SALES FORECASTING FOR RETAIL

Al-Driven Sales Forecasting: Enhancing Business Decision-Making with LSTM, ARIMA & Prophet

SYMBIOSIS INSTITUTE OF TECHNOLOGY

TEAM NAME: CLOUD CONQUERS

TEAM MEMBERS

SHREYASH DADURIA
KRUTIKA GADGE
JAY CHAFALE

PROBLEM STATEMENT & BUSINESS IMPACT

PROBLEM STATEMENT:

Businesses often struggle with accurate sales forecasting, leading to:

- Inventory mismanagement Overstocking or stockouts •
- Revenue loss Inability to anticipate demand 🗟
- Inefficient promotions Poor timing & resource allocation

WHY IT MATTERS?

- **✓ Optimized inventory management** Prevents overstocking & stockouts
- Reduced financial risks Avoids unnecessary holding costs & lost sales
- ✓ Improved decision-making Aligns pricing & promotions with demand

Develop a robust **Al-driven forecasting model** that accurately predicts future sales, identifies patterns, and enhances business efficiency.

TECHNOLOGY

TECH STACK

Dataset:

Superstore Sales Data (superstore.csv)

External Data Sources:

Oil Prices, Inflation, Exchange Rate, Weather Data (via APIs like Alpha Vantage, Yahoo Finance, EIA)

Programming Language:

Python, Data Processing, Pandas, NumPy, Feature Engineering

Time-based Features, Log Scaling, Sales Growth Calculation

Data Scaling, MinMaxScaler (from Scikit-Learn)

Models:

Prophet, Arima, Deep Learning (LSTM

DATASET & PREPROCESSING

DATASET USED:

Primary Data: Superstore Sales Data

(Historical sales transactions)

Link: https://www.kaggle.com/datasets/fatihilhan/global-superstore-dataset

KEY FEATURES ADDED:

Time-Based Features:

- weeknum Week of the year
- is_weekend Weekend vs. weekday
- **season** Winter, Summer, etc.
- **is_holiday** Identifies holiday periods

Macroeconomic Data:

- oil_price Fluctuations affecting transport costs
- inflation_rate Impact on consumer purchasing power
- exchange_rate Currency variation effect on sales

Trend Indicators:

• Sales_Growth - Measures sales momentum

X DATA CLEANING & PREPROCESSING:

TIME-SERIES FORECASTING MODELS USED

WHY TIME-SERIES FORECASTING?

Businesses need accurate sales predictions to optimize inventory, pricing, and resource allocation.

We used three powerful models for forecasting:

We used three powerful models for forecasting:

A deep learning model that captures long-term dependencies and complex sales patterns.

PROPHET:

A statistical model optimized for handling seasonality, trends, and holiday effects.

ARIMA:

A time-series model best suited for short-term forecasting and structured data with linear trends.

RESULTS & EVALUATION

Model	MAE	MSE	MAPE
LSTM	620.45	198,500.67	40.75%
ARIMA	1010.32	254,712.89	62.45%
Prophet	750.87	220,134.23	50.12%
Ensemble (Avg.)	793.88	224,449.26	51.11%

CONCLUSION & NEXT STEPS

Key Takeaways

- **LSTM:** Best for low-mid sales; struggled with spikes.
- **Prophet:** Seasonal trends strong; short-term weak.
- **ARIMA:** Short-term trends only; lacks depth.

Future Improvements

- Deploy as a real-time API.
- Experiment with Transformer models.
- Add real-time external factors.
- Create an interactive dashboard.

Deployment Roadmap

