第四次习题课

伍文超 MJTDX USTC

1: (1) 证明 $GL_2(2)$ 同构于 S_3 .

(2) 证明 $PGL_2(3) \cong S_4$. 从而也有 $PSL_2(3) \cong A_4$ 因为其是 $PGL_2(3)$ 的指数为而的子群. $GL_n(\mathbb{F}_q)$ 简记为 $GL_n(q),q$ 是素数的幂.

证明: (1): 考虑:

$$GL_2(2)$$
 $(\mathbb{Z}_2 \oplus \mathbb{Z}_2) \setminus \{(0,0)^T\}$ \longrightarrow $(\mathbb{Z}_2 \oplus \mathbb{Z}_2) \setminus \{(0,0)^T\}$

上述作用是合理的, 因为 $GL_2(2)$ 中任意一个元素给出 $S=(\mathbb{Z}_2\oplus\mathbb{Z}_2)\setminus\{(0,0)^T\}$ 的一个置换 (元素是 可逆矩阵). 通过计算可知 $A \in GL_2(2)$ 在 S 上作用平凡当且仅当 $A = I_2$. 因此有单射 $GL_2(2) \hookrightarrow S_3$. 最后由 $|GL_2(2)| = 2 \cdot 3 = 6 = |S_3|$ 可知二者同构.

(2) 类似于 (1), 考虑 $\mathbb{Z}_3 \oplus \mathbb{Z}_3$ 中的四个子集 $V_i = \{a(i,1) \in \mathbb{Z}_3 \oplus \mathbb{Z}_3 | a = 0,1,2\}, i = 0,1,2,V_\infty = 0,1,2\}$ $\{a(1,0)\in\mathbb{Z}_3\oplus\mathbb{Z}_3|a=0,1,2\}$. 记 $S=\{V_0,V_1,V_2,V_\infty\}$. 同样的 $GL_2(3)$ 中任意一个元素给出 S的一个置换 (合理的),而且通过计算可知 $A \in GL_2(3)$ 在 S 上作用平凡当且仅当 A 是标量矩阵 (scalar matrices). 因此有单射 $GL_2(3)/Z(GL_2(3)) = PGL_2(3) \hookrightarrow S_4$. 最后由 $|GL_2(3)| = 24 = |S_4|$

Remark:(1) 类似的,我们可以取 $\mathbb{F}_q \oplus \mathbb{F}_q$ 中的 q+1 个子集 (一维子空间) $V_i = \{a(i,1) \in \mathbb{F}_q \oplus \mathbb{F}_q | a=0,1,\cdots,q-1\}, i=0,2,\cdots,q-1,V_{\infty}=\{a(1,0) \in \mathbb{F}_q \oplus \mathbb{F}_q | a=0,1,\cdots,p-1\},$ 记

 V_{q-1}, V_{∞} }. 同样的 $GL_2(q)$ 中任意一个元素给出 S 的一个置换 (合理的), 且只有标量矩阵给出平凡 作用, 因此我们得到单射 $PGL_2(q) \hookrightarrow S_{q+1}$

(2) 在线性代数中, 我们定义射影空间为 $ℝ^n$ 的所有一维子空间 (直线) 构成的集合 n=2 时就是射 影直线, n=3 时就是射影平面. 在此处我们可以类似的命名 (1) 中的集合为 \mathbb{F}_q 上的射影直线, 不 妨记为 PL(q). 根据我们的定义, $PL(q)=\{V_0,V_1,V_2,\cdots,V_{q-1},V_\infty\} \iff \mathbb{F}_q \bigcup \{\infty\}$ (将每一个直线 视作一个点),我们将二者视为恒等的. 如果取 \mathbb{F}_q^3 的二维子空间构成的集合则是射影平面 (有限射影平面,有 q^2+q+1 个点和线,每条线上 q+1 个点,每个点关联 q+1 条线.)
(3) 任意 $A=\begin{pmatrix} a & b \\ c & c \end{pmatrix} \in GL_2(q)$,我们有 $A(k(i,1)^T)=k(ai+b,ci+d)$, $A(k(1,0)^T)=k(a,0)$. 等

价的:

$$GL_2(q)$$
 $PL(q)$ \longrightarrow $PL(q)$

$$z \longrightarrow \frac{az+b}{cz+d} = \frac{a+b/z}{c+d/z}$$

2: 旋转群 SO(3) 是单群 (SO(n)?).

证明: 第一次习题课我们证明了 $SU(2)/\{\pm I_2\} \cong SO(3)$, 第四次作业说明了 SU(2) 的包含 $\{\pm I_2\}$ 的正规子群和 SO(3) 的正规子群是一一对应的,因此我们只需要说明 SU(2) 的真包含 $\{\pm I_2\}$ 的正 规子群 G 等于 SU(2). 回顾:

$$SU(2) = \left\{ \left(\begin{array}{cc} x & y \\ -\bar{y} & \bar{x} \end{array} \right) \middle| |x|^2 + |y|^2 = 1, x, y \in \mathbb{C} \right\}$$

从线性代数我们知道任意 $A \in SU(2)$ 酉相似于对角矩阵, 特征多项式有共轭复根或都为 ± 1 , 记为 $B_{\varphi} = \begin{pmatrix} e^{i\varphi} & 0 \\ 0 & e^{-i\varphi} \end{pmatrix}$, $\varphi \in [0,2\pi)$. 因此 SU(2) 的每个共轭类都含有对角矩阵, 而由于正规子群是共轭类的无交并, 因此 G 包含一个对角矩阵 $(\neq \pm I_2)$, 记为 B_{α_0} , $\alpha_0 \neq 0$, π . 自然的 $B_{\alpha_0}^{-1} = B_{2\pi-\alpha_0} \in G$, 故设 $0 < \alpha_0 < \pi$. 考虑 B_{α_0} 和 $\forall A \in G$ 的换位子:

$$\begin{split} [B_{\alpha_0},A] &= B_{\alpha_0}AB_{\alpha_0}^{-1}A^{-1} \\ &= \begin{pmatrix} e^{i\alpha_0} & 0 \\ 0 & e^{-i\alpha_0} \end{pmatrix} \begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix} \begin{pmatrix} e^{-i\alpha_0} & 0 \\ 0 & e^{i\alpha_0} \end{pmatrix} \begin{pmatrix} \bar{x} & -y \\ \bar{y} & x \end{pmatrix} \\ &= \begin{pmatrix} |x|^2 + |y|^2 e^{i2\alpha_0} & (e^{i2\alpha_0} - 1)xy \\ (1 - e^{-i2\alpha_0})\bar{x}\bar{y} & |x|^2 + |y|^2 e^{-i2\alpha_0} \end{pmatrix}. \end{split}$$

 $tr([B_{\alpha_0},A]) = 2|x|^2 + |y|^2(e^{i2\alpha_0} + e^{-i2\alpha_0} = 2(1-|y|^2) + 2|y|^2(-2sin^2\alpha_0 + 1) = 2(1-2|y|^2sin^2\alpha_0).$ 设 $[B_{\alpha_0},A]$ 和 B_{α_1} 共轭,故 $e^{i\alpha_1} + e^{-i\alpha_1} = 2cos\alpha_1 = 2-4|y|^2sin^2\alpha_0 \Rightarrow cos\alpha_1 = 1-2|y|^2sin^2\alpha_0 \in [1-2sin^2\alpha_0,1] = [cos2\alpha_0,1]$,因为 $0 \le |y|^2 \le 1$.

不妨设 $2\alpha_0 \leq 2\pi - 2\alpha_0$ (另一边类似),则有 α_1 可以取遍 $[0,2\alpha_0],[2\pi - 2\alpha_0,2\pi]$. 也就是说 $B_{\alpha_1} \in G, \forall \alpha_1 \in [0,2\alpha_0]$. 因为对于任意的 $\alpha > 0$, 存在 $n \in \mathbb{Z}_{\geq 0}$ 使得 $0 < \alpha/n \leq 2\alpha_0$, 因此 $B_{\alpha} \in G, \forall \alpha$, 即 G = SU(2).

Remark: 一般的,SO(2n+1) 是单群, $SO(2n)/\{\pm I_{2n}\}$ 是单群.

3: 如果域 F 有至少四个元素, 则 $SL_2(F)/\{\pm I_2\}$ 是单群 (一般的, $PSL_n(F_p)$ 呢?). **证明**: 我们先给出一些需要用到的子群:

$$U = \left\{ u(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \middle| x \in F \right\}$$

$$V = \left\{ v(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \middle| x \in F \right\}$$

$$D = \left\{ d(x) = \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \middle| x \in F^* \right\}$$

$$B = DU = UD = \left\{ \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \middle| x \in F^*, y \in F \right\}$$

再考虑 $[G,G] = \{ABA^{-1}B^{-1} \in G | A, B \in G\}$, 容易证明 [G,G] 是 G 的正规子群. $d(a)u(b)d(a)^{-1}u(b)^{-1} = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b(a^2-1) \\ 0 & 1 \end{pmatrix}$ 因此只需要 $a^2 \neq 1$,则可以得到 $U \subset [B,B] \subset U$,故 $U = [B,B] \leq [G,G]$. 进而 $wUw^{-1} = V \leq [G,G] \Rightarrow w = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in [G,G] \Rightarrow [G,G] = G.$

设 K 是 G 的正规子群,则 $B \le KB$. 若 $B=KB \Rightarrow K \in B \Rightarrow K=CKC^{-1} \subset \bigcap_{A \in G} ABA^{-1} = \{\pm I_2\}.$

若 $B \neq KB$, 则存在 $h \in KB \setminus B$ 且 $h = b_1wb_2 \Rightarrow w \in KB \Rightarrow KB = G$. 从而 $w = kb, k \in K, b \in B \Rightarrow V = wUw^{-1} = kbUb^{-1}k^{-1} = kUk^{-1} = kk_1U \subset KU \Rightarrow KU = G$, 故 $G/K = KU/K \cong U/U \cap K$ 是交换群,因此 $G = [G,G] \leq K \Rightarrow K = G$.

Remark: 一般的, 若 $n \geq 3$, 则 $PSL_n(q)$ 是单群 (利用 Iwasawa 定理).