Nom: Prénom: Classe:

Entourer votre professeur de TD: M. Goron/M. Rodot

Contrôle 1

Exercice 1 (3 points)

1. Déterminer le développement limité en 0 à l'ordre 3 de $\ln(2 + \sin(x))$.

2. Déterminer $\lim_{x \to +\infty} \left(\cos \left(\frac{1}{x} \right) \right)^{x^2}$.

Exercice 2 (5 points)

1. Via la règle de d'Alembert, déterminer la nature de $\sum \frac{(n!)^3}{(3n)!}$.

2. Via un développement limité, déterminer la nature de $\sum \ln \left(\cos\left(\frac{1}{n}\right)\right)$.

4. Déterminer la nature de $\sum \frac{(-1)^n}{n\sqrt{n}}$.

Exercice 3 (4 points)

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par

$$u_n = \ln\left((n-1)!\right) - \left(n - \frac{1}{2}\right)\ln(n) + n$$

1. Montrer que

$$u_{n+1} - u_n = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$$

2. Montrer que $u_{n+1} - u_n \underset{+\infty}{\sim} -\frac{1}{12n^2}$

3. En déduire que (u_n) est convergente.

Exercice 4 (4 points)

Considérons la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$.

1. Déterminer $\lim_{n\to+\infty} \sqrt[n]{n}$.

2. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n = \sqrt[n]{n} \left(\left(1 + \frac{1}{n}\right)^{1/n} - 1 \right)$.

3. Via un développement limité, déterminer un équivalent de $\left(1+\frac{1}{n}\right)^{1/n}-1$ puis de u_n .

4. En déduire la nature de $\sum u_n$.

Exercice 5 (4 points)

On considère la suite (u_n) définie pour tout $n \ge 2$ par $u_n = \frac{(-1)^n}{\ln(n) - (-1)^n}$.

1. Quelle est la limite suivante : $\lim_{n \to +\infty} \frac{n}{\ln^2(n)}$?

2. En déduire la nature de $\sum \frac{1}{\ln^2(n)}$

3. Vérifier que pour tout $n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{\ln(n)} \left(1 - \frac{(-1)^n}{\ln(n)}\right)^{-1}$.

4. Déterminer $a \in \mathbb{R}$ tel que $u_n = \frac{(-1)^n}{\ln(n)} + \frac{a}{\ln^2(n)} + o\left(\frac{1}{\ln^2(n)}\right)$.

5. En déduire la nature de $\sum u_n$.