The Properties of Buffers

Dr. Ting Sun

UM-SJTU JI

&

Department of Chemistry, SJTU

OBJECTIVES

- Develop an understanding of the pH scale.
- Examine the differences between strong and weak acids.
- Investigate how buffers work.
- Prepare a buffer solution with a target concentration and pH.
- Determine the buffer capacity of a solution.

What are buffers

- Buffers are solutions of a weak conjugate
 acid-base pair
- HAc/NaAc
- HF/NaF
- Etc.
- They are particularly
 resistant to pH changes,
 even when strong acid or
 base is added.

BACKGROUND

- Calculating the pH of weak acid
- Preparing a buffer
- The properties of buffers
- Capacity of Buffers

Calculating the pH of weak acid

$$HA \Longrightarrow H^+ + A^-$$

Or: $HA(aq) + H_2O(l)$ $A^{-}(aq) + H_3O^{+}(aq)$

$$\Longrightarrow$$

$$A^{-}(aq) + H_3O^{+}(aq)$$

	[HCOOH], M	[H ₃ O ⁺], <i>M</i>	[HCOO ⁻], <i>M</i>
Initially	C	0	0
Change	-x	X	Х
At equilibrium	C-X	X	X

c = initial conc. of weak acid HA & x is concentration H_3O^+ or A⁻ formed from partial dissociation of weak acid (c-x \approx c)

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_a = \frac{X^2}{C-X} \approx X^2/C$$

$$x = [H^+] = \sqrt{K_a^{\theta} c}$$

[HA]
$$K_{a} = \frac{X^{2}}{\text{C-X}} \approx X^{2}/\text{c}$$

$$pH = -\log[H^{+}] = \frac{1}{2}pK_{a}^{\theta} - \frac{1}{2}\log c$$

The properties of buffers (1)--Depicting Buffer Action

The properties of buffers (2)---

Common Ion Effect Illustrated (La Chatelier's Principle)

$$HAc = H^+ + Ac^-$$

Composition of a buffer solution

a weak acid /conjugate base or

a weak base /conjugate acid

CH₃COOH/CH₃COONa; NH₃•H₂O/NH₄CI

The essential components of a buffer consists of high concentrations of weak acid & its conjugate base so they neutralize added small amounts of H⁺ or OH⁻ and the buffer components stay the same (pH remains constant)

Buffer Calculations: very important

NEXT EXAMPLE SHOWS THAT:

Henderson-Hasselbalch equation

$$pH = pK_a + log \frac{[base]_{eq}}{[acid]_{eq}}$$

IS ABOUT THE SAME AS:

$$pH = pK_a + log$$

[acid]_{eq} = weak
acid
[base]_{eq} = strong
electrolyte of the
acid

Because K_a is small and a common ion is present, we expect x to be small relative to either weak acid initial molarity or its initially added electrolyte molarity. Thus, our equation can be simplified to give

Preparation of a buffer (1)---

Henderson-Hasselbalch Equation

$$\begin{split} K_a^\theta &= \frac{[H^+][A^-]}{[HA]} = \frac{cx \cdot cx}{c(1-x)} \approx cx^2 \\ [H^+] &= K_a \bullet \frac{[CH_3COOH]}{[CH_3COO^-]} \\ pH &= pK_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]} = pK_a + \log \frac{[ConjugateBase]}{[WeakAcid]} \end{split}$$

If [weak acid] = [conjugate base], pH = pK_a

Preparation of a buffer (2)--Henderson-Hasselbalch Equation

Requirements:

❖The ratio of [conjugate base] to [weak acid] is between 0.10 and 10

$$pH = pK_a \pm 1$$

Preparation of a buffer (3)

$$[H^+] = K_a \bullet \frac{[CH_3COOH]}{[CH_3COO^-]}$$

Preparation of a buffer (4)---Related Calculation: Example

- 1. How to prepare 100mL buffer solution with a pH=4.0 and total concentration of 0.10M, starting with: x mL of [HA]= 5.0M. & y mL of [Ac $^{-}$] = 2.0M? a. Find X & Y, b. Find? g AcNa added
- a. Analysis: $K_a=1.8x10^{-5}$, $pK_a(HAc)=4.75$, therefore, HAc+NaAc can be chosen.

$$pH = pK_a + \log \frac{[Ac^-]}{[HAc]}$$

$$pH = pK_a + \log \frac{[Ac^-]}{[HAc]}$$

$$4.0 = 4.75 + \log \frac{[Ac^-]}{[HAc]} \frac{\text{NOTE: Eq. 1 next, has 2 uknowns}}{10^{(4.00-4.75)} = [Ac^-]/[HAc] = C_b/C_a}$$
 Eq. 1

Log
$$(C_b/C_a)$$
= - 0.75 , then C_b/C_a = 10^{-0.75} or: C_b/C_a = 0.178 Eq.1

Preparation of a buffer (5)--- Related Calculation: Weak Acid conc. [HAc]= C_a , Conjugate Base Conc. $[A_c^-]=C_b$

but:
$$C_a + C_b = 0.10M$$
 Eq.2 $C_a = [HAc] = 0.085M$ $C_a + (0.178 C_a) = 0.10$, then: $C_b = [Ac^-] = 0.015M$

$$X (5.0M) = 100 \text{ mL } (0.085M), X = 1.7 \text{ mL} = V_a$$

 $Y (2.0M) = 100 \text{ mL } (0.015M), Y = 0.75 \text{ mL} = V_b$

b.
$$m_{AcNa} = ? g$$

? moles NaAc = $V_b x 2.0M = 0.75 \text{ mL } x2.0 \text{moles}/1000 \text{mL}$ $m_{AcNa} = (0.75x2.0) \text{moles} x83 (g/mole) = 0.12 g AcNa$

Each student must prepare one buffer. "Show TA your buffer design table to get his approval to start the experiment"

- Design four Buffer Solutions: V_a & V_b to be calculated (see next slide) assuming desired buffer pH. Prepare 1 buffer per student, 4 buffers (not 5) per group.
- Make 0.100L of a 0.100M (0.100M = C_a+C_b) buffer solution in a 100-mL volumetric flask using V_a mL 5.00M CH₃COOH and V_b mL 2.00M CH₃COONa solutions, diluted with deionized H₂O). * See example slide, answers on last slide

Buffer	Target pH	C _b /C _a	V _a (mL)	V _b (mL)
			5.00M HA _c	2.00M A _c -
Example*	4.00	0.178*	1.70*	0.75*
1	4.15			
2	4.57			
3	4.75			
4	5.35			

SUMMARY OF E2 PROCEDURES:

(best to follow datasheet after pH meter calibration)

- 1. PART A: Measure pH of: 0.50M HCl, 0.50M HAc (diluted from 5.0M HAc), and unknown molarity of HAc sample. Then test their strength in dissolving Mg strip. (3 pH measurements & 2 Mg strips tested /group). GROUP EFFORTS
- 2. PART B: Design 4 buffers with different pH using same stock solutions of HAc & AcNa but each buffer is diluted to 100 mL (use different volumes of each stock that will be calculated to give designed pH). (1buffer/student, 4buffers/group)
- 3. PART C: Test the initial pH of each buffer to compare with target pH. Then add 5 drops of 0.50M HCl to one 20mL buffer sample then add 5 drops of 0.50M NaOH to another 20mL sample of same buffer. Add 5ml de-ionized water to the 3rd beaker of of 20mL sample of same buffer. Measure pH to conclude that pH remains about constant. Measure pH for the remaining 2 water beakers of 20mL distilled water before and after using 5drops of 0.5M HCl for one beaker & 5drops 0.50M NaOH for the other beaker. If only100-mL beakers available then use 30mL samples. Note: Datasheet pH columns not in order as procedure.
- 4. (3beakers/buffer/student, 12beakers/group, plus 2beakers of distilled water/group). PART D: Test the total capacity of a buffer using the previous sample from Part C when 5drops of 0.50M HCl were added (not NaOH) by also adding more drops until pH starts dropping rapidly. Make sure you account for the initial drops of 0.50M HCl added at start of Part C, to find volume added to capacity. (1 buffer sample/student, 4buffer samples/group).
- 5. Data Errors: not following procedure, temperature effect on K_{eq} , contamination, pH meter errors & mishandling (electrode saturated), stock solutions, readings & dilutions, etc.

TABULATED DATASHEET

(pH meter calibration with buffer pH=4.00 or as provided)

- 1. pH meter calibration (see instructions later): Use standard buffer of pH = 4.003 or as available. In all pH measurements measure 30 mL desired solution and pour into 50-mL a beaker so height of liquid is enough to cover sensor of pH meter electrode. If 100-mL beaker is used then carefully tilt beaker to cover electrode.
- 2. Prepare dilution of 5.0 M to 0.50M in a 100-mL volumetric flask, measure pH1, pH2, & pH3 of each of: 0.50M HCl, 0.50M Hac, ?M $\rm HA_c$ of unknown concentration. Mg observation: two Mg strips add 5-10 drops 0.50M HCl to one strip and then 0.50 M $\rm HA_c$ to the other.
- 3. Prepare Buffers Target pH: Target pH, Calculated C_b/C_a , Calculated V_a (to measure & add to 100mL volumetric flask), Calculated V_b (to measure & add to the same 100mL volumetric flask), pH4&pH5 of distilled water in 2 separate beakers, pH6&pH7: Add 5drops of 0.50M HCl one beaker, and 5 drops of 0.50M NaOH to the other beaker.
- 4. pH8, pH9: measure pH of 30 mL buffer in a 50-mL beaker, then add 5 mL distilled water and measure pH again. pH10& pH11: Using same stock buffer pour measured 30mL each into two separate beakers and measure the pH after adding 5 drops of 0.5M NaOH to one beaker and another 5 drops of 0.5M HCl to another beaker. pH12: add another 5 drops of the 0.5M HCl into the last beaker that of pH11 then measure the pH12 (keep track of the initial volume of 0.50M HCl before adding more drops to test buffer capacity (Part C), final volume after adding more drops of 0.50M HCl to capacity point, change in volume at capacity point, end pH reading at capacity point. Make enough measurements to conclude when buffer capacity is reached within a reasonable time before end of lab session). Instructor/TA will give you directions if you should use HCl or NaOH to reach buffer capacity. Note: Datasheet pH columns are not in the same order as Procedure Part C.
- 5. Discuss results & complete the post lab report for the experiment. All information in the ALR report must be completed as instructed in manual.
- 6. Inconsistent Data Errors: not following procedure, temperature effect on $K_{\rm eq}$, contamination, pH meter errors & mishandling (electrode saturated), stock solutions, inaccurate readings & dilutions, etc.

	Λ	3	С)	Е	F	G	Н	I	J	K	L	M	N	•	P	Ą	R	S	T
2		VC211 D. SECTION/O	ATASHEET	FOR E	XPERI NAME:	MENT:	E2 PF	ROPER	TIES O	F BUF	FERS	TA:				LAB RO	oow.			PAGE 1
3	DA	RT B: TA	JROUI	_	#1	#2	#3	#4	Start	ith (x) n	I SAM) mL 2.0 N	(AcNa	TA will e		7	mu .		
-		ECTS X,Y	PART B: BUI	FFER	17.1	#4	77.7	- 11	DIAIT W	Itu (x) II	IL S.V IVI	ILIC OC Q) III./ 2. V I	I HEIGH.	in will t	ompare	pri Desig			
4	TABI	E BELOW	DESIGN	pН	4.15	4.57	4.75	5.35	to mea	sured ⁻ p	oH8" of e	each buff	er made l	oya stud	lent					
6		PROCED	URE PART→	A	Al	Al	Al	A2	A2	C	C		C	C	C	C	C	C	D	D
_		FETOE	TC.	pH METER CALIB.		GROUF				INDIV.		-	rts (each)			-IMDIV				→
7	Avg. p	EFFOR H meter Ter		BUFFER pH 4.003	*****	use 20ml	?HAc			_	_		O sample)		(each	pH 20:	ML OT R pH: H ₂			→
9		NAME	-p	рн 4.005		0.50M	?M		0.50M	Design Buffer			/ - N	H ₂ O / NaOH	INIT.	H ₂ O	T	T	HCI	TOT. mL
10			D	рH		pH2		HCl	HAc	1		pH5		pH7	рН8	рН9	pH10	pH11		V(HCI)
11	-	Chutese	ш	hii	hiii	pira	prio	IICI	III		,	•	•		prio	hir	pillo	piiii	piliz	(IICI)
12																	1			
13										_	-									
14 15	HOTES	-		See E2	20mL	20mL	20mL	Sand	Sand	_	20	20 mL	IIse	Use	Buffe	Use	20 mL	20 mL	Use	Add TTL
16	1. Di s	pose HCl	waste in	PPT	No	Ъу	No	Mg	Mg		4	H ₂ O	same	same	r		Buffer		pH11	vol. of
17	_	anic wast ot in the			Dil.		Dil.	Fast/	Fast		H ₂ O	only	bkr as			mL Dece	+5			0.5M
- X I		pose XAc	03	clear easy		5.0mL HAc(5.		Slow RXN	/Slow RXN		only		pH4 +5 drops	рно +о drops		Buffer + 5mL	arops 0.5M	drops 0.5M	dro p by	HCl drops
			::_1_	instr		OM) in			5drops					0.5M		H-•	Na ⊕ H	HC1.	drop	added
20.0		drain				50mL		HC1	HAc				HC1	NaOH		1124	.,	Use	0.5M	incl.
		epare buf ions at o		Record		Vol.				DARY B	BUFFE				i			grad	HC1	initial
			r the KAc &			flask					i: COMP				ł			pipet		5 drops
	_	_	e for the	your						THIS I	ABLE		x nL	y mL	l	l		to	pН	
	Hakc			name						Buffer	Design	C/C	5M	214	l				change	\$
		_		the pH							pH		HAc	NeAc	Į	l		the 5	rapid	
		ximately		meter						i.e.		0. 17	B 1.7	0.75		l		drops	(use the	
	_		y immerse electrode	Avg.						1	4.1	5				l		Fello	same	
		_	the sample	Temp.						2	4.5	7			1	l			grad	
	solut									3	4.7	5			1				pipet	
21										4	5.3	5			1)	
	7			9	-			l -				-	*	1		Š.	0.0			

PROCEDURE-- Part A.1

- Strong and Weak Acids
- Prepare 0.50M CH₃COOH solution in a 50-mL volumetric flask solution by using 5-mL graduated pipette and adding 5.00mL of 5.0M CH₃COOH into the volumetric flask

Procedure Part A.1

Attention!
Add drop-wise
with a pipet!

PROCEDURE-- Part A.2

- Strong and Weak Acids
- 2. Use the pH meter to record the pH of the 0.50 M HCl solution, the 0.50 M HAc solution and one of the unknown HAc solutions. This part: Students work in group, measure 3 pH readings total.

PROCEDURE-- Part A.3

Strong and Weak Acids

2Mg strips tested /group

3. Sand two short Mg strips with a piece of abrasive paper and put each in the bottom of the 2 empty wells of a porcelain spot plate, add 5-10 drops 0.50M HCl solution to one well & equal amount of HAc solution to the other well just to cover the Mg, record your observations.

PROCEDURE---- Part B.1(ANSWERS LAST SLIDE)

- Designing a Buffer: V_a & V_b to be calculated (see next slide) assuming desired buffer pH. Prepare 1 buffer per student, 4 buffers (not 5) per group.
- 1. Make 0.100L of a 0.100M (0.100M = C_a+C_b) buffer solution in a 100-mL volumetric flask using V_a mL 5.00M CH₃COOH and V_b mL 2.00M CH₃COONa solutions, diluted with deionized H₂O).

Buffer	Target pH	V_a (mL) 5.00M HA _c	V _b (mL) 2.00M A _c ⁻
Example	4.00	1.70 see example	0.75 see example
1	4.15	?	?
2	4.57	?	?
3	4.75	?	?
4	5.35	?	?

SAMPLE CALCULATION

a. Prepared Buffer must be: Total volume = 0.100L, 0.100M

$$pH = pKa + log ([A_c^-]/[HA_c])$$

b. Start with: V_a mL of $[A_c] = 2M \& V_b$ mL of $[HA_c] = 5M$,

To find $V_a \& V_b$: Set V_a =volume 5.00M HA_c , V_b =volume 2.00M A_c

c. Then prepared Buffer: 5.00 V_a (mmole HA_c) & 2.00 V_b (mmole A_c⁻)

d.
$$10^{pH-pKa} = [A_c^-]/[HA_c] = C_b/C_a$$

Example Buffer 1: Desired pH = 4.15:

$$\bullet C_b/C_a = 10^{\text{ pH-pKa}} = 10^{4.00-4.75} = 0.178 = C_b/C_a$$

- •or $C_b = 0.178C_a$, substitute value of C_a into: $C_a + C_b = 0.100$
- •Then $C_a = 0.085M \& C_b = 0.015M$, But:
- 5.00 M x V_a (mL) = 100 mL x 0.085M, $V_a = 1.7$ mL
- •Similarly: 2.00 M x $V_b = 100 \text{ mL x } 0.015\text{M}, V_b = 0.75 \text{ mL}$
- •USE VOLUMES CALCULATED TO MAKE THE BUFFER THEN MEASURE pH TO COMPARE WITH TARGET pH

Procedure Part B

2.00M NaAc

Attention! Add drop-wise with a pipet!

Procedure Part C: Properties of Buffer

PROCEDURE--- Part D.

 Determination of Buffer Capacity (use 0.50M HCl only & not NaOH)

After lab

- Exchange data with the others in your team who had a different buffer.
- Mark the solution you prepared and measured.
- Discuss in ALR why some data inconsistent? Inconsistent Data Causes: not following procedure, temperature effect on K_{eq}, contamination, pH meter errors & mishandling (electrode saturated), stock solutions, inaccurate readings & dilutions, etc.
- Example next: K_a Temperature corrections

Temperature Effect from CH19, Eq. 19-19:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

At equilibrium: $\Delta G = 0 \& Q = K_{eq}$

Then: $\Delta G^{\circ} = -RT \ln K_{eq}$

or $K_{eq} = e^{-\Delta G^{\circ}/RT}$ but: $\Delta G^{\circ} \& R$ constants,

then: $\overline{T}_1 \ln K_{eq1} = T_2 \ln K_{eq2}$

Knowing T1 = 298 K & K_{eq1} = 1.8x10⁻⁵ Then calculate K_{eq2} at measured lab average T_2

TABLE 19.2 • Conventions Used in Establishing Standard Free Energies

For E, H & S, elements in <u>standard states at 25°C & 1atm</u>.

State of Matter Standard State

Solid

Pure solid

 ΔG° [J/mol]

Liquid

Pure liquid

Gas

1 atm pressure

Solution

1 M concentration

Element

 $\Delta G_f^{\circ} = 0$ for element

 ΔG_f° =0 for elements (incl.N₂, F₂, Br₂, I₂, Cl₂, O₂ in standard state)

in standard state

NOTE: For substances in solution, the standard state is a concentration of 1M, for gas 1atm all at a given T that does not have to be 298 K. ΔG_f° = 0 only for elements in their standard state (at 25°C& 1atm)

pH meter

- Calibrating a Digital pH Meter
- 1. Switch on the pH meter.
- 2. Press the "校准" "RESET" button to begin the new calibration before removing the electrode probe.
- 3. Remove the electrode probe from the bottle of storage solution. Rinse with de-ionized water & dry the electrode tip carefully with a tissue.

Calibrating a Digital pH Meter

4. Immerse the electrode in pH 4.003 buffer. Swirl the solution to fully saturate the probe electrode with buffer.

Calibrating a Digital pH Meter

5.

Press the "校准" "RESET" button again. After the reading is stable (decimal dot & vertical line stop blinking), the meter will return to the "Measure" screen and a tiny boxed "[A]" appears at the top left hand side of the display (also the dot & vertical bar stops blinking). The box may blink and disappear between, indicating that calibration is complete and pH should be 4.00. Do not press "measure" again.

Calibrating a Digital pH Meter

- 8. Rinse the electrode with distilled water and wipe softly with clean tissue. Immerse the electrode properly into the sample bottle to measure its pH by following the next step.
- 5. Before removing the electrode from the buffer solution (of pH 4.003) and in a separate small beaker, prepare a sample to measure its unknown pH. If the sample is not ready within 10-15 minutes then you must follow the next step.
- 7. Remove the electrode from the buffer solution (pH 4.003) and rinse its probe with de-ionized water. Dry the electrode tip **carefully** with a tissue. Safe and label the used buffer solution (pH 4.003) for collection by TA at end of lab.

pH measurement

- Now the meter is ready to use for measuring the pH of any solution.
- Rinse the electrode with distilled water, wipe with clean tissue
- Immerse the electrode into the prepared sample to measure its unknown pH and swirl.
- Press "测量" "MEASURE" button, after the reading is stable (when the decimal dot & the vertical bar stops blinking), record the pH.
- A tiny boxed "A" or "A/" or "/" appears at the top left hand side of the display. The box may blink and disappear between, indicating that measurement is complete. Do not hist "MEASURE" again, proceed in measuring the next pH sample, make sure you rinse and wipe correctly with distilled water between each measurement.

AVOID DAMAGE TO THE pH METER

- Remember you calibrated with buffer pH=4.003
- Follow the calibration and measurements instructions carefully.
- When you measure the pH with 5 drops of 0.5M HCl, or with 5 drops of 0.5M NaOH, do not exceed the number of drops. If it is exceeded, then the pH may go down to 2 or up to 12. This means you are abusing the electrode and it will take overnight saturation with distilled water to reestablish the sensitivity of the buffer pH range.

BUFFERS

CH17: p707-713 VC210 textbook (12th ed.)

Conclude

Buffer sample #1 with designed pH = 4.15 will take less no. of drops of HCl than sample #4 with designed pH = 5.35 before the pH starts to drop significantly, indicating the approach of Buffer Capacity Point. Because buffer Sample #1 is made of lesser volume of conjugate base (1mL) than Sample # 5 (4mL). So, it will take lesser amount of HCl to neutralize the lesser amount of conjugate base.