Theory of Computation

One-mark questions (20 - MCQS)

1. Which type of automaton recognizes regular languages?

a) DFA 🥥
b) NFA
c) PDA
d) TM
2. What is the language accepted by a finite state machine with a single final state?
a) All possible strings
b) No string
c) Only the empty string
d) All strings except the empty string
3. Which of the following is a regular language?
a) {0^n 1^n n ≥ 0}
b) {0^n n ≥ 0}
c) {1^n 0^n n ≥ 0}
d) {1^n n ≥ 0}
4. What is the complement of the language {a, b}?
a) {ε}
b) {a, b}
c) {ε, a, b}
d) Ø
5. Which of the following is a context-free language?
a) {a^n b^n n ≥ 0}
b) {a^n b^2n n ≥ 0}
c) {a^n b^3n n ≥ 0}
d) {a^n b^m n, m ≥ 0}

6. What is the closure property of regular languages under union?
a) The union of two regular languages is always regular 🗸
b) The union of two regular languages is never regular
c) The union of two regular languages may or may not be regular
d) The union of two regular languages is only regular if they are identical
7. Which of the following is a decidable problem?
a) Halting problem
b) Membership problem
c) Validity problem
d) Satisfiability problem
8. What is the language accepted by a pushdown automaton with a single final state?
a) All possible strings
b) No string
c) Only the empty string
d) All strings except the empty string 🗸
9. Which type of automaton recognizes context-free languages?
a) DFA b) NFA c) PDA d) TM
10. What is the pumping lemma used for in TOC?
a) To prove a language is regular
b) To prove a language is context-free
c) To prove a language is non-regular
d) To prove a language is non-context-free
11. Which of the following is a non-context-free language?
a) $\{a^n b^n \mid n \ge 0\}$ b) $\{a^n b^2 \mid n \ge 0\}$ c) $\{a^n b^3 \mid n \ge 0\}$ d) $\{a^n b^m \mid n, m \ge 0\}$
12. What is the language accepted by a Turing machine with a single final state?
a) All possible strings b) No string
c) Only the empty string d) All strings except the empty string

13. Which type of automaton recognizes recursively enumerable languages?
a) DFA b) NFA c) PDA d) TM
14. What is the halting problem in TOC?
a) Whether a machine accepts a string
(b) Whether a machine halts on a string
c) Whether a machine rejects a string
d) Whether a machine loops on a string
15. Which of the following is a regular expression?
a) (a b)* b) (a b)+ c) (a b)? d) (a b)^n
16. What is the language accepted by a finite state machine with no final states?
a) All possible strings by No string
c) Only the empty string d) All strings except the empty string
c) only the empty string - u) An strings except the empty string
17. Which of the following is a context-free grammar?
a) S \rightarrow aS ϵ b) S \rightarrow aS b c) S \rightarrow aS bS d)8 \rightarrow aS b ϵ
18. What is the closure property of regular languages under intersection?
a) The intersection of two regular languages is always regular
b) The intersection of two regular languages is never regular
c) The intersection of two regular languages may or may not be regular
d) The intersection of two regular languages is only regular if they are identical
19. Which of the following is a decidable problem?
a) Halting problem
Membership problem
c) Validity problem
d) Satisfiability problem

20. What is the language accepted by a pushdown automaton with no final states?
a) All possible strings
b) No string
c) Only the empty string
d) All strings except the empty string
Two-mark questions (10 - MCQS)
1. What is the difference between a DFA and an NFA?
a) DFA is non-deterministic, NFA is deterministic
by DFA is deterministic, NFA is non-deterministic
c) DFA accepts regular languages, NFA accepts context-free languages
d) DFA accepts context-free languages, NFA accepts regular languages
2. What are the two types of finite automata?
A) DFA and NFA B) DFA and PDA
C) NFA and PDA D) PDA and TM
3. What is the pumping lemma used for in TOC?
a) To prove a language is regular b) To prove a language is context-free
c) To prove a language is non-regular d) To prove a language is non-context-free
4. What is the halting problem in TOC?
a) Whether a machine accepts a string b) Whether a machine halts on a string
c) Whether a machine rejects a string d) Whether a machine loops on a string
5. Which of the following is a regular expression?
a) (a b)* b) (a b)+ c) (a b)? d) (a b)^n
6. What is the language accepted by a finite state machine with no final states?
a) All possible strings b) No string
c) Only the empty string d) All strings except the empty string

- 7. Which type of automaton recognizes recursively enumerable languages?

 a) DFA b) NFA c) PDA d/TM
- 8. What is the difference between a context-free grammar and a regular grammar?
- a) Context-free grammar generates regular languages, regular grammar generates context-free languages
- b) Context-free grammar generates context-free languages, regular grammar generates regular languages
- c) Context-free grammar generates recursively enumerable languages, regular grammar generates regular languages
- d) Context-free grammar generates regular languages, regular grammar generates recursively enumerable languages
- 9. Which of the following is a decidable problem?
- a) Halting problem b) Membership problem
- c) Validity problem d) Satisfiability problem
- 10. What is the closure property of regular languages under complementation?
- a) The complement of a regular language is always regular
- b) The complement of a regular language is never regular
- c) The complement of a regular language may or may not be regular
- d) The complement of a regular language is only regular if it is identical

One-mark questions (5 - MSQs)

- 1. Which of the following are true about Turing Machines?
- A They are single-tape machines
- B) They are multi-tape machines
- C) They are equivalent to Pushdown Automata
- D) They are less powerful than Pushdown Automata
- 2. What is the language accepted by a finite state machine with a single final state?
- a) All possible strings b) No string
- c) Only the empty string d'All strings except the empty string

3. Which of the following is a regular language?

- a) $\{0^n 1^n \mid n \ge 0\}$
- b) $\{0^n \mid n \ge 0\}$
- c) $\{1^n 0^n \mid n \ge 0\}$
- $(1)^{n \le 0}$

4. What is the complement of the language {a, b}?

- a) {E}
- b) {a, b}
- c) $\{\varepsilon, a, b\}$
- d) Ø

5. Which of the following is a decidable problem?

- a) Halting problem
- **b**) Membership problem
- c) Validity problem
- d) Satisfiability problem

Two-mark questions (5 - MSQs)

- 1. What is the difference between a DFA and an NFA?
- a) DFA is non-deterministic, NFA is deterministic
- b) DFA is deterministic, NFA is non-deterministic
- c) DFA accepts regular languages, NFA accepts context-free languages
- d) DFA accepts context-free languages, NFA accepts regular languages
- 2. Which of the following are closure properties of regular languages?
- A) Union and intersection
- By Union and complementation
- C) Intersection and complementation D) Union, intersection, and complementation
- 3. What is the pumping lemma used for in TOC?
- a) To prove a language is regular
- b) To prove a language is context-free
- C) To prove a language is non-regular
- d) To prove a language is non-context-free
- 4. What is the halting problem in TOC?
- a) Whether a machine accepts a string
- め) Whether a machine halts on a string
- c) Whether a machine rejects a string
- d) Whether a machine loops on a string

A) Regular languages are closed under union and intersection.
B) Regular languages are closed under complementation.
E) Regular languages are closed under concatenation.
D) Regular languages are not closed under complementation.
One-mark questions (5 - NAT)
1. What is the minimum number of states required in a DFA to recognize the language {a, b}?
Answer:
2. What is the maximum number of transitions possible in an NFA with 3 states and 2 inputs?
Answer:6
3. What is the minimum number of states required in a PDA to recognize the language $\{0^n 1^n \mid n \ge 0\}$?
Answer: 2
4. What is the maximum number of productions possible in a context-free grammar with 2 variables and 2 terminals?
Answer:
5. What is the minimum number of tapes required in a TM to recognize the language {a, b}?
Answer: \
Two-mark questions (5 - NAT)
1. What is the minimum number of states required in a DFA to recognize the language $\{a^n b^n \mid n \ge 0\}$?
Answer: 3
2. What is the maximum number of transitions possible in an NFA with 4 states and 3 inputs?
Answer:
3. What is the minimum number of states required in a PDA to recognize the language $\{0^n 1^2 n \mid n \ge 0\}$?
Answer:
4. What is the maximum number of productions possible in a context-free grammar with 3 variables and 3 terminals?
Answer:
5. What is the minimum number of tapes required in a TM to recognize the language $\{a^n b^2 \mid n \ge 0\}$?
Answer:

5. Which of the following statements are true about regular languages?

				UNIT I						
S.N o	Question	Image	Option	Option	Option	Option	Corre	Mar k	Typ e	Topic
1	Which of the following is a correct definition of a regular language?		Any languag e that can be recogni zed by a Turing machine	Any language that can be expresse dusing a regular expression.	Any languag e that contain s only finite strings.	Any languag e that contain s an infinite number of strings.	Any langu age that can be expres sed using a regula r expres sion.	1	MC Q	Regular Languag e
2	In a regular expression, what does the symbol `*` typically represent?		Matches exactly one occurre nce of the preceding characte r.	Matches zero or more occurren ces of the precedin g character	Matche s one or more occurre nces of the precedi ng charact er.	Matche s the end of a string.	Match es zero or more occurr ences of the prece ding charac ter.	1	MC Q	RE
3	Which of the following is not a valid component of a DFA (Deterministic Finite Automaton)?		Alphabe t	Transitio ns	Stack	States	Stack	1	MC Q	DFA
4	What is the purpose of the transition function in a DFA?		To define how the automat on moves between states based on input symbols	To define the initial state of the automato n.	To define the set of accepting states.	To define the input alphabe t.	To define how the autom aton moves betwe en states based on input symb ols.	1	MC Q	DFA

				/					
5	Which of the following is a correct statement about NFAs (Nondeterministic Finite Automata)?	NFAs are always smaller than DFAs.	NFAs cannot recogniz e regular language s.	NRAS can have multipl e possibl e next states for a given input symbol and current state.	NFAs do not require initial states.	NFAs can have multip le possib le next states for a given input symb ol and curren t state.	1	MC Q	NFA
6	Which of the following is used to convert a regular expression into an equivalent NFA (Nondeterministic Finite Automaton)?	Thomps on's construc tion	Subset construct ion	Lexical analysis	Parsing	Thom pson's construction	1	MC Q	NFA
7	The lexical analysis phase in a compiler is responsible for:	Checkin g syntax errors in the code.	Optimizi ng intermed iate code generatio n.	Convert ing source code into a sequenc e of tokens	Debugg ing the compile d output.	Converting source code into a sequence of tokens	1	MC Q	lexical analysis
8	Which of the following tools is commonly used to generate lexical analyzers based on regular expressions?	Yacc	Bison	Flex	JavaCC	Flex	1	MC Q	lexical analysis
9	What is the primary difference between a DFA and an NFA?	DFAs use a stack, while NFAs do not.	DFAs can recogniz e more language s than NFAs.	DFAs have a single unique transiti on for each state and input symbol, wherea s NFAs can have	DFAs require more memor y than NFAs.	DFAs have a single unique e transition for each state and input symbol, where	1	MC Q	DFA,NF A

	<u> </u>			1,1 1		1	1		
				multipl e		as NFAs			
				transiti		can			
				ons.		have			
				Ons.		multip			
						le			
						transit			
						ions.			
						TOTIS.			
10	Which of the	Groupii	Alternati	Recursi	Quantif	Recur	1	MC	RE
	following is not a	g using		ve /	iers like	sive		Q	
	feature of regular	parenth		definiti	'*' and	definit			
	expressions?	eses	symbol	ons	'+'	ions			
11	Which operation on	Union	Intersecti	Concat	Comple	Inters	1	MC	RL
	regular languages is		on	enation	mentati	ection		Q	
	not closed?				on				
10	W71 1 C.4		<u> </u>		TT .	<u> </u>	1	140	DE
12	Which of the	D.	Construc	Crawa	Using	Const	1	MC	RE
	following is a correct	Direct	ting an	Cpnvert	pushdo	ructin		Q	
	conversion process	substitu		ing the	wn	g an			
	from a regular	ion of	simulates	regular	automat	NFA that			
	expression to an NFA?	symbols	the regular	express ion to a	a as an interme	that simul			
	NI'A!		expressio	DFA	diate	ates			
			n's	first	step	the			
			behavior	IIIst	step	regula			
			/			r			
			1./			expres			
						sion's			
						behav			
						ior			
13	What is the	1	2	3	4	2	1	MC	DFA
	minimum number of							Q	
	states required in a								
	DFA that accepts all								
	strings over $\{0, 1\}$								
	that do not end with								
	'00'?								
14	Lexical analysis is	Interpre	Analyzin	Convert	Optimi	Conve	1	MC	lexical
	the process of:	ting the		ing	zing	rting	_	Q	analysis
	1	meanin	_	source	code	source			J
		g of	of	code	for	code			
		individu	sentence	into	faster	into			
		al word	s in a	tokens	executi	tokens			
		in a	language	for	on	for			
		sentenc		further		furthe			
		e		process		r			
				ing		proces			
1.5	The manage in a 1-	D	D	Carre		sing	1	MO	
15	The pumping lemma	Prove that	Prove	Generat e RE	Simplif	Prove that	1	MC	pumping lemma
	for regular languages is used to:	every	that certain	from	Simplif y the	certai		Q	icillila
	is used to.	regular		DFA's	constru	n			
		regulai	language	דע א	Constitu	111			

		languag e has an equivale nt DFA.	s are not regular.		ction of NFA's	langu ages are not regula r.			
16	What is the relationship between NFAs and DFAs?	Every DFA is also a NFA	Every NFA is also a DFA	DFA's and NFA's recogni se the same set of languag es	NFA's are more powerf ul than DFA's	DFA's and NFA's recognise the same set of languages	1	MC Q	NFA,DF A
17	A regular expression for the language of all strings over {0, 1} that contain at least two 0s is:	01	010*	(01)*	011*	010*	1	MC Q	RE
18	The empty language can be recognized by:	A DFA with one non- acceptin g state	A DFA with one acceptin g state	An NFA with one non- accepti ng state	An NFA with non- accepti ng state	A DFA with one non-accept ing state	1	MC Q	language
19	Which of the following is a valid regular expression for all strings over {0, 1} that end with '11'?	(01)*	0111	0111*	(0 1)	0111	1	MC Q	RE
20	What is the purpose of the transition function in a finite automaton?	To specify the start state of the automat a	To define the set of acceptin g states	To determine the output of each input symbol	To specify the next state giventh e current state and input symbol	To specify the next state givent he current state and input symbol	1	MC Q	FA
21	Which of the following is a limitation of regular	They cannot recogni ze	They cannot recogniz e	They cannot handle strings	They cannot recogni ze	They canno t recog	1	MC Q	RL

	1		1	1	1	1	I	T	Ī	
	languages?	nest struc		language with	longer than a	languag	nize nested			
		es		infinite	predefi	e containi	struct			
		Cs		alphabets	ned	ng both	ures			
				arphaoets	length	Os and	ures			
					length	1s				
22	Which of the	(a b)*	ab	(abc*)+	a(b c)*	(abc*)	1	MC	RE
	following is NOT a						+		Q	
	valid regular				/					
	expression?									
23	Which of the	An	ıv	Every	DFAs	NFA s	Every	1	MC	DFA,NF
	following is a correct	NF	-	regular	can	are	regula	_	Q	A
	statement about	can		language	recogni	always	r		*	
	DFAs and NFAs?	conv		has a	ze more	faster	langu			
		ed in	nto	unique	languag	in	age			
		a Dl	FA	NFA that	es than	recogni	has a			
		with		recogniz	NFAs	zing	uniqu			
		chan	gin	es it.		regular	e			
		g				languag	NFA			
		num				es than	that			
		of sta	ates			DFAs	recog			
							nizes			
24	XX714 :- 41	F		T1	D 1	F	it.	1	MC	
24	What is the pumping	Eve	•	There	Regular	Every	There	1	MC	pumping
	lemma for regular	regu		exist	languag	regular	exist		Q	lemma
	languages used to prove?	lang es h	_	language that are	es are always	languag e can	langu			
	prove:	ar		not	finite.	be	age that			
		equiv		regular.	minc.	generat	are			
		nt D				ed by a	not			
						regular	regula			
)		express	r.			
						ion				
25	Which of the	The	•	They	They	They	They	1	MC	NFA
	following statements	can		always	are	cannot	can be		Q	
	about NFAs is true?	mult	- 1	require	equival	be	multip			
		trans		more	ent	simulat	le			
		ns o		memory than	toTurin	ed by a DFA	transit			
		san		unan DFAs for	g machin	DFA	ions on the			
		inp		the same	es in		same			
		sym		language	comput		input			
		fron		141154450	ational		symb			
		sta			power		ol			
					1		from			
							a state			
26	Select all correct	DFA	.S	DFAs	DFAs	DFAs	DFAs	2	MS	DFA
	statements about	can		are a	can	have	are a		Q	
	DFAs (Deterministic	have		type of	recogni	exactly	type			
	Finite Automata).	epsil		finite	ze all	one	of			
		trans	itio	automato	regular	unique	finite			
		ns.		n.	languag	next	autom			
				~	es.	state	aton,			
						for	DFAs			
						each	have			

					state and input symbol.	exactl y one uniqu e next state for each state and input symb ol.			
27	Which of the following are valid components of a regular expression?	Literal characte rs	Meta character s	Parenth eses for groupin g	Square bracket s for charact er classes	Litera l charac ters, Meta charac ters, Parent heses for groupi ng, Squar e brack ets for charac ter classe s	2	MS Q	RE
28	When converting an NFA to a DFA, which of the following statements are true?	The DFA may have fewer states than the original NFA.	The DFA may have more states than the original NFA.	The DFA always has the same number of states as the original NFA.	The DFA can recogni ze a differen t languag e than the original NFA.	The DFA may have fewer states than the origin al NFA., The DFA may have more states than the origin al	2	MS Q	DFA,NF A

						NFA.			
29	Select all applications where finite automata are commonly used:	Lexical analysis in compile rs	Natural language processin g	Pattern matchin g in text process ing	Networ k security protoco ls	Lexic al analys is in compi lers, Patter n match ing in text proces sing	2	MS Q	Applicati on of FA
30	Convert the regular expression `(a b)*abb` into an equivalent NFA. How many states does the resulting NFA have?					The resulti ng NFA will have 5 states.	2	NA T	NFA
31	Convert the following NFA into an equivalent DFA: State 0: ε -> {1, 2} State 1: a -> {1} b -> {2} State 2: a -> {3} b -> {3} State 3: a -> {3} How many states does the resulting DFA have?					The resulti ng DFA will have 4 states.	2	NA T	NFA
32	Determine the number of possible transitions from state (q_1) in a DFA with input alphabet ({0, 1}) and states ({q_1, q_2, q_3}).					There are 6 possib le transit ions from state (q_1).	2	NA T	DFA

	,					
33	Calculate the number		The	2	NA	DFA
	of states in the		minim		T	
	minimal DFA that		al			
	recognizes the		DFA			
	language described		will			
	by the regular		have			
	expression (4			
	(a b)*abb).		states.			
34	Given a regular		The	2	NA	RE
	expression (NFA		T	
	(a b)*abb), how		can			
	many distinct paths		have			
	can an NFA have for		2			
	the string "abb"		distin			
	starting from the		ct			
	initial state?		paths			
			for			
			the			
			string			
			"abb".			
35	How many states		The	2	NA	DFA
	does a minimal DFA		minim		T	
	have that recognizes		al			
	the language defined		DFA			
	by the regular		will			
	expression (a*b*)?		have			
			3			
			states.			

UN	IT I									
S. N	Question	Image	Option	Option	Option	Option	Corr	M ar k	Type	Topic
1	Which type of automaton recognizes only regular languages?		DFA	CFG	PDA	ТМ	DFA	1	MCQ	Regular languag es
2	What is the language accepted by a finite state machine with a single final state?		All possible strings	No string	Only the empty string	All strings except the empty string	All possi ble strin gs	1	MCQ	Regular languag es
3	Which of the following is a regular language?		{0^n 1^n n ≥ 0}	{0^n n ≥ 0}	{1^n 0^n n≥0}	{1^n 0^2n n ≥ 3}	{0^n n ≥ 0}	1	MCQ	Regular languag es
4	What is the complement of the language accepted by the NFA shown below?	- a - ε - ε - ε - ε - ε - ε - ε - ε - ε	Ø	{∈}	a*	{a,∈}	{∈}	1	MCQ	NFA
5	The string 1101 does not belong to the set represented by		110*(0+	1(0+1)*01 01	(10)*(01)*(00+11)*	(00+(11)* 0)*	(10)* (01)* (00+ 11)*	1	MCQ	Regular Express ions
6	What is the closure property of regular languages under union?		The union of two regular language s may or may not be regular	The union of two regular languages is never regular	The union of two regular languages is always regular	The union of two regular languages is only regular if they are identical	The unio n of two regul ar langu ages is alwa ys regul	1	MCQ	Regular languag es

		1	ı	1		1			
						ar			
7	Consider the following Deterministic Finite Automaton (M). Let A denote the set of eight bit strings whose second, third, sixth and seventh bits are 1. The number of strings in that are accepted by M is	0	1	2	3	1	1	MCQ	DFA
8	Which of the following language is regular?	{wwRx x ,w∈{0,1} +}	{xww ^R x, w∈{0,1} ⁺ }	$\{ww^{R} w \in \{0,1\}^{+}\}$	{wxwR x, w∈{0,1}+}	{wxw R x, w∈{0 ,1}+}	1	MCQ	Regular languag es
9	Consider the following Finite State Automaton. The language accepted by this automaton is given by the regular expression	b*ab*ab *ab*	b*a(a+b)*	(a+b)*	b*ab*ab*	b*a(a+b) *	1	MCQ	∈-NFA, RE
10	What is the pumping lemma used for in TOC?	To prove a language is regular	To prove a language is context- free	To prove a language is non-regular	To prove a language is recursivel y enumera ble	To prov e a langu age is non-regul ar	1	MCQ	Pumpin g Lemma
11	Consider the automata below. The minimum state automaton equivalent to the above FSA has the following number of states	1	2	3	4	2	1	MCQ	FSA
12	Which of the following is regular?	{a ⁿ b ⁿ n ≥ 0}	{a ⁿ n is prime}	{w w has 3k + 1 b's for some k ∈N with Σ = {a, b}}	{ww we Σ^* with Σ = {0,1}}	{w w has 3k+ 1 b's for some k∈N	1	MCQ	Regular languag es

	,		T	1	T	,		1	
						with			
						Σ =			
						{a,			
						b}}			
	What are the two								Automa
13	types of finite	DFA and	NFA and	DFA and	TM and	DFA	1	MCQ	ta
	automata?	NFA /	PDA	PDA	PDA	and			Theory
		. /				NFA			
		U							
	The length of the								Regular
14	shortest string				,				Express
	NOT in the	0	1	2	3	3	1	MCQ	ion
	language over Σ =				/				
	{a,b} of the				/				
	following regular								
	expression								
	a*b*(ba)*a*								
	How many								Automa
15	substrings of	n	n ²	2 ⁿ	n(n+1)/2	n(n+	1	MCQ	ta
	different lengths				/	1)/2			Theory
	(non-zero) can be								
	formed from a								
	character string								
	of length n?								
16	What is the	All	No string	All string	Only the	No	1	MCQ	Regular
16	language	possible	/	except the	empty	strin			languag
	accepted by a	strings		empty	string	g			es
	finite state			string					
	machine with no								
	final states?								
	Let N be an NFA								
17	with n states. Let								
	k be the number	$k \ge 2^n$	k ≥ n	$n^2 \ge k$	2 ⁿ ≥ k	2 ⁿ ≥	1	MCQ	DFA,
	of states of a					k			NFA
	minimal DFA				/				
	which is				(/				
	equivalent to N.								
	Which one of the								
	following is								
	necessarily TRUE?					<u> </u>		1.600	
10	What is the	The	The	The	The	The		MCQ	Regular
18	closure property	intersect	intersecti	intersectio	intersecti	inter			languag
	of regular	ion of	on of two	n of two	on of two	secti	1		es
	languages under	two	regular	regular	regular	on of			
	intersection?	regular	languages	languages	languages	two .			
		language	is never	may or may	is only	regul			
		s is	regular	not be	regular if	ar			
		always		regular	they are	langu			
		regular			identical	ages			
						is			
						alwa			
						ys			
						regul			
	M/bish of the					ar			
19	Which of the		(A) line			,	1	MCO	∈-NFA
17	following NFA with null	letter digit	-O see	ide digit	hoter Chine days	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	MCQ	C-MLH
	transitions	ě							
	นสารเมษาร				l .				

	accepts the set of valid identifiers?									
20	Which of the following statement is TRUE about the regular expression 01*0?		It represen ts a finite set of finite strings.	It represent s an infinite set of finite strings.	It represents a finite set of infinite strings.	It represent s an infinite set of infinite strings.	It repre sents an infini te set of finite strin gs.	1	MCQ	Regular Express ion
21	Let δ denote the transition function and δ^{\wedge} denote the extended transition function of the \in -NFA whose transition table is given below: (0 is the initial state): Find $\delta^{\wedge}(2,aba)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ø	{0,1,3}	{0,2,3}	{0,1,2}	{0,1, 2}	2	MCQ	€-NFA
22	A minimum state deterministic finite automaton accepting the language L={w w ε {0,1} *, number of 0s and 1s in w are divisible by β and 5, respectively} has		8	125	243	15	15	2	MCQ	Automa ta Theory
23	Consider the regular expression $R=(a+b)*(aa+bb)(a+b)*$ Which deterministic finite automaton accepts the language represented by the regular expression R ?							2	MCQ	Regular Expressi ons, DFA

24	Which regular expression best describes the language accepted by the non-deterministic automaton below?	$ \begin{array}{c} a,b \\ \uparrow \\ s \\ \hline \end{array} $ $ \begin{array}{c} a,b \\ s \\ \hline \end{array} $ $ \begin{array}{c} s \\ \hline \end{array} $ $ \begin{array}{c} s \\ \hline \end{array} $ $ \begin{array}{c} s \\ \hline \end{array} $	(a+b)* a(a+b)b	(abb)*	(a+b)* a(a+b)* b(a+b)*	(a+b)*	(a+b)* a(a+ b)b	2	MCQ	NFA
25	The regular expression 0*(10*)* denotes the same set as		(1*0)*1*	0+(0+10)*	(0+1)*10(0 +1)*	None of the above	(1*0) *1*	2	MCQ	Regular Express ions
26	Which of the following regular expressions are equivalent? (i)(00)*(∈+0) ✓ (ii)(00)* (iii) 0* ✓ (iv) 0(00)*		(i) and (ii)	(ii) and (iii)	(i) and (iii)	(iii) and (iv)	(i) and (iii)	2	MCQ	Regular Express ions
27	In some programming language, an identifier is permitted to be a letter followed by any number of letters or digits. If L and D denote the set if letters and digits respectively, which of the following defines an identifier?		(L + D) ⁺	(L.D)*	L.(L + D)*	L.(L.D) ⁺	L.(L + D)*	2	MCQ	Regular Langua ges
28	Let $r = 1(1+0)^*$, s = 11*0 and t = 1*0 be three regular expressions. Then which of the following is true?		$L(s)\subseteq L(r)$ and $L(s)\subseteq L(t)$	L(r)⊆L(s) and L(s) ⊆ L(t)	$L(t)\subseteq L(s)$ and $L(s)\subseteq$ L(r)	None of the above	L(s) ⊆L(r) and L(s) ⊆ L(t)	2	MCQ	Regular Express ions
29	Let M be the 5 state NFA with null transtitions as shown in the diagram below. Which one of the following regular expressions represents the language accepted by M?	$ \begin{array}{c} \epsilon & 2 & 0 \\ \hline 0 & 3 \\ \hline \epsilon & 4 & 1 \\ \hline 1 & 5 \end{array} $	(00)*+1(11)*	0*+(1+0(0 0)*)(11)*	(00)*+(1+(0 0)*)(11)*	0+1(11)*+ 0(11)*	0*+(1+0(00)*) (11)*	2	MCQ	€-NFA

30	What is the closure property of regular languages under complementation ?	The comple ment of a regular language is only regular if it is identical	The complem ent of a regular language is never regular	The compleme nt of a regular language may or may not be regular	The complem ent of a regular language is always regular	The com plem ent of a regul ar langu age is alwa ys regul ar	2	MCQ	Regular Langua ge
31	Given the language $L=\{ab,a$ $a,baa\}$, which of the following strings are in L^* ?	abaaba aabaa	aaaaba aaa	baaaaab aaaab	baaaaa baa	1,2 and 4	1	MSQ	Regular Langua ge
32	Which of the following are regular sets?	$\{a^n n\geq 0\}$	$ \begin{cases} a^n b^m n = \\ 2m \end{cases} $	$\{a^nb^m n\neq m\}$	{ <i>xcy</i> <i>x,y</i> ,∈{ <i>a,b</i> }* }	1,4	1	MSQ	Regular Langua ge
33	Which of the following is/are a regular language?	{0^n 1^n n ≥ 0}	{0^n n ≥ 0}	{1^n 0^n n ≥ 0}	{1^n n ≥ 0}	2	1	MSQ	Regular Langua ge
34	Which of the following regular expression identities is/are TRUE?	r(*) = r*	(r*s*) = (r+s)*	(r+s)* = r* + s*	(r*s*) = (rs)*	1 and 2	1	MSQ	Regular Express ion
35	Consider a DFA M with the alphabet {a,b}. Which of the following statements are true?	DFA M can have multiple final states	DFA M can have multiple initial states.	DFA M can have transitions for every symbol in the alphabet from every state.	DFA M can have a dead state.	1, 3 and 4	1	MSQ	DFA
36	For a language L accepted by a DFA, which of the following statements are true?	If L is empty, the DFA must have at least one final state.	If L is non- empty, the DFA must have at least one final state.	If L is non- empty, the DFA must have at least one initial state.	If L is regular, its complem ent is not necessaril y regular.	1, 2 and 3	2	MSQ	DFA
37	For a language L accepted by a DFA, which of the following preserve	Union with another regular language	Intersecti on with another regular language	Subset of a regular language.	Kleene closure of a regular language.	1, 2 and 4	2	MSQ	Regular Langua ge

							1		Ι	
	regularity?									
38	Which of the following can be recognized by a DFA?		The set of all strings over {0,1} that contain an even number of '0's	The set of all strings over {a,b} that end with 'a'.	The set of all strings over {a,b} that contain 'ab' as a substring.	The set of all strings over {0,1} that start and end with the same symbol.	1,2,3 and 4	2	MSQ	DFA
39	If the regular set A is represented by $A=(01+1)*$ and the regular set B is represented by $B=((01)*1*)*$, which of the following is true?		$A \subset B$	B⊂A	A and B are incompara ble	A=B	1	2	MSQ	Regular Express ions
40	Lex tools such as Flex are primarily used for:		Generat ing parsers from context- free gramma rs.	Generati ng lexical analyzers from regular expressio ns.	Optimizin g code generation for interpreter s.	Performi ng semantic analysis of source code.	2	2	MSQ	LEX tools
41	What is the minimum number of states required in a DFA to recognize the language {a, b}?						2	1	NAT	DFA
42	The number of states in the minimal DFA that accepts the language defined by the regular expression (0+1)*(0+1)(0+1)* is						2	1	NAT	DFA
43	What is the minimum number of states required in a DFA equivalent to a NFA with 4 states? (Best case scenario)	A					4	1	NAT	NFA

44	What is the minimum number of states required in a DFA equivalent to a NFA with 5 states? (Worst case scenario)	37			32	1	NAT	DFA
45	What is the minimum number of states required in a DFA to recognize a string in the language {a^n b^n n ≥ 0}?				1	1	NAT	DFA
46	Consider the language L given by the regular expression (a + b)*b (a + b) over the alphabet {a, b}. The smallest number of states needed in a deterministic finite-state automaton (DFA) accepting L is				4	2	NAT	DFA
47	What is the maximum number of transitions possible in an NFA with 4 states and 3 inputs?	12			48	2	NAT	NFA
48	What is the maximum number of transitions possible in an NFA with 3 states and 2 inputs?				2	2	NAT	NFA
49	The number of states in the minimal DFA corresponding to the regular expression (0+1)*(10) is	7			3	2	NAT	DFA

50	Consider the following language. L = {x ∈ {a,b}* No of a's in x is divisible by 2 but not divisible by 3} The minimum number of states in a DFA that accepts L is						6	2	NAT	DFA	
----	---	--	--	--	--	--	---	---	-----	-----	--