Punch Out Model Synthesis

A Stochastic Algorithm for Constraint Based Tiling Generation

Zzyv Zzyzek November 19th, 2024

Punch Out Model Synthesis (*POMS*) A Constraint Based Tiling Generation (*CBTG*) algorithm:

- Works on large grids
- Minimal setup requirements
- Resiliance to contradiction

Definitions

- Grid composed of cells
- Each cell can hold D tiles
- Pairwise tile constraints in each dimension (±X,±Y,±Z)

Constraint Based Tiling Generation (CBTG) Problem

Find a valid grid realization

- A realization is a single tile placement at each cell respecting constraints.
- A contradiction if no tiles left at a cell location

Definitions

- A tile has support if there's a valid neighbor in each grid dimension direction
- A region is *Arc Consistent* if all *tiles* within the region are *supported*

Definitions

The basis for a *Constraint*Propagation algorithm can be made by removing *unsupported*tiles from a cell's domain

Definitions

- Block Level Solver: completely maintains Arc Consistency
- Grid Level Solver:
 only keep summary
 information for the entire
 grid but work on block
 sub-regions

Gumin's Wave Function Collapse (WFC)

WFC

Resolve, propagate

- One-shot
- Block Level
- Indeterminate initial condition
- Ergodic

Breakout Model Synthesis (BMS) from Hoetzlein's just_math

BMS

Resolve, propagate, revert

- Stochastic backtracking
- Block Level
- Indeterminate initial condition
- Ergodic

Merrell's Modify in Blocks Model Synthesis (MMS)

MMS

From resolved grid, solve block, incorporate

- Block step consistent
- Grid Level
- Requires bootstrap initial realization
- Non-ergodic

	WFC	BMS	MMS	POMS
Solver Type	Block	Block	Grid	Grid
Contradiction Resilience	No	Yes	Yes	Yes
Block Step Consistent	n/a	n/a	Yes	No
Indeterminate Initial State	Yes	Yes	No	Yes
Ergodic	Yes	Yes	No	Yes

Intuition

How much influence does a tile choice have over long distances?

Difficult to define and/or calculate

As a heuristic,

Tile Arc Consistent Correlation

Length (TACCL) from

Hoetzlein's just_math project

Tile Arc Consistent Correlation Length (TACCL)

TACCL

• Take block in isolation

Example

Tile Arc Consistent Correlation Length (TACCL)

TACCL

- Take block in isolation
- Set block to indeterminate state

Example

Tile Arc Consistent Correlation Length (TACCL)

TACCL

- Take block in isolation
- Set block to indeterminate state
- Fix a tile at the center

Tile Arc Consistent Correlation Length (TACCL)

TACCL

- Take block in isolation
- Set block to indeterminate state
- Fix a tile at the center
- Propagate constraints

Tile Arc Consistent Correlation Length (TACCL)

TACCL

- Take block in isolation
- Set block to indeterminate state
- Fix a tile at the center
- Propagate constraints
- Take minimum bounding box of altered cells

Example

Tile Arc Consistent Correlation Length (TACCL)

TACCL

- Take block in isolation
- Set block to indeterminate state
- Fix a tile at the center
- Propagate constraints
- Take minimum bounding box of altered cells
- Repeat for all tiles

Algorithm: Overview

Grid partially realized

Choose block

Pill Mortal Tile Set

ThKaspar's Forest Micro Tile Set

Erode Boundary

Erode Boundary

Results

Results

...

Conclusion

Conclusion

 $\verb|https://github.com/zzyzek/PunchOutModelSynthesis||$