Free \dashv Forgertful Adjunction between $Mod(\mathbb{T})$ and **Set**

Artem Gureev

Winter 2021

Theorem If \mathbb{T} is an algebraic theory then there is a free/forgetful adjunction from $Mod(\mathbb{T})$ of set-valued models to **Set**.

First, define the forgetful functor $Fo: Mod(\mathbb{T}) \to \mathbf{Set}$ by Fo(G) = G(1), the universe, and for $\alpha: F \to G$ we get that $Fo(\alpha) = \alpha_1$. Functoriality is evident.

Now, we define $Fr \colon \mathbf{Set} \to Mod(\mathbb{T})$. If X is a set then Fr(X) is a functor from \mathbb{T} to \mathbf{Set} such that Fr(X)(1) is the set of terms Tm_X modulo axioms formed from elements of X. We build up this set inductively. If $x \in X$ then $x \in Fr(X)(1)$. If $f \in \Sigma_n$, i.e. an n-ary function symbol, and $t_1, ..., t_n$ terms in Fr(X)(1), then $f(t_1, ..., t_n) \in Fr(X)(1)$. If $\overline{x_i}|t_1(\overline{x_i}) = t_2(\overline{x_i})$ is in the axioms of \mathbb{T} , then $t_1(\overline{x_i}) = t_2(\overline{x_i})$ in Tm_X . The products are the usual products and the projection maps are the usual projection maps. Functoriality is evident and hence well-defined, finite products are preserved by definition.

If $f: X \to Y$, then $Fr(f): Fr(X) \to Fr(Y)$ is defined on $Fr(X)(1) \to F(Y)(1)$ by induction. For the base step $x \mapsto f(x)$ for the inductive step if $g \in \Sigma_n$ and $t_1, ..., t_n$ terms then $Fr(f)(g(t_1, ..., t_n)) = g(Fr(f)(t_1), ...Fr(f)(t_n))$. This assignment naturally extends to assignment on all n. Then if $f: n \to 1$ corresponds to an n-ary function symbol in our signature in \mathbb{T} we have that $Fr(X)(f): Tm_X^n \to Tm_X$ is defined naturally by $Fr(X)(f)(t_1, ..., t_n) = f(t_1, ..., t_n)$. Check naturality if $g: X \to Y$:

on the base terms we get

and

$$Tm_X^n \longrightarrow Tm_X \longrightarrow Tm_Y$$

$$\overline{x_i} \mapsto f(\overline{x_i}) \mapsto f(\overline{gx_i})$$

$$Tm_X^n \longrightarrow Tm_Y^n \longrightarrow Tm_Y$$

$$\overline{x_i} \mapsto \overline{gx_i} \mapsto f(\overline{gx_i})$$

so that they agree. On the inductive step, we get

$$Tm_X^n \longrightarrow Tm_X \longrightarrow Tm_Y$$

$$\overline{k_i}(\overline{t_i}) \longmapsto f(\overline{k_i}(\overline{t_i})) \longmapsto f(\overline{k_i}(Fr(Y)(f)(\overline{t_i})))$$

$$Tm_X^n \longrightarrow Tm_Y^n \longrightarrow Tm_Y$$

 $\overline{k_i}(\overline{t_i}) \qquad \mapsto$ and hence naturality holds.

and

Functoriality is easy to check as suffices to check it for the universe and the base case. If $f: X \to Y$ and $g: Y \to Z$, then $Fr(gf)_1$ is defined to be $x \mapsto gfx$ on the base case. Now, $Fr(g)Fr(f)_1$ on the bases will be defined by $x \mapsto fx \mapsto gfx$. Similarly, $Fr(id_X)$ is evidently the identity in the category of models as $Fr(id_X)_1(x) = x$ on the base case.

 \mapsto $\overline{k_i}(Fr(Y)(f)\overline{t_i})$ \mapsto $f(\overline{k_i}(Fr(Y)(f)(\overline{t_i})))$

Now, we claim that $Fr \dashv Fo$. To see this, we define

$$Mod(\mathbb{T})(Fr(X),G) \cong \mathbf{Set}(X,Fo(G))$$

by sending $\alpha \colon Fr(X) \to G$ to $\alpha_1|_X$ by abuse of notation, looking at the base-level terms as elements of X and from the other direction sending $f \colon X \to Fo(G)$ to a natural transformation α defined by extending $\alpha_1 \colon Fr(X)(1) \to G(1)$. That is, $\alpha_1(x) = f(x)$ and $\alpha_1(k(\overline{t_i})) = G(k)(\overline{\alpha_1 t_i})$. This naturally extends to the products. We need to prove naturality. As before, suffices to check on maps to 1.

On the base case we have

 $\overline{x_i}$

$$Tm_X^n \longrightarrow Tm_X \longrightarrow G(1)$$

$$\overline{x_i} \mapsto g(\overline{x_i}) \mapsto G(g)(\overline{fx_i})$$

in the other

$$Tm_X^n \longrightarrow G(1)^n \longrightarrow G(1)$$

 $\mapsto \qquad \overline{fx_i} \qquad \mapsto \qquad G(g)(\overline{fx_i})$

on the induction step

$$Tm_{X}^{n} \longrightarrow Tm_{X} \longrightarrow G(1)$$

$$\overline{k_{i}}(\overline{t_{i}}) \mapsto g(\overline{k_{i}}(\overline{t_{i}})) \mapsto G(g)(\overline{G(k_{i})}(\overline{\alpha_{1}t_{i}}))$$

$$Tm_{X}^{n} \longrightarrow G(1)^{n} \longrightarrow G(1)$$

$$\overline{k_{i}}(\overline{t_{i}}) \mapsto \overline{G(k_{i})}(\overline{\alpha_{1}t_{i}}) \mapsto G(g)(\overline{G(k_{i})}(\overline{\alpha_{1}t_{i}}))$$

In one direction, if $\alpha \colon Fr(X) \Rightarrow G$ it gets taken to $\alpha_1|_X$ which then gets taken to a natural transformation defined on the base level as $x \mapsto \alpha_1(x)$ which extends to an interpretation on all terms producing α .

In the other direction, of $f: X \to Fo(G)$, then it first gets taken to a natural transformation α defined on 1 by applying on the base terms the function f and then gets taken to a map that is $\alpha_1|_{X}$, i.e. exactly our map f.

Now, let us prove naturality in both variables. Let us consider the diagram

Suppose $\alpha \colon Fr(X) \Rightarrow G$. Recall that suffices to see what happens at the bottom level. So, by abuse of notation we have that

$$Mod(\mathbb{T})(Fr(X),G) \longrightarrow Mod(\mathbb{T})(Fr(Y),G) \longrightarrow \mathbf{Set}(Y,Fo(G))$$

$$\alpha \qquad \mapsto \qquad \alpha(Fr(f)) \qquad \mapsto \qquad \alpha(Fr(f))|_{Y}$$

where $\alpha(Fr(f))_1$ is defined on the base level as $y \mapsto f(y) \mapsto \alpha_1 f(y)$ and on the inductive step as $k(\overline{t_i}) \mapsto G(k)(\alpha_1(t_i))$ so that $\alpha(Fr(f))|_Y = (\alpha_1|_Y)f$

$$Mod(\mathbb{T})(Fr(X),G) \longrightarrow \mathbf{Set}(X,Fo(G)) \longrightarrow \mathbf{Set}(Y,Fo(G))$$

$$\alpha \mapsto \alpha_1|_X \mapsto (\alpha_1|_Y)f$$

in the other variable, get

so take $\eta: Fr(X) \Rightarrow F$. In one direction, following both sides of the square we get $\alpha_1 \eta_1|_X$ and hence we have the desired adjunction.

Corollary

The category of set-valued models of essentially algebraic theories has a free-forgetful adjunction formulated by this procedure.