

MODELISER LE COMPORTEMENT DES SYSTEMES MECANIQUES DANS LE BUT D'ETABLIR UNE LOI DE COMPORTEMENT EN UTILISANT DES METHODES

PSI - PSI *

ENERGETIQUES

BILAN ENERGETIQUE D'UN SYSTEME MULTIPHYSIQUE

CHEVILLE DU ROBOT NAO

1 OBJECTIFS

1.1 Objectif technique

Objectif:

L'objectif de ce TP est d'estimer l'énergie nécessaire à la mise en mouvement de la cheville ainsi que la part attribuée à chaque sous ensemble.

1.2 Contexte pédagogique

Analyser:

☐ A3 – Conduire l'analyse

Modéliser:

- ☐ Mod2 Proposer un modèle
- Mod3 Valider un modèle

Résoudre:

☐ Rés2 — Procéder à la mise en œuvre d'une démarche de résolution analytique

1.3 Évaluation des écarts

Problématique : déterminer la consommation énergétique de la cheville lors d'une flexion du robot.

2 ÉVALUATION DE L'ENERGIE NECESSAIRE A LA MISE EN MOUVEMENT DE LA CHEVILLE

2.1 Évaluation de l'énergie cinétique

Activité 1 – Modélisation En utilisant la documentation et le modèle numérique réaliser : le graphe de liaison du mécanisme de la cheville (mouvement de tangage) ; le schéma cinématique de la cheville. On considèrera que la cheville est en liaison encastrement avec le pied (considéré comme le bâti).

Activité 2 - Modélisation

- Proposer et mettre en œuvre une méthode permettant de donner l'expression littérale de l'énergie cinétique de l'ensemble {Tibia+Rotor+Pignons} par rapport au bâti.
- □ Proposer et mettre en œuvre une méthode permettant de déterminer l'inertie équivalente des pignons ramenée sur l'arbre moteur.

Activité 3 - Expérimentation - Modélisation

- Proposer une méthode expérimentale permettant d'estimer la (les) composante(s) utile(s) de la matrice d'inertie des pignons. (Moyens pouvant être mis à disposition : balance, pied à coulisse).
- Proposer une méthode, à partir de SolidWorks, permettant d'estimer le moment d'inertie des pignons.
- Proposer une méthode permettant de valider les valeurs déterminées.

2.2 Evaluation du rendement

Activité 4 - Expérimentation

- Proposer une méthode expérimentale permettant d'estimer le rendement de la cheville en régime permanent.
- On étudiera l'impact du chargement sur le rendement.

2.3 Synthèse

Activité 5 - Résolution

Évaluer l'inertie équivalente de l'ensemble {Tibia+Rotor+Pignons}. Vous prendrez soin d'identifier la part (en pourcentage) de chacune des composantes de l'énergie cinétique.

Activité 5 - Résolution

☐ Évaluer le nombre de squats que peut réaliser le robot NAO.

1 Presentation Generale

1.1 Description générale

1.2 Géométrie du robot

Tibia: 7 cm

Cuisse: 7 cm

Masse globale du robot : 5 kg

1.3 Spécification de la batterie

Battery type	Lithium ion	
Nominal voltage/capacity	21.6 V / 2.15 Ah	
Max charge voltage	24.9 V	
Recommended charge current	2 A	
Max discharge current	2.0 A	
Energy	27.6 Wh	

1.4 Spécifications de la cheville

Ankle Pitch	Module	Z	Coefficient de déport	Entraxe de fonctionnement	Rapport de réduction	
pignon_03_20		20	0		4	
mobile_inf_1 - roue	0,3	80	0	15		
mobile_inf_1- pignon	0,4	25	0,214	14,5	1,88	
mobile_inf_2 - roue		47	0,042	,-	,	
mobile_inf_2 - pignon	0,4	12	0,564	14,5	4,83	
mobile_inf_3 - roue	,	58	0,836	ŕ	,	
mobile_inf_3 - pignon	0,7	10	0,541	16,8	3,6	
roue_sortie_inf		36	0,603	,		
Rapport					130,85	

1.5 Spécifications moteur

Product Designation 22NT 82 213P 1001 Specification		3P 1001 09/10		Portescap		
			unit	value	toleran ce	
	sured values					
1	Measuring voltage		V	18	-	
2	No-load speed		rpm	8300	±10%	
3	No-load current		mA	75	max	
4	Starting voltage		V		max	
5	Terminal resistance		Ohm	5.4	±10%	
Rec	ommended values					
10	Continuous current (at 22°C)		Α	0.92	max	
11	Continuous torque		mNm	16.1	max	
12	Angular acceleration		10 ³ rad/s ²	181	max	
13	Ambient working temperature range		°C	-30°C to 65°C	typical	
14	Rated coil temperature		°C	155	max	
ntri	nsic parameters					
20	Back-EMF constant		V/1000 rpm	2.03	±8%	
21	Torque constant		mNm/A	19.4	±8%	
22	Motor regulation R/k2		10 ³ /Nms	13.71	typical	
23	Rotor inductance (@1kHz)		mH	0.6	typical	
24	Mechanical time constant		ms	4.5	-	
25	Thermal resistance rotor-body		°C/W	6	typical	
26	Thermal resistance body-ambient		°C/W	22	typical	
27	Thermal time constant – rotor		S	9	typical	
28	Thermal time constant –stator		S	550	typical	
29	Rotor Inertia		Kgm ² 10 ⁻⁷	4.8	typical	
30	Stall torque		mNm	68	±8%	