

FAKULTÄT FÜR PHYSIK Praktikum Moderne Physik

Prak.: P4 Semester: WS20/21	Wochentag: Mo Gruppennr.: 22
Name: Filip	Vorname: Paul
Name: Janic	Vorname: Beck
Emailadresse(n):	
Versuch: Comptoneffekt (P4-)	Fehlerrech.: Ja
Betreuer: Roxanne Turcotte	Durchgeführt am: 16.11.20
Wird vom Betreuer ausgefüllt.	
1. Abgabe am:	
Rückgabe am: Begründung:	
2. Abgabe am:	
Ergebnis: + / 0 / - Fehlerrechnung: Ja / Nein	
Datum: Handa	zeichen:
Bemerkungen:	

Contents

2. Theory & Preparation

2.1 Compton scattering

Consider the scenario of a high-energy photon interacting with an unbound electron as shown in ??. To describe this process we choose a coordinate frame where the electron is at rest with respect to us. In the experiments to be presented in this report such a coordinate frame conveniently is the lab frame anyways.

From the conservation of energy and impluse we can construct a theoretical description of this process based on the inital and final energies of both particles.

$$E_{\gamma,i} + \underbrace{E_{e,i}}_{=0} = E_{\gamma,f} + E_{e,f}$$

$$p_{\gamma,i} + \underbrace{p_{e,i}}_{=0} = p_{\gamma,f} + p_{e,f}$$

From the above relations an expression for the energy of the photon after interacting with the electron can be obtained and reads

$$E_{\gamma,f} = \frac{E_{\gamma,i}}{1 + \frac{E_{\gamma,i}}{m_e c^2} (1 - \cos \theta)},$$
(2.1)

where θ defines the angle spanned between the incident photon and its path post scattering. It follows that the electron gains energy from the interaction.

$$E_{e,f} = E_{\gamma,i} - E_{\gamma,f} = E_{\gamma,f} \cdot \frac{E_{\gamma,i}}{m_e c^2} \cdot (1 - \cos \theta).$$
 (2.2)

The measureable change in the photons wavelength $\lambda = \frac{hc}{E\gamma}$ due to the interaction is called the **Compton effect**. The underlaying elastic scattering of photons and unbound electrons is consequently labelled **Compton scattering**.

3. Experiment & Evaluation