

CS396: Security, Privacy & Society

Fall 2022

Lecture 7: Cryptographic System I

Instructor: Abrar Alrumayh

September 19, 2022

The one-time pad

The one-time pad: A perfect cipher

A type of "substitution" cipher that is "absolutely unbreakable"

- invented in 1917 Gilbert Vernam and Joseph Mauborgne
- "substitution" cipher
 - individually replace plaintext characters with shifted ciphertext characters
 - independently shift each message character in a random manner
 - ◆ to encrypt a plaintext of length n, use n uniformly random keys k₁, . . . , k_n
- "absolutely unbreakable"
 - perfectly secure (when used correctly)
 - based on message-symbol specific independently random shifts

The one-time pad (OTP) cipher

- Let **n** be an integer = of the plaintext messages.
- Message space M := {0, 1}ⁿ length (bit-strings of length n)
- ◆ Key space K := {0, 1}ⁿ (bit-strings of length n)
- The key is as long as the message

Fix n to be any positive integer; set $\mathcal{M} = C = \mathcal{K} = \{0,1\}^n$

- Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
 - Gen \rightarrow {0,1}ⁿ
- Enc: given a key and a message of equal lengths, compute the bit-wise XOR
 - Enc(k, m) = Enc_k(m) \rightarrow k \oplus m (i.e., mask the message with the key)
- **Dec**: compute the bit-wise XOR of the key and the ciphertext
 - $Dec(k, c) = Dec_k(c) := k \oplus c$
- Correctness Deck(Enck(m))
 - trivially, $k \oplus c = k \oplus k \oplus m = 0 \oplus m = m$

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m₁ and m₂ and ciphertexts c, it holds that

$$Pr[E_{K}(m_{1}) = c] = Pr[E_{K}(m_{2}) = c],$$

where probabilities are measured over the possible keys chosen by Gen.

Proof

- events "Enc_K(m_1) = c", " $m_1 \oplus K = c$ " and " $K = m_1 \oplus c$ " are equal-probable
- K is chosen at random, irrespectively of m₁ and m₂, with probability 2⁻ⁿ
- thus, the ciphertext does not reveal anything about the plaintext

OTP characteristics

A "substitution" cipher

encrypt an n-symbol m using n uniformly random "shift keys" k₁, k₂, . . . , k_n

2 equivalent views

- $\mathcal{K} = \mathcal{M} = C$
- "shift" method

view 1 $\{0,1\}^n$ bit-wise XOR (m \bigoplus k) or

view 2 G, (G,+) is a group addition/subtraction (m +/- k)

Perfect secrecy

- since each shift is random, every ciphertext is equally likely for any plaintext
 Limitations (on efficiency)
- "shift keys" (1) are as long as messages & (2) can be used only once

Perfect, but impractical

In spite of its perfect security, OTP has two notable weaknesses

- the key has to be as long as the plaintext
 - limited applicability
 - key-management problem
- the key cannot be reused (thus, the "one-time" pad)
 - if reused, perfect security is not satisfied
 - e.g., reusing a key once, leaks the XOR of two plaintext messages
 - this type of leakage can be devastating against secrecy

These weakness are detrimental to secure communication

securely distributing fresh long keys is as hard as securely exchanging messages...

Importance of OTP weaknesses

Inherent trade-off between efficiency / practicality Vs. perfect secrecy

- historically, OTP has been used efficiently & insecurely
 - repeated use of one-time pads compromised communications during the cold war
 - NSA decrypted Soviet messages that were transmitted in the 1940s
 - that was possible because the Soviets reused the keys in the one-time pad scheme
- modern approaches resemble OTP encryption
 - efficiency via use of pseudorandom OTP keys
 - "almost perfect" secrecy

