

文档编号:

RJ/DS0092018

产品使用说明书

密 级:

公开

产品使用说明书

MPCI-GW2-EV (M-GW2 评估板)

(A1.0)

南京芮捷电子科技有限公司

地址:南京市浦口高新区星火路9号

电话: 153 3519 3612

邮箱: Lewis.zhu@rejeee.com

网址: www.rejeee.com

◆ 版权声明

本文档包含的所有内容均受版权法的保护,未经南京芮捷电子科技有限公司(以下简称为"芮捷电子")的书面授权,任何组织和个人不得以任何形式或手段对整个文档和(或)部分内容进行复制和转载,且不得以任何形式传播。

◆ 文档声明

由于产品版本升级或其它原因,本文档内容会不定期进行更新。除非 另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议 不构成任何明示或暗示的担保。

MPCI-GW2-EV 外观图

2 / 18 <u>www.rejeee.com</u> 2018-08-01

导言

概述

为了方便用户对 Rejeee 提供的基于 SX1301 的 LoRa 网关模块进行开发、测试与评估,我们设计了一个 MPCI-GW2 的底板,支持树莓派插针接口,方便在树莓派上运行 SX1301 的测试程序以评估使用 MPCI-GW2。

MPCI-GW2-EV 默认包含树莓派一个,基于 mini PCI-E 接口规范的 LoRa 网关模块 MPCI-GW2 一个,以及 MPCI-GW2 底板一个,标准支持 SMA 接口天线,方便测试时更换各种不同规格的天线,使用非常灵活方便。

订购说明

型号说明

下表列出了当前已经支持的产品订购型号。

产品名称	产品型号	硬件版本	备注
LoRa 模块	MPCI-GW2-EV	A	不含单片机
LoRa 模块	MPCI-GW2-EV	В	含单片机

注:对于同一个产品,文档版本以最新版本为准。除非特别说明,芮捷电子在未提前告知用户的情况下,有保留更新文档版本的权利。

读者对象

本文档适用于:

- ▲ 研发工程师
- ▲ 技术支持工程师
- ▲ 客户

如果您是第一次使用芮捷电子公司的产品,建议您从第一章开始, 阅读本文档全部内容,以便更好的了解产品功能,熟悉使用方式,防 止造成操作不当等人为原因带来的不必要损失。

如果您了解或使用过芮捷电子公司的同类产品或其它公司生产的 类似产品,那么,您可以选择跳过相关章节,通过文档结构导航阅读 您想了解的其它章节内容。

目 录

	概述	3
	订购说明	3
	读者对象	4
— .	产品介绍	6
	1.1 产品概述	6
	1.2 功能特点	6
二.	原理框图及系统说明	6
	2.1 原理框图	6
	2.2 组网通信	7
三.	接口与配置	8
	3.1 MPCI-GW2-EV 接口说明	8
	3.1 MPCI-GW2-EV 部件说明	9
	3.2 MPCI-GW2-EV 功能选择	9
四.	使用 STM32 单片机评估(B型号)	11
	4.1 USB 转串口驱动的安装	11
	4.2 串口工具的使用	
	4.3 使用评估板收发数据	12
五.	使用树莓派进行评估	13
	5.1 树莓派	13
	5.2 登录系统	13
	5.3 测试 1301	14
六.	FAQ	
	6.1 异常故障分析	16
	6.1.1 电源指示灯不亮	16
	6.1.2 设备管理器中找不到 COM 口设备	16
	6.1.2 执行 SPI 或 USB 测试程序失败	16
七.	发货清单	16
	7.1 发货清单	16
	7.2 运输与贮存	17

一. 产品介绍

1.1 产品概述

MPCI-GW2-EV 是基于 SX1301 的 LoRa 网关模块 MPCI-GW2 的评估板,增加 Mini PCI-E 连接器及 USB 接口,外加 SMA 接口天线接口,标配天线,同时评估板也兼容树莓派的接口,可以通过排针与树莓派直接连接。

1.2 功能特点

- ◆ 支持树莓派,并提供SX1301官方软件包;
- ◆ 采用LoRa技术,可视传输距离极远;
- ◆ 使用SMA天线接口,方便更换不同规格的天线;
- ◆ 预留支持STM32单片机的电路接口。

二. 原理框图及系统说明

2.1 原理框图

MPCI-GW2-EV产品基于 LoRa 网关模块 MPCI-GW2,可以搭配 SMT32 的单片机开发或者树莓派进行开发,使用灵活方便,网关模块评估套件原理框图如下图所示:

图 1 MPCI-GW2-EV 原理框图

2.2 组网通信

利用 MPCI-GW2 多信道的特点,很容易构建一个星型的物联网络,用户可以使用自己的节点与 MPCI-GW2-EV 连接,也可以使用多个M-KL9-EV 评估板与 MPCI-GW2-EV 组成一个一对多的星型网络,如下系统拓扑图所示。(关于网关 M-KL9-EV 的具体使用说明及参数性能请参照相关文档。)

图 2 多点数据通信系统框图

三. 接口与配置

3.1 MPCI-GW2-EV 接口说明

网关评估板的实物图如下:

图 3 网关评估板实物图

序号	名称	功能说明
1	复位按键	仅使用 STM32 时有效
2	MicroUSB接口2	与 MPCI-GW2 模块的 USB 口连接
3	MicroUSB接口3	与 STM32 单片机的串口连接
4	跳线帽组	跳线功能选择
5	网口座	树莓派标配
6	USB 座	树莓派标配
7	USB 座	树莓派标配
8	SMA 座子	天线座子

3.1 MPCI-GW2-EV 部件说明

- 1. 树莓派
- 2. MPCI-GW2 底板
- 3. MPCI-GW2 模块 (SX1301 网关模组)

3.2 MPCI-GW2-EV 功能选择

这款 EV 网关由于支持多种连接方式,可以通过跳线选择不同使用方式。

1. 单片机网关模式 (需配套单片机)

跳线帽全部短接,并且 mini PCI-E 模块需要从树莓派上拔下来。

2. 树莓派 USB 网关

mini PCI-E 模块插在 MPCI-GW2 底板的插槽上, 然后 MPCI-GW2

底板接树莓派,跳线帽全部断开。用USB线将树莓派USB口和MPCI-GW2 底板 microUSB2 口连接起来。此时整个 EV 就变成了使用树莓派 USB 的方式连接 SX1301。

3. 树莓派 SPI 网关

mini PCI-E 模块插在 MPCI-GW2 底板的插槽上,然后 MPCI-GW2 底板接树莓派。跳线帽只接最边上的 SEL-GND 对应针脚,其它断开。此时整个 EV 就变成了使用树莓派 SPI 的方式连接 SX1301。

四. 使用 STM32 单片机评估(B 型号)

4.1 USB 转串口驱动的安装

如是首次使用此类产品,请先安装 USB 转串口驱动,此评估板使用 CH340 芯片,驱动下载地址: https://eyun.baidu.com/s/3eTeMiFg

安装完驱动,通过 USB 线连接 MicroUSB 接口 3 到电脑的 USB 口,在设备管理器中端口可以看到安装的 USB 串口设备(此示例中为 COM4),如下图:

图 5 USB 串口设备

备注:不同的 USB 口,对应不同的 COM 口,如不确定,建议在设备管理器中查看并确认。

4.2 串口工具的使用

如电脑已经安装有串口工具,直接使用即可,如没有串口工具,可以通过此链接 https://eyun.baidu.com/s/3oAstf4I 下载。

打开串口工具,选择对应 USB 串口的端口号(此处为 COM4), 设置波特率 115200,默认 8 位数据位,1 位停止位,然后点击打开串口,既可以通过串口来发送和接收数据了,如下图所示:

图 5 串口工具使用

4.3 使用评估板收发数据

MPCI-GW2-EV 出厂默认配置可以实现与 M-KL9-EV 直接通信,如需要更改无线通信参数,可参照 M-GW1 产品相关文档,通过 AT 命令进行配置,参数配置后默认保存,下次上电不会丢失。

五. 使用树莓派进行评估

5.1 树莓派

为了便于 SX1301 应用开发,我们选择了市面上较流行树莓派系统。树莓派系统采用最新的版本 4.14,硬件支持 WIFI,BLE 方便测试和使用。默认 IP 地址为: 192.168.0.178。登录用户和密码都是re jeee。同时,为了更加便于集成开发使用,兼容 USB 和 SPI 两种方式硬件接口。

5.2 登录系统

本 EV 板配套的树莓派系统为桌面系统,可外接显示器和键鼠操作,也可通过 SSH 登录,如果在 Windows 下操作,相关 SSH 工具如 Putty或 SecureCRT,下载安装请参考对应工具网站,在此就不赘述。

下面介绍使用 SSH 登录的方式,如 SecureCRT,通过快速连接,新建一个 session,登录系统,如下所示。

执行程序在用户 rejeee 下的 LoRa/exec 目录,分别是 SPI 方式程序和 USB 方式程序。执行之前,需要通过 reset_lgw. sh 复位一下 SX1301。

```
rejeee@raspberrypi:~$ cd LoRa/exec/
rejeee@raspberrypi:~/LoRa/exec$ ls -al
total 20
drwxr-xr-x 4 rejeee rejeee 4096 Jun 12 13:17 .
drwxr-xr-x 4 rejeee rejeee 4096 Jun 12 18:18 ..
-rwxr-xr-x 1 rejeee rejeee 1480 Jun 12 13:17 reset_lgw.sh
drwxr-xr-x 2 rejeee rejeee 4096 Jun 12 11:43 spi
drwxr-xr-x 3 rejeee rejeee 4096 Jun 12 11:43 usb
rejeee@raspberrypi:~/LoRa/exec$
```

5.3 测试 1301

1. SPI 读写测试

首先确定树莓派与 1301 的连接方式,然后执行,reset 脚本复位芯片 reset_lgw. sh start,然后执行对应的测试程序。

```
spi/test loragw spi
```

正确执行结果返回值 48, 如下所示。

```
rejeee@raspberrypi:~/LoRa/exec$ ./reset_lgw.sh start
Accessing concentrator reset pin through GPIO7...
rejeee@raspberrypi:~/LoRa/exec$ ./spi/test_loragw_spi
Beginning of test for loragw_spi.c
data received (simple read): 48
End of test for loragw_spi.c
rejeee@raspberrypi:~/LoRa/exec$
```

2. 寄存器读写测试

执行对应的测试程序。spi/test_loragw_reg,正确执行结果返回值如下所示。

```
+++MATCH+++ reg number 324 read: 0 (0) default: 0 (0)
+++MATCH+++ reg number 325 read: 0 (0) default: 0 (0)
End of register verification
IMPLICIT_PAYLOAD_LENGHT = 197 (should be 197)
FRAME_SYNCH_PEAK2_POS = 11 (should be 11)
PREAMBLE_SYMB1_NB = 49253 (should be 49253)
ADJUST_MODEM_START_OFFSET_SF12_RDX4 = 3173 (should be 3173)
IF_FREQ_1 = -1947 (should be -1947)
End of test for loragw_reg.c
rejeee@raspberrypi:~/LoRa/exec$
```

3. 收发测试

执行对应的测试程序。spi/test_loragw_hal,可以通过命令查询帮助,分别对应1301对应的A和B两路接收和下行通道频点,然后是对应的RF前端型号,最后参数可不输入则取默认值。

```
rejeee@raspberrypi:~/LoRa/exec$ ./spi/test_loragw_hal -h
Library version information: Version: 5.0.1;
Available options:
   -h print this help
   -a <float> Radio A RX frequency in MHz
   -b <float> Radio B RX frequency in MHz
   -t <float> Radio TX frequency in MHz
   -r <int> Radio TX frequency in MHz
   -r <int> Radio type (SX1255:1255, SX1257:1257)
   -k <int> Concentrator clock source (0: radio_A, 1: radio_B(default))
rejeee@raspberrypi:~/LoRa/exec$
```

假设 MPCI-GW2 对应的前端是 1255, 选择一个 470 左右频点测试如下执行命令如下: ./spi/test_loragw_hal -a 471.1 -b 473.1 -t 475.1 -r 1255, 如果执行失败,执行以下复位脚本即可,参考命令如下。

```
Accessing concentrator reset pin through GP10/...
rejeee@raspberrypi:~/LoRa/exec$ ./spi/test_loragw_hal -a 471.1 -b 473.1 -t 475.1 -r 1255
Beginning of test for loragw_hal.c
*** Library version information ***
Version: 5.0.1;
*** Concentrator started ***
INFO: tx_start_delay=1495 (1495.500000) - (1497, bw_delay=1.500000, notch_delay=0.000000)
Sending packet #0, rf path 0, return 0
status -> 4:2:
TX finished
INFO: tx_start_delay=1495 (1495.500000) - (1497, bw_delay=1.500000, notch_delay=0.000000)
Sending packet #1, rf path 0, return 0
status -> 4:2:
TX finished
INFO: tx_start_delay=1495 (1495.500000) - (1497, bw_delay=1.500000, notch_delay=0.000000)
Sending packet #2, rf path 0, return 0
status -> 4:2:
TX finished
Rcv pkt #1 >> if_chain: 2 tstamp:0017393228 size: 20
CRC error, damaged packet
INFO: tx_start_delay=1495 (1495.500000) - (1497, bw_delay=1.500000, notch_delay=0.000000)
Sending packet #3, rf path 0, return 0
status -> 4:2:
TX finished
INFO: tx_start_delay=1495 (1495.500000) - (1497, bw_delay=1.500000, notch_delay=0.000000)
+++
Sending packet #4, rf path 0, return 0
status -> 4:2:
TX finished
Rcv pkt #1 >> if_chain: 2 tstamp:0027104780 size: 20 LoRa SF9 CR1(4/5)
RSSI: +57.0 SNR:-13.0 (min:-16.5, max:-10.0) payload:
54 58 2E 54 45 53 54 2E 4C 4F 52 41 2E 47 57 2E 00 00 00 04 #
```

六. FAQ

6.1 异常故障分析

6.1.1 电源指示灯不亮

◆ 评估板未上电或 USB 接口不良,更换到电脑的其它 USB 接口。

6.1.2 设备管理器中找不到 COM 口设备

- ◆ 未安装 USB 转串口的驱动或者驱动安装不正确, 请重新安装驱动。
 - ◆ USB 口损坏,请更换其它 USB 口再试。

6.1.2 执行 SPI 或 USB 测试程序失败

◆ SX1301 初始状态不正确,需要执行 reset_lgw.sh start 命令复位 一下 SX1301 芯片。

七. 发货清单

7.1 发货清单

请检查产品包装内的物品是否完整,MPCI-GW2-EV产品应至少包括以下物品:

- 1. MPCI-GW2 模块一个;
- 2. MPCI-GW2 底板一个;
- 3. 树莓派一个;
- 4. 配套的吸盘天线一根;
- 5. 圆头电源线一根;

购买后,若以上配件有所遗失,请持原包装及配件与销售商联系更换。

7.2 运输与贮存

- 1. 因产品内部有高灵敏度电子元器件,运输与装卸不应受到剧烈冲击。
- 2. 贮存的环境温度为-25℃—70℃,相对湿度不超过 85%,空气中无腐蚀气体。

