Сергеева Диана РК6-56Б

Задача 7.3

Требуется доказать, что метод Якоби, примененный к Ax = b, вне зависимости от начального условия всегда сходится к единственному решению x, если матрица A обладает строгим диагональным преобладанием.

В матричном виде метод Якоби предполагает разложение матрицы A на диагональную, нижнюю треугольную и верхнюю треугольную составляющие:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & 0 & \cdots & 0 \\ -a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{n-1,n} \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$

Или:

$$A = D - L - U,$$

Или из курса лекций мы знаем, что матричная форма метода Якоби имеет вид:

$$x^{(k)} = D^{-1}(L+U)x^{(k-1)} + D^{-1}b.$$

Причем:

$$T = D^{-1}(L+U),$$
$$c = D^{-1}b.$$

Теорема: последовательность $\{x^{(k)}\}_{k=0}^{\infty}$, сгенерированная итерацией $x^{(k)} = Tx^{(k-1)} + c$, сходится к единственному решению уравнения x = Tx + c, т.е. неподвижной точке x, для любого $x^{(0)} \in R^n$ тогда и только тогда, когда $\rho(T) < 1$.

Для спектрального радиуса существует свойство:

Теорема: пусть $A \in \mathbb{R}^{n \times n}$. Тогда $\rho(T) \leq \|T\|$ для любой индуцированной матричной нормы.

То есть для сходимости этой последовательности при любом начальном приближении необходимо и достаточно, чтобы все собственные значения матрицы T были по абсолютной величине меньше единицы. На практике это трудно, воспользуемся достаточным условием сходимости: метод сходится, если норма матрицы меньше единицы. То есть метод Якоби сходится, если спектральный радиус матрицы T меньше единицы.

Начнём с нахождения верхней границы для $||T||_{\infty}$.

Формула векторной нормы для матрицы:

$$||T||_{\infty} = \max_{i \in [1,n]} \sum_{j=1}^{m} |t_{ij}|$$

То есть:

$$||T||_{\infty} = \max_{i \in [1,n]} \sum_{j=1}^{n} |t_{ij}| = \max_{i \in [1,n]} \sum_{j=1}^{n} \left| \frac{(l_{ij} + u_{ij})}{d_{ii}} \right| = \max_{i \in [1,n]} \sum_{j=1}^{n} \frac{\left| (l_{ij} + u_{ij}) \right|}{|d_{ii}|}$$
$$= \max_{i \in [1,n]} \frac{\sum_{j=1}^{n} \left| (l_{ij} + u_{ij}) \right|}{|d_{ii}|}$$

Из условия A=D-L-U заметим, что $\left|(l_{ij}+u_{ij})\right|=\left|a_{ij}\right|$ при $i\neq j$ и что $\left|(l_{ij}+u_{ij})\right|=0$ при i=j. Также из матричного вида метода Якоби видно, что $|d_{ii}|=|a_{ii}|$.

Тогда перепишем:

$$||T||_{\infty} = \max_{i \in [1,n]} \frac{\sum_{j=1}^{n} |a_{ij}|}{|a_{ii}|}$$

По условию задачи наша матрица должна обладать строгим диагональным преобладанием, то есть должно выполняться условие:

$$|a_{ii}| \ge \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|$$

Из этого условия следует:

$$\frac{\sum_{j=1}^{n} \left| a_{ij} \right|}{\left| a_{ii} \right|} < 1$$

То есть:

$$||T||_{\infty} < 1$$

Тогда из теорем следует, что так как $||T||_{\infty} < 1$, то и $\rho(T) < 1$, то есть метод Якоби, примененный к Ax = b, вне зависимости от начального условия всегда сходится к единственному решению x, если матрица A обладает строгим диагональным преобладанием.