

Anticipez les besoins en consommation de bâtiments

Anticipez les besoins en consommation de bâtiments

Objectifs

- Prédire les émissions de CO₂
- Prédire la consommation totale d'énergie
- Évaluer l'intérêt de l'"ENERGY STAR Score"

data.seattle.gov/dataset/2016-Building-Energy-Benchmarking

1 - Informations sur les 46 paramètres

Location : adresse, code postal, quartier, ville, latitude et longitude

Structure : année de construction, nombre d'étage, nombre de bâtiments

Types des différents biens et leurs superficies

Relevés des consommations énergétiques

Relevés des émissions de CO₂

2 - Informations sur les 3376 observations

Aucun doublon

Aucun erreur lexicale ou de formatage

Peu de valeurs manquantes : 12,8 %

Certaines valeurs aberrantes déjà identifiées (32)

Observation comportant des valeurs d'énergies négatives (1)

3 - Sélection des observations et des variables

Suppression des catégories "Multifamily" de la variable "BuildingType"

Suppression identique pour la variable "LargestPropertyUseType"

Traitement des variables par type

Valeurs manquantes restantes: 1,5 % ("ENERGYSTARScore")

4 - Analyse univariée

Répartition de la variable 'YearBuilt'

Répartition de la variable 'PrimaryPropertyType'

Répartition de la variable 'NumberofFloors'

Répartition de la variable 'PropertyGFABuilding(s)'

Répartition de la variable 'SiteEnergyUseWN(kBtu)'

INGENIEUR MACHINE LEARNING PROJET 3

5 - Analyse multivariée

- 1.00 - 0.75

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

5 - Analyse multivariée

TotalGHGEmissions / ENERGYSTARScore

SiteEnergyUseWN(kBtu) / ENERGYSTARScore

5 - Analyse multivariée

TotalGHGEmissions / ENERGYSTARScore

GHGEmissionsIntensity / ENERGYSTARScore

Présentation du Feature Engineering

1 - Variable "YearBuilt"

Remplacement par l'âge du bâtiment en années

2 - Variable "NumberofFloors"

Passage au log: application de la fonction np.log(1 + x)

3 - Suppression de certaines variables

"NumberofBuildings"

"Neighborhood"

"BuildingType"

"Latitude" et "Longitude"

Présentation du Feature Engineering

4 - Variables énergétiques

Application de la fonction logarithme

Calcul des proportions des sources d'énergie utilisées :

- "ElectricityProp"
- "NaturalGasProp"
- "SteamUseProp"

Présentation du Feature Engineering

5 - Variables surfaciques

Standardisation des surfaces en divisant par la surface totale

Création d'un encodage des surfaces normalisées pour :

- "LargestPropertyUseType"
- "SecondLargestPropertyUseType"
- "ThirdLargestPropertyUseType"

Objectif: créer de nombreuses colonnes qui correspondent aux différents types de biens et y affecter pour chaque observation le rapport entre la surface utilisée pour ce bien et la surface totale

Hotel

1.000000

0.809918

0.791220

1.000000

0.703070

1 - Modélisations

StandardScaler sur l'ensemble des variables quantitatives

Régressions sans CV et sans réglage des hyperparamètres avec :

- DummyRegressor
- RandomForestRegressor
- GradientBoostingRegressor
- ElasticNet
- ExtraTreesRegressor
- SVR
- AdaBoostRegressor
- XGBRegressor
- KerasRegressor

1 - Modélisations

	DummyRegressor	RandomForest	GradientBoosting	ElasticNet	ExtraTrees	SupportVector	AdaBoost	XGBoost	NeuralNetwork
R ² Train	0.000	0.973	0.901	0.256	1.000	0.857	0.749	0.987	0.945
R² Test	-0.000	0.801	0.820	0.263	0.809	0.780	0.707	0.833	0.801
M.A.E.	1.176	0.498	0.480	1.006	0.487	0.489	0.624	0.465	0.491
R.M.S.E.	1.466	0.653	0.621	1.258	0.641	0.687	0.793	0.599	0.654

Comparaison des distributions entre valeurs réelles et valeurs prédites (XGBoost)

1 - Modélisations

Cross-Validation avec 5 modèles

R² issue de la cross-validation pour la prédiction des émissions de CO2

1 - Modélisations

Hyperparamétrage de trois modèles

2 - Présentation des résultats

Modèle performant pour les bâtiments à faible émissions

Prédiction de la consommation totale d'énergie

1 - Modélisations

Même amorçage que pour la prédiction des émissions de CO₂

	DummyRegressor	RandomForest	GradientBoosting	ElasticNet	ExtraTrees	SupportVector	AdaBoost	XGBoost
R² Train	0.000	0.965	0.866	0.338	1.000	0.817	0.701	0.984
R² Test	-0.000	0.724	0.748	0.321	0.714	0.733	0.630	0.713
M.A.E.	0.999	0.503	0.480	0.819	0.496	0.474	0.594	0.494
R.M.S.E.	1.274	0.669	0.639	1.050	0.681	0.659	0.775	0.682

Comparaison des distributions entre valeurs réelles et valeurs prédites (GradientBoosting)

Prédiction de la consommation totale d'énergie

1 - Modélisations

Après Cross-Validation et hyperparamètrage sur 3 modèles :

Prédiction de la consommation totale d'énergie

2 - Présentation des résultats

Modèle performant pour les bâtiments à faible consommation

Évaluation de l'intérêt de l'"ENERGY STAR Score"

Importance relative de l'ENERGYSTARScore par rapport aux autres variables

Évaluation de l'intérêt de l'"ENERGY STAR Score"

SHAP: SHapley Additive exPlanations

