Plano tangente

Dada S una superficie de nivel F(x,y,z)=k y $P(x_0,y_0,z_0)$ un punto en ella, para toda curva r=r(t) contenida en S y que pasa por el punto P se tiene que

$$\nabla F \cdot r'(t) = 0.$$

A partir de lo anterior parece natural definir el **plano tangente a** la superficie de nivel F(x, y, z) = k en el punto $P(x_0, y_0, z_0)$ como el plano que tiene vector normal a $\nabla F(x_0, y_0, z_0)$. Es decir,

$$F_x(x_0, y_0, z_0)(x-x_0) + F_y(x_0, y_0, z_0)(y-y_0) + F_z(x_0, y_0, z_0)(z-z_0) = 0.$$

Asimismo se definirá la **recta normal** a la superficie S en el punto P, como la recta que es perpendicular al plano tangente y pasa por P, de este modo sus ecuaciones simétricas son:

$$\frac{x-x_0}{F_x(x_0,y_0,z_0)}=\frac{y-y_0}{F_y(x_0,y_0,z_0)}=\frac{z-z_0}{F_z(x_0,y_0,z_0)},$$

o bien de manera paramétrica,

$$x = x_0 + t \cdot F_x(x_0, y_0, z_0)$$

$$y = y_0 + t \cdot F_y(x_0, y_0, z_0)$$

$$z = z_0 + t \cdot F_z(x_0, y_0, z_0)$$

Ejemplo

Determine las ecuaciones del plano tangente y de la recta normal en el punto (-2,1,-3) al elipsoide de ecuación:

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$$

Anexo: Geometria en el espacio

A continuación se revisaran algunas definiciones necesarias para este y otros cursos de mas adelante.

Producto vectorial o cruz

Definición

Sean $v_1 = (a_1, a_2, a_3)$; $v_2 = (b_1, b_2, b_3)$ dos vectores. Se define el producto vectorial de v_1 con v_2 como el vector,

$$v_1 \times v_2 = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1).$$

Aprovechando la notación de determinantes aveces es útil escribirlo asi:

$$v_1 \times v_2 = det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

Una propiedad inmediata del vector $v_1 \times v_2$ es que resulta ser ortogonal tanto a v_1 como a v_2 y por ende a el plano que ellos generen.

Otra propiedad que permite caracterizar al producto vectorial es:

Definición

Si θ es el ángulo entre los vectores v_1, v_2 entonces

$$|v_1\times v_2|=|v_1||v_2|\sin(\theta),$$

para
$$\theta \in [0, \pi]$$
.

Ecuaciones de rectas y planos

Sea P(x, y, z) un punto sobre la recta L. Sean r_0, r los vec**tores** posición de los puntos P_0, P

Se tiene que la ecuación vectorial de la recta *L* será:

$$r = r_0 + t \cdot v, \qquad t \in \mathbb{R}.$$

En el caso que v = (a, b, c) y $r_0 = (x_0, y_0, z_0)$ entonces

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$
.

Estas ultimas las llamaremos las ecuaciones parametricas de la recta *L*.

Finalmente, en caso que el parametro t se eliminado, igualando las ecuaciones anteriores, se obtiene las **Ecuaciones simétricas** de la recta L.

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Ecuacion vectorial del plano

Un plano en el espacio se determina por un punto $P_0(x_0, y_0, z_0)$ y un vector **n** ortogonal a dicho plano.

En cuyo caso, si r_0 es el vector posición de P_0 y r es el vector posición de un punto arbitrario P entonces la ecuación del plano con vector ortogonal (o normal) es:

$$n\cdot (r-r_0)=0.$$

En el caso que n = (a, b, c), P(x, y, z) se tiene:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0.$$