

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE TELEINFORMÁTICA Homework 01 – LSKRF-LSKP-KPSVD SEMESTRE 2025.2

TIP8419 – Álgebra Linear e Multilinear Homework 01

• ALUNOS: Janathan Junior Plana Pena – 587142

• CURSO: Engenharia de Telecomunicações

• PROFESSOR: Bruno Sokal

 $\begin{array}{c} \textbf{FORTALEZA} - \textbf{CEARÁ} \\ 2025 \end{array}$

Sumário

1	Objetivo	5
2	Fatoração de Khatri-Rao por Mínimos Quadrados	5
	2.1 Problema 01	5
	2.2 Problema 02 - Katri-hao	6
3	Fatoração de Produto de Kronecker por Mínimos Quadrados	8
	3.1 Problema 01	8
	3.2 Problema 02	9
4	Decomposição em Valores Singulares via Produto de Kronecker	11
	4.1 Problema 01	11
	4.2 Problema 02	13

Lista de Figuras

1	Fatoração de Khatri-rao por minimos quadrados (LSKRF)	5
2	Curvas NMSE vs. SNR para duas configurações do algoritmo LSKRF	
	(dados complexos, 1000 experimentos de Monte Carlo)	6
3	Resultados experimentais do Problema 01 – LSKronF. Comparação entre	
	${f X}$ original e ${f X}_{ m est}$, mapa de erro $ {f X}-{f X}_{ m est} $ e curva de convergência do	
	algoritmo	8
4	Decomposição KPSVD aplicada à matriz \mathbf{X} : matrizes original e reconstru-	
	ída, erro de reconstrução, espectro de valores singulares e energia acumulada.	12
5	Aproximações de posto- r pela decomposição KPSVD. São apresentadas as	
	reconstruções \mathbf{X}_r , o erro relativo, os valores singulares de Kronecker e a	
	energia acumulada	13

Lista de Tabelas

1	Resultados para a Configuração 1	6
2	Resultados para a Configuração 2	7
3	Parâmetros de configuração – Problema 01	8
4	Resultados numéricos – Configuração 1	10
5	Resultados numéricos – Configuração 2	10

1 Objetivo

O objetivo deste experimento é investigar as características da fatoração de Khatri–Rao por mínimos quadrados.

2 Fatoração de Khatri-Rao por Mínimos Quadrados

2.1 Problema 01

Gere $\mathbf{X} = \mathbf{A} \diamond \mathbf{B} \in \mathbb{C}^{20 \times 4}$, para matrizes escolhidas aleatoriamente $\mathbf{A} \in \mathbb{C}^{5 \times 4}$ e $\mathbf{B} \in \mathbb{C}^{4 \times 4}$. Em seguida, implemente o algoritmo de Fatoração de Khatri–Rao por Mínimos Quadrados (LS–KRF), que estima \mathbf{A} e \mathbf{B} resolvendo o seguinte problema:

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}) = \arg\min_{\mathbf{A}, \mathbf{B}} \|\mathbf{X} - \mathbf{A} \diamond \mathbf{B}\|_F^2.$$

Compare as matrizes estimadas $\hat{\bf A}$ e $\hat{\bf B}$ com as originais. O que você pode concluir? Explique os resultados.

Figura 1: Fatoração de Khatri-rao por minimos quadrados (LSKRF)

Análise dos Resultados

Observando as figuras, nota-se que as matrizes \mathbf{X} e $\hat{\mathbf{X}}$ apresentam praticamente a mesma estrutura, indicando que a reconstrução foi exata. O mapa de calor do erro $|\mathbf{X} - \hat{\mathbf{X}}|$ evidencia valores da ordem de 10^{-15} , ou seja, erros numéricos desprezíveis.

O gráfico de convergência mostra que o erro de Frobenius decai rapidamente, demonstrando estabilidade e eficiência do método.

As comparações entre os fatores \mathbf{A} e $\hat{\mathbf{A}}$, e \mathbf{B} e $\hat{\mathbf{B}}$, revelam pequenas variações de escala e sinal, características esperadas devido à não unicidade da fatoração (Khatri–Rao é invariante a transformações lineares de escala).

Conclui-se que o algoritmo LSKRF estimou com sucesso as matrizes fatoradas, atingindo o mínimo global e reproduzindo \mathbf{X} com altíssima precisão numérica.

2.2 Problema 02 - Katri-hao

Nesta etapa, avaliou-se o desempenho do algoritmo LSKRF sob diferentes níveis de ruído (adicionados de forma complexa) por meio de **1000 experimentos de Monte Carlo**. Foram consideradas duas configurações distintas de dimensões para as matrizes fatoradas.

Figura 2: Curvas NMSE vs. SNR para duas configurações do algoritmo LSKRF (dados complexos, 1000 experimentos de Monte Carlo)

Configuração 1

Dimensões: (I, J) = (10, 10), R = 6Matriz resultante: $\mathbf{X} \in \mathbb{C}^{100 \times 6}$

Tabela 1: Resultados para a Configuração 1

SNR [dB]	NMSE(X)	$\overline{\mathrm{NMSE}(\mathrm{A})}$	NMSE(B)
0.0	2.1803e-01	$5.2536 e{+00}$	1.3178e + 00
5.0	6.2791e-02	8.7016e + 00	1.1929e+00
10.0	1.9307e-02	$1.4793e{+01}$	1.1373e + 00
15.0	6.0456e-03	$2.2311e{+01}$	1.1149e + 00
20.0	1.8917e-03	$3.2855 e{+01}$	1.1172e + 00
25.0	6.0157e-04	$4.0295e{+01}$	$1.1165\mathrm{e}{+00}$
30.0	1.9089e-04	$5.3481\mathrm{e}{+01}$	$1.1089e{+00}$

Observações:

- Para **SNR baixo** (0 dB), o erro de reconstrução é elevado (NMSE $\approx 2.18 \times 10^{-1}$), indicando que o ruído domina o processo de estimação.
- Em **SNR médio** (15 dB), o algoritmo entra em regime de transição (NMSE $\approx 6.05 \times 10^{-3}$).

- Para SNR alto (30 dB), o erro reduz para NMSE $\approx 1.91 \times 10^{-4}$, mostrando que o algoritmo atinge o limite de precisão numérica.
- \bullet O ganho de desempenho entre 0 e 30 dB é de aproximadamente 1.14×10^3 vezes.

Configuração 2

Dimensões: (I, J) = (30, 10), R = 6Matriz resultante: $\mathbf{X} \in \mathbb{C}^{300 \times 6}$

Tabela 2: Resultados para a Configuração 2

Tabela 2. Resaltades para a Comigaração 2				
SNR [dB]	NMSE(X)	NMSE(A)	NMSE(B)	
0.0	1.3964e-01	$1.2314e{+01}$	1.1082e+00	
5.0	4.2095e-02	$2.2790e{+01}$	$1.0574 e{+00}$	
10.0	1.3030e-02	$4.1559\mathrm{e}{+01}$	$1.0412e{+00}$	
15.0	4.1098e-03	$6.5636\mathrm{e}{+01}$	$1.0396e{+00}$	
20.0	1.2973e-03	$9.6051\mathrm{e}{+01}$	$1.0381e{+00}$	
25.0	4.1056e-04	1.3110e + 02	$1.0283e{+00}$	
30.0	1.3028e-04	$1.5054\mathrm{e}{+02}$	1.0364e + 00	

Observações:

- Para SNR baixo (0 dB), o erro é NMSE $\approx 1.40 \times 10^{-1}$, dominado pelo ruído.
- Em SNR médio (15 dB), há clara melhoria com NMSE $\approx 4.11 \times 10^{-3}$.
- Para SNR alto (30 dB), o erro atinge NMSE $\approx 1.30 \times 10^{-4}$, caracterizando o regime onde o sinal domina.
- O ganho entre 0 e 30 dB é da ordem de 1.07×10^3 vezes.

Síntese

A análise das curvas *NMSE vs. SNR*, apresentadas na Figura 2, evidencia que o algoritmo LSKRF é altamente robusto ao ruído aditivo. À medida que o SNR aumenta, o erro de reconstrução NMSE(X) decai exponencialmente, confirmando o comportamento teórico esperado para algoritmos baseados em mínimos quadrados.

Enquanto o erro associado à reconstrução da matriz \mathbf{X} reduz-se significativamente com o aumento do SNR, os erros dos fatores \mathbf{A} e \mathbf{B} mantêm-se praticamente constantes. Esse comportamento ocorre porque as soluções de \mathbf{A} e \mathbf{B} não são únicas — a fatoração Khatri–Rao é invariante a escalas e rotações lineares dos fatores. Portanto, o algoritmo prioriza minimizar o erro em \mathbf{X} , a grandeza observável no problema.

Além disso, nota-se que a **Configuração 2**, com maior dimensão (I, J) = (30, 10), apresenta desempenho ligeiramente superior, uma vez que o aumento de amostras melhora a estimativa estatística e reduz a variância do erro.

Em resumo, os resultados confirmam que o algoritmo LSKRF apresenta excelente desempenho de reconstrução mesmo em condições de ruído significativo, com melhora sistemática à medida que o SNR cresce.

3 Fatoração de Produto de Kronecker por Mínimos Quadrados

3.1 Problema 01

Figura 3: Resultados experimentais do Problema 01 – LSKronF. Comparação entre \mathbf{X} original e \mathbf{X}_{est} , mapa de erro $|\mathbf{X} - \mathbf{X}_{\text{est}}|$ e curva de convergência do algoritmo.

Nesta primeira etapa, foi implementado o algoritmo **LSKronF** com o objetivo de estimar os fatores \mathbf{A} e \mathbf{B} a partir de uma matriz observada $\mathbf{X} = \mathbf{A} \otimes \mathbf{B}$, onde \otimes representa o produto de Kronecker. As matrizes \mathbf{A} e \mathbf{B} foram geradas de forma aleatória, com valores complexos de distribuição gaussiana, e o processo de estimação foi conduzido através do método de *Mínimos Quadrados Alternados* (ALS).

A Tabela 3 apresenta as dimensões adotadas e os parâmetros de execução utilizados no experimento.

Tabela 3: Parâmetros de configuração – Problema 01			
$\textbf{Dimens\~oes} \qquad \qquad \textbf{A} \in \mathbb{C}^{4 \times 2}, \textbf{B} \in \mathbb{C}^{6 \times 3}$			
Matriz resultante	$\mathbf{X} = \mathbf{A} \otimes \mathbf{B} \in \mathbb{C}^{24 imes 6}$		
Critério de parada	Tolerância = 10^{-8} , Máximo de iterações = 100		

Durante a execução, o algoritmo confirmou a consistência do produto de Kronecker inicial, verificando que $\mathbf{X} = \mathbf{A} \otimes \mathbf{B}$. Em seguida, iniciou-se o processo iterativo do ALS, no qual os fatores foram atualizados alternadamente. Já nas primeiras iterações, observou-se que o erro de reconstrução atingiu a ordem de 10^{-15} , estabilizando em torno desse valor ao longo das 100 iterações realizadas. Essa estabilidade numérica confirma a eficiência do processo de estimação e demonstra que o método rapidamente alcança o limite de precisão de máquina.

Ao término do procedimento, foram obtidos os seguintes resultados numéricos principais:

- Reconstrução de X: O erro médio quadrático normalizado apresentou valor extremamente baixo, $\text{NMSE}(\mathbf{X}) = 8.95 \times 10^{-32}$, com norma de Frobenius $\|\mathbf{X} \mathbf{X}_{\text{est}}\|_F = 7.99 \times 10^{-15}$, indicando uma reconstrução praticamente perfeita.
- Fatores sem normalização: Os erros relativos dos fatores foram NMSE(\mathbf{A}) = 1.02×10^1 e NMSE(\mathbf{B}) = 9.41×10^{-1} , valores esperados devido à ambiguidade de escala característica do produto de Kronecker.
- Fatores com ajuste de escala: Após compensar o fator de escala entre A e B, observou-se redução do erro para aproximadamente 9.39×10^{-1} em ambos os fatores, evidenciando coerência entre as estimativas.
- Convergência: O algoritmo convergiu em 100 iterações, com erro final constante da ordem de 10⁻¹⁵, demonstrando comportamento oscilatório suave típico de sistemas que atingem a precisão numérica do hardware.
- Ambiguidades do produto de Kronecker: Verificou-se numericamente que a relação $\mathbf{A} \otimes \mathbf{B} = (\mathbf{A}D_A) \otimes (\mathbf{B}D_B)$ permanece válida sempre que $D_A \otimes D_B = \mathbf{I}$, confirmando que \mathbf{A} e \mathbf{B} não são únicos, embora o produto \mathbf{X} seja invariável. A verificação direta resultou em erro nulo, e a análise de escala (×2.0) também manteve o produto exato.

A Figura 3 apresenta os mapas de magnitude de X original e estimada, o mapa de erro $|X - X_{est}|$ e a curva de convergência do algoritmo.

Síntese

Os resultados obtidos confirmam que o algoritmo **LSKronF** reconstrói a matriz **X** com **alta precisão numérica**, atingindo erro residual na ordem de 10^{-15} e NMSE inferior a 10^{-10} . Pequenas discrepâncias entre os fatores estimados e os originais são atribuídas às **ambiguidades de escala**, inerentes a decomposições baseadas no produto de Kronecker.

O método **ALS** (Alternating Least Squares) apresentou convergência rápida e comportamento estável, demonstrando ser uma abordagem eficiente para estimar fatores estruturados em produtos de Kronecker. Em síntese, o **LSKronF** mostrou-se altamente eficaz para aplicações envolvendo compressão de dados estruturados, modelagem de sistemas MIMO e análise de matrizes de grande escala com estrutura determinística.

3.2 Problema 02

Esta seção apresenta a análise quantitativa do algoritmo de fatoração de Produto de Kronecker por Mínimos Quadrados (LSKronF) sob diferentes níveis de relação sinal-ruído (SNR). O desempenho foi avaliado por meio do erro médio quadrático normalizado (NMSE) da matriz reconstruída $\mathbf{X}_0 = \mathbf{A} \otimes \mathbf{B}$, considerando duas configurações distintas de dimensão.

Configuração 1

Para a primeira configuração, foram adotadas as dimensões (I, J) = (6, 8) e (P, Q) = (7, 5), resultando em matrizes $\mathbf{A} \in \mathbb{C}^{6 \times 7}$, $\mathbf{B} \in \mathbb{C}^{8 \times 5}$ e $\mathbf{X}_0 = \mathbf{A} \otimes \mathbf{B} \in \mathbb{C}^{48 \times 35}$.

Tabela 4: Resultados numéricos – Configuração 1

SNR [dB]	$\mathbf{NMSE}(\mathbf{X}_0)$	Redução vs SNR=0 dB
0	4.9845×10^{-2}	1.00×
5	1.5435×10^{-2}	$3.23 \times$
10	4.8332×10^{-3}	$10.31 \times$
15	1.5225×10^{-3}	$32.74 \times$
20	4.7922×10^{-4}	$104.01 \times$
25	1.5315×10^{-4}	$325.46 \times$
30	4.8245×10^{-5}	$1033.16 \times$

Em baixos valores de SNR (0 dB), observa-se que o NMSE é aproximadamente 5×10^{-2} , indicando que o ruído domina o processo de estimação. No regime intermediário (15 dB), o erro reduz-se para 1.52×10^{-3} , caracterizando a região de transição entre ruído e sinal. Para SNR elevado (30 dB), o NMSE atinge 4.82×10^{-5} , regime em que o erro é limitado apenas pela precisão do algoritmo. A melhoria total entre 0 e 30 dB foi de aproximadamente 1.03×10^3 vezes, com taxa média de redução de cerca de $3.17\times$ a cada incremento de 5 dB.

Configuração 2

Na segunda configuração, foram utilizadas dimensões maiores: (I, J) = (12, 16) e (P, Q) = (7, 5), resultando em $\mathbf{A} \in \mathbb{C}^{12 \times 7}$, $\mathbf{B} \in \mathbb{C}^{16 \times 5}$ e $\mathbf{X}_0 = \mathbf{A} \otimes \mathbf{B} \in \mathbb{C}^{192 \times 35}$.

Tabela 5: Resultados numéricos – Configuração 2

SNR [dB]	$\frac{\mathbf{NMSE}(\mathbf{X}_0)}{\mathbf{NMSE}(\mathbf{X}_0)}$	Redução vs SNR=0 dB
0	2.4692×10^{-2}	1.00×
5	7.6973×10^{-3}	$3.21 \times$
10	2.4385×10^{-3}	$10.13 \times$
15	7.6496×10^{-4}	$32.28 \times$
20	2.4250×10^{-4}	$101.82 \times$
25	7.6700×10^{-5}	$321.93 \times$
30	2.4181×10^{-5}	$1021.13 \times$

O comportamento observado segue a mesma tendência da Configuração 1. Em baixos SNR, o ruído domina o processo de estimação (NMSE $\approx 2.47 \times 10^{-2}$). Em SNR intermediário (15 dB), o erro decai para 7.65×10^{-4} , enquanto em SNR alto (30 dB) o NMSE atinge valores mínimos (2.42×10^{-5}). O ganho total de desempenho entre 0 e 30 dB é da ordem de 10^3 , confirmando a robustez do método e a dependência previsível do erro em relação ao SNR.

Discussão e Interpretação dos Resultados

A análise dos resultados permite estabelecer as seguintes conclusões:

1. Comportamento do NMSE em função do SNR: Em baixos valores de SNR, o NMSE apresenta comportamento aproximadamente inverso ao SNR (NMSE \propto

SNR⁻¹), o que se reflete em uma redução média de 3 dB no erro a cada aumento de 5 dB no SNR. Em altos SNR, o erro tende a um valor limite, determinado pela precisão do algoritmo ALS e pela estrutura numérica de Kronecker.

- 2. Propriedades do algoritmo ALS: O método demonstrou rápida convergência (cerca de 30 iterações) e custo computacional proporcional a $O(IJP^2Q + IJQ^2P)$. O algoritmo mostrou-se numericamente estável em regimes de SNR elevado, mas mais sensível à presença de ruído em SNR baixos.
- 3. Impacto das dimensões das matrizes: A Configuração 1 (X ∈ ℂ⁴8׳5) apresentou ligeiramente menor NMSE em comparação à Configuração 2 (X ∈ ℂ¹92׳5). Isso se deve à menor quantidade de parâmetros e ao efeito de regularização implícita em matrizes menores. Já a Configuração 2, por conter mais elementos, sofre maior influência do ruído, elevando o NMSE absoluto.
- 4. Influência da estrutura de Kronecker: O modelo apresenta uma clara vantagem de parametrização reduzida, com número de parâmetros dado por $(I \cdot P + J \cdot Q)$, muito inferior ao número total de elementos $(I \cdot J \cdot P \cdot Q)$. Entretanto, o acoplamento entre os fatores \mathbf{A} e \mathbf{B} faz com que o ruído em um dos componentes impacte o outro, explicando o comportamento previsível e regular do erro em função do SNR.
- 5. Aplicações práticas: O modelo LSKronF é aplicável em contextos como compressão de dados estruturados, modelagem de canais MIMO com estrutura Kronecker, identificação de sistemas multiescala e processamento de sinais multidimensionais.
- 6. Recomendações: Para SNR superiores a 20 dB, o algoritmo apresenta excelente desempenho e convergência estável. Em regimes entre 10 e 20 dB, o desempenho permanece aceitável, podendo-se empregar regularização leve. Já para SNR inferiores a 10 dB, recomenda-se o uso de pré-processamento ou filtragem de ruído para garantir estimativas confiáveis.

4 Decomposição em Valores Singulares via Produto de Kronecker

4.1 Problema 01

A decomposição **KPSVD** (Kronecker Product Singular Value Decomposition) foi aplicada à matriz **X** com o objetivo de explorar sua estrutura em blocos e representar a informação de forma mais compacta, preservando a maior parte da energia. Diferentemente da SVD tradicional, a KPSVD decompõe **X** em uma soma de produtos de Kronecker, cada um capturando padrões estruturais específicos.

1. Conceito e Estrutura

A KPSVD estende a SVD tradicional ao considerar a estrutura de blocos da matriz:

$$\mathbf{X} = \sum_{k=1}^{r_{KP}} \sigma_k(\mathbf{U}_k \otimes \mathbf{V}_k),$$

Figura 4: Decomposição KPSVD aplicada à matriz \mathbf{X} : matrizes original e reconstruída, erro de reconstrução, espectro de valores singulares e energia acumulada.

onde σ_k indica a relevância do termo k, \mathbf{U}_k e \mathbf{V}_k modelam padrões nas linhas e colunas, e o produto de Kronecker gera a interação entre esses subespaços. Dessa forma, a decomposição captura dependências espaciais e correlações interblocos que a SVD comum não representa.

2. Energia e Compressibilidade

A análise dos valores singulares de Kronecker mostra que os primeiros termos concentram mais de 95% da energia total, o que indica alta compressibilidade da matriz. O decaimento exponencial dos σ_k evidencia redundância estrutural e permite reconstruções de baixo posto com erro mínimo (Figura 4).

3. Vantagens e Aplicações

A KPSVD apresenta menor complexidade paramétrica $(O(r_{KP}(MP+NQ)))$ contra O(MN) da SVD), alta interpretabilidade e separabilidade espacial. Essas propriedades tornam o método adequado para:

- Compressão e processamento de imagens estruturadas;
- Modelagem de canais MIMO e sistemas com acoplamento espacial;
- Análise tensorial e representação de dados multidimensionais.

Síntese

A decomposição KPSVD reconstrói **X** com alta precisão utilizando poucos termos, confirmando sua eficiência para representar estruturas Kronecker. O rápido decaimento da energia e a natureza interpretável dos componentes reforçam seu potencial para aplicações em compressão e modelagem de sistemas estruturados.

4.2 Problema 02

A decomposição KPSVD (Kronecker Product Singular Value Decomposition) permite representar uma matriz X como soma de termos de Kronecker ponderados pelos valores singulares σ_k :

$$\mathbf{X} = \sum_{k=1}^{r_{KP}} \sigma_k(\mathbf{U}_k \otimes \mathbf{V}_k).$$

Essa estrutura possibilita realizar aproximações de posto reduzido $r < r_{KP}$, preservando a maior parte da energia da matriz original.

Figura 5: Aproximações de posto-r pela decomposição KPSVD. São apresentadas as reconstruções \mathbf{X}_r , o erro relativo, os valores singulares de Kronecker e a energia acumulada.

1. Posto de Kronecker

O posto completo da decomposição é $r_{KP}=16$, correspondente à dimensão $\mathbf{X} \in \mathbb{C}^{16 \times 16}$. O posto de Kronecker captura relações estruturadas entre blocos da matriz, permitindo modelar dependências espaciais e redundâncias internas.

2. Qualidade da Aproximação

A aproximação de posto-r é dada por:

$$\mathbf{X}_r = \sum_{k=1}^r \sigma_k(\mathbf{U}_k \otimes \mathbf{V}_k).$$

O erro relativo $\|\mathbf{X} - \mathbf{X}_r\|_F$ decresce monotonicamente com r, em conformidade com o Teorema de Eckart-Young, que garante que \mathbf{X}_r é a melhor aproximação possível (ótima em norma de Frobenius) para um dado posto r.

3. Compressão e Eficiência

A decomposição KPSVD reduz o número de parâmetros de MN=256 para aproximadamente r(MP+NQ+1). Para valores $r \ll r_{KP}$, obtém-se compressão significativa sem perda perceptível de qualidade, evidenciando o trade-off natural entre erro e economia de representação.

4. Interpretação dos Valores Singulares

Os valores singulares σ_k expressam a contribuição energética de cada termo:

- σ_k grandes indicam componentes dominantes;
- σ_k pequenos representam detalhes de baixa energia;
- decaimento rápido \Rightarrow matriz altamente compressível;
- decaimento lento \Rightarrow necessidade de mais termos.

A curva de energia acumulada confirma que poucos modos são suficientes para capturar mais de 95% da energia total.

5. Aplicações Práticas

A KPSVD de posto reduzido é útil em:

- Compressão e representação eficiente de dados estruturados;
- Filtragem de ruído mantendo apenas os termos principais;
- Redução de dimensionalidade e análise de componentes estruturadas;
- Regularização de problemas inversos e reconstrução de sinais.

6. Teorema Fundamental

Para qualquer $r < r_{KP}$, vale:

$$\mathbf{X}_r = \arg\min_{\mathrm{rank}_{KP}(\mathbf{Y}) \le r} \|\mathbf{X} - \mathbf{Y}\|_F.$$

Assim, a **KPSVD fornece a melhor aproximação possível em norma de Frobenius**, garantindo eficiência e precisão na reconstrução de matrizes com estrutura Kronecker.