Obviously, if relaxation occouned with no constraints, the solution would be \$=3.
However, there are constraints, and they turn
out to be topological. This follows from
The fact that Ideal MHD accepts a topological Conserved magnetic quantity, named helicity.
Helicity
Consider the quantity
H= M A. Bdv
where $B = \overline{\forall} x \overline{A}$, and \overline{A} is the vector
Detential

let's prove some properties of H.

1. Helicity is well defined.
Not abvious, as we can always Chift A -> A + => X and not change P.
(a gauge transformation).
If we gauge tronsform we get
H > H+ M B. Fxdv by pork
by ports $= H + ff (\exists \cdot (Bx) - x \not \ni \cdot B) dy$ divergence thosen
- H + Box X P.ds
So if our volume encases the entire field then B.J = 0 and His unchanged.

"un curl"

dot with ?

term by term

$$\mathbb{R} \cdot (\mathbb{R} \times \mathbb{R}) = 0$$
 (symmetry)

$$\begin{array}{cccc}
(& \text{Glogod} \\
= & \text{Fr} & \text{Fr} & \text{Fr}
\end{array}$$

Integrate over total volume

$$\frac{\partial}{\partial t} \int \int \int \partial x dx = \int \int \int \partial x dx = \int$$

= 0 as nothing (Rork)
Sticks out of the volume:

this is the constraint subject to which energy may be minimised.

Helicity is a topological invariant

Consider two linked flux tubes I recall from Alfvéns theorem that these tubes forever enclose a field line?

Then the helicity of take I is

H, = MA.Bd27, the volume of the tube is de.ds

unitalogytube Boll

thus

by Stake's theorem

$$\int_{\tau_i} \overrightarrow{A} \cdot d\overrightarrow{l} = \iint_{S_i} (\overrightarrow{A} \times \overrightarrow{A}) \cdot d\overrightarrow{S}$$

where Si isthe surface band by li

$$\int_{T_i} \vec{A} \cdot d\vec{l} = \iint_{S_i} \vec{B} \cdot d\vec{s}$$

flux through middle of loop 1 = \$\Pi_2\$

by the same Adder, in a system of many linked tubes, the helicity of tube i is flux of j^{th} tube $H_{i} = \oint_{i} \oint_{j} N_{ij}$ $H_{i} = \oint_{i} \oint_{j} N_{ij}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{j \neq i} \int_{j \neq i} N_{ij}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} \int_{j \neq i} N_{ij}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} \int_{j \neq i} f_{through hole, i}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} \int_{j \neq i} f_{through hole, i}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} \int_{j \neq i} f_{through hole, i}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} \int_{j \neq i} f_{through hole, i}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} \int_{j \neq i} f_{through hole, i}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} f_{through hole, i} = \int_{i} f_{through hole, i}$ $I_{i} = \int_{i} f_{through hole, i} = \int_{i} f_{through hole, i} = \int_{i} f_{through hole, i}$

 $H = \sum_{i j \neq i} \sum_{j \neq i} \Phi_{i} \Phi_{j} N_{ij}$

Thus holicity measures the number of linkages of the flux tubes weighted by the field strength in each tube.

The physical insight is the following: if one thinks of the Magnetic Rield as a tengled mers of Rield lines, white you can change this mess by moving field lines around, you cannot easily undo linkages, knots, etc.

[This is Alfrén's theorem ogain]. Basically any operation which would require kield lines to have "enob!!

Taylor Relaxation

We can now work out which equilibrium an MHD system will relax to by minimising its energy subject to constant helicity. This is a classic lagrange multiplyer problem, with "action"

$$S = \iiint_{\mathcal{D}} (B^2 - \alpha \vec{A} \cdot \vec{B}) d\nu$$

then $SS = 0$
implies $S = 0$
 $S = 0$

first term

$$S \iiint_{\mathcal{V}} \mathbb{B}^2 dV = 2 \iiint_{\mathcal{V}} \vec{\mathbb{B}} \cdot S \vec{\mathbb{B}} dV$$
$$= 2 \iiint_{\mathcal{V}} \vec{\mathbb{B}} \cdot (\vec{\mathbb{B}} \times S \vec{\mathbb{A}}) dV$$

$$\exists \iiint_{\mathcal{V}} g^2 d\mathcal{V} = -2 \iiint_{\mathcal{V}} \vec{\exists} \cdot (\vec{\beta} \times S\vec{A}) d\mathcal{V} + 2 \iiint_{\mathcal{V}} S\vec{A} \cdot (\vec{A} \times \vec{B}) d\mathcal{V}$$

divergence theorem
$$= -2 \iint_{SD} (\overrightarrow{R} \times \overrightarrow{SA}) \cdot d\overrightarrow{S} + 2 \iiint_{V} (\overrightarrow{A} \times \overrightarrow{R}) \cdot \overrightarrow{SA} dV$$

and

identical manipulation to before on second term

=
$$2 \text{ M}_{\text{S}} \vec{B} \cdot \vec{S} \vec{A} dV - \iint_{\text{S}V} (\vec{A} \times \vec{S} \vec{A}) \cdot d\vec{S}$$

we must wary about surface terms.

As
$$\frac{\partial}{\partial t} S \vec{R} = \vec{\partial} \times \left(\frac{\partial \vec{\xi}}{\partial t} \times \vec{R} \right)$$
 [reinfroducing $S \vec{u} = \frac{\partial \vec{\xi}}{\partial t}$]

uncurling SA = 3 XR

$$\frac{1}{4} \times 8 = \frac{1}{4} \times (3 \times 8) = \text{ Gijk Aj Ekem } = \text{ Bm}$$

$$= [\text{Sie Sim} - \text{Sim Sie] Aj Se Bm}$$

 $= (\vec{A} \cdot \vec{B}) \vec{S} - (\vec{A} \cdot \vec{S}) \vec{B}$

also

ond so all surface terms come with \$2.05° or \$3.05°, which will vonish if 52 encloses both the magnetic field and the plasma.

Thus, we are left with

$$S \iiint_{\mathcal{V}} (\mathbb{R}^2 - \times \overrightarrow{A} \cdot \overrightarrow{R}) dv = 2 \iiint_{\mathcal{V}} [\overrightarrow{A} \times \overrightarrow{R} - \times \overrightarrow{R}] \cdot S\overrightarrow{A} dv$$

ond he have recovered the linear force free field.

So our system will relax to a linear force free State with system-specific boundary conditions. The boundary conditions come in through the initial helicity, and our lagrange multiplyer X is a function X = X(H), which entorces this.

This linear force free state has a particularly simple helicity, which follows from

$$H(\alpha) = \iint_{\mathcal{D}} \vec{A} \cdot \vec{B} d\nu = \frac{1}{\alpha} \iint_{\mathcal{D}} \vec{B}^2 d\nu - \frac{1}{\alpha} \iint_{\mathcal{D}} \vec{B} \cdot \vec{A} d\nu$$

final term vonishes under volume integral

· Constant 'x' set by

$$H = \int \int \int \int B^2 dv$$
.

General procedure:

- Calculate
$$H(\alpha) = \frac{1}{\alpha} ff_{\nu} B^{2}(P,\alpha) d\nu$$

- Set
$$\alpha$$
 by inverting to $\alpha = \alpha(Ho)$

- Then relaxed state
$$\vec{R} = \vec{R}(\vec{r}, \alpha \vec{l} + \vec{l})$$
.

Example Let us

Let us consider the case of cylindrical A axial symmetry once again. We know $B_r = 0$, and B_0 , $B_z \neq 0$.

 $\frac{2-\text{component of}}{\sqrt{2}R} = \sqrt{2}R \Rightarrow \frac{\partial^2 B_z}{\partial r^2} + \frac{1}{r} \frac{\partial B_z}{\partial r} + \sqrt{2}B_z = 0.$

This is a Bessel equation, with solution

 $B_Z(r) = B_0 J_0(ar)$

The Bessel Function of order O.

This solution satisfies the b.c. Bz(0) = Bo, Bz(r-Dx)->0.

We can we

$$\vec{Q} \times \vec{R} = \alpha \vec{R} + \alpha \vec{R} = (\vec{Q} \times \vec{R})_0 = -3R_z$$

Using Bessel identities

Bessel function of Pack)

Boly)

Boly)

recall J(x) N = sin(x)

For large x,

which is an interesting twisted field geometry which can maintain itself in equilibrium.

Enforce helicity constraint

Assume volume is of a cylinder of length L and radius R

$$H = \frac{1}{\alpha} \cdot B_0^2 \cdot 2\pi \cdot L \cdot \int_0^R \left[\int_0^2 (\alpha r) + \int_1^2 (\alpha r) \right] dr$$

$$H = \frac{Bo^2}{\alpha R} \frac{TR^2L}{J_o^2(\alpha R) + 2J_o^2(\alpha R) + J_o^2(\alpha R)} - \frac{2}{\alpha R} J_o(\alpha R) J_o(\alpha R)$$

Picking Ho and inverting for $\alpha = \alpha(Ho)$ gives us our final field state.