Zadanie	Jest	Powinno być
1.9	$n \in \{-2, -1, 0, 1, 2, 3, 4\}$	$k \in \{-2, -1, 0, 1, 2, 3, 4\}$
2.82	$k \in \mathbf{C}$	$k \in \mathbf{Z}$
2.83	$k \in \mathbf{C}$	$k \in \mathbf{Z}$
4.30	linowa	liniowa
4.39 (odpowiedź)	$d) x \in (-\infty, -5)$	c) $x \in (-\infty, -5)$
4.80a (odpowiedź)	$x \in \langle 1, 7 \rangle$	$f(x) \in \langle 1, 7 \rangle$
6.39	zbiornik w cylindryczny ,	zbiornik cylindryczny,
7.10	Oblicz a	Oblicz α
7.42 (odpowiedź)	łamana zwyczajna zamknięta	łamana zwyczajna zamknięta
	g)	f)
7.60	brak numeracji podpunktów	(a) b)
7.162 (odpowiedź)	13 cm	13
7.167 (odpowiedź)	$4\frac{4}{9}$	$4\frac{4}{9}$ cm
8.37h	g	h

7 1 '	NidSd Z	
Zadanie	Jest	Powinno być
1.14	\overrightarrow{CA} i \overrightarrow{DB}	$ \overrightarrow{CA}$ i \overrightarrow{BD}
1.106	[] przedstawionego na	[] przedstawionego na poniż-
	poni¿szym rysunku []	szym rysunku []
2.36 (zadanie + od-	C-A-B	(C-A)-B
powiedź)		
2.48 d,e,f (odpo-	brak odpowiedzi	
wiedź)		
2.42a (odpowiedź)	x = 0	{0}
2.61d	$x \neq -\frac{1}{2}$	$x \neq -\frac{1}{3}$
2.74 (odpowiedź)	/(x-1) + (y+3) 2 x-1 -4	$\frac{ (x-1) + (y+3) }{ 2 x-1 -4 }$
2.87f	2 x-1 -4	2 x-1 -4
3.57d	$x \in (-4,0)$	$x \in \langle -4, 0 \rangle$
3.200a (odpowiedź)	$5 + x - 4\sqrt{x+1} = (x+1) -$	$5 + x - 4\sqrt{x+1} = (x+1) -$
	$4\sqrt{x+1}$	
3.279f	$\frac{1}{2 x - x^2} = k^2 - 2$	$\begin{vmatrix} 4\sqrt{x+1} + 4 \\ 2 x - x^2 = m^2 - 2 \end{vmatrix}$
3.279f (odpowiedź)	$[\ldots]k \in [\ldots]$	$[]m \in []$
4.31 (wskazówka))	$\triangle PDC \equiv \triangle ABD$ - ale te trój-	
((((((((((((((((((((kąty nie są nawet podobne	
4.88	Czworokąt <i>ABCD</i>	Czworokąt $ADBC$
4.107 (wyd. II)	brak informacji o współliniowo-	[] jest równa 5 oraz punkty
(", ", ", ")	ści	C, O, D są współliniowe.
4.107 (odpo-	b) $ CE = 4 \text{ cm}, EB = 6 \text{ cm}$	b) $ CE = 4$, $ EB = 6$
wiedź)(wyd. II)		
4.146	$\frac{5\sqrt{3}}{3}$	$\frac{5\sqrt{3}}{3}$ cm
4.171b (odpowieź)	$\frac{3}{ AC }$	$\begin{vmatrix} 3 \\ BC \end{vmatrix}$
4.174 (odpowiez)	brak punktu M na rysunku	
5.5 (zadanie + odpo-		a,b,c,d
wiedź)	numeracja e,f,g,h	a,b,c,d
5.23 (odpowiedź)	wskazówka skopiowana z po- przedniego zadania	brak wskazówki lub inna
5.27c	(270, 360)	$(270^{\circ}, 360^{\circ})$
5.42b	$\cos \alpha = \alpha$	$\cos \alpha = a$
5.46b		
5.48	$\begin{aligned} \lg \alpha - \operatorname{ctg} \alpha \\ y &= 18x^2 - 24x + 7 = 0 \end{aligned}$	$\frac{ \lg \alpha + \operatorname{ctg} \alpha }{y = 18x^2 - 24x + 7}$
5.51	dla którego rozwiązania	-
5.85 (odpowiedź)	T = 8 x = 3 + 8k	dla których rozwiązania $T = 8$ b) $x = 3 + 8k$
5.85 (oupowiedz)	$3(\sin \alpha - 8 \cdot \cos \alpha) - 7$	$3(\sin \alpha - 8 \cdot \cos \alpha) - 7$
21 (powtórzeniowe r.	$\frac{3(\sin\alpha - 3 \cdot \cos\alpha)}{4 \cdot \cos\alpha - 5 \cdot \sin\alpha} = 7$	$\frac{3(\sin\alpha - 3 \cdot \cos\alpha)}{4 \cdot \cos\alpha - 7 \cdot \sin\alpha} = 7$
5)		
6.26 (odpowiedź)	m	a
7.46a (odpowiedź)	$\frac{\sqrt{6} - \sqrt{2}}{4}$ 84 cm^2	$\frac{\sqrt{6}-\sqrt{2}}{2}$
7.61 (odpowiedź)	84 cm ²	$84 \text{ cm}^2 \text{ lub } 24 \text{ cm}^2$
7.128	jest podpunkt c) zamiast b)	b) zamiast c)
7.135(rysunek)	l	L (4 2 (5) 2
7.142(odpowiedź)	$\frac{(4-3\sqrt{3})r^2}{6}$ $x \in (-\infty, -1) \cup (-2, +\infty)$	$\frac{(4\pi - 3\sqrt{3})r^2}{6}$ $x \in (-\infty, -1) \cup (2, +\infty)$
8.54b (odpowiedź)	$x \in (-\infty, -1) \cup \langle -2, +\infty \rangle$	$x \in (-\infty, -1) \cup \langle 2, +\infty \rangle$
8.125b (odpowiedź)	$R(x) = x^4 + 5$	$R(x) = x^3 + 5$
8.152ab (odpowiedź)	$x^3 = -1, x^3 = -2$	$x_3 = -1, x_3 = -2$
8.177a	$\sqrt[3]{26+15\sqrt{3}} - \sqrt[3]{26-15\sqrt{3}}$	$\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}$
8.215	$81x^4 - 1$	$81x^4 - 1 = 0$
		1 1

Zadanie	Jest	Powinno być
8.244)	Jakiej wymiary powinny mieć	Jakie wymiary powinny mieć
	[]	[]

Zadanie	Jest	Powinno być
1.44c (odpowiedź)	$\frac{2-a}{2}$ (wyd. I), $\frac{a+2}{a+1}$ (wyd. II)	2-a
1.11c (oupowiedz)	$\frac{2}{x^6 - 3x^3 + 2}$	$\frac{a}{x^6 - 3x^3 + 2}$
1.66f		
1.68 (odpowiedź)		
1.118 (wskazówka)	p,q,R	` *′
1.125	$(x+y)\cdot(y+z)\geqslant(z+3)^3$	$\begin{array}{ c c } p, q, r \\ \hline (x+z) \cdot (y+z) \geqslant (z+3)^3 \end{array}$
1.148 (rysunek)	wykres nie zgadza się z danymi	Powinien być przesunięty w
(-)	w zadaniu (np. miejsce zerowe,	lewo i mieć inne nachylenie
	punkt przecięcia z Oy).	
1.161 (odpowiedź)	$m \in (-\infty, -3\frac{1}{2}) \cup (1,2) \cup$	$m \in (-\infty, -3\frac{1}{3}) \cup (1,2) \cup$
	$(2,5)\cup(5,+\infty)$	$(2,5)\cup(5,+\infty)$
1.174	parametru $k, k \in \mathbb{R}$	parametru $k, k \in \mathbb{R} - \{0\}$
2.57d	$a_n = n + 1, \ n > 1$	$a_1 = 3, \ a_n = n+1, \ n > 1$
2.83	jest cztery razy większa	jest dwa większa
3.6	do zbioru Z	do zbioru C
4.35a (odpowiedź)	AB = CD = 21 cm, AD =	AB = 21 cm, CD = 9 cm
(wyd. II)	BC = 9 cm	
4.77a (odpowiedź)	$ DE = 4\sqrt{2}, DF = 4 + 4\sqrt{3}$	
	(bo $ DE < 8$)	$\left \begin{array}{ccc} (\text{bo} DE & < & 8) & \text{lub} & DE & = & \\ \end{array}\right $
		$ 4\sqrt{2}, DF = 4\sqrt{3} - 4$ (bo
		$ DF < 4\sqrt{2}$
4.77b (odpowiedź)	AD = BC = 8, AB =	AD = BC = 8, AB =
	$ CD = 4(\sqrt{6} - \sqrt{2})$	$ CD = 4(\sqrt{6} - \sqrt{2}) \text{ lub } AD =$
		$ BC = 8(\sqrt{3} - 1), AB =$
		CD = 8
4.99 (odpowiedź)	najpierw $ AC $, następnie R .	najpierw $ AC $, następnie R .
	Niech $d = BD $ (wyd. I); naj-	Niech $d = BD $.
	pierw AC , następnie R . Niech	
	$d = \stackrel{BD}{ } \text{(wyd. III)}$	
4.128	w ten okrąg można	w ten czworokąt można
5.70a (odpowiedź)	h = 2r = 12 cm	h = 2r = 24 cm
5.73 (odpowiedź)	$P = 6(1 + 4\sqrt{3})$	$P = 48\sqrt{3}$
6.16e (odpowiedź)	granica w punkcie -2 nie ist-	granica w puncie -2 istnieje i
	nieje	jest równa −1
6.41	$\lim_{x \to \infty} \frac{2}{1 + x^{2n}}$	$\lim_{n \to \infty} \frac{2}{1 + x^{2n}}$
6.118	$x \to \infty \ 1 + x^{2n}$ równa 36 litry	$n \to \infty 1 + x^{2n}$ równa 32 litry
6.120	objętości 76	objętości 72
6.120	równy 1:6	równy 1:2
6.122	równy 6:3	równy 2:3
7.33c (odpowiedź)	$x = \frac{3\pi}{2} + 4k\pi \lor x = \frac{\pi}{2} + k\pi, k \in$	$x = \frac{\pi}{2} + k\pi, k \in \mathbf{Z}$
(2, =
6.126	$w(t) = 50 + 9t - t^6 - \frac{1}{9}t^3$	$w(t) = 50 + 9t - t^2 - \frac{1}{9}t^3$
7.38c (odpowiedź)	$w(t) = 50 + 9t - t^6 - \frac{1}{9}t^3$ $m \in \left\langle -1\frac{1}{3}, -1 \right\rangle \cup \left\langle -\frac{1}{3}, 0 \right\rangle$ $\cos^2 \alpha + \cos^2 \beta - 2\cos \alpha \cdot \cos \alpha$	$w(t) = 50 + 9t - t^2 - \frac{1}{9}t^3$ $m \in \langle -1\frac{1}{3}, -1 \rangle \cup \langle -\frac{1}{3}, 0 \rangle$ $\cos^2 \alpha + \cos^2 \beta - 2\cos \alpha \cdot \cos \beta$
7.56	$\cos^2 \alpha + \cos^2 \beta - 2\cos \alpha \cdot \cos \alpha$	$\cos^2\alpha + \cos^2\beta - 2\cos\alpha \cdot \cos\beta$
	$\cos \gamma$	$\cos \gamma$
7.58	$\alpha + \beta + \gamma = \pi$	α, β, γ są kątami trójkąta nie-
		prostokątnego
7.58	$\sin \alpha$	$\cos \gamma$
	$\sin \beta \cdot \sin \gamma$	$\cos \alpha \cdot \sin \beta$
7.59	brak zadania	Wykaż, że jeśli α, β, γ są kątami
		trójkąta, to $\operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta + \operatorname{ctg} \beta \cdot$
		$\cot \gamma + \cot \gamma \cdot \cot \alpha = 1.$

Zadanie	Jest	Powinno być
7.90d (odpowiedź)	$x = \frac{k\pi}{3} \lor x = \frac{\pi}{3} + k\pi \lor x =$	$x = \frac{k\pi}{3}, k \in \mathbf{Z}$
	$\frac{-\pi}{3} + k\pi, k \in \mathbf{Z}$	
7.104b	$\operatorname{tg}\pi$	$\operatorname{tg}(\pi x)$
7.105b (odpowiedź)	$x \in \left(-\frac{\pi}{2}, \frac{-3\pi}{8}\right) \cup \left(\frac{\pi}{8}, 0\right)$	$x \in \left(-\frac{\pi}{2}, \frac{-3\pi}{8}\right) \cup \left(-\frac{\pi}{8}, 0\right)$
24a (odpowiedź) (powtórzeniowe r. 7)	$x \in \left\{ \frac{-5\pi}{6}, \frac{-\pi}{12}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$	$x \in \left\{ \frac{-5\pi}{6}, \frac{-\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$
8.95a (odpowiedź)	zły kształt nieskończoności	

Zadanie	Jest	Powinno być
1.39b (odpowiedź)	$ZW = \left(-\infty, 1\frac{2}{3}\right) \cup \left(2, +\infty\right)$	$ZW = \left(-\infty, 1\frac{2}{3}\right) \cup (2, +\infty)$
1.106	$x^2 \cdot 2x + 8$	$x^2 \cdot 2^x + 8$
2.81 (odpowiedź d)	<i>d</i>)	d)
2.83 (odpowiedź a)	podana tylko dziedzina	$x = -\frac{2}{3}$
2.84d	źle złożona podstawa logarytmu $(x \text{ jest niżej})$	$\log_{2x} 2, \log_{16x} 2$
2.85a	$2\log_3 x^2 \aleph \log_3^2(x)$ 4	$2\log_3 x^2 - \log_3^2(-x) = 4$
2.92f	źle złożona podstawa logarytmu (cyfra 2 jest niżej)	0,2
2.99 (odpowiedź)	odpowiedzi są z innego zadania	
2.100 (odpowiedź)	odpowiedzi są z zadania 101	
2.107 (odpowiedź)	a) 230, 18 zł b) 13	a) 1012, 23 zł b) 4
18a (powtórzeniowe r. 2)	$\log_{\frac{1}{2}}\left(x^2 \aleph 3x\right) \qquad 2$	a) $1012, 23 \text{ zl}$ b) 4 $\log_{\frac{1}{2}}(x^2 - 3x) = -2$
3.20 (diagram)	jasny niebieski – 25%, 6 pkt,	jasny niebieski – 20, 6 pkt%,
	ciemny niebieski – 20%, 10 pkt	ciemny niebieski – 25%, 10 pkt
3.20	większa od 70	większa od 7
3.20 (odpowiedź)	$\bar{x}_w > 70$	$\bar{x}_w > 7$
3.43 (odpowiedź)	b) $\sigma \approx 2.15 \text{ g}$ c) nie	$\sigma \approx 1,715 \text{ g}$ c) tak
4.51 (odpowiedź)	$A \subset B$, czyli zdarzenie A pociąga za sobą zdarzenie B	$B \subset A$, czyli zdarzenie B pociąga za sobą zdarzenie A
4.171	losujemy pudełko, tego pudełka	losujemy pojemnik, tego pojemnika
4.177	Klient kupił sklepie żarówkę	Klient kupił w sklepie żarówkę
4.184	– iloczyn liczby oczek	A – iloczyn liczby oczek
4.211	- pudełka typu B	pudełka typu II
5.65	$5~\mathrm{dm}$	$5\sqrt{2} \text{ dm}$
5.116	10 dm	10 cm
6.84 (odpowiedź)	R = 8,5 cm	R = 8,5 cm
6.105 (odpowiedź)	$\frac{1}{3}\sqrt{\frac{x^6}{3} - 10x^5 + 25x^4}$	$\frac{1}{3}\sqrt{\frac{x^6}{2} - 10x^5 + 25x^4}$
6.109	Wyznaczymy promień []	Wyznacz promień []

- Klasa 2 9 (test powtórzeniowy do rozdziału 3). Mowa o miejscach zerowych, a zbiór wartości nie zawiera 0, bo jest $[10, +\infty)$.
- Klasa 2 5.46b niepotrzebna wskazówka
- Klasa 3 4.88 brak informacji, że O jest we wnętrzu czworokąta. Gdy jest na zewnątrz, wychodzą inne kąty.
- Klasa 3 4.114 wskazówka. Można bez wykazywania, że u góry kwadrat: wystarczy tw. o odcinkach stycznych i tw. Pitagorasa. Co więcej, wtedy wystarczą kąty ostre przy podstawie mogą sumować się do dowolnej liczby, niekoniecznie 90°.
- Klasa 1 1.27 zamiast 0, (6) dać 0, (9) bo większość uczniów myśli, że 0, (9) < 1
- Klasa 1 1.46 wszędzie wyciągany jest ułamek o liczniku 1, z wyjątkiem przykładu f
- Klasa 3 4.20 Analogiczny przykład jest rozwiązywany w podręczniku. I zakłada tylko jeden przypadek, gdy trapez wygląda "standardowo". A przecież może on wyglądać inaczej np. być prostokątny lub taki podobny do równoległoboku przechylony. A to może prowadzić do problemów. Podobne zadanie dałem kiedyś uczniom jako zadanie dodatkowe i opisuję je tutaj (Zadanie 38): https://piobury.github.io/media/rozw21.pdf
- Klasa 3 (Podręcznik) str. 162 Ciągi Zadanie 8a) W odpowiedzi przy 0 jest przedział otwarty. A gdy podstawimy do równania 0, to trzymamy nierówność 0 < 6, która jest prawdziwa. Błąd zapewne wynika ze sprawdzania jedynie warunku |q| < 1, bez rozpatrzenia przypadku, gdy $a_1 = 0$ i q dowolne. To powtarza się też w innych przykładach z szeregiem.
- Klasa 3 (Podręcznik) str. 115 Podana nierówność to nierówność Bernoulliego, a nie Bernoullego. Piszemy Bernoulliego zamiast Bernoullego ponieważ nazwiska pochodzenia niemieckiego zakończone na i zachowują to i, w odróżnieniu od nazwisk pochodzenia włoskiego.
- Na maturze są nawiasy kwadratowe jako przedziały domknięte. Warto i w zbiorze zadań zmienić je na "aktualne"
- Klasa 3 5.75 informacja o polu nie jest w ogóle potrzebna, bo wysokość można wyliczyć z tw. Pitagorasa.
- Klasa 1 (Podręcznik) str. 74 Definicja 1. Założenia dopuszczają podstawę i wykładnik potęgi równą 0, co jest symbolem nie mającym sensu w tym kontekście. Może dołożyć założenie a, b liczby rzeczywiste różne od zera.
- Klasa 3 6.108 W odpowiedzi dołożyłbym jeszcze $f_{max}(0) = 3$. Wiem, że z lewej strony punktu 0 funkcji nie ma, ale lokalnie wyraźnie jest to wartość największa. Tu jak rozumiem rozchodzi się o definicję ekstremum czy funkcja musi być określona po obu stronach danego punktu, czy wystarczy po jednej.
- Klasa 1 Podręcznik str. 38 "Definicja" równania jest taka, że według niej np. wyrażenie xy = 1 jest równaniem z jedną niewiadomą x, a wyraźnie jest z dwiema.
- Klasa 3 6.72 najbardziej znanym przykładem funkcji nieróżniczkowalnej jest moduł z x, ten przykład powinien się pojawić do policzenia.
- Klasa 3 (Podręcznik (dla nauczyciela)) str. 291 (383) Przykład 3
a. Brakuje $x \to -3$ pod symbolem granicy.
- Klasa 3 (Podręcznik) str. 322 Definicja 2. Brakuje informacji, że funkcja jest określona w pewnym przedziale $(k, +\infty)$ oraz $(-\infty, k)$ tak jak to jest później przy asymptotach ukośnych.
- Klasa 1 (Podręcznik) str. 60 (Przykład 7b) Wynik jest podany w ułamku zwykłym z procentami. Przy używaniu procentów powinno używać się ułamków dziesiętnych.
- Klasa 1 (Podręcznik) str. 332 Definicja 1. Brakuje informacji, że odcinek jest prostopadły do przeciwległego boku.
- Klasa 1 (Podręcznik) str. 81 Zarówno przy jednomianach jak i dalej powinny być zmienne zamiast liter.
- Klasa 4 (Podręcznik) str. 162 W podręczniku temat nazywa się **Prawdopodobieństwo klasyczne**, zaś w zbiorze zadań **Obliczanie prawdopodobieństwa.**
- Klasa 4 (Podręcznik wersja dla nauczyciela) W połowie książki powtarzają się te same cytaty.
- Klasa 4 (Podręcznik wersja dla nauczyciela) str. 301 Użyto sformułowania "po najniższej linii oporu", które jest niepoprawne. Po pierwsze zamiast przymiotnika najniższy powinien być użyty czasownik najmniejszy, a po drugie to nie jest najmniejsza linia oporu, tylko linia najmniejszego oporu.
- Klasa 4 (Podręcznik wersja dla nauczyciela) str. 361 Informacja o pięciu deltościanach jest błędna. Jest ich dokładnie 8 i możliwa liczba ścian to: 4,6,8,10,12,14,16,20