Nom:

Prénom:

Examen d'algorithmique EPITA ING1 2017 S1; A. DURET-LUTZ

Durée: 1h30

Janvier 2015

Consignes

- Cette épreuve se déroule sans document et sans calculatrice.
- Répondez sur le sujet dans les cadres prévus à cet effet.
- Soignez votre écriture, et ne donnez pas plus de détails que ceux nécessaires à vous justifier.
- Il y a cinq pages d'énoncé, assurez-vous de l'avoir en entier.
- Le barème, indicatif, correspond à une note sur 24.

1 Dénombrement (6 pts)

Donnez vos réponses en fonction de N. (On souhaite des formules précises, pas des classes de complexité.)

1. **(2 pts)** Combien de fois le programme ci-dessous affiche-t-il "x"?

Réponse :			

2. **(2 pts)** Et celui-ci?

```
for (int i = 3; i < N; ++i)
  for (int j = 1; j < i; ++j)
   puts("x");
```

<u>Réponse :</u>

3. **(2 pts)** Et celui-ci?

```
for (int i = 0; i <= N; ++i)
    {
     puts("x");
     for (int j = 0; j < i; ++j)
        puts("x");
}</pre>
```

```
Réponse :
```

2 Gaussons-nous! (4 pts)

L'algorithme du *pivot de Gauss*, aussi appelé *élimination de Gauss-Jordan*, peut s'écrire comme suit. Notez qu'il n'est pas nécessaire de savoir à quoi sert cet algorithme pour répondre aux questions.

```
1
     // input : A[1..n][1..m], a matrix of n rows and m columns
2
     for k \leftarrow 1 to m do :
3
        // Find pivot for column k
4
        p \leftarrow k
5
        for i \leftarrow k + 1 to m:
            if abs(A[i][k]) > abs(A[p,k]):
6
7
               p \leftarrow i
8
        if A[p][k] = 0:
9
            error "Matrix is singular"
        // swap rows k and p
10
        A[k] \leftrightarrow A[p]
11
12
        // Update all elements below and the pivot
        for i \leftarrow k + 1 to m do:
13
            for j \leftarrow k to n do :
14
15
               A[i][j] \leftarrow A[i][j] - A[k][j] \times (A[i][k]/A[k][k])
16
            // fill lower triangular matrix with zeroes
17
            A[i][k] \leftarrow 0
```

Dans les deux questions qui suivent, on suppose que la matrice est carrée (n = m) et inversible (la ligne 9 n'est jamais exécutée).

1. **(2 pts)** Donnez une formule (simplifiée) indiquant exactement combien de multiplications scalaires sont effectuées par cet algorithme (ligne 15) en fonction de *n*.

```
Réponse :
```

$ae \Theta(\ldots)$ ou $O(\ldots)$).		
Réponse :		

2. **(2 pts)** Quelle est la complexité de cet algorithme en fonction de *n* (soyez précis dans votre choix

3 Recursion (8 pts)

On considère la fonction suivante qui retourne une liste contenant tous les anagrammes de la chaîne *s* :

1	1 ANAGRAMS(s):		T(n), n > 0
2	if $s = ""$:	Θ(1)	
3	return[s]	$\Theta(1)$	
4	$res \leftarrow []$ /* liste vide */		
for w in ANAGRAMS($s[1:]$):			
6	6 for pos in $\{0, 1,, w \}$:		
7	res.insert(w[:pos] + s[0] + w[pos:])		
8	return <i>res</i>		

Si w= "abcde", la notation w[:3] désigne le préfixe de w ne contenant que les lettres 0, 1 et 2, soit w[:3]= "abc"; tandis que w[3:] désigne le suffixe de w à partir de la lettre 3, ici w[3:]= "de". En particulier, w[:0]=w[5:]="".

A titre d'exemple, ANAGRAM("foo") retourne ["foo", "ofo", "oof", "foo", "oof", "oof"]. Les doublons viennent du fait que la chaîne "foo" contient deux 'o' qui peuvent être permutés : l'algorithme ne fait aucun effort pour éviter cela.

Dans tout cet exercice, on note n la taille de la chaîne s passée à ANAGRAM.

1. **(2 pts)** Pour une chaîne de taille *n*, quel est le nombre d'anagrammes retournés par ANAGRAMS ? (Donnez une formule précise, en fonction de *n*.)

Réponse :		

2. **(2 pts)** Si ANAGRAMS est appelé avec une chaîne de taille n > 0, combien de fois la ligne 7 est-elle exécutée lors de cet appel (c'est-à-dire sans compter les exécutions de la ligne 7 lors des appels récursifs effectués ligne 5)?

Réponse :	
	otant les lignes de algorithme par leurs complexités respectives, que l AGRAMS satisfait l'équation suivante :
	$\int \Theta(1) \qquad \qquad \sin n = 0$
	$T(n) = \begin{cases} \Theta(1) & \text{si } n = 0\\ \Theta(n) \times n! + T(n-1) & \text{si } n > 0 \end{cases}$
(i+1)! - i!. Fascinant, n	lution de l'équation ci-dessus? (Notez que $i! \times i = i! \times (i+1) - i! = non?$)
Réponse :	

4	Comp	lexité	réci	ursive	(6	pts)
_	O P -				, –	P

— si $f(n) = O(n^{(\log_b a) - \varepsilon})$ pour un $\varepsilon > 0$, alors $T(n) = \Theta(n^{\log_b a})$; — si $f(n) = \Theta(n^{\log_b a})$, alors $T(n) = \Theta(n^{\log_b a} \log n)$; — si $f(n) = \Omega(n^{(\log_b a) + \varepsilon})$ pour un $\varepsilon > 0$, et de plus $af(n/b) \le cf(n)$ pour un $c < 1$ et toutes les grandes valeurs de n , alors $T(n) = \Theta(f(n))$.
Pour chacune des définitions récursive de complexité qui suivent, donnez la classe de complexité à laquelle elles appartiennent.
1. $T(n) = 3T(n/3) + \Theta(1)$ $\frac{R\acute{e}ponse:}{}$
2. $T(n) = 2T(n/3) + \Theta(n)$ $\frac{R\acute{e}ponse:}{}$
3. $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(1)$
Réponse:

Théorème général. Pour une récurrence du type T(n) = aT(n/b + O(1)) + f(n) avec $a \ge 1$, b > 1:

The End