Midterm 1, CS-UY 4563

Sample Questions

Show all of your work to receive full (and partial) credit.

Always, Sometimes, Never

Indicate whether each of the following statements is **always** true, **sometimes** true, or **never** true. Provide a one or two short justification or example to explain your choice.

1. For random events $p(x \mid y) < p(x, y)$.

ALWAYS SOMETIMES NEVER

2. You use gradient descent to find parameters $\vec{\beta}_{GD}$ for a multiple linear regression problem under ℓ_2 loss: $L(\vec{\beta}) = \|X\vec{\beta} - \vec{y}\|_2^2$. You are short on time, so you only run gradient descent for 10 iterations. Your friend finds parameters $\vec{\beta}_M$ using the equation $\vec{\beta}_M(X^T = X)^{-1}X^Ty$. Is $L(\vec{\beta}_m) \leq L(\vec{\beta}_{GD})$?

ALWAYS SOMETIMES NEVER

3. Does \vec{eta}_m acheive better population risk than \vec{eta}_{GD} ?

ALWAYS SOMETIMES NEVER

4. To evaluate machine learning models, you should use a train-test split instead of k-fold cross validation.

ALWAYS SOMETIMES NEVER

Short Answer

- 1. You are trying to develop a machine learning algorithm for classifying data $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$ into catagories $1,\ldots,q$. You have decided to use linear classification for the problem.
 - (a) You know you can find a good linear classifier for *binary* classification (dividing into q=2 classes) using logistic regression. You are considering using either the **one-vs-all** or **one-vs-one** approach to adapting this approach to the multiclass problem. In a few sort sentences describe why you might use one over the other.

(b) Your coworker suggests the following alternative approach: let's try to learn a parameter vector $\vec{\beta} \in \mathbb{R}^d$ and classify using the following model:

$$f_{\vec{\beta}}(\vec{x}) = \begin{cases} 1 \text{ if } & \langle \vec{\beta}, \vec{x} \rangle \leq 1 \\ 2 \text{ if } & 2 < \langle \vec{\beta}, \vec{x} \rangle \leq 3 \\ 3 \text{ if } & 3 < \langle \vec{\beta}, \vec{x} \rangle \leq 4 \\ \vdots & & \\ q - 1 \text{ if } & q - 2 < \langle \vec{\beta}, \vec{x} \rangle \leq q - 1 \\ q \text{ if } & q - 1 < \langle \vec{\beta}, \vec{x} \rangle \end{cases}$$
(1)

- (c) Describe **one potential issue** and **one potental benefit** of your coworker's method over the approaches mentioned in (a). There is no one "right" answer here.
- (d) For the two datasets D_1 and D_2 below, indicate which of the three approaches (**one-vs-one**, **one-vs-all**, or your **coworkers approach**) would lead to an accurate solution to the multiclass classification problem. No explanation is required, but having one might help you earn partial credit.
 - class 1
 - class 2
 - class 3

2. We are given data with just one predictor variable and one target: $(x_1, y_1), \ldots, (x_n, y_n)$, with the goal of fitting a degree two polynomial model using unregularized multiple linear regression with data transformation. The goal is to find the best coefficients $\beta_0, \beta_1, \beta_2$ for predicting y as $\beta_0 + \beta_1 x + \beta_2 x^2$.

Consider the following three transformed data matrices:

$$X_1 = egin{bmatrix} 1 & x_1 & x_1^2 \ dots & dots & dots \ 1 & x_n & x_n^2 \end{bmatrix}$$
 , $X_2 = egin{bmatrix} 1 & x_1^2 - x_1 & x_1^2 \ dots & dots & dots \ 1 & x_n^2 - x_n & x_n^2 \end{bmatrix}$, and $X_3 = egin{bmatrix} 1 & 2x_1^2 - x_1 & 2x_1 - 4x_1^2 \ dots & dots & dots \ 1 & 2x_1^2 - x_1 & 2x_1 - 4x_1^2 \ dots & dots & dots \ 1 & 2x_1^2 - x_1 & 2x_1 - 4x_1^2 \ \end{matrix}$

Which of the above matrices can be used to solve this problem? In other words, if we train a multiple linear regression problem with X_i can we obtain an optimal degree two polynomial fit for y_1, \ldots, y_n . Justify your answer in words, or with equations.

3. Write each of the following models as transformed linear models. That is, find a parameter vector $\vec{\beta}$ in terms of the given parameters a_i and a set basis functions of functions $\phi(\vec{x})$ such that $y = \langle \vec{\beta}, \phi(\vec{x}) \rangle$. Also, show how to recover the original parameters a_i from the parameters β_j :

(a)
$$y=(a_1x_1+a_2x_2)e^{-x_1-x_2}$$
 .

(b)
$$y=\left\{egin{array}{ll} a_1+a_2x & ext{if } x<1\ a_3+a_4x & ext{if } x\geq 1 \end{array}
ight.$$

(c)
$$y=(1+a_1x_1)e^{-x_2+a_2}$$
 .

4. For data with one predictor variable and one target: $(x_1, y_1), \ldots, (x_n, y_n)$, consider a simple linear regression model:

$$f_{\beta_0,\beta_1}(x) = \beta_0 + \beta_1 x \tag{2}$$

with a *logarithmically transformed* ℓ_2 loss:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (\log(y_i) - \log(f_{\beta_0, \beta_1}(x_i)))^2$$
 (3)

This sort of model makes sense when trying to predict a value that is more naturally expressed on a logarithmic scale (e.g. pH level, volume in decimals, etc.)

- (a) Write down an expression for the gradient of the loss L.
- (b) Using your expression and the gradient descent update rule, write pseudocode for finding parameters β_0^* , β_1^* which approximately minimize L.
- (c) What other method could have been used to find nearly optimal β_0^*, β_1^* ?