Résumé de probabilités

1)Vocabulaire des probabilités

Dans une <u>expérience aléatoire</u> on ne peut pas prévoir avec certitude quel en sera le résultat

On associe alors l'ensemble Ω des résultats possibles appelé <u>univers</u>. Ses éléments sont appelés <u>éventualités</u>.

Le nombre d'éléments distincts de Ω est appelé le <u>cardinal</u> de Ω , on le note : Card(Ω)

3)Un <u>évènement</u> correspond à une partie de l'univers et les événements formés d'un seul élément sont appelés événements élémentaires.

a)Si A et B sont deux événements, \overline{A} est l'événement contraire de A, AUB est la réunion de A et B, A \cap B est l'intersection de A et B.

b)A et B sont incompatibles ssi $A \cap B = \emptyset$.

c)L'événement $G = \Omega$ est l'événement certain.

d) L'événement M = Ø est l'événement impossible

et on a : $A \cap \overline{A} = \emptyset$ et $A \cup \overline{A} = \Omega$.

2) La probabilité d'un événement

1)Une situation équiprobable est une expérience où toutes les éventualités ont la même probabilité d'être réalisées et si A est un évènement alors ;

$$P(A) = \frac{nombre \ de \ cas \ favorables}{nombre \ de \ cas \ possibles}$$

2) La probabilité d'un événement est la somme des probabilités des événements élémentaires qui le constituent.

3) La probabilité P(A) d'un événement A est telle :

$$0 \le P(A) \le 1$$
 et $P(\Omega)=1$ et $P(\emptyset)=0$

4)
$$p(\overline{A}) = 1 - p(A)$$

5)Si deux événements A et B sont incompatibles alors $P(A \cup B) = P(A) + P(B)$.

6)Si A et B sont deux événements d'une expérience aléatoire, alors : $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(B \setminus A) = P(B) - P(A)$.

3)Probabilité conditionnelle

si A un événement de probabilité non nulle

La probabilité de B sachant A est : $P_A(B) = \frac{P(A \cap B)}{P(A)}$

Si A et B sont tous deux de probabilité non nulle, alors les probabilités conditionnelles

p(A/B) et p(B/A) sont toutes les deux définies et on a :

$$P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$$

4)Événements indépendants

Deux événements A et B de probabilité non nulle sont indépendants si et seulement si ils vérifient une des trois conditions : $P_R(A) = P(A)$ ou $P_A(B) = P(B)$

PROF: ATMANI NAJIB

ou
$$p(A \cap B) = p(A) \times p(B)$$

5) Variables aléatoires et Loi de probabilité

Soit un univers de probabilité fini

 $U=\{w_1,\,w_2,\,...,\,w_n\}\;(n\geq 1)\;\text{sur lequel est défini une}$ probabilité p et Soit X une fonction qui à chaque élément w_i de U associe un nombre réel x_i

On dit que X est une variable aléatoire (réelle) qui prend r valeurs avec $r \le n$

Pour tout x_i avec $1 \le i \le r$ on pose : $p(x_i) = p(X = x_i)$

(Cas de U favorables pour x_i)

et on définit ainsi une loi de probabilité que l'on consigne en général dans un tableau.

valeurs possibles de $X : x_i$	x_1	x_2	 x_r	total
probabilités : $p_i = p(X = x_i)$	p_1	p_2	 p_r	1

Pour une la variable aléatoire X on peut calculer :

1) l'espérance de X donnée par : $E(X) = \sum_{i=1}^{4} x_i p(X = x_i)$

2) la variance et l'écart type de X donnés par :

$$V(X) = \sum_{i=1}^{4} x_i p_i^2 - (E(X))^2$$
 et $\sigma(X) = \sqrt{V(X)}$

6)Indépendance d'épreuves et Répétition d'épreuves

On dira que des épreuves sont indépendantes dès lors que le résultat d'une épreuve ne dépend pas de celles qui l'ont précédée.

7)Épreuve de Bernoulli et Répétition d'épreuves et lois Binomiales

On appelle épreuve de Bernoulli : une épreuve n'ayant que deux issues : Succès (S) et Échec(E).

<u>On appelle schéma de Bernoulli :</u> la répétition n fois, de manière indépendante, une épreuve de Bernoulli.

<u>La loi binomiale</u>: La variable aléatoire X qui lie chaque résultat au nombre de fois que cet événement se réalise S'appelle une variable aléatoire binomiale de paramètres n et p, notée B(n;p).

Soit B(n; p) une loi Binomiale, la probabilité d'obtenir k succès $(0 \le k \le n)$ est donnée par :

$$p(X = k) = C_n^k p^k (1-p)^{n-k}, k \in \{0;1;..;n\}$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que

l'on devient un mathématicien

Prof/ATMANI NAJIB <u>1</u>