2.10 Do Now Quiz - Find the zeros of a factored polynomial (A.APR.3)

1. Write down the solutions to the following polynomial equation

$$x(x-5)(x+2)=0$$

2. Write down a polynomial function f(x) with roots x = 4, -3, 7

$$(\chi-4)(\chi+3)(\chi-7)$$

- 3. Given f(x) = x(x+5)(x+1)(x-9). Select the true statements.
 - (a) f(5) = 0
 - (b) f has degree 3.
 - (c) One of the zeros of f is 9.
 - (d) An ordered pair satisfying the equation is (-1,0)
 - (e) f(0) = 0
- 4. Write a recursive definition of the sequence $a_1 = 5$, $a_2 = -15$, $a_3 = 45$, ...

2.10b Do Now Quiz - Find the zeros of a factored polynomial (A.APR.3)

1. Given the solutions to f(x) = 0 are x = 0, 5, -2. Write down a possible polynomial function f.

fa) = x(x-5)(x+2)

2. Write down the zeros to the following polynomial:

$$f(x) = (x-4)^{2}(x+1)(x-8)$$
4, -7, 8

- 3. Given $f(x) = x^2(x+1)(x+5)$. Select the true statements.
 - (a) The degree of the polynomial is odd.
 - (b) The x intercepts of the function's graph are at 0, 1, and 5.
 - (c) Regarding end behavior, as x increases without bound in either the positive or negative direction, y increases in the negative direction.
 - (d) An ordered pair satisfying the equation is (-1,0)
- 4. Write a recursive definition of the arithmetic sequence a.

[7	n	$\begin{array}{c} a_n \\ -8 \\ -3 \\ 2 \end{array}$		a	-	-8	
	1	-8		1		U	
:	2	-3		_			
	3	2		an	=	an-1	+3

Name:

2.11 Do Now Quiz - Add, subtract, and multiply polynomials (A.APR.1)

1. Evaluate the polynomial for x = 0:

$$f(x) = x^4 - 13x^2 - 23x + 17$$

 $f(o) = 7$

2. Add
$$(x^4 + 2x^3 - x^2 + 3x + 1) + (2x^4 - x^3 + 7x^2 + 2x + 6)$$

= $3x^4 + x^3 + 6x^2 + 5x + 7$

3. Simplify
$$(3x^4 - 5x^2 - 9x + 10) - (x^4 - 4x^3 + 7x^2 - 9x - 2)$$

$$= 2x^4 + 4x^3 - 12x^2 + 12$$

4. Multiply $(x^2 + 3) \times (2x^3 - 5x^2 + 3x + 2)$ using the grid method.

	$2x^3$	$-5x^{2}$	+3x	+2
x^2	275	-5-X4	323	272
+3	6 x3	-15 x2	9x	+6

$$= 2x^5 - 5x^4 + 9x^3 - 13x^2 + 9x + 6$$

5. Write a recursive definition for $a_1 = 7$, $a_2 = 1$, $a_3 = -5$, $a_4 = -11$, ...

$$a_n = 7$$

$$a_n = a_{n-1} - 6$$

2.11 Do Now Quiz: Graph polynomials, identify zeros, end behavior F.IF.7c

- 1. Given the function $f(x) = (x-2)^2(x+7)(x-8)$
 - (a) Write down the zeros of the function

(b) What is the degree of f(x)?

2. Write down the end behavior of the function shown at right $g(x) = x^3 - 14x + 2$

- 3. Given $h(x) = x^3 + 11x^2 + 32x + 28$ which is graphed below.
 - (a) Write down the factors of the function.

(b) Which factor has a multiplicity of 2?

