Acceleration

Velocity is the _____ and ____ of something's motion.

Acceleration means that the is ...

An accelerating bus could be _____,

Slowing down is also called .

- 1 Are these things accelerating? How did you decide?
 - (a) A snail starting to move.
 - (b) A cyclist riding East at 12 mph.

- 2 Are these things accelerating? How did you decide?
 - (a) The Earth going round the Sun.
- (b) A train slows to stop at a station.
- An aeroplane begins to speed up down a runway. An airport worker measures the velocity after each second. This is the speed along the runway.

()					4	
Velocity (m/s)	0	4	8	12	16	20

- (a) Is the aeroplane accelerating? How can you tell?
- (b) What do you think the velocity is after 7 s?
- (c) When will the velocity be 36 m/s?
- (d) How much does the velocity change each second?
- 4 A truck speeds up after leaving a town. The velocities (speeds away from the town) are in the table below, but one is missing.

Time (s)	0	2	4	6	8
Velocity (m/s)	10	13		19	22

- (a) Is the truck accelerating? How can you tell?
- (b) What is the missing velocity?
- (c) If it keeps accelerating like this, when will the velocity be 28 m/s?

(d) How much does the velocity change each second?	(c	1)	How r	much	does	the	velocit	v change	each	second	d?
--	----	----	-------	------	------	-----	---------	----------	------	--------	----

5 The velocities of three accelerating vehicles are given in the tables below

Aeroplane						
Time (s)	0	1	2	3	4	5
Velocity (m/s)	0	4	8	12	16	20

- (a) Plot graphs of the velocities of the three vehicles. Add best fit lines to your points.
- (b) How can you tell from the graph which vehicle has the largest acceleration?
- (c) How can you tell from the graph which vehicle is slowing down?

The ____ in ___ each ___ is called the acceleration. Acceleration is measured in metres per second squared (m/s^2) , meaning m/s per second. An acceleration of 20 m/s^2 means the object of velocity each .

- 6 A rocket accelerates at 20 m/s².
 - (a) Complete the sentence: The velocity gets m/s greater every second.
 - (b) Work out the velocity change in five seconds using an equation.

(c) Work out the velocity change in 10 s using an equation.

velocity change (m/s) = acceleration (m/s²)
$$\times$$
 time (s) = 20 \times

(d) Work out the velocity change in 25 s.

7	A more powerful rocket accelerates at 30 m/s ² .
	(a) Complete the sentence: The rocket gets m/s faster every second.
	(b) Work out how much time it will take to gain 60 m/s using an equation.
	velocity change $(m/s) = acceleration (m/s^2) \times time(s)$
	= 30 ×
	(c) Work out how much time it will take to gain $150\mathrm{m/s}$ using an equation.
	$velocity\ change\ (m/s)\ =\ acceleration\ (m/s^2)\ \times\ time\ (s)$
	= 30 ×
	(d) Work out the time taken for the rocket to gain $1500\mathrm{m/s}$.
8	A netball is dropped and reaches 30 m/s in 3 s.
	(a) Velocity gained in one second $=$ \div $=$ $=$ m/s
	(b) Complete the sentence: The netball's acceleration (in m/s ²) is
	(c) A motorcyclist gains 24 m/s in 4 s. Work out their acceleration using an equation.
	velocity gain (m/s) = acceleration (m/s ²) \times time (s)
	= × 4
	(d) Work out the acceleration of a drag race car which gains 40 m/s in 0.8 s .
	(a) 1
9	Complete the word equations using acceleration, velocity change and time taken.
	(a) acceleration = (b) velocity change = (c) time taken =
10	Rewrite your word equations using symbols.
	a is the acceleration, t is the time taken and v is the velocity change.
	(a) $a = $ (b) $v = $
11	A car leaving a town starts at 12 m/s and accelerates to 30 m/s in 6 s.
	(a) Calculate its acceleration in m/s ² .

(b) How much time does it take to gain 12 m/s?