Algorytmy i Struktury Danych

Wojciech Typer

```
Algorithm 1 Insertion Sort
```

```
1: procedure InsertionSort(A, n)
      for i = 1 to n - 1 do
2:
         key = A[i]
3:
         j = i - 1
4:
         while j \ge 0 and A[j] > key do
5:
             A[j+1] = A[j]
6:
             j = j - 1
7:
         end while
8:
         A[j+1] = key
9:
      end for
10:
11: end procedure
```

Złożoność czasowa: $O(n^2)$

Best case: w najlepszym przypadku złożoność czasowa będzie wynosić $\mathcal{O}(n)$

Złożoność pamięciowa: O(1)

Algorithm 2 Merge Sort

```
1: procedure MergeSort(A, 1, n)
2: if |A[1..n]| = 1 then
3: return A[1..n]
4: else
5: B = \text{MergeSort}(A, 1, \lfloor n/2 \rfloor)
6: C = \text{MergeSort}(A, \lfloor n/2 \rfloor, n)
7: return \text{Merge}(B, C)
8: end if
9: end procedure
```

Algorithm 3 Merge

```
1: procedure Merge(X[1..k], Y[1..n])
        if X = \emptyset then
            \mathbf{return}\ Y
 3:
        else if Y = \emptyset then
 4:
            return X
 5:
        else if X[1] \leq Y[1] then
 6:
 7:
            return [X[1]] \times \text{Merge}(X[2..k], Y[1..n])
        else
 8:
            return [Y[1]] \times \text{Merge}(X[1..k], Y[2..n])
 9:
        end if
10:
11: end procedure
```

Złożoność czesowa Merge Sort: $O(n \log n)$ Złożoność pamięciowa Merge Sort: O(n)

Istnieje również iteracyjna wersja algorytmu Merge, sort, która została przedstawiona poniżej w postaci pseudokodu.

Algorithm 4 IterativeMergeSort

```
1: procedure ITERATIVEMERGESORT(A[1..n])
2: for size = 1 to n - 1 by size \times 2 do
3: for left = 0 to n - 1 by 2 \times size do
4: mid \leftarrow \min(left + size - 1, n - 1)
5: right \leftarrow \min(left + 2 \times size - 1, n - 1)
6: MERGE(A, left, mid, right)
7: end for
8: end for
9: end procedure
```

Złożoność czasowa Iterative Merge Sort: $O(n \log n)$ - dzieje się tak, ponieważ size jest podwajany o 2 w każdej iteracji, więc potrzebujemy około $\log_2 n$ iteracji, a w każdej z nich wykonujemy O(n) operacji.

Złożoność pamięciowa Iterative Merge Sort: O(n)

```
Notacja asymptotyczna O:f(n) = O(g(n)) \to (\exists c>0)(\exists n_0 \in N): \forall n \geq n_0 \to 0 \leq f(n) \leq c \cdot g(n)
```


$$f(n) = O(g(n)) \to \lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} < \infty$$

Notacja asymptotyczna - własności

a)
$$f(n) = n^3 + O(n^2) \to (\exists h(n) = O(n^2))(f(n) = n^3 + h(n))$$

b)
$$n^2 + O(n) = O(n^2) \to (\forall f(n) = O(n))(\exists h(n) = O(n^2))(n^2 + f(n) - h(n))$$

Notacja Ω

$$f(n) = \Omega(g(n)) \to (\exists c > 0)(\exists n_0 \in N)(\forall n \ge n_0)(c * g(n) \le |f(n))$$

Notacja Ω - własności

a)
$$n^3 = \Omega(2n^2)$$

b)
$$n = \Omega(\log(n))$$

c)
$$2n^2 = \Omega(n^2)$$

Notacja Θ

$$f(n) = \Theta(g(n)) \to (\exists c_1, c_2 > 0)(\exists n_0 \in N)(\forall n \ge n_0)(c_1g(n) \le |f(n) \le c_2g(n))$$

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

Notacja o- małe

$$f(n) = o(g(n)) \rightarrow (\forall c > 0)(\exists n_0 \in N)(\forall n \geq n_0)(|f(n)| < c * |g(n)|)$$

Notacja o- małe - przykłady

a)
$$117nlog(n) = o(n^2)$$

b)
$$n^2 = o(n^3)$$

Notacja ω

$$f(n) = \omega(g(n)) \rightarrow (\forall c > 0)(\exists n_0 \in N)(\forall n \geq n_0)(|f(n)| > c * |g(n)|)$$

$$\lim_{n\to\infty} \frac{|f(n)|}{|g(n)|} = \infty$$

Rekurencje

Metoda podstawiania (metoda dowodzenia indukcyjnego)

- 1. Zgadnij odpowiedź (bez stałych)
- 2. Sprawdź przez indukcję, czy dobrze zgadliśmy
- 3. Znajdź stałe

Przykład 1:

 $\begin{array}{l} T(n) = 4T(\frac{n}{2}) + n \\ \text{Pierwszy strzał: } T(n) = O(n^3) \\ \text{Cel: pokazać, } \dot{\text{ze}} \; (\exists c > 0) T(n) \leq c * n^3 \\ \text{Krok początkowy: } T(1) = \Theta(1) = c * 1^3 = c \\ \text{Krok indukcyjny: zał. } \dot{\text{ze}}, \; (\forall_(k < n)) (T(k) \leq c * k^3) = \\ \text{Dowód: } T(n) = 4T(\frac{n}{2}) + n \leq 4c * (\frac{n}{2})^3 + n = \frac{1}{2}cn^3 + n = \\ = cn^3 - \frac{1}{2}cn^3 + n = cn^3 - (\frac{1}{2}cn^3 - n) \leq cn^3 \\ \text{Pokazaliśmy, } \dot{\text{ze}} \; T(n) = O(n^2) \end{array}$

Spróbujmy wzmocnić zał. indukcyjne: $T(n) \leq c_1 n^2 - c_2 n$ $T(n) \leq 4T(\frac{n}{2}) + n \leq 4(c_1(\frac{n}{2})^2 - c_2\frac{n}{2}) + n =$ $= c_1 n^2 - 2c_2 n + n = c_1 n^2 - (2c_2 - 1)n \leq c_1 n^2 - c_2 n$ Musimy dobrać takie $c_1 i c_2$, aby $2c_1 \geq c_2$ Wówczas otrzymamy $T(1) = O(1) \leq c_1 1^2 - c_2 1$

Przykład 2:

$$T(n)=2T(\sqrt{n})+\log(n)$$
 Załóżmy, że n jest potęgą dwójki $n=2^m\to m=\log(n)$ $T(2^m)=2T(2^{m/2})+m$ oznaczmy $T(2^m)=S(m)$
$$T(2^m)=2T(2^{m/2})+m\to 2S(m/2)+m$$

$$S(m)=O(m\log(m))$$

$$T(n)=O(\log(n)\log(\log(n)))$$
 (formalnie powinniśmy to udowodnić)

Drzewo rekursji

Przykład : $T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + n^2$

Trzeba pamiętać, że drzewo rekursji samo w sobie nie jest formalnym rozwiązaniem problemu. Nie można go urzywać do dowodzenia złożoności algorytmów. Jest to jedynie intuicyjne podejście do problemu. Formmalnie T(n) należałoby policzyć jako sumę wszystkich wierzchołków w drzewie rekursji:

$$T(n) = \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k \cdot n^2 = n^2 \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k = n^2 \frac{1}{1 - \frac{5}{16}} = n^2 \frac{16}{11} = \frac{16}{11} n^2$$

Widzimy zatem, że $T(n) = O(n^2)$

Master Theorem

Niech $a \geq 1, b > 1, f(n), d \in N$ oraz f(n)będzie funkcją nieujemną. Rozważmy rekurencję:

$$T(n) = aT(\frac{a}{h}) + \Theta(n^d)$$

Wówczas:

• $\Theta(n^d)$, jeśli $d > log_b a$

- $\Theta(n^d log(n))$, jeśli $d = log_b a$
- $\Theta(n^{\log_b a})$, jeśli $d < \log_b a$

Do przedstawienia problemu użyjemy drzewa rekursji. Rozważmy rekurencję:

$$T(n) = aT(\frac{n}{b}) + \Theta(n^d)$$

$$c \cdot (\frac{n}{b})^d \qquad c \cdot (\frac{n}{b})^d$$

 $n^{d} \qquad c \cdot n^{d}$ $\frac{n^{d}}{b^{d}} \qquad c \cdot \left(\frac{n}{b}\right)^{d} \qquad c \cdot \left(\frac{n}{b}\right)^{d}$ $\frac{n^{d}}{b^{2d}} \qquad c \cdot \left(\frac{n}{b^{2}}\right)^{d} \qquad c \cdot \left(\frac{n}{b^{2}}\right)^{d} \qquad c \cdot \left(\frac{n}{b^{2}}\right)^{d}$

1. suma kosztoów w k-tym kroku

$$a^k c(\frac{n}{b^k})^d = c(\frac{a}{b^d})^k n^d$$

gdzie $c(\frac{n}{b^k})^d$ to koszt jednego podproblemu w k–tym kroku

2. obliczenie wysokości drzewa:

$$\frac{n}{h^h} = 1 \to h = \log_b n$$

3. Obliczenie T(n)

$$\begin{split} T(n) &= \Theta\left(\sum_{k=0}^{\log_b n} c \frac{a}{b^k} n^d\right) \\ &= \Theta\left(c \cdot n^d \sum_{k=0}^{\log_b n} \left(\frac{a}{b^d}\right)^k\right) \\ &= \Theta\left(c \cdot n^d \frac{1 - \left(\frac{a}{b^d}\right)^{\log_b n + 1}}{1 - \frac{a}{b^d}}\right) \\ &\Longrightarrow T(n) = \Theta(n^d) \end{split}$$

4. rozważmy 3 przypadki:

(a)
$$d > \log_b a$$

$$T(n) = \Theta(n^d)$$

(b)
$$d = \log_b a$$

$$T(n) = \Theta(n^d \log n)$$

(c)
$$d < \log_b a$$

$$T(n) = \Theta(n^{\log_b a})$$

Przykłady

• $T(n) = 4T(\frac{n}{2}) + 11n$ Wtedy kożystając z **Master Theorem** mamy:

$$a = 4, b = 2, d = 1$$

Jak i również

$$\log_b a = \log_2 4 = 2 > 1 = d \implies T(n) = \Theta(n^2)$$

• $T(n) = 4T(\frac{n}{3}) + 3n^2$ Wtedy

$$a = 4, b = 3, d = 2$$

Jak i również

$$\log_b a = \log_3 4 < 2 = d \implies T(n) = \Theta(n^2)$$

• $T(n) = 27T(\frac{n}{3}) + \frac{n^2}{3}$ Wtedy

$$a = 27, b = 3, d = 2$$

Jak i również

$$\log_b a = \log_3 27 = 3 > 2 = d \implies T(n) = \Theta(n^3 \log n)$$

Metoda dziel i zwyciężaj (D&C)

Na czym ona polega?

- 1. Podział problemu na mniejsze podproblemy
- 2. Rozwiazanie rekurencyjnie mniejsze podpoblemy
- 3. połącz rozwiązania podproblemów w celu rozwiązania problemu wejściowego

Algorytm – Binary Search

- Input: posortowania tablica A[1..n] oraz element x
- Output: indeks i taki, że A[i] = x lub 0 jeśli x nie występuje w A
- przebieg algorytmu:

Algorithm 5 Binary Search

```
1: procedure BINARYSEARCH(A, x)
 2:
        l=1
        r = |A|
 3:
        while l \leq r do
 4:
           m = \overline{\lfloor \frac{l+r}{2} \rfloor} if A[m] = x then
 5:
 6:
 7:
                return m
            else if A[m] < x then
 8:
                l = m + 1
 9:
10:
            else
                r = m - 1
11:
12:
            end if
        end while
13:
        return 0
14:
15: end procedure
```

• Asypmtotyka Algorytm spełnia następująca rekurencje:

$$T(n) = T(\frac{n}{2}) + \Theta(1)$$

Rozwiązując za pomocą Master Theorem otrzymujemy:

$$T(n) = \Theta(\log n)$$

Divide & Conquer

Problem: Obliczenie x^n .

Rozwiązanie naiwną metodą iteracyjną:

$$x^n = x \cdot x \cdot \dots \cdot x \quad \Rightarrow \quad \Theta(n)$$

Rozwiązanie za pomocą Divide & Conquer:

$$x^n = \begin{cases} (x^{\frac{n}{2}}) \cdot (x^{\frac{n}{2}}), & \text{gdy } n \text{ jest parzyste} \\ (x^{\frac{n-1}{2}}) \cdot (x^{\frac{n-1}{2}}) \cdot x, & \text{gdy } n \text{ jest nieparzyste} \end{cases}$$

Rekurencyjna złożoność czasowa:

$$T(n) = T(n/2) + \Theta(1) = \Theta(\log n)$$

Problem: Obliczenie *n*-tej liczby Fibonacciego

Metoda rekurencyjna:

$$F(n) = F(n-1) + F(n-2)$$

Ma ona złożoność wykładniczą:

$$\Theta(\phi^n)$$
, gdzie $\phi = \frac{1+\sqrt{5}}{2}$

Drzewo rekurencyjne dla F_4 :

Wzór jawny:

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - (-\phi)^{-n} \right)$$

Obliczanie F_n macierzą: Zamiast rekurencji można użyć potęgowania macierzy, co daje optymalną złożoność. Dla każdego $n \geq 0$ zachodzi:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

Potęgowanie macierzy metodą szybkiego potęgowania daje czas:

$$\Theta(\log n)$$

co jest znaczną poprawą w porównaniu do wykładniczej rekurencji.

Mnożenie liczb binarnych metodą Divide & Conquer Wejście: x,y Wyjście: $x\cdot y$

Każdą liczbę można rozbić na dwie połowy:

$$x = x_L \cdot 2^{\frac{n}{2}} + x_R$$

$$y = y_L \cdot 2^{\frac{n}{2}} + y_R$$

Podstawiając do iloczynu:

$$xy = (x_L \cdot 2^{\frac{n}{2}} + x_R) \cdot (y_L \cdot 2^{\frac{n}{2}} + y_R)$$

Po rozwinięciu:

$$xy = x_L y_L \cdot 2^n + (x_L y_R + x_R y_L) \cdot 2^{\frac{n}{2}} + x_R y_R$$

Rekurencyjna zależność czasowa:

$$T(n) = 4T(n/2) + \Theta(n)$$

Zastosowanie Master Theorem daje:

$$T(n) = \Theta(n^2)$$

co pokazuje, że metoda ta nie poprawia złożoności względem standardowego mnożenia.

Optymalizacja: metoda Gaussa

Zamiast wykonywać 4 mnożenia rekursywne, można zastosować zasadę Gaussa:

$$xy = x_L y_L \cdot 2^n + ((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) \cdot 2^{\frac{n}{2}} + x_R y_R$$

Dzięki temu zamiast 4 mnożeń wykonujemy tylko 3:

$$T(n) = 3T(\frac{n}{2}) + \Theta(n)$$

Zastosowanie Master Theorem daje:

$$T(n) = \Theta(n^{\log_2 3})$$

Algorithm 6 Multiply - Mnożenie dużych liczb binarnych metodą Gaussa

```
1: procedure MULTIPLY(x, y)
 2:
           n \leftarrow \max(|x|, |y|)
           if n = 1 then
 3:
                 return x \cdot y
 4:
           end if
 5:
           m \leftarrow \lceil n/2 \rceil
 6:
 7:
           x_L, x_R \leftarrow
           y_L, y_R \leftarrow
 8:
 9:
           p_1 \leftarrow \text{MULTIPLY}(x_L, y_L)
           p_2 \leftarrow \text{MULTIPLY}(x_R, y_R)
10:
           p_3 \leftarrow \text{MULTIPLY}((x_L + x_R), (y_L + y_R))

return p_1 \cdot 2^{2m} + (p_3 - p_1 - p_2) \cdot 2^m + p_2
11:
12:
13: end procedure
```

QuickSort

Algorithm 7 QuickSort - Sortowanie szybkie

```
1: procedure QUICKSORT(A, low, high)
       if low < high then
2:
           p \leftarrow \text{PARTITION}(A, low, high)
3:
           QUICKSORT(A, low, p - 1)
4:
           QUICKSORT(A, p + 1, high)
5:
       end if
6:
7: end procedure
8:
9: procedure Partition(A, low, high)
       pivot \leftarrow A[high]
10:
       i \leftarrow low - 1
11:
       for j \leftarrow low to high - 1 do
12:
           if A[j] \leq pivot then
13:
               i \leftarrow i + 1
14:
               SWAP(A[i], A[j])
15:
           end if
16:
       end for
17:
       SWAP(A[i+1],\,A[high])
18:
       \mathbf{return}\ i+1
19:
20: end procedure
```


Algorithm 8 Hoare Partition

```
1: procedure HOARE_PARTITION(A, p, q)
           \begin{array}{l} pivot \leftarrow A\left[\left\lfloor\frac{p+q}{2}\right\rfloor\right] \\ i \leftarrow p-1 \end{array}
 3:
           j \leftarrow q + 1
 4:
           \mathbf{while} \ \mathrm{true} \ \mathbf{do}
 5:
                repeat
 6:
 7:
                     i \leftarrow i+1
                until A[i] \ge pivot
 8:
                repeat
 9:
                     j \leftarrow j-1
10:
                until A[j] \leq pivot
11:
                if i \geq j then
12:
                     \mathbf{return}\ j
13:
                end if
14:
                swap(A[i], A[j])
15:
           end while
16:
17: end procedure
```

Analiza worst-case QuickSorta

$$T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$$

Drzewo rekurencji (dla przypadku pesymistycznego, tj. jednostronny podział):

$$T(n) \leq \sum_{i=1}^n c \cdot i = c \cdot \sum_{i=1}^n i = \Theta(n^2)$$

Analiza best-case

Jeśli pivot zawsze dzieli tablicę na dwie równe części:

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \Rightarrow T(n) = \Theta(n\log n)$$

Analiza average-case

Niech T_n oznacza liczbę porównań dla tablicy długości n.

$$x_k = \begin{cases} 1, & \text{jeśli partition dzieli tablicę na } (k, \ n-k-1) \\ 0, & \text{w przeciwnym wypadku} \end{cases}$$

$$T_n = \sum_{k=0}^{n-1} x_k \cdot (T_k + T_{n-k-1}) + (n-1)$$

Liczymy wartość oczekiwaną:

$$E(T_n) = \sum_{k=0}^{n-1} \mathbb{E}(x_k) \cdot (\mathbb{E}(T_k) + \mathbb{E}(T_{n-k-1})) + (n-1)$$

$$\mathbb{E}(x_k) = \frac{1}{n} \quad \text{(bo pivot jest losowy)}$$

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} (E(T_k) + E(T_{n-k-1})) + (n-1)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} E(T_k) + (n-1)$$

$$\Rightarrow E(T_n) = \Theta(n \log n)$$

Analiza avg Case'a $T_n \to \text{Liczba}$ porównań elementów sortowanej tablicy: $|\mathbf{A}| = \mathbf{n}$

$$x_k = \begin{cases} 1, & \text{jeśli partition dzieli tablicę na } (k, n-k-1) \\ 0, & \text{w przeciwnym wypadku} \end{cases}$$

$$T_n = \begin{cases} T_0 + T_{n-1} + n - 1, g dy(0, n-1) - split \\ T_1 + T_{n-2} + n - 1, g dy(1, n-2) - split \\ \dots \\ T_k + T_{n-1-k} + n - 1, g dy(k, n-k-1) - split \\ \dots \\ T_{n-1} + T_0 + n - 1, g dy(n-1, o) - split \end{cases}$$

$$T_n = \sum_{k=0}^{n-1} x_k (T_k + T_{n-k-1}) + n - 1$$

liczymy wartosć oczekiwana:

$$E(T_n) = E(\sum_{k=0}^{n-1} K_k (T_k + T_{n-k-1} + n - 1))$$

$$E(T_n) = \sum_{k=0}^{n-1} E(X_k \cdot (T_k + T_{n-k-1}) + n - 1)$$

$$E(T_n) = \sum_{k=0}^{n-1} E(X_k) - E(T_k + T_{n-k-1} - n - 1)$$

$$E(T_n) = \frac{1}{n} \cdot \sum_{k=0}^{n-1} E(T_k) + \sum_{k=0}^{n-1} E(T_{n-k-1})$$

Dual pivot quicksort

Wartość oczekiwana:

 $E(\text{liczba porównań w dual pivot partition})\approx \frac{16}{9}n$ $E(\text{liczba porównań w dual pivot qs sedwick})\approx \frac{32}{15}nlogn$

Yaroslavsky dual pivot qs

 $E(\text{liczba porównań w partition}) \approx \frac{19}{12}n$ $E(\text{liczba porównań w Dual Pivot qs Yaroslavsky}) \approx 1.9nlogn$

Strategia count

 $E(\text{liczba porównań w Count Partition}) \approx \frac{3}{2}n$ $E(\text{liczba porównań w Dual Pivot qs z count}) \approx 1.8nlogn$

Comparsion Model

Dolne ograniczenie na liczbę porównań w problemie sortowania w Comparsion Modelwynosi $\Omega(nlogn)$

D-d:

- dla dowolnego algorytmu sortującego możemy znależć odpowiadające mu drzewo decyzyjne
- n! liści w binarnym drzewie decyzyjnym
- drzewo binarne pełne o wysokości h ma co najmniej 2^h liści
- ale liści w drzewie decyzyjnym powinno być co najmniej n!, zatem:

$$\begin{split} 2^h & \leq n! \ / \ \text{lg} \\ h & \leq \log_2 n! \\ lgn! & = lg(\sqrt{s\pi n}(\frac{n}{e})^n(1+o(1))) \\ lg(\frac{n}{e})^n + lg(\sqrt{(2\pi n)(1+o(1))}) \\ nlogn - nlge + lg(\sqrt{2\pi n}(2+o(1))) & = \Omega(nlogn) \end{split}$$

Sortowanie:

Input: $|a| = n, \forall i \in \{1, ..., k\}$

Output: posortowana rosnąco tablica A

Algorithm 9 CountingSort

```
1: procedure COUNTING_SORT(A, n, k)
2:
       for i = 1 to k do
           C[i] \leftarrow 0
3:
4:
       end for
       for i = 1 to n do
5:
           C[A[i]] \leftarrow C[A[i]] + 1
6:
7:
       end for
       for i = 2 to k do
8:
           C[i] \leftarrow C[i] + C[i-1]
9:
       end for
10:
       for i = n downto 1 do
11:
           B[C[A[i]]] \leftarrow A[i]
12:
           C[A[i]] \leftarrow C[A[i]] - 1
13:
       end for
14:
15:
       return B
16: end procedure
```


Złożoność obliczeniowa Counting Sorta:

 $\Theta(n+k)$ gdzie k=O(n)

Stable Sorting Property

Algorytm zachowuje kolejność równych sobie elementów z tablicy wejściowej

RadixSort

Algorithm 10 RadixSort

```
1: procedure RADIX_SORT(A, n, d)
2: for i = 1 to d do
3: counting\_sort(A, n, 9)
4: end for
5: return A
6: end procedure
```

Złożoność obliczeniowa RadixSorta

- n liczb b'bitowych
- liczb b bitowych dzielimy na r-bitowe cyfry
- cyfry są z $|0,...,2^n-1|=2^n$
- Counting Sort sortujący n liczb względem jednej cyfry

Zatem Radix Sort będzie miał złożoność obliczne
iową: $\Theta(\frac{b}{r}\cdot(n+2^r))$ Co po wykonaniu skomplikowanej analizy daje:
 $\Theta(d\cdot n)$

Statystyki pozycyjne

Def: k-tą statystyką pozycyjną nazywam← k-tą najmniejszą wartość z zadanego zbioru przykład:

- $k=1 \rightarrow O(n)$
- $k = n \rightarrow O(n)$
- $k = [\rightarrow \text{ sortowanie } O(n \log n)]$

Algorithm 11 RandomSelect

```
1: procedure RANDOM_SELECT(A, p, q, i)
       if p = q then
3:
          return A[p]
       end if
4:
       r \leftarrow \text{RandPartition}(A, p, q)
5:
       k \leftarrow r - p + 1
6:
7:
       if i = k then
8:
          return A[r]
       else if i < k then
9:
          return RANDOM_SELECT(A, p, r - 1, i)
10:
11:
          return RANDOM_SELECT(A, r+1, q, i-k)
12:
       end if
13:
14: end procedure
```

Select algorithm

- dzielimy A[p..q] na $\frac{n}{\lfloor 5\rfloor}$ pięcio
elementowych częsci oraz ostanią część na \leq 5 elementów
- Sortujemy te grupy i wybieramy z każdej z nich medianę
- Znajdujemy medianę M. Select(M, 1, $\frac{n}{5}$, $\frac{n}{10}$)
- Ustalamy X jako pivot; Partition(A, p, q) i tak samo jak w RandomSelect

Select

 $Select(A, K) \to T(n)$

- Dziel na 5 elementowe tablice i znajdź ich medianę $\rightarrow \Theta(n)$
- Select $(...) \to \text{znajd\'{z}}$ medianę median $\to T(\lceil \frac{n}{5} \rceil)$
- Użyj mediany median jako pivot w Partition $\rightarrow \Theta(n)$
- Idź do lewej albo prawej podtablicy w zależności od indeksu pivota i szukaj statystyki pozycyjnej

Otrzymujemy: $t(n) = T(\lceil \frac{n}{5} \rceil) + \Theta(?)$

Struktury danych

Set interface:

- build (A) buduje set z danych zawartych w A
- length zwraca moc zbioru
- find (k) zwraca element zbioru o kluczu równym k
- insert (k) dodaje element o kluczu k do zbioru
- delete (k) usuwa element o kluczu k ze zbioru
- find_max zwróc element o największym kluczu
- find_min zwróć element o najmniejszym kluczu
- find_prev zwraca element poprzedni od klucza

Binary Search Tree

BST property:

- $x \in T$ x jest węzłem drzewa T
- Wówczas każdy y in x.left ma y.key < x.key
- key y in x.right ma y.key > x.key

Inorder Tree Walk

Algorithm 12 Inorder Tree Walk

procedure InorderTreeWalk(x ∈ T)
 if x ≠ null then
 InorderTreeWalk(x.left)
 print(x)
 InorderTreeWalk(x.right)
 end if
 end procedure

Tree Search

Algorithm 13 TreeSearch

```
1: procedure TREESEARCH(x \in T, k)
2: if x = \text{null} \lor k = x.key then
3: return x
4: else if k < x.key then
5: return TREESEARCH(x.left, k)
6: else
7: return TREESEARCH(x.right, k)
8: end if
9: end procedure
```

BST - Delete

- x jest liścciem zwolnij pamięć zajmowaną przez x, wstaw wskaźnik na jego ojca (na niego / na null'a)
- x ma jedno poddrzewo x ma syna v to:
 - zwalniamy pamięć x
 - ojciec x wskazuje na v
 - v.p wskazuje na x.p
- x ma dwa poddrzewa:
 - znajdź następnika x -> y
 - zastąp dane x danymi z y
 - skasuj y

Twierdzenie: Niech T będzie losowym drzewem BST o n-węzłach. wtedy:

```
E(h(t)) \leq 3log_2n = o(logn) D-d: Nierówność Jensena: f-wypukła: f(E(x)) \leq E(f(x)) Zamiast analizować zmienną losową h(t) będziemy się zajmować zmienną losową H_n, będziemy się zajmować Y_n = 2^{H_n} Pokażemy, że E(Y_n) = O(n^3) 2^{H_n} \leq E(2^{H_n}) = E(Y_n) = O(n^3)//log_2 E(H_n) = 3 \cdot log_2n + o(lnn)
```

Drzewa czerwono-czarne

- Drzewo czerwono-czarne jest drzewem BST
- Każdy węzeł jest czerwony albo czarny
- Korzeń oraz liście są czarne
- Czerwony węzeł nie może mieć czerwonego ojca
- Każda ścieżka od węzła do liścia ma tę samą liczbę czarnych węzłów (ścieżkę tę będziemy nazywać black-height i oznaczać jako $\mathrm{bh}(\mathrm{x})$)

Lemat: Niech T będzie drzewem czerwono-czarnym o n węzłach. Wówczas wysokość drzewa T jest z góry ograniczona przez:

wysokość
$$(T) \le 2 \cdot log_2(n+1)$$

RB - Insert

- Wstawiamy węzeł z w taki sposób jak w BST
- z.kolor = czerwony
- FixUp (nie chodzi o zespół punkowy)

Więcej o drzewacz czerwono - czarnych można znaleźć pod linkiem:

https://inf.ug.edu.pl/pmp/Z/ASDwyklad/czczWUd.pdf