```
In [3]:
          import pandas as pd
          import numpy as np
          from sklearn import metrics
          %matplotlib inline
          import matplotlib.pyplot as plt
In [4]:
          dataset=pd.read csv(r"C:\Users\SWAJAN\Documents\education\da project\datasets\infy stock.csv")
In [5]:
          dataset.head()
Out[5]:
                                   Prev
                                                                                                                  Deliverable
            Date Symbol Series
                                          Open
                                                  High
                                                                 Last
                                                                        Close
                                                                               VWAP
                                                                                      Volume
                                                                                                  Turnover Trades
                                                                                                                             %Deliverble
                                                         Low
                                  Close
                                                                                                                     Volume
            2015-
         0
                    INFY
                            EQ 1972.55 1968.95 1982.00 1956.9 1971.00 1974.40 1971.34
                                                                                       500691 9.870306e+13
                                                                                                            14908
                                                                                                                      258080
                                                                                                                                 0.5154
           01-01
            2015-
                    INFY
                            EQ 1974.40 1972.00 2019.05 1972.0 2017.95 2013.20 2003.25 1694580 3.394669e+14
                                                                                                            54166
                                                                                                                     1249104
                                                                                                                                 0.737
            01-02
            2015-
         2
                    INFY
                            EQ 2013.20 2009.90 2030.00 1977.5 1996.00 1995.90 2004.59 2484256 4.979911e+14
                                                                                                            82694
                                                                                                                     1830962
                                                                                                                                 0.7370
            01-05
            2015-
                    INFY
                                                                                                                     1772070
                                                                                                                                 0.7332
                            EQ 1995.90 1980.00 1985.00 1934.1 1965.10 1954.20 1954.82 2416829 4.724458e+14 108209
            01-06
            2015-
                    INFY
                            EQ 1954.20 1965.00 1974.75 1950.0 1966.05 1963.55 1962.59 1812479 3.557162e+14
                                                                                                            62463
                                                                                                                     1317720
                                                                                                                                 0.7270
            01-07
         4
                                                                                                                                  |
In [6]:
          dataset.shape
         (248, 15)
Out[6]:
In [7]:
          dataset.isnull().sum()
         Date
                                 0
Out[7]:
         Symbol
                                 0
         Series
                                 0
         Prev Close
                                 0
                                 0
         0pen
         High
                                 0
         Low
                                 0
         Last
         Close
                                 0
         VWAP
                                 0
         Volume
                                 0
         Turnover
                                 0
         Trades
                                 0
         Deliverable Volume
                                 0
         %Deliverble
                                 0
         dtype: int64
In [8]:
          dataset.isna().any()
         Date
                                 False
Out[8]:
         Symbol
                                 False
         Series
                                 False
         Prev Close
                                 False
         0pen
                                 False
         High
                                 False
         Low
                                 False
         Last
                                 False
         Close
                                 False
         VWAP
                                 False
         Volume
                                 False
         Turnover
                                 False
         Trades
                                 False
         Deliverable Volume
                                 False
         %Deliverble
                                 False
         dtype: bool
In [9]:
```

<class 'pandas.core.frame.DataFrame'>

dataset.info()

```
RangeIndex: 248 entries, 0 to 247
Data columns (total 15 columns):
#
     Column
                         Non-Null Count Dtype
0
    Date
                         248 non-null
                                          obiect
 1
     Symbol
                         248 non-null
                                          object
     Series
                         248 non-null
                                          object
 3
                         248 non-null
    Prev Close
                                          float64
 4
     0pen
                         248 non-null
                                          float64
 5
    High
                         248 non-null
                                          float64
                         248 non-null
                                          float64
    Low
 7
                         248 non-null
                                          float64
    Last
 8
     Close
                         248 non-null
                                          float64
     VWAP
                         248 non-null
                                          float64
    Volume
                         248 non-null
 10
                                          int64
 11
    Turnover
                         248 non-null
                                          float64
 12
     Trades
                         248 non-null
                                          int64
    Deliverable Volume 248 non-null
 13
                                          int64
 14 %Deliverble
                         248 non-null
                                          float64
dtypes: float64(9), int64(3), object(3)
memory usage: 29.2+ KB
```

In [10]: dataset.describe()

Out[10]: **Prev Close** Close **VWAP** Open High Low Last Volume Turnover Trades 248 000000 248 000000 248 000000 248 000000 248 000000 248 000000 248 000000 2 480000e+02 2 480000e+02 248 000000 count mean 1551.474798 1550.506855 1566.266532 1530.085887 1548.084879 1547.978226 1548.133589 2.982072e+06 4.234132e+14 92675.024194 529.396894 530.578342 534.714088 524.194873 529.493276 529.468189 528.861589 2.043627e+06 2.708337e+14 50541.614178 std 937 500000 941 000000 952 100000 932 650000 935 500000 937 500000 941 180000 3 536520e+05 3 923481e+13 13196 000000 min 25% 1085.912500 1088.000000 1099.975000 1067.150000 1086.875000 1085.912500 1085.907500 1.722753e+06 2.847065e+14 63052.250000 1149.650000 1150.000000 1159.725000 1131.150000 1145.625000 1149.325000 1146.245000 2.532474e+06 3.624709e+14 80019.000000 75% 2125 312500 2136 137500 2150 000000 2104 500000 2125 250000 2125 312500 2125 082500 3 567063e+06 4 915434e+14 106617 250000 max 2324.70000 2328.50000 2336.00000 2292.05000 2323.20000 2324.70000 2322.17000 1.915506e+07 2.285439e+15 408583.00000

```
In [11]: dataset['Open'].plot(figsize=(19,6))
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1b60e6a6370>


```
In [12]: import seaborn as sns
In [13]: x=dataset[['Open','High','Low','Volume']]
y=dataset['Close']
In [14]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train , y_test= train_test_split(x,y,test_size=0.1,random_state=0)
In [15]: x_train.shape
x_test.shape
```

```
Out[15]: (45, 4)
In [16]:
          x_train.shape
Out[16]: (223, 4)
In [17]:
           from sklearn.linear_model import LinearRegression
In [18]:
           from sklearn.metrics import accuracy_score
In [19]:
           reg=LinearRegression()
In [20]:
           reg.fit(x_train,y_train)
Out[20]: LinearRegression()
In [21]:
           reg.coef_
Out[21]: array([-5.13528790e-01, 8.80773340e-01, 6.31218854e-01, -7.74699148e-07])
In [22]:
           reg.intercept_
         1.4975643538564327
Out[22]:
In [23]:
          predicted=reg.predict(x_test)
In [24]:
          predicted.shape
Out[24]: (25,)
In [25]:
          dframe=pd.DataFrame( y_test, predicted )
In [26]:
          dfr=pd.DataFrame( { 'Actual Price':y_test, 'Predicted price': predicted } )
In [27]:
          dfr.head()
Out[27]:
              Actual Price Predicted price
          247
                  1105.40
                           1102.346336
                  1099.45
                           1103.406374
          168
          76
                  1995.20
                           2039.866058
                 1095.60
                           1095.712094
          150
          145
                  1077.05
                           1066.075250
In [28]:
          reg.score(x_test,y_test)
Out[28]: 0.9992825576971539
In [29]:
          import math
          print('mean absolute error : ', metrics.mean_absolute_error(y_test,predicted))
```

```
print('mean squared error : ', metrics.mean_squared_error(y_test,predicted))
print('root mean squared error : ',math.sqrt(metrics.mean_squared_error(y_test,predicted)))
```

mean absolute error : 9.108103880953577 mean squared error : 166.08161449578975 root mean squared error : 12.88726559421314

```
In [30]:
    graph=dfr.head(50)
    graph.plot(kind="bar")
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1b610c4f100>


```
In [31]:
    graph=dfr.head(20)
    graph.plot(kind="bar")
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x1b6108cc820>


```
In [32]: dfr.head(50)
```

Out[32]:		Actual Price	Predicted price
	247	1105.40	1102.346336
	168	1099.45	1103.406374
	76	1995.20	2039.866058
	150	1095.60	1095.712094
	145	1077.05	1066.075250
	73	2142.60	2133.119289
	45	2190.05	2204.982446
	159	1134.55	1144.274439
	218	1020.00	1021.852404
	213	1103.85	1108.156839
	96	2016.80	2025.843407
	201	1149.90	1138.529365
	83	1922.05	1933.743807
	176	1099.75	1090.352403

161	1092.05	1095.976985
202	1152.15	1149.601141
55	2233.45	2252.070492
116	1023.85	1018.661152
229	1049.05	1054.027865
92	2022.35	2025.563290
203	1149.40	1148.371244
135	1001.85	1000.330349
162	1085.65	1076.189079
89	1934.80	1925.159735
44	2247.60	2270.611438

```
reg.score(x_test,y_test)
reg.score(x_train, y_train)
```

Out[37]: 0.9996967320810379

```
In [40]:
    from sklearn.metrics import r2_score
    r2_score(y_test,predicted)
```

Out[40]: 0.9992825576971539

```
In [ ]:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js