Part III-B: Probability Theory and **Mathematical Statistics**

Lecture by 李漫漫 Note by THF

2024年11月22日

目录

1	参数估计 1.1 矩估计	2 2 2 3	
2	假设检验	4	
L€	ecture 16 Review:		11.12
	1. 抽样分布定理: 定理 $6.4.3$ 2. 表达式 $\frac{(n-1)S^2}{\sigma^2}$ 什么时候是统计量: σ^2 已知 当 σ^2 未知时: 表达式符合 $\chi^2(n-1)$,称为 枢轴量		
Co	prollary. $X_1, X_2, \dots X_n$ 来自总体 $X \sim N\left(\mu, \sigma^2\right)$,样本均值和方差记为 \bar{X}, S^2 ,则:		

a. 求 ES^2 : $ES^2 = \sigma^2$

b. 求 DS^2 : $DS^2 = \frac{2\sigma^4}{n-1}$ c. 构造 t 分布: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}/\sqrt{\frac{S^2}{\sigma^2}} = \frac{\bar{X}-\mu}{S}\sqrt{n} \sim t(n-1)$

(上述 $\sqrt{\left(n-1\right)S^{2}/\sigma^{2}} \sim \chi^{2}\left(n-1\right)$ 且 $(\bar{X}-\mu)/\frac{\sigma}{\sqrt{n}} \sim \Phi\left(x\right)$)

重点题目: 例 6.4.4

Corollary. 两个正态总体的抽样分布定理: 两个总体记为 X,Y ,样本容量分别为 m,n ,样本 分布分别符合 $\mu = \mu_1, \sigma^2 = \sigma_1^2$ 和 $\mu = \mu_2, \sigma^2 = \sigma_2^2$ 的正态分布, ...

1 参数估计

参数: param

- 点估计
 - 。 矩估计
 - 。 极大似然估计
- 区间估计

1.1 矩估计

使用样本矩 \bar{X} 替代总体矩 $\hat{\mu}$

Notation. 总体矩不存在(无穷)时不能使用矩估计

Example. 总体 $X \sim U[a,b], X_1, X_2, \dots, X_n$ 为总体的样本, 求 a,b 的矩估计量

解:

$$\begin{cases} EX &= \frac{a+b}{2} \\ DX &= \frac{(b-a)^2}{12} \end{cases}.$$

求解得: $\begin{cases} a = EX - \sqrt{3DX} \\ b = EX + \sqrt{3DX} \end{cases}$, 替代后为: $\begin{cases} \hat{a} = \bar{X} - \sqrt{3M_2^{\star}} \\ \hat{b} = \bar{X} + \sqrt{3M_2^{\star}} \end{cases}$, \hat{a} 代表对 a 的估计

1.2 极大似然估计

似然函数: 样本的联合概率分布函数 (P167)

Example. 同矩估计例题, 求 a,b 的极大似然估计量

解: 写出联合密度函数: $L(...) = \prod_{i=1}^{n} f_{X_i}(x_i)$, 由于 $f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{Others} \end{cases}$, 则联合密度函数为:

$$L = \prod_{i=1}^{n} \frac{1}{b-a} I_{[a,b]}(x_i)$$
$$= \frac{1}{(b-a)^n} \prod_{i=1}^{n} I_{[a,b]}(x_i).$$

Lecture 18 11.19

Review:

。对参数(完全可观测数据)进行点估计:极大似然估计、矩估计两种方法得到的结果可能一样或不一样

。 点估计的评价标准:

(**渐进**) 无偏 估计的参数的期望 $E\hat{\theta}$ 求极限为 θ

有效性 在无偏的前提下: $D\hat{\theta}$ 越小越有效 相合性 (一致性) MSE $(\hat{\theta}, \theta)$: 均方误差

Example. \bar{X} 和 $\hat{W} = \sum_{i=1}^{n} a_i X_i$ 可以证明都是 μ 的无偏估计,称 \bar{X} 为算术均值, \hat{W} 为加权均值,且算术均值比加权均值更有效(均值不等式)

Notation. 均方误差: $MSE(\hat{\theta}, \theta) = E(\hat{\theta} - \theta)^2$

1.3 区间估计

Definition. 置信区间: α 为给定值,总体的分布函数为 $F(x,\theta)$,有两个从总体中抽取后构造的统计量 T_1,T_2 ,当:

$$P\{T_1 < \theta < T_2\} = 1 - \alpha.$$

时: 称 P 为置信度, 区间长度 T_2-T_1 的数学期望 $E(T_2-T_1)$ 为精度

纽曼提出的准则: 先确定 α 来确定置信度, 再确定置信上下限

Notation. 已知标准正态分布 $X \sim N(\mu, \sigma^2)$ 中的 σ^2 , 置信度为 $1 - \alpha$ 时参数 μ 的置信区间:

$$(T_1, T_2) = \left(\bar{X} - \frac{\sigma}{\sqrt{n}} u_{1-\frac{\alpha}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} u_{1-\frac{\alpha}{2}}\right).$$

如果 σ^2 未知: 通过 t 分布可得: $T = \frac{\bar{X} - \mu}{S} \sqrt{n} \sim t (n-1)$, 置信区间为:

$$(T_1, T_2) = \left(\bar{X} - \frac{S}{\sqrt{n}} t_{1-\frac{\alpha}{2}} (n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{1-\frac{\alpha}{2}} (n-1)\right).$$

Notation. 卡方分布下: 方差为 σ^2 , 置信度为 $1-\alpha$ 的置信区间:

$$(T_1, T_2) = \left(\frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}\right).$$

对应的标准差为 σ , 置信度为 $1-\alpha$ 的置信区间: $T_1'=\sqrt{T_1}, T_2'=\sqrt{T_2}$

如果 μ 已知, σ^2 未知,令 $S_1^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \mu \right)^2$,因为 $\chi^2 = \frac{nS_1^2}{\sigma^2} \sim \chi^2 \left(n \right)$,可得置信度为 $1 - \alpha$ 的方差的置信区间为:

$$\left(\frac{nS_1^2}{\chi_{1-\frac{\alpha}{2}}^2(n)}, \frac{nS_1^2}{\chi_{\frac{\alpha}{2}}^2(n)}\right).$$

Lecture 18

2 假设检验

Notation. 在医药研发大量应用

• 参数假设检验: 假设效果

• 非参数假设检验

Notation. 下节课之前准备一个本专业的假设检验问题

Lecture 19

Example. 参数假设检验: 主场优势: NBA 某球队进行 82 场比赛, 41 场为主场, 统计过去 15 年主场胜率 P_1 和客场胜率 P_2 ,判断该球队是否存在主场优势

通过胜率差 $\Delta P = P_1 - P_2$, 当 $\Delta P = 0$ 时不存在, 当 $\Delta P > 0$ 时存在

Notation. 非参数假设检验: 住房面积和家庭生活幸福感的关系, 学历程度和年均收入的关系; 非参数假设检验的两个变量独立

Example. 规定工业废水中 Cr(VI) 排放浓度不超过 0.5,即 $c_{Cr(VI)} \le 0.5$,设 X 为工业废水有 害物质排放浓度总体,抽取 16 份废水 $X_1, X_2, ..., X_{16}$,测得物质浓度 $\bar{x} = 0.52, s^2 = 0.09$,假设该物质浓度分布为 $X \sim N(\mu, \sigma^2)$,求排放浓度是否符合规定($\alpha = 0.5$)

解:

$$\bar{x} = \frac{1}{16} \sum_{i=1}^{16} x_i$$
 $s^2 = \frac{1}{15} \sum_{i=1}^{16} (x_i - \bar{x})^2$.

判断是否超标: 通过检测 $\mu \le 0.5$ 达标, $\mu > 0.5$ 超标: 一般把带等号的假设设为原假设 $H_0: \mu \le 0.5$, 被则假设 $H_1: \mu > 0.5$;

检验水平 $\alpha=0.05$: 通常不超过 0.1 ,表示犯第一类错误的概率 $(\alpha=P\left(\bar{H}_0\right))$; 对比 β : 犯第二类错误

选择检验统计量:将最大似然估计标准化: $\frac{\bar{X}-\mu}{s/\sqrt{n}}=T$,当 H_0 成立时: $T=\frac{\bar{X}-0.5}{s/\sqrt{n}}\sim t$ (15) (分布为 t 分布,该检验方法为 t 检验法)

确定拒绝域 \mathscr{L}_0 : 确定拒绝域的形式,由于被则假设为 $H_1:\mu>0.5$,假设拒绝域为 $\{\bar{X}-0.5>c\}$,c 为未知量

犯第一类错误的概率 $P\left\{\bar{X} - 0.5 > c \mid \mu \le 0.5\right\} \le 0.05$,原式放缩:

$$\begin{split} P\left\{\bar{X} - 0.5 > c \mid \mu \leq 0.5\right\} &= P\left\{\frac{\bar{X} - 0.5}{\frac{s}{\sqrt{16}}} > \frac{c}{\frac{s}{\sqrt{16}}} \mid \mu \leq 0.5\right\} \\ &= P\left\{\frac{\bar{X} - \mu}{\frac{s}{4}} > \frac{c + 0.5 - \mu}{\frac{s}{4}} \mid \mu \leq 0.5\right\} \\ &\leq P\left\{\frac{X - \mu}{\frac{s}{4}} > \frac{c}{\frac{s}{4}}\right\} = \alpha \quad (0.5 - \mu \geq 0) \,. \end{split}$$

Lecture 19

由题 $\frac{c}{s/4} = t_{0.95}$ (15),则检验统计量在拒绝域中可以表示: $\left\{\frac{\bar{X} - 0.5}{s/4} > t_{0.95}$ (15) $\right\}$

判断: $\bar{x}=0.52, s=0.3$,查表得 $t_{0.95}$ (15) = 1.753,带入原式得: $\frac{\bar{X}-0.5}{s/4}=\frac{0.52-0.5}{0.3/4}<1.753$,因此并未落在拒绝域中,接受原假设 H_0

下结论:认为 $t \notin \mathcal{X}_0$,因此不拒绝原假设 H_0 ,在显著性水平 $\alpha = 0.05$ 下,可以认为该区域有害物质排放浓度符合规定

假设检验的两类错误

假设 H_0 正确,可以认为 H_0 正确或错误,类似二分类问题

表 1: 假设检验的两类错误

一					
真实情况 真实情况	接受 H ₀	拒绝 H ₀			
H_0 为真	正确	第一类错误 α			
H ₀ 为假	第二类错误 β	正确			

对于上题:
$$\beta = \left\{ \frac{X - 0.5}{s/4} \le t_{0.95} (15) \mid \mu > 0.5 \right\}$$

$$\begin{split} \beta &= P\left\{\frac{X-0.5}{\frac{s}{4}} < t_{0.95} \left(15\right) \mid \mu > 0.5\right\} \quad \text{(We assume that: } \mu = 0.6\text{)} \\ &= P\left\{\frac{X-0.5}{\frac{s}{4}} < t_{0.95(15)} + \frac{0.6-0.5}{\frac{s}{4}}\right\} \approx 60\%. \end{split}$$

使用被则假设检验一般有较大的概率犯错误,因此一般使用原假设检验 假设检验的内容:

Notation. 小概率原理: 犯第一类错误的概率 α 为小概率; 如果认为 H_0 正确,但是数据观测得到的是 $H_1: \bar{x} - 0.5 > c$,则应该反过来认为 H_1 正确