Quiz 1 Solutions CE16 W15 Larrabee

Sam Mansfield

January 8, 2015

- 1. Hom many rows appear in the truth table for $(p \land \neg q) \to q$?

 There are two variables p and q, and each variable can either be 1 or 0. Therefore there are 2*2 different combinations. So, the answer is 4.
- 2. Complete the truth table for $(p \land \neg q) \to q$. $\boxed{p \mid q \mid \neg q \mid p \land \neg q \mid (p \land \neg q) \to q}$

	p	q	$\neg q$	$p \land \neg q$	$(p \land \neg q) \to q$
	0	0	1	0	1
	0	1	0	0	1
	1	0	1	1	0
ı	1	1	0	0	1

3. Verify the first De Morgan Law by showing that $\neg(p \land q) \equiv \neq p \lor \neg q$.

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

The truth tables are the same. Therefore they are logically equivalent.

4. Show that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.

p	q	r	$p \rightarrow q$	$(p \to q) \to r$	$q \rightarrow r$	$p \to (q \to r)$
0	0	0	1	0	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

The truth tables are not the same. Therefore the two expressions are not logically equivalent.