FMI, Info, Anul I Logică matematică și computațională

Seminar 1

1 Breviar

1.1 Numărabilitate

Corolarul 1.10. Fie A o mulţime numărabilă şi B o mulţime nevidă cel mult numărabilă. Atunci $A \times B$ şi $A \cup B$ sunt numărabile.

Propoziţia 1.13.

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

1.2 Logica propozițională

Fie $\varphi, \psi \in Form$.

Pentru orice $e:V\to\{0,1\}$, notăm cu $e\vDash\varphi$ (şi spunem că e satisface φ sau e este model pentru φ) dacă $e^+(\varphi)=1$. Notăm cu $\vDash\varphi$ (şi spunem că φ este tautologie) dacă pentru orice $e:V\to\{0,1\}$ avem că $e\vDash\varphi$. Spunem că φ este satisfiabilă dacă există $e:V\to\{0,1\}$ cu $e\vDash\varphi$ și nesatisfiabilă în caz contrar, când nu există $e:V\to\{0,1\}$ cu $e\vDash\varphi$, i.e. pentru orice $e:V\to\{0,1\}$ avem că $e\vDash\varphi$. Notăm $\varphi\vDash\psi$ (şi spunem că din φ se deduce semantic φ sau că φ este consecință semantică a lui φ) dacă pentru orice $e:V\to\{0,1\}$ cu $e\vDash\varphi$ avem $e\vDash\varphi$. Notăm cu $\varphi\sim\psi$ dacă pentru orice $e:V\to\{0,1\}$ avem $e\vDash\varphi$ dacă și numai dacă $e\vDash\psi$, i.e. pentru orice $e:V\to\{0,1\}$ avem $e\vDash\varphi$

2 Exerciții

(S1.1)

- (i) Demonstrați că mulțimea Expr a expresiilor logicii propoziționale este numărabilă.
- (ii) Demonstrați că mulțimea Form a formulelor logicii propoziționale este numărabilă.

Demonstrație:

(i) Avem că $Expr = \bigcup_{n \in \mathbb{N}} Sim^n = \{\lambda\} \cup Sim \cup \bigcup_{n \geq 2} Sim^n = A \cup B$, unde $A = \{\lambda\} \cup Sim$ şi $B = \bigcup_{n \geq 2} Sim^n$. Deoarece $Sim = V \cup \{\neg, \rightarrow, (,)\}$ şi V este numărabilă, obţinem, din Corolarul 1.10, că Sim este numărabilă. Aplicând încă o dată Corolarul 1.10, rezultă că A este numărabilă.

Conform Propoziției 1.13.(iii), Sim^n este numărabilă pentru orice $n \geq 2$. Este evident că $\mathbb{N} \setminus \{0,1\}$ este numărabilă (se poate verifica imediat că $h: \mathbb{N} \setminus \{0,1\} \to \mathbb{N}, \ h(n) = n-2$ este bijecție). Putem aplica Propoziția 1.13.(i) pentru a concluziona că B este cel mult numărabilă. Evident, B este nevidă.

Aplicând din nou Corolarul 1.10, obținem că Expr este numărabilă.

(ii) Cum $Form \subseteq Expr$, iar Expr este numărabilă, rezultă că Form este o mulțime cel mult numărabilă.

Cum $V \subseteq Form$, iar V este infinită, rezultă că Form este numărabilă.

(S1.2) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

(i) $\psi \vDash (\varphi \to \psi)$;

(ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$.

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a \in \{0, 1\}$,

$$1 \to a = a, \qquad a \to 1 = 1,$$

$$0 \to a = 1, \quad a \to 0 = \neg a,$$

$$1 \wedge a = a, \quad 0 \wedge a = 0.$$

- (i) Fie $e: V \to \{0, 1\}$ cu $e^+(\psi) = 1$. Vrem să arătăm că $e^+(\varphi \to \psi) = 1$. Dar: $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1.$
- (ii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că $e^+(\varphi\to(\psi\to\chi)=1 \text{ dacă și numai dacă } e^+(\varphi\wedge\psi\to\chi)=1,$

ceea ce este echivalent cu a arăta că $e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi)$. Observăm că

$$e^{+}(\varphi \to (\psi \to \chi)) = e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)),$$

$$e^{+}(\varphi \land \psi \to \chi) = e^{+}(\varphi) \land e^{+}(\psi) \to e^{+}(\chi),$$

deci trebuie arătat că

$$e^+(\varphi) \rightarrow (e^+(\psi) \rightarrow e^+(\chi)) = (e^+(\varphi) \land e^+(\psi)) \rightarrow e^+(\chi).$$

Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b) $e^+(\varphi) = 1$. Atunci

$$e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)) = 1 \to (e^{+}(\psi) \to e^{+}(\chi)) = e^{+}(\psi) \to e^{+}(\chi),$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \to e^{+}(\chi) = 1 \wedge e^{+}(\psi) \to e^{+}(\chi) = e^{+}(\psi) \to e^{+}(\chi).$$

(S1.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

Demonstraţie:

(i) Fie funcția $e: V \to \{0, 1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 1, & \text{dacă } x = v_2, \\ 0, & \text{altfel.} \end{cases}$$

Atunci:

$$e^+(v_0 \to v_2) = e^+(v_0) \to e^+(v_2) = e(v_0) \to e(v_2) = 0 \to 1 = 1,$$

deci $e \vDash v_0 \to v_2.$

(ii) Fie funcția $e: V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 0, & \text{dacă } x = v_4, \\ 1, & \text{altfel.} \end{cases}$$

Atunci:

$$e^{+}(v_{0} \wedge v_{3} \wedge \neg v_{4}) = e^{+}(v_{0}) \wedge e^{+}(v_{3}) \wedge \neg e^{+}(v_{4})$$

$$= e(v_{0}) \wedge e(v_{3}) \wedge \neg e(v_{4})$$

$$= 1 \wedge 1 \wedge \neg 0$$

$$= 1 \wedge 1 \wedge 1$$

$$= 1,$$

deci $e \vDash v_0 \land v_3 \land \neg v_4$.

(S1.4) Să se demonstreze că, pentru orice formulă φ , $\neg \varphi$ este nesatisfiabilă dacă și numai dacă φ este tautologie.

Demonstrație:

Avem:

 $\neg \varphi \text{ e nesatisfiabilă} \iff \neg \varphi \text{ nu e satisfiabilă} \\ \iff \text{ nu avem că} \ \neg \varphi \text{ e satisfiabilă} \\ \iff \text{ nu avem că există } e: V \rightarrow \{0,1\} \text{ cu } e^+(\neg \varphi) = 1 \\ \iff \text{ pentru orice } e: V \rightarrow \{0,1\}, \ e^+(\neg \varphi) \neq 1 \\ \iff \text{ pentru orice } e: V \rightarrow \{0,1\}, \ e^+(\neg \varphi) = 0 \\ \iff \text{ pentru orice } e: V \rightarrow \{0,1\}, \ \neg e^+(\varphi) = 0 \\ \iff \text{ pentru orice } e: V \rightarrow \{0,1\}, \ e^+(\varphi) = 1 \\ \iff \varphi \text{ este tautologie.}$

(S1.5) Confirmați sau infirmați:

- (i) pentru orice φ , $\psi \in Form$, $\vDash \varphi \land \psi$ dacă şi numai dacă $\vDash \varphi$ şi $\vDash \psi$;
- (ii) pentru orice φ , $\psi \in Form$, $\vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.

Demonstrație:

(i) Este adevărat. Fie φ , $\psi \in Form$. Avem:

$$\begin{split} \vDash \varphi \wedge \psi &\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\varphi \wedge \psi) = 1 \\ &\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\varphi) \wedge e^+(\psi) = 1 \\ &\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\varphi) = 1 \text{ si } e^+(\psi) = 1 \\ &\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\varphi) = 1 \text{ si } \\ &\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\psi) = 1 \\ &\iff \vDash \varphi \text{ si } \vDash \psi. \end{split}$$

(ii) Nu este adevărat! Vom lua $\varphi := v_0$ și $\psi := \neg v_0$.

Luăm $e_0: V \to \{0, 1\}$ ca fiind funcția constantă 0. Atunci $e_0^+(\varphi) = e_0^+(v_0) = e_0(v_0) = 0$. Deci $e_0 \not\vDash \varphi$. Prin urmare, $\not\vDash \varphi$.

Luăm $e_1: V \to \{0,1\}$ ca fiind funcția constantă 1. Atunci $e_1^+(\psi) = e_1^+(\neg v_0) = \neg e_1^+(v_0) = \neg e_1(v_0) = \neg 1 = 0$. Deci $e_1 \not\models \psi$. Prin urmare, $\not\models \psi$.

Fie acum $e: V \to \{0,1\}$ arbitrară. Atunci

$$e^{+}(\varphi \lor \psi) = e^{+}(v_{0} \lor \neg v_{0}) = e^{+}(v_{0}) \lor e^{+}(\neg v_{0}) = e^{+}(v_{0}) \lor \neg e^{+}(v_{0}) = e(v_{0}) \lor \neg e(v_{0}) = 1,$$

deci $e \vDash \varphi \lor \psi$. Prin urmare, avem că $\vDash \varphi \lor \psi$.