

Keterangan

- · Seluruh kode ditulis pada file <nama-file>.hs
- · Gunakan : load < nama-file > untuk me-load script
- · Setelah di-load, fungsi pada script dapat diaplikasikan

MORE ON FUNGSI REKURSIF

Contoh-1: Factorial

Contoh-2: GCD

Contoh-3a: Fibonacci

```
-- DEFINISI DAN SPESIFIKASI
fib :: Int -> Int
-- Definisi rekursif fungsi fibonacci:
-- fib (n) = sesuai dengan definisi deret fibonacci:
       n = 0 : fib(0) = 0
      n = 1 : fib(1) = 1
       n > 1: fib(n) = fib(n-1) + fib(n-2)
-- REALISASI (versi 1)
fib n = if n == 0 then 0 -- basis 0
       else if n == 1 then 1 \qquad -- basis 1
       else fib(n-1) + fib(n-2) -- rekurens
```

Contoh-3b: Fibonacci

```
-- DEFINISI DAN SPESIFIKASI
fib2 :: Int -> Int
-- Definisi rekursif fungsi fibonacci:
-- fib2(n) = sesuai dengan definisi deret fibonacci:
       n = 0 : fib2(0) = 0
  n = 1 : fib2(1) = 1
       n > 1: fib2(n) = fib2(n-1) + fib2(n-2)
-- REALISASI(versi 2)
fib2 n
   | n == 0 = 0
   | n == 1 = 1
   \mid otherwise = fib(n-1) + fib(n-2)
```

Latihan Soal (untuk dikerjakan mandiri)

Buatlah definisi, spesifikasi, dan realisasi dari fungsi-fungsi berikut (menggunakan pendekatan rekursif):

- 1. DeretSegitiga, merupakan fungsi untuk mencari nilai bilangan ke-n pada deret segitiga. Deret segitiga: 1, 3, 6, 10, 15, ...
- 2. IsGanjil, merupakan predikat untuk memeriksa apakah sebuah bilangan integer (≥0) merupakan bilangan ganjil.
- 3. LuasBS, merupakan fungsi untuk menghitung luas bujur sangkar dengan panjang sisi tertentu.

Latihan Soal (untuk dikerjakan mandiri)

4. SumOfDigits, menghitung hasil penjumlahan dari setiap bilangan tunggal yang terdapat di dalam sebuah bilangan integer positif.

Misalnya:

- SumOfDigits(234) = 2 + 3 + 4 = 9
- SumOfDigits(38) = 3 + 8 = 11
- SumOfDigits(5) = 5

Apabila didefinisikan bahwa SumOfDigits dari bilangan negatif dilakukan dengan mengabaikan tanda '-', buatlah fungsi **SumOfDigitsPosNeg** yang menangani hal ini.

Misalnya: SumOfDigitsPosNeg(-45) = 4 + 5 = 9

Latihan Soal (untuk dikerjakan mandiri)

5. IsOdd? dan IsEven? yang saling mutually recursive. IsOdd? digunakan untuk memeriksa apakah sebuah bilangan integer (>0) merupakan bilangan ganjil, sedangkan IsEven? sebaliknya.

Hint: IsOdd?(n) akan memberikan hasil yang sama dengan IsEven?(n-1), IsOdd?(n-2), IsEven?(n-3), dst.

6. GCD dengan menggunakan pendekatan kedua. Fungsi Min2(a,b) yang menghasilkan nilai terkecil dari a dan b dapat langsung digunakan.

LIST OF ELEMEN SEDERHANA

Konstruktor List

```
-- DEFINISI DAN SPESIFIKASI KONSTRUKTOR
konso :: <type elemen> -> [<type elemen>] -> [<type elemen>]
-- konso(e,1) menghasilkan sebuah list dari e (sebuah
-- elemen) dan l (list of elemen),
-- dengan e sebagai elemen pertama: e o l -> l'
-- REALISASI
konso e 1 = [e] ++ 1
konsDot :: [<type_elemen>] -> <type_elemen> -> [<type_elemen>]
-- konsDot(l,e) menghasilkan sebuah list dari l (list of
-- elemen) dan e (sebuah elemen),
-- dengan e sebagai elemen terakhir: l • e -> l'
-- RFALTSAST
konsDot 1 e = 1 ++ [e]
```

Predikat List of integer

```
-- DEFINISI DAN SPESIFIKASI PREDIKAT
isEmpty(1) :: [<type_elemen>] -> Bool
-- isEmpty(1) true jika list of integer 1 kosong
-- RFALTSAST
isEmpty 1 = null 1
isOneElmt :: [<type_elemen>] -> Bool
-- isOneElmt(L) true jika list of integer l hanya
-- mempunyai satu elemen
-- RFALTSAST
isOneElmt 1 = (length 1) == 1
```

Predikat untuk list of <type_elemen>

 Gunakan pola pada realisasi predikat isEmpty dan isOneElmt pada type list of integer dengan cara mengganti integer menjadi <type_elemen>

Fungsi Lain terhadap List of <type_elemen>

- · NbElmt
- · IsMember?
- · Copy
- IsEqual
- Konkat
- · ElmtKeN
- · isXElmtKeN

nbElmt - List of integer

isMember - List of Integer

```
isMember1 :: Int -> [Int] -> Bool
-- isMember1(x,1) true jika x adalah elemen list l
-- REALISASI isMember1 menggunakan head dan tail
isMember1 x l = if (isEmpty l) then False -- Basis
                  else if (head 1) == x then True
                       else (isMember1 x (tail 1)) -- Rekurens
isMember2 :: Int -> [Int] -> Bool
-- isMember2(x,1) true jika x adalah elemen list l
-- REALISASI isMember2 menggunakan init dan last
isMember2 x l = if (isEmpty l) then False -- Basis
                  else if (last 1) == x then True
                       else (isMember2 x (init 1)) -- Rekurens
```

IsEqual - List of integer

Copy - List of integer

```
-- DEFINISI DAN SPESIFIKASI
copy :: [Int] -> [Int]
-- copy(1) menghasilkan list yang identik dengan list
-- asal

-- REALISASI (versi 1: menggunakan konso)
copy 1 = if (isEmpty 1) then [] -- Basis
else (konso (head 1) (copy (tail 1)) -- Rekurens

-- REALISASI (versi 2: menggunakan konsDot)
copy 1 = if (isEmpty 1) then [] -- Basis
else (konsDot (copy (init 1)) (last 1)) -- Rekurens
```

Konkat - List of integer

Latihan

- · Lanjutkan untuk:
 - · ElmtKeN
 - · isXElmtKeN
 - listPlus
- Bagaimana untuk list of elemen bertype lain?

maxList - List of integer

maxNb - List of integer

```
-- DEFINISI DAN SPESIFIKASI
maxNb :: [Int] -> (Int, Int)
-- maxNb(li) menghasilkan <nilai max, kemunculan nilai max>
-- dari suatu list of integer li: <m,n> dengan m adalah
nilai
-- maksimum di li dan n adalah jumlah kemunculan m dalam li
-- REALISASI
maxNb li = if (isOneElmt 1) then (head 1,1) -- Basis
           else -- Rekurens
              let (m,n) = (maxNb (tail 1)) in
                 if (m < (head l)) then (head l, 1)
                 else if (m>(head l)) then (m,n)
                      else (m, n+1)
```

nbA - List of character/Teks