ИІТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.13

"Магнитное поле Земли"

Группа: 1.3.1

Студент: Стафеев И.А., Голованов Д.И., Да-

нилов Н.О., Игнатьев А.Ю. Преподаватель: Рудель А.Е. К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

- Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца
- Определить горизонтальную составляющую магнитного поля Земли

2 Объект исследования

Суперпозиция магнитного поля колец Гельмгольца и геомагнитного поля

3 Метод экспериментального исследования

Многократные прямые измерения физической величины с последующей обработкой

4 Рабочие формулы и исходные данные

1. Магнитное поле между катушками, n - количество витков в каждой катушке, R - радиус катушки

$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R} \tag{1}$$

2. Зависимость пробного магнитного поля B_c от магнитного поля Земли B_h , где φ - угол между $\vec{B_c}$ и $\vec{B_h}$, α - угол между $\vec{B_h}$ и $\vec{B_h} + \vec{B_c}$ (результирующим магнитным полем)

$$B_c = B_h \cdot \frac{\sin(\alpha)}{\sin(\varphi - \alpha)} \tag{2}$$

3. Значение горизонтальной составляющей индукции магнитного поля Земли B_h

$$\gamma = \frac{\sin\left(\alpha\right)}{\sin\left(\varphi - \alpha\right)}\tag{3}$$

5 Измерительные приборы:

Таблица 1 — Измерительные приборы

Nº	Наименование	Используемый диапазон	$\Delta_{\scriptscriptstyle M}$
1	Амперметр	0-50 мА	0.1 мА
2	Транспортир	0-160°	0.5°

6 Схема установки

Лабораторная установка 1 включает в себя последовательно соединенные кольца Гельмгольца с компасом в центральной части, источник питания со встроенным амперметром и токоограничивающее сопротивление. Кольца Гельмгольца смонтированы на устойчивом основании и расположены параллельно друг другу.

Рисунок 1 — Лабораторная установка

7 Расчёт результатов косвенных измерений

Таблица 2 — Результаты измерений

α_i , °	I_1 , мА	I_2 , мА	I_3 , мА	$\langle I \rangle$, мА	$\frac{\sin(\alpha_i)}{\sin(\varphi - \alpha_i)}$	B_c , мк T л
10	14.0	14.0	13.0	13.7	0.35	8.19
20	23.0	22.0	22.0	22.3	0.53	13.39
30	27.0	27.0	27.0	27.0	0.65	16.19
40	29.0	30.0	29.0	29.3	0.74	17.58
50	33.0	31.0	31.0	31.7	0.82	18.98
60	34.0	34.0	34.0	34.0	0.88	20.38
70	36.0	36.0	37.0	36.3	0.94	21.78
80	37.0	37.0	38.0	37.3	1.0	22.38
90	39.0	39.0	39.0	39.0	1.06	23.38
100	41.0	41.0	42.0	41.3	1.14	24.78
110	43.0	43.0	44.0	43.3	1.23	25.98
120	46.0	46.0	46.0	46.0	1.35	27.57
130	48.0	48.0	47.0	47.7	1.53	28.57
140	51.0	51.0	52.0	51.3	1.88	30.77

График зависимости $B_c(\gamma)$ показан на рисунке 2. По графику можно сделать вывод, что зависимость линейная.

С помощью линейной регресии было получено значение B_h (значение углового коэффициент), равное $B_h = 14.77 \text{ мкТл.}$

8 Расчет погрешностей

$$\begin{split} d_i &= y_i - \left(a + bx_i\right) \\ D &= \sum \left(x_i - \overline{x}\right)^2 = 2.135 \\ S_b^2 &= \frac{1}{D} \frac{\sum d_i^2}{n-2} = 1.41 \cdot 10^{-12} \\ \Delta_b &= 2 \cdot S_b = 2.38 \cdot 10^{-6} \text{ Тл} = 2.38 \text{ мкТл} \\ \varepsilon_{B_h} &= \frac{\Delta_b}{B_h} \cdot 100\% = \frac{2.38}{14.77} \cdot 100\% = 16\% \end{split}$$

9 Графики

Рисунок 2 — График зависимости $B_c(\gamma)$

10 Окончательные результаты

$$B_h = (14.77 \pm 2.38)$$
 мкТл; $\varepsilon_{B_h} = 16\%; \, \alpha = 0.95$

11 Выводы и анализ результатов работы

В результате работы было исследовано сложение векторов магнитной индукции полей, создаваемых кольцами Гельмгольца и Землей. На основе этого была рассчитана горизонтальная составляющая магнитного поля Земли на широте Санкт-Петербурга. Табличное значение горизонтальной составляющей равно 14.92 мкТл (источник), что входит в доверительный интервал $B_h = (14.77 \pm 2.38)$ мкТл. Следовательно, можно утверждать, что вычисления проведены корректно.