This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(D)特許出願公告

昭50-23618

6公告 昭和50年(1975)8月8日

庁内整理番号 7122-24

発明の数 1

(全 5 頁)

1

匈測尺装置

②特 顧 昭45-43131

願 昭45(1970)5月20日 223出

②発 明 者 鳥山成寛

> 東京都世田谷区玉川等々力8の 26

の出 顧 人 ソニー株式会社

東京都品川区北品川6の7の35

邳代 理 人 弁理士 伊藤貞

図面の簡単な説明

第1図は従来の測尺装置の一例を示す系統図、 第2図及び第3図はその動作を説明する為の波形 図及び曲線図、第4図は本発明による測尺装置の 15 一実施例を示す系統図である。

発明の詳細な説明

本発明は例えば工作機等に使用される測尺装置 に関する。

測尺装置の一例として第1図に示す様に磁気媒 20 体に記録された磁気格子を目盛りとするいわゆる マグネスケールがある。即も第1図において100 はマグネスケールを全体として示し、3はその磁 気スケールで、これはガラス、金属等の帯状板体 上に形成された磁気媒体に一定波長 1 の例えば 25 正弦波が磁気トラツクT、として記録され、又磁 気トラツクT, のN対、図の例では6対の磁気格 子mal,mbl,mal,……mas,mbsが磁気 目盛りとして一定ピッチで形成されて構成され、 この磁気スケールはたとえば工作機の移動部にそ 30 の移動方向に延在するように取付けられている。 そしてこの磁気スケール3に対接して一対の磁気 変調型磁気ヘツド(磁東応答型磁気ヘツド) 1A, 1Bが互いに $(K+\frac{1}{4})$ λ_1 (ただしKは整数) の 間隔を保持して工作機の固定部にとりつけられて 35 ル3 , (第3図A)の磁気格子ma, , mb。に対 いる。

更に発信器 4が設けられ、これよりの周波数

n fo(たとえば2.5 MHz)の発信器信号が分周器 5に供給されて第2図Aに示すように周波数fo (たとえば50KHz)の信号8aに分周され、 この信号sa はたとえばシュミット回路よりなる 5 波形整形回路 6 に供給されて第2図Bに示すよう

2

に短形波状とされ、この短形波信号sb は、たと えばフリップフロップ回路よりなる位相比較回路

7に基準信号として供給される。

また信号 8 8 は分周器 8 に供給されて周波数 10 10/2 の信号に分周され、この分周信号は増巾器 11を通じて磁気ヘッド1Aにその励磁電流とし て供給されるとともに、移送器12にてπ/4だ け遅相され増巾器13を通じて磁気ヘッド1Bに その励磁電流として供給される。

ここで磁気ヘッド1A.1Bが夫々磁気スケー ル3の磁気格子mai~mbe に対しxなる位置に あり、磁気ヘツド1A、1Bより得られる出力電 圧をe₁,e₂とすれば、出力電圧e₁,e₂は

$$e_1 = a_1 \sin \frac{2\pi x}{\lambda_1} \cos 2\pi \text{ fot}$$

$$2\pi x$$

$$e_2 = a_2 \cos \frac{2\pi x}{\lambda}$$

$$\lambda$$

と表わされる。(ただしaェ.azは定数)。

この出力電圧e, e,は加算回路 14に供給さ れて加算され、第2図Cに示すように信号 s,= $e_1 + e_2 = a \sin(2\pi \cot + \frac{2\pi x}{1})$, (ただし aは定数) とされる。即ち磁気 $^{\prime}$ ド $^{\prime}$ I A $^{\prime}$ I B に対する磁気スケール3の変位xが信号s1 の位 相偏移 $\frac{2\pi x}{1} = \theta_1$ に変換される。従つて磁気へ ツド1A,1Bと磁気スケール3とが相対的に移 動する場合、第3図Bに示す様に信号s,の位相 $\theta_1 = \frac{2\pi x}{\lambda_1}$ は信号 s a を基準として磁気スケー 応して順次繰返し変化する。

この信号s, は帯域通過フィルタ15を通じて

波形整形回路 1 6 に供給されて第2図Dに示す様 に短形波信号sd とされ、これは位相比較回路 7 に供給される。こうして比較回路了において例え は信号sb 及びsd の各立上り部分が位相比較さ れて第2図Eに示す様に変位×に対応した巾の位 5 上に第2の磁気トラックT2 が形成されると共に、 相比較信号se が形成される。この比較信号se はゲート回路17に制御信号として供給され、又 このゲート回路17には発振器4よりその発振信 号が被制御信号として供給され、従つて出力端子 位xに対応した数のパルス数変調信号 sf が信号 sa の各サイクル毎に得られる。

従つて信号se の平均値をメータにより指示す ることによつて、あるいは信号sfをカウンタに より信号saの周期毎に計数することによつて1 15 算回路24に供給されて加算され、位相変調信号 彼長 l, 内における変位xを知る事ができ、即ち 移動体の移動を測尺できる。しかしながら磁気格 子mai~mbe はスケール3上に繰返し形成され ているので、磁気ヘッド1A,1Bが磁気格子 $ma_1 \sim mb_0$ のどれに対接しているのか、即ち磁 20 と向様変位xに対応して偏移し、又その繰返し波 気格子maiを原点とした場合、磁気へツド1A. 1 Bが原点(磁気格子mat)よりどれだけの距離に あるか、その絶対的な相対位置は測定できない。

この為磁気スケール 3に沿つて同様の第2の磁 気スケールを並置すると共に、この第2の磁気ス 25 示す様に変位xに対し正弦波状に変化し、その周 ケールの磁気格子の波長を長く形成しておき、と の第2の磁気スケールに対する磁気へツドの出力 により、第1の磁気~ツド1A,1Bが磁気スケ ール3のどの磁気格子に対接しているかを検知し、 これと磁気ヘッド1A,1Bの測定出力とにより 30 磁気トラック T_1 , T_2 の全長と同長を1対の磁気 磁気ヘッド 1A, 1Bの原点からの位置を測定す る事が考えられる。ところがこの様に波長の長い 磁気格子を正確に形成する事は困難であり、即ち 磁気格子として波長の長い(周波数の低い)信号 を正弦波状に記録する事は困難で、一般に歪ん) 35 れ、この短形液信号及び信号 s d が位相比較回路 状態で記録されてしまう。

本発明はこの様な点に鑑み簡単な構成にして磁 気スケールと磁気ヘッドとの絶対的な相対位置、 即ちこれらが夫々取付けられた2つの相対的に移 動する移動体の相対位置を測定できる測尺装置を 40 号 s_1 と s_2 との位相差 $heta_1- heta_2$ に対応したパル 提供せんとするものである。以下本発明の一例を 第4図により説明しよう。

本発明においては例えば2個の磁気スケールを それらの各磁気格子の波長をたがいに違えて設け、

各磁気スケール及び磁気ヘッドより得られる2つ の位相変調信号の位相比較信号を得、これにより 相対位置を測定する様にしたものである。

即ち第4図に示す例においては磁気スケール3 磁気トラックT」, T2の各磁気格子の波長 入」, λ。は互いに違えられ、例えばN λ1=(N-1)λ2 とされ、この第2の磁気トラツクT2に対し第2 の磁気ヘツド2A , 2 Bが第1の磁気ヘツド1A. 18にはゲート出力として第2図下に示す様に変 10 1 Bと同様の関係をもつて対接配置され、これら 磁気ヘツド2A.2Bには夫々増巾器21,23 を通じて分周器8及び移送器12の各出力が励磁 電流として供給される。

> そして磁気ヘッド2A,2Bの各出力は夫々加 8. と同様の第2の位相変調信号 $S_2 = b \sin \left(2\pi fot + \frac{2\pi X}{\lambda_-} \right)$, (ただしb は定 数)が形成される。従つて信号 s_2 の位相 θ_2 = $rac{2\pi X}{T}$ は第3図Cに示す様に信号 ${f s}_1$ の位相 ${f heta}_1$ 形数は磁気トラックT2の磁気格子の対の数に対 応している。

ことで信号 s_1 と s_2 との位相差 θ_1 - θ_2 につ いて考えると、この位相差 $\theta_1 - \theta_2$ は第3図Dに 期は変位xを関数とする信号s1 とs2 とのピー ト信号の周期に一致し、即ち位相差 $\theta_1 - \theta_2$ の変 化は磁気トラツクT1,T2の全長を1サイクルと する。この事は取りも直さず第3図Eに示す様に 格子ma , mb が占める第3の磁気トラツクT₁₂ が形成された事と等価である。

そこで信号 s 2 は帯域通過フィルタ 2 5を通じ て波形整形回路26に供給されて短形波信号とさ 31に供給されて互いに位相比較され、その比較 出力はゲート回路32に制御信号として供給され る。又信号sa がゲート回路32に被制御信号と して供給され、こうしてゲート回路32からは信 ス数の変調信号が取り出され、これは出力端子 33に導出される。

従つて物差により長さを測定する場合、まずcm 目盛りておおよその長さを知り、その後■目盛り 5

により正確な長さまで測定する様に、例えば始子 33,18よりのパルス数変調信号のパルス数を 計数し、端子32よりのパルス数変調信号により 磁気ヘッド1A、1Bが磁気トラックT1 のいず れの磁気格子に対接しているかを検知し、又端子 5 記磁気格子の波長に対応して互いに所定の間隔を 18よりのパルス数変調信号により磁気ヘッド 1 A , 1 B の対接している磁気格子内における位 置xを検知し、これにより磁気スケール3と磁気 ヘッド 1 A , 1 Bとの相対位置、即ちこれが取り 付けられた2物体間の相対位置又は相対変位量を10 段と、上記第1の磁気スケールの磁気格子の波長 測定する事ができる。

この場合本発明によれば信号s、とs。とが位 相比較されて第3の磁気トラックT12は電気的に 形成されるので、即ち磁気トラツクT1,T2の各 磁気格子はその波長が短いので(例えば200μ)、15 ツドと、この第2の1対の磁気へツドの出力より 容易に正確に形成でき、この磁気トラックT.. Teに基づいて信号s1,seが形成され、又これ より第3の磁気トラックTigが形成されるので、 この第3の磁気トラツクT12は極めて正確なもの とする事ができ、従つて正確に2物体間の相対位20位相比較回路とを有し、この位相比較回路より上 置又は相対変位量を測定できる。

尚、上述においては磁気トラツクをTi,T2の 2個のみ形成した場合であるが、さらに多数の波 長の異なる磁気トラックを形成し、これら各磁気 トラックに基づく位相変調信号を夫々位相比較し、25 相対位置または相対変位量を測定するようにした あるいは、その位相比較信号同士を位相比較し、 より長い波長の磁気トラツクを電気的に形成して

切特許請求の範囲

もよい。

1 所定の波長の磁気格子よりなる第1の磁気ス ケールと、この第1の磁気スケールに対接し、上 有する第1の1対の磁気ヘッドと、この第1の1 対の磁気ヘッドの出力よりこれら磁気ヘッドと上 記第1の磁気スケールとの相対変位に応じて位相 が繰返し変化する第1の信号を形成する第1の手 とは異なる波長の磁気格子よりなる第2の磁気ス ケールと、この第2の磁気スケールに対接し、こ の第2の磁気スケールの磁気格子の波長に対応し て互いに所定の間隔を有する第2の1対の磁気へ これら磁気ヘッドと上記第2の磁気スケールとの 相対変位に応じて位相が繰返し変化する第2の信 「号を形成する第2の手段と、上記第1及び第2の 手段よりの第1及び第2の信号の位相を比較する 記第1及び第2の磁気スケールの磁気格子の波長 よりも充分に長い彼長の信号に相当して位相が変 化する信号を得て上記第1及び第2の磁気スケー ルと、上記第1及び第2の1対の磁気ヘッドとの 御尺裝置。

第1図

第2図

第3図

第4図

