Societatea de Științe Matematice din România

Olimpiada Națională de Matematică Etapa Națională, Sibiu, 8 aprilie 2014

CLASA a VII-a

SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. Determinați numerele prime p și q, cu $p \leq q$, pentru care are loc egalitatea:

$$p(2q+1) + q(2p+1) = 2(p^2 + q^2).$$

Problema 2. În exteriorul pătratului ABCD se construiește rombul BCMN. Se notează cu P punctul de intersecție a dreptelor BM și AN. Arătați că $DM \perp CP$ și că triunghiul DPM este dreptunghic isoscel.

Soluţie.

$$180^{\circ} = m(\widehat{DMB}) + m(\widehat{BDM}) + m(\widehat{DBM}) =$$

$$= m(\widehat{DMB}) + 45^{\circ} + m(\widehat{CDM}) + 45^{\circ} + m(\widehat{CBM}) = 90^{\circ} + 2m(\widehat{DMB}),$$

Problema 3. Determinați numerele naturale n pentru care are loc egalitatea:

$$17^n + 9^{n^2} = 23^n + 3^{n^2}.$$

Soluţia 1. Se observă că n = 0 şi n = 1 sunt soluţii 1p

Pentru $n \geq 2$, avem $n^2 \geq 2n$, de unde rezultă că $9^{n^2} - 3^{n^2} = 3^{n^2} \left(3^{n^2} - 1\right) \geq 3^{2n} \left(3^{2n} - 1\right) = 81^n - 9^n \dots 4p$ Deoarece $81^n - 9^n > 23^n - 17^n$, ecuația nu are soluții $n \geq 2 \dots 2p$

$$A = 23^{n-1} + 17 \cdot 23^{n-1} + 17^2 \cdot 23^{n-2} + \dots + 17^{n-2} \cdot 23 + 17^{n-1}$$

$$B = 9^{n^2 - 1} + 9^{n^2 - 2} \cdot 3 + 9^{n^2 - 3} \cdot 3^2 + \dots + 9 \cdot 3^{n^2 - 2} + 3^{n^2 - 1} \cdot \dots \cdot \mathbf{2p}$$

Deoarece $n^2-1=(n+1)\,(n-1)\geq 3\,(n-1)\,,$ pentru orice $n\geq 2,$ rezultă că

$$B > n^2 \cdot 3^{n^2 - 1} \ge n^2 \cdot 3^{3(n - 1)} = n^2 \cdot 27^{n - 1} > n \cdot 23^{n - 1} = A,$$

Problema 4. În exteriorul pătratului ABCD se construiește triunghiul dreptunghic isoscel ABE, cu ipotenuza [AB]. Fie N mijlocul laturii [AD] și $\{M\} = CE \cap AB$, $\{P\} = CN \cap AB$, $\{F\} = PE \cap MN$. Pe dreapta FP se consideră punctul Q astfel încât [CE] este bisectoarea unghiului QCB. Arătați că $MQ \perp CF$.

De asemenea, $\triangle CEQ \equiv \triangle PEM$ (C.U.), adică $EQ = EM$, deci $\triangle EMQ$
este dreptunghic și isoscel. Obținem $m(\widehat{EQM}) = 45^{\circ} = m(\widehat{EPC})$, de unde
rezultă că $MQ \parallel CP$ (3)1p
Aplicând teorema lui Menelaus în triunghiul CPE cu transversala NF CN FP ME
avem $\frac{CN}{NP} \cdot \frac{FI}{FE} \cdot \frac{ME}{MC} = 1$
Notând cu R piciorul perpendicularei din E pe AB, atunci $\triangle CBM \sim$
$\triangle ERM$, de unde obţinem $\frac{\overline{ME}}{MC} = \frac{ER}{BC} = \frac{1}{2}$
Deoarece $NP = CN$, rezultă $\frac{FP}{FE} = 2$, deci $PE = EF$, și conform (1),
CE este înălțime și mediană în triunghiul CFP , adică acesta este isoscel.
Folosind (2), rezultă $m(\widehat{FCP}) = 90^{\circ}$, adică $CP \perp CF$, de unde, ţinând cont
de (3), obţinem $MQ \perp CF$