XYZ@SAMPLE.EDU

UVW@FOO.AC.UK

ALPHABETA@EXAMPLE.EDU

Full Title of Article

Author Name1*1,2 ABC@SAMPLE.EDU

Address 1
Address 2

Author Name2*1 Author Name3² Author Name4^{†3}

³ Address 3

Author Name $\mathbf{5}^{\dagger 4}$ FGH@BAR.COM

⁴ Address 4

Editors: Under Review for MIDL 2019

Abstract

This is a great paper and it has a concise abstract. **Keywords:** List of keywords, comma separated.

1. Introduction

This is where the content of your paper goes. Some random notes¹:

- You should use LATEX (Lamport, 1986).
- JMLR/PMLR uses natbib for references. For simplicity, here, \cite defaults to parenthetical citations, i.e. \citep. You can of course also use \citet for textual citations.
- You should follow the guidelines provided by the conference.
- Read through the JMLR template documentation for specific IATEXusage questions.
- Note that the JMLR template provides many handy functionalities such as \figureref to refer to a figure, e.g. Figure 1, \tableref to refer to a table, e.g. Table 1 and \equationref to refer to an equation, e.g. Equation (1).

Acknowledgments

We thank a bunch of people.

^{*} Contributed equally

[†] Contributed equally

^{1.} Random footnote are discouraged

Table 1: An Example Table

Dataset	Result
Data1	0.12345
Data2	0.67890
Data3	0.54321
Data4	0.09876

Figure 1: Example Image

Algorithm 1: Computing Net Activation

Input: $x_1, \ldots, x_n, w_1, \ldots, w_n$ Output: y, the net activation $y \leftarrow 0$; for $i \leftarrow 1$ to n do

 $y \leftarrow y + w_i * x_i;$

 \mathbf{end}

References

Leslie Lamport. Latex: A Document Preparation System. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-15790-X.

Appendix A. Proof of Theorem 1

This is a boring technical proof of

$$\cos^2 \theta + \sin^2 \theta \equiv 1. \tag{1}$$

Appendix B. Proof of Theorem 2

This is a complete version of a proof sketched in the main text.