Smooth Strongly Convex Minimization The Fastest-Known First-Order Method

Bryan Van Scoy

University of Wisconsin-Madison

International Symposium on Mathematical Programming
Bordeaux

July 5, 2018

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathbb{R}^d \end{array}$$

- f is L-smooth and μ -strongly convex
- denote the optimizer as $x_{\star} \in \mathbb{R}^d$
- $\kappa := L/\mu$ is the condition ratio

Main result

We design a first-order method whose iterate sequence $\{x_k\}$ satisfies

$$||x_k - x_\star|| = \mathcal{O}(\rho^k)$$

$$f(x_k) - f(x_{\star}) = \mathcal{O}(\rho^{2k})$$

where $\rho = 1 - 1/\sqrt{\kappa}$.

Compare with Nesterov's fast gradient method:

$$||x_k - x_\star|| = \mathcal{O}(\rho^{k/2})$$

$$f(x_k) - f(x_\star) = \mathcal{O}(\rho^k)$$

Theorem (Nesterov, 2004)

The fast gradient method is "optimal" for the class of L-smooth and μ -strongly convex functions.

Complexity: Number of iterations to obtain $\|x_k - x_\star\| \leq \varepsilon$

Rate of iterates: $||x_k - x_\star|| = \mathcal{O}(\rho^k)$

Method	Complexity	Rate of iterates
Gradient method (stepsize $\frac{1}{L}$)	$\mathcal{O}(\kappa \ln(\frac{1}{\varepsilon}))$	$1-\frac{1}{\kappa}$
Gradient method (stepsize $\frac{L}{L+\mu}$)	$\mathcal{O}(\kappa \ln(\frac{1}{\varepsilon}))$	$\frac{\kappa-1}{\kappa+1}$
Fast gradient method	$\mathcal{O}\left(\sqrt{\kappa}\ln(\frac{1}{\varepsilon})\right)$	$(1-\frac{1}{\sqrt{\kappa}})^{k/2}$
Proposed method	$\mathcal{O}\!\left(\sqrt{\kappa}\ln(\frac{1}{\varepsilon})\right)$	$1-\frac{1}{\sqrt{\kappa}}$
Lower bound	$\mathcal{O}\!\left(\sqrt{\kappa}\ln(\frac{1}{\varepsilon})\right)$	$\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$

Proposed method is twice as fast as Nesterov's method

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, 2004.

Method

gradient method

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

heavy ball method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f(x_k)$$

fast gradient method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\beta)x_k - \beta x_{k-1})$$

triple momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

	α	β	γ
GM	$\frac{1}{L}$		
HBM	$\frac{4}{(\sqrt{L}+\sqrt{\mu})^2}$	$\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^2$	
FGM	$\frac{1}{L}$	$\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$	
TMM	$\frac{2\sqrt{L} - \sqrt{\mu}}{L\sqrt{L}}$	$\frac{(\sqrt{\kappa}-1)^2}{\kappa+\sqrt{\kappa}}$	$\frac{(\sqrt{\kappa}-1)^2}{2\kappa+\sqrt{\kappa}-1}$

4

Triple momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\rho = 1 - \frac{1}{\sqrt{\kappa}}$$

$$\alpha = \frac{1+\rho}{L}$$

$$\beta = \frac{\rho^2}{2-\rho}$$

$$\gamma = \frac{\rho^2}{(1+\rho)(2-\rho)}$$

Condition ratio $\kappa := L/\mu$

Theorem (Van Scoy, Freeman, Lynch, 2017)

Suppose f is L-smooth and μ -strongly convex with minimizer $x_\star \in \mathbb{R}^d$. Then for any initial conditions $x_0, x_{-1} \in \mathbb{R}^d$, there exists a constant c>0 such that

$$||x_k - x_\star|| \le c \, \rho^k$$
 for all $k \ge 1$.

5

f quadratic

Convergence rate:
$$\|x_k - x_\star\| \le c \, \rho^k$$
 Iterations to converge $\propto -\frac{1}{\ln \rho}$

f smooth strongly convex

- HBM does not converge if $\kappa \ge (2 + \sqrt{5})^2 \approx 17.94$
- For FGM, Nesterov proved the rate $\sqrt{1-\frac{1}{\sqrt{\kappa}}}$ which is loose
- TMM converges faster than FGM

Simulations

Objective function:

$$f(x) = \sum_{i=1}^{n} g(a_i^T x - b_i) + \frac{\mu}{2} ||x||^2, \quad x \in \mathbb{R}^d$$

where

$$g(y) = \begin{cases} \frac{1}{2} y^2 e^{-r/y}, & y > 0\\ 0, & y \le 0 \end{cases}$$

with
$$A = [a_1, \dots, a_p] \in \mathbb{R}^{d \times n}$$
, $b \in \mathbb{R}^n$, and $||A|| = \sqrt{L - \mu}$

f is

- \bullet L-smooth
- μ -strongly convex
- infinitely differentiable (of class C^{∞})

8

Simulations

Parameters: $\mu = 1$, $L = 10^4$, d = 100, n = 5, $r = 10^{-6}$

Robustness to μ

Parameters: $\mu = 1$, $L = 10^4$, d = 100, n = 5, $r = 10^{-6}$

To prove the bound for TMM, use *interpolation*.

Interpolation: The set $\{y_k, f_k, g_k\}$ is \mathcal{F} -interpolable if and only if $f_k = f(y_k)$ and $g_k = \nabla f(y_k)$ for some $f \in \mathcal{F}$ and all k.

Theorem (Taylor, Hendrickx, Glineur, 2017)

The set $\{y_k,f_k,g_k\}$ is interpolable by an L-smooth μ -strongly convex function if and only if $\phi_{ij}\geq 0$ for all i,j where

$$\phi_{ij} := (L - \mu)(f_i - f_j) - \frac{1}{2} \|g_i - g_j\|^2 + (\mu g_i - L g_j)^\mathsf{T} (y_i - y_j) - \frac{\mu L}{2} \|y_i - y_j\|^2$$

Sketch of proof for TMM

- 1. Suppose f is L-smooth and μ -strongly convex. Then the **interpolation conditions** are satisfied, i.e., $\phi_{ij} \geq 0$ for all i, j.
- 2. Define the **Lyapunov function**

$$V_k := \mu L \|z_k - x_\star\|^2 + \phi_{k-1,\star}$$

where
$$z_k := (1+\delta)x_k - \delta x_{k-1}$$
 and $\delta := \frac{\rho^2}{1-\rho^2}$.

3. Using the definition of TMM, it is straighforward to verify that

$$V_{k+1} - \rho^2 V_k + (1 - \rho^2)\phi_{\star,k} + \rho^2 \phi_{k-1,k} = 0$$

for all $k \ge 1$, so V_k decreases by at least ρ^2 at each iteration.

4. Iterating gives the **bound** $V_k \leq \rho^{2(k-1)}V_1$ for $k \geq 1$.

Gradient noise

What if the measured gradient is *not* the actual gradient?

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha u_k$$
$$y_k = (1+\gamma)x_k - \gamma x_{k-1}$$

No noise: $u = \nabla f(y)$

Relative gradient noise: $||u - \nabla f(y)||_2 \le \delta ||\nabla f(y)||_2$

Robust momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\rho \in \left[1 - \frac{1}{\sqrt{\kappa}}, 1 - \frac{1}{\kappa}\right] \qquad \text{TMM}$$

$$\alpha = \frac{\kappa(1 - \rho)^2 (1 + \rho)}{L} \qquad \text{Fast} \qquad \blacksquare$$

$$\beta = \frac{\kappa \rho^3}{\kappa - 1} \qquad 1 - \frac{1}{\sqrt{\kappa}} \qquad \blacksquare$$

$$\gamma = \frac{\rho^3}{(\kappa - 1)(1 - \rho)^2 (1 + \rho)} \qquad \text{Fragile} \qquad \blacksquare$$

Theorem (Cyrus, Hu, Van Scoy, Lessard, 2017)

Suppose f is L-smooth and μ -strongly convex with minimizer $x_\star \in \mathbb{R}^d$, and there is no gradient noise (i.e., $\delta=0$). Then for any initial conditions $x_0,x_{-1}\in\mathbb{R}^d$, there exists a constant c>0 such that

$$||x_k - x_\star|| \le c \, \rho^k$$
 for all $k \ge 1$.

Sketch of proof for RMM

- 1. Suppose f is L-smooth and μ -strongly convex. Then the **interpolation conditions** are satisfied, i.e., $\phi_{ij} \geq 0$ for all i, j.
- 2. Define the Lyapunov function

$$V_k := \mu L \|z_k - x_\star\|^2 + \phi_{k-1,\star}$$

where
$$z_k := (1+\delta)x_k - \delta x_{k-1}$$
 and $\delta := \frac{\rho^2}{1-\rho^2}$.

3. Using the definition of RMM, it is straighforward to verify that

$$V_{k+1} - \rho^2 V_k + (1 - \rho^2) \phi_{\star,k} + \rho^2 \phi_{k-1,k}$$

+
$$\frac{(1+\rho)(1-\kappa+2\kappa\rho-\kappa\rho^2)}{2\rho} \|\nabla f(y_k) - \mu (y_k - y_\star)\|^2 = 0$$

for all $k \ge 1$, so V_k decreases by at least ρ^2 at each iteration.

4. Iterating gives the **bound** $V_k \leq \rho^{2(k-1)}V_1$ for $k \geq 1$.

Noise strength (δ)

Numerics

For TMM, we can analyze the convergence rate in closed-form.

What can we say when a closed-form expression for the convergence rate is unknown (e.g., when there is gradient noise)?

Calculate an upper bound on the convergence rate numerically using:

- Integral Quadratic Constraints
 - Megretzki, Rantzer, 1997
 - Lessard, Recht, Packard, 2016
 - Performance Estimation Problem
 - Drori, Teboulle, 2014
 - Taylor, Hendrickx, Glineur, 2017
 - Quadratic Lyapunov functions
 - Taylor, Van Scoy, Lessard, 2018 (ICML)

Conclusion

Triple momentum method

- Iterates converge linearly with rate $\rho=1-1/\sqrt{\kappa}$
- This is the fastest known convergence rate for first-order methods on smooth strongly convex functions (twice as fast as FGM)

Robust momentum method

• Interpolates TMM and GM (with stepsize $\frac{1}{L}$) to exploit the trade-off between convergence rate and robustness to gradient noise

Collaborators

Laurent Lessard

Saman Cyrus

Bin Hu

Randy Freeman

Kevin Lynch

Adrien Taylor

Papers

- Van Scoy, Freeman, Lynch, IEEE Control Systems Letters, 2018
- Cyrus, Hu, Van Scoy, Lessard, American Control Conference, 2018
- Taylor, Van Scoy, Lessard, ICML, 2018
- Available on my website: vanscoy.github.io