Problem

Consider the language $F=\{\mathbf{a}^i\mathbf{b}^j\mathbf{c}^k|\ i,j,k\geq 0\ \mathrm{and}\ \mathrm{if}\ i=1\ \mathrm{then}\ j=k\}.$

- a. Show that F is not regular.
- b. Show that F acts like a regular language in the pumping lemma. In other words, give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.
- c. Explain why parts (a) and (b) do not contradict the pumping lemma.

Step-by-step solution

Step 1 of 4

Consider the language:

$$F = \left\{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k \right\}$$

The language F is the union of three disjoint languages.

$$F_0 = \left\{ b^j c^k \mid j, k \ge 0 \right\}, F_1 \left\{ a b^j c^j \mid j \ge 0 \right\}, F_2 = \left\{ a^i b^j c^k \mid i \ge j, k \ge 0 \right\}$$

Clearly F_0 and F_2 are regular languages.

The class of regular languages is closed under union and complement.

Thus $\overline{F_0 \cup F_2}$ is also regular.

We have
$$F_1 = F - (F_0 \cup F_2)$$

$$= F \cap \overline{F_0 \cup F_2}$$

Since the class of regular languages is closed under intersection if F is regular, then so is F.

Comments (1)

Step 2 of 4

a.

Use pumping lemma to show that F_i is not regular and hence neither is F.

Assume that F_1 is regular language.

Let P be the pumping length given by pumping lemma.

Consider a string $S = ab^P c^P \in F_1$

Clearly |S| > P.

By using the pumping lemma, S can be divided into three pieces.

i.e.,
$$S = ab^P c^P = uvw$$
 such that $|uv| \le P, |v| > 0$ and $uv^i w \in F_1 \ \forall i \ge 0$.

Take
$$u = a$$
 $v = b^P$ $w = c^P$

$$uv^{0}w = a(b^{P})^{0}c^{P} \qquad \therefore (i=0)$$
$$= ac^{P} \notin F_{1}$$

The string w consist of ' c 's. In this case, string $a(b^p)^0 c^p$ has more c s than ' b 's and so is not a member of F_1 , violating the condition of pumping emma.
This is contradiction. The previous assumption that F_1 is regular is wrong. Thus F_1 is not regular.
Therefore, F is also not a regular language.
Comments (1)
Step 3 of 4
b.
Let pumping length $P=2$
Show that every string $S \in F$ of length at least P can be divided into three pieces $S = uvw$ such that, $ uv \le P, v > 0$ and $uv^l w \in F \ \forall l \ge 0$.
Consider a string $a^ib^jc^k \in F$ of length at least 2.
• Choose <i>x</i> to be the empty string.
If $i \neq 2$, then choose y to be the first symbol in $a^i b^j c^k$.
If $i = 2$, then choose $y = aa$
Clearly these chosen x, y satisfies the three conditions of pumping lemma.
Comment
Step 4 of 4
D.
part (a) and part(b) do not contradict the pumping lemma because the pumping lemma just says if a language is regular then there is a pumping ength for that language. But, if the language satisfies the pumping lemma, the language may not be regular.
Comment