EEE210 - Energy conversion and power system fundamentals

In class quiz 3

Department of Electrical and Electronic Engineering, XJTLU

The quiz will:

- last for 50 minutes;
- account for 5% of your overall marks for EEE210.

After completing the quiz. You need to upload the softcopy of your answers on LMO.

Q1

Q2

Total

- 1. A two-winding transformer rated at P=24 kVA, $V_L/V_H = \frac{120}{180}V$, f = 60~Hz. This transformer has a core loss $Loss_{core} = 400~\mathrm{W}$ and a full-load copper loss $Loss_{copper} = 750~\mathrm{W}$.
- (a) Calculate the magnitude of currents on the low voltage side I_{LV} and high voltage side I_{HV} . [6]
- (b) The above transformer is to be connected as an autotransformer, i) calculate the secondary current $I_{secondary}$ of the autotransformer; ii) draw the relevant diagram and label all relevant currents and voltages.
- (c) As an autotransformer, the transformer supplies a load at 180 V from a 300 V source. Calculate the load apparent power in kVA that can be supplied without exceeding the current of the windings.
- (d) Calculate the efficiency η with the load of the question (c) and power factor $p_f = 0.8$. [4]
- 2. The three-phase power and line-line ratings of the electric power system shown in the following figure are given below.

The rated parameters are shown as follows:

G	80 MVA	20 kV	X = 9%
T_1	60 MVA	20/200 kV	X = 10%
T_1	60 MVA	200/22 kV	X = 10%
M	50 MVA	18 kV	X = 8%
Line		220 kV	$Z = 140 + j220 \Omega$

(a) Calculate impedances of all system components in per unit on a 100-MVA base. Choose 20 kV

as the base voltage at the generator side.

(b) Draw an impedance diagram showing all impedances in per unit values.

[5]

[10]

- (c) The motor is drawing 60 MVA, 0.8 power factor lagging at a line-to-line terminal voltage of 18 kV. Determine:
 - 1) the current in per unit value flows in the system;
 - 2) the terminal voltage and the internal emf of the generator in per unit and in kV.