#### **Association Rules**

- Market-Basket Analysis
- Grocery Store: Large no. of ITEMS
- Customers fill their market baskets with subset of items
- 98% of people who purchase diapers also buy beer
- Used for shelf management
- Used for deciding whether an item should be put on sale
- Other interesting applications
  - Basket=documents, Items=words
     Words appearing frequently together in documents may represent phrases or linked concepts. Can be used for intelligence gathering.

#### **Association Rules**

- Purchasing of one product when another product is purchased represents an AR
- Used mainly in retail stores to
  - Assist in marketing
  - Shelf management
  - Inventory control
- Faults in Telecommunication Networks, traffic analysis, document analysis, bioinformatics, computational chemistry,
- Transaction Database
- Item-sets, Frequent or large item-sets
- Support & Confidence of AR

### **Types of Association Rules**

#### Boolean/Quantitative ARs

```
Based on type of values handled

Bread □ Butter (Presence or absence)

age(X, "30....39") & income(X, "42K...48K") □ buys(X, Projection TV)
```

#### Single/Multi-Dimensional ARs

Based on dimensions of data involved

buys(X,Bread) □ buys(X,Butter)

#### Single/Multi-Level ARs

Based on levels of Abstractions involved

age(X, "30....39")  $\square$  buys(X, laptop)

 $age(X, "30....39") \square buys(X, computer)$ 

#### **Support & Confidence**

 A rule must have some minimum user-specified confidence

1 & 2 => 3 has 90% confidence if when a customer bought 1 and 2, in 90% of cases, the customer also bought 3.

 A rule must have some minimum user-specified support

1 & 2 => 3 should hold in some minimum percentage of transactions to have business value

 AR X => Y holds with support T, if T% of transactions in DB that support X also support Y

## **Support & Confidence**



#### **Support & Confidence**

I=Set of all items

**D=Transaction Database** 

AR A=>B has support s if s is the %age of transactions in D that contain AUB (both A & B)

$$s(A=>B)=P(AUB)$$

AR A=>B has confidence c in D if c is the %age of transactions in D containing A that also contain B

$$c(A=>B)=P(B/A)=P(AUB)/P(A)$$

#### **Example**

#### Transaction Database

| Transaction Id | Purchased Items  |
|----------------|------------------|
| 1              | <b>{1, 2, 3}</b> |
| 2              | <b>{1, 4}</b>    |
| 3              | {1, 3}           |
| 4              | {2, 5, 6}        |

●For minimum support = 50%, minimum confidence = 50%, we have the following rules

1 => 3 with 50% support and 66% confidence

3 => 1 with 50% support and 100% confidence

### Mining Associations Rules

#### **2 Step Process**

- Find all frequent Itemsets
   i.e. all itemsets satisfying min\_sup
- Generate strong ARs from frequent itemsets
- i.e. ARs satisfying min\_sup & min\_conf

### Frequent Itemsets (FIs)

#### **Algorithms for finding FIs**

- 1. Apriori
- 2. Sampling
- 3. Partitioning
- 4. Hash based Technique
- 5. Transaction Reduction
- 6. etc

## Apriori Algorithm (Boolean ARs)

#### **Candidate Generation**

Level-wise search

Frequent 1-itemset (L₁) is found

Frequent 2-itemset (L<sub>2</sub>) is found & so on...

Until no more Frequent k-itemsets (L<sub>k</sub>) can be found

Finding each L<sub>k</sub> requires one pass

## Apriori Algorithm

#### Apriority Property

All nonempty subsets of a FI must also be frequent" i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset

#### Anti-Monotone Property

"If a set cannot pass a test, all its supersets will fail the test as well"

 $P(I) < min_sup \square P(I \cup A) < min_sup$ , where A is any item Property is monotonic in the context of failing a test

# Frequent itemset /Apriori Property: example

If {*a*, *c*, *d*} is a large itemset then {*a*, *c*}, {*a*, *d*}, {*c*, *d*}, {*a*}, {*c*}, {*d*}, {*d*}, {*s*} are large itemsets too.



## Apriori Algorithm - Example



## Apriori Algorithm

#### 2-Step Process

#### Join Step (candidate generation)

Guarantees that no candidate of length > k are generated using Lk- $\square$ 

#### **Prune Step**

Prunes those candidate itemsets all of whose subsets are not frequent

#### **Candidate Generation**

```
Given L<sub>k-1</sub>
C_k = \phi
For all itemsets I_1 \in L_{k-1} do
For all itemsets I_2 \in L_{k-1} do
If I_1[1] = I_2[1] \land I_1[2] = I_2[2] \land ... \land I_1[k-2] =
  I_{2}[k-2] \wedge I_{1}[k-1] < I_{2}[k-1]
Then c= I_1[1], I_1[2], I_1[3].... I_1[k-1], I_2[k-1]
C_k = C_k U \{c\}
```

## **Example of Generating Candidates**

- L<sub>3</sub>={abc, abd, acd, ace, bcd}
- Self-joining: L<sub>3</sub>\*L<sub>3</sub>
  - abcd from abc and abd
  - acde from acd and ace
- Pruning:
  - acde is removed because ade is not in L<sub>3</sub>
- C<sub>4</sub>={abcd}

#### **ARs from Fls**

- For each FI *l*, generate all non-empty subsets of *l*
- For each non-empty subset s of l, output the rule  $s \Rightarrow (l-s)$  if  $\underbrace{support\_count(l)}_{support\_count(s)} \geq \min\_conf$

#### **Example**

- Suppose  $l = \{2,3,5\}$
- {2,3}, {2.5}, {3,5}, {2}, {3}, & {5}

#### Association Rules are

```
2,3 \Rightarrow 5 confidence 100%
```

$$2,5 \Rightarrow 3$$
 confidence 66%

$$3,5 \Rightarrow 2$$
 confidence 100%

$$2 \Rightarrow 3.5$$
 confidence 100%

$$3 \Rightarrow 2.5$$
 confidence 66%

$$5 \Rightarrow 2.3$$
 confidence 100%

## **Apriori: Some Observations**

- $C_2 = L1*L1$
- No. of Candidates in  $C_2 = {}^{L1}C_2$
- The larger the C<sub>2</sub> / C<sub>k</sub> the more processing cost required to discover FIs

## Variations of the Apriori

Many variations of the Apriori has been proposed that focus on improving the efficiency of the original algorithm

- Hash-based technique- hashing itemset counts
- Transaction reduction-reducing the number of transactions scanned in future iterations
- Partitioning-partitioning the data to find candidate itemsets
- Sampling-mining on a subset of the given data
- Dynamic itemset counting-adding candidate itemsets at different points during a scan

## Sampling Algorithm

- Random transactions of the original database are selected (sampled) and placed in a much smaller sampled database.
- The size of sampled database is small enough so that it can reside in main memory.
- This reduces the number of (original) database scans to at most two.
- Any standard algorithm, such as Apriori, can be used to create a set of large itemsets in sampled database.

## Sampling Algorithm cont...

- Since these large itemsets is applied to sampled database, some may not be the actual large itemsets of the original database. These itemsets are called *potentially large itemsets*, and *PL* denotes the set of potentially large itemsets.
- Some actual large itemsets may not be in *PL*. Additional candidates for large itemsets are determined by applying negative border function, *NB*(), against *PL*.
- Negative border returns the itemsets that are not in PL but has all of their subsets in PL.
- Usually, the minimum support threshold is lowered when finding the PL from sampled database.

# Sampling Algorithm: Algorithm

- 1. Sample transactions from Database *D*.
- 2. Using Apriori (or something else) algorithm to find *PL* from sampled database.
- 3. The candidate set  $C_1$  contain itemsets from  $PL \cup NB(PL)$ .
- 4. Scan the original database, check the support of each candidate in  $C_1$ . Those that meet the minimum support requirement will be added into L.
- 5. If some itemsets from NB(PL) were added into L in step 4. Initially candidate set  $C_2$  is equal to L. Repeatedly add NB( $C_2$ ) into  $C_2$  until no growth in  $C_2$ .
  - Scan the original database, check the support for each candidate in  $\mathcal{C}_2$  . Adding large itemsets into  $\mathcal{L}$ .

## Sampling Algorithm: Example

- Let  $I = \{a, b, c, d\}$ ,
- After step 2, let  $PL = \{\{a\}, \{c\}, \{d\}, \{c, d\}\}.$



## Sampling Algorithm: Example

Assume that  $L = \{\{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}\}\}$  after the database scan in step 4. Since  $\{a, c\}$  and  $\{a, d\}$  are in NB(PL), we need to execute step 5.  $C_2$  will be L U  $\{\{a, c, d\}\}$ .



## **Partitioning**

- Instead of sampling transactions in database, the database D is subdivided into n partitions D<sub>1</sub>, D<sub>2</sub>, ..., D<sub>n</sub>.
- Partitioning may improve the performance by:
  - A large itemset must be large in at least one of the partitions.
  - We can adjust the size of each partition so that it is small enough to fit in main memory.

## **Partitioning**

#### Algorithm

- 1. Split database *D* into *n* partitions
- 2. Using apriori algorithm to find set of large itemset of each partition, Let *L*<sup>*i*</sup> denote set of large itemsets of partition *i*.
- 3. Candidate set  $C = Un L^{i}$
- 4. Scan the original database, check the minimum support of each candidate *c* in *C*. If the criteria is met, add *c* into *L*.

## Partitioning: Example

| A1 | A2 | A3 | A4 | A5 | A6 | A/ | A8 | A9 |
|----|----|----|----|----|----|----|----|----|
| 1  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 0  |
| 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  | 0  |
| 0  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | 0  |
| 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  |
| 0  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| 0  | 1  | 0  | 0  | 0  | 1  | 1  | 0  | 1  |
| 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  |
| 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  |
| 0  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 0  |
| 0  | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 0  |
| 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  |
| 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1  |

 $\sigma = 20\%$ 

### Partitioning: Example

#### **Apriori:**

The Frequent set  $L=L_1 \cup L_2 \cup L_3$ 

### Partitioning: Example

Dividing database in 3 equal partitions. Local support= $20\% = \sigma_1 = \sigma_2 = \sigma_3 = \sigma$ 

$$\{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{1,5\}, \{1,6\}, \{1,8\}, \\ \mathcal{L}^1 = \{2,3\}, \{2,4\}, \{2,8\}, \{4,5\}, \{4,7\}, \{4,8\}, \{5,6\}, \{5,8\}, \{5,7\}, \\ \{6,7\}, \{6,8\}, \{1,6,8\}, \{1,5,6\}, \{1,5,8\}, \{2,4,8\}, \{4,5,7\}, \\ \{5,6,8\}, \{5,6,7\}, \{1,5,6,8\}$$
 
$$\mathcal{L}^2 = \{\dots\} \quad \mathcal{L}^3 = \{\dots\}$$

The candidate set  $C=L^1 \cup L^2 \cup L^3$ 

Read database once to compute the global support of the sets in C and get the final set of frequent itemsets L

#### **Hash-Based Algorithm**

- The larger the C<sub>k</sub> the more processing cost required to discover FIs
- Reduces the size of C<sub>k</sub> for k>1
- DHP( Direct hashing and pruning) or PCY has 2 major features
  - Efficient generation for FIs (2-itemsets)
  - Reduction of Tr. DB size (right after the generation of large 2-itemsets)

#### **Hash-Based Algorithm**

- Efficient counting
- For each Tr. After 1-itemsets are counted, 2itemsets of the Tr. are generated and hashed into a hash table H<sub>2</sub>
- Subset function: finds all the candidates contained in a transaction
- When a 2-itemset is hashed to a bucket, the count of the bucket is incremented

# Hash-Based Algorithm: Example

| TID | Items |
|-----|-------|
| 100 | 1 3 4 |
| 200 | 235   |
| 300 | 1235  |
| 400 | 2 5   |

| itemset     | sup. |
|-------------|------|
| {1}         | 2    |
| {2}         | 3    |
| {3}         | 3    |
| <b>{4</b> } | 1    |
| <b>{5</b> } | 3    |

| $L_{\scriptscriptstyle 1}$ | itemset     | sup. |
|----------------------------|-------------|------|
| <b>−</b> 1                 | {1}         | 2    |
|                            | {2}         | 3    |
|                            | {3}         | 3    |
|                            | <b>{5</b> } | 3    |

L1\*L1=({1,2},{1,3},{1,5},{2,3} {2,5},{3,5})

## Hash-Based Algorithm: Example (generating C<sub>2</sub>)



**Bucket no** 

#### **Multiple-Level Association Rules**

- Items often form hierarchy.
- •Items at the lower level are expected to have lower support.

•Rules regarding itemsets at appropriate levels could be quite useful.

milk ⇒ bread [20%, 60%]

2% milk  $\Rightarrow$  wheat bread [6%, 50%].

Food
milk bread
wheat white
Fraser Sunset

#### **Multiple-Level Association Rules**

mining multilevel association rules.

2% milk ⇒ wheat bread

2% milk ⇒ bread

## Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
  - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support
  - Lower level items do not occur as frequently. If support threshold
    - too high ⇒ miss low level associations
    - too low ⇒ generate too many high level associations
- Reduced Support: reduced minimum support at lower levels

## **Uniform Support**

Level 1 min\_sup = 5%

Level 2 min\_sup = 5%



#### Reduced Support

Level 1 min\_sup = 5%

Level 2 min\_sup = 3%

Milk
[support = 10%]

2% Milk

Skim Milk

[support = 4%]

[support = 6%]

## Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
  - milk ⇒ wheat bread [support = 8%, confidence = 70%]
  - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

# Multi-Dimensional Association: Concepts

• Single-dimensional rules:

```
buys(X, "milk") \Rightarrow buys(X, "bread")
```

- Multi-dimensional rules: O 2 dimensions or predicates
  - Inter-dimension association rules (no repeated predicates)
     age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X,"coke")
  - hybrid-dimension association rules (repeated predicates)
     age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes
  - finite number of possible values, no ordering among values
- Quantitative Attributes
  - numeric, implicit ordering among values

## **Techniques for Mining MD Associations**

- Search for frequent k-predicate set:
  - Example: {age, occupation, buys} is a 3-predicate set.
  - Techniques can be categorized by how age are treated.

#### 1. Using static discretization of quantitative attributes

 Quantitative attributes are statically discretized by using predefined concept hierarchies.

#### 2. Quantitative association rules

 Quantitative attributes are dynamically discretized into "bins"based on the distribution of the data.

#### 3. Distance-based association rules

 This is a dynamic discretization process that considers the distance between data points.

## **Static Discretization of Quantitative Attributes**

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans.
- Data cube is well suited for mining.
- The cells of an n-dimensional cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.



## **Quantitative Association** Rules

- Numeric attributes are dynamically discretized
  - Such that the confidence or compactness of the rules mined is maximized.

2-D quantitative association rules: A<sub>quan1</sub> ∧ A<sub>quan2</sub> ⇒ A<sub>cat</sub>



48K")





### Mining Distance-based Association Rules

Binning methods do not capture the semantics of interval data

|           | Equi-width   | Equi-depth | Distance- |
|-----------|--------------|------------|-----------|
| Price(\$) | (width \$10) | (depth 2)  | based     |
| 7         | [0,10]       | [7,20]     | [7,7]     |
| 20        | [11,20]      | [22,50]    | [20,22]   |
| 22        | [21,30]      | [51,53]    | [50,53]   |
| 50        | [31,40]      |            |           |
| 51        | [41,50]      |            |           |
| 53        | [51,60]      |            |           |

- Distance-based partitioning, more meaningful discretization considering:
  - density/number of points in an interval
  - "closeness" of points in an interval