Linear Algebra

枫聆

2021年2月12日

目录

1	Group	2
2	Ring	3
3	Module	4

Group

Ring

Definition 2.1. 在集合 R 上定义两种二元运算操作 + 和 · ,并且满足以下条件

- 1. R 在 + 下是一个 abelian group:
 - 加法结合律: $\forall a, b, c \in R, (a+b) + c = a + (b+c).$
 - 加法交換律: $\forall a, b \in R, a + b = b + a$.
 - 加法零元: $\forall a \in R, a+0=a$.
 - 加法逆元: $\forall a \in R, \exists -a \in R, a + (-a) = 0.$
- 2. R 在·下是一个 monoid:
 - 乘法结合律: $\forall a, b, c \in R, (a \cdot b) \cdot c = a \cdot (b \cdot c).$
 - 乘法单位元: $\forall a \in R, 1 \cdot a = a, a \cdot 1 = a$.
- 3. 乘法分配率
 - 左分配: $\forall a, b, c \in R, a \cdot (b+c) = (a \cdot b) + (a \cdot c).$
 - 右分配: $\forall a, b, c \in R, (b+c) \cdot a = (b \cdot a) + (c \cdot a).$

则称 R 是一个 ring, 上面条件称为 ring axioms.

Module

Definition 3.1. 给定一个带乘法单位元的 ring R. 一个 **left** R -module M 由一个 abelian group (M, +) 和一个操作 $: R \times M \to M$ 组成,并且对于任意的 $r, s \in R$ 和任意的 $x, y \in M$ 满足以下条件:

- 1. $r \cdot (x+y) = r \cdot x + r \cdot y$.
- $2. (r+s) \cdot x = r \cdot x + s \cdot x.$
- 3. $(rs) \cdot x = r \cdot (s \cdot x)$.
- 4. $1 \cdot x = x$.

类似也有 right R-module.

关于 module 更形象的理解可以去看看写在 linear algebra 最前面的东西.

If M is a left R-module, then the action of an element r in R is defined to be the map $M \to M$ that sends each x to rx (or xr in the case of a right module), and is necessarily a group endomorphism of the abelian group (M,+). The set of all group endomorphisms of M is denoted $End_Z(M)$ and forms a ring under addition and composition, and sending a ring element r of R to its action actually defines a ring homomorphism from R to $End_Z(M)$.

注意这里的环同态是在确定 M 是一个 module 的情况下反过来推.