

Spencer Riley

- (505) 205-9115
- https://pharaohcola13.github.io
- @ spencer.riley@student.nmt.edu
- https://github.com/PharaohCola13
- 0000-0001-7949-9163
- https://www.researchgate.net/ profile/Spencer_Riley2

Skills -

Programming Languages

Python Bash

Laboratory Proficiency Oscilloscope

Development Projects

pacviz:

visualization

Precipitable-Water Model Analysis Tool:

modeling | regression analysis

machine learning

Work History

Sep 05 2017

Research Intern

Present

Sep 06 2016 High School Work Study **National Security Agency**

Aug 16 2017

The position required a thorough background check, federal investigation including a polygraph, as part of the application in order to obtain Top Secret security clearance. Most of the tasks that were assigned revolved around clerical work, specifically inventory and data transfer requests added with Inspector General inspection preparations.

Education

Aug 2017

B.Sc. Physics

New Mexico Institute of Mining and Technology

Institute of Complex Additive Systems Analysis

May 2022

Concentration in Astrophysics and Atmospheric Physics

Minor in Mathematics

GPA: 3.26

Publications

Under Review Atmospheric Precipitable Water and its Correlation with Clear Sky **Infrared Temperature Readings**

> Vicki Kelsey, Spencer Riley, Kenneth Minschwaner Atmospheric Measurement Techniques

Presentations

Jan 2020 Boston, MA Atmospheric Precipitable Water and its Correlation with Clear Sky **Infrared Temperature Readings**

Vicki Kelsey, Spencer Riley

American Meteorological Society Annual Meeting 100

Nov 2019 Providence, RI Atmospheric Precipitable Water and its Correlation with Clear Sky **Infrared Temperature Readings: Data Analysis**

Spencer Riley, Vicki Kelsey Physics Congress 2019

Research Projects

Jan 2019

Precipitable Water Modeling

Present

This research is based on developing a computational model of the relationship between daily precipitable water measurements and the atmospheric temperature. The goal of this research is to develop and utilize the relationship using low cost instrumentation to deduce the amount of precipitable water from the effective temperature.

Collaborators: Vicki Kelsey, Dr. Kenneth Minschwaner Documentation Page: https://precipitable-water.tech/