CODE

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report, accuracy score
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
# Step 1: Load Data
try:
  data = pd.read_csv('breast_cancer_data.csv')
  print("Data loaded successfully")
except Exception as e:
  print(f"Error loading data: {e}")
# View the first few rows of the dataset
print("First few rows of the dataset:")
print(data.head())
# Step 2: Define Features and Target
try:
  X = data[['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
       'smoothness mean', 'compactness mean', 'concavity mean',
       'concave_points_mean', 'symmetry_mean', 'fractal_dimension_mean']]
  y = data['diagnosis']
  print("Features and target variable defined successfully")
except KeyError as e:
  print(f"Error defining features and target: {e}")
# Encode the target variable
try:
  label encoder = LabelEncoder()
  y encoded = label encoder.fit transform(y) # Convert 'M' and 'B' to 1 and 0
  print("Target variable encoded successfully")
except Exception as e:
  print(f"Error encoding target variable: {e}")
```

```
# Step 3: Split the Data into Training and Testing Sets
try:
  X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2,
random_state=0)
  print("Data split into training and testing sets successfully")
except Exception as e:
  print(f"Error splitting data: {e}")
# Define and Train the Model
try:
  model = RandomForestClassifier(n_estimators=100, random_state=0)
  model.fit(X train, y train)
  print("Model trained successfully")
except Exception as e:
  print(f"Error training the model: {e}")
# Make Predictions
try:
  y pred = model.predict(X test)
  print("Predictions made successfully")
except Exception as e:
  print(f"Error making predictions: {e}")
# Evaluate the Model
try:
  print("Accuracy:", accuracy_score(y_test, y_pred))
  print("Classification Report:\n", classification_report(y_test, y_pred))
except Exception as e:
  print(f"Error evaluating the model: {e}")
# Feature Importances
try:
  importances = model.feature_importances_
  features = X.columns
  feature importance df = pd.DataFrame({
    'Feature': features,
```

```
'Importance': importances
  }).sort_values(by='Importance', ascending=False)
  print("Feature importances calculated successfully")
except Exception as e:
  print(f"Error calculating feature importances: {e}")
import matplotlib.pyplot as plt
import seaborn as sns
# Assuming 'y encoded' contains the encoded target variable (0: Benign, 1:
Malignant)
# Plot the distribution of diagnosis (Malignant and Benign)
plt.figure(figsize=(8, 6))
sns.countplot(x=y encoded, palette="coolwarm")
plt.title('Distribution of Breast Cancer Diagnosis')
plt.xlabel('Diagnosis (0: Benign, 1: Malignant)')
plt.ylabel('Count')
plt.show()
# Step 7: Identify and Print Individuals Affected by Cancer
try:
  malignant_indices = X_test.index[y_pred == 1]
  if not malignant indices.empty:
    malignant cases = data.loc[malignant indices]
    print("Individuals affected by cancer (predicted malignant cases):")
    print(malignant cases)
  else:
    print("No individuals predicted to be affected by cancer in the test set.")
except Exception as e:
  print(f"Error identifying malignant cases: {e}")
```

OUTPUT

AFFECTED PEOPLE

Individuals affected by cancer (predicted malignant cases):													
	ınaıı						,		area mean	smoothness mean	compactness mean	concavity mean	١
	E42		alagnosis M			perimeter_mean	\	512	556.7	0.11060	0.14690	0.14450	,
	512 421	915691 906564	M B	13.40 14.69	20.52 13.98	88.64 98.22		421	656.1	0.10310	0.18360	0.14500	
								157	880.2	0.07445	0.07223	0.05150	
	157	8711216	В	16.84	19.46	108.40		89	651.9	0.11320	0.13390	0.09966	
	89 172	861598	В	14.64	15.24	95.77		172	736.9	0.12570	0.15550	0.20320	
	233	87164 88206102	M	15.46	11.89	102.50 134.40		233	1319.0	0.09159	0.10740	0.15540	
			M	20.51	27.81			389	1174.0	0.10100	0.13180	0.18560	
	389	90312	М	19.55	23.21	128.90		250	1364.0	0.10070	0.16060	0.27120	
	250	884948	M	20.94	23.56	138.90		283	805.1	0.10660	0.18020	0.19480	
	283	8912280	M	16.24	18.77	108.80		372	1386.0	0.10010	0.15150	0.19320	
	372	9012795	M	21.37	15.10	141.30		14	578.3	0.11310	0.22930	0.21280	
	14	84667401	M	13.73	22.61	93.60		337	1092.0	0.09116	0.14020	0.10600	
	337	897630	M	18.77	21.43	122.90		1	1326.0	0.08474	0.07864	0.08690	
	1	842517	M	20.57	17.77	132.90		132	809.8	0.10080	0.12840	0.10430	
	132	86730502	М	16.16	21.54	106.20		64	499.0	0.11220	0.12620	0.11280	
	64	85922302	М	12.68	23.84	82.69		127	1138.0	0.08217	0.08028	0.09271	
	127	866203	M	19.00	18.91	123.40		353	716.6	0.10240	0.09769	0.12350	
	353	9010018	M	15.08	25.74	98.00		414	719.5	0.08320	0.04605	0.04686	
	414	905680	М	15.13	29.81	96.71		10	797.8	0.08206	0.06669	0.03299	
	10	845636	M	16.02	23.24	102.70		564	1479.0	0.11100	0.11590	0.24390	
	564	926424	М	21.56	22.39	142.00		15	658.8	0.11390	0.15950	0.16390	
	15	84799002	М	14.54	27.54	96.73		12	1123.0	0.09740	0.24580	0.20650	
	12	846226	М	19.17	24.80	132.40		194	671.4	0.10440	0.19800	0.16970	
	194	87556202	М	14.86	23.21	100.40							
	134	867739	M	18.45	21.91	120.20		134	1075.0	0.09430	0.09709	0.11530	
	272	8910988	M	21.75	20.99	147.30		272	1491.0	0.09401	0.19610	0.21950	
	196	875938	M	13.77	22.29	90.63		196	588.9	0.12000	0.12670	0.13850	
	75	8610404	M	16.07	19.65	104.10		75	817.7	0.09168	0.08424	0.09769	
	468	9113538	M	17.60	23.33	119.00		468	980.5	0.09289	0.20040	0.21360	
	108	86355	M	22.27	19.67	152.80		108	1509.0	0.13260	0.27680	0.42640	
	239	88330202	M	17.46	39.28	113.40		239	920.6	0.09812	0.12980	0.14170	
	210	881046502	M	20.58	22.14	134.70		210	1290.0	0.09090	0.13480	0.16400	
								17	798.8	0.11700	0.20220	0.17220	
								385	664.7	0.08682	0.06636	0.08390	