】以上詳細に説明したように、本発明に係る電流型表示素子のマトリクス駆動方法によれば、信号電極への表示信号の供給に先立って、交差部の容量についてプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積されるので、1走査線の選択時間の間に効率良く表示を行うことが可能となり、浮遊容量による画質劣化の問題が大幅に改善される。

【0042】また、本発明に係る電流型表示素子のマトリクス駆動装置によれば、プリチャージ手段が信号電極への表示信号の供給に先立って交差部の容量についてプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積されるので、1走査線の選択時間の間に効率良く表示を行うことが可能となり、浮遊容量による画質劣化の問題が大幅に改善される

【図面の簡単な説明】

【図1】本発明を適用した電流型表示素子のマトリクス 型駆動装置の構成図である。

【図2】電流型表示素子として使用する有機ELの電圧 一電流特性図である。

【図3】一走査時間におけるプリチャージ期間と表示期間との関係を示すタイミングチャートである。

【図4】本発明を適用した電流型表示素子のマトリクス 型駆動装置の他の構成図である。

【図5】走査電極駆動回路の他の構成例について示す図である

【図6】信号電極駆動回路をIC化する場合の構成例を示す回路図である。

【図7】従来の電流型表示素子のマトリクス型駆動装置 の構成図である。

【図8】1 走査線選択時間と発光時間との関係を示す図である。

【図9】無効期間による画質劣化を説明するための図であり、(A)に階調数が低下する場合を、(B)にガンマ特性が劣化する場合をそれぞれ示す。

【符号の説明】

10, 10A マトリクス型駆動装置、1, 1A 走査電極駆動回路、2, 2A 信号電極駆動回路、3, 3A プリチャージ回路、4 電源部、CS (CS $_1$, CS $_2$, ···CS $_x$) 電流源、ScE (ScE $_1$, ScE $_2$, ···ScE $_y$) 走査電極、SiE (SiE $_1$, SiE $_2$, ···SiE $_x$) 信号電極、L(L_1 , L_2 , ··· L_y), K(K_1 , K_2 , ··· K_y), S(S_1 , S_2 , ··· S_x), C(C_1 , C_2 , ··· C_x) 選択スイッチ

【図1】

【図2】 【図3】

有機Eしの電圧 - 電流特性例 (例Green:V=1)V Io=8mmA/cm²)

ブリチャージ期間T₁ と表示期間T₂ (一定各時間=T・ + T 。)

【図8】

【図9】

充電(無効)期間による画質劣化

【図4】

【図5】

【図6】

【図7】

【手続補正書】

【提出日】平成11年4月23日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 電流型表示素子のマトリクス駆動方

法及び電流型表示素子のマトリクス駆動装置

【特許請求の範囲】

【請求項1】 複数の走査電極と複数の信号電極との各 交差部に電流型表示素子をマトリクス状に配置し、上記 走査電極を選択して上記信号電極に表示信号を供給する ことによって、各電流型表示素子を駆動する電流型表示 素子のマトリクス駆動方法であって、

上記信号電極への表示信号の供給に先立って、上記交差 部の容量に<u>電荷を</u>プリチャージすることを特徴とする電 流型表示素子のマトリクス駆動方法。 【請求項2】 上記信号電極への表示信号の供給に先立って、上記交差部に配置された電流型表示素子の発光閾値電圧を印加することを特徴とする請求項1記載の電流型表示素子のマトリクス駆動方法。

【請求項3】 上記信号電極への表示信号の供給に先立って、選択された走査電極と各信号電極との交差部の容量に<u>電荷を</u>プリチャージすることを特徴とする請求項1記載の電流型表示素子のマトリクス駆動方法。

【請求項4】 上記信号電極への表示信号の供給に先立って、選択された走査電極に対してはGNDレベルの電位を与え、選択されない走査電極に対しては上記信号電極に与えられている電位以上の電位を与えることを特徴とする請求項1記載の電流型表示素子のマトリクス駆動方法。

【請求項5】 複数の走査電極と複数の信号電極との各 交差部に電流型表示素子をマトリクス状に配置し、上記 走査電極を選択して上記信号電極に表示信号を供給する ことによって、各電流型表示素子を駆動する電流型表示 素子のマトリクス駆動装置であって、

上記信号電極への表示信号の供給に先立って、上記交差 部の容量に<u>電荷を</u>プリチャージするプリチャージ手段を 備えることを特徴とする電流型表示素子のマトリクス駆 動装置。

【請求項6】 上記プリチャージ手段は、上記交差部に配置された電流型表示素子の発光閾値電圧を印加することを特徴とする請求項5記載の電流型表示素子のマトリクス駆動装置。

【請求項7】 各信号電極について選択する信号電極選択手段と、選択した信号電極に対して上記表示信号を供給する表示信号供給手段とを有する信号電極駆動手段

各走査電極について選択する走査電極選択手段を有する 走査電極駆動手段とを備えることを特徴とする請求項5 記載の電流型表示素子のマトリクス駆動装置。

【請求項8】 上記プリチャージ手段は、上記走査電極 駆動手段の走査電極選択手段によって選択された走査電 極と各信号電極との交差部の容量に<u>電荷</u>をプリチャージ することを特徴とする請求項7記載の電流型表示素子の マトリクス駆動装置。

【請求項9】 上記走査電極駆動手段は、上記走査電極 選択手段によって選択した走査電極に対してはGNDレ ベルの電位を与え、選択しない走査電極に対しては上記 信号電極に与えられている電位以上の電位を与えること を特徴とする請求項7記載の電流型表示素子のマトリク ス駆動装置。

【請求項10】 上記信号電極選択手段は、MOSトランジスタから成ることを特徴とする請求項7記載の電流型表示素子のマトリクス駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、LED (Light Emitting Diode), ECD (Electrochromic Display), EL (Electro Luminescence)等の電流で駆動される電流型表示素子を駆動するためのマトリクス駆動方法及びマトリクス駆動装置に関する。

[0002]

【従来の技術】表示素子を駆動するための単純XYマトリクス型駆動装置(以下、単にマトリクス型駆動装置という。)は、互いにその方向が直角となすように設けられた複数の走査電極(Scanning Electrode)と複数の信号電極(Signal Electrode)からなる2組の帯状電極群の交差部に表示素子を挟み、これらの帯状電極にそれぞれ接続された駆動回路によって、上記交差部での電圧等を変化させることにより表示素子を駆動する。

【0003】ここで、マトリクス型駆動装置の駆動方式は、その入力(電圧又は電流など)と、表示素子の出力(発光、輝度、透過率、反射率)との関係により決定される。例えば表示素子が液晶の場合には、マトリクス型駆動装置の駆動は、走査電極を線順次で選択する線順次走査方式を用いて、液晶に印加される実効電圧(液晶がツイストネマチック(TN)型の場合)または電圧の極性(液晶が強誘電性(FLC)の場合)を変化させることにより行う。

[0004]

【発明が解決しようとする課題】一方、表示素子がLED(Light Emitting Diode),ECD(Electrochromic Display),EL(Electro Luminescence)等の電流で駆動される電流型表示素子の場合には、例えば図7に示すマトリクス型駆動装置100によりその駆動を行っていた。ここで、マトリクス型駆動装置100は、図7に示すように、複数の走査電極ScE(ScE1,ScE2,・・・ScE $_{y}$)と複数の信号電極SiE(SiE $_{1}$,SiE $_{2}$,・・・SiE $_{x}$)とが互いに方向が直角となすように設けられている。これら2組の帯状電極群の交差部に上述した電流型表示素子が挟持され、さらに走査電極ScEに走査電極駆動回路101が、信号電極SiEに信号電極駆動回路102がそれぞれ接続されて構成される。

【0005】走査電極駆動回路101は、図7に示すように、各走査電極 ScE_1 , ScE_2 ,・・・ ScE_y に対して選択スイッチL(L_1 , L_2 ,・・・ L_y)が接続されており、図示しない制御部からの制御信号で各選択スイッチLのON/OFFを切り換えることにより、選択した走査電極ScEの電位をGNDレベルにする。

【0006】一方、信号電極駆動回路102は、各信号電極 SiE_1 、 SiE_2 、・・ SiE_x に対して選択スイッチ $S(S_1, S_2, \cdots S_x)$ 及び電源103により動作する電流源 $CS(CS_1, CS_2, \cdots CS_x)$ が接続されており、図示しない制御部からの制御信号で各選択スイッチSのON/OFFを切り換えることによ

り、選択した信号電極SiEに対して電流源CSから表示信号としての電流を供給する。そして、マトリクス型駆動装置100は、各選択スイッチL、SのON/OFFを切り換えることにより、選択した走査電極ScEと選択した信号電極SiEとの交差部に配置された各電流型表示素子を線順次駆動するようになっていた。

【0007】ところで、このようなマトリクス型駆動装置100においては、走査電極ScEと信号電極SiEとの交差部に浮遊容量と呼ばれる容量成分が生じることから、以下のような問題が生じた。

【0008】すなわち、マトリクス型駆動装置100においては、線順次駆動を行う際に、電流型表示素子に電流源CSからの電流(表示信号)を供給しようとすると、この浮遊容量に対する充電が行われることとなる。これにより、マトリクス型駆動装置100によれば、図8に示すように、電流型表示素子の表示(発光)に要する閾値電圧V tに到達するまでは表示に寄与する電流が流れないため、1走査線の選択時間の間に「無効時間」が発生することになる。そして、マトリクス型駆動装置100においては、この無効時間の発生により、1走査線の選択時間の間に効率良く表示が行えないという問題が生ずることとなる。なお、このときの電流型表示素子の輝度低下率は、図8からも分かるように、発光時間/1走査線選択時間×100(%)で表すことができる。

【0009】マトリクス型駆動装置100におけるこの 無効時間の影響は、特に階調表現を行う場合に顕著とな る。例えば、マトリクス型駆動装置100においてPW M (Pulse Width Modulation:パルス幅変調)により 8:4:2:1のパルス幅の比で階調を表現しようとす ると、1 走査線選択時間が決められていることから、図 9に示すように、階調数が制限され、或いは画質の劣化 を生じさせる、という問題があった。具体的には、マト リクス型駆動装置100によれば、1走査線選択時間内 で、上述の無効時間を考慮して8:4:2:1のパルス 幅の比を維持するように階調表現を行うと、図9(A) に示すように、例えば16グレイスケール (grayscal e) が4グレイスケールに減少してしまい、階調数が不 足してしまう。一方、無効時間を無視して線順次駆動に より8:4:2:1のパルス幅の比で階調表現を行う と、図9(B)に示すように、表示している期間a, b, c, dにおいて8:4:2:1の発光時間の比が正 しく確保できず、階調の非線形化(ガンマ特性劣化)が 発生し階調が正しく得られない、という問題が生じた。

【 0 0 1 0 】本発明は、このような実情に鑑みて提案されたものであって、走査電極と信号電極との交差部に生じる浮遊容量の影響を抑えることのできる電流表示素子のマトリクス駆動方法及びマトリクス駆動装置を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明は、上記課題を解

決するため、複数の走査電極と複数の信号電極との各交差部に電流型表示素子をマトリクス状に配置し、走査電極を選択して信号電極に表示信号を供給することによって、各電流型表示素子を駆動する電流型表示素子のマトリクス駆動方法であって、信号電極への表示信号の供給に先立って、交差部の容量に電荷をプリチャージする。

【0012】電流型表示素子のマトリクス駆動方法においては、信号電極への表示信号の供給に先立って、交差部の容量に電荷をプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積される。

【0013】また、本発明は、上記課題を解決するため、複数の走査電極と複数の信号電極との各交差部に電流型表示素子をマトリクス状に配置し、走査電極を選択して信号電極に表示信号を供給することによって、各電流型表示素子を駆動する電流型表示素子のマトリクス駆動装置であって、信号電極への表示信号の供給に先立って、交差部の容量に電荷をプリチャージするプリチャージ手段を備える。

【0014】電流型表示素子のマトリクス駆動装置においては、プリチャージ手段が信号電極への表示信号の供給に先立って交差部の容量に電荷をプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積される。

[0015]

【発明の実施の形態】本発明の実施の形態につき図面を 参照しながら詳細に説明する。本発明を適用した電流型 表示素子を駆動するための単純XYマトリクス型駆動装 置(以下、単にマトリクス型駆動装置という。)10は、図1に示すように、複数の走査電極S c E(S c E $_1$,S c E $_2$,···S c E $_y$)と複数の信号電極S i E $_1$,S i E $_2$,···S i E $_x$)とが互いに方向が直角となすように設けられ、これら2組の電極群の交差部に電流型表示素子が挟持され、走査電極S c E に走査電極駆動回路1が、信号電極S i E に信号電極駆動回路2及びプリチャージ回路3がそれぞれ接続されることにより構成される。

【0016】このマトリクス型駆動装置10は、走査電極ScEが金属により帯状に形成されたカソード電極となり、信号電極SiEが透明部材により帯状に形成されたアノード電極となることにより、全体としてP型のデバイスを形成している。走査電極駆動回路1は、図1に示すように、走査電極ScE(ScE_1 , ScE_2 ,・・ ScE_y)に対して接続される選択スイッチL(L_1 , L_2 ,・・ L_y)を備えている。走査電極駆動回路1は、図示しない制御部からの制御信号で各選択スイッチLのON/OFFを切り換えることにより、走査電極ScEの選択/非選択を決定し、選択した走査電極ScEについてその電位をGNDレベルにする。

【0017】一方、信号電極駆動回路2は、信号電極S

i E(S i E_1 , S i E_2 , · · · · S i E_x) に対して接続される選択スイッチS(S_1 , S_2 , · · · · S_x),選択スイッチS(S_1 , S_2 , · · · · S_x)に対して接続される電流源CS(C S_1 , C S_2 , · · · · C S_x),各電流源CSの電源となる電源部4を備えている。電源部4は、電圧Vを電流源CSに出力することによって、電流源CSから各表示素子を表示用として十分発光させるのに必要な電流 I_0 を出力させる。信号電極駆動回路 2 においては、図示しない制御部からの制御信号で各選択スイッチSのON/OFFを切り換えることにより、信号電極S i E に対して電流源CSからの電流 I_0 が表示信号として供給される。

【0018】ここで、各走査電極ScEと各信号電極SiEとの交差部に挟持される電流型表示素子としては、例えば緑色に発光する有機EL(Electro Luminescence)が用いられる。この有機ELの電圧-電流特性図を図2に示す。この図2に示されるように、マトリクス型駆動装置10で駆動する有機ELは、発光を開始する閾値電圧Vt = 10(ボルト)、十分な発光に必要な電流 $I_0 = 8$ (mA/cm^2)、電流源CSが電流 I_0 を流すため に必要な信号電極駆動回路2の電源部4の出力電圧V=11(ボルト)という特性となっている。

【0019】プリチャージ回路3は、図1に示すよう に、各信号電極 $SiE_1 \sim SiE_x$ と接続される選択スイ ッチC₁~C_x及びこれら各選択スイッチC₁~C_xを介し て各信号電極SiEに電源を供給する電源部5を備えて いる。電源部5は、上述の有機ELが発光を開始する閾 値電圧Vtを各選択スイッチC1~C2を介して各信号電 極 $SiE_1 \sim SiE_2$ に出力するようになっている。な お、図1では各選択スイッチC₁~C_x毎に電源部5を有 する構成としているが、1つの電源部5で各選択スイッ チC₁~C_xを介して各信号電極SiEに電源を供給する 構成としてもよい。プリチャージ回路3は、走査電極駆 動回路1の上記選択スイッチし、~し、によって走査電極 $ScE_1 \sim ScE_y$ の選択/非選択の切り換えを行う際 に、走査電極ScEと信号電極SiEとの交差部に生じ る浮遊容量に対して予め有機ELの閾値電圧Vtを出力 するようになっている。具体的には、プリチャージ回路 3は、図示しない制御部からの制御信号で各選択スイッ $\mathcal{F}C_1 \sim C_x OON / OFF を切り換えることにより、各$ 信号電極SiEに対する電圧Vtの出力/非出力を決定 する。

【0020】以下に、マトリクス型駆動装置100動作について図3を参照して説明する。マトリクス型駆動装置10では、まず走査電極駆動回路1が上記選択スイッチ $L_1 \sim L_y$ によって走査電極 $S \circ E$ についての選択/非選択の切り換えを行う。この切り換えが行われると、プリチャージ回路3が、各選択スイッチ $C_1 \sim C_x$ を0Nにし、電源部5の出力電圧Vtによって、図3に示すよう

に、 T_1 の期間だけプリチャージを行う。マトリクス型 駆動装置10においては、このプリチャージによって、 走査電極S c E と信号電極S i E との交差部に生じる浮 遊容量に電荷が蓄積され、さらに有機E L について閾値 Vtまで充電が行われる。

【0021】そして、T₁のプリチャージ期間が終わる と、プリチャージ回路3が各選択スイッチC1~C2をO FFにして、続いて信号電極駆動回路2が信号電極Si Eについての各選択スイッチS₁~S_xのON/OFFを 切り換えて、各有機ELについて点灯/非点灯について の選択を行う。この時に、選択スイッチSがONなら、 対応する有機ELに対して信号電極駆動回路2からの出 力電圧Vが印加されるので、図2で説明した電流 Ioが 流れることにより図3に示すT₀の期間の後に当該有機 ELが発光する。一方、選択スイッチSがOFFなら ば、対応する有機ELに対して信号電極駆動回路2から の出力電圧Vが印加されずに、プリチャージしたときの 電圧Vtのままになっているので、当該有機ELは発光 しない状態となる。そして、マトリクス型駆動装置10 においては、順次次の走査電極ScEを選択し、同様の 処理を行うことによって、有機ELを発光させて画像等 の表示を行うことができる。

【0022】なお、図3に示すように、 T_0 の期間に変動する電圧幅V-V t が小さく、ほとんど零にできるため、有機E L の発光に要する期間はほぼプリチャージ期間 T_1 だけで決定されることになる。また、プリチャージの電圧を大きくすることでプリチャージ期間 T_1 を短くできるため、図3 に示すように、一走査時間内で有機 E L を発光させる時間(表示期間) T_2 の比率を高めることが可能となる。これにより、マトリクス型駆動装置1 0 においては、図9 で説明したような階調数の制限、或いは階調レベルの劣化等の発生がなくなり、信号電極駆動回路2 からの表示信号を忠実に再現することが可能となる。

【0023】次に、マトリクス型駆動装置10の他の構成例について、図4を参照して説明する。図4に示すこのマトリクス型駆動装置10Aは、図1に示すマトリクス型駆動装置10と比較して、プリチャージ回路の構成が異なっている。

【0024】すなわち、マトリクス型駆動装置10Aにおけるプリチャージ回路3Aは、図4に示すように、各信号電極S i $E_1 \sim S$ i E_x と接続されたダイオード $D_1 \sim D_x$ 及びこれら各ダイオード $D_1 \sim D_x$ を介して各信号電極S i E に電源を供給する電源部5 Aを備えている。電源部5 Aは、その負極が接地され、正極が各ダイオード $D_1 \sim D_x$ と接続されることにより、有機E Lが発光を開始する閾値電圧V tを各ダイオード $D_1 \sim D_x$ を介して各信号電極S i $E_1 \sim S$ i E_x に出力する。各ダイオード $D_1 \sim D_x$ は、そのアノード側が各信号電極S i $E_1 \sim S$ i E_x と接続され、カソード側が電源部5 Aの正極と接

続されることにより、電源部5Aの保護を図っている。 なお、各デバイスの保護のため、実際には、ダイオード とVt電源の間に必要に応じて電流制限抵抗が接続される。

【0025】このようなプリチャージ回路3Aを備えたマトリクス型駆動装置10Aにおいては、走査電極駆動回路1の各選択スイッチ上による走査電極ScEDEの選択と同時に、当該選択された走査電極ScEDDの有機ELに対して電源部5Aからの閾値電圧Vtが印加される。これにより、マトリクス型駆動装置10Aによれば、図1のマトリクス型駆動装置10Cにおけるプリチャージ回路3の各選択スイッチCによって発生する図3に示したプリチャージ期間 T_1 と表示期間 T_2 の切り換えがなくなり、各有機ELをより迅速に発光させることが可能となる。

【0026】次に、走査電極駆動回路1の他の構成例について図5を参照して説明する。図5に示す走査電極駆動回路1Aは、走査電極ScE(Sc E_1 , Sc E_2 , ···Sc E_y) に対して接続される選択スイッチK(K_1 , K_2 , ··· K_y) 及び各選択スイッチ Kを介して各走査電極ScEに電源を供給する電源部6を備えている。

【0027】この走査電極駆動回路1Aにおいては、各選択スイッチKにつき非選択側端子aと選択側端子bの2つの端子が設けられており、各走査電極ScEと接続された選択スイッチKがこの2つの端子のいずれかと接続するようになっている。この走査電極駆動回路1Aにおいては、図5に示すように、各非選択側端子aがそれぞれ電源部6と接続されており、選択側端子bがそれぞれ接地されている。ここで、電源部6は、信号電極SiE側の電源部4からの電位V或いはVより大きい電圧を各走査電極ScEに出力するようになっている。

【0028】走査電極駆動回路1Aは、図示しない制御部からの制御信号で各選択スイッチKの選択(端子a)/非選択(端子b)を切り換える。これにより、各選択スイッチKによって選択された走査電極ScEの電位がGNDレベルとなり、選択されない走査電極ScEの電位がV(ボルト)となる。

【0029】走査電極選択部をこのような構成としたマトリクス型駆動装置10,10Aによれば、走査電極ScEの非選択時に、対応する有機ELに対して電流が流れないことから、クロストークの影響が低減される。

【0030】次に、信号電極駆動回路2をI C化する場合の回路構成例について、図6を参照して説明する。図6に示す信号電極駆動回路2 Aは、電圧/電流供給部1 1 と、各信号電極S i E に対して接続されたユニットセルUC(U C_1 ,U C_2 ,U C_x)からなる。電圧/電流供給部1 1 は、各ユニットセルUCに対して定電圧Vを印加する定電圧源1 2 と、各ユニットセルUCに対して定電圧Vもを印加する定電圧1 3 と、各ユニットセル

UCに対して可変電圧 V_0 ボルトを印加する可変電圧源 14と、2つの(P型)MOSトランジスタMa, Mbとを備えている。ここで、MOSトランジスタMaは、そのドレインが可変電圧源 14の正極側と接続されており、YースがMOSトランジスタMbのドレインと接続されている。さらに、MOSトランジスタMaは、そのドレインとゲートとが直結されている。

【0031】各ユニットセルUCは、図6に示すよう に、3つのN型のMOSトランジスタM1, M2, M4 と、2つのP型のMOSトランジスタM3, M5により構 成されている。MOSトランジスタM1は、そのゲート が外部ブロックからの1(High)若しくは0(Low)に よる入力信号が供給される入力端子Xと接続され、ソー スが接地され、ドレインがMOSトランジスタM3のゲ ート及びMOSトランジスタM2のソースと接続されて いる。MOSトランジスタM2は、そのゲートが定電圧 源13と接続され、ドレインがMOSトランジスタM3 のソース, MOSトランジスタM4のドレイン及びゲー トと接続されている。MOSトランジスタM3は、その ドレインがMOSトランジスタM5のソースと接続され ている。そして、各ユニットセルUCにおいては、MO SトランジスタM5のドレインとMOSトランジスタM4 のソースとが接続され、ここから上述した電流Ioが表 示信号として出力されるようになっている。

【0032】なお、MOSトランジスタM4は、ダイオード接続したものであり、Out端子にVの電圧を印加することができる。ここで、MOSトランジスタには1/gm(但し、gmは相互コンダクタンスである)で決まる抵抗値による電流制限があるため、デバイスの最大許容電流に応じてできるだけ大きい電流になるよう、MOSトランジスタM4のサイズ(幅W/長さLの比を大きくする)を決定するようにする。

【0033】この信号電極駆動回路 2 Aにおいては、M OSトランジスタMaとMOSトランジスタMbとでカレントミラーを構成しており、各ユニットセルUCにおけるMOSトランジスタM5とMOSトランジスタM4から出力される電流 I_0 (以下、表示電流 I_0 という。)は、可変電圧源 1 4の出力電圧 V_0 の値を調整することによって決定される。また、MOSトランジスタM1とMOSトランジスタM2は、インバータを構成しており、M OSトランジスタM2のバイアスがVbで、このMOSトランジスタM2は負荷抵抗となる。

【0034】そして、入力端子Xから1(High:表示する、電流を流す)の入力信号が入力された時には、MO SトランジスタM1がONとなり、MO SトランジスタM3のゲートがLowになり、またMO SトランジスタM5のソース側が定電圧源12によるVの電圧になり、MO SトランジスタMaを流れる電流と同じ電流がMO SトランジスタM5に流れ、表示電流 L_0 が出力されるようになる。なお、このときのMO SトランジスタM3で

の電圧降下(抵抗)がMOSトランジスタMbと同様となるようにする。

【0036】このように、信号電極駆動回路2Aによれば、各ユニットセルUCの入力端子Xに1(ON)または0(OFF)の入力信号を与えることにより、各ユニットセルUCから各信号電極S i E_1 $\sim S$ i E_z に表示電流 I_0 を流したり、流さなかったりすることが可能となる

【0037】このように、本発明においては、各信号電極SiEへの表示信号の供給に先立って、走査電極ScEと信号電極SiEとの交差部に生じる浮遊容量についてプリチャージすることとしたので、1走査線の選択時間の間に効率良く表示を行うことが可能となり、単純マトリクス型の電流により駆動される表示デバイスの当該浮遊容量から生じる階調レベル劣化の問題が大幅に改善される。プリチャージを行う構成としては、上述した選択スイッチCによるプリチャージ回路3、ダイオードDによるプリチャージ回路3Aのどちらでも同等に階調レベル劣化を防止することが可能であり、回路を集積化する場合には、設計上ダイオードDによるプリチャージ回路3Aの方が実現容易である。

【0038】なお、上述した実施の形態では、信号電極SiEを透明な電極によるアノードとし、走査電極ScEを金属によりカソードとするP型の構成としたが、本発明はこれに限られず、走査電極ScE側をアノードとし、信号電極SiE側をカソードとするN型の構成としてもよい。この場合には、信号電極SiEの透明な電極について低抵抗化を図る必要があるが、N型の構成とすることによって、消費電力の低減を図ることが可能となる

[0039]

【発明の効果】以上詳細に説明したように、本発明に係る電流型表示素子のマトリクス駆動方法によれば、信号電極への表示信号の供給に先立って、交差部の容量についてプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積されるので、1走査線の選択時間の間に効率良く表示を行うことが可

能となり、浮遊容量による画質劣化の問題が大幅に改善 される。

【0040】また、本発明に係る電流型表示素子のマトリクス駆動装置によれば、プリチャージ手段が信号電極への表示信号の供給に先立って交差部の容量についてプリチャージすることにより、走査電極と信号電極との交差部に生じる浮遊容量に電荷が蓄積されるので、1走査線の選択時間の間に効率良く表示を行うことが可能となり、浮遊容量による階調レベル劣化の問題が大幅に改善される。

【図面の簡単な説明】

【図1】本発明を適用した電流型表示素子のマトリクス型駆動装置の構成図である。

【図2】電流型表示素子として使用する有機ELの電圧 一電流特性図である。

【図3】一走査時間におけるプリチャージ期間と表示期間との関係を示すタイミングチャートである。

【図4】本発明を適用した電流型表示素子のマトリクス型駆動装置の他の構成図である。

【図5】走査電極駆動回路の他の構成例について示す図 である

【図6】信号電極駆動回路をIC化する場合の構成例を示す回路図である。

【図7】従来の電流型表示素子のマトリクス型駆動装置 の構成図である。

【図8】1 走査線選択時間と発光時間との関係を示す図である。

【図9】無効期間による画質劣化を説明するための図であり、(A)に階調数が低下する場合を、(B)にガンマ特性が劣化する場合をそれぞれ示す。

【符号の説明】

10, 10A マトリクス型駆動装置、1, 1A 走査電極駆動回路、2, 2A 信号電極駆動回路、3, 3A プリチャージ回路、4 電源部、CS (CS $_1$, CS $_2$, · · · CS $_x$) 電流源、ScE (ScE $_1$, ScE $_2$, · · · · ScE $_y$) 走査電極、SiE (SiE $_1$, SiE $_2$, · · · · SiE $_x$) 信号電極、L(L_1 , L_2 , · · · L_y), K(K_1 , K_2 , · · · · K_y), S(S_1 , S_2 , · · · · S_x), C(C_1 , C_2 , · · · · C_x) 選択スイッチ

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】図2

【補正方法】変更

【補正内容】

【図2】

有機ELの電圧-電流特性例 (例Green:V=11V Io=8mmA/cm²)

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】図3

【補正方法】変更 【補正内容】

プリチャージ期間 T ₁ と表示期間 T ₂ (一走査時間 = T ₁ + T ₂)

【手続補正4】

【補正対象書類名】図面

【補正対象項目名】図5

【補正方法】変更

【補正内容】

【図5】

【手続補正5】 【補正対象書類名】図面 【補正対象項目名】図9 【補正方法】変更 【補正内容】 【図9】

充電(無効)期間による階級レベル劣化