Klasszikus bitek és logikai kapuk

A	В	C	S
0	0		
0	1		
1	0		
1	1		

Klasszikus bitek és logikai kapuk

A	В	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Interferencia

klasszikus testek

részecskék

hullámok

Szuperpozíció

Cikk: <u>Quantum Supremacy Using a Programmable</u> <u>Superconducting Processor</u>

A Google Sycamore nevű kvantum processzora

Schrödinger-Feynman Algorithm

Cikk: Shor's algorithm is implemented using five trapped ions

A prímfaktorizációs probléma komplexitása klasszikus és kvantum-algoritmussal

Kvantum logikai kapuk

IBM Quantum Experience

Hadamard

Entanglement

Összefonódás

Kihívások

- Nagy számok esetén a Shor algoritmushoz pl. több ezer qubit kéne (a számjegyekkel négyzetével arányos)
- Kvantum-dekoherencia: a környezet folyamatosan "meg akarja mérni" a qubiteket, ezért nehéz egy ekkora rendszert szuperpozícióban tartani
- Hipotézis: a qubitek számával exponenciálisan növekszik a zaj, ezért lehetetlen értelmezhető méretű kvantumszámítógépet építeni
- Videó: Why Quantum Computing Requires Quantum Cryptography
- Videó: Solving Quantum Cryptography