CHE
SIBLIOTHEK
SIBLIOTHEK
VER

York • Oxford rdney • Tokyo

Handbook of Statistics

Volume 32

Computational Statistics with R

Edited by

Marepalli B. Rao

Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA

C.R. Rao

C.R. Rao AIMSCS, University of Hyderabad Campus, Hyderabad, India

Contents

contributors	XIII
reface	XV
1. Introduction to R	1
Chaitra H. Nagaraja	
1 Introduction	1
2 Setting Up R	4
2.1 Installing and Starting R	4
2.2 Memory	10
2.3 Saving Your Code and Workspace	11
2.4 R Packages	13
3 Basic R Objects and Commands	14
3.1 Numbers, Character Strings, and Logicals	14
3.2 Scalars, Vectors, Matrices, and Arrays	15
3.3 Data Frames and Lists	17
3.4 Strings and Factors	18
4 Writing Programs	19
4.1 Conditional Statements	19
4.2 if/else Statements	20
4.3 for Loops	20
4.4 while Loops	21
4.5 Functions	23
4.6 Debugging and Efficiency	27
5 Input and Output	31
6 Data Processing	32
7 Exploratory Data Analysis	35
8 Statistical Inference and Modeling	36
8.1 Hypothesis Testing	36
8.2 Regression	37
9 Simulation	42
10 Numerical Techniques	45
11 Annotated References	47
Set Up	47
Text Editors	47
Introductory Resources and Books	48

vi Contents

2.	R Graphics	49
	Deepayan Sarkar	
	1 Introduction	49
	1.1 Origins	49
	1.2 Principles of Data Graphics	51
	2 Traditional Graphics	51
	2.1 The plot() Function	54
	2.2 Other Common High-Level Functions	56
	2.3 Visualizations for Time Series Data	62 63
	2.4 Customizing Plots Using Low-Level Functions	66
	2.5 Limitations of Traditional Graphics3 Grid Graphics	69
	3.1 Viewports	70
	3.2 Units and Primitives	70
	3.3 First Attempt	71
	4 Lattice	74
	4.1 Overview	74
	4.2 Common High-Level Functions	78
	4.3 Bar Charts and Dot Plots for Tabular Data	79
	4.4 Scatterplots and Custom Displays	83
	4.5 The "trellis" Object	84
	5 ggplot	85
	6 Further Reading	88
	References	91
3.	Graphics Miscellanea	93
	Palash Mallick and Marepalli B. Rao	
	1 Introduction	93
	2 The Plot() Command	93
	2.1 Features that Can Be Included in a Scatter Plot	94
	3 Scatter Plots	96
	3.1 Regression Analysis with Scatter Plots	96
	3.2 Multiple Regression Analysis with Scatterplot Matrices	102
	3.3 Scatterplot Matrices of Data Segregated by a Categorical Variable	105
	4 Time Series Plots	105
	4.1 Three Graphs in a Single Frame	107
	4.2 Two Different Time Series Data Sets in a Single Plot	109
	5 Pie Charts	111
	6 Special Box Plots	113
	7 xy Plots	116
	8 Curves	118
	9 LOWESS	122
	10 Sunflower Plots	125
	11 Violin Plots	127
	12 Bean Plots	129
	13 Bubble Charts	130

Contents	VII

	14 3D Surface Plot	130	
	15 Chernoff Faces—Graphical Presentation of Multivariate Data	133	
	16 Maps	137	
	16.1 Drawing Common Maps	13 <i>7</i>	
	16.2 Creating a Choropleth Map	139	
	References	142	
1	Matrix Algebra Topics in Statistics and Economics		
┰.	Using R	143	
		175	
	Hrishikesh D. Vinod		
	1 Introduction	143	
	2 Basic Matrix Manipulations in R	144	
	3 Descriptive Statistics	146	
	3.1 Outlier Detection and Normality Tests	148	
	3.2 Multivariate Normality Tests	148	
	4 Matrix Transformations, Invariance, and Equivariance	148	
	Affine Transformations Defined	149	
	Desirable Invariance and Equivariance	149	
	4.1 Data Standardization	149	
	4.2 Limitations of the Usual Standardization	151	
	4.3 Mahalanobis Distance and Outlier Detection	153	
	5 Payoff Matrices in Decision Analysis	154	
	6 Matrix Algebra in Regression Models	156	
	6.1 Matrix QR Decomposition	1 <i>57</i>	
	6.2 Collinearity and Singular Value Decomposition	158	
	6.3 Heteroscedastic and Autocorrelated Errors	159	
	7 Correlation Matrices and Generalizations	160	
	Bounds on the Cross-Correlation	160	
	7.1 New Asymmetric Generalized Correlation Matrix	161	
	8 Matrices for Population Dynamics	165	
	9 Multivariate Components Analysis	168	
	9.1 Projection Matrix: Generalized Canonical Correlations	168	
	9.2 Invariant Coordinate Selection	169	
	10 Sparse Matrices	172	
	References	1 <i>7</i> 5	
5.	Sample Size Calculations with R: Level 1	1 <i>77</i>	
٠.	•		
	Marepalli B. Rao and Subramanyam Kasala		
	1 Introduction	1 <i>77</i>	
	1.1 Goals	178	
	1.2 Why Did We Choose R?	178	
	2 General Ideas on Sample Size Calculations	178	
	2.1 Example	179	
	2.2 FAQ and Pointers	180	
	2.3 Signal-to-Noise Ratio	181	
	2.4 Some Features of the Normal Distribution	181	

viii Contents

3	Sing	e-Sample Problems	184
	3.1	Quantitative	184
		Testing of Hypotheses Environment	184
	3.3	Specifications	185
		Formula for Sample Size	186
	3.5	Comments	190
	3.6	The Other Type of One-Sided Alternative	190
	3.7	The Case of Two-Sided Alternative	190
	3.8	Comments	194
	3.9	One-Sided Alternative	194
	3.10	Two-Sided Alternative	194
	3.11	The Case When the Population Standard Deviation σ Is	
		Unknown	194
		The Case of One-Sided Alternative	194
	3.13	Specifications	195
		Comments	198
		One-Sample Problem: One-Sided Alternative: σ Is Known	198
		One-Sample Problem: One-Sided Alternative: σ Is Unknown	198
		R Code	199
		One-Sample Problem	201
		Specifications	202
		Example	202
		An Alternative Approach	202
		Example	202
		Specifications	204
4		Sample Problems: Quantitative Responses	204
		Scenario 1	205
		Specifications	205
		Scenario 2	206
		One-Sided Alternative	206
		Specifications	206
		Scenario 3	207
		One-Sided Alternative	207
		Specifications	207
		Illustration	207
		Two-Sided Alternative	208
		Specifications And Illustration	208
		An Illustration	208
		Scenario 4	211
		Estimation Perspective	211
		Scenario 1	211
		Specifications Frame Is	211
		Example Sonneric 2	212
		Scenario 2	212
		Specifications Example	212
		Example Sconario 2	213
		Scenario 3 Paired t-Test	213
			213
	4.23	Specifications	214

Contents ix

	5 Multisample Problem—Quantitative Responses—Analysis	
	of Variance	215
	5.1 Specifications	215
	5.2 Examples	216
	5.3 Structure of the Data	216
	5.4 Specifications	217
	5.5 Specifications	217
	5.6 Some Guidelines from the Social Sciences and Psychology	218
	5.7 Comments	220
	References	220
6.	Sample Size Calculations with R: Level 2	221
	Marepalli B. Rao and Hansen Bannerman-Thompson	
	1 Single Proportions	221
	1.1 Problem	221
	2 Two-Sample Proportions	232
	2.1 Traditional Test	233
	2.2 Arcsine Square Root Transformation	234
	3 Effect Sizes	237
	3.1 The Case of Proportions	237
	3.2 The Case of <i>t</i> -Test	237
	3.3 The Case of Correlation	238
	3.4 Analysis of Variance	238
	4 Multisample Proportions	239 239
	4.1 Testing Equality of Several Population Proportions	239
	5 McNemar TEST 6 Correlations	244
	7 Hazard Ratio in Survival Analysis	247
	7.1 A Pilot Study	249
	8 Multiple Regression	251
	References	255
-	Discovered Decreasion in D	257
/.	Binomial Regression in R	257
	John Muschelli, Joshua Betz, and Ravi Varadhan	
	1 Binomial Regression in the Generalized Linear Model	258
	2 Standard Logistic Regression	259
	3 Assumptions Involved in the Standard Logistic Regression Model	
	4 Residuals	261 263
	4.1 Interpreting Residuals	
	4.2 Influential Points	266 268
	5 Overdispersion 5.1 Estimation Using Quasilikelihood	269
	5.1 Estimation Using Quastiketinood 5.2 Adding Explanatory Terms to the Model	271
	6 Hypothesis Testing and Inference	273
	7 Model Performance	275
	7.1. ROC Curves/Sensitivity/Specificity/Accuracy	275

x Contents

	7.2 Area Under the Curve	277
	7.3 Selecting a Cut Point	280
	8 Modeling Repeated (Longitudinal) Binary Measures	281
	8.1 Generalized Estimating Equations	282
	8.2 Generalized Linear Mixed Models	285
	9 Model Selection	289
	9.1 Penalized Logistic Regression: The glmnet Package	292
	9.2 Phoneme Data	293
	9.3 Fitting glmnet Models	293
	9.4 Visualizing the glmnet Model	294
	9.5 Choosing λ in glmnet Using Cross-Validation	296
	10 Machine Learning Methods	299
	10.1 Splitting the Data in Train and Test Samples	299
	10.2 Recursive Partitioning (rpart)	300
	10.3 Random Forests	300
	10.4 Generalized Boosted Regression Modeling	302
	10.5 Comparison of Results	303
	11 Concluding Remarks	305
	References	306
8.	Computing Tolerance Intervals and Regions Using R	309
	Derek S. Young	
	1 Introduction	309
	1.1 Formal Definition	310
	2 Tolerance Intervals for Continuous Distributions	311
	2.1 Tolerance Intervals for the Normal Distribution	311
	2.2 Tolerance Intervals for the Exponential Distribution	315
	2.3 Tolerance Intervals for the Weibull Distribution	316
	3 Tolerance Intervals for Discrete Distributions	317
	3.1 Tolerance Intervals for the Binomial Distribution	318
	3.2 Tolerance Intervals for the Poisson Distribution	319
	3.3 Tolerance Intervals for the Negative Binomial Distribution	320
	4 Nonparametric Tolerance Intervals	321
	5 Regression Tolerance Intervals	324
	5.1 Linear Regression Tolerance Intervals	324
	5.2 Nonlinear Regression Tolerance Intervals	327
	5.3 Nonparametric Regression Tolerance Intervals	328
	6 Multivariate Tolerance Regions	331
	7 Final Remarks	334
	References	336
9.	Modeling the Probability of Second Cancer in	
	Controlled Clinical Trials	339
	Kao-Tai Tsai and Karl E. Peace	
	1 Introduction	339
	2 Difficulties in Second Cancer Research	340

Contents xi

	3 Current Knowledge of Second Malignancy	340
	4 Clinical Trial Database	342
	4.1 Laboratory Test Data Analysis	343
	4.2 Medical History and Concomitant Medicines	345
	4.3 Efficacy Data Consideration	347
	5 Integrated Analysis	347
	6 Assessing Model Adequacy	353
	7 Summary	355
	References	356
10.	Bayesian Networks	357
	Marepalli B. Rao and C. R. Rao	
	1 Introduction	357
	2 Joint and Conditional Distributions	358
	3 Generalities and Issues	362
	4 Graph Theory	365
	5 A Case Study	367
	Model Selection	372
	6 Network Model Fitting	378
	7 Learning Algorithm	383
	References	385
Inde	v	38: