# POLYACETAL RESIN COMPOSITION

Patent number:

JP9151298

Publication date:

1997-06-10

Inventor:

ANADA YUKIO

**Applicant:** 

**POLYPLASTICS CO** 

**Classification:** 

- international:

C08L59/00; C08K3/38; C08K3/40; C08K5/55; C08K7/14;

C08K7/20; C08K9/06

- european:

C08K3/38; C08K3/40

Application number: JP19950340401 19951227

Priority number(s): JP19950340401 19951227; JP19950252534 19950929

Also published as:

EP0765910 (A2) US5777019 (A1)

EP0765910 (A3)

EP0765910 (B1)

Report a data error here

# Abstract of JP9151298

PROBLEM TO BE SOLVED: To obtain a polyacetal resin compsn. improved in mechanical strengths by compounding a polyacetal resin with an inorg. glass filler and a boric acid compd. SOLUTION: A hundred (100) pts.wt. polyacetal resin having a melt flow rate (at 190 deg.C under a load of 2,160g) of 1.0-100g/10min is compounded with 3-200 pts.wt. inorg. glass filler, if necessary, surface-treated with a titanate or silane coupling agent and 0.001-3.0 pts.wt. at least one boric acid compd. selected from among orthoboric acid, metaboric acid, tetraboric acid, and diboron trioxide.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平9-151298

(43)公開日 平成9年(1997)6月10日

| (51) Int.Cl. <sup>6</sup> | 識別記号 庁           | 内整理番号 | FΙ      |          |          |         | 技術表示箇所 |  |
|---------------------------|------------------|-------|---------|----------|----------|---------|--------|--|
| C08L 59/00                | LMN              |       | C08L    | 59/00    |          | LMN     |        |  |
| C08K 3/38                 |                  |       | C08K    | 3/38     |          |         |        |  |
| 3/40                      |                  |       |         | 3/40     |          |         |        |  |
| 5/55                      | LMM              |       |         | 5/55     |          | LMM     |        |  |
| 7/14                      |                  | •     |         | 7/14     |          |         |        |  |
|                           | ·                | 審査請求  | 未請求 請   | 求項の数 5   | OL       | (全 5 頁) | 最終頁に続く |  |
| (21)出願番号                  | 特願平7-340401      |       | ・(71)出願 | 人 390006 | 323      |         |        |  |
|                           |                  |       |         | ポリブ      | ゚ラスチ     | ックス株式会  | 社      |  |
| (22)出願日                   | 平成7年(1995)12月27  | 日     |         | 中央区安土町   | 2丁目3番13号 |         |        |  |
|                           | •                |       | (72)発明  | 者 穴田     | 幸雄       |         |        |  |
| (31)優先権主張番号               | 特願平7-252534      |       |         | 静岡県      | 宮島885-11 | -11     |        |  |
| (32)優先日                   | 平7 (1995) 9 月29日 |       | (74)代理  | 人 弁理士    | 古谷       | 攀 (外3   | 名)     |  |
| (33)優先権主張国                | 日本 (JP)          |       |         |          |          |         | -      |  |

# (54)【発明の名称】 ポリアセタール樹脂組成物

# (57)【要約】

【課題】 成形品の機械強度に優れたポリアセタール樹脂組成物を提供する。

【解決手段】 (A) ポリアセタール樹脂 100重量部に対して、(B) ガラス系無機充填剤3~200 重量部と(C) ホウ酸化合物 0.001~3.0 重量部を添加する。

### 【特許請求の範囲】

【請求項1】(A) ポリアセタール樹脂 100重量部に対し て(B) ガラス系無機充填剤3~200 重量部と(C) ホウ酸 化合物 0.001~3.0 重量部を添加して成るポリアセター ル樹脂組成物。

【請求項2】(B) 成分が、ガラス繊維である請求項1記 載のポリアセタール樹脂組成物。

【請求項3】(B) 成分が、ガラスビーズ、ミルドファイ バー及びガラスフレークから選ばれた無機充填剤である 請求項1記載のポリアセタール樹脂組成物。

【請求項4】(B)成分が、アミノアルコキシシランで表 面処理されたガラス系無機充填剤である請求項1~3の 何れか1項記載のポリアセタール樹脂組成物。

【請求項5】(C) ホウ酸化合物が、オルトホウ酸、メタ ホウ酸、四ホウ酸及び三酸化二ホウ素の中から選ばれる 少なくとも1種であるである請求項1~4の何れか1項 記載のポリアセタール樹脂組成物。

### 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、改良されたポリア セタール樹脂組成物に関する。更に詳しくは、ポリアセ タール樹脂にガラス系無機充填剤とホウ酸化合物を添加 してなる、成形品の機械的強度に優れたポリアセタール 樹脂組成物に関するものである。

#### [0002]

【従来の技術及び発明が解決しようとする課題】ポリア セタール樹脂が、ガラス系無機充填剤により強化される ことは、従来より知られているが、化学的に不活性な 為、単にポリアセタール樹脂と例えばガラスビーズ等の ガラス系無機充填剤と溶融混練しても、補強効果は現れ ず、逆に非強化のポリアセタール樹脂よりも機械的強度 が低下する場合もある。この点を改良するために、ガラ ス系無機充填剤をエポキシ系化合物、シラン系化合物、 チタネート系化合物等で表面処理したものを使用する方 法が提案されている。しかし、これらの方法によって も、工業的に実施する場合、機械的強度の向上が小さ く、未だ満足できるものではない。

# [0003]

【課題を解決するための手段】本発明者らはかかる問題 に鑑み、優れた機械的物性を持つ強化ポリアセタール樹 脂組成物を得るべく鋭意研究を重ねた結果、少量のホウ 酸化合物をポリアセタール樹脂及びガラス系無機充填剤 と共に溶融混練して組成物を調製することによって、か かる問題が顕著に改善されることを確認し、本発明を完 成するに至った。即ち、本発明は(A) ポリアセタール樹 脂 100重量部に対して(B) ガラス系無機充填剤3~200 重量部と(C) ホウ酸化合物 0.001~3.0 重量部を添加し て成るポリアセタール樹脂組成物に関するものである。 [0004]

【発明の実施の形態】以下に本発明の構成成分について

説明する。本発明で用いられるポリアセタール樹脂(A) とは、オキシメチレン基(-CH<sub>2</sub>O-)を主たる構成単位とす る高分子化合物で、ポリオキシメチレンホモポリマー、 又はオキシメチレン基を主たる繰り返し単位とし、これ 以外に他の構成単位、例えばエチレンオキサイド、1,3 -ジオキソラン、1,4 -ブタンジオール等のコモノマー 単位を少量含有するコポリマー、ターポリマー、ブロッ クポリマーの何れにても良く、又、分子が線状のみなら ず分岐、架橋構造を有するものであってもよく、又、他 の有機基を導入した公知の変性ポリオキシメチレンであ ってもよい。又、その重合度に関しても特に制限はな く、溶融成形加工性を有するもの(例えば 190℃、2160 g荷重下でのメルトフロー値 (MFR)が 1.0~100 g /10分)であればよい。

【0005】次に本発明で用いられる(B) 成分のガラス 系無機充填剤は、目的に応じて繊維状(ガラス繊維)、 粉状(ミルドファイバー)、粒状(ガラスビーズ)、板 状(ガラスフレーク)の充填剤または中空状(ガラスバ ルーン)またはこれらの混合物が用いられる。これら、 ガラス系無機充填剤としては、未処理のものも使用でき るが、チタネート系あるいはシラン系カップリング剤等 の表面処理剤による処理を施されている無機充填剤を使 用する方が好ましい。チタネート系表面処理剤として は、例えばチタニウムー i ープロポキシオクチレングリ コレート、テトラーnーブトキシチタン、テトラキス (2-エチルヘキソキシ)チタン等が挙げられる。又、 シラン系カップリング剤としては、例えばビニルアルコ キシシラン、エポキシアルコキシシラン、アミノアルコ キシシラン、メルカプトアルコキシシラン、アリルアル コキシシラン等が挙げられる。ビニルアルコキシシラン としては、例えばビニルトリエトキシシラン、ビニルト リメトキシシラン、ビニルトリス (β-メトキシエトキ シ)シランなどが挙げられる。エポキシアルコキシシラ ンとしては、例えばケーグリシドキシプロピルトリメト キシシラン、 $\beta$  - (3,4 -エポキシシクロヘキシル) エ チルトリメトキシシラン、ァーグリシドキシプロピルト リエトキシシランなどが挙げられる。アミノアルコキシ シランとしては、例えばァーアミノプロピルトリメトキ シシラン、ケーアミノプロピルトリエトキシシラン、ケ ーアミノプロピルメチルジメトキシシラン、ァーアミノ プロピルメチルジエトキシシラン、N-(β-アミノエ チル) -γ-アミノプロピルトリメトキシシラン、N-フェニルーァーアミノプロピルトリメトキシシランなど が挙げられる。メルカプトアルコキシシランとしては、 例えばケーメルカプトプロピルトリメトキシシラン、ケ ーメルカプトプロピルトリエトキシシランなどが挙げら れる。アリルアルコキシシランとしては、例えばァージ アリルアミノプロピルトリメトキシシラン、ァーアリル アミノプロピルトリメトキシシラン、ァーアリルチオプ ロピルトリメトキシシランなどが挙げられる。何れの表

面処理剤を用いても本発明所期の効果を得ることができるが、本発明の目的のためには、アミノアルコキシシランが特に好ましい表面処理剤である。表面処理剤の使用量は、無機充填剤100重量部に対して0.01~20重量部、好ましくは0.05~5重量部である。(B) 成分としての無機充填剤の配合量は、3~200重量部、好ましくは5~150重量部、特に好ましくは10~100重量部である。3重量部未満では機械的物性の改善が不十分であり、200重量部を越えると成形加工が困難になる。

【0006】本発明で用いられる(C) 成分のホウ酸化合物としては、オルトホウ酸、メタホウ酸、四ホウ酸及び三酸化二ホウ素が挙げられ、市販品を使用することが出来る。(C) 成分としてのホウ酸化合物の配合量は、0.001~3重量部、好ましくは0.005~1重量部、特に好ましくは0.01~0.5重量部である。0.001重量部未満では所望の効果が得られず、3重量部を越えると熱安定性が問題となる。

【0007】本発明の組成物は、さらに公知の各種安定 剤を添加して安定性を補強することができる。また、目 的とする用途に応じてその物性を改善するため、更に公 知の各種の添加物を配合し得る。添加物の例を示せば、 各種の着色剤、滑剤、離型剤、核剤、帯電防止剤、その 他の界面活性剤、異種ポリマー、有機改良剤、本発明で 使用する以外の充填剤等である。

【0008】次に本発明の組成物の調製は、従来の樹脂 組成物調製法として一般に用いられる公知の方法により 容易に調製される。例えば各成分を混合した後、1軸又 は2軸の押出機により練込み押出しして、ペレットを調 製し、しかる後、成形する方法、一旦組成の異なるペレ ット(マスターバッチ)を調製し、そのペレットを所定 量混合(稀釈)して成形に供し、成形後に目的組成の成形品を得る方法等、何れも使用できる。又、斯かる組成物の調製において、基体であるポリアセタール樹脂の一部又は全部を粉砕し、これとその他の成分を混合した後、押出等を行うことは添加物の分散性を良くする上で好ましい方法である。

# [0009]

【発明の効果】本発明によれば、優れた機械的物性を備 えたポリアセタール樹脂組成物を提供することができ る。

#### [0010]

【実施例】以下本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。

#### 実施例1~19、比較例1~10

ボリアセタール樹脂〔ポリプラスチックス(株)製、商品名「ジュラコン・M270」〕100重量部に、表1,2に示す各種のガラス系無機充填剤とホウ酸を表1,2に示す量で配合し、シリンダー温度200℃の押出機で溶融混練し、ペレット状の組成物を調製した。次いでこのペレット状の組成物から射出成形機を用いて試験片を成形し、以下に示す物性を測定した。結果を表1,2に示す。比較のため、それぞれのガラス系無機充填剤に対して、ホウ酸を添加しない組成物についても同様に調製し、評価を行った。結果を表3に示す。尚、測定・評価方法は次の通りである。

## 引張強伸度/曲げ強度

試験片を温度23℃、湿度50%の条件下に48時間放置し、 ASTM-D638(引張) とASTM-D790(曲げ) に準じて測定し か

# [0011]

#### 【表1】

|       |     |             | 実施例<br>l | 実施例<br>2 | 実施例    | 実施例   | 実施例<br>5 | 実施例   | 実施例<br>7 | 実施例  | 実施例   | 実施例<br>10 | 実施例<br>11 | 実施例<br>12 |
|-------|-----|-------------|----------|----------|--------|-------|----------|-------|----------|------|-------|-----------|-----------|-----------|
|       | (A) | ポリアセタール樹脂   | 100      | 100      | 100    | 100   | 100      | 100   | 100      | 100  | 100   | 100       | 100       | 100       |
|       |     | ガラスピーズ      | 8-1      | B-2      | B-2    | B-2   | B-2      | B-2   | B-2      | B-2  | B-3   | B-4       | B-5       | B-6       |
| 組     |     | 7/20-2      | 35       | 35       | 35     | 35    | 35       | 10    | 35       | 70   | 35    | 35        | 35        | 35        |
| 成     | (B) | ガラスファイバー    |          |          |        |       |          |       |          | ·    |       |           |           |           |
| (超量部) |     | ガラスフレーク     |          |          |        |       |          |       |          |      |       |           |           |           |
| a)    | (0) | ホウ酸化合物      | C-1      | C-1      | C-1    | C-1   | C-1      | C-1   | C-2      | C-1  | C-1   | C-1       | C-1       | C-1       |
|       | (6) | 小り取10台初     | 0. 03    | 0. 01    | 0. 005 | 0. 03 | 0. 05    | 0. 03 | 0.03     | 0.03 | 0.03  | 0. 03     | 0.03      | 0.03      |
| 評     | 引張亞 | 負度 (kg/cm²) | 558      | 570      | 514    | 630   | 640      | 638   | 637      | 522  | 584   | 595       | 588       | 600       |
| 価     | 引張作 | 車度 (%)      | 19. 3    | 22. 0    | 21.3   | 25. 3 | 26. 3    | 25. 5 | 25, 8    | 8.3  | 20. 9 | 21.0      | 21.0      | 20. 6     |
|       | 曲げる | 始度 (kg∕cm²) | 1140     | 1187     | 893    | 1280  | 1316     | 917   | 1310     | 751  | 1210  | 1244      | 1230      | 1185      |

|       |               |             | 実施例<br>13 | 実施例<br>14  | 実施例<br>15 | 実施例<br>16 | 実施例<br>17 | 実施例<br>18 | 実施例<br>19 |
|-------|---------------|-------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|
|       | (A)           | ポリアセタール樹脂   | 100       | 100        | 100       | 100       | 100       | 100       | 100       |
| 組     | (B)           | ガラスピーズ      |           |            |           |           |           |           |           |
|       |               | ガラスファイバー    | B-7       | B-7        | B-7       | B-7       | B-7       | B-8       | -         |
| 成     |               |             | 35        | <b>3</b> 5 | 35        | 10        | 35        | 35        |           |
| 童     |               |             |           |            |           |           |           |           | B-9       |
| (重量部) |               |             |           |            |           |           |           |           | 35        |
| 5     | (C)           | ) ホウ酸化合物    | C-1       | C-1        | C-1       | C-1       | C-2       | C-1       | C-1       |
|       | (0)           | · / B/CE19  | 0. 03     | 0. 005     | 0. 01     | 0. 03     | 0. 03     | 0. 03     | 0. 03     |
| 評     | 引張強度 (kg/cm²) |             | 1500      | 1290       | 1320      | 1045      | 1572      | 1370      | 740       |
| 価     | 引張何           | 申度 (%)      | 2.5       | 2. 2       | 2.3       | 3. 8      | 2. 8      | 2. 2      | 7. 5      |
| 11111 | 曲げ            | 鱼度 (kg/cm²) | 2270      | 1954       | 2001      | 1131      | 2315      | 1584      | 1310      |

# [0013]

# - 【表3】

|          |               |                                         | 比較例<br>1 | 比較例<br>2 | 比較例<br>3 | 比較例<br>4 | 比較例<br>5 | 比較例<br>6 | 比較例<br>7 | 比較例<br>8 | 比較例<br>9 | 比較例<br>10 |
|----------|---------------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| 組        | (A)           | ポリアセタール樹脂                               | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100       |
|          |               | ガラスビーズ                                  |          | B-1      | B-2      | B-2      | B-2      | B-6      |          |          |          |           |
| _        |               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | · 35     | · 35     | 10       | 70       | 35       |          |          |          | ,         |
| 成        |               | ガラスファイバー                                |          |          |          |          |          |          | B-7      | 8-7      | B-8      |           |
| <b>A</b> |               | 777777                                  |          |          |          |          |          |          | 35       | 10       | 35       |           |
| (部員部)    |               | ガラスフレーク                                 |          |          |          |          |          |          |          |          |          | 8-9       |
|          | (0)           | 1 . Th II . A 4L                        |          |          | · ·      |          |          |          |          |          |          | 35        |
|          | (C)           | ホウ酸化合物                                  |          |          |          |          |          |          |          |          |          |           |
| 評        | 引張強           | é度 (kg/cm²)                             | 640      | 445      | 462      | 480      | 391      | 451      | 1210     | 845      | 1220     | 631       |
| (ATT)    | 引張作           | <b>Þ度 (%)</b>                           | 60.0     | 13. 9    | 14.8     | 24.7     | 7. 3     | 14. 3    | 2. 2     | 3. 1     | 2. 1     | 7.1       |
| Han)     | 曲げ強度 (kg/cm²) |                                         | 920      | 759      | 772      | 680      | 573      | 763      | 1850     | 1023     | 1790     | 1120      |

【 O O 1 4】\* B-1 ; ガラスビーズ (表面処理剤無使 田)

B-2 ;  $\gamma$  - アミノプロピルトリエトキシシランで表面処理したガラスビーズ

B-3 ; ビニルトリエトキシシランで表面処理したガラス ビーズ

B-4 ; *γ* - グリシドキシプロピルトリエトキシシランで 表面処理したガラスビーズ

B-5 ; メルカプトプロピルトリメトキシシランで表面処

理したガラスビーズ

B-6 ; チタニウム – i – プロポキシオクチレングリコレートで表面処理したガラスビーズ

B-7 ;  $\gamma$  - アミノプロピルトリエトキシシランで表面処理したガラスファイバー

B-8 ; チタニウム – i – プロポキシオクチレングリコレートで表面処理したガラスファィバー

B-9 ;  $\gamma$ -アミノプロピルトリエトキシシランで表面処理したガラスフレーク

C-1 ; オルトホウ酸

C-2 ; 四ホウ酸

フロントページの続き

(51) Int. Cl. <sup>6</sup> C O S K 7/20 識別記号

庁内整理番号

FI.

COSK 7/20

技術表示箇所

9/06

9/06