RNAseq Theory

Teo Sakel

De Bruijn Graph

Figure 1: Leggett et al. PloS one 8.3 (2013): e60058

Kallisto Index

Transcript Abundances

Trascripts vs Fragments vs Reads

- pools of transcripts
- transcript abundances (simplex): $\sum_{t} \rho_{t} = 1$
- ightharpoonup reads per X_t

Abundances Estimation

- \blacktriangleright effective length: $\tilde{\ell_t} = \ell_t \bar{m} + 1$
- \blacktriangleright probability of sequencing: $a_t \propto \rho_t \tilde{\ell}_t$
- \blacktriangleright likelihood of observing X_t reads from a set of T transcripts:

$$\mathcal{L}(\rho \mid X) = \prod_{t \in T} \prod_{r \in R} P(r|t) P(f \in t) = \prod_{t \in T} \left(\frac{a_t}{\tilde{\ell}_t}\right)^{X_t}$$

RPKM

 \blacktriangleright treat $\tilde{\ell}_t$ as constant

$$\begin{split} \hat{a}_t &= \frac{X_t}{\sum_t X_t} \\ \hat{\rho}_t &= \frac{\hat{a}_t}{\tilde{\ell}_t} = \frac{X_t}{N\tilde{\ell}_t} \end{split}$$

TPM

- Problem with RPKM:
 - $ightharpoonup \sum_t X_t$ is not an estimate of total number of transcripts
 - $ightharpoonup ilde{\ell}_t$ differs from experiment to experiment.
- Estimate of transcript count: $Y_t = \frac{X_t \bar{m}}{\tilde{\ell}_s}$

$$\hat{\rho}_t = \frac{Y_t}{\sum_t Y_t}$$

Estimated Counts

lackbox We do not know the origin of reads: $P(r\mid t)$

$$\mathcal{L}(\rho) = \prod_{r \in R} \sum_{t \in T} a_t P(r \mid t)$$

- lacksquare E-step: estimate X_t
- M-step: estimate \hat{a}_t

Paired-end Reads

2 ends define the length of fragment:

- lacktriangleright Fragment length distribution: F(m) usually modeled as normal
- \blacktriangleright effective length: $\tilde{\ell_t} = \sum_m F(m) (\ell_t m + 1)$
- compatibility matrix: $\overline{y_{rt}}^m \mathbf{1}$ if r is compatible with t 0 otherwise
- ightharpoonup probability of r mapping to t:

$$P(r \mid t) = y_{rt} \frac{F(m_r)}{\ell_t - m_r + 1}$$

Differential Expression - Part 1

$GDE^2 = DGE^2 + DTU^2$

Abundance Fold Change

Assuming the simplest model $\hat{
ho}_t = \frac{X_t}{N\tilde{\ell}_t}$

► Transcript:

$$\Delta \rho_t = \frac{\hat{\rho}_t^b}{\hat{\rho}_t^a} = \frac{X_t^b}{X_t^a}$$

► Gene:

$$\Delta \rho_G = \frac{\sum_{t \in G} \hat{\rho}_t^b}{\sum_{t \in G} \hat{\rho}_t^a} = \frac{N_a}{N_b} \frac{\sum_{t \in G} X_t^b / \tilde{\ell}_t^b}{\sum_{t \in G} X_t^a / \tilde{\ell}_t^a}$$

Problematic Cases

Figure 2: Trapnell et al. Nature biotechnology 31.1 (2013): 46-53.

Gene Counts

Figure 3: F1000Research 2016, 4:1521 Last updated: 18 JUL 2022

DESeq Analysis

```
dds <- DESeqDataSet(airway, ~ cell + dex)
keep <- rowSums(counts(dds) >= 10) >= 3
dds <- dds[keep,]
dds <- DESeq(dds)</pre>
```

estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

Scaling Factors

Are the differences biological or technical?

```
estimateSF <- function(K) {
    # K: count matrix genes x samples
    K[K == 0] <- NA
    k <- log(K)
    k <- k - rowMeans(k, na.rm = TRUE)
    sf <- colMedians(k, na.rm = TRUE)
    exp(sf - mean(sf))
}</pre>
```

Scaling Factor - TMM edgeR uses a different approach

```
trim <- function(X, p) {</pre>
    p < -c(p, 1 - p)
    q <- rowQuantiles(X, probs = p, na.rm = TRUE)</pre>
    X < q[, 1] | X > q[, 2]
estimate_TMM <- function(K) {</pre>
    ref <- which.min(colSums2(K == 0))
    k \leftarrow log(K \%*\% diag(x = 1/colSums(K)))
    M \leftarrow k - k[, ref]
    A \leftarrow (k + k[, ref]) / 2
    qmask \leftarrow trim(M, 0.3) \mid trim(A, 0.05)
    M[qmask] <- NA_real_
    sf <- rowMeans(M, na.rm = TRUE)</pre>
    exp(sf - mean(sf))
```

Results

Results DataFrame

	log2FC	IfcSE	pval	padj
ENSG0000000003	0.38	0.10	0.0001	0.0011
ENSG00000000419	-0.20	0.11	0.0675	0.1859
ENSG00000000457	-0.04	0.14	0.8027	0.9040
ENSG00000000460	0.09	0.28	0.7410	0.8717
ENSG00000000971	-0.42	0.09	0.0000	0.0000
ENSG0000001036	0.24	0.09	0.0066	0.0302
ENSG0000001084	0.05	0.17	0.7619	0.8827
ENSG0000001167	0.50	0.12	0.0000	0.0002
ENSG0000001460	0.13	0.18	0.4729	0.6829
ENSG0000001461	0.04	0.10	0.6725	0.8289

Calling Differentially Expressed Genes

$$H_0: |\beta| \le \beta_0$$

$$P(H_0) \le a$$

P-values under H_0

Histogram of Null P-values

P-value Distribution of dds

Multiple Comparisons

- Probability refers to a single event
- ▶ More stringent threshold for *all* comparison
- Q-value: p-value adjusted to the new threshold

Confusion Matrix

Predict	H_0	H_1	Total
0	TN	FN	n-R
1	FP	TP	R
Total	n_0	n_1	n

Family-wise error rate (FWER)

$$\mathsf{FWER} = P(\mathsf{FP} \ge 1)$$

- **B** Bonferonni Correction: FWER $\leq a \Rightarrow p_i \leq \frac{a}{n}$
- ightharpoonup Q-value: $q_i = np_i$

False Discovery Rate

$$FDR = E\left[\frac{FP}{FP + TP}\right]$$

- ▶ Benjamini–Hochberg: $FDR \le \frac{n_0}{n}a \le a$
- $\blacktriangleright \ \, \mathsf{Q}\text{-value} \; q_i = \min \left\{ \mathsf{FDR}(a) \mid a \geq p_i \right\}$

Benjamini-Hochberg procedure


```
BH <- function(pval) {
    n <- length(pval)
    k <- order(pval)
    q <- pval[k] * n/(1:n)
    q <- rev(q) |>
        cummin() |>
        rev()
    q[order(k)]
}
```

Filtering Steps

- Marginal Independence: should not affect the null distribution
- \blacktriangleright Enrichment: we want u and t to be correlated in H_1 but not in H_0
- Correlation structure: multiple-comparison correction take advantage of the p-value correlation the filtering should not alter that much
- ▶ Threshold on variance/mean imply thresholds on logFC
- Better to filter on variance than mean (base rate can vary by a lot)
- ► Filtering on mean combats discreteness (low counts)

How we calculate p-values?

	log2FC	IfcSE	pval	padj
ENSG00000000003	0.38	0.10	0.0001	0.0011
ENSG00000000419	-0.20	0.11	0.0675	0.1859
ENSG00000000457	-0.04	0.14	0.8027	0.9040
ENSG00000000460	0.09	0.28	0.7410	0.8717
ENSG00000000971	-0.42	0.09	0.0000	0.0000
ENSG0000001036	0.24	0.09	0.0066	0.0302
ENSG0000001084	0.05	0.17	0.7619	0.8827
ENSG0000001167	0.50	0.12	0.0000	0.0002
ENSG0000001460	0.13	0.18	0.4729	0.6829
ENSG0000001461	0.04	0.10	0.6725	0.8289

Generative Models

$$y \sim f(\mu, \sigma^2)$$
$$\mu = \eta(X\beta)$$
$$\beta \sim \mathcal{N}(\hat{\beta}, \sigma_{\beta}^2)$$

Maximum Likelihood Estimation

Design (X) - 1

Design (X) - 2

Predicting Mean vs Variance

Overdispersion

Partial Pooling

Partial Pooling

LFC Shrinkage

Pathways Enrichment

- Main Categories
 - ► ORA: over-representation analysis
 - ► GSEA: gene set enrichment analysis
 - Network/Topology-based
- Sources of Sets:
 - ► Gene Ontology
 - Kyoto Encyclopedia of Genes and Genomes
 - Molecular Signature DB
 - Reactome
 - many more...

Over-Representation Analysis

GSEA

ks.test(x, x[pathway], ...)

Network/Topology Based Methods

Table 1 Overview of tested pathway enrichment methods

From: A comparative study of topology-based pathway enrichment analysis methods

Method	Null hypothesis	Gene p-value thresholding	Expression data	Pathway	R/Bioconductor
Pathway-Express	Competitive	Optional	No	Topology	ROntoTools 2.10.0
SPIA	Competitive	Yes	No	Topology	graphite 1.28.2
NetGSA	Self-contained	No	Yes	Topology	netgsa 3.1.0
topologyGSA	Self-contained	No	Yes	Topology	topologyGSA 1.4.6
DEGraph	Self-contained	No	Yes	Topology	DEGraph 1.34.0
CAMERA	Competitive	No	Yes	Membership	limma 3.38.3
CePa	Competitive	Yes	No	Topology	CePa 0.6
PRS	Competitive	Yes	No	Topology	ToPASeq 1.16.1
PathNet	Competitive	Yes	No	Topology	PathNet 1.22.0

All in vain?

