# TP4 – Étude cinétique de l'oxydation des ions iodure par l'eau oxygénée

MP2I

2021 - 2022

## **Objectifs**

- → Étalonner une chaine de mesure si nécessaire.
- → Déterminer une concentration ou une quantité de matière par spectrophotométrie UV-Visible.
- → Exploiter les résultats d'un suivi temporel de concentration pour déterminer les caractéristiques cinétiques d'une réaction.
- → Proposer et mettre en œuvre des conditions expérimentales permettant la simplification de la loi de vitesse.
- → Déterminer la valeur d'une énergie d'activation.
- → Établir une loi de vitesse de formation d'un produit ou de consommation d'un réactif
  à partir du suivi temporel d'une grandeur physique.

Le port de la blouse et des lunettes de protection est obligatoire dans la salle.

## Oxydation des ions iodure par l'eau oxygénée

On cherche à suivre la réaction d'oxydation des ions iodures I $^-$  par l'eau oxygénée  $\rm H_2O_2$  en milieu acide. Cette réaction est relativement lente pour des concentrations usuelles en réactifs. En particulier, on recherche si elle admet un ordre ou non par rapport à  $\rm H_2O_2$  dans les conditions de l'expérience. L'équation de la réaction est :

$$\label{eq:H2O2} {\rm H_2O_2(aq)} + 2\,{\rm I^-(aq)} + 2\,{\rm H^+(aq)} = 2\,{\rm H_2O(l)} + {\rm I_2(aq)}.$$

L'eau oxygénée et les différents ions sont incolores alors que le diiode en présence d'un excès d'ion iodure est de couleur jaune-brune. Son spectre d'absorption est donné ci-dessous, pour une solution à  $1 \, \text{mol} \cdot \text{L}^{-1}$  à travers une cuve de  $1 \, \text{cm}$ .



## Conditions expérimentales

On suppose que la réaction d'oxydation des ions iodures par l'eau oxygénée admet un ordre. On écrit donc sa loi de vitesse :

$$v = k[\mathbf{I}^-]^{\alpha}[\mathbf{H}_2\mathbf{O}_2]^{\beta}[\mathbf{H}^+]^{\gamma}.$$

On souhaite déterminer uniquement l'ordre partiel par rapport à l'eau oxygénée.

Le protocole proposé par la suite consiste à mélanger dans un bécher  $10 \,\mathrm{mL}$  de la solution d'eau oxygénée, et  $10 \,\mathrm{mL}$  d'iodure de potassium et  $20 \,\mathrm{mL}$  d'acide sulfurique. On donne  $M_{\mathrm{KI}} = 166 \,\mathrm{g} \cdot \mathrm{mol}^{-1}$ .

- 1. Justifier que cela permet d'accéder à l'ordre cherché. Montrer que  $v = k_{\rm app}[{\rm H_2O_2}]^{\beta}$  où l'on donnera  $k_{\rm app}$  en fonction de k,  $[{\rm I}^-]_0$  et  $[{\rm H}^+]_0$ ,  $\alpha$  et  $\gamma$ .
- 2. La réaction sera suivie par spectrophotométrie. Justifier qu'il s'agit d'un choix raisonnable et proposer une longueur d'onde de travail.

## Protocole expérimental

Les mesures doivent démarrer très rapidement après le début de la réaction : réfléchissez aux détails pratiques et préparez votre feuille de calcul (ou votre calculatrice) avant de mélanger toutes les solutions! Le spectrophotomètre doit être étalonné.

- 1. À l'aide d'une éprouvette graduée, introduire  $70\,\mathrm{mL}$  d'eau distillée dans un erlenmeyer noté « SOLUTION ETUDIEE ».
- 2. À l'aide d'une pipette jaugée, prélever  $10\,\mathrm{mL}$  de solution d'eau oxygénée  $\mathrm{H_2O_2}$  et les verser dans l'erlenmeyer noté « SOLUTION ETUDIEE ».
- 3. À l'aide d'une pipette jaugée, prélever 10 mL de solution d'iodure de potassium (K<sup>+</sup>, I<sup>-</sup>). Les placer dans un bécher intermédaire.
- 4. Quelles précautions doit-on prendre avant de manipuler de l'acide sulfurique à  $1 \text{ mol} \cdot \text{L}^{-1}$ ? À l'aide d'une éprouvette graduée, préparer 20 mL de solution d'acide sulfurique  $\text{H}_2\text{SO}_4$  à  $1 \text{ mol} \cdot \text{L}^{-1}$  et ajouter les dans le bécher intermédiaire.
- 5. Introduire l'acide sulfurique et l'iodure de potassium dans l'erlenmeyer « SOLUTION ETUDIEE ». La réaction d'oxydation démarre, déclencher le chronomètre.
- 6. Homogénéiser quelques dizaines de secondes la solution en remuant l'erlenmeyer.
- 7. A la pipette pasteur, prélever de la solution et remplir au 3/4 une cuve. Introduire la cuve dans le spectrophotomètre et fermer le capot.
- 8. Mesurer l'absorbance de la solution à raison d'une mesure toutes les 30 secondes pendant une durée totale de 30 minutes.

#### Exploitation des mesures

#### Tableau d'avancement

3. Etablir le tableau d'avancement de la réaction sachant qu'elle est totale.

#### **Absorbance**

On note  $C_0$  la concentration initiale en  $H_2O_2$ .

- 4. Exprimer alors  $[I_2]$  en fonction de  $[H_2O_2]$  et  $C_0$ .
- 5. Exprimer la loi de Beer-Lambert dans le cas de la réaction étudiée en fonction de  $[H_2O_2]$  et  $C_0$ .
- 6. En déduire que  $[H_2O_2](t) = (A_\infty A(t))/(\varepsilon l)$  avec  $\varepsilon$  le coefficient d'absorption molaire du diiode, l la longueur de la cuve du spectrophotomètre,  $A_\infty$  l'absorbance en fin de réaction et A(t) l'absorbance à un instant t.

#### Méthode intégrale

- 7. Dans l'hypothèse d'une réaction d'ordre 0 :
  - Montrer que l'absorbance A(t) est donnée par  $A(t) = \varepsilon l k_{\rm app} t$ .
  - Cette hypothèse est-elle vérifiée expérimentalement? Justifier par un graphe.
  - Si oui, en déduire la constante de vitesse apparente.
- 8. Dans l'hypothèse d'une réaction d'ordre 1 :
  - Montrer que l'absorbance A(t) est donnée par  $\ln(A_{\infty}-A(t))=-k_{\rm app}t$ .
  - Evaluer la valeur de  $A_{\infty}$ .
  - L'hypothèse de l'ordre 1 est-elle vérifiée? Justifier par un graphe.
  - Si oui, en déduire la constante de vitesse apparente.
- 9. Dans l'hypothèse d'une réaction d'ordre 2 :
  - Montrer que l'absorbance A(t) est donnée par  $\frac{1}{A_{\infty} A(t)} = \frac{1}{A_{\infty}} + \frac{k_{\text{app}}}{\varepsilon l}t$ .
  - Évaluer la valeur de  $A_{\infty}$ .
  - L'hypothèse de l'ordre 2 est-elle vérifiée? Justifier par un graphe.
  - Si oui, en déduire la constante de vitesse apparente.

#### Document 1 - Matériel

- Solution d'eau oxygénée à  $5.0 \times 10^{-2} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$
- Solution d'iodure de potassium à  $5.0 \times 10^{-1}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$
- Spectrophotomètre
- Cuves de spectrophotométrie
- 3 béchers.
- Erlenmeyer 250 mL
- $\bullet$  Éprouvettes graduées de  $25\,\mathrm{mL}$  et  $100\,\mathrm{mL}$
- Pipette jaugée de 10 mL
- Un agitateur magnétique
- Pipette pasteur
- Chronomètre
- Pissette d'eau distillée