K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC Biasing Circuits

1. For the given circuit shown in figure 1. Find V_G , I_D , V_{GS} and V_{DS} . Also, determine the region of operation of the given device.

Given data: $V_{GS_{(th)}} = 5V$, $V_{GS_{(ON)}} = 10V$, $I_{D_{(ON)}} = 3mA$

Figure 1: Mosfet Circuit

Solution:

Using zero-temperature drift biasing technique

1.) Data:

$$|A_v| = 10, V_o = 2V, f_L = 20Hz$$

$$V_G = \frac{R_2}{R_1 + R_2} \times V_{DD} = \frac{18M\Omega}{18M\Omega + 22M\Omega} \times 40 = 18V$$

For E-NMOS transistor,

$$k_n = \frac{I_{D_{(ON)}}}{\left[V_{GS_{(ON)}} - V_{GS_{(th)}}\right]^2} = \frac{3mA}{[10 - 5]^2}$$

$$k_n = 0.12 \ mA/V^2$$

 V_{GS} is given by,

$$V_{GS} = V_G - V_S = V_G - I_D R_S$$

Assuming that the given E-NMOS transistor is working in the saturation region,

$$I_D = k_n \left(V_{GS} - V_{GS_{(th)}} \right)^2$$

$$I_D = 0.12 \times 10^{-3} (V_{GS} - 5)^2 \qquad \dots (2)$$

Substituting Eq.(2) in Eq.(1), we get

$$V_{GS} = 18 - 820 \times 0.12 \times 10^{-3} (V_{GS} - 5)^2$$

$$V_{GS} = 18 - 0.0984(V_{GS}^2 - 10V_{GS} + 25)$$

$$V_{GS} = 18 - 0.0984V_{GS}^2 + 0.984V_{GS} - 2.46$$

i.e.
$$0.0984V_{GS}^2 + 0.016V_{GS} - 15.54 = 0$$

Solving the above quadratic equation we get,

$$V_{GS} = 12.48V$$
 or $V_{GS} = -12.64V$

Since $V_{GS} < V_{GS_{(th)}}$ for $V_{GS} = -12.64V$, it is rejected.

$$\therefore V_{GS} = 12.48V$$

i.e.
$$I_D = k_n (V_{GS} - 5)^2 = 0.12 \times 10^{-3} (12.48 - 5)^2$$

$$\therefore I_D = 6.72 mA$$

Now,
$$V_{DS} = V_{DD} - I_D(R_D + R_S) = 40 - 6.72 mA(3k + 820)$$

$$\therefore V_{DS} = 14.32V$$

$$\because V_{GS} > V_{GS_{(th)}} \ \& \ V_{DS} > V_{GS} - V_T \ \text{i.e} \ V_{DS} > (12.48-5)$$

... the given E-NMOS device is working in the saturation region

2. Design a E-NMOS DC biasing circuit to give $I_D=0.25mA,\ V_{DS_Q}=4V,\ V_{R_S}=1V.$ The mosfet parameters are $k_n'=80\mu A/V^2,\ W/L=4,\ V_{TN}=1.2V.$ The current in the bias resistors $(R_1\ \&\ R_2)$ should be approximately $20\mu A.\ V_{DD=}+5V$ and $V_{SS}=-5V$

Figure 2: DC Biasing Circuit

Solution:

From figure 2, we have

$$V_{R_S} = R_S I_{D_Q}$$

$$R_S = \frac{V_{R_S}}{I_{DO}} = \frac{1V}{0.25mA} = 4k\Omega$$

Select $R_S = 3.9 k\Omega_{(std)}$, 1/4 W......(L.S.V)

Applying KVL to D-S loop we get,

$$V_{DD} - I_{D_Q} R_D - V_{DS} - I_{D_Q} R_S + V_{SS} = 0$$

$$\therefore 5 - I_{D_O}(R_D + R_S) - 4 + 5 = 0$$

$$I_{D_O} = 0.25 mA....$$
 (given)

$$R_S = 3.9k\Omega \& R_D = 20.1k\Omega$$

Select $R_D = 22k\Omega_{(std)}$, 1/4 W.....(H.S.V)

$$I_D = k_n (V_{GS} - V_T)^2$$

$$I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

$$0.25mA = \frac{80\mu}{2} \times 4^2 \times (V_{GS} - 1.2)^2$$

$$1.5625 = (V_{GS} - 1.2)^2$$

$$\therefore V_{GS} = 2.45V$$

: Current through bias resistor is $20\mu A$

$$R_1 + R_2 = \frac{V_{DD} + V_{SS}}{I_{R_1 + R_2}} = \frac{5 + 5}{20\mu A} = 500k\Omega$$

$$V_G = \left[\frac{R_2}{R_1 + R_2} (5 + 5) \right] - 5$$

$$V_G = \frac{R_2 \times 10}{500k} - 5$$

$$V_S = I_D R_S - 5$$

Since, we know that $V_{GS} = V_G - V_S$

$$2.45 = \left[\frac{R_2 \times 10}{500k} - 5\right] - [3.9k \times 0.25mA - 5]$$

$$2.45 = \frac{R_2}{50k} - 5 - 0.975 + 5$$

$$3.425 = \frac{R_2}{50k}$$

$$\therefore R_2 = 171.25k\Omega$$

Select
$$R_2 = 150 k\Omega_{(std)}, 1/4W.....(L.S.V)$$

$$R_1 = 328.75 \text{ k}\Omega \dots (: R_1 + R_2 = 500k)$$

Select
$$R_1 = 330k\Omega_{(std)}$$
, $1/4W.....(H.S.V)$

The designed MOSFET Biasing Circuit is shown in the figure below

Figure 3: Designed MOSFET Biasing Circuit

3. Design a single stage CS JFET amplifier to give output voltage of 2V and voltage gain of -10. The circuit should be suitable for operation upto frequency of 20Hz

Note: If frequency is not given, then assume it to be 50Hz

Solution: Using zero-temperature drift biasing technique for designing the circuit.

1) Data:

$$|A_v| = 10, V_o = 2V, f_L = 20Hz$$

2) Selection of JFET:

We select n-JFET BFW11 for the datasheet with the following specifications:

$$g_{m_0} = 5600 \mu \text{U}, V_p = -2.5 V, r_d = 50 k \Omega \text{ and } I_{DSS} = 7 m A$$

3) Selection of Biasing Network:

We select self-bias circuit shown in figure 4 for our design.

Figure 4: JFET Self-Biasing Circuit

4) Selection of Q-point:

i) For zero-temp drift,
$$|V_p| - |V_{GS}| = 0.63$$

$$2.5 - |V_{GS}| = 0.63$$

$$|V_{GS}| = 1.87$$

i.e.
$$V_{\mathrm{GS}} = -1.87 \mathrm{V}$$

ii)
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2 = 7mA \left(1 - \frac{(-1.87)}{(-2.5)} \right)^2$$

$$I_D = 0.44 \text{mA}$$

iii)
$$g_m = g_{m_o} \left(1 - \frac{V_{GS}}{V_p} \right) = 5600 \times 10^{-6} \left(1 - \frac{(-1.87)}{(-2.5)} \right)$$

$$\therefore \mathbf{g_m} = 1.4112 \mathbf{mA/V}$$

5) Selection of Rs:

$$V_{GS} = -R_S I_D$$
....(Self-Bias)

i.e.
$$R_S = \frac{-V_{GS}}{I_D} = \frac{-(-1.87)}{0.44mA} = 4.25k\Omega$$

Select L.S.V to maintain Q-point in middle of transfer curve.

$$\therefore \mathbf{Select}\ \mathbf{R_S} = 3.9k\Omega_{(\mathbf{std})}, 1/4\mathbf{W}$$

6) Selection of R_D

$$A_v = -g_m(r_d \mid\mid R_D)$$

Note: If R_L is given, then $A_v = -g_m(r_d \mid\mid R_D \mid\mid R_L)$

$$A_v = -g_m \left(\frac{r_d R_D}{r_d + R_D} \right)$$

$$\therefore -10 = -1.4112 \times 10^{-3} \left(\frac{50k\Omega \times R_D}{50k\Omega + R_D} \right)$$

Solving the above equation we get,

$$R_D = 8.256k\Omega$$

Select H.S.V to increase the gain,

$$\therefore$$
 Select $R_D = 9.1k\Omega_{(std)}, 1/4W$

7) Selection of R_G:

To prevent loading of preceding stage,

Select
$$R_G = 1M\Omega_{(std)}, 1/4W$$

8) Selection of V_{DD}:

 $V_{DS} \geqslant V_{o_{peak}} + \mid V_p \mid$(Condition for undistorted output)

$$V_{DS} = 1.5(V_{o_{peak}} + \mid V_p \mid)$$

$$V_{\mathbf{DS}} = 1.5(V_{o_{\mathbf{peak}}} + 2.5)$$

The value is multiplied by 1.5 to take care of saturation voltages, tolerance in resistance value, variation in supply voltage and device parameter variation.

$$V_{o_{rms}} = 2V$$

$$\therefore V_{o_{peak}} = 2\sqrt{2}$$

i.e.
$$V_{DS} = 1.5(2\sqrt{2} + 2.5) = 7.99V$$

$$\therefore V_{DS} = 8V$$

Figure 5: JFET Circuit

Applying KVL to the D-S loop shown in figure 5 we get,

$$V_{DD} - I_D R_D - V_{DS} - I_D R_S = 0$$

$$V_{DD} = V_{DS} + I_D(R_D + R_S)$$

$$V_{DD} = 8 + 0.44 \times 10^{-3} (3.9k + 9.1k)$$

$$\therefore V_{DD} = 13.72V$$

$$Select\ V_{DD}=15V$$

9) Selection of C_S:

$$f_L = 20Hz$$

$$X_{C_S} \le 0.1 R_S$$

i.e.
$$\frac{1}{2\pi f_L C_S} \le 0.1 R_S$$

i.e.
$$C_S \ge \frac{1}{2\pi f_L \times 0.1 R_S} \ge \frac{1}{2\pi \times 20 \times 0.1 \times 3.9k}$$

$$\therefore C_S = 20.4 \mu F$$

 $\mathbf{Select}\ \mathbf{C_S} = \mathbf{22}\mu\mathbf{F}/\mathbf{25V......}(\mathbf{H.S.V})$

10) Selection of C_{C1} :

Figure 6: JFET Small Signal Equivalent Input Circuit

$$C_{C1} = \frac{1}{2\pi f_{L_{C_{C1}}} R_{eq}}$$

$$f_{C_{C1}} = f_L = 20Hz$$

$$R_{eq} = R_G = 1M\Omega$$

$$C_{C1} = \frac{1}{2\pi \times 20 \times 1M\Omega} = 7.957nF$$
Solvet $C_{C1} = 8.2nF/25V$ (H.S.)

 $Select \ C_{C1} = 8.2nF/25V....(H.S.V)$

11) Selection of C_{C2}:

Figure 7: JFET Small Signal Equivalent Output Circuit

$$\begin{split} C_{C2} &= \frac{1}{2\pi f_{L_{C_{C2}}}R_{eq}} \\ R_{eq} &= r_d \mid\mid R_D + R_L \\ \text{If } R_L \text{ is not given, Select } R_L = R_i(next stage) \\ R_L &= R_G = 1M\Omega \\ \\ R_{eq} &= 9.1k \mid\mid 50k + 1M\Omega \\ \\ R_{eq} &= 7.698k + 1M\Omega = 1.0077m\Omega \\ \\ f_{L_{C_{C2}}} &= f_L = 20Hz \end{split}$$

$$C_{C2} = \frac{1}{2\pi \times 20 \times 1.077 M\Omega}$$

$$C_{C2} = 7.89 nF$$
Select $C_{C2} = 8.2 nF/25 V.....(H.S.V)$

12) The designed JFET circuit is:

Figure 8: Designed JFET Amplifier Circuit using Zero-temperature Drift Technique

- 4. For the network shown in figure 9, determine
 - a) $I_{D_Q} \& V_{GS}$ b) $V_D \& V_S$

 - c) V_{DS_Q}

Figure 9: Circuit 1 for Numerical 4

Solution: The circuit given above is a voltage divider biased circuit.

By applying KVL at the G-S loop we get,

$$V_G - R_2 I_G - V_{GS} - I_S R_S = 0$$

But for JFET, $I_G = 0$

$$I_D = I_S$$

From equations (1), (2) and (3) we get,

$$V_G - V_{GS} - I_D R_S = 0$$

$$\therefore V_{GS} = V_G - I_D R_S \qquad \dots (1)$$

By voltage division rule,

$$V_G = \frac{R_2}{R_1 + R_2} \times V_{DD} = \frac{110k}{110k + 910k} \times 20$$

$$V_G = 2.15V$$

Substituting the value of V_G and R_S in equation (1) we get,

We know that $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_n} \right)^2$

$$\therefore I_D = 10 \times 10^{-3} \left(1 + \frac{V_{GS}}{3.5} \right)^2 \qquad \dots (3)$$

Substituting equation (3) in equation (2) we get,

$$V_{GS} = 2.15 - 11\left(1 + \frac{V_{GS}^2}{12.25} + \frac{2V_{GS}}{3.5}\right)$$

$$\therefore V_{GS} = 2.15 - \left(11 + \frac{11V_{GS}^2}{12.25} + \frac{22V_{GS}}{3.5}\right)$$

$$V_{GS} = -1.487V \text{ or } V_{GS} = -6.66V$$

Accepting the value of $V_{GS} = -1.48V$ because $V_{GS} > V_p$

$$\therefore V_{GS} = -1.487V$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2 = 10mA \left(1 - \frac{(-1.48)}{(-3.5)} \right)^2$$

$$\therefore I_D = 3.307 mA$$

We know that $V_{GS} = V_G - V_S$

$$V_S = V_G - V_{GS} = 2.15 + 1.487$$

$$\therefore \mathbf{V_S} = 3.637\mathbf{V}$$

Applying KVL to D-S loop we get,

$$V_{DD} - I_D R_D - V_{DS} - I_S R_S = 0$$

$$V_{DS} = 20 - 3.307 \times 2.2 - 3.3.07 \times 1.1$$

$$\therefore V_{DS} = 9.086V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 10: Circuit Schematic: Results

Comparison between observed and theoretical values:

Parameters	Simulated	Theoretical
V_G	2.15V	2.15V
V_S	3.367V	3.64V
I_D	$3.31 \mathrm{mA}$	$3.307 \mathrm{mA}$

Table 1: Question 4

- 5. For the network shown in figure 11, determine
 - a) $I_{D_Q} \& V_{GS_Q}$
 - b) $V_{DS} \& V_D$

Figure 11: Circuit 1 for Numerical 5

Solution: The circuit given above is common gate configuration.

By applying KVL to the G-S loop we get,

But for JFET, $I_G = 0$

$$\therefore I_D = I_S \qquad \qquad \dots (2)$$

From equations (1) and (2) we get,

$$V_{GS} = V_{SS} - I_D R_S$$

$$V_{GS} = 4 - I_D(2.2k)$$
(3)

We know that
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2$$

Substituting the given values in the formula we get,

Substituting equation (4) in equation (3) we get,

$$V_{GS} = 4 - 13.2 \left(1 + \frac{2V_{GS}}{6} + \frac{V_{GS}^2}{36} \right)$$

$$\therefore V_{GS} = 4 - 13.2 - 4.4V_{GS} - 0.3667V_{GS}^2$$

i.e.
$$0.3667V_{GS}^2 + 5.4V_{GS} + 9.2$$

Solving the above quadratic equation we get,

$$V_{GS} = -1.966V$$
 or $V_{GS} = 12.75V$

We will select -1.966V because $V_{GS} > V_p$

$$\therefore V_{GS} = -1.966V$$

Assuming the transistor to be in the saturation region,

$$I_D = I_{DSS} \left(1 - \frac{-1.966}{-6} \right)^2$$

$$\therefore I_D = 2.71 mA$$

Applying KVL to D-S we get,

$$V_{DD} - I_D R_D - V_{DS} - I_S R_S + V_{SS} = 0$$

$$V_{DD} + V_{SS} - V_{DS} - I_D(R_D + R_S) = 0$$

$$V_{DS} = V_{DD} + V_{SS} - I_D(R_D + R_S) = 16 + 4 - 2.71 mA(2.2k + 2.2k)$$

$$\therefore V_{DS} = 8.076V$$

We know that, $V_D = V_{DD} - I_D R_D = 16 - 2.71 mA \times 2.2 k\Omega$

$$\therefore V_D = 10.038V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 12: Circuit Schematic: Results

Comparison between observed and theoretical values:

Parameters	Simulated	Theoretical
V_D	10.038V	10.038V
V_{DS}	8.07V	8.076V
I_D	0.00271A	2.71mA

Table 2: Question 5

- 6. For the network shown in figure 13, determine
 - a) $V_{GS_Q} \& I_{D_Q}$
 - b) V_{DS}
 - c) $V_D \& V_S$

Figure 13: Circuit 1 for Numerical 6

Solution: The circuit 1 is a common gate configuration.

We know that, $V_{GS} = V_G - V_S$

Applying KVL to G-S loop we get,

$$V_{GS} = -I_D R_S + V_{SS}$$

$$\therefore V_{GS} = 10 - I_D(1.5k)$$
(1)

Also,
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2$$

$$I_D = 9mA \left(1 + \frac{V_{GS}}{3}\right)^2$$
(2)

Substituting (2) in (1) we get

$$V_{GS} = 10 - 13.5 \left(1 + \frac{V_{GS}^2}{9} + \frac{2V_{GS}}{3} \right)$$

$$\therefore V_{GS} = \left(-13.5 - \frac{13.5V_{GS}^2}{9} - \frac{2 \times 13.5V_{GS}}{3}\right)$$

$$\therefore 1.5V_{GS}^2 + 10V_{GS} + 3.5 = 0$$

Solving the above quadratic equation we get,

$$V_{GS} = -0.3706V$$
 or $V_{GS} = -6.296V$

We select $\mathbf{V_{GS}} = -\mathbf{0.3706V}$ because $V_{GS} > V_p$

$$\therefore I_D = 9mA\left(1 - \frac{0.3706}{3}\right)^2$$

$$\therefore I_D = 6.913 mA$$

Applying KVL to D-S loop we get,
$$-V_{SS} + I_S R_S + V_{DS} + I_D R_D - V_{DD} = 0$$

$$V_{DS} = V_{DD} + V_{SS} - I_D (R_D + R_S) \qquad (\because I_S = I_D),$$

$$\therefore V_{DS} = 20 + 10 - (6.9mA)(1.8k + 1.5k) = 30 - 22.77$$

$$\therefore \mathbf{V_{DS}} = \mathbf{7.23V}$$

We know that,
$$V_D = V_{DD} - I_D R_D = 20 - (6.9mA)(1.8k) = 20 - 12.42$$

$$\therefore V_D = 7.58V$$

$$V_{DS} = V_D - V_S$$

$$V_S = V_D - V_{DS} = 7.58 - 7.23$$

$$\therefore \mathbf{V_S} = 0.35\mathbf{V}$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 14: Circuit Schematic: Results

Comparison between theoretical and simulated values is given below:

Parameters	Simulated	Theoretical
V_D	7.55V	7.58V
V_S	0.37V	0.35V
I_D	$6.913 \mathrm{mA}$	$6.913 \mathrm{mA}$

Table 3: Question 6

7. Find V_{DS_Q} and I_{D_Q} for the enhancement type MOSFET shown in figure 15.

Figure 15: Circuit 1 for Numerical 7

Solution:

Given data: $I_{DSS} = 6mA$

$$V_{GS_{(ON)}} = 8V$$

$$V_{GS_{(Th)}} = 3V$$

Solving for k_n we get,

$$k_n = \frac{I_{D_{(ON)}}}{\left[V_{GS_{(ON)}} - V_{GS_{(Th)}}\right]^2} = \frac{6mA}{(8V - 3V)^2}$$

$$\therefore k_n = 0.24 mA/V^2$$

Applying KVL to D-S loop we get,

$$V_{GS} = V_{DD} - I_D R_D = 12 - I_D(2000) \qquad \dots (1)$$

Assuming that the given NMOS-E is in saturation region

$$I_D = k_n (V_{GS} - V_{GS_{(ON)}})^2 = 0.24 \times 10^{-3} (V_{GS} - 3)^2$$

Substituting (2) in (1) we get,

$$V_{GS} = 12 - 0.48(V_{GS} - 3)^2 = 12 - 0.48(V_{GS}^2 - 6V_{GS} + 9)$$

$$\therefore V_{GS} = 12 - 0.48V_{GS}^2 + 2.88V_{GS} - 4.32$$

$$\therefore 0.48V_{GS}^2 - 1.88V_{GS} - 7.68 = 0$$

Solving the above quadratic equation we get,

$$V_{GS} = 6.41V$$
 or $V_{GS} = -2.49V$

We select $V_{GS} = 6.41V$

$$\mathbf{V_{DS}} = \mathbf{V_{GS}} = 6.41\mathbf{V}$$

$$I_D = k_n (V_{GS} - 3)^2 = 0.24 \times 10^{-3} (6.41 - 3)^2$$

 $\mathbf{I_D} = \mathbf{2.79mA}$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 16: Circuit Schematic: Results

Comparison between observed and theoretical values:

Parameters	Simulated	Theoretical
V_{GS}	6.411V	6.41V
V_{DS}	6.411V	6.41V
I_D	2.794A	$2.794 \mathrm{mA}$

Table 4: Question 7

8. The pnp transistor shown in figure 17 has $\beta = 100$ and $V_{EB} = 0.7V$. Find I_B and V_{EC}

Figure 17: Circuit 1 for Numerical 8

Solution:

Given: $\beta = 100$ and $V_{EB} = 0.7V$

From figure 1 we get,

$$R_{th} = R_1 \mid\mid R_2$$

$$R_1 = 30k\Omega$$
 and $R_2 = 10k\Omega$

$$R_{th} = 10k || 30k$$

$$\therefore R_{th} = 7.5k\Omega$$

We know that,
$$V_{th} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{10k}{10k + 30k} \times (-20)$$

$$\therefore V_{th} = -5V$$

In DC analysis, the capacitors become open circuit,

Applying KVL to E-B loop we get,

$$-V_{th} - I_B R_{th} - I_E R_E - V_{EB} = 0$$

$$-V_{th} - V_{EB} = I_B R_{th} + (1+\beta)I_B R_E$$

$$I_B = \frac{-V_{th} - V_{BE}}{R_{th} + (1+\beta)R_E} = \frac{-(-5)V - 0.7V}{7.5 + (101)2}$$

$$\therefore$$
 $I_B = 20.52 \mu A$

$$I_C = \beta I_B = 100 \times 20.52 \mu A$$

$$\therefore I_C = 2.052 mA$$

Applying KVL to the E-C loop we get,

$$V_{CC} - I_C R_C - V_{EC} - I_E R_E = 0$$

$$V_{EC} = V_{CC} - I_C R_C - I_E R_E = 20 - (2.052mA)(5k) - (2.072mA)(2k)$$

$$V_{EC} = 5.596 V \,$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 18: Circuit Schematic: Results

Comparison between theoretical and simulated values is given below:

Parameters	Simulated	Theoretical
I_B	$20.0855 \mu A$	$20.52\mu\mathrm{A}$
V_{EC}	5.9V	5.596V

Table 5: Question 8

9. The parameters of the amplifier circuit shown in figure 19 are $V_{CC}=5V$, $R_c=500\Omega$, $R_1=6.5k\Omega$, $R_E=450\Omega$, $R_S=500\Omega$, $R_L=5k\Omega$ and C_1 & $C_2=1\mu F$, $\beta=100$

Figure 19: Circuit 1 for Numerical 9

Solution:

From figure 1 we get,

$$R_{th} = R_1 \mid\mid R_2$$

$$R_{th} = 6.5k \mid\mid 2.5k$$

$$\therefore R_{th} = 1.80k\Omega$$

We know that,
$$V_{th} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{2.5}{6.5 + 2.5} \times 5$$

$$\therefore V_{th} = 1.389V$$

In DC analysis, the capacitors become open circuit,

Applying KVL to B-E loop we get,

$$V_{th} - I_B R_{th} - I_E R_E - V_{BE} = 0$$

$$V_{th} - V_{BE} = I_B R_{th} + (1+\beta)I_B R_E$$

$$I_B = \frac{V_{th} - V_{BE}}{R_{th} + (1+\beta)R_E} = \frac{1.389V - 0.7V}{1.8 + (101)0.45} = \frac{0.689}{47.25}$$

$$\therefore$$
 $I_B = 14.58 \mu A$

$$I_C = \beta I_B = 100 \times 14.58 \mu A$$

$$\therefore I_C = 1.458 mA$$

Applying KVL to the C-E loop we get,

$$V_{CC} - I_C R_C - V_{CE} - I_E R_E = 0$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E = 5 - (1.458mA)(0.5k) - (1.473mA)(0.45k)$$
 (: $I_E = I_B + I_C$)

$$V_{\mathrm{CE}} = 3.61 \mathrm{V}$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 20: Circuit Schematic: Results

Comparison between theoretical and simulated values is given below:

Parameters	Simulated	Theoretical
I_B	$12.869 \mu A$	14.58 μA
V_{CE}	3.77V	3.61V

Table 6: Question 9
