

Universidad Autónoma de San Luis Potosí Facultad de ingeniería Tratamiento de Imágenes **Practica** 10

Nombre Práctica: Cámaras Industriales Nombre del Alumno: Manuel Ramírez Galván

Fecha: 29/04/2025

Procedimiento

- 10.1.- Configuración del emulador.
- 10.2.- Configure un programa en cognex en el cual se analicen 2 imágenes y se verifique cuales son correctas y cuáles incorrectas.
- 10.3.- Configure un programa en cognex en el cual se realice el reconocimiento de caracteres.
- 10.4.- Configure un programa en cognex en el cual se realice el reconocimiento de colores en diferentes botellas.
- 10.5.- Configure un programa en cognex en el cual se realice el reconocimiento complejo de piezas.

Resultados

Resultados obtenidos en cada procedimiento.

Comprensión

1. ¿En qué procesos es más común utilizar las cámaras industriales?

1. Inspección de calidad en manufactura

- Detectar defectos en productos (rayones, grietas, deformaciones).
- Verificar dimensiones, alineaciones o colores correctos.
- Controlar la calidad en líneas de producción automatizadas.

2. Visión artificial para robótica

- Localizar piezas en un área de trabajo.
- Guiar brazos robóticos para ensamblaje o soldadura.
- Asegurar precisión en tareas automatizadas.

3. Lectura de códigos y OCR

- Leer códigos de barras o QR en productos.
- Realizar OCR (Reconocimiento Óptico de Caracteres) en etiquetas, documentos o empaques.

4. Detección y clasificación de objetos

- Separar productos buenos de defectuosos.
- Clasificar frutas, piezas mecánicas o medicamentos.

5. Medición y metrología

- Medir longitudes, áreas o volúmenes con alta precisión.
- Controlar tolerancias en fabricación de componentes.

6. Monitoreo y seguridad industrial

- Monitoreo de hornos, maquinaria pesada o zonas de acceso restringido.
- Inspección en ambientes hostiles (altas temperaturas, polvo, vibraciones).

2. ¿Qué diferencias existen entre las cámaras industriales utilizadas en la práctica?

1. Tipo de procesamiento necesario

No todas las cámaras industriales ni todas las configuraciones de software se especializan en todos los tipos de procesamiento.

Algunas cámaras son optimizadas para visión monocromática y otras para visión en color.

2. Resolución y calidad de imagen

Cámaras de mayor resolución se usan en tareas que necesitan leer texto o identificar piezas complejas.

En tareas más generales se pueden usar cámaras estándar.

3. Sensores monocromáticos y sensores a color

La elección entre una cámara en color o monocromática depende directamente de si el color es relevante para la inspección.

4. Capacidad de herramientas y algoritmos de visión

No todas las cámaras industriales tienen las mismas herramientas de procesamiento o potencia de cálculo incorporada.

3. ¿Por qué se utilizan los simuladores para las cámaras industriales?

1. Facilitar el aprendizaje y la capacitación

Los simuladores permiten aprender a configurar, programar y utilizar cámaras industriales de forma práctica, sin necesidad de hardware físico.

2. Desarrollar y probar programas antes de implementar

Permiten crear, configurar y probar programas de visión sobre imágenes de ejemplo antes de transferirlos a una cámara real.

3. Ahorro de costos

Comprar múltiples cámaras industriales para prácticas o pruebas iniciales puede ser costoso. El simulador permite trabajar sin necesidad de equipamiento físico adicional.

4. Flexibilidad en la práctica

Los simuladores permiten cargar imágenes variadas y simular diferentes escenarios (diferentes defectos, condiciones de iluminación, tipos de objetos).

5. Desarrollo remoto

Trabajar desde cualquier lugar, sin necesidad de estar físicamente junto al sistema de visión.

Conclusiones

Las cámaras industriales son herramientas útiles en procesos de automatización y control de calidad, ya que permiten capturar imágenes de alta precisión para inspección, medición, detección de defectos y reconocimiento de objetos.

Su robustez, velocidad y capacidad de integrar herramientas de visión artificial las hacen ideales para entornos exigentes como manufactura, robótica, logística y seguridad, mejorando la eficiencia y reduciendo errores en los procesos productivos.