

机电一体化系统设计

主讲教师: 张立勋 教授

MECHANICAL AND ELECTRICAL SYSTEM DESIGN

第 3 讲

机电一体化系统总体方案设计

回顾

机电一体化系统设计的工程路线

- 拟定目标及初步技术规范
- 可行性分析
- 初步设计(总体方案设计)

前期 (开题)

- 评价、评审
- 建模(理论分析)
- 仿真、模拟试验
- 详细设计 (样机设计) 中期
- 试制样机
- 样机试验测试
- 技术评价、审定
- 小批量生产
- 试销
- 批量生产

后期

第3讲 机电一体化系统总体方案设计

- 3.1 总体方案的作用及对系统的影响
- 3.2 总体结构方案设计
- 3.3 驱动方案设计
- 3.4 控制系统方案设计
- 3.5 可靠性设计**

3.1 总体方案的作用及对系统的影响

3.1.1 总体方案的作用

- ▶ 属于概念性设计,从系统角度进行优化,确定系统最优设计方案。
- ▶ 符合整体效应规律,使系统整体功能大于各个单元功能的简单和
- ✓ 整体效应规律: 1+1>2
- ✓ 系统内耗规律: 1+1<2</p>
- 总体方案将决定性的影响产品的创新和后续产品的详细设计,其设计缺陷很难在后续设计过程中加以纠正。

3.1 总体方案的作用及对系统的影响

- 3.1.2 总体方案设计的主要内容
- (1)总体结构方案设计 总体结构、布局、外观设计等
- (2)驱动方案设计 传动方案、驱动方式和驱动元件选择等
- (3) 控制方案设计 计算机控制方案、伺服控制方案、接口方案设计等
- (4) 人机工程设计 人机接口和人机环境设计
- (5) 可靠性设计 系统可靠性和人机安全性设计

3.2 总体结构方案设计

(1) 主体机械结构设计

- 主要几何尺寸的确定
- 作业空间的确定
- 运动自由度数的确定
- 操作环境的确定

(2) 总体布局

- 确定主要部件的相对位置关系
- 确定主要部件的相对运动关系

例:机器人典型结构形式

圆柱坐标式

极坐标式

共同点:

- ◆ 都是**2**自由度 机器人;
- ◆ 都可以实现X,Y坐标控制;

不同点:

- ◆工作空间性状 不同;
- ◆ 关节运动耦合 不同;
- ◆控制难度不同;
- ◆成本不同;
- ◆适用场合不同;

思考:下列工业机器人属哪种结构形式?

结构方案对系统的影响

- ◆ 自由度数, 自由度之间的耦合程度
- ◆工作空间范围
- ◆占用的空间
- ◆结构复杂程度,材料和成本
- ◆系统的性能(精度、快速性、稳定性)
- ✓ 刚度、惯量、质量分布;
- ✓ 驱动功率、驱动能力;
- ✓ 运动灵活性、控制难易程度;
- ◆可靠性、稳定性

思考:

直角坐标式和关节式机器人的各个关节之间耦合关系?

直角坐标式

多关节式

例: 数控加工中心结构形式

选择主体结构要考虑的主要问题:

- 加工要求
- 被加工零件的特点
- 与其它设备的匹配关系
- 复杂程度、制造成本

结构设计基本原则:

- 明确 工作原理、工作条件、作业空间、使用环境
- 简单
 结构简单、零部件少、形状规则,便于装配、 维修,简化工艺、降低成本
- 安全可靠 机器的工作安全性、操作安全性

主体机械结构设计实例分析

例:自动助餐机器人

结构方案设计应解决哪些问题?

- > 取送餐机械手构型、自由度数
- > 手爪的类型、结构形式
- > 取送餐方式与餐盘结构
- 食物种类与餐盘数量、布局

设计目标: 多种食物的自动送餐

服务对象: 手部功能障碍者

使用环境: 家庭、医院、康养

使用要求: 自动送食、人机安全

结构特点:

- ▶ 4自由度机械手
- > 叉勺手爪
- > 旋转餐盘
- ▶ 语音等三种人机接口
- ▶ 基于图像餐食识别、 人机安全控制

14

主体机械结构设计实例分析

例:自动助餐机器人

实施方案: 技术路线

助食辅具技术要求 助食辅具机械结构 驱动系统机械特性 驱动元件选择 控制器设计 驱动电路设计 驱动性能仿真 驱动系统样机 成功 取食 通讯测试 性能实验及改进完善

取食物研究详细技术路线

15

总体机构

机电工程学院 My Spoon餐食 Obi餐食

3.2.2总体布局方案设计

确定主要部件的相对位置关系确定主要部件的相对运动关系

总体布局基本原则:

(1) 功能合理: 各个子功能便于实现

(2) 结构紧凑:内部便于装配和维护,外部有利于艺术造型

(3) 层次分明: 所有部件一目了然

(4) 比例协调:符合艺术造型原则,美观

注意:与主体机械结构、电气控制装置、辅助装置和人机接口使用环境一起考虑。

布局

穿戴设备

脚踏板

摄像头

布局--<mark>优化</mark>

优化之前的布局

优化之后的布局

3.3 驱动方案设计

- > 现代驱动、传动机构特点
- ✓ 高度集成化、高度标准化、小型化
- ✔ 传动机构的设计工作重点是选型设计,而非传动机构本身
- > 传动方案设计
 - (1) 直线运动输出型机构的驱动 直线驱动元件驱动 回转型驱动元件驱动
 - (2)转动输出型机构的驱动 直线驱动元件驱动 回转型驱动元件驱动
- > 驱动方式选择

3.3.1 传动方案设计

- (1) 直线运动驱动
- 1) 直线驱动元件直接驱动 直线步进电机、阀控油缸、汽缸

优点:

- 不需要中间转换机构,负载运动精度不 受其影响
- 执行机构简单

缺点:

- 种类少,尺寸大,价格贵;
- 汽缸和油缸需控制阀、动力源等设备, 占地空间大,噪声大,对环境有污染。

直线运动机构的驱动

• 三种常用直线驱动元件的主要特点及适用场合

名称特点	直线步进电动机	气压缸	液压缸
结构	复杂	简单	较简单
传感器	磁电式或直接开环控制	直线型位移传感器,受制造工艺限制,行程不能太大	直线型位移传感器,行程受限制
控制	使用专用控制器,开环控制,位置精度高,低速振动较大,有一定的负载能力	使用气压控制阀控制, 快速性好,负载能力差,定 位精度不高	使用电液伺服阀控制, 快速性好,负载能力强,可 实现较高的定位精度
适用场合	并联机器人等	包装机械等轻工机械, 多用于开关控制	并联机器人,包装机械,水下机器人等
成本	较高	较低	较高

机电工程学院

直线运动机构的驱动

2) 回转型驱动元件实现的直线运动驱动

种类:

直流电动机、步进电机、交流伺服电机

传动装置: 丝杠螺母机构、齿轮齿条机构、同步齿形带机构

连杆等机构

3.3.1 传动方案设计

(2) 转动输出型驱动机构

种类: 回转驱动元件, 直线型驱动元件

- 电动机+减速器驱动
- 气压或液压马达驱动
- 液压缸及连杆机构驱动
- 电机+连杆驱动

3.3.1 传动方案设计

例: 助餐机器人传动方案

关节直驱

电动推杆驱动

关节直接驱动+带传动

机电工程学院 25

伺服驱动方案设计应用

例:绳索驱动式并联机器人,负载由多根张紧绳驱动,要求对每根绳索做位置控制,试选择驱动方案和传感器。

解:

方案一

电动机通过控制绳在滚筒上转过的角度实现绳位移的控制。

结构紧凑, 位移量大, 绕线 直径变化, 精确控制困难

伺服驱动方案应用

方案2

电动机经过丝杠螺母机 构或齿形带传动机构,通过电 动机的转角控制实现绳的位移 控制。

精度高、技术成熟,丝 杠位移有限、噪声大、齿形带 驱动能力有限

方案3

采用直线电动机直接控制绳的位移。

成本高、体积大、质量大

3.3.2 驱动方式选择

- (1) 工作环境及要求
- ▶ 家用电器、医疗器械 无污染(电动)、低噪声(无刷电机、带传动)、体积小、重量轻(交直流伺服)。
- ▶ 食品、医药生产机电产品 无污染(电动、气动,非润滑类传动)。
- ▶ 水下设备
 高压密封,防腐材料(液压驱动)
- ▶ 一般工业设备 噪声、污染、能源的获取、功率的大小。。。

3.3.2 驱动方式选择

(2) 传动精度及成本的要求

机械传动精度对控制精度、震动噪声、稳定性都有很大影响,对系统成本影响很大。

高精度传动: RV减速器、谐波减速器、高精度齿轮传动, 滚珠丝杠传动;

中等精度传动: 行星加速器、齿轮传动、同步带传动

经济型差传动: 涡轮蜗杆、同步带传动、链传动, 一般

精度行星轮传动、齿轮传动等;

29

3.3 驱动方案

例: 助餐机器人驱动方案

手爪张合:普通舵机

擦盘旋转: 伺服舵机

手臂关机: 伺服舵机

3.4 控制系统方案设计

• 局域伺服驱动系统

实现某一个单项运动的伺服控制,一般由局域控制器实现

• 计算机综合控制系统

承担整个系统运行管理的控制,包括为伺服驱动系统传送控制命令、检测系统的反馈信息、人机界面的控制、作业任务规划和系统运行管理等

3.4 控制系统方案设计

- 3.4.1 伺服控制方案设计
 - (1) 伺服驱动控制系统的作用
- ➤ "机"与"电"的接口,把电信号转换成执行机构的动力输出量
- > 决定系统的精度和动态性能指标
- > 直接影响整个系统的可靠性
- > 影响系统的成本
- > 对系统噪声、对环境的影响起决定作用

(2) 对伺服控制系统的要求:

- ▶好的动、静态指标
- >合理的结构,体积小、重量轻
- ▶高效率、低功耗
- ▶高可靠性
- ▶低成本
- ▶对环境无害

(3) 伺服控制方案

- > 开环控制
- > 闭环控制
- ▶半闭环控制

开环控制特点

- > 结构简单、成本低
- ▶ 稳定性好
- 适用于对控制精度要求不高的,负载力、负载速度较少或不变的场合
- > 应用广泛

(3) 伺服控制方案

- > 开环控制
- > 闭环控制
- > 半闭环控制

闭环控制特点

- > 结构复杂,成本高
- > 可以对传动机构的间隙做出一定的补偿
- > 稳定性与控制系统性能参数相关
- ▶ 适用于对控制精度要求高,负载力、 负载速度变化频繁的场合
- > 应用于高精度伺服驱动系统

(3) 伺服控制方案

- > 开环控制
- > 闭环控制
- > 半闭环控制

半闭环控制特点

- > 结构复杂,成本较高
- > 传动机构的间隙无法补偿
- > 稳定性与控制系统性能参数相关
- ▶ 适用于传动机构精度高,对控制精度要求较高,负载力、负载速度变化频繁的场合
- > 应用于高精度伺服驱动系统

伺服控制方案应用

例: 助餐机器人伺服控制方案

控制要求:

- ◆ 机手臂要实现轨迹和位姿控制,需要有较高的位置 控制精度,竖直面作业;
- ◆餐盘旋转满足一定的定位角度要求,水平面作业;
- ◆ 手爪实现张合动作,不需要角度精确控制。

伺服控制方案:

- > 手臂关节舵机位置闭环;
- ▶ 盘转动舵机位置闭环;
- > 手爪叉勺舵机开环

伺服控制方案应用

机电工程学院 38

3.4.2 传感检测方案设计

- 传感检测方案 检测方案设计 传感选择
- ▶ 传感检测方案对检测精度、检测成本、产品外观设计都有影响

传感检测方案

例

己知某绳驱动式并联机器人,负载由多根张紧的绳来驱动,要求对每根绳的位置做精确控制,试选择驱动方案和传感器。

解:

分析: 绳索位移行程大, 滚 筒转动角度与绳索位移存在 不确定性。

方案1

电动机通过控制绳在滚筒上转过的角度实现绳位移的控制。

特点:结构紧凑,传感器安装方便,检测精确控制 困难

传感检测方案

例

己知某绳驱动式并联机器人,负载由多根张紧的绳来驱动,要求对每根绳的位置做精确控制,试选择驱动方案和传感器。

解:

方案2

电动机通过控制绳在滑轮上转电动机 减速器 滚筒 驱动绳过的角度实现绳位移的控制。

特点:结构紧凑,传感器安装较 方便,检测精度较高,需要避 免钢丝绳在滑轮上的打滑。

问题: 两种方案对传感器的精

度要求有何不同?

3.4.2 传感检测方案设计

▶ 传感决定了系统精度精度的上限、对成本、产品外观设计都有影响,不同特测量方案对传感器、 传动机构提出了不同的要。

传感检测方案的选择要求:

- (1)满足测试的静态、动态特性要求
- (2) 与驱动元件与执行机构的传动方式匹配性
- (3) 合理的成本
- (3) 环境适应性

满足基本控制功能、性能指标要求

- (1) 基于产品类型的控制方案设计
- ▶ 单件小批量还是大批量生产 单件小批量:通用计算机,降低成本,缩短周期 大批量生产:专用计算机,提高资源利用率、系统 可靠性
- →一般工业产品还是特殊要求产品一般工业产品:成本和生产周期特殊要求产品:军用、航天、水下产品,可靠性和适应性

43

▶产品开发还是科研样机

产品开发:生产成本、周期、可维修性等,采用集散控制计算机系统

科研样机: 研究工作原理, 获取数据, 采用软、硬件接口资源丰富、速度快、兼容性好的专用计算机系统

▶工业产品还是民用产品

民用产品:小家电、便携式仪器仪表、嵌入式移动系统, 考虑体积、重量、功耗、成本,采用专用的单片机或微处理 器控制系统

工业产品: 可靠性高的计算机系统

(2) 基于系统规模的控制方案设计

主要因素

▶ 人机接口:命令及数据输入、状态显示

> 系统控制:接收状态信息、轨迹规划、控制算法、发控制指令

▶ 伺服控制:滤波算法、伺服控制算法、控制信号输出

分级控制

集中控制

(3) 基于工作环境的控制方案设计

▶工作环境与构件的材料

海洋开发,航天产品,医疗产品,化工产品的耐腐蚀性、温度稳定性、化学性能等

>工作环境与控制系统

电辐射、电网干扰、振动等需要采取防护措施 家用电器、办公设备对控制系统要求不高,对生产 设备需采用可靠性高的控制计算机,采用抗干扰电 源,屏蔽、接地保护,防尘、防潮设计,抗振设计, 冗余设计,抗干扰软、硬件,恒温控制等措施。

例: 助餐机器人

47

例: 助餐机器人

- (1)基于产品类型的控制方案设计 家用电器产品,面向产品批量生产:低成本, 产品化。
- (2) 基于系统规模的控制方案设计中小规模控制: ARM
- (3) 基于工作环境的控制方案设计 家用电器产品:无特殊要求

优选方案: 主机选用ARM自行开发, 伺服驱动选用一体化舵机, 人机界面选用通用平板、配备双目摄像头, 采用DC24V安全供电, 485、以太网通讯;

例: 助餐机器人控制方案(硬件)

GlassOuse鼠标

Mousetool工具

49