Faculty of Science

Institute for Astronomy and Astrophysics Tübingen

Investigations of the pulse profiles of Her X-1 and the pulse profile fitting method

BeXRB 2021 – July 26, 2021 – Inga Saathoff – saathoff@astro.uni-tuebingen.de

DATE

METHOD

RESULTS

SUMMARY

System Parameters

- Companion: HZ Her, B3-B4
- $M_{\rm NS}$ = (1.5 ± 0.3) M_{\odot}
- $M_{\rm HZ}$ = (2.3 ± 0.3) M $_{\odot}$
- $R_{HZ} = (4.2 \pm 0.2) R_{\odot}$

Reynolds et al. (1997)

- → IMXB, accretion mechanism: Roche lobe overflow (typical for LMXB)
- d ≈ 6 kpc

Leahy & Abdallah (2014)

- · Variability on three timescales:
 - P_{NS}

 \approx 1.24 s

Pbinary

 \approx 1.7 d

P_{super-orbital}

 \approx 35 d

Staubert et al. (2009

DAT

METHOD

RESULTS

SUMMARY

Super-Orbital Period:

Two Clocks?

1: Accretion Disk

2: Neutron Star

Observable: light curve

Observable: pulse profile

DATA

METHO

RESULT

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- X-ray Light Curve
- Turn-On
- (O^{LC} C) Diagram

DATA

METHO

RESULTS

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- X-ray Light Curve
- Turn-On
- (O^{LC} C) Diagram

X-ray Light Curve \rightarrow (O^{LC} - C) Diagram

DATA

METHO

RESULT:

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- · Pulse Profile
- Turn-On
- (OPP C) Diagram

NuSTAR data 9-13 keV

DATA

METHO

RESULT

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- Pulse Profile
- Turn-On
- (OPP C) Diagram

Data

METHO

RESULT:

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- Pulse Profile
- Turn-On
- (OPP C) Diagram

Pulse Profile Evolution → (OPP - C) Diagram

DATA

METHO

RESULT

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- Comparison:
 - (OLC C) Diagram
 - (OPP C) Diagram

Comparing the (O^{LC} - C) and (O^{PP} - C) diagrams

DATA

METHO

RESULT:

SUMMARY

HZ Her / Her X-1:

Super-Orbital Period:

- Comparison:
 - (OLC C) Diagram
 - (OPP C) Diagram

DATA

METHOD

Satellites

&

Observations

NuSTAR - Nuclear Spectroscopic Telescope Array

• NASA Small Explorer SMEX-11

• Launch: 13 June 2012

· Data:

• 10 observations

• Exposure time total: 254 ks

• September 2012- March 2019

Parameter	Value **
Energy range	3 to 79 keV
Energy resolution (FWHM) at 10 keV	400 eV
Energy resolution (FWHM) at 68 keV	900 eV
Relative time resolution	2 μs

HXMT/Insight - Hard X-ray Modulation Telescope

• CAS/IHEP (China)

• Launch: 14 June 2017

· Data:

· 23 observations

Expc

• July

osure time total: 1144 ks		ua/China
2017- March 2019		Xinhua/0
neter	Value	

Parameter	Value
Energy range HE	20 to 250 keV
Energy range ME	5 to 30 keV
Energy range LE	1 to 15 keV
Energy resolution (FWHM) HE	14-16% at 60 keV
Energy resolution (FWHM) ME	3 keV at 20 keV
Energy resolution (FWHM) LE	140 eV at 5.9 keV

DATA

METHOD

RESULTS

HZ Her / Her X-1:

RXTE Template

&

Template Fitting

- → Determine 35 day phase for multiple times during the same main-on / cycle
- → Determine the turn-on/phase zero time

DATA

METHOD

RESULTS

HZ Her / Her X-1:

Phase Zero /

Turn-on Time

Determination

⇒ Extrapolation to phase zero based on a super-orbital phase of 34.85 d (this is not a linear fit, the slope is fixed to 34.85 d)

HZ Her / Her X-1:

DATA

METHOD

RESULTS

DUMMARY

HZ Her / Her X-1:

Phase Zero /

Turn-on Time

Determination

A closer look

Changes in pulse profile with superorbital period: *RXTE* template with 34.85d does not seem to be represented in the *NuSTAR* and *HXMT* data.

Possible explanations:

- Observations too short compared to an entire main-on?
- Has something changed since the RXTE template time?
- → Going back to the turn-on time determination

DATA

METHOD

RESULTS

SUMMAR'

HZ Her / Her X-1:

Phase Zero /

Turn-on Time

Determination

→ Linear regression; super-orbital phase (slope) is a free parameter

DATA

METHOD

RESULTS

HZ Her / Her X-1: (O-C) diagrams

DATA

METHOD

RESULTS

SUMMARY

Two clocks in Her X-1?

Accretion disk & light curveNeutron star & pulse profiles

Method

- Pulse profile fitting
- Turn-on determination

Results

- (O-C) Diagrams
- Closer Look

Open questions

 Does the pulse profile change as systematically with 35 day phase as needed for the pulse profile fitting method?

Next steps

- In-depth analysis of RXTE data to examine the method
- New template

Data

METHOD

RESULTS

SUMMARY

Thank you!