1A Fixed and Adjustable Low Dropout Positive Voltage Regulators

General Description

The RT9164A series of high performance positive voltage regulators is designed for applications requiring low dropout performance at fully rated current. Additionally, the RT9164A series provides excellent regulation over variations in line and load. Outstanding features include low dropout performance at rated current, fast transient response, internal current-limiting, and thermal-shutdown protection of the output device. The RT9164A series of three terminal regulators offers fixed and adjustable voltage options available in space-saving SOT-223, TO-252, and TO-263 packages.

Ordering Information

RT9164A-

G : Green (Halogen Free and Pb Free)

Output Voltage Default : Adjustable 15 : 1.5V

18: 1.8V 25: 2.5V 28: 2.85V 30: 3.0V 33: 3.3V 35: 3.5V

Note:

Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

- Low Dropout Performance, 1.4V Max
- Full Current Rating Over Line and Temperature
- Fast Transient Response
- ±2% Output Voltage Accuracy
- 1.5V, 1.8V, 2.5V, 2.85V, 3.0V, 3.3V, and 3.5V Fixed Adjustable Output Voltage
- SOT-223, TO-252, and TO-263 Packages
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Active SCSI Termination
- Low Voltage Microcontrollers
- Switching Power Supply Post-Regulator

Pin ConFigurations

TO-252 (R-Type)

TO-252

Typical Application Circuit

- (1) C_{IN} needed if device is far from filter capacitors.
- (2) C_{OUT} required for stability.

Figure 1. Adjustable Voltage Regulator

- (1) C_{IN} needed if device is far from filter capacitors.
- (2) C_{OUT} required for stability.

Figure 2. Fixed Voltage Regulator

Figure 3. Active SCSI Bus Terminator

Function Block Diagram

Functional Pin Description

Pin Name	Pin Function		
ADJ/GND	Adjust Output or Ground.		
VOUT	Output Voltage.		
VIN	Power Input.		

DS9164A-15 April 2011 www.richtek.com

Absolute Maximum Ratings (Note 1)

• Supply Input Voltage	15V
 Power Dissipation, P_D @ T_A = 25°C 	
SOT-223	0.740W
TO-252	1.471W
TO-263	2.222W°C
Package Thermal Resistance (Note 2)	
SOT-223, θ_{JA}	135°C/W
SOT-223, θ_{JC}	19°C/W
TO-252, θ_{JA}	68°C/W
TO-252, θ_{JC}	7.5°C/W
TO-263, θ_{JA}	45°C/W
TO-263, θ_{JC}	7.8°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Mode)	8 kV
MM (Machine Mode)	750V
Recommended Operating Conditions (Note 4)	
Supply Input Voltage	3V to 14V

Electrical Characteristics

(T_A = 25°C, unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Reference Voltage (Note 5)	RT9164A	V _{REF}	I_{OUT} = 10mA, $(V_{IN} - V_{OUT})$ = 2V, T_A = 25°C	1.243	1.256	1.281	V
			10mA < I _{OUT} < 1.0A, 1.5V < V _{IN} - V _{OUT} < 10V	1.231	1.256	1.294	>
Output Voltage (Note 5)	RT9164A -15	Vouт	I_{OUT} = 10mA, V_{IN} = 3.3V, T_{J} = 25°C	1.485	1.5	1.53	V
			$10mA < I_{OUT} < 1.0A,\ 3.3V < V_{IN} < 10V$	1.470	1.5	1.55	
	RT9164A -18		$I_{OUT} = 10$ mA, $V_{IN} = 3.3$ V, $T_{J} = 25$ °C	1.797	1.815	1.85	
			$10mA < I_{OUT} < 1.0A, \ 3.3V < V_{IN} < 10V$	1.779	1.815	1.87	
	RT9164A -25		I _{OUT} = 10mA, V _{IN} = 4.0V, T _J = 25°C	2.475	2.500	2.550	
			$10mA < I_{OUT} < 1.0A, 4.0V < V_{IN} < 10V$	2.450	2.500	2.575	
	RT9164A -28		I _{OUT} = 10mA, V _{IN} = 4.25V, T _J = 25°C	2.822	2.850	2.910	
			$10mA < I_{OUT} < 1.0A, \ 4.25V < V_{IN} < 10V$	2.793	2.850	2.936	
	RT9164A -30		I _{OUT} = 10mA, V _{IN} = 4.5V, T _J = 25°C	2.970	3.000	3.060	
			$10mA < I_{OUT} < 1.0A, 4.5V < V_{IN} < 10V$	2.940	3.000	3.090	

To be continued

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage (Note 5)	RT9164A -33	-V _{OUT}	I _{OUT} = 10mA, V _{IN} = 4.75V, T _J = 25°C	3.267	3.300	3.365	- V
			10mA < I _{OUT} < 1.0A, 4.75V < V _{IN} < 10V	3.234	3.300	3.400	
	RT9164A -35		I _{OUT} = 10mA, V _{IN} = 5V, T _J = 25°C	3.465	3.500	3.570	
			10mA < I _{OUT} < 1.0A, 5.0V < V _{IN} < 10V	3.430	3.500	3.605	
Line Regulation (Note 5)	RT9164A	ΔVLINE	I_{OUT} = 10mA, 1.5V \leq V _{IN} $-$ V _{OUT} \leq 10V		0.1	0.3	%
	RT9164A -15		I_{OUT} = 10mA, 3.3V $\leq V_{IN} \leq 15V$		1	6	mV
	RT9164A -18		I_{OUT} = 10mA, 3.3V $\leq V_{IN} \leq 15V$		1	6	
	RT9164A -25		I _{OUT} = 10mA, 4.0V ≤ V _{IN} ≤ 15V		1	6	
	RT9164A -28		I _{OUT} = 10mA, 4.25V ≤ V _{IN} ≤ 15V		1	6	
	RT9164A -30		I _{OUT} = 10mA, 4.5V ≤ V _{IN} ≤ 15V		1	6	
	RT9164A -33		I _{OUT} = 10mA, 4.75V ≤ V _{IN} ≤ 15V		1	6	
	RT9164A -35		I _{OUT} = 10mA, 5.0V ≤ V _{IN} ≤ 15V		1	6	
	RT9164A	-ΔV _{LOAD}	$(V_{IN} - V_{OUT}) = 3V$, $10mA \le I_{OUT} \le 1.0A$		0.2	0.4	%
	RT9164A -15		V _{IN} = 3.3V, 10mA ≤ I _{OUT} ≤ 1.0A		1	10	mV
	RT9164A -18		$V_{IN} = 3.3V, 10mA \le I_{OUT} \le 1.0A$		1	10	
Load Regulation	RT9164A -25		$V_{IN} = 4.0V$, $10mA \le I_{OUT} \le 1.0A$		1	10	
(Note 5)	RT9164A -28		$V_{IN} = 4.25V, 10 \text{mA} \le I_{OUT} \le 1.0 \text{A}$	-	1	10	
	RT9164A-30		$V_{IN} = 4.5V$, $10mA \le I_{OUT} \le 1.0A$		1	12	
	RT9164A -33		$V_{IN} = 4.75V, 10 \text{ mA} \le I_{OUT} \le 1.0 \text{A}$		1	12	
	RT9164A -35		$V_{IN} = 5.0V$, $10mA \le I_{OUT} \le 1.0A$		1	15	
Dropout Voltage (Note 6)		V _{DROP}	I _{OUT} = 500mA		1.15	1.25	V
			I _{OUT} = 1.0A		1.3	1.4	
Current Limit		I _{LIM}	V _{IN} = 5V	1.0	1.8		Α
Minimum Load Current RT9164A			$(V_{IN} - V_{OUT}) = 2V$		5	10	mA
Quiescent Current RT9164A -XX		IQ	V _{IN} = 5V		5	10	
Ripple Rejection		PSRR	$f_{RIPPLE} = 120Hz$, $(V_{IN} - V_{OUT}) = 2V$, $V_{RIPPLE} = 1V_{P-P}$		72		dB
Adjust Pin Current		I_{ADJ}			65	120	μΑ
Adjust Pin Current Change		ΔI_{ADJ}	$10\text{mA} \le I_{OUT} \le 1.0\text{A}, V_{IN} = 5\text{V}$		0.2	5	μΑ

DS9164A-15 April 2011 www.richtek.com