

East West University Department of Computer Science and Engineering Course Outline Spring 2018 Semester

Course Information

Course: CSE301 Database Systems

Credit and Teaching Scheme:

	Theory	Laboratory	Total
Credits	3	1	4
Contact	3 Hours/Week for 13	2 Hours/Week for 13	5 Hours/Week for 13
Hours	Weeks	Weeks	Weeks

Prerequisite: CSE 205 Discrete Mathematics

Instructor Information

Instructor: Mohammad Rezwanul Huq, PhD

Assistant Professor, Department of Computer Science and Engineering

Office: Room # 629

Tel. No.: 09666775577 (hunting) ext. 372

E-mail: mrhuq@ewubd.edu

URL: http://www.ewubd.edu/~mrhuq/

TA: TBA

Class Routine and Office Hour

Day	08:30-10:00	10:10-11:40	11	:50-01:20	01:30-03:00	03:10-04:40	04:50-06:20
Sunday	Office Hour	CSE 301 (2) AB1-802		SE 464 (1) Room 222	Office Hour	CSE 301 (3) AB2-204	
Monday					Office Hour	CSE 301 (4) AB1-802	CSE 301 (3) LAB Room 529 (till 18:50)
Tuesday	Office Hour	CSE 301(2) AB1-802		SE 464 (1) AB2-204	Office Hour	Office Hour	
Wednesday					Office Hour	CSE 301 (4) AB1-802	CSE 301 (4) LAB Room 530 (till 18:50)
Thursday		CSE 301 (2) LAB Room 534 (till 12:10)			Office Hour	CSE 301 (3) Room 213	

Course Objective

This course introduces the fundamental concepts and practices of designing and implementing database system. It also enables the student to design and perform complex query operations on relational databases. It builds the capability of optimizing the databases efficiently by applying different techniques. Knowledge of this course will be needed as prerequisite knowledge for future courses such as CSE 411 Software Engineering and Information System Design, CSE 435 Software Quality Assurance, CSE 436 Multimedia Design and Development.

Course Outcomes (COs)

After completion of this course students will be able to:

	1
CO1	Understand basic concepts of relational database, construct and interpret algebraic
	expressions to represent relations.
CO2	Perform and organize different query operations for data manipulation.
CO2	D: 1:00 1-11
CO3	Discuss, use and examine different models and optimization techniques to design
	efficient relational database system.
CO4	Use and examine software tools, demonstrate skills and write report to design, build and
	test real life database.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	X											
CO2	X	X										
CO3	X	X	X									
CO4		X	X		X				X	X		X

Program Outcomes (POs)

PO1	Computer Science and Engineering Knowledge: Apply knowledge of mathematics,
	natural sciences, algorithm, and hardware design to the solution of complex problems of
	different areas of Computer Science and Engineering such as Software Systems,
	Information Systems, Intelligent Systems, Hardware Systems, and Networking Systems.
PO2	Problem Analysis: Identify, formulate, research literature, and analyse complex
	Computer Science and Engineering problems reaching substantiated conclusions using
	principles of mathematics, natural sciences, algorithm, and hardware design.
PO3	Design/Development of Solutions: Design solutions for complex Computer Science and
	Engineering problems and design systems, components, or processes that meet specified
	needs with appropriate consideration for realistic constraints.
PO4	Investigation: Conduct investigation into complex Computer Science and Engineering
	problems using research based knowledge and research methods including design of
	experiments, analysis and interpretation of data, and synthesis of information to provide
	valid conclusions.

PO5	Modern Tool Usage: Create, select and apply appropriate techniques, resources, and
	modern Software Engineering, Hardware Engineering, and Information Technology
	tools to complex Computer Science and Engineering activities, with an understanding of
	the limitations.
PO6	Computer and Society: Apply reasoning informed by contextual knowledge to assess
	societal, legal and cultural issues and the consequent responsibilities relevant to
	professional Computer Science and Engineering practice.
PO7	Contemporary Issues and Sustainability: Understand the impact of professional
	Computer Science and Engineering solutions in societal and contemporary contexts and
	demonstrate knowledge of and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of computing practice.
DOO	
PO9	Individual Work and Team Work: Function effectively as an individual, and as a
	member or leader in diverse teams and in multi-disciplinary settings.
PO9 PO10	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and
	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as
	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make
PO10	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project Management: Demonstrate knowledge and understanding of Computer Science
PO10	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project Management: Demonstrate knowledge and understanding of Computer Science and Engineering and management principles and apply these to one's own work, as a
PO10	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project Management: Demonstrate knowledge and understanding of Computer Science and Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO10	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project Management: Demonstrate knowledge and understanding of Computer Science and Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. Life-Long Learning
PO10	member or leader in diverse teams and in multi-disciplinary settings. Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project Management: Demonstrate knowledge and understanding of Computer Science and Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Mapping of Course Outcomes (COs) to Knowledge Profile

CO	K1	K2	K3	K4	K5	K6	K7	K8
CO1	X	X						
CO2	X	X						
CO3	X	X	X					
CO4	X	X	X		X			

Knowledge Profile

	Attribute
K1	A systematic, theory-based understanding of the natural sciences applicable to Computer
	Science and Engineering.
K2	Conceptually-based mathematics, numerical analysis, statistics and formal aspects of
	computer and information science to support analysis and modeling applicable to Computer
	Science and Engineering.
K3	A systematic, theory-based formulation of engineering fundamentals required in Computer
	Science and Engineering.
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of
	knowledge for the accepted practice areas in Computer Science and Engineering; much is at
	the forefront of Computer Science and Engineering.

K5	Knowledge that supports engineering design in a practice area of Computer Science and
	Engineering.
K6	Knowledge of engineering practice (technology) in the practice areas in the Computer
	Science and Engineering.
K7	Comprehension of the role of engineering in society and identified issues in engineering
	practice in Computer Science and Engineering: ethics and the professional responsibility of
	an engineer to public safety; the impacts of engineering activity: economic, social, cultural,
	environmental and sustainability.
K8	Engagement with selected knowledge in the research literature of Computer Science and
	Engineering.

Complex Engineering Problems and Activities

Attributes of Complex Engineering Problems Involved

CO	PO	Attributes
CO1	PO1	Range of conflicting requirements, Depth of knowledge
		required
CO2	PO1, PO2	Range of conflicting requirements, Depth of analysis required,
		Familiarity of issues
CO3	PO1, PO2, PO3	Range of conflicting requirements, Depth of analysis required,
		Familiarity of issues

Attributes of Complex Engineering Activities Involved

CO	PO	Attributes
CO4 (Project)	PO5, PO10	Range of resources, Level of interaction, Familiarity

Descriptions of Range of Complex Engineering Problem Solving

Attribute	Complex Problems
Range of conflicting	Involve wide-ranging or conflicting technical, engineering and
requirements	other issues
Depth of analysis required	Have no obvious solution and require abstract thinking and
	originality in analysis to formulate suitable models.
Depth of knowledge required	Requires research-based knowledge, much of which is at, or
	informed by, the forefront of Computer Science and
	Engineering and that allows a fundamental-based, first-
	principles analytical approach.
Familiarity of issues	Involve infrequently encountered issues.
Extent of applicable codes	Are outside problems encompassed by standards and codes of
	practice for professional Computer Science and Engineering.
Extent of stakeholder	Involve diverse groups of stakeholders with widely varying
involvement and level of	needs.
conflicting requirements	
Consequences	Have significant consequences in a range of contexts.
Interdependence	Are high-level problems that include many component parts or
	sub-problems.

Complex Engineering Activities

Attribute	Complex Problems
Range of resources	Involve the use of diverse resources (for this purpose, resources
	include people, money, equipment, materials, information and
	technologies)
Level of interaction	Require resolution of significant problems arising from interactions
	between wide-ranging or conflicting technical, engineering or other
	issues
Innovation	Involve creative use of Computer Science and Engineering
	principles and research-based knowledge in novel ways
Consequences to society	Have significant consequences in a range of contexts, characterized
and the environment	by difficulty of prediction and mitigation
Familiarity	Outside problems encompassed by standards and codes of practice
	for professional Computer Science and Engineering

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching- Learning Method	СО		Mark of Cognitive Learning Levels				Mark of COs	Exam (Mark)
			C1	C2	C3	C4	C5		
Introduction to Database Management Systems	Lecture, Class Discussion, Discussion Outside Class with Instructor/ Teaching Assistant	CO1	2					2	Midterm Exam I (15)
Introduction to the Relational Model	Do	CO3		1	2			3	
Writing Basic and DDL and DML Queries using SQL (Structured Query Language)	Do	CO2			7			7	
Writing Basic Relational Algebra	Do	CO1			3			3	
Intermediate and Advanced SQL Queries (SELECT- PROJECT-JOIN, SET OPERATIONS,	Do	CO2				5		5	Midterm Exam II (15)

AGGREGATE etc.)									
Writing advanced Relational Algebra Expressions	Do	CO1				3		3	
Designing a Database using E-R Model	Do	CO3					7	7	
Database Normalization based on Functional Dependency, Boyce-Codd Normal Form	Do	CO3		2		6		8	Einal Evon
Database Indexing and Hashing Techniques	Do	CO3			5			5	Final Exam (20)
Transaction Management	Do	CO1	1	1	3			5	
Concurrency Control Protocols	Do	CO2		2				2	

Experiment	Teaching-Learning Method	CO	Mark of Psychomotor		CO Mark		
			Le	earnin	g Lev	els	
			P1	P2	P3	P4	
Introduction to oracle,	Preparing Pre-Lab Report,	CO3	0.5	1			1.5
SQL, simple DDL	Lab Experiment and Result						
Commands	Analysis, Preparing Post-						
	Lab Report						
Basic query pattern,	Do	CO3	0.5	1			1.5
single row function,							
Simple DML queries							
Introduction to group by	Do	CO3	0.5	1			1.5
clause, aggregate function							
Introduction to sub-query,	Do	CO2	0.5	1			1.5
Including constraints							
Joining Multiple Tables,	Do	CO2	0.5	1			1.5
Introduction to view &							
sequence							
Designing a Database	Do	CO3	0.5	1			1.5
using an ER model							
Transforming an ER	Do	C03	0.5	1			1.5

model into a Relational							
Schema							
User Access Control &	Do	CO2	0.5	1			1.5
Project template							
discussion							
Lab Exam	Individual Lab Exam	CO1	1	5			6
		CO2					
		CO3					
Lab Project including	Team-based moderately	CO4		2	2.5	2.5	7
Report and Presentation	complex Lab Project with						
	report writing, and						
	oral/poster presentation						
Total			5	15	2.5	2.5	25

*Notes:

- Late assignments suffer a penalty rate of 20% per day, up to 5 days (weekends count towards the 5 days). Assignments that are more than 5 days late are penalized by 100%.
- Group-based assignment must be done in group of 3, **STRICTLY NO COPYING** from other groups.

Learning Taxonomy: Cognitive Domain

Cognit	ive Domain		
Level	Category	Meaning	Keywords
C1	Knowledge	Ability to observe and remember	Arrange, Underline, Label,
		previously learned information;	Name, Identity, Enumerate,
		knowledge of specific facts, terms,	List, State, Indicate, Select,
		concepts, principles, ideas, events,	Define, Read, Describe,
		places etc.; mastery of subject	Record.
		material.	
C2	Comprehension	Ability to understand information	Infer, Review, Explain, Report,
		and grasp material; translating	Rewrite, Estimate, Distinguish,
		knowledge from one form to	Describe, Trace, Identity,
		another; interpreting, comparing	Classify, Indicate, Discuss,
		and contrasting material; predicting	Recognize, Translate, Give
		consequences and future trends.	examples, Defend, Summarize,
			Paraphrase.
C3	Application	Ability to use information, learned	Change, Apply, Manipulate,
		material, methods, concepts,	Teach, Illustrate, Use, Report,
		theories, principles, laws and	Determine, Solve, Construct,
		theories in new situations; problem	Write, Interpret, Organize,
		solving using required knowledge	Provide, Employ, Investigate,
		or skills.	Translate.
C4	Analysis	Ability to break down material and	Analyze, Solve, Test, Debate,
		recognition of organization	Compare, Contrast, Diagram,

		structure; identification of	Determine, Criticize, Prioritize,
		components and relationships	Categorize, Experiment, Sub-
		between components; recognitions	divide, Calculate, Questions,
		of patterns and hidden meanings.	Illustrate, Appraise, Relate,
		or patterns and midden meanings.	7 11 7
	G 4 1		Examine.
C5	Synthesis	Ability to combine parts or apply	Assemble, Combine, Propose,
		prior skills and knowledge to	Set Up, Compile, Devise,
		produce a new whole; integrate	Compose, Adapt, Explain,
		ideas into a solution; generalize	Manage, Intervene, Arrange,
		from given facts; propose a plan of	Categorize, Reorganize,
		action; formulate new	Structure, Validate, Substitute,
		classification methods.	Generate, Integrate, Express,
			Perform, Plan, Prepare,
			Negotiate, Model.
C6	Evaluation	Ability to judge and assess the	Enumerate, Interpret, Predict,
		value of theories and presentation,	Attach, Reframe, Choose,
		based on their value, logic or	Evaluate, Estimate, Conclude,
		adequacy, for a given purpose;	Revise, Judge, Support,
		compare and make choices based	Compare, Measure, Critique,
		on reasoned argument; verify the	Decide, Defend, Rate, Grade,
		value of argument; verify the value	Criticize, Appraise, Contrast,
		of evidence; recognize subjectivity.	Justify, Assess, Score, Argue.

Psychomotor Domain

Level	Category	Meaning	Keywords
P1	Imitation	Copy action of another; observe	Relate, Repeat, Choose, Copy,
		and replicate.	Follow, Show, Identify, Isolate.
P2	Manipulation	Reproduce activity from	Copy, response, trace, Show,
		instruction or memory	Start, Perform, Execute,
			Recreate.
P3	Precision	Execute skills reliably;	Assemble, Implement,
		independent of help.	Organize, Calibrate,
			Demonstrate, Build, Perfect,
			Control, Complete, Measure.
P4	Articulation	Adapt and integrate expertise to	Modify, Master, Develop,
		satisfy a non-standard objective.	Adapat, Formulate, Coordinate,
			Combine, Solve, Integrate.
P5	Naturalization	Automated, unconscious mastery	Design, Rank, Manage,
		of activity and related skills at	Compose, Develop, Specify,
		strategic level.	Construct, Invent.

Overall Assessment Scheme

CO	Assessment Area
	Mark

Assessment Area	CO1	CO2	CO3	CO4	
Class Participation	1.25	1.25	1.25	1.25	5
Class Test/Quizzes	2.5	2.5	2.5	2.5	10
Midterm Exam - I	5	7	3		15
Midterm Exam -II	3	5	7		15
Final Exam	5	2	13		20
Assignments with report and	1.5	1.5	3.5	3.5	10
presentation					
Laboratory Experiments, Exam, and Lab	2	5	8	10	25
Project					
Total Mark	20.25	24.25	38.25	17.25	100

Student Learning Time (SLT)

Activity	Hours
Theory	
Contact Hours (3 Hours/Week × 13 Weeks)	39.0
Final Examination on 14th Week	1.5
Review Lessons and Preparation for Class Tests/Quizzes (3.5 Hours/Week × 13 Weeks)	45.5
Preparation for Exams (Midterm Exam I = 9, Midterm Exam II = 9, Final Exam = 9.5)	27.5
Carryout Assignment	6.5
Subtotal	120.0
Laboratory	
Lab Works (2 Hours/Experiment × 8 Experiment)	16.0
Lab Examination	2.0
Preparation for Lab Work and Writing Lab Reports (1 Hour/Experiment × 8	8.0
Experiment)	
Lab Project including Report and Presentation	14.0
Subtotal	40.0
Total	160.0

Teaching Materials/Equipment

Text Book:

Avi Silberschatz, Henry F. Korth, S. Sudarshan, *Database System Concepts*, Sixth Edition, McGraw-Hill, ISBN 0-07-352332-1

Reference Book:

Hector Garcia-Molina. Jeffrey D. Ullman and Jennifer Widom, *Database Systems: The Complete Book*, Stanford InfoLab (2nd edition)

Assignments:

Assignment description will be provided.

^{*} Lecture Slides and Lab Manuals will be made available to the students during the class.

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
97-100	A+	4.00	73-76	C+	2.30
90-96	A	4.00	70-72	С	2.00
87-89	A-	3.70	67-69	C-	1.70
83-86	B+	3.30	63-66	D+	1.30
80-82	В	3.00	60-62	D	1.00
77-79	B-	2.70	Below 60	F	0.00

Exam Dates

Section	Term I	Term II	Final
2	11 February 2018	11 March 2018	15 April 2018
3	08 February 2018	08 March 2018	12 April 2018
4	07 February 2018	07 March 2018	11 April 2018

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be **NO** make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor within 48hoursof the exam time. Proper supporting documents in favor of the reason of missing the exam have to be presented with the application.
- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hoursof the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange

an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.

- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheatingin exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.