CS5020: Nonlinear Optimisation: Theory and Algorithms Worksheet - 7

For all the questions below:

- (a) Sketch the constraints and shade the constraint set.
- (b) Find the set of global minima.
- (c) Find the set of active constraints $\mathcal{A}(x_*)$ at $x_* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
- (d) At at $x_* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, find all possible ways in which

$$-\nabla f(x_*) = \sum_{i \in \mathcal{A}(x_*)} \lambda_i \nabla g_i(x_*), \text{ where } \lambda_i \ge 0, i \in \mathcal{A}(x_*)$$

Note: Here 'all possible ways' means all possible values for λ_i that satisfy our needs.

- (e) Assume that a budget of $\epsilon \geq 0$ is given. At $x_* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, we are allowed to relax an active constraint $i \in \mathcal{A}(x_*)$ by $\epsilon_i \geq 0$, such that the total budget $\sum_{i \in \mathcal{A}(x_*)} \epsilon_i = \epsilon$. Under this assumption, find the least possible objective value achieved after relaxing the constraints.
- (f) Assume that a budget of $\epsilon \geq 0$ is given. At $x_* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, find **all possible ways** to relax the constraints, wherein, an active constraint $i \in \mathcal{A}(x_*)$ is relaxed by $\epsilon_i \geq 0$, such that the total budget $\sum_{i \in \mathcal{A}(x_*)} \epsilon_i = \epsilon$, so that the least possible objective value achieved after relaxing the constraints.

Note: Here 'all possible ways' means all possible values for ϵ_i that satisfy our needs.

(1)

$$\min \qquad f(x) = -(x(1) + x(2))$$
 such that
$$g_1 \quad : \quad x(1) \le 0$$

$$g_2 \quad : \quad x(2) \le 0$$

(2)

$$\min \qquad f(x) = -x(1)$$
 such that
$$g_1 \quad : \quad x(1) \le 0$$

$$g_2 \quad : \quad x(2) \le 0$$

(3)

$$\min \qquad f(x) = -x(2)$$
 such that
$$g_1 : x(1) \le 0$$

$$g_2 : x(2) \le 0$$

(4)

$$\min \qquad f(x) = -(x(1) + x(2))$$
 such that g_1 : $2x(1) + x(2) \le 0$
$$g_2$$
 : $x(1) + 2x(2) \le 0$

 $\begin{array}{lll} & \min & & f(x)=-x(1) \\ \text{such that} & g_1 & : & 2x(1)+x(2) \leq 0 \\ & g_2 & : & x(1)+2x(2) \leq 0 \end{array}$

(6)

such that g_1 : $2x(1) + x(2) \le 0$ g_2 : $x(1) + 2x(2) \le 0$

(7)

such that
$$g_1$$
 : $-x(2)$
 g_2 : $x(1) \le 0$

(8)

such that
$$\begin{array}{lll} \min & f(x) = -x(2) \\ g_1 & : & -0.1x(1) + x(2) \leq 0 \\ g_2 & : & x(1) \leq 0 \end{array}$$

(9)

such that
$$g_1$$
 : $x(1) \le 0$
 g_2 : $x(2) \le 0$
 g_3 : $-x(1) + x(2) \le 0$

(10)

such that
$$g_1$$
 : $x(1) \le 0$
 g_2 : $x(2) \le 0$
 g_3 : $2x(1) + x(2) \le 0$
 g_4 : $x(1) + 2x(2) \le 0$