Lab #2

Image Enhancement (Pixel intensity Adjustment)

Math Operation

Histogram based Operation

Lab#2

Topics

2.1 Image Pixel Adjustment

2.2 Image Histogram Equalization

2.3 Image Histogram Matching

Libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

2.1 Image Pixel Adjustment

2.1.1 Image Pixel Adjustment

(Linear Equation)

- ullet 2.1.1 ให้สร้างภาพผลลัพธ์จากสมการเส้นตรง $oldsymbol{g}(x,y)=af(x,y)+b$
 - กำหนดให้ปรับค่า a, b เพื่อสร้างภาพอย่างน้อย 20 ภาพ
 - โดยให้ทำการคำนวน Image Array ด้วยตนเอง
 - ห้ามใช้ฟังก์ชันจาก Library
 - เขียนภาพทั้งหมดลงไฟล์วิดีโอ เพื่อให้เห็นการเปลี่ยนแปลงความคมชัด (contrast) และ ความสว่าง (brightness) อย่างต่อเนื่อง
 - หากค่าพิกเซลผลลัพธ์เกินช่วงค่า bit_dept = 8
 - ปรับค่า g(x,y) > 255 o g(x,y) = 255
 - ปรับค่า g(x,y) < 0 $\rightarrow g(x,y) = 0$

2.1.2 Image Pixel Adjustment

(Gamma Equation)

- ullet 2.1.2 ให้สร้างภาพผลลัพธ์จากสมการ gamma $g(x,y)=af(x,y)^{\gamma}+b$
 - กำหนดให้ปรับค่า a = 1, b = 0 เพื่อสร้างภาพ $0 < \gamma < 1$ อย่างน้อย 10 ภาพ และ $\gamma > 1$ อย่างน้อย 10 ภาพ รวมทั้งหมดไม่น้อยกว่า 20 ภาพ
 - เขียนภาพทั้งหมดลงไฟล์วิดีโอ เพื่อให้เห็นการเปลี่ยนแปลงความคมชัด (contrast) และ ความสว่าง (brightness) อย่างต่อเนื่อง
 - หากค่าพิกเซลผลลัพธ์เกินช่วงค่า bit_dept = 8
 - ให้ทำ Quantization ค่าพิกเซลให้อยู่ในช่วง [0,255]

2.1 Image Pixel Adjustment

2.2 Image Histogram Equalization

2.2 ImageHistogramEqualization

- 2.2
- ให้สร้างภาพผลลัพธ์จากกระจายเฉดสีด้วย
 - เทคนิค Image Histogram Equalization
 - * Using OpenCV: cv2.equalizeHist() แยกสี R, G, B
- คำนวนค่า Histogram แบบแยกสี R,G,B
 - ของภาพต้นฉบับ และ ภาพหลังทำ Histogram Equalization
 - Using cv2.calcHist()
- แสดงภาพเปรียบเทียบ
 - รูปภาพ และ กราฟเส้นแสดง Histogram สี R,G,B
 - ของภาพต้นฉบับและภาพผลลัพธ์หลังทำ Histogram Equalization

2.2 Image Histogram Equalization

✓ Histogram Equalization
Using openCV

cv2.equalizeHist()

R, G, B each channel

✓ Visualize Histogram of R,G,B cv2.calcHist()

2.3 Image Histogram Matching

2.3 ImageHistogramMatching

- 2.3
- อ่านไฟล์ภาพ
 - 🔹 ภาพต้นฉบับ และภาพ template
- คำนวนค่า Normalized Histogram (pdf) แบบแยกสี R,G,B
 - ของภาพต้นฉบับ และภาพ template
 - โดยทำ Normalized array ผลลัพธ์จากฟังก์ชัน cv2.calcHist()
 - จำนวน nbins = 256 เฉดสี
- คำนวนค่า Cummulative Histogram (cdf)
 - จาก Normalized Histogram (pdf) ที่คำนวนได้ก่อนหน้า
 - ของภาพต้นฉบับ และภาพ template
 - ตรวจสอบ cdf bin ใน array ตำแหน่งสุดท้าย ต้องมีค่าใกล้เคียหรือเท่ากับ 1.0
- เขียนฟังก์ชันเพื่อทำ Histogram Matching
 - โดยสร้างตารางการแปลงค่าสี ที่เกิดจาก
 - การเทียบแต่ละค่าสีที่มีค่า cdf ของภาพ template ที่ใกล้เคียงกับ cdf ของภาพต้นฉบับ
 - สร้างภาพผลลัพธ์ที่แปลงค่าเฉดสี R, G, B ของภาพต้นฉบับ ตามตารางแปลงค่าสีที่สร้างได้ก่อนหน้า
- แสดงภาพเปรียบเทียบ ภาพต้นฉบับ ภาพ template และกราฟ pdf, cdf ของภาพทั้งสอง
 - โดยใช้ฟังก์ชัน subplot()
- เขียนโปรแกรม save รูปภาพผลลัพธ์
 - โดยใช้ฟังกชัน imwrite()
 - 🔹 ตรวจสอบ data type ให้ถูกต้องก่อนเขียนลงไฟล์

2.3 Image Histogram Matching

2.3 Image Histogram Matching

