Machine Learning Project

Apartment price prediction

Our Solution

QR code with the repository of our solution

Aim of our Project

To **predict** the cost of apartments in Moscow and the region using the given dataset

To do this we:

- Analyze given dataset
- Build a machine learning model
- Search for correlations and insights from the analysis of the generated diagrams
- Apply it to a test sample

Our Dataset

	Туре	Number of rooms	Area	Floor parameter	Number of floors	Building	Repair	Time to metro	Region	District	Name of residental complex	Price
0	Квартира	2	70.03	0.117647	17	Новостройка	Без ремонта	48	Москва	НАО (Новомосковский)	ЖК «Белая звезда»	7073030
1	Квартира	3	76.47	0.647059	17	Новостройка	Без ремонта	48	Москва	НАО (Новомосковский)	ЖК «Белая звезда»	7799940
2	Квартира	2	60.00	0.250000	20	Новостройка	Без ремонта	12	Москва	СЗАО	ЖК «Хорошевский»	11700000
3	Квартира	2	65.20	0.400000	5	Новостройка	Без ремонта	500	Красногорск	Красногорск городской округ	ЖК «Рублевское предместье»	6055000
4	Квартира	1	38.18	0.333333	3	Новостройка	Без ремонта	132	Истра	Истра городской округ	ЖК «Павловский квартал»	2710780
		•••		****						****		•••
29039	Квартира	2	62.50	1.000000	3	Новостройка	Без ремонта	500	Истра	Истра городской округ	ЖК «Павловский квартал»	4312500
29040	Квартира	3	80.40	1.000000	3	Новостройка	Без ремонта	92	Истра	Истра городской округ	ЖК «Павловский квартал»	5102860
29041	Квартира	3	84.00	1.000000	3	Новостройка	Без ремонта	500	Истра	Истра городской округ	ЖК «Павловский квартал»	5376000
29042	Квартира	3	104.90	0.500000	20	Новостройка	Без ремонта	500	Балашихинский	Балашиха	ЖК «Эдельвейс- Комфорт»	7000000
29043	Квартира	2	72.71	0.333333	3	Новостройка	Без ремонта	92	Истра	Истра городской округ	ЖК «Павловский квартал»	4144470

K-nearest neighbour Algorithm

KNN

```
1 X = prep df.drop('Price', axis=1)
   y = prep_df['Price'].values
   X train, X test, y train, y test = train_test_split(X, y, test_size=0.2, random_state=42)
  scaler = MinMaxScaler()
   X_train_scaled = scaler.fit_transform(X_train)
   X test scaled = scaler.transform(X test)
 9
   knn = KNeighborsRegressor(n neighbors=3)
   knn.fit(X train scaled, y train)
12
   y_pred = knn.predict(X_test_scaled)
14
15 rmse = np.sqrt(mean_squared_error(y_test, y_pred))
16 print("RMSE:", rmse)
17 r2_score = r2_score(y_test, y_pred)
18 print("r2 score:", r2 score)
```

RMSE: 2548343.098887824 r2_score: 0.8080678921442257

Linear Regression

Linear Regression

```
linear_reg = LinearRegression()
linear_reg.fit(X_train_scaled, y_train)

y_pred = linear_reg.predict(X_test_scaled)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print("RMSE:", rmse)
```

RMSE: 3889526.900627334

Random Forest

Random Forest

```
1 # X = new df.drop("Price", axis=1).values
 2 # y = new_df["Price"].values
 3 # X = new_df.drop("Price for m2", axis=1).values
   # y = new_df["Price for m2"].values
   model = RandomForestRegressor(n_estimators=100)
   model.fit(X_train, y_train)
   y_pred = model.predict(X_test)
   # new_df['Predicted Price for m2'] = ([0] * (len(new_df) - len(y_pred))) + list(y_pred)
11
   rmse = np.sqrt(mean_squared_error(y_test, y_pred))
   print("RMSE:", rmse)
   rmsle = np.sqrt(mean_squared_log_error(y_test, y_pred))
15 print("RMSLE:", rmsle)
```

RMSE: 1407481.5118087337 RMSLE: 0.10052839931429551

Distribution of Apartment Types

Thank You For Attention!

