

Chapter 28: Animal Systems II

TABLE OF CONTENTS

28.4 — Homeostasis

Interrelationship of Body Systems

Fighting Disease

Chemical Controls

Body Temperature Control

Ectotherms

Endotherms

Comparing Ectotherms and Endotherms

Evolution of Temperature Control

28.4 — Homeostasis

Interrelationship of Body Systems

Homeostasis: the control of internal conditions

Failure of homeostasis for a few moments → Devastating

ALL body systems interact to maintain *homeostasis*.

Many organ systems are rendered useless without working with others

Fighting Disease

Pathogens: disease-causing microorganisms

- Internal environment for animals is hospitable to pathogens
 - Easy to steal helpful nutrients

Immune System → differentiates between the body and pathogens

Chemical Controls

Body functions are *mostly* regulated using chemical controls.

 Endocrine Glands → release hormones into the blood to give chemical instructions to the body

Body Temperature Control

All organisms respond to external temperature.

- Most organs can only operate within specific temperatures
 - Can't work if solely dependent on external temperature
 - Temperature must be regulated in an organism's internal environment

Body Temperature Control: source of heat, way to conserve heat, method to eliminate excess heat

Interactions betwen multiple body systems

Ectotherms

Ectotherms \rightarrow animals regulate body temperature depending on relationships to external sources of temperature

- Most reptiles, invertebrates, fishes, amphibians
- Mostly low metabolic rates while resting

Endotherms

Endotherms \rightarrow animals regulate body temperature using heat generated by the body

- High metabolic rates (generate heat even when resting)
- Insulation using body fat, hair (some animals), feathers (birds)

Comparing Ectotherms and Endotherms

Endotherms:

- Move around easily in colder temperatures
- Requires a lot of fuel for metabolism

Ectotherms:

- Need much less food than similarly-sized endotherms
- Trouble in colder temperatures

Evolution of Temperature Control

There is a lot of evidence to suggest that *some* dinosaurs were endotherms.

Feathered dinosaurs could've used feathers as insulation.

Current evidence → endothermy has evolved at least twice among vertebrates

- Once along ancient reptiles → birds
- Once along ancient reptiles → mammals