Guide Python Guide pratique & Exercices corrigés

José OUIN

Ingénieur I.N.S.A Toulouse Professeur Agrégé de Génie civil Professeur Agrégé de Mathématiques

Site Internet de ressources pédagogiques : www.joseouin.fr

Document rédigé avec \LaTeX José OUIN - www.joseouin.fr

José OUIN - www.joseouin.fr

Python : Guide pratique & Exercices corrigés

Table des matières

T	1.1 Introduction	(
	1.2 Téléchargement du logiciel Python et des bibliothèques	
	1.2.1 Téléchargement du logiciel Python	
	1.2.2 Téléchargement d'un ensemble Python + Bibliothèques + Editeur	
	1.3 Editeur de texte	
า	Coloule et Onémeteure	10
2	Calculs et Opérateurs 2.1 Exemples de calculs avec Python	
	2.2 Les opérateurs avec Python	
3	Saisie et affichage des variables	11
	3.1 Saisie des variables : la fonction input()	
	3.2 Utilisation combinée : eval() et input()	
	3.3 Les fonctions int() et float() $\dots \dots \dots$	
	3.4 Les listes	
	3.5 Les listes et les tableaux (matrices) avec la bibliothèque Numpy	
	3.6 Différences entre le type 'list' et le type 'array'	
	3.7 Transformer une liste de type 'list' en liste de type 'array'	17
	3.8 Affichage des variables : la fonction print()	18
	3.8.1 La fonction print()	18
	3.8.2 Affichage de valeurs arrondies	18
	3.9 Chargement des bibliothèques	19
	3.10 Opérations avec les nombres complexes	20
	3.11 Génération de nombres aléatoires	21
4	3.9 Chargement des bibliothèques	22
_	4.1 Les tests	22
	4.1.1 Test: if else	
	4.1.2 Test: if elif else	
	4.2 Les boucles	
	4.2.1 La boucle for	22
	4.2.2 La boucle while	23
	4.3 A propos de l'indentation en Python	
5	Les instructions de contrôle	2 4
	5.1 L'instruction break	24
	5.2 L'instruction continue	25

6	Les	fonctions personnalisées avec Python 26						
	6.1	Définition						
	6.2	Instruction def						
	6.3	Opérations avec les tableaux						
7	Les graphiques avec Python 28							
	7.1	Bibliothèque Matplolib						
	7.2	Les graphiques de base						
	1.2	7.2.1 Représenter un nuage de points						
		7.2.2 Représenter une courbe						
		7.2.3 Représenter un histogramme						
		7.2.4 Représenter une surface de l'espace $z = f(x,y)$						
0								
8	_	èbre linéaire avec Python 33						
	8.1	Dimension d'une matrice						
	8.2	Multiplication de deux matrices						
	8.3	Déterminant d'une matrice						
	8.4	Matrice inverse						
	8.5	Matrice transposée						
	8.6	Résolution de systèmes linéaires						
	8.7	Vecteurs propres et valeurs propres						
9	Énc	oncés des exercices de base 37						
	9.1	Saisir et afficher des variables						
		9.1.1 EXB-1						
		9.1.2 EXB-2						
		9.1.3 EXB-3						
		9.1.4 EXB-4						
		9.1.5 EXB-5						
		9.1.6 EXB-6						
	9.2	Effectuer des opérations avec les vecteurs						
		9.2.1 EXB-7						
		9.2.1 EXB-7						
		9.2.5 EAB-9.						
	9.3	Définir une fonction personnalisée						
		9.3.1 EXB-10						
		9.3.2 EXB-11						
	9.4	Effectuer des tests logiques						
		9.4.1 EXB-12						
		9.4.2 EXB-13						
		9.4.3 EXB-14						
	9.5	Utiliser des boucles						
		9.5.1 EXB-15						
		9.5.2 EXB-16						
	9.6	Effectuer des simulations d'expériences aléatoires						

		9.6.1 EXB-17	46
		9.6.2 EXB-18	47
		9.6.3 EXB-19	47
	9.7	Représenter le graphe d'une fonction	48
		9.7.1 EXB-20	48
		9.7.2 EXB-21	49
10	Solu	tions des exercices de base	4 9
	10.1	A propos des solutions	49
	10.2	Consultation des solutions	49
11	-		5 0
		A propos du QCM	
		Énoncé du QCM	
	11.3	Corrigé du QCM	58
12		1 1	67
			69
			71
		TP- [1]-3 - Calcul approché d'une intégrale	
		TP- [2]-1 - Le lièvre et la tortue	
		L J *	79
		[]	81
			83
			85 87
		r i	90
			90
	12.1.	OTP [Bonus] 3 Language do 6 dós	04
	14.14	211 - [Donus]-5 - Lancers de 0 des	94
13	Solu	tions des travaux pratiques	96
	13.1	A propos des solutions	96
	13.2	PTP- [Bonus]-3 - Lancers de 6 dés A propos des solutions Consultation des solutions Défis Python (DP)	96
14	Les	Défis Python (DP)	98
			99
	14.2	DP-2 : Ensemble des diviseurs d'un entier naturel	99
		DP-3: Spaghettis et triangles	
		DP-4 : Triangle rectangle ou non?	
		DP-5 : Points alignés ou non?	
		DP-6: L'île aux loups	
		DP-7 : Répartition des notes à un examen	
		DP-8 : Factorielle de n	
		DP-9 : Lancers de 6 dés équilibrés	
		DP-10 : Le jeu des 3 dés équilibrés	
	14.1	DP-11: Les galettes des Rois	10

14.12DP-12 : Comptage de nombres		 112
14.13DP-13 : Le triangle de Pascal		 113
14.14DP-14 : Nombre d'apparitions dans une liste		 114
$14.15 \mathrm{DP}\text{-}15$: Indices d'un entier dans une liste donnée $\ \ldots \ \ldots \ \ldots$		 114
$14.16 \mathrm{DP}\text{-}16$: Encadrement par des fonctions polynômes		 115
14.17DP-17 : Écart moyen entre un nuage et une courbe		 116
14.18 DP-18 : Valeur approchée du nombre π		 118
$14.19 \mathrm{DP}\text{-}19$: Contrôle d'une épidémie $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$		 119
14.20DP-20 : Valeur approchée de $\sqrt{2}$		 120
14.21DP-21 : Valeur approchée de $ln(2)$		 120

2 Calculs et Opérateurs

2.1 Exemples de calculs avec Python

Voici quelques exemples commentés de calculs dans l'éditeur de texte. Les commentaires sont toujours précédés du symbole # afin de ne pas être interprétés par Python. Le symbole \hookrightarrow dans le code source indique que la ligne a été coupée pour les besoins du traitement de texte. Dans le code source, il ne s'agit que d'une seule et même ligne.

```
a = 5
1
   # a prend la valeur 5 (5 est affecté à a)
   # le symbole '=' est une affectation de la droite vers la gauche
   b = a
   # b prend la valeur a donc b vaut 5
   c = a + b
   # c prend la valeur de la somme a + b, donc c vaut 10
   # a prend la valeur 5 + 4 = 9. L'ancienne valeur 5 est perdue
   d = a*5 + 3
   # d prend la valeur 9*5 + 3 = 48
11
   f = b + 3
12
   # f prend la valeur 5 + 3 = 8
13
   # b a gardé sa valeur 5 donnée par a à la ligne 3. Le fait de changer la
14
    → valeur de a à la ligne 7 n'affecte pas la valeur de b.
```

2.2 Les opérateurs avec Python

Le tableau ci-dessous dresse la liste des opérateurs mathématiques et logiques :

Opérateur	Définition	Logique	Définition 11
=	affectation	==	y J ^O égalité
+	addition	<; <=	inférieur; inférieur ou égal
_	Soustraction	>;>=	supérieur; supérieur ou égal
*	multiplication	!=	différent
/	division	and	ET logique
**	puissance	or	OU logique
//	quotient d'une division	not	négation
%	reste d'une division		

Remarque : le signe '+' permet d'effectuer une somme mais aussi de concaténer des chaînes de caractères. Exemple :


```
a = "Bonjour"

# a est une chaîne de caractère (str en Python (string))

b = "Monsieur"

# b est également une chaîne de caractères

c = a + b

# c est la chaîne : "Bonjour Monsieur"
```

3 Saisie et affichage des variables

3.1 Saisie des variables : la fonction input()

Les noms de variables sont des noms que vous choisissez. Ce sont des suites de lettres (non accentuées) et/ou de chiffres. Le premier caractère est obligatoirement une lettre (le caractère _ est considéré comme une lettre). Python respecte la casse (il distingue les minuscules des majuscules).

Les cinq principaux types de variables sont les suivants :

- bool : variable booléenne True ou False (bool, abréviation de boolean);
- int : les entiers (int, abréviation de integer);
- float : les flottants ou réel (float, signifie flottant) ;
- str : les chaînes de caractères (str, abréviation de string)
- complex : nombres complexes de la forme a+jb (j est le symbole par défaut) avec $j^2=-1$

A partir de la version 3 de python, la fonction input() renvoie une chaîne de caractères (str). Si l'on souhaite obtenir un entier ou un réel, on doit transtyper la valeur lue au clavier par la fonction input().

Les lignes de codes ci-après montre les différents types rencontrés. La fonction type() renvoie le type de variable. La fonction eval() permet d'évaluer la chaîne de caractère renvoyée par la fonction input() soit par un entier (int) ou soit par un réel (float).

Exemple:

```
from cmath import *
angle = pi/2

print("Valeur de l'angle : ", round(angle,3), " radians")
# Affichage du résultat avec 3 décimales.

Console :
Valeur de l'angle : 1.571 radians
```

La fonction int() permet d'effectuer la troncature à l'unité. Exemple :

```
from cmath import *
1
   angle = pi/2
2
3
   print("Valeur de l'angle : ", int(angle), " radians")
4
    # Affichage de la troncature à l'unité.
5
6
   Console :
   Valeur de l'angle : 1 radians
8
   >>> int(45.4589)
10
   45
11
```

3.9 Chargement des bibliothèques

Les bibliothèques sont chargées dans un programme Python par la commande : import. Voici quelques exemples :

```
from cmath import *
    from math import *
    import numpy as np
3
    from random import *
4
   z = 2 + 3j
    # z est un nombre complexe
    y = cos(pi)
    # y vaut -1
10
11
   >>> e
12
    2.718281828459045
13
```

```
>>> pi
14
    3.141592653589793
15
    # constantes mathématiques
16
17
    >>> a = cos(pi/4)
18
    >>> a
19
    0.7071067811865476
20
    >>> alpha = acos(a)
21
    >>> alpha
    0.7853981633974483
23
    # alpha est en radians
24
    >>>degrees(alpha)
25
26
    # On a converti les radians en degrés
27
    >>> radians(45)
28
    0.7853981633974483
    # On a converti les degrés en radians
30
31
   k = randint(1,6)
32
    # randint(1,6) retourne en entier compris entre 1 et 6 inclus
33
    # Ceci permet d'effectuer la simulation du lancer d'un dé équilibré à 6
34
    → faces.
   p = uniform(0,1)
    # uniform(0,1) renvoie un nombre réel aléatoire compris strictement entre 0
36
    \rightarrow et 1.
```

3.10 Opérations avec les nombres complexes

Les lignes de codes ci-après donnent des exemples d'utilisation des fonctions relatives aux nombres complexes :

```
>>> from cmath import *
   # cmath est la bibliothèque relative aux nombres complexes
2
3
   >>> z = 3 + 4j
4
   # Saisie d'un nombre complexe (ici i est noté j en langage Python)
5
6
   >>> z.real
7
   # calcul de la partie réelle
   >>> z.imag
10
11
   # calcul de la partie imaginaire
12
13
```

7.2.4 Représenter une surface de l'espace z = f(x,y)

On considère la fonction de 2 variables : $f(x,y) = x^2 - y^2$

```
from math import *
    import numpy as np
2
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
4
5
    def f(x,y):
6
        return x**2 - y**2
7
   ax = Axes3D(plt.figure())
9
10
   X = np.linspace(-1,1,10)
11
    Y = np.linspace(-1,1,10)
12
13
   X, Y = np.meshgrid(X, Y)
14
   Z = f(X, Y)
15
   ax.plot_surface(X, Y, Z)
16
   plt.show()
```

On obtient le graphique suivant :

L'instruction np.linspace(-1,1,10) permet de définir un tableau (array) de 10 valeurs allant de -1 à +1.

8 Algèbre linéaire avec Python

La bibliothèque Numpy est chargée à l'aide de la commande import numpy as Nom

8.1 Dimension d'une matrice

On souhaite déterminer la dimension de la matrice suivante, c'est-à-dire le nombre de lignes et de colonnes de cette matrice :

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \end{pmatrix}$$

```
import numpy as np
A = np.array([[1, 3, 3],[1, 4, 3]])
print("Dimension de A : ", A.shape)

# On obtient :
Dimension de A : (2, 3)
# A comporte 2 lignes et 3 colonnes
```

8.2 Multiplication de deux matrices

On souhaite effectuer la multiplication des matrices A et B:

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 2 & 1 \\ 7 & -3 & 2 \\ 2 & -1 & 1 \end{pmatrix}$$

On rappelle que la multiplication des matrices n'est pas commutative :

$$1086 \quad 188 \neq B * A$$

```
import numpy as np
A = np.array([[1, 3, 3],[1, 4, 3],[1, 3, 4]])
B = np.array([[0, 2, 1],[7, -3, 2],[2, -1, 1]])

C = A.dot(B)
D = B.dot(A)

print("A*B = ",C)
print("B*A = ",D)
```


9.1 Saisir et afficher des variables

9.1.1EXB-1

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes:

- 1- Saisir l'année de naissance d'un utilisateur;
- 2- Afficher l'âge correspondant. Par exemple : "Vous avez 21 ans".

Solution

```
a = eval(input("Entrer l'année de votre naissance : "))
annee = 2020
print("Vous avez : ", 2020 - a, " ans.")
```

9.1.2EXB-2

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes:

- 1- Saisir un entier compris entre 0 et 500;
- 2- Afficher sa parité. Par exemple : " Le nombre 452 est pair".

Aide:

```
>>> 14%2
   # Le reste de la division de 14 par 2 est égal à 0
3
   >>> 15%2
4
   1
5
   # Le reste de la division de 15 par 2 est égal à 1
```

Solution

```
compris
  a = int(input("Entrer un entier compris entre 0 et 500 : "))
1
  if a\%2 == 0:
2
      print("Le nombre ", a, " est pair.")
3
  else :
4
      print("Le nombre ", a, " est impair.")
```

9.1.3EXB-3

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes:

- 1- Saisir le nom de l'utilisateur (exemple : Bidule);
- 2- Saisir le sexe de l'utilisateur (M ou F);
- 3- Afficher le texte de bienvenue "Bonjour Monsieur/Madame Bidule" selon le cas.

Solution

```
nom = input("Entrer votre nom : ")
1
   s = input("Sexe M/F : ")
2
   if s == "M" :
4
       print("Bonjour Monsieur ", nom)
5
6
       print("Bonjour Madame ", nom)
```

9.1.4 EXB-4

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes :

- 1- Saisir le prénom de l'utilisateur (exemple : Joseph);
- 2- Saisir l'âge de l'utilisateur;
- 3- Afficher le texte "Joseph, vous avez moins/plus de 25 ans" selon le cas.

Solution

```
prenom = input("Entrer votre prénom : ")
   age = eval(input("Quel est votre âge : "))
2
3
   if age == 25 :
4
      print(prenom, ", vous avez 25 ans.")
5
   elif age > 25 :
6
      print(prenom, ", vous avez plus de 25 ans.")
   else :
      print(prenom, ", vous avez moins de 25 ans.")
                                  IN - www.joseou
```

9.1.5 EXB-5

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes :

- 1- Saisir un nombre réel:
- 2- Afficher le texte "Ce nombre est inférieur/supérieur à 500" selon le cas.

Solution

```
a = eval(input("Entrer un nombre réel : "))
   if a >= 500 :
2
       print("Le nombre ", a, " est supérieur ou égal à 500.")
3
   else :
4
       print("Le nombre ", a, " est strictement inférieur à 500.")
```


9.1.6 EXB-6

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes :

- 1- Saisir un nombre réel;
- 2- Afficher la partie entière et la partie décimale. Exemple pour 45.478; afficher "Partie entière 45 et partie décimale 0.478".

Solution

```
a = float(input("Entrer un nombre réel : "))

print("Partie réelle : ", int(a))

print("Partie décimale ", a - int(a))

# les erreurs d'arrondis sont normales. Elles sont liées à la variable de

type float.
```

9.2 Effectuer des opérations avec les vecteurs

9.2.1 EXB-7

On se place dans le plan muni d'un repère orthonormé. Écrire un algorithme puis un programme Python qui effectue les opérations suivantes :

- 1- Saisir deux vecteurs \overrightarrow{u} et \overrightarrow{v} ;
- 2- Calculer la somme : $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$;
- 3- Afficher le résultat.

Solution

```
import numpy as np

u = eval(input("Entrer le vecteur u : [xu , yu] : "))
v = eval(input("Entrer le vecteur v : [xv , yv] : "))

npu = np.array(u)
npv = np.array(v)
w = npu + npv

print("Vecteur w = u + v : ", w)
```

9.2.2 EXB-8

Écrire un algorithme puis un programme Python qui effectue les opérations suivantes : 1- Saisir un vecteur \overrightarrow{u} dans le plan muni d'un repère orthonormé;

12.1 TP- [1]-1 - Intégration : Méthode des rectangles

On considère le quart de disque de rayon 1. Il s'agit de déterminer l'aire, S, de ce quart de disque en effectuant la somme des aires des rectangles comme indiqué par la figure ci-dessous.

En considérant un nombre N de rectangle suffisamment grand, la somme des aires de ces rectangles, S, est une approximation de l'aire du quart du disque de rayon 1, c'est-à-dire $\frac{\pi}{4}$.

On a donc : $\lim_{N\to+\infty} S = \frac{\pi}{4}$, c'est-à-dire $4 \times \lim_{N\to+\infty} S = \pi$.

On rappelle qu'un point M(x;y) appartient au cercle si et seulement si : $x^2 + y^2 = 1$.

Travail demandé:

1- Écrire un programme qui permet d'afficher une approximation du nombre π . L'utilisateur doit pouvoir choisir le nombre N de rectangles.

2- Combien de rectangles faut-il considérer pour obtenir 5 décimales exactes de π ? On donne les 14 premières décimales de π ; $\pi = 3,14159265358979...$

Solution

```
from math import *
1
2
   N = int(input("Entrer le nombre de rectangles : N = "))
3
4
   h = 1/N
5
   x = 0
   S = 0
    for i in range(1,N+1) :
       y = sqrt(1 - x**2)
9
       S = S + h*y
10
        x = x + h
11
12
13
   print("Approximation de Pi pour ",N," rectangles : ",4*S)
14
```