Analysis

Erzhuo Wang

February 19, 2024

Contents

1	Fou	ındation	5
	1.1	Construction of Real Number	5
	1.2	Point-Set Topology	9
		1.2.1 Definition	9
		1.2.2 Metric space	11
		1.2.3 Compactness	12
		1.2.4 Connectness	13
		1.2.5 Completeness	14
		1.2.6 Separation axiom	14
	1.3	Limit	15
	1.4	Series	16
	1.5	Functions of single variable	18
	1.6	Several Variables functions	19
2	Mea	asure	21
3	Complex Analysis		
	3.1	Single Variable	23
	3.2	Multiple Variables	24
4	Fun	nctional Analysis	25
	4.1	Foundation	25
	4.2	Spectrum of Opertor	25
	4.3	Banach Algebra	25
5	Diff	ferential Equation	27
6	Har	rmonicl Analysis	2 9
	6.1	Abstact Harmonic Analysis	29

4 CONTENTS

Foundation

1.1 Construction of Real Number

Definition 1.1.1 (ordered ring). Thus, a ring(field) $R \neq 0$ with an order < is called an ordered ring(field) if the following holds:

- (1) (R, <) is totally ordered
- (2) $x < y \Rightarrow x + z < y + z, z \in R$
- (3) $x, y > 0 \Rightarrow xy > 0$

Of course, an element $x \in R$ is called positive if x > 0 and negative if x < 0. We gather in the next proposition some simple properties of ordered fields.

Proposition 1.1.2. Let K be an ordered field, then for $x, y, a, b \in K$.

- $(1) x > y \Leftrightarrow x y > 0.$
- (2) If x > y and a > b, then x + a > y + b.
- (3) If a > 0 and x > y, then ax > ay.
- (4) If x > 0, then -x < 0. If x < 0, then -x > 0.
- (5) Let x > 0. If y > 0, then xy > 0. If y < 0, then xy < 0.
- (6) If a < 0 and x > y, then ax < ay.
- (7) $x^2 > 0$ for all $x \neq 0$. In particular, 1 > 0.
- (8) If x > 0, then $x^{-1} > 0$.
- (9) If x > y > 0, then $0 < x^{-1} < y^{-1}$ and $xy^{-1} > 1$.

Definition 1.1.3. K is a ordered field, K is said to be Archimedes if and only if for x, y > 0 there's $n \in \mathbb{Z}$ such that nx > y.

Example 1.1.4. \mathbb{Q} is a Archimedes ordered field with original order.

Proposition 1.1.5. For an ordered field K, the absolute value function, $|\cdot|: K \to K$ and the sign function, $\operatorname{sign}(\cdot): K \to K$ are defined by

$$|x| := \begin{cases} x, & x > 0, \\ 0, & x = 0, \\ -x, & x < 0, \end{cases} \text{ sign } x := \begin{cases} 1, x > 0, \\ 0, x = 0, \\ -1, x < 0. \end{cases}$$

Let K be an ordered field and $x, y, a, \varepsilon \in K$ with $\varepsilon > 0$.

- (1) $x = |x|\operatorname{sign}(x), |x| = x\operatorname{sign}(x).$
- (2) $|x| = |-x|, \quad x \le |x|.$
- (3) |xy| = |x||y|.
- (4) $|x| \ge 0$ and $(|x| = 0 \Leftrightarrow x = 0)$.
- (5) $|x a| < \varepsilon \Leftrightarrow a \varepsilon < x < a + \varepsilon$.
- (6) |x+y| < |x| + |y| (triangle inequality).
- (7) $|x y| \ge ||x| |y||, \quad x, y \in K$

Definition 1.1.6. A ring homomorphism f between ordered field is said to be order-preserving if

$$a < b \iff f(a) < f(b)$$

.

Definition 1.1.7. A sequence $r = (x_n)_{n \in \mathbb{Z}_{>0}}$ is a Cauchy sequence if for all $\epsilon \in \mathbb{Q} > 0$, there's N > 0 such that for all m, n > N, $|x_n - x_m| < \epsilon$.

Proposition 1.1.8. Cauchy sequence is bounded.

Definition 1.1.9. Let

$$\mathcal{R} = \{(x_n) \in \mathbb{Q}^{\mathbb{Z}_{>0}} : (x_n) \text{ is a Cauchy sequence}\}$$

and

$$\mathbf{c}_0 = \{(x_n) \in \mathbb{Q}^{\mathbb{Z}_{>0}} : \text{for all } \epsilon > 0, \text{ there's } N > 0 \text{ such that for all } n > N, |x_n| < \epsilon \}$$

It's clear that $\mathbf{c}_0 \subset \mathcal{R}$ is a maximal ideal of \mathcal{R} . Hence \mathcal{R}/\mathbf{c}_0 is a field and we denote it by \mathbb{R} . For convenience, we usually denote $(a_n) + \mathbf{c}_0$ by (a_n) .

Definition 1.1.10. Now we define a order on \mathbb{R} , for (a_n) , (b_n) in \mathbb{R} , $(a_n) > (b_n)$ if there's $\epsilon > 0$, a sufficiently large integer N, such that $a_n - b_n > \epsilon$ for n > N. And denote this order by <. It's esay to check that '<' is well-defined and totally ordered.

Proposition 1.1.11. $(\mathbb{R}, <)$ is a Archimedes ordered field. And the embedding $l : \mathbb{Q} \to \mathbb{R}$ given by

$$r \mapsto (r, r, r, \dots)$$

is an order-preserving ring homomorphism.

Definition 1.1.12. For a sequence $(A_n) \in \mathbb{R}$, we say $A_n \to A$ if for all $\epsilon \in \mathbb{R} > 0$, there's N > 0 such that for all n > N, $|A_n - A| < \epsilon$. And we say (A_n) is a Cauchy sequence if for all $\epsilon \in \mathbb{R}_{>0}$, there's N > 0 such that for all m, n > N, $|x_n - x_m| < \epsilon$.

Proposition 1.1.13 (dense). For all $a, b \in \mathbb{R}$, if a < b, there's $c \in \mathbb{Q}$ such that a < l(c) < b.

Proposition 1.1.14 (completeness). (A_n) is a Cauchy sequence in \mathbb{R} if and only if there's $A \in \mathbb{R}$ such that $A_n \to A$.

Proof: 'if' is obvious.

'only if': Take $x_n \in \mathbb{Q}$ such that:

$$A_n < l(x_n) < A_n + l(\frac{1}{n})$$

It's cleat that $a = (x_n) + \mathbf{c}_0 \in \mathbb{R}$.

Notice that $A_n \to a$, we have \mathbb{R} is complete.

Now we identity \mathbb{Q} with a subfield of \mathbb{R} in the following content.

Proposition 1.1.15. (1) E is a non-empty subset of \mathbb{R} and if E is lower-bounded, then E has a infimum; if E is upper-bounded, then E has a supremum.

- (2) Every incresing bounded sequence $(x_n) \in \mathbb{R}$ has a limit.
- (3) (Bolzano-Weierstress) Every bounded sequence has a convergent subsequece.
- (4) if

$$[a,b] \subset \bigcup_{i \in I} (a_i,b_i)$$

, then

$$[a,b] \subset \bigcup_{k \in J} (a_k,b_k)$$

for some finite subset J of I.

Proposition 1.1.16. a > 0, $n \in \mathbb{Z}_{>0}$, then there's unique $x \in \mathbb{R}_{>0}$ such that $x^n = a$. We denote the unique positive root by $\sqrt[n]{a}$. And for all $a \in \mathbb{R}$ and $r = \frac{p}{q} \in \mathbb{Q}$, define $a^r = \sqrt[q]{a^p}$. It's easy to check that $\sqrt[q]{a^p} = (\sqrt[q]{a})^p$.

Proof: To prove the existence of a solution, we can, without loss of generality, assume that $n \geq 2$ and $a \neq 1$. We only prove with the case a > 1. Then we have

$$x^n > a^n > a > 0$$
 for all $x > a$.

Now set $A := \{x \ge 0 : x^n \le a\}$. Then $0 \in A$ and $x \le a$ for all $x \in A$. Thus $s := \sup(A)$ is a well defined real number such that $s \ge 0$. We will prove that $s^n = a$ holds by showing that $s^n \ne a$ leads to a contradiction. Suppose first that $s^n < a$ so that $a - s^n > 0$.

$$b := \sum_{k=0}^{n-1} \left(\begin{array}{c} n \\ k \end{array} \right) s^k > 0$$

implies that there is some $\varepsilon \in \mathbb{R}$ such that $0 < \varepsilon < (a - s^n)/b$. By making ε smaller if needed, we can further suppose that $\varepsilon \leq 1$. Then $\varepsilon^k \leq \varepsilon$ for all $k \in \mathbb{Z}_{>0}$, and, using the binomial theorem, we have

$$(s+\varepsilon)^n = s^n + \sum_{k=0}^{n-1} \binom{n}{k} s^k \varepsilon^{n-k} \le s^n + \left(\sum_{k=0}^{n-1} \binom{n}{k} s^k\right) \varepsilon < a.$$

This shows that $s + \varepsilon \in A$, a contradiction of $\sup(A) = s < s + \varepsilon$. Therefore $s^n < a$ cannot be true. Now suppose that $s^n > a$. Then, in particular, s > 0 and

$$b := \sum^{*} \left(\begin{array}{c} n \\ 2j - 1 \end{array} \right) s^{2j - 1} > 0,$$

where the symbol \sum^* means that we sum over all indices $j \in \mathbb{Z}_{>0}$ such that $2j \leq n$. Then there is some $\varepsilon \in \mathbb{R}$ such that $0 < \varepsilon < (s^n - a)/b$ and $\varepsilon \leq \min\{1, s\}$. Thus we have

$$(s-\varepsilon)^n = s^n + \sum_{k=0}^{n-1} (-1)^{n-k} \binom{n}{k} s^k \varepsilon^{n-k}$$

$$\geq s^n - \sum_{k=0}^{n} \binom{n}{2j-1} s^{2j-1} \varepsilon^{n-2j+1} \geq s^n - \varepsilon \sum_{k=0}^{n} \binom{n}{2j-1} s^{2j-1}$$

$$> a$$

1.2 Point-Set Topology

Munkres's Topology is a good reference for this section.

1.2.1 Definition

Definition 1.2.1. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \varnothing and X are in \mathcal{T} .
- (2) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (3) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a topological space.

Definition 1.2.2. If X is a set, a basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis elements) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology T generated by \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

Definition 1.2.3. Let X be a topological space with topology \mathcal{T} . If Y is a subset of X, the collection

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

is a topology on Y, called the subspace topology. With this topology, Y is called a subspace of X; its open sets consist of all intersections of open sets of X with Y.

Definition 1.2.4. X is Hausdorff if for any two elements $x \neq y$ in X, there's U, V open in X such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 1.2.5 (convergence).

Proposition 1.2.6. If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Example 1.2.7. Let X be a ordered set; assume X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

- (2) All intervals of the form $[a_0, b)$, where a_0 is the smallest element (if any) of X.
- (3) All intervals of the form $(a, b_0]$, where b_0 is the largest element (if any) of X. The collection \mathcal{B} is a basis for a topology on X, which is called the order topology.

Proposition 1.2.8. Given a subset A of a topological space X, the interior of A is defined as the union of all open sets contained in A, and the closure of A is defined as the intersection of all closed sets containing A.

Let Y be a subspace of X; let A be a subset of Y; let \bar{A} denote the closure of A in X. Then the closure of A in Y equals $\bar{A} \cap Y$.

Definition 1.2.9. If A is a subset of the topological space X and if x is a point of X, we say that x is a limit point of A if every neighborhood of x intersects A in some point other than x itself. Said differently, x is a limit point of A if it belongs to the closure of $A - \{x\}$. The point x may lie in A or not; for this definition it does not matter. Let A be a subset of the topological space X; let A' be the set of all limit points of A. Then

$$\bar{A} = A \cup A'$$
.

Proposition 1.2.10. Let X and Y be topological spaces; let $f: X \to Y$. Then the following are equivalent:

- (1) f is continuous. (U open in X implies $f^{-1}(U)$ open in Y)
- (2) For every subset A of X, one has $f(\bar{A}) \subset \overline{f(A)}$.
- (3) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$. If the condition in (4) holds for the point x of X, we say that f is continuous at the point x.

Definition 1.2.11. Consider $(X_i)_{i\in I}$ be a family of topology spaces, then the sets of the form

$$\prod_{i \in I} U_i$$

 $U_i = X_i$ for all but finite i, form a basis of $\prod_{i \in I} X_i$. We call it the topology induced by this product topology.

In language of category, product topology with projection $p_i: \prod_{i\in I} X_i \to X_i$ is the product object in the category of topological space.

Proposition 1.2.12. If each space X_{α} is Hausdorff space, then $\prod X_{\alpha}$ is a Hausdorff space in product topology.

Proposition 1.2.13. Let $\{X_{\alpha}\}$ be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each α . If $\prod X_{\alpha}$ is given the product topology, then

$$\prod \bar{A}_{\alpha} = \overline{\prod A_{\alpha}}$$

Theorem 1.2.14. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation

$$f(a) = (f_{\alpha}(a))_{\alpha \in J},$$

where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.

1.2.2 Metric space

Definition 1.2.15. A metric on a set X is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

having the following properties:

- (1) $d(x,y) \ge 0$ for all $x,y \in X$; equality holds if and only if x = y.
- (2) d(x,y) = d(y,x) for all $x, y \in X$.
- (3) (Triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$, for all $x,y,z \in X$.

Given a metric d on X, the number d(x, y) is often called the distance between x and y in the metric d. Given $\epsilon > 0$, consider the set

$$B_d(x,\epsilon) = \{ y \mid d(x,y) < \epsilon \}$$

of all points y whose distance from x is less than ϵ . It is called the ϵ -ball centered at x. Sometimes we omit the metric d from the notation and write this ball simply as $B(x, \epsilon)$, when no confusion will arise.

If d is a metric on the set X, then the collection of all ϵ -balls $B_d(x, \epsilon)$, for $x \in X$ and $\epsilon > 0$, is a basis for a topology on X, called the metric topology induced by d.

Example 1.2.16. \mathbb{R}^n is a metric space with distance d(x,y) = ||x-y||

Theorem 1.2.17. Let X be a topological space; let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$; the converse holds if X is metrizable.

Let $f: X \to Y$. If the function f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is metrizable.

Theorem 1.2.18. Let $f_n: X \to Y$ be a sequence of functions from the set X to the metric space Y. Let d be the metric for Y. We say that the sequence (f_n) converges uniformly to the function $f: X \to Y$ if given $\epsilon > 0$, there exists an integer N such that

$$d\left(f_n(x), f(x)\right) < \epsilon$$

for all n > N and all x in X.

Let $f_n: X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If (f_n) converges uniformly to f, then f is continuous.

1.2.3 Compactness

Definition 1.2.19. A collection \mathcal{A} of subsets of a space X is said to cover X, or to be a covering of X, if the union of the elements of \mathcal{A} is equal to X. It is called an open covering of X if its elements are open subsets of X.

A space X is said to be compact if every open covering \mathcal{A} of X contains a finite subcollection that also covers X.

Proposition 1.2.20. Every closed subspace of a compact space is compact. Every compact subspace of a Hausdorff space is closed.

Theorem 1.2.21. The image of a compact space under a continuous map is compact.

Corollary 1.2.22. X is a compact space, Y is a Hausdorff space, then continuous $f: X \to Y$ is closed.

Corollary 1.2.23. Let $f: X \to Y$ be a continuous bijection. X is a compact space, Y is a Hausdorff space, then f is homemorphism.

Lemma 1.2.24 (Lebesgue number lemma). Let \mathcal{A} be an open covering of the metric space (X,d). If X is compact, there is a $\delta > 0$ such that for each subset of X having diameter less than δ , there exists an element of \mathcal{A} containing it. The number δ is called a Lebesgue number for the covering \mathcal{A} .

Theorem 1.2.25. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact(infinite subset has a limit point).
- (3) X is sequentially compact(every sequence has a convergent subsequence).

Theorem 1.2.26 (Tychonoff theorem). An arbitrary product of compact spaces is compact in the product topology.

Definition 1.2.27. A function f from the metric space (X, d_X) to the metric space (Y, d_Y) is said to be uniformly continuous if given $\epsilon > 0$, there is a $\delta > 0$ such that for every pair of points x_0, x_1 of X,

$$d_X(x_0, x_1) < \delta \Longrightarrow d_Y(f(x_0), f(x_1)) < \epsilon.$$

Theorem 1.2.28. Let $f: X \to Y$ be a continuous map of the compact metric space (X, d_X) to the metric space (Y, d_Y) . Then f is uniformly continuous.

Definition 1.2.29 (one-point compactification).

1.2.4 Connectness

Definition 1.2.30. Given X, define an equivalence relation on X by setting $x \sim y$ if there is a connected subspace of X containing both x and y. The equivalence classes are called the components (or the "connected components") of X. The components of X are connected disjoint subspaces of X whose union is X, such that each nonempty connected subspace of X intersects only one of them.

Definition 1.2.31. We define another equivalence relation on the space X by defining $x \sim y$ if there is a path in X from x to y. The equivalence classes are called the path components of X. The path components of X are path-connected disjoint subspaces of X whose union is X, such that each nonempty path-connected subspace of X intersects only one of them.

Definition 1.2.32. A space X is said to be locally connected at \boldsymbol{x} if for every neighborhood U of x, there is a connected neighborhood V of x contained in U. If X is locally connected at each of its points, it is said simply to be locally connected. Similarly, a space X is said to be locally path connected at \boldsymbol{x} if for every neighborhood U of x, there is a path-connected neighborhood V of x contained in U. If X is locally path connected at each of its points, then it is said to be locally path connected.

Proposition 1.2.33. (1) A space X is locally connected if and only if for every open set U of X, each component of U is open in X.

- (2) A space X is locally path connected if and only if for every open set U of X, each path component of U is open in X.
- (3) If X is a topological space, each path component of X lies in a component of X. If X is locally path connected, then the components and the path components of X are the same.

Proposition 1.2.34. The union of a collection of connected subspaces of X that have a point in common is connected.

Proposition 1.2.35. Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then B is also connected.

Proposition 1.2.36. The image of a connected space under a continuous map is connected.

Theorem 1.2.37 (Intermediate Value Theorem). Let $f: X \to Y$ be a continuous map, where X is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y lying between f(a) and f(b), then there exists a point c of X such that f(c) = r.

Theorem 1.2.38 (Extreme value theorem). Let $f: X \to Y$ be continuous, where Y is an ordered set in the order topology. If X is compact, then there exist points c and d in X such that $f(c) \leq f(x) \leq f(d)$ for every $x \in X$.

1.2.5 Completeness

Definition 1.2.39. Let (X, d) be a metric space. A sequence (x_n) of points of X is said to be a Cauchy sequence in (X, d) if it has the property that given $\epsilon > 0$, there is an integer N such that

$$d(x_n, x_m) < \epsilon$$
 whenever $n, m \ge N$.

The metric space (X, d) is said to be complete if every Cauchy sequence in X converges.

Theorem 1.2.40. A metric space (X, d) is compact if and only if it is complete and totally bounded.

Theorem 1.2.41 (extension theorem). Suppose Y and Z are metric spaces, and Z is complete. Also suppose X is a dense subset of Y, and $f: X \to Z$ is uniformly continuous. Then f has a uniquely determined extension $\bar{f}: Y \to Z$ given by

$$\bar{f}(y) = \lim_{\substack{x \to y \\ x \in X}} f(x) \quad \text{ for } y \in Y$$

and \bar{f} is also uniformly continuous.

Definition 1.2.42. Let X be a metric space. If $h: X \to Y$ is an isometric imbedding of X into a complete metric space Y, such that h(X) dense in Y. Then Y is called the completion of X. By extension theorem, the completion of X is uniquely determined up to an isometry.

Definition 1.2.43. A space X is said to be a Baire space if the following condition holds: Given any countable collection $\{A_n\}$ of closed sets of X each of which has empty interior in X, their union $\bigcup A_n$ also has empty interior in X.

Theorem 1.2.44 (Baire Category Theorem). If X is a compact Hausdorff space or a complete metric space, then X is a Baire space.

Theorem 1.2.45. Any open subspace Y of a Baire space X is itself a Baire space.

Theorem 1.2.46. Let X be a space; let (Y,d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions such that $f_n(x) \to f(x)$ for all $x \in X$, where $f: X \to Y$. If X is a Baire space, the set of points at which f is continuous is dense in X.

1.2.6 Separation axiom

1.3. LIMIT 15

1.3 Limit

1.4 Series

In the following theorem, $(E, |\cdot|)$ is a complex Banach space and (x_n) is a sequence in E.

Proposition 1.4.1. For a series $\sum x_k$ in a Banach space $(E, |\cdot|)$, the following are equivalent:

- (1) $\sum x_k$ converges.
- (2) For each $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that

$$\left| \sum_{k=n+1}^{m} x_k \right| < \varepsilon, \quad m > n \ge N.$$

Proposition 1.4.2. A normed vector space is complete if and only if every absolutely convergent series converges.

Proposition 1.4.3. Let $\sum x_k$ be a series in complex Banach space E and $\sum a_k$ a series in \mathbb{R}^+ . Then the series $\sum a_k$ is called a majorant (or minorant) for $\sum x_k$ if there is some $K \in \mathbb{N}$ such that $|x_k| \leq a_k$ (or $a_k \leq |x_k|$) for all $k \geq K$. If a series in a Banach space has a convergent majorant, then it converges absolutely.

Proposition 1.4.4. Let $(a_n)_{n\in\mathbb{Z}}$, $(b_n)_{n\in\mathbb{Z}}$ be two sequences in E, then

$$\sum_{M < n \le M+N} a_n b_n = a_{M+N} B_{M+N} + \sum_{M < n \le M+N-1} (a_n - a_{n+1}) B_n,$$

where $B_n = \sum_{M < k \leq n} b_k$.

If in particular $E = \mathbb{C}$ and (a_n) is a monotone sequence of \mathbb{R} , and

$$\sup_{M < n \le M+N} |B_n| \le \rho,$$

then

$$\left| \sum_{M < n \leqslant M+N} a_n b_n \right| \leqslant \rho \left(|a_{M+1}| + 2 |a_{M+N}| \right).$$

Corollary 1.4.5. (1) (Dirichlet's Rule)

(2) (Leibniz's Rule)

Theorem 1.4.6. Let $\sum x_k$ be a series in E and

$$\alpha := \overline{\lim} \sqrt[k]{|x_k|}.$$

Then the following hold: $\sum x_k$ converges absolutely if $\alpha < 1$. $\sum x_k$ diverges if $\alpha > 1$. For $\alpha = 1$, both convergence and divergence of $\sum x_k$ are possible.

Example 1.4.7. (1) $m \ge 2 \in \mathbb{R}, \sum n^{-m}$ converges.

(2) For any $z \in \mathbb{C}$ such that |z| < 1, the series $\sum z^k$ converges absolutely.

1.4. SERIES

17

(3)

$$\exp: \mathbb{C} \to \mathbb{C}, \quad z \mapsto \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

converges absolutely for all $z \in \mathbb{C}$.

Theorem 1.4.8. Every rearrangement of an absolutely convergent series $\sum x_k$ is absolutely convergent and has the same value as $\sum x_k$.

Theorem 1.4.9. There is a bijection $\alpha: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. If α is such a bijection, we call the series $\sum_{n} x_{\alpha(n)}$ an ordering of the double series $\sum_{k} x_{jk}$. If we fix $j \in \mathbb{N}$ (or $k \in \mathbb{N}$), then the series $\sum_{k} x_{jk}$ (or $\sum_{j} x_{jk}$) is called the j^{th} row series (or j^{th} column series) of $\sum_{k} x_{jk}$. If every row series (or column series) converges, then we can consider the series of row sums $\sum_{j} (\sum_{k=0}^{\infty} x_{jk})$ (or the series of column sums $\sum_{k} (\sum_{j=0}^{\infty} x_{jk})$). Finally we say that the double series $\sum_{j} x_{jk}$ is summable if

$$\sup_{n\in\mathbb{N}}\sum_{j,k=0}^n|x_{jk}|<\infty.$$

Let $\sum x_{jk}$ be a summable double series.

- (1) Every ordering $\sum_{n} x_{\alpha(n)}$ of $\sum_{jk} x_{jk}$ converges absolutely to a value $s \in E$ which is independent of α .
- (2) The series of row sums $\sum_{j} (\sum_{k=0}^{\infty} x_{jk})$ and column sums $\sum_{k} (\sum_{j=0}^{\infty} x_{jk})$ converge absolutely, and

$$\sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} x_{jk} \right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{\infty} x_{jk} \right) = s$$

Theorem 1.4.10. Suppose that the series $\sum x_j$ and $\sum y_k$ in \mathbb{C} converge absolutely. Then the Cauchy product $\sum_n \sum_{k=0}^n x_k y_{n-k}$ of $\sum x_j$ and $\sum y_k$ converges absolutely, and

$$\left(\sum_{j=0}^{\infty} x_j\right) \left(\sum_{k=0}^{\infty} y_k\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} x_k y_{n-k}$$

Corollary 1.4.11.

$$\exp(x+y) = \exp(x)\exp(y)$$

for $x, y \in \mathbb{C}$

1.5 Functions of single variable

1.6 Several Variables functions

Measure

Complex Analysis

3.1 Single Variable

Theorem 3.1.1 (Open mapping Theorem). If f is a holomorphic function and non-constant in a connected open set $\Omega \subset \mathbb{C}$, then f is open.

Proposition 3.1.2. U is an open subset of \mathbb{C} , $f:U\to\mathbb{C}$ is a injective holomorphic map, then $f'(z)\neq 0$ for all $z\in U$. By Open Mapping Theorem, the image of f is still open in \mathbb{C} , we denote it by V. Then $f:U\to V$ is a holomorphic bijective function. f^{-1} is also holomorphic and $(f^{-1})'(z)=\frac{1}{f(z)}$.

Proposition 3.1.3. f holomorphic, $f(a) \neq 0$, then f is local biholomorphic at a.

3.2 Multiple Variables

Functional Analysis

- 4.1 Foundation
- 4.2 Spectrum of Opertor
- 4.3 Banach Algebra

Differential Equation

Harmonicl Analysis

6.1 Abstact Harmonic Analysis