Найти НОД многочленов

$$f(x) = 2x^4 - 4x^3 - 3x^2 + 7x - 2$$
 $g(x) = 6x^3 + 4x^2 - 5x + 1$

а так же его линейное выражение через f(x) и g(x).

Для нахождения НОДа воспользуемся теоремой Евклида:

1.
$$f(x) = (\frac{1}{3}x - \frac{8}{9})g(x) + (\frac{20}{9}x^2 + \frac{20}{9}x - \frac{10}{9})$$

2.
$$g(x) = (\frac{27}{10}x - \frac{9}{10})(\frac{20}{9}x^2 + \frac{20}{9}x - \frac{10}{9})$$

Как делятся многлены достаточно очевидно. Получаем, $HOД = \frac{20}{9}x^2 + \frac{20}{9}x - \frac{10}{9}$.

НОД
$$= f(x) - (\frac{1}{3}x - \frac{8}{9})g(x)$$

Задача 2

Разложите многочлен $x^6 + x^3 - 12$ в произведение неприводимых в кольце $\mathbb{C}[x]$ и в кольце $\mathbb{R}[x]$.

1. Начнем с ℝ.

$$x^{6} + x^{3} - 12 = (x^{3} + 4)(x^{3} - 3) = (x + \sqrt[3]{4})(x^{2} - \sqrt[3]{4}x + \sqrt[3]{16})(x - \sqrt[3]{3})(x^{2} + \sqrt[3]{3}x + \sqrt[3]{9})$$

Причем очевидно, что дальше не раскладывается, так как D < 0.

2. Теперь к \mathbb{C} . Здесь неприводимыми уже будут многочлены степени не больше 1, поэтому наши квадраты разложатся еще на 2 слогаемых:

$$x^{6} + x^{3} - 12 = (x + \sqrt[3]{4})(x - \sqrt[3]{3})(x^{2} - \sqrt[3]{4}x + \sqrt[3]{16})(x^{2} + \sqrt[3]{3}x + \sqrt[3]{9}) =$$

$$(x + \sqrt[3]{4})(x - \sqrt[3]{3}) \cdot (x - \frac{1 - i\sqrt{3}}{\sqrt[3]{2}})(x - \frac{1 + i\sqrt{3}}{\sqrt[3]{2}}) \cdot (x - \frac{1}{2}i\sqrt[3]{3}(i + \sqrt{3}))(x - \frac{1}{2}i\sqrt[3]{3}(i - \sqrt{3}))$$

Многочлен 6 степени - 6 корней, все отлично.

Задача 3

Выясните, является ли число $5 + \sqrt{-5}$ элементом кольца $\mathbb{Z}[\sqrt{-5}]$.

$$Z[\sqrt{-5}] = \{z : z = m + \sqrt{-5}n \quad m, \ n \in \mathbb{Z}\}$$

Рассмотрим два элемента и докажем их необратимость:

1. $1 - \sqrt{-5}$:

Предположим, что существуют $m, n \neq (0, 0)$, что $(1 - \sqrt{-5})(m + \sqrt{-5}n) = 1$, тогда

$$(1-\sqrt{-5})(m+\sqrt{-5}n)=(m+5n)+i\sqrt{5}(n-m)=1+0i\Rightarrow n=m=rac{1}{6}\notin\mathbb{Z}$$
 \Rightarrow противоречие

2. $\sqrt{-5}$:

Аналогично.

$$\sqrt{-5}(m+\sqrt{-5}n)=-5n+\sqrt{5}mi=1+0i\Rightarrow m=0, n=-rac{1}{5}\notin\mathbb{Z}$$
 \Rightarrow противоречие

Отметим, что $5+\sqrt{-5}=\sqrt{-5}(1-\sqrt{-5})$, следовательно элемент раскладывается на 2 необратимых, следовательно не является простым.

Задача 4

Пусть R - евклидово кольцо с нормой N. Докажите, что N принимает бесконечное число значений.

Рассмотрим элемент m, при котором норма достигает своего максимального значения (если такой существует). Дополнительно введем элемент n - ненулевой необратимый. Такой найдется так как евкилидово кольцо это не поле. N(mn) > N(m) = max, так как элемент n необратимый, теорема из лекции. Получаем, что N не может быть ограничено, то есть принимает бесконечное число значений.