Chapitre 3.11c – Les collisions inélastiques

La vitesse de rapprochement dans une collision à deux objets non ponctuels

Lors d'une collision entre deux objets non ponctuels \mathbf{A} et \mathbf{B} , on peut évaluer la composante de vitesse de rapprochement v_{nAB} des deux objets par rapport à un axe orienté selon la normale à la surface \hat{n} du contact :

$$v_{nAB} = \vec{v}_{AB} \cdot \hat{n}_{BA}$$
 avec $\vec{v}_{AB} = \vec{v}_{A} - \vec{v}_{BB}$

où v_{nAB} : Composante de la vitesse relative de **A** par rapport à **B** selon l'axe n (m/s).

 \vec{v}_A : Vitesse initiale de l'objet **A** (m/s).

 $\vec{v}_{\rm B}$: Vitesse initiale de l'objet **B** (m/s).

 \hat{n}_{BA} : Normale à la surface de l'objet **B** sur l'objet **A** pointant vers l'extérieur de **B**.

Remarque: (avec une définition de $\hat{n} = \hat{n}_{BA}$)

ightharpoonup Si $v_{nAB} > 0$, alors l'objet **A** s'éloigne de **B** (vitesse relative après la collision).

ightharpoonup Si $v_{nAB} < 0$, alors l'objet **A** se rapproche de **B** (vitesse relative avant la collision).

Le coefficient de restitution

En 1687, Isaac Newton propose un coefficient permettant d'évaluer la perte de vitesse relative entre deux objets entant en collision. Ce coefficient e compris entre 0 et 1 correspond au rapport entre le module de la vitesse relative v_{nAB} de deux objets \mathbf{A} et \mathbf{B} après une collision et le module de la vitesse relative v_{nAB0} avant une collision :

En valeur absolue	Avec signes	Comparaison des vitesses relatives
$e = \frac{ v_{nAB} }{ v_{nAB0} }$	$e = -\frac{v_{nAB}}{v_{nAB0}}$	$v_{nAB} = -e v_{nAB0}$

e: Coefficient de restitution ($e \in [0..1]$).

 v_{nAB} : Composante de la vitesse relative de **A** par rapport à **B** après la collision selon l'axe n (m/s).

 v_{nAB0} : Composante de la vitesse relative de ${\bf A}$ par rapport à ${\bf B}$ avant la collision selon l'axe n (m/s).

οù

Le coefficient de restitution e permet d'interpréter un scénario de perte d'énergie cinétique K dans une collision de façon empirique :

Type de collision	Valeur de <i>e</i>
élastique	e = 1
inélastique	0 < e < 1
Parfaitement inélastique	e = 0

Pour des sphères entrant en collisions, voici quelques valeurs tirées de la littérature¹:

Sphère		Coefficient e
bois	bois	1/2
liège	liège	5/9
ivoire	ivoire	8/9
verre	verre	15 / 16
acier	acier	19 / 20

La collision inélastique en 3D entre deux objets non ponctuels (complément informatique)

Lors d'une collision inélastique entre deux objets $\bf A$ et $\bf B$ non ponctuels, on peut évaluer l'impulsion $\bar J$ s'appliquant les deux objets selon un axe parallèle à la normale à la surface des deux objets en fonction de la vitesse initiale $\bar v_0$ de nos deux objets, de leur masse m et du coefficient de restitution e. Tout en respectant la conservation de la quantité de mouvement, nous obtenons les équations suivantes :

$$\vec{v}_{A} = \vec{v}_{A0} + \frac{J_{n}}{m_{A}} \hat{n}_{BA}$$
 et $\vec{v}_{B} = \vec{v}_{B0} - \frac{J_{n}}{m_{B}} \hat{n}_{BA}$

tel que

$$J_{n} = \frac{-(1+e)}{(1/m_{A} + 1/m_{B})} (\vec{v}_{A0} - \vec{v}_{B0}) \cdot \hat{n}_{BA}$$

où $\vec{v}_{\rm A}$: Vitesse finale de l'objet **A** (m/s). $\vec{v}_{\rm B}$: Vitesse finale de l'objet **B** (m/s).

 \vec{v}_{A0} : Vitesse initiale de l'objet **A** (m/s). \vec{v}_{B0} : Vitesse initiale de l'objet **B** (m/s).

 $m_{\rm A}$: Masse de l'objet **A** (kg). $m_{\rm B}$: Masse de l'objet **B** (kg).

 $\hat{n}_{\text{BA}}\;$: Normale à la surface de l'objet ${\bf B}$ pointant vers l'extérieur de ${\bf B}.$

 J_n : Composante de l'impulsion appliquée selon l'axe \hat{n}_{BA} (Ns).

¹ Référence des coefficients : http://fr.wikipedia.org/wiki/Coefficient_de_restitution

Preuve:

Considérons un objet **A** de masse m_A se déplaçant à vitesse \vec{v}_{A0} qui entre en collision avec un objet **B** de masse m_B se déplaçant à vitesse \vec{v}_{B0} tel que la force normale de contact appliquée par l'objet **B** sur l'objet **A** sera orientée selon une orientation \hat{n}_{BA} .

Par **conservation de la quantité de mouvement**, l'impulsion appliquée par l'objet **A** sur l'objet **B** et l'impulsion appliquée par l'objet **B** sur l'objet **A** respecte la relation

$$\vec{J}_{_{\Delta\mathrm{B}}} = -\vec{J}_{_{\mathrm{B}\Delta}}$$

tel que

$$\vec{J}_{\rm BA} = J_n \hat{n}_{\rm BA} \ .$$

Ainsi, nous pouvons établir par le théorème de la quantité de mouvement que

$$\vec{p}_{A} = \vec{p}_{A0} + \vec{J}_{BA}$$
 et $\vec{p}_{B} = \vec{p}_{B0} + \vec{J}_{AB}$

ce qui nous donne en remplaçant $\vec{p} = m\vec{v}$ les équations

$$m_{\rm A} \vec{v}_{\rm A} = m_{\rm A} \vec{v}_{\rm A0} + \vec{J}_{\rm BA}$$
 et $m_{\rm B} \vec{v}_{\rm B} = m_{\rm B} \vec{v}_{\rm B0} + \vec{J}_{\rm AB}$.

En divisant par la masse m, en utilisant $\vec{J}_{AB} = -\vec{J}_{BA}$ et en remplaçant $\vec{J}_{BA} = J_n \hat{n}_{BA}$, nous pouvons obtenir

$$\vec{v}_{A} = \vec{v}_{A0} + \frac{J_{n}}{m_{A}} \hat{n}_{BA}$$
 et $\vec{v}_{B} = \vec{v}_{B0} - \frac{J_{n}}{m_{B}} \hat{n}_{BA}$.

Il reste maintenant qu'à évaluer l'impulsion J_n appropriée dans la collision pour respecter la nature d'une collision inélastique. Pour ce faire, introduisons la **définition du coefficient de restitution**

$$V_{nAB} = -eV_{nAB0}$$

valide lors d'une collision inélastique. En développant cette équation tout en respectant la conservation de la quantité de mouvement, nous pouvons obtenir l'impulsion J_n requise :

$$\begin{aligned} & v_{nAB} = -e \, v_{nAB0} \\ & \Rightarrow \qquad (\vec{v}_{A} - \vec{v}_{B}) \cdot \hat{n}_{BA} = -e \big(\vec{v}_{A0} - \vec{v}_{B0} \big) \cdot \hat{n}_{BA} \\ & \Rightarrow \qquad \left(\left(\vec{v}_{A0} + \frac{J_{n}}{m_{A}} \hat{n}_{BA} \right) - \left(\vec{v}_{B0} - \frac{J_{n}}{m_{B}} \hat{n}_{BA} \right) \right) \cdot \hat{n}_{BA} = -e \big(\vec{v}_{A0} - \vec{v}_{B0} \big) \cdot \hat{n}_{BA} \end{aligned} \qquad (\text{Remplacer } \vec{v}_{A} \text{ et } \vec{v}_{B})$$

$$\Rightarrow \qquad \vec{v}_{A0} \cdot \hat{n}_{BA} + \frac{J_{n}}{m_{A}} \hat{n}_{BA} \cdot \hat{n}_{BA} - \vec{v}_{B0} \cdot \hat{n}_{BA} + \frac{J_{n}}{m_{B}} \hat{n}_{BA} \cdot \hat{n}_{BA} = -e \big(\vec{v}_{A0} - \vec{v}_{B0} \big) \cdot \hat{n}_{BA} \qquad (\text{Distribution})$$

$$\Rightarrow \qquad \vec{v}_{A0} \cdot \hat{n}_{BA} + \frac{J_{n}}{m_{A}} - \vec{v}_{B0} \cdot \hat{n}_{BA} + \frac{J_{n}}{m_{B}} = -e \big(\vec{v}_{A0} - \vec{v}_{B0} \big) \cdot \hat{n}_{BA} \qquad (\hat{n}_{BA} \cdot \hat{n}_{BA} = 1)$$

Isolons les termes en J_n et établissons un lien avec les vitesses initiales :

$$\vec{v}_{A0} \cdot \hat{n}_{BA} + \frac{J_n}{m_A} - \vec{v}_{B0} \cdot \hat{n}_{BA} + \frac{J_n}{m_B} = -e(\vec{v}_{A0} - \vec{v}_{B0}) \cdot \hat{n}_{BA}$$
 (Équation précédente)

$$\Rightarrow \frac{J_n}{m_A} + \frac{J_n}{m_B} = -e(\vec{v}_{A0} - \vec{v}_{B0}) \cdot \hat{n}_{BA} - \vec{v}_{A0} \cdot \hat{n}_{BA} + \vec{v}_{B0} \cdot \hat{n}_{BA}$$
 (Isoler terms avec J_n)

$$\Rightarrow J_n \left(\frac{1}{m_{\text{A}}} + \frac{1}{m_{\text{B}}} \right) = \left(-e(\vec{v}_{\text{A0}} - \vec{v}_{\text{B0}}) - \vec{v}_{\text{A0}} + \vec{v}_{\text{B0}} \right) \cdot \hat{n}_{\text{BA}}$$
 (Factoriser \hat{n}_{BA} et J_n)

$$\Rightarrow J_n \left(\frac{1}{m_A} + \frac{1}{m_B} \right) = \left(-e(\vec{v}_{A0} - \vec{v}_{B0}) - (\vec{v}_{A0} - \vec{v}_{B0}) \right) \cdot \hat{n}_{BA}$$
 (Réécriture)

$$\Rightarrow J_n \left(\frac{1}{m_A} + \frac{1}{m_B} \right) = -\left(e \left(\vec{v}_{A0} - \vec{v}_{B0} \right) + \left(\vec{v}_{A0} - \vec{v}_{B0} \right) \right) \cdot \hat{n}_{BA}$$
 (Factoriser signe nég.)

$$\Rightarrow J_n \left(\frac{1}{m_A} + \frac{1}{m_B} \right) = -(e+1)(\vec{v}_{A0} - \vec{v}_{B0}) \cdot \hat{n}_{BA}$$
 (Factoriser $\vec{v}_{A0} - \vec{v}_{B0}$)

$$\Rightarrow J_n = \frac{-(1+e)}{\left(\frac{1}{m_A} + \frac{1}{m_B}\right)} (\vec{v}_{A0} - \vec{v}_{B0}) \cdot \hat{n}_{BA} \qquad \blacksquare$$
 (Isoler J_n)