### Gait Recognition in Mobile Security

#### Chase R. Ottomoeller

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

December 6, 2014 Senior Seminar, Morris

### The Big Picture

#### What is Mobile Security?

- Information Storage
- Device Access

#### How is mobile security evolving?

- No More Passwords
- Something You Are



http://mobilebuzz.guru/wpcontent/uploads/2014/06/Mobile-Security.png

### **Outline**

- Background
- Preprocessing The Data
- Feature Extraction
- Gait Classification
- Results
- 6 Conclusion



### **Outline**

- Background
  - Biometrics
  - Two Methods
- Preprocessing The Data
- Feature Extraction
- Gait Classification
- 6 Results
- Conclusion



#### **Biometrics**

- Biometrics
- Gait Recognition
- Why Gait is Better
- Unobtrusive Access



http://www.smc2012.org/images/jain3-1.jpg

### Two Methods

- Fixed Method
- Unfixed Method



# Fixed Method Approach

- 51 Subjects
- Phone Clipped to Waist
- Walked Down 18.5
   Meter Hallway
- Separated into "Walks"



## **Unfixed Method Approach**

- 47 Subjects
- Phone in more natural location (pocket, handbag, backpack)
- Performed in Real-world Environments
- Separated Into Frames



#### Outline

- Background
- Preprocessing The Data
  - What is Preprocessing?
  - Fixed Method Preprocessing
  - Unfixed Method Preprocessing

## Preprocessing

- Separates accelerometer data into sections
- Drops sections with little or no movement
- Walks VS Frames





## Fixed Method Preprocessing

- Walk Extraction
- Linear Interpolation (curve fitting)
- Zero Normalization



### Walk Extraction

- Walk Extraction
- Separates walking data from non-walking data



# **Linear Interpolation**

 Linear Interpolation (curve fitting)



### Zero Normalization

- Zero Normalization
- Only need the axis influenced by gravity
- Acceleration along the other two axes must be zero



## **Unfixed Method Preprocessing**

- Framing
- Projection



### Framing

- Separating Data into Equal Sections
- Frame Length: 5.12 seconds
- Each Frame contains 512 Samples
- Stationary frames are dropped



### Projection

- Each sample is projected onto a global coordinate system (sample = x, y, and z)
- Estimating direction of gravity with changes in x, y, and z.
- axes local (object)

  axes

  z global (world)

  axes

Frame dropped if orientation is changed

### **Outline**

- Background
- Preprocessing The Data
- Feature Extraction
  - What is Feature Extraction?
  - Fixed Method Feature Extraction
  - Unfixed Feature Extraction
- Gait Classification
- 6 Results
- Conclusion

#### What is Feature Extraction?

 Feature extraction separates "walking" cycles from "non-walking" cycles

### Fixed Method Feature Extraction

- Four Steps:
  - Cycle Length Estimation
  - Cycle Detection
  - Cycle length normalization
  - Omitting Unusual Cycles

## Cycle Length Estimation

- Compute the Minimum Salience Vector of each cycle
- Minimum Salience Vector
  - Contains one entry for each data point
  - Each entry is the count of data values between the current value and following smaller value



### Cycle Detection

- Detecting Individual Cycles
- Start of each cycle is located using the entry with the greatest value
- Spikes show the length of each cycle
- Long cycles are split again using the same method



## Cycle Length Normalization

- The distance of each cycle is measured from the start of one cycle to the start of the following.
- Cycles need to be of a set length for later Gait Analysis
- Linear Interpolation helps to normalize the data



## **Omitting Unusual Cycles**

- Deleting Unusual Gait Cycles
- Dynamic Time Warping (DTW): An algorithm used to measure similarity between two sequences
- Euclidean VS DTW
- Cycles with half the distance of the average cycle are dropped



### **Unfixed Method Feature Extraction**

- Three Steps:
  - Feature Extraction I
  - Walking Detection
  - Feature Extraction II

#### Feature Extraction I

- Determine differences between "walking" and "non-walking"
- Walking 1-2Hz vs Running >3Hz
- These features are used in Walking Detection

## Walking Detection

- Three classifications:
  - Walking: 1-2Hz
  - Non-Walking: >3Hz (running, biking, in moving vehicle)
  - Random Movements: >0Hz (transitional movements, short spikes)
- Cycles labeled as walking move onto the next step

### Feature Extraction II

- Once Walking Detection confirms that the frame contains walking data, more relevant features are extracted
- Some features extracted using Autocorrelation

#### Autocorrelation

- Useful to find periodicity and cadence of a cycle
- Example: Phone inside a pocket
- Segmentation methods, like minimum salience vectors, cannot be used
- Autocorrelation can reveal features even with noise



### **Outline**

- Background
- Preprocessing The Data
- Feature Extraction
- Gait Classification
  - Overview
  - Fixed Method Gait Classification
  - Unfixed Method Gait Classification
- 6 Results
- Conclusion



#### What is Gait Classification?

 Gait Classification determines if the user is "genuine" or an "impostor"

### Fixed Method Gait Classification

- Template-based
- Machine Learning

### Template-based

- Feature Cycle: The cycle with the lowest DTW distance
- Probe Cycles: The remaining cycles
- After computing probe and reference cycles for all walks two classes are made:
  - Genuine
  - Impostor
- Genuine and Impostor are made by comparing the DTW distance of all the reference and probe cycles
- 50% of the Probe cycles must be classified as genuine



### Machine Learning

- Data is split into two groups:
  - Training (80%)
  - Testing (20%)
- Support Vector Machines (SVMs) are used for biometric classification
- A SVM finds a hyperplane that linearly separates data into two classes: genuine and impostor



## Machine Learning

- The data is not usually linearly separable. Therefore, a kernel function is used.
- A kernel function maps non linearly separable data to a high dimension space
- These data points are now compared to the Testing data set and labelled as genuine or imposter
   Classification: Class with the most
- Classification: Class with the most data points



### **Unixed Method Gait Classification**

- Universal Background Model:
  - Data Pooled from a group of subjects
  - Represents various gait patterns

#### **Unfixed Method**

- The UBM is trained with a user's data
- The current user's gait model is generated from the extracted features
- The current user's model is compared to the personalized Universal Background Model and either accepts or rejects.
- Further training of the UBM is done by recording false negatives

### **Outline**

- Background
- Preprocessing The Data
- Feature Extraction
- Gait Classification
- Results
- Conclusion



#### Conclusions

- Accuracy calculated by Equal Error Rate (EER):
  - False acceptance rate and false rejection rate are equal.
  - The Lower the EER the more accurate the method
- EER:
  - Fixed: EER 22.49%Unfixed: EER 14%
- RunTime:
  - Fixed: 2-3 minutes
  - Unfixed: 30 milliseconds



### **Outline**

- Background
- Preprocessing The Data
- Feature Extraction
- Gait Classification
- 6 Results
- 6 Conclusion



### Conclusions

- The unfixed method:
  - Uses a real-world approach
  - More accurate
  - Faster

#### References

### Questions?

- H. Lu, J. Huang, T. Saha, and L. Nachman, Unobtrusive gait verification for mobile phones, 2014
- 2) M. Muaaz and R. Mayrhofer, An analysis of different approaches to gait recognition using cellphone based accelerometers, 2013