Can 'machine learning' improve our understanding of non-response in Understanding Society and means of tacking it?

Stephen McKay 4 July 2019

Non-response (attrition)

- Model of non-response
 - Generally logistic regression, sometimes weighting class method (e.g. CHAID)
- Calculate probability of taking part in this wave, conditional on having been in the past wave
 - (non-monotone response patterns an issue)
- Generate a weight as inverse of the probability of taking part

Approach of different surveys

Understanding Society	GSOEP	BHPS	HILDA
Such as age,	Household moved	Weighting class method	Age
Gender	Large city	(CHAID).	Sex
Marital status	Age (of head), female	Age	Marital status
Employment status	(head)	Sex	"ability of speak English"
Hh size	Separation/divorce	Employment status	Employment status
Presence of children	Change of interviewer; N-	Race	Hours worked
Hh spending on food	past-ints with interviewer	Qualifications	N kids
Consideration of use of	Low income	Organisational	Country of birth
environmental energy,	Item non-response on	membership	Highest education
Among others	income	Region	Health status
	Expect to lose job	Tenure	Relationship in household
	East Berlin	Cars	Likelihood of moving
		Consumer durables	Past moves

Models of non-response

- Logistic regression (or probit, 'robit', among others)
- Can be used to predict, but not generally tested for predictive power. Generally interested in the coefficients.
- Tend to be looking at within-sample, not going beyond (esp with stepwise methods); not looking for interactions

 Class of 'machine learning' models are designed for prediction, though (arguably) less clear to understand

Data preparation

- Understanding Society (today w1-w2)
- Combining xwavedat, indresp, hhresp, callrec datasets (about 1600 variables)
- Variables with <=20 unique values regarded as categorical, with 0/1 variables created (about 7500 variables)
- Dropped variables with no/low variance (-> 1900 variables)
- Sample divided into two equal groups (N=24,000 in each)
 - Training data to develop models
 - Validation (test) data to test models, on unseen data

Logistic regression model to predict nonresponse (person level, w1-w2)

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 5.372e-01
                           1.629e-01
                                        3.297 0.000976 ***
sex.2
                 1.377e-01
                           3.101e-02
                                        4.439 9.05e-06 ***
a_dvage
                 4.040e-02 5.211e-03
                                        7.753 8.99e-15 ***
a_dvagesq
                -4.008e-04
                           5.059e-05
                                       -7.922 2.33e-15 ***
hhorig.7
                -1.875e-01
                           5.158e-02
                                       -3.635 0.000278 ***
a_fihhmngrs1_dv -7.507e-06
                           5.422e-06
                                       -1.384 0.166208
a_tenure_dv.1
                9.148e-02 4.606e-02
                                        1.986 0.047039 ×
                -8.570e-02 5.558e-02
a_tenure_dv.3
                                       -1.542 0.123101
a_tenure_dv.4
                -5.839e-02 6.504e-02
                                       -0.898 0.369369
a_tenure_dv.6
                -3.060e-01
                           5.934e-02
                                       -5.157 2.51e-07 ***
a_tenure_dv.7
                -4.305e-01
                            6.476e-02
                                       -6.647 3.00e-11 ***
                           4.331e-02
a_ncars.0
                -6.694e-02
                                       -1.546 0.122163
                -2.628e-02
                           4.150e-02
                                       -0.633 0.526639
a_ncars.2
                -2.286e-01
                           6.143e-02
                                       -3.721 0.000199 ***
a_ncars.3
a_gor_dv.2
                -2.638e-02 6.614e-02
                                       -0.399 0.689962
a_gor_dv.3
                -2.068e-01
                           6.909e-02
                                       -2.994 0.002757 **
a_gor_dv.4
                 3.747e-03
                           7.336e-02
                                        0.051 0.959266
a_gor_dv.5
                -2.501e-01
                            6.707e-02
                                       -3.729 0.000192 ***
a_gor_dv.6
                -1.003e-01
                            6.938e-02
                                       -1.445 0.148346
a_gor_dv.7
                -2.677e-01
                           6.399e-02
                                       -4.184 2.86e-05 ***
                           6.425e-02
                -1.165e-02
                                       -0.181 0.856103
a_gor_dv.8
                 1.433e-01
                           7.607e-02
a_gor_dv.9
                                        1.883 0.059634 .
                -3.633e-01
a_gor_dv.11
                           7.169e-02
                                       -5.068 4.03e-07 ***
a_finnow.1
                2.360e-01
                            7.567e-02
                                        3.119 0.001817 **
a_finnow.2
                 1.379e-01
                            7.148e-02
                                        1.929 0.053703 .
a_finnow.3
                 1.059e-01
                            7.050e-02
                                        1.502 0.133009
a_finnow.4
                 1.240e-01
                            7.935e-02
                                        1.563 0.117996
a_finfut.1
                -3.857e-02 3.740e-02
                                       -1.031 0.302422
a_finfut.2
                9.052e-03
                           4.449e-02
                                        0.203 0.838792
evermar_dv.2
                -5.358e-01
                           4.280e-02 -12.519 < 2e-16 ***
generation.1
                -4.670e-01
                           4.823e-02
                                       -9.684 < 2e-16 ***
generation.2
                -1.115e-01
                           5.418e-02
                                       -2.057 0.039640 ×
generation.3
                 1.182e-02 6.336e-02
                                        0.187 0.852026
a_pno.2
                1.422e-02 3.591e-02
                                        0.396 0.692008
a_pno.3
                 4.723e-02 6.242e-02
                                        0.757 0.449292
                -3.620e-02 4.492e-02
a_sf1.1
                                       -0.806 0.420400
a_sf1.3
                 3.759e-02 4.026e-02
                                        0.934 0.350491
a_sf1.4
                -2.837e-02 5.054e-02
                                       -0.561 0.574576
a_sf1.5
                -2.283e-01 6.538e-02
                                       -3.493 0.000478 ***
```

(single) Decision tree

- Older technique (e.g. 'CHAID'), with more recent algorithms
- Seeks to divide the sample into groups that are like each other, and unlike other groups.
- Easy to understand (e.g. for policy-making?)
- Don't tend to generalise well from training data to new data ('overfitting'), unless 'pruned'

Decision tree for w2 attrition

Random forest

- Multiple of trees (few hundred)
- Takes random groups of the sample to run
- Random sampling of groups of variables in each tree
- Large number of separate 'trees' generated
- Each tree may be quite weak on its own ... but using all the trees makes for a strong overall model

Random Forest – most important variables

- Home ownership
- Housing Benefit receipt
- Married (Ever)
- Any children
- Agreed to health linkage
- Intend to move
- Ethnic boost sample
- GHQ score

Boosting

- Rather than only independent trees, focus on the 'hard' cases
- Misclassified cases get higher weights, then put through same models
- Various approaches to how to 'learn'
 - adaboost (Freund and Schapire)
 - Extreme gradient boosting (xgboost 2015) best single algorithm on competitive tests (?) e.g. Kaggle competitions

Xgboost – most important variables

Imar1y_dv (first marriage year) ch1by_dv (first child birth year) a_xpmove.2 (expect to move nxt yr) a_indpxus_xw (x-section adult wgt) a_flaglink.1 (health consent flag) a_hscost (house purchase price) a_hhresp_dv.3 (within-hh resp) a_nbrsnci_dv (N'hood cohesion) a_intnum (interviewer number) a_scdoby4 (year of birth) a_ivcoop.1 (respondent co-operative)	100.00 92.87 56.58 56.39 53.96 53.82 47.64 35.51 34.57 28.17 26.60	a_mvyr (year moved here) a_hhdenus_xw (x-section hh wgt) a_fihhmngrs_if (share imputed income) paid.1 (father ethnic group) a_fiyrdia (interest income) a_istrtdathh (int start: hours) a_susp.1 (suspicious respondent) a_plbornc (country of birth) a_hlphmwk8 (parents help w homework)	26.57 22.28 22.15 21.52 19.78 18.87 18.83 18.13 17.62

Predictions – same input variables

Predictions – ML with full dataset

Predictive performance (mean sq error; correctly predicted)

Model	Training data	
Average (respondent)	0.190	(74%)
Base logit (stepwise v similar, as is OLS)	0.179	(75%)
Random Forest – same variables	0.151	(77%)
XGBoost – same variables	0.178	(75%)
Single decision tree – all variables	0.171	(76%)
Random Forest – all variables	0.123	(80%)
XGBoost – all variables	0.138	(80%)

Predicted rate of attrition: w1->w2

Predictive performance (mean sq error; correctly predicted)

Model	Training data	Held-out data	
Average (respondent)	0.190 (74%)	0.190 (74%)	
Base logit (stepwise v similar, as is OLS)	0.179 (75%)	0.181 (74%)	
Random Forest – same variables	0.151 (77%)	0.180 (75%)	
XGBoost – same variables	0.178 (75%)	0.180 (75%)	
Single decision tree – all variables	0.171 (76%)	0.179 (75%)	
Random Forest – all variables	0.123 (80%)	0.172 (75%)	
XGBoost – all variables	0.138 (80%)	0.163 (77%)	

Predictions – on held-out data

Effect of weights

	W1	W1 after attrition	Logit-based weights	RF-based weights	Xgb-based weights
Is female (%)	55.5	56.6	55.6	56.2	55.6
Mean (age)	46.0	47.3	46.0	46.5	46.1
SE (age)	0.12	0.13	0.14	0.14	0.14
(also considered: region, rural, income, health, depression, politics,)					
Range of predicted probabilities			0.279 – 0.900	0.24 - 0.960	0.018 – 0.985
Range –respondents			0.311 - 0.900	0.40 - 0.960	0.164 - 0.985
Kish design effect			1.026	1.013	1.060

Conclusions

- ML methods will more closely fit the probability of attrition ... though not to any great extent on unseen data except best models with more data
- ML highlights some variables relating to 'para data' process of taking part and permissions – that might be further explored for attrition models
- Distribution of weights from ML models *may* be more extreme (without truncating) than from standard statistical models
- Not (yet) found any advantages in terms of descriptive statistics with weights from ML models over existing practice