Практика 10.11

Во всех задачах V-n-мерное векторное пространство, $\{e_i\}_{i=1}^n$ — базис V.

- 1. Какие из следующих тензоров разложимы в $V \bigotimes V$?
 - (a) $w = \sum_{i=1}^{n} ij \cdot e_i \otimes e_j$
 - (b) $w = \sum_{i=1}^{n} \delta_{1i} j \cdot e_i \otimes e_j$
 - (c) $w = \sum_{i,j=1}^{n} (i+j) \cdot e_i \otimes e_j$
- 2. Докажите, что в тензорном произведении двух векторных пространств $a \otimes b = c \otimes d \neq 0$ тогда и только тогда, когда $a = \lambda c, b = \frac{1}{\lambda} d$ для некоторого скаляра.
- 3. Пусть $f: U_1 \to V_1, g: U_2 \to V_2$ линейные отображения между векторными пространствами над полем k. Тогда тензорное произведнеие f и g это отображение $f \otimes g: U_1 \bigotimes U_2 \to V_1 \bigotimes V_2$, заданное как $(f \otimes g)(u \otimes v) = f(u) \otimes g(v)$ на разложимых тензорах и продолженное по универсальному свойству тензорного произведения.
 - (a) Опишите матрицу $A \otimes B$ отображения $f \otimes g$ в базисах $\{u_i \otimes v_j\}$ и $\{u_i' \otimes v_j'\}$, если известны матрицы отображений f и g в базисах $\{u_i\}, \{v_i\}$ и $\{u_i'\}, \{v_i'\}$ соответственно $(A \otimes B)$ называется кронекеровским поризведением матриц A и B).
 - (b) Докажите, что $Im(f \otimes g) = Im(f) \otimes Im(g) = (Im(f) \otimes V_2) \cap (V_1 \otimes Im(g)).$
 - (c) Докажите, что $\ker(f \otimes g) = \ker(f) \bigotimes U_2 + U_1 \bigotimes \ker(g)$.
- 4. (а) Пусть A, B две квадратные матрицы размеров $m \times m$ и $n \times n$ соотвественно. Пусть $\alpha_1, \ldots, \alpha_m$ собственные числа $A, \beta_1, \ldots, \beta_n$ собственные числа B. Найдите собственные числа матриц $A \otimes B$ и $A \otimes E_n + E_m \otimes B$.
 - (b) Найдите след и определитель $A \otimes B$, если известен след и определитель каждой из матриц A и B.
- 5. Докажите, что $\mathbb{Z}/n\mathbb{Z}\otimes\mathbb{Z}/m\mathbb{Z}$ изоморфно как абелева группа $\mathbb{Z}/(n,m)\mathbb{Z}.$
- 6. Ранг тензора $v \in V^{p,q}$ это наименьшее число n, что $v = v_1 + \dots + v_n$, где v_i разложимые тензоры. Покажите, что ранг тензора $v \in V^{1,1}$ совпадает с рангом соответствующего линейного оператора $V \to V$.
- 7. Докажите, что ранг тензора в тензорной степени пространства U < V такой же, как если его рассматривать в объемлющем пространстве V.
- 8. Пусть W векторное пространство над \mathbb{R} , u,v его базис. Докажите, что тензор $u \otimes u \otimes u v \otimes v \otimes u + u \otimes v \otimes v + v \otimes u \otimes v$ представим в виде суммы двух разложимых, если перейти к комплексификации, а в исходном пространстве это не так.