PARUL UNIVERSITY - Faculty of Engineering and Technology

Department of Computer Science & Engineering SYLLABUS FOR 5th Sem BTech PROGRAMME

Data Visualization and Data Analytics

Type of Course: BTech

Prerequisite: Database management system, Linear algebra.

Rationale: Data Analytics helps small and large organizations maximize the value of their data, unearth

insights, build plans and respond in real-time to customer demand.

Teaching and Examination Scheme:

Teaching Scheme				Examination Scheme					
Lect Hrs/	Tut Hrs/	Lab Hrs/ Week	Credit	External		Internal			Total
				T	P	Т	CE	P	100
0	0	2	1	-	30	-	-	20	50

 $\boldsymbol{Lect}\text{ - Lecture, }\boldsymbol{Tut}\text{ - Tutorial, }\boldsymbol{Lab}\text{ - Lab, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - Theory, }\boldsymbol{P}\text{ - Practical, }\boldsymbol{CE}\text{ - CE, }\boldsymbol{T}\text{ - CE, }\boldsymbol{T}\text$

List of Practical:

Sr. No.	Name of Experiments					
1	Use MS-Excel to create pivot table & apply statistical measures to it.					
2	Use the table created in above practical to generate different charts					
3	Perform the Histogram Analysis of given dataset using Data Analysis Toolbox of Excel					
4	Use python libraries to generate chart from data stored in Excel.					
5	Perform Multiple Linear Regression on data.					
6	Perform the Logistic Regression on a dataset and Interpret the regression table					
7	Use a dataset & apply KNN to get insights from data.					
8	Use a dataset & apply K means clustering to get insights from data.					
9	Study about the tools like Orange, Tableau ,Weka etc. tool for data Visualization					
10	Given a case study: Interactive Data Analytics with Power BI					
	Open Ended Experiments					
1	Perform Data Visualization with advanced python libraries like seaborn.					

Course Outcome:

After Learning the course, the students shall be able to:

CO1: Analyze the dataset and perform Descriptive Statistics

CO2: Analyze the dataset and perform an Inferential Statistics

CO3: Apply linear regression on the given dataset

CO4: Apply the logistic regression on the given dataset

CO5: Create an interactive data visualization