Confidence Sets Controlling for False Discovery Rate

Howon Ryu

March 6, 2023

1 Multiple Testing

In a testing setting where m null hypotheses $\{H_1, \ldots, H_m\}$ are tested simultaneously, the following contingency table can be constructed according to the claimed significance and the true state $(H_0$ true or false) of the hypothesis:

	Not Significant	Significant (rejected)	
H_0	TN	FP	m_0
H_1	FN	TP	$m-m_0$
	m-R	R	m

In the above, m represents the total number of hypotheses tested, R represents the number of rejected (claimed significant) hypotheses, and m_0 represents the number of hypotheses that are truly not significant (true H_0). R and m are observable. Let p_1, \ldots, p_m be the p-values associated with the hypotheses H_1, \ldots, H_m , and let I_0 be the set of all true H_0 hypotheses. Then, for $i \in I_0$, $\mathbb{P}(p_i < \alpha) < \alpha$, $0 \le \alpha \le 1$.

1.1 Family-Wise Error Rate

Family-wise error rate (FWER) is defined as:

$$\mathbb{P}(FP \ge 1)$$

which signifies the probability of making one or more Type I error.

• Bonferroni correction: Controlling $\mathbb{P}(FP \geq 1) < \alpha$ by rejecting H_i if $p_i < \frac{\alpha}{m}$, as $\mathbb{P}(FP \geq 1) \leq \mathbb{E}(FP) \leq \frac{m_0 \alpha}{m} \leq \alpha$

1.2 False Discovery Rate

False discovery rate (FDR) is defined as:

$$\mathbb{E}\left(\frac{FP}{R}|R>0\right)\mathbb{P}(R>0) = \mathbb{E}\left(\frac{FP}{\max\left(1,R\right)}\right)$$

which aims to control the expected proportion of false positives out of all the significantly claimed tests.

- Benjamini-Hochberg(BH) procedure: The BH procedure aims to control the FDR below α level by rejecting $\{H_{(1)}, \ldots, H_{(k)}\}$ where $k = \max_i \{p_{(i)} < \frac{\alpha i}{m}\}$.
- With the BH procedure, $FDR < \alpha \cdot \frac{m_0}{m}$.

2 FDR controlling confidence sets

2.1 Confidence Sets (two-sided)

In constructing the confidence sets for the area in the image $\{s \in S : \mu(s) > c\}$, we define \hat{A}_c as $\hat{A}_c = \{s \in S : \hat{\mu}(s) \geq c\}$ which could be thought of as a point estimate for the area above c. Take

$$t(s) = \frac{\hat{\mu}(s) - c}{\hat{\sigma}(s) / \sqrt{n}}$$

the t-statistics for testing $\{H_0 : \mu(s) = c\}$. The following procedure describes the construction of the FDR-controlling two-sided confidence sets via the Benjamini-Hochberg procedure.

- 1. Obtain the p-values $2 \cdot \{1 T_{n-1}(|t(s)|)\}$ where T_{n-1} is the cdf of t-distribution with n-1 degrees of freedom.
- 2. Apply the Benjamini-Hochberg procedure to the p-values at α level to get the set of $s \in S$ rejected by the BH procedure i.e., $\mathcal{B} = \{s \in S : p_s \leq p_k\}$
- 3. Set the upper confidence set $\hat{\mathcal{A}}_c^+$ and the lower confidence set $\hat{\mathcal{A}}_c^-$ as

$$\hat{\mathcal{A}}_c^+ = \{\hat{\mathcal{A}}_c \cap \mathcal{B}\}$$

and

$$\hat{\mathcal{A}}_c^- = \{\hat{\mathcal{A}}_c \cup \mathcal{B}^C\}$$

Figure 1: plot displaying the confidence set constructing procedures based on two-sided test representing \hat{A}_c , t-statistics p-values, \mathcal{B} , \hat{A}_c^- , \hat{A}_c^+ from left to right.

The error rate for the two-sided confidence sets is given as:

$$\mathbb{E}\left(\frac{|\hat{\mathcal{A}}_{c}^{+} \setminus \mathcal{A}_{c} \cup \mathcal{A}_{c} \setminus \hat{\mathcal{A}}_{c}^{-}|}{|\hat{\mathcal{A}}_{c}^{+} \cup (\hat{\mathcal{A}}_{c}^{-})^{C}|}\right) \tag{1}$$

The confidence sets defined as above are expected to keep the error rate 1 below α level.

2.2 Confidence Sets (one-sided)

To construct the confidence set for the area $\{s \in S : \mu(s) \geq c\}$ with $\hat{A}_c = \{s \in S : \hat{\mu}(s) \geq c\}$, we can think of a testing approach using one-sided test. First, consider the null hypothesis $\{H_0 : \mu(s) < c\}$. Then, the FDR-controlling one-sided upper confidence set is obtained by the following procedure:

- 1. Obtain the p-values $\{1 T_{n-1}(t(s))\}$ where T_{n-1} is the cdf of t-distribution with n-1 degrees of freedom.
- 2. Apply the Benjamini-Hochberg procedure to the p-values at α level to get the set of $s \in S$ rejected by the BH procedure i.e., $\mathcal{B} = \{s \in S : p_s \leq p_k\}$
- 3. Set the upper confidnce set $\hat{\mathcal{A}}_c^+$

$$\hat{\mathcal{A}}_c^+ = \{\hat{\mathcal{A}}_c \cap \mathcal{B}\}$$

.

Figure 2: plot displaying the confidence set constructing procedures based on one-sided test representing \hat{A}_c , t-statistics p-values, \mathcal{B} , and \hat{A}_c^+ from left to right.

Conversely, to construct the confidence set for the area $\{s \in S : \mu(s) \leq c\}$ via one-sided test using the null hypothesis $\{H_0 : \mu(s) > c\}$ and $\hat{A}_c = \{s \in S : \hat{\mu}(s) \leq c\}$, we use the following procedure:

- 1. Obtain the p-values $\{T_{n-1}(t(s))\}$ where T_{n-1} is the CDF of t-distribution with n-1 degrees of freedom.
- 2. Apply the Benjamini-Hochberg procedure to the p-values at α level to get the set of $s \in S$ rejected by the BH procedure i.e., $\mathcal{B} = \{s \in S : p_s \leq p_k\}$
- 3. Set the lower confidnce set $\hat{\mathcal{A}}_c^-$

$$\hat{\mathcal{A}}_c^- = \{\hat{\mathcal{A}}_c \cup \mathcal{B}^C\}$$

•

Figure 3: plot displaying the confidence set constructing procedures based on one-sided test representing \hat{A}_c , t-statistics p-values, \mathcal{B} , and \hat{A}_c^- from left to right.

The error rate for one-sided upper sets is measured by

$$\mathbb{E}\left(\frac{|\hat{\mathcal{A}}_c^+ \setminus \mathcal{A}_c|}{|\hat{\mathcal{A}}_c^+|}\right),\tag{2}$$

and the lower set is measured by

$$\mathbb{E}\left(\frac{|\mathcal{A}_c \setminus \hat{\mathcal{A}}_c^-|}{|(\hat{\mathcal{A}}_c^-)^C|}\right). \tag{3}$$

2.3 Power and false non-discovery rate

3 Adaptive procedure

As the Benjamini-Hochberg procedure controls the FDR at $\alpha \cdot \frac{m_0}{m}$ level in actuality, this often leads to conservative inference on the confidence sets. Adaptive procedures remedy this by using the threshold collection of the form $\Delta_i = \pi_0^{-1} \frac{\beta(i)}{m} \alpha$ where $\beta(i)$ is the shape function for a step-up procedure. By multiplying the threshold by a factor of $\pi_0^{-1} = \frac{m}{m_0}$, we expect to have less conservative procedure. In practice, we use $\Delta_i = \hat{\pi}_0^{-1} \frac{\beta(i)}{m} \alpha$ where $\hat{\pi}_0^{-1} = \frac{m}{\hat{m_0}}$ is the estimator of the true π_0^{-1} .

3.1 Two-stage adaptive procedure

Blanchard and Roquain [1] suggests a two-stage adaptive procedure that provably controls the FDR at α level. In the first stage, a step-up procedure is conducted with threshold collection $\Delta_i = \frac{\beta(i)}{m}\alpha_0$ to get an estimate $\hat{m}_0 = m - |R_0|$ where $|R_0|$ is the number of rejected hypotheses from the first stage. In the second stage, an adaptive procedure is conducted with $\Delta_i = \hat{\pi}_0^{-1} \frac{\beta(i)}{m}\alpha_1$ where $\hat{\pi}_0^{-1} = F_{\kappa}(\frac{\hat{m}_0}{m})$. $F_{\kappa}(\cdot)$ is given as follows:

$$F_{\kappa}(x) = \begin{cases} 1, & \text{if } x \leq \kappa^{-1} \\ \frac{2\kappa^{-1}}{1 - \sqrt{1 - 4(1 - x)\kappa^{-1}}}, & \text{otherwise} \end{cases}$$

Blanchard and Roquain states that this two-stage procedure with $\alpha_0 = \alpha/4$, $\alpha_1 = \alpha/2$ and $\kappa = 2$ is less conservative compared to the linear step-up procedure alone (Benjamini-Hochberg) when the large proportion of the rejection is expected, or potentially when $\hat{\pi_0}$ is small.

4 Simulation

4.1 Simulation Setting

We now construct confidence sets based on different signal shapes, image sizes, and noise settings. Take circular and ramp signal of image sizes 50 * 50 and 100 * 100 as presented in figure 4. Then, correlated (smoothed) or uncorrelated noise fields are added to the above six signals to form a random field with.

Figure 4: six different signal settings: small or large circle for 50*50 and 100*100 image size, and ramp for 50*50 and 100*100 image size

4.2 Confidence Sets

Figure 5 and 6 shows the upper and lower confidence sets superimposed on the signal. The confidence sets were constructed for six different images, each a combination of different signals (small circle/large circle/ramp) and noises (correlated/uncorrelated).

The confidence sets constructed by the two-stage adaptive procedure shows bigger \hat{A}_c^+ and \hat{A}_c^{-1} than the ones constructed by the Benjamini-Hochberg procedure which suggests that the two-stage procedure is less conservative.

--WORK FROM ERE-----

Figure 5: $\hat{A}_c^+ + \hat{A}_c + \hat{A}_c^-$ by the Benjamini-Hochberg procedure. Yellow area represents A_c^+ , green area including the yellow area represents \hat{A}_c , and the blue area including green and yellow area represents \hat{A}_c^- .

Figure 6: $\hat{A}_c^+ + \hat{A}_c + \hat{A}_c^-$ by two-stage adaptive procedure. Yellow area represents A_c^+ , green area including the yellow area represents \hat{A}_c , and the blue area including green and yellow area represents \hat{A}_c^- .

4.3 Error Rate

4.3.1 Two-sided

We look at the false discovery rate, expressed as (1), calculated from 1,000 simulations. Recall that $FDR < \alpha \cdot \frac{m_0}{m}$.

• Since on the discrete grid, there was often no voxel exactly of the value of the threshold c = 0.5, 2, 3. Instead, range was used to capture the number of voxels m_0 . In this simulation, used range of $\{c \pm 0.2\}$

	\mathbf{small}	small&smth	$\alpha \frac{m_0}{m}$	large	large&smth	$\alpha \frac{m_0}{m}$
50*50						
c = 0.5	0.0002	0.0002	0.0	0.0009	0.0009	0.0
c=0.5/std=*3	0.0041	0.0021		0.0026	0.0029	
c=2	0.0002	0.0002	0.00072	0.0006	0.0006	0.00168
c=2/std=*3	0.0005	0.0006		0.0017	0.0014	
c=3	0.0021	0.0024	0.00466	0.012	0.0117	0.02674
c=3/std=*3	0.0024	0.0022		0.0135	0.0122	
100*100						
c=0.5	0.0003	0.0003	0.0	0.0007	0.0007	0.0
c=0.5/std=*3	0.0038	0.0053		0.0023	0.0024	
c=2	0.0001	0.0001	0.00038	0.0007	0.0007	0.00238
c=2/std=*3	0.0004	0.0004		0.002	0.0015	
c=3	0.0022	0.0023	0.00461	0.013	0.0131	0.02817
c=3/std=*3	0.0024	0.0026		0.0142	0.0133	

Table 1: FDR

- For c = 0.5, since m_0 is 0, the error rates are very close to 0.
- For c=2 and c=3, the error rates are all below the $\alpha \frac{m_0}{m}$ level.
- Generally no big difference between image size 50*50 and 100*100.

References

[1] Gilles Blanchard and Etienne Roquain. "Adaptive False Discovery Rate Control under Independence and Dependence." In: *Journal of Machine Learning Research* 10.12 (2009).