Part 1: Background

- Probabilistic Pipeline
 - (Assumptions -> Model, Data) -> Discover Patterns -> Predict & Explore
- Probabilistic Machine Learning
 - probabilistic model: p(z, x)
 - z hidden. variables
 - x observed variables
 - o inference about unknowns through the **posterior**: $p(z|x) = rac{p(z,x)}{p(x)}$
 - For most interesting models, the denominator is intractable
 - Hence approximate posterior inference is required
 - lacktriangledown MCMC forms a Markov Chain whose stationary distribution is p(z|x)
 - Variational Inference
- Variational Inference

0

- VI turns inference into optimization.
- ullet Posit a **variational family** of distributions over the latent variables, $q(\mathbf{z}; oldsymbol{v})$
- ullet Fit the **variational parameters** u to be close (in KL) to the exact posterior.
 - There are alternative divergences, which connect to algorithms like EP, BP, and others.
- Posterior Predictive Distributions
- Modern VI: probabilistic programming, RL, NNs, Convex optimization, Bayesian Statistics
- VI + Stochastic Optimisation
 - scale up VI to massive data
 - enable VI on a wide class of difficult models
 - enable VI with elaborate and flexible families of approximations

Part 2: Mean-field VI and Stochastic VI

- Topic models: Use posterior inference to discover the hidden thematic structure in a large collection of documents. Eg. LDA
- LDA

٥

- idea:
 - Each **topic** is a distribution over words
 - Each **document** is a mixture of corpus-wide topics
 - Each word is drawn from one of those topics
- A **Mixed Membership model** for which the Z is intractable.
- $p(\beta, \boldsymbol{\theta}, \mathbf{z} \mid \mathbf{w}) = \frac{p(\beta, \boldsymbol{\sigma}, \mathbf{z}, \mathbf{w})}{\int_{\beta} \int_{\boldsymbol{\theta}} \sum_{\mathbf{z}} p(\beta, \boldsymbol{\theta}, \mathbf{z}, \mathbf{w})}$
- ${\bf \circ}$ $\;$ The denominator, p(w) is intractable and requires approximate inference. Define the generic class of conditionally conjugate models Derive classical mean-field VI

Derive stochastic VI, which scales to massive data

Generic Class of Conditionally Conjugate Models

$$p(\beta, \mathbf{z}, \mathbf{x}) = p(\beta) \prod_{i=1}^{n} p(z_i, x_i | \beta)$$

- The **observations** are $\mathbf{x} = x_{1:n}$
- The **local variables** are $\mathbf{z}=z_{1:n}$
- The **global variables** are β .
- The ith data point x_i only depends on z_i and eta.
- Compute $p(\beta, \mathbf{z}, \mathbf{x}) = p(\beta) \prod_{i=1}^n p(z_i, x_i \mid \beta)$
- A complete conditional is the conditional of a latent variable given the observations and other latent variables.
- Assume each complete conditional is in the exponential family,

$$p\left(z_{i}\mid\beta,x_{i}\right)=h\left(z_{i}\right)\exp\left\{\eta_{\ell}(\beta,x_{i})^{\top}z_{i}-a\left(\eta_{\ell}\left(\beta,x_{i}\right)\right)\right\}$$

$$p(\beta\mid\mathbf{z},\mathbf{x})=h(\beta)\exp\left\{\eta_{g}(\mathbf{z},\mathbf{x})^{\top}\beta-a\left(\eta_{g}(\mathbf{z},\mathbf{x})\right)\right\}$$
The global parameter comes from conjugacy and has a particular form: [Bernardo and Smith, 1994]

- - $\begin{array}{ll} \bullet & \eta_g(\mathbf{z},\mathbf{x}) = \alpha + \sum_{i=1}^n t\left(z_i,x_i\right) \\ \bullet & \text{where } \alpha \text{ is a hyperparameter and } t(\cdot) \text{ are sufficient statistics for } [z_i,x_i] \text{ .} \end{array}$
- Examples:
 - o Bayesian mixture models
 - Time series models
 - Factorial models
 - Matrix Factorization
 - o Mixed-membership models (LDA etc.)
 - etc.
- Evidence Lower Bound
 - $\bullet \quad \mathscr{L}(\boldsymbol{v}) = \mathbb{E}_{\beta, z \sim q}[\log p(\beta, \mathbf{z}, \mathbf{x})] \mathbb{E}_{\beta, z \sim q}[\log q(\beta, \mathbf{z}; \boldsymbol{v})]$
 - First term is expected likelihood and the second is entropy.
 - KL is intractable as it requires knowing the posterior itself
 - VI optimizes the evidence lower bound (ELBO) instead which is a lower bound on $\log p(\mathbf{x})$.
 - Maximizing the ELBO is equivalent to minimizing the KL.
 - The ELBO trades off two terms.
 - The first term prefers $q(\cdot)$ to place its mass on the MAP estimate.
 - The second term (entropy of q) encourages $q(\cdot)$ to be diffuse.
 - Caveat: The ELBO is not convex.
 - => Find a local optimum
- Mean-Field Family

0

- A form of $q(\beta, \mathbf{z})$.
- Fully factorized: All latent variables are independent and governed by their on variational parameters.
 - $q(\beta, \mathbf{z}; \lambda, \phi) = q(\beta; \lambda) \prod_{i=1}^{n} q(z_i; \phi_i)$
- Each factor is the same family as the model's complete conditional,

$$\begin{array}{l} \bullet & p(\beta \mid \mathbf{z}, \mathbf{x}) = h(\beta) \exp \big\{ \eta_g(\mathbf{z}, \mathbf{x})^\top \beta - a\left(\eta_g(\mathbf{z}, \mathbf{x})\right) \big\} \\ q(\beta; \lambda) = h(\beta) \exp \big\{ \lambda^\top \beta - a(\lambda) \big\} \end{array}$$

Classical Mean Field VI

- $\bullet \quad \text{Optimize the ELBO, } \mathscr{L}(\lambda, \boldsymbol{\phi}) = \mathbb{E}_q[\log p(\beta, \mathbf{z}, \mathbf{x})] \mathbb{E}_q[\log q(\beta, \mathbf{z})]$
- Traditional VI uses coordinate ascent [Ghahramani and Beal, 2001]
 - $\begin{array}{ll} \bullet & \lambda^* = \mathbb{E}_{\phi} \left[\eta_g(\mathbf{z}, \mathbf{x}) \right] \\ \bullet & \phi_i^* = \mathbb{E}_{\lambda} \left[\eta_{\ell} \left(\beta, x_i \right) \right] \end{array}$
- Iteratively update each parameter, holding others fixed.
 - Notice the relationship to Gibbs sampling [Gelfand and Smith, 1990]
 - In Gibbs Sampling we iteratively sample from the distributions,
 - In VI we set it to the expectation
 - Caveat: The ELBO is not convex.
- Mean Field VI for LDA

- The local variables are the per-document variables $heta_d$ and \mathbf{z}_d .
- The global variables are the topics β_1, \ldots, β_K
- The variational distribution is
- $q(oldsymbol{eta},oldsymbol{ heta},\mathbf{z}) = \prod_{k=1}^{K} q\left(eta_{k};\lambda_{k}
 ight) \prod_{d=1}^{D} q\left(heta_{d};\gamma_{d}
 ight) \prod_{n=1}^{N} q\left(z_{d,n};\phi_{d,n}
 ight)$
- Algorithm
 - **Input**: data x, model $p(\beta, \mathbf{z}, \mathbf{x})$.
 - Initialize λ randomly.
 - repeat until the ELBO has converged:
 - for each data point i:
 - $\qquad \qquad \text{Set local parameter } \phi_i \leftarrow \mathbb{E}_{\lambda} \left[\eta_\ell \left(\beta, x_i \right) \right] \\ = \quad \text{Set global parameter } \lambda \leftarrow \alpha + \sum_{i=1}^n \mathbb{E}_{\phi_i} \left[t \left(Z_i, x_i \right) \right]$
- - Need to local computation for each data point, aggregate them to reestimate the global structure and repeat.
- Solution: Stochastic VI scales VI to massive data.

Stochastic VI

• Stochastic Optimization

- With noisy gradients, update
 - $lacksquare v_{t+1} = v_t +
 ho_t \hat{
 abla}_v \mathscr{L}(v_t)$
- Requires unbiased gradients, $\mathbb{E}\left[\hat{\nabla}_{
 u}\mathscr{L}(v)
 ight]=
 abla_{v}\mathscr{L}(v)$
- ullet Requires the step size sequence ho_t follows the Robbins-Monro conditions

Stochastic VI

- The natural gradient of the ELBO [Amari, 1998; Sato, 2001]
 - $abla_{\lambda}^{\mathrm{nat}}\mathscr{L}(\lambda) = \left(\alpha + \sum_{i=1}^{n} \mathbb{E}_{\phi_{i}^{*}}\left[t\left(Z_{i}, x_{i}\right)\right]\right) \lambda$
 - second term is the sum of expectations of the sufficient statistics.
- · Construct a noisy natural gradient,

$$j \sim \text{ Uniform } (1,\ldots,n)$$

$$\hat{\nabla}_{\lambda}^{\text{nat}} \, \mathscr{L}(\lambda) = \alpha + n \mathbb{E}_{\phi_j^*} \left[t \left(Z_j, x_j \right) \right] - \lambda$$
 o This is a good noisy gradient.

- - Its expectation is the exact gradient (unbiased).
 - It only depends on optimized parameters of one data point (cheap).
- o Algorithm:
 - Input: data x, model $p(\beta, \mathbf{z}, \mathbf{x})$.
 - Initialize λ randomly. Set ρ_t appropriately.
 - repeat until forever
 - lacksquare Sample $j \sim \mathrm{Unif}(1,\ldots,n)$
 - Set local parameter $\phi \leftarrow \mathbb{E}_{\lambda}\left[\eta_{\ell}\left(eta,x_{j}
 ight)
 ight]$
 - Set intermediate global parameter $\hat{\lambda}=\alpha+n\mathbb{E}_{\phi}\left[t\left(Z_{j},x_{j}\right)
 ight]$
 - Set global parameter $\lambda = (1ho_t)\,\lambda +
 ho_t\hat{\lambda}$
- Eg. LDA
 - 1. Sample a document
 - 2. Estimate the local variational parameters using the current topics
 - 3. Form intermediate topics from those local parameters
 - 4. Update topics as a weighted average of intermediate and current topics

Part 3: Stochastic gradients of the ELBO

VI Recipe

$$p(\mathbf{x}, \mathbf{z}) = \int (\cdots) q(\mathbf{z}; \nu) d\mathbf{z} \qquad \nabla_{\nu} = \nabla_{\nu}$$

- Start with a model: p(z,x)
- Choose a variational approximation: $q(\mathbf{z}; \mathbf{v})$
- Write down the ELBO: $\mathscr{L}({m v}) = \mathbb{E}_{q({f z};{m v})}[\log p({f x},{f z}) \log q({f z};{m v})]$
- Take derivatives: $\nabla_v \mathcal{L}$
- Optimize: $v_{t+1} = v_t + \rho_t \nabla_v \mathscr{L}$

- Example: Bayesian Logistic Regression
 - ullet Data pairs y_i, x_i
 - ullet x_i are covariates
 - y_i are label
 - ullet z is the regression coefficient
 - Generative process

$$p(z) \sim N(0,1)$$
 $p(y_i \mid x_i, z) \sim \mathrm{Bernoulli}(\sigma(zx_i))$

- VI for Bayesian LR
 - Assume:
 - We have one data point (y, x)
 - \mathbf{x} is a scalar
 - lacksquare The approximating family q is the normal; $oldsymbol{v}=\left(\mu,\sigma^2
 ight)$
 - The ELBO is

$$\begin{split} \mathscr{L}\left(\mu,\sigma^{2}\right) &= \mathbb{E}_{q}[\log p(z) + \log p(y\mid x,z) - \log q(z)] \\ &= \mathbb{E}_{q}[\log p(z) - \log q(z) + \log p(y\mid x,z)] \\ &= -\frac{1}{2}\left(\mu^{2} + \sigma^{2}\right) + \frac{1}{2}\log\sigma^{2} + \mathbb{E}_{q}[\log p(y\mid x,z)] + C \\ &= -\frac{1}{2}\left(\mu^{2} + \sigma^{2}\right) + \frac{1}{2}\log\sigma^{2} + \mathbb{E}_{q}[yxz - \log(1 + \exp(xz))] \\ &= -\frac{1}{2}\left(\mu^{2} + \sigma^{2}\right) + \frac{1}{2}\log\sigma^{2} + yx\mu - \mathbb{E}_{q}[\log(1 + \exp(xz))] \end{split}$$

- We are stuck.
 - We cannot analytically take that expectation.
 - The expectation hides the objectives dependence on the variational parameters. This makes it hard to directly optimize.
- Want a blackbox VI algorithm that works for non-Conjugate models as well.

New Blackbox VI recipe

• Define
$$g(\mathbf{z}, \mathbf{v}) = \log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \mathbf{v})$$

$$\nabla_v \mathcal{L} = \nabla_v \int q(\mathbf{z}; \mathbf{v}) g(\mathbf{z}, \mathbf{v}) d\mathbf{z}$$

$$= \int \nabla_v q(\mathbf{z}; \mathbf{v}) g(\mathbf{z}, \mathbf{v}) + q(\mathbf{z}; \mathbf{v}) \nabla_v g(\mathbf{z}, \mathbf{v}) d\mathbf{z}$$

$$= \int q(\mathbf{z}; \mathbf{v}) \nabla_v \log q(\mathbf{z}; \mathbf{v}) g(\mathbf{z}, \mathbf{v}) + q(\mathbf{z}; \mathbf{v}) \nabla_v g(\mathbf{z}, \mathbf{v}) d\mathbf{z}$$

$$= \mathbb{E}_{q(\mathbf{z}; \mathbf{v})} \left[\nabla_v \log q(\mathbf{z}; \mathbf{v}) g(\mathbf{z}, \mathbf{v}) + \nabla_v g(\mathbf{z}, \mathbf{v}) \right]$$

Score-Function Gradients

- Simplify $\nabla_{\nu} \mathcal{L}$:
 - $\mathbb{E}_q\left[
 abla_
 u g(\mathbf{z}, oldsymbol{v})
 ight] = \mathbb{E}_q\left[
 abla_
 u \log q(\mathbf{z}; oldsymbol{v})
 ight] = 0$
 - score function has expectation zero
- Gives the gradient:
 - $\bullet \quad \nabla_v \mathscr{L} = \mathbb{E}_{q(\mathbf{z}; \boldsymbol{v})} \left[\nabla_{\nu} \log q(\mathbf{z}; \boldsymbol{v}) (\log p(\mathbf{x}, \mathbf{z}) \log q(\mathbf{z}; \boldsymbol{v})) \right]$
 - Called Score Function Estimator or likelihood ratio or REINFORCE gradients
- Noisy Unbiased Gradients with Monte-Carlo
 - $\circ \ \, \textstyle \frac{1}{S} \textstyle \sum_{s=1}^{S} \nabla_{v} \log q \left(\mathbf{z}_{s}; \boldsymbol{v}\right) \left(\log p \left(\mathbf{x}, \mathbf{z}_{s}\right) \log q \left(\mathbf{z}_{s}; \boldsymbol{v}\right)\right) \\$
 - lacksquare where $\mathbf{z}_s \sim q(\mathbf{z}; oldsymbol{v})$
 - Requirements for Inference i.e. to compute the noisy gradient of the ELBO we need
 - $\quad \blacksquare \quad \text{Sampling from } q(\mathbf{z})$
 - Evaluating $\nabla_{\nu} \log q(\mathbf{z}; \boldsymbol{v})$
 - lacksquare Evaluating $\log p(\mathbf{x}, \mathbf{z})$ and $\log q(\mathbf{z})$

- Nothing model-specific hence black-box satisfied
- Problem: Sampling rare values can lead to high scores and hence high variance
- Solution: Control Variates
 - lacksquare Replace with f with \hat{f} where $\mathbb{E}[\hat{f}(z)] = \mathbb{E}[f(z)]$.
 - ullet General such class: $\hat{f}(z) riangleq f(z) a(h(z) \mathbb{E}[h(z)])$
 - lacksquare h is a function of our choice
 - lacksquare a is chosen to minimize the variance
 - ullet Good h have high correlation with the original function f
 - For VI, need h with known q expectation:
 - Set $h(z) = \nabla_v \log q(\mathbf{z}; \boldsymbol{v})$
 - lacksquare Simple as $\mathbb{E}_{q}\left[
 abla_{
 u}\log q(\mathbf{z};oldsymbol{v})
 ight]=0$ for any q

Pathwise Gradients

- Additional assumption that aren't very restrictive and allow faster or more efficient inference.
 - $\mathbf{z} = t(\epsilon, v)$ for $\epsilon \sim s(\epsilon)$ implies $\mathbf{z} \sim q(\mathbf{z}; v)$
 - Starting with noise that comes from distribution independent of ν , transform it using a function that depends on ν so that the resulting random variable \mathbf{z} has distribution $q(\mathbf{z}; v)$

$$\epsilon \sim \mathrm{Normal}(0,1)$$

• Example: $z=\epsilon\sigma+\mu$

$$z o z \sim ext{Normal}(\mu, \sigma^2)$$

- ullet log $p(\mathbf{x},\mathbf{z})$ and $\log q(\mathbf{z})$ are differentiable with respect to \mathbf{z}
- Pathwise Estimator
 - Rewrite $abla_{
 u}\mathscr{L}$ using using $\mathbf{z}=t(\pmb{\epsilon},\pmb{v})$
 - $\qquad \nabla_{\nu} \mathscr{L} = \mathbb{E}_{s(\epsilon)} \left[\nabla_{\nu} \log s(\epsilon) g(t(\epsilon, v), v) + \nabla_{v} g(t(\epsilon, v), v) \right]$
 - Now the first term is zero as $\nabla_{\nu} \log s(\epsilon) = 0$.
 - Simplify:

$$egin{aligned}
abla \mathscr{L}(v) &= \mathbb{E}_{s(\epsilon)} \left[
abla_v g(t(\epsilon, v), v)
ight] \ &= \mathbb{E}_{s(\epsilon)} \left[
abla_{\mathbf{z}} [\log p(\mathbf{x}, \mathbf{z}) \log q(\mathbf{z}; oldsymbol{v})]
abla_v t(\epsilon, v) -
abla_v \log q(\mathbf{z}; oldsymbol{v})
ight] \ &= \mathbb{E}_{s(\epsilon)} \left[
abla_{\mathbf{z}} [\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; oldsymbol{v})]
abla_v t(\epsilon, v) -
abla_v \log q(\mathbf{z}; oldsymbol{v})
ight] \end{aligned}$$

- lacksquare This again uses $\mathbb{E}_q\left[
 abla_
 u\log q(\mathbf{z};oldsymbol{v})
 ight]=0$
- Also known as the **reparameterization gradient**.
- Variance: Pathwise > Score function with control variate > Score Function

Amortized Inference

- SVI revisited:
 - Input: data x, model $p(\beta, \mathbf{z}, \mathbf{x})$.
 - Initialize λ randomly. Set ρ_t appropriately.
 - repeat until forever
 - lacksquare Sample $j \sim \mathrm{Unif}(1,\ldots,n)$
 - Set local parameter $\phi \leftarrow \mathbb{E}_{\lambda}\left[\eta_{\ell}\left(eta,x_{j}
 ight)
 ight]$
 - Set intermediate global parameter $\hat{\lambda} = \alpha + n \mathbb{E}_{\phi} \left[t \left(Z_j, x_j \right)
 ight]$
 - Set global parameter $\lambda = (1ho_t)\,\lambda +
 ho_t\hat{\lambda}$
- *Problem*: The expectaitons are no longer tractable and require stochastic optimization. But that stochastic optimisation for each data point make it too slow.
- ullet Solution: Learn a mapping f from x_i to ϕ_i
 - ELBO:
 - $\mathscr{L}(\lambda, \phi_{1...n}) = \mathbb{E}_q[\log p(\beta, \mathbf{z}, \mathbf{x})] \mathbb{E}_q[\log q(\beta; \lambda) + \sum_{i=1}^n q(z_i; \phi_i)]$
 - Amortizing the ELBO with inference network f:
 - $\mathscr{L}(\lambda, \theta) = \mathbb{E}_q[\log p(\beta, \mathbf{z}, \mathbf{x})] \mathbb{E}_q\left[\log q(\beta; \lambda) + \sum_{i=1}^n q\left(z_i \mid x_i; \phi_i = f_{\theta}\left(x_i\right)\right)\right]$
- Amortized SVI
 - Input: data x, model $p(\beta, \mathbf{z}, \mathbf{x})$.
 - Initialize λ randomly. Set ρ_t appropriately.
 - repeat until forever
 - Sample $\beta \sim q(\beta; \lambda)$
 - lacksquare Sample $j \sim \mathrm{Unif}(1,\ldots,n)$

- Sample $z_{j} \sim q\left(z_{j} \mid x_{j}; \phi_{\theta}\left(x_{j}\right)\right)$
- Compute stochastic gradients

$$\hat{
abla}_{\lambda} \mathscr{L} =
abla_{\lambda} \log q(eta; \lambda) \left(\log p(eta) + n \log p\left(x_{j}, z_{j} \mid eta
ight) - \log q(eta)
ight) \ \hat{
abla}_{ heta} \mathscr{L} = n
abla_{ heta} \log q\left(z_{j} \mid x_{j}; heta
ight) \left(\log p\left(x_{j}, z_{j} \mid eta
ight) - \log q\left(z_{j} \mid x_{k}; heta
ight)
ight)$$

- Update
 - $\lambda = \lambda + \rho_t \hat{\nabla}_{\lambda}$
 - $\bullet \quad \theta = \theta + \rho_t \hat{\nabla}_{\theta}$
- Computational-Statistical tradeoff: Amortized inference is faster but admits a smaller class of approximations whose size depends on the flixibility of f.

Rules of Thumb for a New Model

- If $\log p(\mathbf{x}, \mathbf{z})$ is \mathbf{z} differentiable
 - ullet Try out an approximation q that is reparameterizable
- ullet If $\log p(\mathbf{x},\mathbf{z})$ is not \mathbf{z} differentiable
 - use score function estimator with control variates
 - Add further variance reductions based on experimental evidence
- General Advice:
 - Use coordinate specific learning rates (eg. RMSProp, AdaGrad)
 - Annealing + Tempering
 - \circ Consider sampling across samples from q (embarassingly parallelable)

Part 4: Beyond the Mean-field

•

- $\bullet \ \ q_G(\mathbf{z}; \boldsymbol{v}) = \mathscr{N}(\mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Beyond Gaussian Approximations
 - Autoregressive distributions:

 - $\begin{array}{ll} \bullet & q_{AR}(\mathbf{z}; \boldsymbol{v}) = \prod_k q_k \left(z_k \mid z_{< k}; \boldsymbol{v}_k \right) \\ \bullet & \text{Impose an ordering and non-linear dependency on all preceding variables.} \end{array}$
 - Joint distribution is non-gaussian even though the conditionals are.
 - More structured Posteriors

