→ Projeto 1 - Prevendo Complicações de Infarto do Miocárdio

Universidade de Brasília

Departamento de Ciência da Computação

Projeto 1, Fundamentos de Sistemas Inteligentes, Turma A, 2022/2

Prof. Díbio

Introdução

O presente projeto tem como objetivo utilizar modelos de classificação supervisionados para prever complicações de infarto do miocárdio com base nas informações sobre um paciente no momento da admissão e no terceiro dia de internação. É utilizado o dataset disponível em https://archive.ics.uci.edu/ml/datasets/Myocardial+infarction+complications.

▼ Importação de bibliotecas

```
1 from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
2 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
3 from sklearn.neighbors import KNeighborsClassifier
4 from sklearn.tree import DecisionTreeClassifier
5 from sklearn.model_selection import train_test_split
6 from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score
7 from numpy import mean
8
9 import pandas as pd
10 import matplotlib.pyplot as plt
11 import warnings
12
13 warnings.filterwarnings("ignore", message='Variables are collinear') # Usado para ocultar o warning emitido pelo QDA
```

Análise do dataset

Primeiramente, o dataset é lido do arquivo .csv. Pelo atributo shape podemos ver que o dataset tem 1700 linhas e 124 atributos. São mostradas 10 amostras aleatórias do dataset para se ter uma visão geral dele.

```
1 df = pd.read_csv('data.csv')
2
3 print('Shape:', df.shape)
4
5 df.sample(10)
```

В

Shape: (1700, 124) TD AGE SEX THE ANAM STENOK AN EK STENOK TBS POST TBS NASI GB STM GTPERT ...

1	217	1218	43.0	1	0.0	0.0	0.0	0.0	NaN	2.0	0.0	
4	121	422	65.0	1	0.0	3.0	2.0	2.0	NaN	2.0	0.0	
1	602	1603	84.0	0	0.0	0.0	0.0	0.0	NaN	2.0	0.0	
5	512	513	68.0	1	2.0	6.0	2.0	2.0	NaN	2.0	0.0	

Aqui pode-se ver que o dataset tem muitos valores faltantes (chamados de NA), com colunas chegando a ter 1696 (99% das linhas) de linhas sem valor.

```
JUO / J.U
                                                                                         U.U ...
1 df.isna().sum().sort values(ascending=False).head(10)
```

```
KFK BLOOD
             1696
IBS_NASL
             1628
S AD KBRIG
            1076
D_AD_KBRIG
             1076
NOT NA KB
              686
LID KB
              677
NA KB
              657
GIPER NA
              375
NA BLOOD
              375
K BLOOD
              371
dtype: int64
```

▼ Limpeza e separação

É preciso então tratar essa falta de valores. Primeiramente são removidas as colunas que tem menos de 1000 linhas preenchidas. Também são removidas as linhas que tem menos de 80% dos atributos. O restante dos valores faltantes são preenchidos utilizando interpolação linear, ou seja, são calculados com base nos valores dos outros atributos.

Serão analisados os classificadores em dois momentos: na admissão ao hospital e no terceiro dia de hospital. É necessário então separar o dataset em dois dataframes diferentes. O dataframe da admissão ao hospital contém todas as colunas de entrada (2-112) exceto 93, 94, 95, 100, 101, 102, 103, 104 e 105. O dataframe do terceiro dia de hospital contém todas as colunas de entrada (2-112). A coluna 1 não é utilizada em nenhum dos dataframes pois é a coluna com o identificador único de cada linha. As colunas 122 a 124 contém as possíveis complicações de infarto do miocárdio (output).

```
1 df.dropna(axis='columns', thresh=1000, inplace=True)
2 df.dropna(thresh=int(df.columns.size * 0.8), inplace=True)
3 df.drop(columns='ID', inplace=True)
4 df.interpolate(inplace=True)
5 df.dropna(inplace=True) # Alguns valores NaN não são preenchidos com interpolate
7 df_admission = df.drop(columns=['R_AB_1_n', 'R_AB_2_n', 'R_AB_3_n', 'NA_R_1_n', 'NA_R_2_n',
                                  'NA_R_3_n', 'NOT_NA_1_n', 'NOT_NA_2_n', 'NOT_NA_3_n'])
9 df_third_day = df.copy()
```

Os dados são separados em 2 conjuntos (treinamento e teste), selecionados aleatoriamente em porções 70% e 30%, respectivamente. Cada conjunto tem seus dados de input (X) e output (y) separados.

```
1 X = df_admission.iloc[:, :-12]
2 y = df admission.iloc[:, -12:]
```

▼ Classificação

É criada uma função que retorna as métricas de desempenho de um modelo passado como parâmetro. Esse é um problema de classificação com múltiplas saídas. Como os modelos só conseguem prever uma saída por vez, é feito a classificação e medição de desempenho para cada uma. Por fim, é feita a média das predições de todas as saídas.

```
1 def get model report(model):
      accuracies = []
      precisions = []
      recalls = []
      f1s = []
7
      for i in range(-12, 0):
8
          model.fit(X_train, y_train.iloc[:, i])
9
          predictions = model.predict(X test)
10
11
          correct_output = y_test.iloc[:, i]
12
          accuracy = accuracy score(correct output, predictions)
13
          precision = precision score(
14
              correct_output, predictions, average='weighted', zero division=0)
15
          recall = recall score(correct output, predictions,
16
                                average='weighted', zero division=0)
17
          f1 = f1_score(correct_output, predictions,
                        average='weighted', zero division=0)
18
19
20
          accuracies.append(accuracy)
21
          precisions.append(precision)
22
          recalls.append(recall)
23
          f1s.append(f1)
24
25
      return {'accuracy': round(mean(accuracies), 4),
               'precision': round(mean(precisions), 4),
26
27
               'recall': round(mean(recalls), 4),
28
               'f1 weighted': round(mean(f1s), 4)}
```

São testados quatro modelos de classificação: LDA, QDA, CART e KNN. Todos com suas configurações padrões. Os dados de acurácia, precisão, revocação e medida F1 de cada modelo são mostrados na tabela, ordenados pela acurácia.

```
1 def compare models(models):
      rows = []
      for name, model in models:
          report = get_model_report(model)
4
          rows.append([name, *report.values()])
5
6
      rows.sort(key=lambda row: row[1], reverse=True)
      colLabels = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Weighted']
9
      plt.figure(figsize=(10, 2))
      plt.axis('off')
10
11
      table = plt.table(cellText=rows, colLabels=colLabels,
12
                        loc='center', cellLoc='center')
13
      table.scale(1, 2)
14
15
```

Model	Accuracy	Precision	Recall	F1 Weighted
KNN	0.9183	0.8684	0.9183	0.891
LDA	0.9027	0.8853	0.9027	0.8913
CART	0.8663	0.8786	0.8663	0.8721
QDA	0.6499	0.8591	0.6499	0.6404

▼ Melhorando o desempenho

Para tentar melhorar o desempenho dos classificadores, serão verificados os melhores valores para 2 parâmetros: número de vizinhos no KNN e o número mínimo de amostras necessárias para dividir um nó interno no CART.

Para o modelo KNN, é verificada a acurácia para um k variando de 1 a 49. O melhor desempenho é alcançado com K = 20.

```
1 accuracies = []
2
3 ks = list(range(1, 50))
4
5 for k in ks:
6    report = get_model_report(KNeighborsClassifier(n_neighbors=k))
7    accuracies.append(report['accuracy'])
8
9 plt.figure(figsize=(20, 6))
10 plt.plot(ks, accuracies, marker='o')
11 plt.title('Accuracy x K Value')
12 plt.xlabel('K')
13 plt.ylabel('Kr')
14 plt.grid(True)
15 plt.xticks(range(min(ks), max(ks)))
16 print("Max accuracy: , max(accuracies),
17    "at K ="", ks[accuracies.index(max(accuracies))])
```


Para o modelo CART, é verificada a acurácia para o número mínimo de amostras necessárias para dividir um nó interno variando de 2 a 400. O melhor desempenho é alcançado com min_samples_split = 341 em que a acurácia é de 0.926, 6% maior que na configuração padrão.

▼ Classificação final

Com os valores de parâmetros ajustados, é feita uma nova comparação entre modelos.

Model	Accuracy	Precision	Recall	F1 Weighted
CART	0.926	0.884	0.926	0.9002
KNN	0.926	0.8785	0.926	0.8927
LDA	0.9027	0.8853	0.9027	0.8913
QDA	0.6499	0.8591	0.6499	0.6404

É feita também a classificação para o dataframe do terceiro dia de internação.

```
1 X = df_third_day.iloc[:, :-12]
2 y = df_third_day.iloc[:, -12:]
3
4 X_train, X_test, y_train, y_test = train_test_split(
5          X, y, test_size=0.30, random_state=1)
6
7 compare_models(models)
```

Model	Accuracy	Precision	Recall	F1 Weighted
CART	0.926	0.8827	0.926	0.9006
KNN	0.926	0.8785	0.926	0.8927
LDA	0.904	0.8898	0.904	0.8949
QDA	0.6877	0.8588	0.6877	0.6921

Análise dos resultados

Os modelos CART e KNN obtiveram uma acurácia igual, mas a árvore de decisão obteve um melhor resultado em todas as outras medidas. O modelo se mostrou bastante eficaz atingindo 92% de acurácia, além de 90% de medida F, o que mostra que a acurácia obtida é confiável. O modelo também apresentou uma alta taxa de revocação, o que é positivo, pois é melhor prever que pacientes saudáveis vão ter complicações do que classificar pacientes doentes como saudáveis.

Produtos pagos do Colab — Cappolar contratos