In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.gofplots import ProbPlot
from statsmodels.formula.api import ols
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
data = pd.read_csv('/home/praveen/Desktop/SEM/ML/housing.data.txt',header=None,deli
data.head()
```

Out[2]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	
4													•

In [3]:

data.dtypes

Out[3]:

CRIM	float64
ZN	float64
INDUS	float64
CHAS	int64
NOX	float64
RM	float64
AGE	float64
DIS	float64
RAD	int64
TAX	float64
PTRATIO	float64
В	float64
LSTAT	float64
MEDV	float64
dtvpe: obi	ect

In [4]:

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): Non-Null Count # Column Dtype _ _ _ _ _ _ -----0 **CRIM** 506 non-null float64 506 non-null 1 ZN float64 2 **INDUS** 506 non-null float64 3 CHAS 506 non-null int64 4 float64 NOX 506 non-null 5 RM 506 non-null float64 6 AGE 506 non-null float64 7 DIS 506 non-null float64 8 RAD 506 non-null int64 float64 9 TAX 506 non-null 10 PTRATIO 506 non-null float64 11 506 non-null float64 В 12 float64 LSTAT 506 non-null 13 MEDV 506 non-null float64 dtypes: float64(12), int64(2)

memory usage: 55.5 KB

In [5]:

data.describe().T

Out[5]:

	count	mean	std	min	25%	50%	75%	ma
CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.970
ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.000
INDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.740
CHAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.000
NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.871
RM	506.0	6.284634	0.702617	3.56100	5.885500	6.20850	6.623500	8.780
AGE	506.0	68.574901	28.148861	2.90000	45.025000	77.50000	94.075000	100.000
DIS	506.0	3.795043	2.105710	1.12960	2.100175	3.20745	5.188425	12.120
RAD	506.0	9.549407	8.707259	1.00000	4.000000	5.00000	24.000000	24.000
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.000
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.000
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.900
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.970
MEDV	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.000
4								

In [6]:

```
plt.figure(figsize=(12,8))
cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(data.corr(),annot=True,fmt='.2f',cmap=cmap )
plt.show()
```


In [7]:

```
for i in data.columns:
    plt.figure(figsize=(7, 4))
    sns.histplot(data, x=i, kde = True)
    plt.show()
```



```
350 -
```

In [8]:

```
plt.figure(figsize=(6, 6))
sns.scatterplot(x=data['NOX'], y=data['INDUS'],data=data)
plt.show()
```


In [9]:

```
plt.figure(figsize=(6, 6))
sns.scatterplot(x=data['AGE'], y=data['NOX'], data=data)
plt.show()
```


In [10]:

```
plt.figure(figsize=(6, 6))
sns.scatterplot(x = 'AGE', y = 'DIS', data = data)
plt.show()
```


In [11]:

```
plt.figure(figsize=(6, 6))
sns.scatterplot(x = 'AGE', y = 'INDUS', data = data)
plt.show()
```


In [12]:

```
df1 = data[data['TAX'] < 600]
from scipy.stats import pearsonr
print('The correlation between TAX and RAD is', pearsonr(df1['TAX'], df1['RAD'])[0]</pre>
```

The correlation between TAX and RAD is 0.24975731331429196

In [13]:

```
plt.figure(figsize=(6, 6))
sns.scatterplot(x = 'LSTAT', y = 'MEDV', data = data)
plt.show()
```


In [14]:

```
data['MEDV_log'] = np.log(data['MEDV'])
Y = data['MEDV_log']
X = data.drop(columns = {'MEDV', 'MEDV_log'})

# add the intercept term
X = sm.add_constant(X)
```

In [15]:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30 , random_s
```

In [16]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
def checking_vif(train):
    vif = pd.DataFrame()
    vif["feature"] = train.columns
    vif["VIF"] = [
        variance_inflation_factor(train.values, i) for i in range(len(train.columns))
    return vif

print(checking_vif(X_train))
```

```
feature
                      VIF
0
      const
              585.099960
       CRIM
1
                 1.993439
2
          ZN
                 2.743911
3
      INDUS
                4.004462
4
                 1.078490
       CHAS
5
        NOX
                4.430555
6
         RM
                1.879494
7
        AGE
                 3.155351
8
        DIS
                4.361514
9
        RAD
                8.369185
               10.194047
10
        TAX
    PTRATIO
11
                 1.948555
12
                 1.385213
           В
13
      LSTAT
                2.926462
```

In [17]:

```
X_train = X_train.drop(['TAX'],1)
print(checking_vif(X_train))
```

```
VIF
    feature
0
      const
              581.372515
1
       CRIM
                 1.992236
2
          ZN
                 2.483521
                3.277778
3
      INDUS
4
       CHAS
                 1.052841
5
        NOX
                4.397232
6
                 1.876243
          RM
7
        AGE
                 3.154114
8
        DIS
                4.339453
9
        RAD
                 2.978247
10
    PTRATIO
                 1.914523
11
                 1.384927
           В
12
      LSTAT
                2.924524
```

In [18]:

```
model1 = sm.OLS(y_train, X_train).fit()
model1.summary()
```

Out[18]:

OLS Regression Results

Dep. \	/ariable:	: N	MEDV_log		R-squared:	0.771
	Model:	:	OLS	Adj.	R-squared:	0.763
	Method:	: Leas	st Squares	F-statistic:		95.56
	Date:	: Sat, 11	Sep 2021	Prob (F-statistic):		2.97e-101
	Time:	:	12:16:32	Log-Likelihood:		78.262
No. Obser	vations:	:	354		AIC:	-130.5
Df Re	siduals:	:	341		BIC:	-80.22
D	f Model:	:	12			
Covarian	се Туре:		nonrobust			
coef		f std err	t	P> t	[0.025	0.975]
const	4.4999	0.253	17.767	0.000	4.002	4.998
CRIM	CRIM -0.0122		-7.005	0.000 -0.016		-0.009
ZN 0.0010		0.001	1.417	0.157	-0.000	0.002
INDUS -0.0002		2 0.003	-0.066	0.947	-0.006	0.005
CHAS 0.1164		0.039	3.008	0.003 0.040		0.193
NOX	-1.0297	0.187	-5.509	0.000	-1.397	-0.662
RM	0.0569	0.021	2.734	0.007	0.016	0.098
AGE	0.0003	0.001	0.390	0.697	-0.001	0.002
DIS	-0.0496	0.010	-4.841	0.000	-0.070	-0.029
RAD	RAD 0.0080		3.885	0.000	0.004	0.012
PTRATIO	PTRATIO -0.0458		-6.762	0.000	-0.059	-0.033
В	B 0.0002		1.796	0.073	-2.35e-05	0.001
LSTAT	-0.0291	L 0.002	-11.772	0.000	-0.034	-0.024
Omnibus: 3		33.707	Durbin-V	Vatson:	1.924	
Prob(Omn	ibus):	0.000	Jarque-Be	ra (JB):	100.726	
	Skew:	0.387	Pr	ob(JB):	1.34e-22	
Kurtosis:		5.496	Co	nd. No.	1.01e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.01e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [19]:

```
X = data.drop(columns = {'MEDV', 'MEDV_log', 'ZN', 'AGE', 'INDUS', 'TAX'})
X = sm.add_constant(X)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30 , random_s
model2 = sm.OLS(y_train, X_train).fit()
model2.summary()
```

Out[19]:

OLS Regression Results

Dep. \	/ariable:	MEDV_log		R-squared:		0.769
	Model:		OLS	Adj.	R-squared:	0.763
	Method:	Least	Squares		F-statistic:	127.5
	Date:	Sat, 11 9	Sep 2021	Prob (I	F-statistic):	6.21e-104
	Time:		12:16:32	Log-	Likelihood:	77.190
No. Obser	vations:		354		AIC:	-134.4
Df Re	siduals:		344		BIC:	-95.69
D	f Model:		9			
Covarian	се Туре:	r	nonrobust			
coef		std err	t	P> t	[0.025	0.975]
const	4.5147	0.252	17.925	0.000	4.019	5.010
CRIM -0.0119		0.002	-6.909	0.000	-0.015	-0.009
CHAS 0.1165		0.039	3.016	0.003	0.041	0.192
NOX -1.0234		0.168	-6.086	0.000	-1.354	-0.693
RM	0.0622	0.020	3.089	0.002	0.023	0.102
DIS -0.0434		0.008	-5.488	0.000	-0.059	-0.028
RAD	0.0083	0.002	4.092	0.000	0.004	0.012
PTRATIO	-0.0490	0.006	-7.936	0.000	-0.061	-0.037
В	0.0002	0.000	1.824	0.069	-1.95e-05	0.001
LSTAT	-0.0287	0.002	-12.577	0.000	-0.033	-0.024
Omi	nibus: 3	35.608	Durbin-V	Vatson:	1.927	
Prob(Omn					104.246	
•	Skew:	•		ob(JB):	2.31e-23	
	tosis:	5.519		nd. No.		
	-	2011401				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.76e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [20]:

```
residuals = model2.resid
residuals.mean()
```

Out[20]:

-2.8570993656314058e-15

In [21]:

```
from statsmodels.stats.diagnostic import het_white
from statsmodels.compat import lzip
import statsmodels.stats.api as sms
```

In [22]:

```
name = ["F statistic", "p-value"]
test = sms.het_goldfeldquandt(y_train, X_train)
lzip(name, test)
```

Out[22]:

```
[('F statistic', 1.0844138711700861), ('p-value', 0.3005648212246474 5)]
```

In [23]:

```
fitted = model2.fittedvalues

#sns.set_style("whitegrid")
sns.residplot(x = y_train, y = residuals , color="lightblue", lowess=True)
plt.xlabel("Fitted Values")
plt.ylabel("Residual")
plt.title("Residual PLOT")
plt.show()
```


In [24]:

sns.histplot(residuals, kde=True)

Out[24]:

<AxesSubplot:ylabel='Count'>

In [25]:

```
import pylab
import scipy.stats as stats
stats.probplot(residuals, dist="norm", plot=pylab)
plt.show()
```


In [26]:

```
def rmse(predictions, targets):
    return np.sqrt(((targets - predictions) ** 2).mean())
def mape(predictions, targets):
    return np.mean(np.abs((targets - predictions)) / targets) * 100
def mae(predictions, targets):
    return np.mean(np.abs((targets - predictions)))
def model pref(olsmodel, x train, x test):
    y pred train = olsmodel.predict(x train)
    y_observed_train = y_train
    y pred test = olsmodel.predict(x test)
    y observed test = y test
    print(
        pd.DataFrame(
            {
                "Data": ["Train", "Test"],
                "RMSE": [
                    rmse(y_pred_train, y_observed_train),
                    rmse(y pred test, y observed test),
                "MAE": [
                    mae(y_pred_train, y_observed_train),
                    mae(y pred test, y observed test),
                ],
                "MAPE": I
                    mape(y_pred_train, y_observed_train),
                    mape(y pred test, y observed test),
                ],
            }
        )
    )
model_pref(model2, X_train, X_test)
```

```
Data RMSE MAE MAPE
0 Train 0.194565 0.141729 4.919107
1 Test 0.191732 0.146199 5.069304
```

In [27]:

```
from sklearn.model_selection import cross_val_score
linearregression = LinearRegression()

cv_Score11 = cross_val_score(linearregression, X_train, y_train, cv = 10)
cv_Score12 = cross_val_score(linearregression, X_train, y_train, cv = 10, scoring = print("RSquared: %0.3f (+/- %0.3f)" % (cv_Scorel1.mean(), cv_Scorel1.std() * 2))
print("Mean Squared Error: %0.3f (+/- %0.3f)" % (-1*cv_Score12.mean(), cv_Score12.s
```

RSquared: 0.726 (+/- 0.251) Mean Squared Error: 0.041 (+/- 0.024)

In [28]:

```
coef = pd.Series(index = X_train.columns, data = model2.params.values)
coef_df = pd.DataFrame(data = {'Coefs': model2.params.values }, index = X_train.co
coef_df
```

Out[28]:

```
      const
      4.514720

      CRIM
      -0.011919

      CHAS
      0.116497

      NOX
      -1.023431

      RM
      0.062203

      DIS
      -0.043391

      RAD
      0.008288

      PTRATIO
      -0.049038

      B
      0.000249

      LSTAT
      -0.028659
```

In [29]:

```
Equation = "log (Price) ="
print(Equation, end='\t')
for i in range(len(coef)):
    print('(', coef[i], ') * ', coef.index[i], '+', end = ' ')
```

```
log (Price) = (4.514720483568423) * const + (-0.01191877517303779) * CRIM + (0.11649715902151608) * CHAS + (-1.0234312247045108) * NOX + (0.06220269133025548) * RM + (-0.04339113889561061) * DIS + (0.008287691091705312) * RAD + (-0.049037903605757244) * PTRATIO + (0.00024900512380058866) * B + (-0.02865873169444097) * LSTAT +
```

In [30]:

```
X = data.iloc[:, [0, 12]]
y = data.iloc[:, 13]
```

In [31]:

```
scaler = MinMaxScaler(feature_range=(0, 1))
X = scaler.fit_transform(X)
```

In [32]:

```
from sklearn.model_selection import KFold
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
```

```
In [33]:
scores = []
best_svr = SVR(kernel='rbf')
cv = KFold(n splits=10, random state=None, shuffle=False)
for train index, test index in cv.split(X):
    print("Train Index: ", train_index, "\n")
print("Test Index: ", test_index)
    X_train, X_test, y_train, y_test = X[train_index], X[test_index], y[train_index
    best_svr.fit(X_train, y_train)
    scores.append(best svr.score(X test, y test))
Train Index: [ 51 52 53 54 55 56 57 58 59 60 61 62
                                                                  63
   65 66 67 68
             72
                  73 74 75 76
                                  77 78
                                          79
                                               80
                                                   81
                                                       82
     70
         71
                                                           83 84 85
86
                  91
                      92
                          93
                               94
                                   95
                                       96
  87
     88
          89
              90
                                           97
                                               98
                                                   99 100 101 102 103
104
 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
```

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 94

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

In [34]:

```
best_svr.fit(X_train, y_train)
scores.append(best_svr.score(X_test, y_test))
```

In [35]:

```
cross_val_score(best_svr, X, y, cv=10)
```

Out[351:

```
array([ 0.71484256, 0.43145909, 0.46093183, 0.00835446, 0.2505539, -0.20966503, -0.45867327, 0.50286329, 0.05559233, 0.22298864])
```

In []: