BUBBLE SORT

The bubble sort graphs show that sorted algorithms are O(n), and the other lists show that the algorithm is $O(n^2)$. This is expected from bubble sort; since, bubble sort is $O(n^2)$ unless created a certain way to account for an already sorted list than it is O(n).

INSERTION SORT

The graphs indicate that normally the algorithm is near O(n); however, when the list is reversed ordered the algorithm is $O(n^2)$. This is expected from insertion sort; the best case is O(n), but the worst case (reverse order) is $O(n^2)$.

MERGE SORT

The graphs show that merge sort is O (n $\log n$). This is expected from merge sort, since; merge sort is commonly O (n $\log n$).

QUICK SORT

The graph is showing that quick sort is O (n log n). This was expected since I coded the partition to be a "median of three"; which mitigates the O (n^2).

SHELL SORT

The graph indicates that the ordered list is O (n $\log^2 n$), and the rest of the lists are O (n^3/2). This was expected since shell sort is often O (n^3/2) except in certain conditions such as an ordered list where shell sort is O (n $\log^2 n$).

CONCLUSION

- **Bubble Sort**: Best case O (n), worst case O (n^2) (exponent 1 and 2).
- Insertion Sort: Best case O (n), worst case O (n^2) (exponent 1 and 2).
- Merge Sort: Best case O (n log n) worst case O (n log n) (exponent around 1.5)
- Quick Sort: Best case O (n log n), worst case O (n^2) (exponent around 1.5 and 2).
- **Shell Sort**: Best case O (n log^2 n), worst case O (n^3/2) (exponent around 1.6 and 1.5).