Business problem:- Perform clustering for the airlines data to obtain optimum number of clusters. Draw the inferences from the clusters obtained. Refer to EastWestAirlines.xlsx dataset.

About Data: - We have been given data about EastWest Airline customers, their transaction, balance, bonus mils etc.

Analysis With Python: -

import pandas as pd

import numpy as np

excel = pd.read_excel("D:/DataScience/Class/assignment
working/h_clustering/EastWestAirlines.xlsx",1)

looking at data types

excel.head()

```
In [6]: excel.head()
Out[6]:
  ID# Balance Qual_miles ... Flight_trans_12 Days_since_enroll Award?
  1 28143
              0 ...
                                                                  0
                     0 ...
0 ...
0 ...
  2
1
        19244
       41354
                                         0
                                                        7034
                                                                  0
2
        14776
                                          0
                                                        6952
                                                                  0
3
   4
4
   5
        97752
                                          4
                                                        6935
                                                                  1
```

[5 rows x 12 columns]

checking EDA

excel.describe()

```
In [7]: excel.describe()
Out[7]:
```

	ID#	Balance	 Days_since_enroll	Award?
count	3999.000000	3.999000e+03	 3999.00000	3999.000000
mean	2014.819455	7.360133e+04	 4118.55939	0.370343
std	1160.764358	1.007757e+05	 2065.13454	0.482957
min	1.000000	0.000000e+00	 2.00000	0.000000
25%	1010.500000	1.852750e+04	 2330.00000	0.000000
50%	2016.000000	4.309700e+04	 4096.00000	0.000000
75%	3020.500000	9.240400e+04	 5790.50000	1.000000
max	4021.000000	1.704838e+06	 8296.00000	1.000000

[8 rows x 12 columns]

checkinh null values

excel.isna().sum()

In [8]: excel.isna()).sum()
Out[8]:	()
ID#	0
Balance	0
Qual_miles	0
cc1_miles	0
cc2_miles	0
cc3_miles	0
Bonus_miles	0
Bonus_trans	0
Flight_miles_12mo	0
Flight_trans_12	0
Days_since_enroll	0
Award?	0
dtype: int64	

checking data types

excel.dtypes

In [9]: excel.dtypes	
Out[9]:	
ID#	int64
Balance	int64
Qual_miles	int64
cc1_miles	int64
cc2_miles	int64
cc3_miles	int64
Bonus_miles	int64
Bonus_trans	int64
Flight_miles_12mo	int64
Flight_trans_12	int64
Days_since_enroll	int64
Award?	int64
dtype: object	

checking Duplicates

excel.duplicated().sum()

#Checking outliers

excel.plot(kind="box",subplots=True,layout=(4,4),figsize=(30,15))

outliers treatment

```
q1=excel["Balance"].quantile(0.25)
q3=excel["Balance"].quantile(0.75)
H_limit=q3+1.5*(q3-q1)
win_quant=excel.Balance.quantile(0.93)
excel["Balance"]=np.where(excel["Balance"]>H_limit,win_quant,excel["Balance"])
excel["Balance"].plot(kind="box")
```



```
excel["Qual_miles"].describe()
#droping ID
excel_1=excel.drop(["ID#"],axis=1)
excel_1.var()
```

```
In [19]: excel_1.var()
Out[19]:
Balance
                    3.336310e+09
Qual_miles
                    5.985557e+05
cc1_miles
                   1.895907e+00
cc2 miles
                   2.180060e-02
cc3_miles
                   3.811896e-02
Bonus_miles
                   5.832692e+08
Bonus_trans
                    9.223317e+01
Flight_miles_12mo
                    1.960586e+06
Flight_trans_12
                    1.438816e+01
Days_since_enroll
                    4.264781e+06
Award?
                    2.332473e-01
dtype: float64
```

cc2_miles and cc3_miles have near zero variance so it wont help in model lerning hence removing them

```
excel_1=excel_1.drop(["cc2_miles","cc3_miles"],axis=1)
```

normalizing data

def norm(x):

z=(x-x.min())/(x.max()-x.min())

return z

norm_data=norm(excel_1)

from scipy.cluster.hierarchy import linkage

import scipy.cluster.hierarchy as sch

import matplotlib.pyplot as plt

link=linkage(norm_data,method="complete",metric="euclidean")

plt.figure(figsize=(30,15));plt.title("Dendrogram of EastWestAirline");plt.xlabel("Index");plt.ylabel("Distance")

sch.dendrogram(link)

plt.show()

Now applying AgglomerativeClustering

```
from sklearn.cluster import AgglomerativeClustering
```

```
h_complete = AgglomerativeClustering(n_clusters = 3, linkage = 'complete', affinity = "euclidean").fit(norm_data)
```

h_complete.labels_

excel_1["clust"] = h_complete.labels_ # creating a new column and assigning it to new column

```
excel 1.head()
```

Aggregate mean of each cluster

excel_1.groupby("clust").mean()