Answer any *four* questions from the following:

1.

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2021

GE1-P1-MATHEMATICS

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE1, GE2, GE3, GE4 and GE5. Candidates are required to answer any *one* from the *five* courses and they should mention it clearly on the Answer Book.

GE1

CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION

GROUP-A

 $3 \times 4 = 12$

(a) Find the points of inflexion on the curve $(\theta^2 - 1)r = a\theta^2$.	3
(b) Find the envelopes of the lines $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are parameters related	3
 by a+b=c. (c) Find the equation of the sphere through the circle x² + y² + z² = 9, x + y - 2z = 4 and the origin. 	3
(d) Evaluate $\int_{0}^{1} xe^{-\sqrt{x}} dx$ using reduction formula.	3
(e) Obtain the singular solution of the equation $(xp - y)^2 = p^2 - 1$, where $p = dy/dx$.	3
(f) Determine the nature of the quadric $5x^2 - 6xy + 5y^2 + 22x - 26y + 29 = 0$.	3

GROUP-B

2. Answer any *four* questions from the following: $6 \times 4 = 24$

(a) If
$$y = \frac{\sin^{-1} x}{\sqrt{1-x}}$$
, $|x| < 1$, then prove that $(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$.

(b) Find the asymptotes of the curve $x^3 + 2x^2y - 4xy^2 + 8y^3 - 4x + 8y - 10 = 0$.

(c) Find the area of the region lying between the cissoid $y^2 = \frac{x^3}{2a - x}$ and its asymptote.

(d) Solve:
$$y(2xy+1) dx + x(1+2xy+x^2y^2) dy = 0$$

(e) Find a, b such that,
$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1$$
.

(f) Find the volume of the solid generated by revolving the cardioid $r = a(1 + \cos \theta)$ about initial line.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

- 3. (a) Find the range of values of x for which $y = x^4 6x^3 + 12x^2 + 5x + 7$ is concave upward or downward.
 - (b) Find the length of the arc of the cardioid $r = a(1 \cos \theta)$ lying inside the circle $r = a \cos \theta$.
- 4. (a) Solve by using Bernoulli form $\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2$.
 - (b) Solve: $(xy^2 e^{1/x^3}) dx x^2 y dy = 0$
- 5. (a) Reduce the equation $7x^2 2xy + 7y^2 16x + 16y 8 = 0$ to its canonical form and hence determine the nature of the conic.
 - (b) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 4x + 3y + 4z = 8 is a great circle.
- 6. (a) Find the value of $y_n(0)$, where $y = \log(x + \sqrt{1 + x^2})$.
 - (b) If $I_{m,n} = \int_{0}^{\pi/2} \cos^m x \sin nx \, dx$, then show that $I_{m,n} = \frac{1}{m+n} + \frac{m}{m+n} I_{m-1, n-1}$.

GE₂

ALGEBRA

GROUP-A

1. Answer any *four* questions from the following:

- $3 \times 4 = 12$
- (a) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^4 + mx^2 + nx p = 0$, where m, n, p are positive.
- (b) Prove that $\sqrt{i} + \sqrt{-i} = \sqrt{2}$.
- (c) Prove that the eigenvalues of a real skew symmetric matrix are purely imaginary or zero
- (d) Find the sum of 99th power of the roots of the equation $x^7 1 = 0$.
- (e) Use Cayley-Hamilton theorem to find A^{-1} for the matrix 3

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

(f) Find the quadratic equation whose roots are twice the roots of $2x^2 - 5x + 2 = 0$.

GROUP-B

2. Answer any *four* questions from the following:

 $6 \times 4 = 24$

3

(a) If $2\cos\theta = x + \frac{1}{x}$ and θ is real, prove that $2\cos n\theta = x^n + \frac{1}{x^n}$, *n* being an integer.

2

- (b) Solve the equation $16x^4 64x^3 + 56x^2 + 16x 15 = 0$ whose roots are in arithmetic progression.
- (c) Find integers u and v satisfying 52u 91v = 78.
- (d) Find all eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 4 & 3 & 1 \\ 2 & 1 & 1 \end{bmatrix}$.
- (e) For what values of λ the following system of equations are consistent?

x - y + z = 1 $x + 2y + 4z = \lambda$

$$x + 4v + 6z = \lambda^2$$

(f) Use Cayley-Hamilton theorem to find A^{100} , where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

6

6

- 3. (a) If $\log \sin(\theta + i\varphi) = \alpha + i\beta$, then prove that $2e^{2\alpha} = \cosh 2\varphi \cos 2\theta$.
 - (b) Find the relation among the coefficients of the equation $a_0x^4 + 4a_1x^3 + 6a_2x^2 + 4a_3x + a_4 = 0$, so that the second term and the fourth term may be removed by the transformation x = y + h.
- 4. (a) If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, find the equation whose roots are $\beta + \gamma 2\alpha$, $\gamma + \alpha 2\beta$, $\alpha + \beta 2\gamma$.
 - (b) Determine all values of $(1+i\sqrt{3})^{3/4}$ and show that their product is 8. 4+2
- 5. (a) Solve the equation $3x^3 + 5x^2 + 5x + 3 = 0$, which has three distinct roots of equal moduli.
 - (b) If roots of $ax^3 + bx^2 + cx + d = 0$ are in arithmetic progression. Show that $2b^3 9abc + 27a^2d = 0$.
- 6. (a) Determine the conditions for which the system of equation has 2+2+2
 - (i) only one solution
 - (ii) no solution
 - (iii) infinitely many solution.

$$x+2y+z=1$$

$$2x+y+3z=b$$

$$x+ay+3z=b+1$$

(b) The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ with ordered basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 is given by

$$\begin{pmatrix}
0 & 3 & 0 \\
2 & 3 & -2 \\
2 & -1 & 2
\end{pmatrix}$$

Find the matrix of T relative to the ordered basis $\{(2, 1, 1), (1, 2, 1), (1, 1, 2)\}$ of \mathbb{R}^3 .

GE₃

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

1. Answer any *four* questions from the following:

- $3 \times 4 = 12$
- (a) Show that the function $f(x, y) = xy^2$ does not satisfy the Lipschitz condition on the strip $|x| \le 1$, $|y| < \infty$.
- (b) Find the Wronskian of $\{1, 1+x, 1+x+x^2+x^3\}$.
- (c) Define Lipschitz constant. Find Lipschitz constant for the function $f(x, y) = x^2 y^2$ defined on $|x| \le 1$, $|y| \le 1$.
- (d) Solve: $\frac{d^5y}{dx^5} 2\frac{d^4y}{dx^4} + \frac{d^3y}{dx^3} = 0$
- (e) Examine whether the vector valued function $\vec{r} = t^3 \hat{i} + e^t \hat{j} + \frac{1}{t+3} \hat{k}$ is continuous at t = -3 or not.
- (f) Evaluate: $\lim_{t \to 1} \left[\frac{t^3 1}{t 1} \hat{i} + \frac{t^2 3t + 2}{t^2 + t 2} \hat{j} + (t^2 + 1)e^{t 1} \hat{k} \right]$

GROUP-B

2. Answer any *four* questions from the following:

 $6 \times 4 = 24$

6

- (a) (i) If y_1 and y_2 are two independent solutions of the linear equation 3+3 $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$, then show that the Wronskian $W(y_1, y_2) = Ae^{-\int p \, dx}$, where A is a constant.
 - (ii) Show that the functions $\{e^{2x}, e^{2x} \cos 4x, e^{2x} \sin 4x\}$ are linearly independent.
- (b) Show that linearly independent solutions of y'' 2y' + 2y = 0 are $e^x \sin x$ and $e^x \cos x$. What is the general solution? Find the solution y(x) with the conditions y(0) = 2, y'(0) = -3.
- (c) Solve: $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + x^{-1})$
- (d) Solve: $(D^3 1)y = x \sin x$, $D = \frac{d}{dx}$
- (e) (i) Find the co-ordinates of the point where the line $\vec{r} = t\hat{i} + (1+2t)\hat{j} 3t\hat{k}$ 3+3 intersects the plane 3x y z = 2.
 - (ii) Show that the graph of $\vec{r}(t) = t\hat{i} + \frac{1+t}{t}\hat{j} + \frac{1-t^2}{t}\hat{k}$, t > 0 lies on the plane x y + z + 1 = 0.
- (f) (i) Find the domain of the vector function h(t) F(t), where $h(t) = \sin t$ and 3+3 $F(t) = \frac{1}{\cos t} \hat{i} + \frac{1}{\sin t} \hat{j} + \frac{1}{\tan t} \hat{k}$
 - (ii) Find $(F \times G)(t)$ if $F(t) = t^2 \hat{i} + t \hat{j} (\sin t) \hat{k}$ and $G(t) = t^2 \hat{i} + \frac{1}{t} \hat{j} + 5 \hat{k}$.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

- 3. (a) (i) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = xe^x \log x$. 5+3+4
 - (ii) Evaluate: $\frac{1}{D^2 3D + 2} xe^{3x}$
 - (iii) Solve: $\frac{d^2y}{dx^2} + 16y = 1$, y(0) = 1, y'(0) = 2
 - (b) (i) Solve by using the method of undetermined coefficient $(D^2 + D 6)y = 10e^{2x} 18e^{3x} 6x 11$
 - (ii) Solve: $(D^4 + 2D^3 3D^2)y = x^2 + 3e^{2x} + 4\sin x$
 - (c) (i) Solve the equations

 $\frac{dx}{dx} = -wy$

 $\begin{cases} \frac{dx}{dt} = -wy\\ \frac{dy}{dt} = wx \end{cases}$

and show that the point (x, y) lies on a circle.

(ii) Solve the system of equations

$$\begin{cases} \frac{dx}{dt} = -x + 6y \\ \frac{dy}{dt} = x - 2y \end{cases}$$

- (d) (i) Find the slope of the line in R^2 for the vector equation $\vec{r}(t) = (1 2t)\hat{i} (2 5t)\hat{j}$
 - (ii) Define continuity of a vector valued function.
 - (iii) Show that the vector function $\vec{r}(t) = \begin{cases} \frac{\sin t}{t} \hat{i} + t\hat{j} + t^2\hat{k} &, t \neq 0 \\ \hat{i} &, t = 0 \end{cases}$

is continuous at t = 0.

(iv) Find a vector function F whose graph is the curve of intersection of the hemisphere $z = \sqrt{4 - x^2 - y^2}$ and the curve $y = x^2$.

GE4

GROUP THEORY

GROUP-A

1. Answer any *four* questions from the following:

 $3 \times 4 = 12$

- (a) Let (S, \circ) be a semigroup. If for all $x, y \in S$, $x^2 \circ y = y = y \circ x^2$, prove that (S, \circ) is an abelian group.
- (b) Suppose H, K are subgroups of index 2 in a group G. Prove that $H \cap K$ is a normal subgroup of G.
- (c) Let $G = \langle a \rangle$ be a cyclic group of order n. Prove that every subgroup of G is of the form $\langle a^m \rangle$, where m is a divisor of n.
- (d) Find all elements of order 10 in the group (\mathbb{Z}_{30} , +).

2.

(e) Show that there does not exist an onto homomorphism from the group $(\mathbb{Z}_6, +)$ to 3 (f) Prove or disprove: $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \cdot) 3 **GROUP-B** Answer any *four* questions from the following: $6 \times 4 = 24$ (a) Let S be the set of all permutations on the set $\{1, 2, 3\}$. Show that S forms a non-6 abelian group with respect to multiplication. (b) Suppose that the order of an element a in a group (G, \circ) is n. Show that 4+2 $O(a^m) = \frac{n}{d}$, where $d = \gcd(m, n)$. Find the order of $\overline{n-1}$ in $(\mathbb{Z}_n, +)$. (c) (i) Let H be a subgroup of a group G and $a, b \in G$. Prove that $b \in Ha$ iff 2+4 $ba^{-1} \in H$. (ii) Let H be a subgroup of a group G. Show that the set of all distinct left cosets of H in G and the set of all distinct right cosets of H in G have the same cardinality. (d) (i) If H is a subgroup of G and N is a normal subgroup of G, then show that 4+2 $H \cap N$ is a normal subgroup of H. (ii) Prove that N is a normal subgroup of G iff $gNg^{-1} = N$ for every $g \in G$. Let (G, \circ) be a group and H, K be subgroups of (G, \circ) . Show that HK forms a (e) (i) 4+2 subgroup of (G, \circ) iff HK = KH. (ii) Check whether the union of two subgroups of a group (G, \circ) is a subgroup of (G, \circ) or not? Let (G, \circ) be a group and a mapping $\varphi: G \to G$ is defined by (f) (i) 4+2 $\varphi(x) = x^2$, $x \in G$. Prove that φ is a homomorphism iff G is commutative. (ii) Prove that $(\mathbb{Z}_4, +)$ and "Klein's 4-group" are not isomorphic. **GROUP-C** Answer any two questions from the following $12 \times 2 = 24$ 3. (a) (i) Let $G = S_3$, $G' = (\{-1, 1\}, \cdot)$ and $\varphi : G \to G'$ is defined by 4+2+2 $\varphi(\alpha) = \begin{cases} 1 & , & \alpha \text{ be an even permutation in } S_3 \\ -1 & , & \alpha \text{ be an odd permutation in } S_3 \end{cases}$ Then, (I)Show that φ is homomorphism. (II)Find $\ker \varphi$. (III) Deduce that A_3 is a normal subgroup of S_3 . (ii) Prove that a finite cyclic group of order n is isomorphic to $(\mathbb{Z}_n, +)$. 4 (b) (i) Let H be a normal subgroup of G. Prove that the quotient group G/H is abelian iff $xyx^{-1}y^{-1} \in H$ for all $x, y \in G$. (ii) Suppose that a subgroup H of a group G has the property that $x^2 \in H$ for every $x \in G$. Prove that H is normal in G and G/H is abelian.

(iii) Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \text{ and } ad \neq 0 \right\}$ and $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$. Show

6 1059

that H is a normal subgroup of G.

(c) Let *M* be the set of all real matrices
$$\left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} : a+b \neq 0 \right\}$$
. Prove that

- (i) (M, \circ) is a semi-group under matrix multiplication.
- (ii) there is no left identity in the semi-group.
- (iii) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is a right identity.
- (d) (i) Let (G, \circ) , (G', *) be two groups and $\varphi: (G, \circ) \to (G', *)$ be an onto homomorphism. Then prove that $G/\ker \varphi \cong G'$.
 - (ii) Let G be a cyclic group of order 10 and G' be a cyclic group of order 5. Show that there exists a homomorphism φ of G onto G' with $o(\ker \varphi) = 2$.

GE5

NUMERICAL METHODS

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) If $f(x) = 4\cos x 6x$, find the relative percentage error in f(x) for x = 0, if the error in x = 0.005.
 - (b) Deduce the iterative procedure $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$ for evaluating \sqrt{a} using Newton-
 - (c) Prove that $\left(\frac{\Delta^2}{E}\right)x^3 = 6xh^2$ where the notations used have their usual meanings.
 - (d) Show that $\nabla y_{n+1} = h \left[1 + \frac{1}{2} \nabla + \frac{5}{12} \nabla^2 + \cdots \right] Dy_n$, where D is the differential operator.
 - (e) Write down the convergence of bisection method.
 - (f) What is the geometrical significance of Simpson's one-third rule?

GROUP-B

- 2. Answer any *four* questions from the following:
 - (a) If a number is connected to n significant figures and the first significant figure of the number is k, then prove that the relative error $\varepsilon_r < \frac{1}{k \cdot 10^{n-1}}$.
 - (b) Find the positive root of the equation $x^3 + x 1 = 0$ by fixed point iteration method correct upto three decimal places.
 - (c) Find a real root of the equation $x^x + 2x 2 = 0$ correct upto five decimal places using bisection method.
 - (d) Define backward difference operator ∇ and shifting operator E. Show that

$$\sum_{k=0}^{n-1} \Delta^2 f_k = \Delta f_n - \Delta f_0$$

1059

 $3 \times 4 = 12$

3

 $6 \times 4 = 24$

- (e) Use Runge-Kutta method of order two to find y(0.1) and y(0.2) correct upto four decimal places given $\frac{dy}{dx} = y x$, y(0) = 2.
- (f) Explain Gauss-Seidel method for solving a system of linear equations. Obtain the sufficient condition for convergence of Gauss-Seidel method.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

- 3. (a) Evaluate $\int_{0}^{\pi/2} \sqrt{1 0.162 \sin^2 \theta} \ d\theta$, by Simpson's $\frac{1}{3}$ rd rule, correct upto 4 decimal places taking 12 points.
 - (b) Given $\frac{dy}{dx} = \frac{-y}{1+x}$, y(0.3) = 2. Compute y(1) by Euler's method, correct upto four decimal places, taking step length h = 0.1.
- 4. (a) Solve the system of equations by Gauss-elimination method

$$3x + 9y - 2z = 11$$

 $4x + 2y + 13z = 24$

$$4x - 2y + z = -8$$

correct upto 2 decimal places.

- (b) Using Newton-Raphson method find a positive root of the equation $e^x 3x = 0$ correct upto four decimal places.
- 5. (a) Find f(x) as a polynomial in x by using the following table:

6

x	0	2	4	6	8
f(x)	2.51881	2.53148	2.54407	2.55630	2.56820

(b) Obtain the missing terms in the following table:

6

6

6

х	1	2	3	4	5	6	7	8
f(x)	1	8	*	64	*	216	343	512

- 6. (a) Explain the method of fixed point iteration with the condition of convergence for numerical solution of an equation of the form $x = \phi(x)$.
 - (b) What is interpolation? Establish Lagrange's polynomial interpolation formula.

¥