Total No	o. of Questions : 8]	SEAT No. :		
P6565	[6181]-115	[Total No. of Pages : 2		
	B.E. (Computer Engineering	<u>y</u>)		
	DEEPLEARNING	5 /		
(2019 Pattern) (Semester - VIII) (410251)				
Time: 2	½ Hours]	[Max. Marks : 70		
	ons to the candidates:	-		
1) 2)	Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8. Figures to the right indicate full marks.			
3)	Neat diagrams must be drawn wherever necessary.			
<i>4</i>)	Make squable assumption whenever necessary.	0-		
	C 260	3		
Q1) a)	Explain stride Convolution with example.	[6]		
b)	Explain Padding and its types.	[6]		
c)	Explain Local response normalization and nee	d of it. [6]		
	OR			
Q2) a)	Explain ReLU Layer and its advantages.	[6]		
b)	Explain Pooling layers and its types with exam	ples.		
c)	What are the applications of Convolution with	examples? [6]		
Q3) a)	Draw CNN architecture and explain its working	g. (6]		
b)	Explain the types of Recurrent Neural Network	[6]		
c)	Justify RNN is better suited to treat sequential	data than a feed forward		
	neural network.	[5]		
	OR OR	b		
)		
	Se.			
		P.T.O.		

Q4)	a)	Explain Recurrent Neural Network with its architecture.	[6]		
	b)	Draw and explain architecture for Long Short-Term Memory (LSTM).	[6]		
	c)	Explain how the memory cell in the LSTM is implemented computation			
Q5)	a)	Explain Deep generative model with example.	[6]		
	b)	How does GAN training scale with batch size?	[6]		
	c)	List the applications of GAN network with description.	[6]		
		OR 35	[6]		
Q6)	a) Draw and explain architecture of Boltzmann machine.				
	b)	9°	[6]		
	c)	Explain Deep Belief Network with diagram.	[6]		
Q 7)	a)	Explain dynamic programming algorithms for reinforcement learning.	[6]		
	b)	What is deep reinforcement learning? Explain in detail.			
	c)	Explain Simple reinforcement learning for Tic-Tac-Toe.	[5]		
		OR			
Q 8)	a)	Explain Markov decision process.	[6]		
	b)	Write Short Note on Q Learning and Deep Q-Networks. [6]			
	c)		in [5]		
		46 46 A A A A A A A A A A A A A A A A A			

[6181]-115