JUL 0 1 2009

21375YP

In the Claims

(Currently Amended) A compound represented by Formula (I):

$$\mathbb{R}^{7}$$
 \mathbb{R}^{6}
 \mathbb{R}^{6}
 \mathbb{R}^{1}
 \mathbb{R}^{6}

or a pharmaceutically acceptable salt thereof, wherein

HET is one of the following heterocycles:

Rl is

- (a) H;
- (b) C₁-C₆-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl,C₃-C₆-cycloalkyl, or C₁-C₄-alkyl-[C₃-C₆-cycloalkyl], any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) -O-C₁-C₆-alkyl, -O-C₃-C₆-cycloalkyl, -S-C₁-C₆-alkyl or -S-C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-

- C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl;
- (e) -OH;
- (f) -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) --C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀-4alkyl-CO-OR^a, viii) -(C₀-4alkyl)-NH-CO-OR^a, ix) -(C₀-4alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁-10alkyl, and xiv) -C₁-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C-;
- (g) $-OCON(R^a)(R^b)$, or $-OSO_2N(R^a)(R^b)$;
- (h) -SH, or -SCON(\mathbb{R}^a)(\mathbb{R}^b);
- (i) NO₂;
- (j) NR^aR^b , $-N(COR^a)R^b$, $-N(SO_2R^a)R^b$, $-N(R^a)SO_2N(R^a)_2$, $-N(OR^a)CONR^aR^b$, $-N(R^a)SO_2R^a$ or $-N(R^a)CON(R^a)_2$;
- (k) -CH(OR^a)R^a, -C(OR^b)CF₃, -CH(NHR^b)R^a, -C(=O)R^a, C(=O)CF₃, -SOCH₃, -SO₂CH₃, COOR^a, CN, CONR^aR^b, -COCONR^aR^b, -SO₂NR^aR^b, -CH₂O-SO₂NR^aR^b, SO₂N(R^a)OR^a, -C(=NH)NH₂, -CR^a=N-OR^a, CH=CHCONR^aR^b,
- (l) -CONR^a(CH₂)₀₋₂C(R^a)(R^b)(CH₂)₀₋₂CONR^aR^b;
- (m) tetrazolyl, tetrazolinonyl, triazolyl, triazolinonyl, imidazolyl, imidozolonyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrazolonyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, or phenyl, any of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)R^a, v) C₁-C₆-alkyl, vi) -O-R^a, vii) -NR^aR^b, viii) C₀-C₄-alkyl -CO-O R^a, ix) -(C₀-C₄-alkyl)-NH-CO-OR^a, x) -(C₀-C₄-alkyl)-CO-NR^a R^b, xi) -S(O)₀₋₂R^a, xii) -SO₂NR^aR^b, xiii) -NHSO₂R^a, xiv) -C₁-C₄-perfluoroalkyl, and xv) -O-C₁-C₄-perfluoroalkyl;
- (n) $-C(R^a)=C(R^b)-COOR^a$, or $-C(R^a)=C(R^b)-CONR^aR^b$;

(o)

$$R^{b}$$
 R^{b} R^{b} R^{b} R^{b} R^{c} R^{c

<u>or</u>

(p) piperidin-1-yl, morpholin-4-yl, pyrrolidin-1-yl, piperazin-1-yl or 4-susbstituted piperazin-1yl, any of which is optionally substituted with 1-3 substituents selected from i) -CN, ii) -alkyl)-NH-CO-OR^a, viii) -(C_0 - C_4 -alkyl)-CON(R^a)(R^b), ix) -SR^a, x) -S(O)_{0.7}R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a xiii) -C₁-C₄-perfluoroalkyl and xiv) -O-C₁-C₄perfluoroalkyl;

Ra is

- (a) H;
- (b) C₁-C₄-alkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O- (C_1-C_4) alkyl, S $(O)_{0\cdot 2}$ - (C_1-C_4) alkyl, -OCON (C_1-C_4) alkyl C_4 alkyl)(C_1 - C_4 alkyl), -OCONH C_1 - C_4 alkyl-aryl), -OCON(C_1 - C_4 alkyl)(C_1 - C_4 alkyl-aryl), NH₂, $NH(C_1-C_4alkyl)$, $N(C_1-C_4alkyl)$ (C_1-C_4alkyl), $NH(C_1-C_4alkyl-aryl)$, $N(C_1-C_4alkyl)$ (C_1-C_4alkyl) aryl), NHCONH₂, NHCONH(C₁-C₄alkyl), NHCONH(C₁-C₄alkyl-aryl), -NHCON(C₁-C4alkyl)(C1-C4alkyl), NHCON(C1-C4alkyl)(C1-C4alkyl-aryl), N(C1-C4alkyl)CON(C1-C4alkyl) C_4 alkyl)(C_1 - C_4 alkyl), $N(C_1$ - C_4 alkyl)CON(C_1 - C_4 alkyl)(C_1 - C_4 alkyl-aryl), COO-(C_1 - C_4 -alkyl), COOH, CN, CONH₂, CONH(C₁-C₄alkyl), CON(C₁-C₄alkyl)(C₁-C₄alkyl), SO₂NH₂, $SO_2NH(C_1-C_4alkyl)$, $SO_2NH(C_1-C_4alkyl-aryl)$, $SO_2N(C_1-C_4alkyl)$, $C_1-C_4alkyl)$, $NHSO_2NH_2$, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) C₀-C₄-alkyl-(C₁-C₄)-perfluoroalkyl; or
- (d) C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, $iv) - C(=0)(C_1-C_4-alkyl), v) - O(C_1-C_4-alkyl), vi) - N(C_1-C_4-alkyl)(C_1-C_4-alkyl), vii) - C_1$ 10alkyl, and viii) -C1-10alkyl, wherein one or more of the alkyl carbons can be replaced by a - O-, -S(O)_{1.2}-, -O-C(O)-, -C(O)-O-, -C(O)-, -CH(OH)-, -C \underline{H} =C \underline{H} -, or -C \equiv C-;

Rb is

- (a) H; or
- (b) C₁-C₆-alkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, -OCONH₂, -OCONH(C₁-C₄alkyl), NH₂, NH(C₁-C₄alkyl), N(C₁-C₄alkyl)(C₁-C₄alkyl), NHCONH₂, NHCONH(C₁-C₄alkyl), -NHCON(C₁-C₄alkyl), COO-(C₁-C₄-alkyl), COOH, CN, and CONH₂;

R² is:

- (a) H;
- (b) -C₁-C₄-alkyl, -C₃-C₆-cycloalkyl or -C₁-C₄-alkyl-(C₃-C₆)-cycloalkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR̄^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR̄^aR^b, SO₂NR̄^aR̄^b, N(R̄^a)SO₂NR̄^aR̄^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl and piperazinyl;
- (c) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl;
- (d) aryl or -(C₁-C₄-alkyl)-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀-4alkyl-CO-OR^a, viii) -(C₀-4alkyl)-NH-CO-OR^a, ix) -(C₀-4alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁-10alkyl, and xiv) -C₁-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C=C-; or

(e) $-C(=O)(R^a)$, $-CONR^aR^b$, $COO-(C_1-C_4)alkyl$, $-SO_2R^a$, $-SO_2N(R^a)(R^b)$;

R³ is

- (a) H;
- (b) -C₁-C₄-alkyl, -C₃-C₆-cycloalkyl or -C₁-C₄-alkyl-(C₃-C₆)-cycloalkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^aR^b)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^aR^b)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl;

- (d) aryl or -(C₁-C₄-alkyl)-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)(Ra), v) -ORa, vi) -NRaRb, vii) -C0-4alkyl-CO-ORa, viii) -(C0-4alkyl)-NH-CO-ORa, ix) -(C0-4alkyl)-CO-N(Ra)(Rb), x) -S(O)0-2Ra, xi) -SO2N(Ra)(Rb), xii) -NRaSO2Ra, xiii) -C1-10alkyl, and xiv) -C1-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NRa-, O-, -S(O)1-2-, -O-C(O)-, -C(O)-O-, -C(O)-N(Ra)-, -N(Ra)-C(O)-, N(Ra)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C-;
- (e) $-O-C_1-C_4$ -alkyl, $-O-C_0-C_4$ -alkyl- $-C_4$ -perfluoroalkyl, -O-aryl or $-O(C_1-C_4$ -alkyl)-aryl; or
- (f) -C(=O)(R*), -SO₂R*, -SO₂N(R*)(R*), CN, NR*R*, NO₂, F, Cl, Br, I, OH, OCONR*R*, O(C₁-C₄-alkyl)CONR*R*, -OSO₂NR*R*, COOR*, or CONR*R*;

R4 and R5 each independently is:

- (a) H;
- (b) -G₄-C₆-alkyl, -C₂-C₆-alkenyl, -C₂-C₆-alkynyl or -C₃-C₆-eyoloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, -O (G₄-C₄)alkyl, CN, -N(R^a)(R^b), N(R^a)CO-(C₄-C₄)alkyl, COOR^b, CON(R^a)(R^b) or phenyl;
- (c) O C₀ C₆-alkyl, -O-aryl, or O C₁-C₄-alkyl aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thionyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, exazolyl, or exadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) CN, iii) NO₂, iv) -C(=O)(R⁶), v) -OR⁶, vi) NR⁶R⁶, vii) C0 4alkyl CO OR⁶, viii) (C0 4alkyl) NII CO OR⁶, ix) -(C0 4alkyl) CO N(R⁶)(R⁶), x) -S(O)_{0.2}R⁶, xi) -SO₂N(R⁶)(R⁶), xii) NR⁶SO₂R⁶, xiii) -C₁ 10alkyl, and xiv) C₁ 10alkyl, wherein one or more of the alkyl earbons can be replaced by a NR⁶, -O, S(O)_{1.2}, O C(O), C(O) O, C(O) N(R⁶), N(R⁶) C(O), N(R⁶) C(O) N(R⁶), C(O), CH(OH), C=C, or C=C;
- (d) C₀ C₄ alkyl-C₁ C₄ perfluoroalkyl, or O C₀ C₄ alkyl-C₁ C₄ perfluoroalkyl; or
- (e) CN, NH₂, NO₂, F, Cl, Br, I, OH, OCON(R^a)(R^b) O(C₁-C₄-alkyl)CONR^aR^b, OSO₂N(R^a)(R^b), COOR^b, CON(R^a)(R^b), or aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3-substituents selected from i) F, Cl, Br, I, ii) CN, iii) NO₂, iv) -C(-O)(R^a), v) -OR^a, vi) NR^aR^b, vii) C₀ 4alkyl CO OR^a, viii) (C₀ 4alkyl) NH CO OR^a, ix) -(C₀ 4alkyl) CO N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) NR^aSO₂R^a, xiii) -C₁ 10alkyl, and xiv) -C₁ 10alkyl, wherein one or more of the alkyl carbons can be replaced by a NR^a, O, S(O)₁₋₂, O-C(O), C(O) O, C(O) N(R^a), N(R^a) C(O), N(R^a), C(O), CH(OH), C-C, or C=C; and

- R6. R7 and R8 each independently is:
- (a) H, provided at least one of R⁶, R⁷ and R⁸ is not hydrogen;
- (b) C₁-C₆-alkyl, C₂-C₄-alkenyl, C₃-C₄-alkynyl or C₃-C₆-cycloalkyl, any of which is optionally substituted all substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, OCON(R^a)(R^b), NR^aR^b, COOR^a, CN, CONR^aR^b, N(R^a)CONR^aR^b, $N(R^a)SO_2NR^aR^b$, $SO_2NR^aR^b$, $S(O)_{0-2}(C_1-C_4-alkyl)$, $-C(=NH)NH_2$, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl, or piperazinyl;
- (c) -O- C₁-C₆-alkyl, -O-C₃-C₆-cycloalkyl, -S-C₁-C₆-alkyl, or -S-C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁- C_4)alkyl, NH_2 , $NH(C_1-C_4-alkyl)$, $N(C_1-C_4-alkyl)_2$, COOH, CN, $CONH_2$, $CONH(C_1-C_4-alkyl)_2$, COOH, CN, $CONH(C_1-C_4-alkyl)_2$, COOH, CN, alkyl), CONH(C1-C4-alkyl)2, SO2NH2, SO2NH(C1-C4-alkyl), tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl, or piperazinyl;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl; or
- (e) -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=O)(Ra), v) -ORa, vi) -NRaRb, vii) -C0-4alkyl-CO-ORa, viii) -(C0-4alkyl)-NH-CO-OR^a, ix) -(C₀-4alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NRaSO2Ra, xiii) -C1_10alkyl, and xiv) -C1_10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NRa-, - O-, -S(O)1.2-, -O-C(O)-, -C(O)-O-, -C(O)-N(Ra)-, - $N(R^{a})-C(O)-$, $-N(R^{a})-C(O)-N(R^{a})-$, -C(O)-, -CH(OH)-, -CH=CH-, or -C=C; (f) CN, $N(R^a)(R^b)$, NO_2 , F, Cl, Br, I, $-OR^a$, $-SR^a$, $-OCON(R^a)(R^b)$, $-OSO_2N(R^a)(R^b)$, $COOR^b$, $CON(R^a)(R^b)$, $-N(R^a)CON(R^a)(R^b)$, $-N(R^a)SO_2N(R^a)(R^b)$, $-C(OR^b)R^a$, $-C(OR^a)CF_3$, -C(NHR^a)CF₃, -C(=0)R^a, C(=0)CF₃, -SOCH₃, -SO₂CH₃, -NHSO₂(C₁₋₆-alkyl), -NHSO₂-aryl, $SO_2N(R^b)$, $-CH_2OSO_2N(R^b)$, $SO_2N(R^b)$ - OR^a , $-C(=NH)NH_2$, $-CR_a=N-OR_a$, CH=CH or aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO2, iv) -C(=0)(R^B), v) -ORa, vi) -NRaRb, vii) -C0-4alkyl-CO-ORa, viii) -(C0-4alkyl)-NH-CO-ORa, ix) -(C0-4alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁0alkyl, and xiv) -C1-10alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR2-, -O-, -S(O)1.2-, -O-C(O)-, -C(O)-O-, -C(O)-N(Ra)-,

 $-N(R^a)-C(O)-$, $-N(R^a)-C(O)-N(R^a)-$, -C(O)-, -CH(OH)-, -CH=CH-, or -C=C; or when R^6 and R7 are present on adjacent carbon atoms, R6 and R7, together with the benzene ring to which

they are attached, may form a bicyclic aromatic ring selected from naphthyl, indolyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzofuryl, benzothienyl, benzoxazolyl, benzothiazolyl, and benzimidazolyl, any aromatic ring of which is optionally substituted with 1-4 independent substituents selected from i) halogen, ii) -CN, iii) -NO2, iv) -CHO, v) -O-C1_4alkyl, vi) -N(C0_4alkyl)(C0_4alkyl), vii) -C0_4alkyl-CO-O(C0_4alkyl), viii) -(C0_4alkyl)-NH-CO-O(C0_4alkyl), ix) -(C0_4alkyl)-CO-N(C0_4alkyl)(C0_4alkyl), x) -S(C0_4alkyl), xii) -SO2(C0_4alkyl), xiii) -SO2N(C0_4alkyl)(C0_4alkyl), xiv) -NHSO2(C0_4alkyl)(C0_4alkyl), xv) -C1_10alkyl and xvi) -C1_10alkyl in which one or more of the carbons can be replaced by a -N(C0_6alkyl)-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(C0_6alkyl)-, -N(C0_6alkyl)-C(O)-, -N(C0_6alkyl)-C(O)-N(C0_6alkyl)-, -C(O)-, -CH(OH), -CH=CH-, or -C=C-.

2(Original) A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

HET is

$$\begin{cases} N & R^1 \\ R_2 & S \end{cases}$$

3(Original) A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

HET is

$$\xi$$
 S
 R_2

4 (Canceled).

5 (Canceled).

6 (Canceled).

7 (Canceled).

8(Original) A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

R⁶ is other than H and is attached at the ortho position.

9(Currently Amended) A compound represented by

10(Currently Amended)

A compound according to Claim 1 which is

represented by

R ⁶	R ²	R ¹
Cl	Н	Н
Cl	Н	COOEt
Cl	Н	CONH ₂
Cl	Н	CONH-tBu

R ⁶	R ²	R ¹
CI	Н	NH.
Cl	Н	NH ₂
CF ₃	Н	COOEt
CF ₃	Н	CONH ₂
CF ₃	н	н
CF ₃	Н	NH ₂
OCF ₃	н	CH₃
OCF ₃	Н	Н
OCF ₃	Н	NH ₂
OCF ₃	H	CONMe ₂
OCF ₃	Cl	CH ₃
OCF ₃	Н	NHSO₂CH3
OCF ₃	н	СН₂ОН
O-Ph	Н	CONH ₂
CF ₃	н	NHCONH-iPr
OCF ₃	Н	NHCONH-iPr
OCF ₃	Н	NHCOCH ₃
CF ₃	Н	NHCOCH ₃
OCF ₃	н	CH₂COOEt
OCF ₃	Н	CH₂CN_
OCF ₃	Н	CH₂CONH₂
CF ₃	Н	CH₂CONH₂
OCF ₃	Н	NHCONMe2
OCF ₃	Н	HN
OCF ₃	Н	2-Pyrimidyl
OCF ₃	H_	2-Pyridyl
OCF ₃	Н	2-Oxazolyl
OCF ₃	н	2-Imidazolyl
OCF ₃	Н	2-Pyrazolyl
OCF ₃	Н	2-(1-Methyl)-
		imidazolyl

21375YP

R ⁶	R²	R ¹
OCF ₃	н	A A A A A A A A A A A A A A A A A A A
OCF ₃	Н	, or
OCF ₃	Н	

11(Currently Amended) A compound represented by

12(Currently Amended)

A compound according to Claim 1 represented

by

R ₆	R ₂	R _i
CF ₃	Н	Н
CF ₃	Н	COOEt
CF ₃	Н	CONH ₂
CF ₃	Н	CONHCH ₃
CF ₃	COOEt	CH ₃
CF ₃	CONH ₂	CH ₃
OCF ₃	Н	н
OCF ₃	Н	COOCH ₃
OCF ₃	н 🐪 .	CONH ₂

21375YP

R ₆	R ₂	R ₁
OCF ₃	Н	СООН
OCF ₃	Н	CH₂OH_
OCF ₃	н	CONH(CH ₂) ₃ OH, or
O-Ph	Н	CONH ₂

- 13 (Canceled).
- 14 (Canceled).
- 15 (Canceled).
- 16 (Canceled).

17(Original) A pharmaceutical composition comprising a therapeutically effective amount of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

18 (Canceled).

19(Withdrawn) A method of treatment or prevention of pain comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

20(Withdrawn) A method of treatment of chronic, visceral, inflammatory and neuropathic pain syndromes comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

21(Withdrawn) A method of treatment of pain resulting from, or associated with, traumatic nerve injury, nerve compression or entrapment, postherpetic neuralgia, trigeminal neuralgia, diabetic neuropathy, cancer and chemotherapy, comprising the step of administering to

a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

22(Withdrawn) A method of treatment of chronic lower back pain comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

23(Withdrawn) A method of treatment of phantom limb pain comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

24(Withdrawn) A method of treatment of HIV- and HIV treatment-induced neuropathy, chronic pelvic pain, neuroma pain, complex regional pain syndrome, chronic arthritic pain and related neuralgias comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

25(Withdrawn) A method of administering local anesthesia comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

26(Withdrawn) A method of treatment of irritable bowel syndrome and Crohn's disease comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

27(Withdrawn) A method of treatment of epilepsy and partial and generalized tonic seizures comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

28(Withdrawn) A method for neuroprotection under ischaemic conditions caused by stroke or neural trauma comprising the step of administering to a patient in need thereof a

therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

29(Withdrawn) A method of treatment of multiple sclerosis comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

30(Withdrawn) A method of treatment of bipolar disorder comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

31(Withdrawn) A method of treatment of tachy-arrhythmias comprising the step of administering to a patient in need thereof a therapeutically effective amount, or a prophylactically effective amount, of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof.