Application No.: 10/630,441 Attorney Docket No: 104978-0239

CLEAN VERSION OF THE CLAIMS

1. (Currently Amended) A coated metal electrode, the metal electrode comprising a coating and an overcoating, wherein the overcoating comprises a surfactant, wherein the coating comprises a sulfur containing moiety in its molecular structure, wherein

the coating does not result in a loss of the sensing characteristics of the electrode, and wherein;

the coating is selected from the group consisting of 2-mercaptoethanol, 2-mercaptoethylamine, thiophene, L-cysteine, L-cysteine, D-cysteine, D-cysteine, L-homocysteine, D-homocysteine, and wherein

a temporal stability of the coated metal electrode is greater than a temporal stability of a corresponding uncoated metal electrode.

2-13. (Cancelled)

- 14. The coated metal electrode according to claim 1, wherein the compound is a stereospecific compound.
- 15. The coated metal electrode according to claim 14, wherein the stereospecific compound comprises a mixture of D isomers and L isomers.
- 16. The coated metal electrode according to claim 14, wherein the stereospecific compound comprises a D isomer.
- 17. The coated metal electrode according to claim 14, wherein the stereospecific compound comprises an L isomer.
- 18. A method of preparing a metal electrode stabilized by a coating, the method comprising: contacting a metal electrode with a substance comprising a sulfur containing moiety in its molecular structure; and thereafter contacting the metal electrode with a surfactant, whereby a coated metal electrode is obtained, wherein

Application No.: 10/630,441 Attorney Docket No: 104978-0239

the coating does not result in a loss of the sensing characteristics of the electrode, and wherein;

the coating is selected from the group consisting of 2-mercaptoethanol, 2-mercaptoethylamine, 3-mercaptopropionic acid, thiophene, L-cysteine, L-cysteine, D-cysteine, D-cysteine, L-homocysteine, D-homocysteine, and wherein

a temporal stability of the coated metal electrode is increased relative to that of a corresponding uncoated metal electrode.

19. A method of sensing an analyte, the method comprising: contacting a sample comprising an analyte to a metal electrode, the metal electrode comprising a coating and an overcoating, wherein the overcoating comprises a surfactant, wherein the coating comprises a sulfur containing moiety in its molecular structure, wherein

the coating does not result in a loss of the sensing characteristics of the electrode, and wherein;

the coating is selected from the group consisting of 2-mercaptoethanol, 2-mercaptoethylamine, 3-mercaptopropionic acid, thiophene, L-cysteine, L-cysteine, D-cysteine, D-cysteine, L-homocysteine, D-homocysteine, and wherein

a temporal stability of the coated metal electrode is greater than a temporal stability of a corresponding uncoated metal electrode; and obtaining a measurement indicative of a presence of the analyte in the sample.

- 20. The method of claim 18, wherein the coating further comprises a stereospecific compound.
- 21. The method of claim 18, wherein the stereospecific compound comprises a mixture of D isomers and L isomers.
- 22. The method of claim 18, wherein the stereospecific compound comprises a D isomer.
- 23. The method of claim 18, wherein the stereospecific compound comprises an L isomer.
- 24. The method of claim 19, wherein the coating further comprises a stereospecific compound.

Application No.: 10/630,441 Attorney Docket No: 104978-0239

25. The method of claim 19, wherein the stereospecific compound comprises a mixture of D isomers and L isomers.

- 26. The method of claim 19, wherein the stereospecific compound comprises a D isomer.
- 27. The method of claim 19, wherein the stereospecific compound comprises an L isomer.

1646198.1