Problem 1 (6 points) For each of the following expressions, explain when cancellations can occur and how to avoid them.

- (a) $\sqrt{x+1} 1$
- (b) $(e^x e^{-x})/2$
- (c) $(1 \cos x) / \sin x$

Problem 2 (4 points) The following Matlab program

```
x = 1;
while (x+1)-x == 1
    x = 2*x;
end
x
```

outputs 9.007199254740992e+15. Explain why this loop terminates and explain how this value is produced.

Problem 3 (4 points) Consider $f(x) = x \sin(x)$. Assume that you are given values for f(x) at $x = 0, \pi/8, \pi/4, 3\pi/8$. Denote by p(x) the polynomial interpolating these values. Derive a bound for |f(x) - p(x)| for any $x \in [0, 3\pi/8]$.

Problem 4 (4 points) Let A be an $n \times n$ nonsingular matrix and let B be an $n \times m$ matrix, where $m \ge 1$. How can you compute efficiently an $n \times m$ matrix X such that

$$AX = B$$

What is the complexity of your approach in big-O notation?

Problem 5 (4 points) Let x and y be floating-point numbers. Assume that you have the \log and \exp functions available and you want to compute x^y using them. That is, you compute x^y by evaluating the expression $e^{y \ln x}$ using $\exp(y*\log(x))$, which is x^y in exact arithmetic.

Assume that $f(\log(x)) = (\ln x)(1 + \epsilon)$, where $|\epsilon| \le \eta$ for some η . Ignore the errors in the multiplication and the exp function, that is, assume they produce exact results.

What is the relative error in $\exp(y * \log(x))$. Can this error be large and why?