

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Sistemas de Controle II ELT331

AULA 14 – Projeto de Controlador em Avanço de Fase pela Resposta em Frequência

Prof. Tarcísio Pizziolo

14. Projeto de Controladores em Avanço de Fase

14.1. Características

Seja uma Função de Transferência dada por G_c(s):

$$G_{\mathbf{c}}(\mathbf{s}) = \mathbf{K}_{\mathbf{c}} \alpha \frac{\left(\mathbf{T}\mathbf{s} + 1\right)}{(\alpha \mathbf{T}\mathbf{s} + 1)} = \mathbf{K}_{\mathbf{c}} \frac{(\mathbf{s} + \frac{1}{\mathbf{T}})}{(\mathbf{s} + \frac{1}{\alpha \mathbf{T}})} \qquad (0 < \alpha < 1)$$

Esta Função de Transferência possui um Ganho K_c , um zero em s = -1/T e um polo em $s = -1/(\alpha T)$, sendo α o Fator de Atenuação.

- Como $0 < \alpha < 1$, o zero sempre estará à direita do polo no plano **s** caracterizando um controlador em Avanço de Fase.
- Por limitação física α_{mínimo} = 0,05, ou seja, o avanço máximo será de 65°.
- Considerando que $G_c(s)$ é simples de se determinar, esta é adotada como um modelo de Controlador a ser projetado utilizando técnicas abordadas pela resposta em frequência.

14.1. Características

Seja a Função de Transferência dada por $G_c(jw)$ com $K_c = 1$:

$$G_{\mathbf{c}}(\mathbf{j}\mathbf{w}) = \alpha \frac{(\mathbf{j}\mathbf{w}\mathbf{T} + 1)}{(\mathbf{j}\mathbf{w}\alpha\mathbf{T} + 1)}$$
 $(0 < \alpha < 1)$

O Gráfico Polar (Nyquist) de G_c(jw) é dado a

seguir:

Diagrama polar de um compensador por avanço de fase $\alpha(j\omega T + 1)/(j\omega\alpha T + 1)$, onde $0 < \alpha < 1$.

O ângulo máximo de avanço de fase ϕ_m em w_m será dado por:

$$sen(\phi_{m}) = \frac{\left(\frac{1-\alpha}{2}\right)}{\left(\frac{1+\alpha}{2}\right)} = \frac{\left(1-\alpha\right)}{\left(1+\alpha\right)} \Rightarrow \boxed{\alpha = \frac{(1+sen(\phi_{m}))}{(1-sen(\phi_{m}))}} \quad ;para \ \alpha = 0.05 \Rightarrow \boxed{\phi_{m} \approx 65^{\circ}}$$

14.1. Características

O Diagrama de Bode para $G_c(jw)$ com $K_c = 1$ e $\alpha = 0,1$ é dado por:

As frequências de canto são:

$$w_1 = \frac{1}{T}$$
 e $w_2 = \frac{1}{\alpha T} = \frac{10}{T} (\alpha = 0.1)$

A frequência \mathbf{w}_{m} é a **média geométrica** entre \mathbf{w}_{1} e \mathbf{w}_{2} .

$$\begin{split} &\text{M\'edia Geom\'etrica} \quad \overline{X_G} = \sqrt[n]{X_1 X_2 X_n} \\ &\log_{10}(w_m) = \frac{1}{2} \Big[log_{10}(w_1) + log_{10}(w_2) \Big] \Rightarrow log_{10}(w_m) = \frac{1}{2} log_{10}[w_1 w_2] \Rightarrow \\ &\Rightarrow log_{10}(w_m) = log_{10}[\sqrt[2]{w_1 w_2}] \Rightarrow w_m = \sqrt[2]{w_1 w_2} \Rightarrow w_m = \left[\sqrt[2]{\frac{1}{T} \left(\frac{1}{\alpha T}\right)}\right] \Rightarrow \\ &\Rightarrow w_m = \frac{1}{\sqrt{\alpha T}} \end{split}$$

14.2. Procedimentos para Projeto

O Controlador G_c(jw) em Avanço de Fase produz melhora na resposta transitória, mas provoca uma variação na precisão da resposta estacionária.

Procedimentos:

1. Suponha o seguinte Controlador em Avanço de Fase:

$$G_{c}(s) = K_{c}\alpha \frac{\left(Ts+1\right)}{(\alpha Ts+1)} = K_{c}\frac{\left(s+\frac{1}{T}\right)}{\left(s+\frac{1}{\alpha T}\right)} \qquad \left(0 < \alpha < 1\right)$$

2. Defina
$$K_c \alpha = K$$
, então:
$$G_c(s) = K \frac{(Ts+1)}{(\alpha Ts+1)}$$
 A Função de Transferência de Malha Aberta do sistema

compensado será:

$$G_{c}(s)G(s) = [K \frac{(Ts+1)}{(\alpha Ts+1)}]G(s) = [\frac{(Ts+1)}{(\alpha Ts+1)}]KG(s) = [\frac{(Ts+1)}{(\alpha Ts+1)}]G_{1}(s)$$

Onde $G_1(s) = KG(s)$

Plotar o Diagrama de Bode para G₁(s).

14.2. Procedimentos para Projeto

- 3. Determine o ganho K a fim de satisfazer o requisito da Constante de Erro Estático dado. Como esta constante está relacionada com a resposta estacionária, deve-se tentar mantê-la para não alterar significativamente esta resposta.
- **4.** Utilizando o ganho K determinado, construir o Diagrama de Bode de $G_1(jw)$ com o sistema com o ganho ajustado, mas ainda não compensado. Avalie a Margem de Fase.
- 5. Determine o ângulo de fase ϕ_m necessário que deve ser acrescentado ao sistema. Adicione 5° a 12° ao ângulo obtido, pois a adição do controlador por Avanço de Fase desloca a Frequência de Cruzamento de Ganho w_g para a direita e diminui a Margem de Fase.
- 6. Calcular o Fator de Atenμação α em:

$$\operatorname{sen}(\varphi_{\mathrm{m}}) = \frac{\left(1 - \alpha\right)}{\left(1 + \alpha\right)}$$

7. Defina a frequência em que o módulo do sistema não compensado $G_1(jw)$ seja igual a $-20log_{10}(1/\sqrt{\alpha})$.

14.2. Procedimentos para Projeto

8. Selecione a frequência do item 7 como a nova Frequência de Cruzamento de Ganho para:

$$\mathbf{w_m} = \frac{1}{\sqrt{\alpha}T}$$

- 9. A defasagem máxima φ_m ocorre na frequência w_m do item 8.
- 10. Determine as Frequências de Canto do controlador.

zero do controlador:
$$w = 1/T$$
 polo do controlador: $w = 1/(\alpha T)$

11. Utilizando o valor de K calculado no item 2 e o de α determinado no item 6 calcule a constante K_c .

$$K_{\rm C} = \frac{K}{\alpha}$$

12. Verifique a **Margem de Ganho** para se certificar que é satisfatória. Se não for, repita o processo de projeto pela modificação das localizações de polos e zeros do controlador até que um resultado satisfatório seja obtido.

Exemplo 1 – Para o sistema dado, projetar um controlador em Avanço de Fase de modo que K_v (Constante de Erro Estático de Velocidade) seja 20 s⁻¹, a Margem de Fase seja pelo menos 50° e a Margem de Ganho seja pelo menos 10 dB.

Sistema de controle. $R(s) \longrightarrow \frac{4}{s(s+2)}$

$$G(s)H(s) = \frac{4}{s(s+2)} \qquad G_{c}(s) = K_{c}\alpha \frac{(Ts+1)}{(\alpha Ts+1)} = K_{c}\frac{\left(s + \frac{1}{T}\right)}{\left(s + \frac{1}{\alpha T}\right)}$$
 Definindo:
$$G_{1}(s) = KG(s) = \frac{4K}{s(s+2)}; \quad \text{onde: } K = K_{c}\alpha$$

Ajuste do ganho **K** para $K_V = 20 \text{ s}^{-1}$.

$$\begin{split} K_{V} &= \underset{s \to 0}{\text{lim}} [sG_{c}(s)G(s)] = \underset{s \to 0}{\text{lim}} [s[K\frac{(Ts+1)}{(\alpha Ts+1)}]G(s)\}; \quad \boxed{G_{1}(s) = KG(s)}; \\ Ent\tilde{a}o: K_{V} &= \underset{s \to 0}{\text{lim}} [s[\frac{(Ts+1)}{(\alpha Ts+1)}]G_{1}(s)\} = \underset{s \to 0}{\text{lim}} [\frac{s(Ts+1)}{(\alpha Ts+1)}\frac{4K}{s(s+2)}] \Rightarrow \\ \Rightarrow K_{V} &= 2K \Rightarrow 20 = 2K \Rightarrow \boxed{K = 10} \end{split}$$

$$G_1(jw) = \frac{40}{jw(jw+2)} = \frac{20}{jw(1+j\frac{w}{2})}$$

Pelo Diagrama de Bode :
$$\Rightarrow \begin{cases} \gamma = 17^o \\ K_g = +\infty \, dB \end{cases}$$

Como necessita-se de pelo menos $\gamma = 50^\circ$, o controlador deve contribuir com no mínimo 33° sem decréscimo do ganho K.

Ao aplicar o controlador, a Frequência de Cruzamento de Ganho desloca-se para direita, então deve-se adicionar de 5° a 12° para manter a Margem de Fase sem alteração significativa. Inicia-se com a adição de 5° e verifica-se no final o desejado!

final o desejado! Então:
$$\phi_{\mathbf{m}} = 33^{\mathbf{0}} + 5^{\mathbf{0}} = 38^{\mathbf{0}} \Rightarrow \mathrm{sen}\phi_{\mathbf{m}} = \frac{(1-\alpha)}{(1+\alpha)} \Rightarrow \alpha \cong 0.24$$
 A contribuição angular máxima $\phi_{\mathbf{m}}$ de $G_{\mathbf{C}}(\mathbf{jw})/\mathbf{K}$ ocorre em: $\mathbf{W}_{\mathbf{m}} = \frac{1}{\sqrt{\alpha}T}$

O valor da alteração no módulo em w_m em decorrência da inclusão do termo do controlador $G_0(iw)/K = (Ts+1)/(\alpha Ts+1)$ é

do controlador
$$G_{C}(jw)/K = (Ts+1)/(\alpha Ts+1)$$
 é:
$$\left|\frac{G_{C}(s)}{K}\right|_{W_{m}} = \frac{1}{\sqrt{\alpha T}} = \left|\frac{1+jwT}{1+jw\alpha T}\right| = \left|\frac{1+j\frac{1}{\sqrt{\alpha}}}{1+j\frac{\alpha}{\sqrt{\alpha}}}\right| = \frac{1}{\sqrt{\alpha}}; como \alpha = 0,24 \Rightarrow \frac{1}{\sqrt{\alpha}} = 2,041$$

O valor da alteração na curva de módulo em **dB** será:

$$20\log \frac{G_{C}}{K} = 20\log(2,041) = 6,2 dB$$

O controlador tem que contribuir com 6,2 dB para alterar a Frequência de Cruzamento de Ganho para o desejado. Veja no Diagrama de Bode compensado!

Diagrama de Bode do sistema compensado.

A nova frequência de cruzamento de ganho (desejada) será:

$$w_c = 9 \text{ rd/s}$$

Para determinar o zero e o polo do controlador aplicamos:

$$wc = \frac{1}{\sqrt{\alpha}T} \Rightarrow \begin{cases} \frac{1}{T} = \sqrt{\alpha}w_c \Rightarrow \frac{1}{T} = \sqrt{0,24}(9) = 4,41\\ \frac{1}{\alpha T} = \frac{w_c}{\sqrt{\alpha}} \Rightarrow \frac{1}{\alpha T} = \frac{9}{\sqrt{0,24}} = 18,4 \end{cases}$$

O controlador por avanço de fase determinado é:

$$G_c(s) = K_c \frac{(s+4,41)}{(s+18,4)}$$

O valor de K_C será dado por: $K_C = K / \alpha = 10 / 0,24 = 41,7$

A Função de Transferência do controlador será:

$$G_c(s) = 41,7 \frac{(s+4,41)}{(s+18,4)}$$

Respostas do Sistema s/ o Controlador e c/ o controlador

Função de Transferência em malha fechada sem o

controlador:

$$\frac{C(s)}{R(s)} = \frac{4}{(s^2 + 2s + 4)}$$

Função de Transferência em malha fechada com o

controlador:
$$\frac{C(s)}{R(s)} = \frac{166,8s + 735,588}{(s^3 + 20,4s^2 + 203,6s + 735,588)}$$

Polos dominantes de malha fechada com o controlador: $S_1 = -6,9541 + j8,0592$; $S_2 = -6,9541 - j8,0592$ e $S_3 = -6,4918$

Respostas ao Degrau Unitário do Sistema s/ o Controlador e c/ o controlador

Curvas de resposta ao degrau unitário dos sistemas compensado e não compensado.

Respostas à Rampa Unitária do Sistema s/ o Controlador e c/ o controlador

Curvas de resposta à rampa unitária dos sistemas compensado e não compensado.

