BİLKENT UNIVERSITY CTIS163 - DISCRETE MATHEMATICS 2022 – 2023 Fall FINAL

120 minutes – January 5, 2023

Name	
Surname	
Student Id	

NOTICE TO THE STUDENTS

Read the instructions carefully listed below and sign the box:

- 1. An A4 size paper both sides written by the student can be used during the exam.
- 2. Textbooks, lecture notes, calculators with extensive memories, and any kind of computers are not permitted.
- 3. Cell phones and smart watches should be totally switched off (not in silent or flight modes).
- **4.** Permitted material to be kept on your desks are; pencils, sharpeners, erasers (and in case you may need: water and tissues). **Pencil boxes are strictly forbidden**.
- 5. You are not allowed to talk to other students during the exam whatever the reason may be.
- **6.** Disobeying the above rules will be severely penalized and a **disciplinary action** will be conducted.
- 7. Please prepare your ID's (with photos) on your desk for identity check.

1/15	2/10	3/10	4/15	5/30	6/20	Total/100

Q1. (a) (10 pts) Draw the corresponding binary tree for the following tree traversals.

Preorder: G В A \mathbf{C} K F P D E R Q Η F R Inorder : Q В K \mathbf{C} G P Ε D Η Α

Solution:

(b) (5 pts) Write the **Postorder** vertex listing of the binary tree in part (a).

Solution: Postorder: Q F K C A B E H R D P G

Q2. (10 pts) Represent $\{A \land [(B \land \overline{C}) \lor (\overline{B} \land C)]\} \lor (\overline{A} \land B \land C)$ as switching circuit

Q3. (10 pts) Draw combinatorial circuit corresponding to $(x_1 \land (\overline{x}_2 \lor x_3)) \lor x_2$.

Q4. (a) (15 pts) Prove the following statement using the laws and properties of Boolean algebra.

$$xy' = 0$$
 if and only if $xy = x$

Solution: If
$$xy' = 0$$
 then $xy = x$

Proof:
$$x = x1$$
 Identity law
$$= x(y+y')$$
 Complement law
$$= xy+xy'$$
 Distributive law
$$= xy+0$$
 Given $xy'=0$

$$= xy$$
 Identity law

If
$$xy = x$$
 then $xy' = 0$

Proof:
$$xy' = (xy)y' \qquad Given \ xy = x$$

$$= x(yy') \qquad Associative \ law$$

$$= x0 \qquad Complement \ law$$

$$= 0 \qquad Bound \ law$$

- **Q5.** Given the Boolean function f(x, y, z) = (x'z + yy')(y + y')z + x'y + xy'
 - (a) (15 pts) Find the disjunctive normal form (sum of minterms) of the function by using algebraic methods only. Don't use logic table.

Solution:
$$f(x,y,z) = (x'z + yy')(y + y')z + x'y + xy' = (x'z)z + x'y + xy'$$

 $f(x,y,z) = x'z + x'y + xy' = x(y + y')z + x'y(z + z') + xy'(z + z')$
 $f(x,y,z) = x'yz + x'y'z + x'yz + x'yz' + xy'z + xy'z'$
 $f(x,y,z) = x'yz + x'y'z + x'yz' + xy'z + xy'z'$
011 001 010 101 100

$$f(x, y, z) = m_1 + m_2 + m_3 + m_4 + m_5 = \sum (1, 2, 3, 4, 5)$$

 $f(x, y, z) = M_0 \cdot M_6 \cdot M_7 = \prod (0, 6, 7)$

(b) (15 pts) Find the **conjunctive** normal form (*product of maxterms*) of the function by using algebraic methods only. *Don't use logic table*.

Solution:
$$f(x,y,z) = (x'z + yy')(y + y')z + x'y + xy' = (x'z)z + x'y + xy'$$

 $f(x,y,z) = x'z + x'y + xy' = (x' + x'y + xy')(z + x'y + xy')$
 $f(x,y,z) = (x' + x' + xy')(x' + y + xy')(z + x' + xy')(z + y + xy')$
 $f(x,y,z) = (x' + xy')(x' + y + xy')(z + x' + xy')(z + y + xy')$
 $f(x,y,z) = (x' + x)(x' + y')(x' + y + x)(x' + y + y')(z + x' + x)(z + x' + y')$
 $(z + y + x)(z + y + y')$ All red terms give 1. \therefore We can remove them
 $f(x,y,z) = (x' + y')(z + x' + y')(z + x + y) = (x' + y' + zz')(x' + y' + z)(x + y + z)$
 $f(x,y,z) = (x' + y' + z)(x' + y' + z')(x' + y' + z)(x + y + z)$ Blue terms are same
 $f(x,y,z) = (x' + y' + z)(x' + y' + z')(x + y + z)$
110 111 000
6 7 0

- **Q6.** Design a finite-state machine that outputs 1 whenever it sees baba in the input string; otherwise, outputs 0. (The machine receives strings over {a, b} as input.)
 - a. (10 pts) Draw the state transition diagram of the finite-state machine.

Solution:

b. (**5 pts**) Write down the sets *I*, *O*, *S*, the initial state and the table defining the next-state function (f) and output function (g) for the finite-state machine.

Solution: $I = \{a, b\}$, $O = \{0,1\}$, $S = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ and the initial state is σ_1 .

	f		g	
SI	a	b	a	b
σ ₁	σ1	σ ₂	0	0
σ_2	σ_3	σ_2	0	0
σ_3	σ_1	σ_4	0	0
O 4	0 3	σ_2	1	0