1 point

midterm exam	(midterm exam)^2	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)^2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(4)}$? (Hint: midterm = 69, final = 78 is training example 4.) Please round off your answer to two decimal places and enter in the text box below.

0.47

2. You run gradient descent for 15 iterations

1 point

with $\alpha=0.3$ and compute

 $J(\theta)$ after each iteration. You find that the

value of $J(\theta)$ decreases quickly then levels

off. Based on this, which of the following conclusions seems

most plausible?

- Rather than use the current value of lpha, it'd be more promising to try a larger value of lpha (say lpha=1.0).
- $\alpha = 0.3$ is an effective choice of learning rate.
- Rather than use the current value of α , it'd be more promising to try a smaller value of α (say $\alpha=0.1$).
- 3. Suppose you have m=28 training examples with n=4 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

1 point

- \bigcirc X is 28×5 , y is 28×5 , θ is 5×5
- $\bigcirc \hspace{0.2cm} X \text{ is } 28 \times 4 \text{, } y \text{ is } 28 \times 1 \text{, } \theta \text{ is} 4 \times 1$
- $\bigcirc X$ is 28×4 , y is 28×1 , θ is 4×4
- \bigcirc X is 28×5 , y is 28×1 , θ is 5×1

4	. Suppose you have a dataset with $m=1000000$ examples and $n=200000$ features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?	1 point
	\bigcirc The normal equation, since gradient descent might be unable to find the optimal $ heta.$	
	The normal equation, since it provides an efficient way to directly find the solution.	
	$lacktriangle$ Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.	
	\bigcirc Gradient descent, since it will always converge to the optimal $ heta.$	
5.	Which of the following are reasons for using feature scaling?	1 point
	☐ It is necessary to prevent the normal equation from getting stuck in local optima.	
	It speeds up gradient descent by making it require fewer iterations to get to a good solution.	
	It speeds up gradient descent by making each iteration of gradient descent less expensive to compute.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	