UNIVERSIDADE DE SÃO PAULO – USP INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO

$\begin{array}{c} {\rm RELAT\acute{O}RIO~2} \\ {\rm SME~104-C\acute{A}LCULO~NUM\acute{E}RICO} \end{array}$

Alunos: Adams Vietro Codignotto da Silva - 6791943 Ana Clara Kandratavicius Ferreira - 7276877

> São Carlos 2014

1 Introdução

O método de Euler é um método de primeira ordem usado para resolver PVIs, servindo de construção para o método a ser estudado neste trabalho: o Método de Euler Modificado. Esse método é explícito de ordem 2, com um erro de $O(h^3)$ por passo.

2 Modelagem do Problema

Como o método de Euler Modificado necessita que a EDO seja de primeira ordem, precisamos fazer com que o PVI, que é de ordem superior, seja reduzido para um sistema de equações de primeira ordem.

2.1 Redução para Equação de Primeira Ordem

Dado o PVI:

$$\begin{cases} y'' = y + e^x, x \in [0, 2] \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Podemos usar uma mudança de variável, fazendo y'=z, obtendo $z'=y+e^x$. Assim, a equação de segunda ordem fica reduzida ao sistema:

$$\begin{cases} y' = z \\ z' = y + e^x, x \in [0, 2] \\ y(0) = 1 \\ z(0) = 0 \end{cases}$$

2.2 Calculando os passos

Para esse sistema, podemos utilizar a fórmula de Euler Modificado, uma vez que o mesmo é de primeira ordem, onde:

$$y_{n+1} = y_n + hf(x_n, y_n, z_n)$$

 $z_{n+1} = z_n + hg(x_n, y_n, z_n)$

Então, usando a fórmula acima, temos:

$$y_{n+1} = y_n + hz_n$$

$$z_{n+1} = z_n + h(y_n + e^{x_n})$$

Fazendo n=0 e utilizando k=1 para $h_k=\frac{0.2}{2^k},$ obtemos:

$$\begin{cases} y_1 = y_0 + h(z_0) = 1 + 0.1(0) = 1 \\ z_1 = z_0 + h(y_0 + e^{x_0}) = 0 + 0.1(1 + e^0) = 0.2 \end{cases}$$

3 Experimentos e Resultados

i)

O método foi testado para todos os valores de k definidos no enunciado do problema. Os resultados foram:

X	y(x)	exata(x)
0.00	1.000000	1.000000
0.05	1.002500	1.002522
0.10	1.010131	1.010179
0.15	1.023045	1.023127
0.20	1.041418	1.041539
0.25	1.065443	1.065610
0.30	1.095338	1.095557
0.35	1.131341	1.131620
0.40	1.173715	1.174061
0.45	1.222747	1.223169
0.50	1.278752	1.279259
0.55	1.342071	1.342670
0.60	1.413071	1.413774
0.65	1.492153	1.492970
0.70	1.579748	1.580691
0.75	1.676320	1.677400
0.80	1.782368	1.783598
0.85	1.898428	1.899823
0.90	2.025075	2.026649
0.95	2.162926	2.164695
1.00	2.312639	2.314621
1.05	2.474920	2.477133
1.10	2.650522	2.652986
1.15	2.840250	2.842987
1.20	3.044964	3.047995
1.25	3.265578	3.268929
1.30	3.503069	3.506766
1.35	3.758478	3.762549
1.40	4.032912	4.037388
1.45	4.327552	4.332464
1.50	4.643652	4.649037
1.55	4.982549	4.988443
1.60	5.345663	5.352106
1.65	5.734505	5.741541
1.70	6.150681	6.158355
1.75	6.595897	6.604258
1.80	7.071967	7.081069
1.85	7.580816	7.590716
1.90	8.124492	8.135250
1.95	8.705168	8.716848
2.00	9.325149	9.337822

Tabela 1: Resultados para k=1

Podemos ver que pelos gráficos a solução obtida com o método de Euler Modificado ficou bem próxima da solução exata, mostrando até mesmo dificuldades em observar tal fato nos gráficos abaixo. O uso da tabela de erros acima foi necessário para que possamos visualizar com mais facilidade. A tabela para k=4, por ser muito extensiva, foi omitida deste relatório.

Figura 1: Erro para k=1

Figura 2: Erro para k=4

ii)

Podemos notar que, com o aumento do número de passos (ou seja, com o aumento de k) o erro diminui:

Figura 3: Gráfico erro x passos

Com isso, podemos chegar à conclusão que a solução analítica está chegando cada vez mais próxima ao da solução exata, e para $k=\infty$, ou seja, quando $h\to 0$, teremos a solução mais próxima da solução exata.

A tabela a seguir mostra a ordem de convergência calculada para o método implementado para resolver o PVI dado.

\mathbf{k}	Ordem de convergência	
0	1.9007	
1	1.9520	
2	1.9765	
3	1.9884	
4	1.9942	
5	1.9971	
6	1.9986	
7	1.9993	
8	1.9996	

Tabela 2: Ordem de convergência do método Euler Modificado

4 Conclusões

Com os resultados obtidos neste trabalho, mostramos que a solução obtida é próxima à solução exata. Os erros obtidos mostram que o método se aproxima da solução exata com o aumento do número de passos, e que tal solução fica bem próxima à da exata com um passo próximo de 0. O método se mostrou extremamente fácil de se usar, uma vez determinado o PVI. Como mostrado na tabela 2, foi possível observar que a ordem calculada está próxima à ordem esperada do método, que é de ordem 2.

5 Implementação do Problema

O método foi implementado utilizando a linguagem Matlab, e todas as funções utilizadas para o mesmo estão abaixo.

O programa é designado para exibir a ordem de convergência do método de Euler Modificado ao resolver o PVI do enunciado, podendo ser facilmente modificado para exibir a solução exata do mesmo. A única entrada do programa é o valor de k, determinando a quantidade de passos.

```
%Calcula solucao de um PVI dado um k
%retorna a ordem de convergencia
function y2 = Euler(k)
[erro1,Y1,Exata1] = Euler_Modificado(k);
[erro2,Y2,Exata2] = Euler_Modificado(k+1);
y2 = OrdemEuler(erro1,erro2);
end
function [erro,YY,VExata]=Euler_Modificado(k)
h=0.2/(2^k);
                                    %m varia de 1 a 4
intervalo=[0,2];
                                    %define o intervalo de x
a=intervalo(1);
b=intervalo(2);
passos=(b-a)/h;
                                    %define número de passos
VErro=zeros(passos,1);
                                    %vetor de erro para calculo da norma2
x=intervalo(1);
                                    %pega x inicial
y=[1;0];
                                    %define matrix de y(0) e y'(0)
VExata=zeros(passos,1);
                                    %vetor de valores da solucao exata
YY=zeros(passos,1);
VExata(1)=Exata(x);
                                        %inicializa primeira posicao da solucao exata
VErro(1)=y(1)-Exata(x);
YY(1)=y(1);
% fileID = fopen('exp.txt','w');
                                                 %todas as operacoes de file são para exibir a saida de
                                                 %no modo x|y(x)|exata(x) em um arquivo chamado exp.txt
% fprintf(fileID,'\\begin{tabular}{|c|c|c|}');
% fprintf(fileID,'%6s & %15s & %24s \\\ \n','x','y(x)','exata(x)');
% fprintf(fileID,'\\hline');
% fprintf(fileID, '%6.2f & %15.6f & %24.6f \\\ n', x, y(1), Exata(x));
for i=1:passos
    k1=F(x,y);
                                    %k1 e k2 também são vetores
    k2=F(x+h/2,y+(h*(k1/2)));
    y=y+(h*k2);
                                    %calcula a matrix y(x) e y'(x)
    x=x+h;
                                    %avanca o ponto
    VErro(i+1)=y(1)-Exata(x);
                                      %para calcular a norma2
    VExata(i+1)=Exata(x);
                                      %para calcular a norma2
    YY(i+1)=y(1);
%
      fprintf(fileID,'%6.2f & %15.6f & %24.6f \\\ \n',x,y(1),Exata(x));
% fprintf(fileID,'\\end{tabular}');
% fclose(fileID);
erro = norm(VErro,2)/norm(VExata,2); % calcula erro do método em relacao à solucao exata
end
function t = F(x,y)
t=[y(2);y(1)+exp(x)];
                                    %definindo a F(x,y)
end
function result = Exata(x)
                                    %formula da solucao exata
result = ((\exp(x)*(1+2*x))+3*\exp(-x))/4;
end
function ordem = OrdemEuler(erro1, erro2)
ordem = log(erro1/erro2)/log(2); %calculo da ordem de convergencia
end
```