

What is Windows Server Management?

Windows Server Management refers to the processes, tools, and practices used to install, configure, monitor, secure, and maintain a Windows Server operating system and the services it provides (e.g., Active Directory, DNS, DHCP, file sharing, etc.).

Key Components of Windows Server

- 1. Windows Server OS Versions (most common):
 - Windows Server 2016
 - Windows Server 2019
 - Windows Server 2022

2. Server Roles & Features:

- Active Directory Domain Services (AD DS) central identity management.
- o **DNS Server** domain name resolution.
- **DHCP Server** automatic IP address assignment.
- File and Storage Services shared folders and storage.
- Web Server (IIS) hosting web apps.
- **Hyper-V** virtualization platform.

X Core Server Management Tools

1. Server Manager

GUI-based tool to add roles, manage services, and monitor server performance.

2. Windows Admin Center

Modern web-based server management tool (free from Microsoft).

3. PowerShell

 Command-line scripting language for automation and remote server management.

4. Remote Server Administration Tools (RSAT)

Tools for managing other servers from a Windows client machine.

5. Group Policy Management Console (GPMC)

• Manages security settings and configurations across domain-joined computers.

a Common Server Management Tasks

1. Installation & Configuration

- Install Windows Server OS (GUI or Core).
- Configure network settings, hostname, and domain membership.
- Install required roles and features.

2. User and Group Management

- Create and manage users via Active Directory.
- Assign permissions via security groups.
- Apply Group Policies (GPOs).

3. Network Services Management

- Set up DHCP and DNS.
- Configure static IPs, subnets, routing.
- Set up remote access or VPN if needed.

4. Security Management

- Set up firewalls and Windows Defender.
- Manage user rights and file permissions.
- Patch management and update scheduling.
- Configure backups and recovery.

5. Performance Monitoring & Troubleshooting

- Use Task Manager, Performance Monitor, and Event Viewer.
- Monitor CPU, RAM, Disk I/O, and network traffic.
- Investigate service failures or system crashes.

6. Virtualization (Hyper-V)

- Create and manage virtual machines (VMs).
- Configure virtual switches and resource allocation.

7. Automation & Scripting

- Use PowerShell to script common tasks (e.g., adding users, checking logs).
- Schedule tasks using Task Scheduler.

Best Practices for Windows Server Management

- Regular Backups Full + incremental.
- Least Privilege Principle Restrict admin rights.
- Patch Management Keep OS and apps up to date.
- Monitor Logs Review Event Viewer regularly.
- **Document Everything** Configuration, changes, issues, solutions.

• Redundancy and Failover – Especially for critical services.

Example Day-to-Day Admin Tasks

Task Tool Used

Add new user ADUC / PowerShell

Set GPO for password policy Group Policy Manager

Check disk usage Server Manager / PS

Restart a failed service Services.msc / PS

Backup server Windows Server Backup

Patch update Windows Update

Services

How to Learn More

1. Microsoft Learn - https://learn.microsoft.com/

2. **Books**:

- Mastering Windows Server 2019 Jordan Krause
- Windows Server Administration Fundamentals Microsoft Official Academic Course

3. Labs/Practice:

- Use Hyper-V or VirtualBox to create test environments.
- o Practice setting up domains, DNS, DHCP, and users.

What Are iLO and iDRAC?

Feature iLO (Integrated Lights-Out) iDRAC (Integrated Dell Remote Access Controller)

Vendor Hewlett Packard Enterprise (HPE) Dell Technologies

Purpose Remote server management Remote server management

Function Manage server hardware Same — manage server without OS

independently of OS interaction

Core Functions (iLO & iDRAC)

Both offer similar capabilities, including:

Remote Access

- Web-based GUI for full control.
- Virtual KVM (Keyboard-Video-Mouse) console.
- Access BIOS/UEFI, boot menu, etc.

Power Management

- Power on, off, reboot the server remotely.
- Schedule power events.

Virtual Media Mounting

- Mount ISO images (e.g., OS installer) as if a physical disk was inserted.
- Useful for OS installs or recovery without needing to visit the datacenter.

Hardware Monitoring

- Monitor CPU, RAM, PSU, fan status, and temperatures.
- View hardware logs (System Event Log, iLO Event Log, etc.).

War & Security Management

- Create user accounts for access.
- Configure network settings (DHCP/static IP).
- Enable SSL, LDAP integration, 2FA (advanced features).

Mow They Work

iLO:

- Default IP is often set via BIOS or DHCP.
- Access via web browser: https://<ilo-ip>
- Username: Administrator (by default)
- Advanced features may require a license (e.g., iLO Advanced for remote console).

iDRAC:

- Default IP often printed on the server or set via Lifecycle Controller.
- Access via: https://<idrac-ip>
- Username: root, Password: calvin (default, should be changed!)
- Advanced features require iDRAC Enterprise license.

Use Cases

- Reboot a frozen server.
- Install a fresh OS remotely.
- Monitor hardware without OS involvement.
- Update BIOS or firmware.
- Troubleshoot boot failures (e.g., failed disks, bad memory).

Security Considerations

- Always change default credentials.
- Place iLO/iDRAC on a secure management network or VLAN.
- Enable SSL and update firmware regularly.
- Limit access via firewall or VPN.

iLO vs iDRAC at a Glance

Feature	iLO (HPE)	iDRAC (Dell)
Remote Console (basic)	Free	Free
Virtual Media (ISO mount)	Requires license (iLO Advanced)	Requires license (iDRAC Enterprise)
HTML5 Console	Yes	Yes
IPMI Support	Yes	Yes
Firmware Update	Yes	Yes

Pro Tips

- Use IPMI (Intelligent Platform Management Interface) tools like ipmitool or OpenManage to script or automate server control.
- You can integrate iLO/iDRAC into monitoring systems (e.g., Zabbix, Nagios) for hardware health checks.
- Use **DNS** naming for iLO/iDRAC interfaces (e.g., ilo-server1.domain.local) to make access easier.

If you're managing physical servers, learning how to effectively use iLO/iDRAC is crucial for **24/7 uptime**, **remote troubleshooting**, and **disaster recovery**.

What is logical networking

Logical networking refers to the creation of **virtualized or abstracted network structures** that operate independently of the underlying physical network hardware (like switches, routers, cables, etc.). It's a key concept in modern IT infrastructures, especially in virtualization, cloud computing, and software-defined networking (SDN).

In Simple Terms

Logical networking = Virtualized networking defined by software, not by cables or physical ports.

Instead of being limited by physical devices, you **create and manage networks in software**, allowing for greater flexibility, scalability, and automation.

WATER OF LOGICAL Networking

1. VLANs (Virtual Local Area Networks)

- Divide one physical switch into multiple logical networks.
- Devices in different VLANs can't talk to each other without routing.

2. Virtual Switches (vSwitches)

- Used in hypervisors like VMware ESXi, Hyper-V.
- Connect virtual machines (VMs) to each other or to the outside world without physical switches.

3. Subnets and IP Schemas

- Logical division of IP address space.
- Helps control traffic flow and access.

4. Software-Defined Networking (SDN)

- Centralized control of the network via software.
- Logical rules define how traffic flows.

5. Cloud Networking

- In AWS, Azure, or Google Cloud, you define VPCs (Virtual Private Clouds), subnets, firewalls all logical, not physical.
- You can route traffic, create VPNs, and isolate workloads virtually.

Logical vs Physical Networking

Feature	Physical Networking	Logical Networking
Based on	Physical devices (routers, switches)	Software-defined structures
Flexibility	Limited by hardware	Highly flexible and scalable
Cost	Requires physical investment	Uses existing infrastructure more efficiently
Used in	Traditional data centers	Virtualization, cloud, modern data centers
Examples	Cables, ports, NICs, routers	VLANs, subnets, virtual switches, VPCs

X Why Logical Networking Matters

- Scalability: Easily create or remove networks as needed.
- Security: Isolate workloads and environments (e.g., dev vs prod).
- **Automation**: Manage networks with code (Infrastructure as Code).
- **Disaster Recovery**: Rapid redeployment of entire networks.
- Multi-tenancy: Serve multiple clients securely on the same hardware.

Common Logical Networking Terms

Term	Description

VLAN Virtual LAN to segment traffic within a switch

vSwitch Software switch inside a hypervisor (e.g., Hyper-V)

VPC Virtual Private Cloud (AWS, Azure, GCP)

Subnet Logical subdivision of an IP network

NSG/ACL Security rules (firewalls) applied logically

Overlay Network Logical network on top of another network (e.g., VXLAN)

★ 1. Peer-to-Peer (P2P) Network

What It Is:

A P2P network is a simple, decentralized network model where each computer (peer) acts as both a client and a server.

Characteristics:

- No central server or domain controller.
- Each computer manages its own users and resources.
- Best for small networks (e.g., home or small office).

Example:

- PC1 shares a folder.
- PC2 accesses it using local credentials (e.g., a user account created manually on both PCs).

Pros:

Easy to set up.

- No expensive infrastructure needed.
- Each PC is independent.

X Cons:

- Hard to manage at scale.
- No central control of users or policies.
- Security and permissions must be managed manually per device.

2. Domain Client (Client-Server) Network

🧠 What It Is:

A **Domain network** is a **centralized** network where a server (Domain Controller) manages user accounts, security, and resources.

- Based on Active Directory Domain Services (AD DS).
- Computers "join" a domain and become **domain clients**.

Characteristics:

- Centralized login and policy management.
- Single sign-on (SSO) for domain resources.
- Administrators manage users, groups, and permissions from one place.

Example:

- PC1, PC2, and PC3 all joined to corp.local domain.
- A user logs in with their domain account and accesses shared drives or printers without re-authenticating.

Pros:

- Centralized management of users, security, and updates.
- Scalable for large environments.
- Group Policy for enforcing rules and policies.
- Easier backup and monitoring.

X Cons:

- Requires Windows Server with Active Directory.
- More complex setup and maintenance.
- Domain controller is a critical point if it fails, services can be affected.

Summary Comparison

Feature	Peer-to-Peer (P2P)	Domain Client (Domain)
Structure	Decentralized	Centralized (server-based)
Best For	Small networks (≤10 PCs)	Medium to large networks
User Management	Local accounts per PC	Central (Active Directory)
Security Control	Manual on each device	Centralized (GPO, AD)
Requires Windows Server?	No	Yes (for Domain Controller)
Cost	Low	Higher (server & licenses)
Scalability	Poor	Excellent

🧖 Real-World Use Cases

Use Case Model to Use

Home network Peer-to-Peer

Small office (3–5 computers) Peer-to-Peer

Company with 50+ employees and Domain Client

policies

School or government office Domain Client

Quick Tips

• If you want **central login, password policies, shared drives**, and user/group management — **use a domain**.

- For quick file sharing or gaming between 2–3 PCs **P2P is enough**.
- Windows 10/11 Pro editions support joining a domain; Home editions do **not**.