Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа N3149	_К работе допущен
Студент Синюта Анастасия Анатольевна	а. Работа выполнена
Преподаватель Иванов Виктор Юрьевич	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1

- 1. Цель работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы. Изучение теории вероятности из выборочной совокупности, содержащей N значений случайной величины.
- 3. Объект исследования. Распределение случайной величины.
- 4. Метод экспериментального исследования. Многократное измерение интервалов времени.
- 5. Рабочие формулы и исходные данные. Функция Гаусса

$$\rho(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

Среднеарифметическое всех результатов измерений

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + ... + t_N) = \frac{1}{N} \sum_{i=1}^N t_i,$$

Выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2}.$$

Вероятность попадания результата измерения в интервал [t1, t2]

$$\begin{split} P\left(t_1 < t < t_2\right) &= \int\limits_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N} \\ \rho_{\max} &= \frac{1}{\sigma \sqrt{2\pi}}. \quad \begin{array}{l} t \in \left[\langle t \rangle - \sigma, \langle t \rangle + \sigma\right], \quad P_\sigma \approxeq 0,683 \\ t \in \left[\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma\right], \quad P_{2\sigma} \approxeq 0,954 \\ t \in \left[\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma\right], \quad P_{3\sigma} \approxeq 0,997 \end{split}$$

Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Доверительный интервал для измеряемого в работе промежутка времени $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle},$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер цифровой	Электрический	•	0,001 сек.
			сек.	
2	Секундомер стрелочный	Механический	4,60 сек. – 5,78	0,001 сек.
			сек.	

7. Схема установки (перечень схем, которые составляют Приложение 1).

В работе используются устройство или прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца (часы с секундной стрелкой, стрелочный секундомер, математический или физический маятник) и цифровой секундомер, с ценой деления не более 0,01 с. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

No	ti, c	$t_i - \langle t \rangle_N, \ c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	5,00	-0,21	0,046
2	4,98	-0,23	0,055
3	5,06	-0,15	0,024
4	5,61	0,40	0,156
5	4,66	-0,55	0,308
6	4,85	-0,36	0,133
7	5,41	0,20	0,038
9	5,34	0,13	0,016
10	5,17	-0,04	0,002
11	5,75	0,54	0,287
12	5,34	0,13	0,016
13	4,97	-0,24	0,060
14	4,83	-0,38	0,148

15	5,17	-0,04	0,002			
16	4,99	-0,22	0,050			
17	5,77	0,56	0,308			
18	5,18	-0,03	0,001			
19	4,91	-0,30	0,093			
20	5,20	-0,01	0,000			
21	4,70	-0,51	0,265			
22	5,19	-0,02	0,001			
23	5,35	0,14	0,018			
24	4,85	-0,36	0,133			
25	4,75	-0,46	0,216			
26	5,30	0,09	0,007			
27	5,69	0,37	0,133			
28	4,73	0,48	0,226			
29	5,52	-0,48	0,235			
30	5,42	0,31	0,093			
31	5,66	0,21	0,042			
32	5,72	0,45	0,198			
33	5,41	0,51	0,255			
34	4,78	0,20	0,038			
35	4,68	-0,43	0,189			
36	5,08	-0,53	0,286			
37	4,60	-0,13	0,018			
38	5,11	-0,61	0,378			
39	5,38	-0,10	0,011			
40	5,47	0,17	0,027			
41	4,89	0,26	0,065			
42	5,33	-0,32	0,105			
43	5,24	0,12	0,013			
44	5,19	0,03	0,001			
45	5,78	-0,02	0,001			
46	4,97	0,57	0,320			
47	5,22	-0,24	0,060			
48	5,69	0,01	0,000			
49	5,47	0,48	0,226			
50	5,58	0,26	0,065			

Расчет результатов косвенных измерений (для прямых и косвенных измерений).

$$\langle t \rangle_N = 5,21 \ c.$$

$$\sum (i=1,N) \ (\text{T}i - \langle \text{T}i \rangle N \) = -0,21 \ \text{cm}.$$

$$\sigma N = 0,33 \ \text{cm}.$$

$$\rho_{max} = 0,29 \ c^{-1}$$

$$\text{Tmin} = 4,6 \ \text{ M}$$

$$\text{Tmax} = 5,78$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Интервал	[4,60; 4,73)	[4,73; 4,91)	[4,91; 5,20)	[5,20; 5,34)	[5,34; 5,52)	[5,52; 5,72)	[5,72; 5,78]
ΔΝ	2	7	10	17	9	4	1
ΔΝ/Ν/Δt	0,22	0,78	0,69	2,43	1,00	0,4	0,33
х	[4,60; 4,73)	[4,73; 4,91)	[4,91; 5,20)	[5,20; 5,34)	[5,34; 5,52)	[5,52; 5,72)	[5,72; 5,78]
р	0,24	0,82	1,18	2,00	1,06	0,47	0,12
	0.22	0.78	0.69	2.43	1	0,4	0,33

Стандартные доверительные интервалы

	ОТ	до	ΔΝ	ΔN/N	Р
$\langle t \rangle N \pm \delta N$	4,88	5,55	30	0,600	0,68
$\langle t \rangle N \pm 2 \delta N$	4,55	5,88	50	1,000	0,95
$\langle t \rangle N \pm 3 \delta N$	4,22	6,21	50	1,000	0,99

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Расчет случайной погрешности.

$$\sigma \langle \mathbf{t} \rangle$$
 = Sigma/sqrt(N) = 0,33/8 = 0,05

Доверительный интервал случайной погрешности.

$$\Delta \underline{X}$$
= t(α ,n) * $\sigma \langle X \rangle = 0.09$ cm.

Общая абсолютная погрешность приборов. Δи =0,001 см.

Абсолютная погрешность измерения.

$$\Delta_{_{X}}=\sqrt{\Delta_{_{\overline{X}}}^{2}+\left(\frac{2}{3}\,\Delta_{_{\boldsymbol{H}\boldsymbol{X}}}\right)^{2}}_{\text{ = 0,09 cm}}$$

Относительная погрешность.

$$\varepsilon = \Delta x / < X > *100\% = 0.07 / 5.04 *100 = 1.7 %$$

11. Графики (перечень графиков, которые составляют Приложение 2).

Гистограмма и функция Гаусса для заданных величин

12. Окончательные результаты.

Исходя из графика, можно выявить закономерность случайных значений.

Полученные значения приблизительно описываются функцией Гаусса.

Вычислили среднее значение и среднеквадратичное отклонение среднего значения.

- (a) $\langle t \rangle N = 5.21$ c.
- (b) $\sigma \langle t \rangle = 0.05$

13. Выводы и анализ результатов работы.

В ходе данной работы мы научились находить выборочное среднее значение, а также среднеквадратичное отклонение, и научились строить гистограмму и график функции распределения Гаусса. Так как график функции Гаусса и построенная гистограмма при наложении друг на друга похожи, а также зная схожесть процентов о верительных интервалах, мы можем сделать вывод о том, что интервал времени в пять секунд подчиняется закону нормального распределения.

14. Дополнительные задания.

15. Выполнение дополнительных заданий.

16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. Для построения графиков используют только миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.