LSTM Long Short-Term Memory

1. Concatenation: $[h_{t-1}, x_t]$

Forget Gate: Controls what to discard from the previous cell state.

- 2. Sigmoid Activation (f_t) : $f_t = \sigma(W_f \cdot [h_{t-1}, x_t + b_f)$
- 3. $f_t \odot c_{t-1}$

Sigmoid = $\underline{\text{Gate Controller}}$, regulating the flow of information by outputting values between $\underline{0 \text{ (block/discard)}}$ and 1 (allow/keep).

Input Gate: Decides what new information to add.

- 4. $i_t = \sigma(W_i \cdot [h_{t-1}, x_t + b_f))$
- 5. Candidate Cell State $\tilde{C}_t = tanh(W_c \cdot [h_{t-1}, x_t + b_c))$
- 6. $i_t \odot \tilde{C}_t$

Tanh = $\underline{\text{Value Rescaler}}$ that brings $\underline{\text{values into } [-1,+1]}$, ensuring the cell state and hidden state remain bounded + Provides nonlinearity, enabling the network to capture complex patterns.

Cell State Update: Combines old and new information to update the memory.

7. $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{C}_t = \text{Retained memory} + \text{New memory}$

Output Gate: Determines what part of the memory to output as the hidden state.

- 8. $o_t = \sigma(W_o \cdot [h_{t-1}, x_t + b_o))$
- 9. $h_t = o_t \odot tanh(c_t)$