D. H. Hodger

Journal of Sound and Vibration (1980) 72(4), 547-549

D. J. Leve 80 1 (12) 3

COMMENTS ON VIBRATION OF A ROTATING BEAM WITH TIP MASS"

Recently Hoa [1] presented a finite element model to obtain the vibration frequencies of a rotating beam with tip mass. It was discovered later that there was a minus sign missing in the expression for d in Table 1 of reference [1]+; the correct expression should be d = -(R' + n). The correct expression for d gives faster convergence in the finite element results and slightly smaller values than those reported in reference [1]. A revised version of Table 3 of reference [1] is shown in Table 1. In Table 1, a value of $\lambda = 10.70310$ is given instead of the value of $\Omega = 500 \text{ rad/s}$ in Table 3 of reference [1] based upon the physical parameters of h = 0.02 in, L = 5 in, $E = 30 \times 10^6 \text{ lb/in}^2$, $\rho = 0.283 \text{ lb/in}^3$, and $g = 0.283 \text{ lb/in}^3$ 386 in/s^2 .

TABLE 1 Convergence of the finite element model, $\lambda = 10.70310$, $R = \gamma = 0$

	Vibration frequency parameter \tilde{a}		
Mode	10 elements	12 elements	14 elements
First	11.8926	11-8924	11-8924
Second	35.0044	35.0037	35.0034
Third	76-3471	76.3394	76.3360
Fourth	136-889	136-835	136-811
Fifth	216-963	216.726	216-621
Sixth	317-204	316-446	316-101

TABLE 2 Comparison between the present finite element results and calculations based on [2], first mode, $R = \gamma = 0$

	ā		M = 1 N = 15 [2]
λ	Present, 10 elements	M = 10, N = 3[2]	M = 1, N = 15[2] (exact)
0	3.51602	3.51602	3.51602
1	3.68165	3.68165	3.68165
2	4.13732	4-13732	4.13732
3	4.79728	4.79728	4.79728
4	5.58501	5.58501	5.58500
5	6-44957	6-44957	6-44954
6	7-36041	7-36041	7-36037
7	8-29970	8-29970	8-29964
8	9-25694	9-25694	9-25684
9	10.2258	10-2258	10-2257
10	11.2026	11-2026	11-2023
11	12-1847	12-1847	12-1843
12	13-1706	13-1706	13-1702

† The results of reference [1] were first noted to be incorrect by Dr Dewey H. Hodges. The actual sign error was later discovered by Dr Michael J. Rutkowski.

0022-460X/80/200547+03 \$02.00/0

For the case of a rotating beam without a tip mass $(\gamma = 0)$, the present finite element results obtained by using a third order polynomial and ten elements are presented for various values of the angular velocity parameter λ . Results obtained by using Hodges' analysis [2] with both the present element configuration (M = 10, N = 3) and with the fifteenth order polynomial and one element (M = 1, N = 15), which yields the essentially exact solution, are also shown. For ten elements, the results obtained from the present analysis and that of reference [2] are identical and agree quite well with the exact solution.

Table 3

Comparison between the present finite element results and calculations based on [2], second mode, $R = \gamma = 0$

λ	ã			
	Present, 10 elements	M = 10, N = 3[2]	M = 1, N = 15[2] (exact)	
0	22.0352	22.0352	22.0345	
1	22.1817	22-1817	22.1810	
2	22.6156	22-6156	22-6149	
3	23.3210	23.3210	23.3203	
4	24.2740	24.2740	24-2733	
5	25-4468	25-4468	25-4461	
6	26-8098	26.8098	26.8091	
7	28-3349	28-3349	28-3341	
8	29.9963	29.9963	29.9954	
9	31.7716	31.7716	31.7705	
10	33.6416	33.6416	33-6404	
11	35.5905	35.5905	35.5890	
12	37.6050	37.6050	37.6031	

TABLE 4
Comparison between the present finite element results and calculations based on [2], first mode, R = 1, $\gamma = 0$

λ	ā			
	Present, 10 elements	M = 10, N = 3[2]	M = 1, N = 15[2] (exact)	
0	3.51602	3.51602	3.51602	
1	3.88883	3-88883	3.88882	
2	4.83369	4.83369	4.83369	
3	6.08177	6.08177	6.08175	
4	7.47509	7.47509	7.47505	
5	8-94046	8-94046	8-94036	
6	10-4441	10-4441	10-4439	
7	11-9694	11-9694	11-9691	
8	13.5079	13-5079	13-5074	
9	15-0549	15.0549	15-0541	
10	16-6075	16-6075	16-6064	
11	18-1642	18-1642	18-1625	
12	19.7237	19.7237	19.7215	

The results in Tables 1-4 are for $\bar{\alpha} = (\alpha^2 + \lambda^2 \sin^2 \theta)^{1/2}$ and are thus valid for all θ . The definitions of α . λ , R, and θ are the same as in reference [1].

Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada H3G 1M8 S. V. HOA

Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories, (AVRADCOM), Ames Research Center, D. H. HODGES M. J. RUTKOWSKI

Ames Research Center, Moffett Field, California 94035, U.S.A.

(Received 2 June 1980)

REFERENCES

- 1. S. V. HOA 1979 Journal of Sound and Vibration 67, 369-381. Vibration of a rotating beam with tip mass.
- 2. D. H. HODGES 1979 Journal of the American Helicopter Society 24, 43-50. Vibration and response of nonuniform rotating beams with discontinuities.

Accession For	
7717 GRAAT 3 TLB	
างการการคร ิ อักษาที่โดยที่โดย	
District way	
Avi to the let a	(a) (a)
H 39	· 0.3*