

planetmath.org

Math for the people, by the people.

ergodicity of a map in terms of its induced operator

 ${\bf Canonical\ name} \quad {\bf ErgodicityOf AMap In TermsOf Its Induced Operator}$

Date of creation 2013-03-22 17:59:22 Last modified on 2013-03-22 17:59:22 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Theorem
Classification msc 47A35
Classification msc 37A30
Classification msc 37A25
Classification msc 28D05

Theorem - Let (X, \mathfrak{B}, μ) be a probability space and $T: X \longrightarrow X$ a measure-preserving transformation. The following statements are equivalent:

- 1. T is ergodic.
- 2. If f is a measurable function and $f \circ T = f$ http://planetmath.org/AlmostSurelya.e., then f is constant a.e.
- 3. If f is a measurable function and $f \circ T \geq f$ a.e., then f is constant a.e.
- 4. If $f \in L^2(X)$ and $f \circ T = f$ a.e., then f is constant a.e..
- 5. If $f \in L^p(X)$, with $p \ge 1$, and $f \circ T = f$ a.e., then f is constant a.e.

Let U_T denote the http://planetmath.org/OperatorInducedByAMeasurePreservingMapoper induced by T, i.e. the operator defined by $U_T f := f \circ T$. The statements above are statements about U_T . The above theorem can be rewritten as follows:

Theorem - Let (X, \mathfrak{B}, μ) be a probability space and $T: X \longrightarrow X$ a measure-preserving transformation. The following statements are equivalent:

- 1. T is ergodic.
- 2. The only fixed points of U_T are the functions that are constant a.e.
- 3. If f a measurable function and $U_T f \geq f$ a.e., then f is constant a.e.
- 4. The eigenspace of U_T (seen as an operator in $L^p(X)$, with $p \geq 1$) associated with the eigenvalue 1, is one-dimensional and consists of functions that are constant a.e.