Chapter 12: Heron's Formula

A. Main Concepts

Heron's Formula helps us find the area of a triangle when all three sides are known, and height is not given.

Important Formulas:

1 Semi-perimeter (s) of triangle with sides a, b, c:

$$s = (a + b + c) / 2$$

2 Area of triangle:

$$A = \sqrt{(s(s-a)(s-b)(s-c))}$$

This formula is known as Heron's Formula. It works for all types of triangles (scalene, isosceles, equilateral).

B. Area Formulas of Special Quadrilaterals & Polygons

► Rectangle:

- Area = length × breadth
- Perimeter = 2 × (length + breadth)
- Diagonal = $\sqrt{(l^2 + b^2)}$

Square:

- Area = side²
- Perimeter = 4 × side
- Diagonal = √2 × side

▲ Triangle:

- Area = ½ × base × height
- With Heron's Formula → when height not given

▼ Isosceles triangle (base = a, equal sides = b):

• Area = $\frac{1}{4} \times \sqrt{(4b^2 - a^2)}$

▲ Equilateral triangle (side = a):

• Area = $(\sqrt{3} / 4) \times a^2$

Parallelogram:

- Area = base × height
- ightharpoonup Rhombus (diagonals d₁ and d₂):

- Area = $\frac{1}{2} \times d_1 \times d_2$
- Perimeter = $4 \times \text{side or } 2 \times \sqrt{(d_1^2 + d_2^2)}$
- **Trapezium** (parallel sides a and b, height h):
 - Area = $\frac{1}{2}$ × (a + b) × h

○ **Regular Hexagon** (side = a):

Area = (3√3 / 2) × a²
(= 6 × area of equilateral triangle)

C. Key Use-Cases of Heron's Formula

- For finding the area of irregular triangles (non-right triangles)
- In word problems involving triangular plots, boards, or tiling
- Also helpful in finding cost (e.g. painting, fencing) based on area

D. Concept Explanation

Why use Heron's Formula?

In many problems, the height (altitude) of a triangle is not given, but the sides are. In such cases, we can't use the basic formula:

Area = $\frac{1}{2}$ × base × height

Instead, we calculate semi-perimeter (s), then use Heron's Formula to find the area without knowing the height.

Tip: Always check if the sum of any two sides is greater than the third side. Otherwise, triangle is not valid.

📏 E. Useful Notes and Tips

- ☑ Units: Always write units cm², m² etc.
- ☑ Square roots: If options are in decimals, approximate roots
- ✓ Use Heron's Formula first, then extend to cost/tiles/perimeter questions
- ✓ For equilateral triangle: just use direct area formula instead of Heron's
- Example Walkthrough (without calculations):

Problem: A triangle has sides 7 cm, 8 cm, 9 cm. Find area.

Step 1: Find s = (7+8+9)/2 = 12Step 2: Apply Heron's Formula: A = $\sqrt{[12(12-7)(12-8)(12-9)]}$ _

☑ Summary Table:-

Shape	Area Formula
Triangle	√[s(s-a)(s-b)(s-c)] (Heron's Formula)
Rectangle	length × breadth
Square	side ²
Parallelogram	base × height
Rhombus	$\frac{1}{2} \times d_1 \times d_2$
Trapezium	½ × (a + b) × h
Equilateral Triangle	$(\sqrt{3}/4) \times a^2$
Regular Hexagon	$(3\sqrt{3}/2) \times a^2$