1. Fourier Integral Theorem

If f(x) satisfies Dirichlet's Conditions in every finite interval of length 2L, and is absolutely integrable in $(-\infty, \infty)$, then the Fourier integral representation of f(x) is

$$f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty f(t) \cos[\lambda(t-x)] dt d\lambda.$$

<u>Alternative form of Fourier Integral</u>: Denoting $A(\lambda) = \int_{-\infty}^{\infty} f(t) \cos(\lambda t) dt$ and

 $B(\lambda) = \int_{-\infty}^{\infty} f(t) \sin(\lambda t) dt$, the Fourier Integral representation of f(x) can be expressed as $f(x) = \frac{1}{\pi} \int_{0}^{\infty} [A(\lambda) \cos(\lambda x) + B(\lambda) \sin(\lambda x)] d\lambda$.

2. Fourier Cosine and Sine Integrals

- ► If f(x) is even, then the Fourier integral is called the **Fourier Cosine integral**, and is $f(x) = \frac{1}{\pi} \int_0^\infty A(\lambda) \cos(\lambda x) \, d\lambda$, where $A(\lambda) = 2 \int_0^\infty f(t) \cos(\lambda t) \, dt$.
- ► If f(x) is odd, then the Fourier integral is called the **Fourier Sine integral**, and is $f(x) = \frac{1}{\pi} \int_0^\infty B(\lambda) \sin(\lambda x) \, d\lambda$, where $B(\lambda) = 2 \int_0^\infty f(t) \sin(\lambda t) \, dt$.

3. Complex Form of the Fourier integral

If f(x) satisfies Dirichlet's Conditions in every finite interval of length 2L, and is absolutely integrable in $(-\infty, \infty)$, then the complex form of the Fourier integral of f(x) is

 $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{i\lambda(t-x)} dt d\lambda$. Alternatively, the complex form of the Fourier integral of f(x) can also be expressed as $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) e^{-i\lambda x} d\lambda$, where $F(\lambda) = \int_{-\infty}^{\infty} f(t) e^{i\lambda t} dt$.

Fourier Convergence Theorem : The complex form of the Fourier integral $\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\lambda)e^{-i\lambda x}d\lambda$ converges to f(x) at points of continuity and converges to $\frac{1}{2}[f(x-)+f(x+)]$ at points of discontinuity, where f(x-) and f(x-) are the left and right hand limits of f(x).

4. Fourier Transform pair

The function $F(\lambda) = \int_{-\infty}^{\infty} f(x) \mathrm{e}^{\mathrm{i}\lambda x} dx$ is called the Fourier transform of f(x), and the complex form of the Fourier integral of the function $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) e^{-\mathrm{i}\lambda x} d\lambda$ is called the inverse Fourier transform of F(s). The pair $(f(x), F(\lambda))$ is called a Fourier Transform pair, where λ is called the transform variable.

5. PROPERTIES OF FOURIER TRANSFORMS

Fourier Transform of f(x) is defined by $F(\lambda) = \int_{-\infty}^{\infty} f(x)e^{i\lambda x} dx$.

S.No.	Property Name	Function, $f(x)$	Fourier Transform function, $F(\lambda)$
1	Linearity	af(x) + bg(x)	$aF(\lambda) + bG(\lambda)$
2	Scaling	f(ax)	$\frac{1}{a}F\left(\frac{\lambda}{a}\right)$
3	Shifting	f(x-a)	$e^{ia\lambda}F(\lambda)$
4	Modulation	$f(x)\cos(ax)$	$\frac{1}{2}[F(\lambda+a)+F(\lambda-a)]$
		$f(x)\sin(ax)$	$\frac{1}{2}[F(\lambda+a)+F(\lambda-a)]$ $\frac{-i}{2}[F(\lambda+a)+F(\lambda-a)]$
5	Convolution	f(x)*g(x)	$F(\lambda)G(\lambda)$
6	Parseval's Identity (i) $\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) \bar{G}(\lambda) d\lambda = \int_{-\infty}^{\infty} f(x) \bar{g}(x) dx$		$f(x)\bar{g}(x)dx$
		(ii) $\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) ^2 d\lambda = \int_{-\infty}^{\infty} f(x) ^2 dx$	
7	Differentiation in	$f^n(x)$	$(i\lambda)^n F(\lambda)$
	the time domain		
8	Differentiation in	$x^n f(x)$	$i^n F^n(\lambda)$
	the frequency		
	domain		
9	Transform of the	$\int_{-\infty}^{x} f(t)dt$	$\frac{F(\lambda)}{i\lambda}$
	integral in time	$\int_{-\infty}^{\infty}$	$i\lambda$
	domain		

6. PROPERTIES OF FOURIER COSINE AND SINE TRANSFORMS

Fourier Cosine Transform (FCT) of f(x) is defined by $F_C(\lambda) = \int_0^\infty f(x) \cos(\lambda x) dx$.

Fourier Sine Transform (FST) of f(x) is defined by $F_S(\lambda) = \int_0^\infty f(x) \sin(\lambda x) dx$.

Property	Function, $f(x)$	FCT function, $F_C(\lambda)$	FST function, $F_S(\lambda)$
Name			
Linearity	af(x) + bg(x)	$aF_C(\lambda) + bG_C(\lambda)$	$aF_S(\lambda) + bG_S(\lambda)$
Scaling	f(ax)	$\frac{1}{a}F_{C}\left(\frac{\lambda}{a}\right)$	$\frac{1}{a}F_S\left(\frac{\lambda}{a}\right)$
Shifting	f(x-a)	$e^{ia\lambda}F_C(\lambda)$	$e^{ia\lambda}F_S(\lambda)$
Modulation	$f(x)\cos(ax)$	$\frac{1}{2}[F_C(\lambda-a)+F_C(\lambda+a)]$	$\frac{1}{2}[F_S(\lambda-a)+F_S(\lambda+a)]$
Modulation	$f(x)\sin(ax)$	$\left \frac{-1}{2} \left[F_S(\lambda - a) - F_S(\lambda + a) \right] \right $	$\frac{1}{2}[F_C(\lambda-a)-F_C(\lambda+a)]$
Parseval's	$\begin{bmatrix} 2 & \infty \\ 1 & 1 \end{bmatrix}$	_∞	$\begin{bmatrix} \infty & \infty & \infty \\ 2 & 0 & 0 \end{bmatrix}$
Identity	$\frac{2}{\pi} \int_{0}^{\infty} F_C(\lambda) G_C(\lambda) d\lambda = \int_{0}^{\infty} f(x) g(x) dx$ $\frac{2}{\pi} \int_{0}^{\infty} F_C(\lambda) ^2 d\lambda = \int_{0}^{\infty} f(x) ^2 dx$		$\begin{vmatrix} \frac{2}{\pi} \int_{0}^{\infty} F_{S}(\lambda) G_{S}(\lambda) d\lambda = \int_{0}^{\infty} f(x) g(x) dx \\ \frac{2}{\pi} \int_{0}^{\infty} F_{S}(\lambda) ^{2} d\lambda = \int_{0}^{\infty} f(x) ^{2} dx \end{vmatrix}$

7. Images of Fourier Transform pairs

