Homework 13

Table of Contents

[✓] ADSI Problem 7.1	1
[✓] ADSI Problem 7.2: Hilbert transform of a cosine signal	
[✓] ADSI Problem 7.3: One-sided spectrum of analytical signals	
[»] ADSI Problem 7.4: Swept sine wave	
1. Design swept sine signal	5
2. Compute instantaneous frequency	
[»] ADSI Problem 7.5: Envelope Detection	
1. Plot the signal and envelope on the same graph	
2. Describe how noise affects Hilbert transform's ability to recover the envelope	6
3. Try with other two signals	6
[»] ADSI Problem 7.8: Amplitude modulated signal	
1. Plot 1 second of the signal and confirm that it is an amplitude modulated signal with a carrier frequency of	
20 kHz	
2. Use the procedure from Figure 9.8 in the note to frequency shift the signal to 15 kHz. Plot the spectrum of	of
the signal at each step in the procedure.	

[✓] ADSI Problem 7.1

A tremendous amount of functionality is found in MATLABs toolboxes and Hilbert transforms are no exception. Type doc hilbert in MATLAB and read the documentation.

doc hilbert

[✓] ADSI Problem 7.2: Hilbert transform of a cosine signal

A continuous time signal is given by $x(t) = 4 + 3\cos(\omega t)$. What is the Hilbert transform of this signal?

Signal	Hilbert transform ^[fn 1]
u(t)	H(u)(t)
$\sin(\omega t)$ [fn 2]	$\mathrm{sgn}(\omega)\sinig(\omega t-rac{\pi}{2}ig)=-\mathrm{sgn}(\omega)\cos(\omega t)$
$\cos(\omega t)$ [fn 2]	$\operatorname{sgn}(\omega)\cos\!\left(\omega t - \frac{\pi}{2}\right) = \operatorname{sgn}(\omega)\sin(\omega t)$
$e^{i\omega t}$	$\mathrm{sgn}(\omega)e^{i\left(\omega t-rac{\pi}{2} ight)}=-i\cdot\mathrm{sgn}(\omega)e^{i\omega t}$
$\frac{1}{t^2+1}$	$\frac{t}{t^2+1}$
e^{-t^2}	$2\pi^{-1/2}F(t)$ (see Dawson function)
Sinc function $\frac{\sin(t)}{t}$	$\frac{1-\cos(t)}{t}$
$\mathrm{rect}(t) = \Pi(t) = \begin{cases} 0, & \mathrm{if}\ t > \frac{1}{2}\\ \frac{1}{2}, & \mathrm{if}\ t = \frac{1}{2}\\ 1, & \mathrm{if}\ t < \frac{1}{2}. \end{cases}$	$\frac{1}{\pi} \ln \left \frac{t + \frac{1}{2}}{t - \frac{1}{2}} \right $
Dirac delta function $\delta(x) = egin{cases} +\infty, & x=0 \ 0, & x eq 0 \end{cases}$	$\frac{1}{\pi t}$
Characteristic Function $\chi_{[a,b]}(t)$	$\frac{1}{\pi} \ln \biggl \frac{t-a}{t-b} \biggr $

	Deal signal	II:ll-out-toon-of-our
	Real signal	Hilbert transform
)	$a_1g_1(t) + a_2g_2(t); a_1, a_2 \in \mathbb{C}$	$a_1\hat{g}_1(t) + a_2\hat{g}_2(t)$
	$h(t-t_0)$	$\hat{h}(t-t_0)$
	$h(at); a \neq 0$	$\operatorname{sgn}(a)\hat{h}(at)$
	$rac{\mathrm{d}}{\mathrm{d}t}h(t)$	$rac{\mathrm{d}}{\mathrm{d}t}\hat{h}(t)$
	$\delta(t)$	$rac{1}{\pi t}$
	$e^{\mathrm{j}t}$	$-je^{jt}$
	e^{-jt}	$\mathrm{j}e^{-\mathrm{j}t}$
	$\cos(t)$	$\sin(t)$
	$\mathrm{rect}(t)$	$\frac{1}{\pi} \ln (2t+1)/(2t-1) $
	$\operatorname{sinc}(t)$	$\frac{\pi t}{2}\operatorname{sinc}^2(t/2) = \sin(\pi t/2)\operatorname{sinc}(t/2)$
	$1/(1+t^2)$	$t/(1+t^2)$

$$H[4+3\cos(\omega t)] = H[4] + 3H[\cos(\omega t)]$$

$$H[4 + 3\cos(\omega t)] = 0 + 3\operatorname{sgn}(\omega)\sin(\omega t)$$

[✓] ADSI Problem 7.3: One-sided spectrum of analytical signals

Consider the signal

$$x(n) = e^{-0.001(n-255)^2} \cos(1.8n) \quad 0 \le n \le 511.$$

Calculate the analytical signal in MATLAB and check that the spectrum is one-sided as expected.

Recall that we start with a real-valued signal $x_r(t)$ and we want we need to represent the signal as a complex sinusoid:

$$x_c(t) = x_r(t) + j x_i(t)$$

 $x_c(t)$ is known as an **analytic signal** because it has no negative-frequency spectral components.

To show that the spectrum is one-sided, we have to show that the frequency response $X_c(e^{j\omega})$ is zero over the negative frequency range.

We can do this by estimating the power spectrum density (PSD) of the analytical signal using the periodogram.

In the MATLAB plot, the normalised **positive frequency range** is [0, 1] whereas the **negative frequency range** is between 1 and 2. Notice there is no power spikes in the negative frequency range, only noise.

```
n = (0:511)';
x = exp(-0.001.*(n-225).^2).*cos(1.8*n);
```

```
% Compute the analytic signal of the real signal x(n)
y = hilbert(x);
% Compute and plot the PSD estimate
periodogram(y)
```


% PSD estimate using the Welch method
pwelch(y)

[»] ADSI Problem 7.4: Swept sine wave

In (audio) measurements an exponentially swept sine wave is often used to measure transfer functions and nonlinear distortion, see e.g. Novák et al. "Nonlinear System Identification Using Exponential Swept-Sine Signal" IEEE Trans. Instrum. Measure. **59**, 2220-2229, (2010) or "Synchronized Swept-Sine: Theory, Application and Implementation". J. Audio Eng. Soc. **63**, 787-798, (2015). In the continuous time domain an exponential swept sine wave is given by

$$s(t) = \sin\left(2\pi f_1 L \left[\exp\left(\frac{t}{L}\right) - 1\right]\right)$$

where

$$L = \frac{T}{\ln\left(\frac{f_2}{f_1}\right)}$$

T is the duration of the sweep, f_1 and f_2 are the start and stopping frequencies of the sweep.

1. Design swept sine signal

1. Design a 5 second long swept sine sampled at 48 kHz. The sine should sweep from 50 Hz to 5000 Hz. Play the sound on your pc and check that is performs as expected.

2. Compute instantaneous frequency

2. Use equation 9.6 $F(t) = d/dt \tan^{-1} x_i(t)/x_r(t)$ to calculate the instantaneous frequency of the swept sine signal and compare with the real frequency.

[»] ADSI Problem 7.5: Envelope Detection

The textbook states that the Hilbert transform can be used to find the envelope of a signal. The validity of this statement is investigated in this problem.

Consider an exponentially decaying oscillating signal given by

```
x(n) = 4e^{-0.01n}\cos(\pi n)
```

1. Plot the signal and envelope on the same graph

Plot this signal and use equation 9.4 to plot the envelope on the same graph. Compare the result with the expected outcome.

```
n = (0:511)';
x = 4*exp(-0.001.*n).*cos(pi*n);
plot(n, x)
```


2. Describe how noise affects Hilbert transform's ability to recover the envelope

In real life noise is always present in measurements.

2. Add white Gaussian noise WGN \sim (0,1) to the signal and repeat. Describe the influence of the noise in the ability of the Hilbert transform to recover the envelope.

3. Try with other two signals

3. Repeat the above two questions for the signals $x_1(n) = 4e^{-0.01n}\cos(3n)$ and $x_2(n) = 4e^{-0.01n}\cos(0.3n)$.

[»] ADSI Problem 7.8: Amplitude modulated signal

Consider an amplitude modulated signal given by

$$x(t) = (1 + 0.2\cos(2\pi 37t))\cos(2\pi * 20000t)$$

- 1. Plot 1 second of the signal and confirm that it is an amplitude modulated signal with a carrier frequency of 20 kHz.
- 2. Use the procedure from Figure 9.8 in the note to frequency shift the signal to 15 kHz. Plot the spectrum of the signal at each step in the procedure.