MATLAB EXPO 2017

MATLAB® and Simulink® 最新情報

R2017b R2017a

MathWorks Japan アプリケーションエンジニアリング部 宅島 章夫

Platform Productivity

Getting your work done faster

Workflow Depth

Support for your entire workflow

Application Breadth

Products for the work you do

Platform Productivity

Getting your work done faster

MATLAB Live Editor

Create scripts that not only capture your code – they tell a story you can share with others. (introduced in R2016a)

- Edit figures interactively
- Code with automated, contextual hints for arguments, property values, and alternative syntaxes
- Export live scripts to LaTeX format
- Display high-resolution plots in PDF output

App Designer

R2017a R2017b

Create professional apps without having to be a professional software developer. (introduced in R2016a)

- Expanded support for 2-D and 3-D plots
- New component for app menus
- Enhancements for packaging and sharing
- Zoom and pan plots in apps

Apps Simplify Modeling and Analysis

These interactive applications automate common technical computing tasks

- Regression Learner app
 - Train regression models using supervised machine learning
- Analog Input Recorder app
 - Acquire and visualize analog input signals
- Wavelet Signal Denoiser app
 - Visualize and denoise time series data

Preprocessing and Analyzing Data Just Got Easier R2017 R2017 R2017 R2017

Spend less time preparing your data and more time analyzing it

- Detect and replace outliers with isoutlier and filloutliers
- Smooth noisy data with filtering or local regression using smoothdata
- Detect local minima and maxima using islocalmin and islocalmax
- Detect abrupt changes in data with ischange

Working with Big Data Just Got Easier

R2016b R2017a R2017b

Use tall arrays to manipulate and analyze data that is too big to fit in memory

- Tall arrays let you use familiar MATLAB functions and syntax to work with big datasets, even if they don't fit in memory
- Support for hundreds of functions in MATLAB and Statistics and Machine Learning Toolbox
- Works with Spark + Hadoop Clusters

Working with Big Data Just Got Easier in Simulink Too

Stream large input signals from MATfiles without loading the data into memory

- Provides a big data workflow for Simulink simulations
- Use big data in Simulink logging and loading
- Especially useful when running many simulations where data retrieved is too large to fit into memory

Create Your Models Faster

Use automatic port creation and reduced bus wiring

- Add inports and outports to blocks when routing signals
- Quickly group signals as buses and automatically create bus element ports for fewer signal lines

Create Your Stateflow Charts Faster

R2017a R2017b

Use smart editing cues and automatic layout to create clean diagrams quickly

- Learn the Stateflow language quicker
- Recall syntax when returning to Stateflow
- Easier to create concise, readable diagrams

Simulate your Model Faster

R2017a R2017b

Use the new parsim command to speed up your simulations

- Directly run multiple parallel simulations from the parsim command
- Monitor simulation status and progress in the Simulation Manager
- Especially useful for Monte Carlo simulations and Design of Experiments

Simulink Project Upgrade

Easily update all the models in your Simulink Project to the latest release

- Avoid the manual process of upgrading one model at a time
- Simulink Project upgrade is an easy to use UI to automate the upgrade process of all the models in a Simulink project
- Fixes are automatically applied and a report gets generated

Code Compatibility Report

- Tool to help upgrade code to a newer release
- Identifies potential compatibility issues
- Includes hundreds of checks for incompatibilities, errors, and warnings

Platform Productivity

Getting your work done faster

Workflow Depth

Support for your entire workflow

Integrate MATLAB Analytics into Enterprise Applications

- Production deployment of MATLAB programs without recoding or creating custom infrastructure
- Scalable performance and management of MATLAB analytics
- Lightweight client library for secure access to analytics from enterprise applications
- Centralized analytic service accessible via the RESTful JSON interface or from .NET, Java, C/C++, and Python environments

Web-based management dashboard for IT configuration and control R2017b

PID Auto-tuning

Implement an embedded PID auto-tuning algorithm

- Automatically tune PID controller gains in real time against a physical plant
- No model of plant dynamics required
- Deploy the auto-tuning algorithm to embedded software using automatic code generation

Verification and Validation

New products for more flexibility to align products based on usage

- Simulink Requirements requirements authoring, editing, trace, management
- Simulink Coverage model and code coverage analysis
- Simulink Check static checking, metrics, clone detection

Generate CUDA Code for Implementation on NVIDIA GPU's R2017b

- Generate optimized CUDA code from MATLAB code for deep learning, radar, embedded vision, and autonomous systems
- Generated CUDA code is portable across NVIDIA GPUs – from desktop to servers to embedded
- Use generated CUDA code within MATLAB to accelerate computationally intensive portions of your MATLAB code

SURF feature extraction

700x speedup

Efficient Code Generation

R2017a

Improve code quality with clone detection and dynamic memory allocation

- Refactor repeating library patterns and subsystem clones
 - Reduces redundancy
 - Improves reusability
- Generate C code that uses dynamic memory allocation from MATLAB Function blocks
 - Allocate memory as needed at runtime


```
118
       /* MATLAB Function: '<Root>/MATLAB Function' */
119
       /* MATLAB Function 'MATLAB Function': '<S1>:1' */
120
       if (!mymdl DW.p not empty) {
121
         /* '<S1>:1:4' */
122
123
         k = mymdl DW.p->size[0] * mymdl DW.p->size[1];
124
         mymdl DW.p->size[0] = 1;
         mymdl DW.p->size[1] = 0;
125
126
         mymdl emxEnsureCapacity((emxArray common mymdl T *)mymdl DW.p, k, (int
127
           sizeof(real T));
128
         mymdl_DW.p_not_empty = false;
129
```


Platform Productivity

Getting your work done faster

Workflow Depth

Support for your entire workflow

Application Breadth

Products for the work you do

Support for the Latest Wireless Standards

Generate IEEE 802.11ad compliant waveforms and simulate 3GPP 5G radio technologies

- IEEE 802.11ad is a new Wi-Fi standard intended for high data rate short range communication
 - e.g., streaming video between a phone and a TV
- A new 5G library is available to explore the behavior and performance of new proposed 5G radio technologies
- LTE HDL Toolbox is a new product for modeling LTE communications subsystems for FPGAs and ASICs

R2017a R2017b 802.11b/g/n 802.11a/ac 2.4 GHz 900 MHz

802.11ah

Machine Learning

"Learn" information directly from data without assuming a predetermined equation as a model

- Regression Learner app
 - Choose from multiple algorithms
 - Train and validate multiple models
 - Assess model performance, compare results, and choose the best model
- Code generation
 - Generate C code for predictive models that can be deployed directly to hardware devices

Text Analytics

Analyze and model text data

- Text extraction from PDF and Microsoft Word files
- Text preprocessing and normalization
- TF-IDF and word frequency statistics
- Machine learning algorithms, including Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA)
- Word-embedding training, and pretrained model import with word2vec, FastText, and GloVe
- Word cloud and text scatter plots

Deep Learning

Design, build, and visualize convolutional neural networks

- Access the latest models
 - GoogLeNet, ResNet, VGG-16, and VGG-19
- Import pretrained models from:
 - Caffe, TensorFlow/Keras
- Design and build your own models
 - R-CNN, Fast R-CNN, and Faster R-CNN algorithms
- Use NVIDIA GPUs to train your models
- Automatically generate high-performance CUDA code for embedded deployment (requires GPU Coder)

Deep Learning

R2017a R2017b

- Use the Image Labeler app to label pixels and regions for semantic segmentation
- Monitor training progress with plots for accuracy, loss, validation metrics, and more
- Visualize and debug deep learning models

Detection and Localization Using Deep Learning

R2017a

Regions with Convolutional Neural Network Features (R-CNN)

Semantic Segmentation using SegNet

CamVid Database: Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in video: A high-definition ground truth database." *Pattern Recognition Letters* Vol 30, Issue 2, 2009, pp 88-97.

Autonomous Driving Systems

Design, simulate, and test ADAS and autonomous driving systems

- Algorithm development
 - Sensor Fusion
 - Computer Vision
 - Deep learning
- Visualization tools
- Testing and verification
 - Ground Truth Labeling App
 - Traffic scenario generation

Model and simulate automotive powertrain systems

Accelerate your powertrain controls development process

- Simulate engine and controller subsystems, transmission assemblies, battery packs
- Use pre-built conventional, EV, and HEV vehicle models that can be parameterized and customized
- Run fuel economy and performance simulations
- Deploy fast-running models onto HIL systems

Platform Productivity

Getting your work done faster

Workflow Depth

Support for your entire workflow

Application Breadth

Products for the work you do

What's New in MATLAB and Simulink?

Platform Productivity

- Live Editor
- MATLAB Apps
- Big Data
- Modeling enhancements
- Release adoption

Workflow Depth

- Enterprise applications
- Control system design
- Verification and validation
- CUDA code generation
- C code generation enhancement

Application Breadth

- New wireless standards
- Machine learning
- Deep learning
- Autonomous driving
- Powertrain systems

MATLAB EXPO 2017

Thank You