Inteiros

Inteiros.

Congruência.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 4

Números reais

- \square A relação binária \le em \mathbb{R} é uma ordem parcial
 - Reflexiva, antissimétrica, transitiva
- \square Propriedades da adição e multiplicação de reais (a,b,c $\in \mathbb{R}$)
 - (fecho) a+b e ab são números reais
 - (**comutatividade**) a+b=b+a e ab=ba
 - (associatividade) (a+b)+c = a+(b+c) e (ab)c = a(bc)
 - (elemento neutro) a+0 = a e a.1 = a
 - (**distributividade**) a(b+c) = ab+ac e (a+b)c = ac+bc
 - (inverso aditivo) a+(-a)=0
 - (inverso multiplicativo) a $\left(\frac{1}{a}\right) = 1$ se $a \ne 0$
 - $a \le b$ implies $a+c \le b+c$
 - $a \le b$ e $c \ge 0$ implica que $ac \le bc$
 - $a \le b$ e $c \le 0$ implica que $ac \ge bc$

A subtração define-se como a-b = a+(-b)

Princípio da boa ordenação

- Muitos conjuntos de reais não têm mínimo
 - Não existe o menor real positivo
 - $\min\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\} = ?$
- □ Este problema não ocorre nos naturais

Princípio da boa ordenação. Todo o conjunto não vazio de números naturais tem um elemento mínimo.

- □ As propriedades dos reais podem ser transpostas para os inteiros
 - O conjunto dos naturais é fechado para a adição? Multiplicação?
 Subtração?
 - O conjunto dos inteiros ímpares é fechado para a adição?

Algoritmo da divisão

□ Divisão

$$\frac{58}{17} = 3 + \frac{7}{17}$$

$$\frac{58}{17} = 2 + \frac{24}{17}$$

$$\frac{a}{b} = q + \frac{r}{b}$$

$$a = qb + r$$

Menor dos múltiplos de b maiores que a (existe!) 0≤r=a-qb<b

- **Teorema**: sejam $a,b \in Z$, $b \neq 0$. Então existem inteiros únicos q e r, com $0 \le r < |b|$, tal que a = qb + r.
 - q quociente
 - r resto

Exemplo

$$\square$$
 19 = 4(4) + 3

$$-19 = -5(4) + 1$$

$$\square$$
 19 = -4(-4) + 3

$$-19 = 5(-4) + 1$$

Função chão.

Proposição:
$$q = \begin{cases} \left\lfloor \frac{a}{b} \right\rfloor & \text{se } b > 0 \\ \left\lceil \frac{a}{b} \right\rceil & \text{se } b < 0 \end{cases}$$
 $\frac{19}{4} = 4.75$

Representação de naturais

■ Representação habitual é base 10

$$-2159 = 2 * 10^3 + 1 * 10^2 + 5 * 10^1 + 9 * 10^0 = (2159)_{10}$$

$$(a_{n-1}a_{n-2} \dots a_o)_b = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_1b + a_o$$

 $(4157)_8$

Numeração binária e hexadecimal

□ Representação base 2 ou binária

-
$$(2159)_{10} = 1 * 2^{11} + 0 * 2^{10} + 0 * 2^9 + 0 * 2^8 + 0 * 2^7 + 1 * 2^6 + 1 * 2^5 + 0 * 2^4 + 1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0 = (100001101111)_2$$

- □ Base 16 ou hexadecimal necessita de 16 símbolos
 - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - $(2159)_{10} = 8 * 16^2 + 6 * 16^1 + 15 * 16^0 = (86F)_{16}$
- □ Passar da binária para a hexadecimal
 - 1000 0110 1111
 - 8 6 F

Divisibilidade

- □ **Definição**: dados a e b inteiros com $b\neq 0$, diz-se que b é um divisor ou um fator de a e que a é divisível por b se e só se a = qb para algum inteiro q.
 - Escreve-se b | a e lê-se "b divide a"
- \square Para todo o n, 1|n e para $n\neq 0$, n|0
- Proposição: Sejam a, b, c inteiros tais que $c \mid a \in c \mid b$. Então $c \mid (xa + yb)$ para quaisquer inteiros $x \in y$.
- □ **Prova**: dado que $c|a, a = q_1c, q_1$ inteiro, e dado que $c|b, b = q_2c, q_2$ inteiro. Então $xa + yb = xq_1c + yq_2c = (q_1x + q_2y)c$. Como $(q_1x + q_2y)$ é um inteiro então c|(xa + yb)
- \square A relação binária em \mathbb{N} a|b é ordem parcial e (\mathbb{N} ,|) um cpo

Máximo divisor comum

□ **Definição**: Sejam a e b inteiros não simultaneamente iguais a 0. Um inteiro g é o máximo divisor comum de a e b, g = mdc(a,b), se g|a e g|b e qualquer c tal que c|a e c|b implica $c \le g$.

Ex: Considere os números 238 e 68
 divisores238 = {1,2,7,14,17,34,119,238}
 divisores68 = {1,2,4,17,34,68}
 divisoresComuns = {1,2,17,34}
 mdc(238,68) = 34

Lema

- Lema: se a = qb + r para inteiros a, b, q, r então mdc(a, b) = mdc(b, r)
 - Como 238 = 3(68) + 34, mdc(238,68) = mdc(68,34) = 34porque 68 = 2(34) + 0
- □ **Prova**: Seja $g_1 = mdc(a, b)$ e $g_2 = mdc(b, r)$.

Como $g_2|b$ e $g_2|r$ então $g_2|(qb+r)$, isto é, $g_2|a$. Então g_2 é um divisor comum de a e de b e, como g_1 é o maior divisor comum de a e de b, $g_2 \le g_1$.

Por outro lado, como $g_1|a$ e $g_1|b$ temos que $g_1|(a-qb)$, isto é, $g_1|r$. Então g_1 é um divisor comum de b e de r e, como g_2 é o maior divisor comum de b e de r, $g_1 \le g_2$. Portanto, $g_1 = g_2$ e mdc(a,b) = mdc(b,r).

Algoritmo de Euclides

Sejam a e b números naturais com b<a. Para calcular mdc(a,b) fazer</p>

$$a = q_1 b + r_1, \quad 0 \le r_1 < b$$

$$\Box$$
 Se $r_1 \neq 0$ $b = q_2 r_1 + r_2$, $0 \leq r_2 < r_1$

$$\square$$
 Se $r_2 \neq 0$ $r_1 = q_3 r_2 + r_3$, $0 \leq r_3 < r_2$

$$\square$$
 Se $r_k \neq 0$ $r_{k-1} = q_{k+1}r_k + r_{k+1}$, $0 \leq r_{k+1} < r_k$

$$\square$$
 Se $r_{k+1} = 0$, $mdc(r_{k-1}, r_k) = r_k = mdc(a, b)$.

$$-$$
 Ex: mdc(630,196) =14

$$-630=3(196)+42$$
 $42=630-3(196)=a-3b$

$$-196=4(42)+28$$
 $28=196-4(42) = b-4r_1=b-4(a-3b)=-4a+13b$

$$-42=1(28)+14$$
 $14=42-28$ $=r_1-r_2=(a-3b)-(-4a+13b)=5a-16b$

Obtenção de mdc(a,b)=ma+nb

Apresentando as três equações anteriores r = ma+nb em forma tabular, antecedidas das duas linhas para a e para b

	r	а	b	q	
а	630	1	0		
b	196	0	1	3	
r_1	42	1	-3	4	
r ₂	28	-4	13	1	
r ₃	14	5	-16	2	
r ₄	0				

$$q_k = \text{quotient}(r_{k-1}, r_k)$$

$$3 = \text{quotient}(630, 196)$$

$$(42, 1, -3) = (630, 1, 0) - 3(196, 0, 1)$$

$$linha_k = linha_{k-2}, -q_{k-1} linha_{k-1}$$

Como
$$r_4$$
=0,
 $mdc(630,196) = r_3 = 14 = 5(630) + (-16)(196)$

Propriedades do mdc

- **Definição**: Dois inteiros a e b, a≠0 b≠0, são primos entre si se mdc(a,b)=1
- **Teorema**: O máximo divisor comum dos inteiros a e b é uma combinação linear inteira de a e b, g=mdc(a,b) =ma+nb.
 - mdc(630,196)=14=5a-16b=5(630)-16(196)
- □ Corolário: Sejam x,a,b inteiros tais que x|ab. Se x e a forem primos entre si, então x|b.
- □ **Corolário**: o mdc(a,b) é divisível por qualquer divisor comum de a e b.
- \square Recordando que (\mathbb{N} ,|) é um cpo, verifica-se que
 - $a \land b = mdc(a,b)$ ínfimo

Mínimo múltiplo comum

- **Definição**: Se a e b forem inteiros não nulos, dizemos que l é o mínimo múltiplo comum de a e b, l = mmc(a, b), se e só se l for um inteiro positivo que satisfaça
 - a|l, b|l e,
 - Se m for um inteiro positivo tal que a|m e b|m então $l \le m$.
 - Ex: mmc(630, -196) = 630 * 196/14 = 8820
- \square Ainda no cpo (\mathbb{N} ,|), verifica-se que
 - \Box a \lor b=mmc(a,b) supremo
- \square O cpo (N,|) é um reticulado
- O conjunto dos divisores de um número natural é um reticulado
 - Ex: $A = \{d \in \mathbb{N} \mid d|30\} = \{1,2,3,5,6,10,15,30\}$

Números primos

- Definição: um número natural p ≥2 é um primo se e só se os únicos números naturais que dividem p forem p e 1. Um número natural n>1 que não seja primo é composto.
 - n é composto se n=ab, com 1<a,b<n
 - 1 não é primo nem composto
 - Há ¼ de números primos de 1 a 100
 - 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
 - Alguns primos grandes: 2⁷⁵⁶⁸³⁹-1, 2⁸⁵⁹⁴³³-1
- Lema: Dado qualquer número natural n>1, existe um primo p tal que p|n.

Primos

- □ **Teorema**: há um número infinito de primos.
 - Prova por contradição: se o número de primos for finito p₁,p₂,...,p_t, seja n= (p₁p₂...p_t)+1. Pelo lema, n é divisível por um primo, p_i.
 Como p₁p₂...p_t também é divisível por p_i, n p₁p₂...p_t=1 é divisível por p_i, o que é uma contradição.
- □ Como determinar se um número é primo?
 - Os pares são múltiplos de 2
 - Os números cujos algarismos somados são múltiplos de 3 são divisíveis por 3
 - Os números terminados em 0 ou 5 são múltiplos de 5
- □ **Lema**: se um número natural n>1 não é primo, então é divisível por um primo p $\leq \sqrt{n}$

Crivo de Eratóstenes

- □ Para encontrar todos os primos até n
 - Listar todos os inteiros de 2 a n
 - Marcar 2 e cortar todos os múltiplos de 2; idem para 3, 5, ...
 - Marcar o próximo número não marcado ou cortado e cortar os múltiplos até todos os números até \sqrt{n} estarem marcados ou cortados

2	3	4	5	6	7	8	9	10	11
1/2	13	1,4	1/5	1.6	17	18	19	20	21
2/2	23	24	25	26	27	28	29	30	31
32	33	34	3/5	36	37	3/8	39	40	41
42	43	44	4.3	46	47	48	49	50	5X
52	53	54	5/ 5	56	57	58	59	60	61
62	63	64	65	66	67	68	69	70	71
72	73	74	75	76	77	7.8	79	80	81
82	83	84	8 5	86	87	88	89	98	91
92	93	94	95	96	97	98	99	100	

Decomposição em números primos

- □ Teorema Fundamental da Aritmética: cada número natural n≥2 pode ser escrito $n = p_1 p_2 \dots p_r$ como um produto único de números primos ou, agrupando os primos iguais, na forma $n = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_s^{\alpha_s}$ do produto de potências de s primos distintos, em que os primos e as potências são únicos.
- \blacksquare Ex: $100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 5^2$
- $1176 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 \cdot 7 = 2^3 3^1 7^2$
- □ **Definição**: os fatores primos de um inteiro n≥2 são os números primos que dividem n; a multiplicidade de um fator primo p de n é o maior α tal que $p^{\alpha}|n$.

Divisibilidade

$$\Box$$
 a = 9

$$b = 77$$

$$a = 9$$
 $b = 77$ $ab = 693$

- \Box c = 21

- \Box c \ a \ c \ b \ c \ ab \ 21 \ 693 \ 693=33*21
- Esta situação de um número não dividir nenhum dos fatores mas dividir o produto não pode acontecer se o número for primo!
 - Fica evidente se se explicitar a decomposição em números primos

a
$$= 3*3$$
 b $= 7*11$ **c** $= 3*7$

$$b = 7*11$$

$$c = 3*7$$

$$ab = (3*3)(7*11) = 3(3*7)11 = 3*c*11$$

□ Se c fosse um número primo tinha que dividir a ou b

Unicidade da decomposição

□ **Proposição**: se um primo p divide o produto $a_1a_2 ... a_k$ de inteiros, então p divide um dos a_i .

■ Unicidade da decomposição em fatores primos

 Prova: Assuma-se que um número natural n>1 pode ser fatorizado em números primos de duas maneiras diferentes

$$n = p_1 p_2 \dots p_k = q_1 q_2 \dots q_1$$

- Cancelem-se os fatores iguais nas duas expressões; obtém-se um produto de primos igual a 1 (absurdo) ou uma equação da mesma forma sem fatores repetidos nas duas expressões
- Como p₁|p₁p₂...p_k então p₁|q₁q₂...q_l. Pela proposição acima, p₁|q_j para um dos primos q_j. Como tanto p₁ como q_j são primos, isto força p₁=q_j
- Mas isso contradiz a n\u00e3o exist\u00e9ncia de primos comuns, pelo que n\u00e3o podem existir duas fatoriza\u00f3\u00e9es diferentes

Decomposição do mdc

- Exercício: qual a decomposição em números primos do mdc(a,b)?
- Resposta
 - Pelo Teorema Fundamental da Aritmética, a e b podem exprimir-se na forma

$$a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$$
 $b = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r}$

Sendo assim

$$mdc(a,b) = p_1^{\min(\alpha_1,\beta_1)} p_2^{\min(\alpha_2,\beta_2)} \dots p_r^{\min(\alpha_r,\beta_r)}$$

Casos especiais

□ Primos de Mersenne

- São números da forma 2^p-1
- Verificar com p até 16
- Mersenne indicou a lista: 2,3,5,7,13,17,19,31,67,127,257
- Mais tarde corrigiu-se: 2,3,5,7,13,17,19,31,61,89,107,127.
- Conjetura-se que haja relação entre p ser primo e 2^p -1 ser primo
 - \circ Se p não for primo 2^p -1 também não é; o inverso não é sempre verdade
- O 39º primo de Mersenne (p=13466917) foi encontrado em 2001, após dois anos e meio a testar 100000 candidatos numa rede de 200000 PCs
- Não se sabe se há um número infinito de primos de Mersenne

Mais casos especiais

Primos de Fermat

- $-2^{2^n}+1$
- São primos para n=0, 1, 2, 3, 4 (para n=5 é divisível por 641)
- Há mais do que cinco destes primos?

■ Qual a regra para obter o número primo seguinte?

- Não há regra conhecida
- Os números primos são muito rebeldes... e essenciais!
- É possível encontrar dois primos consecutivos com um intervalo arbitrariamente grande.
 - D!+2 é divisível por 2, D!+3 por 3, ..., D!+D por D.
 - Entre D!+1 e D!+D não há primos

Qual a densidade de primos?

☐ Teorema dos **números primos**

- Seja $\pi(x)$ o número de primos p ≤ x
- Valor aproximado: $\pi(x) \sim \frac{x}{\ln x}$
- $-\pi(100) \sim \frac{100}{\ln 100} = 21.7$ De facto, 25

Observação

- Todos estes cálculos usam números que ultrapassam a gama de inteiros das unidades aritméticas
- É necessário recorrer a bibliotecas de operações aritméticas sobre cadeias de algarismos de comprimento variável e elevado

Mais casos em aberto

- □ Último Teorema de Fermat. Para qualquer inteiro n>2 a equação $a^n + b^n = c^n$ não tem solução inteira
 - Prova realizada só em 1994 por Andrew Wiles
- □ Conjetura dos primos gémeos. Existe um número infinito de números x tais que x e x+2 são primos?
 - 11 e 13, 41 e 43
 - não se sabe
- □ Conjetura de Goldbach. Podem todos os inteiros pares maiores que 2 ser escritos como a soma de dois primos?