Problem 1.

Solution We will prove that this is an increasing sequence by induction. Notice that

$$a < a + \sqrt{a} \Rightarrow \sqrt{a} < \sqrt{a + \sqrt{a}} \Rightarrow x_1 < x_2$$

Now assume that $x_{n-1} < x_n$, Then

$$x_{n+1} = \sqrt{a + x_n} > \sqrt{a + x_{n-1}} = x_n$$

And so strict increasingness holds by induction. Now we show that it is bounded. Notice that the graph of $y = \sqrt{x+a}$ and the graph of y = x has a single intersection, which is found to be at $x = \frac{1+\sqrt{1+4a}}{2}$, and since

$$\frac{d}{dx}\sqrt{x+a} = \frac{1}{2\sqrt{x+a}} < 1 \text{ for } x > \frac{1}{4} - a$$

Notice that

$$\frac{1+\sqrt{1+4a}}{2} > \frac{1}{4} - a$$

And so if $x > \frac{1+\sqrt{1+4a}}{2}$, then we have that the slope of $\sqrt{x+a}$ is less than 1. this means that the graph of y = x passes through the graph of $y = \sqrt{x+a}$ as we move through the intersection. So then if the was an x_n such that $x_n > \frac{1+\sqrt{1+4a}}{2}$, then we would have that $x_{n+1} = \sqrt{x+a} < x_n$, and the sequence would fail to be increasing. So then we have that the sequence is bounded above by $\frac{1+\sqrt{1+4a}}{2}$, hence it must converge. Morover, this value is the limit, since the limit of any convergent recursive sequence must also be a fixed point of the generating function.

Problem 2

Solution For the first part, suppose that there is a positive decreasing function f(x) such that $\lim_{x\to\infty} x f(x) \neq 0$ and

$$\int_0^\infty f(x)dx < \infty$$

Since $\lim_{x\to\infty} xf(x) \neq 0$ and f is positive, we must have that

$$\lim_{x \to \infty} x f(x) = \alpha > 0$$

and thus there is an x_0 such that $xf(x) > \frac{\alpha}{2}$ for all $x > x_0$, and so $f(x) > \frac{\alpha}{2x}$ for $x > x_0$. This gives that

$$\int_{1}^{\infty} f(x)dx \ge \int_{x_0}^{\infty} f(x)dx \ge \frac{\alpha}{2} \int_{x_0}^{\infty} \frac{1}{x}dx = \lim_{t \to \infty} \ln(t) - \ln(x_0) = \infty$$

But this contradicts that $\int_{1}^{\infty} f(x)dx < \infty$.

Part(b) is a millenium problem I'm sure...

Problem 3

Solution Let g be defined as the hint. then we have that

$$g(x) = \int_0^x |f'(t)|dt \ge \left| \int_0^x f'(t)dt \right| = |f(x) - f(0)| = |f(x)|, \text{ since } f(0) = 0$$

Additionally, notice that

$$g'(x) = |f'(x)|$$

Lastly, consider the following calculation, using integration by parts

$$\int_0^1 g(x)g'(x)dx = g^2(x)\Big|_0^1 - \int_0^1 g(x)g'(x)dx$$

which implies that

$$2\int_{0}^{1} g(x)g'(x)dx = g^{2}(1) - g^{2}(0)$$

Since g(0) = 0 we get that $\int_0^1 g(x)g'(x)dx = \frac{1}{2}g^2(1)$. bringing these three facts together we get that

$$\int_0^1 |f(x)f'(x)| dx = \int_0^1 |f(x)|g'(x)dx \le \int_0^1 g(x)g'(x) dx = \frac{1}{2}g^2(1) = \left(\int_0^1 |f'(x)| dx\right)^2 \le \int_0^1 |f'(x)|^2 dx$$

where the last inequality holds due to Cauchy-Bunakovsky-Schwarz.

Problem 4

Solution Notive that for x = 1 the sequence is just $(1^n f(1))_n = f(1)$, and thus it converges. For a fixed $x \in [\frac{1}{2}, 1)$ we have that $x^n \to 0$, and thus $x^n f(x) \to 0$. So our pointwise limit is given by

$$\lim x^n f(x) = \begin{cases} 0 & \frac{1}{2} \le x < 1\\ f(1) & x = 1 \end{cases}$$

Now suppose that the convergence is uniform. Then we must have that $\lim x^n f(x)$ is continuous at 1, since each $x^n f(x)$ is continuous at 1. But since $x^n f(x)$ coverges to 0 uniformly on $[\frac{1}{2}, 1)$, we would have to have that f(1) = 0. So then the uniform limit is 0, which means that f must be bounded.

Now suppose that f is bounded and that f(1)=0. Let ϵ be given. Then since f is continuous at 1, there is a delta such that for all $x\in (1-\delta,1]$ we have that $|f(x)-f(1)|<\epsilon$, and since f(1)=0, we get that $|f(x)|<\epsilon$ for all $x\in (1-\delta,1]$. Now since f is bounded, let $\alpha=\max_{x\in [\frac{1}{2},1-\delta]}|f(x)|$. Let N be such that $(1-\delta)^n\leq \frac{\epsilon}{\alpha}$. Now x^n is increasing on $[\frac{1}{2},1-\delta]$, and thus we have that, for any $x\in [\frac{1}{2},1-\delta]$, for all $n\geq N$:

$$x^n f(x) \le (1 - \delta)^n \alpha < \frac{\epsilon}{\alpha} \alpha = \epsilon$$

and thus the convergence is uniform.

Problem 5

Solution Since $\int_0^\infty f(x)dx$ converges, then we must have that f(x)to0 as $x \to \infty$. Since f is decreasing, and converging to 0 we must have that $f(x) \ge 0$. Now then, since f is nonnegative and decreasing we have

that

$$\sum_{n=1}^{\infty} f(n\delta) \le \int_{0}^{\infty} f(\delta x) dx = \frac{1}{\delta} \int_{0}^{\infty} f(u) du$$

which converges, and thus we have that $\sum_{n=1}^{\infty} f(n\delta)$ converges. Furthermore, notice that

$$\int_0^\infty f(x)dx = \int_0^\delta f(x)dx + \sum_{n=1}^\infty \int_{n\delta}^{(n+1)\delta} f(x)dx = \int_0^\delta f(x)dx + \sum_{n=1}^\infty \delta \int_n^{n+1} f(x\delta)dx \le \delta f(0) + \delta \sum_{n=1}^\infty f(n\delta)dx$$

Subtracting $\delta f(0)$, and using the previous comparison we get that

$$\int_0^\infty f(x)dx - \delta f(0) \le \delta \sum_{n=1}^\infty f(n\delta) \le \int_0^\infty f(x)dx$$

Letting $\delta \to 0$, and applying the squeeze theorem, gives the result.

Problem 6.

Solution

Problem 7.

Solution Part (a) is easy. Let f be lipschitz, with lipschitz constant M. Given $\epsilon > 0$ for any $x, y \in X$ such that $d(x,y) < \frac{\epsilon}{M}$ we have

$$|f(x) - f(y)| \le Md(x, y) < M\frac{\epsilon}{M} = \epsilon$$

Since our choices of x and y were arbitrary we have that f is uniformly continuous.

However, not ever uniformly continuous function need be lipschitz. Let X = [0, 1], and let $f = \sqrt{x}$, then since f is continuous, and X compact, we must have that f is uniformly continuous. However, notice that

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{1}{2\sqrt{x}} = \infty$$

and so f has an unbounded derivative, and thus cannot be lipschitz.

The remaining parts are not obvious. Also, they're dumb.

Problem 8.

Solution Consider that

$$\cos^{n}(\theta) = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} e^{i(n-k)\theta} e^{-ik\theta}$$
$$= \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} e^{i(n-2k)\theta}$$

Notice that $\cos^n(\theta)$ is real. Thus we have that

$$\cos^{n}(\theta) = Re(\cos^{n}(\theta)) = Re\left(\frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} e^{i(n-2k)\theta}\right) = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} Re\left(e^{i(n-2k)\theta}\right)$$

$$=\frac{1}{2^n}\sum_{k=0}^n \binom{n}{k}\cos((n-2k)\theta)$$

Problem 9

Solution First we note that the Laurent expansion must converge uniformly on the annulus. The we must also have that

$$\left| \sum_{n \in \mathbb{Z}} c_n z^n \right|$$

Also converge uniformly. This follows from the obervation that, for an z and n:

$$\left\| \sum_{-n \le k \le n} c_k z^k \right| - |f(z)| \le \left| \sum_{-n \le k \le n} c_n z^n - f(z) \right|$$

Anyway, we get that, from the hint

$$\int_{0}^{2\pi} |f(re^{i\theta})|^{2} d\theta = \int_{0}^{2\pi} \left(\sum_{n \in \mathbb{Z}} c_{n} r^{n} e^{in\theta} \right) \left(\sum_{m \in \mathbb{Z}} \overline{c_{m}} r^{m} e^{-im\theta} \right) d\theta$$

$$= \int_{0}^{2\pi} \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} c_{n} \overline{c_{m}} r^{m+n} e^{i(n-m)\theta} d\theta = \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} c_{n} \overline{c_{m}} r^{m+n} \int_{0}^{2\pi} e^{i(n-m)\theta} d\theta$$

It is easy to see that

$$\int_0^{2\pi} e^{i(n-m)\theta} d\theta = \begin{cases} 0 & n \neq m \\ 2\pi & n = m \end{cases}$$

So then all the terms where $n \neq m$ in the above expression drop out. This gives that

$$\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n \in \mathbb{Z}} 2\pi c_n \overline{c_n} r^{2n} = 2\pi \sum_{n \in \mathbb{Z}} |c_n|^2 r^{2n}$$

Notice now that

$$\int_{\Omega} |f(x+iy)|^2 dx dy = \int_0^1 \int_0^{2\pi} r |f(re^{i\theta})|^2 d\theta dr$$
$$= \int_0^1 2\pi \sum_{n \in \mathbb{Z}} |c_n|^2 r^{2n+1} dr = 2\pi \sum_{n \in \mathbb{Z}} |c_n|^2 \int_0^1 r^{2n+1} dr$$

Now if $|c_n| > 0$ for any $n \leq -1$, then we would have that

$$\int_0^1 r^{2n+1} dr = \infty$$

for $n \leq -1$. This would contradict that $\int_{\Omega} |f|^2 dx dy < \infty$. So then $c_n = 0$ for $n \leq -1$. This implies that the singularity at 0 is removable, since the negative coefficients of the laurent series are all 0.

Problem 10

Solution I am not going to do all the work here, but it is easy to show that the value of the integral is $\frac{\pi}{4e}$.