

A FORUM TO INVESTIGATE/ADDRESS COMMAND AND CONTROL

(PERTAINING TO CYBER DEFENSE)

Neal Ziring
NSA IAD Technical Director

Agenda

- Background
 - Problem Statement
 - Formation of the Working Group
- Design Principles/Scope
- □ Work In Progress
- □ Next Steps
- Updates

The Problem Statement

- Modern Cyber Defense implementations:
 - Integrate products in a proprietary or unique manner
 - Statically configured
 - Upgrades to the functional blocks are intensive
 - Modifications may impact the efficacy of the system
 - Adaptations to new TTPs hard to accomplished in cyber-relevant time
- Future Defense implementations must support:
 - Sharing of indicators
 - Coordination of responses between domains
 - Synchronization of cyber defense mechanisms
 - Automated, multi-part actions at machine speed
- Standardization is a Key Enabler for Unambiguous C2

Formation of the Working Group

- Stakeholders
 - USG: DHS IACD, NSA Active Cyber Defense
 - Industry
 - Orchestration Vendors
 - Network, Endpoint, Application Vendors
 - Financial Sector
 - Academia
- Course of Action Working Group
 - □ Kickoff on July 29, 2015
 - 90 minute Teleconference/Meetings (biweekly)
 - Full Day Workshops (Quarterly)

Defense in Cyber Relevant Time

OpenC2 Design Principles

- Lightweight
 - Efficient Machine to Machine communications
 - Minimize the set of 'core' actions
- Abstract
 - Focuses on 'What' to do vice 'How' to do it
 - Permits different levels of abstraction
- Extensible
 - Address requirements for operational environment
 - Extensions enable additional precision and flexibility
- Agnostic
 - Transport, Authentication, Integrity controls etc.
 - Enables flexibility w.r.t. implementation

Enable Unambiguous Machine to Machine Command and Control Messages

Additional Considerations

- External Dependencies
 - Transport Layer
 - Information Assurance
 - Authentication Mechanism
 - Integrity
 - Availability
 - Confidentiality
 - Message Prioritization
 - Message Identification/ Acknowledgment
- Message Types
 - Tasking/ Response
 - Notifications
 - Effects based

Conceptual Model

Course of Action

- Focused on desired effect.
- A set of activities to mitigate specific attack to an information system.

Workflow

- Derived from a Course of Action
- □ An ordered or coordinated set of steps

Response Action

One or more instructions for a particular sensor or actuator

OpenC2 to Support Integrated Defensive Cyber Operations

- Coordination/ Sharing using OpenC2 commands (i.e. Course of Action)
- Execution using OpenC2 Commands (i.e. Workflow)

Work In Progress: Syntax

Provide additional information for the ACTION (optional)

```
<ACTION> (
         target (type=<TARGET_TYPE>, specifiers),
          [actuator (type=<ACTUATOR_TYPE>, specifiers)],
         [modifiers]
ACTION ('The Verb')
What is to be done
All OpenC2 commands have an Action
TARGET ('The Object')
What is affected by the ACTION
   All OpenC2 commands have a target
ACTUATOR ('The Subject')
What is executing the ACTION on the TARGET
Optional In Higher Level Commands
Specifiers
Further identify TARGET(s) and ACTUATOR(s)
Modifiers
```

OpenC2 Syntax Flexibility

ACTION	TARGET	SPECIFIER	ACTUATOR	SPECIFIER	MODIFIER
Effects-based (no actuator specified); suitable for coordinating across enclaves					
DENY	ip	address			
Specify class of actuator					
DENY	ip	address	network		
Specify type of actuator					
DENY	ip	address	network.router		
Specify particular actuator					
DENY	ip	address	network.router	BGP Speaker	
Add a modifier to specify the action					
DENY	ip	address	network.router	BGP Speaker	Method= blackhole

Work in Progress: Lexicon

- ACTIONS
 - Converging on ~ 30 terms
 - Modifiers
- TARGETS
 - Leveraging CybOX objects
- ACTUATORS
 - Categories
 - Endpoint
 - Network/ Platform
 - Services / Processes
 - Researching the ISCM and SACM efforts

Next Steps

- Continue Development of the language (Version 1.0)
- □ Reference Implementations
 - NSA/APL (Beginning January 2016)
 - NSA/G-2 Corporation (Beginning January 2016)
 - NIST Cyber-security Center of Excellence (Future)
- Integrate with Trusted Cyber Sensor (ongoing)
- Definition of TLV (Future)

Future Steps

- □ Finalize Working Group Charter
 - Draft Charter
 - Membership Agreement in progress
- Increase Participation in the Working Group
 - Financial Sector, DHS, Malware Detection vendors
- Engage OASIS
 - OpenC2 and STIX efforts complement each other
 - STIX COA Profile in progress
- □ Web Presence
 - http://openc2-org.github.io/public-website/

Questions?