Centro Universitário Católica de Santa Cararina

Engenharia de Software

Gerenciamento, Configuração e Processos de Software

Alunos: Leonardo Lotério de Lima, Lucas Honorato dos Santos, Luis Fernando Pereira, Miguel Angel Balladares Huertas, Miguel Angel Dufloth Filho.

Data: 22/09/2025

Comparativos	Big Tech (evidências do artigo)	Lean (princípios)
Pessoas & Autonomia	 Engenheiros/Tech Leads lideram projetos. TPMs só em projetos crossorg. Autonomia alta correlaciona com satisfação. Scrum quase ausente. 	Respeitar as pessoas.Empoderar equipes.Decisões no gemba, perto do trabalho.
Processo	 Cada time escolhe seu processo (Kanban, plan-buildship, RFCs). Flexibilidade permite ciclos rápidos. 	- Eliminar desperdícios.- Fluxo puxado.- Entrega rápida eincremental.
Tooling	 CI/CD, feature flags, automação de testes. Menos rituais, feedback rápido. Qualidade embutida no processo. 	 Construir qualidade no processo. Ciclos curtos de aprendizado. Informação e conhecimento gerados continuamente.
Coordenação	 - TPMs para projetos complexos. - Artefatos/processos variam por equipe. - Foco em resultados (outcomes). 	 Otimizar o todo, não sub- otimizar times isolados. Coordenação sistêmica e integração.
Métricas	- Autonomia aumenta satisfação.	- Medir lead time, valor entregue, retrabalho.

Adequação ao
contexto

- Processos pesados (ex.: JIRA) reduzem motivação.
- Scrum/SAFe útil em "kitchen sink teams", times novos ou necessidade de reporting.
- Métricas orientadas a fluxo e impacto real.
- Adiar decisões até o último momento responsável (defer commitment).
- Aprender por experimentos e adaptação.
- Autonomia é central: engenheiros lideram, decisões descentralizadas.
- Processos flexíveis: Kanban ou fluxo contínuo prevalecem sobre Scrum rígido.
- Ferramentas de primeira classe: CI/CD, feature flags, automação.
- Governança leve: TPMs só em projetos complexos, foco em outcomes.
- Satisfação ligada a confiança: menos burocracia = mais engajamento.
- Contexto define a metodologia: Scrum útil só em situações específicas; caso contrário, flexibilidade e aprendizado contínuo.
- Lean aplicado na prática: eliminação de desperdício, qualidade embutida, ciclos rápidos, respeito pelas pessoas, aprendizado contínuo.