# INVESTING IN WATERSHED SERVICES WITH RIOS





Adrian L. Vogl avogl@stanford.edu

### **RIOS IN CONTEXT**









#### **GOALS**

natural capital

- Invest in watershed services with limited budget
- Maximize improvement in multiple services

## **QUESTIONS**

- Which activities are most costeffective?
- Where should I do them?





# IMPROVING INVESTMENT OPTIONS WITH RIOS

 Must address physical realities, feasibility, and cost effectiveness

 Know where you can get best results for multiple goals AND where it is practical to work

Need a method that is robust and replicable with local capacity

#### RIOS DEVELOPMENT PROCESS

natural capital

Watershed Investment Prioritization Working Group

Core Team





















Science Team





**RIOS INPUTS** 

natural capital

Biophysical effectiveness

Feasible activities

Stakeholder preferences

Cost data Budget

Investment Portfolio



#### **TYPES OF DATA**



#### Land use/Land cover

Vegetation retention, land practice and management



#### **Topography**

Digital elevation model, slope threshold

#### **Erosivity**

Based on intensity and kinetic energy of rainfall

#### **Erodibility**

Soil detachment and transport potential due to rainfall

#### **Watershed Areas**

Catchment areas, beneficiaries

### **TYPES OF DATA**





Stakeholder preferences

Legal and logistical restrictions

**Opportunity cost** 

**Feasible locations** 

## **TYPES OF DATA**





How much do activities cost?

Implementation, maintenance, payments

Total budget



natural capital

Biophysical effectiveness

Feasible activities

Stakeholder preferences

Cost data Budget

Investment portfolio



### **OVERVIEW OF RIOS WORKFLOW**





## **CHOOSE OBJECTIVES**



#### **SERVICES**

- Erosion Control
- Nitrogen Regulation
- Phosphorus Regulation
- Groundwater Recharge
- Flood Mitigation
- Dry Season Baseflow
- Biodiversity
- "Other"

#### **DIAGNOSTIC SCREENING**







#### **DIAGNOSTIC SCREENING**





1. Choose activities



Score impact of transitions based on physical characteristics and beneficiaries

#### **KEY FACTORS**



Factors determined
 through literature review



Compromise between process representation and data availability

 Determine effectiveness of transitions for meeting objectives, in a specific place



Q: How do landscape characteristics compare to the ideal for each transition?



Natural Capital in

17



Q: Are some factors more important for determining the effectiveness of a transition? Factor 1 score Trans/Obj 1 factors Factor 2 O weight f weights score Biophysical Factor 1 **Transition** score Trans/Obj 2 Score Map Factor 2 f weights O weight score Factor 1 score factors Trans/Obj 1 O weight Factor 2 f weights Biophysical score **Transition** Factor 1 Score Map Trans/Obj 2 factors score O weight f weights Factor 2

,

score

desh Workshop \* 21 – 23 May 2014

score

desh Workshop \* 21 – 23 May 2014

Natural Capital



Q: How effective is a transition/ how important are objective(s)? Factor 1 score Trans/Obj 1 factors Factor 2 O weight f weights score Biophysical Factor 1 **Transition** score Trans/Obj 2 Score Map Factor 2 f weights O weight score Factor 1 score factors Trans/Obj 1 Factor 2 f weights O weight Biophysical score **Transition** Factor 1 Score Map Trans/Obj 2 factors score f weights O weight Factor 2





#### **RIOS Steps**







Low: 0.136321

#### **RIOS Steps**









Cost-effectiveness score (energy plant.)
High: 4.52511e-005

Low: 1.0976e-005

#### **RIOS Steps**





# WHAT activities to invest in and WHERE



natural capital

PROJECT

Desired outcomes

Feasibility & baseline studies

Phase 1: Design Investments Available

Choose

Objectives

- Stakeholder input
- Financial & economic studies

Diagnosti Screening

- Biophysical data
- Information from other scientific studies

Priority **Areas** 

- Feasbility and socio-economic data
- Select where and in what to invest

Phase 2: Evaluation, monitoring and adaptive management

Evaluation Monitoring

- Design monitoring plan
- Begin baseline & impact data collection
- Estimate **Benefits**
- Model development (HEC-HMS or others)
  - Economic valuation

natural capital

PROJECT

Desired outcomes

Feasibility & baseline studies

Phase 1: Design Investments Available

Choose

Objectives

- Stakeholder input
- Financial & economic studies

Diagnostic Screening RIOS

Select Priority **Areas** 

resource investment optimization system

Phase 2: Evaluation, monitoring and adaptive management

Evaluation Monitoring

Design monitoring plan

• Begin baseline & impact data collection

Estimate **Benefits** 

- Model development (HEC-HMS or others)
- Economic valuation

## **ACKNOWLEDGEMENTS**



Development of the RIOS tool was funded by the Gordon & Betty Moore Foundation.

Special thanks to the Water Funds Working Group and the Latin American Water Funds Platform









