Podejmowanie decyzji - projekt zaliczeniowy; wersja 0.1.0

Piotr Koproń Bartłomiej Słupik

2023.03.03

Spis treści

1	Wst	е́р	2	
2	Spe	cyfikacja	2	
	2.1	Zakres projektu	2	
		2.1.1 Cele projektu	2	
		2.1.2 Przykładowy Use Case, który powinien być możliwy do		
		zrealizowania	2	
	2.2	Architektura	3	
	2.3	Konfguracja	3	
	2.4	Zarządzanie testowaniem	4	
	2.5	Zarządzanie ryzykiem	4	
3	Cze	sć projektowa	5	
	3.1	Założenia przed rozpoczęciem realizacji	5	
	3.2	Ograniczenia	5	
	3.3	Wzorce architektoniczne	5	
	3.4	Diagram komponentów	6	
	3.5	Diagram przepływu danych	7	
	3.6	Model bazy danych	8	
	3.7	· · ·	9	
		Opis bazy danych	_	
	3.8	Harmonogram realizacji	10	

1 Wstęp

W niniejszym dokumencie przedstawione są założenia i projekt aplikacji zaliczeniowej z przedmiotu "Podejmowanie Decyzji". System powinien umożliwiać użytkownikowi tworzenie rankingów obiektów, których pary mogą porównywać klienci. Następnie wyliczany będzie ranking końcowy w oparciu o jedną z metod EVM i GMM. W części 'Specyfikacja' przedstawione są dokładne założenia działania aplikacji z punktu widzenia użytkownika, takie jak przypadki użycia, przykładowy schemat interakcji, czy plan wdrażania kolejnych funkcjonalności. Następnie w części 'Projekt' zamieszczono plan od strony technicznek, w tym schemat działania back-endu i konstrukcję bazy danych.

2 Specyfikacja

2.1 Zakres projektu

2.1.1 Cele projektu

Podstawowym celem projektu jest przygotowanie aplikacji do grupowego podejmowania decyzji metodą AHP (metodą porównywania parami).

- aplikacja powinna wykorzystywać metodę EVM i/lub GMM do tworzenia rankingów oraz odpowiednie metody AIJ i/lub AIR do grupowania osądów (macierzy porównywania parami) pochodzących od różnych ekspertów.
- aplikacja powinna pozwalać na używanie tzw. skali fundamentalnej ale również na definiowanie swojej własnej skali porównań przez użytkownika, w tym bezpośrednio skali numerycznej.
- aplikacja powinna działać w architekturze klient-serwer
- aplikacja powinna umożliwiać pełny eksport danych rankingowych (wszystkich danych wejściowych) do pliku JSON (przykładowy plik załączony w sekcji Ramowy Opis Projektu).

2.1.2 Przykładowy Use Case, który powinien być możliwy do zrealizowania

- Facylitator
 - Tworzy nowy ranking
 - * Definiuje nowe alternatywy
 - * Definiuje kryteria
 - * Definiuje pod-kryteria (jeśli to konieczne)
 - * Definiuje uczestników rankingu
 - * Określa parametry rankingu takie jak:

- · Sposób liczenia rankingu (EVM / GMM etc).
- · Czy ranking ma być kompletny czy nie kompletny
- · Skale pomiarową
- · Sposób liczenia niespójności rankingu
- · Kolejność zadawanych pytań (losowa / konkretna)
- · Datę i czas od której ranking ma być dostępny
- · Datę i czas do której ranking ma być dostępny
- * Rozsyła zaproszenie do udziału w rankingu ekspertom (uczestnikom rankingu)

• Eksperci

- Odpowiadają na pytania o porównanie parami alternatyw (na jednym ekranie powinno znaleźć się jedno pytanie (jedno porównanie parami dwóch alternatyw)
- Odpowiadają na pytania o porównanie parami kryteriów (podobnie na jednym ekranie jedno porównanie)
- "Naciskają" guzik [submit], informujący system, że z ich strony ocena się zakończyła.

• Facylitator

- Sprawdza zebrane wyniki
- Nadzoruje wykonanie rankingu
- Rozsyła wyniki uczestnikom/ekspertom procesu (oraz decydentom zewnętrznym).
- Eksportuje wszystkie dane procesu do formatu JSON.

2.2 Architektura

- Serwer: REST-based ASP .NET Core (C#)
- Klient: React+Next.js+TypeScript zgodnie z mockami w osobnych dokumentach
- Wewnętrzne REST API zgodnie z osobnym dokumentem
- Baza danych EntityFramework Code First

2.3 Konfguracja

- Frontend developement
 - cd reporoot/web
 - npm run dev
 - Aplikacja uruchomiona na http: localhost:3000
- Backend

2.4 Zarządzanie testowaniem

BLOCKED BY: Brak zatwierdzenia specyfikacji przez Klienta

2.5 Zarządzanie ryzykiem

Podstawowym źródłem ryzyka są nieprzewidziane okoliczności. Zalecane ostrożne estymaty czasu pracy nad funkcjonalnościami. Przy tworzeniu aplikacji będą priorytetyzowane funkcjonalności krytyczne ponad błędami oraz aspektami wizualnymi i płynnścią działania.

3 Część projektowa

3.1 Założenia przed rozpoczęciem realizacji

• Wykonanie testowej bazy w technice Code First aby opanować sprawne tworzenie migracji w Entity Framework

3.2 Ograniczenia

• Użytkownik będzie korzystał z aplikacji poprzez przeglądarkę internetową. Nie przewidujemy wykonania aplikacji mobilnej.

3.3 Wzorce architektoniczne

- Aplikacja będzie działać w modelu klient-serwer, opierając się na komunikacji przy pomocy kontrolera i modelu (MVC)
- Serwer będzie podzielony na warstwy przejmujące różne jego role, tj. dostępu aplikacji, obliczeniowa, dostępu do bazy danych.

3.4 Diagram komponentów

Rysunek 1: Diagram komponentów. Naszkicowane moduły odpowiadają w dużej mierze docelowym klasom, które będą wykonywały te zadania.

3.5 Diagram przepływu danych

Rysunek 2: Diagram przepływu danych. Opisane sekwencje są odzwiercie
dlane przez projektowane API. $\,$

3.6 Model bazy danych

Rysunek 3: Schemat bazy danych

3.7 Opis bazy danych

- Tabela Rankings przechowuje dane dotyczące aktywnych i zamkniętych rankingów porównawczych
- Tabela Users przechowuje dane użytkowników.
- Tabela UserRankings tworzy relację wiele użytkowników do wielu rankingów, a każdej parze przypisuje rolę użytkownika w danym rankingu: właściciel, zaproszony, nieprzypisany
- Tabela Answers przechowuje odpowiedzi użytkowników na porównania.
 Zawiera dwa klucze obce do lewej i prawej alternatywy, oraz wartość float jaką wybrał użytkownik
- Tabela Alternatives przechowuje zdefiniowane alternatywy w danym rankingu
- Tabela Results przechowuje już policzone wyniki rankingu
- Tabela Criteria przechowuje kryteria w danym rankingu oraz tworzy relację z podkryteriami
- Tabela ScaleValues definiuje skale oceny rankingu

3.8 Harmonogram realizacji

• (21.11.2023)

Implementacja modelu i kontrolera zwracającego mockowe dane Stworzenie pierwotnej wersji interfejsu

• (5.12.2023)

Stworzenie warstwy dostępu do bazy danych i funkcjonalności tworzenia i usuwania obiektów

Realizacja komunikacji klient-serwer

• (19.12.2023)

Zaimplementowanie algorytmów obliczających rankingi wraz z testami

Dodanie widoków tworzenia rankingu i konta

• (2.01.2024)

Ulepszenie komponentu logowania użytkownika o lepsze bezpieczeństwo i zachowanie sesji

Dodanie mniej istotnych funkcjonalności takich jak kolejność zadawania pytań, podkryteria