Darstellung rationaler Zahlen durch Ägyptische Brüche

Lars Berger

Universität der Bundeswehr München

18. Dezember 2019

Ägyptische Brüche

Lars Berger

Einführi

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithms

Auswertung einige Testreihen

Ergebnis

Theorie und Ausblick

Geschichte

https://research.britishmuseum.org/research/collection_online/collection_object_details/collection_image_gallery.aspx?assetId=766120001&objectId=117389&partId=1

Ägyptische Brüche

Lars Berger

EINTUNTU Geschichte

Geschichte

Zerlegungsalgorithr

Farey-Folgen-Algorithmu Binär-Algorithmus

Auswertung einiger Testreihen

Methodil Ergebniss

Theorie und Ausblick

Ein Bruch soll fortan "in ägyptischer Form" bzw. "Ägyptischer Bruch" heißen genau dann, wenn er in der Form

 $\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}, \quad n \in \mathbb{N}, n \ge 1$

mit paarweise verschiedenen x_i , $i \in \{1, ..., n\}$, vorliegt.

Einführung Geschichte

Zerlegungsalgorithm

Farey-Folgen-Algorithmus Binär-Algorithmus

Auswertung einige Testreihen

Testreihen Methodik

Ergebnis

Theorie und Ausblick

Theoretische Schranken
Ungeklärte theoretische

Definition

Ein Bruch soll fortan "in ägyptischer Form" bzw. "Ägyptischer Bruch" heißen genau dann, wenn er in der Form

 $\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}, \quad n \in \mathbb{N}, n \ge 1$

mit paarweise verschiedenen x_i , $i \in \{1, ..., n\}$, vorliegt.

Anmerkung

Es werden nur Brüche $\frac{p}{q}$ mit $0 < \frac{p}{q} < 1$ betrachtet.

Beispiel: 23 · 69

	1	69
	2	138
	4	276
	8	552
	16	1104
Summe:	0	0

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithn

Farey-Folgen-Algorithmu

Auswertung einige

Methodik

Ergebnis

Theorie und Ausblick

Beispiel: 23 · 69

	1	69
	2	138
	4	276
	8	552
\checkmark	16	1104
Summe:	16	1104

Ägyptische Brüche

Lars Berger

Eintun

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorith

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binär-Algorithmus

Auswertung einige Testreihen

Methodik

Ergebnis

Theorie und Ausblick

Beispiel: 23 · 69

	1	69
	2	138
\checkmark	4	276
	8	552
\checkmark	16	1104
Summe:	20	1380

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithn

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binär-Algorithmus

Auswertung einiger Testreihen

Methodil

Theorie un

Ausblick Theoretische Schranke

Beispiel: 23 · 69

	1	69
\checkmark	2	138
\checkmark	4	276
	8	552
\checkmark	16	1104
Summe:	22	1518

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithn

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binär-Algorithmus

Auswertung einiger Testreihen

Methodik

Ergebni

Theorie und Ausblick

Beispiel: 23 · 69

\checkmark	1	69
\checkmark	2	138
\checkmark	4	276
	8	552
\checkmark	16	1104
Summe:	23	1587

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithn

Greedy-Algorithmus
Farey-Folgen-Algorithmu

Auswertung einige

Testreihen

Methodik

Theorie und

Theoretische Schranke

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
	16	112
Summe:	Ω	0

Ägyptische Brüche

Lars Berger

EINTUN

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binär-Algorithmus

Auswertung einiger Testreihen

Methodi Ergebnis

Ergebnisse

Theorie und Ausblick

Beispiel: 117 ÷ 7

```
1 7
2 14
4 28
8 56
✓ 16 112
Summe: 16 112
```

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binär-Algorithmus

Auswertung einiger Testreihen

Methodik

Theorie und

Ägyptische Brüche

Lars Berger

Einfüh

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmu

Auswertung einige

Methodil

Theorie und

Ausblick
Theoretische Schranke

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
\checkmark	16	112
	$\frac{1}{2}$	$3 + \frac{1}{2}$
	$\frac{1}{7}$	1
	$ \begin{array}{r} \frac{1}{2} \\ \frac{1}{7} \\ \hline \frac{1}{14} \end{array} $	$\frac{1}{2}$
Summe:	16	112

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binär-Algorithmus

Auswertung einiger Testreihen

Ergebniss

Theorie und Ausblick

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
\checkmark	16	112
\checkmark	$\frac{\frac{1}{2}}{\frac{1}{7}}$	$3 + \frac{1}{2}$
	$\frac{1}{7}$	1
	$\frac{1}{14}$	$\frac{\frac{1}{2}}{115 + \frac{1}{2}}$
Summe:	$16 + \frac{1}{2}$	$115 + \frac{1}{2}$

Ägyptische Brüche

Lars Berger

Einfüh

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmus

Farey-Folgen-Algorithmus Binär-Algorithmus

Auswertung einiger Testreihen

Ergebnis

Theorie und Ausblick

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
\checkmark	16	112
\checkmark	$\frac{1}{2}$ $\frac{1}{7}$	$3 + \frac{1}{2}$
\checkmark	$\frac{1}{7}$	1
	$\frac{1}{14}$	$\frac{1}{2}$
Summe:	$16 + \frac{1}{2} + \frac{1}{7}$	$116 + \frac{1}{2}$

Ägyptische Brüche

Lars Berger

Einführ

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einige

Methodik

Theorie und Ausblick

Beispiel: $117 \div 7$

		1	7
		2	14
		4	28
		8	56
\checkmark		16	112
\checkmark		$\frac{1}{2}$ $\frac{1}{2}$	$3 + \frac{1}{2}$
\checkmark		$\frac{1}{7}$	1
\checkmark		$\frac{1}{14}$	$\frac{1}{2}$
Summe:	$16 + \frac{1}{2} + \frac{1}{7} +$	$-\frac{1}{14}$	117

Ägyptische Brüche

Lars Berger

Einführ

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus

Farey-Folgen-Algorithmus Binär-Algorithmus

Auswertung einiger Testreihen

Ergebniss

Theorie und Ausblick

Zerlegungsalgorithmen

Betrachtung einer Auswahl:

- ► Greedy-Algortihmus
- ► Farey-Folgen-Algorithmus
- Binäralgorithmus

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Zerlegungsalgorithm

Farey-Folgen-Algorithmu Binär-Algorithmus

Auswertung einige Testreihen

Methodik

Theorie und

Der Greedy-Algorithmus

Ziel

$$\frac{a}{b} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_i} = \sum_{i=1}^{l} \frac{1}{x_i}.$$

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus

Farey-Folgen-Algorithmu Binär-Algorithmus

Auswertung einige Testreihen

Ergebniss

Theorie und Ausblick

$$\frac{a}{b} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_i} = \sum_{j=1}^{i} \frac{1}{x_j}.$$

Algorithmus

- 1. finde den größten, noch nicht verwendeten Stammbruch $\frac{1}{x}$, sodass $\frac{1}{x} \leq \frac{p}{a}$.
- 2. setze $\frac{1}{x}$ als weiteren Summanden des Ergebnisses
- 3. falls $\frac{p}{q} \frac{1}{x} > 0$, gehe zu Schritt 1 mit $\left(\frac{p}{q}\right) \leftarrow \left(\frac{p}{q} \frac{1}{x}\right)$.

Einführung

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus
Farey-Folgen-Algorithmus

Auswertung einiger Testreihen

Methodik Ergebniss

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

-

Nebenrechnungen:

Ägyptische Brüche

Lars Berger

Elmium

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorith

Greedy-Algorithmus Farey-Folgen-Algorithm

Auswertung einiger

Methodik

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

5

Nebenrechnungen:

$$\frac{1}{2} \leq \frac{5}{9} < \frac{1}{1}$$

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Rechenwege der Ägypte

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithm

Auswertung einiger

Methodik

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{5}{9} > \frac{1}{2}$$

Nebenrechnungen:

$$\frac{1}{2} \leq \frac{5}{9} < \frac{1}{1}$$

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmu

Auswertung einige

Methodik

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{a}$.

$$\frac{5}{9} > \frac{1}{2}$$

Nebenrechnungen:

$$\frac{5}{9} - \frac{1}{2} = \frac{1}{18}$$

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus
Farey-Folgen-Algorithm

Auswertung einiger

Methodik

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{a}$.

$$\frac{5}{9} = \frac{1}{2} + \frac{1}{18}$$

Ägyptische Brüche

Lars Berger

Eintunr

Geschichte

Rechenwege der Agypte

Zerlegungsalgorithn

Greedy-Algorithmus Farey-Folgen-Algorithm

Auswertung einige

Methodil

Theorie und Ausblick

Farey-Folgen

Definition

Sei $q \in \mathbb{N}$. Die Farey-Folge der Ordnung q, F_q , ist definiert als die aufsteigend sortierte Folge aller einmalig darin vorkommenden gekürzten Brüche $\frac{a}{b} \in \mathbb{Q}$, für die gilt: $0 \le a \le b \le q$, $b \ne 0$.

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Zerlegungsalgorithm

Farey-Folgen-Algorithmus Binär-Algorithmus

Auswertung einige Testreihen

Ergebniss

Theorie und Ausblick

Farey-Folgen

Definition

Sei $q \in \mathbb{N}$. Die Farey-Folge der Ordnung q, F_q , ist definiert als die aufsteigend sortierte Folge aller einmalig darin vorkommenden gekürzten Brüche $\frac{a}{b} \in \mathbb{Q}$, für die gilt: $0 \le a \le b \le q, \ b \ne 0$.

Beispiel: F_5

$$F_5 = \left(\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right).$$

Ägyptische Brüche

Lars Berger

Einführung

Destruction des Automates

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einige Testreihen

Ergebniss

Theorie und Ausblick

Der Farey-Folgen-Algorithmus

Algorithmus

Sei $\frac{p}{q} \in \mathbb{Q}_+$ in gekürzter Form der zu zerlegende Bruch.

- 1. Konstruiere F_q .
- 2. Sei $\frac{r}{s}$ der zu $\frac{p}{q}$ adjazente Bruch in F_q , sodass $\frac{r}{s} < \frac{p}{q}$. Aufgrund der Eigenschaften der Farey-Folge gilt dann

$$\frac{p}{q} = \frac{1}{qs} + \frac{r}{s},$$

wobei s < q, r < p.

3. Wiederhole dieses Vorgehen für $\frac{r}{s}$ solange, bis $s = 1 \Leftrightarrow r = 0$.

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Agypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einiger Testreihen

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

Ägyptische Brüche

Lars Berger

Einführi

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einige

Methodik

Ergebniss

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

$$F_{9rel} = \left(\frac{0}{1}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{1}{1}\right)$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einige Testreihen

Ergebniss

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

$$F_{9rel} = \left(\frac{0}{1}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{1}{1}\right)$$

$$\Rightarrow \frac{r}{5} = \frac{1}{2}$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einige Testreihen

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{a} = \frac{5}{9} = \frac{1}{as} + \frac{r}{s}$$

$$F_{9rel} = \left(\frac{0}{1}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{1}{1}\right)$$

$$\Rightarrow \frac{r}{s} = \frac{1}{2}$$

$$\frac{5}{9} = \frac{1}{9 \cdot 2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{18}$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Auswertung einiger

Testreihen

Ergebnis

Theorie und Ausblick

Der Binäralgorithmus

Algorithmus

Sei $rac{p}{q}\in\mathbb{Q}_+$ in gekürzter Form und $k\in\mathbb{N}.$

- 1. Finde $N_{k-1} < q \le N_k$ wobei $N_k = 2^k$ ist.
- 2. Falls $q = N_k$, schreibe p als Summe von Teilern von N_k , hier d_i genannt:

$$\frac{p}{q} = \sum_{i=1}^{j} \frac{d_i}{N_k} = \sum_{i=1}^{j} \frac{1}{\frac{N_k}{d_i}}$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Zerlegungsalgorithm

Farey-Folgen-Algorithmu
Binär-Algorithmus

Auswertung einiger Testreihen

Methodik Ergebniss

Theorie und Ausblick

Binär-Algorithmus

Algorithmus

3. Sonst seien $s, r \in \mathbb{N}, 0 \le r < q$ so gewählt, dass:

$$pN_k = qs + r$$
.

Es folgt:

$$\frac{p}{q} = \frac{pN_k}{qN_k} = \frac{qs+r}{qN_k} = \frac{s}{N_k} + \frac{r}{qN_k}.$$

- 4. Schreibe $s = \sum d_i$ und $r = \sum d'_i$, wobei d_i , d'_i jeweils paarweise verschiedene Teiler von N_{ν} sind.
- 5. Erhalte den Ägyptischen Bruch:

$$\sum \frac{1}{\frac{N_k}{d_i}} + \sum \frac{1}{\frac{qN_k}{d_i'}}.$$

Der Binär-Algorithmus: Rechenbeispiel

Gesucht: Zerlegung für $\frac{5}{9}$.

Ägyptische Brüche

Lars Berger

Emiuni

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithm

Binär-Algorithmus

Auswertung einige Testreihen

Methodil

heorie und Jusblick

Der Binär-Algorithmus: Rechenbeispiel

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

Ägyptische Brüche

Lars Berger

Eintunr

Geschichte

Rechenwege der Ägypte

Zerlegungsalgorithm

Greedy-Algorithmus
Farey-Folgen-Algorithmu

Binär-Algorithmus

Testreihen

Ergebnis

Theorie und Ausblick

Der Binär-Algorithmus: Rechenbeispiel

Gesucht: Zerlegung für $\frac{5}{a}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

5

Ägyptische Brüche

Lars Berger

Einführi

Geschichte

Rechenwege der Ägypte

Zerlegungsalgorithm

Farey-Folgen-Algorithmus
Binär-Algorithmus

Auswertung einige

Testreihen

Ergebniss

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{a}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

$$\frac{5}{9} = \frac{5 \cdot 16}{9 \cdot 16}$$

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus
Farey-Folgen-Algorithmu
Binär-Algorithmus

Auswertung einiger

Testreihen

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

$$\frac{5}{9} = \frac{5 \cdot 16}{9 \cdot 16} = \frac{9 \cdot 8 + 8}{9 \cdot 16}$$

Ägyptische Brüche

Lars Berger

Einführi

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Greedy-Algorithmus
Farey-Folgen-Algorithmu
Binär-Algorithmus

Auswertung einige

Testreihen

Ergebniss

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

$$\frac{5}{9} = \frac{5 \cdot 16}{9 \cdot 16} = \frac{9 \cdot 8 + 8}{9 \cdot 16} = \frac{8}{16} + \frac{8}{144}$$

Ägyptische Brüche

Lars Berger

Einführi

Geschichte

Rechenwege der Agypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmu
Binär-Algorithmus

Auswertung einige Testreihen

Methodik

Theorie und

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

$$\frac{5}{9} = \frac{5 \cdot 16}{9 \cdot 16} = \frac{9 \cdot 8 + 8}{9 \cdot 16} = \frac{8}{16} + \frac{8}{144} = \frac{1}{2} + \frac{1}{18}.$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Agypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmu
Binär-Algorithmus

Auswertung einige Testreihen

Methodik

Theorie und Ausblick

Weitere Rechenbeispiele

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Greedy-Algorithmus

Farey-Folgen-Algorithn Binär-Algorithmus

Auswertung einige Testreihen

Method

Theorie und Ausblick

$$\mathsf{Datensatzform}\colon\thinspace M_q = \left\{ \tfrac{p}{q} \,|\, (\, 2 \leq p < q) \land (\mathsf{ggT}(p,q) = 1) \right\}$$

Enthaltene Informationen:

- die durchschnittliche Anzahl der Summanden, avgTerms(q)
- das Minimum der Anzahl der Summanden, minTerms(q)
- das Maximum der Anzahl der Summanden, maxTerms(q)
- das Minimum des jeweils größten Nenners, minDenom(q)
- das Maximum des jeweils größten Nenners, maxDenom(q).

Ägyptische Brüche

Lars Berger

Einführung

Geschichte ..

Zerlegungsalgorithm

Farey-Folgen-Algorithmus Binär-Algorithmus

Auswertung einiger Testreihen

Theorie und

Durchschnittliche Anzahl der Terme

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Binär-Algorithmus

Auswertung einiger

Testreihen

Ergebnisse

Theorie und Ausblick

Minimum der größten Nenner

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Rechenwege der Ägypte

Zerlegungsalgorithm

Farey-Folgen-Algorithmus

Binär-Algorithmus

Testreihen

Ergebnisse

Theorie und Ausblick

Maximum der größten Nenner

Ägyptische Brüche

Lars Berger

Einführt

Geschichte ...

Zerlegungsalgorithm

Farey-Folgen-Algorithmus
Binär-Algorithmus

Auswertung einiger

Methodik Ergebnisse

Theorie und

Bekannte theoretische Schranken

Berechnung von $\frac{2}{n}$

Sei $n \in \mathbb{N}$ ungerade. $\frac{2}{n}$ lässt sich für jedes n als Summe zweier Stammbrüche notieren, nämlich:

$$\frac{2}{n} = \frac{1}{\lceil \frac{n}{2} \rceil} + \frac{1}{n \cdot \lceil \frac{n}{2} \rceil}.$$

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus
Binär-Algorithmus

Auswertung einige Testreihen

Methodil Ergebnis

Theorie und Ausblick

Bekannte theoretische Schranken

Berechnung von $\frac{2}{n}$

Sei $n \in \mathbb{N}$ ungerade. $\frac{2}{n}$ lässt sich für jedes n als Summe zweier Stammbrüche notieren, nämlich:

$$\frac{2}{n} = \frac{1}{\left\lceil \frac{n}{2} \right\rceil} + \frac{1}{n \cdot \left\lceil \frac{n}{2} \right\rceil}.$$

Berechnung von $\frac{3}{n}$

$$\frac{3}{n} = \frac{1}{n} + \frac{1}{\left\lceil \frac{n}{2} \right\rceil} + \frac{1}{n \cdot \left\lceil \frac{n}{2} \right\rceil}.$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Ägypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmus
Binär-Algorithmus

Auswertung einige Testreihen

Methodik

Theorie und Ausblick

Theoretische Schranken

Ungeklärte theoretische Fragen

Sonstige Ansätze und offene Fragen

Weitere Ansätze und Fragen umfassen u.a.:

- ► Thesen für $\frac{4}{n}$, $\frac{5}{n}$ usw.
- allgemeingültige Schranken für
 - ► Größe der Nenner
 - Anzahl der Summanden
- Zulassen auch negativer Terme

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Rechenwege der Agypter

Zerlegungsalgorithm

Farey-Folgen-Algorithmu

Auswertung einiger Testreihen

Ergebniss

Fragen

Theorie und Ausblick

Theoretische Schranken