主要内容

- 从专才到通才的转换;
- 更好控制模型的行为,消除bias和toxic;
- 提高参数效率;

专才与通才

Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

- delta为SFT后的模型与预训练模型的增量;
- 简单将参数相加,直观;
- 问题:参数冲突; math的模型和code的模型SFT参数在一些地方有冲突,直接相加会造成能力损失;
- 解决:随机丢弃一些参数的增量delta,可以发现随着LM的size增加,其对于任务的完成依然很好(math上70B甚至99%);这说明SFT更新的大部分参数都是非常冗余的;
- (或许不应该随机drop,应该根据参数更新的幅值来drop,更新大的或许才是重要参数)
 - The delta parameters of both encoder- and decoder-based LMs are highly redundant.
 - The tolerance of drop rates increases with the sizes of LMs

Figure 3: Performance of various decoder-based LMs on AlpacaEval, GSM8K, and HumanEval.

• 方案:通过丢弃大部分delta参数来解决参数冲突;

Table 1: Results of merging decoder-based LMs by Task Arithmetic, where LM, Math, and Code are the abbreviations of WizardLM-13B, WizardMath-13B, and llama-2-13b-code-alpaca. We use blue, green, and red colors to distinguish each single model and utilize mixed colors to denote the merged models. The best and second-best results among the single model, the merged models with and without DARE are marked in **bold** and underlined fonts.

Merging	Models	Preprocess	Instruction- Following	Mathematical Reasoning		Code- Generating	
Methods		Treprocess	AlpacaEval	GSM8K MATH		HumanEval	MBPP
Single Model	LM	/	67.20	2.20	0.04	36.59	34.00
	Math	/	/	64.22	14.02	/	/
	Code	/	/	/	/	23.78	27.60
Task Arithmetic	LM	No	67.04	66.34	<u>13.40</u>	<u>28.66</u>	30.60
	& Math	w/ DARE	67.45	<u>66.26</u>	12.86	26.83	<u>32.40</u>
	LM	No	68.07	/	/	<u>31.70</u>	<u>32.40</u>
	& Code	w/ DARE	<u>67.83</u>	/	/	35.98	33.00
	Math	No	/	64.67	13.98	8.54	8.60
	& Code	w/ DARE	/	65.05	13.96	<u>10.37</u>	9.80
	LM & Math	No	69.03	<u>58.45</u>	9.88	18.29	29.80
	& Code	w/ DARE	69.28	56.48	<u>10.16</u>	<u>23.17</u>	31.60

实验来看,在2、3个任务上面参数融合是有效的;但是在更多的任务融合性能会较大下降;

任务参数delta1和delta2的相加,和多个任务同时SFT(或者持续学习)得到的delta-multi是否相同?若任务相互独立,则可以 实现任务的解耦合;

LORAHUB:EFFICIENT CROSS-TASK GENERALIZATION VIA DYNAMIC LORA COMPOSITION

把多个任务得到的Lora模块统一存为一个hub;

基于具体任务对特定的lora模型进行组合,得到最终的权重;

缺点:效果有限;

消除bias

EDITING MODELS WITH TASK ARITHMETIC

两个任务相加,基本上能力都能获得;

专门构造有害模型,通过取反增量可以实现消除别的模型的bias;

c) Learning via addition

Example: building a multi-task model

但是向量之间是有冲突的, 论文里面没有体现;

提高参数效率

MOE

表示坍缩:可能路由策略喜欢把embedding全传入到少数几个expert中; 通过模型融合的方式,把不常被使用的专家模型融合在一起,提高参数效率和减小存储占用;

• 根据频率作为权重,将参数直接相加;

Merge之后发现矩阵的秩下降了(原因未说明),因此矩阵可以被进一步分解减小;相比于剪枝的方案,该方法在大多数任务上得到了最好的结果;compress之后计算量和size进一步减小;

Table 2: Performance evaluations on the *switch-base-32* model with 32 experts in each SMoE layer, as well as its comparative dense model *t5-base*. We found the first SMoE layer has a profound impact on the model's performance, and merging it results in more significant performance degradation compared to other layers. Thus for all merging/compression mechanisms, the first SMoE layer is skipped following Ma et al. (2023), and it maintains an average of 8 experts in other SMoE layers. We report *exact-match/F1-score* for SQuAD and HotpotQA, *F1-score* for MultiRC, and *accuracy* for other tasks. For each task, we highlight the best performance over all baselines in blue, and mark the performance no worse than full SMoE in **bold**.

Methods	Model Size	TFLOPs	SST-2	MRPC	MultiRC	COPA	WinoGrande	SQuAD	WikiQA	HotpotQA
Dense	220M	4.65	94.61	88.97	74.25	58.00	58.72	63.65/83.76	96.12	66.13/83.45
Full SMoE	2.0B	4.65	95.75	90.20	76.19	68.00	61.80	65.39/85.81	96.45	67.55/84.60
Pruning	733M	4.65	94.50	88.97	75.13	63.00	61.64	64.80/85.13	96.27	67.39/84.56
Task-Specific	733M	4.65	91.28	82.04	53.63	52.00	58.56	54.40/78.00	95.24	64.70/82.76
Averaging	733M	4.65	92.66	88.73	74.04	62.00	59.59	64.49/84.75	96.19	67.36/84.61
ZipIt	733M	4.65	93.12	91.18	75.26	65.00	60.38	65.01/85.06	96.05	67.59/84.70
REPAIR	733M	4.65	92.89	90.44	74.44	65.00	61.48	64.67/84.84	96.27	67.67/84.77
Git Re-basin	733M	4.65	93.35	88.24	74.25	65.00	59.25	64.61/84.92	96.23	67.29/84.46
M-SMoE	733M	4.65	94.50	90.69	75.57	68.00	61.80	65.66 /85.49	96.34	67.91/84.83
MC-SMoE	381M	3.83	93.35	89.22	73.98	67.00	59.52	65.41 /85.30	96.08	67.64/84.77

从结果来看, 秩的下降会给结果带来一定损失但是不大;