Homework 3. Solutions

- 1 a) Show explicitly that matrix $A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ is an orthogonal matrix. b) Show explicitly that under the transformation $\{\mathbf{e}', \mathbf{f}'\} = \{\mathbf{e}_1, \mathbf{f}'\} A_{\varphi}$ an orthonormal
- basis transforms to an orthonormal one.
 - c) Show that for orthogonal matrix A_{φ} the following relations are satisfied:

$$A_{\varphi}^{-1} = A_{\varphi}^{T} = A_{-\varphi}, \qquad A_{\varphi+\theta} = A_{\varphi} \cdot A_{\theta}.$$

a) Check straightforwardly that $A_{\varphi}^T \cdot A = I$ (this is definition of orthogonal matrix):

$$A_{\varphi}^{T} \cdot A = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} = \begin{pmatrix} \cos^{2} \varphi + \sin^{2} \varphi & -\cos \varphi \sin \varphi + \sin \varphi \cos \varphi \\ -\sin \varphi \cos \varphi + \cos \varphi \sin \varphi & \sin^{2} \varphi + \cos^{2} \varphi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

b) Let $\{e, f\}$ be an orthonormal basis, i.e. scalar products (e, e) = 1 and (e, f) = 0. Then

$$\{\mathbf{e}', \mathbf{f}'\} = \{\mathbf{e}, \mathbf{f}\} A_{\varphi} = \{\mathbf{e}, \mathbf{f}\} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
, i.e. $\{\mathbf{e}' = \cos \varphi \mathbf{e} + \sin \varphi \mathbf{f} \\ \mathbf{f}' = -\sin \varphi \mathbf{e} + \cos \varphi \mathbf{f} \}$.

We have to check that $\{e', f'\}$ is also orthonormal basis, i.e. scalar products (e', e) = $(\mathbf{f}', \mathbf{f}') = 1$ and $(\mathbf{e}', \mathbf{f}') = 0$. Calculate:

$$(\mathbf{e}', \mathbf{e}') = (\cos \varphi \mathbf{e} + \sin \varphi \mathbf{f}, \cos \varphi \mathbf{e} + \sin \varphi \mathbf{f}) = \cos^2 \varphi (\mathbf{e}, \mathbf{e}) + 2\cos \varphi \sin \varphi (\mathbf{e}, \mathbf{f}) + \sin^2 \varphi (\mathbf{f}, \mathbf{f}) = \cos^2 \varphi \cdot 1 + 2\cos \varphi \sin \varphi \cdot 0 + \sin^2 \varphi \cdot 1 = 1,$$

$$(\mathbf{f'}, \mathbf{f'}) = (-\sin\varphi\mathbf{e} + \cos\varphi\mathbf{f}_2, -\sin\varphi\mathbf{e} + \cos\varphi\mathbf{f}) = \sin^2\varphi(\mathbf{e}, \mathbf{e}) - 2\cos\varphi\sin\varphi(\mathbf{e}, \mathbf{f}) + \cos^2\varphi(\mathbf{f}, \mathbf{f}) = \mathbf{e}$$

$$\cos^2\varphi \cdot 1 + 2\cos\varphi\sin\varphi \cdot 0 + \sin^2\varphi \cdot 1 = 1 ,$$

and

$$(\mathbf{e}', \mathbf{f}') = (\cos \varphi \mathbf{e} + \sin \varphi \mathbf{f}, -\sin \varphi \mathbf{e} + \cos \varphi \mathbf{f}) =$$

 $-\cos\varphi\sin\varphi(\mathbf{e},\mathbf{e}) + (\cos^2\varphi - \sin^2\varphi)(\mathbf{e},\mathbf{f}) + \sin\varphi\cos\varphi(\mathbf{f},\mathbf{f}) = -\cos\varphi\sin\varphi + \sin\varphi\cos\varphi = 0.$

c) We have that $A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$. Then calculate inverse matrix A_{φ}^{-1} . One can see that $A_{\varphi}^{T} = A_{\varphi}^{-1} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$, because $A_{\varphi}^{T} A_{\varphi} = I$. On the other hand $\cos \varphi = \cos(-\varphi)$ and $\sin \varphi = -\sin(-\varphi)$

$$A_{\varphi}^{T} = A_{\varphi}^{-1} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} = \begin{pmatrix} \cos(-\varphi) & -\sin(-\varphi) \\ \sin(-\varphi) & \cos(-\varphi) \end{pmatrix} = A_{-\varphi}.$$

Now prove that $A_{\varphi+\theta} = A_{\varphi} \cdot A_{\theta}$:

$$A_{\varphi} \cdot A_{\theta} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} (\cos \varphi \cos \theta - \sin \varphi \sin \theta) & -(\cos \varphi \sin \theta + \sin \varphi \cos \theta) \\ (\cos \varphi \sin \theta + \sin \varphi \cos \theta) & (\cos \varphi \cos \theta - \sin \varphi \sin \theta) \end{pmatrix}$$

$$\begin{pmatrix} \cos(\varphi + \theta) & -\sin(\varphi + \theta) \\ \sin(\varphi + \theta) & \cos(\varphi + \theta) \end{pmatrix} = A_{\varphi + \theta}$$

Remark Geometrical meaning of this relation is that composition of "rotations" on angle φ and θ is "rotation" on angle $\varphi + \theta$.

2 Let \mathbf{e}, \mathbf{f} be orthonormal basis in Euclidean space \mathbf{E}^2 . Consider a vector

$$\mathbf{n}_{\varphi} = \mathbf{e}\cos\varphi + \mathbf{f}\sin\varphi.$$

Let A be a linear orthogonal operator acting on the space \mathbf{E}^2 such that $A(\mathbf{e}) = \mathbf{n}_{\varphi}$. We know that $\det A = \pm 1$ since A is orthogonal operator.

In the case if $\det A = 1$, find the image $A(\mathbf{f})$ of vector \mathbf{f} and an image $A(\mathbf{x})$ of an arbitrary vector $\mathbf{x} = a\mathbf{e} + b\mathbf{f}$, write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} and explain geometrical meaning of the operator A.

† How the answer will change if $\det A = -1$?

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be transition matrix of operator A in the orthonormal basis $\{\mathbf{e}, \mathbf{f}\}$:

$$\{\mathbf{e}', \mathbf{f}'\} = \{\mathbf{e}, \mathbf{f}\}A = \{\mathbf{e}, \mathbf{f}\}\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \left\{ \begin{array}{l} \mathbf{e}' = a\mathbf{e} + c\mathbf{f} \\ \mathbf{f}' = b\mathbf{e} + c\mathbf{f} \end{array} \right.$$

New basis is also orthonormal. We have that $\mathbf{e}' = \mathbf{n}_{\varphi} = \mathbf{e} \cos \varphi + \mathbf{f} \sin \varphi$, hence matrix of the orthogonal operator A in orthonormal basis $\{\mathbf{e}, \mathbf{f}\}$ is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos \varphi & b \\ \sin \varphi & d \end{pmatrix}$$

Matrix of orthogonal operator in orthonormal basis is an orthogonal matrix. Hence $\begin{pmatrix} \cos \varphi & b \\ \sin \varphi & d \end{pmatrix}$ is orthogonal matrix, i.e.

$$\begin{cases} b\cos\varphi + d\sin\varphi = 0 \\ b^2 + d^2 = 1 \end{cases}.$$

Put $b = \sin \psi$, $d = \cos \psi$, then bearing in mind the condition that $\det A = d \cos \varphi - b \sin \varphi = 1$, we come to equations

$$\begin{cases} b\cos\varphi + d\sin\varphi = \sin\psi\cos\varphi + \cos\psi\sin\varphi = \sin(\varphi + \psi) = 0\\ d\cos\varphi - b\sin\varphi = \cos\psi\cos\varphi - \sin\psi\sin\varphi = \cos(\varphi + \psi) = 1 \end{cases},$$

i.e. we come to $\psi = -\varphi + 2\pi k$. Matrix of operator A in the basis $\{\mathbf{e}, \mathbf{f}\}$ is equal to $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$. A is operator of rotation on the angle φ (see the section 1.7.1. in lecture notes). $A(\mathbf{f}) = b\mathbf{e} + d\mathbf{f} = -\sin \varphi \mathbf{e} + \cos \varphi \mathbf{f}$. For arbitrary vector \mathbf{x} we have that

$$A(\mathbf{x}) = A(x^1 \mathbf{e} + x^2 \mathbf{f}) = x^1 A(\mathbf{e}) + x^2 A(\mathbf{f}) = x^1 (\mathbf{e} \cos \varphi + \mathbf{f} \sin \varphi) + x^2 (-\mathbf{e} \sin \varphi + \mathbf{f} \cos \varphi) =$$

$$(x^1 \cos \varphi - x^2 \sin \varphi) \mathbf{e} + (x^1 \sin \varphi + x^2 \cos \varphi) \mathbf{f},$$

or in the other way: $A(\mathbf{x}) = A(x^1\mathbf{e} + x^2\mathbf{f}) =$

$$=A\left(\left\{\mathbf{e},\mathbf{f}\right\} \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}\right) = \left\{\mathbf{e},\mathbf{f}\right\} \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \end{pmatrix} = \left\{\mathbf{e},\mathbf{f}\right\} \begin{pmatrix} x^1\cos\varphi - x^2\sin\varphi \\ x^1\sin\varphi + x^2\cos\varphi \end{pmatrix} \,.$$

[†] One can see that in the case if det A = -1, then A is the operator of reflection with respect to the line directed along the vector $\mathbf{n}_{\frac{\varphi}{2}} = \cos \frac{\varphi}{2} \mathbf{e} + \sin \frac{\varphi}{2} \mathbf{f}$.

Remark Note that condition that one can find an angle φ such that $A(\mathbf{e}) = \cos \varphi \mathbf{e} + \sin \varphi \mathbf{f}$ is automaticall fullfilled for orthogonal operator. In fact solving this problem we repeated the calculation of matrix of orthogonal operator in \mathbf{E}^2 (see lecture notes, subsection 1.7.1)

3 Let \mathbf{e}, \mathbf{f} be an orthonormal basis in Euclidean space \mathbf{E}^2 .

Consider a vector $\mathbf{N} = \mathbf{e} + \mathbf{f}$ in \mathbf{E}^2 .

Let A be an orthogonal operator acting on the space \mathbf{E}^2 such that $A\mathbf{N} = \mathbf{N}$. (N is eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.

- a) Find an action of operator A on the vector $\mathbf{R} = \mathbf{e} \mathbf{f}$ in \mathbf{E}^2 .
- b) Explain geometrical meaning of the operator A.
- c) Write down the matrix of operator A in the basis **e**, **f**.
- a) Let $A(\mathbf{R}) = a\mathbf{e} + b\mathbf{f}$. Vectors **N** and **R** are orthogonal to each other:

$$(N, R) = (e + f, e - f) = (e, e) - f, f = 1 - 1 = 0,$$

Hence the vectors $A(\mathbf{N})$ and $A(\mathbf{R})$ have to be orthogonal to each other also, since orthogonal operator does not change the scalar product.

Hence vector $A(\mathbf{R})$ has to be proportional to the vector \mathbf{R} also, i.e. $A(\mathbf{R}) = a\mathbf{R}$. The length of the vector is not changed under othogonal transformation, hence $a = \pm 1$. If a = 1, i.e. $A(\mathbf{R}) = \mathbf{R}$ we see that operator A is identical on two linear independent vectors: $A(\mathbf{R}) = \mathbf{R}$, $A(\mathbf{N}) = \mathbf{N}$ hence it is identical on their span, i.e. $A = \mathbf{id}$. On the other hand we know that A is not identity operator. Hence a = -1. We come to the conclusion that $A(\mathbf{R}) = -\mathbf{R}$.

b) Operator A is reflection operator with respect to the line directed along the vector N. c) We have that $\mathbf{e} = \frac{\mathbf{N} + \mathbf{R}}{2}$ and $\mathbf{f} = \frac{\mathbf{N} - \mathbf{R}}{2}$. Hence

$$A(\mathbf{e}) = A\left(\frac{\mathbf{N} + \mathbf{R}}{2}\right) = \frac{\mathbf{N} - \mathbf{R}}{2} = \mathbf{f}, A(\mathbf{f}) = A\left(\frac{\mathbf{N} - \mathbf{R}}{2}\right) = \frac{\mathbf{N} + \mathbf{R}}{2} = \mathbf{e},$$

i.e. the matrix of operator A in the bases $\{\mathbf{e}, \mathbf{f}\}$ is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

4 Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be an orthonormal basis in Euclidean space \mathbf{E}^3 . Consider a linear operator P in \mathbf{E}^3 such that

$$\mathbf{e}' = P(\mathbf{e}) = \mathbf{e}, \quad \mathbf{f}' = P(\mathbf{f}) = \frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}, \quad \mathbf{g}' = P(\mathbf{g}) = -\frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}.$$

Write down the matrix of operator P in the basis $\{e, f, g\}$ to the order

Show that P is an orthogonal operator.

Show that orthogonal operator P preserves the orientation of \mathbf{E}^3 .

Find an axis of the rotation and the angle of the rotation.

The matrix of operator P in the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is the transition matrix from basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ to the basis $\{\mathbf{e}', \mathbf{f}', \mathbf{g}'\} = \{P(\mathbf{e}), P(\mathbf{f}), P(\mathbf{g})\}$. We have

$$\{\mathbf{e}', \mathbf{f}', \mathbf{g}'\} = \{P(\mathbf{e}), P(\mathbf{f}), P(\mathbf{g})\} = \left\{\mathbf{e}, \frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}, -\frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}\right\} = \left\{\mathbf{e}, \mathbf{f}, \mathbf{g}\right\} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

$$(1)$$

One can see that the matrix in (1) is invertible. The triple $\{\mathbf{e}', \mathbf{f}', \mathbf{g}'\}$ is a basis. It is easy to see that the new basis $\{\mathbf{e}', \mathbf{f}', \mathbf{g}'\}$ is orthonormal basis since the former basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is orthonormal one: $(\mathbf{e}', \mathbf{e}') = (\mathbf{f}', \mathbf{f}') = (\mathbf{g}', \mathbf{g}') = 1$ and $(\mathbf{e}', \mathbf{f}') = (\mathbf{e}', \mathbf{g}') = (\mathbf{f}', \mathbf{g}') = 0$. Linear operator P is orthogonal operator and its matrix in orthonormal basis is orthogonal matrix operator.

One can check the condition of orthogonality of matrix in equation (1) straightforwardly:

$$P^T \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We see that $\det P = 1$, hence he linear operator P does not change orientation.

One can see from expression (1) that operator P rotates space \mathbf{E}^3 with respect to the axis directed along the vector \mathbf{e} on the angle $\frac{\pi}{4}$:

$$P = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\frac{\pi}{4} & -\sin\frac{\pi}{4}\\ 0 & \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix}$$

5 Consider a linear operator P_1 in \mathbf{E}^3 such that it transforms the orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ into the orthonormal basis $\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}$:

$$P_1(\mathbf{e}) = \mathbf{f}$$
, $P_1(\mathbf{f}) = \mathbf{e}$, $P_1(\mathbf{g}) = \mathbf{g}$.

Consider also a linear orthogonal operator P_2 such that it is the reflection operator with respect to the plane spanned by vectors \mathbf{e} and \mathbf{f} .

Do operators P_1 , P_2 preserve orientation?

Does operator $P = P_2 \circ P_1$ preserve orientation?

Find eignevectors of operator P.

Show that P is rotation operator.

Operator P_1 is orthogonal operator since it transforms orthonormal basis to orthonormal one. We have that

$$P_1(\mathbf{e}) = \mathbf{f}, P_1(\mathbf{f}) = \mathbf{e}, P_1(\mathbf{g}) = \mathbf{g}. \tag{7.1}$$

The transition matrix of basis $\{e, f, g\}$ to basis $\{f, e, g\}$ is a matrix

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ since } \{\mathbf{f}, \mathbf{e}, \mathbf{g}\} = \{\mathbf{e}, \mathbf{f}, \mathbf{g}\} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Its determinant equals -1 < 0. Hence linear operator P_1 changes orientation. It is reflection operator (with respect to the plan spanned by vectors $\mathbf{e} + \mathbf{f}$ and \mathbf{g} ,

These vectors and their arbitrary linear combinations are eigenvalues of this operator:

$$P(\mathbf{e} + \mathbf{f}) = \mathbf{f} + \mathbf{e} = \mathbf{e} + \mathbf{f}, \qquad P(\mathbf{g}) = \mathbf{g}, P(\lambda(\mathbf{e} + \mathbf{f}) + \mu\mathbf{g}) = \lambda(\mathbf{e} + \mathbf{f}) + \mu\mathbf{g}.$$

Now consider orthogonal operator P_2 . The plane spanned by vectors \mathbf{e}, \mathbf{f} remains intact, hence $P_2(\mathbf{e}) = \mathbf{e}$ and $P_2(\mathbf{f}) = \mathbf{f}$. Vector \mathbf{g} transforms to vector $-\mathbf{g}$ since it is orthogonal to vectors \mathbf{e} and \mathbf{f} . We have

$$P_2(\mathbf{e}) = \mathbf{e}, P_2(\mathbf{f}) = \mathbf{f}, P_2(\mathbf{g}) = -\mathbf{g}. \tag{7.2}$$

Vectors \mathbf{e} , \mathbf{f} and \mathbf{g} are eigenvectors with eigenvalues 1, 1, -1 respectively. Matrix of operator P_2 in the basis $\{\mathbf{e}, \mathbf{f}, g\}$ is equal to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ Determinant of operator P_2 is equal to

product of eigenvalues: $\det P = 1 \cdot 1 \cdot (-1) = 1$. (Or you can calculate it using matrix of operator P.)

This orthogonal operator as well as orthogonal operator P_1 does not preserve orientation. Using equations (7.1) and (7.2) we have that for operator $P = P_2 \circ P_1$

$$P(\mathbf{e}) = P_2 \circ P_1(\mathbf{e}) = P_2(\mathbf{f}) = \mathbf{f}, \ P(\mathbf{f}) = P_2 \circ P_1(\mathbf{f}) = P_2(\mathbf{e}) = \mathbf{e}, \ P(\mathbf{g}) = P_2 \circ P_1(\mathbf{g}) = P_2(\mathbf{g}) = -\mathbf{g}, \ \blacksquare$$

 $\det P = \det(P_2 \circ P_1) = \det P_2 \cdot \det P_1 = (-1)(-1) = 1$. P is orthogonal matrix which preserves orientation.

Consider the vector $\mathbf{N} = \mathbf{e} + \mathbf{f}$. This is eigenvector of operator P:

$$P(\mathbf{N}) = P(\mathbf{e} + \mathbf{f}) = \mathbf{f} + \mathbf{e} = \mathbf{N}$$

We see that **N** is an eigenvector of non-identical orthogonal operator preserving orientation. Thus axis of rotation is along the vector **N**. To calculate the angle of rotation notice that vector **g** transforms to vector -g. Hence the rotation is on the angle π ⁽¹⁾.

⁽¹⁾ One can see that an arbitrary vector \mathbf{a} orthogonal to vector \mathbf{N} ("axis") changes to vector $-\mathbf{a}$.