Exercise Sheet 10 Linear Algebra (AAI)

Exercise 10.1 (H)

Let $A_1, A_2, A_3, A_4 \in \mathbb{R}^{3 \times 3}$ be given by

$$A_1 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 3/2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 7 & 2 & 4 \\ 1 & 6 & 2 \\ 1 & 1 & 7 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

- a) Determine the characteristic polynomials P_{A_i} for all i = 1, 2, 3, 4.
- b) Determine all eigenvalues and the corresponding eigenspaces of A_i for all i = 1, 2, 3, 4.

Exercise 10.2 (H)

Let the basis $\mathcal{A} = (v_1, v_2, v_3, v_4)$ of \mathbb{R}^4 be given by

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \qquad v_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Construct a matrix $A \in \mathbb{R}^{4 \times 4}$ such that

$$Av_1 = v_1, \quad Av_2 = -v_2, \quad Av_3 = 0, \quad Av_4 = 2v_4.$$

Hint: Determine $\mathcal{M}_{\mathcal{A}}^{\mathcal{A}}(\mathcal{F}_A)$ and note that $A = \mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(\mathcal{F}_A)$.

Exercise 10.3 (H)

Let $n \in \mathbb{N}$ and $A \in \mathbb{R}^{n \times n}$.

- a) Show that $\operatorname{Eig}(A,\lambda) = \operatorname{Eig}(A^{-1},\lambda^{-1})$ for $A \in \operatorname{Gl}(n,\mathbb{R})$ and $\lambda \in \sigma(A)$.
- b) Let all $x \in \mathbb{R}^n \setminus \{0\}$ be eigenvectors of A. Show that there exists $c \in \mathbb{R}$ such that $A = c \cdot E_n$, i.e., A is a multiple of the identity matrix E_n . Hint: Note that $Ae_i = \lambda_i e_i$ and $Ae_j = \lambda_j e_j$. Consider $A(e_i + e_j)$ to show $\lambda_i = \lambda_j$.

Exercise 10.4 (H)

Let V be a K-vector space with dim $V=n\in\mathbb{N}.$ Moreover, let $F\colon V\to V$ be linear with im $F=\ker F.$

- a) Show that n is even.
- b) Determine all eigenvalues and the corresponding eigenspaces of F. Hint: Note that an eigenvector $v \in V \setminus \{0\}$ satisfies $F(F(v)) = F(\lambda v) = \lambda^2 v$.
- c) Construct a linear map $F: \mathbb{R}^2 \to \mathbb{R}^2$ such that im $F = \ker F$.