Classical Mechanics 12

Work-Energy Theorem in 3D

dW = F. dr = Fros0 xdr = Fxdrros0

Suppose a bodies moves from r: to re along a path r(t) subsect to external force F(t). At every point on the sourcey:

(=

F=moly

The force may depend on position, time, velocity,

The route r(t) may also change sourcey to sourcey

Kf-Ke = Zok

=
$$WA \cdot QA + QQ(QB)$$

= $\frac{1}{2}W(1715 + 5A \cdot QA + 19A15) - \frac{1}{2}W1A15$
= $\frac{1}{2}W(A + QA)(A + QA) - \frac{1}{2}W1A15$
 $QK = \frac{1}{2}W1A + QA15 - \frac{1}{2}W1A15$

For small enough St, we get Kt-Ki= Imx. SY Since St is arbitrarily small, we can also assume that the acceleration is constant though St. SV = ast = Est Kt - Ki = Zmy. #8t = ZE. XSt = ZE. SC Now take limit as St -> 0. This defines the path intergral. Ke-Ki=lim [F. Sr = JF.dr Potentials in 3D In ID, any position-dependent force field F(x) is consenutive: the work done by F(x) in moving a body from xo to x is a function of To and or only independent of the details of the Sourrey between them. This is not true in 30. Even when the forces is a function of position only, the work done moving from to to r may algorial upon the path taken This means we cannot use our 10 definition U(c) - f F(c) dc

Fortu	nately almost all tages in physics are	
central	and mutin - dependent central torce	
fields	can be dearabed with some ods.	0
Sento	al fore	
11 h	$F(r) = -\frac{GMm}{r^2} r^2 = F(r) r^2$	
	F(r) = -r = F(r)	
Λ ο		
H (en	ou for co amengs frames of and	
paralle	1 To the vector between the two would	
involve		
A Not		
N2 +	or moon:	
o if	we treat the earth as infinitely massive mr = F(r)?	
° mo	re accorately pir = F(r)?	
		E
In 7	te world of central forces (ours), any force field is consecutive.	
(Entra	torre held is consentative.	
0 0	ac continue of	
force /	contentral con apply.	
()(r)=-S(F(r)dr)	
14. 81		
abo A	F(r) = - dU/dr	
	eu-	=
day.	THE PROPERTY BOOMS HAVE COMENTY IN THE THE	
		>
- 1		

- 20

Section 1.

9-1-