0.1 多项式函数与根

定义 0.1 (多项式的重根)

设 $f(x) \in \mathbb{K}[x], b \in \mathbb{K}$, 若存在正整数 k, 使 $(x-b)^k \mid f(x)$, 但 $(x-b)^{k+1}$ 不能整除 f(x), 则称 $b \not\in f(x)$ 的一个 k 重根. 若 k=1, 则称 b 为单根.

定理 0.1 (多项式没有重因式的充要条件)

数域 \mathbb{K} 上的多项式 f(x) 没有重因式的充分必要条件是 f(x) 与 f'(x) 互素.

证明 设多项式 p(x) 是 f(x) 的 m(m > 1) 重因式, 则 $f(x) = p(x)^m g(x)$, 故

$$f'(x) = mp(x)^{m-1}p'(x)g(x) + p(x)^{m}g'(x).$$

于是 $p(x)^{m-1} \mid f'(x)$, 这表明 f(x) 与 f'(x) 有公因式 $p(x)^{m-1}$. 反之, 若不可约多项式 p(x) 是 f(x) 的单因式, 可设 f(x) = p(x)g(x), p(x) 不能整除 g(x). 于是

$$f'(x) = p'(x)g(x) + p(x)g'(x).$$

若 p(x) 是 f'(x) 的因式,则 p(x) | p'(x)g(x). 但 p(x) 不能整除 g(x) 且 p(x) 不可约,故 p(x) | p'(x). 而 $p'(x) \neq 0$ 且 $\deg p'(x) < \deg p(x)$,这是不可能的. 若 f(x) 无重因式,则在 f(x) 的标准分解式(??)中, $e_i = 1$ 对一切 $i = 1, 2, \cdots, m$ 成立,于是 $p_i(x)$ 都不能整除 f'(x). 由于 $p_i(x)$ 为不可约多项式,故 $(p_i(x), f'(x)) = 1$,由互素多项式和最大公因式的基本性质 (5) 可知

$$(p_1(x)p_2(x)\cdots p_m(x), f'(x)) = 1,$$

 $\mathbb{P}\left(f(x),f'(x)\right)=1.$

定理 0.2

设 d(x) = (f(x), f'(x)), 则 f(x)/d(x) 是一个没有重因式的多项式,且这个多项式的不可约因式与 f(x) 的不可约因式相同 (不计重数).

证明 设 f(x) 有如(??)式的标准分解式,则

$$f'(x) = ce_1 p_1(x)^{e_1 - 1} p_2(x)^{e_2} \cdots p_s(x)^{e_s} p'_1(x)$$

$$+ ce_2 p_1(x)^{e_1} p_2(x)^{e_2 - 1} \cdots p_s(x)^{e_s} p'_2(x)$$

$$+ \cdots$$

$$+ ce_s p_1(x)^{e_1} p_2(x)^{e_2} \cdots p_s(x)^{e_s - 1} p'_s(x). \tag{1}$$

因此 $p_1(x)^{e_1-1}p_2(x)^{e_2-1}\cdots p_s(x)^{e_s-1}$ 是 f(x) 与 f'(x) 的公因式. 注意到 f(x) 的因式一定具有 $p_1(x)^{k_1}p_2(x)^{k_2}\cdots p_s(x)^{k_s}$ 的形状. 不妨设 h(x) 是 f(x), f'(x) 的公因式. 注意到 $p_1(x)^{e_1}$ 可以整除(??)式中右边除第一项外的所有项, 但不能整除第一项, 因此 $p_1(x)^{e_1}$ 不能整除 f'(x). 同理, $p_i(x)^{e_i}$ 不能整除 f'(x). 由此我们不难看出

$$h(x) \mid p_1(x)^{e_1-1} p_2(x)^{e_2-1} \cdots p_s(x)^{e_s-1},$$

即 $p_1(x)^{e_1-1}p_2(x)^{e_2-1}\cdots p_s(x)^{e_s-1}=d(x)$. 显然 f(x)/d(x) 没有重因式且与 f(x) 含有相同的不可约因式.

命题 0.1 (多项式有 k 重根的充要条件)

求证:a 是多项式 f(x) 的 k 重根的充要条件是:

$$f(a) = f'(a) = \dots = f^{(k-1)}(a) = 0, \quad f^{(k)}(a) \neq 0.$$

1

证明 若 a 是 f(x) 的 k 重根, 可设 $f(x) = (x - a)^k g(x)$, g(x) 不含因式 x - a. 通过对 f(x) 求导可发现, x - a 可整除 $f^{(j)}(x)$ ($1 \le j \le k - 1$). 因此

$$f(a) = f'(a) = \dots = f^{(k-1)}(a) = 0.$$

而 $f^{(k)}(a) = k!g(a) \neq 0$, 故必要性得证.

反之, 若 a 是 f(x) 的 m 重根, 若 m > k, 则由必要性的证明可知, 将有 $f^{(k)}(a) = 0$, 这与已知矛盾. 同样, 若 m < k, 则由必要性的证明可知, 将有 $f^{(m)}(a) \neq 0$, 这也与已知矛盾, 于是只能 m = k.

命题 0.2

设 deg $f(x) = n \ge 1$, 若 $f'(x) \mid f(x)$, 证明: f(x) 有 n 重根.

证明 证法一: 设 $f(x) = \frac{1}{n}(x-a)f'(x)$, 现证明 $a \neq f(x)$ 的 n 重根. 假设 $a \neq f(x)$ 的 k 重根, $f(x) = (x-a)^k g(x)$, k < n 且 g(x) 不含因式 x - a, 则

$$f'(x) = k(x-a)^{k-1}g(x) + (x-a)^k g'(x) = n(x-a)^{k-1}g(x).$$

于是 g(x) | (x-a)g'(x), 而 g(x) 与 x-a 互素, 故将有 g(x) | g'(x). 引出矛盾.

证法二: 设 f(x) = b(x - a)f'(x), 则

$$\frac{f(x)}{(f(x),f'(x))}=\frac{f(x)}{f'(x)}=b(x-a),\quad b\neq 0.$$

由定理 0.2可知,x-a 是 f(x) 唯一的不可约因式,因此 $f(x) = b(x-a)^n$.

命题 0.3

数域 ℙ上任意一个不可约多项式在复数域 ℂ中无重根.

证明 设 f(x) 是 \mathbb{F} 上的不可约多项式,则 $\deg f(x) > \deg f'(x)$.从而 $f(x) \nmid f'(x)$,于是由 f 的不可约性可知 (f(x), f'(x)) = 1. 故由多项式没有重因式的充要条件可知 f(x) 复数域 \mathbb{C} 中无重根.

引理 0.1 (次数不为 1 得到不可约多项式没有根)

设 f(x) 是数域 \mathbb{K} 上的不可约多项式且 $\deg f(x) \ge 2$, 则 f(x) 在 \mathbb{K} 中没有根.

证明 用反证法, 设 $b \in \mathbb{K}$ 是 f(x) 的根, 由余数定理 知 $(x - b) \mid f(x)$, 即 f(x) = (x - b)g(x) 可分解为两个低次多项式之积, 这与 f(x) 不可约矛盾.

定理 0.3 (多项式根的有限性)

设 f(x) 是数域 \mathbb{F} 上的 n 次多项式, 则 f(x) 在 \mathbb{F} 中最多只有 n 个根.

🔮 笔记 由命题??可知, 若一个 n 次多项式的根超过 n 个, 则这个多项式一定恒为零.

证明 将 f(x) 作标准因式分解,则由次数不为 1 得到不可约多项式没有根知 f(x) 在 \mathbb{K} 中根的个数等于该分解式中一次因式的个数,它不会超过 n.

推论 0.1 (两个多项式相等的判定准则)

设 f(x) 与 g(x) 是 \mathbb{K} 上的次数不超过 n 的两个多项式, 若存在 \mathbb{K} 上 n+1 个不同的数 b_1,b_2,\ldots,b_{n+1} , 使 $f(b_i)=g(b_i),\quad i=1,2,\ldots,n+1,$

则 f(x) = g(x).

证明 作 h(x) = f(x) - g(x), 显然 h(x) 次数不超过 n. 但它有 n+1 个不同的根, 因此只可能 h(x) = 0, 即 f(x) = g(x).

例题 0.1 求证: $f(x) = \sin x$ 在实数域内不能表示为 x 的多项式.

证明 注意到 $f(x) = \sin x$ 在实数域内有无穷多个根,而任一非零多项式只能有有限个根,因此 $f(x) = \sin x$ 在实数域内不能表示为 x 的多项式.

例题 0.2 设 f(x) 是数域 \mathbb{F} 上的多项式, 若对 \mathbb{F} 中某个非零常数 a, 有 f(x+a) = f(x), 求证: f(x) 必是常数多项式. 证明 假设 f(x) 不是常数多项式, 则 f(x) - f(a) 也不是常数多项式, 但由 f(x+a) = f(x) 可知, ka ($k \in \mathbb{Z}$) 是 f(x) - f(a) 的无穷多个根, 矛盾.

例题 0.3 设 f(x) 是非常数多项式且 f(x) 可以整除 $f(x^m)$ ($m \in \mathbb{N}_+$), 求证: f(x) 的根只能是 0 或 1 的某个方根. 证明 将 f(x) 看成复数域上的多项式,则 $f(x^m) = f(x)g(x)$. 假设 c 是 f(x) 的一个复根,即 f(c) = 0,则 $f(c^m) = 0$,即 c^m 也是 f(x) 的根. 由此可知 c^m , c^{m^2} , c^{m^3} , ... 也都是 f(x) 的根. 由于 f(x) 只有有限个不同的复根,故存在正整数 k > t, 使得 $c^{m^k} = c^{m^t}$. 因此若 $c \neq 0$, 取 $n = m^k - m^t \in \mathbb{N}_+$,则有 $c^n = 1$.

定理 0.4 (余数定理)

设 $f(x) \in \mathbb{F}[x], b \in \mathbb{F}$, 则存在 \mathbb{F} 上的多项式 g(x), 使得

$$f(x) = (x - b)g(x) + f(b).$$

特别地,b 是 f(x) 的根的充要条件是 $(x-b) \mid f(x)$.

室記 利用余数定理可以实现求根与判断整除性之间的相互转换.

证明 由带余除法知

$$f(x) = (x - b)g(x) + r(x),$$

其中 $\deg r(x) < 1$, 因此 r(x) 为常数多项式. 在上式中用 b 代替 x, 即得 r(x) = f(b).

例题 0.4 设 n 是奇数, 求证:(x+y)(y+z)(x+z) 可整除 $(x+y+z)^n-x^n-y^n-z^n$.

证明 将多项式 $(x+y+z)^n - x^n - y^n - z^n$ 看成是未定元 x 的多项式. 当 x = -y 时, $(x+y+z)^n - x^n - y^n - z^n = 0$, 因此由余数定理可知 x+y 是 $(x+y+z)^n - x^n - y^n - z^n$ 的因式. 同理 x+z,y+z 也是因式. 又这 3 个因式互素, 故 (x+y)(y+z)(x+z) 可整除 $(x+y+z)^n - x^n - y^n - z^n$.

例题 0.5 设 f(x) 是一个 n 次多项式, 若当 k = 0, 1, ..., n 时有 $f(k) = \frac{k}{k+1}$, 求 f(n+1). 证明 解今 g(x) = (x+1)f(x) - x, 则 0, 1, ..., n 是 g(x) 的根, 因此

$$g(x) = cx(x-1)(x-2)\cdots(x-n),$$

即

$$(x+1)f(x) - x = cx(x-1)(x-2)\cdots(x-n),$$

其中 c 是一个常数. 令 x = -1, 可求出 $c = \frac{(-1)^{n+1}}{(n+1)!}$. 从而

$$f(x) = \frac{1}{x+1} \left(\frac{(-1)^{n+1} x(x-1) \cdots (x-n)}{(n+1)!} + x \right),$$

故

$$f(n+1) = \frac{1}{n+2} \left(\frac{(-1)^{n+1}(n+1)!}{(n+1)!} + n + 1 \right).$$

当 n 是奇数时, f(n+1) = 1; 当 n 是偶数时, $f(n+1) = \frac{n}{n+2}$.

例题 0.6 设 $(x^4 + x^3 + x^2 + x + 1) \mid (x^3 f_1(x^5) + x^2 f_2(x^5) + x f_3(x^5) + f_4(x^5))$, 这里 $f_i(x)$ ($1 \le i \le 4$) 都是实系数多项式, 求证: $f_i(1) = 0$ ($1 \le i \le 4$).

证明 设 ε_i (1 \leq i \leq 4) 是 1 的五次虚根,则 ε_i (1 \leq i \leq 4) 都适合 x^5 – 1,从而由余数定理可知

$$x^{5} - 1 = (x - 1)(x - \varepsilon_{1})(x - \varepsilon_{2})(x - \varepsilon_{3})(x - \varepsilon_{4}) = (x - 1)(x^{4} + x^{3} + x^{2} + x + 1).$$

故

$$x^4 + x^3 + x^2 + x + 1 = (x - \varepsilon_1)(x - \varepsilon_2)(x - \varepsilon_3)(x - \varepsilon_4).$$

因此 ε_i (1 $\leq i \leq 4$) 都是 $x^4 + x^3 + x^2 + x + 1$ 的根. 由条件可得

$$\varepsilon_i^3 f_1(1) + \varepsilon_i^2 f_2(1) + \varepsilon_i f_3(1) + f_4(1) = 0 \quad (1 \leq i \leq 4).$$

这是一个由 4 个未知数、4 个方程式组成的线性方程组 (将 $f_i(1)$ 看成是未知数), 其系数行列式是一个 Vandermonde 行列式, 显然其值不等于零, 因此 $f_i(1) = 0$.