Maximum likelihood can be found by differentiating wat. P and equating the result to zero

4)	Parameter & based on a normal (4,02) sample of size ni known variance 52.4
	sample of size ni known variance of
	anknown mean 4.
roil-	such that (x1 xn) Ex for n-size
W. Kitch	such that (x, xn) Exctor n-size
	Similar of by
-6.	Probability Density Function for normal distribution
1,2970	Probability Density Function for normal distribution with parameters uf 62
Dogo	of knip on 11 Dine metaling a nit
a Byracon	$\frac{1}{1000} = \frac{1}{1000} = 1$
.14	2 12 20 isstmance positiletile improcessi
\	Hence, likelihood function for normal (4,62)
	(is given by, d (is) min : b
	,
21 1 5	$\Gamma(x^{(n)},x^{(n)}) = \frac{1}{(x^{(n)},x^{(n)})^2}$
	It the student of the straight to the state of the state
	X to troop algare
	Taking log likelihood on both sides,
	V
	log ((X,1 Xn XL) = log (TT -1 C 262
	i=1 √2π6²

7		
	6)	Parameters (u, 62) based on a Nominal (u, 62)
Ī	7	Parameters (u,62) based on a Nominal (u,62) sample of size n with unknown mean u &
		Vaniance 1 62
		(1) (X) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z
0 =	-	Probability density function for parameter 11 &
		6 is given by,
		$f(x; (M, 6^2) = \frac{(x; -M)^2}{26^2}$
		$\sqrt{6^2}\sqrt{2\pi}$
		Here 0. < U < 00 and O < 6 < 00 holds
		Here, -00. < 11 < 00 and 0 < 62 < 00 hdds Now, likelihood function can be written as the
		n 0 - (1) - 1x 1 3h (1) 112
		$L(M, 6^2) = \pi \left(\frac{1}{\sqrt{6^2}\sqrt{2\pi}}\right)^{\frac{1}{2}} e^{\frac{1}{2}} \frac{(x_i - \mu)^2}{26^2}$
		1=10 V62 VIII 262
	-	$=\frac{1}{12}\left(\frac{1}{12}\right)^{-1/2}$
		(6^2) (2π) $\exp\left[\frac{-1}{26^2}, \frac{2}{(x_1-M)^2}\right]$
	_	Taking the log likelihood on both sides,
		Log L(M,62) = -n .10g(62) -n log(2tr)-
	-	Log L(M,6) = -n .log(6) -n log(2tr) -
		Supplied Deville III (MILLE III)
		Sin(ixi-M)
		(3) 262

Now, taking paistical derivative w.s.f. u q equating the result to 0 to get MLE, Multiplying both sides by 6 This is maximum likelihood estimator unknown

To find MLF, for 62; we take the partial desirative of equation (1), w.s.t. 624 equating the result 7000 with 0 $\frac{\partial}{\partial 6^{2}} \left[\log \left((M_{1}.6^{2}) \right] = -\eta , \frac{\eta}{2} \cdot (x_{1} - M)^{2} - \frac{1}{2} \cdot 2 \cdot (6^{2})^{2} \right]$ Multiplying - by 2 (62) we get, $0 = \frac{1}{26^2} + \frac{2(x_1 - \mu)^2}{2(6^2)^2} \times \frac{2(6^2)^2}{2(6^2)^2}$ $-n6+ \frac{h}{(x_1-\mu)^2}=0$ 6= 2 (Xi-M)2 i=1 Substituting · M=X · a from egre $\hat{S}^2 = \mathcal{E}(x; -x)^2$ This is the maximum likelihood estimator

2)	You are given a coin and a thumbtrack & your portam	
	the following experiment: toss both the thumbtack of coin	1 _
	loo times. You get 60 hoads of 40 tails for the coin.	
	70 heads 4 30 tails for thumbtack. You put Beta	
2	priors - Beta (1,1), Beta (40,60), Beta (30,70), Beta (100,10	00
	Bota (1000, 1000). & Beta (100,000, 1000,00). on the	
	coin & the thumbtack, respectively.	_
	1) Perive MLF & me estimates for both coin &	
	1= 9the! thumbtack? = +0 00 = HT	
	MLE estimate for coin.	
	ay = number of heads = 60	
	$\alpha_{\tau} = number of tails = 40$	
	2-17-01 T11-00	
	OME = 4H = 60 60	6
	(coin) 0 4+ 4+ 60+40 100	_
	C , MH AT DODO !!	
		_
	MLE estimate for thumbtack	
	Om 1-50 X4 00 10 70: 70: 00-70.7	_
<u> </u>	(thumbfack) TH + X+ 70+30	_
		_
2.1	Pro Pr	
	371 <u>S 99.9</u>	

MAP estimates for coin 4. Humbtack,

$$\hat{\Theta} = \arg \max_{P(\theta|D)} = \ker_{P(\theta|D)} = \ker_{P(\theta|D$$

(3) For
$$\beta = (30,70)$$
 $\beta_{H} = 30$, $\beta_{T} = 70$

$$\alpha_{H} = 60, \alpha_{T} = 40$$

$$\theta_{MAP} = 60 + 30 - 1$$

$$= 60 + 30 + 40 + 70 - 2$$

$$= 9.4494$$
(3) For $\beta = (100, 100)$, $\beta_{R} = 100$, $\beta_{T} = 100$

$$\alpha_{H} = 60, \alpha_{T} = 40$$

$$\theta_{MAP} = 100 + 60 - 1$$

$$100 + 60 + 100 + 40 - 2$$

$$= 160 - 1$$

$$= 159$$

$$= 0.5335$$

$$300 - 2$$

$$= 298$$
(3) For $\beta = (1000, 1000)$, $\beta_{R} = 1000$, $\beta_{T} = 1000$

$$\alpha_{H} = 60, \alpha_{T} = 40$$

$$\alpha_{H} = 60, \alpha_{T} = 60$$

$$\alpha_{H} = 60, \alpha_{T} =$$

$$\beta = (30,70), \ \alpha_{\text{H}} = 70, \ \alpha_{\text{T}} = 30,$$

$$\theta_{\text{MAP}} = 30 + 70 - 1 \qquad 99 \qquad = \frac{1}{2}$$

$$30 + 70 + 70 + 30 - 2 \qquad [98]$$

$$= 0.5$$

$$\beta = (100,100), \ \alpha_{\text{H}} = 70, \ \alpha_{\text{T}} = 30$$

$$\theta_{\text{MAP}} = 70 + 100 - 1 \qquad = 169 \qquad = 0.5671$$

$$70 + 100 + 30 + 100 - 2 \qquad 298$$

$$\beta = (1000,1000), \ \alpha_{\text{H}} = 70, \ \alpha_{\text{T}} = 30$$

$$\theta_{\text{MAP}} = 1000 + 70 - 1$$

$$1000 + 70 + 1000 + 30 - 2$$

$$= 1069$$

$$20.98$$

$$= 0.5095$$

8

Scanned with CamScanner

3)	on the priors but, as we increase taking the number of trails more & more, the part of the prior will become lesser & lesser & dominant; so, MLE will becomes equal to MAP.
4)	True, as the priors in the MAP are very high they dominate the values of data
	which are in MIE, so, their MIE are different but MAPs are same because of
	dominating priors.
N	
-	