Homework 0

Zi Yan

September 9, 2011

Problem 1 Solution:

Fact 1. A ship should be the last one that schedules to visit a port that it will remain in.

Proof. By contradiction, we suppose ship S, which is not the last ship that will visit port P, will remain in port P, beginning on day d, and another ship S' has a schedule to visit port P on day d+x, where $0 \le x \le (m-d)$. But this will conflict with the requirement (\dagger). Therefore S cannot remain in the port P for the rest of the month, which contradicts with the assumption. \square

In order to proof that a set of truncations can always be found, we can use contradiction.

Proof. Suppose on some day d, a ship S cannot remain in any port, while all the other n-1 ships all remain in their ports respectively.

There are three cases here,

- 1. all ports are occupied, so S has no place to remain in.
- 2. S remains in port P, but there is another ship S' that will schedule to visit port P on day d + x $(0 \le x \le (m d))$, in order not to violate the requirement (\dagger) , S cannot remain in P.
- 3. a port P is the only empty port, but S stayed in P before, so S cannot visit and remain in P.

For first case, because there are n ships and n ports, and the rest n-1 ships already remain in the ports, there must be exactly one empty port.

For second case, from the assumption, we know all the other ships	are in
ports, so there cannot be another ship that will visit port P .	
For last case,	

ullet Show a set of truncations can always be found: We can prove this by contradiction. First, we suppose there is a ship S that cannot find any port to remain in.