

Dance Movement Classification with Joint Detection

Stephanie Liu, Maia Ezratty – Advised by Andras Ferencz, Princeton University

MOTIVATION

- Human activity recognition (HAR): healthcare, security, video summary, highlight extraction
- Research has traditionally utilized a wide variety of feature representations
- Is activity recognition using detected joints effective?

GOAL AND APPROACH

- Classify dance movement into one of the three categories performed—turn, jump, and fall
- Evaluate effectiveness of different feature representations based on detected joints
- Compare different KNN distance measures for each feature representation

RELATED WORK

- Joint detection
 - CMU OpenPose
 - Multi-person system to detect human body keypoints
- Feature representation
 - Actions as time-space models
 - Data from wearable accelerometers
- KNN distance measures and performance

DATA COLLECTION

- Self-collected data
- 60 training examples
- 3 categories: turn, jump, and fall
- 20 examples each 10 per person
- 21 test cases: occlusion, orientation, variation
- 80 frames per video, passed through OpenPose

IMPLEMENTATION

Classification Algorithm

- K-Nearest Neighbors to classify the three movements: turn, jump, and fall
- Simple and high performance
- K = 1 to classify test cases
- Experimented with different distance measures
 - Manhattan (L-1)
 - Euclidean (L-2)
 - Chebyshev (L-infinity)

Feature Representation

Baseline (all features for all frames)

Feature selection

Best features for L1	Best features for Euclidean	Best features for Chebyshev
right elbow y coord	right wrist y coord	right shoulder y coord
right wrist y coord	left elbow x coord	right wrist y coord
right hip y coord	right hip y coord	left elbow y coord
right ankle x coord		right ankle y coord
left hip y coord		left eye y coord

- Frame-based model
 - Each frame voted for the class that it was nearest to
 - Classification was based on number of votes

- Motion vector model
- Calculated the change in distance between two frames for all joints
- Normalized the distance by dividing by the distance between nose and neck

RESULTS

Distance Measure Performance

- Best: 85.7%
 - Feature selection representation with Euclidean distance measure
- Worst: 38.1%
- Motion vector representation with Chebyshev distance measure

Test Case Performance

	Baseline (all features)	Feature Selection	Frame-based model	Motion vector model
Rise (unknown case)	X	X	X	X
Turn	✓	✓	✓	X
Turn	✓	✓	✓	X
Turn 45°	✓	✓	✓	✓
Turn 90°	✓	✓	✓	✓
Turn 180°	✓	✓	✓	✓
Turn close to camera	X	X	X	✓
Double turn	x	X	X	✓
Turn variation	x	✓	✓	X
Fall	✓	✓	✓	X
Fall 90°	✓	✓	✓	X
Fall 180°	✓	✓	✓	X
Fall close to camera	✓	✓	✓	X
Fall variation	✓	✓	✓	X
Jump	✓	✓	✓	✓
Jump 90°	X	✓	X	✓
Jump 180°	✓	✓	X	✓
Jump occluded	✓	✓	✓	✓
Jump close to camera	X	✓	X	√
Jump variation	✓	✓	✓	✓
Jump variation	✓	✓	x	✓
ACCURACY	0.714	0.857	0.666	0.571

- Test cases covered unseen movement, different orientations, occlusion/missing joints, and variations of each type of movement
- Strengths
- Orientation
- Variation that did not resemble other classes
- Did not correctly classify an unknown movement
- Weaknesses
 - Occlusion
 - Multi-person classification
 - Dependent on accurate joint detection

CHALLENGES

- The software used for joint detection,
 OpenPose, did not have feature tracking
 - As a result, multi-person movement classification was inaccurate
 - We eliminated these test cases from our accuracy calculations
- Joint detection sometimes fails due to occlusion or other confusion in a video
 - We replaced these missing joints with their position from the previous frame
- This improved accuracy results

CONCLUSIONS

- Dance movement classification performs well with joint-based feature representations
- Given our training data, we found that using feature selection and the Euclidean distance gave the best classification accuracy
 - Potential reasons:
 - Dance movement is effectively represented by a few key joints
 - Euclidean distance is logical for body movement
- The motion vector model performed the worst of all the feature representations
 - Potential reasons:
 - Poor distance normalization
 - Does not utilize initial positions

FUTURE WORK

- Extension 1: Reject unseen actions
- Extension 2: Extend dance movement classification to dance recognition

ACKNOWLEDGEMENTS

Thank you to Andras Ferencz for your helpful advice, and Professor Russakovsky, Riley, and Kyle for your help this semester.