Computabilità 9 febbraio 2021

Esercizio 1

Può esistere una funzione $f: \mathbb{N} \to \mathbb{N}$ totale non calcolabile tale che la funzione $g(x) = \prod_{y < x} f(y)$ sia calcolabile? Motivare le risposta fornendo un esempio di tale funzione oppure dimostrando che non esiste.

Soluzione: Si consideri la funzione caratteristica di K, ovvero $\chi_K : \mathbb{N} \to \mathbb{N}$,

$$\chi_K(x) = \begin{cases} 1 & \text{se } x \in K \\ 0 & \text{altrimenti} \end{cases}$$

che è totale e non calcolabile. Sia $x_0 = \min\{x \mid \chi_K(x) = 0\} = \min\{x \mid x \in \bar{K}\}$. Si osservi che x_0 è ben definito, dato che $\bar{K} \neq \emptyset$.

A questo punto se $g(x) = \prod_{y < x} f(y)$ è facile vedere che g è calcolabile, dato che

$$g(x) = \begin{cases} 1 & \text{se } x < x_0 \\ 0 & \text{altrimenti} \end{cases} = sg(x_0 \div x)$$

Esercizio 2

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid |W_x \cap E_x| = 2\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Si osserva che A è saturato, dato che $A = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \mid |dom(f) \cap cod(f)| = 2\}$.

Quindi per Rice-Shapiro si conclude che A e \bar{A} sono non r.e., e quindi non sono neppure ricorsivi. In dettaglio:

• A non r.e.

Indicato con id la funzione identità, vale che $id \notin \mathcal{A}$, dato che $dom(id) \cap cod(id) = \mathbb{N}$ non ha cardinalità 2. Inoltre la funzione

$$\theta(x) = \begin{cases} x & \text{se } x \leq 1 \\ \uparrow & \text{altrimenti} \end{cases}$$

è finita, $\theta \subseteq id$ e inoltre $dom(\theta) = cod(\theta) = \{0,1\}$ quindi $|dom(\theta) \cap cod(\theta) = |\{0,1\}| = 2$ e pertanto $\theta \in \mathcal{A}$. Quindi per Rice-Shapiro si conclude che A non è r.e.

• \bar{A} non r.e.

Si osserva che, se θ è la funzione del punto precedente, $\theta \notin \overline{\mathcal{A}}$, e la funzione sempre indefinita \emptyset soddisfa \emptyset] $\subseteq \theta$ e $|dom(\emptyset) \cap cod(\emptyset)| = |\emptyset| = 0$, quindi $\emptyset \in \overline{\mathcal{A}}$. Quindi per Rice-Shapiro si conclude che \overline{A} non è r.e.

Esercizio 3

Studiare la ricorsività dell'insieme $B=\{x\in\mathbb{N}\mid 3x\in E_x\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme B non è ricorsivo dato che $K \leq_m B$. Per mostrarlo si può considerare la funzione g(x,y)=y se $x\in K$ e indefinita altrimenti. Tale funzione è calcolabile, dato che $g(x,y)=sc_k(x)\cdot y$. Quindi per il teorema smn, esiste una funzione calcolabile totale $s:\mathbb{N}\to\mathbb{N}$ tale che $\varphi_{s(x)}(y)=g(x,y)$ per ogni $x,y\in\mathbb{N}$. Si vede dunque che s è funzione di riduzione di K a B. Infatti

- Se $x \in K$ allora $g(x,y) = \varphi_{s(x)}(y) = y$ per ogni $y \in \mathbb{N}$. Quindi $E_{s(x)} = \mathbb{N}$ e pertanto certamente $3 * s(x) \in E_{s(x)}$. Quindi $s(x) \in B$.
- Se $x \notin K$ allora $g(x,y) = \varphi_{s(x)}(y) \uparrow$ per ogni $y \in \mathbb{N}$. Quindi $E_{s(x)} = \emptyset$ e pertanto certamente $3 * s(x) \notin E_{s(x)}$. Quindi $s(x) \notin B$.

L'insieme B è r.e., infatti la sua funzione semi-caratteristica

$$sc_B(x) = \mathbf{1}(\mu w.(S(x,(w)_1,3x,(w)_2))),$$

è calcolabile.

Dato che B è r.e., ma non ricorsivo, il suo complementare \bar{B} non r.e. (altrimenti entrambi sarebbero ricorsivi), e quindi \bar{B} non è neppure ricorsivo.