Alexander Kagan

323 West Hall, 1085 South University Ave, Ann Arbor, MI 48109

■ amkagan@umich.edu | 😭 alexanderkagan.github.io | 🖸 AlexanderKagan | 🛅 KaganAlex

Research Interests_

My interests lie in the intersection of statistical network analysis and bioinformatics, with primary focus on:

- Latent space models for collections of networks with shared structure
- · Modeling of information diffusion on networks with applications to epidemiology and influence maximization
- Model selection and cross-validation in network-assisted regression problems
- Hierarchical feature selection for prediction problems with extensive drop-outs motivated by proteomics and aging

Education

University of Michigan

Ann Arbor, MI, USA

Ph.D. IN STATISTICS (ADVISED BY PROFESSORS LIZA LEVINA AND JI ZHU)

2021 - 2026 (expected)

Outstanding Department Service Award (2025) for chairing the org. committee of a 150-person Stats symposium

Skolkovo Institute of Science and Technology

Moscow, Russia

M.S. IN COMPUTER SCIENCE (GPA: 4.0/4.0)

2020 - 2021

Yandex School of Data Analysis

Moscow, Russia

M.S. EQUIVALENT CERTIFICATE IN DATA SCIENCE (GPA: 3.8/4.0)

2019 - 2021

National Research University Higher School of Economics

Moscow, Russia

B.S. (WITH HONORS) IN MATHEMATICS (GPA: 3.9/4.0)

2016 - 2020

Research and Work Experience _____

Sanofi

Cambridge, MA, USA

R&D COMPUTATIONAL SCIENCE INTERN (advised by Prof. Ziv Bar-Joseph)

Summer 2024

• Developed statistical tools based on Temporal Graph Neural Networks for discovering new biomarkers governing the patient's recovery process, with applications to psoriasis and Crohn's disease.

Kirshner Lab, Harvard Medical School

Cambridge, MA, USA

RESEARCH ASSISTANT (advised by Prof. Leon Peshkin)

Jan 2021 - Apr. 2024

- Led a group of three MSc students developing hierarchical variable selection methods for classification problems with extensive dropouts, e.g., cell-type prediction with single-cell data
- Supervised two Ph.D. students applying Active Learning methods to identify the optimal order of sequential phenotype-to-drug response measurements.
- Developed function-on-function regression methods for phenotype prediction given kinase responses to drugs in multiple doses
- Developed automatic cell nuclei detection methods for liver images using UNet CNNs

MRM Proteomics

Montreal, Canada

RESEARCH INTERN (advised by Prof. Christoph Borchers)

Summer 2021

• Developed dimension reduction techniques allowing robust extraction of cancer biomarkers from patient's proteomics and metabolomics measurements.

Juicy Labs

Moscow, Russia

JUNIOR DATA SCIENTIST

July 2019 - Feb 2020

• Developed new credit scoring models using linear regression, random forest, and boosting.

Computing Skills _____

Proficient in Python (Numpy, Pandas, Sklearn, Matplotlib, PyTorch, Scipy, NetworkX, JAX, CVXPY), R, and Matlab

Publica	ations		
Publish	IED		
	Noe, M., Parisi, E., Rifat, S., Navitskis, L., Conway, D., Deshmukh, A., Kagan, A., Millward, D., Chung, E. **Comparison of 1st Year and 3rd Year ECGs in Collegiate Athletes.** Journal of the American College of Cardiology		
Under I	REVIEW OR PREPRINTED		
	, Levina, E., Zhu, J. ble Modeling of Influence Propagation through a Network with Statistical Guarantees JMLR		
	., Kagan, A., Passaban, P., Mattoo, H., Hasanaj, E., Bar-Joseph, Z. poral Foundation Models for Clinical Transcriptomics Data Bioinformatics		
Kagan, A.	, MacDonald, P., Levina, E., Zhu, J. <i>Latent Space Models for Grouped Multiplex Networks with Shared</i>	/ Structure. Arxiv	
Kagan, A.	Levina, E., Zhu, J. <i>Influence Maximization under General Linear Threshold Models</i> . Arxiv		
In Prep	ARATION		
Kagan, A.	, Tang, T., Levina, E., Zhu, J. Cross Validation for Network Regression.		
	Harwood, J., <u>Kagan, A.</u> , Lukaszewicz, G., Kirschner, M., Peshkin, L., Montell, D. me regression identifies critical modulators of cellular resilience.		
Presen	tations and Posters		
PRESEN	TATIONS		
20	24 CFE-CMStatistics , London, UK		
20			
20 Poster:			
20 20 20 20	Statistical Network Analysis and Beyond (Best poster award), Anchorage, AK, USA ICSA Applied Statistics Symposium (Honorable mention), Ann Arbor, MI, USA		
Teachi	ng Experience		
GRADUATI	STUDENT INSTRUCTOR, University of Michigan		
1. Da	ta Science 415: Data Mining and Statistical Learning (upper undergraduate level)	Fall 2025	
	• Taught weekly lab sections (~20 students), created new educational Python notebooks		
2. ST/	ATS 485: Capstone Seminar (upper undergraduate level)	Fall 2022	
	Held office hours, graded data analysis reports.		
3. <i>ST</i> /	ATS 250: Introduction to Statistics and Data Analysis (lower undergraduate level)	Winter 2022	
	• Taught weekly lab sections (~40 students), held office hours, graded homework and exams.		
4. <i>ST</i> /	ATS 426: Introduction to Theoretical Statistics (upper undergraduate level)	Fall 2021	
	Held office hours, graded homework and exams.		

English (fluent), Russian (native), German (upper-intermediate), French (intermediate), Hebrew (intermediate)

Languages _____