Sequential Models for COVID Peak Prediction

Introduction

Problem Statement

To predict by Corona Virus Peak in a Country by Machine Learning Methods

- 1) LSTM
- 2) Generalized Linear Mixed Models (Next Experiment)

Materials and Methods

Data

We dynamically take daily data from Our World in Data repository https://covid.ourworldindata.org/data/owid-covid-data.csv

The important usable features in the data per location are as follows population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cvd_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing facilities, hospital beds per thousand

The following data is non-sparse and important

- Location
- Date
- Total cases
- New_cases
- Total cases per million

- New_cases_per_million
- Gdp per capita
- Population
- Population density
- Median age

The following features are important sequential data by date for each location

- Total cases
- New cases
- Total cases per million
- New_cases_per_million

We filter data for each Location

- With Population > 1,00,000
- Staring from Total cases per million > 1
- And had No of weeks since above > 10

All data is aligned with day 0 as the day when Total_cases_per_million crosses 1 for the country Orignal data has 209 Countries, after filtering 163 Countries are left

Total of 151 Countries are found among which 101 Countries have peaked and 50 Countries including India have yet to peak one week before

Further, we generate 2 features, as moving average with a rolling window of 7 days

- moving_average(new_cases)
- moving_average(new_cases_per_million)

Further, to predict if the peak is n weeks after this week

Further, we find the peak of each country and take the last (n+1)*7 to (n)7 days previous to peak as sequential features (of length 7, other lengths can also be used) for the LSTM model with the following six features:

- Total cases
- New_cases
- Total cases per million
- New_cases_per_million
- moving average(new cases)
- moving_average(new_cases_per_million)

So as to form,

n_countries*7*6 features for training

For n = 1 week

Total of 151 Countries are found among which 101 Countries have peaked and 50 Countries including India have yet to peak

For n = 3 week

Total of 127 Countries are found among which 74 Countries have peaked and 49 Countries including India have yet to peak

For n = 6 week

A total of **80 Countries** are found among which **31 Countries have peaked and 49 Countries** including India have yet to peak.

Data is so less it's completely upon chance, experimentally verified.

Model - LSTM

LSTM based Sequential model

```
LSTM with cell units= 28, activation layers='relu'

FC Dense Layer 1, activation='sigmoid'

loss='binary_crossentropy', optimizer= stochastic gradient descent

Learning rate=le-10, decay=le-6, momentum=0.9
```

Results

LSTM Model Metrics

For n = 1 week

There is no train-test split as to preserve data (which is not ideal), i.e. test set = train set N = 151

True Positive 83
True Negative 20
False Positive 30
False Negative 18
Accuracy 0.68

The probability that next week is the peak of new cases for India is 1.1e-11. Therefore certainly next week is not the peak of new cases for India

Confusion Matrix [[20 30] [18 83]]

Classification Report

support	f1-score	recall	precision	
50 101	0.45 0.78	0.40 0.82	0.53 0.73	0 1
151 151 151	0.68 0.62 0.67	0.61 0.68	0.63 0.67	accuracy macro avg weighted avg

For n = 3 week There is no train-test split as to preserve data (which is not ideal), i.e. test set = train set N = 127

True Positive 41
True Negative 42
False Positive 8
False Negative 36
Accuracy 0.65

Confusion Matrix [[42 8] [36 41]]

Classification Report

	precision	recall	f1-score	support
0	0.54	0.84	0.66 0.65	50 77
accuracy macro avg	0.69	0.69	0.65	127 127
weighted avg	0.72	0.65	0.65	127

The probability that next week is the peak of new cases for India is 0.00010963. Therefore three weeks after today has a very low probability of being the peak of new cases for India

For n = 6 week

There is no train-test split as to preserve data (which is not ideal), i.e. test set = train set, N = 80

Confusion Matrix

[[48 1] [30 1]]

Classification Report

support	f1-score	recall	precision	
49	0.76	0.98	0.62	0
31	0.06	0.03	0.50	1
80	0.61			accuracy
80	0.41	0.51	0.56	macro avg
80	0.49	0.61	0.57	weighted avg

Rough Conclusion

- We can roughly predict if the COVID new cases peak is exactly after 1 week with 68% accuracy, and after 3 weeks with 65% accuracy.
- At 6 weeks the data and learning are so insufficient that the prediction is almost completely chance and thus of not much use.
- With the majority of the difficulty in predicting given COVID peak is not in x weeks accurately predicting that it is not.
- It is not a fairly accurate prediction.

Further Directions

- 1. Add features such as Gdp_per_capita, Population, Population_density, Median age as covariates in the LSTM model possible as a logistic model.
- 2. Try out Generalized Linear Mixed Models (Next Experiment) with said data.
- 3. Try Further experimentation with LSTM based model.