Analyse de Survie

Professeur Abdellatif El Afia

Rappel

- L'analyse de survie est un ensemble de procédures statistiques pour l'analyse de données dans lesquelles la variable de résultat d'intérêt est le **temps** jusqu'à ce qu'un **événement** se produise.
- Modèle : Exposition, Evénement, Temps, Variables X.
- La censure : on ne connait pas le temps exactement.
- Censure à droite temps de survie observé < temps réel de survie.
- Fonctions de survie :

•
$$S(t) = P(T \ge t) = 1 - F(t), t > 0$$

•
$$F(t) = 1 - S(t)$$

•
$$f(t) = -\frac{d}{dt}S(t)$$

•
$$\lambda(t) = h(x) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t / T \ge t)}{\Delta t}$$

•
$$\Lambda(t) = H(t) = \int_0^t h(x) dx$$
, $t \ge 0$

Travail 1:

- Trouver des exemples d'analyses de survie.
- Modéliser ces exemples (Exposition, Evénement, Temps, Variables X.).
- Trouver une data de survie

Analyse de Survie

3

Fonction de survie

Théoriquement, comme t varie de 0 à l'infini, la fonction de survie S(t) est représentée graphiquement sous la forme d'une courbe lisse décroissante, de la valeur S(t)=1 pour t=0, et tend vers 0 quand t tend vers l'infini.

Fonction de survie

En pratique, en utilisant des données, les courbes de survie estimées sont généralement des fonctions en escalier.

Modèle de survie

Fonction de survie :

$$S(t) = P(T \ge t) = 1 - F(t), t > 0$$

Fonction de densité:

$$f(t) = -\frac{d}{dt}S(t)$$

Fonction de risque:

$$\lambda(t)\Delta t \approx P(t \leq T < t + \Delta t | T \geq t)$$

Fonction de risque Cumulative :

$$\Lambda(t) = \int\limits_0^t \lambda(x) dx$$
 , $t \geq 0$

Modèles Non Paramétriques

☐ Estimateur de Kaplan Meier (KM) :

$$\hat{S}(t_k) = \prod_{t_k < t} S(t_{k-1}) \left(1 - \frac{d_k}{n_k} \right)$$
 $1 < k < j$

□Estimateur de Nelson–Aalen :

$$\widetilde{H}(t) = \sum_{t_i < t} \frac{d_i}{n_i}$$

☐ Tables de survie.

Estimateur de Kaplan Meier (KM)

Hypothèses:

- Censure non-informative.
- Temps de survie indépendants.
- \blacksquare l'hypothèse nulle: H_0 :"Il n' y a pas de difference statistique entre les deux groupes"

Estime: la fonction de survie S(t) en fonction en éscaliers.

Utilisé souvent pour mesurer la fraction d'individus en vie pour une certaine durée, et comparer la survie de deux ou plusieurs groupes.

Kaplan-Meier étapes

- Classer les temps de survie dans un ordre croissant commençant par la valeur 0.
- La deuxième colonne indique la fréquence des événements à chaque instant d'événement distinct.
- La troisième colonne donne la fréquence des personnes censurées, noté qf, dans l'intervalle de temps commençant par l'instant d'événement t(f) jusqu'à l'instant d'événement suivant mais non compris, désigné par t(f+1).
- La dernière colonne donne les individus au risque, qui ont survécu au moins jusqu'au temps t(f).
- On calcule la probabilité de survie *S(t)* de chaque temps de survie prenant en compte la censure si elle existe.

Exemple pratique

The data: remission times (weeks) for two groups of leukemia patients

Group 1 $(n = 21)$ treatment	Group 2 $(n = 21)$ placebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Note: + denotes censored

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	О	21

Descriptive statistics:

$$\bar{T}_1(\text{ignoring} + '\text{s}) = 17.1, \, \bar{T}_2 = 8.6$$

$$\bar{h}_1 = .025, \ \bar{h}_2 = .115, \ \frac{\bar{h}_2}{\bar{h}_1} = 4.6$$

Exemple pratique

Group 2 $(n = 21)$ placebo
1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Group 2 (placebo)							
$t_{(f)}$	n_f	m_f	q_f				
0	21	0	0				
1	21	2	0				
1 2 3	19	2	0				
3	17	1	0				
4	16	2	0				
5 8	14	2	0				
8	12	4	0				
11	8	2	0				
12	6	2	0				
15	4	1	0				
17	3	1	0				
22	2	1	0				
23	1	1	0				

Exemple pratique

Group 1 $(n = 21)$ treatment
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,

Group 1 (treatment)							
$t_{(f)}$	n_f	m_f	q_f				
0	21	0	0				
6	21	3	1				
7	17	1	1				
10	15	1	2				
13	12	1	0				
16	11	1	3				
22	7	1	0				
23	6	1	5				
>23							

KM formule = Produit limite

$$\hat{S}(t_k) = \hat{S}(t_{k-1}) \times \hat{P}(T > t_k \mid T \ge t_k)$$

$$\hat{S}(t_k) = \prod_{i=1}^k \hat{P} (T > t_i \mid T \ge t_i)$$

$$P(A \cap B) = P(A) \times P(B \mid A)$$

$$\hat{S}(t_k) = \prod_{t_k < t} S(t_{k-1}) \left(1 - \frac{m_k}{n_k} \right) \qquad 1 < k < j$$

Analyse de Survie

13

- Un test chi-deux χ^2 utilisant un grand échantillon pour fournir une comparaison globale de KM courbes.
- Utilisé pour tester l'hypothèse nulle:

 H_0 : "Il n'y a pas de difference statistique entre les deux groupe«

■ Utilise la technique d'observés Vs attendues sur les catégories, ces dernières étant définies par chacun des évènements ordonnés pour l'ensemble des données analysées (les deux groupes).

Analyse de Survie

14

• Attendues (expected):

$$\bullet \ e_i^1 = ecpected_i^{group \ 1} = \frac{At \ risk_i^{group 1}}{At \ risk_i^{group 1} + At \ risk_i^{group 2}} \times \left(Failure_i^{group 1} + Failure_i^{group 2}\right)$$

• Observées (observed):

•
$$o_i^1 = observed_i^{group1} = Failure_i^{group1}$$

• Observed – expected :

•
$$O^g - E^g = \sum_i (o_i^g - e_i^g)$$

$$Log-rank statistic = \frac{(O^g - E^g)^2}{Var(O^g - E^g)}$$

- Log-rank statistic est approximativement du khi-deux χ^2 avec un degré de liberté.
- Approximation: $\chi^2 = \sum_g \frac{(O^g E^g)^2}{E^g}$
- La p-value de Log-rank détermine si H_0 est rejetée ou non.

EXAMPLE

Remission data: n = 42

# fail	ures	# in risk set			
$t_{(f)}$	m_{1f}	m_{2f}	n_{1f}	n_{2f}	
1	0	2	21	21	
	0	2	21	19	
2 3 4 5 6 7	0	1	21	17	
(4)	0	2	21	16	
5	0	2	21	14	
6	3	0	21	12	
7	1	0	17	12	
8	0	4	16	12	
(10)	1	0	15	8	
11	0	2	13	8	
12	0	2	12	6	
13	1	0	12	4	
15	0	1	11	4	
16	1	0	11	3	
17	0	1	10	3	
22	1	1	7	2	
23	1	1	6	1	

Expected cell counts:

$$e_{1f} = \left(\frac{n_{1f}}{n_{1f} + n_{2f}}\right) \times \left(m_{1f} + m_{2f}\right)$$

$$\uparrow \qquad \uparrow$$
Proportion # of failures over in risk set both groups
$$e_{2f} = \left(\frac{n_{2f}}{n_{1f} + n_{2f}}\right) \times \left(m_{1f} + m_{2f}\right)$$

EXA	AMPI	E.								
Exp	ande	d Tab	le (Re	missio	n Data)	į.				
		# fail	ures	# in r	isk set	# expected		Observed-expected		
f	$t_{(f)}$	m_{1f}	m_{2f}	n _{1f}	n_{2f}	e_{1f}	e_{2f}	$m_{1f}-e_{1f}$	$m_{2f}-e_{2f}$	
1	1	0	2	21	21	$(21/42) \times 2$	$(21/42) \times 2$	-1.00	1.00	
2	2	0	2	21	19	$(21/40) \times 2$	$(19/40) \times 2$	-1.05	1.05	
3	3	0	1	21	17	$(21/38) \times 1$	$(17/38) \times 1$	-0.55	0.55	
4	4	0	2	21	16	$(21/37) \times 2$	$(16/37) \times 2$	-1.14	1.14	
5	5	0	2	21	14	$(21/35) \times 2$	$(14/35) \times 2$	-1.20	1.20	
6	6	3	0	21	12	$(21/33) \times 3$	$(12/33) \times 3$	1.09	-1.09	
7	7	1	0	17	12	$(17/29) \times 1$	$(12/29) \times 1$	0.41	-0.41	
8	8	0	4	16	12	$(16/28) \times 4$	$(12/28) \times 4$	-2.29	2.29	
9	10	1	0	15	8	$(15/23) \times 1$	$(8/23) \times 1$	0.35	-0.35	
10	11	0	2	13	8	$(13/21) \times 2$	$(8/21) \times 2$	-1.24	1.24	
11	12	0	2	12	6	$(12/18) \times 2$	$(6/18) \times 2$	-1.33	1.33	
12	13	1	0	12	4	$(12/16) \times 1$	$(4/16) \times 1$	0.25	-0.25	
13	15	0	1	11	4	$(11/15) \times 1$	$(4/15) \times 1$	-0.73	0.73	
14	16	1	0	11	3	$(11/14) \times 1$	$(3/14) \times 1$	0.21	-0.21	
15	17	0	1	10	3	$(10/13) \times 1$	$(3/13) \times 1$	-0.77	0.77	
16	22	1	1	7	2	$(7/9) \times 2$	$(2/9) \times 2$	-0.56	0.56	
17	23	1	1	6	1	$(6/7) \times 2$	$(1/7) \times 2$	-0.71	0.71	
Tota	als	9	21)		,	19.26 Analyse de Survie	10.74	-10.26	-10.26	

of failure times

$$O_i - E_i = \sum_{f=1}^{17} (m_{if} - e_{if}),$$

 $i = 1, 2$

EXAMPLE

$$O_1 - E_1 = -10.26$$

 $O_2 - E_2 = 10.26$

Two groups:

 $O_2 - E_2$ = summed observed minus expected score for group 2

$$Log-rank statistic = \frac{(O_2 - E_2)^2}{Var(O_2 - E_2)}$$

$$Var(O_i - E_i)$$

$$= \sum_{j} \frac{n_{1f} n_{2f} (m_{1f} + m_{2f}) (n_{1f} + n_{2f} - m_{1f} - m_{2f})}{(n_{1f} + n_{2f})^2 (n_{1f} + n_{2f} - 1)}$$

$$i = 1, 2$$

EXAMPLE								
Using Stata: Remission Data								
Group	Events observed	Events expected						
1	9	19.25						
2	21	10.75						
Total	30	30.00						
$ \begin{array}{l} \text{Log rank} = \text{chi2} \\ \text{P-Value} = \text{Pr} > \end{array} $	2(2) = 16.79 2(2) = 16.79 2(2) = 16.79 2(2) = 16.79							

Pysurvival python

col dat	_	s=[' <mark>age',</mark> .read_csv	'anaemia','creatinine','di (io.BytesIO(uploaded['hear				,'platelets	','serum_creatinin	e','serum_sodi	um',	'sex','smo	king'	,'time','DE
	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
0	75.0	0	582	0	20	1	265000.00	1.9	130	1	0	4	1
1	55.0	0	7861	0	38	0	263358.03	1.1	136	1	0	6	1
2	65.0	0	146	0	20	0	162000.00	1.3	129	1	1	7	1
3	50.0	1	111	0	20	0	210000.00	1.9	137	1	0	7	1
4	65.0	1	160	1	20	0	327000 00	2.7	116	0	0	8	1

Pysurvival KM

Lifelines Log-Rank test

```
from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test
```

```
t_0 = -1

null_distribution = chi squared

degrees_of_freedom = 1

    test_name = logrank_test

---

test_statistic    p -log2(p)
    9.79 <0.005    9.16</pre>
```

KM avec Intervalle de confiance

• pour genre

• Pour serum creatinine

```
<lifelines.StatisticalResult: logrank_test>
<lifelines.StatisticalResult: logrank_test>
                                                                        t 0 = -1
              t 0 = -1
                                                          null_distribution = chi squared
null_distribution = chi squared
                                                         degrees_of_freedom = 1
degrees_of_freedom = 1
                                                                  test_name = logrank_test
        test_name = logrank_test
                                                          test_statistic
                                                                              p - log2(p)
test_statistic p -log2(p)
                                                                    9.79 < 0.005
                                                                                     9.16
          0.00 0.95
                         0.07
```

Plus de tests

- Wilcoxen
- Tarone-Ware
- Peto
- Flemington-Harrington

Kaplan-Meier

Avantages

- Simple à interpréter.
- Permet d'estimer S(t).

• Inconvénients

- Pas de formule-Fonction.
- Ne permet pas d'estimer le « Hazard ratio »
- Que <u>quelques</u> <u>catégoriques</u> X

Autres Modèles Non-paramètriques

- Estimateur de **Breslow** du risque cumulé.
- Estimateur de Nelson-Aalen du risque cumulé.
- Estimateur de **Harrington-Fleming** du risque cumulé.
- Estimation des variances.
- Life tables.

TP2:

- Subdiviser la data en deux groupes (ou plus) selon une variable.
- Implémenter KM pour les deux groupes et tracer KM courbe.
- Tester l'hypothèse nulle par le Log-Rank test
- Comparer vos résultats avec ceux trouver par les bibliothèques existantes.