实时类光定量 PCR实验结果 分析

Hao Angela

Field Application Specialist Gene Expression Division North China Bio-Rad Laboratories

定量PCR应用

- ◆定量分析
- ノ
- •绝对定量
- •相对定量

- ◆定性分析
 - •SNP分析,基因扫描
 - •阴阳性判定
 - •熔解曲线分析

应用实例-基因表达分析

利用TaqMan技术研究ERBB2 在乳腺肿瘤 组织标本中的表达差异

实验设计流程

材料和方法

- 己知在50%的乳腺肿瘤样本中, ERBB2表达异常, 因此可以作为一个检测标准
- 选用GAPDH作为内标基因
 —FAM标记的ERBB2探针
 —VIC标记的GAPDH探针
- 标准品(质粒)构造标准曲线
- 多重PCR反应
- 阴性对照
 - 一无RNA对照(空白)
 - 一无逆转录酶对照(监控基因组污染)

RNA定性及定量分析

正常乳腺组织 RNA

乳癌组织 RNA

Experion™ RNA HighSens Chip 0.1-5 ng/µl 100-6,000 nt

Experion™ RNA StdSens Chip 5-500 ng/µl 100-6,000 nt

一步法&两步法

在不同的反应管中运行RT & PCR

1. 反转录反应 加热灭**活反**转酶

2. PCR 反应

1.反转录反应

iScript cDNA Synthesis Kit

- 1. 25° C 5 min
- 2. 42° C 30 min
- 3. 85° C 5 min
- 4. 冷却至4°C

设计gPCR实验方法

- 1. 定性条件摸索
- **荧光化学物**质
 - SYBR GREEN染料
 - Tagman探针
- 3. 定量PCR条件优化
- 单双通道相互验证

- Fam标记目标基因探针
 - VIC标记看家基因探针

扩增仪一独特的梯度PCR功能

- ▶采用多点温控和传感技术,可以实现温度梯度PCR功能
- ▶温度条件与镁离子、引物和酶浓度之间最佳搭配关系
- ▶温度梯度范围: 1-25 ℃
- ▶温度梯度选择范围: 40-99 ℃
- ▶在定量和定性状态下都可实现

RT-gPCR实验

•目标基因: 未知样品

•生成标准曲线: 标准品梯度

• 监控系统故障: 阳性对照 •

监控污染: 阴性对照/基因组对照 ■

• 校准生物学误差:看家基因 •

• 降低其余误差: 重复实验

- 95°C,15min
- 94°C,15sec
- 60°C,1min
- plate read
- go to step 3,39 more times
- 10°C, forever
- End

结果分析-绝对曲线

Color 1 – FAM detection for *ERBB2*

Color 2 - VIC detection for *GAPDH*

结果分析-单双通道相互验证

ERBB2单双通道相互验证的实验结果

A.Multiplex Reactions		
Healthy RNA	Carcinoma	
28.48	26.42	
28.68	26.98	
28.78	26.98	
28.65± 0.15	26.80 ± 0.32	

B.Singleplex reactions		
Healthy RNA	Carcinoma	
28.67	27.09	
28.71	26.68	
28.73	26.70	
28.70 ± 0.03	26.82 ± 0.24	

结果分析-扩增曲线

样品扩增:正常vs肿瘤

PMT1-FAM detection- ERBB2

PMT2-VIC detection- GAPDH

结果计算-双标准曲线

Copies ng/ µl Total RNA

	Healthy RNA	Tumor RNA
ERBB2	1095 1052	2130 2492
GAPDH	95500 85730	136000 130800

ERBB2 copies / **GAPDH** copies

Healthy RNA $1095 / 95500 = 0.011 \rightarrow 0.011$ 1052 / 85730 = 0.012

Tumor RNA $2130/136000 = 0.017 \\ 2492/130800 = 0.0197 \\ \hline 0.018$

0.018/ 0.011=1.63

结果计算-2-^^c(t)法

•
$$\triangle \triangle C(t) = 4.41-5.18$$

=-0.77 ± 0.18

- $-2^{-\Delta \Delta c(t)} = 1.51 1.93$
- 结果与双标准曲线法相近

Healthy RNA			
BBER2	GAPDH	△C(t)	
28.40	23.27	5.31	
28.46	23.41	5.05	
28.43± 0.04	23.34± 0.10	5.18±0.1 8	

Carcinoma RNA			
BBER2	GAPDH	ΔC(t)	
27.36	22.81	4.55	
27.12	22.86	4.26	
27.24 ± 0.17	22.83 ± 0.03	4.41 ±0.21	

应用实例-绝对定量分析

利用SYBR Green 1进行GMO定量

Figure 2 Updated molecular characterization of RR soybean event 40-3-2.

E35S - 35S transcription promoter CTP4 - Chloroplast targeting sequence (polypeptide) CP4 EPSPS - the CP4 EPSPS open reading frame (protein) NOS - The nopaline synthase 3' transcription terminator

转基因作物发展现状

1983年:首例转基因植物一转 基因烟草

1986**年**: 转**基因植物首次**进入 田间实验

1994年:首例转基因植物产品 —Flavr Savr 延熟保鲜转 基因番茄进入市场

1996年一至今:转基因作物迅 猛发展期

转基因产品介绍

- 1. "转基因产品"又叫生物技术产品,指用基因工程技术或者 其他现代技术改变基因组构成的动物、植物、微生物及其产 品。例如,把某些除草剂抗性的基因转入大豆、玉米的植株中 ,产生除草剂抗性。
- 转基因食品就是以转基因生物体直接作为食品或以其为原料 加工生产的食品。
- 3. 我国于2001年5月9日通过了转基因生物管理方面的核心法规。 规《农业转基因生物安全管理条例》,标识制度
- 4. 检测标准:制订了12项转基因产品检测行业标准和7项国家标准

转基因产品成分检测

- 检测方法
- PCR/Real-time PCR
- DNA Microarray
- ELISA/Quicktest strip
- Captured PCR-ELISA

- 检测基因
- 外源目的基因
- 标记基因
- 基因表达调控元件 (启动子、终止子)
- 生物内源基因

根据需要可以进行基因特异性、构建特异性或品系特异性检测

实验设计流程

材料&方法

样品制备:

•从超级市场买来的下列食物用来作为测试样品:大豆饼,豆制甜点 和两个牌子的面粉

标准品的制备:

- ●比例混合非转基因大豆粉末与 Roundup Ready大豆粉末得到含有 0%, 0.1%, 0.5%, 1%, 2% 和 5% 定量标准品 引物设计:
- ●转基因大豆(Roundup Ready)特异序列epsps
- •大豆内源凝集素基因lectin

设计GPCR实验方法

- 1. 定性条件摸索
- 2. 荧光化学物质
 - SYBR GREEN染料
- 3. 定量PCR条件优化
- 4. 数据处理

- □ 熔解曲线分析
- 标准曲线log%GMO对应△C(t)获得

扩增仪一独特的梯度PCR功能

- ▶采用多点温控和传感技术,可以实现温度梯度PCR功能
- ▶温度条件与镁离子、引物和酶浓度之间最佳搭配关系
- ▶温度梯度范围: 1-25 ℃
- ▶温度梯度选择范围: 40-99 ℃
- ▶在定量和定性状态下都可实现

数据收集与处理

数据处理:

C(t)EPSPS-C(t)lectin= $\triangle C(t)$

处理条件:

假定两对引物有相同的扩增效率并且相互独立扩增。

A: EPSPS GMO

B: Lectin all bean

A/B: %GMO

数据分析]一熔解曲线分析

熔解曲线 - Lectin 扩增

熔解曲线 - epsps 扩增

数据分析」一定量结果分析

不同转基因成分含量与Ct epsps做标准曲线

数据分析II 一 / CT 均一化分析

M

Table 7.1. Calculation of △CT			=CT(epsps) – CT(lectin)		
Standard sample	CT(eps	ps)	CT(lectin)	CT	
0.0% GMO standard	ND		19.68	ND	
0.1% GMO standard	ND		19.78	ND	
0.5% GMO standard	26.85		19.58	7.27	
1.0% GMO standard	25.62		19.52	6.10	
2.0% GMO standard	24.56		19.70	4.86	
5.0% GMO standard	22.94		19.48	3.46	
Soy dessert	22.78		19.27	3.51	
Soy flour	ND		18.13	ND	
Soy burger	22.32		19.91	2.41	

CT = CT(GMO epsps) - CT(lectin)

数据分析III一标准曲线

根据△C(t)值与标准品百分含量做标准曲线

数据分析IV一标准曲线

根据△C(t)值标准曲线推算未知样本的转基因成分含量

Standards/ Sample	ΔC(t)	%GMO
0	ND	_
0. 1	ND	_
0. 5	5. 6	_
1.0	4. 7	_
2. 0	3. 4	_
5. 0	1.9	
Soy Dessert	2. 1	4. 40
Soy Flour	ND	< 0.5
Soy Burger	0.7	> 5

- ◆定量分析
 - •绝对定量与相对定量
 - •基因表达分析
 - •GMO 检测

- •SNP分析
- •基因型分析
- •熔解曲线分析

什么是SNP?

单点核苷酸多态性Single Nucleotide Polymorphisms

AACCTGCA GAATGCCAG

SNP分析&技术

DNA 样本数

SNP 发现

Resequencing and *in silico* analysis to find putative SNPs

Technology: DNA sequencing dHPLC, SSCP

SNP 验证

Confirmation of true SNPs and allele frequency estimation

Technology: MALDI-TOF飞行 质谱 SBE

SNP 筛选

Using SNPs for research & diagnosis

Technology: DNA 芯片 RT-PCR

SNP 位点

SNP分析-基因分型

两条探针分别针对不同等位基因

↑FAM=等位基因II纯合子-AA

↑VIC=等位基因I纯合子-CC

↑ FAM+VIC=等位基因I、II杂合子-AC

实验设计流程

SNP分析-遗传性血色素沉着症HH

实验材料与方法

- 遗传性血色素沉着症(heriditaryhemochromatosis, HH),遗传性血色素沉着症在白人中较常见,尤其在北欧群体,发病率可达1/400~1/200。此病特点是铁在人体 各器宫中过度的沉积而导致器官损伤和衰竭。因HFE基因突变所引起, 主要为Cys282Tyr、His63Asp
- SNP位点:
 - 1. Cys282Tyr-<mark>G</mark>845<mark>A</mark>
 - 2. His63Asp -C187G
- 样本组: 37全血
- 对照组: 3个阳性对照, 4个阴性对照, 8个空白对照
- 基因组全血DNA提取

HFE by multiplex TagMan

设计oPCR实验方法

- 1. 定性条件摸索
- 2. 荧光化学物质
 - Tagman探针
- 3. 定量PCR条件优化
- 4. 数据处理

扩增仪一独特的梯度PCR功能

- ▶ 采用多点温控和传感技术,可以实现温度梯度PCR功能
- ▶温度条件与镁离子、引物和酶浓度之间最佳搭配关系
- ▶温度梯度范围: 1-25 ℃
- ➤温度梯度选择范围: 40-99 °C
- ▶在定量和定性状态下都可实现

梯度范围: 55-70 ℃

Negative control

WT-H63D/FAM PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd

Mut-H63D/HEX PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd

Mut-C282Y/Cy5 PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd

Genotype: Wild type

PCR Amplification vs Cycle: Multiplex 4 11.38.01.opd

Mut-H63D/HEX

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd Mut-C282Y/Cy5

Genotype: H63D突变体纯合子

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd WT-H63D/FAM

PCR Amplification vs Cucle: Multiplex 4 11.28.01.opd

PCR Amplification ve Cycle: Multiplex 4 11.28.01.opd Mut-C282Y/Cy5

Genotype: C282Y突变体纯合子

PCR Amplification vs Cucle: Multiplex 4 11.28.01.opd WT-C282Y/TX

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd Mut-H63D/HEX

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd Mut-C282Y/Cy5

Genotype: H63D综合子

PCR Amplification vs Cycle: Multiplex 4 11,28.01.opd

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd

Mut-H63D/HEX

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd Mut-C282Y/Cy5

Genotype: C282Y综合于

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd

PCR Amplification vs Cycle: Multiplex 4 11.38.01.opd

PCR Amplification vs Cycle: Multiplex 4 11.28.01.opd Mut-C282Y/Cy5

Genotype: H63D/C282Y综合子

H63D data

- Allele 1
- Allele 2
- Heterozygote
- None.
- * Unknown
- Control 1
- Control 2

C282Y data

- Allele 1
- Allele 2
- Heterozygote
- None.
- Unknown
- Control 1
- Control 2

SNP分析-实验

	Genotype	Num	Flour
	WT	9	FAM TX RED
C282Y	突变体纯合子	6	CY5
	杂 合子	5	CY5/TX RED
H63D	突变体纯合子	6	HEX
	杂 合子	8	FAM/HEX
C282Y/H63D	杂 合子	3	CY5/TX RED/ FAM/HEX

Applications for HRM

- 基因的突变扫描。测序前检测杂合子 SNP 、区段 / 碱基缺失、前后 重复、杂合子缺失。
- HLA 基因组配型
- 等位基因频率分析
- 物种鉴定、品种鉴定
- 甲基化研究
- 法医学鉴定、亲子鉴定。

Bio-Rad HRM Workflow

Set up reactions using HRM compatible reagents

SsoFast EvaGreen Supermix

Run PCR protocol for amplification followed by High Resolution Melt on

CFX96 or CFX384

98° C for 2 min

98° C for 2-5s

55-60° C for 2-10sec (plate read)

Go to step 2, 39 more times

Melt curve 65° C to 95° C increment

0.2° C 5-10 sec hold (plate read)

Open Precision Melt Analysis software Import CFX Manager data file (.pcrd) to create Melt file (.melt)

Experiment Considerations

- Ensure a single product is amplified at high reaction efficiency特异扩增,且具有较高扩增效率
- Aim for uniformity in reaction mix/sample concentrations DNA浓度及体系一致性
- Ensure sufficient PCR product is generated (C(t) ≤ 30) Ct值低于30,那么该样品的HRM 分析可以不必考虑DNA模板质量的影响
- Analyze short PCR products, smaller the better片段越小,特异性越强
- 100-250bp for SNP identification 100-250bp适于SNP分析
- For longer sequences, consider melt domain complexity (M-fold) 针对长片段,Mfold评估二级结构
- Avoid areas of secondary structure and high GC content避免二级结构和高GC含量
- Capture data over at least 10°C 大于10°C信号收集范围
- Use primer concentrations <300nM as excess primers can encourage primer dimers 引物 浓度<300nM , 防止引物二聚体扩增

SNP Genotyping

- Identify samples containing known single nucleotide polymorphisms
- Not all SNPs are equally easy to differentiate

SNP Class	Base Change	Typical T _M Melt Curve Shift	Rarity (in the human genome)
1	C/T and G/A	Large (>0.5°C)	64%
2	C/A and G/T		20%
3	C/G	▼	9%
4	A/T	Very Small (<0.2°C)	7%

SNP classes as defined by Venter et al. (2001).

SNP 是指基因组水平上由单个核苷酸的变异所引起的DNA 序列多态性,在群体中的发生频率不小于1 %。包括单个碱基的转换、颠换、插入和缺失等。所谓转换是指同型碱基之间的转换,如嘌呤与嘌呤(G2A)、嘧啶与嘧啶(T2C)间的替换;所谓颠换是指发生在嘌呤与嘧啶(A2T、A2C、C2G、G2T)之间的替换。依据排列组合原理,SNP 一共可以有6种替换情况,即A/G、A/T、A/C、C/G、C/T和G/T,但事实上,转换的发生频率占多数,而且是C2T 转换为主,其原因是Cp G的C 是甲基化的,容易自发脱氨基形成胸腺嘧啶T, Cp G 也因此变为突变热点。

SsoFast EvaGreen & SNP Genotyping

Discrimination of a Class 2 SNP

G→A Mutation

(—) G:G – Wild-type

(—) A:A – Homozygous Mutant

(—) G:A – Heterozygous

SsoFast EvaGreen & SNP Genotyping

Discrimination of a Class 4 SNP

A→T Mutation

(—) A:A – Wild-type

(—) T:T – Homozygous Mutant

(—) A:T – Heterozygous

Methylation Studies - CGU (Taipei)

Temperature shifted

Difference curve

实时定量PCR对食品中病原微生物检测

一利用分子信标进行食品中李斯特单增菌检测

实验材料与方法

■ 试剂:

IQ-CHECK LISTERIA MONO II

- ■仪器: VORTEX DISRUPTOR细胞破碎仪 IQ5实时荧光定量PCR系统
- 对照样本:阳性肉制品、阴性肉制品
- 待测样本:肉类×2牛奶×1罐头鱼×1

2007-7-12北京市CDC营养与食品卫生所

病原菌检测程序

样本 增菌培养

Ω

DNA 提取

Û

PCR 扩增

&

定量检测

 $\hat{\mathbf{U}}$

检测结果

样品制备一增菌

- ➤ 25 g 食品
- ➤ 225 ml LSB 培养基
- > 灭菌均质器
- > 过夜培养
 - 李斯特单增菌 30℃ 培养25 hours +/- 1 hour

大块**的食物**, **在收集前避免晃**动**均**质器 所有样本只有一次过夜增菌培养

样品制备一DNA提取

Kit Reagent: Lysis reagent Lysis beads

增菌样本100 µl

裂解缓冲液 100 µl

3 min +/- 1min

孵育15 min

离心12 000 g - 2 min

开始扩增

<mark>荧光信号强度</mark>

	Listeria mono detection (Texas-Red)	Internal Control detection (FAM)	
对照:			
阳性对照	$26 < C_T < 36$	Not significant	
阴 性 对照	Ct = N/A*	$30 < C_T < 40$	
Samples:			
Positive sample	C _T ≥ 10	Not significant	
Negative sample	Ct = N/A*	C _T > 10	
Inhibited sample	Ct = N/A*	$Ct = N/A^*$	

结果分析-阴阳性对照

结果分析-待测样本

Current date: 7/5/2007 10:03:59 AM

User:cs

Instrument used : iQ5 PCR data file name : Kit lot number : 3578124

	1	2	3	4	5	6	7	8	9	10	11	12	_
Α													Α
В			Valid										В
С		2 pos sample Positive	nc Valid										С
D		3 Positive											D
Е		4 Positive											Е
F		5 Positive											F
G		6 Positive											G
Н													Н
_	1	2	3	4	5	6	7	8	9	10	11	12	•

Negative control					
Criteria	Calculated Ct:				
Target Ct = N/A	N/A				
Internal control 28 < Ct < 40	32.02				
Valid					

Sample interpretation						
Target	Interpretation					
Ct > 10		Positive				
Ct = N/A	Ct > 28	Negative				
Ct = N/A	Ct = N/A	Inhibition				

Positive control					
Criteria	Calculated Ct:				
Target 26 < Ct < 36 Internal control	34.29				
	31.65				
Valid					

	<u></u>	3		
快捷方式	1	到	iqca.	1nk

Well	Sample id	Ct target	Ct Internal Control	Result
B2	1 neg sample	N/A	35.39	Negative
C2	2 pos sample	21.20	N/A	Positive
D2	3	36.79	33.97	Positive
E2	4	33.88	33.98	Positive
F2	5	27.13	43.91	Positive
G2	6	42.91	34.38	Positive
В3	рс	34.29	31.65	Valid
C3	nc	N/A	32.02	Valid

