Marcin Prabucki 269282 Śr/TN 17:05

Projekt nr 2

SPRZĘGŁO ZĘBATE JEDNOSTRONNE

Prowadzący dr inż. Janusz Rogula

Wrocław 2023

Parametry sprzęgła:

1. Moment nominalny $M_n = 350 \text{ Nm}$

2. Prędkość obrotowa n = 1600 obr/min

3. Przemieszczenia wału:

• przemieszczenie promieniowe Δr =0,5 mm

• przemieszczenie osiowe $\Delta a = 0.5 \text{ mm}$

Ogólne wymagania sprzęgła zębatego:

Sprzęgła zębate ogólnego przeznaczenia stosuje się do przenoszenia momentu obrotowego przy kątowych, promieniowych i osiowych przemieszczeniach wałów.

W zmontowanym sprzęgle tuleje uzębione powinny mieć możliwość przemieszczania poosiowego oraz wychylenia kątowego we wszystkich kierunkach w przedziałach dopuszczalnych dla sprzęgieł zębatych.

Sprzęgło to będzie pracowało pomiędzy silnikiem spalinowym 4-cylindrycznym a urządzeniem wiertniczym.

Zakładamy że sprzęgło będzie działało 5 godzin na dobę.

Odpowiednio dla tych urządzeń zostaną podane później w obliczeniach, wartości współczynników przeciążenia k₁, k₂.

Tok obliczeń:

DANE	OBLICZENIA	WYNIKI
Obliczanie mocy nominalnej P _n : N – moc [kW] M _n = 350 Nm ω –prędkość kątowa [1/s] n= 1600 obr/min	$P_n = M_n \cdot \omega = M_n \cdot \frac{\pi \cdot n}{30}$	P _n = 58,6 kW
Moment obrotowy obliczeniowy: \mathbf{k}_1 –zachowanie się silnika \mathbf{k}_1 = 0,5 \mathbf{k}_2 –zachowanie się maszyny \mathbf{k}_2 = 3,0	$M_0 = k \cdot M_n = (k_1 \cdot k_2) \cdot M_n$ $M_0 = (0.5 \cdot 3) \cdot 350 = 1.35 \cdot 350 = 525Nm$	M ₀ = 525 Nm
Obliczenie średnicy wału: Wał wykonany ze stali C45 Parametry stali: k _{sj} - naprężenia dopuszczalne na skręcanie	$ au_S = rac{M_S}{W_S}$ $W_S = rac{\pi \cdot d^3}{16}$	
k _{sj} – 95 MPa Obliczenie średnicy wału z warunku na skręcanie:	$d = \sqrt[3]{\frac{16 \cdot M_O}{\pi \cdot k_S}}$	
	$d = \sqrt[3]{\frac{16.525}{\pi.95}} = 30,4$ mm	d = 30,4mm Przyjmujemy średnicę wału 40 mm

DANE	OBLICZENIA	WYNIKI
Sprawdzenie warunku:	$\frac{M_s}{W_s} \le k_s$ $\frac{16 \cdot 525}{3,14 \cdot 0,032^3} \le 95$ $81,6MPa \le 95MPa$	81,6MPa ≤ 95MPa Warunek został spełniony
Obliczanie wpustu: W projekcie zostanie zastosowany wpust pryzmatyczny, zaokrąglony, pełny typu A Wysokość i szerokość wpustu odczytana z tablic wynosi: B x h = 10 x 8	$p = \frac{2F}{l_o \cdot h \cdot n} \le p_{dop}$	
Materiał E360 Wyznaczymy długość wpustu z warunku na nacisk powierzchniowy:	$F = \frac{2M_O}{d}$ $p_{dop} = z \cdot k_c$	F = 32.8 kN $l_0 = 30 \text{ mm}$
d - średnica wału l ₀ - długość wpustu n – ilość wpustów n=3,5 h – wysokość wpustu pryzmatycznego h=6mm p _{dop} – nacisk dopuszczalny z- współczynnik z z=0,25 k _c =175MPa	$l_0 \ge \frac{4M_o}{d \cdot h \cdot n \cdot z \cdot k_c}$	Przyjmujemy długość wpustu 36mm
p _{dop} = 130 MPa Obliczenie rzeczywistej długości wpustu:	$l = l_0 + b$ $l = 36 + 10 = 46mm$	l=46mm
S		

DANE	OBLICZENIA	WYNIKI
Warunek wytrzymałościowy wpustu na ścinanie: I₀ – czynna część wpustu b – szerokość wpustu k₁ – naprężenia na ścinanie k₁ = 85MPa	$\tau = \frac{M_s}{r \cdot l_0 \cdot b} \le k_{tj}$ $\tau = \frac{F}{l \cdot b} \le k_{tj}$ $\tau = \frac{32800}{0,046 \cdot 0,01} \le k_{tj}$ $\tau = 71,3MPa$ $\tau \le k_{tj} = 85MPa$	$ au = 71,3MPa$ $ au \leq k_{tj}$ Warunek został spełniony
Obliczenia zębów: Materiał z jakiego wykonany jest wieniec zębaty to 18CrMo4.		
Do obliczeń wartości modułu, szerokości wieńca zębatego i ilości zębów zostały założone. Obliczenie wysokości zęba:	h= 1,8m	
m- moduł h- wysokość zębów	$h = 1.8 \cdot 3 = 5.4mm$	h = 5,4mm
m = 3Obliczenie promienia i średnicy podziałowej wieńca zębatego:z- ilość zębów	$R_g = \frac{z \cdot m}{2}$	
z = 30	$R_g = \frac{30 \cdot 3}{2} = 45mm$	$R_g = 45mm$
	$D_p = 2 \cdot R_g = 90mm$	$D_p = 90mm$

Obliczenie szerokości wieńca zębatego: Pdop=40MPa Z=30 h=5,4mm d _p =90mm	$F = \frac{2M_0}{d_p}$ $\frac{F}{n \cdot l_z \cdot z} \le p_{dop}$ $\frac{2M_0}{d_p \cdot h \cdot b \cdot z \cdot 0,75} \le p_{dop}$ $b \ge \frac{2M_0}{d_p \cdot h \cdot p_{dop} \cdot z \cdot 0,75}$ $b \ge 2,4mm$ Dobieram szerokość wieńca zębatego b=12mm	b=12mm
Obliczenie czynnej liczby zębów: k _g = 172 MPa k _c = 81 MPa E=210GPa ν =0,3	$z_{cz} = \frac{1}{\pi} \frac{E}{1 - v^2} a \frac{b}{R_g} \frac{k_g}{k_c^2} \frac{1}{\sin^2 \alpha_0 \cos \alpha_0}$ $z_{cz} = 46.7$	Przyjmuję: $z_{cz} = 48$
Obliczenie maksymalnego obciążenia przyłożonego do zęba: k _{gi} – naprężenia na zginanie k _{gi} = 172 MPa α – kat przyporu b – szerokość wieńca zębatego b = 12mm α = 20°	$q = \frac{M_S K_1}{2\pi \cdot z_{cz} \cdot b \cdot R_g}$ $q = \frac{525 \cdot 0.5}{2 \cdot 3.14 \cdot 78 \cdot 0.012 \cdot 75} = 0.595 N/mm$	q = 0,48 N/mm

Obliczenie momentu jaki może przenieść sprzęgło:

$$M_0 = \frac{2\pi \cdot z_{cz}qbR_g}{K_1}$$

 $M_0 = \frac{2 \cdot 3.14 \cdot 78 \cdot 0,595 \cdot 0,012 \cdot 45}{0,5}$ = 314,8Nm

$$M_0 = 314,8Nm$$

 $k_{gi} = 308MPa$

Obliczenie dopuszczalnych naprężeń na zginanie dla zębów hartowanych:

R_e = 880 MPa R_m = 1080 MPa

$k_{qj} = 31 \cdot \sqrt[3]{0.5 \cdot (R_m + R_e)}$

$$k_{gj} = 31 \cdot \sqrt[3]{0.5 \cdot 1960} = 31 \cdot 9.93 = 308MPa$$

Obliczenie maksymalnego naprężenia przyłożonego do zębów:

 R_{z1-2} - zastępczy promień krzywizny zęba piasty i tulei

$$R_{z1-2} = R_g = 75mm$$

$$k_c = 200MPa$$

$\sigma_{cmax} = \sqrt{\frac{q_c \cdot E}{\pi \cdot R_{z1-2} \cdot (1 - v^2)}} \le k_c$

$$\sigma_{cmax} = \sqrt{\frac{0,48 \cdot 2,1 \cdot 10^5}{3,14 \cdot 75(1-0,3^2)}}$$

$$\sigma_{cmax} \leq k_c$$

$$\sigma_{cmax} = 21,7 \text{MPa}$$

Warunek został spełniony

Obliczenie luzu międzyzębnych

 ${f b}$ – szerokość wieńca zębatego ${\it Δ}{\it α}$ - odchylenie kątowe

$$\Delta \alpha = 0,5^{\circ}$$

$$l_0 = b \cdot \sin \Delta \, \alpha$$

$$l_0 = 15 \cdot \sin 0.5^{\circ} = 0.13mm$$

 $l_0 = 0.13mm$

Obliczanie śrub łączące d	lwa
kołnierze sprzęgła:	

Śruby wykonane ze stali **E335** Śruby są ciasno pasowane

Obliczenie siły działającej na śrubę:

D - Średnica rozmieszczenia śrub **D** =**200mm**

z - liczba śrub

z = 6

 $k_t = 80MPa$

Obliczenie średnicy śruby z warunku na ścinanie:

$$F = \frac{2M_0}{D \cdot z}$$

$$F = \frac{2 \cdot 529}{0,2 \cdot 6} = 875N$$

$$\tau = \frac{F}{A} \le k_t$$

$$A = \frac{\pi d_3}{4}$$

$$d_3 = \sqrt{\frac{8F}{\pi \cdot k_t}}$$

$$d_3 = \sqrt{\frac{8 \cdot 881,7}{3.14 \cdot 80}} = 5,3mm$$

F=881,7 N

 $D_3 = 5,3mm$

Przyjmujemy średnicę śruby

 $D_3 = 6 \text{ mm}$ $\mathbf{M6}$