
Optical Thermal Mechanical Model

Jay Ambrose

FAME TIM
LMMS Advanced Technology Center
Palo Alto, CA
October 25-26, 2000

Topics

- Optical Thermal Mechanical Model Status
- Overall Instrument Thermal Design Status
- Sunshield Blanket - Is it Needed?

OTM Model Objectives

- Support flowdown of instrument optical performance requirements to thermal gradient/stability requirements on individual components and bench structure
 - Requires facsimile of detailed thermal control scheme
 - Evolve robust thermal design approach in parallel

Approach

- Simplified TMG and TSS models developed to support thermal design analysis cases
- Evaluate transient orbital heating effects
- Assess preliminary heater power requirements for new instrument layout
- Develop detailed thermal model from IDEAS OTM FEM by Larry Sokolsky

OTM Thermal Model

External Thermal Model

Sunshield based on 45° sun-angle

OTM Thermal Model

OTM Thermal Model

OTM Model Status

- Preliminary thermal results obtained and fed into structural analysis
- ‘Place-holder’ displacements calculated for closing loop (not checked out yet)
- Meetings held to discuss handoff of results to ray-tracing analysis by Optics group
- Expect several iterations to allow refinement of thermal/structural design for better instrument performance

Preliminary Displacement Calculation - Optical Bench

RESULTS: 3- B.C. 4,DISPLACEMENT_3,RESTRAINT SET 1
DISPLACEMENT - MAG MIN: 1.48E-07 MAX: 3.40E-06
DEFORMATION: 3- B.C. 4,DISPLACEMENT_3,RESTRAINT SET 1
DISPLACEMENT - MAG MIN: 1.48E-07 MAX: 3.40E-06
FRAME OF REF: PART

VALUE OPTION:ACTUAL

Preliminary Displacement Calculation - Optics

RESULTS: 3- B.C. 4,DISPLACEMENT_3,RESTRAINT SET 1
DISPLACEMENT - MAG MIN: 3.35E-07 MAX: 3.18E-06
DEFORMATION: 3- B.C. 4,DISPLACEMENT_3,RESTRAINT SET 1
DISPLACEMENT - MAG MIN: 3.35E-07 MAX: 3.18E-06
FRAME OF REF: PART

VALUE OPTION:ACTUAL

Orbit Heating - Simplified Models

Simplified models used to facilitate rapid evaluation of thermal design features

Single Orbit Point-

Account for 40 minute period spin

Full Orbit-

Account for solar/earth shadowing and eclipse

Predicted orbital heating transients will be compared with 'full' orbit model

Orbit Heating - Full Model

First-Cut Panel Heater Requirements

Orbit Heating - Average Absorbed IR, Eclipse Orbit

Time = 18 hrs, Max. IR = 2.3
 W/m^2

ELEMENT INFRARED ABSORBED FLUXES, T= 2.369E+01
4-ELEM IR ABS FLUX, T= 2.369E+01
TIME: 23.688
AT FLUX - MAG MIN: 0.00 MAX: 1.39

Time=12 hrs, Max. IR = 3.1
 W/m^2

Time = 0 hrs, Max. IR = 3.41
 W/m^2

Time=6 hrs, Max. IR = 1.7 W/m^2

Orbit Heating - Average Absorbed Albedo, Eclipse Orbit

CORPORATION
LOCKHEED MARTIN

Time = 18 hrs, Max. Albedo = 0.8 W/m²

Time = 12 hrs, Max. Albedo = 2.3 W/m²

Time = 6 hrs, Max. Albedo = 0.5 W/m²

Time = 0 hrs, Max. Albedo = 0 W/m²

Orbit Heating - Absorbed IR, Single Point in Orbit

Time = 30 min, Max. IR = 1.7
W/m²

100% 100% 100%

ED HEAT FLUX = MAX MIN: 0.00 MAX: 1.39

VALUE
SHEL

Time=20 min, Max. IR = 2.1
W/m²

Time = 0 min, Max. IR = 2.15
W/m²

Time = 10 min, Max. IR = 1.8 W/m²

Orbit Heating - Absorbed Albedo, Single Point in Orbit

LOCKHEED MARTIN

Time = 30 min, Max. Albedo = 0.5 W/m²

Time = 20 min, Max. Albedo = 2.7
W/m²

Time = 0 min, Max. Albedo = 0
m²

Time = 10 min, Max. Albedo = 0.5 W/m²

Quasi-Steady Temperatures Time = 6 hrs

RESULTS: 13-NODE TEMP, T= 2.160E+04
Timestep: 0 TIME: 21600.0
TEMPERATURE - MAG MIN:-192.89 MAX: 73.95

NODE TEMPERATURES, T= 2.160E+04

VALUE OPTION:ACTUAL

Thermal Design Findings

- Thermal environment investigated using updated instrument configuration
- Calculated heater power requirements are quite similar to those from preliminary thermal model results
- Dissipation of heat from the electronic boxes may be difficult to fully utilize in current configuration - will require additional design study to develop a good solution
- Effect of earthshine and albedo variations are quite small, over a single rotation and a full orbit (without eclipse)
- Mirror temperature gradients found to be extremely stable
- Mirror temperature gradients for highly lightweighted optics are significantly larger than others

Sunshield Blanketing

- Blanketing of sunshield thought to be a more robust thermal design from viewpoint of instrument environment - since sunshield dominates instrument IR loading
- Simplified full-orbit transient model run to investigate effect of sunshield blanket
- Worst-case conditions assumed to be during eclipse orbit
- Thermal gradient change on compound mirror found to approximately double when blanket removed from sunshield
- On the other hand, required instrument heater power approximately 25 W less without sunshield blanket

Average Sunshield Temperatures

Compound Mirror Gradients

