FIRST and FOLLOW Computation Example

- Consider the following grammar $S' \to S\$$, $S \to aAS \mid c$, $A \to ba \mid SB$, $B \to bA \mid S$
- $FIRST(S') = FIRST(S) = \{a, c\}$ because $S' \Rightarrow S\$ \Rightarrow \underline{c}\$$, and $S' \Rightarrow S\$ \Rightarrow \underline{a}AS\$ \Rightarrow \underline{a}baS\$ \Rightarrow \underline{a}bac\$$
- $FIRST(A) = \{a, b, c\}$ because $A \Rightarrow \underline{b}a$, and $A \Rightarrow SB$, and therefore all symbols in FIRST(S) are in FIRST(A)
- $FOLLOW(S) = \{a, b, c, \$\}$ because $S' \Rightarrow \underline{S}\$$, $S' \Rightarrow^* aAS\$ \Rightarrow a\underline{S}BS\$ \Rightarrow a\underline{S}\underline{b}AS\$$, $S' \Rightarrow^* a\underline{S}BS\$ \Rightarrow a\underline{S}SS\$ \Rightarrow a\underline{S}\underline{a}ASS\$$, $S' \Rightarrow^* a\underline{S}SS\$ \Rightarrow a\underline{S}\underline{c}S\$$
- $FOLLOW(A) = \{a, c\}$ because $S' \Rightarrow^* a\underline{A}S\$ \Rightarrow a\underline{A}\underline{a}AS\$$, $S' \Rightarrow^* a\underline{A}S\$ \Rightarrow a\underline{A}c$

Computation of FIRST: Terminals and Nonterminals

```
for each (a \in T) FIRST(a) = \{a\}; FIRST(\epsilon) = \{\epsilon\};
for each (A \in N) FIRST(A) = \emptyset;
while (FIRST sets are still changing) {
    for each production p {
       Let p be the production A \rightarrow X_1 X_2 ... X_n;
       FIRST(A) = FIRST(A) \cup (FIRST(X_1) - \{\epsilon\});
       i = 1:
       while (\epsilon \in \mathsf{FIRST}(X_i) \&\& i < n-1) {
           FIRST(A) = FIRST(A) \cup (FIRST(X_{i+1} - {\epsilon}); i + +;
       if (i == n) \&\& (\epsilon \in FIRST(X_n))
          FIRST(A) = FIRST(A) \cup \{\epsilon\}
```

Computation of $FIRST(\beta)$: β , a string of Grammar Symbols

```
{ /* It is assumed that FIRST sets of terminals and nonterminals
    are already available /*
    FIRST(\beta) = \emptyset;
    while (FIRST sets are still changing) {
       Let \beta be the string X_1X_2...X_n;
       FIRST(\beta) = FIRST(\beta) \cup (FIRST(X_1) - \{\epsilon\});
       i = 1:
       while (\epsilon \in \mathsf{FIRST}(X_i) \&\& i < n-1) {
           FIRST(\beta) = FIRST(\beta) \cup (FIRST(X_{i+1} - \{\epsilon\}); i + +;
       if (i == n) \&\& (\epsilon \in FIRST(X_n))
          FIRST(\beta) = FIRST(\beta) \cup \{\epsilon\}
```

FIRST Computation: Algorithm Trace - 1

- Consider the following grammar $S' \to S\$$, $S \to aAS \mid \epsilon$, $A \to ba \mid SB$, $B \to cA \mid S$
- Initially, FIRST(S) = FIRST(A) = FIRST(B) = ∅
- Iteration 1
 - FIRST(S) = $\{a, \epsilon\}$ from the productions $S \to aAS \mid \epsilon$
 - FIRST(A) = {b} \cup FIRST(S) { ϵ } \cup FIRST(B) { ϵ } = {b, a} from the productions $A \rightarrow ba \mid SB$ (since $\epsilon \in$ FIRST(S), FIRST(B) is also included; since FIRST(B)= ϕ , ϵ is not included)
 - FIRST(B) = {c} \cup FIRST(S) { ϵ } \cup { ϵ } = {c, a, ϵ } from the productions $B \rightarrow cA \mid S$ (ϵ is included because $\epsilon \in \mathsf{FIRST}(S)$)

FIRST Computation: Algorithm Trace - 2

- The grammar is $S' o S\$, \ S o aAS \mid \epsilon, \ A o ba \mid SB, \ B o cA \mid S$
- From the first iteration, $FIRST(S) = \{a, \epsilon\}, FIRST(A) = \{b, a\}, FIRST(B) = \{c, a, \epsilon\}$
- Iteration 2 (values stabilize and do not change in iteration 3)
 - FIRST(S) = {a, ϵ } (no change from iteration 1)
 - FIRST(A) = {b} \cup FIRST(S) { ϵ } \cup FIRST(B) { ϵ } \cup { ϵ } = {b, a, c, ϵ } (changed!)
 - FIRST(B) = {c, a, ϵ } (no change from iteration 1)

Computation of FOLLOW

```
{ for each (X \in N \cup T) FOLLOW(X) = \emptyset;
 FOLLOW(S) = \{\$\}; /* S \text{ is the start symbol of the grammar }*/
 repeat {
   for each production A \to X_1 X_2 ... X_n \{/^* X_i \neq \epsilon^* / e^* \}
     FOLLOW(X_n) = FOLLOW(X_n) \cup FOLLOW(A);
      REST = FOLLOW(A);
     for i = n downto 2 {
        if (\epsilon \in \mathsf{FIRST}(X_i)) \{ \mathsf{FOLLOW}(X_{i-1}) =
            FOLLOW(X_{i-1}) \cup (FIRST(X_i) - \{\epsilon\}) \cup REST;
            REST = FOLLOW(X_{i-1});
        } else { FOLLOW(X_{i-1}) = FOLLOW(X_{i-1}) \cup FIRST(X_i) ;
                 REST = FOLLOW(X_{i-1}); }
 } until no FOLLOW set has changed
```

FOLLOW Computation: Algorithm Trace

- Consider the following grammar $S' o S\$, \ S o aAS \mid \epsilon, \ A o ba \mid SB, \ B o cA \mid S$
- Initially, $follow(S) = \{\$\}$; $follow(A) = follow(B) = \emptyset$ $first(S) = \{a, \epsilon\}$; $first(A) = \{a, b, c, \epsilon\}$; $first(B) = \{a, c, \epsilon\}$;
- Iteration 1 /* In the following, $x \cup = y$ means $x = x \cup y$ */
 - $S \rightarrow aAS$: $follow(S) \cup = \{\$\}$; $rest = follow(S) = \{\$\}$ $follow(A) \cup = (first(S) - \{\epsilon\}) \cup rest = \{a, \$\}$
 - $A \rightarrow SB$: $follow(B) \cup = follow(A) = \{a, \$\}$ $rest = follow(A) = \{a, \$\}$ $follow(S) \cup = (first(B) - \{\epsilon\}) \cup rest = \{a, c, \$\}$
 - $B \rightarrow cA$: $follow(A) \cup = follow(B) = \{a,\$\}$
 - $B \rightarrow S$: $follow(S) \cup = follow(B) = \{a, c,\$\}$
 - At the end of iteration 1
 follow(S) = {a, c,\$}; follow(A) = follow(B) = {a,\$}

FOLLOW Computation: Algorithm Trace (contd.)

- $first(S) = \{a, \epsilon\}$; $first(A) = \{a, b, c, \epsilon\}$; $first(B) = \{a, c, \epsilon\}$;
- At the end of iteration 1
 follow(S) = {a, c, \$}; follow(A) = follow(B) = {a, \$}
- Iteration 2
- $S \rightarrow aAS$: $follow(S) \cup = \{a, c, \$\}$; $rest = follow(S) = \{a, c, \$\}$ $follow(A) \cup = (first(S) - \{\epsilon\}) \cup rest = \{a, c, \$\}$ (changed!)
- $A \rightarrow SB$: $follow(B) \cup = follow(A) = \{a, c, \$\}$ (changed!) $rest = follow(A) = \{a, c, \$\}$ $follow(S) \cup = (first(B) \{\epsilon\}) \cup rest = \{a, c, \$\}$ (no change)
- At the end of iteration 2
 follow(S) = follow(A) = follow(B) = {a, c, \$};
- The follow sets do not change any further

