Range Minimal Query

Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2023

Содержание

- 🕕 Задача RMQ
 - Постановка и разновидности задачи RMQ
- RMQ: static online
 - Тривиальное решение задачи RMQ (static online)
 - Sqrt-декомпозиция
 - Sparse table

Задача RMQ

RMQ - Range Minimum (Maximum) Query - задача поиска минимума на отрезке.

Дан массив чисел, к нему делаются запросы на поиск минимума на отрезке $\left[\mathsf{I}, \, \mathsf{r} \right]$

Задача RMQ

Разновидности задач

По количеству запросов:

- offline можно получить много запросов, проанализировать их все и выдать ответ на все сразу
- online обработка запросов строго по одному

По возможности изменения исходного массива:

- static массив чисел закреплён
- dynamic массив чисел меняется

Мы сегодня будем рассматривать static online и немного поговорим про подходы к обработке модификаций(dynamic online).

Задача RMQ

Online vs offline

Тривиальное решение задачи RMQ

Без предобработки

Время препроцессинга: O(1)

Время ответа: O(n)

С предобработкой

Время препроцессинга: $O(n^3)$

Время ответа: O(1)

Нужно вычислить n^2 возможных отвезков, каждый за n.

Замечание: n^3 может быть сокращен до n^2 с помощью динамики

Sqrt-декомпозиция

Поделим массив на блоки размером \sqrt{n} . Предподсчитаем минимумы на этих блоках.

При запросе берём минимум из минимумов полностью покрытых блоков и оставшихся элементов неполностью покрытых блоков.

Sqrt-декомпозиция

Время препроцессинга: O(n)

Время ответа: $O(\sqrt{n})$

Мотивация

Проблема: время на ответ у sqrt-декомпозиции все еще очень долгое. Хотим: немного увеличим время на препроцессинг, но добъёмся константного времени на ответ.

Цель:

Препроцессинг - O(nlog(n)), Запрос - O(1)

Интуиция

Нам не обязательно вычислять все n^2 интервалов, чтобы уметь отвечать про минимум за O(1). Каждый интервал может быть накрыт двумя интервалами длины степени двойки.

	0	1	2	3	4	5	6	7
0	31	31	31	26				
1		41	41	26	26			
2			59	26	26	26		*
3				26	26	26	26	
4					53	53	53	53
5						58	58	58
6							97	93
7								93

Описание идеи

Заведем таблицу ST, такую, что она содержит минимумы на всех отрезках, длина которых есть степень двойки.

Имеем nlog(n) интервалов, которые можно вычислить за n*log(n) с помощью динамического программирования

	2^{0}	2^1	2^2	2^3
0	31	31	*	
1	41	41		
2	59	26		
3	26	26		
4	53	53		
5	58	58		
6	97	93		
7	93			

Реализация препроцессинга

Дано: массив A

Таблица ST[k][i] = min на полуинтервале $[A[i], A[i+2^k])$.

Формула для вычисления таблицы с помощью динамики:

 $ST[k][i] = min(ST[k-1][i], ST[k-1][i+2^{k-1})]).$

Благодаря ей мы можем сначала посчитать ST[0], ST[1], потом ST[2] и т.д.

[3] 0 0 3 2 [2] 0 [1] 3 0 0 ST [0] 0 10 A[i]

Реализация препроцессинга

Дано: массив A

Таблица ST[k][i] = min на полуинтервале $[A[i], A[i+2^k])$.

Формула для вычисления таблицы с помощью динамики:

$$ST[k][i] = min(ST[k-1][i], ST[k-1][i+2^{k-1})]).$$

Благодаря ей мы можем сначала посчитать ST[0], ST[1], потом ST[2]

и т.д.

Вычисление запроса

$$RMQ(i,j) = min(ST[k][i], ST[k][j-2^k+1]$$

 $k = log(j-i+1)$

где k - длина максимального двоичного отрезка, который входит в заданный. Двоичные отрезки подбираем так, чтобы один начинался, а второй — заканчивался там, где начинается заданный.

Например,

$$RMQ(1,6) = min(ST[2][1] + ST[2][6 - 4 + 1])$$

Оценка сложности

```
Оценки работы: Препроцессинг - O(nlog(n)), Запрос - O(1)
```

Ограничения

Какие есть ограничения? Можно использовать для min/max, а можно ли для других функций?

Ограничения

Какие функции подходят?

- min
- max
- наибольший общий делитель
- булевый AND
- булевый OR

Полезные ссылки І

- E-maxx: sqrt-декомпозиция https://e-maxx.ru/algo/sqrt_decomposition
- Xa6p: Static RMQ https://habr.com/ru/post/114980/
- Хабр: RMQ 2. Дерево отрезков
 https://habr.com/ru/post/115026/