Program Verification: Lecture 25

José Meseguer

University of Illinois at Urbana-Champaign

For $\mathcal{R}=(\Omega,B,R)$ a topmost rewrite theory with state sort St, $u_1\vee\ldots\vee u_n$ an inititial state, and $Q\subseteq T_{\Omega/B,St}$, folding narrowing verification of an invariant (\dagger) $\mathbb{C}_{\mathcal{R}}, \llbracket u_1\vee\ldots\vee u_n\rrbracket \models_{S4} \Box Q$ is supported by Maude in the following ways:

For $\mathcal{R}=(\Omega,B,R)$ a topmost rewrite theory with state sort St, $u_1\vee\ldots\vee u_n$ an inititial state, and $Q\subseteq T_{\Omega/B,St}$, folding narrowing verification of an invariant (\dagger) $\mathbb{C}_{\mathcal{R}}, \llbracket u_1\vee\ldots\vee u_n\rrbracket \models_{S4} \Box Q$ is supported by Maude in the following ways:

A. If $Q = [\![\neg v_1 \land \ldots \land \neg v_m]\!]$, by **Method 1** in Lecture 24, (†) holds if the m commands $\{\text{fold}\}$ vu-narrow $u_1 \lor \ldots \lor u_n => * v_j$, $1 \le j \le m$ return: No solution.

For $\mathcal{R}=(\Omega,B,R)$ a topmost rewrite theory with state sort St, $u_1\vee\ldots\vee u_n$ an inititial state, and $Q\subseteq T_{\Omega/B,St}$, folding narrowing verification of an invariant (\dagger) $\mathbb{C}_{\mathcal{R}}, \llbracket u_1\vee\ldots\vee u_n\rrbracket \models_{S4} \Box Q$ is supported by Maude in the following ways:

A. If $Q = [\![\neg v_1 \land \ldots \land \neg v_m]\!]$, by **Method 1** in Lecture 24, (†) holds if the m commands $\{\texttt{fold}\}$ vu-narrow $u_1 \lor \ldots \lor u_n =>* v_j$, $1 \le j \le m$ return: No solution.

W.L.O.G Maude assumes and requires that $vars(u_i) \cap vars(u_{i'}) = \emptyset$, $1 \le i < i' \le n$, and of course that $vars(u_i) \cap vars(v_j) = \emptyset$, $1 \le i \le n$, $1 \le j \le m$.

For $\mathcal{R}=(\Omega,B,R)$ a topmost rewrite theory with state sort St, $u_1\vee\ldots\vee u_n$ an inititial state, and $Q\subseteq T_{\Omega/B,St}$, folding narrowing verification of an invariant (\dagger) $\mathbb{C}_{\mathcal{R}}, \llbracket u_1\vee\ldots\vee u_n\rrbracket \models_{S4} \Box Q$ is supported by Maude in the following ways:

A. If $Q = [\![\neg v_1 \land \ldots \land \neg v_m]\!]$, by **Method 1** in Lecture 24, (†) holds if the m commands $\{\texttt{fold}\}$ vu-narrow $u_1 \lor \ldots \lor u_n =>* v_j$, $1 \le j \le m$ return: No solution.

W.L.O.G Maude assumes and requires that $vars(u_i) \cap vars(u_{i'}) = \emptyset$, $1 \le i < i' \le n$, and of course that $vars(u_i) \cap vars(v_j) = \emptyset$, $1 \le i \le n$, $1 \le j \le m$.

As explained in Lecture 23, the more general the initial state, the better, since this increases the chances that {fold} vu-narrow commands will succeed. Let us see an example.

Recall the R&W module, where to enable folding narrowing rules must be declared with the [narrowing] attribute.

Recall the R&W module, where to enable folding narrowing rules must be declared with the [narrowing] attribute.

```
mod R&W is
   sorts Nat Config .
   op 0 : -> Nat [ctor] .
   op s : Nat -> Nat [ctor] .
   op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .
   rl < R, s(W) > => < R, W > [narrowing] .
   rl < R, 0 > => < s(R), 0 > [narrowing] .
   rl < R, 0 > => < s(R), 0 > [narrowing] .
   rl < s(R), W > => < R, W > [narrowing] .
   rl < s(R), W > => < R, W > [narrowing] .
   endm
```

Recall the R&W module, where to enable folding narrowing rules must be declared with the [narrowing] attribute.

```
mod R&W is
   sorts Nat Config .
   op 0 : -> Nat [ctor] .
   op s : Nat -> Nat [ctor] .
   op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .
   rl < R, s(W) > => < R, W > [narrowing] .
   rl < R, 0 > => < s(R), 0 > [narrowing] .
   rl < R, 0 > => < s(R), 0 > [narrowing] .
   rl < s(R), W > => < R, W > [narrowing] .
   rl < s(R), W > => < R, W > [narrowing] .
   endm
```

The $\{fold\}$ vu-narrow command from initial state < 0, 0 > will not terminate. We can try the more general state < R, 0 > to verify mutual exclusion.

 $\label{eq:maude} \begin{tabular}{ll} Maude> & fold & vu-narrow & R,0 & =>* & s(N),s(M) & > & . \\ \end{tabular}$

No solution.

```
Maude> \{fold\} vu-narrow \{R,0 > => * < s(N), s(M) > .
No solution.
```

This command terminated because the folding variant narrowing algorithm computed at "fixpoint" P_d some depth d s.t. $F_{d+1} = \bot$.

```
Maude> \{fold\} vu-narrow \{R,0 > => * < s(N), s(M) > .
No solution.
```

This command terminated because the folding variant narrowing algorithm computed at "fixpoint" P_d some depth d s.t. $F_{d+1} = \bot$. We can ask Maude to display such a P_d with the command:

```
Maude> {fold} vu-narrow < R,0 > =>* < s(N),s(M) > . No solution.
```

This command terminated because the folding variant narrowing algorithm computed at "fixpoint" P_d some depth d s.t. $F_{d+1} = \bot$. We can ask Maude to display such a P_d with the command:

```
Maude> show most general states .
< #1:Nat, 0 > \/
< 0, s(0) >
Maude>
```

By **Method 2** in Lecture 24, we can now verify any other invariant $Q = \llbracket \neg v_1 \wedge \ldots \wedge \neg v_m \rrbracket$ from $< \mathbb{R}, 0 >$ by checking that $P_d \wedge v_j = \bot$, $1 \leq j \leq m$, which (see Appendix 1 to Lecture 24) can be computed by unification.

For example, we can verify the **One-writer** invariant by the unification commands:

For example, we can verify the **One-writer** invariant by the unification commands:

```
Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.
```

For example, we can verify the **One-writer** invariant by the unification commands:

```
Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.
```

That is, once we have found the fixpoint < R,0 > < 0, s(0) > there is no need to use the $\{fold\}$ vu-narrow command to verify any other invariant from < R,0 >, since unification suffices.

For example, we can verify the **One-writer** invariant by the unification commands:

```
Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.
```

That is, once we have found the fixpoint < R,0 > < 0, s(0) > there is no need to use the $\{fold\}$ vu-narrow command to verify any other invariant from < R,0 >, since unification suffices. Of course, **One-writer** could also be verified with the $\{fold\}$ vu-narrow command:

For example, we can verify the **One-writer** invariant by the unification commands:

```
Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.
```

That is, once we have found the fixpoint < R,0 > < 0, s(0) > there is no need to use the {fold} vu-narrow command to verify any other invariant from < R,0 >, since unification suffices. Of course, **One-writer** could also be verified with the {fold} vu-narrow command:

```
Maude> \{fold\} vu-narrow < R,0 > =>* < N,s(s(M)) > .
```

No solution.

B. Let Q be specifiable as $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. By **Method 3** in Lecture 24, If we have found a P_d (resp. positive formula p) s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ (resp. $\llbracket p \rrbracket \supseteq \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$), then invariant (\dagger) holds for any such Q iff $P_d \subseteq_B v_1 \vee \ldots \vee v_m$ (resp. if $p \subseteq_B v_1 \vee \ldots \vee v_m$).

B. Let Q be specifiable as $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. By **Method 3** in Lecture 24, If we have found a P_d (resp. positive formula p) s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ (resp. $\llbracket p \rrbracket \supseteq \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$), then invariant (\dagger) holds for any such Q iff $P_d \subseteq_B v_1 \vee \ldots \vee v_m$ (resp. if $p \subseteq_B v_1 \vee \ldots \vee v_m$). A decidable sufficient condition is $P_d \sqsubseteq_B v_1 \vee \ldots \vee v_m$ (resp. $p \sqsubseteq_B v_1 \vee \ldots \vee v_m$).

B. Let Q be specifiable as $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. By **Method 3** in Lecture 24, If we have found a P_d (resp. positive formula p) s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ (resp. $\llbracket p \rrbracket \supseteq \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$), then invariant (\dagger) holds for any such Q iff $P_d \subseteq_B v_1 \vee \ldots \vee v_m$ (resp. if $p \subseteq_B v_1 \vee \ldots \vee v_m$). A decidable sufficient condition is $P_d \sqsubseteq_B v_1 \vee \ldots \vee v_m$ (resp. $p \sqsubseteq_B v_1 \vee \ldots \vee v_m$).

This method can be quite useful to prove, for example, that R&W is deadlock-free. That is, that < 0, $0 > \lor < R$, $s(W) > \lor < R$, $0 > \lor < s(R)$, W >is an invariant from < R,0 >.

B. Let Q be specifiable as $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. By **Method 3** in Lecture 24, If we have found a P_d (resp. positive formula p) s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ (resp. $\llbracket p \rrbracket \supseteq \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$), then invariant (\dagger) holds for any such Q iff $P_d \subseteq_B v_1 \vee \ldots \vee v_m$ (resp. if $p \subseteq_B v_1 \vee \ldots \vee v_m$). A decidable sufficient condition is $P_d \sqsubseteq_B v_1 \vee \ldots \vee v_m$ (resp. $p \sqsubseteq_B v_1 \vee \ldots \vee v_m$).

This method can be quite useful to prove, for example, that R&W is deadlock-free. That is, that < 0, $0 > \lor < R$, $s(W) > \lor < R$, $0 > \lor < s(R)$, W >is an invariant from < R,0 >. All we need to show is that < R,0 > \lor < 0, $s(0) > \sqsubseteq < 0$, $0 > \lor < R$, $s(W) > \lor < R$, $0 > \lor < s(R)$, W >.

B. Let Q be specifiable as $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. By **Method 3** in Lecture 24, If we have found a P_d (resp. positive formula p) s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ (resp. $\llbracket p \rrbracket \supseteq \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$), then invariant (\dagger) holds for any such Q iff $P_d \subseteq_B v_1 \vee \ldots \vee v_m$ (resp. if $p \subseteq_B v_1 \vee \ldots \vee v_m$). A decidable sufficient condition is $P_d \sqsubseteq_B v_1 \vee \ldots \vee v_m$ (resp. $p \sqsubseteq_B v_1 \vee \ldots \vee v_m$).

This method can be quite useful to prove, for example, that R&W is deadlock-free. That is, that < 0, 0 > \vee < R, s(W) > \vee < R, 0 > \vee < s(R), W > is an invariant from < R,0 >. All we need to show is that < R,0 > \vee < 0, s(0) > \sqsubseteq < 0, 0 > \vee < R, s(W) > \vee < R, 0 > \vee < s(R), W >. This holds trivially for < R,0 >.

B. Let Q be specifiable as $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. By **Method 3** in Lecture 24, If we have found a P_d (resp. positive formula p) s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ (resp. $\llbracket p \rrbracket \supseteq \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$), then invariant (\dagger) holds for any such Q iff $P_d \subseteq_B v_1 \vee \ldots \vee v_m$ (resp. if $p \subseteq_B v_1 \vee \ldots \vee v_m$). A decidable sufficient condition is $P_d \sqsubseteq_B v_1 \vee \ldots \vee v_m$ (resp. $p \sqsubseteq_B v_1 \vee \ldots \vee v_m$).

This method can be quite useful to prove, for example, that R&W is deadlock-free. That is, that < 0, 0 > \vee < R, s(W) > \vee < R, 0 > \vee < s(R), W > is an invariant from < R,0 >. All we need to show is that < R,0 > \vee < 0, s(0) > \sqsubseteq < 0, 0 > \vee < R, s(W) > \vee < R, 0 > \vee < s(R), W >. This holds trivially for < R,0 >. It also holds for < 0, s(0) > because < 0, s(0) > \sqsubseteq < R, s(W) >.

The subsumption check $< R,0 > \lor < 0$, $s(0) > \sqsubseteq < 0$, $0 > \lor < R$, $s(W) > \lor < R$, $0 > \lor < s(R)$, W > for R&W is trivial.

The subsumption check < R,0 > \lor < 0, s(0) $> \sqsubseteq$ < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form (\sharp_i) $w_i \sqsubseteq_B v_1 \lor \ldots \lor v_m$, $1 \le j \le k$,

The subsumption check < R,0 > \lor < 0, s(0) $> \sqsubseteq$ < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form $(\sharp_j) \ w_j \sqsubseteq_B v_1 \lor \ldots \lor v_m, \ 1 \le j \le k$, where the $v_i, \ 1 \le i \le m$, are the lefthand sides of the rules in \mathcal{R} .

The subsumption check < R,0 > \lor < 0, s(0) $> \sqsubseteq$ < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form (\sharp_j) $w_j \sqsubseteq_B v_1 \lor \ldots \lor v_m$, $1 \le j \le k$, where the v_i , $1 \le i \le m$, are the lefthand sides of the rules in \mathcal{R} . In the worse case this may require $k \times m$ checks of the form $w_i \sqsubseteq_B v_i$.

The subsumption check < R,0 > \lor < 0, s(0) > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form (\sharp_j) $w_j \sqsubseteq_B v_1 \lor \ldots \lor v_m$, $1 \le j \le k$, where the v_i , $1 \le i \le m$, are the lefthand sides of the rules in \mathcal{R} . In the worse case this may require $k \times m$ checks of the form $w_j \sqsubseteq_B v_i$. This can be automated by $k \times m$ Maude matching commands: match [1] $v_i \le v_i$?

The subsumption check < R,0 > \lor < 0, s(0) > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form (\sharp_j) $w_j \sqsubseteq_B v_1 \lor \ldots \lor v_m$, $1 \le j \le k$, where the v_i , $1 \le i \le m$, are the lefthand sides of the rules in \mathcal{R} . In the worse case this may require $k \times m$ checks of the form $w_j \sqsubseteq_B v_i$. This can be automated by $k \times m$ Maude matching commands: match [1] $v_i \le v_i$?

But since the v_i are the rule's lefthand sides, each (\sharp_j) holds if the search command: search [1] $w_i = 1 \cdot S \cdot St$ has a solution.

The subsumption check < R,0 > \lor < 0, s(0) > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form $(\sharp_j) \ w_j \sqsubseteq_B v_1 \lor \ldots \lor v_m, \ 1 \le j \le k$, where the $v_i, \ 1 \le i \le m$, are the lefthand sides of the rules in \mathcal{R} . In the worse case this may require $k \times m$ checks of the form $w_j \sqsubseteq_B v_i$. This can be automated by $k \times m$ Maude matching commands: match [1] $v_i <=? w_i$.

But since the v_i are the rule's lefthand sides, each (\sharp_j) holds if the search command: search [1] $w_i = 1 \cdot S \cdot St$ has a solution. E.g.,

The subsumption check < R,0 > \lor < 0, s(0) > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < R, 0 > \lor < s(R), W > for R&W is trivial. In general, for $P_d = w_1 \lor \ldots \lor w_k$ we need k checks of the form $(\sharp_j) \ w_j \sqsubseteq_B v_1 \lor \ldots \lor v_m, \ 1 \le j \le k$, where the $v_i, \ 1 \le i \le m$, are the lefthand sides of the rules in \mathcal{R} . In the worse case this may require $k \times m$ checks of the form $w_j \sqsubseteq_B v_i$. This can be automated by $k \times m$ Maude matching commands: match [1] $v_i <=? w_j$.

But since the v_i are the rule's lefthand sides, each (\sharp_j) holds if the search command: search [1] $w_j =>1$ S:St has a solution. E.g., Maude> search [1] < R, 0 > =>1 C:Config .

```
Solution 1 (state 1) C:Config --> < s(R), 0 > Maude> search [1] < 0, s(0) > =>1 C:Config .
```

Solution 1 (state 1) C:Config --> < 0, 0 >

By **Method 4**, (†) holds for $Q = [v_1 \lor ... \lor v_m]$ if:

By **Method 4**, (†) holds for $Q = [v_1 \lor ... \lor v_m]$ if: (1) $u_1 \lor ... \lor u_n \subset_B v_1 \lor ... \lor v_m$; a decidable sufficient condition is $u_1 \lor ... \lor u_n \subset_B v_1 \lor ... \lor v_m$.

By **Method 4**, (†) holds for $Q = [v_1 \lor ... \lor v_m]$ if: (1) $u_1 \lor ... \lor u_n \subset_B v_1 \lor ... \lor v_m$; a decidable sufficient condition is $u_1 \lor ... \lor u_n \subset_B v_1 \lor ... \lor v_m$. (2) Q is transitition-closed;

By **Method 4**, (†) holds for $Q = \llbracket v_1 \lor \ldots \lor v_m \rrbracket$ if: (1) $u_1 \lor \ldots \lor u_n \subset_B v_1 \lor \ldots \lor v_m$; a decidable sufficient condition is $u_1 \lor \ldots \lor u_n \subset_B v_1 \lor \ldots \lor v_m$. (2) Q is transitition-closed; this holds iff a {fold} vu-narrow $v_1 \lor \ldots \lor v_m =>1$ \$. command, where \$ is a fresh, unreachable constant added to \mathcal{R} , generates an $F_1(v_1 \lor \ldots \lor v_m)$ s.t. $F_1(v_1 \lor \ldots \lor v_m) \subset_B v_1 \lor \ldots \lor v_m$;

By **Method 4**, (†) holds for $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$ if: (1) $u_1 \vee \ldots \vee u_n \subset_B v_1 \vee \ldots \vee v_m$; a decidable sufficient condition is $u_1 \vee \ldots \vee u_n \subset_B v_1 \vee \ldots \vee v_m$. (2) Q is transitition-closed; this holds iff a {fold} vu-narrow $v_1 \vee \ldots \vee v_m =>1$ \$. command, where \$ is a fresh, unreachable constant added to \mathcal{R} , generates an $F_1(v_1 \vee \ldots \vee v_m)$ s.t. $F_1(v_1 \vee \ldots \vee v_m) \subset_B v_1 \vee \ldots \vee v_m$; a decidable sufficient condition is $F_1(v_1 \vee \ldots \vee v_m) = \bot$.

By **Method 4**, (†) holds for $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$ if: (1) $u_1 \vee \ldots \vee u_n \subset_B v_1 \vee \ldots \vee v_m$; a decidable sufficient condition is $u_1 \vee \ldots \vee u_n \subset_B v_1 \vee \ldots \vee v_m$. (2) Q is transitition-closed; this holds iff a {fold} vu-narrow $v_1 \vee \ldots \vee v_m =>1$ \$. command, where \$ is a fresh, unreachable constant added to \mathcal{R} , generates an $F_1(v_1 \vee \ldots \vee v_m)$ s.t. $F_1(v_1 \vee \ldots \vee v_m) \subset_B v_1 \vee \ldots \vee v_m$; a decidable sufficient condition is $F_1(v_1 \vee \ldots \vee v_m) = \bot$.

This method provides, for example, an alternative way of proving that R&W is deadlock-free from < R,0 >.

By **Method 4**, (†) holds for $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$ if: (1) $u_1 \vee \ldots \vee u_n \subset_B v_1 \vee \ldots \vee v_m$; a decidable sufficient condition is $u_1 \vee \ldots \vee u_n \subset_B v_1 \vee \ldots \vee v_m$. (2) Q is transitition-closed; this holds iff a {fold} vu-narrow $v_1 \vee \ldots \vee v_m =>1$ \$. command, where \$ is a fresh, unreachable constant added to \mathcal{R} , generates an $F_1(v_1 \vee \ldots \vee v_m)$ s.t. $F_1(v_1 \vee \ldots \vee v_m) \subset_B v_1 \vee \ldots \vee v_m$; a decidable sufficient condition is $F_1(v_1 \vee \ldots \vee v_m) = \bot$.

This method provides, for example, an alternative way of proving that R&W is deadlock-free from < R,0 >. The module adding the unreachable fresh constant \$ to the kind [Config] is:

Maude> show frontier states .

< @1:Nat, @2:Nat >

Folding Narrowing Verification in Maude (VII)

```
mod R&W is
  sorts Nat Config .
  op <_,_> : Nat Nat -> Config [ctor] .
  op $ : -> [Config] . *** unreachable state
  op 0 : -> Nat [ctor] .
  op s : Nat -> Nat [ctor] .
  vars R. W. N. M. T. J.: Nat. .
  rl < 0, 0 > \Rightarrow < 0, s(0) > [narrowing].
  rl < R, s(W) > \Rightarrow < R, W > [narrowing].
  rl < R, 0 > \Rightarrow < s(R), 0 > [narrowing].
  rl < s(R), W > \Rightarrow < R, W > [narrowing].
endm
\{fold\}\ vu-narrow\ in\ R\&W: < 0,\ 0 > \/ < R,\ s(W) > \/ < N,\ 0 > \/ < s(M),\ I > \}
    =>1 $ .
No solution.
```

4□ ト 4団 ト 4 豆 ト 4 豆 ト 3 豆 め 9 0 0

```
mod R&W is
  sorts Nat Config .
  op <_,_> : Nat Nat -> Config [ctor] .
  op $ : -> [Config] . *** unreachable state
  op 0 : -> Nat [ctor] .
  op s : Nat -> Nat [ctor] .
  vars R. W. N. M. T. J.: Nat. .
  rl < 0, 0 > \Rightarrow < 0, s(0) > [narrowing].
  rl < R, s(W) > \Rightarrow < R, W > [narrowing].
  rl < R, 0 > \Rightarrow < s(R), 0 > [narrowing].
  rl < s(R), W > \Rightarrow < R, W > [narrowing].
endm
\{fold\}\ vu-narrow\ in\ R\&W: < 0,\ 0 > \/ < R,\ s(W) > \/ < N,\ 0 > \/ < s(M),\ I > \}
    =>1 $ .
No solution.
```

We just need to check conditions (1)–(2).

Maude> show frontier states .

< @1:Nat, @2:Nat >

Condition (1) is: $< R,0 > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < N, 0 > \lor < s(M), I >, which holds trivially.$

```
Condition (1) is: < R,0 > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < N, 0 > \lor < s(M), I >, which holds trivially.
```

Condition (2) is:
$$<$$
 I,J $>$ \subseteq $<$ 0, 0 $>$ \lor $<$ R, s(W) $>$ \lor $<$ N, 0 $>$ \lor $<$ s(M), I $>$.

```
Condition (1) is: < R,0 > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < N, 0 > \lor < s(M), I >, which holds trivially.
```

```
Condition (2) is: \langle I,J \rangle \subseteq \langle 0,0 \rangle \lor \langle R,s(W) \rangle \lor \langle N,0 \rangle \lor \langle s(M),I \rangle. This holds because by the Pattern

Decomposition Lemma in pg. 6 of Lecture 24, using the generator set \{0,s(K)\} for sort Nat, this follows from \langle I,0 \rangle \lor \langle I,s(K) \rangle \sqsubseteq \langle 0,0 \rangle \lor \langle R,s(W) \rangle \lor \langle N,0 \rangle \lor \langle s(M),I \rangle.
```

```
Condition (1) is: < R,0 > \sqsubseteq < 0, 0 > \lor < R, s(W) > \lor < N, 0 > \lor < s(M), I >, which holds trivially.
```

Condition (2) is: < I,J $> \subseteq <$ 0, 0 $> \lor <$ R, s(W) $> \lor <$ N, 0 $> \lor <$ s(M), I > This holds because by the **Pattern Decomposition Lemma** in pg. 6 of Lecture 24, using the generator set $\{0, s(K)\}$ for sort Nat, this follows from < I,0 $> \lor <$ < I,s(K) $> \sqsubseteq <$ 0, 0 $> \lor <$ R, s(W) $> \lor <$ N, 0 $> \lor <$ s(M), I > which holds trivially.

R&W is unfair. The infinite behavior below starves all readers:

R&W is unfair. The infinite behavior below starves all readers:

```
< 0,0 > => < 0,s(0) > => < 0,0 > => < 0,s(0) > ...
```

R&W is unfair. The infinite behavior below starves all readers:

$$<0,0> => <0,s(0)> => <0,s(0)> ...$$

This problem is resoved by the following R&W fair protocol:

R&W is unfair. The infinite behavior below starves all readers:

```
< 0,0 > => < 0,s(0) > => < 0,0 > => < 0,s(0) > ...
```

This problem is resoved by the following R&W fair protocol:

```
mod R&W-FAIR is sorts NzNat Nat Conf . subsorts NzNat < Nat .
  op 0 : -> Nat [ctor] .
  op 1 : -> NzNat [ctor] .
  op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
  op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .
  op <_,_>[_|_] : Nat Nat Nat Nat -> Conf .
  op $ : -> [Conf] .
  op init : NzNat -> Conf .
  vars N N1 N2 N3 N4 M M1 M2 K K1 K2 I J : Nat . vars N' N1' N2' N3' M' : NzNat
  eq init(N') = < 0,0 > [0 | N'].
  rl [w-in] : < 0,0 > [ 0 | N] => < 0,1 > [0 | N] [narrowing] .
  rl [w-out] : < 0,1 > [0 | N] => < 0,0 > [N | 0] [narrowing].
  rl [r-in] : \langle N,0 \rangle [M+1 | K] = \langle N+1,0 \rangle [M | K] [narrowing].
  rl [r-out] : < N + 1,0 > [M | K] => < N,0 > [M | K + 1] [narrowing] .
endm
                                                   4日 + 4周 + 4 3 + 4 3 + 3 3
```

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^* \llbracket u_1 \lor \ldots \lor u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \lor \ldots \lor u_n$.

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p?

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in \mathcal{R} to guess a p such that:

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in \mathcal{R} to guess a p such that: (i) $u_1 \vee ... \vee u_n \subseteq_B p$, and

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in \mathcal{R} to guess a p such that: (i) $u_1 \vee ... \vee u_n \subseteq_B p$, and (ii) p is transition-closed.

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in $\mathcal R$ to guess a p such that: (i) $u_1 \vee \ldots \vee u_n \subseteq_B p$, and (ii) p is transition-closed. this can be checked by command $\{ \text{fold} \}$ vu-narrow p =>1\$.

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in \mathcal{R} to guess a p such that: (i) $u_1 \vee \ldots \vee u_n \subseteq_B p$, and (ii) p is transition-closed. this can be checked by command $\{ \text{fold} \}$ vu-narrow p =>1 \$. Even if $\mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket \subset \llbracket p \rrbracket$, p can still be very useful for Methods 3–4.

A possitive pattern formula p specifying the set of all reachable states $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ can be obtained by a terminating with no solution a folding narrowing search from $u_1 \vee \ldots \vee u_n$. A second approach is to guess it, by guessing the patterns that describe (or over-approximate) $\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ from some initial states $u_1 \vee \ldots \vee u_n$. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in \mathcal{R} to guess a p such that: (i) $u_1 \vee \ldots \vee u_n \subseteq_B p$, and (ii) p is transition-closed. this can be checked by command $\{ \text{fold} \}$ vu-narrow p =>1\$. Even if $\mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket \subset \llbracket p \rrbracket$, p can still be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 > [0 | N'].

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process.

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in $<_{-,-}>[-]$ as places where the "pea" 1 could be hidden.

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[$_{|}$] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules?

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[_|_] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules? Here is a guess inspired by the "pea" idea, yet fully general:

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[_|_] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules? Here is a guess inspired by the "pea" idea, yet fully general:

```
< 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/
< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]
```

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[_|_] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules? Here is a guess inspired by the "pea" idea, yet fully general:

```
< 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/
< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]
```

This guess is an invariant by Method 4 because:

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[_|_] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules? Here is a guess inspired by the "pea" idea, yet fully general:

```
< 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]
```

This guess is an invariant by **Method 4** because: (i) it *B*-subsumes < 0,0 > [0 | N'] when decomposed with generator set $\{n+1\}$ for N'; and

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[_|_] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules? Here is a guess inspired by the "pea" idea, yet fully general:

```
< 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]
```

This guess is an invariant by **Method 4** because: (i) it *B*-subsumes < 0,0 > [0 | N'] when decomposed with generator set $\{n+1\}$ for N'; and (ii) it is transition closed:

Since in < 0,0 > [0 | N'] variable N' has sort NnNat, there is at least one reading process. To guess the pattern, we can think about the case N' = 1, and of the different containers in <_,_>[_|_] as places where the "pea" 1 could be hidden. Can we guess where it can be, looking at the rules? Here is a guess inspired by the "pea" idea, yet fully general:

```
< 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]
```

This guess is an invariant by **Method 4** because: (i) it *B*-subsumes < 0,0 > [0 | N'] when decomposed with generator set $\{n+1\}$ for N'; and (ii) it is transition closed:

```
Maude> \{fold\} vu-narrow < 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 \$ .
```

```
Maude> show frontier states .
*** frontier is empty ***
```

The **Mutual Exclusion** and **One-writer** invariants can be specified by negative patterns of the form

The **Mutual Exclusion** and **One-writer** invariants can be specified by negative patterns of the form $\neg v_1 = \neg < 1 + m:Nat$, 1 + i:Nat > [j:Nat | k:Nat] and

The **Mutual Exclusion** and **One-writer** invariants can be specified by negative patterns of the form $\neg v_1 = \neg < 1 + m:Nat$, 1 + i:Nat > [j:Nat | k:Nat] and $\neg v_2 = \neg < m:Nat$, 1 + i:Nat > [j:Nat | k:Nat].

The **Mutual Exclusion** and **One-writer** invariants can be specified by negative patterns of the form $\neg v_1 = \neg < 1 + m : \text{Nat}$, $1 + i : \text{Nat} > [j : \text{Nat} \mid k : \text{Nat}]$ and $\neg v_2 = \neg < m : \text{Nat}$, $1 + i : \text{Nat} > [j : \text{Nat} \mid k : \text{Nat}]$. By **Method 2** we just need to check that $p \land v_1 = \bot$, and $p \land v_2 = \bot$ by unification.

The **Mutual Exclusion** and **One-writer** invariants can be specified by negative patterns of the form $\neg v_1 = \neg < 1 + m : \text{Nat}$, $1 + i : \text{Nat} > [j : \text{Nat} \mid k : \text{Nat}]$ and $\neg v_2 = \neg < m : \text{Nat}$, $1 + i : \text{Nat} > [j : \text{Nat} \mid k : \text{Nat}]$. By **Method 2** we just need to check that $p \wedge v_1 = \bot$, and $p \wedge v_2 = \bot$ by unification. But this intersection check is automated by the commands:

The **Mutual Exclusion** and **One-writer** invariants can be specified by negative patterns of the form $\neg v_1 = \neg < 1 + \text{m:Nat}$, $1 + \text{i:Nat} > [\text{j:Nat} \mid \text{k:Nat}]$ and $\neg v_2 = \neg < \text{m:Nat}$, $1 + \text{i:Nat} > [\text{j:Nat} \mid \text{k:Nat}]$. By **Method 2** we just need to check that $p \wedge v_1 = \bot$, and $p \wedge v_2 = \bot$ by unification. But this intersection check is automated by the commands:

```
Maude> {fold} vu-narrow < 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .
```

No solution.

```
Maude> \{fold\} vu-narrow < 0,0 >[ 0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .
```

No solution.

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[0 | N'] by Method 3.

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[0 | N'] by **Method 3**. That is, by showing that $p \subseteq_B < 0,0 >$ [0 | N] \vee < 0,1 >[0 | N] \vee < N,0 >[M + 1 | K] \vee < N + 1,0 >[M | K].

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[0 | N'] by **Method 3**. That is, by showing that $p \subseteq_B < 0,0 >$ [0 | N] \vee < 0,1 >[0 | N] \vee < N,0 >[M + 1 | K] \vee < N + 1,0 >[M | K]. Furthermore, we can do so using the shortcut suggested in pg. 7:

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[0 | N'] by **Method 3**. That is, by showing that $p \subseteq_B < 0,0 >$ [0 | N] \vee < 0,1 >[0 | N] \vee < N,0 >[M + 1 | K] \vee < N + 1,0 >[M | K]. Furthermore, we can do so using the shortcut suggested in pg. 7:

```
search [1] < 0,0 >[ 0 | N + 1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < 0, 1 >[0 | 1 + N]
search [1] < 0, 1 >[0 | N3 + 1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < 0, 0 >[1 + N3 | 0]
```

```
search [1] < M,0 > [N1 + 1 | K] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < 1 + M, 0 > [N1 | K]
search [1] < N2 + 1,0 > [M1 | K1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < N2, 0 > [M1 | 1 + K1]
search [1] < N4,0 > [M2 | K2 + 1] =>1 C:Conf .
No solution.
```

```
search [1] < M,0 > [N1 + 1 | K] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < 1 + M, 0 > [N1 | K]
search [1] < N2 + 1,0 > [M1 | K1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < N2, 0 > [M1 | 1 + K1]
search [1] < N4,0 > [M2 | K2 + 1] =>1 C:Conf .
No solution.
```

The problem with pattern < N4,0 > [M2 | K2 + 1] is that is too general to be rewritten by the rules of R&W-FAIR.

```
search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < 1 + M, 0 >[N1 | K]
search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < N2, 0 >[M1 | 1 + K1]
search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .
No solution.
```

The problem with pattern < N4,0 > [M2 | K2 + 1] is that is too general to be rewritten by the rules of R&W-FAIR. But we can use the **Pattern Decomposition Lemma** of Lecture 24 to show that it is semantically equivalent to a disjunction of patterns that can be rewritten.

```
search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < 1 + M, 0 >[N1 | K]
search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < N2, 0 >[M1 | 1 + K1]
search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .
No solution.
```

The problem with pattern < N4,0 > [M2 | K2 + 1] is that is too general to be rewritten by the rules of R&W-FAIR. But we can use the **Pattern Decomposition Lemma** of Lecture 24 to show that it is semantically equivalent to a disjunction of patterns that can be rewritten. We instantiate N4 with generator set $\{0, n: Nat + 1\}$

```
search [1] < n:Nat + 1,0 > [M2 | K2 + 1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < n:Nat, 0 > [M2 | 1 + 1 + K2]
search [1] < 0,0 > [M2 | K2 + 1] =>1 C:Conf .
No solution.
```

```
search [1] < n:Nat + 1,0 > [M2 | K2 + 1] =>1 C:Conf .
Solution 1 (state 1)
C:Conf --> < n:Nat, 0 > [M2 | 1 + 1 + K2]
search [1] < 0,0 > [M2 | K2 + 1] =>1 C:Conf .
```

No solution.

Finally, we instantiate M2 with generator set $\{0, n: Nat + 1\}$.

```
search [1] < n:Nat + 1,0 > [M2 | K2 + 1] =>1 C:Conf.
Solution 1 (state 1)
C:Conf \longrightarrow (n:Nat, 0)[M2 | 1 + 1 + K2]
search [1] < 0.0 > [M2 | K2 + 1] =>1 C:Conf.
No solution.
Finally, we instantiate M2 with generator set \{0, n: Nat + 1\}.
search [1] < 0.0 > [0 | K2 + 1] =>1 C:Conf.
Solution 1 (state 1)
C:Conf --> < 0, 1 > [0 | 1 + K2]
search [1] < 0,0 > [n:Nat + 1 | K2 + 1] =>1 C:Conf.
Solution 1 (state 1)
C:Conf \longrightarrow <1, 0 > [n:Nat | 1 + K2]
```