

UNIVERSIDAD SIMON BOLIVAR

MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

SEGUNDO EXAMEN PARCIAL: TIPO A

[duración : una hora y 45 minutos]

SOLUCIONES

SE1. (10 ptos.) Sea α el plano que pasa por los puntos A(3, 1, -3), B(0, 2, -3), C(3, 2, 0) y sea β el plano de ecuación 2x-3y+4z+3=0.

1a) Determine(y justifique) si los planos α , β son o no son paralelos;

1b) en el caso de no ser paralelos halle ecuaciones paramétricas de la recta de intersección de los dos planos;

1c) halle el área del triángulo de vértices A, B, C.

$$\mathbf{AB} = (-3, 1, 0), \mathbf{AC} = (0, 1, 3);$$
El vector
$$\mathbf{AB} \times \mathbf{AC} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = (3, 9, -3) = 3(1, 3, -1) \text{ es perpendicular al plano } \alpha \text{ y su}$$

módulo es igual al doble del área del triángulo de vértices A, B, C;

S1a. Como el ángulo de dos planos es igual al ángulo de sus vectores normales, que en nuestro caso son $\mathbf{n}_{\alpha}=(1,3,-1)$, $\mathbf{n}_{\beta}=(2,-3,4)$ y como dos vectores son paralelos si y sólo si uno de ellos es múltiplo del otro, queda claro que los dos planos α , β no son paralelos. **S1b**. una ecuación del plano α es \mathbf{n}_{α} . $\mathbf{AP}=(1,3,-1)(x-x_A,y-y_A,z-z_A)=0$, por lo cual obtenemos la ecuación (x-3)+3(y-1)-(z+3)=x+3y-z-9=0; a partir del sistema de las ecuaciones de los dos planos α , β , obtenemos:

$$\begin{cases} x + 3y - z - 9 = 0 \\ 2x - 3y + 4z + 3 = 0 \end{cases} \Rightarrow \begin{bmatrix} 1 & 3 - 1 & | & 9 \\ 2 & - 3 & 4 & | & -3 \end{bmatrix} \Rightarrow \dots \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & \frac{2}{3} & | & \frac{7}{3} \end{bmatrix} \Rightarrow \begin{cases} x = 2 - t \\ y = \frac{7}{3} + \frac{2}{3} t \\ z = t \end{cases}$$

S1c. como ya se observó, el módulo del vector $\mathbf{AB} \times \mathbf{AC} = 3(1, 3, -1)$ es igual

al doble del área del triángulo de vértices A, B, C, de manera que el área es igual a :

$$\frac{3}{2}\sqrt{1+9+1} = \frac{3\sqrt{11}}{2} .$$

SE2.- (5 ptos.) En el espacio vectorial, **P2**, exprese el polinomio t^2+4t -3 como combinación lineal de los tres polinomios $p_1=t^2$ -2t+5, $p_2=2t^2$ -3t, $p_3=t+3$. El polinomio t^2+4t -3 es una combinación lineal de los tres polinomios $p_1=t^2$ -2t+5, $p_2=2t^2$ -3t, $p_3=t+3$ si y sólo si existen tres números, x_1 , x_2 , x_3 , tales que :

$$x_1(t^2 - 2t + 5) + x_2(2t^2 - 3t) + x_3(t + 3) = t^2 + 4t - 3, \Leftrightarrow (x_1 + 2x_2)t^2 + (-2x_1 - 3x_2 + x_3)t + (5x_1 + 3x_3) = t^2 + 4t - 3 \Leftrightarrow$$

UNIVERSIDAD SIMON BOLIVAR

MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

SEGUNDO EXAMEN PARCIAL: TIPO A

[duración : una hora y 45 minutos]

SOLUCIONES

por lo tanto hallamos que el polinomio t^2+4t-3 se puede expresar (en una sola manera) con la siguiente combinación lineal :

$$t^2+4t-3=-3(t^2-2t+5)+2(2t^2-3t)+4(t+3)$$
.

SE3.(4 ptos.) En el espacio vectorial, V, de todas las matrices de tamaño nxn , averigüe para cada uno de los subconjuntos que se definen a continuación, si es o no es subespacio de V : **3a.** W $_1 = \{ H=[a_{ij}] \in V | a_{ij}=a_{ji} \} =$ subconjunto de todas las matrices simétricas ; **3b.** W $_2 = \{ H \in V | HA=AH \} =$ subconjunto de todas las matrices que conmutan con una matriz, A, asignada .

S3a. W₁ es subespacio, ya que (por ejemplo) la matriz nula es simétrica [por lo cual $W_1 \neq \emptyset$] y además :

 $A=[a_{ij}] \in W_1$, $B=[b_{ij}] \in W_1 \Rightarrow a_{ij}=a_{ji}$, $b_{ij}=b_{ji} \Rightarrow$ para la matriz suma $C=A+B=[c_{ij}]=[a_{ij}+b_{ij}]$ se cumple : $c_{ij}=a_{ij}+b_{ij}=a_{ji}+b_{ji}=c_{ji}$ [cierre de W_1 respecto a la suma de vectores] y tambien :

 $A{=}[a_{ij}] \in W_1 \text{ , } \lambda {\in} R \Longrightarrow \text{ para la matriz } D{=}\lambda A{=}[\lambda a_{ij}] \text{ se cumple } d_{ij}{=}\lambda a_{ij}{=}\lambda a_{ji}{=}d_{ji}$ [cierre de W_1 respecto a la smultiplicación de vectores por números] .

 ${\bf S3b}.\ {\bf W}_2$ es subespacio. En efecto la matriz nula permuta con A y además :

HA=AH, $BA=AB \implies$

[usando la propiedad distributiva del producto de matrices respecto a la suma]

(H+B)A=HA+BA=AH+AB=A(H+B) [cierre de W₂ respecto a la suma de vectores];

HA=AH, $\lambda\in R\Longrightarrow (\lambda H)A=\lambda(HA)=\lambda(AH)=A(\lambda H)$ [cierre de W_1 respecto a la multiplicación de vectores por números] .

SE4. (6 ptos) Halle las condiciones sobre a, b, c para que el vector (a, b, c) $\in \mathbb{R}^3$ pertenezca al subespacio generado por \mathbf{u} =(2, 1, 0), \mathbf{v} =(1, -1, 2), \mathbf{w} =(0, 3, -4). Observemos que el vector (a, b, c) pertenece al subespacio generado por \mathbf{u} =(2, 1, 0), \mathbf{v} =(1, -1, 2), \mathbf{w} =(0, 3, -4), si y sólo si existen tres números x_1, x_2, x_3 , tales que :

$$\begin{array}{l} x_1(\ 2,\ 1,\ 0) + x_2(1,\ -1,\ 2) +\ x_3(\ 0,\ 3,\ -4) = (a,b,c)\ ; \qquad \left\{ \begin{array}{l} 2x_1 + x_2 = a \\ x_1 - x_2 + 3x_3 = b \\ 2x_2 - 4x_3 = c \end{array} \right. \Rightarrow$$

$$\Rightarrow \begin{bmatrix} 2 & 1 & 0 & a \\ 1 & -1 & 3 & b \\ 0 & 2 & -4 & c \end{bmatrix} \Rightarrow \dots \Rightarrow \begin{bmatrix} 1 & -1 & 3 & b \\ 0 & 1 & -2 & | c/2 \\ 0 & 0 & 0 & -4b + 2a - 3c \end{bmatrix} \Rightarrow 2a - 4b - 3c = 0.$$