Comparing Forecasting through ARMA-GARCH with LSTM on	
Time-Series Data	62
LSTM Model	63
Data Preprocessing	63
Model Training and Forecasting	65
Visual Analysis of Actual vs Predicted (Forecasted) Closing Prices	66
ARMA Method	72
Volatility Prediction	76
Volatility Prediction through ARMA-GARCH:	77
Volatility Prediction through LSTM-GARCH	82
Conclusion: Methodological Synergy and Divergence	87

Time-Series Model

Introduction

A time series model specifies how the random variables $\{X_t\}$ behave jointly over time. This can be done in two main ways:

- 1. Full Joint Distribution: The model might completely specify the joint probability distribution of $\{X_t\}$.
- 2. Moments (Means and Covariances): In many practical situations, especially when dealing with linear processes or Gaussian assumption: it is sufficient to specify just the means and covariances (or autocovariances) of the process. This is because for Gaussian processes, the mean and covariance completely determine the joint distribution.

Definition

A time series model for the observed data $\{x_t\}$ is a specification of the joint distributions (or possibly only the means and covariances) of a sequence of random variables $\{X_t\}$ of which $\{x_t\}$ is postulated to be a realization. Here, x_t is the single outcome of stochastic process X_t .

Zero-mean models

IID noise:

No trend or seasonal component, and the observations are simply independent and identically distributed (iid) random variables with zero mean.

$$P[X \leq x_1, \cdots, X_n \leq x_n] = P[X_1 \leq x_1] \cdots P[X_n \leq x_n] = F(x_1) \cdots F(x_n)$$

F is the cumulative distribution function of each of the iids.

$$P[X_{n+h} \le x | X_1 = x_1, \cdots, X_n = x_n] = P[X_{n+h} \le x]$$

Simple Symmetric Random Walk:

A simple symmetric random walk is a foundational stochastic process that models a path formed by successive random steps. Assume, we start at $S_0 = 0$. For $t \ge 1$, define

$$S_t = X_1 + X_2 + \dots + X_t$$

where $\{X_t\}$ are independent and identically distributed (iid) random variables. Here, each binary step is defined as:

$$X_t = \begin{cases} +1 & \text{with probability 0.5 "heads",} \\ -1 & \text{with probability 0.5 "tails".} \end{cases}$$

So, we start at position 0 and move ± 1 at each time t based on a fair coin toss.

Simple Symmetric Random Walk

Figure 1: Simulation of simple symmetric RW

Models with trends and seasonality

Using a zero-mean model for data is inappropriate. When analyzing time series data with trends or seasonality, a zero-mean model is often inadequate because such data inherently violates the assumption of a constant mean over time. Instead, the series should be decomposed into distinct components: a **trend** (m_t) , capturing slow, long-term changes; **seasonality** (s_t) , representing periodic fluctuations; and **stationary residuals** (Y_t) , which account for random, zero-mean noise. To model this structure, we can look for parametric methods like **linear regression** or nonparametric techniques (e.g., moving averages).

Assume there is a clear increasing trend in the population of USA. So, we can suggest a model of the form:

$$X_t = m_t + Y_t$$

• m_t (trend component): A slowly changing deterministic function (e.g., linear, quadratic, or exponential).

• Y_t (residuals): A zero-mean stochastic process, ideally stationary.

We can estimate m_t by minimizing the sum of squared residuals:

$$\sum_{i=1}^{n} (X_t - m_t)^2$$

We can choose a functional form for m_t such as:

• Linear: $m_t = a + bt$

• Quadratic: $m_t = a + bt + ct^2$

• Exponential: $m_t = ae^{bt}$ (requires linearization via log transforms).

Population of the USA, 1790-1990

```
data <- read.csv("uspop.csv")
ts_data <- ts(data$value, start = 1790, deltat = 10)

# Plot the time series with points
plot(ts_data,
    main = "U.S. Population (1790-1970)",
    xlab = "Year",
    ylab = "Population (Millions)",
    type = "b", # "b" for both points and lines
    pch = 19) # Use solid circles as points</pre>
```

U.S. Population (1790-1970)


```
# Load necessary packages
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 4.4.3

```
# Read and prepare data
data <- read.csv("uspop.csv")
data$t <- data$time - 1790  # Create time variable starting at 0 for 1790

# Fit quadratic model
quad_model <- lm(value ~ t + I(t^2), data = data)

# Add fitted values to dataframe
data$fitted <- predict(quad_model)

# Show model coefficients
summary(quad_model)</pre>
```

```
Call:
lm(formula = value ~ t + I(t^2), data = data)
Residuals:
    Min     1Q     Median     3Q     Max
-6.5997 -0.7105     0.2669     1.4065     3.9879
```

Coefficients:

U.S. Population with Quadratic Trend

U.S. Population Trend (1790-1970)


```
# Residual diagnostics
par(mfrow = c(1,2))
acf(data$residuals, main = "Residual ACF")
plot(density(data$residuals), main = "Residual Distribution")
```


(a) Trend
The U.S. population data exhibits a strong upward non-linear trend. The

quadratic model (with a significant quadratic term, p < 0.001) captures accelerating growth, explaining 99.83% of the variance. The curve reflects increasing growth rates over time, consistent with historical population expansion.

(b) Seasonal Component

There is **no seasonal component** in the data. Measurements are decennial (10-year intervals), and residuals show no cyclical patterns. Seasonality, as seen in monthly or quarterly data, does not apply here.

(c) Sharp Changes in Behavior

The series displays **no abrupt shifts or discontinuities**. Population growth follows a smooth, accelerating trajectory aligned with the quadratic trend. No sudden spikes, drops, or structural breaks are evident.

Level of Lake Huron 1875–1972

Lake Huron Water Levels (1875–1972)


```
# Load necessary packages
library(ggplot2)
lake_data <- read.csv("LakeHuron.csv")</pre>
lake_data$t <- lake_data$year - 1875 # Create time variable starting at 0</pre>
# Fit linear model
model <- lm(level ~ t, data = lake_data)</pre>
lake_data$fitted <- predict(model)</pre>
# Show model summary
summary(model)
Call:
lm(formula = level ~ t, data = lake_data)
Residuals:
             1Q
                 Median
                              3Q
-2.50997 -0.72726 0.00083 0.74402 2.53565
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
t
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.13 on 96 degrees of freedom
Multiple R-squared: 0.2725, Adjusted R-squared: 0.2649
F-statistic: 35.95 on 1 and 96 DF, p-value: 3.545e-08
# Base R plot version
plot(lake_ts,
    main = "Lake Huron Water Levels (1875-1972)",
    xlab = "Year",
    ylab = "Level (feet)",
    col = "darkblue",pch = 98)
lines(lake_data$year, lake_data$fitted, col = "red", lwd = 2)
legend("topleft",
      legend = c("Observed", "Linear Fit"),
      col = c("black", "red"),
      lty = 1, pch = c(98, NA))
```

Lake Huron Water Levels (1875-1972)

(a) Trend

The data exhibits a significant linear downward trend ($\hat{a}_1 = -0.0242$), p-value (3.55 × 10⁻⁸). The fitted model $\hat{m}_t = 580.178 - 0.0242t$ (where t = Year - 1875) indicates a gradual decline in water levels over time. The trend explains 27.25% of the variance (R² = 0.2725), reflecting moderate but meaningful linearity.

(b) Seasonal Component

There is **no seasonal component** in the series. The data is annual, and residuals show no cyclical patterns. Seasonality is irrelevant for yearly measurements.

(c) Sharp Changes in Behavior

The series displays **no abrupt changes**. The decline is smooth and consistent, with no sudden drops or spikes. The residuals also lack discontinuities, supporting a stable linear trend.

Stationary Models

A time series is **stationary** if its statistical properties (mean, variance, covariance) do not change over time. This simplifies modeling, as patterns remain consistent.

Mean Function:

Let $\{X_t\}$ be a time series with $E(X_t^2) < \infty$. The **mean function** of $\{X_t\}$ is

$$\mu_X(t) = E(X_t)$$

Covariance Function:

The **covariance function** of $\{X_t\}$ is

$$\gamma_X(r,s) = Cov(X_r,X_s) = E[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

for all integers \mathbf{r} and \mathbf{s} .

Weakly Stationary:

- $\{X_t\}$ is weakly stationary if
- (i) $\mu_X(t)$ is independent of t,

and

(ii) $\gamma_X(t+h,t)$ is independent of t for each h.

Strictly Stationary:

 $\{X_t\}$ is said to be **strictly stationary** if the joint distribution of any set of observations $(X_{t_1}, X_{t_2}, \cdots, X_{t_n})$ is identical to the shifted set $(X_{t_1+h}, X_{t_2+h}, \cdots, X_{t_n+h})$ for all h.

Note:

Whenever we use the term stationary we shall mean **weakly stationary**, unless we specifically indicate otherwise.

Autocovariance Function (ACVF)

For a stationary time series $\{X_t\}$, the **autocovariance function (ACVF)** at lag h is defined as:

$$\gamma_X(h) = Cov(X_{t+h}, X_t)$$

It depends only on the $lag\ h$, not on the specific time t (due to stationarity). It measures the linear dependence between observations separated by h time units. At lag $h=0,\ \gamma_X(0)=Var(X_t)$, which is the variance of the series.

Autocorrelation Function (ACF)

The autocorrelation function (ACF) normalizes the ACVF by the variance:

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = Cor(X_{t+h}, X_t)$$

 $\rho_X(h)$ is the correlation coefficient between X_{t+h} and X_t , ranging between -1 and 1. For example, If $\rho_X(1)=0.8$ then observations one lag apart are strongly positively correlated.

Linearity Property of Covariances

For random variables X, Y, Z with finite variance and constants a, b, c:

$$Cov(aX + bY + c, Z) = a.Cov(X, Y) + b.Cov(Y, Z)$$

Examples:

IID Noise:

Given a sequence $\{X_t\}$ is independent and identically distributed (IID) noise, so X_t and X_s are independent for $t \neq s$ and all $\{X_t\}$ have the same probability distribution with zero mean and finite variance. Therefore,

$$E[X_t] = 0; \quad Var(X_t) = E[X_t^2] = \sigma^2 < \infty$$

So,

$$\mu_X(t) = E[X_t] = 0$$

and

$$\gamma_X(h) = Cov(X_{t+h}, X_t) = E[(X_{t+h} - \mu_X(t+h))(X_t - \mu_X(t))]$$

$$\gamma_X(h) = E[X_{t+h}.X_t]$$

If h = 0, then

$$\gamma_X(0) = E[X_t.X_t] = \sigma^2$$

If $h \neq 0$, then X_{t+h} and X_t are independent, hence

$$\gamma_X(h) = E[X_{t+h}] \cdot E[X_t] = 0.0 = 0$$

Therefore,

$$\gamma_X(h) = \begin{cases} \sigma^2 & \text{if } h = 0 \\ 0 & \text{if } h \neq 0 \end{cases}$$

So, $\gamma_X(h)$ does not depend on t, hence **IID Noise** is stationary. Therefore,

$$\rho_X(h) = \begin{cases} 1 & \text{if } h = 0 \\ 0 & \text{if } h \neq 0 \end{cases}$$

No autocorrelation (except at lag 0) makes it a "memoryless" process. This means IID noise has **no memory**: past values do not influence future values. Few examples of IID Noise are White Noise (e.g., Gaussian white noise) and Fair coin tosses (heads = +1, tails = -1).

IID noise is the simplest stationary process. Many time series models (e.g., regression errors) assume residuals behave like IID noise. Real-world data often violates IID assumptions (e.g., trends, autocorrelation).

The Random Walk:

A random walk $\{S_t\}$ is constructed by cumulatively summing iid noise $\{X_t\}$ with $E[X_t] = 0$ and $Var(X_t) = \sigma^2$. For example, if X_t represents steps of +1 or -1 (as in a simple symmetric random walk), the position S_t at time t is the sum of all steps up to t:

$$S_t=X_1+X_2+\cdots+X_t,\quad S_0=0$$

$$E[S_t]=0;\quad Var(S_t)=Var(X_1+X_2+\cdots+X_t)=t.\sigma^2<\infty$$

So,

$$\mu_S(t) = E[S_t] = 0$$

and

$$\gamma_S(h) = Cov(S_{t+h}, S_t) = Cov(S_t + X_{t+1} + X_{t+2} + \dots + X_{t+h}, S_t)$$

$$\gamma_S(h) = Cov(S_t, S_t) = Var(S_t) = t\sigma^2$$

Since ACVF depends on t, so a simple random walk is **non-stationary**.

Simple Symmetric Random Walk


```
# Compute ACF for the realization (excluding initial S = 0)
acf(s[-1],
    main = "ACF of Simple Symmetric Random Walk",
    lag.max = 50,  # Show up to lag 50
    ylab = "Autocorrelation",
    xlab = "Lag (h)")
```

ACF of Simple Symmetric Random Walk

The autocorrelation remains significantly positive for many lags, reflecting the non-stationarity of the random walk. Each value S_t depends heavily on all prior values S_{t-1} , S_{t-2} , \cdots leading to high autocorrelation at all lags.

First-order moving average MA(1) process:

The first-order moving average (MA(1)) process is defined as:

$$X_t = Z_t + \theta Z_{t-1}, \quad \{Z_t\} \sim WN(0, \sigma^2)$$

where $\{Z_t\}$ is white noise (uncorrelated, zero mean, variance σ^2) and θ is a constant.

$$\mu_X(t) = E[X_t] = E[Z_t] + \theta \cdot E[Z_{t-1}] = 0$$

$$Var(X_{t}) = Var(Z_{t}) + \theta^{2}.Var(Z_{t-1}) = \sigma^{2}(1 + \theta^{2})$$

So, the ACVF:

$$\gamma_X(h) = \begin{cases} \sigma^2(1+\theta^2) & \text{if } h = 0\\ \sigma^2\theta & \text{if } h = \pm 1\\ 0 & \text{if } |h| > 1 \end{cases}$$

and, the ACF:

$$\rho_X(h) = \begin{cases} 1 & \text{if } h = 0 \\ \frac{\theta}{1+\theta^2} & \text{if } h = \pm 1 \\ 0 & \text{if } |h| > 1 \end{cases}$$

Hence, MA(1) is stationary.

```
# Load required package
library(stats)

# Simulate MA(1) process with = 0.5
set.seed(123)
n <- 1000  # Number of observations
theta <- 0.5
sigma <- 1
ma1_process <- arima.sim(model = list(ma = theta), n = n, sd = sigma)

# Compute ACVF and ACF
acvf <- acf(ma1_process, type = "covariance", plot = FALSE)</pre>
```

Sample ACVF of MA(1) Proce Sample ACF of MA(1) Proce

First-order autoregression or AR(1) process

The AR(1) process is a foundational time series model where each observation depends linearly on its immediate past value plus random noise.

$$X_t = \phi X_{t-1} + Z_t, \quad t = 0, \pm 1, \cdots,$$

$$\{Z_t\} \sim WN(0, \sigma^2)$$

where:

- ϕ is the autoregressive coefficient ($|\phi| < 1$ for stationarity).
- $\{Z_t\}$ is white noise (uncorrelated, zero mean, variance $\sigma^2).$

Computing expectation:

$$E[X_t] = E[\phi X_{t-1} + Z_t]$$

$$E[X_t] = \phi E[X_{t-1}] + E[Z_t]$$

Since $E[Z_t] = 0$,

$$E[X_t] = \phi E[X_{t-1}]$$

Let $E[X_t] = \mu$ and the process $\{X_t\}$ is stationary, so $E[X_t] = E[X_{t-1}]$:

$$\mu = \phi \mu$$

$$\mu(1-\phi)=0$$

Since $|\phi| < 1$:

$$\mu = 0$$

So, $E[X_t] = 0$.

Computing ACVF:

$$\gamma_{X}(h) = Cov(X_{t}, X_{t-h}) = Cov(\phi X_{t-1}, X_{t-h}) + Cov(Z_{t}, X_{t-h})$$

$$\gamma_X(h) = \phi \gamma_X(h-1) + 0 = \dots = \phi^h \gamma_X(0)$$

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \phi^{|h|}, \quad h = 0, \pm 1, \cdots$$

Computing $\gamma_X(0)$:

$$\gamma_X(0) = Cov(X_t, X_t) = Cov(\phi X_{t-1} + Z_t, \phi X_{t-1} + Z_t)$$

$$\gamma_X(0) = \phi.Cov(X_{t-1}, \phi X_{t-1} + Z_t) + Cov(Z_t, \phi X_{t-1} + Z_t) = \phi^2.Cov(X_{t-1}, X_{t-1}) + Cov(Z_t, Z_t)$$

$$\gamma_X(0) = \phi^2 \gamma_X(0) + \sigma^2$$

$$\gamma_X(0) = \frac{\sigma^2}{1 - \phi^2}$$

Hence,

$$\gamma_X(h) = \frac{\sigma^2 \phi^{|h|}}{1 - \phi^2}$$

Since, ACVF is independent of t, hence $\{X_t\}$ is stationary.

Sample Autocorrelation Function

When analyzing a time series $\{x_1, x_2, \dots, x_n\}$, one of the key tools is the **sample autocorrelation function (sample ACF)**. It provides insights into the correlation of the time series with itself at different time lags.

Sample Mean:

Given observations $\{x_1,x_2,\cdots,x_n\},$ the sample mean is:

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

This is just the average of all observed values and is used when centering the data (subtracting the mean) before computing the sample autocovariance and autocorrelation.

Sample Autocovariance Function:

The sample autocovariance at lag h (denoted $\hat{\gamma}(h)$) is defined by:

$$\widehat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{x})(x_t - \overline{x}), \quad -n < h < n$$

and $\hat{\gamma}(h) = \hat{\gamma}(-h)$ for negative h.

Autocovariance measures how the time series covaries with itself at different lags. For example, $\hat{\gamma}(1)$ roughly measures how x_t relates to x_{t+1} , $\hat{\gamma}(2)$ relates x_t to x_{t+2} , etc.

We define sample covariance matrix as $\hat{\Gamma}n := [\hat{\gamma}(i-j)]_{i,j=1}^n$ and using n as divisor ensures that this matrix is **non-negative definite**.

Sample Autocorrelation Function:

The sample autocorrelation function at lag h (denoted $\hat{\rho}(h)$) is:

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

We define sample correlation matrix as $\hat{R}n := [\hat{\rho}(i-j)]_{i,j=1}^n$ and it is also non-negative definite. Each of its diagonal elements is 1.

Illustration of Sample ACF through IID N(0,1) noise

We assume $X_t \sim N(0,1)$, i.e., Gaussian white noise with mean 0 and variance 1. We first simulate 200 values of N(0,1) noise.

Simulated IID N(0,1) Noise

Computing sample mean, sample ACF using above definitions.

$$\bar{X} = \frac{\sum_{t=1}^{200} X_t}{200}$$

$$\hat{\rho}(h) = \frac{\sum_{t=1}^{200-|h|} (X_{t+|h|} - \overline{X})(X_t - \overline{X})}{\sum_{t=1}^{200} (X_t - \bar{X})^2}$$

```
# Sample mean
n<-200
x_bar <- sum(iid_noise) / n
cat("Sample Mean =",x_bar, "\n")</pre>
```

Sample Mean = 0.05846075

```
acvf <- function(h) {
   sum((iid_noise[(1 + h) : (n - h) ] - x_bar)*(iid_noise[1: (n - h) ]-x_bar)) / n
}
lag <- 0:40
acfs_values <- sapply(lag, acvf)</pre>
```

```
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - : longer object length is not a multiple of shorter object length Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
```

```
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid noise[(1 + h):(n - h)] - x bar) * (iid noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
```

```
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid noise[(1 + h):(n - h)] - x bar) * (iid noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
Warning in (iid_noise[(1 + h):(n - h)] - x_bar) * (iid_noise[1:(n - h)] - :
longer object length is not a multiple of shorter object length
```


For large number of simulations $n, X \approx 0$. Hence,

$$\hat{\rho}(h) \approx \frac{\sum_{t=1}^{n-|h|} X_{t+|h|} X_t}{\sum_{t=1}^{n} (X_t - \bar{X})^2}$$

$$\hat{\rho}(h) \approx \frac{1}{n\sigma^2} \sum_{t=1}^{n-|h|} X_{t+|h|} X_t$$

Now, we will look at the $E[\hat{\rho}(h)]$ and $Var(\hat{\rho}(h))$:

We will use the fact that X_{t+h} and X_t are independent.

$$E[\hat{\rho}(h)] \approx \frac{1}{n\sigma^2} \sum_{t=1}^{n-|h|} E[X_{t+h} X_t] = 0$$

$$Var(\hat{\rho}(h)) \approx \frac{1}{n^2\sigma^4} \sum_{t=1}^{n-|h|} Var(X_{t+h}X_t)$$

$$Var(X_{t+h}X_t) = E[(X_{t+h}X_t)^2] - (E[X_{t+h}X_t])^2 = E[X_{t+h}^2X_t^2] - 0$$

$$Var(X_{t+h}X_t) = E[X_{t+h}^2]E[X_t^2] = (Var(X_{t+h}) + (E[X_{t+h}])^2).(Var(X_t) + (E[X_t])^2)$$

$$Var(X_{t+h}, X_t) = \sigma^4$$

Hence,

$$Var(\hat{\rho}(h)) \approx \frac{1}{n^2\sigma^4} n\sigma^4 \approx \frac{1}{n}$$

By the **Central Limit Theorem (CLT)**, the $\hat{\rho}(h)$ converges to a normal distribution for large n. Thus, for IID noise, the sample ACF at any $lag\ h \neq 0$ is approximately:

$$\hat{\rho}(h) \sim N(0, \frac{1}{n})$$

Verification: We first simulate m independent datasets of length n from an IID N(0,1) process. Large m ensures the Central Limit Theorem (CLT) applies. For each dataset, calculate the sample ACF $\hat{\rho}(h)$ at lags $h=1,2,\cdots,H$. Aggregate all $\hat{\rho}(h)$ values across lags (h>0) and datasets. This creates an empirical distribution of sample ACFs. Now, we can plot a histogram of the pooled ACF values. This should overlay the theoretical normal density $N(0,\frac{1}{n})$ and 95% confidence bounds $\pm 1.96/\sqrt{n}$.

```
# Load required package
library(ggplot2)
# Set parameters
set.seed(123)
                  # Reproducibility
n <- 200
                  # Length of each time series
m < -1000
                  # Number of realizations (large for CLT)
H < -40
                   # Maximum lag
conf_level <- 0.95
# Simulate m realizations of IID N(0,1) noise
acf_values <- matrix(NA, nrow = m, ncol = H)</pre>
for (k in 1:m) {
  # Generate IID N(0,1) noise
 noise \leftarrow rnorm(n, mean = 0, sd = 1)
 # Compute sample ACF up to lag H
  acf_result <- acf(noise, lag.max = H, plot = FALSE)$acf</pre>
 # Store ACF values at lags 1 to H
  acf_values[k, ] <- acf_result[2:(H + 1)]</pre>
}
```

```
# Pool all ACF values (across lags and realizations)
pooled_acf <- as.vector(acf_values)</pre>
# Theoretical parameters under HO (IID noise)
mu <- 0
sigma <- 1 / sqrt(n)</pre>
# Compute proportion of values outside confidence bounds
conf_bound <- qnorm((1 + conf_level)/2) * sigma</pre>
out_of_bounds <- mean(abs(pooled_acf) > conf_bound)
# Create histogram with theoretical normal curve
ggplot(data.frame(x = pooled_acf), aes(x = x)) +
 geom_histogram(aes(y = ..density..),
                 bins = 30,
                 fill = "lightblue",
                 color = "black") +
 stat_function(fun = dnorm,
                args = list(mean = mu, sd = sigma),
                color = "red",
                linewidth = 1) +
  geom_vline(xintercept = c(-conf_bound, conf_bound),
             color = "blue",
             linetype = "dashed") +
  labs(title = "Empirical Distribution of Sample ACF for IID N(0,1) Noise",
       subtitle = sprintf("n = %d, m = %d realizations", n, m),
       x = "Sample ACF at Lag h > 0",
       y = "Density") +
  theme_minimal()
```

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0. i Please use `after_stat(density)` instead.

Lake Huron Residuals Modeling Process

Earlier, the Lake Huron water level data (1875–1972) was analyzed to identify a suitable time series model:

```
# Load necessary packages
library(ggplot2)
lake_data <- read.csv("LakeHuron.csv")</pre>
lake_data$t <- lake_data$year - 1875 # Create time variable starting at 0</pre>
# Fit linear model
model <- lm(level ~ t, data = lake_data)</pre>
lake_data$fitted <- predict(model)</pre>
# Base R plot version
plot(lake_ts,
     main = "Lake Huron Water Levels (1875-1972)",
     xlab = "Year",
     ylab = "Level (feet)",
     col = "darkblue",pch = 98)
lines(lake_data$year, lake_data$fitted, col = "red", lwd = 2)
legend("topleft",
       legend = c("Observed", "Linear Fit"),
       col = c("black", "red"),
       lty = 1, pch = c(98, NA))
```

Lake Huron Water Levels (1875–1972)

We can see that our initial model constitutes of a straight line fitted to the data (linear trend: $\hat{m}_t = a + bt$). We then analyzed the residuals $\{y_1, y_2, \cdots, y_{98}\}$. We now compute Sample ACF for the Lake Huron Residuals:

```
lake_data$residuals <- residuals(model) # Store residuals</pre>
# Compute sample ACF of residuals
acf_res <- acf(lake_data$residuals, plot = FALSE, lag.max = 40)</pre>
# Convert ACF results to dataframe for ggplot
acf_df <- with(acf_res, data.frame(lag, acf))</pre>
# Create confidence bounds (95% CI)
n <- nrow(lake_data)</pre>
conf_level <- 1.96/sqrt(n)</pre>
# Plot ACF with ggplot
ggplot(acf_df[-1,], aes(x = lag, y = acf)) + # [-1,] removes lag 0
  geom_hline(yintercept = c(-conf_level, conf_level),
             color = "blue", linetype = "dashed") +
  geom_segment(aes(xend = lag, yend = 0), color = "darkred") +
  geom_point(color = "darkred", size = 2) +
  labs(title = "Sample ACF of Lake Huron Residuals",
       subtitle = "Linear Trend Removed (1875-1972)",
       x = "Lag (Years)",
       y = "Autocorrelation") +
  theme_minimal() +
```

```
scale_x_continuous(breaks = seq(0, 40, 5)) +
ylim(c(-0.5, 1))
```

Sample ACF of Lake Huron Residuals

Linear Trend Removed (1875–1972)


```
r1 <- acf_df[1,2]
r2 <- acf_df[2,2]
r3 <- acf_df[3,2]
r4 <- acf_df[4,2]
gradual_Decay <- list()
gradual_Decay[1] <- r2 / r1
gradual_Decay[2] <- r3 / r2
gradual_Decay[3] <- r4 / r3
gradual_Decay</pre>
```

[[1]]

[1] 0.7615963

[[2]]

[1] 0.6097112

[[3]]

[1] 0.5622723

r1

[1] 1

We can see, after fitting a linear trend, the residuals $\{y_t\}$ violated the IID noise assumption. The ACF showed a gradual decay, with $\frac{\hat{\rho}^{(h+1)}}{\hat{\rho}^{(h)}} \approx 0.7$, characteristic of autoregressive (AR) processes. The geometric decay $\hat{\rho}(h) \approx \phi^{|h|}$ suggested an **AR(1) process**. The decay rate $\phi \approx 0.7$ was inferred from $\hat{\rho}(1) \approx 0.7$.

```
# Fit AR(1) to residuals
ar1_model <- arima(lake_data$residuals, order = c(1,0,0), include.mean = FALSE)
# Model summary
cat("AR(1) Model Summary:\n")
AR(1) Model Summary:
print(ar1_model)
Call:
arima(x = lake_data$residuals, order = c(1, 0, 0), include.mean = FALSE)
Coefficients:
         ar1
      0.7826
s.e. 0.0635
sigma^2 estimated as 0.4975: log likelihood = -105.32, aic = 214.65
cat("\nPhi estimate:", ar1_model$coef, "\n")
Phi estimate: 0.7826118
cat("Noise variance:", ar1_model$sigma2, "\n")
Noise variance: 0.4975348
# Get AR(1) residuals
ar1_residuals <- residuals(ar1_model)</pre>
# Plot 1: ACF of AR(1) residuals
acf_ar1 <- acf(ar1_residuals, plot = FALSE, lag.max = 40)</pre>
conf_bound <- 1.96/sqrt(length(ar1_residuals))</pre>
ggplot(data.frame(lag = acf_ar1$lag, acf = acf_ar1$acf)[-1,],
```

ACF of AR(1) Residuals


```
# Plot 2: Scatterplot of Y_t vs Y_{t-1}
lake_data$lag1_residual <- c(NA, lake_data$residuals[-nrow(lake_data)])

ggplot(lake_data, aes(x = lag1_residual, y = residuals)) +
    geom_point(color = "darkblue") +
    geom_smooth(method = "lm", formula = y ~ x, se = FALSE, color = "red") +
    labs(title = "Residuals vs Lagged Residuals",
        subtitle = "Linear Relationship Supports AR(1) Structure",
        x = expression(Y[t-1]),
        y = expression(Y[t])) +
    theme_minimal()</pre>
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

Residuals vs Lagged Residuals

Linear Relationship Supports AR(1) Structure

The linear relationship between Y_t and Y_{t-1} in the above figure supported the AR(1) structure $Y_t = \phi Y_{t-1} + Z_t$. Least squares regression of Y_t on Y_{t-1} gave $\hat{\phi} = 0.7826$. Residual variance ($\sigma^2 = 0.4975$) was computed, but the residuals still showed slight autocorrelation.

Hence, the fitted model:

$$Y_t = 0.78 Y_{t-1} + Z_t, \quad Z_t \sim IID(0, 0.50)$$

Residual ACF of AR(1) showed slight excess correlation at lag 1 ($\hat{\rho}(1)$ is outside the bound only). This hinted that the AR(1) model might not fully capture dependencies. So, we can go for another model.

A better fit could be done by using **AR(2)** process. The **AR(1)** residuals had a sample ACF value outside bounds at lag 1, indicating unresolved dependence. This suggested the need for a higher-order model.

```
# Fit AR(2) to residuals
ar2_model <- arima(lake_data$residuals, order = c(2,0,0), include.mean = FALSE)
# Model summary
cat("AR(2) Model Summary:\n")</pre>
```

AR(2) Model Summary:

```
print(ar2_model)
```

```
Call:
arima(x = lake_data$residuals, order = c(2, 0, 0), include.mean = FALSE)
Coefficients:
         ar1
                  ar2
      1.0050 -0.2925
s.e. 0.0976
              0.1002
sigma^2 estimated as 0.4572: log likelihood = -101.26, aic = 208.51
cat("\nPhi estimate:", ar2_model$coef, "\n")
Phi estimate: 1.005013 -0.2924751
cat("Noise variance:", ar2_model$sigma2, "\n")
Noise variance: 0.4571513
# Get AR(1) residuals
ar2_residuals <- residuals(ar2_model)</pre>
# Plot 1: ACF of AR(1) residuals
acf_ar2 <- acf(ar2_residuals, plot = FALSE, lag.max = 40)</pre>
conf_bound <- 1.96/sqrt(length(ar2_residuals))</pre>
ggplot(data.frame(lag = acf_ar2$lag, acf = acf_ar2$acf)[-1,],
       aes(x = lag, y = acf)) +
  geom_hline(yintercept = c(-conf_bound, conf_bound),
             color = "blue", linetype = "dashed") +
  geom_segment(aes(xend = lag, yend = 0), color = "darkred") +
  labs(title = "ACF of AR(2) Residuals",
       subtitle = sprintf(" 1 = %.3f, 2 = %.3f",
                         ar2_model$coef[1],
                         ar2_model$coef[2]),
       x = "Lag", y = "Autocorrelation") +
  theme_minimal()
```

ACF of AR(2) Residuals f1 = 1.005, f2 = -0.292 0.2 0.1 -0.1

We found residual variance ($\sigma^2 = 0.4571$) to be lesser than before and also from the ACF, we can see no autocorrelation. The fitted model:

20

Lag

30

40

10

-0.2

0

$$Y_t = 1.005 Y_{t-1} - 0.292 Y_{t-1} + Z_t, \quad Z_t \sim IID(0, 0.457)$$

 $\phi_1=1.005$ indicates strong persistence from the immediate past and $\phi_2=-0.292$ indicates negative correction for over-persistence, introducing mean reversion. All lags within confidence bounds confirmed noise independence.

The Lake Huron residuals were best modeled by an AR(2) process, which reduced residual variance by 11.8% compared to AR(1) and also eliminated significant autocorrelation in residuals.

Estimation and Elimination of Trend and Seasonal Components

The first step in time series analysis is **visual inspection** of the data to identify structural breaks, outliers, or patterns. If trends or seasonality are present, the **classical decomposition model** is often applied:

$$X_t = m_t + s_t + Y_t$$

where m_t is a slowly varying trend component, s_t is a periodic seasonal component with known period d, and Y_t represents stationary noise. This