Data Cleaning

STAGE 1 - CONVERSIONS

```
# IMPORT BY USING THE SUITABLE ENCODING
fifa = read.csv("raw_downloaded_data.csv",fileEncoding="UTF-8-BOM")

#LIBRARY TO PLAY WITH STRINGS
library("stringr")

#TO PREVENT SCIENTIFIC NOTATION
options(scipen = 999)
```

SI No	ID	Name	Age	Photo	Nationality	Flag C	Overall	Potential Club	Club Logo Va	alue	Wage	Special F	referred	Internation Weak Foo	Skill Move Work Rate	Body Type	Real Face	Position	Jersey Nur J
0	158023	L. Messi		31 https://c	dı Argentina	https://cdi	94	94 FC Barce	elo https://cdi €1	L10.5M	€565K	2202 L	.eft	5	4 Medium/	Messi	Yes	RF	10
1	20801	Cristiano F		33 https://c	dı Portugal	https://cdi	94	94 Juventu	https://cdi€7	77M	€405K	2228 F	Right	5	5 High/ Low	C. Ronaldo	Yes	ST	7
2	190871	Neymar Jr		26 https://c	dı Brazil	https://cdi	92	93 Paris Sa	nt https://cdi€1	L18.5M	€290K	2143 F	Right	5 5	5 High/ Med	Neymar	Yes	LW	10
3	193080	De Gea		27 https://c	dı Spain	https://cdi	91	93 Manche	st∈https://cdi€7	72M	€260K	1471 F	Right	4 3	1 Medium/	Lean	Yes	GK	1
4	192985	K. De Bruy	,	27 https://c	dı Belgium	https://cdi	91	92 Manche	st∈https://cdi€1	L02M	€355K	2281 F	Right	4 5	4 High/ High	Normal	Yes	RCM	7 ;
5	183277	E. Hazard		27 https://c	dı Belgium	https://cdi	91	91 Chelsea	https://cdi €9	93M	€340K	2142 F	Right	4	4 High/ Med	Normal	Yes	LF	10
6	177003	L. Modrić		32 https://c	dı Croatia	https://cdi	91	91 Real Ma	dr https://cdi€6	57M	€420K	2280 F	Right	4	4 High/ High	Lean	Yes	RCM	10
7	176580	L. Suárez		31 https://c	dı Uruguay	https://cdi	91	91 FC Barce	elo https://cdi€8	30M	€455K	2346 F	Right	5	3 High/ Med	Normal	Yes	RS	9
8	155862	Sergio Ran	1	32 https://c	dı Spain	https://cdi	91	91 Real Ma	dr https://cdi€5	51M	€380K	2201 F	Right	4 3	3 High/ Med	Normal	Yes	RCB	15
9	200389	J. Oblak		25 https://c	dı Slovenia	https://cdi	90	93 Atlético	M https://cdi€6	58M	€94K	1331 F	Right	3	1 Medium/	Normal	Yes	GK	1
10	188545	R. Lewand	l	29 https://c	dı Poland	https://cdi	90	90 FC Baye	rn https://cdi€7	77M	€205K	2152 F	Right	4	4 High/ Med	Normal	Yes	ST	9
11	182521	T. Kroos		28 https://c	dı Germany	https://cdi	90	90 Real Ma	dr https://cdi€7	76.5M	€355K	2190 F	Right	4 5	3 Medium/	Normal	Yes	LCM	8
12	182493	D. Godín		32 https://c	dı Uruguay	https://cdi	90	90 Atlético	M https://cdi €4	14M	€125K	1946 F	Right	3	2 Medium/	Lean	Yes	СВ	10
13	168542	David Silva	3	32 https://c	dı Spain	https://cdi	90	90 Manche	st∈https://cdi€6	50M	€285K	2115 L	.eft	4 2	4 High/ Med	Normal	Yes	LCM	21
14	215914	N. Kanté		27 https://c	dı France	https://cdi	89	90 Chelsea	https://cdi€6	53M	€225K	2189 F	Right	3	2 Medium/	Lean	Yes	LDM	13
15	211110	P. Dybala		24 https://c	dı Argentina	https://cdi	89	94 Juventu	https://cdi€8	39M	€205K	2092 L	.eft	3	4 High/ Med	Normal	Yes	LF	21
16	202126	H. Kane		24 https://c	dı England	https://cdi	89	91 Tottenh	an https://cdi€8	33.5M	€205K	2165 F	Right	3	High/ High	Normal	Yes	ST	9
17	194765	A. Griezma		27 https://c	dı France	https://cdi	89	90 Atlético	M https://cdi€7	78M	€145K	2246 L	.eft	4 3	4 High/ High	Lean	Yes	CAM	7
18	192448	M. ter Ste	•	26 https://c	dı Germany	https://cdi	89	92 FC Barce	elo https://cdi€5	58M	€240K	1328 F	Right	3	1 Medium/	Normal	Yes	GK	22
19	192119	T. Courtoi		26 https://c	dı Belgium	https://cdi	89	90 Real Ma	dr https://cdi€5	53.5M	€240K	1311 L	.eft	4 2	1 Medium/	Courtois	Yes	GK	1
20	189511	Sergio Bus		29 https://c	dı Spain	https://cdi	89	89 FC Barce	elo https://cdi€5	51.5M	€315K	2065 F	Right	4 3	3 Medium/	Lean	Yes	CDM	5
21	179813	E. Cavani		31 https://c	dı Uruguay	https://cdi	89	89 Paris Sa	nt https://cdi€6	50M	€200K	2161 F	Right	4	3 High/ High	Lean	Yes	LS	21
22	167495	M. Neuer		32 https://c	dı Germany	https://cdi	89	89 FC Baye	rn https://cdi€3	38M	€130K	1473 F	Right	5	1 Medium/	Normal	Yes	GK	1
23	153079	S. Agüero		30 https://c	dı Argentina	https://cdi	89	89 Manche	st∈https://cdi€6	54.5M	€300K	2107 F	Right	4	4 High/ Med	Stocky	Yes	ST	10
24	138956	G. Chiellini	i	33 https://c	dı Italy	https://cdi	89	89 Juventu	https://cdi€2	27M	€215K	1841 L	.eft	4 3	2 Medium/	Normal	Yes	LCB	3
25	231747	K. Mbappé	É	19 https://c	dı France	https://cdi	88	95 Paris Sa	nt https://cdi€8	31M	€100K	2118 F	Right	3	5 High/ Med	Lean	Yes	RM	10
26	209331	M. Salah		26 https://c	dı Egypt	https://cdi	88	89 Liverpoo	ol https://cdi€6	59.5M	€255K	2146 L	.eft	3	4 High/ Med	PLAYER_B	Yes	RM	10
27	200145	Casemiro		26 https://c	dı Brazil	https://cdi	88	90 Real Ma	dr https://cdi€5	59.5M	€285K	2170 F	Right	3	2 Medium/	Normal	Yes	CDM	14

```
#REMOVE "€" FROM THE CURRENCY COLUMNS
fifa$Release.Clause = lapply(fifa$Release.Clause,
function(x){gsub("€", "", x)})
fifa$Value = lapply(fifa$Value, function(x){gsub("€", "", x)})
fifa$Wage = lapply(fifa$Wage, function(x){gsub("€", "", x)})
```

```
#CONVERT CURRENCY(FROM 'K' AND 'M') TO NUMBERS
fifa$Value = lapply(fifa$Value, function(i) {
   if(isTRUE(str detect(i, "K"))){
        a= strsplit(as.character(i[[1]][1]), "[[:upper:]]")
        b = as.double(a[[1]][1])
        c = b*1000
        return(c)
   } else if (isTRUE(str_detect(i, "M"))){
    a= strsplit(as.character(i[[1]][1]), "[[:upper:]]")
        b = as.double(a[[1]][1])
        c = b*1000000
       return(c)
   } else{
       return(i)
a= strsplit(as.character(i[[1]][1]), "[[:upper:]]")
    b = as.double(a[[1]][1])
    c = b*1000
    return(c)
  } else if (isTRUE(str_detect(i, "M"))){
  a= strsplit(as.character(i[[1]][1]), "[[:upper:]]")
    b = as.double(a[[1]][1])
    c = b*1000000
    return(c)
  } else{
    return(i)
fifa$Release.Clause = lapply(fifa$Release.Clause, function(i) {
  if(isTRUE(str_detect(i, "k"))){
    a = strsplit(as.character(i[[i]][1]), "[[:upper:]]")
    b = as.double(a[[1]][1])
    c = b*1000
    return(c)
  } else if (isTRUE(str_detect(i, "M"))){
  a= strsplit(as.character(i[[1]][1]), "[[:upper:]]")
    b = as.double(a[[1]][1])
    c = b*1000000
    return(c)
  } else{
    return(i)
```

Value	Value	Wage	Wage	Release Cla	Release.Clause
€110.5M	110500000	€565K	565000	€226.5M	226500000
€77M	7700000	€405K	405000	€127.1M	127100000
€118.5M	118500000	€290K	290000	€228.1M	228100000
€72M	72000000	€260K	260000	€138.6M	138600000
€102M	102000000	€355K	355000	€196.4M	196400000
€93M	93000000	€340K	340000	€172.1M	172100000
€67M	67000000	€420K	420000	€137.4M	137400000
€80M	80000000	€455K	455000	€164M	164000000
€51M	51000000	€380K	380000	€104.6M	104600000

```
#CONVERT HEIGHTS FROM INCHES TO CENTIMETERS
fifa$Height = lapply(fifa$Height, function(i) {
    a = strsplit(as.character(i), "[[:punct:]]")[[1]][1]
    b = strsplit(as.character(i), "[[:punct:]]")[[1]][2]
    return (as.integer(a)*30.48 + as.integer(b)*2.54)
}
```

Height	Height
5'7	170
6'2	187
5'9	175
6'4	193
5'11	180
5'8	172
5'8	172
6'0	182
6'0	182

ght	Height
	170.18
	187.96
	175.26
	193.04
1	180.34
	172.72
	172.72
	182.88
	182.88
1	193.04 180.34 172.72 172.72 182.88

```
#CONVERT WEIGHTS FROM LBS TO KG
fifa$Weight = lapply(fifa$Weight, function(i) {
   a= strsplit(as.character(i[[1]][1]), "[[:lower:]]")
   b = as.double(a[[1]][1])
   c = round(b*0.45359237, digits=2)
   return(c)
}
```

Weight	Weight
159lbs	72.12
183lbs	83.01
150lbs	68.04
168lbs	76.2
154lbs	69.85
163lbs	73.94
146lbs	66.22
190lbs	86.18
181lbs	82.1

```
#CONVERT LIST(EVERY CELL) TO NUMERIC
fifa$Value = unlist(lapply(fifa$Value, as.numeric))
fifa$Wage = unlist(lapply(fifa$Wage, as.numeric))
fifa$Height = unlist(lapply(fifa$Height, as.numeric))
fifa$Weight = unlist(lapply(fifa$Weight, as.numeric))
fifa$Release.Clause = unlist(lapply(fifa$Release.Clause, as.numeric)
)
```

```
#WRITE THE CLEANED DATA INTO A NEW FILE
write.csv(fifa, "0_raw_downloaded_data.csv", row.names = FALSE)
```

Data Cleaning

STAGE 2 – DELETIONS AND REPLACEMENT

```
# DELETING THE UNECCESSARY ROWS
fifa <- fifa[, -
c(2,5,7,11,14,16,17,18,19,21,24,25,26,29,30,31,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]</pre>
```

Sl.No	Name	Age Na	ationalit Overall	Potential Club		Value	Wage Prefer	red. Body.Typ	e Position	Jersey.Nur H	leight	Weight	Crossing	Finishing	HeadingA Sho	rtPass Volley	s Drib	bling Cu	rve FK	Accurac Lo	ngPassi Ball	Contro Acce	lerati Sprii	ntSpee
	0 L. Messi	31 Ar	gentina 9	94 FC E	Barcelo	1.1E+08	565000 Left	Messi	RF	10	170.18	72.12	84	95	70	90	86	97	93	94	87	96	91	86
	1 Cristiano I	33 Pc	ortugal 9	94 Juve	ntus	7.7E+07	405000 Right	C. Ronald	kST	7	187.96	83.01	84	94	89	81	87	88	81	76	77	94	89	91
	2 Neymar Jr	26 Br	azil	92 93 Pari	s Saint	1.2E+08	290000 Right	Neymar	LW	10	175.26	68.04	79	87	62	84	84	96	88	87	78	95	94	90
	3 De Gea	27 Sp	ain 9	91 93 Mar	chest	7.2E+07	260000 Right	Lean	GK	1	193.04	76.2	17	13	21	50	13	18	21	19	51	42	57	58
	4 K. De Bruy	27 Be	elgium 9	91 92 Mar	chest	1E+08	355000 Right	Normal	RCM	7	180.34	69.85	93	82	55	92	82	86	85	83	91	91	78	76
	5 E. Hazard	27 Be	elgium 9	91 91 Che	lsea	9.3E+07	340000 Right	Normal	LF	10	172.72	73.94	81	84	61	89	80	95	83	79	83	94	94	88
	6 L. Modric	32 Cr	oatia 9	91 91 Rea	l Madı	6.7E+07	420000 Right	Lean	RCM	10	172.72	66.22	86	72	55	93	76	90	85	78	88	93	80	72
	7 L. Suárez	31 Ur	uguay	91 91 FC E	Barcelo	8E+07	455000 Right	Normal	RS	9	182.88	86.18	77	93	77	82	88	87	86	84	64	90	86	75
	8 Sergio Rar	32 Sp	ain 9	91 91 Rea	l Madı	5.1E+07	380000 Right	Normal	RCB	15	182.88	82.1	66	60	91	78	66	63	74	72	77	84	76	75
	9 J. Oblak	25 Slo	ovenia 9	90 93 Atlé	tico M	6.8E+07	94000 Right	Normal	GK	1	187.96	87.09	13	11	15	29	13	12	13	14	26	16	43	60
1	0 R. Lewand	29 Pc	oland 9	90 FC E	Bayern	7.7E+07	205000 Right	Normal	ST	9	182.88	79.83	62	91	85	83	89	85	77	86	65	89	77	78
1	1 T. Kroos	28 G	ermany	90 90 Rea	l Madı	7.7E+07	355000 Right	Normal	LCM	8	182.88	76.2	88	76	54	92	82	81	86	84	93	90	64	62
1	2 D. Godín	32 Ur	uguay	90 90 Atlé	tico M	4.4E+07	125000 Right	Lean	CB	10	187.96	78.02	55	42	92	79	47	53	49	51	70	76	68	68
1	3 David Silva	32 Sp	ain 9	90 90 Mar	chest	6E+07	285000 Left	Normal	LCM	21	172.72	67.13	84	76	54	93	82	89	82	77	87	94	70	64
1	4 N. Kanté	27 Fr	ance 8	89 90 Che	lsea	6.3E+07	225000 Right	Lean	LDM	13	167.64	72.12	68	65	54	86	56	79	49	49	81	80	82	78
1	5 P. Dybala	24 Ar	gentina 8	89 94 Juve	ntus	8.9E+07	205000 Left	Normal	LF	21	177.8	74.84	82	84	68	87	88	92	88	88	75	92	87	83
1	6 H. Kane	24 Er	gland 8	89 91 Tott	enhan	8.4E+07	205000 Right	Normal	ST	9	187.96	88.9	75	94	85	80	84	80	78	68	82	84	68	72
1	7 A. Griezma	27 Fr	ance 8	89 90 Atlé	tico M	7.8E+07	145000 Left	Lean	CAM	7	175.26	73.03	82	90	84	83	87	88	84	78	76	90	88	85
1	8 M. ter Ste	26 G	ermany 8	89 92 FC E	Barcelo	5.8E+07	240000 Right	Normal	GK	22	187.96	84.82	15	14	11	36	14	17	18	12	42	18	38	50
1	9 T. Courtoi:	26 Be	elgium 8	89 90 Rea	l Madı	5.4E+07	240000 Left	Courtois	GK	1	198.12	96.16	14	14	13	33	12	13	19	20	35	23	46	52
2	0 Sergio Bus	29 Sp	ain 8	89 FC E	Barcelo	5.2E+07	315000 Right	Lean	CDM	5	187.96	76.2	62	67	68	89	44	80	66	68	82	88	50	52
2	1 E. Cavani	31 Ur	uguay 8	89 Rari	s Saint	6E+07	200000 Right	Lean	LS	21	185.42	77.11	70	89	89	78	90	80	77	76	52	82	75	76
2	2 M. Neuer	32 G	ermany 8	89 FC E	Bayern	3.8E+07	130000 Right	Normal	GK	1	193.04	92.08	15	13	25	55	11	30	14	11	59	48	54	60
2	3 S. Agüero	30 Ar	gentina 8	89 Mar	chest	6.5E+07	300000 Right	Stocky	ST	10	172.72	69.85	70	93	77	81	85	89	82	73	64	89	88	80
2	4 G. Chiellin	33 Ita	aly 8	89 Juve	ntus	2.7E+07	215000 Left	Normal	LCB	3	187.96	84.82	58	33	83	59	45	58	60	31	59	57	63	75
2	5 K. Mbappé	19 Fr	ance 8	88 95 Pari	s Saint	8.1E+07	100000 Right	Lean	RM	10	177.8	73.03	77	88	77	82	78	90	77	63	73	91	96	96
2	6 M. Salah	26 Eg	ypt 8	88 89 Live	rpool	7E+07	255000 Left	PLAYER_I	BRM	10	175.26	71.21	78	90	59	82	73	89	83	60	72	88	94	91
2	7 Casemiro	26 Br	azil 8	88 90 Rea	l Madı	6E+07	285000 Right	Normal	CDM	14	185.42	83.91	52	59	76	85	53	69	59	74	82	78	59	65
2	8 J. Rodrígu	26 Co	olombia 8	88 89 FC E	Bayern	7E+07	315000 Left	Normal	LAM	10	180.34	78.02	90	83	62	89	90	85	89	86	83	90	73	67
2	9 L. Insigne	27 Ita	aly 8	88 88 Nap	oli	6.2E+07	165000 Right	Normal	LW	10	162.56	58.97	86	77	56	85	74	90	87	77	78	93	94	86
3	0 Isco	26 Sp	ain 8	88 91 Rea	l Madı	7.4E+07	315000 Right	Normal	LW	22	175.26	78.93	75	79	55	89	65	94	88	76	83	95	75	69
3	1 C. Eriksen	26 De	enmark 8	88 91 Tott	enhan	7.4E+07	205000 Right	Lean	CAM	10	180.34	76.2	88	80	52	91	77	84	86	87	88	91	75	73
3	2 Coutinho	26 Br	azil 8	88 89 FC E	Barcelo	7E+07	340000 Right	Normal	LW	7	172.72	68.04	79	79	48	88	75	91	91	86	83	92	89	75
3	3 P. Aubame	29 Ga	abon 8	88 88 Arse	enal	5.9E+07	265000 Right	Lean	LM	14	187.96	79.83	77	88	79	77	86	79	80	74	64	82	93	95

```
#CHECK FOR THE CLASS
sapply(colnames(fifa),
                                            function(x) class(fifa[[x]]))
                                                                                                           Nationality "factor"
################################
                         S1.No
                                                          Name
                 "integer"
...Overall
                                                   "factor"
                                                                                "integer
       Pote,
"inte,
"inte,
"inte,
"integer" "factc
"integer" "numeric
Finishing HeadingAccuracy
"integer" "integer"
Dribbling
"integer"
"integer"
"integer"
                                                Potential
                                                                                                                       Value
                                                                                                               "integer"
Position
                                                                                  "factor"
                                                                               Body. Type
                                                                                  "fáctór
                                                                                                                 "factor"
                                                                                     Weight
                                                                                                                 Crossing
                                                                                                           "integer"
Volleys
"integer"
LongPassing
"integer"
Agility
"integer"
                                                                                "numeric
                                                                          ShortPassing
                                                                                "integer
                                                                              FKAccuracy
                                          "integer"
Acceleration
"integer"
Balance
                                                                            "integer"
SprintSpeed
             "integer"
BallControl
                                                                               "integer"
ShotPower
                   integer"
                                                                                                                   Jumping
                 Reactions
                                            "integer"
Strength
"integer"
Positioning
"integer"
Marking
                                                                                "integer"
LongShots
"integer"
Vision
                   integer"
                                                                                                                 integer
                                                                                                             Aggression "integer" Penalties
                     Stamina
                   integer"
         Interceptions "integer"
                                                                     "integer"
StandingTackle
"integer"
GKKicking
                                                                                                       "integer"
SlidingTackle
"integer"
GKPositioning
                 Composure
                                              "integer"
GKHandling
                   integer"
                   ĢKDiving
                                       "integer"
Release Clause
                 "integer
                                                                                "integer
                                                                                                               "integer
              GKReflexes
"integer"
                                                 "integer"
```

```
#REPLACING CATEGORICAL MISSING VALUE
for (j in which(fifa$Name == '')) {
  fifa$Name[j] <-fifa$Name[j-1]</pre>
for (j in which(fifa$Nationality == '')) {
  fifa$Nationality[j] <-fifa$Nationality[j-1]
for (j in which(fifa$Club == '')) {
  fifa$Club[j] <-fifa$Club[j-1]</pre>
for (j in which(fifa$Preferred.Foot == '')) {
  fifa$Preferred.Foot[j] <-fifa$Preferred.Foot[j-1]
for (j in which(fifa$Body.Type == ''))
  fifa$Body.Type[j] <-fifa$Body.Type[j-1]
for (j in which(fifa$Position == '')) {
  fifa$Position[j] <-fifa$Position[j-1]</pre>
```

#BEFORE REPLACING CATEGORICAL MISSING VALUE

13225 M. Baude	28 Germany	62	62 FC Energie	240000	1000 Right	Normal	RB		25 177			51	33	47	49	36	52	42	30	48	51	67	67
13226 L. Moneta	24 Poland	62	66 Zaglebie L	400000	2000 Left	Normal	LM		77 172.	72 69.853	2	61	48	52	63	45	63	54	39	58	60	72	71
13227 S. Hyodo	32 Japan	62	62 Hokkaido	230000	1000 Right	Normal	CM		6 172.	72 68.038	8	63	54	45	69	51	58	66	39	60	62	70	70
13228 S. Økland	25 Norway	62	66 Kristiansu	375000	1000 Right	Normal	CM		10 177	.8 68.038	8	57	39	40	64	48	62	38	59	61	71	63	52
13229 L. Sapela	35 Poland	62	62 Miedz Leg	70000	1000 Left	Normal	GK		1 185.4	42 81.19	3	12	14	14	38	13	15	11	15	31	23	34	24
13230 J. Tell	21 France	62	71 US Orléan	475000	4000 Right	Normal	LM		11 185.4	42 73.935	5	59	69	73	63	63	64	51	41	48	66	67	63
13231 A. Altuna	26 Argentina	62	65 San Martir	325000	2000 Right	Normal	CDM		5 182.8	88 73.935	5	46	30	48	65	28	57	40	35	58	65	56	59
13232 A. Rizzo	21 Italy	62	72 Cittadella	500000	1000 Left	Normal	LM		26 175.2	26 69.853	2	61	42	51	59	41	63	55	50	57	58	80	78
13233 L. Thomas	19 England	62	76 Coventry (650000	3000 Right	Lean	RM		23 167.0	64 66.224	4	50	49	45	52	38	68	35	32	35	67	81	83
13234 R. Schlege	21 Argentina	62	74 Racing Clu	475000	2000 Right	Normal	CB		14 185.4	42 82.100	2	33	27	54	34	33	31	35	29	35	38	48	60
13235 D. Montoy	22 Colombia	62	69 Itagüí Leo	350000	1000 Right	Normal	LB		26 180.3	34 71.213	9	48	24	51	49	21	42	20	28	41	51	74	70
13236 J. McNulty	33 Scotland	62	62 Rochdale	120000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13237 J. Barrera	29 Nicaragua	62	62 Boyacá Cł	300000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13238 J. Stead	35 England	62	62 Notts Cou	140000	3000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13239 A. Semprir	20 Italy	62	72 Brescia	425000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13240 R. Binghar	24 England	62	66 Hamilton	400000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13241 K. Dankow	21 Poland	62	72 Slask Wro	425000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13242 I. Colman	23 Argentina	62	70 Club Atlét	450000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13243 M. Feeney	19 England	62	78 Everton	600000	5000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13244 R. Minor	30 Denmark	62	62 Hobro IK	230000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13245 Klauss	21 Brazil	62	69 HJK Helsir	425000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13246 I. Sissoko	22 France	62	68 AS Béziers	425000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13247 F. Hart	28 Austria	62	62 SV Matter	240000	3000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13248 L. McCullo	24 Northern I	62	69 Tranmere	375000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13249 Li Yunqiu	27 China PR	62	62 Shanghai	250000	3000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13250 F. Garcia	29 Paraguay	62	62 Itagüí Leo	300000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13251 R. Haemh	34 Belgium	62	62 NAC Breda	150000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13252 E. Binaku	22 Albania	62	70 Malmö FF	375000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13253 G. Miller	31 Scotland	62	62 Carlisle U	200000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13254 A. Aidonis	17 Germany	62	82 VfB Stuttg	550000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13255 L. Sowah	25 Germany	62	65 Hamilton	325000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13256 R. Deacon	26 England	62	62 Dundee F0	325000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13257 Jang Hyun	25 Korea Rep	62	65 Suwon Sar	375000	2000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13258 A. Al Malk	23 Saudi Arak	62	67 Al Wehda	350000	3000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
13259 E. Guerrer	27 Chile	62	65 CD Palesti	300000	1000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N

#AFTER REPLACING CATEGORICAL MISSING VALUE

13224 L. Dennis	25 England	62	65 Portsmout	375000	2000 Right	Lean	CAM		18 1	185.42	68.946	5	57	56	38	59	36	64	49	35	52	61	82	82
13225 M. Baude	28 Germany	62	62 FC Energie	240000	1000 Right	Normal	RB		25	177.8			51	33	47	49	36	52	42	30	48	51	67	67
13226 L. Moneta	24 Poland	62	66 Zaglebie l	400000	2000 Left	Normal	LM			172.72	69.8532		61	48	52	63	45	63	54	39	58	60	72	71
13227 S. Hyodo	32 Japan	62	62 Hokkaido	230000	1000 Right	Normal	CM			172.72	68.0388		63	54	45	69	51	58	66	39	60	62	70	70
13228 S. Økland	25 Norway	62	66 Kristiansu	375000	1000 Right	Normal	CM		10	177.8	68.0388		57	39	40	64	48	62	38	59	61	71	63	52
13229 L. Sapela	35 Poland	62	62 Miedz Leg	70000	1000 Left	Normal	GK			185.42	81.193		12	14	14	38	13	15	11	15	31	23	34	24
13230 J. Tell	21 France	62	71 US Orléan	475000	4000 Right	Normal	LM			185.42	73.9355		59	69	73	63	63	64	51	41	48	66	67	63
13231 A. Altuna	26 Argentina	62	65 San Martir	325000	2000 Right	Normal	CDM			182.88		_	46	30	48	65	28	57	40	35	58	65	56	59
13232 A. Rizzo	21 Italy	62	72 Cittadella	500000	1000 Left	Normal	LM			175.26			61	42	51	59	41	63	55	50	57	58	80	78
13233 L. Thomas	19 England	62	76 Coventry (650000	3000 Right	Lean	RM			167.64	66.2244		50	49	45	52	38	68	35	32	35	67	81	83
13234 R. Schlege	21 Argentina	62	74 Racing Clu	475000	2000 Right	Normal	СВ			185.42			33	27	54	34	33	31	35	29	35	38	48	60
13235 D. Montoy	22 Colombia	62	69 Itagüí Leo	350000	1000 Right	Normal	LB				71.2139	_	48	24	51	49	21	42	20	28	41	51	74	70
13236 J. McNulty	33 Scotland	62	62 Rochdale	120000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA	NA	70						
13237 J. Barrera	29 Nicaragua	62	62 Boyacá Ch	300000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA NA	NA	NA		
13238 J. Stead	35 England	62	62 Notts Cou	140000	3000 Right	Normal	LB	NA	NA		NA	NA	N.		-	NA								
13239 A. Semprir	20 Italy	62	72 Brescia	425000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13240 R. Binghar	24 England	62	66 Hamilton	400000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA		
13241 K. Dankow	21 Poland	62	72 Slask Wro	425000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA		
13242 I. Colman	23 Argentina	62	70 Club Atlét	450000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA	NA	NA	NA	NA	NA	NA.		
13243 M. Feeney	19 England	62	78 Everton	600000	5000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13244 R. Minor	30 Denmark	62	62 Hobro IK	230000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13245 Klauss	21 Brazil	62	69 HJK Helsir	425000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13246 I. Sissoko	22 France	62	68 AS Béziers	425000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13247 F. Hart	28 Austria	62	62 SV Matter	240000	3000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13248 L. McCullo	24 Northern I	62	69 Tranmere	375000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13249 Li Yungiu	27 China PR	62	62 Shanghai	250000	3000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA		
13250 F. Garcia	29 Paraguay	62	62 Itagüí Leo	300000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13251 R. Haemh	34 Belgium	62	62 NAC Breda	150000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13252 E. Binaku	22 Albania	62	70 Malmö FF	375000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13253 G. Miller	31 Scotland	62	62 Carlisle U	200000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA		
13254 A. Aidonis	17 Germany	62	82 VfB Stuttg	550000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA NA		
13255 L. Sowah	25 Germany	62	65 Hamilton	325000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA NA	NA NA	NA	NA	NA	NA NA	NA NA		
13256 R. Deacon	26 England	62	62 Dundee F(325000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA	NA NA	NA	NA	NA	NA	NA NA		
13257 Jang Hyun	25 Korea Rep	62	65 Suwon Sar	375000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA		I'
13258 A. Al Malk	23 Saudi Arak	62	67 Al Wehda	350000	3000 Right	Normal	LB	NA	NA NA		NA	NA	N.			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA		
13230 A. Al IVIAIK	23 Saudi Alat	UZ	or Ai Weilda	330000	JUUU NIBIIL	Nomial	LD	IVA	INA		INA	INA	IN	1 N/	n INA	INA	NA	INA	INA	INA	INA	INA	INA	P

```
#REPLACING NUMERICAL MISSING VALUES
for(i in c(8,9, 14:50))
  m <- mean(fifa[,i], na.rm = TRUE)</pre>
  fifa[is.na(fifa[,i]), i] <-m</pre>
  fifa[[i]] = lapply(fifa[[i]], function(x){replace(x,x==0,m)})
 fifa[[i]] = unlist(lapply(fifa[[i]], as.numeric))
for(i in c(3,5,6,13))
  m=as.integer(mean(fifa[,i], na.rm = TRUE))
  fifa[is.na(fifa[,i]), i] <-m</pre>
  fifa[[i]] = lapply(fifa[[i]], function(x){replace(x,x==0,m)})
 fifa[[i]] = unlist(lapply(fifa[[i]], as.numeric))
```

#BEFORE REPLACING NUMERICAL MISSING VALUE

13224 L. Dennis	25 England	62	65 Portsmout	375000	2000 Right	Lean	CAM		18 1	185.42	68.946	5	57	56	38	59	36	64	49	35	52	61	82	82
13225 M. Baude	28 Germany	62	62 FC Energie	240000	1000 Right	Normal	RB		25	177.8			51	33	47	49	36	52	42	30	48	51	67	67
13226 L. Moneta	24 Poland	62	66 Zaglebie l	400000	2000 Left	Normal	LM			172.72	69.8532		61	48	52	63	45	63	54	39	58	60	72	71
13227 S. Hyodo	32 Japan	62	62 Hokkaido	230000	1000 Right	Normal	CM			172.72	68.0388		63	54	45	69	51	58	66	39	60	62	70	70
13228 S. Økland	25 Norway	62	66 Kristiansu	375000	1000 Right	Normal	CM		10	177.8	68.0388		57	39	40	64	48	62	38	59	61	71	63	52
13229 L. Sapela	35 Poland	62	62 Miedz Leg	70000	1000 Left	Normal	GK			185.42	81.193		12	14	14	38	13	15	11	15	31	23	34	24
13230 J. Tell	21 France	62	71 US Orléan	475000	4000 Right	Normal	LM			185.42	73.9355	_	59	69	73	63	63	64	51	41	48	66	67	63
13231 A. Altuna	26 Argentina	62	65 San Martir	325000	2000 Right	Normal	CDM			182.88		_	46	30	48	65	28	57	40	35	58	65	56	59
13232 A. Rizzo	21 Italy	62	72 Cittadella	500000	1000 Left	Normal	LM			175.26			61	42	51	59	41	63	55	50	57	58	80	78
13233 L. Thomas	19 England	62	76 Coventry (650000	3000 Right	Lean	RM			167.64	66.2244		50	49	45	52	38	68	35	32	35	67	81	83
13234 R. Schlege	21 Argentina	62	74 Racing Clu	475000	2000 Right	Normal	СВ			185.42			33	27	54	34	33	31	35	29	35	38	48	60
13235 D. Montoy	22 Colombia	62	69 Itagüí Leo	350000	1000 Right	Normal	LB				71.2139	_	48	24	51	49	21	42	20	28	41	51	74	70
13236 J. McNulty	33 Scotland	62	62 Rochdale	120000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA	NA	70						
13237 J. Barrera	29 Nicaragua	62	62 Boyacá Ch	300000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA NA	NA	NA		
13238 J. Stead	35 England	62	62 Notts Cou	140000	3000 Right	Normal	LB	NA	NA		NA	NA	N.		-	NA								
13239 A. Semprir	20 Italy	62	72 Brescia	425000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13240 R. Binghar	24 England	62	66 Hamilton	400000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA		
13241 K. Dankow	21 Poland	62	72 Slask Wro	425000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA		
13242 I. Colman	23 Argentina	62	70 Club Atlét	450000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA.		
13243 M. Feeney	19 England	62	78 Everton	600000	5000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13244 R. Minor	30 Denmark	62	62 Hobro IK	230000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13245 Klauss	21 Brazil	62	69 HJK Helsir	425000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13246 I. Sissoko	22 France	62	68 AS Béziers	425000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13247 F. Hart	28 Austria	62	62 SV Matter	240000	3000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13248 L. McCullo	24 Northern I	62	69 Tranmere	375000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13249 Li Yungiu	27 China PR	62	62 Shanghai	250000	3000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA NA	NA	NA		
13250 F. Garcia	29 Paraguay	62	62 Itagüí Leo	300000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13251 R. Haemh	34 Belgium	62	62 NAC Breda	150000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13252 E. Binaku	22 Albania	62	70 Malmö FF	375000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA								
13253 G. Miller	31 Scotland	62	62 Carlisle U	200000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA NA	NA	NA		
13254 A. Aidonis	17 Germany	62	82 VfB Stuttg	550000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA.	NA	NA	NA	NA	NA	NA NA		
13255 L. Sowah	25 Germany	62	65 Hamilton	325000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA NA	NA NA	NA	NA	NA	NA NA	NA NA		
13256 R. Deacon	26 England	62	62 Dundee F(325000	1000 Right	Normal	LB	NA	NA		NA	NA	N.			NA	NA NA	NA	NA	NA	NA	NA NA		
13257 Jang Hyun	25 Korea Rep	62	65 Suwon Sar	375000	2000 Right	Normal	LB	NA	NA		NA	NA	N.			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA		I'
13258 A. Al Malk	23 Saudi Arak	62	67 Al Wehda	350000	3000 Right	Normal	LB	NA	NA NA		NA	NA	N.			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA		
13230 A. Al IVIAIK	23 Saudi Alat	UZ	or Ai Weilda	330000	JUUU NIBIIL	Nomial	LD	IVA	INA		INA	INA	IN	1 N/	n INA	INA	NA	INA	INA	INA	INA	INA	INA	P

#AFTER REPLACING NUMERICAL MISSING VALUE

13223 P. Hellquis	27 Sweden	62	63 IF Bromma	350000	1000 Right	Normal	LW	13	182.88	73.03	58	58	53	62	51	53	59	61	56	62	70	73
13224 L. Dennis	25 England	62	65 Portsmout	375000	2000 Right	Lean	CAM	18	185.42	68.95	57	56	38	59	36	64	49	35	52	61	82	82
13225 M. Baude	28 Germany	62	62 FC Energie	240000	1000 Right	Normal	RB	25	177.8	76.2	51	33	47	49	36	52	42	30	48	51	67	67
13226 L. Moneta	24 Poland	62	66 Zaglebie L	400000	2000 Left	Normal	LM	77	172.72	69.85	61	48	52	63	45	63	54	39	58	60	72	71
13227 S. Hyodo	32 Japan	62	62 Hokkaido	230000	1000 Right	Normal	CM	6	172.72	68.04	63	54	45	69	51	58	66	39	60	62	70	70
13228 S. Økland	25 Norway	62	66 Kristiansu	375000	1000 Right	Normal	CM	10	177.8	68.04	57	39	40	64	48	62	38	59	61	71	63	52
13229 L. Sapela	35 Poland	62	62 Miedz Leg	70000	1000 Left	Normal	GK	1	185.42	81.19	12	14	14	38	13	15	11	15	31	23	34	24
13230 J. Tell	21 France	62	71 US Orléan	475000	4000 Right	Normal	LM	11	185.42	73.94	59	69	73	63	63	64	51	41	48	66	67	63
13231 A. Altuna	26 Argentina	62	65 San Martir	325000	2000 Right	Normal	CDM	5	182.88	73.94	46	30	48	65	28	57	40	35	58	65	56	59
13232 A. Rizzo	21 Italy	62	72 Cittadella	500000	1000 Left	Normal	LM	26	175.26	69.85	61	42	51	59	41	63	55	50	57	58	80	78
13233 L. Thomas	19 England	62	76 Coventry (650000	3000 Right	Lean	RM	23	167.64	66.22	50	49	45	52	38	68	35	32	35	67	81	83
13234 R. Schlege	21 Argentina	62	74 Racing Clu	475000	2000 Right	Normal	СВ	14	185.42	82.1	33	27	54	34	33	31	35	29	35	38	48	60
13235 D. Montoy	22 Colombia	62	69 Itagüí Leo	350000	1000 Right	Normal	LB	26	180.34	71.21	48	24	51	49	21	42	20	28	41	51	74	70
13236 J. McNulty	33 Scotland	62	62 Rochdale	120000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13237 J. Barrera	29 Nicaragua	62	62 Boyacá Ch	300000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13238 J. Stead	35 England	62	62 Notts Cou	140000	3000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13239 A. Semprir	20 Italy	62	72 Brescia	425000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13240 R. Binghar	24 England	62	66 Hamilton	400000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13241 K. Dankow	21 Poland	62	72 Slask Wro	425000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13242 I. Colman	23 Argentina	62	70 Club Atlét	450000	2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13243 M. Feeney	19 England	62	78 Everton	600000	5000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13244 R. Minor	30 Denmark	62	62 Hobro IK	230000	2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13245 Klauss	21 Brazil	62	69 HJK Helsir	425000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13246 I. Sissoko	22 France	62	68 AS Béziers	425000	2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13247 F. Hart	28 Austria	62	62 SV Matter	240000	3000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13248 L. McCullo	24 Northern I	62	69 Tranmere	375000	2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13249 Li Yungiu	27 China PR	62	62 Shanghai	250000	3000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13250 F. Garcia	29 Paraguay	62	62 Itagüí Leo	300000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13251 R. Haemh	34 Belgium	62	62 NAC Breda	150000	2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13252 E. Binaku	22 Albania	62	70 Malmö FF		1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13253 G. Miller	31 Scotland	62	62 Carlisle U		2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13254 A. Aidonis	17 Germany	62	82 VfB Stuttg		2000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721	64.6158	64.7292
13255 L. Sowah	25 Germany	62	65 Hamilton	325000	1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733	47.1728	42.8647	52.7139	58.3721		
13256 R. Deacon	26 England	62	62 Dundee F0		1000 Right	Normal	LB	19	181.257	75.2854	49.7363	45.553	52.3004	58.6889	42.9111	55.3733		42.8647	52.7139	58.3721		
13257 Jang Hyun	25 Korea Rep	62	65 Suwon Sar		2000 Right	Normal	LB	19			49.7363	45.553	52.3004	58.6889		55.3733					64.6158	

```
#CHECK IF THERE IS ANY MISSING VALUES
print(any(is.na(fifa)))

## [1] FALSE

#VIEW THE CLEANED DATA
View(fifa)

#WRITE THE CLEANED DATA INTO A NEW FILE
write.csv(fifa, "1_cleaned_data.csv", row.names = FALSE)
```

Normalization

Normalization, Standardization

```
# IMPORT THE DATASET
fifa = read.csv( "1 cleaned data.csv")
#SELECTS NUMERICAL COLUMNS ONLY
library("dplyr")
 ##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
   The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
 numfifa = select_if(fifa, is.numeric)
```

```
#NORMALIZE FUNTION USING MIN-MAX VALUES
normalize <- function(x){
   return ((x-min(x))/(max(x)-min(x)))
}

#NORMALIZING THE DATA USING USER-DEFINED NORMALIZED FUNCTIONS
((x-min)/range)
mmfifa <- as.data.frame(lapply(numfifa, normalize))
write.csv(mmfifa, "2_minmax.csv", row.names = FALSE)</pre>
```

SlNo.	Age	Overall	Potential	Value	Wage	Jersey.Nur	Height.in	Weight.in	Crossing	Finishing	Heading A	ShortPassi	Volleys	Dribbling	Curve	FKAccurac	LongPassi I	BallContro	Accelerati	SprintSpec	Agility	Reactions E	Balance	ShotPower	umping	Stamina	Strei
	0.51724		0.97872			0.09184		0.36842				0.96512	-		0.98864		0.92857					0.98667		0.89247		0.71429	
5.49E-05			0.97872				0.65					0.86047					0.80952			0.94048		1	0.675	1		0.90476	
0.00011	0.34483	0.95833	0.95745	1	0.51327	0.09184	0.4	0.30075	0.84091	0.91398	0.64444	0.89535	0.93023	0.98925	0.93182	0.92308	0.82143	0.98901	0.96471	0.92857	1	0.97333	0.85	0.83871	0.575	0.82143	
0.00016	0.37931	0.9375	0.95745	0.60759	0.46018	0	0.75	0.43609	0.13636	0.11828	0.18889	0.5	0.10465	0.15054	0.17045	0.17582	0.5	0.40659	0.52941	0.54762	0.56098	0.92	0.3375	0.31183	0.65	0.36905	0
0.00022	0.37931	0.9375	0.93617	0.86076	0.62832	0.06122	0.5	0.33083	1	0.86022	0.56667	0.98837	0.90698	0.88172	0.89773	0.87912	0.97619	0.94505	0.77647	0.7619	0.79268	0.93333	0.7625	0.95699	0.6	0.92857	
0.00027	0.37931	0.9375	0.91489	0.78481	0.60177	0.09184	0.35	0.3985	0.86364	0.88172	0.63333	0.95349	0.88372	0.97849	0.875	0.83516	0.88095	0.97802	0.96471	0.90476	0.9878	0.92	0.975	0.86022	0.5125	0.84524	0
0.00033	0.55172	0.9375	0.91489	0.5654	0.74336	0.09184	0.35	0.27068	0.92045	0.75269	0.56667	1	0.83721	0.92473	0.89773	0.82418	0.94048	0.96703	0.8	0.71429	0.96341	0.92	0.975	0.82796	0.6625	0.91667	0
0.00038	0.51724	0.9375	0.91489	0.67511	0.80531	0.08163	0.55	0.6015	0.81818	0.97849	0.81111	0.87209	0.97674	0.89247	0.90909	0.89011	0.65476	0.93407	0.87059	0.75	0.82927	0.94667	0.8375	0.90323	0.675	0.92857	
0.00044	0.55172	0.9375	0.91489	0.43038	0.67257	0.14286	0.55	0.53383	0.69318	0.62366	0.96667	0.82558	0.72093	0.63441	0.77273	0.75824	0.80952	0.86813	0.75294	0.75	0.78049	0.85333	0.625	0.82796	0.975	0.85714	
0.00049	0.31034	0.91667	0.95745	0.57384	0.16637	0	0.65	0.61654	0.09091	0.09677	0.12222	0.25581	0.10465	0.08602	0.07955	0.12088	0.20238	0.12088	0.36471	0.57143	0.64634	0.86667	0.4125	0.21505	0.7625	0.34524	0
0.00055	0.44828	0.91667	0.89362	0.64979	0.36283	0.08163	0.55	0.49624	0.64773	0.95699		0.88372	0.98837	0.87097	0.80682	0.91209	0.66667	0.92308	0.76471	0.78571	0.78049	0.92	0.775	0.92473	0.8625	0.78571	0
0.0006	0.41379	0.91667	0.89362	0.64557	0.62832	0.07143	0.55	0.43609	0.94318	0.7957	0.55556	0.98837	0.90698	0.82796	0.90909	0.89011	1	0.93407	0.61176	0.59524	0.68293	0.90667	0.6875	0.91398	0.1875	0.75	
0.00066		0.91667	0.89362	0.37131	0.22124	0.09184	0.65	0.46617	0.56818	0.43011	0.97778			0.52688	0.48864	0.52747	0.72619	0.78022	0.65882	0.66667	0.53659	0.85333	0.475	0.69892	0.95	0.64286	
0.00071	0.55172	0.91667					0.35			0.7957		1	0.90698	0.91398	0.86364	0.81319		0.97802		0.61905	0.95122	0.92		0.75269		0.78571	0
0.00077										0.67742			0.60465		0.48864					0.78571		0.96		0.74194	0.775	1	0
0.00082							0.45	0.41353		0.88172		0.93023			0.93182			0.95604		0.84524	0.93902			0.86022		0.80952	
0.00088		0.89583						0.64662		0.98925			0.93023		0.81818			0.86813		0.71429	0.69512			0.92473		0.91667	0
0.00093							0.4	0.38346		0.94624	0.88889		0.96512		0.88636				0.89412	0.86905	0.92683	0.92			0.9375	0.84524	0
0.00099	0.34483	0.89583				0.21429	0.65	0.57895		0.12903			0.11628		0.13636	0.0989	0.39286	0.14286	0.30588	0.45238	0.28049	0.85333		0.21505		0.27381	
0.00104	0.34483	0.89583				0	0.85	0.76692	0.10227			0.30233			0.14773			0.1978			0.57317	0.84		0.36559		0.30952	0
0.0011	0.44828				0.55752		0.65	0.43609				0.95349	0.46512		0.68182			0.91209				0.88		0.63441		0.88095	
0.00115	0.51724					0.20408		0.45113					1		0.80682	0.8022		0.84615						0.91398	0.9125	0.95238	
0.00121						0	0.75						0.0814			0.08791			0.49412		0.45122	0.84		0.24731	0.775	0.36905	
0.00126				0.5443			0.35			0.97849			0.94186					0.92308			0.87805	0.92			0.825	0.7619	
0.00132							0.65	0.57895		0.33333		0.60465			0.61364		0.59524		0.6	0.75	0.4878		0.4875		0.925	0.63095	I
	0.10345	0.875										0.87209			0.80682			0.94505			0.95122	0.88		0.82796		0.84524	<u> </u>
0.00143			0.87234		0.45133							0.87209				0.62637			0.96471					0.80645	0.6625	0.85714	0
0.00148			0.89362		0.50442			0.56391	0.53409	0.6129		0.90698	0.56977			0.78022			0.55294			0.84		0.90323	0.9125	0.89286	
0.00154	0.34483		0.87234	0.5865			0.5	0.46617		0.87097		0.95349	1	0.87097		0.91209	0.88095		0.71765					0.90323	0.4875	0.69048	
0.00159								0.15038					0.81395		0.92045				0.96471		0.97561			0.78495	0.475	0.75	_
0.00165						0.21429	0.4			0.82796			0.7093			0.8022			0.74118	0.67857	0.89024			0.72043	0.6125	0.69048	
0.0017	0.34483				0.36283			0.43609				0.97674					0.94048							0.88172		0.95238	
0.00176			0.87234	0.5865			0.35			0.82796								0.95604	0.90588		0.95122			0.87097	0.55	0.79762	
0.00181	0.44828	0.875	0.85106	0.49789	0.46903	0.13265	0.65	0.49624	0.81818	0.92473	0.83333	0.81395	0.95349	0.80645	0.84091	0.78022	0.65476	0.84615	0.95294	0.9881	0.7561	0.88	0.675	0.86022	0.8	0.7619	0

```
#STANDARDIZATION ((x-mean)/sd)
library("clusterSim")
## Loading required package: cluster
 ## Loading required package: MASS
 ##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
       select
##
 sfifa = data.Normalization(numfifa, type="n1", normalization
= "column")
write.csv(sfifa, "2 standard.csv", row.names = FALSE)
```

-1																	_							-1 -			_
			Potential		_	Jersey.Nur l							-													Stamina	
-1.73187		4.01807				-0.59957																				0.55306	
-1.73168		4.01807	3.6979			-0.78806		1.0932							1.84148											1.56118	
	0.18795					-0.59957			1.59575						2.22255											1.12013	
	0.40208					-1.16503																3.12972				-1.27415	
	0.40208					-0.78806																					
	0.40208		3.20903			-0.59957																				1.24615	
-1.73073	1.47273	3.58386	3.20903	11.5439	18.6487	-0.59957																				1.62419	-0.5
-1.73054			3.20903												2.11367							3.35197					
			3.20903			-0.28543																2.57407	0.1439	1.36738	2.36473	1.30915	1.4
-1.73016	-0.02618	3.43913	3.53494	11.7227	3.83041	-1.16503	0.99756	1.67118	-2.00323	-1.77207	-2.14929	-2.02274												-1.94386		-1.40017	1.0
-1.72997	0.83034	3.43913	3.04608	13.3312	8.8759	-0.6624	0.24159	0.64366	0.66874	2.33078	1.88419	1.65634	2.6084	1.56893	1.62373	2.47124	0.80271	1.83828	0.83078	0.90722	0.98305	3.12972	0.99409	1.89021	1.60215	0.93111	1.4
-1.72978	0.61621	3.43913				-0.72523							2.21223		2.11367					-0.18657	0.44046	3.01859	0.49815	1.83211	-2.97332	0.74209	0
-1.72959	1.47273	3.43913	3.04608	7.43319	5.23951	-0.59957	0.99756	0.38678	0.28703	-0.18222	2.28753	1.38382	0.23141	-0.12568	0.09947	0.46607	1.12938	1.05802	0.22702	0.2236	-0.37342	2.57407	-0.70629	0.67028	2.19527	0.17502	1.8
-1.7294	1.47273	3.43913	3.04608	10.2928	12.5123	0.09155	-1.27033	-1.15451	1.8684	1.5615	0.09793	2.33766	2.21223	1.78076	1.89592	1.95563	2.24007	2.13838	0.36119	-0.04985	1.93257	3.12972	1.84428	0.96074	-0.09247	0.93111	-1.0
-1.7292	0.40208	3.29439	3.04608	10.829	9.785	-0.41109	-2.02629	-0.44809	0.99592	0.99735	0.09793	1.86074	0.74077	1.25119	0.09947	0.35149	1.84807	1.2981	1.1662	0.90722	1.25434	3.4631	1.98598	0.90264	1.00903	2.06524	8.0
-1.72901	-0.24031	3.29439	3.6979	15.476	8.8759	0.09155	-0.51437	-0.06277	1.75934	1.97178	0.90463	1.92887	2.5518	1.93963	2.22255	2.58583	1.45606	2.01834	1.50162	1.24903	1.86475	2.6852	1.49004	1.54165	0.83957	1.05712	-0.0
-1.72882	-0.24031	3.29439	3.20903	14.493	8.8759	-0.6624	0.99756	1.92806	1.37763	2.48464	1.88419	1.45195	2.32542	1.30415	1.67817	1.44001	1.9134	1.53818	0.22702	0.49705	0.50829	3.24085	0.49815	1.89021	1.09376	1.62419	1.4
-1.72863	0.40208	3.29439	3.04608	13.51	6.14861	-0.78806	-0.89235	-0.31965	1.75934	2.2795	1.82656	1.65634	2.49521	1.7278	2.0048	2.01292	1.52139	1.8983	1.56871	1.38575	1.79693	3.12972	1.13579	1.42547	2.11054	1.24615	-0.2
-1.72844	0.18795	3.29439	3.37199	9.93539	10.4668	0.15438	0.99756	1.35008	-1.89417	-1.61822	-2.37977	-1.54582	-1.63622	-2.03213	-1.58811	-1.76826	-0.69999	-2.42312	-1.7855	-1.00691	-1.7977	2.57407	-1.48563	-1.94386	1.1785	-1.77821	1.0
-1.72825	0.18795	3.29439	3.04608	9.13111	10.4668	-1.16503	2.50948	2.95559	-1.9487	-1.61822	-2.26453	-1.75022	-1.74941	-2.24395	-1.53367	-1.30993	-1.15733	-2.12303	-1.24883	-0.87019	-0.16995	2.46294	-1.34393	-1.13057	0.24646	-1.58919	0.3
-1.72806	0.83034	3.29439	2.88312	8.77365	13.8759	-0.91372	0.99756	0.12989	0.66874	1.09993	0.90463	2.06513	0.06163	1.30415	1.02491	1.44001	1.9134	1.77826	-0.98049	-0.87019	0.16917	2.79633	-0.84799	0.32173	0.07699	1.43517	0.9
-1.72787	1.2586	3.29439	2.88312	10.2928	8.64863	0.09155	0.61957	0.25833	1.10498	2.22821	2.11467	1.31569	2.66499	1.30415	1.62373	1.89834	-0.04664	1.41814	0.69661	0.77049	0.91522	3.24085	-0.35204	1.83211	1.94107	1.81321	1.0
-1.72768	1.47273	3.29439	2.88312	6.36081	5.46678	-1.16503	1.75352	2.37761	-1.89417	-1.6695	-1.57308	-0.25133	-1.806	-1.34369	-1.80586	-1.82555	0.4107	-0.62253	-0.71215	-0.32329	-0.84818	2.46294	-2.05242	-1.76958	1.00903	-1.27415	1.1
-1.72749	1.04447	3.29439	2.88312	11.0971	13.1941	-0.59957	-1.27033	-0.76919	1.10498	2.43335	1.42322	1.52008	2.38202	1.78076	1.89592	1.72647	0.73737	1.83828	1.56871	1.04394	1.52563	3.12972	1.91513	1.89021	1.34796	0.80509	0
-1.7273	1.68686	3.29439	2.88312	4.3948	9.33045	-1.03938	0.99756	1.35008	0.45062	-0.64379	1.76894	0.0212	0.11822	0.1391	0.69829	-0.67974	0.4107	-0.08235	-0.1084	0.70213	-0.64471	2.24068	-0.63544	1.30929	2.0258	0.11201	1.8
-1.72711	-1.31096	3.14966	3.86085	14.0461	4.10314	-0.59957	-0.51437	-0.31965	1.48669	2.17693	1.42322	1.58821	1.98586	1.83372	1.62373	1.15356	1.32539	1.95832	2.10538	2.13773	1.93257	2.79633	1.34834	1.36738	0.83957	1.24615	0.4
-1.72692	0.18795	3.14966	2.88312	11.9908	11.1486	-0.59957	-0.89235	-0.57653	1.54122	2.2795	0.38604	1.58821	1.70288	1.78076	1.95036	0.98169	1.26005	1.77826	1.97121	1.79592	1.86475	3.24085	1.70259	1.2512	0.24646	1.30915	0.3
-1.72673	0.18795	3.14966	3.04608	10.2035	12.5123	-0.34826	0.61957	1.22164	0.12344	0.68964	1.3656	1.79261	0.57098	0.72162	0.64385	1.78376	1.9134	1.17806	-0.37673	0.01852	-0.10212	2.46294	0.1439	1.77402	1.94107	1.49818	1.8
-1.72654	0.18795	3.14966	2.88312	11.9908	13.8759	-0.59957	-0.13639	0.38678	2.19558	1.9205	0.5589	2.06513	2.66499	1.56893	2.27699	2.47124	1.97874	1.8983	0.56245	0.15524	1.32216	2.57407	0.8524	1.77402	-0.93978	0.42705	0.2
-1.72635	0.40208	3.14966	2.72017	10.6503	7.05771	-0.59957	-2.78226	-2.31048	1.97746	1.61278	0.21317	1.79261	1.75948	1.83372	2.16811	1.95563	1.65206	2.07836	1.97121	1.45411	2.06822	2.35181	2.05683	1.13501	-1.02451	0.74209	-1
-1.72616	0.18795	3.14966	3.20903	12.7057	13.8759	0.15438	-0.89235	0.51522	1.37763	1.71535	0.15555	2.06513	1.25012	2.04554	2.22255	1.89834	1.97874	2.1984	0.69661	0.29196	1.59346	1.68504	1.84428	0.78646	-0.09247	0.42705	-0.5
-1.72597	0.18795	3.14966	3.20903	12.7057	8.8759	-0.59957	-0.13639	0.12989	2.08652	1.76664	-0.01731	2.20139	1.92926	1.51598	2.11367	2.52853	2.30541	1.95832	0.69661	0.56541	1.05087	2.90746	1.20664	1.65784	-1.2787	1.81321	-0.5
-1.72578	0.18795	3.14966	2.88312	11.9908	15.0123	-0.78806	-1.27033	-1.02607	1.59575	1.71535	-0.24779	1.997	1.81607	1.88667	2.38586	2.47124	1.97874	2.01834	1.63579	0.70213	1.93257	2.35181	2.05683	1.59975	-0.51612	0.99412	-0
-1.72559	0.83034	3.14966	2.72017	10.1141	11.6032	-0.34826	0.99756	0.64366	1.48669	2.17693	1.53846											2.79633		1.54165		0.80509	
																											'

```
#NORMALIZATION ((x-mean)/sqrt(sum((x-mean)^2)))
nfifa = data.Normalization(numfifa, type="n12", normalization
= "column")
write.csv(nfifa, "2_norm.csv", row.names = FALSE)
```

																-											
	0		Potential		_	Jersey.Nur	_	_	_				-			FKAccurac					0 ,	Reactions				Stamina	
						-0.00444														0.01078							
-0.01283	0.0125		0.02741	0.0988		-0.00584			0.01385			0.01127								0.01331		0.02814	0.00317				
	0.00139	0.02763	0.0262			-0.00444			0.01183			0.01278			0.01647			0.01629			0.01633	0.02649		0.01056		0.0083	
	0.00298	0.02656	0.0262			-0.00863	0.013		-0.01323			-0.00439					-0.00083			-0.00341			-0.01101		0.0012		
	0.00298	0.02656	0.02499			-0.00584			0.01748			0.01682	0.0164			0.01704	0.01854			0.00571		0.02402	0.00684		-0.00131	0.0125	
	0.00298	0.02656	0.02378	0.12		-0.00444										0.01534				0.01179		0.0232	0.01577			0.00924	
-0.01283	0.01092	0.02656	0.02378			-0.00444			0.01466			0.01733				0.01492			0.00765			0.0232	0.01577				
-0.01283	0.00933	0.02656	0.02378			-0.00491						0.01177				0.01747				0.0052	0.0093		0.00999				
-0.01282	0.01092	0.02656	0.02378	0.06436	0.12474	-0.00212										0.01237			0.00566	0.0052	0.00729	0.01908	0.00107	0.01013	0.01753	0.0097	
-0.01282	-0.00019	0.02549	0.0262	0.08688	0.02839	-0.00863									-0.01379	-0.01226				-0.0024	0.00176	0.0199	-0.00786	-0.01441	0.00685	-0.01038	
-0.01282	0.00615	0.02549	0.02258	0.0988	0.06578	-0.00491	0.00179	0.00477	0.00496	0.01727	0.01396	0.01228	0.01933	0.01163	0.01203	0.01832	0.00595	0.01362	0.00616	0.00672	0.00729	0.0232	0.00737	0.01401	0.01187	0.0069	
-0.01282	0.00457	0.02549	0.02258	0.09814	0.11632	-0.00538	0.00179	0.00096	0.01546	0.01157	0.00073	0.01682	0.0164	0.01006	0.01567	0.01747	0.01951	0.01407	-0.00031	-0.00138	0.00326	0.02237	0.00369	0.01358	-0.02204	0.0055	0.0
-0.01282	0.01092	0.02549	0.02258	0.05509	0.03883	-0.00444	0.00739	0.00287	0.00213	-0.00135	0.01695	0.01026	0.00172	-0.00093	0.00074	0.00345	0.00837	0.00784	0.00168	0.00166	-0.00277	0.01908	-0.00523	0.00497	0.01627	0.0013	3 0.1
-0.01282	0.01092	0.02549	0.02258	0.07629	0.09273	0.00068	-0.00942	-0.00856	0.01385	0.01157	0.00073	0.01733	0.0164	0.0132	0.01405	0.01449	0.0166	0.01585	0.00268	-0.00037	0.01432	0.0232	0.01367	0.00712	-0.00069	0.0069) -0.1
-0.01282	0.00298	0.02442	0.02258	0.08026	0.07252	-0.00305	-0.01502	-0.00332	0.00738	0.00739	0.00073	0.01379	0.00549	0.00927	0.00074	0.00261	0.0137	0.00962	0.00864	0.00672	0.0093	0.02567	0.01472	0.00669	0.00748	0.01531	L 0.1
-0.01281	-0.00178	0.02442	0.02741	0.1147	0.06578	0.00068	-0.00381	-0.00047	0.01304	0.01461	0.0067	0.0143	0.01891	0.01438	0.01647	0.01916	0.01079	0.01496	0.01113	0.00926	0.01382	0.0199	0.01104	0.01143	0.00622	0.00783	3 -0.1
-0.01281	-0.00178	0.02442	0.02378	0.10741	0.06578	-0.00491	0.00739	0.01429	0.01021	0.01841	0.01396	0.01076	0.01723	0.00967	0.01244	0.01067	0.01418	0.0114	0.00168	0.00368	0.00377	0.02402	0.00369	0.01401	0.00811	0.01204	1.0
-0.01281	0.00298	0.02442	0.02258	0.10013	0.04557	-0.00584	-0.00661	-0.00237	0.01304	0.01689	0.01354	0.01228	0.01849	0.01281	0.01486	0.01492	0.01128	0.01407	0.01163	0.01027	0.01332	0.0232	0.00842	0.01056	0.01564	0.00924	1.0- 1
-0.01281	0.00139	0.02442	0.02499	0.07364	0.07757	0.00114	0.00739	0.01001	-0.01404	-0.01199	-0.01764	-0.01146	-0.01213	-0.01506	-0.01177	-0.01311	-0.00519	-0.01796	-0.01323	-0.00746	-0.01332	0.01908	-0.01101	-0.01441	0.00873	-0.01318	3 0.1
-0.01281	0.00139	0.02442	0.02258	0.06767	0.07757	-0.00863	0.0186	0.02191	-0.01444	-0.01199	-0.01678	-0.01297	-0.01297	-0.01663	-0.01137	-0.00971	-0.00858	-0.01573	-0.00926	-0.00645	-0.00126	0.01825	-0.00996	-0.00838	0.00183	-0.01178	3 0.1
-0.01281	0.00615	0.02442	0.02137	0.06503	0.10284	-0.00677	0.00739	0.00096	0.00496	0.00815	0.0067	0.01531	0.00046	0.00967	0.0076	0.01067	0.01418	0.01318	-0.00727	-0.00645	0.00125	0.02072	-0.00628	0.00238	0.00057	0.01064	1.0
-0.01281	0.00933	0.02442	0.02137	0.07629	0.0641	0.00068	0.00459	0.00191	0.00819	0.01651	0.01567	0.00975	0.01975	0.00967	0.01203	0.01407	-0.00035	0.01051	0.00516	0.00571	0.00678	0.02402	-0.00261	0.01358	0.01439	0.01344	4 C
-0.0128	0.01092	0.02442	0.02137	0.04714	0.04052	-0.00863	0.013	0.01762	-0.01404	-0.01237	-0.01166	-0.00186	-0.01339	-0.00996	-0.01338	-0.01353	0.00304	-0.00461	-0.00528	-0.0024	-0.00629	0.01825	-0.01521	-0.01312	0.00748	-0.00944	1.0
-0.0128	0.00774	0.02442	0.02137	0.08225	0.09779	-0.00444	-0.00942	-0.0057	0.00819	0.01803	0.01055	0.01127	0.01765	0.0132	0.01405	0.0128	0.00547	0.01362	0.01163	0.00774	0.01131	0.0232	0.01419	0.01401	0.00999	0.00597	/ 0.0
-0.0128	0.0125	0.02442	0.02137	0.03257	0.06915	-0.0077	0.00739	0.01001	0.00334	-0.00477	0.01311	0.00016	0.00088	0.00103	0.00518	-0.00504	0.00304	-0.00061	-0.0008	0.0052	-0.00478	0.01661	-0.00471	0.0097	0.01501	0.00083	3
-0.0128	-0.00972	0.02334	0.02861	0.1041	0.03041	-0.00444	-0.00381	-0.00237	0.01102	0.01613	0.01055	0.01177	0.01472	0.01359	0.01203	0.00855	0.00982	0.01451	0.0156	0.01584	0.01432	0.02072	0.00999	0.01013	0.00622	0.00924	1.0
-0.0128	0.00139	0.02334	0.02137	0.08887	0.08263	-0.00444	-0.00661	-0.00427	0.01142	0.01689	0.00286	0.01177	0.01262	0.0132	0.01446	0.00728	0.00934	0.01318	0.01461	0.01331	0.01382	0.02402	0.01262	0.00927	0.00183	0.0097	7 0.1
-0.0128	0.00139	0.02334	0.02258	0.07562	0.09273	-0.00258	0.00459	0.00905	0.00091	0.00511	0.01012	0.01329	0.00423	0.00535	0.00477	0.01322	0.01418	0.00873	-0.00279	0.00014	-0.00076	0.01825	0.00107	0.01315	0.01439	0.0111	L
-0.0128	0.00139	0.02334	0.02137	0.08887	0.10284	-0.00444	-0.00101	0.00287	0.01627	0.01423	0.00414	0.01531	0.01975	0.01163	0.01688	0.01832	0.01467	0.01407	0.00417	0.00115	0.0098	0.01908	0.00632	0.01315	-0.00697	0.00317	/ 0.1
-0.01279	0.00298	0.02334	0.02016	0.07893	0.05231	-0.00444	-0.02062	-0.01712	0.01466	0.01195	0.00158	0.01329	0.01304	0.01359	0.01607	0.01449	0.01224	0.0154	0.01461	0.01078	0.01533	0.01743	0.01524	0.00841	-0.00759	0.0055	0- و
-0.01279	0.00139	0.02334	0.02378	0.09417	0.10284	0.00114	-0.00661	0.00382	0.01021	0.01271	0.00115	0.01531	0.00927	0.01516	0.01647	0.01407	0.01467	0.01629	0.00516	0.00216	0.01181	0.01249	0.01367	0.00583	-0.00069	0.00317	/ -0.1
-0.01279	0.00139	0.02334	0.02378	0.09417	0.06578	-0.00444	-0.00101	0.00096	0.01546	0.01309	-0.00013	0.01632	0.0143	0.01124	0.01567	0.01874	0.01709	0.01451	0.00516	0.00419	0.00779	0.02155	0.00894	0.01229	-0.00948	0.01344	1.0-
-0.01279	0.00139	0.02334	0.02137	0.08887	0.11126	-0.00584	-0.00942	-0.0076	0.01183	0.01271	-0.00184	0.0148	0.01346	0.01398	0.01768	0.01832	0.01467	0.01496	0.01212	0.0052	0.01432	0.01743	0.01524	0.01186	-0.00383	0.00737	/ -0.1
-0.01279	0.00615	0.02334	0.02016	0.07496	0.086	-0.00258	0.00739	0.00477	0.01102	0.01613	0.0114	0.00925	0.01807	0.00927	0.01324	0.01322	0.00547	0.01051	0.01411	0.01534	0.00628	0.02072	0.00317	0.01143	0.00873	0.00597	7 0.1

```
#NORMALIZING THE DATA THROUGH NATURAL LOGARITHMS
logfifa = as.data.frame(lapply(numfifa, log))
write.csv(logfifa, "2_log.csv", row.names = FALSE)
```

	-	-	-	_		-			•		-			-		~		-	•	-					_		
-	_		Potential		_	Jersey.Nur	_	_	_		_			_		FKAccurac								ShotPower			Strei
#NAME?	3.43399	4.54329	4.54329	18.5205	13.2446	2.30259	5.13686	4.27835	4.43082	4.55388	4.2485	4.49981	4.45435	4.57471	4.5326	4.54329	4.46591	4.56435	4.51086	4.45435	4.51086	4.55388			4.21951	4.27667	-
0	3.49651	4.54329	4.54329	18.1593	12.9116	1.94591	5.23623	4.41893	4.43082	4.54329	4.48864	4.39445	4.46591	4.47734	4.39445	4.33073	4.34381	4.54329	4.48864	4.51086	4.46591	4.56435	4.2485	4.55388	4.55388	4.47734	4.3
0.69315	3.2581	4.52179	4.5326	18.5904	12.5776	2.30259	5.16627	4.22008	4.36945	4.46591	4.12713	4.43082	4.43082	4.56435	4.47734	4.46591	4.35671	4.55388	4.54329	4.49981	4.56435	4.54329	4.43082	4.38203	4.11087	4.39445	3.8
1.09861	3.29584	4.51086	4.5326	18.0922	12.4684	0	5.2629	4.33341	2.83321	2.56495	3.04452	3.91202	2.56495	2.89037	3.04452	2.94444	3.93183	3.73767	4.04305	4.06044	4.09434	4.49981	3.7612	3.43399	4.20469	3.7612	4.1
1.38629	3.29584	4.51086	4.52179	18.4405	12.7799	1.94591	5.19484	4.2464	4.5326	4.40672	4.00733	4.52179	4.40672	4.45435	4.44265	4.41884	4.51086	4.51086	4.35671	4.33073	4.36945	4.51086	4.34381	4.51086	4.14313	4.49981	4.3
1.60944	3.29584	4.51086	4.51086	18.3481	12.7367	2.30259	5.15167	4.30319	4.39445	4.43082	4.11087	4.48864	4.38203	4.55388	4.41884	4.36945	4.41884	4.54329	4.54329	4.47734	4.55388	4.49981	4.54329	4.40672	4.02535	4.41884	4.1
1.79176	3.46574	4.51086	4.51086	18.0202	12.948	2.30259	5.15167	4.19305	4.45435	4.27667	4.00733	4.5326	4.33073	4.49981	4.44265	4.35671	4.47734	4.5326	4.38203	4.27667	4.5326	4.49981	4.54329	4.36945	4.21951	4.48864	4.0
1.94591	3.43399	4.51086	4.51086	18.1975	13.0281	2.19722	5.20883	4.45647	4.34381	4.5326	4.34381	4.40672	4.47734	4.46591	4.45435	4.43082	4.15888	4.49981	4.45435	4.31749	4.40672	4.52179	4.41884	4.45435	4.23411	4.49981	4.4
2.07944	3.46574	4.51086	4.51086	17.7473	12.8479	2.70805	5.20883	4.40794	4.18965	4.09434	4.51086	4.35671	4.18965	4.14313	4.30407	4.27667	4.34381	4.43082	4.33073	4.31749	4.35671	4.44265	4.18965	4.36945	4.5326	4.43082	4.4
2.19722	3.21888	4.49981	4.5326	18.035	11.4511	0	5.23623	4.46694	2.56495	2.3979	2.70805	3.3673	2.56495	2.48491	2.56495	2.63906	3.2581	2.77259	3.7612	4.09434	4.20469	4.45435	3.89182	3.09104	4.33073	3.71357	4.3
2.30259	3.3673	4.49981	4.49981	18.1593	12.2308	2.19722	5.20883	4.37993	4.12713	4.51086	4.44265	4.41884	4.48864	4.44265	4.34381	4.45435	4.17439	4.48864	4.34381	4.35671	4.35671	4.49981	4.35671	4.47734	4.43082	4.35671	4.4
2.3979	3.3322	4.49981	4.49981	18.1528	12.7799	2.07944	5.20883	4.33341	4.47734	4.33073	3.98898	4.52179	4.40672	4.39445	4.45435	4.43082	4.5326	4.49981	4.15888	4.12713	4.2485	4.48864	4.26268	4.46591	3.4012	4.31749	4.2
2.48491	3.46574	4.49981	4.49981	17.5997	11.7361	2.30259	5.23623	4.35694	4.00733	3.73767	4.52179	4.36945	3.85015	3.97029	3.89182	3.93183	4.2485	4.33073	4.21951	4.21951	4.06044	4.44265	3.98898	4.20469	4.51086	4.18965	4.4
2.56495	3.46574	4.49981	4.49981	17.9099	12.5602	3.04452	5.15167	4.20666	4.43082	4.33073	3.98898	4.5326	4.40672	4.48864	4.40672	4.34381	4.46591	4.54329	4.2485	4.15888	4.52179	4.49981	4.49981	4.27667	4.15888	4.35671	3.9
2.63906	3.29584	4.48864	4.49981	17.9586	12.3239	2.56495	5.12182	4.27835	4.21951	4.17439	3.98898	4.45435	4.02535	4.36945	3.89182	3.89182	4.39445	4.38203	4.40672	4.35671	4.40672	4.5326	4.52179	4.26268	4.34381	4.56435	4.3
2.70805	3.17805	4.48864	4.54329	18.3041	12.2308	3.04452	5.18066	4.31539	4.40672	4.43082	4.21951	4.46591	4.47734	4.52179	4.47734	4.47734	4.31749	4.52179	4.46591	4.41884	4.51086	4.45435	4.44265	4.40672	4.31749	4.38203	4.1
2.77259	3.17805	4.48864	4.51086	18.2404	12.2308	2.19722	5.23623	4.48756	4.31749	4.54329	4.44265	4.38203	4.43082	4.38203	4.35671	4.21951	4.40672	4.43082	4.21951	4.27667	4.26268	4.51086	4.26268	4.47734	4.35671	4.48864	4.4
2.83321	3.29584	4.48864	4.49981	18.1722	11.8845	1.94591	5.16627	4.29085	4.40672	4.49981	4.43082	4.41884	4.46591	4.47734	4.43082	4.35671	4.33073	4.49981	4.47734	4.44265	4.49981	4.49981	4.38203	4.38203	4.49981	4.41884	4.1
2.89037	3.2581	4.48864	4.52179	17.876	12.3884	3.09104	5.23623	4.44055	2.70805	2.63906	2.3979	3.58352	2.63906	2.83321	2.89037	2.48491	3.73767	2.89037	3.63759	3.91202	3.61092	4.44265	3.7612	3.09104	4.36945	3.55535	4.3
2.94444	3.2581	4.48864	4.49981	17.7952	12.3884	0	5.28887	4.56603	2.63906	2.63906	2.56495	3.49651	2.48491	2.56495	2.94444	2.99573	3.55535	3.13549	3.82864	3.95124	4.11087	4.43082	3.80666	3.58352	4.21951	3.63759	4
2.99573	3.3673	4.48864	4.48864	17.7571	12.6603	1.60944	5.23623	4.33341	4.12713	4.20469	4.21951	4.48864	3.78419	4.38203	4.18965	4.21951	4.40672	4.47734	3.91202	3.95124	4.18965	4.46591	3.95124	4.11087	4.18965	4.45435	4.3
3.04452	3.43399	4.48864	4.48864	17.9099	12.2061	3.04452	5.22262	4.34524	4.2485	4.48864	4.48864	4.35671	4.49981	4.38203	4.34381	4.33073	3.95124	4.40672	4.31749	4.33073	4.34381	4.51086	4.07754	4.46591	4.47734	4.52179	4.3
3.09104	3.46574	4.48864	4.48864	17.4531	11.7753	0	5.2629	4.52265	2.70805	2.56495	3.21888	4.00733	2.3979	3.4012	2.63906	2.3979	4.07754	3.8712	3.98898	4.09434	3.93183	4.43082	3.55535	3.21888	4.34381	3.7612	4.3
3.13549	3.4012	4.48864	4.48864	17.9822	12.6115	2.30259	5.15167	4.2464	4.2485		4.34381	4.39445	4.44265	4.48864	4.40672	4.29046	4.15888	4.48864	4.47734	4.38203	4.45435	4.49981	4.51086	4.47734	4.39445	4.33073	4.2
3.17805	3.49651	4.48864	4.48864	17.1113		1.09861		4.44055				4.07754				3.43399				4.31749	3.98898	4.40672	4.00733	4.35671	4.48864	4.17439	4.4
3.21888	2.94444	4.47734	4.55388	18.21	11.5129	2.30259												4.51086	4.56435	4.56435	4.52179	4.46591	4.41884	4.36945	4.31749	4.41884	4.2
3.2581	3.2581	4.47734	4.48864	18.0568	12.449	2.30259	5.16627	4.26569	4.35671	4.49981	4.07754	4.40672	4.29046	4.48864	4.41884	4.09434	4.27667	4.47734	4.54329	4.51086	4.51086	4.51086	4.47734	4.34381	4.21951	4.43082	4
3.29584	3.2581	4.47734	4.49981	17.9015	12.5602	2.63906										4.30407								4.45435	4.47734	4.46591	4.4
3.3322		4.47734				2.30259										4.45435						4.44265		4.45435		4.2485	_
3.3673						2.30259						4.44265								4.45435				4.31749		4.31749	_
3,4012		4.47734								4.36945		4.48864		4.54329		4.33073				4.23411					4.15888	4.2485	_
3.43399		4.47734				2.30259			4.47734			4.51086				4.46591				4.29046		4.47734			3.91202		_
3.46574		4.47734				1.94591			4.36945							4.45435									4.07754		_
3.49651		4.47734				2.63906																				4.33073	
5.45051	3.3073	4.47734	4.47734	17.055	12.4073	2.03300	3.23023	4.5755	4.54501	4.47734	4.50545	-1.5-1501	4.45455	4.50545	4.55205	4.55407	4.13000	4.40072	4.5520	4.55500	4.00073	4.40001	4.2403	4.45072	4.50545	4.55075	710

Normalization

Normality Test

```
# This library is already loaded: library("dplyr")
library("ggpubr")

## Loading required package: ggplot2

## Loading required package: magrittr
```

#DENSITY PLOT OF AGE

print(ggdensity(fifa\$Age, main="Density plot of Age", xlab = "

Ages"))

#QQ PLOT OF WAGE print(ggqqplot(fifa\$Wage, main="QQ Plot of Wage"))

Graph Visualization

#FREQUENCY PLOT OF FOOT PREFERRENCE
print(ggplot(fifa, aes(Preferred.Foot)) +geom_bar(fill = "#0073C2
FF") + ggtitle("Most of the players are right footed") + theme_fi
vethirtyeight())


```
#HISTOGRAM OF PLAYER RATING
print(fifa %>%
    ggplot(aes(x= Overall)) + geom_histogram(color = "white", fill = "darkgrey", binwidth =
1) + ggtitle("Player Ratings Are Normally Distributed", subtitle = "The mean can be used
as a measure of central tendancy") + theme_fivethirtyeight() + theme(axis.text.y = eleme
nt_blank()))
```



```
#BOXPLOT OF AGE VS VALUE
print(fifa %>%
```

ggplot(aes(x= AgeGroup, y= Value)) + geom_boxplot(fill = "darkgrey") +
scale_y_log10(labels = dollar_format(prefix = "€")) + ggtitle("Players Are In High Demand In
Their Mid-20s", subtitle = "Valuation on a log scale, so differences \nbetween the age groups
are significant") + theme_fivethirtyeight())


```
# FREQUENCY PLOT OF TEAM VS TOTAL WAGE
print(fifa %>%
 group_by(Club) %>%
  summarise(TotalWages = sum(Wage, na.rm = T),) %>%
  arrange(desc(TotalWages)) %>% head(n= 20) %>%
 ggplot(aes(x= reorder(Club, TotalWages), y= TotalWages)) +
 geom col(colour = "black") +
  scale y continuous(labels = dollar format(prefix = "€")) +
  coord flip() +
 ggtitle("The 20 highest wage bills in FIFA19 and how much o
ne rating point costs in wages") +
  theme fivethirtyeight() +
  theme(legend.position = "none"))
```


Correlations & Simple Regression

```
fifa = read.csv("1 cleaned data.csv")
options(scipen = 999)
library("GGally")
 ## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
#HFAT MAP
print(ggcorr(fifa))
## Warning in ggcorr(fifa): data in column(s) 'Name', 'Nation
ality', 'Club',
## 'Preferred.Foot', 'Body.Type', 'Position' are not numeric a
nd were ignored
```

HEAT MAP

Release.C

#SCATTER PLOT FOR HEIGHT VS WEIGHT print(ggplot(fifa, aes(x=Height, y =Weight)) + geom_point() + geom_smooth(method = lm))

- Correlation:
 - Positive
 - Weak
 - Linear

#SCATTER PLOT

print(ggplot(fifa, aes(x=Release.Clause, y =Value)) + geom_jitter()+geom_smooth
 (method = lm))

- Correlation:
 - Positive
 - Strong
 - Linear

#SCATTER PLOT FOR OVERALL VS WAGE print(ggplot(fifa, aes(x=Overall, y =Wage)) + geom_jitter()+geom_smooth()) + theme_cleveland () ## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

- Correlation:
 - Positive
 - Exponential

##CORRELATION #SCATTER PLOT BETWEEN LOG(VALUE) VS OVERALL print(ggplot(fifa, aes(x=Overall, v =unlist))

```
print(ggplot(fifa, aes(x=Overall, y =unlist(lapply(lapply(fifa$Value, log), as.nu
meric))))+ylab("Value") + geom_jitter()+geom_smooth(method = lm))
```



```
#PEARSON CORRELATION TEST
print(cor.test(unlist(lapply(lapply(fifa$Value, log), as.numer
ic)), fifa$Overall, method="pearson"))
##
   Pearson's product-moment correlation
##
## data: unlist(lapply(lapply(fifa$Value, log), as.numeric))
and fifa$Overall
## t = 343.89, df = 18204, p-value < 0.00000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9289499 0.9328261
## sample estimates:
##
         cor
## 0.9309142
```

```
#CREATING THE TRAINING AND TEST DATA
set.seed(100)
trainingRows<-sample(1:nrow(fifa), 0.8*nrow(fifa))
trainingData<-fifa[trainingRows, ]
testData<-fifa[-trainingRows, ]

#FIT THE MODEL ON TRAINING DATA AND PREDICT ON TEST DATA
model = lm(log(Value)~Overall, data = trainingData)
predictedData = predict(model,testData)
predictedData = exp(predictedData)</pre>
```

#REVIEW DIAGNOSTIC MEASURES summary(model) ## ## Call: lm(formula = log(Value) ~ Overall, data = trainingData) ## ## ## Residuals: 1Q Median Min Max ## ## -3.2437 -0.2204 0.0497 ## Coefficients: Estimate Std. Error t value ## (Intercept) 1.117921 ## Overall 0.188936 ## ## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Residual standard error: 0.5104 on 14562 degrees of freedom ## Multiple R-squared: 0.8667, Adjusted R-squared: 0.8667 ## F-statistic: 9.467e+04 on 1 and 14562 DF, p-value: < 0.0000000000000000