Package 'inTrees'

April 23, 2024

Title Interpret Tree Ensembles

Version 1.4

2 buildLearner

AGDZLISI	• •	• •	•	 •	•	•	 •	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	٠	•	11
selectRuleRRF XGB2List																													

applyLearner

apply a simplified tree ensemble learner (STEL) to data

Description

apply STEL to data and get predictions

Usage

```
applyLearner(learner, X)
```

Arguments

learner a matrix with rules ordered by priority

X predictor variable matrix

Value

predictions for the data

See Also

buildLearner

buildLearner

build a simplified tree ensemble learner (STEL)

Description

Build a simplified tree ensemble learner (STEL). Currently works only for classification problems.

Usage

```
buildLearner(ruleMetric, X, target, minFreq = 0.01)
```

Arguments

ruleMetric a matrix including the conditions, predictions, and and metrics

X predictor variable matrix

target target variable

minFreq minimum frequency of a rule condition in order to be included in STEL.

dataSimulate 3

Value

a matrix including the conditions, prediction, and metrics, ordered by priority.

Author(s)

Houtao Deng

References

Houtao Deng, Interpreting Tree Ensembles with inTrees, technical report, 2014

Examples

```
data(iris)
library(RRF)
X <- iris[,1:(ncol(iris)-1)]</pre>
target <- iris[,"Species"]</pre>
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF</pre>
treeList <- RF2List(rf)</pre>
ruleExec <- extractRules(treeList,X)</pre>
ruleExec <- unique(ruleExec)</pre>
ruleMetric <- getRuleMetric(ruleExec,X,target) # measure rules</pre>
ruleMetric <- pruneRule(ruleMetric, X, target) # prune each rule</pre>
#ruleMetric <- selectRuleRRF(ruleMetric,X,target) # rule selection</pre>
learner <- buildLearner(ruleMetric, X, target)</pre>
pred <- applyLearner(learner,X)</pre>
read <- presentRules(learner,colnames(X)) # more readable format</pre>
# format the rule and metrics as a table in latex code
library(xtable)
print(xtable(read), include.rownames=FALSE)
print(xtable(ruleMetric[1:2,]), include.rownames=FALSE)
```

dataSimulate

Simulate data

Description

Simulate data

Usage

```
dataSimulate(flag = 1, nCol = 20, nRow = 1000)
```

Arguments

```
flag 1 (default): team optimization; 2: non-linear; 3: linear.

nCol the number of columns in the data set. must >= 2.

nRow the number of rows in the data set.
```

4 extractRules

Value

predictor variable matrix and target variable

Examples

```
res <- dataSimulate(flag=1)
X <- res$X;
target <- res$target</pre>
```

dicretizeVector

discretize a variable

Description

discretize a variable

Usage

```
dicretizeVector(v, K = 3)
```

Arguments

v vector

K discretize into up to K levels with equal frequency

Value

discretized levels for v

Examples

```
data(iris)
dicretizeVector(iris[,1],3)
```

extractRules

Extract rules from a list of trees

Description

Extract rule conditions from a list of trees. Use functions RF2List/GBM2List to transform RF/GBM objects to list of trees.

Usage

```
extractRules(treeList, X, ntree = 100, maxdepth = 6, random = FALSE, digits = NULL)
```

GBM2List 5

Arguments

treeList tree list

X predictor variable matrix

ntree conditions are extracted from the first ntree trees

maxdepth conditions are extracted from the top maxdepth levels from each tree

random the max depth for each tree is an integer randomly chosen between 1 and maxdepth

digits digits for rounding

Value

a set of rule conditions

Examples

```
library(RRF)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X,digits=4) # transform to R-executable rules
ruleExec <- unique(ruleExec)</pre>
```

GBM2List

Transform gbm object to a list of trees

Description

Transform gbm object to a list of trees that can be used for rule condition extraction

Usage

```
GBM2List(gbm1,X)
```

Arguments

gbm1 gbm object

X predictor variable matrix

Value

a list of trees in an inTrees-required format

See Also

RF2List

6 getFreqPattern

Examples

```
library(gbm)
data(iris)
X <- iris[,1:(ncol(iris)-1)]</pre>
target <- iris[,"Species"]</pre>
gbmFit <- gbm(Species~ ., data=iris, n.tree = 400,</pre>
                  interaction.depth = 10,distribution="multinomial")
treeList <- GBM2List(gbmFit,X)</pre>
ruleExec = extractRules(treeList,X)
ruleExec <- unique(ruleExec)</pre>
#ruleExec <- ruleExec[1:min(2000,length(ruleExec)),,drop=FALSE]</pre>
ruleMetric <- getRuleMetric(ruleExec,X,target)</pre>
ruleMetric <- pruneRule(ruleMetric, X, target)</pre>
ruleMetric <- unique(ruleMetric)</pre>
learner <- buildLearner(ruleMetric,X,target)</pre>
pred <- applyLearner(learner,X)</pre>
readableLearner <- presentRules(learner,colnames(X)) # more readable format</pre>
err <- 1-sum(pred==target)/length(pred);</pre>
```

getFreqPattern

calculate frequent variable interactions

Description

calculate frequent variable interactions

Usage

```
getFreqPattern(ruleMetric, minsup = 0.01, minconf = 0.5, minlen = 1, maxlen = 4)
```

Arguments

ruleMetric a matrix including conditions, predictions, and the metrics

minsup minimum support of conditions in a tree ensemble

minconf minimum confidence of the rules
minlen minimum length of the conditions
maxlen max length of the conditions

Value

a matrix including frequent variable interations (in a form of conditions), predictions, length, support, and confidence.

getRuleMetric 7

Examples

```
library(RRF)
library(arules)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X) # transform to R-executable rules
ruleMetric <- getRuleMetric(ruleExec,X,target)
freqPattern <- getFreqPattern(ruleMetric)
freqPatternMetric <- getRuleMetric(freqPattern,X,target)</pre>
```

getRuleMetric

Assign outcomes to a conditions, and measure the rules

Description

Assign outcomes to a conditions, and measure the rules

Usage

```
getRuleMetric(ruleExec, X, target)
```

Arguments

ruleExec a set of rule conditions
X predictor variable matrix

target target variable

Value

a matrix including the condictions, predictions, and metrics

References

Houtao Deng, Interpreting Tree Ensembles with inTrees, technical report, 2014

Examples

```
library(RRF)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X) # transform to R-executable rules
ruleExec <- unique(ruleExec)
ruleMetric <- getRuleMetric(ruleExec,X,target) # measure rules</pre>
```

8 pruneRule

presentRules

Present a learner using column names instead of X[i,]

Description

Present a learner using column names instead of X[i,]

Usage

```
presentRules(rules, colN, digits)
```

Arguments

rules a set of rules

colN a vector including the column names

digits digits for rounding

Value

a matrix including the conditions (with column names), etc.

See Also

buildLearner

Examples

```
# See function "buildLearner"
```

pruneRule

Prune irrevant variable-value pair from a rule condition

Description

Prune irrevant variable-value pair from a rule condition

Usage

```
pruneRule(rules, X, target, maxDecay = 0.05, typeDecay = 2)
```

Arguments

rules A metrix including the rules and metrics

X predictor variable matrix target target variable vector maxDecay threshold of decay

typeDecay 1: relative error; 2: error; default :2

RF2List 9

Value

A matrix including the rules each being pruned, and metrics

Author(s)

Houtao Deng

References

Houtao Deng, Interpreting Tree Ensembles with inTrees, technical report, 2014

See Also

buildLearner

Examples

see function "buildLearner"

RF2List

Transform a random forest object to a list of trees

Description

Transform a random forest object to a list of trees

Usage

```
RF2List(rf)
```

Arguments

rf

random forest object

Value

a list of trees

See Also

GBM2List

10 selectRuleRRF

Examples

```
library(RRF)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X) # transform to R-executable rules</pre>
```

selectRuleRRF

select a set of relevant and non-redundant rules

Description

select a set of relevant and non-redundant rules using regularized random forests

Usage

```
selectRuleRRF(ruleMetric, X, target)
```

Arguments

ruleMetric a matrix including the rules and metrics

X predictor variable matrix

target response variable

Value

a matrix including a set of relevant and non-redundant rules, and their metrics

Author(s)

Houtao Deng

See Also

buildLearner

Examples

```
# See function "buildLearner:
```

XGB2List 11

XGB2List

Transform an xgboost object to a list of trees

Description

Transform an xgboost object to a list of trees

Usage

```
XGB2List(xgb, X)
```

Arguments

xgb xgboost object

X predictor variable matrix

Value

a list of trees in an inTrees-required format

See Also

XGB2List

Examples

```
library(data.table)
library(xgboost)
# test data set 1: iris
X <- within(iris,rm("Species")); Y <- iris[,"Species"]
X <- within(iris,rm("Species")); Y <- iris[,"Species"]
model_mat <- model.matrix(~. -1, data=X)
xgb <- xgboost(model_mat, label = as.numeric(Y) - 1, nrounds = 20,
objective = "multi:softprob", num_class = 3 )
tree_list <- XGB2List(xgb,model_mat)</pre>
```

Index

* STEL buildLearner, 2 * apply applyLearner, 2	GBM2List, 5, 9 getFreqPattern, 6 getRuleMetric, 7
* discretize	presentRules,8
dicretizeVector, 4	pruneRule, 8
* extract	
extractRules, 4	RF2List, <i>5</i> , 9
* gbm	selectRuleRRF, 10
GBM2List, 5	selectivaletti, 10
* learner	XGB2List, <i>11</i> , 11
buildLearner, 2	,
* measure	
getRuleMetric,7	
* predict	
applyLearner, 2	
* present	
presentRules, 8	
* prune	
pruneRule, 8	
* randomforest	
RF2List,9	
* rank	
getRuleMetric, 7	
* select	
selectRuleRRF, 10	
* simulate	
dataSimulate, 3 * variable interaction	
getFreqPattern, 6 * xgboost	
XGB2List, 11	
AGDZLIST, II	
applyLearner, 2	
buildLearner, 2, 2, 8-10	
dataSimulate, 3	
dicretizeVector, 4	
extractRules, 4	