27 - 960 MHz OOK/(G)FSK Transmitter SoC

MCU Features

- High-performance 8051
- Single instruction cycle (1T-8051)
- Up to 24 MIPS
- 8 kB RAM / 8 kB OTP
- Built-in 512 bits EEPROM
- 12 kB ROM (API function library)
- · Single-wire online simulation debugging interface
- Digital peripherals
- · Built-in AES-128 acceleration engine
- · True random number generator
- 1x UART
- 1x SPI
- 1x WDT
- 1x RTC (internal 32 kHz and external 32.768KHz)
- 2x 16-bit multifunction timer (supports PWM/CCP)
- 16x GPIO, all supporting interrupt-on-change and wake-up
- Analog peripherals
- Sub-1G transmitter module
- 3D low-frequency wake-up module
- 12-bit SAR-ADC, 100ksps, 12-ch
- 2x micro-power operational amplifier (LPOA)
- 2x high-speed low-power operational amplifier (HSOA)
- Built-in high speed 3 /12/ 24 MHz RC oscillator
- Built-in low-power 32 kHz RC oscillator
- Support for external 32.768 kHz crystal oscillator
- Code security
- Built-in multi-level program protection achieving high security
- Serial port (S3S interface) for programming with lock function

Low-power Features

- Operating temperature: 40 °C ~ + 85 °C
- Operating voltage: 2.0 3.6 V
 Shutdown current: 300 nA
 RTC mode current: 800 nA
- Low-power wake-up: 4.6 uA @ 125 kHz

Sub-1G Transmitter Features

- Operating frequency range: 27 960 MHz
- Modulation mode: OOK, G/FSK
- Data rate
- 0.5 40 kbps (OOK)
- 0.5 200 kbps (G/FSK)
- Output power: +13 dBm (Max.)
- Operating current: 18mA @+13 dBm, 433.92 MHz FSK
- Single-ended and high-efficient Class E high-frequency transmission PA
- PA ramping slope varying according to rate

3D Low-frequency Wake-up Features

- Operating frequency: 20 200 kHz
- Data rate: 1 8 kbps
- Supporting 1/2/3 channels
- Supporting programmable 8/16/24/32-bit matching sync word
- Supporting programmable 8/16-bit matching ID
- Wake-up sensitivity of 70 uVrms
- Supporting low-power listening mode (DutyCycle)
- Supporting digital RSSI with a dynamic range of 80 dB

Packaging

■ QFN32

Application

- Garage door remote control
- Remote access control system
- Consumer wireless remote control
- Smart home
- Home security
- Active RFID tags
- Wireless sensor network
- WM-Bus T1 mode

Description

Embedded with a 1T-8051 core, the CMT2168A is a low-power SoC RF transmitter enriched with below features.

- The chip series supports wireless transmission @
 960 MHz with OOK or (G)FSK modulation.
- 2. High-efficient single-ended PA with an adjustable output power range of 0~+13dBm, consuming only a current of 18 mA for +13dBm transmission.
- 3. 8 kB OTP program bank and 12 kB ROM (for API library storage).
- 4. With 1-wire online simulation function, users can download the target debugging code directly to the on-chip PRAM through the dedicated 1-wire debugger, achieving more convenient debugging comparing with the troublesome debugging of traditional OTP chip with no online simulation supporting and a specific simulator required.
- 5. Supporting built-in AES-128 accelerator, true random number generator (TRNG), and 32-bit serial number (ID), fit for remote or active RFID applications requiring encrypted transmission.
- 6. Supporting dual-clock operating architecture, namely, the system operating with the internal high-speed clock meanwhile the internal low-power RC oscillation or external 32.768 kHz crystal oscillator operating for periodical wake-up from low-power mode.
- 7. Built-in 12-bit high-precision and high-speed SAR-ADC, fit for wireless sensor acquisition scenarios.

QFN32 5 x 5 x 0.75 mm

Ordering Information

Model	Package	MOQ
CMT2168A-EQR	QFN32 T&R	3,000 pcs

Table of Contents

1	Elect	rical Specifications	4
	1.1	Recommended Operating Conditions	4
	1.2	Absolute Maximum Ratings	4
	1.3	Transmitter Specifications	5
	1.4	Oscillator Specifications	7
	1.5	EEPROM Specifications	8
	1.6	3D Low-frequency Wake-up Performance	
	1.7	High-speed Low-power Op Amplifier (HSOA) Performance	
	1.8	Micro-power Operational Amplifier (LPOA) Performance	10
	1.9	High-precision ADC Performance	
	1.10	Temperature Sensor Specifications	12
	1.11	Supply Voltage Detection Specifications	
	1.12	Constant Current Source Drive Specifications	
	1.13	Micro-power Regulator Specifications	
	1.14	DC Specifications	
	1.15	AC Specifications	
	1.16	Typical Performance of High-frequency Transmission	
2	Pin C	Description	17
3	Fund	tional Description	20
	3.1	High-performance 8051	21
	3.2	Sub-1G Transmission Module	21
	3.3	3D Low-frequency Receiving/waking-up Module	21
	3.4	High-performance Analog Front End (AFE)	21
4	Orde	ring Information	22
5		aging Information	
6	Top I	Marking	24
7	Rela	ted Documents	25
8	Revi	se History	26
9	Cont	acts	27

1 Electrical Specifications

If nothing else stated, all measurement results are obtained using the evaluation board CMT216xA-EM Rev001 under the conditions of VDD= 3.3 V, T_{OP} = 25°C, F_{RF} = 433.92 MHz, matching to 50 Ω impedance and +10 dBm output power.

1.1 Recommended Operating Conditions

Table 1. Recommended Operating Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	VDD	Temperature range is -40°C ~ +85°C	2.0		3.6	V
Operating temperature	T _{OP}		- 40		+ 85	$^{\circ}$
Supply voltage slope			1			mV/us

1.2 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings [1]

Parameter	Symbol	Condition	Min.	Тур.	Max.
Supply voltage	VDD		-0.3	3.6	V
Interface voltage	VIN		-0.3	VDD + 0.3	V
Junction temperature	TJ		-40	125	$^{\circ}$ C
Storage temperature	TSTG		-50	150	$^{\circ}$ C
Soldering temperature	TSDR	Lasts for at least 30 seconds		255	$^{\circ}$
ESD rating ^[2]		Human body model (HBM)	-2	2	kV
Latch-up current		@ 85°C	-100	100	mA

Notes:

- [1]. Exceeding the Absolute Maximum Ratings may cause permanent damage to the equipment. This value is a pressure rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to absolute maximum ratings for extended periods of time, it may affect equipment reliability.
- [2]. The CMT216xA is a high performance RF integrated circuit. The operation and assembly of this chip should only be performed with good ESD protection.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent performance degradation or loss of functionality.

1.3 Transmitter Specifications

Table 3. Transmitter Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
	_		27		480	MHz	
Frequency range	F _{RF}	HXOSC connecting 26 MHz crystal oscillator	630		960	MHz	
		HXOSC connecting 26 MHz crystal oscillator					
Data rate	DR	HXOSC connecting 26 MHz crystal oscillator					
Output power range	Pout	Single-ended PA mode	0		+13	dBm	
		630 ~ 960 MHz	1		300	kHz	
FOX (v. v. v. v.		315 ~ 480 MHz	0.5		150	kHz	
	F _{DEV}	210 ~ 320 MHz	0.33		100	kHz	
deviation range		160 ~ 240 MHz	0.25		75	kHz	
		105 ~ 160 MHz	0.17		50	kHz	
Output power step	P _{STEP}			1		dB	
Transmission startup time [1]	T _{PLL}	API tx_sym_prepare_for_transmission execution time		900		uS	
		0dBm		7.9		mA	
		+5dBm		10.0		mA	
Frequency range Data rate Output power range FSK frequency deviation range Output power step Transmission startup	I _{DD-315F}	+7dBm		11.4		mA	
		+10dBm		14.0		mA	
		+13dBm		17.0		mA	
		0dBm		8.0		mA	
		+5dBm		10.3		mA	
	I _{DD-434F}	+7dBm		11.8		mA	
		+10dBm		14.3		mA	
FSK transmission		+13dBm		20.6		mA	
current [2]		0dBm		9.2		mA	
		+5dBm		12.2		mA	
	I _{DD-868F}	+7dBm		13.8		mA	
		+10dBm		17.7		mA	
		+13dBm		23.5		mA	
		0dBm		9.1		mA	
		+5dBm		12.3		mA	
	I _{DD-915F}	+7dBm		13.7		mA	
		+10dBm		18.3		mA	
		+13dBm		25.0		mA	
		0dBm		6.5		mA	
OOK transmission		+5dBm		7.2		mA	
	I _{DD-4340}	+7dBm		7.8		mA	
Janone		+10dBm		8.5		mA	
		+13dBm		12.0		mA	

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		0dBm		6.8		mA
		+5dBm		8.0		mA
	I _{DD-868O}	+7dBm		8.9		mA
		+10dBm		10.5		mA
		+13dBm		13.7		mA
		0dBm 6.8 +5dBm 8.0 +7dBm 8.9 +10dBm 10.5		dBc/Hz		
Phase noise Harmonic output DOK adjusted extinction		200kHz frequency deviation		83		dBc/Hz
	PN ₄₃₄	400kHz frequency deviation		91		dBc/Hz
		600kHz frequency deviation		96		dBc/Hz
Dhaanain		1.2MHz frequency deviation		105		dBc/Hz
Phase noise		100kHz frequency deviation		-77		dBc/Hz
	PN ₈₆₈	200kHz frequency deviation		-79		dBc/Hz
		400kHz frequency deviation		-87		dBc/Hz
		600kHz frequency deviation		-91		dBc/Hz
		1.2MHz frequency deviation		-100		dBc/Hz
	IDD-8680 17dBm	2 nd harmonic @630MHz, +13dBm		< -45		dBm
	H3 ₃₁₅	3 nd harmonic @945MHz, +13dBm		< -45		dBm
Phase noise Harmonic output	H2 ₄₃₄	2 nd harmonic @867.84MHz, +13dBm		< -45		dBm
	H3 ₄₃₄	3 nd harmonic @1301.76MHz, +13dBm		< -45		dBm
Harmonic output	H2 ₈₆₈	2 nd harmonic @1736MHz,+13dBm		< -36		dBm
	H3 ₈₆₈	3 nd harmonic @2604MHz,+13dBm		< -36		dBm
	H2 ₉₁₅	2 nd harmonic @1830MHz,+13dBm		< -36		dBm
	H3 ₉₁₅	3 nd harmonic @2745MHz,+13dBm		< -36		dBm
OOK adjusted extinction ratio				60		dB
0	OBW ₃₁₅	A bandwidth of -20 dBc, RBW = 1kHz, SR = 1.2 kbps		6		kHz
Occupied bandwidth	OBW ₄₃₄	A bandwidth of -20 dBc, RBW = 1kHz, SR = 1.2 kbps		7		kHz

Notes

- [1]. This item already includes the crystal startup time.
- [2]. It includes the 8051 core current. HFOSC uses the internal 24 MHz high-speed RC as the clock source.
- [3]. A high/low duty cycle of 50% for baseband data.

1.4 Oscillator Specifications

Table 4. Oscillator Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Parameter
	Crystal frequency [1]	F _{HXOSC}			26		MHz
High-speed	Frequency precision [2]				±20		ppm
oscillating	Load capacitor	C _{HX-LOAD}			15		pF
frequency	Equivalent resistance	R _{HX-ESR}				60	Ω
	Startup time [3]	t _{HXOSC}			400		us
	Crystal frequency [1]	F _{LXOSC}			32.768		KHz
00 700 141	Frequency precision [2]						ppm
32.768 KHz	Load capacitor	C _{LX-LOAD}			9	12.5	pF
crystal oscillator	Equivalent resistance	R _{LX-ESR}			50	90	ΚΩ
	Startup time [3]	t _{LXOSC}		A	1		S
Internal high	RC oscillating frequency	F _{HF_RC}		3	24	24	MHz
speed RC oscillator	Frequency precision [4]				1		%
Internal 32 kHz	Oscillator frequency	F _{LP_RC}			32		kHz
RC oscillator	Frequency precision [4]				1		%

Notes:

- [1]. An external reference clock can be used to drive the XTAL pin directly through a coupling capacitor. It's required the peak-to-peak level of the external reference clock is between 0.3 and 0.7 V.
- [2]. It involves:(1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal frequency tolerance is subject to the bandwidth of the receiver and the RF error between the receiver and its paired transmitter.
- [3]. This parameter is crystal dependent to a large degree.
- [4]. Frequency precision is the value after calibration, which is related to environmental factors. Users can initiate calibration through calling the calibration API.

Rev0.7 | 7/27

www.cmostek.com

1.5 EEPROM Specifications

Table 5. EEPROM Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Do writing time	4	Call eeprom_write_words for [1]		14		ms/unit
Re- writing time	t _{EE-WR}	Call eeprom_set_dec_count [2]		42		ms
Number of		Call eeprom_write_words [1]	10,000	100,000		cycles
programming times		Call eeprom_set_dec_count [2]		1,000,000		cycles

Notes:

- [1]. The internal EEPROM is re-written by calling API eeprom_write_words for direct re-writing, and the operation address points to a 2-byte storage unit, namely, each unit is 2 bytes.
- [2]. The internal EEPROM is re-written by calling API eeprom_set_dec_count for enhanced re-writing. By applying Balanced Gray Code algorithm, it can endure more than 1,000,000 writing operations. It should be noted that the function is fixed to operating 3 units, namely, this field occupies 6 bytes with only the lower 22 bits data valid in the written value and the read value.

1.6 3D Low-frequency Wake-up Performance

Table 6. 3D-LF RX Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Low-frequency range	LF _{Range}	Operating frequency range	15	125	200	kHz
	Isingle_carrier_RC	Power consumption when single channel in operating (using internal RC clock for carrier detection)		4.6		uA
	I _{scan_carrier_RC}	Power consumption when multiple channels in operating		4.6		uA
	Isingle_snr_RC	Power consumption when single channel in operating (SNR detection)		5.7		uA
Operating	I _{scan_snr_} RC	Power consumption when multiple channels in operating		5.7		uA
current	Isingle_carrier_EXT	Power consumption when single channel in operating (using an external 32.768 kHz crystal clock for carrier detection)		4.8		uA
	I _{scan_carrier_EXT}	Power consumption when multiple channels in operating		4.8		uA
	I _{single_snr_EXT}	Power consumption when single channel in operating		5.9		uA
	I _{scan_snr_} EXT	Power consumption when multiple channels in operating		5.9		uA

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{RC_DECODE}	Power consumption when decoding (data output is not connected to load)		5.7		uA
	I _{150/300_} Fix_DC_RC	Fixed duty cycle mode, RX_time = 150 ms, Sleep_time = 300 ms		2.8		uA
	I _{150/600_} Fix_DC_RC	Fixed duty cycle mode, RX_time = 150 ms, Sleep_time = 600 ms		2.4		uA
	I _{5/10_Extend_RC}	Auto-extended duty cycle mode, Rx_time = 5 ms, Sleep_time = 10 ms		2.9		uA
	I _{5/20_Extend_RC}	Auto-extended duty cycle mode, Rx_time = 5 ms, Sleep_time = 20ms		2.5		uA
	I _{5/40_Extend_RC}	Auto-extended duty cycle mode, Rx_time = 5 ms, Sleep_time = 40 ms		2.2		uA
	I _{5/80_Extend_RC}	Auto-extended duty cycle mode, Rx_time = 5 ms, Sleep_time = 80 ms	X	2.0		uA
		Data rate of 1 kbps		65		uVrms
	S _{carrier}	Data rate of 2 kbps		65		uVrms
	carrier detection	Data rate of 4 kbps		70		uVrms
Compitivity.		Data rate of 8 kbps		80		uVrms
Sensitivity	S _{snr}	Data rate of 1 kbps		70		uVrms
	SNR detection	Data rate of 2 kbps		70		uVrms
	(SNR is set as 8	Data rate of 4 kbps		70		uVrms
	dB)	Data rate of 8 kbps		70		uVrms
Startup time [2]	T _{LF_STR}	3D-LF RX startup settling time		1		ms

Notes:

1.7 High-speed Low-power Op Amplifier (HSOA) Performance

Table 7. HSOA Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input offset voltage	Vos			±1		mV
Input offset voltage temperature drift	dV _{OS} /dT	-40 ∼ +85 °C		±3		uV/℃
Input offset current	Ios			±2		рА
Input bias current	I _B			±1		рА
Full temperature range input bias current	l _Β	-40 ∼ +85 ℃			±100	рА
Common mode input impedance	Z _{CM}			10 ¹³ 4		Ω pF

^{[1].} The startup time means the stabilization time dedicated for starting the 3D-LF module after the software initialization is completed.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Differential mode input impedance	Z_{DIFF}			10 ¹³ 2		Ω pF
Common mode input range	V_{CMR}		VSS-0.2		VDD+0.2	V
Common mode rejection ratio	CMRR		80	120		dB
Power supply rejection ratio	PSRR		70	90		dB
Large signal DC open loop gain	A _{OL}	0.3 V ≤ VOUT ≤ VDD-0.3	90	120		dB
Maximum output voltage swing	V _{SW}		VSS+0.05		VDD-0.05	V
Linear output voltage swing	V _{OVR}		VSS+0.2		VDD-0.2	V
Output short circuit current	I _{sc}	VDD = 2.2 V V _{BAT} = VDD = 3.3 V		±11 ±21	1110	mA
Gain bandwidth product	GBWP			3		MHz
Slew rate	SR			1.2		V/uS
Phase margin	PM		70	80		0
Input voltage noise	En	1 Hz - 10 kHz	611	12		u∨pp
Input voltage noise density	e _n	@ 1 kHz		160		nV/√ Hz
Quiescent Current	IQ			81		uA
Leakage current	I _{LEAKAGE}	Circuit is not in operating		0.35		nA
Settling time	T _{STAB}	The stabilization time of the analog circuit			5	uS

1.8 Micro-power Operational Amplifier (LPOA) Performance

Table 8. LPOA Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input offset voltage	Vos			±2		mV
Input offset voltage temperature drift	dV _{OS} /dT	-40 ∼ +85 °C		±3		uV/℃
Input offset current	I _{OS}			±2		pА
Input bias current	l _Β			±1		pА
Full temperature range input bias current	I _B	-40 ∼ +85 °C			±100	pА
Common mode input impedance	Z _{CM}			10 ¹³ 4		Ω pF
Differential mode input impedance	Z_{DIFF}			10 ¹³ 2		Ω pF
Common mode input range	V_{CMR}		VSS-0.2		VDD+0.2	V
Common mode rejection ratio	CMRR		75	115		dB
Power supply rejection ratio	PSRR		70	90		dB

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Large signal DC open loop gain	A _{OL}	0.3 V ≤ VOUT ≤ VDD-0.3	85	130		dB
Maximum output voltage swing	V_{SW}		VSS+0.05		VDD-0.05	V
Linear output voltage swing	V _{OVR}		VSS+0.2		VDD-0.2	V
Output short circuit current	I _{SC}	VDD = 2.2 V V _{BAT} = VDD = 3.3 V		±11 ±21		mA
Gain bandwidth product	GBWP			24		kHz
Slew rate	SR			10		V/mS
Phase margin	PM		70	80		o
Input voltage noise	E _n	1 Hz - 1k Hz		14		uVpp
Input voltage noise density	e _n	@ 1 kHz		345		nV/√Hz
Quiescent current	ΙQ			0.84		uA
Leakage current	I _{LEAKAGE}	Circuit is not in operating	2.0	0.32		nA
Settling time	T _{STAB}	The stabilization time of the analog circuit		100	200	uS

1.9 High-precision ADC Performance

Table 9. High-precision ADC Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Resolution	R _{ADC}			12		bit	
Effective number of bits	NOEB			10		bit	
Conversion input range	V _{AIN}		0		V_{REF}	V	
ADC clock frequency	f _{ADC}		0.5	1.0	2.0	MHz	
ADC total conversion time	t _{CONV}		16	16	25		
Sampling time [1]	t _{SAMP}		2	2	8	4/5	
Successive approximation conversion time [2]	t _{SAR}		13	13	16	1/F _{ADC}	
Data update time	t _{UPDATE}		1	1	1		
ADC data refresh rate	f _S	F _{ADC} = 1 MHz		62.5		kHz	
Stabilization time [3]	t _{STAB}				10	uS	
Offset error	Eos	F _{ADC} = 1 MHz		±4		LSB	
Gain error	E _G	F _{ADC} = 1 MHz		±4		LSB	
Integral nonlinearity error	INL	F _{ADC} = 1 MHz		±3		LSB	

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Differential nonlinearity error	DNL	F _{ADC} = 1 MHz		±2		LSB
ADC reference voltage						
Regulator output				V_{DDA}		V
Bandgap reference	V_{REF}			1.2		V
External input reference [4]		Input from B6 pin	1.0		V_{DDA}	
Supply voltage range	V_{BAT}		2.0		3.6	V
Operating voltage range	V_{DDA}		2.0	2.2	3.6	>
Operating current	I _{ADC}	V _{DDA} = 2.2 V		220		uA
Power efficiency	P _E			7.6		pJ/Conv
Leakage current	I _{LEAKAGE}			2.2	V	nA

Notes:

- [1]. The sampling time can be configured by software. See AN281 CMT216xA ADC and AFE User Guide or CMT216xA User Guide for details.
- [2]. The successive approximation conversion time can be configured by software. See AN281 CMT216xA ADC and AFE User Guide or CMT216xA User Guide for details.
- [3]. The stabilization time refers to the analog circuit stabilization time after power-on, which depends on the system design.
- [4]. The external input reference voltage must be at least 1.0 V, otherwise the circuit may not work properly.

1.10 Temperature Sensor Specifications

Table 10. Temperature Sensor Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Temperature measurement error [1]	T _{ERR}	VDD: 2.2 ~ 3.6 V TOP: -20 ~ +70 ℃		TBD		
remperature measurement entire	TERR	VDD: 2.2 ~ 3.6 V TOP: -40 ~ +125 °C		TBD		°C
Temperature sensor circuit establishing time	t _{STAB}				5	us

Notes:

[1]. Based on the average of two measurements.

1.11 Supply Voltage Detection Specifications

Table 11. Supply Voltage Detection Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Battery measuring error [1]	V _{ERR}		-50		+50	mV
Battery sensor circuit establishing time	t _{STAB}				5	us

Notes:

1.12 Constant Current Source Drive Specifications

Table 12. Constant Current Source Drive Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
D2 port constant current driver current ^[1]	I _{D2_DRV}		0		+250	mA
D2 port current output error range	I _{D2_ERR}	Full output range		+10		%
D3 port constant current driver current ^[1]	I _{D3_DRV}		0		+40	mA
D3 port current output error range	I _{D3_ERR}	Full output range		+10		%
Constant current source driver establishing time	t _{DRV_STAB}			5		uS

Notes:

1.13 Micro-power Regulator Specifications

Table 13. Micro-power Regulator Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output voltage	V_{REG_OUT}			2.2		V
Output drive current	I _{REG_OUT}				0.5	mA
Quiescent Current	I _{REG_Q}			2.3		uA
Setup time	t _{REG_STAB}				200	uS

^{[1].} Based on the average of two measurements.

^{[1].} The constant current source output current of D2 and D3 is adjustable. See AN281 CMT216xA ADC and AFE User Guide or CMT216xA User Guide for details.

1.14 DC Specifications

Table 14. DC Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		CLK_SYS_DIV=1, F _{SYSCLK} =24 MHz		2.15		mA
Active mode		CLK_SYS_DIV=2, F _{SYSCLK} =12 MHz		1.56		mA
operating current [1]	I _{AM_24}	CLK_SYS_DIV=4, F _{SYSCLK} =6 MHz		1.25		mA
(HFOSC = 24 MHz)		CLK_SYS_DIV=8, F _{SYSCLK} =3 MHz		1.09		mA
		CLK_SYS_DIV=16, F _{SYSCLK} =1.5 MHz		1.00		mA
		CLK_SYS_DIV=1, F _{SYSCLK} =12 MHz		1.22		mA
Active mode	I _{AM_12}	CLK_SYS_DIV=2, F _{SYSCLK} =6 MHz		0.91		mA
operating current (HFOSC = 12 MHz)		CLK_SYS_DIV=4, F _{SYSCLK} =3 MHz		0.75		mA
(5 5 5		CLK_SYS_DIV=8, F _{SYSCLK} =1.5 MHz		0.67		mA
Active mode operating current	1	CLK_SYS_DIV=1, F _{SYSCLK} =3 MHz		0.49		mA
(HFOSC = 3 MHz)	I _{AM_3}	CLK_SYS_DIV=2, F _{SYSCLK} =1.5 MHz		0.41		mA
Sleep mode (deep sleep)	I _{SDN}	Call sys_shutdown function, then LFOSC module is disabled		300		nA
Sleep mode (RTC)	I _{RTC}	Call sys_shutdown function, then the internal LFOSC module is enabled and the internal LPOSC (32 kHz) is selected.		800		nA
OTP code loading [2]	I _{LOAD}			4.6		mA

Notes:

^{[1].} The program runs the While(1) loop, and the GPIO has no load.

^{[2].} Charge Pump is enabled. See CUS_SYSCTL20 register description for details.

1.15 AC Specifications

Table 15. AC Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
High level output	V _{OH}	Load is 1 kΩ, VDD = 3.3 V	VDD-0.4			V
Low level output	V _{OL}	Load is 1kΩ, VDD = 3.3 V			0.4	V
	\/II.I	VDD = 3.3 V		0.7*VDD		V
High level input	VIH	VDD = 2.0 V		0.7*VDD		V
Laurianaliana	.,	VDD = 3.3 V		0.2*VDD	* _ ()	V
Low level input	V _{IL}	VDD = 2.0 V		0.2*VDD	X	V
Port leakage current	I _{LKG}	VDD = 2.0 V – 3.6 V		TBD		nA

1.16 Typical Performance of High-frequency Transmission

Figure 1. Phase Noise @ F_{RF} = 868 MHz, P_{OUT} = +13 dBm, un-modulated

Figure 2. Output Power Vs. Supply Voltage

 $F_{RF} = 433.92 \text{ MHz}, P_{OUT} = +13 \text{ dBm}$

2 Pin Description

Figure 3. CMT2168A QFN32 Pin Arrangement

Table 16. CMT2168A Pin Description

Pin#	Name	Туре		Description	
1	VPP/B1	Ю	B1	GPIO9, one of the general purpose GPIOs	
ı	VPP/B1	Α	VPP	OTP programming VPP, 6.5 V voltage input pin	
2	XTAL		Α	Crystal input pin, connect 26 MHz crystal to GND. See Section	
	XIAL		Λ	1.4 Oscillator Specifications for details.	
3	NC			Floating. Don't connect	
4	LFRX3	А		Low-frequency wake-up Z-axis antenna input pin	
5	LFRX2		A Low-frequency wake-up Y-axis antenna input pin		
6	LFRX1		Α	Low-frequency wake-up X-axis antenna input pin	
7	B0/1-Wire	Ю	В0	GPIO8, one of the general purpose GPIOs	
,	DO/ I-VVIIE	Ю	1-Wire	1-wire chip debugging line	
8	GND	А		Power ground	
9	TX		Α	Single-ended PA RF output pin	

Pin#	Name	Туре		Description
10	VDD		Α	Power supply input pin
		Ю	A1	GPIO1, one of the general purpose GPIOs
11	A1/ADC1/HSOA2+	Α	ADC1	ADC1, ADC sampling channel 1
		Α	HSOA2+	High-speed operational amplifier 2 positive input
		Ю	A2	GPIO2, one of the general purpose GPIOs
12	A2/ADC2/HSOA2-	Α	ADC2	ADC2, ADC sampling channel 2
		Α	HSOA2-	High-speed operational amplifier 2 negative input
40	4.0D//.IOO.4.0. O.L.T.	Α	ASP	No function
13	ASP/HSOA2_OUT	Α	HSOA2_OUT	High speed operational amplifier 2 output
		10	А3	GPIO3, one of the general purpose GPIOs
14	A3/ADC3/HSOA1+	Α	ADC3	ADC3, ADC sampling channel 3
		А	HSOA1+	High-speed operational amplifier 1 positive input
		Ю	A4	GPIO4, one of the general purpose GPIOs
15	A4/ADC4/HSOA1-	Α	ADC4	ADC4, ADC sampling channel 4
		Α	HSOA1-	High-speed operational amplifier 1 negative input
4.0	DOD//JOOAA OUT	Α	PSP	No function
16	16 PSP/HSOA1_OUT		HSOA1_OUT	High-speed operational amplifier 1 output
4-	47 401// 5040 61/7	Α	ASN	ADC11, ADC sampling channel 11
17	17 ASN/LPOA0_OUT		LPOA0_OUT	Micro-power operational amplifier 0 output
	18 A5/ADC5/LPOA0-	Ю	A5	GPIO5, one of the general purpose GPIOs
18		Α	ADC5	ADC5, ADC sampling channel 5
		Α	LPOA0-	Micro-power operational amplifier 0 negative input
		Ю	A6	GPIO6, one of the general purpose GPIOs
19	A6/ADC6/LPOA0+	Α	ADC6	ADC6, ADC sampling channel 6
		Α	LPOA0+	Micro-power operational amplifier 0 Positive Input
00	DON'I DOMA CLIT	Α	PSN	ADC12, ADC sampling channel 12
20	PSN/LPOA1_OUT	Α	LPOA1_OUT	Micro-power operational amplifier 1 output
		Ю	A7	GPIO7, one of the general purpose GPIOs
21	A7/ADC7/LPOA1-	A	ADC7	ADC7, ADC sampling channel 7
		Α	LPOA1-	Micropower operational amplifier 1 negative input
		10	В7	GPIO15, one of the general purpose GPIOs
22	B7/ADC8/LPOA1+	Α	ADC8	ADC8, ADC sampling channel 8
		Α	LPOA1+	Micro-power operational amplifier 1 positive input
20	DO/A DOS	Ю	B6	GPIO14, one of the general purpose GPIOs
23	B6/ADC9	Α	ADC9	ADC9, ADC sampling channel 9
0.4	DOM/DEC. OUT	А	VREG_OUT	Internal regulator 2.2 V output, supporting up to 0.5 mA load
24	D3/VREG_OUT	А	D3	Constant current source D3 output driver port
25	D2		А	Constant current source D2 output driver port
66	DE/ADO10	Ю	B5	GPIO13, one of the general purpose GPIOs
26	B5/ADC10	Α	ADC10	ADC10, ADC sampling channel 10
27	D1		Ю	GPIO16, one of the general purpose GPIOs

Pin#	Name	Туре		Description	
28 D0/LXOSC2			D0	No function	
28	D0/LXOSC2	Α	LXOSC2	External 32.768 kHz crystal	
29	A0/LXOSC1	IO A0 GPIO0, one of the general purpose GPIOs		GPIO0, one of the general purpose GPIOs	
		Α	LXOSC1	External 32.768 kHz crystal	
30	B4/S3S_DIO	10	B4	GPIO12, one of the general purpose GPIOs	
		10	S3S_DIO	Chip burning bus S3S, burning data line	
31	B3/S3S_CLK	10	B3	GPIO11, one of the general purpose GPIOs	
31		10	S3S_CLK	Chip burning bus S3S, burning clock line	
32	B2/S3S_FCSB	Ю	B2	GPIO10, one of the general purpose GPIOs	
		Ю	S3S_FCSB	Chip programming bus S3S, programming chip selection line	

3 Functional Description

Embedded with a Sub-1 GHz OOK / (G)FSK transmitter, the CMT2168A is a high-performance 8051 SoC, suitable for low-power wireless transmission applications in the 27 - 960 MHz band. The series chips integrate the below major modules [1].

- High-performance 8051 core with rich peripheral resources.
- Sub-1G OOK / (G) FSK transmission module.
- 3D low-frequency receiving/wake-up module (LFRX).
- Powerful analog front end module (AFE).

Figure 4. System Block Diagram

Notes:

1. This is the general block diagram for CMT216xA series. Different product models consist of different module combinations, namely not all models provide the full function modules.

3.1 High-performance 8051

Built-in with enhanced 1T-8051 and 24 MHz high-speed RC oscillator, the CMT2168A supports dual-clock operating mode. achieving 24 MIPS high-speed operating. Meanwhile, the low-speed clock is provided by the internal low-speed 32 kHz RC oscillator or external 32.768 kHz crystal oscillator, serving as the clock source of the low-power RTC.

For memory architecture, the on-chip 8 kB OTP ROM is for code storage, 8 kB PRAM for code running, 1 kB XRAM for data storage and 512 bits EEPROM for key data storage in case of power loss. Meanwhile, it integrates 12 kB MASK ROM for the storage of API library function of various chip modules.

For digital peripherals, it supports on-chip AES-128 operation acceleration engine, true random number generator, one UART, one SPI, watchdog, two 16-bit multi-function timers, one RTC, and 16 ports with multiplexing functions.

For development and debugging, the CMT216xA series chips adopt 1-wire debugging interface, which requires only one single wire connecting to the debugger to download code to PRAM, achieving simple and convenient online debugging.

3.2 Sub-1G Transmission Module

The CMT2168A integrates a high-performance Sub-1G transmitter, which applies a high-efficient single-ended Class E PA architecture, achieving p to +13 dBm transmission power while consuming only a current of 18 mA.

The transmitter supports 3 modulation modes, OOK, GFSK and FSK. Appling the fractional phase-locked loop technology, it requires only one 26 MHz crystal oscillator to achieve most of the $27 \sim 960$ MHz band coverage.

3.3 3D Low-frequency Receiving/waking-up Module

Integrating a 3D low-frequency receiving/waking-up module, the CMT2168A supports operating in listening mode with a low power consumption of 4.6 μ A, reaching a wake-up sensitivity of 70 uVrms. It supports digital RSSI with a dynamic range of 80 dB. This product model is a suitable for various active RFID based near-field identification application scenarios.

3.4 High-performance Analog Front End (AFE)

The high-performance AFE module mainly consists of 3 sub-modules including 12-bit high-precision successive approximation analog-to-digital converter (SAR-ADC) with up to 12 channels, 2-channel high-speed and low-power operational amplifier and 2-channel micro-power operational amplifier. It supports various sensor interfaces, which can form instrumentation amplifier with programmable gain or non-inverting amplifier, providing a flexible and suited solution for sensor acquisition application scenarios.

4 Ordering Information

Table 17. CMT2168A Ordering Information

Model	Description	Packaging	Package Option	Operating Condition	Minimum Ordering Quantity
CMT2168A-EQR ^[1]	27 - 960 MHz transmitter SoC	QFN32	T&R	2.0 to 3.6 V, - 40 to 85 °C	3000

Notes:

[1]. E refers to extended Industrial product rating, which supports a temperature range from -40 to +85 °C.Q refers to the packaging type QFN32.

R refers to Tape & Reel package type, and the minimum ordering quantity (MOQ) is 3000 pieces.

Please visit <u>www.cmostek.com</u> for more product/product line information.

Please contact sales@cmostek.com or your local sales representative for sales or pricing requirements.

5 Packaging Information

The packaging information of the CMT2168A is shown in the below figure. \\

Figure 5. QFN32 Packaging

Table 18. QFN32 5x5 Packaging Scale

Completel					
Symbol	Min.	Тур.	Min.		
Α	0.70	0.75	0.80		
A1	0	0.02	0.05		
b	0.18	0.25	0.30		
С	0.18	0.20	0.25		
D	4.90	5.00	5.10		
D2	3.40	3.50	3.60		
е	0.50 BSC				
Ne	3.50 BSC				
Nd	Nd 3.50 BSC				
E	4.90	5.00	5.10		
E2	3.40	3.50	3.60		
L	0.35	0.40	0.45		

6 Top Marking

Figure 6. CMT2168A Top Marking

Table 19. CMT2168A Top Marking Information

Marking Method	Laser
Pin 1 Mark	Diameter of the circle = 1 mm
Font Size	0.5 mm, align right
Line 1 Marking	CMT2168A refers to model CMT2168A.
Line 2 Marking	F9 ①② is the internal tracing code.
Line 3 Marking	YWW is the date code assigned by the package factory. Y is the last digit of the year. WW is the working week

7 Related Documents

Table 20. CMT2168A Related Documents

Doc No.	Document Name	Description	
AN290	CMT216x User Guide	CMT216xA series chips user guide.	
AN280	CMT216xA Low-frequency Receiving Function User Guide	CMT216xA 3D low-frequency receiving function user guide.	
AN281	CMT216xA ADC and AFE User Guide	CMT216xA series chip ADC and analog front end user guide.	
AN282	CMT216xA API Function Library User Guide	CMT216xA series chip API function library user guide.	
AN284	CMT216xA Development Environment Establishment and Debugging	CMT216xA development environment establishment and debugging quick start guide.	
AN286	CMT216xA Register Guide	CMT216xA series chip SFR register detail description.	

8 Revise History

Table 21. Revise History Records

Version No.	Chapter	Description	Date
0.6	All	Initial version	2019-07-01
0.7	All		2019-11-01

9 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch

Address: 2/F Building 3, Pingshan Private Enterprise S.T. Park, Xili, Nanshan District, Shenzhen, Guangdong, China

Tel: +86-755-83231427

Post Code: 518071

Sales: sales@cmostek.com
Supports: support@cmostek.com
Website: www.cmostek.com

IMPORTANT NOTICES AND DISCLAIMERS

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. This document was initially published in Sep. 2019. During product design and manufacture, users should get the latest published version for reference.

The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK does not give warranties as to the accuracy or completeness of the included information herein and shall have no liability for the consequences of use of the information supplied herein.

CMOSTEK assumes no responsibility for any infringement of patents, copyrights and other intellectual property rights of third parties arising from the use of the products listed in this document. Nothing contained in this document should be construed as license or authorization (express or implied) of CMOSTEK for patents, copyrights or other intellectual property rights owned by other companies or individuals.

The circuits, software, and related information in this document are provided only to illustrate the operation and application examples of the semiconductor products. Users should take up full liability for the application of the circuits, software and related information in this document in their device design. CMOSTEK assumes no responsibility for any loss of users or other third-parties caused by the use of the above circuits, software and related information.

CMOSTEK products are not authorized for use as critical components in life support devices or systems. CMOSTEK assumes no responsibility for the loss caused by the malfunction of the devices or systems that use CMOSTEK products.

Although CMOSTEK is committed to improving the quality and reliability of its semiconductor products, users should be aware and agree that CMOSTEK still cannot completely eliminate the possibility of product defects. In order to minimize the risk of damage to people and property (including death) caused by the failure of our semiconductor products, users must adopt the necessary safety measures such as redundancy, fire prevention and failure prevention in their design.

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.