Contact		
	Lionartment of Computer Science	vhiinhh(())iiic odii
	Department of Computer Science	xhuan5@uis.edu

INFORMATION
3115 UHB, One University Plaza
Phone: +1 (217) 206-8336

Springfield, IL 62703-5407, USA

CURRENT Assistant Professor, University of Illinois Springfield, Springfield, IL, US. (August, 2020)

Position to present)

Personal xianghuang.org

Website

Research Algorithmic Information Theory, Analog Computing, Theoretical Foundations.

Interests

VISITING Visiting Assistant Professor, Le Moyne College, Syracuse, NY, US. (Sept, 2019 to June,

Position: 2019)

EDUCATION Iowa State University, IA, US.

Ph.D. in Computer Science, 2020,

• Thesis: Chemical Reaction Networks: Computability, Complexity, and Randomness

• Advisor: Professor Jack H. Lutz

Institute of Software, Chinese Academy of Sciences, Beijing, China.

Computer Science, 2009.09 - 2012.06.

• Topic: Model Checking, Formal Methods, Automata Theory

Nanjing University, Nanjing, China.

B.E. in Software Engineering, 2005.09 - 2009.06.

CSRG Proposal

Related

Journal

Publications

1. Xiang Huang, Titus H. Klinge, James I. Lathrop, Xiaoyuan Li and Jack H. Lutz: Real-Time Computability of Real Numbers by Chemical Reaction Networks. *Volume 18, Issue 1, pp 63-73, Natural Computing (2019).* (invited paper).

CSRG PROPOSAL

Related

Conference

PUBLICATIONS

4. Xiang Huang and Rachel Huls. Computing Real Numbers with Large-Population Protocols Having a Continuum of Equilibria. The 28th International Conference on DNA Computing and Molecular Programming (DNA 28, Albuquerque, NM, Aug 8-12, 2022). (paper published with UIS undergraduate)

- Xiang Huang, Jack H. Lutz, and Andrei N. Migunov. Algorithmic Randomness in Continuous-Time Markov Chains, 2019. In Proceedings of the 57th Annual Allerton Conference on Communication, Control, and Computing.
- Xiang Huang, Titus H. Klinge, James I. Lathrop. Real-Time Equivalence of Chemical Reaction Networks and Analog Computers. In: Thachuk C., Liu Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science, vol 11648. Springer, Cham.
- Xiang Huang, Titus H. Klinge, James I. Lathrop, Xiaoyuan Li and Jack H. Lutz. Real-Time Computability of Real Numbers by Chemical Reaction Networks. In Proceedings of the 16th International Conference on Unconventional Computation and Natural Computation (UCNC), June 2017, pp. 29-40.