CMPE 493 INTRODUCTION TO INFORMATION RETRIEVAL

Index Compression

Department of Computer Engineering, Boğaziçi University November 23-24, 2020

Why compression (in general)?

- Use less disk space
 - Saves a little money
- ▶ Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
 - ▶ Premise: Decompression algorithms are fast
 - ▶ True of the decompression algorithms we use

._____

Why compression for inverted indexes?

Dictionary

- Make it small enough to keep in main memory
- Make it so small that you can keep some postings lists in main memory too

Postings file(s)

- Reduce disk space needed
- Decrease time needed to read postings lists from disk
- Large search engines keep a significant part of the postings in memory.
 - ▶ Compression lets you keep more in memory
- We will devise various IR-specific compression schemes

<u>.</u>

RCV1: Our collection for this lecture

- Shakespeare's collected works definitely are not large enough for demonstrating many of the points in this course.
- ▶ The collection we will use isn't really large enough either, but it is publicly available and is at least a more plausible example.
- As an example for applying scalable index compression/construction algorithms, we will use the Reuters RCVI collection.
- ► This is one year of Reuters newswire (part of 1995 and 1996)

<u>.</u>

Reuters RCV1 statistics symbol statistic value Ν 800,000 documents avg.# tokens per doc 200 terms (= word types) Μ 400,000 avg.# bytes per token (incl. spaces/punct.) 4.5 avg. # bytes per token (without spaces/punct.) 100,000,000 Т tokens

Effect of preprocessing (RCV1 corpus)

size of	word ty	pes (terms)	non-posit postings	ional		positional postings			
	dictionary		non-positional index			positional index				
	Size (K)	$\Delta\%$	cumul %	Size (K)	$_{\%}^{\Delta}$	cumul %	Size (K)	$_{\%}^{\Delta}$	cumul %	
Unfiltered	484			109,971			197,879			
No numbers	474	-2	-2	100,680	-8	-8	179,158	-9	-9	
Case folding	392	-17	-19	96,969	-3	-12	179,158	0	-9	
30 stopwords	391	-0	-19	83,390	-14	-24	121,858	-31	-38	
150 stopwords	391	-0	-19	67,002	-30	-39	94,517	-47	-52	
stemming	322	-17	-33	63,812	-4	-42	94,517	0	-52	

Lossless vs. lossy compression

- ▶ Lossy compression: Discard some information
- ▶ Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- ▶ Lossless compression: All information is preserved.
 - ▶ Today's topic

_ -

	Sec. 5.3
	Statistical properties of terms
>	

Statistical Properties of Text

- ▶ How fast does vocabulary size grow with the size of a corpus?
- ▶ How is the frequency of different words distributed?
- ▶ Such factors affect the performance of information retrieval and can be used to select appropriate term weights and other aspects of an IR system.

Vocabulary vs. collection size

- ▶ How big is the term vocabulary?
 - ▶ That is, how many distinct words are there?
- ▶ Can we assume an upper bound?
 - Not really.
- In practice, the vocabulary will keep growing with the collection size

Vocabulary vs. collection size

- ▶ Heaps' law: $M = kT^b$
- ▶ *M* is the size of the vocabulary, *T* is the number of tokens in the collection
- ▶ Typical values (for English): $30 \le k \le 100$ and $b \approx 0.5$
- ▶ In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ½
 - $\log M = \log k + b*\log T$
 - ▶ An empirical finding ("empirical law")

-

Heaps' Law

For RCVI, the dashed line

Good empirical fit for Reuters RCVI!

For first 1,000,020 tokens,

- law predicts 38,323 terms;
- actually, 38,365 terms

Word distributions

- Words are not distributed evenly!
- ▶ Same goes for letters of the alphabet (ETAOIN SHRDLU), city sizes, wealth, etc.
- ▶ Usually, the 80/20 rule applies (80% of the wealth goes to 20% of the people or it takes 80% of the effort to build the easier 20% of the system)...

_ -

Shakespeare

▶ Romeo and Juliet:

And, 667; The, 661; I, 570; To, 515; A, 447; Of, 382; My, 356; Is, 343; That, 343; In, 314; You, 289; Thou, 277; Me, 262; Not, 257; With, 234; It, 224; For, 223; This, 215; Be, 207; But, 181; Thy, 167; What, 163; O, 160; As, 156; Her, 150; Will, 147; So, 145; Thee, 139; Love, 135; His, 128; Have, 127; He, 120; Romeo, 115; By, 114; She, 114; Shall, 107; Your, 103; No, 102; Come, 96; Him, 96; All, 92; Do, 89; From, 86; Then, 83; Good, 82; Now, 82; Here, 80; If, 80; An, 78; Go, 76; On, 76; I'll, 71; Death, 69; Night, 68; Are, 67; More, 67; We, 66; At, 65; Man, 65; Or, 65; There, 64; Hath, 63; Which, 60;

· ...

A-bed, I;A-bleeding, I;A-weary, I;Abate, I;Abbey, I;Abhorred, I;Abhors, I;Aboard, I; Abound'st, I;Abroach, I;Absolved, I;Abuse, I;Abused, I;Abuses, I;Accents, I;Access, I; Accident, I;Accidents, I;According, I;Accursed, I;Accustom'd, I;Ache, I;Aches, I;Aching, I; Acknowledge, I;Acquaint, I;Acquaintance, I;Acted, I;Acting, I;Action, I;Acts, I;Adam, I;Add, I;Added, I;Adding, I;Addle, I;Adjacent, I;Admired, I;Ado, I;Advance, I;Adversary, I; Adversity's, I;Advise, I;Afeard, I;Affecting, I;Afflicted, I;Affliction, I;Affords, I;Affray, I; Affright, I;Afire, I;Agate-stone, I;Agile, I;Agree, I;Agrees, I;Aim'd, I;Alderman, I;All-cheering, I;All-seeing, I;Alla, I;Alliance, I;Alligator, I;Allow, I;Ally, I;Although, I;

The BNC (Adam Kilgarriff)

- I 6187267 the det
- > 2 4239632 be v
- 3 3093444 of prep
- 4 2687863 and conj
- 5 2186369 a det
- ▶ 6 1924315 in prep
- 7 1620850 to infinitive-marker
- 8 1375636 have v
- 9 1090186 it pron
- ▶ 10 1039323 to prep
- ▶ 11 887877 for prep
- ▶ 12 884599 i pron
- 13 760399 that conj14 695498 you pron
- ▶ 15 681255 he pron
- ▶ 16 680739 on prep
- 17 675027 with prep
- 18 559596 do v
-) 19 534162 at prep
- > 20 517171 by prep

The British National Corpus (BNC) is a 100 million word collection of samples of written and spoken English language from a wide range of sources.

Kilgarriff, A. Putting Frequencies in the Dictionary. *International Journal of Lexicography* 10 (2) 1997. Pp 135--155

Stop words

- ▶ 250-300 most common words in English account for 50% or more of a given text.
- Example: "the" and "of" represent 10% of tokens. "and", "to", "a", and "in" another 10%. Next 12 words another 10%.
- Moby Dick Ch.1: 859 unique words (types), 2256 word occurrences (tokens). Top 65 types cover 1132 tokens (> 50%).

Zipf's law

- ▶ Heaps' law estimates the vocabulary size in collections.
- ▶ We also study the relative frequencies of terms.
- In natural language, there are a few very frequent terms and very many very rare terms.
- ▶ Zipf's law: The *i*th most frequent term has frequency proportional to I/i.
- $ightharpoonup cf_i \propto 1/i = K/i$ where K is a normalizing constant
- cf_i is <u>collection frequency</u>: the number of occurrences of the term t_i in the collection.

•

Zipf consequences

- ▶ If the most frequent term (the) occurs cf₁ times
 - then the second most frequent term (of) occurs $cf_1/2$ times
 - the third most frequent term (and) occurs cf₁/3 times ...
- ▶ Equivalent: $cf_i = K/i$ where K is a normalizing factor, so
 - \triangleright log cf_i = log K log i
 - Linear relationship between log cf, and log i
- Another power law relationship (like Heaps' Law)

•

Does Real Data Fit Zipf's Law?

- A law of the form $y = kx^c$ is called a power law.
- ▶ Zipf's law is a power law with c = -1
- ▶ On a log-log plot, power laws give a straight line with slope *c*.

$$\log(y) = \log(kx^c) = \log k + c\log(x)$$

▶ Zipf is quite accurate except for very high and low rank.

Zipf's Law Impact on IR

Pros:

- ▶ Stopwords account for a large fraction of text. So, eliminating them considerably reduces inverted-index storage costs.
- Postings list for most remaining words in the inverted index will be short since they are rare, making retrieval fast.

▶ Cons:

Most words very rare. So, gathering sufficient data for meaningful statistical analysis (e.g. for spelling correction) is difficult.

_	
	DICTIONARY COMPRESSION
	Biolionaliti comi nescion
· ·	

Why compress the dictionary?

- ▶ Search begins with the dictionary
- ▶ We want to keep it in memory
- ▶ Embedded/mobile devices may have very little memory
- ▶ Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- ▶ So, compressing the dictionary is important

._____

Dictionary storage - first cut

- Array of fixed-width entries
 - ▶ ~400,000 terms; 28 bytes/term = 11.2 MB.

Fixed-width terms are wasteful

- ▶ Most of the bytes in the **Term** column are wasted we allot 20 bytes for 1 letter terms.
 - And we still can't handle supercalifragilistic expialidocious or hydrochlorofluorocarbons.
- ▶ Average dictionary word in English: ~8 characters

Space for dictionary as a string

- ▶ 4 bytes per term for Document Freq.
- ▶ 4 bytes per term for pointer to Postings.
- ▶ 3 bytes per term pointer
- Avg. 8 bytes per term in term string
- > 400K terms x 19 \Rightarrow 7.6 MB (against 11.2MB for fixed width)

Net

- ▶ Example for block size k = 4
- ▶ Save 5 bytes per four-term block.
- ▶ Total: 400,000/4 * 5 = 0.5 MB

Saved another ~0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger k.

Why not go with larger k?

15

Dictionary search without blocking

Assuming each dictionary term equally likely in query (not really so in practice!), average number of comparisons = (1+2·2+4·3+4)/8 = ~2.6

Dictionary search with blocking

- ▶ Binary search down to 4-term block;
 - Then linear search through terms in block.
- ▶ Blocks of 4 (binary tree), avg. = (1+2·2+2·3+2·4+5)/8
 = 3 comparisons

RCV1 dictionary compression summary

Fixed width Dictionary-as-String with pointers to every term	11.2 7.6
	7.6
AL	
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

Character Representations: Fixed length codes

- Binary representations
 - ASCII
 - Representational power (2^k symbols where k is the number of bits)

<u>.</u>

Most frequent letters in English

- Some are more frequently used than others...
- Most frequent letters:
 - -ETAOINSHRDLU
- Demo:
 - http://www.amstat.org/publications/jse/secure/v7n2/co
 unt-char.cfm
- Also: bigrams:
 - TH HE IN ER AN RE ND AT ON NT

-

Variable length codes

```
• Alphabet:

A .- N -. 0 ----

B -... 0 --- 1 .----

C -.-. P .--. 2 .---

D -.. Q --.- 3 ..-

E . R .-. 4 ...

F .-. S ... 5 ...

G --. T - 6 -...

H ... U .- 7 --..

I .. V ..- 8 ---.

J .--- W .-- 9 ----

K -.- X -.-

L .-. Y -.-

M -- Z --..
```

Huffman coding

- Developed by David Huffman (1952)
- Average of 5 bits per character (37.5% compression compared to 8 bits)
- Based on frequency distributions of symbols
- Algorithm: iteratively build a tree of symbols starting with the two least frequent symbols

Symbol	Frequency
A	7
В	4
C	10
D	5
E	2
F	11
G	15
H	3
I	7
\mathbf{J}	8
-	<u></u>

Symbol	Code
A	0110
В	0010
\mathbf{C}	000
D	0011
E	01110
\mathbf{F}	010
\mathbf{G}	10
H	01111
I	110
\mathbf{J}	111

ı	POSTINGS COMPRESSION
·	

Postings compression

- ▶ The postings file is much larger than the dictionary, factor of at least 10.
- ▶ Key: store each posting compactly.
- A posting for our purposes is a doclD.
- ▶ For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- ▶ Our goal: use a lot less than 20 bits per docID.

._____

Postings: two conflicting forces

- A term like arachnocentric occurs in maybe one doc out of a million – we would like to store this posting using log₂ IM ~ 20 bits.
- A term like **the** occurs in virtually every doc, so 20 bits/posting is too expensive.
 - ▶ Prefer 0/1 bitmap vector in this case

Postings file entry

- ▶ We store the list of docs containing a term in increasing order of docID.
 - **computer**: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **33,14,107,5,43** ...
- ▶ <u>Hope</u>: most gaps can be encoded/stored with far fewer than 20 bits.

- -

Three	posti	ngs	entı	ries					S (
	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs gaps	252000 252000	248100	500100							
											

Variable length encoding

- Aim:
 - ▶ For *arachnocentric*, we will use ~20 bits/gap entry.
 - ▶ For **the**, we will use ~I bit/gap entry.
- ▶ If the average gap for a term is G, we want to use $\sim \log_2 G$ bits/gap entry.
- ▶ <u>Key challenge</u>: encode every integer (gap) with about as few bits as needed for that integer.
- ▶ This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- ▶ Begin with one byte to store *G* and dedicate I bit in it to be a <u>continuation</u> bit *c*
- ▶ If $G \le 127$, binary-encode it in the 7 available bits and set c = 1
- ▶ Else encode *G*'s lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to I (c = I) and for the other bytes c = 0.

Example Binary representation: I 100 I I 1000 215406 docIDs 829 5 214577 gaps VB code 00000110 10000101 00001101 10111000 00001100 10110001 Postings stored as the byte concatenation $000001\overline{101011100010000101000011010000110010110001}$ Key property: VB-encoded postings are uniquely prefix-decodable. For a small gap (5), VB uses a whole byte.

33

Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- ▶ Variable byte alignment wastes space if you have many small gaps nibbles do better in such cases.
- Variable byte codes: Used by many commercial/research systems

Unary code

- ▶ Represent *n* as *n* Is with a final 0.
- ▶ Unary code for 3 is 1110.
- ▶ Unary code for 40 is

▶ Unary code for 80 is:

▶ This doesn't look promising, but....

68

Gamma codes

- ▶ We can compress better with <u>bit-level</u> codes
 - The Gamma code is the best known of these.
- ▶ Represent a gap G as a pair: length and offset
- offset is G in binary, with the leading bit cut off
 - ▶ For example $13 \rightarrow 1101 \rightarrow 101$
- ▶ length is the length of offset
 - For 13 (offset 101), this is 3.
- ▶ We encode length with unary code: 1110.
- ► Gamma code of 13 is the concatenation of *length* and offset: 1110101

Gamma code examples

number	length	offset	γ-code
0			none
1	0		0
2	10	0	10,0
3	10	1	10,1
4	110	00	110,00
9	1110	001	1110,001
13	1110	101	1110,101
24	11110	1000	11110,1000
511	111111110	11111111	11111110,1111111
1025	11111111110	000000001	11111111110,0000000001

Gamma code properties

- ▶ G is encoded using $2 \lfloor \log G \rfloor + 1$ bits
 - ▶ Length of offset is \[log G \] bits
 - ▶ Length of length is $\lfloor \log G \rfloor + 1$ bits
- All gamma codes have an odd number of bits
- ▶ Almost within a factor of 2 of best possible, log₂ G
- ▶ Gamma code is uniquely prefix-decodable, like VB

Gamma seldom used in practice

- ▶ Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slow
- Variable byte encoding is aligned and thus potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, k = 4	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ–encoded	101.0

Index compression summary

- We can now create an index for highly efficient retrieval that is very space efficient
- ▶ Only 4% of the total size of the collection
- Only 10-15% of the total size of the <u>text</u> in the collection
- ▶ However, we've ignored positional information
- ▶ Hence, space savings are less for indexes used in practice
 - ▶ But techniques substantially the same.

References

- Introduction to Information Retrieval, chapter 5.
 - http://nlp.stanford.edu/IR-book/information-retrieval-book.html
- ▶ The slides were adapted from the lecture notes at the book's website and Prof. Dragomir Radev's and Prof. Raymond Mooneys's lecture notes.

 $\overline{}$