

Focal Plane Array Shutter Mechanism

of the JWST NIRSpec Detector System

Kathleen Hale Rajeev Sharma NASA's Goddard Space Flight Center

Outline

- Requirements
- Chamber location
- Shutter system design
- Motor specs
- Dry lubrication
- Control system
- Environmental cryogenic function testing
- Test results
- Acronyms
 - FPA- Focal Plane Assembly
 - SCA- Sensor Chip Assembly
 - JWST James Webb Space Telescope
 - NIRSpec Near Infrared Spectrum

Derived Requirements

- Light baffle mechanism for ground testing for NIRSpec FPA
- 1 degree of freedom operation
- Operate in vacuum (10⁻⁶ Torr) mechanism not required to hold vacuum
- Open or close shutter in about one minute
- Operate through several thousand cycles over life
- Fit within "Experimental Shell" diameter Ø302 mm (Ø11.9") envelope and on Ø279mm (Ø11.0") plate
- Keep maximum height, at any time during operation,
 <228.5 mm (9")

Derived Requirements

- Light tightness
 - Required attenuation = 1 E4
 - Path length designed for specified gap distance
 - Door rotation >90°
- Temperature
 - Operating: -253°C to 27°C (20K to 300K)
- · Operate in any direction 1g field
 - Hold position with power off in any direction 1g field

Stepper Motor

- Requires 0.0107 kg m² (0.155 oz. in²) to move door
 - Includes inertia of door and light box
- Requires 0.095 N m (0.84 in. lb) of detent torque (3.2x margin)
- Stepper Motor Requirements
 - 2 phase
 - 186.7 gear ratio -
 - 30 degrees/step ---

0.16° per step resolution at output

- Right angle gear head
- Dry lubrication

Dry Plating Process for Stepper Motor

- Actuator bearings and gear train parts are lubed with Molybdenum Di-Sulfide
- · 22 parts per motor
- We required 0.0001" thick coating
 - Thickness required was determined by maximum thickness allowed due to motor part tolerancing
- Contamination not an issue as motor is contained within a closed volume

- National Instrument (NI) ESP 300 series stepper controller (3 amp/axis)
- Used resolver and both switches for feedback and control
- Constant current source to motor

Environmental Test Set-up

- Radial support bearing already dry lubricated by a cage that wears away and provides lubricant
 - Bearing mount made of AL-6061. Calculations performed to ensure CTE mismatch would not affect bearing performance
- Cryogenic compatible end-of-travel sensors purchased
 - Were designed by manufacturer for cryogenic environment but were not previously tested
 - Tested in house by slowing introducing into liquid Nitrogen

Lessons Learned - Cryogenic Testing

- Verify all solder connections so ensure connections will not separate when reach cryogenic temperatures
- Check and re-check all electrical connections before buttoning up the chamber
- Use Belleville washers to keep interfaces tight through thermal changes
- Light tightness will be tested when integrated into project's cryogenic dewar with the detectors

10