Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital - IMD Núcleo de Pesquisa e Inovação em Tecnologia da Informação - Npitl

Programação de Microcontroladores PIC - Dia 02

Ministrante: Fellipe Augusto

Roteiro

- Interrupções
 - Conceitos
 - Exemplo (assembly)
- Timers
 - Conceito
 - HandsOn (assembly e C)
- Conversor Analógico Digital
 - Conceitos
 - Hands-on (C)

Blink Tradicional

Como fazer multitasking dessa forma?

```
void main(void) {
11
12
          TRISB0=0;
          while(1){
13
14
          RB0=0;
             delay ms(200);
15
16
          RB0=1;
             delay_ms(200);
17
18
19
           return;
20
```

Interrupções: O distúrbio da ordem

 Um Alerta a CPU de que um evento significativamente importante ocorreu

32 Kbyte Device PC<20:0> CALL, RCALL, RETURN, RETFIE, RETLW, CALLW, ADDULNK, SUBULNK Stack Level 1 Stack Level 31 10000 h Reset Vector High-Priority Interrupt Vector 0008 h Low-Priority Interrupt Vector 0018h On-Chip Program Memory 7FFFh 8000 h Read '0' 1FFFFFh

Fluxograma de uma interrupção

Exemplo de aplicação de Interrupção

- Press Button Acionar um LED quando o botão for pressionado (detecção do pressionamento via interrupção)
- Configurar interrupções:
 - Registradores INTCON (pag 103), INTCON2 (pag 104), INTCON3 (pag 105)

Timers

- Nosso modelo de PIC (PIC18F4550) possui quatro Timers: Timer 0, Timer 1, Timer2 e Timer3
- Contador e temporizador
 - Temporização do Sistema
 - Utilização no módulo de captura e comparação de sinais (Timer1 e Timer3)
 - Utilização no módulo PWM (Timer2)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TMR0L	Timer0 Register Low Byte					54			
TMR0H	Timer0 Register High Byte						54		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	-	TMR0IP	_	RBIP	53
T0CON	TMR00N	T08BIT	T0CS	T0SE	PSA	T0PS2	T0PS1	T0PS0	54
TRISA	_	TRISA6(1)	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	56

Registradores Associados ao Timer O

Configuração específica do TimerO: TOCON (pag 109)

Hands-On: TimerO

- Fazer o download do header file contendo o protótipo das funções de configuração (timerOlib.h)
- Implementar o source file (timerOlib.c)
- Implementar o arquivo main.c:
 - Desenvolver um BLINK (simular no Proteus) utilizando interrupção do Timer 0
 - o Frequência: 1 Hz
 - Testar no kit
 - Dica: usar o material adicional de configuração de Timers

Desafio

A partir da biblioteca desenvolvida, implementar um projeto de blink com dois leds em frequências diferentes

Utilize a interrupção do Timer0

Conversor Analógico Digital (ADC)

Conversão de sinais analógicos para binários de 10 bits

Que taxa de conversão escolher?

AD Clock	AD Clock Source (TAD)			
Operation	ADCS2:ADCS0	Maximum Fosc		
2 Tosc	000	2.50 MHz		
4 Tosc	100	5.00 MHz		
8 Tosc	001	10.00 MHz		
16 T osc	101	20.00 MHz		
32 Tosc	010	40.00 MHz		
64 T osc	110	48.00 MHz		
RC ⁽²⁾	×11	1.00 MHz ⁽¹⁾		

Registradores de Configuração

- ADCONO
 - o O que ele faz?
- ADCON1
 - O que ele faz?
- ADCON2
 - O que ele faz?

Formatação do Valor Digital

HandsOn - ADC

- Fazer o download do header file adclib.h
- Implementar o source file adclib.c
- Implementar a função main.c
 - Ler um valor analógico do ADC e refletir tal valor nos LEDs
 - Uso do kit de desenvolvimento

Desafio

A partir da biblioteca desenvolvida, implementar um projeto em que, após determinado valor limiar lido pelo ADC, habilitar um blink de alerta

- Utilize a interrupção do TimerO;
- Utilizar a biblioteca para display de sete segmentos;
- Utilizar a biblioteca de manipulação dos GPIOS

