MATH 321 WEEK 6 UNCLAIMED PROBLEM SOLUTIONS

KENAN INCE

- (1) 2.2.4
 - (a) $(1,-1,1,-1,1,-1,\dots)$
 - (b) This is impossible. Suppose that $(a_n) \to a$ with $a \neq 1$. Then, taking $\epsilon = |a-1|$ in the definition of convergence, there exists $N \in \mathbb{N}$ such that whenever $n \geq N$, $|a_n a| < |a-1|$. If $a_n = 1$ for some $n \geq N$, then |1-a| < |a-1| = |1-a|, a contradiction. Therefore, $a_n \neq 1$ for all $n \geq N$, and thus, (a_n) contains at most N-1 ones.
 - (c) $(0,1,0,1,1,0,1,1,1,0,1,1,1,1,\dots)$
- (2) 2.2.5
 - (a) We show $\lim a_n = 0$.
 - (i) Let $\epsilon > 0$ be arbitrary.
 - (ii) [scratch work] |[5/n]| = [5/n] = 0 whenever n > 5. For when n > 5, 0 < 5/n < 1.
 - (iii) Choose N = 6.
 - (iv) Assume $n \geq N$.
 - (v) Then

$$|[[5/n]]| = [[5/n]] = 0 < \epsilon.$$

b) Here the limit of a_n is 1. Let $\epsilon > 0$ be arbitrary. By picking N = 7 we have that for $n \geq N$,

$$\left| \left[\left[\frac{12+4n}{3n} \right] \right] - 1 \right| = |1-1| < \epsilon,$$

because [(12 + 4n)/3n] = 1 for all $n \ge 7$.

In these exercises, the choice of N does not depend on ϵ in the usual way. In exercise (b) for instance, setting N=7 is a suitable response for every choice of $\epsilon>0$. Thus, this is a rare example where a smaller $\epsilon>0$ does not require a

- (b) larger N in response.
- (3) 2.2.6

Assume $(a_n) \to a$ and $(a_n) \to b$. We show that a = b by appealing to the following theorem (Theorem 1.2.6 in your book):

Theorem 1. Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

- (a) Let $\epsilon > 0$ be arbitrary.
- (b) [scratch work] We want to show that $|a-b| < \epsilon$. But we know that we can make $|a_n-a|$ and $|a_n-b|$ as small as we want by the definition of convergence. Then we notice that

$$|a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b|$$

= $|a_n - a| + |a_n - b|$

where the inequality is due to the Triangle Inequality. Thus, if $|a_n - a|$ and $|a_n - b|$ were both less than $\epsilon/2$, we'd be done.

- (c) Choose $N_1 \in \mathbb{N}$ so that, whenever $n \geq N_1$, $|a_n a| < \epsilon/2$. Similarly, choose $N_2 \in \mathbb{N}$ so that whenever $n \geq N_2$, $|a_n b| < \epsilon/2$. Then let $N = \max\{N_1, N_2\}$.
- (d) Assume $n \geq N$.

(e) Then

$$|a - b| = |(a - a_n) + (a_n - b)|$$

$$\leq^{\Delta} |a_n - a| + |a_n - b|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, by Theorem 1.2.6, we must have that a = b, as desired.

(4) 2.3.1

Exercise 2.3.1. (a) Let $\epsilon > 0$ be arbitrary. We must find an N such that $n \geq N$ implies $|\sqrt{x_n} - 0| < \epsilon$. Because $(x_n) \to 0$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $|x_n - 0| = x_n < \epsilon^2$. Using this N, we have $\sqrt{(x_n)^2} < \epsilon^2$, which gives $|\sqrt{x_n} - 0| < \epsilon$ for all $n \geq N$, as desired.

(b) Part (a) handles the case x=0, so we may assume x>0. Let $\epsilon>0$. This time we must find an N such that $n\geq N$ implies $|\sqrt{x_n}-\sqrt{x}|<\epsilon$, for all $n\geq N$. Well,

$$|\sqrt{x_n} - \sqrt{x}| = |\sqrt{x_n} - \sqrt{x}| \left(\frac{\sqrt{x_n} + \sqrt{x}}{\sqrt{x_n} + \sqrt{x}}\right)$$
$$= \frac{|x_n - x|}{\sqrt{x_n} + \sqrt{x}}$$
$$\leq \frac{|x_n - x|}{\sqrt{x}}$$

Now because $(x_n) \to x$ and x > 0, we can choose N such that $|x_n - x| < \epsilon \sqrt{x}$ whenever $n \ge N$. And this implies that for all $n \ge N$,

$$|\sqrt{x_n} - \sqrt{x}| < \frac{\epsilon \sqrt{x}}{\sqrt{x}} = \epsilon$$

as desired.

(5) 2.3.3

Exercise 2.3.3. Let $\epsilon > 0$ be arbitrary. We must show that there exists an N such that $n \geq N$ implies $|y_n - l| < \epsilon$. In terms of ϵ -neighborhoods (which are a bit easier to use in this case), we must equivalently show $y_n \in (l - \epsilon, l + \epsilon)$ for all $n \geq N$.

Because $(x_n) \to l$, we can pick an N_1 such that $x_n \in (l - \epsilon, l + \epsilon)$ for all $n \ge N_1$. Similarly, because $(z_n) \to l$ we can pick an N_2 such that $z_n \in (l - \epsilon, l + \epsilon)$ whenever $n \ge N_2$. Now, because $x_n \le y_n \le z_n$, if we let $N = \max\{N_1, N_2\}$, then it follows that $y_n \in (l - \epsilon, l + \epsilon)$, for all $n \ge N$. This completes the proof.