

MATERI PERTEMUAN VI ALJABAR BOOLEAN 3

Wahyu Nur Cholifah, M.Kom

- Ada 3 metode penyerderhanaan fungsi Boolean :
- 1.Secara aljabar, menggunakan hokumhokum aljabar boolean
- 2.Metode peta karnough (K-Map)
- 3.Teknik minimisasi fungsi Boolean dengan peta karnaugh

.Secara aljabar

PENYEDERHANAAN FUNGSI BOOLEAN

Cara penyelesaian penyederhanan fungsi boolean secara aljabar sama dengan cara menyelesaian penjumlahan fungsi boolean pada bahasan penjumlahan dan perkalian fungsi boolean

Contoh: buatlah penyederhanaan fungsi Boolean dengan menggunakan hokum aljabar:

a.
$$f(x, y, z) = x'y'z + x'yz + xy'$$

$$b. \quad f(x,y,z) = xz + y'z + xyz'$$

$$f(x,y,z) = x'y'z + x'yz + xy'$$

$$= (x'y'z + x'yz) + xy'$$

$$= x'z(y' + y) + xy'$$

$$= x'z \cdot 1 + xy'$$

$$f(x,y,z) = x'z + xy'$$

b.
$$f(x, y, z) = xz' + y'z + xyz'$$

 $= (xz' + xyz') + y'z$
 $= xz'(1 + y) + y'z$
 $= xz'.1 + y'z$
 $f(x, y, z) = xz' + y'z$

2. Metode Peta Karnaough (K-Map) Peta Karnaugh(k-map) adalah sebuah diagram/peta yang terbentuk dari kotak-kotak(berbentuk bujur sangkar) yang bersisihan. Peta karnaugh yang dibahas yaitu peta karnaugh:

- 1. Dua variable
- 2. Tiga variable
- 3. Empat variable

1. PK 2 variable

a b	0	1
0	00	01
1	10	11

a b	0	1
0	m0	m1
1	m2	m3

Catt:
a sebagai baris
b sebagai kolom

2. PK 3 variable

Catt:
a sebagai baris
bc sebagai kolom

a bc	00	01	11	10
0	000	001	011	010
1	100	101	111	110

bc a	00	01	1.1	10
0	m0	m1	m3	m2
1	m4	m5	m7	m6

8

PENYEDERHANAAN FUNGSI BOOLEAN

. qd	3. PK 4	variab	le	
ab	c'd'	c'd	cd	cd'
alb'	a'b'c'd'	a'b'c'd	a'b'cd	a'b'cd'
a'b	a'bc'd'	a'bc'd	ab'cd	a'bcd'
ab	abc'd'	abc'd	abcd	abcd'
ab'	ab'c'd'	ab'c'd	ab'cd	ab'cd'

b cd	00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14
10	m8	m9	mll	m10

	Ė				ca	# :					
	C	dı	S	ek	aç	ja	i k)(ır	İS	
. !	C	d	se	de	ag	ai	k	ol	0	n	1

Wahyu Nur Cholifah-Matematika Diskrit

~ \	00	<u></u>		<u>-::::::!.Y</u> :::::::
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

CONTOH1:

diberikan table kebenaran

gambarkan

peta

karn/aughnya

X	У	f(x,y)
0	0	0
0	1	0
1	0	1
1	1	1

V/	Pk	
x\	0	1
0	0	0
1	1	1

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

x yz	00	01	11	10
0	0	0	0	1
1	0	0	1	1

Wahyu Nur Cholifah-Matematika Diskrit

П	\cap	
ш		
- 1	\mathbf{C}	

W	X	У	Z	f(w,x,y,z)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1 `holifah-Mat	O ematika Diskrit

Wahyu Nur Cholifah-Matematika Diskrit

MATEMATIKA DISKRIT

PENYEDERHANAAN FUNGSI BOOLEAN

CONTOH 2 cara 1: gambarkan peta karnugh untuk f(a,b,c) = ac' + b

2. b:

 $b \rightarrow semua kotak pada kolom ke 3 dan kolom ke 4$

a pc	b'c'	b'c		bc'
a'			1	1
a			1	1

b = a'bc + a'bc' + abc + abc'

= (a'bc + a'bc') + (abc + abc')

= a'b(c+c') + ab(c+c')

= a'b.1 + ab.1

= b(a' + a)

= b

. 1	P		. 1	100	17	200	7/. i	n in	10	100	100	. '	/		10.0		10	0.1	100	10	677	10	. A.	10	10.0	. T		100	200	100	100	. A.	100	100			100	ж.	10	10.0	10	. 11	ď.	100	100	. 1	101	100	. A.	
۱٠۱	ı		N I	1	N · A	1.0	S.I			₹	\sim	14	ÁΙ	IA		- 100		1		a I		- 4	2			16	H			ч.	- 1		•			-11	1		MI.		•	ш		7 T	111	7	N 4	10	4	•
Δ.Ι	AIF.	€	-1	ш	v	4.5	_		- 1	31	•	II X	9	111	1.	٠.	J	п	U	11	и.	1.1		ш	U	12			ľĿ	41	- 1	1		U	3	Μ	ш	U	41	. 3	ľ	9 /	ĸ		J.		V	U	9 1	_
6 I	4				•	- T	-		4		Υ.	7	~-			. [_	-,-	. –		-			-	\sim			-, -		7).		9.5	-	$\overline{}$. =	7).	_	•			•	-		/		~	•
	4 -					- 47																							-	-																				

1. ac':

a →/semua kotak pada baris ke 2

 $c' \not\rightarrow$ semua kotak pada kolom ke 1 dan kolom ke 4

1	bc	b'c'	b'c	bc	bc'
	a'				
	а	1			1

$$ac' = ab'c' + abc'$$

$$= ac'(b' + b)$$

$$= ac'.1$$

$$= ac'$$

bc b'c' b'c bc bc'

PK

a 1 1 1

Wahyu Nur Cholifah-Matematika Diskrit

Cara 2: gambarkan peta karnugh untuk f(a,b,c) = ac' + b

f(a,b,c) = ac' + b	00	01	11	10
= ac'(b+b') + b(a+a') $= abc' + ab'c' + (ab+a'b)(c+c')$			1	1
= abc' + ab'c' + abc + abc' + a'bc + a'bc' $= abc' + ab'c' + abc + a'bc + a'bc'$	1		1	1
= 110 + 100 + 111 + 011 + 010				
$= m6 + m4 + m7 + m3 + m2$ $f(a, b, c) = \Sigma(2, 3, 4, 6, 7)$				

CONTOH 3:

gambarkan peta karnugh untuk f(a,b,c,d) = bc'd + acd

$$f(a,b,c,d) = bc'd + acd$$

$$= bc'd(a + a') + acd(b + b')$$

$$= abc'd + a'bc'd + abcd + ab'cd$$

$$= 1101 + 0101 + 1111 + 1011$$

$$= m13 + m5 + m15 + m11$$

$$f(a,b,c,d) = \Sigma(5,11,13,15)$$

Teknik Minimisasi Penggunaan PK dalam penyederhanan teknik minimisasi dalam peyederhanaan fungsi Boolean dilakukan dengan menggabungkan kotak-kotak yang bernilai 1 dan saling bersisihan.

Kelompok kotak yang bernilai 1 dapat membentuk :

- 1. Pasangan (dua)
- 2. Kuad (empat)
- 3. Oktet (delapan)

CONTOH:

Diberikan peta karnugh sebagai berikut, carilah penyederhanaan fungsi booleannya kedalam bentuk SOP dan POS:

bc a	b'c'	b'c	bc	bc'
a'	0	0	1	0
a	1	0	1	1

bod	c'd'	c'd	cd	cď
a'b'	0	1	1	0
a'b	0	1	1	0
ab	1	1	1	1
ab'	1	1	1	1

Bentuk baku SOP = 1

$$f(a,b,c)=ac'+bc$$

Bentuk baku POS = 0

$$f(a,b,c) = (a'+c').(b'+c)$$

a'

a'

b'

b'

b

c'

С

c'

С

d

d

d

d

d

Wahyu Nur Cholifah-Matematika Diskrit

PENYEDERHANAAN FUNGSI BOOLEAN

ŀ.				
	ā	b'	Ċ	ď
	a'	b'	C	ď'
1.0	a'	b	c'	ď
	a'	b	С	ď'
	a'	-	-	ď'

	а	b	c'	d'
	a	b	Ċ	d
	a	р	U	d
	σ	b	U	ď'
/	a	b'	·υ	ď'
	a	b'	·Ό	d
	a	b'	U	d
	а	<u>ر</u>	O	ď'
	а	-	-	-

Bentuk baku SOP = 1

$$f(a,b,c,d)=a+a'd$$

Bentuk baku POS = 0

$$f(a,b,c,d)=(a'+d')$$

CONTOH-CONTOH PENYEDERHANAAN FUNGSI BOOLEAN

1. Dari table kebenaran tentukan bentuk sederhana dari fungsi Boolean ke dalam bentuk SOP dan POS

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- 2. Carilah penyederhanaan beserta PK dari minimisasi fungsi Boolean f(x, y, z) = x'z + x'y + xy'z + yz
- 3. Carilah penyederhanaan dari minimisasi fungsi Boolean $f(x,y,z) = \Sigma(0,2,4,5,6)$
- 4. Dari PK dibawah ini sederhanakan fungsi booleannya kedalam bentuk SOP

_\cd				
ab ca	c'd'	c'd	cd	cď'
a'b'	0	1	1	0
a'b	0	1	1	1
ab	0	1	1	1
ab'	1	1	1	0

Matematika Diskri

MATEMATIKA DISKRIT CONTOH-CONTOH PENYEDERHANAAN FUNGSI BOOLEA

1. Dari table kebenaran tentukan bentuk sederhana dari fungsi Boolean ke dalam bentuk SOP dan POS

a	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Bentuk baku SOP = 1

$$f(a,b,c)=a'c+ac$$

Bentuk baku POS = 0

$$f(a,b,c) = a'c + ac'$$
 $f(a,b,c) = (a'+c').(a+c)$

CONTOH-CONTOH PENYEDERHANAAN FUNGSI BOOLEAN

2. Carilah penyederhanaan beserta PK dari minimisasi tungsi Boolean f(x, y, z) = x'z + x'y + xy'z + yz

Penyelesaian: pilah masing-masing sukunya:

1. x'z:

 $x' \rightarrow semua\ kotak\ pada\ baris\ ke\ 1$ $z \rightarrow semua\ kotak\ pada\ kolom\ ke\ 2\ dan\ 3$

yz:

y → semua kotak pada kolom ke 3 dan 4 z → semua kotak pada kolom ke 2 dan 3

2. x'y:

 $x' \rightarrow semua\ kotak\ pada\ baris\ ke\ 1$ y $\rightarrow semua\ kotak\ pada\ kolom\ ke\ 3\ dan\ 4$

3. xy'z:

22

CONTOH-CONTOH PENYEDERHANAAN FUNGSI BOOLEAN

3. Carilah penyederhanan dari

Minimisasi fungsi Boolean

$$f(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

X	у'	z'
Х	у'	Z
Х	у'	-

х уд	00	01	11	10	
0	1				
1		1			

х'	у'	z'
x'	У	z'
Х	у'	z'
Χ	У	z'
1	1	Z'

jadi hasil penyederhanaanya f(x, y, z) = z' + xy'

23

CONTOH-CONTOH PENYEDERHANAAN FUNGSI BOOLEAN

4. Dari PK dibawah ini sederhanakan fungsi booleannya dalam bentuk sop

Ш,				
	a	$\sigma_{\underline{\cdot}}$	o.	ō
	а	b'	c'	d
	а	b'	c'	1

ab cd	c'd'	c'd	cd	cď'
a'b'		1	1	
a'b		1	1	1
ab		1	1	1
ab'	1	1	1	

a'	b'	c'	d
a'	b'	O	d
a'	р	c'	d
a'	b	С	d
а	Q	·Ċ	d
а	b'	C	d
a	b'	·Ċ	d
a	b'	U	d
-	-	-	d

a'	р	С	d
a'	р	С	ď'
а	Q	U	đ
а	D	С	ď
_	р	С	-

Bentyk baku SOP = 1

jadi hasil penyederhanaanya f(a,b,c,d) = ab'c' + d + bc

LATIHAN 5

1. Dari PK dibawah ini carilah peyederhanaan fungsi booleannya dalam bentuk SOP dan POS

ab cd	c'd'	c'd	cd	cď'
a'b'	1	1	0	0
a'b	1	1	0	0
ab	1	1	1	1
ab'	1	1	1	1

Dari persamaan f(a,b,c) = a + b' + c buatlah PK nya