웹기반의 단일세포 RNA-seq 데이터 자동분석 서비스 SCODA™를 이용한 종양/조직 미세환경 연구

윤석현

㈜ 엠엘비아이랩 (MLBI Lab) 단국대학교 전자전기공학부 단국대학교 대학원 인공지능융합학과

SCODA?

- Web-based, Fully-automated, all-in-one computing service for Single-Cell (transcript)Omics Data Analysis (single-cell RNA-seq)
- ☐ It is useful for
 - In-vivo tissue/tumor micro-environment (TME) study.
 - O Immune cell profiling in many diseases, e.g., autoimmune disease & cancer

How SCODA works?

(1) Simply upload your data

- 1. Compressed 10x mtx files + optional meta data.csv
- 2. Compressed CSV file + optional meta data.csv
- 3. Compressed h5ad file (including meta data in obs field)

(2) Automated pipeline analyzes your data

- 1. Celltype annotation (HiCAT, MIT license)
- 2. DEG & GSA/GSEA (GSEApy, MIT license)
- 3. Cell-cell interaction (CellPhoneDB, MIT license)
- 4. Tumor cell identification (InferCNV, BSD-3c + icnv_addon)
- ***** We use proven & standardized analysis tools
- * The pipeline can be tailored with optional settings

(3) Once it is done, you can download the result

- 1. Saved in Anndata formatted h5ad file (tar.gz compressed)
- 2. It contains all the analysis results and the count matrix itself

(4) Explore the results by yourself on your web browser

- 1. We provide "jupyter notebook" with example codes
- 2. You can freely use SCODA-viz & SCANpy (free open SW)
- 3. With a little bit of programming, you can get deeper insight into the single-cell RNA-seq data you uploaded
- 4. We offer free workshop for data mining (upon request)

Visualization & data mining

Using SCODA

- □ SCODA homepage: https://mlbi-lab.net
- MLBI lab company homepage: https://mlbi-lab.com

Why SCODA?

Bio/Medical background

SCODA

with SCODA-viz tool

Little bit of programming skill (Free Training workshop available)

Single-cell RNA-seq 데이터 분석 전문가

Why SCODA?

Related papers

☐ HiCAT

J. Lee, M. Kim, K. Kang, CS Yang and S. Yoon, "Hierarchical cell-type identifier accurately distinguishes immune-cell subtypes enabling precise profiling of tissue microenvironment with single-cell RNA-sequencing," Briefings in Bioinformatics, Jan. 2023. https://doi.org/10.1093/bib/bbad006

□ Studies using SCODA

- O D. Hong, H. Kim, W. Yang, C. Yoon, M. Kim, CS Yang and S. Yoon, "Integrative analysis of single-cell RNA-seq and gut microbiome metabarcoding data elucidates macrophage dysfunction in mice with DSS-induced ulcerative colitis," Communications Biology, June 2024. https://doi.org/10.1038/s42003-024-06409-w
- O M. Kim, W. Yang, D. Hong, HS Won, S. Yoon, "A Retrospective View of the Triple-Negative Breast Cancer Microenvironment: Novel Markers, Interactions, and Mechanisms of Tumor-Associated Components Using Public Single-Cell RNA-Seq Datasets," Cancers, Mar. 2024. https://doi.org/10.3390/cancers16061173
- O JS Kim, HK Kim, M. Kim, S. Jang, E. Cho, S. Mun, J. Lee, D. Hong, S. Yoon and CS Yang,, "Colon-Targeted eNAMPT-Specific Peptide Systems for Treatment of DSS-Induced Acute and Chronic Colitis in Mouse," Antioxidants, Nov. 2022. https://doi.org/10.3390/antiox11122376

SCODA Optional configuration

SCODA?

□ SCODA is useful for

- In-vivo tissue/tumor micro-environment (TME) study.
- Immune cell profiling in many diseases, e.g., autoimmune disease & cancer
- Discovery of diagnostic/prognostic markers
- Discovery of druggable targets and its biological mechanism around pathological tissue
- Exploring drug response and mechanism of action

☐ But not suitable yet for

- Studies with cell line
- Differentiation study

Summary

- **□** SCODA utilizes proven open-source software
 - O HiCAT (MIT license) for cell type annotation
 - CellPhoneDB (MIT license) for inferring cell-cell interaction
 - InferCNVpy (BSC-3clause) for CNV estimation
 - GSEApy (BSC-3clause) for gene set enrichment analysis
- □ SCODA-viz package and example jupyter notebook freely available for visualization and data mining
 - With a little bit of programming skill, you can create any kind of plots you want. (Free training workshop available upon request)
- ☐ It accelerate your research with single-cell RNA-seq experiment, saving your time and the cost.
 - Use SCODA first to get insight into the tissue of your interest.
 - Then, plan biological experiment to verify your hypothesis.

Input dataset formatting for using SCODA

Input data formatting (1) 10x_mtx

1. 압축된 예제 데이터셋을 알집으로 열어 보면

3. 각 데이터 폴더를 더블 클릭해서 열면

CellRanger로 생성된 3개 파일을 포함

2. 메인 폴더를 더블 클릭해서 열면

4. meta_data.csv 파일을 엑셀로 열어 보면

1열: 인덱스 열

2열: sample (name)

3열: condition

- 인덱스 열의 각 인덱스는 폴 더 명과 일치해야 함.
- Sample name과 인덱스가 동일할 필요는 없음.
- Condition 열의 조건들을 대상으로 DEG, GSEA, cellcell interaction 비교가 수 행됨

Input data formatting (2) csv format

1. 압축된 예제 데이터셋을 알집으로 열어 보면

2. 메인 폴더를 더블 클릭해서 열면

3. 데이터 csv 파일

4. meta_data.csv 파일

- 1열: 인덱스 열 2열: sample 3열: condition 4열~: optional items
- Count 데이터 파일 과 메타 데이터 파일 의 인덱스 열은 일치 해야 함.
- Condition 열의 조건 들을 대상으로 DEG, GSEA, cell-cell interaction 비교가 수행됨

Input data formatting (3) h5ad format

1. 압축된 예제 데이터셋을 알집으로 열어 보면

https://anndata.readthedocs.io/en/latest/

2. h5ad file contents

```
adata_t = sc.read_h5ad(file_h5ad)
adata_t

AnnData object with n_obs × n_vars = 12000 × 29733
    obs: 'Patient', 'Percent_mito', 'nCount_RNA', 'nFeature_RNA', 'Celltype_Major', 'Celltype_Minor', 'Celltype_Subset',
'subtype', 'gene_module', 'Calls', 'normal_cell_call', 'CNA_value', 'sample', 'condition'
    var: 'gene_ids'
```

- AnnData contains "sample" and "condition" columns to run DEG/GSEA. DEG/GSEA will not be performed if the obs field does not contain both "sample" and "condition" column.
- If the "sample" column exists in the obs field, cell-cell interaction will be performed per-sample the same as in the above.