ANALYSING GENOMIC AND TRANSCRIPTOMIC DATA IN R

A mini-course

Overview of the course

Date	1 st Lecture	2 nd Lecture
16 th July	Icebreakers, ground rules and maybe and Intro to Molecular Biology and NGS	
17 th July	Intro to Molecular Biology and NGS	Data analysis 1
18 th July	Experiment: Nucleic acid extraction	Data analysis 2
19 th July	Single-cell DNA, RNA and protein technologies	Proteomics, spatial technologies and epigenomics Data analysis 3
20 th July	Data analysis 4	Experiment: Staining our own cells
21 st July	Experiment: Gel electrophoresis	Data analysis 5 Data analysis 6
22 nd July	Preparation for the final presentation	Final presentation and closing ceremony

Mini-course structure

- Session 1: R basics and data exploration
- Session 2: Data exploration and data visualisation

This covers up to chapter 2

- Session 4: Quality Check (QC) and Alignment
- Session 5: Statistics, Clustering and Dimensionality Reduction
- Session 6: RNA-seq analysis

Aim

• To be able to explore and visualise genomic data in R.

What is bioinformatics?

Combines biology, computer science, and statistics to analyse and interpret biological data.

Steps of genomic analysis

- Data collection
- 2. Data quality check (QC) and cleaning
- 3. Data preprocessing
- 4. Data exploration
- 5. Data visualisation

SESSION 1

R SETUP

Download R and R Studio

https://posit.co/download/rstudio-desktop/

Download the latest versions of R and RStudio for your PC

- R is the underlying statistical computing environment
- RStudio is a graphical integrated development environment (IDE) that makes using R much easier and more interactive.

Download R and R Studio

R studio features

Download packages

- To install packages install.packages("tidyverse")
- To use installed packages

library(tidyverse)

R BASICS

Objectives

- 1. Constants and variables
- 2. Data types and data structures
- 3. Reading and writing data
- 4. Basic data exploration

Help in R

• Type into R:

? And ??

Help()

• Stack Overflow for online help

https://stackoverflow.com/

What are constants and variables?

- Constants are fixed.
 - o Pi
 - o Avogadro's number
- Variables are assigned
 - ∘ X=5
 - Y=2

Basic commands

- Arithmetic operations: +, -, *, /, ^
- Assignment: <- or =]
- R comments: #

Try

a <- 5

b <- 10

c <- a + b

print(c)

Data types

- Numeric: 42, 3.14
- Character: "Hello, world!"
- Logical: TRUE, FALSE
- Factor: ("apple", "banana", "apple")

<u>Try</u>

```
num <- 42
char <- "Hello, world!"
bool <- TRUE
fact_var <- factor(c("apple", "banana", "apple"))</pre>
```

Type of functions

- Functions: A set of instructions that perform a specific task
- Built-in functions: Pre-defined and available in standard R packages
 - In R, built in functions have ()
 - For example, merge()
- User-defined functions: created by the user to perform specific tasks not covered by built-in functions.

Conversion between data types

- as.character()
- as.numeric()
- as.logical()
- as.factor(c())

Data structures

- Vectors
- Matrices
- Lists
- Data Frames

Vectors

- One-dimensional arrays.
- Created using c()

<u>Try</u>

```
vec <- c(1, 2, 3, 4, 5)
days <- c("Monday", "Tuesday", "Wednesday", "Thursday"," Friday", "Saturday" and "Sunday")
```

Matrices

- Two-dimensional arrays with elements of the same type.
- Created using matrix()

<u>Try</u>

mat <- matrix(1:9, nrow = 3, ncol = 3)

Lists

- Ordered collections of objects, which can be of different types.
- Created using list()

<u>Try</u>

lst <- list(num = 42, char = "Hello", bool = TRUE)</pre>

How about typing 'number' instead of 'num'?

Data frames

- Two-dimensional tables with columns of different types.
- Created using data.frame().

<u>Try</u>

```
df <- data.frame(

x = c(1, 2, 3),

y = c("A", "B", "C")
```

Sub-setting data structures

- vec[1] # First element of the vector
- mat[2, 3] # Element in the 2nd row, 3rd column of the matrix
- Ist\$name # Accessing the 'name' element from the list
- df\$Name # Accessing the 'Name' column from the data frame

Converting between data structures

- as.list(df) # Converting an object to list
- as.data.frame(mat or list or characyter) # Converting matrix, list or character to data frame

Exercise 1

Objectives

- ✓ Constants and variables
- ✓ Data types and data structures
- 3. Reading and writing data
- 4. Basic data exploration

Reading and writing data

- read.table()
- read.csv()
- write.table()
- write.csv()

Excel

- Package needed: readxl
- library(readxl)

```
read_excel()
```

read_xls()

read_xlsx()

Setting working directory

- getwd() # Get current working directory
- setwd("/path/to/your/directory") # Set working directory
- list.files() # List files in the working directory

How to view data?

- data() #load specified datasets that are built into R packages into the R environment.
- head() # View the first 6 rows of the data
- tail() # View the last 6 rows of the data
- str() # Get the structure of the data
- summary() # Get summary statistics for the data

Cleaning Data

- What is data cleaning: preparing raw data for analysis
- Why clean data:
 - o Handling missing data
 - Removing unnecessary rows/columns
 - Standardising formats
 - Removing duplicates
 - Correcting errors

```
na.omit() # Remove rows with missing values df[complete.cases(df), ] # Another way to remove rows with missing values df[, -5] # Remove the 5<sup>th</sup> column df[-10, ] # Remove the 10<sup>th</sup> row
```

Exercise 2

Objectives

- ✓ Constants and variables
- ✓ Data types and data structures
- ✓ Reading and writing data
- ✓ Basic data exploration

Any questions?

R mini-project