Теоретические основы численных методов. Теоремы Чебышева. Теорема Джексона

Шокуров

25 марта 2025 г.

Теорема Чебышева

Теорема 1. Пусть $L \subset C[I]$ — чебышевское подпространство, $n=\dim L \geq 1$ и $f \in C[I]$ — произвольная функция. Тогда функция $p \in L$ наименее уклоняется от f тогда и только тогда, когда найдутся n+1 различные точки $a \leq x_1 < x_2 < \ldots < x_{n+1} \leq b$, для которых разность r(x)=f(x)-p(x) удовлетворяет следующим условиям:

1.
$$|r(x_i)| = ||r|| = \sup_{x \in I} |r(x)|$$
 при $1 \le i \le n+1$,

2.
$$r(x_1) = -r(x_2) = r(x_3) = \ldots = (-1)^n \cdot r(x_{n+1}).$$

Теорема 2. Пусть $L \subset C[\mathbf{S^1}]$ — чебышевское подпространство, $2n-1=\dim L \geq 1$ и $f \in C[\mathbf{S^1}]$ — произвольная функция. Тогда функция $p \in L$ наименее уклоняется от f тогда и только тогда, когда найдутся 2n различные точки $0 \leq x_1 < x_2 < \ldots < x_{2n} < 2\pi$, для которых разность r(x) = f(x) - p(x) удовлетворяет следующим условиям:

1.
$$|r(x_i)| = ||r|| = \sup_{\mathbf{x} \in \mathbf{S}^1} |r(\mathbf{x})|$$
 при $1 \le i \le 2n$,

2.
$$r(x_1) = -r(x_2) = r(x_3) = \ldots = -r(x_{2n}).$$

Доказательство теорем Чебышева

Теоремы 1 и 2 будут доказаны в следующих важных частных случаях: $D = I = [a, b], L = \mathcal{P}_n, n > 0$ и $D = \mathbf{S}^1$ и $L = \mathcal{T}_{2n-1}$. **Лемма 1.** Пусть $r, g \in C[D]$, $M = M(r) = \{x \in D \mid |r(x)| = ||r||\}$. Тогда, если $a = \inf_{\mathbf{x} \in \mathcal{M}} \mathit{r}(\mathbf{x}) g(\mathbf{x}) > 0$, то существует $\delta > 0$ такое, что при $0 < k < \delta$ всегда выполнено неравенство $\|r - kq\| < \|r\|$. **Лемма 2.** Пусть $r \in C[I]$ ненулевая функция, $M = M(r) = \{x \in I \mid |r(x)| = ||r||\}$. Тогда M представимо в виде объединения, $M = \{ \} M_k$, где M_k , $1 \le k \le m$, $m \ge 1$ замкнутые непустые попарно непересекающиеся множества, причем: 1) $M_k < M_{k+1}$, $1 \le k \le m$, 2) sign(r(x)) = -sign(r(y))для любых $x \in M_k$, $y \in M_{k+1}$, 1 < k < m.

Доказательство. Лемма 1

Доказательство леммы 1. Множество $M \subset I$ замкнуто и ограничено, поэтому компактно. Поэтому существует такое c>0,что $\forall x\in M$ выполнено r(x)q(x)>2c. Для каждой точки $x \in M$ имеется открытый шар радиуса $r_x > 0$, такой что для любой точки у этого шара выполняются условия r(x)r(y) > 0, r(y)q(y) > c и |r(y)| > ||r||/2. Рассмотрим покрытие M открытыми шарами $U(x, r_x/4)$ (по всем $x \in M$). Поскольку Mкомпактно, можно выделить его конечное подпокрытие $U(x_1, r_{x_1}/4), \ldots, U(x_n, r_{x_n}/4)$. Дополнение в I объединения этих шаров — компактное множество *N*. Тогда $\|r\|>\max_{\mathbf{x}\in N}|r(\mathbf{x})|=r_0.$ Пусть $\max_{\mathbf{x} \in \mathcal{N}} |g(\mathbf{x})| = g_0.$ Тогда существует такое δ_1 , что

Пусть $\max_{x \in \mathcal{N}} |g(x)| = g_0$. Гогда существует такое δ_1 , что $0 < r_0 - kg_0 < r_0 + kg_0 < \|r\|$ для всех $0 < k < \delta_1$. Поэтому для любого $x \in \mathcal{N}$ и любого $0 < k < \delta_1$ всегда $|r(x) - kg(x)| < r_0 + kg_0 < \|r\|$.

Доказательство

Выберем теперь такое $\delta_2>0$, что для всех $x\in I$ выполняется $\delta_2|g(x)|<\|r\|/4$. Тогда для всех $0< k<\delta_2$ и $x\in\bigcup_{i=1}^n \textit{U}(x_i,r_{x_i})$

выполняется
$$|r(x) - kg(x)| < \|r\|$$
. Пусть $N_1 = \bigcup\limits_{i=1}^{\infty} B(x_i, r_{x_i}/2)$, где $B(x,r)$ — замкнутый шар радиуса r . Тогда N_1 компакт и, следовательно, для любого $0 < k < \delta_2$ и $x \in N_1$ выполняется неравенство $\max_{x \in N_1} |r(x) - kg(x)| = a_k < \|r\|$.

Поскольку $\mathit{I} = \mathit{N} \cup \mathit{N}_1$ величина $\delta = \min\{\delta_1, \delta_2\}$ удовлетворяет условиям леммы.

Доказательство. Лемма 2

Представим $M=M^+\cup M^-$, где $M^+=\{x\in M\mid r(x)>0\}$ и $M^-=\{x\in M\mid r(x)<0\}$. Пусть $x\in M$. Положим $M_x^+=\{y\in M\mid r(y)>0, \forall z\in (x,y)\cap M\ r(z)>0\}$ и $M_x^-=\{y\in M\mid r(y)<0, \forall z\in (x,y)\cap M\ r(z)<0\}$. Возможно, что при некоторых $x_0\neq x_1$ выполняется $M_{x_0}^+=M_{x_1}^+$. Выберем по одному экземпляру таких множеств. Пусть это множества M_a^+ при $a\in A$ и M_b^- при $b\in B$. Тогда $M^+=\bigcup_{a\in A}M_a^+$, $M^-=\bigcup_{b\in B}M_b^-$, $M_a^+\neq M_{a'}^+$ при $a\neq a'$ и $M_b^+\neq M_{b'}^-$ при $b\neq b'$.

Доказательство. Лемма 2

Множества A и B конечны, поскольку в противном случае имеется точка $x_0 \in I$ в любой окрестности которой бесконечно много элементов из A или B. Тогда $x_0 \in A$ или $x_0 \in B$. В этом случае $M_{x_0}^+$ пересекается с M_a^+ (соответственно, с $M_{x_0}^-$) для бесконечного числа элементов $a \in A$ (соответственно, $b \in B$). Тогда для некоторого $a \neq x_0$ (соответственно, $b \in B$) выполняется $M_{x_0}^+ = M_a^+$ ($M_{x_0}^- = M_b^+$). Пусть $a \neq a'$ и $(a, a') \cap A = \emptyset$. Тогда множество $(a, a') \cap B$ состоит из одного элемента. Расположим теперь элементы множеств A и B в порядке чередования

$$\ldots a_1 < b_1 < a_2 < \ldots < a_k \ldots,$$

тогда

$$\dots M_{a_1}^+ < M_{b_1}^- < M_{a_2}^+ < \dots < M_{a_k}^+ \dots$$

Доказательство теоремы Чебышева для $\mathit{L} = \mathcal{P}_\mathit{n}$.

1. Необходимость. Пусть $f\in {\it C}[I]$ и $p\in L$ наименее уклоняется от f. Рассмотрим разность r=f-p. При r=0 утверждение теоремы очевидно. Если $r\neq 0$, рассмотрим

 $M=M(r)=\{x\in I\quad |\quad |r(x)|=\|r\|\}.$ Тогда множество M

представимо в виде объединения, $M=\bigcup\limits_{k=1}^{\infty}M_k$, непустых замкнутых непересекающихся множеств, удовлетворяющих условиям 1 и 2 леммы 2. Пусть не существует чебышевского альтернанса порядка n+1 для функции r(x). Тогда $m\leq n$. Поскольку все множества M_k компактны, существует последовательность точек

$$M_1 < y_1 < M_2 < y_2 < \ldots < y_{m-1} < M_m.$$

Рассмотрим многочлен $h(x)=\sigma(y_1-x)\cdot (y_2-x)\cdot \ldots \cdot (y_{m-1}-x)$ степени m-1, где $\sigma=\operatorname{sgn} \operatorname{r}(M_1)$. Тогда функции r(x) и h(x) удовлетворяют условию леммы 1. Поэтому при некотором $\delta>0$ выполнено неравенство $\|r-\delta h\|<\|r\|$. Следовательно многочлен $p+\delta h\in L$ дает лучшее приближение. Поэтому предположение о том, что чебышевского альтернанса не существует неверно.

Доказательство теоремы Чебышева для $\mathit{L} = \mathcal{P}$

2. Достаточность. Пусть для разности r(x) = f(x) - p(x) существует чебышевский альтернанс $x_1, \ldots x_{n+1}$ порядка n+1, а наилучшим приближением является многочлен q(x). Тогда

$$|f(x_k) - q(x_k)| < ||r|| = |r(x_k)| = |f(x_k) - p(x_k)|.$$
 (1)

Поэтому

$$|q(x_k) - p(x_k)| = |(f(x_k) - p(x_k)) - (f(x_k) - q(x_k))|$$

$$\geq ||(f(x_k) - p(x_k))| - |(f(x_k) - q(x_k))||$$

$$= |(f(x_k) - p(x_k))| - |(f(x_k) - q(x_k))|$$

$$> 0,$$

причем согласно (1) $\mathrm{sgn}(q(x_k)-p(x_k))=\mathrm{sgn}(f(x_k)-p(x_k)).$ Следовательно, существуют точки

 $x_1 < y_1 < x_2 < y_2 < \ldots < y_n < x_{n+1}$, в которых $q(y_k) - p(y_k) = 0$.

Поскольку $q(x)-p(x)\in L$, то q(x)-p(x)=0 для всех $x\in I$. Поэтому q(x)=p(x), т.е. многочлен p(x) дает наилучшее приближение.

Теорема Хаара

Теорема Чебышева для периодического случая доказывается аналогично.

Теперь выведем в двух частных случаях теорему Хаара.

Теорема

Пусть $D=I,\ L=\mathcal{P}_n$ или $D=\mathbf{S}^1,\ L=\mathcal{T}_{2n-1}.$ Тогда для любого $f\in C[D]$ наилучшая аппроксимация существует и единственна.

Доказательство теоремы Хаара

Доказательство. Существование следует из теоремы Бореля.

Единственность. Пусть существует две наилучшие аппроксимации p и q функции f. Тогда, согласно теореме Бореля, наилучшей аппроксимацией является и (p(x)+q(x))/2. Поэтому согласно теореме Чебышева существует чебышевский альтернанс $x_1 < x_2 < \ldots < x_{m+1}$ для разности f(x) - (p(x)+q(x))/2, где $m = \dim L$. Тогда

$$2\varepsilon(f,L) = ||2f - (p+q)|| = |2f(x_k) - p(x_k) - q(x_k)|$$

$$= |(f(x_k) - p(x_k)) + (f(x_k) - q(x_k))|$$

$$\leq |(f(x_k) - p(x_k))| + |(f(x_k) - q(x_k))|$$

$$\leq ||f - p|| + ||f - q|| = 2\varepsilon(f, L).$$

Следовательно, все неравенства в приведенных выше соотношениях являются равенствами. Тогда $|f(x_k)-p(x_k)|=\|f-p\|$, $|f(x_k)-q(x_k)|=\|f-q\|$ и $\mathrm{sgn}(\mathrm{f}(\mathrm{x}_k)-\mathrm{q}(\mathrm{x}_k))=\mathrm{sgn}(\mathrm{f}(\mathrm{x}_k)-\mathrm{p}(\mathrm{x}_k))$. Поэтому $f(x_k)-p(x_k)=f(x_k)-q(x_k)$, т.е. $p(x_k)=q(x_k)$. Поскольку L

чебышевское, из полученных равенств следует, что p(x)=q(x) для всех $x\in D$.

Примеры

Пример 1. Пусть D=[-1,1], $L=\mathcal{P}_n$ и $f(x)=x^n\not\in L$. Рассмотрим алгебраический многочлен $T_n(x)=\cos n$ агссоs x степени n со старшим коэффициентом, равным 2^{n-1} . Этот многочлен имеет чебышевский альтернанс порядка n+1. Поэтому согласно теореме Чебышева многочлен $f(x)-T_n(x)/2^{n-1}\in\mathcal{P}_n$ является наименее уклоняющимся элементом от $f(x)=x^n$ в L и $\varepsilon(x^n,\mathcal{P}_n)=1/2^{n-1}$.

Задача 1. Постройте чебышевский альтернанс порядка n+1 для многочлена $T_n(x) = \cos(n\arccos x) \in \mathcal{P}_{n+1}$. **Задача 2.** Не существует чебышевских подпространств размерности большей 1 на множестве, являющемся объединением трех отрезков с общим концом. **Задача 3.** Чебышевское подпространство размерности большей 1 определено на связном компактном множестве тогда и только тогда, когда это множество гомеоморфно отрезку или окружности.

Задача 4. Докажите теорему Чебышева для произвольного чебышевского подпространства в случае $D=\mathbf{S}^1$.

Задача 5. Пусть $a_k>0$ — такие вещественные положительные числа, что ряд $\sum\limits_{k=0}^{\infty}a_k$ сходится. Рассмотрим 2π -периодическую функцию

$$f(x) = \sum_{k=0}^{\infty} a_k \cos 3^k x$$

и для целого $m \ge 0$ положим

$$T(x) = \sum_{k=0}^{\infty} a_k \cos 3^k x.$$

Доказать, что тригонометрический многочлен T(x) наименее уклоняется от f(x) в $\mathcal{T}_{2\cdot 3^m+1}$ и $\varepsilon(f,\mathcal{T}_{2\cdot 3^m+1})=\sum\limits_{k=1}^\infty a_k$.

Задача 6. Пусть $f \in C[D]$ и для некоторого p из чебышевского подпространства L размерности n найдутся точки $a \leq x_1 < x_2 < \ldots < x_{n+1} \leq b$, в которых разность r = f - p принимает ненулевые значения с чередующимися знаками (в силу задачи 2 это множество упорядочено, для \mathbf{S}^1 этот порядок задает направление обхода по окружности.) Тогда

$$\varepsilon(f, L) \ge \min_{1 \le k \le n+1} |r(x_k)|.$$

Задача 7. Пусть $f \in C[\mathbf{S}^1]$ — четная функция. Тогда наименее уклоняющийся многочлен Чебышева также является четной функцией.

Задача 7. Пусть $a_k > 0$ — такие вещественные положительные

числа, что ряд $\sum\limits_{k=0}^{\infty} a_k$ сходится, а $1 \leq n_1 < n_2 < \ \ldots < n_k < \ \ldots$

— такие натуральные числа, для которых все отношения n_{k+1}/n_k суть целые нечетные числа. Положим

$$f(x) = \sum_{k=0}^{\infty} a_k \cos n_k x$$

и для целого m > 0 положим

$$T(x) = \sum_{k=1}^{m} a_k \cos n_k x.$$

Доказать, что тригонометрический многочлен T(x) наименее уклоняется от f(x) в $\mathcal{T}_{2\cdot n_m+1}$ и $\varepsilon(f,\mathcal{T}_{2\cdot n_m+1})=\sum\limits_{k=m+1}^{\infty}a_k.$

Неравенство Джексона

Согласно теореме Вейерштрасса выполнено предельное соотношение

$$\lim_{n\to+\infty}\varepsilon(f,\mathcal{P}_n)=0.$$

Тем не менее остается вопрос о скорости сходимости. Оказывается скорость сходимости определяется классом гладкости функции f(x).

Определение (Класс $W^r(M)$)

Пусть M>0 и r натуральное. Классом $W^r(M)$ называется множество r-1 дифференцируемых 2π -периодических функций, для которых $f^{(r-1)}(x)\in L_1(M)$.

Теорема (Джекссон)

Существует такая константа C, что для любых r,n,M>0 и $f\in W^r(M)$ выполняется неравенство

$$\varepsilon(f, \mathcal{T}_{2n-1}) < \mathcal{C}' \cdot \mathcal{M}/n'$$
.

Ядро.

В качестве константы ${\it C}$ можно взять $(3\pi^3/4)\int\limits_0^{\infty} \frac{\sin^4 {\it v}}{{\it v}^3} d{\it v}.$

Определение (Ядро)

Положительным ядром называется последовательность 2π -периодических функций $K_n(x)$, удовлетворяющая следующим свойствам:

- $oldsymbol{\circ} \lim_{n o \infty} \int\limits_{-\delta}^{\delta} \mathit{K}_{\mathit{n}}(\mathit{x}) \mathit{dx} = 1$ для всех $0 < \delta < \pi$

При выполнении свойств 2 и 3 последовательность K_n называется ядром.

Лемма о положительном ядре

Лемма (Лемма о положительном ядре)

Пусть $K_n(x)$ — положительное ядро. Тогда для любой 2π -периодической функции f(x) последовательность функций

 $f_n(x) = \int\limits_{-\pi}^{\pi} f(t+x) K_n(t) dt$ сходится равномерно к функции f(x).

Доказательство. Ввиду свойств ядра $\forall_{0<\delta<\pi}$ имеем

$$f(x) - \int_{-\pi}^{\pi} f(x+t)K_n(t)dt = \int_{-\pi}^{\pi} f(x)K_n(t)dt - \int_{-\pi}^{\pi} f(x+t)K_n(t)dt$$
$$= \int_{-\pi}^{\pi} (f(x) - f(x+t))K_n(t)dt$$
$$= \left(\int_{-\pi}^{-\delta} + \int_{-\pi}^{\delta} + \int_{-\pi}^{\pi} (f(x) - f(x+t))K_n(t)dt\right)$$

19/41

Пусть задано произвольное $\varepsilon>0$. В силу непрерывности и периодичности функции f(x), эта функция равномерно непрерывна и ограничена на всей числовой прямой. Поэтому для любого $\varepsilon>0$ существует такое $\delta>0$, что из $|x_1-x_2|\leq \delta$ следует, что $|f(x_1)-f(x_2)|<\frac{\varepsilon}{2}$, и существует такое M, что |f(x)|< M при всех x.

Фиксируем такое $\delta < \pi.$ Тогда ввиду неотрицательности $\mathit{K}_{\mathit{n}}(t)$, имеем

$$\left| \int_{-\delta}^{\delta} (f(x) - f(x+t)) K_n(t) dt \right| \leq \int_{-\delta}^{\delta} |f(x) - f(x+t)| K_n(t) dt$$

$$< \int_{-\delta}^{\delta} \frac{\varepsilon}{2} K_n(t) dt$$

$$< \frac{\varepsilon}{2} \int_{-\delta}^{\delta} K_n(t) dt,$$

поскольку при $t \in [-\delta, \delta]$ всегда $|x - (x + t)| = |t| \le \delta$.

В силу ограниченности функции |f(x)| < M выполнено неравенство

$$\left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi}\right) |f(x) - f(x+t)| K_n(t) dt \le 2M \left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi}\right) K_n(t) dt \\
= 2M \left(1 - \int_{\delta}^{\delta} K_n(t) dt\right).$$

Поэтому
$$\left| f(x) - \int\limits_{-\pi}^{\pi} f(x+t) K_n(t) dt \right| = \left| \int\limits_{-\pi}^{\pi} f(x) K_n(t) dt - \int\limits_{-\pi}^{\pi} f(x+t) K_n(t) dt \right|$$

$$= \left| \int\limits_{-\pi}^{\pi} (f(x) - f(x+t)) K_n(t) dt \right|$$

$$\begin{vmatrix} f(x) - \int_{-\pi}^{\pi} f(x+t)K_n(t)dt \end{vmatrix} = \begin{vmatrix} \int_{-\pi}^{\pi} f(x)K_n(t)dt - \int_{-\pi}^{\pi} f(x+t)K_n(t)dt \end{vmatrix}$$
$$= \begin{vmatrix} \int_{-\pi}^{\pi} f(x)K_n(t)dt - \int_{-\pi}^{\pi} f(x+t)K_n(t)dt \end{vmatrix}$$

 $= \left| \left(\int_{-\delta}^{-\delta} + \int_{\delta}^{\delta} + \int_{\delta}^{\pi} \right) (f(x) - f(x+t)) K_n(t) dt \right|$

 $\leq \left(\int_{-\delta}^{-\delta} + \int_{1}^{\delta} + \int_{1}^{\pi}\right) |(f(x) - f(x+t))K_n(t)| dt$

 $\leq rac{arepsilon}{2} \int\limits_{-\delta}^{\delta} \mathit{K}_{\mathit{n}}(t) \mathit{d}t + 2 \mathit{M} \left(1 - \int\limits_{-\epsilon}^{\delta} \mathit{K}_{\mathit{n}}(t) \mathit{d}t
ight).$

Поскольку $\lim_{n\to\infty}\int\limits_{-\delta}^{\delta}K_n(x)dx=1$, последнее выражение является бесконечно малой, не зависящей от x.

Неравенство Бесселя

Рассмотрим пространство $B = L_2^*(-\pi, \pi]$ кусочно непрерывных функций с интегрируемым квадратом. Это гильбертово пространство со скалярным произведением

$$(f,g)=\int_{-\infty}^{\pi}f(x)g(x)dx.$$

Пусть $H_n = \{1, \cos x, \sin x, \dots, \cos nx, \sin nx\}$ — его 2n + 1-мерное подпространство. Тогда согласно задаче 4 предыдущей лекции выполняется равенство

$$arepsilon(f, H_n) = \left(\|f\|^2 - (1, f)^2 - \sum_{k=1}^n ((f(x), \cos kx)^2 + (f(x), \sin kx)^2) \right)^{1/2}.$$
 Поэтому $\lim_{n \to \infty} (f(x), \cos nx) = \lim_{n \to \infty} (f(x), \sin nx) = 0.$

Следовательно, $\lim_{n \to \infty} \int\limits_{-\pi}^{\pi} f(x) \cos nx dx = \lim_{n \to \infty} \int\limits_{-\pi}^{\pi} f(x) \sin nx dx = 0.$

Ядро Дирихле

Лемма (Определение ядра Дирихле)

Последовательность функций

$$D_n(x) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n-1} \cos kx = \frac{\sin (n - 1/2) x}{2\pi \sin(x/2)}$$

определяет ядро. Это ядро называется ядром Дирихле.

Доказательство леммы о ядре Дирихле

Доказательство. По определению функции D_n

$$\int_{-\pi}^{\pi} D_n(t) dt = \int_{-\pi}^{\pi} \frac{dx}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n-1} \int_{-\pi}^{\pi} \cos kt dt = 1.$$

Проверим свойство 3 определения ядра. Пусть $0<\delta<\pi$.

$$\int\limits_{-\delta}^{\delta} D_n(t) dt = 1 - \left(\int\limits_{-\pi}^{-\delta} + \int\limits_{\delta}^{\pi} \right) D_n(t) dt.$$

Достаточно проверить, что $\left(\int\limits_{-\pi}^{-\delta}+\int\limits_{\delta}^{\pi}\right)D_n(t)dt$ бесконечно малая величина.

Доказательство леммы о ядре Дирихле

Рассмотрим функцию

$$g(\mathbf{x}) = \begin{cases} 0 & |\mathbf{x}| < \delta \\ 1 & \delta \le |\mathbf{x}| \le \pi \end{cases}$$

Положим $h(x) = g(x)/\sin{\frac{x}{2}} \in L_2^*[-\pi,\pi]$. Тогда

$$\left(\int\limits_{-\pi}^{-\delta}+\int\limits_{\delta}^{\pi}
ight)D_{n}(t)dt=$$

$$\int_{-\pi}^{\pi} h(t) \sin \left(n - \frac{1}{2} \right) t dt = \int_{-\pi}^{\pi} h(t) \cos \frac{t}{2} \sin nt dt - \int_{-\pi}^{\pi} h(t) \sin \frac{t}{2} \cos nt dt.$$

Согласно неравенству Бесселя последние два интеграла стремятся к нулю. ■

Ядро Фейера

Лемма (Определение ядра Фейера)

Последовательность функций

$$\Phi_n(\mathbf{x}) = \frac{\sum_{k=1}^n D_k(\mathbf{x})}{n}$$

определяет положительное ядро. Это ядро называется ядром Фейера.

Доказательство леммы о ядре Фейера

Доказательство. По определению функции $\Phi_n(\mathbf{x})$

$$\frac{\pi}{f} \qquad 1 \quad \frac{\pi}{f} \qquad 1 \quad \frac{\pi}{f}$$

 $\int_{-\infty}^{\infty} \Phi_n(t) dt = \frac{1}{n} \int_{-\infty}^{\infty} \sum_{k=1}^{n} D_k(t) dt = \frac{1}{n} \sum_{k=1}^{n} \int_{-\infty}^{\infty} D_k(t) dt = \frac{1}{n} \sum_{k=1}^{n} 1 = 1.$

Hanapaustpa $\Phi_{-}(t) > 0$ spanyot va saatuawawa

Неравенство
$$\Phi_n(t) \geq 0$$
 следует из соотношения $\Phi_n(t) = \frac{1}{1-\cos nt} \cdot \frac{1-\cos nt}{2\delta(t+1)}.$

 $\Phi_{\it n}(t)=rac{1}{4\pi \it n}\cdotrac{1-\cos \it nt}{\sin^2(t/2)}.$ Фиксируем $0<\delta \leq \pi$. Функция

$$\overline{\sin^2(t/(2\pi))}$$
 ограничена на $[-\pi,-\delta]\cup[\delta,\pi]$. Следовательно, на этом

 $1-\cos nt$

ограничена на $[-\pi, -\delta] \cup [\delta, \pi]$. Следовательно, на этом множестве $\Phi_n(t) \overrightarrow{\Rightarrow} 0$. Поэтому

иножестве
$$\Phi_n(t)$$
 o 0. Поэтому $\lim_{n o\infty}\left(\int\limits_{-\delta}^{-\delta}+\int\limits_{s}^{\pi}
ight)\Phi_n(t)dt=0.lacksquare$

Теорема Фейера

Лемма

Пусть $h(x) \in \mathcal{T}_{2n-1}$ и f(x) — непрерывная периодическая функция на прямой. Тогда

$$\int\limits_{-\pi}^{\pi}f(x+t)h(x)dx\in\mathcal{T}_{2n-1}.$$

Теорема (Фейер)

Теорема 2 (Фейер). Для любой непрерывной периодической функции с периодом 2π на прямой последовательность тригонометрических многочленов

$$f_n(x) = \int\limits_{-\pi}^{\pi} f(t+x) \Phi_n(t) dt$$

31/4

Теорема Вейерштрасса

Теорема Фейера следует непосредственно из леммы о положительном ядре и лемме о ядре Фейера.

Теорема (Вейерштрасс)

Для любой непрерывной на отрезке [a,b] функции f(x) существует равномерно сходящаяся к ней последовательность многочленов.

Для доказательства теоремы потребуется

Лемма

Функцию $\cos nx$ можно представить как многочлен степени n от переменной $\cos x$.

Доказательство леммы

Доказательство. При n=0 и n=1 утверждение очевидно.Пусть теорема доказана для всех $n \le k$ (k>0) и при всех $n \le k$ выполнено равенство $\cos nx = P_n(\cos x)$. Докажем, что тогда теорема справедлива и при n=k+1. Имеем

$$cos(k+1)x = cos kx cos x - sin kx sin x
= P_k(cos x) cos x
-(sin(k-1)x cos x + cos(k-1)x sin x) sin x
= P_k(cos x) cos x
- sin(k-1)x sin x cos x - cos(k-1)x sin2 x
= P_k(cos x) cos x + (cos kx - cos(k-1)x cos x) cos x
- cos(k-1)x(1 - cos2 x)
= P_k(cos x) cos x + P_k(cos x) cos x - P_{k-1}(cos x) cos2 x
- P_{k-1}(cos x)(1 - cos2 x)
= 2P_k(cos x) cos x - P_{k-1}(cos x)
= P_{k+1}(cos x). \blacksquare$$

Доказательство теоремы Вейерштрасса

Определим функцию на отрезке [0,1]

$$g(s) = f((1-s)a + sb).$$

Функция f(x) на отрезке [a,b] восстанавливается по функции g(s), заданной на отрезке [0,1], по формуле

$$f(x) = g\left(\frac{x-a}{b-a}\right).$$

Поэтому достаточно установить теорему только для функций, заданных на отрезке [0,1]. Будем далее считать, что $f(\mathbf{x}) \in \mathbf{C}[0,1]$.

Доказательство теоремы Вейерштрасса

Продолжим функцию $f(\mathbf{x})$ до четной функции на отрезке [-1,1]

$$h(\mathbf{x}) = \left\{ egin{array}{ll} f(\mathbf{x}) & ext{при } \mathbf{x} \geq 0 \ f(-\mathbf{x}) & ext{при } \mathbf{x} \leq 0 \end{array}
ight.$$

и определим четную функцию на всей числовой прямой

$$g(t) = h(\cos t)$$
.

В силу определения и условий теоремы, функция g(t) непрерывна и периодична с периодом $T=2\pi$. Следовательно, выполнены условия теоремы Фейера и последовательность тригономертических многочленов $\sigma_n(t;g)$ сходится равномерно к функции g(t).

Доказательство теоремы Вейерштрасса

Поскольку функция g(t) четная, коэффициенты $b_n=0$ и, следовательно,

$$\sigma_n(t;g) = \sum_{k=0}^n a_k \cos kt =$$

$$\sum^{n} a_k P_k(\cos t) = Q_n(\cos t),$$

где $P_k(x)$ — многочлены из доказанной выше леммы и, следовательно, $Q_n(x)$ также многочлен степени n. Покажем теперь, что последовательность $Q_n(x)$ сходится равномерно к функции f(x).

Поскольку $Q_n(\cos t) \overrightarrow{\Rightarrow} g(t)$, то для любого $\varepsilon>0$ существует N такое, что при n>N всегда $|g(t)-Q_n(\cos t)|<\varepsilon$. Следовательно, при n>N всегда $|f(\cos t)-Q_n(\cos t)|<\varepsilon$, т.е.

следовательно, при n > N всегда $|f(\cos t) - Q_n(\cos t)| < \varepsilon$, т.е. для всех $x \in [0,1]$ выполнено $|f(x) - Q_n(x)| < \varepsilon$.

Ядро Джексона

Лемма (Определение ядра Джексона)

Последовательность функций

$$J_n(\mathbf{x}) = \frac{3n^3}{2\pi(2n^2+1)} \left(\frac{\sin n\mathbf{x}/2}{n\sin \mathbf{x}/2}\right)^4 = \frac{6\pi n}{2n^2+1} \Phi_n^2(\mathbf{x})$$

определяет положительное ядро. Это ядро называется ядром Джексона.

Задача 8. Докажите лемму 5.

Доказательство. Согласно определению $J_n(x)\in \mathcal{T}_{4n-1}$. Поэтому $J_n(x)$ тригонометрический многочлен степени 2(n-1). Следовательно, $\forall f\in C[\mathbf{S}^1]$

$$T_n(x) = \int_{-\pi}^{\pi} J_n(t-x) f(t) dt$$

- тригонометрическид многочлен степени $\leq 2(n-1)$.

Доказательство теоремы Джексона.

Пусть r=1 и $f\in W^1(M)$. Для $m\geq 1$ рассмотрим тригонометрический многочлен

$$T(x) = \int_{-\infty}^{\infty} J_m(t-x)f(t)dt, \quad T(x) \in \mathcal{T}_{4m-3}.$$

Учитывая четность ядра Джексона и условие Липшица для функции f, получаем

$$|f(x)-T(x)|=\left|\int_{-\pi}^{\pi}J_m(t)(f(x)-f(x+t))dt\right|\leq$$

$$M\int_{0}^{\pi}|t|J_{m}(t)dt=2M\int_{0}^{\pi}tJ_{m}(t)dt.$$

Доказательство теоремы Джексона.

Ввиду неравенства $\sin(t/2) \geq t/\pi$ при $0 \leq t \leq \pi$ получаем

$$\int_{0}^{\pi} t J_{m}(t) dt \leq \frac{3\pi^{3}}{2m(2m^{2}+1)} \int_{0}^{\pi} \frac{\sin^{4} mt/2}{t^{3}} dt$$

$$= \frac{3\pi^{3}m}{8(2m^{2}+1)} \int_{0}^{m\pi/2} \frac{\sin^{4} t}{t^{3}} dt < \frac{C}{4m}$$

Следовательно, $\|f-T\|<\frac{\mathit{CM}}{2m}$. Если n=2m, то с помощью ядра J_m построим тригонометрический многочлен $T\in\mathcal{T}_{4m-3}=\mathcal{T}_{2n-3}\subset\mathcal{T}_{2n-1}$, для которого, как доказано выше, $\|f-T\|<\frac{\mathit{CM}}{2m}=\mathit{CM}/n$. Если n=2m-1, то с помощью ядра J_m строим тригонометрический многочлен $T\in\mathcal{T}_{4m-3}=\mathcal{T}_{2n-1}$, для которого, как доказано выше, $\|f-T\|<\frac{\mathit{CM}}{2m}<\mathit{CM}/n$. Заметим, что если интеграл по периоду от функции f равен

нулю, то и вычисляемый тригонометрический многочлен T

также удовлетворяет этому условию.

39/41

Доказательство теоремы Джексона.

Пусть теперь теорема доказана для произвольного r и более того, если интеграл по периоду равен нулю, то и полученная аппроксимация удовлетворяет этому свойству. Докажем, что тогда то же выполнено и для r+1. Пусть $f \in W^{r+1}(M)$. Тогда $f \in W'(M)$. Причем, очевидно, интеграл по периоду от функции f равен нулю. Тогда согласно индукционному предположению существует $T(x) \in \mathcal{T}_{2n-1}$, для которого выполнено неравенство $\|f'-T\| < C'Mn^{-r}$ и интеграл по периоду от T равен нулю. Тогда свободный член тригонометрического многочлена Т нулевой. Поэтому существует тригонометрический многочлен U той же степени с нулевым свободным членом, для которого U'(x) = T(x). Следовательно, $||(f - U)'|| = ||f' - T|| < C'Mn^{-r}$. Поэтому $f - U \in W^1(C^rMn^{-r})$. Следовательно, существует $t \in \mathcal{T}_{2n-1}$ такой, что $\|f - U - t\| < C(C'Mn^{-r})/n = C^{r+1}M/n^{r+1}$. Причем, если интеграл по периоду функции f равен нулю, то это же справедливо и для многочлена $U+t\in\mathcal{T}_{2n-1}$.

Задача 9. Докажите, что для четной функции существует четный тригонометрический многочлен, удовлетворяющий неравенству из теоремы Джексона.

Теорема (Джексон)

Пусть $f \in W^r(M,[a,b])$. Тогда для любого $n \geq r$ справедливо неравенство

$$\varepsilon(f, \mathcal{P}_n) < \left(\frac{b-a}{2}\right)^r \frac{A_r M}{n^r}, \quad n \geq r,$$

где константа A_r не зависит от M, n, f и равна $A_r = (Cr)^r/r!$ (C — константа из теоремы Джексона для периодических функций).

Задача 10. Докажите теорему Джексона для непериодических функций. Указание: сначала сведите доказательство к случаю функций f на отрезке [-1,1], затем перейдите к функциям вида $h(t) = f(\cos t)$.