(IIITU & Dual Degree) Roll Name

National Institute of Technology, Hamirpur Department of Computer Science & Engineering End Semester Examination- Nov, 2017

Course: B. Tech

Subject: Analysis and Design of Algorithm

Time: 03:00 hrs

Semester: Vth

Code: CSD-312 Max. Marks: 60

Note: All questions are compulsory

Q 1. Solve the given recurrence relation: $T(n) = 4T(\frac{n}{2}) + n^2\sqrt{n}$ (a)

(2)

(b) Is $(n+a)^b = \Theta(n^b)$?

(2)

(2)

Derive a recurrence relation and calculate the complexity of the following code (c) segment:

> int IsPrime (n) int i, n; for $(i = 2; i \le \sqrt{n}; i ++)$ if (n % i = = 0)printf ("Not Prime"); return 0; return 1;

Define Class NP and Non-deterministic algorithms. (d)

(2)

What is N-Queens problem? Give a feasible solution for 4-Queens problem. (e)

(2)

Illustrate the operation of Heap Sort by sorting the elements of array A [4, 11, 9, 10, Q 2. (a) 5, 6, 8, 1, 2, 16].

(6)

- An undirected graph G (V, E) contains n (n > 2) nodes named $v_1, v_2, ..., v_n$. Two (b) (4) nodes v_1 and v_2 are connected if and only if $0 < |i - j| \le 2$. Each edge (v_i, v_j) is assigned a weight (i + j). What is the cost of minimum spanning tree using Kruskals algorithm of such a graph with 8 nodes?
- A text is made up of 5 characters a, b, c, d, e each occurring with probability 0.11, Q 3. (a) (4)0.40, 0.16, 0.09 and 0.24. What is the average length using optimal Huffman coding technique?
 - Find the shortest path between all pairs of vertices of the following graph. (b)

(6)

Q 4. (a) Find the maximum profit and a subset of elements that can be included in the given knapsack of weight 9 using dynamic programming for the following instance of items. (5)

Item	Weight	20 30 35 12	
1	2		
2	5		
3	7		
4	3		
5	1	3	

- (b) Consider two strings A = "QPQRR" and B = "PQPRQRP". Find the length of the longest common subsequence between A and B.
- (c) Apply Depth-first search on the following graph (assuming node labeled as 3 to be the source node).

- Q 5. (a) Show that the Clique problem is NP Complete. Take (5) $\Phi = (X_1 \vee \neg X_2 \vee \neg X_3) \wedge (\neg X_1 \vee X_2 \vee X_3) \wedge (X_1 \vee X_2 \vee X_3).$
 - (b) Find the shortest path in the following graph using Bellman Ford algorithm. Take (5) Node B as the source vertex.

Q 6. Find a tour of minimum cost for a travelling salesman using branch and bound for the given adjacency matrix. (Assume tour starts from <u>node 1</u>)

. (1	2	3	4	5
1	0	6	6	10	8
2	3	0	12	7	6
3	8	7 .	0	14	20
4	5	13	9	0	8
5	9	8	10	6	0