

91FB8C6D + 68D3239F FACEBOOC

Example: BCD Addition

$$99 + 66 = 165$$

$$66 = 0110 \ 0110$$

Example: BCD Addition

$$99 + 66 = 165$$

1 0000 0101

Example: BCD Addition

$$99 + 66 = 165$$

$$66 = 0110 \ 0110$$

1 0000 0101

101100101

BCD Addition

BCD Addition

0000	0100	1000	110C
0001	0101	1001	1101
0010	0110	1010	1110
0011	0111	1011	1111

BCD Addition

0000	0100	1000	1100
0001	0101	1001	1101
0010	0110	1010	1110
0011	0111	1011	1111

Chapter 3

BOOLEAN ALGEBRA, LOGIC FUNCTIONS and LOGIC GATES

Binary Logic

- consists of binary variables and logical operations
- resembles binary arithmetic
- use and application of binary logic are demonstrated by switching circuits
- equivalent to Boolean Algebra

Boolean Algebra

- a set of elements, a set of operators, and a number of unproven axioms or postulates
- developed by an English mathematician named George Boole

Boolean Operations

- AND
 - represented by a dot or the absence of an operator
 - -0 dominates

X	у	ху
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Operations

- OR
 - -represented by a plus sign
 - -1 dominates

x	у	x+y
0	0	0
0	1	1
1	0	Ĩ
1	1	1

Boolean Operations

- NOT
 - -represented by a prime
 - inversion or complementation

X	x'
0	1
1	0

Boolean Theorems

- Boolean operations on constants
- Boolean operations on one variable
- Boolean operations on two or more variables

Boolean Operations on constants

AND	OR	NOT
$0 \cdot 0 = 0$	0 + 0 = 0	0' = 1
0 · 1 = 0	0 + 1 = 1	1' = 0
1 · 0 = 0	1 + 0 = 1	
1 · 1 = 1	1 + 1 = 1	

Boolean Operations on one variable

AND	OR	NOT
$A \cdot O = O$	A + O = A	A" = A
$A \cdot 1 = A$	A + 1 = 1	
$A \cdot A = A$	A + A = A	
$A \cdot A' = 0$	A + A' = 1	

Boolean Operations On Two or More Variables

• Associative laws A+(B+C) = (A+B)+C A(BC) = (AB)C

• Distributive laws
$$A(B + C) = AB + AC$$

$$A+(BC) = (A+B)(A+C)$$

De Morgan's laws
 (A + B)' = A'B'
 (AB)' = A' + B'

Laws of Absorption
 A + AB = A
 A(A+B) = A

Boolean Functions

- Boolean functions are expressions formed with binary variables and boolean operators
- Representations of boolean functions:
 - algebraic expression
 - -truth table

Algebraic Expression Examples

•
$$F_1 = xyz'$$

•
$$F_2 = x + y'z$$

•
$$F_3 = x'z + xy'$$

•
$$F_5 = 1$$

Truth table examples

X	У	Z	F ₁	F ₂	F ₃	F ₄	F ₅
0	0	0	0	0	0	1	1
0	0	1	0	1	1	1	1
0	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	ī	0	0	1
1	1	1	0	1	0	0	1

•
$$F_1 = x + x'y$$

•
$$F_1 = x + x'y$$

$$= (x+x')(x+y)$$

•
$$F_1 = x + x'y$$

$$= (x+x')(x+y)$$

$$= 1 (x+y)$$

•
$$F_1 = x + x'y$$

$$= (x+x')(x+y)$$

$$= 1 (x+y)$$

$$= x+y$$

•
$$F_1 = x + x'y$$

•
$$F_2 = x(x'+y)$$

$$= (x+x')(x+y)$$

$$= 1 (x+y)$$

$$= x+y$$

•
$$F_1 = x + x'y$$

$$= (x+x')(x+y)$$

$$= 1 (x+y)$$

$$= x+y$$

•
$$F_2 = x(x'+y)$$

$$= xx' + xy$$

•
$$F_1 = x + x'y$$

$$= (x+x')(x+y)$$

$$= 1 (x+y)$$

$$= x+y$$

•
$$F_2 = x(x'+y)$$

$$= xx' + xy$$

$$= 0 + xy$$

•
$$F_1 = x + x'y$$

•
$$F_2 = x(x'+y)$$

$$= (x+x')(x+y)$$

$$= xx' + xy$$

$$= 1 (x+y)$$

$$= 0 + xy$$

$$= x+y$$

$$= xy$$

•
$$F_3 = xy + xy'$$

•
$$F_3 = xy + xy'$$

$$= x(y+y')$$

•
$$F_3 = xy + xy'$$

$$= x(y+y')$$

$$= x$$

•
$$F_3 = xy + xy'$$

$$= x(y+y')$$

$$= x$$

•
$$F_4 = x'y'z + x'yz + xy'$$

•
$$F_3 = xy + xy'$$

$$= x(y+y')$$

$$= x$$

•
$$F_4 = x'y'z + x'yz + xy'$$

$$= x'z(y'+y) + xy'$$

•
$$F_3 = xy + xy'$$

$$= x(y+y')$$

$$= x$$

•
$$F_4 = x'y'z + x'yz + xy'$$

$$= x'z(y'+y) + xy'$$

$$= x'z + xy'$$

- Forms of variables
 - normal (x)
 - -complement(x')
- Forms of terms (variables x and y)
 - Minterms m_i (or standard product)

Maxterms M_i (or standard sum)

$$x+y$$
, $x+y'$, $x'+y$, $x'+y'$

Minterms and Maxterms for 3 variables

	MINTERM		MAXTERM			
х	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m0	x+y+z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz'	m2	x+y'+z	M2
0	1	1	x'yz	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x'+y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	x'+y'+z'	M7

Forms of Boolean Functions

- Canonical Form
 - Sum of minterms

$$F(x,y,z) =$$

$$xyz' + x'yz$$

Product of maxterms

$$F(x,y,z) = (x'+y'+z)(x+y+z')$$

- Standard Form
 - Sum of products

$$F(x,y,z) = xz' + y$$

Product of sums

$$F(x,y,z) = (x+y')z$$