05

로그방정식과 로그부등식

01	로그방정식	195
	예제	
02	로그부등식	208
	예제	
기본 다지기		224
실력	다지기	226

믿을 같게 할 수 있는 로그방정식의 풀이

예제 • • 1

다음 방정식을 풀어라.

 $(1)\log_3(3x-2) = \log_3 2 + \log_3(x+2)$

 $(2) \log 3x + \log (x-2) = \log (x^2 - 3x + 9)$

접근 방법

밑을 같게 할 수 있는 로그방정식은 로그의 성질이나 밑의 변환 공식을 이용하여 $\log_a f(x) = \log_a g(x)$ 꼴로 변형한 후

 $\log_a f(x) = \log_a g(x) \iff f(x) = g(x), f(x) > 0, g(x) > 0$

임을 이용합니다. 이때, 진수의 조건에 의하여 f(x) > 0, g(x) > 0임을 주의합니다.

Bible 로그방정식은 밑을 같게 하고, 진수의 조건을 반드시 고려한다.

상세 풀이

- (1) 진수의 조건에서 3x-2>0, x+2>0이므로 $x>\frac{2}{3}$, x>-2 $\therefore x>\frac{2}{3}$ \cdots \bigcirc 주어진 방정식을 변형하면 $\log_3(3x-2)=\log_32(x+2)$ 로그의 밑이 같으므로 3x-2=2(x+2), 3x-2=2x+4 $\therefore x=6$ x=6은 \bigcirc 을 만족시키므로 구하는 해입니다.
- (2) 진수의 조건에서 3x>0, x-2>0, $x^2-3x+9>0$ 이므로 x>0, x>2 $\therefore x>2$ \cdots \odot 주어진 방정식을 변형하면 $\log 3x(x-2)=\log (x^2-3x+9)$ 로그의 밑이 같으므로 $3x(x-2)=x^2-3x+9$, $3x^2-6x=x^2-3x+9$ $2x^2-3x-9=0$, (2x+3)(x-3)=0 $\therefore x=-\frac{3}{2}$ 또는 x=3

 \bigcirc 에 의하여 구하는 해는 x=3입니다.

정답 \Rightarrow (1) x=6 (2) x=3

보충 설명

주어진 로그방정식을 풀어서 구한 해가 진수의 조건을 만족시키는지 확인하는 것은 놓치기 쉽습니다. 그래서 위의 (2)와 같은 경우에도 답을 두 개로 적는 실수를 할 수 있는데, 밑의 조건이나 진수의 조건을 만족시키지 않으면 로그 지체가 정의되지 않음을 기억합니다. 따라서 로그방정식의 해를 구하는 문제에서는 항상 밑과 진수의 조건을 확인해야 합니다.

◆ 보충 설명

01-1 다음 방정식을 풀어라.

$$(1) \log_2(x+2) + \log_2(x-4) = 4 \qquad (2) \log_x(3x+4) = 2$$

$$(2) \log_r(3x+4) = 2$$

$$(3) \log_3(x^2+6x+5) - \log_3(x+3) = 1$$

$$(3) \log_3\left(x^2 + 6x + 5\right) - \log_3\left(x + 3\right) = 1 \qquad (4) \log\sqrt{5x + 5} = 1 - \frac{1}{2}\log\left(2x - 1\right)$$

표형 바꾸기

◆다른 풀이 ◆보충 설명

01-2 다음 방정식을 풀어라.

$$(1)\log_2(x+3) = \log_4(x+3) + 1 \qquad (2)\log_3(x+3) - \log_9(x+7) = 1$$

$$(2) \log_3(x+3) - \log_2(x+7) = 1$$

개념 넓히기 ★☆☆

연립방정식 $\left\{egin{array}{l} \log_2(x-3) - \log_4(2y+5) = 0 \\ x-y+12 = 0 \end{array}
ight.$ 의 해를 $x=lpha,\ y=eta$ 라고 할 때, lpha+eta의

값은?

① 30

② 32

3 34

4 36

⑤ 38

8日 01-1 (1) x=6 (2) x=4 (3) x=1 (4) x=3

01-2 (1) x=1 (2) x=9

01-3 ②

치환을 이용한 로그방정식의 풀이

^{예제} . 02

다음 방정식을 풀어라.

$$(1) 2 \log_2 x - 6 \log_x 2 + 1 = 0$$

$$(2) (\log_3 x)^2 + 8 = \log_3 x^6$$

접근 방법

 $\log_a x$ 꼴이 반복되는 로그방정식은 $\log_a x = t$ 로 치환하여 t에 대한 방정식을 풉니다.

Bible $\log_a x$ 꼴이 반복되는 로그방정식 $\Rightarrow \log_a x = t$ 로 치환한다.

상세 풀이

(1) 주어진 방정식을 변형하면

$$2\log_2 x - \frac{6}{\log_2 x} + 1 = 0 \leftarrow \log_a x = \frac{1}{\log_x a}$$

이때,
$$\log_2 x = t$$
로 놓으면 $2t - \frac{6}{t} + 1 = 0$

양변에 t를 곱하여 정리하면

$$2t^2+t-6=0$$
, $(t+2)(2t-3)=0$ $\therefore t=-2$ $\pm t=\frac{3}{2}$

따라서 $\log_2 x = -2$ 또는 $\log_2 x = \frac{3}{2}$ 이므로

$$x=2^{-2}=\frac{1}{4}$$
 $\pm \pm x=2^{\frac{3}{2}}=2\sqrt{2}$

- 이 값들은 진수의 조건 x>0과 밑의 조건 x>0, $x\neq 1$ 을 모두 만족시키므로 방정식의 해입니다.
- (2) 주어진 방정식을 변형하면 $(\log_3 x)^2 + 8 = 6\log_3 x$

이때.
$$\log_3 x = t$$
로 놓으면 $t^2 + 8 = 6t$

$$t^2-6t+8=0$$
, $(t-2)(t-4)=0$ $\therefore t=2 \pm t=4$

따라서 $\log_3 x = 2$ 또는 $\log_3 x = 4$ 이므로

$$x=3^2=9$$
 또는 $x=3^4=81$

이 값들은 진수의 조건 x>0, $x^6>0$ 을 모두 만족시키므로 방정식의 해입니다.

정답
$$\Rightarrow$$
 (1) $x = \frac{1}{4}$ 또는 $x = 2\sqrt{2}$ (2) $x = 9$ 또는 $x = 81$

보충 설명

지수함수 $y=a^x$ $(a>0, a \neq 1)$ 의 치역은 양의 실수 전체의 집합이므로 $a^x=t$ 로 치환하였을 때 t>0이지만 로그함수 $y=\log_a x$ $(a>0, a \neq 1)$ 의 치역은 실수 전체의 집합이므로 $\log_a x=t$ 로 치환하였을 때 t의 값의 범위에 신경 쓸 필요가 없습니다.

02-1 다음 방정식을 풀어라.

- $(1) \log_5 x \log_x 25 = 1$
- $(2) \log_2 x^4 + \log_x 2 5 = 0$
- (3) $(\log_2 x 6)^2 + \log_2 x^2 11 = 0$
- $(4) (\log_2 x)^3 + \log_2 x^4 = 4(\log_2 x)^2 + \log_2 x$

표현 바꾸기

02-2 다음 방정식을 풀어라.

- $(1) 5^{\log x} \times x^{\log 5} 3 (5^{\log x} + x^{\log 5}) + 5 = 0$
- $(2) \, 2^{\log x} \times x^{\log 2} 3x^{\log 2} 2^{1 + \log x} + 4 = 0$

개념 넓히기 ★★☆

x에 대한 방정식 $\log_2 x imes \log_2 rac{16}{x} = rac{m}{16}$ 의 해가 존재하도록 실수 m의 값의 범위를 정 02-3 할 때, m의 최댓값을 구하여라.

32.1 (1) $x = \frac{1}{5}$ $\pm \pm x = 25$ (2) $x = \sqrt[4]{2}$ $\pm \pm x = 2$ (3) x = 32 (4) x = 1 $\pm \pm x = 2$ $\pm \pm x = 8$

02-2 (1) x=1 $\pm \pm x=10$ (2) x=1 $\pm \pm x=100$

02-3 64

지수에 로그가 있는 방정식의 풀이

예제 03

다음 방정식을 풀어라.

$$(1) x^{\log_3 x} = 81$$

$$(2) x^{\log_4 x} = 16x$$

접근 방법

지수에 로그가 있는 방정식은 양변에 로그를 취하여 풉니다. 이때, 지수에 있는 로그와 밑이 같은 로그를 취하면 계산이 편리합니다.

Bible

지수에 로그가 있는 방정식은 양변에 로그를 취한다.

상세 풀이

 $(1) x^{\log_3 x} = 81$ 의 양변에 밑이 3인 로그를 취하면 $\log_3 x^{\log_3 x} = \log_3 81$

$$\log_3 x \times \log_3 x = \log_3 3^4$$
, $(\log_3 x)^2 = 4$

∴
$$x=3^{-2}=\frac{1}{9}$$
 또는 $x=3^2=9$

 $(2) x^{\log_4 x} = 16x$ 의 양변에 밑이 4인 로그를 취하면 $\log_4 x^{\log_4 x} = \log_4 16x$

$$\log_4 x \times \log_4 x = \log_4 16 + \log_4 x$$

$$(\log_4 x)^2 - \log_4 x - 2 = 0$$

 $\log_4 x = t$ 로 놓으면 $t^2 - t - 2 = 0$

$$(t+1)(t-2)=0$$
 $\therefore t=-1 \pm t=2$

따라서 $\log_4 x = -1$ 또는 $\log_4 x = 2$ 이므로

$$x=4^{-1}=\frac{1}{4}$$
 또는 $x=4^2=16$

정답 \Rightarrow (1) $x = \frac{1}{9}$ 또는 x = 9 (2) $x = \frac{1}{4}$ 또는 x = 16

보충 설명

위의 예제에서 (1)은 지수에 밑이 3인 로그가 있으므로 양변에 밑이 3인 로그를 취하여 풀었고, (2)는 지수에 밑이 4인 로그가 있으므로 양변에 밑이 4인 로그를 취하는 것이 계산이 편리합니다.

03-1 다음 방정식을 풀어라.

$$(1) x^{\log x} = 10000 x^3$$

$$(2) x^{\log_3 x} = \frac{x^3}{9}$$

표현 바꾸기 다음 방정식을 풀어라.

$$(1) \, 2^{\log 2x} = 3^{\log 3x}$$

$$(2)\left(\frac{2}{x}\right)^{\log 2} - \left(\frac{3}{x}\right)^{\log 3} = 0$$
 (단, $x > 0$)

개념 넓히기 ★★☆

03-3 방정식 $2^{x-1} {=} 5^{x+1}$ 의 해를 lpha라고 할 때, $10^{lpha^{-1}}$ 의 값은?

- ② $\frac{4}{5}$

3 1

- $4\frac{5}{4}$
- $(5)\frac{5}{2}$

03-1 (1)
$$x = \frac{1}{10} \, \, \pm \frac{1}{10} \, \pm$$

03-2 (1)
$$x = \frac{1}{6}$$
 (2) $x = 6$

03-3 ①

로그방정식과 이차방정식 사이의 관계

^{예제} •

방정식 $(\log_2 x)^2 + 2\log_2 x - 1 = 0$ 의 두 근을 α , β 라고 할 때, 다음 식의 값을 구하여라.

 $(1) \alpha \beta$

(2) $\log_{\alpha} \beta + \log_{\beta} \alpha$

접근 방법

 $(\log_2 x)^2$ 이 있으므로 $\log_2 x = t$ 로 치환하여 t에 대한 이차방정식으로 변형합니다.

이때, 주어진 방정식 $(\log_2 x)^2 + 2\log_2 x - 1 = 0$ 의 두 근이 α , β 이면

$$(\log_2 \alpha)^2 + 2\log_2 \alpha - 1 = 0$$
, $(\log_2 \beta)^2 + 2\log_2 \beta - 1 = 0$

이 성립합니다.

이것은 t에 대한 이차방정식 $t^2+2t-1=0$ 이 $t=\log_2\alpha$, $t=\log_2\beta$ 일 때 성립한다는 것을 의미하므로 $t^2+2t-1=0$ 의 두 근은 $\log_2\alpha$, $\log_2\beta$ 가 됩니다.

Bible $(\log_a x)^2 + p \log_a x + q = 0$ 의 두 근이 α , β 이면 $t^2 + pt + q = 0$ 의 두 근은 $\log_a \alpha$, $\log_a \beta$ 이다.

상세 풀이

 $\log_2 x = t$ 로 놓으면 주어진 방정식은 $t^2 + 2t - 1 = 0$ 이고, 이 방정식의 두 근은 $\log_2 a$, $\log_2 \beta$ 입니다. 이 때, 이차방정식의 근과 계수의 관계에 의하여

$$\log_2 \alpha + \log_2 \beta = -2$$
, $\log_2 \alpha \times \log_2 \beta = -1$

 $(1)\log_2\alpha+\log_2\beta=-2$ 에서

$$\log_2 \alpha \beta = -2 = \log_2 2^{-2} = \log_2 \frac{1}{4} \quad \therefore \ \alpha \beta = \frac{1}{4}$$

$$(2) \log_{a} \beta + \log_{\beta} \alpha = \frac{\log_{2} \beta}{\log_{2} \alpha} + \frac{\log_{2} \alpha}{\log_{2} \beta} - \log_{a} b = \frac{\log_{c} b}{\log_{c} a}$$

$$= \frac{(\log_{2} \alpha + \log_{2} \beta)^{2} - 2\log_{2} \alpha \times \log_{2} \beta}{\log_{2} \alpha \times \log_{2} \beta} = \frac{(-2)^{2} - 2 \times (-1)}{-1} = -6$$

정답 \Rightarrow (1) $\frac{1}{4}$ (2)-6

보충 설명

지수방정식, 로그방정식과 이처방정식 사이의 관계는 서로 비교해서 그 차이를 꼭 알아 둡니다. 즉.

- (1) $a^{2x} + pa^x + q = 0$ 의 두 근이 a, β 일 때 $t^2 + pt + q = 0$ 의 두 근은 a^a , a^β 이므로 $a^aa^\beta = a^{a+\beta} = q$
- (2) $(\log_a x)^2 + p \log_a x + q = 0$ 의 두 근이 α , β 일 때

 $t^2+pt+q=0$ 의 두 근은 $\log_a \alpha$, $\log_a \beta$ 0 으로 $\log_a \alpha + \log_a \beta = \log_a \alpha\beta = -p$

- 방정식 $(\log_3 x)^2 3\log_3 x 1 = 0$ 의 두 근을 a, β 라고 할 때, 다음 식의 값을 구하여라. 04-1
 - $(1) \alpha \beta$

(2) $\log_{\alpha} \beta + \log_{\beta} \alpha$

표형 바꾸기

04-2 다음 방정식의 두 근을 α , β 라고 할 때, $\alpha\beta$ 의 값을 구하여라.

 $(1) \log 2x \times \log 3x = 1$

 $(2) \log_2 4x \times \log_2 x + \log_2 3 \times \log_2 x - 6 = 0$

개념 넓히기 ★★★

방정식 $2^{2x} - a \times 2^x + 8 = 0$ 과 방정식 $(\log_2 x)^2 - \log_2 x + b = 0$ 의 근이 같을 때, 상수 a, 04-3 b에 대하여 a+b의 값은?

1)2

2 4

3 6

4 8

⑤ 10

정답 04-1 (1)27 (2)-11

04-2 $(1)\frac{1}{6}$ $(2)\frac{1}{12}$ **04-3** ③

02 로그부등식

■ 로그부등식

 $\log_2 x \ge 8$, $(\log_3 x)^2 < \log_3 x^3 + 4$, $x^{\log x} < 100x$ 와 같이 로그의 진수 또는 밑에 미지수를 포함하고 있는 부등식을 로그부등식이라고 합니다. 로그부등식은 로그방정식과 마찬가지로 로그함수의 성질을 이용하여 풀 수 있습니다.

이제 로그부등식의 해를 구하는 방법에 대하여 알아봅시다.

로그함수 $y = \log_a x \ (a > 0, a \neq 1)$ 의 그래프는 다음 그림과 같이 a > 1일 때 x의 값이 증가하면 y의 값도 증가하고. 0 < a < 1일 때 x의 값이 증가하면 y의 값은 감소합니다.

따라서 로그부등식을 풀 때에는 밑의 값에 따라 부등호의 방향이 달라짐에 주의해야 합니다. 즉, (밑)>1이면 진수의 부등호의 방향은 그대로이고, 0<(밑)<1이면 진수의 부등호의 방향은 반대로 바뀝니다.

Example 부등식 $\log_2 x \ge \log_2 (3x-6)$ 에서 밑이 1보다 크므로

$$x \ge 3x - 6, 2x \le 6$$

 $\therefore x \le 3$

이때, 진수의 조건에서 x>0, 3x-6>0이므로 x>2 ····· ©

 \bigcirc , \bigcirc 의 공통 범위를 구하면 $2 < x \le 3$

일반적으로 로그방정식과 마찬가지로 로그부등식 역시 주어진 식을 정리했을 때, 다음과 같이 크게 3가지 경우로 나누어 생각할 수 있습니다.

(i) 밑을 같게 할 수 있는 경우, 즉 로그의 밑이 같은 두 로그의 식으로 만들 수 있는 경우

- $(ii) \log_a x$ 꼴이 반복되는 경우. 즉 치환할 수 있는 경우
- (iii) 지수에 로그가 있는 경우

로그부등식을 품 때에도 로그방정식을 품 때와 마차가지로 구한 미지수의 값이 밑의 조건 또 는 진수의 조건을 만족시키는지 반드시 확인해야 합니다.

1. 믿을 같게 할 수 있는 경우

밑을 같게 할 수 있는 로그부등식은 로그의 성질이나 밑의 변환 공식을 이용하여 밑을 같게 한 다음 진수를 비교합니다. 즉. 주어진 부등식을 $\log_a f(x) < \log_a g(x)$ 꼴로 변형한 후

- (1) a > 1일 때, $\log_a f(x) < \log_a g(x) \iff 0 < f(x) < g(x)$
- (2) 0 < a < 1일 때, $\log_a f(x) < \log_a g(x) \iff f(x) > g(x) > 0$ 임을 이용합니다. 이 성질을 이용하여 로그부등식을 풀어 봅시다.

Example (1) 부등식 $\log_2 x \ge 4$ 를 풀어 봅시다.

주어진 부등식에서 $\log_2 x \ge \log_2 2^4$ 이고. 밑이 1보다 크므로

 $x \ge 16 \leftarrow (\mathbb{Q}) > 1$ 이므로 부등호의 방향은 그대로입니다.

이때, 진수의 조건에서 x>0이므로 구하는 해는

 $x \ge 16$

(2) 부등식 log_{0 2} x ≥ 2를 풀어 봅시다.

주어진 부등식에서 $\log_{0.2} x \ge \log_{0.2} 0.2^2$ 이고, 밑이 1보다 작으므로

 $x \le 0.04 \leftarrow 0 < (\mathbb{Q}) < 1$ 이므로 부등호의 방향은 반대로 바뀝니다.

이때, 진수의 조건에서 x>0이므로 구하는 해는

 $0 < x \le 0.04$

$2.\log_a x$ 꼴이 반복되는 경우

부등식 $(\log_3 x)^2 < \log_3 x^3 + 4 + \log_3 x$ 가 반복된다는 것을 알 수 있으므로 로그방정식과 마 찬가지로 $\log_3 x$ 를 t로 치환하여 t에 대한 이차부등식을 풀 수 있습니다. 이와 같이 $\log_3 x$ 꼴이 반복되는 경우에는 $\log_a x = t$ 로 놓고 t에 대한 부등식을 풉니다.

Example 부등식 $(\log_3 x)^2 < \log_3 x^3 + 4$ 를 풀어 봅시다. 주어진 부등식을 변형하면 $(\log_3 x)^2 < 3\log_3 x + 4$ $\log_3 x = t$ 로 놓으면 $t^2 < 3t + 4$, $t^2 - 3t - 4 < 0$

$$(t+1)(t-4) < 0$$
 : $-1 < t < 4$

따라서
$$-1 < \log_3 x < 4$$
이므로 $\frac{1}{3} < x < 81$ ① 이때, 진수의 조건에서 $x > 0$, $x^3 > 0$ 이므로 $x > 0$ ① ① ① ① ①

그리고 로그방정식과 같은 원리로 로그부등식에서 $\log_a x = t$ 로 치환하여 풀 때에는 치환하는 변수 t의 값의 범위를 신경 쓰지 않아도 됩니다.

3. 지수에 로그가 있는 경우

부등식 $x^{\log x} < 100x$ 는 지수에 로그가 있기 때문에 믿을 같게 만들거나 치환하여 풀 수 없습니 다. 하지만 지수에 밑이 10인 로그가 있으므로 양변에 상용로그를 취한 후, $\log x$ 를 t로 치환하 여 풀 수 있습니다. 이와 같이 지수에 로그가 있는 경우에는 양변에 로그를 취하여 풉니다. 이 때, 양변에 0<(밑)<1인 로그를 취하면 부등호의 방향이 반대로 바뀌는 것에 주의합니다.

Example 부등식 $x^{\log x} < 100x$ 를 풀어 봅시다.

주어진 부등식의 양변에 상용로그를 취하면

 $\log x^{\log x} < \log 100x, \log x \times \log x < \log 100 + \log x$

$$(\log x)^2 < 2 + \log x$$

 $\log x = t$ 로 놓으면 $t^2 < 2 + t$

$$t^2-t-2<0, (t+1)(t-2)<0$$

$$: -1 < t < 2$$

따라서
$$-1 < \log x < 2$$
이므로 $\frac{1}{10} < x < 100$ ····· \bigcirc

이때, 진수의 조건에서
$$x>0$$

$$\bigcirc$$
, \bigcirc 의 공통 범위를 구해 보면 $\frac{1}{10} < x < 100$

이와 같이 지수에 로그가 있는 로그부등식은 양변에 로그를 취하여 얻은 부등식을 풉니다.

한편. 밑이 다른 $a^{f(x)} > b^{g(x)}$ 꼴의 지수부등식도 양변에 상용로그를 취하여 풉니다. 즉. $a^{f(x)} > b^{g(x)}$ 의 양변에 상용로그를 취하면

$$\log a^{f(x)} > \log b^{g(x)} \iff f(x) \log a > g(x) \log b$$

입니다.

Example 부등식 $2^{2x} > 5^{1-2x}$ 을 풀어 봅시다.

주어진 부등식의 양변에 상용로그를 취하면

$$\begin{split} \log 2^{2x} &> \log 5^{1-2x}, \, 2x \log 2 > (1-2x) \log 5 \\ &x (2 \log 2 + 2 \log 5) > \log 5, \, x (\log 2^2 + \log 5^2) > \log 5 \\ &x \log 100 > \log 5, \, 2x > \log 5 \\ &\therefore \, x > \frac{1}{2} \log 5 \end{split}$$

Bible Point 로그부등식의 풀이

- 1 믿을 같게 할 수 있는 경우 : 믿을 같게 한 다음 진수를 비교한다.
 - (1) a > 1일 때, $\log_a f(x) < \log_a g(x) \iff 0 < f(x) < g(x)$
 - (2) 0<a<1일 때, $\log_a f(x) < \log_a g(x) \iff f(x) > g(x) > 0$
- $2 \log_a x$ 꼴이 반복되는 경우 : $\log_a x = t$ 로 치환하여 t에 대한 부등식을 푼다.
- 3 지수에 로그가 있는 경우 : 양변에 로그를 취하여 푼다.

개념 콕콕

1 다음 로그부등식을 풀어라.

$$(1)\log_3 x > \frac{1}{2}$$

$$(2) \log_{\frac{1}{2}}(x-1) < -2$$

$$(3)\log_{\frac{1}{3}}(2x+1) \le \log_{\frac{1}{3}}(3x-2)$$

$$(4) (\log x)^2 - \log x^3 < 0$$

풀이 1 (1) 진수의 조건에서 x>0

 $\log_3 x > \frac{1}{2}$ 에서 밑이 3이고 3>1이므로 $x > 3^{\frac{1}{2}}$ $\therefore x > \sqrt{3}$ \bigcirc

 \bigcirc , \bigcirc 의 공통 범위를 구해 보면 $x>\sqrt{3}$

(2) 진수의 조건에서 x-1>0 $\therefore x>1$

 $\log_{\frac{1}{2}}(x-1)$ <-2에서 밑이 $\frac{1}{2}$ 이고 0< $\frac{1}{2}$ <1이므로

$$x-1>\left(\frac{1}{2}\right)^{-2}, x-1>(2^{-1})^{-2}=2^2=4 \quad \therefore x>5 \quad \cdots$$

 \bigcirc , \bigcirc 의 공통 범위를 구해 보면 x>5

(3) 진수의 조건에서 2x+1>0, 3x-2>0이므로 $x>\frac{2}{3}$

....

 $\log_{\frac{1}{3}}(2x+1) \le \log_{\frac{1}{3}}(3x-2)$ 에서 밑이 $\frac{1}{3}$ 이고 $0 < \frac{1}{3} < 1$ 이므로 $2x+1 \ge 3x-2$ $\therefore x \le 3$

 \bigcirc , \bigcirc 의 공통 범위를 구해 보면 $\frac{2}{3} < x \le 3$

(4) 주어진 부등식을 변형하면 $(\log x)^2 - 3\log x < 0$

 $\log x = t$ 로 놓으면 $t^2 - 3t < 0$, t(t-3) < 0 $\therefore 0 < t < 3$

따라서 0<log x<3이므로 1<x<1000 ①

이때, 진수의 조건에서 x>0, $x^3>0이므로 <math>x>0$ ①

①. ①의 공통 범위를 구해 보면 1 < x < 1000

믿을 같게 할 수 있는 로그부등식의 풀이

^{Պվ} 05

다음 부등식을 풀어라.

 $(1)\log_{0.3}(5x-3) > \log_{0.3}3 + \log_{0.3}(x+1)$

 $(2)\log_6(x-2) + \log_6(x+3) < 1$

접근 방법

밑을 같게 할 수 있는 로그부등식은 로그의 성질이나 밑의 변환 공식을 이용하여 $\log_a f(x) > \log_a g(x)$ 꼴로 변형한 후 진수를 비교합니다. 이때, (밑)>1이면 진수의 부등호의 방향은 그대로이고, $0<(\mathbf{l})<1$ 이면 진수의 부등호의 방향은 반대로 바뀝니다.

Bible a>1일 때, $\log_a f(x) < \log_a g(x) \iff 0 < f(x) < g(x)$ 0 < a < 1일 때, $\log_a f(x) < \log_a g(x) \iff f(x) > g(x) > 0$

상세 풀이

(1) 진수의 조건에서 5x-3>0, x+1>0이므로 $x>\frac{3}{5}$ ······ \bigcirc

주어진 부등식을 변형하면 $\log_{0.3}(5x-3) > \log_{0.3}3(x+1)$

이때, 밑이 0.3이고 0<0.3<1이므로

$$5x-3 < 3(x+1), 2x < 6$$
 : $x < 3$

 \bigcirc , \bigcirc 의 공통 범위를 구해 보면 $\frac{3}{5} < x < 3$

(2) 진수의 조건에서 x-2>0, x+3>0이므로 x>2 \bigcirc 주어진 부등식을 변형하면 $\log_6(x-2)(x+3)<\log_6 6$ 이때, 밑이 6 이고 6>1이므로

$$(x-2)(x+3) < 6, x^2+x-12 < 0$$

 $(x+4)(x-3) < 0 \quad \therefore -4 < x < 3 \quad \cdots$

①, ①의 공통 범위를 구해 보면 2<x<3

정답 \Rightarrow (1) $\frac{3}{5} < x < 3$ (2) 2 < x < 3

보충 설명

(1)과 (2)는 풀이 방법은 같지만 두 부등식의 가장 큰 차이는 로그의 밑의 범위입니다. (1)은 $0<(\mathbf{e})<10$ l므로 진수의 부등호의 방향이 반대로 바뀌었고, (2)는 (밑)>10l므로 부등호의 방향이 바뀌지 않았습니다. 지수부등식을 풀 때 거듭제곱의 밑이 중요했던 것처럼 로그부등식을 풀 때에도 로그의 밑이 중요합니다

05-1 다음 부등식을 풀어라.

$$(1)\log_{0.5}(2x-1) > -2$$

$$(2) 0 \le \log_2(\log_3 x) < 1$$

$$\text{(3)} \log_5 10 - \log_5 \left(x - 4\right) < \log_5 \left(x - 1\right) \\ \text{(4)} \ 2\log_{\frac{1}{2}}(x - 3) > \log_{\frac{1}{2}}(5 - x)$$

$$(4) 2 \log_{\frac{1}{2}}(x-3) > \log_{\frac{1}{2}}(5-x)$$

표현 바꾸기

05-2 다음 부등식을 풀어라.

$$(1)\log_2(x-4) < \log_4(x-2)$$

개념 넓히기 ★★★

05-3 다음 연립부등식을 풀어라.

$$(1) \begin{cases} \log_3 |x-3| < 4 \\ \log_2 x + \log_2 (x-2) \ge 3 \end{cases}$$

$$(2) \left\{ \begin{array}{l} 2^{x+3} > 4 \\ 2\log(x+3) < \log(5x+15) \end{array} \right.$$

85.1 (1) $\frac{1}{2} < x < \frac{5}{2}$ (2) $3 \le x < 9$ (3) x > 6 (4) 3 < x < 4

05-2 (1) 4 < x < 6 (2) 5 < x < 10 **05-3** (1) $4 \le x < 84$ (2) -1 < x < 2

치환을 이용한 로그부등식의 풀이

^{예제} 06

다음 부등식을 풀어라.

 $(1) (\log_3 x)^2 + 6 \le \log_3 x^5$

(2) $(\log_2 4x)(\log_2 16x) < 3$

접근 방법

- $(1)\log_3 x$ 를 t로 치환하여 t에 대한 부등식을 풉니다.
- (2) 로그의 성질을 이용하여 주어진 식을 변형한 다음 $\log_2 x = t$ 로 치환하여 t에 대한 부등식을 풉니다.

Bible $\log_a x$ 꼴이 반복되는 로그부등식 $\Rightarrow \log_a x$ 를 t로 치환한다.

상세 풀이

(1) 진수의 조건에서 x>0, $x^5>0이므로 <math>x>0$

.....(¬)

주어진 부등식을 변형하면 $(\log_3 x)^2 + 6 \le 5\log_3 x$

이때, $\log_3 x = t$ 로 놓으면 $t^2 + 6 \le 5t$

$$t^2 - 5t + 6 \le 0, (t-2)(t-3) \le 0$$
 $\therefore 2 \le t \le 3$

따라서 $2 \le \log_3 x \le 3$ 이므로 $\log_3 3^2 \le \log_3 x \le \log_3 3^3$

밑이 3이고
$$3 > 1$$
이므로 $3^2 \le x \le 3^3$ $\therefore 9 \le x \le 27$

.....

 \bigcirc \bigcirc 의 공통 범위를 구해 보면 $9 \le x \le 27$

(2) 진수의 조건에서 4x>0. 16x>0이므로 x>0

.....(¬)

주어진 부등식을 변형하면

$$(\log_2 4 + \log_2 x)(\log_2 16 + \log_2 x) < 3$$

$$(2+\log_2 x)(4+\log_2 x) < 3$$

이때, $\log_2 x = t$ 로 놓으면 (2+t)(4+t) < 3

$$t^2+6t+5<0$$
, $(t+5)(t+1)<0$ $\therefore -5< t<-1$

따라서 $-5 < \log_2 x < -1$ 이므로 $\log_2 2^{-5} < \log_2 x < \log_2 2^{-1}$

밑이 2이고 2>1이므로
$$2^{-5} < x < 2^{-1}$$
 $\therefore \frac{1}{32} < x < \frac{1}{2}$ ①

 \bigcirc , \bigcirc 의 공통 범위를 구해 보면 $\frac{1}{32} < x < \frac{1}{2}$

정답 \Rightarrow (1) $9 \le x \le 27$ (2) $\frac{1}{32} < x < \frac{1}{2}$

보충 설명

다시 한 번 강조하지만 로그에서의 치환은 지수에서의 치환과 달리 t의 값의 범위에 신경 쓰지 않아도 됩니다.

06-1 다음 부등식을 풀어라.

(1)
$$(\log_2 x)^2 - \log_2 x^5 + 6 < 0$$
 (2) $(\log x)^2 < \log x^3$

(2)
$$(\log x)^2 < \log x^3$$

$$(3) \left(\log_3 \frac{x}{3} \right) (\log_3 9x) \le 4$$

$$(4) \log_2 x (3 + \log_{\frac{1}{2}} x) > -4$$

$$(4)\log_2 x(3 + \log_{\frac{1}{2}} x) > -4$$

표현 바꾸기

◆ 보충 설명

06-2 다음 부등식을 풀어라.

$$(1) \log_2 x + 3 \log_x 4 - 7 < 0$$
 (2) $3 \log_x 10 + \log x > 4$

(2)
$$3\log_x 10 + \log x > 4$$

개념 넓히기 ★★★

06-3 두 집합 $A = \{x \mid 2^{2x} - 2^{x+1} - 8 < 0\}$, $B = \{x \mid (\log_2 x)^2 - a \log_2 x + b \le 0\}$ 에 대하여 $A \cap B = \emptyset$, $A \cup B = \{x \mid x \leq 16\}$

을 만족시킬 때, a^2+b^2 의 값을 구하여라. (단, a, b는 상수이다.)

06-1 (1) 4 < x < 8 (2) 1 < x < 1000 (3) $\frac{1}{27} \le x \le 9$ (4) $\frac{1}{2} < x < 16$

06-2 (1) 0<x<1 또는 2<x<64 (2) 1<x<10 또는 x>1000

06-3 41

지수에 로그가 있는 부등식의 풀이

^{পাসা}. 07

다음 부등식을 풀어라.

 $(1) x^{\log_3 x} \leq 3$

 $(2) x^{\log x} > x^2$

접근 방법

예제 03과 마찬가지로 지수에 로그가 있는 부등식은 양변에 로그를 취하여 풉니다. 이때, 지수에 있는 로그와 밑이 같은 로그를 취하면 계산이 편리합니다.

Bible 지수에 로그가 있는 부등식은 양변에 로그를 취한다.

상세 풀이

(1) 진수의 조건에서 x>0 ····· \bigcirc

 $x^{\log_3 x} \le 3$ 의 양변에 밑이 3인 로그를 취하면

$$\log_3 x^{\log_3 x} \le \log_3 3 \qquad \therefore (\log_3 x)^2 \le 1$$

 $\log_3 x = t$ 로 놓으면

$$t^2 \le 1, t^2 - 1 \le 0, (t+1)(t-1) \le 0$$
 $\therefore -1 \le t \le 1$

즉. $-1 \le \log_3 x \le 1$ 이므로

 $\log_3 3^{-1} \le \log_3 x \le \log_3 3$

$$\therefore \frac{1}{3} \le x \le 3 \qquad \cdots \bigcirc$$

①, ①의 공통 범위를 구하면 $\frac{1}{3} \le x \le 3$

(2) 진수의 조건에서 x>0

.....

 $x^{\log x} > x^2$ 의 양변에 상용로그를 취하면 $\log x^{\log x} > \log x^2$

$$\log x \times \log x > 2\log x \qquad \therefore (\log x)^2 - 2\log x > 0$$

이때. $\log x = t$ 로 놓으면 $t^2 - 2t > 0$

$$t(t-2)>0$$
 ∴ $t<0$ 또는 $t>2$

따라서 $\log x < 0$ 또는 $\log x > 2$ 이므로 x < 1 또는 x > 100 ····· \bigcirc

 \bigcirc (그)의 공통 범위를 구해 보면 0 < x < 1 또는 x > 100

정답 \Rightarrow (1) $\frac{1}{3} \le x \le 3$ (2) 0 < x < 1 또는 x > 100

부축 석명

표현 바꾸기 07-2 처럼 밑을 같게 할 수 없는 지수부등식 역시 양변에 밑이 같은 로그를 취합니다.

07-1 다음 부등식을 풀어라.

 $(1) x^{\log_2 x} < 4x$

(2) $x^{\log_3 x} < 27x^2$

표현 바꾸기

07-2 다음 부등식을 풀어라.

 $(1) \, 2^{2x} \ge 10^{2x-1}$

(2) $2^x < 3^{-x+1}$

개념 넓히기 ★★☆

07-3 다음 부등식이 모든 양의 실수 x에 대하여 항상 성립할 때, 양수 a의 최솟값을 구하여라.

$$(1) x^{\log_3 x} \ge \frac{x^4}{a}$$

$$(2) ax^{\log_{\epsilon} x} \ge x^4$$

07-1 (1) $\frac{1}{2} < x < 4$ (2) $\frac{1}{3} < x < 27$ **07-2** (1) $x \le \log_{25} 10$ (2) $x < \frac{\log 3}{\log 2 + \log 3}$

07-3 (1) 81 (2) 256

상용로그의 실생활 활용

9 08

소리의 강도가 P(단위 $: \mathrm{W/m^2})$ 일 때 소리의 크기 D(단위 $: \mathrm{dB})$ 는 기준 음의 강도 I와 비교하여

$$D=10\log\frac{P}{I}$$

로 나타낸다. A 지역의 소리의 강도가 B 지역의 소리의 강도의 5000배일 때, A 지역과 B 지역의 소리의 크기의 차이는 몇 dB인지 구하여라.

(단, log 2=0.3으로 계산한다.)

접근 방법

A 지역과 B 지역의 소리의 크기의 차이를 구하는 문제이므로 주어진 공식을 이용하여 A 지역과 B 지역의 소리의 크기를 구합니다. 즉, 두 지역 A, B의 소리의 강도를 각각 P_a , P_b , 소리의 크기를 각각 D_a , D_b 라고 하면

$$D_a = 10 \log \frac{P_a}{I}, D_b = 10 \log \frac{P_b}{I}$$

따라서 두 지역의 소리의 크기의 차이는 $D_a - D_b$ 이므로 위의 두 식을 빼서 정리하면 답을 구할 수 있습니다.

Bible 공식이 주어진 실생활 문제는 주어진 조건을 공식에 잘 대입한다.

상세 풀이

두 지역 A, B의 소리의 강도를 각각 P_a , P_b , 소리의 크기를 각각 D_a , D_b 라고 하면 A 지역의 소리의 강도가 B 지역의 소리의 강도의 5000배이므로

$$P_a = 5000 P_b$$

$$\therefore D_a - D_b = 10 \log \frac{P_a}{I} - 10 \log \frac{P_b}{I}$$

$$= 10 \log \left(\frac{P_a}{I} \times \frac{I}{P_b}\right) = 10 \log \frac{P_a}{P_b}$$

$$= 10 \log 5000 = 10 \log \frac{10000}{2}$$

$$= 10(4 - \log 2) = 10 \times 3.7 = 37$$

따라서 A 지역과 B 지역의 소리의 크기의 차이는 37 dB입니다.

정답 ⇒ 37 dB

보충 설명

관계식이 주어진 로그의 실생활 문제에서는 구하려는 값이 공식에서 어떻게 표현되는지 알고 주어진 조건을 대입해서 얻은 식을 잘 변형하는 것이 포인트입니다.

수자 바꾸기

08-1 전파가 어떤 벽을 투과하여 전파의 세기가 A에서 B로 바뀔 때, 그 벽의 전파감쇄비 F를 $F=10\log\frac{B}{A}$ (dB)

> 로 정의한다. 전파감쇄비가 -7(dB)인 벽을 투과한 전파의 세기는 벽을 투과하기 전 전파 의 세기의 몇 배인가? (단. $10^{\frac{3}{10}}$ =2로 계산한다.)

- $1 \frac{1}{10}$ #
- ② 1 배

③ <u>3</u> 배

- ④ <u>1</u> 배
- ⑤ <u>7</u> 배

표현 바꾸기

08-2 단일 재료로 만들어진 벽면의 소음차단 성능을 표시하는 방법 중의 하나는 음향투과손실을 측정하는 것이다. 어느 주파수 영역에서 벽면의 음향투과손실 $L(\mathrm{dB})$ 은 벽의 단위면적당 질 량 $m(kg/m^2)$ 과 음향의 주파수 f(Hz)에 대하여

 $L = 20 \log mf - 48$

이라고 한다. 음향의 주파수가 일정할 때, 벽의 단위면적당 질량이 5배가 되면 벽면의 음향 투과손실은 $a(\mathrm{dB})$ 만큼 증가한다. a의 값을 구하여라. (단, $\log 2 = 0.3$ 으로 계산한다.)

개념 넓히기 ★★☆

투수계수란 지층에 물이 통과하는 정도를 나타내는 계수이다. 이 투수계수 K를 구하는 식 08-3 은 다음과 같다.

$$K \!=\! \frac{2.3Q}{2\pi LH} \!\times\! \log \frac{L}{r} \left(L \!\geq\! r\right)$$

(Q: 주입하는 물의 양, L: 시험구간, r: 시험 공 반경, H: 총 수두) 어느 지층의 투수계수 K를 구하는 실험에서 시험구간 L과 총 수두 H가 일정하고, 주 입하는 물의 양 Q와 시험 공 반경 r를 각각 처음의 2배, 4배로 하였을 때, 투수계수가 처음의 $\frac{1}{2}$ 배가 된다. $\frac{L}{r} = 10^n$ 일 때, 100n의 값을 구하여라.

(단. log 2=0,3으로 계산한다.)

정답 08-1 ②

08-2 14

08-3 80

219

부등식을 이용한 로그함수의 활용(1)

현재 자동차에서 배출되는 오염물질의 연간 총 배출량은 10만 톤이다. 환경부는 자동차 연료의 공해 물질 축소를 위하여 대기환경 보전법의 시행규칙을 개정하려고한다. 이 시행규칙이 시행되면 매년 오염물질의 연간 총 배출량의 4.5%를 줄일 수있게 된다. 오염물질의 연간 총 배출량이 처음으로 5만 톤 이하가 되는 것은 몇 년후인지 구하여라. (단, $\log 5 = 0.699$, $\log 9.55 = 0.980$ 으로 계산한다.)

접근 방법

매년 오염물질의 연간 총 배출량의 4.5%가 줄어들면 오염물질의 연간 총 배출량은 전년도의 95.5%가 됩니다. 즉.

1년 후의 오염물질의 연간 총 배출량은 100000 × 0.955 (톤)

2년 후의 오염물질의 연간 총 배출량은 (100000 × 0.955) × 0.955=100000 × 0.955²(톤)

:

n년 후의 오염물질의 연간 총 배출량은 100000×0.955^n (톤) 임을 이용하여 부등식을 세웁니다.

Bible 감소한다는 표현이 있으면 남는 것을 생각한다.

상세 풀이

n년 후의 오염물질의 연간 총 배출량은 100000×0.955^n (톤)

n년 후에 오염물질의 연간 총 배출량이 5만 톤 이하가 된다고 하면

$$100000 \times 0.955^{n} \le 50000$$
 $\therefore 0.955^{n} \le 0.5$

양변에 상용로그를 취하면

 $n \log 0.955 \le \log 0.5, n \log (9.55 \times 10^{-1}) \le \log (5 \times 10^{-1})$

$$n(\log 9.55 + \log 10^{-1}) \le \log 5 + \log 10^{-1}$$

$$n(0.980-1) \le 0.699-1.-0.020n \le -0.301$$

$$\therefore n \ge \frac{-0.301}{-0.020} = 15.05$$

따라서 16년 후에 처음으로 오염물질의 연간 총 배출량이 5만 톤 이하가 됩니다.

정답 ⇒ 16년

보충 설명

실생활 활용 문제는 구하는 값을 미지수로 놓고 조건에 맞는 식을 세우는 것이 문제 해결의 포인트입니다.

09-1 이산화탄소(CO_2)의 무분별한 배출로 인한 지구 온난화 현상을 막기 위하여 제정된 기후변 화협약(UNFCCC)에 가입한 우리나라의 현재 이산화탄소 연간 총 배출량은 15000만 TC 정도이다. 매년 이산화탄소 연간 총 배출량의 10%를 줄인다고 할 때, 이산화탄소 연간 총 배출량이 처음으로 현재의 절반 이하가 되는 것은 몇 년 후인지 구하여라.

(단, TC는 가스배출량의 단위이고, $\log 2 = 0.301$, $\log 3 = 0.477$ 로 계산한다.)

표현 바꾸기

09-2 바닷물 속으로 내려갈수록 빛의 세기가 줄어들어 점점 어두워진다. 빛이 바닷물 속을 지날때 일정한 비율로 세기가 줄어들어 바닷물 속에서 $0.6~\mathrm{m}$ 내려갈 때마다 빛의 세기가 10~%씩 감소한다고 한다. 빛의 세기가 처음으로 바다 표면에서의 빛의 세기의 10~%이하가 되는바닷 속 깊이는 바다 표면으로부터 몇 m 이래 지점인지를 구하여라.

(단, log 3=0.48로 계산한다.)

개념 넓히기 ★★★

◆보충 설명

09-3 기업의 매출 증가율은 $\frac{(금년도 매출액)-(전년도 매출액)}{(전년도 매출액)} \times 100(\%)$ 로 계산한다. 한 기

업의 매출 증가율이 매년 50%라고 할 때, 처음으로 매출액이 2001년 매출액의 10배가 넘는 해는 몇 년도로 예상되는가? (단, $\log 2 = 0.301$, $\log 3 = 0.477$ 로 계산한다.)

- ① 2005년
- ② 2006년
- ③ 2007년

- ④ 2008년
- ⑤ 2009년

정답 09-1 7년 09-2 15 m

09-3 ③

부등식을 이용한 로그함수의 활용(2)

^{পাম} 10

매년 조사하는 어느 도시의 통계자료에 의하면 현재 이 도시의 디지털 TV 보급대수는 1가구당 0.02대 꼴인데, 이 도시의 가구 수는 매년 $20\,\%$ 씩 감소하고, 디지털 TV의 보급대수는 매년 $20\,\%$ 씩 증가한다고 한다. 이 통계자료를 근거로 하여 몇년 후에 처음으로 이 도시의 디지털 TV의 보급대수가 1가구당 0.5대 이상이 되겠는지 구하여라. (단, $\log 2 = 0.30$, $\log 3 = 0.48$ 로 계산한다.)

접근 방법

예제 09와 달리 2개의 변량이 증가하거나 감소하는 유형인데, 푸는 원리는 예제 09와 같습니다.

즉. n년 후에 디지털 TV의 보급대수가 1가구당 0.5대 이상이 되어야 하므로 부등식

$$\frac{(n년 후 디지털 TV의 보급대수)}{(n년 후 가구 수)} \ge 0.5$$

를 이용하여 문제를 해결합니다.

Bible 미지수 n을 포함한 항들은 하나로 합친다.

상세 풀이

현재 이 도시의 가구 수를 H라고 하면 디지털 TV의 보급대수는 0.02H입니다. 이때, n년 후 이 도시의 가구 수는 $H(1-0.2)^n$ 이고, 디지털 TV의 보급대수는 $0.02H(1+0.2)^n$ 입니다. 따라서 디지털 TV의 보급대수가 1가구당 0.5대 이상이 되려면

$$\frac{0.02H \times 1.2^n}{H \times 0.8^n} \ge 0.5 \qquad \therefore \left(\frac{3}{2}\right)^n \ge 25$$

양변에 상용로그를 취하면

$$n\log\frac{3}{2} \ge \log 25 = 2\log 5$$

$$\therefore n \ge \frac{2(\log 10 - \log 2)}{\log 3 - \log 2} = \frac{1.4}{0.18} = 7.7 \times \times \times$$

따라서 8년 후에 처음으로 이 도시의 디지털 TV의 보급대수는 1가구당 0.5대 이상이 됩니다.

정답 ⇒ 8년

보충 설명

지문에 "처음으로 …"라는 표현이 등장하는데, 이것은 8년, 9년, 10년, \cdots 후에 모두 디지털 TV의 보급대수가 1 가구당 0.5대 이상이기 때문입니다.

10-1 실질연봉은 연봉을 그해의 물가지수로 나눈 값이라고 한다. 예를 들어, 물가지수가 1.2인해에 3000만 원의 연봉을 받는 사람의 실질연봉은 $\frac{3000}{1.2} = 2500$ (만 원)이다. 회사원 K씨의 연봉은 매년 10 %씩 인상되고, 물가지수는 매년 5 %씩 상승한다고 한다. 올해의 물가지수를 1이라고 할 때, K씨의 실질연봉이 처음으로 올해 실질연봉의 2배 이상이 되는 해는 올해부터 몇 년 후인지 구하여라.

(단. log 1.05=0.0212, log 1.1=0.0414, log 2=0.3010으로 계산한다.)

표현 바꾸기

10-2 총 인구에서 65세 이상 인구가 차지하는 비율이 20 % 이상인 사회를 '초고령화 사회'라고한다. 2000년 어느 나라의 총 인구는 1000만 명이고 65세 이상 인구는 50만 명이었다. 총 인구는 매년 전년도보다 0.3 %씩 증가하고 65세 이상 인구는 매년 전년도보다 4 %씩 증가한다고 가정할 때, 처음으로 '초고령화 사회'가 예측되는 시기는?

(단, log 1.003=0.0013, log 1.04=0.0170, log 2=0.3010으로 계산한다.)

- ① 2008년~2010년
- ② 2018년~2020년
- ③ 2028년~2030년

- ④ 2038년~2040년
- ⑤ 2048년~2050년

개념 넓히기 ★★☆

10-3 어떤 학생이 태블릿 PC를 구입하기 위하여 가격에 대한 정보를 알아보았더니, 현재 제품 A의 가격은 24만 원, 제품 B의 가격은 16만 원이고, 3개월마다 제품 A는 10 %, 제품 B는 5 %의 가격 하락이 있었다. 이런 추세가 계속된다고 가정할 때, 두 제품의 가격 차가 구입 시점의 제품 B 가격의 20 % 이하가 되면 제품 A를 구입하기로 하였다. 이 학생이 제품 A를 구입할 수 있는 최초의 시기는?

(단, log 2=0.30, log 3=0.48, log 0.95=-0.02로 계산한다.)

- ① 12개월 후
- ② 15개월 후
- ③ 18개월 후

- ④ 21개월 후
- ⑤ 24개월 후

정답 10-**1** 15년 10-**2** ④ 10-**3** ②