

Optimization for Big Data - Mirror Descent

Summary

The goal of this homework is to study both from a theoretical and from a practical point of view some ingredients related to the optimization of convex and smooth function constrained on a smooth and convex set. We expect you to illustrate your homework with Python.

1) You are asked to answer the theoretical questions either with a handwritten report or a latex file. You are also asked to answer the practical questions with python and produce an illustrated pdf report.

2) You are also asked to call your file:

M1-NAME-SURNAME.pdf. If not, your final mark is divided by 2.

Deadline: 25th of april 2021

Individual work

In what follows, we consider a state space \mathbb{R}^p and a domain $\mathcal{D} \subset \mathbb{R}^p$ such that \mathcal{D} is **closed** and **convex**. We consider a smooth function f that is assumed to be $C_1^L(\mathbb{R}^p, \mathbb{R}_+)$ and **convex**. We are looking for

$$x^* = \arg\min_{x \in \mathcal{D}} f(x).$$

Below, the notation $|.|_2$ will refer to the standard Euclidean norm :

$$|x|_2 = \sqrt{\sum_{i=1}^p x_i^2},$$

whereas $|.|_1$ will refer to the L^1 norm :

$$|x|_1 = \sum_{i=1}^p |x_i|.$$

In what follows, ∇f will refer to the gradient of f.

Part I - Elementary facts

Question 1-a : Prove that when f is α strongly convex, a unique minimizer x^* exists for f.

Question 1-b: Prove that x^* satisfies

$$\forall v \in \mathcal{D} \qquad \langle \nabla f(x^*), v - x^* \rangle \ge 0.$$

Question 2-a: Recall the definition of the projection on \mathcal{D} with respect to $|.|_2$. Does this projection exists? Why (we do not ask for a proof). Below, we will denote this projection by $\Pi_{\mathcal{D}}$.

Question 2-b: Consider the case

$$\mathcal{D} \coloneqq [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_p, b_p],$$

where $a_i < b_i$ for all i. Compute $\Pi_{\mathcal{D}}(x)$.

Question 2-c: For p' an integer such that $p' \le p$ and a radius R > 0, consider the set

$$\mathcal{D} := \left\{ x \in \mathbb{R}^p : x_1^2 + \ldots + x_{p'}^2 \le R^2 \right\}.$$

Compute $\Pi_{\mathcal{D}}(x)$.

Part II - Non-smooth domain (not so elementary)

We consider S the probability simplex :

$$\mathcal{S}\coloneqq \left\{x\in\mathbb{R}^p\,\big|\,x_1+x_2+\ldots+x_p=1 \text{ and } \forall i\in\{1,\ldots,p\}\quad x_i\geq 0\right\}$$

For a given $v \in \mathbb{R}^p$, we write $q: x \in \mathcal{S} \longmapsto \frac{1}{2}|x-v|_2^2$.

Question 3-a: Define the projection on S as a constrained minimization problem. Below, we denote by w this projection.

Question 3-b : Prove that the Lagrangian function $\mathcal L$ associated to this minimization problem is :

$$\mathcal{L}(x,\xi) = \frac{1}{2}|x-v|_2^2 + \lambda \left(\sum_{i=1}^p x_i - 1\right) - \langle \xi, x \rangle,$$

where $\lambda \in \mathbb{R}$ and $\xi \in \mathbb{R}^p_+$. Give the relationship between the multipliers and w with the help of the KKT conditions.

Question 3-c: Assume that for two integers $(i, j) \in \{1, ..., p\}, v_i \ge v_j$, prove that if $w_i = 0$, then $w_j = 0$.

Question 3-d : Prove that if $w_i > 0$, then $\xi_i = 0$. Denote by I the set of "active coordinates" for the solution w:

$$I = \{i \in \{1 \dots p\} : w_i > 0\},\$$

and $\rho = |I|$. Prove that if we rank w by decreasing values :

$$w_{(1)} \ge w_{(2)} \ge \ldots \ge w_{(\rho)} > w_{(\rho+1)} = 0,$$

then the same ranking also holds for coordinates in v for integers in I.

Deduce that:

$$\lambda = \frac{\sum_{i=1}^{\rho} v_{(i)} - 1}{\rho}$$

Question 3-e : Assume that the integer ρ is known, prove that

$$w_i = \max\{v_i - \lambda, 0\}$$

Question 3-f: Prove that the following algorithm computes w.

Algorithm 1 (Projection on S) Input : $v \in \mathbb{R}^p$

- Sort $v_{(1)} \ge v_{(2)} \ge \ldots \ge v_{(p)}$.
- Compute ρ^* defined by:

$$\rho^* = \max \left\{ j \le p : v_{(j)} - \frac{1}{j} \left(\sum_{k=1}^j v_{(k)} - 1 \right) \ge 0 \right\}$$

• Compute λ^* defined by : $\lambda^* = \frac{1}{\rho^*} \left(\sum_{k=1}^{\rho^*} v_{(k)} - 1 \right)$

• Return:

$$w_i = \max\{v_i - \lambda^*, 0\}$$

Question 3-g: Implement this projection in Python with a program from you.

Question 3-h: What is the complexity cost of a such algorithm?

Part III - Projected Gradient Descent

Below, we consider that $x^* = \arg\min_{x \in \mathbb{R}^p} f(x) \in \mathcal{D}$. We also assume that f is strongly convex of parameter α .

Question 4-a: We introduce the *projected gradient descent algorithm* as:

ALGORITHM 2 (PGD) *Initialization* : $x_0 \in \mathbb{R}^p$

- Choose a step-size $\rho > 0$
- Iterate:
 - Compute $d_k = \nabla f(x_k)$ and

$$\tilde{x}_{k+1} = x_k - \rho \nabla f(x_k).$$

— Upgrade the new position of the algorithm:

$$x_{k+1} = \Pi_{\mathcal{D}}(\tilde{x}_{k+1}).$$

Prove that the algorithm always belongs to \mathcal{D} .

Question 4-b : Show that when $\rho \in (0, \frac{2\alpha}{L^2})$, the algorithm converges exponentially fast towards x^* .

Question 4-c : What is the numerical "cost" of the algorithm to achieve an ϵ solution?

Question 4-d: Discuss on the effect of the dimension when looking at the simplex constraint of Question 3.

Part IV - Projected stochastic strongly convex case

Question 5-a: Assume that we only have access to a noisy gradient within a framework of stochastic optimization:

$$x_{k+1} = \Pi_{\mathcal{D}} [x_k - \gamma_{k+1} [\nabla f(x_k) + \xi_{k+1}]],$$

where $(\xi_{k+1})_{k\geq 1}$ is a sequence of i.i.d. centered random noises with

$$\sigma^2 = \sup_{k>1} \mathbb{E}[\|\xi_{k+1}\|^2] < +\infty.$$

The purpose of the next questions is to derive a mathematical study of the projected stochastic gradient descent algorithm. Prove that:

$$2\gamma_{k+1} \left[f(x_k) - f(x^*) + \frac{\alpha}{2} |x_{k-1} - x^*|_2^2 \right] \le |x_{k-1} - x^*|_2^2$$
$$- \mathbb{E}[|x_k - x^*|_2^2 |\mathcal{F}_{k-1}|] + \sigma^2 \gamma_{k+1}^2 L^2$$

Question 5-b: Conclude that for a fixed horizon N>0 and a constant step-size γ , if we define $\bar{x}_N=\frac{1}{N}\sum_{k=1}^N x_k$, one has :

$$\mathbb{E}[2(f(\bar{x}_N) - f(x^*)) + \alpha |\bar{x}_n - x^*|^2] \le \sigma^2 L^2 \gamma + \frac{D^2}{N\gamma}$$

Conclude an optimal tuning of the parameter γ .

Question 5-c: Coming back to 5.a and choosing $\gamma_k = \frac{1}{\alpha k}$, prove that

$$\mathbb{E}[f(\bar{x}_N)] - f(x^*) \le \frac{D^2 \log n}{\alpha n}$$

where D refers to the diameter of \mathcal{D} .

Question 5-d : Compare the rates obtained by the two step-size strategies.

Part V - Projected stochastic convex case

We are now interested in the weaker situation of convex function f.

Question 6-a: Repeating the arguments of Question 5.a, prove that:

$$\gamma_{k+1}\mathbb{E}[f(x_k) - f(x^*)] \le \frac{|x_1 - x^*|_2^2 + \sigma^2 \sum_{j=1}^k \gamma_j^2}{2\sum_{j=1}^k \gamma_j}.$$

Question 6-b: Define now

$$\bar{x}_N = \sum_{k=1}^N \left(\frac{\gamma_{k+1}}{\sum_{j=1}^k \gamma_{j+1}} x_k \right),$$

prove that a suitable constant step-size yields a $\mathcal{O}(N^{-1/2})$ convergence rate. Discuss on the "not-anytime" feature of a such strategy.

Question 6-c : Choosing now $\gamma_{k+1} \propto (k+1)^{-1/2}$, what convergence rate is obtained?

Part VI - Mirror Descent - convex case

The objective of the rest of the theoretical part is to avoid the projection, as it may be a real additional cost for large dimensional problems. In this view, we introduce φ a smooth strongly convex function on $\mathcal D$ and the Bregman divergence

$$\forall (x,z) \in \mathcal{D}^2$$
 $D_{\varphi}(x,z) = \varphi(x) - \varphi(z) - (\nabla \varphi(z), x - z).$

We assume that φ is ρ strongly convex.

Question 7-a : Prove that $D_{\varphi} \ge 0$ and is a convex function of the first coordinate. Compute $\nabla_x D_{\varphi}(x,z)$.

Question 7-b: Show that D_{ω} satisfies the three points lemma:

$$D_{\varphi}(x,z) = D_{\varphi}(x,y) + D_{\varphi}(y,z) - \langle \nabla \varphi(z) - \nabla \varphi(y), x - y \rangle.$$

Question 7-c: Assume that $\mathcal{D} = \mathbb{R}^p$ (no constraints) and φ is the square function $\varphi(x) = |x|_2^2$, prove that :

$$D_{\varphi}(x,z) = |x-z|_2^2.$$

Question 7-d: Assume that $\mathcal{D} = \mathcal{S}$ (simplex) and φ is the negative entropy $\varphi(x) = \sum_{i=1}^{p} x_i \log(x_i)$, prove that

$$D_{\varphi}(x,z) = \sum_{i=1}^{p} x_i \log\left(\frac{x_i}{z_i}\right)$$

What is the name of a such divergence?

We introduce now the Mirror Descent algorithm:

Algorithm 3 (Mirror descent on \mathcal{D}) Initialization : $x_0 \in \mathcal{D}$

• Input : step-size sequence $(\gamma_{k+1})_{k\geq 0}$

- Iterate:
 - Compute the gradient of $f: g_k = \nabla f(x_k)$
 - Upgrade the new position of the algorithm:

$$x_{k+1} = \arg\min_{x \in \mathcal{D}} \left\{ \langle g_k, x - x_k \rangle + \frac{1}{\gamma_{k+1}} D_{\varphi}(x, x_k) \right\}$$

Question 8-a: Write an explicit upgrade when $\mathcal{D} = \mathbb{R}^p$ and $\varphi(x) = |x|_2^2$.

Question 8-b : Prove that when $\mathcal{D} = \mathcal{S}$ and $\varphi(x) = \sum_{i=1}^{p} x_i \log(x_i)$:

$$\forall j \in \{1, \dots, p\} \qquad x_{k+1,j} = \frac{x_{k,j} e^{-\gamma_{k+1} g_{k,j}}}{\sum_{i=1}^{p} x_{k,i} e^{-\gamma_{k+1} g_{k,i}}}.$$

Question 8-c: Using the definition of the algorithm and the three points lemma, prove that for any $x \in \mathcal{D}$, we have:

$$\gamma_{k+1}\langle g_k, x_{k+1} - x \rangle \le D_{\varphi}(x, X_k) - D_{\varphi}(x, X_{k+1}) - D_{\varphi}(X_{k+1}, X_k).$$

Question 8-d: Show that

$$\gamma_{k+1}\langle g_k, x_{k+1} - x_k \rangle \le \frac{\gamma_{k+1}^2 |g_{k+1}|^2}{2\rho} + \frac{\rho}{2} |x_{k+1} - x_k|^2$$

Question 8-e: Assume that $|\nabla f|$ is bounded over \mathcal{D} by M, using the convexity of f and a telescopic sum argument, prove that if we define \bar{x}_N as in Question 6-b, then:

$$f(\bar{x}_N) - f(x^*) \le \frac{\sup_{x \in \mathcal{D}} D_{\varphi}(x, x_0) + \frac{M^2}{2\rho} \sum_{k=0}^N \gamma_{k+1}^2}{\sum_{k=0}^N \gamma_{k+1}}$$

Question 9: Present the Markowitz portfolio problem. To do this, you are allowed (and even asked) to find the needed documentation by yourself on www.

Question 10 : Compare the mirror descent and the projected gradient descent over the simplex from a numerical point of view with a large number p of assets in a porfolio with the Markowitz model with correlated and uncorrelated framework.

Question 11: Would it be possible to handle the mirror descent with a stochastic optimzation algorithm? If yes, try it on the Markowitz model!