

Melbourne Veterinary School

Bovine ketosis and other fatty liver syndromes in domestic animals

Dr Nick Bamford

Senior Lecturer, Veterinary Biosciences

n.bamford@unimelb.edu.au

Role of the liver in metabolism & energy production

- Lecture 3 Health
 - Key pathways of metabolism

- Lecture 8 Disease
 - Metabolism of negative energy balance
 - Ruminant metabolism
 - Syndrome of ruminant ketosis
 - Fatty liver syndromes in other species

Chapter 2 & 14

Intended learning outcomes

- Describe the metabolism of negative energy balance
 - Role of the liver in these processes
- Outline how ruminants digest complex carbohydrates to derive energy
- Apply knowledge of metabolism to clinical cases
 - Biochemistry of ketosis
 - Fatty liver syndromes
 - Principles of treatment

Recap: Energy release from food

Hormonal control

- Insulin
 - Main signal to 'store'
 - Pancreatic β cells in response to high glucose
- Glucagon
 - Main signal to 'release'
 - Pancreatic α cells in response to low glucose
- Reciprocal control

Metabolic balance in the liver

Negative energy balance (early)

- Mobilisation of energy stores to maintain blood glucose
 - Depletion of glycogen stores (≈ 24 hrs)
 - Release of FFA from adipose stores
 - β-oxidation in tissues
 - (Spare precious glucose for brain)
 - Breakdown of proteins to amino acids
 - Gluconeogenesis
- Glucagon >> insulin

Recap: Gluconeogenesis

- Glucose production from non-carbohydrate substrates
 - Glycerol
 - Pyruvate, lactate
 - Certain amino acids
 - Propionate ruminants
- Acetyl-CoA is not gluconeogenic!
- Mainly in liver (also in kidney)

Protein degradation for gluconeogenesis

Negative energy balance (later)

- Continued fasting/starvation:
 - Glucagon remains high / glycogen stores depleted
 - FFAs continue to be released into circulation
 - Overwhelm TCA cycle
 - Oxaloacetate concurrently diverted to gluconeogenesis
 - Acetyl-CoA converted to <u>ketone bodies</u> by liver

Ketogenesis

- Acetyl-CoA accumulates beyond capacity for oxidation or lipogenesis
- Ketone bodies produced by liver alterative fuel source for tissues
 - AcAc & BHB (4C) converted to acetyl-CoA
 - Acetone (3C) utilized via different pathway → pyruvate

Ketone bodies

Acetone

Acetoacetate

β-hydroxybutyrate

Recap: Fatty acids and the liver

- Liver packages TAGs with apoproteins as VLDL
- Negative energy balance: process can be overwhelmed (plus apoproteins can be scarce)
- Accumulation of TAGs within hepatocytes → hepatic lipidosis

Ruminant metabolism

Ruminant metabolism

Microbial fermentation of feed to produce volatile fatty acids (VFAs)

VFAs: Acetate

- Absorbed across rumen epithelium
- Minimal uptake by liver
- Oxidised as acetyl-CoA in tissues to generate energy
 - Skeletal muscle, heart, kidneys
- Important precursor for de novo fatty acid synthesis
 - Adipose tissue
 - Mammary gland
- Utilisation dependent on energy balance (Which hormones?)
 - Oxidised when energy is low
 - Lipogenesis when energy is high

VFAs: Propionate

$$H_3C$$
 OH

- Principal gluconeogenic precursor in ruminants
 - > 70% glucose derived from propionate

VFAs: Butyrate

- Absorbed across rumen epithelium
- Metabolised in rumen wall to ketone bodies (β-OH-butyrate)
 - Utilised by liver and other tissues

Ketosis: A system under stress

 Applied understanding of ruminant metabolism in the context of negative energy balance

- History
 - 7 year-old Holstein Friesian cow
 - Calved 3 weeks ago
 - Inappetent and losing weight
 - · Poor milk yield
 - Diet: lush pasture

- Physical examination
 - Dull and depressed, not interactive, disinclined to move
 - Dry coat, body condition score 2/5
 - TPR normal
 - Reduced rumen contractions
 - Dry manure

- Clinical pathology
 - Stallside Ketostix reagent strips
 - Detect ketone bodies in urine
 - Blood collected

			RESULTS	REFERENCE VALUES
\longrightarrow	Glucose	mmol/L	1.9	2.3 – 5.1
	Urea	mmol/L	8.7	2.0 - 9.5
	Creatinine	mmol/L	0.14	0.08 - 0.18
	Protein	g/L	70	63 - 85
	Albumin	g/L	35	32 - 42
	Globulin	g/L	35	32 - 53
	Total bilirubin	μmol/L	7.3	0 - 8
	Conjugated bilirubin µmol/L		2.0	0 – 8
\rightarrow	GLDH	U/L	47	0-20
11111	ALP	U/L	126	40 – 100
\longrightarrow	AST	U/L	380	50 – 150
\longrightarrow	GGT	U/L	43	10 - 32
\longrightarrow	β-OH butyrate	mmol/L	5.3	0 - 0.9
\longrightarrow	CPK	U/L	560	30 – 250
	Cholesterol	mmol/L	4.8	2.0 - 6.5
	Magnesium	mmol/L	1.0	0.6 - 1.2
	Calcium	mmol/L	2.3	2.0 - 3.05
	Phosphate	mmol/L	2.0	1.0 - 2.5
	Sodium	mmol/L	145	143 – 151
	Potassium	mmol/L	3.9	4.1 - 5.3
	Chloride	mmol/L	108	97 – 111
\longrightarrow	Bicarbonate	mmol/L	13.5	18 - 33
\longrightarrow	Anion gap	mmol/L	27.4	6 – 14

- Diagnosis
 - Ketosis!
 - Clinical manifestation of negative energy balance
 - 1° or 2°
 - Can also be subclinical if noticed early how?
 - Why?!

- Pathophysiology
 - Intense demand of early lactation → negative energy balance
 - Peak energy demand 4-7 weeks post-calving
 - Peak feed intake 8-12 weeks post-calving

But the cow had access to lush pasture...

- Negative energy balance (dominance of glucagon)
 - Glycogen stores depleted
 - Protein breakdown for gluconeogenesis
 - FFAs released into circulation
 - Overwhelm TCA cycle
 - Oxaloacetate diverted to gluconeogenesis
 - Acetyl-CoA converted to <u>ketone bodies</u> by liver

- Treatment
 - Provide glucose
 - Intravenous bolus/infusion
 - Short term but immediate improvement
 - Provide gluconeogenic substrate
 - Propylene glycol
 - Converted to pyruvate (propionate)
 - Address energy drain if possible
 - (Corticosteroids?)

Ketosis in other contexts

- Pregnancy toxaemia
 - Beef cattle
 - Sheep ('twin lamb disease')
 - Intense energy demand of late developing foetus coupled with inadequate feed intake
 - Often severe clinical signs due to failure to notice early signs
 - Depressed & inappetent
 - Weight loss
 - Neurological signs (circling)
 - Weakness & recumbency
 - Death

Ketosis in other contexts

- Is feed intake the only factor?
- Vitamins and trace minerals involved in metabolic pathways
- Cobalt is a cofactor for Vit B12 → dietary deficiency of Co leads to ineffective methylmalonate pathway → impaired gluconeogenesis
- 'Illthrift' (ketosis)

Fatty liver disease (hepatic lipidosis)

- Potential sequelae to ketosis
- Especially in overconditioned animals
 - Large adipose reserve to flood the liver with FFAs
 - Overwhelm VLDL formation → FFAs accumulate in hepatocytes

Fatty liver disease (hepatic lipidosis)

- Not only ruminants
- e.g. Horses (esp. fat ponies)
 - During negative energy balance develop <u>hyperlipaemia</u>
 - Ketone pathway poorly developed
 - Do not develop overt ketosis
 - Mobilisation of FFAs occurs
 - VLDL pathway in liver well developed
 - But still overwhelmed
 - FFA accumulation → Hepatic lipidosis

Intended learning outcomes

- Describe the metabolism of negative energy balance
 - Role of the liver in these processes
- Outline how ruminants digest complex carbohydrates to derive energy
- Apply knowledge of metabolism to clinical cases
 - Biochemistry of ketosis
 - Fatty liver syndromes
 - Principles of treatment