Tianzhe Chu

Email: tianzhechu@gmail.com Google Scholar: Tianzhe Chu Web: tianzhechu.com

EDUCATION

ShanghaiTech University

Shanghai, China

B.Eng in Computer Science and Technology; GPA:3.75/4.0

Sep 2020 - Jun 2024

Selected Courses: Introduction to Machine Learning, Probability and Statistics, Computer Architecture I, Data Structure and Algorithms, Discrete Mathematics, Signals and Systems, Mathematical Analysis.

University of California, Berkeley

Berkeley, CA, US

Visiting undergraduate in EECS; GPA: 3.87/4.0

Aug 2022-May 2023

Selected Courses: Deep Learning, Deep Reinforcement Learning, Foundation of Graphics, Applications of Parallel Computing, Computer Vision, Optimization Model in Engineering, Introduction to Artificial Intelligence.

Research Interest

• I'm interested in unsupervised/self-supervised representation learning and interpretable deep learning architectures. My goal is to develop principled learning techniques that model the structures of real-world information at scale, with applications on visual recognition, 3D generation, multimodality, etc.

Publications

(* means equal contribution)

- Yaodong Yu*, **Tianzhe Chu***, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, Yi Ma, Emergence of Segmentation with Minimalistic White-Box Transformers, Under Review(CPAL 2024), https://arxiv.org/abs/2308.16271.
- Tianzhe Chu*, Shengbang Tong*, Tianjiao Ding*, Xili Dai, Benjamin D. Haeffele, René Vidal, Yi Ma, Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models, Under Review(ICLR 2024), https://arxiv.org/abs/2306.05272.
- Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin D. Haeffele, Yi Ma, White-Box Transformers via Sparse Rate Reduction, NeurIPS 2023, https://arxiv.org/abs/2306.01129.

Research Experience

Berkeley Artificial Intelligence Research (BAIR) in UC Berkeley

Berkeley, CA, US

Undergraduate research assistant advised by Prof. Yi Ma

Nov 2022-Now

- In general, seeking low-dimensional structures of high-dimensional natural signals, i.e. images and languages
- Empirically investigating the properties of white-box transformers
- Exploring mathematically interpretable deep learning architectures driven by optimizing sparse rate reduction
- Pushing the limits of image clustering in the age of pre-trained models

ACTIVITIES AND AWARDS

Outstanding Individual Award as Leader of Social Practice Group

Enshi, Hubei, China

Affiliation: ShanghaiTech University

July 2021

Outstanding Individual Award as Member of Industrial Practice Group Affiliation: ShanghaiTech University

Shanghai, China July 2022

Provincial First Prize for 35th National Physics Olympics Competition

Affiliation: Suzhou High School of Jiangsu Province

Nanjing, Jiangsu, China Sep 2018

SKILLS

- Languages: Python, C/C++, Matlab, RISC-V, Mandarin(native), Cantonese, English(fluent)
- Tools: Pytorch, Jax, Markdown, git, LaTeX

Emergence Properties in White-box Transformers

Mentor: Prof. Yi Ma

Berkeley, CA, US Summer 2023

- We discover that white-box transformer leads to the emergence of segmentation properties in the network's self-attention maps, solely through a minimalistic supervised training recipe.
- Qualitatively, supervised white-box transformer(named CRATE) learns (i) explicit attention maps with semantic meanings; (ii) structured patch-wise representations with less spurious correlations.
- Quantitatively, supervised CRATE, though not trained for segmentation, achieves a much higher segmentation score than supervised ViT.

Clustering via Principle of rate reduction and Pretrained model

Berkeley, CA, US

Mentor: Prof. Yi Ma and Dr. Benjamin David Haeffele

Mar 2023 - May 2023

- We propose a novel image clustering pipeline (named CPP) that integrates pre-trained models and rate reduction, enhancing clustering accuracy and introducing an effective self-labeling algorithm for unlabeled datasets at scale.
- Our pipeline learns a highly clusterable image representation that can be extended to CIFAR-100/ImageNet-1k/LAION-Aesthetic/WikiArt, where few previous methods succeeded in achieving a decent performance.
- Our pipeline goes beyond deep clustering via proposing solutions for (i) measuring optimal number of clusters; (ii) better image-to-image search; (iii) labeling clusters with semantic meanings.

White-box Transformers

Berkeley, CA, US

Feb 2023 - May 2023

Mentor: Prof. Yi Ma

- We develop white-box transformer-like deep network architectures which are mathematically interpretable and achieve performance very close to ViT.
- The white-box transformer (named CRATE) is designed as an unrolled optimization of the sparse rate reduction objective over layers.