

House Price Prediction

Ankit Nigam

GCDAI – August Batch 2019

Dataset Information

https://github.com/insaid2018/Term-2/blob/master/Projects/houseprices.txt

Target variable

Meaning

			SalePr	ice		the p	ropert	y's sale p	orice in	dollars.		
Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood
1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	Inside	Gtl	CollgCr
2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	FR2	Gtl	Veenker

Handling missing values in dataset

Handling missing values in dataset

Handling missing values in dataset

Distribution of input features

Distribution of target data

Selecting continuous features for prediction

Selecting continuous features for prediction

Selecting categorical features for prediction

 There has to be linear relationship between input features and target variable

Target variable should be normally distributed

Independent features are not correlated - No multicollinearity

• The error term must have constant variance - Homoscedasticity

Comapring Models for Prediction

Linear R	egre	essior	1					
			Bias	Variance	MAE	MSE	RMSE	
	0	0.	006653	0.006653	0.102697	0.018963	0.137707	
Random Forest								
			Bias	Variance	MAE	MS	SE RI	MSE
	0	0.0	008144	0.008144	0.109968	0.02442	28 0.156	295
Decision	Tre	e						
			Bia	s Variance	e MAE	MSE	RMSE	
		0	0.00379	5 0.003795	0.135125	0.034486	0.185705	

Conclusion

Since errors along with Bias and Variance is low in Linear regression, so we will prefer Linear regression model

THANK YOU