Teorema: Sea
$$X = \{(z_{B_r}, z, x) \in Z_+ \times Z_+^{n_1} \times R_+^{n_2} / z_{B_r} + \sum_{j \in N_1} y_{rj} z_j + \sum_{j \in N_2} y_{rj} x_j = \overline{b}_r \},$$

donde $n_i = |N_i|$ para i = 1, 2. Si $\overline{b}_r \notin Z$, $f = \overline{b}_r - \lfloor \overline{b}_r \rfloor$ y $f_j = y_{rj} - \lfloor y_{rj} \rfloor$ para $j \in N_1 \cup N_2$.

El corte entero mixto de Gomory

$$\sum_{\substack{f_j \leq f \\ j \in N_1}} f_j z_j + \frac{f}{1-f} \sum_{\substack{f_j > f \\ j \in N_1}} \Bigl(1-f_j\Bigr) z_j + \sum_{\substack{y_{r_j} > 0 \\ j \in N_2}} y_{r_j} x_j - \frac{f}{1-f} \sum_{\substack{y_{r_j} < 0 \\ j \in N_2}} y_{r_j} x_j \geq f$$

es válido para X.

EJEMPLO

max
$$z = 5x_1 + 2x_2$$

s. a.: $2x_1 + 2x_2 + x_3 = 9$
 $3x_1 + x_2 + x_4 = 11$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0,$
 $x_1 \ y \ x_3 \text{ enteros}$

La solución óptima, del problema de programación lineal correspondiente a la relajación continua del problema anterior, se presenta en la siguiente tabla

	\mathcal{X}_1	χ_2	<i>X</i> ₃	χ_4	
x_2	0	1	3/4	-1/2	5/4
x_1	1	0	-1/4	1/2	13/4
	0	0	-1/4	-3/2	Z - (75/4)

Considerando como ecuación generatriz del corte: $x_1 - \frac{1}{4}x_3 + \frac{1}{2}x_4 = \frac{13}{4}$, se obtiene el corte:

$$\frac{1}{12}x_3 + \frac{1}{2}x_4 \ge \frac{1}{4}.$$

	\mathcal{X}_1	χ_2	<i>X</i> ₃	χ_4	<i>X</i> ₅	
X_4	0	-1/5	0	1	-9/5	1/5
x_1	1	2/5	0	0	3/5	18/5
x_3	0	6/5	1	0	-6/5	9/5
			-			
	0	0	0	0	-3	Z-18

Considerando como ecuación generatriz del corte: $\frac{6}{5}x_2 + x_3 - \frac{6}{5}x_5 = \frac{9}{5}$, se obtiene el corte:

$$\frac{6}{5}x_2 + \frac{24}{5}x_5 \ge \frac{4}{5}.$$

	\mathcal{X}_1	χ_2	χ_3	χ_4	χ_5	χ_6	
<i>X</i> ₄	0	0	0	1	-1	-1/6	1/3
x_1	1	0	0	0	-1	1/3	10/3
x_3	0	0	1	0	-6	1	1
		Ů	1	v	O	1	1
x_2	0	1	0	0	4	-5/6	2/3
	0	0	0	0	2	0	7 10
	0	U	U	U	-3	U	Z-18

Considerando como ecuación generatriz del corte: $x_1 - x_5 + \frac{1}{3}x_6 = \frac{10}{3}$, se obtiene el corte:

$$\frac{1}{2}x_5 + \frac{1}{3}x_6 \ge \frac{1}{3}.$$

	x_1	χ_2	χ_3	χ_4	χ_5	χ_6	χ_7	
<i>X</i> ₄	0	0	0	1	-3/4	0	-1/2	1/2
x_1	1	0	0	0	-3/2	0	1	3
X_3	0	0	1	0	-15/2	0	3	0
x_2	0	1	0	0	21/4	0	-5/2	3/2
x_6	0	0	0	0	3/2	1	-3	1
	0	0	0	0	-3	0	0	Z-18

Solución óptima: $x_1^*=3$, $x_2^*=\frac{3}{2}$, $x_3^*=0$, $x_4^*=\frac{1}{2}$, $z^*=18$

Se consideran, a continuación, los dos posibles cortes respecto de la segunda tabla:

a) Considerando como ecuación generatriz del corte: $x_1 + \frac{2}{5}x_2 + \frac{3}{5}x_5 = \frac{18}{5}$, se obtiene el corte:

$$\frac{2}{5}x_2 + \frac{3}{5}x_5 \ge \frac{3}{5}.$$

b) Considerando como ecuación generatriz del corte: $\frac{6}{5}x_2 + x_3 - \frac{6}{5}x_5 = \frac{9}{5}$, se obtiene el corte:

$$\frac{6}{5}x_2 + \frac{24}{5}x_5 \ge \frac{4}{5}.$$

Puesto que se verifica:

$$\frac{\frac{2}{5} + \frac{3}{5}}{\frac{3}{5}} < \frac{\frac{6}{5} + \frac{24}{5}}{\frac{4}{5}}$$

se elige la opción a), añadiendo el correspondiente corte al problema anterior.

	x_1	\mathcal{X}_2	χ_3	χ_4	χ_5	χ_6	
<i>X</i> ₄	0	-1/5	0	1	-9/5	0	1/5
x_1	1	2/5	0	0	3/5	0	18/5
x_3	0	6/5	1	0	-6/5	0	9/5
X_6	0	-2/5	0	0	-3/5	1	-3/5
	0	0	0	0	-3	0	Z-18

	x_1	x_2	χ_3	χ_4	χ_5	χ_6	
<i>X</i> ₄	0	0	0	1	-3/2	-1/2	1/2
x_1	1	0	0	0	0	1	3
x_3	0	0	1	0	-3	3	0
x_2	0	1	0	0	3/2	-5/2	3/2
	0	0	0	0	-3	0	Z-18
	U	U	U	V	_3	U	Z-16

Solución óptima: $x_1^*=3$, $x_2^*=\frac{3}{2}$, $x_3^*=0$, $x_4^*=\frac{1}{2}$, $z^*=18$