1

Chapitre

Introduction

1. Charge et courant

1.1.Charge

Définition et valeurs

Définition 1.1 : Charge électrique

Propriété fondamentale de la matière qui caractérise son intéraction avec les champs électromagnétiques

Elle est quantifiée : c'est un multiple entier de la charge élémentaire $e=1.602\cdot 10^{-19}~{\rm C}$

• électron : $q_{e-} = -e$

• proton : $q_e = +e$

• neutron : $q_n = 0$

1.1. Courant

Définition

Définition 1.2 : Courant

C'est le débit de charge dans un conducteur, noté $i(t)=\frac{\mathrm{d}q(t)}{\mathrm{d}t}$. Il peut être continu (les charges se déplacent dans le même sens) ou alternatif (sens du déplacement oscille).

Il est mesuré par l'intensité du courant et s'exprime en Ampère : C/s

1. Potentiel électrique, tension et dipôles

1.2. Définitions

Définition 2.1: Tension électrique

On appelle tension électrique la différence de potentielle $u_{AB}=V_A-V_B=\frac{Ep(A)-Ep(B)}{q}$. Elle traduit le changement de potentiel de la charge q entre A et B et s'exprime en Volt.

Définition 2.2 : Dipôle

Un composant qui possède deux pôles, appelées bornes. Ils fournissent ou consomment de l'énergie/puissance.

$\widehat{\pi}$

Définition 2.3: Puissance

Elle correspond au débit d'énergie à travers le dipôle et s'exprime en Watt (J/s). Dans un circuit la puissance fournie est intégralement consommée.

Définition 2.4 : Circuit

Un ensemble de dipôles reliés par des fils électriques idéaux (conducteur parfait). Deux points reliés par un conduteur parfait sont au même potentiel

1.2. Conventions

Générateur

La puissance le traversant est négative : P < 0 et le sens positif du courant est orienté comme la tension.

Récepteur

La puissance le traversant est positive : P > 0 et le sens positif du courant est orienté dans le sens opposé à la tension.

(c) convention générateur, (d) convention récepteur.

1 Dipôles élémentaires

Ils permettent en les assemblant de modéliser le comportement électrique de tout circuit électrique réel. Ils sont parcourus par un courant et ont une tension à leur borne. On caractérise leur propriété par une courbe courant/tension de la forme i=f(u). Cette courbe se nomme carractéristique courant/tension.

1.3. Générateur de tension idéal

Il impose une tension U_0 assez grande entre ses bornes quelque soit le dipôle auquel il est connecté.

1.3. Générateur de courant idéal

Il maintient un courant I_0 constant quelque soit les dipôles connectés

1.3. Résistance

C'est un dipôle récepteur dont la tension entre ses bornes est proportionnelle au courant qui le traverse avec un coefficient de proportiona-

lité R en Ω . On a $U=R\times I$. C'est le seul dipôle à dissiper l'énergie sous forme de chaleur par effet Joule

1.3. ¢ondensateur idéal

C'est un sipôle dont la tension à ses bornes et le courant sont reliés par $i=C\frac{\mathrm{d}U}{\mathrm{d}t}$ ou $U=\frac{q}{C}$ avec q la charge accumulée dans le condensateur. et C la capacité du condensateur qui s'exprime en Farad F.

Pour une tension constante, on a un courant nul, donc il se comporte comme un interrupteur fermé.

1.3. Bobine idéale

C'est un dipôle dont la tension à ses bornes et le courant sont reliés par : $U=L\frac{\mathrm{d}i}{\mathrm{d}t}$ où L est l'inductance propre de la bobine (en Henry H) .

Pour un courant constant, on a une tension nulle, donc cela se comporte comme un court-circuit.

Pour la fabriquer, on réalise un enroulement de fil conducteur (souvant autour d'un barreau ferro-magnétique). L dépend ud nombre de tour, du diamètre du tube et des prorpriétés du barrea, la permeabilité lagnétique relative

