Apunts del Taller de Nous Usos de la Informàtica

Jordi Vitrià

Universitat de Barcelona

10 de setembre de 2019

Lliçó: El problema dels ítems frequents

El model de la bossa de la compra

venen a un supermercat)

Donat un gran conjunt de clients d'un dia determinat, cada un amb la

Donat un gran conjunt d'ítems (per exemple, els productes que es

- Donat un gran conjunt de clients d'un dia determinat, cada un amb la seva bossa de la compra
- Podem trobar connexions interessants entre els ítems a partir d'analitzar el contingut de les bosses?
- Aquest tipus de relació de "molts-a-molts" es pot aplicar a molts tipus de problemes, és molt general!

Conjunts d'ítems frequents

- La pregunta més simple que ens podem fer és: Quins són els subconjunts d'ítems que apareixen de manera més freqüent a les bosses?
- Definim el suport d'un (sub)conjunt d'ítems I com el nombre de bosses que contenen tot el conjunt I.
- Donat una valor s, anomenem conjunt d'ítems freqüents a tots els conjunts d'ítems que tenen un suport de com a mínim s.

Exemple: Conjunts d'ítems frequents

- Ítems = $\{ m, c, p, b, j \}$.
- Suport: s = 3 bosses.
- Les bosses:

$$\begin{array}{lll} B_1 = \{ \ \mathsf{m}, \ \mathsf{c}, \ \mathsf{b} \ \} & B_2 = \{ \ \mathsf{m}, \ \mathsf{p}, \ \mathsf{j} \ \} \\ B_3 = \{ \ \mathsf{m}, \ \mathsf{b} \ \} & B_4 = \{ \ \mathsf{c}, \ \mathsf{j} \ \} \\ B_5 = \{ \ \mathsf{m}, \ \mathsf{p}, \ \mathsf{b} \ \} & B_6 = \{ \ \mathsf{m}, \ \mathsf{c}, \ \mathsf{b}, \ \mathsf{j} \ \} \\ B_7 = \{ \ \mathsf{c}, \ \mathsf{b}, \ \mathsf{j} \ \} & B_8 = \{ \ \mathsf{b}, \ \mathsf{c} \ \} \end{array}$$

El conjunts d'ítems freqüents són: { m }, { c },{ b },{ j },{ m, b },{ b, c } { c, j }, i no n'hi ha més.

Aplicacions

- Si els ítems són els productes d'un supermercat i les bosses són el que un client compra un dia determinat, una de les connexions que podríem trobar és, per exemple, que molta gent compra cervesa i bolquers.
- Aquesta informació pot servir per collocar-los junts i fer una oferta sobre els bolquers i al mateix temps pujar el preu de la cervesa per compensar (els humans sóm així!).
- Aquesta estratègia només és òtil si hi ha molta gent que compra cervesa i bolquers (per exemple, un 1%).

Aplicacions

- Si els ítems són documents, les bosses són frases contingudes als documents, i definim que un item/document està a una bossa/frase si la frase està al document, els ítems que apareixen junts massa sovint poden indicar plagiarisme.
- Si les bosses són pàgines web i els ítems paraules, la coocurrència de paraules rares (en el sentit de poc probables, com Brad i Angelina) pot indicar relacions interessants.

Aplicacions

 Si les bosses són pacients que han sofert efectes no desitjats després d'un tractament i els ítems són medicaments podem detectar interaccions perilloses entre medicaments.

Us: Generació de regles d'associació

- Aquesta anàlisi pot generar regles del tipus *Si-Llavors* sobre els continguts de les bosses.
- $\{i_1, i_2, i_3, \dots, i_k\} \rightarrow j$ significa que si la bossa conté els ítems $i_1, i_2, i_3, \dots, i_k$ llavors és molt probable que contingui j.
- La confiança d'aquesta regla d'associació Es la probabilitat condicional de j donats i₁, i₂, i₃, ..., i_k.

$$C = \frac{\mathsf{Suport}\ \{i_1, i_2, i_3, \dots, i_k\} \cup \{j\}}{\mathsf{Suport}\ \{i_1, i_2, i_3, \dots, i_k\}}$$

Regles d'associació interessants

- No totes les regles d'associació són interessants. Per exemple, la regla
 X → llet pot tenir una confiança alta només perquè molta gent
 compra llet, independentment de X.
- L'**interès** es defineix com la diferència entre la seva *confiança* i la fracció de bosses (sobre el total) que contenen *j*.

$$I = C - \frac{\mathsf{Suport}\{j\}}{n}$$

• Les regles $\{i_1, i_2, i_3, \dots, i_k\} \rightarrow j$ interessants són les que tenen un valor molt positiu o negatiu d'interès.

Regles d'associació interessants

- Si $\{i_1, i_2, i_3, \dots, i_k\}$ no té influència sobre j tindrem tantes bosses amb $\{i_1, i_2, i_3, \dots, i_k, j\}$ com $\{i_1, i_2, i_3, \dots, i_k\}$.
- Per tant, bolquers → cervesa té un interès alt, coke → pepsi i pepsi → coke tenen un interès molt baix (negatiu) i X → llet té un interès 0.

Exemple: Confiança i interès

$$\begin{array}{lll} B_1 = \{ \ \mathsf{m}, \ \mathsf{c}, \ \mathsf{b} \ \} & B_2 = \{ \ \mathsf{m}, \ \mathsf{p}, \ \mathsf{j} \ \} \\ B_3 = \{ \ \mathsf{m}, \ \mathsf{b} \ \} & B_4 = \{ \ \mathsf{c}, \ \mathsf{j} \ \} \\ B_5 = \{ \ \mathsf{m}, \ \mathsf{p}, \ \mathsf{b} \ \} & B_6 = \{ \ \mathsf{m}, \ \mathsf{c}, \ \mathsf{b}, \ \mathsf{j} \ \} \\ B_7 = \{ \ \mathsf{c}, \ \mathsf{b}, \ \mathsf{j} \ \} & B_8 = \{ \ \mathsf{b}, \ \mathsf{c} \ \} \end{array}$$

• La regla d'associació $\{m,b\} \rightarrow c$ té una confiança 0.5 (hi ha dos casos sobre els quatre possibles) i un interès -0.125 (= 0.5 - 5/8).

Cerca de regles d'associació

- El problema és trobar totes les regles d'associació amb suport ≥ s i confiança ≥ c. (El suport de la regla és el suport del conjunt d'ítems de l'esquerra)
- La part més dura és trobar els conjunts d'ítems més frequents:
 - Si $\{i_1, i_2, i_3, \dots, i_k\} \rightarrow j$ té suport (1%) i confiança (50%) elevats llavors tant $\{i_1, i_2, i_3, \dots, i_k\}$ com $\{i_1, i_2, i_3, \dots, i_k, j\}$ seran freqüents.
 - Hem de trobar tots els conjunts d'ítems amb suport alt i després totes les regles d'associació amb suport i interès suficients.
 - Si en conjunt d'ítems freqüents tenim *j* elements, podem generar *j* possibles regles.

Model Computacional

- Típicament les dades les tindrem en un fitxer en un disc, emmagatzemades per bosses i hem d'expandir les bosses en parells, triples, etc. a mesura que anem llegint les bosses.
- La implementació ingènua és usar un conjunt de k iteradors niuats per generar tots els conjunts de mida k.

Model Computacional

- El cost més important a l'hora de processar aquestes dades és el nombre de lectures/escriptures al disc.
- A la pràctica, els algorismes que generen regles d'associació llegeixen les dades en *passades*, llegint totes les bosses una darrera l'altra.
- Per tant, mesurarem el cost de l'algorisme pel nombre de passades que fa sobre el conjunt total de les dades.

Model Computacional

- Per aquests algorismes, l's de la memòria principal és el recurs més crític.
 - A mesura que llegim bosses, hem de contar alguna cosa (com per exemple els cops que apareix una determinada parella d'ítems).
 - El nombre de coses diferents que podem contar està limitat per la memòria principal.

Trobant parelles frequents

- El problema més dur és normalment el de trobar les parelles més freqüents.
 - Sovint, les parelles frequents són bastant nombroses. Les tripletes frequents són molt més rares. Si tenim n elements hi ha $\binom{n}{r} = \frac{n!}{k!(n-k)!}$ possibles conjunts de k elements. Per n=20 tenim 190 possibles parelles.
 - La probabilitat de que un conjunt d'ítems sigui freqüent baixa de forma exponencial respecte a la mida del conjunt.
- Per tant, ens concentrarem en les parelles i després ho estendrem a conjunts més nombrosos.

Un algorisme ingenu

- Llegim el fitxer un cop i contem a la memòria principal el nombre d'ocurrències de cada parella.
 - Per cada bossa de n ítems, generem les seves $\frac{n(n-1)}{2}$ parelles amb dos iteracions niuades.
- L'algorisme donarà un error si (#items)² excedeix la mida de la memòria.
 - El nombre d'ítems pot ser de l'ordre de 100.000 (en un gran supermercat) o de 10.000.000.000 si parlem de pàgines web.

- Primera aproximació: Emmagatzemar les tripletes [i, j, c] tals que count(i, j) = c.
 - Si els enters i els identificadors dels ítems es poden guardar en 4 bytes, com a mínim necessitem 12 bytes per cada parella.
 - Si ho guardem en un diccionari (taula hash) necessitarem una mica més de memòria adicional, però estalviarem l'espai correponent als conjunts amb contador a 0.

Nota: Podem usar com a clau d'un diccionari la tupla formada per (i,j).

```
i1 = 1
i2 = 2
a = (i1,i2)
a
```

(1, 2)

```
d = {}
d[a]=23
d[a]
```

23

• Què passa si la majoria de parelles surten alguna vegada? Doncs que necessitarem $6n^2$ bytes per guardar-les i això només ens permet tenir un nombre d'ítems de l'ordre de milers en un ordinador convencional.

- Observació: Podem reduir espai si intentem emmagatzemar $\binom{n}{2}$ contadors de manera que sigui fàcil trobar-los a memòria donada la parella (i,j), sense escriure (i,j) (un ítem pot ser un string).
- Representar els ítems amb enters ho simplificarà.

- Segona aproximació (Matriu Triagular):
 - Numerem els ítems 1,2,3,...
 - Contem $\{i,j\}$ només si i < j i incrementem el valor A[i,j] d'una matriu triangular.

Amb això estalviem l'espai per guardar els identificadors dels productes i la mitat de la matriu.

- A més a més, si mantenim els contadors de les parelles en ordre lexicogràfic podem optimitzar-ho encara guardant la matriu en una llista triangular A[i]:
 - $\{1,2\},\{1,3\},\ldots,\{1,n\},\{2,3\},\{2,4\},\ldots\{3,4\},\ldots$
 - La parella $\{i,j\}$ està a la posició A[(i-1)(n-i/2)+j-i].
- El nombre total de parelles és $\frac{n(n-1)}{2}$, que ocupen un total de $2n^2$ bytes (4 bytes per parella).

• El mètode de la matriu triangular (4 bytes per parella) és millor que que una taula hash (12 bytes per parella) si al menys 1/3 de les $\binom{n}{2}$ parelles apareix en alguna bossa. Sinó, són millor les taules hash.

- L'algorisme Apriori és un mètode que busca conjunts d'ítems frequents amb molt poques lectures de les dades i fa un s molt limitat de la memòria.
- La seva idea principal és la *monotonia*: Si un conjunt d'ítems apareix al menys s vegades al conjunt, tots els seus possibles subconjunts també apareixen al menys s vegades!
- Per una altra banda, si un ítem i no apareix a s bosses, llavors cap conjunt que inclogui i pot aparèixer a s bosses.

- A la primera passada llegim les bosses, traduïm els ítems a enters i contem a la memòria principal les ocurrències de cada ítem. Aquest procés requereix una part de la memòria proporcional al nombre d'ítems.
- Després identifiquem els ítems que apareixen al menys s vegades, i per tant són els *ítems freqüents*.

- A la segona passada, llegim les bosses una altra vegada, posem a 0 els contadors dels ítems no freqüents i contem només les parelles per les que els dos elements van ser etiquetats com a freqüents a la passada anterior.
 - Per la propietat de monotonia segur que no perdem cap parella frequent.
 - Requereix una quantitat de memòria proporcional al quadrat dels ítems freqüents (per guardar els contadors) $O(m^2)$.
 - També necessita una llista dels ítems freqüents (per saber què hem de contar)

- Podem fer servir el mètode de la matriu triangular amb un m corresponent al nombre d'ítems freqüents.
- Per fer-ho, renumerem els ítems frequents 1,2,... i mantenim una taula que relaciona els nous nombres amb els identificadors originals dels ítems.

Tripletes, etc.

- Per construir els conjunts de k ítems a partir dels de k-1, construim dos k-conjunts (conjunts de mida k) a partir dels anteriors:
 - $C_k = k$ -conjunts candidats = aquells conjunts que poden ser freqüents, basant-se en la informació de la passada per k-1.
 - L_k = el conjunt de k-conjunts realment freqüents.

Apriori per tots els conjunts d'ítems frequents

- Un pas per cada k.
- Necessita espai a la memòria principal per contar cada k-conjunt candidat.
- Per un conjunt de dades típic i un suport raonable (p.e., 1%), k=2 és el pas que necessita més memòria.

001	I1, I2, I5
002	12, 14
003	12,13
004	l1,l2,l4
005	I1, I3
006	I2, I3
007	I1, I3
800	I1, I2 ,I3, I5
009	I1, I2, I3

- Considerem una base de dades, D, amb 9 transaccions.
- Suposem que el suport mínim és 2.
- Definim el nivell de confiança mínim com el 70%.
- L'objectiu és generar les regles d'associació.

Pas 1: Crear els 1-conjunts més freqüents.

Llegim D per contar cada un desl candidats i creem C_1 :

Conjunts	Contador
{l1 }	6
{I2}	7
{I3 }	6
{I4 }	2
{I5 }	2

Comparem el suport de cada candidat amb el valor de mínim suport i creem L_1 :

•	
Conjunts	Contador
{l1 }	6
{I2 }	7
{I3 }	6
{I4 }	2
{I5 }	2

Pas 2: Generar els 2-conjunts més freqüents.

Generem els candidats C_2 des de L_1 i contem quantes vegades apareixen:

Conjunts	Contador
{I1, I2 }	4
{I1, I3 }	4
{I1, I4 }	1
{I1, I5 }	2
{I2, I3 }	4
{I2, I4 }	2
{I2, I5 }	2
{I3, I4 }	0
{I3, I5 }	1
{14, 15 }	0

Comparem el suport de cada candidat amb el valor de mínim suport i creem L_2 :

suport i cicciii L2.		
Conjunts	Contador	
{I1, I2 }	4	
{I1, I3 }	5	
{I1, I5 }	2	
{I2, I3 }	4	
{12, 14 }	2	
{I2, I5 }	2	

Pas 3: Generar els 3-conjunts més freqüents.

Generem els candidats C_3 des de L_2 i contem quantes vegades apareixen:

Conjunts	Contador
{I1, I2, I3 }	2
{I1, I2, I5 }	2

Comparem el suport de cada candidat amb el valor de mínim suport i creem L_3 :

Conjunts	Contador
{I1, I2, I3 }	2
{I1, I2, I5 }	2

- La generació dels 3-conjunts més freqüents ha fet s de la propietat de l'algorisme Apriori.
- Aquesta propietat també ens diu que cap subconjunt de 4 candidats pot ser freqüent.
- Observació: $\{12, 13, 15\}$ no hi és perquè $\{13, 15\}$ no hi és a L_2 .

Exemple: Regles d'associació

- Per cada conjunt d'ítem frequent / generarem tots els subconjunts no buits de /.
- Per cada subconjunt no buit s de I produirem una regla $s \to (I-s)$ si $\frac{suport(I)}{suport(s)} \ge$ confiança-mínima.
- El resultat final és que hem trobat com a conjunts d'ítems freqüents: {I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2}, {I1,I3}, {I1,I5}, {I2, I3}, {I2, I4}, {I2,I5}, {I1,I2,I5} .
- Si considerem $\{11,12,15\}$, els seus subconjunt possibles són $\{11\}$, $\{12\}$, $\{15\}$, $\{11,12\}$, $\{11,15\}$, $\{12,15\}$.

Exemple: Regles d'associació

- Suposem que el nivell mínim de confiança és del 70%.
- Les cerca de regles d'associació és:
 - I1 \wedge I2 \rightarrow I5, Confiança=2/4=50%, regla rebutjada.
 - I1 \wedge I5 \rightarrow I2, Confiança=2/2=100%, regla acceptada.
 - I2 \wedge I5 \rightarrow I1, Confiança=2/2=100%, regla acceptada.
 - I1 \rightarrow I2 \land I5, Confiança=2/6=33%, regla rebutjada.
 - I2 \rightarrow I1 \land I5, Confiança=2/7=29%, regla rebutjada.
 - I5 \rightarrow I1 \land I2, Confiança=2/2=100%, regla acceptada.