

Multi-Transmotion:

Pre-trained Model for Human Motion Prediction

Yang Gao, Po-Chien Luan, Alexandre Alahi

Overview

Task: Predicting future **human trajectory** and **3D pose** from observational data.

Motivation: Missing of foundation model to predict human motion with different fps, horizon, keypoints settings.

Approach:

- * Create a Unified Human Motion Data Framework
- * Propose a pre-trained model that can adapt to varying frame settings and keypoints settings.

Trajectory pred. on NBA

Models	Venue	Min ADE ₂₀	MinFDE ₂₀
Social-GAN	CVPR 18	1.59	2.41
Trajectron++	ECCV 20	1.15	1.57
GroupNet	CVPR 22	0.96	1.30
Leapfrog	CVPR 23	0.81	1.10
Social-Transmotion	ICLR 24	0.78	<u>1.01</u>
Multi-Transmotion	(ours)	0.75	0.97

How does pre-training help? Few-shot learning curve Key takeaways: Social-LSTM * More data efficient Multi-Transmotion * Better generalization 2.5 9 2.0 1.5 1.0 400 600 1000 Number of training samples **Pre-trained model** Specific model **Datasets** NBA 0.75/0.97 0.77/0.98

0.54/1.13

66.91

73.74

0.57/1.22

69.58

76.77

Trainet++

AMASS

3DPW

Pose pred. on AMASS

Trajnet++

Models	160 ms	400 ms	720 ms	1000 ms
ConvSeq2Seq	36.9	67.6	87	93.5
LTD-10-10	19.3	44.6	75.9	91.2
LTD-10-25	20.7	45.3	65.7	75.2
HRI	20.7	<u>42</u>	<u>58.6</u>	67.2
ST-Trans	21.3	42.5	58.3	66.6
Multi-Transmotion	19.3	41.4	<u>58.6</u>	<u>66.9</u>

JRDB-Pose

NBA

Application in robot navigation

	Completion time in seconds (gain)	Collision rate (gain)
Robot navigation w/o our predictor	16.46	1.93%
Robot navigation w/ our predictor	16.20 (+2%)	0.39% (+80%)