CS7GV2: Mathematics of Light and Sound, M.Sc. in Computer Science.

Lecture #1: Waves

Fergal Shevlin, Ph.D.

School of Computer Science and Statistics, Trinity College Dublin

September 13, 2024

Notes

-	

CS7GV2 ©FS, TCD 2023-24.

1/11

y ***

Physical waves

Periodic disturbance from its equilibrium of matter or field. Propagates radially from a point source.

Amplitude A along a radial line through space.

In 2-D prop., $A \propto r^{-1}$ and in 3-D,

through in 3-D,

Amplitude at a distance r writime t

Prop. speed in m s $^{-1}$ is c Wavelength in m is λ Wave period in s is $T=\lambda/c$ Wave frequency in Hz is $\nu=1/T$ Angular freq. in rad s $^{-1}$ is $\omega=2\pi/T$ Wave number in rad m $^{-1}$ is $k=2\pi/\lambda$

Notes

vee_

How can waves be described so their behaviour can be analysed mathematically?

A constraint equation can be derived from Newton's and Hooke's physical laws:

$$\frac{\partial^2 A(r,t)}{\partial r^2} = \frac{1}{c^2} \frac{\partial^2 A(r,t)}{\partial t^2}$$

Sum of two sinusoids travelling in opposite directions over time t.

An analytic solution * can be expressed as the sum of two "wave shaped" functions of transformed parameters, e.g.

$$A(r, t) = \cos(k r - \omega t) + \cos(k r + \omega t).$$

Here the parameters are angles (in radians,)

$$k r = r (2\pi/\lambda)$$
 $\omega t = t (2\pi/T) = t (c (2\pi/\lambda))$

$$\frac{\partial}{\partial t} \left[\frac{\partial}{\partial t} [\cos(r - c t) + \cos(r + c t)] \right] =$$

$$\frac{\partial}{\partial t} [c \sin(r - c t) - c \sin(r + c t)] =$$

$$-c^2 \cos(r - c t) - c^2 \cos(r + c t).$$

$$\frac{\partial}{\partial r} \left[\frac{\partial}{\partial r} [\cos(r - c t) + \cos(r + c t)] \right] =$$

$$-\cos(r - c t) - \cos(r + c t).$$

Notes

Wave summation, $A_1(\theta) + A_2(\theta)$

CS7GV2 ©FS, TCD 2023-24.

Notes

$$\lambda_1 = \lambda_2$$
 and $\phi_1 = \phi_2 + \pi$.

$$\lambda_1 > \lambda_2$$
 and $\phi_1 = \phi_2$.

Sinusoids

CS7GV2 ©FS, TCD 2023-24.

CS7GV2 ©FS, TCD 2023-24.

For any point (x, y) on unit circle, $\cos \theta := x$ and $\sin \theta := y$.

Sinusoids with same λ but arbitrary ϕ and A sum to a sinusoid with same λ .

This is how physical waves behave.

Sinusoids are *only* periodic functions with this property.

Geometric contruction is impractical and mathematical expression is complicated:

$$\cos\theta = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \, \theta^{2n}$$

so calculators with programmed buttons or printed tables are used instead.

Angle θ corresponding to point (x, y) on the unit circle is $\theta = \arccos x = \arcsin y$.

Notation $\cos^{-1} x$ and $\sin^{-1} y$ is not recommended because of its ambiguity wrt the reciprocal.

To enhance readability, function parameter need not be enclosed in parentheses.

Notes

Wavefront propagation

Huygens-Fresnel Construction.

Votes			

CS7GV2 ©FS, TCD 2023-24. Propagation from a point where amplitude is increasing

Notes			

...and from another point where amplitude is decreasing

Notes			

CS7GV2 ©FS, TCD 2023-24.

Notes			

Assignment # 1: Wave simulation

CS7GV2 ©FS, TCD 2023-24.

- ► Install the Anaconda distribution of SciPy on your own computer or else make Google Colab or Anaconda Cloud accounts.
- ▶ Use the given analytic solution of the Wave Equation to simulate the movement of a radial wave over a distance in space and a period of time.
- ▶ Present it in a Jupyter Notebook.
- ► Make it into a self-contained project repository in your personal account on gitlab.scss.tcd.ie.
- Add fshevlin@tcd.ie as a member with "reporter" privileges.

Notes				

CS7GV2 ©FS, TCD 2023-24

11 / 11

Greek letters* often used as symbols in mathematics

*With their anglophone pronunciations.

α	alpha	θ	theta	0	omicron	τ	tau
β	beta	ϑ	caligr. theta	π	pi .	v	upsilon
γ	gamma	ι	iota	$\overline{\omega}$	caligr. pi	ϕ	phi
δ	delta	κ	kappa	ρ	rho	φ	caligr. phi
ϵ	epsilon	λ	lambda	ρ	caligr. rho	χ	chi
ε	caligr. epsilon	μ	mu	σ	sigma	ψ	psi
ζ	zeta	ν	nu	ς	caligr. sigma	ω	omega
η	eta	ξ	xi				
Г	big gamma	٨	big lambda	Σ	big sigma	Ψ	big psi
Δ	big delta	Ξ	big xi	Υ	big upsilon	Ω	big omega
Θ	big theta	П	big pi	Φ	big phi		

Notes			
Notes			
-			