Next Topics

- Tree classifier
- Bagging
- Random Forest

Decision Tree

Decision Trees

- Fast training
- Fast prediciton
- Easy to understand
- Easy to interpret

http://en.akinator.com/personnages/jeu

Decision Tree - Idea

Decision Tree - Idea

 What is a the benefit of using only one feature at a time?

What is the drawback?

Decision Tree - Prediction

Decision Tree - Training

- Learn the tree structure:
 - which feature to query
 - which threshold to choose

Node Purity

- Expected error
- if you randomly choose a sample
- and predict the class of the entire node based on it.

Example:

4 red, 3 green, 3 blue data points

Class probabilities:

- red: 4/10 green: 3/10 blue: 3/10

misclassification:

- red: 4/10 * (3/10 + 3/10)

misclassification:

– red:

$$4/10 * (3/10 + 3/10) = 0.24$$

– green and blue:

$$3/10 * (4/10 + 3/10) = 0.21$$

• gini impurity: 0.24 + 0.21 + 0.21 = 0.66

- Number of classes: C
- Number of data points:N
- Number of data points of class i: N_i

$$I_G = \sum_{i=1}^{C} \frac{N_i}{N} (1 - \frac{N_i}{N})$$
true wrong prediction

Hastie et al.,"The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer (2009)

Node Purity Gain

- Compare:
 - Gini impurity of parent node
 - Gini impurity of child nodes

$$\Delta I_G = I_G(A) - \frac{N(B)}{N(A)} I_G(B) - \frac{N(C)}{N(A)} I_G(C)$$

Misclassification

•
$$\frac{1}{N} \sum_{i}^{N} \mathbf{1}(\hat{\mathbf{y}}_i \neq y_i)$$

not differentiable

Comparison Gini vs Misclassification

Binary problem: 400 samples per class

Misclassification: 0.25

Gini gain: 0.125

Misclassification: 0.25

Gini gain: 0.166

Pseudocode

- Check if already finished
- For each feature x_i
 - Calculate the gain from splitting on x_i
 - Let x_{best} be the feature with highest gain
- Create a decision *node* that splits on x_{best}
- Repeat on the sub-nodes
- Does this produce an optimal tree?
- What does optimal tree mean?

When to Stop

- node contains only one class
- node contains less than x data points
- max depth is reached
- node purity is sufficient
- you start to overfit => cross-validation

Tree Pruning

How do you make a prediction for the merged cell?

Pruning and Complexity

Decision Trees - Disadvantages

- Sensitive to small changes in the data
- Overfitting
- Only axis aligned splits

Decision Trees vs SVM

Characteristic	SVM	Trees
Natural handling of data of "mixed" type	•	A
Handling of missing values	•	A
Robustness to outliers in input space	•	A
Insensitive to monotone transformations of inputs	•	A
Computational scalability (large N)	•	A
Ability to deal with irrel- evant inputs	•	A
Ability to extract linear combinations of features	A	•
Interpretability	•	*
Predictive power	<u> </u>	▼

Wisdom of Crowds

The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.

James Surowiecki

Netflix Prize

Take home messages:

Ensemble Methods

- A single decision tree does not perform well
- But, it is super fast
- What if we learn multiple trees?

We need to make sure they do not all just learn the same.

- Resampling method from statistics
- Useful to get error bars on estimates

- Take N data points
- Draw N times with replacement

Get estimate from each bootstrapped sample

- I can generate more data!
- Can I do cross validation on this?

Bootstrap has overlap in data sets

Do not use simple bootstrap to generate train and test data from same data set.

$$p(n \in Z^{*i}) = \frac{1}{N}$$

Probability of choosing n

Bootstrap has overlap in data sets

Do not use simple bootstrap to generate train and test data from same data set.

$$p(n \in Z^{*i}) = 1 - \frac{1}{N}$$

Probability of not choosing n

Bootstrap has overlap in data sets

Do not use simple bootstrap to generate train and test data from same data set.

$$p(n \in Z^{*i}) = (1 - \frac{1}{N})^N$$

Probability of not choosing n in N draws

Bootstrap has overlap in data sets

Do not use simple bootstrap to generate train and test data from same data set.

$$p(n \in Z^{*i}) = 1 - (1 - \frac{1}{N})^N$$

Probability of (not not) choosing n in N draws

Bootstrap has overlap in data sets

Do not use simple bootstrap to generate train and test data from same data set.

$$p(n \in Z^{*i}) = 1 - e^{-1}$$

$$\approx 0.632$$

This number is important later

Bagging

Bootstrap aggregating

- Sample with replacement from your data set
- Learn a classifier for each bootstrap sample
- Average the results

Bagging Example

Bias-Variance Trade-off

Bagging Decision Trees

Hastie et al.,"The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer (2009)

Bagging Decision Trees

Bagging

- Reduces overfitting (variance)
- Normally uses one type of classifier
- Decision trees are popular
- Not helping with linear models
- Easy to parallelize

Random Forest

- Builds upon the idea of bagging
- Each tree build from bootstrap sample
- Node splits calculated from random feature subsets

Random Forest – Fun Fact

hand_tracking_kinect.mp4

http://research.microsoft.com/enus/projects/handpose/

Random Forest

- All trees are fully grown
- No pruning

- Two parameters
 - Number of trees
 - Number of features

Random Forest Error Rate

- Error depends on:
 - Correlation between trees (higher is worse)
 - Strength of single trees (higher is better)

- Increasing number of features for each split:
 - Increases correlation
 - Increases strength of single trees

Out of Bag Error

- Each tree is trained on a bootstrapped sample
- About 1/3 of data points not used for training

- Predict unseen points with each tree
- Measure error

Out of Bag Error

Out of Bag Error

- Very similar to cross-validation
- Measured during training
- Can be too optimistic

Variable Importance - 1

- Again use out of bag samples
- Predict class for these samples
- Randomly permute values of one feature
- Predict classes again
- Measure decrease in accuracy

Variable Importance - 1

shape

Variable Importance - 2

- Measure split criterion improvement
- Record improvements for each feature
- Accumulate over whole ensemble

Example: Spam classification

Randomization tends to spread out the variable importance more uniformly.

Unbalanced Classes

• The Problem:

Oversample:

• Subsample:

Subsample for each tree!

Random Forest Subsampling

Random Forest

- Similar to Bagging
- Easy to parallelize
- Packaged with some neat functions:
 - Out of bag error
 - Feature importance measure
 - Proximity estimation