Липецкий государственный технический университет

Кафедра прикладной математики

КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ МАТЕМАТИЧЕСКИХ ИССЛЕДОВАНИЙ

Лекция 2

Структуры языка R. Пользовательские функции.

Решение задач линейной алгебры с помощью R.

Описательная статистика

Составитель - Сысоев А.С., к.т.н., доц.

Липецк — 2019

Outline

- 3.1. Функции. Пользовательские функции
 - 3.1.1. Синтаксис
 - 3.1.2. Примеры функций
- 3.2. Математические выражения
- 3.3. Циклы
 - 3.3.1. Условие If-Else. Использование ifelse
 - 3.3.2. Цикл For
 - 3.3.3. Цикл While
 - 3.3.4. Пример сложной функции
- 3.4. Задачи линейной алгебры
 - 3.4.1. Произведение векторов и матриц. Единичная матрица
 - 3.4.2. Обращение и псевдообращение матриц
 - 3.4.3. Определитель матрицы. Собственные числа и собственные векторы
 - 3.4.4. Определенность матриц
 - 3.4.5. Гессиан. Аппроксимация функции разложением в ряд Тейлора.
- 4.1. Основные статистические функции
- 4.2. Стандартизация данных
- 4.3. Статистические распределения
 - 4.3.1. Дискретные статистические распределения
 - 4.3.2. Непрерывные статистические распределения
 - 4.3.3. Воспроизводимость результатов при использовании ГПСЧ
- 4.4. Подгонка статистического распределения
- 4.5. Проверка распределения на нормальность

Функции создаются для того, чтобы выполнять определенные стандартные действия более одного раза.

Примеры: 1) стандартные функции для работы с векторами и матрицами sum(x) mean(x) max(x) min(x)

2) стандартные тригонометрические функции

cos(x) sin(x) tan(x) ...

Тригонометрические функции определены для углов в радианах!!! sin(pi/2) sin(90)

3.1.1. Синтаксис

R предоставляет большое количество встроенных функций с возможностью гибкой пользовательской настройки.

ФУНКЦИЯ в R **может** содержать

- ✓ **Имя**, через которое происходит обращение (не должно совпадать с именами существующих функций)
- ✓ Тело функции, содержащие основные операции
- ✓ Аргументы, определяющие основные параметры ее выполнения
- ✓ Значение, которое необходимо вернуть в результате выполнения функции

Простой пример:

```
f <- function(x,y) {
   return(2*x + y^2)
}
f(-3, 5)
## [1] 19</pre>
```

3.1.1. Синтаксис

CUHTAKCUC

```
functionname <- function(argument1, argument2, ...) {
  function_body
  return(value)
}</pre>
```

- ✓ Возвращаемое значение (по умолчанию) результат, последнего выполненного действия
- ✓ В случае, если функция содержит только одно выражение, фигурные скобки могут быть опущены (однако этого делать не рекомендуется)
- ✓ Порядок аргументов имеет значение
- ✓ Промежуточные значения вычислений внутри функций не выводятся в консоль, однако, print(...) может решить эту проблему

```
function_1 <- function(x,y,z){</pre>
function_0 <- function(x,y,z){</pre>
      x \leftarrow y + 3;
                                                     x \leftarrow y + 3;
      z < -x^3;
                                                     z \leftarrow x^3; prom \leftarrow c(x,z); print(prom);
      k \leftarrow x + y + z;
                                                     k \leftarrow x + y + z;
      return(k)}
                                                     return(k)}
> function 0(10,3,4)
                                               > function 1(10,3,4)
[1] 225
                                                      6 216
                                               [1]
                                               [1] 225
```

3.1.2. Примеры функций

```
square <- function(x) x*x</pre>
                                         cubic <- function(x){</pre>
                                             print(c("Значение: ", x, "Куб: ", x*x*x))}
> square(5)
                                         > cubic(5)
[1] 25
                                         [1] "Значение: " "5 "Куб: "
                                                                                "125"
hello <- function() print("Привет!")
                                         my mean <- function(x){</pre>
> hello()
                                              return(sum(x)/length(x))}
[1] "Привет!"
                                         > my mean(seq(10,20))
                                         > x <- "A"
                                         g <- function(x){</pre>
     Переменные, созданные в
                                             x \leftarrow "B"; return(x)
   функции, существуют только в
                                         > x <- "C"
        ней, они ЛОКАЛЬНЫ.
                                         > g(x)
                                                           [1] ???
                                                           [1] ???
                                         > X
```

ПРИМЕР ПОЛЬЗОВАТЕЛЬСКОЙ ФУНКЦИИ

<u>Задача:</u> На автомагистрали могут возникать транспортные заторы. Существует множество программных продуктов, способных моделировать это. У автомагистрали есть определенная пропускная способность, экспериментально доказано. что это случайное значение, которое можно описать распределением Вейбулла. Определить, какое распределение имеет резерв транспортного потока (разность пропускной способности и интенсивности поступления).

3.1.2. Примеры функций

```
reserve<-function(num, fl rate, c hbs){</pre>
    library(nortest); library(MASS);
    flow rate<-fl rate*rnorm(n=num, mean=1, sd=4/sqrt(fl rate));</pre>
    capacity<-rweibull(n=num, shape=15, scale=1.275*c hbs);</pre>
    raz<-capacity-flow rate;</pre>
    raz.1 <- split(raz[raz>0],cumsum(raz==0)[raz>0]); R1<-sapply(raz.1, as.numeric);</pre>
    raz.2 <- split(raz[raz<0],cumsum(raz==0)[raz<0]); R2<-sapply(raz.2, as.numeric);</pre>
    opar <- par(no.readonly=TRUE); par(mfrow=c(2,1));</pre>
    hist(R1, freq=FALSE, breaks=20, main="Undersaturated flow, Weibull");
    xfit<-seq(min(R1), max(R1), length=length(R1));</pre>
    fit.weibull <- fitdistr(R1, "weibull");</pre>
    yfit<-dweibull(xfit, shape= fit.weibull$estimate["shape"],</pre>
    + scale=fit.weibull$estimate["scale"]);
    lines(xfit, yfit, lwd=2, col="red"); lines(density(R1), col="blue", lwd=3);
    hist(R2, freq=FALSE, breaks=20, main="Oversaturated flow, Normal");
    xfit<-seq(min(R2), max(R2), length=length(R2));
    fit.normal <- fitdistr(R2, "normal");</pre>
    yfit<-dnorm(xfit, mean=fit.normal$estimate["mean"], sd=fit.normal$estimate["sd"])</pre>
    lines(xfit, yfit, lwd=2, col="red"); lines(density(R2), col="blue", lwd=3);
    par(opar); print("Undersaturated flow, Weibull distribution"); print(fit.weibull);
    print(ks.test(R1, "pweibull", scale=fit.weibull$estimate["scale"],
    + shape=fit.weibull$estimate["shape"]));
    print("Oversaturated flow, Normal distribution");
    print(fit.normal); print(lillie.test(raz)) }
```

3.1.2. Примеры функций

> reserve(500,4500,4560)

Undersaturated flow, Weibull

Oversaturated flow, Normal

3.1.2. Примеры функций

```
> reserve(500,4500,4560)
[1] "Undersaturated flow, Weibull distribution"
                    scale
      shape
  2.550446e+00 1.305352e+03
 (9.459161e-02) (2.424581e+01)
        One-sample Kolmogorov-Smirnov test
data: R1
D = 0.055762, p-value = 0.09616
alternative hypothesis: two-sided
[1] "Oversaturated flow, Normal distribution"
      mean
                   sd
  -310.62464 192.93086
 ( 55.69434) ( 39.38185)
        Lilliefors (Kolmogorov-Smirnov) normality test
data: raz
D = 0.045931, p-value = 0.01357
```

3.2. Математические выражения

В R выражения могут хранить в себе символьные математические структуры, которые в последствии могут быть модифицированы (например, вычислены их частные производные).

Для задания такого рода объекта существует функция expression()

f <- expression(x^3 + 3*y - y^3 - 3*x)

> f

expression(x^3 + 3 * y - y^3 - 3 * x)

Если необходимо вычислить значение созданного выражения при определенных значениях переменных, входящих в него, используют функцию eval()

3.3.1. Условие If-Else. Использование ifelse

Условие If

```
if (condition) {
   statement1
}
```

Условие If-Else

```
if (condition) {
   statement1
} else {
   statement2
}
```

```
grades <- c(1, 2, 3, 4, 5)
ifelse(grades <= 4, "Passed", "Failed")
## [1] "Passed" "Passed" "Passed" "Failed"</pre>
```

3.3.2. Цикл For


```
for (counter in looping_vector) {
    # code to be executed for each element in the sequence
}
```

3.3.3. Цикл While

```
    > z <- 1</li>
    > while(z <= 4){
        print(z);
        z <- z + 1}
        <ul>
            [1] 1
            [1] 2
            [1] 3
            [1] 4

    ✓ Количество итераций определяется выполнением заданного условия
    ✓ Условия проверяется в начале каждой итерации
    ✓ Условия проверяется в начале каждой итерации
```

```
while (condition) {
    # code to be executed
}
```

3.3.4. Пример сложной функции

<u>Задача:</u> При моделировании потока транспортных средств на автомагистрали используется распределение Вейбулла пропускной способности полосы. Но при компьютерном моделировании необходимо найти такие наименьшее и наибольшее значения случайного равномерно распределенного числа, используемого для моделирования, чтобы получить адекватные значения смоделированной пропускной способности.

3.3.4. Пример сложной функции

```
poisk <- function(lambda,k,h1){</pre>
   В=0;і=0; ... # определяем локальные переменные
        for(i in 1:((1/h)-h)){
             point <- point + h; value[i] <- lambda*(-log(1-point))^(1/k); prob[i] <- i*h}</pre>
        for(i in 1:length(value)){
        z[i] \leftarrow k*(lambda^(-k))*(value[i]^(k-1))*exp(-(lambda/value[i])^(-k));
        t[i] <- (k*exp(-(value[i]/lambda)^k)*((value[i]/lambda)^k)*
             *(k-1-((value[i]/lambda)^2)*k))/(value[i]^2)}
        low <- which(t==max(t)); upp <- which(t==min(t));</pre>
        for(i in 1:length(value)){
        x[i] \leftarrow (k*exp(-(value[i]/lambda)^k)*(exp(-(value[i]/lambda)^k)*k^2-
             -3*exp(-(value[i]/lambda)^k)*k-3*exp(-(value[i]/lambda)^2*k)*k^2+2*exp(-
             (value[i]/lambda)^k)+3*exp(-(value[i]/lambda)^2*k)*k+exp(-
             -(value[i]/lambda)^3*k)*k^2))/(value[i]^3)}
        for(i in 2:((length(value)))){
             diff[i] \leftarrow x[i]-x[i-1]; diff1[i-1] \leftarrow diff[i]; ind[i] = i; ind[1] = 1;
             diff1[length(value)]=diff1[length(value)-1]}
        fit power <- nls(diff1 ~ a * ind^b, start = list(a=0.1, b=0.1))
        for(i in 2:length(ind)){
             deriv1[i] <- coef(fit power)[1]*coef(fit power)[2]*ind[i]^(coef(fit power)[2]-1)</pre>
             deriv2[i] <- coef(fit power)[1]*coef(fit power)[2]*(coef(fit power)[2]-1)*</pre>
                       *ind[i]^(coef(fit power)[2]-2);
             curve[i] <- abs(deriv2[i])/((1+deriv1[i]^2)^1.5)}</pre>
## продолжение далее
```

3.3.4. Пример сложной функции

```
## продолжение
    sred <- mean(curve)</pre>
    for(i in 1:length(curve)){
                                                 poisk(4500,17,100)
        if(abs(curve[i]-sred) >
                                                  [1] "lower theshold"
        0.1^abs(ceiling(log10(mean(curve))))) [1] 4043.851
              {number <- ind[i]} }</pre>
                                                   [1] "lower probability rate"
a1 <- value[low];</pre>
                                                   [1] 0.15
a2 <- pweibull(value[low], k, lambda);</pre>
                                                   [1] "adjusted lower theshold"
a3 <- value[upp];
                                                   [1] 3778.624
a4 <- pweibull(value[upp], k, lambda);</pre>
                                                   [1] "adjusted lower probability rate"
a5 <- value[number];</pre>
                                                   [1] 0.05
a6 <- pweibull(value[number], k, lambda)</pre>
                                                   [1] "upper theshold"
B \leftarrow c(a1,a3)
                                                   [1] 4663.23
                                                   [1] "probability rate"
return(B)
                                                   [1] 0.84
poisk(4500, 17, 100)
[1] 4043.851 4663.230
```

3.3.4. Пример сложной функции

3.4.1. Произведение векторов и матриц. Единичная матрица

• Произведение вектора или матрицы на скаляр

```
5*c(1, 2, 3)
## [1] 5 10 15

m <- matrix(c(1,2, 3,4, 5,6), ncol=3)
```

• Произведение векторов или матриц

• Единичная матрица

3.4.2. Обращение и псевдообращение матриц

• Обратная матрица

```
sq.m \leftarrow matrix(c(1,2, 3,4), ncol=2)
sq.m
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
solve (sq.m)
## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
sq.m %*% solve(sq.m) - diag(2) # post check
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
```

3.4.2. Обращение и псевдообращение матриц

• Псевдообратная матрица

3.4.3. Определитель матрицы. Собственные числа и собственные векторы

```
det (sq.m)
## [1] -2
```

```
## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

e <- eigen(sq.m)

e$val # eigenvalues

## [1] 5.3722813 -0.3722813

e$vec # eigenvectors

## [,1] [,2]

## [1,] -0.5657675 -0.9093767

## [2,] -0.8245648 0.4159736
```

3.4.4. Определенность матриц

Матрица Q является *отрицательно определённой*, если -Q есть положительно определённая матрица.

Матрица Q является *отрицательно полуопределённой*, если -Q есть положительно полуопределённая матрица.

Матрица Q является $heonpeden\"ehho\~u$, если квадратичная форма x^TQx может принимать как положительные, так и отрицательные значения.

$$Q = \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix}, \quad \varphi(x) = (x_1, x_2) \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$$

$$= (x_1, x_2) \begin{pmatrix} x_1 - x_2 \\ x_1 - 2x_2 \end{pmatrix} = x_1(x_1 - x_2) + x_2(x_1 - 2x_2) =$$

$$= x_1^2 - x_1 x_2 + 2x_2^2 = x_1^2 - 2x_2^2.$$

3.4.4. Определенность матриц

Для проверки определённости (полуопределённости) матрицы служат критерии Сильвестра:

- 1. Матрица положительно определена, если:
 - а) все диагональные элементы положительны;
 - б) все угловые миноры матрицы положительны.
- 2. Матрица отрицательно определена, если:
 - а) все диагональные элементы отрицательны;
 - б) все угловые миноры матрицы имеют чередующиеся знаки, начиная со знака «-».
- 3. Матрица положительно полуопределена, если значения диагональных элементов и главных миноров матрицы неотрицательны.

3.4. Задачи линейной алгебры 3.4.4. Определенность матриц

library (matrixcalc)

```
I \leftarrow diag(3)
Ι
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
is.negative.definite(I)
## [1] FALSE
is.positive.definite(I)
## [1] TRUE
```

```
C \leftarrow \text{matrix}(c(-2,1,0,1,-2,1,0,1,-2),
            nrow=3, byrow=TRUE)
С
## [,1] [,2] [,3]
## [1,] -2 1 0
## [2,] 1 -2 1
## [3,] 0 1 -2
is.positive.semi.definite(C)
## [1] FALSE
is.negative.semi.definite(C)
## [1] TRUE
```

3.4.5. Гессиан. Аппроксимация функции разложением в ряд Тейлора

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\mathbf{x}) \end{bmatrix}$$

```
f <- function(x) (x[1]^3*x[2]^2-x[2]^2+x[1])
optimHess(c(3,2), f, control=(ndeps=0.0001))

## [,1] [,2]
## [1,] 72 108
## [2,] 108 52</pre>
```

3.4.5. Гессиан. Аппроксимация функции разложением в ряд Тейлора

```
library(pracma)

f <- function(x) cos(x)
taylor.poly <- taylor(f, x0=0, n=4)
taylor.poly

## [1] 0.04166733 0.000000000 -0.500000000 0.000000000 1.000000000

x <- seq(-7.0, 7.0, by=0.01)
y.f <- f(x)
y.taylor <- polyval(taylor.poly, x)
plot(x, y.f, type="l", col="gray", lwd=2, ylim=c(-1, +1))
lines(x, y.taylor, col="darkblue")
grid()</pre>
```


4.1. Основные статистические функции

Функция	Описание
mean(x)	Среднее арифметическое mean(c(1,2,3,4)) равно 2.5
median(x)	Медиана median(c(1,2,3,4)) равно 2.5
sd(x)	Стандартное отклонение sd (c(1,2,3,4)) равно 1.29
var(x)	Дисперсия var(c(1,2,3,4)) равно 1.67
mad(x)	Абсолютное отклонение медианы mad(c(1,2,3,4)) равно 1.48
quantile(x, probs)	Квантили, где x – числовой вектор, для которого нужно вычислить квантили, а $probs$ – числовой вектор с указанием вероятностей в диапазоне [0; 1] # 30-й и 84-й процентили х $y <$ - quantile(x , c (.3,.84))

Пример: 1) вычислить среднее арифметическое для всех элементов объекта х

$$y \leftarrow mean(x)$$

2) вычислить усеченное среднее, исключив 5% наибольших и 5% наименьших значений в выборке, не принимая при этом во внимание пропущенные значения.

4.1. Основные статистические функции

Функция	Описание
range(x)	Размах значений x <- c(1,2,3,4)
sum(x)	Сумма sum(c(1,2,3,4)) равно 10
<pre>diff(x, lag=n)</pre>	Разность значений в выборке, взятых с заданным интервалом (lag). По умолчанию интервал равен 1. x <- c(1,5,23,29) diff(x) равно c(4, 18, 6)
min(x)	Минимум min(c(1,2,3,4)) равно 1
max(x)	Максимум max(c(1,2,3,4)) равно 4
<pre>scale(x, center=TRUE, scale=TRUE)</pre>	Значения объекта x, центрованные (center=TRUE) или стандартизованные (center=TRUE, scale=TRUE) по столбцам.

4.1. Основные статистические функции

В системе R имеется возможность быстрого расчета основных параметров описательной статистики.

Функция общего назначения summary():

Функция describe() пакета Hmisc:

```
# Пакет Hmisc, функция describe():

describe(mtcars)

mtcars

11 Variables 32 Observations

mpg

n missing unique Mean .05 .10 .25 .50 .75 .90 .95

31 1 25 20 11.85 14.30 15.35 19.20 22.15 30.40 31.40
lowest: 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9
```

4.2. Стандартизация данных

СТАНДАРТИЗАЦИЯ (НОРМАЛИЗАЦИЯ) ДАННЫХ

По умолчанию функция scale() стандартизирует заданный столбец матрицы или таблицы данных так, чтобы его среднее арифметическое было равно нулю, а стандартное отклонение – единице.

Для преобразования каждого столбца так, чтобы его среднее арифметическое и стандартное отклонение приобрели заданные значения:

```
newdata <- scale(mydata)*SD + M</pre>
```

где M — это нужное значение среднего арифметического, а SD — стандартного отклонения.

Чтобы стандартизировать определенный столбец, а не всю матрицу или таблицу данных целиком:

newdata <- transform(mydata, myvar = scale(myvar)*10+50).</pre>

В базовой установке R (пакет stats) реализованы следующие вероятностные распределения:

дискретные:

- биномиальное;
- пуассоновское;
- геометрическое;
- гипергеометрическое;
- отрицательно биномиальное;
- полиномиальное;

непрерывные:

- бета-распределение;
- распределение Коши;
- экспоненциальное;
- х²-распределение;
- распределение Фишера (f-распределение);
- гамма-распределение;
- логнормальное;
- логистическое;
- нормальное;
- распределение Стьюдента (t-распр.);
- равномерное;
- распределение
 Вейбулла.

ранговые распределения Вилкоксона

Для каждого из распределений в R имеются четыре функции:

- плотность распределения (для непрерывных случайных величин) и вероятность принятия случайной величиной конкретного значения (дискретные с.в.) префикс d перед названием распределения;
- функция распределения (ФР) с.в. префикс р перед названием распределения;
- **квантили распределения префикс q** перед названием распределения;
- случайная выборка по заданному распределению префикс r перед названием распределения.

4.3.1. Дискретные статистические распределения

БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Случайная величина ξ , описывающее число «успехов» в ряде испытаний Бернулли, принадлежит биномиальному распределению B(n, p) с параметрами p — вероятность «успеха» в испытании и n — число испытаний Бернулли.

Вероятность $P\{\xi = k\}$ имеет вид

$$P\{\xi = k\} = C_n^k p^k (1 - p)^{n - k}.$$

В R для биномиального распределения реализованы функции:

```
dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
```

4.3.1. Дискретные статистические распределения

БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ (ПРОДОЛЖЕНИЕ) **Аргументы функций:**

- x целочисленный неотрицательный вектор вектор значений случайной величины ξ ;
- *q* неотрицательный вектор вектор квантилей;
- *p* вектор вероятностей;
- *n* –длина создаваемого вектора;
- *size* число испытаний Бернулли;
- prob вероятность «успеха» в одном испытании Бернулли;
- *log* логарифмический аргумент (по умолчанию FALSE). Нужно ли вычислять логарифм вероятности;
- log.p аналогично;
- *lower.tail* логический аргумент. Если установлен в TRUE, то используется $P\{\xi \le k\}$, в противном случае $P\{\xi > k\}$.

4.3.1. Дискретные статистические распределения

ПУАССОНОВСКОЕ РАСПРЕДЕЛЕНИЕ

Моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Дискретная случайная величина ξ имеет распределение Пуассона с параметром λ , если

$$P\{\xi = i\} = \frac{\lambda^i}{i!}e^{-\lambda}.$$

В R для пуассоновского распределения реализованы функции:

```
dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)
```

4.3.1. Дискретные статистические распределения

ГИПЕРГЕОМЕТРИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ

В урне имеется m белых и n черных шаров. Из урны без возвращения вынимают k шаров (0 < k < n + m). Случайная величина ξ , описывающая число I (0 $\leq I \leq min(k,m)$) вытянутых белых шаров, подчиняется гипергеометрическому распределению. (Пример: описывает вероятность того, что в выборке из n различных объектов, вытянутых из поставки, ровно k объектов являются бракованными.)

$$P\{\xi = i\} = \frac{C_m^i C_n^{k-i}}{C_{n+m}^k}, \quad 0 \le i \le \min(k, m).$$

В R для гипергеометрического распределения реализованы функции:

```
dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)
```

4.3.1. Дискретные статистические распределения

ПОЛИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

rmultinom(n, size, prob)

Пусть имеется n предметов, каждый из которых может обладать только одним из k свойств с вероятностью p_i , i=1,...,k. Вероятность того, что предмет n_1 обладает свойством 1, n_2 - свойством 2, ..., n_k - свойством k, определяется формулой

$$P(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot \dots \cdot n_k!} p_1^{n_1} \cdot \dots \cdot p_k^{n_k}.$$

B R представлено всего двумя функциями: dmultinom(x, size = NULL, prob, log = FALSE)

4.3.2. Непрерывные статистические распределения

ЭКСПОНЕНЦИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Моделирует время между двумя последовательными свершениями одного и того же события.

Случайная величина X имеет экспоненциальное распределение с параметром λ , если её плотность имеет вид

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

В R для экспоненциального распределения реализованы функции:

```
dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)
```

-

4.3.2. Непрерывные статистические распределения

РАСПРЕДЕЛЕНИЕ ВЕЙБУЛЛА

Относится к двухпараметрическим распределениям, используется в демографических исследованиях, анализе дожития (исследовании смертности). Частным случаем распределения Вейбулла является экспоненциальное распределение.

Плотность распределения

$$p(x) = \begin{cases} 0, & x < 0, \\ \alpha \lambda x^{\alpha - 1} e^{-\lambda x^{\alpha}}, & x \geqslant 0. \end{cases}$$

```
dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)
```

Аргумент shape — параметр формы α , аргумент scale — параметр $1/\lambda$. Оба аргумента — положительные числа.

4.3.2. Непрерывные статистические распределения

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Плотность нормального распределения

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}},$$

где m – математическое ожидание, σ – среднее квадратическое отклонение.

В R за нормальное распределение отвечают функции

```
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
```

Замечания: 1) заданный порядок аргументов функций является обязательным;

2) для функции dnorm() обязательным параметром является только x, для pnorm() – q, для qnorm() – p и для rnorm() – n. В этом случае используется стандартное нормальное распределение.

4.3.2. Непрерывные статистические распределения

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ (ПРОДОЛЖЕНИЕ)

ЗАДАЧА	РЕШЕНИЕ
Как изобразить кривую стандартного нормаль-	x <- pretty(c(-3,3), 30)
ного распределения в диапазоне	y <- dnorm(x)
значений [–3, 3]?	plot(x, y,
	+ type = "1",
	+ xlab = "Normal Deviate",
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ ylab = "Density",
5-	+ yaxs = "i"
-3 -2 -1 0 1 2 3)
Какова площадь под кривой стандартного	pnorm(1.96)
нормального распределения слева от z=1.96?	[1] 0.9750021
Каково значение 90-го процентиля нормально-	qnorm(.9, mean=500, sd=100)
го распределения со средним значением 500 и	[1] 628.1552
стандартным отклонением 100?	
Как создать 50 случайных чисел, принадлежа-	rnorm(50, mean=50, sd=10)
щих нормальному распределению со средним значением 50 и стандартным отклонением 10?	

4.3.3. Воспроизводимость результатов при использовании ГПСЧ

Генератор псевдослучайных чисел (ГПСЧ) начинает свою работу с определенной точки в пространстве возможных чисел. Эта точка называется **начальным числом**.

<u>Пример</u>: создадим таблицу example с двумя столбцами. В первом столбце будут храниться коды уровней гипотетического фактора Factor (три уровня: A, B, и C). Для каждого из этих уровней сгенерируем (псевдо-)случайным образом по 300 нормально распределенных значений с разными средними и стандартными отклонениями.

```
example = data.frame(Factor = rep(c("A", "B", "C"), each = 300),
+ Variable = c(rnorm(300, 5, 2), rnorm(300, 4, 3), rnorm(300, 2, 1)))
```


Выход - set.seed(...)

Можно выделить 4 шага при подборе распределений:

- 1) Выбор модели: выдвигается гипотеза о принадлежности выборки некоторому семейству распределений;
- 2) Оценка параметров теоретического распределения;
- 3) Оценка качества приближения;
- 4) Проверка согласия между наблюдаемыми и ожидаемыми значениями с использованием статистических тестов.

ПРИНЦИП МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Принцип максимального правдоподобия состоит в том, что в качестве «наиболее правдоподобного» значения параметра берут значение Θ , максимизирующее вероятность получить при n опытах имеющуюся выборку $X = (x_1, ... x_n)$.

При оценке параметров в R могут использоваться функции fitdistr() из пакета MASS и fitdist() из пакета fitdistrplus.

<u>Пример (непрерывное распределение):</u> рассмотрим имитацию случайной выборки из распределения Вейбулла

```
set.seed(1946)
x = sort(rweibull( 100, 2, (1 + 1.21*rbinom(100, 1, 0.05)) ))
```

График выборочной гистограммы и ядерной функции плотности распределения

```
hist(x, freq = FALSE, breaks=8,
+ col="grey88", main = "Гистограмма и
+ ядерная плотность")
lines(density(x), lwd = 2, col="blue")
```


Рассмотрим в качестве моделей-претендентов три закона распределения: нормальное, лог-нормальное и распределение Вейбулла. Процедура подгонки эмпирического распределения состоит из трех шагов:

- оценка параметров распределения на основе метода максимального правдоподобия;
- проверка гипотезы о согласии эмпирического и теоретического распределений с использованием критерия Колмогорова-Смирнова;
- вывод графика (для удобства сопоставления показаны на одном рисунке).

График выборочной гистограммы и ядерной функции плотности распределения

```
оценка параметров нормального распределения
(dof = fitdistr(x, "normal"))
ep1=dof$estimate[1]; ep2=dof$estimate[2]
                        sd
       mean
  0.89502201 0.53760487
 (0.05376049) (0.03801440)
ks.test(x,pnorm, mean=ep1,sd=ep2)
         One-sample Kolmogorov-Smirnov test
data: x
D = 0.1342, p-value = 0.05463
alternative hypothesis: two-sided
         Эмпирическая КФР и
                                      Эмпирическая ФПР и
      нормального распределения
                                    нормального распределения
                              0.6
                             Density
 0.4
                              0.2
 0.2
      0.5
                 2.0
          1.0
             1.5
                    2,5
                        3.0
```

N = 100 Bandwidth = 0.1324

Пример (дискретное распределение): из реки было сделано 60 проб и подсчитывалось число обнаруженных видов донных организмов. Это число варьирует от 2 до 30 при среднем x = 11.2. Какое распределение является лучшим с формально-статистической точки зрения: Пуассона с $\lambda = 11.2$ или нормальное?

```
x \leftarrow c(12,20,19,19,18,10,19,30,16,10,8,11,10,11,16,3,7,6,5,11,
8,14,9,8,10,11,14,17,2,7,17,19,9,15,9,8,4,8,11,8,5,3,10,
14, 22, 11, 8, 7, 3, 5, 8, 11, 14, 2, 13, 9, 12, 6, 19, 21)
# Оценка параметров распределений нормального и Пуассона
n = length(x); p1 = mean(x); p2 = sqrt(var(x)*(n-1)/n)
# Создание векторов эмпирических и теоретических частот
pr obs <- as.vector(table(x)/n) ; nr <- length(pr obs)</pre>
pr norm <- dnorm(1:nr, p1, p2) # Частоты нормального распр.
pr pois <- dpois(1:nr, pl) # Частоты распр. Пуассона
plot(pr obs, type="b", ylab ="Частоты")
  lines(1:nr, pr pois , col="red", lwd=2)
  lines(1:nr, pr norm, col="blue", lwd=2)
  legend ("topright", legend = c("Нормальное", "Пуассона"),
         lwd=2, col=c("red", "blue"))
# Сравнение качества подгонки распределений
# Среднее абсолютное отклонение
c(sum(abs(pr obs-pr norm))/nr, sum(abs(pr obs-pr pois))/nr)
[1] 0.02314994 0.03176255
# Средняя квадратичная ошибка
c(sum((pr obs-pr norm)^2)/nr, sum((pr obs-pr pois)^2)/nr)
[1] 0.0009595203 0.0017446052
# Критерий согласия Колмогорова-Смирнова
c(ks.test(pr obs, pr norm) $statistic,
       ks.test(pr obs, pr pois)$statistic)
[1] 0.2272727 0.4090909
```


4.5. Проверка распределения на нормальность

СПОСОБЫ:

- 1. Графический (с помощью гистограмм, графиков квантилей и т.п.)
- 2. Формальные тесты (тест Шапиро-Уилка, тест Андерсона-Дарлинга, тест Крамера фон Мизеса, тест Колмогорова-Смирнова в модификации Лиллиефорса, тест Шапиро-Франсия)

```
# Тесты на нормальность
shapiro.test(x)
        Shapiro-Wilk normality test
data: x
W = 0.8986, p-value = 1.219e-06
library (nortest)
ad.test(x)
        Anderson-Darling normality test
data: x
A = 2.0895, p-value = 2.382e-05
cvm.test(x)
        Cramer-von Mises normality test
data: x
W = 0.3369, p-value = 0.0001219
lillie.test(x)
        Lilliefors (Kolmogorov-Smirnov) normality test
data: x
D = 0.1348, p-value = 0.0001225
sf.test(x)
        Shapiro-Francia normality test
data: x
W = 0.8936, p-value = 3.617e-06
```

Список литературы

Кабаков Р. К. (2014) R в действии. Анализ и визуализация данных на языке R Издательство: ДМК Пресс, 580 с.

Numerical Analysis // Computational Ecomonics Practice by Stefan Feuerrigel (Freiberg Universitaet)

Мастицкий С. Э., Шитиков В. К. (2014) Статистический анализ и визуализация данных с помощью R. - Электронная книга, 400 с

Зарядов И. С. (2010) Статистический пакет R: теория вероятностей и математическая статистика. Москва: Изд-во РУДНБ, 141 с.