多変量ゼミ クラスター分析

髙見澤 真央

§ 1. クラスター分析

クラスター分析とは…

クラスタとは、"群れ"や"集団"という意味を持つ。

クラスター分析とは、与えられたデータを"似たものどうしの群れに分ける方法"である.

データのことを"個体"と呼び、個体と個体とが集まって、クラスタを構成することになる、

しかし、今のままではクラスタに分類する基準が曖昧であるため、"似ている"とは何かを数学的に定義する必要がある。そこでまず、"似ている程度"を測る方法として、以下のようなものが挙げられる。

(ユークリッド距離 ユークリッド距離の2乗 マハラノビスの距離 相関係数

このような方法は、距離の概念を一般化したものと考えられるので、これらを広い意味で"距離"と呼ぶこととする.

クラスタ間の距離

分析のとき、"2つのクラスタ間の距離 Dをどのように決めるか"という問題が発生する.

各クラスタの成分が1個だけならば、シンプルに個体間の距離を Dとすればいい.

では、各クラスタの成分が 2 個以上から成る場合は、どのように距離 D を測ればよいだろうか? この"2 つのクラスタ間の距離 D の決め方"のには、複数の方法が存在しており、§2 では、その内の 6 つの手法について説明する.

クラスタの成分が1個だけの場合

クラスタの成分が2個以上の場合

§2. クラスタ間の距離の決め方

最短距離法

クラスタ A の個体とクラスタ B の個体とのすべての組合せについて距離を求め、その中で最も短い距離をクラスタ間の距離 Dとする.

最長距離法

クラスタ A の個体とクラスタ B の個体とのすべての組合せについて距離を求め、その中で最も長い距離をクラスタ間の距離 Dとする.

群平均法

クラスタAの個体とクラスタBの個体とのすべての組合せについて距離を求め、その距離の平均値をクラスタ間の距離Dとする.

メディアン法

クラスタ A の個体とクラスタ B の個体とのすべての組合せについて距離を求め、その距離を順番に並べたときの中央値をクラスタ間距離 Dとする.

重心法

クラスタ A の重心とクラスタ B の重心との距離を、クラスタ間距離 Dとする.

ウォード法

例えば、シャムネコとペルシャネコをまとめてネコ達と呼んでしまうと、もともとどんなネコがいたのかわからなくなってしまう。このように、異なるものを 1 つにまとめると、元の情報が少し失われてしまう。これをクラスタの情報損失量と呼ぶこととする。

ウォード法では、2つのクラスタ A, B を 1 つのクラスタにまとめたとき、

その情報損失量をクラスタ間距離 Dとする.

具体的に、クラスタ間距離 Dは、以下のような式で定義される.

クラスタ間距離 D =
$$L(A \cup B) - L(A) - L(B)$$

ここでL(A)は、クラスタAの各個体から重心までの距離の 2 乗和を計算したもので、クラスタ内でのデータの散らばり具合を表現している。L(B)および $L(A \cup B)$ も同様の意味である。

§3. クラスター分析の手順

表1のデータを使って,実際にクラスター分析をしてみる.

クラスター分析は、以降のような手順で進んでいき、次々にまとまっていくクラスタをデンドログラム (樹形図)というグラフで表現する.

なお今回, 距離はユークリッド距離の2乗, クラスタ間距離は重心法を用いて求めていく.

表1 エイズ患者数と新聞の発行部数						
国夕	ェイブ串去	新聞の祭行室				

国名	エイズ患者	新聞の発行部数
A	6.6	35.8
В	8.4	22.1
С	24.2	19.1
D	10.0	34.4
Е	14.5	9.9
F	12.2	31.1
G	4.8	53.0
Н	19.8	7.5
I	6.1	53.4
J	26.8	50.0
K	7.4	42.1

図1 エイズ患者数と新聞の発行部数

手順 1

はじめに、すべての組合せにおける"距離"を計算すると、以下のようになる.

	В	С	D	Е	F	G	Н	I	J	K
A	190.9	588.7	13.5	733.2	53.5	299.1	975.1	310.0	609.7	40.3
В		258.6	153.9	186.1	95.4	967.8	343.1	985.0	1117.0	401.0
С			435.7	178.7	288.0	1525.6	153.9	1504.1	961.6	811.2
D				620.5	15.7	373.0	819.7	376.2	525.6	66.1
Е					454.7	1951.7	33.9	1962.8	1759.3	1087.3
F						534.4	614.7	534.5	570.4	144.0
G							2295.3	1.9	493.0	125.6
Н								2294.5	1855.3	1350.9
I									440.1	129.4
J										438.8

この中で、GとIの間の距離が

$$(4.8 - 6.1)^2 + (53.0 - 53.4)^2 = 1.85 \approx 1.9$$

となり、すべての組合せの中で最小になる。よって、G と I が最初のクラスタ $\{G,I\}$ を構成する。 このことをデンドログラムに描くと、次のようになる。

また、クラスタ $\{G,I\}$ の重心を求めると(5.45,53.2)であり、以降の手順ではこの重心を基点として、クラスタ $\{G,I\}$ との距離を計算していく.

手順 2

次に残りすべての組合せにおける"距離"を計算すると、以下のようになる.

	В	С	D	Е	F	G · I	Н	J	K
A	190.9	588.7	13.5	733.2	53.5	304.1	975.1	609.7	40.3
В		258.6	153.9	186.1	95.4	975.9	343.1	1117.0	401.0
С			435.7	178.7	288.0	1514.4	153.9	961.6	811.2
D				620.5	15.7	374.1	819.7	525.6	66.1
Е					454.7	1956.8	33.9	1759.3	1087.3
F						534.0	614.7	570.4	144.0
G · I							2294.4	466.1	127.0
Н								1855.3	1350.9
J									438.8

この中で、AとDの間の距離が

$$(10.0 - 6.6)^2 + (34.4 - 35.8)^2 = 13.52 \approx 13.5$$

となり、この組合せの中で最小になる。よって、 $A \ge D$ が 2 つ目のクラスタ $\{A,D\}$ を構成する。 このことをデンドログラムに描き加えると、次のようになる。

また、クラスタ $\{A,D\}$ の重心を求めると(8.3,35.1)であり、以降の手順ではこの重心を基点として、クラスタ $\{A,D\}$ との距離を計算していく。

以上の作業を繰り返していき、10回目で最後のクラスタが構成されて終了となる.

最終的に完成したデンドログラムは、次のようになる.

図2 完成したデンドログラム

§ 4. デンドログラム

デンドログラムは個体とクラスタ間の"距離"の関係をまとめたものであり、クラスター分析において 非常に重要なグラフ表現である.

縦軸が類似度を表す"距離"となっており、横軸に平行な線を引いたとき、デンドログラムの縦線とぶつ かった個数がクラスタの個数になる。またこのとき、クラスタを構成している個体の内訳をみることが できる.

例えば、クラスタの個数を4個にしたい場合は、図3のようにオレンジ色の平行線を引けばよい. そして、4つのクラスタはそれぞれ $\{G,I\}$, $\{A,D,F,K,B\}$, $\{J\}$, $\{E,H,C\}$ という個体で構成されていることが 読み取れる.

図3 デンドログラム

この4つのクラスタを散布図に描くと、次のようになる.

図4 散布図と4つのクラスタ

最適なクラスタの個数

デンドログラムに平行線を引くことで、任意の個数のクラスタを求めることができた.

しかし、クラスター分析を行う際、"最適なクラスタの個数は何個なのか?"という問題がある。 実は、はっきりとした基準はなく、何個のクラスタに分類するかは、そのデータを研究している人が判断 する必要がある。