

Matlab的基本繪圖函數plot

編修函數的圖形

fplot與ezplot函數

利用Property editor來編修圖形

基本繪圖函數基本的二維繪圖函數

o 在Matlab裡,最常使用的二維繪圖函數是plot函數:

表 4.1.1 plot 函數的使用

函 數	說 明
plot(x,y)	以 x 為資料點的橫座標所組成的向量, y 為縱座標所組成的向量,描點繪出 (x,y) 的曲線圖
plot(y)	x的間距為 1 ,描點繪出 (x,y) 的曲線圖

o 下圖是由資料點擷取出橫座標與縱座標的示意圖:

二維圖形的編修

o 利用下面的語法可編修二維函數的圖形:

表 4.1.2 修飾 plot 函數所繪出的圖形

函 數	說 明
plot(x,y,'str')	以字串 str 所指定的格式繪出二維圖形
plot($x_1, y_1, 'str_1', x_2, y_2, 'str_2', \cdots$)	以字串 str_1 所指定的格式繪出 (x_1, y_1) 的圖形,以 str_2 所指定的格式繪出 (x_2, y_2) 的圖形,以此類推
$plot(x_1, y_1, 'str', 'p_str', property, \cdots)$	根據繪圖性質 p_str 來繪圖,其中 p_str 可為:
	LineWidth — 設定線條寬度
	MarkerFaceColor — 設定標記的顏色
	MarkerEdgeColor — 設定標記的邊框顏色
	MarkerSize — 設定標記的大小

o 下表列出了字串str可使用的控制碼,以及它們所代表的意義:

表 4.1.3 plot 函數的控制碼(一),控制資料點的顯示符號

符號	說 明	符號	說 明
	繪點	^	
*	繪出星號	V	繪出「v」符號(小寫 v)
0	繪出小圓(小寫字母 o)	s或square	繪出正方形
+	繪出加號	d或diamond	繪出菱形
Х	繪出打叉符號(小寫字母 x)	p或pentagram	繪出五角形
<	繪出「<」符號	h或hexagram	繪出六角形
>	繪出「>」符號	none	不繪出任何形狀(預設)

表 4.1.4 plot 函數的控制碼(二),控制線條樣式

線條樣式	說 明	線條樣式	說 明
- (減號)	實線(預設)	:	由點連成的線段
	虚線	none	不繪出線段
	虛線和點連成的線段		

表 4.1.5 plot 函數的控制碼(三),控制線條顏色

線條顏色	說 明	線條顏色	說 明
g	綠色 (green)	W	白色(white)
m	紫色 (magmata)	r	紅色(red)
b	藍色(blue)(預設)	k	黑色(black)
С	青藍色 (cyan)	У	黃色 (yellow)

○ 簡單的範例:

>> x=linspace(1,8,36);

>> y1=sin(2*x)./x;

>> plot(x,y1,'-sb')

自1到8取36點 形成36行的向量陣列

每一點x值*2取sin函數後除以原值即向量元素相除若沒有.則表示向量投影長度即a/b=dot(a,b)/dot(b,b)

繪圖區域的控制 更改繪圖的範圍與顯示方式

o 如果想自行設定函數圖形顯示的範圍時, 則可利用axis函數:

表 4.2.1 設定繪圖的範圍

函數說明

axis([xmin,xmax,ymin,ymax]) 指定繪圖的範圍,x 方向從 xmin 到 xmax,y 方向從 ymin 到 ymax

>> x=linspace(0,10,64); >> y=x.*cos(4*x)./12; 0.6 >> plot(x,y,'-ro') 0.4 0.2 >> axis([0,6,-0.6,0.6]) 0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.4 -0.5

o 利用 box 和 grid 指令可設定設定格線與外框:

表 4.2.2 設定是否顯示圖形的格線與外框

指令	說 明
grid	設定是否顯示格線,設定 on 為顯示,設定 off 則不顯示
box	設定是否顯示圖形的外框,設定 on 顯示,設定 off 不顯示

>> grid on

修改x與y軸的顯示比例

○ 設定座標軸顯示的比例所用的指令:

表 4.2.3 設定座標軸顯示的比例

指令	說 明
axis normal	使用 Matlab 預設的寬高比,且拉動視窗即可調整其比例
axis square	圖形輸出的寬與高比例為 1:1
axis equal	圖形座標軸的比例為 1:1
axis tight	圖形的繪圖區域緊貼著視窗

>> axis square

>> axis equal tight

>> axis equal

於已存在的圖中加入新圖

o 利用h old on 可將新繪的圖形附加於原有圖形之上:

表 4.2.4 設定圖形產生的方式

指令 說明

hold 設定 hold 為 on 時,則新產生的圖形會疊加在原有圖形的上面,若是設定 off,則原有的圖形會被新產生的圖形覆蓋掉。

```
>> plot(x,y1,'-rs')
```

- >> hold on
- >> plot(x,y2,'-bo')

建立一個新的繪圖視窗來繪圖

o figure指令可另起一個新的視窗來容納新的圖形:

表 4.2.5 設定圖形產生的方式

指令	說 明
figure	建立一個新的繪圖視窗,視窗的標題為 Matlab 自動設定
figure(n)	建立一個新的繪圖視窗,視窗的標題為 Figure n 。若 Figure n 為已 經存在的視窗,則 figure(n) 會把此視窗變成作用中視窗

將數張圖合併成一張大圖

o 利用subplot可在一個繪圖視窗內呈現數張小圖:

表 4.2.6 subplot 函數的用法

函 數	說 明
subplot(m,n,p)	把繪圖視窗分成 $m \times n$ 個區域,並在第 p 個位置建立一個子繪圖區。位置 p 的計算方式是由左而右,由上而下來排列
<pre>subplot(m,n,p,'replace')</pre>	於第 p 個位置建立一個子繪圖區,若此繪圖區內已有其它圖形存在,則新繪的圖會取代掉原有的圖

於圖形內加入文字

下表面的函數可設定圖形的標題文字,以及每一個 繪圖軸的解說文字:

表 4.3.1 於圖形內加入文字

函 數	說 明
title('text')	設定圖形的標題文字為 text
xlabel('text')	設定 x 軸的解說文字為 text
ylabel('text')	設定 y 軸的解說文字為 text
zlabel('text')	設定 z 軸的解說文字為 text

>> title('plot of sin(x^2)')

>> xlabel('time');ylabel('value');

o 下面的函數可在圖形內加入註解:

表 4.3.2 加入圖形的註解

函 數	說 明
$legend(str_1, str_2,)$	設定圖例標記的字串
$legend(str_1, str_2, \ldots, pos)$	設定圖例標記的位置,1代表將圖例放在右上角,2 是左上角,3是左下角,4則是放在右下角
legend off	清除圖例標記
text(x,y,'text')	在圖形中位置為(x,y)之處加入註解文字
gtext('text')	利用滑鼠來設定文字輸入的位置

>> legend('x*cos(x)','x*sin(x)',2)

>> text(2,2.5,'x*sin(x)'); text(5.5,3,'x*cos(x)')

更簡潔的繪圖函數

- o fplot函數只要給予一個函數字串即可繪圖
- o fplot可依據圖形陡峭的程度,自動調整樣點數的多 寡以繪出平滑的曲線

表 4.4.1 繪圖函數 fplot 的用法

函 數	說 明
<pre>fplot('f_str',[xmin,xmax])</pre>	繪出函數 f_str 的圖形, x 軸的範圍取 $xmin$ 到
	xmax
<pre>fplot('f_str',[xmin,xmax,ymin,ymax])</pre>	繪出函數 f_str 的圖形, x 軸的範圍取 $xmin$ 到
	xmax,y軸的範圍取 ymin 到 ymax

>> fplot('x-cos(x^3)-sin(2*x^2)',[-3,3])

o ezplot可繪出隱函數圖,以及參數繪圖等:

表 4.4.2 繪圖函數 ezplot 的用法

函 數	說 明
$ezplot('f_str',[xmin,xmax])$	繪出函數 f_str 的圖形,繪圖範圍在 x 與 y 方 均取 $xmin$ 到 $xmax$
ezplot('f_str',[xmin,xmax,ymin,ymax])	繪出函數 f_str 的圖形,繪圖範圍在 x 方向 $xmin$ 到 $xmax$ 在 y 方向均取 $ymin$ 到 $ymax$
ezplot(' fx ',' fy ',[$tmin,tmax$])	參數繪圖,繪出 $(fx(t), fy(t))$, t 從取 $tmin$ 到 tm 的參數圖

>> ezplot('x^3+4*x^2-3*x+1-y^2')

$>> ezplot('x^2*sin(x^2)/exp(x)',[0,10,-0.7,0.7])$

利用Property Editor來編修圖形

o 利用Property Editor對話方塊可編修圖形的性質:

學習三維繪圖的基本技巧

學習peaks函數的用法

學習二維與三維等高線圖的繪製

學習三維圖形的編修

基本三維繪圖

o 對於函數而言,每給一組f(x,y),便能求得其相對應的高度z,如下圖所示:

繪製三維的網格圖

o 利用mesh函數可繪製三維的網格圖:

表 5.1.1 mesh 函數的使用

函 數	說 明
mesh(x,y,z)	繪出三維的網格圖
mesh(z)	繪出 x 座標從 1 到 m, y 座標從 1 到 n 的三維的網格圖

Mesh 函數的用法


```
>> xx=[2 3 4;2 3 4;2 3 4;2 3 4];
>> yy=[0 0 0;1 1 1;2 2 2;3 3 3]
>> zz=[7 7 6;7 7 7;8 8 9;8 8 9]
>> mesh(xx,yy,zz)
```


o Matlab提供了meshgrid函數,可以建立xx與yy矩陣:

表 5.1.2 meshgrid 函數的使用

函數說明

meshgrid(vx,vy) 建構出兩個二維矩陣xx與yy,以供三維繪圖所需

```
>> x=linspace(-2,2,30);
>> y=linspace(-2,2,30);
>> [xx,yy]=meshgrid(x,y);
>> zz=xx.*exp(-xx.^2-yy.^2);
>> mesh(xx,yy,zz)
```


o 下面是meshc函數與waterfall函數用法:

表 5.1.3 meshc 與 waterfall 函數的使用

函 數	說 明
meshc(xx, yy, zz)	繪出網格圖,但在網格圖下方會附帶繪出等高線圖
waterfall(xx,yy,zz)	以切片的方式來繪製三維的立體圖

>> meshc(xx,yy,zz)

>> waterfall(xx,yy,zz)

繪製三維的曲面圖

o 想要對網格面上色,可利用surf或其它相關的函數:

表 5.1.4 surf 與 surfc 函數的使用

函數	說 明
surf(xx,yy,zz)	繪出三維的曲面圖
surfc(xx,yy,zz)	同 surf,但在圖形下方會顯示出函數圖形的等高線圖

>> surf(xx,yy,zz);

>> surfc(xx,yy,zz);axis tight;

簡易的三維繪圖函數

o ezmesh與ezsurf函數可以快速的繪出三維的圖形:

表 5.2.1 簡易三維繪圖函數的使用

函 數	說 明
ezmesh(f, [xmin, xmax, ymin, ymax])	根據函數 f 以 60×60 個網格數繪出 f 的三維圖形
ezmeshc(f,[xmin,xmax,ymin,ymax])	同 ezmesh,但在圖形下方會顯示出圖形的等高線
ezsurf(f,[xmin,xmax,ymin,ymax])	同 ezmesh,但是網格面會上色
ezsurfc(f,[xmin, xmax, ymin, ymax])	同 ezsurf,但在圖形下方會顯示出圖形的等高線

>> ezmesh('exp(-0.2*x)*cos(t)')

>> ezsurfc('y/(x^2+y^2+1)',36)

內建的三維圖形展示函數—peaks

o peaks所描述的數學函數,其定義式為

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{5} - x^3 - y^5\right) e^{-x^2 - y^2} - \frac{1}{3}e^{-(x+1)^2 - y^2}$$

表 5.3.1 使用 peaks 函數

函 數	說 明
peaks	以 49×49 個資料點繪製數學函數 peaks,範圍 x 與 y 方向同為 $-3 \sim 3$
peaks(n)	同 $peaks$,但以 $n \times n$ 個資料點來繪圖
zz=peaks	計算 49×49 個數學函數 peaks 的值
zz=peaks(n)	以 n×n 個資料點計算數學函數 peaks 的值
[xx,yy,zz] = peaks(n)	以 n×n 個資料點計算數學函數 peaks 的值

>> peaks(24); >> surfc(xx,yy,zz);

>> [xx,yy,zz]=peaks(32);

空間曲線繪圖

o plot3函數可用來繪製空間的曲線:

表 5.4.1 空間曲線繪圖函數

函 數	說 明
plot3(x,y,z)	以向量 x,y 與 z 繪製三維空間曲線
plot3(x,y,z,'str')	以控制字串 str 所指定的格式繪出三維空間曲線

>> plot3(t.*sin(t),t.*cos(t),t);

等高線繪圖

二維等高線圖

o Matlab的contour函數可用來繪製二維的等高線圖:

表 5.5.1 二維等高線繪圖函數

函 數	說 明
contour(xx,yy,zz,n)	分別以矩陣 $xx \cdot yy$ 與 zz 繪出 n 條等高線
contour(zz,n)	同上,但 x 方向是從 1 到 m , y 方向是從 1 到 n
contour $(xx, yy, zz, [z_1, z_2, z_3,])$	繪出高度為 z ₁ , z ₂ , z ₃ , 的等高線圖
contourf(xx,yy,zz,n)	同 contour 函數,但會以顏色填滿(fill)等高線圖

>> contour(xx,yy,zz) >> contourf(xx,yy,zz,20)

o 要標註等高線的值: 把繪出的等高線圖設給某一個變數 把這個變數傳遞給clabel函數

表 5.5.2 將等高線加入高度標記的函數

函 數	說 明
clabel(cmat)	在等高線圖內加上高度的標記
clabel($cmat, [z_1, z_2, z_3,]$)	在高度為 $[z_1, z_2, z_3,]$ 的等高線上加上高度標記
clabel(cmat, 'manual')	利用滑鼠標註等高線的數值

>> cmat=contour(xx,yy,zz); >> clabel(cmat)

三維的等高線圖

o contour3函數可繪製三維的等高線圖:

表 5.5.3 三維等高線繪圖函數

函 數	說 明
contour3(xx,yy,zz,n)	分別以矩陣 $xx \cdot yy$ 與 zz 繪出 n 條三維的等高線
contour3(zz,n)	同上,但x方向從1到m,y方向從1到n
contour3(xx,yy,zz,[z ₁ ,z ₂ ,z ₃ ,])	指定繪出高度為 z ₁ ,z ₂ ,z ₃ , 的三維等高線圖

- >> zz=peaks;
- >> contour3(zz);

編修三維繪圖

三維圖形的基本編修

o 下表列出了三維圖形常用的編修指令:

表 5.6.1 三維繪圖的基本編修指令

指令	說 明
hidden on/off	預設為 on。設定 off 則會除去隱藏線,但這個指令只對 mesh 等函數所繪出的網格圖形有效
axis on/off	預設為 on。設定 off 則不顯示座標軸與刻度
box on/off	預設為 off。設定 on 則在圖形的外圍顯示一個外框
hold on/off	預設為 off。設定 on 時,則新產生的圖形不會覆蓋掉原有的圖形
grid on/off	設定 on 則顯示座標的網格線

>> hidden off;

>> box on;

改變三維圖形的視角

o 如果想更改圖形的觀測角度,可用利用view函數:

表 5.6.2 改變三維圖形的視角

函 數	說 明
view(az,el)	設定圖形的視角,單位為度
[az,el]=view	傳回目前所使用的視角

>> peaks;

>> view(60,30);

o 按下工具列上的Rotate 3D鈕 , 可利用滑鼠旋轉所 繪製的圖形

修改三維圖形的曲面顏色

O Matlab是利用color map,依所繪製之函數值的大小來對曲面上色。

- o colormap可限定三維的圖形使用特定的顏色對應表
- o 下表列出了colormap與colorbar函數的用法:

表 5.6.4 colormap 函數的使用

函 數	說 明
colormap(map)	使用map當成目前配色的顏色對應表
colormap('default')	使用預設的顏色對應表
map=colormap	把目前的顏色對應表設定給變數 map
colorbar	在目前的圖形中顯示顏色對應圖

o 下表列出了Matlab常用來建立顏色對應表的函數

表 5.6.5 產生顏色對應表的函數

函數	說 明
hsv(m)	建立一個 $m \times 3$ 的顏色對應矩陣,色系是由紅、橙、黃、綠、藍、靛、紫
	等循環色彩所組成
	建立一個 $m \times 3$ 的顏色對應矩陣,色系是暗紅、紅、橙、黃、綠、藍、靛、
	紫與暗藍等色彩所組成(Matlab 預設的顏色對應表)
spring(m)	建立一個 $m \times 3$ 的春天色系矩陣,它是由粉紅與黃色色系所組成
summer(m)	建立一個 $m \times 3$ 的夏天色系矩陣,它是由綠色與黃色色系所組成
autumn(m)	建立一個 $m \times 3$ 的秋天色系矩陣,它是由黃色與紅色色系所組成
winter(m)	建立一個 $m \times 3$ 的冬天色系矩陣,它是由藍色與綠色色系所組成
hot(<i>m</i>)	建立一個 $m \times 3$ 的暖色系矩陣,由黑、紅、黃、白等顏色所組成
cool(m)	建立一個 m×3 的冷色系矩陣,由青色和暗紅色等顏色所組成
gray(m)	建立一個 m×3 的灰階色系矩陣

>> colormap(hot(32));colorbar; >> colormap('default');colorbar;

利用Property Editor視窗修改圖形

學習極座標繪圖與對數繪圖

學習雙у軸繪圖

學習向量場繪圖

學習統計繪圖

在Matlab的環境裡製作動畫

常用的二維繪圖函數

極座標繪圖

○ 極座標函數可以寫成

$$r = f(\theta)$$

o Matlab 的polar函數來繪製極座標圖。

表 6.1.1 polar 函數的使用

函 數	說 明
polar($theta, r$)	根據角度向量 $theta$,以及距原點的長度 r 繪製極座標圖
polar(theta,r,'str')	依據格式字串 str 所指定的格式繪製極座標圖

```
>> t=linspace(0.01,4*pi,100);
>> r=log(t);
>> polar(t,r)
```


對數繪圖

o 下表所列的函數可繪製對數座標圖形:

表 6.1.2 對數繪圖函數的使用

函 數	說 明
semilogx(x,y)	x 軸為對數座標,繪出 $x-y$ 的對數圖
semilogy(x,y)	y 軸為對數座標,繪出 x-y 的對數圖
loglog(x,y)	x 軸與 y 軸皆為對數座標,繪出 $x-y$ 的對數圖

```
>> x=linspace(0,100,600);
>> semilogx(x,sin(x)./(x+1))
```


雙у軸繪圖

o 利用雙y軸繪圖可繪製兩個函數於同一張圖:

表 6.1.3 plotyy 函數的使用

函數 說明

 $plotyy(x_1,y_1,x_2,y_2)$

以圖形左邊的刻度當成 x_1-y_1 資料點的 y 軸,以圖形右邊的刻度當成 x_2-y_2 資料點的 y 軸,繪出雙 y 軸圖

- >> x=linspace(0,6,50);
- >> plotyy(x,sqrt(x)+sin(6*x),x,exp(x))

向量場與法向量繪圖 梯度向量場的繪製

o 要繪出梯度向量場 以gradient函數計算 再以quiver函數繪出圖形

表 6.2.1 gradient 與 quiver 函數的語法

函 數	說 明
[fx,fy]=gradient(zz)	依矩陣 zz 計算出每一個資料點的梯度
[fx,fy]=gradient(zz,dx,dy)	同上,但 x 軸方向的間距是 dx , y 軸方向的間距是 dy
quiver(xx,yy,fx,fy)	在座標為 xx 與 yy 的點上繪出一個箭號

```
>> [xx,yy]=meshgrid(-2:0.2:2,-2:0.2:2);
>> zz=sin(xx).*cos(yy);
>> [u,v]=gradient(zz);
>> quiver(xx,yy,u,v)
```


三維法向量的繪圖

o 要繪製曲面的法向量,可利用surfnorm與quiver3函數:

表 6.2.3 quiver3 的用法與三維的法向量繪圖

函 數	說 明
surfnorm(xx,yy,zz)	利用 xx, yy 與 zz 所描述的曲面計算其法向量
quiver3(xx , yy , zz , fx , fy , fz)	同 quiver,但是繪出三維的向量場
quiver3 (fx,fy,fz)	同上,但是箭號的間格大小相等

- >> [u,v,w]=surfnorm(xx,yy,zz);
- >> quiver3(xx,yy,zz,u,v,w,0.4),

統計繪圖 長條圖

o Matlab提供了bar與bar3函數,可用來繪製二維與 三維的長條圖:

表 6.3.1 長條圖繪圖函數

函 數	說 明
bar(y)	依y的值來繪製長條圖
bar(x,y)	指定向量 x 的元素值為座標軸的標記來繪圖
bar(x,y,width)	指定長條圖裡長方形的寬度,預設值為 0.8
bar(x,y,'stacked')	將同一群組的長條圖疊加起來繪圖

>> bar([1 4 3 7 2 6])

o bar3可用來繪製三維的圖形:

表 6.3.2 立體的長條圖繪圖函數

函 數	說 明
bar3(<i>zz</i>)	同 bar 函數,但是繪出三維的長條圖
bar3(y,zz)	同上,其中向量y可用來指定三維圖中y方向的刻度

- >> A=[1 2 3 6;2 4 1 3;8 6 1 4]
- >> bar3(A);ylabel('y-axis')

圓形圖

o pie與pie3函數,可分別繪製二維與三維的圓形圖:

表 6.3.3 圓形圖繪圖

函 數	說 明
pie(x,explode)	依向量 x 繪出圓形圖,並依向量 $explode$ 決定該塊區域是否要和圓形圖分開
pie3(x,explode)	同 pie 指令,但是以三維的方式來呈現

>> pie([4 6 3 1],[0 0 0 1])

直方圖

o 直方圖(histogram)是以組別為橫軸,次數或度為 縱軸所繪出的統計圖:

表 6.3.4 直方圖繪圖函數 hist

函 數	說 明
v=hist(data)	將向量 $data$ 按數據大小分成 10 個等距的區間,然後將這 10 個區間內元素的個數傳回給向量 v
v=hist(data,n)	同上,但區間數為 n

- >> data=[0 3 3 4 5 3 7 4 2 8 2 8 10];
- >> hist(data)

動畫的製作

o comet函數在繪製動態圖形時,會拖了一條長長的 尾巴,因而得名。

表 6.4.1 使用 comet 函數

函 數	說 明
comet(x,y,p)	繪出彗星軌跡圖,彗星尾巴拖的長度為 $p*length(y)$
comet3(x,y,z,p)	同上,但繪出三維的彗星軌跡圖

>> comet3(sin(t/2).*cos(6*t),sin(t/2).*sin(6*t),t)

