ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ								
ПРЕПОДАВАТЕЛЬ								
ассистент		Е.К. Григорьев						
должность, уч. степень, звание	подпись, дата	инициалы, фамилия						
ОТЧЕТ О	ЛАБОРАТОРНОЙ РАБО	OTE №1						
МОДЕЛИРОВАНИЕ ТЕСТОВЫХ СИГНАЛОВ								
пс	о курсу: МОДЕЛИРОВАНИЕ							
РАБОТУ ВЫПОЛНИЛ								
СТУДЕНТ ГР. № 4143	подпись, дата	Д.В.Пономарев инициалы, фамилия						

Цель работы

Получить навыки моделирования и визуализации основных тестовых сигналов в системе MATLAB.

Вариант задания

Содержание вариант №14 (№4) продемонстрировано на рисунке 1.

№	Синусоида/косинусоида			Прямоугольные импульсы		Пилообразные импульсы	
4	3	5	$\pi/4$	3.3	10%	1.5	0.5

Рисунок 1 – Индивидуальное задание

Ход работы

Для начала построим синусоидальный сигнал с помощью функции, изображённой на рисунке 2.

$$S(t) = A\sin(2\pi f t + \varphi_0),$$

Рисунок 2 – Функция для построения синусоидального сигнала

Код программы

```
clear all
close all
clc
% Начальные параметры
A = 3;
f = 5;
phi = pi/4;
t = 0:0.001:5;
% Построение соответствующей линии графика
sinusoida = A * sin(2 * pi * f * t + phi);
% Построение графика с сеткой и подписанными осями
plot(t,sinusoida);
grid on;
xlabel('Время, (c)');
ylabel('Амплитуда');
title('Синусоидальный сигнал');
```

Результат работы программы продемонстрирован на рисунке 3.

Рисунок 3 – Результат работы программы

Далее необходимо построить косинусоиду. Воспользуемся той же функцией, что изображена на рисунке 2, только вместо sin напишем cos.

Код программы

```
clear all
close all
clc
% Начальные параметры
A = 3;
f = 5;
phi = pi/4;
t = 0:0.001:5;
% Построение соответствующей линии графика
cosinusoida = A * cos(2 * pi * f * t + phi);
% Построение графика с сеткой и подписанными осями
plot(t,cosinusoida);
grid on;
xlabel('Время, (c)');
ylabel('Амплитуда');
title('Косинусоидальный сигнал');
```

Результат работы программы

Результат работы программы продемонстрирован на рисунке 4.

Рисунок 4 – Косинусоидальный сигнал

Далее необходимо построить последовательность прямоугольных импульсов. Для этого воспользуемся функцией:

$$S(t) = A * square(2\pi \frac{1}{T} * t, D)$$

Код программы

```
clear all
close all
clc

% Начальные параметры
A = 3.3;
D = 10;
t = 0:0.001:5;
T = 2;

% Построение соответствующей линии графика
rectangle = A * square(2 * pi * (1 / T) * t, D);
```

```
% Построение графика с сеткой и подписанными осями plot(t,rectangle); grid on; xlabel('Время, (с)'); ylabel('Амплитуда'); title('Последовательность прямоугольных импульсов');
```

Результат работы программы

Результат работы программы продемонстрирован на рисунке 5.

Рисунок 5 — Последовательность прямоугольных импульсов Наконец необходимо построить последнюю последовательность пилообразных импульсов. Для этого воспользуемся функцией

$$S(t) = A * sawtooth(2\pi \frac{1}{T} * t, s)$$

Код программы

```
clear all
close all
clc
% Начальные параметры
```

```
A = 1.5;

s = 0.5;

t = 0:0.001:5;

T = 1;

% Построение соответствующей линии графика

saw = A * sawtooth(2 * pi * (1 / T) * t, s);

% Построение графика с сеткой и подписанными осями

plot(t,saw);

grid on;

xlabel('Время, (с)');

ylabel('Амплитуда');

title('Последовательность пилообразных импульсов');
```

Результат работы программы

Результат работы программы продемонстрирован на рисунке 6.

Рисунок 6 – Последовательность пилообразных импульсов

Выводы

В данной лабораторной работе были получены навыки моделирования и визуализации основных тестовых сигналов в системе MATLAB. Пройдёмся по отдельности по каждому из построенных сигналов.