Course Code	18CSE388T	Course Name			Course Category	Е	Professional Elective	1 3	T 0	P 0	C 3
Pre-requisit Courses	e Nil		Co-requisite Courses Nil		Progre Cou		Nil				
Course Offerin	ng Department	Compute	er Science and Engineering	Data Book / Codes/Standards	Nil						
				·	<u> </u>						

Course Learning Rationale (CLR): The purpose of learning this course is to:			Learning			
CLR-1:	Connect Biology with Comp	outers		1	2	3
CLR-2:	Understand components of	artificial neural networks		E :	(%)	(%)
CLR-3:	Understand supervised lear	rning networkparadigms				e) E
CLR-4:	Understand unsupervised le	earning networkparadigms		hinking	ted Proficiency	Expected Attainment (%)
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	-	evel	Expected	Expect
CLO-1:	Know the purpose of Artific	ial Neural Networks	1		80	85
CLO-2:	Apply the concepts of active	ation, propogation functions	2		75	80
CLO-3:	Work with supervised learn	ing network paradigm	3		85	80
CLO-4 :	Work with unsupervised lea	rning network paradigm	3		80	75

Program Learning Outcomes (PLO)														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO-3
Н	L	-	-	H-	-	-	-	-	-	-	Н	L	L	-
Н	Н	-	-	Н	-	-	-	-	-	-	Н	Н	Н	Н
Н	Н	Н	-	Н	-	-	-	-	-	-	Н	Н	Н	Н
Н	Н	-	-	Н	-	-	-	-	-	-	Н	Н	Н	Н

Dura	tion (hour)	9	9	9	9	9	
	SLO-1	Why neural network?	Components of artificial neural networks	Learning and training samples	Radial basis functions	Unsupervised learning networkparadigms	
S-1	SLO-2	Basics of Artificial Neural Networks	The concept of time in neural networks	Paradigms of Learning	Information processing of an RBF network	Structure of a self-organizing map(SOM)	
S-2	SLO-1	A brief history of neural networks	Connections	Using training samples	Training of RBF networks	Functionality	
3-2	SLO-2	Biological neural networks	Propagation function	Gradient Optimization Procedure	Growing of RBF networks	Training	
	SLO-1	Biological neural networks	Activation	Hebbian learning rule	Growing of RBF fietworks	Topology function	
S-3	SLO-2	The vertebrate nervous system	Threshold value, Activation function	Supervised learning networkparadigms	Compare multilayer perceptrons and RBF	Decreasing Learning Rate	
S-4	SLO-1	peripheral nervous system	Common activation functions	The perceptron, back propagation and its variants	Recurrent perceptron-like networks	Variations of SOMs	
	SLO-2	Cerebrum, cerebellum, diencephalon,brainstem	Output function, Learning strategies	Singlelayer perceptron	Jordan networks	Neural gas	
S-5	SLO-1	Cerebrum, cerebellum, diencephalon,brainstem	Network topologies	Linear Separability	Elman networks	Multi-SOM	
3-3	SLO-2	The Neuron	Feedforward networks	Multilayer perceptron	Training recurrent networks	Multi-neural gas	
S-6	SLO-1	Components	Recurrentnetworks	Backpropagation of error	Training recurrent networks	Growing neural gas	
3-0	SLO-2	Electrochemical processes	Completely linked networks	Selecting learning rate	Unfolding in time	Adaptive resonance theory(ART)	
S-7	SLO-1	Receptor cells- Various types	Bias neuron	Resilient Backpropagation	Teacher forcing	Task and structure of an ART network	
3-1	SLO-2	Information processing within nervous system	Representing Neurons	Adaption of Weights			
S-8	SLO-1	Light Sensing organs	Orders of Activation	Variations in Backpropagation	Recurrent backpropagation	Resonance	
3-0	SLO-2	Neurons in living organisms	Synchronous activation	variations in backpropagation			
S-9	SLO-1	Transition to technical neurons	Asynchronous activation	Multilayar paraantran	Evolutionary algorithms	Learning process of an ART network	
3-9	SLO-2	Transition to technical neurons	input and outputof data	Multilayer perceptron	Evolutionary algorithms	Learning process or all ART network	

Learning
Resources

- David Kriesel, A BriefIntroduction to Neural Networks, dkriesel.com, 2005
 GunjanGoswami, Introduction to Artificial Neural Networks, S.K. Kataria& Sons, 2012
- Raul Rojas, Neural Networks: A Systematic Introduction, 1996.
 S. Sivanandam, Introduction to Artificial Neural Networks, 2003

	Dloom'o	Continuous Learning Assessment (50% weightage)								Final Examination (50% weightage)		
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA -	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Exallillialioi	i (50 % weigiilage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Lovel 1	Remember	40 %		30 %		30 %		30 %		30%		
Level 1	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 %	40 %	40 %	-	40 %	-	40 %	-	40%	_	
Laural 2	Evaluate	20.0/		20.0/		20.0/		20.0/		200/		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Total 100		0 %	10	0 %	100	0 %	100) %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
1. Dr.Harisekharan,CTO,Sri SeshaaTechnologies Pvt. Ltd., Chennai	1. Dr.J.Suresh, SSN College of Engineering	Dr.G.Vadivu						
	2. Dr. Sharmila Shankar, Crescent Institute of Science and Technology	Dr. D.Rajeswari						
		Dr.M.S.Abirami						