Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ŞI DE NOTARE

Test 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(3-i)^2 - 6(3-i) + 10 =$	2p
	$=9-6i+i^2-18+6i+10=0$	3 p
2.	$f(a) = a^2 + 6$, $f(a-2) = (a-2)^2 + 6$	2p
	$a^{2} + 6 = (a-2)^{2} + 6$, de unde obținem $a = 1$	3p
3.	$x^{2} + 4x + 5 = 2x + 4 \Rightarrow x^{2} + 2x + 1 = 0$	3 p
	x = -1, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre, care au produsul cifrelor egal cu 16, are 3 elemente, deci sunt 3 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{90} = \frac{1}{30}$	1p
5.	ABCD este paralelogram, deci segmentele AC și BD au același mijloc	1p
	$x_A + x_C = x_B + x_D \Rightarrow x_D = 4$	2 p
	$y_A + y_C = y_B + y_D \Rightarrow y_D = 5$	2 p
6.	$E\left(\frac{\pi}{2}\right) = \operatorname{tg}\frac{\pi}{4} - \operatorname{ctg}\frac{\pi}{4} + \operatorname{ctg}\frac{\pi}{2} + 2\sin\frac{5\pi}{6} =$	2p
	$=1-1+0+2\cdot\frac{1}{2}=1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$A(a)A(b) = \begin{pmatrix} 1 & -2a & 0 \\ 0 & 1 & 0 \\ 2a & -2a^2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2b & 0 \\ 0 & 1 & 0 \\ 2b & -2b^2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2b-2a & 0 \\ 0 & 1 & 0 \\ 2a+2b & -4ab-2a^2-2b^2 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & -2(a+b) & 0 \\ 0 & 1 & 0 \\ 2(a+b) & -2(a+b)^2 & 1 \end{pmatrix} = A(a+b), \text{ pentru orice numere reale } a \text{ și } b$	2 p

c)	$A(n) = A(1)A(2)A(3) \cdot \dots \cdot A(2020) = A(1+2+3+\dots+2020) = A\left(\frac{2020 \cdot 2021}{2}\right) =$	3p
	$=A(1010\cdot 2021)$, deci $n=1010\cdot 2021$, care este multiplu de 2021	2 p
2.a)	$\sqrt{3} * 0 = \sqrt{3} \cdot 0 - \sqrt{3} \left(\sqrt{3} + 0 \right) + 3 + \sqrt{3} =$	3p
	$=-3+3+\sqrt{3}=\sqrt{3}$	2 p
b)	$x * y = xy - \sqrt{3}x - \sqrt{3}y + 3 + \sqrt{3} =$	2 p
	$= x\left(y - \sqrt{3}\right) - \sqrt{3}\left(y - \sqrt{3}\right) + \sqrt{3} = \left(x - \sqrt{3}\right)\left(y - \sqrt{3}\right) + \sqrt{3}, \text{ pentru orice numere reale } x \text{ şi } y$	3 p
c)	$x*\sqrt{3} = \sqrt{3}$ și $\sqrt{3}*y = \sqrt{3}$, unde x și y sunt numere reale	2 p
	$\left(\frac{\sqrt{5}}{\sqrt{1}} * \frac{\sqrt{6}}{\sqrt{2}}\right) * \frac{\sqrt{7}}{\sqrt{3}} * \dots * \frac{\sqrt{100}}{\sqrt{96}} = \left(\frac{\sqrt{5}}{\sqrt{1}} * \sqrt{3}\right) * \frac{\sqrt{7}}{\sqrt{3}} * \dots * \frac{\sqrt{100}}{\sqrt{96}} = \sqrt{3} * \left(\frac{\sqrt{7}}{\sqrt{3}} * \dots * \frac{\sqrt{100}}{\sqrt{96}}\right) = \sqrt{3}$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a) $f'(x) = \frac{(2x+4)e^x - (x^2+4x+4)e^x}{(e^x)^2} = \frac{e^x(-x^2-2x)}{(e^x)^2} = \frac{-x(x+2)}{e^x}, x \in \mathbb{R}$	3p 2p
$=\frac{e^x\left(-x^2-2x\right)}{\left(e^x\right)^2} = \frac{-x(x+2)}{e^x}, \ x \in \mathbb{R}$	
	2n
$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 4x + 4}{e^x} = \lim_{x \to +\infty} \frac{2x + 4}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$	3 p
Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c) $g(x) = \frac{1}{e^x}$, deci $\lim_{n \to +\infty} (g(1) + g(2) + + g(n)) = \lim_{n \to +\infty} (\frac{1}{e^1} + \frac{1}{e^2} + + \frac{1}{e^n}) =$	2p
$= \lim_{n \to +\infty} \frac{1}{e} \cdot \frac{\left(\frac{1}{e}\right)^n - 1}{\frac{1}{e} - 1} = \frac{1}{e - 1}$	3p
2.a) $ \int_{0}^{1} (x+1) f(x) dx = \int_{0}^{1} (2x+1) dx = (x^{2} + x) \Big _{0}^{1} = $	3p 2p
	3p
	2p
$I_n = \int_0^1 e^x (2x+1)^n dx = e^x (2x+1)^n \left \frac{1}{0} - 2n \int_0^1 e^x (2x+1)^{n-1} dx \right = 0$	3 p
$=e\cdot 3^n-1-2nI_{n-1}$, deci $I_n+2nI_{n-1}=3^ne-1$, pentru orice număr natural n , $n\geq 2$	2 p