

# Personalized E-commerce Search Challenge

**<epam>** Nikitko Dmitrii

#### Data

- Anonymized user activity (purchases, views, clicks)
- Search engine queries, hashed query terms, category id
- Hashed product descriptions and meta-data

#### **Dataset Statistics**

- The number of queries: 923 127
- The number of unique sessions: 573 935
- The number of products: 184 047



# Sample

| queryld | sessionId | userId | timeframe | duration | Searchstring<br>tokens      | categoryId | items                      | is.test |
|---------|-----------|--------|-----------|----------|-----------------------------|------------|----------------------------|---------|
| 43491   | 33900     | NaN    | 3766699   | 451      | 42423,37748,<br>2886,215391 | 0          | 91816,81796,<br>8517,72561 | False   |
| 226872  | 164307    | NaN    | 0         | 1638     | NaN                         | 571        | 109677,3813<br>1,72578,    | False   |
| 681772  | 50411     | NaN    | 345234    | 2863     | NaN                         | 1009       | 8392,206727,<br>314260,    | True    |



### Metric

#### NDCG (Normalized Discounted Cumulative Gain)

$$ext{nDCG}_{ ext{p}} = rac{DCG_{p}}{IDCG_{p}}, \qquad ext{DCG}_{ ext{p}} = \sum_{i=1}^{p} rac{2^{rel_{i}}-1}{\log_{2}(i+1)}$$

- Highly relevant documents are more useful than marginally relevant documents, which are in turn more useful than irrelevant documents.
- Relevance value is reduced logarithmically proportional to the position of the result

#### Queries per session

### 450000 400000 350000 250000 150000 100000 50000

#### Items per query



#### **Products views**



• 75% sessions have only one query

 83% non-textual sessions with large search results (items)

Long tail

### Recover item relevance for every query

- Purchases have session information, timeframe and item id.
- Clicks information provide a query id, timeframe, item id.
- Combine it! Its improve query-level relevance information.

| Query     |      |      |       |       |  |  |
|-----------|------|------|-------|-------|--|--|
| Item id   | 4355 | 2344 | 34534 | 34553 |  |  |
| Relevance | 0    | 1    | 0     | 3     |  |  |

Sparse 184047-D vector

### Possible solutions

#### **Pointwise regression**

- Linear SGD regression with L1 regularization and sparsify after fit.
- For every item train own model only on positive items, for negative sampling choose random query.
- Gaussian random projection for reduce the dimensionality

#### **Query similarity**

- Locality Sensitive Hashing MinHash (Jaccard similarity) (datasketch)
- Cosine similarity (fast sklearn pairwise\_distances)
- Split items by category

### Personalized recommendations

- Group queries by session => user profile with items relevance
- Now we can use collaborative filtering technics
  - Matrix factorization
    - SVD
    - NMF
    - Implicit ALS
  - Pairwise loss (BPR, WARP) (LightFM)
  - Factorization Machines



## Neural networks similarity learning





## Results

| RE | RESULTS         |                   |                              |                                          |                                            |  |  |  |
|----|-----------------|-------------------|------------------------------|------------------------------------------|--------------------------------------------|--|--|--|
|    | User            | Team Name         | FinalNDCG (weighted average) | SearchNDCG (query-full; textual queries) | CategoryNDCG (query-less; category facets) |  |  |  |
| 1  | minerva         | Ali-Search        | 0.4262 (1)                   | 0.5574 (1)                               | 0.3935 (1)                                 |  |  |  |
| 2  | Dmitrii_Nikitko |                   | 0.4149 (2)                   | 0.5301 (2)                               | 0.3861 (3)                                 |  |  |  |
| 3  | joaopalotti     |                   | 0.3712 (5)                   | 0.4860 (3)                               | 0.3425 (5)                                 |  |  |  |
| 4  | wistuba         |                   | 0.3769 (4)                   | 0.4495 (4)                               | 0.3588 (4)                                 |  |  |  |
| 5  | tjy             | red fruit<br>yard | 0.4015 (3)                   | 0.4364 (5)                               | 0.3928 (2)                                 |  |  |  |

#### Tricks

- Cut-off long tail use only most popular items
- Write extension methods and classes
- Logging experiments with code backups
- Use already implemented solutions and algorithms



# Personalized E-commerce Search Challenge

**<epam>** Nikitko Dmitrii