This formulation is similar to that of Hinge Loss.

Soft SVM rule

min (W, b, &) A ||w||^2 + In  $\sum_{i=1}^{m} \mathcal{E}_{s_i}$ Min(W, b, &) A ||w||^2 \frac{\mathbb{E}\_s}{s\_i}

No. 10.

No. A haised tottu power - subscript Overall, the soft SVM learning rule can be considered as regularized loss minimization. Even the linear negression machine can be negularized by including a negularization team to the loss function.

SSD + \[ \lambda || \lambda ||^2 hegularization helps in reducing the complexity sum of squared difference.

Regularization team of model.

This is called as Tikhonov negularization. Implementing Soft SVM using Stochastic Gradient Descent min  $\frac{1}{2}\|\mathbf{w}\|^2 + \frac{1}{m}\sum_{i=1}^{m}\max\{0, -4i\} \left(\mathbf{w}, \mathbf{x}_i\right)$  =  $\frac{1}{2}\|\mathbf{w}\|^2 + \frac{1}{m}\sum_{i=1}^{m}\max\{0, -4i\} \left(\mathbf{w}\right)$  empirical paish where  $f(\mathbf{w}) = \frac{1}{2}\|\mathbf{w}\|^2 + \frac{1}{2}\|\mathbf{w}$ 

Hinge Loss. distance from hyperp uniform D loss. Linear Reguession (squared Increasing



vector.

Let  $v_{t}$  be one such subgradient vector of the loss function  $l(\underline{w}^{(t)}, Z)$  at point  $\underline{w}^{(t)}$ subgradient.  $(v_{\pm}) \in 2l(w^{(\pm)}, z)$  differential set.

Since  $f(w) = d||w||^2$ Since  $f(\omega) = \frac{1}{2} ||\omega||^2 + C_s(\omega)$ one of the subgradient vectors of  $f(\omega)$  at  $\omega^{(t)}$  is

subgradient  $f(\omega) = \frac{1}{2} ||\omega||^2 + C_s(\omega)$ oo the SGD (Stochastic Gradient Descent) update step  $\omega = \omega - \eta \left( \lambda \omega' + v_t \right)$  subgradient For a strongly convex function,  $M = \frac{1}{11}$  $000 \quad \underline{W} = \underline{W} - \frac{1}{1t} \left( \underline{\lambda} \underline{w}^{(t)} + \underline{v_t} \right)$  $= \left(1 - \frac{1}{t}\right) \omega^{(t)} - \frac{1}{\lambda t} \frac{V_{\overline{t}}}{V_{\overline{t}}}$  $= \left(\frac{t-1}{t}\right) \frac{(t)}{\omega} - \frac{1}{\lambda t} \frac{v_t}{v_t}$  $= \left(\frac{t-1}{t}\right) \left(\frac{t-2}{t-1} \omega^{\left(t+1\right)} - \frac{1}{1(t-1)} \omega^{t+1}\right) - \frac{1}{1} \omega^{t+1}$ 

 $\underline{\omega} = -\frac{1}{1+} \left( \sum_{i=1}^{t} \underline{v}_{i} \right)$ Vi is the subgradient of the loss function at w = { 0 if. y(w), x>>1 -12 -yx otherwise 2 case 24 case 24 case loss = max (0, 1-y (w, x)) SGD for solving soft SVM Let  $w^{(t)} = (1)$  sum 4 ( yi (w), 24) <1 sum = sum + yi xi sum = sum (t).