Statistical Inference: Tooth Growth Analysis

Henrique Souza (github.com/htssouza)

Goals

1-) Load the ToothGrowth data and perform some basic exploratory data analyses 2-) Provide a basic summary of the data 3-) Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. (Only use the techniques from class, even if there's other approaches worth considering) 4-) State your conclusions and the assumptions needed for your conclusions

1-) Load the ToothGrowth data and perform some basic exploratory data analyses

```
# Load data
data (ToothGrowth)
# Data summary
str(ToothGrowth)
## 'data.frame':
                 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
   # A small sample of the data
head(ToothGrowth)
##
     len supp dose
## 1 4.2
         VC 0.5
## 2 11.5
          VC 0.5
## 3 7.3
          VC 0.5
## 4 5.8
         VC 0.5
## 5 6.4
          VC 0.5
## 6 10.0
          VC 0.5
```

2-) Provide a basic summary of the data.

Dose is a factor (few different valyes) so make the preprocessing conversion:

```
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
```

Plotting some histograms:

```
library(plyr)
library(ggplot2)
qplot(
  len,
  data = ToothGrowth,
  facets = .~supp~dose,
  binwidth = 1,
  geom="histogram")
```


3-) Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

Summarizing data to compute confidence intervals (using Student T interval):

```
summaries \leftarrow ddply(ToothGrowth, .(supp, dose), summarize, mean = mean(len), sd = sd(len), n = length(lensummaries)
```

```
##
     supp dose mean
## 1
           0.5 13.23 4.459709 10
       OJ
## 2
       OJ
             1 22.70 3.910953 10
             2 26.06 2.655058 10
## 3
       OJ
## 4
       VC
           0.5 7.98 2.746634 10
## 5
       VC
             1 16.77 2.515309 10
## 6
       VC
             2 26.14 4.797731 10
```

Computing confidence intervals (95% of confidence):

1 16.77 2.515309 10 14.415961 19.12404

2 26.14 4.797731 10 23.990112 28.28989

Plotting these intervals:

VC

VC

5

6

```
gg <- ggplot(summaries)
gg <- gg + geom_crossbar(
  aes(ymin = min, ymax = max, x = supp, y = min),
  fill = "blue",
  fatten = 0
  )
gg <- gg + facet_wrap(~dose)
gg</pre>
```


4-) Conclusions

Based on the summary above we can say (with 95% of sure that):

- lengths when using OJ (.5 dose) > VC (.5 dose)
- lengths when using OJ (1.0 dose) > VC (1.0 dose)
- lengths when using 2.0 of both OJ and VC are similar/equivalent

The assumptions are:

- current dataset (small, with only 60 rows)
- 95% of confidence