dodatek k přednášce z LGR

Obsah

- Přirozená dedukce dodatek
 - Matematická indukce
 - Korektnost a úplnost přirozené dedukce

Matematická indukce je typ důkazu, který lze použít, dokazujeme-li nějakou vlastnost pro přirozená čísla. Funguje na standardním modelu přirozených čísel, tedy pokud každé přirozené číslo vzniklo tak, že jsme k nule přičetli konečněkrát jedničku.

Analogicky lze pro dokazování vlastností prvků induktivně definované množiny použít strukturální indukci.

Princip slabé indukce

Nechť V je vlastnost smysluplná pro přirozená čísla $n \ge n_0$. Pokud platí obě podmínky:

- \bigcirc číslo n_0 má vlastnost V;
- $oldsymbol{2}$ pro každé $n\geq n_0$: když n má vlastnost V, pak také n+1 má vlastnost V;

pak každé $n \ge n_0$ má vlastnost V.

Princip silné indukce

Nechť V je vlastnost smysluplná pro přirozená čísla $n \ge n_0$. Pokud platí obě podmínky:

- \bullet číslo n_0 má vlastnost V;
- $oldsymbol{2}$ pro každé $n\geq n_0$: když každé k, kde $n_0\leq k\leq n$, má vlastnost V, pak také n+1 má vlastnost V;

pak každé $n \ge n_0$ má vlastnost V.

Věta

Následující tvrzení jsou ekvivalentní na modelu přirozených čísel:

- princip slabé indukce;
- princip silné indukce;
- princip dobrého uspořádání;

Princip dobrého uspořádání

Každá neprázdná podmnožina přirozených čísel má nejmenší prvek.

Princip strukturální indukce

Nechť množina M je induktivně definována a nechť V je vlastnost smysluplná pro všechny prvky množiny M.

Pokud platí obě podmínky:

- 1 všechny prvky vytvořené základními pravidly mají vlastnost V;
- každé odvozovací pravidlo splňuje: když předpoklady tohoto pravidla mají vlastnost V, pak i závěr má vlastnost V;

pak každý prvek z množiny M má vlastnost V.

Věta (syntaktická o kompaktnosti)

Pro libovolnou množinu formulí S a libovolnou formuli φ platí: $S \vdash \varphi$, právě když existuje konečná $S' \subseteq S$ tak, že $S' \vdash \varphi$.

Věta (syntaktická o dedukci)

Pro libovolnou množinu formulí S a libovolné formule φ a ψ platí: $S \cup \{\varphi\} \vdash \psi$, právě když $S \vdash \varphi \Rightarrow \psi$.

Věta (sémantická o kompaktnosti)

Pro libovolnou množinu formulí S a libovolnou formuli φ platí: $S \models \varphi$, právě když existuje konečná $S' \subseteq S$ tak, že $S' \models \varphi$.

Věta (sémantická o kompaktnosti)

Pro libovolnou množinu formulí S platí: S je nesplnitelná, právě když nějaká její konečná podmnožina $S' \subseteq S$ je nesplnitelná.

Věta (sémantická o dedukci)

Pro libovolnou množinu formulí S a libovolné formule φ a ψ platí: $S \cup \{\varphi\} \models \psi$, právě když $S \models \varphi \Rightarrow \psi$.

Věta o korektnosti

Pro každou množinu formulí S a formuli φ platí:

Když
$$S \vdash \varphi$$
, pak $S \models \varphi$.

Důkaz

Silnou indukcí podle délky odvození $k \geq 1$ dokážeme, že pro všechna $k \geq 1$ platí vlastnost V(k): "Pro každou S a každou S, jejichž odvození z S má délku S, platí, že S je sémantickým důsledkem S"

Věta o úplnosti

Pro každou množinu formulí S a formuli φ platí:

$$S \vdash \varphi$$
, právě když $S \models \varphi$.

Důkaz

Použijeme syntaktickou i sémantickou větu o kompaktnosti a obě věty o dedukci a převedeme problém na důkaz slabé věty o úplnosti. Nejtěžší část důkazu je schována v sémantické větě o kompaktnosti: S je nesplnitelná, právě když nějaká její konečná podmnožina $S' \subseteq S$ je nesplnitelná.

Definice

Formule φ splňující $\vdash \varphi$ se nazývá *věta* výrokové logiky. Aneb věty výrokové logiky jsou odvoditelné pravidly přirozené dedukce z prázdné množiny.

Slabá věta o úplnosti

Větami výrokové logiky jsou právě tautologie.

Pro každou formuli φ platí: $\vdash \varphi$, právě když $\models \varphi$.

Lemma

Nechť x_1, \ldots, x_n jsou všechny logické proměnné ve formuli φ a nechť u je pravdivostní ohodnocení pro tyto proměnné. Označme \tilde{x}_i literál takový, že

pro $u(x_i) = 1$ je $\tilde{x}_i = x_i$,

pro
$$u(x_i) = 0$$
 je $\tilde{x}_i = \neg x_i$.

Pak pokud $u(\varphi) = 1$, tak $\{\tilde{x}_1, \dots, \tilde{x}_n\} \vdash \varphi$ a pokud $u(\varphi) = 0$, tak $\{\tilde{x}_1, \dots, \tilde{x}_n\} \vdash \neg \varphi$.

Důkaz se provede strukturální indukcí podle struktury formule φ . Z těchto 2^n odvození tautologie φ z literálů jednotlivých řádků tabulky se pak sestaví odvození tautologie bez předpokladů postupným eliminováním globálních předpokladů za pomoci zákona vyloučeného třetího.

Poznámka

Podle věty o úplnosti přirozené dedukce platí:

 $S \vdash \varphi$, právě když $S \models \varphi$.

 $S \nvdash \varphi$, právě když $S \not\models \varphi$.

Úlohy se zajímavě doplňují v tom smyslu, že vždy jedna je lehčí, máme-li trochu štěstí (nalezneme-li svědka).

Pro $S \vdash \varphi$ stačí najít jedno odvození formule φ z S, zatímco pro $S \models \varphi$ je třeba vyplnit tabulku o 2^n řádcích.

Pro $S \not\models \varphi$ stačí najít jedno ohodnocení u, ve kterém je u(S) = 1, ale $u(\varphi) = 0$, zatímco pro $S \not\vdash \varphi$ je nutno zjistit, že neexistuje odvození formule φ z S.

Literatura

- M. Huth, M. Ryan: Logic in Computer Science, Cambridge University Press, 2004. Kapitola 1.2
- M. Demlová, B. Pondělíček: Matematická logika, ČVUT Praha, 1997. Kapitola 9.
- P. Habala: Diskrétní matematika Indukce a rekurze. https://math.fel.cvut.cz/cz/lide/habala/teaching/dma/dmknih05.pdf