Exercise 3.9

Nolan Hauck

Last updated Wednesday 28th February, 2024 at 20:48

Suppose $\{\nu_j\}$ is a sequence of positive measures. If $\nu_j \perp \mu$ for all j, then $\sum_{1}^{\infty} \nu_j \perp \mu$ and if $\nu_j \ll \mu$, then $\sum_{1}^{\infty} \nu_j \ll \mu$.

Solution. Since $\nu_j \perp \mu$ for all j, there are sequences of measurable sets $\{E_j\}$ and $\{F_j\}$ so that for each j, $E_j \cup F_j = X$, $E_j \cap F_j = \emptyset$, E_j null for ν_j , and F_j null for μ . Then $F = \bigcup_{1}^{\infty} F_j \in \mathcal{M}$, so $(\bigcup_{1}^{\infty} F_j)^c = \bigcap_{1}^{\infty} E_j \in \mathcal{M}$ as well. Then $F \cup F^c = X$ and $F \cap F^c = \emptyset$. Then

$$\mu(F) \le \sum_{1}^{\infty} \mu(F_j) = 0 \tag{1}$$

and

$$\left(\sum_{1}^{\infty} \nu_j\right)(F^c) = \sum_{1}^{\infty} \nu_j(F^c) \le \sum_{1}^{\infty} \nu(F_j) = 0 \tag{2}$$

since $F^c \subset F_j$ and F_j is null for ν_j for all j. Since we are dealing exclusively with positive measures, the condition that $\mu(F) = 0$ and $(\sum_{1}^{\infty} \nu_j) (F^c) = 0$ is enough to conclude that F is null for μ and F^c is null for $(\sum_{1}^{\infty} \nu_j)$. So $\sum_{1}^{\infty} \nu_j \perp \mu$.

Now let $E \in \mathcal{M}$ be null for μ . Then E is null for ν_j for all j, so

$$\left(\sum_{1}^{\infty} \nu_j\right)(E) = \sum_{1}^{\infty} \nu_j(E) = 0. \tag{3}$$

Thus $\sum_{1}^{\infty} \nu_{j} \ll \mu$.