Today's Agenda:-	
 Log Basics + Iteration Problems Comparing Iterations using Graph Time Complexity - Definition and Notations (Asymptotic Analysis - Big O) TLE Importance of Constraints 	

Bosice of Lon

 $deg_{2}(64) \rightarrow \underline{6}$

lag₃ (27) → \$

له ج (۱۶۵ → ک

Jag_ (32) -> 5.

of d b resump set blunch 2 tooles (- (a) deal

94 <u>व</u> ,

Jay b = c = 1 b c = a.

, prishbush .8 <= cois pal

lag_(40)=> 5. Something.

~: HOH

3 x = N => Jag_ N = K

Jag 2 (26) => 6.

Jogg (35) => 5

Joga (an) -> 10

Given a positive integer N, how many times do we need to divide it by 2 (Consider only integer part) until it reaches 1.

N=100

100 -> 50 -> 25 -> 12 -> 6-> 3 -> 1 => 6 times.

N=324

324 -> 162 -> 81 -> 40 -> 20 -= 10

8 Hwor '

9 -3 4 -3 2 -3 1 -3 3 times

Generically

2 -> 2 - 2 - · · 1.

 $-\frac{2}{n} - \frac{2}{n} - \frac{2$

36 = 1 => N=3k => youn = k.

N=27, log_10 -> log_2(27) => 4.

```
Ouiz =: -
                How many iterations will be there in this loop?
                \underbrace{i=N;}_{\text{while}(i>1)} \Rightarrow 32
                            1232,16,8,4,2,1
                  CO1200 €
             How many iterations will be there in this loop
              for(i=1; i<N; i=i*2)
                                             (mg21)04
              }
               1-32-34-8-316-332
  Duiz 5 :-
       How many iterations will be there in this loop?
        N>=0
        for(i=0; i<=N; i = i*2)
```

How many iterations will be there in this loop

for(i=1	; i<=10; i++){
for	(j=1; j<=N; j++){
/	/
}	
}	
	C020

;	2	'hevalio	~
1	C1 WZ	2	
3	C1 42	N	
3	C1 42	10	
	•		
•			
10	[Li w.	2 10	
		10 10	

F gind

How many iterations will be there in this loop

```
for(i=1; i<=N; i++){
    for(j=1; j<=N; j++){
    }
}</pre>
```

0 m ²)		5	iteration .
	•	Ec 13	2
	2	C1 17	N
	3	C1 42	10
	•	•	*
			· :
	2	C' 23	<u></u>

Quiz 8

How many iterations will be there in this loop

```
for(i=1; i <= N; i++){
   for(j=1; j <= N; j = j*2){
     ...
}</pre>
```

	·	5	'Herebon	3
	١	I NT	10810	0
Car BO law 0	3	C1 20	10910	
	•			
	t .	'.		6 2
		•		
	n	[" "]	Ca gal	
			n109 m	

Duiz 9:-

How many iterations will be there in this loop?

```
for(i = 1; i <= 4; i++) {
    for(j = 1; j <= i ; j++) {
        //print(i+j)
    }
}
```

i	7	iteration
V	<u>[1 1]</u>	-> \
2	T1 23	→ 2
3	CE 1]	→ <u>3</u>
4	[r , 7]	- 3 4

How many Iterations will be there in this loop?

```
for(i = 1; i <= N; i++) {
   for(j = 1; j <= i ; j++) {
      //print(i+j)
   }
}</pre>
```

-:	2	Herelion	
2	[1 1]	2	
3	L' 97	3 4	
•	•	:]	
ฟ	[10]	(= (mm) =)	w(W41) => 25 + 25
	1	3 ,	0(2) = 3

ouisn.

How many iterations will be there in this loop

```
for(i=1; i<=N; i++){
    for(j=1; j<=(2^i); j++)
    {
        ...
}</pre>
```

ï	2	'Herahor
	: [1 2 ²] [1 2 ¹]	22 23 2 24
	(1 2 mZ	2 2 2 2

$$\frac{2-1}{2m}$$
 $\frac{2-1}{2(2m-1)}$

Total => $2(9^{m}-1)$ -> $2.2^{10}-26$ 9+eventions -> $0(2^{10})$

-: Compare tous different Algorithms:

no. d !forey,our

Algo 1 100 * 100 W)

Algo 2 %

NX3500 Algo 1 is bettern

En today: world, data is lange.
= 3nd us for -> 18 m
- Saby Shark Video - 2.88 Went,
<u> </u>
me"11 say Bloro1 is better berz is
taking less iteration for huge date.
Alymptohic Bralysis Digo
to me came in this only ration isp
big on
 Calculate Iterations based on Input Size Ignore Lower Order Terms Ignore Constant Coefficients Algo 2 O Algo 2
$code. \rightarrow 4n^2 + 3n^2 + 3n^2 \rightarrow 0(n^2)$
2 < 0 < 30 < 30 + 2 < 30 + 2 < 30 + 2 < 30 < 30 < 30 < 30 < 30 < 30 < 30 <

fw): (yoz snign+) Ques SNIQN 1 0 children) Oues? fcv) = 4nton n + 3nJn+ 100 (w m) code 2 Cade 1 0 cw) ~ 0 cm2) bugs ushy do we neglect housed Order Teams? N2+ (00) itenshés Contribution of Lawr Order Ten Total i tenshi en N 100 => 500. 200 10 1000 \$ 1041103 00 04. 104103 100 104 2014801 Conclusion 1_ we can say as input size incurares, the Contribution of Lower Order tem demassey

Ougs)	why	do	we	neg lect	Constant	w-efficieny.
_	•			•		• •

<u> اوولک</u>	Algo 2	too lauge Inputs.
lo leg_N	2	Algo!
100 10g2 N	2	Algor
9* N	N ²	Algo!
10* N	102	Algo1,

<- 9sue	s in big-on	\rightarrow	
9,8ue-1.	Algo1	Algo2	
	(10 ³ N	ر م2	
	(3 o cro)	0(102)	
	A1901	Algo2	winner
N=10	10000	100	Algo 2
N=100	105	104	Ng. 2
N2 103	106	106	both are Lung
N2 104	lo [‡]	108	Algo 11's bother

Claim: for all lauge inputs >=1000, Algol will peuform bettey else algo 2.

```
9/2 me 2 :
     Cede 1
 for(int i=1; i<=N; i++) {
                           grenopies
    if(i%2 != 0) {
                                  <u>→</u> 0 cm )
    c = c+1;
    }
  }
       Cade 2
                       Stenetien.
for(int i=1; i<=N; i=i+2) {
 c = c+1;
}
In both, big 0 is 0000, but we know second
         code is belten.
```

Time Limit Exceeded Puneet -> Amazon -> contest 2 questions 1 hours. 1 Develion -> code -> Sumit -> 72 & charges idea Can we touchow ases the logic's ability, before me merite any cede? Online Editous L) I hHz trackine Ly 109 instructions few second. lec time . Time Hmit. bol confactors con ? int c = 0', +1 100 (121; 1 x = 20) & Total instruction

setuen c',

Approximations 1:	
In a small code generally,	
iteration = 10 instruction	
10 giteration = 10 x 10 ginstra	
Approximation 2:	
Suffere you wen't a trig vode,	
literation: 100 hatmeties	
107 itemention = 100x107 instruction	
Conclusions!	
Out code can have 10th to 10th Herations,	
then only it'll own in 1ses	
Have to accept a foodback	
How to approach a problem !-	
Read the Question and Constraints carefully.	
• Formulate an Idea or Logic.	
 Verify the Correctness of the Logic. Mentally develop a Pseudocode or rough Idea of Loops. 	
 Determine the Time Complexity based on the Pseudocode. Assess if the time complexity is feasible and won't result in Time Limit Exceeded (TLE) errors. 	
Re-evaluate the Idea/Logic if the time constraints are not met; otherwise, proceed.	
Code the idea if it is deemed feasible.	

	Corstrains	T 0
0.00	1×= n×=10 5	7.cJ x
6.91)	14= MX=10-	
		0 CM3) X
		0 (corporon) ~ (201) pal ² 01
		(10° x -)
و.٩٤٦	12= m 2= 10p;	
		O cro210gro) ×
		0(102) ×
		0(010800)
		10 6 x 50 mon on 0 (10 10 0 10)
		may net
		0 000 0
6.9 3		
	b) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ (EON) O
		(102)3 D 100.
e.9 प) / 4 = 10 < = 500 1	0(20)
		220
		7
		210 ×2'0
		F P
		1000 1000 00 1000 9 0