模块二 三角恒等变换

第1节和差角、辅助角、二倍角公式(★★☆)

内容提要

和差角、辅助角、二倍角公式是三角函数的核心公式,本节涉及一些有关公式应用的基础题,让大家熟悉公式的简单应用,下面先梳理这些公式.

- 1. 和差角公式
- ① $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$, $\sin(\alpha \beta) = \sin\alpha\cos\beta \cos\alpha\sin\beta$;

2. 辅助角公式:
$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)$$
, 其中 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$.

在辅助角公式中,若a>0,则 $\varphi\in(-\frac{\pi}{2},\frac{\pi}{2})$;若a<0,可先提负号到外面,再用辅助角公式合并.

- 3. 二倍角公式及其变形
- ①二倍角公式: $\sin 2\alpha = 2\sin \alpha \cos \alpha$, $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$, $\tan 2\alpha = \frac{2\tan \alpha}{1 \tan^2 \alpha}$.

②降次公式:
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
, $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$, $\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha$.

③升次公式: $1+\cos 2\alpha = 2\cos^2 \alpha$, $1-\cos 2\alpha = 2\sin^2 \alpha$, $1\pm\sin 2\alpha = (\sin \alpha \pm \cos \alpha)^2$, $1=\sin^2 \alpha + \cos^2 \alpha$.

典型例题

类型 I: 正弦、余弦的和差角、二倍角公式的应用

【例 1】已知
$$\sin \alpha = \frac{\sqrt{5}}{5}$$
,且 $\alpha \in (\frac{\pi}{2}, \pi)$,则 $\cos(\alpha + \frac{\pi}{4}) = ____.$

解析: 将 $\cos(\alpha + \frac{\pi}{4})$ 展开会出现 $\cos \alpha \, \pi \sin \alpha$, 故先由 $\sin \alpha \, \bar{\pi} \cos \alpha$,

因为
$$\sin \alpha = \frac{\sqrt{5}}{5}$$
,且 $\alpha \in (\frac{\pi}{2}, \pi)$,所以 $\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{2\sqrt{5}}{5}$,

故
$$\cos(\alpha + \frac{\pi}{4}) = \cos\alpha\cos\frac{\pi}{4} - \sin\alpha\sin\frac{\pi}{4} = -\frac{2\sqrt{5}}{5} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{5}}{5} \times \frac{\sqrt{2}}{2} = -\frac{3\sqrt{10}}{10}$$
.

答案:
$$-\frac{3\sqrt{10}}{10}$$

【变式 1】已知
$$\sin(\frac{\pi}{4} + \alpha) = \frac{1}{3}$$
,则 $\sin 2\alpha =$ _____.

解法 1: 先尝试简单的思路,把所给条件展开,看它与要求的 $\sin 2\alpha$ 的联系,

$$\sin(\frac{\pi}{4} + \alpha) = \frac{1}{3} \Rightarrow \sin\frac{\pi}{4}\cos\alpha + \cos\frac{\pi}{4}\sin\alpha = \frac{\sqrt{2}}{2}(\cos\alpha + \sin\alpha) = \frac{1}{3} \Rightarrow \cos\alpha + \sin\alpha = \frac{\sqrt{2}}{3},$$

所以 $(\cos \alpha + \sin \alpha)^2 = \cos^2 \alpha + \sin^2 \alpha + 2\cos \alpha \sin \alpha = 1 + \sin 2\alpha = \frac{2}{\alpha}$,故 $\sin 2\alpha = -\frac{7}{\alpha}$.

解法 2: 给值求值问题, 先探究角之间的关系, 可将已知角换元以方便观察, 把求值的角化为已知角,

设
$$t = \frac{\pi}{4} + \alpha$$
,则 $\alpha = t - \frac{\pi}{4}$,且 $\sin t = \frac{1}{3}$,所以 $\sin 2\alpha = \sin 2(t - \frac{\pi}{4}) = \sin(2t - \frac{\pi}{2}) = -\cos 2t = 2\sin^2 t - 1 = -\frac{7}{9}$.

答案: $-\frac{7}{0}$

【变式 2】(2022 • 新高考 II 卷) 若 $\sin(\alpha + \beta) + \cos(\alpha + \beta) = 2\sqrt{2}\cos(\alpha + \frac{\pi}{4})\sin\beta$,则(

(A)
$$tan(\alpha + \beta) = 1$$

(B)
$$tan(\alpha + \beta) = -1$$

(C)
$$tan(\alpha - \beta) = 1$$

(A)
$$\tan(\alpha + \beta) = 1$$
 (B) $\tan(\alpha + \beta) = -1$ (C) $\tan(\alpha - \beta) = 1$ (D) $\tan(\alpha - \beta) = -1$

解法1: 先尝试简单的思路,直接将题干所给等式左右两侧都展开,看能否进一步变形,

由题意,
$$(\sin \alpha \cos \beta + \cos \alpha \sin \beta) + (\cos \alpha \cos \beta - \sin \alpha \sin \beta) = 2\sqrt{2}(\frac{\sqrt{2}}{2}\cos \alpha - \frac{\sqrt{2}}{2}\sin \alpha)\sin \beta$$
,

整理得: $(\sin \alpha \cos \beta - \cos \alpha \sin \beta) + (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = 0$,

此时恰好又凑成了正弦、余弦的差角公式,故再将其合并,

所以
$$\sin(\alpha - \beta) + \cos(\alpha - \beta) = 0$$
,故 $\tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = -1$.

解法 2: 注意到左侧的 $\sin(\alpha + \beta) + \cos(\alpha + \beta)$ 可以合并,故先将其合并,再看能否进一步变形,

$$\sin(\alpha+\beta)+\cos(\alpha+\beta)=\sqrt{2}\sin(\alpha+\beta+\frac{\pi}{4}),$$
 代入题干等式化简得:
$$\sin(\alpha+\beta+\frac{\pi}{4})=2\cos(\alpha+\frac{\pi}{4})\sin\beta$$
 ①,

注意到右侧的两个角是 $\alpha + \frac{\pi}{4}$ 和 β ,所以把左侧的 $\alpha + \beta + \frac{\pi}{4}$ 调整为 $(\alpha + \frac{\pi}{4}) + \beta$,再展开看看,

所以代入式①可得:
$$\sin(\alpha + \frac{\pi}{4})\cos\beta + \cos(\alpha + \frac{\pi}{4})\sin\beta = 2\cos(\alpha + \frac{\pi}{4})\sin\beta$$
,

整理得:
$$\sin(\alpha + \frac{\pi}{4})\cos\beta - \cos(\alpha + \frac{\pi}{4})\sin\beta = 0$$
, 故 $\sin(\alpha + \frac{\pi}{4} - \beta) = 0$,

所以
$$\alpha + \frac{\pi}{4} - \beta = k\pi$$
, 从而 $\alpha - \beta = k\pi - \frac{\pi}{4}(k \in \mathbb{Z})$, 故 $\tan(\alpha - \beta) = \tan(k\pi - \frac{\pi}{4}) = \tan(-\frac{\pi}{4}) = -\tan\frac{\pi}{4} = -1$.

答案: D

【总结】当条件中有形如 $\sin(\alpha + \frac{\pi}{4})$, $\sin(\alpha + \beta)$ 的多角混合三角等式时,常有两个考虑的方向,一是把括 号拆开,观察它与目标之间的关联;二是寻求这些角与目标中的角的整体联系.

【变式 3】 己知
$$0 < \beta < \alpha < \frac{\pi}{4}$$
, $\cos(\alpha - \beta) = \frac{12}{13}$, $\sin(\alpha + \beta) = \frac{4}{5}$, 则 $\sin 2\alpha =$ _____.

解析: 若将所给两个等式展开,则不易进一步变形,故寻找角的关系,若看不出来,可换元,

设
$$\begin{cases} x = \alpha - \beta \\ y = \alpha + \beta \end{cases}$$
, 则 $\cos x = \frac{12}{13}$, $\sin y = \frac{4}{5}$, 且 $2\alpha = x + y$,

所以 $\sin 2\alpha = \sin(x+y) = \sin x \cos y + \cos x \sin y$ ①,

要求式①,还差 sinx 和 cosy,可由同角三角函数关系来求,先分析 x 和 y 的范围,

因为
$$0 < \beta < \alpha < \frac{\pi}{4}$$
,所以 $0 < x = \alpha - \beta < \frac{\pi}{4}$, $0 < y = \alpha + \beta < \frac{\pi}{2}$,

故
$$\sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - (\frac{12}{13})^2} = \frac{5}{13}$$
, $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - (\frac{4}{5})^2} = \frac{3}{5}$,

代入①得:
$$\sin 2\alpha = \frac{5}{13} \times \frac{3}{5} + \frac{12}{13} \times \frac{4}{5} = \frac{63}{65}$$
.

答案: $\frac{63}{65}$

类型 II: 正切的和差角、二倍角公式的应用

【例 2】若
$$\tan(\alpha - \frac{\pi}{4}) = \frac{1}{6}$$
,则 $\tan \alpha =$ _____.

解析: 由题意,
$$\tan(\alpha - \frac{\pi}{4}) = \frac{\tan \alpha - \tan \frac{\pi}{4}}{1 + \tan \alpha \tan \frac{\pi}{4}} = \frac{\tan \alpha - 1}{1 + \tan \alpha} = \frac{1}{6}$$
,解得: $\tan \alpha = \frac{7}{5}$.

答案: $\frac{7}{5}$

【变式 1】已知
$$\tan \alpha = -2$$
, $\tan(\alpha + \beta) = \frac{1}{7}$,则 $\tan 2\beta$ 的值为_____.

解析: 看到
$$\tan(\alpha + \beta)$$
, 先尝试展开, 由题意, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{1}{7}$ ①,

已知 $\tan \alpha$,我们发现代入上式可求出 $\tan \beta$,进而用二倍角公式求 $\tan 2\beta$,

将
$$\tan \alpha = -2$$
 代入式①可得 $\frac{-2 + \tan \beta}{1 + 2 \tan \beta} = \frac{1}{7}$,解得: $\tan \beta = 3$,所以 $\tan 2\beta = \frac{2 \tan \beta}{1 - \tan^2 \beta} = -\frac{3}{4}$.

答案: $-\frac{3}{4}$

【变式 2】已知
$$\alpha$$
, β 均为锐角, $(1-\sqrt{3}\tan\alpha)(1-\sqrt{3}\tan\beta)=4$,则 $\alpha+\beta=($

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{2\pi}{3}$ (C) $\frac{3\pi}{4}$ (D) $\frac{\pi}{2}$

解析: 先展开等式观察形式, 由题意, $(1-\sqrt{3}\tan\alpha)(1-\sqrt{3}\tan\beta)=1-\sqrt{3}(\tan\alpha+\tan\beta)+3\tan\alpha\tan\beta=4$, 上式中有 $\tan\alpha+\tan\beta$ 、 $\tan\alpha\tan\beta$ 这些结构, 自然想到往 $\tan(\alpha+\beta)$ 的展开式去变形,

所以 $-(\tan \alpha + \tan \beta) = \sqrt{3}(1 - \tan \alpha \tan \beta)$,从而 $\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -\sqrt{3}$,故 $\tan(\alpha + \beta) = -\sqrt{3}$,

又 α , β 都是锐角,所以 $\alpha+\beta\in(0,\pi)$,故 $\alpha+\beta=\frac{2\pi}{3}$.

答案: B

类型III: 数字角三角代数式求值

【例 3 】 $\cos 15^{\circ} \cos 45^{\circ} - \cos 75^{\circ} \sin 45^{\circ} =$.

解析:看到这个式子,想到凑形式,把 cos 75°变成 sin 15°,就凑成了余弦和角公式,

$$\cos 15^{\circ} \cos 45^{\circ} - \cos 75^{\circ} \sin 45^{\circ} = \cos 15^{\circ} \cos 45^{\circ} - \sin 15^{\circ} \sin 45^{\circ} = \cos (15^{\circ} + 45^{\circ}) = \cos 60^{\circ} = \frac{1}{2}.$$

答案: $\frac{1}{2}$

【变式 1】
$$\frac{\sin 110^{\circ} \sin 20^{\circ}}{\cos^2 155^{\circ} - \sin^2 155^{\circ}} = ____.$$

解析: 先看角之间的关联, 110°=90°+20°, 所以分子诱导后可以利用正弦倍角公式合并,

原式 =
$$\frac{\sin(90^{\circ} + 20^{\circ})\sin 20^{\circ}}{\cos 310^{\circ}} = \frac{\cos 20^{\circ} \sin 20^{\circ}}{\cos(360^{\circ} - 50^{\circ})} = \frac{\frac{1}{2}\sin 40^{\circ}}{\cos 50^{\circ}} = \frac{1}{2} \cdot \frac{\sin 40^{\circ}}{\sin 40^{\circ}} = \frac{1}{2}.$$

答案: $\frac{1}{2}$

【变式 2】 $\tan 25^{\circ} + \tan 35^{\circ} + \sqrt{3} \tan 25^{\circ} \tan 35^{\circ} =$ _____.

解析:看到 tan 25° + tan 35°和 tan 25° tan 35°, 联想到 tan(25° + 35°), 尝试正切和角公式找联系,

因为
$$\tan 60^\circ = \tan(25^\circ + 35^\circ) = \frac{\tan 25^\circ + \tan 35^\circ}{1 - \tan 25^\circ \tan 35^\circ} = \sqrt{3}$$
,所以 $\tan 25^\circ + \tan 35^\circ = \sqrt{3} - \sqrt{3} \tan 25^\circ \tan 35^\circ$,

故 $\tan 25^{\circ} + \tan 35^{\circ} + \sqrt{3} \tan 25^{\circ} \tan 35^{\circ} = \sqrt{3}$.

答案: √3

【总结】给数字角求值,关键是寻找角的关系,如相加、相减为特殊角可考虑用和差角公式,相加、相减为90°,180°等可考虑用诱导公式,或者角度之间有2倍关系,可考虑用二倍角公式.

类型IV: 辅助角公式的应用

【例 4】设 $f(x) = \sin x - \sqrt{3}\cos x$,则 f(x)的最大值为_____.

解析: 先利用辅助角公式将解析式合并, $f(x) = \sqrt{1^2 + (-\sqrt{3})^2} \sin(x + \varphi) = 2\sin(x + \varphi)$, 所以 $f(x)_{max} = 2$.

答案: 2

【反思】因为本题 f(x) 的定义域为 R,所以不用去求辅助角 φ 的值,就能得出最大值. 接下来的两道题我

们还会看到必须求 φ 的情形下, φ 是特殊角和 φ 不是特殊角的处理方法.

【变式 1】设
$$f(x) = \sin x - \sqrt{3}\cos x (0 \le x \le \frac{2\pi}{3})$$
,则 $f(x)$ 的最大值为_____.

解析: 先利用辅助角公式将解析式合并, $f(x) = \sqrt{1^2 + (-\sqrt{3})^2} \sin(x + \varphi) = 2\sin(x + \varphi)$,

这里因为规定了 $0 \le x \le \frac{2\pi}{3}$,所以必须求出 φ 的值,因为 $\tan \varphi = -\sqrt{3}$ 且 $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$,所以 $\varphi = -\frac{\pi}{3}$,

从而 $f(x) = 2\sin(x - \frac{\pi}{3})$,接下来可将 $x - \frac{\pi}{3}$ 换元成 t,借助 $y = 2\sin t$ 的图象来求最值,

设
$$t = x - \frac{\pi}{3}$$
, 则 $f(x) = 2\sin t$, 当 $0 \le x \le \frac{2\pi}{3}$ 时, $-\frac{\pi}{3} \le t = x - \frac{\pi}{3} \le \frac{\pi}{3}$,

函数 $y = 2\sin t$ 的部分图象如图所示,由图可知当 $t = \frac{\pi}{3}$ 时, f(x) 取得最大值 $\sqrt{3}$.

答案: √3

《一数•高考数学核心方法》

【变式 2】已知
$$f(x) = \sin x + 2\cos x (0 \le x \le \frac{\pi}{2})$$
,则 $f(x)$ 的值域为_____.

解析: 由题意, $f(x) = \sqrt{1^2 + 2^2} \sin(x + \varphi) = \sqrt{5} \sin(x + \varphi)$, 为了求值域, 可先将 $x + \varphi$ 换元成t,

设
$$t = x + \varphi$$
,则 $f(x) = \sqrt{5}\sin t$,因为 $0 \le x \le \frac{\pi}{2}$,所以 $\varphi \le t \le \frac{\pi}{2} + \varphi$,

接下来必须研究辅助角 φ , 才能求出 $y = \sqrt{5} \sin t \propto [\varphi, \frac{\pi}{2} + \varphi]$ 上的值域,

由辅助角公式知
$$\sin \varphi = \frac{2\sqrt{5}}{5}$$
, $\cos \varphi = \frac{\sqrt{5}}{5}$, 所以 φ 在第一象限, 不妨设 $\varphi \in (0, \frac{\pi}{2})$,

从而
$$y = \sqrt{5} \sin t$$
 在 $[\varphi, \frac{\pi}{2}]$ 上 \nearrow ,在 $[\frac{\pi}{2}, \frac{\pi}{2} + \varphi]$ 上 \searrow ,故当 $t = \frac{\pi}{2}$ 时, $f(x)$ 取得最大值 $\sqrt{5}$;

对于最小值,根据单调性,只需比较左右端点谁更小即可,

又
$$\sin \varphi = \frac{2\sqrt{5}}{5} > \sin(\frac{\pi}{2} + \varphi) = \cos \varphi = \frac{\sqrt{5}}{5}$$
,所以 $y = \sqrt{5} \sin t$ 在 $[\varphi, \frac{\pi}{2} + \varphi]$ 上的图象如图所示,

由图可知, 当 $t = \frac{\pi}{2} + \varphi$ 时, f(x)取得最小值 1, 故 f(x)的值域为[1, $\sqrt{5}$].

答案: [1,√5]

【反思】在辅助角公式 $a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$ 中,若需要用到辅助角 φ ,但 φ 又不是特殊角, 则我们可以利用 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$ 来解决问题.

强化训练

- 1. (2023・江苏南京模拟・★)已知 $\cos \alpha = \frac{1}{3}$,则 $\sin \alpha \sin 2\alpha =$ ()

- (A) $\frac{1}{27}$ (B) $\frac{2}{27}$ (C) $\frac{8}{27}$ (D) $\frac{16}{27}$
- 2. $(2022 \cdot 安徽模拟 \cdot ★★) 若 α 是第二象限的角,且 <math>\sin(\pi \alpha) = \frac{3}{5}$,则 $\tan 2\alpha =$ ____.
- 3. $(2023 \cdot 新高考 II 卷 \cdot ★★) 已知 α 为锐角, <math>\cos \alpha = \frac{1+\sqrt{5}}{4}$,则 $\sin \frac{\alpha}{2} = ($)

- (A) $\frac{3-\sqrt{5}}{2}$ (B) $\frac{-1+\sqrt{5}}{2}$ (C) $\frac{3-\sqrt{5}}{4}$ (D) $\frac{-1+\sqrt{5}}{4}$
- 4. (2023 重庆模拟 ★★) sin 20° sin 10° cos 20° sin 80° = ____.
- 5. $(2021 \cdot 全国乙卷 \cdot \star \star) \cos^2 \frac{\pi}{12} \cos^2 \frac{5\pi}{12} = ($

- (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

- 6. $(2022 \cdot 黑龙江模拟 \cdot \star \star)$ 数学家华罗庚倡导的"0.618 优选法"在各领域都有广泛应用,0.618 就是 黄金分割比 $m = \frac{\sqrt{5}-1}{2}$ 的近似值,黄金分割比还可以表示成 $2\sin 18^\circ$,则 $\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ 1} = ($
 - (A) 4 (B) $\sqrt{5}+1$ (C) 2 (D) $\sqrt{5}-1$
- 7. $(2022 \cdot 北京模拟 \cdot \star \star \star \star)$ 若 $\cos(\pi \alpha) = -\frac{\sqrt{10}}{10}$, $\alpha \in (0, \frac{\pi}{2})$, $\tan(\alpha + \beta) = \frac{1}{2}$, 则 β 可以为_____. (写 出一个满足条件的 β)

- 8. $(2023 \cdot 江苏常州模拟 \cdot \star \star \star)$ 已知 $\cos(\alpha + \beta) = \frac{1}{3}$ $\tan \alpha \tan \beta = -\frac{1}{4}$,则 $\cos(\alpha \beta) = _____.$
- 9. (2022 · 江 苏 常 州 模 拟 · ★ ★) 己 知 $a = \frac{\sqrt{2}}{2}(\cos 1^{\circ} \sin 1^{\circ})$, $b = \frac{1 \tan^{2} 22.5^{\circ}}{1 + \tan^{2} 22.5^{\circ}}$, $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ}$, 则 a , b , c 的大小关系为()
 (A) b > a > c (B) c > b > a (C) c > a > b (D) b > c > a
- 10. (★★★) 设当 $x = \theta$ 时,函数 $f(x) = \sin x 2\cos x$ 取得最大值,则 cos $\theta =$ _____.