Statistical Methods in Engineering Project - Task 1

Name: Samarth Chetan NUID: 002780999

Email: chetan.s@northeastern.edu

Task 1 - Regression

Dataset - https://www.kaggle.com/datasets/harrimansaragih/dummy-advertising-and-sales-data/data

```
# importing the necessary libraries to carry out analysis
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.stats import pointbiserialr

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
```

Exploring the dataset

reading the dataset and storing it in the variable called df1
df1 = pd.read_csv('Marketing_Sales.csv')
df1.head()

	TV	Radio	Social Media	Influencer	Sales
0	16.0	6.566231	2.907983	Mega	54.732757
1	13.0	9.237765	2.409567	Mega	46.677897
2	41.0	15.886446	2.913410	Mega	150.177829
3	83.0	30.020028	6.922304	Mega	298.246340
4	15.0	8.437408	1.405998	Micro	56.594181

displaying the shape of the dataframe
df1.shape

(4572, 5)

displaying the type of information containd in the dataframe df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4572 entries, 0 to 4571
Data columns (total 5 columns):

D	ala	Cotumins (tota	C J CO CUIIII I J .	
	#	Column	Non-Null Count	Dtype
-				
	0	TV	4562 non-null	float64
	1	Radio	4568 non-null	float64
	2	Social Media	4566 non-null	float64
	3	Influencer	4572 non-null	object
	4	Sales	4566 non-null	float64
C	ltype	es: float64(4)	<pre>, object(1)</pre>	
m	nemo	ry usage: 178.	7+ KB	

getting a description of the numerical values of the dataframe
df1.describe()

	TV	Radio	Social Media	Sales	
count	4562.000000	4568.000000	4566.000000	4566.000000	11.
mean	54.066857	18.160356	3.323956	192.466602	
std	26.125054	9.676958	2.212670	93.133092	
min	10.000000	0.000684	0.000031	31.199409	
25%	32.000000	10.525957	1.527849	112.322882	
50%	53.000000	17.859513	3.055565	189.231172	
75%	77.000000	25.649730	4.807558	272.507922	
max	100.000000	48.871161	13.981662	364.079751	

describing the nature of the categorical column
df1['Influencer'].describe()

count 4572 unique 4 top Mega freq 1158

Name: Influencer, dtype: object

Handling missing values

finding the sum of missing values in every column
df1.isna().sum()

TV 10 Radio 4 Social Media 6

```
Influencer 0
Sales 6
dtype: int64
```

creating a copy of the dataframe to handle missing values
df1_null = df1[df1.isnull().any(axis = 1)]
df1_null.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 26 entries, 13 to 236
Data columns (total 5 columns):

Data	COLUMNIS (LOLA	t 5 Cotumns):	
#	Column	Non-Null Count	Dtype
0	TV	16 non-null	float64
1	Radio	22 non-null	float64
2	Social Media	20 non-null	float64
	Influencer	26 non-null	object
4	Sales	20 non-null	float64
21	es: float64(4) ry usage: 1.2+	, , ,	

taking a look at all the null values
df1_null.head(26)

	TV	Radio	Social Media	Influencer	Sales	
13	NaN	22.351667	3.031815	Mega	276.165351	11.
26	NaN	34.111674	4.624148	Nano	342.913372	
46	NaN	34.859637	7.781417	Mega	318.969784	
75	NaN	6.482293	0.866845	Macro	91.177216	
99	NaN	7.635819	1.554146	Macro	56.186730	
119	NaN	30.470485	6.806919	Micro	336.818690	
141	NaN	9.164464	1.096681	Macro	65.259189	
163	NaN	38.118424	6.676611	Micro	328.555184	
199	Ω1 Λ	OE 40E400	MalA	Macro	200 640441	
		ipdated da [.] If1.dropna	taframe after ()	dropping mis	ssing values	5
184	25.0	0.413849	NaN	Macro	92.357092	
# verify			of the cleaned	dataframe		

Index(['TV', 'Radio', 'Social Media', 'Influencer', 'Sales'], dtype='object')

taking a look at the new, cleaned dataset df1_cleaned.head()

	TV	Radio	Social Media	Influencer	Sales	
0	16.0	6.566231	2.907983	Mega	54.732757	ılı
1	13.0	9.237765	2.409567	Mega	46.677897	
2	41.0	15.886446	2.913410	Mega	150.177829	
3	83.0	30.020028	6.922304	Mega	298.246340	
4	15.0	8.437408	1.405998	Micro	56.594181	
_						

Since we are making use of Linear Regression, it is important that the 'Sales' column is linearly dependent on other features of the dataset. Hence, making use of PairGrid

236 27.0 1.384415 2 398129 Nano NaN # making use of Seaborn to plot the PairGrid g = sns.PairGrid(df1_cleaned, height = 1.5) g.map_diag(sns.histplot)

g.map_offdiag(sns.scatterplot)

From the above plot, we can observe that:

- 'Sales' shows a strong positive linear dependency from 'TV'
- 'Sales' shows a kind of positive linear depdendency from 'Social Media'
- 'Sales' shows a positive linear depdendency from 'Radio'
- 'Radio' and 'Social Media' features show a positive linear relationship

Correlation Matrix

extracting the numerical columns and creating the correlation matrix
numerical_cols = ['TV', 'Radio', 'Social Media', 'Sales']
correlation = df1_cleaned[numerical_cols].corr()
correlation.round(3)

```
TV Radio Social Media Sales
```

We can confirm the results of our visualization through the correlation matrix obtained above

```
# creating a box-plot for the categorical feature
plt.figure(figsize = (6, 4))
sns.boxplot(x = 'Influencer', y = 'Sales', data = df1_cleaned, palette = 'Set3')
plt.title('Sales vs. Influencers')
plt.xlabel('Influencers')
plt.ylabel('Sales')
```

Text(0, 0.5, 'Sales')

We can observe that there are no outliers and the plots are almost similar for the different values present in the 'Influencers' column

Encoding

```
# performing one-hot encoding to convert categorical into numerical data
df1_modified = pd.get_dummies(df1_cleaned, columns = ["Influencer"]).astype(int)
df1_modified.head()
```

P-Values

```
# finding the Point-Biseral correlation between different values in the 'Influencers' column
influencer_columns = ['Influencer_Macro', 'Influencer_Mega', 'Influencer_Micro', 'Influencer_Nano']
for col in influencer_columns:
    correlation, p_value = pointbiserialr(df1_modified[col], df1_modified['Sales'])
    print(f'{correlation:.4f}: Point-Biserial Correlation for {col} with p-value {p_value:.4f}')

    0.0224: Point-Biserial Correlation for Influencer_Macro with p-value 0.1313
    -0.0125: Point-Biserial Correlation for Influencer_Mega with p-value 0.4006
    -0.0052: Point-Biserial Correlation for Influencer_Micro with p-value 0.7242
    -0.0044: Point-Biserial Correlation for Influencer_Nano with p-value 0.7646
```

Since none of the p-values are above 0.05, we can conclude that 'Influencer' has no strong correlation with 'Sales'

```
# adding an additional feature called 'TV-Radio' to the dataframe
df1_modified['TV_Radio'] = df1_modified['TV'] + df1_modified['Radio']
df1 modified.head()
```

	TV	Radio	Social Media	Sales	Influencer_Macro	Influencer_Mega	Influencer_Micro	Influencer_Nano	TV_Radio
0	16	6	2	54	0	1	0	0	22
1	13	9	2	46	0	1	0	0	22
2	41	15	2	150	0	1	0	0	56
3	83	30	6	298	0	1	0	0	113

```
# creating a dictionary to store accuracy metrics of our models
rmse = {}
```

Linear Regression

```
# creating a Linear Regression model using the 'TV' feature
model lr = LinearRegression()
model_lr.fit(X_train[['TV']], y_train)
predictions_lr = model_lr.predict(X_test[['TV']])
print('Linear Regression RMSE: ' + str(mean squared error(predictions lr, y test) ** 0.5))
rmse['Linear Regression with the TV feature'] = mean squared error(predictions lr, y test) ** 0.5
print(rmse)
    Linear Regression RMSE: 2.9679611281793905
    {'Linear Regression with the TV feature': 2.9679611281793905}
# creating residuals to obtain information regarding distribution
residuals_lr = y_test - predictions_lr
plt.figure(figsize = (12, 6))
plt.subplot(1, 2, 1)
plt.hist(residuals_lr, bins = 20)
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.title("Histogram of Residuals")
plt.subplot(1, 2, 2)
stats.probplot(residuals lr, dist = "norm", plot = plt)
plt.title("Quantile-Quantile Plot")
plt.show()
```


Decision Tree

```
# building a decision tree with depth = 2
model_dt = DecisionTreeRegressor(max_depth = 2)
model_dt.fit(X_train, y_train)
predictions_dt = model_dt.predict(X_test)
print('Decision Tree RMSE (max_depth = 2): ' + str(mean_squared_error(predictions_dt, y_test) ** 0.5))
rmse['Decision Tree with max_depth = 2'] = mean_squared_error(predictions_dt, y_test) ** 0.5
Decision Tree RMSE (max_depth = 2): 23.305238142648893
```

```
\# building a decision tree with depth = 3
model_dt = DecisionTreeRegressor(max_depth = 3)
model_dt.fit(X_train, y_train)
predictions_dt = model_dt.predict(X_test)
print('Decision Tree RMSE (max depth = 3): ' + str(mean squared error(predictions dt, y test) ** 0.5))
rmse['Decision Tree with max depth = 3'] = mean squared error(predictions dt, y test) ** 0.5
    Decision Tree RMSE (max depth = 3): 11.973162281275224
# building a decision tree with depth = 4
model dt = DecisionTreeRegressor(max depth = 4)
model_dt.fit(X_train, y_train)
predictions_dt = model_dt.predict(X_test)
print('Decision Tree RMSE (max depth = 4): ' + str(mean squared error(predictions dt, y test) ** 0.5))
rmse['Decision Tree with max depth = 4'] = mean squared error(predictions dt, y test) ** 0.5
    Decision Tree RMSE (max_depth = 4): 6.505668607737348
# building a decision tree with depth = 5
model_dt = DecisionTreeRegressor(max_depth = 5)
model_dt.fit(X_train, y_train)
predictions dt = model dt.predict(X test)
print('Decision Tree RMSE (max_depth = 5): ' + str(mean_squared_error(predictions_dt, y_test) ** 0.5))
rmse['Decision Tree with max depth = 5'] = mean squared error(predictions dt, y test) ** 0.5
    Decision Tree RMSE (max_depth = 5): 4.1736633257165625
Random Forest
# using random forest with depth = 2
model rf = RandomForestRegressor(max depth = 2, random state = 7)
model_rf.fit(X_train, y_train)
predictions random forest = model rf.predict(X test)
print('Random Forest RMSE (max depth = 2): ' + str(mean squared error(predictions random forest, y test) ** 0.5))
rmse['Random Forest with max depth = 2'] = mean_squared error(predictions_random forest, y test) ** 0.5
    Random Forest RMSE (max_depth = 2): 22.220051660684128
# using random forest with depth = 3
model rf = RandomForestRegressor(max depth = 3, random state = 7)
model_rf.fit(X_train, y_train)
predictions_random_forest = model_rf.predict(X_test)
print('Random Forest RMSE (max depth = 3): ' + str(mean squared error(predictions random forest, y test) ** 0.5))
rmse['Random Forest with max depth = 3'] = mean squared error(predictions random forest, y test) ** 0.5
    Random Forest RMSE (max_depth = 3): 10.46736100820533
```

```
# using random forest with depth = 4
model_rf = RandomForestRegressor(max_depth = 4, random_state = 7)
model_rf.fit(X_train, y_train)
predictions_random_forest = model_rf.predict(X_test)
print('Random Forest RMSE (max_depth = 4): ' + str(mean_squared_error(predictions_random_forest, y_test) ** 0.5))
rmse['Random Forest with max_depth = 4'] = mean_squared_error(predictions_random_forest, y_test) ** 0.5

Random Forest RMSE (max_depth = 4): 5.201931407991952

# using random forest with depth = 5
model_rf = RandomForestRegressor(max_depth = 5, random_state = 7)
model_rf.fit(X_train, y_train)
predictions_random_forest = model_rf.predict(X_test)
print('Random Forest RMSE (max_depth = 5): ' + str(mean_squared_error(predictions_random_forest, y_test) ** 0.5))
rmse['Random Forest with max_depth = 5'] = mean_squared_error(predictions_random_forest, y_test) ** 0.5

Random Forest RMSE (max_depth = 5): 3.3847229030932087
```

Results

```
# plotting the bar plot for the result dictionary created earlier 'rmse'
plt.figure(figsize=(8, 6))
plt.barh(*zip(*rmse.items()))
plt.gca().invert_yaxis()
plt.show()
```

Conclusion

- TV advertisement spend has the highest impact on Sales when compared to other media
- Linear Regression model with 'TV' gave the least RMSE
- Sales can be calculated by: Sales = -0.6 + 3.56 * (TV)
- The above point indicates that is potentially a 3.56 increase in sales when 1 million USD is spent on TV adverstisin

