Introduction to the basics of Al

Session 6

Z. TAIA-ALAOUI

Outline

Definitions

• SVM / MLP

Shallow Neural Network

Implementation

Statistical Tools - Dataset

IRIS DATASET

Sample

$$X_{k \in [1,N]} \in R^p$$

Set of samples

$$\mathbf{X} = \{X_k \in \mathbb{R}^p\}_{k \in [1, N]}$$

		<i>p</i> varial	oles	
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	Row = Sample - Observation = Measurement			
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5.0	3.4	1.5	0.2

Statistical Tools - Dataset

Set of N samples expressed in a space of p Variables

- **Hyperplane:** Hyperplane is the decision boundary that is used to separate the data points of different classes in a feature space.
- **Support Vectors:** Support vectors are the closest data points to the hyperplane.
- Margin: Margin is the distance between the support vector and hyperplane.
- **Kernel**: Kernel is the mathematical function, which is used in SVM to map the original input data points into high-dimensional feature spaces.
- **C:** Margin maximisation and misclassification fines are balanced by the regularisation parameter C in SVM. A stricter penalty is imposed with a greater value of C, which results in a smaller margin and perhaps fewer misclassifications

$$\hat{y} = \begin{cases} 1 : w^T x + b \ge 0 \\ 0 : w^T x + b < 0 \end{cases}$$

Hard Margin

$$\min_{w,b} \frac{1}{2} w^T w = \min_{W,b} \frac{1}{2} \|w\|^2$$
subject to $y_i(w^T x_i + b) \ge 1$ for $i = 1, 2, 3, \dots, m$

Soft Margin

minimize
$$\frac{1}{2}w^Tw + C\sum_{i=1}^m \zeta_i$$

subject to $y_i(w^Tx_i + b) \ge 1 - \zeta_i$ and $\zeta_i \ge 0$ for $i = 1, 2, 3, \dots, m$

Non-linear case

Linear: $K(w,b) = w^T x + b$

Polynomial: $K(w, x) = (\gamma w^T x + b)^N$

Gaussian RBF: $K(w, x) = \exp(-\gamma ||x_i - x_j||^n$

Sigmoid: $K(x_i, x_j) = \tanh(\alpha x_i^T x_j + b)$

Input Space

The perceptron imitates human perception

$$\frac{f(x,w)}{\text{output}} = \underbrace{x_1}_{\text{inputs}} w_1 + \dots + x_n w_n$$
weights

T is called activation function.

Classification with MLP

Classification with MLP: Geometrical Interpretation

Classification with MLP: Learning

```
Data: Training Data:(x_i, y_i); \forall i \in \{1, 2, ..., N\}, Learning Rate: \eta Result: Separating Hyper-plane coefficients: \mathbf{w}^* Initialize \mathbf{w} \leftarrow \mathbf{0}; repeat
\begin{vmatrix} \text{get example } (x_i, y_i); \\ \hat{y}_i \leftarrow w^T x_i; \\ \hat{\mathbf{if }} \hat{y}_i y_i \leq 0 \text{ then} \\ | w \leftarrow w + \eta y_i x_i \\ \text{until } convergence; \end{vmatrix}
```

Vanilla (shallow) NN

Hidden Feature Space (Latent space)

Your measurements

ANN

Activation Functions

Activation Functions

Activation Functions

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Softmax
$$s\left(x_{i}\right) = \frac{e^{x_{i}}}{\sum_{i=1}^{n} e^{x_{i}}}$$

Learning

Forward Propagation

Input Layer

Hidden Layer

Output Layer

$$\mathbf{z} = \mathbf{W}^{(1)}\mathbf{x}$$

$$\mathbf{h} = \phi(\mathbf{z})$$

$$\mathbf{o} = \mathbf{W}^{(2)}\mathbf{h}$$

Learning

Forward Propagation

$$W^TX = \begin{bmatrix} \theta_{11}^{(1)} & \theta_{12}^{(1)} & \theta_{13}^{(1)} & \theta_{14}^{(1)} \\ \theta_{21}^{(1)} & \theta_{22}^{(1)} & \theta_{23}^{(1)} & \theta_{24}^{(1)} \\ \theta_{31}^{(1)} & \theta_{32}^{(1)} & \theta_{33}^{(1)} & \theta_{34}^{(1)} \\ \theta_{41}^{(1)} & \theta_{42}^{(1)} & \theta_{43}^{(1)} & \theta_{44}^{(1)} \\ \theta_{51}^{(1)} & \theta_{52}^{(1)} & \theta_{53}^{(1)} & \theta_{54}^{(1)} \\ \theta_{61}^{(1)} & \theta_{62}^{(1)} & \theta_{63}^{(1)} & \theta_{64}^{(1)} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \\ z_4^{(1)} \\ z_5^{(1)} \\ z_6^{(1)} \end{bmatrix} = Z^{(2)}$$

Learning

Backward Propagation

$$\mathbf{z} = \mathbf{W}^{(1)}\mathbf{x}$$
 Loss $L = l(\mathbf{o}, y)$ $\mathbf{o} = \mathbf{W}^{(2)}\mathbf{h}$ $\widehat{o} = \sigma(\ w^Tx + b)$

$$w_{ij}^{(k)} = w_{ij}^{(k)} - \eta \frac{\partial L}{\partial w_{ij}^{(k)}}$$
$$b_i^{(k)} = b_i^{(k)} - \eta \frac{\partial L}{\partial b_i^{(k)}}$$

Vocabulary

- Batch Learning: for each epoch, a batch of samples is select to train the model
- Epoch: complete sequence of iterations in a batch
- Iteration: one backward pass
- Learning rate: speed at which weights are updated

Sources

https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb40 8ee93141

https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

https://course.ccs.neu.edu/cs6140sp15/2 GD REG pton NN/lecture notes/lectureNotes Perceptron.pdf

https://towhttps://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f