

MATEMÁTICAS II

Boletín 4 - Integración múltiple

1. Calcular las siguientes integrales iteradas:

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} (x+y)dydx$$
.

(a)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} (x+y)dydx$$
. (b) $\int_0^2 \int_0^{\sqrt{4-y^2}} \frac{2}{\sqrt{4-y^2}} dxdy$.

2. Dibuja la región R cuya área representa la integral iterada. Calcular dicha área, cambiando previamente el orden de integración.

(a)
$$\int_{a}^{1} \int_{a}^{\sqrt{y}} dx dy$$
.

(a)
$$\int_0^1 \int_{y^2}^{\sqrt{y}} dx dy$$
. (b) $\int_0^2 \int_0^x dy dx + \int_2^4 \int_0^{4-x} dy dx$.

3. Usar una integral iterada para calcular el área de la región acotada por las gráficas de 2x - 3y = 0, x + y = 05, y = 0.

4. Para calcular las siguientes integrales iteradas es necesario cambiar previamente el orden de integración:

(a)
$$\int_{0}^{2} \int_{0}^{2} x \sqrt{1 + y^3} dy dx$$

(a)
$$\int_0^2 \int_x^2 x \sqrt{1+y^3} dy dx$$
 (b) $\int_0^1 \int_y^1 \sin^2 x dx dy$.

5. Realizar un esbozo de la región ${\mathcal R}$ y calcular la integral doble :

a) $\int \int_{\mathbb{R}} x dA \, y \, \mathcal{R}$ es el sector circular en el primer cuadrante acotado por $y = \sqrt{25 - x^2}$, 3x - 4y = 0, y = 0.

b)
$$\int \int_{\mathcal{P}} (x^2 + y^2) dA$$
 y \mathcal{R} es el semicírculo acotado por $y = \sqrt{4 - x^2}$, $y = 0$.

6. Calcular el volumen del sólido acotado por las gráficas de las ecuaciones:

a)
$$z = xy$$
, $z = 0$, $y = x$, $x = 1$, primer octante.

b)
$$x^2 + z^2 = 1$$
, $y^2 + z^2 = 1$, primer octante.

7. Calcular las siguientes integrales dobles, pasando previamente a coordenadas polares.

$$a) \int_0^2 \int_0^{\sqrt{2x-x^2}} xy dy dx$$

b)
$$\int_0^2 \int_0^x \sqrt{x^2 + y^2} dy dx + \int_2^{2\sqrt{2}} \int_0^{\sqrt{8-x^2}} \sqrt{x^2 + y^2} dy dx$$
.

8. Calcular el volumen del sólido acotado por las gráficas de las ecuaciones

a)
$$z = \sqrt{x^2 + y^2}$$
, $z = 0$, $x^2 + y^2 = 25$.

b)
$$z = \ln(x^2 + y^2)$$
, $z = 0$, $x^2 + y^2 \ge 1$, $x^2 + y^2 \le 4$.

9. Calcular el volumen del sólido que es interior al hemisferio $z = \sqrt{16 - x^2 - y^2}$ y al cilíndro $x^2 + y^2 - 4y = 0$.

10. Determinar a, de modo que el volumen interior al hemisferio $z = \sqrt{16 - x^2 - y^2}$ y exterior al cilindro $x^2 + y^2 = a^2$ sea la mitad del volumen de hemisferio.

1

11. Calcular las siguientes integrales triple:

(a)
$$\int_0^1 \int_0^x \int_0^{xy} x \, dz \, dy \, dx$$
 (b) $\int_0^9 \int_0^{y/3} \int_0^{\sqrt{y^2 - 9x^2}} z \, dz \, dx \, dy$.

- 12. Esbozar la región sólida cuyo volumen representa la integral triple $\int_0^4 \int_0^{\sqrt{16-x^2}} \int_0^{10-x-y} dz \ dy \ dx$ y reescribirla en el orden que se indica $dz \ dx \ dy$.
- 13. Calcular el volumen del sólido acotado por las gráficas de las ecuaciones:

(a)
$$z = 9 - x^2 - y^2$$
, $z = 0$ (b) $z = 4 - x^2$, $y = 4 - x^2$, primer octante.

14. Pasar la integral a coordenadas cilíndricas y a coordenadas esféricas. Evaluar la que resulte más sencilla:

(a)
$$\int_0^4 \int_0^{\sqrt{16-x^2}} \int_0^{\sqrt{16-x^2-y^2}} \sqrt{x^2+y^2} \ dz \ dy \ dx$$
 (b) $\int_{-a}^a \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} \int_a^{a+\sqrt{a^2-x^2-y^2}} x \ dz \ dy \ dx$.

- 15. Hallar el volumen del sólido interior a la esfera $x^2 + y^2 + z^2 = 4$ y por encima del semicono $z = \sqrt{x^2 + y^2}$.
- 16. Calcular el volumen del sólido comprendido entre las esferas $x^2 + y^2 + z^2 = 4$ y $x^2 + y^2 + z^2 = 9$ e interior al cono $x^2 + y^2 z^2 = 0$.
- 17. Calcular el volumen del sólido comprendido entre las gráficas de z = x + y, z = 0, y = 0, y = x, x = 0 y x = 3.
- 18. Calcular el volumen del sólido acotado por la gráficas z = 0 y z = 3, exterior al cilindro $x^2 + y^2 = 1$ e interior al hiperboloide $x^2 + y^2 z^2 = 1$.
- 19. Calcular el volumen de la región sólida interior al cilindro $x^2 + y^2 = 1$, limitada inferiormente por el paraboloide $z = x^2 + y^2$ y superiormente por la superficie esférica $x^2 + y^2 + z^2 = 9$.
- 20. Dada la siguiente integral triple

$$\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{16-x^2-y^2}} \sqrt{x^2+y^2} dz dy dx$$

- 1) Hacer un esbozo de la región de integración y expresar la integral en coordenadas cilíndricas.
- 2) Calcular la integral.
- 21. Calcular el volumen del sólido Q limitado inferiormente por el paraboloide $z=4x^2+4y^2$ y superiormente por el paraboloide $z=6-2x^2-2y^2$.
- 22. Calcular $\int \int \int_Q z \, dV$ siendo Q la región limitada superiormente por el paraboloide $z = 2 x^2 y^2$ e inferiormente por el plano z = 1.

Soluciones

1. a)
$$\frac{2}{3}$$
 b) 4

2. a)
$$\frac{1}{3}$$
 b) 4

4. a)
$$\frac{26}{9}$$
 b) $\frac{1}{2}(1-\cos 1)$

5. a) 25 b)
$$4\pi$$

6. a)
$$\frac{1}{8}$$
 b) $\frac{2}{3}$

7. a)
$$\frac{2}{3}$$
 b) $\frac{4\sqrt{2}\pi}{3}$

8. a)
$$\frac{250\pi}{3}$$
 b) $2\pi \left(4\ln 2 - \frac{3}{2}\right)$

9.
$$\frac{64}{3}\pi$$

10.
$$a = \sqrt{16 - 8\sqrt[3]{2}}$$

11. a)
$$\frac{1}{10}$$
 b) $\frac{729}{4}$

12.
$$\int_0^4 \int_0^{\sqrt{16-y^2}} \int_0^{10-x-y} dz \ dx \ dy$$

13. a)
$$\frac{81\pi}{2}$$
 b) $\frac{256}{15}$

14. a)
$$8\pi^2$$
 b) 0

15.
$$\frac{16\pi}{3} \left(1 - \frac{\sqrt{2}}{2}\right)$$

16.
$$\frac{76\pi}{3} \left(1 - \frac{\sqrt{2}}{2}\right)$$

17.
$$\frac{27}{2}$$
.

18.
$$9\pi$$
.

$$20. \ \frac{8\pi^2}{3} - 2\sqrt{3}\pi$$

21.
$$3\pi$$

22.
$$\frac{2}{3}\pi$$