7.2-1.

Use the substitution method to prove that the recurrence $T(n) = T(n-1) + \Theta(n)$ has the solution $T(n) = \Theta(n^2)$, as claimed at the beginning of Section 7.2.

Proof.

One must show that both $T(n) = O(n^2)$ and $T(n) = \Omega(n^2)$ hold to converge on the correct, asymptotically tight bound $T(n) = \Theta(n^2)$.

We first set out to prove that $T(n) = O(n^2)$. The substitution method requires us to show that $T(n) \le c n^2$ for an appropriate choice of the constant c > 0. We start by assuming that this bound holds for all positive m < n, in particular for m = n - 1, yielding $T(n - 1) \le c (n - 1)^2$. Substituting into the recurrence yields

$$\begin{array}{ll} T\left(n \right) & \leq & c \, (n-1)^2 + \Theta \left(n \right) \\ & \leq & c \, (n-1)^2 + d \, n \\ & = & c \, n^2 - 2 \, c \, n + c + d \, n \\ & \leq & c \, n^2 \end{array}$$

where the last step holds as long as $0 \le d \le c$ and $n \ge 1$. So it turns out that $T(n) = O(n^2)$. Similarly we can prove that $T(n) = \Omega(n^2)$. Therefore the recurrence $T(n) = T(n-1) + \Theta(n)$ has the solution $T(n) = \Theta(n^2)$.

^{*.} Creative Commons © 1000 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com