$11n_{54} (K11n_{54})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{25} + u^{24} + \dots + b - u, -u^{25} + u^{24} + \dots + a + 2, u^{27} - 2u^{26} + \dots + 4u - 1 \rangle$$

$$I_2^u = \langle -u^3 + b + u + 1, -u^4 - u^3 + u^2 + a + u, u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{25} + u^{24} + \dots + b - u, -u^{25} + u^{24} + \dots + a + 2, u^{27} - 2u^{26} + \dots + 4u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{25} - u^{24} + \dots + 3u^{2} - 2 \\ u^{25} - u^{24} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{26} - u^{25} + \dots - 5u - 1 \\ -u^{26} + u^{25} + \dots - 2u^{2} + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{24} + u^{23} + \dots - 3u - 1 \\ -u^{26} + u^{25} + \dots - 5u^{3} + 2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{24} + u^{23} + \dots - 3u - 1 \\ -u^{26} + u^{25} + \dots - 5u^{3} + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u^{3} + u \\ u^{4} - u^{2} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 2u^{9} - 2u^{7} + u^{3} \\ -u^{11} + 3u^{9} - 4u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 2u^{9} - 2u^{7} + u^{3} \\ -u^{11} + 3u^{9} - 4u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{26} + 6u^{25} + 20u^{24} - 39u^{23} - 47u^{22} + 126u^{21} + 51u^{20} - 259u^{19} + 17u^{18} + 366u^{17} - 150u^{16} - 376u^{15} + 266u^{14} + 292u^{13} - 287u^{12} - 189u^{11} + 231u^{10} + 112u^9 - 162u^8 - 61u^7 + 97u^6 + 36u^5 - 47u^4 - 23u^3 + 17u^2 + 12u - 14$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{27} - 7u^{26} + \dots - 5u + 1$
c_2	$u^{27} + 3u^{26} + \dots + 5u + 1$
c_3, c_7	$u^{27} + u^{26} + \dots + 128u + 64$
c_5	$u^{27} - 2u^{26} + \dots + 2u + 1$
c_6,c_{10}	$u^{27} + 2u^{26} + \dots + 4u + 1$
c ₈	$u^{27} + 8u^{26} + \dots + 16990u + 565$
<i>c</i> ₉	$u^{27} + 12u^{26} + \dots + 12u + 1$
c_{11}	$u^{27} + 6u^{26} + \dots + 48u + 5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{27} - 3y^{26} + \dots + 5y - 1$
c_2	$y^{27} + 49y^{26} + \dots - 23y - 1$
c_3, c_7	$y^{27} + 39y^{26} + \dots - 28672y - 4096$
<i>C</i> ₅	$y^{27} - 36y^{26} + \dots + 12y - 1$
c_6, c_{10}	$y^{27} - 12y^{26} + \dots + 12y - 1$
C ₈	$y^{27} - 72y^{26} + \dots + 171458760y - 319225$
<i>C</i> 9	$y^{27} + 8y^{26} + \dots + 32y - 1$
c_{11}	$y^{27} - 4y^{26} + \dots + 504y - 25$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.917142 + 0.407659I		
a = 1.20846 + 2.04717I	-2.84916 + 1.60658I	-4.88146 - 5.04321I
b = 2.09938 + 1.19019I		
u = -0.917142 - 0.407659I		
a = 1.20846 - 2.04717I	-2.84916 - 1.60658I	-4.88146 + 5.04321I
b = 2.09938 - 1.19019I		
u = 0.526875 + 0.831344I		
a = 0.11316 - 2.41248I	12.17430 - 2.19817I	-0.63423 + 2.08830I
b = 1.82470 - 0.93091I		
u = 0.526875 - 0.831344I		
a = 0.11316 + 2.41248I	12.17430 + 2.19817I	-0.63423 - 2.08830I
b = 1.82470 + 0.93091I		
u = 0.467388 + 0.843376I		
a = -0.08288 + 2.25887I	11.82210 + 5.91141I	-1.03607 - 2.33228I
b = -2.19783 + 0.76965I		
u = 0.467388 - 0.843376I		
a = -0.08288 - 2.25887I	11.82210 - 5.91141I	-1.03607 + 2.33228I
b = -2.19783 - 0.76965I		
u = 0.971756 + 0.498250I		
a = 0.462169 - 0.060454I	-2.13464 - 3.70052I	-7.14700 + 4.32876I
b = -0.404355 + 0.874051I		
u = 0.971756 - 0.498250I		
a = 0.462169 + 0.060454I	-2.13464 + 3.70052I	-7.14700 - 4.32876I
b = -0.404355 - 0.874051I		
u = 1.059940 + 0.286714I		
a = -0.219785 - 0.584186I	-2.30226 - 0.55935I	-5.41913 - 0.15707I
b = 0.225820 - 0.093826I		
u = 1.059940 - 0.286714I		
a = -0.219785 + 0.584186I	-2.30226 + 0.55935I	-5.41913 + 0.15707I
b = 0.225820 + 0.093826I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.580852 + 0.656113I		
a = -0.834314 - 0.778452I	2.76848 + 0.13713I	0.773547 - 0.780119I
b = -1.197700 - 0.124667I		
u = -0.580852 - 0.656113I		
a = -0.834314 + 0.778452I	2.76848 - 0.13713I	0.773547 + 0.780119I
b = -1.197700 + 0.124667I		
u = -1.001280 + 0.594918I		
a = -0.59412 - 1.46994I	1.53114 + 4.74698I	-2.05877 - 5.37624I
b = -1.21967 - 0.98587I		
u = -1.001280 - 0.594918I		
a = -0.59412 + 1.46994I	1.53114 - 4.74698I	-2.05877 + 5.37624I
b = -1.21967 + 0.98587I		
u = -1.175710 + 0.039463I		
a = -0.392154 - 0.491529I	5.98407 - 3.79755I	-6.46791 + 2.18250I
b = -0.267337 + 1.188470I		
u = -1.175710 - 0.039463I		
a = -0.392154 + 0.491529I	5.98407 + 3.79755I	-6.46791 - 2.18250I
b = -0.267337 - 1.188470I		
u = -1.103060 + 0.538696I		
a = 1.181940 - 0.254407I	-0.58075 + 6.65503I	-3.43691 - 7.46005I
b = 0.857869 - 0.770675I		
u = -1.103060 - 0.538696I		
a = 1.181940 + 0.254407I	-0.58075 - 6.65503I	-3.43691 + 7.46005I
b = 0.857869 + 0.770675I		
u = -0.326760 + 0.690469I		
a = -0.462660 + 0.572854I	1.66847 - 1.93992I	0.12713 + 2.72762I
b = 0.218748 + 0.864330I		
u = -0.326760 - 0.690469I		
a = -0.462660 - 0.572854I	1.66847 + 1.93992I	0.12713 - 2.72762I
b = 0.218748 - 0.864330I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.698871 + 0.307602I		
a = -0.894710 + 0.463414I	-1.077410 - 0.093546I	-6.21440 - 0.06252I
b = 0.205039 - 0.148466I		
u = 0.698871 - 0.307602I		
a = -0.894710 - 0.463414I	-1.077410 + 0.093546I	-6.21440 + 0.06252I
b = 0.205039 + 0.148466I		
u = 1.074550 + 0.661713I		
a = 2.00442 - 1.14909I	10.52730 - 3.36992I	-2.71394 + 2.50695I
b = 3.21245 - 0.01349I		
u = 1.074550 - 0.661713I		
a = 2.00442 + 1.14909I	10.52730 + 3.36992I	-2.71394 - 2.50695I
b = 3.21245 + 0.01349I		
u = 1.106510 + 0.642553I		
a = -2.19489 + 1.59992I	9.8976 - 11.4401I	-3.60368 + 6.65783I
b = -3.52700 + 0.08432I		
u = 1.106510 - 0.642553I		
a = -2.19489 - 1.59992I	9.8976 + 11.4401I	-3.60368 - 6.65783I
b = -3.52700 - 0.08432I		
u = 0.397840		
a = -1.58927	-1.09734	-8.57440
b = 0.339752		

II. $I_2^u = \langle -u^3 + b + u + 1, \ -u^4 - u^3 + u^2 + a + u, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + u^{3} - u^{2} - u \\ u^{3} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{3} - u^{2} - u \\ u^{3} - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{2} - u \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^4 5u^2 5u 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{6}$
c_{2}, c_{4}	$(u+1)^6$
c_{3}, c_{7}	u^6
c_5, c_8, c_{10}	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_6	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_9,c_{11}	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_6, c_8 c_{10}	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_9, c_{11}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.685196 + 1.063260I	-3.53554 - 0.92430I	-12.63596 - 0.09369I
b = -1.258210 + 0.569162I		
u = 1.002190 - 0.295542I		
a = -0.685196 - 1.063260I	-3.53554 + 0.92430I	-12.63596 + 0.09369I
b = -1.258210 - 0.569162I		
u = -0.428243 + 0.664531I		
a = 0.917982 + 0.270708I	0.245672 - 0.924305I	-2.59683 + 0.69886I
b = -0.082955 - 0.592379I		
u = -0.428243 - 0.664531I		
a = 0.917982 - 0.270708I	0.245672 + 0.924305I	-2.59683 - 0.69886I
b = -0.082955 + 0.592379I		
u = -1.073950 + 0.558752I		
a = -0.732786 + 0.381252I	-1.64493 + 5.69302I	-6.76721 - 4.86918I
b = -0.158836 + 1.200140I		
u = -1.073950 - 0.558752I		
a = -0.732786 - 0.381252I	-1.64493 - 5.69302I	-6.76721 + 4.86918I
b = -0.158836 - 1.200140I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{27}-7u^{26}+\cdots-5u+1)$
c_2	$((u+1)^6)(u^{27}+3u^{26}+\cdots+5u+1)$
c_3, c_7	$u^6(u^{27} + u^{26} + \dots + 128u + 64)$
C ₄	$((u+1)^6)(u^{27}-7u^{26}+\cdots-5u+1)$
<i>C</i> 5	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{27} - 2u^{26} + \dots + 2u + 1)$
c_6	$ (u^6 + u^5 - u^4 - 2u^3 + u + 1)(u^{27} + 2u^{26} + \dots + 4u + 1) $
<i>C</i> ₈	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{27} + 8u^{26} + \dots + 16990u + 565)$
<i>C</i> 9	$ (u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)(u^{27} + 12u^{26} + \dots + 12u + 1) $
c_{10}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{27} + 2u^{26} + \dots + 4u + 1)$
c_{11}	$ (u6 - 3u5 + 5u4 - 4u3 + 2u2 - u + 1)(u27 + 6u26 + \dots + 48u + 5) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_4	$((y-1)^6)(y^{27} - 3y^{26} + \dots + 5y - 1)$
c_2	$((y-1)^6)(y^{27} + 49y^{26} + \dots - 23y - 1)$
c_3,c_7	$y^6(y^{27} + 39y^{26} + \dots - 28672y - 4096)$
<i>C</i> 5	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{27} - 36y^{26} + \dots + 12y - 1)$
c_6, c_{10}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{27} - 12y^{26} + \dots + 12y - 1)$
<i>C</i> ₈	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)$ $\cdot (y^{27} - 72y^{26} + \dots + 171458760y - 319225)$
<i>c</i> ₉	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{27} + 8y^{26} + \dots + 32y - 1)$
c_{11}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{27} - 4y^{26} + \dots + 504y - 25)$