DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Generatorne funkcije

Tema 1

Generatorne funkcije

Generatorne funkcije nizova

$$\underbrace{(a_0,a_1,a_2,\ldots)}_{\text{brojni niz}} \ \leftrightarrow \ \underbrace{a_0+a_1z+z_2z^2+\ldots}_{\text{simbolički stepeni red}}$$

Definicija

Generatorna funkcija brojnog niza $\{a_n\}$ jeste (simbolički tj. formalni) stepeni red

$$\sum_{n\geq 0} a_n z^r$$

Generatorne funkcije - primene

Mogu se koristiti za:

- prebrojavanje kombinatornih objekata
- rešavanje celobrojnih jednačina
- dokazivanje nekih identiteta
- rešavanje rekurentnih relacija
- **5** . . .

Motivacioni primer

PROBLEM: Odrediti zatvorenu formu a(n) za sumu:

$$1^2 + 2^2 + 3^2 + \ldots + n^2, \quad n \in \mathbb{N}.$$

Generatorne funkcije nizova

brojni niz	generatorna funkcija
$(0,0,0,\ldots)$	0
$(1,0,0,\ldots)$	1
$(0,1,0,\ldots)$	z
$(3, 2, 1, 0, \ldots)$	$3 + 2z + z^2$
$(1,1,1,\ldots)$	$1+z+z^2+\dots$
$(1,-1,1,-1\ldots)$	$1-z+z^2-z^3+\dots$

Generatorne funkcije nizova

Simbolički stepeni red:

- konvergencija reda nije relevantna
- važne su operacije pomeranje, sabiranje, množenje, izvodi, integrali

Generatorne funkcije nizova - jednakost

Definicija

Generatorne funkcije nizova $\{a_n\}$ i $\{b_n\}$ su jednake ako su im jednaki odgovarajući nizovi tj. ako je za svako $n \in \mathbb{N}$, $a_n = b_n$.

Zatvorena forma generatorne funkcije

$$\begin{array}{rcl}
 & \left[(1,1,1,\ldots) \right] \\
A(z) & = & 1 & +z & +z^2 & +z^3 & + \dots \\
-zA(z) & = & -z & -z^2 & -z^3 & - \dots \\
(1-z)A(z) & = & 1
\end{array}$$

$$\boxed{1+z+z^2+\ldots=\frac{1}{1-z}}$$

 $1+z+z^2+\ldots$ - otvorena forma generatorne funkcije $A(z)=\frac{1}{1-z}$ - zatvorena forma generatorne funkcije

KONVERGENCIJA NIJE BITNA!!!

Operacije nad zatvorenim formama

$$(a_0, a_1, a_2, \ldots) \leftrightarrow A(z)$$
 $(b_0, b_1, b_2, \ldots) \leftrightarrow B(z).$

skaliranje

$$(ca_0, ca_1, ca_2, \ldots) \leftrightarrow cA(z)$$

sabiranje

$$(a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) \leftrightarrow A(z) + B(z)$$

desno pomeranje

$$(\underbrace{0,0,\ldots,0}_{k},a_{0},a_{1},\ldots)\leftrightarrow z^{k}A(z)$$

Operacije nad generatornim funkcijama

Primer

Napisati zatvorenu formu generatorne funkcije niza:

- $\bullet \ (\underbrace{0,0,\ldots,0}_{k},1,1,1,\ldots)$
- \bullet $(1, 2, 2^2, 2^3, \ldots)$
- $z^k + z^{k+1} + \dots = \sum_{n \ge k} z^n = z^k \sum_{n \ge k} z^{n-k} = z^k \sum_{n \ge 0} z^n = \frac{z^k}{1-z}$
- $1 + 2z + (2z)^2 + (2z)^3 + \ldots = \frac{1}{1-2z}$

Operacije nad generatornim funkcijama

$$(a_0, a_1, a_2, \ldots) \leftrightarrow A(z)$$
 $(b_0, b_1, b_2, \ldots) \leftrightarrow B(z).$

množenje

$$A(z) \cdot B(z) = \sum_{n \ge 0} \left(\sum_{j=0}^{n} a_j b_{n-j} \right) z^n$$

$$\frac{1}{(1-z)^2} = \frac{1}{1-z} \cdot \frac{1}{1-z} = \sum_{n>0} z^n \cdot \sum_{n>0} z^n = \sum_{n>0} \left(\sum_{j=0}^n 1 \cdot 1\right) z^n = \sum_{n>0} (n+1)z^n$$

Izvod

Definicija

Neka je $A(z) = \sum\limits_{n \geq 0} a_n z^n$ generatorna funkcija niza a_n . Izvod, u oznaci

A'(z), definisan je sa

$$A'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

$$\frac{z}{(1-z)^2} = z \left(\frac{1}{1-z}\right)' = z \left(\sum_{n \geq 0} z^n\right)' = z \sum_{n \geq 0} (z^n)' = z \sum_{n \geq 1} n z^{n-1} = \sum_{n \geq 1} n z^n = \sum_{n \geq 0} n z^n$$

Uopšteni binomni koeficijenti

Definicija

Neka je u realan broj, a k nenegativan ceo broj. Uopšteni binomni koeficijent $\binom{u}{k}$ je definisan sa

$$\begin{pmatrix} u \\ k \end{pmatrix} = \left\{ \begin{array}{cc} \frac{u \cdot (u-1) \cdot \ldots \cdot (u-k+1)}{k!} & \text{ako je } k > 0 \\ 1 & \text{ako je } k = 0. \end{array} \right.$$

Njutnova binomna formula

Teorema

Neka je u proizvoljan realan broj. Tada je

$$(1+z)^u = \sum_{n>0} \binom{u}{n} z^n.$$

Njutnova binomna formula

Primer

Koristeći binomnu formulu, odrediti otvoren oblik generatorne funkcije, ako je njen zatvoren oblik

$$\frac{1}{1-cz}$$

$$\frac{1}{1-cz} = (1-cz)^{-1} = \sum_{n\geq 0} {\binom{-1}{n}} (-cz)^n$$
$$= \sum_{n\geq 0} (-1)^n (-1)^n (cz)^n = \sum_{n\geq 0} (cz)^n$$

Njutnova binomna formula

Primer

Koristeći Njutnovu formulu, odrediti otvoren oblik generatorne funkcije, ako je njen zatvoren oblik

(1)
$$\frac{1}{(1-z)^m}$$
 (2) $\frac{1}{(1-z)^2}$ (3) $\frac{1}{(1-z)^3}$.

(1)
$$\frac{1}{(1-z)^m} = (1-z)^{-m} = \sum_{n>0} {\binom{-m}{n}} (-z)^n = \sum_{n>0} {\binom{m+n-1}{n}} z^n$$

(2)
$$\frac{1}{(1-z)^2}$$
 = $\sum_{n>0} {n+1 \choose n} z^n = \sum_{n>0} (n+1) z^n$

(3)
$$\frac{1}{(1-z)^3} = \sum_{n>0} {n+2 \choose n} z^n = \sum_{n>0} {n+2 \choose 2} z^n$$

Primena - kombinacije bez ponavljanja

Primer

Odrediti broj neuređenih izbora od m elemenata iz skupa $A = \{a_1, \ldots, a_n\}$, ako se elementi ne mogu ponavljati.

 x^i - element je izabran i puta, $i \in \{0,1\} \Rightarrow$

$$\underbrace{(1+x)}_{a_1}\underbrace{(1+x)}_{a_2} \dots \underbrace{(1+x)}_{a_n} = 1 + c_1 x + c_2 x^2 + \dots + c_m x^m + \dots + c_n x^n$$

 c_m - # načina da se izabere m elemenata Prema binomnoj formuli,

$$(1+x)^n = \sum_{0 \le m \le n} \binom{n}{m} x^m,$$

odakle je broj kombinacija od n elemenata klase m jednak $\binom{n}{m}$.

Primena - kombinacije sa ponavljanjem

Primer

Odrediti broj neuređenih izbora od m elemenata iz skupa $A = \{a_1, \ldots, a_n\}$, ako se elementi mogu ponavljati.

 x^i - element je izabran i puta, $i > 0 \Rightarrow$

$$\underbrace{(1+x+x^2+\ldots)}_{a_1} \cdot \underbrace{(1+x+x^2+\ldots)}_{a_2} \cdot \cdot \cdot \underbrace{(1+x+x^2+\ldots)}_{a_n} = 1 + c_1x + c_2x^2 + \ldots + c_mx^m + \ldots$$

 c_m - # načina da se izabere m elemenata Prema uopštenoj binomnoj formuli,

$$(1+x+x^2+\ldots)^n = \frac{1}{(1-x)^n} = (1-x)^{-n}$$
$$= \sum_{n>0} {\binom{-n}{m}} (-1)^m x^m = \sum_{m>0} {\binom{m+n-1}{m}} x^m.$$

Za svako $0 \le m \le n$ koeficijent uz x^m odgovara broju kombinacija sa ponavljanjem od n elemenata klase m.

Primena

Primer

Neka je $1 \le n \le m$. Odrediti broj izbora m elemenata iz skupa $A = \{a_1, \ldots, a_n\}$, ako se elementi mogu ponavljati i od svake vrste je izabran bar jedan element.

$$p(x) = \underbrace{(x + x^2 + x^3 + \dots)}_{a_1} \underbrace{(x + x^2 + x^3 + \dots)}_{a_2} \dots \underbrace{(x + x^2 + x^3 + \dots)}_{a_n}$$

$$p(x) = \left(\frac{x}{1 - x}\right)^n = x^n \cdot \frac{1}{(1 - x)^n} = x^n (1 - x)^{-n}$$

$$= x^n \sum_{l \ge 0} \binom{n + l - 1}{l} x^l = \sum_{l \ge 0} \binom{n + l - 1}{l} x^{n+l}$$

Ako uvedemo smenu m = n + l, onda je

$$p(x) = \sum_{m > n} {m-1 \choose m-n} x^m \Rightarrow \boxed{{m-1 \choose m-n}}$$

Primer- rešavanje celobrojne jednačine

Primer

Odrediti broj nenegativnih rešenje jednačine

$$x_1 + x_2 + x_3 + x_4 = n, n \ge 0.$$

ako su $x_1, x_2, x_3, x_4 \in \mathbb{N}_0$.

Broj nenegativnih rešenje jednačine jednak je koeficijentu a_n uz z^n u razvoju proizvoda

$$(1+z+z^2+z^3+z^4+\ldots)^4$$

$$A(z) \quad = \quad \frac{1}{(1-z)^4} = \frac{1}{(1-z)^4} = \sum_{l>0} {{l+l-1}\choose{l}} z^l = \sum_{n>0} {{l+3}\choose{l}} z^l.$$

$$a_n = \binom{n+3}{n}$$

Primena na rešavanje rekurentnih relacija

$$h_0 = 0$$
 $h_n = 2h_{n-1} + 1, \quad n \ge 1$

Neka je
$$H(z) = \sum_{n \ge 0} h_n z^n$$
.

$$\sum_{n \ge 1} h_n z^n = 2 \sum_{n \ge 1} h_{n-1} z^n + \sum_{n \ge 1} z^n \Leftrightarrow (H(z) - h_0) = 2zH(z) + \sum_{n \ge 1} z^n$$

$$\Leftrightarrow$$
 $H(z)(1-2z) = \frac{1}{1-z} - 1 \Leftrightarrow H(z) = \frac{1}{(1-z)(1-2z)} - \frac{1}{1-2z}$

$$\Leftrightarrow \quad H(z) = \frac{1}{1-2z} - \frac{1}{1-z} \Leftrightarrow H(z) = \sum_{n \ge 0} 2^n z^n - \sum_{n \ge 0} z^n$$

$$\Leftrightarrow H(z) = \sum_{n>0} (2^n - 1)z^n \qquad \Rightarrow \boxed{h_n = 2^n - 1}$$

Primer - rešavanje celobrojne jednačine

Primer

Kutija sadrži 20 crvenih, 30 zelenih i 40 plavih kuglica. Koliko ima različitih izbora od 60 kuglica?

Traženi broj je jednak broju rešenja jednačine

$$i+j+k=60$$
 $i \in \{0,\ldots,20\}, j \in \{0,\ldots,30\}, k \in \{0,\ldots,40\}.$

Ekvivalentno, taj broj je jednak koeficijentu uz z^{60} proizvoda

$$\underbrace{(1+z+\ldots+z^{20})}_{\text{Cryene}}\underbrace{(1+z+\ldots+z^{30})}_{\text{relene}}\underbrace{(1+z+\ldots+z^{40})}_{\text{playe}}$$

Primer- rešavanje celobrojne jednačine

$$(1+z+\ldots+z^{20})(1+z+\ldots+z^{30})(1+z+\ldots+z^{40})$$

$$= \frac{1-z^{21}}{1-z} \cdot \frac{1-z^{31}}{1-z} \cdot \frac{1-z^{41}}{1-z}$$

$$= \frac{1}{(1-z)^3} (1-z^{21})(1-z^{31})(1-z^{41})$$

$$= (1+\binom{3}{2}z+\binom{4}{2}z^2+\ldots)(1-z^{21}-z^{31}-z^{41}+z^{52}+z^{62}+z^{72}-z^{93})$$

$$= \ldots + \left(\binom{60+2}{2} - \binom{60-21+2}{2} - \binom{60-31+2}{2} - \binom{60-41+2}{2} + \binom{60-52+2}{2}\right)z^{60} + \ldots$$

$$\frac{1}{(1-z)^3} = (1-z)^{-3} = \sum_{n\geq 0} \binom{-3}{n} (-1)^n z^n = \sum_{n\geq 0} \binom{n+2}{2} z^n$$

Primer- rešavanje celobrojne jednačine

Primer

Odrediti broj rešenja jednačine

$$x_1 + x_2 + x_2 = 19$$

ako je $x_1, x_2, x_3 \in \mathbb{N}_0$ i $3 \le x_1 \le 6$ i $4 \le x_2 \le 7$ i $5 \le x_3 \le 8$.

$$p(x) = (x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)(x^5 + x^6 + x^7 + x^8),$$

$$p(x) = \frac{x^3(1-x^4)}{1-x} \cdot \frac{x^4(1-x^4)}{1-x} \cdot \frac{x^5(1-x^4)}{1-x} = x^{12}(1-x^4)^3 \cdot \frac{1}{(1-x)^3}$$

$$= x^{12}(1-3x^4+3x^8-x^{12}) \sum_{n\geq 0} {n+2 \choose 2} x^n = (x^{12}-3x^{16}+3x^{20}-x^{24}) \sum_{n\geq 0} {n+2 \choose 2} x^n$$

$${9 \choose 2} - 3{5 \choose 2} = 36 - 30 = 6.$$