EXECUTION RUNS

DIJKSTRA'S SINGLE SOURCE SHORTEST PATH ALGORTHM

Vertices starts at 0 and terminates at 4

Vertex ID of -1 terminates Input

Enter Existing Edges in the Graph

Edge#	'u'	'v'	Cost	Remark
1	0	1	10	Edge Taken
2	0	2	3	Edge Taken
3	1	3	2	Edge Taken
4	1	2	1	Edge Taken
5	2	1	4	Edge Taken
6	2	3	8	Edge Taken
7	2	4	2	Edge Taken
8	3	4	7	Edge Taken
9	4	3	9	Edge Taken
10	4	0	4	Edge Taken
11	4	1	2	Edge Taken
12	1	0	1	Edge Taken
13	-1	-1	0	Invalid Edge

Graph with 5 vertices ...

Adjacency Matrix is.... [786 denotes INFINITY] [-1 denotes no parent]

u v	0	1	2	3	4
0	0	10	3	786	786
1	1	0	1	2	786
2	786	4	0	8	2
3	786	786	786	0	7
4	4	2	786	9	0

Data Structure		[0]		[1]		[2]		[3]	[4]
DIST[]	I	0		10		3	1	786	786
PREV[]		-1		0		0		-1	-1
VISITED[]	 	1	 	0	 	0	 	0	0
Data Structure	 	[0]		[1]	 	[2]	 	[3]	[4]
DIST[]	I	0	I	7	I	3		11	5
PREV[]		-1		2		0		2	2
VISITED[]	 	1		0	 	1	 	0	0
Data Structure		[0]		[1]		[2]	ı	[3]	[4]
DIST[]		0		7		3		11	5
PREV[]		-1		2		0		2	2
VISITED[]	 	1		0		1	 	0	1
Data Structure	 	[0]	 	[1]	 	[2]	. <u>.</u> .	[3]	[4]
DIST[]	1	0		7		3		9	5
PREV[]	 	-1		2		0		1	2
VISITED[]	 	1		1		1	 	0	1
Path: [u]->[v] D	ist	ance	S	hort	est	Path	1		
[0]->[1] [0]->[2] [0]->[3] [0]->[4]		3 9		0-> 2 0-> 2 0-> 2 0-> 2	2 2->	1->	3		

Dijkstra's Algorithm for Different Source?? [0 to Stop] : 1 Enter Source Vertex [0 thru 4]: 4

Data Structure	I	[0]		[1]		[2]		[3]		[4]
DIST[]		4		2		786		9		0
PREV[]		4		4		-1		4		-1
VISITED[]		0		0		0		0		1
Data Structure		[0]	 	[1]	 	[2]	 	[3]		[4]
DIST[]		3		2		3		4		0
PREV[]		1		4		1		1		-1
VISITED[]		0		1		0		0		1
Data Structure	 	[0]		[1]	. <u>-</u> -	[2]	 	[3]		[4]
DIST[]		3		2		3		4		0
PREV[]		1		4		1		1		-1
VISITED[]		0		1		1		0		1
Data Structure	 	[0]		[1]	. <u>-</u> -	[2]	 	[3]		[4]
DIST[]		3		2		3		4		0
PREV[]		1		4		1		1		-1
VISITED[]	 	1	 	1		1	 	0		1
Path: [u]->[v] D	ist	ance	S	horte	est	: Path	1			
[4]->[0]				4-> 1		• 0	•			
[4]->[1] [4]->[2]		2		4-> 1 4-> 1		- 2				
[4]->[3]		4		4-> 1						

Dijkstra's Algorithm for Different Source?? [0 to Stop] : 0

FLOYD-WARSHALL ALL-PAIRS SHORTEST PATH ALGORITHM

dab@dab-dell-3010:~/Desktop/graph18\$./floyd_warshall.out Graph Creation [Undirected/Directed]... Type of Graph [0: UnDirected] := 1 How Many Vertices [upto 10 vertices]?? 5

> Vertices starts at 0 and terminates at 4, Vertex ID of -1 terminates Input Enter Existing Edges in the Graph

Enter Ex		Euges 	III (I		oı apıı 			
Ec	dge#	'u'	'v'	Cost	Rem	ark		
	1	0	1	10	Edg	e Taken		
	2	0	2	3	Edg	e Taken		
	3	1	3	2	Edg	e Taken		
	4	1	2	1	Edg	e Taken		
	5	2	1	4	Edg	ge Taken		
	6	2	3	8	Edg	e Taken		
	7	2	4	2	Edg	e Taken		
	8	3	4	7	Edg	ge Taken		
	9	4	3	9	Edg	e Taken		
	10	4	0	4	Edg	e Taken		
	11	4	1	2	Edg	e Taken		
	12	1	0	1	Edg	e Taken		
	13	-1	-1	0	Inv	alid Edge		
Graph with 5 ve	ertices	· · · ·			THEATTH THE			
Adjacency	/ Matri	ix is.	[786	denotes INFINITY			
	u v	0	1	2	3	4		
	0	0	10	3	786	786		
	1	1	0	1	2	786		
	2	786	4	0	8	2		
	3	786	786	786	0	7		
	4	4	2	786	9	0		
At Initializatio	on							
Cost Matr	rix is.							
	u v	0	1	2	3	4		
	0	 0	10	3	786	 786		
	1	1		1		786		
		786		0	8	2		
		786				7		
		4				0		
Path Matr		•						
		0	1	2	3	4		
	0	 0	1	2	 3	4		
		0			3			
	2	0						

3 | 0 1 2 3 4

```
ITERATION K = 1
    Cost Matrix is....
         u|v| 0 1 2 3 4
          0 | 0 10 3 786 786
          1 | 1 0 1 2 786
          2 | 786 4 0 8 2
          3 | 786 786 786 0 7
          4 | 4 2 7 9 0
    Path Matrix is....
         u|v | 0 1 2 3 4
          0 | 0 1 2 3 4
          1 | 0 1 2 3 4
          2 | 0 1 2 3 4
          3 | 0 1 2 3 4
          4 | 0 1 0 3 4
ITERATION K = 2
    Cost Matrix is....
         u|v | 0 1 2 3 4
          0 | 0 10 3 12 786
          1 | 1 0 1 2 786
          2 | 5 4 0 6 2
          3 | 786 786 786 0 7
          4 | 3 2 3 4 0
    Path Matrix is....
         u|v| 0 1 2 3 4
          0 | 0 1 2 1 4
          1 | 0 1 2 3 4
          2 | 1 1 2 1 4
          3 | 0 1 2 3 4
          4 | 1 1 1 1 4
ITERATION K = 3
    Cost Matrix is....
         u|v| 0 1 2 3 4
          0 | 0 7 3 9 5
          1 | 1 0 1 2 3
          2 | 5 4 0 6 2
          3 | 786 786 786 0 7
          4 | 3 2 3 4 0
    Path Matrix is....
         u|v | 0 1 2 3 4
          0 | 0 2 2 2 2
          1 | 0 1 2 3 2
          2 | 1 1 2 1 4
          3 | 0 1 2 3 4
```

4 | 1 1 1 1 4

ITERATION K = 4Cost Matrix is.... u|v| 0 1 2 3 4 0 | 0 7 3 9 5 1 | 1 0 1 2 3 2 | 5 4 0 6 2 3 | 786 786 786 0 7 4 | 3 2 3 4 0 Path Matrix is.... u|v| 0 1 2 3 4 0 | 0 2 2 2 2 1 | 0 1 2 3 2 2 | 1 1 2 1 4 3 | 0 1 2 3 4 4 | 1 1 1 1 4 ITERATION K = 5Cost Matrix is.... u|v | 0 1 2 3 4 0 | 0 7 3 9 5 1 | 1 0 1 2 3 2 | 5 4 0 6 2 3 | 10 9 10 0 7 4 | 3 2 3 4 0 Path Matrix is.... u|v | 0 1 2 3 4 0 | 0 2 2 2 2 1 | 0 1 2 3 2 2 | 1 1 2 1 4 3 | 4 4 4 3 4

4 | 1 1 1 1 4

EXECUTION RUNS

```
Graph G(V,E)

V = {0,1,2,3,4,5}

E = {(0,1,6),(0,2,1),(0,3,5),(1,2,5),(1,4,3),

(2,3,5),(2,4,6),(2,5,4),(3,5,2),(4,5,6)}
```

PRIM'S MINIMUM COST SPANNING TREE

dab@dab-dell-3010:~/Desktop/graph18\$./primsMST.out

```
Graph Creation [Undirected/Directed]...
Type of Graph [0: UnDirected] := 0
How Many Vertices [upto 10 vertices]?? 6
```

Vertices starts at 0 and terminates at 5, Vertex ID of -1 terminates Input

Enter Existing Edges in the Graph

Edge#	'u'	'v'	Cost	Remark
1	0	1	6	Edge Taken
2	0	2	1	Edge Taken
3	0	3	5	Edge Taken
4	1	2	5	Edge Taken
5	1	4	3	Edge Taken
6	2	3	5	Edge Taken
7	2	4	6	Edge Taken
8	2	5	4	Edge Taken
9	3	5	2	Edge Taken
10	4	5	6	Edge Taken
11	-1	-1	0	Invalid Edge

Graph with 6 vertices ...

Adjacency Matrix is.... [786 denotes INFINITY] [MST[] denotes parent vertex index]

u v	0	1	2	3	4	5
0	0	6	1	5	786	786
1	6	0	5	786	3	786
2	1	5	0	5	6	4
3	5	786	5	0	786	2
4	786	3	6	786	0	6
5	786	786	4	2	6	0

Data Structure		[0]		[1]		[2]		[3]		[4]		[5]	
DIST[]	 	0		6		1		5		786		786	
MST[]		-1		0		0		0		-1		-1	
VISITED[]	 	1	 	0		0	 	0		0	 	0	

Data Structure		[0]		[1]	1	[2]		[3]		[4]		[5]
DIST[]		0		5	1	1		5		6		4
MST[]		-1		2		0		0		2		2
VISITED[]		1	 	0		1	 	0	 	0		0
Data Structure	 	[0]	 	[1]	 	[2]	 	[3]	 	[4]	. <u>.</u> .	[5]
DIST[]	 	0	 	5		1	 	2	 	6	 	4
MST[]		-1	 	2		0	. <u></u>	5		2		2
VISITED[]		1	 	0		1	 	0	 	0		1
 Data Structure	 	 [0]	 	[1]	 	[2]	 	[3]	 	[4]	 	[5]
DIST[]	 	0	 	5		1	 	2	 	6	 	4
MST[]	 	-1		2		0		5		2		2
VISITED[]	 I	1	 	0	 	1	 	1	 	0	 	1
			·		· 							
Data Structure	 		. <u>.</u> .	[1]	· 		. <u>-</u> -		 	[4]	 	[5]
Data Structure DIST[]	 	 [0]			- <u>-</u> -	[2]	. <u>.</u> 	[3]				
	 	[0] 0	 	5	 	[2]	. <u>.</u> .	[3] 2	 	3		4

Edge	Weight
[2]->[1]	5
[0]->[2]	1
[5]->[3]	2
[1]->[4]	3
[2]->[5]	4