Structure of Deep Learning Frameworks: computational graph, autodiff, and optimizers

Joris Mollinga SURF

Computational Graphs

- Represents math in graph format
- Nodes and edges

Computational Graphs

- Represents math in graph format
- Nodes and edges

Computational Graphs

- Represents math in graph format
- Nodes and edges

Autodiff

$$C(y, w, x, b) = y - max(0, w \cdot x + b)$$

$$C(y,w,x,b) = y - max(0,w \cdot x + b)$$

Result $z=w_8$
 $w_8=w_4-w_7$
 $w_6=w_5+w_3$

 $w_3=b$

 $w_2 = x$

Node	Expression	Value
w_1	w	2
w_2	x	1
w_3	b	1
w_4	y	5
w_5	$w_1 \cdot w_2$	2
w_6	$w_5 + w_3$	3
w_7	$\max(0, w_6)$	3
w_8	$w_4 - w_7$	2
Z	w_8	2

$$C(y, w, x, b) = y - max(0, w \cdot x + b)$$

 $w_8 = w_4 - w_7$

 $w_7 = max(0, w_6)$

 $w_6 = w_5 + w_3$

 $w_5 = w_1 w_2$

$$\frac{\delta z}{\delta w_1} = \frac{\delta z}{\delta w_8} \times \frac{\delta w_8}{\delta w_7} \times \frac{\delta w_7}{\delta w_6} \times \frac{\delta w_6}{\delta w_5} \times \frac{\delta w_5}{\delta w_1}$$

$\frac{\delta w_5}{\delta w_1} = \frac{\delta w_1 w_2}{\delta w_1} = w_2$	$\frac{\delta w_{5}}{\delta w_{2}} = \frac{\delta w_{1}w_{2}}{\delta w_{2}} = w_{1}$
$\frac{\delta w_6}{\delta w_5} = \frac{\delta w_5 + w_3}{\delta w_5} = 1$	$\frac{\delta w_6}{\delta w_3} = \frac{\delta w_5 + w_3}{\delta w_3} = 1$
$\frac{\delta w_7}{\delta w_6} = \frac{\delta \max(0, w_6)}{\delta w_6} = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$	$\frac{\delta w_3}{\delta w_7} = \frac{\delta w_4 - w_7}{\delta w_7} = -1$
$\frac{\delta w_8}{\delta w_4} = \frac{\delta w_4 - w_7}{\delta w_4} = 1$	$\frac{\delta z}{\delta w_8} = 1$

$$\frac{\delta z}{\delta w_1} = \frac{\delta z}{\delta w_8} \times \frac{\delta w_8}{\delta w_7} \times \frac{\delta w_6}{\delta w_5} \times \frac{\delta w_6}{\delta w_5} \times \frac{\delta w_5}{\delta w_1} = 1 \times (-1) \times \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases} \times 1 \times w_2 = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$$

Frameworks

- Caffe
- NVCaffe
- IntelCaffe
- PyTorch
- PyTorch Lightning
- Tensorflow
- Horovod (DL distribution framework only)

PyTorch

- Probably the most popular package nowadays
- Multi-GPU support (more than one node)
- Supports cuDNN and MKL-DNN
- Suppports various communication backends: Gloo, MPI, NCCL

Tensorflow

- Also very popular
- Multi-GPU in one node through *tf.device*
- Parallelism across nodes with *tf.distribute*
- Support for TPU
- Supports cuDNN and MKL-DNN
- Supports NCCL allreduce
- For CPU, build from source

Tensorflow optimization tips

- Use TFRecords to prevent I/) bottlenecks
- Overlap computation and data preparation using tf.data.Dataset.prefetch
- Parallelize data transformation using tf.data.Dataset.map
- If data fits in memory, use tf.data.Dataset.cache

Horovod

Is a distribution framework for deep learning (not a deep learning framework itself). Design goals:

- Minimal code changes to make serial program distributed
- High performance distribution

Horovod

- Support for Keras, MXNet, Tensorflow and PyTorch
- Supports MPI and MCCL as communication backends
- Requires about 6 lines of code changes
- Has it's own profiling ability, making it easy to assess communication overhead.

PyTorch Lightning

- PyTorch wrapper for high performance AI research
- Supports various distribution strategies (horovod, data parallel, model parallel)
- Has other convenient features too.

Optimizers

SGD

$$heta_j = heta_j - \eta \cdot \overbrace{rac{\partial C}{\partial heta_j}}^{ ext{Backprop}}$$

Momentum

$$\theta = \theta - \eta \nabla J(\theta) + \gamma v_t$$

Momentum

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates

Require: $f(\theta)$: Stochastic objective function with parameters θ

Require: θ_0 : Initial parameter vector

 $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector)

 $t \leftarrow 0$ (Initialize timestep)

while θ_t not converged do

 $t \leftarrow t + 1$

 $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate)

 $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate)

 $\widehat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters)

end while **return** θ_t (Resulting parameters)

What optimizer to pick?

Adam is always a safe bet

Thank you!