Problem Set 8

Due: 5/08

Part One: Hand-Written Exercise

1. After applying a model to a given data set, we calculate the testing MSEs based on 3 different cross validation methods: LOOCV, 10-fold CV, and the validation set approach. We do these cross validation methods 10 times and obtain the following testing MSEs:

Method A	5.8021	5.8021	5.8021	5.8021	5.8021	5.8021	5.8021	5.8021	5.8021	5.8021
Method B	5.8523	5.8266	5.8295	5.7586	5.7909	5.8205	5.7719	5.8005	5.8231	5.7831
Method C	5.7004	6.5871	6.0887	6.3250	5.3031	5.5726	6.0595	5.8611	5.7672	4.8724

Which cross validation method do Method A, B, and C respectively correspond to? Briefly explain your answer.

- 2. Suppose that we obtain a bootstrap sample from a set of N observations.
 - (a) For i = 1, ..., N and j = 1, ..., N, what is the probability that the *i*th bootstrap observation is *not* the *j*th observation from the original samples? Does your answer depend on *i* or *j*? Justify your answer.
 - (b) What is the probability that the jth observation from the original samples is not in the N bootstrap samples? Justify your answer.
 - (c) Continue with part (b), calculate the probability for N=5 and N=5000.
 - (d) Continue with part (b), calculate the probability when $N \to \infty$.

Part Two: Computer Exercise

1. Please load the data set Auto from the package ISLR. Auto contains gas mileage, horse-power, and other information for 392 vehicles. Suppose we have three competing models:

```
\begin{split} & \text{Model 1: mpg} = \beta_0 + \beta_1 \text{horsepower} + u \\ & \text{Model 2: mpg} = \beta_0 + \beta_1 \text{horsepower} + \beta_2 \text{weight} + u \\ & \text{Model 3: mpg} = \beta_0 + \beta_1 \text{horsepower} + \beta_2 \text{weight} + \beta_3 \text{acceleration} + u. \end{split}
```

Complete the following questions by setting the random seed to set.seed(1):

- (a) Please choose the best model using the validation set approach and estimate its testing MSE.
- (b) Please choose the best model using LOOCV and estimate its testing MSE.
- (c) Please choose the best model using 10-fold CV and estimate its testing MSE.
- 2. For the simple linear regression model:

$$mpg = \beta_0 + \beta_1 horsepower + u,$$

please obtain the OLS estimator $\hat{\beta}_1$, and construct the following bootstrap estimators of $SD(\hat{\beta}_1)$ using B = 1000 simulations.

- (a) Compute the "Paired Bootstrap" estimator of $SD(\hat{\beta}_1)$ without the function boot().
- (b) Compute the "Residual Bootstrap" estimator of $SD(\hat{\beta}_1)$.