MAT1110 Oblig2

Erik Øystein Gåserud

April 23, 2015

Oppgave 1

a)

Av oppgaven har vi fått opplyst:

$$A = \begin{pmatrix} 4 & 6 \\ 6 & -1 \end{pmatrix} \qquad \mathbf{v}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

Vi ganger ut $A\mathbf{v}_1$ og $A\mathbf{v}_2$:

$$A\mathbf{v}_1 = \begin{pmatrix} 24\\16 \end{pmatrix} = A\lambda_1$$
 $A\mathbf{v}_2 = \begin{pmatrix} -10\\15 \end{pmatrix} = A\lambda_2$

som gir ligningene for egenverdiene λ_1 og λ_2 :

$$3\lambda_1 = 24 \wedge 2\lambda_1 = 16$$

$$3\lambda_2 = -10 \wedge 2\lambda_2 = 15$$

$$\downarrow \qquad \qquad \downarrow$$

$$\lambda_1 = 8 \qquad \qquad \lambda_2 = -5$$

b)

Dersom ${\bf v}$ er en egenvektor for en $n\,x\,n$ matrise A med en egenverdi λ , så er også enhver parallell vektor, $c{\bf v}\,der\,c\neq 0$, en egenvektor med egenverdi λ siden :

$$A(c\mathbf{v}) = c(A\mathbf{v}) = c(\lambda\mathbf{v}) = \lambda(c\mathbf{v})$$