Momento risultante delle forze

Indichiamo con il simbolo $\vec{\tau}_i$ il momento risultante delle forze agenti sull'*i*-esimo punto rispetto a un dato polo O (per brevità di notazione omettiamo il pedice O, assumendo ovunque il medesimo polo O, fisso in un sistema di riferimento inerziale); tale momento può essere scomposto nel risultante dei momenti delle forze interne e di quelle esterne, sempre rispetto al medesimo polo: $\vec{\tau}_i = \vec{\tau}_i^{(I)} + \vec{\tau}_i^{(E)}$.

Sommando sull'indice *i* i momenti risultanti delle forze interne otteniamo:

$$\begin{split} \vec{\tau}^{(I)} &= \sum_{i=1}^{n} \vec{\tau}_{i}^{(I)} = \sum_{i=1}^{n} \vec{r}_{i} \times \vec{F}_{i}^{(I)} = \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} \vec{r}_{i} \times \vec{F}_{i,j} = \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left(\vec{r}_{i} \times \vec{F}_{i,j} + \vec{r}_{j} \times \vec{F}_{j,i} \right) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left(\vec{r}_{i} \times \vec{F}_{i,j} - \vec{r}_{j} \times \vec{F}_{i,j} \right) = \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left[\left(\vec{r}_{i} - \vec{r}_{j} \right) \times \vec{F}_{i,j} \right] = 0 \end{split}$$

$$\vec{r}_i \times \vec{F}_{i,j} = -\vec{r}_j \times \vec{F}_{j,i}$$

Di conseguenza, il momento risultante delle forze agenti su un sistema è pari al momento risultante delle sole *forze esterne* rispetto allo stesso polo:

$$\vec{\tau} \ = \ \sum_{i=1}^n \vec{\tau}_i \ = \ \vec{\tau}^{(I)} + \vec{\tau}^{(E)} \ = \ \vec{\tau}^{(E)} \ = \ \sum_{i=1}^n \vec{\tau}_i^{(E)} \ = \ \sum_{i=1}^n \vec{r}_i \times \vec{F}_i^{(E)}$$

Momento della quantità di moto e II equazione cardinale per i sistemi

Si definisce *momento della quantità di moto* di un sistema di punti rispetto al polo O la somma vettoriale dei momenti della quantità di moto dei singoli punti rispetto allo stesso polo:

$$\vec{L} \equiv \sum_{i=1}^{n} \vec{L}_{i} = \sum_{i=1}^{n} \vec{r}_{i} \times \vec{p}_{i}$$

(ove di nuovo si è omesso il pedice O per brevità di notazione).

Per ciascun punto materiale del sistema, vale la II equazione cardinale vista in precedenza, cioè

$$\frac{d\vec{L}_i}{dt} = \vec{\tau}_i.$$

Sommando sull'indice *i* tale equazione otteniamo:

$$\sum_{i=1}^{n} \frac{d\vec{L}_i}{dt} = \frac{d\vec{L}}{dt} = \sum_{i=1}^{n} \vec{\tau}_i = \vec{\tau}.$$

Tenendo conto, inoltre, che il momento risultante delle forze agenti sul sistema è pari al momento risultante delle sole forze esterne, risulta:

$$\boxed{\frac{d\vec{L}}{dt} = \vec{\tau}^{(E)}}$$

Tale equazione prende il nome di *II Equazione cardinale* per i sistemi di punti materiali ed afferma che:

La derivata temporale del momento della quantità di moto di un sistema di punti rispetto ad un dato polo fisso è uguale al momento risultante, rispetto allo stesso polo, delle forze esterne applicate al sistema.

Oss. Un sistema è isolato se si annullano sia il risultante delle forze esterne, sia il momento risultante delle forze esterne. In generale il fatto che il risultante delle forze esterne sia nullo non *implica* che si annulli anche il momento risultante delle forze esterne:

$$\vec{F}^{(E)} = 0 \implies \vec{\tau}^{(E)} = 0$$

Per un sistema isolato si conservano sia la quantità di moto sia il momento della quantità di moto.

II Equazione cardinale rispetto ad un polo mobile

Consideriamo ora un polo O che si muove con velocità \vec{v}_O in un riferimento inerziale.

Il momento angolare di *P* rispetto ad *O* vale:

Il momento angolare di
$$P$$
 rispetto ad O vale:
$$\vec{L}_O = \vec{r} \times \vec{p} \quad ; \quad \vec{r} = \vec{r}_P - \vec{r}_O \quad \Rightarrow \quad \vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}_P}{dt} - \frac{d\vec{r}_O}{dt} = \vec{v}_P - \vec{v}_O$$

$$\frac{d\vec{L}_O}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \vec{F} = (\vec{v}_P - \vec{v}_O) \times \vec{p} + \vec{\tau} = -\vec{v}_O \times \vec{p} + \vec{\tau}$$
 essendo $\vec{v}_P \parallel \vec{p} \quad \Rightarrow \quad \vec{v}_P \times \vec{p} = 0$.

In conclusione, la II equazione cardinale della dinamica rispetto ad un polo mobile con velocità \vec{v}_{o} diventa, per un singolo punto materiale:

$$\boxed{\frac{d\vec{L}_O}{dt} + \vec{v}_O \times \vec{p} = \vec{\tau}}$$

Per un sistema di punti materiali tale equazione varrà per ciascun punto del sistema. Sommando su tutti i punti, otteniamo banalmente:

$$\boxed{\frac{d\vec{L}_O}{dt} + \vec{v}_O \times \vec{p} = \vec{\tau}^{(E)}}$$

con ovvio significato dei simboli utilizzati per le grandezze totali (quantità di moto e momento angolare) del sistema.

Oss. Se il polo mobile coincide con il centro di massa del sistema di punti materiali (O = CM):

$$\vec{v}_{CM} \times \vec{p} = \vec{v}_{CM} \times M \vec{v}_{CM} = 0 \implies \frac{d\vec{L}_{CM}}{dt} = \vec{\tau}_{CM}^{(E)}.$$

Il centro di massa è un polo mobile ma gode di proprietà particolari!

6.5 Teoremi di Konig

Energia cinetica di un sistema

Si definisce energia cinetica di un sistema di punti materiali (in un dato SdR) la somma delle energie cinetiche di tutti i punti rispetto allo stesso sistema di riferimento:

$$E_c = \sum_{i=1}^n \frac{1}{2} m_i v_i^2$$

I Teorema di Konig

Consideriamo un SdR solidale con il *CM*, con l'origine in esso e con orientazione fissa rispetto ad un sistema inerziale (un tale SdR è detto SdR *C*); il suo moto di trascinamento è traslatorio puro.

Le leggi di composizione del vettore posizione e del vettore velocità per l'i-esimo punto sono:

$$\vec{r}_i = \vec{r}_i' + \vec{r}_{CM}$$
 ; $\vec{v}_i = \vec{v}_i' + \vec{v}_{CM}$

essendo $\vec{r_i}'$ e $\vec{v_i}'$ la posizione e la velocità relative al sistema C, $\vec{r_i}$ e $\vec{v_i}$ quelle riferite al sistema inerziale (fisso), \vec{r}_{CM} e \vec{v}_{CM} quelle del centro di massa (nel sistema inerziale fisso).

Il momento angolare del sistema, nel riferimento inerziale, si scrive:

$$\vec{L} = \sum_{i=1}^{n} \vec{r_i} \times m_i \vec{v_i} = \sum_{i=1}^{n} (\vec{r_i'} + \vec{r_{CM}}) \times m_i (\vec{v_i'} + \vec{v_{CM}}) = \sum_{i=1}^{n} \vec{r_i'} \times m_i \vec{v_i'} + \sum_{i=1}^{n} \vec{r_i'} \times m_i \vec{v_{CM}} + \sum_{i=1}^{n} \vec{r_{CM}} \times m_i \vec{v_i'} + \sum_{i=1}^{n} \vec{r_{CM}} \times m_i \vec{v_{CM}}$$

Osserviamo ora che:

$$\sum_{i=1}^{n} \vec{r}_{i}' \times m_{i} \vec{v}_{i}' = \vec{L}_{O'}' \equiv \vec{L}_{CM}', \text{ trovandosi l'origine O' del SdR C nel CM};$$

$$\sum_{i=1}^{n} \vec{r}_{i}' \times m_{i} \vec{v}_{CM} = \left(\sum_{i=1}^{n} \frac{m_{i}}{M} \vec{r}_{i}'\right) \times M \vec{v}_{CM} = \vec{r}_{CM}' \times M \vec{v}_{CM} = 0 \text{ , essendo } \vec{r}_{CM}' = 0 \text{ nel SdR C};$$

$$\sum_{i=1}^{n} \vec{r}_{CM} \times m_{i} \vec{v}_{i}' = M \vec{r}_{CM} \times \sum_{i=1}^{n} \frac{m_{i}}{M} \vec{v}_{i}' = M \vec{r}_{CM} \times \vec{v}_{CM}' = 0 \text{ , essendo } \vec{v}_{CM}' = 0 \text{ nel SdR C};$$

$$\sum_{i=1}^{n} \vec{r}_{CM} \times m_{i} \vec{v}_{CM} = \vec{r}_{CM} \times M \ \vec{v}_{CM} = \vec{L}_{O}^{(CM)}.$$

Abbiamo dimostrato il seguente teorema:

Thr. I Teorema di Konig

Il momento angolare di un sistema di punti materiali in un riferimento inerziale è pari alla somma del momento angolare del centro di massa e del momento angolare del sistema rispetto al centro di massa (cioè nel sistema di riferimento C).

$$\vec{L}_O = \vec{L}_O^{(CM)} + \vec{L}_{CM}'$$

II Teorema di Konig

In modo analogo possiamo calcolare l'energia cinetica del sistema nel riferimento inerziale:

$$E_{c} = \sum_{i=1}^{n} \frac{1}{2} m_{i} v_{i}^{2} = \sum_{i=1}^{n} \frac{1}{2} m_{i} \vec{v}_{i} \cdot \vec{v}_{i} = \sum_{i=1}^{n} \frac{1}{2} m_{i} (\vec{v}_{i}' + \vec{v}_{CM}) \cdot (\vec{v}_{i}' + \vec{v}_{CM}) =$$

$$= \sum_{i=1}^{n} \frac{1}{2} m_{i} (v_{i}'^{2} + v_{CM}^{2} + 2\vec{v}_{i}' \cdot \vec{v}_{CM}) = \sum_{i=1}^{n} \frac{1}{2} m_{i} v_{i}'^{2} + \frac{1}{2} M v_{CM}^{2} + \vec{v}_{CM} \cdot \sum_{i=1}^{n} m_{i} \vec{v}_{i}'$$

L'ultimo addendo della somma è nullo, essendo:

$$\sum_{i=1}^{n} m_{i} \vec{v}_{i}' = M \left(\sum_{i=1}^{n} \frac{m_{i}}{M} \vec{v}_{i}' \right) = M \vec{v}_{CM}' = 0 \text{ nel SdR C}.$$

Pertanto abbiamo dimostrato il seguente teorema:

Thr. II Teorema di Konig

L'energia cinetica di un sistema di punti materiali rispetto ad un riferimento inerziale è pari alla somma dell'energia cinetica del centro di massa e dell'energia cinetica del sistema di punti rispetto al centro di massa (cioè nel sistema di riferimento C).

$$E_c = \frac{1}{2} M v_{CM}^2 + \sum_{i=1}^n \frac{1}{2} m_i v_i'^2 = E_c^{(CM)} + E_c'$$

Oss. Il centro di massa, dunque, descrive le proprietà globali del sistema per quanto riguarda la quantità di moto totale e la risultante delle forze esterne, ma non per quanto riguarda il momento angolare e l'energia cinetica. Infatti:

$$\vec{p} = M \cdot \vec{v}_{CM} \qquad ; \qquad \vec{F}^{(E)} = \frac{d\vec{p}}{dt} = M \cdot \vec{a}_{CM} \qquad \text{mentre}$$

$$\vec{L}_O = \vec{L}_O^{(CM)} + \vec{L}_{CM}' \qquad ; \qquad E_c = E_c^{(CM)} + E_c' \, .$$

Teorema dell'energia cinetica

Per ciascuno dei punti del sistema vale il "Teorema delle forze vive" o "Teorema dell'energia cinetica":

$$\mathcal{L}_{A_i \to B_i, \gamma_i} = \int_{A_i, \gamma_i}^{B_i} \vec{F}_i \cdot d\vec{r}_i = \Delta E_{c,i}(A_i, B_i),$$

dove $\vec{F}_i = \vec{F}_i^{(I)} + \vec{F}_i^{(E)}$ è la risultante delle forze interne ed esterne applicate al punto *i*-esimo. Sommando sull'indice *i* si ottiene:

$$\mathcal{L}_{A \to B, \gamma} \triangleq \sum_{i=1}^{n} \mathcal{L}_{A_{i} \to B_{i}, \gamma_{i}} = \sum_{i=1}^{n} \Delta E_{c,i}(A_{i}, B_{i}) = \sum_{i=1}^{n} E_{c,i}(B_{i}) - \sum_{i=1}^{n} E_{c,i}(A_{i}) = E_{c}(B) - E_{c}(A) = \Delta E_{c}(A, B)$$

avendo ricordato la definizione di energia cinetica totale del sistema, data in precedenza.

Concludiamo dunque che anche per i sistemi di punti materiali vale il seguente:

Thr. Teorema dell'energia cinetica

Se un sistema di punti passa da una configurazione^(O) A ad una configurazione B, il lavoro compiuto da tutte le forze applicate (interne ed esterne) è pari alla variazione di energia cinetica totale del sistema tra le configurazioni A e B.

$$\mathcal{L}_{A \to B, \gamma} = \Delta E_c(A, B)$$

⁽O) Per "configurazione" si intende l'insieme dei vettori posizione di tutti i punti materiali del sistema che individua univocamente l'insieme delle posizioni di tali punti in un dato SdR (ad un istante di tempo considerato).