

Sri Chaitanya IIT Academy, India

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE: 13-12-15

 TIME: 3:00
 2012_P1 MODEL
 MAX MARKS: 210

KEY & SOLUTIONS

PHYSICS

1	C	2	В	3	A	4	D	5	A	6	C
7	D	8	В	9	В	10	D	11	BCD	12	AC
13	ABD	14	ACD	15	ABD	16	6	17	1	18	1
19	5	20	4								

CHEMISTRY

21	C	22	D	23	A	24	В	25	C	26	A
27	D	28	D	29	С	30	A	31	BC	32	ABC
33	ABD	34	AB	35	ABC	36	3	37	3	38	2
39	2	40	4	Á	i Ya						

MATHEMATICS

41	D	42	C	43	C	44	С	45	В	46	D
47	С	48	В	49	D	50	D	51	ACD	52	ABCD
53	ABCD	54	BC	55	ABD	56	1	57	1	58	2
59	1	60	4								

Sec: Sr.IPLCO Page 1

MATHS

41.
$$\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]; \cos^{-1} y \in [0, \pi]$$

$$\sec^{-1} z \in \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$$

$$\Rightarrow \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \le \frac{\pi}{2} + \pi + \pi = \frac{5\pi}{2}$$

Also
$$t^2 - \sqrt{2\pi}t + 3\pi$$

$$= t^2 - 2\sqrt{\frac{\pi}{2}}t + \frac{\pi}{2} - \frac{\pi}{2} + 3\pi = \left(t - \sqrt{\frac{\pi}{2}}\right) + \frac{5\pi}{2} \ge \frac{5\pi}{2}$$

The given inequality holds

$$\Leftrightarrow$$
 $x = 1$, $y = -1$, $z = -1$

LHS = RHS =
$$\frac{5\pi}{2}$$

$$\Rightarrow$$
 $x = 1, y = -1, z = -1$ and

$$t = \sqrt{\frac{\pi}{2}} \Rightarrow \cos^{-1}\left(\cos 5t^2\right) = \cos^{-1}\left(\cos\left(\frac{5\pi}{2}\right)\right) = \frac{\pi}{2}$$

$$\cos^{-1}(\min\{x, y, z\}) = \cos^{-1}(-1) = \pi$$

45. In
$$\triangle ABP$$

$$\frac{\sin\left(B + \frac{A}{2}\right)}{AP} = \frac{SinC}{AB} = \frac{\sin C}{2\sin C} = \frac{1}{2}$$

$$\Rightarrow AP = 2\sin\left(B + \frac{A}{2}\right), BQ = 2\sin\left(C + \frac{B}{2}\right) \text{ and } CR = 2\sin\left(A + \frac{C}{2}\right)$$

$$\sum AP\cos\frac{A}{2} = 2\sin\left(B + \frac{A}{2}\right)\cos\frac{A}{2} + 2\sin\left(C + \frac{B}{2}\right)\cos\frac{B}{2} + 2\sin\left(A + \frac{C}{2}\right)\cos\frac{C}{2}$$

$$= 2(\sin A + \sin B + \sin C)$$

but
$$\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$$

$$\therefore \leq 3\sqrt{3}$$

47.
$$\angle FDE = 180^{\circ} - A$$

$$\angle FED = 90^{\circ} - B$$

$$\angle EFD = 90^{\circ} - C$$

Sec: Sr.IPLCO

Sri Chaitanya IIT Academy

03-12-15 Sr. IPLCO_Jee-Adv_2012-P1_Key Solutions

By sine rule in $\triangle DEF$

$$\frac{\sin A}{EF} = \frac{\cos B}{FD} = \frac{\cos C}{DE}$$

$$\Delta = ADC + \Delta ADB$$

$$\Rightarrow \frac{\Delta}{EF} = \frac{1}{2} \left(b \frac{DE}{EF} + c \frac{DF}{EF} \right) = \frac{1}{2} \left(\frac{b \cos c}{\sin A} + \frac{c \cos B}{\sin A} \right) = R$$

49. d

Diag:

$$OC = R$$
, $OB_1 = R\cos A$, $HA_1 = OO_1$

$$BA_1 = C\cos B$$

$$HA_1 = BA_1 \cot C$$

From these relation we get

 $\tan B \tan C = 3$

In Δle , ABC, $\tan A + \tan B + \tan C = \tan A \tan B \tan C$

$$\Rightarrow \tan B + \tan C = 2 \tan A$$

In $\triangle le$ ABC scalence acute $(\tan B - \tan C)^2 > 0$ for $\underline{B} \neq \underline{C}$

$$A.M > G.M. (\tan B + \tan C)^2 > 4 \tan B \tan C$$

$$\Rightarrow 4 \tan^2 A > 12 \Rightarrow \tan A > \sqrt{3} \Rightarrow A \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

50.
$$\sum \frac{a}{r_1} = \sum \frac{\cos \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}} = \sum \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right)$$

Sec: Sr.IPLCO

Page 8

$$-2\sum \tan \frac{A}{2} - 4\sum \frac{r_1}{2s} - 4\left(\frac{r_1 + r_2 + r_3}{a + b + c}\right)$$

53. $\therefore \angle A = \alpha_a$ constant. If 'I' is in-centre of $\triangle ABC$

$$BIC - 90^{\circ} + \frac{\alpha}{2}$$
 which is also fixed chord.

Hence 'I' lies on a fixed circle of which BC is a fixed chord

 $\therefore \angle A = \alpha \text{ If } H' \text{ is orthocentre } \angle BHC = 180^{\circ} - \alpha \text{ which is fixed.}$

Hence, 'H' lies on a circle of which BC is fixed chord.

- $\therefore \angle A = \alpha \angle HGK = \alpha$ where H, K are points of trisection of base BC which are fixed.
- The fixed line segment H, K subtends a constant angle α at a variable point \Im .

Hence, locus of centroid is also lies on circle.

55. (A, B, D)

$$-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$

$$\Rightarrow \left\lceil \sin^{-1} x \right\rceil \in \left\{-2, -1, 0, 1\right\}$$

$$1 + \left[\sin^{-1} x \right] \in \{-1, 0, 1, 2\}$$

$$0 \le \cos^{-1} x \le \pi$$

$$\left[\cos^{-1} x\right] \in \{0, 1, 2, 3\}$$

$$1 + [\sin^{-1} x] > [\cos^{-1} x]$$
only if $1 + [\sin^{-1} x] = 1$ and $[\cos^{-1} x] = 0$

or
$$1 + \lceil \sin^{-1} x \rceil = 2$$
 and $\lceil \cos^{-1} x \rceil = 0$ or 1.

Case I

$$1+\left[\sin^{-1}x\right]=1$$
 and $\left[\cos^{-1}x\right]=0$

$$\Rightarrow \left[\sin^{-1} x\right] = 0 \qquad 0 \le \cos^{-1} x < 1$$

$$0 \le \sin^{-1} x < 1$$
 and $\cos 1 < x \le 1$

$$0 \le x < \sin 1$$

$$\Rightarrow \cos 1 < x < \sin 1 \dots (i)$$

Case II

$$1+\lceil \sin^{-1} x \rceil = 2$$
 and $\lceil \cos^{-1} x \rceil = 0$ or 1

Sec: Sr.IPLCO

$$\lceil \sin^{-1} x \rceil = 1$$

$$0 \le \cos^{-1} x < 2$$

$$1 \le \sin^{-1} x \le \frac{\pi}{2} \qquad \cos 2 < x \le 1$$

$$\cos 2 < x \le 1$$

 $\sin 1 \le x \le 1$

$$\Rightarrow \sin 1 \le x \le 1$$
 ... (ii)

from (i) & (ii)

$$\Rightarrow \cos 1 < x \le 1$$
.

Let us denote the n^{th} terms of the series by t_n then we have 56.

$$t_n = \cot^{-1} 2n^2 = \tan^{-1} \frac{1}{2n^2}$$

$$= \tan^{-1} \left(\frac{2}{4n^2} \right) = \tan^{-1} \left(\frac{2}{4n^2 - 1 + 1} \right)$$

$$= \tan^{-1} \left[\frac{(2n+1) - (2n-1)}{(2n-1)(2n+1) + 1} \right]$$

$$= \tan^{-1} (2n+1) - \tan^{-1} (2n-1)$$
 Or

$$t_n = \tan^{-1}(2n+1) - \tan^{-1}(2n-1)$$

Putting n=1, 2, 3,...etc. in the above equation we have each terms as

$$t_1 = \tan^{-1} 3 - \tan^{-1} 1$$

$$t_2 = \tan^{-1} 5 - \tan^{-1} 3$$

$$t_3 = \tan^{-1} 7 - \tan^{-1} 5$$

$$t_n = \tan^{-1}(2n+1) - \tan^{-1}(2n-1)$$

adding,
$$S_n = \tan^{-1}(2n+1) - \tan^{-1}1$$

as
$$n \to \infty$$
, $2n+1 \to \infty$ and $\tan^{-1} 1 = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$

$$K=1$$
.

58. We have

$$r = 01$$

$$\Rightarrow R\sqrt{1 - 8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}} = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

$$\Rightarrow \sqrt{1-x} = 4x$$

$$x = \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

On solving, we get
$$x = \frac{\sqrt{2} - 1}{4}$$

Now use
$$\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

$$59. \quad \sin^{-1} x \in \left(0, \frac{\pi}{2}\right)$$

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \Rightarrow \cos^{-1} x \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow \sin(\cos^{-1}x) = \cos(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

Thus
$$\cos^{-1}(\sin(\cos^{-1}x)) + \sin^{-1}(\cos(\sin^{-1}x)) = \frac{\pi}{2}$$

$$\Rightarrow \tan\left(\frac{\pi}{4}\right) = 1.$$