

Alkine Sour Water Corrosion Calculation for Asset ID k

Asset Name/ID

k

H2S concentration in system

It is suggested to determine NH4HS value with ionic process models. However, approximate values may be calculated from API 581 Table 2.B.7.1

1.40 wt%

NH3 concentration in system

It is suggested to determine $\,$ NH4HS $\,$ value with ionic process models. However, approximate values may be calculated from API 581 Table 2.B.7.1

4.00 wt%

NH3 concentration in system

Determine the concentration of the H2SO4 present in this equipment/piping. If analytical results are not readily available, it should be estimated by a knowledgeable process engineer $2.10~\rm wt\%$

Stream Velocity

The vapor phase velocity should be used in a two-phase system. The liquid phase velocity should be used in a liquid full system.

5.00 m/s

%mol H2S in the system

1.40 %

System pressure

Fill the Total system pressure psia 120.00 psia

H2S partial pressure

Fill the Total system pressure KPa 26.00 psia

Baseline CR mm/yr

0.11 mm/yr

Baseline CR mpy

4.33 mpy

Adjusted CR mm/yr

0.17 mm/yr

Alkine Sour Water Corrosion Calculation for Asset ID k

Adjusted CR mpy 6.82 mpy

Corrosion Damage Morphology General thinnig

Remaining Life and Next Inspection Date Calculation

Corrosion Rate (overwritten)

Corrosion Rate Overwritten by the user No

Material Thickness Units

Units of the thickness in

T Actual

Current thickness of the material 0.9

T Required

 $\begin{array}{l} \mbox{Minimum required thickness for safe operation} \\ \mbox{0.85} \end{array}$

Selected Date

Start date of the remaining life Tue Apr 01 2025

Remaining Life years/Retirement date

7.33 / Sat Jul 31 2032