CS 110 Computer Architecture

Caches Part III

Instructors:

Chundong Wang & Siting Liu

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2023/index.html

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkeley's CS61C

Cache Terms I

Cache:

- A small and fast memory used to increase the performance of accessing a big and slow memory
- Uses temporal locality: The tendency to reuse data in the same space over time
- Uses spatial locality: The tendency to use data at nearby addresses
- Cache hit: The address being fetched is in the cache (•)
- Cache miss: The address being fetched is not in the cache (:)

- Valid bit: Is a particular entry valid
- Cache *line flush*: Invalidate and flush one entry
 - e.g., clflush of x86, but newer clwb may not invalidate the entry
- Cache *flush*: Invalidate all entries
 - e.g., wbinvd of x86

CPU-Cache Interaction

(5-stage pipeline)

Cache Refill Data from Lower Levels of Memory Hierarchy

Cache Terms II

Cache level:

- The order in the memory hierarchy: L1\$ is closest to the processor
- L1 caches may only hold data (Data-cache, D\$) or instructions (Instruction Cache, I\$)
 - Most L2+ caches are "unified", can hold both instructions and data
- Cache *capacity*:
 - The total # of bytes in the cache
- Cache *line* or cache *block*:
 - A single entry in the cache
- Cache block size:
 - The number of bytes in each cache line

Cache Terms III Associativity

- Number of cache lines:
 - Cache capacity / block size:
- Cache associativity:
 - The number of possible cache lines a given address may exist in.
 - Also the number of comparison operations needed to check for an element in the cache
 - Direct mapped: A data element can only be in one possible location (N=1)
 - N-way set associative: A data element can be in one of N possible positions
 - Fully associative: A data element can be at any location in the cache.
 - Associativity == # of lines
- Total # of cache lines == capacity of cache/line size
- Total # of lines in a set == # ways == N == associativity
- Total # of sets == # of cache lines / associativity

Victim Cache

- Conflict misses are a pain, but...
 - Perhaps a little associativity can help without having to be a fully associative cache
- In addition to the main cache...
 - Optionally have a very small (16-64 entry) fully associative "victim" cache
- Whenever we evict a cache entry
 - Don't just get rid of it, put it in the victim cache
- Now on cache misses...
 - Check the victim cache first, if it is in the victim cache you can just reload it from there

Cache Terms IV Parts of the Address

- Address is divided into | TAG | INDEX | OFFSET |
- Offset:
 - The lowest bits of the memory address which say where data exists within the cache line.
 - It is log2(line/block size)
 - So for a cache with 64B blocks it is 6 bits

Index:

- The portion of the address which says where in the cache an address may be stored
- Takes log2(# of cache lines / associativity) bits
- So for a 4-way associative cache with 512 lines it is 7 bits
- Tag: The portion of the address which must be stored in the cache to check if a location matches
 - # of bits of address (# of bits for index + # of bits for offset)
 - So with 64-bit addresses it is 51-bit...

Cache Terms V Writing

Eviction:

The process of removing an entry from the cache

Write Back:

- A cache which only writes data up the hierarchy when a cache line is evicted
- Instead set a dirty bit on cache entries
- All i7 caches are write back

Write Through:

A cache which always writes to memory

• Write Allocate:

- If writing to memory *not in the cache* fetch it first
- i7 L2 is Write Allocate

• No Write Allocate:

- Just write to memory without a fetch
- i7 L1 is no write allocate

Replacement Policy

In an associative cache, which line from a set should be evicted when the set becomes full?

- Random
- Least-Recently Used (LRU)
 - LRU cache state must be updated on every access
 - True implementation only feasible for small sets (2-way)
 - Pseudo-LRU binary tree often used for 4-8 way
- First-In, First-Out (FIFO) a.k.a. Round-Robin
 - Used in highly associative caches
- Not-Most-Recently Used (NMRU)
 - FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses

Cache Terms VI Cache Performance

• Hit Time:

- Amount of time to return data in a given cache: depends on the cache
- i7 L1 hit time: 4 clock cycles

Miss Penalty:

 Amount of *additional* time to return an element if its not in the cache: depends on the cache

Miss Rate:

- Fraction of a particular program's memory requests which miss in the cache
- Average Memory Access Time (AMAT):
 - Hit time + Miss Rate * Miss Penalty

Understanding Cache Misses: The 3Cs

- Compulsory (cold start or process migration, 1st reference):
 - First access to block impossible to avoid; small effect for long running programs
 - Solution: increase block size (increases miss penalty; very large blocks could increase miss rate)
- Capacity:
 - Cache cannot contain all blocks accessed by the program
 - Solution: increase cache size (may increase access time)
- Conflict (collision):
 - Multiple memory locations mapped to the same cache location
 - Solution 1: increase cache size
 - Solution 2: increase associativity (may increase access time)

Prefetching...

- Programmer/Compiler: I know that, later on, I will need this data...
- Tell the computer to prefetch the data
 - Can be as an explicit prefetch instruction
 - Or an implicit instruction: lw x0 0(t0)
 - Won't stall the pipeline on a cache miss: The processor control logic recognizes this situation
- Allows you to hide the cost of compulsory misses
 - You still need to fetch the data however

How to Calculate 3C's using Cache Simulator

- 1. Compulsory: set cache size to infinity and fully associative, and count number of misses
- Capacity: Change cache size from infinity, usually in powers of 2, and count misses for each reduction in size
 - 16 MB, 8 MB, 4 MB, ... 128 KB, 64 KB, 16 KB
- 3. Conflict: Change from fully associative to n-way set associative while counting misses
 - Fully associative, 16-way, 8-way, 4-way, 2-way, 1-way

- Three sources of misses (SPEC2000 integer and floating-point benchmarks)
 - Compulsory misses 0.006%; not visible
 - Capacity misses, function of cache size
 - Conflict portion depends on associativity and cache size

Improving Cache Performance

AMAT = Time for a hit + Miss rate x Miss penalty

- Note: miss penalty is additional time for cache miss
- Reduce the time to hit in the cache
 - E.g., Smaller cache
- Reduce the miss rate
 - E.g., Bigger cache Longer cache lines (somewhat: improves ability to exploit spatial locality at the cost of reducing the ability to exploit temporal locality)
 - E.g., Better programs!
- Reduce the miss penalty
 - E.g., Use multiple cache levels
- Hit and Miss, 3C

Impact of Larger Cache on AMAT?

- 1) Reduces misses (what kind(s)?)
- 2) Longer Access time (Hit time): smaller is faster
 - Increase in hit time will likely add another stage to the pipeline
- At some point, increase in hit time for a larger cache may overcome the improvement in hit rate, yielding a decrease in performance
- Computer architects expend considerable effort optimizing organization of cache hierarchy – big impact on performance and power!

Increasing Associativity?

- Hit time as associativity increases?
 - Increases, with large step from direct-mapped to >= 2 ways, as now need to mux correct way to processor
 - Smaller increases in hit time for further increases in associativity
- Miss rate as associativity increases?
 - Goes down due to reduced conflict misses, but most gain is from 1->2->4-way with limited benefit from higher associativities
- Miss penalty as associativity increases?
 - Unchanged, replacement policy runs in parallel with fetching missing line from memory

Increasing #Entries?

- Hit time as #entries increases?
 - Increases, since reading tags and data from larger memory structures
- Miss rate as #entries increases?
 - Goes down due to reduced capacity and conflict misses
 - Architects rule of thumb: miss rate drops ~2x for every ~4x increase in capacity (only a gross approximation)
- Miss penalty as #entries increases?
 - Unchanged

At some point, increase in hit time for a larger cache may overcome the improvement in hit rate, yielding a decrease in performance

Increasing Block Size?

- Hit time as block size increases?
 - Hit time unchanged, but might be slight hit-time reduction as number of tags is reduced, so faster to access memory holding tags
- Miss rate as block size increases?
 - Goes down at first due to spatial locality, then increases due to increased conflict misses due to fewer blocks in cache
- Miss penalty as block size increases?
 - Rises with longer block size, but with fixed constant initial latency that is amortized over whole block

How to Reduce Miss Penalty?

- Could there be locality on misses from a cache?
- Use multiple cache levels!
- With Moore's Law, more room on die for bigger L1 caches and for second-level (L2) cache
- And in some cases even an L3 cache!
- IBM mainframes have ~1GB L4 cache off-chip.

Review: Memory Hierarchy

Processor

Size of memory at each level As we move to outer levels the latency goes up and price per bit goes down.

Adding Cache to Computer

L1 and L2 Caches

Typical Memory Hierarchy

Principle of locality + memory hierarchy presents programmer with
 ≈ as much memory as is available in the *cheapest* technology at the
 ≈ speed offered by the *fastest* technology

How is the Hierarchy Managed?

- registers ↔ memory
 - By compiler (or assembly level programmer)
- cache ↔ main memory
 - By the cache controller hardware
- main memory ↔ disks (secondary storage)
 - By the operating system (virtual memory)
 - Virtual to physical address mapping assisted by the hardware ('translation lookaside buffer' or TLB)
 - By the programmer (files)

2015 IBM CPU

- z13 designed in 22nm SOI technology with seventeen metal layers, 4 billion transistors/chip
- 8 cores/chip, with 2MB L2 cache, 64MB L3 cache, and 480MB L4 off-chip cache.
- 5GHz clock rate, 6 instructions per cycle, 2 threads/core
- Up to 24 processor chips in shared memory node

IBM z13 Memory Hierarchy

Local vs. Global Miss Rates

- Local miss rate the fraction of references to one level of a cache that miss
- Local Miss rate L2\$ = L2\$ Misses / L1\$ Misses
 = L2\$ Misses / total_L2_accesses
- Global miss rate the fraction of references that miss in all levels of a multilevel cache
 - L2\$ local miss rate >> than the global miss rate

FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running the full integer SPECCPU2006 benchmarks.

Local vs. Global Miss Rates

- Local miss rate the fraction of references to one level of a cache that miss
- Local Miss rate L2\$ = \$L2 Misses / L1\$ Misses
- Global miss rate the fraction of references that miss in all levels of a multilevel cache
 - L2\$ local miss rate >> than the global miss rate
- Global Miss rate = L2\$ Misses / Total Accesses
 - = (L2\$ Misses / L1\$ Misses) × (L1\$ Misses / Total Accesses)
 - = Local Miss rate L2\$ × Local Miss rate L1\$
- AMAT = Time for a hit + Miss rate × Miss penalty
- AMAT = Time for a L1\$ hit + (local) Miss rate L1\$ ×
 (Time for a L2\$ hit + (local) Miss rate L2\$ × L2\$ Miss penalty)

Characteristic	Intel Nehalem	AMD Opteron X4 (Barcelona)	
L1 cache organization	Split instruction and data caches	Split instruction and data caches	
L1 cache size	32 KB each for instructions/data per core	64 KB each for instructions/data per core	
L1 block size	64 bytes	64 bytes	
L1 write policy	Write-back, Write-allocate	Write-back, Write-allocate	
L1 hit time (load-use)	Not Available	3 clock cycles	
L2 cache organization	Unified (instruction and data) per core	Unified (instruction and data) per core	
L2 cache size	256 KB (0.25 MB)	512 KB (0.5 MB)	
L2 block size	G4 bytoo	64 bytes	
	64 bytes	64 bytes	
L2 write policy	Write-back, Write-allocate	Write-back, Write-allocate	
L2 hit time	Not Available	9 clock cycles	
L3 cache organization	Unified (instruction and data)	Unified (instruction and data)	
L3 cache size	8192 KB (8 MB), shared	2048 KB (2 MB), shared	
L3 block size	64 bytes	64 bytes	
L3 write policy	Write-back, Write-allocate	Write-back, Write-allocate	
L3 hit time	Not Available	38 (?)clock cycles	

CPI/Miss Rates/DRAM Access SpecInt2006

		Data Only	Data Only	Instructions and Data
Name	СРІ	L1 D cache misses/1000 instr	L2 D cache misses/1000 instr	DRAM accesses/1000 instr
perl	0.75	3.5	1.1	1.3
bzip2	0.85	11.0	5.8	2.5
gcc	1.72	24.3	13.4	14.8
mcf	10.00	106.8	88.0	88.5
go	1.09	4.5	1.4	1.7
hmmer	0.80	4.4	2.5	0.6
sjeng	0.96	1.9	0.6	0.8
libquantum	1.61	33.0	33.1	47.7
h264avc	0.80	8.8	1.6	0.2
omnetpp	2.94	30.9	27.7	29.8
astar	1.79	16.3	9.2	8.2
xalancbmk	2.70	38.0	15.8	11.4
Median	1.35	13.6	7.5	5.4

In Conclusion, Cache Design Space

- Several interacting dimensions
 - Cache size
 - Block size
 - Associativity
 - Replacement policy
 - Write-through vs. write-back
 - Write-allocation
- Optimal choice is a compromise
 - Depends on access characteristics
 - Workload
 - Use (I-cache, D-cache)
 - Depends on technology / cost
- Simplicity often wins

