Задание по курсу «Суперкомпьютерное моделирование и технологии»

сентябрь 2023 - декабрь 2023

Содержание

\mathbf{C}	одержание	1
1	Введение	1
2	Математическая постановка дифференциальной задачи	1
3	Численный метод решения задачи	2
4	Программная реализация	3
5	Варианты заданий	4
6	Требования к отчету	5
\mathbf{C}	писок литературы	6

1 Введение

В качестве модельной задачи предлагается задача для трехмерного гиперболического уравнения в области, представляющей из себя прямоугольный параллелепипед. Индивидуальные варианты заданий отличаются типом граничных условий. Данное уравнение часто применяется в теории тепло и массопереноса, гидро и аэромеханике, электростатике. Поэтому поиск решения данный задачи в различных областях является весьма актуальным.

Задание необходимо выполнить на следующих ПВС Московского университета:

1. IBM Polus [1],

2 Математическая постановка дифференциальной задачи

В трехмерной замкнутой области

$$\Omega = [0 \leqslant x \leqslant L_x] \times [0 \leqslant y \leqslant L_y] \times [0 \leqslant z \leqslant L_z]$$

для $(0 < t \le T]$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u \tag{1}$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z), \tag{2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0,\tag{3}$$

при условии, что на границах области заданы однородные граничные условия первого рода

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$ (4)

$$u(x, 0, z, t) = 0,$$
 $u(x, L_u, z, t) = 0,$ (5)

$$u(x, y, 0, t) = 0,$$
 $u(x, y, L_z, t) = 0,$ (6)

либо периодические граничные условия

$$u(0, y, z, t) = u(L_x, y, z, t), u_x(0, y, z, t) = u_x(L_x, y, z, t), (7)$$

$$u(x, 0, z, t) = u(x, L_y, z, t), u_y(x, 0, z, t) = u_y(x, L_y, z, t), (8)$$

$$u(x, y, 0, t) = u(x, y, L_z, t), u_z(x, y, 0, t) = u_z(x, y, L_z, t). (9)$$

Конкретная комбинация граничных условий определяется индивидуальным вариантом задания (см. п. 5).

3 Численный метод решения задачи

Содержание данного пункта основано на материале книги [2]. Для численного решения задачи введем на Ω сетку $\omega_{h\tau} = \bar{\omega}_h \times \omega_{\tau}$, где

$$T = T_0,$$

 $L_x = L_{x_0}, L_y = L_{y_0}, L_z = L_{z_0}$
 $\bar{\omega}_h = \{(x_i = ih_x, y_j = jh_y, z_k = kh_z), i, j, k = 0, 1, \dots, N, h_x N = L_x, h_y N = L_y, h_z N = L_z\},$
 $\omega_\tau = \{t_n = n\tau, n = 0, 1, \dots, K, \tau K = T\}.$

Через ω_h обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\bar{\omega}_h$.

Для аппроксимации исходного уравнения (1) с однородными граничными условиями (4)–(6) и начальными условиями (2)–(3) воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = a^2 \Delta_h u^n, \quad (x_i, y_j, z_k) \in \omega_h, \quad n = 1, 2, \dots, K - 1,$$

Здесь Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u^n_{i-1,j,k} - 2u^n_{i,j,k} + u^n_{i+1,j,k}}{h^2} + \frac{u^n_{i,j-1,k} - 2u^n_{i,j,k} + u^n_{i,j+1,k}}{h^2} + \frac{u^n_{i,j,k-1} - 2u^n_{i,j,k} + u^n_{i,j,k+1}}{h^2}.$$

Приведенная выше разностная схема является явной — значения u_{ijk}^{n+1} на (n+1)-м шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета (т.е. для нахождения u_{ijk}^2) должны быть заданы значения u_{ijk}^0 , u_{ijk}^1 , $(x_i, y_j, z_k) \in \omega_h$. Из условия (2) имеем

$$u_{ijk}^0 = \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h. \tag{10}$$

Простейшая замена начального условия (3) уравнением $(u_{ijk}^1-u_{ijk}^0)/\tau=0$ имеет лишь первый порядок аппроксимации по τ . Аппроксимацию второго порядка по τ и h дает разностное уравнение

$$\frac{u_{ijk}^1 - u_{ijk}^0}{\tau} = a^2 \frac{\tau}{2} \Delta_h \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h.$$

$$\tag{11}$$

$$u_{ijk}^{1} = u_{ijk}^{0} + a^{2} \frac{\tau^{2}}{2} \Delta_{h} \varphi(x_{i}, y_{j}, z_{k})$$
(12)

Разностная аппроксимация для периодических граничных условий выглядит следующим образом

$$\begin{array}{ll} u_{0jk}^{n+1} = u_{Njk}^{n+1}, & u_{1jk}^{n+1} = u_{N+1jk}^{n+1}, \\ u_{i0k}^{n+1} = u_{iNk}^{n+1}, & u_{i1k}^{n+1} = u_{iN+1k}^{n+1}, \\ u_{ij0}^{n+1} = u_{ijN}^{n+1}, & u_{ij1}^{n+1} = u_{ijN+1}^{n+1}, \end{array}$$

$$i, j, k = 0, 1, \dots, N.$$

Для вычисления значений $u^0, u^1 \in \gamma_h$ допускается использование аналитического значения u, которое задается в программе еще для вычисления погрешности решения задачи.

4 Программная реализация

Требуется реализовать блочное разбиение области между процессами, поскольку в этом случае предполагается меньше межпроцессорных коммуникаций, по сравнению с ленточным.

Блочное разбиение 3d.

Рис. 1: Виды разбиений 3d

Число областей, на которое необходимо произвести разбиение может быть произвольным, как четным, так и нечетным.

На рисунке 1 изображен схематично двумерный ленточный и блочный вариант разбиения квадратной области на 8 частей.

В случае ленточного разбиения получаем $S_{strip}=8L$ межпроцессорных коммуникаций. В блочном случае $S_{block}=8(L/2)+4(L/4)=5L$ коммуникаций, то есть в 1.6 раз меньше. С ростом числа разбиений (и процессов, соответственно) это число будет только увеличиваться. Данные рассуждения можно обобщить и на трехмерный случай.

Рис. 2: Виды разбиений

Таким образом, алгоритм решения задачи, выглядит следующим образом:

- 1. Исходя из варианта, расчитывается точное аналитическое решение $u_{analytical}$ в узлах сетки
- 2. Проводим разбиение области Ω между процессами.
- 3. Фиксируем временной слой (начиная с 0).
- 4. Используя формулы (10) и (12). находим значения u^0 и u^1 .
- 5. Пользуясь найденными u^0 и u^1 и разностным представлением уравнения (1), находим значения u в локальной области разбиения
- 6. Передаем посчитанные граничные значения блокам-соседям.
- 7. Повторяем шаги 5-6 для внутренних блоков.
- 8. Определяем максимальную погрешность на сетке между посчитанным и аналитическим решением.
- 9. Переходим на следующий слой по времени и повторяем шаги 2-9.

5 Варианты заданий

Индивидуальные варианты заданий отличаются комбинацией граничных условий. Варианты приведены в следующей таблице (1P - условие первого рода, П - периодическое условие) 1.

Таблица 1: Варианты заданий

Вариант	\boldsymbol{x}	y	z	$u_{analytical}$
1	1P	1P	1P	$\sin(\frac{\pi}{L_x}x) \cdot \sin(\frac{\pi}{L_y}y) \cdot \sin(\frac{\pi}{L_z}z) \cdot \cos(a_t \cdot t), a_t = \pi, a^2 = \frac{L_x^2 L_y^2 L_z^2}{L_x^2 L_z^2 + L_y^2 L_z^2 + L_x^2 L_y^2}$
2	1P	1P	П	$\sin(\frac{\pi}{L_x}x) \cdot \sin(\frac{\pi}{L_y}y) \cdot \sin(\frac{2\pi}{L_z}z) \cdot \cos(a_t \cdot t + 2\pi), a_t = \sqrt{\frac{1}{L_x^2} + \frac{1}{L_y^2} + \frac{4}{L_z^2}}, a^2 = \frac{1}{\pi^2}$
3	1P	П	1P	$\sin(\frac{\pi}{L_x}x) \cdot \sin(\frac{2\pi}{L_y}y) \cdot \sin(\frac{3\pi}{L_z}z) \cdot \cos(a_t \cdot t), a_t = \frac{\pi}{2}\sqrt{\frac{1}{L_x^2} + \frac{4}{L_y^2} + \frac{9}{L_z^2}}, a^2 = \frac{1}{4}$
4	1P	Π	Π	$\sin(\frac{3\pi}{L_x}x) \cdot \sin(\frac{2\pi}{L_y}y) \cdot \sin(\frac{2\pi}{L_z}z) \cdot \cos(a_t \cdot t + 4\pi), a_t = 2\pi, a^2 = \frac{4}{\frac{9}{L_x^2} + \frac{4}{L_y^2}}$
5	П	1P	1P	$\sin(\frac{2\pi}{L_x}x) \cdot \sin(\frac{\pi}{L_y}y) \cdot \sin(\frac{\pi}{L_z}z) \cdot \cos(a_t \cdot t + 2\pi), a_t = \frac{1}{2}\sqrt{\frac{4}{L_x^2} + \frac{1}{L_y^2} + \frac{1}{L_z^2}}, a^2 = \frac{1}{4\pi^2}$
6	П	1P	П	$\sin(\frac{2\pi}{L_x}x) \cdot \sin(\frac{\pi}{L_y}y + \pi) \cdot \sin(\frac{2\pi}{L_z}z + 2\pi) \cdot \cos(a_t \cdot t + \pi), a_t = \frac{\pi}{3}\sqrt{\frac{4}{L_x^2} + \frac{1}{L_y^2} + \frac{4}{L_z^2}}, a^2 = \frac{1}{9}$
7	Π	Π	1P	$\sin(\frac{2\pi}{L_x}x + 3\pi) \cdot \sin(\frac{2\pi}{L_y}y + 2\pi) \cdot \sin(\frac{\pi}{L_z}z) \cdot \cos(a_t \cdot t + \pi), a_t = \pi, a^2 = \frac{1}{\frac{4}{L_x^2} + \frac{4}{L_y^2} + \frac{1}{L_z^2}}$
8	П	П	П	$\sin(\frac{2\pi}{L_x}x) \cdot \sin(\frac{4\pi}{L_y}y) \cdot \sin(\frac{6\pi}{L_z}z) \cdot \cos(a_t \cdot t), a_t = \pi \sqrt{\frac{4}{L_x^2} + \frac{16}{L_y^2} + \frac{36}{L_z^2}}, a^2 = 1$

Значениям «1-го рода» и «периодические» в столбце x отвечают формулы (4) и (7), в столбце y — (5) и (8), в столбце z — (6) и (9).

Функция $u_{analytical}$ напрямую зависит от введенных L_x, L_y, L_z , которые являются входными аргументами программы. Функция $\varphi(x, y, z)$ зависит напрямую от $u_{analytical}$ (2).

6 Требования к отчету

Для того, чтобы успешно сдать задание, необходимо

- понимать семантику всех используемых в коде функций MPI и директив OpenMP;
- представить отчет с результатами исследования параллельных характеристик программы;
- представить программный код.

Также необходимо провести исследование параллельных характеристик гибридной программы MPI/OpenMP и сравнить полученные результаты с программой, не используещей директивы OpenMP.

Отчет о выполнении задания должен содержать

- математическую постановку задачи;
- численные метод ее решения;
- краткое описание проделанной работы по созданию гибридной реализации MPI/ OpenMP;
- график аналитического и посчитанного решений
- график погрешности между аналитическим и посчитанным решений в каждом узле сетки.
- результаты расчетов (см. ниже).

Расчеты проводятся для разных размеров задач и на разном числе процессоров. Результаты расчетов заносятся в таблицу. Значениями в ячейках таблицы являются время решения и ускорение (таблица 2).

Следует выполнить около 20 шагов по времени.

Таблица 2: Пример оформления таблицы с результатами расчетов на ПВС IBM Polus (OpenMP код)

Число	\mid Число точек сетки N^3	Время решения Т	Ускорение Ѕ	Погрешность б
OpenMP				
нитей				
2	128^{3}			
4	128^{3}			
8	128^{3}			
16	128^{3}			
4	256^{3}			
8	256^{3}			
16	256^{3}			
32	256^{3}			

Таблица 3: Пример оформления таблицы с результатами расчетов на ПВС IBM Polus (MPI + OpenMP код)

Число МРІ	Число	Число то-	Время ре-	Ускорение	Погрешность б
\mid процессов N_p	OpenMP	чек сетки	шения Т	S	
_	нитей в	N^3			
	процессе				
2	1	128^{3}			
2	2	128^{3}			
2	4	128^{3}			
2	8	128^{3}			
4	1	256^{3}			
4	2	256^{3}			
4	4	256^{3}			
4	8	256^{3}			

Требуется провести расчеты как минимум для двух случаев: $L_x = L_y = L_z = 1, \; L_x = L_y = L_z = \pi$

IBM Polus

Расчеты должны быть проведены на сетках 128^3 , 256^3 .

Список литературы

- [1] Суперкомпьютер IBM Polus. http://hpc.cs.msu.su/polus.
- [2] *Самарский А.А., Гулин А.В.* Численные методы. М.: Наука. Гл. ред. физ-мат. лит., 1989.