Prípravné sústredenie pred IMO a MEMO 2013, mazo@kms.sk

Úprava na štvorec

- 1. Zapíšte $8a^2 20ab + 17b^2$ ako súčet štvorcov.
- 2. Pre reálne čísla a, b, c platí $a^2 + c^2 \le 4b$. Dokážte, že $x^4 + ax^3 + bx^2 + cx + 1 \ge 0$.
- **3.**** Dokážte, že $\sum a^4 + 2 \sum a^2 b^2 \ge 3 \sum ab^3$.

AG-nerovnosť

- **1.25** Dokážte, že $(x+y)(y+z)(z+x) \ge 8xyz$.
- 4. Nájdite minimum $a^2 + b^2 + c^2 + 1/abc$, ak $a + b + c \ge 5$.
- **1.30** Dokážte, že $x^2 + y^2 + z^2 \ge x\sqrt{y^2 + z^2} + y\sqrt{x^2 + z^2}$.
- **1.31** Dokážte, že $x^4 + y^4 + 8 \ge 8xy$.
- **M18.** Dokážte, že $a^4b + b^4c + c^4a \ge abcd(a+b+c+d)$.
- **1.3.2*** Nájdite maximum výrazu $x(1-x^3)$ pre $x \in [0,1]$.
- **5.*** Nájdite maximum výrazu $a^2 + ab$, ak $a^2 + b^2 = 1$.
- **6.** Dokážte, že $\sum \frac{3a^2}{b+c+d} \ge a+b+c+d$.
- **7.*** Dokážte, že $\sum \frac{3a^3}{b^2+bc+c^2} \ge a+b+c$.
- **V1.28*** Ak x + y + z = 1, tak $\sum \frac{xy}{\sqrt{z+xy}} \le 1/2$.
- **1.6.3*** Ak abc = 1, tak $\sum \frac{1}{a^3(b+c)} \ge 3/2$.
- **V1.40*** Dokážte, že $\sum \frac{x^3}{y^3} \ge \sum \frac{xz}{y^2}$.

Jensen

- **1.5.11*** Dokážte, že $\sum_{i=1}^{n} \frac{1}{1+x_i} \ge \frac{n}{1+\sqrt[n]{x_1 \dots x_n}}$.
- **1.80** Maximalizujte $\sin \alpha \cdot \sin \beta \cdot \sin \gamma$, $\sin \alpha + \sin \beta + \sin \gamma$.
- 8.* Ak $a^2 + b^2 + c^2 = 1$, tak $2 \sum \frac{a}{1-a} \ge 3\sqrt{3} + 3$.

Cauchy-Schwarz

- **M5.** Minimalizujte $(a + b + c + d) \left(\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \right)$.
- **V2.14** Nech x + y = 1. Maximalizujte $x\sqrt{1+y} + y\sqrt{1+x}$.
- **V2.15*** Ak $x^2 + y^3 \ge x^3 + y^4$, tak $x^3 + y^3 \le x^2 + y^2 \le x + y \le 2$.
- M14. Dokážte, že

$$\frac{x}{ay+bz} + \frac{y}{az+bx} + \frac{z}{ax+by} \ge \frac{3}{a+b}.$$

- **1.6.3*** Ak abc = 1, tak $\sum \frac{1}{a^3(b+c)} \ge 3/2$.
- **1.6.6** Dokážte, že $\sum \frac{a}{b+2c} \ge 1$.

V2.29* Ak
$$\sum x_i = 1$$
, tak $\sum \frac{x_i}{\sqrt{1-x_i}} \ge \sqrt{\frac{n}{n-1}}$.

Ďalšie

- **1.55** Dokážte, že $x^4 + y^4 + z^2 \ge \sqrt{8}xyz$.
- **V1.1** Ak a, b, c sú strany \triangle , tak $\sum \sqrt{a+b-c} \ge \sum \sqrt{a}$.
- **M8.*** Ak a+b+c=1, tak $a^3+b^3+c^3+6abc\geq 1/4$. Kedy nastáva rovnosť?
- **1.47** Ak $\sum a_i = \sum b_i$, tak $2\sum \frac{a_i^2}{a_i+b_i} \geq \sum a_i$.
- 9.* Ak $\sum x_i^2 = 1$, tak $\sum \frac{x_i}{1-x_i} \ge 4$.
- **1.41*** Ak $\sum (1+x_i)^{-1} = 1$, tak $x_1 x_2 \dots x_n \ge (n-1)^n$.
- **1.42** Ak abc = 1, tak $\sum \frac{1+ab}{1+a} \ge 3$.
- **V2.17** Ak a+b+c=1, tak $\frac{4}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq 39$.
- **V1.27*** Ak xy + yz + zx = 1, tak $\sum \frac{x}{\sqrt{x^2+1}} \le 3/2$.
- **V1.23*** Ak $a, b, c \in [0, 1]$, tak

$$(1-a)(1-b)(1-c) + \sum \frac{a}{b+c+1} \le 1.$$

- **M3.** Ak P je polynóm s klad. koef., tak $P(1/x) \ge 1/P(x)$.
- **V1.42** Ak abc = 1, tak

$$\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \le 1.$$

V2.31* Dokážte, že

$$\sum \frac{a}{\sqrt{b^2 + \frac{1}{4}bc + c^2}} \ge 2.$$

V1.51* Dokážte, že

$$\sum \frac{a^3}{a+b} \ge \frac{3}{4}(a^2+b^2+c^2) - \frac{1}{4}(ab+bc+ca).$$

- **V1.55*** Ak abc = 8, tak $\sum \frac{1}{\sqrt{1+a^3}} \ge 1$.
- **V1.65**** Dokážte, že $\sum \frac{a}{\sqrt{a^2+8bc}} \geq 1$.
- **M19.** Ak $a^2+b^2+c^2+abc=4$, tak $0 \le ab+bc+ca-abc \le 2$.
- **1.5.12** Ak $x_i \in (0,1)$ a $\sum x_i = 1$, tak

$$\sqrt{n-1} \cdot \sum_{i=1}^{n} \frac{x_i}{\sqrt{1-x_i}} \ge \sum_{i=1}^{n} \sqrt{x_i}.$$