Priority queues. Disjoint set collections

DS 2018/2019

Content

Priority queues and "max-heap".

Disjoint set collections and "union-find".

Priority queues - examples

- Plane passengers
 - Priorities:
 - Buisness-class
 - Persons travelling with children / with reduced mobility
 - Other passengers
- Planes approaching the airport
 - Priorities:
 - Emergences
 - Fuel level
 - Distance to the airport

Priority queues: abstract

• Objects: data structures where the elements are called *atoms*; any atom has *key-field* called *priority*.

 Elements are stores function of their priorities and not their position.

Priority queues: operations

read

- input: priority queue C
- output: the atom from C with the highest priority

delete

- input: priority queue C
- output: C from which the atom with the highest priority has been deleted

insert

- input: priority queue C and an atom at
- output: C where the atom at has been added

maxHeap

- Implements the priority queues.
- Binary tree with properties:
 - Nodes stores the fields "key";
 - For any node, the node keys higher or equal than the child node keys;
 - The tree is complet. Let h be the tree height.
 Then,
 - For i = 0, ..., h-1, there are 2^i nodes of height i;
 - On level h-1, the internal nodes are on the left of external nodes;
 - The last node of a maxHeap is the rightmost node on the h level.

maxHeap - example

maxHeap height

• <u>Theorem</u>: A maxHeap with *n* keys has the height $O(\log n)$.

• Proof:

- The complete binary tree properties are used.
- Let h a maxHeap height with n keys.
- There are 2^i keys of depth i, for i = 0, ..., h-1 and at least one key of depth h: $n \ge 1+2+4+...+2^{h-1}+1=2^h$
- It follows: $h \le \log n$

maxHeap: delete

 The heap root is deleted (it correspons to the atom with the highest probability).

- The algorithm has three stages:
 - The root key is replaced with the key of the last node;
 - The last node is deleted;
 - The maxHeap property is repaired.

maxHeap: delete

maxHeap: insert

 The new key is inserted in a new node.

- Algorithm has three stages:
 - A new node is added as the rightmost node on the last level;
 - The new key is inserted in this node;
 - The maxHeap property is repaired.

maxHeap: insert

maxHeap: array implementation

$$(\forall k)$$
 1 $\leq k \leq n-1 \Rightarrow a[k] \leq a[(k-1)/2]$

maxHeap: insert

```
procedure insert(a, n, key)
begin
    n \leftarrow n+1
   a[n-1] \leftarrow key
   j \leftarrow n-1
   heap \leftarrow false
   while ((j > 0)) and not heap) do
      k \leftarrow [(j-1)/2]
      if (a[j] > a[k])
      then swap(a[j], a[k])
             j \leftarrow k
      else heap ← true
end
```

maxHeap - delete

```
procedure delete(a, n)
begin
    a[0] \leftarrow a[n-1]
   n \leftarrow n-1
    i \leftarrow 0
   heap \leftarrow false
    while ((2*j+1 < n)) and not heap) do
       k \leftarrow 2*j+1
        if ((k < n-1)) and (a[k] < a[k+1])
        then k \leftarrow k+1
        if (a[i] < a[k])
        then swap(a[j], a[k])
                j \leftarrow k
        else heap \leftarrow true
end
```

maxHeap: execution time

• The insert/delete operations require the time $O(h) = O(\log n)$

Disjoint set collections

Applications:

- Computer networks
- Web pages(Internet)
- Pixels in a digital image

Disjoint sets collections: abstract data type

- objects: disjoint sets collections (partitions) of a universe set
- operations:
 - find()
 - input: a collection C, an element i from the universe set
 - output: the subset of C to which i belongs
 - union()
 - input: a collection C, two elements i and j from universe
 - output: C where the components of a i and j are joint
 - singleton()
 - input: a collection C, an element i from universe
 - output: C where the component of i has i as unique element.

Disjoint set collections: "union-find"

- The "union-find" structure
 - universe set = $\{0,1, ..., n-1\}$
 - subset = tree
 - collection = forest
 - Forest reprezentation by parent link

Disjoint set collections: "union-find"

examples:

$$-n=10, \{1,2,6\}, \{3\}, \{0,4,5,8\}, \{7,9\}$$

Disjoint set collections: "union-find"

```
procedure singleton(C, i)
begin
   C.parent[i] ← -1
end
```

Disjoint sets collections: "union-find"

```
function find(C, i)
begin
  temp \leftarrow i
  while (C.parent[temp] >= 0) do
    temp ← C.parent[temp]
  return temp
end
```

Disjoint sets collections: "union-find"

Balanced "union-find" structure

 Solution for the degenerated trees problem.

- Mechanism:
 - Store the number of node of the tree (with negative sign).
 - Tree flatting.

Balanced "union-find" structure

example:

Data structures

Tree flating

find(9)

Balanced "union-find" structure

```
procedure union(C, i, j)
begin
   ri \leftarrow find(i); rj \leftarrow find(j)
   while (C.parent[i] >= 0) do
       temp \leftarrow i; i \leftarrow C.parent[i]; C.parent[temp]\leftarrow ri
   while (C.parent[j] >= 0) do
       temp \leftarrow j; j \leftarrow C.parent[j]; C.parent[temp]\leftarrow rj
   if (C.parent[ri] > C.parent[rj])
      then C.parent[rj] ← C.parent[ri]+C.parent[rj]
            C.parent[ri] \leftarrow rj
      else C.parent[ri] ← C.parent[ri]+C.parent[rj]
            C.parent[rj] \leftarrow ri
end
```

Balanced "union-find" structure

 <u>Theorem</u>: Starting from an empty collection, any sequence of M operations "union" and "find" over N elements has complexity O(N+M lg*N).

-lg*N = number of logarithms until 1 is obtained.