ECCS1721-Homework#11

Problem 1

Using sequential (arbitrary) state assignment, realize the NRZ to Manchester code converter (described in lecture 27, slide 1) using D-Flip Flops.

Problem 2Given the following state table:

Current state	Next state		output
	W=0	W=1	
A	В	С	1
В	D	F	1
С	F	Е	0
D	В	G	1
Е	F	С	0
F	Е	D	0
G	F	G	0

- 1. Minimize the state table.
- 2. Using heuristic rules, assign the right values for the states in the minimized state table.
- 3. Implement the minimized state table using Toggle Flip Flops.

1:

AB
$$S0 = 00$$

$$S1 = 01$$

$$S2 = 10$$

$$S3 = 11$$

(h)	State	graph
w	State	graph

Present State	Next State $X=0$ $X=1$		Present Output (Z	
S_0	S_1	S ₃	0	
S_1	S ₂	_	0	
S_2	S_1	S_3	1	
S_3	_	S_0	1	

(c) State table

	X = 0		X = 1		
$A^t B^t$	$A^{t+1}B^{t+1}$	$D_A D_B$	$A^{t+1}B^{t+1}$	$D_A D_B$	Z
00	01	01	11	11	0
01	10	10			0
10	01	01	11	11	1
11			00	00	1

$$D_A = \overline{B}X + B\overline{X}$$

$$D_B = \overline{B}$$

$$Z = A$$

2.1:	B C	B-D C-F		C = A =	E = 0	G	
	D	B-B C-G	B-B F-G	X			
	E	\times	X	F-F E-C	X		
	F	\times	\times	F-E E-D	X		
	G	\times	\times	F-F E-G	B-F G-G	F-F C-G	E-F D-G
		A	В	C	D	F	F

Current State		State W = 1	Output (Z)
A	В	С	1
В	Α	F	1
C	F	C	0
F	C	Α	0

B:

Rule 2: (B,C) (A,F) (F, C) (C, A)

Rule 3: (A,B) (C,F)

11

Q2 ^Q	1	_1
0	Α	C
1	H	В

1

11 = B

01

00

$$T_1 = \overline{Q_1 \oplus Q_2} + \overline{W}$$

$$T_2 = \overline{Q_1}Q_2 + \overline{W}$$

$$Z = \overline{Q_1 \oplus Q_2}$$

