

${f EDGEWOOD}$

RESEARCH, DEVELOPMENT & ENGINEERING CENTER

U.S. ARMY SOLDIER AND BIOLOGICAL CHEMICAL COMMAND

ERDEC-TR-548

SULFUR CHEMILUMINESCENCE DETECTION COMPARED TO SULFUR FLAME PHOTOMETRIC DETECTION

Michael W. Ellzy L. Gail Janes

RESEARCH AND TECHNOLOGY DIRECTORATE

December 1998

Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank,	2. REPORT DAT	TE	3. REPORT TYPE AND	DATES CO	OVERED
	1998 Dec	ember	Final; 94 Jan -	94 Mar	
4. TITLE AND SUBTITLE				5. FUNDII	NG NUMBERS
Sulfus Chamiltuminasanas D	stastian Commons	al &a. C. (16) as 1	Clama Dhatamatria		
Sulfur Chemiluminescence D	etection Compare	a to Sultur I	Flame Photometric	PR-1	0262622A553
Detection				''''	02020227000
6. AUTHOR(S)					
o. Admon(d)					
Ellzy, Michael W., and Janes	I Gail				
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS	(ES)		8. PERFC	ORMING ORGANIZATION
				REPOR	RT NUMBER
DIR, ERDEC, ATTN: SCBRE	-RTC, APG, MD 2	21010-5424			
				ERD	EC-TR-548
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND AD	DRESS(ES)			ISORING/MONITORING
				AGEN	ICY REPORT NUMBER
11. SUPPLEMENTARY NOTES				l.,	
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT			I 40h DICT	RIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY S	IATEMENT			120. 0151	RIBUTION CODE
Approved for public release;	distribution is unlin	nited.			
•					
13. ABSTRACT (Maximum 200 words,					
Detection of compounds cont	aining culfur botor	otom io trac	ditionally accomplished	d using 4	Nome abatemetria
Detection of compounds cont detection (FPD). Sulfur chen	alluminoscopco do	toction (SC	D) is an alternative to	a using i	his report compares the
FPD with two SCD configurat	ions using various	sulfur cont	aining compounds as	nrobee	Attention was focused on
detector linearity versus resp		Sunui Cont	aning compounds as	probes.	Attention was locused on
	J.1.001				
	•				
				•	
14. SUBJECT TERMS					15. NUMBER OF PAGES
Flame photometric detector		Sulfur het	eratom		45
Sulfur chemiluminescence de	tector		matography		19
2 5.16.1		5 45 011101	natography		16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASS	IFICATION To	19. SECURITY CLASSIFICA	TION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE		OF ABSTRACT		
UNCLASSIFIED	UNCLASSIF	IED	UNCLASSIFIED		UL

Blank

PREFACE

The work described in this report was authorized under Project No. 10262622A553, CB Defense and General Investigation. This work was started in January 1994 and completed in March 1994.

The use of either trade or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for public release. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service.

Blank

CONTENTS

1.	INTRODUCTION	7
	EXPERIMENTATION	
2.1	Instrumentation	
2.2	GC Parameters	
2.3	Chemiluminescence Parameters	8
2.4	Materials	
3.	DISCUSSION AND RESULTS	
•		
4.	CONCLUSION	11

TABLES

1	Chemical Structure and Retention Times of the Components	. 12
2	Comparison of Sulfur Detector Responses for Flame Photometric and Chemiluminescence for 2-Thiophene acetonitrile and 2-Chloroethylethyl Sulfide	. 13
3	Comparison of Sulfur Detector Responses for Flame Photometric and Chemiluminescence for Tert-Butyl Sulfide and 2-Chloroethyl methyl Sulfide	. 14
4	Comparison of Sulfur Detector Responses for Flame Photometric and Chemiluminescence for 1,4-Thioxane and 1,4-Dithiane	. 15
5	Comparison of Sulfur Detector Responses for Flame Photometric and Chemiluminescence for 2,2'-Dichloroethyl Sulfide and Dibenzothiophene	. 16
6	Comparison of Sulfur Detector Responses for Flame Photometric and Chemiluminescence for Octyl Sulfide and Propyl Sulfide	. 17
7	Comparison of Sulfur Detector Responses for Flame Photometric and Chemiluminescence for Diethyl Sulfide and Ethyl Methyl Sulfide	. 18
8	Physical Properties of Compounds Analyzed in Table 1	. 19

SULFUR CHEMILUMINESCENCE DETECTION COMPARED TO SULFUR FLAME PHOTOMETRIC DETECTION

1. INTRODUCTION

Sulfur detection is a selective means of screening complex matrices for the presence of chemical warfare agents (CWA) bis(2-chloroethyl) sulfide (HD), bis[2(2-chloroethylthio)ethyl]ether (T), and associated analogs such as thiodiglycol and 1,4-dithiane. In the continuing effort to improve detection capability, the use of chemiluminescence has been investigated. Selected compounds were analyzed with triplicate injections and detection compared between the Sievers model 350B, Sievers model 355, and Varian flame photometric detectors (FPD). Chromatographic conditions were equivalent where possible.

Our goal for this detection capability is to provide increased sensitivity for the analysis of soils, waters, brines, and decontamination solutions for the presence of CWAs, precursors, and decomposition products. Work is currently performed using the Varian FPD. Farwell and Barinaga¹ describe the principal of this type of detection. Dyson² thoroughly describes the construction and principal of chemiluminescence.

2. EXPERIMENTATION

2.1 <u>Instrumentation</u>.

A Varian VISTA 6000 gas chromatograph (GC) was equipped with an FPD in the sulfur mode, on-column injection port, and a J&W, DB-608, 30 m, 0.53 mm i.d., 0.83 μ m film column with helium flowing at 10 mL/min. A Leap Technologies (Chapel Hill, NC) model CTC A200S autosampler was used to perform the 1 μ L sample injections. Data and chromatograms were generated on a Varian Instruments (Valencia, CA) 402 data system.

A Hewlett-Packard (HP) (Wilmington, DE) 5880A GC equipped with a flame ionization detector (FID) was interfaced to a chemiluminescence detector, model 355, supplied by Sievers Research, Incorporated (Boulder, CO). The GC was equipped with an on-column injection port and a Restek (Bellefonte, PA) Rtx-3 m, 0.53 mm i.d., 1.0 μ m film, or a J&W, DB-5, 30 m, 0.53 mm i.d., 1.5 μ m film column with helium flowing at 10 mL/min. A Leap Technologies model CTC A200S autosampler was used to perform the 1 μ L sample injections. Data and chromatograms were generated on an HP 5880A integrator.

An HP 5890 series II GC equipped with an FID was interfaced to a chemiluminescence detector, model 350B, supplied by Sievers Research, Incorporated. The GC was equipped with a vaporization liner in the injection port and a Restek Rtx-35, 30 m, 0.53 mm i.d., 1.0 µm film column with helium flowing at 10 mL/min. The injection port design required a

¹Farwell, S.O., and Barinaga, C.J., "Sulfur-Selective Detection with the FPD: Current Enigmas, Practical Usage, and Future Directions," J. of Chromatographic Science Volume 24 (1986).

²Dyson, M., "The Sievers SCD 350 Detector," Analytical Proceedings Volume 30 (1993).

1 mL/min split flow and 0.5 mL/min septum purge. An HP 7673 auto injector was used to perform the 1 μ L sample injections. An HP 3396A integrator was used to generate the data and chromatograms.

2.2 GC Parameters.

Oven Temperature Initial Value: 60 °C

Initial Hold Time: 3 min

Program Rate: 10°/min

Oven Temperature Final Value: 250 °C

Final Hold Time: 5 min

Injector Temperature: 250 °C

Detector Temperature on Varian: 300 °C

2.3 Chemiluminescence Parameters.

Sievers Chemiluminescence Detector model 350

Air: 450 mL/min at pressure of 70 psi

Hydrogen: 210 mL/min at pressure of 60 psi

Vacuum at detector module 12.5 torr

Air to ozone generator set for 0.6 psi

Sievers Chemiluminescence Detector model 355

Air: 120 mL/min at pressure of 34 psi

Hydrogen: 90 mL/min at pressure of 32 psi

Vacuum at detector module 11 torr

Air to ozone generator set for 0.6 psi

2.4 <u>Materials</u>.

The standards were prepared from Baxter, Burdick, and Jackson capillary GC/GC/mass spectroscopy grade hexane. Bis(2-chloroethyl) sulfide was obtained from the Chemical Transfer Facility, U.S. Army Edgewood Research, Development and Engineering

NOTE: The initial temperature for ethyl methyl sulfide was 40 °C.

Center (ERDEC). The simulants, 2-chloroethyl ethyl sulfide (CEES), and O,S-diethylmethyl-phosphonothiolate (OS DEMP),* were synthesized by chemists in Research and Technology Directorate, ERDEC. The remaining compounds were supplied as follows:

Aldrich Chemical Company, Incorporated, Milwaukee, WI:

Ethyl methyl sulfide

Propyl sulfide

Octyl sulfide

tert-Butyl sulfide

2-Chloroethyl methyl sulfide

1.4-Thioxane

1,4-Dithiane

Dibenzothiophene

2-Thiophene acetonitrile

2-Mercaptoethanol*

2-(Methylthio)ethanol*

Alfa, Johnson Matthey Catalog Company, Incorporated, Ward Hill, MA: Diethyl sulfide

3. DISCUSSION AND RESULTS

The concentrations of the compounds were prepared in a range of 0.5 to 20 μ g/mL. The range for each compound was selected to obtain an equivalent concentration range among all compounds. Four concentrations were analyzed in triplicate for each compound. The retention times and chemical structures of the compounds are listed in Table 1.

Detector responses have been tabulated for each compound in Tables 2-7. Compound name, concentration, column type, average response, and standard deviation are tabulated. Overall examination shows the FPD could not detect sulfur at the lowest concentration range of 0.54 to 1.2 µg/mL for all compounds analyzed except 1,4-dithiane and dibenzothiophene. Sievers model 355 could not detect the same concentration range for all compounds except tert-butyl sulfide and ethyl methyl sulfide. Table 8 provides some physical properties necessary for computing sulfur concentration for compounds analyzed.

^{*}These compounds were not used due to very poor chromatography.

The Sievers chemiluminescence detector model 350B was superior to the Varian FPD and Sievers chemiluminescence detector model 355 by linearity and sensitivity. The Sievers model 350B performed well for all of the compounds analyzed.

The Varian FPD, although not as sensitive as the Sievers model 350B, did detect all of the compounds and maintained linearity.

The Sievers model 355 did not detect the 1,4-thioxane, dibenzothiophene, or octyl sulfide. This detector was not as sensitive as the FPD for 1,4-dithiane and ethyl methyl sulfide. However, it was more sensitive for tert-butyl sulfide; otherwise, it performed the same as the FPD.

To verify that observed sensitivity differences between Sievers models was neither probe nor detector module related, we interchanged the detector units on the HP 5880 and HP 5890. The resulting differences were insignificant.

This lack of response between the Sievers models 355 and 350B is believed to be due to a degree of cooling experienced with the Sievers model 355 plasma flame versus the FID open flame construction required for the Sievers model 350B. A second assumption is the stabilization compounds experience because of functional group shield and/or surrounding electron clouds. These hypotheses require further investigation.

The chemiluminescence detector technique used to screen decontamination solutions for the presence of specific sulfur-containing compounds is very useful due to the absence of hydrocarbon interferences, which exist with FPD analysis. The technique must be coupled to a switching valve to vent halogenated solvents. Our work shows halogenated solvents drastically reduce the sensitivity upon the initial injection of any extracted sulfur analyte. Our specific work was performed with methylene chloride and chloroform. We also found that methanol and ethanol reduced the sensitivity of both the Sievers models (350B and 355). We strongly recommend the use of either hexane or any similar hydrocarbon.

The second sulfur concentration range not detected occurred with the FPD analysis of 2-thiophene acetonitrile, octyl sulfide, and methyl ethyl sulfide. The Sievers model 355 did not detect the second concentration range for analytes 2-thiophene acetonitrile, 1,4-thioxane, 1,4-dithiane, dibenzothiophene, and octyl sulfide. This detector also failed to detect all concentrations for 1,4-thioxane, dibenzothiophene, and octyl sulfide. The Sievers model 350B detected all compounds and concentrations.

Data trends indicated lower concentration values result in higher value for the standard deviation. For example, the percent standard deviation for the concentration of tert-butyl sulfide dropped from 4% for 1.701 μ g/mL to 1% at 6.804 μ g/mL for the FPD, from 7 to 3% for Sievers model 350B, and from 14 to 7% over the same concentration range. The high range on the model 350B is attributed to the difference observed in on-column injection performed on the Varian 6000 and HP 5880 versus the vaporization configuration standard on the HP 5890 Series II megabore injectors.

4. CONCLUSION

Examination based on sensitivity suggests the Sievers detectors (models 355/350B) in some cases performed better than the Varian flame photometric detectors (FPD). Overall, examination indicates the FPD is the recommended detector for screening unknown sulfur compounds. Our experiments indicate that the Sievers sulfur sensitivity is compound structure related. This is exemplified by comparison of responses measured for 1,4-thioxane on the Sievers model 355 versus 350B. Unexpectedly, the model 350B detected all compounds. It is theorized that the reduced response on the Sievers model 355 is attributed to the plasma flame this system uses. Further study is required.

TABLE 1. CHEMICAL STRUCTURE AND RETENTION TIMES OF THE COMPONENTS

	CHEMICAL NAME	CHEMICAL STRUCTURE	RT
1	2-Chloroethylethyl sulfide	CI-CH ₂ CH ₂ -S-CH ₂ CH ₃	5.0
2	O,S-Diethylmethyl- phosphonothiolate	O CH ₃ -P-SCH ₂ CH ₃ OCH ₂ CH ₃	*
3	tert-butyl sulfide	[(CH ₃) ₃ C] ₂ S	3.5
4	2-chloroethyl methyl sulfide	CICH ₂ CH ₂ SCH ₃	3.4
5	2-Thiophene acetonitrile	C ₆ H ₅ NS	11.6
6	1,4-Thioxane	C₄H ₈ OS	4.6
7	1,4-Dithiane	C₄H ₈ S₂	8.6
8	2-Mercaptoethanol	HSCH₂CH₂OH	
9	Dibenzothiophene	C ₁₂ H ₈ S	18.7
10	Diethyl sulfide	(CH ₃ CH ₂) ₂ S	1.2
11	Ethyl methyl sulfide	C₃H ₈ S	1.2
12	Octyl sulfide	C ₁₆ H ₃₄ S	18.1
13	Propyl sulfide	C ₆ H₁₄S	3.5
14	2-(methylthio)ethanol	CH₃SCH₂CH₂OH	*
15	2,2'-Dichloroethyl sulfide	CICH ₂ CH ₂ SCH ₂ CH ₂ CI	10.0
			•

^{*}These compounds were dropped from the study due to very poor chromatography.

TABLE 2. COMPARISON OF SULFUR DETECTOR RESPONSES FOR FLAME PHOTOMETRIC AND CHEMILUMINESCENCE FOR 2-THIOPHENE ACETONITRILE AND 2-CHLOROETHYLETHYL SULFIDE

	2-Thiophene Acetonitrile													
	V	arian Ff	D			Sieve	rs/HP 5	880		Sie	vers/h	1P 5890		
Molecular Weight(5)		DB-608 0.83 µr			5 µm			Rtx-35 Rtx-35 1.0 μm						
(µg/mL)	x	%	n	х	%	n	x	%	n	x	%	n		
0.6	-	-	-	-	-	-	-	-	-	34035	2	583		
1.2	-	-	-	-	-	-	-	-	-	91338	13	11985		
3.0	78	6	5	5 73 36 27 189012							6	10561		
6.0 170 2 4 132 14 18 300142 10 30580														

	2-Chloroethylethyl Sulfide													
Varian FPD Sievers/HP 5880 Sievers/HP 5890														
Molecula Weight (DB-6			DB-5 1.5 μ			Rtx-35		Rtx-35 1.0 µm				
(µg/mL)	х	%	n	x	%	n	х	%	n	x	%	n		
0.5	-	-	-	-	-	-	-	-	-	41789	3	1348		
1.1	93	3	3	245	45	111	114	7	8	118613	17	19692		
5.4	224	3	7	585	3	15	497	4	22	586352	5	28197		
10.8	528	2	10	1099	099 3 29 1133 10 11 1295657 9 1190									

^{*}See Table 8 for compounds' physical properties.

TABLE 3. COMPARISON OF SULFUR DETECTOR RESPONSES FOR FLAME PHOTOMETRIC AND CHEMILUMINESCENCE FOR TERT-BUTYL SULFIDE AND 2-CHLOROETHYL METHYL SULFIDE

	tert-Butyl Sulfide													
	١	/arian	FPD		S	ievers/	HP 5880		•	Sieve	rs/HP	5890		
Molecula Weight (3		DB-60 0.83 µ	_)B-5 I.5 µm	1		x-35 0 µm		Rtx 1.0				
(µg/mL) x % n				х	%	n	x	%	n	×	%	n		
0.68	-	-	-	375	7	2 5	269	7	19	113550	4	4436		
1.70	150	4	6	931	6	58	742	7	51	310947	14	44342		
3.40	458	3	13	2369	2	43	1461	6	81	597715	6	37964		
6.80 743 1 10 3612 2 70 3281 3 87 1166566 7 77575														

	2-Chloroethyl Methyl Sulfide													
	V	'arian	FPD		Sie	vers/HF	5880			Sieve	rs/HF	5890		
Molecular DB-608 DB-5 Rtx-35 Rtx-35 Weight (4)* 0.83 μm 1.5 μm 1.0 μm 1.0 μm														
(µg/mL)	х	%	n	×	%	n	x	%	n	x	%	n		
1.0	-	-	-	_	-	-	-	•	-	74637	4	3071		
2.0	56	11	5	37	70	26	107	35	38	112487	4	3327		
4.0	134	1	2	165	23	38	161	32	15	207541*	2	5075		
10.0	10.0 348 8 3 428 12 52 320 10 32									331724	3	11412		

*See Table 8 for compounds' physical properties.

NOTE: For the HP 5890, the concentration of the third vial was 6 µg/mL, instead of 4 µg/mL.

TABLE 4. COMPARISON OF SULFUR DETECTOR RESPONSES FOR FLAME PHOTOMETRIC AND CHEMILUMINESCENCE FOR 1,4-THIOXANE AND 1,4-DITHIANE

					1,	4-Thic	xane						
	Va	arian F	PD		Sie	vers/H	IP 588	0		Siever	s/HP 5	890	
Molecular Weight (6)		0B-608 0.83 µn		DB-5 Rtx-35 1.5 μm 1.0 μm						Rtx-35 1.0 µm			
(µg/mL)	n	х	%	n	x	%	n	x	%	n			
1.15	-	-	-	-	_	-	-	-	-	70873	3	1932	
2.89	154	3	5	-	-	-	-	-	-	167142	2	2695	
5.77	335	0.5	21	-	-	-	-	-	-	340920	0.4	1332	
11.54	741	0.3	2	-	-	-	-	-	-	664329	5	35213	

						1,4-Dit	hiane							
	Varian FPD Sievers/HP 5880 Sievers/HP 5890													
Molecular Weight (7		DB-608 0.83 μr			DB-5 1.5 μ	m	Rtx-35 1.0 µm			Rtx-35 1.0 µm				
(µg/mL)	(μg/mL) x % n >					n	x	%	n	×	%	n		
0.67	58	17	10	-	-	-	-	-	-	64856	4	2711		
1.69	164	2	4	-	-	-	-	-	-	154719	0.5	840		
3.37	345	0.3	1	-	-	-	61	28	17	320976	0.5	1540		
6.74	74 711 0.1 1 194 21 41 635961 2 1380									13802				

^{*}See Table 8 for compounds' physical properties.

TABLE 5. COMPARISON OF SULFUR DETECTOR RESPONSES FOR FLAME PHOTOMETRIC AND CHEMILUMINESCENCE FOR 2,2'-DICHLORO-ETHYL SULFIDE AND DIBENZOTHIOPHENE

				2	,2'-Dich	loroeth	yl Sulfid	е				
	V	arian F	PD		Si	evers/H	P 5 880			Siever	s/HP 5	890
Molecular DB-608 DB-5 Rtx-35 Rtx-35 Weight (15)* 0.83 μm 1.5 μm 1.0 μm 1.0 μm												
(µg/mL)	x	%	n	x	%	n	x	%	n	x	%	n
0.91	-	-	-	-	-	-	-	-	-	30186	3	961
2.26	189	1	2	-	-	-	114	14	17	77757	4	2751
4.53	312	1	3	46	69	32	215	11	23	155300	0.6	949
9.05	439	1	6	147	31	46	433	1	6	301061	1	3186

	Dibenzothiophene													
	V	/arian FF	PD		s	ievers	/HP 58	80		Sieve	ers/HP	5890		
Molecular Weight (9		DB-608 0.83 µm	1		DB-5 1.5 µm	ı	Rtx-35 1.0 µm			Rt 1.0				
(µg/mL)	x	%	n	х	%	n	x	%	n	x	%	n		
2.11	77	3	2	-	-	-	-	-	-	53139	5	2719		
4.22	134	3	3	-	-	-	-	-	-	108612	4	3830		
8.44	274	0.4	1	-	-	-	-	-	•	230534	2	4213		
16.9	16.9 602 0.5 3									459431	2	10234		

^{*}See Table 8 for compounds' physical properties.

TABLE 6. COMPARISON OF SULFUR DETECTOR RESPONSES FOR FLAME PHOTOMETRIC AND CHEMILUMINESCENCE FOR OCTYL SULFIDE AND PROPYL SULFIDE

Octyl Sulfide												
	V	arian F	PD		S	ievers/l	HP 5880	HP 5880 Sievers/HP 5890				5890
Molecular DB-608 Weight (12)* 0.83 µm				DB-5 1.5 μm			Rtx-35 1.0 µm			Rtx-35 1.0 µm		
(µg/mL)	x	%	n	x	%	n	x	%	n	х	%	n
1.17	-	-	-	-	-	-	-	-	-	17097	8	1382
2.35	-	-	-	•	-	-	-	-	-	24429	2	480
4.70	53	4	2	-	-	-	-	-	•	39344	5	2075
9.40	155	2	3	-	-	-	-	-	-	71367	3	2078

Propyl Sulfide												
	V	arian FF	D	Sievers/HP 5880						Sievers/HP 5890		
Molecular Weight (1	DB-5 Rtx-35 1.5 μm 1.0 μm				Rtx-35 1.0 µm							
(µg/mL)	x	%	n	x	%	n	x	%	n	x	%	n
0.84	-	-	•	-	-	•	-	-	-	40104	5	1993
2.10	141	1	2	-	-	-	232	7	16	96056	3	3255
4.21	273	1	4	-	-	-	522	11	56	165330	1	2403
8.41	656	0.5	3	-	-	-	1185	2	18	344426	11	36882

^{*}See Table 8 for compounds' physical properties.

TABLE 7. COMPARISON OF SULFUR DETECTOR RESPONSES FOR FLAME PHOTOMETRIC AND CHEMILUMINESCENCE FOR DIETHYL SULFIDE AND ETHYL METHYL SULFIDE

Diethyl Sulfide												
	Va	arian Fl	PD		Sie	evers/	HP 58 8	0		Sievers/HP 5890		
Molecular Weight (1	1	DB-5 1.5 µm			Rtx-35 1.0 μm			Rtx-35 1.0 μm				
(µg/mL)	x	%	n	х	%	n	×	%	n	x	%	n
0.71	-	-	-	-	-	-	-	-	-	23958	4	937
1.77	78	1	1	-	-	-	160	8	12	56274	2	1257
3.54	154	0.6	1	-	-	-	287	6	18	114905	13	15451
7.08	384	0.3	1	-	-	-	664	4	29	203554	3	5318

Ethyl Methyl Sulfide												
	٧	arian Fl	PD	Sievers/HP 5880						Sievers/HP 5890		
Molecular DB-608 DB-5 Rtx-35 Rtx-35 Weight (11)* 0.83 μm 1.5 μm 1.0 μm 1.0 μm												
(µg/mL)	x	%	n	x	%	n	×	%	n	x	%	n
0.78	_	-	-	-	-	-	35	77	27	36390	3	1090
1.55	-	-	-	•	-	-	97	32	31	77578	3	2506
3.11	157	1	2	-	-	-	200	12	23	162882	4	6010
6.21	361	0.3	1	-	-	-	436	5	22	338485	1	3525

^{*}See Table 8 for compounds' physical properties.

Since above data were not favorable, the compound was analyzed again. See below.

(µg/mL)	x	%	n
0.77	144	72	125
1.55	2142	19	414
3.11	24603	4	866
6.21	109520	25	2617

TABLE 8. PHYSICAL PROPERTIES OF COMPOUNDS ANALYZED IN TABLE 1

COMPOUND NO.	MOLECULAR WT	BOILING PT	SULFUR CONTENT
1	125.0	156-157	0.256
2	168.0	223	0.190
3	146.3	147-151	0.219
4	110.6	55-56 (30 MM)	0.289
5	123.0	115-120 (22 MM)	0.260
6	104.0	147 (755 MM)	0.308
7	120.2	*	0.266
8	78.1	157-158	0.410
9	184.2	*	0.174
10	90.0	91	0.356
11	76.1	66-67	0.420
12	258.5	180 (10 MM)	0.124
13	118.2	142-143	0.271
14	92.0	169-171	0.356
15	159.0	227.8	0.201

^{*}Compound is a solid.