Tarea 8

Eduardo Navarro

Octubre 2021

1. Introducción

En esta práctica se realizó un estudio de la influencia en el número de cúmulos respecto al número de partículas para la observación de la distribución al momento de usar un filtro.

2. Desarrollo

Con las instrucciones de la tarea [4] y lo visto en clase [3] se le hicieron modificaciones al código para obtener una distribución con respecto a los cúmulos aplicando el filtrado, de nuevo se añadió un for para las repeticiones y otro para variar la k. Se utilizaron algunos códigos de la actividad [4] para obtener algunas gráficas que nos muestran la normalidad. Se busca la normalidad debido a que se está obteniendo el cúmulo a partir de la media.

Listing 1: Código para la obtención del tamaño de cúmulos y repeticiones.

```
library(testit) # para pruebas, recuerda instalar antes de usar
taman <- c(100, 200, 400)
n <- 1000000
j <- 1:30

datos = data.frame()

for (k in taman){
    for (replicas in j){</pre>
```

Listing 2: Código para el filtro.

```
freq
    filtros = freq[freq$tam >= c,]
    filtros$cont = filtros$tam * filtros$num
    f = sum(filtros$cont)
    porcent = 100 * f/n
    resultado = c(k, replicas, paso, porcent, c)
    datos = rbind(datos, resultado)

    assert(sum(abs(cumulos)) == n)
}
```

Con esto se generaron los datos de la tabla 1 y se le hicieron las correspondientes pruebas estadísticas.

Tabla 1: Ejemplo de datos obtenidos.

k	Replicas	Iteración	filtrado	c
100	1	0	61.818	1012.5
100	1	1	34.315	1012.5
100	1	2	23.624	1012.5
100	1	3	15.323	1012.5
100	1	4	14.455	1012.5
100	1	5	8.611	1012.5
100	1	6	6.137	1012.5
100	1	7	4.902	1012.5
100	1	8	3.462	1012.5

Con los datos de la tabla 1 se procedió a graficar.

Gráfica 1: K=100.

Gráfica 2: K=200.

Listing 3: Código para la obtención de las gráficas y pruebas estadísticas.

```
png("p8_norm.png")
par(mfrow = c(2, 2)) \# juntamos graficas
plot(density(originales)) # lo generado que era normal
print(shapiro.test(originales))
qqnorm (originales)
qqline(originales, col = 2)
plot (density (cumulos)) # lo nuestro que hemos modificado
print(shapiro.test(cumulos))
qqnorm (cumulos)
qqline(cumulos, col = 2)
graphics.off()
library (ggplot2)
datos $ Iteracion = as. factor (datos $ Iteracion)
datoss = split.data.frame(datos, f = datos$k)
ggplot(datoss$'100', aes(x= Iteracion, y= filtrado)) +
 \mathtt{geom\_boxplot}\,(\,\mathtt{fill}\,=\,\mathtt{"\#F8766D"}\,,\,\,\mathtt{colour}\,=\,\mathtt{"\#1F3552"}\,) +
  stat_boxplot(geom = "errorbar", width = 0.9)+
  theme(axis.line = element_line(colour = "black", size = 0.25))+
  labs (x = "Iteracion", y = "% Filtrado")
ggplot(datoss$'200', aes(x= Iteracion, y= filtrado)) +
 geom_boxplot(fill = "#3FCF30", colour = "#1F3552")+
  stat_boxplot(geom = "errorbar", width = 0.9)+
  theme(axis.line = element_line(colour = "black", size = 0.25))+
  labs(x = "Iteracion", y = "% Filtrado")
ggplot(datoss $ '400', aes(x= Iteracion, y= filtrado)) +
 geom_boxplot(fill = "#FAFA2D", colour = "#1F3552")+
  stat_boxplot(geom = "errorbar", width = 0.9)+
 theme(axis.line = element_line(colour = "black", size = 0.25))+
  labs(x = "Iteracion", y = "%_Filtrado")
library(tidyverse)
options (max. print = 999999)
resul100<-datoss$'100'%>%
```

```
group_by(Iteracion) %%
  summarise (
    promedio = mean(filtrado, na.rm = TRUE),
    desviacion_std = sd(filtrado, na.rm = TRUE),
    varianza = sd(filtrado, na.rm = TRUE)^2,
    mediana = median (filtrado, na.rm = TRUE),
    rango_intercuartil = IQR(filtrado, na.rm = TRUE)
resul200<-datoss$'200'%>%
  group_by(Iteracion) %%
  summarise (
    promedio = mean(filtrado, na.rm = TRUE),
    desviacion_std = sd(filtrado, na.rm = TRUE),
    varianza = sd(filtrado, na.rm = TRUE)^2,
    mediana = median (filtrado, na.rm = TRUE),
    rango_intercuartil = IQR(filtrado, na.rm = TRUE)
  )
resul400<-datoss$'400'%>%
  group_by(Iteracion) %%
  summarise (
    promedio = mean(filtrado, na.rm = TRUE),
    desviacion\_std = sd(filtrado, na.rm = TRUE),
    varianza = sd(filtrado, na.rm = TRUE)^2,
    mediana = median (filtrado, na.rm = TRUE),
    rango_intercuartil = IQR(filtrado, na.rm = TRUE)
  )
shapiro100<-tapply(datoss$'100'$filtrado, datoss$'100'$Iteracion, shapiro.test)
shapiro200<-tapply(datoss$'200'$filtrado, datoss$'200'$Iteracion, shapiro.test)
shapiro400<-tapply(datoss$'400'$filtrado, datoss$'400'$Iteracion, shapiro.test)
one.way1 <-aov (filtrado Iteración, data=datoss $ '100')
one . way11 < -summary (one . way1)
one.way2 <-aov (filtrado Iteración, data=datoss $ '200')
one . way22 < -summary (one . way2)
one.way4 <-aov (filtrado Iteración, data=datoss $ '400')
one.way44<-summary(one.way4)
one.wayt <-aov (filtrado Iteración, data=datos)
one.waytt<-summary(one.wayt)
pw100<-pairwise.wilcox.test(datoss$'100'$filtrado, datoss$'100'$Iteracion)
pw200 <- pairwise.wilcox.test(datoss$'200'$filtrado, datoss$'200'$Iteracion)
pw400<-pairwise.wilcox.test(datoss$'400'$filtrado, datoss$'400'$Iteracion)
```

De las gráficas 1, 2 y 3 podemos observar como aumenta el % de filtrados conforme aumenta la k. Para poder observar la normalidad se realizaron las pruebas de Shapiro Wilk [5] y ANOVA [1] además de que con la prueba

Wilcox [2] se pueden apreciar las diferencias entre grupos, pese a que no es una prueba óptima se obtuvieron resultados favorables.

Gráfica 4: Ejemplo de estado inicial.

Gráfica 5: Gráficas con distribución normal.

Tabla 2: Ejemplo de datos estadísticos obtenidos para k=100.

Iteración	promedio	desviación std	varianza	mediana	rango intercuartil
0	61.71523	1.251743	1.566861	61.854	1.31775
1	35.353	3.684828	13.57796	35.851	4.10225
2	22.0904	3.343907	11.18171	22.3465	2.72025
3	14.70127	3.729616	13.91003	15.054	6.0525
4	10.40123	2.897143	8.393438	10.1935	4.546
5	7.3204	3.168591	10.03997	7.007	3.78525
6	5.127867	2.400151	5.760723	4.746	2.81
7	3.519367	2.215608	4.90892	3.4655	2.57625
8	2.3015	1.470262	2.161672	2.2485	2.293

Tabla 3: Ejemplo de datos estadísticos obtenidos para k=200.

Iteración	promedio	desviación std	varianza	mediana	rango intercuartil
0	60.57787	1.238704	1.534388	60.5265	1.74225
1	41.02593	2.128901	4.53222	40.954	2.7095
2	36.2149	2.390426	5.714138	36.376	2.5355
3	34.29113	2.07091	4.288669	34.42	2.86925
4	31.9951	2.275252	5.17677	31.847	3.14825
5	31.4436	1.494179	2.232571	31.5385	2.085
6	29.99557	1.404691	1.973156	29.815	2.13825
7	29.35143	1.578227	2.490799	29.3635	1.84925
8	28.45743	2.058751	4.238456	28.5345	2.3135

Tabla 4: Ejemplo de datos estadísticos obtenidos para k=400.

Iteración	promedio	desviación std	varianza	mediana	rango intercuartil
0	60.22247	1.198264	1.435837	59.9465	1.45875
1	49.2111	1.612989	2.601732	48.9445	2.6865
2	49.62313	1.494653	2.233989	49.5585	2.266
3	49.93227	1.126089	1.268076	49.821	1.471
4	50.18423	1.146516	1.314499	50.2575	1.30675
5	49.75323	1.336128	1.785238	49.721	2.08425
6	50.10557	1.222426	1.494326	50.167	1.85475
7	50.08103	1.172139	1.373911	50.1475	1.81075
8	49.96683	1.789549	3.202485	50.2665	3.034

Tabla 5: Ejemplo de resultados de la prueba Shapiro-Wilk para k=100.

Iteración	W	P
0	0.96596	0.4354
1	0.97459	0.6705
2	0.96884	0.508
3	0.95827	0.2797
4	0.97573	0.7042
5	0.97921	0.8043
6	0.95772	0.2706
7	0.96945	0.5242
8	0.93848	0.08279

Tabla 6: Ejemplo de resultados de la prueba Shapiro–Wilk para k=200.

Iteración	W	Р
0	0.98141	0.8617
1	0.9849	0.9355
2	0.98351	0.9092
3	0.96734	0.4692
4	0.99127	0.996
5	0.96747	0.4724
6	0.9745	0.6681
7	0.97553	0.6983
8	0.9473	0.1431

Tabla 7: Ejemplo de resultados de la prueba Shapiro-Wilk para k=400.

Iteración	W	P
0	0.97893	0.7965
1	0.96796	0.485
2	0.97755	0.7572
3	0.9688	0.5068
4	0.9697	0.531
5	0.97967	0.8167
6	0.98276	0.8931
7	0.96719	0.4655
8	0.9572	0.2622

Tabla 8: Resultados de la prueba ANOVA para varios valores de k.

k	Df	Sum Sq	Mean Sq	F value	Pr(>F)
100	50	161461.06	3229.2212	2008.46572	0
	1479	2377.94358	1.60780499		
200	50	44928.0908	898.561817	271.417384	0
	1479	4896.41787	3.31062736		
400	50	3174.70437	63.4940873	36.2600481	$1,148 \times 10^{-218}$
	1479	2589.84089	1.75107565		
Todos	50	143653.377	2873.06753	7.44500087	$1,9434 \times 10^{-48}$
	4539	1751625.52	385.905601		

Tabla 9: Resultados de la prueba por parejas de Wilcox para k=100.

Iteración	0	1	2	3	4	5	6	7
1	2.2×10^{-14}	-	-	-	-	-	-	-
2	2.2×10^{-14}	l '	-	_	-	-	-	-
3	2.2×10^{-14}	l '	l '	-	-	-	-	-
4	2.2×10^{-14}		l '		-	-	-	-
5	2.2×10^{-14}	2.2×10^{-14}	l '	l '	0.2323	-	-	-
6	2.9×10^{-8}		l '	l '	,	1	-	-
7	2.9×10^{-8}	2.9×10^{-8}	l '	l '	3.7×10^{-7}		1	-
8	2.9×10^{-8}	2.9×10^{-8}	2.9×10^{-8}	2.9×10^{-8}	5.8×10^{-8}	9.3×10^{-6}	0.00297	1

Tabla 10: Resultados de la prueba por parejas de Wilcox para k=200.

Iteración	0	1	2	3	4	5	6	7
1	2.2×10^{-14}	-	-	-	-	-	-	-
2	2.2×10^{-14}	6.6×10^{-8}	-	-	-	-	-	-
3	2.2×10^{-14}	2.2×10^{-13}	1	-	-	-	-	-
4	2.2×10^{-14}	· '	6.2×10^{-6}	0.12635	-	-	-	-
5	2.2×10^{-14}	· '	,	0.00035	1	-	-	-
6	2.2×10^{-14}	,	,		0.09026	0.32849	-	-
7	2.2×10^{-14}		,		0.00314	0.0044	1	-
8	2.2×10^{-14}	2.2×10^{-14}	5.5×10^{-13}	2×10^{-7}	2.9×10^{-5}	2×10^{-5}	1	1

Tabla 11: Resultados de la prueba por parejas de Wilcox para k=400.

Iteración	0	1	2	3	4	5	6	7
1	2.2×10^{-14}	-	-	-	-	-	-	-
2	2.2×10^{-14}	1	-	-	-	-	-	-
3	2.2×10^{-14}	1	1	-	-	-	-	-
4	2.2×10^{-14}	1	1	1	-	-	-	-
5	2.2×10^{-14}	1	1	1	1	-	-	-
6	3.7×10^{-8}	1	1	1	1	1	-	-
7	2.2×10^{-14}	1	1	1	1	1	1	-
8	2.2×10^{-14}	1	1	1	1	1	1	1

Se cambió el tamaño crítico al mínimo con min y se obtubieron las gráficas 6, 7 y 8.

Gráfica 6: k=100 con c al mínimo.

Gráfica 7: k=200 con c al mínimo.

Gráfica 8: k=400 con c al mínimo.

Listing 4: Código para el cambio en el tamaño crítico.

```
\begin{array}{l} assert(length(cumulos[cumulos = 0]) = 0) \\ assert(sum(cumulos) = n) \\ c <- \min(cumulos) \\ d <- sd(cumulos) / 4 \end{array}
```

Del mismo modo se cambió el tamaño crítico al máximo con max.

Gráfica 9: k=100 con c al máximo.

Gráfica 10: k=200 con c al máximo.

Gráfica 11: k=400 con c al máximo.

3. Conclusiones

Con los resultados obtenidos podemos concluir que la k tiene una influencia en el porcentaje de filtración ya que este aumenta conforme lo hace la k hasta nivelarse alrededor del 50 % para la k grande. De las pruebas de normalidad tenemos datos normales y de las de ANOVA se rechaza la hipótesis nula de que sus medias son iguales debido al elemento inicial que difiere bastante del resto de los elementos. En base a la prueba de wilcox se tiene una igualdad entre grupos a partir de la iteración 11 para k=100, la iteración 9 para k=200 y la iteración 1 para k=400, aunque no se considera una prueba fuerte para datos con distribución normal se obtuvieron interesantes resultados. De los cambios al tamaño crítico se pudo observar que con un tamaño mínimo filtraba todo al inicio y después se fue estabilizando hasta llegar al 50 % ya que con un tamaño crítico mínimo se forman menos cúmulos pero de mayor tamaño y así se logra filtrar más facilmente. Caso contrario al máximo donde al inicio no filtra nada ya que hay más cúmulos pero son mas pequeños.

Referencias

- [1] Rebecca Bevans. ANOVA in R: A step-by-step guide, 2020. URL https://www.scribbr.com/statistics/anova-in-r/.
- [2] Thomas Pernet. 9 Non Parametric tests, 2020. URL https://bookdown.org/thomas_pernet/Tuto/non-parametric-tests.html.
- [3] Elisa Schaeffer. P8: modelo de urnas (simulación ad21), 2021. URL https://www.twitch.tv/videos/1175840438.
- [4] Elisa Schaeffer. Práctica 8: modelo de urnas. https://elisa.dyndns-web.com/teaching/comp/par/p8.html/, 2021. [Online; accessed 17-October-2021].
- [5] El Tío Estadístico. Cómo hacer la Prueba de Normalidad en R, 2020. URL https://www.youtube.com/watch?v=LAzSb6jCFbs.