Réseaux de neurones
IFT 780

Réseaux à convolution
Par
Pierre-Marc Jodoin

Convolution
et
couche convolutionnelle
1D

En gros convolution = produit scalaire + translation

La convolution des réseaux de neurones = $\frac{(f*W)(v) = \sum_{u=-\infty}^{\infty} f(u)W(v+u)}{v+u}$				
	(signal d'entrée) f(u) 10 20 -30 40 -50	(filtre) W(u) .1 .2 .3	(filtre) W(+u) .1].2].3	'
(f™W)(1) 10/20/-30/40/-50 × × × 1.1.2.3.3 1+4-9 4	(6°W) 10 20 -30 40 ××× 11 -2 -3 2-6+12 4 8	_	(f*W)(3 10 20 -30 40 -5:)

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

E=3

2 --3 .4

Stride = 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26

28

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26 -7

29

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26 -7 23

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

21 21 26 -7 23 8

31

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

21 21 26 -7 23 8 11

Taille de la carte d'activation = 7

32

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

35

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 4 -5 .6

35 -18 33

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 4 -5 .6

35 -18 33 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

Taille de la carte d'activation = 5

37

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

38

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

Stride = 1

Stride = 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

Taille de la carte d'activation = 3

40

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

35

41

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

Stride = 2

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

35

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

35 1

Stride = 3

Convolution et couche convolutionnelle **2D**

Tout comme un Perceptron multi-couches, un réseau à convolution contient plusieurs couches consécutives

Tout comme un perceptron multicouches, un réseau à convolution se termine par une couche de sortie avec 1 neurone par variable prédite

103

104

113

Réseaux à convolution vs Réseaux **pleinement** convolutifs

Configurations équivalentes

couche 1 : 3 filtres de taille 7x7 couche 2 : 5 filtres de taille 9x9 couche 3 : 4 filtres de taille 11x11 couche 4 pleinement connectée 256x4 Softmax couche 1:3 filtres de taille 7x7 couche 2:5 filtres de taille 9x9 couche 3:4 filtres de taille 11x11 couche 4:4 filtres de taille 8x8 Softmax

En fait, presque équivalent ...

Question: qu'arrive-t-il si on remplace l'image 32x32x3 par une image 64x64x3?

125

Pooling

Multiplication matricielle parcimonieuse

https://towards datascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

134

Il est plus rapide de multiplier des matrices que de les convoluer. Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3 Entrée Filtre X0 X1 X2 X3 W0 W1 W2 Y1 Y2 X6 X7 W3 W5 X8 W6 X9 X10 X11 W7 W8 X12 X13 X14 X15

	app		« valid	d», un	canal d'entrée et une carte d'activation, filtre 3x3
	X0	W0	W1	W2	Y0 Y1
	X4	W3	W4	W5	Y2 Y3
	X8	W6	-W7	-W8	
	X12	X13	X14	X15	
Y1=	=W0.X	ζ1+W1	1.X2+V	W2.X3	+W3.X5+W4.X6+W5.X7+W6.X9+W7.X10+W8.X11

cinéarisation de l'entrée et « matriçage » du filtre Ex.: convolution « valid », un canal d'entrée, une carte d'activation, filtre 2x2										
mini-b Eı	atch de ntrée	2 entr	ées		Filtre	e				
X0	X1	X2	Х3		W0	W1		Y0	Y1	Y2
X4	X5	X6	X7	*	W2	W3	=	Y3	Y4	Y5
X8	Х9	X10	X11					Y6	Y7	Y8
X12	X13	X14	X15					Y9	Y10	Y11
X16	X17	X18	X19					Y12	Y13	Y14
X20	X21	X22	X23					Y15	Y16	Y17
X24	X25	X26	X27							
X28	X29	X30	X21							

	Linéarisation de l'entrée et « matriçage »																					
ı	du filtre																					
	Ex.: convolution « valid », un canal d'entrée, une carte d'activation,																					
ı	filtre 2x2 mini-batch de 2 entrées.																					
_	X3 X19 Y0 Y9												Y9									
Ľ	W0	Wl	0	0	W2	W3	0	0	0	0	0	0	0	0	0	0		X4	X20		YI	Y10
L	0	W0	Wl	0	0	W2	W3	0	0	0	0	0	0	0	0	0		X5	X21		Y2	Y11
╙	0	0	W0	Wl	0	0	W2	W3	0	0	0	0	0	0	0	0		X6	X22			
╙	0	0	0	0	W0	Wl	0	0	W2	W3	0	0	0	0	0	0		X7	X23	ı	Y3	Y12
L	0	0	0	0	0	W0	WI	0	0	W2	W3	0	0	0	0	0	х	X8	X24	F	Y4	Y13
L	0	0	0	0	0	0	W0	Wl	0	0	W2	W3	0	0	0	0		X9	X25		Y5	Y14
╙	0	0	0	0	0	0	0	0	W0	WI	0	0	W2	W3	0	0		X10	X26		Y6	Y15
╙	0	0	0	0	0	0	0	0	0	W0	Wl	0	0	W2	W3	0		X11	X27	l	Y7	Y16
IL	0	0	0	0	0	0	0	0	0	0	W0	WI	0	0	W2	W3		X12	X28		Y8	Y17
ı																		X13	X29			1
ı																		X13	X30			
N																		X15	X31			

	1
On peut faire la même chose mais en linéarisant le	
filtre et en « matriçant » l'entrée	
,	
Exercice à la maison, voir comment cette 2e approche s'applique au cas à	
Plusieurs canaux en entrée	
Plusieurs cartes d'activation Plusieurs entrées (mini-batch)	
rusicurs ciurees (mini-bateri)	
a im2 and a travail protions 2	
Sinon, voir im2col du travail pratique 2.	-
457	
157	
	1
Comment calculer la	
rétropropagation dans un CNN?	
À faire au TP2	