Reza Godaz¹ Benyamin Ghojogh² Reshad Hosseini³ Reza Monsefi¹ Fakhri Karray² Mark Crowley²

¹Ferdowsi University of Mashhad ²University of Waterloo ³University of Tehran

Riemannian Optimization

Optimization on a manifold where the point belongs to a manifold:

$$\begin{array}{ccc} \text{minimize} & f(\mathbf{\Sigma}) \\ & \Sigma \\ \text{subject to} & \mathbf{\Sigma} \in \mathcal{M}. \end{array}$$

VTF-RLBFGS Algorithm

Algorithm 1: The VTF-RLBFGS algorithm

 $ilde{oldsymbol{p}}' := oldsymbol{p}' -
ho_k \, oldsymbol{g}'_{oldsymbol{\Sigma}_k}(oldsymbol{s}'_k, oldsymbol{p}') oldsymbol{y}'_k$

 ${f return}\; m{H}_0\, m{p}'$

 $\widehat{\boldsymbol{p}}' := \operatorname{GetDirection}(\widetilde{\boldsymbol{p}}', k-1)$

 $\mathbf{return} \ \widehat{\boldsymbol{p}}' - \rho_k \, \boldsymbol{g}_{\boldsymbol{\Sigma}_k}'(\boldsymbol{y}_k', \widehat{\boldsymbol{p}}_k') \boldsymbol{s}_k' + \rho_k \, \boldsymbol{g}_{\boldsymbol{\Sigma}_k}'(\boldsymbol{s}_k', \boldsymbol{s}_k') \boldsymbol{p}'$

```
Input: Initial point \Sigma_0
H_0 := \frac{1}{\sqrt{g'_{\Sigma_0}(\nabla' f(\Sigma_0), \nabla' f(\Sigma_0))}}I
for k = 0, 1, \dots do
\begin{bmatrix} \text{Compute } \nabla' f(\Sigma_k) \text{ from Euclidean gradient by one of the mappings in Table 1} \\ \boldsymbol{\xi}_k' := \text{GetDirection}(-\nabla' f(\Sigma_k), k) \\ \alpha_k := \text{Line search with Wolfe conditions} \\ \boldsymbol{\Sigma}_{k+1} := \text{Exp}_{\Sigma_k}(\alpha_k \boldsymbol{\xi}_k') \text{ or } \text{Ret}_{\Sigma_k}(\alpha_k \boldsymbol{\xi}_k') \\ s'_{k+1} := \alpha_k \boldsymbol{\xi}_k' \\ y'_{k+1} := \nabla' f(\Sigma_{k+1}) - \nabla' f(\Sigma_k) \\ H_{k+1} := \frac{g'_{\Sigma_{k+1}}(s'_{k+1}, y'_{k+1})}{g'_{\Sigma_{k+1}}(y'_{k+1}, y'_{k+1})} \\ \text{Store } y'_{k+1}, s'_{k+1}, g'_{\Sigma_{k+1}}(s'_{k+1}, y'_{k+1}), g'_{\Sigma_{k+1}}(s'_{k+1}, s'_{k+1}), \text{ and } H_{k+1} \\ \text{end} \\ \text{return } \boldsymbol{\Sigma}_{k+1} \\ \text{Function GetDirection}(\boldsymbol{p}', k) \\ \text{if } k > 0 \text{ then} \\ \boldsymbol{\rho}_k := \frac{1}{g'_{\Sigma_k}(y'_k, s'_k)} \\ \end{bmatrix}
```

Mapping Operators on SPD Manifold

Operator	No mapping		
Metric, $g_{\Sigma}(\boldsymbol{\xi}, \boldsymbol{\eta})$	$tr(\mathbf{\Sigma}^{-1} \boldsymbol{\xi} \mathbf{\Sigma}^{-1} \boldsymbol{\eta})$		
Gradient, $\nabla f(\mathbf{\Sigma})$	$rac{1}{2}\mathbf{\Sigma}ig(abla_E f(\mathbf{\Sigma}) + (abla_E f(\mathbf{\Sigma}))^ opig)\mathbf{\Sigma}$		
Exponential map, $\operatorname{Exp}_{\Sigma}(\boldsymbol{\xi})$	$\sum \exp(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}) = \boldsymbol{\Sigma}^{\frac{1}{2}} \exp(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\xi}\boldsymbol{\Sigma}^{-\frac{1}{2}}) \boldsymbol{\Sigma}^{\frac{1}{2}}$		
Vector transport, $\mathcal{T}_{\Sigma_1,\Sigma_2}(oldsymbol{\xi})$	$oxed{\Sigma_2^{rac{1}{2}}oldsymbol{\Sigma}_1^{rac{1}{2}}oldsymbol{\xi}oldsymbol{\Sigma}_1^{rac{1}{2}}oldsymbol{\Sigma}_2^{rac{1}{2}}oxed{or}\ oldsymbol{L}_2oldsymbol{L}_1^{-1}oldsymbol{\xi}oldsymbol{L}_1^{- op}oldsymbol{L}_2^{ op}$		
Approx. Euclidean retraction, $\mathrm{Ret}_\Sigma(\boldsymbol{\xi})$	$oldsymbol{\Sigma} + oldsymbol{\xi} + rac{1}{2} oldsymbol{\xi} oldsymbol{\Sigma}^{-1} oldsymbol{\xi}$		
Operator	Mapping by inverse second root		
Mapping	$oldsymbol{\xi}' := oldsymbol{\Sigma}^{-rac{1}{2}} oldsymbol{\xi} oldsymbol{\Sigma}^{-rac{1}{2}}$		
Metric, $g_{\Sigma}'(\boldsymbol{\xi}', \boldsymbol{\eta}')$	$tr(oldsymbol{\xi}'oldsymbol{\eta}')$		
Gradient, $\nabla' f(\Sigma)$	$rac{1}{2}\mathbf{\Sigma}^{rac{1}{2}}ig(abla_E f(\mathbf{\Sigma}) + (abla_E f(\mathbf{\Sigma}))^ opig)\mathbf{\Sigma}^{rac{1}{2}}$		
Exponential map, $Exp_\Sigma(\boldsymbol{\xi}')$	$oldsymbol{\Sigma}^{rac{1}{2}} \operatorname{exp}(oldsymbol{\xi'}) oldsymbol{\Sigma}^{rac{1}{2}}$		
Vector transport, $\mathcal{T}'_{\Sigma_1,\Sigma_2}(oldsymbol{\xi}')$	$oldsymbol{\xi}'$		
Approx. Euclidean retraction, $Ret_\Sigma(\xi')$	$\Sigma + \Sigma^{\frac{1}{2}} \xi' \Sigma^{\frac{1}{2}} + \frac{1}{2} \Sigma^{\frac{1}{2}} \xi'^{2} \Sigma^{\frac{1}{2}}$		
Operator	Mapping by Cholesky decomposition		
Mapping	$oldsymbol{\xi}' := oldsymbol{L}^{-1} oldsymbol{\xi} oldsymbol{L}^{- op}$		
Metric, $g_{\Sigma}'(\boldsymbol{\xi}', \boldsymbol{\eta}')$	$tr(oldsymbol{\xi}'oldsymbol{\eta}')$		
Gradient, $\nabla' f(\Sigma)$	$rac{1}{2}oldsymbol{L}^ opig(abla_E f(oldsymbol{\Sigma}) + (abla_E f(oldsymbol{\Sigma}))^ opig)oldsymbol{L}$		
Exponential map, $Exp_\Sigma(\boldsymbol{\xi}')$	$\boldsymbol{\Sigma} \exp(\boldsymbol{L}^{-\top} \boldsymbol{\xi}' \boldsymbol{L}^{\top})$		
Vector transport, $\mathcal{T}'_{\Sigma_1,\Sigma_2}(oldsymbol{\xi}')$	$oldsymbol{\xi}'$		
Approx. Euclidean retraction, $Ret_\Sigma(\xi')$	$oldsymbol{\Sigma} + oldsymbol{L} oldsymbol{\xi}' oldsymbol{L}^ op + rac{1}{2} oldsymbol{L} oldsymbol{\xi}'^2 oldsymbol{L}^ op$		

Riemannian LBFGS

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS):

$$\tilde{\boldsymbol{p}} := \boldsymbol{p} - \rho_k \, \boldsymbol{g}_{\Sigma_k}(\boldsymbol{s}_k, \boldsymbol{p}) \boldsymbol{y}_k, \tag{2}$$

$$\hat{\boldsymbol{p}} := \mathcal{T}_{\Sigma_{k-1}, \Sigma_k} \big(\text{GetDirection}(\mathcal{T}_{\Sigma_{k-1}, \Sigma_k}^*(\tilde{\boldsymbol{p}}), k - 1) \big), \tag{3}$$

$$\text{return } \boldsymbol{\xi}_k := \hat{\boldsymbol{p}} - \rho_k \, \boldsymbol{g}_{\Sigma_k}(\boldsymbol{y}_k, \hat{\boldsymbol{p}}_k) \boldsymbol{s}_k + \rho_k \, \boldsymbol{g}_{\Sigma_k}(\boldsymbol{s}_k, \boldsymbol{s}_k) \boldsymbol{p}, \tag{4}$$

$$\Sigma_{k+1} := \text{Exp}_{\Sigma_k}(\alpha_k \boldsymbol{\xi}_k) \text{ or } \text{Ret}_{\Sigma_k}(\alpha_k \boldsymbol{\xi}_k), \tag{5}$$

$$\boldsymbol{s}_{k+1} := \mathcal{T}_{\Sigma_k, \Sigma_{k+1}}(\alpha_k \boldsymbol{\xi}_k), \tag{6}$$

$$\boldsymbol{y}_{k+1} := \nabla f(\Sigma_{k+1}) - \mathcal{T}_{\Sigma_k, \Sigma_{k+1}} \big(\nabla f(\Sigma_k)\big). \tag{7}$$

Experiments on Gaussian Mixture Model

minimize
$$\{\alpha_{j}, \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\}_{j=1}^{K} - \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} \alpha_{j} \mathcal{N}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \right),$$
subject to
$$\boldsymbol{\Sigma}_{j} \in \mathcal{M} = \mathbb{S}_{++}^{n}, \quad \forall j \in \{1, \dots, K\},$$
(8)

Experiments on Geometric Metric Learning

$$\begin{aligned} & \underset{\boldsymbol{W}}{\text{min.}} \ f := \sum_{(\boldsymbol{x}_i, \boldsymbol{x}_j) \in \mathcal{S}} (\boldsymbol{x}_i - \boldsymbol{x}_j)^\top \boldsymbol{W} (\boldsymbol{x}_i - \boldsymbol{x}_j) \\ & + \sum_{(\boldsymbol{x}_i, \boldsymbol{x}_j) \in \mathcal{D}} (\boldsymbol{x}_i - \boldsymbol{x}_j)^\top \boldsymbol{W}^{-1} (\boldsymbol{x}_i - \boldsymbol{x}_j) + \frac{1}{2} \|\boldsymbol{W}\|_F^2, \end{aligned} \tag{9}$$
 s.t. $\boldsymbol{W} \in \mathcal{M} = \mathbb{S}_{++}^n,$

Data	Algorithm	#iters	conv. time	iter. time	last cost
Iris	VTF (ISR)	$23.500{\pm}4.528$	$2.461{\pm}1.174$	0.110 ± 0.070	1512.602 ± 347.004
	VTF (Chol.)	25.000 ± 5.676	2.474 ± 1.009	0.096 ± 0.028	1594.975 ± 124.087
	RLBFGS	25.000 ± 4.714	2.914 ± 1.239	0.113 ± 0.037	1620.207 ± 125.989
USPS	VTF (ISR)	14.700 ± 3.234	1.885 ± 1.024	0.133 ± 0.094	14223.215 ± 0.001
	VTF (Chol.)	13.100 ± 1.524	1.246 ± 0.217	0.095 ± 0.012	14223.216 ± 0.001
	RLBFGS	13.100 ± 2.234	1.307 ± 0.454	0.098 ± 0.025	14223.215 ± 0.001
MNIST	VTF (ISR)	11.700 ± 3.335	1.288 ± 0.619	0.108 ± 0.041	6254.283 ± 0.001
	VTF (Chol.)	13.100 ± 3.479	1.435 ± 0.793	0.104 ± 0.029	6254.284 ± 0.001
	RLBFGS	12.100 ± 3.381	1.266 ± 0.754	0.099 ± 0.024	6254.284 ± 0.001