U.H.B.C. Chlef Année Universitaire: 2018/2019

Faculté des Sciences Exactes et Informatique Niveau: 2^{ème} Master/ Option: M.A.S.

Département des Mathématiques Module: Processus Stochastiques 3.

EXAMEN FINAL

Exercice 1

1. Questions de Cours:

- (a) Quand-est-ce que l'intégrale de Wiener coïncide-t-elle avec l'intégrale au sens de Riemann-Stieljes trajectoire par trajectoire?
- (b) Montrer que l'intégrale de Wiener n'est pas, en général, faisable trajectoire par trajectoire.
- 2. $(B_t)_{t\geq 0}$ est un Mouvement Brownien Standard défini sur l'espace $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$. Montrer que:
 - (a) $E(B_t^3) = 0$
 - (b) $E(B_t^2/\mathcal{F}_s) = B_s^2 s + t; \ s \le t.$
 - (c) $E(B_sB_t^2) = 0$; $s \le t$.(utiliser a. et b.).
 - (d) $E(B_sB_t^2) = 0$; $t \le s$.(utiliser a. et l'espérance itérée).
 - (e) $E(B_t/\mathcal{F}_s) = B_{s \wedge t}$.
 - (f) $E(\int_0^t B_u du/\mathcal{F}_s) = B_s \int_0^s u dB_u; s \leq t.$

Exercice 2

 $(B_t)_{t>0}$ est un Mouvement Brownien Standard défini sur l'espace $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.

1. L'exponentielle stochastique

Soit $(X_t)_{t\geq 0}$ un processus d'Itô. $(U_t)_{t\geq 0}$ un processus satisfait l'E.D.S.:

$$dU_t = U_t dX_t \tag{1}$$

- (a) Montrer par la formule d'Itô que $U_t = U_0 e^{X_t X_0 \frac{1}{2}\langle X \rangle_t}$ satisfait l'E.D.S. (1). (*U* est dit l'exponentielle stochastique de *X*, notée par: $U_t = \mathcal{E}(X)(t)$).
- (b) Quand-est-ce que $\mathcal{E}(X)$ coïncide-t-elle avec l'exponentielle classique $\exp(X)$?
- (c) Application:
 - i. Déterminer $\mathcal{E}(B)$ avec $(B_t)_{t\geq 0}$: le mouvement brownien standard et $\mathcal{E}(B)(0)=1$.
 - ii. Ecrire l'E.D.S. satisfaite par $U_t = \mathcal{E}(B)(t)$.

2. Résolution d'une Equation Différentielle Stochastique linéaire simple

Soit l'E.D.S.

$$dU_t = \beta_t U_t dt + \delta_t U_t dB_t \tag{2}$$

avec: β et δ fonctions adaptées et continues en t, et U_0 donnée.

- (a) Montrer que $U_t = \mathcal{E}(Y)(t)$ où $(Y_t)_{t\geq 0}$ est un processus d'Itô à determiner (sous la forme différentielle).
- (b) Calculer la variation quadratique $\langle Y \rangle_t$ de (Y).
- (c) En déduire de (1.a.) U_t en fonction de U_0 , β , δ et B.

3. Résolution d'une Equation Différentielle Stochastique linéaire générale

Soit $(X_t)_{t\geq 0}$ un processus inconnu satisfaisant l'E.D.S. :

$$dX_t = (\alpha_t + \beta_t X_t)dt + (\gamma_t + \beta_t X_t)dB_t \tag{3}$$

avec: α , β , γ et δ fonctions adaptées et continues en t, et X_0 donnée.

- (a) Vérifier que l'équation (2) est un cas particulier de l'équation (3).
- (b) Vérifier par la formule d'Itô (la différentielle du produit de 2 processus stochastiques) que le processus:

$$X_t = U_t(X_0 + \int_0^t \frac{\alpha_s - \delta_s \gamma_s}{U_s} ds + \int_0^t \frac{\gamma_s}{U_s} dB_s)$$
(4)

est une solution de l'équation (3), avec U_t donné par l'équation (2).

4. **Application:** E.D.S.de Langevin

Résoudre l'E.D.S.(Utiliser l'expression (4))

$$dX_t = a_t X_t dt + dB_t$$

avec: a est une fonction adaptée et continue en t, et X_0 donnée.

(BONUS)

1. (a) Montrer que pour toutes fonctions $f, g \in L^2_{ad}([a, b] \times \Omega)$

$$\langle \int_{b}^{b} f(t)dB(t), \int_{b}^{b} g(t)dB(t) \rangle_{L^{2}(\Omega)} = \langle f, g \rangle_{L^{2}_{ad}([a,b] \times \Omega)}$$
(5)

Indication: Utiliser $xy = \frac{1}{4}[(x+y)^2 - (x-y)^2]$

(b) Que signifie l'identité (5)?