## **Massively Multilingual Transformers**

- Deep Transformer nets pretrained on large multilingual corpora via (masked) language modeling objectives
  - Multilingual BERT, XLM-R, mT5
- Automatically induces shared (subword) vocabulary across all languages
- Unsupervised from the perspective of explicit cross-lingual signal
  - Deemed very effective for zero-shot CL transfer

"Suprising cross-lingual effectiveness of BERT" "mBERT surprisingly good at zero-shot CL model transfer"



# **Massively Multilingual Transformers**

- Assumption: after multilingual MLM pretraining mBERT can encode text from any of the languages seen in pretraining
- Automatically lends itself to zero-shot language transfer for downstream NLP tasks
- mBERT has its own tokenizer that can tokenize input texts from all languages seen in pre-training
  - Caveat: words from larger languages mostly have their own tokens
    - Words from smaller languages broken down into subwords which can be found across languages
    - Worst case scenario: input broken into characters



# **Cross-Lingual Transfer with MMTs**

**Zero-shot language transfer** for downstream NLP tasks with mBERT:

- 1. Couple the mBERT Transformer with the taskspecific classifier ("head")
- 2. Train the mBERT+classifier model jointly on source language data
  - Classifier parameters trained from scratch
  - mBERT's Transformer parameters fine-tuned
- 3. Predict by feeding the target language text (tokenized with mBERT's tokenizer) into the fine-tuned mBERT+classifier model



#### So...has mBERT solved zero-shot CL transfer?

No! Settings in which they were evaluated were simply too favorable

"How multilingual is Multilingual BERT?" [Pires et al., ACL 19]

Tasks: NER, POS; Target languages: DE, NL, ES

"Cross-lingual Ability of mBert: Empirical Study" [Karthikeyan et al., ICLR 20]

- Tasks: NER, NLI; Target languages: ES, HI, RU
- In most studies, the selected target languages were:
  - (1) from the same language family,
  - (2) with large corpora in pretraining

#### **Zero-shot transfer performance drops**

Lauscher, A., Ravishankar, V., Vulić, I., & Glavaš, G. (2020). *From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual Transfer with Multilingual Transformers*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 4483-4499).

| Task  | Model  | EN | $rac{\mathbf{Z}\mathbf{H}}{\Delta}$ | TR<br>Δ        | RU<br>Δ | AR<br>Δ | $\Delta$ | $rac{\mathbf{E}\mathbf{U}}{\Delta}$ | FI<br>Δ | $^{\rm HE}_\Delta$ | $^{\rm IT}_\Delta$ | JA<br>Δ | KO<br>Δ        | $\frac{\mathbf{sv}}{\Delta}$ | $\Delta$ | $\Delta$              | $\Delta$ | $rac{\mathbf{EL}}{\Delta}$ | DE<br>Δ       | FR<br>Δ | BG<br>Δ | sw<br>Δ        | UR<br>Δ |
|-------|--------|----|--------------------------------------|----------------|---------|---------|----------|--------------------------------------|---------|--------------------|--------------------|---------|----------------|------------------------------|----------|-----------------------|----------|-----------------------------|---------------|---------|---------|----------------|---------|
| DEP   |        |    |                                      | -46.0<br>-44.2 |         |         |          |                                      |         |                    |                    |         |                | -14.3<br>-16.3               | -        | -                     | -        | -                           | -             | -       | -       | -              | -       |
| POS   |        |    |                                      | -35.9<br>-27.7 |         |         |          |                                      |         |                    |                    |         |                |                              | -        | -                     | -        | -                           | -             | -       | -       | -              | -       |
| NER   |        |    |                                      | -11.6<br>-6.2  |         |         |          |                                      |         |                    |                    |         | -13.8<br>-15.6 |                              | -        | -                     | -        | -                           | -             | -       | -       | -              | -       |
| XNLI  | B<br>X |    |                                      | -20.6<br>-11.3 |         |         |          | -                                    | -       | -                  | -                  | -       | -              | -                            |          | -28.1<br>-12.3        |          | -14.1<br>-8.9               | -10.5<br>-7.8 |         |         | -33.0<br>-20.2 |         |
| XQuAD | B<br>X |    |                                      | -34.2<br>-18.7 |         |         |          | -                                    | -       | -                  | -                  | -       | -              | -                            |          | <b>-43.2</b><br>-14.8 |          |                             |               |         | -       | -              | -       |

- B = mBERT (Base), X = XLM-R (Base)
- Drops huge for:
  - 1. Distant target languages and
  - 2. Target languages with small pretraining corpora

## Language-Specific Representation Subspaces

 In representation spaces produced by MMTs, one can still relatively easy discern language-specific subspaces



# Better alignment between language subspaces...

- ...can be achieved with bilingual supervision (word translations of parallel data) [Wu & Conneau, ACL 20; Cao et al., ICLR 20; Hu et al., 2020]
- As with CLWEs: some bilingual/multilingual supervision → better bilingual/multilingual representation space



Image from [Cao et al., '20]

### Choosing a Language Sample for CL Transfer Experiments

- Multilingual evaluation benchmarks should assess the expected performance of a model across languages
  - Sample of languages should be representative but of what exactly?
- Findings can critically depend on the selection of languages
  - Most studies sample languages with the largest digital footprint
  - Such languages tend to belong to the same families (e.g., Indo-European)
  - Expected transfer performance is overestimated!

### Variety sampling of languages

Ponti, E. M., Glavaš, G., Majewska, O., Liu, Q., Vulić, I., & Korhonen, A. (2020). *XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*, pp. 2362-2376.

#### Idea: selection according to the distribution of linguistic properties

- Variety sampling favors the inclusion of outlier languages
- 1. Typological diversity: entropy of distribution of linguistic properties
- 2. Family index: number of different families / sample size
- 3. Geography index: entropy of lang. distr. over 6 geographic macro-areas

|           | Range                                                  | XCOPA | TyDiQA | XNLI | XQUAD | MLQA | PAWS-X |
|-----------|--------------------------------------------------------|-------|--------|------|-------|------|--------|
| Typology  | $egin{array}{c} [0,1] \ [0,1] \ [0,\ln 6] \end{array}$ | 0.41  | 0.41   | 0.39 | 0.36  | 0.32 | 0.31   |
| Family    |                                                        | 1     | 0.9    | 0.5  | 0.6   | 0.66 | 0.66   |
| Geography |                                                        | 1.67  | 0.92   | 0.37 | 0     | 0    | 0      |

### **Learning outcomes**

- Now you...
  - 1. Understand what multilingual NLP is and why we need it
  - 2. Know the mechanisms for inducing multilingual representations spaces
    - Cross-lingual word embeddings (CLWEs)
    - Massively multilingual transformers (MMTs)
  - 3. Understand how to use multilingual representations spaces for CL transfer