

Nasser M Alqahtani Mukhtar Al bin Hamad

In project, build a machine learning regression model. The main purpose of this project is to provide predictions the price of trips.

Data

Yellow taxi trip in NYC in July 2021.

+2.8M Observations

18 Features

Algorithms

Preparing the data.

Exploration the data and visualization.

Feature Engineering

converting categorical values to dummy.

Feature Selection

calculate the features correlation.

Methods

Linear regression, polynomial regression, ridge regression, lasso regression, ElasticNet, and Knn.

Tools

EDA

Distribution of VendorID

Show payment types

Distribution of trips in days

Model

Model R ²	Train	Validation	Test
Linear regression	0.771	0.746	0.779
Polynomial regression	0.872	0.890	0.845
Ridge regression	0.771	0.746	0.779
Lasso regression	0.771	0.746	0.776
Elastic Net regression	0.771	0.7460	0.776
KNN regression	0.914	0.919	0.865

Models

By applying the dataset on machine learning models as linear regression, polynomial regression, ridge regression, lasso regression, Elastic Net, and Knn, to predict the prices of the trips.

The best model	R ² test	RMSE	MAE
KNN	0.865	5.45	2.48

