Machine Learning Lecture 3: Linear Classification

Harbour.Space University February 2020

Radoslav Neychev

Outline

- 1. Linear regression recap
- 2. Linear classification
 - Margin in linear classification
 - Loss functions
- 3. Gradient descent recap
- 4. Logistic regression
- 5. Measuring the quality in classification
- 6. Model validation and evaluation.

Linear regression

Linear regression problem statement:

- Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y}=w_0+\sum_{k=1}^p x_k\cdot w_k=//\mathbf{x}=[1,x_1,x_2,\ldots,x_p]//=\mathbf{x}^T\mathbf{w}$$
 where $\mathbf{w}=(w_0,w_1,\ldots,w_n)$, w_0 is bias term.

Least squares method (MSE minimization) provides a solution:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|Y - \hat{Y}\|_{2}^{2} = \arg\min_{\mathbf{w}} \|Y - X\mathbf{w}\|_{2}^{2}$$

Regression:

$$\hat{y} = f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

$$Q = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

How can we use the same technique to solve the *classification* problem?

Classification:

$$\hat{y} = f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

$$a(\mathbf{x}) = +1$$
 if $f(\mathbf{x}) > 0$
 $a(\mathbf{x}) = -1$ if $f(\mathbf{x}) < 0$

$$Q = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{y}_i)$$

Let's say we predict the class label now

What about loss function?

Classification:

$$\hat{y} = f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

$$a(\mathbf{x}) = +1$$
 if $f(\mathbf{x}) > 0$
 $a(\mathbf{x}) = -1$ if $f(\mathbf{x}) < 0$

$$Q = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{y}_i)$$

Let's say we predict the class label now

Loss function could be just number of misclassifications

Linear classification

$$a(\mathbf{x}) = +1$$
 if $f(\mathbf{x}) > 0$
 $a(\mathbf{x}) = -1$ if $f(\mathbf{x}) < 0$

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

Geometrical interpretation: Linearly separable case

Margin

Denote algorithm
$$a(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x}))$$

Let's call $M_i = y_i a(\mathbf{x}_i)$ algorithm **margin** on object \mathbf{X}_i .

$$M_i \leq 0 \iff y_i \neq a(\mathbf{x}_i)$$

$$M_i > 0 \iff y_i = a(\mathbf{x}_i)$$

Loss functions in classification

$$Q = \frac{1}{N} \sum_{i=1}^{N} [M_i \le 0] \le \widetilde{Q} = \frac{1}{N} \sum_{i=1}^{N} L(M_i)$$

$$\widetilde{Q} \longrightarrow \min \implies Q \longrightarrow \min$$

$$Q(M) = (1 - M)^2$$

 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

Loss functions

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$\frac{\partial M_{i}}{\partial w} = y_{i}x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i}x_{i}L'(M_{i})$$

$$w_{n+1} = w_n - \gamma_n \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Logistic regression

$$y_{i} \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_{i} \ln p_{i} + (1 - y_{i}) \ln(1 - p_{i}) \to \min_{w}$$

$$p_{i} = \sigma(\langle w, x_{i} \rangle) = \frac{1}{1 + e^{-\langle w, x_{i} \rangle}} = P(y = 1 | x)$$

logistic loss

L1 or L2 regularization terms are usually used along the *logistic loss* function.

The optimization problem is solved by SGD or Newton-Raphson's method.

Logistic regression optimization problem

$$Q = -\sum_{i=1}^{\ell} y_i \ln \frac{1}{1 + e^{-\langle w, x_i \rangle}} + (1 - y_i) \ln \frac{1}{1 + e^{\langle w, x_i \rangle}} \to \min_{w}$$

$$-y_{i} \ln \frac{1}{1 + e^{-\langle w, x_{i} \rangle}} - (1 - y_{i}) \ln \frac{1}{1 + e^{\langle w, x_{i} \rangle}} = \begin{cases} \ln(1 + e^{-\langle w, x_{i} \rangle}), y_{i} = 1\\ \ln(1 + e^{\langle w, x_{i} \rangle}), y_{i} = 0 \end{cases}$$

$$Q = \sum_{i=1}^{\ell} \ln\left(1 + e^{-y_i\langle w, x_i \rangle}\right) \to \min_{w} \qquad y_i \in \{-1, 1\}$$

$$L(M) = \ln(1 + e^{-M_i})$$

Measuring the quality in classification

Quality functions in classification

- Accuracy
- Precision
- Recall
- F-score
- ROC-curve, ROC-AUC
- PR-curve

Accuracy

Number of right classifications

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

accuracy = 8/10 = 0.8

relevant elements

false negatives true negatives true positives false positives

Precision and recall

		Actual Class		
		Yes	No	
Predicted Class	Yes	True Positive	False Positive	
	No	False Negative	True N egative	

$$ext{Precision} = rac{tp}{tp+fp}$$
 $ext{Recall} = rac{tp}{tp+fn}$

How many selected items are relevant?	How many relevant items are selected?	
Precision =	Recall =	

selected elements

F-score

Harmonic mean of precision and recall. Closer to the smallest one.

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

F-score

ROC - receiver operating characteristic

		Actual Class	
		Yes	No
Predicted Class	Yes	True Positive	False Positive
	No	False Negative	T rue N egative

$$TPR = \frac{True \ positives}{True \ positives + False \ negatives}$$

$$FPR = \frac{False \ positives}{False \ positives + True \ negatives}.$$

ROC

		Actual Class	
		Yes	No
Predicted Class	Yes	True Positive	False Positive
	No	False Negative	True N egative

$$TPR = \frac{True \ positives}{True \ positives + False \ negatives}$$

$$FPR = \frac{False \ positives}{False \ positives + True \ negatives}.$$

ROC-AUC - area under curve

PR-curve

$$ext{Precision} = rac{tp}{tp+fp}$$
 $ext{Recall} = rac{tp}{tp+fn}$

Model validation and evaluation

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $x_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{x})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Overfitting vs. underfitting

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Is it good enough?

Image credit: Joseph Nelson @josephofiowa

Cross-validation

