# Lab 2 - BCC406

#### REDES NEURAIS E APRENDIZAGEM EM PROFUNDIDADE

# Regressão Logística e Rede Neural

Prof. Eduardo e Prof. Pedro

#### Objetivos:

• Regressão e Descida do Gradiente

Data da entrega: 26/08

- Complete o código (marcado com ToDo) e quando requisitado, escreva textos diretamente nos notebooks. Onde tiver None, substitua pelo seu código.
- Execute todo notebook e salve tudo em um PDF nomeado como "NomeSobrenome-LabX.pdf"
- Envie o PDF via google <u>FORM</u>

# Classificação utilizando frameworks

- Trabalharemos com um problema de classificação: é um gato ou não é um gato.
- Utilizaremos um framework: o Tensorflow/Keras.

# Importando os pacotes

Primeiro, vamos executar a célula abaixo para importar todos os pacotes que precisaremos.

- <u>numpy</u> é o pacote fundamental para a computação científica com Python.
- <u>h5py</u> é um pacote comum para interagir com um conjunto de dados armazenado em um arquivo H5.
- matplotlib é uma biblioteca famosa para plotar gráficos em Python.
- PIL e scipy são usados aqui para testar seu modelo.
- <u>tensorflow</u> é uma biblioteca famosa para criar e treinar modelos de Deep Learning.
- np.random.seed (1) é usado para manter todas as chamadas de funções aleatórias.

```
import numpy as np
import h5py
import matplotlib.pyplot as plt
import random
```

```
from sklearn.metrics import accuracy_score import tensorflow as tf from tensorflow.python.keras import Sequential from tensorflow.python.keras.layers import Dense from tensorflow.keras import initializers
```

Configurando o matplotlib e a geração de dados aleatórios

```
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
```

# Configurando o Google Colab

```
# Para Google Colab: Você vai precisar fazer o upload dos arquivos no seu drive e montá-lc
# não se esqueça de ajustar o path para o seu drive
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
```

# Carregando os dados (10pt)

Coloque os arquivos *train\_catvnonvat.h5* e *test\_catvnoncat.h5* na pasta raiz do seu Drive. Ambos os arquivos estão na pasta dataset da pasta compartilhada.

```
# Lendo os dados (gato/não-gato)
def load_dataset():

    train_dataset = h5py.File('train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

classes = np.array(test_dataset["list_classes"][:]) # the list of classes
```

```
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
# Lendo os dados (gato/não-gato)
treino_x_orig, treino_y, teste_x_orig, teste_y, classes = load_dataset()
```

### Pré-processamento dos dados

Pre-processamento necessário. Iremos converter a imagem 3D (64x64x3) em um único vetor 1D (12288 = 64x64x3). A figura mostra um exemplo do pré-processamento executado (imagem vetorizada)



Figura: Vetorização de uma imagem.

# ▼ ToDo: Vetorização da imagem (10pt)

Converta as imagens do formato 64x64x3 para 12288x1.

```
m_treino = len(treino_x_orig)
m_teste = len(teste_x_orig)
num_px = teste_x_orig[1].shape[1]
```

# Vetorizando as imagens de treinamento e teste

```
### Início do código ###
```

```
treino_x = treino_x_orig.reshape((m_treino, num_px*num_px*3)) # dica : utilize reshape par
### Fim do código ###

### Início do código ###

# Normalize os dados para ter valores de recurso entre 0 e 1.
teste_x = teste_x_orig.reshape((m_teste, num_px*num_px*3)) # dica : utilize reshape para n
### Fim do código ###
```

# Testando redes neurais e sigmoid

Para classificação de classes 0 ou 1, pode-se ter um único neurônio de saída e deve-se usar a operação sigmoid antes de se calcular o custo (mean-squared error ou binary cross entropy).

#### Testando uma rede com uma camada oculta



Figura 7: Rede neural com 2 camadas.

Resumo do modelo: \*\*\*ENTRADA -> LINEAR -> RELU -> LINEAR -> SIGMOID -> SAIDA\*\*\*.

```
## Setando a seed
np.random.seed(1)
random.seed(1)
```

```
### Executar uma rede de 1 camada oculta ###
# Camadas da rede = [12288, 200, 1]
# Definição do modelo
model = Sequential()
model.add(Dense(200, input_shape=(12288,), activation='relu', name='CamadaOculta'))
model.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='binary_crossentropy', optimizer='adam')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
model.fit(treino_x, treino_y.reshape(-1), epochs=100)
 Epoch 73/100
 Epoch 74/100
 Epoch 75/100
 Epoch 76/100
 Epoch 77/100
 Epoch 78/100
 Epoch 79/100
 Epoch 80/100
 Epoch 81/100
 Epoch 82/100
 Epoch 83/100
 Epoch 84/100
 Epoch 85/100
 Epoch 86/100
 Epoch 87/100
 Epoch 88/100
 Epoch 89/100
 Epoch 90/100
 7/7 [============== ] - 0s 18ms/step - loss: 1.4516e-06
 Epoch 91/100
 Epoch 92/100
 Epoch 93/100
```

```
7/7 [==========] - 0s 17ms/step - loss: 1.4445e-06
Epoch 94/100
Epoch 95/100
Epoch 96/100
Epoch 97/100
Epoch 98/100
Epoch 99/100
Epoch 100/100
7/7 [==========] - 0s 18ms/step - loss: 1.4258e-06
<tensorflow.python.keras.callbacks.History at 0x7f29d1020690>
```

**Use os parâmetros treinados** para classificar as imagens de treinamento e teste e verificar a acurácia.

## Resultado esperado:

```
Acurácia treino = 100%
Acurácia teste = 64%
```

▼ ToDo: Análise dos resultados (5pt)

Acurácia no teste: 68.00

Por que você obteve 100% no treino e apenas 64% no teste?

Porque a rede neural ficou muito sobreajustada aos dados de treino e não conseguiu acertar bem os dados de teste, houve um overfitting.

▼ Testando com uma rede com três camadas ocultas



Figura 8: Rede neural com L camadas.

Resumo do modelo: \*\*\*ENTRADA -> LINEAR -> RELU -> LINEAR -> SIGMOID -> SAIDA\*\*\*.

```
## Setando a seed
np.random.seed(1)
random.seed(1)
### Executar uma rede de 3 camadas ocultas ###
\# Camadas da rede = [12288, 200, 70, 5, 1]
# Definição do modelo
model = Sequential()
model.add(Dense(200, input_shape=(12288,), activation='relu', name='CamadaOculta1'))
model.add(Dense(70, activation='relu', name='CamadaOculta2'))
model.add(Dense(5, activation='relu', name='CamadaOculta3'))
model.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='binary crossentropy', optimizer='adam')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
model.fit(treino_x, treino_y.reshape(-1), epochs=50)
```

```
EPOCN 23/50
Epoch 24/50
7/7 [========== - - os 24ms/step - loss: 0.6767
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 32/50
Epoch 33/50
Epoch 34/50
Epoch 35/50
Epoch 36/50
Epoch 37/50
7/7 [============ - - os 19ms/step - loss: 0.6689
Epoch 38/50
7/7 [========== - - os 22ms/step - loss: 0.6685
Epoch 39/50
Epoch 40/50
Epoch 41/50
Epoch 42/50
7/7 [=============== ] - 0s 25ms/step - loss: 0.6664
Epoch 43/50
7/7 [============== ] - 0s 22ms/step - loss: 0.6661
Epoch 44/50
Epoch 45/50
Epoch 46/50
7/7 [============== ] - 0s 24ms/step - loss: 0.6648
Epoch 47/50
Epoch 48/50
7/7 [========== ] - 0s 23ms/step - loss: 0.6639
Epoch 49/50
7/7 [========== - - os 24ms/step - loss: 0.6634
Epoch 50/50
<tensorflow.python.keras.callbacks.History at 0x7f34f3070f50>
```

Use os parâmetros treinados para classificar as imagens de treinamento e teste e verificar a acurácia.

#### Resultado esperado:

```
Acurácia treino = 65.55%
Acurácia teste = 34.00%
```

#### ▼ ToDo: Análise dos resultados (5pt)

O resultado com três camadas ocultas foi melhor ou pior do que usa somente uma camada? Tente explicar os motivos.

Foi pior, errou mais no conjunto de treino e de teste. Isso aconteceu porque a informação passadas pelas múltiplas camadas alteravam muito os pesos, impedindo o modelo de aprender.

# ▼ ToDo: Teste uma rede (20pt)

Crie uma arquitetura e treine/teste o seu modelo

```
### Início do código ###
## Setando a seed
np.random.seed(1)
random.seed(1)

### Executar uma rede de 1 camada oculta ###
# Camadas da rede = [12288, 8193, 1]

# Definição do modelo
model2 = Sequential()
model2.add(Dense(8193, input_shape=(12288,), activation='relu', name='CamadaOculta'))
model2.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))

# Compilando o modelo
model2.compile(loss='binary_crossentropy', optimizer='adam')
```

```
# Imprimindo a arquitetura da rede proposta
model2.summary()
```

# Treinando o modelo
model2.fit(treino\_x, treino\_y.reshape(-1), epochs=100)
### Fim do código ###

#### ## Predição da rede

print(f'Train accuracy: {accuracy\_score(treino\_y.reshape(-1), np.round(model2.predict(trei print(f'Test accuracy: {accuracy\_score(teste\_y.reshape(-1), np.round(model2.predict(teste\_

```
Epoch 73/100
7/7 [========= ] - 5s 639ms/step - loss: 3.0609
Epoch 74/100
Epoch 75/100
Epoch 76/100
Epoch 77/100
Epoch 78/100
Epoch 79/100
Epoch 80/100
7/7 [============== ] - 5s 696ms/step - loss: 1.5760e-04
Epoch 81/100
Epoch 82/100
7/7 [========== ] - 5s 715ms/step - loss: 0.0191
Epoch 83/100
Epoch 84/100
Epoch 85/100
Epoch 86/100
7/7 [========== - 4s 603ms/step - loss: 0.1483
Epoch 87/100
7/7 [================ ] - 4s 580ms/step - loss: 0.8147
Epoch 88/100
Epoch 89/100
Epoch 90/100
7/7 [=========== - - 5s 649ms/step - loss: 5.6132
Epoch 91/100
7/7 [============= ] - 5s 688ms/step - loss: 2.8586
Epoch 92/100
Epoch 93/100
7/7 [============ - 5s 715ms/step - loss: 0.1700
Epoch 94/100
7/7 [==================== ] - 5s 743ms/step - loss: 0.2610
Epoch 95/100
7/7 [================ ] - 6s 802ms/step - loss: 0.1660
Epoch 96/100
7/7 [==========] - 5s 690ms/step - loss: 0.2263
Epoch 97/100
```

## ▼ Testando redes neurais e softmax

Para classificação de múltiplas classes, tem-se um neurônio de saída para cada classe (como ilustrado no exemplo da Figura 1) e deve-se usar a operação Softmax antes de se calcular o custo (entropia cruzada ou cross-entropy como no exemplo anterior). Consute o capítulo 3.6 do livro para entender melhor. No caso de se usar softmax, deve-se usar a função one\_hot para transformar a saída em logits.

A função **one\_hot** transforma um escalar em um **hot encoder**, de acordo com o número de classes.



Figura 1: Rede neural dois neurônios de saída.

# ▼ Função de one-hot encoded

#### Saída esperada

### ToDo: Função one-hot encoded (5pt)

O que a função one-hot encoded faz com o vetor na prática?

Tranforma cada possível valor do vetor(rótulo) em um vetor do tamanho da quantidade de valores(rótulos) possíveis. Cada vetor produzido possui em suas posições os valores de 0 ou 1, onde 1 representa que um rótulo está ativo. O vetor na realidade vira um vetor com esses vetores (uma matriz).

# ▼ Função SoftMax

A função softmax transforma a saída em uma distribuição de probabilidades. Assim, a soma de todas as saídas dos neurônio da última camada sempre vai ser igual a 1:

$$softmax(\mathbf{x}) = rac{1}{\sum_{i=1}^n e^{x_i}} \cdot egin{bmatrix} e^{x_2} \ dots \ e^{x_n} \end{bmatrix}$$

o gradiente para o custo usando-se a função softmax é trivial de se calcular:

$$dw = softmax(\mathbf{y_{pred}}) - y$$

```
indices = [-1., 0., 1.]
print(tf.nn.softmax(indices))
    tf.Tensor([0.09003057 0.24472848 0.66524094], shape=(3,), dtype=float32)
```

#### Saída esperada

[0.09003057, 0.24472848, 0.66524094]

Perceba que esse código também funciona se você passar um lote (batch) de amostras

#### ToDo: Função softmax (5pt)

O que a função softmax faz com o vetor na prática?

A função softmax transforma a saída em uma distribuição de probabilidades que somadas resulta em 1. Ela retorna um vetor como resultado, com a probabilidade(distribuição) de cada elemento do vetor passado como parâmetro. Quanto maior o elemento maior será sua probabilidade. Isso ajudará na classificação de múltiplas classes.

## ▼ Função de erro

Em seguida, deve-se computar o erro entre um vetor predito (**Y\_pred**) e o vetor de real de rótulos (**Y\_true**). para tal, deve-se usar cross entropy loss, ou verossimilhança negativa (negative log likelihood). A função **cross\_entropy()** implementa a verossimilhança negativa.

```
tf.keras.losses.CategoricalCrossentropy()
```

Erro de uma predição bem ruim

```
y_true = [[1, 0, 0]]
y_pred = [[0.12, 4, 10]]

cce = tf.keras.losses.CategoricalCrossentropy()
print(cce(y_true, y_pred).numpy())

4.7678556
```

Erro de uma boa predição

```
y_true = [[1, 0, 0]]
y_pred = [[0.97, 0.01, 0.02]]
```

A função de erro também funciona para um lote de dados.

## ▼ ToDo: Função de erro (5pt)

Explique a função de erro Categorical Cross-entropy.

Ela calcula a perda de entropia cruzada entre os rótulos e as previsões, ou seja, é a medida da diferença entre duas distribuições, no caso a real e a predita. A função de perda requer as seguintes entradas: y\_true(rótulo verdadeiro): isso é 0 ou 1, y\_pred(valor previsto): previsão do modelo, ou seja, um único valor de ponto flutuante.

#### Testando uma rede com uma camada oculta

Para esta atividade você deve usar uma loss (ou função de perda) baseada em softmax.

```
## Setando a seed
np.random.seed(1)
random.seed(1)

### Executar uma rede de 1 camada oculta ###
# Camadas da rede = [12288, 200, 1]

# Definição do modelo
model = Sequential()
```

```
model.add(Dense(200, input_shape=(12288,), activation='relu', name='CamadaOculta'))
model.add(Dense(2, activation='softmax', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='categorical_crossentropy', optimizer='adam')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
model.fit(treino_x, tf.one_hot(treino_y.reshape(-1), 2), epochs=100)
  באסרנו אא/ דמם
  Epoch 50/100
  7/7 [============ - - os 19ms/step - loss: 4.1968
  Epoch 51/100
  Epoch 52/100
  7/7 [============ - - os 17ms/step - loss: 1.9273
  Epoch 53/100
  Epoch 54/100
  7/7 [============= ] - 0s 16ms/step - loss: 0.1440
  Epoch 55/100
  7/7 [============ - - os 18ms/step - loss: 1.5554
  Epoch 56/100
  Epoch 57/100
  Epoch 58/100
  Epoch 59/100
  Epoch 60/100
  Epoch 61/100
  Epoch 62/100
  Epoch 63/100
  7/7 [============= ] - 0s 18ms/step - loss: 32.8054
  Epoch 64/100
  7/7 [=============== ] - 0s 18ms/step - loss: 30.4529
  Epoch 65/100
  7/7 [============ ] - 0s 17ms/step - loss: 28.4256
  Epoch 66/100
  7/7 [================] - 0s 18ms/step - loss: 11.8998
  Epoch 67/100
  Epoch 68/100
  Epoch 69/100
  7/7 [========== - - os 17ms/step - loss: 0.8535
  Epoch 70/100
  7/7 [===========] - 0s 19ms/step - loss: 0.1792
  Epoch 71/100
  7/7 [=========== ] - 0s 18ms/step - loss: 0.1061
  Epoch 72/100
  7/7 [============== ] - 0s 19ms/step - loss: 0.4757
```

**Use os parâmetros treinados** para classificar as imagens de treinamento e teste e verificar a acurácia.

```
## Predição da rede
print(f'Acurácia no treino: {accuracy_score(treino_y.reshape(-1), np.argmax(model.predict(
print(f'Acurácia no teste: {accuracy_score(teste_y.reshape(-1), np.argmax(model.predict(teste_y.reshape(-1), np.argmax(model.predi
```

#### Resultado esperado:

```
Acurácia treino = 100%
Acurácia teste = 70%
```

# ▼ ToDo: Testando outras redes (20pt)

Primero, implemente a rede de três camadas ocultas (mesma arquitetura utilizada com sigmoid). Por fim, repita o teste com uma arquitetura projetada por você, de preferência, bem profunda e mais larga. Plote a curva de custo (epochs vs loss) para cada um dos dois casos. O que você conclui?

```
### Início do código ###
## Setando a seed
## Setando a seed
np.random.seed(1)
random.seed(1)

### Executar uma rede de 3 camadas ocultas ###
# Camadas da rede = [12288, 200, 70, 5, 2]

# Definição do modelo
model = Sequential()
model.add(Dense(200, input_shape=(12288,), activation='relu', name='CamadaOculta1'))
model.add(Dense(70, activation='relu', name='CamadaOculta2'))
model.add(Dense(5, activation='relu', name='CamadaOculta3'))

**CamadaOculta3')

**Calcher Politica (Archer Marker)
**CamadaOculta3')
**Calcher Politica (Archer Marker)
**CamadaOculta3')
**Calcher Politica (Archer Marker)
**CamadaOculta3')
**Calcher Politica (Archer Marker)
**CamadaOculta3')
**Calcher Politica (Archer Marker)
**CamadaOculta3')
**Calcher Politica (Archer Marker)
**CamadaOculta3')
**Camadas Camadas ocultas ###
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288, 200, 70, 5, 2]
**Camadas da rede = [12288
```

```
model.add(Dense(2, activation='softmax', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='categorical_crossentropy', optimizer='adam')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
history = model.fit(treino_x, tf.one_hot(treino_y.reshape(-1), 2), epochs=100)
### Fim do código ###
## Predição da rede
print(f'Acurácia no treino: {accuracy_score(treino_y.reshape(-1), np.argmax(model.predict(
print(f'Acurácia no teste: {accuracy_score(teste_y.reshape(-1), np.argmax(model.predict(teste_y.reshape(-1), np
       Epoch 73/100
       Epoch 74/100
       7/7 [============ - - os 24ms/step - loss: 0.6462
       Epoch 75/100
       Epoch 76/100
       7/7 [============ - - os 21ms/step - loss: 0.6460
       Epoch 77/100
      Epoch 78/100
       Epoch 79/100
       7/7 [============ - - os 17ms/step - loss: 0.6457
       Epoch 80/100
      Epoch 81/100
       Epoch 82/100
       Epoch 83/100
       Epoch 84/100
       Epoch 85/100
       7/7 [========== - - os 17ms/step - loss: 0.6452
       Epoch 86/100
       Epoch 87/100
       Epoch 88/100
       7/7 [========== - - os 17ms/step - loss: 0.6451
       Epoch 89/100
       7/7 [============== ] - 0s 17ms/step - loss: 0.6449
       Epoch 90/100
       Epoch 91/100
       Epoch 92/100
       Epoch 93/100
       Epoch 94/100
```

plt.plot(history.epoch, history.history['loss'], label="Distribuição do Erro")



```
### Início do código ###
## Setando a seed
## Setando a seed
np.random.seed(1)
random.seed(1)
### Executar uma rede de 7 camadas ocultas ###
# Camadas da rede = [12288, 500, 200, 70, 50, 20, 10 5, 2]
# Definição do modelo
model = Sequential()
model.add(Dense(500, input_shape=(12288,), activation='relu', name='CamadaOculta1'))
model.add(Dense(200, activation='relu', name='CamadaOculta2'))
model.add(Dense(70, activation='relu', name='CamadaOculta3'))
model.add(Dense(50, activation='relu', name='CamadaOculta4'))
model.add(Dense(10, activation='relu', name='CamadaOculta5'))
model.add(Dense(5, activation='relu', name='CamadaOculta6'))
model.add(Dense(2, activation='softmax', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='categorical_crossentropy', optimizer='adam')
```

```
# Imprimindo a arquitetura da rede proposta
model.summary()
```

# Treinando o modelo

history = model.fit(treino\_x, tf.one\_hot(treino\_y.reshape(-1), 2), epochs=100)
### Fim do código ###

## Predição da rede

print(f'Acurácia no treino: {accuracy\_score(treino\_y.reshape(-1), np.argmax(model.predict(
print(f'Acurácia no teste: {accuracy\_score(teste\_y.reshape(-1), np.argmax(model.predict(teste\_y.reshape(-1)))

```
Epoch 73/100
7/7 [========== - - os 42ms/step - loss: 0.6496
Epoch 74/100
Epoch 75/100
7/7 [=========== ] - 1s 123ms/step - loss: 0.6492
Epoch 76/100
Epoch 77/100
Epoch 78/100
Epoch 79/100
Epoch 80/100
Epoch 81/100
Epoch 82/100
Epoch 83/100
7/7 [============ - - 1s 83ms/step - loss: 0.6478
Epoch 84/100
Epoch 85/100
Epoch 86/100
7/7 [============== ] - 0s 40ms/step - loss: 0.6474
Epoch 87/100
7/7 [============== ] - 0s 41ms/step - loss: 0.6473
Epoch 88/100
Epoch 89/100
7/7 [==========] - 0s 56ms/step - loss: 0.6470
Epoch 90/100
7/7 [============== ] - 0s 56ms/step - loss: 0.6469
Epoch 91/100
Epoch 92/100
7/7 [========== ] - 0s 56ms/step - loss: 0.6466
Epoch 93/100
7/7 [============== ] - 0s 57ms/step - loss: 0.6465
Epoch 94/100
Epoch 95/100
7/7 [========== - - os 60ms/step - loss: 0.6462
Epoch 96/100
7/7 [============= ] - 0s 57ms/step - loss: 0.6462
Fnoch 97/100
```

plt.plot(history.epoch, history.history['loss'], label="Distribuição do Erro")



É possível concluir que em redes neurais mais largas e profundas o erro no início das épocas sofre mais variação para depois convergir a um determinado erro menor.

# ▼ ToDo: Variando alguns hiperparâmetros (20pt)

Usando o framework do tensorflow/keras, altere os hiperparâmetros e veja o impacto (gere pelo menos dois novos modelos):

- learning rate,
- Algoritmo de otimização (SGD com momento, ADAM, ADADELTA, RMSPROP),
- inicialização dos pesos: inicialiação aleatória vs uniforme,
- Funções de ativação: troque a sigmoid por (ReLU, GELU, Leaky RELU),

```
### Início do código ###
## Setando a seed
np.random.seed(1)
random.seed(1)
### Executar uma rede de 1 camada oculta ###
# Camadas da rede = [12288, 200, 1]
```

```
model = Sequential()
model.add(Dense(200, input shape=(12288,), activation='relu', name='CamadaOculta', kernel
model.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='binary_crossentropy', optimizer='sgd')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
model.fit(treino_x, treino_y.reshape(-1), epochs=100)
### Fim do código ###
## Predição da rede
print(f'Acurácia no treino: {accuracy_score(treino_y.reshape(-1), np.round(model.predict(t
Epoch 35/100
  Epoch 36/100
  Epoch 37/100
  Epoch 38/100
  Epoch 39/100
  7/7 [============ - - os 20ms/step - loss: 0.6242
  Epoch 40/100
  Epoch 41/100
  7/7 [============ - - os 17ms/step - loss: 0.6236
  Epoch 42/100
  Epoch 43/100
  7/7 [=========== ] - 0s 21ms/step - loss: 0.6230
  Epoch 44/100
  Epoch 45/100
  7/7 [============== ] - 0s 17ms/step - loss: 0.6225
  Epoch 46/100
  Epoch 47/100
  7/7 [========== - - os 21ms/step - loss: 0.6220
  Epoch 48/100
  Epoch 49/100
  Epoch 50/100
  Epoch 51/100
  7/7 [============== ] - 0s 22ms/step - loss: 0.6211
  Epoch 52/100
  7/7 [========== - - os 21ms/step - loss: 0.6209
  Epoch 53/100
  Epoch 54/100
```

Fnoch 79/100

7/7 [================== ] - 0s 19ms/step - loss: 3043.0417

```
LPOCII / 2/ 100
    7/7 [============ ] - 0s 19ms/step - loss: 3024.2070
    Epoch 80/100
    7/7 [================= ] - 0s 22ms/step - loss: 3005.1292
    Epoch 81/100
    7/7 [============ ] - 0s 19ms/step - loss: 2986.8103
    Epoch 82/100
    7/7 [============ ] - 0s 19ms/step - loss: 2966.0745
    Epoch 83/100
    7/7 [============== ] - 0s 19ms/step - loss: 2945.2412
    Epoch 84/100
    7/7 [============= ] - 0s 20ms/step - loss: 2926.8008
    Epoch 85/100
    7/7 [============= ] - 0s 20ms/step - loss: 2908.7827
    Epoch 86/100
    7/7 [============ ] - 0s 19ms/step - loss: 2891.3220
    Epoch 87/100
    7/7 [============== ] - 0s 21ms/step - loss: 2873.6104
    Epoch 88/100
    7/7 [============= ] - 0s 19ms/step - loss: 2857.2451
    Epoch 89/100
    7/7 [=========== ] - 0s 26ms/step - loss: 2841.6704
    Epoch 90/100
    7/7 [============= ] - 0s 24ms/step - loss: 2823.5933
    Epoch 91/100
    7/7 [========== ] - 0s 23ms/step - loss: 2806.6956
    Epoch 92/100
    7/7 [============= ] - 0s 25ms/step - loss: 2790.2512
    Epoch 93/100
    7/7 [============ ] - 0s 26ms/step - loss: 2774.4099
    Epoch 94/100
    7/7 [============ ] - 0s 23ms/step - loss: 2758.3894
    Epoch 95/100
    7/7 [============= ] - 0s 25ms/step - loss: 2742.2302
    Epoch 96/100
    7/7 [============= ] - 0s 23ms/step - loss: 2727.5994
    Epoch 97/100
    7/7 [=========== ] - 0s 25ms/step - loss: 2713.4397
    Epoch 98/100
    7/7 [============== ] - 0s 25ms/step - loss: 2698.2212
    Epoch 99/100
    7/7 [============= ] - 0s 27ms/step - loss: 2684.6353
    Epoch 100/100
    7/7 [============ ] - 0s 25ms/step - loss: 2671.1672
    Acurácia no treino: 58.37
    Acurácia no teste: 34.00
### Início do código ###
## Setando a seed
np.random.seed(1)
random.seed(1)
### Executar uma rede de 1 camada oculta ###
\# Camadas da rede = [12288, 200, 1]
# Definição do modelo
model = Sequential()
model.add(Dense(200, input_shape=(12288,), activation='relu', name='CamadaOculta', kernel_
```

```
model.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='binary_crossentropy', optimizer='RMSPROP')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
model.fit(treino_x, treino_y.reshape(-1), epochs=100)
### Fim do código ###
## Predição da rede
print(f'Acurácia no treino: {accuracy_score(treino_y.reshape(-1), np.round(model.predict(t
print(f'Acurácia no teste: {accuracy_score(teste_y.reshape(-1), np.round(model.predict(teste_y.reshape(-1))
  Epoch 73/100
  7/7 [==========] - 0s 26ms/step - loss: 0.0000e+00
  Epoch 74/100
  7/7 [=============== ] - 0s 29ms/step - loss: 0.0000e+00
  Epoch 75/100
  Epoch 76/100
  Epoch 77/100
  Epoch 78/100
  Epoch 79/100
  Epoch 80/100
  Epoch 81/100
  7/7 [=============== ] - 0s 34ms/step - loss: 0.0000e+00
  Epoch 82/100
  Epoch 83/100
  Epoch 84/100
  Epoch 85/100
  Epoch 86/100
  Epoch 87/100
  Epoch 88/100
  Epoch 89/100
  Epoch 90/100
  Epoch 91/100
  Epoch 92/100
  Epoch 93/100
  7/7 [==========] - 0s 28ms/step - loss: 0.0000e+00
  Epoch 94/100
```

```
Epoch 95/100
   Epoch 96/100
   7/7 [=============== ] - 0s 29ms/step - loss: 0.0000e+00
   Epoch 97/100
   Epoch 98/100
   7/7 [=============== ] - 0s 27ms/step - loss: 0.0000e+00
   Epoch 99/100
   Epoch 100/100
   Acurácia no treino: 100.00
   Acurácia no teste: 66.00
### Início do código ###
## Setando a seed
np.random.seed(1)
random.seed(1)
### Executar uma rede de 1 camada oculta ###
# Camadas da rede = [12288, 200, 1]
# Definição do modelo
model = Sequential()
model.add(Dense(200, input_shape=(12288,), activation='gelu', name='CamadaOculta', kernel_
model.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))
# Compilando o modelo
model.compile(loss='binary_crossentropy', optimizer='RMSPROP')
# Imprimindo a arquitetura da rede proposta
model.summary()
# Treinando o modelo
model.fit(treino_x, treino_y.reshape(-1), epochs=100)
### Fim do código ###
## Predição da rede
print(f'Acurácia no treino: {accuracy_score(treino_y.reshape(-1), np.round(model.predict(t
print(f'Acurácia no teste: {accuracy_score(teste_y.reshape(-1), np.round(model.predict(teste_y.reshape(-1))
   Epoch 73/100
   Epoch 74/100
   Epoch 75/100
   7/7 [========== ] - 0s 27ms/step - loss: 0.0000e+00
   Epoch 76/100
   7/7 [============= ] - 0s 28ms/step - loss: 0.0000e+00
   Epoch 77/100
   7/7 [==========] - 0s 27ms/step - loss: 0.0000e+00
   Epoch 78/100
   7/7 [============= ] - 0s 29ms/step - loss: 0.0000e+00
   Epoch 79/100
   Epoch 80/100
```

```
7/7 [=========== ] - 0s 27ms/step - loss: 0.0000e+00
  Epoch 81/100
  7/7 [============= ] - 0s 28ms/step - loss: 0.0000e+00
  Epoch 82/100
  Epoch 83/100
  Epoch 84/100
  Epoch 85/100
  7/7 [==========] - 0s 36ms/step - loss: 0.0000e+00
  Epoch 86/100
  7/7 [==========] - 0s 28ms/step - loss: 0.0000e+00
  Epoch 87/100
  Epoch 88/100
  Epoch 89/100
  Epoch 90/100
  Epoch 91/100
  7/7 [=========== ] - 0s 29ms/step - loss: 0.0000e+00
  Epoch 92/100
  Epoch 93/100
  7/7 [=========== ] - 0s 28ms/step - loss: 0.0000e+00
  Epoch 94/100
  Epoch 95/100
  Epoch 96/100
  Epoch 97/100
  Epoch 98/100
  7/7 [=============== ] - 0s 35ms/step - loss: 0.0000e+00
  Epoch 99/100
  Epoch 100/100
  Acurácia no treino: 100.00
  Acurácia no teste: 66.00
### Início do código ###
## Setando a seed
np.random.seed(1)
random.seed(1)
### Executar uma rede de 1 camada oculta ###
# Camadas da rede = [12288, 200, 1]
# Definição do modelo
model = Sequential()
model.add(Dense(200, input_shape=(12288,), activation='gelu', name='CamadaOculta', kernel_
model.add(Dense(1, activation='sigmoid', name='CamadaClassificacao'))
```

```
# Compilando o modelo
model.compile(loss='binary_crossentropy', optimizer='adam')

# Imprimindo a arquitetura da rede proposta
model.summary()

# Treinando o modelo
model.fit(treino_x, treino_y.reshape(-1), epochs=100)
### Fim do código ###

## Predição da rede
print(f'Acurácia no treino: {accuracy_score(treino_y.reshape(-1), np.round(model.predict(t
print(f'Acurácia no teste: {accuracy_score(teste_y.reshape(-1), np.round(model.predict(test))
```

```
Epoch 73/100
7/7 [==========] - 0s 22ms/step - loss: 0.0000e+00
Epoch 74/100
Epoch 75/100
Epoch 76/100
Epoch 77/100
Epoch 78/100
Epoch 79/100
7/7 [=========== ] - 0s 20ms/step - loss: 0.0000e+00
Epoch 80/100
Epoch 81/100
Epoch 82/100
Epoch 83/100
Epoch 84/100
Epoch 85/100
Epoch 86/100
Epoch 87/100
Epoch 88/100
Epoch 89/100
Epoch 90/100
Epoch 91/100
Epoch 92/100
Epoch 93/100
Epoch 94/100
```

```
###*Início·do·código·###
##·Setando·a·seed
np.random.seed(1)
random.seed(1)
###.Executar.uma.rede.de.1.camada.oculta.###
#.Camadas.da.rede.=.[12288,.200,.1].
#.Definição.do.modelo
model · = · Sequential()
model.add(Dense(200, input_shape=(12288,), activation='relu', name='CamadaOculta'))
model.add(<u>Dense(1, activation='sigmoid', name='CamadaClassificacao'))</u>
#.Compilando.o.modelo
model.compile(loss='binary_crossentropy', optimizer='adam')
#.Imprimindo.a.arquitetura.da.rede.proposta
model.summary()
#.Treinando.o.modelo
model.fit(treino_x, ·treino_y.reshape(-1), ·epochs=100)
###.Fim.do.código.###
##·Predição·da·rede
print(f'Acurácia·no·treino: {accuracy_score(treino_y.reshape(-1), np.round(model.predict(t
print(f'Acurácia·no·teste: {accuracy_score(teste_y.reshape(-1), np.round(model.predict(teste_y.reshape(-1), np.round(model.predict(teste_y.reshape(-1
```

#### Model: "sequential 43"

| Layer (type)                | Output Shape | Param # |
|-----------------------------|--------------|---------|
| CamadaOculta (Dense)        | (None, 200)  | 2457800 |
| CamadaClassificacao (Dense) | (None, 1)    | 201     |

Total params: 2,458,001 Trainable params: 2,458,001 Non-trainable params: 0

```
Epoch 1/100
Epoch 2/100
7/7 [=========== ] - 0s 21ms/step - loss: 609.6093
Epoch 3/100
Epoch 4/100
Epoch 5/100
Epoch 6/100
7/7 [=========== ] - 0s 27ms/step - loss: 36.1824
Epoch 7/100
Epoch 8/100
7/7 [============= ] - 0s 25ms/step - loss: 60.9487
Epoch 9/100
7/7 [=========== ] - 0s 32ms/step - loss: 33.9603
Epoch 10/100
7/7 [=========== ] - 0s 23ms/step - loss: 22.7876
Epoch 11/100
7/7 [=========== ] - 0s 25ms/step - loss: 13.9051
Epoch 12/100
7/7 [=========== ] - Øs 23ms/step - loss: 17.7887
Epoch 13/100
Epoch 14/100
7/7 [========= ] - 0s 26ms/step - loss: 19.7043
Epoch 15/100
7/7 [============= ] - 0s 21ms/step - loss: 12.6698
Epoch 16/100
7/7 [=========== ] - 0s 22ms/step - loss: 17.2494
Epoch 17/100
7/7 [========== ] - Øs 23ms/step - loss: 13.4265
Epoch 18/100
7/7 [============= ] - 0s 22ms/step - loss: 18.8268
Epoch 19/100
7/7 [========== ] - 0s 21ms/step - loss: 4.0057
Epoch 20/100
7/7 [==========] - 0s 18ms/step - loss: 2.8827
Epoch 21/100
7/7 [============= ] - 0s 20ms/step - loss: 2.0993
Epoch 22/100
7/7 [============== ] - 0s 17ms/step - loss: 1.2552
Epoch 23/100
```

# ▼ ToDo: Analisando redes treinadas (5pt)

Qual combinação rendeu o melhor resultado? Tente explicar o por que.

A melhor combinação para um rede de 1 camada oculta com 200 neurônios foi a rede que utilizou: inicialização de pesos uniformes, a função relu como função de ativação e o algoritmo de otimização adam. Isso acontece porque a função ReLU não ativa todos os neurônios ao mesmo tempo, isso significa que, ao mesmo tempo, apenas alguns neurônios

são ativados, tornando a rede esparsa e eficiente e fácil para a computação. Com a inicialização do pesos de maneira uniforme evita-se o problema com a saturação dos neurônios. Já o uso do Adam como otimizador garante eficiência ao trabalhar com problemas envolvendo muitos dados ou parâmetros, como neste caso.

√ 15s conclusão: 21:30

X