Student Number:

Name: Bryan Hoang

4. (7 points) Let $S = \{+1, -1\}^d$ denote the state space of X_n .

(a) Answer:

Proof. For $s, s^* \in S$, let k be the number of components the two states (co-ordinates) s and s^* differ by.

Then by flipping one component at a time, $\exists \{s_i : i \in [0, k]\}$ such that

$$s_0 = s$$
$$s_k = s^*,$$

and that for all $i \in [k-1]$, s_i and s_{i+1} differ in only one component. Then

$$\begin{split} P_s(X_k = s^*) &\geq P_s(X_1 = s_1, \dots, X_k = s_k) \\ &\geq \frac{1}{d^k} \\ &> 0. \end{split}$$

Therefore, $\{X_n:n\geq 0\}$ is irreducible.

(b) Answer:

For the state $\mathbf{i} \in S$, to return to \mathbf{i} , each component of the co-ordinate needs to be flipped an even number of times. Then $\forall s \in S, \forall n \in \mathbb{Z}_{\geq 1}$,

$$P_{\mathbf{i}}(X_{2n-1}=s)=0.$$

But,

$$\begin{split} P_{\mathbf{i}}(X_2 = s) &= \frac{1}{d} \\ &> 0. \end{split}$$

Therefore, the period of state i is $\boxed{2}$.

(c) **Answer:**

Claim. Let $\pi_s = \frac{1}{2^d}, \forall s \in S$ and $\pi = (\pi_s)_{s \in S}$. Then π is the unique invariant distribution.

Proof. $\forall s \in S$, let s_{-i} be the state ahrienved after flipping the *i*th component of *s* for $i \in [1, d]$. Then

$$p_{s_{-i},s} = \frac{1}{d} \qquad \qquad \forall i \in [1,d]$$

Student Number: Name: Bryan Hoang

and

$$p_{s^*,s} = 0 \qquad \qquad \text{if } s^* \not \in \{s_{-1}, \dots, s_{-d}\}.$$

Then $\forall s \in S$,

$$\begin{split} \sum_{s^* \in S} \pi_{s^*} p_{s^*,s} &= \sum_{i=1}^d \frac{1}{2^d} \cdot \frac{1}{d} \\ &= \frac{1}{2^d} \\ &= \pi_s \end{split}$$

which means that π is an invariant distribution. Since the chain is irreducible by part (a), the invariant distribution is unique.

(d) **Answer:**

Let $T_{\mathbf{i}}^{(1)} = \inf\{n \in \mathbb{Z}_{\geq 1} : X_n = \mathbf{i}\}$ be the first passage time to \mathbf{i} . From a corollary discussed in class, we have that

$$\pi_{\mathbf{i}} = \frac{1}{\mathrm{E}_{\mathbf{i}}[T_{\mathbf{i}}^{(1)}]}$$

But since $\pi_{\mathbf{i}} = \frac{1}{2^d}$ from part (c), we have that

$$\mathrm{E}_{\mathbf{i}}[T_{\mathbf{i}}^{(1)}] = 2^d.$$

Therefore, the expected number of steps until the particle returns it **i** is 2^d .

(e) **Answer:**

 $\forall i \in S$, define

$$\gamma_i^{\mathbf{i}} = \mathbf{E_i} \left[\sum_{n=0}^{T_{\mathbf{i}}^{(1)}} \mathbb{1}_{\{X_n = i\}} \right].$$

Then by Theorems discussed in class, $\gamma^{\mathbf{i}}$ is an invariant measure and is identical to π up to scale. Thus,

$$\gamma_{\mathbf{o}}^{\mathbf{i}} = \gamma_{\mathbf{i}}^{\mathbf{i}}$$
$$= 1.$$

Therefore, the expected number of visits to \mathbf{o} until the particle returns to \mathbf{i} is $\boxed{1}$.