Tutorium - Foliensatz 10 aus Statistik 1

Thomas Haase

09.05.23

Kurze Wiederholung der Vorlesung

Stichprobe	Wahrscheinlichkeitsverte Grungdgesamtheit	
Kennwertwerte	Parameter	Parameter
Mittelwert \bar{x}	Erwartungswert μ	Mittelwert μ
Standardabweichung	Standardabweichung	Standardabweichung
5	σ	σ
Varianz s ²	Varianz σ^2	Varianz σ^2

Wahrscheinlichkeit

Wahrscheinlichkeit: Maß für Chance, dass ein bestimmtes Ereignis eintritt

$$P(A) = \frac{positive\ outcomes}{alle\ m\"{o}glichen\ Ergebnisse}$$

Wahrscheinlichkeit = "relative Häufigkeit eines Ereignis"

Wahrscheinlichkeit

Wahrscheinlichkeit: Maß für Chance, dass ein bestimmtes Ereignis eintritt

$$P(A) = \frac{positive \ outcomes}{alle \ m\"{o}glichen \ Ergebnisse}$$

- ► Wahrscheinlichkeit = "relative Häufigkeit eines Ereignis"
- empirische Wahrscheinlichkeit = Schätzwert für Wahrscheinlichkeit

Standardnormalverteilung

Definition:

(1)
$$\mu = 0$$

Standardnormalverteilung

Definition:

- (1) $\mu = 0$ (2) $\sigma = 1$

Standardnormalverteilung

Definition:

- (1) $\mu = 0$
- (2) $\sigma = 1$
 - Was passiert genau?

► Was sagt der Z-Wert eines Rohwertes aus und wie wird er berechnet?

- Was sagt der Z-Wert eines Rohwertes aus und wie wird er berechnet?
- $ightharpoonup z_i = \frac{x_i \bar{x}}{s}$

- Was sagt der Z-Wert eines Rohwertes aus und wie wird er berechnet?
- $ightharpoonup z_i = \frac{x_i \bar{x}}{s}$
- ▶ Der Rohwert wird nichtmehr als absolutes Ergebnis ("Lara hat Note 2 erreicht") sondern relativ zum Rest der Verteilung angegeben ("Lara hat eine Note erreicht, die 2 Standardabweichungen über dem Durchschnitt der Klasse liegt")

- Was sagt der Z-Wert eines Rohwertes aus und wie wird er berechnet?
- $ightharpoonup z_i = \frac{x_i \bar{x}}{s}$
- ▶ Der Rohwert wird nichtmehr als absolutes Ergebnis ("Lara hat Note 2 erreicht") sondern relativ zum Rest der Verteilung angegeben ("Lara hat eine Note erreicht, die 2 Standardabweichungen über dem Durchschnitt der Klasse liegt")
- ➤ **Z-Transformation:** Z Werte für alle Rohwerte einer Verteilung berechnen

Übung

berechnet die Z-Werte für folgende Roh-Werte (Es handelt sich um Punkte einer Klausur) und plottet 5,7,2,12,8

```
Werte <- c(5,4,2,12,9)
# Mittelwert
mean(Werte)</pre>
```

```
# standard deviation
sd(Werte)
```

[1] 4.037326
$$z_i = \frac{x_i - \bar{x}}{\epsilon}$$

[1] 6.4

Lösung

```
Werte <- c(5,4,2,12,9)
scale(Werte)
##
              Γ.17
## [1,] -0.3467642
## [2,] -0.5944529
## [3,] -1.0898303
## [4,] 1.3870567
## [5,] 0.6439906
## attr(, "scaled:center")
## [1] 6.4
## attr(,"scaled:scale")
## [1] 4.037326
```

Z-Transformation anschaulich gemacht

Figure 1: Rohwerte

Figure 2: Häufigkeit

Das Beispiel besteht natürlich aus zu wenigen Werten, aber wenn man viele Werte einer Normalverteilten Variablen nimmt sie die typische Glockenförmige Verteilung an.

► Wenn wir mehr Klausurteilnehmer hätten würde die Kurve vermutlich Glockenförmig aussehen,

Mit der Standardnormalverteilung arbeiten

Was bringt uns diese Transformation? Selbstlernmodul - Zentrales Grenzwerttheorem -Wenn man irgendeine Variable aus der Bevölkerung unendlich oft misst, die unabhängig und identisch Verteilt ist und diese Z-Transformiert erhalten man IMMER eine Standardnormalverteilung.

- vorhin haben wir gesehen, dass die Standardnormalverteilung eine angepasste Häufigkeitsverteilung ist > - Die Fläche unter der Dichtefunktion beschreibt die Wahrscheinlichkeit, dass der jeweilige Wert auftritt, denn der Wert ist ja auch sooft in der Grundgesamtheit insgesamt verteilt...
- Normalverteilung: $\mathcal{N}(\mu, \sigma^2)$
- ▶ Standardnormalverteilung: $\mathcal{N}(0, 1)$

Aufgabe

N=50.000 Personen mit Körpergröße $\mathcal{N}(175,5)$ Wie groß sind 95% aller Personen?

Lösung

Intervall	Flächenanteil
$[\mu-1\cdot\sigma;\mu+1\cdot\sigma]$	68.3%
$[\mu-1.96\cdot\sigma;\mu+1.96\cdot\sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- 175-1,96 = 165,2 - 175+1,96 = 184,5 - 95% aller Personen sind zwischen 165 und 184cm groß

Tolle Videos zum üben

Das Video, welches wir im Tutorium geschaut hatten: https://youtu.be/uwhV0TAPmWc

hier noch ein kurzes Video um das Verständnis zu schärfen: https://www.youtube.com/watch?v=2fzYE-Emar0