## 串口转 HID 键盘鼠标芯片 CH9329

中文手册 版本: V1.1 http://wch.cn

### 1、概述

CH9329 是一款串口转标准 USB HID 设备(键盘、鼠标、自定义 HID) 芯片,根据不同的工作模式,在电脑上可被识别为标准的 USB 键盘设备、USB 鼠标设备或自定义 HID 类设备。该芯片接收客户端发送过来的串口数据,并按照 HID 类设备规范,将数据先进行打包再通过 USB 口上传给计算机。通过提供的上位机软件,用户也可自行配置芯片工作模式、串口通信模式、串口通信波特率、多种超时时间、VID、PID、以及各种 USB 字符串描述符。下图为其一般应用框图。



## 2、特点

- 支持 12Mbps 全速 USB 传输, 兼容 USB V2.0, 内置晶振。
- 默认串口通信波特率为 9600bps, 支持各种常见波特率。
- 支持 5V 电源电压和 3.3V 电源电压。
- 多种芯片工作模式,适应不同应用需求。
- 多种串口通信模式,灵活切换。
- 支持普通键盘和多媒体键盘功能,支持全键盘功能。
- 支持相对鼠标和绝对鼠标功能。
- 支持自定义 HID 类设备功能,可用于单纯数据传输。
- 支持 ASCII 码字符输入和区位码汉字输入。
- 支持远程唤醒电脑功能。
- 支持串口或 USB 口配置芯片参数。
- 可自行配置芯片的 VID、PID, 以及芯片各种字符串描述符。
- 可自行配置芯片的默认波特率。
- 可自行配置芯片通信地址,实现同一个串口下挂载多个芯片。
- 可自行配置回车字符。
- 可自行配置过滤字符串,以便进行无效字符过滤。
- 符合 USB 相关规范,符合 HID 类设备相关规范。
- 采用小体积的 SOP-16 无铅封装, 兼容 RoHS。

# 3、封装



| 封装形式  | 塑体宽度   |        | 引脚间距    |       | 封装说明      | 订货型号   |  |
|-------|--------|--------|---------|-------|-----------|--------|--|
| S0P16 | 3. 9mm | 150mil | 1. 27mm | 50mil | 标准 16 脚贴片 | CH9329 |  |

# 4、引脚

| 引脚号     | 引脚名称           | 类型     | 引脚说明                            |
|---------|----------------|--------|---------------------------------|
| 1       | ACT#           | 输出     | USB 配置完成状态输出引脚,低电平有效            |
| 2       | 2   MODFO   輸入 |        | 芯片工作模式配置引脚 0, 配合 MODE1 引脚使用, 内置 |
| 2       |                |        | 上拉电阻                            |
| 3 MODE1 |                | 输入     | 芯片工作模式配置引脚 1, 配合 MODEO 引脚使用, 内置 |
| 3       | MODET          | 1      | 上拉电阻                            |
| 4       | CFG0           | 输入     | 芯片串口通信模式配置引脚 0,配合 CFG1 引脚使用,    |
| 4       | or do          | 刊りて    | 内置上拉电阻                          |
| 5       | CFG1           | 输入     | 芯片串口通信模式配置引脚 1,配合 CFGO 引脚使用,    |
|         | or u i         | 11117  | 内置上拉电阻                          |
| 6       | RST            | 输入     | 外部复位输入引脚,高电平有效,内置下拉电阻           |
| 7       | TXD            | 输出     | 串行数据输出                          |
| 8       | RXD            | 输入     | 串行数据输入,内置上拉电阻                   |
|         | UP             | 输出     | USB 数据包上传成功指示引脚,每成功上传一包数据,      |
| 9       |                |        | 该引脚电平翻转一次;                      |
| ,       |                |        | 注:如果芯片需要在 3.3V 下工作,必须在该引脚对地     |
|         |                |        | 加 1 个 4. 7K 下拉电阻;               |
| 10      | DEF            | DEF 输入 | 芯片参数恢复出厂设置引脚, 拉低 3S 以上可将参数恢     |
| 10      | DEI            | 11117  | 复出厂默认设置,内置上拉电阻                  |
|         |                |        | 芯片参数配置引脚,低电平有效,内置上拉电阻           |
| 11      | SET            | 输入     | 任何模式下,芯片检测到该引脚为低电平后自动切换         |
|         |                |        | 到"协议传输模式",客户端串口设备可进行参数配置        |
| 12      | UD+            | USB 信号 | 直接连到 USB 总线的 D+数据线              |
| 13      | UD-            | USB 信号 | 直接连到 USB 总线的 D-数据线              |
| 14      | GND            | 电源     | 公共接地端,直接连到 USB 总线的地线            |

| 15 | VCC | 电源 | 正电源输入端,需要外接 0. 1uF 电源退耦电容   |
|----|-----|----|-----------------------------|
|    |     |    | 内部 USB 电源调整器输出和内部 USB 电源输入, |
| 16 | V33 |    | 在 3.3V 电源电压时连接 VCC 输入外部电源,  |
|    |     |    | 在 5V 电源电压时外接容量为 0.1uF 退耦电容  |

### 5、功能说明

CH9329芯片内置了电源上电复位电路,复位完成后,芯片根据当前配置的工作模式和串口通讯模式进行工作。

CH9329芯片使用5V电源电压时,V33引脚应该外接容量为0.1uF左右的电源退耦电容。使用3.3V电源电压时,V33引脚应该与VCC引脚相连接,同时输入外部的3.3V电源。

CH9329芯片的ACT#引脚是USB设备配置完成状态输出,用于指示USB设备已经成功连接到计算机。CH9329内置了独立的收发缓冲区,支持单工、半双工或者全双工异步串行通讯。串行数据包括1个低电平起始位,8个数据位,1个高电平停止位,默认波特率为9600bps,支持常用通讯波特率: 1200、2400、4800、9600、14400、19200、38400、57600、115200(注:芯片在3.3V电源电压下工作时不支持115200)。串口发送信号的波特率误差小于0.3%,串口接收信号的允许波特率误差不小于2%。

CH9329芯片内置了串口转USB HID类通讯的相关固件,是串口转HID类设备简单快捷的解决方案。此外它还内置了USB总线所需的所有外围电路,包括PLL和24MHz的USB时钟、D+和D-信号线的串联匹配电阻、Device设备的1.5KΩ上拉电阻等,并且内置了晶振,外围电路非常简单。

CH9329芯片符合相关技术规范,支持即插即用,计算机端的Windows/Linux/Android/MAC等操作系统已经内置相应的驱动程序,连接后即可使用。

#### 芯片工作模式配置说明:

| 芯片工作模式 | MODE1电平 | MODEO电平 | 功能说明                                                                                                                                              |
|--------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 模式0    | 1       | 1       | 模拟标准USB键盘+USB鼠标设备+USB自定义HID类设备(默认)该模式下CH9329芯片在电脑上识别为USB键盘、USB鼠标和自定义HID类设备的多功能复合设备,USB键盘包含普通键和多媒体键,USB鼠标包含相对鼠标和绝对鼠标。该模式功能最全,可以实现USB键盘和USB鼠标的全部功能。 |
| 模式1    | 1       | 0       | 模拟标准USB键盘设备<br>该模式下CH9329芯片在电脑上识别为单一USB键<br>盘设备,USB键盘只包含普通键,不包含多媒体<br>键,支持全键盘模式,适用于部分不支持复合设<br>备的系统。                                              |
| 模式2    | 0       | 1       | 模拟标准USB键盘+USB鼠标设备<br>该模式下CH9329芯片在电脑上识别为USB键盘和<br>USB鼠标的多功能复合设备,USB键盘包含普通键<br>和多媒体键,USB鼠标包含相对鼠标和绝对鼠标。<br>注:Linux/Android/苹果等操作系统下,建议使<br>用该模式。    |
| 模式3    | 0       | 0       | 模拟标准USB自定义HID类设备                                                                                                                                  |

|  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|--|----------------------------------------|
|  | 该模式下CH9329芯片在电脑上识别为单一USB自              |
|  | 定义HID类设备,具有上传和下传2个通道,可以                |
|  | 实现串口和HID数据透传功能。                        |
|  | CH9329芯片如果接收到串口数据,则打包通过                |
|  | USB上传,如果接收到USB下传数据,则通过串口               |
|  | 进行发送。                                  |

如果MODEO引脚和MODE1引脚悬空,则芯片默认处于工作模式0。

#### 串口通信模式配置说明:

| 串口通信模式 | CFG1电平 | CFG0电平 | 功能说明                                                                                                                                                        |  |  |
|--------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 模式0    | 1      | 1      | 协议传输模式(默认)<br>该模式下客户串口设备向CH9329芯片发送串口数据时,必须按照协议格式发送,否则会直接丢弃。具体协议格式见"CH9329芯片串口通信协议_Vx.x.PDF"。<br>该模式一般适用于既需要使用USB键盘功能,又需要使用USB鼠标功能的应用。如果需要使用全键盘功能,也建议采用该模式。 |  |  |
| 模式1    | 1      | 0      | ASCII模式<br>该模式下客户串口设备向CH9329芯片发送串口<br>数据时,可以发送ASCII码字符数据,也可以发<br>送区位码汉字数据。<br>该模式适用于只需要使用USB键盘中可见ASCII<br>字符的应用。                                            |  |  |
| 模式2    | 0      | 1      | 透传模式<br>该模式下客户串口设备向CH9329芯片发送串口<br>数据时,可以是任意16进制数据。<br>该模式适用于CH9329芯片处于芯片工作模式3的<br>应用。                                                                      |  |  |

如果CFGO引脚和CFG1引脚悬空,则芯片默认处于串口通信模式0。

如果芯片当前工作于 "ASCII模式"或 "透传模式",此时需要切换到 "协议传输模式"进行参数配置,则可以先将SET引脚设置为低电平(芯片检测到SET引脚为低电平后,自动切换到 "协议传输模式"),再进行配置。撤销SET引脚低电平后,芯片会按照新设置的串口通信模式进行工作。

如果需要将芯片的所有参数配置恢复到出厂默认设置值,则可以通过以下2步实现:

- (1)、将DEF引脚设置为低电平,并持续3S以上;
- (2)、将DEF引脚恢复为高电平,等待200mS,所有参数配置自动恢复出厂默认设置值;

由于CH9329芯片有4种芯片工作模式和3种串口通信模式,为方便客户使用,建议按照以下推荐组合进行使用。

| 芯片工作模式 | 串口通信模式<br>(推荐优先级由上<br>而下) | 推荐说明                      |
|--------|---------------------------|---------------------------|
| 模式0    | 模式0                       | 1、如果需要同时使用USB键盘和USB鼠标功能,则 |

|                     | ,                                        |
|---------------------|------------------------------------------|
| 模式1                 | 只能采用串口通信模式0(协议传输模式),该模式                  |
| 模式2                 | 可以实现USB键盘和USB鼠标的全部功能,包括全键                |
|                     | 盘功能、多媒体按键功能、绝对鼠标功能;                      |
|                     | 2、如果只使用其中的USB普通键盘功能,也可以采                 |
|                     | 用串口通信模式1(ASCII模式),该模式下,串口数               |
|                     | 据必须符合ASCII字符格式;                          |
|                     | 3、如果只使用其中的USB普通键盘功能,也可以采                 |
|                     | 用串口通信模式2(透传模式),该模式下,串口数                  |
|                     | 据每8个字节组成一包,芯片每接收到8个字节后,                  |
|                     | 直接打包通过USB口上传。故串口数据必须按照标                  |
|                     | 准的USB键盘数据包进行发送。                          |
|                     | 比如模拟"A"按下,则串口发送数据包为:                     |
|                     | 0x00、0x00、0x04、0x00、0x00、0x00、0x00、0x00  |
|                     | 比如模拟"A"释放,则串口发送数据包为:                     |
|                     | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00; |
|                     | 1、如果USB键盘只需要使用到可见ASCII功能,则               |
| 模式1                 | 采用串口通信模式1(ASCII模式),该模式使用最简               |
| 模式0                 | 单,最方便;                                   |
| 模式2                 | 2、如果USB键盘需要实现全键盘功能,则可以采用                 |
|                     | 串口通信模式0(协议传输模式);                         |
| +#- <del>+</del> *○ | 1、CH9329如果工作在芯片工作模式2时,只支持串               |
| 悮 <b>八</b> U        | 口通信模式0(协议传输模式);                          |
|                     | 1、如果上传数据量较大且速度要求更快时,建议                   |
| 模式2                 | 采用串口通信模式2(透传模式),该模式下,CH9329              |
| 模式0                 | 芯片可以一次性最多接收400个字节数据,然后分                  |
|                     | 包上传;                                     |
|                     | 模式2<br>模式1<br>0<br>模式0<br>模式2            |

通过提供的上位机软件,用户可自定义芯片工作模式、串口通信模式、串口通信波特率、串口通信地址、多种超时时间、回车字符、是否自动回车、过滤起始字符和结束字符、VID、PID,以及各种USB字符串描述符等芯片参数。芯片参数配置后,将永久保存在芯片内部,断电不丢失,除非重新配置或恢复出厂设置,新配置在下一次上电或外部复位后生效。如果没有设置过,则启用芯片默认的工作模式、USB VID、PID 和 USB字符串描述符。具体配置方法,可参考提供的测试软件。

## 6、参数

### 6.1. 绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

| - 11 17 1 17 4 11 | 71-71-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |                 |          |    |  |  |
|-------------------|-----------------------------------------|-----------------|----------|----|--|--|
| 名称                | 参数说明                                    | 最小值             | 最大值      | 单位 |  |  |
| TA                | 工作时的环境温度                                | -40             | 85       | °C |  |  |
| TS                | 储存时的环境温度                                | <del>-</del> 55 | 125      | Ç  |  |  |
| VCC               | 电源电压(VCC 接电源,GND 接地)                    | -0.4            | 5. 5     | ٧  |  |  |
| VIO               | 除 UD+/UD-之外的其它输入或者输出引脚上的电压              | -0.4            | VCC+0. 4 | ٧  |  |  |
| VIOU              | UD+/UD-引脚上的电压                           | -0.4            | V33+0. 4 | ٧  |  |  |

#### 6.2. 电气参数

(测试条件: TA=25℃, VCC=5V, 不包括连接 USB 总线的引脚)

| 名称   | 参数说明              | 最小值      | 典型值   | 最大值      | 单位 |
|------|-------------------|----------|-------|----------|----|
| VCC  | 电源电压              | 3. 7     | 5     | 5. 5     | ٧  |
| V33  | 内部USB电源调整器输出电压    | 3. 14    | 3. 27 | 3. 4     | ٧  |
| ICC  | 静态电源电流            | 8        | 11    |          | mA |
| VIL  | 低电平输入电压           | -0.4     |       | 1. 2     | ٧  |
| VIH  | 高电平输入电压           | 2. 4     |       | VCC+0. 4 | ٧  |
| VOL  | 低电平输出电压(8mA 吸入电流) |          |       | 0.4      | ٧  |
| VOH  | 高电平输出电压(8mA 输出电流) | VCC-0. 4 |       |          | ٧  |
| IUP  | 内置上拉电阻的输入电流       | 35       | 70    | 140      | uA |
| IDN  | 内置下拉电阻的输入电流       | -35      | -70   | -140     | uA |
| Vpot | 电源上电复位的电压门限       | 2. 1     | 2. 3  | 2. 5     | ٧  |

#### 7、应用

#### 7.1. 串口转 HID 设备(下图)

下图是由CH9329实现的串口转HID设备(键盘、鼠标、HID类)相关原理图。

P1是USB端口,USB总线包括一对5V电源线和一对数据信号线,通常,+5V电源线是红色,接地线是黑色,D+信号线是绿色,D-信号线是白色。USB总线提供的电源电流最大可以达到500mA,一般情况下,CH9329芯片和低功耗的USB产品可以直接使用USB总线提供的5V电源。如果USB产品通过其它供电方式提供常备电源,那么CH9329也应该使用该常备电源,如果需要同时使用USB总线的电源,那么可以通过阻值约为1 $\Omega$ 的电阻连接USB总线的5V电源线与USB产品的5V常备电源,并且两者的接地线直接相连接。

P2是TTL串口, RXD是CH9329的串行接收引脚, TXD是CH9329的串行发送引脚。

C1容量为0.1  $\mu$  F,用于CH9329内部电源节点退耦,C2容量为0.1  $\mu$  F,用于外部电源退耦。电阻R1和发光管LED1是可选器件,仅用于USB连接状态的指示。

在设计印刷线路板PCB时,需要注意:退耦电容C1和C2尽量靠近CH9329的相连引脚;使D+和D-信号线贴近平行布线,尽量在两侧提供地线或者覆铜,减少来自外界的信号干扰;为了减少高频干扰,可以在相关元器件周边环绕地线或者覆铜。

