Exact Diagonalization Notes

Tsung-Han Lee

May 6, 2015

Hamiltonians:

$$H = t \sum_{i=i}^{N-1} (c_{i\sigma}^{\dagger} c_{i+1\sigma} + c_{i+1\sigma}^{\dagger} c_{i\sigma}) + \sum_{i=i}^{N} \epsilon_{i} c_{i\sigma}^{\dagger} c_{i\sigma} + \sum_{i=i}^{N} U_{i} c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$
a) Anderson model: $\epsilon_{i} = \epsilon \delta_{i,1}$ and $U_{i} = U \delta_{i,1}$. Only the first site has

- Coulomb repulsion and atomic energy.
 - b) Hubbard model: $\epsilon_i = \epsilon$ and $U_i = U$.

The basis state representation is chosen in the convention $c_{1\uparrow}^{\dagger}...c_{N\uparrow}^{\dagger}c_{1\downarrow}^{\dagger}...c_{N\downarrow}^{\dagger}|0>$, such that the hopping term for the nearest neighbor is always positive. In the code, the basis is represented as 0 (empty), -1 (spin down), 1 (spin up), and 2 (double occupied), so the basis looks like $|0,1,-1,2\rangle$. The basises is build based on two symmetries: the total charge (N) and the total spin S_Z . The quantum number is represented as Q and S_Z , each Q and S_Z has subspace r. Normally the highly symmetric state has the largest subspace, e.g. for N=4, Q = 0 and $S_Z = 0$ has r = 1...400 400 basises. Noted that in the note, the real S_Z need to be devided by 2, because the code's S_Z is set to integer for the convinience of building basis. Similarly, the real total charge Q need to be added by a total size of the chain N, since it runs from $-N \leq Q \leq N$ for the convinience of building basis.

The full exact diagonalization is performed in each subspace (block diagonal for each Q and S_Z), and the energies is recorded in "energiesXXXXX.dat".

2 Zero Temperature Spectral Function and Green's function:

Here we discuss the implementation of zero temperature Lehmann representation for spectral function. For simplicity, we calculate the spectral function at

the first site with spin up,
$$A_{1\uparrow}(\omega)$$
.
$$A_{1\uparrow}(\omega) = \sum_{Q,S_Z,r} |_{diag} < 0, 0, 0 | c_{1\uparrow}| Q, S_Z, r >_{diag} |^2 \delta(\omega - E_{0,0,0} + E_{Q,S_Z,r}) + \sum_{Q,S_Z,r} |_{diag} < 0, 0, 0 | c_{1\uparrow}^{\dagger}| Q, S_Z, r >_{diag} |^2 \delta(\omega - E_{Q,S_Z,r} + E_{0,0,0})$$

Since we know that only the state $Q = 1, S_Z = 1$ or $Q = -1, S_Z = -1$, for $c_{1\uparrow}$ and $c_{1\uparrow}^{\dagger}$ respectly, can survive for the bracket, we only need to focus on their subspace r. Noted that the subscript diag means the $|Q,S_Z,r>_{diag}$ is the eigenvector for the energy $E_{Q,S_Z,r}$. Here we focus on the $_{diag}<0,0,0|c_{1\uparrow}|1,1,r>_{diag}$ term, the other term can be calculated similarily.

The $_{diag} < 0, 0, 0 | c_{1\uparrow} | 1, 1, r >_{diag}$ is not easy to calculate, because each eigenstate $|Q, S_Z, r >_{diag}$ is the mix state of the original basis $|Q, S_Z, r >_{old}$, where $|Q, S_Z, r >_{old}$ is the primitive basis, e.g. |0, 1, -1, 2 > for $Q = 0, S_Z = 0$. However, the $_{old} < 0, 0, 0 | c_{1\uparrow} | 1, 1, r >_{old}$ is easy to calculate. So we can do a basis transformation:

$$_{old} < 0, 0, 0 \\ |c_{1\uparrow}|1, 1, r>_{diag} = \sum_{r'} \sum_{r''} {}_{diag} < 0, 0, 0 \\ |0, 0, r'>_{old} {}_{old} < 0, 0, r' \\ |c_{1\uparrow}|1, 1, r''>_{old} {}_{old} < 1, 1, r'' \\ |1, 1, r>_{diag}$$

The term $_{diag} < 0, 0, 0|0, 0, r'>_{old}$ and $_{old} < 1, 1, r''|1, 1, r>_{diag}$ are the orthonormal transformation matrices, which is stored in the code variable "states". Thus, the braket can be easily evaluate using the simple matrix multiplication. We first evaluate the matrix $_{old} < 0, 0, r'|c_{1\uparrow}|1, 1, r''>_{old}$ by simple index look up, then multiply it by transform matrix.

$$_{diag} < 0, 0, 0 | c_{1\uparrow} | 1, 1, r >_{diag(1 \times M)} = U_{0,0(1 \times L)}^{T} \cdot _{old} < 0, 0, r' | c_{1\uparrow} | 1, 1, r'' >_{old(L \times M)} \cdot U_{1,1(M \times M)}$$

The dimension for $U_{0,0}^T$ is $1\times L$, where L is the size of subspace $Q=0, S_Z=0$. The dimension for $U_{1,1}$ is $M\times M$, where M is the size of subspace $Q=1, S_Z=1$. After obtained $_{diag}<0,0,0|c_{1\uparrow}|1,1,r>_{diag}$, the square of it is called spectral weight, which is printed out in "spectralWeightsXXXXX.dat". Pluging in the energies $E_{1,1,r}$ and the corresponding spectralweight $|_{diag}<0,0,0|c_{1\uparrow}|1,1,r>_{diag}|^2$ into $A_{1\uparrow}(\omega)$ we obtain the electron part of the spectral function. The hole part $|_{diag}<0,0,0|c_{1\uparrow}|-1,-1,r>_{diag}|^2$ can be calculated similarily. We can check that:

$$\sum_{r} (|_{diag} < 0, 0, 0|c_{1\uparrow}| - 1, -1, r >_{diag} |^{2} + |_{diag} < 0, 0, 0|c_{1\uparrow}|1, 1, r >_{diag} |^{2}) = 1$$

the total spectralweight is 1. Finally, the spectralfunction is outputed as "spectralFunctionXXXXXX.dat". The Green's function can be evaluated by the Kramer-Kronig relation:

$$G_{1\uparrow}(\omega) = \int_{-\infty}^{\infty} d\omega' \frac{A(\omega')}{\omega - \omega'}$$
 and the output is "greenFunctionXXXXX.dat".

3 Examples:

Hubbard at half filling

Figure 1: $\mu=-U/2,\,t=-0.5$, and broadening is 0.2.

Anderson at half filling

Figure 2: $\mu=-U/2,\,t=-0.5$, and broadening is 0.2.