

# Montezuma's Revenge



# Montezuma's Revenge



- very sparse rewards hundrets of steps
- huge state space
- hard exploration
- needs returns back

## highlighted score

name

vear

https://papers with code.com/sota/atari-games-on-atari-2600-montezum as revenge

| 2015 | Deep Reinforcement Learning with Double Q-learning              | 0      |
|------|-----------------------------------------------------------------|--------|
| 2021 | MuZero                                                          | 2500   |
| 2018 | Count-Based Exploration with Neural Density Models <sup>1</sup> | 3705   |
| 2019 | Exploration by Random Network Distillation <sup>2</sup>         | 8152   |
| 2021 | GoExplore* <sup>3</sup>                                         | 43 000 |

#### \* : requires environment state saving/loading

score

 $<sup>^{1}\</sup>mathsf{https://arxiv.org/abs/1703.01310}$ 

<sup>&</sup>lt;sup>2</sup>https://arxiv.org/abs/1810.12894

<sup>&</sup>lt;sup>3</sup>https://arxiv.org/abs/2004.12919

#### random network distillation



#### random network distillation



- neural network works as novelty detector
- model learns to imitate random (target) model
- less visited states produce bigger motivation signal
- orthogonal weights initialisation  $(g = 2^{0.5})$  for strong signal
- lot of fully connected layers to avoid generalisation

#### random network distillation architecture



## ppo model architecture



## ppo model architecture



#### results



- 1M steps 20% of original paper
- 128 parallel envs (128M steps)
- score 6400
- 9 rooms explored

# Q&A

