Descomposición del Error: Sesgo-Varianza

Derivación Matemática

July 24, 2025

Contexto del Problema

El objetivo es entender la naturaleza del error de un modelo en el aprendizaje supervisado. Partimos de los siguientes supuestos:

- El verdadero modelo que genera los datos es $y = g(x) + \epsilon$, donde el ruido ϵ es una variable aleatoria con media cero ($\mathbb{E}[\epsilon] = 0$) y desviación estándar σ . Por lo tanto, la varianza del ruido es $\text{Var}(\epsilon) = \sigma^2$.
- Aprendemos un predictor $\hat{y} = f(x; D)$ al que entrenamos en un conjunto de datos específico $D = \{(x_i, y_i)\}$. La forma del predictor f depende del conjunto de entrenamiento D.

Buscamos descomponer el error de generalización esperado para un nuevo punto de datos x.

Derivación del Error Cuadrático Esperado

El error de generalización se define como el valor esperado del error cuadrático, donde la esperanza se toma sobre todos los posibles conjuntos de entrenamiento D y sobre el ruido ϵ .

$$\mathbb{E}_{D,\epsilon} \left[(y - \hat{y})^2 \right] = \mathbb{E}_{D,\epsilon} \left[(g(x) + \epsilon - f(x;D))^2 \right]$$

$$= \mathbb{E}_{D,\epsilon} \left[(g(x) - f(x;D))^2 + 2\epsilon(g(x) - f(x;D)) + \epsilon^2 \right]$$

$$= \mathbb{E}_D \left[(g(x) - f(x;D))^2 \right] + 2\mathbb{E}_{D,\epsilon} \left[\epsilon(g(x) - f(x;D)) \right] + \mathbb{E}_{\epsilon} \left[\epsilon^2 \right]$$

$$= \mathbb{E}_D \left[(g(x) - f(x;D))^2 \right] + \sigma^2 \quad (\text{ya que } \mathbb{E}[\epsilon] = 0 \text{ y } \mathbb{E}[\epsilon^2] = \sigma^2)$$

$$= \mathbb{E}_D \left[(g(x) - \mathbb{E}_D[f(x;D)] + \mathbb{E}_D[f(x;D)] - f(x;D))^2 \right] + \sigma^2$$

$$= \mathbb{E}_D \left[(g(x) - \mathbb{E}_D[f(x;D)])^2 + (\mathbb{E}_D[f(x;D)] - f(x;D))^2 \right]$$

$$+ 2(g(x) - \mathbb{E}_D[f(x;D)])(\mathbb{E}_D[f(x;D)] - f(x;D)) + \sigma^2$$

$$= \mathbb{E}_D \left[(g(x) - \mathbb{E}_D[f(x;D)])^2 \right] + \mathbb{E}_D \left[(\mathbb{E}_D[f(x;D)] - f(x;D))^2 \right]$$

$$+ 2\mathbb{E}_D \left[(g(x) - \mathbb{E}_D[f(x;D)])^2 \right] + \mathbb{E}_D \left[(f(x;D) - \mathbb{E}_D[f(x;D)])^2 \right] + \sigma^2$$

$$= (g(x) - \mathbb{E}_D[f(x;D)])^2 + \mathbb{E}_D \left[(f(x;D) - \mathbb{E}_D[f(x;D)])^2 \right] + \frac{\sigma^2}{\text{error irreducible}}$$

$$= (g(x) - \mathbb{E}_D[f(x;D)])^2 + \mathbb{E}_D \left[(f(x;D) - \mathbb{E}_D[f(x;D)])^2 \right] + \frac{\sigma^2}{\text{error irreducible}}$$