KOSHA GUIDE A - 178 - 2019

> 콜타르피치 휘발물에 대한 작업환경측정·분석 기술지침

> > 2019. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 한국산업안전보건공단 산업안전보건연구원 직업환경연구실
- 제·개정 경과
- 2019년 11월 산업위생분야 제정위원회 심의(제정)
- 관련규격 및 자료
 - National Institute for Occupational Safety and Health, NIOSH Manual of Analytical methods (NMAM), 4th ed, www.cdc.gov/niosh/nmam
- Occupational Safety and Health Administration (U.S.A), Sampling and Analytical method, www.osha.gov/dts/sltc/methods/index.html
- Health and Safety Executive (U.K.), Methods for the Determination of Hazardous Substances (MDHS) guidance, www.hse.gov.uk/pubns/mdhs/
- American Conference of Governmental Industrial Hygienists(ACGIH): Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Ed, 2019.
- 관련법규·규칙·고시 등
- 산업안전보건법 시행규칙 제150조 (유해인자 허용기준)
- 산업안전보건법 시행규칙 제193조 (작업환경측정 대상작업장 등)
- 고용노동부 고시 제2017-27호 (작업환경측정 및 지정측정기관 평가 등에 관한 고시)
- 고용노동부 고시 제2018-62호 (화학물질 및 물리적인자의 노출기준)
- 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www. kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

○ 공표일자 : 2019년 12월 24일

○ 제 정 자 : 한국산업안전보건공단 이사장

콜타르피치 휘발물에 대한 작업환경측정·분석 기술지침

1. 목적

이 지침은 산업안전보건법 시행규칙 제150조(유해인자 허용기준)의 규정에 따른 허용기준 설정 대상 유해인자와 제193조(작업환경측정 대상 작업장 등)의 규정에 따른 작업환경측정 대상 유해인자 중 콜타르피치 휘발물에 대한 측정 및 분석을 수행할 때 정확성 및 정밀성을 유지하기 위하여 필요한 제반 사항에 대하여 규정함을 목적으로 한다.

2. 적용범위

이 지침의 적용대상은 산업안전보건법 시행규칙에서 정한 허용기준 설정 대상 유해 인자와 작업환경측정 대상 유해인자 중 콜타르피치 휘발물의 측정, 분석 및 이와 관련된 사항에 한한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음의 각 호와 같다.
 - (가) "밀폐"라 함은 취급 또는 보관 상태에서 고형(固形)의 이물(異物)이 들어가지 않도록 한 상태를 말한다.
 - (나) "밀봉"이라 함은 취급 또는 보관 상태에서 기체 또는 미생물이 침입할 염려가 없는 상태를 말한다.
 - (다) 중량을 "정확하게 단다."라 함은 지시된 수치의 중량을 그 자릿수까지 단다는 것을 의미한다.
 - (라) "약"이란 그 무게 또는 부피에 대하여 ± 10% 이상의 차가 있어서는 안 된다.
 - (마) 시험조작 중 "즉시"라는 용어는 30초 이내에 표시된 조작을 하는 것을 말한다.
 - (바) "검출한계"라 함은 주어진 분석절차에 따라 합리적인 확실성을 가지고 검출할 수 있는 가장 적은 농도나 양을 의미한다.

KOSHA GUIDE

A- 178 -2019

(2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 기준에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 시행규칙, 산업안전보건기준에 관한 규칙 및 작업환경측정 및 지정측정기관 평가 등에 관한 고시(고용노동부 고시제2017-27호)에서 정하는 바에 따른다.

4. 일반사항

- (1) 이 시험법에 필요한 어원, 분자식 및 화학명 등은 특별한 언급이 없는 한 () 내에 기재한다.
- (2) 원자량은 국제순수 및 응용화학협회(IUPAC)에서 제정한 원자량 표에 따른다. 분자 량은 소수점 이하 제 2단위까지 하고 제 3단위에서 반올림한다.
- (3) 이 시험법에 규정한 방법이 분석화학적으로 반드시 최고의 정밀도와 정확도를 갖는다고는 할 수 없으며 이 시험방법 이외의 방법이라도 동등 이상의 정확도와 정밀도가 있다고 인정될 때에는 그 방법을 사용할 수 있다.
- (4) 이 시험방법에 표시한 사항 중 회수율, 검출한계 등은 각조의 조건으로 시험하였을 때 얻을 수 있는 값을 참고하도록 표시한 것이므로 실제로는 그 값이 분석조건에 따라 달라질 수 있다.
- (5) 시료의 시험, 바탕시험 및 표준액에 대한 일련의 동일시험을 행할 때 사용하는 시약 또는 시액은 동일 롯트(LOT)로 조제된 것을 사용하다.
- (6) 이 시험법에 사용하는 유효숫자는 따로 규정이 없는 한 한국산업규격 KS Q 5002 (데이터의 통계적 해석방법)에 따른다.
- (7) 이 시험법에 규정하지 않는 사항에 대해서는 일반적인 화학적 상식에 따르되 이 시험법에 기재한 방법 중 세부조작은 시험의 본질에 영향을 미치지 않는 범위 내에 서 시험자가 적당히 변경 조절할 수 있다.
- (8) 단위 및 기호 : 길이, 넓이, 부피, 농도, 압력 또는 무게를 나타내는 단위 및 기호는 아래 표에 따른다. 여기에 표시되어 있지 않은 단위는 한국산업규격 KS A ISO 80000-1(양 및 단위-제1부: 일반사항)에 따른다.

종류	단위	기호	종류	단위	기호
길이	미터	m	농도	몰농도	M
	센티미터	cm		노르말농도	N
	밀리미터	mm		밀리그램/리터	mg/L
	마이크로미터	μm		마이크로그램/밀리리터	μg/mL
	나노미터	nm		퍼센트	%
압력	기압	atm	부피	세제곱미터	m^3
	수은주밀리미터	mmHg		세제곱센티미터	cm^3
	수주밀리미터	mmH ₂ O		세제곱밀리미터	mm^3
넓이	제곱미터	m^2	무게	킬로그램	kg
				그램	g
	제곱센티미터	cm^2		밀리그램	mg
	제곱밀리미터	mm^2		마이크로그램	μg
용하	리터	L			
	밀리리터	mL			
	마이크로리터	μL			

(9) 온도

- (가) 온도의 표시는 셀시우스(Celsius) 법에 따라 아라비아숫자 오른쪽에 ℃를 붙인다. 절대온도는 K로 표시하고 절대온도 0 K는 -273℃로 한다.
- (나) 상온은 15~25℃, 실온은 1~35℃, 미온은 30~40℃로 한다. 냉소는 따로 규정이 없는 한 15℃이하의 곳을 뜻한다.

(10) 농도

- (가) 액체 단위부피중의 성분질량 또는 기체 단위부피중의 성분질량을 표시할 때에는 중량/부피(w/v)%의 기호를 사용한다. 액체 단위부피중의 성분용량, 기체 단위 부피중의 성분용량을 표시할 때에는 부피/부피(v/v)%의 기호를 사용한다. 백만분의 용량비를 표시할 때는 ppm(part per million)의 기호를 사용한다.
- (나) 공기 중의 농도를 mg/m³으로 표시했을 때의 m³은 정상상태(NTP, Normal Temperature and Pressure : 25℃, 1기압)의 기체용적을 뜻한다. 따라서 노출기 준과 비교 시는 작업환경 측정 시의 온도와 압력을 실측하여 정상상태의 농도로 환산하여야 한다.

KOSHA GUIDE

A- 178 -2019

(11) 시약. 표준물질

- (가) 분석에 사용되는 시약은 따로 규정이 없는 한 화학용 시약에 규정된 일급이상 의 것을 사용하여야 한다. 분석에 사용하는 시약은 제조회사에서 표시하는 농도 함량을 따른다.
- (나) 광도법, 전기화학적분석법, 크로마토그래피법, 고성능액체크로마토그래피법에 쓰이는 시약은 특히 순도에 주의해야 하고, 분석에 영향을 미치는 불순물을 함유할 염려가 있을 때는 미리 검정하여야 한다.
- (다) 분석에 사용하는 지시약은 특이한 것을 제외하고는 한국산업규격 KS M 0015 (화학 분석용 지시약 조제방법)에 규정된 지시약을 사용한다.
- (라) 시험에 사용하는 표준품은 원칙적으로 특급시약을 사용하며, 표준용액을 조제하기위한 표준용 시약은 따로 규정이 없는 한 적절히 보관되어 오염 및 변질이 안 된 상태로 보존된 것을 사용한다.
- (12) 측정·분석 방법에 사용하는 증류수는 따로 규정이 없는 한 정제증류수 또는 이 온교환수지로 정제한 탈염수(脫鹽水)를 말한다.

(13) 기구

- (가) 계량기구중 측정값을 분석결과의 계산에 사용할 목적으로 사용되는 것은 모두 보정하는 것을 원칙으로 한다.
- (나) 중량분석 용 저울은 적어도 10^{-5} g(0.01 mg)까지 달수 있어야 하며, 화학분석용 저울은 적어도 10^{-4} g(0.1 mg)까지 달 수 있어야 하며, 국가검정을 필한 제품 또는 이에 준하는 검정을 필한 제품이어야 한다.
- (다) 이 시험법에서 사용하는 모든 유리 기구는 한국산업규격 KS L 2302(이화학용 유리기구의 모양 및 치수)에 적합한 것 또는 이와 동등이상의 규격에 적합한 것으로 국가에서 지정한 기관에서 검정을 필한 것을 사용하여야 한다.
- (라) 여과용 기구 및 기기는 특별한 언급이 없이 "여과한다"라고 하는 것은 한국산업 규격 KS M 7602(거름종이(화학 분석용)) 거름종이 5종 또는 이와 동등한 여과 지를 사용하여 여과함을 말한다.

5. 시료채취 및 분석 시 고려사항

(1) 시료채취 기구 및 측정방법의 선택

시료채취의 목적과 시료채취시간, 방해인자, 예상되는 오염농도 및 실험실에서 보유하고 있는 분석장비의 능력 등을 종합적으로 고려하여 최적의 시료채취기구 및 분석방법을 선택한다.

콜타르피치 휘발물

(Coal Tar Pitch Volatiles, CTPV)

분자식: - **호학식**: - **분자량**: - **CAS No.**: 65996-93-2 아스팔트

녹는점: - 꿇는점: - 비 중: - 용 해 도: -

특징, 발생원 및 용도: 금속 및 주조공장, 전기장비 설치, 파이프 코팅 작업 및 건설현장에서 사용됨

고용노동부 (mg/m³) 0.2 OSHA (mg/m³) 0.2 노출기준 ACGIH (mg/m³) 0.2 NIOSH (mg/m³) -

동의어: -

분석원리 및 적용성: 작업환경 중 대상물질을 여과지에 채취하고 벤젠으로 추출하여 중량분석한다.

시료채취 개요	분석 개요
■ 시료채취매체: 유리섬유여과지	■ 분석기술 : 중량분석법
■ 유량: 2~3 L/min	■ 분석대상물질 : 벤젠 추출물
■ 공기량 960 L	■ 탈 착: 3 mL 벤젠 초음파처리 20분
■ 운반: 빛에 노출을 최소화하여 운반	■ 검출한계: 6 µg/sample
■ 시료의 안정성: 상온(20℃)에서 최소 15일간 안	
정함	
■ 공시료: 시료 세트당 2~5개의 현장 공시료	
방해작용 및 조치	정확도 및 정밀도
■ 벤젠에 용해될 수 있는 물질에 의한 방해작용	■ 연구범위(range studied): -
■ PTFE 컵에 달라붙거나 혹은 떨어져 나오는	■ 편향(bias): -
물질이 중량분석에 영향을 줄 수 있음	■ 총 정밀도(overall precision): -
	■ 정확도(accuracy): -
	■ 시료채취분석오차: 0.3

시약	기구
■ 벤젠 : HPLC 시약 등급	■ 시료채취매체: 유리섬유여과지, 2단카세트홀더
■ 테트라하이드로퓨란(Tetrahydrofuran, THF)	■ 개인시료채취펌프(유연한 튜브 사용)
: HPLC 시약등급	■ 유량: 2 L/min
■ 질소가스	■ 저울(0.001 mg까지 칭량가능)
	■ 진공오븐
	교반기
	■ 13 mm 스테인리스 필터 홀드, 필터와 결합 가
	능한 10 mL 유리 실린지
	■ 13 mm PTFE 필터, 공극 5 μm
	■ 2 mL PTFE 컵과 운반용 받침대
	■ 2 mL 일회용 피펫
	■ 일회용 배양튜브(13×100mm)
	■ 핀셋, 용량플라스크, 피펫, 실린지
	■ 바이알, PTFE 캡
	■ 알루미늄호일
	※ 시료 채취 전·후 사용되는 저울은 반드시 동
	일한 저울을 사용해야 함
	※ 저울은 정기적으로 검교정을 실시해야함

 특별 안전보건 예방조치: 콜타르피치는 사람에게 충분한 발암성 증거가 있는 물질(1A, 고용노동부 노출기준 고시 기준)이므로 특별한 주의를 기울여야 한다.

I. 시료채취

- 1. 시료채취시와 동일한 연결 상태에서 각 시료채취펌프를 보정한다.
- 2. 유량 약 2~3 L/min으로 약 960 L의 공기 중 시료를 채취한다.
- 3. 시료채취가 끝나면 깨끗한 핀셋을 사용하여 여과지를 1/4로 접어 바이알에 넣어 운반한다. 이때 필터 위에 채취된 입자상 물질들이 떨어지지 않도록 해야 하며 카세트 외벽에 붙어 있는 물질은 접힌 여과지로 닦아준다. PTFE 마개로 막고 알루미늄호일로 감싸 빛에 노출을 최소화한다.

Ⅱ. 시료 전처리 및 분석

【벤젠 용매 추출(반드시 후드안에서 작업할 것)】

- 4. PTFE 컵을 테트라하이드로퓨란(THF)으로 몇 분 동안 초음파세척 후 깨끗한 THF로 두 번 정도 더 헹궈준다. 번호가 적혀진 홀더에 컵을 넣고 미리 예열된 오븐(40℃, 약 20 in. Hg vacuum) 에서 1시간 동안 방치한다. 이 후 실온에서 컵을 식혀 무게를 재준다.
- 5. 시료채취된 여과지가 들어있는 바이알에 3 mL 벤젠을 첨가한고 60분 동안 흔들어준다.
- 6. 13 mm PTFE 필터(공국 5 µm)를 스테인리스 스틸 홀더에 넣고 실린지와 결합시킨다. 연결부위 누출을 확인하기 위해 실린지로 벤젠 3 mL를 분취하여 질소를 사용한 여과장치를 통해 밀어 누출 여부를 확인한다. 고무스토퍼는 실린지 배럴을 10 psig 로 가압하기 위하여 질소라인에서 사용된다. 질소를 사용하여 여과지를 30초 동안 건조시켜준다.

- 7. 바이알의 벤젠 추출물을 실린지에 옮긴다(한 시료당 한 실린지 사용). 만약 바이알에 입자상물질의 양이 많을 경우 추출물을 모두 실린지에 옮겨준다. 질소의 압력으로 여과된 벤젠 추출물을 일회용 배양튜브에 옮겨준다.
- 8. 벤젠 추출물 1.5 mL를 중량을 잰 PTFE 컵에 분취한다.
- 9. PTFE 컵을 예열된 오븐(40℃, 약 15 in. Hg vacuum)에 두고 공기를 주입하여 벤젠이 휘발되도록 3-4시간정도 가열해준다. 공기 배출구를 막고 한 시간 동안 건조시킨다.
- 10. 필요시 배양튜브에 남아있는 벤젠용액 중의 PAHs(고성능액체크로마토그래피법)를 분석할 수 있다.

III. 계산

다음 식에 의하여 농도를 구한다.

【벤젠 용매 추출】

: 벤젠 용매 추출의 농도(μg/m³)는 추출 전후의 PTFE 컵의 중량(μg)에 의해 결정된다. 계산식의 상수 2는 샘플의 1/2을 사용한데 대한 값이다.

$$C\left(ug/m^{3}\right) = \frac{2 \times \left[\left(final\,wt_{s} - tare\,wt_{s}\right) - \left(final\,wt_{b} - tare\,wt_{b}\right)\right]}{V \times 1000}$$

C : 분석물질의 농도(μg/m³)

final wt_s : 시료 컵의 전처리 전 무게(μg) tare wt_s : 시료 컵의 전처리 후 무게(μg) final wt_b : 공시료 컵의 전처리 전 무게(μg) tare wt_h : 공시료 컵의 전처리 후 무게(μg)

V : 공기채취량(L)

Ⅳ. 비고

- 이 방법은 OSHA Method 58에 기초하였다.
- 다른 방법은 NIOSH Method 5042 등이 있다.
- 건강영향 및 예방조치: 실험은 실험실 후드 내에서 수행되어야 하고, 실험실 내에서는 보안경과 실험복을 착용하고 실험해야 한다.

V. 참고문헌

- 1. 고용노동부 고시 제2018-62호, 화학물질 및 물리적인자의 노출기준, 2018.
- 2. 고용노동부 고시 제2017-27호, 작업환경측정 및 지정측정기관 평가 등에 관한 고시, 2017.
- 3. American Conference of Governmental Industrial Hygienists(ACGIH): Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Ed, 2019.
- 4. National Institute for Occupational Safety and Health (NIOSH): NIOSH pocket guide to chemical hazards and other databases, 2018.
- 5. Occupational Safety and Health Administration(OSHA): Sampling and Analytical Methods, Method 58.