

Processador ARM Cortex M3/M4 STM32F10XXX GPIOs

Prof. Francisco Granziera JR

granziera@uel.br

Organização

- Descrição funcional dos GPIOs;
- Set e Reset atômico;
- Interrupção externa e linhas de WakeUp;
- Funções Alternativas;
- Remapeamento de Funções Alternativas;
- Mecanismo de trancamento da GPIO;
- Configurações como entrada, saída, AF e entrada analógica;
- Configurações para dispositivos periféricos;
- Registradores GPIO.

- GPIO significa Entradas e Saídas de Propósito Geral.
- Cada GPIO possui dois registradores de configuração GPIOx_CRL, GPIOx_CRH, dois registradores de dados GPIOx_IDR e GPIOx_ODR, um registrador de set/reset GPIOx_BSRR, um registrador de 16 bits de reset GPIOx_BRR e um registrador de trancamento GPIOx_LCKR.
- As GPIOs podem ser configuradas individualmente via software.

- As possibilidades de configuração (seguindo o datasheet de cada dispositivo) são:
 - Entrada flutuante
 - Entrada com pull-up
 - Entrada com pull-down
 - Analógica
 - Saída open-drain (dreno aberto)
 - Saída push-pull
 - AF open-drain
 - AF push-pull
- Embora o acesso a cada pino GPIO seja individual, o acesso aos registradores ocorre somente em 32 bits (acessos em 16 ou 8 bits não são permitidos)

Configuration mode	CNF1	CNF0	MODE1	MODE0	PxODR register		
General purpose	Push-pull	0	0	0	1	0 or 1	
output	Open-drain		1	10 11 see <i>Table 21</i>		0 or 1	
Alternate Function output	Push-pull	1	0			Don't care	
	Open-drain	'	1			Don't care	
	Analog	0	0	00		Don't care	
Input	Input floating		1			Don't care	
	Input pull-down	1	0		U	0	
	Input pull-up] '				1	

MODE[1:0]	Meaning
00	Reserved
01	Maximum output speed 10 MHz
10	Maximum output speed 2 MHz
11	Maximum output speed 50 MHz

- Durante e somente após o reset as FA (funções alternativas) não estão ativas e as portas I/O estão configuradas como Entradas Flutuantes.
- Atenção: os pinos do JTAG estão em entrada PU/PD após o reset:
 - PA15: JTDI em PU
 - PA14: JTCK em PD
 - PA13: JTMS em PU
 - PB4: NJTRST em PU

- Quando um pino está configurado como saída, o que for escrito em GPIOx_ODR é colocado no pino de saída.
- É possível que o pino forneça 0/1 (em push-pull) ou apenas
- O Registrado de Dados de Entrada (Input Data register) GPIOx_IDR captura os dados presentes nos pino da porta a cada ciclo de clock APB2.
- TODOS os pinos de GPIO possuem um sistema wakeup PD e PU que pode ser ativado ou não quando o pino é configurado como entrada.

Descrição funcional: Reset/Set atômico

- Não há necessidade de desabilitar interrupções quando se está programando GPIOx_ODR: é possível modificar somente um ou diversos bits por meio de uma única escrita atômica via clock APB2.
- Isto pode ser feito escrevendo '1' no registrador Set/Reset GPIOx_BSRR ou para apenas Reset no registrador GPIO_BRR.

Descrição funcional: Funções Alternativas

- É necessário programar o *Port Bit Configuration Register* antes de utilizar alguma FA.
- Para FAs de entrada, as portas devem ser configuradas como FAs de entrada (flutuante, PU ou PD) e os pinos alimentados externamente.
- Para FAs de saída, as portas devem ser configuradas como FAs de saídas (PP / OD).
- Para FAs bidirecionais, as portas devem ser configuradas como FAs de saídas (PP / OD). Neste caso o driver de entrada é configurado como Entrada Flutuante.

Descrição funcional: Funções Alternativas

- SE um pino é configurado como FA de saída, o Registrador de Saída (ODR) é desconectado do pino e o sinal de saída do periférico presente no chip é conectado a ele.
- Se o software configura um pino como FA, e o periférico não está ativado, a saída no pino é indeterminada.

Descrição funcional: Remapeamento

- Para otimizar o número de periféricos de funções I/O para diferentes encapsulamentos, é possível remapear algumas FAs para outros pinos.
- Via software basta programar os registradores AFIO. Uma vez mapeado, a função não existirá mais no pino original.

Descrição funcional: Locking

- O mecanismo de travamento permite que as configurações do I/O sejam congeladas.
- Quando a sequência de LOCK é aplicada a um pino, não será mais possível modificar o valor até o próximo reset.

Descrição funcional: Config. como entrada

- Quando uma porta I/O é programada como ENTRADA:
 - Os buffers de saída são desativados;
 - O ST de entrada está ativado;
 - Os resistores de weakup PU/PD são ativados ou não dependendo da configuração;
 - O dado presente no pino de I/O é amostrado e colocado no IDR a cada ciclo de clock APB2;
 - Um acesso de leitura ao IDR obtém o estado do pino.

Descrição funcional: Config. como entrada

1. V_{DD FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD}.

Descrição funcional: Config. como saída

- Quando uma porta I/O é programada como SAÍDA:
 - O buffer de saída é ativado;
 - Modo Open Drain (OD): um ZERO no registrador de saída ativa a chave NMOS enquanto que UM no registrador de saída leva a porta a alta-impedância (Hi-Z);
 - Modo Push-Pull: um ZERO no registrador de saída ativa a chave NMOS enquanto que UM no registrador de saída ativa a chave PMOS;
 - O ST de entrada está ativado;
 - Os resistores PU/PD de weakup estão desativados;
 - O dado presentes nos pinos I/O é amostrado no IDR a cada ciclo de clock APB2.
 - Uma leitura de IDR pega o estado da I/O no modo Open-Drain.
 - Uma leitura de ODR pega o último valor escrito no modo Push-Pull

Descrição funcional: Config. como saída

- 1. V_{DD} FT is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .
- Note que a entrada permanece ativa mesmo quando a porta é colocada como saída.

Descrição funcional: Config. como FA

- Quando um pino I/O é programado como FA:
 - O buffer de saída é ligado em OD ou PP;
 - O buffer de saída é controlado pelo sinal proveniente do periférico da FA;
 - O ST de entrada está ativado;
 - Os resistores PU/PD de weakup estão desativados;
 - O dado presentes nos pinos I/O é amostrado no IDR a cada ciclo de clock APB2;
 - Uma leitura de IDR pega o estado da I/O no modo Open-Drain;
 - Uma leitura de ODR pega o último valor escrito no modo Push-Pull.

Descrição funcional: Config. como FA

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

Descrição funcional: Config. como Analógico

- Quando um pino de I/O é programado como Analógico:
 - O buffer de saída é desligado;
 - O ST de entrada é desativado consumindo zero corrente do valor analógico no pino de I/O. A saída do ST fica com valor constante (zero);
 - Os resistores PU/PD de weakup estão desativados;
 - Acessos de leitura em IDR retornam sempre zero.

Descrição funcional: Config. como Analógico

Configurações para dispositivos periféricos

 Nem todo dispositivo ou periférico necessita que se ligue a FA de um pino I/O:

TIM1/8 pinout	Configuration	GPIO configuration			
TIM1/8 CHx	Input capture channel x	Input floating			
TIWIT/O_CITX	Output compare channel x	Alternate function push-pull			
TIM1/8_CHxN	Complementary output channel x	Alternate function push-pull			
TIM1/8_BKIN	Break input	Input floating			
TIM1/8_ETR	External trigger timer input	Input floating			

TIM2/3/4/5 pinout	Configuration	GPIO configuration				
TIM2/3/4/5 CHx	Input capture channel x	Input floating				
T V 2/3/4/3_C X	Output compare channel x	Alternate function push-pull				
TIM2/3/4/5_ETR	External trigger timer input	Input floating				

Configurações para dispositivos periféricos

USART pinout	Configuration	GPIO configuration				
USARTx TX ⁽¹⁾	Full duplex	Alternate function push-pull				
USARIX_IX(1)	Half duplex synchronous mode	Alternate function push-pull				

USART pinout	Configuration	GPIO configuration
USARTx RX	Full duplex	Input floating / Input pull-up
OSANTA_NA	Half duplex synchronous mode	Not used. Can be used as a general IO
USARTx_CK	Synchronous mode	Alternate function push-pull
USARTx_RTS	Hardware flow control	Alternate function push-pull
USARTx_CTS	Hardware flow control	Input floating/ Input pull-up

^{1.} The USART_TX pin can also be configured as alternate function open drain.

Configurações para dispositivos periféricos

I2S pinout	Configuration	GPIO configuration					
I2Sx WS	Master	Alternate function push-pull					
123%_ VV3	Slave	Input floating					
136 v. CK	Master	Alternate function push-pull					
I2Sx_CK	Slave	Input floating					
1267 60	Transmitter	Alternate function push-pull					
I2Sx_SD	Receiver	Input floating/ Input pull-up/ Input pull-down					

I2S pinout	Configuration	GPIO configuration					
I2Sx MCK	Master	Alternate function push-pull					
IZSX_IVION	Slave	Not used. Can be used as a GPIO					

SPI pinout	Configuration	GPIO configuration			
SDIV SCK	Master	Alternate function push-pull			
SPIx_SCK	Slave	Input floating			
	Full duplex / master	Alternate function push-pull			
SDIV MOSI	Full duplex / slave	Input floating / Input pull-up			
SPIx_MOSI	Simplex bidirectional data wire / master	Alternate function push-pull			
	Simplex bidirectional data wire/ slave	Not used. Can be used as a GPIO			
	Full duplex / master	Input floating / Input pull-up			
	Full duplex / slave (point to point)	Alternate function push-pull			
	Full duplex / slave (multi-slave)	Alternate function open drain			
SPIx_MISO	Simplex bidirectional data wire / master	Not used. Can be used as a GPIO			
	Simplex bidirectional data wire/ slave (point to point)	Alternate function push-pull			
	Simplex bidirectional data wire/ slave (multi-slave)	Alternate function open drain			
	Hardware master /slave	Input floating/ Input pull-up / Input pull-down			
SPIx_NSS	Hardware master/ NSS output enabled	Alternate function push-pull			
	Software	Not used. Can be used as a GPIO			

I2C pinout	Configuration		GPIO configuration			
I2Cx_SCL	I2C clock		Alternate function open drain			
I2Cx_SDA	I2C Data I/O		Alternate function open drain			
BxCAN	l pinout		GPIO configuration			
CAN_TX (Transmit data	line)	Alterna	ate function push-pull			
CAN_RX (Receive data I	line)	Input floating / Input pull-up				
	_					
ADC/D	AC pin	GPIO configuration				
ADC/DAC		Analog				
Pins	Alternate function		GPIO configuration			
TAMPER-RTC pin	RTC output	Foi	rced by hardware when configuring the			
TAIVIF LIX-IX TO PIII	Tamper event input	BK	P_CR and BKP_RTCCR registers			
МСО	Clock output	Alte	ernate function push-pull			
EXTI input lines	External input interrupts	Inp	out floating / input pull-up / input pull-down			

Registradores da GPIOx

- Os registradores da GPIO são acessíveis somente em 32 bits. Na família STM32F10X podem existir GPIO de A a G.
- Cada GPIO pode ter até 16 pinos de I/O.
- Importante se atentar aos valores de reset de cada registrador que contra a GPIOx.
- Cada GPIO possui 7 (sete) registradores diretos. Vejamos cada um deles a seguir.

GPIOx_CRL (Control Reg Low) / offset 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	7[1:0]	MODE	E7[1:0]	CNF	6[1:0]	MODE	[1:0]	CNF	5[1:0]	MODE	5[1:0]	CNF	=4[1:0] M		4[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	3[1:0]	MODE	E3[1:0]	CNF	2[1:0]	MODE	MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF0[1:0]		0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30, 27:26, **CNFy[1:0]:** Port x configuration bits (y = 0 ... 7)

23:22, 19:18, 15:14, 11:10, 7:6, 3:2

These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, **MODEy[1:0]**: Port x mode bits (y=0...7)

21:20, 17:16, 13:12, 9:8, 5:4, 1:0 These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

GPIOx_CRH (Control Reg High) / offset 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	[5[1:0]	MODE	15[1:0]	CNF1	4[1:0]	MODE	14[1:0]	CNF1	3[1:0]	3[1:0] MODE13[1:0]		MODE13[1:0] CNF12[1:0]		MODE12[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	1[1:0]	MODE	11[1:0]	CNF1	0[1:0]	MODE	10[1:0]	CNF	9[1:0]	MODE	E9[1:0]	CNF	8[1:0]	MODE	8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30, 27:26, **CNFy[1:0]**: Port x configuration bits (y= 8 .. 15)

23:22, 19:18, 15:14, 11:10, 7:6, 3:2

These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

21:20, 17:16, 13:12, 9:8, 5:4, 1:0

Bits 29:28, 25:24, **MODEy[1:0]:** Port x mode bits (y= 8...15)

These bits are written by software lr à página 161 the corresponding I/O port.

Refer to Table 20: Port bit configuration table.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

GPIOx_IDR (Input Data Reg) / offset 0x08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy:** Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

Reset 0x0000XXXX

GPIOx_ODR (Output Data Reg) / offset 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy:** Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to the GPIOx BSRR register (x = A ... G).

GPIOx_BSRR (Bit Set/Res Reg) / offset 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits 31:16 **BRy:** Port x Reset *bit y* (y = 0 ... 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x Set bit y (y = 0 ... 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Set the corresponding ODRx bit

GPIOx_BRR (Bit Reset Reg) / offset 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	W	w	w	w	w	w	w	w	w	w

Bits 31:16 Reserved

Bits 15:0 **BRy:** Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

GPIOx_LCKR (Locking Reg) / offset 0x18 reset 0x0000000

- Este registrador é utilizado para bloquear a configuração dos pinos de I/O quando uma sequencia correta é aplicada ao bit 16 (LCKK). Durante a execução da sequência, os bits 15:0 não podem mudar.
- Após o travamento não é possível destravar até o próximo reset ocorrer.
- Cada bit de GPIOx_LCKR corresponde ao congelamento de 4 bis dos registradores GPIOx_CRL / GPIOx_CRH.

GPIOx_LCKR (Locking Reg) / offset 0x18

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								LCKK
							reserveu								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:17 Reserved

Bit 16 LCKK[16]: Lock key

This bit can be read anytime. It can only be modified using the Lock Key Writing Sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. GPIOx_LCKR register is locked until the next reset.

LOCK key writing sequence:

Write 1

Write 0

Write 1

Read 0

Read 1 (this read is optional but confirms that the lock is active)

Note: During the LOCK Key Writing sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence will abort the lock.

Bits 15:0 **LCKy**: Port x Lock bit y (y= 0 .. 15)

These bits are read write but can only be written when the LCKK bit is 0.

0: Port configuration not locked

1: Port configuration locked.

Resumo dos Regs da GPIO e valor após reset

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	3	2	1	0
0x00	GPIOx _CRL	CI [1	7	:	DE 7 :0]	(NF 6 :0]	(DE 6 :0]	CN 5	5		DE 5 :0]		NF 4 ·01	MC	1	:	NF 3 :0]	E	OD :3 :0]	CI 2 [1	2	MO 2 [1:	2		NF 1 :0]	MC E [1:	1	CN (1:)		DDE 0 :01
	Reset value	0	_	0	0	0	1	0	0	0	1	0	0	0	-	0	0	0	_	0	-	0	_	0	0	0	_	0	-	0	-		0
0x04	GPIOx _CRH	CI 1 [1		1	DDE 5 :0]	1	NF 4 :0]	1	DE 4 :0]	CN 1 [1:	3	1	DE 3 :0]	1	NF 2 :0]		DE 2 :0]	1	NF 1 :0]	E	OD 11 :0]		VF 0 :0]	MO 1 [1:	0	CI (1	9	MC E [1:	9	CN - 8 [1:	3	MO 8 [1:	3
	Reset value	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
0x08	GPIOx _IDR Reset value								Rese	erve	d									1.0				0		Ry							
0x0C	GPIOx _ODR								Rese	erved								0	0	0	0	0	0	0	OE	ORy	0	0	0	0	0	0	0
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	GPIOx _BSRR								BR[15:0]]													E	BSR	[15:0)]						
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x14	GPIOx _BRR								Rese	erve	b														BR[15:0]]						
	Reset value		0 0 0 0 0 0 0 0 0 0 0 0 0 0								0	0																					
0x18	GPIOx _LCKR		Reserved Y																														
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Mapa de Memória: onde estão as GPIOs?

Boundary address	Peripheral	Bus
0xA000 0000 - 0xA000 0FFF	FSMC	
0x5000 0000 - 0x5003 FFFF	USB OTG FS	
0x4003 0000 - 0x4FFF FFFF	Reserved	
0x4002 8000 - 0x4002 9FFF	Ethernet	
0x4002 3400 - 0x4002 7FFF	Reserved	
0x4002 3000 - 0x4002 33FF	CRC	
0x4002 2000 - 0x4002 23FF	Flash memory interface	AHB
0x4002 1400 - 0x4002 1FFF	Reserved	And
0x4002 1000 - 0x4002 13FF	Reset and clock control RCC	
0x4002 0800 - 0x4002 0FFF	Reserved	7
0x4002 0400 - 0x4002 07FF	DMA2	7
0x4002 0000 - 0x4002 03FF	DMA1	7
0x4001 8400 - 0x4001 FFFF	Reserved	7
0x4001 8000 - 0x4001 83FF	SDIO	7

<u> </u>		, ,
Boundary address	Peripheral	Bus
0x4001 5800 - 0x4001 7FFF	Reserved	
0x4001 5400 - 0x4001 57FF	TIM11 timer	
0x4001 5000 - 0x4001 53FF	TIM10 timer	
0x4001 4C00 - 0x4001 4FFF	TIM9 timer	
0x4001 4000 - 0x4001 4BFF	Reserved	
0x4001 3C00 - 0x4001 3FFF	ADC3	
0x4001 3800 - 0x4001 3BFF	USART1	
0x4001 3400 - 0x4001 37FF	TIM8 timer	7
0x4001 3000 - 0x4001 33FF	SPI1	
0x4001 2C00 - 0x4001 2FFF	TIM1 timer	
0x4001 2800 - 0x4001 2BFF	ADC2	APB2
0x4001 2400 - 0x4001 27FF	ADC1	
0x4001 2000 - 0x4001 23FF	GPIO Port G	
0x4001 1C00 - 0x4001 1FFF	GPIO Port F	
0x4001 1800 - 0x4001 1BFF	GPIO Port E	
0x4001 1400 - 0x4001 17FF	GPIO Port D	
0x4001 1000 - 0x4001 13FF	GPIO Port C	
0x4001 0C00 - 0x4001 0FFF	GPIO Port B	
0x4001 0800 - 0x4001 0BFF	GPIO Port A	/
0x4001 0400 - 0x4001 07FF	EXTI	
0x4001 0000 - 0x4001 03FF	AFIO	

Boundary address	Peripheral	Bus
0x4000 7800 - 0x4000 FFFF	Reserved	
0x4000 7400 - 0x4000 77FF	DAC	
0x4000 7000 - 0x4000 73FF	Power control PWR	
0x4000 6C00 - 0x4000 6FFF	Backup registers (BKP)	
0x4000 6400 - 0x4000 67FF	bxCAN1	
0x4000 6800 - 0x4000 6BFF	bxCAN2	
0x4000 6000 ⁽¹⁾ - 0x4000 63FF	Shared USB/CAN SRAM 512 bytes	
0x4000 5C00 - 0x4000 5FFF	USB device FS registers	
0x4000 5800 - 0x4000 5BFF	I2C2	
0x4000 5400 - 0x4000 57FF	I2C1	
0x4000 5000 - 0x4000 53FF	UART5]
0x4000 4C00 - 0x4000 4FFF	UART4	
0x4000 4800 - 0x4000 4BFF	USART3	
0x4000 4400 - 0x4000 47FF	USART2	
0x4000 4000 - 0x4000 43FF	Reserved	
0x4000 3C00 - 0x4000 3FFF	SPI3/I2S	APB1
0x4000 3800 - 0x4000 3BFF	SPI2/I2S	
0x4000 3400 - 0x4000 37FF	Reserved	
0x4000 3000 - 0x4000 33FF	Independent watchdog (IWDG)	
0x4000 2C00 - 0x4000 2FFF	Window watchdog (WWDG)	
0x4000 2800 - 0x4000 2BFF	RTC	
0x4000 2400 - 0x4000 27FF	Reserved	
0x4000 2000 - 0x4000 23FF	TIM14 timer	
0x4000 1C00 - 0x4000 1FFF	TIM13 timer	
0x4000 1800 - 0x4000 1BFF	TIM12 timer	
0x4000 1400 - 0x4000 17FF	TIM7 timer	
0x4000 1000 - 0x4000 13FF	TIM6 timer	1
0x4000 0C00 - 0x4000 0FFF	TIM5 timer	1
0x4000 0800 - 0x4000 0BFF	TIM4 timer	
0x4000 0400 - 0x4000 07FF	TIM3 timer	1
		1

Mapa de Memória: onde estão as GPIOs ?

0x4001 2000 - 0x4001	1 23FF	GPIO Port G
0x4001 1C00 - 0x400	1 1FFF	GPIO Port F
0x4001 1800 - 0x4001	1 1BFF	GPIO Port E
0x4001 1400 - 0x4001	1 17FF	GPIO Port D
0x4001 1000 - 0x4001	1 13FF	GPIO Port C
0x4001 0C00 - 0x400	1 OFFF	GPIO Port B
0x4001 0800 - 0x4001	1 OBFF	GPIO Port A
0x4001 1000 - 0x4001 0x4001 0C00 - 0x400	1 13FF 1 0FFF	GPIO Port C GPIO Port B