Constrained Trajectories

MEAM 620

Minimum Jerk Segment

Given an n'th order system $x^{(n)}=u$, minimizing $\int u^2 dt$ led to (2n-1)'th order polynomials.

Example: For a 3rd order system, the 'minimum jerk' polynomials are quintic.

$$p(t) = t^5c_5 + t^4c_4 + t^3c_3 + t^2c_2 + t^1c_1 + c_0$$

At any time t, we can think of the position as the product of a row vector of time-coefficients [T(t)] and column vector of polynomial coefficients [X].

$$[T(t)] = \begin{bmatrix} t^5 & t^4 & t^3 & t^2 & t^1 & 1 \end{bmatrix}$$

$$[X] = \begin{bmatrix} c_5 & c_4 & c_3 & c_2 & c_1 & c_0 \end{bmatrix}^T$$

$$p(t) = \begin{bmatrix} t^5 & t^4 & t^3 & t^2 & t^1 & 1 \end{bmatrix} \begin{bmatrix} c_5 \\ c_4 \\ c_3 \\ c_2 \\ c_1 \\ c_0 \end{bmatrix}$$

Position Boundary Constraints

Enforcing the position at time t=0 and time t=1 yields two position constraints.

We write this as two rows in a constraint matrix A.

$$[T(t)] = \begin{bmatrix} t^5 & t^4 & t^3 & t^2 & t^1 & 1 \end{bmatrix}$$

$$[X] = \begin{bmatrix} c_5 & c_4 & c_3 & c_2 & c_1 & c_0 \end{bmatrix}^T$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ t_1^5 & t_1^4 & t_1^3 & t_1^2 & t_1^1 & 1 \end{bmatrix} \begin{bmatrix} c_5 \\ c_4 \\ c_3 \\ c_2 \\ c_1 \\ c_0 \end{bmatrix} = \begin{bmatrix} p(0) \\ p(t_1) \end{bmatrix}$$

$$p(0) = [T(t_1)][X]$$

No unique solution; we have 2 constraints and 6 unknowns.

$$A][X] = b$$

Full Boundary Constraints

The state of our third order system $x^{(3)} = u$ consists of $\{x, \dot{x}, \ddot{x}\}$. Typically all must satisfy boundary conditions.

The derivatives of p are also polynomials, so we can write constraints on the derivatives in the same way.

$$p(t) = t^5c_5 + t^4c_4 + t^3c_3 + t^2c_2 + t^1c_1 + c_0$$

$$\dot{p}(t) = 5t^4c_5 + 4t^3c_4 + 3t^2c_3 + 2t^1c_2 + c_1$$

$$\ddot{p}(t) = 20t^3c_5 + 12t^2c_4 + 6t^1c_3 + 2c_2$$

At each end point get n=3 constraint equations.

Unique solution: 6 constraints and 6 unknowns.

$$[A][X] = b$$

Minimum Jerk Spline

With m segments, we have 6m unknowns.

$$p_1(t) = t^5 c_{1,5} + t^4 c_{1,4} + t^3 c_{1,3} + t^2 c_{1,2} + t^1 c_{1,1} + c_{1,0}$$
...
$$p_m(t) = t^5 c_{m,5} + t^4 c_{m,4} + t^3 c_{m,3} + t^2 c_{m,2} + t^1 c_{m,1} + c_{m,0}$$

If segment k has duration t_k , it is convenient to define each segment on the interval $[0,t_k]$.

The boundary conditions still only give 6 constraints (first point, last point)

$$\begin{bmatrix} c_{1,5} \\ c_{1,4} \\ c_{1,3} \\ c_{1,2} \\ c_{1,1} \\ c_{1,0} \\ c_{2,5} \\ c_{2,4} \\ c_{2,3} \\ c_{2,2} \\ c_{2,1} \\ c_{2,0} \end{bmatrix} = \begin{bmatrix} p_1(0) \\ \dot{p}_1(0) \\ \dot{p}_1(0) \\ \dot{p}_2(t_2) \\ \dot{p}_2(t_2) \\ \dot{p}_2(t_2) \\ \dot{p}_2(t_2) \end{bmatrix}$$

Waypoint Position Constraints

Forcing the spline to go through (m-1) waypoints adds 2(m-1) constraints.

"Segment k ends at position p_k at time t_k ."

"Segment k+1 starts at position p_k at time 0."

Necessary Continuity Constraints

For a physical system $x^{(n)} = u$, the (n-1)'th derivative must be continuous everywhere.

"The derivative at the end of segment k equals the derivative at the start of segment k+1."

Adds another m-1 constraints for each required derivative.

$$\begin{bmatrix} 5t_1^4 & 4t_1^3 & 3t_1^2 & 2t_1^1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 20t_1^3 & 12t_1^2 & 6t_1^1 & 2 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_{1,0} \\ c_{1,0} \\ c_{2,5} \end{bmatrix}$$

Summary so far (5'th order):

- 6m unknowns
- 2m position constraints (two for each segment)
- 2(m-1) derivative continuity constraints (two at each midpoint)
- 4 derivative boundary constraints (two at each endpoint) -> 2(m-1) remaining

```
c_{1,5}
c_{1,3}
c_{1,2}
c_{2,4}
c_{2,3}
c_{2,2}
c_{2,1}
c_{2,0}
```

Solution #0

Boundary and continuity constraints up to acceleration don't fully constrain the solution.

To fully constrain the solution, we need another 2 constraints per midpoint.

Idea: Arbitrarily assign the jerk to 0 at each midpoint.

Solution #1: Fully Constrained Spline

That was pretty arbitrary, we don't really need zero jerk at the midpoints.

Idea: Add enough additional continuity constraints to force a unique solution.

Example with Fully Constrained Spline

Solution #2: Optimize Cost

We don't really need those extra degrees of continuity either.

Idea: Find the polynomial that minimizes the original cost (the integral of u^2).

We already have the polynomial for the jerk.

$$p_1(t) = t^5 c_{1,5} + t^4 c_{1,4} + t^3 c_{1,3} + t^2 c_{1,2} + t^1 c_{1,1} + c_{1,0}$$

$$\ddot{p}_1(t) = 60t^2 c_5 + 24t^1 c_4 + 6c_3$$

If we square $\ddot{p}_1(t)$, integrate, and evaluate from t=[0, t_1] we get the explicit cost.

$$cost = \int_0^{t_1} (\ddot{p}_1(t))^2 dt = \int_0^{t_1} (60t^2 c_5 + 24t^1 c_4 + 6c_3)^2 dt$$

The cost is a function of the coefficients, and can be put into a quadratic form.

$$cost = c^T H c + f^T c$$

Know matrix H and vector f, don't know polynomial coefficients c.

Quadratic Program

The problem of optimizing this cost subject to the constraints we've already found is called a "Quadratic program."

Quadratic programs are a special class of convex optimization problems that are relatively fast to solve with specialized solvers like CVXOPT.

Example with Optimized Cost

Solution #3: Inequality Coordinate Constraints

We can use extra degrees of freedom to satisfy other constraints.

Idea: Inequality constraints such as 'position below 5 m' or 'velocity under 5 m/s' can be enforced at additional sample points.

Choose (lots) of sample times s, and for each sample time add a constraint.

$$p(t)=t^5c_5+t^4c_4+t^3c_3+t^2c_2+t^1c_1+c_0$$
 $p(s)\leq 10$ "stay under the 10 m ceiling" $\dot{p}(s)\leq 3$ "keep velocity below 3 m/s" $-\dot{p}(s)\leq 3$ "keep velocity above -3 m/s"

minimize
$$X^T H X + f^T X$$

s.t $A_{eq} X = b_{eq}$

AX < b

Can express these with a constraint matrix, just like all the previous examples.

Example with a Constraint

Corridor Constraints

A common requirement is to stay 'close' to the original path.

Idea: Add corridor constraints that relate x,y positions to stay near the original line.

For details see Mellinger and Kumar 2011, "Minimum Snap Trajectory Generation and Control for Quadrotors"

Implementation Notes

In big multi-segment problems, numerical stability becomes important.

Consider the intermediate values required to compute a 7th order spline

$$p(t) = t^7c_7 + t^6c_6 + t^5c_5 + t^4c_4 + t^3c_3 + t^2c_2 + t^1c_1 + c_0$$

When defining constraints:

- \circ Scale the time by α for each segment to run from [0, 1]
- \circ Scale the displacement by β for each segment to run from [0, 1]
- Solve the nondimensional problem, then scale the solution back to real units.

Special cases can be scaled and re-used, eg. zero derivative boundary conditions.

https://www.youtube.com/watch?v=geqip_0Vjec (hula hoop example exploits scaling for speed)

For details see Mellinger and Kumar 2011, "Minimum Snap Trajectory Generation and Control for Quadrotors"