

## Department of Artificial Intelligence and Data Science

# Retail & E-Commerce — Inventory Stockout Prediction and Auto-Replenishment

**Dr.Suresh Kumar.S** 

Professor,

**Artificial intelligence and Data science** 

**GAURAV RAMASUBRAMANIAM-**

231801038

**HARISH TUTU YT-231801050** 

#### **Abstract**

☐ This project focuses on building an **Inventory Analytics system** that transforms raw transactional data into actionable insights through a **multi-layered data pipeline**. Using PySpark, the system processes data into bronze, silver, and gold layers, enabling KPIs such as average daily demand, demand-to-stock ratio, and lead time analytics. The platform supports dashboards for inventory optimization, helping warehouses improve stock management and replenishment efficiency.

## **Literature Survey**

- □ Traditional inventory systems rely on static reporting and often fail to predict stockouts.
  □ Modern analytics leverage **Big Data frameworks** (like Apache Spark) for **real-time processing** and **predictive insights**.
  □ KPI-driven dashboards help decision-makers visualize trends and optimize inventory replenishment.
- $\Box$  Our project builds upon layered ETL concepts (Bronze  $\rightarrow$  Silver  $\rightarrow$  Gold) to ensure data quality and usability.

## **Architecture Diagram**



#### **Modules**

**Data Ingestion Module:** Reads transactional data from CSV/Delta. Data Cleaning & Transformation Module: Handles nulls, type conversions, and aggregates features. **KPI Calculation Module:** Computes metrics like avg demand to stock ratio, avg lead time days, and transaction counts. **Dashboard Module:** Generates visualizations for warehouse-level insights. Access & Security Module: Implements table permissions and ensures data sharing.

## **Implementation**

- ☐ **Framework:** Apache Spark with PySpark APIs.
- ☐ Layers:
  - . Bronze: Raw ingestion.
  - . Silver: Cleansing and type conversion.
  - . Gold: Aggregation and KPI computation.
- **KPI Computation Examples:** 
  - . Avg daily demand per warehouse
  - . Avg on-hand quantity per SKU
  - · Avg demand-to-stock ratio
- □ **Dashboards:** Configured in Databricks for heatmaps, area charts, and KPI visualizations.

### **Results**

- . KPIs generated provide clear warehouse and SKU-level insights.
- . Visualizations include:
  - Heatmaps for demand-to-stock ratio.
  - Area charts for daily demand vs. stock.
  - Bar charts for warehouse lead time comparisons.
- Gold layer ensures all metrics are reliable and ready for business decision-making.
- Performance metrics show the pipeline handles large datasets efficiently  $(\sim 500,000 + \text{rows})$ .

### **Conclusion**

- ☐ The project successfully implements a multi-layered inventory analytics pipeline.
- ☐ Clean, aggregated data in the gold layer enables accurate **KPIs** and effective
- visualization.
- □ **Dashboards** allow actionable decision-making for warehouse stock optimization.
- ☐ **Future work:** Incorporating predictive analytics, automatic reorder suggestions,

and supplier performance scoring.

#### **References**

- □ Databricks, *Delta Lake Guide*, <a href="https://docs.databricks.com/delta/index.html">https://docs.databricks.com/delta/index.html</a>
- ☐ Apache Spark Documentation, https://spark.apache.org/docs/latest/
- ☐ "Big Data Analytics for Inventory Management," International Journal of

Advanced Research in Computer Science, 2022

- ☐ Kimball, R., *The Data Warehouse Toolkit*, Wiley, 2013
- ☐ Tableau/Power BI Dashboard Best Practices, 2023

## **Thank You**