Theory for Boundary-Value Objective-First Optimization

Jesse Lu, jesselu@stanford.edu

June 6, 2011

Contents

1 Setting up the boundary-value problem

1

1 Setting up the boundary-value problem

We begin by writing down a generic (sourceless) physics problem,

$$A(p)x = 0. (1)$$

Here, x is the field variable, p is the structure variable, and A(p) represents the physics of the problem.

Now, suppose that we want to fix the value of the field at certain grid-points. We denote these fixed points as $boundary\ values$ of the problem. Specifically, we break up x into

$$x = S_1 x_1 + S_0 x_0, (2)$$

where S_1 and S_0 are selection matrices for the varying and fixed elements of x respectively.

We can now attempt to solve eq. 1 by finding x_1 in the following manner. Let

$$A(p)S_1x_1 = -S_0x_0, (3)$$

or

$$\hat{A}(p)x_1 = b, (4)$$

where $\hat{A}(p) = A(p)S_1$ and $b = -S_0x_0$.

Note that there often will not be a valid x_1 to satisfy eq. [?] since $\hat{A}(p)$ will in general be skinny and full-rank. Instead, we can minimize the *physics residual*, defined as

$$||A(p)x||^2 = ||\hat{A}(p)x_1 - b||^2.$$
(5)

We call solving the problem

$$\underset{x_1}{\text{minimize}} \quad \|\hat{A}(p)x_1 - b\|^2 \tag{6}$$

improving the field. Note that an equivalent problem definition is

minimize
$$||A(p)x||^2$$
 (7)
subject to $S_0^T x = x_0$ (8)

subject to
$$S_0^T x = x_0$$
 (8)

References