Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

З дисципліни «Методи оптимізації та планування»
Тема: Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план)

ВИКОНАВ: Студент II курсу ФІОТ Групи IO-92 Рожко М.М.

ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета:

Провести трьохфакторний експеримент з урахуванням квадратичних членів ,використовуючи центральний

ортогональний композиційний план. Знайти рівняння регресії, яке буде адекватним для опису об'єкту.

Завдання

- 1. Взяти рівняння з урахуванням квадратичних членів.
- 2. Скласти матрицю планування для ОЦКП
- 3. Провести експеримент у всіх точках факторного простору (знайти значення функції відгуку Y). Значення функції відгуку знайти у відповідності з варіантом діапазону, зазначеного далі. Варіанти вибираються по номеру в списку в журналі викладача.

$$\begin{aligned} y_{i\max} &= 200 + x_{cp\max} \\ y_{i\min} &= 200 + x_{cp\min} \end{aligned}$$
 где $x_{cp\max} = \frac{x_{1\max} + x_{2\max} + x_{3\max}}{3}$, $x_{cp\min} = \frac{x_{1\min} + x_{2\min} + x_{3\min}}{3}$

- 4. Розрахувати коефіцієнти рівняння регресії і записати його.
- 5. Провести 3 статистичні перевірки.

Варіант завдання:

N	X	[1	X	2	X3		
	min	max	min	max	min	max	
217	-1	6	-3	4	-3	7	

Розруківка коду програми:

```
from pyDOE2 import
def regression(x, b):
     for i in data: info.append(i)
x \text{ range} = ((-1,6), (-3, 4), (-3, 7))
x \text{ aver max} = \text{sum}([x[1] \text{ for } x \text{ in } x \text{ range}]) / 3
def plan matrix5(n, m):
     def add sq nums(x):
```

```
B))
```

```
fisher_value = f.ppf(q=1 - q1, dfn=f2, dfd=(f1 - 1) * f2)
       res.append(b)
range(len(y))])
```

```
y new.append(regression([X[j][i] for i in range(len(ts)) if ts[i] in
```

Результати роботи програми:

x										
1	-1	-3	-3	3	3	9	-9	1	9	9
1	6	-3	-3	-18	-18	9	54	36	9	9
1	-1	4	-3	-4	3	-12	12	1	16	9
1	6	4	-3	24	-18	-12	-72	36	16	9
1	-1	-3	7	3	-7	-21	21	1	9	49
1	6	-3	7	-18	42	-21	-126	36	9	49
1	-1	4	7	-4	-7	28	-28	1	16	49
1	6	4	7	24	42	28	168	36	16	49
1	6	0	1	0	6	0	0	36	0	1
1	-2	0	1	0	-2	0	0	4	0	1
1	2	4	1	8	2	4	8	4	16	1
1	2	-4	1	-8	2	-4	-8	4	16	1
1	2	0	7	0	14	0	0	4	0	49
1	2	0	-5	0	-10	0	0	4	0	25
1	2	0	1	0	2	0	0	4	0	1

Х нормоване										
1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	-1.0	1.0	1.0	1.0
1.0	1.0	-1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	1.0	1.0
1.0	-1.0	1.0	-1.0	-1.0	1.0	-1.0	1.0	1.0	1.0	1.0
1.0	1.0	1.0	-1.0	1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0
1.0	-1.0	-1.0	1.0	1.0	-1.0	-1.0	1.0	1.0	1.0	1.0
1.0	1.0	-1.0	1.0	-1.0	1.0	-1.0	-1.0	1.0	1.0	1.0
1.0	-1.0	1.0	1.0	-1.0	-1.0	1.0	-1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1.0	-1.22	0.0	0.0	-0.0	-0.0	0.0	-0.0	1.48	0.0	0.0
1.0	1.22	0.0	0.0	0.0	0.0	0.0	0.0	1.48	0.0	0.0
1.0	0.0	-1.22	0.0	-0.0	0.0	-0.0	-0.0	0.0	1.48	0.0
1.0	0.0	1.22	0.0	0.0	0.0	0.0	0.0	0.0	1.48	0.0
1.0	0.0	0.0	-1.22	0.0	-0.0	-0.0	-0.0	0.0	0.0	1.48
1.0	0.0	0.0	1.22	0.0	0.0	0.0	0.0	0.0	0.0	1.48
1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Υ				
203.0	205.0	202.0	201.0	200.0
204.0	199.0	200.0	203.0	199.0
200.0	204.0	201.0	198.0	205.0
202.0	205.0	198.0	205.0	199.0
202.0	198.0	202.0	200.0	205.0
200.0	198.0	201.0	199.0	205.0
199.0	203.0	204.0	203.0	202.0
199.0	203.0	202.0	201.0	201.0
201.0	205.0	201.0	201.0	203.0
200.0	204.0	205.0	205.0	204.0
201.0	201.0	205.0	202.0	203.0
200.0	205.0	204.0	203.0	203.0
205.0	198.0	199.0	203.0	203.0
205.0	200.0	203.0	200.0	205.0
199.0	200.0	199.0	205.0	204.0

```
Гереруємо матрицю планування для n = 15, m = 5
Коефіцієнти рівняння регресії:
200.268 201.704 203.144 200.71 201.682 201.16 ]
   Перевірка рівняння:
3 ймовірністю 0.95 дисперсії однорідні.
Значення "у" з коефіцієнтами [200.886, -0.089, -0.021, 0.079, 0.001]
    201.034000000000002
    201.034000000000002
    201.034000000000002
    200.856000000000000
    200.856000000000002
    200.856000000000002
    200.85499927499998
    200.85499927499998
    201.002621775
    200.886
```

Перевірка адекватності за критерієм Фішера Fp = 3.2027843562551057

F_t = 1.9925919966294197

Математична модель не адекватна експериментальним даним

Process finished with exit code 0

Висновок:

Успішно проведено трьохфакторний експеримент з урахуванням квадратичних членів ,використовуючи центральний ортогональний композиційний план. Знайдено рівняння регресії, яке буде адекватним для опису об'єкту. Написана відповідна програма. Результати успішного виконання надані у звіті.