Relatório sobre o ajuste dos offsets dos satélites irregulares

Altair Ramos

10 de Julho de 2015

Ajuste

O problema consiste em ajustar uma função dependente do tempo e da anomalia verdadeira aos offsets obtidos e publicados no artigo de posições dos satélites irregulares. Assim estimando correções às posições dos satélites para predição de ocultações estelares.

As equações utilizadas são as seguintes e dependem da situação:

$$F(t,p) = p[0] \times \frac{t - 2451544.5}{365.65} + p[1] \times \sin(f) + p[2] \times \cos(f) + p[3], \quad (1)$$

$$F(t,p) = p[0] \times \sin\left(\frac{2\pi}{p[1]} \times \frac{t - 2451544.5}{365.25} + p[2]\right) + p[3] \times \sin(f) + p[4] \times \cos(f) + p[5],$$
(2)

$$F(t,p) = p[0] \times \cos\left(\frac{2\pi}{p[1]} \times \frac{t - 2451544.5}{365.25} + p[2]\right) + p[3] \times \sin(f) + p[4] \times \cos(f) + p[5],$$
(3)

onde t é o tempo em data juliana, f é a anomalia verdadeira e p[i] são os parâmetros de ajuste onde i é o número do parâmetro.

A equação 1 é basicamente uma variação linear com o tempo mais variações senoidais dependentes da anomalia verdadeira. p[0] foi colocado de forma a ter a unidade de mas/ano. Apenas o ajuste para a declinação de Carme foi utilizada essa função.

As equações 2 e 3 correspondem a uma variação senoidal com o tempo (uma utilizando o seno e outra o cosseno) mais variações senoidais da anomalia verdadeira. Pra maioria dos casos as duas últimas dão o mesmo resultado. p[1] foi colocado de forma a ser o período da oscilação em anos.

Para cada satélite há quatro gráficos, dois para RA e dois para DEC. Dos pares, um é offset X tempo com os ajustes. O outro é offset X anomalia verdadeira. Além disso, temos tabelas com os valores e erros obtidos para os parâmetros através do método de mínimos quadrados não-linear.

Nos gráficos em função do tempo, as linhas verticais marcam os instantes de anomalia verdadeira igual a zero (periastro). A linha verde é o ajuste

utilizando $1/\sigma^2$ como peso onde σ é a dispersão da noite. A linha vermelha é o ajuste dos offsets onde todos os offsets tem o mesmo peso.

Nas tabelas temos os valores derivados para os parâmetros e seus erros a partir dos dois ajustes (com peso e sem peso). Além disso, também mostro o resíduo médio de cada ajuste calculado a partir da seguinte equação:

$$RM = \frac{\sum_{i=1}^{n} (x_i - F(t_i, f_i))^2 w_i}{\sum_{i=1}^{n} w_i},$$
(4)

onde x_i é o offset, F é a função ajustada para tempo ti e anomalia verdadeira f_i e w_i é o peso do offset i.

Começo apresentando para os satélites de Júpiter. Primeiro os satélites que são únicos de seu grupo orbital e por fim para o grupo de Himalia. Notem que muitos desses ajustes obtêm como período na senoide do tempo um valor entre 10 e 13 anos. Lembrando que o período da órbita de Júpiter é 11.8 anos. Para Phoebe e Nereida, coloquei como chute inicial para o período 1 ano de forma a tentar obter uma variação de paralaxe da Terra, já que não temos observações suficientes para obter uma senoide cujo período seja da ordem da órbita dos planetas Saturno (29.4) e Netuno (164.8).

Ainda precisamos melhorar os ajustes, talvez limitando o peso para que observações com dispersão muito baixa não esteja sendo superestimada. Outra possibilidade é mudar as funções em relação à anomalia verdadeira e/ou ao tempo.

Sinope

Ascensão Reta

Para Sinope (RA), o ajuste foi feito utilizando a função 2. Vemos pelo gráfico em função do tempo e a tabela que a variação em função da anomalia verdadeira influencia menos que o tempo.

Tabela 1: Resultados dos ajustes para Sinope - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-284 ± 28	-316 ± 25	mas
p[1]	12 ± 1	11.7 ± 0.7	anos
p[2]	-30 ± 8	-22 ± 7	graus
p[3]	10 ± 48	44 ± 37	mas
p[4]	-15 ± 31	-18 ± 24	mas
p[5]	-26 ± 21	1 ± 21	mas
Residuo	122	97	mas

Para Declinação também foi utilizada a função 2. Nesse, o seno da anomalia verdadeira tem uma importância maior que para RA e que a amplitude do tempo é bem menor que para RA.

Tabela 2: Resultados dos ajustes para Sinope - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-69 ± 11	-38 ± 11	mas
p[1]	12.7 ± 0.7	15 ± 3	anos
p[2]	123 ± 8	129 ± 23	graus
p[3]	69 ± 11	79 ± 15	mas
p[4]	-18 ± 9	-19 ± 10	mas
p[5]	-54 ± 7	-43 ± 8	mas
Residuo	48	41	mas

Pasiphae

Tabela 3: Resultados dos ajustes para Pasiphae - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-157 ± 14	-136 ± 15	mas
p[1]	12.7 ± 0.4	11.3 ± 0.6	anos
p[2]	-39 ± 7	-57 ± 10	graus
p[3]	20 ± 16	15 ± 17	mas
p[4]	-39 ± 19	-16 ± 19	mas
p[5]	-17 ± 12	-24 ± 13	mas
Residuo	95	88	mas

Tabela 4: Resultados dos ajustes para Pasiphae - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	35 ± 13	26 ± 10	mas
p[1]	9 ± 1	8 ± 2	anos
p[2]	-85 ± 29	-110 ± 45	graus
p[3]	-30 ± 14	-48 ± 11	mas
p[4]	44 ± 16	58 ± 13	mas
p[5]	-62 ± 10	-67 ± 9	mas
Residuo	66	63	mas

Ananke

Tabela 5: Resultados dos ajustes para Ananke - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	246 ± 39	160 ± 43	mas
p[1]	10.8 ± 0.5	12.0 ± 0.9	anos
p[2]	5 ± 8	24 ± 10	graus
p[3]	60 ± 29	44 ± 39	mas
p[4]	152 ± 37	111 ± 32	mas
p[5]	-20 ± 37	5 ± 37	mas
Residuo	116	92	mas

Tabela 6: Resultados dos ajustes para Ananke - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	105 ± 8	66 ± 12	mas
p[1]	7.6 ± 0.2	6.6 ± 0.4	anos
p[2]	45 ± 5	31 ± 18	graus
p[3]	9 ± 11	18 ± 18	mas
p[4]	260 ± 10	194 ± 19	mas
p[5]	-22 ± 13	-34 ± 16	mas
Residuo	69	51	mas

Carme

Tabela 7: Resultados dos ajustes para Carme - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	167 ± 14	112 ± 20	mas
p[1]	10.7 ± 0.2	9.9 ± 0.7	anos
p[2]	1 ± 8	-24 ± 16	graus
p[3]	104 ± 16	33 ± 22	mas
p[4]	-17 ± 20	0 ± 24	mas
p[5]	-4 ± 15	0 ± 17	mas
Residuo	107	90	mas

Tabela 8: Resultados dos ajustes para Carme - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	12 ± 1	10 ± 2	mas/ano
p[1]	-44 ± 9	-4 ± 12	$_{ m mas}$
p[2]	155 ± 9	140 ± 12	$_{ m mas}$
p[3]	-55 ± 9	-57 ± 11	$_{ m mas}$
Residuo	58	49	$_{ m mas}$

Elara

Tabela 9: Resultados dos ajustes para Elara - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-42 ± 17	-63 ± 20	mas
p[1]	11 ± 2	8.5 ± 0.8	anos
p[2]	-41 ± 26	-82 ± 24	graus
p[3]	33 ± 13	27 ± 18	mas
p[4]	-49 ± 23	-57 ± 21	mas
p[5]	-7 ± 14	-23 ± 15	mas
Residuo	110	103	mas

Tabela 10: Resultados dos ajustes para Elara - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	34 ± 8	39 ± 10	mas
p[1]	11.1 ± 1.2	9.8 ± 0.9	anos
p[2]	33 ± 27	23 ± 24	graus
p[3]	32 ± 8	26 ± 10	mas
p[4]	29 ± 8	42 ± 11	mas
p[5]	-37 ± 7	-31 ± 8	mas
Residuo	60	58	mas

Himalia

Tabela 11: Resultados dos ajustes para Himalia - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	71 ± 24	49 ± 19	mas
p[1]	18 ± 8	12 ± 2	anos
p[2]	5 ± 46	12 ± 41	graus
p[3]	0 ± 21	-17 ± 21	mas
p[4]	-55 ± 17	-36 ± 21	mas
p[5]	-49 ± 36	-32 ± 14	mas
Residuo	144	140	mas

Tabela 12: Resultados dos ajustes para Himalia - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	15 ± 5	26 ± 7	mas
p[1]	16 ± 3	12.2 ± 1.6	anos
p[2]	76 ± 23	3 ± 29	graus
p[3]	15 ± 6	19 ± 8	mas
p[4]	7 ± 5	3 ± 7	mas
p[5]	-7 ± 4	-10 ± 5	mas
Residuo	55	53	mas

Lysithea

Tabela 13: Resultados dos ajustes para Lysithea - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	88 ± 37	117 ± 350	mas
p[1]	10.8 ± 0.9	24 ± 49	anos
p[2]	31 ± 21	132 ± 96	graus
p[3]	67 ± 27	12 ± 28	mas
p[4]	-38 ± 33	-24 ± 26	mas
p[5]	-16 ± 28	79 ± 370	mas
Residuo	103	82	mas

Tabela 14: Resultados dos ajustes para Lysithea - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	64 ± 20	34 ± 24	mas
p[1]	11.3 ± 0.7	11.1 ± 1.9	anos
p[2]	-77 ± 16	-57 ± 29	graus
p[3]	85 ± 14	72 ± 17	mas
p[4]	-12 ± 15	11 ± 16	mas
p[5]	-8 ± 14	-19 ± 15	mas
Residuo	55	52	mas

Phoebe

Tabela 15: Resultados dos ajustes para Phoebe - RA

Parâmetro	Com peso	Sem peso	Unidade
p[0]	-17 ± 8	-17 ± 8	mas
p[1]	0.99 ± 0.01	1.01 ± 0.01	anos
p[2]	36 ± 49	112 ± 31	graus
p[3]	-8 ± 7	-26 ± 6	mas
p[4]	-12 ± 8	1 ± 5	mas
p[5]	2 ± 9	8 ± 8	mas
Residuo	48	44	mas

Tabela 16: Resultados dos ajustes para Phoebe - DEC

Parâmetro	Com peso	Sem peso	Unidade
p[0]	22 ± 13	20 ± 8	mas
p[1]	0.98 ± 0.01	0.95 ± 0.01	anos
p[2]	-29 ± 49	-127 ± 27	graus
p[3]	12 ± 12	16 ± 7	mas
p[4]	3 ± 10	10 ± 6	mas
p[5]	-13 ± 8	-9 ± 5	mas
Residuo	55	52	mas

Nereida

