RESTRICTED 内部文件 / // ()

Remarks
`
及赵九可
OR Ja
Do not accept \sqrt{a}
<pre>lM for log pⁿ = nlogp lM for logpq = logp+logq</pre>
For $\sin^2\theta = 1 - \cos^2\theta$

RESTRICTED 内部文件				
Solutions	Marks	Remarks		
(a) (i) $6x + 1 \ge 2x - 3$ $6x - 2x \ge -3 - 1$ $\therefore x \ge -1$	1M 1A	Collecting terms		
 (ii) (2 - x)(x + 3) > 0 (By considering the graph of the quadratic function), the solution is given by -3 < x < 2. (b) From (i) and (ii), the values of x are ε ven by -1 < x < 2. 	2A 	OR (+) x (+) -3 < x < 2 1A (-) x (-) no solution ∴ -3 < x < 2 1A Accept graphical representation of solution. Withhold 1 mark for weak inequality. I mak for -1 ≤ x ≤ 2, εtc		
By sliding the line ℓ , it is observed that p takes the greatest value at A and the least value at D.	1 1			
Putting $x = 0$ in ℓ_1 , $y = 6$ $\therefore A = (0, 6)$ The greatest value of $P = 22$.	1A 1A			
Putting $y = -2$ in ℓ_4 , $x = -1$ $D = (-1, -2)$ The least value of $P = -11$.	1A 1A 6			
Alternatively A = (0, 6), B = (3, 4), C = (5, -2), D = (-1, -2),) (-3, 0) The values of P at these points are respectively) 22, 17, -5, -11, -5 P takes the greatest value of 22 at A and the least		Testing value at any pt. 1A for any one correct radio Must first score the above 5 points		
value of -11 at D.	x	above 5 points		

RESTRICTED 內部文件

Solutions	Marks Remarks
6. (a) \propto and β are the roots of $x^2 + px + q = 0$. $\therefore \propto + \beta = -p$	1A \ /
M(-2, 0) is the mid-point of AB $\frac{x+\beta}{2}=-2$	1A M(-2,0)
p = 4	$\frac{1A}{3}A(\alpha,0)$ $B(\beta,$
(b) Now $\alpha \beta = q$ $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$	1A
$(-4)^2 = 26 + 2q$ $q = \frac{16 - 26}{2}$ $= -5$	IM Formula correct
	1 <u>A</u> 3
7. (a) The remainder is $(-1)^{1000} + 6$	1M Optional
= 7	$\left \frac{1A}{2} \right $
(b) (i) Putting x = 8,	1M optional or quoting result in (a)
by (a), the remainder is 7 (ii) The remainder of 8^{1000} when divided by 9 is 7	7 - 6 lM optional
= 1	1 <u>A</u> 6

RESTRICTED 内部文件

	Solutions	Marks	Remarks
(a)	Centre = (1, -3)	1A	x=1, y=-3
	Radius = $\sqrt{(-1)^2 + (3)^2 - 1} = 3$	1 <u>A</u>	
(b)	Distance between the centre and A		
	$= \sqrt{(5-1)^2 + (0-3)^2}$	1 M	
	= 5	1A	
) radius of (C_1) (=3)		
	A lies outside (C ₁)	1M -3	
c)	(i) $s = 5 - 3$	1M	
_	= 2	1A	
	(ii) Equation of (C_2) is $(x - 5)^2 + (y - 0)^2 = 2^2$	1A	2
	or $x^2 + y^2 - 10x + 21 = 0$		
i)		3	
·	¹ ↑	1	For sketch. A line touching two circles at
			2 distinct points. May draw the other common tangent, Follow through.
	EF = DA		tangeny, ronow through.
	$\begin{array}{c} O \\ \hline O \\ \hline \end{array} $ BD = BE - AF)		
/	$EF = \sqrt{AB^2 - BD^2}$		•
_	$= \sqrt{5^2 - (3-2)^2}$	1M+1A	
	$= \sqrt{24}$	1A	
	$= 2\sqrt{6} (= 4.90)$)	Any figure roundable to 4.90
• .	(C.)	4	1.70

Solutions	Marks	Remarks
9.(a) Consider \(\Delta \) s ABD and ACD.		
As AB is a diameter,		÷
$\angle ADB = 90^{\circ}.$	8	
As RDC is a straight line \ /	/ *	
L ADC = 90° $\frac{56.37}{4}$	<u>></u> _	I for AD=AD AB=AC
As AB = AC and AD is common)	171	,
\triangle ABD and \triangle ACD are congruent (RHS))	3	1 for comed reasoning
(b) Consider △s ABD and ADE		. •
$\triangle ABD \cong \triangle ACD$		
$\angle BAD = \angle CAD$	1	
Since DE is a tangent, $\angle ADE = \angle ABD$ (\angle in alt. $\triangle ABD \sim \triangle ADE$	seg.) 1	
	2	
(c) (i) As $\angle ADB = 90^{\circ}$		<u>OR</u>
$AD = \sqrt{AB^2 - BD^2} \\ = \sqrt{5^2 - 4^2} = 3$		AD = 3 1A
	1A	_1
$\frac{\Delta ABD \sim \Delta ADE}{\frac{DE}{3} = \frac{4}{5}} = \frac{AB}{AD} = \frac{BD}{DE}, \frac{1}{5} = \frac{AB}{DE}$		$\angle ABD = \cos^2 0.8$ 1M
5	1M	DE = 3cos36.87°
DE = $2\frac{2}{5}$ (= 2.4)	1A	= 2.4 1A
(ii) Consider \triangle s BCF and ABD		
\therefore AB is a diameter, \angle AFB = 90°	1	
- ∠ ADB		
$As \ \angle BCF = \angle ABD,$		
△ s BCF and ABD are similar	1.	
$\frac{AF + 5}{8} = \frac{4}{5}$	1A	
$AF = 1\frac{2}{5} (= 1.4)$	1A	
Alternatively	7	
(a) AB is a diameter, LADB = 90°	1A 7	May also use AAS
· ABC is an isosceles triangle and BC LAD		
\triangle ABD \cong \triangle ACD		
(c)(ii) (1) $\angle ACB = \angle ABC = 36.87^{\circ}$	1A	Accept 36.9°
$\angle AFB = 90^{\circ}$	1	optional
$\frac{AF + 5}{8} = \cos 36.9^{\circ}$	1A	
AF = 1.40	1A	
(2). \angle ABC = \angle ACB = 36.87°	1A	Accept 36.9°
$\angle AFB = 90^{\circ}$	1	optional
$\angle BAF = \angle ABC + \angle ACB = 73.7^{\circ}$		
$\cos 73.7^{\circ} = \frac{AF}{5}$	1A	
AF = 1.40 DECTRICTED #	I TO THE	<u> </u>

RESTRICTED 內部文件

RESTRICTED 内部文件				
	Solutions	Marks	Remarks	
.0.(a)	$\frac{OT}{OA} = \tan 30^{\circ} \qquad \left(\frac{cA}{cT} = \tan 6^{\circ}\right)$	1A 7		
	$\therefore OA = \frac{h}{\tan 30^{\circ}}$	IA	2 + 1	
	= $h \int 3$ metres (= 1.73h)		2 + 1	
	Similarly OB = $\frac{h}{\tan 60^\circ} = \frac{h}{\sqrt{3}}$ metres (= 0.577h)	$\frac{1A}{3}$		
(b)	\angle AOB = 60°	1A		
	By the cosine rule,			
	$AB^2 = OA^2 + OB^2 - 2(OA)(OB)\cos\angle AOB$			
	= $(h\sqrt{3})^2 + (\frac{h}{\sqrt{3}})^2 - 2(h\sqrt{3})(\frac{h}{\sqrt{3}}) \cos 60^\circ$	1.M		
	$= 3h^2 + \frac{h^2}{3} - h^2$			
	$= \frac{7}{3} h^2$			
	AB = $h \sqrt{\frac{7}{3}}$ metres (1.53h)	IA	Any fig. roundable to 1:53h	
	As $h \sqrt{\frac{7}{3}} = 500$	1M		
	$h = 500 \int \frac{3}{7} $ (= 327 or 328)	1A	Any figure roundable to 327 or 328	
	•	5	327 07 320	
(c)	By the sine rule $\frac{R/\sqrt{3}}{\sin \angle OAB} = \frac{500}{\sin 60^\circ}$	1 M		
	$\sin \angle OAB = \frac{h}{\sqrt{3}} \times \frac{\sin 60^{\circ}}{500}$			
	$= \frac{500 \int_{\frac{3}{7}}^{\frac{3}{7}} \times \frac{\int_{\frac{3}{2}}^{\frac{3}{2}}}{500} = \frac{1}{2} \int_{\frac{3}{7}}^{\frac{3}{7}} (0.327)$			
	∴∠OAB = 19.1° = 19° (correct to the nearest degree)	1A		
	(i) The bearing of B from A is N39°E $(039^{\circ} \text{ or } 34^{\circ})$	1A	Accept figure roundable	
	(ii) The bearing of A from B is S39°W (219°) T	N 1A 4	to 39° 34°/219°	
	309			

	Solution	s		Marks	Remarks
11.(a)	(i) $S = 2\pi r^2 + 2\pi rh$,	1A	
	(ii) As $V = \pi r^2 h$, h	$=\frac{V}{T_{i}r^{2}}$.20
	$S = 2\pi r^2 + 2\pi$	$r(\frac{V}{\pi r^2})$		1M	$\frac{0.7}{2\pi r^2 + \frac{2V}{2}} = 2\pi r^2 + \frac{2(\pi r^2 + \frac{2V}{2})}{2\pi r^2 + \frac{2V}{2}}$
	$= 2 \pi r^2 + \frac{2V}{r}$			$\frac{1}{3}$	$\frac{QA}{2\pi r^2 + \frac{2V}{r}} = 2\pi r^2 + \frac{2(\pi r^2 + 4)}{r^2}$ = S
(b)	Putting $V = 2 T_i$, $S = 6$	π			
	$6 \pi = 2 \pi r^2 + \frac{2(2\pi)}{r}$				
	$r^3 - 3r + 2 = 0$			1.	
	By inspection, r = 1 is	a root (or r = -2)		1A	ςOR r-1 is a factor
	$r^3 - 3r + 2 = (r - 3r + 2 -$	$1)(r^2 + r - 2)$			OR r+2 is a factor
_	= (r -	1) ² (r + 2)		1A	
	= 0			·	
	i.e. $r = 1(as r \neq -2)$			1A 4	
(c)	Putting $V = 3\pi$, $S = 1$	0π , we have			
	$10\pi = 2\pi r^2 + \frac{2(3\pi)}{r}$				
	$r^3 - 5r + 3 = 0$			1A	
**	Let $f(r) = r^3 - 5r + 3$	•			
	f(1) < 0 and $f(2) > 0$, between 1 and 2	there is a root of f	(r) = 0	1A	Signs of f(1), f(2)
_	Interval	Mid -value, r	f(r _i)		
	1 < r < 2 1.5 < r < 2 1.75 < r < 2 1.75 < r < 1.875 1.8125 < r < 1.875	1.5 1.75 1.875 1.8125 (1.813) 1.84375 (1.844)	- - + -	1M 1M	Testing at mid-value Choosing interval
	1.8125 < r < 1.84375		<u> </u>		
	` r = 1.8 (correct	to 1 d.p.)		1A 5	

		Solutions	Marks	Remarks
2.(a)	(i)	The model class is \$6000 - \$7000 By symmetry of the distribution,	1A	Accept \$6500
		the median salary = \$6500,	1A	
		the mean salary = \$6500.	1A	
		The interquartile range = 8000 - 5000	1A	Optional
		= \$3000	1A	
		The mean deviation		
		$= \frac{1}{100} \times 2 \left[7(6500 - 2500) + 8(6500 - 3500) \right]$		•
		+ 10(6500 - 4500) + 15(6500 - 5500)]	1A	
_		= \$1740	1A 7	
	(ii)	The standard deviation of salaries will become smaller because the salaries of the additional 10 employees have no deviation from the mean while the total number of employees has become larger.	1A 1	For answer OR By calculation $\sum (x - x)^2$ unchanged is greater
(b)	The s	standard deviation		
	= \int_{-1}^{1}	$\frac{1}{7}$ (9 + 4 + 1 + 0 + 1 + 4 + 9)	2A	
	= 2		1A	•
			3	

		Solutions	Marks	Remarks
13.(a)	(1)	The probability that Bag B is chosen = $\frac{1}{3}$.	1A	
		``, the probability that the ball drawn is green		
		$=\frac{1}{3}\times\frac{2}{3}$	1M	P ₁ * P ₂
		$=\frac{2}{9}$ (0.222)	1A	
	(ii)	the probability that Bag B is chosen and the	,	
		yellow ball is drawn = $\frac{1}{3} \times \frac{1}{3}$ = $\frac{1}{9}$ (0.111)	1A	OR probability of drawing (Y) from bag C.
		the required probability = $\frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times 1$	lM	$P_1 + P_2 = \frac{1}{3} \times \frac{1}{3} \times 1$ no mank
		$=\frac{4}{9}$ (0.444)	1A 6	
<u>(b)</u>	(i)	The probability that Peter and Alice both draw		•
		a green ball = $\frac{2}{9} \times \frac{2}{9}$	1M	Followed from (a)(i)
		$= \frac{4}{81} (0.0494)$	1A	
•.	(ii)	The probability that they both draw a yellow		
		ball from Bag B = $\frac{1}{9} \times \frac{1}{9}$	1 A	
		$= \frac{1}{81} (0.0123)$		
		The probability that they both draw a yellow ball		
		from Bag C = $\frac{1}{3} \times \frac{1}{3}$	1 A	
		$= \frac{1}{9} (0.111)$ The regular probability = 1 \ 1		
_		the required probability = $\frac{1}{81} + \frac{1}{9}$	11)	
		$=\frac{10}{81} (0.123)$	2A/A	

RESTRICTED 内部文件

·	Solutions	Marks	Remarks
14.(a)	(i) The integers in G ₆ are 16, 17, 18, 19, 20, 21	1M+1A	lM for 6 consecutive integers (5 correct)
	(ii) The total number of integers in G_1 , G_2 ,, G_6		
	= 1 + 2 + 3 + + 6	1A	Optional
	= 21	1 <u>A</u>	
(b)	(1) $u_{k-1} = 1 + 2 + \dots + (k-1)$	1A	
	$= \frac{(k-1)}{2} [1 + (k-1)]$	1M	Sum of AP = $\frac{n}{2}[a + \ell]$
	$=\frac{k(k-1)}{2}$		
	The first term in $G_k = \frac{k(k-1)}{2} + 1 \ (= \frac{k^2-k+2}{2})$	1M+1A	IM for v = uk + 1
_	(ii) The sum of all integers in $G_{\mathbf{k}}$		
	$= \frac{k}{2} \left[2 \left(\frac{k(k-1)}{2} + 1 \right) + (k-1) \times 1 \right]$	1M+1A	/M for Sum of AP
	$= \frac{k(k^2 + 1)}{2} (= \frac{k^3 + k}{2})$	1A 8	