

Fast Recovery Diodes (Hockey PUK Version), 600 A

PRIMARY CHARACTERISTICS				
I _{F(AV)} 600 A				
Package	B-43			
Circuit configuration	Single			

FEATURES

- High power fast recovery diode series
- 1.0 µs to 2.0 µs recovery time
- High voltage ratings up to 2200 V
- High current capability
- · Optimized turn-on and turn-off characteristics
- Low forward recovery
- · Fast and soft reverse recovery
- Press PUK encapsulation
- Case style conform to JEDEC® B-43
- Maximum junction temperature 125 °C
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- Snubber diode for GTO
- · High voltage freewheeling diode
- Fast recovery rectifier applications

MAJOR RATINGS AND CHARACTERISTICS						
	TEST CONDITIONS					
PARAMETER	TEST CONDITIONS	S10	S15	S20	UNITS	
1		600	600	600	Α	
I _{F(AV)}	T _{hs}	55	55	55	°C	
1		942	942	942	Α	
I _F (RMS)	T _{hs}	25	25	25	°C	
1	50 Hz	8320	8320	8320	- A	
I _{FSM}	60 Hz	8715	8715	8715		
l ² t	50 Hz	346	346	346	kA ² s	
	60 Hz	316	316	316		
V _{RRM}	Range	400 to 1000	1200 to 1600	2000 to 2200	V	
		1.0	1.5	2.0	μs	
t _{rr}	T _J	25	25	25	°C	
TJ		-40 to +125	-40 to +125	-40 to +125		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 125 °C mA			
	04	400	500				
VS-SD603CS10C	08	800	900				
	10	1000	1100				
	12	1200	1300	45			
VS-SD603CS15C	14	1400	1500	45			
	16	1600	1700				
VC CDC00C C00C	20	2000	2100				
VS-SD603CS20C	22	2200	2300				

Revision: 11-Jan-18 1 Document Number: 93178

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	I _{F(AV)}	180° conduction, half sine wave		600 (300)	Α	
at heatsink temperature	. (*)	Double sid	e (single side) o	coolea	55 (75)	°C
Maximum RMS current	I _{F(RMS)}	25 °C heat	sink temperatu	re double side cooled	942	
		t = 10 ms	No voltage		8320	
Maximum peak, one-cycle	leo,	t = 8.3 ms	reapplied		8715	Α
non-repetitive forward current	I _{FSM}	t = 10 ms	100 % V _{RRM}		7000	
		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_{.1} = T_{.1}$	7330	
	l ² t	t = 10 ms	No voltage	maximum	346	kA ² s
Maximum I ² t for fusing		t = 8.3 ms	reapplied		316	
I Waxii idiii i-t ioi iusiiig		t = 10 ms	100 % V _{RRM}		245	
		t = 8.3 ms	reapplied		224	
Maximum I ² √t for fusing	I²√t	t = 0.1 to 10 ms, no voltage reapplied			3460	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum			1.36	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			1.81	V
Low level of forward slope resistance	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum			0.87	mW
High level of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.67	11100
Maximum forward voltage drop	V_{FM}	$I_{pk} = 1885$	A, $T_J = 25 ^{\circ}\text{C}$; t_p	= 10 ms sinusoidal wave	2.97	V

RECO	RECOVERY CHARACTERISTICS							
	MAXIMUM VALUE AT T _J = 25 °C	TEST CONDITIONS		TYPICAL VALUES AT T _J = 125 °C				
CODE	t _{rr} AT 25 % I _{RRM} (µs)	I _{pk} SQUARE PULSE (A)	dl/dt (A/µs)	V _r (V)	t _{rr} AT 25 % I _{RRM} (µs)	Q _{rr} (μC)	I _{rr} (A)	I _{FM} t _{rr}
S10	1.0				2.0	45	34	dir/ dt Q _{rr}
S15	1.5	1000	25	-30	3.2	87	51	I I I I I I I I I I I I I I I I I I I
S20	2.0				3.5	97	55	, ,,

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating junction temperature range	TJ		-40 to 125	°C	
Maximum storage temperature range	T _{Stg}		-40 to 150	C	
Maximum thermal resistance,	R _{thJ-hs}	DC operation single side cooled	0.076	K/W	
junction to heatsink		DC operation double side cooled	0.038		
Mounting force, ± 10 %			9800 (1000)	N (kg)	
Approximate weight			83	g	
Case style		See dimensions - link at the end of datasheet	B-4	3	

△R _{thJ-hs} CONDUCTION							
CONDUCTION ANGLE	SINUSOIDAL C	ONDUCTION	RECTANGULA	R CONDUCTION	TEST CONDITIONS	UNITS	
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS		
180°	0.006	0.007	0.005	0.005			
120°	0.008	0.008	0.008	0.008			
90°	0.010	0.010	0.011	0.011	$T_J = T_J$ maximum	K/W	
60°	0.015	0.015	0.016	0.015			
30°	0.026	0.025	0.026	0.025			

Note

[•] The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - Current Ratings Characteristics

Fig. 4 - Current Ratings Characteristics

Fig. 5 - Forward Power Loss Characteristics

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 9 - Forward Voltage Drop Characteristics

Fig. 10 - Thermal Impedance $Z_{thJ\text{-}hs}$ Characteristics

Fig. 11 - Typical Forward Recovery Characteristics

www.vishay.com

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 12 - Recovery Time Characteristics

Fig. 13 - Recovery Charge Characteristics

Fig. 14 - Recovery Current Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 15 - Recovery Time Characteristics

Fig. 16 - Recovery Charge Characteristics

Fig. 17 - Recovery Current Characteristics

Fig. 18 - Recovery Time Characteristics

Fig. 19 - Recovery Charge Characteristics

Fig. 20 - Recovery Current Characteristics

Fig. 21 - Maximum Total Energy Loss Per Pulse Characteristics

Fig. 22 - Maximum Total Energy Loss Per Pulse Characteristics

Fig. 23 - Maximum Total Energy Loss Per Pulse Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

|**2**| - Diode

Essential part number

4 - 3 = fast recovery

5 - C = ceramic PUK

6 - Voltage code x 100 = V_{RRM} (see Voltage Ratings table)

t_{rr} code (see Recovery Characteristics table)

8 - C = PUK case B-43

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95249			

B-43

DIMENSIONS in millimeters (inches)

Quote between upper and lower pole pieces has to be considered after application of mounting force (see Thermal and Mechanical Specifications)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.