

Ants living at the edge face thermal constraints

Andrew D. Nguyen¹, <u>Megan Brown²</u>, <u>Jordan Zitnay²</u>, Nicholas J. Gotelli¹, Sara Helms Cahan¹, Amy Arnett², Aaron M. Ellison³ Deptartment of Biology, University of Vermont; Department of Biology, Unity College; Harvard Forest, Harvard University

Common woodland ants (Aphaenogaster picea) experience thermally stressful environments! Colder, more seasonal Thermal stress over long and short term (Shaefer et al. 2009)

Q1: What determines their distribution at their northern range?

Fig3. Overview of physiological testing for cold tolerance and hardening (short term cold responses). For each colony, 2-4 workers followed each line.

Methods summary: Presence and absence values were collated from previous field surveys and a survey done in the summer of 2015. In this survey, Megan and Jordan visited 80 sites! They did most-all of the work on this project. Physiological tests were performed on 20 lab acclimated (25 °C at least 1 month) ant colonies collected from Maine and Burlington, VT. We used an ANCOVA to test the effect of pre-treatment (factor), Tmin (continuous), and their interaction on chill coma recovery time. The variance covariance matrix was constructed from a MANOVA, manova(traits ~ Colony). To examine correlated responses among pre-treatments, we decomposed the variance-covariance matrix (broad sense G) with a PCA.

Acknowledgements: This project was supported by a Broadening Participation REU supplement to NSF award DEB-1136644 (N. Sanders, A. Ellison, R.R. Dunn, N.J. Gotelli, S. Helms Cahan & B. Ballif). Please visit http://www.alexanderwild.com/ for awesome ant photos.