

AD-A051 741

AEROSPACE RESEARCH INC BOSTON MASS
PASSIVE INFRARED MOTION SENSOR (PIMS). TEST PLAN.(U)

NOV 76

F/0 17/5

DAA653-76-C-0158

NL

UNCLASSIFIED

PUB-573

| OF |
AD
A051741

1012
8800

END

DATE

FILMED

4 - 78

DDC

AD NO. 1
DDC FILE COPY

ADA051741

TEST PLAN

(1) PASSIVE INFRARED
MOTION SENSOR
(PIMS). Test Plan.

(15) CONTRACT DAAG53-76-C-0158
TECHNICAL DATA ITEM A004

(11) 22 Nov 76

(12) 14P.

(14) PUB-573

AEROSPACE RESERACH, INC.
130 Lincoln Street
Boston (Brighton), Massachusetts

02135

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

Publication #573
22 November 1976

BRUBAKER DESK CPY

009 900 JOB

1.0

SCOPE

The plan describes a sequence of tests designed to show that the Passive Infrared Motion Sensor (PIMS), complies with the requirements of the purchase description, and additionally functions correctly with regard to parameters not specifically described therein. The plan proposes a group of functional tests to which all deliverable equipment will be subjected, and a group of environmental tests to which randomly selected samples of the deliverable equipment will be subjected. All deliverable equipment is defined as Engineering Prototype Models (EPM) and will be tested as such in accordance with the requirements of the purchase description.

Group I - 2 units to be delivered in advance of the balance will be subjected to functional tests only as shown in Table II column 1.

Group II - 4 units will be subjected to all applicable tests of Table II column 2.

Group III - 10 units will be subjected to all applicable tests of Table II column 5.

R51

Aug 1978 R78-0271

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
21	22	23	24
25	26	27	28
29	30	31	32
33	34	35	36
37	38	39	40
41	42	43	44
45	46	47	48
49	50	51	52
53	54	55	56
57	58	59	60
61	62	63	64
65	66	67	68
69	70	71	72
73	74	75	76
77	78	79	80
81	82	83	84
85	86	87	88
89	90	91	92
93	94	95	96
97	98	99	100
101	102	103	104
105	106	107	108
109	110	111	112
113	114	115	116
117	118	119	120
121	122	123	124
125	126	127	128
129	130	131	132
133	134	135	136
137	138	139	140
141	142	143	144
145	146	147	148
149	150	151	152
153	154	155	156
157	158	159	160
161	162	163	164
165	166	167	168
169	170	171	172
173	174	175	176
177	178	179	180
181	182	183	184
185	186	187	188
189	190	191	192
193	194	195	196
197	198	199	200
201	202	203	204
205	206	207	208
209	210	211	212
213	214	215	216
217	218	219	220
221	222	223	224
225	226	227	228
229	230	231	232
233	234	235	236
237	238	239	240
241	242	243	244
245	246	247	248
249	250	251	252
253	254	255	256
257	258	259	260
261	262	263	264
265	266	267	268
269	270	271	272
273	274	275	276
277	278	279	280
281	282	283	284
285	286	287	288
289	290	291	292
293	294	295	296
297	298	299	300
301	302	303	304
305	306	307	308
309	310	311	312
313	314	315	316
317	318	319	320
321	322	323	324
325	326	327	328
329	330	331	332
333	334	335	336
337	338	339	340
341	342	343	344
345	346	347	348
349	350	351	352
353	354	355	356
357	358	359	360
361	362	363	364
365	366	367	368
369	370	371	372
373	374	375	376
377	378	379	380
381	382	383	384
385	386	387	388
389	390	391	392
393	394	395	396
397	398	399	400
401	402	403	404
405	406	407	408
409	410	411	412
413	414	415	416
417	418	419	420
421	422	423	424
425	426	427	428
429	430	431	432
433	434	435	436
437	438	439	440
441	442	443	444
445	446	447	448
449	450	451	452
453	454	455	456
457	458	459	460
461	462	463	464
465	466	467	468
469	470	471	472
473	474	475	476
477	478	479	480
481	482	483	484
485	486	487	488
489	490	491	492
493	494	495	496
497	498	499	500
501	502	503	504
505	506	507	508
509	510	511	512
513	514	515	516
517	518	519	520
521	522	523	524
525	526	527	528
529	530	531	532
533	534	535	536
537	538	539	540
541	542	543	544
545	546	547	548
549	550	551	552
553	554	555	556
557	558	559	560
561	562	563	564
565	566	567	568
569	570	571	572
573	574	575	576
577	578	579	580
581	582	583	584
585	586	587	588
589	590	591	592
593	594	595	596
597	598	599	600
601	602	603	604
605	606	607	608
609	610	611	612
613	614	615	616
617	618	619	620
621	622	623	624
625	626	627	628
629	630	631	632
633	634	635	636
637	638	639	640
641	642	643	644
645	646	647	648
649	650	651	652
653	654	655	656
657	658	659	660
661	662	663	664
665	666	667	668
669	670	671	672
673	674	675	676
677	678	679	680
681	682	683	684
685	686	687	688
689	690	691	692
693	694	695	696
697	698	699	700
701	702	703	704
705	706	707	708
709	710	711	712
713	714	715	716
717	718	719	720
721	722	723	724
725	726	727	728
729	730	731	732
733	734	735	736
737	738	739	740
741	742	743	744
745	746	747	748
749	750	751	752
753	754	755	756
757	758	759	760
761	762	763	764
765	766	767	768
769	770	771	772
773	774	775	776
777	778	779	780
781	782	783	784
785	786	787	788
789	790	791	792
793	794	795	796
797	798	799	800
801	802	803	804
805	806	807	808
809	810	811	812
813	814	815	816
817	818	819	820
821	822	823	824
825	826	827	828
829	830	831	832
833	834	835	836
837	838	839	840
841	842	843	844
845	846	847	848
849	850	851	852
853	854	855	856
857	858	859	860
861	862	863	864
865	866	867	868
869	870	871	872
873	874	875	876
877	878	879	880
881	882	883	884
885	886	887	888
889	890	891	892
893	894	895	896
897	898	899	900
901	902	903	904
905	906	907	908
909	910	911	912
913	914	915	916
917	918	919	920
921	922	923	924
925	926	927	928
929	930	931	932
933	934	935	936
937	938	939	940
941	942	943	944
945	946	947	948
949	950	951	952
953	954	955	956
957	958	959	960
961	962	963	964
965	966	967	968
969	970	971	972
973	974	975	976
977	978	979	980
981	982	983	984
985	986	987	988
989	990	991	992
993	994	995	996
997	998	999	1000

2.0 FUNCTIONAL TEST (ALL UNITS)

2.1 Area of Coverage

The equipment will be set up in a rectangular open area 20 x 40 feet. The sensor will be located in the center of the 40 foot wall on one side of the area at a height of 7 feet from the floor. It will be shown that coverage exists within the enclosed volume by means of 17 narrow fields of view.

2.2 Target Velocity Range

Using a special test fixture consisting of a black body radiator emitting infrared energy through a moving aperture, it will be demonstrated that the sensor will detect targets within the velocity range of 0.1 to 15 ft./sec. Motion will persist for at least 1 second at the lowest target velocities.

2.3 Interface

2.3.1 FIDS Compatibility

It will be demonstrated that the PIMS is compatible with the FIDS Control Unit.

? too long

2.3.1.1 Alarm Output

The intrusion alarm output will appear on pin 16 and the tamper alarm output will appear pin 17 of the Alarm Processor. No alarm will be a logic level 1 and alarm will be logic level 0.

2.3.1.2 Power

The sensor will draw power from the 9 to 11v regulated supply on pins 9 and 10 of the alarm processor. The current drain will not exceed 2 milliamperes per receiver..

2.3.1.3 Test Mode

It will be shown that when a logic level 1 (5v) appears at pin 28 of the Alarm Processor that an alarm output from both signal processors is required to produce an alarm output. It will be shown that the system remains inhibited from producing further alarms for 30 seconds after the test stimulus (on pin 28) is removed. The two step alarm logic is inhibited during the test mode.

2.3.1.4 Two Step Detection Logic

It will be shown that if the two step detection mode is selected by means of a jumper on the Alarm Processor, that two detections will be required to produce an intrusion alarm output. By means of another jumper selection, these events must occur within a one minute or five minute time interval.

2.3.2 JSIIDS Compatibility

It will be shown that by means of the J-SIIDS Adaptor Unit that the PIMS is compatible with the J-SIIDS Control Unit.

2.3.2.1 Alarm Output

The intrusion alarm output and the tamper alarm output will appear at the appropriate terminals of the barrier strip located in the Adaptor Unit. The no alarm condition will be a closed relay contact current protected by a series 100 ohm resistor. The alarm condition will be an open (greater than 100k ohms) circuit between the appropriate contacts.

2.3.2.2 Power

It will be demonstrated that the PIMS will operate from 18 to 22Vdc as supplied by the J-SIIDS Control Unit.

2.3.2.3 Tamper Switch Tolerance Test

The continuity of the adaptor unit tamper switch will be monitored with the cover in place. As any edge of the cover is lifted until continuity is lost, the contacts will be shown to open with not less than 1/8 inch or more than 1/4 inch of movement and before the cover flange is disengaged. With the cover off pulling up plunger will close the tamper contacts.

3.0 ENVIRONMENTAL TESTS (GROUP II, 4 UNITS)

The group II units will be subjected to the following environmental tests.

- 1) Low Temperature
- 2) High Temperature
- 3) Shock Test
- 4) Vibration Test
- 5) Humidity Test

The tests will be performed in accordance to the applicable requirements of MIL-STD-810, either at Aerospace Research, Inc., or at the facilities of Associated Testing Laboratories, Burlington, Mass.

3.1 Operational Check

Before, during and after each test, the PIMS will be subjected to an operational check to verify continuing system performance. The test will consist of generating intrusion alarms by means of an infrared source within the field of view.

3.2 Low Temperature Test

The PIMS equipment will be subjected to low temperature testing in accordance with Method 502, Procedure I of MIL-STD-810, as follows:

- (a) The system will be placed in the test chamber and fully interconnected. The system will then be subjected to the operational check (3.1) to determine that no malfunction or damage was caused due to faulty installation or handling.
- (b) The internal chamber temperature will be lowered to -50°F and maintained for 48 hours. While still at -50°F the units will be visually inspected through the chamber window.
- (c) The chamber will be returned to room ambient conditions and the units will be visually inspected to determine if any deterioration, corrosion, or other damage has taken place which would constitute a failure of the unit to withstand the test conditions.

- (d) The internal chamber temperature will be lowered to +10° F and maintained for 2 hours. While at +10° F, the system will be subjected to the operational check of 3.1.
- (e) The internal chamber temperature will be lowered to -40° F and maintained for 2 hours. While at -40° F, the system will be subjected to the operational check of 3.1.
- (f) The chamber will be returned to room ambient conditions and stabilized for 2 hours. The system will then be tested by the operational check of 3.1.

3.3 High Temperature Test

The PIMS equipment will be subjected to high temperature testing in accordance with Method 501, Procedure II of MIL-STD-810B, as follows:

- (a) The system will be placed in the test chamber and fully interconnected. The system will then be subjected to the operational check (3.1) to determine that no malfunction or damage was caused due to faulty installation or handling.
- (b) The internal chamber temperature will be raised to +120° F and maintained for 6 hours.
- (c) The internal chamber temperature will be raised to +150° F within a time period of 1 hour and maintained for 4 additional hours.
- (d) The internal chamber temperature will be lowered to +120° F within a time period of 1 hour.
- (e) Steps b, c, and d above will be repeated two additional times, making a total of three 12-hour cycles.
- (f) The internal chamber temperature will be raised to +125° F and maintained for 2 hours. While at +125° F, the system will be subjected to the operational check of 3.1.
- (g) The internal chamber temperature will be raised to +150° F and maintained for 2 hours. While at +140° F, the system will be subjected to the operational check of 3.1.

(h) The chamber will be returned to room ambient conditions and stabilized for 2 hours. The system will then be tested by the operational check of 3.1.

Humidity Test

The PIMS equipment will be subjected to humidity testing in accordance with Method 507, Procedure I of MIL-STD-810, as follows:

- (a) The system will be placed in the test chamber and fully interconnected. The system will then be subjected to the operational check (3.1) to determine that no malfunction or damage was caused due to faulty installation or handling.
- (b) The internal chamber temperature will be raised to $+160^{\circ}\text{F}$ and the relative humidity brought to 95% (wet bulb depression 2°F) over a period of 2 hours, and then maintained for 6 hours.
- (c) The internal chamber temperature will be reduced to $+82^{\circ}\text{F}$ over 16 hours, while relative humidity is maintained at 85% or greater.
- (d) The test items will be removed from the chamber and allowed to stabilize at room temperature, $28+10^{\circ}\text{C}$ (82°F). The test items will be subjected to the operational check of 3.1. Prior to operation, excess moisture may be removed from exterior surfaces by turning the test item upside-down, or by wiping external surfaces only.
- (e) Steps b, c and d above will be repeated four more times, for a total of 120 hours.
- (f) The chamber will be returned to room ambient humidity conditions and stabilized for 2 hours at $+82^{\circ}\text{F}$. The system will then be tested by the operational check of 3.1.

(g) Deterioration, corrosion, or physical change which impairs the mechanical integrity of the system, or change in the tolerance limits in any internal or external component which would prevent the system from meeting operational requirements, will provide reason to consider the item as having failed to withstand the conditions of this test. Evidence of delamination or water penetration in integrated circuits or printed circuit boards after the humidity test will be a failure.

3.4

Shock Test

The PIMS equipment will be subjected to shock tests in accordance with Method 516.1, Procedure I, Basic Design Test as follows:

- (a) The shock machine will be calibrated using dummy loads representing the signal processor and sensor units rigidly attached to the shock machine table. The dummy loads will receive two consecutive shocks to produce sawtooth waveforms of 20 g's peak and 11 ms duration within the tolerances of Figure 516.1.1, Procedure I.
- (b) The signal processor and sensor units will be attached to the machine table and interconnected as in a typical installation. The system will then be operated to determine that no malfunction or damage was caused due to faulty installation or handling.
- (c) While non-operating, the units will receive three shocks in each direction along three mutually perpendicular axes.
- (d) At the conclusion of the test the system will be tested according to Section 3.1 and the results compared with those obtained prior to the shock test.
- (e) The units will be inspected for any evidence of physical damage.

3.4.1

Bench Handling

The PIMS equipment will be subjected to shock test in accordance with Method 516.1, Procedure V, Bench Handling Test, as follows:

- (a) The unit enclosures will be opened as for servicing, and placed in a suitable position on a horizontal, solid wooden bench top at least 1-5/8 inches thick.
- (b) Using one edge as a pivot, opposite edges of each unit will be lifted until one of the following conditions occurs (whichever occurs first):
 - 1. The unit forms an angle of 45° with the horizontal bench top.
 - 2. The lifted edge of the unit has been raised 4 inches above the horizontal bench top.
 - 3. The lifted edge of the unit is just below the point of perfect balance.The unit will be allowed to fall back freely on the bench top. The drop will be repeated using other practical edges of the same horizontal face as pivot points, for a total of four drops.
- (c) The preceding test will be repeated with the unit resting on other faces until it has been dropped for a total of four times on each face on which it could be placed practicably during servicing. The unit will not be operating during the test. At the conclusion of the test, the system will be tested and the results compared with the data obtained in accordance with Section 3.7.
- (d) The units will then be inspected according to determine if any physical damage has resulted from the test.

3.5 Vibration Test

The PIMS equipment will be subjected to vibration tests in accordance with Method 514.1, Procedure X, Curves AY (aircraft) and AW (track, semi-trailer and railroad) as follows:

- (a) The signal processor units and corresponding sensors units will be attached to the vibration exciter table by normal mounting means or by means of a fixture capable of transmitting the vibration conditions.

- (b) The units will be interconnected and operated to determine that no malfunction or damage was caused due to faulty installation or handling.
- (c) While non-operating, the units will undergo resonance search, resonance dwell, and sinusoidal cycling according to the level and time durations specified in Procedure X for land transportation of 3000 miles. If serious resonances are observed, the use of slip-sync movies will be considered as an aid to corrective action.
- (d) The system will then be tested according to Section 3.1 and the results compared with those obtained prior to the test.
- (e) The units will then be inspected to determine if any physical damage resulted from the test.

3.6 Burn-in

The Group III units will be subjected to a burn in test of at least 50 hours duration. For purely practical reasons it is proposed that the units will be set up in an open area where they will be energized and recorders set up to record all alarm activity. During the day time the units will be activated frequently by persons moving about in the test area going about their normal business. At night, conditions should be quiet and no alarm activity should be evident. Twice a day the recordings will be inspected and any unit not performing normally will be examined, repaired, and put back into test for a further 50 hour period. After units have successfully completed the burn-in, they will be tested using the functional test described in Section 2, prior to the shipment.

TEST DATA SHEET

FUNCTIONAL TEST

AREA OF COVERAGE

Check unit responds to stimulus
in all 17 fields of view

1 () 2 () 3 () 4 ()
5 () 6 () 7 () 8 ()
9 () 10 () 11 () 12 ()
13 () 14 () 15 () 16 ()
17 ()

TARGET VELOCITY RANGE

With unit set up in test fixture
and exciting field of view #1
check that alarms can be generated
at the following target velocities:

0.1 ft/sec. ()
1.0 ft/sec. ()
5.0 ft/sec. ()
10.0 ft/sec. ()
15.0 ft/sec. ()

Test fixture conditions will be:

- (a) Water bath 96°F *Good temp*
(b) Curtain, at room temperature
(c) Single stroke mode
(d) Standard aperture, range 10 feet

ALARM OUTPUT

Set unit for FIDS operation and stimulate intrusion and tamper alarms. Check status on alarm output terminals in both states:

	<u>Alarm</u>	<u>No Alarm</u>
Intrusion Alarm	() 0.0-0.4v	() 2.4-5.0v
Tamper Alarm	() 0.0-0.4v	() 2.4-5.0v

Set unit for J-SIIDS operation

Intrusion Alarm () >100k ohm () < 1k ohm
Tamper Alarm () >100k ohm () < 1k ohm

POWER

Set unit for FIDS operation

Record current () < 12 mA

Set unit for J-SIIDS operation

Record current () < 12 mA

TEST MODE

Set unit for FIDS operation and stimulate according to the following matrix. Record data

In matrix 0 = no stimulus applied
 1 = stimulus applied
 A = ALARM
 N = NO ALARM

TEST SIGNAL	0	0	0	1	1	1
STIMULUS CH1	0	1	0	0	1	1
STIMULUS CH2	0	0	1	0	0	1
ALARM OUTPUT	N	A	A	N	N	A

Check if true() () () () () () ()

Upon release of TEST SIGNAL check that unit is inhibited from producing alarms for approximately 30 seconds.
Record time.
() 25 to 35 seconds

TWO STEP DETECTION MODE

Set unit for two-step detection and check that unit does not alarm on a single stimulus (). Check unit does alarm on further stimulus within the two-step window (). Check time of windows. Record times.

1 minute window () 50 to 70 seconds
5 minute window () 270 to 330 seconds

TAMPER SWITCH TOLERANCE

Set unit for J-SIIDS operation. Record measured delta () should be 1/8" to 1/4".

TEST DATA SHEET

Operational Test

With unit set up for environmental test. Check
that unit is not in alarm condition ().

Apply test stimulus. Check unit alarms ().