Deep Learning: Algorithms and Applications

Peking University Spring 2023 Prof. Yadong Mu

Homework 1

Due Date: May 15th

1. MLP for Classification

In a multi-class classification problem, *e.g.* a problem with M classes, we use a model f_{θ} to produce the output \hat{y} . \hat{y} is a vector of dimension M with sum 1, whose components indicate the probability of x belong to each class.

In this section, you will use a simple model — the 3-layer MLP — to tackle this problem. Assume that we have K labeled data (x_k, y_k) with k = 1, 2, ..., K where $x_k \in \mathbb{R}^N$ and $y_k \in \mathbb{R}^M$ is a M-dimensional one-hot vector.

- a) Define the cross entropy loss for a multi-class classification problem.
- b) A 3-layer MLP consists of an input layer, a hidden layer and an output layer with two learned parameter matrices W^1 , W^2 between successive layers. Please note that there is generally a Softmax layer after the output layer to scale the output, which we omitted in this sub-question for simplicity. When given an input x, this model performs the following forward computations sequentially:

$$a_1 = W^1 x,$$

$$h = \sigma(a_1),$$

$$a_2 = W^2 h,$$

$$\hat{y} = \sigma(a_2).$$

where $W^1 \in \mathbb{R}^{D \times N}$, $W^2 \in \mathbb{R}^{M \times D}$ are parameter matrices and $\sigma(z) = \frac{1}{1 + e^{-z}}$ is the element-wise Sigmoid function. Use the loss function you defined in sub-question a), apply an SGD update to the parameters W^1 and W^2 with learning rate η via back-propagation. You must identify the closed-form gradient of each parameter, which is $\frac{\partial \mathcal{L}}{\partial W^2(m,d)}$ and $\frac{\partial \mathcal{L}}{\partial W^1(d,n)}$ in your derivation.

[HINT: 1) For simplicity, you can assume that the SGD program uses only one training data per batch. 2) Use formula $\sigma'(z) = \sigma(z)(1 - \sigma(z))$ for a scalar z.]

2. Dropout and Regularization

Dropout is a well-known way to prevent neural networks from overfitting. In this section, you will show this regularization explicitly for linear regression. Recall that linear regression optimizes $w \in \mathbb{R}^d$ to minimize the following MSE objective:

$$\mathcal{L}(w) = \|y - Xw\|^2$$

where $y \in \mathbb{R}^n$ is the response to design matrix $X \in \mathbb{R}^{n \times d}$. One way of using dropout during training on the d-dimensional input features x_i involves *keeping* each feature at random with probability p (and zero out it if not kept).

a) Show that when we apply such dropout, the learning objective becomes

$$\mathcal{L}(w) = \mathbb{E}_{M \sim \text{Bernoulli}(p)} ||y - (M \odot X)w||^2$$

where \odot denotes the element-wise product and $M \in \{0,1\}^{n \times d}$ is a random mask matrix whose element $m_{i,j}$ have i.i.d. Bernoulli distribution with success probability p.

b) Show that we can manipulate the dropout learning objective to a explicit regularized objective:

$$\mathcal{L}(w) = \|y - pXw\|^2 + p(1-p)\|\Gamma w\|^2$$

and define a suitable matrix Γ .