Intégration et théorie

Intégration de

Lebesgue

de la mesure

Question 1/8

Lemme de Fatou

Réponse 1/8

Si
$$(f_n)$$
 est une suite de fonctions mesurables alors $\lim \inf \left(\int_X f_n \, \mathrm{d}\mu \right) \leqslant \int_X \lim \inf (f_n) \, \mathrm{d}\mu$

Question 2/8

f est étagée

Réponse 2/8

$$f = \sum_{i=1}^{n} (\lambda_i \mathbb{1}_{\{f = \lambda_i\}})$$

Question 3/8

Inegailté de Tchebychev

Réponse 3/8

Si
$$\alpha > 0$$
, $\mu(\{f \geqslant \alpha\}) \leqslant \frac{1}{\alpha} \int_{Y} f \, \mathrm{d}\mu$

Question 4/8

Intégrale d'une fonction étagée

Réponse 4/8

$$\int f \, \mathrm{d}\mu = \sum_{\lambda \in \mathrm{im}(f)} (\lambda \mu(\{f = \lambda_i\}))$$

Question 5/8

Théorème de convergence dominée

Réponse 5/8

Si
$$(f_n:(X,\mathcal{A}) \to \overline{\mathbb{R}_+})$$
 est une suite de fonctions mesurables qui convergent simplement vers f et telle qu'il existe $g \in L^1(X)$ pour laquelle $f_n \leqslant |g| \mu$ -pp pour tout $n \in \mathbb{N}$, alors $\lim \left(\int_X f_n \, \mathrm{d}\mu \right) = \int_X f \, \mathrm{d}\mu$

Question 6/8

Lien entre fonction mesurable et fonction étagée

Réponse 6/8

Toute fonction mesurable est limite simple de fonctions mesurables croissantes

Question 7/8

Théorème de convergence monotone (ou Beppo-Levi)

Réponse 7/8

Si $(f_n:(X,\mathcal{A}) \to \overline{\mathbb{R}_+})$ est une suite croissantes de fonctions mesurables qui convergent simplement vers f alors $\lim \left(\int_V f_n \, \mathrm{d}\mu \right) = \int_V f \, \mathrm{d}\mu$

Question 8/8

Intégrale d'une fonction positive f

Réponse 8/8

$$\int_{Y} f \, \mathrm{d}\mu = \sup \left(\left\{ \int_{Y} g \, \mathrm{d}\mu, g \text{ \'etag\'ee }, g \leqslant f \right\} \right)$$