

第 19-20 讲 反馈

陈江 2022.11

? 请快速估算该放大器增益

- ▶ 稍嫌麻烦
- ▶ 负载 源变化 → 增益变化
- ▶ 环境变化 → 性能不稳定
- **)设计电路更痛苦**

② 但是如果做一小点点改动 ...

- ▶ **再做假设:** A₁ ·A₂ ·A₃ 很大
- ▶ 以及假设: R_F 相对 R 不是很大
- ▶ 可能的结论1: A_总 ≈ 1+(R_F/R)
- ▶ 可能的结论2: R_o → 0
- ▶ 可能的结论3: 相当稳定 ...

效

用

2 什么是反馈?

- > 信号反向传输
- Feedback

无反馈系统

- 执行指令
- ▶ 无监督观测机制
- 动作尽量准确

快速

有反馈系统

知晓效果

- 执行指令
- ▶ 增加监督观测机制
- ▶ 根据观察结果修正执行

误差缩减

低速

- ② 反馈系统的两个模块?
 - 可调节的功能模块
 - 观测后的调节措施

2 细分为四个原子模块:

▶ 基本功能: 野蛮而傻乎乎

▶ **简易调整:** 或加, 或减

▶ **反馈处理**: 产生调节量

▶ **简易采样:** 获取处理依据

线性 反馈 系统

? 反馈放大器?

- **放大**: 普通放大器
- ▶ 调整: V 或 I 的加或减
- ▶ 处理: 分压|分流|V→I|I→V
- ▶ **采样**: 直接|间接取得 V 或 I

2 到底是电压还是电流?

- ▶ 既可以是 V ,也可以是 I
- ▶ 一般性的框图中,使用 X
- **▶ X_F: 反馈量**
- ▶ X_{id}:净输入量

不同 D (或AF) 功能截然不同

1+AF > 1 负反馈

 \rightarrow 1+AF = 1 无反馈

1>1+AF>0收敛的正反馈

1+AF=0自激振荡

▶ 1+AF < 0 发散的正反馈

线性反馈放大器基本方程?

原放大器 增益定义

$$\mathbf{A} = \frac{\mathbf{X_o}}{\mathbf{X_{id}}}$$

$$X_{id} = \frac{X_0}{A}$$

反馈系数 定义

$$\mathbf{F} = \frac{\mathbf{X_F}}{\mathbf{X_O}}$$

$$\mathbf{X}_{\mathbf{F}} = \mathbf{X}_{\mathbf{O}}\mathbf{F}$$

反馈调整 关系

$$X_{id} = X_{I} - X_{F}$$

$$\frac{X_{O}}{A} = X_{I} - X_{O}F$$

$$\frac{X_0}{A} = X_1 - X_0 F$$

$$A_{F} = \frac{X_{O}}{X_{I}} = \frac{A}{1 + AF}$$

闭环增益

D=1+AF

反馈深度

定义

AF 环路增益

- 为什么要分类?
 - 不同反馈效果可能相反
 - ▶ 增益更大? 还是更小?
 - **)** 更稳定? 更不稳定?
 - ▶ 稳定Q? 还是稳定A?
 - ▶ 稳定V? 还是稳定I?

正反馈 反馈 ← 反馈信号极性: AF 是正|负?

直流反馈

← X_F 所处的频段: 是直流|交流?

级内反馈

← 反馈环路跨度: 单级内|多级间? ✔

电压反馈

串联反馈

← X_F是 V 还是 I

流反馈

← X。是 V 还是 I

② 正 | 负反馈的功用?

正反馈

增益提升, 趋于发散

牺牲稳定性换取增益/速度

负反馈

增益减小, 趋于稳定

牺牲增益/速度换取稳定性

2 如何判定 正 | 负反馈?

瞬时 极性 法

- 1. 标出放大通道和反馈通道
- 2. 假定某节点信号的瞬时极性
- 3. 沿通道判定各节点瞬时极性
- 4. 闭环处极性和预设是否相同

同→正 反→负

直流负

② 直流 | 交流负反馈功用?

反馈网络只有直流通路 稳定Q,间接影响 A_v 等

 交流
 反馈网络只有交流通路

 负
 稳定 A_V, 间接影响Q

② 如何判定 直流 | 交流反馈?

☑ 反馈通路是否有动态元件

☑ 耦合电容?

☑ 旁路电容?

☑ 其他动态元件?

串联反馈: 调整电压

各组态负反馈效用

更好的源

更好的负载

分析的套路?

- 假设遭某种扰动
- 分析扰动极性
- 负反馈→矫正扰动
 - 而扰动可以由更换 R_L或 R_s导致 ...

并联反馈: 调整电流

电流反馈: 电流采样

稳定性

串联反馈: 调整电压

并联反馈: 调整电流

负反馈: AF > 0

情形1: A, F > 0

- ① 假设 V_o↑ ←
- $2 \rightarrow X_f$
- $3 \rightarrow X_{id} \downarrow$
- 4 → V_o↓

故输出 V。更稳定

- 若扰源假设为 R_L
- 则稳定根源是 R。↓

情形2: A, F < 0

电流反馈: 电流采样

- 若R_s→0: 反馈最佳
- 若R_s→∞: 反馈消失

- 2 各组态如何判定?
- ①假定反馈外部阻抗异常: →0 或 →∞
- ②判断是否仍有反馈
- ③即可区分组态

注意:

- ▶ 先确定反馈前 后端
 - → 否则可能引出矛盾
- 组态互斥 → 唯一解
 - → 短|断互为校验
- 只需分析"半圈"
 - → 先假定对端有信号

- 若R₁→0: 反馈消失
- 若R_L→∞: 反馈最佳

- 若R_L→0: 反馈最佳
- 若R₁→∞: 反馈消失

- 若R_S→0: 反馈消失
- 若R_s→∞: 反馈最佳

- 若R_s→0: 反馈最佳
- 若R_S→∞: 反馈消失

- 2 各组态如何判定?
- ①假定反馈外部阻抗异常: →0 或 →∞
- ②判断是否仍有反馈
- ③即可区分组态

注意:

- **先确定反馈前**|后端
 - → 否则可能引出矛盾
- 组态互斥 → 唯一解
 - → 短|断互为校验
- 只需分析"半圈"
 - → 先假定对端有信号

- 若R₁→0: 反馈消失
- 若R[→∞: 反馈最佳

- 若R_S→0: 反馈消失
- 若Rs→∞: 反馈最佳

- 若R_L→0: 反馈最佳
- P 若R₁→∞:反馈消失

分类判定

深度负反馈

效用分析

稳定性

电流 反馈

电压 反馈

电流 反馈

并联 反馈

串联 反馈

串联

反馈

4

电压

反馈

反馈

串联

反馈

电压 有何经验? 反馈

并联 反馈

有何经验?

有何经验?

有何经验?

电压 反馈 极限情形 D → +∞ 深度负反馈

线性反馈放大基本方程

原放大器 增益定义

$$\mathbf{A} = \frac{\mathbf{X_0}}{\mathbf{X_{id}}}$$

$$X_{id} = \frac{X_o}{A}$$

反馈系数 定义

$$\mathbf{F} = \frac{\mathbf{X}_{\mathbf{F}}}{\mathbf{X}_{\mathbf{O}}}$$

$$\boldsymbol{X}_{\boldsymbol{F}} = \boldsymbol{X}_{\boldsymbol{O}}\boldsymbol{F}$$

反馈调整 关系

$$X_{id} = X_{I} - X_{F} \qquad \frac{X_{O}}{\Lambda} = X_{I} - X_{O}F$$

$$\frac{X_0}{A} = X_1 - X_0 F$$

→ 近似结论

→ 可快速估算

- → 直接推算 A.
- → 间接得 R_{iF} R_{oF}

$$\mathbf{A}_{\mathsf{f}} = \frac{\mathsf{A}}{\mathsf{1} + \mathsf{AF}} \approx \frac{\mathsf{1}}{\mathsf{F}}$$

$$X_f = \frac{AF}{1 + AF}X_i ? X_f$$

$$X_{id} = \frac{1}{1 + AF} X_i ? 0$$

$$A_{F} = \frac{X_{O}}{X_{I}} = \frac{A}{1 + AF}$$

- 如何定量分析?
 - 拆环 → 需分离出 A, F
 - → 多数电路难以清晰拆环

$$\mathbf{A_f} = \frac{\mathbf{A}}{\mathbf{1} + \mathbf{AF}} \approx \frac{\mathbf{1}}{\mathbf{F}}$$

$$X_{id} = \frac{1}{1 + AF} X_i ? 0$$

$$\mathbf{V_i} - \frac{\mathbf{R_3}}{\mathbf{R_3} + \mathbf{R_5}} \mathbf{V_o} = \mathbf{0}$$

$$\boldsymbol{A_f} = \frac{\boldsymbol{R_3} + \boldsymbol{R_5}}{\boldsymbol{R_3}}$$

$$\boldsymbol{F} = \frac{\boldsymbol{R_3}}{\boldsymbol{R_3} + \boldsymbol{R_5}}$$

- ❷ 极速估算方法?
 - → 使用条件不满足
- 2 解方程组方法?
 - → 仍然有效,准确
 - → 仍然痛苦

- 群深度负反馈成立
 - → 组态: 电压串联
 - → X_F: V_o经R₃,R₅ 分压成V_F
 - $\rightarrow X_{id} \approx 0: V_{be1} \approx 0$
 - → 推算: I_{E1} ≈ 0

- P R_{if}和 R_{of}?
 - A_F与 R_L 无关
 - \rightarrow R_{oF} \approx 0
 - $I_{B1} \approx 0$
 - \rightarrow R_{iF} \approx R₁

$$\bm{A_f} = \frac{\bm{A}}{\bm{1} + \bm{AF}} \approx \frac{\bm{1}}{\bm{F}}$$

$$X_{id} = \frac{1}{1 + AF} X_i ? 0$$

- 母 若深度负反馈成立
 - → 组态: 电压并联
 - → X_F: V_o经R₁产生 I_F
 - $\rightarrow X_{id} \approx 0$: $I_B \approx 0$
 - → 推算: V_{BE} ≈ 0

- R_{iF}和 R_{oF}?
- A_{VF}与 R_L 无关
 - \rightarrow R_{oF} \approx 0
- V_{BE} ≈ 0
 - \rightarrow R_{iF} \approx R₃

$$I_i = \frac{V_i}{R_3}$$

$$\mathbf{A}_{\mathsf{Vf}} = -\frac{\mathbf{R_1}}{\mathbf{R_3}}$$

$$\mathsf{F} = rac{\mathbf{I_f}}{\mathsf{V_o}} = -rac{\mathbf{1}}{\mathsf{R_1}}$$

$$\mathbf{A}_{\mathsf{rf}} = \frac{\mathbf{V}_{\mathsf{o}}}{\mathbf{I}_{\mathsf{i}}} = \frac{\mathbf{V}_{\mathsf{o}}}{\mathbf{V}_{\mathsf{i}} / \mathbf{R}_{\mathsf{3}}} = \frac{\mathbf{1}}{\mathsf{F}}$$

- F和 1/F?
 - 反馈电流 I_F!
 - 需换算成电压

- 台灣大學
 - → 组态: 电压串联
 - → X_F: V_o经25K产生 V_F
 - \rightarrow $X_{id} \approx 0$: $V_{BE4} \approx 0$
 - → 推算: I_{E4} ≈ 0
 - → 增益: A_{VDF} ≈ 51/2
- R_{iF}和 R_{oF}?
 - A_{VF}与 R_L 无关
 - \rightarrow R_{oF} \approx 0
 - $I_{B1} \approx I_{B2} \approx 0$
 - \rightarrow $R_{idF} \approx R_{B1} + R_{B2}$

- R_F 支路 为直流反馈
- 100Ω支路 为交流反馈

日 若深度负反馈成立

→ 组态: 电流串联

→ X_F: I_{C3} 经100产生 V_F

 \rightarrow $X_{id} \approx 0$: $V_{BE1} \approx 0$

→ 推算: I_{E1} ≈ 0

→ 增益: A_{VF} ≈ -12

- R_{iF}和 R_{oF}?
 - A_{VF}与 R_L 无关?

 $\rightarrow R_{oF} \approx (r_{eb4} + 600/\beta) | | R_{E4}$

• $I_{B1} \approx 0$ • $R_{iF} \approx R_{F}$

反馈效用的小结

馈

增益提升,趋于发散 牺牲稳定性换取增益

负反 馈

增益减小, 趋于稳定 牺牲增益换取稳定性

直接稳定 Q 间接影响 A_V等

直接稳定 A_V 可能间接影响 Q

仅稳定本级 作用不如级间反馈

级间

稳定全局 稳定其中各级

电压 负

V。受 R_L 影响变小 R。缩小

电流 负

I。受 R_L 影响变小 R。增加

V_{in} 受 R_s 影响变小 R_i增加

I_{in} 受 R_s 影响变小 R_i 减少

度负 反 馈

 $X_{id} \approx 0$, $\vec{x} X_F \approx X_i$

 $A_F \approx 1/F$

R_i → 0 或 ∞ (看组态)

R₀ → 0 或 ∞ (看组态)

稳定

- 2 定量分析? 一般并不容易
- ▶ 从开环到闭环: A、F相互影响
- 从闭环到开环: 拆环 极为困难
- ? 哪种情况较容易?

理想反馈

输入电阻: 0或∞

输出电阻: 0或∞

理想单向

- ? 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性 steady
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 帯宽
 - **> 失真**

$$A_f = \frac{X_o}{X_i} = \frac{A}{1 + AF}$$

$$\begin{split} \frac{\Delta A_{F}/A_{F}}{\Delta A/A} &= \frac{A}{A_{f}} \frac{\Delta A_{f}}{\Delta A} \approx A \frac{d \ln A_{f}}{d A} \\ &= A \left(In \frac{A}{1 + AF} \right)' = A [In A - In (1 + AF)]' \\ &= A \left(\frac{1}{A} - \frac{F}{1 + AF} \right) = \frac{1}{1 + AF} \end{split}$$

- 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽
 - **失真**

$$\mathbf{R_i} = rac{\mathbf{V_{id}}}{\mathbf{I_i}}$$

$$\boldsymbol{R}_{if} = \frac{\boldsymbol{V}_i}{\boldsymbol{I}_i} = \frac{\boldsymbol{V}_{id} + \boldsymbol{V}_{id} \boldsymbol{AF}}{\boldsymbol{I}_i}$$

$$R_{if} = (1 + AF)R_i$$

- 2 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽
 - **>** 失真

$$\mathbf{R_i} = \frac{\mathbf{V_i}}{\mathbf{I_{id}}}$$

$$\boldsymbol{R}_{if} = \frac{\boldsymbol{V}_i}{\boldsymbol{I}_i} = \frac{\boldsymbol{V}_i}{\boldsymbol{I}_{id} + \boldsymbol{I}_{id} \boldsymbol{AF}}$$

$$R_{if} = \frac{R_i}{1 + AF}$$

电压

- 2 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽
 - **>** 失真

$$\mathbf{X}_{id} = -\mathbf{X}_{f} = -\mathbf{FV}_{X}$$

$$AX_{id} + I_XR_o = V_X$$

$$\mathbf{R}_{of} = \frac{\mathbf{V}_{x}}{\mathbf{I}_{x}} = \frac{\mathbf{R}_{o}}{\mathbf{1} + \mathbf{AF}}$$

- 2 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽
 - **>** 失真

$$\mathbf{X}_{id} = -\mathbf{X}_{f} = -\mathbf{FI}_{o} = \mathbf{FI}_{X}$$

$$\boldsymbol{R_o}\left(\boldsymbol{AX_{id}}+\boldsymbol{I_X}\right)=\boldsymbol{V_X}$$

$$\mathbf{R}_{of} = \frac{\mathbf{V}_{x}}{\mathbf{I}_{x}} = (\mathbf{1} + \mathbf{AF})\mathbf{R}_{o}$$

- 2 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽 —阶 F 阻性
 - **>** 失真
- 2 巧合么?

 $\frac{\Delta A_{F}/A_{F}}{\Delta A/A} = \frac{1}{1 + AF}$

①小F ②中F ③大F

$$A_{f} = \frac{A}{1 + AF} = \frac{1}{1/A + F}$$

$$= \frac{1}{\frac{1 + jf / f_{H}}{A_{M}} + F} = \frac{A_{M}}{1 + jf / f_{H}} + A_{M}F$$

$$= \frac{A_{M} / (1 + A_{M}F)}{1 + jf / (1 + A_{M}F) f_{H}} = \frac{A_{MF}}{1 + jf / f_{HF}}$$

- 2 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽 | 一阶 | F阻性
 - **>** 失真
- 2 巧合么?

 $\frac{\Delta A_{F}/A_{F}}{\Delta A/A} = \frac{1}{1 + AF}$

①小F ②中F ③大F

$$A_{f} = \frac{A}{1 + AF} = \frac{1}{1/A + F} = \frac{1}{\frac{1 + jf / f_{L}}{jA_{M}f / f_{L}}} + F$$

$$= \frac{jA_{M}f / f_{L}}{1 + j(f / f_{L})(1 + A_{M}F)}$$

$$= \frac{A_{M}/(1 + A_{M}F) - j(f / f_{L})(1 + A_{M}F)}{1 + j(f / f_{L})(1 + A_{M}F)}$$

- ? 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 | 输出电阻
 - ▶ 截止频率 | 带宽 | 一阶 | F阻性
 - **>** 失真

 $BW_F \approx BW \cdot (1+A_MF)$

2 巧合么?

带内 带外近处

带外远处

- ▶ 增益 | 增益稳定性
- ▶ 输入电阻 | 输出电阻
- ▶ 截止频率 | 带宽
- **失真** 定性

- ₽ 定量分析?
 - 较困难 ▶ 需更多假设 ▶ 随幅度变化
 - 非线性失真:可看成增益随幅度变化

$$\frac{\Delta A_{\text{F}}/A_{\text{F}}}{\Delta A/A} = \frac{1}{1 + AF}$$

- 2 若假设为理想反馈...
 - ▶ 增益 | 增益稳定性
 - ▶ 输入电阻 輸出电阻
 - ▶ 截止频率 | 带宽
 - **>** 失真

稳 空动减小 → 1/D 定 深负 → 0

R_i 串联 → ×D

并联 → 1/D

R。 电压 → 1/D

电流 → ×D

f_H f_H → ×D fl f_L → 1/D 正 相 反

正 反 馈 反

正 反 馈 反

反馈的稳定性 (stability)

- 不同 D 或AF功能截然不同
- ▶ 1+AF > 1 负反馈
- ▶ 1+AF = 1 无反馈
- ▶ 1>1+AF>0 收敛的正反馈
- ▶ 1+AF = 0 自激振荡
- ▶ 1+AF < 0 发散的正反馈

AF≤-1

- ② 负反馈会自己演变为正反馈?
 - 中频:设计为纯负反馈
 - ▶ 带外: A幅度下降+相移...
 - ▶ 若相移180, 而|A|还较大..

判据

 $\delta \phi = 180$ °处, $AF_{dB} > 0$?

 $AF_{dB} = 0$ 处, φ>180?

❶ 一般取 F 为实数 ...

电压串联 | 电流并联: F<1

稳定性: 裕度|余量(Margin)

- ② 如何定量描述"稳定性"?
 - 增益裕度: G_M = AF_{dB} | δφ =180°
 - 相位裕量: φ_M = (δφ -180°)|_{AF=0dB}
- 2 最低要求?
- **▶ G**_M < 0dB
- $\phi_{M} > 0^{\circ}$
- ☑ 工程要求?
- ► **G**_M < -10dB

AF 极点2低于横轴

稳定性:条件稳定 | 绝对稳定

- ▶ A: 厂商生产; F: 据需求设定
- ♠ A的属性: 绝对稳定 或 条件稳定
 - ▶ 绝对稳定: 纯电阻反馈必然稳定
 - ▶ 条件稳定: 纯电阻反馈未必稳定
- ❶ 如何判定 条件稳定 | 绝对稳定?
 - ▶ 纯阻性反馈: F 为实数
 - ▶ 电压串联|电流并联时: |F|<1
 - ▶ (1/F)_{dB} 在横轴上方

AF 极点2低于横轴

A 极点 2 低于横轴

稳定性:相位补偿

- ② 如何条件稳定 → 绝对稳定?
 - ▶ 相位补偿电路: 也称频率补偿
 - ▶ 如何调整 A 的电路?
- ❶ 典型做法1:滞后补偿
- ▶ 极大降低主极点: f_H → f_H'
- ▶ 使 A_{dB}(f_{H2}) 落在横轴以下
- ▶ 找到电路中构成 f_{H1} 的电容
- ▶ 将其增大 ...

主极点补偿

AF 极点2低于横轴

A 极点 2 低于横轴

效用分析

主极点 滞后补偿

借助密勒效应

主极点 滞后补偿

借助密勒效应

效

用分析

稳定性:相位补偿

- ② 典型做法2: 超前补偿
- ▶ 若相位裕度不够充足
- ▶ 在临界区域稍渐少相移 → 增加裕度
- 具体做法: 引入超前相移网络

级间 超前补偿