1 Ziel und Vorgehensweise

Satz 1 (Uniformisierungssatz). Jede einfach zusammenhängende Riemann'sche Fläche ist biholomorph äquivalent zur Einheitskreisscheibe \mathbb{E} oder zur Zahlebene \mathbb{C} oder zur Zahlkugel $\overline{\mathbb{C}}$.

Beweisstrategie:

- Fallunterscheidung je nach Eigenschaften des Randes (positiv berandet / nullberandet).
- Konstruiere jeweils eine injektive holomorphe Funktion $f: X \to \overline{\mathbb{C}}$.
- Erhalte eine biholomorphe Abbildung $X \cong f(X) \subseteq \mathbb{C}$.
- Ist $X \subseteq \mathbb{C}$, so folgt mit dem Riemann'schen Abbildungssatz $X \cong \mathbb{C}$ oder $X \cong \mathbb{E}$.

2 Grundlagen

Def. 1 (positiv berandet/nullberandet). Eine Riemann'sche Fläche X heißt nullberandet, wenn . Sonst heißt X positiv berandet.

Def. 2 (Greensche Funktion). . . .

Lemma 2. Auf positiv berandeten Flächen existiert die Greensche Funktion zu jedem Punkt.

Lemma 3. Auf nullberandeten Flächen gilt der Satz von Liouville.

Lemma 4. Auf einer beliebigen Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} : X \setminus \{a,b\} \to \mathbb{C}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- -u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

3 Beweis für Fall 1 (positiv berandet)

Behauptung Einfach zusammenhängend impliziert elementar.

Beweis. Sei $X = \bigcup U_i$ eine offene Überdeckung von X und sei $f_i \colon U_i \to \overline{\mathbb{C}}$ eine Schar invertierbarer meromorpher Funktionen mit der Eigenschaft $|f_i/f_j| = 1$ auf $U_i \cap U_j$. Man kann nun für ein $a \in U_i \cap U_j$ analytische Fortsetzungen für f_i entlang von Wegen konstruieren, indem man auf U_j die Funktion f_j benutzt und diese mit dem konstanten (Maximumprinzip) Faktor $c_{ij} = |f_i/f_j|$ multipliziert. Auf $U_j \cap U_k$ benutzt man dann f_k und multipliziert mit dem Faktor $c_{ij} \cdot |f_j/f_k|$. (Bild wäre vllt. echt hilfreich) Da X einfach zusammenhängend ist, erhält man nach dem Monodromiesatz eine meromorphe Fortsetzungen von f_i auf ganz X. Nach Konstruktion ist auf U_k dann f/f_k konstant und vom Betrag 1.

• Es existiert eine holomorphe Funktion $F_a \colon X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a, G_a \colon X \setminus \{a\} \to \mathbb{R}$ Greensche Funktion.

- Greensche Funktion existiert stets.
- Es genügt, zu jedem Punkt b mit Umgebung U(b) eine holomorphe Funktion F mit $|F(x)| = e^{-G_a(x)} \forall x \in U(b), x \neq a$ anzugeben. Dann ist nämlich $|F/\tilde{F}| = 1$ auf $U(b) \cap U(\tilde{b})$ und mit obiger Aussage erhalten wir eine Funktion $F: X \to \mathbb{C}$ mit dem geforderten Betrag.
- Fall 1: $b \neq a$. Für geschickte Wahl von U(b) ist G_a Realteil einer analytischen Funktion f (das ist auf Elementargebieten stets der Fall) und wir wählen $F_a := e^{-f}$.
- Fall 2: b = a. OE $X = \mathbb{E}$ (kleine Umgebung um a, die sich konform auf eine Kreisscheibe abbildet). Dann gilt $G_a(z) = -\log |z|$ und $F_a(z) = z$ ist die gesuchte Funktion.
- Insbesondere ist $\lim_{x\to a}|F_a(x)|=\lim_{x\to a}e^{-G_a(x)}=0$, also $F_a(a)=0$ und wegen $G_a(x)>0$ gilt außerdem $|F_a(x)|<1$.
- F_a ist injektiv.
 - Betrachte

$$F_{a,b}(x) := \frac{F_a(x) - F_a(b)}{1 - \overline{F_a(b)}F_a(x)}.$$

Diese Funktion erfüllt folgende Eigenschaften.

- * $|F_{a,b}| < 1$. (Rechnung)
- * $F_{a,b}$ ist als Quotient analytischer Funktionen meromorph. Aufgrund der Beschränktheit muss $F_{a,b}$ aber sogar analytisch in X sein.
- * $F_{a,b}(b) = 0$, Ordnung k. (klar wegen $|F_a(b)|^2 < 1$)
- * $F_{a,b}(a) = -F_a(b)$. Klar wegen $F_a(a) = 0$.
- $-|F_{a,b}(x)| = |F_b(x)| \forall x \in X.$
 - * $u(x) := -\frac{1}{k} \log |F_{a,b}(x)|$ ist außerhalb einer diskreten Teilmenge ≥ 0 und harmonisch mit einer logarithmischen Singularität bei x = b.
 - * Greensche Funktion: $G_b(x) \leq u(x)$.
 - * $e^{G_b(x)} \leq e^{u(x)}$. Umformen ergibt

$$\frac{|F_{a,b}(x)|}{|F_b(x)|} \le 1.$$

- * Für x=a folgt $|F_a(b)| \leq |F_b(a)|$. Symmetrie $\Longrightarrow \frac{|F_{a,b}(x)|}{|F_b(x)|}$ nimmt an einer Stelle ein Maximum an, nach dem Maximumprinzip erhalten wir die Behauptung.
- Es folgt $F_{a,b} \neq 0$ für $x \neq b$, also $F_a(x) \neq F_a(b)$ für $x \neq b$. b war beliebig $\implies F_a$ injektiv.
- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt ($|F_a(x)| < 1$) und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz ist damit $X \cong \mathbb{E}$.

4 Zusammenfassung

- Ziel
- Wie viel davon haben wir schon bewiesen?

5 Wiederholung

- Was wir bisher bewiesen haben (copy paste von Zusammenfassung)
- Def 1
- Lemma 3
- Lemma 4

6 Beweis für Fall 2 (nullberandet)

- $\forall a \neq b \in X \exists f_{a,b} \colon X \setminus \{a,b\} \to \mathbb{C}$ mit 1. $f_{a,b}$ hat in a NST erster Ordnung und in b Pol erster Ordnung und 2. Zu Umgebungen $U(a), U(b) \exists C$ mit $C^{-1} \leq |f_{a,b}(x)| \leq C$ für $x \notin U(a) \cup U(b)$, d.h. $f_{a,b}$ hat außer a und b weder Pole noch Nullstellen.
 - Benutze II.12.2: Es existiert eine harmonische Funktion $u := u_{a,b} \colon X \setminus \{a,b\} \to \mathbb{C}$. mit folgenden Eigenschaften:
 - * u ist logarithmisch singulär bei a.
 - * -u ist logarithmisch singulär bei b.
 - * u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.
 - Konstruiere mithilfe der ersten Aussage eine analytische Funktion $f_{a,b}: X \setminus \{a,b\} \to \mathbb{C}$ mit $|f_{a,b}| = e^{u_{a,b}}$.
- $f_{a,b}$ ist injektiv.
 - Als Quotient analytischer Funktionen ist

$$g(z) \coloneqq \frac{f(z) - f(c)}{f_{c,b}(z)}.$$

meromorph und beschränkt außerhalb einer gewissen Umgebung um a, b, c.

- Wegen $\lim_{z \to c} g(z) = \lim_{z \to c} \frac{f(z) f(c)}{f_{c,b}(z)} = \text{const}$ ist g analytisch und beschränkt auf ganz X und damit nach dem Satz von Liouville für nullberandete RF konstant.
- $-f(z)-f(c)=\lambda f_{c,b}(z)$. Insbesondere hat f(z)-f(c) genau eine Nullstelle bei z=c, d.h. f ist injektiv.
- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $f_{a,b}(X) \subset \overline{\mathbb{C}}$.

- Ist $f_{a,b}(X)$ kompakt, so muss $f(X) = \overline{\mathbb{C}}$ gelten (Wäre dem nicht so, so müsste nach dem nächsten Punkt $f(x) \cong \mathbb{C}$ oder \mathbb{E} gelten. Diese sind aber beide nicht kompakt).
- Sonst ist OE $f_{a,b}(X) \subset \mathbb{C}$ und damit nach dem Riemann'schen Abbildungssatz konform äquivalent zu \mathbb{C} oder \mathbb{E} , wobei letzeres Hyperbolizität impliziert (weil die Greensche Funktion für den Nullpunkt existiert und die Gruppe der konformen Selbstabbildungen transitiv operiert oder so ähnlich), sodass nur noch \mathbb{C} möglich ist.

7 Diskussion Ergebnis und Idee der weiteren Klassifikation

- Sehr schönes Resultat :D etc.
- Einfach zusammenhängende Flächen kennen wir jetzt, allgemeine Flächen sind aber einfach zusammenhängende Flächen modulo einer frei operierenden Gruppe von konformen Selbstabbildungen (Überlagerungstheorie)

8 weitere Klassifikation

- Zahlkugel als universelle Überlagerung: Möbiustransformationen haben immer einen Fixpunkt, also besteht die einzige frei operierende Gruppe nur aus der Identität.
- Ebene als universelle Überlagerung: Selbstabbildungen $z \mapsto az + b$. Diese besitzen für $a \neq 1$ einen Fixpunkt, also a = 1. Es gibt drei Möglichkeiten für eine frei operierende Gruppe.
 - $-\{0\}, X \cong \mathbb{C}.$
 - zyklische Untergruppen $L=\{z\mapsto z+\tilde{b},\tilde{b}\in\mathbb{Z}b\}$. Dann ist $\mathbb{C}/L\xrightarrow{z\mapsto e^{2\pi iz/b}}\mathbb{C}^*$ eine konforme Äquivalenz
 - -L ist ein Gitter, d.h. \mathbb{C}/L ist ein Torus. Wann sind zwei Tori äquivalent?
- Einheitskreis/obere Halbebene: Untergruppen $\Gamma \subset SL(2,\mathbb{R})$, die -1 enthalten. Welche operieren frei? Wann gilt $\mathbb{H}/\Gamma \cong \mathbb{H}/\Gamma'$? (zum Teil einfach VL von letztem Semester)