Homework

Deadline: 17-April-2022

- 1. Let $(a_n)_n$ and $(b_n)_n$ be real-sequences such that $a_n \xrightarrow[n \to \infty]{} a$ and $b_n \xrightarrow[n \to \infty]{} b$ where $a, b \in \mathbb{R}$. Prove that,
 - i. $(a_n + \lambda b_n)_n$ converges to $a + \lambda b$, for all $\lambda \in \mathbb{R}$.
 - ii. $(a_n b_n)_n$ converges to ab.
 - iii. $\left(\frac{a_n}{b_n}\right)_n$ converges to $\frac{a}{b}$ if $b \neq 0$ and $b_n \neq 0, \forall n$.
- 2. Let $(a_n)_n$ be a divergent real-sequence. Prove that $\lim_{n\to\infty} \frac{1}{a_n} = 0$.
- 3. If a real-sequence is convergent, prove that its limit is unique.
- 4. Prove that a convergent real-sequence is bounded. Is the converse true?
- 5. Prove that convergence of $(a_n)_n$ implies convergence of $(|a_n|)_n$. Is the converse
- 6. Prove the density of \mathbb{Q} in \mathbb{R} ; that is to prove that for every $a, b \in \mathbb{R}, a < b$, there is $q \in \mathbb{Q}$ such that a < q < b.
- 7. By definition, prove that

i.
$$\lim_{n \to \infty} \frac{2n+1}{n-2} = 2$$

ii.
$$\lim_{n\to\infty} \frac{\sqrt{n-1}}{\sqrt{n}+1} = 1$$

$$\lim_{n \to \infty} \frac{\sqrt{n+1}}{\sqrt[3]{n^3 - 3}} = \frac{1}{2}.$$
iv.
$$\lim_{n \to \infty} \frac{2\sqrt{n+3}}{n-3} = 0.$$
v.
$$\lim_{n \to \infty} (n - \sqrt{n}) = \infty.$$

iv.
$$\lim_{n \to \infty} \frac{2\sqrt{n} + 3}{n - 3} = 0$$
.

v.
$$\lim_{n \to \infty} (n - \sqrt{n}) = \infty$$
.

^{*} Note that any homework received after the deadline is not considered.