

LINEARE ALGEBRA

ÜBUNG 11: SKALARPRODUKTE

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 19.01.2021

SKALARPRODUKT

Sei *V* ein Vektorraum über einem Körper *K*.

Eine Abbildung $\bullet: V \times V \to K$ heißt *Skalarprodukt*, wenn folgende Eigenschaften erfüllt sind:

- ist bilinear,
- ist symmetrisch,
- ist positiv definit.

Manchmal schreibt man für Vektoren $u, v \in V$ statt $u \bullet v$ auch $\langle u, v \rangle$ oder $\langle u, v \rangle$.

Einen Vektorraum V gemeinsam mit einem Skalarprodukt \bullet nennt man *euklidischen Vektorraum* und schreibt (V, \bullet) für diese Paarung.

BILINEARITÄT VON •

Die Abbildung • ist "linear in jedem Argument":

- 1. Linearität im ersten Argument:
 - \triangleright additiv: $(u_1 + u_2) \bullet v = (u_1 \bullet v) + (u_2 \bullet v)$
 - \triangleright homogen: $(ku) \bullet v = k(u \bullet v)$

oder in einem Schritt

$$\triangleright (k_1u_1+k_2u_2) \bullet v = k_1(u_1 \bullet v) + k_2(u_2 \bullet v)$$

- 2. Linearität im zweiten Argument:
 - \triangleright additiv: $u \bullet (v_1 + v_2) = (u \bullet v_1) + (u \bullet v_2)$
 - ▷ homogen: $u \bullet (\ell v) = \ell (u \bullet v)$

oder in einem Schritt

$$\qquad \qquad \triangleright \quad u \bullet \left(\ell_1 v_1 + \ell_2 v_2 \right) = \ell_1 \big(u \bullet v_1 \big) + \ell_2 \big(u \bullet v_2 \big)$$

BILINEARITÄT VON •

Alternativ kann man auch alles in einem Rutsch erledigen und zeigen, dass

$$(k_1u_1 + k_2u_2) \bullet (\ell_1v_1 + \ell_2v_2)$$

$$= k_1 \Big(u_1 \bullet (\ell_1v_1 + \ell_2v_2) \Big) + k_2 \Big(u_2 \bullet (\ell_1v_1 + \ell_2v_2) \Big)$$

$$= k_1 \ell_1 (u_1 \bullet v_1) + k_1 \ell_2 (u_1 \bullet v_2) + k_2 \ell_1 (u_2 \bullet v_1) + k_2 \ell_2 (u_2 \bullet v_2)$$

gilt.

BILINEARITÄT ↔ LINEARITÄT

Wir können Bilinearität auch mit der bekanten Linearität in Verbindung bringen. Definieren wir dazu die Abbildung

$$s_{v}: V \to K \quad \text{mit} \quad s_{v}(u) \coloneqq u \bullet v .$$

Dann ist Linearität im ersten Argument äquivalent zur Linearität von s_v , denn

$$s_v(k_1u_1 + k_2u_2) = (k_1u_1 + k_2u_2) \bullet v$$
.

BILINEARITÄT ↔ LINEARITÄT

Wir können Bilinearität auch mit der bekanten Linearität in Verbindung bringen. Definieren wir dazu die Abbildung

$$s_{v}: V \to K \quad \text{mit} \quad s_{v}(u) \coloneqq u \bullet v .$$

Dann ist Linearität im ersten Argument äquivalent zur Linearität von s_v , denn

$$s_v(k_1u_1 + k_2u_2) = (k_1u_1 + k_2u_2) \bullet v$$
.

Definieren wir analog dazu

$$s_u: V \to K \quad \text{mit} \quad s_u(v) \coloneqq u \bullet v$$
,

dann ist wieder Linearität im zweiten Argument äquivalent zur Linearität von s_u , denn

$$s_u(\ell_1v_1 + \ell_2v_2) = u \bullet (\ell_1v_1 + \ell_2v_2)$$
.

Linearität von Abbildungen zwischen Vektorräumen haben wir in Übung 5 bereits studiert. Man beachte hier, dass jeder Körper auch einen Vektorraum bildet.

BEISPIEL: STANDARDSKALARPRODUKT

Aus der Schule bekannt ist das *Standardskalarprodukt* von $u, v \in \mathbb{R}^n$ durch

$$u \bullet v = u_1 v_1 + u_2 v_2 + \dots u_n v_n$$
 (*)

Mit Matrixmultiplikation können wir auch $|u \cdot v = u^T v|$ schreiben.

- Bilinearität folgt aus den Eigenschaften der Matrixmultiplikation.
- ► *Symmetrie:* klar mit (*).
- Positive Definitheit: $u \bullet u = \underbrace{u_1^2 + u_2^2 + \dots + u_n^2}_{\geq 0} \geq 0$ und $u \bullet u = 0$ kann nur auftreten, wenn jeder Summand schon Null ist, d.h. $u_1 = 0 \land u_2 = 0 \land \dots \land u_n = 0$, was gerade u = 0 entspricht.

BEISPIEL: SKALARPRODUKT MIT MATRIX

Anstelle von $u^{\mathsf{T}}v$ können wir etwas allgemeiner $u \bullet v$ definieren als

$$u \bullet v = u^{\mathsf{T}} M v$$

mit einer Matrix *M*. Welche Bedingungen muss *M* erfüllen, damit • ein Skalarprodukt wird?

- Bilinearität folgt weiter aus den Eigenschaften der Matrixmultiplikation (vgl. auch Ü106).
- ► Symmetrie: Dafür muss M symmetrisch sein, d.h. $M^{T} = M$.

$$u \bullet v = \underbrace{u^{\mathsf{T}} M v}_{\in \mathbb{R}} = \left(u^{\mathsf{T}} M v\right)^{\mathsf{T}} = v^{\mathsf{T}} M^{\mathsf{T}} \left(u^{\mathsf{T}}\right)^{\mathsf{T}} = v^{\mathsf{T}} \underbrace{M^{\mathsf{T}}}_{=M, \text{ wenn } M \text{ symm}}^{\mathsf{T}} u = v \bullet u$$

▶ Positive Definitheit: Hier muss man die positive Definitheit direkt zeigen, d.h. $u^{T}Mu \ge 0$ und $u^{T}Mu = 0 \iff u = 0$ oder gleichwertig dazu $u^{T}Mu > 0$ für alle $u \ne 0$.

BEISPIEL: INTEGRALE?!

Wir haben aber auch abstraktere Vektorräume kennengelernt, z.B. den Vektorraum der Abbildungen $V = \{f : \mathbb{R} \to \mathbb{R}\}$. Wie können wir dort ein Skalarprodukt definieren?

Man kann zeigen, dass für $f, g \in V$ der Ausdruck

$$f \bullet g \coloneqq \int_0^1 f(x) \ g(x) \ dx$$

ein Skalarprodukt • auf V definiert.

LÄNGENMESSUNG

Ein Skalarprodukt • induziert durch

$$\|v\| \coloneqq \sqrt{v \bullet v}$$

eine Norm auf V.

Damit können wir Längen von Vektoren messen.

WINKELMESSUNG

Sei (V, \bullet) ein euklidischer Vektorraum. Der Winkel $\varphi \in [0, 2\pi)$ zwischen zwei Vektoren $u, v \in V$ ist bestimmt durch

$$\cos(\varphi) = \frac{u \bullet v}{\|u\| \|v\|} .$$

Zwei Vektoren $u, v \in V$ heißen *orthogonal* (in Zeichen $u \perp v$), wenn

$$u \bullet v = 0$$

gilt. Dann ist nämlich $\cos(\varphi) = \frac{u \bullet v}{\|u\| \|v\|} = 0$ und damit $\varphi \in \left\{\frac{\pi}{2}, \frac{3\pi}{2}\right\}$.