Simulación del Crecimiento Vegetal Mediante Modelo Logístico

Valeria López Agustín

Simulación de Sistemas Físicos

Junio 2025

Objetivos del Proyecto

Implementar un modelo matemático para simular el crecimiento de plantas considerando:

- Crecimiento logístico natural
- Efectos de factores ambientales
- Eventos climáticos extremos

Metodología

- Modelado matemático con ecuaciones diferenciales
- 2 Implementación numérica (método de Euler)
- Visualización

Modelo Matemático Base

Ecuación logística clásica:

$$\frac{dH}{dt} = r \cdot H \cdot \left(1 - \frac{H}{K}\right)$$

- H(t): Altura de la planta (cm)
- r: Tasa de crecimiento (d^{-1})
- K: Capacidad máxima (cm)

Modificaciones Ambientales

Modelo extendido con factores ambientales:

$$\frac{dH}{dt} = r \cdot f_e(T, H_m) \cdot H \cdot \left(1 - \frac{H}{K \cdot g_e(T, H_m)}\right)$$

Factores de estrés

- f_e: Función de estrés que afecta la tasa de crecimiento
- g_e: Función que modifica la capacidad máxima
- Dependen de temperatura (T) y humedad (H_m)

$$f_e = \exp\left(-\frac{(H_m - 0.65)^2}{2 \cdot 0.3^2}\right) \cdot \exp\left(-\frac{(T - 24)^2}{2 \cdot 10^2}\right)$$

Parámetros de Simulación

Cuadro: Parámetros principales

Parámetro	Símbolo	Valor
Tasa de crecimiento	r	$0,15 \; \mathrm{d}^{-1}$
Capacidad máxima	K	100 cm
Altura inicial	H_0	$1,0~\mathrm{cm}$
Temperatura óptima	T_{opt}	24 ° C
Humedad óptima	$H_{m,opt}$	0,65
Duración simulación	t_{max}	80 d

Eventos programados

- Día 15-35: Sequía (humedad baja)
- Día 35-60: Lluvias intensas (humedad alta)
- Día 60-80: Ola de frío (temperatura baja)

Implementación Numérica

Método de Euler:

$$H_{n+1} = H_n + \Delta t \cdot f(t_n, H_n)$$

- Paso temporal $\Delta t = 0.5$ días
- 160 iteraciones en total
- Implementado en Python/NumPy

Figura: Aproximación de Euler

Resultados: Dinámica de Crecimiento

- Línea azul: Altura real de la planta
- Línea roja: Capacidad máxima efectiva
- Área roja: Zona de sobrecapacidad (estrés)
- Humedad del suelo con óptimo en 0.65
- Temperatura con óptimo en 24 °C
- Eventos extremos identificados

Resultados: Condiciones Ambientales

Resultados: Factor de Estrés

- El punto negro indica condiciones óptimas
- Colores fríos (azul): Bajo estrés
- Colores cálidos (rojo): Alto estrés
- La seguía (baja humedad) es más estresante que el frío

Conclusiones Principales

- Validación del modelo: El crecimiento logístico modificado captura efectivamente la dinámica vegetal
- Impacto ambiental: Eventos extremos reducen hasta un 40 % la capacidad máxima
- Sensibilidad: La planta es más sensible a la humedad que a la temperatura
- Estabilización: Tras eventos estresantes, la altura se estabiliza en nuevos equilibrios
- Herramienta predictiva: El modelo permite simular diferentes escenarios climáticos

Aplicaciones futuras

- Optimización de riego
- Predicción de cosechas
- Estudios de cambio climático

Demostración del Código

Estructura principal:

- Inicialización de parámetros
- Configuración de arreglos temporales
- Bucle de simulación
- Cálculo de factores ambientales
- Actualización de crecimiento
- 6 Almacenamiento de resultados

¡Gracias!

Link del Proyecto:

https://colab.research.google.com/drive/1wK52D5GUJV-7y0Xi9euqgYrUzvpnBUY-?usp=sharing