

LECTURE 0 of 42

Artificial Intelligence: Course Organization and Survey

Monday, 24 August 2009

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3

Course web site: http://www.kddresearch.org/Courses/Fall-2009/CIS730

Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Chapter 1, Russell and Norvig 2nd edition Syllabus and Introductory Handouts

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY, 24 AUG 2009

COURSE OUTLINE

- Overview: Intelligent Systems and Applications
- Artificial Intelligence (Al) Software Development Topics
 - * Knowledge representation
 - ⇒ Logical
 - ⇒ Probabilistic
 - * Search
 - $\ \Rightarrow$ Problem solving by (heuristic) state space search
 - * Planning: classical, universal
 - * Machine learning
 - ⇒ Models (decision trees, version spaces, ANNs, genetic programming)
 - Applications: pattern recognition, planning, data mining and decision support
 - * Topics in applied Al
 - ⇒ Computer vision fundamentals
 - ⇒ Natural language processing (NLP) and language learning survey
- Practicum (Short Software Implementation Project)

CIS 530 / 730: ARTIFICIAL INTELLIGENC

MONDAY, 24 AUG 2009

COMPUTING & INFORMATION SCIENCES KANSAS STATE UNIVERSITY

COURSE ADMINISTRATION

- Official Course Page (KSOL): http://snipurl.com/v9v3
- Class Web Page: http://www.kddresearch.org/Courses/Fall-2009/CIS730
- Instructional E-Mail Addresses
 - * CIS730TA-L@listserv.ksu.edu (always use this to reach instructor)
 - * CIS730-L@listserv.ksu.edu (this goes to everyone)
- Instructor: William Hsu, Nichols 213
 - * Office phone: +1 785 532 7905; home phone: +1 785 539 7180
 - * Gtalk: banazir & rizanab, IM: AIM/YIM/MSN hsuwh & rizanabsith
 - * Office hours: after class Mon/Wed/Fri; other times by appointment
- Graduate Teaching Assistant: TBD
 - * Office location: Nichols 124
 - * Office hours: to be announced on class web board
- Grading Policy
 - * Midterm: 25% (in-class, closed-book); final (open-book): 30%; quiz: 3%
 - * Machine problems, problem sets (6 of 8): 12%; term project: 26%
 - * Class participation: 5% (1% attendance, 1% questions, 2% answers)

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY 24 AUG 2009

COMPUTING & INFORMATION SCIE
KANSAS STATE UNIVE

How To GET AN A IN THIS COURSE

- A Story from Dr. Gerard G. L. Meyer, Johns Hopkins University
- Ask Questions
 - * Ask for (more) examples, another explanation, etc. if needed ("don't be shy")
 - * All students (especially remote students): post in class web board
 - ⇒ Unclear points bring to class as well
 - ⇒ "When will X happen"?
 - * Fastest way to reach instructor: instant messaging (ICQ, MSN Messenger)
 - * Notify TA, KDD system administrators of any computer problems
- Be Aware of Resources
 - * Check with instructor or GTA about
 - \Rightarrow Handouts, lectures, grade postings
 - ⇒ Resources online
 - * Check with classmates about material from missed lecture
- Start Machine Problems (and Problem Sets) Early
 - * How to start virtuous (as opposed to vicious) cycle
 - * Don't cheat

HOMEWORK ASSIGNMENTS: PROBLEM SETS AND MACHINE PROBLEMS

- MP1 assigned Wed 26 Aug 2009, due Fri 11 Sep 2009
- PS2 assigned Wed 09 Sep 2009, due Mon 28 Sep 2009
 - * Submit using K-State Online
 - * HW page: http://www.kddresearch.org/Courses/Fall-2009/CIS730/Homework
- Model solutions: 2 class days after due date
- Graded assignments: ≤ 7 days after due date
- Machine Problem: Search
 - * Problem specifications to be posted on homework page before 10 Sep 2009
 - * Languages: C/C++ & Java
 - * MP guidelines
 - ⇒ Work individually
 - ⇒ Generate standard output files and test against partial standard solution
 - ⇒ No late submissions except with documented excusal (medical, etc.)
 - * See also: state space, constraint satisfaction problems

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY, 24 AUG 2009

COMPUTING & INFORMATION SCIENCES
KANSAS STATE UNIVERSITY

QUESTIONS ADDRESSED

- Problem Area
 - * What are intelligent systems and agents?
 - * Why are we interested in developing them?
- Methodologies
 - * What kind of software is involved? What kind of math?
 - * How do we develop it (software, repertoire of techniques)?
 - * Who uses AI? (Who are practitioners in academia, industry, government?)
- Artificial Intelligence as A Science
 - * What is Al?
 - * What does it have to do with intelligence? Learning? Problem solving?
 - * What are interesting problems to which intelligent systems can be applied?
 - * Should I be interested in AI (and if so, why)?
- Today: Brief Tour of Al History
 - * Study of intelligence (since classical age), Al systems (1940-present)
 - * Viewpoints: philosophy, math, psychology, engineering, linguistics

WHAT IS AI? [1]

- Four Categories of Systemic Definitions
 - * 1. Think like humans
 - * 2. Act like humans
 - * 3. Think rationally
 - * 4. Act rationally
- Thinking Like Humans
 - * Machines with minds (Haugeland, 1985)
 - * Automation of "decision making, problem solving, learning..." (Bellman, 1978)
- Acting Like Humans
 - * Functions that require intelligence when performed by people (Kurzweil, 1990)
 - * Making computers do things people currently do better (Rich & Knight, 1991)
- Thinking Rationally
 - * Computational models of mental faculties (Charniak & McDermott, 1985)
 - * Computations that make it possible to *perceive*, *reason*, and *act* (Winston, 1992)
- Acting Rationally
 - * Explaining, emulating int. behavior via computation (Schalkoff, 1990)
 - * Branch of CS: automating intelligent behavior (Luger, 2005)

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY 24 AUG 2009

OMPUTING & INFORMATION SCIENCES

What is AI? [2] Thinking and Acting Like Humans

- Concerns: Human Performance (Figure 1.1 R&N, Left-Hand Side)
 - * Top: thought processes and reasoning (learning and inference)
 - * Bottom: behavior (interacting with environment)
- Machines With Minds
 - * Cognitive modelling
 - ⇒ Early historical examples: problem solvers (see R&N Section 1.1)
 - ⇒ Application (and one driving force) of cognitive science
 - * Deeper questions
 - ⇒ What is intelligence?
 - ⇒ What is consciousness?
- Acting Humanly: The Turing Test Approach
 - * Capabilities required
 - ⇒ Natural language processing
 - ⇒ Knowledge representation
 - ⇒ Automated reasoning
 - * Turing Test: can a machine appear indistinguishable from a human to an experimenter?

What is AI? [3] VIEWPOINTS ON DEFINING INTELLIGENCE

- Genuine versus Illusory Intelligence
 - * Can we tell?
 - ⇒ If so, how?
 - ⇒ If not, what limitations do we postulate?
 - * The argument from disability ("a machine can never do X")
- Turing Test Specification
 - * Objective: develop intelligent system "indistiguishable from human"
 - ⇒ Blind interrogation scenario (no direct physical interaction "teletype")
 - ⇒ 1 Al system, 1 human subject, 1 interrogator
 - ⇒ Variant: total Turing Test (perceptual interaction: video, tactile interface)
 - * Is this a reasonable test of intelligence?
 - Details: Section 26.3, R&N
 - * See also: Loebner Prize page
- Searle's Chinese Room
 - * Philosophical issue: is (human) intelligence a pure artifact of symbolic manipulation?
 - * Details: Section 26.4, R&N
 - * See also: consciousness in Al resources

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY 24 AUG 2009

COMPUTING & INFORMAT

What is AI? [3] Thinking and Acting Rationally

- Concerns: Human Performance (Figure 1.1 R&N, Right-Hand Side)
 - * Top: thought processes and reasoning (learning and inference)
 - * Bottom: behavior (interacting with environment)
- Computational Cognitive Modelling
 - * Rational ideal
 - ⇒ In this course: rational agents
 - **⇒ Advanced topics: learning, utility theory, decision theory**
 - * Basic mathematical, computational models
 - ⇒ Decisions: automata (Chomsky hierarchy FSA, PDA, LBA, Turing machine)
 - **⇒** Search
 - ⇒ Concept learning
- Acting Rationally: The Rational Agent Approach
 - * Rational action: acting to achieve one's goals, given one's beliefs
 - * Agent: entity that perceives and acts
 - * Focus of next lecture
 - ⇒ "Laws of thought" approach to AI: correct inferences (reasoning)
 - ⇒ Rationality not limited to correct inference

WHAT IS AI? [4] A BRIEF HISTORY OF THE FIELD

- Philosophy Foundations (400 B.C. present)
 - * Mind: dualism (Descartes), materialism (Leibniz), empiricism (Bacon, Locke)
 - * Thought: syllogism (Aristotle), induction (Hume), logical positivism (Russell)
 - * Rational agentry (Mill)
- Mathematical Foundations (c. 800 present)
 - * Early: algorithms (al-Khowarazmi, 9th century mathematician), Boolean logic
 - * Computability (20th century present)
 - ⇒ Cantor diagonalization, Gödel's incompleteness theorem
 - ⇒ Formal computuational models: Hilbert's Entscheidungsproblem, Turing
 - ⇒ Intractability and NP-completeness
- Computer Engineering (1940 present)
- Linguistics (1957 present)
- Stages of Al
 - * Gestation (1943 c. 1956), infancy (c. 1952 1969)
 - * Disillusioned early (c. 1966 1974), later childhood (1969 1979)
 - * "Early" (1980 1988), "middle" adolescence (c. 1985 present)

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY, 24 AUG 2009

COMPUTING & INFORMATION SCIENCES

WHY STUDY ARTIFICIAL INTELLIGENCE?

- New Computational Capabilities
 - * Advances in uncertain reasoning, knowledge representations
 - * Learning to act: robot planning, control optimization, decision support
 - * Database mining: converting (technical) records into knowledge
 - * Self-customizing programs: learning news filters, adaptive monitors
 - * Applications that are hard to program: driving, speech recognition
- Better Understanding of Human Cognition
 - * Cognitive science: theory of knowledge acquisition (e.g., through practice)
 - * Performance elements: reasoning (inference) and recommender systems
- Time is Right
 - * Recent progress in algorithms and theory
 - * Rapidly growing volume of online data from various sources
 - Available computational power
 - * Growth of Al-based industries (e.g., data mining, robotics, web search)

ARTIFICIAL INTELLIGENCE: SOME PROBLEMS AND METHODOLOGIES

- Problem Solving
 - * Classical search and planning
 - * Game-theoretic models
- Making Decisions under Uncertainty
 - * Uncertain reasoning, decision support, decision-theoretic planning
 - * Probabilistic and logical knowledge representations
- Pattern Classification and Analysis
 - * Pattern recognition and machine vision
 - * Connectionist models: artificial neural networks (ANNs), other graphical models
- Data Mining and Knowledge Discovery in Databases (KDD)
 - * Framework for optimization and machine learning
 - * Soft computing: evolutionary algorithms, ANNs, probabilistic reasoning
- Combining Symbolic and Numerical Al
 - * Role of knowledge and automated deduction
 - * Ramifications for cognitive science and computational sciences

CIS 530 / 730: ARTIFICIAL INTELLIGENCE

MONDAY 24 AUG 2009

INTELLIGENT AGENTS: OVERVIEW

- Agent: Definition
 - * Any entity that <u>perceives</u> its environment through <u>sensors</u> and <u>acts</u> upon that environment through effectors
 - * Examples (class discussion): human, robotic, software agents
- Perception
 - * Signal from environment
 - * May exceed sensory capacity
- Sensors
 - * Acquires percepts
 - * Possible limitations
- Action
 - * Attempts to affect environment
 - * Usually exceeds effector capacity
- Effectors
 - * Transmits actions
 - * Possible limitations

TERM PROJECT TOPICS FALL 2009

- 1. Game-playing Expert System
 - * "Borg" for Angband computer role-playing game (CRPG)
 - * http://www.thangorodrim.net/borg.html
- 2. Trading Agent Competition (TAC)
 - * Supply Chain Management (TAC-SCM) scenario
 - * http://www.sics.se/tac/page.php?id=13
- 3. Knowledge Base for Bioinformatics
 - * Evidence ontology for genomics or proteomics
 - * http://bioinformatics.ai.sri.com/evidence-ontology/

TERM PROJECT GUIDELINES

- Due: Fri 04 Dec 2009
 - * Project milestones: initial (plan), interrim (interview), final (presentation)
 - * Presentations, peer review outside class
- Individual Projects
 - * Topic selection due Fri 12 Sep 2009
 - * First draft of project plan due Fri 19 Sep 2009
- Grading: 260 points (out of 1000)
 - * Proposal: 20 points * Interview: 20 points

* Writeup: 40 points

- * Presentation: 20 points
- * Project content: 160 points
 - ⇒ Originality: 40 points
 - ⇒ Functionality: 40 points
 - ⇒ Development effort: 40 points
 - ⇒ Completeness: 40 points

RELATED ONLINE RESOURCES

- Research
 - * KSU Laboratory for Knowledge Discovery in Databases http://www.kddresearch.org (see especially Group Info, Web Resources)
 - * KD Nuggets: http://www.kdnuggets.com
- **Courses and Tutorials Online**
 - * At KSU
 - ⇒ CIS732 Machine Learning and Pattern Recognition http://www.kddresearch.org/Courses/Spring-2009/CIS732
 - ⇒ CIS830 Advanced Topics in Artificial Intelligence http://www.kddresearch.org/Courses/Spring-2009/CIS830
 - CIS690 Implementation of High-Performance Data Mining Systems http://ringil.cis.ksu.edu/Courses/Summer-2005/CIS690
 - * Other courses: see KD Nuggets, www.aaai.org, www.auai.org
- Discussion Forums
 - * Newsgroups: comp.ai.*
 - * Recommended mailing lists: Data Mining, Uncertainty in Al
 - * KDD Group Mailing List (KDD-L@listserv.ksu.edu)

TERMINOLOGY

- Artificial Intelligence (AI)
 - * Operational definition: study / development of systems capable of "thought processes" (reasoning, learning, problem solving)
 - * Constructive definition: expressed in artifacts (design and implementation)
- Intelligent Agents
- Topics and Methodologies
 - * Knowledge representation
 - ⇒ Logical
 - ⇒ Uncertain (probabilistic)
 - ⇒ Other (rule-based, fuzzy, neural, genetic)
 - * Search
 - Machine learning
 - * Planning
- Applications
 - * Problem solving, optimization, scheduling, design
 - * Decision support, data mining
 - * Natural language processing, information retrieval and extraction (IR/IE)
 - * Pattern recognition and robot vision

0 / 730: ARTIFICIAL INTELLIGENCE

MONDAY, 24 AUG 2009

COMPUTING & INFORMATION SCIENCES

SUMMARY POINTS

- Artificial Intelligence: Conceptual Definitions and Dichotomies
 - * Human cognitive modelling vs. rational inference
 - * Cognition (thought processes) versus behavior (performance)
 - * Some viewpoints on defining intelligence
- Roles of Knowledge Representation, Search, Learning, Inference in Al
 - * Necessity of KR, problem solving capabilities in intelligent agents
 - * Ability to reason, learn
- Applications and Automation Case Studies
 - * Search: game-playing systems, problem solvers
 - * Planning, design, scheduling systems
 - * Control and optimization systems
 - * Machine learning: pattern recognition, data mining (decision support)
- More Resources Online
 - * Home page for AIMA (R&N) textbook
 - * CMU Al repository
 - * KSU KDD Lab (Hsu): http://www.kddresearch.org
 - * comp.ai newsgroup (now moderated)

