Resistencia equivalente de resistores en serie y en paralelo Ciclo 2024- 02

Objetivos

- 1- Verificar las reglas para calcular la resistencia equivalente para combinaciones de resistores en serie y en paralelo.
- 2- Calcular la incerteza de las resistencias equivalentes a partir de las incertezas individuales de cada resistor, a partir de la información del medidor usado (manual), para analizar las diferencia teóricas y prácticas.

Referencias teóricas

Un resistor presenta cierta oposición al paso de corriente eléctrica, la cual denominamos resistencia eléctrica (R). Las combinaciones básicas de resistores son en serie y en paralelo.

Por ejemplo, si tenemos tres resistores con resistencias R_1 , R_2 y R_3 respectivamente al combinarlas en serie tendríamos una resistencia equivalente que viene dada por

Si las combinamos en paralelo la resistencia equivalente es:

$$R_{eqp} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$$

Materiales y equipos

- 1 tablero de conexiones
- 3 resistores de diferentes valores
- 1 multímetro
- 1 manual del multímetro utilizado (digital)

Figura 3: Resistores sobre tabla de conexiones

Procedimiento

1- Tome los tres resistores en su equipo y mida la resistencia de cada uno, completando la siguiente tabla, ordenados de menor a mayor

Tabla 1

Resistor	Resistencia nominal / Ω	Resistencia medida / Ω
1		
2		
3		

La resistencia nominal es la anotada en el resistor o la calculada según el código de colores.

2- Combinación en serie

2.1 En el tablero de conexiones conecte los resistores 1 y 2 en serie y mida con el multímetro su resistencia equivalente, complete la siguiente tabla

Tabla 2

Resistor	Resistencia /Ω	Resistencia equivalente / Ω
1		
2		

2.2 Repita el paso anterior, ahora combinando los tres resistores

Tabla 3

Resistor	Resistencia /Ω	Resistencia equivalente / Ω
1		
2		
3		

3- Combinación en serie

3.1 En el tablero de conexiones conecte los resistores 1 y 2 en paralelo y mida con el multímetro su resistencia equivalente, complete la siguiente tabla

Tabla 4

Resistor	Resistencia / Ω	Resistencia equivalente medida $/\Omega$
1		
2		

3.2 Repita el paso anterior, ahora combinando los tres resistores en paralelo

Tabla 5

Resistor	Resistencia /Ω	Resistencia equivalente medida $/\Omega$
1		
2		
3		

4- Combinación híbrida serie-paralelo

Coloque los resistores 1 y 2 en paralelo y a dicha combinación agregue el resistor 3 en serie. Mida la resistencia equivalente con el multímetro y anótela en el siguiente cuadro. Dibuje el diagrama que corresponde o tome fotografía del arreglo.

Tabla 6

Resistor	Resistencia /Ω	Resistencia equivalente medida $/\Omega$
1		
2		
3		

REPORTE: Resistencia equivalente de resistores en serie y en paralelo

Integrantes:			

Cuestionario

Objetivos

1. Para la tabla 1 calcule la incerteza de las resistencias medidas, según el manual del multímetro utilizado y agréguele en una columna adicional

Resistor	Resistencia nominal $/\Omega$	Resistencia medida / Ω	Incerteza absoluta según el manual del multímetro.
1			
2			
3			

Dentro de los límites de error ¿coinciden los valores medidos con los nominales? Explique.

- 2. Calcule la resistencia equivalente teórica de los 2 resistores conectados en serie (tabla 2). ¿Es congruente este valor con el obtenido a partir de la medición? ¿están dentro del rango de incertezas? Explique por qué.
- 3. Calcule la resistencia equivalente teórica de los 3 resistores conectados en serie (tabla 3). ¿Es congruente este valor con el obtenido a partir de la medición? ¿están dentro del rango de incertezas? Explique por qué.
- 4. Repita el análisis anterior para los resistores conectados en paralelo (tablas 4 y 5)
- 5. Para la tabla 6 calcule la resistencia equivalente de la combinación híbrida serie-paralelo y compare mediante las incertezas si concuerdan con la medida.

Conclusiones

Anote 3 conclusiones válidas sobre las combinaciones serie y paralelo que pueda inferir de los resultados obtenidos