# Lecture One Instructions: Language of the Computer

**CSE-2204: Computer Architecture and Organization** 

Course Teacher: Dr. Mosarrat Jahan

**Associate Professor** 

CSE, DU.

#### **MIPS**

- MIPS (Microprocessor without Interlocked Pipelined Stages) is Reduced Instruction Set Computer (RISC) Instruction Set Architecture (ISA).
- MIPS was developed by MIPS Computer Systems (an American company now known as MIPS Technologies).
- It has the following characteristics:
  - Streamlined instruction.
  - Load/store architecture.
  - Single clock cycle execution.

## Why MIPS?

- An elegant example of instruction set produced since 1980.
- Once learned, helps the designer to pick up other popular instruction sets;
  - ARM 7 (Advanced RISC Machine/Acron RISC Machine)
  - Intel x86
  - ARM8

# Operations of the Computer Hardware

- MIPS arithmetic instruction performs only one operation and must always have exactly three variables.
- Example: add a, b, c
- Keeping exactly three operands for every instruction, makes the hardware very simple. Hardware for a variable number of operands is more complicated.
- Design Principle 1: *Simplicity favors regularity.*

#### Example

```
High level instruction: f = (g+h) - (i+j)

MIPS instruction: add t0, g, h \longrightarrow t0 = g + h

: add t1, i, j \longrightarrow t1 = i + j

: sub f, t0, t1 \longrightarrow f = t0 - t1
```

```
With MIPS register notation: add $t0, $s1, $s2 \longrightarrow $t0 \longleftarrow g + h
: add $t1, $s3, $s4 \longrightarrow $t1 \longleftarrow i + j
: sub $s0, $t0, $t1 $s0 \longleftarrow f
```

#### **Operands of Computer Hardware**

Two types: 1. Registers 2. Memory operands

- **Register:** Special locations built directly into the hardware.
- The size of registers: 32 bits (MIPS architecture)
- Word size: 32 bits (MIPS architecture)
- Three operands of MIPS instruction must each be chosen from one of the 32 registers.
- A very large number of registers may increase the clock cycle time simply because it takes electronic signals longer when they travel farther.
- Design Principle 2: **Smaller is faster.**
- MIPS registers: \$s0, \$s1,... for variables in C and \$t0, \$t1, ... for temporary variables.

## Memory Operands

- Registers can contain few data values. The remaining data values and the complex data structures are kept in the memory.
- ✓ **Data Transfer Instruction:** Arithmetic operations are performed only on registers. So, data transfer instruction are needed to transfer data between memory and registers.
- ✓ Load Instruction: Used to fetch data from memory into a register.
- ✓ Format of Load Instruction:

|  | lw | Dest Register | Constant/offset | Base Register |
|--|----|---------------|-----------------|---------------|
|--|----|---------------|-----------------|---------------|

Memory address= constant + Base register

#### Example

1.High level instruction: g = h + A[8]

MIPS instruction: lw \$t0, 8(\$s3)

add \$s1, \$s2, \$t0

2. High level instruction: A[12] = h + A[8]

MIPS instruction: lw \$t0, 32 (\$s3)

add \$t0, \$s2, \$t0

sw \$t0, 48(\$s3)

## Memory Representation



- In MIPS, words must start at addresses that are multiples of 4. (Alignment restriction)
- MIPS follow Big Endian scheme.
- Store instruction: used to store data from register to memory location.
- Format of Store Instruction:

| • | SW | Source Register | Constant | Base Register |
|---|----|-----------------|----------|---------------|
|---|----|-----------------|----------|---------------|

#### Constant and Immediate Operand

- ✓ By adding constant operand in the instruction we can avoid load operation.
- ✓ Example: addi \$s3, \$s3, 4
- ✓ Constant operands occur frequently. By including constants inside arithmetic instruction, they are much faster than if constants were loaded from memory.
- ✓ Design Principle 3: *Make the common case fast.*

#### MIPS Instruction Format

| Op     | rs     | rt     | rd     | shamt  | funct  |
|--------|--------|--------|--------|--------|--------|
| 6 bits | 5 bits | 5 bits | 5 bits | 5 bits | 6 bits |

Figure: R- type or R-format Instruction

- Data and instruction are represented as binary number in computer memory.
- 5 bits are required for register address because there are 32 registers.
- Mapping of register to number:

# Representing Instruction in the Computer

Example: add \$t0, \$s1, \$s2

Decimal Representation:

| 0 | 17 | 18 | 8 | 0 | 32 |
|---|----|----|---|---|----|
|   |    |    |   |   |    |

#### Binary Representation:

| 000000 | 1001   | 10010  | 01000  | 00000  | 100000 |
|--------|--------|--------|--------|--------|--------|
| 6 bits | 5 bits | 5 bits | 5 bits | 5 bits | 6 bits |

#### MIPS Instruction Format

| Op     | rs     | rt     | Constant or address |
|--------|--------|--------|---------------------|
| 6 bits | 5 bits | 5 bits | 16 bits             |

Figure: I- format or I- type instruction (used by immediate and data transfer instruction)

- rs=base register
- Design Principle 4: Good design demands good compromise.
- We can reduce hardware complexity by keeping the formats similar.
- Formats are distinguished by values in the first field.

## MIPS Instruction Encoding

| Instruc<br>-tion | Format | Op | rs  | rt  | rd  | shamt | funct | address  |
|------------------|--------|----|-----|-----|-----|-------|-------|----------|
| add              | R      | 0  | reg | reg | reg | 0     | 32    | n.a      |
| sub              | R      | 0  | reg | reg | reg | 0     | 34    | n.a      |
| addi             | I      | 8  | reg | reg | n.a | n.a   | n.a   | constant |
| lw               | I      | 35 | reg | reg | n.a | n.a   | n.a   | address  |
| SW               | I      | 43 | reg | reg | n.a | n.a   | n.a   | address  |

## Example

```
A[300] = h + A[300]
```

#### MIPS instructions:

```
1. lw $t0, 1200(\$t1) # $t0 := A[300]
```

2. add \$t0, \$s2, \$t0 #\$t0 := h + A[300]

3. sw \$t0, 1200(\$t1) #A[300] := A[300] + h

#### Decimal Representation:

| ор | rs | rt | rd   | address/<br>shamt | funct |
|----|----|----|------|-------------------|-------|
| 35 | 9  | 8  | 1200 |                   |       |
| 0  | 18 | 8  | 8    | 0                 | 32    |
| 43 | 9  | 8  | 1200 |                   |       |

Chapter 2 of textbook.