Program Structures and Algorithms Spring 2023(SEC –1)

NAME: Manish Shivaprasad

NUID:002766390

Task

1.A cutoff (defaults to, say, 1000) which you will update according to the first argument in the command line when running. It's your job to experiment and come up with a good value for this cutoff. If there

are fewer elements to sort than the cutoff, then you should use the system sort instead.

2.Recursion depth or the number of available threads. Using this determination, you might decide on

an ideal number (t) of separate threads (stick to powers of 2) and arrange for that number of partitions

to be parallelized (by preventing recursion after the depth of lg t is reached).

3.An appropriate combination of these.

Relationship Conclusion

During the experiment, it was observed that increasing the number of threads used did not result in significant performance improvements beyond a certain point, even when the cut-off values were kept the same. For instance, increasing the number of threads from 16 to 32 did not yield noticeable benefits. It was found that setting the cut-off value to half of the array size produced reasonably good results. It was found that from 16 threads the running time started give almost constant results. After cut-off value of more than half of the array size running time increased was gave almost constant results. The values

obtained varies from computer to computer depending on the number of cores the processor has.

Evidence to support that conclusion

The conclusion is based on evidence gathered from an experiment, which is presented in the form of an

Excel sheet. The data from the experiment supports the conclusion that has been drawn.

Data Obtained for array size of 2 million

Cut off	2 Threads	4 Threads	8 Threads	16 Threads	32 Threads
100000	137.8	79.2	89.6	70.4	72
200000	75.2	72.5	77.2	63.9	64.9
300000	74.6	68.2	83	63.7	64.8
400000	70.2	73	74.5	63.1	64.9
500000	70.8	69.8	71.5	65.6	64.8
600000	67.9	69.3	70.2	65.8	64.2
700000	66.8	69.3	70.8	65.6	65
800000	67.4	69.2	70.4	65.6	65.8
900000	67.8	68.6	69.5	65.4	63.8
1000000	67.9	69.2	69.9	63.2	67
1100000	87.1	87.2	93.3	85.6	85.5
1200000	87.3	88.4	90.7	84.2	85.5
1300000	92.6	87.2	88.7	82.3	84.5
1400000	87.8	85.4	84.3	84.8	83.2
1500000	86.1	86.9	86.3	84.3	83
1600000	88.3	88.1	86.7	84.9	85.6
1700000	86.7	88	86.2	86.2	85
1800000	85.9	88.3	85.1	83.4	84.7
1900000	86	88.8	84.5	86.1	83.3
2000000	86.1	86.7	85.9	84.2	84.5

Data obtained for array size of 3 million

Cuttoff	2 Threads	4 Threads	8 Threads	16 Threads	32 Threads
100000	101.7	113.5	104.9	99.8	102
200000	97.9	99.4	100.7	98.5	98.4
300000	99.5	100.8	103	98.1	98.1
400000	100.6	102.7	112.5	99.8	103.7
500000	102.9	103.1	107.5	99.2	107.7
600000	102.1	104.5	102.9	104.6	108.6
700000	104.1	104	104.4	99.7	107.7
800000	101.7	102.4	101.5	101.3	108
900000	100.7	101.1	102.4	100.6	107.9
1000000	99.4	103.6	103.5	101.3	107.5
1100000	101.6	103.2	101	101.6	111.2
1200000	102.7	101.4	101.1	100.9	109.2
1300000	109.2	100.7	102.6	100.7	108.1
1400000	113.8	100.9	105.8	103.5	108.7
1500000	107.2	100.1	103.4	101.3	110.7
1600000	138.1	134.4	136.8	134	135.2
1700000	141.1	132.7	135.2	131.4	135.1
1800000	132.3	131.2	133.5	132.7	135.1
1900000	133.2	131.7	137.4	130	135
2000000	130.1	131.2	132.9	133.3	139.5
2100000	132	136.5	135	130.1	136.2
2200000	132.2	132.6	132.3	134	134.5
2300000	130.4	142.4	135.6	132.5	136.2
2400000	148.2	135	134	131.5	145.6
2500000	141	145.6	131.9	132	134.4
2600000	133.1	145.4	133.8	132.1	138.7
2700000	133.7	135.3	133.4	133.3	141.3
2800000	135.7	133.8	134.1	130	140.3
2900000	133.6	133.1	133.2	129.4	135.5
3000000	131.6	140.9	132.3	128.4	136.2

Data obtained for array size of 4 million

Cuttoff	2 Threads	4 threads	8 threads	16 Threads	32 Threads
100000	161.3	154.7	172.3	172.5	186.6
200000	149.5	147	156.3	161.5	155.5
300000	146.3	149.9	151	155.9	150
400000	153.3	147.4	149.6	156.6	148.1
500000	161.1	149.4	145.3	149.5	149.5
600000	153.4	152.2	150	154.2	152
700000	150.8	149.7	150.6	158.7	151.2
800000	149.3	150.8	152.7	162.3	159.9
900000	153.6	147.2	152.6	166.8	155.1
1000000	153.1	156	146.6	159.7	153.4
1100000	150.1	148.9	149.1	154.8	151.6
1200000	156.4	150.9	146.2	154.6	154.2
1300000	151.7	150	149.6	150.7	153.4
1400000	149.4	148.6	154.8	155.9	155.6
1500000	151.2	149.9	149.3	155.7	162.1
1600000	154.5	147.9	156.4	151.8	176.8
1700000	154.2	147.9	150.4	151.4	169.2
1800000	152.3	145.7	146.9	151.3	167.2
1900000	149.1	147.7	148.1	153.8	170.5
2000000	150.3	147.3	162.3	152.1	169.2
2100000	184	182.7	204.5	185.5	202.7
2200000	182.9	182	194.6	186.7	199.3
2300000	183.7	183	185.3	189.3	199.4
2400000	186.9	183.9	185.2	190.5	189.8
2500000	191.1	196.6	187	191	188.7
2600000	181.9	180.3	187.7	189.2	188.9
2700000	183.5	182.7	187.7	196	185.1
2800000	182.9	179	186.5	189.5	183.2
2900000	182.5	180.2	190.9	197.2	187.4
3000000	181.5	181.5	184	189.8	187.9
3100000	185.1	183.8	191.9	195.8	186.3
3200000	181.8	180.1	189.9	191.9	189.5
3300000	181.7	181.1	183.6	192.9	191.6
3400000	186.5	179.3	183.5	192.6	190.7
3500000	182.6	179.1	182	193.6	188.5
3600000	185.3	180.1	184.7	195.1	190.5
3700000	183	179.5	184.1	206.9	190.1
3800000	181.4	181.2	188.2	195.1	201.2
3900000	183.2	180.1	188.6	193.6	202.7
4000000	181	188	182.4	193.4	191.4

Data obtained for array size of 5 million

	2 Threads	4 Threads	8 Threads	16 Threads	32 Threads
100000	228	249.7	242.4	217	218.
200000	192	219.7	201.2	205	205.
300000	201.8	220.8	195.6	234.1	199
400000	199.5	203.6	218.3	220	225
500000	204.2	203	200.6	226.6	199
600000	196.6	198.8	188.7	208.2	192
700000	193.5	209.3	192.6	193.9	193
800000	195.7	206.9	194.9	199.1	193.
900000	199.2	200.3	194.2	201.6	190
1000000	202.2	201.6	214	191.6	252
1100000	203.7	207.2	211.5	194.3	212
1200000	207.4	201.7	215.4	194.5	218
1300000	201.8	199	207.5	199.3	194
1400000	193	200.2	204.4	193	19
1500000	196.3	202.3	198.4	200.4	202
1600000	195.1	198.8	189.6	200.2	186
1700000	202	195.3	195.3	206.5	191
1800000	210.2	196.5	190.3	228.6	191
1900000	218.1	199.4	207	205.3	187
2000000	258.2	196.6	216.2	234.2	195
2100000	214.3	201.1	204.2	269	202
2200000	200.4	200.3	211.7	290.9	198
2300000	191.6	199.2	214.3	270	197
2400000	193.1	199.8	210.7	217.4	215
2500000	190.4	205.7	205.3	209.9	24
2600000	238.1	249.7	237.3	244.2	253
2700000	259.1	245.3	235.9	246	243
2800000	250.7	261.5	244	241.4	242
2900000	240	245.2	238.6	239.4	23
3000000	244.8	241	243.6	244.2	241
3100000	242	245.8	239.5	245.2	233
3200000	245.4	248.6	242.4	246.2	234
3300000	252.8	255.4	238.4	253.9	249
3400000	256.7	243.8	242.4	243.4	237
3500000	251.6	250.6	241	247.5	232
3600000	244.1	241.3	249.1	249.4	230
3700000	241.1	243	243.8	243	232
3800000	243.9	250.2	240	249.9	232
3900000	248.3	245.6	239.4	243.7	231
4000000	251.2	243	243.3	246.2	230
4100000	246	248.4	244.4	239.9	233
4200000	244.9	247.3	245.6	251.5	237
4300000	244.7	242.3	240.7	244.6	234
4400000	247.1	245.5	241.6	243.2	238
4500000	249.8	245.5	248.2	242.7	229
4600000	244.8	247.1	321	243.6	238
4700000		241.9	249	234.8	236
4800000		238.6	246.7	237.2	235
4900000		246.1	244.1	235.1	232
5000000		249.5	237.3	239.1	233

Graphical Representation

Below is the graphs obtained by plotting cuttoff vs Execution time on x axis and y axis respectively.

Graph obtained for array size of 2 million

Graph obtained for array size of 3 million

Graph obtained for array size of 4 million

Graph obtained for array size of 5 million

