AMS580 Prof. Wei Zhu

Confidence Interval

Illustrated through inference on one population mean or proportion

Motivation & simple random sample

- Eg) We wish to estimate the average height of adult US males
- → Take a random sample.
- "Simple" random sample: every subject in the population has the same chance to be selected.

Introduction to statistical inference on one population mean

For a "random sample" of size n: $X_1, X_2, ..., X_n$

*Point estimation
$$\overline{X} \to \text{sample mean } (=\frac{X_1 + X_2 + ... + X_n}{n} = \frac{\sum_{i=1}^n X_i}{n})$$*

Other estimators: median, mode, trimmed mean, ...

<ii> Confidence Interval (C.I.)

Eg) 95% C.I. for
$$\mu$$
 99.9999% C.I. ('6-9' in the manufacture industry)

<iii> Hypothesis Test

Eg)
$$H_0: \mu \le 5'6''$$

 $H_1: \mu > 5'6''$

Point Estimator, C.I., Test \Rightarrow Statistical Inference

 Draw some conclusion on the population (parameters of interest) based on a random sample.

1

1. The Exact Confidence Interval for μ when the population is normal & σ^2 is known

① Point estimator and confidence interval for μ

- When the population is normal and the population variance is known.
- Let $X_1, X_2, ..., X_n$ be a random sample for a normal population with mean μ and variance σ^2 . That is, $X_i \stackrel{iid.}{\sim} N(\mu, \sigma^2), i=1,...,n$.
- For now, we assume that σ^2 is known.

Point Estimator for
$$\mu : \hat{\mu} = \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$E(\hat{\mu}) = E(\overline{X}) = \mu \Rightarrow \hat{\mu} = \overline{X}$$
 is an unbiased estimator of μ

- Intuitively, this means if you take "many" samples of size n from the population, then the mean of these samples means would be equal to μ if you take a large enough # of samples.
- \overline{X} is also a maximum likelihood estimator (MLE) of μ .
- \overline{X} is also a method of moment estimator (MOME) of μ .
- Other good properties too.

$\langle ii \rangle$ Confidence Interval for μ

- Intuitive approach (backwards derivation for the CI boundaries \mathcal{C}_1 and \mathcal{C}_2):

$$P(C_1 \le \mu \le C_2) = 0.95$$

 $P(-C_1 \ge -\mu \ge -C_2) = 0.95$
 $P(\bar{X} - C_1 \ge \bar{X} - \mu \ge \bar{X} - C_2) = 0.95$

$$P\left(\frac{\bar{X} - C_1}{\sigma/\sqrt{n}} \ge \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \ge \frac{\bar{X} - C_2}{\sigma/\sqrt{n}}\right) = 0.95$$

Since we know

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

We can compute the expressions for C_1 and C_2 .

However, one question is that there are MANY ways to choose the C's.

Later you will see that for pivotal quantity with symmetric pdfs, the symmetric CIs are the optimal – in that they have the shortest lengths for the given confidence level $100(1-\alpha)\%$.

Now we present a general approach to derive the CI's.

General approach for deriving CI's: the Pivotal Quantity (P.Q.) approach

*Definition: A pivotal quantity is a function of the sample and the parameter of interest. Furthermore, its distribution is entirely known.

- 1. We start by looking at the point estimator of μ . $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
- * Is \overline{X} a pivotal quantity for μ ?
- $ightarrow \overline{X}$ is not because μ is unknown.
- * function of \overline{X} and $\mu : \overline{X} \mu \sim N(0, \frac{\sigma^2}{n})$
- \rightarrow Yes, it is pivotal quantity.
- * Another function of \overline{X} and $\mu : Z = \frac{\overline{X} \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
- \rightarrow Yes, it is pivotal quantity.

So, Pivotal Quantity is not unique.

2. Now that we have found the pivotal quantity Z, we shall start the derivation for the symmetrical CI's for μ from the PDF of the pivotal quantity Z

100(1-α)% CI for μ , 0<α<1

(e.g.
$$\alpha$$
=0.05 \Rightarrow 95% C.I.)

$$P(-Z_{\alpha/2} \le Z \le Z_{\alpha/2}) = 1 - \alpha$$

$$P(-Z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}) = 1 - \alpha$$

$$P(-Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \overline{X} - \mu \le Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$P(-\overline{X}-Z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\leq -\mu\leq -\overline{X}+Z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}})=1-\alpha$$

$$P(\overline{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \ge \mu \ge \overline{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$P(\overline{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$\ \, \text{the } 100(1\text{-}\alpha)\% \text{ C.I. for } \mu \text{ is } [\overline{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}]$$

*Note, some special values for α and the corresponding $Z_{\alpha/2} values$ are:

1. The 95% CI, where
$$\alpha=0.05$$
 and the corresponding $Z_{\frac{\alpha}{2}}=Z_{0.025}=1.96$

2. The 90% CI, where $\alpha=0.1$ and the corresponding $Z_{\frac{\alpha}{2}}=Z_{0.05}=1.645$

3. The 99% CI, where $\alpha=0.01$ and the corresponding $Z_{\frac{\alpha}{2}}=Z_{0.005}=2.575$

Example 1. A random sample of 400 adult US male was taken and the sample mean was found to be $\bar{X} = 5'7'' = 67$ inches. Based on past studies, it is believed that the population distribution of all adult US male is normal and the standard deviation is 30 inches. Please construct a 95% confidence interval for the average height of all adult US male based on this sample.

Solution: The 95% CI for μ is

$$\left[\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right] = \left[67 - 1.96 \frac{30}{\sqrt{400}}, 67 + 1.96 \frac{30}{\sqrt{400}}\right] \approx [64, 70]$$

That is, the estimated 95% confidence interval for the average height of all adult US male is [5'4", 5'10"].

... ...

This means that we are 95% sure the population mean μ would lie between 5'4" and 5'10".

 $\text{:Recall the } 100(1-\alpha)\% \text{ symmetric C.I. for } \mu \text{ is } [\overline{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}]$

*Please note that this CI is symmetric around \bar{X}

The length of this CI is:

$$L_{sy} = 2 \cdot Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Now we derive a non-symmetrical CI:

$$P(-Z_{\alpha/3} \le Z \le Z_{2/3\alpha}) = 1 - \alpha$$

100(1-α)% C.I. for μ

$$\Rightarrow [\overline{X} - Z_{\frac{2}{3}\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1}{3}\alpha} \cdot \frac{\sigma}{\sqrt{n}}]$$

Compare the lengths of the C.I.'s, one can prove theoretically that:

$$L = (Z_{\alpha/3} + Z_{2/3}\alpha) \cdot \frac{\sigma}{\sqrt{n}} > L_{sy} = 2 \cdot Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

You can try a few numerical values for α , and see for yourself. For example,

$$\alpha = 0.05$$

HW: Please derive the $100(1-\alpha)\%$ symmetric C.I. for μ based on a random sample from a normal population with unknown variance

2. (Large Sample) Confidence interval for a population mean (*any population) or a population proportion p

<Theorem> Central Limit Theorem

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{n \to \infty} N(0,1)$$

When n is large enough, we have

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{.}{\sim} N(0,1)$$

That means Z follows approximately the normal (0,1) distribution.

Application #1. Inference on μ when the population distribution is unknown but the sample size is large

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

By Slutsky's Theorem We can also obtain another pivotal quantity when σ is unknown by plugging the sample standard deviation S as follows:

$$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim N(0, 1)$$

We subsequently obtain the $100(1-\alpha)\%$ C.I. using the second P.Q. for $\mu: \overline{X} \pm Z_{\alpha/2} \frac{S}{\sqrt{n}}$

Application #2. Inference on one population proportion p when the population is

Bernoulli(p) *** Let X_i ~ Bernoulli(p), $i = 1, \dots, n$, please find the $100(1-\alpha)\%$ CI for p.

Point estimator:
$$\hat{p} = \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 (ex. $n = 1000$, $\hat{p} = 0.6$)

Our goal: derive a $100(1-\alpha)\%$ C.I. for p

Thus for the Bernoulli population, we have:

$$\mu = E(X) = p$$

$$\sigma^2 = Var(X) = p(1-p)$$

Thus by the CLT we have:

$$Z = \frac{\overline{X} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\sim}{\sim} N(0,1)$$

Furthermore, we have for this situation: $\bar{X} = \hat{p}$

Therefore we obtain the following pivotal quantity Z for p:

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\sim}{\sim} N(0,1)$$

By Slustky's theorem, we can replace the population proportion in the denominator with the sample proportion and obtain another pivotal quantity for p:

$$Z^* = \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \dot{\sim} N(0,1)$$

Thus the $100(1-\alpha)\%$ (approximate, or large sample) C.I. for p based on the second pivotal quantity Z^* is:

$$\begin{split} &P(-z_{\alpha/2} \leq Z^* \leq z_{\alpha/2}) = 1 - \alpha \\ &P(-z_{\alpha/2} \leq \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}} \leq z_{\alpha/2}) = 1 - \alpha \\ &P(-\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \leq -p \leq -\hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}) = 1 - \alpha \\ &P(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}) = 1 - \alpha \\ &=> \text{The } 100(1 - \alpha)\% \text{ large sample C.I. for p is} \end{split}$$

$$[\hat{p}-Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}].$$

CLT => n large usually means $n \ge 30$

special case for the inference on p based on a Bernoulli population. The sample size n is large means

Let
$$X = \sum_{i=1}^{n} X_i$$
, large sample means:

$$n\hat{p} = X \ge 5$$
 (*Here X= total # of 'S'), and $n(1-\hat{p}) = n - X \ge 5$ (*Here n-X= total # of 'F')

Example 2.

During one of the "beer wars" in the early 1980's, a taste test between Schlitz and Budweiser was the focus of a TV commercial. 100 people agreed to drink 2 unmarked mugs and indicate which of the two beers they liked better. 54 chose "Bud". Construct and interpret the corresponding 95% confidence interval for p - the proportion of beer drinkers who prefer Bud to Schlitz.

Solution.

Confidence Interval for one population proportion (p) when the sample size is large Sample size : n (n = 100)

Sample proportion:
$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 ($\hat{p} = \frac{54}{100}$)

*** Recall we usually denote $X = \sum_{i=1}^{n} X_i$

"sample is large" means

- For one population mean, $n \ge 30$
- For one population proportion : $X \ge 5$ and $(n-X) \ge 5$

$$(X = 54 \ge 5; n - X = 46 \ge 5)$$

$$n = 100$$
, $X = 54$, 95% CI for p

From 95% confidence interval, $1-\alpha = 0.95$, $\alpha = 0.05$, $\frac{\alpha}{2} = 0.025$

$$\hat{p} = \frac{54}{100} = 0.54 \; ; Z_{0.025} = 1.96$$

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{(0.54)(0.46)}{100}} = 0.049$$

$$Z_{0.025} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \times 0.049 = 0.096$$

 \therefore The 95% confidence interval for p is [0.444, 0.636]

If
$$n = 10000$$
; $\hat{p} = 0.54$,

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{(0.54)(0.46)}{10,000}} = 0.0049$$

$$Z_{0.025} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \times 0.0049 = 0.0096 \approx 0.01$$

 \therefore The 95% confidence interval for p is [0.53, 0.55]

3. The Exact Confidence Interval for μ when the population is

<mark>normal</mark> & <mark>σ² is unknown</mark>

1. Point estimation : $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

2.
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

3. **Theorem.** Sampling from normal population

a.
$$Z \sim N(0,1)$$

b.
$$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

c. Z and W are independent.

Definition.
$$T = \frac{Z}{\sqrt{W/(n-1)}} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

----- Derivation of CI, normal population, σ^2 is unknown ------

 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ is not a pivotal quantity.

 $\overline{X} - \mu \sim N(0, \frac{\sigma^2}{n})$ is not a pivotal quantity.

 $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$ is not a pivotal quantity.

Remove $\sigma!!!$

Therefore $T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$ is a pivotal quantity.

Now we will use this pivotal quantity to derive the $100(1-\alpha)\%$ confidence interval for μ .

We start by plotting the pdf of the t-distribution with n-1 degrees of freedom as follows:

The above pdf plot corresponds to the following probability statement:

$$P(-t_{n-1,\alpha/2} \le T \le t_{n-1,\alpha/2}) = 1 - \alpha$$

$$=> P(-t_{n-1,\alpha/2} \le \frac{\overline{X} - \mu}{S / \sqrt{n}} \le t_{n-1,\alpha/2}) = 1 - \alpha$$

$$=> P(-t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \le \bar{X} - \mu \le t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

$$=> P(-\overline{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \le -\mu \le -\overline{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

$$=> P(\bar{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \ge \mu \ge \bar{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

$$=> P(\overline{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

=> Thus the $100(1-\alpha)\%$ C.I. for μ when σ^2 is unknown is

$$\left[\bar{X}-t_{n-1,\alpha/2}\frac{S}{\sqrt{n}},\bar{X}+t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}\right].$$

(*Please note that $t_{n-1,\alpha/2} \ge Z_{\alpha/2}$)

Example 3. In a psychological depth-perception test, a random sample of n = 14 airline pilots were asked to judge the distance between 2 markers at the other end of a laboratory. The data (in test) are

Please construct a 95% CI for μ , the average distance.

Solution.

(Note: we can perform the Shapiro-Wilk test to examine whether the sample comes from a normal population or not. This test is not required in our class. Here we simply assume the population is normal. I will always give you such information in the exams.) CI for μ , small sample, normal population, population variance unknown.

$$n = 14$$
, $\overline{X} = 2.26$, $S = 0.28$, $\alpha = 0.05$
95% CI for μ is $\overline{X} \pm t_{n-1,\alpha/2} \cdot \frac{S}{\sqrt{n}} = 2.26 \pm 2.16 \cdot \frac{0.28}{\sqrt{14}}$
 $\therefore [2.10, 2.42]$