Física Experimental Básica: Mecânica

Aula 2

Propagação de incertezas e Gráficos

Conteúdo da aula:

- Muitas vezes, teremos que determinar uma grandeza física de forma indireta. Isso será feito em duas etapas:
 - 1. Medimos uma ou mais grandezas relacionadas a ela.
 - 2. Calculamos a grandeza de interesse usando as medidas.

Exemplo: Para determinar o volume de um cilindro, medimos o seu diâmetro (d), sua altura (h) e, a seguir, calculamos $V = \pi (d/2)^2 h$.

- As incertezas das grandezas medidas produzirão uma incerteza no resultado da grandeza de interesse. Como a estimamos?
 - 1. Estimamos as incertezas das grandezas medidas.
 - 2. Determinamos como estas incertezas "se propagam".

Regra geral para funções de uma variável

 Considere que uma grandeza Y é uma função f arbitrária de uma grandeza X:

$$Y = f(X)$$
.

Suponha que a medição de X resulte em

$$x \pm \Delta x$$
.

Nesse caso, o valor y da grandeza Y será

$$y = f(x)$$
,

• A incerteza Δy é obtida pela seguinte regra:

$$\Delta y = \left| \frac{dy}{dx} \right| \Delta x = \sqrt{\left(\frac{dy}{dx} \Delta x \right)^2}.$$

Regra geral para funções de uma variável

- Como podemos entender essa regra? (argumentos não rigorosos).
- Do gráfico abaixo vemos que $\Delta y = y(x + \Delta x) y(x)$.

Considerando a incerteza Δx pequena, teremos (Cálculo I):

$$\Delta y = \frac{dy}{dx} \Delta x.$$

Como dy/dx pode ser negativo, usamos o módulo:

$$\Delta y = \left| \frac{dy}{dx} \right| \Delta x$$

Regra geral

Considere que uma grandeza Y é uma função f arbitrária de N outras grandezas X₁, X₂, ..., X_N:

$$Y = f(X_1, X_2, \dots, X_N).$$

Suponha que as medições de X₁, X₂, ..., X_N resultem em

$$x_1 \pm \Delta x_1, \quad x_2 \pm \Delta x_2, \quad \dots, \quad x_N \pm \Delta x_N.$$

Nesse caso, o valor y da grandeza Y será

$$y = f(x_1, x_2, ..., x_N).$$

• A incerteza Δy é obtida pela seguinte regra:

$$\Delta y = \sqrt{\left(\frac{\partial y}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial y}{\partial x_2} \Delta x_2\right)^2 + \dots + \left(\frac{\partial y}{\partial x_N} \Delta x_N\right)^2}.$$

Regra geral*

$$\Delta y = \sqrt{\left(\frac{\partial y}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial y}{\partial x_2} \Delta x_2\right)^2 + \dots + \left(\frac{\partial y}{\partial x_N} \Delta x_N\right)^2}.$$

- Esta regra é uma generalização da regra anterior.
- As incertezas Δx_i das grandezas medidas diretamente são ponderadas por $\partial y/\partial x_i$, que avaliam o quanto o resultado da medição varia com a mudança em cada x_i .
- Cada termo $(\partial y/\partial x_i)\Delta x_i$ quantifica a incerteza **parcial** em y devido apenas à incerteza Δx_i da medida correspondente.

Para o caso particular em que

$$y = ax_1^{p_1}x_2^{p_2}\cdots x_N^{p_N},$$

onde a é uma constante e os expoentes $p_1, p_2, ..., p_N$ são números conhecidos quaisquer, a incerteza Δy pode ser determinada por:

$$\Delta y = y \times \sqrt{\left(p_1 \frac{\Delta x_1}{x_1}\right)^2 + \left(p_2 \frac{\Delta x_2}{x_2}\right)^2 + \dots + \left(p_N \frac{\Delta x_N}{x_N}\right)^2}.$$

- Esta regra é deduzida da regra geral.
- Nesta equação, os termos $\Delta x_i/x_i$, ponderados pelos expoentes p_i , são as incertezas relativas.
- Em muitos experimentos do Laboratório de Mecânica poderemos calcular a incerteza dessa maneira.

Exemplo: As dimensões de um cilindro foram medidas com uma régua graduada em milímetros:

$$d = (21,35 \pm 0,05) \times 10^{-2} \text{m};$$

$$h = (28,50 \pm 0,05) \times 10^{-2} \text{m}.$$

Determine o volume deste cilindro e sua respectiva incerteza.

• Sabendo que $V = \pi h \left(\frac{d}{2}\right)^2$, teremos

$$V = 1,02031 \times 10^{-2} \text{ m}^3.$$

 Observação: o número de algarismos significativos desse resultado será determinado pelo valor da incerteza.

• Como $V = \pi h \left(\frac{d}{2}\right)^2$, a incerteza pode ser calculada por qualquer das duas equações vistas anteriormente:

$$\Delta V = \sqrt{\left(\frac{\partial V}{\partial d}\Delta d\right)^2 + \left(\frac{\partial V}{\partial h}\Delta h\right)^2} = \sqrt{\left(\frac{\pi h d}{2}\Delta d\right)^2 + \left(\frac{\pi d^2}{4}\Delta h\right)^2}$$
OU

$$\Delta V = V \times \sqrt{\left(\frac{2\Delta d}{d}\right)^2 + \left(\frac{\Delta h}{h}\right)^2}$$

Em ambos casos obtemos:

$$\Delta V = 5 \times 10^{-5} \text{ m}^3.$$

- Lembre-se que a incerteza deve ser fornecida com um (ou, no máximo, dois) algarismo(s) significativo(s).
- Com o valor de $V = 1,02031 \times 10^{-2} \text{ m}^3$, podemos expressar corretamente o resultado final como:

$$V = (1020 \pm 5) \times 10^{-5} \,\mathrm{m}^3$$
.

→ Para uma introdução mais detalhada ao tópico "Análise de Incertezas", consulte nosso material de apoio em https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-mecanica/

Fornecida uma tabela com dados de duas grandezas físicas que se relacionam, a construção de um gráfico nos auxilia a:

- Visualizar de forma direta e rápida a relação entre as grandezas.
- Interpretar o fenômeno físico.
- Obter informação quantitativa a partir da análise gráfica.

Exemplo: dados de tensão (*V*) e corrente (*I*) para aferição da resistência (*R*) elétrica de um elemento resistivo ôhmico.

Tensão (± 0 , 1 V)	Corrente (± 0 , 001 A)
1,0	0,052
2,0	0,098
3,0	0,151
4,0	0,195
5,0	0,244

Essas grandezas são relacionadas por

$$V = RI$$
.

Vamos construir o gráfico VxI, o que significa que os dados de V serão colocados na coluna Y (eixo y) e os dados de I na coluna X (eixo x) do

programa gráfico.

Tensão (± 0 , 1 V)	Corrente $(\pm 0,001~{ m A})$
1,0	0,052
2,0	0,098
3,0	0,151
4,0	0,195
5,0	0,244

Atenção! Aqui estamos usando o SciDavis.

Table 1			
	[1[X]	½ 2[Y]	^
1	0,052	1	
2	0,098	2	
3	0,151	3	
4	0,195	4	
5	0,244	5	
6			
7			
8			
9			
10			٧

Com o gráfico podemos visualizar a relação entre tensão e corrente.

Para gráficos com poucos pontos usamos símbolos para identificá-los

As informações em destaque (principalmente as dos eixos *x* e *y*) são essenciais para se entender e interpretar um gráfico.

- Ajustar uma curva a um conjunto de dados experimentais é determinar a função y(x) que melhor representa a tendência geral desses dados.
- Através do ajuste obtemos informações quantitativas do fenômeno físico em estudo, determinando os **parâmetros da curva** y(x) que mais se aproxima dos pontos experimentais.

Exemplos:

Lab. Mecânica

- Ajustes polinomiais:
 - Linear: $y = a_1x + a_0$ → parâmetros (a_1, a_0) ;
 - O Quadrático: $y = a_2x^2 + a_1x + a_0 \rightarrow \text{parâmetros}(a_2, a_1, a_0);$
 - o Grau *n*: $y = a_n x^n + \dots + a_1 x + a_0$ → parâmetros (a_n, \dots, a_1, a_0) .
- Ajuste exponencial: $y = a_0 e^{-a_1 x} \rightarrow \text{parâmetros}(a_1, a_0)$
- Etc.

Suponha que em um experimento foram medidos valores de duas grandezas físicas X e Y que se relacionam linearmente, i.e., Y = CX.

Y	X
0,34	0,16
0,6	0,36
1,2	0,51
1,54	0,76
1,98	0,98

- Há infinitas retas que representam o comportamento dos pontos.
- Como determinar a reta y = Ax + B que melhor se ajusta a estes pontos?

Método dos mínimos quadrados

• Minimiza a discrepância entre os dados (x_i, y_i) e os pontos da curva obtida $(x_i, Ax_i + B)$, através da minimização da <u>soma dos quadrados das</u> <u>distâncias entre estes pontos</u>:

$$\delta = \sum_{i=1}^{m} (y_i - Ax_i - B)^2$$

• Para determinar os parâmetros A e B, fazemos

$$\frac{\partial \delta}{\partial A} = -2 \sum_{i=1}^{m} (y_i - Ax_i - B)x_i = 0,$$

$$\frac{\partial \delta}{\partial B} = -2 \sum_{i=1}^{m} (y_i - Ax_i - B) = 0,$$

e resolvemos o sistema de equações gerado. As incertezas de A e B também podem ser obtidas aplicando-se a propagação.

 Para um ajuste polinomial de ordem n, o método é generalizado e produz um sistema de n+1 equações.

Suponha que em um experimento foram medidos valores de duas grandezas físicas X e Y que se relacionam linearmente, i.e., Y = CX.

Υ	X
0,34	0,16
0,6	0,36
1,2	0,51
1,54	0,76
1,98	0,98

• **Exercício**: usando os dados da tabela, resolva o sistema de equações do slide anterior e obtenha os parâmetros A e B.

Voltando ao exemplo inicial:

Como obter o valor da resistência a partir da análise do gráfico Vx/?

Sabemos que *V* varia linearmente com *I* (*V=RI*).

Corrente $(\pm 0,001~{ m A})$
0,052
0,098
0,151
0,195
0,244

Neste caso, um ajuste linear (regressão linear) determinará a equação da reta que melhor se ajusta aos dados.

- O ajuste de uma reta
 y = Ax + B
 fornece os valores dos
 parâmetros A (inclinação)
 e B (termo independente)
 com suas respectivas
 incertezas.
- Como y=V, x=I, temos que R=A. Portanto

$$R = (20.8 \pm 0.3)\Omega$$

Resultados usando o MyCurveFit

O ajuste de uma reta
y = mx + c
fornece os valores dos
parâmetros m
(inclinação) e c (termo
independente) com suas
respectivas incertezas.

 Como y=V, x=I, temos que R=m. Portanto

$$R = (20.8 \pm 0.3)\Omega$$

Atenção! Os parâmetros do ajuste podem ser representados por letras diferentes em cada programa ²⁵

Resultados usando o LinearFit

O ajuste de uma reta y = mx + bfornece os valores dos parâmetros m(inclinação) e b (termo independente) com suas respectivas incertezas.

 Como y=V, x=I, temos que R=m. Portanto

$$R = (20.8 \pm 0.3)\Omega$$

Atenção! Os parâmetros do ajuste podem ser representados por letras diferentes em cada programa

É razoável ajustar uma reta a esses dados?

Não! Devemos fazer ajustes não lineares.

Ajuste com $y = Ae^{Bx}$

Ajuste com
$$y = \sin(Ax + B)$$

Linearização de gráficos

Linearização de gráficos

Frequentemente, duas grandezas x e y se relacionam de forma não linear. Exemplos:

1.
$$y = ax^2 + b$$

2. $y = be^{ax}$

2.
$$y = be^{ax}$$

$$3. \quad y = ax^2 + bx$$

- Em alguns casos é possível definir novas grandezas que sejam funções das originais e obedeçam uma relação linear entre si.
 - 1. Fazendo $X = x^2$ teremos y = aX + b
 - 2. Aplicando o logaritmo: $\ln y = \ln b + ax$ Y = B + ax
 - 3. Não é possível linearizar
- Após a linearização, é possível fazer a análise do gráfico via regressão linear. Não confundir linearização com regressão linear.

Exercícios em sala de aula

Exercício 1

Considere uma mola de constante elástica

$$k = (120 \pm 10) N/m.$$

Utilizando seis objetos de massas conhecidas, medimos o deslocamento da plataforma após a compressão da mola e obtemos

os seguintes resultados:

X

Compressão (m)	Massa (kg)
0,016	0,20
0,033	0,40
0,049	0,60
0,065	0,80
0,083	1,00

Sabendo que a força exercida sobre a mola é o peso do objeto, **kx** = **mg**, <u>faça um gráfico e</u> encontre o valor da aceleração da gravidade g.

Neste caso x = (g/k) m

Exercício 2

Um objeto se move sob a ação de uma força constante em uma superfície sem atrito. Ao medirmos sua posição e velocidade, obtemos

os seguintes resultados:

Posição (m)	Velocidade (m/s)
0	1,382
0,1	2,871
0,2	3,826
0,3	4,586
0,4	5,454
0,5	6,056
0,6	6,474

Sabendo que $V^2 = V_0^2 + 2aX$, faça um gráfico linearizado e determine, através de um ajuste linear, a aceleração do objeto e sua incerteza.

Programas de análise de dados

Para fazer e analisar gráficos <u>fora do laboratório</u>, você pode usar pelo menos um dos seguintes programas de acordo com o seu equipamento:

- SciDAvis: https://sourceforge.net/projects/scidavis/
 - Computador onde se pode instalar programas.
- MyCurveFit: https://mycurvefit.com/
 - Computador onde não é possível instalar programas.
 Este se usa sempre online.
- LinearFit: Vá ao aplicativo "Play Store" e busque "LinearFit".
 - Smartphone.
- Tutoriais de instalação e utilização: "Material de apoio" em https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-mecanica/

Próxima aula

- Preparem-se para a próxima aula lendo o roteiro do experimento "Pêndulo simples" disponível na página da disciplina https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-mecanica/
- O experimento será feito de forma coletiva e os resultados deverão ser entregues conforme definido pelo(a) professor(a), que conduzirá a prática.
- O objetivo é aplicar o que foi visto nas Aulas 1 e 2 através de um experimento simples. Sempre que necessário, revise o conteúdo destas aulas e os materiais de apoio na nossa página.