CO2 하에서 PLA 열분해와 결합된 NG 개질 공정을 통한 수소 생산

최민식a, 김도훈b, 조형태c, 이재원at [□]한국생산기술연구원 저탄소에너지그룹, □한국기술교육대학교, □경희대학교 화학공학과 (j.lee@kitech.re.kr[†])

Abstract

Polylactic acid (PLA)는 환경에 대한 관심에 힘입어 수요가 지속적으로 증가하고 있지만 처리에 한계가 있다. 퇴비화, 화학적 재활용 등 기존 처리 방식은 환경오염, 비용적 단점이 있다. 본 연구에서는 CO₂ 기반 PLA열분해와 천연 │가스 개질 공정을 결합한 수소 생산 공정을 제안하였다. 기존 공정에 PLA 열분해로 생성된 합성가스를 추가적으로 투입함으로써 수소의 생산량이 기존 대비 41.1% 증가하였다. 결과적으로 PLA 폐기물 문제를 해결함과 동시에 청 ┃정수소를 추가적으로 생산할 수 있는 가능성을 확인하였다.

Keywords: Polylacticacid(PLA), CO₂ 조건 열분해, 천연가스 개질, 청정수소

Overall process

Figure 1. Overall process block diagram of PLAW-integrated hydrogen production process

- 기존 NG reforming 공정 내 WGS 반응기에 PLAW 열분해로 생성된 합성가스를 추가적으로 투입
- → H₂ 수율 극대화
- PSA off-gas 및 PLAW 열분해 오일을 연료로 활용
- → SMR 및 열분해 반응기에 필요한 열 자체 공급하여 에너지 절감
- CCS 공정을 결합하여 flue gas 속 CO₂ 포집
- → 탄소 배출이 거의 없는 환경 친화적 시스템 구축 및 경제적 이익 달성
- 전체적인 **공정 열 통합** 최적화
- → 에너지 효율적인 공정 제안

- * HDS: Hydrodesulfurization
- * SMR: Steam methane reforming
- * WGS : Water-gas shift * PSA: Pressure swing adsorption

H₂ production: NG reforming + PLAW pyrolysis

Figure 2. NG reforming and PLAW pyrolysis modeling

Table 1. Comparison of H₂ production

		conventional SMR ^[1]	Proposed process
Feed [kg/h]	NG	40.09	40.09
	PLAW	-	100.00
CH ₄ conversion in SMR		0.8438	0.8928
CO conversion in LTS		0.9370	0.9176
Hydrogen production	[kg/h]	14.00	19.76
	[Nm ³ /h]	156.3	220.6

- 기존의 SMR 공정과 비교하여 **수소 생산량 41.1% 증가**
- 기존 SMR과 달리 off-gas의 양이 충분하여 NG를 연료로 추가 투입하지 않아도 됨
- 실제 예상되는 열분해 생성 가스의 수율보다 낮은 값을 설정하여 실제 생산량은 더 높을 것으로 예상
- 소규모 공정의 설비 크기를 고려하여 PLAW의 투입량을 보수적으로 낮게 설정하였지만 대규모 시설로 확장한다면 생산량이 대폭 증가할 것으로 기대

Carbon capture and storage

(HX- 706)							
ure 3.	Amine	scrubbing	and	CO ₂	liquefaction	modeling	J

Table 2. Specific parameters of CCS model				
Classification	Value			
Inlet flue gas temperature (°C)	348.6			
Flue gas flow rate (kg/h)	955.5			
Flue gas composition (mol%)				
H ₂ O	14.2			
CO ₂	26.9			
N_2	55.1			
O_2	3.8			
CO ₂ in flue gas flow rate (kg/h)	364.5			
CO ₂ in Clean gas flow rate (kg/h)	30.1			
Stripper reboiler duty (kW)	291.9			
Product after CO ₂ adsorbtion temperature (°C)	75.5			
Product flow rate (kg/h)	509.7			
Product composition (mol%)				
H ₂ O	39.7			

Amine scrubbing section

- → Flue gas는 955.5kg/h로 amine scrubbing 공정에 들어감
- → Flue gas 속 364.5kg/h의 CO₂ 중 30.1kg/h 만 남음 (CO₂ 포집율 91.7%)
- → Stripper에서 MEA용액 재생에 3.61GJ/ton CO₂의 에너지 필요

CO₂ liquefaction section

- → CO₂ 액화에 **4개의 다단 compressor** 사용
- → 최종 생성물 30°C, 150bar 액체 CO₂

Results: LCOH comparison

Table 3. LCOH comparison of conventional and proposed system

	Value	NG reforming	PLAW-to-H ₂
CAPEX	USD/y	1,611,824	3,762,635
OPEX	USD/y	589,864	760,500
Total annualized cost	USD/y	731,717	1,112,979
Carbon tax	USD/y	93,639	10,110
Total revenue	USD/y	0	75,816
Hydrogen production	kgH ₂ /y	117,600	165,984
LCOH	USD/kgH ₂	7.10	6.31

- 기존 개질공정과 제안공정 비교
- → CAPEX와 OPEX는 증가하지만, Carbon tax 감소

 CO_2

- → 액체 CO₂ 판매로 인한 수익 발생(연간 75,816USD)
- → LCOH 11.1% 감소

Conclusions

60.3

- PLAW 열분해로 생성 된 syngas를 feed로 WGS반응
- → 기존 공정에 비해 수소 생산량 41.1% 증가
- 액체 CO₂ 판매로 인한 수익 발생
- → 기존 공정에 비해 LCOH 11.1% 감소

Reference

- [1] Yun, Seunggwan, et al. "Process design and improvement for hydrogen production based on thermodynamic analysis: Practical application to real-world on-site hydrogen refueling stations." Journal of Cleaner Production 423 (2023): 138745.
- [2] Lim, Jonghun, et al. "Novel process design for waste energy recovery of LNG power plants for CO₂ capture and storage." Energy Conversion and Management 277 (2023): 116587