Bruhat decomposition via row reduction

Ryan Reich

June 23, 2010

Let k be a field, $W \subset GL_n(k)$ the group of permutation matrices, $B \subset GL_n(k)$ the group of upper-triangular matrices.

Theorem. For every $g \in GL_n(k)$ there is a unique $w \in W$ such that $g \in BwB$.

Proof. Let i_0 be the largest i such that $g_{i1} \neq 0$; define a matrix $b^{(1)}$ such that

$$b_{ii}^{(1)} = 1$$
 $b_{ii_0}^{(1)} = -g_{i1}g_{i_01}^{-1} \quad (i < i_0)$ $b_{ij}^{(1)} = 0$ (else).

Then $b^{(1)} \in B$ and $g' = b^{(1)}g$ has $g'_{i1} = \delta_{ii_0}$, and for any w, we have $g \in BwB$ if and only if $g' \in BwB$. Note that if we have $g' \in b^{(2)}wB$ for any w, then $b^{(2)}_{ii_0} = \delta_{ii_0} = w_{ii_0}$.

 $b_{ii_0}^{(2)} = \delta_{ii_0} = w_{ii_0}$. Say that a k-expansion of a matrix M is any matrix obtained by adding a k'th row and column whose (i,k) and (k,j) entries are 0 for i,j < k. Note that any k-expansion of an upper-triangular matrix is upper-triangular.

Let h be the $(i_0, 1)$ 'th minor of g' and for $w \in W$, let v be the same minor of w, which is still a permutation matrix; then the first set following surjects onto the second one:

- Matrices $b^{(2)} \in B$ such that $g' \in b^{(2)}wB$;
- Matrices $b^{(3)} \in B \subset \operatorname{GL}_{n-1}(k)$ such that $h \in b^{(3)}vB$.

Indeed, we may take $b^{(2)}$ to be any i_0 -expansion of $b^{(3)}$; conversely, every $b^{(2)}$ is such an expansion. By induction on n, such a $b^{(3)}$ exists for a unique v, hence $b^{(2)}$ exists for the unique w whose $(i_0, 1)$ -minor is v.