Quant II Recitation

Ye Wang yw1576@nyu.edu

Feb 7, 2018

Today's Plan

- Causal inference from a machine learning perspective
- Regression
- ► Simulation (Regression in R)

Today's Plan

- Causal inference from a machine learning perspective
- Regression
- ► Simulation (Regression in R)

▶ Now we have been familiar with the Rubin model

$$Y_i = \begin{cases} Y_i(1) \text{ if } D_i = 1\\ Y_i(0) \text{ if } D_i = 0 \end{cases}$$

▶ Now we have been familiar with the Rubin model

$$Y_i = \begin{cases} Y_i(1) \text{ if } D_i = 1\\ Y_i(0) \text{ if } D_i = 0 \end{cases}$$

▶ For each i, we observe either $Y_i(0)$ or $Y_i(1)$ ("Fundamental problem of causal inference")

▶ Now we have been familiar with the Rubin model

$$Y_i = \begin{cases} Y_i(1) \text{ if } D_i = 1\\ Y_i(0) \text{ if } D_i = 0 \end{cases}$$

- ▶ For each i, we observe either $Y_i(0)$ or $Y_i(1)$ ("Fundamental problem of causal inference")
- Suppose we are interested in ATT, then we just need to know $Y_i(0)$ for each treated unit

▶ Now we have been familiar with the Rubin model

$$Y_i = \begin{cases} Y_i(1) \text{ if } D_i = 1\\ Y_i(0) \text{ if } D_i = 0 \end{cases}$$

- ▶ For each i, we observe either $Y_i(0)$ or $Y_i(1)$ ("Fundamental problem of causal inference")
- Suppose we are interested in ATT, then we just need to know $Y_i(0)$ for each treated unit
- ▶ It is a prediction problem: $\hat{Y}_i(0) = f(\mathbf{X}, \mathbf{Y}_{(-i)})$

▶ That's where machine learning enters!

- That's where machine learning enters!
- ▶ The target of machine learning algorithms is to find a prediction function \hat{f} that minimizes the expected squared prediction error (ESPE), $E[(f \hat{f})^2]$

- That's where machine learning enters!
- ▶ The target of machine learning algorithms is to find a prediction function \hat{f} that minimizes the expected squared prediction error (ESPE), $E[(f \hat{f})^2]$
- ▶ It is easy to see that

$$E[(f - \hat{f})^{2}] = E[f^{2} - 2 * f * \hat{f} + \hat{f}^{2}]$$

$$= f^{2} - 2 * f * E[\hat{f}] + E[\hat{f}^{2}]$$

$$= f^{2} - 2 * f * E[\hat{f}] + E[\hat{f}]^{2} - E[\hat{f}]^{2} + E[\hat{f}^{2}]$$

$$= (E[\hat{f}] - f)^{2} + E[\hat{f}^{2}] - E[\hat{f}]^{2}$$

$$= (Bias(\hat{f}))^{2} + Var(\hat{f})$$

- ► That's where machine learning enters!
- ▶ The target of machine learning algorithms is to find a prediction function \hat{f} that minimizes the expected squared prediction error (ESPE), $E[(f \hat{f})^2]$
- It is easy to see that

$$E[(f - \hat{f})^{2}] = E[f^{2} - 2 * f * \hat{f} + \hat{f}^{2}]$$

$$= f^{2} - 2 * f * E[\hat{f}] + E[\hat{f}^{2}]$$

$$= f^{2} - 2 * f * E[\hat{f}] + E[\hat{f}]^{2} - E[\hat{f}]^{2} + E[\hat{f}^{2}]$$

$$= (E[\hat{f}] - f)^{2} + E[\hat{f}^{2}] - E[\hat{f}]^{2}$$

$$= (Bias(\hat{f}))^{2} + Var(\hat{f})$$

- This is called bias-variance trade-off
- A method with smaller bias usually has larger variance

 In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have?

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have? Random experiment

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have? Random experiment
- ▶ If $\hat{f} = \bar{Y}_{D_i=0,\mathbf{X}=\mathbf{x}}$, what do we have?

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have? Random experiment
- ▶ If $\hat{f} = \bar{Y}_{D_i=0,\mathbf{X}=\mathbf{x}}$, what do we have? Blocking experiment or matching

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have? Random experiment
- ▶ If $\hat{f} = \bar{Y}_{D_i=0,\mathbf{X}=\mathbf{x}}$, what do we have? Blocking experiment or matching
- Now, what is the assumption behind regression?

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have? Random experiment
- If $\hat{f} = \bar{Y}_{D_i=0,\mathbf{X}=\mathbf{x}}$, what do we have? Blocking experiment or matching
- Now, what is the assumption behind regression? $\hat{f} = \mathbf{X}_{D_i=0}\beta$ (Linearity) $\gamma_i = \gamma$ for any i (Constant treatment effect)

- In causal inference, we train a model based on the control group observations, then use the model to predict counterfactuals
- ▶ If $\hat{f} = \bar{Y}_{D_i=0}$, what do we have? Random experiment
- If $\hat{f} = \bar{Y}_{D_i=0,\mathbf{X}=\mathbf{x}}$, what do we have? Blocking experiment or matching
- Now, what is the assumption behind regression? $\hat{f} = \mathbf{X}_{D_i=0}\beta$ (Linearity) $\gamma_i = \gamma$ for any i (Constant treatment effect)
- Matching: low bias and high variance; regression: high bias and low variance

It is straightfoward to drop the constant treatment effect assumption

$$\hat{\gamma}_i = Y_i - \mathbf{X}_{D_i=0}\hat{\beta}$$
 (Regression with interaction)

▶ Replacing $\mathbf{X}_{D_i=0}\beta$ with $(\mathbf{X}_{D_i=0} - \bar{\mathbf{X}}_{D_i=0})\beta$, we get the more efficient Lin's regression

- ▶ It is straightfoward to drop the constant treatment effect assumption
 - $\hat{\gamma}_i = Y_i \mathbf{X}_{D_i=0}\hat{\beta}$ (Regression with interaction)
- ▶ Replacing $\mathbf{X}_{D_i=0}\beta$ with $(\mathbf{X}_{D_i=0} \bar{\mathbf{X}}_{D_i=0})\beta$, we get the more efficient Lin's regression
- Question: How to get rid of the linearity assumption?

Causal inference is built upon the assumption of (strong) ignorability

- Causal inference is built upon the assumption of (strong) ignorability
- ▶ But assumptions imposed on \hat{f} are up to the researcher's decision

- Causal inference is built upon the assumption of (strong) ignorability
- ightharpoonup But assumptions imposed on \hat{f} are up to the researcher's decision
- Design-based perspective vs. Model-based perspective

- Causal inference is built upon the assumption of (strong) ignorability
- ightharpoonup But assumptions imposed on \hat{f} are up to the researcher's decision
- Design-based perspective vs. Model-based perspective
- With no extra assumption: Agnostic, or non-parametric estimation

- Causal inference is built upon the assumption of (strong) ignorability
- ightharpoonup But assumptions imposed on \hat{f} are up to the researcher's decision
- Design-based perspective vs. Model-based perspective
- With no extra assumption: Agnostic, or non-parametric estimation
 - Group-mean difference, Matching
- ▶ When a complete model is specified: Parametric estimation

- Causal inference is built upon the assumption of (strong) ignorability
- ightharpoonup But assumptions imposed on \hat{f} are up to the researcher's decision
- Design-based perspective vs. Model-based perspective
- With no extra assumption: Agnostic, or non-parametric estimation
 - Group-mean difference, Matching
- ▶ When a complete model is specified: Parametric estimation Regression, Probit, Logit, All Bayesian approaches, etc.
- ▶ With some "structure" assumed for \hat{f} : Semi-parametric estimation

- Causal inference is built upon the assumption of (strong) ignorability
- ightharpoonup But assumptions imposed on \hat{f} are up to the researcher's decision
- Design-based perspective vs. Model-based perspective
- With no extra assumption: Agnostic, or non-parametric estimation
 - Group-mean difference, Matching
- ▶ When a complete model is specified: Parametric estimation Regression, Probit, Logit, All Bayesian approaches, etc.
- ▶ With some "structure" assumed for \hat{f} : Semi-parametric estimation
 - Kernelized or serial estimation, factor models
- Two types of pre-treatment attributes: confounders and covariates

Problems with naive regression

It is biased and inconsistent under treatment effect heterogeneity

Problems with naive regression

- It is biased and inconsistent under treatment effect heterogeneity
- What is its expectation then? Abadie et al. (2017): a weighted sum of the true individualistic effects under linearity, and a weighted sum of something without linearity

Problems with naive regression

- It is biased and inconsistent under treatment effect heterogeneity
- What is its expectation then? Abadie et al. (2017): a weighted sum of the true individualistic effects under linearity, and a weighted sum of something without linearity
- Should we add as many covariates as possible?
 No. Covariates may sometimes amplify the existing bias (Middleton et al., 2016)
- 1. X may absorb the variation of D and reduces its explanatory power of Y
- If X is negatively correlated with Y and the unobservables are positively correlated with Y, leaving X outside the regression may offset the impact of the unobservables

Covariate Adjustment in sampling

- ▶ Imagine that we are biologists who are interested in leaf size.
- ▶ Finding the size of leaves is hard, but weighting leaves is easy.
- ▶ We can use auxilliary information to be smarter:
 - Sample from leaves on a tree.
 - ▶ Measure their size and weight.
 - Let \bar{y}_s be the average size in the sample.
 - Let \bar{x}_s be the average weight in the sample.
 - We know that \bar{y}_s unbiased and consistent for \bar{y}
 - But we have extra information!
 - We also have \bar{x} (all the weights)
 - This motivates the regression estimator: $\hat{y} = \bar{y}_s + \beta(\bar{x} \bar{x}_s)$
 - We get β by a regression of leaf area on weight in the sample.

A Social Science Example

- We are interested in the effect of a binary treatment on test scores.
- Let's set up a simulation.
- 200 students. Observed over two years.
- Half good tutors and half bad since the second year.
- ▶ We want to estimate the effect of the intervention in year 2.
- Treatment is assigned randomly
- Test score in the first year will be a covariate

Simulation

##

```
cat("Real ATE =", RealATE, "\n")
## Real ATE = 10.35974
round(summary(lm(Yr20bs~Trt))$coefficients[2,], 4)
##
    Estimate Std. Error t value Pr(>|t|)
      8.9718 1.1365 7.8944
                                     0.0000
##
```

```
round(summary(lm(Yr20bs~Trt+Yr1Score))$coefficients[2,], 4
    Estimate Std. Error t value Pr(>|t|)
##
```

9.1094 1.1231 8.1106 0.0000 ##

t value Pr(>|t|)

0.0000

8.0916

round(summary(lm(Yr20bs~Trt*demeaned_Yr1Score))\$coefficien

Estimate Std. Error

1.1258

9.1093

Coefficient Plot Code

Regression Table

##

```
## Please cite as:
   Hlavac, Marek (2018). stargazer: Well-Formatted Regress
##
##
   R package version 5.2.2. https://CRAN.R-project.org/package
##
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Ha
## % Date and time: Thu, Feb 07, 2019 - 13:56:02
## \begin{table}[!htbp] \centering
    \caption{Regression Results}
##
    \label{}
##
## \begin{tabular}{@{\extracolsep{5pt}}lccc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
```

Loading required package: stargazer

Regression Table

F Statistic

Table 1: Regression Results

_		Dependent variable: Yr2Obs
	(1)	(2)
Treatment	8.452***	8.240***
	(1.247)	(1.236)
Yr1 Score		0.271*
		(0.114)
Yr1 Score (demeaned)		
Tr. * Yr1 Score		
Observations	200	200
R^2	0.188	0.211
Adjusted R ²	0.184	0.203
Residual Std. Error	8.819 (df = 198)	8.717 (df = 197)

 45.928^{***} (df = 1; 198) 26.322^{***} (df = 2; 197)

18.

Unbiasedness

```
cat("Real ATE =", RealATE, "\n")
## Real ATE = 10.35974
mean(coefs[, 1]) - RealATE
## [1] -5.094933e-06
mean(coefs[, 2]) - RealATE
## [1] 0.005582937
mean(coefs[, 3]) - RealATE
## [1] 0.005548307
```

Consistency 1.0 0.5 0.5 0.5 0.0 Bias Bias Bias -0.5-0.5 -0.5 -1.0 -1.0 -1.5 -1.5 -1.5 -2.0 -2.0 -2.0 0 600 600 600 Sample Size Sample Size Sample Size

Plot Data

Treatment

Partial Regression and Residualized Plot

- Can we make that plot a little more friendly?
- ▶ Let's residualize our outcome based on scores in the first period. This should remove a substantial amount of the variance in the outcome.

Partial Regression and Residualized Plot

- Can we make that plot a little more friendly?
- ▶ Let's residualize our outcome based on scores in the first period. This should remove a substantial amount of the variance in the outcome.

Partial Regression and Residualized Plot

Partial Regression for FEs

- We'll get to this later in the semester.
- ▶ The point is, partial regression is a fundamentally important tool that let's us do things that would otherwise be very hard.

Partial Regression for FEs

- We'll get to this later in the semester.
- ▶ The point is, partial regression is a fundamentally important tool that let's us do things that would otherwise be very hard.

Partial Regression for FEs

- We'll get to this later in the semester.
- ► The point is, partial regression is a fundamentally important tool that let's us do things that would otherwise be very hard.
- When the panel is unbalanced, this is not correct. . .

Testing linear Restrictions

- ▶ Hypothesis: $R\beta = r$
- $W = (R\hat{\beta} r)'(R\hat{V}R')^{-1}(R\hat{\beta} r) \sim \chi_q^2$
- Or more conservatively: $W/q \sim F_{q,N-K}$
- ► In R:

Testing linear Restrictions

- ▶ Hypothesis: $R\beta = r$
- $W = (R\hat{\beta} r)'(R\hat{V}R')^{-1}(R\hat{\beta} r) \sim \chi_q^2$
- ▶ Or more conservatively: $W/q \sim F_{q,N-K}$
- ► In R:
- ► Think about how these two might differ for different starting parameters (ex. sample size)