שיעור 6 ישרים במרחב תלת ממדי

הגדרה 6.1 משוואת הישר בצורה פרמטרית

משוואת הישר העובר דרך הנקודה $M_0(x_0,y_0,z_0)$ במקביל לוקטור T במקביל העובר דרך משוואת הישר העובר אווא הישר הנקודה $(x,y,z)=M_0+t\cdot ar a=(x_0,y_0,z_0)+t(a_1,a_2,a_3)$,

או באופן שקול

$$x = x_0 + a_1 t$$
, $y = y_0 + a_2 t$, $z = z_0 + a_3 t$.

. הווקטור $ar{a}$ נקרא וקטור הכיוון, הקואורדינטות (a_1,a_2,a_3) נקראות קואורדינטות הכיוון של הישר

דוגמה 6.1

(6,7,1) במקביל לוקטור ברך הנקודה ((2,1,3) במקביל הישר הישר הישר העובר את

פתרון:

$$\begin{cases}
 x = 2 + 6t \\
 y = 1 + 7t \\
 z = 3 + t
 \end{cases}$$

$$(x, y, z) = (2, 1, 3) + t \cdot (6, 7, 1) .$$

דוגמה 6.2

הישר

$$\begin{cases}
 x = t \\
 y = 5 - 2t \\
 z = 5 - 3t
 \end{cases}$$

$$(x, y, z) = (0, 5, 5) + t \cdot (1, -2, -3)$$

 $ar{a}=(1,-2,-3)$ עובר דרך $M_0(0,5,5)$ במקביל לוקטור

כלל 6.1 משוואת הישר בצורה קנונית

משוואת הישר העובר דרך נקודה נתונה $\bar{a}=(a_1,a_2,a_3)$ במקביל לוקטור נתון, $M_0(x_0,y_0,z_0)$ נתונה נתונה דרך נקודה נתונה $\bar{a}=(a_1,a_2,a_3)$

$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3} \ .$$

ע"י אם המקדם של אחלק את נחליף אם אם כלומר אם כלומר אפס, כלומר אפס. שווה אפס, אם המקדם של x

$$x=x_0$$
.

 $x=x_0$ ז"א הישר מוכל במישור

אם המקדם של שלו במשוואה ע"י, כלומר אם $a_2=0$ אם המקדם שלו שלו שווה אפס, כלומר אם •

$$y=y_0$$
.

 $y=y_0$ ז"א הישר מוכל במישור של

ע"י אם המקדם של z שווה אפס, כלומר אם $a_3=0$ אם המקדם של שלו במשוואה ע"י

$$z=z_0$$
.

 $z=z_0$ ז"א שהישר מוכל במישור של

ינים $a_1=a_2=0$, הישר נתון ע"י $a_1=a_2=0$

$$\left. \begin{array}{rcl}
x & = x_0 \\
y & = y_0
\end{array} \right\}$$

z -כלומר הישר מקביל לציר ה

דוגמה 6.3

חשבו את משוואת הישר העובר דרך הנקודה (4,4,-1) במקביל לוקטור (2,-2,7) בצורה קנונית.

פתרון:

$$\frac{x-4}{2} = \frac{y-4}{-2} = \frac{z+1}{7} \ .$$

דוגמה 6.4

 $M_0(2,3,5)$ העובר דרך הנקודה $ar{a}=(0,1,2)$ חשבו את משוואת הישר המקביל לוקטור

$$x = 2$$
, $y - 3 = \frac{z - 2}{5}$.

כלל 6.2 ישר כחיתוך של שני מישורים

בהינתן שני מישורים

$$A_1x + B_1y + C_1z + D_1 = 0$$
,
 $A_2x + B_2y + C_2z + D_2 = 0$,

שאינם מתלכדים או מקבילים קובעים את הישר שבו הם מפגשים. צמד המשוואות של שני המישרוים נקרא **משוואה כללית של הישר** .

מכייון שיש שתי משוואות בשלושה נעלמים, אז הפתרון יהיה בצורה קבוצה של אינסוף פתרונות באמצעות פרמטר חופשי, אשר הוא דווקא הפרמטר המופיע במשוואה פרמטרית של הישר.

דוגמה 6.5

מצאו את הישר הנתון ע"י המערכת

פתרון:

שיטה 1

$$y=5-2x$$
 \Rightarrow $z=y-x=5-3x$ נציב $x=t$ $y=5-2t$ $z=5-3t$

קיבלנו את משוואת הישר.

הישר מוכל בשני המישורים ולכן ניצב לוקטור $ar{a}=(1,-1,1)$ וגם לוקטור לכן, הוא מקביל לוקטור

$$\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{vmatrix} = (-1, 2, 3) .$$

כדי למצוא נקודה על הישר, נציב ערכים במשוואה. למשל, אם נציב $x_0=1$ נקבל $z_0=2$ ו- $z_0=2$ לכן הישר נתון ע"י

$$\frac{x-1}{-1} = \frac{y-3}{2} = \frac{z-2}{3} \ .$$

משפט 6.1 חלוקה של וקטור ביחס נתון

 $\frac{AC}{CB} = \frac{\lambda_1}{\lambda_2}$.

$$x_c = \frac{\lambda_2 x_A + \lambda_1 x_B}{\lambda_1 + \lambda_2}$$
, $y_c = \frac{\lambda_2 y_A + \lambda_1 y_B}{\lambda_1 + \lambda_2}$, $z_c = \frac{\lambda_2 z_A + \lambda_1 z_B}{\lambda_1 + \lambda_2}$.

דוגמה 6.6

AB מצאו נקודה C המחלק את הקטע את ביחס ביחס אור ביחס ביחס את המחלק את המחלק את ביחס אור ביחס אור ביחס אור המחלק את הקטע

פתרון: , $\lambda_2=3$, $\lambda_1=2$

$$\lambda_2 = 3 \ \lambda_1 = 2$$

$$x = \frac{3 \cdot 1 + 2 \cdot 7}{3 + 2} = \frac{17}{5}$$

$$y = \frac{3 \cdot 2 + 2 \cdot 0}{3 + 2} = \frac{6}{5}$$

$$z = \frac{3 \cdot 3 + 2 \cdot 5}{3 + 2} = \frac{19}{5}$$

$$.C = \left(\frac{17}{5}, \frac{6}{5}, \frac{19}{5}\right)$$
 לכן

הגדרה 6.2 מרחק בין ישרים מצטלבים

ישרים מצטלבים. המרחק ביניהם $N(t): \quad (x,y,z) = N_0 + tar{b}$, $M(t): \quad (x,y,z) = M_0 + tar{a}$ יהיו מוגדר להיות המרחק בין השתי נקודות P ו- Q, הקרובות ביותר על הישרים.

ניתן לחשב את המרחק d ע"י לבחור כל שתי נקודות ו- M_0 ו- M_0 על השני ישרים לפי הנוסחה:

$$d = \frac{\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b})}{|\bar{a} \times \bar{b}|} .$$

דוגמה 6.7

(x,y,z)=(t,4-t,0) ו- (x,y,z)=(2-t,t,t) מצאו את המרחק בין הישרים

פתרון:

$$\bar{a} = (-1, 1, 1) , \qquad \bar{b} = (1, -1, 0) .$$

$$M_0 = (2, 0, 0) , \qquad N_0 = (0, 4, 0) , \qquad \overline{M_0 N_0} = (-2, 4, 0) .$$

$$\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = (1, 1, 0) , \qquad \overline{M_0 N_0} \cdot (\bar{a} \times \bar{b}) = 2 .$$

לכן $|ar{a} imesar{b}|=\sqrt{2}$

$$d = \frac{\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b})}{|\bar{a} \times \bar{b}|} = \sqrt{2} .$$

משפט 6.2 מצב ההדדי בין שני ישרים במרחב

(1) נתונים שני ישרים

$$M(t):$$
 $(x, y, z) = M_0 + t \cdot \bar{a} = (x_0, y_0, z_0) + t \cdot (a_1, a_2, a_3)$

$$N(s):$$
 $(x,y,z) = N_0 + s \cdot \bar{b} = (X_0, Y_0, Z_0) + s \cdot (b_1, b_2, b_3)$

ונתון שתי נקודות N(t) על הישר M(t) ושתי נקודות M(t) על הישר M_1, M_2 ושתי נקודות למצב ההדדי ביניהם:

(2) מתלכדים אם

. אז הישרים מתלכדים $\overline{M_0N_0} imes\overline{M_0N_1}=ar{0}$ -ו $(a_1,a_2,a_3)\parallel(b_1,b_2,b_3)$

(3) מקבילים אם

. הישרים מקבילים אז הישרים $\overline{M_0N_0} imes \overline{M_0N_1} \neq \bar{0}$ -ו $(a_1,a_2,a_3) \parallel (b_1,b_2,b_3)$ הישרים נמצאים באותו מישור.

 $d = \frac{\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b})}{|\bar{a} \times \bar{b}|} = 0 ,$

(4) נחתכים אם

-1
$$(a_1, a_2, a_3) \not\parallel (b_1, b_2, b_3)$$

כלומר והמרחק בין הישרים שווה לאפס, אז הישרים נחתכים. הישירם נמצאים במישור באותו מישור ולכן הם נחתכים.

(5) מצטלבים

-ו
$$(a_1,a_2,a_3)
mid (b_1,b_2,b_3)$$
 אם

$$d = \frac{\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b})}{|\bar{a} \times \bar{b}|} \neq 0 ,$$

כלומר והמרחק בין הישרים אינו שווה לאפס, אז הישרים מצטלבים. הישירם אינם נמצאים באותו מישור ולכן הם מצטלבים.

דוגמה 6.8

קבעו את המצב ההדדי של הישרים

$$M(t):$$
 $(1,2,3) + t(1,-1,1)$ $N(t):$ $(0,2,1) + t(-1,1,-1)$

פתרון:

הווקטורים הכיוון שלהם הם $\bar{a}=(1,-1,1)$ -ו $\bar{a}=(1,-1,1)$ הישרים מקבילים או מתלכדים בגלל שהווקטורים הכיוום שלהם מקבילים: $(1,-1,1)\parallel(-1,1,-1)$. נבדוק אם הם נחתכים.

$$M_0 = (1, 2, 3)$$
, $N_0 = (0, 2, 1)$, $N_1 = (-1, 3, 0)$.

$$\overline{M_0 N_0} = (-1, 0, -2) , \qquad \overline{M_0 N_1} = (-2, 1, -3) .$$

$$\overline{M_0 N_0} \times \overline{M_0 N_1} = \begin{vmatrix} i & j & k \\ -1 & 0 & -2 \\ -2 & 1 & -3 \end{vmatrix} = (2, 1, -1) \neq \overline{0}$$

לכן הישרים מקבילים.

דוגמה 6.9

קבעו את המצב ההדדי של הישרים

$$M(t):$$
 $(x, y, z) = (1 - t, 2 + 3t, -2 + t)$
 $N(t):$ $(x, y, z) = (4 - 2t, 1 - t, t)$

פתרון:

 $.\bar{b}=(-2,-1,1)\ \bar{a}=(-1,3,1)$ באן כאן .
 $\bar{a}\not\parallel\bar{b}$ -ש בגלל ש- הישרים נחתכים או מצטלבים בגלל

$$M_0 = (1, 2, -2)$$
, $N_0 = (4, 1, 0)$, $\overline{M_0 N_0} = (3, -1, 2)$.
 $\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ -1 & 3 & 1 \\ -2 & -1 & 1 \end{vmatrix} = (4, -1, 7)$

לכן

$$\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b}) = 27 .$$

. ולכן הישרים ממצטלבים ולכן
$$d = \frac{\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b})}{|\bar{a} \times \bar{b}|} \neq 0$$
לכן

דוגמה 6.10

קבעו את המצב ההדדי של הישרים

$$M(t)$$
: $(x, y, z) = (t, 3 - t, 4 - 3t)$
 $N(t)$: $(x, y, z) = (1 - t, 2 + t, 2t)$

פתרון:

יש נקודת חיתוך: .(1, -1, -3) $\nparallel (-1, 1, 2)$. $\bar{a} \not \parallel \bar{b}$

$$M_0 = (0, 3, 4)$$
, $N_0 = (1, 2, 0)$, $\overline{M_0 N_0} = (1, -1, -4)$.

$$\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ 1 & -1 & -3 \\ -1 & 1 & 2 \end{vmatrix} = (1, 1, 0)$$

לכן

$$\overline{M_0 N_0} \cdot (\bar{a} \times \bar{b}) = 0 .$$

. לכן הישירים נחתכים
$$.d=\frac{\overline{M_0N_0}\cdot(\bar{a}\times\bar{b})}{|\bar{a}\times\bar{b}|}=0$$
לכן

$$\begin{cases}
 t = 1 - s \\
 3 - t = 2 + s \\
 4 - 3t = 2s
 \end{cases}
 \Rightarrow
 \begin{cases}
 t + s = 1 \\
 t + s = 1 \\
 3t + 2s = 4
 \end{cases}
 \Rightarrow
 t = 2, s = -1.$$

.P(2,1,-2) הנוקודת חיתוך היא \Leftarrow

משפט 6.3 מצב הדדי בין ישר למישור

יש ביניהם $M(t): (x,y,z) = (x_0,y_0,z_0) + t \cdot (a_1,a_2,a_3)$ וישר אישר האריים: Ax + By + Cz + D = 0 יש ביניהם שלושה מצבים הדדיים אפשריים:

(א) הישר מוכל במישור

$$(A, B, C) \perp (a_1, a_2, a_3) \Rightarrow (A, B, C) \cdot (a_1, a_2, a_3) = 0$$
.

וכל הנקודות של הישר נמצאות גם על המישור. מספיק שיהיו שתי נקודות.

(ב) הישר מקביל למישור

$$(A, B, C) \perp (a_1, a_2, a_3) \Rightarrow (A, B, C) \cdot (a_1, a_2, a_3) = 0$$
.

ואין להם נקודה משותפת.

(ג) הישר נחתך עם המישור <u>(</u>

$$(A, B, C) \not\perp (a_1, a_2, a_3) \Rightarrow (A, B, C) \cdot (a_1, a_2, a_3) \neq 0$$
.

הווקטור הכיוון של הישר לא ניצב למישור ויש להם נקודה אחת משותפת.

דוגמה 6.11

$$2x+3y-z-5=0$$
 והמישור $x+4=rac{y-1}{2}=-(z+1)$ מהו המצב הדדי בין הישר

פתרון:

הווקטור הכיוון של הישר הוא $\bar{a}=(1,2,-1)$ והנורמל של המישור הוא $\bar{a}=(1,2,-1)$ נחשב את המכפלה הטקלרית:

$$(1,2,-1)\cdot(2,3,-1)=9\neq 0$$

הישר המישור נחתכים. נחשב את הנקודת החיתוך: נציב נקודה כללית של הישר \Leftarrow

$$\left. \begin{array}{ll}
x & = -4 + t \\
y & = 1 + 2t \\
z & = -1 - t
\end{array} \right\}$$

במשוואת המישור:

$$2(-4+t) + 3(1+2t) - (-1-t) - 5 = 0 \quad \Rightarrow \quad 9t = 9 \quad \Rightarrow \quad t = 1 \quad \Rightarrow \quad (x,y,z) = (-3,3,-2) \ .$$

הגדרה 6.3 זווית בין מישורים וישירם

(א) הזווית בין שני מישורים מוגדרת להיות הזוית בין הווקטורים הנורמלים שלהם.

$$\cos \alpha = \frac{|\bar{n}_1 \cdot \bar{n}_2|}{|\bar{n}_1| \cdot |\bar{n}_2|}$$

(ב) הזוית בין שני ישירים גם מצטלבים מוגדרת להיות הזוית ביו וקטורים הכיוון שלהם.

$$\cos \alpha = \frac{|\bar{a} \cdot \bar{b}|}{|\bar{a}| \cdot |\bar{b}|}$$

(ג) הזוית בין מישור לישר מוגדרת להיות הזוית המשלימה לזוית בין הנורמל של המישור ווקטור הכיוון של הישר.

$$\sin\alpha = \frac{|\bar{a} \cdot \bar{n}|}{|\bar{a}| \cdot |\bar{n}|}$$

הגדרה 6.4 מרחק בין נקודה לישר

ואז \overline{M}_1P ניצב ל- \overline{M}_1 על הישר ל- P תהיה נקודה שבה הקרובה ביותר M_1 ניצב ל-

$$d = |\overline{M_1P}| = |\overline{M_0P}| \sin \alpha = \frac{|\overline{M_0P} \times \bar{a}|}{|\bar{a}|}$$

דוגמה 6.12

מצאו את המרחק בין הישר P=(0,1,0) לנקודה (x,y,z)=(2-t,3+t,1-2t) ואת הנקודה על הישר הקורבה ביותר לנקודה P=(0,1,0)

פתרון:

נקח את $M_0=(2,3,1)$.t=0 כאשר על הישר על היות הנקודה על M_0 את להיות $\overline{M_0P}=(0,1,0)-(2,3,1)=(-2,-2,-1)$.

וקטור הכיוון של הישר הוא

$$\bar{a} = (-1, 1, -2)$$
.

לכן המרחק בין הישר M(t) לנקודה P הוא

$$d = \frac{|(-2, -2, -1) \times (-1, 1, -2)|}{|(-1, 1, -2)|} = \frac{|(5, -3, -4)|}{|(-1, 1, -2)|} = \frac{\sqrt{50}}{\sqrt{6}}.$$

$$\overline{M(t)P} \perp \bar{a} \qquad \Rightarrow \qquad \overline{M(t)P} \cdot \bar{a} = 0 \ .$$

בדוגמה שלנו:

$$\overline{M(t)P} = (0,1,0) - (2-t,3+t,1-2t) = (-2+t,-2-t,-1+2t)$$

לכן

$$\overline{M(t)P} \cdot \bar{a} = 0 \quad \Rightarrow \quad (-2+t, -2-t, -1+2t) \cdot (-1, 1, -2) = 0 \quad \Rightarrow \quad 2-t-2-t+2-4t = 2-6t = 0$$

לכן P -לכן הנקודה הקרובה ביותר ל- $t=rac{1}{3}$

$$M_1 = \left(\frac{5}{3}, \frac{10}{3}, \frac{1}{3}\right) .$$