Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 40

(Nov 09, 2019)

Diagonalization of Symmetric Matrices

Diagonalization of Symmetric Matrices

- **Definition:** A matrix A is said to be **symmetric** if $A = A^T$. A symmetric matrix is necessarily square. For the time being, we will restrict our interest to matrices and vectors with real entries only.
- **Proposition 55:** If A is symmetric, then any two eigenvectors from different eigenspaces (i.e. eigenvectors corresponding to different eigenvalues) are orthogonal.
- **Note:** Recall an earlier theorem for square matrices: Eigenvectors from different eigenspaces (i.e. corresponding to different eigenvalues) are linearly independent. For symmetric matrices, we get the stronger result above

Proof of Proposition 55

Proof of Proposition 55: Let u_1 and u_2 be eigenvectors corresponding to different eigenvalues λ_1 and λ_2 . Then:

$$\lambda_1 < u_1, u_2 > =< \lambda_1 u_1, u_2 >$$

$$= (\lambda_1 u_1)^T u_2 \quad \text{(definition of dot product)}$$

$$= (Au_1)^T u_2 \quad \text{(Since } u_1 \text{ is an eigenvector)}$$

$$= u_1^T A^T u_2$$

$$= u_1^T A u_2 \quad \text{(Since } A \text{ is symmetric)}$$

$$= u_1^T (\lambda_2 u_2) \quad \text{(Since } u_2 \text{ is an eigenvector)}$$

$$= \langle u_1, \lambda_2 u_2 \rangle \quad \text{(definition of dot product)}$$

$$= \lambda_2 < u_1, u_2 >$$

Since $\lambda_1 \neq \lambda_2$, we must have $\langle u_1, u_2 \rangle = 0$, as desired.

Orthogonal Matrices

- **Definition:** A square matrix *P* is said to be **orthogonal** if its columns are <u>orthonormal</u> (*please note this slight inconsistency in terminology*).
- **Proposition 56:** An orthogonal matrix is necessarily invertible and $P^{-1} = P^{T}$.

Proof Suppose $P = [v_1 \ v_2 \ \dots \ v_n]$ with the v_i being orthonormal column vectors. Then:

$$P^{T}P = \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{n}^{T} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & \dots & v_{n} \end{bmatrix} = \begin{bmatrix} v_{1}^{T}v_{1} & v_{1}^{T}v_{2} & \dots & v_{1}^{T}v_{n} \\ v_{2}^{T}v_{1} & v_{2}^{T}v_{2} & \dots & v_{2}^{T}v_{n} \\ \vdots & \vdots & \dots & \vdots \\ v_{n}^{T}v_{1} & v_{n}^{T}v_{2} & \dots & v_{n}^{T}v_{n} \end{bmatrix}$$

Since $v_i^T v_j = v_i . v_j = \langle v_i, v_j \rangle = \delta_{ij}$ (Kronecker delta), we get that $P^T P$ is the identity matrix – hence the result.

Diagonalization of Symmetric Matrices (Cont'd)

- **Definition:** A square matrix A is said to be **orthogonally diagonalizable** if there is an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1} = PDP^{T}$.
- **Note:** For an $n \times n$ matrix to be orthogonally diagonalizable, it should have n linearly independent and orthonormal eigenvectors. We see that this happens only in the following case:
- **Proposition 57:** If an $n \times n$ matrix A is orthogonally diagonalizable, then A is symmetric.

Proof: Suppose $A = PDP^{-1} = PDP^{T}$ is orthogonally diagonalizable. Then $A^{T} = (PDP^{-1})^{T} = (PDP^{T})^{T} = (P^{T})^{T}D^{T}P^{T} = (PDP^{T})$, since D is a diagonal matrix. But $PDP^{T} = A$, so $A^{T} = A$, and so A is symmetric.

Diagonalization of Symmetric Matrices (Cont'd)

- **Definition:** The set of eigenvalues of a matrix A is called the **spectrum** of A.
- Theorem 7 (Spectral Theorem for Symmetric Matrices): An n × n symmetric matrix A has the following properties:
 - The eigenspaces are mutually orthogonal (i.e. eigenvectors corresponding to different eigenvalues are orthogonal)
 - \bigcirc A has n real eigenvalues, counting (algebraic) multiplicities
 - A is orthogonally diagonalizable
 - ① The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ (as a root of the characteristic equation) i.e., the geometric multiplicity is equal to the algebraic multiplicity.

Remarks about the Spectral Theorem

- The proof of Statement (a) has already been given above (Proposition 55).
- It can be shown that for symmetric real matrices, every eigenvalue is real. The Statement (b) follows from exercises. (Exercise: see questions 23 and 24 on page 341 of Lay which contain hints.)
- Statement (d) follows from Statement (c) by using the Diagonalization Theorem.

Proof of Theorem 7 (b)

Theorem 7 (b): Every eigenvalue of a real symmetric matrix is real, i.e., if A is an $n \times n$ real symmetric matrix, then its characteristic polynomial has only real roots (no complex roots).

Step 1 (Lay: Problem 23/Page 341): Let A be an $n \times n$ real symmetric matrix, and let $X \in \mathbb{C}^n$. Put $q = \overline{X}^T A X$, where \overline{X} is complex conjugate of X. Then q is real.

Proof: We have:

$$\overline{q} = \overline{X}^T A X$$
 (by definition)
$$= X^T \overline{AX} \quad \text{(since } \overline{\overline{Y}} = Y \text{ for any } Y \in \mathbb{C}^n \text{)}$$

$$= X^T A \overline{X} \quad (\overline{A} = A, \text{ conjugate of a product is product of conjugates)}$$

$$= (X^T A \overline{X})^T \quad \text{(since transpose of a scalar is equal to itself)}$$

$$= \overline{X}^T A^T X \quad \text{(since}(AB)^T = B^T A^T \text{)}$$

$$= \overline{X}^T A X \quad \text{(since A is symmetric)} = q. \text{ Since } \overline{q} = q, \ q \text{ is real.}$$

Proof of Theorem 7 (b) (Cont'd)

Step 2 (Lay: Problem 24/Page 341): Show that if $AX = \lambda X$ for non-zero vector X in \mathbb{C}^n , then λ is in fact real, and the real part of X is in fact an eigenvector of A (in \mathbb{R}^n).

Proof: Consider $q = \overline{X}^T A X$. By Step 1, q is known to be real.

Now,
$$q = \overline{X}^T (\lambda X)$$
 (since X is an eigenvector)
= $\lambda (\overline{X}^T X)$ (1)

Claim: $\overline{X}^T X$ is real and > 0

Put
$$X = \begin{bmatrix} a_1 + b_1 i \\ \vdots \\ a_n + b_n i \end{bmatrix} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$
, where $z_i \in \mathbb{C}$

Proof of Theorem 7 (b) (Cont'd)

Then
$$\overline{X}^T X = [\overline{z_1} \dots \overline{z_n}] \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = z_1 \overline{z_1} + \dots + z_n \overline{z_n} > 0$$
, since X is

non-zero. This proves the claim.

Putting $\overline{X}^TX=r\in\mathbb{R}, r>0$, we get $q=\lambda r$ from (1), whence $\lambda=\frac{q}{r}$ is again real, as desired.

Finally, if X = U + iV, where $U, V \in \mathbb{R}^n$. Then

$$AX = A(U + iV) = AU + iAV$$

= $\lambda X = \lambda (U + iV) = \lambda U + i\lambda V$

Equating real and imaginary parts, $AU = \lambda U$, and we are done.

The Spectral Theorem in Practice

- In numerical examples, we first factorize the characteristic polynomial.
 We will always get as many real roots (counting multiplicities) as the dimension of the matrix, i.e. complex roots will not occur.
- While row reducing the matrix $A \lambda I$ for any eigenvalue λ to solve the associated homogeneous system, we get as many free variables as the algebraic multiplicity of λ . Thus we get the desired number of basis vectors.
- For each eigenspace of dimension greater than one, we obtain an orthogonal basis by using the Gram-Schmidt process.
- Finally we normalize all the basis vectors.

Numerical Example for Symmetric Matrices

$$A = egin{bmatrix} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 2 \end{bmatrix}, \quad \det(A - \lambda I) = -(\lambda - 1)^2(\lambda - 4)$$

Putting
$$\lambda = 4$$
: $A - \lambda I = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Solving the system, we get $u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as an eigenvector.

After normalizing it, we obtain: $v_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Numerical Example for Symmetric Matrices (Cont'd)

Putting
$$\lambda = 1$$
: $A - \lambda I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Solving the system, we get:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} x_2 + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} x_3$$

We thus get

$$u_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
 $(x_2 = -1, x_3 = 0)$ and $u_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $(x_2 = 0, x_3 = -1)$ as

eigenvectors.

We see that $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = 0$, but $\langle u_2, u_3 \rangle = 1 \neq 0$.

So now we have to apply Gram-Schmidt orthogonalization process to the basis $\{u_2, u_3\}$ of eigenspace $E_{\lambda=1}$ corresponding to eigenvalue $\lambda=1$.

Numerical Example for Symmetric Matrices (Cont'd)

$$u_{2}' = u_{2} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$u_{3}' = u_{3} - \frac{\langle u_{3}, u_{2}' \rangle}{\langle u_{2}', u_{2}' \rangle} u_{2}' = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 \\ 1/2 \\ -1 \end{bmatrix}$$

Now, normalize u_2', u_3' to get: $v_2=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\\0\end{bmatrix}$ and $v_3=\frac{1}{\sqrt{6}}\begin{bmatrix}1\\1\\-2\end{bmatrix}$

Numerical Example for Symmetric Matrices (Cont'd)

Check: We must have $A = PDP^{-1} = PDP^{T}$ or AP = PD, where P has v_1, v_2 and v_3 as columns.

$$AP = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} \frac{4}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{4}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{4}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{bmatrix}$$

and,
$$PD = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{4}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{4}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{bmatrix}$$