Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch : EEE Semester : III

Title of the Course : Electromagnetic Field Thoery Course Code : EEL- 203

Time: 3Hours Maximum Marks: 50

Note:

- Answers should be CLEAR, TO THE POINT AND LEGIBLE.
- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE FVALUATED.
- All questions in Section A are compulsory. Attempt any 4 questions from Section B and 2 questions from Section C.
- Assume any data, if it is missing
- Symbols have their usual meaning.

	Section A	
Q[1]:		(1×10)
	[i]- If $\mathbf{A} = \nabla V$, V is said to be	potential of A.
	[ii]- Given field, $A = 3x^2yz a_x + x^3z a_y + (x^3y - y^2) a_y + x^3z a_z + x^3z a_$	$2z$) a_z , it can be said that A is
	[iii]- For plane wave propagating in free space, what phase velocity (v_p) , group velocity (v_g) and space velocity (v_g)	must be the relationship between beed of light, c
	[iv]- The relation between bound volume current den defined by	sity (I_b) and Magnetization (M) is
	[v]- The electric and magnetic fields $E(z,t)$ and $B(z)$ scalar potential $\varphi(z,t) = 0$ and vector potential	$A(z,t)$, respectively corresponding to $A(z,t) = \hat{\imath} tz$ are
	[vi]- Magnetic dipole moment is define by	
	[vii]- A charge of 1Coulomb is placed near a grounde 1m. The force between them is	d conducting plate at a distance of
	[viii]- Gauss law for the electric field in differential for	orm is expressed as
	[ix] - When phase velocity of an electromagnetic way medium, the phenomenon is called as	
	[x]- The integral form of the Ampere's law for the ma	agnetostatic field is expressed

Section -B

Q1: What do you mean by boundary value problems? Show that a solution of the Laplace's equation satisfies a given set of boundary conditions is the only possible solution. (5.0)

Q2: In the Free space $(z \le 0)$, a plane wave with $H_i = 10\cos(10^8 t - \beta z) \alpha_x mA/m$ is incident normally on a lossless medium $(\epsilon = 2 \epsilon_0, \mu = 8\mu_0)$ in the region $(z \ge 0)$. Determine the reflected wave H_r , E_r and the transmitted wave H_t , E_t . (5.0)

Q3: The lossy dielectric has an intrinsic impedance of 200 exp $(j\pi/6)$ Ω at a particular radian frequency ω . If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component, $H = 10 e^{-\alpha x} \cos \left(\omega t - \frac{1}{2} x\right) a_y$ A/m. Find E and α . (5.0)

Q4: Define the phenomenon of skin effect in the conductor? A uniform plane wave propagating in a medium has $E = 2 e^{-\alpha z} \sin(10^8 t - \beta z) a_y$ V/m. If the medium is characterized by $\epsilon_r = 1, \mu_r = 20$ and $\sigma = 3$ S/m. Find the values of α, β and H. (5.0)

Q5: State and prove the Poynting's theorem of the electromagnetic wave using the Maxwell's curl equations and describe the physical significance of Poynting vector. (5.0)

Section C

Q[1]: What is difference between convection and conduction current? A circular ring of radius r carries a uniform charge ρ_c C/m and is placed on the xy-plane with axis the same as z-axis. Show that

(i)-
$$E(0,0,h) = \frac{\rho_c r h}{2 \epsilon_0 [r^2 + h^2]^{3/2}} a_z$$

(ii)- What values of the h give the maximum value of the E?

(iii)- If the total charge on the ring is Q, find E as
$$r \to 0$$
 (10)

Q[2]: Define the magnetic vector potential through the Gauss's law for the magnetic fields.

Deduce the expressions of the Biot-Savart and Ampere's laws through magnetic vector potential.

(10)

Q[3]: Derive the wave equations for the voltage and current to a given transmission line and discuss about their general solutions. A distortionless line has $Z_0 = 60 \Omega$, $\alpha = 20 \, mNp/m$ and $u = 0.6 \, c$, where c is the speed of light in vacuum. Find R, L, G, C, and λ at 100 MHz.