Sistemas Operacionais I

Introdução aos Sistemas Operacionais

Prof. Carlos Eduardo de B. Paes Departamento de Ciência da Computação PUC-SP

Sumário

- O que é um Sistema Operacional?
- Componentes do SO
- Visões do SO
- Classificação dos SOs

O Que é um SO?

- Um programa que atua como intermediário entre o usuário de um computador e o hardware do computador
- Principais objetivos de um Sistema Operacional:
 - Executar programas do usuário e facilitar a resolução de problemas do usuário
 - Tornar o uso do sistema de computador conveniente
 - Usar o hardware de computador de uma maneira eficiente

Componentes do Computador

- Hardware fornece recursos básicos de computação (CPU, memória, dispositivos de E/S)
- 2. Sistema operacional controla e coordena o uso do hardware entre os vários programas de aplicação para os diversos usuários
- 3. Aplicativos definem as maneiras como os recursos do sistema são usados para resolver os problemas de computação dos usuários (compiladores, sistemas de bancos de dados, video games, programas comerciais)
- 4. **Usuários** (pessoas, máquinas, outros computadores)

Visão Abstrata dos Componentes do Sistema

Definições do Sistema Operacional

- Alocador de recursos gerencia e aloca recursos
- Programa de controle controla a execução dos programas do usuário e as operações dos dispositivos de E/S
- Núcleo (kernel) o único programa sendo executado o tempo todo (sendo todos os outros programas aplicações)

Sistema Operacional

- Algumas funções básicas dos SOs:
 - Abstração de Recurso : facilidade de acesso de recursos do sistema
 - Compartilhamento de Recursos : permite o compartilhamento de recursos de forma organizada e protegida
- O Sistema Operacional interage diretamente com o Hardware para fornecer uma interface para outros sistemas de softwares e sistemas de aplicação, quando estes querem usar os recursos do sistema.

Sistema Operacional

- Abstração de Recursos (Máquina Extendida):
 - Esconde detalhes de como o hardware opera.
 - O SO serve como interface entre o usuário e os recursos disponíveis no sistema
 - Com a abstração dos recursos o desenvolvedor/usuário não precisa conhecer as características específicas do recurso.

Sistema Operacional

- Compartilhamento de Recursos (Gerenciamento de
 - Recursos): abstrações e recursos físicos podem ser compartilhados entre um conjunto de programas sendo executados de forma concorrente. Existem dois tipo de compartilhamento:
 - Espaço-multiplexado : um recurso pode ser dividido em dois ou mais unidades distintas de recurso.
 - Tempo-multiplexado : um recurso não é dividido em unidades

Sistema Operacional

- Exemplos de alguns Sistemas Operacionais:
 - Unix
 - OS/2
 - Linux
 - DOS
 - Windows 95, 98, NT, 2000, XP e Vista
 - QNX
 - z/OS
 - etc . . .

- Um sistema grande e complexo como um sistema operacional só pode ser desenvolvido se for subdividido em partes menores e mais simples.
- Nem todo SO têm a mesma estrutura
- A maior parte dos Sistemas Operacionais modernos possuem o objetivo comum de oferecer suporte aos mesmos tipos de componentes

Componentes de um SO

- Gerenciamento de Processos
- Gerenciamento de Memória Principal
- Gerenciamento de Arquivo (File Systems)
- Gerenciamento de Sistemas de E/S
- Gerenciamento de Memória Secundária
- Gerenciamento para Redes de Computadores

- Gerenciamento de Processos
 - Criação e remoção de processos, tanto do sistema quanto do usuário
 - Suspensão e reativação de processos
 - Sincronização de processos
 - Comunicação entre processos
 - Tratamento de Deadlock entre processos

Componentes de um SO

- Gerenciamento da Memória Principal
 - Manter informação sobre quais partes da memória estão sendo usadas no instante atual e por quem
 - Decidir quais processos devem ser carregador na memória quando algum espaço de memória se torna disponível
 - Alocar espaço e remover programas e dados da memória, quando necessário

- Gerenciamento de Arquivos (File System)
 - Criação e remoção de arquivos
 - Criação e remoção de diretórios
 - Suporte a primitivas (system calls) para manupulação de arquivos e diretórios
 - Mapeamento de arquivos em memóris secundária
 - Cópia de arquivos em meios de armazenamento não-voláteis

Componentes de um SO

- Gerenciamento de Sistemas de E/S
 - Um componente de gerenciamento de memória, que inclui o controle de usos diversos da áreas de armazenamento temporário
 - Uma interface geral para os diversos controladores de dispositivos
 - Rotinas de controle (device drivers) dos diversos dispositivos

- Gerenciamento de Memória Secundária
 - Gerenciamento do espaço livre e ocupado
 - Alocação de espaço na memória
 - Ordenamento e seleção das operações para o uso de discos

SO na visão do Usuários

- Chamadas de Sistema (system calls)
- Programas de Sistema (software básico)
- Interpretador de Comandos
 - Shell
 - Explorer
 - etc.

System Calls

- Maneira pela qual os programas solicitam serviços ao sistema operacional
- Análogo a sub-rotinas
- Serviços executados pelo núcleo (kernel):
 - Gerência do processador
 - Gerência de memória
 - Gerência de arquivos
 - Gerência de E/S
- Variação: micro-kernel
 - Serviços básicos

Programas de sistema

- Programas executados fora do kernel do sistema operacional (utilitários)
- Implementam tarefas básicas:
 - Muitas vezes confundidos com o próprio sistema operacional (ex: compiladores, assemblers, ligadores e etc)
 - Interpretador de comandos:
 - · Ativado sempre que o sistema operacional inicia uma sessão de trabalho
 - Interface gráfico de usuário (GUI)

Sistema Operacional na visão de projeto

- Corresponde a forma pela qual o sistema operacional implementa os serviços
- Sistema operacional ativado por eventos:
 - Chamadas de sistema
 - Interrupção
- Mecanismo de interrupção é essencial na concepção de sistemas operacionais:
 - Sinalizar o termino e ocorrência de eventos
 - Exceções
 - Auxiliar atividades de gerência

Tipos de Sistemas Operacionais

• SOs monoprogramáveis/monotarefa

Sistemas Batch Multiprogramados

 Diversas tarefas são mantidas na memória principal ao mesmo tempo, e a CPU é multiplexada entre elas

Recursos do Sistema Operacional Necessários à Multiprogramação

- Rotina de E/S fornecida pelo sistema
- Gerenciamento de memória o sistema precisa alocar a memória para várias tarefas
- Escalonamento de CPU o sistema precisa escolher entre várias tarefas prontas para serem executadas
- Alocação de dispositivos

Sistemas de Tempo Compartilhado – Computação Interativa

- A CPU é multiplexada entre várias tarefas que são mantidas na memória e no disco
 - A CPU é alocada para uma tarefa apenas se essa tarefa estiver na memória
- Uma tarefa sofre swap-in, do disco para a memória, e swap-out, da memória para o disco

Sistemas de Tempo Compartilhado – Computação Interativa

- É fornecida comunicação on-line entre o usuário e o sistema
 - Quando o sistema operacional termina a execução de um comando, ele aguarda a próxima "instrução de controle" do teclado do usuário
- O sistema on-line precisa estar disponível para que os usuários acessem dados e código

Sistemas Desktop

- Computadores pessoais computador dedicado a um único usuário
- Dispositivos de E/S teclados, mouses, monitores, impressoras
- Conveniência e responsabilidade do usuário

Sistemas Desktop

- Podem adotar tecnologia desenvolvida para sistemas operacionais maiores
 - Os usuários normalmente fazem um único uso do computador e não precisam de utilização avançada de CPU dos recursos de proteção
- Podem executar vários tipos diferentes de sistemas operacionais (Windows, MacOS, UNIX, Linux)

Sistemas de Tempo Real

- Normalmente usados como um dispositivo de controle em uma aplicação dedicada, como experiências científicas de controle, sistemas de geração de imagens médicas, sistemas de controle industrial e alguns sistemas de vídeo
- Restrições bem definidas e com tempo fixo
- Os sistemas de tempo real podem ser rígidos ou flexíveis

Sistemas de Tempo Real

- Tempo real rígido:
 - Armazenamento secundário limitado ou ausente, dados armazenados na memória de curta duração ou na memória de leitura (ROM)
 - Conflitos com os sistemas de tempo compartilhado, não suportados pelos sistemas operacionais de finalidade geral
- Tempo real flexível:
 - Utilidade limitada no controle industrial da robótica
 - Integrável com sistemas de tempo compartilhado
 - Útil nas aplicações (multimídia, realidade virtual), exigindo tempos de resposta curtos

Sistemas com Múltiplos Processadores

• Sistemas fortemente acoplados

Sistemas com Múltiplos Processadores

Sistemas fracamente acoplados

Sistemas Multiprocessados

- Sistemas com mais de uma CPU em perfeita comunicação
 - Também conhecidos como sistemas paralelos
- Sistemas fortemente acoplados os processadores compartilham memória e um relógio; a comunicação normalmente ocorre através da memória compartilhada

Sistemas Multiprocessados

- Vantagens do sistema multiprocessado:
 - Maior throughput
 - Economia
 - Maior confiabilidade (em alguns casos)
 - Degradação controlada
 - Sistemas tolerantes a falhas de software

Sistemas Multiprocessados

- Multiprocessamento assimétrico
 - Uma tarefa específica é atribuída a cada processador; o processador mestre escalona e aloca trabalho para os processadores escravos
 - Mais comum em sistemas extremamente grandes
- Multiprocessamento simétrico (SMP)
 - Cada processador executa uma cópia idêntica do sistema operacional
 - Muitos processos podem ser executados ao mesmo tempo sem queda do desempenho
 - A maioria dos sistemas operacionais modernos suporta SMP

Sistemas Mainframe

- Reduz o tempo de configuração agrupando tarefas semelhantes
- Seqüência automática de tarefas transfere o controle automaticamente de uma tarefa para outra. O primeiro sistema operacional rudimentar
- Monitor residente
 - Controle inicial no monitor
 - O controle é transferido para a tarefa
 - Quando a tarefa é completada, o controle transfere o pacote para o monitor

Sistemas Distribuídos

- Distribuem a computação entre vários processadores físicos
- Sistemas fracamente acoplados cada processador possui sua própria memória local; os processadores se comunicam entre si através de várias linhas de comunicação, como barramentos de alta velocidade ou linhas telefônicas

Sistemas Distribuídos

- Vantagens dos sistemas distribuídos
 - Compartilhamento de recursos
 - Computação mais rápida compartilhamento de carga
 - Segurança
 - Comunicações
- Requerem infra-estrutura de rede
- Redes locais (LANs) ou redes de longa distância (WANs)
- Podem ser sistemas cliente-servidor ou peer-to-peer

Estrutura Geral dos Sistemas Cliente-Servidor Client Client ... client Rede

Sistemas em Clusters

- O clustering permite que dois ou mais sistemas compartilhem armazenamento
- Fornecem alta confiabilidade
- Clustering assimétrico: um servidor executa a(s) aplicação(ções) enquanto outros servidores ficam em espera
- Clustering simétrico: todos os hosts estão executando a(s) aplicação(ções)

Sistemas Portáteis

- Personal Digital Assistants (PDAs)
- Telefones celulares
- Desvantagens:
 - Memória limitada
 - Processadores lentos
 - Telas pequenas

Migração de Recursos e Conceitos de Sistemas Operacionais

Ambientes de Computação

- Computação tradicional
 - PCs, servidores, acesso remoto limitado
- Computação baseada na Web
 - Cliente-servidor e Web Services, acesso remoto conveniente, servidores sem local
- Computação embarcada
 - A maioria dos computadores (controladores de motores de automóveis, microondas)
 - Recursos de sistema operacional bastante limitados
 - Pouca ou nenhuma interface, acesso remoto