Folha 7 - Exercícios de Revisão

- 1. Indique o valor lógico das afirmações seguintes, justificando convenientemente:
 - (a) Dada uma matriz real A, a equação Ax = 0 é sempre possível.
 - (b) Existe uma matriz real triangular superior com determinante igual a -3.
 - (c) Existe uma matriz real com valores próprios -1, 1.
- 2. Indique o valor lógico das afirmações seguintes, justificando convenientemente:
 - (a) Se A e B são matrizes semelhantes então $\det A = \det B$.
 - (b) A matriz $\begin{pmatrix} 2 & 3 \\ 2 & 6 \end{pmatrix}$ invertível.
 - (c) Se A é semelhante a B e B é semelhante a C, então A é semelhante a C.
- 3. Indique o valor lógico das afirmações seguintes, justificando convenientemente:
 - (a) Se $A^2 = -2A^4$, então $(I_n + A^2)(I_n 2A^2) = I_n$.
 - (b) A matriz A é invertível se e somente se, 0 for um valor próprio de A.
 - (c) Se A e B são matrizes quadradas tais que $\det(A) = -2$ e $\det(B) = 3$, então $\det(A^TB^{-1}) = -3/2$.
 - (d) Se A é uma matriz não singular tal que $A^2=A$ então $\det(A)=1$.
- 4. Considere a matriz real $A=\left(\begin{array}{ccc} 1 & \beta & 2 \\ -\beta & \beta & 1-\beta \\ 1 & \beta & \beta+3 \end{array}\right)$

Qual das seguintes afirmações é verdadeira?

- (a) c(A) = 3 se e só se $\beta \neq -1$.
- (b) se $\beta = -1$ então c(A) = 2.
- (c) se $\beta \neq -1$ então $c(A) \geq 2$.
- (d) se $\beta = 0$ então c(A) = 1.
- 5. Seja $F = \{(x, y, z, w) \in \mathbb{R}^4 : 2x z = y w = 0\}$.

Qual das seguintes afirmações é falsa?

- (a) F e um subespaço do espaço vectorial real \mathbb{R}^4 .
- (b) $\{(2,2,4,2),(-1,1,-2,1)\}$ é um conjunto de vectores de F linearmente independente...
- (c) $\{(2,2,4,2),(-1,1,-2,1),(0,1,0,1)\}$ é um conjunto de vectores de F linearmente independente.
- (d) $\{(1,-1,2,-1),(-1,-1,-2,-1)\}$ é uma base de F.

6. Determine $k \in \mathbb{R}$ de modo que a característica da matriz

$$B = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 2 & -1 & 2 & 1 \\ 1 & 2 & 1 & 1k \end{array}\right)$$

seja inferior a 3.

- 7. Considere a matriz $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
 - (a) Verifique que 3,-1 são os valores próprios de A.
 - (b) Verifique se $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ é vector próprio associado ao valor próprio 3 e se $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ vector próprio associado ao valor próprio -1.
 - (c) Diga, justificando, se a matriz $A=\begin{pmatrix}1&-1\\1&1\end{pmatrix}$ é invertível, e caso afirmativo calcule a sua inversa.
- 8. Seja $T:V\longrightarrow R^5$ uma transformação linear.
 - (a) Se T é sobrejectiva e dim(N(T))=2, qual a dimensão de V?
 - (b) Se T é sobrejectiva e injectiva, qual a dimensão de V?
- 9. Sendo $A=\begin{pmatrix}1&-1\\-4&1\end{pmatrix}$, tem-se $A=PDP^{-1}$, para $P=\begin{pmatrix}1&1\\-2&2\end{pmatrix}$ e $D=\begin{pmatrix}3&0\\0&-1\end{pmatrix}$. Calcule $A^k,k\in\mathbb{N}$.
- 10. No espaço vectorial real \mathbb{R}^4 considere o subconjunto

$$G = \{(x, y, z, t) \in \mathbb{R}^4 : x - y + t = 0 \ e \ z - 4t = 0\}.$$

- (a) Mostre que ${\cal G}$ é um subespaço vectorial de ${\cal R}^4.$
- (b) Determine um conjunto de geradores para o subespaço vectorial G.
- 11. Considere a aplicação $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por: f(x,y,z) = (x-y+z,x+y+2z).
 - (a) Mostre que f é uma aplicação linear.
 - (b) Determine o núcleo de f.
 - (c) Determine ainda, as imagens inversas dos vectores (1,0) e (-1,3) de \mathbb{R}^2 .

2

(d) Escreva a matriz da aplicação linear f.