Sample Quality descriptive analysis of data

Lucas Mello Schnorr, Jean-Marc Vincent

INF/UFRGS Porto Alegre, Brazil – October 30th, 2017

CONTROL OF EXPERIMENTS (1)

Tendency analysis

GLOBAL CONTROL

non homogeneous experiment

⇒ model the evolution of experiment
estimate and compensate tendency
explain why

CONTROL OF EXPERIMENTS (2)

Periodicity analysis

periodic evolution of the experimental environment?

⇒ model the evolution of experiment

Fourier analysis of the sample

Integration on time (sliding window analysis) Danger : size of the window

Wavelet analysis

explain why

GLOBAL CONTROL

CONTROL OF EXPERIMENTS (3)

Non significant values

extraordinary behaviour of experimental environment rare events with different orders of magnitude

 \Rightarrow threshold by value

Danger: choice of the threshold: indicate the rejection rate

 \Rightarrow threshold by quantile

Danger: choice of the percentage: indicate the rejection value explain why

CONTROL OF EXPERIMENTS (4)

Threshold value: 10

GLOBAL CONTROL

Threshold percentage: 1%

GLOBAL CONTROL

CONTROL OF EXPERIMENTS (5)

looks like correct experiments

Statistically independent Statistically homogeneous

CONTROL OF EXPERIMENTS (5BIS)

Zooming

GLOBAL CONTROL

Autocorrelation

Danger time correlation among samples experiments impact on experiments ⇒ stationarity analysis autocorrelation estimation (ARMA)

EXPERIMENTAL RESULTS

- ► Deterministic (controlled error non significant (white noise))
- ► Statistic (the system is non deterministic)

Sample analysis

- ► Identification of the response set
- ► Structure of the response set (measure)

DISTRIBUTION ANALYSIS

Summarize data in a histogram

Shape analysis

- unimodal / multimodal
- variability
- ► symmetric / dissymmetric (skewness)
- ► flatness (kurtosis)
- **⇒** Central tendency analysis
- ⇒ Variability analysis around the central tendency

MODE VALUE

Mode

- ► Categorical data
- Most frequent value
- ► highly unstable value
- ► for continuous value distribution depends on the histogram step
- ▶ interpretation depends on the flatness of the histogram
- ⇒ Use it carefully
- ⇒ Predictor function

MEDIAN VALUE

Median

- Ordered data
- ► Split the sample in two equal parts

$$\sum_{i\leqslant \textit{Median}} f_i \leqslant \frac{1}{2} \leqslant \sum_{i\leqslant \textit{Median}+1} f_i.$$

- more stable value
- ▶ does not depends on the histogram step
- ► difficult to combine (two samples)
- ⇒ Randomized algorithms

MEAN VALUE

Mean

- Vector space
- Average of values

$$\textit{Mean} = \frac{1}{\textit{Sample_Size}} \sum x_i = \sum_x x.f_x.$$

- stable value
- ► does not depends on the histogram step
- ► easy to combine (two samples ⇒ weighted mean)
- ⇒ Additive problems (cost, durations, length,...)

CENTRAL TENDENCY

Complementarity

- ► Valid if the sample is "Well-formed"
- Semantic of the observation
- ▶ Goal of analysis
- ⇒ Additive problems (cost, durations, length,...)

CENTRAL TENDENCY (2)

Summary of Means

- Avoid means if possible Loses information
- Arithmetic mean
 When sum of raw values has physical meaning
 Use for summarizing times (not rates)
- ► Harmonic mean
 Use for summarizing rates (not times)
- Geometric mean
 Not useful when time is best measure of perf Useful when multiplicative effects are in play

VARIABILITY

Categorical data (finite set)

 f_i : empirical frequency of element iEmpirical entropy

$$H(f) = \sum_i f_i \log f_i.$$

Measure the empirical distance with the uniform distribution

- $\vdash H(f) \geqslant 0$
- ightharpoonup H(f) = 0 iff the observations are reduced to a unique value
- ► *H*(*f*) is maximal for the uniform distribution

VARIABILITY (2)

Ordered data

Quantiles: quartiles, deciles, etc

Sort the sample:

$$(x_1, x_2, \cdots, x_n) \longrightarrow (x_{(1)}, x_{(2)}, \cdots, x_{(n)});$$

 $Q_1 = x_{(n/4)}; \ Q_2 = x_{(n/2)} = Median; \ Q_3 = x_{(3n/4)}.$

For deciles

$$d_i = argmax_i \{ \sum_{i \le i} f_i \leqslant \frac{i}{10} \}.$$

Utilization as quantile/quantile plots to compare distributions

Variability (3)

Vectorial data

Quadratic error for the mean

SAMPLE ANALYSIS

$$Var(X) = \frac{1}{n} \sum_{1}^{n} (x_i - \bar{x}_n)^2.$$

Properties:

$$Var(X) \geqslant 0;$$

 $Var(X) = \overline{x^2} - (\overline{x})^2, \text{ où } \overline{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2.$
 $Var(X + cste) = Var(X);$
 $Var(\lambda X) = \lambda^2 Var(X).$

