1. (a) This proof will be shown for the 3 * 3 kernel size but is the same for any k > 1. Consider the following separable 2D filter kernel g of size 2k + 1 with k = 1.

$$g_{1} = \begin{bmatrix} w_{4} & w_{5} & w_{6} \end{bmatrix}$$

$$g_{2} = \begin{bmatrix} w_{1} \\ w_{2} \\ w_{3} \end{bmatrix}$$

$$g = g_{2}g_{1}$$

$$= \begin{bmatrix} w_{1}w_{4} & w_{1}w_{5} & w_{1}w_{6} \\ w_{2}w_{4} & w_{2}w_{5} & w_{2}w_{6} \\ w_{3}w_{4} & w_{3}w_{5} & w_{3}w_{6} \end{bmatrix}$$

Then, consider the following value for our "image" f, where the pixel of interest for this proof is x.

$$f = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & x & a_5 \\ a_6 & a_7 & a_8 \end{bmatrix}$$

Then, the convolution of f with g on the pixel x is:

$$h_{2D}(m,n) = \sum_{k,l} g(k,l) f(m+k,n+l)$$

$$= a_1 w_1 w_4 + a_2 w_1 w_5 + a_3 w_1 w_6 + a_4 w_2 w_4 + a_5 w_2 w_5 + a_5 w_2 w_6 + a_6 w_3 w_4 + a_7 w_3 w_5 + a_8 w_3 w_6$$

Now, we must confirm that applying each of the 1D convolutions separately gives the same result. The convolution of f with g_1 is:

$$h_1 = \sum_{l} g_1(l) f(m, n+l)$$

$$= \begin{bmatrix} w_4 a_1 + w_5 a_2 + w_6 a_3 \\ w_4 a_4 + w_5 x + w_6 a_5 \\ w_4 a_6 + w_5 a_7 + w_6 a_8 \end{bmatrix}$$

Then, the convolution of h_1 (the result from the previous step) with g_2 gives the following.

$$h_2 = \sum_k g_2(k)h_1(m+k)$$

$$= a_1w_1w_4 + a_2w_1w_5 + a_3w_1w_6 + a_4w_2w_4 + a_7w_2w_5 + a_5w_2w_6 + a_6w_3w_4 + a_7w_3w_5 + a_8w_3w_6$$

Thus, the result is the same in both cases, so convolving an image with a discrete, separable 2D filter kernel is equivalent to convolving with two 1D filter kernels.

(b) For each pixel, a 2D filter kernel would perform $(2k+1)^2$ operations, while each 1D filter kernel would perform 2k+1 operations. So, the number of operations saved per pixel is:

$$(2k+1)^2 - 2*(2k+1) = (4k^2 + 4k + 1) - (4k+2)$$
$$= 4k^2 - 1$$

Based on this, the total number of operations saved for an N*N image is $N^2(4k^2-1)$.

Matlab Code