

PATENTAMT.

PATENTSCHRIFT

— № 58396 —

KLASSE 12: CHEMISCHE APPARATE UND PROCESSE.

DR. PAUL FRITSCH IN ROSTOCK I. M.

Verfahren zur Darstellung von Glyceriden aromatischer Säuren.

Patentirt im Deutschen Reiche vom 20. August 1890 ab.

Die Triglyceride aromatischer Säuren werden durch Erhitzen der Dichlorhydrinäther aromatischer Säuren mit äquivalenten Mengen der Salze derselben dargestellt.

Bereits Berthelot (Annalen der Chemie und Pharmacie, Bd. 92, S. 303) hat beobachtet, dass die aus Glycerin und organischen Säuren unter Mitwirkung des Chlorwasserstoffes gebildeten Verbindungen homogene Substanzen von bestimmter Zusammensetzung seien, in welchen das Glycerin zugleich mit Chlorwasserstoff und der organischen Säure verbunden sei. Eine aus Benzoesaure und Glycerin durch Chlorwasserstoff erhaltene Verbindung hält er für Benzochlorhydrin (Beilstein, 2. Aufl., Bd. 2, S. 729).

Göttig (Berichte d. d. chem. Ges., Bd. 10, S. 1817) will das Monoglycerid der Salicylsäure durch Einleiten von Chlorwasserstoff in eine Auflösung von Salicylsäure in Glycerin erhalten haben.

Nach Angabe des Erfinders entstehen bei dieser Reaction stets die Dichlorhydrinäther der aromatischen Säuren, wenn das Einleiten von Chlorwasserstoff so lange fortgesetzt wird, als noch Absorption desselben stattfindet.

Die Darstellung geschieht in folgender Weise: Benzoesaure bezw. Salicylsaure, p-Kresotinsaure oder Anissaure werden mit ungefähr dem gleichen bis doppelten oder mehrfachen Gewicht Glycerin durchtränkt; in diesen in einem passenden Gefäs auf dem Wasserbad erhitzten Brei wird trockner Chlorwasserstoff eingeleitet. Nach einiger Zeit tritt Verstüssigung ein; es bilden sich zwei Schichten, eine ölförmige und eine wässerige. Man setzt das Einleiten des Chlorwasserstoffes so lange fort, als noch Absorption desselben stattfindet, was durch Ermittelung der Gewichtszunahme sestgestellt wird. Das abgeschiedene Oel wird dann mit heißem Wasser mehrmals gut durchgeschüttelt, um Glycerin und etwaige Chlorhydrine zu entfernen. Das nunmehr erhaltene Rohproduct stellt den Dichlorhydrinäther der betreffenden aromatischen Säure dar.

Das Benzodichlorhydrin wird zunächst bei 100° getrocknet und im luftverdunnten Raum destillirt; es siedet unter einem Druck von etwa 150 mm bei 230 bis 235° und hat das specifische Gewicht 1,28 bei 15°.

Die Dichlorhydrinäther der Salicylsäure, p-Kresotinsäure und Anissäure, welche ebenso wie Benzodichlorhydrin in Wasser unlöslich sind, werden beim Erkalten fest; sie werden durch Umkrystallisiren aus Alkohol, in welchem sie in der Wärme leicht, in der Kälte schwer löslich sind, gereinigt.

Das Salicyldichlorhydrin krystallisirt in langen Nadeln und schmilzt bei 45°, das p-Kresotindichlorhydrin in feinen Nadeln und schmilzt bei 45,5°, das Anisdichlorhydrin in glänzenden Schuppen und schmilzt bei 81°. Die Analysen ergaben folgende Zahlen:

,	· ·	Berechnet:		Cichinden:		
	сн, а дн. о. со. с, н,		120 10 32	51 ₁₅ , 4 ₁ 19 13,74	51311 431	
	ĊH, CI	_	233	30 ₁₉₇	30,24	31,11
Salicyldichlorhydrin	СИ, С! СН-О-СО-С, И,-ОИ	Granda Gr	10 48	48,00 4,00 19,01	48,17 423 	
	ČH, Cl		71	28 ₁ 11 100 ₁ 12	28,4	
p - Kresotindichlor- hydrin	$CH_2(CI) = CH_1(CH_2(CH_3), CH_2(CH_3), CH_3(CH_3), $		132 12 48	50)19 - 4,56 18,15	5033 467	4,/9
	CH, CI		263	100,00	27,55	27,11
Anisdichlorhydrin	$CH_2 C $ $CH \cdot O \cdot CO \cdot C_4 H_4 \cdot O CH_3 = 1$	H ₁₂	132 12 48	50,19 4,56 18,15	50 ₃₃₄ 4-2+ 	50,44 4,4/
	ĊH ₂ Cl	CI_{\bullet}	71	27,~	26,96	27,13

Durch Erhitzen von je i Molectil eines Dichlorhydrinäthers der vier Säuren mit je 2 Molectilen der Salze derselben auf etwa 180 bis 200° entstehen einfache und gemischte Glyce-

ride der aromatischen Säuren. Beispielsweise verläuft die Umsetzung zwischen Benzodichlorhydrin und salicylsaurem Natrium nach folgender Gleichung:

$$\begin{array}{c} C\,H_2\,Cl \\ \stackrel{\cdot}{C}\,H \cdot O \cdot C\,O \cdot C_0\,H_1 \\ \stackrel{\cdot}{C}\,H_2\,Cl \end{array} + 2\,C_0\,H_4 \\ \stackrel{\cdot}{C}\,O\,H \end{array}$$

$$CH_2 \cdot O \cdot CO \cdot C_6H_4 \cdot OH$$

$$=: 2 \text{ Na Cl} + CH \cdot O \cdot CO \cdot C_6H_4 \cdot OH_5$$

$$CH_2 \cdot O \cdot CO \cdot C_6H_4 \cdot OH_5$$

Das Chlormetall wird durch heißes Wasser ausgelaugt, wobei das gebildete Glycerid als dickes Oel zurückbleibt, oder das Reactionsgemisch wird mit Aether, Chloroform, Benzol, Schwefelkohlenstoff extrahirt; nach dem Abdestilliren oder Verdunsten des Lösungsmittels hinterbleibt das Glycerid.

Es wurden so bisher vier einfache und zwei gemischte Glyceride aromatischer Säuren dargestellt:

Tribenzoïn
Trisalycilin
Tri-p-Kresotin
Trianisin
Dibenzosalycilin
Disalicylbenzoïn
Disalicylbenzoïn

Diese Glyceride sind wie die natürlichen Fette unlöslich in Wasser, schwer löslich in Alkohol, leicht in Aether, Chloroform, Benzol, Schwefelkohlenstoff.

Von diesen krystallisiren das Tribenzom (Schmelzpunkt 70,5°) aus Methylalkohol in concentrisch gruppirten glänzenden Nadeln, das Trisalicylin (Schmelzpunkt 79°) aus Aether in Nadeln, das Trianisin (Schmelzpunkt 103,5°), ebenfalls aus Aether in Nadeln, das Tri-p-Kresotin (Schmelzpunkt 118°) bildet eine undeutlich krystallinische krümelige Masse, das Disalycilbenzom (Schmelzpunkt 95°) aus Aether in Nadeln; das Dibenzosalicylin bleibt ölig und krystallisirt nicht.

Die Analysen ergaben folgende Zahlen:

$$CH_3 \cdot O \cdot CO \cdot C_6H_6$$

$$CH_2 \cdot O \cdot CO \cdot C_6H_5$$

$$CH_2 \cdot O \cdot CO \cdot C_6H_6$$

$$CH_3 \cdot O \cdot CO \cdot C_6H_4 \cdot OH$$

$$CH_3 \cdot O \cdot CO \cdot C_6H_4 \cdot OH$$

$$CH_4 \cdot O \cdot CO \cdot C_6H_4 \cdot OH$$

	Berechnet:	Gefunden:
$CH_2 \cdot O \cdot CO \cdot C_0 H_4 \cdot O CH_1$ Trianisin $CH \cdot O \cdot CO \cdot C_0 H_4 \cdot O CH_3$ $CH_2 \cdot O \cdot CO \cdot C_0 H_4 \cdot O CH_3$	C ₇₇ 324 65,59 H ₁₀ 26 5,16 O ₀ 144 29,15 494 100,00	G5,9 G5,88 G6,06 5,81 5,74 5,53
$CH_3 \cdot O \cdot CO \cdot C_5 H_3 \cdot CH_5 \cdot O \cdot H$ $Tri-p-kresotin CH \cdot O \cdot CO \cdot C_6 H_3 \cdot CH_3 \cdot O \cdot H$ $CH_3 \cdot O \cdot CO \cdot C_6 H_3 \cdot CH_5 \cdot O \cdot H$	C ₃₇ 324 65,59 H ₁₆ 26 5,16 O ₆ 144 29,15 494 100,00	64,5 65,1. 5,35 5,4*
$CH_2 \cdot O \cdot CO \cdot C_6H_4 \cdot OH .$ Disalicylbenzo'in . $CH \cdot O \cdot CO \cdot C_6H_5$ $CH_2 \cdot O \cdot CO \cdot C_6H_4 \cdot OH$	C ₃₄ 288 66,66 H ₁₀ 20 4,59 O ₆ 128 29,35 436 100,00	66,19 65,91 65,75 65,87 4,74 4,78 4,75 4,7°
$CH_2 \cdot O \cdot CO \cdot C_6 H_6$ Dibenzosalicylin . $CH \cdot O \cdot CO \cdot C_6 H_6 \cdot OH$ $CH_2 \cdot O \cdot CO \cdot C_6 H_5$	$\begin{array}{c cccc} C_{24} & 288 & 68,57 \\ H_{30} & 20 & 4,76 \\ O_{7} & 112 & 26,67 \\ \hline & 420 & 100,\infty \end{array}$	68 ₃ 13 68 ₃₃₇ 4,78 4,84

Diese Glyceride aromatischer Sauren sollen in der Medicin Verwendung finden.

PATENT-ANSPRUCH:

Versahren zur Darstellung von einfachen und gemischten Glyceriden aromatischer Säuren mit äquivalenten Mengen der Salze dieser durch Erhitzen der Dichlorhydrinäther der Säuren.