Practice problems

1.

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$$

$$\theta_2 = \sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2} \right)$$

$$\theta_2 = \sin^{-1} \left(\frac{1.00 \sin 24^\circ}{1.33} \right)$$

$$\theta_2 = 17.8^\circ$$

2.

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$$

$$\theta_2 = \sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2} \right)$$

$$\theta_2 = \sin^{-1} \left(\frac{1.52 \sin 20^\circ}{1.00} \right)$$

$$\theta_2 = 31.3^\circ$$

3.

$$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$$

$$\frac{n_2}{n_3} = \frac{\sin \theta_3}{\sin \theta_2}$$

$$\theta_2 = \sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2}\right)$$

$$\theta_3 = \sin^{-1} \left(\frac{n_2 \sin \theta_2}{n_3}\right)$$

$$\theta_2 = \sin^{-1} \left(\frac{1.00 \sin 60^\circ}{1.52}\right)$$

$$\theta_3 = \sin^{-1} \left(\frac{1.52 \sin 34.733^\circ}{1.33}\right)$$

$$\theta_2 = 34.733^\circ$$

$$\theta_3 = 40.6^\circ$$

4.

5.

6. At the critical incident angle the angle of refraction is 90°.

$$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$$

$$\theta_1 = \sin^{-1} \left(\frac{n_2 \sin \theta_2}{n_1} \right)$$

$$\theta_1 = \sin^{-1} \left(\frac{1.00 \sin 90^\circ}{1.50} \right)$$

$$\theta_c = 41.8^\circ$$

7. At the critical incident angle the angle of refraction is 90°.

$$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$$

$$n_1 = \frac{n_2 \sin \theta_2}{\sin \theta_1}$$

$$n_1 = \frac{1.33 \sin 90^{\circ}}{\sin 56.2^{\circ}}$$

$$\boxed{n_1 = 1.60}$$

8. The angle of refraction in water is 60° . If $n_{plastic} = 1.62$ trace the ray path through the system below.

$$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$$

$$\theta_2 = \sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2} \right)$$

$$\theta_2 = \sin^{-1} \left(\frac{1.33 \sin 60^\circ}{1.62} \right)$$

$$\theta_2 = 45.32^\circ$$

$$\frac{n_2}{n_3} = \frac{\sin \theta_3}{\sin \theta_2}$$

$$\theta_3 = \sin^{-1} \left(\frac{n_2 \sin \theta_2}{n_3} \right)$$

$$\theta_3 = \sin^{-1} \left(\frac{1.62 \sin 45.33^\circ}{1.00} \right)$$

 θ_3 = undefined : total internal reflection occurs

Assignment

$$\frac{n_2}{n_1} = \frac{v_1}{v_2}$$

$$\frac{n_2}{1.00} = \frac{3.00 \times 10^8 \, \frac{m}{s}}{2.0 \times 10^8 \, \frac{m}{s}}$$

$$n_2 = 1.5$$

$$\frac{v_{violet}}{v_{air}} = \frac{n_{air}}{n_{violet}}$$

/4

$$egin{array}{ll} V_{air} & n_{violet} \ & n \cdot V \end{array}$$

$$v_{violet} = \frac{n_{air}v_{air}}{n_{violet}}$$

$$v_{violet} = \frac{(1.00)3.0 \times 10^8 \frac{m}{s}}{1.53}$$
 $v_{red} = \frac{(1.00)3.0 \times 10^8 \frac{m}{s}}{1.52}$

$$v_{red} = \frac{(1.00)3.0}{1.5}$$

$$v_{violet} = 1.96 \times 10^8 \, \text{m/s}$$

$$v_{violet} = 1.96 \times 10^8 \, \text{m/s}$$
 $v_{red} = 1.97 \times 10^8 \, \text{m/s}$

$$\sin \theta_2 = \frac{n_1 \sin \theta_1}{n_2}$$

$$\theta_2 = \sin^{-1} \frac{1.00 \sin 60}{1.33}$$

$$\theta_2 = 41^{\circ}$$

$$\theta_2 = 41^o$$

4)
$$\sin \theta_2 = \frac{n_1 \sin \theta}{n_2}$$

/3
$$\theta_2 = \sin^{-1} \frac{n_2}{1.00 \sin 30}$$

$$\theta_2 = 19^{\circ}$$

$$n_2 = \frac{n_1 \sin \theta_1}{\sin \theta_2}$$

$$n_2 = \frac{\sin \theta_2}{\sin 10}$$

$$n_2 = \frac{1.00 \sin 20}{\sin 10}$$

$$n_2 = 1.97$$

6)
$$\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1}$$

$$\lambda_2 = \frac{n_1 \lambda}{n_2}$$

$$\lambda_2 = \frac{1.0(570nm)}{1.33}$$

/6

 $\lambda_2 = 429nm$

$$\sin \theta_{2} = \frac{n_{1} \sin \theta_{1}}{n_{2}}$$

$$\theta_{2} = \sin^{-1} \frac{1(\sin 55^{\circ})}{1.33}$$

$$\theta_{2} = 38^{\circ}$$

$$\sin \theta_{3} = \frac{n_{2} \sin \theta_{2}}{n_{3}}$$

$$\theta_{3} = \sin^{-1} \frac{1.33(\sin 38^{\circ})}{1.50}$$

$$\boxed{\theta_{2} = 33^{\circ}}$$

$$\sin \theta_{2} = \frac{n_{1} \sin \theta_{1}}{n_{2}}$$

$$\theta_{2} = \sin^{-1} \frac{1.00 \sin 50.0}{1.51}$$

$$\theta_{2} = 30.49^{\circ}$$

$$\theta_{2}' = 90 - 30.49 = 59.51$$

$$\theta_{3}' = 180 - \theta_{i}' - 70 = 180 - 59.51 - 70$$

$$\theta_{3}' = 50.49^{\circ}$$

$$\theta_{3} = 90 - 50.49 = 39.51^{\circ}$$

$$\sin \theta_{4} = \frac{n_{3} \sin \theta_{3}}{n_{4}}$$

$$\theta_{4} = \sin^{-1} \frac{1.51(\sin 39.51^{\circ})}{1.00}$$

 $\theta_4 = 73.9^\circ$

/6

/8

/8

$$\sin \theta_2 = \frac{n_1 \sin \theta_1}{n_2}$$

$$\theta_2 = \sin^{-1} \frac{1(\sin 35)}{1.5}$$

$$\theta_2 = 22.5^\circ$$

$$\theta_3 = 60^\circ - 22.5^\circ = 37.5^\circ$$

$$\sin \theta_4 = \frac{n_3 \sin \theta_3}{n_4}$$

$$\theta_4 = \sin^{-1} \frac{1.5 \sin 37.5^\circ}{1.00}$$

$$\theta_4 = 66^\circ$$

$$\theta_1 = 20^\circ$$

$$n_1 = 1.33$$

$$n_1 = 1.33$$
 $\sin \theta_2 = \frac{n_1 \sin \theta_1}{n_2}$ $\sin \theta_2 = \frac{n_2 \sin \theta_1}{n_2}$

$$n_2 = 1.0$$

$$\theta_2 = ?$$

$$\theta_2 = \sin^{-1} \frac{1.33 \sin 20}{1.0}$$

$$\theta_2 = 27^\circ$$

$$\operatorname{set} \theta_2 = 90^\circ$$

$$\sin \theta_1 = \frac{n_2 \sin 90}{n_1}$$

$$\theta_1 = \sin^{-1} \frac{1.0}{1.33}$$

$$\theta_1 = 48.8^{\circ}$$

$$\sin \theta_r = \frac{n_i \sin \theta_i}{n}$$

$$\theta_r = \sin^{-1} \frac{1.33 \sin 30}{1.50}$$

$$\theta_r = 26.3^\circ$$

in air

$$\sin \theta_r = \frac{n_i \sin \theta_i}{n}$$

$$\theta_r = \sin^{-1} \frac{1.50 \sin 26.3}{1.00}$$

$$\theta_r = 42^\circ$$

$$\sin \theta_r = \frac{n_i \sin \theta_i}{n_r}$$

$$\theta_r = \sin^{-1} \frac{1.33 \sin 52}{1.50}$$

$$\theta_r = 44.3^\circ$$

$$\sin \theta_r = \frac{n_i \sin \theta_i}{n}$$

$$\theta_r = \sin^{-1} \frac{1.50 \sin 44.3}{1.00}$$

 θ_r = error, not possible

∴ no refracted ray

12)

/3

 $\sin \theta_i = \frac{n_2 \sin \theta_2}{n_i}$

$$\theta_i = \sin^{-1} \frac{1.33 \sin 25}{1.00}$$

$$\theta_i = 34^\circ$$

13)

/3

The water refracts the light from the penny so it can enter the eye

Hot air has a slightly different refraction index than cool air and therefore causes light to 14) bend differently. The refraction is not uniform resulting in irregular bending of light.

/2

15)
$$n_{1} = \frac{n_{2} \sin \theta_{2}}{\sin \theta_{1}}$$

$$n_{1} = \frac{1.0 \sin 90}{\sin 40.5}$$

$$n_1 = \frac{1}{\sin 40.5}$$

16)

/3

$$n_1 = \frac{n_2 \sin \theta_2}{\sin \theta_1}$$

$$n_1 = \frac{1.0\sin 90}{\sin 61}$$

$$n_1 = 1.14$$

17)

$$\sin \theta_2 = \frac{n_2}{n_1}$$

$$\theta_2 = \sin^{-1} \frac{5/2}{3/2}$$

$$\theta_2 = 37^\circ$$

18)
$$\sin \theta_2 = \frac{n_1 \sin \theta_1}{n_2}$$

$$\sin\theta_2 = \frac{1.50\sin 45}{1.0}$$

/5
$$\sin \theta_2 = 1.06 \leftarrow impossible$$

: total internal reflection

19)

The rays that are not refracted are totally internally reflected

$$\theta_2 = \sin^{-1} \frac{n_2 \sin 90^\circ}{n_1}$$

$$\theta_2 = \sin^{-1} \frac{1.0 \sin 90^{\circ}}{1.33}$$

$$\theta_2 = 48.8^{\circ}$$

$$\tan \theta_2 = \frac{r}{20}$$

$$r = 20 \tan \theta_2$$

$$r = 20 \tan 48.8$$

$$r = 22.81cm$$

$$area = \pi r^2 = \pi (22.81cm)^2$$

$$area = 1634cm^2$$

20) The relationship between n_1, n_2, θ_1 and θ_2 is:

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2} \qquad \checkmark$$

since
$$n_1 = 1.00$$

$$n_2 = \frac{\sin \theta_1}{\sin \theta_2} \qquad slope = \frac{rise}{run}$$

Calculate the sine of the angles:

#16000 tile 21110 at tile mil21021			
$\sin \theta_1$	θ_2	$\sin \theta_2$	
0.00	$0_{\rm o}$	0.00	
0.17	6°	0.10	
0.34	12°	0.21	V
0.50	18°	0.31	
0.64	23°	0.39	V
0.77	$28^{\rm o}$	0.47	
0.87	$32^{\rm o}$	0.53	
	0.00 0.17 0.34 0.50 0.64 0.77	0.00 0° 0.17 6° 0.34 12° 0.50 18° 0.64 23° 0.77 28°	0.00 0° 0.00 0.17 6° 0.10 0.34 12° 0.21 0.50 18° 0.31 0.64 23° 0.39 0.77 28° 0.47

$$slope = \frac{rise}{run}$$

$$n_2 = \frac{\Delta \sin \theta_1}{\Delta \sin \theta_2} = \frac{0.76}{0.47} = 1.6$$

$$\boxed{n_2 = 1.6}$$