Elementary parameter estimation

 \leftarrow Back to Chapters

Prior 6.14 and formula 6.70

Suppose we draw N balls from a Bernoulli distribution of probability p (i.e. each ball is red with probability g and white with probability 1-g). The probability we get R reds is $\binom{N}{R}g^R(1-g)^{(N-R)}$ (this is the "binomial monkey prior" of section 6.7). Now, if our prior probability for p is uniform, then the probability of getting R reds is $\int_0^1 \binom{N}{R}g^R(1-g)^{(N-R)}dg$. Bayes 1763 paper tells us this is $\frac{1}{N+1}$ (see "Bayes' billiards", for example Story 8.3.2 in Blitzstein-Hwang, "Introduction to Probability"); in Jaynes' book this is formula 6.70. So indeed, 6.14 is an uniformed prior in this sense as well.

Remark: This is very different from "binomial monkey prior" because in this model data informs us about g, whereas in the "binomial monkey prior" g is fixed and can not be influenced by data.

Remark: This works in multicolor setting as well: Suppose N balls drawn from a large vat of balls in which there are balls of K colors in total, with unknown fractions p_1, \ldots, p_K of balls of each color. Then the probability of getting N_1 balls of the first color, N_2 balls of the second color etc. - averaged over all possible tuples p_1, \ldots, p_K - is always the same, no matter what the numbers N_i are. Since there are $\binom{N+K-1}{K-1}$ such tuples, each one has probability $\binom{N+K-1}{K-1}^{-1}$; for K=2 this is $\frac{1}{N+1}$ as before.

6.15

No computation needed: with p(R|NI) independent of R, the only term in 6.13 left dependent on R is $p(D|NRI_0)$, so $p(R|DNI) \sim p(D|NRI_0) \sim \binom{R}{r}\binom{N-R}{n-r}$.

Summation formula 6.16

To choose n+1 balls from N+1: first choose the number R+1 of the r+1st chosen ball; then choose r balls from the first R; and, finally, n-r from the last N-R.

Remark: This also follows from the more obvious Vandermonde identity $\sum_{r} \binom{R}{r} \binom{N-R}{n-r} = \binom{N}{n}$ by "upper index negation", see here.

Most probable value 6.21

This is the same as derivation of formulas 3.26 and 3.27 in Chapter 3 (see notes for that chapter).

Laplace rule: 6.25, 6.29 and 6.73

$$E\left[\frac{R-r}{N-n}\right] = \frac{E[R+1] - (r+1)}{N-n} =$$

$$\frac{\frac{(N+2)(r+1)}{n+2} - (r+1)}{N-n} = \frac{r+1}{n+2}$$

In light of our remarks about the Prior 6.14 this is equivalent the fact that uniform is the Beta(1,1), conjugate prior to Bernoulli with the two parameters $\alpha = 1$ and $\beta = 1$ equal to the number of prior imaginary successes and failures, which is another instance of Laplace rule of succession, formula 6.73

Formula 6.44

"Some calculation" is $\binom{N+1}{n+1} - \binom{N}{n} = \binom{N}{n+1}$, leading to the correct formula 6.44

$$p(R|r = 0, NI_1) = \binom{N}{n+1}^{-1} \binom{N-R}{n}$$

This is noted in the unofficial errata.

Some of Exercise 6.1

As in Section 6.5

$$P(R|r=n, NI_1) = S^{-1} \binom{R}{n}$$

for R = 1, ..., N - 1, and

$$S = \binom{N+1}{n+1} - \binom{0}{n} - \binom{N}{n} = \binom{N+1}{n+1} - \binom{N}{n} = \binom{N}{n+1}$$

$$p(R|r=n,DI_1) = \binom{N}{n+1}^{-1} \binom{R}{n}$$

for $R=1,\ldots,N-1$, identical with $p(R|r=n,DI_1)=\binom{N+1}{n+1}^{-1}\binom{R}{n}$ in that range, just renormalized.

Expectation of R:

Using $(R+1)\binom{R}{n} = (n+1)\binom{R+1}{n+1}$ get

$$\sum_{R=1}^{N-1} (R+1) \binom{R}{n} = \sum_{R=1}^{N-1} (n+1) \binom{R+1}{n+1} = (n+1) \binom{N+1}{n+2}$$

$$E[R+1] = (n+1) \binom{N}{n+1}^{-1} \binom{N+1}{n+2} = \frac{(N+1)(n+1)}{n+2}$$

Expectation of R^2 :

Using $(R+2)(R+1)\binom{R}{n} = (n+2)(n+1)\binom{R+2}{n+2}$ get

$$\sum_{R=1}^{N-1} (R+2)(R+1) \binom{R}{n} = \sum_{R=1}^{N-1} (n+2)(n+1) \binom{R+2}{n+2} = (n+2)(n+1) \binom{N+2}{n+3}$$

$$E[(R+2)(R+1)] = \frac{n+1}{n+3}(N+1)(N+2)$$

All the formulas for this case are the same as for uniform prior (with r = n) with N replaced by N - 1.

So with $p=\frac{r+1}{n+2}=\frac{n+1}{n+2}$ as before, the mean is m=n+(N-1-n)p, variance $v=\frac{p(1-p)}{n+3}(N+1)(N-1-n)$.

Concave prior on R via improper β prior on p.

Suppose we still fill the urn by random tossing, but our prior over g is now non-uniform, but rather is given by (imporper, concave) prior

Beta
$$(0,0)(g) \sim g^{-1}(1-g)^{-1}$$
.

Then the probability that from N balls we have R red ones is proportional to

$$\int_0^1 \binom{N}{R} g^R (1-g)^{(N-R)} g^{-1} (1-g)^{-1} dg =$$

$$\binom{N}{R} \frac{1}{\binom{N-2}{R-1}(N-1)} \sim \frac{1}{R(N-R)}$$

which is the "concave prior" 6.49.

In general, if we start with Beta (α, β) and observe r reds on n draws, our posterior over the **remainder of the bin** is the same as the prior we would've gotten with Beta $(\alpha + r, \beta + n - r)$. This is why the formula 6.52 looks like 6.17 with N and n reduced by 2 and R and r reduced by 1. This also gives an alternative solution to Exercise 6.2 – under hypothesis $r \geq 1$, $n - r \geq 1$ we can update on one of the red and one of the white samples first, so that posterior distribution of R under concave prior and data of r reds on r draws is the same as the posterior distribution of r reds on r and r reds on r r

Exercise 6.3

$$p(R|r = 0, NI_{00}) = \frac{A}{R(N-R)} \binom{N-R}{n}$$

This would still be infinite if R=0, but is ok if we condition on/only consider $1 \le R \le N-1$. Then $A^{-1} = \sum_{R=1}^{N-1} \frac{1}{R(N-R)} \binom{N-R}{n}$.

Similarly

$$p(R|r=n, NI_{00}) = \frac{A}{R(N-R)} \binom{R}{n}$$

This would be infinite if R = N.

Now consider n=1, r=0 case. Then $p(R|r=0, NI_{00}) = \frac{A}{R}$ with

$$A = \sum_{R=1}^{R=N-1} \frac{1}{R} \approx \ln N$$

(famously) and $E[R] \approx \frac{N}{\ln N}$, so expected fraction of red balls is approximately $\frac{1}{\ln N}$.

Exercise 6.4

$$P(R|DI)P(D|I) = P(D|RI)P(R|I).$$

Writing this for $R = R_1$, $R = R_2$ and multiplying we get

$$P(R_1|DI)P(R_2|DI)P(D|I)^2 = P(D|R_1I)P(D|R_2I)P(R_1|I)P(R_2|I)$$

Writing the same for $R = R_1R_2$ and using $P(R_1R_2|I) = P(R_1|I)P(R_2|I)$ we get

$$P(R_1R_2|DI)P(D|I) = P(D|R_1R_2I)P(R_1R_2|I) = P(D|R_1R_2I)P(R_1|I)P(R_2|I).$$

We see that $P(R_1R_2|DI) = P(R_1|DI)P(R_2|DI)$ is equivalent to

$$P(D|R_1R_2I)P(D|I) = P(D|R_1I)P(D|R_2I)$$

or

$$\frac{P(D|R_1R_2I)}{P(D|R_2I)} = \frac{P(D|R_1I)}{P(D|I)}.$$

Any further insight into the meaning of this condition would be appreciated.

Discussion of 6.9.1

TO BE EXTENDED.

This is related to Chapter 4, Exercise 4.4 – suppose I decide to keep getting samples until I accept hypothesis A. If A is false (B is true) I may still end up accepting A (in exercise 4.4 the probability of this is low, but that's because the evidence cutoff is chosen to be high).

Relevant: Anscombe, 1954 Fixed-Sample-Size Analysis of Sequential Observations, p.92, and the Anscombe-Armitage discussion.

Also relevant.

Formula 6.86

$$\sum_{n=c}^{\infty} \frac{n!}{c!(n-c)!} \phi^c (1-\phi)^{(n-c)} \frac{\exp\{-s\}s^n}{n!} =$$

$$\sum_{i=0}^{\infty} \frac{1}{c!i!} \phi^c (1-\phi)^i \exp\{-s\}s^i s^c = \frac{1}{c!} (\phi s)^c \exp\{-s\} \exp\{s(1-\phi)\} =$$

$$\frac{(s\phi)^c \exp\{-s\phi)\}}{c!}$$

Formula 6.89

$$\frac{\text{Pois}_{s}(n)\text{Bin}_{n,\phi}(c)}{\text{Pois}_{s\phi}(c)} = \frac{\exp\{-(1-\phi)s\}s^{n}\phi^{c}(1-\phi)^{n-c}}{(s\phi)^{c}(n-c)!} = \text{Pois}_{s(1-\phi)}(n-c)$$

This can be interpreted as saying that in addition to c detected particles there were some undetected ones, distributed by poisson with rate $s(1-\phi)$.

Possible start of Exercise 6.5

As usual, the problem statement is ambiguous. One formalization is as follows: after a particle is registered, for time Δ no further registrations are possible, after which probability of registration for an incident particle reverts to (known) ϕ . We suppose that the counter has registered c particles in time T=1s, with the emission still driven by Poisson process with rate s so that for any set of times B with total duration t we have $p_B(n) = \frac{\exp\{-st\}(st)^n}{n!}$. For more sophisticated versions and solutions see the referred paper of Takács and references therein.

Intuitively, we expect $p(n|\phi cs) = \operatorname{Pois}_{s(1-\phi)(1-c\Delta)+sc\Delta}(n-c)$ (the "undetected" rate being $s(1-\phi)$ during the non-locked phases and s during the locked phases). Let's see if this holds up.

Bayes flytagn:
$$p(n|\phi cs) = p(n|s) \frac{p(c|n\phi s)}{p(c|\phi s)}$$

Here $p(n|s) = \text{Pois}_s(n)$ as before, and $p(c|\phi s)$ is as usual a normalization constant independent of n and the main point is to compute $p(c|n\phi s)$.

Conditional on n the Poisson arrival times $\vec{t} = (t_1, \dots, t_n)$ are equivalent to being order statistics of iid uniform r.v.s., and are uniformly distributed over the simplex $0 \le t_1, \dots, t_n \dots 1$. The problem suggests dividing this simplex into regions depending on which inequalities $t_i + \Delta > t_{i+s}$ hold, and obtain $p(c|n\phi \vec{t})$ for each region separately, and then marginalize over \vec{t} . This seems not entirely straightforward (the combinatorics is somewhat manageable, but unless one gets insight/miracle the marginalization would be tough). One could: a) consider Δ to be small, justifying ignoring cases where more than one of $t_i + \Delta < t_{i+s}$ hold and dividing only into two regions, plus possible further simplifications from ignoring terms that are higher-order in Δ b) do something clever, possibly withe MGFs, possibly borrowed from the counter literature (Feller, Takács and others) or c) abandon this line of attack.

We choose c) for now but hope to return to this at a later occasion.

Formula 6.108

$$\frac{1}{(1-x)^{a+1}} = (\sum_{i=0}^{\infty} x^i)^{a+1} = \sum_{m=0}^{\infty} c_m x^m$$

where c_m is the number of ways of partitioning m into a+1 ordered parts, which is done by selecting a dividers among m+a places, and so $c_m = \binom{m+a}{a} = \binom{m+a}{m}$. Now $(x\frac{d}{dx})x^m = mx^m$, so $(x\frac{d}{dx})x^m = m^nx^m$, hence all together

$$\left(x\frac{d}{dx}^n\right)\frac{1}{(1-x)^{a+1}} = \sum_{m=0}^{\infty} {m+a \choose m} m^n x^m$$

as wanted.

Exercise 6.6

$$S(N) = \sum_{n=N}^{\infty} p(c|\phi n) = \sum_{n=N}^{\infty} {n \choose c} \phi^c (1-\phi)^{n-c}$$

Let $1 - \phi = x$. Then the cth derivative $(x^n)^{(c)} = c! \binom{n}{c} x^{n-c}$ and

$$S(N) = \frac{\phi^c}{c!} \left(\frac{x^N}{1-x}\right)^{(c)}$$

This reproduces $S(0) = \frac{\phi^c}{c!} \frac{c!}{(1-x)^{c+1}} = \frac{1}{\phi}$ and generally gives, using the "higher derivative of product" rule $(fg)^{(c)} = \sum_{k=0}^c {c \choose k} f^{(c-k)} g^{(k)}$,

$$S(N) = \frac{\phi^c}{c!} \sum_{k=0}^c {c \choose k} (c-k)! (1-x)^{-(c-k+1)} \frac{N!}{(N-k)!} x^{N-k} = \frac{1}{\phi} \sum_{k=0}^c {N \choose k} \phi^k (1-\phi)^{N-k}$$

This is a subsum of binomial distribution and one can apply for large N the Poisson approximation to binomial:

$$\binom{N}{k} \phi^k (1 - \phi)^{N-k} \approx \frac{\exp\{-N\phi\}(N\phi)^k}{k!}$$

For large N either before or after approximating one sees that the term is with k=c dominates all the other ones, so indeed

$$\frac{S(N)}{S(0)} = \sum_{k=0}^{c} {N \choose k} \phi^k (1 - \phi)^{N-k} \approx \frac{\exp\{-N\phi\}(N\phi)^c}{c!}$$

as wanted

Pluggin in $\phi=0.1, c=10, N=270$ gives $\frac{S(N)}{S(0)}\approx 10^{-4},$ etc.

6.121, 6.122

$$p(n_1|I_J) = \int_0^s \frac{1}{s} \frac{s^{n_1} \exp\{-s\}}{n_1!} ds = \frac{1}{n_1} = \int_0^s \frac{s^{n_1 - 1} \exp\{-s\}}{(n_1 - 1)!} ds = \frac{1}{n_1}$$

With help of 6.108 we also compute:

$$p(c_1|I_J) = \sum_n p(c_1|n_1I_J)p(n_1|I_J) = \sum_{n_1=c_1}^{\infty} \binom{n_1}{n_1-c_1} \phi^{c_1} (1-\phi)^{n_1-c_1} \frac{1}{n_1}$$

$$= \frac{\phi^{c_1}}{c_1} \sum_{n_1=c_1}^{\infty} \binom{n_1-1}{c_1-1} (1-\phi)^{n_1-c_1} = \frac{\phi^{c_1}}{c_1} \sum_{m=0}^{\infty} \binom{m+c_1-1}{m} (1-\phi)^m =$$

$$= \frac{\phi^{c_1}}{c_1} \frac{1}{\phi^{c_1}} = \frac{1}{c_1}$$

And so

$$p(n_1|c_1\phi I_J) = p(n_1|I_J)\frac{p(c_1|n_1\phi I_J)}{p(c_1|\phi I_J)} = \frac{c_1}{n_1}p(c_1|n_1\phi I_J)$$

confirming 6.121.

Now

$$p(n_1|c_1\phi I_J) = \frac{c_1}{n_1} \binom{n_1}{n_1 - c_1} \phi^{c_1} (1 - \phi)^{n_1 - c_1} = \binom{n-1}{c_1 - 1} \phi^{c_1} (1 - \phi)^{n_1 - c_1}$$

So \hat{n}_J is found by Jaynes' favorite method of equating

$$\binom{n-2}{c_1-1} \phi^{c_1} (1-\phi)^{n_1-1-c_1} = \binom{n-1}{c_1-1} \phi^{c_1} (1-\phi)^{n_1-c_1}$$

$$(n-c_1+1) = (n-1)(1-\phi)$$

$$n\phi = \phi + c_1 - 1$$

$$\hat{n}_J = \frac{c_1 - 1 + \phi}{\phi}$$

And, finally, the expectation is (again, using 6.108)

$$\sum_{n_1=c_1}^{\infty} n_1 \frac{c_1}{n_1} \binom{n_1}{n_1 - c_1} \phi^{c_1} (1 - \phi)^{n_1 - c_1} =$$

$$c_1 \phi^{c_1} \sum_m {m+c_1 \choose m} (1-\phi)^m = \frac{c_1}{\phi}$$

as wanted.

6.140

Formula 6.112 says $p(n_1|\phi c_1I_A) = \binom{n_1}{c_1}\phi^{c_1+1}(1-\phi)^{n_1-c_1}$ and 6.116 says $E_A[n_1] = \frac{c_1+1-\phi}{\phi} = c_1 + \frac{(c_1+1)(1-\phi)}{\phi}$.

Continuing in same vein

$$E_A[(n_1 - c_1)(n_1 - c_1 - 1)] =$$

$$\phi^{c_1+1}(1 - \phi)^2(c_1 + 1)(c_1 + 2) \sum_{n_1} {n_1 \choose n_1 - c_1 - 2} (1 - \phi)^{n_1 - c_1 - 2} =$$

$$\phi^{c_1+1}(1 - \phi)^2(c_1 + 1)(c_1 + 2) \frac{1}{\phi^{c_1+3}} = (c_1 + 1)(c_1 + 2) \frac{(1 - \phi)^2}{\phi^2}$$

$$E[(n - c_1)^2] = (c_1 + 1)(c_1 + 2) \frac{(1 - \phi)^2}{\phi^2} + \frac{(c_1 + 1)(1 - \phi)}{\phi}$$

$$var(n_1) = var(n_1 - c_1) = E[(n - c_1)^2] - E[(n - c_1)]^2 =$$

$$(c_1 + 1) [\frac{(1 - \phi)^2}{\phi^2} + \frac{(1 - \phi)}{\phi}]$$

$$= (c_1 + 1) \frac{(1 - \phi)}{\phi^2}$$

as wanted.

6.141

Formula 6.129 says

$$p(n_1|\phi c_2 c_1 I_B) = \binom{n_1 + c_2}{c_1 + c_2} \left(\frac{2\phi}{1 + \phi}\right)^{c_1 + c_2 + 1} \left(\frac{1 - \phi}{1 + \phi}\right)^{n_1 - c_1}$$

and 6.133 says
$$E_B[n_1] = \frac{c_1 + c_2 + 1 - \phi}{2\phi} + \frac{c_1 - c_2}{2} = c_1 + (c_1 + c_2 + 1) \left(\frac{1 - \phi}{2\phi}\right)$$

$$E[(n_1-c_1)(n_1-c_1-1)] =$$

$$\left(\frac{2\phi}{1+\phi}\right)^{c_1+c_2+1} \left(\frac{1-\phi}{1+\phi}\right)^2 (c_1+c_2+1)(c_1+c_2+2) \sum_{m=n_1-c_1-2=0}^{\infty} {m+(c_1+c_2+2) \choose m} \left(\frac{1-\phi}{1+\phi}\right)^m$$

$$\left(\frac{2\phi}{1+\phi}\right)^{c_1+c_2+1} \left(\frac{1-\phi}{1+\phi}\right)^2 (c_1+c_2+1)(c_1+c_2+2) \left(\frac{2\phi}{1+\phi}\right)^{-(c_1+c_2+3)}$$

$$= (c_1 + c_2 + 1)(c_1 + c_2 + 2) \left(\frac{1 - \phi}{2\phi}\right)^2$$

$$E[(n_1 - c_1)^2] = (c_1 + c_2 + 1)(c_1 + c_2 + 2)\left(\frac{1 - \phi}{2\phi}\right)^2 + (c_1 + c_2 + 1)\left(\frac{1 - \phi}{2\phi}\right)^2$$

$$var(n_1) = var(n_1 - c_1) = E[(n_1 - c_1)^2] - E[(n_1 - c_1)]^2$$

$$(c_1 + c_2 + 1)\left[\left(\frac{1-\phi}{2\phi}\right)^2 + \left(\frac{1-\phi}{2\phi}\right)\right] = (c_1 + c_2 + 1)\frac{1-\phi^2}{4\phi^2}$$

as wanted.

6.142

We have from 6.121 $p(n_1|c_1\phi I_J)=\frac{c_1}{n_1}\binom{n}{c_1}\phi^{c_1}(1-\phi)^{n_1-c_1}=\binom{n-1}{c_1-1}\phi^{c_1}(1-\phi)^{n_1-c_1}$ and from 6.122 also $E_J[n_1]=\frac{c_1}{\phi}$

We get

$$E[n(n+1)] = c_1(c_1+1)\phi^{c_1} \sum_{n_1=c_1}^{\infty} {n_1+1 \choose c_1+1} (1-\phi)^{n_1-c_1} =$$

$$c_1(c_1+1)\phi^{c_1}\sum_{m=n_1-c_1=0}^{\infty} {m+c_1+1 \choose m} (1-\phi)^m = \frac{c_1(c_1+1)}{\phi^2}$$

so

$$var(n_1) = \frac{c_1}{\phi^2} - \frac{c_1}{\phi} = \frac{c_1(1-\phi)}{\phi^2}$$

as wanted.

Exercise 6.8

TO DO

Exercise 6.9

TO DO