

STD/92-118
N 9 3 - 2 0 5 0 1

CHARACTERISTICS OF STORAGE RELATED CAPACITY LOSS
IN NI/H₂ CELLS

H. Vaidyanathan
COMSAT Laboratories
Clarksburg, MD 20871

The changes in the capacity, voltage and pressure profile of flight configuration Ni/H₂ cells when they are stored for extended periods is examined in this manuscript. The Ni/H₂ cells exhibit capacity fade phenomenon regardless of their design when they are stored at room temperature. Capacity loss also occurs if old cells (5 years old) are stored in a very low rate trickle charge (C/200 rate) condition. Periodic recharge technique leads to pressure rise in the cells. Conventional trickle charge (C/100 rate) helps in minimizing or eliminating the second plateau which is one of the characteristics of the capacity fade phenomenon.

COMSAT Laboratories

1992 NASA AEROSPACE BATTERY WORKSHOP

HUNTSVILLE, ALABAMA

CHARACTERISTICS OF STORAGE RELATED CAPACITY LOSS
IN NI/H₂ CELLS

HARI VAIDYANATHAN

COMSAT LABORATORIES
CLARKSBURG, MD. 20871

COMSAT Laboratories

CAPACITY FADE AND RECOVERY IN VARIOUS CELL DESIGNS

CELL CAPACITY	CELL DESIGN	ACTIVE MATERIAL UTILIZATION IN FLOODED KOH			COEFFICIENT OF UTILIZATION IN CELL KOH CONTENT (%)	COEFFICIENT OF UTILIZATION IN CELL KOH CONTENT (%)	CAPACITY FADE AND RECOVERY
		g/cc	LOADING	IN FLOODED KOH (%)			
44 Ah	Alcohol/Ni precharge	1.58		135	123	4.50	Fades extensively Recoverable with trickle charge In orbit battery recovered capacity
44 Ah	Alcohol/Ni precharge	1.45		151	132	4.66	No fade in 3 months
30 Ah	Aqueous/H ₂ Precharge	1.60		124	120	3.03	Flight battery Trickle charged to maintain capacity, showed excellent in orbit data
65 Ah	Aqueous/H ₂ Precharge	1.57		112	102	2.74	Fades extensively
83 Ah	Aqueous/H ₂ Precharge	1.66		118	107	2.85	Simple reconditioning recovers capacity
83 Ah	Aqueous/Ni Precharge	1.56		130	123	4.40	No fade for 3 months

COMSAT Laboratories

CAPACITY MAINTENANCE AT VARIOUS STORAGE CONDITIONS

STORAGE CONDITIONS	LENGTH OF STORAGE	CAPACITY BEHAVIOR
Open circuit Room temperature	12 months	Ni precharged cell showed one-third of the loss suffered by H ₂ precharge cells. Second plateau appears.
Open circuit 0°C	9 months	Capacity is maintained for 6 months.
Trickle charge at C/100 at 10°C	9 months	Not only maintains but also recovery capacity.
Recharge every 7 days	6 months	Maintains and recovery capacity. However there is a pressure rise.
Recharge every 14 days	6 months	Maintains capacity. Pressure rises.
Very low rate trickle charge C/290 at 0°C	6 months	Capacity declined for 5 year old batteries.

VARIATION OF ADDITIONAL CAPACITY AT LOW VOLTAGES WITH STORAGE TIME AT ROOM TEMPERATURE

COMSAT Laboratories

EMF PROFILE OF CELLS AT 23.5A DISCHARGE RATE AFTER TWO 6-WEEK PERIODS OF TOP-OFF CHARGE

CAPACITY VARIATION AT -20^oC

Cell No.	Precharge	Initial Capacity (to 1 V) (Ah)	Storage Period (days)	Final Capacity (to 1 V) (Ah)
4-1104N	H ₂	63.6	270	66.0
5-1116N	H ₂	60.7	270	67.2
13-1382P	None	66.7	112	66.3
1-1081N	H ₂	59.9	112	60.3

CAPACITY VARIATION WITH STORAGE

CAPACITY OF RTTC STORED CELLS

COMSAT Laboratories

CHARGE/DISCHARGE DATA FOR S/N 15-1110 PRESSURE FROM RTTC STORED CELL

HYDRATION OF ACTIVE MATERIAL

- Literature data for molar ratio of Ni to H₂O in Ni(OH)₂ is between 1.1 to 2.36
- Three possible types of hydroxyl groups - interstitial water, water of crystallization and hydroxyl groups bonded to Ni atoms
- Exchange of water from the active material with the electrolyte is believed to be important in the redox reaction

**TGA INTEGRAL AND DERIVATIVE PLOTS FOR ACTIVE MATERIAL FROM
HAC/I-VI CELL S/N 074**

COMSAT Laboratories

TGA INTEGRAL AND DERIVATIVE PLOTS FOR POSITIVE ACTIVE MATERIAL EP/I-V CELL S/N 060085

COMSAT Laboratories

TGA INTEGRAL AND DERIVATIVE PLOTS FOR ACTIVE MATERIAL FROM HAC/I-VI CELL S/N 161

WATER CONTENT FROM TGA

POSITIVE PLATE I.D.	WATER LOSS FROM 140-340°C OR Cell S/N 06-085	WATER CONTENT (%)	PEAK TEMPERATURE (%)	COMMENTS
EP/INTELSAT V Cell S/N 06-085	15.84	289.4	Plate produced by aqueous electrochemical procedure. Did not exhibit capacity fading.	
HAC/INTELSAT VI Virgin Plate 2087	13.71	253.9	Uncycled plate stored under N2 for 8 months.	
HAC/INTELSAT VI	13.22	277.7	Exhibited capacity fading, but regained capacity upon conditioning.	
HAC/INTELSAT VI S/N 074	10.89	272.4	Exhibited capacity fading. Did not regain capacity upon conditioning.	

HYDRATION OF ACTIVE MATERIAL

- x and y cannot be determined since it is impossible to know the quantity of intercalated water removed before 150°C
- W. Dennstedt and W. Loser 1971
- S. Lebihan and M. Figlarz 1973

STRUCTURAL FORMULAE PROPOSED FOR THE ACTIVE MATERIAL *

<u>CHARGED</u>	<u>DISCHARGED</u>
$\text{NiO} (\text{OH}) \cdot 0.2 \text{ H}_2\text{O}$	$\text{Ni} (\text{OH})_2$
$\text{NiO} (\text{OH}) \cdot \text{H}_2\text{O}$	$2\text{Ni} (\text{OH})_2 \cdot 2\text{H}_2\text{O}$
$\text{Ni}_2\text{O}_3 \cdot 2\text{H}_2\text{O}$	$\text{Ni} (\text{OH})_2 \cdot 0.34 \text{ H}_2\text{O}$
$\text{Ni}_2\text{O}_3 \cdot 3.21 \text{ H}_2\text{O}$	$2\text{Ni} (\text{OH})_2 \cdot 1.28 \text{ H}_2\text{O}$
$\text{Ni}_3\text{O}_4 \cdot 2\text{H}_2\text{O}$	
	$\text{NiO} (\text{OH}) \cdot 0.14 \text{ KOH}$
	$3\text{NiO} (\text{OH}) \cdot 7/2 \text{ H}_2\text{O} \cdot 3/4 \text{ KOH}$
	$k\text{Ni}_3\text{O}_6 \cdot 2\text{H}_2\text{O}$

* Literature Data

TEMPERATURE DEPENDENCY OF CALCULATED EMF *

* Data published by D. D. Macdonald and Mark L. Challingsworth in "Thermodynamics of Nickel-Cadmium and Nickel-Hydrogen Batteries"

MECHANISM FOR CAPACITY FADE

EXPERIMENTAL EVIDENCE

- The process is reversible since 95% of the capacity can be recovered
- Extremely low temperature maintains the capacity and sometimes helps in capacity recovery
- Techniques involving overcharging aid in capacity recovery
- Analysis of positive plates from faded cells indicated lower active material utilization
- Thermogravimetric analysis of plates from faded cells showed decreased water content
- The second plateau which appears is particularly prominent at high temperatures
- Low temperature cell capacity is lower in the cycle which immediately follows a 20-25°C capacity cycle

PROPOSED MECHANISM

The capacity fade is due to the predominance of $\text{Ni}(\text{OH})_3$ (alternately represented as $\text{NiOOH} \cdot \text{H}_2\text{O}$) in the positive active material. The reaction of the species produces an equilibrium potential which is not only lower but also very sensitive to increase in temperature. The interstitial water in this form of active material is less than that in the normal NiOOH structure.