MATERIAL DE APOYO - Función afín

Objetivos de la clase

- > Establecer metodología para determinar la ecuación de una recta sin usar ayudas gráficas.
- Diferenciar cuando una tabla de puntos corresponde o no a una recta.

Ticket de entrada

1-. Determinar la ecuación de la recta que pasa por los puntos:

DESARROLLO

2-. Determinar la ecuación de la recta que pasa por los puntos:

x	у
1	$-\frac{5}{2}$
2	$-\frac{11}{2}$

DESARROLLO			

Metodología para encontrar la ecuación de una recta

1. En el triángulo que se forma entre ambos puntos, calcular el largo del lado horizontal y vertical de la forma:

largo lado vertical = $y_1 - y_0$ largo lado horizontal = $x_1 - x_0$

2. Calcular la pendiente (*m*) directamente como la división de los largos del lado vertical y el horizontal del triángulo.

 $m = \frac{y_1 - y_0}{x_1 - x_0}$

3. Una vez que se conoce el valor de la pendiente (m), se puede encontrar el coeficiente de posición (n) despejándolo en la ecuación de la recta $(y = m \cdot x + n)$, ya que, se conocen todos los valores de esa ecuación salvo n. Es decir:

$$n = y_0 - m \cdot x_0$$
 0 $n = y_1 - m \cdot x_1$

Donde (x_0, y_0) y (x_1, y_1) son los puntos que se conocen de la función.

Ticket de salida

3-. Determinar la ecuación de la recta que pasa por los puntos:

 $\begin{array}{c|cc}
x & y \\
\hline
\frac{1}{3} & \frac{3}{5} \\
\hline
\frac{1}{2} & \frac{7}{10}
\end{array}$

