Finite Automata

Prof. A. Morzenti

NB: up to slide 13 notions assumed to be well-known from other previous courses

Algorithms for language recognition are modeled as automata, in order to:

- highlight relations between language families and grammars
- avoid early reference to software implementation details

It is then easy to transform automata into executable code

SCHEME OF A RECOGNIZING AUTOMATON in its most general form:

AUXILIARY MEMORY

- MISSING (only that of the control unit): finite state automaton it recognizes regular languages
- STACK MEMORY: pushdown automaton (PDA) it recognizes CF languages

the automaton examines the source string, through a series of *moves*: every move depends on the symbols under the heads and on the state of the control unit Effects of each move:

- moving the input head one position left or right
- write a symbol in memory and shift one position left or right
- change the state of the Control Unit

UNIDIRECTIONAL MACHINE: input head moves in one direction only models a *single scan analysis*

instantaneous configuration determines future evolution defined by three components:

- part of the input tape still unread
- content of the auxiliary memory and position of the memory head
- state of the control unit

initial configuration:

- input head on the first symbol
- control unit in the initial state
- memory storing the initial information (usually a special symbol)

computation: sequence of moves

deterministic – in every configuration at most one move (hence one next config.) is possible *nondeterministic* otherwise

final configuration

- control unit in a final state
- input head on the string endmark (terminator) symbol '⊢'

a string x is *accepted* (recognized) iff the automaton, starting from initial configuration with $x \dashv$ as input performs a computation and reaches a final configuration

A computation ends when the automaton

- reaches a final configuration (⇒ string is accepted), or
- no move can be executed (⇒ string not accepted)

language accepted or recognized by the automaton: the set of accepted strings

two automata accepting the same language are called *equivalent*

STATE-TRANSITION DIAGRAMS

it is a labeled oriented graph

nodes: states of the control unit

arcs: denote transitions, and are labeled with the input symbols

the state-transition diagram has (in the deterministic version)

- a unique initial state
- possibly many final states

Example – decimal numeric constants

NB: in the drawing several topologically equivalent arcs are merged (e.g. from q_0 to q_1 there is a bundle of 9 arcs).

FORMAL DEFINITION OF A DETERMINISTIC FINITE AUTOMATON

Five elements:

- 1. Q, the set of states (non-empty, finite)
- 2. Σ , the *input alphabet* (or terminal alphabet)
- 3. the transition function (possibly partial) $\delta: (Q \times \Sigma) \to Q$
- 4. $q_0 \in Q$ the initial state
- 5. $F \subseteq Q$, the set of *final states*

the transition function encodes the moves of the automaton M:

if $\delta(q, a) = r$ then M, in the state q, when reading a goes into state r

alternative notation to $\delta(q, a) = r$: $q \stackrel{a}{\rightarrow} r$

if $\delta(q, a)$ is undefined, the automaton stops (\equiv it enters a non-final error state and rejects)

extension δ^* of δ for the strings of any length: $\delta^*: (Q \times \Sigma^*) \to Q$

defined inductively as $\delta^*(q, \varepsilon) = q$ and $\delta^*(q, xa) = \delta(\delta^*(q, x), a), x \in \Sigma^*, a \in \Sigma$

for brevity we use δ also to denote its extension δ^*

COMPUTATION CARRIED OUT BY AN AUTOMATON = PATH ON THE GRAPH

STRING RECOGNITION:

string x recognized (or accepted) by automaton M iff when scanning x, M goes from the initial to a final state:

$$\delta(q_0, x) \in F$$

Hence the empty string ε accepted iff the initial state is also final

language recognized (accepted) by atomaton M: the set of all recognized strings

$$L(M) = \{ x \in \Sigma^* \mid \delta(q_0, x) \in F \}$$

the family of languages accepted by finite state automata is called *finite-state recognizable* complexity of acceptance is called «real-time»: number of steps is equal to |x|

Example – Decimal numeric constants (follows) – The automaton M (see next) defined as:

$$Q = \left\{q_0, q_1, q_2, q_3, q_4\right\}$$

$$\Sigma = \left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 0, \bullet\right\}$$

$$q_0 = q_0$$

$$F = \left\{q_4\right\}$$
examples of transitions:
$$\delta(q_0, 3 \bullet 1) = \delta(\delta(q_0, 3 \bullet), 1) = \delta(\delta(\delta(q_0, 3), \bullet), 1) =$$

$$= \delta(\delta(q_1, \bullet), 1) = \delta(q_3, 1) = q_4$$

$$q_4 \in F \quad \text{the string } 3 \bullet 1 \quad \text{is accepted}$$
strings that are not accepted: $3 \bullet \text{ and } 02$

$$\delta(q_0, 3 \bullet) = q_3 \quad -q_3 \quad \text{not final} \quad 3 \bullet \not\in L$$

$$\delta(q_0, 02) = \delta(\delta(q_0, 0), 2) = \delta(q_2, 2) \quad \text{- undefined} \quad 02 \not\in L$$

COMPLETING THE AUTOMATON WITH THE ERROR STATE

 $0 \cup \Delta$

 q_{err} = error «sink» state

the transition function can always be made complete by means of an *error state* without changing the accepted language

 \forall state $q \in Q$ and \forall symbol $a \in \Sigma$ if $\delta(q, a)$ is undefined let $\delta(q, a) = q_{err}$

and \forall symbol $a \in \Sigma$ let $\delta(q_{err}, a) = q_{err}$

NB: up to here notions assumed to be well-known from other previous courses

CLEAN AUTOMATA

An automaton can include useless parts that do not contribute to string recognition they must be eliminated

A state q is **reachable** from a state p if there exists a computation going from p to q

A state is *accessible* if it is reachable from the initial state

A state is *postaccessible* if a final state can be reached from it

(\Rightarrow NB: the error state q_{err} is not postaccessible)

A state is *useful* if it is accessible and postaccessible (it lays on some path from initial to final state)

An automaton is *clean* if every state is useful

PROPERTY – Every finite automaton admits an equivalent clean automaton.

Cleaning an automaton: identify useless states, delete them and all the incident arcs

Example – useless state elimination

MINIMAL AUTOMATON

PROPERTY – For every finite-state language, the finite recognizer is minimal w.r.t. the number of states *exists and is unique* (apart from a renaming of states)

We provide a procedure for minimizing the number of states assuming the automaton is clean except for the possible presence of error state $q_{\rm err}$

INDISTINGUISHABLE STATES – state p is indistinguishable from state q, iff, \forall **string** x, $\delta(p, x)$ and $\delta(q, x)$ are both final, or both nonfinal (i.e., scannig x from p and from q, one *cannot* reach two states, one final and the other not)

indistinguishability is a binary relation; it is reflexive, symmetric, and transitive

hence it is an equivalence relation

two indistinguishable states can be *merged*, thus reducing the number of states, with no change in the language recognized by the automaton

it is a typical construction: the new set of states is the quotient set w.r.t. the equivalence class

Impossible to compute the indistinguishability relation *directly* from its definition one should consider the whole accepted language, which may be infinite

we compute the indistinguishability relation through its complement:
the *distinguishability* relation
it can be computed through its *inductive definition*

p is **distinguishable** from q iff

- 1. p is final and q is not, or viceversa, or
- 2. $\exists a$: $\delta(p, a)$ is distinguishable from $\delta(q, a)$
- \Rightarrow q_{err} is distinguishable from every postaccessible state p, because \exists string $x: \delta(p, x) \in F$ (just because p is postaccessible) whereas \forall string $x: \delta(q_{err}, x) = q_{err} \notin F$
- \Rightarrow p is distinguishable from q (both assumed postaccessible) if the set of labels on arcs outgoing from p and q are different (NB: not necessarily disjointed)
- In fact, if $\exists a$ such that $\delta(p, a) = p$, with p postaccessible, whereas $\delta(q, a) = q_{err}$, then p is distinguishable from q because q_{err} is distinguishable from p (as from all postaccessible states) 17/25

Table of indistinguishable states: first of all, final and nonfinal states are distinguishable

q1			
q2	Χ	Χ	
q3	Χ	Χ	
	q0	q1	q2

$(\delta(q0,a), \delta(q1,a)) = (q1,q1)$
$(\delta(q0,b), \delta(q1,b)) = (q0,q2)$
q0 dist. q2 → q0 dist. q1
$(\delta(q2,a), \delta(q3,a)) = (q3,q3)$
$(\delta(q2,b), \delta(q3,b)) = (q2,q2)$
q3=q3, q2=q2 → q2 indist. q3

1	q1	(1,1)(0,2)		
1	q2	Χ	Χ	
1	q3	Χ	Χ	(3,3)(2,2)
,		q0	q1	q2

indistinguishable pairs: q₂ and q₃ equivalence classes of indistinguishable states: [q0], [q1], [q2, q3].

q1	Χ		
q2	Χ	Χ	
q3	Χ	Χ	
	q0	q1	q2

MINIMIZATION

states of the minimal automaton M': the equivalence classes of the indistinguishability relation transition function: arcs among equivalence classes:

$$[..., p_r, ...] \xrightarrow{b} [..., q_s, ...]$$

iff in *M* there is an arc:

$$p_r \xrightarrow{b} q_s$$

Example (follows)

Result of minimization:

Example with non-total transition function

Suppose to modify the previous automaton M by removing the move $\delta(q3, a) = q3$.

We redefine as $\delta(q3, a) = q_{err}$

q2 and q3 are now distinguishable:

$$\delta\left(q2,a\right)=q3$$
 and $\delta(q3,a)=q_{err}$ and $q3$ is distinguishable from q_{err}

M is therefore already minimal

The minimization procedure provides a proof of the existence and unicity of a minimum automaton equivalent to any given one.

NB: This property does not hold, in general, for nondeterministic automata (coming next)

State minimization provides a method for *checking* (*deterministic*) *automata equivalence*:

- clean the automata,
- minimize them,
- check if they are identical (apart from a renaming of states)

Nondeterministic Finite Automata

FORMS OF NONDETERMINISM

1) alternative moves for a unique input

2) spontaneous move (or ε -move): automaton changes its state without "consuming" input

3) more than one initial state (the automaton may start the computation from any of them)

THREE MOTIVATIONS FOR NONDETERMINISM IN FINITE STATE AUTOMATA

1) conciseness: language definitions through ND automata are more compact and readable

Example – language with second last symbol = b

recognition of *baba* two computations, only one accepting

$$L_2 = (a \mid b)^* b(a \mid b)$$

$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_2$$

$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0$$

the same language accepted by a *deterministic* automaton M2 in M2 the condition that the symbol before the last one is a b is not so evident

Exercise: show/prove that

Generalizing the example, from language L_2 to language L_k where the k-th last element $(k \ge 2)$ is b, the *nondeterministic* automaton has k + 1 states, the number of states of the *deterministic* one grows *exponentially* with $k \ (\approx 2^k)$

nondeterminism can make many definitions much more concise

2) left – right duality

going from a (deterministic) automaton for lang. L to that for L^R requires to:

- 1. switch initial and final states
- 2. reverse the arrows direction

Both operations may introduce nondeterminism

Example - The language L_2 of strings having b as the second last symbol is the reverse image of language L' of strings having b as the second symbol

$$L' = \{x \mid b \text{ is the second symbol of } x\}$$
 $L' = (L_2)^R$

L': b second char: deterministic

 L_2 : **b** second last char: nondeterministic

3) **automata design**: the transition through nondeterministic automata is useful in the construction of the finite recognizer of a language defined by a regular expression (see coming lessons)

AUTOMATA WITH SPONTANEOUS MOVES

Example – decimal constants (with or without 0 before the dot, with no leading 0's in the integer part)

$$L = \left(0 \mid \varepsilon \mid \left((1..9)(0..9)^*\right)\right) \bullet (0..9)^+$$

When the automaton has spontaneous moves, the computation can be longer than the string (NB: the property of real-time analysis does not hold)

Computation accepting string 34•5: $A \xrightarrow{3} B \xrightarrow{4} B \xrightarrow{\varepsilon} C \xrightarrow{\bullet} D \xrightarrow{5} E$

Computation accepting string $\bullet 02$: $A \xrightarrow{\varepsilon} C \xrightarrow{\bullet} D \xrightarrow{0} E \xrightarrow{2} E$