week2 combined

August 9, 2023

[1]: import matplotlib.pyplot as plt

```
[2]: # Line plot
x = [5, 2, 9, 4, 7]
y = [10, 5, 8, 4, 2]
plt.plot(x,y)
plt.show()
```



```
[3]: # Bar Plot

x = [5, 2, 9, 4, 7]

y = [10, 5, 8, 4, 2]

plt.bar(x,y)

plt.show()
```


[5]: #numPy to randomly generate an array with 250 values,
#where the values will concentrate around 170, and the standard deviation is 10.

import numpy as np
x = np.random.normal(170,10,250)
plt.hist(x)
plt.show()


```
[6]: y = [10, 5, 8, 4, 2]
plt.hist(y)
plt.show()
```



```
[7]: # scatter plot

x = [5, 2, 9, 4, 7]

y = [10, 5, 8, 4, 2]

plt.scatter(x,y)

plt.show()
```



```
[8]: # constants
      from scipy import constants
      print(constants.peta)
      print(constants.mega)
      print(constants.deka)
      print(constants.deci)
      print(constants.pico)
     1000000000000000.0
     1000000.0
     10.0
     0.1
     1e-12
[9]: # CSR (compressed sparse row)
      import numpy as np
      from scipy.sparse import csr_matrix
      arr = np.array([0,0,0,0,0,1,1,0,2])
      print(csr_matrix(arr))
       (0, 5)
                     1
       (0, 6)
                     1
       (0, 8)
                     2
[10]: import numpy as np
      from scipy.sparse import csr_matrix
```

```
arr = np.array([[0,0,0],[0,0,1],[1,0,2]])
      print(csr_matrix(arr))
       (1, 2)
                     1
       (2, 0)
                     1
       (2, 2)
                     2
[11]: import numpy as np
      from scipy.sparse import csr_matrix
      arr = np.array([[0,0,0],[0,0,1],[1,0,2]])
      newarr = csr_matrix(arr).tocsc()
      print(newarr)
       (2, 0)
                     1
       (1, 2)
                     1
       (2, 2)
                     2
[12]: import pandas as pd
      mydataset = {'cars':['BMW','Audi','Merc'],
                  'passings':[3,7,2]}
      myvar = pd.DataFrame(mydataset)
      print(myvar)
        cars passings
       BMW
     0
                     3
     1 Audi
                     7
                     2
     2 Merc
[13]: # series
      new_series = pd.Series([7,4,8,9,2])
      print(new_series)
      print('----')
     print(new_series[2])
     0
          7
     1
          4
     2
          8
     3
          9
          2
     dtype: int64
     8
[14]: # more on series
      new_series = pd.Series([10,20,30,40,50],index=['a','b','c','d','e'])
      print(new_series)
      print('----')
      print(new_series.values)
```

```
print('----')
     print(new_series['b'])
     print('----')
     print(new_series[['a','b','d']])
     print('----')
     print(new_series[new_series>25])
     a
         10
     b
          20
         30
     С
     d
         40
         50
     dtype: int64
     [10 20 30 40 50]
     -----
     20
         10
         20
     b
         40
     d
     dtype: int64
         30
     С
     d
         40
         50
     dtype: int64
[15]: new_series2 = new_series[new_series>35]*2
     print(new_series2)
     d
          80
          100
     е
     dtype: int64
[16]: # Data Frame
[17]: import pandas as pd
     data = {'calories':[100,250,900],
            'duration':[10,15,80]}
     df = pd.DataFrame(data)
     print(df)
        calories duration
     0
            100
                       10
     1
            250
                       15
     2
            900
                       80
```

```
[18]: # loc to locate row
      print(df.loc[1])
     calories
                 250
                  15
     duration
     Name: 1, dtype: int64
[19]: # index
      df = pd.DataFrame(data,index=['day 1','day 2','day 3'])
      print(df)
            calories duration
     day 1
                 100
                            10
     day 2
                 250
                            15
     day 3
                 900
                            80
[20]: # dataframe using list
      list2 = [[0,1,2],[3,4,5],[6,7,8]]
      df = pd.DataFrame(list2)
      print(df)
      print('----')
      df.columns = ['C1','C2','C3']
      print(df)
        0
          1
              2
     0 0 1
              2
     1 3 4 5
     2 6 7 8
        C1 C2 C3
     0
         0
           1
                 2
     1
         3
             4
                 5
     2
         6
             7
                 8
[21]: import pandas as pd
      df=pd.DataFrame({
            'Country': ['Kazakhstan', 'Russia', 'Belarus', 'Ukraine'],
            'Population': [17.04,143.5,9.5,45.5],
            'Square': [2724902, 17125191,207600,603628],
             }, index= ['az','by','cv','dw']
      print(df)
            Country Population
                                   Square
         Kazakhstan
                          17.04
                                  2724902
     az
             Russia
                         143.50 17125191
     by
     cv
            Belarus
                           9.50
                                   207600
            Ukraine
                          45.50
                                   603628
     dw
```

```
[22]: print(df.columns)
      print(df.index)
      df.index.name = 'Country code'
      print(df)
     Index(['Country', 'Population', 'Square'], dtype='object')
     Index(['az', 'by', 'cv', 'dw'], dtype='object')
                      Country Population
                                              Square
     Country code
                   Kazakhstan
                                     17.04
                                             2724902
     az
     by
                       Russia
                                    143.50 17125191
                      Belarus
                                      9.50
                                              207600
     cv
     dw
                      Ukraine
                                     45.50
                                              603628
[23]: print(df.iloc[0])
     Country
                   Kazakhstan
     Population
                        17.04
     Square
                      2724902
     Name: az, dtype: object
[24]: print(df.loc[['az','by'],'Population'])
     Country code
     az
            17.04
           143.50
     by
     Name: Population, dtype: float64
[25]: import pandas as pd
      import numpy as np
      df = pd.DataFrame(np.arange(20).reshape(5,4), columns = ['A','B','C','D'])
      print(df)
                 С
                     D
         Α
             В
             1
                 2
     0
         0
                     3
                     7
         4
             5
     1
                 6
     2
         8
             9 10
                    11
     3
        12 13
                14
                    15
        16
           17
                18
                    19
[26]: # slicing rows and columns
[27]: df.loc[:,'B':'D']
[27]:
              С
                  D
          В
              2
                  3
      0
          1
      1
          5
              6
                  7
```

```
2
          9 10 11
      3 13 14 15
      4 17 18
                19
[28]: df.iloc[0:2,:]
[28]:
         Α
          B C D
         0
            1
              2 3
      1
        4 5 6 7
[29]: df=pd.DataFrame({
            'Country': ['Kazakhstan', 'Russia', 'Belarus', 'Ukraine'],
            'Population': [17.04,143.5,9.5,45.5],
            'Square': [2724902, 17125191,207600,603628],
             })
      print(df)
           Country Population
                                   Square
       Kazakhstan
                         17.04
                                  2724902
            Russia
                        143.50 17125191
     1
     2
           Belarus
                          9.50
                                   207600
     3
           Ukraine
                         45.50
                                   603628
[30]: # filtering
      print([[df.Population > 10], 'Country', 'Square'])
     [[0
             True
     1
           True
     2
          False
     3
           True
     Name: Population, dtype: bool], 'Country', 'Square']
[31]: # drop
      df.drop(['Population'],axis='columns')
[31]:
            Country
                       Square
      0 Kazakhstan
                      2724902
      1
             Russia 17125191
      2
            Belarus
                       207600
      3
            Ukraine
                       603628
[32]: df.drop([2], axis= 'index')
[32]:
            Country Population
                                   Square
        Kazakhstan
                          17.04
      0
                                  2724902
      1
            Russia
                         143.50 17125191
      3
            Ukraine
                          45.50
                                   603628
```

[33]: # using pandas to read CSV

```
[34]: import pandas as pd
df = pd.read_csv('company_sales_data.csv')
print(df.to_string())
```

month_n	umber	facecream	facewash	toothpaste	bathingsoap	${\tt shampoo}$
moisturizer	tota	l_units to	tal_profit			
0	1	2500	1500	5200	9200	1200
1500	21100	2110	000			
1	2	2630	1200	5100	6100	2100
1200	18330	183	300			
2	3	2140	1340	4550	9550	3550
1340	22470	224	700			
3	4	3400	1130	5870	8870	1870
1130	22270	222	700			
4	5	3600	1740	4560	7760	1560
1740	20960	209	600			
5	6	2760	1555	4890	7490	1890
1555	20140	201	400			
6	7	2980	1120	4780	8980	1780
1120	29550	295	500			
7	8	3700	1400	5860	9960	2860
1400	36140	361	400			
8	9	3540	1780	6100	8100	2100
1780	23400	234	000			
9	10	1990	1890	8300	10300	2300
1890	26670	266	700			
10	11	2340	2100	7300	13300	2400
2100	41280	4128	800			
11	12	2900	1760	7400	14400	1800
1760	30020	300	200			

```
[35]: import matplotlib.pyplot as plt
    df.plot()
    plt.show()
```



```
[36]: import matplotlib.pyplot as plt
      import numpy as np
[37]: #1. Follow along with these steps:
      # a) Create a figure object called fig using plt.figure()
      # b) Use add_axes to add an axis to the figure canvas at [0,0,1,1]. Call this.
      ⇔new axis ax.
      # c) Plot (x,y) on that axes and set the labels and titles to match the plot
      ⇔below:
      fig = plt.figure()
      ax = fig.add_axes([0,0,1,1])
      x = np.linspace(0,100,100)
      y = x*2
      ax.set_xlim([min(x),max(x)])
      ax.set_ylim([min(y),max(y)])
      ax.plot(x,y)
      ax.set_xlabel('x')
      ax.set_ylabel('y')
      ax.set_title('title')
```

[37]: Text(0.5, 1.0, 'title')


```
[38]: # 2. Create a figure object and put two axes on it, ax1 and ax2.

#Located at [0,0,1,1] and [0.2,0.5,.2,.2] respectively. Now plot (x,y) on both

axes. And call your figure object to show it.

fig = plt.figure()

ax1 = fig.add_axes([0,0,1,1])

ax2 = fig.add_axes([0.2,0.5,.2,.2])
```


[39]: # 3) Use the company sales dataset csv file, read Total profit of all months_□ ⇒and show it using a line plot

```
[40]: import pandas as pd

df = pd.read_csv('company_sales_data.csv')
print(df.to_string())
```

month_n	number	facecream	facewash	toothpaste	bathingsoap	shampoo
moisturize	r total	_units to	tal_profit			
0	1	2500	1500	5200	9200	1200
1500	21100	2110	000			
1	2	2630	1200	5100	6100	2100
1200	18330	1833	300			
2	3	2140	1340	4550	9550	3550
1340	22470	2247	700			
3	4	3400	1130	5870	8870	1870
1130	22270	222	700			
4	5	3600	1740	4560	7760	1560
1740	20960	2096	300			
5	6	2760	1555	4890	7490	1890
1555	20140	2014	400			
6	7	2980	1120	4780	8980	1780

1120	29550	295500				
7	8	3700	1400	5860	9960	2860
1400	36140	361400				
8	9	3540	1780	6100	8100	2100
1780	23400	234000				
9	10	1990	1890	8300	10300	2300
1890	26670	266700				
10	11	2340	2100	7300	13300	2400
2100	41280	412800				
11	12	2900	1760	7400	14400	1800
1760	30020	300200				

```
[41]: y = df['total_profit'] # store total profit in an array
x = df.index.values
plt.xlabel('Month Index')
plt.ylabel('Total Profit')
plt.plot(x,y)
plt.show()
```



```
[42]: # 4) Use the company sales dataset csv file, get total profit of all months #and show line plot with the following Style properties.

# a. Line Style dotted and Line-color should be red

# b. Show legend at the lower right location.

# c. X label name = Month Number

# d. Y label name = Sold units number
```

```
# e. Add a circle marker.
# f. Line marker color as read
# g. Line width should be 3
```

```
[43]: # Line Style dotted and Line-color should be red
plt.plot(x,y,linewidth =3, linestyle='dashed',color='red', marker='o')
plt.xlabel('Month Number')
plt.ylabel('Units Sold Number')
plt.legend(["profits"], loc ="lower right")
plt.show()
```


[]: