Precalculus Lecture 6 Inverse Functions

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Inverse Functions
 - One-to-one Functions
 - The Definition of the Inverse of f

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Inverse Functions One-to-one Functions 4/14

One-to-one Functions

Definition (One-to-one Function)

A function f is a one-to-one function if it never takes on the same value twice; that is,

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$.

← This function is not one-to-one.

Inverse Functions One-to-one Functions 5/14

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

Inverse Functions One-to-one Functions 5/14

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

Inverse Functions One-to-one Functions 5/14

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

The Definition of the Inverse of *f*

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

The Definition of the Inverse of *f*

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

The Definition of the Inverse of f

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

 Only one-to-one functions have inverses.

The Definition of the Inverse of *f*

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.

The Definition of the Inverse of f

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.
- domain of f^{-1} = range of f.
- range of $f^{-1} = \text{domain of } f$.

The Definition of the Inverse of *f*

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.
- domain of f^{-1} = range of f.
- range of $f^{-1} = \text{domain of } f$.

Example $(f(x) = x^3)$

The inverse of $f(x) = x^3$ is $f^{-1}(x) = \sqrt[3]{x}$. This is because if $y = x^3$, then

$$f^{-1}(y) = \sqrt[3]{y} = \sqrt[3]{x^3} = x.$$

The inverse of f is denoted as f^{-1} .

7/14

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

7/14

The inverse of f is denoted as f^{-1} . This notation is one of the most frequent causes of student confusion. **WARNING:**

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

7/14

The inverse of f is denoted as f^{-1} . This notation is one of the most frequent causes of student confusion. **WARNING:**

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions. • f^{-1} is the compositional inverse of f.

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

No one blamed English language of being logical.

-Bjarne Stroustrup, creator of the programming language C++

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

$$f^n(x) = \left\{ egin{array}{ll} \mbox{stands for } (f(x))^n & \mbox{when } n=1,2,3,\ldots \\ \mbox{stands for inverse of } f \mbox{ applied to } x & \mbox{when } n=-1 \\ \mbox{should be avoided} & \mbox{when } n
eq -1,1,2,3,\ldots. \end{array} \right.$$

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

$$f^n(x) = \left\{ egin{array}{ll} ext{stands for } (f(x))^n & ext{when } n=1,2,3,\dots \\ ext{stands for inverse of } f ext{ applied to } x & ext{when } n=-1 \\ ext{should be avoided} & ext{when } n
eq -1,1,2,3,\dots. \end{array}
ight.$$

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

$$f^n(x) = \left\{ egin{array}{ll} \mbox{stands for } (f(x))^n & \mbox{when } n=1,2,3,\dots \\ \mbox{stands for inverse of } f \mbox{ applied to } x & \mbox{when } n=-1 \\ \mbox{should be avoided} & \mbox{when } n
eq -1,1,2,3,\dots \end{array} \right.$$

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^{2}(x)$ is an abbreviation for $(f(x))^{2}$, $f^{3}(x)$ is an abbreviation of $(f(x))^{3}$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

$$f^n(x) = \left\{ egin{array}{ll} ext{stands for } (f(x))^n & ext{when } n=1,2,3,\dots \\ ext{stands for inverse of } f ext{ applied to } x & ext{when } n=-1 \\ ext{should be avoided} & ext{when } n
eq -1,1,2,3,\dots \end{array}
ight.$$

To reduce confusion, if possible, use $\frac{1}{f(x)}$ instead of $(f(x))^{-1}$.

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) =$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y)$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

Switch the roles of x and y:

$$f^{-1}(x) = y \qquad \Leftrightarrow \qquad f(y) = x.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

Switch the roles of x and y:

$$f^{-1}(x) = y \qquad \Leftrightarrow \qquad f(y) = x.$$

Therefore

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) =$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

Switch the roles of x and y:

$$f^{-1}(x) = y \Leftrightarrow f(y) = x.$$

Therefore

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(y)$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

Switch the roles of x and y:

$$f^{-1}(x) = y \qquad \Leftrightarrow \qquad f(y) = x.$$

Therefore

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(y) = x.$$

8/14

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

Switch the roles of x and y:

$$f^{-1}(x) = y \qquad \Leftrightarrow \qquad f(y) = x.$$

Therefore

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(y) = x.$$

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- 2 Solve this equation for *x* in terms of *y* (if possible).

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- 2 Solve this equation for *x* in terms of *y* (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$

$$x^3 = y - 2$$

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- 2 Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$
$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- ② Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$
$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$.

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$
$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$. Sometimes we relabel x and y and write $f^{-1}(x) = \sqrt[3]{x-2}$.

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$
$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$. Sometimes we relabel x and y and write $f^{-1}(x) = \sqrt[3]{x-2}$. Whenever in doubt, do not relabel anything.

Example (Guess and Check)

If $f(x) = 2x + \sin 2x + e^{\frac{x}{2}}$, find $f^{-1}(1)$. You do not need to show that f has an inverse.

Example (Guess and Check)

If $f(x) = 2x + \sin 2x + e^{\frac{x}{2}}$, find $f^{-1}(1)$. You do not need to show that f has an inverse.

$$f(\) = 2(\) + \sin 2(\) + e^{\frac{(\)}{2}}$$

=
= 1.

10/14

Example (Guess and Check)

If $f(x) = 2x + \sin 2x + e^{\frac{x}{2}}$, find $f^{-1}(1)$. You do not need to show that fhas an inverse.

$$f(0) = 2(0) + \sin 2(0) + e^{\frac{(0)}{2}}$$

= 0 + 0 + 1
= 1.

If $f(x) = 2x + \sin 2x + e^{\frac{x}{2}}$, find $f^{-1}(1)$. You do not need to show that f has an inverse.

$$f(0) = 2(0) + \sin 2(0) + e^{\frac{(0)}{2}}$$

= 0 + 0 + 1
= 1.

Therefore $f^{-1}(1) = 0$.

11/14

Inverse Functions

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

• Suppose (a, b) is on the graph of f.

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

- Suppose (a, b) is on the graph of f.
- Then f(a) = b.

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

- Suppose (a, b) is on the graph of f.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

- Suppose (a, b) is on the graph of f.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .

Todor Milev Lecture 6

2020

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

- Suppose (a, b) is on the graph of f.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .
- (b, a) is the reflection of (a, b) in the line y = x.

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

- Suppose (a, b) is on the graph of f.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .
- (b, a) is the reflection of (a, b) in the line y = x.
- Thus the graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

Sketch the graph of $f(x) = \sqrt{-x-1}$ and its inverse function.

Sketch the graph of $f(x) = \sqrt{-x-1}$ and its inverse function.

• Draw the graph of $y = \sqrt{x}$.

Sketch the graph of $f(x) = \sqrt{-x-1}$ and its inverse function.

- Draw the graph of $y = \sqrt{x}$.
- $y = \sqrt{-x}$ is the reflection of $y = \sqrt{x}$ in the *y*-axis.

Sketch the graph of $f(x) = \sqrt{-x-1}$ and its inverse function.

- Draw the graph of $y = \sqrt{x}$.
- $y = \sqrt{-x}$ is the reflection of $y = \sqrt{x}$ in the *y*-axis.
- $y = f(x) = \sqrt{-(x+1)} = \sqrt{-x-1}$ is the shift of $y = \sqrt{-x}$ one unit to the left.

Sketch the graph of $f(x) = \sqrt{-x-1}$ and its inverse function.

- Draw the graph of $y = \sqrt{x}$.
- $y = \sqrt{-x}$ is the reflection of $y = \sqrt{x}$ in the *y*-axis.
- $y = f(x) = \sqrt{-(x+1)} = \sqrt{-x-1}$ is the shift of $y = \sqrt{-x}$ one unit to the left.
- $y = f^{-1}(x)$ is the reflection of y = f(x) across the line y = x.

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

13/14

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-{\color{red}4} \pm \sqrt{{\color{red}4}^2 - {\color{red}4} \cdot {\color{red}3} \cdot (-{\color{red}y} - {\color{red}7})}}{2 \cdot {\color{red}3}}$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot \textcolor{red}{3}\cdot (-y-7)}}{2\cdot \textcolor{red}{3}}$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot\left(-y-7\right)}}{2\cdot3}$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$=-rac{2\pm\sqrt{25+3y}}{3}=$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$x = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

answer

$$f^{-1}(y) = -\frac{2}{3} + \frac{\sqrt{25 + 3y}}{3}$$
 We are given $x \ge -\frac{2}{3}$, there $x \ge -\frac{2}{3} + \frac{\sqrt{25 + 3y}}{3} = f^{-1}(y)$.

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y)$$

Lecture 6 **Inverse Functions** Todor Milev 2020

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} + \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in *x*. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$=-\frac{2\pm\sqrt{25+3y}}{3}=-\frac{2}{3}\pm\frac{\sqrt{25+3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} + \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4 \pm \sqrt{4^2 - 4 \cdot 3 \cdot (-y - 7)}}{2 \cdot 3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} + \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Example (What if we change the problem to $x \le -\frac{2}{3}$?)

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} + \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Example (What if we change the problem to $x \le -\frac{2}{3}$?)

Given:
$$f(x) = 3x^2 + 4x - 7$$
 with domain $x \le -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} - \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4 \pm \sqrt{4^2 - 4 \cdot 3 \cdot (-y - 7)}}{2 \cdot 3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \le -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} - \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:
$$y = \frac{x+1}{x-1} \quad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

14/14

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \qquad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \qquad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \qquad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \qquad y(x-1) = x+1 \\ x(y-1) = y+1$$
 mult. by $(x-1)$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \qquad \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

$$x = \frac{y+1}{y-1}$$
| div. by $(y-1)$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \qquad \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1 \qquad \text{div. by } (y-1)$$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$

$$f^{-1}(x) = \frac{x+1}{x-1}$$

mult. by
$$(x-1)$$

relabel
$$x, y$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$

$$f^{-1}(x) = \frac{x+1}{x-1}$$

mult. by
$$(x-1)$$

div. by $(y-1)$
relabel x, y

relabel
$$x, y$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1} \quad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1 \quad | \text{div. by } (y-1)$$

$$f^{-1}(y) = x = \frac{y+1}{y-1} \quad | \text{relabel } x, y$$

$$f^{-1}(x) = \frac{x+1}{x-1}$$
We divided by $y-1$ so $y \neq 1$.

Lecture 6 2020 Todor Milev **Inverse Functions**

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Answer: $f^{-1}(x) = \frac{x+1}{x-1}$, $x \neq 1$.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$
, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse?

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer: $f^{-1}(x) = \frac{x+1}{x-1}$, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$
, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

What does it mean for *f* to be its own inverse?

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$
, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

What does it mean for f to be its own inverse? Graph of f is symmetric across y = x.