Probability 2

Exercise sheet nb. 8

Raul Penaguiao - Mailbox in J floor

Due until: 12th November at 5 p.m.

Exercise 1 (5 points). Let $(X_n)_{n\geq 1}$ be i.i.d random variables such that $X_1 \sim \text{Binom}(10,0.3)$.

For the following random processes, prove or refute that we have a Markov chain, and in the affirmative case give the state space and the transition matrix:

- 1. The largest value so far, $M_n = \max_{k=1,...,n} \{X_k\}$.
- 2. The number of 0's so far, $N_n = \#\{k|X_k = 0\}$.
- 3. The difference between the last two results (with the convention that $X_0 = 0$), that is $P_n = X_n X_{n-1}$.
- 4. The time since we last saw a 0 or since we start, whatever is the shortest, that is $Q_n = n \max_k \{X_k = 0 \text{ or } k = 0\}.$
- 5. The length of the current run of equal values, that is $S_n = \max_k \{Y_i = Y_n \text{ for all } i = n 1, \dots, n k + 1\}.$

Exercise 2 (2 points). Let $\{X_n\}_{n\geq 1}$ be independent random variables with distribution $X_n \sim \mathrm{Unif}(\{1,\ldots,n\})$, and define $S_n = \sum_{k=1}^n X_n$, with $S_0 = 0$.

- 1. Show that $\{S_n\}_{n\geq 0}$ is a Markov process and compute the transition matrices Q_i .
- 2. Is $\{X_n\}_{n>1}$ a Markov process?
- 3. Are $\{S_n\}_{n\geq 0}$ or $\{X_n\}_{n\geq 1}$ Markov chains?

Exercise 3 (2 points). Consider a Markov chain $\{X_n\}_{n\geq 0}$ on the state space A and $E\subseteq A$, and let $T=\min_k\{X_k\in E\}$. Show that $\{X_{n\wedge T}\}_{n\geq 0}$ is also a Markov chain. Describe its transition matrix with respect to the transition matrix Q of $\{X_n\}_{n\geq 0}$.

Exercise 4 (2 points). Let $\{X_{2n}\}_{n\geq 0}$ be i.i.d random variables such that

$$\mathbb{P}[X_0 = 1] = \mathbb{P}[X_0 = -1] = \frac{1}{2}.$$

For $n \geq 0$, set $X_{2n+1} := X_{2n}X_{2n+2}$.

- 1. Show that $\{X_n\}_{n\geq 0}$ are pairwise independent (that is, for every $i,j\geq 0$ we have that X_i and X_j are independent).
- 2. For any $n \geq 0$, ε_0 , ε_1 in $\{-1,+1\}$, compute $\mathbb{P}[X_{n+1} = \varepsilon_1 | X_n = \varepsilon_0]$. Is the random process $\{X_n\}_{n \geq 0}$ a Markov chain?