Resumen Grupos

Mario Calvarro Marines

Índice general

1.	Generalidades sobre grupos. Fórmula de Lagrange	1
	1.1. Grupos cíclicos y diedrales	1
	1.2. Fórmula de Lagrange	2

Generalidades sobre grupos. Fórmula de Lagrange

Grupos cíclicos y diedrales

Definición (Grupo)

Un conjunto G y la operación $G \times G \to G, (a,b) \mapsto ab$ se dicen **grupo** si cumplen:

- Asociatividad.
- Elemento neutro.
- Elementos inversos.

Si además es conmutativo, se dice abeliano.

Proposición

Sea G, grupo, $y g \in G \Rightarrow$

$$\{gx:x\in G\}=G=\{xg:x\in G\}$$

Definición (Subgrupo)

Se dice que $H \subset G$ es un **subgrupo** de G si:

- \bullet $1_G \in H$
- $ab^{-1} \in H, \ \forall a, b \in H$

Definición (Subgrupo generado por un subconjunto)

Sea G, grupo, $y \emptyset \neq S \subset G$. Llamamos **subgrupo generado por** S a:

$$\langle S \rangle = \bigcap_{H \in \mathcal{H}_S} H$$

donde \mathcal{H}_S es la familia de los subgrupos de G que contienen a S.

Otra forma de expresarlo es:

$$W(S) = \{s_1^{n_1}, \dots, s_k^{n_k} : s_i \in S \& n_j \in \mathbb{N}\}$$

 $y\ diremos\ que\ un\ grupo\ es\ finitamente\ generado\ si\ \exists S\subset G: \langle S\rangle = G.$

Proposición (Identidad de Bézout)

Sean $m, n \in \mathbb{Z} \setminus \{0\}$ y $d := \operatorname{mcd}(m, n)$. Entonces,

$$\exists a, b \in \mathbb{Z} : d = am + bn$$

Definición

 $Sea\ H \leq G$

• Sea $a \in G$. Llamamos **conjugado** de H vía a a:

$$H^a := a^{-1}Ha := \{a^{-1}ha : h \in H\}$$

 $Diremos\ que\ H\ y\ H^a\ son\ conjugados$

■ Llamamos centralizador de H en G a:

$$C_G(H) := \{ a \in G : ah = ha \ \forall h \in H \}$$

En particular, $\mathcal{Z}(G) := C_G(G)$ se denomina **centro** de G.

Proposición

Sea G un grupo cíclico (generado por un solo elemento), entonces $H \leq G$ es cíclico.

Fórmula de Lagrange

Proposición

Sean $H, K \leq G$. Entonces,

$$\operatorname{ord}(H)\operatorname{ord}(K) = \operatorname{Card}(HK)\operatorname{ord}(H \cap K)$$

En particular, $Card(HK) \leq ord(H) ord(K)$

Definición (Clases laterales)

Sean $H \leq G$.

■ Definimos la clase de equivalencia \mathcal{R}_H tal que:

$$a\mathcal{R}_H b \Leftrightarrow ab^{-1} \in H$$

y decimos que a y b son congruentes por la derecha.

$$Ha := \{ha : h \in H\}$$

lacksquare Definimos la clase de equivalencia \mathcal{R}^H tal que:

$$a\mathcal{R}^H b \Leftrightarrow a^{-1}b \in H$$

y decimos que a y b son congruentes por la izquierda.

$$aH:=\{ah:h\in H\}$$

Las clases de equivalencia definidas por estas relaciones tienen el mismo número de elementos que denominamos **índice** de H en G, [G:H].

Corolario (Fórmula de Lagrange)

Sea G un grupo finito.

■ $H \leq G$, entonces:

$$\operatorname{ord}(G) = \operatorname{ord}(H)[G:H]$$

- $Si \ K \leq G \ y \ \operatorname{mcd} (\operatorname{ord} (H), \operatorname{ord} (K)) = 1, \ entonces \ H \cap K = \{1_G\}.$
- Si el orden de G es un primo, entonces G es cíclico y está generado por cualquiera de sus elementos distintos de 1_G .

Corolario (Pequeño teorema de Fermat)

Dados un entero primo $p \ y \ k \in \mathbb{Z}$ se cumple:

$$k^p \equiv k \mod p$$

Lema

Sea G grupo y $a, b \in G$, elementos de orden n, m, entonces:

- $\blacksquare \ \forall k \in \mathbb{Z}, \ o\left(a^k\right) = \frac{n}{\gcd(n,k)}.$
- $Si\ ab = ba\ y\ \mathrm{mcd}\ (m,n) = 1 \Rightarrow o\ (ab) = mn.$

Proposición

Sea G un grupo cíclico finito. Para cada divisor d > 0 de ord (G), $\exists ! H \leq G : \text{ord}(H) = d$.

Proposición (Transitividad del índice)

Sean $H, K \leq G : H \subset K$ y [G : H] es finito. Entonces, también lo son [G : K] y [K : H] y

$$[G:H] = [G:K] \cdot [K:H]$$