Feuille 3: Méthodes d'estimation

1 Méthode des moments

Exercice 1 Soit X une variable aléatoire réelle de loi

$$\mathbb{P}(X = 0) = \frac{a}{a+1},$$
 $\mathbb{P}(X = 1) = \frac{1}{a+1},$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un *n*-échantillon de X. Ici, a > 0 est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) . Déterminer un estimateur de a par la méthode des moments.

Exercice 2 Soient X une variable aléatoire réelle de densité

$$f(x) = \begin{cases} \frac{1}{2a} & \text{si } x \in [0, a], \\ \frac{1}{2(1-a)} & \text{si } x \in [a, 1], \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \ldots, X_n) un n-échantillon de X. Ici, $a \in]0,1[$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \ldots, X_n) . Déterminer un estimateur de a par la méthode des moments.

Exercice 3 Soient X une variable aléatoire réelle de densité

$$f(x) = \begin{cases} (\theta+1)(\theta+2)(1-x)x^{\theta} & \text{si } x \in [0,1], \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \ldots, X_n) un n-échantillon de X. Ici, $\theta > -1$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \ldots, X_n) . Déterminer un estimateur de θ par la méthode des moments.

Exercice 4 Soient X une variable aléatoire réelle de densité

$$f(x) = p \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + (1-p) \frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}}, \qquad x \in \mathbb{R}.$$

 $n \in \mathbb{N}^*$, et (X_1, \ldots, X_n) un n-échantillon de X. Ici, $p \in]0, 1[$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \ldots, X_n) . Déterminer un estimateur de p par la méthode des moments.

2 Méthode du maximum de vraisemblance

Exercice 5 Soit X une variable aléatoire réelle de loi

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad k \in \mathbb{N},$$

 $n \in \mathbb{N}^*$, et (X_1, \ldots, X_n) un n-échantillon de X. Ici, $\lambda > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \ldots, X_n) . Déterminer l'estimateur du maximum de vraisemblance de λ .

Exercice 6 La hauteur maximale en mètres de la crue annuelle d'un fleuve est une variable aléatoire réelle X de densité

$$f(x) = \begin{cases} \frac{x}{a}e^{-\frac{x^2}{2a}} & \text{si } x \geqslant 0, \\ 0 & \text{sinon.} \end{cases}$$

Soient $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, a > 0 est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Déterminer l'estimateur du maximum de vraisemblance \hat{a}_n de a.
- 2. Application. Une crue supérieure à 6 mètres serait catastrophique. Pendant 8 ans, on a observé les hauteurs de crue du fleuve en mètres. Les résultats sont : 2, 5; 2, 9; 1, 8; 0, 9; 1, 7; 2, 1; 2, 2; 2, 8. À partir de ces mesures, donner une estimation ponctuelle de a et une estimation de la probabilité d'avoir une catastrophe une année donnée.

Exercice 7 Soit (Y_1, \ldots, Y_n) un vecteur de n variables aléatoires réelles telles que, pour tout $i \in \{1, \ldots, n\}$,

$$Y_i = \frac{\theta}{i^{\alpha}} + \sigma X_i,$$

où $\alpha \geq 0$ et $\sigma > 0$ sont des réels connus, (X_1, \ldots, X_n) est un vecteur de n variables aléatoires réelles indépendantes et identiquement distribuées suivant la loi Normale centrée réduite, et $\theta > 0$ est un réel inconnu que l'on souhaite estimer à l'aide des (Y_1, \ldots, Y_n) .

- 1. Déterminer la vraisemblance et la log-vraisemblance de (Y_1, \ldots, Y_n) .
- 2. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ .
- 3. Est-il sans biais? Déterminer les valeurs de α pour lesquelles l'estimateur $\widehat{\theta}_n$ converge.

Exercice 8 Soient X une variable aléatoire réelle de densité

$$f(x) = \begin{cases} (\alpha - 1)x^{-\alpha} & \text{si } x \geqslant 1, \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un n-échantillon de X. Le paramètre $\alpha > 2$ est un réel inconnu.

1. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\alpha}_n$ de α .

2. On pose $\beta = \frac{\alpha - 2}{\alpha - 1}$. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\beta}_n$ de β .

Exercice 9 Soient X la variable aléatoire réelle de densité

$$f(x) = \begin{cases} \frac{3}{(x-\theta)^4} & \text{si } x \geqslant 1+\theta, \\ 0 & \text{sinon.} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un n-échantillon de X. Ici, $\theta > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Calculer $\mathbb{E}(X \theta)$ et $\mathbb{E}((X \theta)^2)$. En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 2. Déduire du résultat de la question 1- un estimateur $\widetilde{\theta}_n$ de θ en utilisant la méthode des moments. Calculer son risque quadratique.
- 3. Calculer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ .
- 4. Calculer la fonction de répartition de $\widehat{\theta}_n \theta$. En déduire sa densité.
- 5. Calculer le risque quadratique de $\widehat{\theta}_n$. Entre $\widehat{\theta}_n$ et $\widetilde{\theta}_n$, quel est le meilleur estimateur de θ lorsque n est supposé être grand?
- 6. Calculer le biais de $\widehat{\theta}_n$, et en déduire un estimateur sans biais $\widehat{\theta}_n^*$ de θ . Montrer, sans calcul intégral, que, lorsque n est supposé être grand, $\widehat{\theta}_n^*$ est un meilleur estimateur de θ que $\widehat{\theta}_n$.

Exercice supplémentaire. Soit X_1, \ldots, X_n des va i.i.d. ayant des moments d'ordre 4. On pose

$$S_n^2 = \sum_{i=1}^n (X_i - \bar{X}_i)^2 / n$$

Le but de cet exercice est de calculer le risque quadratique $\mathbb{E}((S_n^2 - \sigma^2)^2)$ de l'estimateur S_n^2 de $\sigma^2 = \mathbb{V}(X_1)$. On rappelle que $\sum_{i=1}^{n-1} i = n(n-1)/2$.

- 1. Montrer que l'on peut supposer sans perte de généralité que les X_i sont centrées. On fera cette hypothèse dans la suite.
- 2. Montrer que

$$\mathbb{E}((S_n^2 - \sigma^2)^2) = \mathbb{V}(S_n^2) + b^2(S_n^2)$$

où
$$b(S_n^2) = \mathbb{E}(S_n^2) - \sigma^2$$
.

3. Démontrer que :

$$S_n^2 = \frac{n-1}{n^2} \sum_{i=1}^n X_i^2 - \frac{2}{n^2} \sum_{k < l} X_k X_l$$

En déduire que $b(S_n^2) = -\sigma^2/n$.

4. Montrer que

$$\mathbb{C}(\sum_{i=1}^{n} X_i^2, \sum_{k< l} X_k X_l) = 0, \quad \mathbb{V}(\sum_{k< l} X_k X_l) = n(n-1)\sigma^4/2$$

En déduire que :

$$\mathbb{V}(S_n^2) = \frac{n-1}{n^3} \left((n-1)\mathbb{E}(X_1^4) - (n-3)(\mathbb{E}(X_1^2))^2 \right)$$

et calculer la valeur du risque quadratique de S_n^2 .

Exercice à rendre. Soit X une variable aléatoire réelle de loi de Bernoulli de paramètre θ , avec $0 < \theta < 1$. Et (X_1, \dots, X_n) un n-échantillon de X.

- 1. Déterminer un estimateur de θ par la méthode des moments.
- 2. Déterminer l'estimateur du maximum de vraisemblance de θ .
- 3. Les estimateurs précédents sont-il sans biais?
- 4. On cherche à estimer la variance $\theta(1-\theta)$. On propose l'estimateur $\hat{V} = \bar{X}(1-\bar{X})$. Etudier le biais de cet estimateur, sa convergence presque sure et la convergence en loi de $\sqrt{n}(\hat{V} \theta(1-\theta))$.
- 5. Corriger l'estimateur \hat{V} pour proposer un nouvel estimateur \hat{V}' de $\theta(1-\theta)$ qui est sans biais. Etudier sa convergence presque sure et la convergence en loi de $\sqrt{n}(\hat{V}' \theta(1-\theta))$.