%config InlineBackend.figure format = 'retina'

## Individual predictor training - Horizon: 40 datapoints

This Jupyter notebook is the second out of three notebooks that are used to train the individual predictors to benchmark the system performance. In total, 15 individual predictors will be trained on stock and index data. For the benchmarking process, predictors from the predictorsI,py and predictorsII,py are trained. Each predictor will be served with an input batch that is used to dertmine the forecast estimation. The input size will be set at 20 data points (20 trading days). Furthermore, 3 forecasting horizions are considered: 5, 30 and 40 datapoints into the future

## Dataset

The third dataset used is the S&P 500 (^GSPC). Prices are in USD and listed on SNP. The data is extracted via the Yahoo Finance API accessed via the pandas data reader function. The adjusting closing price was used to train the following predictors.

Link to website: https://uk finance.vahoo.com/quote/%SEGSPC/history?n=%SEGSPC

data = DataLoader('^GSPC', '2010-01-01', '2018-01-01')
prices = data.get\_adjclose() In [13]: print(data) Total count of rows: 2013 Ticker: ^GSPC Start: 2010-01-01 End: 2018-01-01

In [14]: data.statistics()

| [14]: |       | High        | Low         | Open        | Close       | Volume       | Adj Close   |
|-------|-------|-------------|-------------|-------------|-------------|--------------|-------------|
|       | count | 2013.000000 | 2013.000000 | 2013.000000 | 2013.000000 | 2.013000e+03 | 2013.000000 |
|       | mean  | 1753.468063 | 1736.600179 | 1745.309675 | 1745.880929 | 3.749912e+09 | 1745.880929 |
|       | std   | 438.586053  | 439.145837  | 438.868087  | 438.888644  | 8.493332e+08 | 438.888644  |
|       | min   | 1032.949951 | 1010.909973 | 1027.650024 | 1022.580017 | 1.025000e+09 | 1022.580017 |
|       | 25%   | 1334.400024 | 1320.709961 | 1328.660034 | 1328.260010 | 3.241030e+09 | 1328.260010 |
|       | 50%   | 1810.880005 | 1800.770020 | 1806.329956 | 1805.810059 | 3.632350e+09 | 1805.810059 |
|       | 75%   | 2095.610107 | 2078.459961 | 2087.629883 | 2088.000000 | 4.134680e+09 | 2088.000000 |
|       | max   | 2694.969971 | 2685.919922 | 2692.709961 | 2690.159912 | 1.061781e+10 | 2690.159912 |

In [15]: data.plotting\_grid()



predictor11 = BasicUnivariatePredictor(20, 40, prices) predictor11.create\_lstm()
predictor11.model\_blueprint()

Model: "sequential 1

| Layer (type)                                        | Output Shape   | Param # |
|-----------------------------------------------------|----------------|---------|
| lstm_3 (LSTM)                                       | (None, 20, 40) | 6720    |
| lstm_4 (LSTM)                                       | (None, 20, 50) | 18200   |
| lstm_5 (LSTM)                                       | (None, 50)     | 20200   |
| dense_1 (Dense)                                     | (None, 40)     | 2040    |
| Total params: 47,160                                |                |         |
| Trainable params: 47,160<br>Non-trainable params: 0 |                |         |

In [17]: predictor11.fit\_model(80, 0)



Out[17]: <tensorflow.pvthon.keras.callbacks.History at 0x1e2cbd0d640>

In [19]: predictor11.save\_model()

In [18]: predictor11.show\_performance()

6/4/2021

In [20]: predictor12 = BasicUnivariatePredictor(20, 40, prices) predictor12 - Basiconivariates predictor12.create\_mlp() predictor12.model\_blueprint()

Model: "sequential\_2"

| Layer (type)    | Output Shape | Param # |
|-----------------|--------------|---------|
| dense_2 (Dense) | (None, 50)   | 1050    |
| dense_3 (Dense) | (None, 25)   | 1275    |
| dense_4 (Dense) | (None, 25)   | 650     |
| dense_5 (Dense) | (None, 40)   | 1040    |

Total params: 4,015 Trainable params: 4,015 Non-trainable params: 0

In [21]: predictor12.fit\_model(80, 0)

Out[21]: <tensorflow.python.keras.callbacks.History at 0x1e2d2a4bac0>

In [22]: predictor12.show\_performance()



INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets

In [24]: predictor13 = BasicUnivariatePredictor(20, 40, prices) predictor13.create\_cnn()
predictor13.model\_blueprint()

Model: "convential 3"

| Layer (type)                 | Output | Shape   | Param # |
|------------------------------|--------|---------|---------|
| conv1d (Conv1D)              | (None, | 19, 64) | 192     |
| conv1d_1 (Conv1D)            | (None, | 18, 32) | 4128    |
| max_pooling1d (MaxPooling1D) | (None, | 9, 32)  | 0       |
| flatten (Flatten)            | (None, | 288)    | 0       |
| dense_6 (Dense)              | (None, | 50)     | 14450   |
| dense 7 (Dense)              | (None. | 40)     | 2040    |

In [25]: predictor13.fit\_model(80, 0)

Out[25]: <tensorflow.python.keras.callbacks.History at 0x1e2d1547490

In [26]: predictor13.show\_performance()

1/4



In [27]: predictor13.save\_model()

INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets

In [28]: predictor14 = BasicUnivariatePredictor(20, 40, prices)

predictor14.create\_bilstm() predictor14.model\_blueprint()

Model: "sequential 4"

Layer (type) Output Shape Param # bidirectional (Bidirectional (None, 20, 100) 1stm\_7 (LSTM)

dense\_8 (Dense) Total params: 53,040 Trainable params: 53,040 Non-trainable params: 0

In [29]: predictor14.fit\_model(80, 0)

Out[29]: <tensorflow.python.keras.callbacks.History at 0x1e2d772c9d0>

In [30]: predictor14.show\_performance()



In [32]:
 predictor15 = HybridUnivariatePredictor(2, 20, 40, prices)
 predictor15.create\_cnnlstm()
 predictor15.model\_blueprint()

Model: "sequential\_5"

| Output Shape        | Param #    |
|---------------------|------------|
| (None, None, 9, 64) | 192        |
| (None, None, 8, 32) | 4128       |
| (None, None, 4, 32) | 0          |
| (None, None, 128)   | 0          |
| (None, None, 50)    | 35800      |
| (None, 25)          | 7600       |
| (None, 40)          | 1040       |
|                     | (None, 25) |

In [33]: predictor15.fit\_model(80, 0)

Out[33]: <tensorflow.python.keras.callbacks.History at 0x1e2da5ac9d0>

In [34]: predictor15.show\_performance()



In [35]: predictor15.save\_model()

INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets