	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64
dtvn	es: int64(6), o	biect(3)	

memory usage: 12.8+ KB

df.shape

(180, 9)

df.describe(include='object').T

	count	unique	top	freq
Product	180	3	KP281	80
Gender	180	2	Male	104
MaritalStatus	180	2	Partnered	107

 ${\tt df.describe(include='number').T}$

	count	mean	std	min	25%	50%	75%	max
Age	180.0	28.788889	6.943498	18.0	24.00	26.0	33.00	50.0
Education	180 O	15 572222	1 617055	12 0	14 00	16 0	16 00	21 0

#Product Portfolio

 $\#The\ KP281$ is an entry-level treadmill that sells for \$1,500.

 $\#The\ KP481$ is for mid-level runners that sell for \$1,750.

#The KP781 treadmill is having advanced features that sell for \$2,500.

```
#we have no Null values
df.isnull().sum()
```

 Product
 0

 Age
 0

 Gender
 0

 Education
 0

 MaritalStatus
 0

 Usage
 0

 Fitness
 0

 Income
 0

 Miles
 0

 dtype: int64

Non Graphical Analysis

df['Gender'].value_counts()

Male 104 Female 76

Name: Gender, dtype: int64

df['Product'].value_counts()

KP281 80 KP481 60 KP781 40

Name: Product, dtype: int64

Percentage Distribution of Products

df['Product'].value_counts(normalize=True)*100.0

KP281 44.44444 KP481 33.33333 KP781 22.22222

Name: Product, dtype: float64

df['MaritalStatus'].value_counts()

Partnered 107 Single 73

Name: MaritalStatus, dtype: int64

#Graphical Analysis

df.head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

sns.histplot(df['Age'],bins=5)

We have only few Customer below age 20
df.loc[df['Age']<20]</pre>

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
80	KP481	19	Male	14	Single	3	3	31836	64

We will create buckets based on Age

df['AgeBucket']=pd.cut(df['Age'],bins=[15,25,35,45,55],labels=['Young Adults','Old Adults','Middle Age','Old'])

df['AgeBucket'].value_counts()

Young Adults 79 Old Adults 73 Middle Age 22 Old 6

Name: AgeBucket, dtype: int64

sns.countplot(data=df,x='AgeBucket')

#Observation:

#We have most customers in the age range of 18-35

df.head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	AgeBucl
0	KP281	18	Male	14	Single	3	4	29562	112	You Ad
1	KP281	19	Male	15	Single	2	3	31836	75	You Ad
2	KP281	19	Female	14	Partnered	4	3	30699	66	You Ad
- ◀										-

sns.histplot(df['Education'],bins=6)

<Axes: xlabel='Education', ylabel='Count'>

df['Education'].value_counts()

Name: Education, dtype: int64

 $\label{locationLevel'} $$ df['Education'], bins=[10,14,17,22], labels=['Basic', 'Intermediate', 'Advance']) $$ $$ df['EducationLevel']= for the context of the context of$

sns.countplot(data=df,x='EducationLevel',label=True)

```
<Axes: xlabel='EducationLevel', ylabel='count'>
         80
#Observation:
#We have most customers in the Basic to Intermediate Education level
df['Usage'].value_counts()
     3
          69
     4
          52
          33
     2
     5
          17
     Name: Usage, dtype: int64
                     Basic
                                       Intermediate
                                                               Advance
df['UsageLevel']=pd.cut(df['Usage'],bins=[1,3,5,7],labels=['Low','Moderate','High'])
```

df.loc[df['UsageLevel']=='High']

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	AgeBı
154	KP781	25	Male	18	Partnered	6	4	70966	180)
155	KP781	25	Male	18	Partnered	6	5	75946	240)
162	KP781	28	Female	18	Partnered	6	5	92131	180	Old
163	KP781	28	Male	18	Partnered	7	5	77191	180	Old
164	KP781	28	Male	18	Single	6	5	88396	150	Old
166	KP781	29	Male	14	Partnered	7	5	85906	300	Old
167	KP781	30	Female	16	Partnered	6	5	90886	280	Old
√	1/0704	24		10	<u> </u>	^		00044	222	^ 11

df['UsageLevel'].value_counts()

Low 102 Moderate 69 High 9

Name: UsageLevel, dtype: int64

sns.countplot(data=df,x='UsageLevel')

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	AgeBucl
0	KP281	18	Male	14	Single	3	4	29562	112	You Ad
1	KP281	19	Male	15	Single	2	3	31836	75	You Ad
2	KP281	19	Female	14	Partnered	4	3	30699	66	You Ad
4										•
								I		

df['Fitness'].value_counts()

- 3 97 5 31 2 26 4 24
- Name: Fitness, dtype: int64

 $\label{lem:df['FitnessLevel']=pd.cut(df['Fitness'],bins=[0,2,4,5],labels=['Begineer','Advance','Elite'])} \\$

df['FitnessLevel'].value_counts()

Advance 121 Elite 31 Begineer 28

Name: FitnessLevel, dtype: int64

sns.countplot(data=df,x='FitnessLevel')

<Axes: xlabel='FitnessLevel', ylabel='count'>

df['IncomeLevel']=pd.cut(df['Income'],bins=[25000,45000,60000,80000,150000],labels=['Low','Moderate','High','Very High'])

#Income-Level Distribution of Customers
sns.countplot(data=df,x='IncomeLevel')

<Axes: xlabel='IncomeLevel', ylabel='count'>

#Observation: Most Customers are Advance level of fitness, we have equal distribution of Begineer and Elite customers aswell

We will check for outliers using Box Plot

```
plt.figure(figsize=(12,10))
plt.subplot(3,2,1)
plt.suptitle('Outlier Detection')
sns.boxplot(data=df,x='Age')
plt.subplot(3,2,2)
sns.boxplot(data=df,x='Education')
plt.subplot(3,2,3)
sns.boxplot(data=df,x='Usage')
plt.subplot(3,2,4)
sns.boxplot(data=df,x='Fitness')
plt.subplot(3,2,5)
sns.boxplot(data=df,x='Income')
plt.subplot(3,2,6)
sns.boxplot(data=df,x='Miles')
```

<Axes: xlabel='Miles'>

Outlier Detection

Product Age Gender Education MaritalStatus Usage Fitness Income Miles AgeBucl Υοι KP281 14 29562 112 18 Male Single Ad Υοι KP281 19 Male 15 Single 2 3 31836 75 Ad Υοι 2 KP281 19 Female 30699 66 14 Partnered 4 3 Ad

```
#Product vs Fitness Level
#Product vs Age
#Product vs Usage
#Product vs Education Level
#Product vs Income
#Product vs Marital Status
plt.figure(figsize=(12,10))
plt.subplot(3,2,1)
sns.countplot(data=df,x='Product',hue='FitnessLevel')
plt.subplot(3,2,2)
sns.countplot(data=df,x='Product',hue='AgeBucket')
plt.subplot(3,2,3)
sns.countplot(data=df,x='Product',hue='UsageLevel')
plt.subplot(3,2,4)
sns.countplot(data=df,x='Product',hue='EducationLevel')
plt.subplot(3,2,5)
sns.countplot(data=df,x='Product',hue='IncomeLevel')
plt.subplot(3,2,6)
sns.countplot(data=df,x='Product',hue='MaritalStatus')
```


#Observations:

#1.Only the Elite level and handfull of Advanced customers prefer the expensive Treadmile(KP781), else other customers prefer the lesser exper #2.We see a similar distribution for all three products with respect to age group

#3.Only the customers with High-Moderate usage expectations prefer the expensive Treadmile(KP781), else other customers prefer the lesser experiments (KP781), we see similar distribution for KP281 & KP481

#5.Customers with very high Income only purchase the KP781, we see similar distribution for KP281 & KP481

#6.We see a similar distribution for all three products with respect to Marital Status

Product Product

df.head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	AgeBucl
0	KP281	18	Male	14	Single	3	4	29562	112	You Ad
1	KP281	19	Male	15	Single	2	3	31836	75	You Ad
2	KP281	19	Female	14	Partnered	4	3	30699	66	You Ad
4										•

sns.pairplot(df)

df.head(5)

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	AgeBucl
0	KP281	18	Male	14	Single	3	4	29562	112	You Ad
1	KP281	19	Male	15	Single	2	3	31836	75	You Ad
2	KP281	19	Female	14	Partnered	4	3	30699	66	You Ad
4										•

#We will create Contingency Tables to compute Marginal and Conditional Probability

pd.crosstab(df['Gender'],df['Product'],margins='All')

Product	KP281	KP481	KP781	A11
Gender				
Female	40	29	7	76
Male	40	31	33	104
All	80	60	40	180

pd.crosstab(df['Gender'],df['Product'],normalize=True,margins=True)

Product	KP281	KP481	KP781	A11
Gender				
Female	0.222222	0.161111	0.038889	0.422222
Male	0.222222	0.172222	0.183333	0.577778
All	0.44444	0.333333	0.22222	1.000000

pd.crosstab(df['Gender'],df['Product'],normalize='index',margins=True)

Product	KP281	KP481	KP781
Gender			
Female	0.526316	0.381579	0.092105
Male	0.384615	0.298077	0.317308
All	0.444444	0.333333	0.222222

pd.crosstab([df['Gender'],df['MaritalStatus']],df['Product'],margins=True,normalize='index')

	Product	KP281	KP481	KP781
Gender	MaritalStatus			
Female	Partnered	0.586957	0.326087	0.086957
	Single	0.433333	0.466667	0.100000
Male	Partnered	0.344262	0.344262	0.311475
	Single	0.441860	0.232558	0.325581
All		0.444444	0.333333	0.22222

pd.crosstab([df['AgeBucket'],df['FitnessLevel']],df['Product'],margins=True,normalize='index')

	Product	KP281	KP481	KP781
AgeBucket	FitnessLevel			
Young Adults	Begineer	0.500000	0.500000	0.000000
	Advance	0.500000	0.403846	0.096154
	Elite	0.076923	0.000000	0.923077
Old Adults	Begineer	0.583333	0.416667	0.000000
	Advance	0.500000	0.395833	0.104167
	Elite	0.076923	0.000000	0.923077
Middle Age	Begineer	0.000000	1.000000	0.000000
	Advance	0.611111	0.333333	0.055556
	Elite	0.000000	0.000000	1.000000
Old	Begineer	1.000000	0.000000	0.000000
	Advance	0.666667	0.333333	0.000000
	Elite	0.000000	0.000000	1.000000
All		0.444444	0.333333	0.222222

pd.crosstab([df['IncomeLevel'],df['FitnessLevel']],df['Product'],margins=True,normalize='index')

	Product	KP281	KP481	KP781
IncomeLevel	FitnessLevel			
Low	Begineer	0.545455	0.454545	0.000000
	Advance	0.729730	0.270270	0.000000
	Elite	1.000000	0.000000	0.000000
Moderate	Begineer	0.533333	0.466667	0.000000
	Advance	0.484375	0.484375	0.031250
	Elite	0.100000	0.000000	0.900000
High	Begineer	0.500000	0.500000	0.000000
	Advance	0.312500	0.375000	0.312500

pd.crosstab([df['IncomeLevel'],df['UsageLevel']],df['Product'],margins=True,normalize='index')

	Product	KP281	KP481	KP781
IncomeLevel	UsageLevel			
Low	Low	0.611111	0.388889	0.000000
	Moderate	0.923077	0.076923	0.000000
Moderate	Low	0.500000	0.482143	0.017857
	Moderate	0.363636	0.333333	0.303030
High	Low	0.600000	0.400000	0.000000
	Moderate	0.000000	0.300000	0.700000
	High	0.000000	0.000000	1.000000
Very High	Moderate	0.000000	0.000000	1.000000
	High	0.000000	0.000000	1.000000
All		0.444444	0.333333	0.222222

pd.crosstab([df['FitnessLevel'],df['UsageLevel']],df['Product'],margins=True,normalize='index')

	Product	KP281	KP481	KP781
FitnessLevel	UsageLevel			
Begineer	Low	0.538462	0.461538	0.000000
	Moderate	0.500000	0.500000	0.000000
Advance	Low	0.560000	0.440000	0.000000
	Moderate	0.466667	0.311111	0.222222
	High	0.000000	0.000000	1.000000
Elite	Low	0.000000	0.000000	1.000000
	Moderate	0.090909	0.000000	0.909091
	High	0.000000	0.000000	1.000000
All		0.444444	0.333333	0.222222

[&]quot;""Observations:

^{1.}We can see from the crosstabs Probability of which treadmile the customer buys is highly dependent on the following factors - Income, Fitnes: 2.We cannot infer much insight from probability distribution of Gender, Marital Status and Age""