3)
$$u(x) = vign(x)$$
 $(Tu)' = ? u' = ?$
 $(u', q') = -(x), q' = -(x) + q(x) + q($

$$= 2 (0) = 2 (\delta_0, 0).$$

$$(sign(x)) = 2 \delta_0$$

$$(2)$$
 = $2 \delta_0$

$$T = \begin{cases} 0 & T = 0 \end{cases}$$

 $= - 4(0) \quad \forall e \in \mathfrak{D}(\Omega).$

 $\langle T, \Psi \rangle = -\langle T, \Psi \rangle = -\langle \delta_0, \Psi \rangle$

Generalitationi

Jugatti se $fh \rightarrow 0$ in $\mathcal{P}(\Omega)$, $fh \rightarrow 0$ in $\mathcal{P}(\Omega)$ $\Rightarrow \langle T, fh \rangle \rightarrow 0$ poiche $f \in \mathcal{D}(\Omega)$ $f \in \mathcal{D}(\Omega)$ $f \in \mathcal{D}(\Omega)$ $f \in \mathcal{D}(\Omega)$ $f \in \mathcal{D}(\Omega)$

 $\frac{\Omega_{\Omega}}{\Omega} = \frac{1}{1} \quad \text{con } u \in C^{k}(\Omega) \subseteq L^{1}_{loc}(\Omega)$ $= \frac{1}{1} \quad \text{con } u \in C^{k}(\Omega) \subseteq L^{1}_{loc}(\Omega)$

Esemples u(x) = (x) \Rightarrow u' = 250

• n > 1 Data TEDER) Ya multiindiee $\langle DT, \Psi \rangle = (-1)^{|\alpha|} \langle T, D\Psi \rangle \quad \forall \Psi \in \mathcal{P}(Q)$ Exemple n=3 d=(3,12) $\langle \frac{\partial^{6}T}{\partial x_{1}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}} \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ $\langle \frac{\partial^{6}T}{\partial x_{2}}, q \rangle = (-1)^{6} \langle T, \frac{\partial^{6}q}{\partial x_{2}}, q \rangle$ (x) 2= (x1, -, xn) = |x|= x1+...+xn On. DI definiscono delle distriburioni 42 Os. Si possous calculare le devisate di tutti ghi ordini, di qualsiasi TED(Q). Dos. Il rimetato vor dipende dall'irdine di derivariare! Data T∈ D¹(Ω), si possous definire ∇T , ΔT , $\cot T$

Gli spay: di Soboler.

Motivazione: sono gli spazi due si trovano soluz.

di pb. al contorno per P.D.E.'s.

Def. Fissato
$$\Omega$$
 aperto $\subseteq \mathbb{R}^m$, $p \in [1, +\infty]$

$$\times^{1,p}(\Omega) := \left\{ u \in L^p(\Omega) : \underbrace{\partial u}_{\text{oxi}} \in L^p(\Omega) \; \forall i=1,...,m \right\}$$

$$\text{nel seuso clele di striberoù}$$

Example
$$(n=1, \Omega = (-1, 1))$$

LE $C_0^1(\Omega) \Rightarrow u \in W^1(\Omega)$

Let $C_0^1(\Omega) \Rightarrow$

Def. Finato
$$\Omega$$
 aperto $\subseteq \mathbb{R}^m$, $p \in [a, +\infty]$, $k \in \mathbb{N}$ $k \ge 1$
 $\mathbb{N}^{k,p}(\Omega) := \{u \in \mathbb{P}(\Omega) : Du \in \mathbb{P}(\Omega)\}$

For particular: $p = 2$
 $\mathbb{N}^{1,2}(\Omega) = \mathbb{N}^{1}(\Omega) = \{u \in \mathbb{P}(\Omega) : \frac{2u}{2u} \in \mathbb{P}(\Omega)\}$
 $\mathbb{N}^{k,2}(\Omega) = \mathbb{N}^{k}(\Omega) = \{u \in \mathbb{P}(\Omega) : \frac{2u}{2u} \in \mathbb{P}(\Omega)\}$
 $\mathbb{N}^{k,2}(\Omega) = \mathbb{N}^{k}(\Omega) = \{u \in \mathbb{P}(\Omega) : \frac{2u}{2u} \in \mathbb{P}(\Omega)\}$
 $\mathbb{N}^{k,p}(\Omega)$ somo \mathbb{N}^{p} some \mathbb{N}^{p} vettorials

 $\mathbb{N}^{k,p}(\Omega)$ somo \mathbb{N}^{p} vettorials

Norma on
$$\mathbb{R}^{1p}(\mathbb{Q})$$
: sià us $\mathbb{R}^{4p}(\mathbb{Q})$

| \mathbb{R}^{1p} |

Teorema (di niguagliano d' Poineasé) Sia 2 aperto limitato di IRM. Atlora esiste una estrante $Cp = Cp(\Omega)$ tale she, per squi us $XP(\Omega)$ lullpa < Cp(Q). Howliga Quinti: de X0P(Q) (Il u ll 1 p = ll u llp + ll vullp norma su X/1/Q) (II vullp - morma equivalente. (Infatti 11 a lla 1P < Cp(Q) 11 vullp + 11 vullp)

< (Cp(Q) +4) 11 vullp Falso on $\times^{1}(\Omega)$, purdendo u = 1. $\frac{\partial n}{\partial x}, \quad \frac{n=1}{n(x)} + \frac{n}{n(t)} = \frac{n(t)}{n(t)} + \frac{n(t)}{n(t)} = \frac{n(t)}{n(t)} +$