

UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU

Wydział Nauk Geograficznych i Geologicznych

Kierunek studiów: Geoinformacja

Nr albumu: 461791

Filip Ratajszczak

Wykrywanie farm fotowoltaicznych na podstawie danych teledetekcyjnych

My title

Praca inżynierska napisana w Instytucie Geoekologii i Geoinformacji pod kierunkiem dr. hab. Jakuba Nowosada

Streszczenie

Abstrakt

Streszczenie powinno przedstawiać skrótowo główny problem pracy i jego rozwiązanie.

Możliwa struktura streszczenia to: (1) 1-3 zdania wstępu do problemu (czym się zajmuje-

my, dlaczego jest to ważne, jakie są problemy/luki do wypełnienia), (2) 1 zdanie opisujące

cel pracy, (3) 1-3 zdania przedstawiające użyte materiały (dane) i metody (techniki, na-

rzędzia), (4) 1-3 zdania obrazujące główne wyniki pracy, (5) 1-2 zdania podsumowujące;

możliwe jest też określenie dalszych kroków/planów.

Słowa kluczowe: (4-6 słów/zwrotów opisujących treść pracy, które nie wystąpiły w tytule)

Abstract

The abstract must be consistent with the above text.

Keywords: (as stated before)

3

Spis treści

St	reszczenie	3
1	Wprowadzenie	5
2	Przegląd literatury	7
	2.1 Podrozdział	8
3	Materiały	9
	3.1 Zdjęcia satelitarne	9
	3.2 Ortofotomapa i mozaiki zdjęć satelitarnych	10
	3.3 OpenStreetMap	11
	3.4 Próbki treningowe i testowe	11
4	Metody	13
5	Wyniki	15
6	Podsumowanie	17

Wprowadzenie

Wprowadzenie powinno mieć charakter opisu od ogółu do szczegółu (np. trzy-pięć paragrafów). Pierwszy paragraf powinien być najbardziej ogólny, a kolejne powinny przybliżać czytelnika do problemu. Przedostatni paragraf powinien określić jaki jest problem (są problemy), który praca ma rozwiązać i dlaczego jest to (są one) ważne.

Wprowadzenie powinno być zakończone stwierdzeniem celu pracy. Dodatkowo tutaj może znaleźć się również krótki opis co zostało zrealizowane w pracy.

Przegląd literatury

Ten rozdział zawiera wyjaśnienie kontekstu pracy.

Pisząc ten rozdział proszę pomyśleć o osobach, które zupełnie nie znają opisywanej tematyki. Należy tutaj krok po kroku wyjaśnić podstawowe koncepcje, istotność problemu, wyniki poprzednich podobnych badań, itd. Ten rozdział obejmuje tylko kwestie, które już zostały wykonane przez inne osoby - nowe wyniki mają swoje miejsce w rozdziale 5.

Każda kwestia opisana w tym rozdziale powinna być cytowana. Dodatnie cytowania odbywa się poprzez uzupełnienie pliku thesis.bib zapisem w formacie BibTeX, a następnie dodanie nazwy referencji poprzedzonej znakiem @. Przykładowo, zacytowanie książki Geocomputation with R odbywa się poprzez (lovelace_geocomputation_2019).

W przypadku, gdy cytowanie zostało poprawnie wpisane oraz istnieje w pliku thesis.bib to bibliografia powinna się automatycznie wygenerować na końcu pracy.

W przypadku, gdy praca dyplomowa opisuje konkretny obszar to można po tym rozdziale stworzyć kolejny rozdział opisujący "obszar badań".

Ten i kolejne rozdziału moją mieć także podrozdziały. Tworzenie podrozdziałów polega na stworzeniu nowej linii rozpoczynającej się od znaków ## a następnie tytułu podrozdziału. Dodatkowo w postaci {#sec-} można dodać skrót nazwy rozdziału/podrozdziału umożliwiający odnoszenie się do niego używając operatora [-@sec].

2.1 Podrozdział

Przykładowo, "te kwestie zostały opisane w podrozdziale 2.1". Zwróć uwagę, że w ten sposób automatycznie tworzony jest odnośnik w pliku PDF.

Materialy

3.1 Zdjęcia satelitarne

Misja Sentinel-2 stanowi inicjatywę Komisji Europejskiej, która jest operacyjnie prowadzona przez Europejską Agencję Kosmiczną (ang. *European Space Agency*, ESA) w ramach programu Copernicus. Celem tej misji jest dostarczanie obrazów satelitarnych, obejmujących trzynaście zakresów spektralnych o różnych rozdzielczościach przestrzennych: 10, 20 lub 60 metrów, zależnie od rejestrowanego kanału. Rozdzielczość czasowa misji Sentinel-2 wynosi pięć dni nad równikiem i zwiększa się wraz ze wzrostem szerokości geograficznej, osiągając dwa dni na średnich szerokościach geograficznych (Hejmanowska et al., 2020).

Dane pozyskiwane przez satelity Sentinel-2 są dostępne na różnych poziomach przetworzenia, lecz najczęściej używane przy tworzeniu map pokrycia terenu i użytkowania ziemi (ang. *Land Use/Land Cover*, LULC) są produkty 1C (współczynnik odbicia na poziomie górnej części atmosfery; ang. *Top-of-Atmospheric reflectance*, TOA) oraz 2A (współczynnik odbicia na powierzchni Ziemi; ang. *Bottom-of-Atmospheric reflectance*, BOA) (Phiri et al., 2020).

Produkty poziomu 1C to dane poddane korekcjom radiometrycznym i geometrycznym, prezentowane jako sceny o powierzchni 100 km^2 (100 x 100 km) w projekcji UTM/WGS84 (ESA, 2015). Skuteczne wykorzystanie tych danych w zastosowaniach związanych z

Tabela 3.1: *Kanały spektralne satelitów Sentinel-2*

Kanał	Nazwa kanału	Centralna długość fali [nm]	Zakres spektralny [nm]	Rozdzielczość przestrzen- na [m]
BO1	Coastal Aerosol	443	433–453	60
B02	Blue	490	458-523	10
B03	Green	560	543-578	10
B04	Red	665	650-680	10
B05	Vegetation RedEdge	705	698–713	20
B06	Vegetation RedEdge	740	733–748	20
B07	Vegetation RedEdge	783	773–793	20
B08	NIR	842	785–900	10
B8A	NIR	865	855-875	20
B09	Water Vapour	945	935–955	60
B10	Cirrus	1375	1360-1390	60
B11	SWIR	1610	1565-1655	20
B12	SWIR	2190	2100–2280	20

terenami lądowymi wymaga precyzyjnej korekcji zdjęć satelitarnych pod kątem efektów atmosferycznych (Main-Knorn et al., 2017). Produkty poziomu 2A powstają poprzez zastosowanie dodatkowej korekcji atmosferycznej dla danych poziomu 1C za pomocą procesora korekcji atmosferycznej Sen2Cor (Main-Knorn et al., 2017).

Z dostępnych kanałów spektralnych (Tabela 3.1) wykorzystano 10 zakresów, ponieważ pasma rejestrowane w rozdzielczości 60 metrów są przeznaczone głównie do korekcji atmosferycznych i detekcji chmur. Kanał 1 (443 nm) służy do korekcji wpływu aerozoli, kanał 9 (940 nm) do korekcji wpływu pary wodnej, a kanał 10 (1375 nm) do wykrywania chmur typu cirrus (Drusch et al., 2012).

Resampling kanałów w rozdzielczości 20 m do 10 m (metoda=bilinear). Złączenie kanałów w wielokanałowy raster. Opisać pozostałe czynności wykonane z tymi danymi. Indeksy spektralne???

3.2 Ortofotomapa i mozaiki zdjęć satelitarnych

Do lokalizacji oraz wektoryzacji istniejących farm fotowoltaicznych wykorzystano ortofotomapę udostępnianą przez Główny Urząd Geodezji i Kartografii oraz mozaiki zdjęć

satelitarnych dostarczane przez podmioty komercyjne. W teledetekcji jednym z zastosowań mozaik obrazów satelitarnych jest tworzenie zestawów danych referencyjnych poprzez interpretację wizualną, np. w celu walidacji wyników klasyfikacji produktów pokrycia terenu (Lesiv et al., 2018). Do stworzenie zbioru danych testowych i treningowych wykorzystano ortomozaiki Google Satellite, Bing Aerial, Mapbox Satellite oraz Planet Basemaps, udostępniane w formie usług sieciowych (WMS, WMTS, XYZ Tiles). Ortomozaiki te są wykonywane na podstawie komercyjnych zdjęć satelitarnych wykonywanych przez podmioty takie jak Maxar, Airbus czy Planet. Ortofotomapa udostępniana przez GU-GiK charakteryzuje się rozdzielczością przestrzenną 25 cm, rozdzielczość przestrzenna wykorzystanych mozaik obrazów satelitarnych (poza Planet Basemaps) wynosi wynosi poniżej 1 m, np. 30-60 cm dla mozaiki Bing Aerial udostępnianej przez firmę Microsoft. Niewiele jednak wiadomo na temat dat wykonania zdjęć satelitarnych na całym świecie, które posłużyły do stworzenia konkretnej mozaiki zobrazowań satelitarnych (Lesiv et al., 2018). Mozaika tworzona przez Planet na podstawie zdjęć satelitarnych wykonywanych przez konstelację satelitów PlanetScope charakteryzuje się rozdzielczością przestrzenną 4,77 m na równiku, jednak w porównaniu do pozostałych wymienionych produktów jest tworzona z kwartalną i miesięczną częstotliwością. Pozwala to, pomimo niższej rozdzielczości przestrzennej na stworzenie zbioru danych testowych i treningowych na konkretny okres czasu (planet-basemaps-product-specifications.pdf). Wybrane mapy bazowe są tworzone na podstawie zdjęć wybieranych przy użyciu algorytmu, który wybiera najlepsze obrazy z katalogu Planet w określonym przedziale czasowym. Wybierając najlepsze obrazy, Planet jest w stanie tworzyć wysokorodzielcze mozaiki, które są dokładne radiometrycznie i przestrzennie, które minimalizują wpływ czynników atmosferycznych.

3.3 OpenStreetMap

3.4 Próbki treningowe i testowe

Rycina 3.1: Moja pierwsza rycina

Rycina 3.2: Moja druga rycina

Metody

Rozdział **Metody** zawiera opis użytych metod (np. statystycznych czy geostatystycznych) oraz technologii (np. pakiety R). Opis każdej z metod czy technologi powinien być zwarty i zawierać tylko najważniejsze informacje z punktu widzenia pracy dyplomowej. Każda użyta metoda i technologia powinna być zacytowana. W przypadku pakietów R, wystarczy wypełnić poniższy blok kodu (zwróć uwagę, że ten blok kodu ma parametr echo: false; oznacza to, że będzie on niewidoczny w wynikowym pliku PDF)...

... a następnie zacytować pakiet używając znaku @, po którym podać nazwę pakietu rozpoczynającą się od prefiksu R-. Przykładowe cytowanie języka R bez nawiasu to R Core Team (2023), a pakietu **kableExtra** w nawiasie to (Zhu, 2021). Więcej przykładów cytowania można znaleźć na stronie https://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html#citations.

W przypadkach, gdy cytowanie istnieje, ale nie jest pakietem R to należy dodać je do pliku thesis.bib i użyć powyższej składni ze znakiem @. W ostateczności, gdy dana technologia nie posiada cytowania, należy podać jej adres internetowy.

Wyniki

Część **Wyniki** może składać się z jednego lub więcej rozdziałów. Każdy z tych rozdziałów powinien mieć tytuł adekwatny do swojej treści.

Rozdziały wynikowe powinny korzystać z wiedzy opisanej w poprzednich rozdziałach (Rozdziały 2, 3, 4). W przypadku prac analitycznych, ich treść powinna przedstawiać kolejne etapy eksploracji i analizy danych. W przypadku prac technicznych, treść tych rozdziałów powinna opisywać stworzone narzędzia, a następnie pokazywać ich zastosowanie/a.

W przypadku prac technicznych warto pokazywać fragmenty napisanego rozwiązania lub jego wywołania używając bloków kodu.

```
moja_funkcja = function(x){
  cat(x, "rządzi!")
}
moja_funkcja("Autor tej pracy")
```

Autor tej pracy rządzi!

Podsumowanie

Podsumowanie pracy jest w pewnym sensie znacznie rozbudowanym abstraktem. Należy wyliczyć i opisać osiągnięcia uzyskane w pracy dyplomowej. Tutaj jednak (w przeciwieństwie do np. rozdziału 1) należy przechodzić od szczegółu do ogółu - co zostało stworzone/określone, jak zostało to zrobione, jakie ma to konsekwencje, itd.

Ten rozdział powinien też zawierać opis kwestii, których nie udało się rozwiązać w pracy dyplomowej (i dlaczego się nie udało) oraz pomysły na przyszłe ulepszenie uzyskanych wyników lub dalsze badania.

Bibliografia

- Drusch, M, U Del Bello, S Carlier, O Colin, V Fernandez, F Gascon, B Hoersch, C Isola, P Laberinti, P Martimort, A Meygret, F Spoto, O Sy, F Marchese, and P Bargellini (2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. *Remote Sensing of Environment* **120**. The Sentinel Missions New Opportunities for Science, 25–36.
- ESA, ESA (2015). Sentinel-2 User Handbook. 64 pages. https://sentinels.copernicus.

 eu/web/sentinel/user-guides/document-library/-/asset_publisher/

 xlslt4309D5h/content/sentinel-2-user-handbook.
- Hejmanowska, B and P Wezyk (2020). *Dane satelitarne dla administracji publicznej*. Polska Agencja Kosmiczna.
- Lesiv, M, L See, JC Laso Bayas, T Sturn, D Schepaschenko, M Karner, I Moorthy, I McCallum, and S Fritz (2018). Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data. *Land* 7(4).
- Main-Knorn, M, B Pflug, J Louis, V Debaecker, U Müller-Wilm, and F Gascon (2017). Sen2Cor for Sentinel-2. In: *Image and Signal Processing for Remote Sensing XXIII*. Ed. by L Bruzzone. Vol. 10427. International Society for Optics and Photonics. SPIE, pp.37–48. https://doi.org/10.1117/12.2278218.
- Phiri, D, M Simwanda, S Salekin, VR Nyirenda, Y Murayama, and M Ranagalage (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. *Remote Sensing* **12**(14).
- R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.

Zhu, H (2021). *kableExtra: Construct Complex Table with kable and Pipe Syntax*. R package version 1.3.4. https://CRAN.R-project.org/package=kableExtra.