COMP6237 Data Mining

Modelling Prices & Nearest Neighbours

Jonathon Hare jsh2@ecs.soton.ac.uk

Introduction

- KNN recap
- KNN for regression
- Weighted KNN
- Dealing with KNN limitations
 - Approximate NN
 - Dimensionality reduction again

Problem statement: Price Modelling

- Assume we want to predict prices of some items
 - Items are described by numerical feature vectors
 - Prices are numbers
 - We have some examples current products and their prices
- · Quite clearly a regression problem
 - but one with a potentially complex regression function

KNN Classification Recap

Using KNN to predict prices (perform regression)

Assign value of unknown point based on average values of closest K neighbours in featurespace

Example Dataset: Fine wine prices

rating %	age	price	
73.58	21.92	£188.87	
71.87	17.28	£164.59	
60.35	31.72	£0.00	
71.21	1.65	£23.72	
55.92	19.20	£0.00	
62.75	27.91	£0.00	
71.60	12.69	£108.44	
67.25	11.99	£121.98	
82.64	43.89	£0.00	
97.70	1.05	£9.94	
53.78	27.09	£0.00	
	•••		

Demo KNN Regression

Choosing the correct K

...can be very important!

- Too small and we might overfit to any noise
 - For regression this can be particularly important
- Too big and we smooth too much...

Price 300

225

Price 300

225

Choosing the correct K

- Measure performance (e.g. regression or classification error) using cross validation
- Optimise k to maximise performance

Improving KNN: Weighting Neighbours

- Rather than taking the average value of the neighbours (or mode for classification), weight neighbours based on their distance
 - Intuition: neighbours further away are likely to be less similar, so should have less effect

Inverse weighting

weight=k₁/(distance + k₂)

Subtraction weighting

weight=max(0,k1-distance)

Gaussian weighting

weight=exp(-distance²/k₁²)

Demo Weighted KNN Regression

Choosing the best weighting

- Measure performance (e.g. regression or classification error) using cross validation
- Optimise weighting scheme & parameters to maximise performance

Dealing with Heterogeneous Variables

- In most datasets the variables/features don't have the same range or scale of values
 - But if we're computing distances this is obviously important - features with bigger ranges would have more of an impact
- What about entirely irrelevant variables?
 - Might force things to be far apart even though they should be considered to be similar...

Example Dataset: Fine wine prices v2

rating %	age	aisle	bottle size	price
70.37	38.89	8	750	£0.00
77.48	39.67	9	375	£0.00
90.01	45.30	18	375	£51.25
80.16	11.76	8	750	£86.45
94.56	1.00	19	750	£176.96
67.75	30.78	10	375	£0.00
97.82	43.95	1	750	£244.00
81.41	6.77	2	750	£0.00
96.40	36.48	17	375	£100.85
82.73	48.58	14	375	£0.00
75.14	1.26	14	375	£8.83
52.15	18.51	19	750	£0.00

Normalising by scaling dimensions

- Normalisation can help
 - e.g. bring all features to same range
 - but is this optimal?
 - might it be better to choose scale factors for each feature that together optimise the performance?
 - Could also use this to perform feature selection

Demo: Optimising feature weightings

KNN Problems

- Computationally expensive if there are:
 - Lots of training examples
 - Many dimensions
- However:
 - More examples generally means better accuracy
 - More dimensions generally gives more descriptive power (unless dimensions are highly correlated or irrelevant...)

Dealing with lots of examples: Approximate NN

- How can we quickly find the nearest neighbour to a query point in a high dimensional space?
 - Index the points in some kind of tree structure?
 - Hash the points?
 - Quantise the space

- Binary tree structure that partitions the space along axisaligned hyperplanes
 - Typically take each dimension in turn and splits on the median of the points in the enclosing partition.
 - Stop after a certain depth, or when the number of points in a leaf is less than a threshold

- Search by walking down the tree until a leaf is hit, and then brute-force search to find the best in the leaf.
 - This is not guaranteed to be the best though...
 - To have to walk back up the tree and see if there are any better matches, and only stop once the root is reached (note you don't have to check a subtree if it's clear that all points in that subtree are further than the current best).

K-D Tree problems

- Doesn't scale well to high dimensions
 - You tend to end up needing to search most of the tree
- There are approximate versions that won't necessarily return the exact answer that do scale (if you don't mind the potential for mismatch)
 - typically based on ensembles of trees where the split dimension is randomised (but biased towards the best)

Locality Sensitive Hashing

- Locality Sensitive Hashing (LSH) creates hash codes for vectors such that similar vectors have similar hash codes!
 - Input vectors hashed so that similar items map to the same "buckets" with high probability
 - number of buckets is much smaller than the set of input items
 - LSH differs from conventional and cryptographic hash functions because it aims to maximise the probability of a "collision" for similar items

Metric Space

- **M**=(M,d)
- M is a set (of vectors)
- d is a distance metric (e.g. a function $d: M \times M \rightarrow \mathbb{R}$)
 - such that for any $x, y, z \in M$
 - $d(x, y) \ge 0 \iff x = y$
 - d(x, y) = 0
 - d(x, y) = d(y, x)
 - $d(x, z) \leq d(x, y) + d(y, z)$

LSH Family

- · An LSH family is defined for a
 - metric space $\mathcal{M}=(M,d)$
 - a threshold R>0
 - and an approximation factor c>1
- The family \mathcal{F} is a family of functions $h: \mathcal{M} \rightarrow S$ which map elements from the metric space to a bucket $s \in S$.
- \mathcal{F} satisfies the following conditions for any two points $p, q \in M$, using a function $h \in \mathcal{F}$ which is chosen uniformly at random:
 - if $d(p, q) \le R$, then h(p) = h(q) (i.e. p and q collide) with probability at least P_1 ,
 - if $d(p, q) \ge cR$, then h(p) = h(q) with probability at most P_2 .
- A family is **interesting** when $P_1 > P_2$

Stable Distribution LSH Family

- $h_{a,b}(\mathbf{v}) = \text{floor}((\mathbf{a} \cdot \mathbf{v} + b)/r)$
 - **a** is a *d* dimensional vector with elements independently randomly generated from a *stable* distribution
 - *b* is a uniform random number in [0,*r*]
- Interesting factoids:
 - if the elements of a are drawn from a Gaussian distribution then underlying metric is Euclidean
 - if the elements of a are drawn from a Cauchy distribution then underlying metric is L1

Geometric Interpretation

Nearest Neighbour Search with LSH

- Can use LSH as a basis for NN search using standard hash tables
 - Combine responses of a list of LSH's into a vector of ints
 - Store in a hash table of <int[], Set of points>
 - Use multiple hash tables to better ensure probability of collision

Sketching

- A technique called sketching concatenates binary hashes into a bit string.
 - With the correct LSH function, the Hamming distance between a pair of sketches is proportional to the Euclidean distance between the original vectors
 - Can easily compress features to relatively small number of bits
 - Hamming distance computation is cheap
 - Lookup tables and bitwise operations

Sketching with a Stable (Gaussian) LSH Family

Dealing with dimensions: Dimensionality Reduction

- Too many dimensions?
 - Reduce the number...
 - Already looked at a few techniques a few lectures ago
 - Some of those (MDS, SOM) not really suitable for this in terms of doing NN analysis...
 - What about PCA?

PCA has a potential problem...

Random Projection

- Johnson-Lindenstrauss lemma
 - "if points in a vector space are of sufficiently high dimension, then they may be projected into a suitable lower-dimensional space in a way which approximately preserves the distances between the points"
- The low dimensional basis on which we project could be generated randomly!

Summary

- KNN can be used for regression as well as classification
- Adding a weighting can improve performance (esp. for regression)
- Some of the problems associated with KNN can be overcome through
 - fast approximate nearest neighbour methods
 - dimensionality reduction