CIS501 - Lecture 14

Woon Wei Lee Fall 2013, 10am-11:15am, Sundays and Wednesdays

For today:

- Unsupervised learning
 - Hierarchical clustering
 - Visualization

Hierarchical clustering

A form of clustering where the nodes are organized hierarchically

- Depiction can be rooted as a "taxonomy"...
- Or unrooted simple depiction of relationships between nodes without super/sub-classes

Many hierarchical clustering algorithms have their roots in biology/bioinformatics

- Inference of phylogenetic trees (evolutionary history)
- But also used for document clustering, image clustering, etc.
- Typically works using only distance information
- Clusters defined by number of levels in the tree.

Two classes

- Agglomerative clustering
- Divisive clustering

Agglomerative clustering: UPGMA

- Most basic of agglomerative techniques
- Stands for "Unweighted Pair Group Method with Arithmetic mean"
 - "Greedy" algorithm
- Algorithm:
 - Inputs: Distance matrix between all pairs of nodes/individiuals in the group
 - *Combine nearest pairs of nodes/individuals
 - Recalculate new distances between all nodes and the cluster using:

$$\frac{1}{|A||B|} \cdot \sum_{x \in A} \sum_{y \in B} d(x, y)$$

- i.e. the average distance between all pairs of points in the two groups
- Generate new distance matrix
- Repeat from (*)

Agglomerative clustering: Neighbour Joining

UPGMA – good starting point but poor performance:

- "Molecular clock" problem
- Heuristic technique → unreliable and frequently does not give good results

"Neighbour-Joining" algorithm

- Generates "unrooted" trees
- Works via global estimates of branch length

Algorithm:

- Inputs: Distance matrix between all pairs of nodes/individuals in the group
- Initiate with "star topology"
- Choose pair of nodes which minimize:

$$s_{12} = \frac{1}{2(N-2)} \sum_{k=3}^{N} \left| d(1,k) - d(2,k) \right| + \frac{1}{2} d(1,2) + \frac{1}{n-2} \sum_{3 \le i \le j} d(i,j)$$

- Pair up as shown on right
- Remove pair from distance matrix and replace with branch point (marked "x")
- Repeat until only binary splits remain
- S_{ij} is the *total branch length* in the tree, which we attempt to minimize (principle of parsimony)

Divisive clustering: Hierarchical *k*-means algorithm

Also known as "top-down" clustering

 Any partitional clustering technique can be used as a divisive hierarchical clustering algorithm

Advantages:

- Many efficient/principled algorithms can be "recycled"
- Clustering can be for a fixed number of levels

• Example: "Hierarchical" k-means algorithm:

- Perform k-means as per normal
- For each cluster with at least a minimum number of individuals, cluster using k-means again
- Iterate until termination

Unsupervised learning: Visualization

A cross between feature selection and dimensionality reduction!

Basic motivation

- Convert high dimensional data set into a representation that is easily visualized/comprehended
- Allows for manual clustering, classification, etc.

Two basic categories:

- Linear projections
 - PCA
 - ICA
 - NMF, etc..
- Nonlinear projections
 - SOM
 - Multi-dimensional scaling (MDS)
 - Sammon Mapping

Linear visualization techniques

Problem is: how to find the optimal projection line/surface?

Principle Component Analysis (PCA)

Basic idea – find direction which capture "most" of the data

- From figure on right, intuitively, v_a does this better
- One metric variance of the projection
- Direction of maximal variance known as the principle components

Finding the principle components

Linear projection defined as:

$$x' = v^T x$$

(x' is the transformed variable)

Variance of projection is given by:

$$\sigma^{2}' = x' x'^{T}$$

$$= v^{T} x (v^{T} x)^{T}$$

$$= v^{T} x x^{T} v = v^{T} \Sigma v$$

(where Σ is the data covariance matrix)

Principle Component Analysis (PCA)

Hence, to find the principle components,

Maximize:
$$v^T \Sigma v$$
 (w.r.t. v)

- Trivial solution → set v to ∞
 - Constraint needed:

Set:
$$v^T v = 1$$

$$L(\sigma, \lambda) = v^T \sum v - \lambda (v^T v - 1)$$
Lagrange multiplier
$$\frac{dL(\sigma, \lambda)}{dv} = 2\sum v - 2\lambda v = 0$$

$$\sum v = \lambda v$$

- Solution given by the eigenvectors of the covariance matrix
- The λ value gives the variance of the projection in this direction (the eigenvalues of the covariance matrix)

PCA (Cont'd)

i.e. The principle components are given by the eigenvectors of the covariance matrices

- For an *n*-dimensional dataset, there will be *n* such eigenvectors.
- Eigenvectors are mutually orthonormal
- Matrix of eigenvectors is hence a rotation matrix

Project upon a subset of these eigenvectors → dimensionality reduction

- The λ value → the eigenvalues of the covariance matrix
- Sorting these and plotting gives the singular spectrum (SS)

Figures (a) and (b):

- (a) SS corresponding to 20 dimensional white noise
- (b) SS for 3 dimensional white noise embedded in 20 dimensional space
- Note the noise "floor" in figure (b).

