# Quine's Fluted Fragment is Non-elementary

#### Ian Pratt-Hartmann

(Joint work with Wiesław Szwast and Lidia Tendera)

University of Manchester/Uniwersytet Opolski email: ipratt@cs.man.ac.uk

Warsaw: February, 2016

# Outline

Overview of results

Lower bound proof

Conclusion

- Fragment identified by W.V.Quine in 1968:
  - homogeneous m-adic formulas (generalization of monadic fragment)
  - later generalized to fluted fragment
- Examples of fluted formulas:

# No student admires every professor

$$\forall x_1(\mathsf{student}(x_1) \to \neg \forall x_2(\mathsf{prof}(x_2) \to \mathsf{admires}(x_1, x_2)))$$

### No lecturer introduces any professor to every student

```
\forall x_1(\mathsf{lecturer}(x_1) \to \neg \exists x_2(\mathsf{prof}(x_2) \land \forall x_3(\mathsf{student}(x_3) \to \mathsf{intro}(x_1, x_2, x_3)))).
```

 Order of quantification of variables matches order of appearance in predicates.

- Fragment identified by W.V.Quine in 1968:
  - homogeneous m-adic formulas (generalization of monadic fragment)
  - later generalized to fluted fragment
- Examples of fluted formulas:

```
No student admires every professor \forall (student( ) \rightarrow \neg \forall (prof( ) \rightarrow admires( )))
```

```
No lecturer introduces any professor to every student \forall (lecturer( ) \rightarrow \neg \exists (prof( )\land \forall (student( ) \rightarrow intro( )))).
```

 Order of quantification of variables matches order of appearance in predicates.

- Let  $x_1, x_2, \ldots$  be a fixed sequence of variables.
- The fluted fragment with k free variables,  $\mathcal{FL}^{[k]}$ , is defined by simultaneous induction for all k:
  - any atom  $p(x_\ell,\ldots,x_k)$  is in  $\mathcal{FL}^{[k]}$ ;
  - $\mathcal{FL}^{[k]}$  is closed under Boolean operations;
  - $\mathcal{FL}^{[k]}$  contains  $\exists x_{k+1}\varphi$  and  $\forall x_{k+1}\varphi$  for any  $\varphi \in \mathcal{FL}^{[k+1]}$ .
- The fluted fragment,  $\mathcal{FL}^{[k]}$  is the union:

$$\mathcal{FL} = \bigcup_{k>0} \mathcal{FL}^{[k]}.$$

• For all m > 0, we define  $\mathcal{FL}^m$ , to be the set of fluted formulas containing at most the variables  $x_1, \ldots, x_m$ , free or bound.

#### History:

- Noah (1980): the generalization of the homogeneous m-adic fluted formulas to the fluted fragment makes decidability of satisfiability non-obvious.
- Purdy (1996):  $\mathcal{FL}$  has the finite model property; hence its satisfiability problem is decidable.
- Purdy (2002):  $\mathcal{FL}$  has the exponential-sized model property; hence its satisfiability problem is in NEXPTIME.

### • History:

- Noah (1980): the generalization of the homogeneous m-adic fluted formulas to the fluted fragment makes decidability of satisfiability non-obvious.
- Purdy (1996): FL has the finite model property; hence its satisfiability problem is decidable.
- Purdy (2002):  $\mathcal{FL}$  has the exponential-sized model property; hence its satisfiability problem is in NEXPTIME.
- The claims in Purdy 2002 are false:
  - satisfiable formulas of  $\mathcal{FL}^{2m}$  force *m*-tuply exponential models;
  - the satisfiability problem for  $\mathcal{FL}^{2m}$  is m-NEXPTIME-hard.

### Outline

Overview of results

Lower bound proof

Conclusion

- Let int<sub>1</sub> and p<sub>0</sub>,..., p<sub>n-1</sub> be unary predicates. We refer to any object satisfying int<sub>1</sub> (in some structure) as a 1-integer.
- For any 1-integer b, define  $\operatorname{val}_1(b)$  to be the integer in the range  $[0, 2^n]$  determined by b's satisfaction of  $p_0, \ldots, p_{n-1}$ .
- It is routine to define (fluted) formulas fixing the predicates

$$zero_1$$
  $eq_1$   $pred_1$ 

to have the expected meaning, and enforcing the property:

1-covering:  $val_1 : int_1^{\mathfrak{A}} \to [0, 2^n - 1]$  is surjective.

- Let int<sub>1</sub> and p<sub>0</sub>,..., p<sub>n-1</sub> be unary predicates. We refer to any object satisfying int<sub>1</sub> (in some structure) as a 1-integer.
- For any 1-integer b, define  $val_1(b)$  to be the integer in the range  $[0, 2^n]$  determined by b's satisfaction of  $p_0, \ldots, p_{n-1}$ .
- It is routine to define (fluted) formulas fixing the predicates

$$zero_1$$
  $eq_1$   $pred_1$ 

to have the expected meaning, and enforcing the property:

1-covering:  $\mathsf{val}_1 : \mathsf{int}_1^\mathfrak{A} \to [0, \mathfrak{t}(1, n) - 1]$  is surjective.

Here:

$$\mathfrak{t}(m,n)=2^{\int_{\mathbb{R}^n}^{2^n}} m^{2's}$$

- For all k ( $2 \le k \le m$ ) we introduce a unary predicate  $int_k$ . Any object satisfying  $int_k$  will be called a k-integer.
- For all k  $(1 \le k < m)$  we introduce a binary predicate  $in_k$ , and for any (k+1)-integer b, we define a function  $val_{k+1}(b)$



 $s_i = \begin{cases} 1 & \text{if } \mathfrak{A} \models \text{in}_k[a, b] \text{ for some 1-integer } a \text{ s.t. } \text{val}_k(a) = i; \\ 0 & \text{otherwise.} \end{cases}$ 

where  $0 \le i < N = \mathfrak{t}(k, n)$ .

- Let zero<sub>k</sub> be a unary predicate and eq<sub>k</sub>, pred<sub>k</sub> binary predicates.
- By insisting that A satisfies certain fluted formulas, we can ensure that, for all k-integers b and b':

$$\mathfrak{A} \models \operatorname{eq}_k[b,b'] \Leftrightarrow \operatorname{val}_k(b) = \operatorname{val}_k(b')$$
 $\mathfrak{A} \models \operatorname{pred}_k[b,b'] \Leftrightarrow \operatorname{val}_k(b') = \operatorname{val}_k(b) - 1 \mod \mathfrak{t}(k,n)$ 
 $\mathfrak{A} \models \operatorname{zero}_k[b] \Leftrightarrow \operatorname{val}_k(b') = 0.$ 

• Suppose  $\mathfrak A$  also makes the following true:

$$\exists x_1(\mathsf{int}_k(x_1) \land \mathsf{zero}_k(x_1)) \\ \forall x_1(\mathsf{int}_k(x_1) \rightarrow \exists x_2(\mathsf{int}_k(x_2) \land \mathsf{pred}_k(x_1, x_2))).$$

Then  ${\mathfrak A}$  satisfies the property

*k*-covering: val<sub>k</sub>: int<sub>k</sub><sup> $\mathfrak{A}$ </sup>  $\rightarrow$  [0,  $\mathfrak{t}(k,n)-1$ ] is surjective.

# Outline

Overview of results

Lower bound proof

Conclusion

• The claims of (Purdy 2002) are false. For all  $m \ge 1$ , the complexity of the satisfiability problem for  $\mathcal{FL}^m$  is

$$\lfloor m/2 \rfloor$$
-NEXPTIME-hard.

• Using a corrected version of the argument in that paper, we can also show that, for  $m \geq 3$ , any satisfiable formula of  $\mathcal{FL}^m$  has a model of (m-2)-tuply exponential size; hence, the satisfiability problem for  $\mathcal{FL}^m$  is

in 
$$(m-2)$$
-NEXPTIME.

- Furthermore, the satisfiability problems for  $\mathcal{FL}^1$  and  $\mathcal{FL}^2$  are NPTIME- and NEXPTIME-complete, respectively.
- These bounds leave a gap when  $m \ge 5$ .