WHAT IS CLAIMED IS:

1	1. A method of forming a bottom oxide layer in a trench structure, the
2	method comprising:
3	(a) providing a semiconductor substrate and forming a trench structure on said
4	semiconductor substrate;
5	(b) performing a the plasma-enhanced chemical vapor deposition (PECVD)
6	process with tetraethylorthosilicate (TEOS) as a gas source to deposit an oxide layer on the
7	bottom and sidewall of said trench structure and said semiconductor substrate; and
8	(c) removing said oxide layer on the sidewall of said trench structure
9	substantially completely and said oxide layer on the bottom of said trench structure partially
10	to define a remaining oxide layer as the bottom oxide layer.
1	2. The method according to claim 1 wherein the step (a) further
2	comprises:
3	(a1) forming a pad oxide layer on the semiconductor substrate;
4	(a2) forming a silicon nitride layer on said pad oxide layer; and
5	(a3) removing said silicon nitride layer, said pad oxide layer and said
6	semiconductor substrate partially to form said trench structure.
1	3. The method according to claim 2 wherein the step (a3) is performed by
2	a photolithography and dry-etching process.
1	4. The method according to claim 1 wherein the trench structure has an
2	aspect ratio between about 3.0 and about 4.0.
1	5. The method according to claim 1 wherein said plasma-enhanced
2	chemical vapor deposition (PECVD) process is performed at a temperature of about 440°C to
3	about 520°C.
1	6. The method according to claim 1 wherein a ratio of a thickness of said
2	oxide layer deposited on the bottom of said trench structure to a thickness of said oxide layer
3	deposited on the sidewall of said trench structure is between about 1.5 and about 2.3.
1	7. The method according to claim 1 wherein the step (c) is performed by
2	a wet-etching process.

2	oxide layer on the sidewall of said trench structure to said oxide layer on the bottom of said
3	trench structure is between about 2.5 and about 3.
1	9. The method according to claim 1 wherein after the step (c), the steps of
2	depositing and removing the oxide layer are repeated in sequence for allowing said bottom
3	oxide layer to reach a required thickness.
1	10. The method according to claim 1 wherein said oxide layer comprises a
2	silicon oxide layer.
1	11. A method of fabricating a trench-type power MOSFET, the method
2	comprising:
3	(a) providing a semiconductor substrate and forming a trench structure on the
4	semiconductor substrate;
5	(b) performing the plasma-enhanced chemical vapor deposition (PECVD)
6	process with tetraethylorthosilicate (TEOS) as a gas source to deposit an oxide layer on the
7	bottom and sidewall of said trench structure and said semiconductor substrate;
8	(c) removing said oxide layer on the sidewall of said trench structure
9	substantially completely and said oxide layer on the bottom of said trench structure partially
10	to define the remaining oxide layer as a bottom oxide layer; and
11	(d) forming the trench-type power MOSFET device in said trench structure.
1	12. The method according to claim 11 wherein the step (a) further
2	comprises steps of:
3	(a1) forming a pad oxide layer on said semiconductor substrate;
4	(a2) forming a silicon nitride layer on said pad oxide layer; and
5	(a3) removing said silicon nitride layer, said pad oxide layer and said
6	semiconductor substrate partially to form said trench structure.
1	13. The method according to claim 12 wherein the step (a3) is performed
2	by a photolithography and dry-etching process.
1	14. The method according to claim 11 wherein said trench structure has an
2	aspect ratio between about 3.0 and about 4.0.

1

8.

The method according to claim 7 wherein an etching selectivity of said

1	15. The method according to claim 11 wherein said plasma-enhanced
2	chemical vapor deposition (PECVD) process is performed at a temperature of about 440°C to
3	about 520°C.
1	16. The method according to claim 11 wherein a ratio of a thickness of
2	said oxide layer deposited on the bottom of said trench structure to a thickness of said oxide
3	layer deposited on the sidewall of said trench structure is between about 1.5 and about 2.3.
1	17. The method according to claim 11 wherein the step (c) is performed by
2	a wet-etching process.
1	18. The method according to claim 17 wherein the etching selectivity of
2	said oxide layer on the sidewall of said trench structure to said oxide layer on the bottom of
3	said trench structure is between about 2.5 and about 3.
1	19. The method according to claim 11 wherein between the steps of (c)
2	and (d), the steps of depositing and removing said oxide layer are repeated for allowing said
3	bottom oxide layer to reach a required thickness.
1	20. The method according to claim 11 wherein said oxide layer comprises
2	a silicon oxide layer.
1	21. A method of forming a bottom oxide layer in a trench structure, the
2	method comprising:
3	providing a substrate including a trench having a bottom and a sidewall;
4	depositing an oxide layer on the bottom and sidewall of said trench by plasma
5	enhanced chemical vapor deposition (PECVD) process with tetraethylorthosilicate (TEOS) as
6	a gas source at a temperature of about 440°C to about 520°C; and
7	removing said oxide layer on the sidewall of said trench substantially
8	completely and said oxide layer on the bottom of said trench partially to form a remaining
9	oxide layer as the bottom oxide layer on the bottom of said trench.
1	22. The method of claim 21 wherein said oxide layer is removed by a wet-
2	etching process having a higher etching selectivity of said oxide layer on the sidewall of said

trench to said oxide layer on the bottom of said trench.

- 1 23. The method of claim 22 wherein the etching selectivity of said oxide
- 2 layer on the sidewall of said trench to said oxide layer on the bottom of said trench is between
- 3 about 2.5 and about 3.