Amendment Dated July 1, 2009

Reply to Office Action of February 2, 2009

<u>Amendments to the Claims:</u> This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A chiral catalyst comprising the reaction product of a ruthenium compound, a chiral bis(phosphine) selected from P-Phos, tol-P-Phos and arXyl-P-Phos, and a chiral diamine of formula (I)

in which R^1 , R^2 , R^3 and e^{-} R^4 are independently hydrogen, a saturated or unsaturated alkyl₇ or cycloalkyl group, an aryl group₇ or a urethane or sulphonyl group and R^5 , R^6 , R^7 and e^{-} R^8 are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group₇ or an aryl group, at least one of R^1 , R^2 , R^3 and e^{-} R^4 is hydrogen and A is a linking group consisting of comprising one or two substituted or unsubstituted carbon atoms.

- 2. (Canceled)
- 3. (Currently Amended) A catalyst according to claim 1 wherein R¹, R², R³ and R⁴ are the same or different and are selected from hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl <u>ander</u> 4-methylphenyl groups.
- 4. (Currently Amended) A catalyst according to claim 1A chiral catalyst comprising the reaction product of a ruthenium compound, a chiral bis(phosphine) selected from P-Phos, tol-P-Phos and xyl-P-Phos, and a chiral diamine of formula (I)

Amendment Dated July 1, 2009

Reply to Office Action of February 2, 2009

in which R^1 and R^2 are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group, an aryl group, a urethane or sulphonyl group, wherein R^4 and R^2 are linked or R^3 and R^4 are linked so as to form a 4 to 7-membered ring structure incorporating the nitrogen atom, and R^5 , R^6 , R^7 and R^8 are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group or an aryl group, at least one of R^1 and R^2 is hydrogen and A is a linking group consisting of one or two substituted or unsubstituted carbon atoms.

- 5. (Currently Amended) A catalyst according to claim 1 wherein R⁵, R⁶, R⁷ and R⁸ are the same or different and are selected from hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, cyclohexyl <u>andor</u> substituted or unsubstituted phenyl <u>andor</u> naphthyl groups.
- 6. (Currently Amended) A catalyst according to claim 1A chiral catalyst comprising the reaction product of a ruthenium compound, a chiral bis(phosphine) selected from P-Phos, tol-P-Phos and xyl-P-Phos, and a chiral diamine of formula (I)

in which R^1 , R^2 , R^3 and R^4 are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group, an aryl group or a urethane or sulphonyl group and R^5 , R^6 , R^7 and R^8 are independently hydrogen, a saturated or unsaturated alkyl or cycloalkyl group, an aryl group, or a group forming a ring structure with A, at least one of R^1 , R^2 , R^3 and R^4 is hydrogen and A is a linking group consisting of one or two substituted or unsubstituted carbon atoms, wherein one or more of R^5 , R^6 R^7 and R^8 form one or more ring structures with the linking group A.

7. (Currently Amended) A catalyst according to claim 1 wherein a substituting group on <u>athe-carbon atom of linking group A is alkyl (C1-C20)</u>, alkoxy (C1-C20) or amino or forms one or more ring structures incorporating one or more carbon atoms making up the linking group.

Amendment Dated July 1, 2009

Reply to Office Action of February 2, 2009

8. (Currently Amended) A catalyst according to claim 1 wherein the chiral diamine is of formula (II)

$$R^{5}$$
 R^{6} O R^{7} R^{8} R^{1} R^{2} R^{3} R^{4}

wherein B is a linking group <u>consisting of</u>comprising one or two substituted or unsubstituted carbon atoms.

- 9. (Currently Amended) A catalyst according to claim 8 wherein R^1 , R^2 , R^3 , R^4 are hydrogen, R^5 , R^6 , R^7 and R^8 are hydrogen or alkyl groups and B comprises $C(CH_3)_2$ or $C(CH_3)_3 C C(CH_3)_3 C C(CH_3)_4 C C(CH_3)_5 C C(CH_3)_5 C C(CH_3)_6 C C($
- 10. (Currently Amended) A catalyst according to claim 8 wherein the chiral diamine is selected from 3-aminomethyl-5,6-dimethoxy-5,6-dimethyl[1,4]-dioxan-2-yl]-methylamine3-Aminomethyl-5-6-dimethoxy-5-6-Dimethyl[1,4]-dioxan-2-yi]-methylamine (DioBD) or 2,3-O-isopropylidenebutane-_1,4-_diamine (DAMTAR).
- 11. (Currently Amended) A catalyst according to claim $\underline{61}$ wherein the chiral diamine is of formula (III)

$$R^5$$
 R^7
 R^8
 R^1
 R^2
 R^3
 R^4

wherein R' is a protecting group.

Amendment Dated July 1, 2009

Reply to Office Action of February 2, 2009

- 12. (Currently Amended) A catalyst according to claim 11 wherein R¹, R² and R⁵ are hydrogen, R³ and R⁴ are hydrogen or alkyl, R⁷ and R⁸ are hydrogen, alkyl or aryl and R' is selected from an alkyl, aryl, carboxylate, amido or sulphonate protecting group.
- 13. (Currently Amended) A catalyst according to claim 11 wherein the chiral diamine is 4-Aminoamino-2-aminomethylpyrrolidine-1-carboxylic acid terttent-butyl ester (PyrBD).
- 14. (Previously Presented) A catalyst according to claim 1 wherein the chiral diamine is of formula (IV)

$$R^5$$
 R^6 R^7 R^8 R^1 R^2 R^3 R^4

- 15. (Original) A catalyst according to claim 14 wherein R¹, R², R³, R⁴, R⁶, R⁷ are hydrogen and R⁵ and R⁸ are aryl or substituted aryl groups.
- 16. (Original) A catalyst according to claim 14 wherein the chiral diamine is Diphenyl-1,3-propanediamine (Dppn).
- 17. (Currently Amended) A catalyst according to claim <u>6</u>± wherein the chiral diamine is of formula (V).

$$n(H_2C)$$
 R^5
 R^8
 R^8
 R^8
 R^8
 R^8

wherein n = 1 or 2.

- 18. (Original) A catalyst according to claim 17 wherein R⁵ and R⁸ are hydrogen.
- 19. (Currently Amended) A method for the asymmetric hydrogenation of ketones and imines comprising contacting a ketone or imine with a strong base and athe chiral

Amendment Dated July 1, 2009

Reply to Office Action of February 2, 2009

catalyst of claim 1 comprising the reaction product of a ruthenium compound, a chiral bis(phosphine) selected from P-Phos, tol-P-Phos or xyl-P-Phos and a chiral diamine of formula (I)

in which R¹, R², R³-or R⁴-are independently hydrogen, a saturated or unsaturated alkyl, or cycloalkyl group, an aryl-group, a urethane or sulphonyl-group and R⁵, R⁶, R⁷-or R^e are independently hydrogen, a saturated or unsaturated alkyl-or-cycloalkyl-group, or an aryl group, at least-one of R¹, R², R³-or R⁴ is hydrogen and A is a linking group comprising one or two substituted or unsubstituted carbon atoms.

- 20. (Currently Amended) The method according to claim 19, wherein the ketone <u>or imine</u> <u>comprises</u> an alkyl ketone of formula RCOR' in which R and R' are substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl or cycloalkyl which may be linked and form part of a ring structure.
- 21. (New) A method for the asymmetric hydrogenation of ketones and imines comprising contacting a ketone or imine with a strong base and the chiral catalyst of claim 4.
- 22. (New) The method according to claim 21, wherein the ketone or imine comprises an alkyl ketone of formula RCOR' in which R and R' are substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl or cycloalkyl which may be linked and form part of a ring structure.
- 23. (New) A method for the asymmetric hydrogenation of ketones and imines comprising contacting a ketone or imine with a strong base and the chiral catalyst of claim 6.
- 24. (New) The method according to claim 23, wherein the ketone or imine comprises an alkyl ketone of formula RCOR' in which R and R' are substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl or cycloalkyl which may be linked and form part of a ring structure.