

Time Complexity Analysis Algorithmic Efficiency

How your algorithm's performance is affected with a change in the size of an input.

Algorthimically

- Execution Speed
- Resource optimization (e.g. memory usage)

Also called Landau's symbol, is a symbolism used in complexity theory, computer science, and mathematics to describe the asymptotic behavior of functions. Basically, it tells you how fast a function grows or declines.

Common Complexities

O(1) Constant Time

O(log n) Logarithic Time

O(n) Linear Time

O(n log n) Log-Linear Time

O(n^2) Quadratic Time

O(2ⁿ) Exponential Time

Faster Algorithm

Slower Algorithm

Big-O Notation (constant time)

O(1)

```
arr = [1,2,3,4,5,6,7,8,9,10]
arr[5]
```

Ex: Accessing single element in an array

Big-O Notation (logarithmic time)

O(log n)

arr = [1, 2, ... 256000]

Ex: Binary Search

Big-O Notation (linear time)

O(n)

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ex: Linear Search

Big-O Notation (log linear time)

O(n log n)

arr = [1,2,3,4,5,6,7,8,9,10]

Ex: Merge Sort

Big-O Notation (quadratic time)

$O(n^2)$

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ex: Finding
Duplicate Values
(nested for loop of same array)

Big-O Notation (exponential time)

 $O(2^n)$

Ex: Finding the nth value in the fibonacci sequence

Big-O Complexity Chart

Elements

Data Structures

Common Data Structure Operations

Data Structure	Time Complexity								Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	θ(1)	θ(n)	Θ(n)	θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
Stack	θ(n)	θ(n)	θ(1)	θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	θ(n)	θ(n)	θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	θ(n)	θ(n)	θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	θ(n)	θ(n)	0(1)	θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	N/A	θ(1)	0(1)	0(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	$\theta(\log(n))$	θ(log(n))	θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Red-Black Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)
Splay Tree	N/A	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	N/A	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	θ(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)

Things to remember

- Drop Constants (two separate for loops of same array)
 - \circ O(n + n) = O(2n) => O(n)
- Use Worst Case Scenario
 - 1 for loop O(n)
 - 1 nested for loop O(n^2) <- worst case
 - O(n^2)
- Searching through dictionairies or objects are faster than searching through lists or arrays because objects don't keep track of indices
- Wherever possible, avoid nested loops
- There's usually a way to avoid poor Big O