Mechanisms of overpressure

Disequilibrium compaction

 Ongoing sedimentation increases overburden (vertical stress) faster than fluid diffuses out of zone

Characteristic time of diffusion in porous medium

$$\tau = \frac{(\phi \beta_f + \beta_r) \eta l^2}{k}$$

- low-permiability sand (\sim 1 md)
 - τ on the order of years for l = 0.1km
- low-permiability shale (\sim 10 nd)
 - τ on the order of 100,000 years for l = 0.1km

Common in Gulf of Mexico

© John Wiley & Sons, Inc. Gordon and Flemmings, 1998

Techtonic compaction

• Occurs in areas where large-scale tectonic stress changes occur over geolocgically short periods of time.

Hydrocarbon column heights

< img src = "images/HCH.png" width = 500 >

Image Source

Hydrocarbon column heights

```
< img src = "images/HCH2.png" width = 400 >
```

© Cambridge University Press Zoback, *Reservoir Geomechanics* (Fig. 2.11, pp. 42)

Centroid effects

```
< img src = "images/centroid.png" width = 600>
```

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 2.12, pp. 43)

Other mechanisms

Aquathermal pressurization

• Temperature increases due to radioactive decay and upward heat flow from mantle

Hydrocarbon generation

• From thermal maturation of kerogen

Direct measurement of pore pressure

- Via wireline samplers that isolate formation pressure from annular pressure in a small area at the wellbore wall.
- Mud weight

Estimation of pore pressure at depth

Confined compaction experiment

```
< img src = "images/confined_compaction_exp.png" width = 500 >
```

© Cambridge University Press Zoback, *Reservoir Geomechanics* (Fig. 2.13, pp. 46)

Shale compaction relation

$$\phi = \phi_0 e^{-\beta(S_v - P_p)}$$

Use with caution!

< img src = "images/compation_deviation.png" width = 600 >

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 2.14, pp. 48)

Porosity inference from P-waves

$$P_p = S_v + \left(\frac{1}{\beta} \ln\left(\frac{\phi}{\phi_0}\right)\right)$$
 $\phi = 1 - \left(\frac{\Delta t_{ma}}{\Delta t}\right)^{\frac{1}{f}}$

© Cambridge University Press Zoback, *Reservoir Geomechanics* (Figs. 2.16a,b, pp. 48, Fig. 2.8b, pp. 36)

