

OPTIMIZED INTER-VIEW PREDICTION BASED LIGHT FIELD IMAGE COMPRESSION WITH ADAPTIVE RECONSTRUCTION

ICIP 2017 LF Image Coding Grand Challenge

¹Chuanmin Jia, <u>cmjia@pku.edu.cn</u>

Joint work with ¹Yekang Yang, ²Xinfeng Zhang, ¹Xiang Zhang, ³Shiqi Wang, ¹Shanshe Wang, ¹Siwei Ma

¹Institute of Digital Media (IDM), PKU ²Rapid-Rich Object Search (ROSE) Lab, NTU ³CS Department, City University of Hong Kong

Light Field Image

◆ Lenslet

High Density Camera Array

• • •

•

. . .

LF Image Coding Standardization

- ◆ JPEG Pleno^[1]
 - ✓ Grand Challenge for LF image coding: ICME-2016, ICIP-2017

LF Image Coding Standardization

- JPEG Pleno
 - ✓ Grand Challenge for LF image coding: ICME-2016, ICIP-2017
 - ✓ Call for Proposal (CfP) in 74th WG1 meeting in Geneva (2017.2)^[1]

ISO/IEC JTC 1/SC29/WG1N74014

74th Meeting, Geneva, Switzerland, January 15-20, 2017

ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG16)

Coding of Still Pictures

JBIG

IPEG

Joint Bi-level Image Experts Group Joint Photographi Experts Group

Proposed Coding Tools

Sub-aperture Rearrangement Mechanism

Enhanced Illuminance Compensation

Adaptive Lenslet Reconstruction

Flowchart

Processing chain: YCbCr-444, bit-depth: 10 bit

Proposed Coding Tools

Sub-aperture Rearrangement Mechanism

◆ Enhanced Illuminance Compensation

Adaptive Lenslet Reconstruction

Sub-aperture Reorder

- ◆ Inspired by.
 - ✓ Hybrid Scan order Zhao et al^[1]

✓ Hilbert Space Filling

Sub aperture Rearrangement

lack Optimized rearrangement algorithm (13 \times 13)

Propose

Performance

◆ Anchor: Zhao et al. [1]

Test Image Name	BD-Rate
I01 Bikes	-0.6%
102 Danger de Mort	-0.8%
104 Stone Pillars Outside	-1.8%
109 Fountain Vincent	-1.7%
I10 Friends	-0.8%
Average	-1.1%

Performance

Optimized rearrangement for sub apertures:

✓ Anchor: JPEG CfP

Test Image Name	BD-Rate
I01 Bikes	-1.6%
102 Danger de Mort	-3.6%
104 Stone Pillars Outside	-5.1%
109 Fountain Vincent	-5.9%
I10 Friends	-O.O%
Average	-3.2%

Propose

Proposed Coding Tools

Sub-aperture Rearrangement Mechanism

Enhanced Illuminance Compensation

Adaptive Lenslet Reconstruction

Local Illuminance Compensation in JEM

Conventional LIC in JEM.

$$y = \alpha x + \beta$$

Linear Regression by 2:1 reference samples down-sampling

- Neighboring samples of current CU
- Neighboring samples of the reference block

Enhanced Illuminance Compensation

Reference pixel selection algorithm.

Reference CU in List0

$$SAD = \sum_{i=0}^{CUWidth-1} abs(pix[i] - ref[i])$$

$$AvgSAD = \frac{SAD}{CUWidth}$$

Selected_Flag_Each_Pix[i] = abs(pix[i] - ref[i])< AvgSAD? True: False

Neighboring samples of current CU

Neighboring samples of reference Block

Enhanced Illuminance Compensation

- Syntax Element
 - ✓ Picture Level Flag
 - > CU flag to denote each CU applied or not
 - ✓ Merge mode CU: derivate from neighboring CU
- Rate-distortion Optimization
 - ✓ Whether apply enhance IC
 - ✓ SAD: integer pixel motion search
 - ✓ SATD: frac pixel motion search

Performance

◆ Enhanced IC vs Original LIC (JEM-2.0)

Test Image Name	BD-Rate
I01 Bikes	-0.5%
102 Danger de Mort	-0.1%
104 Stone Pillars Outside	-0.5%
109 Fountain Vincent	-0.1%
I10 Friends	-0.2%
Average	-0.3%

Proposed Coding Tools

Sub-aperture Rearrangement Mechanism

◆ Enhanced Illuminance Compensation

Adaptive Lenslet Reconstruction

Lenslet Decomposition

lacktriangle Affine Transform for lenslet $\vec{f}: \mathcal{A} \longrightarrow \mathcal{B}$.

$$\begin{bmatrix} \vec{y} \\ 1 \end{bmatrix} = \begin{bmatrix} & \mathcal{A} & | & \vec{b} \\ 0 & \cdots & 0 | & 1 \end{bmatrix}$$

Calibration Information of Lytro LF Camera

◆ Interpolation and re-sampling^[1]: subapertures.

Lenslet Reconstruction

N-1

 $\hat{\boldsymbol{x}}[r] = \sum \boldsymbol{c}(n)\boldsymbol{y}[r+p_n]$

- From sub apertures to lenslet
 - ✓ Irreversible transform
 - > Interpolation & shift noise
 - ✓ Inspired by ALF in JEM
 - > Objective:

Lenslet Reconstruction

- Filter shape
 - \checkmark 3 \times 3 square
 - \checkmark 7 × 7 cross

- Sample Classification
 - ✓ in each super pixel
 - ✓ re-use filter coefficient

Performance

◆ Adaptive Recon VS. no Adaptive Recon

Test Image Name	BD-Rate
I01 Bikes	-3.0%
102 Danger de Mort	-1.4%
104 Stone Pillars Outside	-1.1%
109 Fountain Vincent	-2.9%
I10 Friends	0.0%
Average	-1.7%

Performance (Re-Scan & Enhance IC)

	Re-Scan	Enhance IC	Re-Scan+Enhance IC
I01 Bikes	-1.6%	-0.5%	-2.1%
102 Danger de Mort	-3.6%	-0.1%	-3.7%
104 Stone Pillars Outside	-5.1%	-0.5%	-5.4%
109 Fountain Vincent	-5.9%	-0.1%	-6.0%
I10 Friends	-0.0%	-0.2%	-0.2%
Average	-3.2%	-0.3%	-3.5%

Total Performance

	vs HEVC Intra	vs JEM Intra
IO1 Bikes	-41.0%	-23.1%
102 Danger de Mort	-33.8%	-32.8%
104 Stone Pillars Outside	-54.8%	-32.7%
109 Fountain Vincent	-53.7%	-34.8%
I10 Friends	-29.4%	-15.2%
Average	-42.5%	-27.7%

Total Performance

◆ RD Curves

Conclusion

Goal: High Efficiency Light Field image Compression Algorithm.

- ◆ **Solution1:** Sub aperture Rearrangement Mechanism.
- ◆ **Solution2:** Enhanced Illuminance Compensation.
- ◆ Solution3: Adaptive Reconstruction Lenslet.
- ◆ **Results:** Achieving 3.2%, 0.3% bit-rate reduction respectively. The total bit-rate reduction is over 40% when comparing with HEVC Intra Coding.

Thanks

Q & A

