

Underwater ERT method to image karst cavity distribution below the river water

Daopu Wang^{1*} Haibin Chai² Dikun Yang¹ Banglia Lv²

- 1. Southern University of Science and Technology, Shenzhen, Guangdong, China
- 2. 2. CCCC-FHDI Engineering Co., Ltd., Canton, Guangdong, China

2023.10.18

Introduction

(Huizhou, China)

Introduction

Shallow

Deep

Karst Cave

LIMSTONE

Introduction

Measurement using red cable

Titanium plate

Cable for remote electrode

Red cable length: 200m

Electrode spacing: 5m

Number of electrodes: 40

Transmit voltage: 450V

Remote electrode(B): 800m

Surveys

Surveys

Methods

$$\varphi(m) = \|W_d(d_{obs} - f(m))\|^2 + \gamma \|W_m(m - m_0)\|^2$$

$$\boldsymbol{W}_{m} = \left(\alpha_{s}\boldsymbol{I}, \alpha_{x}\boldsymbol{W}_{x}^{T}, \alpha_{z}\boldsymbol{W}_{z}^{T}\right)^{T}$$

 W_m model weighted matrix

 α_s , α_x , α_z Weight coefficient

 m_0 Reference model

 m_0 Initial Model

(Cockett, et al., 2015)

XB area

- Three-layer electrical structure
- Continuity of resistivity structure

ZB area

 Cave filling has higher water saturation, presumably

Conclusions -2D:

- The electrical structure of 2D can be roughly divided into 3 layers,
 which is consistent with the available geologic information.
- The surface silt, gravel cobblestones roughly exhibit high resistivity,
 the middle sandstone and shale layer exhibit relatively low resistivity,
 and basement limestone exhibit high resistivity.
- Some of the cave's electrical structures exhibit low resistivity, inferred to be water-filled caves.
- The ERT method can only give the underground electrical layering structure and shallow buried caves, and cannot find caves in the deep limestone.

Dong River

MESH:

X unit width: 5m Y unit width: 5m Z unit width: 2m

Topographic correction

Electrode position at the interface between water and rock

Consistency in position

2D > 3D?

- The results of the 2D and 3D inversions have high similarity in some localizations.
- ERT is capable of effectively recognizing the interfaces of rock partings.

 The electrical partitioning of 2D is in good agreement with the drilling data.

Conclusions

Conclusions:

- In some cases, 2D electrical results better characterize the distribution of strata.
- Spatial continuity of electrically structured anomalies of XB and ZB
- Low resistivity anomalies revealed in 2D and 3D together can designate potential cavities and improve the reliability of the results.
- Some of the karst exhibits low resistivity characteristics, and ERT is unable to identify cavities if they are buried too deeply.

THANKS!

Q & A?