Sharp threshold for alignment of graph databases with Gaussian weights

Luca Ganassali

Mathematical and Scientific Machine Learning, August 16-19th, 2021

INRIA, DI/ENS, PSL Research University, Paris, France

Graph/matrix alignment

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

1

Graph/matrix alignment

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Minimizing disagreements: Find a bijection $f: V \rightarrow V'$ that minimizes

$$\sum_{(i,j)\in V^2} \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'}\right)^2,$$

or, equivalently solve

$$\max_{\Pi} \langle \textbf{\textit{G}}, \Pi \textbf{\textit{G}}' \Pi^{\top} \rangle,$$

where Π runs over all permutation matrices.

1

Planted Alignment with gaussian weights

Correlated Wigner model:

- Draw the planted permutation π^* uniformly at random in S_n .
- Set

$$\mathbf{B} = \rho \cdot \mathbf{\Pi}^{*\mathsf{T}} \mathbf{A} \mathbf{\Pi}^* + \sqrt{\mathbf{1} - \rho^2} \cdot \mathbf{H},$$

where H is an independent copy of A, and $\Pi_{i,j}^* = \mathbf{1}_{j=\pi^*(i)}$.

Planted Alignment with gaussian weights

Correlated Wigner model:

- Draw the planted permutation π^* uniformly at random in S_n .
- Set

$$\mathbf{B} = \boldsymbol{\rho} \cdot \boldsymbol{\Pi}^{*\mathsf{T}} \mathbf{A} \boldsymbol{\Pi}^* + \sqrt{\mathbf{1} - \boldsymbol{\rho}^2} \cdot \mathbf{H},$$

where *H* is an independent copy of *A*, and $\Pi_{i,i}^* = \mathbf{1}_{i=\pi^*(i)}$.

Main result: sharp threshold for exact alignment at $n ho^2/\log n \sim$ 4

Theorem (Achievability part)

If for n large enough

$$\rho^2 \ge \frac{(4+\varepsilon)\log n}{n} \tag{1}$$

for some $\varepsilon >$ 0, then there is an estimator (namely, the MAP estimator) $\hat{\pi}$ of π given A, B such that $\hat{\pi} = \pi^*$ with probability 1 – o(1).

Theorem (Converse part)

Conversely, if

$$\rho^2 \le \frac{4\log n - \log\log n - \omega(1)}{n} \tag{2}$$

then any estimator $\hat{\pi}$ of π given A, B verifies $\hat{\pi} = \pi^*$ with probability o(1).

3