

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS (P1) FISIESE WETENSKAPPE: FISIKA (V1)

NOVEMBER 2019

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24 pages. / Hierdie nasienriglyne bestaan uit 24 bladsye.

QUESTION 1/VRAAG 1

1.1 $C \checkmark \checkmark$ (2)

1.2 A $\checkmark\checkmark$ (2)

1.3 A $\checkmark\checkmark$ (2)

1.4 D ✓ ✓ (2)

1.5 B $\checkmark\checkmark$ (2)

1.6 D √√ (2)

 $1.7 \qquad A \checkmark \checkmark \tag{2}$

1.8 B ✓ ✓ (2)

1.9 $\mathsf{D} \checkmark \checkmark$ (2)

1.10 C ✓ ✓ (2) **[20]**

QUESTION 2/VRAAG 2

NOTE: -1 mark for each key word/phrase omitted in the correct context LET WEL: -1 punt vir elke sleutel woord/frase in die korrekte konteks weggelaat

(2)

When a <u>resultant/net force</u> acts on an object, the object will accelerate in the direction of the force with an <u>acceleration that is directly proportional to the force</u> and <u>inversely proportional to the mass of the object</u>. ✓ ✓ Wanneer 'n resultante/netto krag op 'n voorwerp inwerk, sal die voorwerp in die rigting van die krag versnel teen 'n <u>versnelling wat direk eweredig is aan die krag en omgekeerd eweredig aan die massa van die voorwerp</u>.

OR/OF

The <u>resultant/net force</u> acting on an object is <u>equal to the rate of change of momentum</u> of the object (in the direction of the resultant/net force.) $\checkmark\checkmark$ Die netto krag wat op 'n voorwerp inwerk is <u>gelyk aan die tempo van verandering van momentum</u> van die voorwerp (in die rigting van die resulterende/netto krag.)

(2)

2.2

2.1

	Accept the following symbols/Aanvaar die volgende simbole.		
N✓	F _N /Normal/ <i>Normaal</i> /Normal force/ <i>Normaalkrag</i> /16,97 N		
f✓	F _f / f _k / f _r / frictional force/ <i>wrywingskag</i> /kinetic frictional force/ <i>kinetiese</i> wrywingskrag		
w ✓	F _{g,/} mg/weight/F _{Earth on block} /19,6 N/gravitational force/gewig/F _{aarde op blok} /gravitasiekrag		
T✓	Tension/ $Spanning/F_T/F_A/F/F_s$		

Notes/Aantekeninge

- Mark is awarded for label and arrow. /Punt word toegeken vir byskrif en pyltjie
- Do not penalise for length of arrows.
 Moenie vir die lengte van die pyltjies penaliseer nie.
- Deduct 1 mark for any additional force. /Trek 1 punt af vir enige addisionele krag.
- If force(s) do not make contact with body/dot /Indien krag(te) nie met die voorwerp / kolletjie kontak maak nie: Max./Maks: $\frac{3}{4}$
- If arrows missing/Indien pyltjies uitgelaat is: Max./Maks: $\frac{3}{4}$

(4)

For the 2 kg (P) block/Vir die 2 kg (P) blok: 2.3

Find
$$\frac{F_{net} = ma}{T + (-w_{||}) + (-f_{k})} = ma$$
Any one/Enige een $\frac{F_{net} = ma}{T - (2)(9,8)\sin 30^{\circ} \checkmark - 2,5} \checkmark = 2a \checkmark$
Substitution of /vervanging van $w_{||}$ for/vir 2 kg: (2)(9,8)sin30° \checkmark
Substitution of -2,5 N / Vervanging van -2,5 N \checkmark
1 - 12,3 = 2a(1)
For the 3 kg (Q) block/Vir die 3 kg (Q) blok:

• Formula/Formule \checkmark
Substitution of /vervanging van $w_{||}$ for/vir 2 kg: (2)(9,8)sin30° \checkmark
Substitution of -2,5 N \checkmark
2a OR/OF 3a \checkmark
Calculate/Bereken F_x : 40 cos 25° \checkmark (40 Sin 65°)

 $F_{\times} + (-T) + (-w_{||}) = ma$

$$F_x - (T + w_{\parallel}) = ma$$

$$[40 \cos 25^{\circ} \checkmark - T - (3)(9,8)\sin 30^{\circ} \checkmark]$$
 ✓ = 3a
36,25 - T - 14,7 = 3a • Left hand side substitution for 3 kg/*Linkerkant vervanging viii*

$$21,55 - T = 3a$$
(2)

$$9,25 = 5 \text{ a}$$

a = 1,85 m·s⁻² ✓

Marking criteria/Nasienriglyne

- Formula/*Formule* ✓
- w_{||} for/vir 2 kg: (2)(9,8)sin30° ✓
- Substitution of -2,5 N / Vervanging van -2,5 N ✓
- 2a **OR/OF** 3a ✓
- Calculate/Bereken F_x: 40 cos 25° ✓ (40 Sin 65°)
- Substitution of/vervanging van w_{II} for/*vir* for 3 kg: (3)(9,8)sin30° ✓
- 3 kg/Linkerkant vervanging vir 3 kg √
- Final answer/Finale antwoord: 1.85 m·s⁻²√

Systems Approach (Massless String Approximation / Sisteembenadering (Massalose Tou Benadering) (Max 5/8 marks / Maks 5/8 punte)

$$F_{\text{net}} = ma$$

 $F_{x} + (-w_{\parallel}) + (-f_{k}) = ma$
 $F_{x} - (w_{\parallel} + f_{k}) = ma$

2.4 Greater than/groter as ✓
F_{net} increases. /F_{net} neem toe. ✓

ACCEPT/AANVAAR

There is no friction. /Daar is geen wrywing nie. OR/OF

The surface is smooth / Die oppervlak is glad

(2) [16]

(8)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

QUESTION 3/VRAAG 3

3.1 (Motion during which) the only force acting is the force of gravity. ✓ ✓ (Beweging waartydens) die enigste krag wat inwerk gravitasiekrag is.

(2 or/of 0) (2)

3.2 Marking criteria/Nasienriglyne:

- Any appropriate formula for Δy/Enige toepaslike formule vir Δy√
- Whole substitution to calculate 5,1 m /Hele vervanging om 5,1 m te bereken ✓
- 40 + answer from calculation/antwoord van berekening ✓
- Final answer/Finale antwoord: 45,10 m √ (Accept/aanvaar 45,1 m)

OPTION 1/OPSIE 1

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $0 = (10)^2 + (2)(-9.8)\Delta y \checkmark$
 $\Delta y = 5.10 \text{ m } (5.102 \text{ m})$
Height = $\frac{40 + 5}{5.10}$ $\frac{1}{5}$

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $0 = (-10)^2 + (2)(9,8)\Delta y \checkmark$
 $\Delta y = -5,10 \text{ m} (5,102)$
Height = $\frac{40 + 5}{5},10 \checkmark$
= $45.10 \text{ m} \checkmark$

OPTION 2/OPSIE 2

 $v_f = v_i + a\Delta t$

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

$$0 = (10) + (-9.8)\Delta t$$

$$\Delta t = 1.02 \text{ s}$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$= (10)(1.02) + \frac{1}{2} (-9.8)(1.02)$$

Accept swopping of v_i and v_f Aanvaar die omruiling van v_i en v_f

= 45.10 m ✓

$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$ $= \left(\frac{10 + 0}{2}\right) (1,02) \checkmark$ = 5,10 m

OR/OF

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

$$0 = (-10) + (9,8)\Delta t$$

$$\Delta t = 1,02 s$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= \frac{(-10)(1,02) + \frac{1}{2} (9,8)(1,02)^2}{= 5,10 m}$$

$$= 6.10 + 1.00$$

Accept swopping of v_i and v_f Aanvaar die omruiling van v_i en v_f

 $v_f = v_i + a\Delta t$

OPTION 3/OPSIE 3

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$0 = (10) \Delta t + \frac{1}{2}(-9,8) \Delta t^2$$

$$\Delta t = 2,04 \text{ s}$$

$$\frac{1}{2} \Delta t$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= \frac{(10)(1,02) + \frac{1}{2}(-9,8)(1,02)^2}{5,10 \text{ m}}$$

Height =
$$\frac{40 + \sqrt{5},10}{45,10}$$
 = $45,10$ m \checkmark

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$0 = (-10) \Delta t + \frac{1}{2} (9,8) \Delta t^2$$

$$\Delta t = 2,04 \text{ s} \qquad \frac{1}{2} \Delta t$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= \frac{(-10)(1,02) + \frac{1}{2} (9,8)(1,02)^2}{= -5,10 \text{ m}}$$
Height = $\frac{40 + 5}{10}$, 10 \checkmark

$$= 45,10 \text{ m} \checkmark$$

OPTION 4/OPSIE 4

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

$$\Delta y = v_{i}\Delta t + \frac{1}{2} a\Delta t^{2}$$

$$0 = (10)\Delta t + \frac{1}{2}(-9.8)\Delta t^{2}$$

$$\Delta t = 2.04 s$$

$$\Delta y = \left(\frac{v_{i} + v_{f}}{2}\right)\Delta t \checkmark$$

$$= \left(\frac{10 + 0}{2}\right)(1.02)$$

$$= 5.10 \text{ m}$$

Accept swopping of v_i and v_f Aanvaar die omruiling van v_i en v_f

Height =
$$\frac{40 + 5,10}{45,10}$$
 m \checkmark

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$0 = (-10) \Delta t + \frac{1}{2} (9,8) \Delta t^2$$

$$\Delta t = 2,04 s$$

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$= \left(\frac{-10 + 0}{2}\right) (1,02) \checkmark$$

$$= -5,10 m$$
Height = $40 + 5,10 \checkmark$

Accept swopping of v_i and v_f Aanvaar die omruiling van v_i en v_f

= 45,10 m ✓

OPTION 5/OPSIE 5

Height = $\frac{40 + 5,10}{45,10}$ m \checkmark

OPTION 6/OPSIE 6

 $W_{\text{net}} = \Delta E_k \checkmark$ $w\Delta x \cos\theta = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$ $\underline{(m)(9,8)\Delta x \cos 180^0} = 0 - \frac{1}{2} m (10)^2 \checkmark$ $\Delta x = 5,10 m$

Height = $\frac{40 + 5,10}{45,10}$ m \checkmark

OPTION 7/OPSIE 7

 $W_{nc} = \Delta E_p + \Delta E_k \checkmark$ $0 = m(9,8)(h_f - 0) + \frac{1}{2} m(0 - 10^{\frac{2}{2}}) \checkmark$ $h_f = 5,10 \text{ m}$

Height = $\frac{40 + 5,10}{45,10}$ m \checkmark

OPTION 8/OPSIE 8

Marking criteria/Nasienriglyne:

- Appropriate formula/Toegepaste formule √
- Substitution left/Vervanging links √
- Substitution right/Vervanging regs√
- Final answer/Finale antwoord: 45,10 m √

$$E_{(mech/meg)roof/dak} = E_{(mech/meg)top/bo}$$

 $(E_p + E_k)_{roof/dak} = (E_p + E_k)_{top/bo}$
 $(mgh + \frac{1}{2} mv^2)_{roof/dak} = (mgh + \frac{1}{2} mv^2)_{top/bo}$
 $m(9,8)(40) + \frac{1}{2}m (10)^2 \checkmark = m(9,8) (h) + 0)$
 $h = 45,10 m \checkmark$

3.3 9,8 m·s⁻² \checkmark downwards/afwaarts \checkmark (2)

(4)

3.4 Marking criteria/Nasienriglyne

- Calculation/use of 10,26 m./Berekening/gebruik van 10,26 m. ✓
- Appropriate formula to calculate Δt/Toepaslike formule om Δt te bereken√
- Substitution for stone A/Vervanging vir klip A ✓
- Substitution for stone B/Vervanging vir klip B ✓
- Calculating time difference between two stones. /Berekening van tydverskil tussen klippe. ✓
- Final answer/Finale antwoord: 1,34 (s) ✓

OPTION 1/OPSIE 1

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt = -40 + 29,74 = -10,26 m

Stone/Klip A

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

-10,26 $\checkmark = \frac{10 \Delta t + \frac{1}{2} (-9,8) \Delta t^2}{2} \checkmark$
 $\Delta t = 2,79 s$

Stone/Klip B

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

 $\frac{-10,26 = 0 + \frac{1}{2}(-9,8) \Delta t^2}{\Delta t = 1,45 s (1,447 s)}$

$$x = 2.79 - 1.45 \checkmark = 1.34 (s) \checkmark$$

OR/OF

$$[-10,26 = 0(2,79 - x) + \frac{1}{2}(-9,8)(2,79 - x)^2]$$

 $x = 1,34 (s)$

$$v_f^2 = v_i^2 + 2a\Delta y$$

= 0² + 2(-9,8)(-10,26)
 $v_f = -14.18 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $-14,18 = 0 + (-9,8)\Delta t$
 $\Delta t = 1,45 \text{ s}$
 $x = 2,79 - 1,45 \checkmark$

 $= 1.34 (s) \checkmark$

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt = 40 - 29,74 = 10,26 m

Stone/Klip A

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

10,26 \(= \frac{-10 \Delta t + \frac{1}{2}(9,8) \Delta t^2 \quad \Delta t = 2,79 s \)

Stone/Klip B

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

 $\frac{10.26 = 0 + \frac{1}{2}(9.8) \Delta t^2}{\Delta t = 1.45 \text{ s} (1.447 \text{ s})}$

$$x = 2.79 - 1.45 \checkmark = 1.34 (s) \checkmark$$

OR/OF

$$[-10,26 = 0(2,79 - x) + \frac{1}{2}(-9,8)(2,79 - x)^{2}]$$

x = 1,34 (s)

$$v_f^2 = v_i^2 + 2a\Delta y$$

= $0^2 + 2(9.8)(10.26)$
 $v_f = 14.18 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $\frac{14,18 = 0 + (9,8)\Delta t}{\Delta t = 1,45 \text{ s}}$

$$x = 2.79 - 1.45 \checkmark$$

= 1.34 (s) \checkmark

OPTION 2/OPSIE 2

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt= - 40 + 29,74 = - 10,26 m

Displacement of stone A from max height to meeting point/ *Verplasing van klip A vanaf maksimum hoogte tot ontmoetingspunt* = -15,36 m

Stone/Klip A

$$v_f = v_i + a\Delta t$$

 $0 = 10 + (-9,8)\Delta t$
 $\Delta t = 1,02 s$

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

 $-15,36 = 0 + \frac{1}{2} (-9,8) \Delta t^2 \checkmark$
 $\Delta t = 1,77 \text{ s}$
 $\Delta t_{\text{tot}} = 1,77 + 1,02 = 2,79 \text{s}$

Stone/Klip B

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

-10,26 $\checkmark = \frac{0 + \frac{1}{2}(-9,8) \Delta t^2}{\Delta t = 1,45 \text{ s} (1,447 \text{ s})}$

$$x = 2.79 - 1.45 \checkmark = 1.34 (s) \checkmark$$

$$v_f^2 = v_i^2 + 2a\Delta y$$

= 0² + 2(-9,8)(-10,26)
 $v_f^2 = -14,18 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $-14,18 = 0 + (-9,8)\Delta t$
 $\Delta t = 1,45 \text{ s}$

$$x = 2.79 - 1.45 \checkmark$$

= 1.34 (s) \checkmark

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt= 40 - 29,74 = 10,26 m ✓

Displacement of ball A from max height to meeting point/ Verplasing van bal A vanaf maksimum hoogte tot ontmoetingspunt = 15,36 m

Stone/Klip A

$$v_f = v_i + a\Delta t$$

 $0 = -10 + (9.8)\Delta t$
 $\Delta t = 1.02 s$

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

15,36 = 0 + $\frac{1}{2}$ (9,8) $\Delta t^2 \checkmark$
 $\Delta t = 1,77 \text{ s}$
 $\Delta t_{\text{tot}} = 1,77 + 1,02 = 2,79 \text{s}$

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

 $10,26 = 0 + \frac{1}{2} (9,8) \Delta t^2 \checkmark$
 $\Delta t = 1,45 \text{ s} (1,447 \text{ s})$

$$x = 2.79 - 1.45 \checkmark = 1.34 (s) \checkmark$$

$$v_f^2 = v_i^2 + 2a\Delta y$$

= $0^2 + 2(9.8)(10.26)$
 $v_f = 14.18 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $14,18 = 0 + (9,8)\Delta t$
 $\Delta t = 1,45 s$

$$x = 2.79 - 1.45 \checkmark$$

= 1.34 (s) \checkmark

OPTION 3/OPSIE 3

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

Displacement of stones A and B from roof to meeting point/Verplasing van klippe A en B vanaf dak tot by ontmoetingspunt = - 40 + 29,74

10

$$= -10.26 \text{ m}$$

Stone/Klip A

$$v_f = v_i + a\Delta t$$

 $0 = 10 + (-9,8)\Delta t$
 $\Delta t = 1,02 s$

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

- 10,26 \(\sigma = \frac{-10 + \frac{1}{2}(-9,8) \Delta t^2 \sqrt{}}{\Delta t = 0,75 s}\)
\(\Delta t_{tot} = 1,02 + 1,02 + 0,75 = 2,79 s\)

Stone/Klip B

$$\begin{array}{lll} \Delta y_{B} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2} & v_{f}^{2} = v_{i}^{2} + 2a\Delta y \\ \frac{-10,26 = 0 + \frac{1}{2}(-9,8)\Delta t^{2}}{\Delta t = 1,45 \text{ s} (1,447 \text{ s})} & v_{f}^{2} = v_{i}^{2} + 2a\Delta y \\ = 0^{2} + 2(-9,8)(-10,26) \\ v_{f} = -14,18 \text{ m} \cdot \text{s}^{-1} \\ \end{array}$$

$$x = 2,79 - 1,45 \checkmark = 1,34 \text{ (s)} \checkmark \qquad v_{f} = v_{i} + a\Delta t \\ \frac{-14,18 = 0 + (-9,8)\Delta t}{\Delta t = 1,45 \text{ s}} \checkmark$$

$$x = 2,79 - 1,45 \checkmark$$

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

Displacement of stones A and B from roof to meeting point/Verplasing van klippe A en B vanaf dak tot by ontmoetingspunt = 40 - 29,74 = 10,26 m

 $= 1.34 (s) \checkmark$

Stone/Klip A

$$v_f = v_i + a\Delta t$$

 $0 = -10 + (9,8)\Delta t$
 $\Delta t = 1,02 s$

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

 $10,26 \checkmark = \frac{10 + \frac{1}{2} (9,8) \Delta t^2}{\Delta t} \checkmark$
 $\Delta t = 0,75s$
 $\Delta t_{tot} = 1,02 + 1,02 + 0,75 = 2,79 s$

$$\Delta y_{B} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}$$

$$\frac{10,26 = 0 + \frac{1}{2}(9,8)\Delta t^{2}}{\Delta t = 1,45 \text{ s} (1,447 \text{ s})}$$

$$v_{f}^{2} = v_{i}^{2} + 2a\Delta y$$

$$= 0^{2} + 2(9,8)(10,26)$$

$$v_{f} = 14,18 \text{ m} \cdot \text{s}^{-1}$$

$$v_{f} = v_{i} + a\Delta t$$

$$\frac{14,18 = 0 + (9,8)\Delta t}{\Delta t = 1,45 \text{ s}}$$

$$x = 2,79 - 1,45 \checkmark$$

$$= 1,34 \text{ (s) } \checkmark$$

OPTION 4/OPSIE 4

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt = -40 + 29,74 = -10,26 m

Stone/Klip A

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

- 5,10 = 0 + $\frac{1}{2} (-9,8) \Delta t^2$
 $\Delta t = 1,02 \text{ s}$

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
- 10,26 \checkmark = -\frac{10 + \frac{1}{2}(-9,8)\Delta t^2} \times \Delta t = 0,75s
\Delta t_{tot} = 1,02 + 1,02 + 0,75 = 2,79 s

Stone/Klip B

$$\Delta y_{B} = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}$$

$$\frac{-10,26 = 0 + \frac{1}{2}(-9,8)\Delta t^{2}}{\Delta t = 1,45 \text{ s} (1,447 \text{ s})}$$

$$v_{f}^{2} = v_{i}^{2} + 2a\Delta y$$

$$= 0^{2} + 2(-9,8)(-10,26)$$

$$v_{f} = -14,18 \text{ m} \cdot \text{s}^{-1}$$

$$v_{f} = v_{i} + a\Delta t$$

$$\frac{-14,18 = 0 + (-9,8)\Delta t}{\Delta t = 1,45 \text{ s}}$$

$$v_{f} = v_{i} + a\Delta t$$

$$\frac{-14,18 = 0 + (-9,8)\Delta t}{\Delta t = 1,45 \text{ s}}$$

$$v_{f} = v_{i} + a\Delta t$$

$$\frac{-14,18 = 0 + (-9,8)\Delta t}{\Delta t = 1,45 \text{ s}}$$

$$v_{f} = v_{i} + a\Delta t$$

$$\frac{-14,18 = 0 + (-9,8)\Delta t}{\Delta t = 1,45 \text{ s}}$$

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

Displacement from roof to meeting point /verplasing vanaf dak tot by ontmoetingspunt = 40 - 29,74 = 10,26 m

Stone/Klip A

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

5,10 = 0 + $\frac{1}{2}$ (9,8) Δt^2
 $\Delta t = 1,02$ s

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
 $10,26 \checkmark = \frac{10 + \frac{1}{2}(9,8) \Delta t^2}{\Delta t} = 0,75s$
 $\Delta t_{tot} = 1,02 + 1,02 + 0,75 = 2,79 s$

OPTION 5/OPSIE 5

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt = -40 + 29,74 = -10,26 m

Displacement of stone A from max height to meeting point/ *Verplasing van klip A vanaf maksimum hoogte tot ontmoetingspunt* = -15,36 m

Stone/Klip A

$$v_f^2 = v_i^2 + 2a\Delta y$$

 $v_f^2 = (0)^2 + (2)(-9,8)(-15,36)$
 $v_f = -17,35 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $-17,35 = 0 + (-9,8)\Delta t$
 $\Delta t = 1,77 s$

$$\Delta t_{\text{tot}} = 1,02 + 1,77 = 2,79 \text{ (s)}$$

Stone/Klip B $\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$

$$-10.26 \checkmark = 0 + \frac{1}{2}(-9.8)\Delta t^{2} \checkmark$$

$$\Delta t = 1.45 \text{ s} (1.447 \text{ s})$$

$$x = 2.79 - 1.45 \checkmark = 1.34 (s) \checkmark$$

$$v_f^2 = v_i^2 + 2a\Delta y$$

= 0² + 2(-9,8)(-10,26)
 $v_f = -14.18 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $-14,18 = 0 + (-9,8)\Delta t$
 $\Delta t = 1,45 s$

$$x = 2.79 - 1.45 \checkmark$$

= 1.34 (s) \checkmark

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

Displacement from roof to meeting point /Verplasing vanaf dak tot ontmoetingspunt= 40 - 29,74 = 10,26 m

Displacement of stone A from max height to meeting point/ Verplasing van klip A vanaf maksimum hoogte tot ontmoetingspunt = 15,36 m

Stone/Klip A

$$v_f^2 = v_i^2 + 2a\Delta y$$

 $v_f^2 = (0)^2 + (2)(9.8)(15.36)$
 $v_f = -17.35 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t - \frac{17,35 = 0 + (9,8)\Delta t}{\Delta t = 1,77 \text{ s}}$$

$$\Delta t_{\text{tot}} = 1,02 + 1,77 = 2,79 \text{ (s)}$$

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

 $10,26 \checkmark = \frac{0 + \frac{1}{2}(9,8) \Delta t^2}{\Delta t} \checkmark$
 $\Delta t = 1,45 \text{ s} (1,447 \text{ s})$

$$x = 2,79 - 1,45 \checkmark = 1,34 (s) \checkmark$$

$$v_f^2 = v_i^2 + 2a\Delta y$$

= 0² + 2(9,8)(10,26)
 $v_f = 14.18 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $14.18 = 0 + (9.8)\Delta t$
 $\Delta t = 1.45 s$

$$x = 2.79 - 1.45 \checkmark$$

= 1.34 (s) \checkmark

OPTION 6/OPSIE 6

UPWARDS AS POSITIVE/OPWAARTS AS POSITIEF:

Displacement from roof to meeting point/*Verplasing vanaf dak tot by ontmoetingspunt* = -40 + 29,74 = -10,26 m

Stone/Klip A

$$v_f^2 = v_i^2 + 2a\Delta y$$

 $v_f^2 = (-10)^2 + (2)(-9.8)(-10.26)$

$$v_f = -17,35 \text{ m} \cdot \text{s}^{-1}$$

$$v_f = v_i + a\Delta t$$

 $\frac{-17,35}{\Delta t} = -10 + (-9,8)\Delta t$
 $\Delta t = 0,75 \text{ s}$

Ball A: $\Delta t = 1,02 + 1,02 + 0,75 = 2,79$ (s)

Stone/Klip B

$$\Delta y_{B} = v_{i}\Delta t + \frac{1}{2} a\Delta t^{2}$$

$$-10,26 \checkmark = \frac{0 + \frac{1}{2} (-9,8)\Delta t^{2}}{\Delta t} \checkmark$$

$$\Delta t = 1,45 \text{ s} (1,447 \text{ s})$$

$$x = 2,79 - 1,45 \checkmark = 1,34 \text{ (s)} \checkmark$$

$$V_{f}^{2} = v_{i}^{2} + 2a\Delta y$$

$$= 0^{2} + 2(-9,8)(-10,26)$$

$$v_{f} = -14,18 \text{ m} \cdot \text{s}^{-1}$$

$$V_{f} = v_{i} + a\Delta t$$

$$\frac{-14,18 = 0 + (-9,8)\Delta t}{\Delta t} \checkmark$$

$$\Delta t = 1,45 \text{ s}$$

$$x = 2,79 - 1,45 \checkmark$$

DOWNWARDS AS POSITIVE/AFWAARTS AS POSITIEF:

Displacement from roof to meeting point/*Verplasing vanaf dak tot by ontmoetingspunt* = 40 - 29,74 = 10,26 m

Stone/Klip A

$$v_f^2 = v_i^2 + 2a\Delta y$$

 $v_f^2 = [(10)^2 + (2)(9.8)(10.26)]$
 $v_f = 17.35 \text{ m} \cdot \text{s}^{-1}$

$$v_f = v_i + a\Delta t$$

 $17,35 = 10 + (9,8)\Delta t$
 $\Delta t = 0,75 s$

Ball A: $\Delta t = 1,02 + 1,02 + 0,75 = 2,79$ (s)

Stone/Klip B

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$
 $10,26 \checkmark = \frac{0 + \frac{1}{2}(9,8) \Delta t^2}{2} \checkmark$
 $\Delta t = 1,45 \text{ s} (1,447 \text{ s})$
 $v_f^2 = v_i^2 + 2a \Delta y$
 $= 0^2 + 2(9,8)(10,26)$
 $v_f = 14,18 \text{ m} \cdot \text{s}^{-1}$

$$x = 2.79 - 1.45 \checkmark = 1.34 (s) \checkmark$$

$$v_f = v_i + a\Delta t$$

 $\frac{14,18 = 0 + (9,8)\Delta t}{\Delta t} \checkmark$
 $\Delta t = 1,45 \text{ s}$

 $= 1.34 (s) \checkmark$

$$x = 2.79 - 1.45 \checkmark$$

= 1.34 (s) \checkmark

3.5.1
$$d \checkmark Accept / Aanvaar (0 - e; 0 - d; d - e)$$

3.5.4
$$c \checkmark$$
 (1)

[18]

(6)

(1)

QUESTION 4/VRAAG 4

4.1 **NOTE:** -1 mark for each key word/phrase omitted in the correct context. **LET WEL:** -1 punt vir elke sleutelwoord/frase weggelaat in die korrekte konteks.

Isolated system is a system on which the resultant/net external force is zero. $\checkmark\checkmark$

Geïsoleerde sisteem is 'n <u>sisteem waarop die resultante / netto eksterne krag</u> nul is.

OR/OF

Isolated system is one that has no net / external force acting on it. 'n Geïsoleerde stelsel is een wat geen netto eksterne krag het wat daarop inwerk nie.

(2)

4.2.1 p = mv \checkmark $24 = m (480) \checkmark$ m = 0,05 kg \checkmark

Note: p and v must have the same sign Let wel: p en v moet dieselfde tekens hê

(3)

4.2.2 Marking criteria/Nasienriglyne

- Appropriate formula including F_{net} or W_{net.} /Toepaslike formule wat F_{net} of W_{net} insluit. √
- Substitutions/Vervangings ✓ ✓
- Final answer/Finale antwoord: 2 000 N ✓
- Correct direction/Korrekte rigting: west or left/Wes of links ✓

POSITIVE MARKING FROM QUESTION 4.2.1 POSITIEWE NASIEN VANAF VRAAG 4.2.1

OPTION 1/OPSIE 1

OPTION 2/OPSIE 2

```
v_f = v_i + a\Delta t

80 = 480 + a(0.01) \checkmark

a = -40\ 000\ m\cdot s^{-2}

F_{net} = ma \checkmark

= (0.05)(-40\ 000) \checkmark

= -2\ 000\ N

F_{net} = 2\ 000\ N \checkmark west/wes \checkmark
```

$$\begin{array}{l} \underline{OPTION\ 3/OPS/E\ 3} \\ \Delta x = \left(\frac{V_i + V_f}{2}\right) \Delta t \\ = \frac{480 + 80}{2}\ (0,01) \\ = 2,80\ m \\ V_f^2 = V_i^2 + 2a\Delta x \\ \underline{(80)^2 = (480)^2 + 2a(2,80)} \checkmark \\ a = -40\ 000\ m\cdot s^{-2} \\ F_{net} = ma \checkmark \\ = \underbrace{(0,05)(-40\ 000)}_{= -2\ 000\ N} \checkmark \\ F_{net} = 2\ 000\ N \checkmark \ west/wes \checkmark \\ \end{array}$$

$$\begin{array}{l} W_{net} = \Delta K \checkmark \\ F_{net}\Delta x \cos\theta = \frac{1}{2}mV_f^2 - \frac{1}{2}mV_i^2 \\ F_{net} = -2\ 000\ N \\ F_{net} = 2\ 000\ N \checkmark \ west/wes \checkmark \\ \end{array}$$

$$\begin{array}{l} F_{net} = -2\ 000\ N \\ F_{net} = 2\ 000\ N \checkmark \ west/wes \checkmark \\ \end{array}$$

$$\begin{array}{l} OR/OF \\ F_{net} = 2\ 000\ N \checkmark \ west/wes \checkmark \\ \end{array}$$

QUESTION 5

5.1 **Note:** -1 mark for each key word/phrase omitted in the correct context.

Let Wel: -1 punt vir elke sleutelwoord/frase weggelaat in die korrekte konteks.

IF: The word "work" is omitted - 0 marks.

INDIEN: Die woord "arbeid" uitgelaat is - 0 punte.

A *conservative force* is a force for which the <u>work done</u> (in moving an object <u>between two points</u>) is independent of the path taken. $\checkmark\checkmark$

'n Konserwatiewe krag is 'n krag waarvoor <u>die arbeid wat verrig is (om 'n voorwerp tussen twee punte te beweeg) onafhanklik is van die pad wat gevat word.</u>

OR/OF

A conservative force is a force for which the <u>work done</u> in moving an object <u>in</u> a closed path is zero.

'n Konserwatiewe krag is 'n krag waarvoor die <u>arbeid verrig</u> om 'n voorwerp <u>in</u> 'n geslote pad te beweeg, nul is.

5.2 Gravitational (force)/*Gravitasiekrag* ✓

ACCEPT/AANVAAR: Gravitation / Gravity / Gravitasie / Weight / Gewig (1)

5.3 No/Nee ✓

There is friction/non-conservative force (doing work)/It is not isolated system. ✓

Daar is wrywing/nie konserwatiewe krag (wat arbeid verrig)./Dit is nie 'n geïsoleerde sisteem nie.

OR/OF

The net work done by the non-conservative forces is not zero/*Die netto arbeid deur die nie-konserwatiewe kragte is nie nul nie.* ✓

(2)

(2)

(5) **[10]** NSC/NSS –Marking Guidelines/Nasienriglyne

5.4 **OPTION 2/OPSIE 2** OPTION 1/OPSIE 1 E_P = mah ✓ $W_w = -\Delta E_p \checkmark$ $(1,8)(9,8)(h-0)\cos 180^{\circ} = -(E_{pA} - E_{p(ground)})$ = (1,8)(9,8)(1,5)= 26,46 J ✓ $(1,8)(9,8)(1,5)(-1) = -E_{pA}$ $E_{\rm p} = 26,46 \, \text{J} \checkmark$ OR/OF $W = F\Delta x \cos \theta$ √Any one/*Enige een* = mgΔhcosθ $= (1,8)(9,8) (1,5)\cos 0^{\circ} \checkmark$ = 26,46 J√

5.5 POSITIVE MARKING FROM QUESTION 5.4 / POSITIEWE NASIEN VANAF VRAAG 5.4

OPTION 1/OPSIE 1

$$W_{nc} = \Delta K + \Delta U$$

 $W_f = \frac{1}{2}m(v_f^2 - v_i^2) + mg(h_f - h_i)$ Any one/Enige een
 $= \frac{1}{2}(1.8)(4^2 - 0.95^2) \checkmark + (0 - 26.46) \checkmark$
 $= -12.87 \text{ J} \checkmark$

OPTION 2/OPSIE 2

$$\overline{W_{\text{net}}} = \Delta K$$

$$W_f + W_g = \frac{1}{2} \text{mv}_f^2 - \frac{1}{2} \text{mv}_i^2$$

$$W_f + \text{mgh} = \frac{1}{2} \text{m}(v_f^2 - v_i^2)$$

$$W_f + \text{mgh} = \frac{1}{2} \text{mv}_f^2 - \frac{1}{2} \text{mv}_i^2$$

$$\underline{W_f} + 26,46 \checkmark = \frac{1}{2} (1,8) [(4)^2 - (0,95)^2] \checkmark$$

$$W_f = -12,87 \text{ J} (-12,872 \text{ J}) \checkmark$$

OPTION 3/OPSIE 3

$$E_{(\text{mech/meg})A} = E_{(\text{mech})B} - W_f$$

$$(E_p + E_k)_A = (E_p + E_k)_B - W_f$$

$$(\text{mgh} + \frac{1}{2} \text{ mv}^2)_A = (\text{mgh} + \frac{1}{2} \text{ mv}^2)_B - W_f$$

$$26,46 + \frac{1}{2}(1,8)(0,95^2) \checkmark = 0 + \frac{1}{2}(1,8)(4^2) - W_f \checkmark$$

$$W_f = -12,87 \text{ J} \checkmark$$

5.6
$$W_{net} = 0 (J) / zero \checkmark$$

(1) **[13]**

(1)

(4)

(3)

QUESTION 6/VRAAG 6

- 6.1 Doppler effect/Doppler-effek ✓
- 6.2 (Q): (records sounds with) longer period/ longer time per wave / lower frequency.
 - (Q): (teken klank aan met) langer periode / langer tyd per golf / laer frekwensie.

OR/OF

P: (records sounds with) shorter period/ shorter time per wave / higher frequency. \checkmark

P: (teken klank aan met) korter periode/ korter tyd per golf / hoër frekwensie.

ACCEPT/AANVAAR

- (Q): longer wavelength. /P: shorter wavelength.
- (Q): langer golflengte./P: korter golflengte het.

(1)

6.3 **OPTION 1/OPSIE 1**

$$f = \frac{1}{T} \checkmark = \frac{1}{17 \times 10^{-4}} \checkmark = 5.88 \times 10^2 = 588.24 \text{ Hz} \checkmark$$

OPTION 2/OPSIE 2

 speed =
$$\frac{\text{distance}}{\text{time}}$$
 $v = \frac{\lambda}{T}$
 $340 = \frac{\text{distance}}{25.5 \times 10^{-4}}$
 $340 = \frac{\lambda}{17 \times 10^{-4}}$

 Distance = 0,867 m
 $\therefore \lambda = 0,578 \text{ m}$

 Distance = 1 ½ λ
 $\forall x = 0.578 \text{ m}$
 $\therefore \lambda = 0.578 \text{ m}$
 $\forall x = 0.588 \text{$

6.4 **POSITIVE MARKING FROM QUESTIONS 6.2 AND 6.3. POSITIEWE NASIEN VANAF VRAE 6.2 EN 6.3**

Do not penalise if 10⁻⁴ is again omitted. /Moenie penaliseer indien 10⁻⁴ weer uitgelaat is nie.

OPTION 2/OPSIE 2

$$f_{L} = \frac{1}{18 \times 10^{-4}} \checkmark$$

$$f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \checkmark OR/OF f_{L} = \frac{V}{V + V_{s}} f_{s}$$

$$\frac{1}{18 \times 10^{-4}} = (340) \frac{1}{340 + V} \frac{1}{17 \times 10^{-4}} \checkmark$$

$$V = 20 \text{ m·s}^{-1} \checkmark$$
Range/Gebied 19,57 – 20,09 m·s⁻¹

(6) **[11]**

(3)

QUESTION 7/VRAAG 7

7.1.1 Positive/Positief ✓

(1)

(3)

7.1.2 Marking criteria/Nasienriglyne:

- Appropriate formula /Toepaslike formule√
- Whole substitution Hele vervanging√/
- Final answer/finale antwoord: 2,26 x 10⁻⁶ C ✓

OPTION 1/OPSIE 1

$$F = \frac{kQ_1Q_2}{r^2} \checkmark$$

$$3.05 = \frac{(9 \times 10^9)(6 \times 10^{-6})Q}{0.2^2} \checkmark$$

$$Q = 2.26 \times 10^{-6} C \checkmark$$

$$(2.259 \times 10^{-6} C)$$

OPTION 2/OPSIE 2

7.1.3

Accepted labels/Aanvaarde benoemings			
w√	F _g / F _w / weight / mg / gravitational force		
VV V	$F_g^{"}/F_w/gewig/mg/gravitasiekrag$		
T√	F _T / tension / <i>spanning</i>		
	Electrostatic force/ Coulomb force/ F _{E Field} /F _{x on Y} /		
F _E /F√	3,05 N		
	Elektrostatiese krag/ Coulombkrag		

Notes/Aantekeninge

- Mark is awarded for label and arrow. /Punt word toegeken vir byskrif en pyltjie.
- Do not penalise for length of arrows.
 Moenie vir die lengte van die pyltjies penaliseer nie.
- Deduct 1 mark for any additional force / Trek 1 punt af vir enige addisionele krag
- If force(s) do not make contact with dot /Indien krag(te) nie met die kolletjie kontak maak nie: Max/Maks $\frac{2}{3}$
- If arrows missing/Indien pyltjies uitgelaat word: Max/Maks $\frac{2}{3}$

(3)

7.1.4
$$F_{net} = 0$$

F_F = Tcos80°

$$[3,05 = Tsin10^{\circ} \checkmark] \checkmark$$

[IF /INDIEN Tcos10° = 3,05 ($\frac{1}{3}$)]

OR/OF

$$[3,05 = T\cos 80^{\circ} \checkmark] \checkmark$$

[IF/INDIEN Tsin80° = 3,05 ($\frac{1}{3}$)]

$$T = 17,56 \text{ N} \checkmark (17,564 \text{ N})$$

(3)

7.2.1 Marking criteria/Nasienriglyne

- -1 mark for each key word/phrase omitted in the correct context.
- -1 punt vir elke sleutelwoord/frase weggelaat in die korrekte konteks.

The electric field at a point is the (electrostatic) force experienced per unit positive charge placed at that point. $\checkmark\checkmark$

Die elektriese veld by 'n punt is die (elektrostatiese) <u>krag</u> wat <u>per positiewe</u> eenheidslading wat by die punt geplaas is, ondervind word.

[**IF** the word "unit" or phrase "positive charge" is omitted in this definition: -1 for each **INDIEN** die woord "eenheid" of frase "positiewe lading" uitgelaat is in hierdie definisie: -1 vir elk]

OR/OF

The electric field at a point is the (electrostatic) force experienced by a <u>UNIT</u> positive charge placed at that point. $\checkmark\checkmark$

Die elektriese veld by 'n punt is die (elektrostatiese) <u>krag</u> wat deur 'n positiewe EENHEIDSlading wat by die punt geplaas is, ondervind word.

[If "UNIT" is omitted in this definition, then 0 marks.

Indien "EENHEIDS" uitgelaat word in hierdie definisie, dan 0 punte.]

7.2.2 **OPTION 1/OPSIE 1**

Electric field at **M** due to **A** (+2 x10⁻⁵ C):

$$E_{A} = \frac{kQ}{r^{2}} \checkmark$$

$$= 9 \times 10^{9} \frac{(2 \times 10^{-5})}{(0,2)^{2}} \checkmark$$

$$= 4.5 \times 10^{6} \text{ N} \cdot \text{C}^{-1}$$

Electric field at **M** due to **B** (-4 x10⁻⁵ C):

$$\begin{split} \mathsf{E}_{\mathsf{B}} = & \frac{\mathsf{kQ}}{\mathsf{r}^2} & \mathsf{OR}/\mathsf{OF} & \mathsf{q}_{\mathsf{B}} = 2\mathsf{q}_{\mathsf{A}} \\ &= 9 \times 10^9 \frac{(4 \times 10^{-5})}{(0,2)^2} \checkmark & \mathsf{E}_{\mathsf{B}} = 2\mathsf{E}_{\mathsf{A}} \checkmark \\ &= 9 \times 10^6 \, \text{N} \cdot \text{C}^{-1} & = 9 \times 10^6 \, \text{N} \cdot \text{C}^{-1} \\ \mathsf{E}_{\mathsf{net}} \text{ at } \mathbf{M} = \mathsf{E}_{\mathsf{A}} + \mathsf{E}_{\mathsf{B}} & = \underbrace{(4.5 \times 10^6 + 9 \times 10^6)}_{=1,35 \times 10^7 \, \text{N} \cdot \text{C}^{-1}} \checkmark \text{ to the right/na regs/towards B/na B} \\ &= 1,35 \times 10^7 \, \text{N} \cdot \text{C}^{-1} \checkmark \text{ to the right/na regs/towards B/na B} \\ &= 1,35 \times 10^7 \, \text{N} \cdot \text{C}^{-1} \checkmark \text{ to the right/na regs/towards B/na B} \end{split}$$

OPTION 2/OPSIE 2

Net electrostatic force at M / Netto elektrostatiese krag by M

$$F_{\text{net}} = \frac{kQ_1Q_2}{r^2} + \frac{kQ_1Q_2}{r^2}$$

$$= \frac{(9 \times 10^9)(2 \times 10^{-5})q}{(0,2)^2} + \frac{(9 \times 10^9)(4 \times 10^{-5})q}{(0,2)^2} \checkmark \text{ (any one/ enige een)}$$

$$= 4.5 \times 10^6 q + \checkmark 9 \times 10^6 q$$

$$= 1.35 \times 10^7 q \text{ N}$$

$$F_{\text{net}} = E_{\text{net}}q \checkmark$$

$$1.35 \times 10^7 q \checkmark = E_{\text{net}}q$$

$$E_{\text{net}} = 1.35 \times 10^7 \text{ N·C}^{-1} \checkmark \text{to the right/na regs} \checkmark/\text{towards B / na B}$$

(6) **[18]**

(2)

(2)

QUESTION 8/VRAAG 8

8.1 (Maximum) energy provided (work done) ✓ by a battery per coulomb / unit charge passing through it. ✓

(Maksimum) energie verskaf (arheid verrig) deur 'n hattery per

(Maksimum) energie verskaf (arbeid verrig) deur 'n battery per coulomb/eenheidlading wat daardeur beweeg.

ACCEPT/AANVAAR:

The reading on a voltmeter connected across a battery when there is no current/ in an open circuit. $\checkmark\checkmark$

Lesing op 'n voltmeter oor 'n battery as daar geen stroom is nie

8.2 13 V ✓ (1)

8.3.1 R =
$$\frac{V}{I}$$
 Appropriate formula/Toepaslike formule \checkmark
5,6 = $\frac{10,5}{I}$ Whole substitution/Hele vervanging \checkmark
• Final answer/Finale antwoord: 1,88 A \checkmark
(3)

8.3.2 **POSITIVE MARKING FROM QUESTION 8.3.1. POSITIEWE NASIEN VANAF VRAAG 8.3.1**

OPTION 1	OPTION 2
P = VI ✓	$P = I^2 R \checkmark$
= (10,5)(1,88) √	$= (1,88)^2(5,6) \checkmark$
= 19,74 W ✓ (19,688 W)	= 19,79 W ✓ (19,688 W)

OPTION 3

$$P = \frac{V^2}{R} \checkmark$$

$$= \frac{10.5^2}{5.6} \checkmark$$

$$= 19.69 \text{ W} \checkmark (19.688 \text{ W})$$

8.3.3 **POSITIVE MARKING FROM QUESTIONS 8.2 AND 8.3.1.** *POSITIEWE NASIEN VANAF VRAE 8.2 EN 8.3.1*

OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
$\overline{\varepsilon} = I(R + r) \checkmark$	r = V _{internal}
$13 = 1.88 (5.6 + r) \checkmark$	r =
$r = 1.31 \Omega \checkmark (1.31 - 1.33 \Omega)$	_ 2,5
, ,	= •
	1,88
	$= 1,33 \Omega \checkmark (1,31 - 1,33 \Omega)$

OPTION 3/OPSIE 3

$$E = V_{ext} + V_{int}$$
13 = 10,5 + V_{int}

$$V_{int} = 2,5 V$$

$$V_{int} = Ir \checkmark$$
2,5 = (1,88)r \checkmark
r = 1,31 Ω \checkmark (1,31 – 1,33 Ω)

(3)

(3)

8.4.1 Decreases/Neem af ✓

V_{internal resistance}/Internal volts increase ✓ V_{interne weerstand}/Interne volts neem toe

(2)

8.4.2 Marking criteria/Nasienriglyne

- Formula/Formule ε = I(R + r) √
- Correct substitution into/ Korrekte vervanging in ε = I(R + r) √
- Substitution of values into R_p formula/Vervanging van waarde van R_p in formule√
- Halving value of R_{2X}/Halvering van waarde van R_{2X} √
- Final answer/Finale antwoord: 1,49 Ω ✓ Range/Gebied: 1,46 Ω 1,49 Ω

POSITIVE MARKING FROM QUESTIONS 8.2 AND 8.3.3 POSITIEWE NASIEN VANAF VRAE 8.2 EN 8.3.3

OPTION 2/OPSIE 2
ε = I(R + r)
$$\checkmark$$

13 = 4(R_{ext} + 1,31) \checkmark
R_{ext} = 1,94 $Ω$ (1,92 $Ω$)

$$R_p = \frac{R_1 R_2}{R_1 + R_2}$$
1,94 = $\frac{5,6 R_2}{5,6 + R_2}$ \checkmark

$$R_2 = 2,97 $Ω$ (2,92 $Ω$)

$$X = \frac{1}{2}(2,97) \checkmark$$
= 1,49 $Ω$ \checkmark (1,46 – 1,49 $Ω$)$$

OPTION 3/OPSIE 3
ε = I(R + r)
$$\checkmark$$

13 = 4(R_{ext} + 1,31) \checkmark
R_{ext} = 1,94 $Ω$ (1,92 $Ω$)

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\left[\frac{1}{1,94} = \frac{1}{5,6} + \frac{1}{2X}\right] \checkmark$$

$$X = 1,49 $Ω \checkmark$ (1,46 - 1,49 $Ω$)$$

OPTION 4/OPSIE 4

$$\mathcal{E} = I(R + r) \checkmark$$

 $13 = 4(R_{ext} + 1,31) \checkmark$
 $R_{ext} = 1,94 \Omega (1,92 \Omega)$
 $R_p = \frac{R_1 R_2}{R_1 + R_2}$
 $\left[1,94 = \frac{(5,6)(2X)}{5,6 + 2X}\right] \checkmark$
 $X = 1.49 \Omega \checkmark$

OPTION 5/OPSIE 5 $\mathcal{E} = I(R + r) \checkmark$ $V_{\text{ext}} = 13 - (4)(1,31) \checkmark$ = 7,76 VV_p€IR_{5.6} 7.76 = I(5,6) $I_{5.60} = 1.37 A$ $I_T = I_{2X} + I_{5,6}$ $4 = I_{2x} + 1.37$ $I_{2X} = 2.63 A$ $V = IR_{2X}$ $[7,76 = (2,63)2X\checkmark]\checkmark$ $X = 1.46 \Omega \checkmark$

7 1,40 22	
OPTION 6/OPSIE 6	
$\varepsilon = I(R + r) \checkmark$	
$V_{\text{ext}} = 13 - (4)(1,31) \checkmark$	
$V_{\text{ext}} = 7,76 \text{ V}$	
$I_{5,6\Omega} = \frac{7,76}{5,6} = 1,39 \text{ A}$	
I _{2x} = 4 – 1,39 = 2,61 A	
$V_{2x} = I_{2x}R_{2x}$ $[7,76 = (2,61)2X^{\checkmark}]^{\checkmark}$ $2X = 2,97 \Omega$ $X = 1,49 \Omega^{\checkmark}$ $V_{X} = I_{X}R_{X}$ $3,88^{\checkmark} = (2,61)R_{X}^{\checkmark}$ $R_{X} = 1,49 \Omega^{\checkmark}$	

OPTION 7/OPSIE 7 $\overline{\varepsilon} = I(R + r) \checkmark$ $V_{\text{ext}} = 13 - (4)(1,31) \checkmark$ $V_{\text{ext}} = IR_{\text{ext}}$ $7,76 = (4) \left(\frac{1}{2X} + \frac{1}{5,6} \right)^{-1} \checkmark$ $X = 1,48 \Omega \checkmark$

(5)[19]

(2)

QUESTION 9/VRAAG 9

9.1 9.1.1 DC/GS ✓ (1)

9.1.2 **NOTE:** -1 mark for each key word/phrase omitted in correct context. **LET WEL:** -1 punt vir elke sleutel woord/frase weggelaat in die korrekte konteks.

> Emf is induced as a result of change of magnetic flux (linked) with the coil. ✓ ✓

> Emk word geïnduseer as gevolg van verandering van die magnetiese vloedkoppeling.

9.1.3 **POSITIVE MARKING FROM QUESTION 9.1.1** POSITIEWE NASIEN VANAF VRAAG 9.1.1

(2)

9.2.1 The AC potential difference/voltage which dissipates the same amount of energy ✓ as DC potential difference. ✓

Die WS <u>potensiaalverskil/spanning</u> <u>wat dieselfde hoeveelheid energie</u> verbruik as <u>GS potensiaalverskil/spanning</u>

OR/OF

(The rms value of AC is) the DC potential difference/voltage which dissipates the same amount of energy ✓ as AC potential difference/voltage. ✓ Dit is die GS potensiaalverskil/spanning wat dieselfde hoeveelheid energie

verbruik as WS potensiaalverskil/spanning.

(2)

9.2.2	OPTION 1/	OPTION 2 /	OPTION 3 /	OPTION 4 /
	OPSIE 1	OPSIE 2	OPSIE 3	OPSIE 4
	$W = \frac{V^2}{P} \Delta t \checkmark$	$W = I^2 R \Delta t$	$P_{ave} = I_{rms}^2 R$	$R = \frac{V_{rms}}{I_{rms}} \checkmark$
	R A	$500 = I^2 (200)(10)$	$\frac{500}{10} = I_{rms}^2$	rms
	V^2	$I = I_{rms} = 0.5 A$	10 - 1 rms	$200 = \frac{V_{\text{rms}}}{0.5} \checkmark$
	$500 = \frac{V^2}{200}(10) \checkmark$	$P_{ave} = V_{rms}I_{rms} \checkmark$	(200)	0,5
		$\frac{500}{10}$ =	$I_{rms} = 0.5 A$	$V_{rms} = 100 \text{ V}$
	$V = V_{rms} = 100 V$	10 V _{rms} (0,5)√	$P_{ave} = V_{rms}I_{rms} \checkmark$	/
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$\frac{500}{10} = V_{rms}(0,5)$	$V_{\text{rms}} = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$
	$V_{\text{rms}} = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	V _{rm} € 100 V	10	$\sqrt{2}$
	\ _	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark$	V _{rms} = 100 V	$100 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$
	$100 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	$\sqrt{2}$		v -
	$V_{\text{max}} = 141,42 \text{ V}$	$100 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark$	V _{max} = 141,42 V✓
		$V_{\text{max}} = 141,42 \text{ V}$	$100 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	
			√∠	
	OPTION 5 /	OPTION 6 /	V _{max} = 141,42 V√ OPTION 7 /	OPTION 8 /
	OPSIE 5	OPSIE 6	OPSIE 7	OPSIE 8
	$P_{ave} = \frac{V_{rms}^2}{R} \checkmark$	$P_{ave} = \frac{P_{max}}{2} \checkmark$		$P_{ave} = I_{rms}^2 R \checkmark$
	Rave - R	$P_{\text{ave}} - \frac{1}{2}$	$P = \frac{W}{\Delta t} = \frac{500}{10}$	
	$500 = V_{rms}^2$	500 _ P _{max} _	= 50 W	$\frac{500}{10}$ =
	$\frac{500}{10} = \frac{V_{\text{rms}}^2}{200} \checkmark$	$\frac{500}{10} = \frac{P_{\text{max}}}{2} \checkmark$	$P_{ave} = \frac{V_{rms}^2}{P} \checkmark$	$I_{rms}^{2}(200)$
	$V_{rms} = 100 V$	$P_{max} = 100 W$	11	$I_{rms} = 0.5 A$
	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark$	$P_{\text{max}} = \frac{V_{\text{max}}^2}{R} \checkmark$	$50 = \frac{V_{\text{rms}}^2}{200} \checkmark$	$I_{rms} = \frac{I_{max}}{\sqrt{2}}$
	V _{max}	V ²	$V_{rms} = 100 \text{ V}$	
	$100 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	$100 = \frac{V_{\text{max}}^2}{200} \checkmark$		$0.5 = \frac{I_{\text{max}}}{\sqrt{2}}$
	$V_{\text{max}} = 141,42 \text{ V} \checkmark$	$V_{\text{max}} = 141,42 \text{ V}\checkmark$	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark$	$I_{\text{max}} = 0.71 \text{ A}$
			$100 = \frac{V_{\text{max}}}{\sqrt{2}} \checkmark$	V _{max} = I _{max} R ✓
			V _{max} = 141,42 V√	= (0,71)(200) √
			max , . — v	= 142 V√

(5) **[12]**

QUESTION 10/VRAAG 10

Note: -1 mark for each key word/phrase omitted in correct context. 10.1 Let Wel: -1 punt vir elke sleutel woord/frase weggelaat in die korrekte konteks.

> The process whereby electrons are ejected from a metal / surface when light (of suitable frequency) is incident on that surface. ✓✓ Die proses waarby elektrone vanaf 'n (metaal)oppervlak vrygestel word wanneer lig (van geskikte frekwensie) daarop skyn/inval.

7,48 x 10⁻¹⁹ (J) ✓ $E = W_0 + E_{k(max)} (= W_0 + \frac{1}{2} m v_{max}^2) \checkmark$ When/Wanneer $E_{k(max)} = 0 / v = 0 / v^2 = 0 / E = W_o / W_o$ is the y-intercept / is die y-afsnit ✓ (3)

10.3 Mass (of photo-electron)/Massa (van foto-elektron)/m ✓

ACCEPT/AANVAAR:

½m (1)

10.4 OPTION 1/OPSIE 1

Gradient = ½m

$$\frac{11,98 \times 10^{-19} \checkmark - 7,48 \times 10^{-19} \checkmark}{X - 0 \checkmark} = \frac{1}{2} (9,11 \times 10^{-31}) \checkmark$$

 $X = 0.9879 \checkmark (0.99 \text{ or } 0.988)$

ACCEPT/AANVAAR

 $X = 0.9879 \times 10^{12} (m^2 \cdot s^{-2})$

POSITIVE MARKING FROM 10.2/POSITIEWE NASIEN VANAF 10.2 OPTION 2/ OPSIE 2

 $E = W_o + E_{k(max)}$ ✓ Any one / Enige een $E = W_o + \frac{1}{2} m v^2_{(max)}$

11.98 x $10^{-19} \checkmark = 7.48 \times 10^{-19} \checkmark + \frac{1}{2}(9.11 \times 10^{-31}) \text{ v}^2 \checkmark [\text{or/of } \frac{1}{2}(9.11 \times 10^{-31})\text{X}]$ $4.5 \times 10^{-19} = 4.56 \times 10^{-31} \text{v}^2$

 $v^2 = 0.9868 \times 10^{12}$

 $X/v^2 = 0.9868 \checkmark (0.99)$

Range/gebied $(0.9868 - 0.9879 / 9.87 \times 10^{11} - 9.88 \times 10^{11})$

ACCEPT/AANVAAR:

 $X = 0.9868 \times 10^{12} (m^2 \cdot s^{-2}) / 9.868 \times 10^{11} (m^2 \cdot s^{-2})$

10.5.1 Remains the same /Bly dieselfde ✓ (1)

10.5.2 Increases / Neem toe ✓ (1)

> TOTAL/TOTAAL: 150

Copyright reserved/Kopiereg voorbehou

(5)

(2)

[13]