Diszkrét Matematika 1. Írásbeli vizsga, 2016. január 21. (90 perc)

NÉV: NEPTUN kód: (Leendő) szakirány:		
1. Alapvető fontosságú fogalmak		
A következő hat kérdésre 1-1 pont kapható. Ebből legalább 4 pontot kell szerezni.		
1. Mennyi i abszolút értéke és argumentuma? Írja fel az i szám trigonometrikus alakját.		
2. Adja meg az "és", a "vagy" és a "kizáró vagy" igazságtáblázatát.		
3. Mikor nevezünk ekvivalenciarelációnak egy binér relációt?		
4. Hányféleképpen lehet a latin ábécé 26 betűjéből 4 hosszú sorozatokat képezni?		
5. Bontsa fel a zárójelet: $(x+3y)^4$.		
6. Hány pozitív osztója van a 2^5 , illetve a 2^{100} számoknak?		

${\bf 2. \ Definíci\'ok,\ t\'etelkimond\'asok}$

A következő nyolc kérdésre 1-1 pont kapható.

1.	Mik az i harmadik gyökei? Adja meg őket trigonometrikus alakban.
2.	Lehet-e egy reláció az egészek halmazán egyszerre szimmetrikus és antiszimmetrikus?
3.	Mikor nevezünk egy részbenrendezést (teljes) rendezésnek?
4.	Definiálja az asszociativitást.
5.	Hány k -adosztályú ismétléses kombinációja van egy n elemű halmaznak?
6.	Hogy szól a szita formula 3 halmazra?
7.	Definiálja az asszociáltság fogalmát.
8.	Definiálja a redukált maradékrendszer fogalmát.

3. Bizonyítások

A következő három bizonyításra 3-3 pont kapható. Ebből legalább 3 pontot el kell érni (tételkimondásért nem jár pont). Az összpontszám alapján a ponthatárok: 10-től 2-es, 14-től 3-as, 18-tól szóbelizhet a 4-es, illetve 5-ös osztályzatért.

- 1. Mondja ki és bizonyítsa a relációk inverzére vonatkozó állítást.
- 2. Mondja ki és igazolja a binomiális tételt.
- 3. Mondja ki és igazolja a logikai szitát.

4. Szóbeli kiváltását lehetővé tevő opcionális tétel

Ez a feladat maximálisan 5 pontot ér. Ha ebből legalább 3 pont megvan, és az összpontszám eléri a 20, illetve 24 pontot, akkor 4-es, illetve 5-ös érdemjegyet ajánlunk.

Legyen p egy 2-nél nagyobb prímszám. Egy a egész számot kvadratikus maradéknak neveznek modulo p, ha létezik olyan x egész, melyre $x^2 \equiv a \pmod{p}$. Ellenkező esetben kvadratikus nemmaradéknak hívjuk.

- 1. Soroljuk fel a kvadratikus maradékokat 0 és p között (a határokat is beleértve) a $p=3,\,p=5$ és p=7 esetben.
- 2. Igazoljuk, hogy ha a kvadratikus maradék modulo p és $a \equiv a' \pmod{p}$, akkor a' is kvadratikus maradék. (Vagyis a tulajdonság csak a maradékosztályon múlik.)
- 3. Igazoljuk, hogy kvadratikus maradékok szorzata, illetve nemnulla kvadratikus maradékok reciproka is kvadratikus maradék.
- 4. Mit kapunk, ha egy kvadratikus nemmaradékot és egy kvadratikus maradékot összeszorzunk?
- 5. Igazoljuk, hogy a nemnulla maradékosztályoknak pont a fele lesz kvadratikus maradék.