11210IPT553000 Deep Learning in Biomedical Optical Imaging

Week3 Neural Network Basics (Part II)

Instructor: Hung-Wen Chen @NTHU, Fall 2023 2022/09/25 SPONSORED BY

Outline of Today's Lecture

• HW1 Due today

• Shallow Neural Networks (Course 1 Week 3)

• Deep Neural Networks (Course 1 Week 4)

• Lab Practice: Build an ANN

Interpreting Model with Decision Trees

Prognostic Model

Interpreting models

Systolic Blood Pressure Prognostic Model 10 year mortality risk

Interpreting Models

Decision tree

Age

Shallow Neural Networks

Basics of Neural Network Programming

Computations of a neural network

Neural Networks Overview

What is a neural network?

Neural network representation

Input layer

hidden layer
$$a^{[1]} = \begin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \\ a_4^{[1]} \end{bmatrix}$$
(4,1)

Conventionally, 2-layer NN Hidden layer: layer 1

Output layer: layer 2

Neural network representation

$$z = w^T x + b$$

$$a = \sigma(z)$$

Neural network representation

 χ_3

$$z = w^T x + b$$

$$a = \sigma(z)$$

$$z_1^{[1]} = w_1^{[1]T} x + b_1^{[1]},$$

 $a_1^{[1]} = \sigma(z_1^{[1]})$

 $a_i^{[l]}$ l: layer number i: node in that layer

$$x_{1}$$

$$x_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]},$$

$$a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

Neural network representation

$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$
$$a^{[1]} = \sigma(z^{[1]})$$

Neural network representation learning

Given input x:
$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$(4,1) \quad (4,3) \quad (3,1) \quad (4,1)$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$(4,1) \quad (4,1)$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$(1,1) \quad (1,4) \quad (4,1) \quad (1,1)$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$(1,1) \quad (1,1)$$

Explanation for Vectorized Implementation

Vectorizing across multiple examples (m)

m training examples:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

for
$$i = 1$$
 to m

$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + h^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

 $Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$

$$z^{[2](i)} = W^{[2]}a^{[1](i)}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

 $A^{\lfloor 2\rfloor} = \sigma(Z^{\lfloor 2\rfloor})$

$$X = \begin{bmatrix} & & & & & & \\ & & & & & & \\ \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} \\ & & & & & & \end{bmatrix}$$

i-th hidden unit

i-th training example

Activation functions

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]}) \leftarrow g(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]}) \leftarrow g(z^{[2]})$$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

ReLU (Rectified Linear Unit)
$$\max(0,x)$$

Activation Functions

Pros and cons of activation functions

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

 $Relu: a = \max(0, z)$

$$tanh: a = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Leaky Relu: a = max(0.01z, z)

Why Do You Need Non-Linear Activation Functions?

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]}) \leftarrow z^{[1]}$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]}) \leftarrow z^{[2]}$$

$$a^{[1]} = z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[2]} = z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = z^{[2]} = W^{[2]}(W^{[1]}x + b^{[1]}) + b^{[2]}$$

$$= (W^{[2]}W^{[1]})x + (W^{[2]}b^{[1]} + b^{[2]})$$

$$= (W')x + (b')$$

Activation Functions

Derivative of common activation functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

NOTE: All activation functions are non-linear

Initialization

What happens if you initialize weights to zero?

The initial weights to the network should be unequal to break the symmetry.

Random initialization! (Small numbers)

What happens if you initialize weights to zero?

4.2 - Initialize the model's parameters

Exercise: Implement the function initialize_parameters().

Instructions:

- Make sure your parameters' sizes are right. Refer to the neural network figure ab
- · You will initialize the weights matrices with random values.
 - Use: np.random.randn(a,b) * 0.01 to randomly initialize a matrix of shar
- You will initialize the bias vectors as zeros.
 - Use: np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.

```
[n [9]: # GRADED FUNCTION: initialize parameters
        def initialize parameters(n x, n h, n y):
            Argument:
            n x -- size of the input layer
            n h -- size of the hidden laver
            n y -- size of the output layer
            Returns:
            params -- python dictionary containing your parameters:
                            W1 -- weight matrix of shape (n h, n x)
                            b1 -- bias vector of shape (n h, 1)
                            W2 -- weight matrix of shape (n y, n h)
                            b2 -- bias vector of shape (n y, 1)
            np.random.seed(2) # we set up a seed so that your output matches
            ### START CODE HERE ### (≈ 4 Lines of code)
            W1 = np.zeros((n h, n x))*0.01
            b1 = np.zeros((n h,1))
            W2 = np.zeros((n y, n h))*0.01
            b2 = np.zeros((n y,1))
            ### END CODE HERE ###
```

```
X assess, Y assess = nn model test case()
In [27]:
         parameters = nn model(X assess, Y assess, 4, num iterations=10, print cost=True)
         print("W1 = " + str(parameters["W1"]))
         print("b1 = " + str(parameters["b1"]))
         print("W2 = " + str(parameters["W2"]))
         print("b2 = " + str(parameters["b2"]))
         Cost after iteration 0: 0.693147
         W1 = [[0. 0.]]
          [ 0. 0.]
          [ 0. 0.]
           [ 0. 0.]]
         b1 = [[0.]]
          [ 0.]
          [ 0.]
          [ 0.]]
         W2 = [[0. 0. 0. 0.]]
         b2 = [[0.2]]
       Cost after iteration 1: 0.664806
       W1 = [[0. 0.]]
        [ 0. 0.]
          0. 0.1
         [ 0. 0.]]
       b1 = [[ 0.]
        [ 0.]
          0.]
          0.]]
       W2 = [[0. 0. 0. 0.]]
       b2 = [[0.3401992]]
```

What happens if you initialize weights to one?

```
### START CODE HERE ### (≈ 4 lines of code)
W1 = np.zeros((n_h,n_x)) + 1
b1 = np.zeros((n_h,1))
W2 = np.zeros((n_y,n_h)) +1
b2 = np.zeros((n_y,1))
### END CODE HERE ###
```

```
Cost after iteration 1: 0.919667
W1 = [[ 1.28266063    0.62747155]
        [ 1.28266063    0.62747155]
        [ 1.28266063    0.62747155]
        [ 1.28266063    0.62747155]]
b1 = [[-0.28306887]
        [-0.28306887]
        [-0.28306887]
        [-0.28306887]]
W2 = [[ 0.30042713    0.30042713    0.30042713]]
b2 = [[ 0.41922517]]
```

Deep L-layer Neural Networks

Deep L-layer Neural Network

logistic regression

2 hidden layers

Notation

1 hidden layer

Deep L-layer Neural Network

Forward propagation in a deep network

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$Z^{[3]} = W^{[3]}A^{[2]} + b^{[3]}$$

$$A^{[3]} = g^{[3]}(Z^{[3]})$$

$$A^{[4]} = g^{[4]}(Z^{[4]}) = \hat{Y}$$

L = 4 $n^{[l]}$: number of units in layer I $a^{[l]}$: activations in layer I

$$a^{[l]} = g^{[l]}(Z^{[l]})$$

Layer $l: W^{[l]}, b^{[l]}$ Forward: Input $A^{[l-1]}$, output $A^{[l]}$

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$

 $A^{[l]} = g^{[l]}(Z^{[l]})$

Intuition about deep representation

Intuition about deep representation

Deep learning = Learning hierarchical representations

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Trainable feature hierarchy

- Hierarchy of representations with increasing level of abstraction.
 Each stage is a kind of trainable feature transform
- Image recognition
 - Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object
- Text
 - Character → word → word group → clause → sentence → story
- -Speech
 - Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word

Universal approximation theorem

Any continuous function f

$$f: R^N \to R^M$$

Can be realized by a network with one hidden layer (given **enough** hidden neurons)

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Reference for the reason:

http://neuralnetworksandde
eplearning.com/chap4.html

A feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly.

Ian Goodfellow, DLB

Universal approximation theorem

- In worse case, exponential number of hidden units (possibly one for each input config that needs to be distinguished) is required.
- In binary case, easy to see: number of possible binary vectors on v in $\{0,1\}$ n is 2^2 n, selecting one such function requires 2^n bits.
- While single hidden layer is sufficient to represent any function, the layer may be unfeasibly large and may fail to learn and generalize correctly.

Parameters vs Hyperparameters

What are hyperparameters?

```
Parameters: W^{[1]} , b^{[1]} , W^{[2]} , b^{[2]} , W^{[3]} , b^{[3]} ...
```

```
Hyperparameters: learning rate \alpha
# of iterations
# of hidden layers L
# of hidden units n^{[1]}, n^{[2]},......
choice of activation function
```

Later: momentum, mini-batch size, regularization

Parameters vs Hyperparameters

Applied deep learning is a very empirical process

Biological inspiration

Biological inspiration

The Perceptron (Neuron)

The Perceptron is seen as an **analogy** to a biological neuron.

Biological neurons fire an impulse once the sum of all inputs is over a threshold.

The sigmoid emulates the thresholding behavior → act like a switch.

Figure credit: Introduction to Al

Finding connections

Biological inspiration

Biological inspiration

動作電位產生四階段: (1)極化 - 神經細胞在休息狀態時膜內帶負電、膜外帶正電, 靜止膜電位約 -70 mV。 (2)去極化 - 細胞接受刺激或動作電位傳遞, 細胞膜上的電位依賴性鈉離子通道部份開啟, 鈉離子進入細胞內, 膜電位上升。 (3)膜電位上升超過閾值, 引發大量鈉離子通道開啟, 膜電位更正,達動作電位高峰。 (4)再極化 - 鈉離子通道迅速關閉,鉀離子通道開啟、鉀離子離開細胞。 (5)過極化 - 鉀離子通道延遲關閉,膜電位降至靜止膜電位以下。最後,鉀離子通道關閉,膜電位回復到極化狀態。 (動畫來源:國研院動物中心)

https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0J193509885517004464

Two-Photon fluorescence brain imaging

Functional Magnetic Resonance Imaging (Functional MRI)

Energy consumption

- Brain mass: 2% of body mass
- Energy Consumption per day: 2000 kCal
- Energy Consumption of the brain per day?25%!

Next Lecture

• Setting Up Your Machine Learning Application (Course 2 Week 1)

• Optimizing Algorithms (Course 2 Week 2)

Next: Lab Practice Build an ANN

