

Cloud computing

Agenda

- Cloud computing what it is
- Pluses and minuses
- Different layers
- Providers
- Practical example
 - Typical Python application deployment flow in IaaS
 - Security, SSH
 - Class exercise deployment on AWS

<itc>

Cloud computing

Purpose of a company

Purpose of a software company < itc>

How to get there

IT infrastructure

Resources:

- Compute (CPU)
- Storage (hard disks)
- Memory (RAM)
- Databases
- Network routers, cables…
- ..

IT activities:

- Buy
- Host rooms, air conditioning
- Install, upgrade
- User management
- Security patches
- Monitoring, fixing
- Support users
- Learn, train, hire experts

Before the cloud

Before the cloud

 On Prem (on Premises) – Every organization has all the IT infrastructure physically at company campus

- Pluses:
 - In control

Cloud computing

- Cloud computing buying on demand computer resources and services over the internet
- Economies of scale resources shared between customers
- Pay-as-you-go model

Cloud computing – pluses

Focus on core business

Cloud computing – pluses

Scalability

- Adaptivity to rapidly changing demand
- Scale up on demand, then scale down
- Scalability Horizontal, Vertical
- How to scale: manually, or automatically:
 - Time based only weekends
 - Load based CPU > 70%
 - Latency based response > 10 ms
- Unlimited resources from client perspective

Horizontal Scaling

Cloud computing – mixed blessings < itc >

- Less in control good or bad?
- Security, regulation
 - Same, or better, but different. Part of the specialization outsourced to experts
- Cost
 - Very large organization that sometimes do it cheaper themselves
 - Need to pay attention to bills and resources used
- Cloud vendor lock-in can I switch?
- Latency (time for response) are your customers local or global?

Possible solution:

Hybrid cloud - part On Prem, part in the cloud

<itc>

Cloud computing – layers

Computing Layers

Computing Layers – laaS

- Infrastructure as a service
 - Get servers
 - Do everything above on your own
- Most complex. Need DevOps support

Most freedom and control

Virtualization

Computing Layers - PaaS

- Platform as a Service
 - Get environment with all the pre-requisites
 - Just deploy your application
- Less complex
- Less freedom

Computing Layers – SaaS

- Software as a Service
 - You don't deploy anything, you are only a user
 - Just access a service via internet
 - By browser etc.
- Google Docs, Github

More Layers

- Containers CaaS Container as a Service
 - Instead of getting full Operating System, get a containerized environment
- Serverless / FaaS Function as a Service
 - Don't even need to deploy an application, just deploy a function

Cloud providers

- Some providers give all levels IaaS, PaaS, and more, some only part of the levels
- Leaders are slightly different in different levels

AWS laaS Class Exercise

Get to know the application

plus_one.py:

- reads Pandas DF from file
- transforms it
- writes the result to file

requirements.txt

Includes pandas package

laaS Ex – 1 Github

- Create a local Git repo with the following attached files:
 - plus_one.py
 - requirements.txt
- Push this repo to Github <u>public</u> repo cloud-class under your Github account
 - Note: You can use private Repos, but then you will usually need to put an SSH key on the server to access Github – out of scope for this exercise

laaS Ex – 2 AWS signup and setup

- Create account in AWS: https://portal.aws.amazon.com/billing/signup
 - There is free tier where you get credits for free usage: https://aws.amazon.com/free
- ▶ Sign into AWS console: https://console.aws.amazon.com/
- ▶ Choose region Europe (Frankfurt) eu-central-1
- Go to EC2 service → Network & Security → Key pairs
- Create a SSH key pair named my-key-pair
 - Windows / Putty use ppk file
 - Mac / Linux use pem file
- Save this file for future use in a secure location (this is the secret)

laaS Ex - 3 create the server

- Go to "EC2 service" → "Instances" → "Instances"
- Launch a new instance with "Launch Instances"
- ▶ Choose an AMI of the default AWS type (usually 1st in the list):

- Choose default options for instance type, and leave everything default
- Review and Launch
- For SSH key, choose the key that you created in step 2

laaS Ex – 4 connect to the server

- Wait for the server to be running
- Copy the DNS of the server in "Instance summary" → "Public IPv4 DNS"
- Connect to the server via SSH from your computer:
 - Default user is on this Server is ec2-user, so host name is ec2-user@DNS, example: ec2-user@ec2-35-159-10-38.eu-central-1.compute.amazonaws.com
 - Linux / Mac via OpenSSH and the PEM file.
 - chmod 400 /path/my-key-pair.pem
 - ssh -i /path/my-key-pair.pem ec2-user@ec2-35-159-10-38.eu-central-1.compute.amazonaws.com
 - Details: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
 - Windows (Putty) with PPK file:
 - Host name, like: ec2-user@ec2-35-159-10-38.eu-central-1.compute.amazonaws.com
 - Connection → SSH → Auth → Browse to choose the PPK file
 - Save the connection for future use
 - Details: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

For issues: https://docs.aws.amazon.com/console/ec2/instances/connect/docs

laaS Ex - 5 setup the server

- Install Python 3 (Sometimes Python 2 is installed, and sometimes Python3 is also installed)
 - sudo yum install python3
- Install git: sudo yum install git
- Configure git

```
o git config --global user.email "<emailAddress>"
o git config --global user.name "<gitUserName>"
```

- Clone the git repo:
 - git clone HTTPS_URL (get from Github repo → Code → Clone → HTTPS)
- Go inside the cloned directory
- Install modules from requirements.txt:
 - pip3 install --user -r requirements.txt
 - Note: −−user is needed due to permissions restrictions on this Server

IaaS Ex – 6 Upload, download files, run program

- Upload file 1.csv to repo directory on server from your computer using SCP client
 - Windows can use program like WinSCP / MobaXterm, details: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
 - Linux / Mac using scp:
 - scp -i /path/my-key-pair.pem local_path/1.scv ec2-user@ec2-35-159-10-38.eu-central-1.compute.amazonaws.com:remote_file_path
 - · remote_file_path is the path from home directory. So if home directory is /home/ec2-user, to put into /home/ec2-user/cloud-class, remote_file_path is cloud-class
 - Details: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
- Download file 2.csv from the web to the repo directory on server:
 - wget "https://docs.google.com/uc?export=download&id=1gqDsky3SVNSsflMCp0URu_0NwmmRpc6y" -O 2.csv
- Execute plus_one.py
 - python3 plus_one.py 1.csv
 - python3 plus_one.py 2.csv
- Download back to your computer the output files: output1.csv and output2.csv
 - Windows can use program like WinSCP / MobaXterm
 - Linux / Mac using scp:
 - scp -i /path/my-key-pair.pem ec2-user@ec2-35-159-10-38.eu-central-1.compute.amazonaws.com:remote_file_path local_file_path

Class exercise

- Give on Slack that you finished
- Put in Slack print screen of downloading the output files (last exercise step) to your computer

Summary

- Cloud computing what it is
- Pluses and minuses
- Different layers
- Providers
- IaaS AWS Demo
- Practical example
 - Typical Python application deployment flow in IaaS
 - Security, SSH
 - Class exercise deployment on AWS

Thank you!