ELTRA: An Embedding Method based on Learning-to-Rank to Preserve Asymmetric Information in Directed Graphs

Submitted to the 32th ACM International Conference on Information and Knowledge Management, ACM CIKM 2023

APPENIDIX

APPENDIX A

In this section, we prove that the CRW scores are asymmetric, bounded, monotonic, unique, and always existent.

- (1) **Asymmetry**: according to Equation (2), if $u \neq v$, $S_k(u, v)$ is computed by considering O_u and I_u , while $S_k(v, u)$ is computed by considering O_v and I_v ; since $O_u \neq O_v$ and $I_u \neq I_v$, then $S(u, v) \neq S(v, u)$
- (2) **Bounding**: for all k, $0 \le S_k(u, v) \le 1$.

According to Equation (2), if $u \neq v$, then $S_0(u,v) = 0$, otherwise $S_0(u,v) = 1$; therefore $0 \leq S_0(u,v) \leq 1$. It means the property holds for k = 0. Now, we assume that the property holds for k, which means $0 \leq S_k(u,v) \leq 1$ for any node-pairs (u,v); according to the assumption $S_k(u,v) \geq 0$, thus

$$S_{k+1}(u,v) = \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} S_k(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} S_k(j,v)}{|I_u|} \right)$$

$$\geq \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} (0)}{|O_u|} + \frac{\sum_{j \in I_u} (0)}{|I_u|} \right)$$

$$\geq 0$$

1

also, according to the assumption $S_k(u, v) \le 1$, thus

$$\begin{split} S_{k+1}(u,v) &= \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} S_k(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} S_k(j,v)}{|I_u|} \Big) \\ &\leq \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} (1)}{|O_u|} + \frac{\sum_{j \in I_u} (1)}{|I_u|} \Big) \\ &\leq \frac{C}{2} \cdot \Big(1+1 \Big) \\ &\leq C \end{split}$$

since 0 < C < 1, then $S_{k+1}(u, v) \le 1$.

(3) **Monotonicity**: for every node-pair (u, v), the sequence $\{S_k(u, v)\}$ is non-decreasing as k increases.

If u = v, $S_0(u, v) = S_1(u, v) = \cdots = 1$; thus, the property holds.

If $u \neq v$, according to Equation (2), $S_0(u, v) = 0$ and by the bounding property, $0 \le S_1(u, v) \le 1$; therefore, $S_0(u, v) \le S_1(u, v)$, which means the property holds for k = 0. We assume that the property holds for all k where $S_{k-1}(u, v) \le S_k(u, v)$ for any node-pairs (u, v), which means $S_k(u, v) - S_{k-1}(u, v) \ge 0$. Now, we show the property holds for k+1 as follows:

$$\begin{split} S_{k+1}(u,v) - S_k(u,v) &= \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} S_k(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} S_k(j,v)}{|I_u|} \Big) - \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} S_{k-1}(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} S_{k-1}(j,v)}{|I_u|} \Big) \\ &= \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} S_k(i,v) - S_{k-1}(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} S_k(j,v) - S_{k-1}(j,v)}{|I_u|} \Big) \end{split}$$

according to the assumptions, $S_k(u,v)-S_{k-1}(u,v)\geq 0$ and we already know that C>0 therefore, $S_{k+1}(u,v)-S_k(u,v)\geq 0$, which means $S_{k+1}(u,v)\geq S_k(u,v)$.

(4) **Existence**: the fixed points S(*,*) of the CRW equation always exists.

By the bounding and monotonicity properties, for any node-pairs (u, v), $S_k(u, v)$ is bounded and non-decreasing as k increases. A sequence $S_k(u, v)$ converges to $\lim S(u, v) \in [0, 1]$, according to the Completeness Axiom of calculus. $\lim_{k \to \infty} S_{k+1}(u, v) = \lim_{k \to \infty} S_k(u, v) = S(u, v)$

and the limit of a sum is identical to the sum of the limits, therefore

$$S(u, v) = \lim_{k \to \infty} S_{k+1} = \frac{C}{2} \cdot \left(\frac{\lim_{k \to \infty} \sum_{i \in O_u} S_k(i, v)}{|O_u|} + \frac{\lim_{k \to \infty} \sum_{j \in I_u} S_k(j, v)}{|I_u|} \right)$$

$$= \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} \lim_{k \to \infty} S_k(i, v)}{|O_u|} + \frac{\sum_{j \in I_u} \lim_{k \to \infty} S_k(j, v)}{|I_u|} \right)$$

$$= \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} S(i, v)}{|O_u|} + \frac{\sum_{j \in I_u} S(j, v)}{|I_u|} \right)$$

$$= S(u, v)$$

(5) **Uniqueness**: the solution for the fixed-point S(*,*) is always unique.

Suppose that S(*,*) and S'(*,*) are two solutions for the CRW equation. Also, for *all* nodepairs (u,v), let $\delta(u,v) = S(u,v) - S'(u,v)$ be the difference between these two solutions. Let $M = \max_{(u,v)} |\delta(u,v)|$ be the maximum absolute value of all differences observed for some nod-pairs (u,v) (i.e., $|\delta(u,v)| = M$). We need to prove that M = 0. If u = v, M = 0 since S(u,v) = S'(u,v) = 1. If $u \neq v$, S(u,v) and S'(u,v) are computed by CRW, and we have

$$\begin{split} \delta(u,v) &= S(u,v) - S'(u,v) \\ &= \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} S(i,v) - S'(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} S(j,v) - S'(j,v)}{|I_u|} \Big) \\ &= \frac{C}{2} \cdot \Big(\frac{\sum_{i \in O_u} \delta(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} \delta(j,v)}{|I_u|} \Big) \end{split}$$

thus,

$$\begin{split} M &= |\delta(u,v)| = \left| \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} \delta(i,v)}{|O_u|} + \frac{\sum_{j \in I_u} \delta(j,v)}{|I_u|} \right) \right| \\ &\leq \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} |\delta(i,v)|}{|O_u|} + \frac{\sum_{j \in I_u} |\delta(j,v)|}{|I_u|} \right) \\ &\leq \frac{C}{2} \cdot \left(\frac{\sum_{i \in O_u} M}{|O_u|} + \frac{\sum_{j \in I_u} M}{|I_u|} \right) \\ &= \frac{C}{2} \cdot \left(M + M \right) = C \cdot M \end{split}$$

Since 0 < C < 1, surely M = 0.