Write your name here Surname	Other	names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Unit 6: Chemistry Lal		II
Wednesday 14 May 2014 – Time: 1 hour 15 minutes	Morning	Paper Reference WCH06/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 8 1 A 0 1 1 2

Turn over ▶

H is an aqueous solution of chromium(III) sulfate. (a) What is the colour of the solution? (b) Describe what you would see when sodium hydroxide solution is added to H, drop by drop, until the sodium hydroxide is in excess. (2) (c) When hydrogen peroxide is added to the reaction mixture formed in (b), a yellow solution is formed. Give the formula of the ion responsible for the yellow colour and state the type of reaction which has produced this ion. (2) (a) What is the colour of the solution? (b) Describe what you would see when sodium hydroxide solution is added to H, drop by drop, until the sodium hydroxide is in excess. (2)
(b) Describe what you would see when sodium hydroxide solution is added to H , drop by drop, until the sodium hydroxide is in excess. (c) When hydrogen peroxide is added to the reaction mixture formed in (b), a yellow solution is formed. Give the formula of the ion responsible for the yellow colour and state the type of reaction which has produced this ion. (2)
drop by drop, until the sodium hydroxide is in excess. (2) (c) When hydrogen peroxide is added to the reaction mixture formed in (b), a yellow solution is formed. Give the formula of the ion responsible for the yellow colour and state the type of reaction which has produced this ion. (2) Ion formula Reaction type
solution is formed. Give the formula of the ion responsible for the yellow colour and state the type of reaction which has produced this ion. (2) on formula Reaction type
on formula
(Total for Question 1 = 5 marks)

2 A student wishes to measure the E_{cell} value of an electrochemical cell in which the following reaction occurs.

$$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$$
 Equation 1

The solutions and apparatus available to the student are listed below.

Solution A: copper(II) sulfate 1.00 mol dm⁻³

Solution **B**: iron(II) sulfate concentration unknown

Solution **C**: potassium nitrate saturated Solution **D**: barium chloride saturated

Copper foil electrodes Iron foil electrodes Platinum foil electrodes

Voltmeter **W**: low resistance Voltmeter **X**: high resistance Ammeter **Y**: low resistance Ammeter **Z**: high resistance

Beakers

Connecting leads Crocodile clips Strips of filter paper

(a) Draw a labelled diagram of the cell that the student should set up to measure $E_{\rm cell}$ for the reaction in **Equation 1**.

Only use items selected from the list above.

(4)

(b) (i) The student measured $E_{\rm cell}$ as +0.79 V. The electrode dipping into the copper(II) sulfate solution was the positive electrode.

For this half-reaction

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\ominus} = +0.34 \text{ V}$

where E^{\oplus} is the **standard** electrode potential.

Use the above information to calculate the electrode potential (*E*) in the student's cell for the half-reaction

$$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$$
 (2)

(ii) For the half-reaction

$$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$$
 $E^{\oplus} = -0.44 \text{ V}$

where E^{\oplus} is the **standard** electrode potential.

For this half-reaction, the electrode potential (E) at a particular concentration is related to the standard electrode potential (E^{\ominus}) by the equation

$$E = E^{+} + 0.013 \ln{[Fe^{2+}]}$$
 Equation 2

where In is the natural logarithm and $[Fe^{2+}]$ is the concentration of Fe^{2+} ions in mol dm⁻³.

Use **Equation 2**, and your answer to (b)(i), to calculate the concentration of Fe^{2+} ions in solution **B**.

(2)

(c) The concentration of another solution of iron(II) sulfate, \mathbf{Q} , was found by titration. 25.0 cm³ samples of \mathbf{Q} were titrated with a solution of acidified potassium manganate(VII), concentration 0.0300 mol dm⁻³.

The results are as follows:

Titration	Rough	1	2	3
Burette reading (final) / cm ³	25.00	24.40	24.40	25.70
Burette reading (initial) / cm ³	1.00	2.10	1.60	3.30
Titre /cm³				
Titres used to calculate mean (✓)				

(i) Complete the table and calculate the mean titre. Indicate with a (\checkmark) the titres that you have used in your calculation.

(2)

Mean titre

(ii) State the colour change at the end-point.

(1)

(iii) Complete the equation for the reaction occurring during the titration. State symbols are not required.

(2)

$$\text{MnO}_4^{-} + 8\text{H}^+ + 5\text{Fe}^{2+} \rightarrow$$

(iv) Calculate the concentration, in mol dm ⁻³ , of the iron(II) sulfate solution,	Q.
Give your answer to three significant figures.	

(4)

(v) The concentration of the iron(II) sulfate solution, **Q**, was also measured on a previous day using the method described in part (a).

The concentration was found to be 0.157 mol dm⁻³.

Calculate the percentage difference between this value and the value you calculated in (c)(iv). You should assume that the correct concentration is 0.157 mol dm⁻³.

(1)

(vi) In the titration, the volume delivered by the pipette is accurate to ± 0.06 cm ³ . Each burette reading is accurate to ± 0.05 cm ³ .	
Calculate the percentage error of the pipette for a volume of 25.00 cm ³ and of the burette for your mean titre.	
·	(2)
Pipette	
Burette	
(vii) Comment on the magnitudes of the values you have calculated in (c)(v) and (c)(vi). (1)
(viii) Suggest why the concentration of iron(II) sulfate in solution Q calculated in (c)(iv) is lower than the value given in (c)(v).	
	(1)
(Total for Question 2 = 22 marl	cs)

3	Subs	tance G is a colourless organic liquid with one functional group.	
		few drops of G are tested by the addition of 2,4-dinitrophenylhydrazine solution Brady's reagent). A positive result is obtained.	
	(i) Describe what you would see when a positive result is obtained for this test.	(1)
	(1	i) What can you deduce about G from this test?	(1)
	(b) S	ubstance G is tested with Tollens' reagent. The test is negative .	
	(i) Identify the solutions used to make Tollens' reagent.	
		What condition is essential for this test to work?	
		What would you see when a positive result is obtained?	(4)
So	ution	S	
Со	nditio	n	
Pos	sitive	result	
	(i	i) Based on the results of the tests in (a)(i) and (b)(i), name the functional group present in G .	
			(1)
		few drops of substance G are tested using iodine in the presence of alkali odoform test). A positive result is obtained.	
	(i) What would be seen when a positive result is obtained?	(1)
	(1	i) What information does a positive result give about substance G ?	(1)

(d) The high resolution nmr spectrum of **G** is shown below.

Give two pieces of information about substance ${\bf G}$ that can be deduced from this spectrum. Use this information and your previous deductions to draw the displayed formula of ${\bf G}$.

(3)

Displayed formula of **G**:

soli	e identity of substance \mathbf{G} can be confirmed by making a larger quantity of the id product from the reaction of \mathbf{G} with 2,4-dinitrophenylhydrazine solution and an purifying the product by recrystallization from ethanol.	
(i)	The solid product is removed from the solution by filtration under reduced pressure. Give two advantages of the use of filtration under reduced pressure compared with normal filtration.	(2)
 (ii)	Draw a labelled diagram of the apparatus used for filtration under reduced pressure.	
		(3)

that the product contains impurities, some ethanol and others which are not soluble.	of which are very soluble in
	(4)
v) How would you use the purified product to	confirm the identity of G ?
Practical details are not required.	(2)
	(2)
	(Total for Question 3 = 23 marks)
	TOTAL FOR PAPER = 50 MARKS

	0 (8)	(18) 4.0 He helium 2	20.2	Ne	neon 10	39.9	Ar	18	83.8	궃	krypton 36	131.3	Xe	xenon 54	[222]	몺	radon 86		pa																																																								
	7	(17)	19.0	L.	fluorine 9	35.5	ت ابارا	17	6.62	В	bromine 35	126.9	-	53	[210]	At	astatine 85		een report		175	Ľ	lutetium 71	[257]	ב	lawrencium 103																																																	
	9	(16)	16.0	0	oxygen 8	32.1	S	16	79.0	Se	selenium 34	127.6	<u>e</u>	tellurium 52	[509]	8	polonium 84		116 have by	וורמובח	173	ΥÞ	ytterbium 70	[254]		102																																																	
	2	(15)	14.0	z	nitrogen 7	31.0	م مورود	15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated		ibers 112-1 Ily autheni		bers 112-1 Ily authent		bers 112-1 Ily authent		lbers 112-1		lbers 112-1 Ily authen		lbers 112-1		nbers 112-1 Illy authent		nbers 112-1 Illy authent			nbers 112-1 Illy authent			ibers 112-1 Ily authent			ibers 112-1 Ily authent		ibers 112-1 Ily authent		bers 112-1 lly authent		bers 112-1 Ily authent		bers 112-1 Ily authent		ibers 112-1 Ily autheni		ıbers 112-1 Ily authen		bers 112-1 Ily authent		bers 112-1 Ily autheni		ibers 112-1 Ily authen		ibers 112-1 Ily authen		ıbers 112-1 Ily authen		ıbers 112-1 Ily authen		ibers 112-1 Ily authent		E	_	[326]	PW	mendelevium 101
	4	(14)	12.0	U	carbon 6	28.1	S		72.6	ge	germanium 32	118.7	Sn	20 tiu	207.2	Pb	lead 82		atomic nur	Date Hot H	167	ם	erbium 68	[253]		termium 100																																																	
	е	(13)	10.8	В	boron 5	27.0	IA.	13	69.7	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		ents with		165	유	holmium 67	[254]	Es	99																																																	
ents								(12)	65.4	Zu	zinc 30	112.4	В	cadmium 48	200.6	H	mercury 80		Elem		163	δ	dysprosium 66	[251]	ځ	californium einsteinium 98 99																																																	
Elem								(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	111	159	Д	terbium 65	[245]	æ	Derketium 97																																																	
le of								(10)	58.7	ï	nickel 28	106.4	Pq	palladium 46	195.1	7	platinum 78	[271]	Ds	110	157	PS	gadolinium 64	[247]	E	96																																																	
c Tab								(6)	58.9	ပိ	cobalt 27	102.9	R	rhodium 45	192.2	<u>-</u>	iridium 77	[368]	Mt Ds Rg	109	152	Eu	europium 63	[243]	Am	атепсит. 95																																																	
riodi		1.0 H hydrogen						(8)	55.8	Fe	iron 26	101.1		ruthenium 44	190.2	SO	osmium 76	<u></u>		108	150	Sm	sa	[242]	Np Pu Am	94																																																	
The Periodic Table of Elements								(7)	54.9	Mn	manganese 25	[86]	7	technetium 43	186.2	Re	rhenium 75	-		107	[147]	Pm	praseodymium neodymium promethium 59 60 61	[237]	ď	neptunium 93																																																	
F			mass	pol	umber			(9)	52.0	ხ	chromium 24	95.9	Wo	molybdenum 42	183.8	>	tungsten 74	[596]	Db Sg	106	144	PN	neodymium 60		ם	uranıum 92																																																	
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	6.05	>	vanadium 23	92.9		niobium 41	180.9	Тa	tantalum 73	[292]	ВР	105	141	Pr	praseodymium 59	[231]	Pa	protactinium 91																																																	
			relati	ato	atomic			(4)	47.9	j۲	titanium 22	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	Rf	104	140	Ce	cerium 58	232	T T	thorlum 90																																																	
			_					(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	89		SS				Ī																																																	
	2	(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	S	calcium 20	9.78	Sr	strontium 38	137.3	Ba	barium 56	[526]	Ra	88		* Lanthanide series	* Actinide series																																																				
	-	(1)	6.9	ב	lithium 3	23.0	Na	11	39.1	¥	potassium 19	85.5	Rb	rubidium 37	132.9	S	caesium 55	[223]	Fr	87	* Lantha		* Actini																																																				