Objects recognition

Objects detection

Course Structure

CLASSIC COMPUTER VISION PROBLEMS

Computer vision introduction

Image classification. Transfer learning

Image objects recognition

Image objects segmentation

Homework

ADVANCED COMPUTER VISION PROBLEMS

Image generation: AE and VAE

Image generation: GAN

Style transferring

Homework

Image reconstruction

Video processing

Lecture outline

Difference between classification, localisation and detection

Object recognition application

Main network architectures

Recognition metrics

Objects recognition tasks

Figure 1. Localised star example.
Source: https://astrobackyard.com/types-of-galaxies

Skoltech

Objects recognition tasks

- In classification algorithms, the last layer produces a class label or the probability value of an object belonging to a particular class.
- Localization algorithms, on the contrary, predict 4 real numbers, that is, they solve the regression problem.
- If there are 2 objects in the image, we need 8 coordinates. If there are 5 objects 20.

Objects detection methods

YOLO (You Only Look Once): YOLO is known for its real-time object detection capabilities. It divides the image into a grid and simultaneously predicts bounding boxes and class probabilities for each grid cell.

R-CNN (Region-based Convolutional Neural Networks): First generates region proposals using selective search and then extracts features from these regions using CNNs.

Object detectors solve the following two problems:

- 1. find an arbitrary number of objects (possibly even zero)
- 2. classify each object and estimate its size using a bounding box

Two-stage detectors divide these tasks into two stages. Single-stage - combine both tasks into one stage.

Regions With CNNs (R-CNN)

Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. UC Berkeley. 2014

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features 4. Classify regions

Figure 2. Object detection system overview. The system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal using a large convolutional neural network (CNN), and then (4) classifies each region using class-specific linear SVMs.

Fast R-CNN

Ross Girshick. Fast R-CNN. UC Berkeley. 2015

Figure 3. Fast R-CNN architecture. An input image and multi- ple regions of interest (Rols) are input into a fully convolutional network. Each Rol is pooled into a fixed-size feature map and then mapped to a feature vector by fully connected layers (FCs). The network has two output vectors per Rol: softmax probabilities and per-class bounding-box regression offsets. The architecture is trained end-to-end with a multi-task loss.

Faster R-CNN

Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. 2016

Selective search

Region Proposal Networks (RPN)

Figure 4. Faster R-CNN architecture.

YOLO

Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. 2016

Figure 5. The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448 × 448, (2) runs a single convolutional net- work on the image, and (3) thresholds the resulting detections by the model's confidence.

Skoltech

Intersection over Union

Figure 6. IoU calculation.
Source: https://idiotdeveloper.com/what-is-intersection-over-union-iou/

False Negative

True Positive False Positive

Figure 7. Different IoU illustration.

Source: https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/

Skoltech

Object detection summary

- Object detection is a fundamental computer vision task that involves identifying and localizing objects within images or video frames.
- It goes beyond object recognition by providing precise bounding box locations for detected objects, enabling spatial understanding.
- Object detection techniques can be categorized into two-stage and single-shot approaches, each with its trade-offs in accuracy and speed.
- Two-stage approaches, such as Faster R-CNN, involve region proposal and feature extraction, followed by classification and bounding box regression.
- Single-shot approaches, like YOLO, predict object classes and bounding boxes directly from fixed grid cells, achieving real-time performance.

Next time: Objects segmentation