Integral Definida

Área

Seja f uma função contínua no intervalo fechado [a, b]. Suponha que $fx) \ge 0$ para todo $x \in [a, b]$. Seja R a região limitada pelo gráfico de f, pelo eixo-x e pelas retas x = a e x = b.

Dividimos o intervalo [a,b] em n subintervalos. Para simplificar, vamos considerar estes subintervalos de mesmo comprimento $\Delta x = \frac{b-a}{n}$. Denotemos os extremos destes intervalos por $x_0, x_1, x_2, \ldots, x_{n-1}, x_n$, onde $x_0 = a, x_1 = a + \Delta x, x_2 = a + 2\Delta x, \ldots, x_i = a + i\Delta x, \ldots, x_{n-1} = a + (n-1)\Delta x, x_n = b$. Seja $[x_{i-1}, x_i]$ o i-ésimo intervalo.

Como f é contínua no intervalo fechado [a,b], ela é contínua em cada um dos subintervalos. Pelo teorema do valor extremo existe, para cada i, um número c_i no subintervalo, para o qual f tem um valor mínimo absoluto nesse intervalo.

Considere n retângulos, cada um com base de comprimento Δx unidades e altura de $f(c_i)$ unidades. A soma das áreas dos n retângulos será então $S_n = \sum_{i=1}^n f(c_i) \, \Delta x$

Temos então $A \ge S_n$

Se, ao invés de n, dividirmos o intervalo [a,b] em 2n subintervalos teremos 2n retângulos com bases de comprimento igual à metade do comprimento das bases dos retângulos anteriores. Observando a soma das áreas destes novos retângulos, vemos que está mais próxima do número que desejamos para representar a área da região R.

Quando aumentamos o número de subdivisões do intervalo [a,b], Isto é, quando n cresce, o valor de S_n aumenta e valores sucessivos de S_n diferem um outro por quantidades que se tornam arbitrariamente pequenas. Isto é provado no curso de Cálculo Avançado, num teorema que afirma que se for contínua em [a,b], então, quando n cresce indefinidamente, os valores de S_n tendem a um limite.

Definimos este limite como sendo a área A da região R. Mais precisamente definimos

$$A = \lim_{n \to \infty} S_n$$
, ou seja $A = \lim_{n \to \infty} \sum_{i=1}^n f(c_i) \Delta x$

Observação 1

Na definição anterior consideramos retângulos inscritos na região R. Poderíamos ter considerado retângulos circunscritos. Neste caso tomaríamos como alturas dos retângulos os valores máximos absolutos de f em cada intervalo $[x_{i-1},x_i]$ e a existência deste valor máximo absoluto também é garantida pelo teorema do valor extremo. A soma das áreas dos retângulos circunscritos serão no mínimo tão grandes quanto a medida da área da região R e mostra-se, no curso de cálculo avançado, que o limite destas somas decresce indefinidamente quando n cresce e é exatamente o valor do limite obtido no caso dos retângulos se inscritos.

Observação 2

Na verdade, mostra-se no curso de cálculo avançado, que a medida da altura do retângulo do i-ésimo intervalo $[x_{i-1}, x_i]$ poderia ser tomada como sendo o valor funcional em qualquer número desse intervalo e o limite da soma das medidas das áreas do retângulo continuaria o mesmo, não importando os números escolhidos.

A definição de área que apresentamos, isto é, A = $\lim_{n\to\infty} \sum_{i=1}^n f(c_i) \Delta x$, é um caso particular de um tipo de limite que nos leva a integral definida.

Exemplo

Ache a área da região limitada pelo gráfico da função f(x) = x, o eixo x e a reta x = 2, considerando retângulos inscritos.

Solução

Dividirmos o intervalo [0,2] em n subintervalos de comprimento $\Delta x = \frac{2-0}{n} = \frac{2}{n}$

Tomamos então $x_o=0$, $x_1=\Delta x$, $x_2=2\Delta x$, ..., $x_{i-1}=(i-1)\Delta x$, $x_i=i\Delta x$, ...,

 $x_{n-1} = (n-1)\Delta x, x_n = 2.$

Como f é crescente no intervalo [0,2], o valor mínimo absoluto de f no subintervalo $[x_i, x_{i+1}]$ é $f(x_i)$

Então A = $\lim_{n\to\infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$

Como
$$x_i = i\Delta x$$
 e $f(x) = x$ temos $\sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} f(i\Delta x) \Delta x = \sum_{i=0}^{n-1} f(i\Delta x) \Delta x = \sum_{i=0}^{n-1} i(\Delta x)^2 = \sum_{i=0}^{n-1} i\left(\frac{2}{n}\right)^2 = \sum_{i=0}^{n-1} i.\frac{4}{n^2} = \frac{4}{n^2}\sum_{i=0}^{n-1} i = \frac{4}{n^2}.\frac{n(n-1)}{2} = \frac{2(n^2-n)}{n^2} = \frac{2n^2-2n}{n^2} = 2 - \frac{2}{n}$
Daí $A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i-1}) \Delta x = \lim_{n \to \infty} \left(2 - \frac{2}{n}\right) = 2$

Exemplo

Ache a área da região limitada pelo gráfico da função $f(x) = x^2$, o eixo x e a reta x = 3, considerando retângulos inscritos.

Solução

Dividirmos o intervalo [0,3] em n subintervalos de comprimento $\Delta x = \frac{3-0}{n} = \frac{3}{n}$

Tomamos então $x_o = 0$, $x_1 = \Delta x$, $x_2 = 2\Delta x$, ..., $x_{i-1} = (i-1)\Delta x$, $x_i = i\Delta x$, ..., $x_{n-1} = (n-1)\Delta x$, $x_n = 3$.

Como f é crescente no intervalo [0,3], O valor mínimo absoluto de f no subintervalo $[x_i,x_{i+1}]$ é $f(x_i)$

Então A =
$$\lim_{n\to\infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$$

Como $x_i = i\Delta x$ e $f(x) = x^2$ temos $\sum_{i=0}^{n-1} f(x_i) \Delta x =$

$$\sum_{i=0}^{n-1} ((i\Delta x)^2 \ \Delta x = \sum_{i=0}^{n-1} i^2 (\Delta x)^3 =$$

$$\begin{split} & \sum_{i=0}^{n-1} i^2 \left(\frac{3}{n}\right)^3 = \sum_{i=0}^{n-1} i^2 \frac{27}{n^3} = \frac{27}{n^3} \sum_{i=0}^{n-1} i^2 = \\ & \frac{27}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right) = \frac{27}{n^3} \cdot \frac{2n^3 + 3n^2 + n}{6} = \frac{9}{2} \cdot \frac{2n^3 + 3n^2 + n}{n^3} = \frac{9}{2} \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) \\ & \mathsf{Dai} \; \mathsf{A} = \lim_{n \to \infty} \sum_{i=1}^n f(x_{i-1}) \; \Delta x = \lim_{n \to \infty} \frac{9}{2} \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} (2 + 0 + 0) = 9 \end{split}$$

Outra solução

Ache a área da região limitada pelo gráfico da função $f(x) = x^2$, o eixo x e a reta x = 3, considerando retângulos circunscritos.

Solução

Dividirmos o intervalo [0,3] em n subintervalos de comprimento $\Delta x = \frac{3-0}{n} = \frac{3}{n}$ Tomamos então $x_o = 0$, $x_1 = \Delta x$, $x_2 = 2\Delta x$, ..., $x_{i-1} = (i-1)\Delta x$, $x_i = i\Delta x$, ..., $x_{n-1} = (n-1)\Delta x$, $x_n = 3$. Como f é crescente no intervalo [0,3], O valor máximo absoluto de f no subintervalo $[x_{i-1}, x_i]$ é $f(x_i)$

Então A =
$$\lim_{n\to\infty} \sum_{i=1}^n f(x_i) \Delta x$$

Como $x_i = i\Delta x$ e $f(x) = x^2$ temos $\sum_{i=1}^n f(x_i) \Delta x =$

$$\sum_{i=1}^{n} (i\Delta x)^{2} \Delta x = \sum_{i=1}^{n} i^{2} (\Delta x)^{3} =$$

$$\sum_{i=1}^{n} i^2 \left(\frac{3}{n}\right)^3 = \sum_{i=1}^{n} i^2 \frac{27}{n^3} = \frac{27}{n^3} \sum_{i=1}^{n} i^2 =$$

$$\frac{27}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{27}{n^3} \cdot \frac{2n^3 + 3n^2 + n}{6} = \frac{27}{n^3} \cdot \frac{n(2n^2 + 3n + 1)}{6} = \frac{9}{2} \cdot \frac{2n^2 + 3n + 1}{n^2} = \frac{3n^2 + 3n$$

$$\frac{9}{2} \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) =$$

Daí A =
$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i-1}) \Delta x = \lim_{n \to \infty} \frac{9}{2} \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) = \frac{9}{2} \lim_{n \to \infty} \left(2 + \frac{3$$

$$\frac{9}{2}(2+0+0)=9$$

A Integral Definida

Vamos considerar agora uma função f definida no intervalo fechado [a,b]. Dividimos o intervalo [a,b] em n subintervalos, escolhendo arbitrariamente n-1 pontos entre a e b. Sejam $x_o=a, x_n=b, e x_1, x_2, \ldots, x_{n-1}$ os pontos intermediários, com $x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n$.

Como os pontos não são necessariamente equidistantes os comprimentos dos subintervalos não são necessariamente iguais.

Seja $\Delta_i x$ o comprimento do i-ésimo intervalo $[x_{i-1}, x_i]$

O conjunto de todos estes subintervalos é chamado de partição de [a, b].

Denotaremos esta partição por Δ e denotaremos por $|\Delta|$ o comprimento do maior (ou dos maiores) subintervalo(s) da partição. $|\Delta|$ será chamado de norma da partição.

Escolhemos um ponto arbitrário ξ_i em cada intervalo $[x_{i-1}, x_i]$

A soma $S_n = \sum_{i=1}^n f(\xi_i) \Delta_i x$ é chamada de soma de Gauss.

Definição

Seja f uma função cujo domínio contém o intervalo fechado [a,b]. Dizemos que f é integrável em [a,b], se existir um número L satisfazendo a seguinte condição:

Para todo $\epsilon > 0$, existe um $\delta > 0$ tal que toda partição Δ para a qual $|\Delta| < \delta$, com $\xi_i \epsilon[x_{i-1}, x_i]$, $i = 1, 2, \ldots, n$, temos $|\sum_{i=1}^n f(\xi_i) \Delta_i x - L| < \epsilon$ Nestas condições escrevemos $\lim_{|\Delta| \to 0} \sum_{i=1}^n f(\xi_i) \Delta_i x = L$

Definição

Seja f uma função definida no intervalo fechado [a,b]. Então a integral definida de f de a até b, denotada por $\int_a^b f(x)dx$, é definida como $\lim_{|\Delta|\to 0} \sum_{i=1}^n f(\xi_i) \, \Delta_i x$, se o limite existir.

Dizer que "f é integrável em [a,b]" é equivalente a dizer que "a integral definida $\int_a^b f(x) dx$ existe", isto é, $\lim_{|\Delta| \to 0} \sum_{i=1}^n f(\xi_i) \, \Delta_i x$ existe.

Se uma função for contínua no intervalo fechado [a, b], então ela é integrável em [a, b].

Definição

Seja f uma função definida no intervalo fechado [a,b] e $f(x) \ge 0$ para todo x em [a,b].

Seja R a região limitada pelo gráfico de f, pelo eixo x e pelas retas x=a e x=b, Então a medida da área A da região R é dada por A = $\lim_{|\Delta|\to 0} \sum_{i=1}^n f(\xi_i) \, \Delta_i x = \int_a^b f(x) dx$.

Definição

Se a > b então, se $\int_b^a f(x) dx$ existir, definimos $\int_a^b f(x) dx = -\int_b^a f(x) dx$

Definição

Se f está definida em a, definimos $\int_a^a f(x)dx = 0$

Propriedades da Integral definida

Teorema

Se \varDelta for qualquer partição do intervalo fechado [a,b] , então $\lim_{|\varDelta|\to 0}\sum_{i=1}^n \varDelta_i x=b-a$

Se f está definida no intervalo fechado [a,b] e se $\lim_{|\Delta|\to 0} \sum_{i=1}^n f(\xi_i) \Delta_i x$ existe, onde Δ é qualquer partição de [a,b], então se k for uma constante qualquer, $\lim_{|\Delta|\to 0} \sum_{i=1}^n k f(\xi_i) \Delta_i x = k \lim_{|\Delta|\to 0} \sum_{i=1}^n f(\xi_i) \Delta_i x$

Teorema

Se k for uma constante qualquer, então

$$\int_{a}^{b} k dx = k(b - a)$$

Teorema

Se f for uma função integrável no intervalo fechado [a,b] e se k for uma constante qualquer, então $\int_a^b kf(x)dx = k \int_a^b f(x)dx$

Teorema

Se as funções f e g forem integráveis no intervalo fechado [a,b] então f+g será integrável em [a,b] e $\int_a^b (f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$

Se as funções f_1, f_2, \ldots, f_n forem integráveis no intervalo fechado [a, b] então $f_1 + f_2 + \ldots + f_n$ será integrável em [a, b] e $\int_a^b (f_1(x) + f_2(x) + \ldots + f_n(x)) dx = \int_a^b f_1(x) dx + \int_a^b f_2(x) dx + \ldots + \int_a^b f_n(x) dx$

Teorema

Se a função f for integrável nos intervalos fechados [a,b], [a,c] e [c,b], onde a < c < b, então $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

Teorema

Se a função f for integrável num intervalo fechado contendo os números $a,b\ e\ c$, não importando a ordem de $a,b\ e\ c$, então $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

Teorema

Se as funções f e g forem integráveis no intervalo fechado [a,b] e se $f(x) \ge g(x)$ para todo x em [a,b], então $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

Se a função f é contínua no intervalo fechado [a,b]. Se m e M são respectivamente os valores mínimo e máximo absolutos da função f em [a,b], então

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

Teorema do valor médio para Integrais

Se a função f for contínua no intervalo fechado [a,b], existe um número c em [a,b] tal que $\int_a^b f(x)dx = f(c)(b-a)$

Definição

Se a função f for integrável no intervalo fechado [a,b], o valor médio de f em [a,b] é $\frac{\int_a^b f(x)dx}{b-a}$.

Teorema Fundamental do Cálculo

Seja f uma função contínua no intervalo fechado [a, b].

1ª Parte: Se a função G é definida por $G(x) = \int_a^x f(t)dt$ para todo x em [a,b], então G é uma antiderivada de f em [a,b], isto é, G'(x) = f(x) para todo x em [a,b].

2ª Parte: Se F é qualquer antiderivada de f em [a,b], então $\int_a^b f(t)dt = Fb - F(a)$.

Exemplos

1. Ache a área da região limitada pelo gráfico da função $f(x) = x^2$, o eixo x e a reta x = 3.

Solução

Temos A = $\int_0^3 f(x) dx = \int_0^3 x^2 dx$

Como a função $F(x) = \frac{x^3}{3}$ é uma antiderivada da função $f(x) = x^2$ temos

$$A = \int_0^3 x^2 dx = F(3) - F(0) = \frac{3^3}{3} - \frac{0^3}{3} = 9$$

Observação

Usaremos a notação $F(x) \Big|_a^b$ para representar F(b) - F(a)

Com esta notação, temos

$$A = \int_0^3 x^2 dx = \frac{x^3}{3} \Big|_0^3 = \frac{3^3}{3} - \frac{0^3}{3} = 9$$

2. Encontre a área da região limitada por $y = x^2$ e y = x + 2 Solução:

Inicialmente encontramos as abscissas dos pontos de interseção dos dois gráficos.

Estas abscissas são as soluções da equação $x^2 = x + 2$

$$x^2 = x + 2 \Rightarrow x^2 - x - 2 = 0$$

$$x = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2}$$

Daí temos x = -1 ou x = 2

Então
$$A = \int_{-1}^{2} (x + 2 - x^2) dx =$$

$$\left(\frac{x^2}{2} + 2x - \frac{x^3}{3}\right) \begin{vmatrix} 2 \\ -1 \end{vmatrix} = \left(\frac{2^2}{2} + 2 \cdot 2 - \frac{2^3}{3}\right) - \left(\frac{(-1)^2}{2} + 2 \cdot (-1) - \frac{(-1)^3}{3}\right) =$$

$$\left(2 + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right) = \frac{10}{3} + \frac{7}{6} = \frac{27}{6} = \frac{9}{2}$$