12.1: Parametric Equations

We've already seen a parametric equation represented by the unit circle. Here, we have $x(\theta) = \cos(\theta)$ and $y(\theta) = \sin(\theta)$, where $0 \le \theta \le 2\pi$

Definition. (Positive Orientation)

The direction in which a parametric curve is generated as the parameter increases is called the **positive orientation** of the curve (and is indicated by arrows on the curve).

Example (LC 32.1-32.2). Consider the parametric equations

$$x = 3\cos(t), \ y = 3\sin(t); \pi \le t \le 2\pi$$

Eliminate the parameter t and rewrite as a function of x and y.

$$\chi^{2} + y^{2}$$

$$= (3\cos(t))^{2} + (3\sin(t))^{2}$$

$$= 9\cos^{2}(t) + 9\sin^{2}(t)$$

$$= 9(\cos^{2}(t) + \sin^{2}(t)) = 9$$

Graph the equation found above indicating the positive orientation.

Example (LC 32.3-32.4). A Ferris wheel has a radius of 20 m and completes a revolution in the **clockwise** direction at constant speed in 3 minutes. Assume x and y measure the horizontal and vertical positions of a seat on the Ferris wheel relative to a coordinate system whose origin is at the low point of the wheel. Assume the seat begins moving at the origin.

What is the domain of t such that the Ferris wheel completes one revolution?

x(t) and y(t) will be parameterized using $\sin(bt)$ and $\cos(bt)$. What is b?

What parametric equations describe the path of the seat on the Ferris wheel?

Summary: Parametric Equations of a Line

The equations

$$x = x_0 + at$$
, $y = y_0 + bt$, for $-\infty < t < \infty$,

where x_0 , y_0 , a, and b are constants with $a \neq 0$, describe a line with slope $\frac{b}{a}$ passing through the point (x_0, y_0) . If a = 0 and $b \neq 0$, the line is vertical.

Example. Find 2 parameterized equations of the line that goes through the points (3, -4) and (-2, 3).

Example. Find a parameterized equation for the line segment that connects the points (3,0) and (-1,3).

Example. Consider the parametric equations

$$x(t) = 6 - 2t$$
 and $y(t) = -2 + t$,

Graph the curve indicating the positive orientation

Eliminate the parameter to find an equation in x and y.

Example (LC 32.5-32.7). Consider the parametric equations

$$x = 1 + e^{2t}$$
 and $y = e^t$,

Eliminate the parameter to find an equation in x and y

Graph the curve indicating the positive orientation

Which of the following parametric equations are equivalent?

$$x = 2t^2,$$

$$y = 4 + t;$$

$$x = 2t^2,$$
 $y = 4 + t;$ $-4 \le t \le 4$

$$x = 2t^4.$$

$$u = 4 + t^2$$
:

$$x = 2t^4,$$
 $y = 4 + t^2;$ $-2 \le t \le 2$

$$x = 2t^{2/3}$$

$$x = 2t^{2/3}$$
, $y = 4 + t^{1/3}$; $-64 \le t \le 64$

$$-64 \le t \le 64$$

Theorem 12.1: Derivative for Parametric Curves

Let x = f(t) and y = g(t), where f and g are differentiable on an interval [a, b]. Then the slope of the line tangent to the curve at the point corresponding to t is

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)},$$

provided $f'(t) \neq 0$.

Example (LC 32.8-32.9). Consider the parametric equations

$$x = \sqrt{t}, \qquad y = 2t,$$

Find $\frac{dy}{dt}$.

Find the equation of the line tangent to the curve at t = 4.

Definition. (Arc Length for Curves Defined by Parametric Equations)

Consider the curve described by the parametric equations x = f(t), y = g(t), where f' and g' are continuous, and the curve is traversed once for $a \le t \le b$. The **arc length** of the curve between (f(a), g(a)) and (f(b), g(b)) is

$$L = \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2}} dt.$$

Example (LC 33.1-33.2). Find the arc length of the curve given by $x = 6t^2$, $y = 2t^3$, for $0 \le t \le 4$.

Example (Arc length). Suppose the function y = h(x) is nonnegative and continuous on $[\alpha, \beta]$, which implies that the area bounded by the graph of h and the x-axis on $[\alpha, \beta]$ equals $\int_{\alpha}^{\beta} h(x) \, dx$ or $\int_{\alpha}^{\beta} y \, dx$. If the graph of y = h(x) on $[\alpha, \beta]$ is traced exactly once by the parametric equations x = f(t), y = g(t), for $a \le t \le b$, then it follows by substitution that the area bounded by h is

$$\int_{\alpha}^{\beta} h(x) dx = \int_{a}^{b} g(t)f'(t) dt \text{ if } \alpha = f(a) \text{ and } \beta = f(b)$$

Find the area under one arch of the cycloid $x = 3(t - \sin(t)), y = 3(1 - \cos(t)).$

Example (33.3 Surface area). Let C be the curve x = f(t), y = g(t), for $a \le t \le b$, where f' and g' are continuous on [a, b] and C does not intersect itself, except possibly at its endpoints. If g is nonnegative on [a, b], then the area of the surface obtained by revolving C about the x-axis is

$$S = \int_{a}^{b} 2\pi g(t) \sqrt{f'(t)^{2} + g'(t)^{2}} dt.$$

Find the area of the surface obtained by revolving the curve $x = t \sin(t)$, $y = t \cos(t)$, for $0 \le t \le \pi/2$, about the x-axis.