Ch 5 Dynamic programming

5.1 general method

Concept

- Dynamic programming is a kind of design method
- The concept is to take the process of solving a problem to be a sequence of decision making → then, find the best one as the final result
- If the decision can obtain the optimal solution
 - > the decision process satisfy the principle of optimality
 - → the way to the optimal solution (i.e., the middle product) of the optimal result is also optimal

Example 5.5: shortest path

- Give a graph. Each edge on the graph has a weight value.
- Assume that we can find a shortest path from node i to node j as i, i_1 , i_2 , ..., i_k , j
- Based on the principle of optimality the path i_1 , i_2 , ..., i_k , j is also the shortest path from node i_1 to j

Proof of Example 5.5

- Assume that i_1 , i_2 , ..., i_k , j is not the shortest path
- We can find another path i_1 , r_1 , r_2 , ..., r_k , j, and this path is shorter than i_1 , i_2 , ..., i_k , j
- Which implies the path i, i_1 , i_2 , ..., i_k , j is not optimal
- \rightarrow contradiction, so i, i₁, i₂, ..., i_k, j is optimal

Example 5.6: 0/1 knapsack

Select n items to put in the knapsack. Those items cannot be divided.
 (w_i is the weight of i, p_i is the profit of i)

- We can use KNAP(l, j, y) to express the above problem
 - I: start of items
 - j: end of items
 - y: capacity

Example 5.6: 0/1 knapsack

- Let $y_1, y_2, ..., y_n$ is an optimal 0/1 series to express if the items $x_1, x_2, ..., x_n$ are selected
 - For example: when $y_1 = 1 \rightarrow x_1$ is selected, when $y_1 = 0 \rightarrow x_1$ is not selected
- If $y_1 = 0 \rightarrow$ this implies $y_2, y_3, ..., y_n$ must be the optimal solution of KNAP(2, n, m); otherwise, the $y_1, y_2, ..., y_n$ is not optimal
- If $y_1 = 1 \rightarrow$ this implies $y_2, y_3, ..., y_n$ must be the optimal solution of KNAP(2, n, m-w₁); otherwise, we can find another series $z_2, z_3, ..., z_n$ that can obtain more profit

Example 5.7

- If node k is a neighbor of node i and node k has the shortest path to node j
 - → The shortest path from node i to node j will include the shortest path from node k to node j
- Example 5.9 → extend to general case
 - If the shortest path from i to j (i, i_1 , ..., k, p_1 , p_2 , ..., j) includes a middle node k
 - \rightarrow (i, i₁, ..., k) is the shortest path from i to k
 - \rightarrow (k, p₁, p₂, ..., j) is the shortest path from k to j

Example 5.8

- Let g_i(y) represent an optimal solution of KNAP(j+1, n, y)
- \rightarrow g₀(m) is the optimal solution of KNAP(1, n, m)
- $\rightarrow g_0(m) = \max \{ g_1(m), g_1(m-w_1) + p_1 \}$

Example 5.10/5.13

- Forward
 - $g_i(y) = \max \{ g_{i+1}(y), g_{i+1}(y-w_{i+1}) + p_{i+1} \}$
 - $g_n(y)=0$ for all y>=0 and $g_n(y)=-\inf$ for y<0

- Backward
 - $f_i(y) = \max \{ f_{j-1}(y), f_{j-1}(y-w_j) + p_j \}$
 - $f_0(y) = 0$ for all y > 0 and $f_0(y) = -\inf for y < 0$

Example 5.11 (0/1 knapsack)

- Assume that
 - n = 3, and m = 6 (capacity)
 - $W_1=2$, $W_2=3$, $W_3=4$
 - $p_1=1$, $p_2=2$, $p_3=5$
- To took forward, we aim to obtain $g_0(6)$
- \rightarrow $g_0(6) = \max \{g_1(6), g_1(6-w_1) + p_1\}$ = $\max \{g_1(6), g_1(4) + 1\}$

5.2 Multi-stage graph

Model

- A multi-stage graph G=(V, E) is a directed graph
- All vertices can be divided as k disjoint sets
- Set v_1 contains one node \rightarrow as source s
- Set v_k contains one node \rightarrow as sink t
- The terminals of each edge will be located in different sets
- Each edge has a cost value \rightarrow ex: the cost of edge (i, j) is c(i, j)
- The multi-stage graph problem is to find a minimum cost path from s to t

A practical application

- There are n resources for r projects
- If a project i has j resources, the profit will be N(i, j)
- \rightarrow can be expressed as a (r+1) stage graph problem

- 4 resources
- 3 projects

Solve by dynamic programming

- The i-th decision will decide to use which vertex in V_{i+1} set
 - p(i, j) represent a shortest path from vertex j (in set V_i) to the sink
 - cost(i, j) is the cost of path p(i, j) \rightarrow i is i-th set V_i , j is j-th node in V_i

$$cost(i,j) = \min_{\substack{l \in V_{i+1} \\ \langle j,l \rangle \in E}} \{c(j,l) + cost(i+1,l)\}$$

- cost(x 1, 1) c(1, t) ii iii k (1, t) iii L / tire cost iii tire iast stage wiii be the link cost to the sink
- cost(k-1, j) = inf if link (j, t) not in E

Strategy

- Start from the last stage
 - \rightarrow calculate cost(k-2, j), for all j in V_{k-2}
 - \rightarrow calculate cost(k-2, j), for all j in V_{k-3}
 - •
 - \rightarrow cost(1, s)

Path recorder

- After obtaining the final cost value, we can record the process of calculating path
- Use d(i, j) to record the process
 - Ex: $d(3, 6) = 10 \rightarrow A$ shortest path is by the node 6 in stage 3 going through node 10

$$d(3,6) = 10;$$
 $d(3,7) = 10;$ $d(3,8) = 10;$ $d(2,2) = 7;$ $d(2,3) = 6;$ $d(2,4) = 8;$ $d(2,5) = 8;$ $d(1,1) = 2$

Let the minimum-cost path be $s = 1, v_2, v_3, \dots, v_{k-1}, t$. It is easy to see that $v_2 = d(1,1) = 2, v_3 = d(2,d(1,1)) = 7$, and $v_4 = d(3,d(2,d(1,1))) = d(3,7) = 10$.

 In the pseudocode cost(i, j) → cost(j)

```
Algorithm FGraph(G, k, n, p)
   // The input is a k-stage graph G = (V, E) with n vertices
   // indexed in order of stages. E is a set of edges and c[i,j]
   // is the cost of (i, j). p[1:k] is a minimum-cost path.
         cost[n] := 0.0;
         for j := n - 1 to 1 step -1 do
         \{ // \text{ Compute } cost[j]. 
             Let r be a vertex such that \langle j, r \rangle is an edge
10
             of G and c[j,r] + cost[r] is minimum;
             cost[j] := c[j,r] + cost[r];
             d[j] := r;
12
13
14
         // Find a minimum-cost path.
15
        p[1] := 1; p[k] := n;
        for j := 2 to k-1 do p[j] := d[p[j-1]];
16
17
```

5.3 All pair shortest path

Model

- Give a digraph G=(V, E). Each edge has a cost value.
- The target is to find the shortest paths from every node to all other nodes.
 - The G contains no cycle with negative values

• The simplest way is to execute shortest path algorithm for n times

Design concept

- The principle of optimality can be preserved → solve by DP
- Give each node an index value
- Let A^k(i, j) be the shortest path from i to j
 - The indices of the middle nodes are all smaller than k

$$A(i, j) = \min\{\min_{1 \le k \le n} \{A^{k-1}(i, k) + A^{k-1}(k, j)\}, cost(i, j)\}$$

From all possible middle nodes, select the smallest cost one

The direct link from i to j

From i to k, the index of the middle node do not exceed k-1

Design concept

- For a A^k(i, j),
 - if the shortest path from i to j passed the node $k \rightarrow A^{k}(i, j) = A^{k-1}(i, k) + A^{k-1}(k, j)$
 - Otherwise $\rightarrow A^k(i, j) = A^{k-1}(i, j)$
- \rightarrow So $A^{k}(i, j) = \min\{A^{k-1}(i, j), A^{k-1}(i, k) + A^{k-1}(k, j)\}$
- To derive all pair shortest path \rightarrow find $A^1(i, j) \rightarrow A^2(i, j) ... \rightarrow A^n(i, j)$
- Since the group has n nodes \rightarrow A(i, j) = Aⁿ(i, j)

```
Algorithm AllPaths(cost, A, n)
   // cost[1:n,1:n] is the cost adjacency matrix of a graph with
\begin{matrix}2\\3\\4\\5\end{matrix}
  //n vertices; A[i,j] is the cost of a shortest path from vertex
   // i to vertex j. cost[i, i] = 0.0, for 1 \le i \le n.
         for i := 1 to n do
6
              for j := 1 to n do
                   A[i,j] := cost[i,j]; // Copy cost into A.
89
         for k := 1 to n do
              for i := 1 to n do
                   for j := 1 to n do
10
                       A[i,j] := \min(A[i,j], A[i,k] + A[k,j]);
11
12
```

Algorithm 5.3 Function to compute lengths of shortest paths

(a) Example digraph

A^0	0 6 3	2	3	A^1	1	2	3	
1	0	4	11	1	0	4	11	
2	6	0	2	2	6	0	2	
3	3	∞	0	3	3	7	0	
(b) A ⁰				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
A^2	1	2	3	A^3	1	2	3	
A ²	1	2	<u>3</u>	$\frac{A^3}{1}$	0	2	<u>3</u>	
1 2	1 0 6	2 4 0	3 6 2	1 2	0 5	2 4 0	3 6 2	
1 2 3	1 0 6 3	2 4 0 7	3 6 2 0	1 2 3	1 0 5 3	2 4 0 7	3 6 2 0	

5.4 Single source shortest path: general

Model

- The costs of edges can be negative (without negative loops)
- Let dist[|][u] be the shortest path from v to u, and this path contains at most I edges
- Target: calculate distn-1[u] for all u in G

Observations

- If the shortest path from v to u contains at most k edges
 - The shortest path has at most k-1 edges \rightarrow dist^{k-1}[u] = dist^k[u]
 - The shortest path has k edges \rightarrow dist^k[u] = dist^{k-1}[i] + cost[i,u], i.e.,

the path to u will pass through i

```
dist^{k}[u] = min \{dist^{k-1}[u], min_{i} \{dist^{k-1}[i] + cost[i,u] \}\}
```

Example

	dist ^k [17]								
k	1	2	3	4	5	6	7		
1	0	6	5	5	∞	∞	∞		
2	0	3	3	5	5	4	∞		
3	0	1	3	5	2	4	7		
4	0	1	3	5	0	4	5		
5	0	1	3	5	0	4	3		
6	0	1	3	5	0	4	3		

Bellman ford

```
Algorithm BellmanFord(v, cost, dist, n)
    // Single-source/all-destinations shortest
    // paths with negative edge costs
4
         for i := 1 to n do // Initialize dist.
              dist[i] := cost[v, i];
         for k := 2 to n - 1 do
              for each u such that u \neq v and u has
9
                       at least one incoming edge do
                  for each \langle i, u \rangle in the graph do
10
                       if dist[u] > dist[i] + cost[i, u] then
                            dist[u] := dist[i] + cost[i, u];
12
13
```

5.6 String matching

Model

- Give you two strings $X=x_1, x_2, ..., x_n$ and $Y=y_1, y_2, ..., y_m$
- We aim to change X to be the same as Y
- There are three operations, and they have costs as below
 - Insert: $I(y_i) \rightarrow put$ the symbol y_i to X
 - Delete: $D(x_i) \rightarrow delete$ the symbol x_i from X
 - Change: $C(x_i, y_j) \rightarrow \text{change symbol } x_i \text{ to } y_j$
- delete & insert → cost: 1, change → cost: 2 if changed; cost: 0 otherwise

Example 5.19

- X = aabab
- Y = babb
- Delete all X and then insert all Y
- Delete x_1 , x_2 and then insert y_4

Concept

- cost(i, j) represents the cost of changing x₁x₂..x_i to y₁y₂...y_j
- cost(n, m) represents total cost
- For i=0, $j=0 \rightarrow cost(i, j) = 0$
- For j=0, $i>0 \to cost(i, 0) = cost(i-1, 0) + D(x_i)$
 - This means Y contains nothing and thus delete all symbol in X
- For $i=0, j>0 \rightarrow cost(0, j) = cost(0, j-1) + I(y_j)$

- For $i \neq 0$, $j \neq 0 \rightarrow$ the goal is to let $x_1x_2..x_i = y_1y_2...y_i \rightarrow$ three cases
 - Finished $x_1x_2...x_{i-1} = y_1y_2...y_j$, i.e., $x_1 ... x_{i-1}$ are the same as $y_1 ... y_j$
 - \rightarrow So, we need to delete the upcoming x_i
 - \rightarrow cost(i-1, j) + D(x_i)

- Finished $x_1x_2...x_{i-1} = y_1y_2...y_{i-1}$, i.e., $x_1 ... x_{i-1}$ are the same as $y_1 ... y_{i-1}$
 - \rightarrow So, we need to change the upcoming x_i to y_i
 - \rightarrow cost(i-1, j-1) + C(x_i, y_i)

- Finished $x_1x_2...x_i = y_1y_2...y_{j-1}$, i.e., $x_1 ... x_i$ are the same as $y_1 ... y_{j-1}$
 - \rightarrow So, we need to insert the upcoming y_i
 - \rightarrow cost(i, j-1) + I(y_i)

Cost function

Example 5.20

$$\begin{array}{lll} cost(1,1) & = & \min \ \{ cost(0,1) + D(x_1), cost(0,0) + C(x_1,y_1), cost(1,0) + I(y_1) \} \\ & = & \min \ \{ 2,2,2 \} = 2 \end{array}$$

$$cost(1,2) = \min_{\substack{cost(0,2) + D(x_1), cost(0,1) + C(x_1, y_2), cost(1,1) + I(y_2)}}$$

= $\min_{\substack{cost(0,2) + D(x_1), cost(0,1) + C(x_1, y_2), cost(1,1) + I(y_2)}}$

5.7 0/1 knapsack

Concept

- In Sec. 5.1 we define a KNAP(1, j, y) problem
 - $f_n(m) = \max \{ f_{n-1}(m), f_{n-1}(m-w_n) + p_n \}$
 - → to find an optimal selection, when there are n items, we need to check 2ⁿ possibilities
 - Ex. 5.21

- A more efficient selection method
 - Do not enumerate all possibilities and we can still find the solution

Concept

- Let Sⁱ=(P, W)
 - P is the current profit after processing numbered i item
 - W is the current weight after processing numbered i item
 - $S^{i+1} = \{ S^i \cup S^i_1 \}$
 - $S_{1}^{i} = \{ (P, W) \mid (P p_{i+1}, W w_{i+1}) \text{ in } S^{i} \}$
 - Sⁱ₁ represents that after adding item i+1, the corresponding P and W for rolling back to Sⁱ
- The main idea of reducing computation →
 - If $P_j < P_k$ and $W_j > W_k$, it means that (P_j, W_j) can be ignored

ex 5.21

• n=3, $(w_1, w_2, w_3)=(2,3,4)$, $(p_1, p_2, p_3)=(1,2,5)$, m=6

5.8 reliability design

concept

• A system has many modules, and each module has a reliability value

• Reliability $\rightarrow r_1 \times r_2 \times ... r_n$

To improve reliability

- For a stage i, it can have m_i modules
 - The probability that all modules fail at the same time is (1-r_i)^{mi}
 - So, the reliability of stage i can be $1-(1-r_i)^{mi}$

The goal

- Each module has a cost value c_i
- The goal is to maximize reliability but the cost should be less than c

maximize
$$\Pi_{1 \leq i \leq n} \phi_i(m_i)$$

subject to
$$\sum_{1 \le i \le n} c_i m_i \le c$$

 $m_i \geq 1$ and integer, $1 \leq i \leq n$

DP policy

$$f_i(x) = \max_{1 \le m_i \le u_i} \{ \phi_i(m_i) f_{i-1}(x - c_i m_i) \}$$

Ex 5.25

- The cost of D1, D2, D3 are 30, 15, 20,
- The reliability of D1, D2, D3 are 0.9, 0.8, 0.5.
- The upper bound on cost is 105

5.9 traveling salesperson problem (TSP)

Model

- TSP is more complex than 0/1 knapsack (2ⁿ possibilities)
 - TSP is a permutation problem → n! possibilities
- Give a directed graph G=(V,E). Each edge has a cost value.
- The TSP is to find a tour (with minimum cost) from a start point vertex to go through all other vertices, and then go back to the start point

Concept

- Let the start point is vertex 1
- Let g(i, s) is the shortest path from i and going through all vertices in s, and then stop at vertex 1
- $g(1, V-\{1\}) = \min_{2 \le k \le n} \{ c_{1k} + g(k, V-\{1, k\}) \}$
- General equation: $g(i, S) = \min_{j \in S} \{c_{i,j} + g(j, S \{j\})\}$
- DP policy: from |S|=1, |S|=2, ...

Ex 5.26


```
      0
      10
      15
      20

      5
      0
      9
      10

      6
      13
      0
      12

      8
      8
      9
      0
```

5.10 flow shop scheduling

Model

- There are *n* jobs. Each job need *m* tasks to complete.
- For a job i, its task has T_{1i}, T_{2i}, ..., T_{mi}
- In the system, there are m processes to handle those m tasks
- One process can only execute one task at a time
- For a job, its task should be executed in-sequence
- > To decide a schedule, which can minimize the finish time of n jobs

A special case for two tasks

Solution:

- For a job i, its two tasks are a_i and b_i
- Sort tasks a and b for all jobs in non-increasing order
- Check in-sequence
 - If the current one is task a_i, put job i to the top-half of the schedule
 - If the current one is task b_i, put job i to the bottom-half of the schedule

Ex 5.28

- Four jobs 1, 2, 3, 4
- $(a_1, a_2, a_3, a_4) = (3, 4, 8, 10), (b_1, b_2, b_3, b_4) = (6, 2, 9, 15)$