$Enunciados_perdidas$

April 7, 2025

1 Ejercicio 1

Dado un inductor de $L=1\mu Hy$ con un $Q_o=40$ a F=10MHz

Calcular para la frecuencia de F=10MHz

- 1. ${\cal L}_s$ del modelo serie
- 2. rp_s del modelo serie

- 3. L_p del modelo paralelo
- 4. rp_p del modelo paralelo

2 Ejercicio 2

Dado un capacitor de C=100pF con un $Q_o=400$ a F=100MHz

Calcular para la frecuencia de F = 100MHz

- 1. C_s del modelo serie
- 2. rp_s del modelo serie
- 3. C_p del modelo paralelo
- 4. rp_p del modelo paralelo

3 Ejercicio 3

En la figura se muestra un filtro sintonizado realizado con un inductor y un capacitor que esta sintonizado a $f = 10 \, MHz$.

El inductor tiene un $Q_{oL}(10MHz)=100$ y suponga que el capacitor tiene $ESR\sim0\Omega.$

La fuente tiene una $P_{disp} = 200\,pW$ a $f = 10\,MHz.$

Calcule para adaptar máxima transferencia de energía a r_l con $Q_c=20\,\mathrm{y}$ el generador a f=10MHz(recuerde que para esta condición $\boldsymbol{r}_l = \boldsymbol{r}_g$.

- 1. L_1
- 2. C_1 3. r_p a f = 10MHz del inductor.