

Reconnaissance Automatique de la Parole

LINARES Georges

Laboratoire d'Informatique d'Avignon Université d'Avignon et des Pays de Vaucluse

Objectifs du cours

- Comprendre les problèmes liés au traitement automatique de la parole
- Connaître les types de modèles et d'algorithmes utilisés
- Connaître les capacités et les limites des systèmes actuels

Plan

- ✓ Introduction: la RAP dans l'IA
- ✓ Objectifs et Applications
- ✓ Problématique
- ✓ La paramétrisation
- ✓ Modélisation acoustique : DTW et HMM
- ✓ Modélisation linguistique
- ✓ Algorithmes de recherche
- ✓ Mise en oeuvre d'un SRAP

Une machine à notre image ?

- ✓ Frankestein ou le prométhé moderne (M. Shelley, 1818)
- ✓ HAL (2001 Odyssée de l'espace, A. C. Clarke)
- ✓ La trilogie d'Ender (O.S. Card,1986)

Les objectifs de l'I.A.

- Simulation des comportements humains
 - ✓ Perception
 - √ Raisonnement
 - ✓ Décision
- Applications industrielles

Approche anthropomorphique

- Implantation en machine des mécanismes de la pensée
 - ✓ Ces mécanismes sont mal connus
- Cerveaux artificiels
 - ✓ Différences structurelles

- Elaborer des systèmes adaptés aux machines
 - Acquisition des connaissances (apprentissage)
 - ✓ Représentation des connaissances (modèles)
 - Exploitation des connaissances (algorithmes)

Reconnaissance de la parole et l. A.

- Tâche de perception : reconnaissance des formes
- Modélisation des connaissances
 - ✓ Conception des modèles
 - ✓ Paramétrisation (apprentissage)
- ✓ Algorithmes de décodage

RAP: Objectifs

- ✓ Communication homme-machine
- ✓ Traitement de documents audios

Applications

- Commande vocale
 - Machines, véhicules, appareils ménagers, ordinateurs
- Aides aux handicapés
- Interaction avec des systèmes complexes
 - Dialogue, serveurs interactifs, bornes multimodales
- Application aux Télécommunications
 - Téléphone mains libres, composeur vocal,
- >Indexation de documents audios

Dictée vocale : du son au texte

Signal continu et concret Information : 100 000 bits par seconde

CE SOIR TOUS AU

Mots

Information: 60 bits par seconde

Difficultés du TAP

- Grande quantité d'informations
- Grande variabilité des informations
 - > Type de parole,
 - > Environnement,
 - > Locuteur,
 - > Coarticulation.
- Diversité des sources de connaissance
 - Acoustiques
 - > Linguistiques
 - Extra-linguistiques

Acoustique

- Identification des unités acoustiques (phonèmes)
 - > Médecin -> métcin
- >Insuffisant:
 - oo li on dd oo rr
 - > (oo li) (on dd) (oo rr)
 - > (oo li on dd) (oo rr)

Prosodie

- FIntonation, durée des phonémes
 - > Modalité
 - tu y vas?
 - > tu y vas!
 - Désambiguisation
 - La belle ferme le voile
 - Le boucher salle la tranche

Linguistique

- ✓ Information lexicale
 - √Oli ondor
 - √Ila man get
- ✓ Information syntaxique
 - √Il l'a manger
 - √Le présidant a par les.

Sémantique

- Sémantique (sens)
 - √La pierre m'a demandé l'heure
 - √ La couturière tisse des fils de soie/soi
- Pragmatique (contexte)
 - √ Son petit tamis est tombé dans la piscine
 - ✓ Les deux partis font appel

Contraintes Générales en RAP

- ✓ Dialogue Oral / Dialogue Multimodal
- ✓ Langage Naturel / Langage Artificiel
- ✓ Situation Réelle / Environnement contrôlé
- ✓ Compréhension / Reconnaissance
- ✓ Parole Continue / Mots Isolés
- ✓ Systéme Adaptable / Systéme
- ✓ Multilocuteur / Monolocuteur
- \checkmark

Le signal de Parole

- Les sons de parole sont produits par deux processus différents
 - Vibration des cordes vocales
 - Source de voisement
 - Turbulence créée par l'air
 - s'écoulant rapidement dans une constriction du conduit vocal
 - lors de relâchement d'une occlusion du conduit vocal
 - c'est une **Source de bruit**
- Et « une » modulation

Phonèmes

- Les phonèmes sont les élément sonores les plus brefs qui permettent de distinguer différent mots
- Exemples [p] [b]
 - pas / bas
 - paie / baie
 - pot / beau

Phonèmes du français

TABLEAU I. — Les phonèmes du français

Consonnes			
	[p] paie [b] baie	[t] taie [d] dais	[k] quai [g] gai
	[m] mais [f] fait [v] vais	[n] nez [s] sait [z] zéro	[ɲ] gagner [∫] chez [ʒ] geai
	[w] ouais	[y] huer [l] lait	[j] yéyé [R] raie
Voyelles			
	[i] lit [e] les	[y] lu [ø] leu	[u] loup [o] lot
	[ε] lait [a] là	[œ] leur [ə] le	[5] lotte
	[ɛ̃] lin	[ã] lent	[õ] long

Note: Les distinctions vocaliques [e]-[ϵ], [\emptyset]-[ϵ] et [o]-[δ] ne sont pas faites dans tous les contextes et par tous les locuteurs du français. Par contre, certains locuteurs font aussi des distinctions entre patte et pâte, ([a]-[a]) ainsi qu'entre brin et brun ([ϵ]-[ϵ]).

Phonèmes du français

TABLEAU II. — Classification des phonèmes du français en traits distinctifs

Consonnes Mode d'articulation					Lieu
\downarrow	Labiales	Dentales	Vélo-palatales	\leftarrow	d'articulation
Occlusives					
non voisées	[p]	[t]	[k]		
voisées	[b]	[d]	[g]		
Nasales	[m]	[n]	[ɲ]		
Fricatives					
non voisées	[f]	[s]	[z]		
voisées	[v]	[z]	[3]		
Glissantes	[w]	[y]	[j]		
Liquides		[1]	[R]		
Voyelles					
Orales	Antérie	ures	Postérieures		
	Non arrondies	Ar	rondies		
Fermées	[i]	[y]	[u]		
	[e]	[Ø]	[0]		
	[3]	$[\alpha]$	[5]		
Ouvertes	[a]				
Nasales	Antérieures		Postérieures		
Fermées	$[\widetilde{arepsilon}]$		[õ]		
Ouvertes		[ã]			

Signal de Parole Représentation tempsfréquence

Bonsoir

Signal de Parole

Vous êtes Monsieur Gilbert Dupont n'est-ce pas 🤅

Formants

- Fréquences de résonance du conduit vocal
- Triangle vocalique des voyelles

Fréquence fondamentale ou f0

- Vibration des cordes vocales
- Dépend essentiellement
 - de l'âge et du sexe du locuteur
 - du locuteur
- Valeurs standards
 - 100 à 150 Hz pour l'homme adulte
 - 140 à 240 Hz pour la femme adulte
- Mais une grande variété!
- peut présenter des variations considérables chez un même locuteur
 - selon le type de phrase prononcée
 - selon l'état émotif et l'attitude du locuteur

Prosodie

- Hauteur de la voix (pitch ou fréquence fondamentale)
- ◆ Intensité de la voix (énérgie)
- Durées successives des segments syllabiques

Intonation / Mélodie de la voix

Conversion analogiquenumérique

Etape d **échantillonnage** puis de **quantification**

échantillonnage

quantification

Energie d'un signal

Energie d 'un signal continus(t) surl 'intervalle de temps [t1,t2]

$$W_s(t_1, t_2) = \int_{0}^{t_2} s^2(t) dt$$

Energie d 'un signal discretx(n) sur l 'intervalle [n1,n2]

$$W_s(n_1, n_2) = \sum_{n=n_1}^{n_2} s^2(n)$$

- La qualité d'un signal est souvent représentée par le **Rapport Signal/Bruit ou RSB** (*SNR* en Anglais)
- Pour x(t)=s(t)+n(t)

$$SNR = \frac{W_s}{W_n}$$

$$SNR_{dR} = 10 \log_{10} SNR$$

Reconnaissance de la parole: Historique

- ✓ Années 70 : méthodes à base de connaissances, décodage acousticophonétique
- Fin 70 : Reconnaissance de mots isolés, programmation dynamique
- ✓ 1980 : Modèles de Markovs cachés
- ✓ 1990 : Parole continue, Grands vocabulaires, adaptations

Les Systèmes de R.A.P.

Chaîne de traitement :

- > (1)**Analyseur Acoustique** (paramétrisation)
 - Vecteurs acoustiques toutes les 10 ou 20 ms
- (2)Moteur de reconnaissance
- Détermine les mots reconnus à partir des vecteurs issus de (1)

- •Analyse sur une fenêtre glissante
 - Ordre de grandeur : 30 ms
 - Recouvrement

- •Généralités:
 - Filtre passe bas (8khzt)
 - Préaccentuation (diminuer la dynamique du spectre) :
 - Élimination de la composante continue
 - Pas d'information utile

- •Analyse temps fréquence (spectro):
 - Transformée de Fourier à court terme
 - Convolué avec une fenetre qui évite les effets de bord
 - Energie dans chaque bande de fréquence
 - Calcul rapide
 - ... jamais utilisé directement

- LPC (*Linear Predictive Coding*)
 - Modèle autoregressif (AR)
 - Principe:
 - Éliminer la redondance temporel du signal
 - Filtre AR:

$$s(n) = \sum_{i=1}^{P} a_i s(n-i)$$

• Erreur de prédiction

$$e(n) = x(n) - s(n) = x(n) - \sum_{i=1}^{P} a_i x(n-i)$$

erreur de prédiction

échantillon observé

Coefficients d'autocorrelation

prédiction

- PLP (Perceptually-based Linear Prediction)
 - Inspiré des modèles de perception
 - Approximation de la densité spectrale à résolution variable (échelle de Bark)
 - Préaccentuation :
 - L'intensité perçue dépend de la fréquence
 - Préaccentuation basée sur des abaques

Paramétrisation

- MFCC (Mel Frequency Cepstrum Coefficients)
- •La plus fréquemment utilisée

Paramétrisation (MFCC)

Paramétrisation (MFCC)

Autres types de transformation:

• Traits acoustiques: formants, dpz, etc.

Problèmes:

- augmenter le robustesse
- Réduire la dimension du problème
 - Choix des coefficients
 - Méthode d'analyse de données
 - ACP: analyse en composantes principales
 - LDA : analyse discriminante

Les systèmes à base de règles

- Principe :
 - Utilisation de connaissances explicites
 - Règles formulées par des experts
- Problèmes :
 - Performances faibles
 - Collecte de la connaissance

Principe :

- Chaque mot est modélisé par une réalisation (un exemple de référence)
- Calcul d'une distance de l'observation aux références
- Le mot reconnu est celui dont la référence est le plus proche de l'observation

Problème : quelle distance utiliser ?

Les séquences sont de longueurs variables

Distance : coût du chemin de déformation minimale

Algorithme d'alignement dynamique

✓ Avec contraintes de déformation

observation

Coût d'un chemin:

$$d(\Phi_x,\Phi_y) = \sum_{n=1}^{L} D(X_{\phi_x(n)},Y_{\phi_y(n)}) + \sum_{n=1}^{L-1} a[\Phi_x(n+1) - \Phi_x(n),\Phi_y(n+1) - \Phi_y(n)]$$

Distance (quadratique ?) trames/trames

Coût des transitions

Algorithme de parcours :

- ✓ Principe : le meilleurs chemin allant de A à B en passant par C est :
 - ✓ le meilleurs chemin de A à C
 - ✓ ...suivi du meilleur de C à B

Coût du chemin optimal de A à C

A			
	C		
			В

Pour chaque colonne c,

Pour chaque ligne l,

Pour chaque ligne lp,

Si V(c,l) > V(c-1,lp) + a[1,l-lp] + D(Xc,Yl) alors V(c,l) = V(c-1,lp) + a[1,l-lp] + D(Xc,Yl)

Α			
	 C		
			В

Complexité: LxLxC

Avantages:

- ✓ Rapidité de paramétrage du système
- ✓ Rapidité de décodage

...mais

- ✓ Mots isolés!
- ✓ Faible robustesse au bruit
- ✓ Mono-locuteur
- ✓ Une référence par mot : petit vocabulaire
- ✓ Pas d'exploitation de l'information linguistique

Améliorations:

- ✓ Heuristiques sur le parcours
- ✓ Choix des références
 - ✓ Moyennes, multiples, etc.
- ✓ Distances et coûts des transitions peuvent être affinées

Modèles de Markov

Une unité acoustique (ex : phonème, mot) : un modèle

- ✓ Etats : une fonction de densité de probabilité : $Prob(X_k/E_i)$
 - ✓ Probabilité de produire l'événement X_k sur l'état E_i ,
 - ✓ Modélisant les formes rencontrées.
- ✓ Transitions : probabilité de transition d'un état à un autre : $P(E_{i+1}/E_i)$
 - ✓ Contraint l'ordre temporel dans lequel les formes doivent être observées

Modèles de Markov

- ✓ Les états :
 - ✓ Codent des « moments » des réalisations acoustiques
 - ✓ Estimateurs de probabilités par combinaison de fonctions élémentaires
 - ✓ Généralement, les estimateurs sont des mixtures de gaussiennes (*GMM*, *Gaussian Mixture Model*)
 - ✓ Les GMM permettent d'estimer $P(X_i|E_i)$

Les GMMs

- ✓ Une Mixture de gaussiennes approche n'importe quelle fonction continue
- ✓ ... plus ou moins bien

$$f(x) = \sum_{n=0}^{N} p_n H(x_t)$$
Loi normale
Poids de la pdf

Estimation des probabilités acoustiques

- Estimation de la vraisemblance d'une séquence d'observations sachant un modèle :
 - Alignement optimal de la forme acoustique sur la chaîne de Markov : chemin de probabilité maximale
 - Algorithme de Viterbi : alignement dynamique

Algorithme de Virterbi

Algorithme de Virterbi

observations

Algorithme de Virterbi

- Même principe que la DTW
 - Distance entre trames :
 - vraisemblance d'un vecteur d'observation sachant un état
 - Coût de transition :
 - probabilité de transition

- ✓ Phonèmes :
 - ✓ Environ 50 unités
- ✓ Diphones, triphones
 - ✓ Modèles contextuels
 - ✓ Problème de complexité
 - ✓ D'apprentissage
 - Partage de paramètres : états, gaussiennes partagés entre plusieurs modèles

Décodage Acoustico Phonétique

✓Principe : du signal à la suite phonétique

Décodeur mots isolés avec des HMMs

- ✓ Codage des mots :
 - √un modèle par mot
 - mots isolés, petit vocabulaire

- ✓ Estimation des GMM
 - ✓Principe:
 - ✓ Apprentissage supervisé
 - Basé sur un corpus d'apprentissage
 - Corpus : ensemble de données audio étiquetées

Salut tout le monde

Salut tout le monde

- ✓ Estimation des GMM : processus itératif segmentation/estimation
 - Segmentation:
 - ✓DAP contraint par la séquence de mots solutions
 - DAP semi-contraint par les variantes phonétiques possibles
 - Chaque état doit être associé à l'ensemble des trames qu'il émet

- **✓** Estimation
 - Ajustement des paramètres maximisant la vraisemblance
 - Algorithme de Baum-Welch ou approximation EM

- ✓ Difficultés :
 - Quantité de données (diphones, triphones, etc)
 - Liée à la complexité des modèles
 - ✓ Précision des modèles
 - Représentativité des données
 - ✓ Conditions apprentissage/test

- ✓ Expectation-Maximisation
 - √algo itératif
 - -étape 1 : estimation des paramètres
 - –étape 2 : maximisation de la vraisemblance

✓ Formules de mises à jour :

• Vraisemblances : $l_i(x) = w_i * N_i$ • Probabilités : $P_i(X) = \frac{l_i(X)}{\sum l_i(X)}$

• Ré-estimation des poids :

$$w'_{i} = \frac{\sum_{X} P_{i}(X)}{\sum_{X} \sum_{i} P_{i}(X)}$$

- ✓ Formules de mises à jour :
 - Ré-estimation des moyennes :

$$m'_{i} = \frac{\sum_{X} P_{i}(X).X}{\sum_{X} \sum_{i} P_{i}(X)}$$

- ✓ Formules de mises à jour :
 - Ré-estimation des variances :

$$v'_{i} = \frac{1.0}{\sum_{X} P_{i}(X) - 1} \sum_{X} P_{i}(X) * (X - m'_{i})^{2}$$

- Itérations EM : ré-éstimation des paramètres jusqu'à convergence
 - typiquement, 8-16 itération
- ✓ Initialisation :
 - K-Means : clustering des trames
 - split de gaussiennes : 1 gaussienne, divisée et perturbée

- ✓ Processus itératif alignement-estimation :
 - pour un modèle donné:
 - -alignement du corpus
 - » indexation des trames émises par un état donné
 - -maximisation de la vraisemblance:
 - » EM, itérations

- ✓ Objectif:
 - Réduire la complexité des modèles
 - Améliorer leur qualité en augmentant la quantité de données d'apprentissage
 - ✓ Augmenter le nombre de triphones
- ✓ Principe:
 - Partage d'états
 - ✓Partage de Pdf

- ✓ Partage des états :
 - Classification hiérarchique des états
 - À posteriori:
 - Regroupement d'états proches
 - ✓A priori :
 - ✓arbre de classification
 - ✓ Questions linguistiques
 - Mixte: génération automatique des questions

- •Partage des états par arbre de classification :
 - ✓ choix à priori d'un jeu de questions
 - question relative à la nature et au contexte du triphone
 - -ex: liquide à droite, fricative, voisée,« aa ii uu »
 - ✓ Bootstrap: un modèle acoustique noncontextuel (M_o)
 - topologie fixée à prirori
 - ✓ 1 arbre à estimer pour chaque état de M_o

- •Construction de l'arbre :
 - à chaque noeud, évaluation de chaque question disponible :
 - −1 question bi-partitionne le corpus
 - estimation d'un modèle pour chaque partie
 - -calcul du gain de vraisemblance
 - stop : trop peu de données sur les feuilles, faible gain en vraisemblance, plus de questions !

- •Choix des triphones pour une ensemble d'arbre donné :
 - pour chaque triphone, recherche de la séquence d'état
 - regroupement des triphones partageant la mme séquence d'états
 - construction d'une table des correspondance

- •Méthode ascendante:
 - ✓ sélection à priori des triphones
 - à partir de leur fréquence
 - ✓ estimation de "petits" modèles pour chacun d'eux (typiquement 4 gaussiennes/état)
 - ✓ regroupement des GMM les plus proches

- ✓ Motivation
 - Adapter les HMMs au contexte de la tâche
 - Locuteur, bruit, canal, ...
 - En disposant de *relativement* peu de données
- ✓ Principe
 - ✓ maximiser la vraisemblance
 - ... en préservant la généricité des modèles

supervisée : suppose qu'on dispose d'un corpus d'apdaptation annoté

non-supervisée:

- pas de corpus fourni
- une première passe de décodage : transcription imparfaite, utilisée comme cible
- l'ensemble de l'information impliquée dans le décodage est utilisée pour l'adaptation acoustique

Adaptation des modèles acoustiques

✓ MAP

maximisation de la vraisemblance a posteriori

$$\lambda_{map} = argmax_{\lambda} P(\lambda/O) = argmax_{\lambda} P(O/\lambda) * P(\lambda)$$

• Problème : quantité de données

Adaptation des modèles acoustiques

✓ MLLR:

- méthode généralement utilisée en nonsupervisée
- ✓ régression linéaire maximisant la vraisemblance
 - transformation globale sur des classes de modèles
 - ex: translation de tous les modèles, par phone, etc..
- ✓ TRÈS SOUVENT, EN SECONDE PASSE

Lexiques

- Ensemble des mots reconnus par le système
- ✓ En RAP moyen et grand vocabulaire :
 - ✓Un mot est représenté par un ensemble de séquences phonétiques
 - Chaque séquence correspond à une séquence de HMM

Lexiques

- ✓ Problème : phonétisation
 - Multiple:
 - ✓Liaisons (*Amis/Les amis*)
 - Accents (pain (pp in | pp un))
 - ✓ Langues (jakson, karayan, poggio)
 - ✓ Automatisation difficile
 - ✓ Acronymes, etc

Lexiques

- La complexité du décodage dépend de la taille du lexique
- ✓ Tailles classiques dans les campagnes d'évaluation : 5k-65k mots
- Mots hors vocabulaire (vocabulaire ouvert/fermé)
- ✓ Codage en graphe de HMMs

Représentation des mots du lexique

Représentation Globale (mots isolés, enchaînés)

Autres représentations (grand vocabulaire)

Un mot est codé comme une suite de machines de Markov

Représentation phonémique du lexique

Représentation en Arbre du graphe

Construire à partir des listes de phonèmes un arbre a tête commune de tous les mots :

Exemple:

- lexique
 - A = abc
 - B = abd
 - \cdot C = a e

Modèles

Le décodage

Modèle de langage

« Salut tout le monde »

Modèles de Langages

Des modèles statistiques

$$P(M_1^n)$$
 $\prod_{i=1}^n P(m_i / h)$

Bi-grammes

$$P(m_i / m_i \cdots m_{i-1}) \approx P(m_i / m_{i-1})$$

Tri-grammes

$$P(m_i / m_i \cdots m_{i-1}) \approx P(m_i / m_{i-2}, m_{i-1})$$

Modèles de langage

- ✓ Problèmes :
 - ✓ Estimation
 - ✓ Bigrammes/trigrammes non-observés
 - ✓ Technique du repli
 - ✓ Représentativité des corpus :
 - ✓ Couverture / précision
 - ✓ Acquisition des corpus

Adaptation/sélection des modèles

Modèles de langage

- Modèles à syntaxe fixe
 - ✓ Ensemble de règles exprimées en CFG (Context free grammar)
 - ✓ Chemin dans le graphe des règles : phrase du langage
 - ✓ Problèmes:
 - ✓ impossibilité de représenter toutes les séquences de mots du langage
 - ✓ Cadre non-probabiliste (pas d'estimation de la vraisemblance d'une séquence)

Le décodage

•Difficultés:

- Exploitation/combinaisons des sources d'information
- Exploration de l'espace des hypothèses
 - Construction du graphe
 - Stockage
 - Complexité du parcours

Le décodage

Difficultés : pas de frontières entre les mots

Le décodage Approche Statistique P(WIX) = P(XIW).P(W)/*P(X)

- ✓ P(X /w) : probabilité d'émission de l'observation
 X pour une phrase donnée w
- ✓ *P*(*w*) : probabilité à priori d'une séquence de mots *w*

Le décodage Approche Statistique

Facteur d'échelle

$$W = \underset{w}{\operatorname{argmax}} P(X|W).P(W)$$

Proba acoustique

Proba linguistique

Algorithmes de décodage

- 2 catégories :
 - statck decoder : décodeur à piles
 - Pile d'hypothèses intermédiaires
 - Programmation dynamique
 - Parcours de treillis

Les décodeurs à pile

- Principe
 - Le système maintient une pile d'hypothèses partielles
 - Les hypothèses sont ordonnées par leurs vraisemblances
 - Les meilleures hypothèses sont prolongées, et insérées dans le pile

L'algorithme A*

- Décodeur à pile
- Algorithme classique de recherche du meilleur chemin dans un graphe
 - Algorithme asynchrone
- L'ordre d'exploration des noeuds est déterminé par la fonction F(n) qui représente une estimation du coût du meilleur chemin passant par n.

L'algorithme A*

$$F(x) = g(x) + h(x)$$

- g (n): coût du chemin allant du début du graphe à n,
- h(n): l'estimation du coût du chemin allant de n à la fin du graphe,

Coût du chemin parcouru : coût acoustique + coût linguistique

L'algorithme Two-level

- Algorithme d'alignement dynamique
- Principe:
 - Pour chaque segment du message, évaluation des meilleurs formes de référence (niveau 1)
 - Alignement optimal des solutions issues du niveau 1 (niveau 2)

L'algorithme Level-Building

- Optimisation du two-level:
 - Seules les hypothèses prolongeant des hypothèses partielles « acceptables » sont évaluées

L'algorithme beam-search

- One-pass:
 - Algorithme synchronne
 - Toutes les hypothèses sont évaluées en parallèle
- Amélioration beam-search (recherche en faisceau)
 - Les hypothèses partielles trop peu vraisemblables sont écartées
 - Algorithme très utilisé dans les systèmes actuels

L'algorithme token-passing (passage de jeton)

- Formulation unifiée de l'algorithme de Viterbi
- Principe:
 - Des jetons valués sont propagés dans le graphe d'hypothèses
 - Pour chaque nœ ud, le meilleur jeton est atribué au nœud

- Motivation :
 - Réduction de la complexité
 - 1 passe : 1 filtrage de l'ensemble des hypothèses
 - Adpatation non supervisées :
 - Un premier décodage est utilisé pour l'adaptation du système

Mise en oeuvre d'un SRAP

- Toolkits public ou semis-publics :
- HTK (université de Cambridge)
- ISIP: Université du Mississipi
- Sphinx : CMU
- LIA: SPEERAL (Toolkit GPL, moteur libre pour enseignement/recherche

Mise en oeuvre d'un SRAP

- Difficultés :
 - identifier la tâche:
 - les contraintes
 - Les performances attendues
 - Réglage « fin » du système
 - Paramètres acoustiques
 - Modèles de langage
 - Vitesse de décodage

Performances

- Exprimées en terme de Taux d'erreur Mot (WER)
- Broadcast News: 10-25%
- Cours/conférences : 25-40%
- Réunions, conversations : 60%

Perspectives

- Paramétrisations (LDA, VTLN)
- Modélisation : Apprentissage discriminant
- Linguistique : mises a jours des lexiques, traitement des mots hors vocabulaire
- Décodage : combinaision de systèmes

Perspectives

- Combinaison de systèmes :
 - bas niveau : acoustique
 - cross-adaptation
 - combinaison des one-best/ réseaux de confusion
- Utilisabilité:
 - réduire les coûts d'apprentissage
 - corpus acoustiques
 - collecte des corpus texte, sélection du vocabulaire, etc.

Perspectives

- Nouvelles modélisations acoustiques
 - les HMM reposent sur des hypothèses fortes
 et fausses
 - combinaison de systèmes pour le décodage
 - multi-linguisme
 - interfaces TALN