Predicting gasoline shortage during disasters using social media

Abhinav Khare, Dr. Qing He, Dr. Rajan Batta Department of Industrial and Systems Engineering, University at Buffalo November 6th, 2018

Outline

- Motivation
- Objectives and Challenges
- Data Description
- Methodology
- Case Study and Results
- Contribution
- Future Work

Motivation

- Gasoline is an extremely essential commodity pre/during natural disaster
 - Evacuations
 - Generators
- Surge in demand as people panic-by and hoard supplies → shortages
 - News outlets
 - Word of mouth
- Shortages → people stuck/helpless in high risk zones without essential supplies
- Such shortages became very prominent during the onset and post landfall of Hurricane Sandy (2011) and Hurricane Irma (2017).

Motivation

- According Florida Department of Transportation, during Irma demand of gasoline went up by 150%.
- There was enough gasoline at the ports to replenish the stations and satisfy the demands.
- There were not enough drivers and vehicles. They were brought in from Arizona later.
- People tweeted about these shortages.

"The shelters are full, there is no **gas**. Tornados could happen, and storm surge is predicted. So what are people supposed to do? #Irma "

Saw 25 Electrical Boom Trucks & 15 **Gas** Tankers heading south on I-95 today. <u>#greatfeeling</u> think they were headed to Florida <u>#Irma #NYtoFLA</u>"

"We are riding it out in Jacksonville FI many are without power down south (84,000)gas shortages so

evacuating difficult #Irma is no joke

"My inlaws were going to stay in Port Charlotte until forecast for landfall changed, had barely enough **gas** to get to Gainesville **#Irma**"

"GasBuddy app now supports motorists seeking diesel fuel. <u>#Irma #HurricaneIrma #gas #Florida"</u>
"Insane..95% of Florida trying to leave at one time. Roads r slammed. No **gas**. No hotels available. Scared to see my neighborhood after <u>#irma"</u>

"Gas stations out of gas, water shelves empty, stores and airports closed. Stocked up on food and

wine, waiting on #irma"

Objective

- Natural questions that arise :
 - 1. Can social media data, especially twitter be used to predict these shortages?
 - 2. If so, what methods would solve this problem?

Our objective was to answer these two questions.

- If the demand surges and shortages can be forecasted then the authorities can plan a response to the demand
- Appropriate amount of gasoline can be directed to the shortage affected regions earlier and efficiently.

Challenges

Challenge 1: How to identify tweets about shortage?

- Twitter data is difficult to process and classify.
- It is unstructured, noisy and contains a plethora of information.
- A tweet contains a max of 140 characters, is informal, contain abbreviations and spelling mistakes.
- classifying tweets for a specific problem like identifying gasoline shortage has never been done.
- Identifying important features for this classification task is a novel and unique question

Challenge 2: How to forecast the actual spatio-temporal shortage from tweets.

- Spatio-temporal distribution of tweets not equivalent to the spatio-temporal shortage distribution.
- Spatial & temporal lag between the origin of the shortage & the tweet about shortage is an uncertain quantity.

Data Description

- Our data one million tweets from Florida during the period 6-15 September 2017.
- 1048575 rows and 41 columns that include TWEET ID, TWEET TEXT, USER ID, DATE, HASHTAG, LATITUDE, LONGITUDE, BOUNDING BOX

Summary Statistic	Values
Number of Tweets Collected	1,048,575
Number of Unique Twitter Users	111,801
Period of Data Collection	6th Sept 2017- 15th Sept 2017
Date of Irma Landfall in Florida	9th Sept 2017
Number of tweets prior to Irma landfall in Florida	456,530
Number of tweets during Irma in Florida	151,792
Number of tweets post Irma in Florida	440,253
Number of Gas Related Tweets (labeld manually)	4070

Data Description

- Collected ground truth about gasoline shortage in Florida from 6th-15th Sept 2017 from Gasbuddy App for validation of methodology
- Collected details and predictions of the hurricane Irma path from from 6th-15th Sept 2017 from the National Hurricane Center website

City	Date	Proportion of Gas Stations Without Gas	On Hur- ricane Path	Inside 3- day Cone	Inside 5-day Cone	Days to Arrival	Watch/ Warning	Wind Speeds (mph)
Gainesville	09/07/17	0.58	У	n	у	4	n	175
Jacksonville	09/08/17	0.31	n	У	у	3	n	155
Miami	09/07/17	0.42	У	У	у	3	watch	175
Orlando	09/08/17	0.35	У	У	у	3	watch	155
Tallahassee	09/08/17	0.46	n	n	у	3	n	155
Tampa	09/06/17	0.3	n	n	у	5	n	185
Naples	09/07/17	0.54	n	У	у	3	watch	175

1//

Methodology

Methodology - Stage 1 - Tweet Filtering

- 1. "Gasoline-related" are the filttered out using from the huge corpus tweets.
 - Used keyword search :any word that contains the "string" gas is a possible keyword
 - Used regular expression with the grep package in R for the keyword search.
 - Hashtag search: ^gas finds words starting with "gas" and also finds words that contain the string "gas"
 - Tweet search : \\bgas finds sentences with "gas" anywhere in the sentence
 - Results from tweet and hashtag search.
- 2. Tweet cleaning for removing noise and uniformity (for classification)
 - Removed user names, links, punctuations, tabs, general whitespaces, stopwords, and numbers.
 - Changed words to stem words and to lower case

Methodology – Tweet Filtering – Irma Results

Key words found using regular expressions:

gasoline, gas, gasinmiami, gaspricefixing, gasstation gasservice, gastateparks, gasshortage, gasoil, gastation, gaswaste, nogas, outofgas, findgas

• From 1 million to 4070 gasoline-related tweets were filtered out.

Methodology - Stage 2 - Tweet Classification

- Classified "gasoline-related" into "gasoline-shortage tweets" & " non gasoline-shortage tweets"
- Used a SVM classifier with two kinds of features;
 - 1. Unigrams or words
 - 2. Latent Topics identified using 4 topic modeling techniques namely
 - i. Correlated Topic Models (CTM),
 - ii. Latent Dirichlet Allocation (LDA) using Variational Expectiation-Minimization algorithm (VEM),
 - iii. LDA using fixed VEM (VEM Fixed),
 - iv. LDA using Gibbs Sampling (Gibbs)
- To find the best set of features, conducted an experiment.
 - 1. Fixed number of latent topics in the model and varied frequency threshold of unigrams.
 - 2. Fixed the number of unigrams and varied the number of unigrams in the model.

Methodology - Tweet Classification - Irma Results

Performance of SVM using topics and unigrams (varied word frequency threshold, number of topics = 5, train/test = 70/30

Frequency threshold	Number of words	Precision	Recall	F score
5	937	0.9406566	0.7136015	0.8115468
6	797	0.9604142	0.7884615	0.8659845
7	710	0.9503121	0.7620137	0.8458096
10	519	0.9692899	0.7715618	0.8591967
20	282	0.9636684	0.7667436	0.8540008
50	109	0.9721385	0.7757009	0.862881
100	38	0.9722495	0.7793427	0.8651735
350	5	0.9852071	0.7894737	0.8765465

Methodology - Tweet Classification - Irma Results

• Performance of SVM using topics and unigrams (varied number of topics, word frequency threshold= 350, train/test = 70/30

Number of topics	Precision	Recall	F score
2	0.9634378	0.7670813	0.8541196
4	0.9831247	0.7612366	0.8580682
5	0.9852071	0.7894737	0.8765465
6	0.9503142	0.7903614	0.8629887
10	0.9722495	0.7793427	0.8651735
10	0.975556	0.71388	0.8244524
15	0.9733728	0.7878813	0.8708593

Methodology - Tweet Classification - Irma Results

- The best F1 score was obtained using 5 unigrams and 5 topics.
- The 5 best unigrams were gas, get, line, out, station.

5 topics identified using CTM topic modeling techniques

CTM						
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5		
gas	station	gas	gas	gas		
cannot	gas	no	station	price		
find	need	station	wait	high		
know	hurricaneirm a	line	line	got		
where	close	miami	irma	irma		

Word cloud of top 50 unigrams

 To forecast the spatio-temporal distribution of the gasoline-shortage, spatio-tempral analysis

shortage tweets

Heat map of gasoline shortage tweets

Arrival of gasoline-shortage tweets followed a Poisson Distribution

Results of Chi-square tests for Poisson Distribution

City	Lambda	Chi- squared	p - value	Chi- squared (sim)	p-value (sim)
Tampa	3.637681	249.15	2.20E_16	82.29	0.0004998
Miami	9.558442	197200	2.20E-16	48.273	0.004498
Orlando	3.064516	24.202	0.00212	38.742	0.0004998
Tallahasse e	2	21.447	0.0006669	42.854	0.0004998
Jacksonvill e	1.5	16.521	0.002394	41	0.0004998
Gainsville	2.051282	42.072	5.04E-07	68.282	0.0004998
Florida	25.73171	2.26E+10	2.20E-16	24.366	0.9995

- Arrival of gasoline-shortage tweets followed a Poisson Distribution
- Candidate methods for tweet forecast :
 - ARIMA/SARIMA models for time series modeling
 - 2. Poisson Regression Method
- We tried both and to increase the accuracy came up with a Hybrid Loss Function Method which combines the ARIMA and Poisson Regression Methods.

Hybrid Loss Function (Convex)

$$-L(\theta, Y^{'}) = e^{\theta^{T} X_{train}} - Y_{train} \theta^{T} X_{train} + \lambda_{1} (e^{\theta^{T} X_{test}} - Y^{'} \theta^{T} X_{test}) + \lambda_{2} (Y^{'} - Y_{ts})^{2}$$

Gradients

$$\begin{split} -\frac{\partial L(\theta, Y^{'})}{\partial \theta} &= (e^{\theta^{T}.X_{train}} - Y_{train})X_{train} + \lambda_{1}(e^{\theta^{T}X_{test}} - Y^{'})X_{train} \\ &- \frac{\partial L(\theta, Y^{'})}{\partial Y^{'}} = \lambda_{1}\theta^{T}X_{train} + 2\lambda_{2}(Y^{'} - Y_{ts}) \end{split}$$

Poisson Regression fit in predicting future tweets about shortage

	Estimate	Std Error	z-value	P-value	
(Intercept)	_5.632856917	1.342732525	_4.195069988	2.73E-05	***
gas shortage one that day	10.05553126	1.316275539	7.639381701	2.18E-14	***
number of gas stations	0.006732827	0.000395052	17.04290458	3.95E_65	***
on hurricane path	0.679578601	0.142605366	4.765449025	1.88E-06	***
inside 3-day cone	1.308414331	0.143248048	9.133906853	6.61E_20	***
days to arrival	_1.71048558	0.148740094	_11.49982855	1.32E_30	***
watches/ warning	-5.763048725	0.418491761	_13.77099686	3.81E_43	***
watches/ warning	_3.698064077	0.265035222	_13.95310424	3.01E_44	***
wind speeds	0.058446979	0.007923946	7.375993819	1.63E_13	***

Pseudo-R2 = 0.78

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Null deviance: 2121.05 on 63 degrees of freedom

Residual deviance: 473.84 on 54 degrees of freedom

AIC: 707.31

ARIMA modeling for Miami

ARIMA(0,1,1) model fitted the data for Miami

Methodology – Stage 4 – Predicting number of stations without gasoline

• It's a Poisson Regression Model and for Irma data it fit the data extremely well.

	Estimate	Std. Error	z-value	P-value	Sig
(Intercept)	4.255101001	0.056026652	75.94780113	0	***
Population	_1.18E_06	1.35E_07	-8.700698039	3.30E_18	***
number of gas stations	0.00310295	0.000121362	25.56764236	3.50E_144	***
number of tweets the next day	0.002997528	0.000281172	10.66083059	1.55E_26	***
days to arrival	_0.137963866	0.020294006	-6.798256761	1.06E_11	***
warningn	-0.20750846	0.049436483	_4.19747623	2.70E-05	***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Null deviance: 5961.01 on 71 degrees of freedom

Residual deviance: 689.17 on 60 degrees of freedom

Pseudo-R2 = 0.987

MAPE= 0.31 RMSE= 9.13

Contribution

- Building of a classifier that identifies gasoline shortage tweets from corpus of all tweets generated.
- Discovering that the arrival of tweets about gasoline shortage follows a Poisson distribution.
- Developing a hybrid loss function method that forecasts the number of tweets about gasoline shortage.
- Development of a four-stage gasoline shortage prediction methodology which takes tweets generated on a day in an affected city as input and generates the number of stations that will be out of gas the next day as the output
- Model validation with a case study based on Hurricane Irma.

Future Work

- F1 score for tweet classification is good but recall is relatively low compared to precision . Reduction of false positives in the future using a other techniques like recurrent neural nets.
- Our method does a course grain prediction of gasoline-shortage, predicts the number of stations without gas in the city because ground truth about individual stations was not available.
- In the future prediction at individual gas station level if ground truth is available.
- future shortage data is available at the individual gas station level, it can be fed into a decision making model for gasoline delivery to gas stations to ensure adequate supply were it is needed.
- This would likely be a vehicle routing type of formulation.

Thank you