

Image processing course

M1 immunologie 21 octobre 2021 Mathieu Fallet

Plan

- Part 1 : Notions on image
- Part 2 : Pre processing
- Part 3 : Analyse
- Part 4 : Segmentation and Colocalisation
- Part 5 : Image for publication

« un visible qui donne à en voir un autre »

DEFINITION:

- A pixel is a sample not a little square
- Image is define by its number of pixels

Avoid saturation

249 244 240 230 209 233 227 251 255 248 245 210 93 81 120 97 193 254 250 170 133 94 137 120 104 145 253 241 116 118 107 134 138 96 92 163 277 142 121 113 124 115 107 71 179 234 106 84 125 97 108 125 106 204

Pixel Quantization

Definition : 9x9

DYNAMIC:

- The dynamic is the range of gray values that pixel can get
- Eyes can distinguish only around 40 gray levels differences (without image noise)

Grays
Levels of
pixels
0 ~ ???

1 Bit : 2 levels (0 ou 1)

3 Bit : 8 levels

8 Bit : 256 levels = 1 octet (byte)

16 Bit : 65 535 levels = 2 octets (2 bytes)

32 Bit : 4 292 967 296 levels

32 Bits float

1 Bit

2 Rif

3 Bit

SAMPLING:

$$d = \frac{\Lambda}{2 \times NA}$$

Sampling cannot improve the <u>optical resolution</u>

Nyquist – Shannon sampling theory: Proper spatial sampling 2.3 – 3 times smaller than optical resolution (x, y, z)

Optimal pixel spacing must be calculate with « <u>Nyquist theory</u> »

Channels:

- RGB (Red Green Blue) are 3 grays images associated
- You can easly split into 3 different images or invert

Hyperstack:

Time, Z slices, channels, multi-positions

Part 2: Pre processing

Threshold:

- Use the histogram for determinate manualy or automaticly a threshold value
- Binarise digital image into 2 populations (0 or 255) thanks to theshold value

Part 2: Pre processing

Linear filter

Convolution

3x3	Wind	w
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Inpu	put				\neg	Output					
1	6	12	20	\dagger	\exists						
1	3	9	15			Г		12			Г
1	2	7	12								

1/9	1/9	1/9			
1/9	1/9	1/9			
1/9	1/9	1/9			
Example low-pass					

Example low-pa

-1	-1	-1
-1	9	-1
-1	-1	-1

Example high-pass

Original

Low Pass filter (smooth)

High Pass filter (sharpen)

Part 2: Pre processing

Fast Fourrier Transform

High frequency

run("FFT");
makeOval(112, 112, 32, 35);
setBackgroundColor(0, 0, 0);
run("Clear");
run("Inverse FFT");

Low frequency

run("FFT");
makeOval(112, 112, 32, 35);
setBackgroundColor(0, 0, 0);
run("Clear Outside");
run("Inverse FFT");

Part 3 : Analyze

Shape factors

- Use binary image for detect and measure white objects
- You can filter objects with the size and circularity

Part 3: Analyze

Modal gray value

Feret's diameter

Stack position

Display label

□ NaN empty cells

Cancel

▼|

☐ Perimeter

X

Fig. Set Measurements

Standard deviation

☐ Bounding rectangle☐ Shape descriptors

✓ Integrated density

Skewness

Area fraction

Limit to threshold

Decimal places (0-9):

Add to overlay

Center of mass

☐ Min & max gray value ☐ Centroid

☐ Invert Y coordinates ☐ Scientific notation

None

Redirect to:

Measurements:

You can check measurements that you want

You can apply measure only above a threshold

- 1- Without the option limit to threshold
- 2 With the option

Segmentation by watershed

Map distance flooding

Colocalisation

Colocalization Measures

Pearson's correlation $r_p = \frac{\sum (I_1 - \bar{I}_1)(I_2 - \bar{I}_2)}{\sqrt{\sum (I_1 - \bar{I}_1)^2 \sum (I_2 - \bar{I}_2)^2}}$

overlap coefficient:
$$r = \sqrt{k_1 k_2}$$
 with $k_1 = \frac{\sum I_1 I_2}{\sum I_1^2}$ and $k_2 = \frac{\sum I_1 I_2}{\sum I_2^2}$

example	r_p	r	k_1	k_2	m_1	m_2
1	0.49	0.58	0.79	0.43	0.99	0.15
2	0.39	0.71	0.81	0.62	0.35	0.24
3	-0.08	0.37	0.24	0.57	0.23	0.38

Manders' colocalization coefficients: $m_1 = \frac{\sum I_{1 \text{ coloc } 2}}{\sum I}$ and $m_2 = \frac{\sum I_{2 \text{ coloc } 1}}{\sum I}$

Scatter plot

Part 4: Image for publication

Images Save Formats:

There are destructive formats

JPEG: Joint Photographic Expert Group

for ppt presentation only

TIF for publication

There are non-destructive formats

•

TIF: Tagged Image File

BMP PNG

ppi = **p**oint **p**er **i**nch (point par pouce, 1 inch is 2,54 cm)

A definition of 300 ppi correspond to the visual acuity of an image at 25 cm. Distance between 2 points at 300 ppi: 25,4 mm / 300 = 0,08 mm. 1 mm^2 contents 144 dots at 300 ppi.

Do not make screen copy

Image for publication

 Raw format have to be stored in dedicated server, user have to work on copy

 All digitized images submitted with the final revision of the manuscript must be of high quality and have resolutions of at least 300 d.p.i. for colour, 600 d.p.i. for greyscale and 1,200 d.p.i. for line art.

- The scale bar width in micron should be indicated in the legend
- Every processing should be also indicated

Conclusion

- Image are data and need to be quantified using image processing tool to give results and produce interpretation on an experiment
- Sample preparation, image acquisition and quantification (+statistics tests) should be done with care (using controls) to avoid artefact

Quizz

- 1. What is the purpose of image processing and quantification?
- 2. Which format is better for publication and to work with, explain why?
- 3. How to find the image scaling in image, what about TIF image and jpg image?
- 1. What is a threshold and a watershed and for what is-it useful for?
- 2. What is the size in octet of a image of 1000*1000 pixels containing one channel in 8 bits without compression?
- 3. What is the size in cm of an image containing 1000 pixels by 1000 pixels at 600 DPI?

Question outside this course:

- What is the vectorized format in comparison to matrix format?
 Cite an example of vectorized format? Is the resolution of this format is sensitive to zoom?
- 2. What is a Pyramidal format? In which application is-it useful to use this kind of format?
- 3. What advantage to use machine learning in image processing?

