Data 621: Homework 4

Car Insurance Data

Aaron Grzasko April 14, 2018

Introduction

In this report, we analyze insurance data to estimate the following quantities:

- The probability that a specified driver will have a car crash.
- The dollar cost of auto claims, given that the insured was involved in a crash.

In practice, these claim frequency and severity measures are useful for determining appropriate pure premium amounts to charge auto policyholders.

Using the provide training data set, we will build two separate models:

- a binary logistic regression to determine crash probabilities.
- a multiple linear regression model to estimate claim severity.

We will then make predictions on the provided insurance testing data set.

Data Exploration

Variable Overview

The training data set includes 8,161 observations, with 26 variables: 23 predictors, two response variables, and one record identifier.

Below is a brief description of the included variables:

Variable Name	Description	Theoretical Impact
INDEX	Identification Variable (do not use)	None
$TARGET_FLAG$	In a crash? 1=YES 0=NO	None
$TARGET_AMT$	Cost of Crash, if applicable	None
KIDSDRIV	# Driving Children	When teenagers drive your car, increased crash risk
AGE	Age of Driver	Young and old drivers might be riskier
HOMEKIDS	# Children at Home	Unknown effect
YOJ	Years on Job	Long-term employees are usually safer
INCOME	Income	In theory, rich have fewer crashes
PARENT1	Single Parent	Unknown impact
$HOME_VAL$	Home Value	In theory, home owners may drive more responsibly
MSTATUS	Marital Status	In theory, married individuals are less risky
SEX	Gender	Urban legend: females are safer drivers
EDUCATION	Max Education Level	Unknown, but in theory educated people drive more safely
JOB	Job Category	In theory, white collar workers are less risky
TRAVTIME	Commute Distance	Long drives to work usually suggest greater risk
CAR_USE	Vehicle Use	Commercial fleet driven more, may impact collision prob
BLUEBOOK	Value of Vehicle	Unknown impact on collision prob, but impacts crash payout
TIF	Time in Force	Long-term customers are usually safer

Variable Name	Description	Theoretical Impact
CAR_TYPE	Type of Car	Unknown impact on collision prob, but impacts crash payout
RED_CAR	A Red Car	Urban legend: red cars are riskier, particularly sports cars
OLDCLAIM	# Claims (Past 5 Years)	If total payout high, future payouts might be high
CLM_FREQ	Total Claims (Past 5 Years)	Claim count should be positively correlated with future claims
REVOKED	License Revoked (Past 7 Years)	If your license was revoked, you probably are a riskier driver
MVR_PTS	Motor Vehicle Report Points	Traffic ticket counts have postive correlation with crashes
CAR_AGE	Vehicle Age	Unknown impact on collision prob, but impacts crash payout
URBANICITY	Home/Work Area	Unknown impact

There are a couple issues with the raw data file:

- Currency fields were treated as factors due to "\$" and "," characters.
- Multiple character field entries included an extraneous "z_" or "<" prefix.

We also rescaled the fields INCOME, HOME_VAL, BLUEBOOK, and OLDCLAIM to be so that dollars are expressed in \$1,000s,

After cleaning up these minor issues, we're ready to explore data types and sample observations from the training set:

```
'data.frame':
                8161 obs. of 26 variables:
$ INDEX
             : int
                     1 2 4 5 6 7 8 11 12 13 ...
$ TARGET_FLAG: int
                     0 0 0 0 0 1 0 1 1 0 ...
$ TARGET_AMT : num
                     0 0 0 0 0 ...
$ KIDSDRIV
              : int
                     0 0 0 0 0 0 0 1 0 0 ...
$ AGE
              : int
                     60 43 35 51 50 34 54 37 34 50 ...
$ HOMEKIDS
                     0 0 1 0 0 1 0 2 0 0 ...
              : int
                     11 11 10 14 NA 12 NA NA 10 7 ...
$ YOJ
              : int
$ INCOME
              : num
                     67.3 91.4 16 NA 115 ...
              : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 2 1 1 1 1 ...
$ PARENT1
$ HOME VAL
                     0 257 124 306 244 ...
              : Factor w/ 2 levels "No", "Yes": 1 1 2 2 2 1 2 2 1 1 ...
$ MSTATUS
              : Factor w/ 2 levels "F", "M": 2 2 1 2 1 1 1 2 1 2 ...
$ SEX
             : Ord.factor w/ 4 levels "High School" < ..: 4 1 1 1 4 2 1 2 2 2 ...
$ EDUCATION
$ JOB
              : Factor w/ 9 levels "", "Blue Collar", ...: 8 2 3 2 4 2 2 2 3 8 ...
$ TRAVTIME
              : int 14 22 5 32 36 46 33 44 34 48 ...
$ CAR_USE
             : Factor w/ 2 levels "Commercial", "Private": 2 1 2 2 2 1 2 1 2 1 ...
$ BLUEBOOK
                   14.23 14.94 4.01 15.44 18 ...
$ TIF
                     11 1 4 7 1 1 1 1 1 7 ...
$ CAR_TYPE
              : Factor w/ 6 levels "Minivan", "Panel Truck", ...: 1 1 5 1 5 4 5 6 5 6 ...
$ RED_CAR
             : Factor w/ 2 levels "no", "yes": 2 2 1 2 1 1 1 2 1 1 ...
$ OLDCLAIM
                    4.46 0 38.69 0 19.22 ...
$ CLM_FREQ
              : int 2020200100...
$ REVOKED
              : Factor w/ 2 levels "No", "Yes": 1 1 1 1 2 1 1 2 1 1 ...
              : int 3 0 3 0 3 0 0 10 0 1 ...
$ MVR PTS
$ CAR AGE
                     18 1 10 6 17 7 1 7 1 17 ...
$ URBANICITY : Factor w/ 2 levels "Highly Rural/ Rural",..: 2 2 2 2 2 2 2 2 1 ...
```

We ignore the field INDEX for modeling purposes, which is used only for identifying observations.

The two response variables, TARGET_FLAGand TARGET_AMT, contain binary and dollar values, respectively.

The predictors include four discrete count variables:

- KIDSDRIV
- HOMEKIDS
- CLM_FREQ
- MVR_PTS

There are five discrete time measurements:

- AGE
- YOJ
- TRAVTIME
- TIF
- CAR_AGE

There are also seven binary, categorical features:

- PARENT1
- MSTATUS
- SEX
- CAR_USE
- RED_CAR
- REVOKED
- URBANCITY

The data set includes two multinomial, categorical features:

- JOB
- CAR_TYPE

There is one ordinal, categorical predictor:

• EDUCTATION

Finally, there are four predictors that express dollar amounts. These variables are effectively continuous:

- INCOME
- HOME_VAL
- BLUEBOOK
- OLDCLAIM

Now, let's review a high level statistical summary of the variables:

INDEX	TARGET_FLAG	TARGET_AMT	KIDSDRIV	AGE
Min. : 1	Min. :0.0000	Min. : 0	Min. :0.0000	Min. :16.00
1st Qu.: 2559	1st Qu.:0.0000	1st Qu.: 0	1st Qu.:0.0000	1st Qu.:39.00
Median : 5133	Median :0.0000	Median: 0	Median :0.0000	Median :45.00
Mean : 5152	Mean :0.2638	Mean : 1504	Mean :0.1711	Mean :44.79
3rd Qu.: 7745	3rd Qu.:1.0000	3rd Qu.: 1036	3rd Qu.:0.0000	3rd Qu.:51.00

```
Max.
       :10302
                 Max.
                         :1.0000
                                           :107586
                                                      Max.
                                                             :4.0000
                                                                        Max.
                                                                                :81.00
                                   Max.
                                                                        NA's
                                                                                :6
   HOMEKIDS
                       YOJ
                                      INCOME
                                                    PARENT1
                                                                    HOME VAL
                                                                                 MSTATUS
Min.
       :0.0000
                          : 0.0
                                  Min.
                                          :
                                             0.00
                                                    No:7084
                                                                        : 0.0
                                                                                 No :3267
                  Min.
                                                                Min.
1st Qu.:0.0000
                  1st Qu.: 9.0
                                  1st Qu.: 28.10
                                                     Yes:1077
                                                                1st Qu.:
                                                                           0.0
                                                                                  Yes:4894
Median :0.0000
                  Median:11.0
                                  Median : 54.03
                                                                Median :161.2
       :0.7212
                         :10.5
                                          : 61.90
Mean
                  Mean
                                  Mean
                                                                Mean
                                                                        :154.9
                  3rd Qu.:13.0
                                  3rd Qu.: 85.99
                                                                3rd Qu.:238.7
3rd Qu.:1.0000
Max.
       :5.0000
                  Max.
                          :23.0
                                  Max.
                                          :367.03
                                                                Max.
                                                                        :885.3
                          :454
                                  NA's
                                                                NA's
                  NA's
                                          :445
                                                                        :464
SEX
                EDUCATION
                                         J<sub>0</sub>B
                                                       TRAVTIME
                                                                            CAR_USE
F:4375
         High School:3533
                              Blue Collar: 1825
                                                           : 5.00
                                                                      Commercial:3029
                                                   Min.
M:3786
         Bachelors
                    :2242
                              Clerical
                                           :1271
                                                    1st Qu.: 22.00
                                                                      Private
                                                                                 :5132
                     :1658
                              Professional:1117
                                                   Median : 33.00
         Masters
         PhD
                     : 728
                                           : 988
                                                           : 33.49
                              Manager
                                                   Mean
                              Lawyer
                                           : 835
                                                   3rd Qu.: 44.00
                              Student
                                           : 712
                                                   Max.
                                                           :142.00
                              (Other)
                                           :1413
   BLUEBOOK
                      TIF
                                           CAR TYPE
                                                        RED CAR
                                                                       OLDCLAIM
       : 1.50
                 Min.
                         : 1.000
                                   Minivan
                                               :2145
                                                        no:5783
                                                                    Min.
                                                                           : 0.000
1st Qu.: 9.28
                 1st Qu.: 1.000
                                   Panel Truck: 676
                                                        yes:2378
                                                                    1st Qu.: 0.000
Median :14.44
                 Median : 4.000
                                   Pickup
                                               :1389
                                                                    Median : 0.000
       :15.71
                         : 5.351
                                   Sports Car: 907
                                                                    Mean
                                                                           : 4.037
Mean
                 Mean
                 3rd Qu.: 7.000
3rd Qu.:20.85
                                   SUV
                                                                    3rd Qu.: 4.636
                                               :2294
       :69.74
Max.
                 Max.
                         :25.000
                                   Van
                                               : 750
                                                                    Max.
                                                                           :57.037
   CLM_FREQ
                  REVOKED
                                 MVR_PTS
                                                   CAR_AGE
                                                                                  URBANICITY
       :0.0000
                  No:7161
                                                                   Highly Rural/ Rural:1669
Min.
                              Min.
                                     : 0.000
                                                Min.
                                                        :-3.000
1st Qu.:0.0000
                  Yes:1000
                              1st Qu.: 0.000
                                                1st Qu.: 1.000
                                                                  Highly Urban/ Urban:6492
Median : 0.0000
                              Median : 1.000
                                                Median: 8.000
Mean
       :0.7986
                              Mean
                                      : 1.696
                                                Mean
                                                        : 8.328
3rd Qu.:2.0000
                              3rd Qu.: 3.000
                                                3rd Qu.:12.000
Max.
       :5.0000
                              Max.
                                      :13.000
                                                Max.
                                                        :28.000
                                                NA's
                                                        :510
```

We notice a variety of missing values and strange field entries that may reflect data errors. These issues will be address in a later section.

Let's now focus on each variable individually.

TARGET Variables

TARGET_FLAG

The response variable TARGET_FLAG has a moderate imbalance, with three-quarters of the observations indicating no crashes.

0 1 Sum count 6008.0 2153.0 8161 percent 73.6 26.4 100

TARGET AMT

The other response, TARGET AMT, exhibits extreme, positive skewness and high kurtosis.

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	\mathtt{StdD}	Skew	Kurt
0.00	0.00	0.00	1504.32	1036.00 1	.07586.14	4704.03	8.71	115.32

We already noted that almost three quarters of records indicate no car crash. In these cases, the TARGET_AMT has a zero value.

For modeling purposes, however, we will only be interested in dollar amounts where a crash occurred. Going forward, when performing calculations and summaries involving TARGET_AMT, we will use a subset of the data where zero amounts are filtered out.

Here is a summary of the zero-truncated TARGET_AMT variable:

```
Min.
        1st Qu.
                    Median
                                  Mean
                                                        Max.
                                                                   StdD
                                                                              Skew
                                                                                         Kurt
30.28
        2609.78
                    4104.00
                              5702.18
                                         5787.00 107586.14
                                                                              5.64
                                                                                        45.49
                                                                7743.18
```

Even after we remove the zero values, the variable remains highly skewed:

Count Variables

KIDSDRIV

The discrete variable KIDSDRIV is right skewed, with 88% of insureds in the training data having no teenage drivers in the household.

```
2
                              3 4
                                   Sum
        7180 636.0 279.0 62.0 4 8161
count
percent
          88
                7.8
                      3.4
                            0.8 0
                                   100
   Min. 1st Qu.
                  Median
                             Mean 3rd Qu.
                                              Max.
                                                       StdD
                                                                Skew
                                                                        Kurt
   0.00
           0.00
                    0.00
                             0.17
                                      0.00
                                              4.00
                                                       0.51
                                                                3.35
                                                                       14.78
```

In the barplot below, we see different a slightly different distribution of policyholders involved in crashes vis-a-vis the incident-free insureds. Specifically, we see slightly higher concentration of individuals teenage

drivers. The scatter plot also indicates a relationship between relationship between number of teenage drivers and the log odds of an auto incident.

We also plot the log TARGET_AMT-given that a crash occurred-against KIDSDRIV. Note: we applied the log transformation because TARGET_AMT is highly right skewed, and the directional relationship with KIDSDRIV should be clearer in this form.

While not entirely clear in the boxplot, there appears to be a rough, positive relationship between KIDSDRIV and the median cost of the crash. The relationship with the mean crash amount, however, is less clear.

HOMEKIDS

Numerical distribution and statistical summaries are presented below:

	0	1	2	3	4	5	Sum			
count	5289.0	902.0	1118.0	674.0	164	14.0	8161			
percent	64.8	11.1	13.7	8.3	2	0.2	100			
Min.	1st Qu.	. Med:	ian 1	Mean 31	rd Qu	1.	Max.	StdD	Skew	Kurt
0 00	0.00) (00 (72	1 (00	5 00	1 12	1 34	3 65

The distribution of this discrete variable is right skewed, but not to the same extent as KIDSRIV. HOMEKIDS contains some of the same information as KIDSDRIV: presumably, some of the reported children are also drivers.

Let's look plots relating this predictor to the target variables:

The barplot provides some evidence that policyholders with crashes tend to have more children than than insureds not involved in an auto incident. The scatterplot indicates a significant difference in log odds between policyholders with children vs. insureds without children. We discount the observation associated with five children due to the small sample size.

There appears to be a subtle relationship between HOMEKIDS and the median cost of crashes. The relationship with the mean is less clear, given the highly variable and skewed distribution of crash amounts.

HOMEKIDS	ct	mean_cost	$median_cost$
0	1173	5685	4080
1	305	5522	4036
2	382	6085	4122
3	230	5432	4192
4	57	5610	4575
5	6	5009	5130

CLM_FREQ

Let's review numerical and statistical summaries for CLM_FREQ, another discrete count variable:

0 1 2 3 4 5 Sum

```
5009.0 997.0 1171.0 776.0 190.0 18.0 8161
count
          61.4
                12.2
                        14.3
                                9.5
                                      2.3
                                           0.2 100
percent
   Min. 1st Qu.
                  Median
                             Mean 3rd Qu.
                                              Max.
                                                       StdD
                                                               Skew
                                                                        Kurt
   0.00
           0.00
                             0.80
                                                                        3.29
                    0.00
                                     2.00
                                              5.00
                                                               1.21
                                                       1.16
```

This variable has a similar skew as the previously reviewed count variable, HOMEKIDS.

Based on the barplot below, there seems to be a significance difference in the distribution of prior claim frequencies for TARGET_FLAG values of zero vs. one. We see roughly 60% of auto claimants have had one or more prior claims in the past five year, while only 40% of non-claimants have had accidents. The scatter plot indicates a nonlinear albeit positive relationship between log odds of a claim and prior claim history. We also do not see a clear pattern between CLM_FREQ and the claim amounts.

MVR_PTS

Like the other count variables, MVR_PTS is positively skewed. There seems to be a positive relationship between points and log odds; however the scatter plot below indicates a strange, curved relationship between the two variables. We wonder if the curvature is related to to interaction with another predictor.

We see no straightforward relationship between TARGET_AMT and MVR_PTS.

BIN_MVR	ct	$mean_cost$	$median_cost$
0	985	5379	4037
2	506	5762	4068
4	354	6110	4292
6	198	5896	4194
8	88	6809	4492
10	20	6293	3824
12	2	3786	3786

Time Variables

\mathbf{AGE}

Below is table of values of the AGE predictor, with ages bucketed into 5 year increments (i.e. [15,20), [20,25), [30,35), etc.])

15 20 25 30 35 40 45 50 55 60 65 70 75 80 Sum count 14.0 58.0 249.0 649 1259.0 1673.0 1810.0 1373.0 725.0 265.0 65.0 12.0 1 2 8155

percent 0.2 0.7 3.1 8 15.4 20.5 22.2 16.8 8.9 3.2 0.8 0.1 0 0 100 Here is a statistical summary:

Min. 1st Qu. Median Mean 3rd Qu. NA's StdD Skew Kurt Max. 16.00 39.00 45.00 44.79 51.00 81.00 6.00 8.63 -0.03 2.94

We note six missing values that we'll need to address later.

The distribution of AGE is almost perfectly normal. When we break out the data by TARGET_FLAG values, the distributions of age by TARGET_FLAG are still roughly normal. However, individuals involved in a crash appear to be slightly younger, on average.

In the bottom left scatter plot, we notice a pattern between log odds and age. Specifically, there appears to be a curved relationship where younger ages have a higher odds of a crash. The odds continue to decrease until around age 60, when costs begin to trend upward again.

TARGET_AMT appears to be slightly higher for both younger (< 25) and older (> 60) drivers, but the differences appear to be subtle.

YOJ

YOB refers to the number of years in the insured's current job.

Here is a numerical summary, binned in 2 year increments:

10 12 14 16 18 22 Sum 631.0 51.0 129.0 473.0 905.0 1752.0 2174.0 2 7707 count 1248.0 305 37.0 percent 8.2 0.7 1.7 6.1 11.7 22.7 28.2 16.2 0.5 0 100

Below is the statistical summary:

We have a significant number of NA records-454, or 5.6%-that we'll need to address.

The variable would be approximately normally distributed if it weren't for the high percentage of individuals with less than one year on the job.

Insureds with accidents have a relatively high proportion of individuals with less than a year on the job.

The relationship between log odds and YOB appears to be complex-see the fitted loess curve below.

The relationship between YOJ and TARGET_AMT is also not very clear.

YOJBIN	ct	mean_cost	$median_cost$
16	99	6001	3969

TRAVTIME

Here is a summary of TRAVTIME, the commuting distance to work, in bins of 10 minutes:

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Sum 550.0 1036.0 1788.0 2023.0 1531.0 784.0 305.0 94.0 33.0 8161 count 6.7 12.7 21.9 24.8 18.8 9.6 3.7 1.2 0.4 0.1 0 0 0 0 0 100 percent

Here is a statistical summary:

Min. 1st Qu. Median Mean 3rd Qu. Max. StdD Skew Kurt 5.00 22.00 33.00 33.49 44.00 142.00 0.45 3.67 15.91

The distribution has a slight positive skew. The subset of insureds with no accidents have a higher proportion of individuals with short commute times. In the scatterplot below, we notice a generally positive relationship between log odds and TRAVETIME. Some of the curvature in the loess curve is likely driven by small sample sizes for long commute times.

Finally, we see a slight, upward curvature in the log of TARGET_AMT for long commute times. Judging from the loess curve confidence interval, this upward trend may not be statistically significant.

TRAVBIN	ct	mean_cost	median_cost
30	772	5671	4163
45	451	5516	3964
60	104	6470	4376
75	15	6169	4579
90	1	6909	6909

TIF

Here is a distribution of time in force values in bins of 2 year increments:

0 10 12 14 16 18 20 22 24 Sum count 2533 430.0 1294.0 1961 285.0 1022.0 323 109.0 148.0 32.0 2 8161 5.3 15.9 24 3.5 12.5 4 1.3 1.8 0.4 0.2 100 percent 31

Here is the statistical summary:

Min. 1st Qu. Median Mean 3rd Qu. StdD Skew Kurt Max. 1.00 4.00 5.35 0.89 3.42 1.00 7.00 25.00 4.15

The distribution is somewhat positively skewed. We see somewhat small sub-samples for TIF values of 2-3 and 8-9. Also, the log odds vs. TIF scatterplot suggests a quadratic relationship.

Finally, there does not seem to be a significant relationship between log of TARGET_AMT and TIF.

TIFBIN	ct	mean_cost	median_cost
4	823	5609	4049
8	289	5518	4220
12	91	5764	4061
16	35	5257	4868
20	3	5025	5610

CAR_AGE

The predictor CAR_AGE describes the age in years of the insured's car. Below we bin the data in increments of three:

Here is the statistical summary:

There is an observation that indicates a CAR_AGE value of -3. This is clearly an error. Also, there are 510 missing observations, representing 6% of total records. 1934 out of the 8161 (25%) of the records have a value of one.

Surprisingly, CAR_AGE appears to be negatively correlated with the log odds of a claim. Perhaps there is a confounding variable responsible for this result.

Finally, we expected to see a stronger relationship between CAR_AGE and the log of TARGET_AMT. Our intuition was that payouts go down with the age of the car, as replacement value goes down with age. However, the bottom right scatter plot below does not seem to indicate a significant association.

Binary Variables

PARENT1

Here is a record summary for PARENT1, a binary variable indicating if an insured is a single parent.

No Yes Sum count 7084.0 1077.0 8161 percent 86.8 13.2 100

The vast majority (87%) of individuals in the training data are not single parents.

Let's explore the relationship with TARGET_FLAG

TARGET_FLAG
PARENT1 0 1 Sum
No 5407 1677 7084

Yes 601 476 1077 Sum 6008 2153 8161

Now let's review the proportions of individuals involved in a crash, given PARENT1 status:

TARGET_FLAG
PARENT1 0 1
No 0.76 0.24
Yes 0.56 0.44

The is a 20% difference in the calculated proportions. This difference is statistically significant:

2-sample test for equality of proportions with continuity correction

Finally, lets review the relationship of PARENT1 with TARGET_AMT.

No

log(TARGET_AMT) by PARENT1

5603

4101

1677

PARENT1	ct	mean_cost	median_cost
Yes	476	6050	4133

The distribution of log amounts is pretty similar for both values of PARENT1, with perhaps a very modest increase for single parent insureds.

MSTATUS

The predictor, MSTATUS, refers to the married status of the policyholder.

No Yes Sum count 3267 4894 8161 percent 40 60 100

There is a fairly balanced split (60/40) between married and single insureds.

Let's look at the relationship with TARGET_FLAG

TARGET_FLAG

MSTATUS 0 1 Sum

No 2167 1100 3267

Yes 3841 1053 4894

Sum 6008 2153 8161

Now let's review the proportions of individuals involved in a crash, given MSTATUS status:

TARGET_FLAG
MSTATUS 0 1
No 0.66 0.34
Yes 0.78 0.22

The 12% difference in proportions is statistically significant:

2-sample test for equality of proportions with continuity correction

Now lets explore the relationship of MSTATUS with TARGET_AMT.

log(TARGET_AMT) by MSTATUS

MSTATUS	ct	mean_cost	median_cost
No	1100	5967	4098
Yes	1053	5426	4117

The distribution of log amounts is very similar across MSTATUS type. Non married individuals appear to have a slightly higher average log cost compared to the married cohort. However, median costs are almost identical between the two cohorts.

SEX

The variable, SEX, denotes the gender of the insured policyholder.

F M Sum count 4375.0 3786.0 8161 percent 53.6 46.4 100

The split between males and females is split almost 50/50.

Let's review the relationship with TARGET_FLAG.

TARGET_FLAG

SEX 0 1 Sum
F 3183 1192 4375
M 2825 961 3786
Sum 6008 2153 8161

Here are the proportions of individuals involved in a crash, given gender type:

TARGET_FLAG SEX 0 1 F 0.73 0.27 M 0.75 0.25

The 2% difference in proportions is not statistically significant:

2-sample test for equality of proportions with continuity correction

```
data: tbl[1:2, 1:2]
X-squared = 3.5307, df = 1, p-value = 0.06024
alternative hypothesis: two.sided
95 percent confidence interval:
   -0.0380106016   0.0007561151
sample estimates:
   prop 1   prop 2
0.7275429   0.7461701
```

Now lets explore the relationship of SEX with TARGET_AMT.

log(TARGET_AMT) by SEX

The log dollar cost of claims seems to be slightly higher for males, on average.

CAR_USE

CAR_USE is a predictor that indicates how the vehicle is uses (i.e. commercial or private purposes).

Commercial Private Sum count 3029.0 5132.0 8161 percent 37.1 62.9 100

The majority of the observations involve private use vehicles, at 60%.

Let's explore the relationship with TARGET_FLAG.

TARGET_FLAG

CAR_USE 0 1 Sum
Commercial 1982 1047 3029
Private 4026 1106 5132
Sum 6008 2153 8161

Below are the proportions of individuals involved in a crash, given the CAR_USE indicator:

TARGET_FLAG
CAR_USE 0 1
Commercial 0.65 0.35
Private 0.78 0.22

There is a 13% difference in proportions between the two cohorts. This result is statistically significant.

2-sample test for equality of proportions with continuity correction

Finally, lets explore the relationship of CAR_USE with TARGET_AMT.

log(TARGET_AMT) by CAR_USE

101, 0000	CAR_USE	ct	$mean_cost$	$median_cost$
	Commercial Private	101.	0000	4193 4037

The log dollar cost of claims involving commercial transit appears to somewhat higher than costs associated with private transportation.

RED_CAR

RED_CAR is a binary predictor indicating whether a care is primarily red in color.

We see only 30% of vehicles in the red category.

Let's look at the relationship with ${\tt TARGET_FLAG}.$

Here are the proportions of individuals involved in a crash, given the RED_CAR status:

TARGET_FLAG

```
RED_CAR 0 1
no 0.73 0.27
yes 0.74 0.26
```

There is only 1% difference in proportions between red and non-red cars. The result is not statistically significant.

2-sample test for equality of proportions with continuity correction

```
data: tbl[1:2, 1:2]
X-squared = 0.35996, df = 1, p-value = 0.5485
alternative hypothesis: two.sided
95 percent confidence interval:
   -0.02800322   0.01452763
sample estimates:
   prop 1   prop 2
0.7342210   0.7409588
```

Now, we'll explore the relationship between RED_CAR and TARGET_AMT.

log(TARGET_AMT) by RED_CAR

The distribution for each cohort is very similar, with an subtle uptick in average log costs for red car types.

6036

4082

616

yes

REVOKED

The variable REVOKED indicates whether a driver's license has been suspended within the last seven years.

```
No Yes Sum count 7161.0 1000.0 8161 percent 87.7 12.3 100
```

Only 12% of drivers in the training data have a former license suspension on record.

Here is a look look at the relationship of REVOKED with TARGET_FLAG.

```
TARGET_FLAG

REVOKED 0 1 Sum

No 5451 1710 7161

Yes 557 443 1000

Sum 6008 2153 8161
```

Below are the proportions of individuals involved in a crash, given the REVOKED status:

```
TARGET_FLAG
REVOKED 0 1
No 0.76 0.24
Yes 0.56 0.44
```

There is statistically significant difference in proportions by REVOKED type, with a 20% observed difference in the training data.

2-sample test for equality of proportions with continuity correction

Finally, let's explore the relationship between REVOKED and TARGET_AMT.

log(TARGET_AMT) by REVOKED

REVOKED	ct	mean_cost	median_cost
No	1710	5848	4059
Yes	443	5140	4254

The distribution for each cohort is very similar. In the training data, we very slight increase in average log costs for folks that have not had their license suspended. However, the median log cost seems to be slightly higher for folks with a prior suspended license.

URBANICITY

The predictor URBANICITY indicates whether the environment in which the driver primarily drives: urban vs. rural.

	Highly	Rural/	Rural	Highly	Urban/	Urban	Sum
count		1	669.0			6492.0	8161
percent			20.5			79.5	100

Only 30% of drivers in the training data are categorized as being in a rural environment. .

Let's look at the relationship of URBANICITY with TARGET_FLAG.

		7	TARGET	Γ_FLAC	3
URBANICIT	ГΥ		0	1	Sum
Highly	Rural/	Rural	1554	115	1669
Highly	Urban/	Urban	4454	2038	6492
Sum			6008	2153	8161

Her are the proportions of individuals involved in a crash, given the URBANICITY category:

TARGET_FLAG URBANICITY 0 1 Highly Rural / Rural 0.93 0.07 Highly Urban/ Urban 0.69 0.31

There is a huge difference, 24%, between the two proportions. Urban drivers appear to be significantly more at risk for being involved in a crash.

2-sample test for equality of proportions with continuity correction

data: tbl[1:2, 1:2]

X-squared = 409.14, df = 1, p-value < 0.0000000000000022

alternative hypothesis: two.sided 95 percent confidence interval: 0.2280583 0.2619842 sample estimates:

prop 1 prop 2 0.9310965 0.6860752

Let's review the relationship between URBANICITY and TARGET_AMT.

log(TARGET_AMT) by URBANICITY

ctmean cost median cost

URBANICITY Highly Rural/Rural 5545 3589 115 Highly Urban/ Urban 2038 5711 4125

Urban drivers tend to have somewhat higher claim costs, given a crash. There also appears to be more variability in claim costs for urban drivers compared to their rural counterparts.

Multinomial Categorical Variables

JOB

The variable JOB indicates the insured's job category. there is also blank category which we interpret to mean unknown or not working.

	Blue	Collar	Clerical	${\tt Doctor}$	Home	Maker	Lawyer	Manager	${\tt Professional}$	Student	Sum
count	526.0	1825.0	1271.0	246		641.0	835.0	988.0	1117.0	712.0	8161
percent	6.4	22.4	15.6	3		7.9	10.2	12.1	13.7	8.7	100

Here is a breakdown of job categories by TARGET_FLAG:

	TARGET	Γ_FLAC	j
JOB	0	1	Sum
	390	136	526
Blue Collar	1191	634	1825
Clerical	900	371	1271
Doctor	217	29	246
Home Maker	461	180	641
Lawyer	682	153	835
Manager	851	137	988
Professional	L 870	247	1117
Student	446	266	712
Sum	6008	2153	8161

Let's calculate the proportion of observations by job category in each TARGET_FLAG indicator:

	TARGET	_FLAG
JOB	0	1
	0.74	0.26
Blue Collar	0.65	0.35
Clerical	0.71	0.29
Doctor	0.88	0.12
Home Maker	0.72	0.28
Lawyer	0.82	0.18
Manager	0.86	0.14
Professional	1 0.78	0.22
Student	0.63	0.37

There appears to be significant variability in the probability of a claim by occupational category, with students and blue collar jobs leading the pack.

We reject the null hypothesis that all proportions are identical:

9-sample test for equality of proportions without continuity correction

JOB	ct	$mean_cost$	median_cost
	136	6904	4155
Blue Collar	634	5890	4042
Clerical	371	5446	4144
Doctor	29	4896	4117
Home Maker	180	4951	3612
Lawyer	153	5991	4019
Manager	137	4944	4256
Professional	247	6560	4348
Student	266	5021	4188

There is moderate variability in log costs across job categories, with the unknown, student, and professional, and manager categories appearing to have higher median costs than than other five categories. The relationship are somewhat different though when viewing mean costs (or mean log costs) by category.

CAR_TYPE

The predictor CAR_TYPE indicates the insured's vehicle type.

	Minivan	Panel	Truck	Pickup	Sports	Car	SUV	Van	Sum
count	2145.0		676.0	1389	90	7.0	2294.0	750.0	8161
percent	26.3		8.3	17	1	11.1	28.1	9.2	100

Here is a breakdown of CAR_TYPE categories by TARGET_FLAG:

$$\begin{array}{cccc} & & & TARGET_FLAG \\ CAR_TYPE & O & 1 & Sum \end{array}$$

```
      Minivan
      1796
      349
      2145

      Panel Truck
      498
      178
      676

      Pickup
      946
      443
      1389

      Sports Car
      603
      304
      907

      SUV
      1616
      678
      2294

      Van
      549
      201
      750

      Sum
      6008
      2153
      8161
```

We'll now calculate the proportion of observations by CAR_TYPE category in each TARGET_FLAG indicator:

7	[ARGE]	Γ_FLAC
CAR_TYPE	0	1
Minivan	0.84	0.16
Panel Truck	0.74	0.26
Pickup	0.68	0.32
Sports Car	0.66	0.34
SUV	0.70	0.30
Van	0.73	0.27

There is significant variability in the probability of a claim by occupational category, with sports cars having the highest proportion of accidents, and miniman have the lowest proportion.

We reject the null hypothesis that all proportions are identical:

6-sample test for equality of proportions without continuity correction

```
data: tbl[1:6, 1:2]
X-squared = 170.38, df = 5, p-value < 0.000000000000000022
alternative hypothesis: two.sided
sample estimates:
   prop 1   prop 2   prop 3   prop 4   prop 5   prop 6
0.8372960 0.7366864 0.6810655 0.6648291 0.7044464 0.7320000</pre>
```


Panel trucks and vans appear to have significantly higher log claim costs compared to other car types.

Ordinal Categorical Variables

EDUCATION

The variable EDUCATION denotes the insured's highest level of education attained.

High School Bachelors Masters PhD Sum count 3533.0 2242.0 1658.0 728.0 8161 percent 43.3 27.5 20.3 8.9 100

Below is a breakdown of EDUCATION categories by TARGET_FLAG:

TARGET_FLAG

EDUCATION 0 1 Sum

High School 2355 1178 3533

Bachelors 1719 523 2242

Masters 1331 327 1658 PhD 603 125 728 Sum 6008 2153 8161

Let's review the proportion of observations by EDUCATION category in each TARGET_FLAG indicator:

7	TARGE?	T_FLAG
EDUCATION	0	1
High School	0.67	0.33
Bachelors	0.77	0.23
Masters	0.80	0.20
PhD	0.83	0.17

There are statistically significant differences between the categories, with higher levels of educational attainment associated with lower probabilities of crashes.

4-sample test for equality of proportions without continuity correction

data: tbl[1:4, 1:2]

X-squared = 168.58, df = 3, p-value < 0.0000000000000022

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3 prop 4 0.6665723 0.7667261 0.8027744 0.8282967

EDUCATION	ct	mean_cost	median_cost
Bachelors Masters PhD	523	5883	4036
	327	5966	4256
	125	6623	4395

Interestingly, the TARGET_AMT appears to have a positive association with the level of EDUCATION.

Continuous Variables

INCOME

Below is table of values of the INCOME predictor, with wage bucketed into \$30K increments (i.e. [0,30), [30,60), [60,90), etc.])

```
0
                    30
                            60
                                  90
                                       120
                                              150
                                                    180
                                                         210
                                                               240
                                                                    270 300 330 360
                                                                                      Sum
count
        2059.0 2206.0 1671.0 951.0 417.0 203.0 117.0 56.0 20.0 11.0
                                                                           3
                                                                                     7716
                                                                               1
                                                                                   1
          26.7
                  28.6
                         21.7 12.3
                                              2.6
                                                               0.3 0.1
                                                                                      100
percent
                                       5.4
                                                    1.5
                                                         0.7
                                                                           0
                                                                               0
                                                                                   0
```

Here is a statistical summary:

```
Min. 1st Qu.
                                                             StdD
               Median
                          Mean 3rd Qu.
                                           Max.
                                                    NA's
                                                                     Skew
                                                                              Kurt
0.00
                54.03
                         61.90
                                 85.99
                                         367.03
                                                                              5.13
       28.10
                                                  445.00
                                                            47.57
                                                                     1.19
```

There are some missing values, 445 (5.4% of total), that we'll address later.

The distribution of INCOME is right skewed, with a significant number of observations indicating \$0 in income.

Individuals involved in crashes appear to have a high proportion of low-wage earners. We see the log-odds of a crash decreasing with increases to income—see the lower left scatter plot and loess curve. We see the loess curve starting to bend upward around \$210k, although this phenomenon is possibly due to sparse data for high wage earners.

Finally, the relationship between income and log TARGET_AMT also does not appear to be very strong.

$HOME_VAL$

Below is table of values of the HOME_VAL predictor, with home appraisals bucketed into \$50K increments.

200 100 150 250 300 350 400 450 500 550 600 650 700 750 850 count 2294.0 371.0 902.0 1265.0 1181.0 751.0 435.0 208.0 128.0 85.0 43.0 21.0 7.0 3 29.8 4.8 11.7 16.4 15.3 9.8 5.7 2.7 1.1 0.6 0.3 0.1 percent

Below is a statistical summary:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's StdD Skew Kurt 0.00 0.00 161.16 154.87 238.72 885.28 464.00 129.12 0.49 2.98

There are some missing values, 464 (5.7% of total). We'll address these later.

The distribution of HOME_VAL is right skewed, with a large proportion of observations indicating \$0 in HOME_VAL—this probably refers to policyholders who are not homeowners.

Individuals involved in crashes have a higher proportion of low home values. The loess curve in the lower left scatterplot indicates a decreasing log odds of claim occurrence with increasing incomes. The upward trend in the curve around \$400k is possibly due to the smaller sample size for higher home values.

Finally, the relationship between HOME VAL and log TARGET AMT also does not appear to be very strong.

BLUEBOOK

Below is table of values of the BLUEBOOK predictor, with values bucketed into \$4K increments.

12 16 20 24 28 32 36 40 44 48 56 60 64 68 281.0 1327.0 1503.0 1548 1238.0 903.0 628.0 390.0 190.0 83 45.0 14.0 6.0 count 8161 percent 3.4 16.3 18.4 19 15.2 11.1 7.7 4.8 2.3 1 0.6 0.2 0.1 100

Here is a statistical summary:

Min. 1st Qu. Median Mean 3rd Qu. Max. StdD Skew Kurt 9.28 1.50 14.44 15.71 20.85 69.74 8.42 0.79 3.79

The distribution of BLUEBOOK is right skewed, like the continuous variables reviewed earlier.

Individuals involved in crashes have a higher proportion of low BLUEBOOK values. The loess curve in the lower left scatterplot indicates a decreasing log odds of claim occurrence with increasing incomes. However, there is a prominent bend in the curve around \$30k. Perhaps this upward bend indicates risky driving behavior by owners of luxury and sports cars.

Finally, the relationship between BLUEBOOK and log TARGET_AMT reveals an increase in payouts with the value of the auto, but the curve flattens out around \$20k - \$30k.

BLUEBKBIN	ct	mean_cost	median_cost
25	123	6224	4369
30	57	6180	4321
35	26	11346	5308
40	13	6798	3041
45	2	3846	3846
50	1	18084	18084
55	1	3231	3231
60	1	4104	4104

OLDCLAIM

Below is table of values of the OLDCLAIM variable, with values bucketed into \$4K increments.

0 Sum count 8161 8161 percent 100 100

Below is a statistical summary:

Min. 1	st Qu.	Median	Mean 3	rd Qu.	Max.	\mathtt{StdD}	Skew	Kurt
0.00	0.00	0.00	4.04	4.64	57.04	8.78	3.12	12.86

The distribution of OLDCLAIM is extremely right skewed.

There does not appear to be a clear relationship between <code>OLDCLAIM</code> and log of <code>TARGET_CLM</code>. High previous claim amounts seem to be positively associated with the log odds of a future claim. However, this relationship appears to take a quadratic form.

OLD_BIN	ct	mean_cost	median_cost
0	1395	5814	4148
5	452	5409	4025
10	62	6347	4186
15	28	4712	3318
20	33	4865	3764
25	49	5060	4460
30	53	4898	4262
35	33	6875	3779
40	29	6922	4477
45	16	5350	3299
50	2	3070	3070
55	1	7803	7803

Data Preparation

Missing Values

The following five variables have missing variables:

AGE: 6 missing values (0.07%)
YOJ: 454 missing values (5.6%)

• CAR AGE: 510 (6.2%)

• INCOME: 445 (5.4%)

• HOME_VAL: 464 (5.7%)

Because four of the predictors are missing a significant number of records (5%-6%), we will attempt to use a sophisticated imputation procedure from R's MICE package to fill in the missing values. Our goal in using this procedure is to minimize the introduction of bias in our data vis-a-vis simpler methods like mean substitution.

One way to assess the quality of the imputation procedure used in MICE is to compare the distribution of the imputed data to the distribution of the non-missing values. Let's do that now by reviewing density plots:

With the exception of the AGE variable, the imputed variables seem to reasonably approximate the original distribution.

we're only missing a handful of values for AGE; so we will apply simply mean imputation for this variable.

Finally, we'll assume the -3 value for CAR_AGE is actually zero.

Data Transformation

TARGET FLAG

No changes.

TARGET AMT

The response variable TARGET_AMT is highly right skewed. We will use the box-cox procedure to suggest a reasonable transformation when the TARGET_AMT variable is positive:

Fitted parameters:

lambda beta sigmasq 0.003172095 8.386645882 0.695511168

Convergence code returned by optim: 0

Given this output, We will apply the log transformation.

KIDSDRIV

Given the possible curvature between the log odds and KIDSDRIV, we're going to introduce a centered version of this variable to reduce possible collinearity issues.

HOMEKIDS

We will create another centered version of this variable due to a possible quadratic relationship with the response variable, TARGET_FLAG. Again, our intent with this transformation is avoid multicollinearity issues.

CLM_FREQ

Once again, we'll center the variable due concerns described earlier.

MVR PTS

No changes.

\mathbf{AGE}

Age appears to have a quadratic relationship with both TARGET_FLAG and TARGET_AMT. We'll center the variable.

YOJ

The variable YOJ has a significant number of zero observations. We'll create a mean centered variable, YOJ_MOD, that will be used for years on job of 1 or higher.

TRAVTIME

Well apply the mean-center transformation.

TIF

We'll mean-center the variable to reduce multicollinearity issues if we implement a quadratic term.

CAR_AGE

No changes.

PARENT1

No changes.

MSTATUS

No changes.

SEX

No changes.

CARUSE

No changes.

RED_CAR

No changes.

REVOKED

No changes.

URBANICITY

No changes.

JOB

No changes.

CAR_TYPE

No changes.

EDUCATION

No changes.

INCOME

Income is a positively skewed variable with a significant number zeroes.

We will apply the square root transformation suggested by the box-cox procedure to the original variable to reduce the overall skew.

Fitted parameters:

```
lambda beta sigmasq 0.4276529 10.9653802 17.4267860
```

Convergence code returned by optim: 0

$HOME_VAL$

Home values are also moderately right skewed with a significant number of zeroes.

We'll apply a quarter root transformation to the original variable to reduce the overall skew.

Fitted parameters:

```
lambda beta sigmasq
0.1984401 9.4515199 1.5741664
```

Convergence code returned by optim: 0

BLUEBOOK

The BLUEBOOK variable has a moderate right skew. We'll apply the square root transformation suggested by the box-cox procedure.

Fitted parameters:

```
lambda beta sigmasq
0.4610754 5.2624962 3.7967126
```

Convergence code returned by optim: 0

OLDCLAIM

OLDCLAIM is extremely right skewed. We'll apply a log(x+1) transformation to reduce the overall skew.

Fitted parameters:

```
lambda beta sigmasq -0.04511237 1.76185840 0.82136055
```

Convergence code returned by optim: 0

Build Models

Binary Logistic Regression

Model 1: Manual Variable Selection, Linear Terms Only

Based on our data exploration, we believe the following variables could be relevant in predicted whether or not a claim occurs:

- KIDSDRIV
- HOMEKIDS
- CLM_FREQ

- MVR_PTS
- AGE
- YOJ
- TRAVTIME
- TIF
- CAR_AGE
- PARENT1
- MSTATUS
- CAR_USE
- REVOKED
- URBANICITY
- JOB
- CAR_TYPE
- EDUCATION
- INCOME
- HOMEVAL
- BLUEBOOK
- OLDCLAIM

Granted, we haven't narrowed down the list much.

Before moving forward, let's calculate variance inflation factors, including all potential predictors in our model.

	GVIF	Df	GVIF^(1/(2*Df))
PARENT1	1.925904	1	1.387769
MSTATUS	2.270579	1	1.506844
EDUCATION	9.032168	3	1.443107
JOB	29.006656	8	1.234258
CAR_USE	2.228753	1	1.492901
CAR_TYPE	2.446159	5	1.093575
REVOKED	1.147823	1	1.071365
MVR_PTS	1.195296	1	1.093296
CAR_AGE	2.145459	1	1.464739
URBANICITY	1.147586	1	1.071254
KIDSDRIV_MOD	1.347809	1	1.160952
HOMEKIDS_MOD	2.177248	1	1.475550
CLM_FREQ_MOD	2.350962	1	1.533285

```
YOJ_MOD
             1.458599 1
                              1.207725
             1.602499 1
                              1.265898
                              1.019611
TRAVTIME_MOD 1.039607 1
TIF_MOD
             1.009716 1
                              1.004846
             2.929617 1
INCOME_MOD
                              1.711612
HOME_VAL_MOD
             1.945647 1
                              1.394864
BLUEBOOK MOD
             1.678511 1
                               1.295574
OLD_CLAIM_MOD 2.535045 1
                               1.592183
```

Seeing no major VIF issues—once accounting for degrees of freedom—we will proceed with the model with all suggested predictors.

Call:

Deviance Residuals:

Min 1Q Median 3Q Max -2.6224 -0.7111 -0.3986 0.6144 3.1620

Coefficients:

Coefficients:					
	Estimate	Std. Error	${\tt z}$ value	Pr(> z)	
(Intercept)	-1.713883	0.288210	-5.947	0.00000000273704148	***
PARENT12	0.380188	0.109715	3.465	0.00053	***
MSTATUS2	-0.434783	0.087997	-4.941	0.00000077776605299	***
EDUCATION2	-0.368349	0.088256	-4.174	0.00002997841876851	***
EDUCATION3	-0.280964	0.160097	-1.755	0.07926	
EDUCATION4	-0.190026	0.194621	-0.976	0.32887	
JOB2	0.317719	0.184819	1.719	0.08560	
JOB3	0.376967	0.196322	1.920	0.05484	
JOB4	-0.407352	0.266000	-1.531	0.12567	
JOB5	0.042266	0.216159	0.196	0.84498	
JOB6	0.132768	0.168627	0.787	0.43108	
JOB7	-0.541645	0.170692	-3.173	0.00151	**
JOB8	0.184347	0.177794	1.037	0.29980	
JOB9	-0.109212	0.224207	-0.487	0.62618	
CAR_USE2	-0.774937	0.087596	-8.847	< 0.000000000000000000002	***
CAR_TYPE2	0.587720	0.146458	4.013	0.00005997836389186	***
CAR_TYPE3	0.548806	0.100235	5.475	0.00000004370229128	***
CAR_TYPE4	0.949323	0.108211	8.773	< 0.000000000000000000002	***
CAR_TYPE5	0.716043	0.086037	8.323	< 0.000000000000000000002	***
CAR_TYPE6	0.657848	0.121632	5.409	0.00000006355203919	***
REVOKED2	0.752452	0.085830	8.767	< 0.000000000000000000002	***
MVR_PTS	0.109599	0.013851	7.913	0.00000000000000252	***
CAR_AGE	-0.001111	0.007524	-0.148	0.88260	
URBANICITY2	2.410890	0.113255	21.287	< 0.0000000000000000000002	***
KIDSDRIV_MOD	0.394609	0.061255	6.442	0.0000000011788292	***
HOMEKIDS_MOD	0.039860	0.037188	1.072	0.28378	
CLM_FREQ_MOD	0.173249	0.036264	4.777	0.00000177584154013	***
AGE_MOD	-0.001762	0.004012	-0.439	0.66044	
YOJ_MOD	0.001000	0.008772	0.114	0.90921	

```
TRAVTIME MOD
              0.014748
                          0.001885
                                     7.824 0.0000000000000512 ***
                          0.007353
TIF_MOD
              -0.055066
                                    -7.489
                                            0.0000000000006923 ***
              -0.085729
                          0.015072
INCOME MOD
                                    -5.688
                                            0.0000001286803408 ***
HOME_VAL_MOD
              -0.105028
                          0.022529
                                    -4.662
                                            0.00000313303785010 ***
BLUEBOOK MOD
             -0.185490
                          0.035090
                                    -5.286
                                            0.00000012490164003 ***
OLD CLAIM MOD -0.032814
                                    -0.839
                                                        0.40153
                          0.039117
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 9418.0 on 8160
                                    degrees of freedom
Residual deviance: 7281.6 on 8126
                                    degrees of freedom
AIC: 7351.6
```

The signs of the coefficients mostly make sense:

- We expect claim probabilities to be higher for single parents.
- Married individuals should be less prone to accidents compared to singles.
- The signs of all the EDUCATION levels make sense; however, we expected the Master's and PhD levels to show a greater reduction in log odds relative to the high school reference level. We are not too concerned with this result though, as other variables such as JOB_TYPE and INCOME help in defining an individual's composite risk profile.
- We didn't have solid a priori expectations about the relationship between different job type. We are not surprised with most of these result though. For instance, we are not surprised by the increased risk associated with blue collar workers relative to doctors.
- The model is consistent with our expectation that private vehicles are less accident prone compared to commercial vehicles.
- The car type signs and magnitudes are fairly consistent with our expectations: Minivans(the reference level) should be safer than the other vehicles. Sports cars should be most likely to be involved in an accident. This is what we see.
- A revoked license is highly indicative of future accident risk.
- MVR points are positively associated with accident risk.
- The model shows a slight negative relationship between car age and log odds of an accident, but the result is not statistically significant.
- Our model shows much greater risk in urban areas compared to rural geographies. This is consistent with our expectation.
- The number of teenage drivers impacts risk unfavorably, as our model shows.
- Our model indicates that more children can adversely impact claims risk. We didn't have firm expectations about this variable's influence. More important, our model does not indicate a statistically significant result.

- Our model reveals claim risk declining with age. This is not necessarily surprising; however, the model coefficient is not statistically significant.
- Our model shows risk increasing slightly with increases to YOB. This is maybe a strange result, but our model indicates a very high p-value for our coefficient.
- We expect risk to increase with longer travel times, as our model shows.
- We expect loyal policyholders to be less risky than frequently churning policyholders, as our model indicates.
- Our model indicates decreasing log odds with increases to home value. This is what we would expect.
- We are not surprised to see cars with high BLUEBOOK values being associated with reduced risk in our model compared to lower values.
- The coefficient for prior claims cost is opposite of what we would expect. However, the coefficient has a high associated p-value; so we may drop this predictor from our model.

Let's clean up our model by removing some of the statistically insignificant predictors. We will leave all JOB levels in our model, as the "Manager" and "Clerical" coefficients are highly significant, and two additional levels have p-values below 10%.

Call:

Deviance Residuals:

```
Min 1Q Median 3Q Max -2.6399 -0.7118 -0.3993 0.6121 3.1482
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.757833	0.282629	-6.220	0.00000000049847552	***
PARENT12	0.459073	0.094539	4.856	0.00000119837335651	***
MSTATUS2	-0.402221	0.084254	-4.774	0.00000180697301345	***
EDUCATION2	-0.375761	0.081055	-4.636	0.00000355440716343	***
EDUCATION3	-0.300632	0.141531	-2.124	0.03366	*
EDUCATION4	-0.211068	0.179649	-1.175	0.24004	
JOB2	0.321791	0.184707	1.742	0.08148	•
JOB3	0.386512	0.196036	1.972	0.04865	*
JOB4	-0.415117	0.265500	-1.564	0.11793	
JOB5	0.040669	0.213901	0.190	0.84921	
JOB6	0.125024	0.168259	0.743	0.45745	
JOB7	-0.550785	0.170509	-3.230	0.00124	**
JOB8	0.179572	0.177647	1.011	0.31209	
JOB9	-0.093451	0.222713	-0.420	0.67478	
CAR_USE2	-0.771386	0.087427	-8.823	< 0.000000000000000000002	***
CAR_TYPE2	0.591698	0.146233	4.046	0.00005203971882180	***
CAR_TYPE3	0.548603	0.100178	5.476	0.00000004344038477	***
CAR_TYPE4	0.945975	0.107917	8.766	< 0.00000000000000000000000000000000000	***
CAR TYPE5	0.716538	0.085960	8.336	< 0.000000000000000000002	***

```
CAR TYPE6
             0.658220
                        0.121499
                                  5.418 0.00000006043560923 ***
REVOKED2
             0.730901
                        0.080424
                                  9.088 < 0.000000000000000 ***
                        0.013581
MVR PTS
             0.107957
                                  7.949 0.000000000000188 ***
             2.408645
                        0.113142 21.289 < 0.0000000000000000 ***
URBANICITY2
KIDSDRIV_MOD
             0.423779
                        0.055142
                                  7.685 0.0000000000001527 ***
                        0.025533 5.926 0.00000000311329229 ***
CLM FREQ MOD 0.151294
                        0.001884
TRAVTIME MOD 0.014705
                                  7.806 0.0000000000000589 ***
TIF MOD
            -0.054813
                        0.007347 - 7.461
                                         0.0000000000008618 ***
INCOME_MOD
            -0.084636
                        0.014524 -5.827
                                         0.0000000563328460 ***
HOME_VAL_MOD -0.106391
                        0.022498 -4.729
                                         0.00000225772041669 ***
BLUEBOOK_MOD -0.188871
                        0.034886 -5.414 0.00000006162739580 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 9418.0 on 8160
                                  degrees of freedom
Residual deviance: 7284.3
                          on 8131
                                  degrees of freedom
AIC: 7344.3
```

All predictors are now statistically significant, with the exception of several of the job types. The coefficients in our model also still make sense.

Model 2: Add Quadratic Terms to Model 1

We noted earlier that there appeared to be quadratic relationship between some predictors and log odds.

Starting with our original Model 1–i.e. before we removed the insignificant predictors—we'll add second order polynomial terms for the following variables:

- KIDSDRIV
- HOMEKIDS
- CLM_FREQ
- AGE
- YOJ
- TIF

Here is the summary output from model 2:

Call:

```
glm(formula = TARGET_FLAG ~ PARENT1 + MSTATUS + EDUCATION + JOB +
    CAR_USE + CAR_TYPE + REVOKED + MVR_PTS + CAR_AGE + URBANICITY +
    KIDSDRIV_MOD + HOMEKIDS_MOD + CLM_FREQ_MOD + AGE_MOD + YOJ_MOD +
    TRAVTIME_MOD + TIF_MOD + INCOME_MOD + HOME_VAL_MOD + BLUEBOOK_MOD +
    OLD_CLAIM_MOD + I(KIDSDRIV_MOD^2) + I(HOMEKIDS_MOD^2) + I(CLM_FREQ_MOD^2) +
    I(AGE_MOD^2) + I(YOJ_MOD^2) + I(TIF_MOD^2), family = "binomial",
    data = auto)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.4272 -0.7068 -0.3906 0.5963 3.0532

Coefficients:

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.6776996	0.3057439	-5.487	${\tt 0.000000040819180673}$	***
PARENT12	0.2388555	0.1190667	2.006	0.04485	
MSTATUS2	-0.5167106	0.0910712	-5.674	${\tt 0.000000013974455379}$	***
EDUCATION2	-0.3909598	0.0891435	-4.386	0.000011559497756939	***
EDUCATION3	-0.2957904	0.1615164	-1.831	0.06705	
EDUCATION4	-0.2352758	0.1961787	-1.199	0.23041	
JOB2	0.3466982	0.1856785	1.867	0.06187	
JOB3	0.3975150	0.1973076	2.015	0.04394	*
JOB4	-0.4316015	0.2664914	-1.620	0.10532	
JOB5	0.0542765	0.2193294	0.247	0.80455	
JOB6	0.1352339	0.1692727	0.799	0.42434	
JOB7	-0.5374406	0.1709707	-3.143	0.00167	**
JOB8	0.1947748	0.1784243	1.092	0.27499	
JOB9	-0.1341038	0.2266228	-0.592	0.55402	
CAR_USE2	-0.7793452	0.0882281	-8.833	< 0.00000000000000000002	***
CAR_TYPE2	0.6295135	0.1472723	4.274	$\tt 0.000019157888812068$	***
CAR_TYPE3	0.5667391	0.1010379		$\tt 0.000000020329346729$	
CAR_TYPE4	0.8874125	0.1094808	8.106	$\tt 0.00000000000000525$	***
CAR_TYPE5	0.7089577	0.0868127		0.00000000000000317	
CAR_TYPE6	0.6862665	0.1226279		$\tt 0.000000021893171964$	
REVOKED2	0.8321322	0.0887887	9.372	< 0.00000000000000000002	***
MVR_PTS	0.0962345	0.0141337	6.809	$\tt 0.00000000009838070$	***
CAR_AGE	-0.0016633	0.0075782	-0.219	0.82627	
URBANICITY2	2.3948478	0.1136789		< 0.00000000000000000002	
KIDSDRIV_MOD	0.7322830	0.1425802	5.136	$\tt 0.000000280740271759$	***
HOMEKIDS_MOD	0.0511923	0.0685622	0.747	0.45527	
CLM_FREQ_MOD	0.3727049	0.0738148	5.049	0.000000443696934759	***
_	-0.0026885	0.0041431	-0.649	0.51639	
YOJ_MOD	0.0059588	0.0110425	0.540	0.58945	
TRAVTIME_MOD	0.0148574	0.0018986		0.00000000000005066	
_	-0.0662275	0.0086328		0.00000000000016985	
-	-0.0733066	0.0154936		0.000002229584044502	
	-0.1022630	0.0226822		0.000006528512402561	
-	-0.1932071	0.0353434		0.000000045883229928	
	-0.1258748	0.0493198	-2.552	0.01070	
I(KIDSDRIV_MOD^2)		0.0690468	-2.004	0.04507	*
-	-0.0335400	0.0281639	-1.191	0.23370	
	-0.0888912	0.0282768	-3.144	0.00167	
I(AGE_MOD^2)	0.0022399	0.0002811		0.00000000000001611	***
I(YOJ_MOD^2)	0.0020479	0.0015960	1.283	0.19944	
I(TIF_MOD^2)	0.0031482	0.0013917	2.262	0.02370	*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 9418.0 on 8160 degrees of freedom Residual deviance: 7195.8 on 8120 degrees of freedom

AIC: 7277.8

Below our key results from this second model:

- The first and second order terms for KIDSDRIV are both statistically significant. The negative sign
 of the second order term makes sense: the unfavorable impact of adding additional children drivers
 diminishes with each subsequent child.
- Neither the first nor second order terms are significant for HOMEKIDS.
- Both CLM_FREQ terms are significant. The negative second order term indicates diminishing impact of each additional prior claim.
- The second order term of AGE is statistically significant, but the first first order term is not. We'll leave both terms in our model. The coefficients of the terms make sense. There is a primary trend of reduced risk with age—see the negative first order coefficient, but the trend diminishes and potentially reverses for higher ages—as reflected in the positive second order term.
- Neither YOJ terms are statistically significant.
- Both first and second order TIF terms are significant. The signs of the coefficients have an intuitive explanation: there is a primary effect of risk reduction in risk with increases to TIF but the favorable impact diminishes with higher TIF values.
- CAR_AGE is still insignificant in this model.

Based on the results above, we'll remove all HOMEKIDS and YOJ terms from our model. Here are the summary results from this modified, second model:

Call:

```
glm(formula = TARGET_FLAG ~ PARENT1 + MSTATUS + EDUCATION + JOB +
    CAR_USE + CAR_TYPE + REVOKED + MVR_PTS + URBANICITY + KIDSDRIV_MOD +
    CLM_FREQ_MOD + AGE_MOD + TRAVTIME_MOD + TIF_MOD + INCOME_MOD +
    HOME_VAL_MOD + BLUEBOOK_MOD + OLD_CLAIM_MOD + I(KIDSDRIV_MOD^2) +
    I(CLM_FREQ_MOD^2) + I(AGE_MOD^2) + I(TIF_MOD^2), family = "binomial",
    data = auto)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -2.4257 -0.7041 -0.3926 0.5955 3.0433
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.6759581	0.2954057	-5.673	${\tt 0.000000013998177240}$	***
PARENT12	0.2777259	0.1018441	2.727	0.00639	**
MSTATUS2	-0.4909029	0.0858650	-5.717	0.00000010832584791	***
EDUCATION2	-0.3919889	0.0818148	-4.791	0.000001658104571861	***
EDUCATION3	-0.3010222	0.1425353	-2.112	0.03469	*
EDUCATION4	-0.2372596	0.1810645	-1.310	0.19007	
JOB2	0.3405307	0.1855451	1.835	0.06646	
JOB3	0.3855461	0.1969537	1.958	0.05028	
JOB4	-0.4299822	0.2667154	-1.612	0.10693	
JOB5	0.0928347	0.2152047	0.431	0.66619	
JOB6	0.1305186	0.1692840	0.771	0.44070	

```
JOB7
                 -0.5401499 0.1709242 -3.160
                                                            0.00158 **
JOB8
                  0.1923674 0.1783272
                                         1.079
                                                            0.28071
JOB9
                 -0.1062107
                             0.2238306 - 0.475
                                                            0.63513
CAR_USE2
                             0.0880529 -8.869 < 0.000000000000000 ***
                 -0.7809147
CAR TYPE2
                  0.6263114
                             0.1472346
                                         4.254 0.000021014260357950 ***
                             0.1009482
CAR TYPE3
                  0.5627747
                                        5.575 0.000000024769216593 ***
CAR TYPE4
                  0.8878065
                             0.1093148
                                         8.122 0.00000000000000460 ***
CAR TYPE5
                  0.7074706
                             0.0867202
                                         8.158 0.0000000000000340 ***
CAR_TYPE6
                  0.6832450
                             0.1225326
                                         5.576 0.000000024607726121 ***
REVOKED2
                  0.8285955
                             0.0887177
                                         9.340 < 0.000000000000000 ***
MVR_PTS
                  0.0972327
                             0.0141100
                                         6.891 0.00000000005538170 ***
                                        21.056 < 0.000000000000000 ***
URBANICITY2
                  2.3915266
                             0.1135807
KIDSDRIV_MOD
                  0.7844472
                             0.1289314
                                        6.084 0.000000001170576243 ***
CLM_FREQ_MOD
                                        5.000 0.000000574642059029 ***
                  0.3686980
                             0.0737462
                             0.0036156 -0.659
AGE_MOD
                 -0.0023818
                                                            0.51006
TRAVTIME_MOD
                  0.0148220
                             0.0018979
                                         7.810 0.0000000000005729 ***
                             0.0086283 -7.679 0.00000000000016025 ***
TIF_MOD
                 -0.0662577
INCOME MOD
                 -0.0784599
                             0.0146356 -5.361 0.000000082807106707 ***
                             0.0226702 -4.516 0.000006290735752587 ***
HOME_VAL_MOD
                 -0.1023873
BLUEBOOK MOD
                 -0.1936529
                             0.0353362 -5.480 0.000000042461339546 ***
OLD_CLAIM_MOD
                 -0.1237745
                             0.0492927 -2.511
                                                            0.01204 *
I(KIDSDRIV MOD^2) -0.1634110
                             0.0651681 -2.508
                                                            0.01216 *
I(CLM_FREQ_MOD^2) -0.0870421
                             0.0282286 -3.083
                                                            0.00205 **
                                         8.207 0.000000000000000226 ***
I(AGE MOD^2)
                  0.0022712 0.0002767
I(TIF MOD^2)
                  0.0031561 0.0013905
                                         2.270
                                                            0.02322 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 9418.0 on 8160 degrees of freedom
```

Null deviance: 9418.0 on 8160 degrees of freedom Residual deviance: 7199.1 on 8125 degrees of freedom

AIC: 7271.1

Number of Fisher Scoring iterations: 5

Model 3: Stepwise Regression

For our third model, we'll implement stepwise regression, with variable selecting occurring in both directions. We'll include all predictors (transformed versions where applicable) in our potential universe of candidates.

For simplicity, we'll only include first order terms.

```
Call:
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -2.6399 -0.7118 -0.3993 0.6121 3.1482
```

Coefficients:

Estimate Std. Error z value Pr(>|z|)

```
(Intercept)
                         0.282629
                                    -6.220
                                            0.0000000049847552 ***
             -1.757833
                         0.113142
                                    21.289 < 0.0000000000000000 ***
URBANICITY2
              2.408645
JOB2
              0.321791
                         0.184707
                                     1.742
                                                        0.08148
JOB3
                                     1.972
                                                        0.04865 *
              0.386512
                         0.196036
JOB4
             -0.415117
                         0.265500
                                    -1.564
                                                        0.11793
                                     0.190
              0.040669
                         0.213901
                                                        0.84921
JOB5
JOB6
              0.125024
                         0.168259
                                     0.743
                                                        0.45745
JOB7
             -0.550785
                         0.170509
                                    -3.230
                                                        0.00124 **
JOB8
              0.179572
                         0.177647
                                     1.011
                                                        0.31209
JOB9
             -0.093451
                         0.222713
                                    -0.420
                                                        0.67478
MVR_PTS
              0.107957
                         0.013581
                                     7.949
                                            0.000000000000188 ***
HOME_VAL_MOD -0.106391
                         0.022498
                                    -4.729
                                            0.00000225772041669 ***
CAR_TYPE2
              0.591698
                                     4.046
                                            0.00005203971882181 ***
                         0.146233
                                     5.476
CAR_TYPE3
              0.548603
                         0.100178
                                            0.0000004344038477 ***
                         0.107917
CAR_TYPE4
              0.945975
                                     8.766 < 0.000000000000000 ***
CAR_TYPE5
              0.716538
                         0.085960
                                     8.336 < 0.0000000000000000 ***
                         0.121499
                                     5.418
                                            0.0000006043560923 ***
CAR_TYPE6
              0.658220
REVOKED2
              0.730901
                         0.080424
                                     9.088 < 0.000000000000000 ***
PARENT12
              0.459073
                         0.094539
                                     4.856
                                            0.00000119837335651 ***
CAR USE2
             -0.771386
                         0.087427
                                    -8.823 < 0.000000000000000 ***
TRAVTIME_MOD 0.014705
                         0.001884
                                     7.806
                                            0.0000000000000589 ***
INCOME MOD
             -0.084636
                         0.014524
                                    -5.827
                                            0.0000000563328460 ***
                                    -7.461
TIF_MOD
             -0.054813
                         0.007347
                                            0.0000000000008618 ***
KIDSDRIV_MOD
              0.423779
                         0.055142
                                     7.685
                                            0.000000000001527 ***
CLM FREQ MOD
              0.151294
                         0.025533
                                     5.926
                                            0.0000000311329229 ***
BLUEBOOK MOD -0.188871
                         0.034886
                                    -5.414
                                            0.0000006162739580 ***
                                    -4.774
MSTATUS2
             -0.402221
                         0.084254
                                            0.00000180697301345 ***
EDUCATION2
             -0.375761
                         0.081055
                                    -4.636
                                            0.00000355440716343 ***
             -0.300632
                                    -2.124
EDUCATION3
                         0.141531
                                                        0.03366 *
EDUCATION4
             -0.211068
                         0.179649
                                    -1.175
                                                        0.24004
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
                           on 8160
    Null deviance: 9418.0
                                     degrees of freedom
Residual deviance: 7284.3
                           on 8131
                                     degrees of freedom
AIC: 7344.3
```

```
"MSTATUS"
                                        "SEX"
                                                                          "J0B"
[1] "PARENT1"
                                                         "EDUCATION"
                                                                                            "CAR_USE"
[7]
     "CAR TYPE"
                      "RED CAR"
                                        "REVOKED"
                                                         "MVR PTS"
                                                                           "CAR AGE"
                                                                                            "URBANICITY"
                                                                                            "TRAVTIME_MOD"
[13] "KIDSDRIV_MOD"
                      "HOMEKIDS_MOD"
                                        "CLM_FREQ_MOD"
                                                         "AGE_MOD"
                                                                          "YOJ_MOD"
[19] "TIF_MOD"
                      "INCOME_MOD"
                                        "HOME_VAL_MOD"
                                                         "BLUEBOOK_MOD"
                                                                          "OLD_CLAIM_MOD"
                                                                                           "TARGET_FLAG"
```

Surprisingly, the stepwise procedure produced a model that is identical to our modified Model 1!

Multiple Linear Regression

Now We'll model claim costs using the subset of the training data where claim costs were greater than one.

Before we build our models, let's check for multicollinearity uses by reviewing variance inflation factors for a linear model that includes all predictors.

```
GVIF Df GVIF^(1/(2*Df))
```

PARENT1	2.161870	1	1.470330
MSTATUS	2.424138	1	1.556964
SEX	2.424138 3.759011 9.422433	1	1.938817
EDUCATION	9.422433	3	1.453318
J0B	37.076989	8	1.253340
CAR_USE	2.257139	1	1.502378
	6.333798		1.202725
RED_CAR	1.833205 1.266221	1	1.353959
REVOKED	1.266221	1	1.125265
	1.162829		1.078345
CAR_AGE	2.117086	1	1.455021
URBANICITY	1.052890	1	1.026104
KIDSDRIV_MOD	1.435451	1	1.198103
HOMEKIDS_MOD	2.245895	1	1.498631
CLM_FREQ_MOD	2.233772	1	1.494581
AGE_MOD	1.515101	1	1.230894
YOJ_MOD	1.914315	1	1.383588
TRAVTIME_MOD	1.030286	1	1.015030
TIF_MOD	1.017536	1	1.008730
INCOME_MOD	3.484163	1	1.866591
HOME_VAL_MOD	1.993510	1	1.411917
BLUEBOOK_MOD	2.070495	1	1.438921
OLD_CLAIM_MOD	2.485622	1	1.576585

There does not appear to be an issue with mulicollinearity.

Model 4: Manual Variable Selection, Linear Terms Only

Choosing relevant predictors manually is a challenging exercise as most predictors seemed to have only a subtle influence—if any—on claim costs.

Based on our exploratory work, we believe the following variables may be relevant:

- AGE
- KIDSDRIV
- HOMEKIDS
- TRAVTIME
- SEX
- CAR_USE
- RED_CAR
- UBANICITY
- JOB
- CARTYPE
- EDUCATION
- BLUEBOOK

Let's look at a preliminary model using all 12 of our proposed predictors:

Call:

```
lm(formula = TARGET_AMT_MOD ~ KIDSDRIV_MOD + HOMEKIDS_MOD + AGE_MOD +
TRAVTIME_MOD + SEX + CAR_USE + RED_CAR + URBANICITY + JOB +
CAR_TYPE + EDUCATION + BLUEBOOK_MOD, data = auto_clm)
```

Residuals:

Min 1Q Median 3Q Max -4.7978 -0.4031 0.0403 0.4041 3.2713

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	7.7453078	0.1842369	42.040	< 0.000000000000000 ***
KIDSDRIV_MOD	-0.0359514	0.0331619	-1.084	0.278
HOMEKIDS_MOD	0.0202516	0.0190526	1.063	0.288
AGE_MOD	0.0003962	0.0021644	0.183	0.855
TRAVTIME_MOD	-0.0005149	0.0011623	-0.443	0.658
SEX2	0.0942848	0.0678354	1.390	0.165
CAR_USE2	-0.0042440	0.0519132	-0.082	0.935
RED_CAR2	0.0270291	0.0521879	0.518	0.605
URBANICITY2	0.0274335	0.0789864	0.347	0.728
JOB2	0.0579112	0.1194467	0.485	0.628
JOB3	0.0768355	0.1242451	0.618	0.536
J0B4	-0.0420891	0.1844233	-0.228	0.819
JOB5	0.0186923	0.1219753	0.153	0.878
JOB6	-0.0039060	0.1076219	-0.036	0.971
JOB7	0.0143125	0.1117662	0.128	0.898
JOB8	0.0966539	0.1180372	0.819	0.413
JOB9	0.0707929	0.1262240	0.561	0.575
CAR_TYPE2	-0.0025530	0.0960169	-0.027	0.979
CAR_TYPE3	0.0298786	0.0622815	0.480	0.631
CAR_TYPE4	0.0722865	0.0781345	0.925	0.355
CAR_TYPE5	0.0922557	0.0689352	1.338	0.181
CAR_TYPE6	-0.0279082	0.0804533	-0.347	0.729
EDUCATION2	-0.0537016	0.0471957	-1.138	0.255
EDUCATION3	0.0881450	0.0939857	0.938	0.348
EDUCATION4	0.1428179	0.1147912	1.244	0.214
BLUEBOOK_MOD	0.0980000	0.0227053	4.316	0.0000166 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8092 on 2127 degrees of freedom Multiple R-squared: 0.01979, Adjusted R-squared: 0.008271 F-statistic: 1.718 on 25 and 2127 DF, p-value: 0.01491

Only one of our predictors, BLUEBOOK appears to be significant in our model.

Here is our modified model, with BLUEBOOK as the sole predictor:

Call:

lm(formula = TARGET_AMT_MOD ~ BLUEBOOK_MOD, data = auto_clm)

Residuals:

```
Min 1Q Median 3Q Max
-4.7842 -0.3929 0.0404 0.3952 3.2528
```

Coefficients:

Residual standard error: 0.8069 on 2151 degrees of freedom Multiple R-squared: 0.01441, Adjusted R-squared: 0.01396 F-statistic: 31.46 on 1 and 2151 DF, p-value: 0.00000002298

The positive coefficient for Bluebook makes sense: we expect the replacement cost and/or repairs for a high-valued car to be more expensive than auto with a low replacement cost.

Model 5: Add Quadratic Terms to Model 4

In the exploratory section, we noted potential curved relationship between some predictors and the log of TARGET_AMT.

Those predictors were AGE and TRAVTIME. Let's include squared terms for these two predictors and also for for BLUEBOOK:

Call:

```
lm(formula = TARGET_AMT_MOD ~ BLUEBOOK_MOD + I(BLUEBOOK_MOD^2) +
    TRAVTIME_MOD + I(TRAVTIME_MOD^2) + AGE_MOD + I(AGE_MOD^2),
    data = auto_clm)
```

Residuals:

```
Min 1Q Median 3Q Max
-4.7676 -0.3878 0.0346 0.3986 3.2456
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	7.56281355	0.15338179	49.307	< 0.000000000000000 ***
BLUEBOOK_MOD	0.29957271	0.08325430	3.598	0.000328 ***
I(BLUEBOOK_MOD^2)	-0.02796890	0.01094904	-2.554	0.010704 *
TRAVTIME_MOD	-0.00057023	0.00119024	-0.479	0.631926
I(TRAVTIME_MOD^2)	0.00001846	0.00005609	0.329	0.742148
AGE_MOD	0.00038530	0.00186400	0.207	0.836260
I(AGE_MOD^2)	0.00027981	0.00014693	1.904	0.057004 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8058 on 2146 degrees of freedom Multiple R-squared: 0.0192, Adjusted R-squared: 0.01646 F-statistic: 7.002 on 6 and 2146 DF, p-value: 0.0000002163

The second order term for BLUEBOOK is statistically significant. The second order term for AGE is borderline significant; so we include leave both age variables in our model; but remove terms related to TRAVTIME.

Call:

```
lm(formula = TARGET_AMT_MOD ~ BLUEBOOK_MOD + I(BLUEBOOK_MOD^2) +
```

```
AGE_MOD + I(AGE_MOD^2), data = auto_clm)
```

Residuals:

```
Min 1Q Median 3Q Max -4.7718 -0.3864 0.0345 0.3947 3.2387
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	7.5676524	0.1528591	49.507	< 0.00000000000000000000000000000000000	*
BLUEBOOK_MOD	0.2990652	0.0831884	3.595	0.000332 ***	*
<pre>I(BLUEBOOK_MOD^2)</pre>	-0.0279518	0.0109400	-2.555	0.010687 *	
AGE_MOD	0.0003620	0.0018602	0.195	0.845717	
I(AGE_MOD^2)	0.0002827	0.0001467	1.927	0.054140 .	

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8055 on 2148 degrees of freedom Multiple R-squared: 0.01908, Adjusted R-squared: 0.01725 F-statistic: 10.44 on 4 and 2148 DF, p-value: 0.00000002233

This model indicates that log costs increase quadratically with Age. This result seems possible.

Model 6: Stepwise Regression

Finally, we'll perform a basic stepwise regression with variable selection performed in both directions. For simplicity, we'll only include linear terms.

Call:

Residuals:

```
Min 1Q Median 3Q Max -4.6968 -0.4038 0.0391 0.4093 3.2236
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	7.940083	0.066264	119.825	< 0.00000000000000000000000000000000000	***
BLUEBOOK_MOD	0.086861	0.015942	5.449	0.000000566	***
MSTATUS2	-0.073598	0.034727	-2.119	0.0342	*
MVR_PTS	0.017181	0.007053	2.436	0.0149	*
SEX2	0.055410	0.035037	1.581	0.1139	
CLM_FREQ_MOD	-0.022434	0.014567	-1.540	0.1237	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8051 on 2147 degrees of freedom Multiple R-squared: 0.02064, Adjusted R-squared: 0.01836 F-statistic: 9.051 on 5 and 2147 DF, p-value: 0.00000001583

The stepwise procedure included four additional predictors in addition to BLUEBOOK:

^{*} MSTATUS: the negative coefficient indicates the married individuals are less expensive than singles. This seems reasonable.

^{*} MVR_PTS: the model indicates a positive association between MVR_PTS and claim costs. This also seems reasonable.

- * SEX: According to the model, males are more expensive than females. This is consistent with our earlier exploratory work.
- * CLM_FREQ_MOD1: The coefficient is negative. This result is counterintuitive. We would expect folks with a high incidence accident rate to potentially be at risk for higher cost accidents. For now, we'll leave this predictor in, but we may want do additional analysis.

SELECT MODELS

Binary Logistic Regression Models

Let's compare model fits for all of our models:

```
AIC AICc BIC loglik
m1 7351.575 7351.885 7596.824 -3640.787
m1_mod 7344.333 7344.562 7554.547 -3642.167
m2 7277.850 7278.274 7565.142 -3597.925
m2_mod 7271.090 7271.417 7523.346 -3599.545
m3 7344.333 7344.562 7554.547 -3642.167
```

Based on the various model evaluation criteria, model m2_mod appears to be the clear winner. This model is the binary logistic regression model that included multiple quadratic terms, but removed statistically insignificant predictors from the original model 2 formulation.

Model 2 is superior in that the AIC, AIC_c, and BIC measures are lower than all other evaluated models. The log likelihood is not quite as the original model 2, but this measure does not account for model complexity as the other models do.

Let's also compare the AUC measure for all models:

```
[1] "Model 1: 0.815"
```

[1] "Model 1 mod: 0.814"

[1] "Model 2: 0.82"

[1] "Model 2 mod: 0.82"

[1] "Model 3: 0.814"

Models 2 and Model 2 mod are tied and have the highest AUC measures. Given that Model 2 mod has fewer parameters than Model 2, the AUC measure supports our contention that Model 2 mod is superior to the other models.

Let's explore a summary of our model predictions using the training data:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.002396 0.075235 0.195732 0.263816 0.401488 0.959960
```

We now need to choose an appropriate probability cutoff measure for predicting whether or not an individual will have a claim.

We will use Youden's index to determine this optimal cutoff.

[1] 0.2760209

Using Youden's index, we select a relatively low cutoff measure of 0.276. With such a low cutoff, we will inevitably sacrifice specificity for gains in sensitivity compared to a traditional 0.5 cutoff. However, this lower cutoff provides a better balance between precision and recall.

Reference

Prediction 0 1 0 4470 546 1 1538 1607

\$accuracy

[1] 0.7446391

\$error_rt

[1] 0.2553609

\$precision

[1] 0.5109698

\$sensitivity

[1] 0.7464004

\$specificity

[1] 0.744008

\$F1

[1] 0.606644

For comparison purposes, here is the confusion matrix and related classification metrics with a 0.5 cutoff.

Reference Prediction 0 1 0 5547 1212 1 461 941

\$accuracy

[1] 0.7950006

\$error_rt
[1] 0.2049994

\$precision
[1] 0.671184

\$sensitivity [1] 0.4370646

\$specificity [1] 0.923269

\$F1

[1] 0.5293952

We see that our 0.276 cutoff also results in lower accuracy vis-a-vis the 0.5 threshold. But our lower threshold also results in better balance in precision vs. recall, as indicated by the improved F1 measure.

Multiple Regression Models

We'll review five different measures for assessing our multiple regression models:

- R-Squared
- Adjusted R-Squared
- Root Mean Squared Error
- AIC
- Corrected AIC
- BIC

```
      m4
      0.0198
      0.0083
      7891.530
      5226.140
      5226.852
      5379.355

      m4_mod
      0.0144
      0.0140
      7901.013
      5189.919
      5189.931
      5206.943

      m5
      0.0192
      0.0165
      7897.178
      5189.442
      5189.509
      5234.839

      m6
      0.0206
      0.0184
      7885.800
      5184.273
      5184.325
      5223.995
```

Based on the table above, model 6 appears to be the superior model. It has superior measures in all categories except for BIC.

Let's now do some quick model diagnostics for our selected model, model 6:

The residuals in our model appear to have a relatively constant variance across all fitted values. The qq plot indicates standardized residuals that are fairly well behaved, with only minor departures from normality. Finally, there are only a couple outliers in our data—none appear to be high leverage points.

Make Predictions

Let's wrap up by scrubbing the test data set and make predictions. Please refer to the Github account in the Appendix to access the prediction file.

Appendix

- Link to full code: https://github.com/spitakiss/Data621/tree/master/Homework4/Grzasko_HW4.Rmd
- $\bullet \ \ Prediction \ file: \ https://github.com/spitakiss/Data 621/blob/master/Homework 4/evaluation_data_w_predictions.csv$