Processing: reflection

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_reflection_processing.html

CSG → CMP → Zero Offset Trace

CSG = common shot gather CMP = common midpoint gather

Migration: Dipping reflector

 Incorrect location of reflectors that are not flat laying.

 Migration → Correct location and depth/time of reflectors.

Migration: Syncline Reflector

- Draw zero offset reflection rays for several points along the profile
- Assuming a constant velocity in the upper layer sketch the reflection profile.

Migration: Syncline Reflector

Migration of field data

Processed CMP section (Depth converted)

Figure 10. Depth-converted SH-wave, stacked section. The top of the shale at a depth of approximately 9 m is very clear cut. Depressions in the top of the shale are interpreted to be channels, possibly filled with a gravel lens (CMP 255-275). Reflections from a depth of 6 m correlate with the presence of clay lenses in borehole MLS 54.

- Conversion of time to depth:
 - Requires an average velocity
 - Obtained from stacking velocity used to perform NMO correction

Vertical resolution

- Rayleigh resolution criterion: peak separation of at least peak-trough distance $(\lambda/2)$.
- Account for 2-way travel time through layer
- Vertical resolution = $\lambda/4$

seismic wavelength, metres								
			V, m/sec					
f, Hz	T, sec	330	500	1000	1500	2000	4000	
10	0.1	33	50	100	150	200	400	
100	0.01	3.3	5	10	15	20	40	
1000	0.001	0.33	0.5	1	1.5	2	4	

MASW

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_reflection_processing.html

Multichannel Analysis of Surface Waves

www.masw.com

 Uses surface waves to study the propagation of shear waves in the subsurface

 Compared to reflection and refraction techniques, it's quite new and mostly used for geotechnical work.

Procedure for 2D vs profiling

Procedure for 2-D Vs Profiling

Obtaining a 2D profile

Results

Results

Case history: Hodgson et al

Setup

- City of Dublin is underlain by Dublin Boulder Clay (DBC).
- Hard lodgement till with high stiffness and low permeability.
- Large cobbles and boulders above DBC.

Properties

- Elastic parameters, stiffness is related to shear velocity
- Survey
 - Seismic, MASW
- Data Acquisition
 - Roll-along survey
 - Land streamer 24 plated-coupled 4.5Hz geophones
 - Tractor-mounted weight drop with shots every 6m

Case history: Hodgson et al

Analysis

- Dispersion curve analysis of surface waves
- Invert to obtain Vs
- Generate a 2D profile.

Interpretation

- Low Vs (200-700 m/s) associated with glacial till (0-10m thickness)
- High velocity material (Vs>900 m/s) at depth

Synthesis

- Borehole verified the high velocity material as limestone bedrock
- The depth is variable.

