```
In [1]: | cd C:/Users/anshu/Desktop/kaggle/boston_housePrice_Pridiction
        C:\Users\anshu\Desktop\kaggle\boston housePrice Pridiction
In [2]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn import metrics
        %matplotlib inline
In [3]: | #if you dont have column name in your csv, add names tag and enter column name and put header = None and DONE
        data = pd.read_csv("housing.csv", names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'PRICE'], header = None)
        data.head()
Out[3]:
                                                       DIS RAD TAX PTRATIO
             CRIM ZN INDUS CHAS NOX RM AGE
                                                                                  B LSTAT PRICE
                                 0.0 0.538 6.575 65.2 4.0900
         0 0.00632 18.0
                         2.31
                                                              1 296.0
                                                                          15.3 396.90
                                                                                       4.98
                                                                                             24.0
         1 0.02731
                   0.0
                         7.07
                                 0.0 0.469 6.421 78.9 4.9671
                                                              2 242.0
                                                                          17.8 396.90
                                                                                      9.14
                                                                                             21.6
                         7.07
                                 0.0 0.469 7.185 61.1 4.9671
         2 0.02729
                   0.0
                                                              2 242.0
                                                                          17.8 392.83
                                                                                      4.03
                                                                                             34.7
                                 0.0 0.458 6.998 45.8 6.0622
         3 0.03237
                   0.0
                         2.18
                                                              3 222.0
                                                                          18.7 394.63
                                                                                       2.94
                                                                                             33.4
         4 0.06905 0.0 2.18
                                0.0 0.458 7.147 54.2 6.0622
                                                              3 222.0
                                                                          18.7 396.90
                                                                                      5.33
                                                                                             36.2
In [4]: # data.drop(['PRICE'], axis = 1, inplace = True) #without inplace=True it will not give desired output
        # data.head()
In [5]: data.shape #no brackets
Out[5]: (506, 14)
In [6]: data.columns #no brackets with s in colmun
Out[6]: Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
```

'PTRATIO', 'B', 'LSTAT', 'PRICE'],

dtype='object')

```
In [7]: data.dtypes #with a s
Out[7]: CRIM
                   float64
         ΖN
                   float64
         INDUS
                   float64
         CHAS
                   float64
         NOX
                   float64
                   float64
         RM
         AGE
                   float64
         DIS
                   float64
         RAD
                    int64
         TAX
                   float64
         PTRATIO
                   float64
         В
                   float64
         LSTAT
                   float64
         PRICE
                   float64
         dtype: object
In [8]: data.nunique() #identify unique number of values in column
Out[8]: CRIM
                   452
                    27
         ΖN
         INDUS
                    77
         CHAS
                    16
         NOX
                   132
         RM
                   437
         AGE
                   399
         DIS
                   361
         RAD
                    10
                    67
         TAX
                    85
         PTRATIO
         В
                   374
         LSTAT
                   445
         PRICE
                   210
         dtype: int64
In [9]: data.isnull().sum() #brackets in both
Out[9]: CRIM
                    0
         ΖN
         INDUS
         CHAS
         NOX
         RM
         AGE
         DIS
         RAD
         TAX
         PTRATIO
         В
         LSTAT
                    0
         PRICE
                   54
         dtype: int64
In [10]: data = data.dropna()
```

In [11]: #see rows with missing values data[data.isnull().any(axis=1)].head() #prices has 54 null value and we need to impute the data

Out[11]:

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE

In [12]: data.describe()

Out[12]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
count	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000
mean	1.420825	12.721239	10.304889	0.077434	0.540816	6.343538	65.557965	4.043570	7.823009	377.442478	18.247124	369.826504	11.441881	23.750442
std	2.495894	24.326032	6.797103	0.267574	0.113816	0.666808	28.127025	2.090492	7.543494	151.327573	2.200064	68.554439	6.156437	8.808602
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730000	6.300000
25%	0.069875	0.000000	4.930000	0.000000	0.447000	5.926750	40.950000	2.354750	4.000000	276.750000	16.800000	377.717500	6.587500	18.500000
50%	0.191030	0.000000	8.140000	0.000000	0.519000	6.229000	71.800000	3.550400	5.000000	307.000000	18.600000	392.080000	10.250000	21.950000
75%	1.211460	20.000000	18.100000	0.000000	0.605000	6.635000	91.625000	5.401100	7.000000	411.000000	20.200000	396.157500	15.105000	26.600000
max	9.966540	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	34.410000	50.000000

Out[13]: (14, 14)

```
In [14]: # visualizing correlation on a heat map
plt.figure(figsize=(15,15)) #decides the size of the image
sns.heatmap(corr, cbar=True, square= True, fmt='.1f', annot=True, annot_kws={'size':15}, cmap='Reds', linewidth = 0.5)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x1aaed8dd9b0>

CRIM	1.0	-0.3	0.6	0.1	0.6	-0.1	0.4	-0.5	0.9	0.8	0.3	-0.4	0.4	-0.3
NZ -	-0.3	1.0	-0.5	-0.1	-0.5	0.3	-0.6	0.7	-0.3	-0.3	-0.4	0.2	-0.4	0.3
SNDNI	0.6	-0.5	1.0	0.1	0.7	-0.4	0.6	-0.7	0.5	0.7	0.3	-0.3	0.6	-0.4
CHAS IN	0.1	-0.1	0.1	1.0	0.1	0.1	0.1	-0.1	0.1	0.0	-0.1	0.0	-0.0	0.2
XON	0.6	-0.5	0.7	0.1	1.0	-0.3	0.7	-0.7	0.5	0.6	0.1	-0.4	0.5	-0.3
RM -	-0.1	0.3	-0.4	0.1	-0.3	1.0	-0.2	0.1	-0.1	-0.2	-0.3	0.1	-0.6	0.7
AGE	0.4	-0.6	0.6	0.1	0.7	-0.2	1.0	-0.7	0.4	0.4	0.2	-0.2	0.6	-0.3
DIS	-0.5	0.7	-0.7	-0.1	-0.7	0.1	-0.7	1.0	-0.4	-0.4	-0.2	0.2	-0.4	0.1
RAD	0.9	-0.3	0.5	0.1	0.5	-0.1	0.4	-0.4	1.0	0.9	0.4	-0.4	0.3	-0.2
TAX	0.8	-0.3	0.7	0.0	0.6	-0.2	0.4	-0.4	0.9	1.0	0.4	-0.4	0.4	-0.3
ATIO	0.3	-0.4	0.3	-0.1	0.1	-0.3	0.2	-0.2	0.4	0.4	1.0	-0.1	0.3	-0.5
B PTRATIO	-0.4	0.2	-0.3	0.0	-0.4	0.1	-0.2	0.2	-0.4	-0.4	-0.1	1.0	-0.3	0.3
LSTAT	0.4	-0.4	0.6	-0.0	0.5	-0.6	0.6	-0.4	0.3	0.4	0.3	-0.3	1.0	-0.7
PRICE LS	-0.3	0.3	-0.4	0.2	-0.3	0.7	-0.3	0.1	-0.2	-0.3	-0.5	0.3	-0.7	1.0
Д.	CRIM	ΖŃ	INDUS	CHAS	NOX	кM	AĞE	DİS	RÁD	TÁX	PTRATIO	В	LSTAT	PRICE

- 0.9

- 0.6

- 0.3

- 0.0

- -0.3

- -0.6

```
In [15]: #splitting target variable and independent variable
    X = data.drop(['PRICE'], axis = 1)
    Y = data['PRICE']

In [16]: #splitting them to training and testing
    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.3, random_state = 4)
```

LINEAR REGRESSION

training the model

Model Evaluation

```
In [19]: y_pred = lr.predict(X_train)

In [20]: #Evaluating model
    print('R^2: ', metrics.r2_score(Y_train,y_pred))
    # print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_train)-X_train.shape[1]-1))
    print('MAE: ', metrics.mean_absolute_error(Y_train,y_pred))
    print('MSE: ', metrics.mean_squared_error(Y_train, y_pred))
    print('RMSE:', np.sqrt(metrics.mean_squared_error(Y_train,y_pred)))
```

R^2: 0.7403225970999185 MAE: 2.86611343196035 MSE: 18.24409071946878 RMSE: 4.271310187690514

In [21]: #visualizing the actual price and the predicted prices plt.scatter(Y_train,y_pred) plt.xlabel("Prices") plt.ylabel("Predicted Prices") plt.title("Prices vs Predicted Prices") plt.show()

In [22]: #Checking residual plot plt.scatter(y_pred, Y_train-y_pred) plt.xlabel("Predicted") plt.ylabel("Residual") plt.title("Checking for any pattern") plt.show()

#There is no pattern visible in this plot and values are distributed equally around zero.
#So Linearity assumption is satisfied


```
In [23]: sns.distplot(Y_train-y_pred)
  plt.title("Histogram on residual")
  plt.xlabel("Residual")
  plt.ylabel("frequency")
  plt.show()

#Here the residuals are normally distributed. So normality assumption is satisfied
```


predicting test data

```
In [24]: y_test_pred = lr.predict(X_test)

In [25]: #model evaluation
    acc_linreg = metrics.r2_score(Y_test, y_test_pred)
    print("R^2: ", acc_linreg)
    print("MAE: ", metrics.mean_absolute_error(Y_test, y_test_pred))
    print("MSE: ", metrics.mean_squared_error(Y_test, y_test_pred))
    print("RMSE: ", np.sqrt(metrics.mean_squared_error(Y_test, y_test_pred)))

#Here the model evaluations scores are almost matching with that of train data. So the model is not overfitting.
```

R^2: 0.732036504130758 MAE: 3.4301016596809273 MSE: 25.180362809153582 RMSE: 5.018003866992689

RANDOM FOREST REGRESSOR

Train the model

Model predcition on train Data

```
In [27]: y_pred = reg.predict(X_train)
```

min_samples_leaf=1, min_samples_split=2,

min_impurity_decrease=0.0, min_impurity_split=None,

min weight fraction leaf=0.0, n estimators=10, n jobs=None,

oob_score=False, random_state=None, verbose=0, warm_start=False)

Model Evaluation

```
In [28]: print("R^2: ", metrics.r2_score(Y_train, y_pred))
    print("MAE: ", metrics.mean_absolute_error(Y_train, y_pred))
    print("MSE: ", metrics.mean_squared_error(Y_train, y_pred))
    print("RMSE: ", np.sqrt(metrics.mean_squared_error(Y_train, y_pred)))
```

R^2: 0.9512933335585091 MAE: 1.0096835443037977 MSE: 3.4219721518987334 RMSE: 1.8498573328499508

```
In [29]: #Visualizing the differences between actual prices and the predicted prices
    plt.scatter(Y_train, y_pred)
    plt.xlabel("Actual value")
    plt.ylabel("Predicted value")
    plt.title("Actual vs Predicted value")
    plt.show()
```



```
In [30]: #Checking on the residual
  plt.scatter(y_pred, Y_train-y_pred)
  plt.xlabel("predicted value")
  plt.ylabel("Residual")
  plt.title("predicted vs residual")
  plt.show()
```


predicting the test data

```
In [31]: y_test_pred = reg.predict(X_test)
```

Model Evaluation

```
In [32]: acc_random = metrics.r2_score(Y_test, y_test_pred)
    print("R^2 : ", acc_random)
    print("MAE: ", metrics.mean_absolute_error(Y_test, y_test_pred))
    print("MSE: ", metrics.mean_squared_error(Y_test, y_test_pred))
    print("RMSE : ", np.sqrt(metrics.mean_squared_error(Y_test, y_test_pred)))
```

R^2 : 0.8615991865862214 MAE: 2.4008823529411765 MSE: 13.005438235294116 RMSE : 3.6063053441568305

max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='reg:linear', random_state=0,

reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,

silent=None, subsample=1, verbosity=1)

XGBoost Regressor

```
In [33]: from xgboost import XGBRegressor

xgb = XGBRegressor()

xgb.fit(X_train, Y_train)

[23:07:30] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

C:\Users\anshu\Anaconda3\lib\site-packages\xgboost\core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version if getattr(data, 'base', None) is not None and \

Out[33]: XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bynode=1, colsample_bytree=1, gamma=0, importance_type='gain', learning_rate=0.1, max_delta_step=0,
```

```
max_depth (int) - Maximum tree depth for base learners.
```

learning_rate (float) - Boosting learning rate (xgb's "eta")

n_estimators (int) – Number of boosted trees to fit.

gamma (float) - Minimum loss reduction required to make a further partition on a leaf node of the tree.

min_child_weight (int) - Minimum sum of instance weight(hessian) needed in a child.

subsample (float) – Subsample ratio of the training instance.

colsample_bytree (float) - Subsample ratio of columns when constructing each tree.

objective (string or callable) - Specify the learning task and the corresponding learning objective or a custom objective function to be used (see note below).

nthread (int) – Number of parallel threads used to run xgboost. (Deprecated, please use n_jobs)

scale_pos_weight (float) - Balancing of positive and negative weights.

Model Evaluator

```
In [34]: y_pred = xgb.predict(X_train)
```

Model Evaluation

```
In [35]: print('R^2:',metrics.r2_score(Y_train, y_pred))
#print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_train)-X_train.shape[1]-1))
print('MAE:',metrics.mean_absolute_error(Y_train, y_pred))
print('MSE:',metrics.mean_squared_error(Y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(Y_train, y_pred)))
```

R^2: 0.9748394089729945 MAE: 1.0260493260395678 MSE: 1.7677013868964468 RMSE: 1.3295493172110793

```
In [36]: plt.scatter(Y_train, y_pred)
    plt.xlabel("Prices")
    plt.ylabel("Predicted prices")
    plt.title("Prices vs Predicted prices")
    plt.show()
```


In [37]: #residual plt.scatter(Y_train, Y_train-y_pred) plt.xlabel("Predicted") plt.ylabel("Residual") plt.title("Predicted vs Residual") plt.show()

Predicting test data

```
In [38]: y_test_pred = reg.predict(X_test)
```

```
In [39]: acc_xgb = metrics.r2_score(Y_test, y_test_pred)
    print('R^2:',acc_xgb)
    #print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_train)-X_train.shape[1]-1))
    print('MAE:',metrics.mean_absolute_error(Y_test, y_test_pred))
    print('MSE:',metrics.mean_squared_error(Y_test, y_test_pred)))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(Y_test, y_test_pred)))
```

R^2: 0.8615991865862214 MAE: 2.4008823529411765 MSE: 13.005438235294116 RMSE: 3.6063053441568305

SVM Regressor

```
In [40]: from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

C:\Users\anshu\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py:645: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScal er.

return self.partial_fit(X, y)

C:\Users\anshu\Anaconda3\lib\site-packages\sklearn\base.py:464: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler.

return self.fit(X, **fit_params).transform(X)

C:\Users\anshu\Anaconda3\lib\site-packages\jpykernel launcher.py:6: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler.
```

train the model

C: float, optional (default=1.0): The penalty parameter of the error term. It controls the trade off between smooth decision boundary and classifying the training points correctly.

kernel: string, optional (default='rbf'): kernel parameters selects the type of hyperplane used to separate the data. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable.

degree: int, optional (default=3): Degree of the polynomial kernel function ('poly'). Ignored by all other kernels.

gamma: float, optional (default='auto'): It is for non linear hyperplanes. The higher the gamma value it tries to exactly fit the training data set. Current default is 'auto' which uses 1 / n_features.

coef0: float, optional (default=0.0): Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'.

Model Evaluation

```
In [43]: y_pred = svm_reg.predict(X_train)

In [44]: print('R^2:',metrics.r2_score(Y_train, y_pred))
    #print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_train)-X_train.shape[1]-1))
    print('MSE:',metrics.mean_sabsolute_error(Y_train, y_pred))
    print('MSE:',np.sqrt(metrics.mean_squared_error(Y_train, y_pred)))

    R^2: 0.6510940793642486
    MAE: 2.841175439488562
    MSE: 24.512996500845805
    RMSE: 4.951060139085952

In [45]: plt.scatter(Y_train, y_pred)
    plt.xlabel("Prices")
    plt.ylabel("Predicted prices")
    plt.title("Prices vs Predicted prices")
    plt.show()
```



```
In [46]: plt.scatter(y_pred,Y_train-y_pred)
    plt.title("Predicted vs residuals")
    plt.xlabel("Predicted")
    plt.ylabel("Residuals")
    plt.show()
```


for Test data set

```
In [47]: y_test_pred = svm_reg.predict(X_test)
```

Model Evaluate

```
In [48]: acc_svm = metrics.r2_score(Y_test, y_test_pred)
    print('R^2:', acc_svm)
    #print('Adjusted R^2:',1 - (1-metrics.r2_score(y_test, y_test_pred))*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1))
    print('MAE:',metrics.mean_absolute_error(Y_test, y_test_pred))
    print('MSE:',metrics.mean_squared_error(Y_test, y_test_pred))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(Y_test, y_test_pred)))
R^2: 0.5425335609760945
```

MAE: 3.7719750353519044 MSE: 42.98783634788254 RMSE: 6.556510988924105

Evaluation and Comparison of all the models

Out[49]:

	Model	R-squared Score
1	Random Forest	86.159919
2	XGBoost	86.159919
0	Linear Regression	73.203650
3	Support Vector Machines	54.253356

In [50]: # Since R-square is best for Random Forest, according to me we should go for Random Forest # to predcit the house price in Boston.