Statistical Issues in small/pilot Cost-Effectiveness Analysis

Andrea Gabrio

(Thanks to Gianluca Baio and Alexina J. Mason)

http://www.ucl.ac.uk/statistics/research/ statistics-health-economics/

ucakgab@ucl.ac.uk

DEPARTMENT OF STATISTICAL SCIENCE UNIVERSITY COLLEGE LONDON

Outline

- 1. Health Economic Evaluation
- 2. Statistical Issues in CEA
- 3. Motivating example: The MenSS trial
- 4. Modelling
- 5. Results
- 6. Conclusions and Future Work

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Statistical model

 Estimates relevant population parameters θ

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Rayesian framework

"Standard" statistical modelling — individual level data

• The available data usually look something like this:

		D	emographi	cs		HRQL	. data			Resource i	ise data	
ID	Trt	Sex	Age		u_0	u_1		u_J	c ₀	c_1		c_J
1	1	M	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

"Standard" statistical modelling — individual level data

• The available data usually look something like this:

		D	emographic	cs		HRQL	. data			Resource u	ıse data	
ID	Trt	Sex	Age		и0	u_1		иј	c ₀	c_1		СЈ
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	M	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

and the typical analysis is based on the following steps:

Compute individual QALYs and total costs as

$$e_i = \sum_{i=1}^J \left(u_{ij} + u_{ij-1}\right) rac{\delta_j}{2}$$
 and $c_i = \sum_{i=0}^J c_{ij},$ $\left[ext{with: } \delta_j = rac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}
ight]$

"Standard" statistical modelling — individual level data

• The available data usually look something like this:

		D	emographi	cs		HRQL	. data			Resource	ıse data	
ID	Trt	Sex	Age		и0	u_1		иј	c ₀	c_1		сյ
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

and the **typical** analysis is based on the following steps:

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) rac{\delta_j}{2}$$
 and $c_i = \sum_{j=0}^J c_{ij},$ $\left[ext{with: } \delta_j = rac{ ext{Time}_j - ext{Time}_{j-1}}{ ext{Unit of time}}
ight]$

(Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_{i} &=& \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_{i} + \varepsilon_{ei} \, [+ \ldots], & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_{e}) \\ c_{i} &=& \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_{i} + \varepsilon_{ci} \, [+ \ldots], & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_{c}) \end{array}$$

What's wrong with this?

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.

What's wrong with this?

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0; 1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Can use more suitable models (e.g. Gamma or log-Normal) especially under the Bayesian approach

What's wrong with this?

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0; 1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Can use more suitable models (e.g. Gamma or log-Normal) especially under the Bayesian approach
- ... and of course Partially Observed data
 - Missingness may occur in either or both benefits/costs
 - Important to explore the impact on the results of a range of plausible missingness assumptions in sensitivity analysis

The MenSS Trial: Partially-observed data

- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

Time	Type of outcome	observed (%)	observed (%)
		Control $(n_1=75)$	Intervention (n_2 =84)
Baseline	utilities	72 (96%)	72 (86%)
3 months	utilities and costs	34 (45%)	23 (27%)
6 months	utilities and costs	35 (47%)	23 (27%)
12 months	utilities and costs	43 (57%)	36 (43%)
Complete cases	utilities and costs	27 (44%)	19 (23%)

The MenSS Trial: Empirical Distributions

Modelling

Bivariate Normal

Account for correlation between QALYs and costs

Marginal model for e $e_{it} \sim \text{Normal}(\phi_{eit}, \psi_{et})$ $\phi_{eit} = \mu_{et} + \alpha_t (u_{0it} - \bar{u}_{0t})$ $\phi_{eit} = \mu_{et} + \alpha_t u_{0it}^*$

- Bivariate Normal
 - Account for correlation between QALYs and costs
- Beta-Gamma
 - Model the relevant ranges: QALYs \in (0,1) and costs \in (0, ∞)
 - **But**: needs to rescale observed data $e_{it}^* = (e_{it} \epsilon)$ to avoid spikes at 1

- **Bivariate Normal**
 - Account for correlation between QALYs and costs
- Beta-Gamma
 - Model the relevant ranges: QALYs $\in (0,1)$ and costs $\in (0,\infty)$
 - **But**: needs to rescale observed data $e_{it}^* = (e_{it} \epsilon)$ to avoid spikes at 1
- Hurdle model

 $logit(\pi_{it}) = X_{it}\eta_t$

 Model e_{it} as a mixture to account for correlation between outcomes, model the relevant ranges and account for structural values

Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

- **Bivariate Normal**
 - Account for correlation between QALYs and costs
- Beta-Gamma
 - Model the relevant ranges: QALYs $\in (0,1)$ and costs $\in (0,\infty)$
 - **But**: needs to rescale observed data $e_{it}^* = (e_{it} \epsilon)$ to avoid spikes at 1
- Hurdle model
 - Model e_{it} as a mixture to account for correlation between outcomes, model the relevant ranges and account for structural values

Modelling

- Bivariate Normal
 - Account for correlation between QALYs and costs
- Beta-Gamma
 - Model the relevant ranges: QALYs \in (0,1) and costs \in (0, ∞)
 - ullet But: needs to rescale observed data $e_{it}^* = \left(e_{it} \epsilon
 ight)$ to avoid spikes at 1
- 4 Hurdle model
 - Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values

Results: QALYs

Complete Cases
All cases (Missing At Random)

intervention

Results: Costs

Complete Cases
All cases (Missing At Random)

Imputations (under MAR)

Individuals (n2 = 84)

Imputations (under MAR)

Imputations (under MAR)

MNAR

- We observe $n_{01}^*=13$ and $n_{02}^*=22$ individuals with $u_{0it}=1$ and $u_{iit}=$ NA, for j=1,2,3
- For those individuals, we cannot compute directly the structural one indicator d_{it} and so need to make assumptions/model this
 - Sensitivity analysis to alternative departures from MAR

Scenario	Control $(n_1^* = 13)$	Intervention $(n_2^* = 22)$
MNAR1	$d_{ie}=1$	$d_{ie}=1$
MNAR2	$d_{ie}=0$	$d_{ie}=0$
MNAR3	$d_{ie}=1$	$d_{ie}=0$
MNAR4	$d_{ie}=0$	$d_{ie}=1$

Results — MNAR

Probability of e = 1

QALYs mean

Cost-effectiveness analysis

Cost-Effectiveness Acceptability Curve

Conclusions

• Small/pilot trial CEA data are subject to extra complexities that "standard" methods/approaches may fail to handle

Conclusions

- Small/pilot trial CEA data are subject to extra complexities that "standard" methods/approaches may fail to handle
- A full Bayesian approach allows to increase model complexity in a relatively easy way to formally account for these features
 - Asymmetrical distributions for the main outcomes
 - Correlation between costs & benefits
 - Structural values (eg spikes at 1 for utilities or spikes at 0 for costs)
 - Can consider MAR and MNAR with relatively little expansion to the basic model

Conclusions

- Small/pilot trial CEA data are subject to extra complexities that "standard" methods/approaches may fail to handle
- A full Bayesian approach allows to increase model complexity in a relatively easy way to formally account for these features
 - Asymmetrical distributions for the main outcomes
 - Correlation between costs & benefits
 - Structural values (eg spikes at 1 for utilities or spikes at 0 for costs)
 - Can consider MAR and MNAR with relatively little expansion to the basic model
- Missingness assumptions cannot be tested
 - Necessary to explore plausible MNAR departures
 - Assess and quantify impact of uncertainty on inferences and (more importantly) on the decision process

Next Steps

- ullet Model partially-observed outcomes at the longitudinal level (u_{ij},c_{ij})
 - Use all observed data (more efficient)
 - Capture dependence between outcomes and through time

Next Steps

- ullet Model partially-observed outcomes at the longitudinal level (u_{ij},c_{ij})
 - Use all observed data (more efficient)
 - Capture dependence between outcomes and through time
- Use nonignorable models
 - Pattern Mixture Models (extrapolation factorisation)
 - Flexible model for the observed data distribution (e.g. semi-parametric)
 - Identify distribution of missing data with sensitivity parameters

Next Steps

- ullet Model partially-observed outcomes at the longitudinal level (u_{ij},c_{ij})
 - Use all observed data (more efficient)
 - Capture dependence between outcomes and through time
- Use nonignorable models
 - Pattern Mixture Models (extrapolation factorisation)
 - Flexible model for the observed data distribution (e.g. semi-parametric)
 - Identify distribution of missing data with sensitivity parameters
- Perform sensitivity analysis
 - Naturally falls within a Bayesian approach
 - Calibrate priors on expert opinion or the observed data
 - Assess the robustness of the results to a range of plausible assumptions