Міністерство освіти і науки України Національний авіаційний університет Факультет кібербезпеки, комп'ютерної та програмної інженерії Кафедра комп'ютеризованих систем управління

Лабораторна робота № 3.4 з дисципліни «Технології проектування комп'ютерних систем» на тему «Моделювання одноканальної системи обслуговування методом статистичного моделювання»

> Виконав: студент ФККПІ групи СП-425 Клокун В. Д. Перевірила: Голего Н. М.

1. МЕТА РОБОТИ

Провести моделювання функціонування системи масового обслуговування та визначити показники її роботи.

2. ХІД РОБОТИ

Створюємо 2 множини: множину тривалостей часу з моменту закінчення обробки попередньої заявки до моменту надходження наступної заявки T_i та множину тривалостей обслуговування i-ї заявки $T_{\text{обсл}}$. Кожна множина повинна складатись з n=10 рівномірно розподілених випадкових чисел. Також, елементи кожної з множин повинні задовольняти таким умовам: $t_i \in [0;K)$, $t_{\text{обсл}} \in [0;L)$, де K=13, L=8 за умовами варіанту.

Отже, математично необхідні множини можна записати так:

$$T_i = \{t_i \mid t_i = \text{rand}(), t_i \in [0, K), |T_i| = 10\}$$

 $T_{\text{OGCJ}} = \{t_{\text{OGCJ}} \mid t_{\text{OGCJ}} = \text{rand}(), t_{\text{OGCJ}} \in [0, L), |T_{\text{OGCJ}}| = 10\}$

В результаті отримали необхідні множини (табл. 1).

Табл. 1: Вхідні дані

№ заявки	1	2	3	4	5	6	7	8	9	10
t_i	2	0	5	4	2	4	3	3	3	0
$t_{ m oбc}$ л	2	2	3	2	3	0	3	0	0	0

Моделюємо роботу системи та відкладаємо отримані вхідні дані на осі часу t (рис. 1).

Рис. 1: Часова діаграма обслуговування заявок

За часовою діаграмою роботи системи знаходимо характеристики кожної заявки, що нас цікавлять (табл. 2).

Знаходимо середній час очікування заявки у системі och_{ser} :

$$och_{ser} = \frac{1}{n} \sum_{i=1}^{n} och_i = \frac{0+2+0+0+0+0+0+0+0+0}{10} = \frac{2}{10} = 0,2.$$

Табл. 2: Характеристики заявок у системі

№ заявки	1	2	3	4	5	6	7	8	9	10
pr_i	2	0	1	1	0	0	3	0	3	0
$obsl_i$	2	2	3	2	3	0	3	0	0	0
och_i	0	2	0	0	0	0	0	0	0	0
dovj _i	1	0	0	0	0	0	0	0	0	0

Знаходимо середню довжину черги у системі $dovj_{ser}$:

$$dovj_{ser} = \frac{1}{n} \sum_{i=1}^{n} dovj_{i} = \frac{1+0+0+0+0+0+0+0+0+0}{10} = \frac{1}{10} = 0,1.$$

З часової діаграми визначаємо тривалість моделювання $t_{
m mod}$ і знаходимо ймовірність простою каналу у системі:

$$P_{\text{pr}} = \frac{1}{t_{\text{mod}}} \sum_{i=1}^{n} pr_i = \frac{2+0+1+1+0+0+3+0+3+0}{26} = \frac{10}{26} = \frac{5}{13}.$$

Знаходимо ймовірність зайнятості каналу P_z :

$$P_{\rm z} = 1 - P_{\rm pr} = 1 - \frac{5}{13} = \frac{8}{13}.$$

Отже, ми визначили, що у системі середній час очікування заявки $och_{\rm ser}=0,2,$ середня довжина черги $dovj_{\rm ser}=0,1,$ ймовірність простою $P_{\rm pr}=5/13,$ ймовірність зайнятості каналу $P_{\rm z}=8/13.$

3. Висновок

Виконуючи дану лабораторну роботу, ми провели моделювання функціонування системи масового обслуговування та визначили показники її роботи.