\S **2.** Пусть Фиг. представляет положения Солнца S, Земли T и Луны L, и пусть Θ есть центр тяжести Земли и Луны. Делаем следующие обозначения:

Обозначения

Macca	Солнца	 S
>>	Земли	 T
>>	Луны	 L

Таблица 1: Обозначения

Расстояние:

$$S\Theta = \rho; ST = \rho_1; SL = \rho_2; TL = r$$

тогда будет:

$$T\Theta = r_1 = \frac{L}{T + L} \cdot r$$

$$L\Theta = r_2 = \frac{T}{T + L} r$$
(1)

Составим теперь выражения ускорений, которые эти тела сообщают друг другу.

Солнце S сообщает ускорения:

Фиг. 1: Небесные тела

Земле: $f\cdot \frac{S}{\rho_1^2}$ по направлению TS Луне: $f\cdot \frac{S}{\rho_2^2}$ » » LS

вследствие чего точка Θ имеет ускорения:

$$\dfrac{T}{T+L}\cdot f\cdot \dfrac{S}{
ho_1^2}$$
по направлению, параллельному TS $\dfrac{T}{T+L}\cdot f\cdot \dfrac{S}{
ho_2^2}$ » » »

Ускорения Солнца, происходящие от притяжения Земли и Луны, соответственно, суть:

$$f \cdot \frac{T}{
ho_1^2}$$
по направлению ST $f \cdot \frac{T}{
ho_2^2}$ » » SL

поэтому ускорения точки Θ относительно точки S будут:

$$\omega_1=f\cdot \dfrac{(S+T+L)}{T+L}\cdot \dfrac{T}{
ho_1^2}$$
 по направлению параллельно TS $\omega_2=f\cdot \dfrac{S+T+L}{T+L}\cdot \dfrac{L}{
ho_2^2}$ » » » LS

Разлагая эти ускорения, соответственно, по направлениям ΘS и ΘL , получим, как легко видеть из подобия показанных на Фиг. 2 и 3 треугольников:

$$\omega_1\prime = \omega_1 \cdot \frac{\rho}{\rho_1}$$
по направлению ΘS
 $\omega_1\prime\prime = \omega_1 \cdot \frac{r_1}{\rho_1} \gg \gg \qquad \Theta L$
 $\omega_2\prime = \omega_2 \cdot \frac{\rho}{\rho_2} \gg \gg \qquad \Theta S$
 $\omega_2\prime\prime = \omega_2 \cdot \frac{r_1}{\rho_2} \gg \gg \qquad L\Theta$

Фиг. 2: Расчет ускорений

получим для ускорений точки Θ слагающие:

$$W_1 = \omega_1 \prime + \omega_2 \prime = f \cdot \frac{S + T + L}{T + L} \cdot \left[T \cdot \frac{\rho}{\rho_1^3} + L \cdot \frac{\rho}{\rho_2^3} \right]$$
 по ΘS $W_2 = \omega_1 \prime \prime - \omega_2 \prime \prime = f \cdot \frac{S + T + L}{T + L} \cdot \left[T \cdot \frac{\rho}{\rho_1^3} - L \cdot \frac{\rho}{\rho_2^3} \right]$ по ΘL

Фиг. 3: Результат

Заменив r_1 и r_2 выражениями (1), имеем:

$$W_1=f\cdot rac{S+T+L}{T+L}\cdot
ho\cdot \left[rac{T}{
ho_1^3}+rac{L}{
ho_2^3}
ight]$$
 по направлению ΘS $W_2=f\cdot rac{S+T+L}{T+L}\cdot T\cdot L\cdot r\cdot \left[rac{1}{
ho_1^3}-rac{1}{
ho_2^3}
ight]$ по направлению ΘL

Но

$$ho_1^2 =
ho^2 + 2
ho \cdot rac{L}{T+L} \cdot r \cos \omega + \left(rac{L}{T+L} \cdot r
ight)^2$$
 $ho_2^2 =
ho^2 - 2
ho \quad rac{T}{T+L} r \cos \omega + \left(rac{L}{T+L} r
ight)^2$

следовательно:

$$\frac{1}{\rho_1^3} = \frac{1}{\rho^3} \left[1 + 3 \frac{L}{T+L} \cos \omega + \left(\frac{L}{T+L} r \right)^2 \left(-\frac{3}{2} + \frac{15}{2} \cos^2 \omega \right) + \dots \right]$$

$$\frac{1}{\rho_2^3} = \frac{1}{\rho^3} \left[1 + 3 \frac{T}{T+L} \cos \omega + \left(\frac{L}{T+L} r \right)^2 \left(-\frac{3}{2} + \frac{15}{2} \cos^2 \omega \right) + \dots \right]$$

Подставляя эти выражения, имеем:

$$W_{1} = f \cdot \frac{S + T + L}{\rho^{2}} \left[1 + \frac{T \cdot L}{(T + L)^{2}} \cdot \frac{r^{2}}{\rho^{2}} \left(-\frac{3}{2} + \frac{15}{2} \cos^{2} \omega \right) + \dots \right]$$

$$W_{2} = f \cdot \frac{S + T + L}{\rho^{2}} \left[-3 \cdot \frac{T \cdot L}{(T + L)^{2}} \cdot \frac{r^{2}}{\rho^{2}} \cos \omega + \dots \right]$$

Но отношения

$$\frac{L}{T+L} \approx \frac{1}{80}; \frac{r}{\rho} \approx \frac{1}{400}; \left(\frac{r}{\rho}\right)^2 \approx \frac{1}{160000}$$

поэтому будет

$$rac{T \cdot L}{(T + L)^2} \cdot rac{r^2}{
ho^2} pprox rac{1}{12800000}$$

и члены, содержащие этот множитель, могут быть отброшены, так что будет:

$$W_1 = f \cdot rac{S \, + \, T \, + \, L}{
ho^2}$$
 по направлению ΘS

 $W_2=0$ по направлению ΘL

Отсюда следует, что точка Θ движется вокруг Солнца по эллиптической орбите по законам Кеплера.

Рассмотрим теперь ускорение Луны по отношению к Земле, для чего к ускорениям, сообщаемым Луне Солнцем и Землею, надо присовокупить ускорение, равное и противоположное ускорению земли, происходящему от действия Солнца и Луны. Поступив подобно предыдущему, получим:

$$f\cdot rac{T+L}{r^2}+f\cdot S\left[rac{r_2}{
ho_2^3}+rac{r_1}{
ho_1^3}
ight]$$
 по направлению $L\Theta$ $f\cdot S\cdot
ho\cdot \left[rac{1}{
ho_1^3}-rac{1}{
ho_2^3}
ight]$ параллельно ΘS

положим:

$$T + L = \mu; S = M$$

Список иллюстраций

1	Небесные тела	1			
2	Расчет ускорений	2			
3	Результат	3			
Список таблиц					