CSE 350 Digital Electronics and Pulse Techniques

Analog to Digital Converter (ADC)

Course Instructor: Shomen Kundu (SDU)

Mail: shomen.kundu@bracu.ac.bd

Desk: 4N166

CSE 350

Analog to Digital Converter (ADC)

Signal can be classified into two broad categories.

i. Analog Signal

ii. Digital Signal

Analog to Digital Converter (ADC)

Physical world's information are mostly analog. Analog means data could take any real value at each instant of time.

In order to store/process we use digital data in our computers and microprocessor

Digital data means binary bit of strings.

A/D conversion process

Sample and Hold Circuit

)

Quantization:

Quantization is a process by which we assign sampled and hold signal sata to some fixed preassigned values.

- i. Midrise Quantization
- ii. Midtread Quantization

$$N = Number \ of \ bits$$
 $2^{N} = Number \ of \ levels$
 $\Delta = resolution = \frac{V_{max} - Vmin}{2^{N}}$

Midrise Quantization:

Quantization Range	Quantization Level

Mid tread Quantization (Not symmetrical and Equally Spaced)

Quantization Range	Quantization Level

Encoding

We can choose binary values for each of the level.

 $Number\ of\ bits = Ceil\ (log2(\ Number\ of\ levels\))$

Assign lower Q level to 0

Then increase one for each next level

Quantization Range, Level, code

Ex: Identify which one is Mid rise and Mid tread.

Quantization Range, Level, code

Here,
$$\frac{Vmax + Vmin}{2} = \frac{8+0}{2} = 4V$$

As 4 V is a Quantization level. So, it is a mid tread quantization

Quantization Range, Level, code

Ex: Identify which one is Mid rise and Mid tread.

As 5 V is not a Quantization level. So, it is a mid rise quantization

Flash A/D converter

Features of the Flash A/D converter

- This converter is very fast.
- It requires one clock cycle to convert the analog to digital data.
- It requires a lot components.

Op-Amp

For open loop configuration

If
$$V_{+} > V_{-}$$
, $V_{out} = High (logic 1)$
If $V_{+} < V_{-}$, $V_{out} = Low (logic 0)$

Flash ADC design

Suppose you have a signal with Vmax = 10 V and Vmin = 0V. Design a simple flash ADC converter. Use 3 bits for designing.

Flash ADC design

Suppose you have a signal with Vmax = 10 V and Vmin = 0V. Design a simple flash ADC converter. Use 3 bits for designing. Provide your encoder truth table.

Design:

```
Here, N = 3

\#Number\ of\ registor = 2^3 = 8

\#Number\ of\ comparator = 2^3 - 1 = 7

V_{+ref} = Vmax = 10\ V

V_{-ref} = Vmin = 0\ V
```


Circuit

The following is the Circuit of a 3 bits Flash ADC,

V+ of the comparator is connected to the input.

Inspiring Excellence

The following is the Circuit of a 3 bits Flash ADC,

$$I = \frac{10 - 0}{8R} = \frac{10}{8R}$$

$$I = \frac{V1 - V_{-ref}}{R}$$

$$V1 = V_{-ref} + IR = 0 + \frac{10}{8R} * R = 1.25 V$$
Similarly, $I = \frac{V2 - V1}{R} \Rightarrow V2 = V1 + IR$

$$\Rightarrow V2 = 1.25 + \frac{10}{8R} * R = 2.5 V$$

You can find other voltage in this way.

Summary table:

BRAC

Inspiring Excellence

Q Range	Q level	17161514131211	Binary (B2B1B0)
0 - 1.25	0.675	000 000 0	
1.25 - 2.5	1.875	000 000 1	
2.5 - 3.75	3.125	000 001 1	
3.75 – 5	4.375	000 011 1	
5 – 6.25	5.625	000 111 1	
6.25 – 7.5	6.875	001 111 1	
7.5 – 8.75	8.125	011 111 1	
8.75 - 10	9.375	111 111 1	

Encoder Truth Table:

(V+ of the comparator is connected to the Input)

Encoder can be implemented using the combinational network.

17161514131211	Binary (B2B1B0)
000 000 0	000
000 000 1	001
000 001 1	010
000 011 1	011
000 111 1	100
001 111 1	101
011 111 1	110
111 111 1	111

Encoder Truth Table:

(V- of the comparator is connected to the Input)

Encoder can be implemented using the combinational network.

17161514131211	Binary (B2B1B0)
111 111 1	000
111 111 0	001
111 110 0	010
111 100 0	011
111 000 0	100
110 000 0	101
1 000 000	110
000 000 0	111

Problem:

Make a table with Quantization Range, Quantization Level and Binary values for the given ADC circuit.

What will be the final output if the input voltage $V_A = 2.125 V$.

