

# MTH 309Y LINEAR ALGEBRA

| EAAIVI 3                                                                                                                     |         |  |
|------------------------------------------------------------------------------------------------------------------------------|---------|--|
| December 11, 2018                                                                                                            |         |  |
|                                                                                                                              |         |  |
|                                                                                                                              |         |  |
| Name:                                                                                                                        |         |  |
| , radine.                                                                                                                    |         |  |
| Dorcor                                                                                                                       | Numbari |  |
| Person Number:                                                                                                               |         |  |
|                                                                                                                              |         |  |
| Textbooks and electronic devices (calculators, cellphones etc.)                                                              |         |  |
| are not permitted.                                                                                                           |         |  |
| You may use one sheet of notes.                                                                                              |         |  |
| For full credit explain your answers fully, showing all work.  For full credit explain your answers fully, showing all work. |         |  |
| • Each problem is worth 20 points.                                                                                           |         |  |
| 1                                                                                                                            |         |  |
|                                                                                                                              |         |  |
| 2                                                                                                                            |         |  |
|                                                                                                                              |         |  |
| 3                                                                                                                            |         |  |
|                                                                                                                              |         |  |
| Δ                                                                                                                            |         |  |

5

Total:

1. Consider the following vectors in  $\mathbb{R}^4$ :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$$

The set  $\mathfrak{B} = \{v_1, v_2, v_3\}$  is a basis of some subspace V of  $\mathbb{R}^4$ .

- a) Find an orthogonal basis  $\mathcal{D} = \{w_1, w_2, w_3\}$  of the subspace V.
- b) Compute the vector  $\operatorname{proj}_{V}u$ , the orthogonal projection of u on V.

kosukeho MTH528 SEC. 0 EXAM 1 P.2



## DO NOT WRITE OUTSIDE THE MARKED AREA

2. Find the equation f(x) = ax + b of the least square line for the points (1, 0), (-1, 2), (2, 1).



3. Consider the following matrix A:

$$A = \left[ \begin{array}{rrr} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 4 & 2 & 2 \end{array} \right]$$

For each value of  $\lambda$  given below determine if it is an eigenvalue of A.

- a)  $\lambda = 0$
- b)  $\lambda = -1$
- c)  $\lambda = -2$



#### 4. Consider the matrix

$$A = \begin{bmatrix} 1 & 8 & 4 \\ -2 & 11 & 4 \\ 2 & -8 & -1 \end{bmatrix}$$

Knowing that eigenvalues of A are  $\lambda_1=3$  and  $\lambda_2=5$  diagonalize this matrix; that is, find a diagonal matrix D and an invertible matrix P such that

$$A = PDP^{-1}$$

Note: you do not need to compute  $P^{-1}$ .



- 5. For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a  $2 \times 2$  matrix and v is an eigenvector of A corresponding to an eigenvalue  $\lambda$  then 2v is an eigenvector of A corresponding to the eigenvalue  $2\lambda$ .
- b) If V is a subspace of  $\mathbb{R}^2$  and  $\mathbf{w}$  is a vector such that  $\operatorname{proj}_V \mathbf{w} = -\mathbf{w}$  then  $\mathbf{w}$  must be the zero vector.
- c) If A is a square matrix which is both symmetric and orthogonal then  $A^2$  is the identity matrix.
- d) If A and B are  $2 \times 2$  matrices which are both orthogonally diagonalizable, then the matrix A + B is also orthogonally diagonalizable.