Etapa Judeţeană şi a Municipiului Bucureşti, 12 Martie 2011 CLASA a XII-a SOLUŢII ŞI BAREMURI ORIENTATIVE

Problema 1. Arătați că numărul $\frac{1}{\pi} \int_{\sin \frac{\pi}{13}}^{\cos \frac{\pi}{13}} \sqrt{1-x^2} \, dx$ este rațional.

Soluţie. Considerăm funcția $F:[0,\pi/2]\to\mathbb{R}, F(t)=\int_{\sin t}^{\cos t}\sqrt{1-x^2}\,\mathrm{d}x.$ Această funcție este derivabilă, iar derivata ei este

$$F'(t) = (-\sin t)\sqrt{1 - (\cos t)^2} - (\cos t)\sqrt{1 - (\sin t)^2} = -(\sin t)^2 - (\cos t)^2 = -1.$$

Problema 2. Fie G multimea matricelor de forma

$$\begin{pmatrix} a & b \\ \hat{0} & \hat{1} \end{pmatrix}$$
, $a, b \in \mathbb{Z}_7$, $a \neq \hat{0}$.

- (a) Arătați că G este grup în raport cu înmulțirea matricelor.
- (b) Arătați că nu există morfisme nenule de la grupul G în grupul aditiv \mathbb{Z}_7 .

Solutie. (a) Fie

$$A = \begin{pmatrix} a & b \\ \hat{0} & \hat{1} \end{pmatrix} \quad \text{si} \quad B = \begin{pmatrix} x & y \\ \hat{0} & \hat{1} \end{pmatrix}$$

două matrice din G. Atunci

$$AB = \left(\begin{array}{cc} ax & ay+b\\ \hat{0} & \hat{1} \end{array}\right) \in G,$$

de
oarece $ax \neq \hat{0}$. Înmulțirea matricelor este asociativă, $I_2 \in G$ și inversa matrice
iA este

$$\left(\begin{array}{cc} a^{-1} & -a^{-1}b \\ \hat{0} & \hat{1} \end{array}\right) \in G.$$

(b) Fie

$$A = \left(\begin{array}{cc} a & b \\ \hat{0} & \hat{1} \end{array}\right),$$

o matrice din G, cu $a \neq \hat{1}$. Cum

$$A^{k} = \begin{pmatrix} a^{k} & b(a^{k-1} + a^{k-2} + \dots + 1) \\ \hat{0} & \hat{1} \end{pmatrix},$$

Problema 3. Fie funcția $f:[0,1]\to\mathbb{R}$ continuă și crescătoare și șirul $(a_n)_{n\geq 1}$ definit astfel

$$a_n = \frac{1}{2^n} \sum_{k=1}^{2^n} f\left(\frac{k}{2^n}\right),\,$$

pentru orice $n \ge 1$.

- a) Arătați că șirul $(a_n)_{n\geq 1}$ este descrescător.
- b) Știind că există $p \in \mathbb{N}^*$ astfel încât $a_p = \int_0^1 f(x) \mathrm{d}x,$ arătați că f este constantă.

Soluţie. a)

$$a_{n+1} = \frac{1}{2^{n+1}} \sum_{k=1}^{2^{n+1}} f\left(\frac{k}{2^{n+1}}\right) = \frac{1}{2^{n+1}} \left(\sum_{k=1}^{2^n} f\left(\frac{k}{2^n}\right) + \sum_{k=1}^{2^n} f\left(\frac{2k-1}{2^{n+1}}\right)\right)$$

Deoarece $f\left(\frac{2k-1}{2^{n+1}}\right) \leq f\left(\frac{k}{2^n}\right)$, rezultă că

$$a_{n+1} \le \frac{1}{2^n} \sum_{k=1}^{2^n} f\left(\frac{k}{2^n}\right) = a_n.$$

b) Fie $k \in \{1, 2, \dots, 2^p\}$ şi $c \in \left(\frac{k-1}{2^p}, \frac{k}{2^p}\right)$ şi diviziunea $\Delta = (0, \frac{1}{2^p}, \dots, \frac{k-1}{2^p}, c, \frac{k}{2^p}, \dots, 1)$. Dacă S este suma superioară Darboux asociată acestei diviziuni, vom avea

$$a_p - S = \frac{1}{2^p} f(\frac{k}{2^p}) - f(c)(c - \frac{k-1}{2^p}) - f(\frac{k}{2^p})(\frac{k}{2^p} - c) = (f(\frac{k}{2^p}) - f(c))(c - \frac{k-1}{2^p}) \ge 0.$$

Cum
$$\int_0^1 f(x) dx \le S \le a_p = \int_0^1 f(x) dx$$
, rezultă că $a_p = S$, deci $f(c) = f(\frac{k}{2^p})$. Așadar f este constantă pe toate intervele $(\frac{k-1}{2^p}, \frac{k}{2^p}], k = 1, 2, \dots, 2^p$ cu reuniunea intervalul (01]. Din continuitate rezultă f constantă.

......3 puncte

Problema 4. Fie A un inel şi a un element al său. Arătați că:

(a) Dacă A este comutativ și a este nilpotent, atunci a + x este inversabil, oricare ar fi elementul inversabil $x \in A$.

(b) Dacă A este finit şi a + x este inversabil, oricare ar fi elementul inversabil $x \in A$, atunci a este nilpotent.

(Un element a al unui inel se numește nilpotent, dacă există un număr întreg $n \ge 1$, astfel încât $a^n = 0$.)

Soluţie. (a) Fie x un element inversabil şi n un număr întreg strict pozitiv, astfel încât $a^n=0$. Întrucât $a+x=x(x^{-1}a+1)$, este suficient să arătăm că $x^{-1}a+1$ este inversabil. Fie $b=x^{-1}a$. Inelul A fiind comutativ, rezultă că $b^n=x^{-n}a^n=0$, deci şi $b^{2n+1}=0$. Prin urmare,

$$1 = b^{2n+1} + 1 = (b+1)(b^{2n} - b^{2n-1} + \dots - b + 1),$$

(b) Demonstrăm prin inducție că a^n-1 este inversabil, oricare ar fi numărul întreg $n \ge 1$. Luând x = -1, rezultă că a - 1 este inversabil. Presupunem că $b = a^n - 1$ este inversabil. Din ipoteză rezultă că și $a - b^{-1}$ este inversabil, deci și $ab - 1 = (a - b^{-1})b$ este inversabil. Prin urmare,

$$a^{n+1} - 1 = a + (a(a^n - 1) - 1) = a + (ab - 1)$$

este inversabil.