Stanisław Osowski Krzysztof Siwek Paweł Fabijański

Opiekunowie przedmiotu "Podstawy Elektrotechniki i Elektroniki"

Zestaw zadań nr 1

Uwaga:

- 1) Jest to pierwszy zestaw zadań dotyczący przedmiotu. Takich zestawów będzie 5 z podstaw elektrotechniki i 2 z podstaw elektroniki. Przedmiot prowadzić będą 3 osoby. Prof. S. Osowski i dr K. Siwek są odpowiedzialni za podstawy elektrotechniki (2/3 semestru). Dr P. Fabijański odpowiedzialny jest za część dotyczącą podstaw elektroniki (1/3 semestru).
- 2) Kolejne zestawy będą wysyłane sukcesywnie w miarę trwania semestru. Równolegle z nowym zestawem otrzymacie państwo również rozwiązania zestawu poprzedniego.
- 3) Chciałbym przypomnieć, że normalne oznaczenie kierunku prądu elementu jest odwrotne do kierunku napięcia. W przypadku przyjęcia na rysunku obu oznaczeń zgodnych należy w równaniu elementu dodatkowo uwzględnić znak *minus*.
- 4) Oznaczenia prądów i napięć mogą być pisane małą lub dużą literą. Mała litera oznacza zwykle dziedzinę czasu. Duża litera dotyczy wartości skutecznych zespolonych. Moduł wartości skutecznych pisać będziemy w | |. Proszę nie dziwić się, jeśli na jednym rysunku wystąpić mogą oba rodzaje oznaczeń. Wtedy małe litery oznaczają wybór w dziedzinie czasu a duże wartości zespolone. W rozwiązaniu należy wybrać te wielkości które w danej chwili mają zastosowanie.
- 5) Oznaczenia indukcyjności i pojemności mogą być podane w postaci wartości L i C, wartości reaktancji X_L=ωL, X_C=1/ωC lub w postaci impedancji Z_L=jX_L, Z_C=-jX_C. Samo oznaczenie elementu nie ma żadnego wpływu na rozwiązanie zadania. W rozwiązaniu należy użyć właściwych wielkości (w przypadku stanów ustalonych używa się impedancji).

Zadanie 1

Obliczyć rezystancję wejściową R_{we} obwodu z rys. 1. Wszystkie wartości rezystancji są podane w omach.

Rys. 1

Zadanie 2

Obliczyć rezystancję wejściową R_{we} obwodu z rys. 1. Wszystkie wartości rezystancji są podane w omach.

Rys. 2

Zadanie 3

Określić wartości skuteczne zespolone prądów w obwodzie z rys. 3 metodą praw Kirchhoffa. Przyjąć: $i_1(t) = 10\sqrt{2}\sin(\omega t + 90^o)$, $i_2(t) = 20\sin(\omega t + 45^o)$, R=10 Ω , X_L= ω L=20 Ω , X_C=1/ ω C=40 Ω .

Rys. 3

Zadanie 4

Wyznaczyć moce wydzielone w elementach RLC oraz źródłach w obwodzie z rys. 4. Wykonać bilans mocy (suma poszczególnych rodzajów mocy wydzielonej w elementach pasywnych obwodu powinna równać się mocy generowanej przez źródła). Przyjąć:

$$i(t) = 10\sin(\omega t - 45^{\circ}), \ e(t) = 100\sqrt{2}\sin(\omega t), \ R=10\Omega, \ X_L=\omega L=10\Omega, \ X_C=1/\omega C=20 \ \Omega$$

Zadanie 5

Napisać równanie węzłowe dla obwodu z rys. 5. Potencjały węzłów zaznaczono na rysunku w postaci V_1 i V_2 . Rozwiązać to równanie wyznaczając potencjały węzłów oraz prądy w gałęziach (prądy rezystancji, pojemności i indukcyjności). Przyjąć: $i_1(t) = 10\sqrt{2}\sin(\omega t)$, $i_2(t) = 5\sqrt{2}\sin(\omega t - 90^o)$, $e_1(t) = 10\sin(\omega t + 45^o)$, $e_2(t) = 20\sqrt{2}\sin(\omega t + 90^o)$, $R=2\Omega$, $X_L=\omega L=2\Omega$, $X_C=1/\omega C=1\Omega$

Rys. 5

Zadanie 6

Napisać równanie oczkowe w postaci macierzowej dla obwodu z rys. 6. Przyjąć:

$$e_1(t) = 10\sqrt{2}\sin(\omega t + 90^\circ)$$
,

$$e_2(t) = 20\sqrt{2}\sin(\omega t),$$

$$e_3(t) = 10\sin(\omega t - 45^\circ),$$

 $e_4(t) = 50\sqrt{2}\sin(\omega t - 90^\circ)$, R=1 Ω , X_L= ω L=2 Ω , X_C=1/ ω C=5 Ω . Oczka i prądy oczkowe przyjąć jak zaznaczono na rysunku (o1, o2,o3).

Rys. 6

Zadanie 7

Przekształcić obwód do postaci zawierającej jedynie źródła napięciowe.

Zadanie 8

Wyznaczyć wartość skuteczną prądu I_x w obwodzie z rys. 8 stosując metodę Thevenina.

Przyjąć: $e(t) = 20\sqrt{2}\sin(\omega t + 90^{\circ})$, R=5 Ω , X_L= ω L=10 Ω , X_C=1/ ω C=8 Ω .

