Inner Product Spaces, Orthogonality, Projection

Exercises

- 1. Let X and Y be normed linear spaces. Let $\{x_1,...,x_n\}$ be a basis for X and $\{y_1,...,y_m\}$ a basis for Y. Prove that if $x_i \perp y_j$ for all $i \in \{1,...,n\}$, $j \in \{1,...,m\}$, then X and Y are orthogonal spaces.
- 2. Prove: If a vector $\boldsymbol{\alpha}$ is in the null space of a set of vectors $\{\boldsymbol{x}_1,...,\boldsymbol{x}_n\}$, then it is orthogonal to the space spanned by $\{\boldsymbol{y}_1,...,\boldsymbol{y}_m\}$ where

$$y_i = \{x_{1i}, ..., x_{ni}\}$$

3. Donald Trump tweeted 100 times in April, 150 times in May, and 110 times in June. Let $\boldsymbol{b} = (100, 150, 110)$ represent the number of tweets in each month. Project \boldsymbol{b} onto the linear space spanned by $\boldsymbol{a} = (1, 1, 1)$. Interpret your result.

 $^{^{1}\}mathrm{Disclaimer:}\,$ these data are of suspect quality.