Operational Amplifiers:

Plotting output V vs input differential V

I deal Op Amp

Vicin =
$$\frac{1}{2}$$
 (V₁+V₂)
Aug. between V₁ and V₋
Vid = V⁺ - V⁻
= V₁ - V₂

Assum phons

Infinite input impedance
Infinite differential gain
Zero common mode gain
Zero atput impedance
Finfinite bandwidth

Megative Feed back

=> \n=\p

Positive feedback

Method

- 1) Confirm negative feed back
 Looking at feedback loop. Vp = 0 it connected directly to ground.
- 2) Assume Vn = Vp and in = ip = 0 A (bc.00 input impedance)
- 3) USE standard circuit analysis to determine valus. (Av, Ri, Rout...)

 L. KCL, KUL (Usually KCLOVn)
- 4) Test that the op-amp is inbetween the linear region.

Inverting Amplifiers

From steps above:

Gain: $Av = \frac{V_o}{V_{in}} = -\frac{P_z}{P_i}$ Input R: R: P:

Output R: Ro = O.2

[Vin goes to () side

Mon-inverting Amplifiers

Frain: $Av = 1 + R_1$ $R_1 = \infty$ $R_0 = 0 S$

Evin goes to @ side

Inverting samming Amp. Vo is sum of Va and Va

Voltage follower/butter

"protects equipment for susyes"

Vo = Vin

R in = 00

Designing a simple amplifier

Gain & Formating

Truesting

Use Av = ____ to find R

Non-linear limitations: (cutoffs)

Recall Au = 1 + Rz "around" for surps.

Output swing: Vo will clip at the sail voltage.

This can be asymetric if top and bottom rail voltages differ.

- Output current limits: (lipping exercise if the max output current limit is reached. (I. = $\frac{v_0}{R}$)
- $SQ = \left| \frac{dV_0(1)}{dt} \right| = V_{om} 2\pi f_{FQ} \quad \left(V/s \right)$ · Slew-rate

· full power BW: Range of freq for which op-and can produce an undisterted sinusoidal output with peak amplitude equal to the quarenteed maximum output.

FP =
$$\frac{SR}{2\pi Vom}$$
 guarenteed max output

So above this freq, we will hit skew rate

Differential opens

not Invest or non-invest.

To use this safely und instruments:

Integrators

Differentiater

