Part I - (Ford GoBike System Findings)

by (PURITY NJOKI NG'ANG'A)

Introduction This data set includes information about individual rides made in a bike-sharing system covering the greater San Francisco Bay area.

Preliminary Wrangling

```
In [1]: # importing necessary libraries
        import zipfile
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sb
In [2]: # unzip the files to access the datasets needed for analysis
        with zipfile.ZipFile('jan-baywheels.zip', 'r') as myzip1:
            myzip1.extractall()
        with zipfile.ZipFile('feb-baywheels.zip', 'r') as myzip2:
            myzip2.extractall()
        with zipfile.ZipFile('march-baywheels.zip', 'r') as myzip3:
            myzip3.extractall()
In [3]: #load datasets into pandas dataframe
        jan baywhls = pd.read csv('202001-baywheels-tripdata.csv')
        feb baywhls = pd.read csv('202002-baywheels-tripdata.csv')
        mar baywhls = pd.read csv('202003-baywheels-tripdata.csv')
        C:\Users\User\AppData\Local\Temp\ipykernel 4872\429148203.py:3: DtypeWarning: Columns (1
        3) have mixed types. Specify dtype option on import or set low memory=False.
          jan baywhls = pd.read csv('202001-baywheels-tripdata.csv')
        C:\Users\User\AppData\Local\Temp\ipykernel 4872\429148203.py:4: DtypeWarning: Columns (1
        3) have mixed types. Specify dtype option on import or set low memory=False.
          feb baywhls = pd.read_csv('202002-baywheels-tripdata.csv')
In [4]: #save datasets to csv files and;
        #load the saved dataset into pandas dataframe
        jan_baywhls.to_csv('ford_gobike1_2020.csv', index = False)
        df1 = pd.read csv('ford gobike1 2020.csv', dtype={"rental access method" : "object"})
        feb baywhls.to csv('ford gobike2 2020.csv', index = False)
        df2 = pd.read csv('ford gobike2 2020.csv', dtype={"rental access method" : "object"})
        mar baywhls.to csv('ford gobike3 2020.csv', index = False)
        df3 = pd.read csv('ford gobike3 2020.csv', dtype={"rental access method" : "object"})
        df1.head(5)
In [5]:
Out[5]:
          duration_sec
                                    end_time start_station_id start_station_name start_station_latitude start_station
                        start_time
                                  2020-02-01
                       2020-01-31
                                                             Buchanan St at
        0
                                                    400.0
                83118
                                                                                  37.804272
```

North Point St

15:23:47.7330 14:29:06.2630

1	68239	2020-01-31 15:40:31.6160	2020-02-01 10:37:51.0000	99.0	Folsom St at 15th St	37.767037
2	55407	2020-01-31 17:48:16.6350	2020-02-01 09:11:44.3170	197.0	El Embarcadero at Grand Ave	37.808848
3	54929	2020-01-31 17:53:03.4130	2020-02-01 09:08:32.6340	197.0	El Embarcadero at Grand Ave	37.808848
4	55700	2020-01-31 17:12:33.4600	2020-02-01 08:40:53.6460	12.0	Pier 1/2 at The Embarcadero	37.796389

In [6]: df1.shape

Out[7]:

Out[6]: (295854, 14)

In [7]: df1.sample(10)

	duration_sec	start_time	end_time	start_station_id	start_station_name	start_station_latitude	start_station
194909	406	2020-01- 30 16:21:42	2020-01- 30 16:28:28	NaN	NaN	37.775023	
198687	538	2020-01- 06 09:07:03	2020-01- 06 09:16:01	81.0	Berry St at 4th St	37.775880	
123787	735	2020-01- 04 19:34:04	2020-01- 04 19:46:19	NaN	NaN	37.338660	
178857	996	2020-01- 10 17:07:42	2020-01- 10 17:24:19	93.0	4th St at Mission Bay Blvd S	37.770407	
190203	1144	2020-01- 26 15:02:04	2020-01- 26 15:21:08	NaN	NaN	37.773572	
284139	720	2020-01- 24 17:04:25	2020-01- 24 17:16:26	NaN	NaN	37.798697	
118925	289	2020-01- 20 08:03:19	2020-01- 20 08:08:09	NaN	NaN	37.334211	
178730	477	2020-01- 31 13:00:12	2020-01- 31 13:08:09	93.0	4th St at Mission Bay Blvd S	37.770407	
188541	621	2020-01- 17 15:46:13	2020-01- 17 15:56:34	NaN	NaN	37.773230	
252955	655	2020-01- 27 05:32:50	2020-01- 27 05:43:45	NaN	NaN	37.788512	-

In [8]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 295854 entries, 0 to 295853
Data columns (total 14 columns):

Column Non-Null Count Dtype

```
1 start time
                                        295854 non-null object
                                        295854 non-null object
          2
            end time
            start_station_id 146286 non-null float64
start_station_name 146866 non-null object
          3 start station id
            start station latitude 295854 non-null float64
          5
             start station longitude 295854 non-null float64
          8 end_station_name 146511 non-mull float64
             end station latitude 295854 non-null float64
          10 end_station_longitude 295854 non-null float64
          11 bike id
                                        295854 non-null int64
                                        295854 non-null object
          12 user type
          13 rental access method 185746 non-null object
         dtypes: float64(6), int64(2), object(6)
         memory usage: 31.6+ MB
         df1.describe() # to get descriptives stats
In [9]:
                 duration_sec start_station_id start_station_latitude start_station_longitude end_station_id end_station_lat
         count 295854.000000
                             146286.000000
                                                295854.000000
                                                                   295854.000000
                                                                                145934.000000
                                                                                                  295854.0
                  780.473193
                                168.900879
                                                   37.751277
                                                                      -122.357866
                                                                                   161.061788
                                                                                                      37.7
         mean
           std
                 2037.786317
                                141.956388
                                                    0.228337
                                                                        0.650796
                                                                                   140.766154
                                                                                                       0.2
           min
                   60.000000
                                  3.000000
                                                    0.000000
                                                                      -122.513871
                                                                                     3.000000
                                                                                                       0.0
          25%
                  369.000000
                                 53.000000
                                                   37.766214
                                                                      -122.419481
                                                                                    43.000000
                                                                                                      37.7
          50%
                  588.000000
                                120.000000
                                                   37.777158
                                                                      -122.403234
                                                                                   113.000000
                                                                                                      37.7
          75%
                  912.000000
                                263.000000
                                                   37.790102
                                                                      -122.392450
                                                                                   250.000000
                                                                                                      37.7
          max 811077.000000
                                506.000000
                                                   37.880222
                                                                        0.000000
                                                                                   506.000000
                                                                                                      37.9
         dfl.isna().sum() #finding if there are any missing values
In [10]:
         duration sec
         start time
                                            0
         end time
                                            0
         start station id
                                     149568
         start station name
                                      148988
         start station latitude
                                          Ω
         start station longitude
         end station id
                                     149920
         end station_name
                                      149343
         end station latitude
                                          Ω
         end station longitude
                                            0
         bike id
                                            0
                                            0
         user type
                                     110108
         rental access method
         dtype: int64
         dfl.nunique() #number of unique entries
In [11]:
                                       5574
         duration sec
         start time
                                      282787
         end time
                                      282613
         start station id
                                        429
         start station name
                                        430
```

295854 non-null int64

0

Out[9]:

Out[10]:

Out[11]:

start station latitude

start station longitude

end station id

end station name

122218

123962

428

429

duration sec

```
bike id
                                           8016
         user type
                                              2
                                              2
         rental access method
         dtype: int64
         print(df1['user type'].unique())
In [12]:
          df1['user type'].value counts()
          ['Customer' 'Subscriber']
         Subscriber
                        170988
Out[12]:
         Customer
                         124866
         Name: user type, dtype: int64
          #getting unique categories of the rental access method
In [13]:
          print(df1['rental access method'].unique())
          df1.rental access method.value counts()
          [nan 'app' 'clipper']
                      171751
         app
Out[13]:
                       13995
         clipper
         Name: rental access method, dtype: int64
          df1[df1.duration sec <= 60].count() # getting the minimum number of duration
In [14]:
                                        54
         duration sec
Out[14]:
         start time
                                        54
         end time
                                        54
         start station id
                                        12
         start station name
                                        12
         start station latitude
                                        54
         start station longitude
                                        54
         end_station id
                                        10
         end station name
                                        11
         end station latitude
                                        54
         end station longitude
                                        54
                                        54
         bike id
                                        54
         user type
         rental access method
                                        54
         dtype: int64
         df1.nlargest(5, 'duration sec') # extracting 5 largest values of the time duration
In [15]:
          # seems like there's one outlier
                                             end_time start_station_id start_station_name start_station_latitude
Out[15]:
                  duration_sec
                                start_time
                                2020-01-09
                                            2020-01-19
          121168
                      811077
                                                                NaN
                                                                                 NaN
                                                                                                37.336035
                                  16:23:21
                                              01:41:19
                               2020-01-16
                                            2020-01-17
                                                               417.0
                                                                      Park Ave at Race St
           49926
                       86221
                                                                                                37.326011
                              07:51:37.7090 07:48:39.5150
                                                                      Yerba Buena Center
                               2020-01-12
                                            2020-01-13
           63677
                       85994
                                                               284.0
                                                                            for the Arts
                                                                                                37.784872
                              17:08:54.1100 17:02:08.5300
                                                                         (Howard St at ...
                               2020-01-23
                                            2020-01-24
           27024
                       85450
                                                                14.0
                                                                     Clay St at Battery St
                                                                                                37.795001
                              14:29:54.6580 14:14:05.0000
                               2020-01-15
                                            2020-01-16
                                                                        University Ave at
           50984
                       85268
                                                               258.0
                                                                                                37.872355
                              18:13:47.2190 17:54:55.2520
                                                                              Oxford St
```

end station latitude

end station longitude

122941

125091

What is the structure of your dataset? There are 295854 observations and 14 variables(duration_sec, start_time & end_time, start_station_id, start_station_name, start_station_latitude, start_station_longitude,

end_station_id, end_station_name, end_station_latitude, end_station_longitude, bike_id, user_type and rental_access_method

What is/are the main feature(s) of interest in your dataset? Most interest is in figuring out features that best determine least time taken for each trip in the dataset.

What features in the dataset do you think will help support your investigation into your feature(s) of interest?

I expect that duration will have strongest effect on in determining the time spent on each trip taken. Other features that influence time taken could be day of the week, month or user type.

Assesing the second dataframe

In [16]:	df2.he	ad(10)						
Out[16]:	dura	tion_sec	start_time	end_time	start_station_id	start_station_name	start_station_latitude	start_statio
	0	62083	2020-02-29 18:32:30.5750	2020-03-01 11:47:14.0850	176.0	MacArthur BART Station	37.828410	
	1	1364	2020-02-29 23:53:53.7190	2020-03-01 00:16:37.9720	375.0	Grove St at Masonic Ave	37.774836	
	2	836	2020-02-29 23:54:03.1970	2020-03-01 00:07:59.8490	375.0	Grove St at Masonic Ave	37.774836	
	3	1004	2020-02-29 23:48:34.6480	2020-03-01 00:05:19.2020	179.0	Telegraph Ave at 27th St	37.816073	
	4	1007	2020-02-29 23:48:25.9000	2020-03-01 00:05:13.4490	179.0	Telegraph Ave at 27th St	37.816073	
	5	338	2020-02-29 23:57:43.5250	2020-03-01 00:03:22.4400	182.0	19th Street BART Station	37.809369	
	6	570	2020-02-29 23:52:37.7100	2020-03-01 00:02:08.3470	252.0	Channing Way at Shattuck Ave	37.865847	
	7	1001	2020-02-29 23:36:02.9230	2020-02-29 23:52:44.6450	5.0	Powell St BART Station (Market St at 5th St)	37.783899	
	8	3247	2020-02-29 22:58:00.6150	2020-02-29 23:52:08.3760	246.0	Berkeley Civic Center	37.869060	
	9	898	2020-02-29 23:35:54.7540	2020-02-29 23:50:53.7240	95.0	Sanchez St at 15th St	37.766219	

In [17]:

df2.shape

Out[17]:

(432354, 14)

Tn [18]:

dfl.sample(10)

Out[18]:		duration_sec	start_time	end_time	start_station_id	start_station_name	start_station_latitude	start_
	208696	355	2020-01-10 23:55:09	2020-01-11 00:01:05	NaN	NaN	37.776756	
	195483	424	2020-01-07	2020-01-07	NaN	NaN	37.775175	

49029	985	2020-01-17 09:40:40.2820	2020-01-17 09:57:05.9780	121.0	Mission Playground	37.759210
242633	511	2020-01-27 09:17:33	2020-01-27 09:26:04	NaN	NaN	37.786279
37767	310	2020-01-21 18:16:31.8420	2020-01-21 18:21:42.5470	81.0	Berry St at 4th St	37.775880
68528	428	2020-01-12 11:31:02.2490	2020-01-12 11:38:10.7820	170.0	Telegraph Ave at 58th St	37.844493
26040	375	2020-01-24 17:50:06.5220	2020-01-24 17:56:21.5540	114.0	Rhode Island St at 17th St	37.764478
102157	442	2020-01-03 17:41:09.4920	2020-01-03 17:48:32.1130	182.0	19th Street BART Station	37.809369
122522	650	2020-01-06 14:12:50	2020-01-06 14:23:41	NaN	NaN	37.337091
271663	171	2020-01-27 18:48:34	2020-01-27 18:51:26	NaN	NaN	37.793551

20:12:53

20:05:49

In [19]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 432354 entries, 0 to 432353

Data columns (total 14 columns):

Daca	COTAMINO (COCAT II COTAMIN	○ / •	
#	Column	Non-Null Count	Dtype
0	duration_sec	432354 non-null	int64
1	start_time	432354 non-null	object
2	end_time	432354 non-null	object
3	start_station_id	161723 non-null	float64
4	start_station_name	161723 non-null	object
5	start_station_latitude	432354 non-null	float64
6	start_station_longitude	432354 non-null	float64
7	end_station_id	162194 non-null	float64
8	end_station_name	162194 non-null	object
9	end_station_latitude	432354 non-null	float64
10	end_station_longitude	432354 non-null	float64
11	bike_id	432354 non-null	int64
12	user_type	432354 non-null	object
13	rental_access_method	317843 non-null	object
dtype	es: float64(6), int64(2),	object(6)	

memory usage: 46.2+ MB

df2.describe() # getting descriptive statistics of the dataset In [20]:

Out[20]: duration_sec start_station_id start_station_latitude start_station_longitude end_station_id end_station_lat count 432354.000000 161723.000000 432354.000000 432354.000000 162194.000000 432354.0 802.375502 174.885601 37.752000 -122.363239 37.7 mean 167.831301 0.2 1383.128099 144.087616 0.249644 0.733128 143.653096 std 0.0 60.000000 3.000000 0.000000 -122.514230 3.000000 min 56.000000 -122.421264 37.7 25% 369.000000 37.765910 44.000000 50% 596.000000 126.000000 37.777288 -122.405528 120.000000 37.7

	max	86317.000000	512.000	000	37.880222		0.0000	512.000000	37.8
[21]:	df2[df	f2.duration_	_sec <= 60]	.count()	#getting th	n num	ber of entr	ies with duration	points 1
t[21]:	durati start_ end_ti start_ start_ start_ end_st end_st end_st end_st bike_i user_t rental	ton_sec _time _station_id _station_nam _station_lat _station_id _station_id _ation_id _ation_name _ation_latit _ation_latit	ne zitude agitude zude zude	100 100 100 16 16 100 100 14 14 14 100 100 100					
[22]:	df2.ns			_				number to find i	
:[22]:	119217		2020-02- 26 11:12:31	2020-02- 26 11:13:31	296.0		_station_name St at Virginia St	start_station_latitude 37.325998	start_statior
	122497	60	2020-02- 07 15:19:12	2020-02- 07 15:20:13	NaN		NaN	37.331160	
	124418	60	2020-02- 09 18:03:10	2020-02- 09 18:04:11	NaN		NaN	37.332897	
	124746	60	2020-02- 29 17:21:04	2020-02- 29 17:22:05	NaN		NaN	37.333003	
	124857	60	2020-02- 18 20:59:04	2020-02- 18 21:00:04	NaN		NaN	37.333054	-
[23]:	df2.nl	largest(10,	'duration_	sec') #fi	inding if th	nere'	re any outl:	iers	
[23]:		duration_sec	start_time	end_tin	ne start_statio	n_id	start_station_na	me start_station_latit	ude start_s
	51618	86317	2020-02-17 11:42:26.0590	2020-02- 11:41:03.74		295.0	William St at 10t	h St 37.332	2794
	91130	86239	2020-02-06 17:03:46.4380	2020-02-0 17:01:05.70	/	186.0	Arguello Blv Edwar		3487
	82154	84805	2020-02-09 16:37:18.0310	2020-02- 16:10:43.94		15.0	Jackson Playgro	und 37.765	5026
	38157	84627	2020-02-20 10:40:59.1810	2020-02-2 10:11:26.20-		87.0	Folsom St at 13t	h St 37.769	757
	66401	84252	2020-02-12 18:50:07.3260	2020-02- 18:14:19.50		8.0	The Embarcader Vallej	۲/ /۹۱	953
	57284	84008	2020-02-15	2020-02-	16 2	246.0	Berkeley C	Civic 37.869	0060

37.790102

-122.393572

258.000000

37.7

75%

934.750000

268.000000

		15:39:15.3380	14:59:24.1610		Center	
67124	83889	2020-02-12 17:34:09.6320	2020-02-13 16:52:19.3130	467.0	Brannan St at Colin P Kelly Jr St	37.782386
99658	83845	2020-02-04 17:41:24.5800	2020-02-05 16:58:50.3570	58.0	Market St at 10th St	37.776619
45960	83318	2020-02-18 18:07:42.7780	2020-02-19 17:16:21.2950	284.0	Yerba Buena Center for the Arts (Howard St at	37.784872
77832	83101	2020-02-10 13:08:06.4540	2020-02-11 12:13:08.1690	263.0	Channing Way at San Pablo Ave	37.862827

```
In [24]: print(df2.user type.unique()) #finding unique categories in the user type var
        df2.user type.value counts()
        ['Customer' 'Subscriber']
        Subscriber 277446
Out[24]:
        Customer
                      154908
        Name: user type, dtype: int64
In [25]: print(df2.rental access method.unique())
        df2.rental access method.value counts()
         [nan 'app' 'clipper']
                  293205
        app
Out[25]:
        clipper
                    24638
```

What is the structure of your dataset?

Name: rental access method, dtype: int64

There are 432354 observations and 14 variables(duration_sec, start_time & end_time, start_station_id, start_station_name, start_station_latitude, start_station_longitude, end_station_id, end_station_name, end_station_latitude, end_station_longitude, bike_id, user_type and rental_access_method

What is/are the main feature(s) of interest in your dataset? Most interest is in figuring out features that best determine least time taken for each trip in the dataset.

What features in the dataset do you think will help support your investigation into your feature(s) of interest?

I expect that duration will have strongest effect in determining the time spent on each trip taken. Other features that influence time taken could be day of the week, month or user type.

(iii) Assessing the third dataset

```
df3.shape
In [26]:
           (176799, 14)
Out[26]:
In [27]: df3.head()
Out[27]:
              duration sec
                               start_time
                                             end_time start_station_id start_station_name start_station_latitude start_station
                                            2020-04-01
                              2020-03-31
                                                                           Cruise Terminal at
                                                                  462.0
                                                                                                       37.804648
                    35187
                            20:42:10.0790 06:28:37.8440
                                                                                    Pier 27
```

1	14568	2020-03-31 22:45:25.5010	2020-04-01 02:48:13.7730	42.0	San Francisco City Hall (Polk St at Grove St)	37.778650
2	35990	2020-03-31 15:08:22.3310	2020-04-01 01:08:12.9900	391.0	1st St at Younger Ave	37.355030
3	1068	2020-03-31 23:55:00.4260	2020-04-01 00:12:49.0200	456.0	Arguello Blvd at Geary Blvd	37.781468
4	3300	2020-03-31 23:00:55.6410	2020-03-31 23:55:56.6110	6.0	The Embarcadero at Sansome St	37.804770

In [28]: df3.sample(5)

Out[28]:		duration_sec	start_time	end_time	start_station_id	start_station_name	start_station_latitude	start_
	24569	1101	2020-03-10 10:34:02.5990	2020-03-10 10:52:24.4980	21.0	Montgomery St BART Station (Market St at 2nd St)	37.789625	
	19256	810	2020-03-11 18:09:48.3900	2020-03-11 18:23:18.6650	104.0	4th St at 16th St	37.767045	
	176383	536	2020-03-07 16:49:31	2020-03-07 16:58:27	NaN	NaN	37.807410	
	100092	286	2020-03-11 19:09:13	2020-03-11 19:14:00	223.0	16th St Mission BART Station 2	37.764765	
	103170	3033	2020-03-23 18:47:33	2020-03-23 19:38:06	95.0	Sanchez St at 15th St	37.766219	

In [29]: df3.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 176799 entries, 0 to 176798 Data columns (total 14 columns):

Daca	columns (cocal il columns).								
#	Column	Non-Null Count	Dtype						
0	duration_sec	176799 non-null	int64						
1	start_time	176799 non-null	object						
2	end_time	176799 non-null	object						
3	start_station_id	110696 non-null	float64						
4	start_station_name	111349 non-null	object						
5	start_station_latitude	176799 non-null	float64						
6	start_station_longitude	176799 non-null	float64						
7	end_station_id	111097 non-null	float64						
8	end_station_name	111794 non-null	object						
9	end_station_latitude	176799 non-null	float64						
10	end_station_longitude	176799 non-null	float64						
11	bike_id	176799 non-null	int64						
12	user_type	176799 non-null	object						
13	rental_access_method	114269 non-null	object						
dtype	es: float64(6), int64(2),	object(6)							
memor	ry usage: 18.9+ MB								

In [30]: df3.isna().sum()

Out[30]: duration_sec start_time 0 0 end time 0 start_station_id 66103 65450 start station name start station latitude

	start	station lon	gitude	0
	-	tation id	657	02
	end s	tation name	650	005
	end s	tation latit	ude	0
	end s	tation longi	tude	0
	bike .	_		0
	user			0
	renta	l access met	hod 625	530
		 : int64		
In [31]:	df3.d	escribe()		
Out[31]:		duration_sec	start_station_id	start_station_latitu
	count	176799.000000	110696.000000	176799.0000
	mean	861.590156	185.082261	37.7325
	std	1528.143090	154.647521	0.1704
	min	60.000000	3.000000	0.0000

start_station_longitude end_station_id end_station_lat 000 176799.000000 111097.000000 176799.0 506 -122.339595 179.244228 37.7 476 0.336403 0.2 153.858017 000 -122.513814 3.000000 0.0 25% 374.000000 58.000000 37.763708 -122.421339 53.000000 37.7 50% 602.000000 125.000000 37.776598 -122.403969 121.000000 37.7 **75%** 963.000000 321.000000 37.789677 -122.390648 309.000000 37.7 84450.000000 521.000000 37.880222 0.000000 521.000000 37.9 max

```
In [32]: df3[df3.duration_sec <= 60].count()
```

duration sec 29 start time 29 29 end time start station id 10 start station name 10 start_station_latitude 29 start station longitude 29 end station id 6 end station name 6 end station latitude 29 end station longitude 29 bike id 29 user type 29 29 rental access method dtype: int64

Out[32]:

Out[33]:

In [33]: df3.nlargest(5, 'duration_sec') # extracting maximum durations

	duration_sec	start_time	end_time	start_station_id	start_station_name	start_station_latitude	start_s
7463 11311 43844	84450	2020-03-20 10:07:18.0910	2020-03-21 09:34:48.1470	84.0	Duboce Park	37.769200	
	82608	2020-03-15 13:14:31.1470	2020-03-16 12:11:19.8850	3.0	Powell St BART Station (Market St at 4th St)	37.786375	
	82449	2020-03-03 19:53:05.7190	2020-03-04 18:47:15.4680	508.0	St. Joseph's Ave at Geary Blvd	37.782476	
4392	81351	2020-03-24 11:45:56.7950	2020-03-25 10:21:47.8420	178.0	Broadway at 30th St	37.819381	
23142	80980	2020-03-09 19:19:48.0250	2020-03-10 17:49:28.1160	246.0	Berkeley Civic Center	37.869060	

```
In [34]: print(df3.user_type.unique())
df3.user_type.value_counts()

['Customer' 'Subscriber']
Subscriber    96262
Customer    80537
Name: user_type, dtype: int64

In [35]: print(df3.rental_access_method.unique())
df3.rental_access_method.value_counts()

[nan 'app' 'clipper']
app    105515
clipper    8754
Name: rental access method, dtype: int64
```

What is the structure of your dataset? There are 176799 observations and 14 variables(duration_sec, start_time & end_time, start_station_id, start_station_name, start_station_latitude, start_station_longitude, end_station_id, end_station_name, end_station_latitude, end_station_longitude, bike_id, user_type and rental_access_method

What is/are the main feature(s) of interest in your dataset? Most interest is in figuring out features that best determine least time taken for each trip in the dataset.

What features in the dataset do you think will help support your investigation into your feature(s) of interest?

I expect that duration will have strongest effect in determining the time spent on each trip taken. Other features that influence time taken could be day of the week, month or user type.

Findings

- (i) Tidiness Issues
 - 1. Data is divided into 3 datasets.
 - 2. 'Day' column is missing from the datasets
 - 3. Time is displayed in term of seconds, instead of minutes or hours.
 - 4. Unnecessary columns for analysis.
 - 5. Month column is missing.

Quality

- 1. Wrong data types (start_time, end_time)
- 2. Null records present
- 3. Jan dataset has one outlier

Cleaning Data

```
In [36]:
         # Creating dataframe copies
         df1 clean = df1.copy()
         df2 clean = df2.copy()
         df3 clean = df3.copy()
```

T5. Month column is missing

2020-02-29

2020-02-29

23:53:53.7190 00:16:37.9720

18:32:30.5750

62083

1364

2020-03-01

2020-03-01

11:47:14.0850

Define:

Add month column. In each dataset add the month column, with the name of the month, to tell apart each dataset for ease of analysis.

Code:

```
In [105...
         #creating the new column 'month'
         df1 clean['month'] = 'Jan'
         df2 clean['month'] = 'Feb'
         df3 clean['month'] = 'Mar'
```

```
Test:
In [38]:
           print(df1 clean.shape)
           df1 clean.head()
           (295854, 15)
Out[38]:
               duration sec
                               start time
                                              end time
                                                         start station id start station name start station latitude start station
                               2020-01-31
                                             2020-02-01
                                                                               Buchanan St at
           0
                     83118
                                                                   400.0
                                                                                                         37.804272
                                                                               North Point St
                             15:23:47.7330
                                          14:29:06.2630
                                             2020-02-01
                               2020-01-31
                     68239
                                                                          Folsom St at 15th St
                                                                                                         37.767037
                             15:40:31.6160 10:37:51.0000
                               2020-01-31
                                             2020-02-01
                                                                            El Embarcadero at
           2
                     55407
                                                                   197.0
                                                                                                         37.808848
                             17:48:16.6350 09:11:44.3170
                                                                                   Grand Ave
                               2020-01-31
                                             2020-02-01
                                                                            El Embarcadero at
                     54929
                                                                   197.0
                                                                                                         37.808848
                             17:53:03.4130 09:08:32.6340
                                                                                   Grand Ave
                               2020-01-31
                                             2020-02-01
                                                                               Pier 1/2 at The
                     55700
                                                                    12.0
                                                                                                         37.796389
                             17:12:33.4600
                                           08:40:53.6460
                                                                                Embarcadero
           print(df2 clean.shape)
In [39]:
           df2 clean.head()
           (432354, 15)
Out[39]:
               duration_sec
                               start_time
                                                         start_station_id start_station_name
                                                                                              start_station_latitude start_station
                                               end_time
```

176.0

375.0

MacArthur BART

Grove St at Masonic

Station

37.828410

37.774836

	2	836	2020-02-29 23:54:03.1970	2020-03-01 00:07:59.8490	375.0	Grove St at Masonic Ave	37.774836	
	3	1004	2020-02-29 23:48:34.6480	2020-03-01 00:05:19.2020	179.0	Telegraph Ave at 27th St	37.816073	
	4	1007	2020-02-29 23:48:25.9000	2020-03-01 00:05:13.4490	179.0	Telegraph Ave at 27th St	37.816073	
In [40]:	print(df3_cle	_	=	# checking	if the new co	lumn has been a	dded	
	(176799	9, 15)						
Out[40]:	durat	ion_sec	start_time	end_time	start_station_id	start_station_name	$start_station_latitude$	start_statio
	0	35187	2020-03-31 20:42:10.0790	2020-04-01 06:28:37.8440	462.0	Cruise Terminal at Pier 27	37.804648	
	0	35187 14568			462.0 42.0		37.804648 37.778650	
			20:42:10.0790	06:28:37.8440		Pier 27 San Francisco City Hall (Polk St at		
	1	14568	20:42:10.0790 2020-03-31 22:45:25.5010 2020-03-31	06:28:37.8440 2020-04-01 02:48:13.7730 2020-04-01	42.0	Pier 27 San Francisco City Hall (Polk St at Grove St) 1st St at Younger	37.778650	

T2. Data is divided into 3 datasets.

Define

Append the clean datasets to form one dataset.

Code

```
In [41]: df = df1_clean.append(df2_clean, ignore_index = True)

df= df.append(df3_clean, ignore_index = True)

C:\Users\User\AppData\Local\Temp\ipykernel_4872\3831234053.py:1: FutureWarning: The fram e.append method is deprecated and will be removed from pandas in a future version. Use p andas.concat instead.
    df = df1_clean.append(df2_clean, ignore_index = True)

C:\Users\User\AppData\Local\Temp\ipykernel_4872\3831234053.py:3: FutureWarning: The fram e.append method is deprecated and will be removed from pandas in a future version. Use p andas.concat instead.
    df= df.append(df3_clean, ignore_index = True)
```

Test

```
In [42]: df.shape
Out[42]: (905007, 15)
```

merged datadrame has the total number of rows from the indvidual datasets combined.

T3. Unnecessary columns

Define

Delete the unrequired columns from the dataset

Code

ıt[43]:		duration_sec	start_time	end time	start station id	start station name	start_station_latitude	start statio
	0	83118	2020-01-31 15:23:47.7330	2020-02-01 14:29:06.2630	400.0	Buchanan St at North Point St	37.804272	<u> </u>
	1	68239	2020-01-31 15:40:31.6160	2020-02-01 10:37:51.0000	99.0	Folsom St at 15th St	37.767037	
	2	55407	2020-01-31 17:48:16.6350	2020-02-01 09:11:44.3170	197.0	El Embarcadero at Grand Ave	37.808848	
	3	54929	2020-01-31 17:53:03.4130	2020-02-01 09:08:32.6340	197.0	El Embarcadero at Grand Ave	37.808848	
	4	55700	2020-01-31 17:12:33.4600	2020-02-01 08:40:53.6460	12.0	Pier 1/2 at The Embarcadero	37.796389	
	5	11333	2020-01-31 22:48:22.6390	2020-02-01 01:57:15.7160	60.0	8th St at Ringold St	37.774520	
	6	11341	2020-01-31 22:48:12.9890	2020-02-01 01:57:14.1650	60.0	8th St at Ringold St	37.774520	
	7	4038	2020-01-31 23:32:03.9070	2020-02-01 00:39:22.0210	450.0	Funston Ave at Irving St	37.763934	
	8	4059	2020-01-31 23:31:01.1610	2020-02-01 00:38:40.8570	450.0	Funston Ave at Irving St	37.763934	
	9	1980	2020-01-31 23:49:09.2300	2020-02-01 00:22:09.7540	238.0	MLK Jr Way at University Ave	37.871719	
In [44]:	CC	olumns = ["s	necessary costart_stations, axis =	on_latitude		tion_longitude"	, "end_station_la	titude",

Test

```
In [45]: df.shape
Out[45]: (905007, 11)
```

T4 Time is displayed in term of seconds, instead of minutes or hours.

Define

Add two more columns to display time in minutes and hours spent on each ride

Code

```
In [46]: # converting seconds to minutes and hours
    minutes = df['duration_sec']/60
    hours = df['duration_sec']/3600

In [47]: df.insert(1, 'duration_mins', minutes)
    df.insert(2, 'duration_hrs', hours)

In [48]: days = df['duration_hrs']/24
    df.insert(3, 'duration_days', days)
```

Test

	<pre>df.head()</pre>								
start_sta	start_station_id	end_time	start_time	duration_days	duration_hrs	duration_mins	duration_sec duration_mins		
Buc No	400.0	2020-02-01 14:29:06.2630	2020-01-31 15:23:47.7330	0.962014	23.088333	1385.300000	83118	0	
Folsom S	99.0	2020-02-01 10:37:51.0000	2020-01-31 15:40:31.6160	0.789803	18.955278	1137.316667	2 55407 923.450000		
El Emb	197.0	2020-02-01 09:11:44.3170	2020-01-31 17:48:16.6350	0.641285	15.390833	923.450000			
El Emb	197.0	2020-02-01 09:08:32.6340	2020-01-31 17:53:03.4130	0.635752	15.258056	915.483333			
Pier En	12.0	2020-02-01 08:40:53.6460	2020-01-31 17:12:33.4600	0.644676	15.472222	928.333333	55700	4	

T5. 'Day' column is missing from the datasets

Define

Add 'day' column to the dataframe

Code

```
In [51]: # convert the two data types from string to datetime data type
          df[['start time', 'end time']] = df[['start time', 'end time']].apply(pd.to datetime)
          # create two columns, 'start day' and 'end day'
          start day = df['start time'].dt.day name() #defining start day and end day
          end day = df['end time'].dt.day name()
          df.insert(4, 'start day', start day)
          df.insert(6, 'end day', end day)
          df.head()
In [52]:
Out[52]:
             duration_sec duration_mins duration_hrs duration_days start_day
                                                                               start_time
                                                                                         end_day
                                                                                                     end_time start_s
                                                                                                   2020-02-01
                                                                              2020-01-31
          0
                            1385.300000
                   83118
                                           23.088333
                                                          0.962014
                                                                      Friday
                                                                                         Saturday
                                                                             15:23:47.733
                                                                                                   14:29:06.263
                                                                              2020-01-31
                                                                                                   2020-02-01
          1
                   68239
                            1137.316667
                                           18.955278
                                                          0.789803
                                                                                         Saturday
                                                                      Friday
                                                                             15:40:31.616
                                                                                                   10:37:51.000
                                                                                                   2020-02-01
                                                                              2020-01-31
          2
                   55407
                             923.450000
                                           15.390833
                                                          0.641285
                                                                      Friday
                                                                                         Saturday
                                                                             17:48:16.635
                                                                                                   09:11:44.317
                                                                              2020-01-31
                                                                                                   2020-02-01
                                                                                         Saturday
          3
                   54929
                             915.483333
                                           15.258056
                                                          0.635752
                                                                      Friday
                                                                             17:53:03.413
                                                                                                   09:08:32.634
                                                                              2020-01-31
                                                                                                   2020-02-01
                   55700
                             928.333333
                                           15.472222
                                                          0.644676
                                                                                         Saturday
          4
                                                                      Friday
                                                                             17:12:33.460
                                                                                                   08:40:53.646
In [53]:
          df.shape
          (905007, 16)
Out[53]:
```

Cleaning: Quality Issues

(i) Wrong Data types

Define

Correct the wrong data types, by converting 'start_station_id', and 'end_station_id' into strings since no analysis will be done on its values.

Code

```
In [54]: df[['start_station_id', 'end_station_id']] = df[['start_station_id', 'end_station_id']].
```

Test

```
1
                          905007 non-null
                                          float64
    duration mins
2
    duration hrs
                          905007 non-null float64
    duration days
                          905007 non-null float64
    start day
                          905007 non-null object
5
   start time
                         905007 non-null datetime64[ns]
   end day
                         905007 non-null object
7
    end time
                         905007 non-null datetime64[ns]
    start station id
                      905007 non-null object
9
    start station name
                         419938 non-null object
                          905007 non-null object
10 end station id
11 end station name
                          420499 non-null object
12 bike id
                          905007 non-null int64
13 user type
                          905007 non-null object
14 rental access method 617858 non-null object
15 month
                          905007 non-null object
dtypes: datetime64[ns](2), float64(3), int64(2), object(9)
memory usage: 110.5+ MB
```

Q2. Outlier in Jan dataset

Define

Drop the row containing the outlier

Code

```
df.nlargest(5, 'duration sec')
In [56]:
Out[56]:
                    duration_sec duration_mins duration_hrs duration_days start_day
                                                                                           start_time
                                                                                                      end day
                                                                                                                   end_time
                                                                                          2020-01-09
                                                                                                                 2020-01-19
           121168
                         811077
                                   13517.950000
                                                   225.299167
                                                                     9.387465
                                                                               Thursday
                                                                                                        Sunday
                                                                                         16:23:21.000
                                                                                                                01:41:19.000
                                                                                                                 2020-02-18
                                                                                          2020-02-17
           347472
                           86317
                                    1438.616667
                                                    23.976944
                                                                     0.999039
                                                                                Monday
                                                                                                       Tuesday
                                                                                         11:42:26.059
                                                                                                                 11:41:03.741
                                                                                          2020-02-06
                                                                                                                 2020-02-07
           386984
                                                                    0.998137
                           86239
                                    1437.316667
                                                    23.955278
                                                                               Thursday
                                                                                                         Friday
                                                                                         17:03:46.438
                                                                                                                17:01:05.703
                                                                                          2020-01-16
                                                                                                                 2020-01-17
            49926
                           86221
                                    1437.016667
                                                    23.950278
                                                                     0.997928
                                                                               Thursday
                                                                                                         Friday
                                                                                         07:51:37.709
                                                                                                                07:48:39.515
                                                                                                                 2020-01-13
                                                                                          2020-01-12
                                                                    0.995301
            63677
                           85994
                                    1433.233333
                                                    23.887222
                                                                                 Sunday
                                                                                                       Monday
                                                                                         17:08:54.110
                                                                                                                17:02:08.530
In [57]:
           df.drop(index = 121168, inplace = True)
```

Test

In [58]: df.describe()
Out[58]: duration_sec duration_mins duration_hrs duration_days bike_id

	duration_sec	uuration_iiiiis	uuration_iiis	uuration_uays	DIKE_IU
count	905006.000000	905006.000000	905006.000000	905006.000000	905006.000000
mean	805.888110	13.431469	0.223858	0.009327	345257.291351
std	1415.275537	23.587926	0.393132	0.016381	305503.268537

min	60.000000	1.000000	0.016667	0.000694	12.000000
25%	370.000000	6.166667	0.102778	0.004282	12114.000000
50%	595.000000	9.916667	0.165278	0.006887	326439.000000
75%	932.000000	15.533333	0.258889	0.010787	557460.000000
max	86317.000000	1438.616667	23.976944	0.999039	999960.000000

```
df.nlargest(5, 'duration sec')
In [59]:
Out[59]:
                     duration_sec duration_mins duration_hrs duration_days start_day
                                                                                             start_time
                                                                                                         end_day
                                                                                                                     end time
                                                                                            2020-02-17
                                                                                                                    2020-02-18
           347472
                           86317
                                                     23.976944
                                                                      0.999039
                                     1438.616667
                                                                                  Monday
                                                                                                         Tuesday
                                                                                            11:42:26.059
                                                                                                                   11:41:03.741
                                                                                            2020-02-06
                                                                                                                    2020-02-07
                                                                                 Thursday
           386984
                           86239
                                     1437.316667
                                                     23.955278
                                                                      0.998137
                                                                                                           Friday
                                                                                                                   17:01:05.703
                                                                                            17:03:46.438
                                                                                            2020-01-16
                                                                                                                    2020-01-17
            49926
                           86221
                                     1437.016667
                                                     23.950278
                                                                      0.997928
                                                                                 Thursday
                                                                                            07:51:37.709
                                                                                                                   07:48:39.515
                                                                                            2020-01-12
                                                                                                                    2020-01-13
            63677
                           85994
                                     1433.233333
                                                     23.887222
                                                                      0.995301
                                                                                   Sunday
                                                                                                         Monday
                                                                                            17:08:54.110
                                                                                                                   17:02:08.530
                                                                                            2020-01-23
                                                                                                                    2020-01-24
                                                                                                           Friday
            27024
                           85450
                                     1424.166667
                                                     23.736111
                                                                      0.989005
                                                                                 Thursday
                                                                                            14:29:54.658
                                                                                                                   14:14:05.000
```

Maximum number of duration in seconds is now 86317

Storing clean data

```
In [60]: df.to_csv('clean_df.csv', index = False) # storing clean data
```

Exploratory Data Analysis

(i) Univariate Exploration

```
df 2020 = pd.read csv('clean df.csv', dtype = {'rental access method' : 'object'}) # rea
In [61]:
        df 2020.info()
In [62]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 905006 entries, 0 to 905005
        Data columns (total 16 columns):
           Column
                                  Non-Null Count
                                                   Dtype
                                  905006 non-null int64
         0
            duration sec
           duration mins
         1
                                  905006 non-null float64
           duration hrs
                                  905006 non-null float64
                                  905006 non-null float64
           duration days
            start day
                                  905006 non-null object
            start_time
                                  905006 non-null object
         5
             end day
                                  905006 non-null object
             end time
                                  905006 non-null object
             start_station_id 418705 non-null float64
                                  419938 non-null
             start station name
                                                   object
```

```
10 end_station_id 419225 non-null float64
11 end_station_name 420499 non-null object
12 bike_id 905006 non-null int64
13 user_type 905006 non-null object
14 rental_access_method 617857 non-null object
15 month 905006 non-null object
dtypes: float64(5), int64(2), object(9)
memory usage: 110.5+ MB
```

I'll begin by looking at the checking the distribution of the main variable of interest; duration in minutes

```
In [63]: df_2020['duration_mins'].describe() # descriptive statistics
                905006.000000
        count
Out[63]:
        mean
                 13.431469
                   23.587926
        std
        min
                    1.000000
        25%
                    6.166667
        50%
                    9.916667
        75%
                   15.533333
        max
                  1438.616667
        Name: duration mins, dtype: float64
```

• Overall bike trip duration is 13.431469 minutes.

```
In [109... #defining a function to assist set x and y labels and the title of plots

def function(xL, yL, title):
    plt.title(title)
    plt.xlabel(xL)
    plt.ylabel(yL)

In [107... # Duration of trips in minutes

# settings of the plot
plt.figure(figsize = [14, 8])
bin_edges = np.arange(1, 40, 1)
ticks = [0, 5, 10, 15, 20, 25, 30, 35, 40]
labels = ['{}'.format(val) for val in ticks]

# creating a histogram
plt.hist(data = df_2020, x = 'duration_mins', bins = bin_edges, rwidth = 0.8);
plt.xticks(ticks, labels)
```

function('Duration in minutes', 'No. of Bike trips', 'Bike trip in Minutes')


```
In [ ]: - The distribution is right skewed.
- It is observed that the average duration of bike trip lasts between 3-13 minutes
```

Duration in minutes

10000

Next would be to plot pie charts to determine Number of and rental access methods used

```
In [67]: plt.figure(figsize=(12,8)) # setting plot size
    base_color = sb.color_palette()[0] #setting the color

#creating a barplot
ax = sb.countplot(data=df_2020, x ='user_type', color=base_color)

type_counts = df_2020['user_type'].value_counts()
locs, labels = plt.xticks()

# to loop through each set of loc and labels
for loc, label in zip(locs, labels):
    count = type_counts[label.get_text()]
    pct_string = '{}'.format(count)

    plt.text(loc, count-8, pct_string, va='top', ha='center', fontsize=12)#to create ann

plt.yticks([])
function('User Type', '', 'Bike User Count');
```

Bike User Count


```
In [68]: plt.figure(figsize = [14,8]) #setting figure size

#creating a pie chart
counts = df_2020['user_type'].value_counts()
sorted_counts= counts.index
plt.pie(counts, labels = sorted_counts, startangle = 90, autopct ='%1.1f%%', countercloc plt.axis('square');
function('', '', 'Comparison of Bike User')
```

Comparison of Bike User

• Subscribers take up larger proportions of the bike rides taken as compared to the customers, who only take up about 40%.

To show proportions of rental access method employed by users

```
In [69]: plt.figure(figsize = [14,8]) #setting figure size
    rental_counts = df_2020['rental_access_method'].value_counts()

#creating pie chart to show proportions
    sorted_rental_counts = df_2020['rental_access_method'].value_counts().index
    plt.pie(rental_counts, labels = sorted_rental_counts, startangle = 90, autopct ='%1.1f%%
    plt.axis('square');

function('', '', 'Percentage of rental acess method')
```


Most users use the app to rent bikes. with only a few using the dipper method

2. Finding out which month most trips are taken

I'll now move to the next step of determining number of trips taken each month

(i). Weekly trips

```
In [97]: plt.figure(figsize = [12, 6]) #figure size setting

base_color = sb.color_palette()[0] #setting the color
day_order = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday

#creating a barchart
sb.countplot(data = df_2020, x = 'start_day', color = base_color, order = day_order);
function('Day of the week', 'Number of Trips taken', 'Number of Trips Taken Daily')
```

Number of Trips Taken Daily 140000 120000 Number of Trips taken 100000 80000 60000 40000 20000 0 Thursday Monday Tuesday Wednesday Friday Saturday Sunday

Day of the week

```
In [111... plt.figure(figsize = [12, 6]) #setting figure size

sb.countplot(data = df_2020, x = 'end_day', color = base_color, order = day_order)
function('Day of the week', 'Number of Trips taken', 'Number of Trips Taken Daily');
```


- Most trips are taken on wednesday. Seems like less trips are taken during the weekend.
- Most trips also end on wednesdays

(ii) Trips taken; Monthly count

```
Mar
       176799
Name: month, dtype: int64
```

```
In [112... plt.figure(figsize = [14, 8]) #setting the figure size
         order = df 2020['month'].value counts().index
         #creating a barchart
         sb.countplot(data = df 2020, x = 'month', color = base color, order = order)
         function ('Months', 'Number of Trips Taken', 'No. of Trips Taken monthly');
```


Most trips are taken in February

(iii) Hourly count

duration hrs

3 duration days

4 start day

5 start_time

end day 7 end_time

2

6

```
# create a new column, 'hour'
In [74]:
        df 2020['start time'] = pd.to datetime(df 2020['start time'])
        df 2020['hour'] = df_2020['start_time'].dt.hour
In [75]: df_2020.info() #to proof that the column was created
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 905006 entries, 0 to 905005
        Data columns (total 17 columns):
         # Column
                                Non-Null Count Dtype
        ---
                                -----
         0 duration sec
                               905006 non-null int64
         1 duration mins
                               905006 non-null float64
```

905006 non-null float64

905006 non-null datetime64[ns] 905006 non-null object

905006 non-null float64

905006 non-null object

905006 non-null object
8 start_station_id 418705 non-null float64
9 start_station_name 419938 non-null object
10 end_station_id 419225 non-null float64
11 end_station_name 420499 non-null object

```
14 rental_access_method 617857 non-null object
15 month 905006 non-null object
16 hour 905006 non-null int64
dtypes: datetime64[ns](1), float64(5), int64(3), object(8)
memory usage: 117.4+ MB

In [76]: order = np.arange(0,24) # to get results for the first 24 hours
base_color = sb.color_palette()[0] #setting up the color of the bars
plt.figure(figsize = [12,6]) #setting figure size

#creating a barplot
sb.countplot(data = df_2020, x = 'hour', order = order, color = base_color)
function('Hour', 'Count', 'Bike Trips by Hour');
```

905006 non-null int64

905006 non-null object

12 bike_id 13 user type

Accordding the plot above, bike services are taken during peak hours.

Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

The distribution is mostly skewed to the right(long tail to the right) with most points lying between 1 to 40 minutes of each bike ride

Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

- The datasets collected had some quality issues. There were erroneous data types that had to be canged inoredr to conduct analysis on them, some columns were also added.
- The histogram generated on the original data had few points from 40 minutes going onwards, the data was trimmed to focus on the first 1 to 40 minutes of the dataset

(b) Bivariate Exploration

Out[77]

i'll start by exploring the relationship between duration of trips taken and the user type, to determine how the user type influence time taken on each bike ride

(i) Trip duration depending on the User type

In [77]: $df2 = df_2020[df_2020['duration_mins'] \le 120]$ #creating a dataframe of duration points df2

]:		duration_sec	duration_mins	duration_hrs	duration_days	start_day	start_time	end_day	end_tin
	7	4038	67.300000	1.121667	0.046736	Friday	2020-01-31 23:32:03.907	Saturday	2020-02-
	8	4059	67.650000	1.127500	0.046979	Friday	2020-01-31 23:31:01.161	Saturday	2020-02- 00:38:40.8
	9	1980	33.000000	0.550000	0.022917	Friday	2020-01-31 23:49:09.230	Saturday	2020-02- 00:22:09.7
	10	1969	32.816667	0.546944	0.022789	Friday	2020-01-31 23:49:03.972	Saturday	2020-02- 00:21:53.5
	11	1611	26.850000	0.447500	0.018646	Friday	2020-01-31 23:49:10.931	Saturday	2020-02- 00:16:02.4
	905001	61	1.016667	0.016944	0.000706	Wednesday	2020-04-01 10:42:35.000	Wednesday	2020-04- 10:43:
	905002	78	1.300000	0.021667	0.000903	Wednesday	2020-03-18 17:10:42.000	Wednesday	2020-03- 17:12:
	905003	122	2.033333	0.033889	0.001412	Wednesday	2020-04-01 13:32:28.000	Wednesday	2020-04- 13:34:
	905004	340	5.666667	0.094444	0.003935	Wednesday	2020-04-01 13:07:34.000	Wednesday	2020-04- 13:13:
	905005	333	5.550000	0.092500	0.003854	Monday	2020-03-23 16:39:57.000	Monday	2020-03- 16:45:

902387 rows × 17 columns

In [78]: $df1 = df_2020[df_2020['duration_mins'] \le 60] \# creating a dataframe of durations less t df1$

Out[78]:		duration_sec	duration_mins	duration_hrs	duration_days	start_day	start_time	end_day	end_tin
	9	1980	33.000000	0.550000	0.022917	Friday	2020-01-31 23:49:09.230	Saturday	2020-02- 00:22:09.7
	10	1969	32.816667	0.546944	0.022789	Friday	2020-01-31 23:49:03.972	Saturday	2020-02- 00:21:53.5
	11	1611	26.850000	0.447500	0.018646	Friday	2020-01-31 23:49:10.931	Saturday	2020-02- 00:16:02.4
	12	1133	18.883333	0.314722	0.013113	Friday	2020-01-31 23:56:49.475	Saturday	2020-02- 00:15:42.9

13	1119	18.650000	0.310833	0.012951	Friday	2020-01-31 23:57:02.284	Saturday	2020-02- 00:15:42.0
•••								
905001	61	1.016667	0.016944	0.000706	Wednesday	2020-04-01 10:42:35.000	Wednesday	2020-04- 10:43:
905002	78	1.300000	0.021667	0.000903	Wednesday	2020-03-18 17:10:42.000	Wednesday	2020-03- 17:12:
905003	122	2.033333	0.033889	0.001412	Wednesday	2020-04-01 13:32:28.000	Wednesday	2020-04- 13:34:
905004	340	5.666667	0.094444	0.003935	Wednesday	2020-04-01 13:07:34.000	Wednesday	2020-04- 13:13:
905005	333	5.550000	0.092500	0.003854	Monday	2020-03-23 16:39:57.000	Monday	2020-03-1 16:45:

893066 rows × 17 columns

```
In [79]: #creating the size of the plot
plt.figure(figsize= [14,8])

base_color = sb.color_palette()[0] # setting the color of the vusuals

#creating a violin plot to display average duration relationship to user types
sb.violinplot(data = df1, x = 'user_type', y = 'duration_mins', color = base_color )
function('User Type', 'Duration(Mins) of Bike trips', 'Duration Udage by User Type');
```


At duration less than or equal to 60 minutes, both user types(Casual) and subscribers get almost equal amount of time of using the bikes.

(ii) duration against the month

```
In [80]: plt.figure(figsize= [14,8]) #setting figure size
  base_color = sb.color_palette()[0] # setting the color of the bars

#creating a barplot
  sb.barplot(data = df_2020, x = 'month', y = 'duration_mins', color = base_color)
  function('Month', 'Avg month duration of Bike trips in minutes', 'Average Duration again
```


• The average duration of each bike ride has been increasing. It reached a peak in march. This is to imply that the idea of bike service has been successful due to the increase in number of duration on bike trips.

Monthly Usage Analysis

```
In [104... order = ["Jan", "Feb", "Mar"]

plt.figure(figsize=(12,8)) # setting the figure size

#creating a barchart to display bike usage between the months
ax=sb.countplot(data= df_2020, x = 'month', order = order, hue = 'user_type')
function('Month', '', 'Monthly Bike Usage');
```


• Viewed by month, The plot depicts that, most of the trips were taken by subscribers.

Hourly Usage Analysis

```
#setting the figure size
In [82]:
         plt.figure(figsize=(12,8))
         #creating a barchart to show how bike usage vary hourly
         sb.countplot(data= df 2020, x = 'hour', hue = 'user type')
         function('Hour', '', 'Hourly Bike Usage')
         sb.despine(fig=None, top=True, right=True, left=False, bottom=False, offset=None, trim=F
```


• Both the customers and subscribers use the service more during pesk hours, but the usage is more by the subscribers during these hours, as comapred to customers whose schedule tend to be more flexilbe.

Daily Usage Analysis

```
In [99]: #creating a bar chart to depict how bike trip usage vary between days of the week
plt.figure(figsize=[12,8])
sb.countplot(data=df_2020, x='start_day', order=day_order, hue='user_type')
function('Day', '', 'Bike Usage per Day');
```


• Usage of Bike services is high on weekdays and low on weeknds

Wednesday

Tuesday

Monday

• Subsribers tend to use the service less on weekends and more on weekdays, there's a steady pattern notable during weekdays

Thursday

Day

Friday

Saturday

Sunday

Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in the dataset?

There seems to have a relationship between duration and user type, where customers tend to have longer durations than subscribers

Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

• Bike service tend to be more in usage during peak hours, especially by subscribers. Customers however have a more flexible pattern compare to subscribers.

3. Multivariate Exploration

```
In [114... plt.figure(figsize = [14, 8]) #setting the figure size

# creating a bar plot to display trip durations between months vary with the user types sb.barplot(data = df_2020, x = 'month', y = 'duration_mins', hue = 'user_type') function('Month', 'Trip duration in minutes', 'Trip duration in each month according to
```


• Viewed by month, according to the plot above, customers had longer durations than subscribers

```
In [116... plt.figure(figsize=(14,8)) #setting the figure size
    #creating a barplot to display relationship between duration, user type and hour variab
    sb.barplot(data=df_2020, x='hour', y='duration_mins', ci=None, hue='user_type');
    function('Hour', 'Duration in minutes', 'Duration Usage(Hourly');
```


Talk about some of the relationships you observed in this part of the investigation. Were there features that strengthened each other in terms of looking at your feature(s) of interest?

When viewed according to the month, by comparing user types, customers took longer durations than subscribers.

- Type of user has some influence on the usage of bike service. For instance on the duration of use, compared hourly, subscribers tend to have a stable pattern than customers. Customer usage vary greatly by the hour.
- Second, Suscribers tend to use the service mostly on weekdays and less on weeknds, compared to
 customers who seem to be more flexible. Although in general bike service seems to be in use less on
 weekends.
- On hour Usage, customers seem to have more flexibility as compared to subscribers who seem to have more intense usage at peak hours.

Were there any interesting or surprising interactions between features

• Between 2 AM and 3AM, there's average high duration, especially by customers, which is not notable in any other hour.

CONCLUSION

- The idea has been successful, since the average trip duration has been increasing since january, through to february and reached its peak in march. This leads to conclusion that more people are depending on bikes to travel long distances.
- During weekdays, most trips are preffered on wednesdays.
- Comparing the three months, most trips are preffered in February.
- Most trips are taken on shorter durations, but as for longer durations less and less trips are taken.