2

Docket No.:

K-241

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Young Joon SONG

Serial No.: New U.S. Patent Application

Filed:

November 30, 2000

For:

METHOD FOR GENERATING AND TRANSMITTING OPTIMAL

CELL ID CODES

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENTS

Assistant Commissioner of Patents Washington, D. C. 20231

Sir:

At the time the above application was filed, priority was claimed based on the following applications:

Korean Patent Application Nos. 54097/1999 filed December 1, 1999, 711/2000 filed

January 7, 2000 and 4914/2000 filed February 1, 2000.

A copy of each priority application listed above is enclosed.

Respectfully submitted,

FLESHNER & KM, LLP

Daniel Y.J. Kim

Registration No. 36,186

P. O. Box 221200 Chantilly, Virginia 20153-1200 703 502-9440

Date: November 30, 2000

DYK/kam

대한민국특허 KOREAN INDUSTRIAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Industrial Property Office.

출 원 번 호

특허출원 2000년 제 4914 호

Application Number

출 원 년 월 일

2000년 02월 01일

Date of Application

출

원

인 :

엘지정보통신주식회사

Applicant(s)

2000

11

21

0

특

허

첬

년

COMMISSIONER

919980000484

101110100000000000000

방식	당	당	심	사	관
싔 [
심					
삼					

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0005

【제출일자】 2000.02.01

【국제특허분류】 H04B

【발명의 국문명칭】최적의 셀 식별 코드 생성 및 그의 전송 방법

【발명의 영문명칭】method for generating optimal cell identification

code, and for transmitting the code

【출원인】

【명칭】 엘지정보통신주식회사

【출원인코드】 1-1998-000286-1

【대리인】

【성명】 강용복

【대리인코드】 9-1998-000048-4

【포괄위임등록번호】 1999-057037-3

【대리인】

【성명】 김용인

【대리인코드】 9-1998-000022-1

【포괄위임등록번호】 1999-057038-1

[발명자]

【성명의 국문표기】 송영준

【성명의 영문표기】 SONG. Young Joon

【주민등록번호】 651214-1108619

【우편번호】 431-080

【주소】 경기도 안양시 동안구 호계동 570번지 럭키아파트 101동 903호 【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다.

대리인 강용복 (인)

대리인 김용인 (인)

【수수료】

【기본출원료】	20	면	29,000	원
【가산출원료】	13	면	13.000	원
【우선권주장료】	. 0	건	0	원
【심사청구료】	0	항	0	원
[한계]			42 000	위

【첨부서류】 1.요약서 명세서(도면)_1통

【요약서】

[요약]

본 발명은 차세대 이동통신에 관한 것으로, 특히 광대역 코드분할 다중접속(이하, W-CDMA 라 약칭함) 방식의 이동통신 시스템에서 셀(=기지국)을 식별하기 위한 셀 식별 코드의 생성과 그 생성된 코드의 전송 방법에 관한 것이다.

이에 대해 본 발명에서는 최적 성능의 셀 식별을 만족시키고, 소프트 핸드오 버 모드에서 최적의 다이버시티 효과를 발휘할 수 있도록, 활성군의 크기에 따른 능동적인 할당(Dynamic allocation)을 고려하여 최소해밍거리(Minimum Hamming Distance)가 최대가 되는 최적의 사이트 선택 다이버시티 전송(SSDT : Site Selection Diversity Transmit) 셀 식별 코드를 만들고, 이를 상향링크 채널을 통해 보다 효과적으로 전송하는 방법을 제공한다.

【 대표도】

도 4c

【색인어】

피이드백 식별자(FBI), 하다마드 코드(Hadamard code), 배직교 코드(Bi-orthogonal code)

【명세서】

【 발명의 명칭】

<1>

<2>

<3>

<4>

<5>

<6>

최적의 셀 식별 코드 생성 및 그의 전송 방법{method for generating optimal cell identification code, and for transmitting the code}

【 도면의 간단한 설명】

도 1은 3GPP 규격에 따른 상향링크 전용물리채널(DPCH) 구조를 나타낸 도면.

도 2는 3GPP 규격에 따른 상향링크 전용물리채널(DPCH)에서 피이드백 식별자(FBI) 필드의 상세 구조를 나타낸 도면.

도 3은 본 발명에서 각 슬롯당 FBI 필드에 1비트씩 삽입되는 경우, 상기 사용자측(UE)에 의해 할당되는 셀 식별 코드의 전송 예들을 설명하기 위한 도면.

도 4는 본 발명에서 각 슬롯당 FBI 필드에 2비트씩 삽입되는 경우, 상기 사용자측(UE)에 의해 할당되는 셀 식별 코드의 전송 예들을 설명하기 위한 도면.

【 발명의 상세한 설명】

【 발명의 목적】

【 발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 차세대 이동통신에 관한 것으로, 특히 W-CDMA 방식의 이동통신 시스템에서 셀(=기지국)을 식별하기 위한 셀 식별 코드의 생성과 그 생성된 코드의 전송 방법에 관한 것이다.

일반적으로 3세대 공동 프로젝트(3GPP : Third Generation Partnership Project)의 무선 접속 네트워크(RAN : Radio Access Network) 규격에서는 사이트

선택 다이버시티 전송(Site Selection Diversity Transmit : 이하, SSDT 라 약칭함)에 대해 기술하고 있다. 여기서 사이트(Site), 기지국 및 셀은 서로 동일한 의미를 갖는다.

SSDT는 소프트 핸드오버 모드(soft handover mode)에서의 선택적인 대규모다이버시티(macro diversity) 기법으로, 이러한 시스템측(UTRAN : UMTS Terrestrial Radio Access Network)에 의해 그 서비스 여부가 결정되는 SSDT 동작을 통해 사용자측(UE: User Equipment)은 활성군(active set)에 있는 셀들 중에서 "Primary cell"이라는 한 개의 셀을 선택한다. 이 때 선택되지 않은 다른 모든 셀들은 "Non-primary cell"이 된다.

여기서 SSDT의 목적은 하향링크에서의 정보 전송을 제1 순위 셀(이하, Primary cell 라 칭함)에서 실행하도록 하여, 소프트 핸드오버 모드에서 다중 전송에 의해 야기되는 간섭을 줄이고자 함이다.

<8>

<9>

<10>

<11>

그런데 Primary cell 선택을 위해서는 전송 레벨이 일정 수준 이상이 되는 각 유효 셀들에게 각 임시 식별자(temporary identification)가 할당되며, 사용자 측(UE)은 Primary cell에 해당되는 식별자 코드를 접속되어 있는 셀들에게 알린다.

이 때 사용자측(UE)은 유효 셀들(active cells)에 의해 전송된 공통 파일럿의 수신 레벨을 주기적으로 측정하고 비교하여 Primary cell을 선택하며, 가장 큰파일럿 전력을 가진 셀이 Primary cell로 선택된다. 이후 사용자측(UE)에 의해 후순위(이하, Non-primary 라 칭함)로 선택된 셀들의 전송 전력을 단절시킨다.

Primary cell의 식별자 코드는 도 1에 도시된 상향링크 전용물리채널(DPCH)

에서 상향링크 전용물리제어채널(DPCCH: Dedicated Physical Control Channel)과 같은 제어채널의 여러 필드 중 피이드백 식별자(Feed-Back Indicator: 이하, FBI라 약칭함) 필드를 통해 활성군에 속해 있는 셀들에게 주기적으로 전달된다. 다음의 표 2에서 알 수 있듯이 FBI는 한 개의 슬롯에 1비트 또는 2비트가 전송되는데, FBI가 1비트인 경우는 한 무선프레임에 15비트가 전송되고, FBI가 2비트인 경우는한 무선프레임에 30비트가 전송된다. 그리고 사용자측(UE)은 식별자 코드를 선택된 Primary cell에게 전송할 때, 각 슬롯당 FBI 필드에 1비트를 삽입하여 전송할지 아니면 2비트를 삽입하여 전송할지 결정한다.

참고로 도 1에서 k는 상향링크 전용물리채널(DPCH)에서의 확산인자(SF: Spreading Factor)와 관계되는데, 256에서 4까지의 값을 갖는 확산인자(SF)는 256/2^k로 주어진다. 또한 상향링크 전용물리데이터채널(DPDCH)과 전용물리제어채널(DPCCH)에서 각 슬롯당 필드들의 비트수는 다음 표 1과 표 2와 같이 정해진다.

<13> 【 班 1】

<12>

<14>

슬롯 포맷 번호	채널 비트 레이트	채널 심볼 레이트		프레임당	슬롯당	N _{data}
(Slot Format #1)	(Channel Bit Rate)	(Channel Symbol Rate)	인자	비트수	비트수	비트수
	(kbps)	(ksps)	(SF)	(Bits/	(Bits/	,— ,
				Frame)	Slot)	
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80
4	240	240	16	2400	160	160
5	480	480	8	4800	320	320
6	960	960	4	9600	640	640

[丑 2]

슬롯 포맷 번호 (Slot Format #1)	(Channel	채널 심볼 레 이트 (Channel Symbol Rate) (ksps)	확산 인자 (SF)	프레임당 비트수 (Bits/ Frame)	슬롯당 비트수 (Bits/ Slot)	N _{pilot} 비 트 수	N _{IFCI} 비 트 수	N _{FBI} 비 트 수	N _{TPC} . 비 트 수
0	15	15	256	150	10	6	2	0	2
1	15	15	256	150	10	8	0	0	2
2	15	15	256	150	10	5	2	1	2
3	15	15	256	150	10	· 7	0	1	2
4	15	15	256	150	10	6	0	2	2
5	15	15	256	150	10	5	2	2	1

상기한 표 2에서 FBI 필드에 삽입되는 각 슬롯당 비트수를 나타내는 N_{FBI}는

사용자측(UE)과 시스템측(UTRAN)의 접속점(Access point) 사이에 피이드백이 요구되는 폐쇄 루프 모드 전송 다이버시티(closed loop mode transmit diversity)나 SSDT에 사용된다.

또한 N_{FBI}는 도 2에 도시된 바와 같이 S 필드(S field)와 D 필드(D field)로 나뉘어진다. 여기서 S 필드는 SSDT 신호처리에 사용되고, D 필드는 피이드백 모드 의 전송 다이버시티 신호처리에 사용된다.

도 2에서 S 필드 및 D 필드의 길이는 각각 0, 1, 2가 될 수 있으며, 이 또한 표 2를 통해 알 수 있다. 만약 SSDT에 의한 전력제어와 피이드백 모드의 전송 다이 버시티를 동시에 사용할 경우에는 S 필드와 D 필드에 각각 1비트씩을 사용한다.

이하 소프트 핸드오버 모드에서 다중 전송에 의해 야기되는 간섭을 줄이기 위한 SSDT 동작에 대해 보다 상세히 설명한다.

상기의 SSDT은 소프트 핸드오버 모드(soft handover mode)에서 활성군의 셀들에 근거한 시스템측(UTRAN)에 의해 초기 동작되며, 이후 현재 소프트 핸드오버주기 동안 활성화되어 있는 SSDT 옵션의 시스템측(UTRAN)은 셀과 사용자측(UE)에게

<19>

<18>

<15>_

<16>

<17>

이를 알린다. 이 때 임시 식별자가 활성군의 순서에 근거하여 할당되며, 활성화되어 있는 여러 유효 셀 및 사용자측(UE)에게 전달된다.

유효 리스트(Active list)를 수신한 특정 셀은 자신의 식별자 코드를 결정할수 있는 그 리스트에서 등록지위(entry position)를 알수 있으며, 동시에 유효 리스트를 수신 중에 있는 사용자측(UE)은 그 리스트에서 셀이 등록하는 순서에 따른 유효 셀들의 각 식별자 코드를 정할수 있다.

<20>

<21>

<22>

<23>

<24>

<25>

그러므로 시스템측(UTRAN)과 사용자측(UE)은 식별자 코드와 셀들간에 동일한 조합을 갖는다. 이 때 유효 리스트는 매번 갱신되며, 갱신된 유효 리스트는 모든 유효 셀들과 사용자측(UE)에 전달된다.

SSDT와 사용자측(UE) 인증(acknowledgement)의 활성화 이후 사용자측(UE)이 Primary cell의 식별자 코드를 보내기 시작하는데, 성공적인 SSDT의 활성화와 사용자측(UE) 인증 수락에 따라 유효 셀들은 Primary cell 식별자 정보를 검출하기 시작한다.

다음은 임시 셀 식별자의 설정에 대해 설명하면, SSDT 동안 각 셀에게 임시 식별자가 부여되며, 이 식별자는 사이트 선택 신호(Site Selection signal)로써 사용된다.

상위계층에서 SSDT 모드로 사용자측(UE)과 셀간 전송할 것으로 결정되는 경우, 사용자측(UE)은 유효 셀 중 가장 적절한 하나의 셀을 Primary cell로 정하여 FBI 필드를 통해 시스템측(UTRAN)에 알려 준다.

임시 셀 식별자는 특정 비트길이를 갖는 이진 비트 시퀀스로 부여되며, 이를

다음 표 3과 표 4에 나타내었다.

표 3에는 각 슬롯당 FBI가 1비트인 경우의 임시 식별자 코드이며, 표 4는 각 슬롯당 FBI가 2비트인 경우의 임시 식별자 코드이다.

다음 표 3과 표 4에서, 임시 식별자 코드는 "long", "medium", 그리고 "short"의 형태를 가지며, 각 형태에 대해 모두 8가지 코드가 있다.

임시 식별자 코드는 반드시 한 프레임 내에서 전송되어야 하는데, 만약 임시 식별자 코드를 한 프레임의 각 FBI 필드에 전부 삽입하여 전송하지 못하고 두 프레 임에 삽입하여 전송할 경우에는 임시 식별자 코드의 마지막 비트가 펑쳐링(Puncturing)된다.

<26>

<27>

<28>

식별자 라벨	식별자 코드				
	long	medium	short		
a	000000000000000	0000000(0)	00000		
b	1111111111111111	1111111(1)	11111		
c	000000001111111	0000111(1)	00011		
d	111111110000000	1111000(0)	11100		
е	000011111111000	0011110(0)	00110		
f	111100000000111	1100001(1)	11001		
g	001111000011110	0110011(0)	01010		
h	110000111100001	1001100(1)	10101		

30> 【 丑 4】

식별자 라벨	식별자 코드					
·	long	medium	short			
a	0000000(0)	000(0)	000			
	0000000(0)	000(0)	000			
b	1111111(1)	111(1)	111			
	1111111(1)	111(1)	111			
С	0000000(0)	000(0)	000			
	1111111(1)	111(1)	. 111			
d	1111111(1)	111(1)	111			
	0000000(0)	000(0)	000			
e	0000111(1)	001(1)	001			
	1111000(0)	110(0)	100			
f	1111000(0)	110(0)	110			
	0000111(1)	001(1)	011			
g	0011110(0)	011(0)	010			
	0011110(0)	011(0)	010			
h	1100001(1)	100(1)	101			
	1100001(1)	100(1)	101			

다음 표 5는 상기한 표 3과 표 4에 나타낸 임시 식별자 코드의 특성에 의해 각 식별자 코드 형태별로 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수를 나타내었다.

【 표 5】

<31>

<32>

<33>

<34>

코드 길이	SSDT를 위해 할당된	슬롯당 FBI 비트수
	1	2
"long"	프레임당 1회 사이트 선택	프레임당 2회 사이트 선택
"medium"	프레임당 2회 사이트 선택	프레임당 4회 사이트 선택
"short"	프레임당 3회 사이트 선택	프레임당 5회 사이트 선택

상기한 표 5를 자세히 설명하면, 먼저 슬롯당 FBI가 1비트인 경우에 long 식별자 코드는 각 슬롯에 1비트씩 한 프레임당 15비트가 전송되므로 한 프레임당 1회의 사이트 선택이 이루어지며, 슬롯당 FBI가 2비트인 경우에 long 식별자 코드는 각 슬롯에 2비트씩 한 프레임당 30비트가 전송되므로 한 프레임당 2회의 사이트 선택이 이루어진다.

또한 슬롯당 FBI가 1비트인 경우에 medium 식별자 코드는 한 프레임당 15비트가 전송되므로 한 프레임당 2회의 사이트 선택이 이루어지며, 슬롯당 FBI가 2비

트인 경우에 medium 식별자 코드는 한 프레임당 30비트가 전송되므로 한 프레임당 4회의 사이트 선택이 이루어진다.

<35>

<36>

<37>

<38>

<39>

<40>

마지막으로 슬롯당 FBI가 1비트인 경우에 short 식별자 코드는 한 프레임당 15비트가 전송되므로 한 프레임당 3회의 사이트 선택이 이루어지며, 슬롯당 FBI가 2비트인 경우에 medium 식별자 코드는 한 프레임당 30비트가 전송되므로 한 프레임당 5회의 사이트 선택이 이루어진다.

앞에서도 언급했듯이 SSDT 및 사용자측(UE) 인증(acknowledgement)의 활성화이후 사용자측(UE)이 상기한 임시 식별자 코드 중 하나를 Primary cell 식별자 코드로 결정하여 전달할 때는 상향링크 제어채널의 FBI 필드를 통해 주기적으로 전달한다.

만약에 다음의 세 가지 조건을 동시에 만족하는 경우에는, 이 셀은 Nonprimary 셀이 된다.

첫 째 만약 어떤 셀이 자신의 식별자 코드와 일치되지 않는 Primary cell 식별자 코드를 수신하고, 둘 째 셀에 수신된 상향링크 신호의 품질이시스템측(UTRAN)에 의해 정의되는 임계치를 만족하고, 세 째 상향링크 압축모드(Compressed mode)에서는 $\lfloor N_{JD}/3 \rfloor$ 보다 작은 수의 심볼이 평쳐링된 경우이다.

그러데 상기 나열된 세 가지 조건 중 한 개라도 만족하지 않으면 Primary cell로 유지된다.

다음 SSDT의 종료는 시스템측(UTRAN)에 의해 결정된다. 시스템측(UTRAN)은

소프트 핸드오버의 종료 절차와 동일한 방식으로 SSDT를 종료하고 이 사실을 모든 셀들과 사용자측(UE)에게 알린다.

<41>

이와 같은 종래의 SSDT에서 각 셀을 식별하는데 있어 사용되는 셀 식별 코드의 성능은 최대 상호 상관함수 값 또는 최소해밍거리(dmin)에 의해 결정되며, 이에따라 최대 상호 상관함수 값이 작거나 최소해밍거리(dmin)가 최대인 최적의 셀 식별코드가 현재 요구되고 있으며, 이를 이용하여 보다 더 우수한 성능을 내는 셀 식별방안이 요구되고 있다.

【 발명이 이루고자 하는 기술적 과제】

<42>

본 발명의 목적은 상기한 점을 감안하여 안출한 것으로, 최적 성능의 셀 식별을 만족시키고, 소프트 핸드오버 모드에서 최적의 다이버시티 효과를 발휘할 수있도록, 활성군의 크기에 따른 능동적인 할당(Dynamic allocation)을 고려하여 최소해밍거리(Minimum Hamming Distance)가 최대가 되는 최적의 SSDT 셀 식별 코드를만들고, 이를 상향링크 채널을 통해 보다 효과적으로 전송하는 방법을 제공한다.

<43>

상기한 목적을 달성하기 위한 본 발명에 따른 최적의 셀 식별 코드 생성 및 그의 전송 방법의 특징은, 사용자측(UE)이 주변 다수의 셀들 중 활성군에 속한 유효 셀들에게 사이트 선택 다이버시티 전송(SSDT) 식별자 코드를 할당함에 있어서, 상기 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작하는 시점에서, 상기 활성군에 속한 유효 셀의 개수에 따라 하다마드 코드에 기반한 임시 식별자 코드와 배직교 코드에 기반한 임시 식별자 코드 중 선택된 하나 또는 그 이상

의 코드를 상기 유효 셀들에게 각각 선택적으로 할당하고, 상기 사용자측(UE)에 의해 할당된 해당 식별자 코드를 사이트 선택 다이버시티 전송(SSDT) 동안 각 유효셀들에게 전송한다.

바람직하게는, 상기 활성군에 속한 유효 셀의 개수가 2이하일 경우에는, 상기 배직교 코드를 기반으로 하여 생성된 두 개의 임시 식별자 코드 중 하나 또는 그 이상의 코드를 상기 유효 셀들에게 각각 선택적으로 할당하며, 상기 활성군에 속한 유효 셀의 개수가 2이하일 경우에 할당되는 배직교 코드 기반의 두 개의 임시식별자 코드는 서로 직교되는 코드이다.

또한, 상기 활성군에 속한 유효 셀의 개수가 3이상일 경우에는, 상기 하다마 드 코드를 기반으로 하여 생성된 복수 개의 임시 식별자 코드 중 복수 개의 코드를 상기 유효 셀들에게 각각 선택적으로 할당한다.

마지막으로, 상기 식별자 코드의 할당 이후에 상기 활성군에 속한 유효 셀개수가 3이상으로 증가될 경우에는 상기 하다마드 코드에 기반한 임시 식별자 코드중 선택된 복수 개의 코드를 해당 유효 셀들에게 각각 선택적으로 할당하며, 상기식별자 코드의 할당 이후에 상기 활성군에 속한 유효 셀 개수가 2이하로 감소될 경우에는 상기 배직교 코드에 기반한 임시 식별자 코드 중 선택된 하나 또는 두 개의 코드를 해당 유효 셀들에게 각각 선택적으로 할당한다.

【 발명의 구성】

<45>

<46>

<47>

이하 본 발명에 따른 최적의 셀 식별 코드 생성 및 그의 전송 방법에 대한 바람직한 일 실시 예를 첨부된 도면을 참조하여 설명한다.

임시 셀 식별자는 특정 비트길이를 갖는 이진 비트 시퀀스로 부여되며, 각슬롯당 FBI가 1비트인 경우에 본 발명에서 제안한 SSDT 임시 식별자 코드를 다음 표 6에 나타내었다. 또한 각 슬롯당 FBI가 2비트인 경우에 본 발명에서 제안한 SSDT 임시 식별자 코드를 다음 표 7에 나타내었다.

다음 표 6 및 표 7에서 알 수 있듯이, 본 발명의 임시 식별자 코드는 "Long", "Medium", 그리고 "Short"의 3가지 형태를 가지며, 이들 각각의 형태에 대해 모두 8가지 코드가 있다. 이들 임시 식별자 코드는 반드시 한 프레임 내에서 전송되어야 하는데, 만약 임시 식별자 코드를 한 프레임의 각 FBI 필드에 전부 삽입하여 전송하지 못하고 두 프레임에 삽입하여 전송할 경우에는 임시 평처링(Puncturing)된 식별자 코드를 사용한다.

【 丑 6】

<48>

<49>

<50>

<51>

식별자 라벨	식별자 코드					
	Long	Medium	Short			
A	000000000000000	(0)0000000	00000			
B1	111111111111111	(1)1111111	11111			
B2	101010101010101	(0)1010101	01001			
C	011001100110011	(0)0110011	11011			
D	110011001100110	(0)1100110	10010			
E	000111100001111	(0)0001111	00111			
F	101101001011010	(0)1011010	01110			
G	011110000111100	(0)0111100	11100			
H	110100101101001	(0)1101001	10101			

【 표 7]

r	Τ	1)111-1	
		식별자 코드	
식별자 리	· <u>(열과 행은 슬롯</u>	위치와 FBI 비트 위	치를 나타낸다.)
벨	long	medium	short
A	(0)0000000	(0)000	000
	(0)0000000	(0)000	000
B1	(1)1111111	(1)111	111
	(1)1111111	(1)111	111
B2	(0)0000000	(0)000	000
	(1)1111111	(1)111	111
C	(0)1010101	(0)101	101
	(0)1010101	(0)101	101
D	(0)1010101	(0)101	101
	(1)0101010	(1)010	010
E	(0)0110011	(0)011	011
	(0)0110011	(0)011	011
F	- (0)0110011	(0)011	011
	(1)1001100	(1)100	100
G	(0)1100110	(0)110	110
	(0)1100110	(0)110	110
Н	(0)1100110	(0)110	110
	(1)0011001	(1)001	001

상기한 표 6 및 표 7에서 각 코드길이의 식별자 코드에 대한 최소해밍거리(d_{nin})는 이후에 언급한다.

상기한 표 6과 표 7에 나타낸 본 발명의 임시 식별자 코드 중 식별자 라벨이 각각 A, B2, C, D, E, F, G, H인 것들은 다음에 표 8에 나타낸 길이가 각각 8이고 16인 하다마드 코드를 기반으로 하여 생성된다.

<54> 【 丑 8】

<52>

<53>

길이가 8인 하다마드 코드	길이가 16인 하다마드 코드
$H_{3,0} = 0000 \ 0000$	$H_{4.0} = 0000 \ 0000 \ 0000 \ 0000$
$H_{3.1} = 0101 \ 0101$	$H_{4,1} = 0101 \ 0101 \ 0101 \ 0101$
$H_{3,2} = 0011 \ 0011$	$H_{4.2} = 0011 \ 0011 \ 0011 \ 0011$
$H_{3,3} = 0110 \ 0110$	$H_{4.3} = 0110 \ 0110 \ 0110 \ 0110$
$H_{3.4} = 0000 1111$	$H_{4,4} = 0000 1111 0000 1111$
$H_{3.5} = 0101 \ 1010$	$H_{4.5} = 0101 \ 1010 \ 0101 \ 1010$
$H_{3.6} = 0011 \ 1100$	$H_{4.6} = 0011 \ 1100 \ 0011 \ 1100$
$H_{3,7} = 0110 \ 1001$	$H_{4.7} = 0110 \ 1001 \ 0110 \ 1001$
·	$H_{4.8} = 0000 \ 0000 \ 1111 \ 1111$
	$H_{4,9} = 0101 \ 0101 \ 1010 \ 1010$
	H _{4,10} = 0011 0011 1100 1100
·	H _{4,11} = 0110 0110 1001 1001
	H _{4.12} = 0000 1111 1111 0000
	H _{4.13} = 0101 1010 1010 0101
	H _{4,14} = 0011 1100 1100 0011
,	H _{4.15} = 0110 1001 1001 0110

<55>

<56>

<57>

<58>

상기한 표 8에서 길이가 8인 하다마드 코드와 길이가 16인 하다마드 코드는 첫 번째 비트가 모두 0의 비트값을 가지므로, 이 첫 번째 비트를 평쳐링하더라도 최소해밍거리에는 영향을 주지 않는다는 특성이 있다.

특히 본 발명에서는 식별자 코드 형태별로 각각 8개의 SSDT 식별자 코드가 사용되므로, 길이가 8인 하다마드 코드 8개를 사용하며, 길이가 16인 하다마드 코드에서는 16개 중 상위 8개를 사용한다.

길이가 16인 2비트 FBI의 long 식별자 코드의 첫 번째, 두 번째 비트를 펑쳐 링하여 길이기 14인 long 식별자 코드를 생성한다.

또한 상기한 표 6과 표 7에 나타낸 본 발명의 임시 식별자 코드 중 식별자라벨이 각각 A, B1인 것들은 다음에 나타낸 길이가 각각 8이고 16인 배직교 코드의일부를 기반으로 하여 선택적으로 생성된다.

<59>

 $B_{3.0} = 0000 0000$

<60>

 $B_{3,1} = 1111 1111$

<61>

 $B_{4,0} = 0000 \ 0000 \ 0000 \ 0000$

<62>

 $B_{4,1} = 1111 1111 1111 1111$

<63>

다음 본 발명에서는 상기 표 6과 표 7의 각 임시 식별자 코드를 다음과 같이 생성한다.

<64>

먼저 하다마드 코드를 기반으로 하여 생성되는 식별자 라벨 A, B2, C, D, E, F, G, H의 임시 식별자 코드에 대해 설명한다.

<65>

다음에 설명하겠지만, 상기 식별자 라벨 A, B2, C, D, E, F, G, H의 임시 식별자 코드는 활성군(active set)에 속한 셀들의 개수 즉 활성군 크기(active set size)가 3이상 8이하인 경우에, 사용자측(UE)이 활성군에 속해 있는 각 유효 셀들에게 할당한다.

<66>

상기한 표 6에서 각 슬롯당 FBI가 1비트이고, 활성군 크기(active set size) 가 3이상 8이하인 경우에 할당되는 임시 식별자 코드들은 다음과 같이 생성된다.

<67>

먼저 코드길이가 15인 8개의 long 식별자 코드는 코드길이가 16인 하다마드 코드의 첫 번째 비트를 펑쳐링하여 생성된다.

<68>

다음 코드길이가 8인 8개의 medium 식별자 코드는 코드길이가 8인 하다마드 코드를 그대로 사용하며, 이 코드길이 8인 8개의 medium 식별자 코드와 함께 하나 의 무선프레임에 삽입되어 전송되는 코드길이 7인 식별자 코드는 8비트길이인 8개 의 하다마드 코드들의 첫 번째 비트를 펑쳐링하여 생성된다.

다음 코드길이가 5인 8개의 short 식별자 코드는 코드길이가 8인 하다마드 코드에서 첫 번째 비트를 우선적으로 펑쳐링하며, 다음 표 9, 표 10 및 표 11에 나 타낸 21가지 패턴들처럼 나머지 두 비트를 더 펑쳐링하여 생성된다.

<70> - 【 丑 9】

<69>

코드길이 8인	코드길이 5인 short 식별자 코드
하다마드 코드	
비트의 열 위치	
	4 5 6 7 8 3 5 6 7 8 3 4 6 7 8 3 4 5 7 8 3 4 5 6 8 3 4 5 6 7 2 5 6 7 8
00000000	000000000000000000000000000000000000000
01010101	10101 00101 01101 01001 01011 01010 10101
00110011	1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1
01100110	00110 10110 10110 10010 10010 10011 10011
00001111	0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1
01011010	1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0
00111100	
01101001	01001 1 100 1 1 000 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1

<71> 【 丑 10】

│ 코드길이 8인 │	코드길이 5인 short 식별자 코드
하다마드 코드	
비트의 열 위치	
12345678	2 4 6 7 8 2 4 5 7 8 2 4 5 6 8 2 4 5 6 7 2 3 6 7 8 2 3 5 7 8 2 3 5 6 8
00000000	000000000000000000000000000000000000000
101010101	11101111001111011111010110101110001110011
1010101011	
[00110011]	0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0
1011001101	101101100100101100101101111110111010111010
00001111	00111100111100111100111100111100111100111
1010110101	1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1
00111100	0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0
0 1 1 0 1 0 0 1	10001 10101 10101 11010 1 1100 1 1111 101 1111 101

【 표 11】

_	_		-	71	~1	_	-		_	_	_	_	_	_	_		_		_			_	_	r	: 7	71 0	3	<u> </u>	,		_		_	J 1	n -	à.	_	드	-	_	_	_			_	_	_	
					이드					ı													_	<i>L</i> ==	- 7	2~	1	υŧ	_	21	w		•	4 7	2/	4	37	=										•
1	÷	_	_	-	_	-	_			┝	-	-	-	-	-	Т	-	-			_	7	_	_	_		_	Т		_	-	_		Г	_	_			T	_		_		Т			_	_
1										١,	,	3	5	•	. 7	. [9	2		-	, ,		2	3		6	Ω	l,	,	จ.	A	6	7	١,	ิจ	A	5	Ω	١,	, ,			. 7	١,	, ,		6	6
6	_				_					냙			_	0	_) (_	-								0	lő				
ő	_	-	•	•	_	_	-		- 1	ր	ì	•	_	1	_	-11		ñ		n	-	ľ	-	ñ	1	ĭ	1	ľi	ì		ĺ	1	ŏ	ĭ	ŏ		ŏ	_	ľi	Ô	1		ñ	ľ	ñ	1	n	1
ō	_	-		-	_	_		•	-	lô	1	ĺ	Õ	ō	ĭ	k)	ĭ	ī	ī	ī	ı	ō	ī	ī	ō	ī	lō	1	1	ĺ	0	1	Б	ī	ī	ō	ī	lō	ì	ī	0	ī	6	ī	ī	Õ	ō
0	1	1		0	0	1		ı	0	1	1	Ĺ	Ō	1	1	ŀ	l	1	0	1	0	l	1	1	0	1	0	1	. 1	1 ()	1	1	h	1	0	0	0	1	1	0	0	1	1	1	0	0	1
0	0	C)	0	1	1	. :	l	1	þ	()	1	1	1	k)	0	0	1	1	ŀ	0	0	0	1	1	0	() () .	1	1	0	0	0	1	1	Ю	0	0	`1	1	lo	0	0	1	1
0	1	()	1	1	0) :	l	0	1	()	1	0	1	ľ	l	0	1	1	0	۱	1	0	1	0	0	1	()]	Ļ	0	1	1	0	1	1	0	1	0	1	1	1	1	0	1	1	0
0	0	1	l	1	1	1	()	0	Ю	1	l	1	1	0	K)	1	_	_	0	I	0	1	1	1	0	þ	1	L]	L	1	0	Ю	1	1	1	0	Ю	1	1	1	0	0	1	1	1	1
0	1	1	ı	0	1	0	1)	1	[1	1	l	1	0	0	_[]	L	1	0	0	1		1	1	0	0	1	[1	. 1	<u>l (</u>) (0_	0	1	1	0	1	1	1	1	0	1	0	11	1	0	1	0

상기 표 9에 나타낸 코드길이 5비트의 short 식별자 코드는 코드길이 8인 8 개의 하다마드 코드에서 각각 순서대로 (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,3,4) 위치 패턴의 각 3비트들을 펑쳐링하여 생성된다.

다음 표 10에 나타낸 코드길이 5비트의 short 식별자 코드는 코드길이 8비트 인 8개의 하다마드 코드에서 각각 순서대로 (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,4,5), (1,4,6), (1,4,7) 위치 패턴의 각 3비트들을 평쳐링하여 생성된다.

마지막 표 11에 나타낸 코드길이 5비트의 short 식별자 코드는 코드길이 8비트인 8개의 하다마드 코드에서 각각 순서대로 (1,4,8), (1,5,6), (1,5,7), (1,5,8), (1,6,7), (1,6,8), (1,7,8) 위치 패턴의 각 3비트들을 펑쳐링하여 생성된다.

본 발명에서는 상기한 21가지 패턴들을 모두 선택적으로 사용한다. 그러나 상기한 표 9의 일부 short 식별자 코드들과 같이 공통적으로 코드길이 8비트인 하 다마드 코드의 첫 번째 비트와 두 번째 비트를 펑쳐링하며, 이후 나머지 1비트가 6 가지의 패턴으로 펑쳐링되는 (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7),

<72>

<74>

<75>

<76>

(1,2,8) 위치 패턴을 우선적으로 사용한다.

<77>

<78> 1

<79>

<80>

<81>

<82>

따라서 코드길이 8비트인 하다마드 코드의 첫 번째 비트와 두 번째 비트와 나머지 임의의 1비트를 펑쳐링하여 코드길이 5인 식별자 코드들 을 생성한다.

이렇게 생성된 코드길이 5비트인 short 식별자 코드 21가지는 모두 동일한 최소해밍거리를 가진다.

그러나 이들 21가지의 각 short 식별자 코드는 도플러 주파수에 따라 서로 다른 성능을 가지며, 이에 따라 본 발명에서는 상기 표 6과 같이 21가지 short 식 별자 코드 중 코드길이 8비트의 하다마드 코드의 첫 번째, 두 번째 및 여섯 번째 비트를 펑쳐링하여 생성된 (1,2,6) 위치 패턴의 short 식별자 코드가 최우선적으로 선택되어 사용된다.

다음은 상기한 표 7에서 각 슬롯당 FBI가 2비트이고, 활성군 크기(active set size)가 3이상 8이하인 경우에 할당되는 임시 식별자 코드들은 다음과 같이 생성된다.

먼저 코드길이가 16인 8개의 long 식별자 코드는 코드길이가 16인 하다마드 코드를 그대로 사용하며, 이 코드길이 16인 8개의 long 식별자 코드와 함께 하나의 무선프레임에 삽입되어 전송되는 코드길이 14인 식별자 코드는 16비트길이인 8개의 하다마드 코드들의 첫 번째 비트와 두 번째 비트를 평쳐링하여 생성된다.

다음 코드길이가 8인 8개의 medium 식별자 코드는 코드길이가 8인 하다마드 코드를 그대로 사용하며, 이 코드길이 8인 8개의 medium 식별자 코드와 함께 하나의 무선프레임에 삽입되어 전송되는 코드길이 6인 식별자 코드는 8비트길이인 8개

의 하다마드 코드들의 첫 번째 비트와 두 번째 비트를 펑쳐링하여 생성된다. 다음 코드길이가 6인 8개의 short 식별자 코드도 8비트길이인 8개의 하다마드 코드들의 첫 번째 비트와 두 번째 비트를 펑쳐링하여 생성된다.

사용자측(UE)은 상기와 같이 생성된 SSDT 식별자 코드 중 하나를 Primary cell 식별자 코드로 결정한 후 해당 식별자 코드를 활성군에 속해 있는 셀들에게 주기적으로 전달하며, 이 때는 상향링크 제어채널의 FBI 필드를 통해 전달한다.

다음은 서로 직교성을 갖는 배직교 코드를 기반으로 하여 생성되는 식별자라벨 A, B1의 임시 식별자 코드에 대해 설명한다.

상기 식별자 라벨 A, B1의 임시 식별자 코드는 활성군(active set)에 속한 셀들의 개수 즉 활성군 크기(active set size)가 2이하인 경우에, 사용자측(UE)이 활성군에 속해 있는 둘 이하의 각 유효 셀들에게 할당한다.

상기한 표 6에서 각 슬롯당 FBI가 1비트이고, 활성군 크기(active set size) 가 2이하인 경우에 할당되는 임시 식별자 코드들은 다음과 같이 생성된다.

먼저 코드길이가 15인 2개의 long 식별자 코드는 코드길이가 16인 배직교 코드의 첫 번째 비트를 펑쳐링하여 생성된다. 이 때는 각 코드의 모든 비트값이 0 또는 1로 동일이므로 어떠한 비트를 펑쳐링해도 되지만 첫 번째 비트를 펑쳐링하면 상기한 하다마드 코드를 펑쳐링하는 경우에 사용되는 펑쳐링 알고리즘과 공통성을 가지므로 구현상의 이점이 있다. 또한 식별자 라벨 B1인 식별자 코드는 A에 대해 직교 코드이다.

다음 코드길이가 8인 2개의 medium 식별자 코드는 코드길이가 8인 배직교 코

<88>

<83>

<84>

<85>

<86>

<87>

드를 그대로 사용하며, 이 코드길이 8인 2개의 medium 식별자 코드와 함께 하나의 무선프레임에 삽입되어 전송되는 코드길이 7인 식별자 코드는 8비트길이인 2개의 하다마드 코드들의 첫 번째 비트를 펑쳐링하여 생성된다. 이 때도 각 코드의 모든 비트값이 0 또는 1로 동일이므로 어떠한 비트를 펑쳐링해도 되지만 첫 번째 비트를 펑쳐링하면 상기한 하다마드 코드를 펑쳐링하는 경우에 사용되는 펑쳐링 알고리즘 과 공통성을 가지므로 구현상의 이점이 있다.

<89>

다음 코드길이가 5인 2개의 short 식별자 코드는 코드길이가 8인 배직교 코드에서 첫 번째 비트를 우선적으로 평쳐링하며, 다음에는 상기한 하다마드 코드에서의 21가지 패턴들처럼 나머지 두 비트를 더 평쳐링하여 생성된다. 이 때도 상기한 하다마드 코드를 평쳐링하는 경우에 사용되는 평쳐링 알고리즘과 공통성을 가지도록, 21가지 short 식별자 코드 중 코드길이 8비트의 배직교 코드의 첫 번째, 두번째 및 여섯 번째 비트를 평쳐링하여 생성된 (1,2,6) 위치 패턴의 short 식별자코드가 최우선적으로 선택되어 사용된다.

<90>

다음은 상기한 표 7에서 각 슬롯당 FBI가 2비트이고, 활성군 크기(active set size)가 2이하인 경우에 할당되는 임시 식별자 코드들은 다음과 같이 생성된다. 이 때도 하다마드 코드를 펑쳐링하는 경우와의 공통성을 고려한다.

<91>

먼저 코드길이가 16인 2개의 long 식별자 코드는 코드길이가 16인 배직교 코드를 그대로 사용하며, 이 코드길이 16인 2개의 long 식별자 코드와 함께 하나의 무선프레임에 삽입되어 전송되는 코드길이 14인 식별자 코드는 16비트길이인 2개의 배직교 코드들의 첫 번째 비트와 두 번째 비트를 평쳐링하여 생성된다. <92>

다음 코드길이가 8인 2개의 medium 식별자 코드는 코드길이가 8인 배직교 코드를 그대로 사용하며, 이 코드길이 8인 2개의 medium 식별자 코드와 함께 하나의 무선프레임에 삽입되어 전송되는 코드길이 6인 식별자 코드는 8비트길이인 2개의 배직교 코드들의 첫 번째 비트와 두 번째 비트를 펑쳐링하여 생성된다. 다음 코드길이가 6인 2개의 short 식별자 코드도 8비트길이인 2개의 배직교 코드들의 첫 번째 비트와 두 번째 비트를 펑쳐링하여 생성된다.

<93>

사용자측(UE)은 상기와 같이 생성된 SSDT 식별자 코드 중 하나를 Primary cell 식별자 코드로 결정한 후 해당 식별자 코드를 활성군에 속해 있는 두 개의 셀들에게 주기적으로 전달하며, 이 때는 상향링크 제어채널의 FBI 필드를 통해 전달한다.

<94>

다음은 상기 생성된 SSDT 식별자 코드의 전송 동작을 설명한다.

<95>

이에 대한 설명에 앞서 SSDT 서비스하는 경우는, 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작하는 시점에서 활성군의 셀들에 근거한 시스템측(UTRAN)에 의해 초기 동작된다. 이후 현재 소프트 핸드오버 주기 동안 활성화되어 있는 SSDT 옵션의 시스템측(UTRAN)이 셀과 사용자측(UE)에게 이를 알린다.

<96>

이에 따라 사용자측(UE)은 주변의 활성군 크기(active set size)에 따라 상기에서 생성된 식별자 코드를 유효 셀들에게 할당하며, 사용자측(UE)의 소프트 핸드오버 모드(soft handover mode) 동작이 종료되는 시점에서 SSDT 식별자 코드의할당이 해제된다.

<97>

식별자 코드의 할당 기법으로는 고정적 할당 기법(static allocation

technique)과 능동적 할당 기법(dynamic allocation technique)이 있다.

<98>

고정적 할당 기법을 예를 들어 설명하면, 사용자측(UE)이 소프트 핸드오버모드(soft handover mode)로 동작하는 시점에서 주변의 각 셀들 중 활성군에 속한 셀들에게 미리 고정적인 식별자 코드(예로써, 표 6 또는 표 7의 A, B2, C)를 할당한다. 이후 활성군에 속한 셀이 바뀌면 사용자측(UE)은 새로이 활성군에 들어온 셀에게 다른 식별자 코드(예로써, 표 6 또는 표 7의 D)를 할당하고, 활성군에서 빠져나간 셀에게 할당되었던 식별자 코드(예로써, B2)는 일단 여유 코드로 두어 나중에다른 셀에게 할당될 수 있도록 한다.

<99>

그러나 능동적 할당 기법에서는, 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작하는 시점에서 주변의 각 셀들 중 활성군에 속한 셀들에게 미리 식별자 코드(예로써, 표 6 또는 표 7의 A, B2, C)를 할당한 경우에, 이후 활성군에 속한 셀이 바뀌면 사용자측(UE)은 활성군에서 빠져나간 셀에게 할당되었던 식별자 코드를 다시 새로이 활성군에 들어온 셀에게 할당한다.

<100>

본 발명은 이러한 능동적 할당 기법은 물론 고정적 할당 기법에서도 최적의 성능을 얻을 수 있으며, 시스템 운영 면에서는 능동적 할당 기법의 경우에 더욱 원 활한 적용이 이루어진다.

<101>

또한 본 발명에서는 활성군에 속한 셀들의 개수 즉 활성군의 크기에 따라 하다마드 코드를 기반으로 하여 생성된 식별자 코드를 할당하거나(활성군 크기가 3이상 8이하일 경우), 배직교 코드를 기반으로 하여 생성된 두 개의 식별자 코드를 할당한다(활성군 크기가 2이하일 경우).

<102>

도 3은 본 발명에서 각 슬롯당 FBI 필드에 1비트씩 삽입되는 경우, 상기 사용자측(UE)에 의해 할당되는 셀 식별 코드의 전송 예들을 설명하기 위한 도면이다.

<103>

도 3a는 코드길이 15인 long 식별자 코드가 한 프레임에 전송되는 경우로써, 사용자측(UE)은 활성군의 크기에 따라 표 6에 나타낸 하다마드 코드에 기반한 코드길이 15인 8개의 식별자 코드(식별자 라벨 A, B2, C, D, E, F, G, H) 중에서 선택한 하나 또는 배직교 코드에 기반한 코드길이 15인 2개의 식별자 코드(식별자 라벨 A, B1) 중에서 선택한 하나를 각 슬롯의 FBI 필드에 1비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 1회이다.

<104>

다음 도 3b는 코드길이 8인 medium 식별자 코드와 코드길이 7인 medium 식별자 코드가 함께 한 프레임에 전송되는 경우로써, 사용자측(UE)은 활성군의 크기에따라 표 6에 나타낸 하다마드 코드에 기반한 코드길이 8인 8개의 식별자 코드(식별자 라벨 A, B2, C, D, E, F, G, H) 중에서 선택한 하나 또는 배직교 코드에 기반한코드길이 8인 2개의 식별자 코드(식별자 라벨 A, B1) 중에서 선택한 하나를 처음 8개 슬롯의 FBI 필드에 1비트씩 삽입하고, 나머지 7개의 슬롯에는 표 6에 나타낸 하다마드 코드에 기반한코드길이 7인 8개의 식별자 코드(식별자 라벨 A, B2, C, D, E, F, G, H) 중에서 선택된 하나 또는 배직교 코드에 기반한코드길이 7인 2개의식별자 코드(식별자 라벨 A, B2, C, D, E, F, G, H) 중에서 선택된 하나 또는 배직교 코드에 기반한코드길이 7인 2개의식별자 코드(식별자 라벨 A, B1) 중 하나를 자 FBI 필드에 1비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 2회이다.

<105>

다음 도 3c는 코드길이 5인 short 식별자 코드가 한 프레임에 3번 전송되는 경우로써, 활성군의 크기에 따라 사용자측(UE)은 표 6에 나타낸 하다마드 코드에 기반한 코드길이 5인 8개의 식별자 코드(식별자 라벨 A, B2, C, D, E, F, G, H) 중에서 선택한 하나 또는 배직교 코드에 기반한 코드길이 5인 2개의 식별자 코드(식별자 라벨 A, B1)를 5개 슬롯단위의 각 FBI 필드에 1비트씩 연속적으로 반복 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는사이트 선택 회수가 3회이다.

<106>

도 4는 본 발명에서 각 슬롯당 FBI 필드에 2비트씩 삽입되는 경우, 상기 사용자측(UE)에 의해 할당되는 셀 식별 코드의 전송 예들을 설명하기 위한 도면이다.

<107>

도 4a는 코드길이 16인 long 식별자 코드와 코드길이 15인 long 식별자 코드가 함께 한 프레임에 전송되는 경우로써, 활성군의 크기에 따라 사용자축(UE)은 표 7에 나타낸 하다마드 코드에 기반한 코드길이 16인 8개의 식별자 코드 중에서 선택한 하나 또는 배직교 코드에 기반한 코드길이 16인 2개의 식별자 코드 중에서 선택한 하나를 처음 8개 슬롯의 FBI 필드에 각 열(column)별로 2비트씩 삽입하고, 나머지 7개의 슬롯에는 표 7에 나타낸 하다마드 코드에 기반한 코드길이 14인 8개의 식별자 코드 중에서 선택된 하나 또는 배직교 코드에 기반한 코드길이 14인 2개의 식별자 코드 중에서 선택된 하나를 각 FBI 필드에 각 열별 2비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택회수가 2회이다.

<108>

다음 도 4b는 코드길이 8인 medium 식별자 코드와 코드길이 6인 medium 식별

자 코드가 함께 한 프레임에 전송되는 경우로써, 활성군의 크기에 따라 사용자측(UE)은 표 7에 나타낸 하다마드 코드에 기반한 코드길이 8인 8개의 식별자 코드 중에서 선택한 하나 또는 배직교 코드에 기반한 코드길이 8인 2개의 식별자 코드 중에서 선택한 하나를 처음 12개 슬롯 중 4개 슬롯단위의 각 FBI 필드에 열별 2비트씩 3회 반복 삽입하고, 나머지 3개의 슬롯에는 표 7에 나타낸 하다마드 코드에 기반한 코드길이 6인 8개의 식별자 코드 중에서 선택된 하나 또는 배직교 코드에 기반한 코드길이 6인 2개의 식별자 코드 중에서 선택된 하나를 각 FBI 필드에 2비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 4회이다.

<109>

다음 도 4c는 코드길이 6인 short 식별자 코드가 한 프레임에 5번 전송되는 경우로써, 활성군의 크기에 따라 사용자측(UE)은 표 7에 나타낸 하다마드 코드에 기반한 코드길이 6인 8개의 식별자 코드 중에서 선택한 하나 또는 배직교 코드에 기반한 코드길이 6인 2개의 식별자 코드 중에서 선택한 하나를 3개 슬롯단위의 각 FBI 필드에 2비트씩 연속적으로 반복 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 5회이다.

<110>

이상의 사용자측(UE)에 의해 할당되는 셀 식별 코드의 전송은, 능동적 할당기법을 기본으로 하여 최대의 최소해밍거리(Minimum Hamming Distance)를 얻는다.

<111>

다음은 상기에서 설명된 능동적 할당 기법을 사용하여, 본 발명의 최적 SSDT 식별자 코드 할당 예들을 설명한다.

<112>

첫 번째, 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작

하는 시점에서 활성군에 속한 셀 개수가 2인 경우 즉 활성군 크기가 2인 경우에는 상기한 표 6 또는 표 7에서 식별자 라벨 A, B1에 해당되는 배직교 코드에 기반한 식별자 코드를 활성군에 속한 각 유효 셀들에게 할당한다. 이후 활성군의 유효 셀의 개수가 증가하여 활성군 크기가 3이 된다면 상기한 표 6 또는 표 7에서 식별자라벨 A, B2, C에 해당되는 하다마드 코드에 기반한 식별자 코드를 활성군에 속한 3개의 유효 셀들에게 각각 할당한다.

<113>

두 번째, 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작하는 시점에서 활성군 크기가 2인 경우에는 상기한 표 6 또는 표 7에서 식별자 라벨 A, B1에 해당되는 배직교 코드에 기반한 식별자 코드를 활성군에 속한 두 개의유효 셀들에게 각각 할당한다. 이후 활성군의 유효 셀 개수는 증가되지 않고 활성군의 셀이 바뀐다면, 사용자측(UE)은 활성군에서 빠져나간 셀에게 할당되었던 식별자 코드를 다시 새로이 활성군에 들어온 셀에게 할당한다. 이는 능동적 할당 기법에 근거한 할당 절차이며, 물론 고정적 할당 기법일 경우에는 활성군에 새로이 들어온 셀에게 하다마드 코드에 기반한 식별자 코드 중 하나를 선택하여 할당한다.

<114>

세 번째, 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작하는 시점에서 활성군에 속한 셀 개수가 2인 경우 즉 활성군 크기가 2인 경우에는 상기한 표 6 또는 표 7에서 식별자 라벨 A, B1에 해당되는 배직교 코드에 기반한 식별자 코드를 활성군에 속한 각 유효 셀들에게 할당한다. 이후 활성군의 유효 셀의 개수가 증가하여 활성군 크기가 3이 된다면 상기한 표 6 또는 표 7에서 식별자라벨 A, B2, C에 해당되는 하다마드 코드에 기반한 식별자 코드를 활성군에 속한 3

개의 유효 셀들에게 각각 할당한다. 이후에 다시 활성군의 유효 셀의 개수가 증가한다면 상기한 표 6 또는 표 7에서 하다마드 코드에 기반한 식별자 코드 중 할당되지 않은 식별자 코드를 활성군에 새로이 들어온 유효 셀에게 각각 할당하지만, 반면에 활성군의 유효 셀의 개수가 감소하여 활성군 크기가 다시 2로 된다면 상기한표 6 또는 표 7에서 식별자 라벨 A, B1에 해당되는 배직교 코드에 기반한 식별자코드를 활성군에 속한 2개의 유효 셀들에게 각각 할당한다.

다음 표 12는 SSDT 셀 식별 코드를 능동적 할당 기법에 의해 할당한 때, 사용자측(UE)의 활성군 크기에 따른 본 발명의 코드 형태를 나타내었다.

<116> 【 丑 12】

<115>

<117>

<119>

활성군 크기	2 ાે ઢેને	3~8
코드 형태	배직교 모드	직교 코드(하다마드 코드)

다음 표 13은 각 슬롯당 FBI가 1비트인 경우에 본 발명에서 제안한 활성군 크기에 따른 SSDT 임시 식별자 코드의 최소해밍거리를 나타내었으며, 다음 표 14는 각 슬롯당 FBI가 2비트인 경우에 본 발명에서 제안한 활성군 크기에 따른 SSDT 임시 식별자 코드의 최소해밍거리를 나타내었다. 표 13과 표 14에서 괄호 안의 숫자는 평쳐링에 의해 식별자 코드가 생성될 경우의 최소해밍거리이다.

<118> 【 丑 13】

활성군 크기	식별자 코드									
	Long	Medium	Short							
2০ ই}	15	8(7)	5							
3~8	8	4	2							

【 丑 14】

활성군 크기	식별자 코드									
	Long	Medium	Short							
2० ठो-	16(14)	8(6)	6							
3~8	8(7)	4(3)	3							

<120>

이상의 본 발명에서 제안한 식별자 코드는 SSDT 외에도 사용자측(UE)이 자신이 가지고 있는 셀 정보를 시스템측(UTRAN)에 전달하고 할 때 사용할 수 있으며,이 경우 상호 상관 특성 및 최소해밍거리에 대해 최적화 시킬 수 있다.

<121>

특히 본 발명에서와 같이 하다마드 코드를 사용하여 생성된 SSDT 식별자 코드는 압축 모드(Compressed mode)와 일반 모드(Normal mode)에 모두 적용되며, 특히 압축 모드(Compressed mode)에서 더 우수한 성능을 발휘한다.

<122>

압축 모드에서는 데이터의 일부 부분을 삭제해서 전송하게 되는데, 이러한 경우 각 코드의 해밍 거리 특성이 성능에 더욱 민감하게 반영되므로, 본 발명이 더 욱 유용하게 된다.

【 발명의 효과】

<123>

이상의 설명한 바와 같이 본 발명에 따른 최적의 셀 식별 코드 생성 및 그의 전송 방법에 의하면, SSDT에서 각 셀을 식별하는데 있어 활성군의 크기에 따라 하 다마드 코드 또는 배직교 코드에 기반한 셀 식별 코드를 생성하여 선택적으로 활성 군의 유효 셀에게 할당함으로써, 주기가 빠른 식별자 코드의 사용을 최대화시켜 패 이딩 채널 및 AWGN 채널에서의 시스템 성능을 극대화시킬 수 있다는 효과가 있다.

<124>

그밖에도 본 발명에서는 하다마드 코드 또는 배직교 코드를 활성군의 크기에 따라 선택적으로 할당함으로써 최대 상호 상관함수의 절대값이 작고 최소해밍거리는 최대가 된다. 이에 따라 소프트 핸드오버 모드에서 최적의 다이버시티 성능을 발휘할 수 있다.

<125>

이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니

하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.

<126> 따라서, 본 발명의 기술적 범위는 실시 예에 기재된 내용으로 한정하는 것이 아니라 특허 청구 범위에 의해서 정해져야 한다.

【 특허청구범위】

【 청구항 1】

사용자측(UE)이 주변 다수의 셀들 중 활성군에 속한 유효 셀들에게 사이트 선택 다이버시티 전송(SSDT) 식별자 코드를 할당함에 있어서,

상기 사용자측(UE)이 소프트 핸드오버 모드(soft handover mode)로 동작하는 시점에서, 상기 활성군에 속한 유효 셀의 개수에 따라 하다마드 코드에 기반한 임시 식별자 코드와 배직교 코드에 기반한 임시 식별자 코드 중 선택된 하나 또는 그이상의 코드를 상기 유효 셀들에게 각각 선택적으로 할당하고,

상기 사용자측(UE)에 의해 할당된 해당 식별자 코드를 사이트 선택 다이버시 티 전송(SSDT) 동안 각 유효 셀들에게 전송하는 것을 특징으로 하는 최적의 셀 식 별 코드 생성 및 그의 전송 방법.

【 청구항 2】

제 1 항에 있어서, 상기 활성군에 속한 유효 셀의 개수가 2이하일 경우에는, 상기 배직교 코드를 기반으로 하여 생성된 두 개의 임시 식별자 코드 중 하나 또는 그 이상의 코드를 상기 유효 셀들에게 각각 선택적으로 할당하는 것을 특징으로 하 는 최적의 셀 식별 코드 생성 및 그의 전송 방법.

【 청구항 3】

제 2 항에 있어서, 상기 활성군에 속한 유효 셀의 개수가 2이하일 경우에 할 당되는 배직교 코드 기반의 두 개의 임시 식별자 코드는 서로 직교되는 코드임을 특징으로 하는 최적의 셀 식별 코드 생성 및 그의 전송 방법.

【 청구항 4】

제 1 항에 있어서, 상기 활성군에 속한 유효 셀의 개수가 3이상일 경우에는, 상기 하다마드 코드를 기반으로 하여 생성된 복수 개의 임시 식별자 코드 중 복수 개의 코드를 상기 유효 셀들에게 각각 선택적으로 할당하는 것을 특징으로 하는 최 적의 셀 식별 코드 생성 및 그의 전송 방법.

【 청구항 5】

제 1 항에 있어서, 상기 식별자 코드의 할당 이후에 상기 활성군에 속한 유효 셀 개수가 3이상으로 증가될 경우에는 상기 하다마드 코드에 기반한 임시 식별자 코드 중 선택된 복수 개의 코드를 해당 유효 셀들에게 각각 선택적으로 할당하며, 상기 식별자 코드의 할당 이후에 상기 활성군에 속한 유효 셀 개수가 2이하로 감소될 경우에는 상기 배직교 코드에 기반한 임시 식별자 코드 중 선택된 하나 또는 두 개의 코드를 해당 유효 셀들에게 각각 선택적으로 할당하는 것을 특징으로하는 최적의 셀 식별 코드 생성 및 그의 전송 방법.

【 도면】

[도1]

[도2]

[도 3a]

【도 3b】

[도 3c]

【도 4a】

【도 4b】

Med(8)	Med(8)	Med(8)	Med(6)	Med(8)	Med(8)	Med(8)	Med(6)				
4仓县	4合吴	4仓吴	3合晃	4仓录	4合果 ▶	4会美	3合县				
	1프레9	=15 순묫	 	1프레임=15 슬롯							

【도 4c】

