Formelsammlung EN

J/T/A

I. GRUNDLAGEN

A. Drehstrom (DS), 3-Phasen-System

1) Spannungen in DS (symmetrisch)

Leiter-Erde-Spannung $U_{LE}=230V$

$$\underline{U}_{L1} = U_{LE} \angle 0^{\circ}$$

$$\underline{U}_{L2} = U_{LE} \angle - 120^{\circ} = U_{LE} \angle 240^{\circ}$$

$$U_{L3} = U_{LE} \angle - 240^{\circ} = U_{LE} \angle 120^{\circ}$$

Leiter-Leiter-Spannung $U_{LL} = 400V$

$$\begin{split} &U_{LL} = U_{LE} \cdot \sqrt{3} \\ &\underline{U}_{12} = \underline{U}_{L1} - \underline{U}_{L2} = U_{LL} \angle 30^{\circ} \\ &\underline{U}_{23} = \underline{U}_{L2} - \underline{U}_{L3} = U_{LL} \angle 270^{\circ} \\ &\underline{U}_{31} = \underline{U}_{L3} - \underline{U}_{L1} = U_{LL} \angle 150^{\circ} \end{split}$$

2) Ströme in DS (symmetrisch)

$$\underline{I}_{Lx} = \frac{\underline{U}_{Lx}}{Z}$$

Lx: Stranggrößen L1, L2, L3

3) Effektivgrößen, Symmetrische Last

Stranggröße	Stern	Dreieck
Spannung U_{LE}	$U_{LE} = \frac{U_{LL}}{\sqrt{3}}$	$U_{LE} = U_{LL}$
Strom I_{str}	$I_{str} = I_r$	$I_{str} = \frac{I_r}{\sqrt{3}}$

 I_r : Zuleitungs-, Betriebs-, Bemessungssstrom

4) Leistungen in DS

Scheinleistung S [VA]:

$$\begin{split} S &= 3 \cdot U_{LE} \cdot I_L = \sqrt{3} \cdot U_{LL} \cdot I_L \\ &= \sqrt{P^2 + Q^2} \\ \underline{S} &= 3 \cdot \underline{U}_{LE} \cdot \underline{I}_L^* = P + jQ \end{split}$$

in Sternschaltung:

$$\underline{S}_{ds} = \frac{U_{LL}^2}{\underline{Z}_{LN}^*}$$

$$\underline{S}_{ws} = \frac{U_{LL}^2}{3 \cdot \underline{Z}_{LN}^*}$$

Wirkleistung P [W]:

$$P = S \cdot \cos \varphi$$

$$= 3 \cdot U_{LE} \cdot I_L \cdot \cos \varphi$$

$$= \sqrt{3} \cdot U_{LL} \cdot I_L \cdot \cos \varphi$$

Blindleistung Q [var]:

$$\begin{split} |Q| &= S \cdot \sin \varphi = P \cdot \tan \varphi \\ &= 3 \cdot U_{LE} \cdot I_L \cdot \sin \varphi \\ &= \sqrt{3} \cdot U_{LL} \cdot I_L \cdot \sin \varphi \\ Q \begin{cases} \text{induktiv} > 0 \\ \text{kapazitiv} < 0 \end{cases} \end{split}$$

B. Energiebedarf, Deckung

1) Tagesbelastungskurve

$$W = \int_0^{T_n} P(t) dt$$
$$= P_n \cdot T_a = P_{max} \cdot T_m = P_{mittel} \cdot T_n$$

P_n	Nennleistung
T_a	Ausnutzungsdauer
P_{max}	Höchstlast
T_m	Benutzungsdauer
P_{mittel}	mittlere Leistung
T_n	Nennbetriebsdauer (meist. 24h)

2) Frequenz-Wirkleistungs-Regelung

a) stationärer Zustand (Gleichgewicht)

$$W_{rot} = \frac{1}{2} \cdot J \cdot \omega_{mech}^2$$
 $\omega_{el} = p \cdot \omega_{mech}$ $W_{mech-zu} = W_{el-ab}$ $P_{mech-zu} = P_{el-ab}$

p: Polpaarzahl J: Massenträgheitsmoment

b) Störung

$$W_{m-zu} \neq W_{el-ab} \qquad P_{m-zu} \neq P_{el-ab}$$
$$\Delta W_{rot} = \frac{1}{2} \cdot J \cdot (\omega_{stat} - \omega_{akt})$$

II. TRAFO

OS	Oberspannungsseite (Primär)
US	Unterspannungsseite (Sekundär)

A. Grundgleichungen, idealer Trafo

Windungspannung

$$\frac{U_1}{N_1} = \frac{U_2}{N_2} = U_W = 4,44 \cdot f \cdot \hat{B} \cdot A_{Fe}$$

Induktionsspannung, Effektivwert

$$U_{ieff} = \frac{1}{\sqrt{2}} \cdot 2\pi f \cdot N \cdot A_{Fe} \cdot \hat{B}$$
$$= 4, 44 \cdot N \cdot f \cdot \hat{B} \cdot A_{Fe}$$

Spannungstrafo

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} = \ddot{u}$$
$$\underline{U}_2' = \ddot{u} \cdot \underline{U}_2$$

Stromtrafo

$$\frac{I_1}{I_2} = \frac{N_1}{N_2} = \frac{1}{\ddot{u}}$$
$$\underline{I}_2' = \underline{I}_2 \cdot \frac{1}{\ddot{u}}$$

Impedanztrafo

$$Z_1 = \ddot{u}^2 \cdot Z_2$$

$$R'_2 = \ddot{u}^2 \cdot R_2$$

$$L'_{2\sigma} = \ddot{u}^2 \cdot L_{2\sigma}$$

Durchgangsleistung

$$S_1 = S_2 = S_D$$

B. ESB

$$R_T + jX_T = (R_1 + R'_2) + j(X_{1\sigma} + X'_{2\sigma})$$
$$Z_T = R_T + jX_T$$
$$U_1 = (R_T + jX_T) \cdot I_1 + U'_2$$

1) Kurzschlussmessung (KS):

KS auf US.
$$\rightarrow \underline{U}_{K1}$$
 auf OS
KS auf OS. $\rightarrow \underline{U}_{K2}$ auf US

Bemessungsspannung (r = rated)

$$U_{rT} = U_{LL} = U_{LE} \cdot \sqrt{3}$$

relative KS-Spannung [%]

$$\begin{split} \underline{u}_K &= u_{K,Re} + j u_{K,Im} \\ u_K &= \sqrt{u_{K,Re}^2 + u_{K,Im}^2} \\ &= \frac{U_K \cdot \sqrt{3}}{U_{rT}} \cdot 100\% \\ &= \frac{Z_T \cdot I_r}{U_{rT}/\sqrt{3}} \\ \underline{u}_{K1} &= \frac{\underline{U}_{K1}}{U_{rT1}/\sqrt{3}} = \frac{\underline{U}_{K1}}{U_{LE,T1}} \\ \underline{u}_{K2} &= \frac{\underline{U}_{K2}}{U_{rT2}/\sqrt{3}} = \frac{\underline{U}_{K1} \cdot \ddot{\mathbf{u}}}{U_{rT1} \cdot \ddot{\mathbf{u}}/\sqrt{3}} \\ u_{K,Re} &= \frac{P_K}{S_r} \cdot 100\% = \frac{R_T \cdot I_r}{U_{rT}/\sqrt{3}} \end{split}$$

KS-Größen

$$I_K = \frac{I_r}{u_K} = \frac{U_{rT}/\sqrt{3}}{Z_T}$$

$$U_K = \frac{u_K}{100\%} \cdot \frac{U_{rT}}{\sqrt{3}}$$

Betriebskonstanten

$$Z_{T} = u_{K} \cdot \frac{U_{rT}^{2}}{S_{rT}}$$

$$R_{T} = \frac{u_{K,Re}}{100\%} \cdot \frac{U_{rT}^{2}}{S_{rT}} = \frac{u_{K,Re}}{100\%} \cdot \frac{U_{rT}}{\sqrt{3} \cdot I_{r}}$$

$$= P_{K} \cdot \frac{U_{rT}^{2}}{S_{rT}^{2}}$$

$$X_{T} = u_{K,Im} \cdot \frac{U_{rT}^{2}}{S_{rT}^{2}}$$

Verlustleistung, Wirkungsgrad

$$\begin{split} P_{ab} &= S_{rT} \cdot \cos \varphi \\ P_K &= 3 \cdot R_T \cdot I_r^2 \\ \eta &= \frac{P_{ab}}{P_{zu}} = \frac{P_{ab}}{P_{ab} + P_K + P_L} \end{split}$$

 P_{ab} : abgegebene Wirkleistung

 P_K : KS-/Kupferverluste

 P_L : Leerlaufverluste

C. Parallelbetrieb von 2 Trafos

Scheinleistungsteiler

$$|S_{T1}| = \frac{Z_{T2}}{Z_{T1} + Z_{T2}} \cdot |S_{Tges}|$$
$$|S_{T2}| = \frac{Z_{T1}}{Z_{T1} + Z_{T2}} \cdot |S_{Tges}|$$
$$|S_{Tges}| = |S_{T1}| + |S_{T2}|$$

- 1) Schaltgruppe mit gleicher Kennzahl
- 2) Gleiches Übersetzungsverhältnis
- 3) annähernd gleiche Kurzschlussspannung (max. diff. 10%)
- 4) Bemessungsscheinleistung kleiner als 3:1

III. FREILEITUNG

A. Durchhang von Freileitungsseilen

hängen hyperbolisch durch. (ab 110 kV:)

$$h_{min} = 6 \,\mathrm{m} + \left(\frac{U_{nLL} - 110 \,\mathrm{kV}}{150 \,\mathrm{kV}}\right) m$$

B. Resistanzbelag

Gleichstromwiderstand

$$\begin{split} R'_{=} &= \frac{R_{=}}{l} = \frac{\rho_{20^{\circ}}}{A_{eff}} \\ F_{\vartheta} &= 1 + \alpha(\vartheta_{max} - 20^{\circ}C) + \beta(\vartheta_{max} - 20^{\circ}C)... \end{split}$$

 A_{eff} : Wirksamer Querschnitt

 F_{ϑ} : Widerstandserhöhung durch Erwärmung

 ϑ_{max} : max. zul. Betriebstemp. des Leiterseils

Material	$ ho_{20^{\circ}\mathrm{C}}$ in $rac{m\Omega\cdot mm^2}{m}$	α in K^{-1}
Alu	28,6	0,0038
Kupfer	17,8	0,0039
Silber	16	0,0038
Eisendraht	120	0,0052

Wechselstromwiderstand

$$J = J \cdot e^{-x/\delta}$$

$$\delta = \sqrt{\frac{\rho}{\pi \cdot \mu_0 \cdot f}} = \sqrt{\frac{1}{\pi \cdot \kappa \cdot \mu_0 \cdot f}}$$

J: Stromdichte (Leiterrand)

x : Abstand vom Leiterrand (Oberfläche)

 δ : Eindringtiefe (Skineffekt)

Betriebs-Resistanzbelag

$$R_b' = R_{=}' \cdot F_{\vartheta} \cdot F_S = \frac{R_{bSeil}'}{n_{Seil}}$$

 F_S : Widerstandserhöhung durch Skineffekt

C. Induktivität

Aüßere Ind. Einzelleiter mag. Fluss -||- Doppelleiter

Innere Ind. Einzelleiter verketteter mag. Fluss
-||- Doppelleiter

$$\Phi_{a1} = \frac{\mu I l}{2\pi} \cdot \ln\left(\frac{D-r}{r}\right)$$

$$L_a = \frac{2\Phi_{a1}}{I} = \frac{\mu l}{2\pi} \cdot \ln\left(\frac{D}{r}\right)$$

$$\Psi_{i1} = \Psi_{i2} = \frac{\mu I l}{8\pi}$$

$$L_i = \frac{2\Psi_{i1}}{I} = \frac{\mu l}{8\pi}$$

gesamt Induktivität

 $\mu = \mu_0, D \gg r$

$$L_{ges} = L_a + L_i = \frac{\mu l}{2\pi} \left(\ln \left(\frac{D}{r} \right) + \frac{1}{4} \right)$$
$$L' = \frac{L_{ges}}{l} = \frac{\mu}{2\pi} \left(\ln \left(\frac{D}{r} \right) + \frac{1}{4} \right)$$

D. Reaktanzbelag

Metallmantel keine Schirmung! Für D nicht $\gg r!$ 1- oder 2-Phasig

$$X_b' = \pi \left(4 \ln \left(\frac{D}{r} \right) + 1 \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

Einfach-Drehstromkabel

$$X_b' = \frac{\pi}{2} \left(4 \ln \left(\frac{D_m}{r} \right) + 1 \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$
$$D_m = \sqrt[3]{D_{12} \cdot D_{23} \cdot D_{31}}$$

Bündelleiter

$$X_b' = \frac{\pi}{2} \left(4 \ln \left(\frac{D_m}{r_B} \right) + \frac{1}{n} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$
$$r_B = \sqrt[n]{n \cdot r \cdot r_T^{n-1}}$$
$$r_T = \frac{a}{2 \sin \frac{180^{\circ}}{n}}$$

Werden Bezeichnet nach: n x 2r / a

Doppel 3-Phasig Bündelleiter

$$X_b' = \frac{\pi}{2} \left(4 \ln \left(\frac{D_m \cdot D_{L1/LII}}{r \cdot D_{L1/LI}} \right) + 1 \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

$$D_{L1/LII} = \sqrt[3]{D_{1II} \cdot D_{2III} \cdot D_{3II}}$$

$$D_{L1/LI} = \sqrt[3]{D_{1I} \cdot D_{2II} \cdot D_{3III}}$$

Bei Asymmetrie (Phase zur Mastmitte)

$$D_{L1/L\rm II} = \sqrt[6]{D_{1\rm II}\cdot D_{2\rm III}\cdot D_{3\rm I}\cdot D_{1\rm III}\cdot D_{2\rm I}\cdot D_{3\rm II}}$$
 IV. Kabel

A. Reaktanzbelag

Metallmantel keine Schirmung! Für D nicht $\gg r!$

Wechselstromkabel

$$X_b' = \pi \left(4 \ln \left(\frac{D}{r} - 1 \right) + 1 \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

$$X_b' = \pi \left(2 \ln \left(\frac{D_m}{r} - 1 \right) + \frac{1}{2} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

Doppel-Drehstromkabel

$$X_b' = \pi \left(2 \ln \left(\frac{D_m \cdot D_{L1L\text{II}}}{r \cdot D_{L1L\text{I}}} - 1 \right) + \frac{1}{2} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

B. Suzeptanzbelag

Metallmantel/-folie schirmt das E-Feld ab!

d =Schirmdurchmesser

Wechselstromkabel

$$C_b' = C_{LE} + 2 \cdot C_{LL} = \frac{\pi \cdot \epsilon_0 \cdot \epsilon_r}{\ln\left(\left(\frac{D}{r}\right) \cdot \frac{(d^2 - D^2)}{(d^2 + D^2)}\right)}$$

Einfach-Drehstromkabel

$$C_b' = C_{LE} + 3 \cdot C_{LL} = \frac{4\pi \cdot \epsilon_0 \cdot \epsilon_r}{\ln\left(\left(\frac{D}{r}\right)^2 \cdot \frac{(0.75d^2 - D^2)^3}{(0.75d^2)^3 - (D^2)^3}\right)}$$

C. Konduktanzbelag

Restleitfähigkeit der Isolierstoffe

$$\tan \delta = \frac{I_R}{I_C} = \frac{1}{\omega CR} = \frac{G}{B}$$

$$G_b' = B_b' \cdot \tan \delta = \omega C_b' \cdot \tan \delta$$

Dielektrische Verluste

$$P_{Diel} = (\tan \delta \cdot \epsilon_r) \cdot \omega C_{Vakuum} U^2$$

Werkstoff abhängige Verlustziffer