Timed Automata for Modeling Caches and Pipelines

Franck Cassez

Macquarie University

Sydney, Australia

Pablo Gonzales
University of Cantabria
Santander, Spain

Problem

```
10: e3a03000
                       r3, #0
14: e58d3014
                       r3, [sp, #20]
18: e3a03002
                       r3, #2
1c: e58d300c
                       r3, [sp, #12]
20: ea00000a
                       50 <fib+0x50>
                      r3, [sp, #16]
24: e59d3010
28: e58d3018
                       r3, [sp, #24]
2c: e59d2010
                       r2, [sp, #16]
30: e59d3014
                       r3, [sp, #20]
                      r3, r2, r3
34: e0823003
38: e58d3010
                     r3, [sp, #16]
3c: e59d3018
                       r3, [sp, #24]
40: e58d3014
                       r3, [sp, #20]
44: e59d300c
                       r3, [sp, #12]
48: e2833001
                     r3, r3, #1
4c: e58d300c
                       r3, [sp, #12]
50: e59d200c
                      r2, [sp, #12]
                     r3, [sp, #4]
54: e59d3004
58: e1520003
                     r2, r3
5c: dafffff0
                       24 <fib+0x24>
```


 $\mathsf{WCET}(H,P) = \max_{d \in \mathcal{D}} \mathsf{time}(H,P,d)$

Real-time model-checking

Cache hit/miss

Pipeline Model

Data cache

WCET-equivalent program

000000000 <fib>:</fib>		
0: e24dd020	sub	sp, sp, #32
4: e58d0004	str	r0, [sp, #4]
8: e3a03001	BOV	r3, #1
c: e58d3010	str	r3, [sp, #16]
10: e3a03000	BOY	r3, #0
14: e58d3014	str	
18: e3a03002	BOY	
	str	,
201 01101110		r3, [sp, #12]
20: ea00000a	ь	50 <fib+0x50></fib+0x50>
24: e59d3010	ldr	r3, [sp, #16]
28: e58d3018	str	r3, [sp, #24]
2c: e59d2010	ldr	r2, [sp, #16]
30: e59d3014	ldr	r3, [sp, #20]
34: e0823003	add	r3, r2, r3
38: e58d3010	str	r3, [sp, #16]
3c: e59d3018	ldr	r3, [sp, #24]
40: e58d3014	str	r3, [sp, #20]
44: e59d300c	ldr	r3, [sp, #12]
48: e2833001	add	r3, r3, #1
4c: e58d300c	str	r3, [sp, #12]
50: e59d200c	ldr	r2, [sp, #12]
54: e59d3004	ldr	r3, [sp, #4]
58: e1520003	стр	r2, r3
5c: dafffff0	ble	24 <fib+0x24></fib+0x24>
60: e59d3010	ldr	r3, [sp, #16]
64: e58d301c	str	r3, [sp, #28]
68: e59d301c	ldr	r3, [sp, #28]
6c: ela00003	mov	r0, r3
70: e28dd020	add	sp, sp, #32
74: e12fffle	bx	lr
741 01211110		**
00000078 <main>:</main>		
78: e52de004	push	(lr)
7c: e24dd00c	sub	SD, SD, #12
80: e3a03f4b	BOV	r3, #300
84: e58d3004	str	r3, [sp, #4]
88: e59d0004	ldr	r0, [sp, #4]
8c: ebififdb	bl	U <fib></fib>
90: ela03000	DI	
		r3, r0
	mov	r0, r3
98: e28dd00c	add	sp, sp, #12
9c: e49de004	pop	(lr)
a0: e12fffle	bx	lr

Limitations

explicit cache representation

array: 1000+ "lines"

fixed initial state for all caches

empty cache

may miss pruning in real-time model checking

cache of size 1

2-stage pipeline & concrete cache

2015 © Franck Cassez

MARS 2010

Cache state equivalences

run = sequence of (program state, hit/miss)

given a program state s, two cache states c and c' are equivalent iff they generate the same runs

solution: compute the cache state equivalence

Small cache models

Small cache models

N	States Ex	WCET	
	Explicit Model	Small Model	
1	549	147	396
2	1055	196	396
3	1626	245	396
4	2267	294	396
5	2953	343	396
6	3699	392	396
7	4505	441	396
8	5371	490	396
9	6297	539	396
10	7283	588	396

Trace abstraction refinement

Conclusion & ongoing work

Advantages

- no assumption on initial state of the cache
- reduced state space in real-time model-checking

Ongoing

- implement and test on Malärdalen Univ. benchmarks
- extend technique to data cache

UPPAAL models

ACSD 2013

Pipeline Model

2015 © Franck Cassez MARS 2015

Memory stage

Instruction cache and RAM

Data cache

Execution stage (variable execution time)

Experimental results (ACSD 2013)

Program⊕	loc†	UPPAAL	Computed	Measured POETAMOET (M)	Error (%)‡ S	Slice [§]		
			ime/States Explored [¶] BCET/WCET (C) BCET/WCET (M	BCET/WCET (M)				
		Single	e-Path Programs					
fib-O0	74	2s/74181	8098	8064	0.42%	47/131		
fib-O1	74	0.6s/22333	2597	2544	2.0%	18/72		
fib-O2	74	0.3s/9711	1209	1164	3.8%	22/71		
janne-complex-00*	65	1.7s/38038	4264	4164	2.4%	78/173		
janne-complex-O1*	65	0.5s/14600	1715	1680	2.0%	30/89		
janne-complex-O2*	65	0.5s/13004	1557	1536	1.3%	32/78		
fdct-O1	238	21s/60534	4245	4092	3.7%	100/363		
fdct-O2	238	3.24s/55285	19231	18984	1.3%	166/3543		
Single-Path Programs [‡] with MUL/MLA/SMULL instructions (duration of instruction depends on data)								
fdct-O0	238	124s/85008	11242/11800	11448	3.0%	253/831		
matmult-O0*	162	217s/10531262	502849/529250	511584/528684	0.1%	158/314		
matmult-O1*	162	25s/1112527	129967/156367	127356/153000	2.2%	71/172		
matmult-02*	162	121s/6780931	122045/148299	116844/140664	5.4%	75/288		
jfdcint-O0	374	92s/100861	12726/12918	12588	2.6%	159/792		
fdcint-O1	374	12s/35419	4880/5072	4668	8.6%	25/325		
jfdcint-O2	374	5.38s/175661	[16746,16938]	16380	3.4%	56/2512		
		Multip	le-Path Programs					
bs-O0	174	30s/1421274	478/1068	1056	1.1%	75/151		
bs-O1	174	23s/1214673	321/738	720	2.5%	28/82		
bs-O2	174	12s/655870	273/628	600	4.6%	28/65		
cnt-O0*	115	4s/77002	9025/9027	8836	2.1%	99/235		
cnt-O1*	115	1.4s/27146	4123/4123	3996	3.1%	42/129		
cnt-O2*	115	9s/11490	3067/3067	2928	4.6%	39/263		
insertsort-00*	91	598.98s/24250738	3133	3108	0.8%	79/175		
insertsort-O1*	91	353.80s/11455293	1533	1500	2.2%	40/115		
insertsort-02*	91	11.68s/387292	1326	1320	0.4%	43/108		
ns-00*	497	60s/3064316	940/30968	30732	0.8%	132/215		
ns-O1*	497	8s/368720	605/11701	11568	1.1%	61/124		
ns-O2*	497	55s/1030746	441/7280	7236	0.6%	566/863		

[⊕] file-Ox indicates that file was compiled using gcc -Ox

 $^{^\}dagger$ lines of code in the C source file $^\ddagger \frac{(C-M)}{M} \times 100$ computed using the upper bound for C and M

[§]Instructions in Slice/Instructions in Program

^{*}Program selected for the WCET Challenge 2006

[¶]UPPAAL 4.1.11/Intel Pentium 5/3.1Ghz/16GB

Cache hit/miss

