1.6.8. Vingrinājums. (i) Pierādīt, ka katram kopā \mathcal{A} definētam ekvivalences tipa predikātam \equiv eksistē viens vienīgs kopas \mathcal{A} sadalījums $\{\mathcal{A}_i\}$, kas apmierina nosacījumu:

$$\forall x \in \mathcal{A} \ \forall y \in \mathcal{A} \ [x \equiv y \iff \exists i \ (x \in \mathcal{A}_i \land y \in \mathcal{A}_i)]. \tag{1}$$

Eksistence izriet no apgalvaojuma 1.6.7.

Pieņemsim, ka eksistē divi tādi atšķirīgi kopas \mathcal{A} sadalījumi $\{\mathcal{A}_i \mid i \in \mathcal{I}\}$ un $\{\mathcal{B}_j \mid j \in \mathcal{J}\}$, kas apmierina nosacījumu (1).

Izvēlamies patvaļīgu $i \in \mathcal{I}$ un patvaļīgu $x \in \mathcal{A}_i$. Šim x varam atrast vienu vienīgu $j \in \mathcal{J}$, lai $x \in \mathcal{B}_j$, pēc sadalījuma definīcijas. Apskatām $y \in \mathcal{A}_i$. No nosacījuma (1) seko, ka $x \equiv y$. Vēlreiz pielietojot nosacījumu (1), iegūstam, ka $y \in \mathcal{B}_j$. Tā kā y bija patvaļīgs, secinām, ka $\mathcal{A}_i \subseteq \mathcal{B}_j$. Bet tik pat labi varējām izvēlēties $z \in \mathcal{B}_j$ un secināt, ka $\mathcal{B}_j \subseteq \mathcal{A}_i$. Apvienojot abus šos rezultātus, iegūstam, ka $\mathcal{B}_j = \mathcal{A}_i$.

Tā kā i bija patvaļīgs, varam secināt, ka katrai blakusklasei \mathcal{A}_i varam atrast vienu vienīgu blakusklasi \mathcal{B}_j , lai $\mathcal{A}_i = \mathcal{B}_j$. Jeb citos vārdos $\{\mathcal{A}_i \mid i \in \mathcal{I}\} \subseteq \{\mathcal{B}_j \mid j \in \mathcal{J}\}$. Bet analogi varējām arī spriest, sākotnēji izvēloties patvaļīgu $j \in \mathcal{J}$, tāpēc secinām, ka $\{\mathcal{A}_i \mid i \in \mathcal{I}\} = \{\mathcal{B}_j \mid j \in \mathcal{J}\}$.

Esam ieguvuši pretrunu ar to, ka eksistē divi dažādi sadalījumi.