Subject: Engineering Mathematics Chapter: Calculus

DPP-08

Topic: Partial Differentiation & Euler's theorem

- 1. If $u = e^{xyz}$, then $\frac{\partial^3 u}{\partial x \partial y \partial z}$ is equal to
 - (a) $e^{xyz} \left[1 + xyz + 3x^2y^2z^2 \right]$
 - (b) $e^{xyz} \left[1 + xyz + x^3y^3z^3 \right]$
 - (c) $e^{xyz} \left[1 + 3xyz + x^2y^2z^2 \right]$
 - (d) $e^{xyz} \left[1 + 3xyz + x^3y^3z^3 \right]$
- If $z = f(x + ay) + \phi(x ay)$, then
 - (a) $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$ (b) $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial z^2}$
 - (c) $\frac{\partial^2 z}{\partial x^2} = -\frac{1}{a^2} \frac{\partial^2 z}{\partial x^2}$ (d) $\frac{\partial^2 z}{\partial x^2} = -a^2 \frac{\partial^2 z}{\partial x^2}$
- 3. If $u = \tan^{-1} \left(\frac{x+y}{\sqrt{x+\sqrt{y}}} \right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ equals
 - (a) $2 \cos 2 u$ (b) $\frac{1}{4} \sin 2u$
- - (c) $\frac{1}{4} \tan u$
- (d) 2 tan 2 *u*
- **4.** If $u = \tan^{-1} \frac{x^3 + y^3 + x^2y xy^2}{x^2 xy + y^2}$, then the value of
 - $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is
 - (a) $\frac{1}{2}\sin 2u$
 - (b) sin 2 u
 - (c) $\sin u$
- (d) 0

- 5. If $u = \phi \left(\frac{y}{r} \right) + x\psi \left(\frac{y}{r} \right)$, then the $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$, is
- (c) 2*u*
- (d) -u
- **6.** If $z = e^x \sin y$, $x = \log_e t$ and $y = t^2$, then $\frac{dz}{dt}$ is given by the expression
 - (a) $\frac{e^x}{t} \left(\sin y 2t^2 \cos y \right)$ (b) $\frac{e^x}{t} \left(\sin y + 2t^2 \cos y \right)$
 - (c) $\frac{e^x}{t} \left(\cos y + 2t^2 \sin y\right)$ (d) $\frac{e^x}{t} \left(\cos y 2t^2 \sin y\right)$
- 7. If $z = z(u, v), u = x^2 2xy y^2, v = a$, then
 - (a) $(x+y)\frac{\partial z}{\partial x} = (x-y)\frac{\partial z}{\partial y}$
 - (b) $(x-y)\frac{\partial z}{\partial x} = (x+y)\frac{\partial z}{\partial y}$
 - (c) $(x+y)\frac{\partial z}{\partial x} = (y-x)\frac{\partial z}{\partial y}$
 - (d) $(y-x)\frac{\partial z}{\partial x} = (x+y)\frac{\partial z}{\partial y}$
- If f(x, y) = 0, $\phi(y, z) = 0$, then
 - (a) $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} = \frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y} \cdot \frac{dz}{dx}$
 - (b) $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{dz}{dx}$
 - (c) $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \cdot \frac{dz}{dx} = \frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y}$
 - (d) None of these

9. If $z = \sqrt{x^2 + y^2}$ and $x^3 + y^3 + 3axy = 5a^2$, then at $x = a, y = a, \frac{dz}{dx}$ is equal to

- (a) 2*a*
- (b) 0
- (c) $2a^2$
- (d) a^3

- **10.** If $x = r \cos \theta$, $y = r \sin \theta$ where r and θ are the functions of x, then $\frac{dx}{dt}$ is equal to
 - (a) $r \cos \theta \frac{dr}{dt} r \sin \theta \frac{d\theta}{dt}$ (b) $\cos \theta \frac{dr}{dt} r \sin \theta \frac{d\theta}{dt}$ (c) $r \cos \theta \frac{dr}{dt} + \sin \theta \frac{d\theta}{dt}$ (d) $r \cos \theta \frac{dr}{dt} \sin \theta \frac{d\theta}{dt}$

Answer Key

1. (c)

2. (b)

3. (b)

4. (a)

5. (a)

6. (b)

7. (c)

8. (c)

9. (b)

10. (b)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4