

Continuous Assessment Test (CAT) - II - October 2024

Programme	1	B.Tech ECE	Semester	-	Fall Sem. 2024-25
Course Code & Course Title	:	BECE312L & Robotics and Automation	Class Number		CH2024250101229 CH2024250102746 CH2024250101221 CH2024250101225 CH2024250101219
Faculty	*	Dr. Santoshi Ganala / 51679 Dr. Mohammed Aarif / 53684 Dr. R. Priyadarshini / 52200 Dr. S. Abinaya / 52232 Dr. Suguna M / 52215	Slot	:	B1 + TB1
Duration	20	1½ Hours	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted

Answer all questions

Q. No	Sub Sec.	Description	Marks
1.		A company working with medical MRI scans needs to compress the images for efficient storage & transmission and also segment the images to detect abnormalities, such as tumours, using thresholding and region-growing techniques. Considering the need to balance storage efficiency and segmentation accuracy: a) Identify a suitable image compression techniques for the above scenario with five valid reasons. [5 marks] b) Discuss how the compression artifacts might impact segmentation results with a suitable example. [5 marks]	10
2.		Consider the problem of moving a robot from its initial position to a goal position in a certain amount of time. Inverse kinematics allows the set of joint angles that correspond to the goal position and orientation to be calculated. a) Illustrate how a cubic polynomial is used in trajectory generation for a robotic joint moving from an initial position to a final position. [5 Marks] b) Derive the general form of the cubic polynomial for a smooth trajectory, ensuring zero initial and final velocities. [5 Marks]	10

3	 a) For the above given three-link planar arm identify the link parameters and draw DH (Denavit-Hartenberg) table. [7 marks] b) Calculate θ₁, θ₂ and θ₃ using inverse kinematics for the above given three link planar arm. End effector is positioned at X_e, Y_e. [8 marks] 	15
4	\hat{X}_3 \hat{Y}_1 \hat{Y}_3 \hat{Y}_0 A two-link manipulator with rotational joints is shown above. Calculate the velocity of the tip of the arm as a function of joint rates. Give the answer in two forms—in terms of frame $\{3\}$, and also in terms of frame $\{0\}$.	15

There