Uninformed Search Strategies

Uninformed search: No clue about how close a state is to the goal.

Outline

I. Breadth-first search

II. Depth-first search

III. Iterative deepening and Bi-directional searches

I. Breadth-First Search

Expand the root first, then all its successors, next their successors, and so on.

- Systematic search.
- Complete even when the state space is infinite.
- ♦ Always finds a solution with a minimum number of actions.

BFS Algorithm

- Can call Best-First-Search by letting the evaluation function f(n) = node depth.
- ♠ Not efficient: Use a FIFO queue and adopt early goal test (when a node is generated).

```
function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
  node ← NODE(problem.INITIAL)
  if problem.IS-GOAL(node.STATE) then return node
  frontier ← a FIFO queue, with node as an element
  reached ← {problem.INITIAL}
  while not IS-EMPTY(frontier) do
    node ← POP(frontier)
    for each child in EXPAND(problem, node) do
        s ← child.STATE
        if problem.IS-GOAL(s) then return child
        if s is not in reached then
            add s to reached
            add child to frontier
    return failure
```

Time and Space Complexities

BFS on a uniform tree where every node has b successors.

† branching factor

- b nodes at depth 1 generated by the root.
- Each node at depth 1 generates b nodes. $\Rightarrow b^2$ nodes at depth 2.
- And so on.

Solution at depth
$$d \Longrightarrow \# \text{nodes} = 1 + b + \dots + b^d = O(b^d)$$

$$= \frac{b^{d+1}-1}{b-1} \text{ (assuming } b > 1)$$
Time & space complexities (since every node remains in memory)

- Only small search problems are solvable due to exponential time complexity.
- Memory is a bigger issue than time.

Time and Memory Requirements for BFS

Tree search: $O(b^d)$

Depth	Nodes	Time	Memory
2	110	.11 milliseconds	107 KB
4	11,110	11 milliseconds	10.6 MB
6	10 ⁶	1.1 seconds	1 GB
8	10 ⁸	2 minutes	103 GB
10	10^{10}	3 hours	10 TB
12	10 ¹²	13 days	1 PB
14	10 ¹⁴	3.5 years	99 PB
16	10 ¹⁶	350 years	10 EB

$$b = 10$$

Graph search is preferred since its time and space are proportional to the size of the state space (often less than $O(b^d)$).

Uniform-Cost Search (Dijkstra's Algorithm)

function UNIFORM-COST-SEARCH(*problem*) **returns** a solution node, or *failure* **return** BEST-FIRST-SEARCH(*problem*, PATH-COST)

Spreads out in waves of uniform path-cost.

Uninformed Search: Completeness and Complexity

- ◆ Completeness: systematic exploration of all paths no chance of being trapped in one.
- Optimality: following from that of Dijkstra's algorithm.
- ◆ Complexity

$$O(b^{1+\lfloor C^*/\epsilon \rfloor})$$

 C^* : cost of the optimal solution

 ϵ : lower bound on the costs of all actions

 $\gg b^d$ possible.

 $=b^{d+1}$ if all actions have the same cost.

II. Depth-First Search

Expand the *deepest* node in the frontier first.

• Implementable as a call to Best-First-Search by setting f(n) to the negative depth.

Downsides of DFS

♠ Not optimal

Returns the first solution it finds, even if it is not the cheapest.

▲ Inefficient

May expand the same state many times via different paths, and even systematically the entire space.

May get stuck in an infinite loop in a cyclic state space.

♠ Incomplete

Can go down an infinite path forever.

Why Consider DFS?

◆ Small memory for problems admitting tree-like search.

No need for a table of reached nodes. Small frontier.

- ◆ Search time O(#nodes).
- Memory consumption O(bm).

Workhorse of constraint satisfaction, logic programming, etc.

Depth-Limited Seach

- To avoid exploring an infinite path, add a depth limit l.
- All nodes at depth l are considered dead ends even if they have successors.

Time: $O(b^l)$

Memory: O(bl)

 \clubsuit Performance sensitive to the choice for l.

What strategy to address this?

III. Iterative Deepening Search

Pick a good value for *l* by trying all values: 0, 1, 2, and so on.

```
function Iterative-Deepening-Search(problem) returns a solution node or failure for depth = 0 to \infty do result \leftarrow Depth-Limited-Search(problem, depth) if result \neq cutoff then return result
```

Combines the benefits of DFS and BFS:

Modest memory requirement like DFS:

```
O(bd) when a solution exists (time O(b^d)).

O(bm) on a finite state space with no solution (time O(b^m)).
```

Completeness and optimality of BFS:

III. Bidirectional Search

Motivation:

$$b^{d/2} + b^{d/2} \ll b^d$$

Backward Reasoning

• Easy if all the actions are reversible.

8-puzzle

Finding a route in Romania

• Difficult to conduct if the goal is abstractly specified.

8-queen

^{*} Figure 3.20 in the 3rd edition

Comparing Uninformed Search Strategies

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Optimal cost? Time Space	Yes^1 Yes^3 $O(b^d)$ $O(b^d)$	Yes ^{1,2} Yes $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$	No No $O(b^m)$ $O(bm)$	No No $O(b^\ell)$ $O(b\ell)$	Yes^1 Yes^3 $O(b^d)$ $O(bd)$	Yes ^{1,4} Yes ^{3,4} $O(b^{d/2})$ $O(b^{d/2})$

b: branching factor

d: minimum depth of a solution

l: depth limit

m: maximum search tree depth

 C^* : optimal solution cost

 ϵ : minimum action cost