CUDA访存模型

可编程内存

- Registers
- Local memory
- Shared memory (on-chip)
- Constant memory (with dedicated cache)
- Texture memory (with dedicated cache)
- Global memory
 - L2 cache[, L1 cache]

FIGURE 4-2

Registers

- 在kernel中声明的,无限定符的
 - 变量
 - 编译时可确定大小的数组
- 特点:
 - 线程私有
 - 分配给活跃warp
 - Spilling

Local memory

- 在kernel中声明的,无限定符的
 - 编译时不确定大小的数组
 - 大的结构或数组
 - Spilled registers
- 特点:
 - 线程私有
 - 与global memory类似
 - Warp shuffle支持

Global memory

- 声明
 - Host code: cudaMalloc, cudaFree
 - Device code: 限定符__device__
- 特点:
 - 最大,延迟最高
 - L2 (32-byte line), L1 cache (128-byte line)
 - 写操作不使用L1 cache

Global memory

- Pinned memory
 - 更快读写, 批量读写
 - 申请开销大,可用内存变小可能影响CPU性能
- Zero-copy memory
 - 映射到device地址空间的pinned memory
- Unified virtual addressing
 - 统一地址空间
- Unified memory
 - 数据自动迁移, 指针统一

Global memory

- 访存模式
 - 由device内存事务支持
 - 读操作32-byte/128-byte
 - 写操作32-byte, 每次可写1/2/4个段
 - 对齐访问, 连续访问
 - Prefer Structure of Arrays
- 优化
 - 目标:更多对齐和连续访问,更多并发访存
 - Unrolling,修改执行参数,对角化block坐标

Shared memory

- 在kernel内声明,限定符__shared__
- 特点:
 - On-chip,低延迟、高带宽
 - 分配给block
 - Block内线程间通信, __syncthreads();
 - 与L1 cache共享硬件

Shared memory

- 访存模式
 - 一个warp的请求由1-32个事务完成
 - 访问同一个word由multicast实现
 - 划分为32个bank
 - 按列进行读操作时padding, 避免冲突
 - 同步:barrier, memory fence和volatile限定符

Constant memory

- •全局声明,限定符__constant__
- 特点:
 - Read-only
 - 专用cache
 - Broadcast, 访问相同位置时性能最好

Texture memory

- 访问
 - __ldg函数
 - 参数限定符const ___restrict___
- 特点:
 - Read-only
 - 专用cache, 专用硬件支持
 - 访问分散位置时性能较好