TABLE 4.11 Bond Dissociation Energies

The bond dissociation energy (enthalpy change) for a bond A—B which is broken through the reaction

$$AB \rightarrow A + B$$

is defined as the standard-state enthalpy change for the reaction at a specified temperature, here at 298 K. That is,

$$\Delta H f_{298} = \Delta H f_{298}(A) + \Delta H f_{298}(B) - \Delta H f_{298}(AB)$$

All values refer to the gaseous state and are given at 298 K. Values of 0 K are obtained by subtracting $\frac{3}{2}RT$ from the value at 298 K.

To convert the tabulated values to kcal/mol, divide by 4.184.

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ \mathrm{kJ/mol}$	
Aluminum		Antimony	Antimony (continued)	
Al—Al	186(9)	Sb—O	372(84)	
Al—As	180	Sb—P	357	
Al—Au	326(6)	Sb—S	379	
Al—Br	439(8)	Sb—Te	277.4(38)	
Al—C	255			
Al—Cl	494(13)	Aı	rsenic	
AlCl—Cl	402(8)			
AlCl ₂ —Cl	372(8)	As—As	382(11)	
AlO—Cl	515(84)	As—Cl	448	
Al—Cu	216(10)	As—Ga	209.6(12)	
Al—D	291	As—H	272(12)	
Al—F	664(6)	As—N	582(126)	
AlF—F	546(42)	As—O	481(8)	
AlF ₂ —F	544(46)	As—P	534(13)	
AlO—F	761(42)	As—S	(478)	
Al—H	285(6)	As—Se	96	
Al—I	368(4)	As—Tl	198(15)	
Al—Li	176(15)			
Al—N	297(96)	Astatine		
Al—O	512(4)			
AICI—O	540(41)	At—At	(115.9)	
AlF—O	582	_		
Al—P	213(13)	Ва	arium	
Al—Pd	259(12)	D D	270(0)	
Al—S	374(8)	Ba—Br	370(8)	
Al—Se	334(10)	Ba—Cl	444(13)	
Al—Si	251(3)	Ba—F	487(7)	
Al—Te	268(10)	Ba—I	>431(4)	
Al—U	326(29)	Ва-О	563(42)	
		Ва-ОН	477(42)	
Antimo	ony	Ba—S	400(19)	
Sb—Sb	299(6)	Beryllium		
Sb—Br	314(59)	D D	50	
Sb—Cl	360(50)	Ве—Ве	59	
Sb—F	439(96)	Be—Br	381(84)	
Sb—N	301(50)	Be—Cl	388(9)	

4.42 SECTION 4

TABLE 4.11 Bond Dissociation Energies (*Continued*)

Bond	$\Delta H f_{298}, \ \mathrm{kJ/mol}$	Bond	$\Delta H f_{298}, \ \mathrm{kJ/mol}$
Beryllium (continued)		Bromin	ne
BeCl—Cl Be—F Be—H Be—O Be—S	540(63) 577(42) 226(21) 448(21) 372(59)	Br—Br Br—C Br—CH ₃ Br—CH ₂ Br Br—CHBr ₂ Br—CBr ₃	193.870(4) 280(21) 284(8) 255(13) 259(17) 209(13)
Bismuth Bi—Bi Bi—Br Bi—Cl Bi—D Bi—F Bi—Ga Bi—H Bi—O Bi—P Bi—P Bi—Sb Bi—Se	197(4) 267(4) 305(8) 284 259(29) 159(17) 279 343(6) 280(13) 142(15) 316(5) 251(4) 280(6)	Br—CCl ₃ Br—CF ₃ Br—CF ₂ CF ₃ Br—CF ₂ CF ₂ CF ₃ Br—CHF ₂ Br—Cl Br—CN Br—CO—C ₆ H ₅ Br—F Br—N Br—NF ₂ Br—NO Br—O	218(13) 285(13) 287.4(63) 278.2(63) 289 218.84(4) 381 268 233.8(2) 276(21) 222 120.1(63) 235.1(4)
Bi—Te Bi—Tl Boron	232(11) 121(13)	Cd—Cd Cd—Br Cd—Cl	11.3(8) 159(96) 206.7(34)
B-B H ₃ B-BH ₃ OB-BO B-Br B-C B-Cl	297(21) 146 506(84) 435(21) 448(29) 536(29)	Cd—F Cd—H Cd—I Cd—In Cd—O Cd—S Cd—Se	305(21) 69.0(4) 138(21) 138 142(42) 196 310
BO—Cl B—D	460(42) 341(6)	Calciur	n
B—F BF—F BF ₂ —F B—H B—I B—N B—O BCI—O B—P	766(13) 523(63) 557(84) 330(4) 384(21) 389(21) 806(5) 715(41) 347(17)	Ca—Ca Ca—Br Ca—Cl Ca—F Ca—H Ca—I Ca—O	14.98(46) 321(23) 398(13) 527(21) 167.8 285(63) 464(84) 314(19)
B—S B—Se	581(9) 462(15)	Carboi	1
B—Si B—Te	289(29) 354(20)	C—C H ₃ C—CH ₃	607(21) 368

TABLE 4.11 Bond Dissociation Energies (*Continued*)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ ext{kJ/mol}$
Carbon (continued)		Carbon (continued	7)
Carbon (continued (CH ₃) ₂ C-CH ₃ $(CH_3)_2C-C(CH_3)_2$ $CH_3-C_6H_5$ $CH_3-CH_2C_6H_5$ $(CH_3)_3C-C(C_6H_5)_3$ $CH_3-allyl$ $CH_3-vinyl$ $CH_3-CE-CH$ $CH_2-CH-CH-CH_2$ $HC=C-C=CH$ H_2C-CH CH_3-CN CH_3-CN CH_3-CN CH_3-CH_2CN CH_3-CN CH_3-CH_2CN CH_3-CH_3 CH_3-CH_3 CH_3-CH_3 CH_3-CH_3 CH_3-CH_3 CH_3-CH_3 CH_3-CN	335 282.4 389 301 63 301 121 490 418 628 682 962 506(21) 305(8) 331(8) 251 321.8(71) 603(21) 418 423.4(46) 368(8) 406(13) 318(13) 501 314 342.7 308.8	Carbon (continued) CF ₃ —(N=NCF ₃) H ₂ C=NH HC≡N CH ₃ —NO C ₂ H ₅ —NO C ₃ H ₇ —NO (CH ₃) ₂ CH—NO n-C ₄ H ₉ —NO C ₆ H ₅ —NO Cl ₃ C—NO F ₃ C—NO C ₆ F ₅ —NO NC—NO CH ₃ —NO ₂ C ₂ H ₅ —NO ₂ C-O CH ₃ —OCH ₃ CH ₃ —OCH ₅ CH ₃ CH ₂ —OCOCH ₃ C ₆ H ₅ CH ₂ —OCOCH ₃ CH ₃ CO—OCH ₃ CH ₂ CHCH ₂ —OSOCH ₃ C ₆ H ₅ CH ₂ —OSOCH ₃ C ₆ H ₅ CH ₂ —OSOCH ₃ C ₆ H ₅ CH ₂ —OSOCH ₃	231.0 644(21) 937 174.9(38) 175.7(54) 167.8(75) 171.5(54) 215.5(42) 215.5(42) 134 130 211.3(42) 121(13) 247(13) 259 1076.5(4) 335 381 280 213 285 289 406 280 209 222 749
CH ₃ CO—COCH ₃ C ₆ H ₅ CO—COC ₆ H ₅ Aryl—CH ₂ COCH ₂ —aryl C ₆ H ₅ CH ₂ —COOH (C ₆ H ₅ CH ₂) ₂ CH—COOH C—Cl C—F C—H C—I C—N CF ₃ —NF ₂ CH ₃ —NH ₂ C ₆ H ₅ CH ₂ —NH ₂	308.8 280(8) 277.8 273.6 284.9 248.5 397(29) 536(21) 337.2(8) 209(21) 770(4) 272(13) 331(13) 301(4) 285	C=0 $H_2C=0$ OC=0 SC=0 C=0 C-P C-S CH_3-SH $CH_3-SC_6H_5$ $CH_3-SCH_2C_6H_5$ OC-S C-Se	749 732 532.2(4) 628 1075 513(8) 699(8) 305(13) 285(8) 247(8) 310.4 582(96)
CH_3 — NHC_6H_5 CH_3 — $N(CH_3)C_6H_5$ $C_6H_5CH_2$ — $NHCH_3$ $C_6H_5CH_2$ — $N(CH_3)_2$ CH_3 — $(N$ = $NCH_3)$ C_2H_5 — $(N$ = $NC_2H_5)$ $(CH_3)_3C$ — N = $NC(CH_3)_3$ $Aryl$ — CH_2N = NCH_2 — $aryl$	283 272 289(4) 255(4) 219.7 209.2 182.0 157	Ce—Ce Ce—F Ce—N Ce—O Ce—S Ce—Se Ce—Te	243(21) 582(42) 519(21) 795(13) 573(13) 495(15) 389(42)

4.44 SECTION 4

 TABLE 4.11
 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ \mathrm{kJ/mol}$
Cesium		Chromiun	ı (continued)
Cs-Cs Cs-Br Cs-Cl Cs-F Cs-H Cs-I Cs-O	41.75(93) 397.5(42) 439(21) 514(8) 178.1(38) 339(4) 297(25) 385(13)	Cr—Cu Cr—F Cr—Ge Cr—H Cr—I Cr—N Cr—O OCr—O O ₂ Cr—O Cr—S	155(21) 437(20) 170(29) 280(50) 287(24) 378(19) 427(29) 531(63) 477(84) 339(21)
Cl—Cl	242.580(16)		obalt
$\begin{array}{c} \text{ClC} \\ \text{ClCH}_3 \\ \text{ClCH}_3^+ \\ \text{ClC(CH}_3)_3 \\ \text{ClCH}_2\text{Cl} \\ \text{ClCCl}_3 \\ \text{ClCF}_3 \\ \text{ClCCl}_2\text{F} \\ \text{ClCCIF}_2 \\ \text{ClCF}_2\text{CF}_2 \end{array}$	338(42) 339(21) 213 328.4 310(13) 293(21) 360(33) 305(8) 318(8) 346.0(71)	Co—Co Co—Br Co—Cl Co—Cu Co—F Co—Ge Co—I Co—O	167(25) 331(42) 398(8) 162(17) 435(63) 239(25) 235(81) 368(21) 343(21)
Cl—CH=CH ₂ Cl—CN	351 439	Co	opper
CI—COCI CI—COCH ₃ CI—COC ₆ H ₅ CI—CI ⁺ CI—CIO O ₃ CI—CIO ₄ CI—F O ₃ CI—F CI—N CI—NCI CI—NCI CI—NCI CI—NF ₂ CI—NH ₂ CI—NO	328 349.4 310(13) 393 143.3(42) 243 250.54(8) 255 389(50) 280 381 ca. 134 251(25) 159(6)	Cu—Cu Cu—Br Cu—Cl Cu—F Cu—Ga Cu—Ge Cu—H Cu—I Cu—Ni Cu—O Cu—S Cu—Se Cu—Ss	202(4) 331(25) 383(21) 431(13) 216(15) 209(21) 280(8) 197(21) 206(17) 343(63) 285(17) 293(38) 177(17)
Cl-NO ₂	142(4)	Cu—Te	176(38)
Cl—0 OCl—0	272(4) 243(13)	Cı	ırium
O ₂ Cl—O Cl—P	201(4) 289(42)	Cm—O	736
Cl—SiCl ₃ 464		Dysp	prosium
Cr—Cr Cr—Br Cr—Cl	155(21) 328(24) 366(24)	Dy—F Dy—O Dy—Se Dy—Te	527(21) 611(42) 322(42) 234(42)

TABLE 4.11 Bond Dissociation Energies (*Continued*)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ \mathrm{kJ/mol}$
Erbium		Gallium (a	continued)
Er—F Er—O Er—S Er—Se Er—Te	565(17) 611(13) 418(42) 326(42) 239(42)	Ga—O Ga—P Ga—Sb Ga—Te	285(63) 230(13) 209(13) 251(25)
Europii		Germ	anium
Eu—Eu Eu—Cl Eu—F Eu—O Eu—S Eu—S Eu—Se Eu—Te	33.5(165) ca. 326 528(18) 557(13) 364(15) 301(15) 243(15)	Ge—Ge Ge—Br Ge—Cl Ge—F Ge—H Ge—O Ge—S Ge—Se Ge—Si	274(21) 255(29) 431.8(4) 485(21) 321.3(8) 662(13) 551.0(25) 490(21) 301(21)
Fluorin	ne	Ge—Te	402(8)
F—F F—F+ F—CH ₃ F—C(CH ₃) ₃ F—C ₆ H ₅ F—CCl ₃ F—CCl ₂ F F—CCl ₅ F—CCF ₃ F—COCH ₃ F—FO F—FO ₂ F—N F—NF F—NF F—NF ₂ F—NO F—NO ₂ Gadolin	156.9(96) >251 452(21) 439 485 444(21) 460(25) 490(25) 523(17) 498 272(13) 81.0 301(42) 318(25) 243(8) 235.6(42) 197(25)	Au—Au Au—B Au—Be Au—Bi Au—Cl Au—Co Au—Cr Au—Cu Au—Fe Au—Ga Au—Ge Au—H Au—La Au—Li Au—Mg Au—Mn	221.3(21) 368(11) 285(8) 293(84) 343(10) 215(13) 215(6) 232(9) 187(17) 294(15) 277(15) 314(10) 80(5) 68.0(16) 243(42) 185(13)
-		Au—Ni Au—Pb	274(21) 130(42)
Gd—F Gd—O Gd—S Gd—Se	590(27) 716(17) 525(15) 431(15)	Au—Pd Au—Rh Au—S Au—Si	130(42) 143(21) 231(29) 418(25) 312(12)
Galliu	m	Au—Sn	244(17)
Ga—Ga Ga—Br (CH ₃) ₃ Ga—CH ₃ Ga—Cl Ga—F Ga—H Ga—I	138(21) 444(17) 253 481(13) 577(15) <274 339(10)	Au—Te Au—U Hafi Hf—C Hf—N Hf—O	247(67) 318(29) nium 548(63) 534(29) 791(8)

4.46 SECTION 4

 TABLE 4.11
 Bond Dissociation Energies (Continued)

$H-^{2}H \text{ or } H-D$ 439.446(4) $H-^{2}H-^{2}H \text{ or } D-D$ 443.546(4) $H-^{2}H \text{ or } D-D$ 443.546(4) $H-^{2}H-^{2}H \text{ or } D-D$ 4	Hydrogen (continued) -CHCl ₂ -CCl ₃ -CBr ₃ -CCl ₂ CHCl ₂ -CH ₂ F -CH ₂ F -CHF ₂ -CF ₃ -CF ₃	414.2 377(8) 377(8) 393(8) 423(8) 423(8)
H—2H or H—D 439.446(4) H— 2H—2H or D—D 443.546(4) H— H—Br 365.7(21) H— H—C 337.2(8) H— H—CH 452(33) H—	-CCl ₃ -CBr ₃ -CCl ₂ CHCl ₂ -CH ₂ F -CHF ₂ -CF ₃	377(8) 377(8) 393(8) 423(8) 423(8)
2H—2H or D—D 443.546(4) H— H—Br 365.7(21) H— H—C 337.2(8) H— H—CH 452(33) H—	-CBr ₃ -CCl ₂ CHCl ₂ -CH ₂ F -CHF ₂ -CF ₃	377(8) 393(8) 423(8) 423(8)
H—Br 365.7(21) H— H—C 337.2(8) H— H—CH 452(33) H—	-CCl ₂ CHCl ₂ -CH ₂ F -CHF ₂ -CF ₃	393(8) 423(8) 423(8)
H—C 337.2(8) H— H—CH 452(33) H—	-CH ₂ F -CHF ₂ -CF ₃	423(8) 423(8)
H—C 337.2(8) H— H—CH 452(33) H—	-CHF ₂ -CF ₃	423(8)
` /	-CF ₃	423(8)
	-CF ₃	
2	-CF ₂ Cl	444(13)
$H-CH_3$ 431(8) $H-$		435(4)
	-CH ₂ CF ₃	446(45)
	-CF ₂ CH ₃	416(4)
	-CF ₂ CF ₃	431(63)
=	-CH ₂ I	431(8)
2 7	-CHI ₂	431(8)
2	-CN	540(25)
2 2		389
	-CH(CH ₃)CN	377(8)
$H - CH(CH_3)_2$ 395.4 $H -$	$-C(CH_3)_2CN$	364(8)
	-CH ₂ NH ₂	397(8)
	$-\text{CH}_2\text{N}\text{H}_2$ $-\text{CH}_2\text{Si}(\text{CH}_3)_3$	414(4)
2 1 2/2	-CH ₂ COCH ₃	393(75)
. 2. 2	-Cl	431.8(4)
, 3/3	-CI -CO	126(8)
/ 1	-CO -CHO	364(4)
\	-сно -соон	377
	-COCH ₃	364(4)
/cm cm ₂	-COCH ₂ CH ₃	
H-CH' 335(4)	-coch ₂ ch ₃	364(4)
CH = CH		205
H−		385
H— 343(4)	0	
\	$-COC_6H_5$	364(4)
	-COCF ₃	381(8)
$H-CH_2$ CH_3 $H-$		568.6(13)
C 414(4) H-		298.7(8)
CH ₃ CH ₃		314(17)
H-	-NH	377(8)
, 3/2	$-NH_2$	435(8)
H—cyclopentyl 395(42) H—	-NHCH ₃	431(8)
	$-N(CH_3)_2$	397(8)
	-NHC ₆ H ₅	335(13)
= · · ·	$-N(CH_3)C_6H_5$	310(13)
$H-C(C_6H_5)_3$ 314 HN	F_2	318(13)
/ \	$-N_3$	356
11 /		205
/ H-	-O	428.0(21)
11 Cyclonexy1 355.0(12)	-OH	498.7(8)
H—cycloheptyl 387.0(42) H—	-OCH ₃	436.8(42)
	-OCH ₂ CH ₃	436.0
	$-OC(CH_3)_3$	439(4)
H—CHBr ₂ 435 H—	$-OC_6H_5$	368(25)
	-ONO	327.6(25)

 TABLE 4.11
 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ ext{kJ/mol}$
Hydrogen (continued)		Iridiu	ım
H—ONO ₂ H—OOH H—OOCCH ₃	423.4(25) 374(8) 469(17)	Ir—O Ir—Si	352(21) 463(21)
H—OOCCH ₂ CH ₃	460(17)	Iron	1
H—OOCC ₃ H ₇ H—P H—S H—SH H—SCH ₃ H—Se H—Si H—Si H—Si(CH ₃) ₃ H—Te	431(17) 343(29) 344(12) 381(4) ca. 368 305(2) 298.49(46) 393(13) 377(13) 268(2)	Fe—Fe Fe—Br Fe—Cl Fe—O Fe—S Fe—Si Krypt	
Indiv	ım	Kr—Kr Kr—F	5.4(8) 54
In—In	100(8)	Lantha	num
In—Br In—Cl In—F In—O In—P In—S In—Sb	418(21) 439(8) 506(15) 360(21) 197.9(85) 289(17) 152(11)	La—La La—C La—F La—N La—O La—S	247(21) 506(63) 598(42) 519(42) 799(13) 577(25)
In—Se In—Te	247(17) 218(17)	Lea	d
Iodin	ne	Pb—Pb	339(25)
I—I I—Br I—CH ₃ I—C ₂ H ₅ I—CH(CH ₃) ₂ I—C(CH ₃) ₃ I—CH ₂ CF ₃ I—CF ₂ CH ₃ I—C ₃ F ₇	152.549(8) 179.1(4) 232(13) 223.8 222 207.1 234(4) 216(4) 209(4)	Pb—Br Pb(CH ₃) ₃ —CH ₃ Pb—Cl Pb—F Pb—H Pb—I Pb—O Pb—S Pb—Se Pb—Te	247(38) 207(42) 301(29) 356(8) 176(21) 197(38) 378(4) 346.0(17) 303(4) 251(13)
$I-CH=CHCH_3$ $I-C_6H_5$	172 268(4)	Lithiu	ım
I—C ₆ F ₅ I—Cl I—COCH ₃ I—CN I—F I—N I—NO I—NO ₂ I—O	276 213.3(4) 219.7 305(4) 280(4) 159(17) 71(4) 75(4) 184(21)	Li—Li Li—Br Li—Cl Li—F Li—H Li—I Li—Na Li—O	106(4) 423(21) 469(13) 577(21) 247 352(13) 88 341(6) 427(21)

4.48 SECTION 4

 TABLE 4.11
 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ ext{kJ/mol}$
Lutetium		Molyb	denum
Lu—Lu Lu—F Lu—O Lu—S Lu—Te	142(34) 569(42) 695(13) 507(15) 326(17)	Mo—I Mo—O MoO—O MoO ₂ —O	372 607(34) 678(84) 565(84)
Magnesiun	n	Neody	rmium
Mg—Mg Mg—Br Mg—Cl Mg—F MgF—F MgF—F Mg—H Mg—I Mg—O Mg—OH Mg—OH	8.522(4) 297(63) 318(13) 462(21) 569(42) 197(50) ca. 285 394(35) 238(21) 310(75)	Nd—F Nd—O Nd—S Nd—Se Nd—Te Ne—Ne	3.93
Manganese		Np—O	720(29)
Mn—Mn Mn—Br Mn—Cl Mn—F Mn—I Mn—Cu Mn—O Mn—S Mn—S Mn—Se	42(29) 314(10) 361(10) 423(15) 283(10) 159(17) 402(34) 301(17) 201(13)	Ni—Ni Ni—Ni Ni—Br Ni—Cl Ni—F Ni—H Ni—I Ni—O Ni—S Ni—Si	261.9(25) 360(13) 372(21) 435 289(13) 293(21) 391.6(38) 360(21) 318(17)
Hg—Hg	17.2(21)	Niob	oium
$\begin{array}{l} Hg-Br\\ CH_3-HgCH_3\\ C_2H_5-HgC_2H_5\\ C_3H_7-HgC_3H_7\\ Isopropyl-Hgisopropyl\\ C_6H_5-HgC_6H_5 \end{array}$	72.8(42) 240.6 182.8(42) 197.1 170.3 285	Nb—O Nitro N—N N—Br	753(13) ogen 945.33(59) 276(21)
Hg—Cl Hg—F Hg—H Hg—I Hg—K Hg—Na Hg—S Hg—Se Hg—Te	100(8) 130(38) 39.8 38 8.24(21) >6.7 213 (167) (142)	ON—Br N—Cl ON—Cl O2N—Cl N—F FN—F F_2F —N ON—F O_2N —F	28.7(15) 389(50) 159(6) 142(4) 301(42) 318(21) 243(8) 236(4) 188(21)

 TABLE 4.11
 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298},$ k J/mol	Bond	$\Delta H f_{298}, \ ext{kJ/mol}$
Nitrogen (continued)		Oxygen (con	tinued)
N—I F ₂ N—NF ₂ H ₂ N—NH ₂ H ₂ N—NHCH ₃ H ₂ N—N(CH ₃) ₂ H ₂ N—NHC ₆ H ₅ HN—N ₂ ON—N ON—N ON—NO ₂ O ₂ N—NO ₂	159(17) 88(4) 297(8) 271 264 213 38 480.7(42) 39.8(8) 57.3(21)	C ₂ H ₅ O—OC ₂ H ₅ C ₃ H ₇ O—OC ₃ H ₇ Palladiu Pd—O Phospho	234(29)
HN=NH N=N N-O HN=O NN-O ON-O N-P N-S	456(42) 946 630.57(13) 481 167 305 617(21) 464(21)	P—Br P—C P—Cl P—F P—H P—N P—O Br ₃ P=O Cl ₃ P=O	266.5 513(8) 289(42) 439(96) 343(29) 617(21) 596.6 498(21) 510(21)
Osmium		$F_3P = O$ - $P - S$	544(21) 346.0(17)
O ₃ Os—O Oxygen	301(21)	P=S P-Se P-Te	347 363(10) 298(10)
0-0	498.34(20)	Platinu	m
O—Br HO—CH ₃ HO—CH=CH ₂ HO—CH ₂ CH=CH ₂ HO—C ₆ H ₅ HO—CH ₂ C ₆ H ₅	235.1(4) 377(13) 364 456 431 322	Pt—B Pt—H Pt—O Pt—P Pt—Si	478(17) 352(38) 347(34) 417(17) 501(18)
HO—CHO HO—COCH ₃	402(13) 452(21)	Potassiu	ım
HO—COC ₂ H ₅ O—Cl HO—Cl O—F O—FO FO—OF O—I HO—I O—N HO—NCH ₃	180 272(4) 251(13) 222(17) 467 261(84) 184(21) 234(13) 630.57(13) 209	K—K K—Br K—Cl K—F K—H K—I K—Na K—O K—OH	57.3(42) 383(8) 427(8) 497.5(25) 183(15) 331(13) 63.6(29) 239(34) 343(8)
HO—OC(CH ₃) ₃ HO—OH	192(8) 213.8(21)	Praseodyn	nium
O—OH CF ₃ O—OCF ₃ CH ₃ O—OCH ₃	268(4) 192 157.3(8)	Pr—F Pr—O Pr—S	582(46) 753(17) 492.5(46)

4.50 SECTION 4

 TABLE 4.11
 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298},$ k J/mol
Praseodymium (continued)		Scandium	
Pr—Se Pr—Te	446(23) 326(42)	Sc—Sc Sc—Br Sc—C Sc—C1	163(21) 444(63) 393(63) 318
Pm—F Pm—O Pm—S Pm—S Pm—Se Pm—Te	540(42) 674(63) 423(63) 339(63) 255(63)	Sc	589(13) 469(84) 674(13) 478(13) 385(17) 289(17)
Rad	ium	Selenium	
Rhoo	343(75)	Se—Se Se—Br Se—C	332.6(4) 297(84) 582(96)
Rh—Rh Rh—B Rh—C Rh—O Rh—Si Rh—Ti	285(21) 476(21) 583.7(63) 377(63) 395(18) 391(15)	Se—Cl Se—F Se—H Se—N Se—O Se—P Se—S Se—Si	322 339(42) 305(2) 381(63) 423(13) 364(10) 381(21) 531(25)
Rb—Rb	45.6(21)	Se—Te	268(8)
Rb—Br Rb—Cl Rb—F Rb—H Rb—I Rb—O Rb—OH	389(13) 448(21) 494(21) 167(21) 335(13) 255(84) 351(8)	Silicon Si—Si Si—Br Si—C Si—Cl Si—F Si—H	327(10) 343(50) 435(21) 456(42) 540(13) 298.49(46)
Ruthe	enium	Si—I Si—N	339(84) 439(38)
Ru— $OO_3Ru—ORu$ — $SiRu$ — Th	481(63) 439 397(21) 592(42)	Si—O Si—S Si—Se H ₃ Si—SiH ₃ (CH ₃) ₃ Si—Si(CH ₃) ₃	798(8) 619(13) 531(25) 339(17) 339
Sama	rium	(Aryl) ₃ Si—Si(aryl) ₃ Si—Te	368(31) 506(38)
Sm—Cl Sm—F Sm—O Sm—S	423(13) 531(18) 619(13) 389	Silver Ag—Ag Ag—Au	163(8) 203(9)
Sm—Se Sm—Te	331(15) 272(15)	Ag—Bi	193(42)

TABLE 4.11 Bond Dissociation Energies (*Continued*)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ \mathrm{kJ/mol}$
Silver (continued)		Tan	talum
Ag—Br Ag—Cl	293(29) 341.4	Ta—N Ta—O	611(84) 805(13)
Ag—Cu Ag—F	176(8) 354(16)	Tell	urium
Ag—Ga Ag—Ge Ag—H Ag—I Ag—In Ag—O Ag—Sn Ag—Te	180(15) 175(21) 226(8) 234(29) 176(17) 213(84) 136(21) 293(96)	Te—B Te—H Te—I Te—O Te—P Te—S Te—Se	354(20) 268(2) 193(42) 391(8) 298(10) 339(21) 268(8)
Sodiu	m	Ter	bium
Na—Na Na—Br Na—Cl Na—F	77.0 370(13) 410(8) 481(8)	Tb—F Tb—O Tb—S Tb—Te	561(42) 707(13) 515(42) 339(42)
Na—H Na—I	201(21) 301(8)	Tha	llium
Na—K Na—O Na—OH Na—Rb	63.6(29) 257(17) 381(13) 59(4)	Tl—Tl Tl—Br Tl—Cl — Tl—F	63 333.9(17) 372.8(21) 445(19)
Stronti	um	TI—H — TI—I	188(8) 272(8)
Sr—Br Sr—Cl	332(19) 406(13)	Tho	orium
Sr—F Sr—H Sr—I Sr—O Sr—OH Sr—S	542(7) 163(8) 263(42) 454(15) 381(42) 314(21)	Th—Th Th—C Th—N Th—O Th—P	289 484(25) 577.4(21) 854(13) 377
Sulfu	ır	Thu	llium
S—S S—Cl S—F O ₂ S—F S—N S—O OS—O	429(6) 255 343(5) 71 464(21) 521.70(13) 551.4(84)	Tm—F Tm—O Tm—S Tm—Se Tm—Te	569(42) 557(13) 368(42) 276(42) 276(42)
O ₂ S—O HS—SH	348.1(42) 272(21)	Sn—Sn Sn—Br	195(17) 339(4)

4.52 SECTION 4

TABLE 4.11 Bond Dissociation Energies (*Continued*)

Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H f_{298}, \ ext{kJ/mol}$	
Tin (continued)		Vanadium	Vanadium (continued)	
BrSn—Br Br ₃ Sn—Br (C ₂ H ₅) ₃ Sn—C ₂ H ₅ Sn—Cl Sn—F Sn—H	326 272 ca. 238 406(13) 467(13) 267(17)	V—Cl V—F V—N V—O V—S V—Se	477(63) 590(63) 477(8) 644(21) 490(16) 347(21)	
Sn—I Sn—O	234(42) 548(21)	Xe	non	
Sn—S Sn—Se Sn—Te	464(3) 401.3(59) 319.2(8)	Xe—Xe Xe—F Xe—O	6.53(30) 13.0(4) 36.4	
Tita	nium		bium	
Ti—Ti Ti—Br Ti—C Ti—Cl Ti—F Ti—H Ti—I	141(21) 439 435(25) 494 569(34) ca. 159 310(42)	Yb—Cl Yb—F Yb—H Yb—O Yb—S	322 521(10) 159(38) 397.9(63) 167	
Ti—N Ti—O	464 662(16)		rium	
Ti—S Ti—Se Ti—Te	426(8) 381(42) 289(17)	Y—Y Y—Br Y—C — Y—Cl	159(21) 485(84) 418(63) 527(42)	
Tung	gsten	Y—F — Y—N	605(21) 481(63)	
W—Cl W—F W—O OW—O O ₂ W—O	423(42) 548(63) 653(25) 632(84) 598(42)	Y-O Y-S Y-Se Y-Te	715.1(30) 528(11) 435(13) 339(13)	
<u>W-P</u>	305(4)		nc	
U-O OU-O O ₂ U-O U-S	761(17) 678(59) 644(88) 523(10)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29 142(29) ca. 201 229(20) 368(63) 85.8(21) 138(29) 284.1 205(13)	
V-V V-Br V-C	242(21) 439(42) 469(63)	Zn—Se Zn—Te	136(13) 205	

 TABLE 4.11
 Bond Dissociation Energies (Continued)

Bond	$\Delta H\!f_{298}, \ ext{kJ/mol}$	Bond	$\Delta H\!f_{298},$ k J /mol
Zirconium		Zirconium (continued)	
Zr—C Zr—F Zr—N	561(25) 623(63) 565(25)	Zr—O Zr—S	760(8) 575(17)

Source: T. L. Cottrell, The Strengths of Chemical Bonds, 2d ed., Butterworth, London, 1958; B. deB. Darwent, National Standard Reference Data Series, National Bureau of Standards, no. 31, Washington, 1970; S. W. Benson, J. Chem. Educ. 42:502 (1965); and J. A. Kerr, Chem. Rev. 66:465 (1966).