- 1. Marcar quais das seguintes fórmulas NÃO são bem formadas
 - (x) \forall xP(a) \land \exists yP (x, y) (o Predicado P aparece com argumentos diferentes. O x na segunda chamada ao predicado P, não está ligado a nenhum quantificador.)
 - () $C \land \neg \exists x P(x, a)$
 - $(x) \forall x(B(x) \land \exists xF(x))$ (o x na chamada do predicado F pode estar ligado tanto ao existencial quanto ao Universal)
 - () P (b, a)
- 2. Prove usando dedução natural que:
- a) $\forall x(Q(x) \rightarrow R(x)), \exists x(S(x) \land \neg R(x)) \vdash \exists x(S(x) \land \neg Q(x))$
 - 1. $\forall x(Q(x) \rightarrow R(x))$
- Premissa
- 2. $\exists x(S(x) \land \neg R(x))$
- Premissa
- 3. | S(a) ∧ ¬R(a)
- 2, Hipótese eliminação existencial
- 4. | Q(a)→R(a)
- 1, Eliminação Univesal
- 5. | S(a)
- 3, Eliminação do E1
- 6. | ¬R(a)
- 3, Eliminação do E2
- 7. | ¬Q(a)
- 4, 6, MT
- 8. | S(a) ∧ ¬Q(a)
- 5,7 Introdução do E 8, Introdução do Existencial
- 9. $\mid \exists x(S(x) \land \neg Q(x))$ 10. $\exists x(S(x) \land \neg Q(x))$
- 2, 3-9, Eliminação do existencial
- b) $\forall x (P(x) \rightarrow Q(x)), \forall x R(x) \vdash \forall x P(x) \rightarrow \forall x (Q(x) \land R(x))$
 - 1. $\forall x(P(x)\rightarrow Q(x))$
- Premissa
- 2. $\forall x R(x)$

Premissa

- 3. $| \forall xP(x)$
- Hipótese Introdução →
- 4. | P(a)
- 5. $| P(a) \rightarrow Q(a)$
- 1, Eliminação Universal
- 6. | Q(a)
- 4,5, Eliminação →
- 7. | R(a)
- 2, Eliminação do Universal
- 8. $\mid R((a) \land Q(a)$
- 7,6 Introdução do E
- 9. $| \forall x(Q(x) \land R(x))$
- 8 Introdução do Universal
- 10. $\forall x P(x) \rightarrow \forall x (Q(x) \land R(x))$ 3-9 Introdução \rightarrow

3, EliminaÇão Universal

- 3. Prove usando árvores de refutação que:
- a) $\exists x \neg (F(x) \land G(x)) \vdash \neg \forall x (F(x) \land G(x))$
- 1. $\exists x \neg (F(x) \land G(x))$ Premissa
- 2. $\neg \neg \forall x(F(x) \land G(x))$ Hipótese
- 3. $\forall x(F(x) \land G(x))$ 2, $\neg \neg$
- 4. $\neg (F(a) \land G(a))$ 1, \exists
- 5. $F(a) \wedge G(a)$ 3, \forall
- 6. F(a) 5, ∧
- 7. G(a) 5, ∧
- 8. ¬F(a) ¬G(a) 4, ¬∧ X6,8 X 7,8
- 4. Considerando o predicado

A(x): x é azul

Podemos formalizar a frase, nada é azul, da seguinte forma

- () $\exists x \neg A(x)$
- $() \neg \forall x A(x)$
- $(X) \forall x \neg A(x)$
- $() \neg \exists x \neg A(x)$
- 5 . Considerando o predicado

Podemos formalizar a frase, **Algumas coisas são azuis e algumas não são**, da seguinte forma:

- () $\exists x (A(x) \land \neg A(x))$
- () $\forall x A(x) \land \forall x \neg A(x)$
- $(X) A x E \land (x) A x E (X)$
- () $\forall x (A(x) \land \neg A(x))$