

CS65K Robotics

Modelling, Planning and Control

Chapter 2: Kinematics

Section 2.7

LECTURE 4: DIRECT KINEMATICS — MATRIX FOR ROTATIONS AND DISPLACEMENT

DR. ERIC CHOU

IEEE SENIOR MEMBER

Objectives

- •The homogeneous representation of a vector is adopted
- •Homogeneous transformations are introduced as a compact representation of position and orientation
- •Composition of homogeneous transformations to derive the direct kinematics equation of an open-chain manipulator is illustrated
- Denavit-Hartenberg parameters are introduced
- •A formula is derived to compute the transformation matrix from one link to the next one in a kinematic chain
- A computationally recursive operating procedure is illustrated

Objectives

- •The direct kinematics equation is computed for a number of typical manipulator structures
- •Composition of the kinematics of the arm with the kinematics of the wrist is presented
- •The joint space and operational space concepts are illustrated

Homogeneous Coordinates

Homogeneous Coordinates

- •Homogeneous coordinates, introduced by August Ferdinand Möbius, make calculations of graphics and geometry possible in projective space. Homogeneous coordinates are a way of representing N-dimensional coordinates with N+1 numbers.
- •To make 2D Homogeneous coordinates, we simply add an additional variable, w, into existing coordinates. Therefore, a point in Cartesian coordinates, (X, Y) becomes (x, y, w) in Homogeneous coordinates. And X and Y in Cartesian are re-expressed with x, y and w in Homogeneous as;

$$X = x/w$$

$$Y = y/w$$

Homogeneous Coordinates

- •For instance, a point in Cartesian (1, 2) becomes (1, 2, 1) in Homogeneous. If a point, (1, 2), moves toward infinity, it becomes (∞,∞) in Cartesian coordinates. And it becomes (1, 2, 0) in Homogeneous coordinates, because of (1/0, 2/0) $\approx (\infty,\infty)$.
- •Notice that we can express the point at infinity without using "∞".

Why is it called "homogeneous"?

 As mentioned before, in order to convert from Homogeneous coordinates (x, y, w) to Cartesian coordinates, we simply divide x and y by w;

$$(x, y, w) \Leftrightarrow \left(\frac{x}{w}, \frac{y}{w}\right)$$

Homogeneous Cartesian

Why is it called "homogeneous"?

 Converting Homogeneous to Cartesian, we can find an important fact. Let's see the following example;

Homogeneous Cartesian
$$(1,2,3) \Rightarrow \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$(2,4,6) \Rightarrow \left(\frac{2}{6}, \frac{4}{6}\right) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$(4,8,12) \Rightarrow \left(\frac{4}{12}, \frac{8}{12}\right) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$\vdots \qquad \vdots$$

$$(1a,2a,3a) \Rightarrow \left(\frac{1a}{3a}, \frac{2a}{3a}\right) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

Why is it called "homogeneous"?

•As you can see, the points (1, 2, 3), (2, 4, 6) and (4, 8, 12) correspond to the same Euclidean point (1/3, 2/3). And any scalar product, (1a, 2a, 3a) is the same point as (1/3, 2/3) in Euclidean space. Therefore, these points are "homogeneous" because they represent the same point in Euclidean space (or Cartesian space). In other words, Homogeneous coordinates are scale invariant.

Homogeneous Transformation

Homogeneous Transformation

p(x, y)

$$p = \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale

$$x' = S_x x$$

$$y' = S_y y$$

$$= \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotate

ScaleRotateTranslate
$$x' = S_x x$$
 $x' = x \cos(\theta) - y \sin(\theta)$ $x' = x + a$ $y' = S_y y$ $y' = x \sin(\theta) + y \cos(\theta)$ $y' = y + b$

$$S = \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$$

Translate

$$x' = x + a$$
$$y' = y + b$$

$$S = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$$

Transformations

- •A **transformation** is a process that manipulates a polygon or other two-dimensional object on a plane or coordinate system. Mathematical transformations describe how two-dimensional figures move around a plane or coordinate system.
- •A **preimage** or inverse image is the two-dimensional shape before any transformation. The **image** is the figure after transformation.

Types of Transformations

There are five different transformations in math:

- **1.Dilation** (Scaling) -- The image is a larger or smaller version of the preimage; "shrinking" or "enlarging."
- 2.Reflection -- The image is a mirrored preimage; "a flip."
- **3.Rotation** -- The image is the preimage rotated around a fixed point; "a turn."
- **4.Shear** -- All the points along one side of a preimage remain fixed while all other points of the preimage move parallel to that side in proportion to the distance from the given side; "a skew.,"
- **5.Translation** -- The image is offset by a constant value from the preimage; "a slide."

Coordinate Change and Transformation are Inverse Operations

- •A coordinate system rotate for θ is equivalent to the operation for an object to rotate for $-\theta$.
- •Therefore, the two operations are inverse operation to each other.
- •Transformation:

$$(x,y) \rightarrow (x',y')$$

Sometimes, I use (X, Y)

Dilation

You dilate a preimage of any polygon by duplicating its interior angles while increasing every side proportionally.

Dilation

•Dilate a preimage of any polygon is done by duplicating its interior angles while increasing every side proportionally. You can think of dilating as resizing. Which triangle image, yellow or blue, is a dilation of the orange preimage?

preimage Reflection / Flip Imagine cutting out a preimage, lifting it, and putting it back face down.

Reflection

•Imagine cutting out a preimage, lifting it, and putting it back face down. That is a reflection or a flip. A reflection image is a mirror image of the preimage. Which trapezoid image, red or purple, is a reflection of the green preimage?

Rotation

Using the origin, 0,0, as the point around which a 2D shape rotates, you can easily see rotation in all these figures:

Rotation

•Using the origin, (0, 0), as the point around which a two-dimensional shape rotates, you can easily see rotation in all these figures:

Shear

When a figure is sheared, the area is unchanged.

A shear does not stretch dimensions; it does change interior angles.

Shear

•Here is a square preimage. To shear it, you "skew it," producing an image of a rhombus:

Translation

Moves the figure on the coordinate plane without changing its orientation.

Translation

•A translation moves the figure from its original position on the coordinate plane without changing its orientation. Which octagon image below, pink or blue, is a translation of the yellow preimage?

Homogeneous Representation of a Vector

• Coordinate transformation (*translation* + *rotation*)

$$p^0 = o_1^0 + R_1^0 p^1$$

Inverse transformation

$$p^1 = -R_0^1 o_1^0 + R_0^1 p^0$$

Homogeneous representation

$$\widetilde{m{p}} = egin{bmatrix} m{p} \ 1 \end{bmatrix}$$

Representation of a point in different coordinate frames

Homogeneous Transformation Matrix

 R_1^0 : Rotational Matrix

 o_1^0 : Displacement Vector

$$oldsymbol{A}_1^0 = egin{bmatrix} oldsymbol{R}_1^0 & oldsymbol{o}_1^0 \ oldsymbol{0}^T & 1 \end{bmatrix}$$

Homogeneous Transformation Matrix

Coordinate transformation

$$\widetilde{\boldsymbol{p}}^0 = \boldsymbol{A}_1^0 \widetilde{\boldsymbol{p}}^1$$

Inverse transformation

$$\widetilde{oldsymbol{p}}^1 = oldsymbol{A}_0^1 \widetilde{oldsymbol{p}}^0 = \left(oldsymbol{A}_1^0
ight)^{-1} \widetilde{oldsymbol{p}}^0$$

with

$$oldsymbol{A}_0^1 = egin{bmatrix} oldsymbol{R}_1^0 & -oldsymbol{R}_1^0 & -oldsymbol{R}_1^0 & -oldsymbol{R}_1^0 & -oldsymbol{R}_0^1 \ oldsymbol{0}^T & 1 \end{bmatrix} = egin{bmatrix} oldsymbol{R}_0^1 & -oldsymbol{R}_0^1 oldsymbol{o}_1^0 \ oldsymbol{0}^T & 1 \end{bmatrix}$$

Properties

Orthogonality does not hold

$$\mathbf{A}^{-1} \neq \mathbf{A}^{T}$$

Sequence of coordinate transformations

$$\widetilde{\boldsymbol{p}}^0 = \boldsymbol{A}_1^0 \boldsymbol{A}_2^1 \dots \boldsymbol{A}_n^{n-1} \widetilde{\boldsymbol{p}}^n$$

Type of Joints

SECTION 3

Manipulator

- •Series of rigid bodies (*links*) connected by means of kinematic pairs or *joints*Kinematic chain (from base to end-effector)
- Open (only one sequence of links connecting the two ends of the chain)
- •Closed (a sequence of links forms a loop)

 Degrees of freedom (DOFs) uniquely determine the manipulator's posture
- •Each DOF is typically associated with a joint articulation and constitutes a *joint* variable

Revolute joints

Prismatic joints

Base Frame and Endeffector Frame

Base Frame and End-effector Frame

- Joint variables $q = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix}^T$
- •End-effector frame with respect to base frame $R_e^b = \begin{bmatrix} n_e^b & s_e^b & a_e^b \end{bmatrix}$ Direct kinematics equation

$$m{T}_e^b(m{q}) = egin{bmatrix} m{n}_e^b(m{q}) & m{s}_e^b(m{q}) & m{a}_e^b(m{q}) & m{p}_e^b(m{q}) \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Description of the position and orientation of the end-effector frame

Two-link Planar Arm

SECTION 5

Two-link Planar Arm

$$egin{array}{lll} m{T}_e^b(m{q}) & = & egin{bmatrix} m{n}_e^b & m{s}_e^b & m{a}_e^b & m{p}_e^b \ 0 & 0 & 0 & 1 \end{bmatrix} \ & = & egin{bmatrix} 0 & s_{12} & c_{12} & a_1c_1 + a_2c_{12} \ 0 & -c_{12} & s_{12} & a_1s_1 + a_2s_{12} \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$$

Two-link Planar Arm

Open Chain

SECTION 6

Open Chain

Manipulator direct kinematics

$$T_n^0(q) = A_1^0(q_1)A_2^1(q_2)\dots A_n^{n-1}(q_n)$$

End-effector frame with respect to base frame

$$\boldsymbol{T}_{e}^{b}(\boldsymbol{q}) = \boldsymbol{T}_{0}^{b} \boldsymbol{T}_{n}^{0}(\boldsymbol{q}) \boldsymbol{T}_{e}^{n}$$

Coordinate transformations in an open kinematic chain

Summary

SECTION 7

Summary

- 1.By applying the rules for inverting a block-partitioned matrix, verify the expression of the homogeneous transformation matrix $m{A}_0^1$
- 2. Find the direct kinematics equation for the SCARA manipulator in the figure.

SCARA manipulator