STAT 345/445 Lecture 1

Section 1.1: Set Theory

.. and some points about proofs

Sample spaces and events

- Experiment (conceptual): A process with uncertain outcomes
- Sample space S: Set of all possible outcomes of an experiment

Examples:

Experiment	Sample space S
Roll a die	Sample space S $S = \{1, 2, 3, 4, 5, 6\}$
Toss a coin	5= {H, T} 5= {win, loose, tie}
Soccer game	5= & win, loose, 1,0)
No. of cardinal nests in a city	5= N
Height of a statistics student	5= [0,00)

finite, countable, and uncountable sample spaces

40cces game: x = goals of team to,
y = goals of team & } 5 = & (x,y) & N × N):

Set notation.

{ X: conditition} dummy variable ٤٥,١,2,3,... ك W: Natural numbers:

Sample spaces and events

- Outcome observable result of one trial of an experiment Life
- Sample Space S set of all potential possible outcomes
- Event A a collection of outcomes (subset of S)
 - An event A occurs if the outcome of the experiment is the set A

Examples of events:

Experiment

Events

Roll a die

Rolled an even number: $A = \{2,4,6\}$

No. of cardinal nests in a city

Set operations

BCX

- 1. **Subset:** *B* ⊂ *A*
 - $x \in B \Rightarrow x \in A$
 - Occurrence of B implies occurrence of A
- 2. Intersection: $A \cap B$
 - $\bullet \ A \cap B = \{x : x \in A \text{ and } x \in B\}$
 - Both events A and B occur
- 3. **Union** *A* ∪ *B*:
 - $A \cup B = \{x : x \in A \text{ or } x \in B\}$
 - At least one of A or B occur

Set operations

AIB= AnB

- 1. Complement: Ac C's": and
 - $A^c = \{x : x \in S, x \notin A\}$
 - The event A does not occur
- 2. **Empty set** \emptyset : contains no elements, but is still treated like a set
- 3. A and B are disjoint (mutually exclusive) if $A \cap B = \emptyset$. The two events cannot occur at the same time
- 4. Set difference: A \ B
 - A happened but B did not
 - $A \setminus B = \{x : x \in A, x \notin B\} = A \cap B^c$

Properties of set operations

Can all be proven using definitions of set operations

Let A, B, and C be events defined on S. Then the following holds

Commutative property

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

Associativity property

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 and $A \cap (B \cap C) = (A \cap B) \cap C$

Distributive law

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

DeMorgan's law

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Proving a set equality

- Suppose we want to prove a set equality D = E
- One Strategy:
 - 1. Prove that $D \subset E$
 - 2. Also prove that $E \subset D$

Since
$$D \subset E$$
 and $E \subset D$ we have $D = E$

- To prove *D* ⊂ *E* :
 - Prove $x \in D \Rightarrow x \in E$
 - That is: prove that if x is an arbitrary element in D then it follows that x is also an element in E

Proving a set equality - DeMorgan's law

• Prove one of DeMorgan's laws: $(A \cup B)^c = A^c \cap B^c$) "=>" i.e. prove that (AUB) " < A " AB" Suppose X6 (AUB) => x & A0B => x is in neither A nor B i.a.w x & A and X & B => X & A cand X & B 2) "=" Prove that Angle (AUB)" = (AUB)" Suppose X 6 A OB =7 X 6 A and X 6 B => X & A and X & B => X & AUB => X & (AUB) => A'n B' C (AUB) C => (AUB) = (A n B)

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

$$(A \cup B)^{c}$$

$$A^{c} \cap B^{c}$$

$$A \cup B^{c}$$

$$A^{c} \cap B^{c}$$

Proving a set equality D = E

- Another strategy: Prove D = E (or E = D) directly
 - Prove $x \in D \Leftrightarrow x \in E$
 - That is: prove that x is an element in D if and only if x is also an element in E
 - Sometimes we realize that all our "⇒" steps are actually also "⇔" steps
 - \bullet But " \Rightarrow " and then " \Leftarrow " is generally easier to prove than " \Leftrightarrow " directly
- Yet another strategy: Prove D = = E by using known set equalities

Proving another set equality

Symmetric difference or xor of two sets is defined as

$$A\triangle B = (A \setminus B) \cup (B \setminus A) \qquad (= A \cup B) \quad (A \cap B) = \{x : x \text{ is in either } A \text{ or } B \text{ but not both}\} \quad \text{lisjoint})$$

• Show that $(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C)$

Union and Intersections of many sets

Notation for union of n sets:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n$$
$$= \{x : x \in A_i \text{ for at least one } i\}$$

Notation for union of infinite number of sets:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup A_3 \cdots$$

$$= \{x : \exists i \text{ so that } x \in A_i\}$$

$$= \{x : \exists i \text{ so that } x \in A_i\}$$

$$= \{x : \exists i \text{ so that } x \in A_i\}$$

Union and Intersections of many sets

Notation for intersection of n sets:

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n}$$

$$= \{ \underline{x} : x \in A_{1}, x \in A_{2}, \dots, x \in A_{n} \}$$

Notation for intersection of infinite number of sets:

$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap A_3 \cdots$$

$$= \{x : x \in A_i, \forall i\}$$

DeMorgan's law for many sets

DeMorgan's law generalizes to n sets:

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{c} = \bigcap_{i=1}^{n} A_{i}^{c} \quad \text{and} \quad \left(\bigcap_{i=1}^{n} A_{i}\right)^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$$

DeMorgan's law generalizes to infinite number of sets:

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c \quad \text{and} \quad \left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c$$

Mutually exclusive sets and a partition

• Recall: Two events are **disjoint** if $A \cap B = \emptyset$

Definition: Mutually exclusive

Events $A_1, A_2, A_3, ...$ are called mutually exclusive or pairwise disjoint if

$$A_i \cap A_j = \emptyset$$
 for all $i \neq j$

Definition: Partition

If A_1, A_2, A_3, \ldots are mutually exclusive and

$$\bigcup_{i=1}^{\infty} A_i = S$$

14/15

then A_1, A_2, A_3, \dots is called a partition of S

Example of a partition

• Example:

open closed
$$\frac{1}{2^{i}}$$
 is not included $A_{i} = \left(\frac{1}{2^{i}}, \frac{1}{2^{i-1}}\right]$ $i = 1, 2, 3, ...$

$$A_1 = \left(\frac{1}{2}, \frac{1}{2}\right]$$
 $A_2 = \left(\frac{1}{4}, \frac{1}{2}\right]$, $A_3 = \left(\frac{1}{8}, \frac{1}{4}\right]$

... mutually exclusive

 $A_1 = \left(\frac{1}{2}, \frac{1}{2}\right)$ $A_2 = \left(\frac{1}{4}, \frac{1}{2}\right)$, $A_3 = \left(\frac{1}{8}, \frac{1}{4}\right)$

note that
$$\lim_{i \to \infty} \frac{1}{2^i} = 0$$

$$= \sum_{i=1}^{\infty} A_i = (0, 1]$$