

INSTITUTE OF ECONOMIC STUDIES, FACULTY OF SOCIAL SCIENCES

CHARLES UNIVERSITY IN PRAGUE (established 1348)

ROBUST STATISTICS AND ECONOMETRICS

INSTITUTE OF ECONOMIC STUDIES
FACULTY OF SOCIAL SCIENCES
CHARLES UNIVERSITY IN PRAGUE

JAN ÁMOS VÍŠEK

Week 4

Content of lecture

- 1 Repetiton is mother of wisdom (Jan mos Komensk)
- 2 The breakdown point
- 3 Specification of robustness characteristics for classical estimators

A brief repetition of some points from previous lectures

We have concluded:

The requirements overtaken from the classical statistics

- Consistency (typically weak, i. e. in probability)
- Asymptotic normality
- 4 Loss of efficiency as small as possible
- Scale- and regression-equivariance

A brief repetition of some points from previous lectures

Then we added:

The requirements enlarging the classical paradigma

Gross-error sensitivity

$$\gamma^* = \sup_{x \in R} |IF(x, T, F)|$$

2 Local-shift sensitivity

$$\lambda^* = \sup_{x,y \in R} \left| \frac{IF(x,T,F) - IF(y,T,F)}{x - y} \right|$$

Rejection point

$$\rho^* = \inf \{ r \in R^+ : IF(x, T, F) = 0, |x| > r \}$$

Breakdown point - will be discused as the first topic today

A brief repetition of some points from previous lectures

Then we added (continued):

The requirements enlarging the classical paradigma

- Tight algorithm and reliable implementation
 invention and verification.
- Good heuristic to convince people to employ it

First of

Observe the mean • and the median •

Then there is of course a question:

Why we use more frequently mean than median?

$$\lim_{n\to\infty} \frac{\operatorname{var}_{\Phi}\left(\bar{x}^{(n)}\right)}{\operatorname{var}_{\Phi}\left(median^{(n)}\right)} = 0.6....$$

Hampel's approach - characteristics of the functional T at the d.f. F

An overall characteristic of the functional (the estimator) is

$$\varepsilon^* = \sup \{ \varepsilon \le 1 : \exists K_{\varepsilon} \subset \Theta, K_{\varepsilon} \text{ compact } \}$$

$$\pi(F,G)<\varepsilon \Rightarrow G(\{T_n\in K_\varepsilon\}) \xrightarrow[n\to\infty]{} 1$$

where $\pi(F, G)$ is the *Prokhorov metric* of F(x) and G(x) and T_n is an empirical counterpart to the functional T.

• ε^* is called breakdown point

(explanation of <u>Prokhorov metric</u> is on one of the next slides, then finite sample breakdown point).

Hampel's approach - characteristics of the functional T at the d.f. F

An overall characteristic of the functional (the estimator) is

 ε^*

It is not trivial to understand this definition - we shall try after some preparation.

and T_n is an empirical counterpart to the functional T.

• ε^* is called *breakdown point*.

Hampel's approach - characteristics of the functional *T* at the d.f. *F*An overall characteristic of the functional (the estimator) is

The definition contains new notions:

compact set and Prokhorov metric.

- Firstly, what is a compact set? And what is good for?
- 2 Secondly, an inspiration why we need Prokhorov metric.
- 3 Thirdly, an explanation what Prokhorov metric is.

 ε^* is called *breakdown point*.

Hampel's approach - characteristics of the functional T at the d.f. F

An overall characteristic of the functional (the estimator) is

Then we return to the definiton of breakdown point.

- Firstly, we explain the sense of it.
- 2 Then we try to read the mathematics.

and T_n is an empirical counterpart to the functional T.

• ε^* is called *breakdown point*.

So, let us start with compact set

• Open and closed sets C is closed set if for any sequence $\{x_n\}_{n=1}^{\infty} \subset C$ such that

$$\exists \left(\lim_{n\to\infty} x_n = x_0\right) \Rightarrow x_0 \in C.$$

- C is compact if it is closed and $\forall (x \in C) ||x|| < K < \infty$.
- The sense of compact sets and the use of compactness:
 Any open cover contains a finite subcover.

Recalling Kolmogorov-Smirnov metric

$$D(F, G) = \sup_{-\infty < x < \infty} |F(x) - G(x)|$$

Intuitive convergence of d. f.'s - but the Kolmogorov-Smirnov distance

Intuitive convergence of d. f.'s - but the Kolmogorov-Smirnov distance

D. f. with a jump in the origineWidth of linear part 2.21.8

Explaining Prohorov distance (notice different transcription)

Coinsider two d. f.'s

Explaining Prokhorov distance

Comparing Kolmogorov-Smirnov and Prokhorov metrics

D. f. with a jump in the origineWidth of linear part 2.21.8

The convergence in Prokhorov metrics corresponds with intuitive idea of it.

D. f. with a jump in the origineWidth of linear part 2.21.8

The global empirical characterists of estimator.

Hampel's approach - characteristics of the functional T at the d.f. F

Breakdown point - "finite" sample version

$$X_1, X_2, ..., X_n \Rightarrow T_n(X_1, X_2, ..., X_n)$$

• Find maximal m_n such that for any

$$|y_1, y_2, ..., y_{m_n}| \Rightarrow |T_n(x_1, x_2, ..., x_{n-m_n}, y_1, y_2, ..., y_{m_n})| < \infty$$

 $(0 < T_n(x_1, x_2, ..., x_{n-m_n}, y_1, y_2, ..., y_{m_n}) < \infty$ - for scale).

• Put $\varepsilon^* = \lim_{n \to \infty} \frac{m}{n}$

(we'll return to it later on,

now let's return to the exact definition of the breakdown point).

Let's read the definiton of breakdown point

Hampel's approach - characteristics of the functional T at the d.f. F

An overall characteristic of the functional (the estimator) is

$$\varepsilon^* = \sup \{ \varepsilon \le 1 : \exists K_{\varepsilon} \subset \Theta, K_{\varepsilon} \text{ compact } \}$$

$$\pi(F,G)$$

where $\pi(F, G)$ is the *Prokhorov metric* of F(x) and G(x) and T_n is an empirical counterpart to the functional T.

• ε^* is called breakdown point.

Let's rewrite the mathematical part of definition on the next slide.

Let's read the definiton of breakdown point

Hampel's approach - characteristics of the functional T at the d.f. F

$$\varepsilon^* = \sup \{ \varepsilon \le 1 : \exists K_{\varepsilon} \subset \Theta, K_{\varepsilon} compact \}$$

$$\pi(F,G) < \varepsilon \Rightarrow G(\lbrace T_n \in K_\varepsilon \rbrace) \xrightarrow{n \to \infty} 1$$

- Let's assume that $T \in R$, so it is connected with a parameter of F.
- \mathcal{E} could be sufficiently wide interval for this moment.
- The definition says that T_n is so "good" for estimating "F" that whenever G is sufficiently close to F, T_n converges in probability with respect to G to something finite.

That's all.

Specifying the "robustness" characteristics for the location parameter

At the beginning of the third lecture we have computed influence function for $T(\Phi) = E_{\Phi}Z$:

Recalling definition of influence function is:

Fix a functional $T: \mathcal{H} \rightarrow R....$

$$IF(x,T,F) = \lim_{\delta \to 0} \frac{T\left((1-\delta)F(.) + \delta \cdot \Delta_x\right) - T\left(F(.)\right)}{\delta}$$

- $T\left((1-\delta)\Phi(.) + \delta \cdot \Delta_{x}\right)$ $= \int z\left\{(1-\delta)\frac{1}{\sqrt{2\pi}} \cdot \exp\left\{-\frac{z^{2}}{2}\right\} + \delta \cdot \Delta_{x}\right\} dz = (1-\delta) \cdot 0 + \delta \cdot x.$
- 4 Finally, $IF(x, T, Φ) = \lim_{\delta \to 0} \frac{\delta \cdot x}{\delta} = x$.

Specifying the "robustness" characteristics for the location parameter

We easy verify that the same computation can be done whenever r. v. Z has finite mean value $T(F) = E_F Z = \mu \in R$:

Fix a functional $T: \mathcal{H} \rightarrow R...$

$$IF(x, T, F) = \lim_{\delta \to 0} \frac{T\left((1 - \delta)F(.) + \delta \cdot \Delta_x\right) - T\left(F(.)\right)}{\delta}$$

- $T(F(.)) = \int z \cdot f(z) dz = \mu$
- $T\left((1-\delta)F(.)+\delta\cdot\Delta_{x}\right)$ $=\int z\left\{(1-\delta)f(x)+\delta\cdot\Delta_{x}\right\}dz=(1-\delta)\cdot\mu+\delta\cdot x.$
- Finally, $IF(x, T, F) = \lim_{\delta \to 0} \frac{\delta \cdot (-\mu + x)}{\delta} = -\mu + x$.

Specifying the "robustness" characteristics for the location parameter

Hence the "robustness" characteristics of $T(F) = E_F(X)$ are:

- 1 The gross error sensitivity $\gamma^* = \sup_{x \in R} |IF(x, T, F)| = \infty$.
- The local-shift sensitivity $\lambda^* = \sup_{x,y \in R} \left| \frac{|F(x,T,F) |F(y,T,F)|}{x-y} \right| = 1$.
- 3 The rejection point $\rho^* = \inf\{r \in \mathbb{R}^+ : |F(x, T, F) = 0, |x| > r\} = \infty$.
- The breakdown point $\varepsilon^* = 0$

(the last characteristic is "derived heuristically" from the finite version of breakdown point).

Specifying the "robustness" characteristics for the scale parameter

At the beginning of the third lecture we have also computed influence function for $T(\Phi) = E_{\Phi}X^2$:

The Recalling again definition of influence function is:

Fix a functional $T: \mathcal{H} \rightarrow R....$

$$IF(x, T, F) = \lim_{\delta \to 0} \frac{T\left((1 - \delta)F(.) + \delta \cdot \Delta_x\right) - T\left(F(.)\right)}{\delta}$$

- $T\left(\Phi(.)\right) = \frac{1}{\sqrt{2\pi}} \int z^2 \cdot \exp\left\{-\frac{z^2}{2}\right\} dz = 1$
- $T\left((1-\delta)\Phi(.)+\delta\cdot\Delta_{x}\right)$ $=\int z^{2}\left\{(1-\delta)\frac{1}{\sqrt{2\pi}}\cdot\exp\left\{-\frac{z^{2}}{2}\right\}+\delta\cdot\Delta_{x}\right\}dz=(1-\delta)\cdot1+\delta\cdot x^{2}.$
- Finally, $IF(x, T, \Phi) = \lim_{\delta \to 0} \frac{(1-\delta)\cdot 1 + \delta \cdot x^2 1}{\delta} = -1 + x^2$.

Specifying the "robustness" characteristics for the scale parameter

We easy verify that the same computation can be done whenever r. v. Z has finite variance $T(F) = E_F (Z - EZ)^2 = \sigma^2 \in R^+$:

Fix a functional $T: \mathcal{H} \rightarrow R...$

$$IF(x,T,F) = \lim_{\delta \to 0} \frac{T\left((1-\delta)F(.) + \delta \cdot \Delta_x\right) - T\left(F(.)\right)}{\delta}.$$

- Fix $T(F) = E_F(Z EZ)^2 = \int (Z EZ)^2 dF = \int (z EZ)^2 \cdot f(z) dz$.
- $T(F(.)) = \int (z EZ)^2 \cdot f(z) dz = \sigma^2$
- $T\left((1-\delta)F(.)+\delta\cdot\Delta_{x}\right)$ $=\int (z-EZ)^{2}\left\{(1-\delta)f(z)+\delta\cdot\Delta_{x}\right\}dz=(1-\delta)\cdot\sigma^{2}+\delta\cdot(x-EZ)^{2}.$
- Finally, $IF(x, T, F) = \lim_{\delta \to 0} \frac{\delta \cdot (-\sigma^2 + (x EZ)^2)}{\delta} = -\sigma^2 + (x EZ)^2$.

Specifying the "robustness" characteristics for the scale parameter

Hence the "robustness" characteristics of $T(F) = E_F(Z - EZ)^2$ are:

- The gross error sensitivity $\gamma^* = \sup_{x \in B} |IF(x, T, F)| = \infty$.
- The local-shift sensitivity $\lambda^* = \sup_{x,y \in R} \left| \frac{|F(x,T,F) |F(y,T,F)|}{x-y} \right| = \infty$.
- 3 The rejection point $\rho^* = \inf\{r \in R^+ : |F(x, T, F) = 0, |x| > r\} = \infty$.
- The breakdown point $\varepsilon^* = 0$

(the last characteristic is again "derived heuristically" from the finite version of breakdown point).

