

Parallele Sortierung

Björn Rathjen Patrick Winterstein Freie Universität Berlin

Proseminar Algorithmen, SS14

Grundlage des Sortierens Komparator

Sortiernetzwerk Aufbau

Korrektheit

Laufzeit

Herleitung Vergleich mit Software sortieren

Gegenüberstellung

Zusammenfassung

Ausblick Hybercube

Anhang

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Motivatior: Allgemein

ist Basis für:

- Suche
- ► (Sortierung)
 - Listen
 - Wörterbücher
 - ٠..
- ▶ Ist dies auch in Hardware möglich ?

Grundlage des Sortierens Komparator

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Aufbau

- ▶ 2 Eingänge
- vergleichender Baustein
- ▶ 2 Ausgänge


```
void comp(chan in1, in2, out1 out2){
    a = <- in1;
    b = <- in2;

if (a < b){
      out1 <- a;
      out2 <- b;
      return void;
    }
    out1 <- b;
    out2 <- a;
    return void;
}</pre>
```


Grundlage des Sortierens

Sortiernetzwerk Aufbau Korrektheit

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

- mehrere Eingabeleitungen
- Vergleichende Schritte müssen dazwischen laufen
- mehrere Ausgabeleitungen sortierte Ausgabe

Aufgabe

▶ Resultat soll sortierte Eingabe sein

Aufgabe

- ► Resultat soll sortierte Eingabe sein grundlegendes Prinzip
 - ▶ intuitiver Einsatz von Vergleichen
 - ► Schrittweises sortieren

nativ : grundlegendes Prinzip

Bild siehe 2

Demonstration

Bild kleiner Zahlenfolge 4-8-16 Beispiel

Theorem

Wenn es eine Folge A gibt, die ein Sortiennetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

Proof.

fill

man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren

$$f(c) = \begin{cases} 0, & \text{if } c < k \\ 1, & \text{if } c \ge k \end{cases}$$

Beispiel an der Tafel? Bild

effektiverer Ansatz

- Aufgabe
- ► grundlegendes Prinzip
- ► Demonstration (kleines Beispiel)
- Laufzeit

Aufgabe :

- ▶ Resultat soll sortierte Eingabe sein
- ▶ soll effizient sein

Aufgabe :

- ▶ Resultat soll sortierte Eingabe sein
- ▶ soll effizient sein

grundlegendes Prinzip :

- ▶ intuitiver Einsatz von Vergleichen
 - + Einbezug von Teile und Herrscher

Aufteilung

Bild Buch Biton-Sortierer

Bild

Demonstration

Bild kleiner Zahlenfolge 4-8-16 Beispiel

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit
Herleitung
Vergleich mit Software sortieren

Gegenüberstellung

Zusammenfassung

Aushlick

$$\frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$$

1

$$\frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$$

Herleitung

Herleitung

Unterschiedliche Betrachtungen Schritte gegen Vergleiche, versuch der Darstellung

Bubblesort im Hardwarenetz

Bild Bubblesort siehe 1

Mergesort im Hardwarenetz

Bild Mergesort siehe 4

Bild Quicksort Bild 5

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

- Geschwindigkeit vs Variabilität
 - hohe Geschwindigkeit durch direkte Hardware Implementriegung
 - starre Struktur , bildet Rahmen der Möglichkeiten
 - stark typisierte Eingabe
- Hardwareaufwand vs Softwareaufwand
 - Software zur Auswertung keine zum sortieren
 - geringe Skalierbarkeit
 - hoher Aufwand wenn Eingabelimit überschritten wird
 - nur lokal
 - Hardware Konzeption eventuell aufwendiger

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Zusammenfassung

- paralleles sortieren ist schnell und effizient
- stark Problemabhängig
- muss noch gefüllt werden

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick Hybercube Anhang

Ausblick

weiter

Hyprecube

?¿

structur

Funktion

Fragen, Anregungen? (keine Liederwünsche)

A. Author.

Taschenbuch der Algorithmen. Springer Verlag, 2008.

Tom Leighton.

Einführung in Parallele Algorithmen und Architekturen Gitter, Bäume und Hypercubes. Thomsom Publisching, 1997.

S. Someone.

http://www.iti.fh-

flensburg.de/lang/algorithmen/sortieren/networks/nulleins.htm