Assignment #2 (Group Assignment)

Solve a prediction problem using an unsupervised learning method. Work in groups of 4-5. Have ONE person from your group submit the following: problem statement, approach, summary of findings/recommendation, data, visualizations, model/code, output. Make sure to include the group name and names of all group members. You can source the data from here (the link will open in new window):

https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning

You are expected to submit at the due date. Sunday, 3 November 2019, 11:55 PM

- 1) R Markdown
- 2) Deployed Shiny app link
- 3) Shiny app code + data used

For the labs, I recommend you use a dataset that contains between 10-50 attributes and 1000+ rows which contains missing values, outliers and both categorical and numeric attributes

 $\textbf{Assignment Rubric:} \ \underline{\text{https://learn.continue.yorku.ca/pluginfile.php/282419/mod_page/content/4/Rubric\%20 for } \\ \underline{\text{\%20Assignments.pdf}}$

Rubric for Assignments # 1 and # 2

ML 1000

Assessment Criteria	Not Good Enough (0≤ score <2)	Good (3≤ score <4)	Very Good (score 5)
Interpretation of Data (qualitative)	Little or no attempt to interpret data; or there are significant errors; or some data are over- or under-interpreted.	Interpret most data correctly; part of conclusions may be suspect; suggestions on future implementation are sound.	Data are completely and appropriately interpreted; there is no over- or under-interpretation; draw convincing conclusions.
Analysis (quantitative)	Methods are completely misapplied or applied but with significant errors or omissions. Choose inappropriate methods and make wrong predictions.	Most statistical methods are correctly applied but more could have been done with the data. Predictions are sensible but may deviate from the true results in a large range.	Statistical methods are fully and correctly applied; demonstrate superior data analysis skills; deeply mine the data and obtain useful insights for decision making.
Critical evaluation of findings;	Blindly accept defective results; or recognize defective results but does not know how to fix them.	Recognize defective results and figure out the causes; understand the main sources of errors.	Show deep understanding for the sources of errors; recognize defective results and eliminates the causes.
Ability to draw proper conclusions and make effective suggestions	No drawn conclusions; draw incorrect conclusions; suggestions are not acceptable.	Draw correct conclusion; suggestions may have potential impact on the future business.	Demonstrate substantial understanding of the problem; conduct deep data analytics using correct methods; draw correct conclusions with sufficient explanation and elaboration.
Writing	Report is inadequately written and poorly organized. Analysis is insufficient. Conclusions are unconvincing.	Report is concise and clearly written. Analyze problems following scientific strategies; provide useful suggestions with detailed explanation.	Report is well organized and insightfully written, includes thorough and thoughtful details. Conclusions are convincing.

By the end of this class, you will be able to:

- 1. Describe different data mining tasks and the algorithms most appropriate for addressing them in order to solve business problems.
- 2. Demonstrate competency in the use of CRISP-DM (the Cross-Industry Standard Process for Data Mining) in all phases of a machine learning project (e.g. business understanding phase, the data understanding phase, the exploratory data analysis phase, the modeling phase, the evaluation phase, and the deployment phase).
- 3. Conceptualize a data mining solution in R to a practical problem.
- 4. Demonstrate how to do basic visualization in R.
- 5. Explain the concept of data pre-processing.
- 6. Describe the basic cognitive biases that might affect the project design and the Ethical ML framework for a machine learning project.
- 7. Explain the mathematical and statistical foundations of the proper clustering of data.
- 8. Describe different data mining tasks and the algorithms most appropriate for addressing them specifically as it relates to clustering problems.
- 9. Evaluate basic clustering algorithms with respect to their accuracy including PCA.
- 10.Develop hypotheses based on the analysis of the results obtained through applying the ML techniques and test them to determine whether the models are useful and usable.

CRoss Industry Standardized Procedure for Data Mining:

Generic Tasks

Specialized Tasks (Process Instances)

a visual guide to CRISP-DM methodology

SOURCE CRISP-DM 1.0

http://www.crisp-dm.org/download.htm

DESIGN Nicole Leaper

http://www.nicoleleaper.com

