姓名: ____

学号: _____

院系:_____

___ 级____ 班

大 连 理 工 大 学

课程名称: ____工程数值方法_____ 试卷: ___A___考试形式: <u>闭卷</u> 授课院 (系): ___<u>运载</u>___ 考试日期: 2015 年 7 月 23 日

	1	=	111	四	五.	六	七	总分
标准分	20	10	10	15	15	15	15	100
得 分								

试卷共 4 页

装

一、(20分, 每空2分)填空题

1. 设
$$Q^TQ = I$$
, I 为单位阵, $x = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$, 则 $\|Qx\|_2 = \underline{\qquad}$ 。

2. 设 $l_i(x)(i=0,1,2,\dots,n)$ 为拉格朗日(Lagrange)基函数, $x_i(i=0,1,2,\dots,n)$ 为 两两互异的节点,且 $\sum_{i=0}^{n} C_i l_i(x) = x^3$,则 $C_i = \underline{\qquad} (i = 0,1,2,\cdots,n)$ 。

- 4. 五个节点的插值型求积公式,其代数精度至少可达______次,至多可达 次。
- 5. Jacobi 迭代法的迭代矩阵是。
- 6. Simpson 求积公式的代数精度为
- 7. 用 Jacobi 迭代法解方程组 $\begin{cases} x_1 + ax_2 = 4 \\ ax_1 + x_2 = -3 \end{cases}$, 其中 a 为实数,方法收敛的充要条 件是满足_____。

订

二、(10分,每空2分)单项选择题

- 1. 若线性代数方程组 Ax = b 的系数矩阵 A 是严格对角占优的,则()。Jacobi 迭代法和 G-S 迭代法都收敛
 - (B) Jacobi 迭代法收敛而 G-S 迭代法发散
- (C) Jacobi 迭代法和 G-S 迭代法都发散
- (D) Jacobi 迭代法发散而 G-S 迭代法收敛
- 2. 用迭代法 $x^{(k+1)} = Bx^{(k)} + f$ 求解方程组 Ax = b 的解,则()时,Jacobi 迭代 法和 G-S 迭代法都收敛。
- (A) 迭代矩阵 \mathbf{B} 的范数 $\|\mathbf{B}\|_{\infty} > 1$ (B)迭代矩阵 \mathbf{B} 严格对角占优
- (C) 迭代矩阵 B 的谱半径 $\rho(B) < 1$ (D) 系数矩阵 A 对称正定
- 3. 设 $A = \begin{bmatrix} 1 & a \\ a & 3 \end{bmatrix}$, 要使 $A = LL^T$,则a必须满足(), 其中L为对角元为正的下
 - (A) $|a| < \sqrt{6}$ (B) $|a| \le \sqrt{6}$ (C) $|a| < \sqrt{3}$ (D) $|a| \le \sqrt{3}$

三角矩阵。

- 4. 求方程 x = g(x) 根的 Newton 法的迭代公式为 ()。
- (A) $x_{k+1} = x_k \frac{x_k g(x_k)}{1 g'(x_k)}$ (B) $x_{k+1} = x_k \frac{g(x_k)}{g'(x_k)}$
- (C) $x_{k+1} = g(x_k)$ (D) $x_{k+1} = x_k \frac{x_k x_{k-1}}{x_k g(x_k) x_{k-1} + g(x_{k-1})} (x_k g(x_k))$
- 5. 关于改进的欧拉方法,下列说法错误的是().
 - (A)隐式方法
- (B) 2 阶的方法
- (C) 单步法
- (D) 能够准确地求解初值问题 y' = ax + b, y(0) = 0

三、(10 分) 求不高于 4 次的 Hermite 插值多项式 H(x), 使满足

$$H(-1) = H'(-1) = -1$$
, $H(0) = 0$, $H(1) = H'(1) = 1$.

得 分

四、(15 分)用牛顿法求立方根 $\sqrt[3]{d}$ 。(1)给出迭代公式;(2)用此迭代公式计算

 $\sqrt[3]{3}$,取初始值为 $x_0=3$,要求 $\left|x_{k+1}-x_k\right|<10^{-2}$ 。

五、(15 分)用欧拉(Euler)法计算积分 $\int_0^x \sin t^2 dt$ 在点 x=0.1,0.2,0.3 上的近似值。取步长 h=0.1 ,小数点后至少保留 4 位。

得分

六、(15分)已知数据如下:

X_i	0	1	2	3
\mathcal{Y}_i	0	3	10	20

求一条形如 $y = ax + bx^2$ 的最小二乘拟合曲线。

七、(15分)给定求积公式

 $\int_0^h f(x)dx \approx Af(-h) + Bf(0) + Cf(h)$

试确定 A, B, C. 使它的代数精确度尽可能地高,并指明所构造出的求积公式所具有的代数精度。