Base-two primitive permutation groups

Hong Yi Huang

23rd Postgraduate Group Theory Conference

8 July 2022

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}\mathsf{G}_{\alpha}=1.$$

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Let $G \leqslant \operatorname{\mathsf{Sym}}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

•
$$G = S_n$$
, $\Omega = \{1, \dots, n\}$ and $\Delta = \{1, \dots, n-1\}$.

Let $G \leqslant \operatorname{\mathsf{Sym}}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

- $G = S_n$, $\Omega = \{1, ..., n\}$ and $\Delta = \{1, ..., n-1\}$.
- G = GL(V), $\Omega = V \setminus \{0\}$ and Δ contains a basis of V.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V \setminus \{0\}$: b(G) = dim(V).

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for all } \alpha \in \Delta \iff \mathsf{x}\mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for all } \alpha \in \Delta \iff \mathsf{x}\mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Question. How small can a base be?

Observations: If G is transitive, then

• $b(G) = 1 \iff G$ is regular;

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called primitive if G_{α} is maximal in *G*.

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called primitive if G_{α} is maximal in *G*.

Problem. Classify the finite primitive groups G with b(G) = 2.

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called primitive if G_{α} is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

• $\{1,2\}$ is a base, so b(G) = 2;

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called primitive if G_{α} is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

- $\{1,2\}$ is a base, so b(G) = 2;
- ullet G is primitive iff n is a prime.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leqslant AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leqslant GL(V)$ irreducible.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leqslant AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leqslant GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question. Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question. Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

CFSG is used. Partial results (Burness et al.)

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question. Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• CFSG is used. Partial results (Burness et al.)

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question. Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

CFSG is used. Partial results (Burness et al.)

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \text{Sym}(\Gamma)$

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question. Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

CFSG is used. Partial results (Burness et al.)

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

Product type: $G \leqslant L \wr P$ with its product action on Γ^k , where $L \leqslant \operatorname{Sym}(\Gamma)$

• Bailey & Cameron, 2013: Explicit $b(L \wr P) \checkmark$

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question. Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

CFSG is used. Partial results (Burness et al.)

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \text{Sym}(\Gamma)$

- Bailey & Cameron, 2013: Explicit $b(L \wr P) \checkmark$
- Progress where G_{α} is soluble and $G < L \wr P$ (Burness & H, 2022+)

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \Omega = \{1, 2, 3, 4\}$$
:

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \Box$$

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle$$
, $\Omega = \{1, 2, 3, 4\}$:

Saxl graphs

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Examples

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}: \ \Sigma(G) = \sum_{i=1}^{n} (1234)^{i}$$

Saxl graphs

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω ;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Examples

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}: \ \Sigma(G) = \sum_{i=1}^{n} (1234)^{i}$$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle, \Omega = \{1, 2, 3, 4, 5\}:$$

Saxl graphs

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Examples

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}: \ \Sigma(G) = \sum_{i=1}^{n} (1234)^{i}$$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle, \ \Omega = \{1, 2, 3, 4, 5\} : \Sigma(G) = \langle (12345), (25)(34) \rangle$$

Another example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Another example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a Johnson graph: vertices 2-subsets of $\{1,\ldots,q+1\}$ and two vertices are adjacent if they are not disjoint.

Another example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a Johnson graph: vertices 2-subsets of $\{1,\ldots,q+1\}$ and two vertices are adjacent if they are not disjoint.

For example, when q=4 we have the complement of the Petersen graph.

Assume G is transitive and b(G) = 2.

Assume G is transitive and b(G) = 2.

Notes.

• $\Sigma(G)$ is vertex-transitive.

Assume G is transitive and b(G) = 2.

Notes.

- $\Sigma(G)$ is vertex-transitive.
- $\Sigma(G)$ has valency $r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Assume G is transitive and b(G) = 2.

Notes.

- $\Sigma(G)$ is vertex-transitive.
- $\Sigma(G)$ has valency $r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Chen & H, 2022: A general method for computing r(G).

Assume G is transitive and b(G) = 2.

Notes.

- $\Sigma(G)$ is vertex-transitive.
- $\Sigma(G)$ has valency $r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Chen & H, 2022: A general method for computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

Assume G is transitive and b(G) = 2.

Notes.

- $\Sigma(G)$ is vertex-transitive.
- $\Sigma(G)$ has valency $r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Chen & H, 2022: A general method for computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

Burness & H, 2021+: G almost simple, G_{α} soluble and r(G) = 1

Assume G is transitive and b(G) = 2.

Notes.

- $\Sigma(G)$ is vertex-transitive.
- $\Sigma(G)$ has valency $r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Chen & H, 2022: A general method for computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

Burness & H, 2021+: G almost simple, G_{α} soluble and r(G)=1 \checkmark e.g. $G=\mathsf{PGL}_2(q)$ and $G_{\alpha}=D_{2(q-1)}$

Assume G is transitive and b(G) = 2.

Notes.

- $\Sigma(G)$ is vertex-transitive.
- $\Sigma(G)$ has valency $r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Chen & H, 2022: A general method for computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

Burness & H, 2021+: G almost simple, G_{α} soluble and r(G) = 1 \checkmark

e.g.
$$G = \mathsf{PGL}_2(q)$$
 and $G_{lpha} = D_{2(q-1)}$

Remark. $r(G) = 1 \iff \Sigma(G)$ is an orbital graph.

Notes.

• $\Sigma(G)$ is the union of the r(G) regular orbital graphs of G.

Notes.

- $\Sigma(G)$ is the union of the r(G) regular orbital graphs of G.
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Notes.

- $\Sigma(G)$ is the union of the r(G) regular orbital graphs of G.
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Notes.

- $\Sigma(G)$ is the union of the r(G) regular orbital graphs of G.
- *G* is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

 ${\mathcal G}$ primitive \implies any two vertices in $\Sigma({\mathcal G})$ have a common neighbour.

Notes.

- $\Sigma(G)$ is the union of the r(G) regular orbital graphs of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, it asserts that $\Sigma(G)$ has diameter at most 2.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

All primitive groups of degree up to 4095 ✓

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q)$ \checkmark

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q)$ \checkmark
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark
- Lee & Popiel, 2021+: some affine groups

 $\mathcal{B} := \{ \text{base-two almost simple primitive groups with soluble stabilisers} \}$

 $\mathcal{B} := \{ \text{base-two almost simple primitive groups with soluble stabilisers} \}$

• Burness, 2021: ${\cal B}$ is completely known \checkmark

 $\mathcal{B} := \{ \text{base-two almost simple primitive groups with soluble stabilisers} \}$

- Burness, 2021: B is completely known √
- Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

 $\mathcal{B} := \{ \text{base-two almost simple primitive groups with soluble stabilisers} \}$

- Burness, 2021: B is completely known √
- Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

 $\mathcal{B} := \{ \text{base-two almost simple primitive groups with soluble stabilisers} \}$

- Burness, 2021: B is completely known √
- Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$. Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

 $\mathcal{B} := \{ ext{base-two almost simple primitive groups with soluble stabilisers}\}$

- Burness, 2021: B is completely known √
- Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

Example:
$$(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$$

 $\mathcal{B} := \{ \mathsf{base}\text{-}\mathsf{two} \; \mathsf{almost} \; \mathsf{simple} \; \mathsf{primitive} \; \mathsf{groups} \; \mathsf{with} \; \mathsf{soluble} \; \mathsf{stabilisers} \}$

- Burness, 2021: B is completely known √
- Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

Example:
$$(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$$

Theorem (Burness & H, 2021+)

• $G \in \mathcal{B}$ is simple $\implies \omega(G) \geqslant 5$ or $(G, G_{\alpha}) = (A_5, S_3)$;

 $\mathcal{B} := \{ \mathsf{base}\text{-}\mathsf{two} \; \mathsf{almost} \; \mathsf{simple} \; \mathsf{primitive} \; \mathsf{groups} \; \mathsf{with} \; \mathsf{soluble} \; \mathsf{stabilisers} \}$

- Burness, 2021: B is completely known √
- Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

Example:
$$(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$$

Theorem (Burness & H, 2021+)

- $G \in \mathcal{B}$ is simple $\implies \omega(G) \geqslant 5$ or $(G, G_{\alpha}) = (A_5, S_3)$;
- $G \in \mathcal{B} \implies \alpha(G) \geqslant 4 \text{ or } (G, G_{\alpha}) = (A_5, S_3).$

Probabilistic methods

Recall that $\Sigma(G)$ has valency $v(G) = r(G)|G_{\!lpha}|$

Probabilistic methods

Recall that $\Sigma(G)$ has valency $v(G) = r(G)|G_{\alpha}|$ and let

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

be the probability that a random pair in Ω is not a base for G.

Probabilistic methods

Recall that $\Sigma(G)$ has valency $v(G) = r(G)|G_{\alpha}|$ and let

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

be the probability that a random pair in Ω is not a base for G.

Notes:

•
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Probabilistic methods

Recall that $\Sigma(G)$ has valency $v(G) = r(G)|G_{\alpha}|$ and let

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

be the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

Probabilistic methods

Recall that $\Sigma(G)$ has valency $\nu(G) = r(G)|G_{\alpha}|$ and let

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

be the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.
- $Q(G) < 1/t \implies \omega(G) \geqslant t+1$.

Probabilistic methods

Recall that $\Sigma(G)$ has valency $\nu(G) = r(G)|G_{\alpha}|$ and let

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

be the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.
- $Q(G) < 1/t \implies \omega(G) \geqslant t+1$.

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $Q(G)\to 1$ as $q\to\infty$. But $\Sigma(G)=J(q+1,2)$ still has the common neighbour property.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH $\implies G \wr S_{r(G)}$ does not satisfy BG.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH \implies $G \wr S_{r(G)}$ does not satisfy BG.

Evidence:

• The cases r(G) = 1 and BG holds

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH $\implies G \wr S_{r(G)}$ does not satisfy BG.

Evidence:

- The cases r(G) = 1 and BG holds
- All primitive groups of degree up to 4095 √

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH \implies $G \wr S_{r(G)}$ does not satisfy BG.

Evidence:

- The cases r(G) = 1 and BG holds
- All primitive groups of degree up to 4095 √
- $G = \mathsf{PSL}_2(q)$ and G_α of type $\mathsf{GL}_1(q) \wr S_2$

Saxl graphs:

• Generalised Saxl graphs?

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Determine r(G) in some special cases.

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Determine r(G) in some special cases.
- Other invariants of Saxl graphs? (e.g. the spectrum)

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Determine r(G) in some special cases.
- Other invariants of Saxl graphs? (e.g. the spectrum)

Diagonal type groups:
$$G \leqslant T^k.(Out(T) \times P)$$

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Determine r(G) in some special cases.
- Other invariants of Saxl graphs? (e.g. the spectrum)

Diagonal type groups:
$$G \leqslant T^k$$
.(Out(T) $\times P$)

Fawcett 2013:
$$b(G) = 2$$
 if $P \neq A_k$, S_k

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Determine r(G) in some special cases.
- Other invariants of Saxl graphs? (e.g. the spectrum)

Diagonal type groups:
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$

Fawcett 2013:
$$b(G) = 2$$
 if $P \neq A_k$, S_k

• Determine b(G) when $P = A_k$ or S_k .

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Determine r(G) in some special cases.
- Other invariants of Saxl graphs? (e.g. the spectrum)

Diagonal type groups: $G \leqslant T^k.(\operatorname{Out}(T) \times P)$

Fawcett 2013: b(G) = 2 if $P \neq A_k$, S_k

- Determine b(G) when $P = A_k$ or S_k .
- The Saxl graph $\Sigma(G)$?

Thank you!