<u>Instructions:</u> No notes or electronic devices are allowed. Answers with little or no supporting work will get little or no credit. Work must be neat, organized and easily interpreted. <u>NOTE:</u> Most of the credit for problems involving 2D and 3D integration will be awarded for correctly setting up the requested iterated integrals along with neat, well-labelled, and accurate diagrams of the regions of integrations showing the relevant windshield wipers.

1. (15 Pts.) Find the volume under the surface f(x,y) = 4xy within the region R defined by $1 \le x \le 3$ and $-1 \le y \le 2$. Neatly draw your region of integration showing a "windshield wiper" that illustrates your order of integration.

3. (16 Points) The density of electrons in an electron cloud is given by $G(x, y, z) = \frac{400}{(x^2 + y^2 + z^2)^2} electrons / cm^3$.

Determine the number of electrons in the first octant $(x, y, and z \ge 0)$ where $1 \le x^2 + y^2 + z^2 \le 4$ and where x, y, and z are measured in cm. Providing a figure is OK but is not required for this problem

electrons
$$= \iiint \frac{400}{P^{4}} e^{2} \sin \beta d \rho d \rho d \theta$$

$$= \iint \frac{11}{2} \left(\frac{11}{2} \right) \left(\frac{400}{P} \right) \left(\frac{7}{2} \right)$$

$$= \left(\frac{17}{2} \right) \left(\frac{1}{2} \right) \left(\frac{400}{P} \right) \left(\frac{7}{2} \right)$$

$$= \frac{17}{2} \left(\frac{400 - 200}{P} \right) = 100 \text{ T}$$

$$= 314 \text{ electrons}$$

- 4. (6 Points each) If you were asked to perform integrations of the following functions over the specified regions in \mathbb{R}^3 , what coordinate system would you use and what would you use for the relevant differential volume, dV?
- a. $f(x, y, z) = \cos(z)e^{x^2+y^2}$ over $D: 1 \le x^2+y^2 \le \pi$ and $0 \le z \le \pi/3$

Your selected coordinate system: Cylindrical $dV = Vdrd\theta dZ$

b. f(x, y, z) = x + 2y - z over $D: 0 \le x^2 + y^2 + z^2 \le 5$, $x \le 0$ and $y \ge 0$

Your selected coordinate system: Spherical $dV = e^{2}siky de død\theta$

c. $f(x, y, z = \pi x^2 y^2 z$ over $D: 0 \le z \le 9 - 3x - 2y$, $x \ge 0$ and $y \ge 0$

Your selected coordinate system: Carterion dV = dxdyd2

5. (16 Points) Evaluate the integral $\iint_{\mathbb{R}} \frac{4xy}{(x^2+y^2)} dA$ using polar coordinates, where R is the region

 $4 \le x^2 + y^2 \le 16$, $y \le x$, and $x \ge 0$. You <u>must</u> draw a neat diagram of the region including your windshield wiper.

6. (15 Points) Evaluate the work integral $\int_{C} \vec{F}(x,y) \cdot \vec{dr}$ where C is the straight line segment from (1,1) to (3,2) and

For the straight line segment from (1,1) to (3,2) and
$$\vec{F}(x,y) = \langle x,2y \rangle$$
.

Conv(t) = $\langle 1+2t \rangle$ (+t) $\langle 1+2t \rangle$ (2,1)

 $\vec{F}(x,y) = \langle x,2y \rangle$.

 $\vec{F}(x,y) = \langle x,2y \rangle$.

7. (9 Points) If you are given the coordinates of a point in spherical coordinates, $(
ho,\phi, heta)$, provide the equations you would use to convert to Cartesian coordinates:

$$z = \rho \cos \phi$$

<u>Instructions:</u> No notes or electronic devices are allowed. Answers with little or no supporting work will get little or no credit. Work must be neat, organized and easily interpreted. <u>NOTE:</u> Most of the credit for problems involving 2D and 3D integration will be awarded for correctly setting up the requested iterated integrals along with neat, well-labelled, and accurate diagrams of the regions of integrations showing the relevant windshield wipers.

1. (15 Pts.) Find the volume under the surface $f(x,y) = 6x^2y$ within the region R defined by $1 \le x \le 3$ and $-1 \le y \le 2$. Neatly draw your region of integration showing a "windshield wiper" that illustrates your order of integration.

2. (16 Pts) Determine the total quantity of gold having a density of $d(x,y,z)=8z/(x^2+y^2)^2-gm/cm^3$ in the volume D defined by $1 \le x^2+y^2 \le 9$, $y \ge 0$, and $0 \le z \le 2$ where x,y and z are measured in cm. Be sure to draw a diagram of your region of integration in the xy-plane including a "windshield wiper" illustrating your intended method of integration.

$$Q = \iiint \frac{8^{\frac{1}{2}}}{(x^{2}4y^{2})^{2}} dV = \iiint \frac{8^{\frac{1}{2}}}{|r^{4}|} r dr d\theta dt$$

$$= \int Z dz \int d\theta \int 4r^{-3} dr$$

$$= Z^{2} \int_{0}^{2} TT \left(-2r^{-2}\right) \int_{0}^{3} TT \left(-2r^{-2}\right) d\theta$$

$$= -8TT \left(\frac{1}{9} - 1\right) = -64TT/9$$

3. (16 Points) The density of electrons in an electron cloud is given by $G(x, y, z) = \frac{400}{(x^2 + y^2 + z^2)^2}$ electrons / cm³.

Determine the number of electrons in the first octant $(x, y, and z \ge 0)$ where $1 \le x^2 + y^2 + z^2 \le 4$ and where x, y, and z are measured in cm. Providing a figure is OK but is not required for this problem

electrons
$$= \iiint_{Q} \frac{400}{P^{4}} e^{2} \sin \theta d \rho d \theta d \theta$$

$$= \iint_{Q} \frac{11}{S} \cos \theta d \rho \int_{Q} 400 e^{-2} d \rho$$

$$= \left(\frac{11}{2}\right) \left(1\right) \left(-\frac{400}{P}\right) \int_{Q}^{2} d \theta$$

$$= \frac{11}{2} \left(400 - 200\right) = 100 \text{ T}$$

$$= 314 \text{ electrons}$$

4. (6 Points each) If you were to perform integrations of the following functions over the specified regions in \mathbb{R}^3 , what coordinate system would you use and what would you use for the relevant differential volume, dV?

a.
$$f(x, y, z) = x + 2y - z$$
 over $D: 0 \le x^2 + y^2 + z^2 \le 5$, $x \le 0$ and $y \ge 0$

Your selected coordinate system: s pherical $dV = e^2 single position delivers <math>dV = e^2 single position delivers del$

b.
$$f(x, y, z) = \cos(z)e^{x^2+y^2}$$
 over $D: 1 \le x^2 + y^2 \le \pi$ and $0 \le z \le \pi/3$

Your selected coordinate system: Cylindrical dV = V dV dddc. $f(x, y, z = \pi x^2 y^2 z)$ over $D: 0 \le z \le 9 - 3x - 2y$, $x \ge 0$ and $y \ge 0$

Your selected coordinate system: Carterian dV = dxdyd2

5. (16 Points) Evaluate the integral $\iint \frac{4x}{(x^2+v^2)} dA$ using polar coordinates, where R is the region

 $4 \le x^2 + y^2 \le 16$, $y \le x$, and $x \ge 0$. You <u>must</u> draw a neat diagram of the region including your windshield wiper.

$$\iint_{R} \frac{4x \, dA}{(x^2 + y^2)} = \iint_{T} \frac{4r \cos \theta}{r^2} r dr d\theta$$

$$= \pi \ell_2 \quad Z$$

6. (15 Points) Evaluate the work integral $\int \vec{F}(x,y) \cdot d\vec{r}$ where C is the straight line segment from (1,2) to (2,5) and

 $\overline{F}(x,y) = <2x, y>$.

$$C: V(t) = (1+t, 2+3t) = (2)$$

$$V(t) = (1,3)$$

) F.dr = F. dr lt = [(2+2t, 2+767. <1, 3>df = \((2+2++6 +9+)6+= \(\left(\text{8} + 11\)\(\text{6}\) $=8+\frac{11}{2}=27/2$

7. (9 Points) If you are given the coordinates of a point in spherical coordinates, $(
ho,\phi, heta)$, provide the equations you would use to convert to Cartesian coordinates:

DO NOT TURN OVER BEFORE TOLD TO DO SO YOU MAY USE THIS PAGE FOR SCRATCH WORK

IT WILL NOT BE GRADED