Index calculus on finite fields and applications to pairing based cryptography

Sylvain Duquesne

University Rennes 1

Abidjan CIMPA-ICTP school April 14, 2017

Institut de recherche mathématique de Rennes

IRMAR - UMR 6625 du CNRS

The discrete logarithm

Definition

Let G be a (multiplicative) group. Let g an element of G of finite order ℓ . Let $H=\left(1,g^1,g^2,\cdots,g^{\ell-1}\right)$ the subgroup of G generated by g

$$\forall h \in H, \exists n \in [0, \cdots, \ell-1] \text{ such that } h = g^n$$

n is said to be the discrete logarithm of h in base g and is denoted $\log_g(h)$. n est determined modulo ℓ

Examples:

- ullet The multiplicative group of a finite field $: \mathbb{F}_q^*$
- An elliptic curve
- The Jacobian of an hyperellitic curve

Goal : find a group where finding the discrete logarithm is difficult and use it in cryptography

Diffie-Hellman key exchange

Public parameters : a group G, an element g in G of order ℓ

- ullet A picks a random number a in $[1,\ell-1]$
- A computes g^a in G and sends it to B
- ullet B picks a random number b in $[1,\ell-1]$
- B computes g^b in G and sends it to A
- B gets g^a and computes $g^{ab} = (g^a)^b$
- A gets g^b and computes $g^{ab} = (g^b)^a$
- A and B share a common secret key g^{ab} .

An eavesdropper knows g and intercepts g^a, g^b but cannot deduce g^{ab} without solving a discrete logarithm problem

Computing the discrete logarithm

Definition

An algorithm to compute the discrete log is said to be generic if it uses only the following operations

- the composition of two groups elements
- the inverse of an element
- the equality test

In other words, it can be used on any group

Theorem (Shoup)

Let p be the largest prime number dividing the order ℓ of the element g. Computing a discrete logarithm using a generic algorithm requires at least $O(\sqrt{p})$ operations in the group

Combining Polhig-Hellman with BSGS or Pollard ρ method allows to compute a DL in $O(\sqrt{p})$ operations in the group.

A candidate for $G: \mathbb{F}_p^*$

p prime, \mathbb{F}_p finite field

The set of non-zero elements in \mathbb{F}_p is a (multiplicative) group of order p-1 o natural candidate for G

Index calculus algorithm can compute the discrete logarithm in such a group in subexponential time

Security level of 80 bits $ightarrow p \sim 2^{1024}$ Same security as RSA

In practice, we chose p a 1024 bits prime number such that p-1 is divisible by a 160 bits prime number ℓ . In this case, the operations take place in \mathbb{F}_p^* but the keys (the exponents) are in $\mathbb{Z}/\ell\mathbb{Z}$.

Smaller keys than RSA (160 bits instead of 1024).

Diffie-Hellman key-exchange on \mathbb{F}_p^* for 80 bits security

We chose ℓ a 160 bits prime number and p a 1024 bits prime number such that $p-1=k\ell$. Let g be an element in \mathbb{F}_p^* of order ℓ . Public parameters are ℓ , p and g.

- ullet A picks a random number a in $[1,\ell-1]$
- A computes g^a modulo p and sends it to B
- ullet B picks a random number b in $[1,\ell-1]$
- B computes g^b modulo p and sends it to A
- B gets g^a and computes $g^{ab} = (g^a)^b$ modulo p
- A gets g^b and computes $g^{ab} = (g^b)^a$ modulo p
- A and B share the common secret key g^{ab}

The standard procedure to generate ℓ , p and g is given by the NIST http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

for instance
$$\ell = 2^{160} + 7$$

$$p = 1 + (2^{160} + 7) (2^{864} + 218) \sim 2^{1024}$$

$$g = 2^{\frac{p-1}{\ell}} \mod p$$

Other candidates

- Other finite fields. In particular those of the form \mathbb{F}_{2^n} . Index calculus works much better (since 2013): avoid
- Elliptic curves and genus 2 (hyperelliptic) curves for which nobody knows better attacks than generic ones: 160 bits are sufficient for 80 bits of security
- Curves of larger genus but the Index calculus algorithm can be adapted

Advantages and Drawbacks compared to RSA

- Smaller key size
- Faster decryption (eg 160 bits exponent instead of 1024)
- Slower encryption (if small e is used in RSA)
- Trivial key generation

Principle of Index calculus (Western-Miller, Kraitchik)

We assume, to simplify, that $\# G = \ell$ (ie all elements of G are a power of g). We want to compute the discrete log of h

- 1. Construct a "factor basis" made of some particular elements of G, $(g_i)_{i=1..c}$. By definition, we have $g_i=g^{\log_g(g_i)}$
- 2. Find relations between these elements of the form

$$g^{\alpha_g}h^{\alpha_h}=g_1^{\alpha_1}g_2^{\alpha_2}\cdots g_c^{\alpha_c}$$

This give relations of the form

$$g^{\alpha_g}g^{\log_g(h)\alpha_h}=g^{\log_g(g_1)\alpha_1}g^{\log_g(g_2)\alpha_2}\cdots g^{\log_g(g_c)\alpha_c}$$

and then

$$\alpha_g = -\log_g(h)\alpha_h + \log_g(g_1)\alpha_1 + \log_g(g_2)\alpha_2 + \cdots + \log_g(g_c)\alpha_c$$

which is a linear equation between $\log_g(h)$ and the $\log_g(g_i)$.

Principle of Index calculus (Western-Miller, Kraitchik)

3. When you have c+1 independent relations of this form, solve the system (standard linear algebra) assuming that $\log_g(h)$ and the $\log_g(g_i)$ are the unknowns. The solution then gives $\log_g(h)$

For efficiency, must find a balance between step 2 and step 3 (which are contradictory)

This algorithm is generic but is efficient only if a good factor basis can be used

- ullet on \mathbb{F}_p^* , we choose the small prime numbers
- ullet on $\mathbb{F}_{2^n}^*$, we choose the polynomials of small degrees
- on large genus curves, we choose elements of small degrees

Pairings in cryptography

Definition

In cryptography, a pairing is a map

$$e: (G_1, +) \times (G_2, +) \rightarrow (G_3, x)$$

- ullet bilinear, ie $e(g_1+g_1',g_2)=e(g_1,g_2)e(g_1',g_2)$
- non degenerate, ie $\forall g_1 \in G_1, \exists g_2 \in G_2 \; \mathsf{tq} \; e(g_1,g_2) \neq 1$
- easy to compute

Applications

- Transfert of discret log.
- tri-partite key-exchange.
- identity based cryptography.
- Short signatures
- Broadcast encryption

The Tate pairing

Let E be an elliptic curve defined over \mathbb{F}_q and containing a subgroup of prime order ℓ . Let k be the embedding degree relatively to ℓ

$$e_T: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \rightarrow \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^{\ell}$$

The embedding degree

- ullet It is the smallest extension of \mathbb{F}_q that contains all the ℓ -torsion points.
- It is usually very large (same size as q).
- It is small for supersingular curves $(k \le 6 \text{ in char. } 3, k \le 4 \text{ in char. } 2, k \le 2 \text{ in char. } \ge 5)$

Security issue

The DL should be hard to solve in the 3 groups involved ℓ should be large enough to avoid generic attacks q^k should be large enough to avoid index calculus

The Barreto-Naehrig (BN) curves

Prime order curves given by an equation $y^2 = x^3 + b$ satisfying

- $p = 36u^4 + 36u^3 + 24u^2 + 6u + 1$
- $\bullet \ \ell = 36u^4 + 36u^3 + 18u^2 + 6u + 1$

Properties

- k = 12, "optimal" for 128 bits security level.
- Many implementation tricks available.

 \Rightarrow Massively used since for 10 years

But...

The polynomial form of p can be used to significantly improved index calculus

- $u = -2^{62} 2^{55} 1$ provides only 100 bits of security
- BN curves no more optimal
- Others families must be considered (BLS, KSS, ...)