Answers and hints

The answer, where one is given, is designated by the prefix A; for example, the answer to Q1.1 is A1.1. In some cases a hint to the method of solution is included.

Chapter 1

A1.1 Use a subscript notation, and so consider

(a)
$$\frac{\partial}{\partial x_i}(\phi u_i);$$
 (b) $\varepsilon_{ijk}\frac{\partial}{\partial x_j}(\phi u_k);$ (c) $\varepsilon_{ijk}u_j\left(\varepsilon_{klm}\frac{\partial u_m}{\partial x_l}\right);$

(d)
$$\varepsilon_{ijk} \frac{\partial}{\partial x_j} (\varepsilon_{klm} u_l v_m)$$
.

In (c) and (d) use $\varepsilon_{ijk}\varepsilon_{klm} = \varepsilon_{ijk}\varepsilon_{lmk} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$.

- A1.2 In $\int_{\mathbf{V}} \nabla \cdot \mathbf{a} dv = \int_{\mathbf{S}} \mathbf{a} \cdot \mathbf{n} ds$ write $\mathbf{a} = \phi \mathbf{c}$; $\mathbf{a} = \mathbf{u} \wedge \mathbf{c}$, where in each \mathbf{c} is an *arbitrary* constant vector.
- A1.3 Consider $\int_{S} A_{i} \mathbf{u} \cdot \mathbf{n} ds = \int_{S} (A_{i} \mathbf{u}) \cdot \mathbf{n} ds$ for each *i*.
- A1.4 Write

$$\frac{\mathrm{d}U_i}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left\{ u_i(x_1(t), x_2(t), x_3(t), t) \right\} = \dot{x}_j \frac{\partial u_i}{\partial x_j} + \frac{\partial u_i}{\partial t}.$$

- A1.5 Find $\partial F/\partial t + \mathbf{u} \cdot \nabla F$ directly; note that, for both, $\nabla \cdot \mathbf{u} = 0$.
- A1.6 (a) Find $\mathbf{u} = d\mathbf{x}/dt$ and introduce $\mathbf{x} \equiv (x, y, z)$.
 - (b) Find $d\mathbf{u}/dt \equiv (4x + 16t^2x, -2y + 4t^2y, -2z + 4t^2z)$.
 - (c) Find $\partial \mathbf{u}/\partial t \equiv (4x, -2y, -2z)$.
 - (d) Follows directly.
- A1.8 $\mathbf{u} \equiv (\alpha x, \beta y, \gamma z); \nabla \cdot \mathbf{u} = \alpha + \beta + \gamma = 0.$
- A1.9 $\nabla \cdot \mathbf{u} = 3f + rf'$ so $f(r) = A/r^3$ (A is an arbitrary constant).

A1.10 From

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}t} = -\frac{1}{\rho}\nabla P + \mathbf{F}, \quad \nabla P \equiv \rho(-x - xt^2, -y - yt^2, 2z - 4zt^2 - g)$$

so
$$P = -\frac{1}{2}\rho(x^2 + y^2)(1 + t^2) + \rho z^2(1 - 2t^2) - \rho gz + P_0(t)$$

- A1.11 From $(1/\rho)\nabla P \equiv (0, 0, -g)$, then $P = P_a + \rho g(h_0 z)$; $P(0) = P_a + \rho g h_0$.
- A1.12 Stokes' Theorem gives

$$\oint_{C} \mathbf{u} \cdot d\mathbf{\ell} = \int_{S} (\nabla \wedge \mathbf{u}) \cdot \mathbf{n} ds \approx (\mathbf{\omega} \cdot \mathbf{n}) \pi a^{2} \text{ so } \mathbf{\Omega} \cdot \mathbf{n} = \frac{1}{2} \mathbf{\omega} \cdot \mathbf{n};$$

but **n** is arbitrary so $\Omega = \frac{1}{2}\omega$.

NB
$$\oint_{C} \mathbf{u} \cdot d\boldsymbol{\ell} = \oint_{C} \mathbf{U} \cdot d\boldsymbol{\ell} + \oint_{C} (\mathbf{\Omega} \wedge \mathbf{r}) \cdot d\boldsymbol{\ell} = \mathbf{\Omega} \cdot \oint_{C} \mathbf{r} \wedge d\boldsymbol{\ell} = \mathbf{\Omega} \cdot \mathbf{n} \int_{0}^{2\pi} a^{2} d\theta.$$

- A1.13 $\omega \equiv (0, U'(z), (0); \omega \equiv (0, 0, -U'(y)).$
- A1.14 Use $\mathbf{u} \wedge \mathbf{\omega} = \frac{1}{2} \nabla (\mathbf{u} \cdot \mathbf{u}) (\mathbf{u} \cdot \nabla) \mathbf{u}$ and

$$\frac{1}{\rho} \nabla P = \nabla \left(\int \frac{\mathrm{d}P}{\rho} \right)$$

to give

$$\frac{\partial \mathbf{u}}{\partial t} - \mathbf{u} \wedge \mathbf{\omega} = -\nabla \left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u} + \int \frac{\mathrm{d}P}{\rho} + \Omega \right);$$

$$\operatorname{curl}: \frac{\partial \mathbf{\omega}}{\partial t} - \nabla \wedge (\mathbf{u} \wedge \mathbf{\omega}) = \mathbf{0}$$

and use Q1.1 (d) with $\nabla \cdot \mathbf{u} = 0$, $\nabla \cdot \boldsymbol{\omega} = 0$. In 2D, $\boldsymbol{\omega}$ is orthogonal to ∇ so $\boldsymbol{\omega} \cdot \nabla \equiv 0$; then $D\boldsymbol{\omega}/Dt = \mathbf{0}$.

A1.15 As for A1.14, but with

$$\nabla \wedge \left(\frac{1}{\rho} \nabla P\right) = \frac{1}{\rho} \nabla \wedge (\nabla P) + \nabla(\rho^{-1}) \wedge (\nabla P),$$

and multiply by ρ^{-1} . For $P = P(\rho)$, then $\nabla(\rho^{-1}) \wedge (\nabla P) = \mathbf{0}$.

A1.16 $\omega \equiv (u/r, -\theta u', u')$.

A1.17
$$\omega \equiv \begin{cases} (0,0,\omega), & 0 \le r < a; \\ \mathbf{0}, & r > a \end{cases}$$

$$\frac{P}{\rho} + \Omega = \begin{cases} P_0/\rho + \frac{1}{8}\omega^2(r^2 - 2a^2), & 0 \le r \le a \\ P_0/\rho - \frac{1}{8}\omega^2 \frac{a^4}{r^2}, & r > a. \end{cases}$$

Must have

$$P_0 > \frac{\rho}{8}\omega^2 a^2.$$

A1.18 Consider

$$\frac{1}{\rho} \frac{\partial P}{\partial x_i} = \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}\rho} \frac{\partial \rho}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\int \frac{\mathrm{d}P}{\rho} \right).$$

- (a) $\mathbf{x} \equiv (x_0 e^{ct}, y_0 e^{-ct}, z_0), xy = \text{constant};$ A1.19
 - (b) $\mathbf{x} = (x_0 \exp(t^2), y_0 \exp(-t^2), z_0), xy = \text{constant};$
 - (c) $\mathbf{x} \equiv (1 + t + (x_0 1)e^t, y_0e^{-t}, z_0), y(x t) = \text{constant}$ (at fixed t):

(d)
$$\mathbf{x} = \left(\frac{x_0}{1 - cx_0 t}, \frac{y_0}{1 - cy_0 t}, z_0 (1 - cx_0 t)^2 (1 - cy_0 t)^2\right),$$

 $y = x + Axy$
with $(1 - Ax)^2 = Bzx^4$ where A, B are arbitrary constants.

A1.20 (a)
$$\psi = cxy$$
; (b) $\psi = 2xyt$; (c) $\psi = (x - t)y$.

(b)
$$\psi = 2xyt$$
;

(c)
$$\psi = (x - t)y$$

A1.21
$$\frac{dy}{dx} = \frac{v}{u} = -\psi_x/\psi_y$$
 so $\frac{d}{dx} \{\psi(x, y(x))\} = 0$; $\psi = \text{constant}$.

A1.22 Write

$$u = \frac{1}{r}\psi_{\theta}, \ v = -\psi_{r}; \ \psi = rU\sin\theta.$$

A1.23 (a)
$$u = \frac{1}{r}\psi_z$$
, $w = -\frac{1}{r}\psi_r$; (b) $v = r\psi_z$, $w = -\psi_\theta$.

A1.24 (a) Write $u_k = b_k a_i x_i + a_k b_i x_j$ and form $\varepsilon_{ijk} \partial u_k / \partial x_j$. Then $u_{\nu} = \partial \phi / \partial x_{\nu}$ yields

$$\phi = (\mathbf{a} \cdot \mathbf{x})(\mathbf{b} \cdot \mathbf{x}) \ (+ \text{constant}).$$

(b)
$$\phi = \frac{yz}{x^2 + y^2}$$
 (+ constant).

A1.25
$$\nabla \cdot \mathbf{u} = 0$$
 yields $u = \psi_y$, $v = -\psi_x$; $\nabla \wedge \mathbf{u} = \mathbf{0}$ so $\mathbf{u} = \nabla \phi$, then $u = \phi_x$, $v = \phi_y$: $\phi_x = \psi_y$, $\phi_y = -\psi_x$. Thus $\phi + i\psi = w(z)$; then $\frac{\partial}{\partial x} w = \frac{\partial}{\partial x} (\phi + i\psi)$ gives $\frac{\mathrm{d}w}{\mathrm{d}z} = u - iv$.

Here $w = Ue^{i\alpha} = u - iv$, a uniform flow of speed U(t) at $-\alpha$ to the x-axis.

A1.27 Use
$$\mathbf{u} = \frac{d\mathbf{x}}{dt} \equiv \left(\frac{d\mathbf{x}_{\perp}}{dt}, \frac{dz}{dt}\right) = (\mathbf{u}_{\perp}, w).$$

A1.28 With $P_s - P_a = \Gamma h'' = (1 + h'^2)^{3/2}$ where $P = P_s$ on z = h(x) and $P_s = P_b - \rho g h$ ($P = P_b(x)$ on z = 0). For equilibrium, $P_b = \text{constant}$. Thus

$$\Gamma h'' = (P_b - P_a - \rho g h)(1 + h'^2)^{3/2}, -x_0 \le x \le x_0.$$

A1.29 Similar to A1.28:

$$P_b - P_a - \rho g h = \Gamma \left\{ \frac{h''}{(1 + h'^2)^{3/2}} + \frac{h'}{r(1 + h'^2)^{1/2}} \right\},\,$$

and then for $\varepsilon \to 0$:

$$H'' + H'/R = \beta - \alpha H$$
, $\beta = r_0^2 (P_b - P_a)/\Gamma h_0$.

Hence $H = \beta/\alpha + AJ_0(\sqrt{\alpha}R)$ so

$$A + \beta/\alpha = 1; \quad \beta/\alpha + (1 - \beta/\alpha)J_0(\sqrt{\alpha}) = 0;$$

$$H'(1) = (\sqrt{\alpha} - \beta/\sqrt{\alpha})J'_0(\sqrt{\alpha}).$$

This solution requires $0 < \beta/\alpha < 1$ with $J_0(\sqrt{\alpha}) < 0$, $J_0'(\sqrt{\alpha}) < 0$ which gives $\alpha_0 < \alpha < \alpha_1$.

- A1.31 (a) $I'(x) = x^{-1} \{3 \exp(x^3) 2 \exp(x^2)\};$ (b) n = 4.
- A1.32 Euler's equation leads to

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho \mathbf{u} \cdot \mathbf{u} \right) + \rho \mathbf{u} \cdot \{ (\mathbf{u} \cdot \nabla) \mathbf{u} \} = -\mathbf{u} \cdot \nabla (P + \rho \Omega)$$

with

$$\rho \mathbf{u} \cdot \{(\mathbf{u} \cdot \nabla)\mathbf{u}\} = \nabla \cdot \left\{ \frac{1}{2} (\rho \mathbf{u} \cdot \mathbf{u})\mathbf{u} \right\},$$
$$\mathbf{u} \cdot \nabla (P + \rho \Omega) = \nabla \cdot \{(P + \rho \Omega)\mathbf{u}\}$$

since $\nabla \cdot \mathbf{u} = 0$.

- A1.33 (a) Write $T = \frac{1}{2} \int_{V} \rho \mathbf{u} \cdot \nabla \phi dv = \frac{1}{2} \int_{V} \nabla \cdot (\rho \phi \mathbf{u}) dv$ since $\nabla \cdot \mathbf{u} = 0$.
 - (b) Since the conditions on S are given, either $\Phi = 0$ or U = 0 on S. Thus

$$\int\limits_{V} |\mathbf{U}|^2 dv = 0 \Rightarrow \mathbf{U} = \mathbf{0} \text{ in V}; \text{ that is, } \mathbf{u}_1 \equiv \mathbf{u}_2.$$

A1.34
$$\psi \to ch\psi$$
; $\phi \to c\lambda\phi$; $w \to \frac{ch}{\lambda}w$; $w = \phi_z \to w = \left(\frac{\lambda}{h}\right)^2\phi_z$.

A1.35 The Reynolds number is $\rho \lambda \sqrt{gh_0}/\mu$.

A1.36
$$p - \varepsilon \eta = -\varepsilon \delta^2 W \left\{ [(1 + \varepsilon^2 \delta^2 \eta_\theta^2 / r^2) \eta_{rr} + (1 + \varepsilon^2 \delta^2 \eta_r^2) (r \eta_r + \eta_{\theta\theta}) / r^2 - 2\varepsilon^2 \delta^2 \left(\eta_{r\theta} - \frac{1}{r} \eta_\theta \right) \eta_r \eta_\theta / r^2] / (1 + \varepsilon^2 \delta^2 \eta_r^2 + \varepsilon^2 \delta^2 \eta_\theta^2 / r^2)^{3/2} \right\}$$

and then $p \to \varepsilon p$ with $\varepsilon \to 0$ yields

$$p - \eta = -\delta^2 W \left(\eta_{rr} + \frac{1}{r} \eta_r + \frac{1}{r^2} \eta_{\theta\theta} \right).$$

A1.37
$$\phi_t + \eta + \frac{1}{2}\varepsilon(u^2 + v^2 + \delta^2 w^2) = 0.$$

A1.38
$$\phi_{zz} + \delta^2 \nabla_{\perp}^2 \phi = 0$$
; $\phi_z = \delta^2 \{ \eta_t + \varepsilon (\mathbf{u}_{\perp} \cdot \nabla_{\perp}) \eta \}$ on $z = 1 + \varepsilon \eta$;

$$\phi_t + \eta + \frac{1}{2}\varepsilon \left\{ (\nabla_\perp \phi)^2 + \frac{1}{\delta^2} \phi_z^2 \right\} = 0 \text{ on } z = 1 + \varepsilon \eta;$$

$$\phi_z = \delta^2 (\mathbf{u}_\perp \cdot \nabla) b \text{ on } z = b. \text{ NB } \mathbf{u}_\perp = \nabla_\perp \phi.$$

For $\varepsilon \to 0$: $\phi_{zz} + \delta^2 \nabla_{\perp}^2 \phi = 0$; $\phi_z = \delta^2 \eta_t$ and $\phi_t + \eta = 0$ (or $p = \eta$) on z = 1; $\phi_z = \delta^2 (\mathbf{u}_{\perp} \cdot \nabla) b$ on z = b. With surface tension; $p - \eta = -\delta^2 W \nabla_{\perp}^2 \eta$ on z = 1.

A1.39
$$u = f(x - ct) + g(x + ct);$$

$$u = \frac{1}{2} \{ p(x - ct) + p(x + ct) \} + \frac{1}{2c} \int_{x-ct}^{x+ct} q(y) dy.$$

- A1.40 The right- and left-going waves no longer overlap.
- A1.41 Dispersion relation is $\omega = k k^3 ik^2$, which is dispersive $(\mathcal{R}(\omega/k) = 1 k^2)$ and dissipative (decaying as $\exp(-k^2t)$).
- A1.42 First equation gives $\omega = k k^3$; second gives $\omega = k/(1 + k^2)$ so $\omega = k k^3 + O(k^5)$ as $k \to 0$ (long waves) but $\omega \sim 1/k$ as $k \to \infty$; note that $\omega > 0$ for $\forall k > 0$ in the second case, but not in the first.
- A1.43

$$u(x,t) = \begin{cases} \alpha(x-t)/(1+\alpha t), & 0 \le (x-t)/(1+\alpha t) \le 1, \\ \alpha(2-x+t)/(1-\alpha t), & 1 \le (x-t-2\alpha t)/(1-\alpha t) \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

Figure A.1.

A1.44
$$u = \cos{\{\pi(x - ut)\}}$$
 for $u(x, t)$;
 $u_x = -\pi \sin{\{\pi(x - ut)\}}/[1 - \pi t \sin{\{\pi(x - ut)\}}]$.
The solution becomes multi-valued for $t > \pi^{-1}$.

A1.45 (a) x = O(1): $f \sim 1 + \varepsilon(x^{-1} - x)$:

$$x = \varepsilon X : f \sim \left(1 - \frac{1}{1 + X} + e^{-X}\right)^{-1};$$

$$x = \chi/\varepsilon : f \sim (1 + \chi)^{-1}.$$

The first and second match: 1 + 1/x; the first and third match: $1 - \chi$.

(b)
$$x = O(1)$$
: $f \sim 1 - \frac{1}{2}\varepsilon x + \varepsilon^2 (\frac{3}{8}x^2 - \frac{1}{2}x^4)$;
 $x = \varepsilon^{-1/3}X$: $f \sim 1 - \frac{1}{2}\varepsilon^{2/3}(X + X^4)$;
 $X = \varepsilon^{-1/6}\chi$: $f \sim (1 + \chi^4)^{-1/2} - \frac{1}{2}\varepsilon^{1/2}\chi(1 + \chi^4)^{-3/2}$.

The first and second match: $1 - \frac{1}{2} \varepsilon^{2/3} (X + X^4)$; the second and third match: $1 - \frac{1}{2}\chi^4 - \frac{1}{2}\varepsilon^{1/2}\chi^2$.

(a) $f \sim 1 - \frac{1}{2}\varepsilon x - \frac{1}{2}e^{-x/\varepsilon}$

A1.46 (a)
$$f \sim 1 - \frac{1}{2} \varepsilon x - \frac{1}{2} e^{-x/\varepsilon}$$

(b)
$$x = \varepsilon X$$
: $f \sim (1 - e^{-X})^{1/2} - \frac{1}{2}\varepsilon^2 X (1 - e^{-X})^{-1/2}$

(c)
$$x = \chi/\varepsilon$$
: $f \sim (1-\chi)^{1/2} - \frac{1}{2}\varepsilon\chi^3(1-\chi)^{-1/2}$. The first and second match: $1 - \frac{1}{2}\varepsilon^2X - \frac{1}{2}e^{-X}$; the first and third match: $1 - \frac{1}{2}\chi$. From (c), $\chi \leq \chi_0(\varepsilon)$ where $\chi_0 \sim 1$ (since $f = 0$ at $\chi = \chi_0$); try $\chi_0 \sim 1 + \varepsilon\alpha$ then $\alpha = -1$; that is, $\chi_0 \sim \varepsilon^{-1} - 1$.

A1.47
$$2u_X + 2uu_\xi + u_{\xi\xi} = 0.$$

$$A1.48 \quad 2u_{\tau} - 2uu_{\zeta} - u_{\zeta\zeta\zeta} = 0.$$

A1.49
$$2f_{\tau} + 2ff_{\xi} + f_{\xi\xi\xi} = 0; \quad 2g_{\tau} - 2gg_{\zeta} - g_{\zeta\zeta\zeta} = 0; \\ \phi_{\xi\zeta} = -f_{\xi}g_{\zeta} - \frac{1}{2} (fg_{\zeta\zeta} + gf_{\xi\xi}).$$

Then

$$\phi = -\frac{1}{2} \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \zeta} \right)^2 \left(\int f d\xi \right) \left(\int g d\zeta \right) \quad (= 0 \text{ if } f \equiv 0 \text{ or } g \equiv 0).$$

- A1.50 $c_p^2 = 1 k^{-2}$; $c_g = 1/c_p$; $\omega^2 = k^2 1$; so $c_g = d\omega/dk = k/\omega = 1/c_p$; $A_{10} = -4k^2|A_{01}|^2$ and $A_{12} = 0$.
- A1.51 Introduce $\xi = x c_1 t$, $\tau = \varepsilon^2 t$; then $u \sim u_0(\xi, \tau)$ satisfies

$$u_{0\tau} + u_0 u_{0\xi} = -\lambda u_0$$
, $\lambda = (c - c_1)/(c_2 - c_1)$, $u_0 \to 0$ as $\xi \to +\infty$.

Thus $u_0 = e^{-\lambda \tau} f(\xi + u_0/\lambda)$; exponential decay requires $\lambda > 0$. Similarly, with $\zeta = x - c_2 t$, $\tau = \varepsilon^2 t$:

$$u_{0\tau} + u_0 u_{0\zeta} = -\mu u_0, \quad \mu = (c_2 - c)/(c_2 - c_1).$$

Thus $\lambda > 0$, $\mu > 0$ if $c_1 < c < c_2$.

- A1.52 $\lambda = (c_2 c)(c c_1) > 0; \ \phi = \frac{1}{2} \left\{ 1 \tanh\left(\frac{X \frac{1}{2}T X_0}{4\lambda}\right) \right\}$ where X_0 is an arbitrary constant.
- A1.53 $2G_{\tau\eta} + G_{\eta}^2 + 2GG_{\eta\eta} G_{\eta\eta\eta\eta} = 0;$ $f = \frac{1}{2} \int G(\eta, \tau) d\eta, g = -\frac{1}{2} \int F(\xi, \tau) d\xi.$
- A1.54 $\omega^2 U_{0\theta\theta}^2 + k^2 U_{0\theta\theta} + k^4 U_{0\theta\theta\theta\theta} + U_0 = 0$; then $\omega^2 = k^4 k^2 + 1$. U_1 is periodic if

$$A\omega_T + 2\omega A_T + 4k^3 A_X + 6k^2 k_X A - k_X A - 2k A_X - 3iA|A|^2 = 0,$$

and use $k_T + k_X \omega'(k) = 0$. Finally

$$(\alpha^2)_T + (\omega'\alpha^2)_X = 0; \quad \beta_T + \omega'\beta_X = \frac{3}{2\omega}\alpha^2.$$

- A1.55 (a) $u = -\frac{1}{2}c \operatorname{sech}^2 \left\{ \frac{1}{2} \sqrt{c}(x ct x_0) \right\};$
 - (b) $u = \frac{1}{2}u_0\{1 \tanh\left[\frac{1}{4}u_0(x \frac{1}{2}u_0t x_0)\right]\}$ so that $c = \frac{1}{2}u_0$ (see A1.52); in both, x_0 is an arbitrary constant.

Chapter 2

A2.1 For example, find $dc_p^2/d\lambda$ and then sketch $y = W(t + \lambda s^2)$, $y = (t - \lambda s^2)/\lambda^2$ (where $t = \tanh \lambda$, $s = \mathrm{sech} \lambda$). Show that one point of intersection exists for $\lambda \in (0, \infty)$ provided $W < \frac{1}{3}$. As $\lambda \to \infty$, $c_p \sim \pm \sqrt{\lambda W}$.

A2.2 From A2.1, obtain

$$\left(\frac{c_p}{c_m}\right)^2 = \left(\frac{t}{t_m}\right) \left\{ \frac{1}{2}(l^{-1} + l) + \frac{\lambda_m}{s_m}(l^{-1} - l) \right\};$$

for moderate λ_m (and λ), then $t/t_m \approx 1$, $\lambda_m/s_m \ll 1$, so

$$\left(\frac{c_p}{c_m}\right)^2 \approx \frac{1}{2}(l^{-1}+l).$$

The minimum is, of course, at l=1, where $\lambda=\lambda_m=1/\sqrt{W}$.

- A2.3 $U(z) = A\delta\omega \cosh \delta kz / \sinh \delta k$; $P(z) = A\delta\omega^2 \cosh \delta kz / (k \sinh \delta k)$.
- A2.4 In physical coords, \hat{X} , \hat{Z} :

$$\left(\frac{\hat{X}}{\cosh \delta k z_0}\right)^2 + \left(\frac{\hat{Z}}{\sinh \delta k z_0}\right)^2 = \text{constant.}$$

Hence approaches a circular path as $\delta k \to \infty$ (short waves).

- A2.5 The problem is $\phi_{zz} + \delta^2 \phi_{xx} = 0$; $\phi_z = 0$ on z = 0 with $\phi_z = \delta^2 \eta_t$ and $\phi_t + \eta = 0$ both on z = 1. Write $\phi = X(x, t)Z(z)$.
- A2.6 From example, $A(t) \equiv 0$, $B(t) = B_0 \sin \omega t$; then

$$\eta \propto \sin \omega t \sin kx \left(= \frac{1}{2} \cos(kx - \omega t) - \frac{1}{2} \cos(kx + \omega t) \right).$$

- A2.7 It follows that $W'' \delta^2(k^2 + l^2)W = 0$, so k^2 is replaced by $k^2 + l^2$; wavefront is kx + ly = const. or $\mathbf{n} \cdot \mathbf{x} = \text{constant}$, where $\mathbf{n} \propto \mathbf{k}$.
- A2.8 Use Laplace's equation: $\phi_{zz} + \delta^2(\phi_{xx} + \phi_{yy}) = 0$ with boundary conditions as in A2.5 plus $\phi_y = 0$ on y = 0, l. Then $\alpha = n\pi/l$ and $\omega^2 = (\sigma/\delta^2) \tanh \sigma$, where $\sigma^2 = \delta^2(k^2 + \alpha^2)$.
- A2.9 Cf. A2.8; $\alpha = n\pi/l$, $\beta = m\pi/L$, $\omega^2 = (\sigma/\delta^2) \tanh \sigma$, $\sigma^2 = \delta^2(\alpha^2 + \beta^2)$.
- A2.10 $\omega^2 = (\sigma/\delta^2) \tanh \sigma$, $\sigma^2 = \delta^2(k^2 + l^2 + m^2 + n^2)$ with mk + nl = 0; so $(m, n) \cdot (k, l) = 0$: the wave-number vectors are perpendicular. Wave propagates in the direction (k, l) at a speed $\omega/|\mathbf{k}|$; that is, $\delta\sqrt{k^2 + l^2 + m^2 + n^2}/\sqrt{k^2 + l^2}$, which is *faster* than in the absence of waves along the crests (for which m = n = 0).
- A2.11 Equations are

$$u_t + u_0 u_x = -p_x;$$
 $\delta^2(w_t + u_0 w_x) = -p_z;$ $u_x + w_z = 0$

with

$$w = 0$$
 on $z = 0$

and

$$w = \eta_t + u_0 \eta_x$$
, $p = \eta - \delta^2 W \eta_{xx}$ on $z = 1$.

Then $(\omega - u_0 k)^2 = (1 + \delta^2 k^2 W)(\tanh \delta k)/\delta k = \sigma^2$; speed of the waves is $u_0 + \sigma/k$.

A2.12 Cf. A2.11, but with $u_t + u_0 u_x + v_0 u_y = -p_x$, etc.; then $\Omega^2 = (\omega - u_0 k - v_0 l)^2 = (1 + \sigma^2 W)(\tanh \sigma)/\sigma$, $\sigma^2 = \delta^2 (k^2 + l^2)$. Also

$$kx + ly - \omega t = \mathbf{k} \cdot \mathbf{x} - \left\{ \mathbf{U} + \frac{\Omega \mathbf{k}}{|\mathbf{k}|^2} \right\} \cdot \mathbf{k}t, \ \mathbf{U} \equiv (u_0, v_0),$$

so velocity as required. Stationary implies independent of time (t), so $\mathbf{U} = -\Omega \mathbf{k}/|\mathbf{k}|^2$.

- A2.13 To be valid for all t, the solution takes the form $\eta = A \exp\{i(kx \omega t)\} + R \exp\{-i(k_-x + \omega t)\} + c.c.$ in x < 0 and $\eta = T \exp\{i(k_+x \omega t)\} + c.c.$ in x > 0, where $\omega^2 = (k/\delta) \tanh(\delta k)$ for (k, δ_-) , (k_-, δ_-) , (k_+, δ_+) with $\delta_+ = h_+/\lambda$; that is, $k_- = k$. Continuity of η gives A + R = T; continuity of mass flux is $u_-h_- = u_+h_+$, where $u \propto \eta_x$, so $kh_-(A R) = k_+h_+T$. Thus $R = A(kh_- k_+h_+)/(kh_- + k_+h_+)$ and $T = 2Akh_-/(kh_- + k_+h_+)$.
- A2.14 Stable only if ω is real, from which condition follows. The minimum is at $k = \sqrt{(1-\lambda)/W}$ (for k > 0).

A2.16 (b)
$$I(\sigma) \sim \int_{a}^{a+\varepsilon} f(x)e^{i\delta\alpha(x)}dx = e^{i\sigma\alpha(a)} \int_{0}^{\hat{u}} e^{i\sigma u^{2}} f(x) \frac{dx}{du} du$$

$$= e^{i\sigma\alpha(a)} \int_{0}^{\hat{u}} e^{i\sigma u^{2}} \{c_{0} + uF(u)\} du = e^{i\sigma\alpha(a)} (I_{1} + I_{2}).$$
Then

$$I_1 = \frac{1}{2}c_0\sqrt{\frac{\pi}{\sigma}}e^{i\pi/4} + O(\sigma^{-1}); I_2 = O(\sigma^{-1}),$$

with $c_0 = b_1 f(a)$ and $\frac{1}{2} b_1^2 \alpha''(a) = 1$; required result follows.

A2.18
$$\eta(r, t) = \int_0^\infty p\bar{f}(p)\cos(tp)J_0(rp)dp; \quad f(r) = \int_0^\infty p\bar{f}(p)J_0(rp)dp.$$

A2.19
$$\eta(r,t) = \int_0^\infty p\bar{f}(p)\cos(t\sqrt{p/\delta})J_0(rp)dp$$
. NB: $\bar{w} = \bar{\eta}_t e^{\delta p(z-1)}$.

A2.20
$$\omega^2 = (\sigma \tanh \sigma)/\delta^2$$
; $J'_n(\sigma a) = 0$.
If $n = 0$, then solution is independent of θ .

A2.22
$$\eta(x,t) + \int_{-\infty}^{\infty} F(k) \{ \exp[ik(x-c_p t)] + \exp[ik(x+c_p t)] \} dk$$

where

$$F(x) = \frac{1}{4\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx.$$

For $f(x) = A\delta(x)$ then

$$\eta(x, t) = \frac{A}{\pi} \int_{0}^{\infty} \cos kx \cos \omega t \, dk$$
 (where $c_p(k) = \omega(k)/k$).

A2.23
$$\omega \sim k(1 - \frac{1}{6}\delta^2 k^2)$$
: $u_t + u_x + \frac{1}{6}\delta^2 u_{xxx} = 0$.

A2.24
$$\eta(x, t) \sim \frac{A_0}{2\pi} \int_{-\infty}^{\infty} \exp\{i[k(x - t) + \frac{1}{6}\delta^2 k^3 t]\} dk,$$

$$F(k) \sim \frac{1}{4\pi} \int_{-\infty}^{\infty} \eta_0(x) dx = \frac{A_0}{2\pi}.$$

Then

$$\eta \sim A_0 \left(\frac{2}{\delta^2 t}\right)^{1/3} \operatorname{Ai} \left\{ \left(\frac{2}{\delta^2 t}\right)^{1/3} (x-t) \right\}$$

where

Ai(y) =
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left\{i\left(ly + \frac{l^3}{3}\right)\right\} dl;$$

exponential decay ahead of x = t, oscillatory behind; amplitude decays like $t^{-1/3}$ at x = t.

A2.25 Since $\psi = 0$ on z = 0, then $W(\cdot, t)$ is real; that is, $\overline{W(Z, t)} = W(\overline{Z}, t)$.

A2.27
$$\omega^2 = k(1 + \delta^2 k^2 W_e)/\delta;$$

$$c_g = \frac{1}{2} \left(\frac{1 + 3\delta^2 k^2 W_e}{1 + \delta^2 k^2 W_e} \right).$$

A2.28
$$A(X, T) = A_0 \{1 + \exp[iX(X - \omega'T)]\}.$$

A2.29 Waves in (0, x):

$$\int_{0}^{x} k dx, \text{ so } \frac{\partial}{\partial t} \int_{0}^{x} k dx = \omega_{0} - \omega = \text{net waves/unit time entering } (0, x).$$

$$E(k), k = k(x, t)$$
, yields $E_t + \omega'(k)E_x = 0$.

A2.30
$$[W_0 W_{1z} - W_{0z} W_1]_0^1 + \int_0^1 W_1 (W_{0zz} - \delta^2 k^2 W_0) dz$$

$$= -2k\omega \delta^2 A_{0x} \int_0^1 W_0 \frac{\sinh \delta kz}{\sinh \delta k} dz;$$

and

$$\begin{split} W_0(1) &= -\mathrm{i}\omega A_0, \quad W_1(1) = -\mathrm{i}\omega A_1 + A_{0T}, \quad W_{0z}(1) = \frac{\mathrm{i}k^2}{\omega} A_0, \\ W_{1z}(1) &= -\frac{k}{\omega} \left\{ \mathrm{i}k A_1 + A_{0X} + \frac{k}{\omega} A_{0T} \right\} - \frac{k}{\omega} A_{0X}, \\ \int_0^1 W_0 \frac{\sinh \delta kz}{\sinh \delta k} \, \mathrm{d}z &= -\frac{-\mathrm{i}\omega A_0}{2 \sinh^2 \delta k} \left\{ \frac{\sinh 2\delta k}{2\delta k} - 1 \right\}. \end{split}$$

Finally:

$$A_{0T} + \frac{\omega}{2k} \left\{ 1 + \delta k (\coth \delta k - \tanh \delta k) \right\} A_{0X} = 0.$$

A2.31
$$\mathscr{E} = \int_{0}^{1+\varepsilon\eta} \left\{ \frac{1}{2} \varepsilon^{2} (u^{2} + v^{2} + \delta^{2} w^{2}) + z \right\} dz; \quad \bar{\mathscr{E}} \sim \frac{1}{2} + \frac{1}{2} \varepsilon^{2} A^{2};$$

$$\mathscr{F} = \varepsilon \int_{0}^{1+\varepsilon\eta} (u, v) \left\{ \frac{P_{a}}{\rho g h_{0}} + 1 - \varepsilon \phi_{t} \right\} dz$$
and
$$c_{g} = \frac{1}{2} \frac{\omega}{|\mathbf{k}|} \left(1 + \frac{2\sigma}{\sinh 2\sigma} \right), \quad \sigma^{2} = \delta^{2} (k^{2} + l^{2}).$$

A2.32
$$\mathscr{E}_0 = \frac{1}{2}$$
, $\mathscr{E}_w = \frac{1}{2}\varepsilon^2 A^2$, $\mathscr{F}_0 = \frac{1}{2}\frac{\varepsilon^2 A^2}{\omega} \mathbf{k}$, $\mathscr{F}_w = \frac{1}{2}\varepsilon^2 A^2 c_g \frac{\mathbf{k}}{|\mathbf{k}|}$.

A2.33
$$8\eta_{\xi\xi} + \left(\frac{d'}{\sqrt{d}}\right)(\eta_{\xi} + \eta_{\xi}) = 0;$$

$$\frac{2}{\sqrt{\alpha}} \{\sqrt{x_0} - \sqrt{x_0 - x}\} \pm t \quad (x \le x_0).$$

A2.34
$$16H_{\xi\zeta} - d^{1/4}(d'/d^{1/4})'H = 0;$$

(a) $H_{\xi\zeta} = 0;$ (b) $16H_{\xi\zeta} - \alpha^2 H = 0.$

A2.35
$$\phi_{zz} + \delta^2 \phi_{xx} = 0$$
; $\phi_z + \delta^2 \phi_{tt} = 0$ on $z = 1$; $\phi_z = \alpha \delta^2 \phi_x$ on $z = \alpha x$ (and $\eta = -\phi_t$ on $z = 1$). Set $\phi = F(x, z)e^{-i\omega t}$ with $F = (A_1e^{ikx} + B_1e^{-ikx})e^{\delta kz} + (A_2e^{i\delta kz} + B_2e^{-i\delta kz})e^{kx}$ and $k = \delta\omega^2$, $\alpha\delta = 1$.

A2.36 As in A2.35, but with

$$F = \left(A_1 e^{ikx} + B_1 e^{-ikx}\right) e^{\delta kz} + \left(A_2 e^{i\delta lz} + B_2 e^{-i\delta lz}\right) e^{lx} + \left(A_3 e^{i\delta mz} + B_3 e^{-i\delta mz}\right) e^{mx}$$

where l, $m = \frac{1}{2}(\sqrt{3} \pm i)k$.

A2.37 Write
$$F = Ae^{ikx+\delta mz} + Be^{mx+i\delta kz} + c.c.$$

where $m = \sqrt{k^2 + l^2}$, $\delta \omega^2 = m$; cf. A2.35.

A2.38
$$\mathbf{c}_{g} \equiv \frac{\delta^{2} \omega}{2\sigma^{2}} \left(1 + \frac{2\sigma D}{\sinh 2\sigma D} \right) (k, l);$$
$$\omega^{2} = \frac{\sigma}{\delta^{2}} \tanh(\sigma D), \quad \sigma = \delta \sqrt{k^{2} + l^{2}}.$$

- A2.39 $\sigma \sim c/\sqrt{D}$ as $D \to 0$; $\sigma \to c$ as $D \to \infty$ (c = constant).
- A2.40 (a) $\Theta = c(X\cos\theta + Y\sin\theta)$ where $\cos\theta + \sin\theta = k$.
 - (b) Singular solution, but still of the form

$$\Theta = \frac{c}{\sqrt{2}}(X+Y).$$

A2.41 Wavefront:
$$l_0 Y \pm \frac{\sigma_0}{\delta \beta} \ln(\cosh \beta X) - \omega T = \text{constant.}$$

Ray: $\mu Y \mp \frac{1}{\beta \sigma_0} \ln|\sinh \beta X| = \text{constant.}$

A2.42 Wavefront:
$$l_0 Y \pm \frac{2}{\delta} \sqrt{-\beta X} - \omega T = \text{constant.}$$

Ray:
$$\mu Y \mp \frac{2}{3\sqrt{\beta}}(-X)^{3/2} = \text{constant.}$$

Amplitude: form
$$A^2 \frac{\partial \omega}{\partial k} = \text{constant}$$
,
where $\omega^2 = (\sigma \tanh(\sigma D))/\delta^2$ and $\sigma = \delta \sqrt{k^2 + (\mu/\delta)^2}$.

A2.43 Rays: $X = \frac{1}{2}X_0\{1 - \sin(\cosh t \pm \mu\sqrt{\beta}Y)\}$; periodic, trapped.

A2.44 Start from

$$\frac{d\Theta}{ds} = 2(p^2 + q^2), \quad \frac{dX}{ds} = 2p, \quad \frac{dY}{ds} = 2q,$$
$$\frac{dp}{ds} = 2cc_X, \quad \frac{dq}{ds} = 2cc_Y$$

where $p = \Theta_X$, $q = \Theta_Y$ (so $p^2 + q^2 = c^2$). Then

$$\frac{dY}{dX} = \frac{p}{q}$$
 and so $Y'' = \frac{c}{p^2}(c_Y - Y'c_X)$ and $\frac{c^2}{p^2} = 1 + (Y')^2$.

(a) Straight path;

(b) Becomes
$$(cY'/\sqrt{1+(Y')^2})' = 0$$
: $cY' \propto \sqrt{1+(Y')^2}$.

A2.45 Time = $\int_a^b c(X, Y) \sqrt{1 + (Y')^2} dX = \int_a^b F(X, Y) dX$; Euler-Lagrange is

$$\frac{\mathrm{d}}{\mathrm{d}X} \left(\frac{\partial F}{\partial Y'} \right) - \frac{\partial F}{\partial Y} = 0$$

which is the required equation.

A2.46 Immediately, $Y' / \sqrt{1 + (Y')^2} = \sin \alpha$, so the result follows.

A2.47 Rays:
$$R = \frac{\mu^2}{\beta} \left\{ 1 + \tan^2 \left[\frac{1}{2} \pi \pm \frac{1}{2} \mu^2 (\theta - \theta_0) \right] \right\}$$

where $R \to \infty$ as $\theta \to \theta_0$; closest approach to $R = 0$ is $R = \mu^2/\beta$
where $\theta = \theta_0 \mp \pi/\mu^2$.

A2.48 Rays:
$$\frac{1}{\sqrt{R_0}} \arctan\left(\sqrt{\frac{R}{R_0}-1}\right) - \sqrt{R-R_0} = \pm \mu \sqrt{\beta}\theta + \text{constant};$$

rays cease to exist at $R = R_0$, at which point $dR/d\theta$ is infinite; the ray is perpendicular to the circle $R = R_0$.

- A2.49 Let $c_g = \lambda c_p$; then $\sin \Theta = 1/(2/\lambda 1)$ which increases as λ increases from $\frac{1}{2}$ to 1 (depth decreasing): the wedge angle increases; $\lambda = 3/4$ yields $\Theta = \arcsin(3/5)$.
- A2.51 Let circle intersect course at Q_i (i = 1, 2); limiting case is when circle touches. Join WQ_i ; draw the perpendicular to WQ_i at W to intersect course at P_i' . Then, by similar triangles, $|PQ_i| = \frac{1}{2}|PP_i'|$, so circle through W, diameter Q_iP_i' : two (i = 1, 2) influence points for a given W.

- A2.52 Let W be at (a, b), then W lies on the circle $(a \frac{3}{4}Ut)^2 + b^2 = \frac{1}{4}U^2t^2$: quadratic in t, given a, b, U.
- A2.53 Circular path: circle of radius R, centre at (0, R), ship at origin. Write P' as $(X, Y) = R(\sin \alpha, 1 \cos \alpha)$, $\alpha = Ut/R$, then W is $(x, y) = \{X r\cos(\alpha + \theta), Y r\sin(\alpha + \theta)\}$; cf. Figure 2.13. Condition of stationary phase is $r = \frac{1}{2}\lambda\cos^2\theta$ (equation 2.122) which gives (x, y). Often written as

$$x/R = \sin(\mu \cos \theta) - \frac{1}{2}\mu \cos^2 \theta \cos(\theta + \mu \cos \theta)$$
$$y/R = 1 - \cos(\mu \cos \theta) - \frac{1}{2}\mu \cos^2 \theta \sin(\theta + \mu \cos \theta)$$

where $\mu = \lambda/R$, $\alpha = \mu \cos \theta$ (equation 2.122). Straight-line course is $R \to \infty$, $R\mu = \lambda$ (fixed).

- A2.54 Use $\Omega = -\delta \sqrt{W|\mathbf{k}|^3}$ and follow Section 2.4.2; roots for $\tan \theta$ always real.
- A2.55 $h = H\{t x/(3\sqrt{h} 2c_0)\}; u = U\{t x/(3u/2 + c_0)\} (c_0 = \sqrt{h_0}).$
- A2.56 u = constant on lines $dx/dt = 3u/2 + c_0$ ($c_0 = \sqrt{h_0}$); consider characteristic through $t = \alpha$, $x = X(\alpha)$, then $u = X'(\alpha)$ on lines

$$x - (3X'(\alpha)/2 + c_0)(t - \alpha) = X(\alpha);$$
 also $h = (X'(\alpha)/2 + c_0)^2$.

- A2.57 I = kZ, with $c'\sqrt{1+H} = \mp \frac{3}{2}$, gives $-k = 2k(k-3\sqrt{k/2})$, which has the solution k = 1; this is the no-shear case.
- A2.58 Set

$$X = \xi + \eta = 2(u - \alpha t), Y = \eta - \xi = 4c, t = (-\frac{1}{2}X + T_Y/Y)/\alpha$$
:

$$T_{XX} = T_{YY} + \frac{1}{Y}T_Y$$

(after one integration + decay conditions). Then c = Y/4, $u = T_Y/Y$, and $x = (X\hat{T}_Y/Y + \frac{1}{2}(\hat{T}_Y/Y)^2 - \frac{1}{2}\hat{T}_X)/2\alpha$ where $\hat{T} = T - \frac{1}{4}XY^2$; $T = AJ_0(\omega Y)\cos(\omega X)$, say, since shoreline is at Y = 0. Maximum run-up is where u = 0; which determines X and hence x. Far from the shoreline is $Y \to \infty$.

- A2.59 First show that J=0 can be written as $t_Y^2 t_X^2 = 0$, then that $t_Y \pm t_X = A\omega^2 \{J_2(\omega Y)\cos(\omega X) \pm J_1(\omega Y)\sin(\omega X)\}/Y \mp \frac{1}{2}$. So J=0, provided $A\omega^3 \ge 1$, first on Y=0.
- A2.60 $u^{+}/u^{-} = 2/(\sqrt{1+8F^{2}}-1) < 1$ for F > 1; form $u^{+2}/h^{+} = \alpha/(\sqrt{1+\alpha}-1)^{3}$, where $\alpha = 8F^{2}$ (> 8) where $\alpha < (\sqrt{1+\alpha}-1)^{3}$ (from, for example, $4 + \alpha > 4\sqrt{1+\alpha}$, $\alpha > 8$). For the bore, move

in the frame which brings the flow ahead of the hydraulic jump (u^{-}) to rest; then the speed of the bore is $U = u^{-}$.

- A2.61 Behind approaching bore, let the depth be h_1 speed u_1 ; thus $u_1 = U(1 h_0/h_1)$. After reflection, let the bore move away at speed V, depth h_2 behind; that is, in contact with the wall. Hence $V = U(h_1 h_0)/(h_2 h_1)$ and $h_2/h_1 = (\sqrt{1 + 8F^2} 1)/2$, where $F = (V + u_1)/\sqrt{h_1}$; thus $(H^2 1)(H 1) = 2HF_1^2$, where $H = h_2/h_1$ and $F_1^2 = U^2(1 h_0/h_1)^2/h_1$.
- A2.62 $R[h] = [uh]; \dot{R}[uh] = [hu^2 + \frac{1}{2}h^2].$
- A2.63 Requires $c^2 = 2a$, $\eta' = -1/(\delta\sqrt{3})$ (Stokes' highest wave) $= -\alpha a$, $c^2 = \tan(\alpha \delta)/\alpha \delta$; this yields $c^2 \approx 1.347$. Now $c^2 = 2(a+b) = \tan(\alpha \delta)/\alpha \delta$, $a+2b = 1/(\alpha \delta\sqrt{3})$, $3(\frac{1}{2}a^2 + \frac{2}{3}ab + \frac{1}{4}b^2) = (c^2 1)(2a + b)$; so $c^2 \approx 1.665$.
- A2.64 Remember, speed of solitary wave here is $1 + \varepsilon c$; speed from general result is $\sqrt{\tan \alpha \delta/\alpha \delta}$ with $\delta \to 0$ and $K = \delta^2/\varepsilon$, which agrees at $O(\varepsilon)$. Simply write i α for α .
- A2.65 (b) m = 1 by direct integration, $u = \operatorname{arcsech}(\cos \phi)$.
 - (c) Use $d/du \equiv (d\phi/du)d/d\phi$; d(snu)/du = cnu dnu; d(dnu)/du = -m snu cnu.
- A2.66 Period of $\sin \phi$, $\cos \phi$ is 2π , hence period of Jacobian elliptic functions is

$$\int_{0}^{2\pi} \frac{d\theta}{\sqrt{1 - m \sin^2 \theta}} = 4 \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - m \sin^2 \theta}} = 4K(m).$$

- (b) Compare the terms in the series expansion in powers of m on each side of the equation.
- (c) Or use properties of F from (b).

A2.67
$$3b = 8K\alpha^2 m$$
, $6a + \left(5 - \frac{1}{m}\right)b = 4c$.

- A2.68 (a) On z = 0, $\mathbf{u} \equiv (\phi_{\xi}, 0)$ and $d\ell = (\mathbf{u}/|\mathbf{u}|)d\xi$, so $C = \int_{-\infty}^{\infty} \phi_{\xi} d\xi$.
 - (b) Use construction given in Figure 2.27; then by Stokes' theorem the integral all around the path is zero (since $\nabla \wedge \mathbf{u} = \mathbf{0}$). But \mathbf{u} on $\xi = \pm \xi_0$ approaches zero as $\xi_0 \to \infty$, so the integral (from r to l) on the surface = integral in (a).
- A2.69 With $\eta = \varepsilon \operatorname{sech}^2(\frac{1}{2}\sqrt{3\varepsilon}\xi)$, then $M \approx I \approx C \approx 4\sqrt{\varepsilon/3}$ and $V \approx T \approx 4/(3\varepsilon\sqrt{3\varepsilon})$.

Variation, with integration by parts in z, yields A2.70

$$\begin{split} \int_{D} \int \left\{ \left[\phi_{t} + \frac{1}{2} (\nabla \phi)^{2} + z \right]_{z=\eta} \delta \eta + \frac{\partial}{\partial t} \int_{b}^{\eta} \delta \phi \mathrm{d}z + \frac{\partial}{\partial x} \int_{b}^{\eta} \phi_{x} \delta \phi \mathrm{d}z \right. \\ &+ \frac{\partial}{\partial y} \int_{b}^{\eta} \phi_{y} \delta \phi \mathrm{d}z - \int_{b}^{\eta} \left[\phi_{xx} + \phi_{yy} + \phi_{zz} \right] \delta \phi \mathrm{d}z \\ &- \left[\left(\eta_{t} + \phi_{x} \eta_{x} + \phi_{y} \eta_{y} - \phi_{z} \right) \delta \phi \right]_{z=\eta} \\ &+ \left[\left(\phi_{x} \eta_{x} + \phi_{y} \eta_{y} + \phi_{z} \right) \delta \phi \right]_{z=b} \right\} \mathrm{d}\mathbf{x} \mathrm{d}t, \end{split}$$

from which all the equations follow.

Chapter 3

A3.1Requires

$$\frac{\gamma}{A\beta} = \frac{\beta^2}{C} = -\frac{6}{\alpha B}.$$

- A3.2 $2\eta_{0\tau} 3\eta_0\eta_{0\zeta} \frac{1}{3}\eta_{0\zeta\zeta\zeta} = 0.$
- A3.3 $2\eta_{0\tau} + 3\eta_0\eta_{0\varepsilon} + (\frac{1}{3} W)\eta_{0\varepsilon\varepsilon} = 0$, after writing $\delta^2 = \varepsilon$.

A3.4
$$2\eta_{1\tau} + 3(\eta_0\eta_1)_{\xi} + \frac{1}{3}\eta_{1\xi\xi\xi} = \frac{21}{4}\eta_0^2\eta_{0\xi} + \frac{31}{12}\eta_{0\xi}\eta_{0\xi\xi} + \frac{7}{6}\eta_0\eta_{0\xi\xi\xi} + \frac{1}{36}\eta_{0\xi\xi\xi\xi\xi},$$

where the KdV equation for η_0 has been used; set r.h.s. $= G'(\xi - c\tau)$, then $(\eta_0^2 F')' = 3\eta_0' G$, etc.

- A3.5 $m = -\frac{2}{3}$; $n = -\frac{1}{3}$; $\lambda^2 = 1$. A3.6 Try setting $u = 6t^{-2/3}f(xt^{-1/3})$ and that $f = -\frac{1}{3}(\log F)''$ where $F = \eta^3 + 12 (\eta = xt^{-1/3})$.
- A3.7 $2H_{0\tau} + \frac{1}{\pi}H_0 + 3H_0H_{0\xi} + \frac{1}{2}H_{0\xi\xi\xi} = 0.$
- A3.8 $a = -2b^2$; $c^2 = 1 + 4b^2$ (and so c > 0 or c < 0).
- A3.9 Leading order becomes $(\pm 2\eta_{\tau} \frac{3}{2}(\eta^2)_{\xi} \frac{1}{3}\eta_{\xi\xi\xi})_{\xi} = 0$, $\xi = x \pm t, \ \tau = \varepsilon t$
- A3.11 $a = -2k^2$; $\omega = 4k^3 + 3l^2/k$

A3.15 $u \sim -2k_n^2 \mathrm{sech}^2 \{ k_n \xi_n \mp x_n \}$ as $t \to \pm \infty$ where $\xi_n = x - 4k_n^2 t$ (n = 1, 2) and

$$\exp(2x_1) = \left| \frac{k_1 + k_2}{k_1 - k_2} \right|, \quad \exp(2x_2) = \left| \frac{k_1 - k_2}{k_1 + k_2} \right| \quad (k_1 \neq k_2).$$

- A3.16 Let $k_1 < k_2$, then ${\rm sech}^2$ at t = 0 only if $k_1 = 1$, $k_2 = 2$; two maxima if $\sqrt{3} > k_2/k_1 > 1$; one maximum if $k_2/k_1 \ge \sqrt{3}$.
- A3.21 $a = -2k^2$; $\omega^2 = k^2 + k^4 + l^2$ (so $\omega > 0$ or $\omega < 0$).

A3.22
$$u = -2(12t)^{-2/3} \frac{\partial^2}{\partial \xi^2} \log \left(1 + kt^{-1/3} \int_{\xi}^{\infty} A_i^2(s) ds \right), \quad \xi = x/(12t)^{1/3}.$$

- A3.25 See Q3.17.
- A3.29 Q3.26: $f = 1 + e^{\theta}$, $\theta = kx + ly \omega t + \alpha$, $\omega = k^3 + 3l/k$; Q3.27: $f = 1 + e^{\theta}$, $\theta = kx \omega t + \alpha$, $\omega^2 = k^2 + k^4$;

Q3.28:
$$f = 1 + kt^{-1/3} \int_{\xi}^{\infty} A_i^2(s) ds$$
, $\xi = x/(12t)^{1/3}$, k constant.

A3.31 Set $f = 1 + E_1 + E_2 + AE_1E_2$, $E_i = \exp(2k_ix - \varepsilon_i\omega_it)$, $\varepsilon_i = \pm 1$; then

$$A = -\frac{(\omega_1 - \omega_2)^2 - (k_1 - k_2)^2 - (k_1 - k_2)^4}{(\omega_1 + \omega_2)^2 - (k_1 + k_2)^2 - (k_1 + k_2)^4}.$$

A3.32 $f \sim 1 + e^{\theta_2}$ (a θ_2 solitary wave at infinity); $f \sim 1 + e^{\theta_1}$ (a θ_1 solitary wave at infinity); $f \sim 1 + e^{\theta_1 - \theta_2}$ (a $\theta_1 - \theta_2$ solitary wave at infinity). NB

$$A = \frac{(m_1 - m_2)(n_1 - n_2)}{(m_1 + m_2)(n_1 + n_2)}.$$

- A3.33 For \mathscr{E} , remember that $\int_{-\infty}^{\infty} \eta dx = \text{constant.}$
- A3.34 First, from energy conservation

$$\int_{-\infty}^{\infty} \left\{ 2\eta_0^2 + \varepsilon \left(4\eta_0 \eta_1 - \frac{1}{2} \eta_0^3 \right) + O(\varepsilon^2) \right\} dx = \text{const.};$$

second, use the equation for η_1 (A3.4) and the KdV equation η_0 to find

$$\int_{-\infty}^{\infty} \left(2\eta_0 \eta_1 - \frac{1}{12} \eta_{0\xi}^2 \right) d\xi = \text{const.},$$

when the required result follows.

A3.36 Form

$$(xu + 3tu^{2})_{t} = (12tu^{2} - 6tuu_{xx} + 3tu_{x}^{2} + 3xu^{2} - xu_{xx} + u_{x})_{x}.$$

- A3.37 Use Q3.36; the centre of mass has the x-coordinate $(\int_{-\infty}^{\infty} xu dx)/(\int_{-\infty}^{\infty} u dx)$. Consider two solitons (u_1, u_2) far apart, and then write $u = u_1 + u_2$.
- A3.38 Write

$$u \sim -\sum_{n=1}^{N} k_n^2 \mathrm{sech}^2 \{ k_n (x - 4k_n^2 t - x_n) \} \text{ as } t \to +\infty,$$

then

$$\int_{-\infty}^{\infty} u dx = -2 \sum_{n=1}^{N} k_n; \quad \int_{-\infty}^{\infty} u^2 dx = \frac{4}{3} \sum_{n=1}^{N} k_n^3, \quad \text{etc.}$$

- A3.40 For the third law, add $H \times$ (first equation) to $U \times$ (second equation).
- A3.44 $c = \pm 1$; $I_{31} = \mp 1$; $I_{41} = 1$; $J_1 = \frac{1}{3}$.

$$c = \frac{1}{2} \left\{ U_0 + U_1 \pm \sqrt{4 + (U_1 - U_0)^2} \right\}; \quad I_{31} = \frac{U_1 + U_0 - 2c}{2(U_1 - c)^2 (U_0 - c)^2};$$

A3.45

$$I_{41} = \frac{U_1^2 + U_1 U_0 + U_0^2 + 3c(U_0 + U_1) + 3c^2}{3(U_1 - c)^3 (U_0 - c)^3}, \text{ etc.}$$

- A3.46 (a) With critical level, c given in A3.45 is recovered for which $c > U_1$ or $c < U_0$: no critical level.
 - (b) With critical level, then $\alpha = c/U$ satisfies (for $\alpha < 1$)

$$1 - \frac{\alpha}{2\sqrt{1-\alpha}} \ln \left| \frac{1+\sqrt{1-\alpha}}{1-\sqrt{1-\alpha}} \right| = 2U_1^2 \alpha(\alpha-1),$$

which has one solution only, namely in $\alpha < 0$: no critical level.

- A3.47 $c(c U_1)^2 = c dU_1$: three real roots (for 0 < d < 1) with one satisfying $0 < c < U_1$: critical level exists.
- A3.48 $\alpha = c/U_1$ satisfies (cf. A3.46)

$$1 - \frac{\alpha}{2\sqrt{1-\alpha}} \ln \left| \frac{1+\sqrt{1-\alpha}}{1-\sqrt{1-\alpha}} \right| = \frac{2}{d} U_1^2 \alpha(\alpha-1) + \frac{2\alpha(1-d)}{d(1-\alpha)},$$

and one solution satisfies $0 < \alpha < 1$: critical level exists. NB Interesting exercise: examine this equation for $d \to 1$; $d \to 0$.

- A3.49 See equation (3.139).
- A3.50 $1 + c \cos \theta_0 = U_0 \pm 1$.
- A3.51 Choose $c = U_1$; $k = a \cos \theta + b(a) \sin \theta$ where $b^2 = 1 + a(U_1 - U_0) - a^2$.
- A3.52 Set

$$h(p) = a(p)\cos p + b(p)\sin p$$

and

$$h'(p) = -a(p)\sin p + b(p)\cos p,$$

then $dh/dp \equiv h'(p)$ requires $a'\cos p + b'\sin p = 0$ (and a, b are related by equation (3.139b)). Required solution is described by the set: $a' = -b'\tan p$, $h = a\cos p + b\sin p$, equation (3.139), p derivative of equation (3.139).

- A3.53 $D = (aX + b)^{9/4}$, a, b constants.
- A3.54 Takes the form $(H_0^3)_X \frac{1}{3}D^{9/4}(H_{0\xi}^2)_X + Q_{\xi} = 0$, for some Q.
- A3.56 $(2F_{\tau} + \frac{3}{2}F_{\xi}^2 + \frac{1}{3}F_{\xi\xi\xi})_{\xi} = O(\varepsilon)$ and $H \sim F_{\xi}$.

Chapter 4

A4.1
$$A(\zeta, \tau) \sim \int_{-\infty}^{\infty} f(\kappa; 0) \exp\{\kappa \zeta - \frac{1}{2} \kappa^2 \omega''(\kappa_0) \tau\} d\kappa$$
.

A4.2 (a)
$$F = A \cosh(\omega z) + B \sinh(\omega z) + \frac{z}{2\omega} \sinh(\omega z)$$
;

(b)
$$F = A \cosh(\omega z) + B \sinh(\omega z)$$

$$+\frac{1}{4\omega^2}\{\omega z^2\cosh(\omega z)-z\sinh(\omega z)\}.$$

- A4.4 $u = \phi_x = \phi_\xi + \varepsilon \phi_\zeta = \varepsilon f_{0\zeta} + \text{ periodic terms.}$
- A4.5 See equations (4.43).
- A4.6 For $\delta \rightarrow 0$:

$$-2ik\delta^{2}A_{0\tau} + \delta^{4}k^{2}A_{0\zeta\zeta} - \delta^{2}A_{0YY} + \frac{9}{2}A_{0}|A_{0}|^{2} + 3\delta^{2}k^{2}A_{0}f_{0\zeta} = 0,$$

$$\delta^{2}k^{2}f_{0\zeta\zeta} + f_{0YY} = -3(|A_{0}|^{2})_{\zeta};$$

for
$$\delta \to \infty$$
: with $c_p \sim 1/\sqrt{\delta k}$ then

$$-2i\sqrt{\frac{k}{\delta}}A_{0\tau} + \frac{1}{4\delta k}A_{0\zeta\zeta} - \frac{1}{2\delta k}A_{0YY} + 4k^{3}\delta A_{0}|A_{0}|^{2} + 2k\sqrt{\frac{k}{\delta}}A_{0}f_{0\zeta} = 0,$$

$$f_{0\zeta\zeta} + f_{0YY} = -2\sqrt{\delta k}(|A_{0}|^{2})_{\epsilon}.$$

For $\delta \rightarrow 0$:

$$-2ik\delta^2 A_{0\tau} + \delta^4 k^2 A_{0\zeta\zeta} - \frac{9}{2} A_0 |A_0|^2 = 0;$$

for $\delta \to \infty$:

$$-2i\sqrt{\frac{k}{\delta}} A_{0\tau} + \frac{1}{4\delta k} A_{0\xi\xi} + 4k^3 \delta A_0 |A_0|^2 = 0.$$

A4.7
$$c_{p1} = k^2/6$$
, $c_{g1} = k^2/2$, $A_{12} = 3A_{01}^2/2k^2$; then
$$-2ikA_{01T} + k^2A_{01ZZ} - A_{01YY} + \frac{9}{2k^2}A_{01}|A_{01}|^2 + 3A_{01}f_{0Z} = 0,$$

$$2c_{g1}f_{0ZZ} + f_{0YY} + 3(|A_{01}|^2)_z = 0.$$

A4.8
$$t \to At, x \to Bx, u \to Cu$$
: $AC^2 = \alpha/\gamma, B^2C^2 = \beta/\gamma$.

- A4.10 Oscillates like e^{int} , with amplitude $\sqrt{-n}$.
- A4.11 Try $u(x, t) = a \exp(ia^2 t)(1 + f + ig)$ where f(x, t) and g(x, t) are both real. Oscillates like $\exp(ia^2 t)$, with amplitude a.
- A4.12 Use same approach as adopted for Q4.11.
- A4.13 $u \sim 2am \operatorname{sech}(am\sqrt{2}x) \exp\{ia^2(1+2m^2)t\}$; cf. Q4.9.

A4.16
$$u(x, t) = t^{-1/2} f(\eta), f'' - \frac{1}{2} i(\eta f)' + \varepsilon f |f|^2 = 0, \eta = x t^{-1/2}.$$

A4.18
$$c + g_0 \exp\{\mu(lx - mz) + i\mu^2(m^2 - l^2)t/\alpha\}$$
$$+ \int_x^{\infty} dg_0 \exp\{\mu(ly - mz) + i\mu^2(m^2 - l^2)t/\alpha\} dy = 0;$$
$$d + \int_x^{\infty} cf_0 \exp\{\lambda(my - lz) + i\lambda^2(l^2 - m^2)t/\alpha\} dy = 0.$$

For example,

$$c = -g_0 e^{3\mu(x-3i\mu t)} / \left\{ 1 + e^{3(\mu-1)x+9i(\lambda^2-\mu^2)t} \right\}.$$

- A4.19 For $c = u^*$ then $g_0 = f_0^*$; but $f_0 g_0 = -8k^2$, so $|f_0|^2 = -8k^2$, which is impossible.
- A4.20 Show that

$$\{(iD_t + D_x^2)(g \cdot f)\}/f^2 + g\{\varepsilon|g|^2 - D_x^2(f \cdot f)\}/f^3 = 0.$$

A4.21 Show that

$$\begin{aligned} \big\{ \big(\mathrm{i} \mathrm{D}_{t} + \beta \mathrm{D}_{x}^{2} + \mathrm{i} \gamma \mathrm{D}_{x}^{3} \big) (g \cdot f) \big\} / f^{2} \\ + 3 \mathrm{i} \big\{ \delta |g|^{2} - \gamma \mathrm{D}_{x}^{2} (f \cdot f) \big\} (fg_{x} - gf_{x}) / f^{4} \\ + g \big\{ \varepsilon |g|^{2} - \beta \mathrm{D}_{x}^{2} (f \cdot f) \big\} / f^{3} = 0; \end{aligned}$$

$$\gamma = 0, \ \delta = 0, \ \beta = 1.
\text{A4.22} \quad g = e^{\theta}, \ f = 1 + (\delta/2\gamma)(k + k^*)^{-2} \exp(\theta + \theta^*),
\theta = kx + (i\beta k^2 - \gamma k^3)t + \alpha.$$

A4.23
$$g_3 = 4\sqrt{2} \left(e^{it+7x} + 3e^{9it+5x} \right);$$

 $f_2 = 4 \left(e^{2x} + e^{6x} \right) + 3e^{4x} \left(e^{8it} + e^{-8it} \right);$
 $f_4 = e^{8x}$ and rest are zero.

A4.24 Set $X = l\zeta + mY$, then

$$\begin{split} &-2\mathrm{i}kc_{p}A_{0\tau}+\left(\alpha l^{2}-m^{2}c_{p}c_{g}\right)A_{0XX}\\ &+\left\{\beta+\frac{m^{2}k^{2}\gamma^{2}}{(1-c_{g}^{2})c_{p}^{2}\left\{m^{2}+(1-c_{g}^{2})l^{2}\right\}}\right\}A_{0}|A_{0}|^{2}=0. \end{split}$$

A4.25 $-2ik\delta^2 A_{0\tau} + \delta^4 k^2 l^2 A_{0XX} + \frac{9}{2} A_0 |A_0|^2 = 0$ (retaining only the dominant contribution to each coefficient, but see Section 4.2.3).

A4.26
$$A_0 = \frac{a\sqrt{2}}{3} \exp\left\{i\left[\frac{c}{2k\delta^2}\left(\frac{X}{l} + \frac{c\tau}{2}\right) - \frac{n\tau}{2k\delta^2}\right]\right\} \times \operatorname{sech}\left\{\frac{a}{k\delta^2}\left(\frac{X}{l} + \frac{c\tau}{2}\right) / \sqrt{2}\right\}$$

where $a^2 = 2(n - \frac{1}{4}c^2) > 0$.

A4.29 Structure is evident if we write $\theta = \phi + i\psi$ (ϕ , ψ real); then equation (4.90) gives

$$\begin{split} \left(e^{i\psi}/\sqrt{\lambda}\right) \middle/ \left\{\sqrt{\lambda}e^{\phi} + e^{-\phi}/\sqrt{\lambda}\right\} \\ &= \left\{e^{i\psi}/(2\sqrt{\lambda})\right\} \operatorname{sech}(\phi + \phi_0) \text{ where } e^{\phi_0} = \sqrt{\lambda}. \end{split}$$

A4.31

$$f_m = 1/4(a_m^2);$$
 $c = 1/(a_1 + a_2)^2;$ $b_m = \frac{(a_1 - a_2)^2}{4a_m^2(a_1 + a_2)^2};$ $d = \frac{(a_1 - a_2)^4}{16a_1^2a_2^2(a_1 + a_2)^2}.$

- A4.32 For the first, form $u_{xt}u_x^* + u_xu_{xt}^*$; for the second form $u_tu_{xxx}^* + uu_{xxxt}^*$.
- A4.33 Form

$$i\frac{\mathrm{d}}{\mathrm{d}t}\int_{-\infty}^{\infty} x|u|^2 \mathrm{d}x - \int_{-\infty}^{\infty} (u^*u_x - uu_x^*) \,\mathrm{d}x = 0.$$

A4.34 Integrate over one period to give

$$\int_{-\infty}^{\infty} \overline{\left(\int_{0}^{1+\varepsilon\eta} u \mathrm{d}z\right)} \mathrm{d}\zeta = \text{const.};$$

then with $u = \phi_{\xi} + \varepsilon \phi_{\zeta}$, the oscillatory part of ϕ_{ζ} yields

$$\int_{-\infty}^{\infty} \left(A_0^* A_{0\zeta} - A_0 A_{0\zeta}^* \right) \mathrm{d}\zeta = \text{const.}$$

- A4.35 (a) Each a function of t only.
 - (b) If somewhere independent of t.
 - (c) $\{A+g(t)\}\zeta$ where both A (= const.) and g are arbitrary.
 - (d) If, as $\zeta \to +\infty$ or $-\infty$, the integral in (c) approaches a constant, then g(t) = -A and the integral is zero.
- A4.37 Write u = f(kx + ly, t) to give $if_t + (k^2 + l^2)f_{\xi\xi} + f|f|^2 = 0$; then set $\xi = X\sqrt{k^2 + l^2}$ and follow Q4.9.
- A4.38 For the first, form $i(u^*u_t + uu_t^*)$; for the second form

$$\frac{\partial}{\partial t} \left(u_x u_x^* + u_y u_y^* - \frac{1}{2} u^2 u^{*2} \right).$$

A4.39 First form $i(x^2uu^*)_{tt} + x^2(u^*u_x - uu_x^*)_{xt} = 0$ and also obtain

$$i(u^*u_x - uu_x^*)_t = \left\{ 4u_x u_x^* - (u^*u_x + uu_x^*)_x - \varepsilon |u|^4 \right\}_{\nu}.$$

- A4.40 (a) $A \to 0$ as $|x| \to \infty$; $\omega = a^2/2 > 0$; $A = a \operatorname{sech}(ax/\sqrt{2})$.
 - (b) $A \to \pm a$ as $x \to \pm \infty$; $\omega = -a^2 < 0$; $A = a \tanh(ax/\sqrt{2})$.

A4.41
$$(A^2)_t + 2(kA^2)_x = 0$$
 so $\int_{-\infty}^{\infty} A^2 dx \left(= \int_{-\infty}^{\infty} |u|^2 dx \right) = \text{const.};$

use this first equation in the second to give

$$\left\{ \frac{1}{2}A_x^2 + \frac{1}{2}k^2A^2 + \frac{1}{4}\varepsilon A^4 - \left(k_x A^2 + 2kAA_x\right)\int_x^x kdx \right\}_x$$
$$-\left(AA_x\int_x^x kdx\right)_t = 0.$$

- A4.42 Set-down is $\frac{-2\delta k}{\sinh 2\delta k} |A_0|^2$; mean drift is $c_g f_{0\zeta}$.
- A4.43 $(2K\omega c_p)^2 = \alpha k^2 (\alpha k^2 2\beta |A|^2).$
- A4.44 $P = (\cosh \delta kz)/\cosh \delta k$; $c_p^2 = (\tanh \delta k)/\delta k$.
- A4.45 Use

$$\begin{split} \frac{\partial}{\partial z} \left(W^{-2} P_{zk} \right) - \left(\delta k / W \right)^2 P_k \\ &= 2 \delta^2 k W^{-2} P + 2 \delta^2 k c_p' W^{-3} P - 2 c_p \frac{\partial}{\partial z} \left(W^{-3} P_z \right), \end{split}$$

integrate in z, with the boundary conditions for P, and write

$$P_{zk}(0;k) = 0;$$
 $P_k(1;k) = 0;$ $P_{zk}(1;k) = 2\delta^2 k W_1^2 - 2\delta^2 k^2 c_p' W_1.$

- A4.46 $P \sim 1 \delta^2 k^2 \int_z^1 W^2 \{ \int_0^z W^{-2} dz \} dz.$
- A4.48 Coefficients of NLS equation now functions of $\hat{X} = \sigma X$; NLS then gives $B(\zeta, X; \hat{X})$. Use Q4.8, Q4.9.

Chapter 5

A5.2 See Q5.1; terms are the same size when $\delta kR = O(1)$. Set $1/R = \alpha \delta k$, then $\delta k \to 0$ for α fixed, yields

$$\mu - \tanh \mu + \alpha^2 \mu^5 = 0$$
 with $\mu^2 = -\frac{i}{\alpha} \left(\frac{\omega}{k}\right)$.

- A5.4 See equation (5.21); first term (not involving R) is multiplied by $(1 + \delta^2 k^2 W_e)$.
- A5.5 $y = (e^{-x} e^{-x/\varepsilon})/(e^{-1} e^{-1/\varepsilon});$ (a) $y \sim e^{1-x};$ (b) $y \sim e(1 - e^{-X}).$
- A5.6 To within exponentially small terms: (a) $y_0 = e^{1-x}$, $y_n = 0$, $n \ge 1$; (b) $Y_0 = e(1 - e^{-X})$, $Y_1 = -Xe$. A5.8 $u_{1z} = -z\eta_{0k}$.

A5.9 (b)
$$\hat{u} = \frac{x}{2\sqrt{\pi}} \int_{-\infty}^{t} f(t')(t-t')^{-3/2} \exp\{-x^2/4(t-t')\} dt'$$
.

A5.10 Change the order of the integration and introduce $x + z^2/4y^2 = x'$; integral = $e^{-\alpha x} \sqrt{\pi/\alpha}$.

A5.11
$$\frac{\mathrm{d}}{\mathrm{d}T} \int_{-\infty}^{\infty} \eta_0^2 \mathrm{d}\xi = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \eta_0 \left\{ \int_{\xi}^{\infty} \eta_{0\xi'} \frac{\mathrm{d}\xi'}{\sqrt{\xi' - \xi}} \right\} \mathrm{d}\xi,$$
$$\eta_0 = 2c \operatorname{sech}^2 \left(\xi \sqrt{\frac{3c}{2}} \right).$$

A5.12
$$\xi = x - t + \frac{c_0}{3\alpha\Delta} \left\{ (1 + \varepsilon\Delta\alpha t)^{-3} - 1 \right\} \ (\sim x - t - \varepsilon c_0 t \text{ as } \varepsilon\Delta \to 0).$$

A5.13
$$c = \frac{1}{2} \left(\frac{1}{3} \alpha^2 - \lambda \sqrt{\pi/\alpha} \right); \quad \frac{3}{2} \frac{a^2}{b} = -\alpha^2 - \lambda \left(1 - \frac{1}{\sqrt{2}} \right) \sqrt{\pi/\alpha}.$$

A5.14 Form

$$p_{1z} = (2U_0 - U)w_{0\xi} + \frac{1}{\Re}(w_{1zz} + w_{0zz})$$

with

$$p_1 + \eta_0 p_{0z} - \eta_1 - \frac{2}{\mathscr{R}} \{ w_{1z} + \eta_0 w_{0z} - \eta_{0\xi} u_{0z} - \eta_{1\xi} U' \} = 0 \text{ on } z = 1$$

and $U = U_0 (2z - z^2)$; u_1 and w_1 as given.

A5.15
$$\alpha = \frac{1}{2} \left(\sqrt{\lambda^2 + 4} - \lambda \right) > 0; \quad \beta = \frac{1}{2} \left(\lambda \pm \sqrt{\lambda^2 - 4} \right).$$

- A5.16 Saddle at (0, 0); stable node at (1, 0) for $\lambda \ge 2$; stable spiral point for $0 < \lambda < 2$; a focus at (1, 0) for $\lambda = 0$.
- A5.17 Stable node at (1,0) for $0 \le 1/\lambda \le \frac{1}{2}$.

A5.18
$$\eta_0 = \frac{1}{2} \{ 1 + \tanh(-X/2) \},$$

 $\eta_1 = -\frac{1}{4} \operatorname{sech}^3(-X/2) \ln \{ \operatorname{sech}^2(-X/2) \}.$