V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	4					1			1		
e2	4	0	4					5	1			3
e3		4	0		3							5
e4				0				3	2	4		
e5			3		0	5	2	4	5		1	
e6					5	0	4	5	5	1		1
e7	1				2	4	0		1			1
e8		5		3	4	5		0	2			3
e9		1		2	5	5	1	2	0		3	
e10	1			4		1				0	2	1
e11					1				3	2	0	1
e12		3	5			1	1	3		1	1	0

Воронин Иван Р3131 Вариант: 42

№1 Алгоритм раскраски графа, использующий упорядочивание вершин.

Исходный граф и его матрица соединений

	Н		Τ					- T				
V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	1					1			1		
e2		0	1					1	1			1
e3			0		1							1
e4				0				1	1	1		
e5					0	1	1	1	1		1	
e6						0	1	1	1	1		1
e7							0		1			1
e8								0	1			1
e9									0		1	
e10										0	1	1
e11											0	1
e12												0

- 1. положим j = 1
- 2. Упорядочим вершины графа в порядке невозрастания ri

V/V	e9	e12	e5	e8	e6	e2	e7	e10	e11	e1	e3	e4	ri
e9	0		1	1	1	1	1		1			1	
e12		0		1	1	1	1	1	1		1		
e5			0	1	1		1		1		1		
e8				0	1	1						1	
e6					0		1	1					
e2						0				1	1		
e7							0			1			
e10								0	1	1		1	
e11									0				
e1										0			

e3						0		3	3
e4							0	3	3

- 3. Красим в первый цвет вершины е9 е12 е1
- 4. Остались неокрашенные вершины, поэтому удалим из матрицы строки и столбцы, соответствующие вершинам e9 e12 e1. Положим j=j+1=2.

5

V/V	e5	e8	e6	e10	e2	e3	e4	e7	e11	ri
e5	0	1	1			1		1	1	
e8		0	1	1			1			
e6			0		1			1		
e10				0			1		1	
e2					0	1				
e3						0				
e4							0			
e7								0		
e11									0	

- 5. Упорядочим вершины графа в порядке невозрастания ri
- 6. Красим во второй цвет вершины е5 е2 е10
- 7. Остались неокрашенные вершины, поэтому удалим из матрицы строки и столбцы, соответствующие вершинам e5 e2 e10. Положим $j=j+1=3. \label{eq:constraint}$

V/V	e6	e8	e4	e7	e3	e11	ri
e6	0	1		1			2
e8		0	1				2
e4			0				1
e7				0			1
e3					0		0
e11						0	0

- 8. Упорядочим вершины графа в порядке невозрастания ri
- 9. Красим в третий цвет вершины e6 e4 e3 e11
- 10. Остались неокрашенные вершины, поэтому удалим из матрицы строки и столбцы, соответствующие вершинам e6 e4 e3 e11. Положим j=j+1=4.

V/V	e7	e8	ri
e7	0	0	(
e8		0	(

10. Красим в третий цвет вершины е7 е8

Все вершины окрашены

№ 2 Нахождение кратчайшего пути алгоритмом Дейкстры

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	4					1			1		
e2	4	0	4					5	1			3
e3		4	0		3							5
e4				0				3	2	4		
e5			3		0	5	2	4	5		1	
e6					5	0	4	5	5	1		1
e7	1				2	4	0		1			1
e8		5		3	4	5		0	2			3
e9		1		2	5	5	1	2	0		3	
e10	1			4		1				0	2	1
e11					1				3	2	0	1
e12		3	5			1	1	3		1	1	0

1. l(e1)=0+ ; l(ei)= ∞, для всех i ≠ 1, p = e1.

	1
e1	0+

2.
$$\Gamma p = \{e2, e7, e10\}$$
 — все пометки временные, уточним их: $I(e2) = \min[\infty, 0+4] = 4;$ $I(e7) = \min[\infty, 0+1] = 1;$ $I(e10) = \min[\infty, 0+1] = 1$

		1	2
	e1	0+	
	e2	8	4
	e3	8	8
	e4	8	8
	e5	8	8
=	e6	8	8
	e7	8	1+
	e8	8	8
	e9	8	8
	e10	8	1
	e11	8	8
	e12	8	8

5. Гр ={e5, e6, e9, e12} – все пометки временные, уточним их:
$$I(e5)=min[\infty, 1+2]=3$$
 $I(e6)=min[\infty, 1+1]=2;$ $I(e9)=min[\infty, 1+1]=2;$ $I(e12)=min[\infty, 1+1]=2;$

		1	2	3
	e1	0+		
	e2	8	4	4
	e3	8	8	8
	e4	8	8	8
	e5	8	3	3
L =	e6	8	8	8
	e7	8	1+	
	e8	8	8	8
	e9	8	8	2
	e10	8	1	1+
	e11	8	8	8
	e12	8	8	2

6.
$$I(ei^*) = min[I(ei)] = I(e10) = 1$$
.

7. е7 получает постоянную пометку I(e10) =

8. Гр ={e4, e6, e9, e11, e12} – все пометки временные, уточним их:

l(e4)=min[∞, 1+4]=5

l(e6)=min[∞,1+1]=2;

l(e9)=min[2,1+1]=2;

l(e11)=min[∞,1+2]=3;

l(e12)=min[2, 1+1]=2

		1	2	3	4
	e1	0+			
	e2	8	4	4	4
	e3	8	8	8	8
	e4	8	8	8	5
	e5	8	8	3	3
L =	e6	8	8	8	2+
	e7	8	1+		
	e8	8	8	8	8
	e9	8	8	2	2
	e10	8	1	1+	
	e11	8	8	8	3
	e12	8	8	2	2

9.
$$I(ei^*) = min[I(ei)] = I(e6) = 2$$
.

10. е6 получает постоянную пометку l(e6) =

2+, p=e6.

11. Гр ={e5, e7, e8, e12} – все пометки

временные, уточним их:

I(e5)=min[3,2+5]=7

l(e7)=min[1,2+1]=1;

l(e8)=min[∞,2+5]=7;

l(e12)=min[2, 2+1]=2

		1	2	3	4	5
	e1	0+				
	e2	8	4	4	4	4
	e3	8	∞ ∞		8	8
	e4	8	8	8	5	5
L =	e5	8	∞ 3		3	3
	e6	8	8		2+	
	e7	8	1+			
	e8	8	8	8	8	7
	e9	8	8	2	2	2+
	e10	8	1	1+		
	e11	8	8	8	3	3
	e12	8	8	2	2	2

- 12. $I(ei^*) = min[I(ei)] = I(e9) = 2$.
- 13. е6 получает постоянную пометку I(е9) =
- 2+, p=e9.
- 14. Гр ={e2, e4, e5, e8, e11} все пометки временные, уточним их:
- I(e2)=min[4,2+1]=3
- l(e4)=min[5,2+2]=4
- l(e5)=min[7,2+5]=7;
- l(e8)=min[7, 2+2]=4
- l(e11)=min[3, 2+3]=3

		1	2	3	4	5	6
	e1	0+					
	e2	8	4	4	4	4	3
	e3	8	8	8	8	8	8
	e4	8	8	8	5	5	4
	e5	8	8	3	3	3	3
L =	e6	8	8	8	2+		
	e7	8	1+				
	e8	8	8	8	8	7	4
	e9	8	8	2	2	2+	
	e10	8	1	1+			
	e11	8	8	8	3	3	3
	e12	8	8	2	2	2	2+

- 15. $I(ei^*) = min[I(ei)] = I(e12) = 2$.
- 16. e12получает постоянную пометку l(e12)
- = 2+, p=e12.
- 17. Гр ={e2, e3,e8, e11} все пометки

временные, уточним их:

I(e2)=min[3,2+3]=3

I(e3)=min[∞,2+5]=7 I(e8)=min[4,2+3]=4; I(e11)=min[3, 2+1]=3

		1	2	3	4	5	6	7
	e1	0+						
	e2	8	4	4	4	4	3	3+
	e3	8	8	8	8	8	8	7
	e4	8	8	8	5	5	5	4
	e5	8	8	3	3	3	3	3
L =	e6	8	8	8	2+			
	e7	8	1+					
	e8	8	8	8	8	7	4	4
	e9	8	8	2	2	2+		
	e10	8	1	1+				
	e11	8	8	8	3	3	3	3
	e12	8	8	2	2	2	2+	

- 18. $I(ei^*) = min[I(ei)] = I(e2) = 3$.
- 19. е2получает постоянную пометку l(e2) =
- 3+, p=e2.
- 20. $\Gamma p = \{e3, e8\}$ все пометки временные, уточним их:
- l(e3)=min[3,2+4]=3
- I(e8)=min[4,2+5]=4

		1	2	3	4	5	6	7	8
	e1	0+							
	e2	8	4	4	4	4	3	3+	
	e3	8	8	8	8	8	8	7	7
	e4	8	8	8	5	5	5	5	4
	e5	8	8	3	3	3	3	3	3+
L =	e6	8	8	8	2+				
	e7	8	1+						
	e8	8	8	8	8	7	4	4	4
	e9	8	8	2	2	2+			
	e10	8	1	1+					
	e11	8	8	8	3	3	3	3	3
	e12	8	8	2	2	2	2+		

- 21. $l(ei^*) = min[l(ei)] = l(e5) = 3$.
- 22. е11 получает постоянную пометку I(е5)

= 3+, p=e5. 23. Гр ={e3,e8, e11} – все пометки временные, уточним их: I(e3)=min[7,3+3]=6 l(e8)=min[4,3+4]=4; l(e11)=min[3,3+1]=3

		1	2	3	4	5	6	7	8	9
	e1	0+								
	e2	8	4	4	4	4	3	3+		
L =	e3	8	8	8	8	8	8	7	7	6
	e4	8	8	8	5	5	5	5	4	4+
	e5	8	8	3	3	3	3	3	3+	
	e6	8	8	8	2+					
	e7	8	1+							
	e8	8	8	8	8	7	4	4	4	4
	e9	8	8	2	2	2+				
	e10	8	1	1+						
	e11	8	8	8	3	3	3	3	3+	
	e12	8	8	2	2	2	2+			

24. $I(ei^*) = min[I(ei)] = I(e4) = 4$.

25. е4 получает постоянную пометку l(e4) =

4+, p=e4.

26. Гр ={ e8} – все пометки временные,

уточним их:

l(e8)=min[4,4+3]=4

		1	2	3	4	5	6	7	8	9	10
	e1	0+									
	e2	8	4	4	4	4	3	3+			
	e3	8	8	8	8	8	8	7	7	6	6
	e4	8	8	8	5	5	5	5	4	4+	
	e5	8	8	3	3	3	3	3	3+		
L =	e6	8	8	8	2+						
	e7	8	1+								
	e8	8	8	8	8	7	4	4	4	4	4+
	e9	8	8	2	2	2+					
	e10	8	1	1+							
	e11	8	8	8	3	3	3	3	3+		

e12	∞	∞	2	2	2	2+		

- 27. $I(ei^*) = min[I(ei)] = I(e8) = 4$.
- 28. е8 получает постоянную пометку I(e8) =
- 4+, p=e8.

		1	2	3	4	5	6	7	8	9	10	11
	e1	0+										
	e2	8	4	4	4	4	3	3+				
	e3	8	8	8	8	8	8	7	7	6	6	6+
	e4	8	8	8	5	5	5	5	4	4+		
	e5	8	8	3	3	3	3	3	3+			
L =	e6	8	8	8	2+							
	e7	8	1+									
	e8	8	8	8	8	7	4	4	4	4	4+	
	e9	8	8	2	2	2+						
	e10	8	1	1+								
	e11	8	8	8	3	3	3	3	3+			
	e12	8	8	2	2	2	2+					

29. $I(ei^*) = min[I(ei)] = I(e3) = 6$.

Все пометки постоянные

№3 Нахождение пропускной способности алгоритмом Франка — Фриша

Возьмем s = e1, t = e11

1. Проводим разрез $K1 = (\{s\}, X\setminus \{s\}])$

2. Находим $Q1 = \max[qij] = 4$

3.Закорачиваем все ребра графа (xi, xj) с qij≥Q1 4.Это ребра (1, 2),(2, 3),(2, 8),(8, 5),(3,12),(5, 9),(5,6) (6, 7),(8,6),(6,9). Получаем новый граф и проводим разрер K2

5. Находим $Q2 = \max[qij] = 3$ 6.Закорачиваем все ребра графа (xi, xj) с qij≥Q2

- 7. Вершины s-t(1-11) объединены. Пропускная способность искомого пути Q(P) = 3
- 8. Строим граф, вершины которого вершины исходного графа, а ребра ребра с пропускной способностью qij ≥ Q(P)=3

