Übungsblatt 5 zu Modellkategorien

Lokal präsentierbare Kategorien: große Kategorien, die von kleinen Daten erzeugt werden.

Aufgabe 1. Kompakte Objekte in Modulkategorien

a) Zeige, dass ein A-Modul M genau dann endlich erzeugt ist, wenn der Funktor $\operatorname{Hom}(M, _) : \operatorname{Mod}(A) \to \operatorname{Set}$ mit filtrierten Kolimiten von Monomorphismen vertauscht, wenn also für jedes filtrierte Diagramm $(V_i)_i$, in der die Übergangsabbildungen $V_i \to V_j$ alle injektiv sind, folgende kanonische Abbildung bijektiv ist.

$$\operatorname{colim} \operatorname{Hom}(M, V_i) \longrightarrow \operatorname{Hom}(M, \operatorname{colim} V_i)$$

b) Zeige, dass ein A-Modul M genau dann endlich präsentiert ist, wenn der Funktor $\operatorname{Hom}(M,_)$ mit beliebigen filtrierten Kolimiten vertauscht, wenn M also \aleph_0 -kompakt ist.

Aufgabe 2. Kompakte Objekte in der Kategorie der topologischen Räume

Sei X ein topologischer Raum, der eine Teilmenge $A \subseteq X$ besitzt, die nicht offen ist. Zeige, dass X in der Kategorie der topologischen Räume nicht \aleph_0 -kompakt ist.

Aufgabe 3. Vertauschbarkeit von filtrierten Kolimiten mit endlichen Limiten Sei $F: \mathcal{C} \times \mathcal{D} \to \text{Set}$ ein Funktor.

- a) Konstruiere einen kanonischen Morphismus $\psi: \operatornamewithlimits{colim}_{c \in \mathcal{C}} \lim_{d \in \mathcal{D}} F(c,d) \to \lim_{d \in \mathcal{D}} \operatornamewithlimits{colim}_{c \in \mathcal{C}} F(c,d).$
- b) Sei $\mathcal C$ sogar eine filtrierte Kategorie. Zeige, dass dann ψ ein Isomorphismus ist.

Folgere: Endliche Kolimiten von \aleph_0 -kompakten Objekten sind \aleph_0 -kompakt.

Aufgabe 4. Das Theorem von Whitehead für Modellkategorien

Zeige, dass ein Morphismus zwischen bifasernden Objekten in einer Modellkategorie genau dann eine Homotopieäquivalenz ist, wenn er eine schwache Äquivalenz ist.

Aufgabe 5. Morphismen zwischen kofasernden und fasernden Objekten

- a) Seien X ein kofaserndes und Y ein faserndes Objekt in einer Modellkategorie \mathcal{M} . Zeige, dass der kanonische Morphismus $\pi(X,Y) \to \pi(RX,QY)$ bijektiv ist.
- b) Beweise, dass in $\text{Ho}(\mathcal{M})$ jeder Morphismus Komposition von Morphismen der Form $\gamma(f)$ mit $f \in \text{Mor } \mathcal{M}$ und Morphismen der Form $\gamma(f)^{-1}$ mit $f \in \mathcal{W}$ ist.

