18.06 Recitation 2

Isabel Vogt

October 1, 2018

1 Pictures/Words Problems

- 1. If S_1 stands for the operation of putting on your socks, and S_2 stands for the operation of putting on your shoes (so $S_2 \circ S_1$ stands for first putting on your socks and then putting on your shoes), what is the inverse of $S_2 \circ S_1$?
- 2. The following are a bunch of True/False problems. If True, try to explain in words why; if False, try to give a counter-example!
 - (a) (T/F) For any matrix A, if I use Gaussian Elimination to find the A = LU factorization, then the diagonal entries of U are the same as the diagonal entries of A.
 - (b) **(T/F)** The matrix $\begin{pmatrix} 0 & 1 & 4 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ is upper-triangular.
 - (c) (T/F) If Gaussian Elimination on A produces the identity matrix, then A is lower-triangular.
 - (d) (T/F) The inverse of a permutation matrix P is always the same permutation matrix P.
 - (e) **(T/F)** Fix a vector u in \mathbb{R}^3 . Then all vectors v so that the dot product $u \cdot v = 0$ is a vector subspace of \mathbb{R}^3 .
 - (f) (T/F) Given a nonsingular matrix A and m vectors b_1, \ldots, b_m , it will necessarily take on the order of m^4 operations to solve all the equations

$$Ax_1 = b_1, Ax_2 = b_2, \dots, Ax_m = b_m.$$

(g) (T/F) The set of all invertible 2×2 matrices (with usual addition and scaler multiplication) forms a vector subspace of M the space of all 2×2 matrices.

1

- 3. Which of the following are vector subspaces of \mathbb{R}^2 :
 - (a) The origin (0,0).
 - (b) The first quadrant.
 - (c) The vectors corresponding to points on the line y = x + 1.
 - (d) The vectors corresponding to points on the line y = 4x.

2 Problems

- 1. The following problems concern the vector space \mathbf{M} of all 2×2 matrices. What do we implicitly mean are the operations of addition and scaler multiplication. Why is this a vector space?
 - (i) (Strang 3.1 Problem 4) The matrix $A = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$ is a vector in the space \mathbf{M} . Write sown the zero vector in this space, the vector $\frac{1}{2}A$, and the vector -A. What matrices are in the smallest subspace containing A?
 - (ii) (Strang 3.1 Problem 5)
 - (a) Describe a subspace of **M** that contains $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ but not $B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (b) If a subspace of M does contain A and B, must it contain I?
 - (c) Describe a subspace of M that contains no nonzero diagonal matrices.
- 2. (Strang 3.1 Problem 15)
 - (a) The intersection of two planes through (0,0,0) in \mathbb{R}^3 is probably a _____ in \mathbb{R}^3 but it could be a _____. It can't be just (0,0,0), why?
 - (b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is probably a ______, but it could be a ______ .
 - (c) If **S** and **T** are subspaces of \mathbb{R}^5 , prove that their intersection $\mathbf{S} \cap \mathbf{T}$ is a subspace of \mathbb{R}^5 . Here $\mathbf{S} \cap \mathbf{T}$ consists of the vectors that lie in both spaces.
- 3. (Strang 3.1 Problem 23) If we add an extra column b to a matrix A, then the column space get larger unless ______. Give an example where the column space gets larger and an example where it doesn't. Why is Ax = b solvable exactly when the column space doesn't get larger i.e. it is the same for A and $\begin{bmatrix} A & b \end{bmatrix}$.
- 4. Suppose that E, A, and R are $n \times n$ matrices. Further assume that E is invertible, and that we have a factorization EA = R,.
 - (a) If y is an n component vector and Ey = 0, what can we say about y?
 - (b) If x is an n component vector and Rx = 0, then what can we say about EAx and Ax?
 - (c) If z is an n component vector and Az = 0, then what can we say about Rz?
 - (d) What does this tell us about the null spaces of the matrices $E,\,A$ and R?
- 5. Let A be an $n \times n$ matrix and let b, c, x, y, z be n component vectors. Suppose that Ax = b and Ay = c are both solvable.
 - (a) Show that Az = 2b + 3c is solvable: what is a possible solution z?
 - (b) Can you rephrase this in terms of column spaces?
 - (c) If z + u + v is another solution to A(z + u + b) = 2b + 3c for some vectors u and v, then ____ is in ____.
 - (d) If $z + \alpha u + \beta v$ is also a solution for any α and β , then _____ is in _____.