BUSINESS CONTINUITY & DISASTER RECOVERY

S9/L2

TABLE OF CONTENT

03. INTRODUCTION

05. PROCEDURE

09. CONCLUSION

INTRODUCTION

Traccia:

Durante la lezione teorica, abbiamo affrontato gli argomenti riguardanti la business continuity e disaster recovery.

Nell'es mpio pratico di oggi, ipotizziamo di essere stati assunti per valutare quantitativamente l'impatto di un determinato disastro su un asset di una compagnia.

Con il supporto dei dati presenti nelle tabelle che seguono, calcolare la perdita annuale che subirebbe la compagnia nel caso di:

- Inondazione sull'asset «edificio secondario»
- Terremoto sull'asset «datacenter»
- Incendio sull'asset «edificio primario»
- Incendio sull'asset «edificio secondario»
- Inondazione sull'asset «edificio primario»
- Terremoto sull'asset «edificio primario»

INTRODUCTION

Dati della traccia:

Dati:

ASSET	VALORE
Edificio primario	350.000€
Edificio secondario	150.000€
Datacenter	100.000€

EVENTO	ARO
Terremoto	1 volta ogni 30 anni
Incendio	1 volta ogni 20 anni
Inondazione	1 volta ogni 50 anni

EXPOSURE FACTOR	Terremoto	Incendio	Inondazione
Edificio primario	80%	60%	55%
Edificio secondario	80%	50%	40%
Datacenter	95%	60%	35%

Per calcolare la perdita annuale attesa (Annualized Loss Expectancy, ALE) per ogni scenario descritto, utilizzeremo la formula

$ALE = SLE \times ARO;$

dove:

SLE (Single Loss Expectancy) rappresenta la perdita singola attesa, calcolata come il prodotto del valore dell'asset e del fattore di esposizione.

ARO (Annualized Rate of Occurrence) è il tasso annualizzato di occorrenza dell'event.

E usiamo rispettivamente:

SLE= Valore dell'asset x Exposure Factor (EF);

dove:

- Valore dell'asset è il valore monetario dell'asset.
- Exposure Factor (EF) è la percentuale di perdita che l'asset subirebbe in caso di un determinato evento.

Eventi e ARO:

Terremoto: 1 volta ogni 30 anni (ARO = 1/30) Incendio: 1 volta ogni 20 anni (ARO = 1/20) Inondazione: 1 volta ogni 50 anni (ARO = 1/50)

1. Inondazione sull'asset edificio secondario:

• Valore dell'asset: 150.000€

• Exposure Factor: 40%

• ARO: 1/50

SLE= $150.000 \in \times 0.40 = 60.000 \in$ ALE= $60.000 \in \times 1/50 = 1.200 \in$

2. Terremoto sull'asset datacenter:

Valore dell'asset: 100.000€

Exposure Factor: 95%

ARO: 1/30

SLE= 100.000€ x 0.95= 95.000€ ALE= 95.000€ x 1/30 ≈ 3.167 €

3. Incendio sull'asset edificio primario:

• Valore dell'asset: 350.000€

• Exposure Factor: 60%

• ARO: 1/20

SLE= 350.000€ × 0.60= 210.000€ ALE= 210.000€ × 1/20= 10.500€

4. Incendio sull'asset edificio secondario:

• Valore dell'asset: 150.000€

• Exposure Factor: 50%

• ARO: 1/20

SLE= 150.000€ × 0.50=75.000€ ALE= 75.000€ × 1/20= 3.750€

5. Inondazione sull'asset edificio primario:

• Valore dell'asset: 350.000€

• Exposure Factor: 55%

• ARO: 1/50

SLE=350.000€ \times 0.55= 192.500€ ALE=192.500€ \times 1/50= 3.850€

6. Terremoto sull'asset edificio primario:

• Valore dell'asset: 350.000€

• Exposure Factor: 80%

• ARO: 1/30

 $SLE = 350.000 \in \times 0.80 = 280.000 \in$

ALE= 280.000€ x 130 ≈ 9.333€

CONCLUSION

- Inondazione sull'asset <u>edificio secondario</u>: 1.200€
- Terremoto sull'asset <u>datacenter:</u> 3.167€
- Incendio sull'asset <u>edificio primario</u>: 10.500€
- Incendio sull'asset <u>edificio secondario</u>: 3.750€
- Inondazione sull'asset <u>edificio primario</u>: 3.850€
- Terremoto sull'asset <u>edificio primario</u>: 9.333€