DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

FOUR QUADRANT OPEN WATER CHARACTERISTICS OF CONTROLLABLE PITCH PROPELLER 4739 DESIGNED FOR LSD-41 (MODEL 5367)

ΒY

GARY A. HAMPTON

Distribution Unlimited;
Approved for Public Release

SHIP PERFORMANCE DEPARTMENT REPORT

JANUARY 1980

DTNSRDC/SPD-0049-12

80 4 . 7

005

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
(14	DTNSRDC/SPD-9949-12	3. RECIPIENT'S CATALOG NUMBER		
6	FOUR QUADRANT OPEN WATER CHARACTERISTICS OF CONTROLLABLE PITCH PROPELLER 4739 DESIGNED FOR LSD-41 (MODEL 5367).	6. PERFORMING ORG. REPORT NUMBER		
$\left(\frac{c}{c}\right)$	GARY A. HAMPTON	8. CONTRACT OR GRANT NUMBER(*) WR. 92131 1-1524-692		
	David W. Taylor Naval Ship R&D Center Ship Performance Dept. Bethesda, Md. 20084	10. PROGRE FELEMENT PROJECT, TASK AREA & SORK UNIT NUMBERS		
	Naval Sea Systems Command Washington, D. C. 20362	JANUAL 188		
	14 MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office)	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
	16. DISTRIBUTION STATEMENT (of this Report)			
	Approved for Public Release: Distribution Unlimited			
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro	m Report)		
	18. SUPPLEMENTARY NOTES			
1	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
	Propeller Diameter; Propeller Thrust; Propeller S Open Thrust and Torque	peed of Advance;		
	20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report presents the results of an exper to evaluate the open water thrust and torque on a pitch design propeller for the Dock Landing Ship	controllable reversible		
	389	694 JW		

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

URITY CLASSIFICATION	OF THIS PAGE (When	Data Enterad)		
		•		
•				

TABLE OF CONTENTS

page
iv
V
vi
vii
1
1.
1
2
3
3
4
4

Accession For
NEID Condi
LI.U TAB
Un transpa
J
1
11: 10:11:11
A-131 Gle Codes
Last md/or
Dist special
1 /4
171

LIST OF FIGURES

	page
1 - Schematic Drawing of Propeller 4739	5
2 - Studio Photographs of Propeller 4739 $P/D = 1.511$	6
3 - Open Water Thrust and Torque P/D = 1.813	7
4 - Open Water Thrust and Torque P/D = 1.511	8
5 - Open Water Thrust and Torque P/D = 1.058	9
6 - Open Water Thrust and Torque P/D = 0.604	10
7 - Open Water Thrust and Torque P/D = 0.000	11
8 - Open Water Thrust and Torque $P/D = -0.302$	12
9 - Open Water Thrust and Torque $P/D = -0.604$	13
10 - Open Water Thrust and Torque $P/D = -1.058$	14
LIST OF TABLES	
1 - Experimental Conditions	15
2 - Faired Open Water Characteristics P/D = 1.813 Ahead	16
3 - Faired Open Water Characteristics P/D = 1.813 Crashahead	17
4 - Faired Open Water Characteristics P/D = 1.511 Ahead	18
5 - Faired Open Water Characteristics P/D = 1.511 Crashahead	19
6 - Faired Open Water Characteristics P/D = 1.058 Ahead	20
7 - Faired Open Water Characteristics P/D = 1.058 Crashahead	21
8 - Faired Open Water Characteristics P/D = 0.604 Ahead	22
9 - Faired Open Water Characteristics P/D = 0.604 Crashahead	23
10 - Faired Open Water Characteristics P/D = 0.000 Backing	24
11 - Faired Open Water Characteristics P/D = 0.000 Crashback	25

LIST OF FIGURES

					(conti	nued)			page
12	-	Faired	Open	Water	Characteristics	P/D	= -0.302	Backing	2
13	-	Faired	Open	Water	Characteristics	P/D	= -0.302	Crashback	2
14	_	Faired	Open	Water	Characteristics	P/D	= -0.604	Backing	28
15	-	Faired	Open	Water	Characteristics	P/D	= -0.604	Crashback	2
16	-	Faired	Op en	Water	Characteristics	P/D	= -1.058	Backing	30
17	_	Faired	Open	Water	Characteristics	P/n	= -1.058	Crashback	3:

NOTATION

c _Q	Modified Torque Coefficient = $Q/\rho D^3 (V_A^2 + n^2 D^2)$
$\mathbf{c}_{\mathbf{T}}$	Modified Thrust Coefficient = $T/\rho D^2 (V_A^2 + n^2 D^2)$
D	Propeller Diameter
J	Advance Coefficient = V_A/nD
K _Q	Torque Coefficient = $Q/\rho n^2 D^5$
K _T	Thrust Coefficient = $T/\rho n^2 D^4$
n	Rate of Revolution
P	Propeller Pitch
Q	Propeller Torque
T	Propeller Thrust
$v_{\mathbf{A}}$	Propeller Speed of Advance
μ	Modified Advance Coefficient = $V_A / V_A^2 + n^2 D^2$
ρ	Density

METRIC CONVERSIONS

1 foot	= 0.3048 m (meters)
1 1001	** U*JU7U M \	

1 ton (2240 lbs) =
$$1.016$$
 t (metric ton)

ABSTRACT

An experimental program was conducted at the David W. Taylor Naval Ship R&D Center (DTNSRDC) to evaluate the thrust and torque on the design propeller of the Dock Landing Ship (LSD-41) over a wide range of operating conditions. The analysis revealed no unusual results with regard to performance

ADMINISTRATIVE INFORMATION

The Naval Sea Systems Command (NAVSEA) Code 521 initiated a model experimental program at DTNSRDC to design and evaluate the open water performance of the propeller for the LSD-41. Work was authorized by NAVSEA Work Request 92131 dated 16 January 1979 and the work was performed under DTNSRDC Work Unit Number 1-1524-692.

INTRODUCTION

Propeller 4739 is a controllable reversible pitch propeller for the new Dock Landing Ship (LSD-41). The propeller was designed, manufactured and evaluated for open water performance at the David W. Taylor Naval Ship Research & Development Center (DTNSRDC). The blades were adjustable so that various pitch angles could be evaluated. The blade pitches were set by inserting specially designed pitch blocks attached to the root of the blade which gave the proper blade angle when inserted into the hub. The experiments were performed in the DTNSRDC Carriage I Towing Basin Facility Various operating conditions were simulated in the Basin and investigated for thrust and torque over a wide range of operating conditions. A schematic drawing of Propeller 4739 is shown in Figure 1 and studio

photographs are presented in Figure 2. Listed below are some of the full scale and model dimensions of the propeller.

	Model Scale	Full Scale
Diameter	14.616 in (37.11 cm)	13.50 ft (4.11 m)
Chord at .7R	3.072 in (7.80 cm)	5.44 ft (1.66 m)
Pitch at .7R	11.520 in (29.26 cm)	20.40 ft (6.22 m)
Number of Blades	5	5

DYNAMOMETRY

Propeller thrust and torque were measured by using a variable reluctance 100 in-1b transmission dynamometer. Power to rotate the propeller was supplied by a single constant torque motor selected for its ability to control the shaft rotation rate through all experimental conditions. Propeller rpm and propeller boat velocity were determined respectively by a Hewlett Packard rotopulser and a revolution-speed-time recorder. Propeller depth of submergence during the entire experiment was 13.5 inches (34.29 cm) at the shaft centerline.

The transmission dynamometer was calibrated over a range of -100 to +100 lbs (-444.8 to 444.8 N) for thrust and -120 to +120 in-lbs (-13.56 to 13.56 N.m) for torque. The response of the dynamometer for both thrust and torque remained linear with applied load. A check calibration was performed after the completion of the experiments to confirm the repeatability of the dynamometer data. The before and after dynamometer calibrations were in agreement.

EXPERIMENTAL PROCEDURE

Experiments were conducted in uniform flow over a range of positive and negative advance coefficients representing 120% to -70% of design pitch. These experimental conditions represented a quasi-steady simulation of the various modes of propeller operation including steady ahead, steady backing, crashback and crashahead.

Table 1 lists the experimental conditions. Each condition was established by setting the propeller rpm and propeller boat velocity to achieve a given advance coefficient. To obtain uniform flow into the propeller, it was necessary to drive the propeller from downstream for all conditions. All experimental conditions were run in one direction in the basin. Conditions with astern velocity on the ship (such as steady backing and crashahead) were simulated in the experiments by rotating the blades 180 degrees about the axis and reversing the direction of shaft rotation.

DATA ACQUISITION AND ANALYSIS

All data were digitized and analyzed by using an analog-to-digital converter and an In- 'ata minicomputer (Model 70). The records of thrust, torque, rotational speed, and speed of advance were digitized and averaged over a 5-sec time interval. Computer programs were developed for the Interdata minicomputer to enable an on-line data analysis. This included subtraction of "no loads", and nondimensionalization by the appropriate factors. The data were printed out as a function of advance coefficient for immediate plotting and checking.

RESULTS

There are several ways to present open water data over the complete range of advance coefficients from locked shaft ahead to locked shaft astern. All data in this report is presented in two forms, the $K_T - K_Q - J$ system and the $C_T - C_Q - \mu$ system. Furthermore, whenever any value of K_T , $10K_Q$, or J exceeds 1.0, conversion to 1/J, $1/K_T$, or $1/10K_Q$ is made for plotting purposes. Definition of the various coefficients are given in the notation.

Tables 2 through 17 and Figures 3 through 10 are the results of the open water experiments. The figures show both the experimental data points and the faired line representing these data. The tabulated data are faired data only. The faired data were obtained by calculating K_T , K_Q , and J as well as C_T , C_Q , and μ from the measured quantities (thrust, torque, speed and rpm). K_T and K_Q were each faired independently against J using a standard least squares computer routine. The polynomial coefficients were then used to provide the tabulated data at even values of J. Similarly, the data in the C_T and C_Q form were faired against μ and values of C_T and C_Q calculated at values of μ which corresponded to the tabulated values of J. Since the two forms of data were faired independently, some insignificant differences occur if one tries to convert from one set of coefficients to the other.

CONCLUSIONS

In conclusion, an inspection of the data reveals that there are no unusual results with regard to thrust and torque performance over the range of simulated operating conditions.

Figure 1 - Drawing of Propeller 4739

Figure 2 - Studio Photographs of Propeller 4739

Figure 3 - Open Water Thrust and Torque P/D = 1.813

Figure 4 - Open Water Thrust and Torque P/D = 1.511

Figure 5 - Open Water Thrust and Torque P/D = 1.058

Figure 6 - Open Water Thrust and Torque P/D = 0.604

Figure 7 - Open Water Thrust and Torque P/D = 0.000

Figure 8 - Open Water Thrust and Torque P/D = -0.302

Figure 9 - Open Water Thrust and Torque P/D = -0.604

Figure 10 - Open Water Thrust and Torque P/D = -1.058

TABLE 1
EXPERIMENTAL CONDITIONS

P/D	Condition	Figure Number	Table Number
1.813	Ahead Crashahead	3 3	2 3
1.511	Ahead	4	4
	Crashahead	4	5
1.058	Ahead	5	6
	Crashahead	5	7
0.604	Ahead	6	8
	Crashahead	6	9
0.000	Backing	7	10
	Crashback	7	11
-0.302	Backing	8	12
	Crashback	8	13
-0.604	Backing	9	14
	Crashback	9	15
-1.058	Backing	10	16
	Crashback	10	17

TABLE 2
Faired Open Water Characteristics P/D = 1.813 Ahead

J	$\kappa_{_{ m T}}$	10K _Q	μ	$c_{\mathtt{T}}$	10C _Q
0.000	.862	2.011	0.000	. 861	2.008
.050	.842	1.952	• 05 0	.842	1.951
-100	.820	1.893	.100	. 813	1.876
.150	.796	1.833	.148	.778	1.792
.200	.770	1.774	•196	.739	1.703
.250	.744	1.717	. 243	• 699	1.613
.300	.717	1.660	-287	. 657	1.522
.350	•69 0	1.606	• 330	. 615	1.431
.400	.664	1.553	.371	•573	1.341
•450	.637	1.562	-410	• 531	1.252
•500	.611	1.453	.447	• 490	1.165
.550	•586	1.406	.482	• 451	1.081
.600	.561	1.361	.514	.413	1.001
.650	•537	1.317	• 545	•377	•925
. 7úú	.513	1.274	•573	. 343	.854
.750	.490	1.233	.600	• 312	.787
.800	.467	1.192	.625	· 283	•724
.850	•445	1.152	•648	• 257	.666
.900	.423	1.111	.669	.232	•612
.950	•401	1.071	•689	.210	•561
1.000	.379	1.030	.707	.189	.514
1.050	.357	.987	.724	• 170	.469
1.166	• 335	• 944	.740	•152	•427
1.150	•312	•898	• 755	• 135	.388
1.200	.289	•851	.768	.119	•350
1.250	.265	.801	.781	.105	.314
1.300	•241	.749	•793	• 091	.280
1.350	.215	.693	.804	.077	•248
1.400	.188	•635	.814	.065	.216
1 • 45ù	.159	•572	.823	• û 5 2	.186
1.500	.130	•506	.832	• 041	.157
1.550	.098	• 436	. 840	.029	.130
1.600	.065	.362	.848	• 019	.103
1.650	.031	.283	• 855	.008	.077
1.700	006	.200	.862	002	• 052
1.750	045	.113	.868	011	.028
1.800	086	.021	. 874	021	.005
1.850	128	076	.880	030	017
1.900	173	177	.885	038	039
1.950	220	284	.890	047	059
2.000	270	394	.894	055	080
2.050	321	510	. 899	063	ù99
2.100	375	630	.903	070	118

TABLE 3

Faired Open Water Characteristics
P/D = 1.813 Crashahead

0.000	J	KT	10K _Q	μ	$c_{\mathbf{T}}$	^{10C} Q
050	0.000	. 873		_	•	Ų
100					.873	2.002
150					.853	
2.u .759					.819	
250					• 777	
-3(0					.730	
350					•682	
- 4 L					• 636	
450					• 594	
500					• 557	
550					• 526	
6LL .638						
650						
-7 C						
75L .715						
800					•457	
850					.457	
900					• 460	
950	_				• 466	
-1.000					• 473	
-1.050					. 482	
-1.100						
-1.150					• 499	
-1.2uu 1.271 2.879755 .514 1.162 -1.250 1.351 3.076761 .527 1.197 -1.360 1.432 3.274793 .532 1.210 -1.400 1.595 3.665814 .539 1.224 -1.560 1.683 3.857823 .541 1.226 -1.560 1.768 4.044832 .542 1.226 -1.550 1.853 4.227840 .543 1.223 -1.650 2.023 4.577855 .542 1.223 -1.760 2.107 4.744862 .543 1.219 -1.750 2.192 4.907868 .538 1.197 -1.850 2.360 5.222860 .538 1.197 -1.850 2.360 5.222880 .533 1.178 -1.990 2.444 5.375885 .530 1.185 -1.990 2.444 5.375885 .530 1.168 -1.950 2.528 5.526890 .527 1.157 -2.050 2.697 5.828899 .519 1.135						
-1.250					.514	
-1.360					• 521	
-1.350						
-1.400						
-1.450					• 536	
-1.5C0		-			• 539	
-1.550				823		
-1.600						
-1.650						
-1.700						
-1.75u 2.192 4.907862 .540 1.206 -1.800 2.276 5.066874 .536 1.197 -1.850 2.360 5.222880 .533 1.178 -1.900 2.444 5.375865 .530 1.168 -1.95u 2.528 5.526890 .527 1.157 -2.000 2.612 5.677894 .527 1.157 -2.050 2.697 5.828899 .519 1.135						
-1.800				862	• 540	
-1.850	-1.800					1.197
-1.900						
-1.950					•533	
-2.000 2.612 5.677894 .527 1.157 -2.050 2.697 5.828899 .519 1.135 -2.100 2.781 5.981897 .519	-1.954					
-2.050 2.697 5.828899 .519 1.135 -2.100 2.781 5.981897	-2.000					
-2.160 2.781 5.981 - 002 ·519 1.135	-2.050					
					•519	
A * A 1- *		C 4 1 (1 I	7.761	903	-516	1.124

TABLE 4

Faired Open Water Characteristics
P/D = 1.511 Ahead

J	$\kappa_{_{ m T}}$	10K _Q	μ	c _T	^{10C} Q
0.000	700			1	Q
.050	•789 •766	1.534	0.000	. 789	1.534
• 100	.741	1.495	• 05 0	.764	1.491
.150	.714	1.451	.100	• 733	1.437
• 2 Gu	.686	1.404	•148	• 698	1.374
-250	•658	1.356 1.308	• 196	• 660	1.305
.300	.631	1.262	• 243	• 619	1.232
.350	-604	1.217	.287	• 579	1.157
-400	.577	1.174	• 330	• 538	1.083
• 450	•552	1.133	.371	•498	1.011
•500	.527	1.094	•410	• 459	•942
• 550	.503	1.058	•447	•422	.875
•6û0	.479	1.022	•482 546	- 386	-812
. € 50	•456	. 988	•514 •545	• 353	• 752
.700	.434	•954	•573	• 321	•695
• 750	-411	• 920	-600	• 291	•641
.866	.388	. 885	• 625	• 263	•589
• 850	•365	.849	•648	• 236	.540
•900	.341	.811	.669	• 211	•493
• 950	•316	.771	• 689	• 188 466	.449
1.000	.290	.728	• 707	•166	• 405
1.050	.263	.682	.724	•145	.363
1.100	•235	•633	.740	• 125	• 323
1.150	•206	•580	. 755	•106 •089	•285
1.200	•175	•524	.768	•072	.249
1.250	•142	• 464	.781	• 056	•214
1.300	-108	-400	•793	• 041	-181
1.350	.073	• 333	.804	• 026	.149
1.400	•03E	•263	.814	•613	.119
1.450	003	• 189	.823	000	•090 •062
1.500 1.550	043	.113	• 832	013	•036
1.600	085	•033	.840	025	•011
1.650	128	48	.848	036	013
1.700	173	133	• 855	047	035
1.750	219	220	.862	057	057
1.800	267	310	.868	066	077
1.850	317 360	- • 4 0 3	.874	076	8 97
1.900	369	500	.880	084	115
1.950	423 481	602	•885	093	133
2.000	541	710	• 89B	161	150
2.050	606	824	•894	108	166
2.100	-•676	948	.899	116	181
	-•0/6	-1.084	•903	123	196

TABLE 5

Faired Open Water Characteristics
P/D = 1.511 Crashahead

J	$\kappa_{_{{f T}}}$	10K _Q	μ	$^{\mathrm{C}}_{\mathrm{T}}$	10c _Q
0.000	.781	1.517	0.000	.781	1.516
050	.839	1.665	050	.836	1.661
100	.867	1.740	160	.859	1.724
150	.874	1.762	148	855	1.722
2(0	.865	1.746	196	.831	1.677
250	.846	1.705	243	•796	1.603
300	.823	1.651	287	•754	1.515
356	.797	1.591	330	.710	1.419
400	.774	1.532	371	.668	1.324
450	.754	1.481	416	•628	1.234
500	.740	1.441	447	• 593	1.153
550	.732	1.414	482	• 562	1.084
600	.732	1.402			
650	.740		514	• 538 510	1.028
700	.756	1.407	545 627	•519	.985
750	.780	1.429	573	• 506	.955
8GO		1.466	000	• 498 • 06	•936
	.812	1.520	625	. 494	•926
850 900	•850	1.587	648	• 493 • 05	.924
950	.89€ .948	1.668	669	• 495	•926
-1.000		1.761	689	• 499	.931
-1.050	1.004	1.863	 707	•504 500	.938
-1.100	1.066	1.974	724	• 509	.945
-1.150	1.132	2.092	740	.514	.952
-1.200	1.201	2.216 2.344	 755	•519	.958
	1.272		~. 768	• 523	.962
-1.250 -1.300	1.346	2.475	781	• 526	.965
	1.421	2.607	793	• 528	.966
-1.350	1.497	2.740	R84	• 529	.965
-1.400	1.573	2.873	814	• 550	.963
-1.450	1.650	3.006	823	•530	•9 50
-1.500	1.727	3.137	832	• 529	•955
-1.550	1.804	3.267	840	.527	.950
-1.600	1.880	3.396	848	. 525	.944
-1.65C	1.956	3.523	855	• 523	.937
-1.700	2.031	3.649	862	• 520	.931
-1.750	2.106	3.774	868	•516	.923
-1.800	2.180	3.899	874	•512	.915
-1.850	2.254	4.024	880	•509	.909
-1.900	2.328	4.149	885	• 505	.902
-1.950	2.402	4.276	890	•501	•895
-2.000	2.477	4.405	894	• 496	.889
-2.050	2.551	4.536	899	• 492	•881
-2.100	2.627	4.671	903	- 488	•875

TABLE 6

Faired Open Water Characteristics P/D = 1.058 Ahead

J	$\kappa_{_{ m T}}$	10K _Q	μ	$c_{_{\mathrm{T}}}$	10C _Q
0.000	• 552	• 793	0.000	• 551	.790
• 050	•532	.775	.050	. 533	.776
.100	•512	• 756	-100	•509	.751
.150	•492	.737	.148	- 481	.720
• 200	.471	.717	•196	-451	.687
.250	• 449	•697	.243	• 421	•652
.300	.428	.675	.287	• 391	.617
• 350	•405	• 652	.330	• 360	.580
.466	.382	.628	.371	• 330	•542
• 450	•357	•603	•410	- 298	•503
•500	.332	•576	• 447	• 267	•463
•550	.306	.547	•482	• 237	•423
•6ú0	.279	•517	•514	• 206	•382
•650	•251	•485	• 545	• 177	.342
.700	.222	•451	•573	• 149	.303
.750	.191	•415	•600	•122	•265
.800	.159	• 377	•625	• 096	.228
• 850 000	.125	.337	.648	• 072	•193
•900 •950	• 09 0	• 295 250	• 669	• 049	•16u
1.000	.054	•250	.689	• 027	.128
1.050	.016 024	•203	• 707	• 007	•099
1.100	065	.153 .102	•724	013	.070
1.150	108	.047	•740 •755	030 047	.044
1.200	153	010	•755 •768	047	.019
1.250	200	070	.781	063 078	005 028
1.300	249	132	.793	092	049
1.350	300	198	.804	106	069
1.400	352	266	. 814	118	088
1.450	407	337	.823	30	107
1.500	464	410	.832	142	124
1.550	523	487	. 840	152	141
1.600	584	567	.848	163	156
1.650	647	649	. 855	172	171
1.700	712	735	.862	182	186
1.750	780	823	.868	191	200
1.800	849	915	.874	199	213
1.850	921	-1.610	.880	207	226
1.900	996	-1.107	.885	215	238
1.950	-1.072	-1.208	-890	222	249
2.000	-1.151	-1.312	. 894	229	260
2.05ù	-1.232	-1.419	.899	236	271
2.100	-1.315	-1.529	• 903	242	281

TABLE 7

Faired Open Water Characteristics
P/D = 1.058 Crashahead

J	K _T	10K _Q	μ	c _T	10C _Q
0. 0. 3	.533	.767	0.100	• 531	.768
0.00	.588	. 840	050	•594	.835
050 160	.609	.873	10C	.601	.866
150	.607	.875	148	·587	.859
2.0	.589	.858	196	• 563	.825
250	.562	.828	243	•531	.777
360	.533	.793	287	. 494	.724
350	.504	.756	330	• 455	.673
400	.480	.723	371	.416	.625
450	.462	.696	410	. 383	582
500	. 452	.077	447	•357	.545
550	.451	•66 8	482	.340	.515
600	• 45 9	• 670	514	• 332	•492 477
65.	.477	.683	545	. 332	,477
700	•503	.707	573	. 337	•470
750	.536	.741	600	. 347	.470 .475
800	.581	.785	625	• 359	.485
850	.63ü	. 838	648	.372	.497
900	.685	.900	669	.386	.511
950	.744	.969	 €89	• 398 • 4ú9	.525
-1.000	. 80 8	1.43	767	.419	.539
-1.050	.874	1.123	- .724	.427	.551
-1.100	.942	1.206	740	.433	.561
-1.150	1.011	1.292	~ . 755	• 438	.573
-1.200	1.080	1.380	-,76 8	.442	.576
-1.250	1.150	1.470	781 793	. 445	.581
-1.3û0	1.218	1.559	804	. 446	.583
-1.350	1.246	1.648	814	. 447	.58+
-1.460	1.352	1.737	823	. 447	.584
-1.450	1.417	1.824	832	. 447	.582
-1.500	1.481	1.910 1.994	840	. 446	.580
-1.550	1.543	2.077	848	. 445	.576
-1.600	1.604	2.158	855	. 4444	.573
-1.65u -1.700	1.664 1.724	2.238	862	• 442	.568
	1.783	2.317	868	. 440	.56+
-1.750	1.843	2.395	874	.438	•559
-1.8uu -1.850	1.903	2.473	880	. 436	• 5 55
	1.965	2.551	385	. 434	.551
-1.980 -1.950	2.028	2.629	890	. 432	•546
-2.000	2.093	2.769	894	.430	.542
-2.050	2.161	2.791	899	.428	.539
-2.1Gù	2.231	2.874	903	• 425	•535
-cerun	F 4F 0 Y				

TABLE 8

Faired Open Water Characteristics P/D = 0.604 Ahead

J	$\kappa_{\overline{T}}$	10K _Q	μ	$c^{\mathbf{T}}$	¹⁰⁰ Q
0.000	.199	.277	0.000	.198	.276
.050	.186	.274	.050	.186	.275
.100	.174	.271	.100	. 172	.269
.150	.161	.266	-148	. 158	.260
.200	.148	.261	.196	. 142	.250
.250	.134	.254	. 243	. 126	.239
.300	.118	.247	.287	.109	226ء
.350	.101	.238	.330	• 090	.212
.400	- 08 2	.229	.371	.071	.197
• 450	.061	.218	-410	. 051	.182
•500	.038	.206	.447	. 931	.165
. 556	.013	.193	.482	.010	•149
.600	013	.178	.514	010	•131
.650	042	.162	.545	030	.114
.700	073	.145	•573	050	.097
.75û	106	•126	.600	068	.080
.800	140	.106	• 625	086	.064
. 850	177	.084	.648	103	.048
.900	215	.061	•669	119	.033
•950	254	• 636	.689	134	.018
1.000	296	.009	.707	148	-004
1.050	339	019	.724	161	009
1.100	384	û49	.740	173	022
1.150	430	080	• 755	184	034
1.200	478	113	.768	195	046
1.250	527	147	.781	205	057
1.300	579	183	• 793	215	067
1.350	632	220	.804	224	077
1 - 400	687	259	.814	232	086
1.450	744	299	.823	240	095
1.500	802	340	.832	247	103
1.550	864	383	. 840	254	111
1.600	927	427	•848	261	119
1.650	992	472	• 855	268	126
1.700	-1.060	518	.862	274	133
1.750	-1.131	566	• 868	279	139
1.800	-1.204	614	.874	285	145
1.850	-1.280	- • 665	.880	290	- • 15 1
1.900	-1.358	716	•885	295	157
1.950	-1.439	770	. 89ú	299	162
2.000	-1.522	825	.894	304	167
2.050	-1.607	882	.899	308	172
2.100	-1.695	941	• 903	312	177

TABLE 9

Faired Open Water Characteristics
P/D = 0.604 Crashahead

Dist.

J	κ_{T}	10K _Q	μ	$^{\mathrm{C}}\mathrm{_{T}}$	10C _Q
0.000	•205	. 282	0.000	. 204	282
050	.213	.282	050	.215	.282
166	.215	.278	16	.212	•282 •275
150	.213	.272	148	.207	.266
200	.210	.266	196	• 202	•256
- • 2 5û	.208	.261	243	• 197	•246
300	.209	.257	287	• 193	.236
350	.213	• 256	330	. 190	•229
400	.220	.257	371	.190	•221
45ú	.232	.260	410	.192	.216
500	.248	.267	447	. 197	.213
550	.267	.276	482	. 204	-212
600	.290	.288	514	.213	.212
65.	.317	•3u2	545	. 223	.213
700	.346	.319	573	. 234	.214
750	.378	• 337	600	. 244	.216
8 .0	•412	.357	625	. 253	.219
850	.448	.378	648	. 261	.220
960	•486	.402	669	+259	.22?
950	•525	.426	689	. 276	.224
-1.0CG	•566	.451	707	. 282	.225
-1.050	.608	•478	724	. 287	•227
-1.100	•652	.506	740	. 293	.228
-1.150	• 6 96	•53 5	755	· 298	.230
-1.200	•743	•560	768	.302	•231
-1.250	.791	• 597	781	.307	.233
-1.300	,840	.630	793	.311	.234
-1.350	.892	•664	504	. 316	.236
-1.400	•945	.760	814	. 326	.237
-1.450	1.001	.738	823	. 524	•239
-1.500	1.059	•777	832	* 328	.240
-1.550	1.120	.818	840	• 335	.242
-1.600	1.184	.861	- • 848	• 335	.243
-1.65u	1.25ù	• 906	855	• 339	.245
-1.760	1.320	• 954	862	• 342	.246
-1.750 -1.800	1.391	1.003	468	. 345	.248
-1.850	1.466	1.054	-,874	• 348	•249
-1.960	1.543	1.108	880	• 350	.251
-1.9%0 -1.950	1.623	1.163	885	• 353	.252
~2.000	1.705	1.221	89û	• 355	•254
-2.050	1.789	1.280	894	. 357	.255
-2.100	1.875	1.341	899	• 358	.257
-2 + 1 ()	1.962	1.404	903	• 360	.259

TABLE 10

Faired Open Water Characteristics
P/D = 0.000 Backing

J	ĸ _T	10K _Q	μ	$c_{\mathtt{T}}$	10C _Q
0.000	031	.183	0.000	031	.183
050	030	.180	050	030	.179
100	027	.178	100	027	.176
150	023	.177	148	022	.173
200	017	.176	196	016	.169
250	010	•175	243	009	.165
300	001	.175	287	001	.160
350	.009	.174	330	.008	•155
400	.020	.174	371	.017	.150
450	.033	.174	410	.027	.144
500	.047	.173	447	.038	.139
550	.062	.173	482	• D48	.133
600	.078	•172	514	.058	.126
650	.096	.171	545	• 067	.120
700	-114	•169	573	.077	.114
750	.134	.167	600	.086	.107
800	.155	.165	625	• 095	.101
850	.178	.163	648	.103	.095
900	.201	.160	669	•111	.059
950	.226	.157	689	. 119	.082
-1.000	.252	•154	707	• 126	.077
-1.050	.279	.150	724	.133	.071
-1.100	.308	.147	740	• 139	.066
-1.156	• 33 8	.143	755	. 145	.061
-1.200	.370	.139	-,768	• 152	.056
-1.250	.403	. 135	781	• 157	•052
-1.300	.439	.131	793	• 163	.048
-1.350	•475	.127	804	•168	.045
-1.400	•513	.123	814	• 173	-041
1.450	•552	.119	823	. 178	.038
-1.500	.594	.115	832	. 183	.036
-1.550	.637	.112	840	• 188	.C33
-1.640	•682	.109	84 8	. 192	.031
-1.650	•729	.106	855	. 196	.029
-1.700	•778	.104	862	- 200	.027
-1.750	.828	.102	868	. 204	.026
-1.800	.580	.101	874	. 208	.024
-1.850	• 935	+100	880	. 212	•023
-1.900	.991	-100	885	. 215	.022
-1.950	1.049	.100	890	• 219	.021
-2.000	1.189	.101	894	. 222	.020
-S.050	1.171	.102	899	• 225	.020
-2.160	1.234	.104	903	. 228	.019

TABLE 11

Faired Open Water Characteristics
P/D = 0.000 Crashback

The first of the second of the

J	$\kappa_{_{\mathrm{T}}}$	10K _Q	μ	$\mathtt{c}_{_{\mathbf{T}}}$	100 _Q
0.000	011	.161	0.000	009	.180
.050	044	.191	.050	045	.193
.100	073	.200	.100	074	.200
.156	101	.208	.148	098	.203
500	127	.215	.196	120	.205
.250	151	.222	. 243	141	.207
.300	175	. 228	.287	159	.208
.350	198	. 233	.330	176	.208
.400	222	.239	.371	192	.207
.450	246	.244	.410	206	.205
.500	270	.249	.447	218	.201
.550	296	•254	•482	229	.197
.600	323	•259	.514	238	.192
.650	352	•264	• 545	247	.186
.700	-,382	.270	.573	 256	.181
.750	414	.275	.600	264	.175
. 80G	449	.280	•62 5	272	.169
.850	485	.286	•648	280	.164
.900	524	.291	•669	288	.159
.95û	565	.297	•689	295	.154
1.000	608	.303	.707	303	.150
1.050	654	.309	.724	310	.146
1.100	703	• 315	.740	318	.142
1.150	754	.321	.755	324	.138
1.200	807	.327	.768	331	.134
1.250	863	. 333	.781	338	.131
1.300	922	• 33 9	.793	344	.127
1.350	983	. 345	.804	349	.124
1.400	-1.046	.351	•614	~.355	.120
1.450	-1.112	.357	.823	360	.117
1.500	-1.181	• 362	.832	 365	.113
1.550	-1.251	.368	.840	369	.110
1.600	-1.324	. 373	.848	 373	.106
1.650	-1.400	•377	.855	377	.103
1.700	-1.477	.382	~862	381 384	.096
1.750	-1.557	.386	±868 470	387	.193
1.800	-1.639	• 389 303	.874 .880	390	.090
1.850	-1.723	.393 .395	• 885	3 92	.087
1.900	-1.809	• 398 • 398	• 890	395	.083
1.950	-1.897	•398 •399	• 894	397	.080
2.000	-1.987	.400	.899	399	.077
2.050	-2.078		•903	401	.074
2.100	-2.172	•401	•703	- • 4 O T	• • • •

TABLE 12

Faired Open Water Characteristics P/D = -0.302 Backing

J	$\kappa_{_{ m T}}$	10K _Q	μ	$^{\mathrm{c}}{}_{\mathrm{T}}$	10C _Q
0.000	101	338	0.000	100	337
050	111	345	050	113	346
100	118	349	100	118	347
150	120	~. 350	148	117	342
- • 5 00	120	349	196	114	334
250	117	345	243	108	323
300	111	339	287	100	310
350	102	332	-:330	091	296
400	091	324	~ 4 37 1	080	280
450	079	314	416	067	262
500	064	304	447	053	244
550	048	293	482	038	226
600	030	281	514	623	208
€50	010	269	545	008	190
700	.011	257	573	• 007	172
750	.033	245	600	• 022	156
800	.056	233	625	• 035	141
850	.08 ü	220	648	• 048	127
980	.10€	208	669	• 060	114
958	.133	196	689	. 07 1	102
-1.000	•160	134	707	- 082	091
-1.05û	.189	172	724	.091	081
-1.100	.219	161	740	- 100	072
-1.150	.249	149	755	• 108	064
-1.200	-281	138	768	• 115	057
-1.250	.314	127	761	•122	050
-1.300	.347	116	793	• 128	044
-1.350	. 38 2	105	804	. 134	038
-1.400	-418	095	814	• 140	033
-1.450	•455	884	823	• 145	028
-1.500	•493	074	832	• 150	024
-1.550	•532	063	840	• 155	020
-1.600	.572	053	848	• 159	016
-1.650	-614	042	855	• 163	012
-1.700	.657	031	862	• 167	009
-1.750	.701	021	868	• 171	006
-1.800	.746	009	- • 874	•175	003
-1.850 -4.000	• 793	•û02	880	•178	000
-1.900 -1.950	.841	•013	885	• 182	.003
-1.950 -2.000	• 89 0	• 025	890	.185	.005
	•941	•038	894	• 188	.007
-2.050	.994	• 050	899	•191	.010
-2.140	1.048	.063	903	• 194	.012

TABLE 13

Faired Open Water Characteristics P/D = -0.302 Crashback

J	$\kappa_{_{\mathrm{T}}}$	10K _Q	μ	$^{\mathtt{C}}_{\mathtt{T}}$	¹⁰⁰ Q
0.000	091	339	0.000	093	341
.050	100	342	.050	~. 096	336
. 100	114	350	.100	112	346
.150	133	363	.148	132	358
.200	156	378	.196	153	367
.250	184	396	.243	175	375
.300	215	417	. 287	198	382
.350	251	440	.330	222	389
.4 uü	290	465	.371	247	397
.450	332	491	.410	272	406
.500	376	519	. 447	299	414
.550	424	547	. +82	324	421
.600	473	576	.514	349	-,426
. 650	524	605	.545	371	429
.700	577	635	.573	391	430
.750	631	665	.600	408	429
.800	686	695	.625	422	426
.850	741	725	.648	434	422
.900	797	 756	.669	443	417
• 950	853	786	•689	450	412
1.000	909	816	.707	454	406
1.050	965	847	.724	457	399
1.100	-1.021	877	.740	459	393
1.150	-1.077	907	• 755	459	386
1.200	-1.132	-,937	.768	459	380
1.250	-1.188	968	.781	458	374
1.300	-1.243	998	•793	456	368
1.350	-1.298	-1.029	. 604	454	362
1.400	-1.353	-1.659	.814	451	356
1.450	-1.408	-1.090	.823	449	351
1.500	-1.464	-1.121	•832	446	345
1.550	-1.520	-1.153	.840	444	340
1.600	-1.577	-1.184	.848	441	335
1.650	-1.635	-1.216	.855	- • 439	329
1.700	-1.693	-1.249	.862	437	324
1.750	-1.754	-1.281	.868	434	319
1.800	-1.815	-1.314	.874	432	314
1.850	-1.879	-1.348	.880	430	309
1.900	-1.945	-1.382	.885	-•429	304
1.950	-2.013	-1.417	•890	427	299
2.000	-2.684	-1.452	.894	425	295
2.050	-2.158	-1.487	.899	424	290
2.100	-2.234	-1.523	•903	423	285

TABLE 14

Faired Open Water Characteristics P/D = -0.604 Backing

J	$\kappa_{_{ m T}}$	10K _Q	μ	c _T	10C _Q
0.000	217	625	0.000	217	~•625
050	238	656	050	236	653
160	255	674	100	253	669
150	266	683	148	260	~.668
200	271	683	196	259	656
250	270	678	243	253	~.637
368	264	668	287	243	613
350	254	655	330	228	584
460	241	639	371	208	552
450	224	622	410	187	517
500	205	603	447	164	482
550	185	583	482	141	447
600	163	563	514	119	413
650	141	541	545	099	380
760	118	519	573	079	348
750	095	496	600	061	318
800	071	472	- 4625	044	289
859	046	448	648	028	261
980	021	423	669	012	234
95U	•00€	397	689	.003	239
-1.000	.033	370	707	.017	185
-1.050	. 061	344	724	.030	163
-1.100	• 0 9 0	316	740	.042	142
-1.150	•120	289	755	.053	123
-1.200	•152	262	768	• D63	106
-1.250	.184	 235	781	.073	~.090
-1.300	•217	208	793	- 082	076
-1.350	•252	182	864	- 090	064
-1.450	.287	156	814	.097	053
-1.450	. 322	131	823	• 103	~.043
-1.500	• 358	107	832	- 109	034
-1.550	•395	084	840	• 115	026
-1-600	.431	063	848	•119	019
-1.650	•468	042	855	• 124	013
-1.760	•505	021	862	• 128	007
-1.750	•543	002	868	• 132	002
-1.860	•581	.017	874	. 136	.003
-1.850	.619	•035	880	• 139	.007
-1.900	.657	.053	885	• 142	.011
-1.950	•697	•072	890	• 145	.015
-2.000	.738	• 0 9 0	894	.148	.619
-2.050	.779	•110	899	• 151	.022
-2.100	.823	.130	903	• 154	.026

TABLE 15

Faired Open Water Characteristics P/D = -0.604 Crashback

J	$\kappa_{_{ m T}}$	10к _Q	μ	$^{\mathrm{C}}\mathrm{_{T}}$	10C _Q
0.000	213	628	0.000	213	627
.050	133	540	. 050	134	541
.160	111	518	.100	108	510
.150	126	535	.148	122	523
.200	162	575	•196	158	555
.250	210	625	. 243	199	590
.336	263	680	.287	241	623
.350	318	734	.330	281	652
.400	372	787	.371	319	677
• 450	425	838	•410	353	697
• 58¢	477	887	.447	384	712
•550	530	937	.482	410	721
.600	584	987	.514	431	727
.650	640	-1.038	.545	450	730
. 7 u ü	699	-1.093	•573	468	731
.750	760	-1.150	.600	484	734
. 600	824	-1.211	· 625	500	736
.850	890	-1.275	.648	515	739
.950	959	-1.341	.669	529	741
•950	-1.030	-1.409	•689	542	742
1.660	-1.103	-1.478	.707	553	742
1.050	-1.175	-1.548	.724	561	739
1.100	-1.248	-1.618	.740	567	735
1.150	-1.320	-1.687	.755	571	728
1.200	-1.391	-1.754	. 768	572	719
1.250	-1.461	-1.819	.781	571	709
1.300	-1.529	-1.882	.793	568	698
1.350	-1.595	-1.943	.804	564	686
1.400	-1.660	-2.001	-814	559	673
1.450	-1.724	-2.058	. 623	553	~.660
1.500	-1.786	-2.113	-832	547	648
1.550	-1.848	-2.168	.840	541	635
1.600	-1.910	-2.222	• 84 8	535	623
1.650	-1.973	-2.277	. 855	529	612
1.700	-2.037	-2.333	. 862	523	601
1.750	-2.104	-2.391	.868	518	591
1.800	-2.172	-2.452	.874	513	581
1.850	-2.244	-2.515	.880	509	572
1.900	-2.319	-2.581	.885	505	563
1.950	-2.35.	-2.650	.890	501	~ .555
2.000	-2.480	-2.723	.894	498	547
2.050	-2.566	-2.798	. 899	495	540
2.100	~2.655	-2.877	•9.63	492	533

TABLE 16

Faired Open Water Characteristics P/D = -1.058 Backing

J	K_{T}	10K _Q	μ	C	
	1	Q	<i>r</i>	$^{C}^{T}$	^{10C} Q
0.000	514	-1.429	0 000		
050	523	-1.463	0.000	514	-1.429
- · 1 GO	~.528	-1.484	050	522	-1. 60
150	529	-1.495	100	523	-1.468
2 Lü	527	-1.495	148	518	-1.461
250	520	-1.498	196	507	-1.440
300	511		243	490	-1.403
350	499	-1.478	287	- • 469	-1.356
400	484	-1.460	330	444	-1.299
450	467	-1.437	371	417	-1.238
500	44¢	-1.410	410	389	-1.173
550	429	-1.300	447	359	-1.105
600	467	-1.348	482	329	-1.036
650	384	-1.312	>14	299	-•9ò6
760		-1.275	545	270	897
750	360	-1.236	573	242	829
800	336	-1.195	-•6û G	215	764
850	310	-1.152	625	189	
960	284	-1.108	648	 165	701
950	257	-1.062	669	142	642
-1.000	229	-1.015	689	120	587
-1.050	200	967	717	100	534
	170	916	724	081	484
-1.100	140	865	740	064	437
-1.150	108	812	755	047	393
-1.200	076	757	768		351
-1.250	042	701	781	631	311
-1.300	008	645	793	016	274
-1.350	•027	587	804	003	239
-1.400	• 064	529	~.814	010	207
-1.456	.101	470	823	• 022	177
-1.500	•139	410	832	• 033	150
-1.550	.178	351	840	• 043	125
-1.600	.218	292	848	• 053	102
-1.650	.258	233	855	• 061	081
-1.700	•299	175	- • 86 2	• 069	062
-1.750	• 34 6	118	- 868	- 077	045
-1.800	• 382	61	874	• 083	029
-1.850	.424	007		• 390	015
-1,900	.466	.047	- 880	• 095	003
1.950	•509	.099	885	• 100	•009
2.000	•552	•150	890	•105	.019
2.050	•595	•199	894	•110	•J28
2.100	•638	• 247	899	- 114	.037
	- -	1	903	• 117	.044

TABLE 17

Faired Open Water Characteristics P/D = -1.958 Crashback

J	$\kappa_{_{ m T}}$	10К _Q	μ	$c_{\mathtt{T}}$	10c _Q
0.000	- 516	•			
•05û	516 455	-1.431	0.000	514	-1.429
.100		-1.362	.050	463	-1.370
•150	420	-1.314	•100	403	-1.286
.200	406	-1.258	.148	394	-1.257
.250	409	-1.282	.196	403	-1.245
.300	427	-1.296	.243	410	-1.229
.350	456	+1.327	-287	416	-1.214
• 400	494 538	-1.375	.330	431	-1.213
		-1.436	.371	456	-1.229
•450 •500	589	-1.510	.410	488	-1.255
•550	644 - 702	-1.594	.447	520	-1.283
	702 767	-1.687	•482	547	-1.306
.600 .650	 763	-1.786	•514	568	-1.322
•700	826	-1.890	•545	584	-1.331
	892	-1.998	•573	596	-1.336
• 750	958	-2.107	•600	607	-1.340
.800	-1.026	-2.218	•625	618	-1.342
• 8 5 0	-1.095	-2.328	+648	629	-1.3/2
•900	-1.165	-2.438	.669	639	-1.342
• 950	-1.236	-2.546	•689	648	-1.338
1.000	-1.308	-2.652	.707	656	-1.331
1.050	-1.38û	-2.756	.724	661	-1.319
1.100	-1.452	-2.857	.740	664	-1.303
1.150	-1.525	-2.955	.755	664	-1.283
1.200	-1.597	-3.050	•768	662	-1.259
1.250	-1.670	-3.144	.781	658	-1.233
1.300	-1.743	-3.234	•793	652	-1.205
1.350	-1.816	-3.324	. 804	645	-1.177
1.400	-1.889	-3.411	.814	637	-1.148
1.450	-1.962	-3.498	.823	629	-1.125
1.500	-2.035	-3.585	.832	620	-1.094
1.550	-2.107	-3.671	.840	612	-1.069
1.600	-2.180	-3.759	. 848	604	-1.045
1.650	-2.253	-3.849	•855	597	-1.024
1.780	-2.327	-3.940	.862	590	-1.004
1.750	-2.401	-4.034	• 868	584	986
1.800	-2.476	-4.131	.874	578	970
1.850	-2.553	-4.233	•880	573	955
1.900	-2.630	-4.338	.885	568	942
1.950	-2.710	-4.448	.890	564	929
2.000	-2.791	-4.563	.894	560	918
2.050	-2.875	-4.683	.899	556	907
2.100	-2.962	-4.808	.903	553	898

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1 DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH NICAL VALUE, THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION
- 3 TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.