Natures de séries

Exercice 1

Déterminer, en fonction de $\alpha > 0$, la nature de la série de terme général

$$u_n = \cos^n(1/n^\alpha).$$

Exercice 2 ★

Déterminer la nature de la série de terme général

$$u_n = \frac{\sin(1/n)}{\sqrt{n+1}}.$$

Exercice 3 Autour du binôme

Convergence de la série $\sum_{n \geqslant 0} \frac{1}{\binom{2n}{n}}$.

Exercice 4

Soient a,b et c>0. Etudier la convergence de la série de terme général :

$$u_n = a^{1/n} - \frac{b^{1/n} + c^{1/n}}{2}.$$

Exercice 5

Nature de la série de terme général $u_n = \left(\frac{1}{n}\right)^{1+1/n}$.

Exercice 6

Nature de la série de terme général : $u_n = e^{-\sqrt{n}}$.

Exercice 7

Déterminer la nature de la série de terme général $u_n = (\ln(n))^{-\ln(n)}$.

Exercice 8

Déterminer la nature de la série de terme général $u_n = \tan \left(\pi (7 + 4\sqrt{3})^n\right)$.

Exercice 9 ★

Autour de la série harmonique

Soit a > 0. Étudier la nature de la série de terme général $u_n = a^{1 + \frac{1}{2} + \dots + \frac{1}{n}}$.

Exercice 10

Soient a et b dans \mathbb{R} . Étudier la nature de la série de terme général

$$u_n = \ln(n) + a \ln(n+1) + b \ln(n+2).$$

Exercice 11

Déterminer la nature de la série de terme général $u_n = \sin(\pi(2+\sqrt{3})^n)$.

Exercice 12 ★★★

Étudier la nature de la série de terme général $u_n=\frac{a^n2^{\sqrt{n}}}{2^{\sqrt{n}}+b^n}$ où a,b>0.

Exercice 13

Etudier la nature de la série de terme général $u_n = \frac{1! + 2! + \dots + n!}{(n+p)!}$ suivant les valeurs de $p \in \mathbb{N}$.

Exercice 14 ★★★

Soit (u_n) une suite réelle strictement positive. On pose $S_n = \sum_{p=0}^n u_p$. Comparer la nature des séries $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} \frac{u_n}{S_n}$.

Exercice 15

Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ des séries à termes réels strictement positifs. On suppose que $\sum_{n\geq 0} v_n$ converge et que

$$\forall n \in \mathbb{N}, \ \frac{u_{n+2}}{u_n} \le \frac{v_{n+2}}{v_n}$$

Montrer que $\sum_{n\geq 0} u_n$ converge.

Exercice 16 $\star\star\star$

Critère de Raabe-Duhamel

- 1. Soient (u_n) et (v_n) de suites de réels strictement positifs vérifiant $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. Montrer que $u_n = \mathcal{O}(v_n)$.
- 2. Soit (u_n) une suite de réels strictement positifs telle que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

- **a.** On suppose $\alpha > 1$. A l'aide d'une comparaison avec une série de Riemann, montrer que $\sum_{n\in\mathbb{N}} u_n$ converge.
- **b.** On suppose $\alpha < 1$. Montrer que $\sum_{n=1}^{\infty} u_n$ diverge.
- c. On suppose $\alpha = 1$. Montrer à l'aide d'exemples qu'on ne peut rien conclure en général.
- 3. Application. Déterminer la nature de la série de terme général

$$u_n = \frac{2 \times 4 \times \dots \times (2n)}{3 \times 5 \times \dots \times (2n+1)}$$

Exercice 17

Soit (a_n) une suite de réels positifs telle que $\sum_{n\in\mathbb{N}}a_n$ converge. Etudier la nature des séries suivantes:

$$1. \sum_{n \in \mathbb{N}} a_n^2$$

$$2. \sum_{n \in \mathbb{N}} \frac{a_n}{1 + a_n}$$

$$3. \sum_{n \in \mathbb{N}} a_n a_{2n}$$

1.
$$\sum_{n\in\mathbb{N}} a_n^2$$
 2.
$$\sum_{n\in\mathbb{N}} \frac{a_n}{1+a_n}$$
 3.
$$\sum_{n\in\mathbb{N}} a_n a_{2n}$$
 4.
$$\sum_{n\in\mathbb{N}^*} \frac{\sqrt{a_n}}{n}$$

Exercice 18

Sommation d'Abel

Soient $(a_n)_{n\geq n_0}$ et $(B_n)_{n\geq n_0}$ deux suites complexes. On définit deux suites $(A_n)_{n\geq n_0}$ et $(b_n)_{n\geq n_0}$ de la manière suivante :

$$\forall n \ge n_0, \ A_n = \sum_{k=n_0}^n a_k, \ b_n = B_{n+1} - B_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k B_k = A_n B_n \sum_{k=n_0}^{n-1} A_k b_k$ pour tout $n \ge n_0$.
- 2. Utiliser la question précédente pour étudier la convergence de $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.
- 3. De manière générale, montrer que si (B_n) converge vers 0, si (A_n) est bornée et si $\sum_{n>n} b_n$ est absolument convergente, alors $\sum_{n>n} a_n B_n$ est convergente.

Exercice 19

Soient $\sum_{n>0} u_n$ et $\sum_{n>0} v_n$ des séries à termes strictement positifs vérifiant

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$$

- 1. Montrer que si $\sum_{n \ge 0} v_n$ converge, alors $\sum_{n \ge 0} u_n$ converge également.
- 2. Montrer que si $\sum_{n > 0} u_n$ diverge, alors $\sum_{n > 0} u_n$ diverge également.

Exercice 20

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs convergentes.

- **1.** Montrer que la série $\sum \max(u_n, v_n)$ converge.
- 2. Montrer que la série $\sum \sqrt{u_n v_n}$ converge.
- 3. On suppose que $u_n + v_n$ ne s'annule pas. Montrer que la série $\sum \frac{u_n v_n}{u_n + v_n}$ converge.

Exercice 21 Règle de d'Alembert

Soit $\sum_{n\in\mathbb{N}} u_n$ une série à termes *strictement positifs*.

- 1. Montrer que si la suite de terme général $\frac{u_{n+1}}{u_n}$ admet une limite l < 1, alors $\sum_{n \in \mathbb{N}} u_n$ converge.
- **2.** Montrer que si la suite de terme général $\frac{u_{n+1}}{u_n}$ admet une limite l > 1, alors $\sum_{n \in \mathbb{N}} u_n$ diverge.
- 3. Montrer à l'aide de deux exemples que l'on ne peut pas conclure si la suite de terme général $\frac{u_{n+1}}{u_n}$ admet 1 pour limite.
- **4.** Étudier la nature de la série $\sum_{n \in \mathbb{N}^*} \frac{n!}{n^n}$.

Exercice 22 ★★ Séries de Bertrand

Soit $(\alpha, \beta) \in \mathbb{R}^2$. On pose $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ pour $n \in \mathbb{N} \setminus \{0, 1\}$ et on s'intéresse à la convergence de la série $\sum_{n \geq 2} u_n$.

- **1.** On suppose $\alpha > 1$. Montrer que $\sum_{n \ge 2} u_n$ converge.
- **2.** On suppose $\alpha < 1$. Montrer que $\sum_{n \ge 2} u_n$ diverge.
- **3.** On suppose $\alpha = 1$ et $\beta \le 0$. Montrer que $\sum_{n \ge 2} u_n$ diverge.
- **4.** On suppose $\alpha = 1$ et $\beta > 0$. Déterminer la nature de $\sum_{n \geq 2} u_n$ suivant la valeur de β via une comparaison à une intégrale.

Règle de Cauchy

Soit (u_n) une suite de réels positifs. On suppose que la suite de terme général $\sqrt[n]{u_n}$ admet une limite $\ell \in \mathbb{R}_+ \cup \{+\infty\}$.

- 1. Montrer que si $\ell < 1$, la série $\sum u_n$ converge.
- **2.** Montrer que si $\ell > 1$, la série $\sum u_n$ diverge.
- 3. Montrer à l'aide de deux exemples qu'on ne peut conclure dans le cas $\ell=1$.

Exercice 24

On note (S_n) la suite des sommes partielles de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{\sqrt{n}}$. Montrer que les suites (S_{2n-1}) et (S_{2n}) sont adjacentes. En déduire la convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{\sqrt{n}}$.

Exercice 25

Soit $\sum u_n$ une série réelle.

- 1. On suppose $\sum u_n$ à termes positifs. Montrer que si $\sum u_n$ converge, alors $\sum u_n^2$ converge. La réciproque est-elle vraie?
- 2. On ne suppose plus $\sum u_n$ à termes positifs. Montrer à l'aide d'un contre-exemple que la convergence de la série $\sum u_n$ n'implique pas la convergence de la série $\sum u_n^2$.

Exercice 26

Soit (u_n) une suite décroissante de limite nulle. On note (S_n) la suite des sommes partielles de la série $\sum (-1)^n u_n$. Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. Que peut-on en déduire quant à la convergence de la série $\sum (-1)^n u_n$?

Exercice 27 ★★

Déterminer la nature des séries suivantes.

1.
$$\sum_{n \in \mathbb{N}^*} \left(\tan \left(\frac{1}{n} \right) - \frac{1}{n} \right).$$

3.
$$\sum_{n \in \mathbb{N}^*} \ln \left(\cos \left(\frac{1}{\sqrt{n}} \right) \right).$$

$$2. \sum_{n \in \mathbb{N}^*} \left(\sqrt[n]{3} - \sqrt[n]{2} \right).$$

4.
$$\sum_{n \in \mathbb{N}^*} \left(\operatorname{ch} \left(\frac{1}{\sqrt{3n}} \right) - \operatorname{sh} \left(\frac{1}{\sqrt{n}} \right) \sqrt{n} \right)$$
.

Exercice 28

Constante y d'Euler

Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n} - \ln(n+1) + \ln(n)$.

- 1. Montrer que la série $\sum_{n \in \mathbb{N}^*} u_n$ converge.
- **2.** En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

Exercice 29

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite à termes positifs. Pour $n\in\mathbb{N}^*$, on pose

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^n k u_k$$

A l'aide d'une permutation de sommes, montrer que les séries $\sum_{n\in\mathbb{N}^*}u_n$ et $\sum_{n\in\mathbb{N}^*}v_n$ sont de même nature et, qu'en cas de convergence, elles ont même somme.

Etude asymptotique de sommes partielles ou de restes

Exercice 30 ★★

Déterminer un équivalent de la somme partielle de la série $\sum_{n>1} \frac{1}{n^{\alpha}}$ lorsque $\alpha \le 1$.

Déterminer un équivalent du reste de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ lorsque $\alpha > 1$.

Exercice 31 ★★

On pose $S_n = \sum_{k=1}^n \frac{1}{k^2 + \sqrt{k}}$ pour $n \in \mathbb{N}^*$. Montrer qu'il existe $C \in \mathbb{R}$ tel que

$$S_n = C - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Exercice 32 ★★

Pour $n \in \mathbb{N}$, on pose $u_n = \ln(n!)$.

- 1. Par une comparaison à une intégrale montrer que $u_n \sim n \ln n$.
- **2.** Déterminer la nature de la série $\sum_{n\geq 2} \frac{1}{u_n^2}$.
- 3. Montrer que la fonction $f: x \mapsto \frac{1}{x \ln x}$ est décroissante sur]1, $+\infty$ [.
- **4.** A l'aide d'une comparaison à une intégrale, déterminer la nature de la série $\sum_{n\geq 2} \frac{1}{u_n}$.

Exercice 33

Montrer que pour tout $n \in \mathbb{N}$, la série $\sum_{k \in \mathbb{N}} \frac{\ln(n+2^k)}{k!}$ converge et que pour tout $m \in \mathbb{N}$

$$\sum_{k=0}^{+\infty} \frac{\ln(n+2^k)}{k!} = e \ln n + \sum_{p=1}^{m} \frac{(-1)^{p+1} e^{2^p}}{p n^p} + \mathcal{O}\left(\frac{1}{n^{m+1}}\right)$$

Exercice 34

Déterminer un équivalent simple de la somme partielle de la série $\sum_{n \in \mathbb{N}^*} \ln n$ par comparaison à une intégrale.

Calculs de sommes

Exercice 35

Soit $\alpha \in \left]0, \frac{\pi}{2}\right[$. Convergence de la série $\sum_{n \in \mathbb{N}} \ln\left(\cos\frac{\alpha}{2^n}\right)$ et calcul de la somme.

Exercice 36

Soit p un nombre premier. Calculer $\sum_{n>0} \frac{1}{(pn)!}$.

Exercice 37 ★★

Montrer la convergence et calculer la somme de la série $\sum_{n\geq 0} \frac{n}{n^4+n^2+1}$.

Exercice 38

Montrer la convergence et déterminer la somme de la série $\sum_{n\geq 3} \frac{2n-1}{n^3-4n}$.

Exercice 39 ★★★

Soit $p \in \mathbb{N} \setminus \{0,1\}$. Convergence de la série $\sum_{n \in \mathbb{N}} \frac{1}{\binom{n+p}{n}}$ et calcul de la somme.

Exercice 40 ★★★

Taylor-Lagrange

A l'aide de l'inégalité de Taylor-Lagrange prouver la convergence et déterminer la somme des séries suivantes

1.
$$\sum_{n\geq 0} \frac{x^n}{n!}$$
 pour $x \in \mathbb{R}$;

2.
$$\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$$
 et $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ pour $x \in \mathbb{R}$.

3.
$$\sum_{n>1} \frac{(-1)^{n-1} x^n}{n}$$
 pour $x \in [0,1]$.

Exercice 41

Soit $x \in]-1,1]$. En remarquant que $\frac{x^k}{k} = \int_0^x t^{k-1} \, \mathrm{d}t$, montrer la convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1} x^n}{n}$ et déterminer sa somme. On pourra distinguer les cas $x \le 0$ et $x \ge 0$.

Exercice 42 ★★

En remarquant que $\frac{1}{k} = \int_0^1 t^{k-1} dt$, montrer la convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n}$ et déterminer sa somme.

Exercice 43 ***

Lemme de Riemann-Lebesgue et calcul de $\zeta(2)$

1. Soient $(a, b) \in \mathbb{R}^2$ tel que a < b et f une fonction de classe \mathcal{C}^1 sur [a, b] à valeurs dans \mathbb{R} . On pose pour $\lambda \in \mathbb{R}$

$$I(\lambda) = \int_{a}^{b} f(t) \cos(\lambda t) dt \qquad J(\lambda) = \int_{a}^{b} f(t) \sin(\lambda t) dt$$

Montrer que $\lim_{\lambda \to +\infty} I(\lambda) = \lim_{\lambda \to +\infty} J(\lambda) = 0.$

2. Déterminer deux réels u et v tels que pour tout $n \in \mathbb{N}^*$

$$\int_0^{\pi} (ux + vx^2) \cos(nx) \, \mathrm{d}x = \frac{1}{n^2}$$

3. Soit $n \in \mathbb{N}^*$. Montrer que pour $x \in]0, \pi]$,

$$\sum_{k=1}^{n} \cos(kx) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)} - \frac{1}{2}$$

- **4.** Montrer que la fonction φ : $x \in]0,\pi] \mapsto \frac{x}{\sin\left(\frac{x}{2}\right)}$ est prolongeable en une fonction de classe \mathcal{C}^1 sur $[0,\pi]$.
- 5. A l'aide des questions précédentes, déterminer la somme de la série de Riemann $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}.$
- **6.** En adaptant les deux réels u et v de la question **2**, justifier la convergence et déterminer les sommes des séries $\sum_{n \in \mathbb{N}^{1*}} \frac{(-1)^{n-1}}{n^2}$ et $\sum_{n \in \mathbb{N}^{1*}} \frac{1}{(2n-1)^2}$.

Exercice 44

Une fraction rationnelle

Convergence de la série $\sum_{n\in\mathbb{N}}\frac{1}{n^2+3n}$ et calcul de la somme.

Exercice 45 ★

Un classique sur l'arctangente

Convergence et calcul de la somme de la série de terme général :

$$v_n = \arctan\left(\frac{1}{n^2 + n + 1}\right).$$

Exercice 46 ★

Un peu de numération

Soit $n \ge 1$. On note p(n) le nombre de chiffres de l'écriture de n en base 10. Etablir la convergence et calculer la somme de la série

$$\sum_{n\geqslant 1}\frac{p(n)}{n(n+1)}.$$

Exercice 47 ★★

Convergence et calcul de la somme de la série

$$\sum_{n\geqslant 2} (-1)^n \ln\left(1 - \frac{1}{n^2}\right).$$

Exercice 48 ★★

Avec Stirling

Convergence et somme de la série

$$\sum_{n>1} (-1)^n \ln \left(1 + \frac{1}{n}\right).$$

Exercice 49

Etudier la convergence et calculer somme de la série de terme général

$$u_n = \frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdots(1+\sqrt{n})}.$$

Applications

Exercice 50 CCP

On pose $G(x,y) = \int_0^y \frac{t - [t]}{t(t+x)} dt$ où [t] représente la partie entière de t.

- **1.** Montrer que G est définie sur $(\mathbb{R}_+^*)^2$.
- **2.** Montrer que G(x, y) tend vers une limite finie G(x) quand y tend vers $+\infty$.
- **3.** Montrer que :

$$\forall n \in \mathbb{N}^*, \ \mathrm{G}(n,y) = \frac{1}{n} \left(\int_0^n \frac{t - [t]}{t} \ \mathrm{d}t - \int_y^{y+n} \frac{t - [t]}{t} \ \mathrm{d}t \right)$$

4. On note H(n) = nG(n). Montrer que la série de terme général $H(n) - H(n-1) - \frac{1}{2n}$ converge et en déduire un équivalent de G(n).

Exercice 51 Séries de Engel

Soit $x \in]0,1]$.

- **1.** Montrer qu'il existe une unique suite $(q_n)_{n\in\mathbb{N}}$ d'entiers naturels supérieurs ou égaux à 2 telle que $x=\sum_{n=0}^{+\infty}\frac{1}{q_0q_1\dots q_n}$.
- **2.** Montrer que x est rationnel si et seulement si la suite (q_n) est stationnaire.
- **3.** Montrer que *e* est irrationnel.

Exercice 52

Montrer que le développement décimal d'un réel est périodique à partir d'un certain rang si et seulement si ce réel est rationnel.

Exercice 53

Soient $k \in [0, 1[$ et $f : \mathbb{C} \to \mathbb{C}$ tels que

$$\forall (x, y) \in \mathbb{C}^2, |f(x) - f(y)| \le k|x - y|$$

Soit $u \in \mathbb{C}^{\mathbb{N}}$ telle que $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. En considérant la série $\sum_{n \in \mathbb{N}} u_{n+1} - u_n$, montrer que u converge.

Exercice 54 ★★

Soient $f: \mathbb{R} \to \mathbb{R}$ k-lipschitzienne avec k < 1 et (x_n) une suite telle que $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que $|x_{n+1} x_n| \le k^n |x_1 x_0|$.
- 2. En considérant la série $\sum_{n\in\mathbb{N}} x_{n+1} x_n$, montrer que la suite (x_n) converge.
- **3.** En déduire que f admet un unique point fixe.

Familles sommables

Exercice 55 ★

La famille $\left(\frac{1}{x^2}\right)_{x \in \mathbb{Q} \cap [1, +\infty[}$ est-elle sommable?

Exercice 56 ★★★

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle. On pose

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n} \sum_{k=1}^n u_k$$

- 1. Montrer que $(n+1)v_n^2 (n-1)v_{n-1}^2 \le 2u_nv_n$ pour tout entier $n \ge 2$.
- 2. On suppose que la série $\sum u_n^2$ converge.
 - **a.** Montrer que la série $\sum v_n^2$ converge et que

$$\sum_{n=1}^{+\infty} v_n^2 \le 4 \sum_{n=1}^{+\infty} u_n^2$$

b. En déduire la sommabilité de la famille $\left(\frac{u_m u_n}{m+n}\right)_{(m,n)\in(\mathbb{N}^*)^2}$.

Exercice 57 ***

Banque Mines-Ponts MP 2018

- 1. Pour $n \in \mathbb{Z}$, calculer $\int_0^{2\pi} te^{-int} dt$.
- **2.** Soient I une partie finie de \mathbb{N}^* , $(a_n)_{n\in \mathbb{I}}$ et $(b_n)_{n\in \mathbb{I}}$ deux suites finies de réels positifs. Montrer que

$$\sum_{(n,m)\in \mathbb{I}^2} \frac{a_n b_m}{n+m} \leq \pi \sqrt{\sum_{n\in \mathbb{I}} a_n^2 \sum_{n\in \mathbb{I}} b_n^2}$$

3. Soient $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ deux suites réelles telles que les familles $(a_n^2)_{n\in\mathbb{N}^*}$ et $(b_n^2)_{n\in\mathbb{N}^*}$ soient sommables. Montrer que $\left(\frac{a_nb_m}{n+m}\right)_{(n,m)\in(\mathbb{N}^*)^2}$ est sommable et que

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} \frac{a_n b_m}{n+m} \le \pi \sqrt{\sum_{n\in\mathbb{N}^*} a_n^2 \sum_{n\in\mathbb{N}^*} b_n^2}$$

Exercice 58 ★★★

Montrer que la famille $\left(\frac{1}{mn(m+n+2)}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable et calculer sa somme.

Exercice 59 **

Montrer que la famille $\left(\frac{1}{(p+q^2)(p+q^2+1)}\right)_{(p,q)\in\mathbb{N}\times\mathbb{N}^*}$ est sommable et calculer sa somme.

Exercice 60 ***

Soit $\alpha \in \mathbb{R}$. Montrer que

$$\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = \sum_{p=1}^{+\infty} \frac{1}{p^{\alpha-1}}$$

Pour quelles valeurs de α cette somme est-elle finie?

Exercice 61 ★★

Montrer que la famille $\left(\frac{1}{p^2+q^2}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ n'est pas sommable.

Exercice 62 ★★

Montrer que la famille $\left(\frac{1}{p^2+q^3}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ est sommable.

Exercice 63 ★★

La famille $\left(\frac{1}{(m+n)(m+n+1)}\right)_{(m,n)\in\mathbb{N}^*\times\mathbb{N}}$ est-elle sommable?

Exercice 64 ★★★

On note $\tau(n)$ le nombre de diviseurs positifs d'un entier $n \in \mathbb{N}^*$. Montrer que pour tout $z \in \mathbb{C}$ tel que |z| < 1,

$$\sum_{n=1}^{+\infty} \frac{z^n}{1-z^n} = \sum_{n=1}^{+\infty} \tau(n)z^n$$

Exercice 65 ★★★

Soit $z \in \mathbb{C}$ tel que |z| < 1. Montrer la convergence et déterminer la somme de la série $\sum_{n \in \mathbb{N}} \frac{z^{2^n}}{1 - z^{2^{n+1}}}.$

Exercice 66 ★★

Montrer que la famille $\left(\frac{1}{(m+n)^{\alpha}}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable si et seulement si $\alpha>2$.

Exercice 67 ★★

Calculer

$$S = \sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k!}$$

Exercice 68 ***

TPE-EIVP MP 2015

- **1.** Montrer que la famille $\left(\frac{1}{(p+q)^2}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ n'est pas sommable.
- 2. Déterminer la nature de la famille $\left(\frac{1}{p^2+q^2}\right)_{(p,q)\in(\mathbb{N}^*)^2}$.