

ImageNomer: developing an fMRI and omics visualization tool to detect racial bias in functional connectivity

Anton Orlichenko Grant Daly Ziyu Zhou Anqi Liu Hui Shen Hong-Wen Deng

Tulane University, Department of Biomedical Engineering

Introduction: challenges and goals

Challenges

- Both functional connectivity (FC) and genomic data may contain from tens of thousands to millions of features
- fMRI datasets may range in size from small (<100 subjects), to large (PNC <2,000 subjects), to huge (UKBB 50,000 subjects)

Goals

- Quality Control In large datasets, a researcher may not even look at every FC matrix (or other type of data)
- Dataset Familiarity How to find relationships, explore data, and get basic statistics on a dataset?
- Identifying Hidden Confounds Are there confounders that go undetected because of limited familiarity with data or from confirmation bias?

Our solution

We create an interactive web-based software for visualization and exploration of connectivitybased fMRI and omics data called ImageNomer

ImageNomer provides the following capabilites:

- Exploration Visualize subjects and get statistics about a cohort
- Correlation Quickly find correlations between images, phenotypes, and genomics data
- Analysis Summarize and get distribution of weights from machine learning models

ImageNomer interface

Figure 1. The FC explorer view of the ImageNomer interface.

Background on fMRI and functional connectivity

- fMRI is an endophenotype that has been used to predict age, sex, intelligence and disease status, such as pre-clinical Alzheimer's disease
- The most common way to interpret fMRI for prediction is through functional connectivity (FC)
- FC is the Pearson correlation between the BOLD signal of different brain regions (Equation 1)

$$\rho_{xy} = \frac{\sigma_{xy}^2}{\sqrt{\sigma_{xx}^2 \sigma_{yy}^2}} \tag{1}$$

ImageNomer architecture

Figure 2. ImageNomer is made up of three loosely coupled parts: the web-based frontend, the Flask server, and the Python backend which is integrated with system libraries.

Validation study on intelligence prediction

Previous studies have identified small effects of FC on intelligence

- Other studies have found that dynamic connectivity predicts which social group subjects identify with
- No attempt was made to control for ethnicity

Can we use ImageNomer to either validate the small effect of FC on intelligence or find a confound?

Summary of findings

We find that fMRI predicts race, not intelligence

- FC explains 10% of variance in intelligence, as measured by cognitive battery
- Race prediction accuracy is 85%
- Controlling for race removes any ability to predict intelligence

On the other hand, fMRI legitimately predicts age and sex

- FC explains 35% of variance in age, and only 10 features can explain up to 15%
- Sex prediction accuracy is 78%

Dataset and methods

Philadelphia Neurodevelopmental Cohort

- fMRI scans for 1,445 healthy adolescents and SNP data for more than 9,267
- 8-23 years old
- Dataset enriched for European (EA) and African (AA) ancestry
- Intelligence measured by WRAT = Wide Range Achievement Test (effect of age regressed out)

Figure 3. Mean FC of subjects in the cohort, alongside the 264-region Power template used to parcellate normalized subject brain volumes.

Prediction made with regularized linear models; features chosen by correlation, model weights, LASSO, and greedy selection.

Results

Prediction	Modality	Metric	Null Model	Best Full Model	Best 10 Features
Age	FC	RMSE, months	38.4	26	32.2
Intelligence	FC	RMSE, WRAT score	15.1	13.6	15.1
Intelligence	SNPs	RMSE, WRAT score	15.1	14	-
Intelligence (AA)	FC	RMSE, WRAT score	13.9	13.8	13.9
Intelligence (AA)	SNPs	RMSE, WRAT score	13.9	13.4	-
Intelligence (EA)	FC	RMSE, WRAT score	14	14.1	14
Intelligence (EA)	SNPs	RMSE, WRAT score	14	13.6	-
Race	FC	Accuracy	58%	85%	72%
Sex	FC	Accuracy	51%	78%	62%

Small ability to predict intelligence disappears when controlling for race. Significant results in blue.

Discussion: ImageNomer can quickly identify bias

Figure 4. ImageNomer can both identify bias and find that FC correlation with intelligence is actually a surrogate for correlation with race.