# **Lecture #9: Ensemble Learning**

### What is Ensemble Learning?

In ensemble learning, the idea is to combine multiple classifiers ento a single one. Ensemble learning usually works very well en practice.

Two methods (for this class):

- 1. Bagging
- 2. Boosting

# **Bagging**

```
BAGGING: (Bootstrap AGGregating)
```

- 1. Input: n labelled trainering examples (x1, y1), -, (xn, yn)
- 2. Algorithm!

Repeat k times:

- (a) Select m samples out of n with replacement from the training set to get training set Si
- (b) Train classifier hi on Si (usually, hi's are the same type of classifier)
- 3. Output: classifiers hy, .., hk

Testing: Given test example x, output the majority of  $h_1(x)$ ,  $h_2(x)$ ,...,  $h_k(x)$  (break ties at rondom as usual)

### **Choice Points in Bagging**

1. How to pick k?

Higher k is better, but also increases training time, storage requirement and classification time. So pick a k which is teasible.

# **Choice Points in Bagging**

2. How to pick m?

Popular choice for m=n. But this is still very different from working with the entire training set!

$$Pr(S_i = S) = \frac{n!}{n^n}$$
 (# ways of choosing n samples)

+> only n! of these ways give you the entire training set!

$$\frac{n!}{n^n} = a \text{ very tiny number } \ll 2^{-n/2}$$

For any  $(x_j, y_j)$ ,  $Pr((x_j, y_j) \text{ is not en } S_i) = \left(1 - \frac{1}{n}\right)^n \times \frac{1}{e} \left(\text{large } n\right)^n \times \frac{1}{e$ 

# Why does Bagging work?

It can be shown that bagging decreases the variance of a classifiem. (it doesn't help much with bias).

Thus it prevents overfilting.

#### **Random Forest**

- Forest == Bunch of decision trees
- For K iterations
  - classifier = Decision-Tree(sample, short depth)
- End For
- This is a celebrated algorithm among both researchers, practitioners, and masses
- Its simple, embarrassingly parallel, works extremely well – Often, this is one of the first off-the-shelf classifiers people use.

### **Boosting**

#### Boosting

#### Sometimes it is!

- easy to come up with simple, easy to use, rules of thumb classifiers
- but hard to come up with a single highly accurate rule.

#### Examples:

(1) Spam classification, based on email text.

Certain words, eg. "Nigeria", "Online Pharmacy", etc. typically are a good indicator of spam.

Rule of thumb: Does email contain word "Nigeria"?

# **Boosting (contd.)**

(2) Petect if an image has a face in it.



On an average, pixels around the eyes are darker than those below.

Rule of thumb: Is the (average darkness in the shaded region) - (average darkness in the white rectangular region below) > 0?

Boosting gives us a way to combine these week rules with of thumb wito good classifiers.

#### Debinitions:

- 1. Weak Learner: A simple rule of thumb that doesn't necessarily work very well.
- 2. Strong Learner: A good classifier (with high accuracy)

# **Boosting Framework**

### Boosting Procedure!

- 1. Design method to find a good rule of thumb.
- 2. Repeat:
  - Find a good rule of thumb
  - Modify training data to get a second data set
  - Apply method of to new data set to get a good rule of thumb, and so on.
- 1. How to get a good rule of thumb? Application specific (more later)
- 2. How to modify training data set?
  - Give highest weight to the hardest examples those that were misclassified more often by previous rules of thumb.
- 3. How to combine the rules of thumb ento a prediction rule?

  Take a weighted majority of the rules.

# Weak Learner: Example

Let D be a distribution over labelled examples, and let h be a classifier. Error of h wit D is:

$$err_{D}(h) = Pr [h(x) \neq y]$$
 $(x,y)$   $vD$ 

Example: D:

X: takes values  $\frac{1}{4}$ ,  $\frac{1}{2}$ ,  $\frac{3}{4}$ , 1, each w.p.  $\frac{1}{4}$ .





Y=1 if x has to value > 1/2, 0/w Y=0.

Then if h is the rule:  

$$h(x) = 1$$
 if  $x > \frac{1}{4}$   
= 0 o/w.

Then, 
$$err(h) = \frac{1}{4}$$
.

### **Basic Definitions**

- + h is called a weak learner if erro(h) < 0.5 -> Error of random guessing is 0.5 (with 2 labels)
  - Given training examples (21, y1), -, (2n, yn), we can assign weights  $w_1,...,w_n$  to these examples. If  $\sum w_i = 1$ ,  $w_i > 0$ , we can think of these weights as a probability distribution over the examples.

1 is the endicator bunction, = 0 otherwise.

### **Boosting Algorithm**

```
Input: Training set S = { (21, y1), ..., (20, yn) }, yi = ±1
             D_1(i) = \frac{1}{n} for all i = 1, ..., n
  For t = 1, 2, 3, ....
          ht = weak-learner wit Dt. (so, errpt (ht) < 0.5)
         Et = err D+ (ht)
        \alpha = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} (so, \alpha = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} (so, \alpha = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} (so, \alpha = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} and almost 0 when \epsilon_t is close to 0.5
       DtH(i) = Dt(i)e^{-dt} y_i h_t(x_i) DtH goes f if i is misclassified by h_t; so higher Dt means harder example.
        where It is a normalization constant to ensure that
           \sum \mathcal{D}_{t+1}(i) = 1.
Final classifier: H(x) = sign (\(\sum_{\text{tot}} \alpha tht(\(\pi\))\) (weighted majority)
```

# Example of Weighted Error:

Suppose training data is: 
$$((0,0),1)$$
,  $((1,0),1)$ ,  $((0,1),-1)$ 

weights  $W:$ 
 $\frac{1}{2}$ 
 $\frac{1}{4}$ 
 $\frac{1}{4}$ 

classification rule: Predict 1 if  $x_1 \le \frac{1}{2}$ ,  $-1$  otherwise.

Merr<sub>w</sub>  $(h) = \frac{1}{2} \times 0 + \frac{1}{4} \times 1 + \frac{1}{4} \times \frac{1}{4} = \frac{1}{2}$ 

(The usual (unweighted) error would be 12/3).

# Boosting Algorithm Example:

Training data: 
$$((1,1),+)$$
  $((2,1),-)$   $((4,1),-)$   $((1,2),+)$   $((2,2),-)$   $((3,2),-)$   $((3,3),+)$   $((4,3),-)$   $((4,4),+)$ 



Initially: D1(i) = 0.1 (for all i)

BINDODOSE MI

Weak Learners: Set of vertical and horizontal thresholds.

- 1 Suppose we pick h1(x) = + if 21 < 1.5 = - otherwise
  - Name the points: a,b,.., i (for ease of understanding)

Then.

err<sub>D1</sub>(h<sub>1</sub>) = 
$$\varepsilon_1 = 0.3$$
  $O_1 = 0.42$   
Weights of  $O_1$   $O_2$   $O_3$   $O_4$   $O_5$   $O_5$ 

Note: Calculations rounded to 2 decimal places.



Weights of a,b: 
$$D_3 := 0.07 \times e^{0.66} / Z_3 = 0.17$$
  
Weights of c,d,e,f:  $D_3 := 0.07 \times \bar{e}^{0.66} / Z_3 = 0.04$   
Weights of h,i,j:  $D_3 := 0.17 \times \bar{e}^{0.66} / Z_3 = 0.11$   
Weight of g:  $D_3 := 0.07 \times e^{0.66} / Z_3 = 0.11$   
 $Z_3 = 0.81$ 



In Round 3, suppose we pick:  

$$h_3(\alpha) = + if \alpha_1 \le 3.5$$

$$= - \text{ otherwise.}$$

$$e^{\gamma \gamma} D_3(h_3) = \mathcal{E}_3 = 0.12$$

$$\alpha_3 = 0.99$$

Weights of 
$$a_1b$$
:  $D_4:=0.17 \times e^{-0.99} / Z_4 = 0.1$ 

"  $c_1d_1e$ :  $D_4:=0.17 \times e^{-0.99} / Z_4 = 0.04 e^{-0.99} / Z_4 = 0.07$ 

"  $h_1i_1j$ :  $D_4:=0.11 \times e^{-0.99} / Z_4 = 0.06$ 

"  $f:D_4:=0.04 = 0.99 / Z_4 = 0.02$ 

"  $g:D_4:=0.17 = 0.17 = 0.99 / Z_4 = 0.02$ 

Final classifier: 
$$sign(\alpha_1 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x))$$
  
=  $sign(0.42 h_1(x) + 0.66 h_2(x) + 0.99 h_3(x))$ 

# **Boosting and Overfitting**

When to stop boosting? Use a validation dataset to tind a stopping time. Stop when validation error does not improve.

#### Boosting and Overbitting:

Overfilting can happen with boosting, but often does not. Typical boosting run:



Reason is that the margin of classification often increases with boosting.

# **Boosting Margin**

Intuitively, margin of classification measures how for the + labels are from the - labels.

For boosting:

- think of each ht() as a feature
- Feature space is:

$$[h_1(x), h_2(x), \ldots, h_T(x)]$$

- Margin of example & is: | \sum\_{t=1} d\_t ht(x) |.
- If you have large margin data, then classifiers need less training examples to avoid overfilting. (This is also why kernels work, even if they are very high dimensional feature spaces.)

Note: Notion of margin for boosting is a little different from the exact way we defined margin for perceptron, but the difference is bairly technical.