PEMODELAN GRAF: NETWORKS Algoritma Dijkstra - Floyd

C. Kuntoro Adi, SJ Universitas Sanata Dharma MATEMATIKA DISKRIT 2020/2021

Referensi:

Rosen, 2019, Discrete Mathematics and Its Applications, Bab 11 Taha, 2017, Operation Research an Introduction, Bab 6

.

Pokok Bahasan

- 1. Pengantar
- 2. Minimal spanning tree
- 3. Route terpendek: Dijkstra
- 4. Route terpendek: Floyd

2. ROUTE TERPENDEK: ALGORITMA DIJKSTRA

Ada dua model dalam menentukan jarak terpendek

- 1. Dijkstra Algorithm: untuk menentukan jarak terpendek suatu sumber (asal) terhadap node lain yang ada dalam jaringan
- 2. Floyd Algorithm: dipergunakan untuk menentukan jarak atau route terpendek setiap node dalam suatu jaringan

3

Algoritma Dijkstra

Catatan awal

- Misalkan u_i = jarak terpendek suatu node ke node i
- d_{ii} (≥ 0) = jarak antara node i ke node j
- Label $[u_i, i] = [u_i + d_{ij}, i]$
- Dibedakan: label permanen, label temporer

Langkah Algoritma

- 1. Beri label node sumber dengan label permanen [0,--], set i=1
- 2. Langkah i:
 - 1. Tentukan label temporer $[u_i + d_{ij}, i]$ untuk setiap node j yang bisa disambungkan dengan i
 - 2. Jika node j sudah berlabel $[u_j, \, k]$ lewat node k, dan jika $u_i + d_{ij} < u_j$, ganti label $[u_i, \, k]$ dengan $[u_i + d_{ij}, \, i]$
 - 3. Jika semua node telah memiliki label permanen, stop. Otherwise: pilih label [u_r, s] dengan jarak terpendek dari semua label temporer. Set i=r; ulang lagi langkah i

5

Contoh

Jaringan di Gambar menujukkan jarak (satuan kilometer) beberapa kota. Temukan jarak terpendek antara kota 1 dengan 4 kota lainnya.

How?

- Iterasi O Assign node 1 dengan label permanen [0, -]
- Iterasi 1

Node 2 dan 3 terhubung ke node 1. Label untuk dua node ini akan menjadi sebagai berikut:

Node	Label	Status	
1	[0, -]	Permanent	
2	[0+100,1]=[100,1]	Temporary	
3	[0 + 30, 1] = [30, 1]	Temporary	

Untuk dua label [100, 1] dan [30, 1], node 3 memiliki jarak lebih pendek $(u_3 = 30)$, oleh karena itu labelnya menjadi permanen

.

• Iterasi 2

Node 4 dan 5 dapat terhubung lewat node 3. Label pada node akan menjadi sebagai berikut

Node	Label	Status	
1	[0, -]	Permanent	
2	[100, 1]	Temporary	
3	[30, 1]	Permanent	
4	[30 + 10, 3] = [40, 3]	Temporary	
5	[30 + 60, 3] = [90, 3]	Temporary	

Label temporer [40, 3] di node 4 akan menjadi label permanen $(u_4 = 40)$

• Iterasi 3

Node 2 dan 5 dapat terhubung lewat node 4. Label pada node diupdate menjadi sebagai berikut

Node	Label	Status Permanent	
1	[0, -]		
2	[40 + 15, 4] = [55, 4]	Temporary	
3	[30, 1]	Permanent	
4	[40, 3]	Permanent	
5	[90, 3] or		
	[40 + 50, 4] = [90, 4]	Temporary	

Di node 2, label baru [55, 4] menggantikan label temporer [100, 1] karena memberi route lebih pendek. Node 5 memiliki dua label. Label di node 2 [55, 4] berubah menjadi label permanen ($u_2 = 55$)

•

• Iterasi 4

Node permanen yang bisa terhubung dengan node 2 hanyalah node 3. Node 3 tidak bisa dilabel ulang mengingat sudah permanen. Di iterasi ini semua node sudah memiliki label permanen kecuali label 5.

Label 5 ditandai permanen, dan proses iterasi berhenti.

Prosedur pelabelan Dijkstra

11

Route terpendek? Back-tracking

Route terpendek (misalnya dari node 1 ke node 2) bisa dilacak secara "back-tracking" mulai dari node 2 dengan menggunakan kombinasi node dan label sebagai berikut:

(2)
$$\rightarrow$$
 [55, 4] \rightarrow (4) \rightarrow [40, 3] \rightarrow (3) \rightarrow [30, 1] \rightarrow (1) $^{[90,3]_{(2)}}_{[90,4]_{(3)}}$

Oleh karena itu route yang ditemukan adalah sebagai berikut

$$(1) \rightarrow (3) \rightarrow (4) \rightarrow (2)$$

dengan total jarak = 55 km

Soal Latihan		
		13