SMAI-M20-L23: SVMs and Kernels

C. V. Jawahar

IIIT Hyderabad

October 5, 2020

Announcements

- The number of students who watch and prepare for the sessions is low.
- A number of students are finding it hard to find time. Partly understandable in these times. But not fully acceptable.
- As we move forward, you could expect questions beyond MCQ. (in CR, Quiz, In class). Need to nurture the skill of solving problems on paper.
- Fine tuning the evaluation scheme.

Item	Orig.	Updated
Class Review (↑)	10	25
Home Works (↓)	40	30
Quiz	25	25
Assignments (↓) Prob-	25	20
lem Solving (+)		

Class Review

We know the kernel $\kappa()$ and the feature map $\phi()$. Let us start with samples in 2D and

- Understand how $\phi()$ and $\kappa()$ are related in many specific cases.
- Is it unique?

$$K(P,9) = \varphi(p)^{T} \varphi(e)$$

Recap:

- Supervised Learning: Formulation, Conceptual Issues, Concerns etc.
- Classifiers: (i) Nearest Neighbour, (ii) Notion of a Linear Classifier (iii) Perceptrons (iv) Bayesian Optimal Classifier (v) Logistic Regression (vi) Multiclass classification architectures (v) SVMs
- Dimensionality Reduction and Applications: (i) Feature Selection and Extraction (ii) PCA (iii) LDA (iv) Eigen face
- Matrix Factorization and Applications: (i) SVD, (ii) Eigen
 Decomposition (iii) Matrix Completion (iv) LSI (v) Recommendations
- Other Topics:
 - Linear Regression
 - Probabilistic View, Bayesian View, MLE
 - Gradient Descent: Stochastic and Batch GD
 - Loss Functions and Optimization
 - Eigen Vector based optimization
 - Neuron model, Single Layer Perceptrons
 - Kernel Functions and Kernel Matrix

This Lecture:

- Soft Margin SVMs
 - SVM as a classifier that maximizes the margin.
 - How do we make the constraints "soft".
- Decision Tree Classifier
 - Popular. Simple. Interpretable.
 - Recursive Design. Node test.
- Kernel Perceptron
 - Illustrative: Kernalizing a linear algorithm.

Questions? Comments?

Discussions Point - I

Consider there are 100 samples in 6 dimensions (i.e., N=100 and d=6) and a binary classification (50 each in class + and class -) (i.e., (50+,50-) If we use ith (1 to 6) feature based the node-test at the root, the two subsets formed are as

- * A (25+,25-) and (25+,25-)
 - B (45+,35-) and (5+,15-)
 - C (25+,2-) and (25+,48-)
- D (40+,10-) and (10+,40-)
- E (0+,50-) and (50+,0-)
 - \checkmark F (0+,0-) and (50+,50-)
 - What do you prefer as the node-test? (list the options in the decreasing order of your preference)
- "When d = 6, there can be only six possible splits" True or False?
 - Open your decision of node test "guarantee" that this is the best

F 0+56-

Information Gain

In decision tree 1 design, a popular way to do this is by estimating the information gain^{2}

Basic Idea: "Estimate the entropy of the parent set. Estimate the entropy of the children sets (with different attributes) and select the best that removes most uncertainty."

¹https://en.wikipedia.org/wiki/Decision_tree_learning

²https://en.wikipedia.org/wiki/Information_g ain_in_d ecision_t rees

Discussion Point - II

We know the softmargin SVM problem as

subject to:

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \ \forall i$$

$$\xi_i \ge 0$$

- Why $(\xi_i \ge 0?)$ required in the constraint? Why ξ_i in the objective?
- "If a specific problem has a hard margin possible, ξ_i will all be zero"? True or False?
- If C is very small (say C = 0), what does it mean? what do you expect to see in the final solution?
- If C is very large (say $+\infty$), what does it mean? what do you expect to see in the final solution?
- How do we choose C?

	Lin Ab	(es.	Sum, Percer)
exbres 11	Kernel			_
	= K-	ML		

Discussions Point -III

We know the perceptron classification as

$$sign(\sum_{i=1}^{N} \alpha_i \mathbf{x}_i^T \mathbf{x}))$$

and the kernel perceptron as

$$sign(\sum_{i=1}^{n} \alpha_i \kappa(\mathbf{x}_i, \mathbf{x}))$$

- Does the kernel perceptron yield a nonlinear boundary?
- Assume the samples were in 2D, how do we plot (or visualize the decision boundary)?

What Next:?

More on SVMs and Kernels