Adaboost

Aaditya Ramdas

Dept. of Statistics and Data Science Machine Learning Dept. Carnegie Mellon University

Outline

1. Weak learning implies strong learning (1/2 class)

2. Adaboost (1/2 class)

Recap

A "mixed" strategy is a distribution over actions.

Expected payoff is
$$\mathbb{E}_{r \sim p, c \sim q}[M(r, c)] = p^T M q = \sum_{r \in [R]} \sum_{c \in C} M(r, c) p_r q_c$$

Theorem:
$$\min \max_{q \in \Delta_C} p \in \Delta_R$$
 $\min p^T Mq = \max_{p \in \Delta_R} \min_{q \in \Delta_C} p^T Mq = v^*$

Value of the game

 e_j is the canonical basis vector [0, ..., 1, ..., 0]

Implications:
$$\exists p \in \Delta_R \ \forall q \in \Delta_C \ p^T M q \geq v^*$$

$$\forall q \in \Delta_C \exists i \in [R] \ e_i^T M q \geq v^*$$

$$\exists q \in \Delta_C \forall p \in \Delta_R \ p^T M q \leq v^*$$

$$\forall p \in \Delta_R \exists j \in [C] \ p^T M e_j \leq v^*$$

For "mixed strategies", order does not matter!

Zero-sum games [edit]

The minimax theorem was first proven and published in 1928 by John von Neumann, [3] who is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved". [4]

Formally, von Neumann's minimax theorem states:

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be compact convex sets. If $f: X \times Y \to \mathbb{R}$ is a continuous function that is concave-convex, i.e.

$$f(\cdot,y):X o\mathbb{R}$$
 is concave for fixed y , and $f(x,\cdot):Y o\mathbb{R}$ is convex for fixed x .

Then we have that

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y).$$

Sion's minimax theorem

From Wikipedia, the free encyclopedia

In mathematics, and in particular game theory, **Sion's minimax theorem** is a generalization of John von Neumann's minimax theorem, named after Maurice Sion. It states:

Let X be a compact convex subset of a linear topological space and Y a convex subset of a linear topological space. If f is a real-valued function on $X \times Y$ with

 $f(x,\cdot)$ upper semicontinuous and quasi-concave on Y , $orall x \in X$, and

 $f(\cdot,y)$ lower semicontinuous and quasi-convex on X, $orall y \in Y$

then,

$$\min_{x \in X} \sup_{y \in Y} f(x,y) = \sup_{y \in Y} \min_{x \in X} f(x,y).$$

Notation

- Last lectures (binary) classifier outputs 0/1. In this case the Bayes classifier has form $\mathbb{I}\{\mathbb{E}[Y|X] > 1/2\}$.
- This lecture (binary) classifier outputs -1/1. In this case the Bayes classifier has form $\mathbb{I}\{\mathbb{E}[Y|X]>0\}=\mathrm{sign}(\mathbb{E}[Y|X]).$

Usually classifiers have form h(x) = sign(H(x)). Examples include classification based on logistic regression, k-nearest-neighbors, boosting.

Decision stump: $h(X_i) = 2\mathbf{1}(e_j^T X_i \ge c) - 1$, for some j, c

Decision list: a sequence of if/else decision stumps

Decision tree: a tree of if/else decision stumps

(a) Decision stump performs well.

(b) Decision stump fails. However, decision lists does well

Algorithm 1 Decision list example

if
$$e_1^\top x_i > 3.5$$
 then
$$\begin{array}{c} \operatorname{Predict} + 1 \\ \mathbf{else} \ \mathbf{if} \ e_2^\top x_i > 3.5 \ \mathbf{then} \\ \operatorname{Predict} + 1 \\ \mathbf{else} \\ \operatorname{Predict} - 1 \\ \mathbf{end} \ \mathbf{if} \end{array}$$

Figure 5.2: Decision list perform poorly. However, decision tree performs well

Figure 5.3: Example of a decision tree

Edge or "margin", weighted edge

"Edge" of a classifier Edge of classifier $h \in \mathcal{H}$ is defined as $\frac{1}{n} \sum_{i=1}^{n} Y_i h(X_i)$. Edge provides a way to describe how much better than chance the classifier is:

- Assume that there is a perfect classifier $h^*: h^*(X_i) = Y_i, \forall i \in \{1, ..., n\}$. Then its edge is simply equal to 1.
- Consider, on the contrary, a random guess classifier. It is trivial to show that with high probability its edge concentrates around 0.

Error of a classifier in this case can be viewed as: $\frac{1}{2} \cdot (1 - \text{edge})$. For further analysis we define a "weighted" edge as $\sum_{i=1}^{n} w_i Y_i h(X_i)$ where weights satisfy:

$$\sum_{i=1}^{n} w_i = 1, \qquad w_i > 0, \ \forall i \in \{1, \dots, n\}$$

In the previous definition each data point is equally weighted with weight 1/n.

Weak learning hypothesis

Weak learning hypothesis: $\exists \gamma > 0$, such that for any set of weights w, there is a classifier $h \in \mathcal{H}$ with weighted edge at least γ .

Let
$$M(r,i) = h_r(X_i)Y_i$$
 $\forall w \in \Delta_n \ \exists h \in [H] \ e_h^T M w \ge \gamma$ $(|\mathcal{H}| = H)$

Strong learning: \exists a classifier in span(\mathcal{H}) with zero training error

$$\exists p \in \Delta_H \ \forall w \in \Delta_n \ p^T M w \geq \gamma$$

$$\exists p \in \Delta_H \quad \forall i \in [n] \ p^T M e_i \geq \gamma$$
 every element of $p^T M$ is positive

 $f(X_i) := \text{sign}(p^T M e_i)$ has zero training error, for some $p \in \Delta_H$

The breakthrough Weak learning implies strong learning!

But how do we find this mixture $p \in \Delta_H$ of classifiers?

Outline

1. Weak learning implies strong learning (1/2 class)

2. Adaboost (1/2 class)

Algorithm 1 AdaBoost algorithm

for $m = 1, \dots M$ do

(1) Compute weighted error:

$$\varepsilon(h) = \sum_{i=1}^{n} w_i \mathbb{I}\{Y_i \neq h(X_i)\}\$$

Find a classifier h_m :

$$h_m = \arg\min_{h \in \mathcal{H}} \varepsilon(h)$$

or pick any \boldsymbol{h} with nontrivial edge

(2) Compute:

$$\alpha_m = \frac{1}{2} \log \left(\frac{1 - \varepsilon_m}{\varepsilon_m} \right)$$

 $\epsilon_m = \epsilon(h_m)$

(3) Update weights as:

$$w_i \leftarrow \frac{w_i e^{-\alpha_m Y_i h_m(X_i)}}{Z_m}$$

where Z is a normalization end for

Output the classifier:

$$Z_m = \sum_{i=1}^n w_m(i) \exp(-\alpha_m y_i h(x_i))$$

$$= \sum_{i:y_i h_m(x)=1} w_m(i) \exp(-\alpha_m) + \sum_{i:y_i h_m(x)=-1} w_m(i) \exp(\alpha_m)$$

$$= (1 - \varepsilon_m) \exp(-\alpha_m) + \varepsilon_m \exp(\alpha_m)$$

$$= 2\sqrt{\varepsilon_m (1 - \varepsilon_m)}$$

Figure 5.4: This fugure is taken from [2]: each learning curve shows the training and test error curves (lower and upper curves, respectively) of the combined classifier as a function of the number of classifiers combined.

Theorem 2 (Convergence of empirical risk of Adaboost) The empirical risk of the output of Adaboost algorithm 1 $\hat{R}(f)$ satisfies:

$$\begin{split} \hat{R}(f) & \leq \exp(-2\sum_{m=1}^{M}(\frac{1}{2}-\varepsilon_m)^2) \\ & \leq \exp(-2M\gamma^2) \text{ if weak learning hypothesis is true} \end{split} \tag{6.3}$$

If
$$M > \frac{\log n}{2\gamma^2}$$
, then $\hat{R}(f) < 1/n$, and hence $\hat{R}(f) = 0$

Theorem 2 (Convergence of empirical risk of Adaboost) The empirical risk of the output of Adaboost algorithm 1 $\hat{R}(f)$ satisfies:

$$\hat{R}(f) \le \exp(-2\sum_{m=1}^{M} (\frac{1}{2} - \varepsilon_m)^2)$$
 (6.3)

$$\begin{split} \hat{R}(f) = &\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i \neq f(x_i)) \\ \leq &\frac{1}{n} \sum_{i=1}^{n} \exp(-y_i f(x_i)) \\ = &\frac{1}{n} \sum_{i=1}^{n} [n \prod_{m=1}^{M} Z_m] w_{M+1}(i) \\ = &\prod_{m=1}^{M} Z_m \\ Z_m = &\sum_{i=1}^{n} w_m(i) \exp(-\alpha_m y_i h(x_i)) \end{split}$$

 $\begin{aligned} \alpha_m & \text{ minimizes weighted loss } = \sum_{i:y_i h_m(x)=1} w_m(i) \exp(-\alpha_m) + \sum_{i:y_i h_m(x)=-1} w_m(i) \exp(\alpha_m) \\ &= (1-\varepsilon_m) \exp(-\alpha_m) + \varepsilon_m \exp(\alpha_m) \\ &= 2\sqrt{\varepsilon_m(1-\varepsilon_m)} \quad \leq \exp(-2(\frac{1}{2}-\varepsilon_m)^2) \end{aligned}$

Convex surrogate loss minimization by coordinate descent

$$\hat{R}(\beta) = \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_i \sum_{j=1}^{H} \beta_j h_j(x_i) \right)$$

Adaboost solves $\min_{\beta \in \mathbb{R}_+^H} \hat{R}(\beta) = \min_{f \in \text{span}(\mathcal{H})} \hat{R}(f)$ by "coordinate descent".

- 1. Begin at $\beta^{(0)} = [0,0,...,0]$
- 2. At step t, pick direction $e_t \in \{e_j\}_{j \in J}$ and stepsize $\alpha_t \geq 0$ to minimize $\hat{R}(\beta^{(t-1)} + \alpha_t e_t)$
- 3. Gradient with respect to coordinate j is

$$\hat{R}'(\beta^{t-1})_j \propto (2\epsilon_{t,j} - 1) \prod_{s=1}^{t-1} Z_s$$
, where $\epsilon_{t,j}$ is weighted error of h_j

4. h_t is chosen to minimize the weighted error, optimal stepsize happens to equal $\log(\frac{1-\epsilon_t}{\epsilon_t})$

