m	1024	4.2%
Other values (10)	7425	30.5%

Most occurring blocks

Value	Count	Frequency (%)
(unknown)	24317	100.0%

Most frequent character per block

(unknown)

Value	Count	Frequency (%)
е	5377	22.1%
	1985	8.2%
S	1533	6.3%
a	1470	6.0%
1	1407	5.8%
R	1024	4.2%
r	1024	4.2%
С	1024	4.2%

m 1024 4.2% m 1024 4.2%

Out[]:

- we would like to predict the attrition rate so we will target 'Attrition'
- we will also one-hot-encode some of these features

```
In []: df.Gender.value_counts()

Out[]: Gender
    Male    882
    Female    588
    Name: count, dtype: int64

In []: # binary encoding attrition, Over18, and OverTime

    df['Attrition'] = df['Attrition'].apply(lambda x: 1 if x == 'Yes' else 0)
    df['Over18'] = df['Over18'].apply(lambda x: 1 if x == 'Y' else 0)
    df['OverTime'] = df['OverTime'].apply(lambda x: 1 if x == 'Yes' else 0)
    df['Gender'] = df['Gender'].apply(lambda x: 1 if x == 'Male' else 0)
In []: df
```

[]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Empl
	0	41	1	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	0	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2 37		1	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	0	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	0	Travel_Rarely	591	Research & Development	2	1	Medical	
	•••									
	1465	36	0	Travel_Frequently	884	Research & Development	23	2	Medical	
	1466	39	0	Travel_Rarely	613	Research & Development	6	1	Medical	
	1467	27	0	Travel_Rarely	155	Research & Development	4	3	Life Sciences	
	1468	49	0	Travel_Frequently	1023	Sales	2	3	Medical	
	1469	34	0	Travel_Rarely	628	Research & Development	8	3	Medical	

1470 rows × 35 columns

```
In [ ]: # One hot encoding: Department, EducationField, JobRole, MaritalStatus, Business travel, EducationField

df = df.join(pd.get_dummies(df['BusinessTravel'])).drop('BusinessTravel', axis=1)
    df = df.join(pd.get_dummies(df['Department'], prefix='Department')).drop('Department', axis=1)
```

```
df = df.join(pd.get dummies(df['EducationField'], prefix='EducationField')).drop('EducationField', axis=1)
        df = df.join(pd.get dummies(df['JobRole'], prefix='JobRole')).drop('JobRole', axis=1)
        df = df.join(pd.get dummies(df['MaritalStatus'], prefix='MaritalStatus')).drop('MaritalStatus', axis=1)
In [ ]:
        df
Out[]:
              Age Attrition DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber EnvironmentSatist
            0
                41
                          1
                                  1102
                                                                  2
                                                                                  1
                                                                                                   1
                49
                          0
                                  279
                                                       8
                                                                  1
                                                                                                   2
            2
                37
                          1
                                 1373
                                                       2
                                                                  2
                                                                                  1
                                                                                                   4
                33
                                                                  4
            3
                          0
                                 1392
                                                       3
                                                                                                   5
                27
                          0
                                  591
                                                       2
                                                                  1
                                                                                  1
                                                                                                   7
            4
                36
                                                      23
                                                                  2
                                                                                                2061
         1465
                          0
                                  884
                                                                                  1
         1466
                39
                          0
                                  613
                                                       6
                                                                  1
                                                                                  1
                                                                                                2062
                27
                          0
                                  155
                                                       4
                                                                  3
                                                                                                2064
         1467
                                                                                  1
         1468
                          0
                                 1023
                49
                                                       2
                                                                  3
                                                                                  1
                                                                                                2065
         1469
                34
                          0
                                  628
                                                       8
                                                                  3
                                                                                                2068
                                                                                  1
        1470 rows × 54 columns
In [ ]: df = df.map(lambda x: 1 if x is True else 0 if x is False else x)
```

df

	Age	Attrition	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatis
0	41	1	1102	1	2	1	1	
1	49	0	279	8	1	1	2	
2	37	1	1373	2	2	1	4	
3	33	0	1392	3	4	1	5	
4	27	0	591	2	1	1	7	
•••								
1465	36	0	884	23	2	1	2061	
1466	39	0	613	6	1	1	2062	
1467	27	0	155	4	3	1	2064	
1468	49	0	1023	2	3	1	2065	
1469	34	0	628	8	3	1	2068	

1470 rows × 54 columns

```
In []: df = df.drop('EmployeeNumber', axis=1)
In []: import matplotlib.pyplot as plt
%matplotlib inline

df.hist(figsize=(20, 15))
plt.tight_layout()
plt.show()
```


file:///run/user/1000/doc/109cffcb/employee attrition.html

_			-	
()	11	+	- 1	
\cup	u	ч.	- 1	=

	Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	Gender	HourlyRate	Jobinv
	0 4	1	1102	1	2	2	0	94	
	1 49	0	279	8	1	3	1	61	
:	2 37	1	1373	2	2	4	1	92	
;	3 33	0	1392	3	4	4	0	56	
4	4 27	0	591	2	1	1	1	40	
•	••								
146	5 36	0	884	23	2	3	1	41	
146	6 39	0	613	6	1	4	1	42	
146	7 27	0	155	4	3	2	1	87	
1468	B 49	0	1023	2	3	4	1	63	
1469	9 34	0	628	8	3	2	1	82	

1470 rows × 50 columns

```
In []: # model training
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

X, y = df.drop('Attrition', axis=1), df['Attrition']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = RandomForestClassifier(n_jobs=-1)

model.fit(X_train, y_train)
```

Out[]: ([0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

```
42.
43.
44.
45.
46.
47,
48],
[Text(0, 0, 'MonthlyIncome'),
Text(1, 0, 'OverTime'),
Text(2, 0, 'Age'),
Text(3, 0, 'TotalWorkingYears'),
Text(4, 0, 'DailyRate'),
Text(5, 0, 'DistanceFromHome'),
Text(6, 0, 'HourlyRate'),
Text(7, 0, 'MonthlyRate'),
Text(8, 0, 'YearsAtCompany'),
Text(9, 0, 'NumCompaniesWorked'),
Text(10, 0, 'PercentSalaryHike'),
Text(11, 0, 'StockOptionLevel'),
Text(12, 0, 'YearsWithCurrManager'),
Text(13, 0, 'JobSatisfaction'),
Text(14, 0, 'YearsInCurrentRole'),
Text(15, 0, 'YearsSinceLastPromotion'),
Text(16, 0, 'TrainingTimesLastYear'),
Text(17, 0, 'EnvironmentSatisfaction'),
Text(18, 0, 'JobLevel'),
Text(19, 0, 'JobInvolvement'),
Text(20, 0, 'RelationshipSatisfaction'),
Text(21, 0, 'WorkLifeBalance'),
Text(22, 0, 'Education'),
Text(23, 0, 'MaritalStatus Single'),
Text(24, 0, 'Travel Frequently'),
Text(25, 0, 'JobRole Sales Representative'),
Text(26, 0, 'Gender'),
Text(27, 0, 'Department Research & Development'),
Text(28, 0, 'JobRole Laboratory Technician'),
Text(29, 0, 'Department Sales'),
Text(30, 0, 'MaritalStatus Married'),
Text(31, 0, 'Travel Rarely'),
Text(32, 0, 'EducationField Medical'),
Text(33, 0, 'EducationField Life Sciences'),
Text(34, 0, 'EducationField Technical Degree'),
```

```
Text(35, 0, 'JobRole_Sales Executive'),
Text(36, 0, 'JobRole_Research Scientist'),
Text(37, 0, 'MaritalStatus_Divorced'),
Text(38, 0, 'EducationField_Marketing'),
Text(39, 0, 'PerformanceRating'),
Text(40, 0, 'Non-Travel'),
Text(41, 0, 'JobRole_Manufacturing Director'),
Text(42, 0, 'JobRole_Human Resources'),
Text(43, 0, 'Department_Human Resources'),
Text(44, 0, 'EducationField_Other'),
Text(45, 0, 'EducationField_Human Resources'),
Text(46, 0, 'JobRole_Healthcare Representative'),
Text(47, 0, 'JobRole_Manager'),
Text(48, 0, 'JobRole_Research Director')])
```


 \vee

In []: