x86 Instruction Encoding Part-2

Lecture # 37

Converting Assembly Language Instructions to Machine Code

- An instruction can be coded with 1 to 6 bytes
- Byte 1 contains three kinds of information:
 - Opcode field (6 bits) specifies the operation such as add, subtract, or move
 - Register Direction Bit (D bit)
 - Tells the register operand in REG field in byte 2 is source or destination operand
 - 1:Data flow to the REG field from R/M
 - 0: Data flow from the REG field to the R/M
 - Data Size Bit (W bit)
 - Specifies whether the operation will be performed on 8-bit or 16-bit data
 - 0:8 bits
 - 1: 16 bits

Byte 2 has two fields:

- Mode field (MOD) 2 bits
- Register field (REG) 3 bits
- Register/memory field (R/M field) 3 bits

REG field is used to identify the register for the first operand

REG	W = 0	W = 1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	СН	BP
110	DH	SI
111	ВН	DI

2 bit Mode Field

CODE	EXPLANATION		
00	Memory Mode, no displacement follows*		
01	Memory Mode, 8-bit displacement follows		
10	Memory Mode, 16-bit displacement follows		
11	Register Mode (no displacement)		

^{*}Except when R/M = 110, then 16-bit displacement follows

3 bit R/M Field

MOD = 11				EFFECTIVE ADDRESS CALCULATION			
R/M	W=0	W = 1	R/M	MOD=00	MOD=01	MOD = 10	
000	AL	AX	000	(BX)+(SI)	(BX) + (SI) + D8	(BX)+(SI)+D16	
001	CL	CX	001	(BX) + (DI)	(BX) + (DI) + D8	(BX)+(DI)+D16	
010	DL	DX	010	(BP) + (SI)	(BP) + (SI) + D8	(BP) + (SI) + D16	
011	BL	BX	011	(BP) + (DI)	(BP) + (DI) + D8	(BP)+(DI)+D16	
100	AH	SP	100	(SI)	(SI) + D8	(SI) + D16	
101	CH	BP	101	(DI)	(DI) + D8	(DI) + D16	
110	DH	SI	110	DIRECT ADDRESS	(BP) + D8	(BP) + D16	
111	вн	DI	111	(BX)	(BX) + D8	(BX)+D16	

CODE	EXPLANATION		
00	Memory Mode, no displacement follows*		
01	Memory Mode, 8-bit displacement follows		
10	Memory Mode, 16-bit displacement follows		
11	Register Mode (no displacement)		

2 bit mode and 3 bit R/M fields together identify the second operand.

^{*}Except when R/M = 110, then 16-bit

Examples

- MOV BL,AL
- Opcode for MOV = 100010
- We'll encode AL so
 - D = 0 (AL source operand)
- W bit = 0 (8-bits)
- MOD = 11 (register mode)
- REG = 000 (code for AL)
- R/M = 011

OPCODE	D	W	MOD	REG	R/M
100010	0	0	11	000	011

DEMOs of Semester Projects (Part # 1)

Basic Android to Arduino two way communication interfacing:

- Using MIT App Inventor 2 for Android Application
- Write Arduino code in C/C++ using Arduino IDE
- Interfacing Bluetooth models with Arduino UNO