# **Cyclic Subgroups**

#### **Theorem**

Let G be a group and  $a \in G$ :

$$\langle a \rangle \le G$$

#### Proof

Assume  $x \in \langle a \rangle$ 

$$\exists n \in \mathbb{Z}, x = a^n$$

But by closure,  $a^n = x \in G$ 

$$\langle a \rangle \subseteq G$$

 $\langle a \rangle$  is a group under the induced operation of G.

$$\therefore \langle a \rangle \leq G$$

# **Corollary**

Let G be a group and  $a \in G$ :

 $\langle a \rangle$  is the smallest subgroup of G containing a.

### **Proof**

Assume  $H \leq G$  such that  $a \in H$ 

$$\langle a \rangle \le H$$

$$\forall H \le G, \langle a \rangle \le H$$

 $\therefore \langle a \rangle$  is the smallest subgroup of G containing a.

### **Definition**

Let G be a group and  $a \in G$ .  $\langle a \rangle$  is called the *cyclic subgroup* of G generated by a.

The *order* of a is given by  $|\langle a \rangle|$ .

# **Example**

$$U_{12} = \{ e^{i\frac{2\pi k}{12}} \mid 0 \le k < 12 \}$$

Let 
$$a=e^{i\frac{2\pi 8}{12}}=e^{i\frac{4\pi}{3}}$$
  $\langle a \rangle = \{1,e^{i\frac{4\pi}{3}},e^{i\frac{8\pi}{3}}\}=U_3$   $U_3 \leq U_{12}$ 

Let 
$$a = e^{i\frac{2\pi 6}{12}} = e^{i\pi} = -1$$

$$\langle a \rangle = \{1, -1\}$$

$$U_2 \leq U_{12}$$



#### **Theorem**

Let G be a group:

G has no proper, non-trivial subgroups  $\implies G$  is cyclic.

#### **Proof**

Assume G has no proper, non-trivial subgroups Assume  $a \in G$   $\langle a \rangle \leq G$  But  $\langle a \rangle$  is neither trivial nor proper, so  $\langle a \rangle = G$   $\therefore$  G is cyclic

#### **Theorem**

Let G be cyclic.  $\forall H \leq G, H$  is cyclic.

#### Proof

$$\{e\} \leq G \text{, so AWLOG that } H \leq G \text{ is non-trivial} \\ \text{Let } H' = \mathbb{Z}_n \text{ or } H' = \mathbb{Z} \\ H \simeq H' \\ \text{Let } S = \{a \in H' \mid a \in \mathbb{Z}^+\} \\ 1 \in S \text{, so } S \neq \emptyset \\ \text{Let } h = \min H' \\ \text{Assume } k \in H', k \leq h \\ \text{By the division algorithm: } k = qh + r \text{ such that } q, r \in \mathbb{Z} \text{ and } 0 \leq r < h \\ r = k - qh \in H' \\ \text{But by the minimality of } h, r = 0 \\ k = qh \\ H' = \langle h \rangle \\ H' \text{ is cyclic.}$$

#### **Theorem**

Let  $G=\langle a \rangle$ . Let  $a^h,a^k\in G$  and d=(h,k):  $H=\left\{\left(a^h\right)^n\left(a^k\right)^m\mid n,m\in\mathbb{Z}\right\}=\left\langle a^d\right\rangle\leq G$ 

#### **Proof**

From  $G \simeq \mathbb{Z}_n$  or  $G \simeq \mathbb{Z}$ , so let G' be the appropriate one Let  $H' = \{mh + nk \mid m, n \in \mathbb{Z}\}$   $H \simeq H'$ Assume  $x, y \in H'$   $\exists m_1, n_1 \in \mathbb{Z}, x = m_1h + n_1k$   $\exists m_2, n_2 \in \mathbb{Z}, y = m_2h + n_2k$   $-y = -m_2h - n_2k \in G'$   $x - y = (m_1 - m_2)h + (n_1 - n_2)k \in H'$ So, by the subgroup test,  $H' \leq G'$   $\therefore H \leq G$ But also,  $\exists c \in \mathbb{Z}, x = m_1h + n_1k = c(h, k) = cd$ So,  $H' = \langle d \rangle$   $\therefore H = \langle a^d \rangle$ 

# Corollary

Let  $G=\langle a\rangle$ . Let  $a^h,a^k\in G$  and d=(h,k).  $\langle a^d\rangle$  is the smallest subgroup of G containing  $a^h$  and  $a^k$ .

#### Proof

 $G\simeq \mathbb{Z}_n$  or  $G\simeq \mathbb{Z}$ , so let G' be the appropriate one Assume  $H\leq G'$  Assume  $h,k\in H$   $\langle d\rangle=\{mh+nk\mid m,n\in \mathbb{Z}\}\leq H$  Thus,  $d\in H$   $h=1\cdot h+0\cdot k\in \langle d\rangle$   $k=0\cdot h+1\cdot k\in \langle d\rangle$  But  $\langle d\rangle$  is the smallest subgroup of H containing d

So  $\langle d \rangle$  is the smallest subgroup of H containing aSo  $\langle d \rangle$  is also the smallest subgroup of H containing h and kBut since  $H \leq G'$ ,  $\langle d \rangle$  is the smallest subgroup of G' containing h and k $\therefore \langle a^d \rangle$  is the smallest subgroup of G containing  $a^h$  and  $a^k$ .

# Example

 $9,15 \in \mathbb{Z}_{24} \text{ and } (9,15) = 3$ 

$$\langle 3 \rangle = \{0, 3, 6, 9, 12, 15, 18, 21\}$$

 $\langle 3 \rangle$  is the smallest subgroup of  $\mathbb{Z}_{24}$  containing 9 and 15