Complex Analysis Chapter 1 Section 3

Brandyn Tucknott

Last Updated: 29 September 2025

3 Integration along curves

A parameterized curve z(t) which maps a closed interval $[a,b] \subset \mathbb{R}$ to the complex plane. We say that the parameterized curve is **smooth** if z'(t) exists and is continuous on [a,b] with $z'(t) \neq 0$ for $t \in [a,b]$. At the points t = a, b, z'(a), z'(b) are interpreted as one-sided limits:

$$z'(a) = \lim_{h \to 0, h > 0} \frac{z(a+h) - z(a)}{h} \text{ and } z'(b) = \lim_{h \to 0, h < 0} \frac{z(b+h) - z(b)}{h}.$$

These quantities are called the right-handed derivative at z(a) and left handed derivative at z(b). We say the parameterized curve is **piecewise-smooth** if z is continuous on [a,b] and there exist points $a=a_0 < a_1 < \ldots < a_n = b$, where z(t) is smooth on the intervals $[a_k, a_{k+1}]$. The right-handed derivative and left-handed derivative at a_k may differ for $k=1,2,\ldots,n-1$.

Two parameterizations

$$z:[a,b] \to \mathbb{C}$$
 and $\tilde{z}:[c,d] \to \mathbb{C}$

are **equivalent** if there exists a continuously differentiable bijection $s \to t(s)$ from $[c,d] \to [a,b]$ so that t'(s) > 0 and

$$\tilde{z}(s) = z(t(s)).$$

The condition t'(s) > 0 says that orientation must be preserved: as s travels from c to d, t(s) travels from a to b. The points z(a) and z(b) are called **end-points** of the curve and are independent on the parameterization. Since a curve γ carries an orientation, it is natural to say that γ begins at z(a) and ends at z(b). A smooth or piecewise-smooth curve is **closed** if z(a) = z(b) for any of its parameterizations, and **simple** if it is not self-intersecting $(z(t) \neq z(s))$ unless s = t.

Figure 3. A closed piecewise-smooth curve

We will call any piecewise-smooth curves a **curve**, since these are our objects of primary concern. A basic example is a circle centered at z_0 with radius r, which is by definition

$$C_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}.$$

The positive orientation (counterclockwise) is one given by the standard parameterization

$$z(t) = z_0 + re^{it}$$
 where $t \in [0, 2\pi]$,

while the negative orientation (clockwise) is the one given by

$$z(t) = z_0 + re^{-it}$$
 where $t \in [0, 2\pi]$.

In the following chapters, we denote by C the general positively oriented circle. Loosely speaking, a key theorem in complex analysis states that if a function is holomorphic is the interior of a closed curve γ , then

$$\int_{\gamma} f(z)dz = 0$$
. (we explore this more next chapter)

Given a smooth curve γ in $\mathbb C$ parameterized by $z:[a,b]\to\mathbb C$, and f a continuous function on γ , we define the integral of f along γ as

$$\int_{\mathcal{Z}} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt.$$

For this definition to have meaning, we have to show that the right-hand integral is independent the choice of γ . Say that \tilde{z} is an equivalent parameterization as above. Then the change of variables formula and chain rule imply that

$$\int_a^b f(z(t))z'(t)dt = \int_c^d f(z(t(s)))z'(t(s))t'(s)ds = \int_c^d f(z(s))\tilde{z}'(s)ds.$$

Thus the integral of f over γ is well-defined.

If γ is piecewise-smooth and z(t) a piecewise-smooth parameterization, then

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(z(t))z'(t)dt.$$

By definition, the length of a smooth curve γ is

length(
$$\gamma$$
) = $\int_a^b |z'(t)| dt$.

If γ is piecewise smooth, the its length is the sum of its smooth parts.

Proposition 3.1. Integration of continuous functions over curves satisfies the following properties:

• It is linear, that is, if $\alpha, \beta \in \mathbb{C}$, then

$$\int_{\gamma} \alpha f + \beta g = \alpha \int_{\gamma} f + \beta \int_{\gamma} g$$

• If γ^- is γ with the reverse orientation, then

$$\int_{\gamma} f = -\int_{\gamma^{-}} f$$

• One has the inequality

$$\left| \int_{\gamma} f \right| \le \sup_{z \in \gamma} |f(z)| \cdot length(\gamma)$$

Proof. The first property follows from linearity of the Riemann integral. The second property is a result of the integral being independent of our choice of γ . Let $\gamma:[a,b]\to\mathbb{C}$, and recall that $\gamma^-=\gamma(a+b-t)$. Note that if we let s=a+b-t, then ds=-dt.

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)$$

$$= \int_{a}^{b} f(\gamma^{-}(a+b-t))(-\gamma^{-\prime}(a+b-t))dt$$

$$= \int_{b}^{a} f(\gamma^{-}(s))(-\gamma^{-\prime}(s)) - ds$$

$$= \int_{a}^{b} f(\gamma^{-}(s))(-\gamma^{-\prime}(s))ds$$

$$= -\int_{\gamma^{-}} f$$

For the third property, note that

$$\left| \int_{\gamma} f \right| \leq \sup_{t \in [a,b]} |f(z(t))| \int_{a}^{b} |z'(t)| dt \leq \sup_{z \in \gamma} |f(z)| \cdot \operatorname{length}(\gamma)$$

as was to be shown.

A **primitive** for f on Ω is a function F that is holomorphic on Ω and such that F'(z) = f(z) for all $z \in$. **Theorem 3.2.** If a continuous function f has a primitive in Ω , and γ is a curve in Omega that begins at w_1 and ends at w_2 , then

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1).$$

Proof. If γ is smooth, then by application of the chain rule and the fundamental theorem of calculus it is true. If $z:[a,b]\to\mathbb{C}$ is a parameterization of γ , then $z(a)=w_1$ and $z(b)=w_2$ and we have

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

$$= \int_{a}^{b} F'(z(t))z'(t)dt$$

$$= \int_{a}^{b} \frac{d}{dt}F(z(t))z'(t)dt$$

$$= F(z(b)) - F(z(a)).$$

If γ is only piecewise-smooth, then we can obtain the telescopic sum

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{n-1} F(z(a_{k+1})) - F(z(a_k))$$

$$= F(z(a_n)) - F(z(a_0))$$

$$= F(z(b)) - F(z(a))$$

Corollary 3.3. If γ is a closed curve in an open set Ω , and f is continuous and has a primitive in Ω , then

$$\int_{\gamma} f(z)dz = 0.$$

Page 3

Corollary 3.4. If f is holomorphic in a region Ω and f' = 0, then f is constant.

Proof. Fix a point $w_0 \in \Omega$. It suffices to show that $f(w) = f(w_0)$ for all $w \in \Omega$. Since Ω is connected, for any $w \in \Omega$, there exists a curve γ which joins w_0 to w. Since f is clearly a primitive for f', we have

$$\int_{\gamma} f'(z)dz = f(w) - f(w_0).$$

By assumption, f'=0 so the integral on the left is 0, and we conclude that $f(w)=f(w_0)$.

Remark on notation. When convenient, we follow the practice of using the notation f(z) = O(g(z)) to mean that there is a constant C > 0 such that $|f(z)| \le C|g(z)|$ for z in the neighborhood of the point in question. In addition, we say f(z) = o(g(z)) when $|f(z)/g(z)| \to 0$. We also write $f(z) \sim g(z)$ to mean that $f(z)/g(z) \to 1$.