For binomial data, we have to use the generalised linear model (glmer) and the binomial distribution. This is the syntax for such a model with both fixed and random effects:

```
model.full <- glmer (DV ~ Condition + (1 + Condition|Subject) + (1 + Condition|Item), data=RO, family=binomial)
```

 When we run it, we get an error (that you will get used to seeing again and again!)

```
> model.full <- glmer (DV ~ Condition + (1 + Condition|Subject) + (1 + Condition|Item), data=R0, family=binomial)
Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
    Model failed to converge with max|grad| = 0.0171702 (tol = 0.001, component 1)</pre>
```

- So what can we do? We need to simplify the random effects structures. We can do this by dropping terms one by one until we find a model that can be fitted to our data. For example, we could drop the random slope from our items random effect first.
- For this particular example, the most complex model that works involves only random intercepts.

```
> model.interceptonly <- glmer(DV ~ Condition + (1 | Subject) + (1 | Item) , data = RO,
family = binomial)
> model.null <- glmer(DV ~ (1 | Subject) + (1 | Item), data = RO, family = binomial)
> anova(model.interceptonly, model.null)
```