

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

PLANO DE ENSINO

DEPARTAMENTO: Ciência da Computação

DISCIPLINA: Complexidade de Algoritmos SIGLA: CAL0001

CARGA HORÁRIA TOTAL: 72 TEORIA: 36 PRÁTICA: 36

CURSO(S): Bacharelado em Ciência da Computação

SEMESTRE/ANO: 1/2018 PRÉ-REQUISITOS: TEG0001

OBJETIVO GERAL DA DISCIPLINA: Analisar a complexidade de tempo e espaço de algoritmos. Identificar o melhor caso, o pior caso e o caso médio de execução de algoritmos. Identificar problemas tratáveis e intratáveis.

EMENTA: Crescimento assintótico de funções. Somatórios. Análise de complexidade de algoritmos. Algoritmos iterativos e recursivos. Divisão e conquista. Algoritmos gulosos. Programação Dinâmica. Problemas tratáveis e intratáveis. Classes de problemas: P, NP, NP-Completo e NP-Difícil. Aproximações e Heurísticas.

OBJETIVOS ESPECÍFICOS:

Capacitar o aluno a analisar a complexidade de tempo e espaço de algoritmos e ser capaz de identificar problemas considerados intratáveis.

C.H.	CONTEÚDOS PROGRAMATICOS	AVALIAÇÃO
14 h/a	Apresentação do planejamento e da ementa da disciplina.	
	Introdução à disciplina.	
	Conceitos Básicos de Complexidade:	
	- Notação O grande	
	- Ordens de complexidade	Prova-1
	- Análise de complexidade com uma variável	Exercícios
	- Análise de complexidade de tempo de algoritmos recursivos	Exercicios
	- Somatórios	
	- Complexidade de Espaço	
	- Notações assintóticas (Ω e Θ)	
	- Teorema Mestre (Master)	
6 h/a	Análise de Algoritmos de Ordenação: Merge Sort, Quick Sort, Heap Sort,	Prova-1
	Counting Sort e Bucket Sort	Trabalho-1
8 h/a	Análise de Complexidade de Estruturas de Dados Elementares	Prova-2 Trabalho-2
	Tabelas Hash	
	Análise de Complexidade com múltiplas variáveis	
12 h/a	Análise de Complexidade de operações elementares com inteiros de 'n' bits	Prova-2
	Números primos, aritmética modular e algoritmo de criptografia RSA	*Trabalho-4
18 h/a	Abordagens para Resolução de Problemas:	Prova-3 Trabalho-3
	- Indução matemática	
	- Divisão e conquista	*Trabalho-4
	- Algoritmos gulosos	Exercícios
	- Algoritmos de tentativa e erro	Exercicios

	- Programação dinâmica	
	- Algoritmos de aproximação	
14 h/a	Conceitos de Teoria da Computação vinculados com complexidade:	Prova-3 Exercícios
	- Problemas tratáveis e intratáveis;	
	- Classes de problemas: P, NP, NP-Completo e NP-Difícil;	
	- Redução de problemas;	
	- Problemas NP-Completos: SAT, 3-CNF-SAT, Clique, Cobertura de	
	Vértices, Ciclo Hamiltoniano, Caixeiro Viajante, Subset-Sum	
	- Algoritmos pseudo-polinomiais	

METODOLOGIA PROPOSTA:

Aulas expositivas acompanhadas de trabalhos práticos relacionados aos conteúdos apresentados na aula. Aulas práticas em laboratório que objetivam a implementação ou pesquisa dos conceitos apresentados nas aulas teóricas. Listas de exercícios para auxiliar na fixação do conteúdo apresentado. Seminários para proporcionar a busca de forma autônoma pelo conhecimento. Provas teóricas para avaliar o conteúdo conceitual aprendido. Trabalhos para avaliar a capacidade do uso dos conceitos aprendidos. Até 20% do conteúdo programático poderá ser ministrado na forma de ensino a distância.

AVALIAÇÃO:

Do desempenho do aluno:

Os alunos serão avaliados com base no seu desempenho nas provas, trabalhos e listas de exercícios, sendo que ao final do semestre o aluno deverá ter comparecimento mínimo de 75% às aulas e desempenho mínimo de 70% nas avaliações. O grau de desempenho do aluno será avaliado com base nos seguintes critérios:

- a) Provas: 60%
 - a.1) Prova 1 (20%)
 - a.2) Prova 2 (20%)
 - a.3) Prova 3 (20%)
- b) Trabalhos: 30%
 - b.1) Comparação entre algoritmos de ordenação (6,5%)
 - b.2) Trabalho comparativo entre busca sequencial, binária e hash (6,5%)
 - b.3) Pesquisa e apresentação de complexidade de algoritmo (7%)
 - b.4) Implementação e análise do algoritmo de criptografia RSA (10%)
- c) Exercícios: 10%
 - c.1) Exercícios I (3%)
 - c.2) Exercícios II (3%)
 - c.3) Exercícios III (4%)

BIBLIOGRAFIA (GERAL) OU DE USO DA DISCIPLINA:

Básica:

CORMEN, Thomas H. Algoritmos: teoria e prática. 3. ed. Rio de Janeiro: Elsevier, 2012.

CORMEN, Thomas H. Desmistificando algoritmos. Rio de Janeiro: Elsevier, 2014.

DASGUPTA, Sanjoy; PAPADIMITRIOU, Christos H; VAZIRANI, Umesh Virkumar. Algoritmos. São Paulo: McGraw-Hill, 2009

Complementar:

AHO, A.V; HOPCROFT, J.E.; ULLMAN, J.D.; Data structures and algorithms. Reading, MA: Addison Wesley, 1987.

KNUTH, D.E. The art of computer programming - Fundamental Algorithms. 3nd ed. Massachusetts: Addison Wesley, 2008.

LEVITIN, A. Introduction to the design & analysis of algorithms. 2nd ed. Pearson/Addison Wesley, 2007.

TOSCANI, L.V.; VELOSO, Paulo A. S. Complexidade de algoritmos. 3.ed. Porto Alegre: Bookman, 2012.

ZIVIANI, N. Projeto de algoritmos: com implementações em Pascal e C. 3. ed. rev. e ampl. São Paulo: Pioneira Thomson Learning, 2011.