

Trigonometric Equations

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

4 India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the BEST

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Homework Question

Solve:
$$3\cos x + 3\sin x + \frac{\sin 3x}{2} - \frac{\cos 3x}{2} = 0$$

$$3(\sin x + 6\cos x) + (3\sin x - 4\sin^3 x) - (46\cos^3 x - 36\cos x) = 0$$

$$=) 6\left(\frac{\sin n + \cos n}{\sin n + \cos n}\right) - 4\left(\frac{(\sin n + \cos n)^{2} - 3(\sin n)(\cos n)}{(\sin n + \cos n)}\right) = 0$$

$$a^{3} + b^{3} = (a+b)^{3} - 3ab(a+b)$$

Now. $(sin x + 4sx) = t$

$$\Rightarrow 6t - 4(t^{3} - 3(t^{2} - 1)(t)) = 0$$

$$\Rightarrow \frac{2t^{3} = 0}{2t^{3} = 0}$$

$$6t - 4t^{3}$$

$$+ 6t(t^{2}-1) = 0$$

$$6t - 4t^{3}$$

$$+ 6t^{3} - 6t = 0$$

$$2t^{3} - 0$$

y jee

$$\Rightarrow$$
 Sinx + 65x = 0

7. Use of limited range of sinx and cosx

$$\begin{bmatrix} -1,1 \end{bmatrix}$$

$$\frac{5g^2}{5\ln x + 605x} = 2$$

If $x, y \in [0, 2\pi]$, then total number of ordered pairs (x, y) satisfying the equation, $\sin x \cdot \cos y = 1$, is equal to:

Sin x . Cosy = 1 Cast-1: Sinx=1 (&) 6057=1

D. 7

$$Cag-2$$
:

 $Sin x = -1$
 $X = (4n-1)T$
 $Y = 3T$
 $Y = T$

jee

$$\begin{pmatrix}
(\frac{\pi}{2}, 0) \\
(\frac{\pi}{2}, 2\pi) \\
(\frac{3\pi}{2}, \pi)
\end{pmatrix}$$

Solve: $\sin 3x + \cos 2x = -2$

C.
$$(2n - 1) \pi/2$$
 D. None of these

$$Sin3x + 6s2x = -2$$

$$3x = (4n-1) \pi$$
 & $2x = (2n+1)\pi$

] jee

(6mmon Values)

$$\chi = (4n-1)\frac{\pi}{6}$$

$$-\frac{\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{15\pi}{6}, ---, \frac{27\pi}{6}$$

$$\chi = (2n+1)\frac{\pi}{2}$$

$$\chi = (2n+1)\frac{\pi}{2}$$

$$\chi = (2n+1)\frac{\pi}{2}$$

$$1, 5, 9, -- a=5; d=4 = T_n = 5+(n-1)4$$
 $=(4n+1)$

The general solution of the equation, $\cos x \cos 6x = -1$ is

$$x = (2n + 1)\pi, n \in I$$

 $x = (2n - 1)\pi, n \in I$

B.
$$x = 2n\pi, n \in I$$

$$x = (2n - 1)\pi, n \in I$$

$$X = 2nTT & 6x = (2n+1)TT$$

$$(nocommon) X = (2n+1)TT$$

$$(nologon) X = (2n+1)TT$$

$$(nologon) X = (2n+1)TT$$

$$(ax-2) = (ax-1) = ($$

8. Use of limited range trigonometric expressions

The value of 'a' for which of the equation, $a^2 - 2a + \sec^2 \pi (a + x) = 0$ has solution is:

A 1

B. 2

C. 0 or 1

D. 1 or 2

$$\Rightarrow \left(\frac{2}{a-2a} + \sec^2 \pi(a+n) = 0\right)$$

$$=) (a-1)^2 + tam \pi(a+x) = 0$$

$$\Rightarrow (a = 1)$$

$$=) + on \pi \chi = 0$$

$$\sin \theta + \sqrt{3} \cos \theta = 6x - x^2 - 11$$
; $0 \le \theta \le 4\pi$, $x \in \mathbb{R}$, holds for

- \checkmark No value of x and θ
- Two pairs of values of (x, θ)
- Two values of x and two values of θ
 - One values of x and one values of θ

LNS:
$$[-2,2]$$

RNS: $(-\infty,-2]$
only possibility is
LNS=-2
 $\{2,2\}$

For
$$RNS = -2$$

$$-(N-3)^{2} - 2 = -2$$

$$= |X = 3|$$

$$Sin 0 + 53 cos 0 = -1$$

$$\frac{1}{2} Sin 0 + \frac{53}{2} cos 0 = -1$$

$$\operatorname{Cos}\left(\Theta^{-\frac{1}{6}}\right) = -1$$

$$\begin{array}{ll}
\Theta - \overline{\pi} &= (2n+1)\pi \\
\partial &= (2n+1)\pi + \overline{\pi} \\
\partial &= (2n+1)\pi + \overline{\pi} \\
\partial &= (3\pi + \overline{\pi}) \\
\partial &= (3\pi + \overline{\pi})
\end{array}$$

If x and y are the solutions of the equation, $12 \sin x + 5 \cos x = 2y^2 - 8y + 21$.

Then find the value of $\frac{24}{5}\cot\left(\frac{xy}{2}\right)$

jee

$$\frac{12}{13}) \sin n + \left(\frac{5}{13}\right) \cos n = 1$$

$$\frac{1}{3}$$

$$\frac{1}$$

$$=) \chi - \alpha > 2 n \pi$$

$$\alpha = 2 n \pi + \alpha$$

	Non,
_	$\frac{24}{5}$ Late $\left(\frac{\pi}{2}\right)$
	$\frac{24}{5}$ 6+ $\left(\frac{2n\pi+\alpha}{2}\right)$
	24 6+x (5)

Trigonometric Inequalities

Let $2 \sin^2 x + 3 \sin x - 2 > 0$. Then find the general solution of x.

jee

$$2 \sin^{2}x + 3 \sin x - 2 > 0$$

$$\Rightarrow 2 \sin^{2}x + 4 \sin x - \sin x - 2 > 0$$

$$\Rightarrow 2 \sin^{2}x + 4 \sin x - \sin x - 2 > 0$$

$$\Rightarrow 2 \sin^{2}x + 4 \sin x - \sin x - 2 > 0$$

$$\Rightarrow (\sin x + 2) - 1 (\sin x + 2) > 0$$

$$\Rightarrow (\sin x + 2) (2 \sin x - 1) > 0$$

$$\Rightarrow (\sin x + 2) (2 \sin x - 1) > 0$$

$$\Rightarrow (\sin x + 2) (2 \sin x - 2) > 0$$

$$\Rightarrow (\sin x + 2) (2 \sin x - 2) > 0$$

$$\Rightarrow (\sin x + 2) (2 \sin x - 2) > 0$$

$$\Rightarrow (\sin x + 2) (2 \sin x - 2) > 0$$

The solution of inequality $\cos 2x \le \cos x$ is

A.
$$x \in \left[2n\pi - \frac{\pi}{3}, 2n\pi + \frac{\pi}{3}\right]$$
 B. $x \in \left[2n\pi - \frac{2\pi}{3}, 2n\pi + \frac{2\pi}{3}\right]$

C.
$$x \in \left[2n\pi, 2n\pi + \frac{2\pi}{3}\right]$$
 D. $x \in \left[2n\pi - \frac{2\pi}{3}, 2n\pi\right]$

$$652x \le 65x$$
 $265^{2}x - 1 \le 65x$
 $265^{2}x - 65x - 1 \le 0$

$$265^{2}n - 265n + 65n - 1 \leq 0$$

 $(265n + 1)(65n - 1) \leq 0$
 $+ \frac{1}{-1} + \frac{1}{-1}$

$$\left(\frac{(4n+1)\pi}{4},\frac{(3n+1)\pi}{3}\right),\ (n\in Z)$$

$$\mathbf{B.}\left(\frac{(2n+1)\pi}{4},\frac{(2n+1)\pi}{3}\right),\,(n\in\mathbf{Z})$$

C.
$$\left(\frac{(4n+1)\pi}{4}, \frac{(4n+1)\pi}{3}\right)$$
, $(n \in \mathbb{Z})$ D. $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

$$\mathbf{D.} \ \ \mathsf{X} \in \left[\frac{\pi}{4}, \ \frac{\pi}{2}\right]$$

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's BEST Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

99.28

Yash Bhaskar 99.10

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

Upcoming Batches in May

Bull Eye Batch (Class 11th): JEE Main & Advanced 2023 Starts on 26th May 2021

Sanjivani Batch : MHT-CET 2021 Started on 26th May 2021

Every Sunday |
11 am Onwards
Win Scholarships
worth 4 Cr+

IIT JEE T-20 Test Series

May 25, 26, 27, 28 | 6:30 PM Onwards

Win Daily Amazon vouchers and Scholarship worth Rs 3 CR*

Enroll Now for FREE

Use Code - SAMEERLIVE

Thank you

#JEE Live Daily

Download Now!