ALDAVERA GALLAGA IVÁN	INSTITUTO POLITÉCNICO NACIONAL	ESCUELA SUPERIOR DE CÓMPUTO
TAREA 01 (SEGUNDO PARCIAL)	DEFINICIONES DE CONCEPTOS	FECHA DE ENTREGA:
		11 DE MARZO DEL 2019
GRUPO (3CM2)	ARQUITECTURA DE COMPUTADORAS	

INVESTIGAR LAS DEFINICIONES DE LOS CONCEPTOS

CONCEPTO	DEFINICIÓN	
BIT	Es la unidad más pequeña de información en una computadora. Es la mínima parte de	
	información existente. Es una cifra binaria (puede ser 0 o 1).	
NIBBLE	Es una colección de 4 bits. No sería un tipo de dato interesante a excepción de que con un	
	nibble se representa un número BCD y también se puede representar un dígito hexadecimal.	
	EQUIVALENCIA: 1 NIBBLE = 4 BITS	
	RANGO DECIMAL: de 0 a 15	
	REPRESENTACIÓN HEXADECIMAL:	
	Puede ser representado con 1 dígito hexadecimal. Ejemplo: 0Fh	
BYTE	Es la base estándar para la representación de datos, el tipo de datos más importante para los	
	microprocesadores es este.	
	EQUIVALENCIA: 1 BYTE = 2 NIBBLES = 8 BITS	
	RANGO DECIMAL: de 0 a 255	
	REPRESENTACIÓN HEXADECIMAL:	
	Puede ser representado con 2 dígitos hexadecimales. Ejemplo: 0FFh	
HALFWORD	Es un área de almacenamiento de la mitad del tamaño de una palabra (WORD) en un sistema	
	particular; generalmente 16 bits	
	EQUIVALENCIA: 1 HALFWORD = 2 BYTES = 4 NIBBLES = 16 BITS	
	RANGO DECIMAL: de 0 a 65.535	
	REPRESENTACIÓN HEXADECIMAL:	
	Puede ser representado con 4 dígitos hexadecimales. Ejemplo: 0FFFFh	
WORD	Es una cadena de bits que son manejados como un conjunto por la máquina.	
	EQUIVALENCIA: 1 WORD = 2 HALFWORDS = 4 BYTES = 8 NIBBLES = 32 BITS	
	RANGO DECIMAL: de 0 a 4.294.967.295	
	REPRESENTACIÓN HEXADECIMAL:	
	Puede ser representado por 8 dígitos hexadecimales. Ejemplo: 0FFFFFFFh	
DOUBLEWORD	Un valor numérico de dos veces la magnitud de una palabra (WORD), más específicamente 64	
	bits.	
	EQUIVALENCIA: 1 DOUBLEWORD = 2 WORDS = 4 HALFWORDS = 8 BYTES = 16 NIBBLES = 64	
	BITS	
	RANGO DECIMAL: de 0 a 18.446.744.073.709.551.615	
	REPRESENTACIÓN HEXADECIMAL:	
	Puede ser representado por 16 dígitos hexadecimales. Ejemplo: 0FFFFFFFFFFFFFF	
QUADWORD	Un valor numérico de cuatro veces la magnitud de una palabra (WORD), más específicamente	
	128 bits.	
	EQUIVALENCIA: 1 QUADWORD = 2 DOUBLEWORDS = 4 WORDS = 8 HALFWORDS = 16 BYTES =	
	32 NIBBLES = 128 BITS	
	RANGO DECIMAL: de 0 a 340.282.366.920.938.463.463.374.607.431.768.211.455	
	REPRESENTACIÓN HEXADECIMAL:	
	Puede ser representado por 32 dígitos hexadecimales. Ejemplo:	
	OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	

REFERENCIAS

[1] Aula Macedonia. (1999). *Tipos de datos y operaciones binarias*. marzo 10, 2019, de Macedonia Magazine Sitio web: http://macedoniamagazine.frodrig.com/asm2.htm

[2] Thimmannagari, C. (2005). *CPU Design: Answers to Frequently Asked Questions*. Estados Unidos: Springer US. p.10.