QE Semiconductor : Electronic devices (40 points)

Physical Constants

Electronic charge, q=1.6×10⁻¹⁹C

 $\epsilon_0 = 8.85 \times 10^{-14} F/cm$

Relative Dielectric constant of Si $\epsilon_{r,Si}$ =11.8 Relative Dielectric constant of SiO₂ $\epsilon_{r,SiO2}$ =3.9

- 1. (MOSFET) Supposed an ideal nMOSFET is operated at room temperature. Using the square-law results,
 - a) (10 pts) when $V_D>0$ and $V_G-V_D=V_T/2$: derive the I_D equation and sketch the inversion layer and depletion region inside the MOSFET with labeling all parts of the device.
 - **b**) (10 pts) when $V_D>0$ and $V_G-V_D=2V_T$: repeat (a)
- 2. (BJT) Consider a pnp BJT where $I_{Ep}=1mA,~I_{En}=0.01~mA,~I_{Cp}=0.98~mA,$ and $I_{Cn}=0.1~\mu A.$ Calculate
 - a) $(10 \text{ pts}) \gamma \text{ and } I_B$
 - **b**) $(10 \text{ pts}) \beta$