Math 3501 - Probability and Statistics I

Preliminary material -> we ful of mot enrolled on MATH 2601 yet

Equality and inequality symbols

```
a = b is read a is equal to b. The symbol = is called the equal sign.
```

 $a \not\models b$ is read a is not equal to b.

a < b is read a is less than b.

a > b is read a is greater than b

 $a \le b$ is read a is less than or equal to b.

 $a \ge b$ is read a is greater than or equal to b.

Example

1=1

 $0 \neq 1$

 $0<1 \ \text{and} \ 1>0$

 $0 \le 1$, but also $2 \le 2$

 \longrightarrow 1 \geq 0, but also 3 \geq 3

Elements of sets

Given a set A:

 $\rightarrow x \in A$ means that x is an element of A and is read:

- x belongs to A
- x is in $A \leftarrow$
- x lies in $A \leftarrow$

 $x \notin A$ means that x is not an element of A and is read:

- x does not belong to A
- x is not in A

Example ///

Given $A = \{2, 3, 4\}$, we have that:

$$3 \in A$$

but $1 \notin A$.

Operations on sets

Given two sets A and \underline{B} , we define:

- the *union* of A and B, denoted $A \cup B$, as the set of all elements that belong to A or B (or both).
- the intersection of A and B, denoted $(A \cap B)$ as the set of all elements that belong to both A and B.

Some important sets

- \emptyset denotes the empty set
 - $\mathbb N$ denotes the set of natural numbers: $\mathbb N=\{1,2,3,4,\ldots\}$
- \mathbb{Z} denotes the set of integer numbers: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- \mathbb{Q} denotes the set of <u>rational numbers</u>: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\} \leftarrow$
- \mathbb{R} denotes the set of real numbers

IN

Set-builder notation

is read as the set of all "variables" satisfying a given "condition".

Interval notation

× EIR

Inequality	Interval Notation	Graph on Number Line	Description
a < x < b	(a, b)	a b	x is strictly between a and b
a ≤ x < b	[a, b)	√ [x is between a and b, to include a
a < x ≤ b	(a, b]	(x is between a and b, to include b
a ≤ x ≤ b	[a, b]	a b	x is between a and b, to include a and b

Interval notation

XEIR

Inequality	Interval Notation	Graph on Number Line	Description
x > a	(a, ∞)	a	x is greater than a
<u>x < a</u>	(-∞, a)	a	x is less than a
x ≥ a =	[a, ∞)	a	x is greater than or equal to a
x ≤ a =	(-∞, a]	a	x is less than or equal to a

Applications:

(Phynis, Biology, (hemistry,....)

-> Actual Science (Immana)

- Finance

Math 3501 - Probability and Statistics 1 -> Machine Learning

- Data Science

1.1 - Properties of Probability

branch of mathematics devoted to the study of random or unculain behavior I Probability theory provides the theoretical framework to do Statistics I hanch of mathematics devoted to the collection and organization of data, and to the inference of additional information from such data

Random experiments

A random experiment is an experiment for which the outcome cannot be predicted with certainty.

Example

- tossing a fair coin
- rolling a fair six-sided die
- drawing a card from a standard deck of 52 playing cards

Note: Even though the specific outcome of a random experiment cannot be predicted with certainty before the experiment is performed, the collection of all possible outcomes is known.

Outcome space

The collection of all possible outcomes of a random experiment is called the outcome space or sample space.

In this course, we will often use the letter \underline{S} to denote outcome spaces

Event 2 subred A of sample space S

Given a random experiment with outcome space S, an <u>event</u> is a subset A of S.

When a random experiment is performed and the outcome of the experiment is in A, we say that the event A has occurred.

Example

• tossing a fair coin: $S = \{H, T\}$

The event "Heads is observed" corresponds to the subset $A = \{H\}$ of S

• lifespan (in years) of a lamp: $S = [0, \infty)$

The event "lamp lasts longer than 2 years" corresponds to the subset $A = (2, \infty)$ of S

• number of coin tones until H is observed $S = IN = \{1, 2, 3, 4, 5, \dots\}$ The event "Heads is observed in at most 4 tones" corresponds to the subset $\Delta = \{1, 2, 3, 4\}$

Algebra of sets

 $Venn\ diagram$: represent the outcome space S as a large rectangle and events A as subsets of such rectangle.

 \emptyset denotes the <u>null</u> or empty set.

S

& is always a subset of any set!

$A \cup B$ is the union of A and B.

$A \cap B$ is the intersection of A and B.

A' (or \overline{A}) is the complement of A (in S): all elements in S that are not in A.

on A

A occurs in equivalent to A los mut occur!

Every element of 5 mot in A