

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =85V, I_D =75A $R_{DS(ON)}$ =8.2m Ω , typical @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
Ī	VST08N082-T2	VST08N082	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	75	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	55	Α	
Pulsed Drain Current	I _{DM}	300	Α	
Maximum Power Dissipation	P _D	90	W	
Derating factor		0.6	W/°C	
Single pulse avalanche energy (Note 4)	E _{AS}	352	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case Rejc 1.67 C/W		R ₀ JC	1.67	°C/W
--	--	-------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	85		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.0	3.0	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =37.5A	-	8.2	8.6	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =37.5A		50	-	S
Dynamic Characteristics (Note3)			•	•		
Input Capacitance	C _{lss}	V _{DS} =40V,V _{GS} =0V,	-	2059	-	pF
Output Capacitance	C _{oss}		-	393	-	pF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		25.4	-	pF
Switching Characteristics (Note 3)			•	•		
Turn-on Delay Time	t _{d(on)}	V_{DD} =40V, I_{D} =37.5A V_{GS} =10V, R_{G} =1.6 Ω	-	12	-	nS
Turn-on Rise Time	t _r		-	9	-	nS
Turn-Off Delay Time	t _{d(off)}		-	29	-	nS
Turn-Off Fall Time	t _f		-	7	-	nS
Total Gate Charge	Qg	\/ -40\/1 -27.54	-	41.4	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =40V,I _D =37.5A,	-	14.9	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	12.5	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =37.5A	-	-	1.2	V
Diode Forward Current	Is		-	-	75	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_F = 37.5A$	-	55	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	98	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50 V ,V $_{G}$ =10 V ,L=0.25 mH ,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 5 Source- Drain Diode Forward

Figure 6 Capacitance vs Vds

T_J-Junction Temperature (°C) **Figure 9 Current De-rating**

Figure 7 Power De-rating

Vds Drain-Source Voltage (V)
Figure 8 Safe Operation Area

Figure 10 Rdson-Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance