МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «МГИУ»)

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

КВАЛИФИКАЦИОННАЯ РАБОТА

на тему «Деформирование мембраны внутри криволинейной матрицы»

Группа 10361

Студент А.В. Уколова

Руководитель работы

проф. А.М. Локощенко

Аннотация

Оглавление

	1.	Введение в ползучесть	3
	2.		4
	3.	Постановка задачи	5
	4.	Литературный обзор	5
1	Ma	тематические модели	9
	1.	Деформирование внутри криволинейной матрицы	9
	2.	Деформирование внутри матрицы с вертикальными стенками и плос-	
		ким днищем	.2
2	Pea	лизация 1	5
	1.	Численное интегрирование	.5
	2.	Результаты	
	3.	Анимирование	
	4.	Вывод	
	5.	Приложения	

1. Введение в ползучесть

В механике деформируемого тела принято различать исследуемые материалы по их реакции на нагрузку. Когда при произвольном процессе нагружения материал сразу же после снятия нагрузки возвращается в исходное состояние, то говорят, что имеют дело с чисто упругой средой. Если после разгрузки появляются остаточные деформации, которые зависят только от величин нагрузок и порядка их приложения, но не зависят от скоростей нагружения и времени выдержки, то такая среда носит название упругопластической. В случае же, когда эти деформации существенно зависят от времени нагружения, то про такие среды говорят, что они обладают свойствами ползучести или в более общем виде - реологическими свойствами.

Фактически все существующие материалы при различных температурах в той или иной мере обладают свойствами ползучести. Однако при определенных условиях работы материалов деформациями ползучести по сравнению с упругими или мгновенными пластическими деформациями можно пренебречь. При этом существенно упрощаются определяющие соотношения. Поэтому свойства ползучести учитываются только тогда, когда пренебрежение ими может привести к существенным ошибкам в оценке деформируемости и работоспособности исследуемых объектов.

Из сказанного следует, что для максимального использования потенциальных ресурсов материала необходимо более полно изучать его свойства, переходя от чистой упругости к учету пластичности и далее ползучести. Но при этом более широкий учет свойств материалов приводит к существенному усложнению соотношении, связывающих напряжения и деформации, что в свою очередь ведет к резкому росту трудностей при решении конкретных задач. Вопросы ползучести металлов и расчета элементов конструкций с учетом ползучести рассматриваются в специальных монографиях [2, 3, 4, 5]

Процесс ползучести можно разделить на три стадии. В первой стадии (участок OA) скорость деформации ползучести постепенно уменьшается. Бейли в 1929 (Beiley R. W.) объяснял характер кривой ползучести при разных значениях времени t как результат взаимодействия механического упрочнения и термического разупрочнения. В первой стадии преобладает механическое упрочнение, связанное с ростом деформации ползучести.

Во второй стадии (участок АВ) устанавливается равновесие между механическим упрочнением и термическим разупрочнением, и процесс ползучести протекает с минимальной постоянной во времени скоростью, которая зависит от напряжения и температуры. Длительность второго участка уменьшается с увеличением напряжения, при больших напряжениях она может вообще отсутствовать.

Рис. 1. Кривая ползучести

В третьей стадии ползучести (участок ВС) скорость деформации непрерывно возрастает, пока не наступает разрушение образца (точка С). Увеличение скорости деформации в третьей стадии объясняется или увеличением σ вследствие уменьшения площади поперечного сечения образца, или образованием трещин внутри образца, которые развиваются в материале в течение времени под влиянием напряжений и температуры и ослабляют образец.

Из испытаний следует, что увеличение напряжения и температуры интенсифицирует процесс ползучести, скорости деформаций ползучести при этом возрастают, продолжительность второй стадии и время, необходимое для разрушения, уменьшаются. При этом I стадия вообще может отсутствовать.

2. Базовые модели ползучести

Установившаяся ползучесть

Рассмотрим ползучесть образца при растяжении, при котором продолжительность I и III участков кривой ползучести относительно общего времени работы образца невелика, т.е. образец большую часть времени находится в состоянии установившейся ползучести. В этом случае для описания поведения материала естественно использовать соотношение нелинейно-вязкого течения, называющееся теорией установившейся ползучести:

$$\dot{p} = f(\sigma, T) \tag{0.1}$$

Для функции можно рассмотреть различные конкретные формы. Чаще других используются экспоненциальная зависимость:

$$\dot{p} = B_1 e^{\frac{\sigma}{\gamma}} \tag{0.2}$$

предложенная Людвиком в 1908 г., и степенная зависимость

$$\dot{p} = B\sigma^n, \tag{0.3}$$

предложенная Бейли в 1929 г. Недостаток выражения, приводящего к ненулевой скорости ползучести \dot{p} при нулевом напряжении σ и вообще плохо описывающего свойства металлов при малых напряжениях, исправляет зависимость, предложенная А. Надаи в 1937 г.:

$$\dot{p} = B \operatorname{sh}(\frac{\sigma}{\widehat{\sigma}}). \tag{0.4}$$

В последнее время для описания ползучести при растяжении широкое применение находит зависимость \dot{p} , предложенная С.А.Шестериковым и М.А.Юмашевой [1]:

$$\dot{p} = B \left(\frac{\sigma - \sigma_0}{\sigma_b - \sigma} \right)^n, \tag{0.5}$$

где n и B – параметры материала, σ_0 – минимальный уровень напряжения при котором проявляется ползучесть, σ_b – предел кратковременной прочности. Полученное дробно-линейное соотношение при $\sigma_0=0$ одновременно описывает линейную ползучесть при $\sigma\ll\sigma_b$ и высокую степень нелинейности при $\sigma\to\sigma_b$.

3. Постановка задачи

Исследуется стесненное деформирование длинной узкой прямоугольной мембраны шириной 2a и начальной толщиной H_0 внутри жесткой матрицы под действием равномерного поперечного давления q. При этом предполагаются закрепление мембраны вдоль ее длинных сторон и идеальное скольжение её поверхности относительно поверхности матрицы. Рассматривается два вида матриц: криволинейная парабола вида $y = b(1-x)^k$, с показателем степени $1 < k \le 2$, и матрица с вертикальными стенками и плоским днищем, глубиной b.

Численное решение полученных уравнений должно проводиться двумя методами: методом Симпсона и методом Гаусса.Интерпретация численных расчетов представлена в двух графических формах: видео деформирования мембраны внутри матрицы (для матрицы с вертикальными стенками и плоским днищем) и в виде графиков, отражающих зависимости основных параметров деформации от времени.

4. Литературный обзор

При рассмотрении задачи о стесненном деформировании мембраны рассматривается два этапа деформирования: свободное деформирование (происходит вплоть до касания мембраной стенок матрицы) и стесненное деформирование (от касания мембраной стенок матрицы до заполнения или разрушения мембраны). До настоящего момента существует множество решений задач о деформировании мембраны.

Задача свободного деформирования, при учете упрочнения материала

Решение задачи о свободном деформировании мембраны шириной 2l и начальной толщиной h_0 , закрепленной с двух длинных сторон и нагруженной равномерным давлением p приведено в монографии Н.Н. Малинина [2], используя модель упрочнения материала:

$$\sigma_e = a\xi_e^{m_1} \mathbf{P}^{m_2},\tag{0.6}$$

где α – половина угла раствора, ξ деформации ползучести, $a, m_1 m_2$ – параметры материала, являющиеся справочной информацией[??, ??, ??], σ_e – интенсивность напряжения.

В результате была получена зависимость угла раствора мембраны от времени:

$$\int_{t}^{0} p^{1/m_{1}} dt = b \int_{0}^{\alpha} \Phi d\alpha;$$

$$\Phi = \left(\frac{\sin^{2} \alpha}{\alpha}\right)^{1/m_{1}} \left[\ln\left(\frac{\alpha}{\sin \alpha}\right)\right]^{m_{2}/m_{1}} \left(\frac{1}{a} - \operatorname{ctg} \alpha\right);$$

$$b = \left(\frac{2}{\sqrt{3}}\right)^{(m_{1} + m_{2} + 1)/m_{1}} (ah_{0}/l)^{1/m_{1}}$$

Задача стесненного деформирования, при условии упрочнения материала

Рассмотрим решение задачи, в случае идеального скольжения мембраны вдоль стенок матрицы, приведенное в монографии Н.Н. Малинина [2]:

$$\int_{t}^{t_{1}} p^{1/m_{1}} dt = b \int_{0}^{x} \Phi_{1} d\alpha;$$

$$\Phi_{1} = \frac{\chi_{1}}{\chi_{2} + \chi_{1}x} \left[\ln(\chi_{2} + \chi_{1}x)\right]^{\frac{m_{2}}{m_{1}}} \left\{ \frac{\alpha}{[\chi_{2} - (1 - \chi_{1})x](\chi_{2} + \chi_{1}x)} \right\}^{\frac{1}{m_{1}}};$$

$$b = \left(\frac{2}{\sqrt{3}}\right)^{(m_{1} + m_{2} + 1)/m_{1}} (ah_{0}/l)^{1/m_{1}};$$

$$\chi_{1} = 1 - \alpha \operatorname{ctg} \alpha; \ \chi_{2} = \alpha \sin \alpha.$$

Из этого уравнения численно определяется зависимость безразмерной длины контакта от времени x(t) для заданного закона изменения давления во времени. Зная длину участка контакта можно определить толщину мембраны и напряжения. Решения для случая прилипания также приведено в [2].

Задача стесненного деформирования внутри криволинейной матрицы

В статье [6] приводится решение задачи деформирования мембраны шириной 2a и начальной толщиной h_0 внутри криволинейной матрицы. Мембрана нагружена односторонним равномерным давлением q=q(t), которое может изменяться во времени по определенному закону. Для решения задачи была взята теория упрочнения:

$$p_e^{\gamma} \frac{dp_e}{dt} = A\sigma_e^n, \tag{0.7}$$

где σ_e и p_e – интенсивности напряжений и деформаций, n, γ, A — параметры материала при заданной температуре. Для этапа стесненного деформирования было получено соотношение (для случая идеального скольжения мембраны о стенки матрицы):

$$t^{n+1} = t_1^{n+1} + \left(\frac{2}{\sqrt{3}}\right)^{n+1} (n+1)(q)^{-n} \int_1^{x_0} \frac{(\overline{\rho}d\alpha + \alpha d\overline{\rho} + d\overline{s})}{(\overline{\rho}\alpha + \overline{s})} \left(\frac{h}{\rho}\right)^n dx_0 \qquad (0.8)$$

В данной статье накладывается ограничение на профиль матрицы: кривизна кривой, описывающей профиль матрицы должна монотонно увеличиваться от точки a к 0. В качестве примера рассматривается профиль матрицы заданный параболой: $y = b(1-x^k), 1 < k \leqslant 2$.

Задача стесненного деформирования, при условии установившейся ползучести

Рассматривается деформирование мембраны шириной 2a и начально толщиной H_0 , закрепленной вдоль длинных сторон и нагруженной равномерным поперечным давлением q. В работах [7, 8] рассматривается решение, основанное на дробно-сингулярной модели установившейся ползучести [1]:

$$\dot{p}_u = C \left(\frac{\sigma_u}{\sigma_b - \sigma_u} \right)^n, \tag{0.9}$$

в которой σ_u и $\dot{p_u}$ — интенсивности напряжений и скоростей деформации ползучести, σ_b — предел кратковременной прочности материала, C и n — постоянные.

Известные работы [2,6], описанные выше, допускают появление нефизичных бесконечных напряжений ($\sigma_u \to \infty$) в начальный момент времени. Для их исключения в данной работе и [7, 8] дополнительно учитывается мгновенное деформирование в качестве отдельной стадии.

Основное соотношение стадии свободного деформирования, выраженное в безразмерных переменных:

$$\overline{q} = \frac{q}{\sigma_b}, \overline{H} = \frac{H}{H_0}, \overline{H}_0 = \frac{H_0}{a}, \overline{t} = \frac{\sqrt{3}}{2}Ct, \tag{0.10}$$

принимает вид:

$$t = \int_{\alpha_i}^{\alpha} \left(\frac{1}{\alpha} - \operatorname{ctg}\alpha\right) \left(\frac{2H_0 \sin^2\alpha}{\sqrt{3}q \cdot \alpha} - 1\right)^n d\alpha \tag{0.11}$$

В работах [7, 8] стадия деформирования решена с помощью конечно разностных схем, при условии трения мембраны о стенки матрицы. Идеальное скольжение получается из этого решения путем обнуления коэффициента трения. Основные формулы в кратком обзоре опустим.

Глава 1

Математические модели

Решение рассматриваемой задачи, основанное на степенной связи интенсивности напряжений и скоростей деформации ползучести при напряжениях, не превосходящих предела текучести материала, представлено в монографии Л.М. Качанова [3]. Решение задачи о деформировании мембраны в стесненных условиях при учете упрочнения материала приведены в монографиях Н.Н. Малинина, [2] и К.И. Романова [4]. Известные работы [2,6] допускают появление нефизичных бесконечных напряжений ($\sigma_u \to \infty$) в начальный момент времени, для их исключения в данной работе дополнительно учитывается мгновенное деформирование. В [7, 8] приведено решение рассматриваемой задачи при различных граничных условиях, однако только для клиновидной матрицы. В данной работе приводится обобщение результатов, полученных в [7, 8], на случай криволинейной матрицы. Напряженное состояние мембраны можно считать безмоментным. Поскольку длина мембраны значительно превосходит её ширину, можно считать, что реализуется случай плоской деформации.

1. Деформирование внутри криволинейной матрицы Первая стадия

Первая стадия — стадия мгновенного упругого деформирования позволяет моделировать процесс деформации в начальный момент времени, для исключения бесконечных напряжений при $t \sim 0$. Упругое деформирование мембраны описывается с помощью закона Гука при сложном напряженном состоянии при учете несжимаемости материала мембраны.

Вводим безразмерные переменные:

$$\overline{q} = \frac{q}{\sigma_b}, \ \overline{H} = \frac{H}{H_0}, \ \overline{H}_0 = \frac{H_0}{a}, \ \overline{t} = \frac{\sqrt{3}}{2}Ct, \ k = \frac{E}{\sigma_b}, \ \overline{\rho} = \frac{\rho}{H_0},$$
 (1.1)

где H — толщина мембраны в произвольный момент времени, H_0 — толщина мембраны при t=-0, q — давление, 2a — ширина, E — модуль Юнга, H и ρ — толщина и радиус кривизны мембраны. При дальнейшем анализе черточки над безразмерными величинами в этом пункте опустим. Так как вывод формул описан в работах [7, 8] и совпадает с нашим решением, приведем только итоговый результат, описывающий связь давления q и мгновенно появляющегося угла α_1 , также приведены характеристики, описывающие состояние мембраны $(H_1$ — толщины и $\sigma_{\theta 1}$):

$$q = \frac{4}{3}H_0k\sin(\alpha_1)\left(1 - \frac{\sin(\alpha_1)}{\alpha_1}\right),$$

$$H_1 = \frac{\sin(\alpha_1)}{\alpha_1},$$

$$\sigma_{\theta 1} = \frac{q}{H_1H_0\sin(\alpha_1)},$$
(1.2)

Следует отметить, что соотношения (1.2) позволяют исключить бесконечные напряжения в начальный момент времени. Так же следует отметить, что в работе расчеты этих значений для материала были произведены с помощью программного средства Maxima.

Вторая стадия

Рис. 1. Свободное деформирование

Вторая стадия — стадия свободного деформирования позволяет моделировать деформацию мембраны вплоть до её касания стенок матрицы, что соответствует углу раствора $2\alpha_2$. Подробное описание вывода соотношений описано в работах [7, 8], поэтому приведем то соотношение, которое было рассмотрено и реализовано в работе:

$$t = \int_{\alpha_1}^{\alpha} \left(\frac{1}{\alpha} - \operatorname{ctg}\alpha\right) \left(\frac{2H_0 \sin^2\alpha}{\sqrt{3}q\alpha}\right)^n d\alpha$$
(1.3)

Для анимированного моделирования деформации мембраны требовались промежуточные расчеты по формуле (1.3), которые были произведены методами, описанными в пунктах: 1., 1.

Третья стадия

Началом стесненного деформирования (третья стадия) считается момент времени, при котором мембрана впервые касается матрицы. При исследовании этой стадии рассматривается идеальное скольжение мембраны вдоль матрицы, поверхность которой задана уравнением $\overline{y} = f(\overline{x}) = \overline{b}(1 - (\overline{x})^k), x \text{ и } y \text{ харак-}$ терные размеры матрицы (1.), $\overline{x} = \frac{x}{a}$, $\overline{y} = \frac{y}{a}, b$ — глубина матрицы (рис. $\overset{a}{1}$) $\bar{b} = \frac{b}{a}$. При этом на матрицу будет наложено ограничение, аналогичное [6]: кривизна кривой должна монотонно увеличиваться от точки a до 0, для того, чтобы зона стесненного деформирования оставалась одиночной и непрерывной.

Рис. 2. Стесненное деформирование

Рассмотрим аналогично [6] два близких деформированных состояния: одно с радиусом ρ и длиной участка контакта s и второе $\rho + d\rho$ и длиной участка контакта s + ds. Основываясь на геометрических соображениях (рис. 1.), получим соотношения, характеризующие два близких состояния в данных координатных осях:

$$\rho(x_0) = \sqrt{(y_0 - y_c)^2 + x_0^2}; \ d\rho = \rho'_{x_0} dx_0$$

$$s(x_0) = \int_{x_0}^{1} \sqrt{1 + f_x'^2} dx; \ ds = s'_{x_0} dx_0$$

$$\alpha(x_0) = \frac{\pi}{2} - \arctan(g'_{x_0}); \ d\alpha = \alpha'_{x_0} dx_0$$

$$(1.4)$$

где H — толщина мембраны, q — давление, H_0 — начальная толщина, C — константа материала, a — ширина, x_0 — крайняя точка касания мембраны стенок матрицы, $\rho = \rho(x_0), \alpha = \alpha(x_0)$ — радиус кривизны и угол раствора свободной части мембраны, $s = s(x_0)$ — длина участка контакта, $g(x_0)$ — нормаль к функции профиля матрицы. Учитывая идеальное скольжение мембраны вдоль стенок матрицы, её геометрических характеристиках, получим соотношение для окружной деформации ползучести:

$$p_{\theta} = \frac{\rho d\alpha + \alpha d\rho + ds}{\rho \alpha + s} \tag{1.5}$$

Каждое из слагаемых числителя (1.5) содержит dx_0 , следовательно можно сгруппи-

ровать и ввести обозначения:

$$\rho d\alpha + \alpha d\rho + ds = B_1(x_0)dx_0; \ \rho \alpha + s = B_2(x_0). \tag{1.6}$$

Тогда

$$dp_{\theta} = \frac{B_1(x_0)dx_0}{B_2(x_0)} \tag{1.7}$$

С помощью (1.7) вычисляем характеристики деформированного состояния:

$$\dot{p_{\theta}} = \frac{B_1}{B_2} \frac{dx_0}{dt}; \ \dot{p_u} = \frac{2}{\sqrt{3}} \frac{B_1}{B_2} \frac{dx_0}{dt}$$
 (1.8)

Аналогично выводам [6], из условия несжимаемости плоского деформированного состояния получаем:

$$H = H_1 \exp\left(\int_1^{x_0} \frac{B_1}{B_2} dx_0\right) \tag{1.9}$$

Интенсивность напряжений будет:

$$\sigma_u = \frac{\sqrt{3}}{2}\sigma_\theta = \frac{\sqrt{3}}{2}\frac{q\rho}{H} \tag{1.10}$$

Подставляя (1.7), (1.10) в (0.9) получим выражение, характеризующее зависимость $x_0(t)$:

$$t = t_1 + \int_{1}^{x_0} \left[\frac{2H}{\sqrt{3}q\rho} - 1 \right]^n \frac{B_1}{B_2} dx_0, \tag{1.11}$$

где t_1 – время окончания стадии свободного деформирования. Выражение подлежит численному исследованию, результаты которого приведены 2.

2. Деформирование внутри матрицы с вертикальными стенками и плоским днищем

Первая и вторая стадия

Первая и вторая стадия не имеют отличительных особенностей по сравнению с моделированием деформирования внутри криволинейной матрицы. Поэтому при вычислениях были взяты формулы (1.2) и (1.3).

Третья и четвертая стадия

При рассмотрении матрицы с вертикальными стенками и плоским днищем учитывалось, что стесненное деформирование проходит как две последовательные стадии: третья стадия — когда мембрана касается только стенок матрицы и четвертая стадия — когда мембрана касается днища матрицы и свободных дуг становится две.

Дана матрица шириной 2a и высотой L. Рассмотрим два близких состояния в третьей стадии: одно с радиусом ρ и длиной участка контакта s и с длиной участка

Рис. 3. Третья стадия

Рис. 4. Четвертая стадия

контакта s+ds. При касании только вертикальных стенок радиус свободной дуги матрицы изменятся не будет, поэтому:

$$dp = \frac{ds}{s + \frac{\pi}{2}\rho} \tag{1.12}$$

Введем безразмерные величины:

$$\overline{\rho} = \frac{\rho}{\alpha}, \overline{s} = \frac{s}{a},\tag{1.13}$$

Подставляя (1.13) в (1.12) и учитывая, что из геометрического смысла на этом этапе $\rho = a$, получим (черточки над безразмерными переменными опустим):

$$dp = \frac{ds}{s + \frac{\pi}{2}} \tag{1.14}$$

Перейдем к координатам, аналогично пункту 1. этой главы, введя тривиальную зависимость точки прилипания от координаты касания: s=y, ds=dy. Проведя замену переменных и учитывая условие несжимаемости плоского деформированного состояния получаем:

$$H = \frac{H_1(y + \frac{\pi}{2})}{\frac{\pi}{2}} \tag{1.15}$$

Поставляя (1.14), (1.10) в (0.9) и используя замену переменных получим:

$$t = t_1 + \int_0^{y_0} \left[\frac{2H}{\sqrt{3}q\rho} - 1 \right]^n \left(\frac{dy_0}{y_0 + \frac{\pi}{2}} \right)$$
 (1.16)

где t_1 – время окончания стадии свободного деформирования. Выражение подлежит численному исследованию, результаты которого приведены в главе 2 пункте ??.

Рассмотрим два близких состояния при касании мембраны днища матрицы: одно с радиусом ρ и длиной участка контакта s и другое с радиусом $\rho + d\rho$ с длиной участка контакта s + ds (рис. 4).

Выражение окружной деформации примет вид:

$$p_{\theta} = \frac{2ds + \frac{\pi}{2}d\rho}{b - a + 2s + \frac{\pi}{2}},\tag{1.17}$$

из (рис. 4) видно, что 2a и b — ширина и глубина матрицы, s — как и в предыдущих обозначениях длина участка касания. Для удобства введем обозначения:

$$\overline{b} = \frac{b}{a} + \left(\frac{\pi}{2} - 1\right), \ \overline{x} = \frac{s}{a} \tag{1.18}$$

Подставляя (1.18) в (1.17), дифференцируя по t и используя соотношение

$$p_u = \frac{2}{\sqrt{3}} p_\theta \tag{1.19}$$

получаем выражение (черточки над безразмерными величинами опущены):

$$\dot{p_u} = \frac{\left(2 + \frac{\pi}{2}\right)}{b + \left(2 - \frac{\pi}{2}x_0\right)},\tag{1.20}$$

 $x_0 \in [0,1]$ – так же как и в предыдущих обозначениях крайняя точка касания днища. Подставляя (1.20) в (0.9) получаем зависимость времени от точки касания:

$$t = t_2 + \int_0^{y_0} \left[\frac{2H}{\sqrt{3}q\rho} - 1 \right]^n \left(\frac{\left(2 + \frac{\pi}{2}\right) dx_0}{b + \left(2 - \frac{\pi}{2}x_0\right)} \right), \tag{1.21}$$

где t_2 — время окончания третьей стадии деформирования, а H вычисляется по формуле:

$$(1.22)$$

Выражение подлежит численному исследованию, результаты которого приведены в главе 2 пункте ??.

Глава 2

Реализация

1. Численное интегрирование

В работе рассматриваются два метода приближенного вычисления интегралов (1., 1.).

Все приемы численного интегрирования [9] основаны на замене определенного интеграла

$$I = \int_{a}^{b} f(x) dx \tag{2.1}$$

конечной суммой

$$I_n = \sum_{k=0}^{n} c_k f(x_k), \tag{2.2}$$

где c_k — числовые коэффициенты и x_k —точки отрезка $[a,b],\ k=0,1,\ldots,n$. При этом интеграл по переменному верхнему пределу берется так: выбирается разбиение возможных значений верхнего предела с определенным шагом. Внутри этого отрезка оба предела интеграла являются определенными и выбирается одна из ниже описанных формул.

Метод Симпсона

При аппроксимации интеграла заменим подынтегральную функцию f(x) параболой, проходящей через точки $(x_j, f(x_j)), j = i - 1, i - 0.5, i$. Подробный вывод формул представлен в [9]. Приведем окончательную формулу:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6N} \left[f_0 + f_{2N} + 2(f_2 + f_4 + \dots + f_{2N-2}) + 4(f_1 + f_3 + \dots + f(2N-1)) \right],$$
(2.3)

где 2N — количество узлов одномерной сетки с шагом h, f_i — значение функции f в точке $x_i. \ x_i = a + kh$

Метод Гаусса

Повысить точность вычисления численного интеграла можно не только с помощью уменьшения шага интегрирования, но и за счет выбора определенных точек интегрирования. Уменьшение шага ведет в пропорциональному увеличению времени работы программы, что не приемлемо по времени работы при сильно увеличивающейся точности.

Метод Гаусса описывает способ нахождения специальных точек интегрирования, при этом в разложении интеграла используются квадратурные формулы наивысшей алгебраической точности. Изначально при методе Гаусса рассматривается канонический интеграл:

$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} w_i f(x_i)$$
(2.4)

Для перехода к произвольному интервалу можно воспользоваться следующей заменой:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}z + \frac{a+b}{2}\right) dz \approx \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f\left(\frac{b-a}{2}z_{i} + \frac{a+b}{2}\right). \tag{2.5}$$

В работах [9, 11, 12] подробно описан вывод и доказательство корректности формул, поэтому просто приведем таблицу ключевых значений для 1,2,3,4,5-ти точечного метода.

Кол-во точек	x_i	w_i
1	0	2
2	$\pm \frac{\sqrt{3}}{3}$	1
3	0	<u>8</u>
	$\pm\sqrt{\frac{3}{5}}$	<u>5</u> 9
4	$\pm\sqrt{\left(3-2\sqrt{\frac{6}{5}}\right)/7}$	$\frac{18+\sqrt{30}}{36}$
	$\pm\sqrt{\left(3+2\sqrt{\frac{6}{5}}\right)/7}$	$\frac{18 - \sqrt{30}}{36}$
	0	$\frac{128}{225}$
5	$\pm \frac{1}{3} \sqrt{5 - 2\sqrt{\frac{10}{7}}}$	$\frac{322+13\sqrt{70}}{900}$
	$\pm \frac{1}{3} \sqrt{5 + 2\sqrt{\frac{10}{7}}}$	$\frac{322-13\sqrt{70}}{900}$

В работе использовался пятиточечный метод и окончательная формула принимает вид:

$$\int_{a}^{b} f(x) dx = 128/255 f(\frac{a+b}{2}) + \frac{322+13\sqrt{70}}{900} \cdot f\left(\frac{a+b}{2} + \frac{1}{3} \cdot \sqrt{5-2\sqrt{\frac{10}{7}}} \cdot \frac{b-a}{2}\right) + \frac{322+13\sqrt{70}}{900} \cdot f\left(\frac{a+b}{2} - \frac{1}{3} \cdot \sqrt{5-2\sqrt{\frac{10}{7}}} \cdot \frac{b-a}{2}\right) + \frac{322-13\sqrt{70}}{900} \cdot f\left(\frac{a+b}{2} + \frac{1}{3} \cdot \sqrt{5+2\sqrt{\frac{10}{7}}} \cdot \frac{b-a}{2}\right) + \frac{322-13\sqrt{70}}{900} \cdot f\left(\frac{a+b}{2} - \frac{1}{3} \cdot \sqrt{5+2\sqrt{\frac{10}{7}}} \cdot \frac{b-a}{2}\right);$$
(2.6)

Погрешности

Оценим погрешность, получаемую по двум рассмотренным методам интегрирования. При вычислении интеграла

$$\int_{a}^{b} f(x) dx \tag{2.7}$$

методом Гаусса погрешность оценивается по формуле:

$$R(n) = \frac{2^{2n+3}(n+1)!}{((2n+2)!)^3(2n+3)} f^{(2n+2)}(\xi), \ \xi \in [-1,1]$$
 (2.8)

Вычисление производной 4 и 18 порядка в рассматриваемых подынтегральных функциях представляет определенные сложности, поэму оценка погрешности метода гаусса производится по методу Ругге-Ромберга. При этом получается, что метод Гаусса обеспечивает восемнадцатый порядок точности. Широко распространена [9] оценка метода Симпсона как $O(h^4)$. Так как метод Симпсона брался с очень маленьким шагом на протяжении всего участка интегрирования, а метод Гаусса был пятиточечным, то вычисления по методу Симпсона оказались более точные, но следует отметить, что время работы метода Симпсона при уменьшении шага увеличивается не пропорционально быстро.

Особенности реализации

При реализации методов, описанных в предыдущем пункте использовался язык C++, стандарт 2011 года. Структура проекта была разбита на несколько составных частей:

- 1. Описание численного метода Симпсона;
- 2. Описание численного метода Гаусса;

- 3. Описание граничных условий;
- 4. Описание самого процесса деформирования.

В первых двух пунктах был применена технология шаблонов, так как к функциям интегрирования обращаются объекты разных классов. Шаблон(template) — средство языка С++, предназначенное для кодирования обобщённых алгоритмов, без привязки к некоторым параметрам (например, типам данных, размерам буферов, значениям по умолчанию). В С++ возможно создание шаблонов функций и классов.

В частности были написаны обобщенные функции интегрирования методом Гаусса и методом Симпсона, которые на вход принимали объект, у которого присутствовал оператор, вычисляющий значение подынтегральной функции, а тип объекта определен не был, так в эти функции передавались объекты различных классов.

В стандарте C++11 появилась встроенная поддержка многопоточности, что также было использовано в работе. Потоком в программировании называю легковесный процесс, имеющий с процессом-родителем общую ресурсы, такие как память, тогда как процессы не разделяют этих ресурсов. В частности, потоки разделяют инструкции процесса (его код) и его контекст (значения переменных, которые они имеют в любой момент времени).

Задача о деформировании мембраны внутри криволинейной матрицы связана с большим количеством вычислений интегралов. Алгоритм вычисления интеграла с неопределенным верхним пределом выглядит так:

- разбиваем область верхнего предела на отдельные участки;
- вычисляем по каждому участку значение;
- суммируем полученный результат, получая непрерывные значения.

Как видно из алгоритма, второй пункт можно вычислять независимо для каждого интеграла. В результате разбиения задач по потокам для свободного и стесненного деформирования внутри криволинейной матрицы было получени ускорение отображаемое на рис.1. Отметим, что во второй задаче, где фигурирует матрица с вертикальными стенками и плоским днищем, результаты распараллеливания не приведены, так как там слишком малое время вычисления (практически формулы получены в аналитическом виде).

2. Результаты

В качестве примера рассмотрим деформирование мембраны из алюминиевого сплава Д16Т при 400°С [8]. Константы материала: $C=9.37\cdot 10^5 \mathrm{M}\Pi \mathrm{a}^{-n}\mathrm{cek}^{-1}, n=3.4,$ $\sigma_b=88.3~\mathrm{M}\Pi \mathrm{a}$. Геометрические размеры мембраны: ширина $2a=200~\mathrm{mm},$ толщина $H_0=2~\mathrm{mm},k=1.5,$ $\bar{b}=4.5$ давление $q=2.65~\mathrm{k}\Pi \mathrm{a}$ [8].

Вычисления показали, что мембрана в условиях идеального скольжения полностью заполняет криволинейную матрицу $y=4.5(1-x^{1.5})$ за бесконечное время. Стадия мгновенного деформирования характеризуется параметром $\overline{H}_1=0.97$, стадия свободного деформирования характеризуется параметрами $\overline{H}_2=0.69, \bar{t}_2=5.36\cdot 10^8$. На рис. 2 представлен график зависимости толщины мембраны и интенсивности напряжения от времени (кривые 1 и 2 соответственно).

Расчет для мембраны внутри матрицы с вертикальными стенками и плоским днищем проводился для матриц с различной высотой: b = a (рис.3), b = 4.5a (рис.4),b =

Puc. 1. Время работы программы

 $7a~(\mathrm{puc.5}),~b=10a~(\mathrm{puc.6}).$ Из рисунков видно, что при увеличении высоты мембраны увеличивается максимально достижимая интенсивность напряжения, которое при достижении значения σ_b приведет к разрушению мембраны. Но само разрушение в данной работе не рассматривалось. Приведем результаты вычислений в таблице 2.

b/a	$\overline{t_2}/\overline{H_2}$	$\overline{t_3}/\overline{H_3}$	
1	$7.14 \cdot 10^8 / 0.636$	$7.14 \cdot 10^8 / 0.636$	
4.5	$7.14 \cdot 10^8 / 0.636$	$13.67 \cdot 10^8 / 0.186$	
7	$7.14 \cdot 10^8 / 0.636$	$13.96 \cdot 10^8 / 0.125$	
10	$7.14 \cdot 10^8 / 0.636$	$13.98 \cdot 10^8 / 0.089$	

Puc. 3. b=a

3. Анимирование

4. Вывод

- 1. *Шестериков С. А., Юмашева М. А.* Конкретизация в уравнения состояния в теории ползучести. // *Механика твердого тела.* 1984. № 1. С. 86-91.
- 2. Малинин Н. Н. Ползучесть в обработке металлов. М.: Машиностроение, 1986. 224 с.
- 3. Качанов Л. М. Основы механики разрушения.. М.: Наука, 1974. 312 с.
- 4. *Романов К. И.* Механика горячего формоизменения металлов.. М.: Машиностроение, 1993. 240 с.
- 5. Локощенко A. M. Моделирование процесса ползучести и длительной прочности металлов.. М.: МГИУ, 2007. 264 с.
- 6. Демин В. А., Локощенко А. М, Жеребцов А. А. Ползучесть длинной прямоугольной мембраны внутри криволинейной матрицы. // Известия ВУЗов. Машиностроение. 1998. № 4-6. С. 41-46.

- 7. $Терау \, \theta \, B. \, B.$ Математическое моделирование технологических процессов, протекающих в условиях ползучести. М. МГИУ: Диссертация на соискание ученой степени кандидата технических наук, 2011. 210 с.
- 8. *Локощенко А. М. Терауд В. В.* Ползучесть длинной узкой мембраны в стесненных условиях вплоть до разрушения. // *Прикладная механика и техническая физика*. 2013. № 4. С. XX-XX.
- 9. *Самарский А. А., Гулин А. В.* Численные методы: Учеб. пособие для вузов.. М. Наука. Гл. ред. физ-мат. лит.,, 1989. 432 с.
- 10. Institut f ur Theoretische Informatik, Till Tantau The TikZ and PGF Packages http://sourceforge.net/projects/pgf Manual for version 2.00: Universit at zu L ubeck, 2008.

- 11. Hazewinkel, Michiel Gauss quadrature formula // $\it Encyclopedia$ of Mathematics. 2001. C. XXX-XXX.
- 12. Golub, Gene H.; Welsch, John H. (1969), Calculation of Gauss Quadrature Rules // Mathematics of Computation. 1969. \mathbb{N} 23 (106). C. 221-230.
- 13. $\mathit{C.~M.~Львовский.}$ Набор и верстка в системе \LaTeX Х, 3-е изд., испр. и доп.. М., МЦНМО, 2003.

5. Приложения