

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Muxes, Decoders, Shifters - 3

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Muxes, Decoders, Shifters - 3

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Muxes, Decoders, Shifters 3
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Barrel shifter

Logic circuit to left shift an 8-bit number:

• Logic circuit to left shift an 8-bit number:

• Logic circuit to left shift an 8-bit number:

• Logic circuit to left shift an 8-bit number:

Logic circuit to left shift an 8-bit number:

Shift amount can range from 0 to 7

• Logic circuit to left shift an 8-bit number:

			U	JNIVER
s 2	S 1	S 0	Shift by	ONLI
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	

• Shift amount can range from 0 to 7

• Logic circuit to left shift an 8-bit number:

				Τ.
				۱۲
s 2	S 1	S 0	Shift by	ľ
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	

• Shift amount can range from 0 to 7

• Logic circuit to left shift an 8-bit number:

			U
5 2	S 1	S 0	Shift by
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Bit	0	1
s 0	shift by 0	shift by 1
s_1	shift by 0	shift by 2
s ₂	shift by 0	shift by 4

Shift amount can range from 0 to 7

• Logic circuit to left shift an 8-bit number:

Shift amount can range from 0 to 7

				U١
S	2 5 1	. S 0	Shift	by
C) 0	0	0	
C	0	1	1	
C) 1	0	2	
C) 1	1	3	
1	. 0	0	4	
1	. 0	1	5	
1	. 1	0	6	
1	1	1	7	

Bit	0	1
s 0	shift by 0	shift by 1
s_1	shift by 0	shift by 2
s ₂	shift by 0	shift by 4

 So shifting can be divided into three stages which shift by 1, 2 and 4

Barrel Shifter for N=8

Let the three control inputs be s_2 , s_1 and s_0 . When $s_2s_1s_0 = 000$ there is no shift. When $s_2s_1s_0 = 111$ there is left shift by 7 positions, with zeores being inserted on the right

- When $s_2 s_1 s_0 = 101$ then:
 - Because $s_2 = 1$ shift by 4
 - Because $s_1 = 0$ shift by 0
 - ▶ Because $s_0 = 1$ shift by 1
- So in general, shift in three stages:
 - If $s_2 = 1$ shift by 4 else if $s_2 = 0$ shift by 0
 - If $s_1 = 1$ shift by 2 else if $s_1 = 0$ shift by 0
 - If $s_0 = 1$ shift by 1 else if $s_9 = 0$ shift by 0

Barrel Shifter of Size n

- A barrel shifter with a bitwidth of n,
 - ▶ Number of data inputs is *n*
 - ▶ Number of data outputs is *n*
 - ▶ Shift amout ranges from 0 to n-1
 - ▶ Number of control inputs is $\lceil \log_2 n \rceil$

Think About It

- Consider a left barrel shifter of size n = 4
 - ► How many 2:1 muxes does it contain?
 - Draw its logic circuit
 - Draw the logic circuit of right barrel shifter