NP-Complete Problems (Reduction)

- Sequencing Problems
- Numerical Problems
- Partitioning Problems (optional)
- Graph Coloring (optional)

Sequencing Problems

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Γ .
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. ←

- Suppose G' has an undirected Hamiltonian cycle Γ' .
- Γ' must visit nodes in G' using one of following two orders:

```
..., B, G, R, B, G, R, B, G, R, B, ...
..., B, R, G, B, R, G, B, R, G, B, ...
```

■ Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. ■

Claim. $3-SAT \leq_P DIR-HAM-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2ⁿ Hamiltonian cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

For each clause: add a node and 6 edges.

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^* .
- Then, define Hamiltonian cycle in G as follows:
 - if $x_i^* = 1$, traverse row i from left to right
 - if $x^*_i = 0$, traverse row i from right to left
 - for each clause $C_{\rm j}$, there will be at least one row i in which we are going in "correct" direction to splice node $C_{\rm j}$ into tour

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇐

- Suppose G has a Hamiltonian cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - thus, nodes immediately before and after $\mathcal{C}_{\mathbf{j}}$ are connected by an edge e in \mathbf{G}
 - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on G { C_j }
- Continuing in this way, we are left with Hamiltonian cycle Γ' in $G \{C_1, C_2, \ldots, C_k\}$.
- Set $x_i^* = 1$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. •

Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim. $3-SAT \leq_P LONGEST-PATH$.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show HAM-CYCLE ≤ p LONGEST-PATH.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_P TSP. Pf.

- Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$
- TSP instance has tour of length \leq n iff G is Hamiltonian. ■

Remark. TSP instance in reduction satisfies Δ -inequality.

Numerical Problems

Subset Sum

SUBSET-SUM. Given natural numbers w_1 , ..., w_n and an integer W, is there a subset that adds up to exactly W?

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.

Claim. $3-SAT \leq_{P} SUBSET-SUM$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

Subset Sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim. Φ is satisfiable iff there exists a subset that sums to W.

Pf. No carries possible.

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time t_i , release time r_i , and deadline d_i , is it possible to schedule all jobs on a single machine such that job i is processed with a contiguous slot of t_i time units in the interval $[r_i, d_i]$?

Claim. SUBSET-SUM \leq_{P} SCHEDULE-RELEASE-TIMES.

Pf. Given an instance of SUBSET-SUM $w_1, ..., w_n$, and target W,

- Create n jobs with processing time $t_i = w_i$, release time $r_i = 0$, and no deadline $(d_i = 1 + \Sigma_i w_i)$.
- Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W+1$.

Partition

SUBSET-SUM. Given natural numbers w_1 , ..., w_n and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers v_1 , ..., v_m , can they be partitioned into two subsets that add up to the same value?

$$\frac{1}{2} \Sigma_i V_i$$

Claim. SUBSET-SUM \leq_{P} PARTITION.

Pf. Let $W, w_1, ..., w_n$ be an instance of SUBSET-SUM.

• Create instance of PARTITION with m = n+2 elements.

$$- v_1 = w_1, v_2 = w_2, ..., v_n = w_n, v_{n+1} = 2 \sum_i w_i - W, v_{n+2} = \sum_i w_i + W$$

■ There exists a subset that sums to W iff there exists a partition since two new elements cannot be in the same partition. ■

$v_{n+1} = 2 \Sigma_i w_i - W$	W	subset A
$v_{n+2} = \Sigma_i w_i + W$	$\Sigma_{i} \; w_{i} \;$ - W	subset B

A Partial Taxonomy of Hard Problems

Polynomial-Time Reductions

Extra Slides

Partitioning Problems

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

Instructor	Course	Time
Wayne	COS 423	MW 11-12:20
Wayne	COS 423	TTh 11-12:20
Wayne	COS 226	TTh 11-12:20
Wayne	COS 126	TTh 11-12:20
Tardos	COS 523	TTh 3-4:20
Tardos	COS 423	TTh 11-12:20
Tardos	COS 423	TTh 3-4:20
Kleinberg	COS 226	TTh 3-4:20
Kleinberg	COS 226	MW 11-12:20
Kleinberg	COS 423	MW 11-12:20

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Claim. $3-SAT \leq_P INDEPENDENT-COVER$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable.

Construction. (part 1)

number of clauses

set x_i = true

- Create gadget for each variable x_i with 2k core and tip elements.
- No other triples will use core elements.
- In gadget i, 3D-matching must use either both grey triples or both blue ones. set x_i = false

false clause 1 tips core true k = 2 clauses n = 3 variables X_2

Construction. (part 2)

- For each clause C_i create two elements and three triples.
- Exactly one of these triples will be used in any 3D-matching.
- Ensures any 3D-matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3 .

Construction. (part 3)

• For each tip, add a cleanup gadget.

Claim. Instance has a 3D-matching iff Φ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

Claim. Instance has a 3D-matching iff Φ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

Graph Coloring

3-Colorability

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR $\leq p$ k-REGISTER-ALLOCATION for any constant $k \geq 3$.

Claim. $3-SAT \leq_P 3-COLOR$.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

4 Color Theorem

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.

Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

Planarity Testing

Planarity testing. [Hopcroft-Tarjan 1974] O(n).

simple planar graph can have at most 3n edges

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

Q. Is this planar graph 3-colorable?

Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR $\leq P$ PLANAR-GRAPH-3-COLOR.

Pf sketch. Create a vertex for each region, and an edge between regions that share a nontrivial border.

Claim. W is a planar graph such that:

- In any 3-coloring of W, opposite corners have the same color.
- Any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W.

Pf. Only 3-colorings of W are shown below (or by permuting colors).

Claim. 3-COLOR $\leq p$ PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.

Claim. 3-COLOR $\leq P$ PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.

multiple crossings

gadget W

Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Pf of theorem. Tour de force.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1. The proof is highly non-constructive!

Mind boggling fact 2. The constant of proportionality is enormous!

Unfortunately, for any instance G = (V, E) that one could fit into the known universe, one would easily prefer n^{70} to even *constant* time, if that constant had to be one of Robertson and Seymour's. - David Johnson

Theorem. There exists an explicit O(n) algorithm. Practice. LEDA implementation guarantees $O(n^3)$.

References

References

- Sections 8.5-10 of the text book "algorithm design" by Jon Kleinberg and Eva Tardos
- The <u>original slides</u> were prepared by Kevin Wayne. The slides are distributed by <u>Pearson Addison-Wesley</u>.