Física computacional 2021 - Instituto Balseiro

Trabajo práctico 7

Sistemas conservativos

1 Integre las ecuaciones de un oscilador armónico unidimensional usando el método de Verlet,

$$\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -x.$$

Elija la condición inicial x(0) = 1, p(0) = 1 y resuelva hasta un tiempo fijo t = 31, empleando distintos pasos de tiempo. Grafique la trayectoria en el espacio de fases, y compárela con la trayectoria analítica y con la que obtuvo con el método de Euler en el Trabajo Práctico 1. Calcule la energía mecánica de la solución numérica en función del tiempo, y compárela con la verdadera y con la de Euler.

2 Considere un oscilador no lineal forzado, consistente en una partícula en un potencial cuártico de doble pozo y bajo la acción de una fuerza alterna:

$$\mathcal{H}(x,p) = \frac{1}{2}p^2 - \frac{1}{4}x^2 + \frac{1}{8}x^4 - xF\cos\omega t.$$

Integre numéricamente las ecuaciones de movimiento usando el algoritmo de Verlet (usando un paso de tiempo $h \approx 0.01$). Elija adecuadamente el tiempo final en cada resolución, explicando por qué lo hace.

Considere primero que F=0. Grafique x(t) para las siguientes condiciones iniciales:

i)
$$x(0) = 1.1, p(0) = 0,$$

ii)
$$x(0) = 1.6, p(0) = 0.$$

Grafique también la trayectoria en el espacio de fases (x, p), para condiciones iniciales de distinta energía (por ejemplo con p(0) = 0 y variando -1.8 < x(0) < 1.8).

Considere luego F = 0.015 y $\omega = 0.982$ para dos casos:

i)
$$x(0) = 1.1, p(0) = 0,$$

ii)
$$x(0) = 0.1, p(0) = 0.$$

En cada uno de estos casos, además, considere una condición inicial cercana, con $x'(0) = x(0) + \delta x$ y $p'(0) = p(0) + \delta p$ (indicativamente, considere $\delta x = 10^{-5}$, $\delta p = 0$).

Para ambos casos, grafique x(t) y la distancia entre trayectorias $d(t) = [(x(t) - x'(t)^2) + (p(t) - p'(t)^2)]^{1/2}$. Comente el resultado.

1/3 Instituto Balseiro

Considere las ecuaciones de Newton para un sistema de N átomos que interactúan mediante un potencial de Lennard-Jones dentro de una caja en dos dimensiones de tamaño $L \times L$:

$$\frac{d\mathbf{r}_i}{dt} = \mathbf{p}_i,
\frac{d\mathbf{p}_i}{dt} = \sum_{j \neq i} \frac{\mathbf{r}_{ij}}{r_{ij}} f(r_{ij}),$$

donde $\mathbf{r_i} = (x_i, y_i)$ y $\mathbf{p_i} = (p_{xi}, p_{yi})$ son la posición y momento lineal de la partícula *i*-ésima, $r_{ij} = |\mathbf{r}_{ij}|$, con a $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, es la distancia entre las partículas i y j, y $U(r) = 4(r^{-12} - r^{-6})$ es el potencial de interacción y $f(r) = -\frac{dU(r)}{dr}$ es la fuerza.

Integre numéricamente mediante el algoritmo de Verlet con h = 0.005 durante 2000 pasos usando los siguientes parámetros:

- Sistema de $N=N_c^2$ átomos con $N_c=30$.
- Densidad $\rho = N/L^2 = 0.3$.
- Posiciones iniciales $\mathbf{r}_i(0)$ en una red cuadrada: $(x_i, y_i) = (na, ma)$ con $a = L/(N_c + 1)$ y n, m números enteros: $n = 1, \ldots, N_c$ y $m = 1, \ldots, N_c$.
- Velocidades iniciales $\mathbf{v}_i(0)$ aleatorias considerando dos valores elegidos al azar $\mathbf{v} = (\pm v_0, 0)$ con $v_0 = 1.1$.
- a) Grafique en función del tiempo las energías cinética E_{kin} , potencial E_{pot} y total $E_{tot} = E_{kin} + E_{pot}$.
- b) Calcule, a distintos tiempos, histogramas que representen las distribuciones $P_x(v_x)$ y $P_y(v_y)$ de las componentes v_x , v_y de las velocidades. Defina $P(v) = (P_x(v_x) + P_y(v_y))/2$. Grafíquelos en particular para el tiempo inicial y el tiempo final. Observe que para este último se cumple que $P_x(v_x) = P_y(v_y) = P(v)$, y que corresponde a la distribución de Maxwell-Boltzmann, $\propto v \exp(-\beta v^2/2)$ en dos dimensiones.

Instituto Balseiro 2/3

Física computacional 2021 - Instituto Balseiro

Trabajo práctico 7

Sistemas conservativos

4

OPTATIVO. En el problema anterior, estudie la paradoja de Loschmidt.

- a) Grafique en cada instante la entropía de Boltzmann: $S = -\int P(v) \log(P(v)) \ dv.$
- b) A un dado instante t_R , dé vuelta todas las velocidades: $(v_x, v_y) \rightarrow (-v_x, -v_y)$.
- c) Calcule S(t) y observe que el sistema regresa a la condición inicial (con las velocidades invertidas).
- d) Agregue una perturbación pequeña a las velocidades y coordenadas a un tiempo $t_p \leq t_R$ (cambiándolas al azar en un 0.001%).
- e) Pruebe el efecto de distintos t_p : tiempo cortos y largos (antes y después del "equilibrio").
- f) Analice cómo varía el tiempo necesario para equilibrar al variar la densidad ρ .

3/3 Instituto Balseiro