

1	
1.	1/2/c
rd)	
	35
	-
	58
	- 1:5:
	1.85.
	530
	1.8

4	3) air resistance, drag -> how much does the air affect the notion of an object
	$F_{ain} \sim -f(\vec{v}) \qquad \boxed{F}_{ain}$
	always against direction of motion
	4) friction of fills (see next chapter
	* Examples of problems with forces:
	Morning: F=200N × what is the acceleration of the object? SON × what is the object? Marion the ground on the object?
	F = 1500 M $F = 200 N$ $m = 50 kg$
	$\overline{W} = m\overline{g}$ $\overline{W} = m\overline{g}$ $\overline{F_{net}} = m\overline{a} \implies \infty : \overline{F_1 - F_2} = max$ $y : \overline{W} - mg + N = may = 0$
Q Morring	1

$$\Rightarrow a_{x} = \frac{1}{m} (F_{x} - F_{z}) = + 1 \frac{m}{2}$$

$$\Rightarrow N = mg = 500 N$$

$$\Rightarrow N = mg = 500 N$$

$$\Rightarrow F_{z} = 200N$$

$$\Rightarrow F_{z} = 200N$$

$$\Rightarrow F_{z} = 200N$$

$$\Rightarrow N = mg$$

$$\Rightarrow N = mg + F_{z} = max$$

$$\Rightarrow N = max$$

$$\Rightarrow N = max$$

$$\Rightarrow N = mg + F_{z} = max$$

$$\Rightarrow N = max$$

$$\Rightarrow$$