

Kritische Ortskurve -1	I →	$A = + \infty \qquad A = 0 \text{ bis a } 0$		w _I	$\frac{R_{\beta}^{2}}{R_{\beta}}$	A = a+h
Beschreibungsfunktion N(A)	$= \frac{a}{A} \cdot R_{\beta} =$	2) $R_{\alpha} < 1$ $(A < a) \rightarrow N(A) = 0$ $R_{\alpha} < 1$ $(a < A < b) \rightarrow Totzone$ 3) $R_{\beta} < 1$ $(b < A)$	$ N(A) = \frac{2k}{\pi} (arc \sin R_{\beta} - arc \sin R_{\alpha} + R_{\beta} / 1 - R_{\beta}^2 - R_{\alpha} / 1 - R_{\beta}^2)$ $/N(A) = 0 (N(A) \text{ reell})$	TIN	N(A) = 0 für $R_{\alpha} \le 1$ (a+h $\le A$) gilt: $ N(A) = \frac{2b}{\pi A} \sqrt{2(1-R_{\alpha}R_{\beta}) + 2\sqrt{(1-R_{\alpha}^2)(1-R_{\beta}^2)}}$	$\overline{N(A)} = \text{arc tan } \frac{R_{\beta} - R_{\alpha}}{\sqrt{1 - R_{\alpha}^2 + \sqrt{1 - R_{\beta}^2}}}$
Nichtlinearität y=t(x)	Sättigung und Totzone: ♣ y	k(b-a) 0 a b		Relais mit Hysterese und Totzone	b x x	

Nichtlinearität y=f(x)	Beschreibungsfunktion N(A)	Kritische Ortskurve - $\frac{1}{N(A)}$
Lose	$\frac{R}{A} = \frac{h}{A}$	
	für R > 1 (A < h) gilt:	mI 🖊
X X X	$N(A) = 0$ $f \ddot{u} r R \leq 1 \ (h \leq A) gilt:$	-1/k Re
× × v	×1 ⊨	
tanα = k	$+[\pi+2arc \sin(1-2R)]2R(1-2R)$	
	1/2 , + 4R(1-R)}	
	$N(A) = arc tan \frac{4R(R-1)}{\frac{\pi}{2} + arcsin(1-2R) + 2R(1-2R)} \frac{1-R}{R}$	· ·
Anmerkung: In all diesen Formeln wur (symmetrische Auslenkung) Kennlinien sind punktsymm	In all diesen Formeln wurde vorausgesetzt, dass der Gleichstromanteil verschwindet (symmetrische Auslenkung). Aus Symmetriegründen (alle hier betrachteten nichtlinearen Kennlinien sind punktsymmetrisch zum Nullnunkt) gilt dies immer gegen Gerachte	chstromanteil verschwindet er betrachteten nichtlinearen
anteil des Ein	anteil des Eingangssignals Null ist.	Tunner, Wellin der Gretoliscioni-