Odevzdání: 5. 10. 2009

Vypracoval(a): Karry

VarrasaZ

UČO:

325408

Skupina: 14

2. [2 body] Nechť L je jazyk nad abecedou $\Sigma = \{a,b\}$ tvořený právě všemi slovy, která splūují následující podmínku:

Končí-li slovo písmenem a, pak obsahuje lichý počet písmen b.

Zapište jazyk L pomocí jednoprvkových jazyků $\{a\}$ a $\{b\}$ a s využitím operací průnik (\cap) , sjednocení(∪), zřetězení(·) a iterace(*,+). Chcete-li použít jiné operace nebo jazyky, musíte je nejprve definovat pomocí výše uvedených operací a jazyků.

42283

LI, LZ #CE

 $L_1 = &3$ $L_2 = &2 \cup L_2$ (i = 24, $k \in N$) $L_2 = &2 \cup L_2$ (i = 24, $k \in N$) $L_3 = &2 \cup L_2$ (i = 24, $k \in N$) $L_4 = &2 \cup L_2$ (i