Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа N94

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $(\mbox{группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

Содержание

1	Постановка задачи						
2	Формализация						
3	Выполнение работы						
4	Результаты	4					
5	Анализ результатов 5.1 Сравнение методов на данных без выбросов						
6	Теоретическое обоснование	5					
7	Выводы	Ę					

1 Постановка задачи

Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + \varepsilon_i$, используя 20 точек на отрезке [-1.8; 2] с равномерным шагом равным 0.2. Ошибку ε_i считать нормально распределённой с параметрами (0,1).

В качестве эталонной зависимости взять $y_i = 2 + 2x_i + \varepsilon_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.

2 Формализация

Простая линейная регрессия:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n,$$

где x_1, \ldots, x_n — заданные числа (значения фактора); y_1, \ldots, y_n — наблюдаемые значения отклика; $\varepsilon_1, \ldots, \varepsilon_n$ — независимые, нормально распределённые $N(0,\sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0, β_1 — неизвестные параметры, подлежащие оцениванию.

Метод наименьших квадратов (МНК):

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (1)

Метод наименьших модулей:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}.$$
 (2)

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, scipy, sklearn, mathplotlib. Были построены модели на данных без и с возмущениями, выполнены вычисления, построены графики (сохранялись в виде картинок png). Программа отработала корректно.

4 Результаты

Таблица 1: Результаты для невозмущенной выборки

	Метод	\hat{a}	$\frac{\hat{a}}{a}$	\hat{b}	$rac{\hat{b}}{b}$
(1)	MHK	1.87	0.94	1.96	0.98
(2)	MHM	1.65	0.83	2.12	1.06

Таблица 2: Результаты для возмущенной выборки

	Метод	\hat{a}	$\frac{\hat{a}}{a}$	\hat{b}	$\frac{\hat{b}}{b}$
(1)	MHK	2.01	1.01	0.53	0.26
(2)	MHM	1.61	0.81	2.10	1.05

Рис. 1: Результаты вычислительного эксперимента

5 Анализ результатов

5.1 Сравнение методов на данных без выбросов

• МНК показал лучшую точность, чем МНМ.

5.2 Сравнение методов на данных с выбросами

ullet МНК показал крайнюю чувствительность к выбросам. Оценка b имеет значительное смещение. Можно считать метод неприменимым в этом случае.

• МНМ продемонстрировал устойчивость. Оценки изменились незначительно по сравнению со случаем без выбросов.

6 Теоретическое обоснование

Различие в поведении методов объясняется их целевыми функциями:

- МНК минимизирует **сумму квадратов отклонений**, что делает его:
 - Эффективным при нормальном распределении ошибок
 - Чувствительным к выбросам (квадратичный штраф усиливает влияние больших отклонений)
- МНМ минимизирует сумму абсолютных отклонений, что:
 - Делает его устойчивым к выбросам
 - Менее эффективным для нормально распределенных ошибок

7 Выводы

- Для данных без выбросов предпочтительнее использовать МНК
- Для данных **с выбросами** или для распределений с тяжёлыми хвостами следует применять МНМ.