Contents

Expression of binomial theorem	2
Condition for application of binomial theorem	2
Proof for expression of binomial theorem in terms of induction	2
Number of terms in the binomial expansion of index n	2
Sum of exponent in each term in binomial expansion	2
First term in expansion of (a + x) raised to n in binomial expansion	2
Last term in expansion of (a + x) raised to n in binomial expansion	2
Term decreasing by 1 on tending to last terms in binomial expansion	3
Term increasing by 1 on tending to last terms in binomial expansion	3
Relation of terms equidistant from beginning and end	3

Expression of binomial theorem

$$(a+x)^n = C(n,0)a^n + C(n,2)a^{n-1}x + C(n,2)a^{n-2}x^2 + \dots + C(n,r)a^{n-r}x^r + \dots + C(n,n)x^n$$

Condition for application of binomial theorem

Positive integer

Proof for expression of binomial theorem in terms of induction

•

$$(a+x)^n = (a+x)(a+x)$$
.. to n factors

- Take a from n factors each.
- Take a from n 1 factors each. Take x from remaining one.
- Take a from n r factors each. Take x from r factors.
- Vary r from 0 to n.
- Express by C(n,r)

Number of terms in the binomial expansion of index n

n + 1

Sum of exponent in each term in binomial expansion

n

First term in expansion of (a + x) raised to n in binomial expansion

 a^n

Last term in expansion of (a + x) raised to n in binomial expansion

 x^n

Term decreasing by 1 on tending to last terms in binomial expansion

a

Term increasing by 1 on tending to last terms in binomial expansion

Χ

Relation of terms equidistant from beginning and end

Equal