

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INFORMÁTICA

Identificación

Talle Libre: Programación Científica				
Créditos UTFSM:	Asignaturas Prerrequisitos: INF134 Estructura de Datos +			
1	MAT022 Matemáticas II			
Hrs. Cat. Sem.: 1:30 (hora reloj)		Horario: I	Miércoles 5-6 (Conversable)	
Cant. Sesiones: 10	Fecha Inicio: 14/03	3/2017	Fecha Término: 30/05/2017	

Descripción

Este curso tiene por objetivo que el alumno aprenda a utilizar las herramientas que provee el lenguaje de programación Python, para su utilización en la resolución de problemas en la computación científica y data science.

Requisitos de entrada

- Manejo y conocimiento de los lenguajes Python y C.
- Conocimiento básico de Algebra Lineal.
- (Recomedable) Conocimiento básico de Ecuaciones Diferenciales.

Competencias Específicas del Perfil de Egreso a las que contribuye (máximo 2, ver Anexo 1)

 Analizar problemas susceptibles de ser resueltos computacionalmente, diseñar algoritmos y programar las soluciones utilizando las herramientas adecuadas en cuanto a lenguaje de programación y estructuras de datos.

Competencias Transversales del Perfil de Egreso a las que contribuye (máximo 2, ver Anexo 2)

 Actuar con autonomía, flexibilidad, iniciativa, y pensamiento crítico al enfrentar problemáticas de la profesión.

Objetivos (Resultados del aprendizaje): Al aprobar la asignatura, el estudiante será capaz de:

- Comprender el funcionamiento interno de Python en cuanto al uso y manipulación de arreglo numéricos.
- 2. Desarrollar código optimizado para la resolución de problemas científicos.
- 3. Analizar y detectar secciones críticas del código (cuellos de botellas) por medio de profiling.
- 4. Crear gráficos que permitan entender y visualizar fenómenos de distinto tipo.
- 5. Crear soluciones eficientes a problemas científicos reales.
- 6. Hacer interfaces en Python de bibliotecas en C (Wrapping).

Metodología de enseñanza y de aprendizaje

Clases expositivas complementadas con:

- Ejemplos y demostraciones interactivas (tiempo real) en Jupyter Notebooks, donde se discutiran códigos asociados a las diversas temáticas del curso.
- Desafíos/Actividades individuales y grupales, donde se incentivará la aplicación de lo aprendido.
- Material teórico online para su consulta fuera de la clase, con las demostraciones vistas en clases, así como con ejemplos extra que no se alcancen a cubrir.

Bibliografía sugerida

- 1. Learning IPython for Interactive Computing and Data Visualization, second edition. Cyrille Rossant.
- 2. IPython Interactive Computing and Visualization Cookbook. Cyrille Rossant.

Evaluación

Nota Final = Asistencia * 20% + Actividades en Clases * 50% + Mini Proyecto Final * 30%

Programación semestre

Programación semestre				
Sesión Nº	Nombre	Tipo Actividad		
1	Introducción a Anacona, Ipython, Jupyter Notebook y Git.	Clase práctica para conocer y configurar las herramientas utilizadas en el curso.		
2	Computación Numérica (1): NumPy + NumExpr.	Estudio de los mecanismo internos de Python/NumPy, y su utilización práctica.		
3	Computación Numérica (2): NumPy + Manipulación de array de gran tamaño.	Estudio de problemas de gran escala y herramientas para tratarlos: Matrices Sparse, HDF5, Memory Mapping, entre otras.		
4	Visualización: Matplolib + Ipython Widgets.	Visualización interactiva de datos.		
5	Acelerando Python con Numba: Just In Time Compilaton.	Exposición de la compilación en tiempo real y aplicaciones.		
6	Acelerando Python con Cython: Escribiendo C en Python.	Desarrollo de código C en Python.		
7	Profiling de Código y Optimización.	Detección de códigos críticos y su optimización.		
8	Resolviendo Problemas Numéricos:	Utilizar las herramientas de		

	SciPy	SciPy para resolver problemas númericos.
9	Modulos de C a Python: Wrapping. ¹	Estudio de caso real: Crear un interfaz en Python de C.
10	Paralelización en Python: Threads. ²	Exposición básica de Threads y cómo utilizarlos en Python.

Elaborado por	Martín Villanueva	Observaciones:
Aprobado por		
Fecha		
Aprobación		

¹ Contenido será visto de forma opcional, sólo si alcanza el tiempo.

² Contenido será visto de forma opcional, sólo si alcanza el tiempo.