

AO4294

100V N-Channel MOSFET

General Description

Trench Power MV MOSFET technology

• Low R_{DS(ON)}

Applications

Low Gate ChargeOptimized for fast-switching applications

Product Summary

 V_{DS} 100V I_D (at $V_{GS}=10V$) 11.5A $R_{DS(ON)}$ (at V_{GS} =10V) < 12mΩ $R_{DS(ON)}$ (at V_{GS} =4.5V) < 15.5mΩ

100% UIS Tested 100% Rg Tested

Synchronus Rectification in DC/DC and AC/DC Converters

Industrial and Motor Drive applications

Orderable Part Number	Package Type	Form	Minimum Order Quantity		
AO4294	SO-8	Tape & Reel	3000		
Absolute Maximum Ratings T ₄ =25	°C unless otherwise noted				
Absolute Maximum Ratings 1A-25	C unless other wise noted		1		
Parameter	Symbol	Maximum	Units		
Drain-Source Voltage	Vns	100	V		

	<u> </u>				
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _A =25°C	I-	11.5		
Current	T _A =70°C	ID	9	A	
Pulsed Drain Current ^c		I _{DM}	46		
Avalanche Current ^C		I _{AS}	20	A	
Avalanche energy	L=0.1mH ^C	E _{AS}	20	mJ	
V _{DS} Spike	10µs	V _{SPIKE}	120	V	
	T _A =25°C	P _D	3.1	W	
Power Dissipation ^B	T _A =70°C	L D	2.0	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	В	31	40	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	59	75	°C/W	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		100			V
l	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				1	μΑ
I _{DSS}			T _J =55°C			5	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1.4	1.9	2.4	V
	Static Drain-Source On-Resistance	V_{GS} =10V, I_{D} =11.5A			10	12	m0
R _{DS(ON)}		T _J =125°C			17.5	21	mΩ
		V_{GS} =4.5V, I_{D} =9.5A			12.5	15.5	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =11.5A			45		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.71	1	V
Is	Maximum Body-Diode Continuous Current					4	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz			2420		pF
Coss	Output Capacitance				170		pF
C_{rss}	Reverse Transfer Capacitance				11		pF
R_g	Gate resistance	f=1MHz		0.2	0.55	0.9	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =50V, I _D =11.5A			33	50	nC
Q _g (4.5V)	Total Gate Charge				15	25	nC
Q_{gs}	Gate Source Charge				7		nC
Q_{gd}	Gate Drain Charge				4		nC
t _{D(on)}	Turn-On DelayTime				8		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =4.35 Ω , R_{GEN} =3 Ω			3		ns
$t_{D(off)}$	Turn-Off DelayTime				25		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =11.5A, dl/dt=500A/μs			25		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =11.5A, dI/dt=500A	/μs		110		nC

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The

- value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead R $_{\theta JL}$ and lead to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

 F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150 $^{\circ}$ C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in 2 FR -4 board with 2oz. Copper, in a still air environment with TA=25 ° C.
- I. L=100uH, Fsw=1Hz, Tj≤150C by repetitive UIS.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

2

6

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

8

10

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

1.0E-05

0.0

0.4

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

0.6

8.0

1.0

0.2

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

