Assignment Project Exam Help Foundations of Computer Science UNSWITTER: // Lutores.com

Outline

Assignment Project Exam Help

Terminology and Notation

Graphtetps://tutorcs.com

Properties of Graphs

Assignment Project Exam Help

Terminology and Notation

Graphttps://tutorcs.com

Properties of Graphs

Graph theory: Historical Motivation

Assigning Project Exam Help

Can you find a route which crosses each bridge exactly once?

Δ

Graph theory: Historical Motivation

Assignment Project Exam Help

Can you find a route which crosses each bridge exactly once?

4

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Can you find a route which passes through each door exactly once?

Crossed house problem Assignment Project Exam Help https://tuto WeChatt estutores

Can you draw this without taking your pen off the paper?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Can you connect all utilities to all houses without crossing connections?

Astronomical and the students of the students

Potions	Charms	Herbology	Astronomy	Transfiguration
Harry	Rom ·//	Hakry OI C	Hermione	Hermione
Ron	Luna	George	Neville	Fred
Malfoy	Ginny	Neville	Seamus	Luna
***	\sim 1	' 4	'	•

How many examination time Got trelne Get C Shat no student

has two (or more) exams at the same time?

Graphs in Computer Science

Assignment Project Exam Help

- Dependence of the considered a massive graph where the nodes are web pages and arcs are hyperlinks.
- 2 The possible states of a program form a directed graph.
- 3 Circuit components and their connections form a graph.
- Social networks can be viewed as a graph where the nodes are users, and the edges are connections.
- Themse of the atth cas Set untirected graph where edges delineate countries.

Graphs in Computer Science

Applications of graphs in Computer Science are abundant, e.g.

Assignmentalization jeent restrant Help optimisation, e.g. timetables, utilisation of network structures,

- bandwidth allocation
- demplars using / traph colouring to assign registers to program variables
- circuit layout (Untangle game)
- determining the significance of a web page (Google's pagerank algorithm Latt. CStutOICS
- modelling the spread of a virus in a computer network or news in social network

Outline

Assignment Project Exam Help

Terminology and Notation

Graphttps://tutorcs.com

Properties of Graphs

Graphs

Terminology (the most common; there are many variants):

Assignment Projected eax am Help

Undirected graph: Every edge $e \in E$ is a two-element set of

https://tutorcs.com

Directed graph: Every edge (or arc) $e \in E$ is an ordered pair of vertices, i.e. $e = (x, y) \in V \times V$, note x may equal y.

WeChat: cstutorcs

NB

Binary relations on finite sets correspond to directed graphs. Symmetric, antireflexive relations correspond to undirected graphs.

Graph:

Assignment Project, Land Help

Pictorially:

Pictorially:

https://tutorcs.com

Graph: Directed graph:

As significant Project, L, L, x, a, m Help

Assignment Project, Land Help

Assignment Project, 3, Exam Help

```
Incidence matrix

(vertiles rows //tuto (vertices rows edges columns):
```

$$W_{\left(\begin{smallmatrix} c_1 \\ 0 & 1 \end{smallmatrix}\right)} \text{ at: } \text{cstutores}_{\left(\begin{smallmatrix} c_1 \\ 0 & 1 & -1 \end{smallmatrix}\right)}$$

Paths

 A (directed) path in a (directed) graph (V, E) is a sequence of edges that link up

Assignment Project Exam Help

```
where e_i = \{v_{i-1}, v_i\} \in E \text{ (or } e_i = (v_{i-1}, v_i) \in E \}
```

- Inthe Se pattiste Tros ocenn neither the vertices nor the edges have to be all different
- Subpath of length $r: (e_m, e_{m+1}, \dots, e_{m+r-1})$
- PW & logthast relected to the second secon
- Connected set/graph (undirected) each pair of vertices joined by a path
- Strongly connected set/graph (directed) each pair of vertices joined by a directed path in both directions

Vertex Degrees (Undirected graphs)

Degree of a vertex

- **Degree sequence** $D_0, D_1, D_2, \dots, D_k$ of graph G = (V, E), https://tutorcs.com

Question

What is $D_0 + D_1 + \dots + D_k$? We Chat: cstutores

 $\sum_{v \in V} \deg(v) = 2 \cdot |E|$; so the sum of vertex degrees is always even.

Corollary

There is an even number of vertices of odd degree.

Vertex Degrees (Directed graphs)

• Out-degree of a vertex

Assignment Project Exam Help

i.e., the number of edges going out of the vertex

• https://tutorcs.com

$$indeg(v) = |\{ w \in V : (w, v) \in E \}|$$

i.Wherlumber of tedgeogoing in the the certex

Fact

$$\sum_{v \in V} outdeg(v) = \sum_{v \in V} indeg(v) = |E|.$$

Exercises

swig par ento Projecte Pamerile elp

RW: 6.1.13(b) Draw a connected, regular graph on four vertices,

each https://tutorcs.com

RW: 6.1.13(c) Draw a connected, regular graph on five vertices,

each of degree 3

RW: 6.1.14(a) Graph With 3 Vertices and 9 edges

RW: 6.1.14(b) Two graphs each with 4 vertices and 4 edges

NB

We use the notation

$$n = v(G) = |V|$$
 for the no. of vertices of graph $G = (V, E)$

A so S = |V| for the no. of vertices of graph G = (V, E) A S =

Exercises

RW: 11 20(a) Graph with e(G) = 21 edges has a degree sequence $D_0 = 0$, $D_1 = 0$, $D_2 = 0$, $D_3 = 0$, $D_4 = 0$, Find v(G)

WeChat: cstutorcs

RW: 6.1.20(b) How would your answer change, if at all, when $D_0 = 6?$

NB

We use the notation

$$n = v(G) = |V|$$
 for the no. of vertices of graph $G = (V, E)$
ASSIGNMENTE PROTECTAR HOLD

Exercises

RW: 11 20(a) Graph with e(G) = 21 edges has a degree sequence $D_0 = 0, D_1$ $\downarrow D_2$ $\downarrow D_3$ $\downarrow D_4$ $\downarrow D_5$ $\downarrow D_5$

$$\sum_{\substack{V \text{ deg} \\ 7 \cdot 1 + 3}} d_{2} d_{2} d_{3} d_{4} d_{4} = C_{2} d_{3} d_{4} d_{5} d_{$$

RW: 6.1.20(b) How would your answer change, if at all, when $D_0 = 6$?

No change to D_4 ; v(G) = 25.

Cvcles

Recall paths $v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} \dots \xrightarrow{e_n} v_n$

• simple path — $e_i \neq e_i$ for all edges of the path $(i \neq j)$

Assignment=Project Exam Help Science Closed path, all other v_i pairwise distinct and $\neq v_0$

- acyclic path $v_i \neq v_i$ for all vertices in the path $(i \neq j)$

NB https://tutorcs.com

- $\mathbf{0}$ $C = (e_1, \dots, e_n)$ is a cycle iff removing any single edge leaves an acyclic path. (Show that the 'any' condition is needed!)
- 2 Was de intas the Case hunge locases and vertices and no proper subpath has this property. (Show that the 'subpath' condition is needed, i.e., there are graphs G that are **not** cycles and $|E_G| = |V_G|$; every such G must contain a cycle!)

Trees

- Acyclic graph graph that doesn't contain any cycle
- Assignment iff the ToperCollection and Interest p

NB

Graphtitptse iff/tutores.com \Leftrightarrow it is acyclic and $|V_G| = |E_G| + 1$.

- \Leftrightarrow it is acyclic and $|V_G| = |E_G| + 1$. (Show how this implies that the graph is connected!)
- ⇔ there is exactly one simple path between any two vertices.
 ⇔ G is connected, but becomes disconnected if any single edge
- ⇔ G is connected, but becomes disconnected if any single edge is removed.
- *⇔ G* is acyclic, but has a cycle if any single edge on already existing vertices is added.

Trees

Assignment Project Exam Help

It imposes an ordering on the edges: 'away' from the root — from parent nodes to children. This defines a *level number* (or: *depth*) of a role is saistanted from the company of the com

Another very common notion in Computer Science is that of a DAG variety acyalic graph CSTUTOTCS

Exercise (Supplementary)

Assignment Project Exam Help

```
RW: 6.7.3 | (Supp) Tree with n vertices, n \ge 3.
```

- Always true, false or gould be either?
 (a) e UDS://tutorcs.com
- (b) at least one vertex of degree exactly 2?
- (c) at least two v_1 , v_2 s.t. $deg(v_1)=deg(v_2)$ (d) exactly one path from v_1 $\cos v_1 + \cos v_2$

Exercise (Supplementary)

Assignment Project Exam Help

```
RW: 6.7.3 | (Supp) Tree with n vertices, n \ge 3.
```

- Always true, false or gould be either?
 (a) e LIPS False UUTORCS.COM
- (b) at least one vertex of degree exactly 2? Could be either
- (c) at least two v_1, v_2 s.t. $\deg(v_1) = \deg(v_2)$ True (d) exactly one path from v_1 (tocy True (what acterises a tree)

Special Graphs

• Complete graph K_n

Assignment Project Exam Help

Has m + n vertices, partitioned into two (disjoint) sets, one of n, the other of m vertices.

the same part are disconnected. No. of edges is $m \cdot n$.

• Complete k-partite graph $K_{m_1,...,m_k}$ How the Control of the state of respectively of m_1, m_2, \ldots vertices. No. of edges is $\sum_{i < i} m_i m_j = \frac{1}{2} \sum_{i \neq i} m_i m_i$

• These graphs generalise the complete graphs $K_n = K_1, \dots, 1$

Graph Isomorphisms

- $\phi: G \longrightarrow H$ is a graph isomorphism if
 - (i) $\phi: V_G \longrightarrow V_H$ is a bijection

Since the state of the state o

Assignment Project Exam Help

Terminology and Notation

Graphtetps://tutorcs.com

Properties of Graphs

Graph exploration

Assignment Project Exam Help

Often it is useful to "explore" a graph: visit vertices in some order and examine each one.

- satth Spiore the tap putting participan ertex is discovered.
- Traversal: Examine all the vertices of the graph

Graph exploration

Two common graph exploration algorithms are Depth-first Season (PFE) Project of the Research (BFS).

Both follow the same structure:

- pttps://tutorcs.com
- Discover new vertices (neighbours of v)
- Move to the next discovered but not yet examined vertex
- DFS: Examine vertices by most recently discovered
- BFS: Examine vertices by least recently discovered

Special types of traversals

A SEST Enhance interested intraversals that have a certain property. The least of t

- Eulerian traversals: Visit all the edges exactly once
- Hamiltonian travaersals: Visit all the vertices exactly once

https://tutorcs.com

In any given graph, these traversals may or may not exist.

Establishing the existence of such a traversal (decision problem) vs finding one of the exist (learned problem).

Graph of the exist (learned problem) of the exist (learned problem) of the exist (learned problem).

Edge Traversal

Definition

• Euler path — path containing every edge exactly once ASSIGNMENT (SECTEX AND HELP)

Characterisations

- h(connected)/has an Euler circuit iff deg(v) is even for all https://tutorcs.com
- G (connected) has an Euler path iff either it has an Euler circuit (above) or it has exactly two vertices of odd degree.

- These characterisations apply to graphs with loops as well
- For directed graphs the condition for existence of an Euler circuit is indeg(v) = outdeg(v) for all v ∈ V

Exigenment Project Exam Help RW: 6.2.11 Construct a graph with vertex set

 $\{0,1\} \times \{0,1\} \times \{0,1\}$ and with an edge between vertices if they differ in exactly two/coordinates.

- (a) Howard Somportents CO T this Strack half?
- (b) How many vertices of each degree?
- (c) Euler circuit?

RW: 62.12 ASEX 1 211 bu CASITUIT to b Graen vertices if they differ in two or three coordinates.

A Severcises

This graph consists of air the face diagonals of a cube. It has two disjoint components.

https://tutorcs.com

WeChat: Estutores

No Euler circuit

Assignment Project Exam Help

RW: 6.2.14 Which complete graphs K_n have an Euler circuit? When do bipartite, 3-partite complete graphs have an Euler circuit? https://tutorcs.com

Assignment Project Exam Help

RW: 6.2.14 Which complete graphs K_n have an Euler circuit? When do bipartite, 3-partite complete graphs have an Euler circuit? K_n has an Euler circuit for n odd CS.COM $K_{m,n}$ — when both m and n are even when p+q, p+r, q+r are all even, ie. when p, q, r are all even p+q and p+q are all even p+q are a

Assignment Project Exam Help

Can you find a route which crosses each bridge exactly once? No!

Assignment Project Exam Help https://tutorcs.com WeChat: cstutorcs

Can you find a route which passes through each door exactly once? No!

Assignment Project Exam Help

https://tutorcs.com

WeChatz estutores

Can you draw this without taking your pen off the paper? Yes!

Vertex Traversal

Definition

- Hamiltonian path visits every vertex of graph exactly once
- Hamiltonian cycle visits every vertex exactly once except the SSI Storm Helphatistic General Exam Helphanian

NB

Finding tucing cycle, drugdying it does not exist is a difficult problem—the worst case is NP-complete.

- All live regular polyhedr Cycle exists)
 - n-cube; Hamiltonian circuit = Gray code
 - K_m for all m; $K_{m,n}$ iff m = n; $K_{a,b,c}$ iff a,b,c satisfy the triangle inequalities: $a + b \ge c$, $a + c \ge b$, $b + c \ge a$
 - Knight's tour on a chessboard (incl. rectangular boards)

Examples when a Hamiltonian cycle does not exist are much project Exam Help Also, given such a graph it is nontrivial to verify that indeed there

is no such a cycle: there is nothing obvious to specify that could In contrast, if a cycle it given of icomediate la erify that it is a

Hamiltonian cycle.

These situations demonstrate the often enormous discrepancy in difficulty of poving wetsus (simply) ichesking's

Assignment Project Exam Help

https://tutorcs.com

ment Project Exam Help Let $V = V_1 \cup V_2$

- start at any vertex in V1 bttp Sertex it utores.com
- go to any new vertex in V_1
- There are heavy that er each part and to Cvays to choose the 'first' part, implying $c = 2(n!)^2$ circuits.

Assignment Project Exam Help

Terminology and Notation

Graphttps://tutorcs.com

Properties of Graphs

Colouring

Informally: assigning a "colour" to each vertex (e.g. a node in an electric or transportation network) so that the vertices connected by an edge have different colours.

by an edge have different colours. Suppose the project charge Help by an edge have different colours. $E = (E, w) \in E$

 $c(v) \neq c(w)$

The minimum n sufficient to effect such a mapping is called the **chromatic number** of a graph G = (E, V) and is denoted $\chi(G)$.

NB WeChat: cstutorcs This notion is extremely important in operations research, esp. in

This notion is extremely important in operations research, esp. in scheduling.

There is a dual notion of 'edge colouring' — two edges that share a vertex need to have different colours. Curiously enough, it is much less useful in practice.

Properties of the Chromatic Number

• $\chi(K_n) = n$

Assignment Project Exam Help

Suppose that G is 'missing' the edge (v, w), as compared with K_n . Coloural transfer, except to colour as that of v.

- If $\chi(G) = 1$ then G is totally disconnected: it has 0 edges.
- · WeChat: bestutores
- For any tree $\chi(T) = 2$.
- For any cycle C_n its chromatic number depends on the parity of n for n even $\chi(C_n) = 2$, while for n odd $\chi(C_n) = 3$.

Cliques

Graph (V', E') subgraph of $(V, E) - V' \subseteq V$ and $E' \subseteq E$.

Definition

Actique in Gise of Project. Exam Mesis

The size of the largest clique is called the *clique number* of the graph and denoted $\kappa(G)$.

https://tutorcs.com

Theorem

 $\chi(G) \geq \kappa(G)$.

WeChat: cstutorcs

Every vertex of a clique requires a different colour, hence there must be at least $\kappa(G)$ colours.

However, this is the only restriction. For any given k there are graphs with $\kappa(G) = k$, while $\chi(G)$ can be arbitrarily large.

NB

This fact (and such graphs) are important in the analysis of

ssilemment Project Exam Help

- $\kappa(K_n) = n, \ \kappa(K_{m,n}) = 2, \ \kappa(K_{m_1, \dots, m_r}) = r.$
- $f_{\mu}(G) = 1$ then G is totally disconnected.
- For a cycle C_n

The difference between $\kappa(C_4) = \kappa(C_5) = \dots = 2$ The difference between $\kappa(C_5) = \dots = 2$ $\kappa(G) = 2$ — this does not imply that G is bipartite. For example, the cycle C_n for any odd n has $\chi(C_n) = 3$.

Exercise RW: 9.10.1 (Ullmann) Assignment Project Exam Help Laie Lahaina Hana https://tutores.com Go WeChat: cstutores 114 Hilo G3 Kona $\chi(G_i)$? $\kappa(G_i)$?

Exercise

RW: 9.10.1 (Ullmann)

Assignment Project Exam Help

Lahaina

Kona

Hana

Hilo G3

Go

https://tutores.com

WeChat: cstutores

 $\chi(G_i)$? $\kappa(G_i)$? $\chi(G_1) = \kappa(G_1) = 3$; $\chi(G_2) = \kappa(G_2) = 2$;

 $\chi(G_3) = \kappa(G_3) = 3$

Assignment Project Exam Help

RW: 9.10.3 (Ullmann) Let G = (V, E) be an undirected graph. What inequalities must hold between

- · https://tutorcs.com
- $\bullet \chi(G)$
- κ(G)

Assignment Project Exam Help

RW: 9.10.3 (Ullmann) Let G = (V, E) be an undirected graph.

- What inequalities must hold between
 - · https://tutorcs.com
 - χ(G)
 - κ(G)

max. Wee Chate estutores

Timetable scheduling

Astachement Astach

Potions	Charms	Herbology	Astronomy	Transfiguration
Harry	Rom •//	Hakry OI C	Hermione	Hermione
Ron	Luna	George	Neville	Fred
Malfoy	Ginny	Neville	Seamus	Luna
WoChot actutored				

How many examination timestors we headed to that no student

has two (or more) exams at the same time? 3

Planar Graphs

A Salan ment ca Project of Example Help edges intersecting.

The graph is planar it can be embedded (without self-intersections) in a plane so that all its edges are straight lines.

NB WeChat: cstutorcs

This notion and its related algorithms are extremely important to VLSI and visualizing data.

Two minimal nonplanar graphs

Assignment Project Exam Help

Try out K₅ eChat: cstutorcs

Try out $K_{3,3}$

Assignment Project Exam Help https://tutorcs.com

Is (the undirected version of) this graph planar? Try it out

Assignment Project Exam Help https://tutorcs.com

WeChat: cstutorcs

Is (the undirected version of) this graph planar? Yes Try it out

Three utilities problem

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs
Can you connect all utilities to all houses without crossing connections? No!

Theorem

If graph G contains, as a subgraph, a nonplanar graph, then G itself is nonplanar.

Assignment in Project transment Help vertices, all of degree 2, by placing them on existing edges.

We called delined graphe supplified of the original one.

Theorem

If a graph is nonplanar then it must contain a subdivision of K_5 or $K_{3,3}$.

Theorem

 K_n for $n \geq 5$ is nonplanar.

Assignment Project Exam Help

It contains K_5 : choose any five vertices in K_n and consider the subgraph they define.

https://tutorcs.com

 $K_{m,n}$ is nonplanar when $m \ge 3$ and $n \ge 3$.

Proof.WeChat: cstutorcs

They contain $K_{3,3}$ — choose any three vertices in each of two vertex parts and consider the subgraph they define.

Assignment Project Exam Help

Are all $K_{m,1}$ planar?

Answettps://tutorcs.com Yes, they are trees of two levels — the root and m leaves.

Question

Are all $K_{m,2}$ planar?

Also, among the k-partite graphs, planar are $K_{2,2,2}$ and $K_{1,1,m}$. The latter can be depicted by drawing one extra edge in $K_{2,m}$, connecting the top and bottom vertices.

NB

Finding a 'basic' nonplanar obstruction is not always simple

Assignment Project Exam Help https://tutorcs.com WeChat: estutores

It contains a subdivision $K_{3,3}$, but not K_5 .

Strategy for finding a subdivision

To show G contains a subdivision of H:

Assitghment Project Exam Help

• Perform the following operations as many times as you need:

- Subdivide an jedge to Sertex tutores.com
- Finish with G

- Each operation increases |V| + |E|
- Can do all (i) first, then all (ii), then all (iii)

Strategy for finding a subdivision

To show G contains a subdivision of H:

Assignment Project Exam Help

- Perform the following operations as many times as you need:
 - Delete an edge

 Thelete a vertex (and all adjacent edges)

 Replace a vertex of degree 2 with an edge connecting its neighbours (contracting a vertex)
- WeChat: cstutorcs
- Each operation decreases |V| + |E|
- Can do all (i) first, then all (ii), then all (iii)

Showing a graph does not contain a subdivision

Assignment Project Exam Help

What det OtShange Web Offening the Orantions?