NORMALIZACIÓN

- Anomalía: Problema que surge a raíz del diseño de una relación.
 - o Redundancia: información que se repite innecesariamente en diferentes tuplas.
 - Anomalías de actualización: se puede actualizar el valor en una tupla, sin actualizar los de otras tuplas.
 - Anomalías de inserción: insertar valores en ciertos atributos de una relación y no en otros me produce valores nulos.
 - Anomalías de borrado: borrar ciertos valores de una tupla, puede llevarme a perder la información de la tupla completa.
- Dependencia funcional: captura propiedades del mundo real. Es una restricción de una relación en una base de datos y generaliza la idea de clave de una relación.

Si dos tuplas (t1 y t2) de una relación R, coinciden en todos los atributos A1, A2,..., An, entonces deben también coincidir los atributos B1, B2,..., Bm. Para toda tupla de R.

Esto se escribe: A1, A2, .., An \rightarrow B1, B2, .., Bm

Y se lee: A1, A2, .., An "determina funcionalmente a" B1, B2, .., Bm

Dicho de otra manera:

Una df de la forma $X \rightarrow Y$ se cumple en R si: para todos los pares de tuplas t1 y t2 de la relación, cuando se cumple que t1[x] = t2[x], entonces se cumple t1[y] = t2[y].

- Dependencia funcional trivial: es una df de la forma: A1, A2, .., An → B1, B2, .., Bm

Tal que: $\{B1, B2, ..., Bm\} \subseteq \{A1, A2, ..., An\}$

- <u>Clave de una relación:</u> los atributos {A1, A2, ..,An} son la clave de una relación R si cumplen:
 - o {A1, A2, ..,An} determinan funcionalmente a todos los restantes atributos de la relación R.
 - No existe un subconjunto de {A1, A2, ..., An} que determine funcionalmente a todos los atributos de R –esto implica que una clave es un conjunto minimal-
- <u>Clave candidata de una relación:</u> en caso de existir dos o más conjuntos de atributos {A1, A2, .., An}, {B1, B2, .., Bk}, ... {N1, N2, .., Nm} en una relación R tales que:
 - {A1, A2, ..., An} determinan funcionalmente a todos los restantes atributos de la relación R.
 - o {B1, B2, .., Bk}, ... y {N1, N2, .., Nm} también por si mismos determinan al resto de los atributos de R.
 - O No existe un subconjunto de {A1, A2, ..., An} o {B1, B2, ..., Bk}, ... o {N1, N2, ..., Nm} que determine funcionalmente a todos los atributos de R.
 - Entonces {A1, A2, ..., An}, {B1, B2, ..., Bk}, ... {N1, N2, ..., Nm} son CLAVES CANDIDATAS para la relación
 R.
- <u>Superclave de una relación:</u> "super conjunto" de una clave. Los atributos {A1, A2, .., An} son la superclave de una relación R si cumplen:
 - o {A1, A2, ..., An} determina funcionalmente a todos los restantes atributos de la relación R.
 - Notar que:
 - Una clave está contenida en una superclave.
 - Una superclave no necesariamente es minimal (como lo es la clave por la segunda condición de su definición)

Axiomas de Armstrong

Permiten inferir nuevas df dado un conjunto base que resulto evidente.

Aplicándolos hallo un conjunto completo y seguro donde todas las df halladas son correctas.

Al generar todas las df algunas son triviales.

- Axiomas básicos:
 - Reflexión: X es un conjunto de atributos y Y \subseteq X entonces X \rightarrow Y (sabemos que a \rightarrow a, luego se puede decir que a,b \rightarrow a.

Demostración: Si Y \subseteq X y existen dos tuplas diferentes de R tales que t1[x] = t2[x] por definición de df t1[y] = t2[y].

○ Aumento: Si X \rightarrow Y; Z es un conjunto de atributos, entonces Z,X \rightarrow Z,Y.

Demostración: Asumamos que $X \rightarrow Y$ vale pero $X,Z \rightarrow Y,Z$ no vale. Si $X \rightarrow Y$ entonces cada vez que 1) t1[x] = t2[x] implica 2) t1[y] = t2[y], por otro lado, cada vez que 3) t1[x,z] = t2[x,z] implica 4) t1[y,z] <> t2[y,z].

De 1) y 3) se deduce t1[z] = t2[z]

De 2) y 4) se deduce que t1[y,z] = t2[y,z]

○ Transitividad: si X \rightarrow Y; Y \rightarrow Z, entonces X \rightarrow Z.

Demostración: 1) X \rightarrow Y. 2) Y \rightarrow Z. t1[x] = t2[x] implica por 1) y t1[y] = t2[y] implica por 2). y t1[z] = t2[z] entonces X \rightarrow Z

- Axiomas que se deducen a partir de los básicos:

○ Unión: si X \rightarrow Y; X \rightarrow Z, entonces X \rightarrow Y,Z

Demostración: 1) X \rightarrow Y. 2) X \rightarrow Y. Si X \rightarrow Y, por aumentación vale que X \rightarrow XY. Si X \rightarrow Z, por aumentación vale que X,Y \rightarrow Y,Z. Luego por transitividad, X \rightarrow Y,Z

o Descomposición: si X \rightarrow Y,Z, entonces X \rightarrow Y, X \rightarrow Z

Demostración: $X \rightarrow Y$, Z por reflexividad vale que Y, Z \rightarrow Y. Luego, por transitividad X \rightarrow Z. Por flexibilidad también vale que Y, Z \rightarrow Z. Luego por transitividad, también vale que X \rightarrow Z

Pseudotransitividad: Si X → Y; Y,Z → W entonces X,Z → W
 Demostración: X → Y, por aumento vale que X,Z → Y,Z. Por otro lado se sabe que Y,Z → W. Luego por transitividad, vale que X,Z → W

- Clausura de un conjunto de atributos (X+):

Sea F un conjunto de df sobre un esquema R y sea X un subconjunto de R.

La clausura de X respecto de F, se denota X+ y es el conjunto de atributos A tal que la dependencia $X \rightarrow A$ puede deducirse a partir de F, por los axiomas de Armstrong.

Es decir, X+ son todos los atributos determinados por X en R.

- Algoritmo para encontrar X+:
 - Result := X
 - While (hay cambios en result) do
 - For (cada dependencia funcional Y->Z en F) do
 - if $(Y \subseteq result)$ then
 - result := result U Z
- Como generar relaciones que cumplan condiciones de un buen diseño:
 - o Descomposición:
 - Es una forma aceptada de eliminar las anomalías de una relación.
 - Consiste en separar los atributos de una relación en dos nuevas relaciones.
 - No se debe perder información, ni df.
 - o <u>Perdida de información</u>: si un esquema R, se lo particiona en dos subesquemas R1 y R2 se debe cumplir algunas de las siguientes condiciones.
 - R1 intersección R2 es clave en el esquema R1
 - R1 intersección R2 es clave en el esquema R2
 - Perdida de df:
 - Verificar que cada una de las df que valían en el esquema R, sigan valiendo en alguna de las particiones Ri.
 - Cuando se chequean las df pueden ocurrir dos cosas:
 - Los atributos de la df original quedaron todos incluidos en alguna de las particiones generadas.
 - Los atributos de la df original quedaron distribuidos en más de una partición.
 - Algoritmo para analizar la perdida de df:
 - Res = x Mientras Res cambia

Para i= 1 to cant_de_particiones_realizadas

Res = Res U ((Res intersección Ri)+ intersección Ri)

Donde Ri es el conjunto de atributos de la división representada por Ri
X es el determinante de la dependencia funcional que quiero analizar.
((Res intersección Ri)+ intersección Ri), asegura que quedan sólo los atributos que
pertenecen a la partición que se está tratando.

Formas Normales - BCNF

- Forma normal: propiedad sobre la relación.
 - o BCNF (Forma normal de Boyce Codd): provee un mecanismo para asegurar que:
 - Las anomalías dejan de estar en un particionamiento,
 - que no se pierda información y,
 - en algunos casos, asegura que no se pierdan df.
 - Un esquema esta en BCNF si, siempre que una df de la forma X → A es valida en R, entonces se cumple que:
 - X es superclave de R, o bien,
 - X → A es una df trivial.
 - Como llevar un esquema R a BCNF: de manera esquemática y simplificada, una vez halladas las df y las claves candidatas:
 - 1-analizar si en el esquema R existe alguna dependencia funcional que no cumple con la definición de BCNF
 - 1.1) si existe tal dependencia funcional, particionar el esquema en dos nuevos esquemas Ri, Ri+1, contemplando la dependencia funcional en cuestión. Analizar las 2 particiones generadas
 - 1.1.1) Se pierde información?
 - 1.1.1.1: NO, entonces sigo a 1.1.2
 - 1.1.1.2: SI. La partición es errónea. Reanalizar
 - 1.1.2) Se pierden Dependencias funcionales?
 - 1.1.2.1 NO, entonces sigo a 1.1.3
 - 1.1.2.2 Si. Entonces no es posible llevar a BCNF. Cambia la forma normal analizada.
 - 1.1.3) Determinar en qué forma normal esta Ri, Ri+1, si no están en BCNF, reiniciar desde 1, sino pasar a 1.2
 - 1.2) Si no existe, el esquema está en BCNF
 - 3FN (tercera forma normal): se utiliza cuando no se puede llevar a BCNF porque se pierden df, y asegura que no se pierda información, no se pierdan df, pero no siempre se quitan las anomalías.
 - Un esquema de relación R esta en 3FN si para toda dependencia de la forma X → A, se cumple que:
 - X → A es trivial, o bien,
 - X es superclave, o bien,
 - A es primo (atributo primo: atributo que forma parte de alguna clave candidata)
 - Como llevar un esquema R a 3FN: de manera esquemática y simplificada, una vez halladas las df y las claves candidatas y habiendo detectado que no se puede llevar a BCNF.
 - Se construye una tabla por cada df.
 - Si la clave de la tabla original, no esta incluida en ninguna de las tablas del punto anterior, se construye una tabla con la clave.
 - o 1FN (primera forma normal): los atributos de la relación son simples y atómicos.
 - o 2FN (segunda forma normal): un esquema de relación R esta en 2FN si para toda dependencia de la forma X \rightarrow A, se cumple que: A depende de manera total de la clave.

- <u>Dependencia Multivaluada</u>:

Una dependencia multivaluada, afirma que dos o mas atributos son independientes del resto. Como consecuencia de la independencia, se tiene redundancia. Esta redundancia no se elimina con las df.

- Se puede decir que: X -->> Y si dado un valor de X, hay un conjunto de valores de Y asociados y este conjunto de valores de Y NO esta relacionado (ni funcional ni multifuncionalmente) con los valores de R - X - Y (donde R es el esquema), es decir Y es independiente de los atributos de R - X - Y.
- o Sea R un esquema de relación
- Otra forma de definirla:
 - La Dependencia Multivaluada X->>Y vale en R si para todos los pares de tuplas t1 y t2 en R, tal que:
 - t1[X] = t2[X] existen las tuplas t3 y t4 en R tales que:

$$\circ$$
 t1[X] = t2[X] = t3[X] = t4[X]

$$\circ$$
 t3[R-X-Y] = t2[R-X-Y]

$$\circ$$
 t4[R-X-Y] = t1[R-X-Y]

- Dependencia Multivaluada trivial:

Sea R un esquema de relación, una dependencia multivaluada de la forma X ->> Y que vale en R es trivial si el conjunto de atributos X, Y son todos los atributos del esquema.

- Como proceder cuando se hallan dependencias multivaluada:
 - 4FN (cuarta forma normal): un esquema R esta en 4FN con respecto a un conjunto de dependencias multivaluada D, si para toda dependencia multivaluada de la forma x ->> Y se cumple que X ->> Y es una dependencia multivaluada trivial.
 - En otras palabras, un esquema esta en 4FN cuando no tiene dependencias multivaluada o bien, las dependencias multivaluada que en el valen, son triviales.