

EDF Scheduler Implementation with FreeRTOS

Prepared by: Amr Hassan

amr.hassans880@gmail.com

Contents

1.	Analytical Calculations	3
	Hyperperiod:	
	CPU Load	
	System Schedulability	4
	Rate Monotonic:	4
	Time Demand Analysis	4
Scr	reenshots	6
2.	Simso:	F
	Keil·	-

1. Analytical Calculations

Hyperperiod:

Task	Periodicity
Btn1	50
Btn2	50
Tx	100
Rx	20
Ld1	10
Ld2	100

Hyperperiod = LCM (50,50,100,20,10,100)

Hyperperiod = 100 ms

CPU Load

Task	Periodicity	Execution Time	Occurrence Over Hyperperiod	Deadline
Btn1	50	24.3 us	2	50
Btn2	50	24.3us	2	50
Tx	100	90.1 us	1	100
Rx	20	28 us	5	20
Ld1	10	5 ms	10	10
Ld2	100	12 ms	1	100

Utilization = Total Execution Time over Hyperperiod/Hyperperiod

$$U = \frac{(24.3 \, us * 2) + (24.3 \, us * 2) + 90.1 \, us + (28 \, us * 5) + (5 \, m * 10) + 12 \, ms}{100 \, ms} \times 100\% = 62.32\%$$

System Schedulability

Rate Monotonic:

$$U \le n(2^{\frac{1}{n}} - 1)$$

U=62.32%

n = 6

$$\therefore U_{rm} = 6 * \left(2^{\frac{1}{6}} - 1\right) = 0.7347$$

$$\therefore U < U_{rm}$$

Then, System is schedulable.

Time Demand Analysis

$$W_i = e_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] e_k$$

Where,

w: worst response time

e: execution time

t: time instance

P: periodicity

i: task number

also, the Worst case is 100 ms

Load 1 Simulation: (E: 5ms, P: 10ms, Deadline=10ms)

$$w_1(10) = 5m + 0 = 5, w(10) = 5 < 10$$

Therefore, Load 1 simulation is schedulable

Uart Receiver: (E: 28us, P: 20ms, Deadline=20ms)

$$w_2(20) = 28 \mu + (20/10) 5m = 10.028 ms, w (20) = 10.028 < 20$$

Therefore, Uart Receiver is <u>schedulable</u>

Button 1 Monitor (E: 24.3us, P: 50ms, Deadline=50ms)

$$w_3(50) = 24.3 \,\mu + (50/10) \,5m + (50/20) \,30 \,\mu = 25.099 \,ms, \,w \,(50) = 25.099 \,< 50$$

Therefore, Button 1 Monitor is schedulable

Button 2 Monitor: (E: 24.3us, P: 50ms, Deadline=50ms)

$$w_4(50)$$
=24.3 μ + (50/10) 5 m + (50/20) 30 μ + (50/50)29 μ = 25. 128 ms w (50) = 25. 128 < 50

Therefore, Button 2 Monitor is *schedulable*

Periodic Transmitter :(E: 90.1 us, P: 100ms, Deadline=100ms) $w_5(100) = 90.1 \, \mu \, + (100/10) \, 5m \, + (100/20) \, 30 \, \mu \, + (100/50) 29 \, \mu \, + (100/50) 29 \, \mu \, = 50. \, 356 \, ms$ $w \, (100) = 50. \, 356 < 100$

Therefore, Periodic Transmitter is schedulable

<u>Load 2 Simulation</u>: (E: 12ms, P: 100ms, Deadline=100ms) $w_6(100) = 12m + (100/10)5m + (100/20)30\,\mu + (100/50)29\,\mu + (100/50)29\,\mu + (100/100)93\,\mu \\ + (100) = 62.452 < 100$

Therefore, Load 2 Simulation is <u>schedulable</u>

So, System is schedulable

Screenshots

2. Simso:

3. Keil:

