作业 26: PCA 实现高维数据可视化

要求:

己知鸢尾花数据是 4 维的, 共三类样本。使用 PCA 实现对鸢尾花数据进行降维, 实现在二维平面上的可视化。

萼片长度	萼片宽度	花瓣长度	花瓣宽度	类别
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5	3.4	1.5	0.2	Iris-setosa
4.4	2.9	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
5.4	3.7	1.5	0.2	Iris-setosa
4.8	3.4	1.6	0.2	Iris-setosa
4.8	3	1.4	0.1	Iris-setosa
4.3	3	1.1	0.1	Iris-setosa
5.8	4	1.2	0.2	Iris-setosa

图. 鸢尾花数据

提示:

- 1. 建立工程,导入 sklearn 相关工具包:
- import matplotlib.pyplot as plt
- from sklearn. decomposition import PCA
- from sklearn.datasets import load iris
- 2. 加载数据并进行降维:
- data = load iris()
- #以字典形式加载鸢尾花数据集
- y = data. target #使用 y 表示数据集中的标签
- X = data.data #使用 X 表示数据集中的属性数据
- pca = PCA(n components=2)
- reduced X = pca.fit transform(X)
- 3. 按类别对降维后的数据进行保存
- 4. 降维后数据点的可视化

作业 27: 降维之 NMF

要求:

己知 01 ivetti 人脸数据共 400 个,每个数据是 64*64 大小。由于 NMF 分解得到的 W 矩阵相当于从原始矩阵中提取的特征,那么就可以使用 NMF 对 400 个人脸数据进行特征提取。

通过设置 k 的大小,设置提取的特征的数目。在本实验中设置 k=6,随后将提取的特征以图像的形式展示出来。

提示:

1. 建立工程,导入 sklearn 相关工具包:

import matplotlib.pyplot as plt

from sklearn import decomposition

from sklearn.datasets import fetch olivetti faces

from numpy.random import RandomState

2. 设置基本参数并加载数据:

n row, n col = 2, 3

n components = n row * n col

image shape = (64, 64)

dataset=fetch_olivetti_faces(shuffle=True, random_state=RandomState(
0))

faces = datasets.data

- 3.1 设置图像的展示方式
- 3.2 创建特征提取的对象 NMF, 使用 PCA 作为对比:
- 4. 降维后数据点的可视化

作业 28: 图像分割

要求:

利用 K-means 聚类算法对图像像素点颜色进行聚类实现简单的图像分割输出:同一聚类中的点使用相同颜色标记,不同聚类颜色不同

提示:

数据:本实例中的数据可以是任意大小的图片,为了使效果更佳直观,可以 采用区分度比较明显的图片。

使用算法: Kmeans

实现步骤:

- 1. 建立工程并导入 sklearn 包
 - 创建 Kmeans. py 文件
 - 导入 sklearn 相关包
 - import numpy as np
 - import PIL. Image as image

- from sklearn.cluster import KMeans
- 2. 加载图片并进行预处理 加载训练数据

imgData,row,col = loadData('kmeans/bull.jpg') #加载数据

- 3. 加载 Kmeans 聚类算法
 - 加载 Kmeans 聚类算法
 - km = KMeans(n clusters=3)
 - 其中 n clusters 属性指定了聚类中心的个数为 3
- 4. 对像素点进行聚类并输出
 - 依据聚类中心,对属于同一聚类的点使用同样的颜色进行标记

作业 29: 人体运动状态信息评级

要求:

可穿戴式设备的流行,让我们可以更便利地使用传感器获取人体的各项数据,甚至生理数据。当传感器采集到大量数据后,我们就可以通过对数据进行分析和建模,通过各项特征的数值进行用户状态的判断,根据用户所处的状态提供给用户更加精准、便利的服务。

算法流程:

需要从特征文件和标签文件中将所有数据加载到内存中,由于存在缺失值,此步骤还需要进行简单的数据预处理。

创建对应的分类器,并使用训练数据进行训练。

利用测试集预测,通过使用真实值和预测值的比对,计算模型整体的准确率和召回率,来评测模型。

提示:

1. 模块导入:

导入 numpy 库和 pandas 库。从 sklearn 库中导入预处理模块 Imputer。导入自动生成训练集和测试集的模块 train_test_split。导入预测结果评估模块 classification_report

接下来,从 sklearn 库中依次导入三个分类器模块: K 近邻分类器

KNeighborsClassifier、决策树分类器 DecisionTreeClassifier 和高斯朴素贝叶斯函数 GaussianNB。

2. 数据导入函数

编写数据导入函数,设置传入两个参数,分别是特征文件的列表feature_paths和标签文件的列表label_paths。

定义 feature 数组变量,列数量和特征维度一致为 41; 定义空的标签变量,列数量与标签维度一致为 1。

使用 pandas 库的 read_table 函数读取一个特征文件的内容,其中指定分隔符为逗号、缺失值为问号且文件不包含表头行。

使用 Imputer 函数,通过设定 strategy 参数为'mean',使用平均值对缺失数据进行补全。fit()函数用于训练预处理器,transform()函数用于生成预处理结果。

将预处理后的数据加入 feature, 依次遍历完所有特征文件

遵循与处理特征文件相同的思想,我们首先使用 pandas 库的 read_table 函数读取一个标签文件的内容,其中指定分隔符为逗号且文件不包含表头行。

由于标签文件没有缺失值,所以直接将读取到的新数据加入 label 集合,依次遍历完所有标签文件,得到标签集合 label。

最后函数将特征集合 feature 与标签集合 label 返回。

3.1 主函数-数据准备

设置数据路径 feature paths 和 label paths。

使用 python 的分片方法,将数据路径中的前 4 个值作为训练集,并作为参数 传入 load_dataset()函数中,得到训练集合的特征 x_train,训练集的标签 y train。

将最后一个值对应的数据作为测试集,送入 load_dataset()函数中,得到测试集合的特征 x test,测试集的标签 y test。

使用 train_test_split()函数,通过设置测试集比例 test_size 为 0,将数据随机打乱,便于后续分类器的初始化和训练。

3.2 创建主函数

创建 k 近邻分类器、决策树分类器、贝叶斯分类器,并在测试集上进行预测。

4. 分类结果分析

使用 classification_report 函数对分类结果,从精确率 precision、召回率 recall、f1 值 f1-score 和支持度 support 四个维度进行衡量。分别对三个分类器的分类结果进行输出。

作业 30: 上证指数涨跌预测实例

要求:

根据给出当前时间前 150 天的历史数据,预测当天上证指数的涨跌。

提示:

数据为中核科技 1997 年到 2017 年的股票数据部分截图,红框部分为选取的特征值。

日期	股票代码	名称	收盘价	最高价	最低价	开盘价	前收盘	涨跌額	涨跌幅	换手率	成交量	成交金額	总市值	流通市值
2017/1/20	'000777	中核科技	21.17	21.29	20.9	20.9	20.86	0.31	1.4861	1.0687	4097505	86664725.78	8116950444	8116950444
2017/1/19	'000777	中核科技	20.86	21.14	20.82	21.12	21.12	-0.26	-1.2311	1.0455	4008703	83926679.28	7998090990	7998090990
2017/1/18	'000777	中核科技	21.12	21.44	21.09	21.4	21.37	-0.25	-1.1699	0.922	3535002	75292556.6	8097779564	8097779564
2017/1/17	'000777	中核科技	21.37	21.49	20.75	21.17	21.15	0.22	1.0402	1.3459	5160269	109652595.5	8193633962	8193633962
2017/1/16	'000777	中核科技	21.15	22.5	20.28	22.5	22.53	-1.38	-6.1252	3.1691	12150966	261947917.1	8109282092	8109282092
2017/1/13	'000777	中核科技	22.53	22.88	22.43	22.71	22.85	-0.32	-1.4004	1.8603	7132550	161394780.8	8638398370	8638398370
2017/1/12	'000777	中核科技	22.85	23.53	22.75	23.41	23.51	-0.66	-2.8073	2.817	10800996	249876234.2	8761092000	8761092000
2017/1/11	'000777	中核科技	23.51	23.71	23.06	23.22	23.25	0.26	1.1183	4.0062	15360483	360093755.2	9014147611	9014147611
2017/1/10	'000777	中核科技	23.25	23.59	23.23	23.4	23.57	-0.32	-1.3577	2.713	10402149	243289916.6	8914459037	8914459037
2017/1/9	'000777	中核科技	23.57	23.7	22.72	22.96	23	0.57	2.4783	5.3134	20372449	475747935.6	9037152667	9037152667
2017/1/6	'000777	中核科技	23	23.19	22.82	22.95	22.87	0.13	0.5684	3.0819	11816610	271885545.4	8818604639	8818604639
2017/1/5	'000777	中核科技	22.87	22.93	22.56	22.75	22.75	0.12	0.5275	2.6699	10236812	233103957.5	8768760352	8768760352
2017/1/4	'000777	中核科技	22.75	22.81	22.54	22.65	22.6	0.15	0.6637	1.5802	6058882	137503830.2	8722750241	8722750241
2017/1/3	'000777	中核科技	22.6	22.68	22.36	22.49	22.38	0.22	0.983	1.3948	5348100	120728947.2	8665237602	8665237602
2016/12/30	'000777	中核科技	22.38	22.63	22.31	22.49	22.58	-0.2	-0.8857	1.322	5068828	113686645.3	8580885731	8580885731
2016/12/29	'000777	中核科技	22.58	22.7	22.36	22.41	22.43	0.15	0.6687	1.2307	4718858	106240524.4	8657569250	8657569250
2016/12/28	'000777	中核科技	22.43	22.72	22.42	22.63	22.58	-0.15	-0.6643	1.4301	5483427	123681991.5	8600056611	8600056611
2016/12/27	'000777	中核科技	22.58	22.93	22.56	22.92	22.91	-0.33	-1.4404	1.5646	5998804	136263536.3	8657569250	8657569250
2016/12/26	'000777	中核科技	22.91	22.96	22.38	22.7	22.89	0.02	0.0874	2.1045	8068925	182955263.2	8784097056	8784097056
2016/12/23	'000777	中核科技	22.89	23.25	22.64	22.95	23.11	-0.22	-0.952	2.38	9125180	208889546.6	8776428704	8776428704
2016/12/22	'000777	中核科技	23.11	23.55	22.75	22.82	22.82	0.29	1.2708	3.7389	14335433	333074476.8	8860780574	8860780574
2016/12/21	'000777	中核科技	22.82	22.96	22.58	22.59	22.53	0.29	1.2872	2.2115	8479447	193133942.4	8749589472	8749589472
2016/12/20	'000777	中核科技	22.53	22.67	22.41	22.67	22.69	-0.16	-0.7052	1.329	5095772	114711037.5	8638398370	8638398370
2016/12/19	'000777	中核科技	22.69	22.77	22.51	22.67	22.63	0.06	0.2651	1.4709	5639790	127588225.1	8699745185	8699745185
2016/12/16	'000777	中核科技	22.63	22.88	22.58	22.73	22.71	-0.08	-0.3523	1.9302	7400685	168016411.1	8676740130	8676740130

使用算法: SVM 实现步骤:

1. 建立工程,导入 sklearn 相关包

import pandas as pd
import numpy as np
from sklearn import svm
from sklearn import cross_validation

2. 数据加载&&数据预处理

data=pd.read_csv('stock/000777.csv', encoding='gbk', parse_dates=[0], index_col=0)
data.sort_index(0, ascending=True, inplace=True)
dayfeature=150
featurenum=5*dayfeature
x=np.zeros((data.shape[0]-dayfeature, featurenum+1))
y=np.zeros((data.shape[0]-dayfeature))
3. 创建 SVM 并进行交叉验证

作业 31: 线性回归+房价与房屋尺寸关系的 线性拟合

要求:

背景:与房价密切相关的除了单位的房价,还有房屋的尺寸。我们可以根据已知的房屋成交价和房屋的尺寸进行线性回归,继而可以对已知房屋尺寸,而未知房屋成交价格的实例进行成交价格的预测。

对房屋成交信息建立回归方程,并依据回归方程对房屋价格进行预测。

提示:

```
使用算法:线性回归
步骤:
1. 建立工程并导入 sklearn 包
   创建 house. py 文件
   导入 sklearn 相关包
       • import matplotlib.pyplot as plt
       • from sklearn import linear_model
2. 加载训练数据,建立回归方程
                              建立datasets_X和datasets_Y用来存储数
datasets_X = []
                              据中的房屋尺寸和房屋成交价格。
datasets_Y = []
fr = open('prices.txt','r')
                                                打开数据集所在文件

    lines = fr.readlines() ———— —次读取整个文件。

                                                prices.txt,读取数据。
· for line in lines:
     items = line.strip().split(',')
     datasets_X.append(int(items[0]))
     datasets_Y.append(int(items[1]))
length = len(datasets_X)
datasets_X = np.array(datasets_X).reshape([length,1])
datasets_Y = np.array(datasets_Y)
datasets_X = []
datasets_Y = []
fr = open('prices.txt','r')
lines = fr.readlines()
                       ————→ 逐行进行操作,循环遍历所有数据

    for line in lines:

     items = line.strip().split(',') —
                                   → 去除数据文件中的逗号
     datasets_X.append(int(items[0])) → 将读取的数据转换为int型,并分别写入
     datasets_Y.append(int(items[1]))
                                      datasets_X和datasets_Y。
length = len(datasets_X)
datasets_X = np.array(datasets_X).reshape([length,1])
datasets_Y = np.array(datasets_Y)
......
```

3. 可视化处理

作业 32: 多项式回归+房价与房屋尺寸的非 线性拟合

要求:

背景:我们在前面已经根据已知的房屋成交价和房屋的尺寸进行了线 性回归,继而可以对已知房屋尺寸,而未知房屋成交价格的实例进行了成 交价格的预测,但是在实际的应用中这样的拟合往往不够好,因此我们在 此对该数据集进行多项式回归。

对房屋成交信息建立多项式回归方程,并依据回归方程对房屋价格进 行预测。

提示:

使用算法:线性回归步骤:

- 1. 建立工程并导入 sklearn 包
 - 创建 house. py 文件

导入 sklearn 相关包

- import matplotlib.pyplot as plt
- import numpy as np
- from sklearn import linear_model
- from sklearn.preprocessing import PolynomialFeatures

这里的多项式回归实际上是先将变量 X 处理成多项式特征, 然后使用线性模型学习多项式特征的参数, 以达到多项式回归的目的。

2. 加载训练数据,建立回归方程

```
建立datasets_X和datasets_Y用来存储数
datasets X = []
                              据中的房屋尺寸和房屋成交价格。
datasets_Y = []
fr = open('prices.txt','r')
                                                打开数据集所在文件
prices.txt,读取数据。
 for line in lines:
     items = line.strip().split(',')
     datasets_X.append(int(items[0]))
     datasets_Y.append(int(items[1]))
length = len(datasets_X)

    datasets_X = np.array(datasets_X).reshape([length,1])

datasets_Y = np.array(datasets_Y)
datasets_X = []
datasets_Y = []
fr = open('prices.txt','r')
lines = fr.readlines()

    for line in lines:

                      ───── 逐行进行操作,循环遍历所有数据
     items = line.strip().split(',') → 去除数据文件中的逗号
     datasets_X.append(int(items[0]))
                                   → 将读取的数据转换为int型,并分别写入
     datasets_Y.append(int(items[1]))
                                      datasets_X和datasets_Y。
length = len(datasets X)
datasets_X = np.array(datasets_X).reshape([length,1])
datasets_Y = np.array(datasets_Y)
```

3. 可视化处理

......