Caches

Luke Skywalker

17 de julho de 2015

Considere uma cache com mapeamento <u>direto</u> e endereços de memória de x bits organizados da forma abaixo, responda qual o espaço ocupado pela cache no processador em bits. Considere que c bits de controle são usado por linha de cache.

TAG	ÍNDICE	OFFSET
t bits	i bits	f bits

$$2^{i} \times ((x-i-f) + c + (2^{f} \times 8))$$
 bits $2^{i} \times ((x-i-f) + c + (2^{f} \times 8))$ bytes

Considere um sistema com as seguintes configurações:

- 1. Memória virtual de 2³6 bytes
- 2. Memória física de 2^22 bytes
- 3. Páginas de 2^11 bytes
- 4. 2 bits extra para o controle das páginas

Informe o tamanho da tabela de páginas em bits.

$$2^{25} \times (2 + (22 - 11))$$

Considere uma cache com mapeamento 4-associativo e endereços de memória de 32 bits organizados da forma abaixo, responda quantas linhas tem a cache.

TAG	ÍNDICE	OFFSET
31-26	25-10	9-0

$$2^16 \times 4 = 262144$$

Considere um sistema com as seguintes configurações:

- 1. 2^28 bytes endereçáveis de memória
- 2. Cache com 2^5 blocos de 2^7 bytes cada
- 3. Linhas de cache com 1 bit de validade

Qual seria o tamanho efetivo da cache em bits caso ela fosse implementada com um mapeamento 4-associativo?

$$2^3 \times (4 \times (18 + 1 + 2^7 \times 8))$$

Considere um sistema com as seguintes configurações:

- 1. Memória virtual de 2^33 bytes
- 2. Memória física de 2^24 bytes
- 3. Páginas de 2^11 bytes
- 4. 6 bits extra para o controle das páginas

Informe o tamanho da tabela de páginas em bits.

$$2^{22} \times (6 + (24 - 11))$$