操作系统填空题 2021/982 软12科 洛伽煮

操作系统概念:	
1.控制程序	
2.资源管理器	
3.拓展机器	
操作系统中的资源包括 内存、处理器、	I/O 设备 等
 操作系统 内核 的组成包括:	
1.CPU 管理器	
2.内存管理器	
3.文件系统	
4.设备管理器	
 操作系统 类型:	
1.批处理系统	
2.多道批处理系统	
3.分时系统	
4.桌面式操作系统	
5.嵌入式操作系统	
现代计算机和操作系统是由 中断 驱动的	ta
外围设备使用中断来向 CPU 发出发生了	
 异常也称为 软件生成的中断或同步中 數	斤(SGI) 。
设备控制器包括命令寄存器和数据寄存	序器 。
CPU 如何访问这些寄存器? • I/O 端 口	
• 内存映射 I/O (缺点是缓存)	
硬件保护的方式:	
1.二态模式	
2.特权指令	
3.CPU 保护	
3.存储器保护(定时器、发生中断时操	作系统通过 ISR 获得控制权)
程序应用只能通过 系统调用 请求操作系	统提供的服务,界面中的系统调用因操作系统而异,
也称为 主管呼叫	
クロ L 3 F ロ I グI ベニノ ト ント I L クハップし・	

1.异常 2.特殊指令
操作系统结构: 1.简单结构: MS-DOS 2.分层结构:THE、IBM OS/2 3.虚拟机:IBM VM/370 4.微内核: Mach、QNX 5.混合系统: Mac OS X、iOS、Android 6.模块:Solaris
虚拟机 实现方式: 1.仿真 2.半虚拟化 3.完整虚拟化
一个进程不仅仅是一个程序,还包括了: 文本段、数据段、寄存器、堆栈、堆
程序是一个 被动 实体,进程是一个 活动 实体
进程的 状态: 1.创建态 2.运行态 3.就绪态 4.等待态 5.结束态
每个进程在操作系统中都由 进程控制块(PCB) 表示。
和 CPU 调度 有关的有: 1.从运行态到就绪态(抢占) 2.从等待态到就绪态(抢占) 3.从运行态到等待态 4.从运行态到结束态
进程协作 有几个优点: 1.信息共享 2.计算加速 3.模块化
进程是 1. 资源 分配单位;(空间) 2. 调度 (scheduling)单位。(时间)

线程共享属于同一进程的资源,例如**其代码部分、数据部分、打开的文件**等。

但是,一个进程中的每个线程都有一个 息)和一个私有 堆栈 。	·私有 线程上下文 (包	见括 CPU	寄存器集和其他状态信
1.可响应性			
2.资源共享			
3.经济			
4.多处理器体系结构的利用			
多线程:			
1.在用户空间适用用户线程;			
2.在内核中用于内核线程。			
调度 是操作系统的 基本功能 。			
进程执行包括 CPU 执行和 I/O 等待 的	为周期 。		
CPU 调度 又称为 短期调度			
1.先来先服务			
2.短作业优先(最短的平均等待时间)			
3.优先级调度			
4.轮转调度			
5 .多级反馈队列调度			
静态优先级导致的问题:			
1.饥饿 2.优先级反转			
解决方法:			
老化			
临界区是访问共享资源 的一段代码。			
竞争条件解决方案必须满足:			
1.互斥			
2.前进性			
3.有限等待			
4.速度			
硬件同步:			
1.禁用中断(CLI、STL) 2.特殊指令(TSL 和 SWAP 以原子的	的方式执行	1)
信号量"值"的大小是可用资源数 (>0) 或等待该信号量	量的进程数	枚 (<0)。

PV 操作必须以原子的方式执行,通过下面两种方式: 1.禁用单处理器系统中的中断 2.多处理器系统中的 自旋锁
信号量经典问题: 1.生产者消费者问题(有限缓冲区问题) 2.读者写者问题 3.哲学家进餐问题
使用资源的操作: 1.请求 2.使用 3.释放
死锁特点: 1.互斥 2.保留并等待 3.不剥夺(无抢占) 4.循环等待
死锁恢复: 1.资源抢占 2.进程终止(回滚)
多任务环境 下会带来许多 内存管理问题: 1.重定位(relocation)问题; 2.内存保护(protection)问题; 3.内存分配(allocation)问题。
进行内存的分配和释放以减少外部碎片,提高内存使用率的算法: 1.首次适应(First fit):分配第一个足够大的洞。 2.最佳适应(Best fit):分配足够大的最小孔。 3.最坏适应(Worst fit):分配最大的孔。
外部碎片和内部碎片
 物理内存被分解为固定大小的块,称为帧(frames)。 逻辑内存也被分解成相同大小的块,称为页(pages)。 页表(Page tables)用于将页映射到帧。 页表的条目称为页表条目(PTE)(Page Table Entry)。

地址转换:

在 page table 的帮助下, MMU 把 CPU 产生的	逻辑地址转换成物理地址。
为每一个进程保存一个 page table	
因此在分页中,每一个内存访问都需要 两次 [内存操作
为了提高地址转换效率,MMU中包含了一个i	高速 缓存 称为 translation look-aside buffers(TLBs)
有效访问时间 $EAT = (1 + \epsilon) \alpha + (2 + \epsilon) (1 - \alpha)$	= 2 + ε - α
保护信息 通常都保存在 PTE 中,	
此外,不是所有的 PTE 都可以使用。因此 (valid/invalid), • 仅当该位有效时,MMU 才能用它进行地址 • 否则,MMU 将通过异常向 OS 报告错误。 该位无效有两种情况: 1.不合法 2.合法但不在内存	比,PTE 中的一位表示该 PTE 是否可以使用 转换,
现有 页表结构: 1.层次型页表 (Hierarchical Page Tables) 2.哈希页表 (Hashed Page Tables) 3.倒排页表(Inverted Page Table)	
分段内存管理: 逻辑地址由两部分组成:<段号,偏移>	
段页式内存管理的地址转换包括两个步骤:	 先分段,再分页
虚拟内存可以通过以下方式实现: 1.按需分页(Demand paging) 2.需求细分(Demand segmentation)	
按需分页优点: ・所需的 I/O 更少; ・需要更少的内存; ・更快的响应; ・更多流程;	
辅助内存:此内存保存主内存中不存在的页面	面。它通常称为 交换空间 (swap space);
我们可以通过将每个页面关联为 修改位(mo	dify)(或脏位 dirty)来减少页面置换开销

四种页面置换算法:

- 1.先进先出页面替换(FIFO)
- 2.最佳页面替换(Optimal page replacement)
- 3.LRU 页面替换
- 4.二次页面替换机会(second-chance page replacement)

Thrashing(抖动)导致:

- CPU 利用率低。
- 准入调度器认为它需要提高多进程并发的程度。
- 更多进程将添加到系统中。

抖动原理: 局部模型 (locality model)

工作集模型是局部性模型的近似值。

文件操作:

创建、打开、关闭、读取、写入、搜索、删除

访问控制列表 (ACL)(Access Control List) 指定用户名和每个用户允许的访问类型。

三大分配方法:

连续分配(contiguous allocation)

链接分配(linked allocation) ——FAT 文件系统

索引分配(indexed allocation)

空闲空间管理

- 1.位向量(位图(bit map))
- 2.链表