Chapter 3: The Logic of Types, Part III The Curry-Howard correspondence

Sergei Winitzki

Academy by the Bay

December 16, 2017

Types and propositional logic

The Curry-Howard correspondence

The code val x: T = ... shows that we can compute a value of type T as part of our program expression

- Let's denote this proposition by $\mathcal{CH}(T)$ "Code \mathcal{H} as a value of type \mathbf{T} "
- Correspondence between types and propositions, for a given program:

Туре	Proposition	Short notation
Т	$\mathcal{CH}(T)$	T
(A, B)	CH(A) and $CH(B)$	$A \times B$
Either[A, B]	CH(A) or $CH(B)$	$A+B$, $A\vee B$
$A \Rightarrow B$	CH(A) implies $CH(B)$	$A \Rightarrow B$
Unit	True	1
Nothing	False	0

- Type parameter [T] in a function type means $\forall T$
- Example: def dupl[A]: A ⇒ (A, A). The type of this function corresponds to the (valid) proposition ∀A: A ⇒ A × A

Working with the CH correspondence I

Convert Scala types to short notation and back

Example 1: A disjunction type

```
sealed trait UserAction
case class SetName(first: String, last: String) extends UserAction
case class SetEmail(email: String) extends UserAction
case class SetUserId(id: Long) extends UserAction
```

• Short notation: UserAction ≡ String × String + String + Long

Example 2: A parameterized disjunction type

```
sealed trait Either3[A, B, C] case class Left[A, B, C](x: A) extends Either3[A, B, C] case class Middle[A, B, C](x: B) extends Either3[A, B, C] case class Right[A, B, C](x: C) extends Either3[A, B, C]
```

• Short notation: Either3^{A,B,C} $\equiv A+B+C$

Working with the CH correspondence II

Any valid formula can be implemented in code

Proposition	Code	
$\forall A: A \Rightarrow A$	<pre>def identity[A](x:A):A = x</pre>	
$\forall A: A \Rightarrow 1$	<pre>def toUnit[A](x:A): Unit = ()</pre>	
$\forall A \forall B : A \Rightarrow A + B$	<pre>def inLeft[A,B](x:A): Either[A,B] = Left(x)</pre>	
$\forall A \forall B : A \times B \Rightarrow A$	def first[A,B](p:(A,B)):A = p1	
$\forall A \forall B : A \Rightarrow (B \Rightarrow A)$	$def const[A,B](x:A):B \Rightarrow A = (y:B) \Rightarrow x$	

- Invalid formulas cannot be implemented in code
 - Examples of invalid formulas:

$$\forall A: 1 \Rightarrow A; \ \forall A \forall B: A \lor B \Rightarrow A;$$

$$\forall A \forall B : A \Rightarrow A \times B; \quad \forall A \forall B : (A \Rightarrow B) \Rightarrow A$$

- Given a type's formula, can we implement it in code?
 - ► Example: $\forall A \forall B : ((((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow B) \Rightarrow B$
- Constructive propositional logic has a decision algorithm
- See code examples using the curryhoward library

Working with the CH correspondence III

Using known properties of propositional logic and arithmetic

Are A + B, $A \times B$ more like logic $(A \vee B, A \wedge B)$ or like arithmetic?

• Some standard identities in logic ($\forall A \forall B \forall C$ is assumed):

$$A \times 1 = A; \quad A \times B = B \times A$$

$$A \vee 1 = 1; \quad A \vee B = B \vee A$$

$$(A \times B) \times C = A \times (B \times C); \quad A \vee (B \times C) = (A \vee B) \times (A \vee C)$$

$$(A \vee B) \vee C = A \vee (B \vee C); \quad A \times (B \vee C) = (A \times B) \vee (A \times C)$$

$$(A \times B) \Rightarrow C = A \Rightarrow (B \Rightarrow C)$$

$$A \Rightarrow (B \times C) = (A \Rightarrow B) \times (A \Rightarrow C)$$

$$(A \vee B) \Rightarrow C = (A \Rightarrow C) \times (B \Rightarrow C)$$

- Each identity means 2 function types: X = Y is $X \Rightarrow Y$ and $Y \Rightarrow X$
 - ▶ Do these functions convert values between the types X and Y?

Type isomorphisms I

- Types A and B are isomorphic, $A \equiv B$, if there is a 1-to-1 correspondence between the sets of values of these types
 - ▶ Need to find two functions $f: A \Rightarrow B$ and $g: B \Rightarrow A$ such that $f \circ g = id$ and $g \circ f = id$

Example 1: Is $\forall A: A \times 1 \equiv A$? Types in Scala: (A, Unit) and A

• Two functions with types $\forall A : A \times 1 \Rightarrow A \text{ and } \forall A : A \Rightarrow A \times 1$:

```
def f1[A]: ((A, Unit)) \Rightarrow A = { case (a, ()) \Rightarrow a } def f2[A]: A \Rightarrow ((A, Unit)) = a \Rightarrow (a, ())
```

Verify that their compositions equal identity (see test code)

Example 2: Is $\forall A : A+1 \equiv 1$? (The logic formula $\forall A : A \lor 1 = 1$ is valid.)

- Types in Scala: Option[A] and Unit
 - These types are obviously not equivalent

Some logic identities yield isomorphisms of types

• Which ones do not yield isomorphisms, and why?

Type isomorphisms II

Verifying type equivalence by implementing isomorphisms

• Need to verify that $f_1 \circ f_2 = id$ and $f_2 \circ f_1 = id$

```
Example 3: \forall A \forall B \forall C : (A \times B) \times C \equiv A \times (B \times C)
      def f1[A,B,C]: (((A, B), C)) \Rightarrow (A, (B, C)) = ???
      def f2[A,B,C]: ((A, (B, C))) \Rightarrow ((A, B), C) = ???
Example 4: \forall A \forall B \forall C : (A + B) \times C \equiv A \times C + B \times C
      def f1[A,B,C]: ((Either[A,B], C)) \Rightarrow Either[(A,C), (B,C)] = ???
      def f2[A,B,C]: Either[(A,C),(B,C)] \Rightarrow (Either[A,B],C) = ???
Example 5: \forall A \forall B \forall C : (A + B) \Rightarrow C \equiv (A \Rightarrow C) \times (B \Rightarrow C)
      def f1[A,B,C]: (Either[A, B] \Rightarrow C) \Rightarrow (A \Rightarrow C, B \Rightarrow C) = ???
      def f2[A,B,C]: ((A \Rightarrow C, B \Rightarrow C)) \Rightarrow Either[A, B] \Rightarrow C = ???
Example 6: \forall A \forall B \forall C : A + B \times C \not\equiv (A + B) \times (A + C) – "information loss"
      def f1[A,B,C]: Either[A,(B,C)] \Rightarrow (Either[A,B],Either[A,C]) = ???
      def f2[A,B,C]: ((Either[A,B],Either[A,C])) \Rightarrow Either[A,(B,C)] = ???
```

See test code

Type isomorphisms III

Logic CH vs. arithmetic CH for elementary ("algebraic") types

- WLOG, consider types A, B, ... that have *finite* sets of possible values
 - ▶ Sum type A + B (size |A| + |B|) provides a disjoint union of sets
 - ▶ Product type $A \times B$ (size $|A| \cdot |B|$) provides a Cartesian product of sets
 - ▶ Function type $A \Rightarrow B$ provides the set of all maps between sets
 - ★ The size of $A \Rightarrow B$ is $|B|^{|A|}$
 - * Note the identities $a^c b^c = (ab)^c$, $a^{b+c} = a^b a^c$, $a^{bc} = (a^b)^c$
- If the set size (cardinality) differs, A and B cannot be equivalent
 - Logic identities give only the "equal implementability"

The meaning of the types/logic/arithmetic correspondence:

- Arithmetic formulas are related to type equivalence
- Logic formulas are related to implementability

Reasoning about types is school-level algebra with polynomials and powers

- Exp-polynomial expressions: constants, sums, products, exponentials
 - exp-poly types: primitive types, disjunctions, tuples, functions
 - polynomial types are commonly called "algebraic types"

Algebraic computation with recursive types

Recursive type: "list of integers"

```
sealed trait IntList final case object Empty extends IntList final case class Nonempty(head: Int, tail: IntList) extends IntList IntList \equiv 1 + Int \times IntList
```

Parameterized recursive type: "list of A", short notation: List^A

```
sealed trait List[A]
final case object Nil extends List[Nothing]
final case class ::(head: A, tail: List[A]) extends List[A]
```

Short notation: (the sign "≡" means type isomorphism)

$$\mathtt{List}^A \equiv 1 + A \times \mathtt{List}^A \equiv 1 + A \times (1 + A \times (1 + A \times (...)...)$$

$$\equiv 1 + A + A \times A + A \times A \times A + ...$$

A curious analogy with calculus: List $(t) = 1 + t \cdot \text{List}(t)$; "solve" this as

List(t) =
$$\frac{1}{1-t}$$
 = 1 + t + t² + t³ + ...

Worked examples

- ① Define a parameterized type MyT[T] for the short type notation Boolean \Rightarrow $(1 + T + Int \times T + (String \Rightarrow T))$
- Transform (Either[A,B], Either[C,D]) into an equivalent sum type
- **3** Show that $A + A \not\equiv A$ and $A \times A \not\equiv A$, although these hold in logic
- **1** Show that $(A \times B) \Rightarrow C \neq (A \Rightarrow C) + (B \Rightarrow C)$ in logic
- **1** Denote Reader^{E,T} $\equiv E \Rightarrow T$ and implement functions with types $A \Rightarrow \text{Reader}^{E,A}$ and Reader^{E,A} $\Rightarrow (A \Rightarrow B) \Rightarrow \text{Reader}^{E,B}$
- **6** Show that one cannot implement $Reader[A,T] \Rightarrow (A \Rightarrow B) \Rightarrow Reader[B,T]$
- Implement $map^{A,B}: 1+A \Rightarrow (A \Rightarrow B) \Rightarrow 1+B$ with no "information loss", that is, $map(opt)(x \Rightarrow x) = opt$
 - Implement map and flatMap for Either[L,R] by preferring R over L
- **1** Denoting State $S, T \equiv S \Rightarrow T \times S$, implement the functions:
 - pure $S,A:A \Rightarrow State(S,A)$

 - flatMap S,A,B: State $S,A \Rightarrow (A \Rightarrow State^{S,B}) \Rightarrow State^{S,B}$
- **9** Define recursive type NEList (A) by NEList $= A + A \times NEList^A$
- Implement map and concat for NEList (tail recursion not necessary)

Exercises III

- ① Define type MyTU[T,U] for $1 + T \times U + Int \times T + String \times U$
- 2 Show that $A \Rightarrow (B+C) \neq (A \Rightarrow B) + (A \Rightarrow C)$ in logic
- Transform (Either[A,Int], Either[A,Char], Either[A,Float]) into an equivalent type of the form $A \times (...)$
- OptEither A,B = 1 + A + B and implement map and flatMap for it, without information loss, preferring B over A. Get the same result using the equivalent type (1 + A) + B, i.e. Either[Option[A], B]
- Implement map for MyT[T] (see worked example 1) and for MyTU[T,U]
- Implement type-parametric functions with the following types:
 - **1** State^{S,A} \Rightarrow (S × A \Rightarrow S × B) \Rightarrow State^{S,B}
 - **2** $A+Z \Rightarrow (A \Rightarrow B) \Rightarrow B+Z \text{ and } A+Z \Rightarrow B+Z \Rightarrow (A \Rightarrow B \Rightarrow C) \Rightarrow C+Z$ **3** $flatMap^{E,A,B}$: Reader^{E,A} $\Rightarrow (A \Rightarrow Reader^{E,B}) \Rightarrow Reader^{E,B}$
- \bullet * Denoting Density[Z,T] = (T \Rightarrow Z) \Rightarrow T, implement the functions:
 - \bullet map^{Z,A,B}: Density^{Z,A} \Rightarrow (A \Rightarrow B) \Rightarrow Density^{Z,B}
 - 2 flatMap Z,A,B : Density $^{Z,A} \Rightarrow (A \Rightarrow Density^{Z,B}) \Rightarrow Density^{Z,B}$
- 8 * Denote Cont[R,T] = $(T \Rightarrow R) \Rightarrow R$ and implement the functions:

 - 2 flatMap^{R,T,U}: Cont^{R,T} \Rightarrow ($T \Rightarrow$ Cont^{R,U}) \Rightarrow Cont^{R,U}
- **1** Define recursive type $\operatorname{Tr} 3^A \equiv 1 + A \times A \times A \times \operatorname{Tr} 3^A$; implement map for it.

Working with the CH correspondence IV

Implications for designing new programming languages

- The CH correspondence maps the type system of each programming language into a certain system of logical propositions
- Scala, Haskell, OCaml, F#, Swift, Rust, etc. are mapped into the full constructive logic (all logical operations are available)
 - ► C, C++, Java, C#, etc. are mapped to *incomplete logics* without "or" and without "true" / "false"
 - ▶ Python, JavaScript, Ruby, Clojure, etc. have only one type ("any value") and are mapped to logics with only one proposition
- The CH correspondence is a principle for designing type systems:
 - Choose a complete logic, free of inconsistency
 - Mathematicians have studied all kinds of logics and determined which ones are interesting, and found the minimal sets of axioms for them
 - ★ Modal logic, temporal logic, linear logic, etc.
 - ► Provide a type constructor for each basic operation (e.g. "or", "and")

Working with the CH correspondence V

Implications for actually writing code

What problems can we solve now?

- Use the short type notation for reasoning about types
- Given a fully parametric type, decide whether it can be implemented in code ("type is inhabited"); if so, *generate* the code
 - ► The Gentzen-Vorobiev-Hudelmaier algorithm and its generalizations
 - See also the curryhoward project
- Given some expression, infer the most general type it can have
 - ► The Damas-Hindley-Milner algorithm (Scala code) and generalizations
- Decide type isomorphism, simplify type formulas (the "arithmetic CH")
- Compute the necessary types before starting to write code

What problems cannot be solved with these tools?

- Automatically generate code satisfying properties (e.g. isomorphism)
- Express complicated conditions via types (e.g. "array is sorted")
 - ▶ Need dependent types for that (Coq, Agda, Idris, ...)