Exercise: Ensembl Fungi whole-genome alignments

Let's look at some of the comparative genomics views in the Location tab.

(a) Find the region 14:1128520-1142558 in *Fusarium solani* and go to the Region in detail page. This region includes four genes we identified from our first BioMart query: *PEP5*, *PDA1*, *ESP3* and *PEP5*.

We can look at individual species comparative genomics tracks in this view by clicking on Configure this page. In the Comparative genomics section turn on all of the available species' alignments in the normal style.

We can now see some pink alignments shown on the display. Alignments to the same chromosome are presented in a single row, and gaps in the alignment are shown by linking blocks. If there are alignments to multiple chromosomes in the aligned species these are represented on different rows.

- (b) Looking at the pink alignment blocks, does this region in *F. verticillioides* align to multiple different chromosomes in the other species?
- (c) Which chromosome(s) does the F. solani ESP3 gene align to in F. verticillioides?

We can see that alignments in this region are quite poor for these species, with alignments spanning different chromosomes. This supports the lack of orthologues between these species.

We can view more detailed alignments in the alignment's text / image and region comparison views. Let's first view a text alignment in this region. Click on Alignments (text) on the left and choose *Fusarium verticillioides* from the drop-down menu.

Because this single chromosome region in *F. solani* aligns to regions that are far spread in other genomes, you need to select a specific block for the alignment, as we cannot display a single sequence alignment from more than one region.

Let's click on Block 2. This takes you to a new page with a sample of the aligned sequence. Then click the button to

Display full alignment. You will see a list of the regions aligned, followed by the sequence alignment. Exons are shown in red. Click on Configure this page, you can turn on the options to view Show conservation regions and Mark alignment start/end. This will add highlights where the sequence matches.

To view an image of the alignments, click on Region comparison in the left-hand navigation panel. This view is like the Region in Detail page as it shows three images of the genome at different scales. You can add multiple species to this view.

Click on the brown Select species or regions button. Choose *Fusarium verticillioides* species by clicking on the name. Close the window.

This page, similar to the region in detail page, shows the chromosome positions first. We can see the location of this alignment on the scaffold in *F. verticillioides*.

Scroll down to the most detailed image.

You can add data to both of these views with the same options you had in the Region in Detail page. Click on Configure this page and look at the top of the menu.

We can view chromosomal rearrangements in the Synteny view. Click on Synteny in the left-hand navigation panel.

(d) Which chromosome in *F. verticillioides* is most similar to *F. solani* chromosome 5? Change the display to show *F. oxysporum*. Does this give you the same answer as for *F. verticillioides*?

Additional Exercise - Rearrangements in Magnaporthe species

A recent paper Bao et al (2017) 'PacBio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in *Magnaporthe oryzae*' identified a region on chromosome 1 that is shown to be a region of inter-chromosomal rearrangement and inversion. We're going to take a look at this region and see how it looks in *Magnaporthe oryzae* and *Magnaporthe poae*.

(a) Search for the region 1:5603535-5611402 in Magnaporthe oryzae.

- (b) Click on Region comparison and choose *Magnaporthe poae* from the Select species or regions pop-up to display an alignment.
- (c) Scroll down to the most detailed image. To what region (chromosome/scaffold/contig) does this region align to on the *M. poae* assembly?

(d) Which genes are present in the aligned region for *M. oryzae* and *M. poae*? What are their biotypes?

(e) There is another alignment block in the *M. poae* display. Where does this region map to in *M. oryzae*?

