car-crash-ex

September 13, 2023

[]: pip install seaborn Requirement already satisfied: seaborn in /usr/local/lib/python3.10/distpackages (0.12.2) Requirement already satisfied: numpy!=1.24.0,>=1.17 in /usr/local/lib/python3.10/dist-packages (from seaborn) (1.23.5) Requirement already satisfied: pandas>=0.25 in /usr/local/lib/python3.10/distpackages (from seaborn) (1.5.3) Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in /usr/local/lib/python3.10/dist-packages (from seaborn) (3.7.1) Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.1.0)Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/distpackages (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0) Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.42.1)Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.1->seaborn) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.1->seaborn) Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/distpackages (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0) Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.1.1)Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/distpackages (from pandas>=0.25->seaborn) (2023.3.post1) Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/distpackages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)

[]: import seaborn as sns

[]: print(sns.get_dataset_names())

['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', 'geyser', 'glue', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis', 'tips', 'titanic']

[]: sf = sns.load_dataset('car_crashes')

[]: sf

[]:	total	speeding	alcohol	not_distracted	no_previous	ins_premium	\
0	18.8	7.332	5.640	18.048	15.040	784.55	
1	18.1	7.421	4.525	16.290	17.014	1053.48	
2	18.6	6.510	5.208	15.624	17.856	899.47	
3	22.4	4.032	5.824	21.056	21.280	827.34	
4	12.0	4.200	3.360	10.920	10.680	878.41	
5	13.6	5.032	3.808	10.744	12.920	835.50	
6	10.8	4.968	3.888	9.396	8.856	1068.73	
7	16.2	6.156	4.860	14.094	16.038	1137.87	
8	5.9	2.006	1.593	5.900	5.900	1273.89	
9	17.9	3.759	5.191	16.468	16.826	1160.13	
10	15.6	2.964	3.900	14.820	14.508	913.15	
11	17.5	9.450	7.175	14.350	15.225	861.18	
12	15.3	5.508	4.437	13.005	14.994	641.96	
13	12.8	4.608	4.352	12.032	12.288	803.11	
14	14.5	3.625	4.205	13.775	13.775	710.46	
15	15.7	2.669	3.925	15.229	13.659	649.06	
16	17.8	4.806	4.272	13.706	15.130	780.45	
17	21.4	4.066	4.922	16.692	16.264	872.51	
18	20.5	7.175	6.765	14.965	20.090	1281.55	
19	15.1	5.738	4.530	13.137	12.684	661.88	
20	12.5	4.250	4.000	8.875	12.375	1048.78	
21	8.2	1.886	2.870	7.134	6.560	1011.14	
22	14.1	3.384	3.948	13.395	10.857	1110.61	
23	9.6	2.208	2.784	8.448	8.448	777.18	
24	17.6	2.640	5.456	1.760	17.600	896.07	
25	16.1	6.923	5.474	14.812	13.524	790.32	
26	21.4	8.346	9.416	17.976	18.190	816.21	
27	14.9	1.937	5.215	13.857	13.410	732.28	
28	14.7	5.439	4.704	13.965	14.553	1029.87	
29	11.6	4.060	3.480	10.092	9.628	746.54	
30	11.2	1.792	3.136	9.632	8.736	1301.52	
31	18.4	3.496	4.968	12.328	18.032	869.85	
32	12.3	3.936	3.567	10.824	9.840	1234.31	
33	16.8	6.552	5.208	15.792	13.608	708.24	
34	23.9	5.497	10.038	23.661	20.554	688.75	

59 11.562 697.73 08 18.706 881.51 76 11.500 804.71
76 11 500 004 71
76 11.520 804.71
72 16.016 905.99
12 8.769 1148.99
14 19.359 858.97
12 16.684 669.31
90 15.795 767.91
16.878 1004.75
14 10.848 809.38
56 12.920 716.20
19 11.176 768.95
92 9.116 890.03
36 20.706 992.61
32 11.592 670.31
94 15.660 791.14

	ins_losses	abbrev
0	145.08	AL
1	133.93	AK
2	110.35	AZ
3	142.39	AR
4	165.63	CA
5	139.91	CO
6	167.02	CT
7	151.48	DE
8	136.05	DC
9	144.18	FL
10	142.80	GA
11	120.92	HI
12	82.75	ID
13	139.15	IL
14	108.92	IN
15	114.47	IA
16	133.80	KS
17	137.13	KY
18	194.78	LA
19	96.57	ME
20	192.70	MD
21	135.63	MA
22	152.26	MI
23	133.35	MN
24	155.77	MS
25	144.45	MO
26	85.15	MT
27	114.82	NE
28	138.71	NV

```
29
             120.21
                         NH
     30
             159.85
                         NJ
     31
             120.75
                         NM
     32
             150.01
                         NY
     33
             127.82
                         NC
     34
             109.72
                         ND
     35
             133.52
                         OH
                         OK
     36
             178.86
     37
                         OR
             104.61
     38
             153.86
                         PA
     39
                         RΙ
             148.58
     40
             116.29
                         SC
     41
              96.87
                         SD
     42
             155.57
                         TN
     43
                         ΤX
             156.83
     44
             109.48
                         UT
     45
                         VT
             109.61
     46
             153.72
                         VA
     47
             111.62
                         WA
     48
             152.56
                         WV
     49
             106.62
                         WI
     50
             122.04
                         WY
[]: sns.__version__
[]: '0.12.2'
[]: sf.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 51 entries, 0 to 50
    Data columns (total 8 columns):
     #
         Column
                          Non-Null Count
                                           Dtype
         _____
                          -----
     0
         total
                          51 non-null
                                           float64
                                           float64
     1
         speeding
                          51 non-null
     2
         alcohol
                          51 non-null
                                           float64
     3
         not_distracted 51 non-null
                                           float64
     4
         no_previous
                          51 non-null
                                           float64
     5
         ins_premium
                          51 non-null
                                           float64
     6
         ins_losses
                          51 non-null
                                           float64
         abbrev
                          51 non-null
                                           object
    dtypes: float64(7), object(1)
    memory usage: 3.3+ KB
[]: sns.scatterplot(x="total",y ="speeding",data = sf)
```

[]: <Axes: xlabel='total', ylabel='speeding'>


```
[]: inference = from the plot we can say that as total increases alcohol increases
```

[]: sns.distplot(sf["speeding"])

<ipython-input-16-0a3c4a9b0f53>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(sf["speeding"])

[]: <Axes: xlabel='speeding', ylabel='Density'>


```
[]: inference= the speeding is ranging high at 4
[]: sns.relplot(x="total",y="speeding",data=sf,hue="abbrev")
```

[]: <seaborn.axisgrid.FacetGrid at 0x7e862dc462f0>


```
[ ]: inference= from the plot we can say the relationo between the total \underline{\mathtt{and}}_{\sqcup}
       ⇒speeding by their abbrev with individual colours
[]: sf["abbrev"].value_counts()
[]: AL
            1
     PA
            1
     NV
            1
     NH
            1
     NJ
            1
     NM
            1
     NY
            1
     NC
            1
     ND
            1
     OH
            1
     OK
            1
     OR
            1
     RΙ
            1
     MT
            1
     SC
            1
     SD
            1
     TN
            1
     TX
            1
     UT
            1
     VT
            1
     VA
            1
     WA
            1
     WV
            1
     WI
            1
     NE
            1
     MO
            1
            1
     AK
     ID
            1
     ΑZ
     AR
            1
     CA
            1
     CO
            1
     CT
            1
     DE
            1
     DC
            1
     FL
            1
     GA
            1
     ΗI
            1
```

IL

MS

1

1

```
IN
      1
ΙA
KS
ΚY
LA
       1
ME
       1
MD
       1
MA
       1
ΜI
       1
MN
       1
WY
       1
Name: abbrev, dtype: int64
```

[]: sns.barplot(data=sf,x="abbrev",y="ins_premium")

```
[]: <Axes: xlabel='abbrev', ylabel='ins_premium'>
```



```
[]: inference=from the plot we can say that at LA abbrev we have the highest⊔
ins_premium
```

[]: sns.countplot(data=sf,x="ins_premium")

[]: <Axes: xlabel='ins_premium', ylabel='count'>


```
[]: inference=from the plot we can say that each ins_premium has only 1 count
[]: sns.jointplot(x="total",y="speeding",data=sf)
```

[]: <seaborn.axisgrid.JointGrid at 0x7e862626a620>


```
[]: inference = from the plot we can say that it shows the bivariant and univariant _{\mbox{\tiny $\square$}} analysis
```

```
[]: sns.histplot(x="total",data=sf)
```

[]: <Axes: xlabel='total', ylabel='Count'>


```
[]: inference= from the plot we can say that at 12.5 the count is highest

[]: sns.boxplot(x="abbrev",y="total",data=sf)
```

[]: <Axes: xlabel='abbrev', ylabel='total'>

[]: inference=from the plot we can say that as each abbrev has its individual total $_$ so there is only median line for each of the abbrev

[]: sh=sf.corr() sh

<ipython-input-31-37bb56384f1f>:1: FutureWarning: The default value of
numeric_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric_only
to silence this warning.
 sh=sf.corr()

[]: total speeding alcohol not_distracted no_previous \ total 1.000000 0.611548 0.852613 0.827560 0.956179 speeding 0.611548 1.000000 0.669719 0.588010 0.571976 alcohol 0.852613 0.669719 1.000000 0.732816 0.783520 not_distracted 0.827560 0.588010 0.732816 1.000000 0.747307 no_previous 0.956179 0.571976 0.783520 0.747307 1.000000 ins_premium -0.199702 -0.077675 -0.170612 -0.174856 -0.156895 ins_losses -0.036011 -0.065928 -0.112547 -0.075970 -0.006359

```
ins_premium
                              ins_losses
total
                  -0.199702
                               -0.036011
speeding
                  -0.077675
                               -0.065928
alcohol
                  -0.170612
                               -0.112547
not_distracted
                  -0.174856
                               -0.075970
no_previous
                  -0.156895
                               -0.006359
ins_premium
                   1.000000
                                0.623116
ins_losses
                   0.623116
                                1.000000
```

[]: sns.heatmap(sh,annot=True)

[]: <Axes: >

[]: inference = highly correlated = total and no_previous, neutral correlated = ⊔

onone,less correlated = total and ins_premium