

What is the chemical composition of silica produced by the marine cyanobacterium Synechococcus?

TM

Heera Immandi¹, Kayla Barnette², Lacey Bowman³, Alison Siersma², Jeffrey W. Krause^{2,3}

¹School of Life Sciences, Arizona State University, Tempe, AZ, ²Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, ³Dauphin Island Sea Lab, Dauphin Island, AL

Background

Synechococcus is a genus of small, unicellular marine cyanobacteria, these organisms are among the most numerous primary producers in the ocean.

It was discovered that *Synechococcus* can accumulate measurable amounts of silica despite lacking silica-based structures like shells (e.g., diatom frustules). The chemical form of this silica remains unclear (Ohnemus et al., 2018).

Methods for measuring biogenic silica (i.e., silica from organisms) are tailored to diatoms and **may not fully capture** silica associated with microbes like *Synechococcus* (Brzezinski et al., 2017).

This experiment aims to characterize the chemical form and solubility of *Synechococcus*-associated silica using targeted chemical leaching techniques.

Hypothesis & Rationale

We hypothesize that *Synechococcus*-associated silica includes multiple chemical phases, such as biogenic silica and metal-oxide bound forms.

Different leaching agents target different silica phases

Understanding Synechococcus-associated silica is critical for:

- Improving methods for quantifying silica in marine microbes
- Modeling the silica cycle in regions where diatoms do not dominate phytoplankton biomass (e.g., open ocean)

Methods

- Maintained 12 Synechococcus clone (CCMP 1334) cultures.
- 6 cultures are under moderate light, 6 under low light
- Monitored pH
- Estimated cell abundance with in vivo chlorophyll fluorescence.
- Harvested biomass and subjected it to 3 different chemical leaching treatments to target different silica phases:
- 2.5 M hydrofluoric acid (HF) to solubilize all silica content, e.g., mineral, biogenic, metal-oxide (Krause et al., 2017).
- 0.2 M sodium hydroxide (NaOH) to solubilize amorphous diatom-like biogenic silica (Ohnemus et al., 2016; Krause et al., 2017).
- 0.1 M hydrochloric acid (HCl) to solubilize silica associated with metal oxides (Pickering et al., 2020). This approach is typically used in marine sediments.
- Quantified solubilized silica using a colorimetric spectrophotometric dissolved silica analysis.

Low High Si Si Jum

(adapted from Baines et al., 2012) from Angulo-Cánovas et al., 2024)

Culturing set up of 6 cultures, 3 moderate light and 3 low light

Results

Figure 1 – Box plot showing the concentration of silica (µmol/L) released from *Synechococcus* biomass following three chemical leaching treatments (HCl, HF, NaOH). Kruskal Wallis test indicated significant difference in the median.

ln(RFU) over time: Bottles 1-12

Figure 2 – Line plots showing natural log–transformed in vivo fluorescence (RFU) values across four weeks for all 12 *Synechococcus* cultures (different ranges). Samples were harvested during periods after active growth (peaks) instead of senescence.

Results

pH Summary

	Moderate Light		Low Light	
,	Date	pH Range	Date	pH Range
,	2025-06-18	8.16 - 8.22	2025-06-18	8.12 - 8.25
	2025-06-25	8.20 - 8.27	2025-06-25	8.20 - 8.29
	2025-07-02	8.21 - 8.26	2025-07-02	8.19 - 8.31
	2025-07-09	8.25 - 9.61	2025-07-09	8.13 - 9.57
	2025-07-16	8.19 - 8.39	2025-07-16	8.10 - 8.25
	2025-07-23	8.35 - 8.38	2025-07-23	8.10 - 8.19
	2025-07-30	8.33 - 8.46	2025-07-30	8.16 - 8.20

Table 1 – pH values for *Synechococcus* cultures across six sampling dates under moderate and low light treatments. Only values >8.5 imply formation of sepiolite (which would be filtered and not discriminated from cells in our analyses); this was only an issue during one sampling (07-09) for a subset of bottles.

Conclusions

These results have 3 implications:

- 1) Multiple phases of silica appear to be associated with *Synechococcus*.
- 2) The phases of silica have different solubilities. One is soluble in base (NaOH) and others are soluble in acid (HCl & HF).
- 3) Weak HCl associated silica suggests a metal oxide-bound phase (HCl is not strong enough to degrade mineral silica).

These findings suggest that methods for quantifying silica in *Synechococcus* that were designed for diatom-associated silica may not accurately capture silica associated with microbes like *Synechococcus*.

Future directions include expanding leaching experiments to additional *Synechococcus* clones and different leach types.

References

Angulo-Cánovas, E., et al. (2024). Direct interaction between marine cyanobacteria mediated by nanotubes. Science Advances, 10, eadj1539. https://doi.org/10.1126/sciadv.adj1539

Baines, S. B., et al. (2012). Significant silicon accumulation by marine picocyanobacteria. *Nature Geoscience*, 5, 886-891. https://doi.org/10.1038/ngeo1641

Brzezinski, M. A., et al. (2017). Patterns and regulation of silicon accumulation in Synechococcus spp. Journal of *Phycology*, 53, 746–761. https://doi.org/10.1111/jpy.12545

Krause, J. W., et al. (2017). Picoplankton contribution to biogenic silica stocks and production rates in the Sargasso Sea. *Global Biogeochemical Cycles*, 31, 762–774. https://doi.org/10.1002/2017GB005619

Ohnemus, D. C., et al. (2018). The chemical form of silicon in marine Synechococcus. Marine Chemistry, 201, 124-136. https://doi.org/10.1016/j.marchem.2018.08.004

Ohnemus, D. C., et al. (2016). Silicon content of individual cells of Synechococcus from the North Atlantic Ocean. Marine Chemistry, 187, 16–24. https://doi.org/10.1016/j.marchem.2016.10.003

Pickering, R. A., et al. (2020). Using stable isotopes to disentangle marine sedimentary signals in reactive silicon pools. *Geophysical Research Letters*, 47(15), e2020GL087877. https://doi.org/10.1029/2020GL087877

Acknowledgements: Funding from the National Science Foundation (OCE-2447674 awarded to R. Carmichael). We also thank P. Gilman, K. Breland, and A. McElroy for laboratory and logistics support.