Experimentalphysik II (H.-C. Schulz-Coulon)

Robin Heinemann

4. Juni 2017

Inhaltsverzeichnis

11	Elek	Elektrostatik				
	11.1	Elektrische Ladung	2			
	11.2	Mikroskopische Deutung	2			
	11.3	Coulombsches Gesetz	3			
	11.4	elektrisches Feld	3			
		Elektrischer Fluss	4			
	11.6	Elektrische Felder innerhalb von Leitern	6			
	11.7	Differentielle Form des Gaußschen Gesetzes	6			
	11.8	Elektrisches Potential	7			
	11.9	Grundgleichungen der Elektrostatik	8			
	11.10	Elektrische Felder geladener Felder	9			
	11.11	Elektrischer Dipol	10			
	11.12	2 Kapzität und Kondensator	11			
		B Kondensator als Energiespeicher	13			
	11.14	Dielektrika - Elektrostatik in Materie	13			
12	Elektrische Gleichströme 15					
	12.1	Strom und Stromdichte	15			
	12.2	Elektrischer Widerstand und Ohmsches Gesetz	16			
	12.3	Elektrische Leistung	18			
	12.4	Stromkreise - Kirchhoffsche Regeln	18			
	12.5	Strom und Spannungsquellen	19			
	12.6	Strom und Spannugsmessung	20			
13	Magnetostatik 20					
	13.1	Magnetfelder und bewegte Ladungen	21			
		Grundgleichungen der Magnetostatik				
		Zwei Anwendungsbeispiele				
	13.4	Biot-Savart-Gesetz	24			

14	Mate	erie im Magnetfeld	26
	14.1	Magnetisierung und Magnetische Erregung	26
	14.2	Dia-, Para- und Ferromagnetismus	27
	14.3	Feldgleichungen in Materie	29

11 Elektrostatik

11.1 Elektrische Ladung

- Neue Kraft
- anziehend oder abstoßend
- Konzept der elektrischen Ladung

Experimentelle Erkenntnisse:

- Erzeugung von Ladungen durch Reibung
- Ladungen gleicher Vorzeichen: Abstoßung
- Ladungen ungleicher Vorzeichen: Anziehung
- Ladung kann transportiert werden
- Elektrische Kräfte sind Fernkräfte
- Ladungen sind erhalten

Definition 11.1 Influenz Ladungstrennung durch die (Fern) Wirkung elektrischer Kräfte nennt man Influenz oder elektrostatische Induktion.

11.2 Mikroskopische Deutung

Elektron: negativ Proton: positiv

Atome elektrische neutral

- Z: Anzahl Protonen / Elektronen
- N: Anzahl Neutronen
- A: Anzahl Neutronen + Protonen

Leiter und Nichtleiter: Unterschiedliche Verfügbarkeit von Ladungsträgern

11.3 Coulombsches Gesetz

Experimentelles Resultat:

$$\vec{F}_C = K \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

Definition 11.2

$$\vec{F}_{C} = \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1}q_{2}}{r_{12}^{2}} \hat{r}_{12}$$

mit
$$\varepsilon_0 = 8.854\,16\times 10^{-12}\,\mathrm{C\,N^{-1}\,m^{-2}}$$

Vergleich: Coulomb vs. Gravitation

$$\begin{split} \vec{F}_G &= -G \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12} \\ \vec{F}_C &= K \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12} \\ \frac{F_C}{F_G} &= 227 \times 10^{39} \end{split}$$

11.4 elektrisches Feld

Definition 11.3 (Elektrisches Feld)

$$\vec{E}(\vec{r}) = \frac{\vec{F}_C(\vec{r})}{q} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}$$

$$\vec{F}(\vec{r}) = q \, \vec{E}(\vec{r})$$

Das elektrische Feld hängt nur von der Ladung Q ab, aber nicht von der Testladung q. Es gilt damit:

$$\vec{F}(\vec{\,r}) = q\,\vec{E}(\vec{\,r})$$

Bedeutung das elektrischen Feldes:

Coulomb-Gesetz beschreibt Fernwirkung.

Aber: Wodurch wird diese Wirkung übertragen?

Geschieht die Übertragung instantan? (nein!)

Feldwirkungstheorie: Elektrische Kraftübertragung über Ausbreitung des elektrischen Feldes, das mit der Probeladung q. Elektrostatik: Fernwirkung- und Feldwirkungstheorie äquivalent.

Elektrodynamik: Feldbegriff essentiell.

Feld einer allgemeinen Ladungsverteilung:

Wichtig: Es gilt das Superpositionsprinzips. Es gilt

$$dQ = \rho(\vec{r})dV$$

$$\vec{E}(\vec{R}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\vec{R} - \vec{r}}{\left|\vec{R} - \vec{r}\right|^3} \rho(\vec{r}) dV$$

Für diskrete Ladungen:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i^2} \hat{r}$$

Die Anwesenheit von Ladungen verändern den Raum. Es entsteht in Vektorfeld, dessen Stärke und Richtung in jedem Raumpunkt die normierte Kraft $\frac{\vec{F}}{q}$ auf eine Probeladung angibt. Eigenschaften der Feldlinien

- 1. Das \vec{E} -Feld zeigt tangential zu den Feldlinien
- 2. Feldlinien zeigen weg von positiven Ladungen
- 3. Feldliniendichte entspricht Stärke des Feldes.

11.5 Elektrischer Fluss

Definition 11.4 (Elektrischer Fluss ϕ_E) Maß für die Anzahl der Feldlinien, die Fläche A durchstoßen.

Für geschlossene Oberflächen:

$$Q_{innen} = 0 \implies \phi_E = 0$$

 $Q_{innen} > 0 \implies \phi_E > 0$
 $Q_{innen} < 0 \implies \phi_E < 0$

Mathematisch:

- Homogenes Feld, \perp zur Oberfläche $\implies \phi E = EA$
- Homogenes elektrisches Feld $EA' = EA\cos\theta = \vec{E}\vec{A} = \vec{E}\vec{n}A$

Verallgemeinerung:

$$\begin{split} \Delta\phi_i &= \vec{E}_i \vec{n}_i \Delta A_i \\ \phi_E &= \lim_{\Delta A_i \to 0} \sum \vec{E}_i \vec{n}_i \Delta A \\ \phi_A &= \int \vec{E} \mathrm{d} \, \vec{A} \end{split} \tag{Definition von Elektrischem Fluss)}$$

Ladung einer Kugel:

$$\phi_A = \int \vec{E} d\vec{A}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} \int d\vec{D}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} 4\pi R^2$$

$$= \frac{Q}{\varepsilon_0}$$

Definition 11.5 (Gauß'sches Gesetz (1. Maxwell-Gleichung))

$$\oint \vec{E} \, \mathrm{d} \, \vec{A} = \frac{Q_{\mathrm{innen}}}{\varepsilon_0}$$

Das Gauß'sche Gesetz ist allgemeingültig, da:

$$\begin{split} \oint_{A_2} \vec{E} \mathrm{d}\vec{A} - \oint_{A_1} \vec{E} \mathrm{d}\vec{A} &= 0 \\ \oint_{A_2} \vec{E} \mathrm{d}\vec{A} &= \oint_{A_1} \vec{E} \mathrm{d}\vec{A} = \frac{Q_{\mathrm{innen}}}{\varepsilon_0} \end{split}$$

Zusammen mit Superpositionsprinzip und homogener Fläche erhält man die Allgemeingültigkeit des Gauß'schen Gesetz.

Herleitung des Coulombschen Gesetz mit Gauß'schen Gesetz:

$$\oint \vec{E} d\vec{A} = \frac{Q}{\varepsilon_0}$$

$$E \oint d\vec{A} = \frac{Q}{\varepsilon_0}$$

$$E4\pi R^2 = \frac{Q}{\varepsilon_0}$$

$$E(R) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{R^2}$$

Beispiel 11.6 (Unendlich langer Draht) Ladungsdichte: $\lambda = Q/L$

$$\vec{E}\Big(\vec{R}\Big) = \vec{E}(R)$$

- Mantelfläche:
e $\vec{E} \parallel \operatorname{d} \vec{A}$
- Deckel: $\vec{E} \perp \mathrm{d} \, \vec{D}$

$$\phi_E = \oint \vec{E} \mathrm{d}\vec{A} = \int_{\mathrm{Mantel}} \vec{E} \mathrm{d}\vec{A} + \underbrace{\int_{\mathrm{Deckel}} \vec{E} \mathrm{d}\vec{A}}_{=0} = E \int_{\mathrm{Mantel}} \mathrm{d}A = E 2\pi R L = \frac{V}{\varepsilon_0}$$

$$E = \frac{\frac{Q}{L}}{2\pi R \varepsilon_0} = \frac{\lambda}{2\pi \varepsilon_0} \frac{1}{R}$$

Beispiel 11.7 (Unendlich ausgedehnte Flächenladung) Flächenladungsdichte: $\sigma = Q/A$ Symmetrie:

 $ec{E}$ konstant für festen Abstand.

 $\vec{E} \parallel \vec{A}$

$$\phi_E = \oint \vec{E} d\vec{A} = \underbrace{\int_{\text{Mantel}} \vec{E} d\vec{A}}_{0} + \int_{\text{Deckel}} \vec{E} d\vec{A} = EA_1 + EA_2 = 2EA$$

$$\phi_E = 2EA = \frac{Q}{\varepsilon_0} \implies E = \frac{\sigma}{2\varepsilon_0}$$

Beispiel 11.8 (Plattenkondensator)

$$\vec{E} = \frac{\sigma}{2\varepsilon_0}$$

11.6 Elektrische Felder innerhalb von Leitern

Innerhalb eines Leiters verschwindet das elektrostatische Feld.

Bei einem geladenem, isolierten Leiter sitzen alle Ladungen auf der Oberfläche.

Dazu betrachte Oberfläche, die gerade kleiner als der Leiter ist, dort ist das Elektrische Feld gleich Null, also folgt:

$$\oint \vec{E} \mathrm{d}\,\vec{A} = 0 = \frac{Q_{\mathrm{innen}}}{\varepsilon_0} \implies Q_{\mathrm{innen}} = 0$$

Leiter mit Hohlraum:

$$\oint_O \vec{E} \, \mathrm{d}\vec{A} = 0 \implies Q = 0$$

11.7 Differentielle Form des Gaußschen Gesetzes

$$\oint_{A} \vec{E} \, \mathrm{d}\vec{A} = \int_{V} \mathrm{div} \; \vec{E} \, \mathrm{d}V$$

div
$$\vec{E} = \partial_x E_x + \partial_y E_y + \partial_z E_z$$

Zur Divergenz:

Schreibweise: div $\vec{E} = \vec{\nabla} \cdot \vec{E}, \vec{\nabla} = (\partial_x, \partial_y, \partial_z)$ in Anschauung:

$$\phi_E = E_O \Delta A - E_i \Delta A$$

$$= \Delta E_x \Delta A$$

$$= \frac{\Delta E_x}{\Delta x} \Delta x \Delta A = \underbrace{\partial_x E_x}_{\text{"div"}} \Delta V$$

$$\int_V \operatorname{div} \vec{E} dV = \oint \vec{E} d\vec{A} = \frac{Q}{\varepsilon_0} = \frac{1}{\varepsilon_0} \int_V \rho dV$$

Differentielle Form des Gauß Gesetz, 1. Maxwell Gleichung:

$$\operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0}$$

 ρ : Ladungsdichte.

11.8 Elektrisches Potential

Coulombkraft ist konservativ da radialsymmetrisch.

$$\begin{split} W &= E_{pot}(2) - E_{pot}(1) = -\int_{1}^{2} \vec{F}_{C} \mathrm{d}\vec{s} \\ \vec{F}_{C} &= -\operatorname{grad} E_{pot} \\ E_{pot}(\vec{r}) &= -\int_{\infty}^{+r} \vec{F}_{C} \mathrm{d}\vec{r} = -\frac{1}{4\pi\varepsilon_{0}} \int \frac{Qq}{r^{2}} \mathrm{d}r \\ &= \frac{1}{4\pi\varepsilon_{0}} \frac{Qq}{r} \end{split} \tag{Theorie: } Qq/r)$$

Definition 11.9 (Coulombpotential)

$$\varphi(\vec{r}) = \frac{E_{pot}(\vec{r})}{q} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}, \varphi(\infty) = 0$$
$$\Delta\varphi = \varphi(\vec{r}_2)l\varphi\vec{r}_1 = -\int \vec{E}d\vec{s}$$
$$\oint \vec{E}d\vec{s} = 0$$
$$\vec{E}(\vec{r}) = -\operatorname{grad}\varphi(\vec{r})$$

Allgemeine Ladungsverteilung:

$$\varphi(\vec{R}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r})}{|\vec{R} - \vec{r}|} dV$$

Definition 11.10 (Elektrische Spannung)

$$U_{12} = \varphi_2 - \varphi_1 = \Delta \varphi_{21} = -\int_1^2 \vec{E} d\vec{s}$$

11.9 Grundgleichungen der Elektrostatik

Integralform:

$$\oint \vec{E} d\vec{A} = \frac{Q}{\varepsilon_0} \quad \oint \vec{E} d\vec{s} = 0$$

Differentialform:

$$\operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0} \quad \operatorname{rot} \vec{E} = 0$$

Stokes-scher Satz:

$$\oint_C E \mathrm{d}\vec{s} = \int_A \mathrm{rot} \; \vec{E} \mathrm{d}\vec{A}$$

Zur Rotation:

Schreibweise:

$$\operatorname{rot} \vec{E} = \vec{\nabla} \times \vec{E}, \vec{\nabla} = (\partial_x, \partial_y, \partial_z)$$
$$\operatorname{rot} \vec{E} = (\partial_y E_z - \partial_z E_y, \partial_z E_x - \partial_x E_z, \partial_x E_y - \partial_y E_x)$$

Anschauung:

$$\oint_C \vec{A} d\vec{s} = \Delta E_2 \Delta z - \Delta E_x \Delta x$$

$$= \frac{\Delta E_z}{\Delta_x} \Delta x \Delta z - \frac{\Delta E_x}{\Delta z} \Delta z \Delta x$$

$$= \underbrace{(\partial_x E_z - \partial_z E_x)}_{\text{rot}} \Delta A$$

Mathematik:

$$\begin{split} \operatorname{rot} \, \vec{E} &= -\operatorname{rot}(\operatorname{grad} \varphi) = - \, \vec{\nabla} \times \left(\, \vec{\nabla} \varphi \right) = 0 \\ \operatorname{div} \, \vec{E} &= -\operatorname{div}(\operatorname{grad} \varphi) = - \, \vec{\nabla} \cdot \left(\, \vec{\nabla} \varphi \right) = - \, \vec{\nabla}^2 \varphi = - \Delta \varphi \\ &= - \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} \right) = \frac{\rho}{\varepsilon_0} \end{split}$$

Definition 11.11 (Poissongleichung)

$$\Delta \varphi = -\frac{\varphi}{\varepsilon_0}$$

Zentrale Gleichung der Elektrostatik

Definition 11.12 (Laplacegleichung)

$$\Delta \varphi = 0$$

Eckstein der mathematischen Physik [PTP3]

Realisierung eines Feldes der Form

$$\varphi = ax^2 + by^2 + cz^2 \quad a, b, c > 0$$
$$\Delta \varphi = 2a + 2b + 2c > 0$$

2a + 2b + 2c ist immer $> 0 \implies$ solches Feld nicht möglich.

11.10 Elektrische Felder geladener Felder

"Einfach": Berechnung für bekannte Ladungsverteilung.

"Schwierg": Berechnung in Anwesenheit von Leitern.

Für statische Felder gilt:

im Leiter $\vec{E} = 0$

im Hohlraum $q=0, \vec{E}=0$

Oberfläche eines Leiters:

1.
$$\vec{E} \parallel \vec{A}$$

2.
$$\vec{E} = \frac{\sigma}{\varepsilon_0}$$

$$d\phi_E = \vec{A}d\vec{A} = EdA$$

$$= \frac{dQ}{d\varepsilon_0}$$

$$E = \underbrace{\frac{dQ}{dA}}_{\sigma} \frac{1}{\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

3. $\varphi = \text{const.}$ an Leiteroberfläche.

Berechnung von Verteilungen von Ladungen schwierig. Hier nur qualitatives Verständnis. Kugelladung (Radius R):

Innen: $E=0, \varphi=\mathrm{const.}$

Außen: $E = 1/(4\pi\varepsilon_0)Q/r^2$

$$\vec{E}(\vec{R}) = \frac{\sigma}{\varepsilon_0}$$
$$\vec{E}(\vec{R}) = \frac{\vec{\varphi}(R)}{R}$$

 $\varphi = \mathrm{const.} \implies \mathrm{Erzeugung}$ hoher Felder für kleine R

Beispiel 11.13 (Zwei Kugeln (verbunden)) verbunden $\implies \varphi = \varphi_1 = \varphi_2 \implies Q_1/R_1 = Q_2/R_2$

$$R_1 > R_2$$

$$\implies Q_1 > Q_2$$

$$\sigma_1 < \sigma_2$$

$$E_1 < E_2$$

kleiner krümmungsradius \implies größeres Feld, größere Flächenladungsdichte. Merke: Scharfe Kanten beziehungsweise kleiner Krümmugsradius bedeutet hohes E-Feld

Beispiel 11.14 (Halbraumleiter mit Ladung)

11.11 Elektrischer Dipol

Beispiel 11.15 (Dipol)

$$\begin{split} \varphi(\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{\left| \vec{r} - \frac{1}{2} \vec{d} \right|} + \frac{-q}{\left| \vec{r} + \frac{1}{2} \vec{d} \right|} \right] \\ \varphi(\vec{r}) &= \frac{\vec{p}\hat{r}}{4\pi\varepsilon_0 r^2} \\ \vec{p} &= q \vec{d} \\ \vec{E} &= y \operatorname{grad} \varphi \\ E(\vec{r}) &= \frac{3(\vec{p}\vec{r})\vec{r} - r^2\vec{p}}{r^5} \end{split} \tag{Elektrisches Dipolfeld (ohne Beweis))}$$

Merke: Elektrischer Dipol, $r \gg d$

$$\varphi(\vec{r}) \sim \frac{1}{r^2} \qquad E(\vec{r}) \sim \frac{1}{r^3}$$

Multipolentwicklung:

$$\varphi(\vec{r}) = \frac{a_0}{r} + \frac{a_1}{r^2} + \frac{a_2}{r^3} + \dots$$
$$a_0 = \frac{Q}{4\pi\varepsilon_0} \quad a_1 = \frac{1}{4\pi\varepsilon_0} \cdot \vec{p}\hat{r}$$
$$\vec{p} = \int \rho(\vec{r})\vec{r}dQ$$

Elektrischer Dipol im homogenem Feld:

Drehmoment:

$$\vec{M} = \vec{d} \times \vec{F} = q \cdot \vec{d} \times \frac{1}{q} \vec{F} = \vec{p} \times \vec{E}$$

Kräfepaar! \implies Ausrichtung im Feld. Potentielle Energie: Drehung eines Dipols im homogenen Feld, das heißt Arbeit wird frei oder wird geleistet. Wähle: $E_{pot} = 0$ für $r = 90^{\circ}$

$$E_{pot} = -\vec{F}\vec{s} = -\vec{p}\vec{E}$$

Dipol im inhomogenen Feld: das heißt an den beiden Enden des Dipols wirken unterschiedliche Kräfte. ⇒ Drehmoment + resultierende Kraft. Es gilt:

$$\vec{F} = q \, \vec{d} \frac{\mathrm{d} \, \vec{E}}{\mathrm{d} \, \vec{r}} = \vec{p} \nabla \, \vec{E}$$

$$F_x = \vec{p} \, \mathrm{grad} \, E_x$$

$$F_y = \vec{p} \, \mathrm{grad} \, E_y$$

$$F_x = \vec{p} \, \mathrm{grad} \, E_z$$

11.12 Kapzität und Kondensator

Leiter können Ladungen speichern (zum Beispiel: Leidener Flasche, Kondensator, Metallkugel). Kondensator = Ladungsspeicher (Ladungen werden im Kondensator "kondensiert", das heißt zusammengedrängt) Frage: Was ist die Ladungsspeicherfähigkeit oder Kapazität eines Leiters? Dafür betrachte Kugelkonduktoren. Gespeicherte Ladungsmenge auf einzelner Metallkugel:

$$\Delta \varphi = -\int_{\infty}^{R} \vec{E} d\vec{r} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} \to Q = 4\pi\varepsilon_0 RU$$

 $(\Delta \varphi = U)$. Das heißt gespeicherte Ladung ist proportional zur angelegten Spannung U (Allgemein: $\varphi(Q) \sim Q$, Superpositionsprinzip). Definiere Ladungsspeicherfähigkeit "pro Volt"

Definition 11.16 (Kapazität)

$$C = \frac{Q}{U}$$
 $Q = CU$

$$[C] = 1 \,\mathrm{C}\,\mathrm{V}^{-1} = 1 \,\mathrm{F}$$

Die Kapazität einer Leiteranordnung hängt von der Geometrie (und vom Material) ab. Kapazität eines Kugelkondensators: $C4\pi\varepsilon_0R$ (hier: freistehende Kugel). Einheit Farad ist sehr groß, da $1~\mathrm{C}$ sehr groß ist.

Beispiel 11.17 Kapazität einer Kugel mit $R=1\,\mathrm{cm}\to C\approx 1\times 10^{-12}\,\mathrm{F}=1\,\mathrm{pF}$ Kapazität der Erde mit $R=7\times 10^8\,\mathrm{cm}\to C\approx 7\times 10^{-4}\,\mathrm{F}=700\,\mathrm{F}$ Trotzdem heute: Superkondensatornen mit Kapazitäten bis zu $1\times 10^4\,\mathrm{F}$

Referenzpotential $\varphi=0$ muss aber nicht im Unendlichen liegen. Allgemeiner Kondensator: Zwei Leiter mit Ladungen +Q und -Q (Realisierung durch Erdung) \implies Erhöhung der Kapazität durch Influenz.

Beispiel 11.18 (Kugelkondensator) (siehe Übungen)

Beispiel 11.19 (Plattenkondensator)

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0}$$

$$\implies U = \varphi(x_2) - \varphi(x_1) = -\int_{x_1}^{x_2} \vec{E} d\vec{s}$$

$$= -E \int_{x_1}^{x_2} ds = -\frac{Q}{\varepsilon_0 A} d$$

$$\implies C = \frac{Q}{U} = \frac{\varepsilon_0 A}{d}$$

- A: Fläche der Leiterplatte
- $oldsymbol{\cdot}$ d: Leiterplattenabstand

Kondensatorschaltungen:

Parallelschaltung:

- Gleiche Spannung an allen C_i
- Verschiedene Werte C_i

Es gilt:

$$Q = Q_1 + Q_2 + \dots + Q_n$$

$$\frac{Q}{U} = \frac{Q_1}{U} + \frac{Q_1}{U} + \dots + \frac{Q_n}{U}$$

$$\implies C = C_1 + C_2 + \dots + C_n$$

⇒ Gesamtkapazität parallelgeschalteter Kondensatoren

$$C_{ges} = \sum_{i=1}^{n} C_i$$

Reihenschaltung: Es gilt

$$U = U_1 + U_2 + \dots + U_n$$

$$\frac{Q}{C} = \frac{Q}{C_1} + \frac{Q}{C_2} + \dots + \frac{Q}{C_n}$$

$$\implies \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

⇒ Gesamtkapazität von in Reihe geschalteter Kondensatoren:

$$\frac{1}{C_{ges}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Kehrwert der Gesamtkapazität ergibt sich als Summe der Kehrwerte der Einzelkapazitäten

11.13 Kondensator als Energiespeicher

Energie
dichte des elektrischen Feldes. Aufgeladener Kondensator = Energiespeicher
. Frage: Wieviel Energie ist gespeichert? Hierzu betrachten wir einen Plattenkondensator: Ladungstransport von Platte
 A zu Platte B erfordert Arbeit

$$\implies dW = UdQ = \frac{Q}{C}dQ$$

$$W_C = \int \frac{Q}{C}dQ = \frac{1}{C}\int QdQ = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CU^2$$

⇒ Im Plattenkondensator gespeicherte Energie:

$$E_C = \frac{1}{2}CU^2$$

gilt allgemein für in Kondensator gespeicherte Energie! (Herleitung unabhängig von Geometrie). Für Plattenkondensator gilt weiter:

$$E_C = \frac{1}{2}CU^2 = \frac{1}{2}\frac{\varepsilon_0 A}{d}U^2 = \frac{1}{2}\varepsilon_0 (Ad)\frac{U^2}{d^2} = \frac{1}{2}\varepsilon_0 V E^2$$

Änderung des Blickwinkels: Energie im elektrischen Feld gespeichert \implies Energiedichte $\omega_e=E_c/V$

$$\implies \omega_e = \frac{1}{2}\varepsilon_0 E^2$$

Gilt allgemein für alle elektrischen Felder im Vakuum.

11.14 Dielektrika - Elektrostatik in Materie

Beobachtung: Einbringen eines Isolators (Dielektrikum) in einen Kondensator hat großen Einfluß auf die Kapazität. Die Spannung sinkt \implies Kapazität steigt

Definition 11.20 (Permittivität)

$$C_{Diel} = \varepsilon_r C_{Vakuum} = \varepsilon_r C_0$$

auch Dielektrizitätskonstante, relative Dielektrizitätszahl, relative Permittivitätszahl.

Beispiel 11.21 (Plattenkondensator)

$$C_{Diel} = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

$$C_{Vak} \cdot U_{Vak} = C_{Diel} U_{Diel}$$

$$\implies \frac{C_{vak}}{C_{Diel}} = \frac{U_{Diel}}{U_{vak}} = \frac{E_{Diel}}{E_{vak}} = \frac{1}{\varepsilon_r}$$

$$E_{Diel} = \frac{1}{\varepsilon_r} E_{vak}$$

das heißt das Feld im Kondensator mit Dielektrikum reduziert.

Mikroskopische Beschreibung:

Isolator: Es gibt keine freien, beweglichen Ladungsträger. Aber Polarisation, das heißt Ausrichtung von Dipolen.

Kondensator

$$C_0 = \varepsilon_0 \frac{A}{d}$$

$$C_{Diel.} = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

$$E_{Diel.} = \frac{1}{\varepsilon_r} E_{\text{Vakuum}}$$

$$= \frac{1}{\varepsilon_r} E_0$$

$$\sigma_{0} = \frac{Q_{0}}{A}$$

$$\sigma_{p} = \frac{Q_{p}}{A}$$

$$E_{Diel} = E_{0} - E_{p} = \frac{\sigma_{0}}{\varepsilon_{0}} - \frac{\sigma_{p}}{e_{0}} = \frac{1}{\varepsilon_{0}}(\sigma_{0} - \sigma_{p}) = \frac{1}{\varepsilon_{r}}\frac{\sigma_{0}}{\varepsilon_{0}}$$

$$\implies \sigma_{p} = \sigma_{0}\left(1 - \frac{1}{\varepsilon_{r}}\right)$$

$$\implies \sigma_{0} = \sigma_{frei} = \varepsilon_{r}\sigma_{tot}$$

$$\implies Q_{0} = Q_{frei} = \varepsilon_{r}Q_{tot}$$

Polarisation mit Dipol
moment $\vec{p}_i = q_i \, \vec{d}_i, [P] = \mathrm{C} \, \mathrm{m}^{-2}$

Definition 11.22

$$\vec{P} = \frac{1}{V} \sum \vec{p}_i$$

 \vec{P} wächst mit stärkerer Ausrichtung des Dipols an. Und es gilt

$$\left| \vec{P} \right| = \frac{Q_p d}{V} = \frac{\sigma_p A d}{V} = \sigma_p$$

⇒ Makroskopische Polarisation = Oberflächenladungsdichte auf Dielektrikum.

$$P = \sigma_p = \sigma_0 \left(1 - \frac{1}{\varepsilon_r} \right) = \varepsilon_0 E_{vak} \left(1 - \frac{1}{\varepsilon_r} \right)$$
$$= (\varepsilon_r - 1) \varepsilon_0 E_{Diel}.$$
$$\vec{P} = \chi \varepsilon_0 \vec{E}_{Diel}.$$
$$\chi = \varepsilon_r - 1$$

Definition 11.23 (Dielektrische Verschiebung)

$$\begin{split} \vec{D} &= \varepsilon_0 \vec{E}_{Diel.} + \vec{P} \\ &= \varepsilon_0 \vec{E}_{vak} = \varepsilon_0 \varepsilon_r \vec{E}_{Diel.} \end{split}$$

Vakuum:

$$\vec{E}_{Diel} = \vec{E}_{vak} \quad \vec{D} = \varepsilon_0 \vec{E}_{vak}$$

Dielektrikum

$$\vec{E}_{Diel} = \frac{1}{\varepsilon_r} \vec{E}_{vak} \quad \vec{D} = \varepsilon_0 \, \vec{E}_{vak}$$

Allgemein:

$$\begin{split} E_{vak}^{\parallel} &= E_{Diel}^{\parallel}, E_{vak}^{\perp} = \varepsilon_r E_{Diel}^{\perp} \\ D_{vak}^{\parallel} &= \frac{1}{\varepsilon_r} D_{Diel}^{\parallel}, D_{vak}^{\perp} = D_{Diel}^{\perp} \end{split}$$

$$\operatorname{div} \vec{E}_{vak} = \frac{\rho_{innen}}{\varepsilon_0}$$

$$\implies \operatorname{div} \vec{D} = \rho_{frei}$$

⇒ 1. Maxwell Gleichung in Materie

$$\operatorname{div} \vec{D} = \rho_{frei} \quad \oint \vec{D} d\vec{A} = Q_{frei}$$

$$\mathrm{div}\ \vec{E} = \frac{\rho_{frei}}{\varepsilon_0 \varepsilon_r} \quad \oint \vec{D} \mathrm{d}\vec{A} = \frac{Q_{frei}}{\varepsilon_0 \varepsilon_r}$$

Elektrische Feldenergie im Dielektrikum

$$W_e = \frac{1}{2}Cn^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}\frac{1}{\varepsilon_r}\frac{Q^2}{C_0}$$

$$\implies \omega_C = \frac{1}{2}\varepsilon_r \varepsilon_0 \, \vec{E}^2 = \frac{1}{2} \, \vec{E} \, \vec{D}$$

Für gleiches Feld \vec{E} wächst die Energiedichte mit ε_r . Zur Energie des Feldes \vec{E} wird Polarisationsenergie der Dipole addiert.

12 Elektrische Gleichströme

12.1 Strom und Stromdichte

Definition 12.1 (Elektrischer Strom)

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

$$[I] = \operatorname{C} \operatorname{s}^{-1} = \operatorname{A}$$

$$\left| \vec{j} \right| = \frac{I}{A} = \frac{dQ}{Adt}$$

$$\vec{j} = \rho \vec{v} = nq_e \vec{v}_D$$

$$\dots \rho = \div \vec{j} = 0$$

$$I = \int \vec{j} dA = \frac{dQ}{dt} = \int \dot{\rho} dV$$

12.2 Elektrischer Widerstand und Ohmsches Gesetz

Ladungsfluß entsteht aufgrund einer Potentialdifferenz beziehungsweise eines elektrischen Feldes.

$$U = \varphi_b - \varphi_a = E\Delta l$$

Spannungsänderung

- \implies Änderung Elektrisches Feld
- \implies Änderung der Ladungsträgergeschwindigkeit
- ⇒ Änderung von Stromdichte und Strom

Definition 12.2 (Differentieller Wiederstand)

$$\vartheta = \frac{\mathrm{d}U}{\mathrm{d}I}$$

$$[S] = A V^{-1} = S$$

Definition 12.3 (Differentielle Leitfähigkeit)

$$S = \frac{\mathrm{d}I}{\mathrm{d}U}$$

$$[\vartheta] = V A^{-1} =$$

Beobachtung: Elektischer Leiter: $\vartheta = \text{const.}$

$$R = \frac{U}{I} = \frac{El}{I} \iff I = \frac{El}{R}$$
$$j = \frac{I}{A} = \frac{l}{RA}E = \sigma E = \eta q_e v_D$$

Satz 12.4 (Ohmsches Gesetz)

$$U = RI$$
$$\vec{j} = \sigma \vec{E} = \eta_E \vec{v}_D$$

mit

$$\sigma=\frac{l}{RA}=S\frac{l}{A} \qquad \qquad \text{(spezifische Leitfähigkeit)}$$

$$\rho=\frac{1}{\sigma} \qquad \qquad =R\frac{A}{l} \qquad \qquad \text{(spezifischer Widerstand)}$$

Für ohmschen Leiter muss $ec{v}_D \sim ec{E}$ gelten.

Drude Modell

Bewegung von Elektronen in Leitern. Thermische Bewegung: $v_{th} \approx 1 \times 10^6 - 1 \times 10^7 \,\mathrm{m\,s^{-1}}$. Bewegung wird gestört durch Stöße mit Gitteratomen. Mittlere Zeit zwischen zwei Wechselwirkungen:

$$\tau = \frac{T}{N} \implies \lambda = \tau v_m$$

T: Messzeit, N: Anzahl der Stöße. Einschalten eines E-Feldes: Beschleunigung der Elektronen entgegen der Richtung des elektrischen Feldes \vec{E}

$$\vec{A} = \frac{\vec{F}}{m} = \frac{q\vec{E}}{m}$$

$$\implies \vec{v}_D(t) = \vec{v}_{th} + \frac{q\vec{E}}{m}t$$

$$\vec{v}_D = \underbrace{\langle \vec{v}_{th} \rangle}_{=0} + \frac{q\vec{E}}{m} < t > = \frac{q}{\vec{E}}m\tau = \mu\vec{E}$$

Also gilt für einen ohmschen Leiter:

$$\vec{v}_D = \mu \vec{E}$$

mit μ : Elektronenbeweglichkeit

$$\mu = \frac{q}{\tau} m, [\mu] = m^2 V^{-1} s$$

Mit

$$\vec{j} = nq_e \, \vec{v}_D = nq_e \mu \, \vec{E}$$

$$\sigma = n_e \mu = \frac{nq_e^2 \tau}{m}$$

Beispiel 12.5 (Kupferdraht)

$$A = 1 \,\mathrm{mm}^2, I = 1 \,\mathrm{A}, j = \frac{I}{A} \implies v_D = 10 \times 10^{-4} \,\mathrm{m \, s}^{-1}$$

Jedes Atom trägt 1 Elektron bei.

Ohmscher Leiter: $\vartheta = \text{const.}$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}I} < 0$$
 NTC, Heißleiter $\frac{\mathrm{d}\vartheta}{\mathrm{d}I} > 0$ PTC, Kaltleiter

12.3 Elektrische Leistung

Strom I fließt durch Widerstand beziehungsweise Verbraucher, gewonnene kinetische Energie der Elektronen wird durch Stöße in Wärme umgewandelt.

$$W = QU = UIt$$

Definition 12.6 (Leistung)

$$P = UI$$

$$[P] = W = J s^{-1} = A V^{-1}$$

Für ohmschen Leiter:

$$P = RI^2 \iff P = \frac{U^2}{R}$$

Anwendungsbeispiel: Hochspannungsleitung. Transport von elektrischer Energie: Verluste durch Wärmeerzeugung in Überlandleitung. Ziel: Minimierung von Leistungsverlusten. Kraftwerk: F=UI

Überlandleitung:

- Spannungsabfall: $U_L = R_L I$
- Verlustleistung: $P_L = U_L I = R_L I^2 = U_L^2/R$

das heißt Spannungsabfall beziehungsweise Verlustleistung klein falls I klein und U groß! \Longrightarrow Hochspannungsleitung. Verfügbare Leistung: $P_V=P-P_L$

12.4 Stromkreise - Kirchhoffsche Regeln

Haushalt, elektrische Schaltungen, . . . Im Allgemeinen Netzwerke vieler Leiter, Spannungsquallen und Verbraucher. Zur Berechnung von Strömen und Spannungen: Kirchhoffsche Regeln:

- 1. Knotenregel: An jedem Knoten gilt $\sum I_k = 0$ (Ladungserhaltung, folgt aus Kontinuitätsgleichung)
- 2. Maschenregel: Für jede Masche gilt: $\sum U_k = 0$ (Zirkulationsgesetz)

Für ohmsche Widerstände ergibt sich damit:

Reihenschaltung:

$$R = \sum_{i=1}^{n} R_i$$

Parallelschaltung:

$$\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$$

12.5 Strom und Spannungsquellen

Spannungsquelle mit Innenwiderstand R_i :

$$U_{kl} = U_0 - IR_i$$
$$= U_0 \frac{R_a}{R_a + R_i}$$

⇒ Ideale Spannungsquelle:

$$R_i \approx 0 \quad I \approx \frac{U_0}{R_a}$$

Stromquelle: Versorgung mit konstantem Strom. \implies hoher Innenwiderstand $(R_i \to \infty, R_i \gg R_a)$

$$I = \frac{U_0}{R_i + R_a} = \frac{U_0}{R_i} = \mathrm{const.}$$

Technische Realisierung?

Prinzip: Ladungstrennung durch Energiezufuhr \implies Potentialdifferenz, leitende Verbindung \implies Stromfluß. Anwendung finden:

- elektrodynamische Generatoren, magnetische Induktion
- Batterien und Akkumulatoren, Ladungstrennung durch chemische Reaktionen
- Solarzellen, Ladungstrennung durch Lichtenergie
- Thermische Stromquellen, Ladungstrennung durch Temperaturabhängigkeit von Kontaktpotentialen.

Galvanische Elemente \implies Galvani-Spannung: $\Delta \varphi_C \implies$ Volta-Element

Minuspol: $Zn \rightarrow Zn^{++} + 2e^{-}$

Pluspol: $2H^+ + 2e^- \rightarrow H_2$

$$Z_n + H_2SO_4 \rightarrow H_2 + ZnSO_4$$

Daniel-Element: Diaphragma, dass nur SO_4 durchlässt verhindert **Vergiftung**.

Thermische Stromquellen. Bei Kontakt zweier Metalle ergibt sich Potentialdifferenz ⇒ Kontaktspannung. Ursache: Unterschiedlicshe Austrittarbeit für freie Elektronen. Austrittsarbeit und Kontaktspannung hängen von Temperatur ab.

- Thermoelement
- Peltierkühlung (Umkehrung)

12.6 Strom und Spannugsmessung

Ziel: Strom- und Spannungsmessung ohne Beeinflussung des zu messendes Systems.

Strommessung: Ampermeter in Reihe mit Verbraucher, Ampermeter - $R_i \approx 0$ um zusätzlichen Spannungsabfall aus Messgrät zu minimieren.

Spannungsmessung: Voltmeter parallel zum Verbraucher geschaltet. Voltmeter - $R_i \to \infty$, um Stromfluss durch Voltmeter zu minimieren.

Messinstrumente:

- Galvanometer
- Digitalvoltmeter (mit Operationsverstärker) (Messbereichserweiterung durch Parallel- und Serienschaltung von Widerständen)

13 Magnetostatik

Neue Kraft zwischen elektisch neutralen Materialien. (später: Vereinheitlichung von Elektrizität und Magnetismus \implies Elektromagnetismus) Beobachtungen:

- Zwei Pole: Nord- und Südpol
- Gleichnamige Pole stoßen sich ab, ungleichnamige ziehen sich an
- · Pole lassen sich nicht trennen, keine magnetische Ladungen, keine Monopole
- Magnete richten sich auf der Erde im Nord-Süd-Richtung aus

Traditionell: Definiton der magnetischen Feldstärke p in Analogie zur elektricschen Ladung Q. (Realisierung: langer Stabmagnet)

$$\implies \vec{F} = \frac{1}{4\pi\mu_0} \frac{p_1 p_2}{r^2} \hat{r}$$

mit $\mu_0 = 4\pi \cdot 1 \times 10^{-7} \,\mathrm{V} \,\mathrm{s} \,\mathrm{A}^{-1} \,\mathrm{m}$

$$\vec{H} = \lim_{p_2 \to 0} \frac{\vec{F}}{p_2}$$

•
$$[p] = V s = Wb$$

•
$$[H] = A m^{-1}$$

Hieraus folg die historsche Bezeichnung von H als "Magnetfeld" oder "magnetische Feldstärke". Aber $\vec{B}=\mu_0\vec{H}$ wichtigere Größe, eigentliches Äquivalent zum E-Feld

Traditionell Modern

H = magnetische Feldstärke H = magnetische Erregung

B = magnetische Induktion oder magnetische Flussdichte B = Magnetfeld oder magnetische Flussdichte

Ebenfalls: In Analogie zum elektrischen Feld: Magnetischer Kraftfluss

$$\phi_m = \int \vec{B} d\vec{A}$$

- $[B] = V s m^{-2} = T$
- $[\phi m] = V s = Wb$

13.1 Magnetfelder und bewegte Ladungen

Beobachtungen:

- 1. Ein Strom durch einen Leiter erzeugt ein Magnetfeld um denselben (Oerstedt, 1777 1851)
- 2. Auf bewegten Ladungen wird in einem Magnetfeld eine Kraft ausgeübt. Offenbar: Streuwirkung beeinflußt Kraftrichtung. (Ampere, 1775-1836)

Experiment:

1. $B \sim I/r$

2.
$$\vec{F} \sim I(\vec{e} \times \vec{B})$$

Konvention:

 \vec{l} : Streurichtung. mit $\vec{I} = \vec{j}A$:

$$\vec{F} = lA \Big(\vec{j} \times \vec{B} \Big) = lAnq \Big(\vec{v} \times \vec{B} \Big)$$

Kraft auf einen einzelnen Ladungsträger:

$$ec{F}=q\Big(ec{v} imesec{B}\Big)$$
 (Lorentzkraft (ohne E-Feld))
$$ec{F}=q\Big(ec{E}+ec{v} imes B\Big)$$
 (Lorentzkraft (allgmeine Form))

Beispiel 13.1 (Freie Ladung im homogenen B-Feld) Freie Ladung im homogenen B-Feld mit $\vec{R} \perp \vec{B}$. Bewegungsgleichung:

$$m\,\vec{a} = \left(\vec{r} \times \vec{B}\right)$$

Da Kraft senkrecht auf Bewegungsrichtung steht folgt eine Kreisbewegung! Also:

$$a=a_{zp}=v\omega=rac{v^2}{r}=rac{q}{w}vB$$

$$\omega=rac{q}{w}B$$
 (Zyklotronfrequenz)

Beispiel 13.2 (Leiterschleife im homogenen B-Feld) Kräftepaar bewirkt Drehmoment

$$\vec{M} = \vec{d} \times \vec{F} = \vec{d} \times I(\vec{l} \times \vec{B}) = I(\vec{A} \times \vec{B})$$

Definition 13.3 (Magnetischer Moment)

$$\vec{\mu} := I \vec{A} = I A \vec{n}$$
 $\vec{M} = \vec{\mu} \times \vec{B}$

Elektrischer Dipol Magnetischer Dipol
$$\vec{M} = \vec{p} \times \vec{E}$$
 $\vec{M} = \vec{\mu} \times \vec{B}$

Durch Vergleich mit elektrischen Dipol: Offenpor erzeugt ein Kreisstrom einen magnetischen Dipol.

Beispiel 13.4 (Hall-Effekt) Ablenkung bewegter Ladungsträger im Festkörper beziehungsweise in Leitern durch ein externes Magentfeld. Erlaubt Magnetfeldmessung.

Beobachtug: Aufbau eines elektrischen Querfeldes in einem Stromdurchflossenen Leiter in einem Magnetfeld. Ursache: Lorentzkraft. Es gilt:

$$F_{el} = F_{mag}$$

$$q\frac{U_H}{b} = qvB$$

$$= \frac{I}{nbd}B$$

mit $\vec{v} \perp \vec{B}$

$$I = jA = jbd = nqvbd$$

$$U_H = \frac{1}{nq} \frac{I}{d} B = R_H \frac{I}{d} B$$

mit $R_H = \left(nq\right)^{-1}$, Hallkonstante, n = Ladungsdichte, q = Ladungsdichte, Anwendungen:

- Messungen von Dichte und Vorzeichen der bewegten Ladungsträger in Materialien (zum Beispiel Leiter / Halbleiter)
- · Messung magnetischer Felder

$$\begin{split} B \sim \frac{I}{r} \\ B(r) &= \frac{\mu_0}{2\pi} \frac{I}{r} \mu_0 \\ \vec{B}(\vec{r}) &= \frac{\mu_0}{2\pi} \frac{I}{r} \Big(\hat{l} \times \hat{r} \Big) \end{split} = 4\pi 1 \times 10^{-7} \, \mathrm{V} \, \mathrm{s} \, \mathrm{A}^{-1} \, \mathrm{m} \end{split}$$

$$ec{B}_{21} = rac{\mu_0 I_1}{2\pi r_2} \Big(\hat{l}_1 imes \hat{r}_{21} \Big) \ ec{F}_{21} = I_2 \Big(ec{l} imes ec{B}_{21} \Big) \ ec{r}_{21} = rac{\mu_0 I_1 I_2}{2\pi r_2 1} \hat{r}_{21}$$

13.2 Grundgleichungen der Magnetostatik

"Wir wissen": Magnetfeldlinien immer geschlossen

$$\implies \oint \vec{B} d\vec{A} = 0$$

(Quellenfreiheit des Magnetfeldes)

$$\operatorname{div} \vec{B} = 0$$

(2. Maxwellsches Gesetz)

Zirkulation des B-Feldes:

Elektrostatik:

$$\int \vec{E} \, \mathrm{d}\vec{s} = U, \oint \vec{E} \, \mathrm{d}\vec{s} = 0$$

B-Feld: (Kreis senkrecht um B-Feldlinie)

$$\oint \vec{B} d\vec{s} = B \oint ds$$

$$= \frac{\mu_0 I}{2\pi r} 2\pi r = \mu_0 I$$

Anderer Weg (größerer Kreis)

$$\oint \vec{B} d\vec{s} = \int_4^1 \vec{B} d\vec{s} + \int_2^3 \vec{B} d\vec{s}$$

$$= \frac{\mu_0 I}{2\pi r_1} f_2 2\pi r_1 + \frac{\mu_0 I}{2\pi r_2} f_2 2\pi r_2$$

$$= \mu_0 I (f_1 + f_2) = \mu_0 I$$

$$\oint \vec{B} d\vec{s} = \mu_0 \sum_k I_k$$

$$\text{rot } \vec{B} = \mu_0 \vec{j}$$

⇒ Grunggleichungen der Magnetostatik:

$$\oint_{A} \vec{B} d\vec{A} = 0 \quad \oint_{C} \vec{B} d\vec{s} = \mu_{0} I_{innen}$$
$$div \vec{B} = 0 \quad \text{rot } \vec{B} = \mu \vec{j}$$

13.3 Zwei Anwendungsbeispiele

Beispiel 13.5 (Magnetfeld Sromdurchflossener Leiter) Querschnitt: $A=\pi R^2$

$$j = \frac{I}{\pi R^2}$$

$$\oint \vec{B} d\vec{s} = B(r)2\pi r$$

$$r \ge R : B(r)2\pi r = \mu_0 I \implies B(r) = \frac{\mu_0 I}{2\pi r}$$
$$r > R : B(r)2\pi r = \mu_0 j\pi r^2 \implies B(r) = \frac{1}{2}\mu_0 jr = \frac{\mu_0 I}{2\pi R^2} r$$

Beispiel 13.6 (Magnetfeld einer lagen Spule) N: Anzahl der Windungen, L: Länge, n=N/L Weg C:

$$\oint \vec{B} d\vec{s} = B_{12}l' - B_{34}l' \stackrel{!}{=} 0 \implies B_{12} = B_{34}$$

Weg C':

$$\oint \vec{B} d\vec{s} = Bl' = \mu_0 N J I$$

$$\implies B = \frac{\mu_0 N' L}{l'} = \mu_0 n I$$

$$B_{spule = \mu_0 n I}$$

13.4 Biot-Savart-Gesetz

Vergleich Elektro und Magnetostatik

E-Feld einer Linienladung

$$E(r) = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r}$$

B-Feld eines geraden Leiters

$$B(r) = \frac{\mu_0}{2\pi} \frac{I}{r}$$

Nutze Analogie!

$$\begin{split} \mathrm{d}\,\vec{E}(\,\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \frac{\rho(\,\vec{r}-\vec{r}')}{|\,\vec{r}-\vec{r}'|^3} \mathrm{d}V' \\ \vec{E}(\,\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\,\vec{r}-\vec{r}')}{|\,\vec{r}-\vec{r}'|^3} \mathrm{d}V' \end{split}$$

Ersetzen
$$\rho \to \vec{j}, \varepsilon_0 \to 1/\mu_0, \rho(\vec{r}-\vec{r}') \to \vec{j} \times (\vec{r}-\vec{r}') \Longrightarrow$$
 Biot-Savart-Gesetz
$$\mathrm{d}\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{j}(\vec{r}) \times (\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} \mathrm{d}V'$$

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}(\vec{r}) \times (\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} \mathrm{d}V'$$

$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{d\vec{s}' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$
$$B(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{d\vec{s}' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

Beispiel 13.7 (Leiterschleife) Symmetrie: $B_{\perp}=0, B_{x}=0, B_{y}=0$

$$dB_z = dB \sin \alpha$$

$$= dB \frac{R}{|\vec{r} - \vec{r}'|}$$

$$= \frac{\mu_0 I}{4\pi} \frac{ds'}{|\vec{r} - \vec{r}'|^2} \frac{R}{|\vec{r} - \vec{r}'|} = \frac{\mu_0 I}{4\pi} \frac{R}{(z^2 + R^2)^{\frac{3}{2}}} ds'$$

$$B_z = \int dB_z = \frac{\mu_0 I}{4\pi} \frac{R}{(z^2 + R^2)^{\frac{3}{2}}} \int ds'$$

$$= \frac{\mu_0 R^2}{2(z^2 + R^2)^{\frac{3}{2}}}$$

In der Mitte des Rings: z = 0

$$B_z = \frac{\mu_0 I}{2R}$$

Weit weg: $z\gg R$

$$B_z = \frac{\mu_0 I R^2}{2z^3}$$

Allgemeine Lösung für $r \gg R$

$$B(\vec{r}) = \frac{\mu_0}{4\pi} \left(3\frac{\vec{\mu}\vec{r}}{r^5} \vec{r} - \frac{1}{r^3} \vec{\mu} \right)$$

Vergleich mit Elektrischem Dipol ($r \gg d$):

$$E(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(3\frac{\vec{p}\,\vec{r}}{r^5}\,\vec{r} - \frac{1}{r^3}\,\vec{p} \right)$$

14 Materie im Magnetfeld

14.1 Magnetisierung und Magnetische Erregung

Beobachtung: Beeinflussung des B-Feldes durch Materie. Ein Eisenkern der Länge l hat auf einer Querschnittsfläche A (Normalenvektor \vec{n}) viele Kreiströme (magnetische Dipole) I_i mit Fläche A_i . Auf der Oberfläche des Eisenkern gibs es also einen Strom I_m : molekularer Strom. Für ein infinitesimales Stück es Eisenkerns dl erhält man:

$$I_i = I_m \frac{\mathrm{d}l}{l}$$

$$B_{mag} = \mu_0 \frac{I_m}{l}$$

Definition 14.1 (Magnetisierung)

$$\vec{M} = \frac{1}{V} \sum_{i} \vec{\mu}_{i}$$

mit $\mu := I_i A_i \vec{n}$. (Erinnerung Spule: $B = \mu_0(NI)/l$)

$$\implies \vec{M} = \frac{1}{V} \sum_{i} A_{i} I_{i} \vec{n} = \frac{1}{V} A_{i} \frac{I_{m}}{l} \vec{n} \int dl$$

$$= \frac{1}{V} \frac{I_{m}}{l} \sum_{i} A_{i} \vec{n} l$$

$$= \frac{I_{m}}{l} \vec{n}$$

Magnetfeld rein aufgrund der Magnetisierung:

$$\vec{B}_{mag} = \mu_0 \, \vec{M}$$

Jetzt: Eisenkern mit Draht

$$\implies \vec{B} = \vec{B}_0 + \mu_0 \vec{M}$$

 \vec{B}_0 : Magnetfeld aufgrund äußerer Ströme

$$\oint_C \vec{B} d\vec{s} = \oint_C \vec{B}_0 d\vec{s} + \mu_0 \oint_C \vec{M} d\vec{s}$$

$$= \mu_0 N I + \mu_0 \oint_C \vec{M} d\vec{s}$$

$$= \mu_0 I_{frei} + \mu_0 I_m$$

$$\oint (\vec{B} - \mu_0 \vec{M}) d\vec{s} = \mu_0 I_{frei}$$

Definition 14.2 (Magnetische Erregung)

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$
 $\vec{B} = \mu_0 (\vec{H} + \vec{M})$
$$\oint \vec{H} d\vec{s} = I_{frei} \quad \text{rot } \vec{H} = \vec{j}_{frei}$$

(2. Maxwellsches Gesetz, Amperesches Durchflutungsgesetz)

Auch: rot
$$\vec{M} = \vec{j}_{qeb}$$
, rot $\vec{B} = \mu_0 \vec{j}_{ges}$

14.2 Dia-, Para- und Ferromagnetismus

Experimentelle Beobachtung:

Definition 14.3

$$\vec{M} = \chi_m \vec{H}$$

mit $\mu_0\, \vec{B}=\, \vec{B}=\mu_0\, \vec{M}.$ Gilt nicht immer!, χ_m : magnetische Suszeptibilität.

$$\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right) \qquad = \mu_0 (\chi_m + 1) \vec{H} = \mu_0 \mu_r \vec{H}$$

$$\vec{B} = \mu \mu_0 \vec{H}$$

$$\mu = \mu_r = \chi_m + 1$$

Bisher: $\chi_n > 0$. Gilt dies immer? \implies nein!

• $\chi_m > 0, \mu_r > 1$

Paramagnetismus

• $\chi_m < 0, \mu_r < 1$

Diamagnetismus

• $\chi_m \gg 0, \mu_r \gg 1$

Ferromagnetismus

• Dia:
$$-1 \times 10^{-6} \le \chi_m \le -1 \times 10^{-9}$$

• Para:
$$1 \times 10^{-6} \le \chi_m \le 1 \times 10^{-9}$$

• Ferro:
$$1 \times 10^2 \le \chi_m \le 1 \times 10^5$$

Paramegnetismus: Wolfram, Nickel

$$\begin{split} E_{pot} &= -\vec{M} \, \vec{B} \, \vec{v} \\ &= -\vec{\mu} \, \vec{B} \\ \vec{F} &= \vec{M} \, \text{grad} \, \vec{B} V \end{split}$$

Diamagnetismus: Wismut Mikroskopische Beschreibung

 $\chi_m < 0 (\mu < 1)$: Diamagnetismus. Induktion eines magnetischen Dipolmoments r = const.. Zwei Atome:

$$\vec{\mu}' = \vec{\mu}_1' + \vec{\mu}_2' \neq \emptyset$$

Ursache: Lorentzkraft:

$$v'_{1} > v_{1} \qquad v'_{2} < v_{2}$$

$$F'_{2}p > F_{2}p \qquad F'_{2}p < F_{2}p$$

$$\mu'_{1} > \mu_{1} \qquad \mu'_{1} < \mu_{2}$$

$$\vec{B} = \mu_{0}\mu\vec{H} = \mu_{0}(1 + \chi_{m})\vec{H}$$

$$= (1 + \chi_{m})\vec{B}_{0} \to \chi_{m} < 0$$

 \Longrightarrow Alle Stoffe sind diamagnetisch. Aber Möglichkeit der Überlagerung mit Para- beziehungsweise Ferromagnetismus. $\chi_m>0$: Paramagnetismus

Ausrichtung permanenter magnetischer Dipole mit außerem B-Feld. Vergleich:

- Elektrische Ausrichtung führt zur Abschwächung
- Magnetostatische Ausrichtung führt zur Verstärkung

Thermische Bewegung wirkt der Ausrichtung entgegen \implies Temperaturabhängigkert der Magnetisierung: (Curie-Gesetz)

$$\vec{M} = \frac{1}{3} \frac{\mu B_{ext}}{k_B T} \vec{M}_s$$

 $ec{M}_s$: Sättigungsmagnetismus

 $\chi_m \gg 0$ Ferromagnetismus

Paramagnetische Materie mit zusätzlicher Wechselwikung der magnetischen Dipole miteinander.

Weißsche Bezirke

Ohne Magnetfeld: Statistische Ausrichtung $\vec{M}=0$ Mit Magnetfeld: Ausrichtung der Bezirke entlang \vec{B}

$$\chi_m \gg 0, M \gg 1 \implies \vec{M} = \mu \vec{M} \gg \vec{H}$$

Ferromagnet:

Beobachtung: Magnetisierung durch B-Feld ist abhängig von "Vorgeschichte"

- "Hinweg": Koerzitiv Kraft
- "Rückweg": Remanenz Kraft

Magnetisch hartes Eisen:

- große Remanenz
- große Koerzitiv

Magnetisch weiches Eisen:

- · kleine Remanenz
- · kleine Koerzitiv

Ferromagnetismus ist Temperaturabhäsgig

- geht oberhalb T_C verloren
- T_C kritische Temperatur

Oberhalb von $F_C \implies$ Curie-Weiß Gesetz

$$\chi(T) = \frac{C}{T - T_C}$$

14.3 Feldgleichungen in Materie

Vakuum: $\vec{B} = \mu_0 \vec{H}$

Materie: $\vec{B} = \mu \mu_0 \vec{H} = \mu_0 \left(\vec{H} + \vec{M} \right)$, allgemein: $\mu = \mu(H)$.

Außerdem:

$${\rm div} \; \vec{B} = 0 \; {\rm auch \; in \; Materie} \qquad {\rm rot} \; \vec{H} = \vec{j}_{frei}$$

Verhalten an Grenzflächen

$$H_{\parallel}^{(1)} = H_{\parallel}^{(2)} \implies \frac{B_{\parallel}^{(1)}}{\mu_{1}} = \frac{B_{\parallel}^{(2)}}{\mu_{2}}$$

$$B_{\perp}^{(1)} = B_{\perp}^{(2)} \implies \mu_{1} H_{\perp}^{(1)} = \mu_{2} H_{\perp}^{(2)}$$

⇒ Maxwell-Gleichungen der Elektro- und Magnetostatik

$$\begin{aligned} & \text{rot } \vec{E} = 0 & \text{rot } \vec{H} = \vec{j}_{frei} \\ & \text{div } \vec{D} = \rho & \text{div } \vec{B} = 0 \end{aligned}$$

Anwendung: Toroidmagnet mit Luftspalt

Radius des Torus: R, Eisenkern $\implies \mu \gg 1$, N Windungen um Kern mit Strom I, Breite des Luftspaltes: $d \implies F$ eld im Luftspalt: Ampersches Gesetz:

$$\oint \vec{H} d\vec{s} = NI = \int_{Eisen} \vec{H}_{Fe} d\vec{s} + \int_{Luft} \vec{H}_{Luft} d\vec{s}$$

$$\vec{B}_{Fe} = \vec{B}_{Luft} \implies \mu \vec{H}_{Fe} = \vec{H}_{Luft}$$

$$\implies NI = \oint \vec{H} d\vec{s} = H_{Fe} (2\pi R - d) + H_{Luft} d$$

$$= \frac{H_{Luft}}{\mu} (2\pi R - d) + dH_{Luft}$$

$$H_{Luft} = \frac{NI\mu}{(\mu - 1)d + 2\pi R} \approx \frac{\mu NI}{\mu d + 2\pi R}$$

$$\implies B = \mu_0 H_{Luft} = \frac{\mu_0 \mu NI}{\mu d + 2\pi R}$$