Analyse I – Série 5

Echauffement. (Infimum, supremum)

Soit $a_n = \frac{3n}{n+2}$ pour $n \in \mathbb{N}^*$ et soit $A = \{x \in \mathbb{R} : x = a_n \text{ pour un } n \in \mathbb{N}^*\} \equiv \{a_1, a_2, \ldots\}.$

- i) Inf A
- ii) Sup A

Exercice 1. (Infimum, supremum)

Déterminer si la suite $(a_n)_{n\geq 1}$ est monotone; trouver, s'il existe, le supremum et l'infimum de $A = \{a_1, a_2, \ldots\}$ et décider s'il s'agit d'un maximum ou d'un minimum.

$$i) \ a_n = n^2 - 4n + 1$$

i)
$$a_n = n^2 - 4n + 1$$
 ii) $a_n = \frac{n}{2n - 1}$

Exercice 2. (Critères de convergence)

- Montrer que toute suite convergente est bornée.
- Soit (a_n) une suite. Montrer que si $\lim_{n\to\infty} a_n = +\infty$ ou $\lim_{n\to\infty} a_n = -\infty$ alors la suite est divergente.

Exercice 3. (Lois algébriques)

Montrer que si $\lim_{n\to\infty} a_n = a$ et $\lim_{n\to\infty} b_n = b \neq 0$ alors

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$$

Exercice 4. (Propriétés algébriques de la limite)

Soit $a_n = \frac{3n}{n+2}$ pour $n \in \mathbb{N}^*$. Calculer

$$i$$
) $\lim_{n\to\infty} a_n$

$$ii)$$
 $\lim_{n\to\infty} \frac{1}{a_n}$

i)
$$\lim_{n \to \infty} a_n$$
 ii) $\lim_{n \to \infty} \frac{1}{a_n}$ iii) $\lim_{n \to \infty} \left(\frac{a_n}{3} + \frac{3}{a_n} \right)$

Exercice 5. (Existence de limites)

Déterminer, si elle existe, la limite $n \to \infty$ de la suite $(a_n)_{n \ge 1}$ avec

i)
$$a_n = \frac{5n^2 - 3n + 2}{3n^2 + 7}$$
 ii) $a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$ iii) $a_n = \frac{\sqrt{n^2 + 2}}{2n}$

$$ii) \quad a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$$

$$iii) \ a_n = \frac{\sqrt{n^2 + 2}}{2n}$$

Exercice 6. (Existence de limites)

Calculer

$$i$$
) $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right)$

$$ii)$$
 $\lim_{n\to\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$

$$i)$$
 $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right)$ $ii)$ $\lim_{n\to\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$ $iii)$ $\lim_{n\to\infty} n \cdot \sin\left(\frac{2n+3}{n^3}\right)$

Exercice 7. (Calcul de limites)

Calculer la limite lorsque $n \to \infty$ de la suite $(a_n)_{n \ge 1}$ avec

i)
$$a_n = \sqrt{n+2} - \sqrt{n}$$
 ii) $a_n = \frac{n!}{n^n}$ *iii*) $a_n = \frac{2^n}{n!}$

$$ii) \ a_n = \frac{n!}{n^n}$$

$$iii) \ a_n = \frac{2^n}{n!}$$

Exercice 8. (Calcul de limites)

Calculer les limites suivantes:

$$i) \quad \lim_{n \to \infty} \frac{\cos(\sqrt{n})}{n}$$

$$ii$$
) $\lim_{n\to\infty} n^2 \cos\left(\frac{1}{n^2}\right) \sin\left(\frac{1}{n^3}\right)$

$$iii) \lim_{n \to \infty} \frac{\sin(n+1) - \sin(n-1)}{\cos(n+1) + \cos(n-1)}$$

iv)
$$\lim_{n \to \infty} \frac{\sin(\sqrt{n^3 + n^2 + 1})}{n^3 + n^2 + 1}$$

$$v) \lim_{n \to \infty} \frac{\sqrt{n^2 + 1} - \sqrt{n^2 + 4}}{2}$$

$$vi)$$
 $\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n^3 + n} - \sqrt{n^3 + 1} \right)$

$$vii$$
) $\lim_{n\to\infty} \frac{n^3}{7^n} \cos(\sqrt{n})$

$$viii$$
) $\lim_{n\to\infty} 3^n e^{-3n}$

Exercice 9. (Fonction exponentielle)

Calculer les limites suivantes:

$$i$$
) $\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$

$$ii$$
) $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$

$$ii)$$
 $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$ $iii)$ $\lim_{n\to\infty} \left(1-\frac{1}{n^2}\right)^n$

Exercice 10. (QCM: Limites)

La limite

$$\lim_{n\to\infty} \left(\left(1-\frac{1}{n}\right)^2 \, \left(1+\frac{2}{n}\right) \, \left(1-\frac{1}{n^2}\right) \right)^{n^2}$$

est égale à

$$\square + \infty$$

$$e^{-4}$$

$$\bigcap 0$$

$$\Box e^{-}$$

Remarque: question de type examen. C'est une question difficile à traiter avec les techniques que nous avons actuellement à disposition. Nous allons revenir sur ce problème à plusieurs reprises, ayant en main des techniques de plus en plus performantes.

Exercice 11. (V/F: Suites)

Soit (a_n) une suite numérique.

Q1: Si (a_n) est bornée, alors (a_n) converge.

Q2: Si $\lim_{n\to\infty} a_n = 0$, alors $\lim_{n\to\infty} (a_n \sin(n)) = 0$.

Q3: Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, alors (a_n) diverge.

Q4: Si (a_n) converge, il existe $\epsilon > 0$ tel que $|a_n| \le \epsilon$ pour tout $n \in \mathbb{N}$.

Q5: Si $\lim_{n\to\infty} a_n = a$, alors il existe $\delta > 0$ tel que $|a_n - a| \le \delta$ pour tout $n \in \mathbb{N}$.

2