$\tau_{1^{-}}^{\#2}\alpha$	0	0	0	$-\frac{i}{kr_5+2k^3r_5}$	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \ (k^2 \ r_5 + 2 \ k^4 \ r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 \; r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} + ^{lpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_{1}^{#2} + ^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1}\dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$								
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0					
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0					
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2					

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	-t ₁

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#1} \dagger$	0	0	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

-							
$f_{1}^{"}$ α	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1}^{-1}\alpha$	0	0	0	0	0	0	0
$\omega_1^{} \alpha$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1}^{}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$^{\prime}$ 1 ⁺ $\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1} + \alpha \beta^{-1} + \alpha \beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1 + \alpha \beta$	2 r_{5} - $^{\frac{t_{1}}{2}}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0

 $\omega_1^{\#2} +^\alpha$

 $f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$

 $\omega_{1}^{\#_1} \uparrow^\alpha$

 $f_1^{\#1} +^{\alpha\beta}$

Unitarity conditions $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$

 $\omega_1^{\#_2^2} +^{\alpha\beta}$

(No massive particles)

? k^{μ} /	Quadratic pole	<u>:</u>
?	Pole residue:	$-\frac{1}{r_5 t_1^2} > 0$
?	Polarisations:	2
?		

	#	1	1	1	3	3	3	2	17
Source constraints	SO(3) irreps	$\sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} = 0$	0 =	$t_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

 $^{\prime}_{\lambda}\partial^{\kappa}f^{\prime}_{\prime}+2\,t_{1}\,\,\omega_{\kappa\theta}\,\partial^{\kappa}f^{\prime\theta}-\frac{1}{3}\,t_{1}\,\,\omega_{\alpha}^{}\,\partial^{\kappa}f^{\prime}_{\kappa}-\frac{1}{3}\,t_{1}\,\,\omega_{\lambda}^{\lambda}\,\partial^{\kappa}f^{\prime}_{\prime}$

 $rac{1}{3}t_1\;\omega_{\kappalpha}^{lpha}\;\partial^{\kappa}\!f'_{}'+rac{1}{3}t_1\;\omega_{\kappa\lambda}^{\lambda}\;\partial^{\kappa}\!f'_{}'+rac{2}{3}t_1\;\partial^{lpha}\!f_{lpha}\;\partial^{\kappa}\!f'_{}'$

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_{1}\partial_{\kappa}f_{\theta}^{\ \lambda}\partial^{\kappa}f_{\lambda}^{\ \theta} + \frac{1}{2}t_{1}\partial_{\kappa}f^{\lambda}_{\ \theta}\partial^{\kappa}f_{\lambda}^{\ \theta} -$

 $\tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \,\,\sigma_{\alpha\beta\chi}$

Added source term: $|f^{lphaeta}|$

 $\frac{1}{3}t_1\;\omega_{,}^{\alpha\prime}\;\omega_{\kappa\alpha}^{}-t_1\;\omega_{,}^{\kappa\lambda}\;\omega_{\kappa\lambda}^{\prime}-r_5\,\partial_{\imath}\omega_{\kappa\lambda}^{\kappa\lambda}\;\partial^{\prime}\omega_{\lambda}^{\alpha}-r_5\,\partial_{\alpha}\omega_{\lambda}^{\alpha}\;\partial_{\kappa}\omega_{\lambda}^{\kappa\lambda}+$

Lagrangian density

 $_{\alpha}^{x}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $r_{5}\partial_{\alpha}\omega_{\lambda}^{\ \alpha}{}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ + 2 $r_{5}\partial_{\theta}\omega_{\lambda}^{\ \alpha}{}_{\partial}\partial_{\kappa}\omega^{\kappa\lambda\theta}$

 $r_5 \, \partial_\theta \omega_\lambda^{\ \alpha}$