TOPOLOGÍA. Examen del Tema 1

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11 Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. En \mathbb{N} se considera $\tau = \{A_n; n \in \mathbb{N}\} \cup \{\emptyset\}$, con $A_n = \{n, n+1, \ldots\}$. Probar que es una topología. Hallar el interior y adherencia de $A = \{\text{números pares}\}\$ y $B = \{4, 6\}$.
- 2. En \mathbb{R} se considera la topología τ que tiene por base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probar que para cada $x \in \mathbb{R}$, $\beta_x = \{[x, \infty)\}$ es una base de entornos de x. Hallar la adherencia de (0, 1).
- 3. En \mathbb{R} se considera la topología τ del punto incluido para p=0. Sean A=[0,2] y B=(1,2). Hallar Fr(A). Probar que $\tau_{|B}$ es la topología discreta en B.

1. En \mathbb{N} se considera $\tau = \{A_n; n \in \mathbb{N}\} \cup \{\emptyset\}$, con $A_n = \{n, n+1, \ldots\}$. Probar que es una topología. Hallar el interior y adherencia de $A = \{\text{números pares}\}\$ y $B = \{4, 6\}$.

Solución:

(a)
$$\mathbb{N} = A_1$$
. Por otro lado, $A_n \cap A_m = A_{\max\{n,m\}}$ y $\bigcup_{i \in I} A_{n_i} = A_{\min\{n_i: i \in I\}}$.

Como consecuencia, la familia de cerrados es

$$\mathcal{F} = \{\emptyset, \mathbb{N}\} \cup \{\{1, \dots, n\}; n \in \mathbb{N}\}.$$

- (b) Ningún conjunto A_n está incluido en A, luego su interior es vacío. El único cerrado que contiene a A es \mathbb{N} , luego su adherencia es \mathbb{N} .
- (c) Ningún conjunto A_n está incluido en B, luego su interior es el vacío. El cerrado más pequeño que lo contiene es $\{1, \ldots, 6\}$.
- 2. En \mathbb{R} se considera la topología τ que tiene por base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probar que para cada $x \in \mathbb{R}$, $\beta_x = \{[x, \infty)\}$ es una base de entornos de x. Hallar la adherencia de $\{-1, 1\}$.

Solución: Como el conjunto $[x, \infty)$ es un abierto que contiene a x, es un entorno suyo. Por otro lado, sea U un entorno de x. Entonces existe $a \in \mathbb{R}$ tal que $x \in [a, \infty) \subset U$. En particular, $a \leq x$ y por tanto, $[x, \infty) \subset [a, \infty)$.

Los conjuntos cerrados son, aparte de los triviales, los de la forma $(-\infty, a)$ y $(-\infty, a]$. Por tanto la adherencia es $(-\infty, 1]$.

3. En \mathbb{R} se considera la topología τ del punto incluido para p=0. Se considera A=[0,2] y B=(1,2). Hallar Fr(A). Probar que $\tau_{|B}$ es la topología discreta en B.

Solución:

Como A contiene al 0, es abierto. Como $ext(A) = int(\mathbb{R} - A)$, entonces es vacío. Por tanto, la frontera es $\mathbb{R} - A$.

Dado $b \in B$, $\{b\} = B \cap \{0, b\}$. Por tanto, $\{b\}\tau_{|B}$. Como todo punto es abierto, la topología correspondiente es la discreta.