Wahrscheinlichkeitstheorie

Regressionsgerade

S. 20

$$s_x^2 = \frac{1}{n-1} \left(\sum x_i^2 - 2\bar{x} \sum x_i + n \cdot \bar{x}^2 \right)$$

$$r_{xy} = \frac{\sum x_i y_i - n \cdot \bar{x} \bar{y}}{(n-1) \cdot s_x \cdot s_y}$$

$$b = r_{xy} \cdot \frac{s_y}{s_x}$$

$$a = \bar{y} - b \cdot \bar{x}$$

Verteilungen

S. 121, 125

0. 121, 120			
$\underline{}$ $\phantom{$	S.	$\mathbb{E}(X)$	V(X)
$\overline{Bin(n,p)}$	59	$n \cdot p$	$n \cdot p \cdot (1-p)$
Hyp(n,r,s)	61	$(n \cdot r)/(r+s)$	$n \cdot p \cdot (1-p) \cdot (1-\frac{n-1}{r+s-1}) \text{ mit } p = \frac{r}{r+s}$
$Po(\lambda)$	68	λ	λ
Nb(r,p)	73	$r \cdot (1-p)/p$	$r \cdot (1-p)/p^2$
G(p)	73	(1-p)/p	$(1-p)/p^2$
$\mathcal{N}(\mu, \sigma^2)$	87	μ	σ^2
$\mathcal{LN}(\mu, \sigma^2)$		$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$
U(a,b)	80	(a+b)/2	$(b-a)^2/12$
$\Gamma(\alpha,\beta)$	86	α/β	α/β^2
$Exp(\lambda)$	85	$1/\lambda$	$1/\lambda^2$

Faltungen

S. 111

5. 111		
\mathbb{P}_1	\mathbb{P}_2	$\mathbb{P}_1 * \mathbb{P}_2$
Bin(m,p)	Bin(n,p)	Bin(m+n,p)
$Po(\alpha)$	$Po(\beta)$	$Po(\alpha + \beta)$
Nb(r,p)	Nb(s,p)	Nb(r+s,p)
G(p)	G(p)	Nb(2,p)
$\mathcal{N}(\mu, \sigma^2)$	$\mathcal{N}(\upsilon, au^2)$	$\mathcal{N}(\mu + \upsilon, \sigma^2 + \tau^2)$
$\Gamma(\mu,\beta)$	$\Gamma(\upsilon,\beta)$	$\Gamma(\mu+\upsilon,\beta)$
χ_m^2	χ_n^2	χ^2_{m+n}
$Exp(\beta)$	$Exp(\beta)$	$\Gamma(2,\beta)$

Erwartungswert und Varianz

S. 116, 119 121, 125

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

$$\mathbb{E}(a \cdot X) = a \cdot \mathbb{E}X$$

$$V(aX+b) = a^2 \cdot V(X)$$

$$\mathbb{E}X = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$$

$$\mathbb{E}X^2 = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx$$

$$V(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2$$

Kovarianz

S. 131

$$C(X,Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

$$C(X,X) = V(X)$$

$$C(aX + b, cY + d) = a \cdot c \cdot C(X,Y)$$

$$C(X + Z,Y) = C(X,Y) + C(Z,Y)$$

Stichproben

S. 16

$$k = \lfloor n \cdot \alpha \rfloor$$

$$\bar{x}_{\alpha} = \frac{1}{n - 2 \cdot k} \cdot \sum_{i=k+1}^{n-k} x_{i}$$

$$\tilde{x}_{\alpha} = \begin{cases} x_{(k+1)} & \text{, falls } n \cdot \alpha \notin \mathbb{N}, \\ \frac{1}{2} \cdot (x_{(k)} + x_{(k+1)}) & \text{sonst} \end{cases}$$

http://martin-thoma.com/wt-klausur