

# Chapter 8

NP and Computational Intractability



Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.



# 8.5 Sequencing Problems

#### Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.



## Hamiltonian Cycle

**HAM-CYCLE:** given an undirected graph G = (V, E), does there exist a simple cycle  $\Gamma$  that contains every node in V.







### Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle  $\Gamma$  that contains every node in V.







### Directed Hamiltonian Cycle

**DIR-HAM-CYCLE**: given a digraph G = (V, E), does there exists a simple directed cycle  $\Gamma$  that contains every node in V?

#### THM 1. DIR-HAM-CYCLE ≤ p HAM-CYCLE.

Pf. Given a <u>directed</u> graph G = (V, E), construct an <u>undirected</u> graph G' with 3n nodes.



GADGET for each node v

#### Directed Hamiltonian Cycle

```
Proof of THM 1. G has a Hamiltonian cycle iff G' does.
Pf. ⇒
    Suppose G has a directed Hamiltonian cycle Γ.
    Then G' has an <u>undirected</u> Hamiltonian cycle (same order).
Pf. ∈
    Suppose G' has an undirected Hamiltonian cycle Γ'.
    Γ' must visit nodes in G' using one of following two orders:
    ..., B, G, R, B, G, R, B, G, R, B, ... clockwise →
    ..., B, R, G, B, R, G, B, R, G, B, ... counterclockwise ←
    Blue nodes in Γ' make up <u>directed</u> Hamiltonian cycle Γ in G, or reverse of one.
```





### 3-SAT Reduces to Directed Hamiltonian Cycle

THM 2. 3-SAT ≤ p DIR-HAM-CYCLE.

Proof. Given an instance  $\Phi$  of 3-SAT, we construct an instance G(V,E) of DIR-HAM-CYCLE such that:

6 has a Hamiltonian cycle iff 1 is satisfiable.

**Construction**. First, create graph that has  $2^n$  Hamiltonian cycles which correspond in a natural way to  $2^n$  possible truth assignments for  $\Phi$ .



#### 3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance  $\Phi$  with  $\mathbf{n}$  variables  $\mathbf{x}_i$  and  $\mathbf{k}$  clauses.

- Construct G to have 2<sup>n</sup> Hamiltonian cycles.
- Intuition: traverse path i from left to right  $\Leftrightarrow$  set variable  $x_i = 1$ .



# 3-SAT Reduces to Directed Hamiltonian Cycle

**Construction**. Given **3-SAT** instance  $\Phi$  with **n** variables  $\mathbf{x}_i$  and **k** clauses.

For each clause  $C_j$ : add a gadget with 1 grey node and 6 edges.



#### THM. HAMILTONIAN-CYCLE HAMILTONIAN PATH

Proof (sketch). G(V,E) has a Hamilton Cycle iff f(G) has a Hamilton Path.

From G=(V,E), construct G'(V',E') = f(G) as follows.

- Fix any  $v \in V$  and add 3 new nodes:  $v',s,t \notin V$ .

'v' is a "copy" of v, and add a source s and a sink t, connected to v,v', respectively. (See Figure) Add edges  $\{(v',w)|(v,w) \in E\} \cup \{(s,v),(v',t),(v,v')\}$ .

If G has a Hamiltonian Cycle HC then it can be transformed into a Hamiltonian Path for G'=f(G) starting from S and ending to T and viceversa.





### Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

THM. LONGEST-PATH is NP-Complete

Proof.

LEMMA: HAM-PATH ≤ P LONGEST-PATH:

PROOF (of Lemma): Trivial, take:  $G(V,E) \rightarrow \langle G(V,E), k=n-1 \rangle$ 

HOMEWORK: Prove a direct reduction from DIR-HAM-CYCLE, ignoring back-edge from t to s.



TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu



TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



Optimal TSP tour

Reference: http://www.tsp.gatech.edu



TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?





TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length  $\leq D$ ?



Optimal TSP tour

Reference: http://www.tsp.gatech.edu



TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour/cycle of length  $\leq D$ ?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V (i.e. a Hamiltonian Cycle)?

Claim. HAM-CYCLE  $\leq_P$  TSP.

Prooff. Given instance G = (V, E) of HAM-CYCLE with |V| = n:

create n cities with distance function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

■ TSP instance has tour of length  $\leq$  n iff G is Hamiltonian. ■

