Societatea de Științe Matematice din România

Ministerul Educației Naționale și Cercetării Științifice





## Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 19 Martie 2016 CLASA a X-a

## Enunțuri și bareme

**Problema 1.** Determinați numerele reale  $x \in (2, \infty)$ , care sunt soluții ale ecuației

$$\cos(\pi \log_3(x+6)) \cdot \cos(\pi \log_3(x-2)) = 1.$$

Supliment Gazeta Matematică

**Problema 2.** Fie  $a, b, c \in \mathbb{C}^*$ , distincte şi având acelaşi modul, astfel încât

$$a^2 + b^2 + c^2 + ab + ac + bc = 0.$$

Demonstrați că a,b,c reprezintă afixele vârfurilor unui triunghi dreptunghic sau echilateral.

 **Problema 3.** Fie  $\alpha, \beta \in \mathbb{R}$ . Determinați cea mai mare valoare a expresiei

$$|\alpha x + \beta y| + |\alpha x - \beta y|$$
,

în fiecare dintre următoarele cazuri:

- a)  $x, y \in \mathbb{R}$ , astfel încât  $|x| \le 1$  și  $|y| \le 1$ ;
- b)  $x, y \in \mathbb{C}$ , astfel încât  $|x| \le 1$  şi  $|y| \le 1$ .

Soluţie: a) Deoarece pentru orice numere reale u,v avem  $|u+v|+|u-v| \in \{\pm 2u, \pm 2v\}$ , deducem că  $|\alpha x + \beta y| + |\alpha x - \beta y| \le \max\{2 |\alpha|, 2 |\beta|\}$ . ..... 2p Aceasta este valoarea maximă, deoarece egalitatea se obţine, de exemplu, când x = y = 1. ..... 1p

**Problema 4.** a) Demonstrați că există funcții neperiodice  $f:\mathbb{R}\to\mathbb{R}$  care verifică egalitatea

$$f(x+1) + f(x-1) = \sqrt{5}f(x)$$

pentru orice  $x \in \mathbb{R}$ ;

b) Demonstrați că orice funcție  $g:\mathbb{R}\to\mathbb{R}$  care verifică egalitatea

$$g(x+1) + g(x-1) = \sqrt{3}g(x)$$
,

pentru orice  $x \in \mathbb{R}$ , este periodică.