Statistical Methodology for Software Engineering

Hadas Lapid, PhD

Contents

Analysis of Variance

Reference:

https://en.wikipedia.org/wiki/Analysis_of_variance

ANOVA: Analysis of Variance

Definition

Comparison of k population means in normal variable Y

Why isn't t-test enough?

Multiple hypothesis testing problem

ANOVA

Model and definitions

- Normal variable Y is measured in k independent samples
- $\{\mu_i, \sigma^2\}$ are the ith population's mean and variance
- n_i = ith population sample size
- Y_{ij} = observation j in the ith sample
- $N=n_1+n_2+...+n_k = total sample size$

Assumptions:

- Normality of mutual distribution

$$Y_{ij}\sim N(\mu_j,\sigma^2)$$

- Equality of variances

Hypothesis testing:

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_k$

H_A: otherwise

ANOVA

Example: Comparison between means of three treatment groups

Diet	Α	В	С
Sample size, n _i	7	8	8
Y _{ij}	165,200,140,125, 180,150,145	180,200,185,170, 120,175,165,150	195,215,175,220, 180,160,205,200
Sample mean, $\overline{Y_i}$	157.86	168.13	193.75
Sample variance, s_i^2	657.14	592.41	426.79
Sample standard deviation, s_i	25.63	24.34	20.66

Comparison between means of three treatment groups

Step 1: Boxplot visualization, targeting of outliers

Measuring the differences between groups

Variability between groups:

```
\overline{Y}_i \equiv \text{sample i mean, i:1,...k} \overline{\overline{Y}} \equiv \text{overall mean of all the data}
```

Sum of squares between groups = $SS_{between groups} = \sum_{i=1}^{k} n_i (\overline{Y}_i - \overline{\overline{Y}})^2$

- If one of more group means deviate from overall mean, SS_{bw} will be large
- How do we judge what is large?

Define average variability between groups:

$$MS_{\text{between groups}} = SS_{\text{between groups}}/(k-1)$$

ANOVA

Numeric Example: Variation between group means

Overall mean of means,
$$\overline{\overline{Y}} = \frac{1}{N} \cdot \sum_{j=1}^{3} \sum_{i=1}^{n_i} y_{ij} = 173.91$$

Diet	Α	В	С
Sample size, n _i	7	8	8
Sample mean, $\overline{Y_i}$	157.86	168.13	193.75
$n_i(\overline{Y}_i - \overline{\overline{Y}})^2$	7*(157.86-173.91) ² = 1803.22	8*(168.13-173.91) ² = 267.27	8*(193.75-173.91) ² = 3149.00

$$SS_{between} = 1803.22+267.27+3149.00 = 5219.52$$

 $MS_{between} = 5219.52/(3-1) = 2609.76$

Measuring the differences within groups

In order to estimate how large/small is the variation between groups, we will compare it to the variability Within groups.

Assume equal variance in all groups, estimated as σ^2 - weighted mean of k variances

$$\sigma^2 = \frac{\sum_{i=1}^k (n_i - 1) \cdot S_i^2}{\sum_{i=1}^k (n_i - 1)} \quad \bullet \quad SS_{error} = \sum_{i=1}^k (n_i - 1) \cdot S_i^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y_i})^2$$

$$\bullet \quad \sum_{i=1}^k (n_i - 1) = \text{n-k}$$

•
$$SS_{error} = \sum_{i=1}^{k} (n_i - 1) \cdot S_i^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2$$

$$\sum_{i=1}^{k} (n_i - 1) = \text{n-k}$$

The F Distribution

Estimated population variance in each group

$$MS_{error} = \sigma^2 = \frac{\sum_{i=1}^{k} (n_i - 1) \cdot S_i^2}{\sum_{i=1}^{k} (n_i - 1)}$$

$$MS_{error} = \sigma^2 = \frac{6*657.14+7*592.41+7*426.79}{6+7+7} = 553.86$$

Statistical estimate of hypothesis testing:

$$F = \frac{MS_{between groups}}{MS_{error}} = \frac{2609.76}{553.86} = 4.71$$

 H_0 is rejected for $F>F_c$

F – the Statistical Estimate of ANOVA

F(df₁,df₂) is χ^2 -like distribution df₁ = k-1 (k number of groups) df₂ = n-k (n overall sample size)

 $df_1=3$, $df_2=19$

Standard layout of ANOVA table

