A Comprehensive Survey of Anomaly Detection Algorithms

이상 탐지 알고리즘에 대한 종합적인 조사

이상 탐지의 정의

- 이상 징후의 고전적 정의
 - 1. 해당 관측치가 발생한 표본의 다른 구성원과 현저하게 다르게 나타나는 것
 - 2. 다른 관측치와 너무 많이 달라서 다른 메커니즘에 의해 생성되었다는 의심을 불러일으키는 관측치
 - 3. 나머지 데이터 집합과 일치하지 않는 것으로 보이는 관찰(또는 관찰의 하위 집합)
 - 4. 해당 지역 이웃의 밀도에 비해 낮은 지역 밀도에 있는 점
 - 5. 데이터 집합의 클러스터에 속하지 않거나 다른 클러스터보다 현저히 작은 클러스터로 존재하는 점
 - 6. 점의 밀도가 인근 고밀도 패턴 클러스터 보다 상대적으로 낮거나 자체 밀도 가 인근 저밀도 패턴 규칙성 보다 상대적으로 높은 상황
 - 7. 잘 정의된 정상 동작의 개념에 부합하지 않는 데이터의 패턴
 - 8. 크게 벗어나 정상 데이터와 일치하지 않는 데이터 레코드 또는 인스턴스

이상 탐지의 정의

정의들은 서로 다르지만 유사한 개념
 -> 나머지 데이터와 일치하지 않는 데이터 포인트를 찾는 작업

Anomaly detection =
 Outlier detection, Novelty detection, Abnormality detection

이상의 유형

- Point anomaly = Global anomaly : 데이터 포인트가 나머지 데이터 포인트와 크게 차이가 나는 이상
- Group anomaly : 데이터 포인트의 모음으로 나머지 데이터 포인트와 비교한 이상
- Local anomaly : 데이터 포인트 인근에서 발생한 이상
- Collective anomaly : 전체 데이터셋과 비교하여 이상이 있는 지점의 집합적 이상 (그룹 내에 인스턴스는 이상치가 아닐 수 있지만, 이상 지역에 존재하기때문에 이상치로 간주될 수 있음)

이상 탐지 응용 분야

- 침입 탐지 컴퓨터나 네트워크 시스템의 비정상적인 활동
- 고장 진단(탐지) 기계 장치의 결함
- 의료 환자의 특이한 건강 상태
- 사기 탐지 신용카드 거래 또는 보험 청구와 관련된 사기
- 텍스트로부터 신규성 탐지 새로운 텍스트, 뉴스 또는 문서의 집합

평가 지표

- Precision at n (P@n) $P@n = \frac{\{|a \in A|rank(a) \le n|\}}{n}$
- Average precision $AP = \frac{1}{n} \sum_{a \in \mathcal{A}} P@rank(a)$
- ROC AUC

이상 탐지 알고리즘 범주

- 7개 범주, 52개 알고리즘
 - 통계
 - 밀도
 - 거리
 - 클러스터
 - 격리
 - 앙상블
 - 서브스페이스

Table 4 Anomaly detection algorithms

Category	Anomaly detection algorithm
Anomaly detection algorithms based on statistic model	Grabbs'test, Dixon test, Rosner's test, Student's t -test, Hostelling t^2 -test, χ^2 -statistics test, box plots, HBOS
Anomaly detection algorithms based on density	LOF, COF, LoOP, LOCI, RDF, INFLO, ROF, FastLOF, DWOF, SimplifiedLOF, LiNearN, GLOSH, SPAD, SPAD+
Anomaly detection algorithms based on distance	<i>k</i> -NN, <i>k</i> th-NN, RBRP, ABOD, GPA, LDOF, Sp, AntiHub
Anomaly detection algorithms based on clustering	OFP, FindOut, FindCBLOF, CBOD
Anomaly detection algorithms based on isolation	iForest, SciForest, HS-Tree, ReMass-iForest, iNNE, LeSiNN, LSHiForest, usfAD
Anomaly detection algorithms based on ensemble	LODA, DCSO, LSCP
Anomaly detection algorithms based on subspace	SOD, LSOF, HighDOD, COP, HiCS, CMI, Zero++

통계 기반

- 저확률 구간을 이상치로 간주
- 장점
 - 히스토그램 기반 방법은 다른 이상 탐지 알고리즘에 비해 매우 단순하고 직관적
- 단점
 - 대부분의 방법은 단변량 데이터에만 적용 -> 다차원 데이터 셋을 처리 할 때 계산 비용 매우 높음
 - 히스토그램 기반 방법은 다중 특징에 의존하는 이상을 포착하지 못함
 - 커널 기반 방법은 계산 비용이 매우 높고 매개변수에 민감

통계 기반

 Table 5
 Analysis of different statistic tests

Name	Function equation	Analysis
Could be a sect [4]	$G = \frac{\max_{i=1,\dots,n} x_i - \bar{\mathcal{X}} }{s}$	Also known as maximum normalized residual test
Grubbs's test [4]	$G \equiv \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
		• G greater than critical value is considered as an anomaly
		• Easy to implement
		• For univariate data set only
		• One anomaly at a time
		\bullet Where $\bar{\mathcal{X}}$ and s are sample mean and standard deviation, respectively
Dixon test [31]	$Q = \frac{x_n - x_{n-1}}{x_n - x_1}$	• Assume—only one outlier is present
		• Simple to implement
		Applicable only on small datasets
		• First need to arrange data in ascending order and then compute the Dixon test on data
Rosner's test [21]	$R_{i+1} = \frac{ x_i - \bar{\mathcal{X}} }{s}$	$ullet$ where $\bar{\mathcal{X}}$ and s are as defined above
	-	• The data follow a normal distribution and the anomalies are employed from a different distribution
		• This test is good for larger data sets
		• Not simple as Dixon test
		• Must have knowledge of number of anomalies
Student's <i>t</i> -test [23,24]	$t = \frac{Z}{\sigma} = \frac{\bar{\mathcal{X}} - \mu}{\frac{\hat{\sigma}}{\sqrt{n}}}$	• Where $\bar{\mathcal{X}}$ is as defined above, μ and $\hat{\sigma}$ are mean and standard deviation of population, respectively and n is total number of samples
		 Normal samples are compared to test instance
Hostelling t^2 -test [22]	$T^2 = n(\bar{\mathcal{X}} - \mu)'S^{-1}(\bar{\mathcal{X}} - \mu)$	• Where $\bar{\mathcal{X}}$, n and μ are as defined above. S is a covariance matrix
χ^2 -statistics [26]	$\chi^2 = \sum_{i=1}^n \frac{(x_i - \mu)^2}{\mu}$	$ullet$ μ is defined as above
		• Assumption—normal data has a multidimensional normal distribution
		• Data point with higher χ^2 value is considered as an anomaly

밀도 기반

- 주변 밀도 대비 낮은 포인트 탐지
- 장점
 - 매우 직관적 -> 널리 사용됨
 - 통계 및 거리 기반 알고리즘 보다 성능 우수
- 단점
 - 쌍별 거리를 계산 -> 계산 비용 높음
 - 대규모 및 고차원 데이터셋에는 적합하지 않음
 - 가장 가까운 이웃의 크기(k)와 같은 매개변수에 민감

밀도 기반

Table 6 Time complexity of anomaly detection algorithms based on density

	Time complexity		
Methods	Training stage	Testing stage	
LOF	_	$O(n^2d)$	
COF	_	$O(n^2d)$	
LoOP	_	$O(n^2d)$	
LOCI	_	$O(n^3)$	
RDF	_	$O(n^2d)$	
INFLO	_	$O(n^2d)$	
ROF	_	$O(n^2d)$	
FastLOF	_	$O(n^2d)$	
SimplifiedLOF	_	$O(n^2d)$	
LiNearN	$O(t(\psi + \Psi)\psi d))$	$O(nt\psi d)$	
SPAD	_	O(nd)	
SPAD+	$O(nth + t\psi d)$	O(t(h+d))	

거리 기반

- 최근접 이웃까지 거리로 이상치 측정
- 장점
 - 구현이 쉽고 직관적
 - 데이터 분포에 독립적
 - 인덱싱 구조 사용 하면 시간 복잡도 O(n log(n))
- 단점
 - 일반적으로 높은 시간 복잡도
 - 인덱싱 방안은 고차원 데이터 세트에서 작동 불가

거리 기반

Table 7 Time complexity of anomaly detection algorithms based on distance. #*m* is total number of cells

Methods	Time complexity
kNN	$O(n^2d)$
kth-NN	$O(n^2d)$
RBRP	$O(n^2d)$
ABOD	$O(n^3d)$
FastABOD	$O(n^2 + nk^2)$
GPA	$O(kn^2 + m)$
LDOF	$O(n^2d)$
Sp	$O(nd\psi)$
AntiHub	$O(n^2d)$

클러스터 기반

- 클러스터에 속하지 않거나 작은 클러스터
- 장점
 - 비지도 학습 환경에서 쉽게 적용가능
 - 클러스터링 알고리즘을 단순히 교체 가능 -> 복잡하고 다양한 데이터 유형과 호환
- 단점
 - 성능이 클러스터링 알고리즘에 크게 의존
 - 높은 시간 복잡도
 - 매개변수에 민감
 - 이진 점수를 사용 -> 강한 이상, 약한 이상 구분 불가

클러스터 기반

Table 8 Time complexity of anomaly detection algorithms based on clustering

	OFP	FindOut	FindCBLOF	CBOD
Time complexity	$O(n^2d)$	$O(Tdn\log_2(n))$	$O(n^2d)$	$O(n^2d)$

격리 기반

- 무작위 분할로 포인트 격리 길이 활용
- 장점
 - 상대적으로 낮은 시간 복잡도와 높은 정확도
 - 높은 확장성
 - 글로벌 및 로컬 이상값이 있는 데이터에 적합
 - SCiForest는 iForest, LOF와 같은 다른 방법보다 로컬 및 글로벌 클러스 터링 이상값 탐지에 높은 정확도
- 다점
 - 트리 기반 방법은 로컬 이상에 부적합
 - HS-Tree는 스트리밍 데이터에만 적용 가능
 - iForest의 추가 단점 존재

격리 기반

Table 9 Time complexity of different anomaly detection algorithms based on isolation

Methods	Time complexity Training stage	Testing stage
iForest	$O(t\psi\log(\psi))$	$O(nt\log(\psi))$
SCiForest	$O((t\tau\psi(q\psi+\log(\psi)+\psi))$	$O(qnt\psi)$
HS-Tree	_	$O(t(h+\psi))$
ReMass-iForest	$O(t\psi\log(\psi))$	$O(nt\log(\psi))$
iNNE	$O(t\psi^2 d)$	$O(ntd\psi)$
LeSiNN	$O(\psi td)$	$O(n\psi td)$
LSHiForest	$O(t\psi \log(\psi)d)$	$O(nt\log(\psi)d)$
usfAD	$O(nth + t\psi d)$	O(t(h+d))

앙상블 기반

- 다양한 탐지기의 오류 다양성 결합
- 장점
 - 일반적으로 매우 안정적이며 우수한 성능 발휘
 - 이상치 분석에 유용
- 단점
 - 개발된 방법이 매우 적음
 - 상대적으로 높은 시간 복잡도

앙상블 기반

Table 10 Time complexity of anomaly detection algorithms based on ensemble

Methods	LODA	DSCO	LSCP
Time complexity	$O(nkd^{-\frac{1}{2}})$	$O(nd + n\log(n))$	$O(nd + n\log(n))$

서브스페이스 기반

- 일부 특성 하위공간에서만 드러나는 이상 탐지
- 장점
 - 숨겨진 이상 현상을 탐지하는데 우수
- 단점
 - 높은 시간 복잡도
 - Zero++는 범주형 데이터 세트에만 적용 가능
 - 관련 없는 속성에 민감

서브스페이스 기반

Table 11 Time complexity of anomaly detection algorithms based on subspace

Methods	Time complexity
SOD	$O(n^3d)$
LSOF	$O(n^2d)$
HighDOD	O((x+n)Ndim(S))
COP	$O(n^2d^3)$
HiCS	$O(n^2d)$
CMI	$O(n^2d)$
Zero++	O(ntq + dtq)

종합 통찰

Table 12 Comparison of different anomaly detection algorithms

Category	Methods	Equation	Time Complexity	Scalability
		$\sum lrd(y)$		
Based on density	LOF	$LOF(x) = \frac{\sum\limits_{y \in N^k(x)} lrd(y)}{ N^k(x) \times lrd(x)}$	High	×
	COF	$COF(x) = \frac{ N_k(x) \cdot dist_{N_k(x)}(x)}{\sum_{y \in N_k(x)} \cdot dist_{N_k(y)}(y)}$	High	×
	LoOP	$LoOP(x) = \max \left\{ 0, \operatorname{erf}\left(\frac{PLOF_{\lambda, S}(x)}{nPLOF \cdot \sqrt{2}}\right) \right\}$	High	×
	LOCI	$\text{MDEF}(x_i, r, \alpha) = 1 - \frac{n(x_i, \alpha r)}{\hat{n}(x_i, r, \alpha)}$	High	×
	RDF	$RDF(x, r) = \frac{DF_{nbr}(N_k(x), r)}{DF(N_k(x), r)}$	High	×
	INFLO	$INFLO_k(x) = \frac{\sum\limits_{y \in IS_k(x)} den(y)}{ IS_k(x) \cdot den(x)}$	High	×
	ROF	$ROF(x) = \sum_{i=1}^{R} \frac{ClusterSize(x, r_{i-1}) - 1}{ClusterSize(x, r_{i})}$	High	×
	LiNearN	_	Low	✓
	SPAD	$SPAD(x) = \sum_{i=1}^{d} \log \frac{ H_i(x) +1}{n+b}$	Low	✓
	SPAD+	SPAD+(x) = $\sum_{i=1}^{d} \log \frac{ H_i(x) +1}{n+b} + \sum_{i=1}^{d} \log \frac{ H_j(x') +1}{n+b}$	Low	✓
Based on distance	kNN	$k-NN = \sum_{y \in kNN(x)} dist(x, y)$	High	×
	kth-NN	k th-NN $(x) := dist_k(x; X)$	High	×
	RBRP	-	High	×
	ABOD	_	High	×
	FastABOD	-	High	×
	GPA	_	High	×

Table 12 continued

Category	Methods	Equation	Time Complexity	Scalability
	LDOF	$LDOF(x) = \frac{\bar{d}_x}{\bar{D}_x}$	High	×
	Sp	$Sp(x) = \min_{y \in \mathcal{S}} dist(x, y)$	Low	✓
	AntiHub	-	High	×
Based on clustering	OFP	_	High	×
	FindOut	_	Low	✓
	FindCBLOF	_	High	×
	CBOD	_	High	×
Based on isolation	iForest	$iForest(x) = \frac{1}{t} \sum_{i=1}^{t} l_i(x)$	Low	✓
	SCiForest	$SCiForest(x) = \frac{1}{t} \sum_{i=1}^{t} l_i(x)$	Low	✓
	HS-Tree	$HS-Tree(x) = \frac{1}{t} \sum_{i=1}^{t} m_i(x)$	Low	✓
	ReMass-iForest	ReMass-iForest(x) = $\frac{1}{t} \sum_{i=1}^{t} s_i(x)$	Low	✓
	iNNE	$iNNE(x) = \frac{1}{t} \sum_{i=1}^{t} I_i(x)$	Low	✓
	LeSiNN	$LeSiNN(x) = \frac{1}{t} \sum_{i=1}^{t} \min_{y \in S} dist(x, y)$	Low	✓
	LSHiForest	-	Low	✓
	usfAD	$usfAD(x) = \frac{1}{t} \sum_{i=1}^{t} l_i(x)$	Low	✓

Table 12 continued

Category	Methods	Equation	Time Complexity	Scalability
Based on ensemble	LODA	-	Low	✓
	DSCO	_	Low	\checkmark
	LSCP	-	Low	✓
Based on subspace	SOD	$SOD_{R(x)}(x) = \frac{dist(y, \mathcal{H}(R(x)))}{\ v^{R(x)}\ _{1}}$	High	×
_	LSOF	$LSOF(x) = \frac{1}{ N_{minPts(x)} } \sum_{y \in N_{minPts}(x)} \frac{lsrd(y)}{lsrd(x)}$	High	×
	COP	$COP(x, \psi) = norm(1 - \cos(x), \psi)$	High	×
	CMI	CMI(x) = $-\sum_{i=1}^{n-1} (x_{i+1} - x_i) \frac{i}{n} \log \frac{i}{n}$	High	×
	Zero++	Zero $(x, \mathcal{D} S) = \sum_{i=1}^{\psi} \sum_{S \in \mathcal{S}} I(P_S(x \mathcal{D}) = 0)$	Low	✓

종합 통찰

- •성능 속도
 - Isolation Forest 계열이 가장 빠르고 확장성이 높음
 - SCiForest는 국소/군집 이상치까지 검출력을 개선
- 데이터 특성 별 추천
 - 대규모/고차원: Isolation Forest, LSHiForest
 - 국소 밀집 이상: SCiForest, ReMass-iForest, 밀도 기반(LOCI 등)
 - 해석 가능성 중시: 통계/클러스터/서브스페이스 기반(box-plot, COP 등)