

Fintech Churn Prediction(Bank) Application of Data Science in Finance

Presenting by Manovarma Krishnasamy Thalaivar

FD0003362

Agenda

- 1. Introductions
- 2. Goals
- 3. Business Understanding
- 4. Data Pre-processing
- 5. Models
- 6. Conclusion

Introduction

- Customer churn = when clients stop using a service.
- Predicting churn helps reduce losses and retain valuable customers.
- Our project compares three models:
- Bayesian Network (BN) probabilistic reasoning.
- Random Forest (RF) ensemble tree-based classifier.
- Logistic Regression (LR) baseline linear classifier.

Other Projects

Churn for Bank Customers

Data Card

Code (82)

Discussion (7)

Suggestions (0)

Bank Churn Prediction with XGBoost and SHAP (RU)

Updated 6mo ago

0 comments · Churn for Bank Customers

deep-learning

Updated 6mo ago

0 comments · Churn for Bank Customers

Bank customer churn prediction-CNN

Updated 6mo ago

0 comments · Churn for Bank Customers

Customer Churn predictor

Updated 1y ago

0 comments · Churn for Bank Customers

Goals

Using algorithms:

Bayesian Network → probabilistic churn prediction.

Decision Tree / Random Forest → classification model.

Logistic Regression → baseline model.

What are we going to predict?

We will predict whether a customer will exit (churn = 1) or stay (churn = 0).

Business Understanding

- Source: Bank churn dataset (~10,000 customers). <u>link</u>
- Features: demographic (age, gender, geography), account (balance, tenure, credit score), activity (products, card, active member).

Data Preprocessing

Target: Exited (0 = stayed, 1 = churned).

Preprocessing steps:

- Removed irrelevant IDs (RowNumber, Customerld, Surname).
- Discretization (KBins) for BN.
- One-hot encoding for categorical variables in RF/LR.
- Balanced data using SMOTE to handle class imbalance.

Duplicates: 0	
Missing values per	column:
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Models

Bayesian Network

- Learned structure using Hill Climb Search + BIC score.
- Fitted CPDs with Maximum Likelihood Estimation.
- Inference via Variable Elimination.
- Output: probabilistic prediction
 P(Exited=1 | evidence).

	Threshold	Accuracy	Precision	Recall	F1	AUC	Type I Error	Type II Error
0	0.1	0.569886	0.537984	0.989828	0.697090	0.827694	0.850057	0.010172
1	0.2	0.674369	0.612877	0.946754	0.744078	0.827694	0.598016	0.053246
2	0.3	0.710787	0.650309	0.911968	0.759226	0.827694	0.490393	0.088032
3	0.4	0.745259	0.706492	0.839131	0.767120	0.827694	0.348612	0.160869
4	0.5	0.749969	0.741185	0.768178	0.754440	0.827694	0.268241	0.231822
5	0.6	0.737724	0.803852	0.628909	0.705700	0.827694	0.153460	0.371091
6	0.7	0.727804	0.829220	0.573779	0.678245	0.827694	0.118172	0.426221
7	0.8	0.612206	0.908177	0.249655	0.391647	0.827694	0.025242	0.750345
8	0.9	0.567311	0.946667	0.142660	0.247954	0.827694	0.008037	0.857340

BN STRUCTURE

	Actual	RF_Pred	LR_Pred
0	0	0	0
1	0	0	1
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	1

The Actual and Model predcited values for RF and LR.

Proabability of BN.

Actual	P(Exited=0)	P(Exited=1)	Predicted
1	55.91%	44.09%	1
0	49.58%	50.42%	1
1	3.14%	96.86%	1
0	62.01%	37.99%	0
0	62.86%	37.14%	0
1	86.74%	13.26%	0
0	95.21%	4.79%	0
1	0.00%	100.00%	1
0	92.02%	7.98%	0
0	76.00%	24.00%	0

Random Forest

- •Used Pipeline with preprocessing
- + RandomForestClassifier.
- •Hyperparameters: 200 trees, max depth = 8, class_weight = balanced.
- •Evaluated with 5-fold Stratified CV.
- •Feature importance analyzed (e.g., Age, Balance, Geography top drivers).

RFTREE

200 Trees and 8- depth

Logistic Regression

- •Simple linear baseline.
- •Used with class weighting to handle imbalance.
- •Evaluated with same 5-fold CV.

```
Logit(P(Exited=1)) = -0.1234 + (-0.0667 * CreditScore) + (0.9006 * Age) + (-0.0281 * Tenure) + (0.1537 * Balance) + (-0.0669 * NumOfProducts) + (-0.0143 * HasCrCard) + (-0.4759 * IsActiveMember) + (0.0307 *EstimatedSalary) + (-0.3320 * Geography_France) + (0.5328 *Geography_Germany) + (-0.3242 * Geography_Spain) + (0.2362 *Gender_Female) + (-0.3597 * Gender_Male)
```

$$Logit(P) = \beta_0 + \beta_1 \cdot CreditScore + \beta_2 \cdot Age + \beta_3 \cdot Balance + \cdots + \beta_k \cdot IsActiveMember$$

So:

$$P(ext{Exited} = 1) = rac{1}{1 + e^{- ext{Logit}(P)}}$$

	Model	CA	Precision	Recall	F1	AUC	Type I Error	Type II Error	Threshold
0	BN (Balanced)	0.7453	0.7065	0.8391	0.7671	0.8277	0.3486	0.1609	0.4
1	Random Forest (CV)	0.8230	0.5534	0.6839	0.6115	0.8581	0.1414	0.3161	0.5
2	Logistic Regression (CV)	0.7164	0.3895	0.6917	0.4983	0.7689	0.2773	0.3083	0.5

Overall Model Comparision

Confusion matrix

- Random Forest is the most balanced model with the highest overall performance.
- Bayesian Network gives stronger recall, making it useful when identifying churners is the priority.
- Logistic Regression is less accurate but provides interpretability with clear coefficients.
- Age, activity status, and credit score emerged as important features in churn prediction.
- No single personal detail alone decides churn; rather, it is the interaction of multiple factors.

Conclusion

Back-up slides

