As a student at Union College, I am part of a community that values intellectual effort, curiosity and discovery. I understand that in order to truly claim my educational and academic achievements, I am obligated to act with academic integrity. Therefore, I affirm that I carried out the work on this exam with full academic honesty, and I rely on my fellow students to do the same.

For this exam I understand that:

- 1. I **must** work alone in writing out the answers to this exam.
- 2. I **cannot** copy solutions to these problems from any person or resource.
- 3. I **cannot** use any electronic resources, other than the program I wrote as part of this class, to assist me in the solution to the questions on this exam.
- 4. I **can** use one formula sheet (both sides) that I prepared as a reference for this exam, I **must** staple this sheet to the back of my exam, and this sheet **cannot** contain any solutions to problems.

Signature:			
Print Name	Solution		

PROBLEM 1 (30 pts): A box sits on top of the base shown in Position 1 and needs to be moved to Position 2, and then to Position 3. (Guess β_2 =-50, β_3 =-100, γ_2 =-50, and γ_3 =-80)

1a. Using the program that you developed in class, perform an analytical synthesis to design a linkage that will move the box from positions 1 to 2 to 3, and has ground pivots on the base. Show all work need to calculate the parameters used in your computer model below. Staple a copy of the computer solution directly after the next page of this exam.

From the figure inputs to the numerical analytical synthesis spreadsheet need to be calculated.

First and Second Dyad

$$(P_{1x}, P_{1y}) = (0 mm, 0 mm)$$

$$(P_{2x}, P_{2y}) = (421 mm, 963 mm)$$

$$(P_{3x}, P_{3y}) = (184 mm, 1400 mm)$$

$$p_{21} = \sqrt{(421 mm - 0 mm)^2 + (963 mm - 0 mm)^2} = 1051 mm$$

$$p_{31} = \sqrt{(184 mm - 0 mm)^2 + (1400 mm - 0 mm)^2} = 1412 mm$$

$$\delta_2 = \tan^{-1} \left(\frac{963 mm}{421 mm}\right) = 66.4^{\circ}$$

$$\delta_3 = \tan^{-1} \left(\frac{1400 mm}{184 mm}\right) = 82.5^{\circ}$$

$$\alpha_2 = 27^{\circ}$$

$$\alpha_3 = 88^{\circ}$$

Free Choices

$$\beta_2 = -50^{\circ}$$

$$\beta_3 = -100^{\circ}$$

$$\gamma_2 = -50^{\circ}$$

$$\gamma_3 = -80^{\circ}$$

Exam III

FIRST DY	AD									
GIVEN:		CHOSEN:		FIND:				x-coord	y-coord.	
P12	1051.00	β2	-50.00	w	864.570		O2	-306.819	-402.654	
P13	1412.00	β3	-100.00	θ	155.216		A1	-1091.757	-40.228	
δ2	66.40	•		z	1092.498		A2	-533.733	431.606	
δ3	82.50			ф	2.110		A3	186.405	307.424	
α2	27.00			W1x	-784.938		P1	0.000	0.000	
α3	88.00			W1y	362.426		P2	420.767	963.097	
				Z1x	1091.757		P3	184.303	1399.920	
				Z1y	40.228					
	-0.3572	0.7660	-0.1090	-0.4540		W1x)	ſ	420.7668)
	-0.7660	-0.3572	0.4540	-0.1090	J	W1y	l _	J	963.0972	l
	-1.1736	0.9848	-0.9651	-0.9994	J	Z1x	_	J	184.3030	ſ
	-0.9848	-1.1736	0.9994	-0.9651		Z1y	J	J	1399.9201	J

SECOND I	DYAD									
GIVEN:		CHOSEN:		FIND:				x-coord	y-coord.	
P12	1051.00	γ2	-50.00	u	966.678		04	122.789	-364.194	
P13	1412.00	γ3	-80.00	σ	163.084		B1	-802.064	-82.925	
δ2	66.40	•		s	806.340		B2	-256.231	525.081	
δ3	82.50			Ψ	5.903		B3	239.186	595.450	
α2	27.00			U1x	-924.853		P1	0.000	0.000	
α3	88.00			U1y	281.269		P2	420.767	963.097	
				S1x	802.064		P3	184.303	1,399.920	
				S1y	82.925					
	_									
	-0.3572	0.7660	-0.1090	-0.4540		U1x)	ſ	420.7668)
	-0.7660	-0.3572	0.4540	-0.1090	J	U1y	l _	J	963.0972	l
	-0.8264	0.9848	-0.9651	-0.9994	Ì	S1x	_)	184.3030	ſ
	-0.9848	-0.8264	0.9994	-0.9651		S1y	J	l	1399.9201	J

1b. Draw the final synthesized mechanism to scale in Position 1.

PROBLEM 2 (30 pts): A container of liquid sit on top of a base (A_1B_1) and is required to move to the position on the lower step (A_3B_3) .

Above is an illustration of the graphical two positions synthesis. This configuration 1) insures that the orientation of the container remains the same throughout the motion from the top of the base to the top of the lower platform and is the minimum configuration for the container clearing the corner of the base. The black lines represent the construction lines and perpendicular bisectors of those lines; it is along the perpendicular bisectors that the rotopoles or fixed pivots have to be located.

2a. Using the program that you developed in class, perform an analytical synthesis to design a linkage that will move the box from the top positions (A_1B_1) to the bottom position (A_3B_3) , and has ground pivots on the base. Show all work need to calculate the parameters used in your computer model below. Staple a copy of the computer solution directly after this page.

This particular configuration lends itself to the Analytical Two-Position Synthesis – Approach B. The GIVEN parameters that can be calculated from the above figure are found below.

FIRST DYAD

$$\begin{split} &\left(P_{1x}, P_{1y}\right) = \left(0\,mm, 0\,mm\right) \\ &\left(P_{2x}, P_{2y}\right) = \left(86\,mm + 184\,mm - 86\,mm, -130\,mm\right) = \left(184\,mm, -130\,mm\right) \\ &\left(A_{1x}, A_{1y}\right) = \left(43\,mm, 0\,mm\right) \\ &\left(A_{2x}, A_{2y}\right) = \left(43\,mm + 184\,mm, -130\,mm\right) = \left(227\,mm, -130\,mm\right) \\ &p_{21} = \sqrt{\left(184\,mm - 0\,mm\right)^2 + \left(-130\,mm - 0\,mm\right)^2} = \boxed{225\,mm} \\ &\delta_2 = \tan^{-1}\left(\frac{-130\,mm}{184\,mm}\right) = -35.2^\circ = \boxed{324.8^\circ} \\ &\alpha_2 = \boxed{0^\circ} \quad \text{(The orientation of the container does not change)} \\ &z = \sqrt{\left(P_{1x} - A_{1x}\right)^2 + \left(P_{1y} - A_{1y}\right)^2} = \boxed{43\,mm} \quad \text{(Dependent on the chosen location of P_2)} \\ &\phi = \tan^{-1}\left(\frac{P_{1y} - A_{1y}}{P_{1x} - A_{1x}}\right) = \tan^{-1}\left(\frac{0\,mm}{43\,mm}\right) = \boxed{180^\circ} \quad \text{(Dependent on chosen location of P_2)} \\ &\beta_2 = \boxed{-120^\circ} \quad \text{(Measured from the figure, not a unique value.)} \end{split}$$

APPROAG	СН В		FIRST DY	AD						
GIVEN:		CHOSEN:		FIND:					x-coord	y-coord
P12	225.3	z	43	w	130.077			02	97.561	-118.081
δ2	324.8	ф	180	θ	114.800			A1	43.000	0.000
α2	0	β2	-120	W1x	-54.561			A2	227.103	-129.870
				W1y	118.081			P1	0.000	0.000
					x-coord	y-coord		P2	184.103	-129.870
				W1	-54.561	118.081				
				W2	129.542	-11.789				
				Z1	-43.000	0.000				
				Z2	-43.000	0.000				
			ſ)	ſ)	inve	rse
	-1.5	0.866025404	J	W1x	_	J	184.1027		-0.5	-0.28868
	-0.866025404	-1.5)	W1y	_)	-129.87		0.288675	-0.5
	L		l		J	l		J		

SECOND DYAD

$$(P_{1x}, P_{1y}) = (0 mm, 0 mm)$$

$$(P_{2x}, P_{2y}) = (86 mm + 184 mm - 86 mm, -130 mm) = (184 mm, -130 mm)$$

$$(B_{1x}, B_{1y}) = (43 mm, -86 mm)$$

$$(B_{2x}, B_{2y}) = (43 mm + 184 mm, -130 mm - 86 mm) = (227 mm, -216 mm)$$

$$p_{21} = \sqrt{\left(P_{2x} - P_{1x}\right)^2 + \left(P_{2y} - P_{1y}\right)^2} = \sqrt{\left(184 \, mm - 0 \, mm\right)^2 + \left(-130 \, mm - 0 \, mm\right)^2} = \boxed{225 \, mm}$$

$$\delta_2 = \tan^{-1} \left(\frac{P_{2y} - P_{1y}}{P_{2x} - P_{1x}} \right) = \tan^{-1} \left(\frac{-130 \, mm}{184 \, mm} \right) = -35.2^{\circ} = \boxed{324.8^{\circ}}$$

 $\alpha_2 = 0^{\circ}$ (The orientation of the container does not change)

$$s = \sqrt{(P_{1x} - B_{1x})^2 + (P_{1y} - B_{1y})^2} = \sqrt{(-43 mm)^2 + (86 mm)^2} = 96.2 mm$$
 (Dependent on the chosen location of P₂)

$$\psi = \tan^{-1} \left(\frac{P_{1y} - B_{1y}}{P_{1x} - B_{1x}} \right) = \tan^{-1} \left(\frac{86 \, mm}{-43 \, mm} \right) = \boxed{116.6^{\circ}} \quad \text{(Dependent on chosen location of P}_2\text{)}$$

 $\gamma_2 = \boxed{-120^{\circ}}$ (Measured from the figure, not a unique value.)

APPROAC	APPROACH B		SECOND DYAD								
GIVEN:		CHOSEN:		FIND:					x-coord	y-coord	
P12	225.3	s	96.2	u	130.077			04	97.635	-204.099	
δ2	324.8	Ψ	116.6	σ	114.800			B1	43.074	-86.018	
α2	0	γ2	-120	U1x	-54.561			B2	227.177	-215.888	
				U1y	118.081			P1	0.000	0.000	
					x-coord	y-coord		P2	184.103	-129.870	
				U1	-54.5611	118.0810					
				U2	129.5417	-11.7892					
				S1	-43.0744	86.0176					
				S2	-43.0744	86.0176					
_											
)				inve	rse	
	-1.5	0.866025	J	U1x	L _	J	184.1027	l	-0.5	-0.28868	
	-0.86603	-1.5)	U1y	_)	-129.87		0.288675	-0.5	
					J	l		J			

2b. Does your linkage design require the base to be modified in any way? Explain. Can it be designed so that the base does not have to be modified? How?

The configuration that was synthesized above minimally satisfies the constraint of not having to modify the base. If the fix pivots are positioned any lower on the bisectors of the moving pivots, the corner of the container will run into the base. If this were allowed to happen, the base will have to be modified. If the fixed pivots are positioned higher than the minimal point on the bisectors of the moving pivots, the gap between the container and the corner of the base will increase in distance. The limit to how far above the base the container can be carried is limited by knowing the fixed pivots must be positioned on the bisector, but below the line between the moving pivots.

Because the synthesized mechanism is designed to be a parallelogram, all points on the container will sweep out a circular path of the same diameter. This means that the line between B and the left corner of the container will remain horizontal during the motion of the container and that the location of the center of the corners path is horizontal and to the left of the center of point B's path, at a distance that is equal to the distance from point B to the corner. This geometry enabled the minimal configuration to be identified as shown in the figure.

2c. Will the linkage design enable the container to hold a liquid without spilling it as it travels from the upper base position to the lower platform position? Explain. Can the linkage be designed to hold the container in the same position throughout its motion from the upper to lower base? How?

The linkage designed above will always stay in the same orientation throughout the motion of the container from the top of the base to the lower platform. This is assured, as explained above, by the parallelogram nature of the mechanism design. Because the top of the container will remain horizontal, the mechanism is designed to maximize the ability of the container to hold a liquid without spilling it during the motion of the mechanism.

PROBLEM 3 (40 pts): Design a single-dwell cam to move a follower from 0 to 2" in 60°, fall 2" in 90°, and dwell for the remainder. The total cycle must take 2 seconds.

Using Cycloid Functions:

Region 1:
$$0 \le \theta \le 60^{\circ}$$
, $0 \le \theta \le \frac{\pi}{3}$, $\beta_1 = 60^{\circ} = \frac{\pi}{3}$, $0 \le \frac{\theta_1}{\theta_1} \le 1$, $0 \le \theta_1 \le 60^{\circ}$, $0 \le \theta_1 \le \frac{\pi}{3}$

$$s = h \left[\frac{\theta_{1}}{\beta_{1}} - \frac{1}{2 \cdot \pi} \cdot \sin \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) \right] = 2in \cdot \left[\frac{\theta_{1}}{\beta_{1}} - \frac{1}{2 \cdot \pi} \cdot \sin \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) \right] = \left[2in \cdot \left[\frac{3 \cdot \theta_{1}}{\pi} - \frac{1}{2 \cdot \pi} \cdot \sin \left(6 \cdot \theta_{1} \right) \right] \right]$$

$$v = \frac{h}{\beta_{1}} \left[1 - \cos \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) \right] = \frac{6}{\pi} \cdot \frac{in}{rad} \left[1 - \cos \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) \right] = \left[\frac{6}{\pi} \cdot \frac{in}{rad} \left[1 - \cos \left(6 \cdot \theta_{1} \right) \right] \right]$$

$$a = \frac{2 \cdot \pi \cdot h}{\beta_{1}^{2}} \cdot \sin \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) = \frac{36}{\pi} \cdot \frac{in}{rad^{2}} \cdot \sin \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) = \left[\frac{36}{\pi} \cdot \frac{in}{rad^{2}} \cdot \sin \left(6 \cdot \theta_{1} \right) \right]$$

$$j = \frac{4 \cdot \pi^{2} \cdot h}{\beta_{1}^{3}} \cdot \cos \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) = \frac{216}{\pi} \cdot \frac{in}{rad^{3}} \cdot \cos \left(2\pi \cdot \frac{\theta_{1}}{\beta_{1}} \right) = \left[\frac{216}{\pi} \cdot \frac{in}{rad^{3}} \cdot \cos \left(6 \cdot \theta_{1} \right) \right]$$

Region 2: $60 \le \theta \le 150^{\circ}$, $\frac{\pi}{3} \le \theta \le \frac{5\pi}{6}$, $\beta_2 = 90^{\circ} = \frac{\pi}{2}$, $0 \le \frac{\theta_2}{\beta_2} \le 1$, $0 \le \theta_2 \le 90^{\circ}$, $0 \le \theta_2 \le \frac{\pi}{2}$

$$\begin{split} s &= h - h \left[\frac{\theta_2}{\beta_2} - \frac{1}{2 \cdot \pi} \cdot \sin \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) \right] = 2in - 2in \cdot \left[\frac{\theta_2}{\beta_2} - \frac{1}{2 \cdot \pi} \cdot \sin \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) \right] = \left[2in - 2in \cdot \left[\frac{2 \cdot \theta_2}{\pi} - \frac{1}{2 \cdot \pi} \cdot \sin \left(4 \cdot \theta_2 \right) \right] \right] \\ v &= -\frac{h}{\beta_2} \left[1 - \cos \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) \right] = -\frac{4}{\pi} \cdot \frac{in}{rad} \left[1 - \cos \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) \right] = \left[-\frac{4}{\pi} \cdot \frac{in}{rad} \left[1 - \cos \left(4 \cdot \theta_2 \right) \right] \right] \\ a &= -\frac{2 \cdot \pi \cdot h}{\beta_2^2} \cdot \sin \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) = -\frac{16}{\pi} \cdot \frac{in}{rad^2} \cdot \sin \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) = \left[-\frac{16}{\pi} \cdot \frac{in}{rad^2} \cdot \sin \left(4 \cdot \theta_2 \right) \right] \\ j &= -\frac{4 \cdot \pi^2 \cdot h}{\beta_2^3} \cdot \cos \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) = -\frac{64}{\pi} \cdot \frac{in}{rad^3} \cdot \cos \left(2\pi \cdot \frac{\theta_2}{\beta_2} \right) = -\frac{64}{\pi} \cdot \frac{in}{rad^3} \cdot \cos \left(4 \cdot \theta_2 \right) \end{split}$$

 $\text{Region 3: } 150 \leq \boldsymbol{\theta} \leq 360^{\circ}, \quad \frac{5\pi}{6} \leq \boldsymbol{\theta} \leq 2\pi, \quad \boldsymbol{\beta}_{3} = 210^{\circ} = \frac{7\pi}{6}, \quad 0 \leq \frac{\boldsymbol{\theta}_{3}}{\boldsymbol{\beta}_{3}} \leq 1, \quad 0 \leq \boldsymbol{\theta}_{3} \leq 210^{\circ}, \quad 0 \leq \boldsymbol{\theta}_{3} \leq \frac{7\pi}{6}$

$$s = 0$$

v = 0

a = 0

j = 0

Using 3-4-5 Polynomial Functions, starting with a function of the form

$$s(\frac{\theta}{\beta}) = C_0 + C_1 \cdot \left(\frac{\theta}{\beta}\right) + C_2 \cdot \left(\frac{\theta}{\beta}\right)^2 + C_3 \cdot \left(\frac{\theta}{\beta}\right)^3 + C_4 \cdot \left(\frac{\theta}{\beta}\right)^4 + C_5 \cdot \left(\frac{\theta}{\beta}\right)^5$$

$$\text{Region 1: } 0 \leq \pmb{\theta} \leq 60^{\circ}, \quad 0 \leq \pmb{\theta} \leq \frac{\pi}{3}, \quad \pmb{\beta}_1 = 60^{\circ} = \frac{\pi}{3}, \quad 0 \leq \frac{\pmb{\theta}_1}{\pmb{\beta}_1} \leq 1, \quad 0 \leq \pmb{\theta}_1 \leq 60^{\circ}, \quad 0 \leq \pmb{\theta}_1 \leq \frac{\pi}{3}$$

$$\mathbf{\theta}_1 = 0, \quad \frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} = 0 \quad \Rightarrow \quad s(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} = 0) = 0 \text{ in, } v(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} = 0) = 0 \frac{in}{rad}, \ a(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} = 0) = 0 \frac{in}{rad^2}$$

(The above BC are used to determine that $C_0 = C_1 = C_2 = 0$.)

$$\theta_1 = 60 = \frac{\pi}{3}$$
 \Rightarrow $s(\frac{\theta_1}{\beta_1} = 1) = 2 in, v(\frac{\theta_1}{\beta_1} = 1) = 0 \frac{in}{rad}, a(\frac{\theta_1}{\beta_1} = 1) = 0 \frac{in}{rad^2}$

$$s(\frac{\mathbf{e}_1}{\mathbf{p}_1} = 1) = 2 \text{ in } = C_3 \cdot \left(\frac{\mathbf{e}_1}{\mathbf{p}_1}\right)^3 + C_4 \cdot \left(\frac{\mathbf{e}_1}{\mathbf{p}_1}\right)^4 + C_5 \cdot \left(\frac{\mathbf{e}_1}{\mathbf{p}_1}\right)^5 \quad \Rightarrow \quad 2 \text{ in } = C_3 + C_4 + C_5$$

$$v(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} = 1) = 0 \cdot \frac{in}{rad} = \frac{1}{\mathbf{\beta}} \left[3 \cdot C_3 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^2 + 4 \cdot C_4 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^3 + 5 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^4 \right] \quad \Rightarrow \quad 0 \cdot \frac{in}{rad} = 3 \cdot C_3 + 4 \cdot C_4 + 5 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^4 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta$$

$$a(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} = 1) = 0 \cdot \frac{in}{rad^2} = \frac{1}{\mathbf{\theta}^2} \left[6 \cdot C_3 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^2 + 12 \cdot C_4 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^3 + 20 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^4 \right] \quad \Rightarrow \quad 0 \cdot \frac{in}{rad^2} = 6 \cdot C_3 + 12 \cdot C_4 + 20 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right)^4 = 0 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_1}{\mathbf{\beta}_1} \right$$

Solving the three equations simultaneously results in $C_3=20$ in, $C_4=-30$ in, and $C_5=12$ in. For this region,

$$\begin{split} s(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}) &= C_{3} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{3} + C_{4} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{4} + C_{5} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{5} = \boxed{20in \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{3} - 30in \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{4} + 12in \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{5}} \\ v(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}) &= \frac{1}{\mathbf{\beta}_{1}} \left[3 \cdot C_{3} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{2} + 4 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{3} + 5 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{4} \right] \\ &= \frac{1}{\mathbf{\pi}} \cdot \frac{in}{rad} \left[60 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{2} - 120 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{3} + 60 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\beta}_{1}}\right)^{4} \right] \\ &= \frac{1}{\mathbf{\theta}_{1}^{2}} \left[6 \cdot C_{3} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right) + 12 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right)^{2} + 20 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right)^{3} \right] \\ &= \frac{9}{\mathbf{\pi}^{2}} \cdot \frac{in}{rad} \left[120 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right) - 360 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right)^{2} + 240 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right)^{3} \right] \\ &= \frac{1}{\mathbf{\theta}_{1}^{3}} \left[6 \cdot C_{3} + 36 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right) + 60 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right)^{2} \right] \\ &= \frac{27}{\mathbf{\pi}^{3}} \cdot \frac{in}{rad} \left[120 - 1080 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right) + 720 \cdot \left(\frac{\mathbf{\theta}_{1}}{\mathbf{\theta}_{1}}\right)^{2} \right] \end{aligned}$$

Region 2:
$$60 \le \theta \le 150^{\circ}$$
, $\frac{\pi}{3} \le \theta \le \frac{5\pi}{6}$, $\beta_2 = 90^{\circ} = \frac{\pi}{2}$, $0 \le \frac{\theta_2}{\beta_2} \le 1$, $0 \le \theta_2 \le 90^{\circ}$, $0 \le \theta_2 \le \frac{\pi}{2}$

$$\theta_2 = 0$$
, $\frac{\theta_2}{\beta_2} = 0$ $\Rightarrow s(\frac{\theta_2}{\beta_2} = 0) = 2 in$, $v(\frac{\theta_2}{\beta_2} = 0) = 0 \frac{in}{rad}$, $a(\frac{\theta_2}{\beta_2} = 0) = 0 \frac{in}{rad^2}$

(The above BC are used to determine $C_0 = 2in$, $C_1 = 0$, and $C_2 = 0$.)

$$\mathbf{\theta}_2 = 90 = \frac{\pi}{2}$$
 \Rightarrow $s(\frac{\mathbf{\theta}_2}{\mathbf{B}_1} = 1) = 2 in, v(\frac{\mathbf{\theta}_2}{\mathbf{B}_1} = 1) = 0 \frac{in}{rad}, a(\frac{\mathbf{\theta}_2}{\mathbf{B}_2} = 1) = 0 \frac{in}{rad}$

$$s(\frac{\theta_2}{\theta_2} = 1) = 0$$
 in $= 2in + C_3 \cdot (\frac{\theta_2}{\theta_2})^3 + C_4 \cdot (\frac{\theta_2}{\theta_2})^4 + C_5 \cdot (\frac{\theta_2}{\theta_2})^5 \implies -2$ in $= C_3 + C_4 + C_5$

$$v(\frac{\mathbf{e}_2}{\mathbf{\beta}_2} = 1) = 0 \cdot \frac{in}{rad} = \frac{1}{\mathbf{\beta}} \left[3 \cdot C_3 \cdot \left(\frac{\mathbf{e}_2}{\mathbf{\beta}_2} \right)^2 + 4 \cdot C_4 \cdot \left(\frac{\mathbf{e}_2}{\mathbf{\beta}_2} \right)^3 + 5 \cdot C_5 \cdot \left(\frac{\mathbf{e}_2}{\mathbf{\beta}_2} \right)^4 \right] \quad \Rightarrow \quad 0 \cdot \frac{in}{rad} = 3 \cdot C_3 + 4 \cdot C_4 + 5 \cdot C_5 \cdot \left(\frac{\mathbf{e}_2}{\mathbf{\beta}_2} \right)^4 \cdot C_5 \cdot \left(\frac{\mathbf{e}_2}{\mathbf{\beta$$

$$a(\frac{\theta_{2}}{\beta_{2}} = 1) = 0 \frac{in}{rad^{2}} = \frac{1}{\beta^{2}} \left[6 \cdot C_{3} \cdot \left(\frac{\theta_{2}}{\beta_{2}} \right)^{2} + 12 \cdot C_{4} \cdot \left(\frac{\theta_{2}}{\beta_{2}} \right)^{3} + 20 \cdot C_{5} \cdot \left(\frac{\theta_{2}}{\beta_{2}} \right)^{4} \right] \implies 0 \frac{in}{rad^{2}} = 6 \cdot C_{3} + 12 \cdot C_{4} + 20 \cdot C_{5}$$

Solving the three equations simultaneously results in C_3 =-20in, C_4 =30in, and C_5 =-12in. For this region,

$$\begin{split} s(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}) &= 2in + C_3 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^3 + C_4 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^4 + C_5 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^5 = \boxed{2in - 20in \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^3 + 30in \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^4 - 12in \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^5} \\ v(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}) &= \frac{1}{\mathbf{p}_2} \left[3 \cdot C_3 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^2 + 4 \cdot C_4 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^3 + 5 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^4 \right] = \boxed{\frac{2}{\pi} \cdot \frac{in}{rad}} \left[-60 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^2 + 120 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^3 - 60 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^4 \right] \\ a(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}) &= \frac{1}{\mathbf{p}_2^2} \left[6 \cdot C_3 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right) + 12 \cdot C_4 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^2 + 20 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^3 \right] = \boxed{\frac{4}{\pi^2} \cdot \frac{in}{rad}} \left[-120 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right) + 360 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^2 - 240 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^3 \right] \\ j(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}) &= \frac{1}{\mathbf{p}_2^2} \left[6 \cdot C_3 + 36 \cdot C_4 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right) + 80 \cdot C_5 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^2 \right] = \boxed{\frac{8}{\pi^3} \cdot \frac{in}{rad}} \left[-120 + 1080 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right) - 720 \cdot \left(\frac{\mathbf{\theta}_2}{\mathbf{p}_2}\right)^2 \right] \end{aligned}$$

Region 3: $150 \le \theta \le 360^{\circ}$, $\frac{5\pi}{6} \le \theta \le 2\pi$, $\beta_3 = 210^{\circ} = \frac{7\pi}{6}$, $0 \le \frac{\theta_3}{\beta_3} \le 1$, $0 \le \theta_3 \le 210^{\circ}$, $0 \le \theta_3 \le \frac{7\pi}{6}$ s = 0, v = 0, a = 0, j = 0

Using 4-5-6-7 Polynomial Functions, starting with a function of the form

$$s(\frac{\mathbf{\theta}}{\mathbf{\beta}}) = C_0 + C_1 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right) + C_2 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^2 + C_3 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^3 + C_4 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^4 + C_5 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^5 + C_6 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^6 + C_7 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^7 + C_8 \cdot \left(\frac{\mathbf{\theta}}{\mathbf{\beta}}\right)^8 + C_8 \cdot$$

Region 1: $0 \le \theta \le 60^{\circ}$, $0 \le \theta \le \frac{\pi}{3}$, $\beta_1 = 60^{\circ} = \frac{\pi}{3}$, $0 \le \frac{\theta_1}{\beta_1} \le 1$, $0 \le \theta_1 \le 60^{\circ}$, $0 \le \theta_1 \le \frac{\pi}{3}$

$$\theta_1 = 0, \quad \frac{\theta_1}{\beta_1} = 0 \quad \Rightarrow \quad s(\frac{\theta_1}{\beta_1} = 0) = 0 \text{ in, } v(\frac{\theta_1}{\beta_1} = 0) = 0 \frac{in}{rad}, \quad a(\frac{\theta_1}{\beta_1} = 0) = 0 \frac{in}{rad^2}, \quad j(\frac{\theta_1}{\beta_1} = 0) = 0 \frac{in}{rad^2}$$

(The above BC are used in determining that $C_0 = C_1 = C_2 = C_3 = 0$.)

$$\begin{split} & \theta_{1} = 60 = \frac{\pi}{3} \quad \Rightarrow \quad s(\frac{\theta_{1}}{\beta_{1}} = 1) = 2 \ in, \ v(\frac{\theta_{1}}{\beta_{1}} = 1) = 0 \ \frac{in}{rad}, \ a(\frac{\theta_{1}}{\beta_{1}} = 1) = 0 \ \frac{in}{rad^{2}}, \ j(\frac{\theta_{1}}{\beta_{1}} = 1) = 0 \ \frac{in}{rad^{3}} \\ & s(\frac{\theta_{1}}{\beta_{1}} = 1) = 2 \ in = C_{4} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} + C_{5} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{5} + C_{6} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{6} + C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{7} \quad \Rightarrow \quad 2 \ in = C_{4} + C_{5} + C_{6} + C_{7} \\ & v(\frac{\theta_{1}}{\beta_{1}} = 1) = 0 \ \frac{in}{rad} = \frac{1}{\beta} \left[4 \cdot C_{4} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{3} + 5 \cdot C_{5} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} + 6 \cdot C_{6} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{5} + 7 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{6} \right] \quad \Rightarrow \quad 0 \ in = 4 \cdot C_{4} + 5 \cdot C_{5} + 6 \cdot C_{6} + 7 \cdot C_{7} \\ & a(\frac{\theta_{1}}{\beta_{1}} = 1) = 0 \ \frac{in}{rad^{2}} = \frac{1}{\beta^{2}} \left[12 \cdot C_{4} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{2} + 20 \cdot C_{5} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{3} + 30 \cdot C_{6} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} + 42 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{5} \right] \quad \Rightarrow \quad 0 \ in = 12 \cdot C_{4} + 20 \cdot C_{5} + 30 \cdot C_{6} + 42 \cdot C_{7} \\ & j(\frac{\theta_{1}}{\beta_{1}} = 1) = 0 \ \frac{in}{rad^{2}} = \frac{1}{\beta^{3}} \left[24 \cdot C_{4} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right) + 60 \cdot C_{5} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{2} + 120 \cdot C_{6} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{3} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_{4} + 60 \cdot C_{5} + 120 \cdot C_{6} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{3} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_{4} + 60 \cdot C_{5} + 120 \cdot C_{6} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{3} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_{4} + 60 \cdot C_{5} + 120 \cdot C_{6} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{3} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_{4} + 60 \cdot C_{5} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} + 210 \cdot C_{7} \cdot \left(\frac{\theta_{1}}{\beta_{1}}\right)^{4} +$$

Solving the three equations simultaneously results in C_4 =70in, C_5 =-168in, C_6 =140in, and C_7 =-40in. For this region,

$$\begin{split} s(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}) &= C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{4} + C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{5} + C_{6} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{6} + C_{7} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{7} = \\ \hline 70in \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{4} - 168in \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{5} + 140in \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{6} - 40in \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{7} \\ v(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}) &= \frac{1}{\mathbf{\beta}_{\mathrm{i}}} \left[4 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} + 5 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{4} + 6 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{5} + 7 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{6} \right] \\ &= \frac{3}{\pi} \cdot \frac{in}{rad} \left[280 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} - 840 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{4} + 840 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{5} - 280 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{6} \right] \\ &= a(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}) = \frac{1}{\mathbf{\theta}_{\mathrm{i}}^{2}} \left[12 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{2} + 20 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} + 30 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{4} + 42 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{5} \right] \\ &= \frac{9}{\pi^{2}} \cdot \frac{in}{rad} \left[840 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{2} - 3360 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} + 4200 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{5} \right] \\ &= \frac{1}{\mathbf{\theta}_{\mathrm{i}}^{3}} \left[36 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right) + 60 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{2} + 120 \cdot C_{4} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} + 210 \cdot C_{5} \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{4} \right] \\ &= \frac{27}{\pi^{3}} \cdot \frac{in}{rad} \left[1680 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right) - 10080 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{2} + 16800 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} - 8400 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} \right] \\ &= \frac{27}{\pi^{3}} \cdot \frac{in}{rad} \left[1680 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right) - 10080 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} + 16800 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right)^{3} \right] \\ &= \frac{27}{\pi^{3}} \cdot \frac{in}{rad} \left[1680 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right) - 10080 \cdot \left(\frac{\mathbf{\theta}_{\mathrm{i}}}{\mathbf{\beta}_{\mathrm{i}}}\right) - 10080 \cdot \left$$

$$\text{Region 2: } 60 \leq \boldsymbol{\theta} \leq 150^{\circ}, \quad \frac{\pi}{3} \leq \boldsymbol{\theta} \leq \frac{5\pi}{6}, \quad \boldsymbol{\beta}_{2} = 90^{\circ} = \frac{\pi}{2}, \quad 0 \leq \frac{\boldsymbol{\theta}_{2}}{\boldsymbol{\beta}_{2}} \leq 1, \quad 0 \leq \boldsymbol{\theta}_{2} \leq 90^{\circ}, \quad 0 \leq \boldsymbol{\theta}_{2} \leq \frac{\pi}{2}$$

$$\theta_2 = 0, \quad \frac{\theta_2}{\beta_2} = 0 \quad \Rightarrow \quad s(\frac{\theta_2}{\beta_2} = 0) = 2 \ in, \ v(\frac{\theta_2}{\beta_2} = 0) = 0 \frac{in}{rad}, \ a(\frac{\theta_2}{\beta_2} = 0) = 0 \frac{in}{rad^2}, \ j(\frac{\theta_2}{\beta_2} = 0) = 0 \frac{in}{rad^3}$$

(The above BC are used in determining that $C_0 = 2in$, $C_1 = C_2 = C_3 = 0$.)

$$\begin{split} & \theta_2 = 60 = \frac{\pi}{3} \quad \Rightarrow \quad s(\frac{\theta_2}{\beta_2} = 1) = 0 \ in, \ v(\frac{\theta_2}{\beta_2} = 1) = 0 \ \frac{in}{rad}, \ a(\frac{\theta_2}{\beta_2} = 1) = 0 \ \frac{in}{rad^2}, \ j(\frac{\theta_2}{\beta_2} = 1) = 0 \ \frac{in}{rad^3} \\ & s(\frac{\theta_2}{\beta_2} = 1) = 0 \ in = 2in + C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 + C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^5 + C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^6 + C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^7 \quad \Rightarrow \quad -2 \ in = C_4 + C_5 + C_6 + C_7 \\ & v(\frac{\theta_2}{\beta_2} = 1) = 0 \ \frac{in}{rad} = \frac{1}{\beta_2} \left[4 \cdot C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 5 \cdot C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 + 6 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^5 + 7 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^6 \right] \quad \Rightarrow \quad 0 \ in = 4 \cdot C_4 + 5 \cdot C_5 + 6 \cdot C_6 + 7 \cdot C_7 \\ & a(\frac{\theta_2}{\beta_2} = 1) = 0 \ \frac{in}{rad^2} = \frac{1}{\beta_2^2} \left[12 \cdot C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right)^2 + 20 \cdot C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 30 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 + 42 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^5 \right] \quad \Rightarrow \quad 0 \ in = 12 \cdot C_4 + 20 \cdot C_5 + 30 \cdot C_6 + 42 \cdot C_7 \\ & j(\frac{\theta_2}{\beta_2} = 1) = 0 \ \frac{in}{rad^2} = \frac{1}{\beta_2^2} \left[24 \cdot C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right) + 60 \cdot C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^2 + 120 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 210 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_4 + 60 \cdot C_5 + 120 \cdot C_6 + 210 \cdot C_7 \\ & \frac{\theta_2}{\beta_2} = 1 \right] = 0 \ \frac{in}{rad^2} = \frac{1}{\beta_2^2} \left[24 \cdot C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right) + 60 \cdot C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^2 + 120 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 210 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_4 + 60 \cdot C_5 + 120 \cdot C_6 + 210 \cdot C_7 \\ & \frac{\theta_2}{\beta_2} = 1 \right] = 0 \ \frac{in}{rad^2} = \frac{1}{\beta_2^2} \left[24 \cdot C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right) + 60 \cdot C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^2 + 120 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 210 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_4 + 60 \cdot C_5 + 120 \cdot C_6 + 210 \cdot C_7 \\ & \frac{\theta_2}{\beta_2} = 1 \right] = 0 \ \frac{in}{rad^2} = \frac{1}{\beta_2^2} \left[24 \cdot C_4 \cdot \left(\frac{\theta_2}{\beta_2}\right) + 60 \cdot C_5 \cdot \left(\frac{\theta_2}{\beta_2}\right)^2 + 120 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 210 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_4 + 60 \cdot C_5 + 120 \cdot C_6 \cdot \left(\frac{\theta_2}{\beta_2}\right)^3 + 120 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 \right] \quad \Rightarrow \quad 0 \ in = 24 \cdot C_7 + 60 \cdot C_7 \cdot \left(\frac{\theta_2}{\beta_2}\right)^4 + 120 \cdot C_7 \cdot \left(\frac{$$

Solving the three equations simultaneously results in C_4 =-70in, C_5 =168in, C_6 =-140in, and C_7 =40in. For this region,

$$\begin{split} s(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}) &= 2in + C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} + C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} + C_{6} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{6} + C_{7} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{7} = \\ \hline 2in - 70in \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} + 168in \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} - 140in \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{6} + 40in \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{7} \\ \hline v(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}) &= \frac{1}{\boldsymbol{\beta}_{i}} \left[4 \cdot C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 5 \cdot C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} + 6 \cdot C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} + 7 \cdot C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{6} \right] \\ = \frac{2}{\pi} \cdot \frac{in}{rad} \left[-280 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 840 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} + 280 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} \right] \\ = a(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}) &= \frac{1}{\boldsymbol{\beta}_{i}^{2}} \left[12 \cdot C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{2} + 20 \cdot C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 30 \cdot C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} + 42 \cdot C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} \right] \\ &= \frac{4}{\pi^{2}} \cdot \frac{in}{rad} \left[-840 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{2} + 3360 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} - 4200 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} + 1680 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{5} \right] \\ &= \frac{1}{\beta^{3}} \left[36 \cdot C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right) + 60 \cdot C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{2} + 120 \cdot C_{4} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 210 \cdot C_{5} \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} \right] \\ &= \frac{8}{\pi^{3}} \cdot \frac{in}{rad} \left[-1680 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right) + 10080 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{2} - 16800 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 8400 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} \right] \\ &= \frac{8}{\pi^{3}} \cdot \frac{in}{rad} \left[-1680 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right) + 10080 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 8400 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{4} \right] \right] \\ &= \frac{8}{\pi^{3}} \cdot \frac{in}{rad} \left[-1680 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right) + 10080 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 8400 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} + 8400 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} \right] \\ &= \frac{8}{\pi^{3}} \cdot \frac{in}{rad} \left[-1680 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right) + 10080 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right) + 10080 \cdot \left(\frac{\boldsymbol{\theta}_{i}}{\boldsymbol{\beta}_{i}}\right)^{3} \right] \\ &= \frac{8}{\pi^$$

Region 3:
$$150 \le \theta \le 360^{\circ}$$
, $\frac{5\pi}{6} \le \theta \le 2\pi$, $\beta_3 = 210^{\circ} = \frac{7\pi}{6}$, $0 \le \frac{\theta_3}{\beta_3} \le 1$, $0 \le \theta_3 \le 210^{\circ}$, $0 \le \theta_3 \le \frac{7\pi}{6}$ $s = 0$, $v = 0$, $a = 0$, $j = 0$

As a student at Union College, I am part of a community that values intellectual effort, curiosity and discovery. I understand that in order to truly claim my educational and academic achievements, I am obligated to act with academic integrity. Therefore, I affirm that I carried out the work on this exam with full academic honesty, and I rely on my fellow students to do the same.

For this exam I understand that:

- 1. I **must** work alone in writing out the answers to this exam.
- 2. I **cannot** copy solutions to these problems from any person or resource.
- 3. I **cannot** use any electronic resources, other than the program I wrote as part of this class, to assist me in the solution to the questions on this exam.
- 4. I **can** use one formula sheet (both sides) that I prepared as a reference for this exam, I **must** staple this sheet to the back of my exam, and this sheet **cannot** contain any solutions to problems.

Signature:			_
Print Name:			
Assignment:			
Due Date:			

PROBLEM 1 (30 pts): A box sits on top of the base shown in Position 1 and needs to be moved to Position 2, and then to Position 3. (Guess β_2 =-50, β_3 =-100, γ_2 =-50, and γ_3 =-80)

Union College Mechanical Engineering

1a. Using the program that you developed in class, perform an analytical synthesis to design a linkage that will move the box from positions 1 to 2 to 3, and has ground pivots on the base. Show all work need to calculate the parameters used in your computer model below. Staple a copy of the computer solution directly after this page.

-3-

1b. Draw the final synthesized mechanism to scale in Position 1.

PROBLEM 2 (30 pts): A container of liquid sit on top of a base (A_1B_1) and is required to move to the position on the lower step (A_3B_3) .

Union College Mechanical Engineering

2a. Using the program that you developed in class, perform an analytical synthesis to design a linkage that will move the box from the top positions (A_1B_1) to the bottom position (A_3B_3) , and has ground pivots on the base. Show all work need to calculate the parameters used in your computer model below. Staple a copy of the computer solution directly after this page.

-6-

2b. Does your linkage design require the base to be modified in any way? Explain. Can it be designed so that the base does not have to be modified? How?

2c. Will the linkage design enable the container to hold a liquid without spilling it as it travels from the upper base position to the lower platform position? Explain. Can the linkage be designed to hold the container in the same position throughout its motion from the upper to lower base? How?

Union College Mechanical Engineering

PROBLEM 3 (40 pts): Design a single-dwell cam to move a follower from 0 to 2" in 60°, fall 2" in 90°, and dwell for the remainder. The total cycle must take 2 seconds.

Exam III

Union College Mechanical Engineering Exam III

Union College Mechanical Engineering