Mathematics

Robin Adams

September 5, 2023

Contents

Let there be sets.

Given sets A and B, let there be functions from A to B. We write $f:A\to B$ iff f is a function from A to B, and call A the domain of f and B the codomain. Given functions $f:A\to B$ and $g:B\to C$, let there be a function $g\circ f$:

 $A \to C$, the *composite* of f and g.

Axiom 0.1 (Associativity). Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h(gf) = (hg)f .$$

Axiom 0.2 (Identity). For any set A, there exists a function $i: A \to A$ such that:

- for any set B and function $f: A \rightarrow B$, we have fi = f
- for any set B and function $f: B \to A$, we have if = f.

Proposition 0.3. For any set A, there exists a unique function $i: A \to A$ such that:

- for any set B and function $f: A \to B$, we have fi = f
- for any set B and function $f: B \to A$, we have if = f.

PROOF: If i and j both satisfy these conditions then i = ij = j. \square

Definition 0.4 (Identity Function). For any set A, the *identity function* on A, id_A , is the unique function $A \to A$ such that:

- for any set B and function $f: A \to B$, we have $fid_A = f$
- for any set B and function $f: B \to A$, we have $id_B f = f$.

Definition 0.5 (Isomorphism). A function $f: A \to B$ is an isomorphism, $f: A \cong B$, iff there exists a function $g: B \to A$ such that $fg = \mathrm{id}_B$ and $gf = \mathrm{id}_A$.

Axiom 0.6 (Terminal Set). There exists a terminal set 1 such that, for any set A, there exists exists exactly one function $A \to 1$.

4 CONTENTS

Proposition 0.7. If S and T are terminal sets then there exists a unique isomorphism $S \cong T$.

Proof:

```
\langle 1 \rangle 1. Let: f be the unique function S \to T
```

$$\langle 1 \rangle 2$$
. Let: f^{-1} be the unique function $T \to S$

 $\langle 1 \rangle 3.$ $ff^{-1} = id_T$

PROOF: Each is the unique function $T \to T$.

 $\langle 1 \rangle 4$. $f^{-1}f = \mathrm{id}_S$

PROOF: Each is the unique function $S \to S$.

Definition 0.8 (Terminal Set). Let 1 be the set such that, for any set A, there exists exactly one function $A \to 1$.

Definition 0.9 (Element). An *element* of a set A is a function $1 \to A$. We write $a \in A$ for $a: 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for fa.

Definition 0.10 (Surjective). A function $f: A \to B$ is *surjective* iff, for all $b \in B$, there exists $a \in A$ such that f(a) = b.

Definition 0.11 (Injective). A function $f: A \to B$ is *injective* iff, for all $x, x' \in A$, if f(x) = f(x') then x = x'.

Definition 0.12 (Bijective). A function is *bijective* iff it is injective and surjective.