Grasp and Lift EEG

Group 24

Table of Contents

- I. Competition Overview
- II. Pre-processing
- III. Classification Models
- IV. Comparison of Results

Competition Overview

Objectives

- To have a better understanding between the relationship between EEG signals and hand movements
- Results could aid the development of BCI devices that would give patients with neurological disabilities the ability to move
- A non-invasive approach has been taken to collect EEG readings

Dataset Exploration

X

10 Series*

12 Subjects

Data by Kaggle

EEG Readings

Electrodes (32 Channels)

- EEG is the recording of electrical activity diffused from the cortex
- EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain

id	Fp1	Fp2	F7	O2	PO10
subj1_series1_0	-31	363	211	 120	704
subj1_series1_1	-29	342	216	 83	737
subj1_series1_X	242	266	234	 -229	-153

HandStart

FirstDigitTouch

BothStartLoadPhase

LiftOff

Replace

BothReleased

Overview of steps taken

1. PRE-PROCESSING

Low-pass filter

2. TRAIN

Classification

Linear Discrimination Analysis

Logistic Regression

Random Forest

Artificial Neural Networks

Ensemble Classifier

Evaluated on Mean column-wise Area Under Curve on test dataset

4. EVALUATE

Select Best Model

Preprocessing

Why do we need to pre-process EEG data?

- EEG only measures blurred cortical activities (due to the diffusion of the skull and the skin)
- EEG signals thus may be contaminated by noise from various sources such as ocular and myoelectric signals
- A healthy human brain generates waves at frequencies from 0.5 Hz to 100 Hz

Rhythms of EEG signal

Rhythm	Frequency Range*	Description
Alpha	8 - 13 Hz	Particularly evident during the absence of visual stimuli
Beta	12 - 30 Hz	Frontal region of brain and observed during concentration
Gamma	30 - 100 Hz	Motor activities
Delta	0.5 - 4 Hz	Observed at stage 3 and 4 of sleep
Theta	4 - 8 Hz	Observed during light sleep and during hypnosis
Mu	8 - 12 Hz	Used in Motor Imagery (MI) BCI paradigm

Rhythm Modulation for Hand Movements

- Competition focuses on Motor Imagery (MI) for hand movements.
- Hand MI of a healthy subject results in a desynchronization (ERD) of mu in contralateral EEG
- Hand MI also results in synchronization (ERS) of **beta** rhythm in ipsilateral EEG
- Examined signals within the range of 7-30 Hz

Low Pass Filter

- Normalized values
- Very few input values below the required 7 Hz lower bound
- Used a low pass instead of bandpass filter
- Smooth values and expose features
 - Add low pass filtered values as extra rows to the input data
 - Annunciate the result by raising low pass filtered values to the 8th power

Classification Models*

- 1. Linear Discrimination Analysis (LDA)
- 2. Logistic Regression (LR)
- 3. Random Forest Classification (RFC)
- 4. Artificial Neural Network (ANN)
- 5. Ensemble Classification

Model 1: Linear Discrimination Analysis (LDA)

Reasons for Using LDA:

- Maximizes class separation
- Most widely used model for biological datasets
- High accuracy when applied to large datasets
- Allows both dimensionality reduction and classification

Model 2: Logistic Regression (LR)

Reasons for using LR:

- Robust
- Gets rid of unbounded nonsensical results from linear classification
- Achieves stable results with large sample size

Model 3: Random Forest Classification (RFC)

Reasons for using RFC:

- It has methods for balancing errors in datasets where classes are imbalanced
- Resistant to overtraining and outliers
- Very accurate for large dataset

Model 4: Artificial Neural Networks (ANN)*

Reasons for considering ANN:

- Efficient with large datasets
- Flexibility: Tune parameters for better results

Ensemble Classification

Take the mean of individual model predictions - "bagging submissions"

Advantages:

- Averaging predictions often reduces overfit
- Ideal to have a smooth separation between classes
- A single model's predictions can be a little rough around the edges.

Comparison of Results

Submission Results

Classification	Training Set	Kaggle Score (379 teams)
Linear Discriminant Analysis	Full	0.84757 (181)
Ensemble (LDA + LR)	Full	0.841 (225)
Logistic Regression	Full	0.84 (226)
Random Forest	100 Samples	0.784 (261)
ANN - Stochastic Gradient Descent	100 Samples	0.5420 (334)

Findings

Classifier	Training Speed	Performance
Linear Discriminant Analysis	Fast	$\star\star\star\star$
Ensemble (LDA + LR)	Slow	$\star\star\star$
Logistic Regression	Normal	$\star\star\star$
Random Forest	Very Slow	★ ★
ANN - Stochastic Gradient Descent	Normal	★★

- Scores for models of a sample size of 1000 performed more poorly than those of 100
- LDA outperformed LR in score and speed

Alternative Solutions

- Convolutional Neural Networks
 - Computationally Expensive
 - Submissions that beat the .89 marker often used CNN
 - Could be tweaked to fit in our ensemble to get better results
- Artificial Neural Network
 - Basic Model provides very bad results
 - Linear Hinge loss function
 - Expensive to tweak parameters to get result accuracy close to our final model

Thank you!

The 3 steps of Feature Extraction*

- Signal conditioning to reduce noise and to enhance relevant aspects of the signals
- Extraction of the features from the conditioned signals
- Feature conditioning to properly prepare the feature vector for the featuretranslation stage

Results and Comparison with Submitted Entries

Model Used	Kaggle Score (rank out of 375 entries)
LDA	0.84288(221)
Linear Regression	0.82799 (234)
LR [-100]	0.82839(233)
LR (1000 Subsample)	0.774(262)
LR Full	0.840(226)
RF(100)	0.784(261)
Ensemble (LDA + Linear Regression)	0.84103 (225)
Ensemble Full	0.84665(211)