Dimensionality Reduction Part 3: The Local Manifold

Ng Yen Kaow

Dimensionality Reduction

- Linear methods
 - PCA (Principal Component Analysis)
 - CMDS (Classical Multidimensional Scaling)
- Non-linear methods
 - KPCA (Kernel PCA)
 - mMDS (Metric MDS)
 - Isomap
 - **LLE** (Locally Linear Embedding)
 - Laplacian Eigenmap
 - t-SNE (t-distributed Stochastic Neighbor Embedding)
 - UMAP (Uniform Manifold Approximation and Projection)

Keys principles for PCA/MDS

	Property in matrix	Linearity of mapped space	Principle	Dimensionality reduction
PCA	Pairwise (global) covariance	Linearly mapped space (or no mapping)	Maximizes covariance in mapped space	Principal eigenvectors
cMDS	Pairwise (global) inner product	Linearly mapped space (or no mapping)	Recovers original structure	Principal eigenvectors
mMDS	Pairwise (global) metric distance	Non-linearly mapped space	Find approximate dimension	tion in low
Kernel PCA	Pairwise (global) covariance	Non-linearly mapped space	Maximizes covariance in mapped space	Principal eigenvectors

[□] PCA readily allows embedding of **out-of-sample examples**

Drawback with global properties

 Global properties on some manifolds cannot characterize the manifold well

 Techniques based on preserving global properties does poorly on the Swiss roll

Drawback with global properties

Data projected to main three eigenvectors in **kernel PCA** (rbf kernel)

On the other hand, methods such as **LLE** (in later slides) can handle the Swiss roll

Trends in Dimensionality Reduction

1901 PCA 1958 MDS

Global property preserving Local manifold preserving Graph property preserving

1963 SVM

1964 Kernel Perceptron

1969 Sammon's Mapping

1992 Kernel SVM

1997 Metric MDS

1998 Kernel PCA

2000 Isomap, LLE

2001 Laplacian Eigenmap

2008 t-SNE

2018 UMAP

Linear

Non-linear

Non-global

© 2021. Ng Yen Kaow

Local structure preserving mapping

Weinberger and Saul. "Unsupervised Learning of Image Manifolds by Semi-definite Programming", CVPR 2004

Isomap idea

- Isomap performs only the first step to find (Euclidean) distances of neighboring points
- Pairwise (geodesic) distances are estimated using the neighboring distances
- □ Then, MDS is used on the estimated geodesic distances

Isomap algorithm

- 1. Construct neighborhood graph
 - Find nearest k neighbors $N(x_i)$ of each point x_i
 - Construct a neighborhood graph by connecting x_i to the points in N(x_i) with Euclidean distance set as edge weight
- 2. Compute (shortest) distance matrix M
 - Find shortest distance between pairwise points on the graph
- 3. Find eigenvectors of M using MDS (or PCA)

Isomap

- At first look, appear to be very different from kernel PCA (or PCA)
- However, from a kernel perspective,
 Isomap is similarly a kernel method
 - Discussed in Ham *et al*. "A kernel view of the dimensionality reduction of manifolds", 2003
 - Such a framework allows mapping out-ofsample examples to the embedded space
 - Discussed in Bengio *et al*. "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

Laplacian Eigenmap idea

- □ The normalized Laplacian L encodes structure of the graph
 - The eigenvectors of L known to encode important features of the graph (see slides on Spectral Clustering)
- The Laplacian can be considered as eigenfunctions similar to kernel functions
 - Discussed in Bengio et al. "Learning eigenfunctions links Spectral Embedding and Kernel PCA", 2004
 - Readily gives rise to using Laplacian in similar way as Kernel PCA

Laplacian Eigenmap algorithm

- 1. Construct neighborhood graph
 - Find nearest k neighbors $N(x_i)$ of each point x_i
 - Construct a neighborhood graph by connecting x_i to the points in $N(x_i)$ with **Gaussian heat** function set as edge weight
- 2. Construct normalized Laplacian *L* and degree matrix *D*
- 3. Find the eigenvectors for the generalized eigenvalue system $Lu = \lambda Du$

Laplacian Eigenmap

- Mapping of out-of-sample examples not immediately available like in Kernel PCA
 - Discussed in Bengio et al. "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

Locally Linear Embedding (LLE)

□ LLE is the first algorithm that runs the full scheme

Locally Linear Embedding (LLE)

- 1. Construct neighborhood graph
 - Find nearest k neighbors $N(x_i)$ of each point x_i
- 2 Find matrix W which minimizes its sum of squares error in representing each x_i with its neighbors x_i as a linear combination of its neighbors
 - If suffices that for each i error(w_i) = $||x_i \sum_{j \neq i} w_{ij} x_j||^2$ is minimized
- 3. Find low dimensional $y_1, ..., y_n$ that is most consistent with W
 - Minimize

error
$$(y_1, ..., y_n) = \sum_{i=1}^n ||y_i - \sum_{j \neq i} w_{ij} y_j||^2$$

- □ For each i, find $w_{i1}, ..., w_{ik}$ such that $\|x_i \sum_{j \neq i} w_{ij} x_j\|^2$ is minimized
 - Further require that $\sum_{i} w_{ij} = 1$
 - 1. Then, solution will be invariant to translation

Let
$$x'_j \rightarrow x_j + c$$
. Then,

$$x'_j - \sum_{j \neq i} w_{ij} x'_j = x_j + c - \sum_{j \neq i} w_{ij} (x_j + c)$$

$$= x_j + c - \sum_{j \neq i} w_{ij} x_j - c$$

$$= x_j - \sum_{i \neq i} w_{ij} x_i$$

2. Also, w_{ij} can be interpreted as transition probability

- □ For each i, find $w_{i1}, ..., w_{ik}$ such that $\|x_i \sum_{j \neq i} w_{ij} x_j\|^2$ is minimized
 - 1. Let $x'_j \to x_j x_i$ (Center x_j) Then, $||x'_i - \sum_{j \neq i} w_{ij} x'_j||^2 = ||\sum_{j \neq i} w_{ij} x'_j||^2$
 - 2. Let $C_i = [x'_1, ..., x'_k]$ Then, $\|\sum_{j \neq i} w_{ij} x'_j\|^2 = w_i^T C_i C_i^T w_i$ Or, $\|\sum_{j \neq i} w_{ij} x'_j\|^2 = w_i^T G_i w_i$ for $G_i = C_i C_i^T$
 - \Rightarrow Minimize $w_i^T G_i w_i$ subject to $\sum_j w_{ij} = 1$ Cannot be done by eigendecomposition of G_i since constraint $\sum_j w_{ij} = 1$ cannot be fulfilled Return to the Lagrange multiplier method

- \square Minimize $w_i^{\mathrm{T}}G_iw_i$ subject to $\sum_j w_{ij} = 1$
 - 1. Use Lagrange multiplier to constrain $\sum_{j} w_{ij} = 1$ That is, $\mathbf{1}^{T}w_{i} - 1 = 0$, Lagrangian, $\mathcal{L}(w_{i}, \lambda) = w_{i}^{T}Gw_{i} - \lambda(\mathbf{1}^{T}w_{i} - 1)$ $\frac{\partial \mathcal{L}}{\partial w_{i}} = 2G_{i}w_{i} - \lambda\mathbf{1} = 0 \Rightarrow G_{i}w_{i} = \frac{\lambda}{2}\mathbf{1}$ $\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{1}^{T}w_{i} - 1 = 0$
 - 2. If G is invertible

$$G_i w_i = \frac{\lambda}{2} \mathbf{1} \Rightarrow w_i = \frac{\lambda}{2} G_i^{-1} \mathbf{1}$$

Find $G_i^{-1}\mathbf{1}$ or solve linear equations $G_iw_i = \frac{\lambda}{2}\mathbf{1}$ Then, scale λ such that $\sum_i w_{ij} = 1$

3. If G is not invertible ($k \ge m$, rank deficient), use Tikhonov regularization

Minimize $w_i^T G_i w_i + \alpha w_i^T w_i$ instead, subject to $||w_i|| = 1$, where α determines the degree of regularization

$$\mathcal{L}(w_i, \lambda) = w_i^{\mathrm{T}} G w_i + \alpha w_i^{\mathrm{T}} w_i - \lambda (\mathbf{1}^{\mathrm{T}} w_i - 1)$$

$$\frac{\partial \mathcal{L}}{\partial w_i} = 2G_i w_i + 2\alpha w_i - \lambda \mathbf{1} = 0$$

$$(G_i + \alpha I) w_i = \frac{\lambda}{2} \mathbf{1}$$

$$w_i = \frac{\lambda}{2} (G_i + \alpha I)^{-1} \mathbf{1}$$

Find $w_i = (G_i + \alpha I)^{-1} \mathbf{1}$ or solve linear equations $(G_i + \alpha I)w_i = \mathbf{1}$. Scale λ such that $\sum_i w_{ij} = 1$

LLE Step 3: Find low-D $y_1, ..., y_n$

- □ Find $y_1, ..., y_n \in \mathbb{R}^q$ such that $\|y_i \sum_{j \neq i} w_{ij} y_j\|^2$ is minimized
 - To restrict equivalent solutions due to translation, require that $\sum_i y_i = 0$ (centered)
 - Let Y be the matrix formed by y_i as the rows, and u_i be the columns of Y. To ensure that u_i are orthogonal, require that $Y^TY = nI$

i.e.
$$Y^TY = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}^T \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} [u_1 \quad \dots \quad u_n] = \begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix}$$

$$\begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix} = nI \Rightarrow u_iu_j = 0 \text{ for } i \neq j$$

LLE Step 3: Find low-D $y_1, ..., y_n$

Find $y_1, ..., y_n \in \mathbb{R}^q$ such that $\|y_i - \sum_{j \neq i} w_{ij} y_j\|^2$ is minimized subject to $Y^T Y = nI$ and $\sum_i y_i = 0$

$$\sum_{i=1}^{n} (y_{i} - \sum_{j} w_{ij} y_{j})^{2}$$

$$= \sum_{i}^{n} y_{i}^{2} - y_{i} (\sum_{j} w_{ij} y_{j}) - (\sum_{j} w_{ij} y_{j}) y_{i} + (\sum_{j} w_{ij} y_{j})^{2}$$

$$= Y^{T}Y - Y^{T}(WY) - (WY)^{T}Y + (WY)^{T}(WY)$$

$$= ((I - W)Y)^{T} ((I - W)Y)$$

$$= Y^{T} (I - W)^{T} (I - W)Y$$

$$= Y^{T} MY \text{ where } M = (I - W)^{T} (I - W)$$

LLE Step 3: Find low-D $y_1, ..., y_n$

□ Minimize Y^TMY where $M = (I - W)^T(I - W)$ subject to $Y^TY = nI$ and $\sum_i y_i = 0$ Consider first case q = 1 (that is, Y is column vector and I = 1)

$$\mathcal{L}(Y,\mu) = Y^T M Y - \mu \left(\frac{Y^T Y}{n} - 1 \right) - \nu Y$$

$$\frac{\partial \mathcal{L}}{\partial Y} = 2MY - 2\frac{\mu}{n}Y - \nu = 0 \Rightarrow MY = \frac{\mu}{n}Y \text{ (Set } \nu = 0)$$

Hence Y is a eigenvector of M

For $q \ge 2$, simply observe that by the min-max theorem the eigenvectors for M minimizes Y^TMY

Finally, since
$$W\mathbf{1} = \mathbf{1}$$
, $(I - W)\mathbf{1} = 0$
 $\Rightarrow (I - W)^{\mathrm{T}}(I - W)\mathbf{1} = 0 \Rightarrow M\mathbf{1} = 0$
 $\Rightarrow Y = \mathbf{1}$ is a eigenvector of zero eigenvalue (excluded)

LLE algorithm

- 1. Construct neighborhood graph Find nearest k neighbors $N(x_i)$ of each point x_i
- 2. Find matrix W which minimizes its sum of squares error in representing each x_i with its neighbors For each i

Let $x'_j \rightarrow x_j - x_i$ and Let $C_i = [x'_1, ..., x'_k]$

Solve $G_i w_i = \mathbf{1}$ where $G_i = C_i C_i^{\mathrm{T}}$

Scale w_i such that $w_i \mathbf{1} = 1$

Collect w_i into W

3. Find low dimensional $y_1, ..., y_n$ that is most consistent with W

Find eigenvectors for $M = (I - W)^{T}(I - W)$ with smallest eigenvalues

LLE out-of-sample examples

- Mapping of out-of-sample examples not immediately available like in Kernel PCA
 - Discussed in Bengio et al. "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

Comparison

	Isomap	Laplacian Eigenmap	LLE
Edge weight	Approximated geodesic distance	Gaussian $e^{-d^2/\sigma}$ (transition probability)	Coefficients w_{ij} in reconstructing x_i (transition probability)
Pairwise edge or neighborhood only	Pairwise Distant pairs use shortest path distance	Pairwise Distant pairs near zero	Neighborhood only Matrix contains mostly zeros
Matrix to decompose	Edge weight	Normalized Laplacian	Edge weight
Embedding into lower dimensional space	Use principal eigenvectors from MDS	Use principal eigenvectors that retain graph structure	Find low dimensional points that give the same w_{ij} (shown to be principal eigenvectors)
Edge weight preservation	Preserves Euclidean distance	Preserves $e^{-d^2/\sigma}$	Normalized, scale-free