

Description

The NCEP60T12A uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =60V,I_D =120A

$$\begin{split} R_{DS(ON)} < 4.0 \text{m} & \Omega \quad \text{@} \quad \text{V} \text{ }_{GS} = 10 \text{V} \quad \text{(Typ:3.5m} & \Omega) \\ R_{DS(ON)} < 5.0 \text{m} & \Omega \quad \text{@} \quad \text{V} \text{ }_{GS} = 4.5 \text{V} \quad \text{(Typ:4.0m} & \Omega) \end{split}$$

- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N035-TC	VST06N035	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	60	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous (Silicon Limited)	I _D	120	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	100	А	
Pulsed Drain Current	I _{DM}	480	Α	
Maximum Power Dissipation	P _D	180	W	
Derating factor		1.2	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R o c	0.83	°C/W	
---	-------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250 μ A	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μА
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250 μ A	1.0	1.7	2.4	V
Dunin Course On Chata Benintana	Б	V _{GS} =10V, I _D =60A	-	3.5	4.0	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =60A	-	4.0	5.0	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =60A	40	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{Iss}	V _{DS} =30V,V _{GS} =0V,	-	4000	-	PF
Output Capacitance	Coss		-	680	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	23	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_{D} =60A V_{GS} =10V, R_{G} =4.7 Ω	-	5	-	nS
Turn-Off Delay Time	t _{d(off)}		-	56	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V -20VI -60A	-	67		nC
Gate-Source Charge	Q_{gs}	V _{DS} =30V,I _D =60A,	-	12		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	8.5		nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =120A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	120	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = I _S	-	48		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/ μ s ^(Note3)	-	60		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t \leq 10 sec.
- 3. Pulse Test: Pulse Width \leqslant 300 $\mu\,s$, Duty Cycle \leqslant 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\mathrm{C}$,V_DD=30V,V_G=10V,L=0.5mH,Rg=25 $^{\Omega}$

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)
Figure 8 Safe Operation Area

Figure 9 Power De-rating

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance