User: Assignment 1 log file

name: <unnamed>

log: H:\HAD5744\Assignment #3 2019\HAD5744 A3.smcl type: smcl

log type:

opened on: 4 Dec 2019, 16:19:56

2 . **** use Dataset2 (imported from excel) *****
3 . use "H:\HAD5744\Assignment #3 2019\Dataset2rev.dta"

5 . ***** describe the dataset ***
6 . describe

Contains data from H:\HAD5744\Assignment #3 2019\Dataset2rev.dta

322 obs: vars: 12

21,896 size:

4 Dec 2019 15:52

variable name	storage type	display format	value label	variable label	
	-71				
Exper	byte	%10.0g		Exper	
HP	byte	%10.0g		HP	
Age	byte	%10.0g		Age	
YSRF	double	%10.0g		YSRF	
HSRF	double	%10.0g		HSRF	
F	byte	%10.0g			
G	double	%10.0g			
Н	double	%10.0g			
I	double	%10.0g		,	
J	double	%10.0g			
K		%10.0g			
L L	str8	%9s			

Sorted by:

7 . summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
Exper	320	18.95625	4.136915	12	. 25
HP	320	75.52813	14.9215	50	100
Age	320	50.125	11.59356	30	70
YSRF	320	97.84796	13.73888	59.68127	125.6781
HSRF	320	76.17073	19.92223	18.33078	120.2732
F.	0				
G	1	18.95625		18.95625	18.95625
н	1	75.52813		75.52813	75.52813
I	1	50.125		50.125	50.125
J	1	97.84796		97.84796	97. 84 796
K	1	76.17073		76.17073	76.17073
L	0				

9 . * no missing value, all variables are numerical. Good

10 .
11 .
12 .
13 . * generate summary stats
14 . summarize, detail

Exper							
	Percentiles	Smallest					
1%	12	12					
5%	12	12					
10%	13	12	Obs	320			
25%	15	12	Sum of Wgt.	320			
50%	19		Mean	18.95625			
		Largest	Std. Dev.	4.136915			
75%	23	25					
90%	24	25	Variance	17.11407			
95%	25	25	Skewness	1516396			
99%	25	25	Kurtosis	1.721133			
		НР					
	Percentiles	Smallest					
1%	50	50					
5%	52	50					
10%	55	50	Obs	320			
25%	63	50	Sum of Wgt.	320			
50%	76		Mean	75.52813			
		Largest	Std, Dev.	14.9215			
75%	89	100					
90%	96	100	Variance	222.6512			
95%	98	100	Skewness	0527046			
998	100	100	Kurtosis	1.773009			
		Age	<u> </u>				
	Percentiles	Smallest					
1%	30	30					
5%	32	30					
10%	34.5	. 30	Obs	320			
25%	39	30	Sum of Wgt.	320			
50%	51		Mean	50.125			
		Largest	Std. Dev.	11.59356			
75%	59.5	70					
90%	67	70	Variance	134.4107			
95%	69	70	Skewness	.0161358			
99%	70	70	Kurtosis	1.823681			
		YSRF					
	Percentiles	Smallest					
1%	63.22226	59.68127					
. 5%	74.5025	60.80004					
10%	81.2437	61.47729	0bs	320			
25%	88.15823	63.22226	Sum of Wgt.	320			
50%	98.6814		Mean	97.8479			
		Largest	Std. Dev.	13.7388			
75%	108.1888	122,6407					
90%	115,5274	124.8386	Variance	188.756			
95%	119.3006	125,2264	Skewness	252610			
			Kurtosis	2.572784			

Asiignment 1 log file Wednesday December 4 16:21:27 2019 Page 3

		HSRF		
	Percentiles	Smallest		
1%	22.53686	18.33078		
5%	44.48184	18.76664		
10%	51.48454	19.68741	0bs	320
25%	61.80416	22.53686	Sum of Wgt.	320
50%	75.57711		Mean	76.17073
	•	Largest	Std. Dev.	19.92223
75%	92.79999	112.1047	******	396.8951
90%	101.5063	114.1884	Variance Skewness	3129038
95%	104.0921	115.8988	Kurtosis	2.731626
99%	112.1047	120.2732	Ruicosis	2.,31023
		F		
no ol	oservations			
		G		
	Percentiles	Smallest		
1%	18,95625	18.95625		
5%	18.95625	•		
10%	18.95625	•	Obs	1 1
25%	18.95625	•	Sum of Wgt.	1
50%	18.95625		Mean	18.95625
*		Largest	Std. Dev.	
75%	18.95625	•		
90%	18.95625		Variance	•
95%	18.95625	•	Skewness	
99%	18.95625	18.95625	Kurtosis	. •
		Н		
	Percentiles	Smallest		
1%	75.52813	75.52813		
5%	75.52813	•		ā
10%	75.52813		Obs	1
25%	75.52813	•	Sum of Wgt.	1
50%	75,52813		Mean	75.52813
		Largest	Std. Dev.	
75%	75.52813	•		
90%	75.52813		Variance	•
95%	75.52813		Skewness	
99%	75.52813	75.52813	Kurtosis	•
		I		
	Percentiles	Smallest		
1%	50.125	50.125		
5%	50.125			_
10%	50.125	•	0bs	1
25%	50.125	•	Sum of Wgt.	1
50%	50.125		Mean	50.125
		Largest	Std. Dev.	•
75%	50.125	•	**	•
90%	50.125	•	Variance	•
95%	50.125	EC 105	Skewness	•
99%	50.125	50.125	Kurtosis	•

	_
Obs	1
Sum of Wgt.	1
Mean	97.84796
Std. Dev.	
Variance	
Skewness	
Kurtosis	•
0bs	1
Sum of Wgt.	1
Mean	76.17073
Std. Dev.	
Variance	•
Skewness	•
Kurtosis	
	Sum of Wgt. Mean Std. Dev. Variance Skewness Kurtosis Obs Sum of Wgt. Mean Std. Dev. Variance Skewness

L

no observations

15 .

16 . * Determination of functional form

17 . * Health equation: inherited health and age

18 .
19 . scatter HSRF HP, saving(scatterHealthInheri)
 (file scatterHealthInheri.gph saved)

- 20 . scatter HSRF Age, saving(scatterHealthAge)
 (file scatterHealthAge.gph saved)
- 21 . gr combine scatterHealthInheri.gph scatterHealthAge.gph

22 .

- 23 . * Inherited health is ok; age-health is non-linear
- 24 . * plot health vs. logage and age^2 $\,$
- 25 . gen logage = log(Age)
 - (2 missing values generated)
- 26 . gen agesq = Age^2
 (2 missing values generated)

27

28 . scatter HSRF logage, saving(scatterHealthLogage)
 (file scatterHealthLogage.gph saved)

Asiignment 1 log file Wednesday December 4 16:21:28 2019 Page 5

- 29 . scatter HSRF agesq, saving(scatterHealthSqage)
 (file scatterHealthSqage.gph saved)
- 30 . gr combine scatterHealthLogage.gph scatterHealthSqage.gph
- 31 . * age^2 is better
- 32
- 33 . * Income equation: working experience and age
- 34.
- 35 . scatter YSRF Exper, saving(scatterIncomeExp)
 (file scatterIncomeExp.gph saved)
- 36 . scatter YSRF Age, saving(scatterIncomeAge)
 (file scatterIncomeAge.gph saved)
- 37 . gr combine scatterIncomeExp.gph scatterIncomeAge.gph
- 38
- 39 . * working exp is ok exp for some potential outliers
- 40 . * age needs to be transformed
- 41 . * plot income vs. logage and age^2 $\,$
- 42 . scatter YSRF logage, saving(scatterIncomeLogage) (file scatterIncomeLogage.gph saved)
- 43 . scatter YSRF agesq, saving(scatterIncomeSqage) (file scatterIncomeSqage.gph saved)
- 44 . gr combine scatterIncomeLogage.gph scatterIncomeSqage.gph
- 45 .
- 46 . * log(age) is still non-linear; use age^2
- 47 48
- 49 . * Note: without HP, the YSRF model is not identified in our system of M=2 equations
- 50 . * is that at least M-1 variables (in this case, one variable) from the system be left out of each equ
- 51 . * In health equation, work experience is omitted; therefore, this equation is identified
- 52 . * However, income equation is not identified as it includes all variables in the system
- 53 . * Therefore, need to include HP in HSRF model in order to identify this equation
- 54 . * Estimating the final 2SLS model
- 55 . * use inherited health as an IV for health
- 56 . ivregress 2sls YSRF Exper Age agesq (HSRF=HP)

Instrumental variables (2SLS) regression

Number of obs = 320 Wald chi2(4) = 2061.27 Prob > chi2 = 0.0000 R-squared = 0.8739 Root MSE = 4.8717

YSRF	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
HSRF Exper Age agesq _cons	.4187065 2.069323 1.258022 0109084 -7.460969	.0222697 .0691817 .2281341 .0023068 5.73362	18.80 29.91 5.51 -4.73 -1.30	0.000 0.000 0.000 0.000 0.193	.3750586 1.93373 .8108879 0154296 -18.69866	.4623544 2.204917 1.705157 0063872 3.776719

Instrumented: HSRF

Instruments: Exper Age agesq HP

Assignment 1 log file Wednesday December 4 16:21:28 2019 Page 6

- 57 . predict resIncome, residuals (2 missing values generated)
- 58 . predict hatIncome (option xb assumed; fitted values) (2 missing values generated)
- 59 . estat endog

Tests of endogeneity Ho: variables are exogenous

= 18.3141 (p = 0.0000) Durbin (score) chi2(1) = 19.0617 (p = 0.0000) Wu-Hausman F(1,314)

61 . * use work exp as an IV for income

62 . ivregress 2sls HSRF HP Age agesq (YSRF=Exper)

Instrumental variables (2SLS) regression

Number of obs = Wald chi2(4) = 5120.38Prob > chi2 = 0.0000 = 0.9425R-squared = 4.7695 Root MSE

HSRF	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
YSRF	.2911361	.0275131	10.58	0.000	.2372113	.3450609
HP	.7237591	.0210054	34.46	0.000	.6825892	.764929
Age	1.056241	.2305769	4.58	0.000	.604319	1.508164
agesq	0211947	.0023099	-9.18	0.000	0257219	0166675
_cons	-3.832772	5.613893	-0.68	0.495	-14.8358	7.170257

Instrumented: YSRF

Instruments: HP Age agesq Exper

- 63 . predict resHealth, residuals (2 missing values generated)
- 64 . predict hatHealth (option xb assumed; fitted values) (2 missing values generated)
- 65 . estat endog

Tests of endogeneity Ho: variables are exogenous

= 30.949 (p = 0.0000) Durbin (score) chi2(1) = 33.6203 (p = 0.0000) Wu-Hausman F(1,314)

66 .
67 . * sensitvity analysis
68 . * check the strength of IV by examing the repsective first-stage t-statistics

69 . ivregress 2sls YSRF Exper Age agesq (HSRF=HP),first

First-stage regressions

Number of obs	=	320
F(4, 315)	=	905.66
Prob > F	=	0.0000
R-squared	=	0.9200
Adj R-squared	=	0.9190
Root MSE	=	5.6704

Asiignment 1 log file Wednesday December 4 16:21:28 2019 Page 7

HSRF	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Exper Age agesq HP _cons	.6860895 1.619973 0277537 .8242337 -6.838553	.0770838 .2637108 .0026111 .0213649 6.717289	8.90 6.14 -10.63 38.58 -1.02	0.000 0.000 0.000 0.000 0.309	.5344253 1.101116 0328911 .7821977 -20.05498	.8377537 2.13883 0226163 .8662696 6.377871

Instrumental variables (2SLS) regression

Number of obs = 320 Wald chi2(4) = 2061.27 Prob > chi2 = 0.0000 = 0.8739 R-squared Root MSE = 4.8717

YSRF	Coef.	Std. Err.	2	P> z	[95% Conf.	Interval]
HSRF	.4187065	.0222697	18.80	0.000	.3750586	.4623544
Exper	2.069323	.0691817	29.91	0.000	1.93373	2.204917
Age	1.258022	.2281341	5.51	0.000	.8108879	1.705157
agesq	0109084	.0023068	-4.73	0.000	0154296	0063872
cons	-7.460969	5.73362	-1.30	0.193	-18.69866	3.776719

Instrumented: HSRF

Instruments:

Exper Age agesq HP

70 . ivregress 2sls HSRF Age agesq (YSRF=Exper), first

First-stage regressions

Number	of obs	=	320
F(3,	316)	=	216.91
Prob >	F	=	0.0000
R-squar	ed	=	0.6731
Adj R-s	quared	=	0.6700
Root MS	EΕ	=	7.8922

YSRF	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Age	1.783129	.3667994	4.86	0.000	1.061451	2.504806
agesq	0211107	.0036321	-5.81	0.000	0282569	0139644
Exper	2.459222	.1069214	23.00	0.000	2.248854	2.66959
cons	17.72046	9.031548	1.96	0.051	049106	35.49003

Instrumental variables (2SLS) regression

Number of obs = 320 Wald chi2(3) = 539.82Prob > chi2 0.0000 = 0.6787 R-squared = 11.275 Root MSE

HSRF	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
YSRF	.3786555	.0621142	6.10	0.000	.2569139	.5003971
Age	.5789243	.540442	1.07	0.284	4803226	1.638171
agesq	0163724	.0054081	-3.03	0.002	0269721	0057727
_cons	53.43106	13.14587	4.06	0.000	27.66563	79.19649

Instrumented: YSRF

Instruments: Age agesq Exper

72 . * very big t- and F-score.

73 .

74 . * check the residual of the two equations

75 . hist resIncome, saving(hisresIncome)
(bin=17, start=-14.334509, width=1.673621)
(file hisresIncome.gph saved)

- 76 . hist resHealth, saving(hisresHealth)
 (bin=17, start=-11.971336, width=1.8924575)
 (file hisresHealth.gph saved)
- 77 . gr combine hisresIncome.gph hisresHealth.gph

78

- 79 . * Shapiro-Wilk
- 80 . swilk resIncome

Shapiro-Wilk W test for normal data

	Variable	Obs	W	v	z	Prob>z
_	resIncome	320	0.99641	0.810	-0.495	0.68962

81 . swilk resHealth

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	z	Prob>z
resHealth	320	0.99338	1.494	0.945	0.17236

82

- 83 . * cannot reject normality
- 84 .
- 85 . * check heteroskedasticity: plot fitted income/health against res
- 86 . scatter hatIncome resIncome, saving(hatresIncome)
 (file hatresIncome.gph saved)
- 87 . scatter hatHealth resHealth, saving(hatresHealth)
 (file hatresHealth.gph saved)
- 88 , gr combine hatresIncome.gph hatresHealth.gph

89

90 .

- 91 . * check heteroskedasticity and outliers: plot fitted value vs. predictor
- 92 . * income equation
- 93 . scatter resIncome Age, saving(rIncomeAge)
 (file rIncomeAge.gph saved)
- 94 . scatter resIncome agesq, saving(rIncomeagesq)
 (file rIncomeagesq.gph saved)
- 95 . scatter resIncome Exper, saving(rIncomeExp)
 (file rIncomeExp.gph saved)

Asiignment 1 log file Wednesday December 4 16:21:28 2019 Page 9

96 . scatter resIncome YSRF, saving(rIncomeHealth) (file rIncomeHealth.gph saved)

98 . * health equation

99 . scatter resHealth Age, saving (rHealthAge) (file rHealthAge.gph saved)

- 100 . scatter resHealth agesq, saving(rHealthagesq) (file rHealthagesq.gph saved)
- 101 . scatter resHealth HP, saving(rHealthInheri) (file rHealthInheri.gph saved)
- 102 . scatter resHealth HSRF, saving(rHealthIncome) (file rHealthIncome.gph saved)

- 104 . gr combine rHealthAge.gph rHealthAgesq.gph rHealthInheri.gph rHealthIncome.gph
- 105 . * no cluster, no pattern -> heteroskedastic
- 106 . * also no obv outliers

107 .

108 . * Model comparison: logage vs. age^2

109 . * first we report the regression results if age -> log(age)

110 . ivregress 2sls YSRF Exper logage (HSRF=HP)

Instrumental variables (2SLS) regression

Number of obs = Wald chi2(3) = 1827.64Prob > chi2 = 0.0000 = 0.8668 R-squared = 5.0067 Root MSE

YSRF	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
HSRF Exper logage _cons	.4158628 2.084258 8.204055 -5.223639	.0231588 .0714223 1.743682 7.922289	17.96 29.18 4.71 -0.66	0.000 0.000 0.000 0.510	.3704725 1.944273 4.786501 -20.75104	.4612532 2.224243 11.62161 10.30376

Instrumented: HSRF

Instruments: Exper logage HP

111 , estat endog

Tests of endogeneity

Ho: variables are exogenous

= 28.1297 (p = 0.0000) Durbin (score) chi2(1) $= 30.3589 \quad (p = 0.0000)$ Wu-Hausman F(1,315)

112 .

113 . ivregress 2sls HSRF HP logage (YSRF=Exper)

Instrumental variables (2SLS) regression

Number of obs = 320 Wald chi2(3) = 2948.42Prob > chi2 = 0.0000 = 0.9064 R-squared = 6.0849Root MSE

Assignment 1 log file Wednesday December 4 16:21:28 2019 Page 10

HSRF	Coef. S	td. Err.	z	P> z	[95% Conf.	Interval]
HP .7 logage -5	099119 60.0952 1	.034569 .026564 .497665	8.91 26.72 -33.45 25.99	0.000 0.000 0.000 0.000	.240168 .6578474 -53.03056 173.0058	.3756761 .7619764 -47.15983 201.2328

Instrumented: YSRF

Instruments: HP logage Exper

114 . estat endog

Tests of endogeneity Ho: variables are exogenous

Durbin (score) chi2(1)

 $= 66.0694 \quad (p = 0.0000)$

Wu-Hausman F(1,315)

= 81.9589 (p = 0.0000)

115 .

116 .

117 . * RESET test is conducted to examine omitted var 118 . * original model 119 . reg YSRF Exper Age agesq

Source	SS	df		MS		Number of obs F(3, 316)	=	320 216.91
Model Residual	40530.9427 19682.4905	3 316		0.3142 863622		F(3, 316) Prob > F R-squared Ad R-squared	=	0.0000 0.6731 0.6700
Total	60213.4332	319	188.	756844		Root MSE	=	7.8922
YSRF	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
Exper Age agesq _cons	2.459222 1.783129 0211107 17.72046	.1069 .3667 .0036 9.031	994 321	23.00 4.86 -5.81 1.96	0.000 0.000 0.000 0.051	2.248854 1.061451 0282569 049106	-2 	2.66959 .504806 0139644 5.49003

120 . predict Incomehat

(option xb assumed; fitted values)

(2 missing values generated)

121 . reg HSRF Incomehat Age agesq

Source	ss	df	_	MS		Number of obs F(3, 316)	=	320 124.67
Model Residual	68626.0485 57983.496	3 316		5.3495 492076		Prob > F R-squared Adj R-squared	=======================================	0.0000 0.5420 0.5377
Total	126609.544	319	396.	895124		Root MSE	=	13.546
HSRF	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ιn	terval)
Incomehat Age agesq _cons	.3786555 .5789242 0163724 53.43106	.0740 .6492 .0064	2877 1 973	5.07 0.89 -2.52 3.38	0.000 0.373 0.012 0.001	.2318327 698549 0291558 22.35743	_1 _	5254784 856397 0035889 4.50469

122 . estat ovtest

Ramsey RESET test using powers of the fitted values of HSRF Ho: model has no omitted variables

F(3, 313) = 1.47Prob > F = 0.2220

123 .

124 , * fail to reject absence of omitted variables

125 , * original model is adequate

126 .

127 . 128 . * RESET test is conducted to examine omitted var bias if we now

129 . * include HP in HSRF equation

130 .

131 . reg YSRF Exper Age agesq

So	urce	SS	df	MS			Number of obs F(3, 316)	=	320 216.91
Me Resi	odel dual	40530.9427 19682.4905	3 316		L0.3142 2863622		Prob > F R-squared Adj R-squared	=	0.0000 0.6731 0.6700
To	otal	60213.4332	319	188	.756844		Root MSE	=	7.8922
	YSRF	Coef.	Std.	Err.	t	P> t	(95% Conf.	In	terval]
a	xper Age gesq cons	2.459222 1.783129 0211107 17.72046	.1069 .3667 .0036 9.031	7994 5321	23.00 4.86 -5.81 1.96	0.000 0.000 0.000 0.051	2.248854 1.061451 0282569 049106	2 	2.66959 .504806 0139644 5.49003

132 . predict Incomehat2

(option xb assumed; fitted values)

(2 missing values generated)

133 . reg HSRF Incomehat2 HP Age agesq

	Source	SS	д£		MS		Number of obs		320
-	Model Residual	116481.157 10128.3877	4 315		0.2892 536 116		F(4, 315) Prob > F R-squared Adi R-squared	= =	905.66 0.0000 0.9200 0.9190
-	Total	126609.544	319	396.	895124		Root MSE	=	5.6704
-	HSRF	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	Incomehat2 HP Age agesq _cons	.2789864 .8242337 1.122504 0218641 -11.78232	.031: .021: .272: .002: 6.82:	3649 1612 7235	8.90 38.58 4.12 -8.03 -1.73	0.000 0.000 0.000 0.000 0.085	.2173148 .7821977 .5870206 0272228 -25.20857	1 	.340658 8662696 .657988 0165055 .643927

134 . estat ovtest

Ramsey RESET test using powers of the fitted values of HSRF Ho: model has no omitted variables

F(3, 312) = 1.72Prob > F = 0.1629 135 .

136 . * Fail to reject absence of omitted variables

137 . * New model is now adequate

138 . * This shows that RESET test does not always show that a variable

139 . * is statistically omitted even though conceptually it is necessary to include

140 . 141 .

142 . reg YSRF Exper logage

Source	ss	df		MS		Number of obs	=	320
Model Residual	37730.0772 22483.356	2 317		5.0386 254131		F(2, 317) Prob > F R-squared Adj R-squared	= 1 H	265.98 0.0000 0.6266 0.6242
Total	60213.4332	319	188.	756844		Root MSE	=	8.4217
YSRF	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
Exper logage _cons	2.489385 -15.06513 109.2096	.1139 1.962 7.917	2559	21.84 -7.68 13.79	0.000 0.000 0.000	2.265116 -18.92641 93.63303	-1	.713654 1.20384 24.7862

143 . predict Incomehat3

(option xb assumed; fitted values)

(2 missing values generated)

144 . reg HSRF Incomehat3 HP logage

Source	ss	df		MS		Number of obs		320
Model Residual	109169.923 17439.6219	3 316		9.9742 886769		F(3, 316) Prob > F R-squared Adj R-squared	=	659.37 0.0000 0.8623 0.8609
Total	126609.544	319	396.	895124		Root MSE	=	7.4289
HSRF	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
Incomehat3 HP logage _cons	.2956721 .814169 -50.10059 180.4645	.0405 .0279 1.828 9.355	773 213	7.30 29.10 -27.40 19.29	0.000 0.000 0.000 0.000	.2159388 .7591237 -53.6976 162.0569	-4	3754054 8692143 6.50358 98.8722

145 . estat ovtest

Ramsey RESET test using powers of the fitted values of HSRF

Ho: model has no omitted variables

F(3, 313) =14.13 Prob > F = 0.0000

146 . * log(age) model is not adequate

147 . * choose our unlogged model for discussion

148 .

149 . * END 150 . log close

<unnamed> name:

H:\HAD5744\Assignment #3 2019\HAD5744 A3.smcl log:

log type: smcl

closed on: 4 Dec 2019, 16:20:25

