Decomposition of β -hydroxypropoxy Radicals in the OH-initiated Oxidation of Propene: A Theoretical and Experimental Study

Luc Vereecken and Jozef Peeters*

Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium

John J. Orlando* and Geoffrey S. Tyndall

Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder CO 80303, USA

Corinne Ferronato

Groupe de Recherche sur L'Environnement et la Chimie Appliquée (GRECA), Université Joseph Fourier, F-38000 Grenoble, France

J. Phys. Chem. A, 103, 4693-4702, 1999

SUPPORTING INFORMATION

A. Geometries

The rotamers for the β -hydroxy-propoxy radicals and the transition states for dissociation can be paired (by inverting the sign of all dihedral angles) in enantiomers with the same energy, rotational constants, vibrational wavenumbers, etc. As such, the tabulated material below only distinguishes between the enantiomers when listing the dihedral angles; all other characteristics are only listed once. The names of the structures are derived from the dihedral angles OCCO, and HOCC, and the chiral orientation of the central carbon :

where X can have the following code:

'p': for angles close to +60° (plus)

'm' : for angles close to -60° (minus)

't': for angles close to 180° (trans)

'S' : for left-turning orientation of the chiral carbon

'R': for right-turning orientation of the chiral carbon

Note that chiral 'left'- and 'right'-turning orientation are based on the relative importance of the substituents, and not on the rotation of the orientation of polarised light.

The geometric parameters are given in Ångstroms for the bond lengths, and degrees for bond angles and dihedral angles.

For the oxy radicals formed in the major channel (HOCH₂CH(O)CH₃), the following labelling of atoms is used:

For the oxy radicals formed in the minor channel (OCH₂CH(OH)CH₃), the following labelling of atoms was used :

$$C_a$$
 C_b
 C_b

The geometric parameters for the transition state of the 1,4-hydrogen shift (isomerisation reaction $HOCH_2CH(O)CH_3 \leftrightarrow HOCH_2CH(O)CH_3$) are given using the following labelling :

The threedimensional representations were created using Rasmol 2.5.1. The structures are sorted by increasing relative energy.

1. β -hydroxypropoxy radicals formed in the major OH-addition channel (HOCH $_2$ CH(O)CH $_3$)

Structure	C _a -C _b	C _a -O _a	C_b - O_b	O _a -H _a	C _a -H _b	C _a -H _c	C_b - H_d	C_b - C_c
mpR / pmS	1.5526	1.4050	1.3722	0.9705	1.1035	1.0948	1.1138	1.5311
pmR / mpS	1.5467	1.4102	1.3729	0.9702	1.1020	1.0954	1.1050	1.5588
ttR / ttS	1.5373	1.4208	1.3708	0.9646	1.0997	1.1019	1.1140	1.5382
tpR / tmS	1.5492	1.4181	1.3650	0.9659	1.0991	1.0940	1.1096	1.5543
tmR / tpS	1.5516	1.4161	1.3678	0.9650	1.0996	1.0938	1.1056	1.5526
ppR / mmS	1.5903	1.3997	1.3563	0.9654	1.1008	1.0916	1.1089	1.5356
mmR / ppS	1.5847	1.3980	1.3555	0.9661	1.1016	1.0927	1.1103	1.5367
ptR / mtS	1.5368	1.4190	1.3754	0.9645	1.1030	1.0997	1.1135	1.5387
mtR / ptS	1.5372	1.4153	1.3719	0.9642	1.1026	1.1008	1.1125	1.5393

Structure	O_a - C_a - C_b	O_b - C_b - C_a	H _a -O _a -C _a	H_b - C_a - C_b	H _c -C _a -C _b	H_d - C_b - C_a	C _c -C _b -C _a
mpR / pmS	110.54	109.77	105.19	107.98	110.15	105.32	114.82
pmR / mpS	110.71	109.94	105.21	108.41	110.28	111.22	110.93
ttR / ttS	107.85	111.78	108.43	108.11	108.78	106.63	113.82
tpR / tmS	111.95	111.64	108.12	109.06	108.95	109.45	110.08
tmR / tpS	112.41	110.76	108.39	108.59	108.50	109.25	110.75
ppR / mmS	114.77	106.29	108.67	105.33	108.00	103.22	111.07
mmR / ppS	114.73	106.21	108.71	105.26	108.13	105.15	109.35
ptR / mtS	107.77	112.57	108.37	109.39	107.84	106.34	113.71
mtR / ptS	107.83	112.55	108.61	109.26	108.16	106.21	113.43

Structure	C_c - H_e	C _c -H _f	C_c - H_g	C_b - C_c - H_e	C_b - C_c - H_f	C_b - C_c - H_g
mpR / pmS	1.0948	1.0946	1.0928	110.99	110.29	110.29
pmR / mpS	1.0938	1.0914	1.0907	108.02	110.66	109.24
ttR / ttS	1.0921	1.0950	1.0925	109.98	109.77	110.24
tpR / tmS	1.0930	1.0930	1.0914	107.17	109.89	110.73
tmR / tpS	1.0944	1.0916	1.0937	108.24	110.52	110.40
ppR / mmS	1.0967	1.0937	1.0931	111.43	110.02	109.97
mmR / ppS	1.0956	1.0931	1.0945	111.27	109.82	110.42
ptR / mtS	1.0946	1.0916	1.0924	110.84	109.51	109.83
mtR / ptS	1.0942	1.0922	1.0951	111.30	109.72	110.31

Structure	O_a - C_a - C_b - O_b	H_a - O_a - C_a - C_b	H_b - C_a - C_b - O_a	H_c - C_a - C_b - O_a	H_d - C_b - C_a - O_b	C_c - C_b - C_a - O_b
mpR	-48.07	43.24	123.14	-119.44	109.73	-129.68
pmS	48.07	-43.24	-123.14	119.44	-109.73	129.68
pmR	51.91	-46.66	-122.93	119.29	123.90	-116.04
mpS	-51.91	46.66	122.93	-119.29	-123.90	116.04
ttR	-170.26	-175.61	121.61	-121.50	112.54	-129.28
ttS	170.26	175.61	-121.61	121.50	-112.54	129.28
tpR	-178.83	72.50	124.31	-118.22	124.60	-117.77
tmS	178.83	-72.50	-124.31	118.22	-124.60	117.77
tmR	-177.26	-78.93	-125.63	117.37	124.56	-117.17
tpS	177.26	78.93	125.63	-117.37	-124.56	117.17
ppR	72.21	70.79	124.25	-119.54	117.63	-123.79
mmS	-72.21	-70.79	-124.25	119.54	-117.63	123.79
mmR	-66.06	-63.47	-124.53	119.43	118.81	-122.56
ppS	66.06	63.47	124.53	-119.43	-118.81	122.56
ptR	74.44	176.54	121.45	-120.95	111.61	-129.53
mtS	-74.44	176.54	-121.45	120.95	-111.61	129.53
mtR	-66.87	161.58	-121.52	121.49	112.22	-128.86
ptS	66.87	-161.58	121.52	-121.49	-112.22	128.86

Structure	H_e - C_c - C_b - O_b	H_f - C_c - C_b - O_b	H_g - C_c - C_b - O_b
mpR	174.49	-65.56	53.90
pmS	-174.49	65.56	-53.90
pmR	173.19	53.58	-67.75
mpS	-173.19	-53.58	67.75
ttR	176.84	-63.80	55.68
ttS	-176.84	63.80	-55.68
tpR	-174.79	-55.90	64.96
tmS	174.79	55.90	-64.96
tmR	178.63	59.79	-60.90
tpS	-178.63	-59.79	60.90
ppR	-178.16	-56.26	62.24
mmS	178.16	56.26	-62.24
mmR	178.42	58.62	-60.36
ppS	-178.42	-58.62	60.36
ptR	172.29	-68.27	51.63
mtS	-172.29	68.27	-51.63
mtR	170.99	50.26	-68.79
ptS	-170.99	-50.26	68.79

2. Transition states for dissociation of (HOCH₂CH(O)CH₃) radicals; the products formed

Structure	C _a -C _b	C _a -O _a	C _b -O _b	O _a -H _a	C _a -H _b	C _a -H _c	C _b -H _d	C _b -C _c
TS_mpR / TS_pmS	2.0732	1.3471	1.2565	0.9785	1.0919	1.0886	1.1101	1.5178
TS_pmR / TS_mpS	2.0770	1.3503	1.2558	0.9745	1.0903	1.0880	1.1112	1.5231
TS_tpR / TS_tmS	2.1320	1.3609	1.2446	0.9668	1.0849	1.0883	1.1156	1.5209
TS_tmR / TS_tpS	2.1369	1.3603	1.2452	0.9666	1.0844	1.0887	1.1116	1.5230
TS_ppR / TS_mmS	2.1310	1.3571	1.2446	0.9667	1.0920	1.0841	1.1136	1.5262
TS_mmR / TS_ppS	2.1337	1.3536	1.2423	0.9667	1.0921	1.0854	1.1161	1.5253
H ₂ COH···OCHCH ₃	4.1704	1.3643	1.2185	0.9777	1.0884	1.0846	1.1101	1.5007

Structure	O _a -C _a -C _b	O_b - C_b - C_a	H _a -O _a -C _a	H_b - C_a - C_b	H_c - C_a - C_b	H_d - C_b - C_a	C_c - C_b - C_a
TS_mpR / TS_pmS	100.52	97.21	106.11	94.51	110.36	88.98	105.29
TS_pmR / TS_mpS	102.49	96.80	106.70	94.88	108.82	94.35	101.38
TS_tpR / TS_tmS	111.44	100.81	109.61	98.06	97.05	89.26	100.20
TS_tmR / TS_tpS	112.41	100.18	109.51	97.44	96.63	89.81	100.39
TS_ppR / TS_mmS	111.21	103.20	109.70	98.66	97.77	89.16	99.34
TS_mmR / TS_ppS	110.17	103.18	110.00	98.40	99.01	89.07	99.06
H ₂ COH···OCHCH ₃	48.46	50.21	87.38	152.53	156.87	78.41	109.13

Structure	C _c -H _e	C _c -H _f	C _c -H _g	C_b - C_c - H_e	C_b - C_c - H_f	C_b - C_c - H_g
TS_mpR / TS_pmS	1.0949	1.0933	1.0974	111.98	110.40	108.87
TS_pmR / TS_mpS	1.0941	1.0969	1.0926	112.09	108.22	110.34
TS_tpR / TS_tmS	1.0939	1.0977	1.0933	111.71	108.60	110.12
TS_tmR / TS_tpS	1.0950	1.0941	1.0972	111.89	110.52	108.57
TS_ppR / TS_mmS	1.0963	1.0932	1.0964	112.52	110.06	108.46
TS_mmR / TS_ppS	1.0950	1.0971	1.0933	112.74	108.31	110.31
H ₂ COH···OCHCH ₃	1.0911	1.0972	1.0973	111.10	109.25	109.20

Structure	O_a - C_a - C_b - O_b	H_a - O_a - C_a - C_b	H_b - C_a - C_b - O_a	H_c - C_a - C_b - O_a	H_d - C_b - C_a - O_b	C_c - C_b - C_a - O_b
TS_mpR	-47.82	43.56	119.77	-119.61	119.38	-125.43
TS_pmS	47.82	-43.56	-119.77	119.61	-119.38	125.43
TS_pmR	51.34	-49.64	-119.84	119.45	120.44	-123.61
TS_mpS	-51.34	49.64	119.84	-119.45	-120.44	123.61
TS_tpR	-176.75	80.45	-117.55	123.79	120.16	-126.03
TS_tmS	176.75	-80.45	117.55	-123.79	-120.16	126.03
TS_tmR	174.11	-82.36	117.79	-123.83	120.68	-125.24
TS_tpS	-174.11	82.36	-117.79	123.83	-120.68	125.24
TS_ppR	81.93	78.29	123.65	-117.22	120.42	-125.15
TS_mmS	-81.93	-78.29	-123.65	117.22	-120.42	125.15
TS_mmR	-53.62	-75.03	-123.57	117.18	120.34	-125.67
TS_ppS	53.62	75.03	123.57	-117.18	-120.34	125.67
H ₂ COH···OCHCH ₃	-83.63	30.95	132.77	-57.41	-70.17	159.28

Structure	H_e - C_c - C_b - O_b	H_{f} - C_{c} - C_{b} - O_{b}	H_g - C_c - C_b - O_b
TS_mpR	-159.84	-36.87	81.26
TS_pmS	159.84	36.87	-81.26
TS_pmR	-168.99	71.92	-46.22
TS_mpS	168.99	-71.92	46.22
TS_tpR	-155.13	85.78	-32.35
TS_tmS	155.13	-85.78	32.35
TS_tmR	-160.35	-36.54	81.35
TS_tpS	160.35	36.54	-81.35
TS_ppR	-166.75	-43.17	74.49
TS_mmS	166.75	43.17	-74.49
TS_mmR	-162.10	78.99	-38.67
TS_ppS	162.10	-78.99	38.67
H ₂ COH···OCHCH ₃	0.46	-237.57	-121.59

 $H_2COH\cdots OCHCH_3 \rightarrow H_a\cdots O_b = 1.8522 \text{ Å}$

Dissociation fragments at infinite distance :

$\text{CH}_2\text{OH} \rightarrow$	$C_a - O_a = 1.3684$	$CH(O)CH_3 (C_s \text{ symm.}) \rightarrow$	$C_b - O_b = 1.2106$
	$C_a - H_b = 1.0834$		$C_b - H_d = 1.1146$
	$C_a - H_c = 1.0879$		$C_b - C_c = 1.5077$
	$O_a - H_a = 0.9652$		$C_c - H_e = 1.0914$
	H_a - C_a - O_a = 112.97		$C_c - H_{f/g} = 1.0970$
	H_c - C_a - O_a = 118.82		H_d - C_b - O_b = 120.60
	H_c - C_a - O_a - H_a = 148.45		$C_c - C_b - O_b = 124.66$
	H_a - O_a - C_a - H_b = -176.00		H_e - C_c - O_b = 110.51
			$H_{f/g}$ - C_c - C_b = 109.76
			$H_{f/g}$ - C_c - C_b - O_b = ±121.65

3. Rotational constants for the $HOCH_2CH(O)CH_3$ radicals

Structure	A (GHz)	B (GHz)	C (GHz)
mpR / pmS	9.13749	3.65098	2.81615
pmR / mpS	7.15458	4.1867	3.53446
ttR / ttS	8.11397	3.75319	2.80438
tpR / tmS	8.42186	3.66905	2.8317
tmR / tpS	8.40591	3.68401	2.81333
ppR / mmS	8.92385	3.50919	2.78704
mmR / ppS	6.95503	4.1372	3.28692
ptR / mtS	8.85536	3.54344	2.77758
mtR / ptS	6.99873	4.11752	3.30309
TS_mpR / TS_pmS	8.83847	3.34101	2.63714
TS_pmR / TS_mpS	7.00394	3.74933	3.12959
TS_tpR / TS_tmS	7.69807	3.15344	2.46241
TS_tmR / TS_tpS	7.69836	3.20154	2.45847
TS_ppR / TS_mmS	7.03488	3.40952	2.75593
TS_mmR / TS_ppS	8.25550	3.04434	2.42570
CH₃CHO···HOCH₂	8.45325	2.17807	1.88641

4. Geometric parameters for the most stable β -hydroxypropoxy radical rotamer formed in the minor OH-addition channel (OCH₂CH(OH)CH₃), and its dissociation transition state

Structure	C _a -C _b	C _a -O _a	C _b -O _b	O _a -H _a	C _a -H _b	C _a -H _c	C _b -H _d	C _b -C _c
pmR	1.5479	1.3675	1.4129	0.975	1.1127	1.1046	1.1044	1.5210
TS_pmR	2.1444	1.2473	1.3501	0.9788	1.1078	1.1079	1.0928	1.4918

Structure	O _a -C _a -C _b	O_b - C_b - C_a	H _a -O _a -C _a	H_b - C_a - C_b	H_c - C_a - C_b	H_d - C_b - C_a	C_c - C_b - C_a
pmR	112.23	108.83	105.63	107.20	113.35	106.96	112.34
TS_pmR	98.66	97.64	-40.78	-121.80	123.70	-116.93	121.56

Structure	C_c - H_e	C _c -H _f	C _c -H _g	C_b - C_c - H_e	C_b - C_c - H_f	C_b - C_c - H_g
pmR	1.0951	1.0949	1.0931	111.07	110.35	110.08
TS_pmR	1.0938	1.0939	1.0998	110.69	110.69	110.71

Structure	O_a - C_a - C_b - O_b	H_a - O_a - C_a - C_b	H_b - C_a - C_b - O_a	H_c - C_a - C_b - O_a	H_d - C_b - C_a - O_b	C_c - C_b - C_a - O_b
pmR	47.70	-41.90	-113.83	129.10	-119.52	120.58
TS_pmR	46.15	-40.78	-121.80	123.70	-116.93	121.56

Structure	H_e - C_c - C_b - O_b	H_f - C_c - C_b - O_b	H_g - C_c - C_b - O_b
pmR	179.94	59.08	-60.12
TS_pmR	170.154	48.61	-70.49

Structure	A (GHz)	B (GHz)	C (GHz)
pmR	8.77896	3.80403	2.88411
TS_pmR	8.69651	3.26987	2.58229

5. Geometric parameters for the transition state for 1,4-hydrogen shift in the $\beta\text{-hydroxypropoxy radicals}: HOCH_2CH(O)CH_3 \leftrightarrow OCH_2CH(OH)CH_3$

	C _c -H _e	C_c - H_f	C_c - H_g	C_b - C_c - H_e	C_b - C_c - H_f	C_b - C_c - H_g
Ī	1.0956	1.0942	1.0930	110.52	110.25	110.57

O_a - C_a - C_b - O_b	H_a - O_a - C_a - C_b	H_a - O_b - C_b - C_a	H_b - C_a - C_b - O_a	H_c - C_a - C_b - O_a	H_d - C_b - C_a - O_b	C_c - C_b - C_a - O_b
-18.24	13.28	12.65	117.72	-123.71	114.40	-124.85

H_e - C_c - C_b - O_b	H_{f} - C_{c} - C_{b} - O_{b}	H_g - C_c - C_b - O_b
-177.92	-57.70	61.98

A (GHz)	B (GHz)	C (GHz)
9.47881	3.98735	3.07830

 $CH_3CHO\cdots HOCH_2$

 $\mathsf{HOCH_2CH}(\mathsf{O})\mathsf{CH}_3 \leftrightarrow \mathsf{OCH_2CH}(\mathsf{OH})\mathsf{CH}_3$

CH₂OH

CH₃CHO (C_s symmetry)

pmR (minor channel)

TS_pmR (minor channel)

B. Vibrational Wavenumbers

The wavenumbers listed below are given in cm⁻¹, and pertain to both enantiomers of each rotamer. All wavenumbers reported here have been scaled by 0.9614, as indicated in the main article.

1. Wavenumbers for the HOCH₂CH(O)CH₃ radicals and transition states for dissociation

mpR / pmS	129.42	191.78	239.11	351.26	420.71	475.23	501.28	782.11	864.13	886.77
	1002.68	1040.91	1065.47	1078.65	1124.84	1164.02	1214.52	1307.31	1352.82	1381.95
	1441.35	1447.92	1468.75	2754.91	2861.89	2934.95	2974.68	3004.83	3020.84	3605.35
pmR / mpS	132.98	204.97	260.71	332.42	377.41	477.49	621.51	766.16	864.82	903.59
	949.97	1026.34	1062.35	1089.33	1149.53	1219.52	1256.83	1327.73	1336.47	1380.16
	1429.65	1452.46	1465.95	2844.31	2877.74	2947.77	2968.98	3029.28	3053.23	3611.41
ttR / ttS	113.89	205.94	222.97	244.07	338.84	391.54	476.60	789.05	841.75	897.96
	970.40	1038.64	1048.09	1115.00	1138.64	1180.92	1218.48	1219.93	1338.96	1392.52
	1440.24	1450.94	1474.46	2754.71	2873.87	2919.96	2939.65	3013.68	3036.19	3687.41
tpR / tmS	123.69	221.41	251.70	290.03	317.63	418.86	470.90	791.72	850.54	899.08
	950.42	1023.10	1041.40	1115.45	1118.15	1242.76	1259.35	1328.08	1333.65	1342.90
	1430.70	1447.68	1457.77	2792.82	2904.98	2944.55	2990.32	3029.35	3039.42	3667.76
tmR / tpS	112.12	218.28	247.67	277.43	318.25	411.00	466.19	769.01	838.96	896.61
	930.13	1015.28	1054.48	1109.28	1124.45	1235.82	1264.81	1317.73	1335.94	1352.76
	1434.21	1450.31	1458.41	2839.37	2902.88	2935.55	2990.00	3015.38	3032.8	3682.30
ppR / mmS	116.15	198.80	240.47	309.77	346.58	423.76	451.53	756.31	844.77	873.13
	986.33	998.71	1031.83	1114.83	1159.74	1231.14	1288.26	1333.53	1347.40	1362.57
	1434.12	1446.92	1455.77	2785.17	2877.56	2929.79	3001.03	3005.96	3015.67	3666.83
mmR / ppS	111.08	221.43	252.32	309.34	351.21	397.04	538.05	712.84	839.76	871.90
	944.26	1016.31	1026.59	1100.69	1162.00	1225.38	1300.52	1335.14	1351.38	1354.14
	1440.91	1442.76	1463.14	2797.86	2885.92	2925.74	3000.51	3015.73	3017.84	3678.61
ptR / mtS	113.73	162.32	195.87	246.49	335.30	417.38	469.97	799.76	840.08	913.41
	967.17	1038.58	1045.72	1089.35	1126.76	1186.29	1215.95	1263.57	1347.20	1388.83
	1442.78	1450.67	1465.76	2774.74	2862.72	2906.04	2935.09	3004.10	3026.55	3692.11
mtR / ptS	109.35	205.00	209.90	243.63	350.72	381.27	604.15	764.80	871.20	913.45
	951.53	994.06	1069.56	1109.02	1133.10	1180.99	1219.70	1248.29	1343.43	1397.35
	1437.07	1452.43	1467.06	2761.43	2859.97	2915.11	2942.39	3016.53	3038.96	3688.11
TS_mpR / TS_pmS	133.35	163.38	170.93	266.83	373.12	473.10	559.16	687.80	836.41	876.63
	963.05	1039.44	1078.50	1101.95	1195.80	1311.38	1344.58	1354.18	1423.67	1432.23
	1464.94	1513.15	2793.14	2921.04	2963.16	2984.80	3019.60	3083.15	3477.25	338.07i
TS_pmR / TS_mpS	119.58	164.28	203.82	233.36	411.92	496.26	527.72	680.86	821.16	864.38
	970.10	1044.21	1081.79	1093.73	1188.01	1319.01	1344.16	1356.17	1426.79	1435.53
	1461.10	1509.94	2780.15	2925.76	2976.59	2992.44	3028.22	3095.28	3548.19	356.93i
TS_tpR / TS_tmS	82.72	164.04	187.43	274.75	350.31	412.85	477.36	662.56	833.27	859.09
	955.80	1043.93	1050.76	1081.72	1162.97	1320.43	1326.33	1346.19	1425.98	1433.58
	1449.01	1544.12	2727.40	2920.56	2989.10	3003.48	3024.72	3131.26	3667.62	274.93i
TS_tmR / TS_tpS	67.83	167.75	199.68	291.97	352.70	396.56	478.14	669.10	831.17	857.88
	955.49	1039.85	1049.09	1078.32	1164.75	1320.84	1326.38	1346.09	1432.56	1433.19
		1540.09	2776.49	2919.53		3001.25	3013.38	3132.73	3671.05	268.60i
TS_ppR / TS_mmS	60.63	172.35	189.57	215.76	345.83	384.64	478.24	626.65	814.63	866.09
	931.77	1024.81	1054.74	1075.99	1178.19	1325.34	1329.33	1352.59	1432.11	1435.48
	1453.39	1578.51	2753.48	2919.58	2975.02	2981.70	3021.08	3134.07	3669.52	304.54i
TS_mmR / TS_ppS	58.00	155.64	181.46	262.96	304.10	398.71	475.86	669.50	829.31	871.46
	960.26	1033.37	1062.88	1075.26	1189.34	1322.61	1330.10	1348.69	1426.04	1434.88
	1452.81	1542.17	2720.57	2921.54	2965.25	2984.82	3019.17	3113.65	3666.52	305.18i

2. Wavenumbers for the $OCH_2CH(OH)CH_3$ radical and transition state for dissociation

pmR					449.97					
	1005.23	1024.40	1072.67	1075.97	1138.78	1210.02	1253.41	1320.47	1336.49	1356.26
	1395.94	1439.52	1455.16	2769.50	2847.37	2867.17	2932.61	3002.83	3015.00	3605.25
TS_mpR	130.80	158.32	168.54	293.41	352.92	432.57	583.83	608.60	843.49	896.91
	991.08	1053.58	1087.11	1193.03	1201.84	1286.96	1352.03	1396.86	1420.29	1435.40
	1449.12	1572.37	2794.37	2846.84	2903.32	2976.56	2983.82	3019.80	3466.80	182.11i

3. Wavenumbers for the products

CH ₃ CHO···HOCH ₂			106.73							
_	764.03	864.81	1075.62	1101.56	1112.28	1188.71	1340.93	1382.75	1386.34	1417.96
	1432.83	1444.53	1741.71	2826.98	2922.22	2978.67	2995.12	3046.87	3126.77	3461.39
CH ₂ OH	424.51	620.48	1023.60	1175.38	1313.97	1443.08	3002.98	3142.26	3684.96	
OCHCH ₃	150.59	485.45	745.53	855.51	1086.49	1094.55	1333.88	1381.43	1416.00	1426.61
	1772.11	2773.70	2922.66	2979.68	3041.48					

${\bf 4.\ Wave numbers\ for\ the\ 1,4-hydrogen\ shift\ transition\ state}$

$\mathrm{HOCH_2CH}(\mathrm{O})\mathrm{CH_3} \leftrightarrow \mathrm{OCH_2CH}(\mathrm{OH})\mathrm{CH_3}$

1,4-H-shift	91.15	227.46	303.80	433.67	594.87	683.94	735.54	859.36	887.24	975.94
	989.37	1069.68	1092.73	1135.41	1145.19	1163.95	1220.92	1247.19	1357.87	1399.09
	1437.80	1451.57	1920.43	2773.57	2802.21	2912.35	2932.08	3003.60	3018.25	-1987.75i