EE23BTECH11054 - Sai Krishna Shanigarapu*

GATE EC 2021

49. A sinusoidal message signal having root mean square value of 4V and frequency of 1 kHz fed to a phase modulator with phase deviation constant 2 rad/volt. If the carrier signal is $c(t) = 2\cos(2\pi 10^6 t)$, the maximum instantaneous frequency of the phase modulated signal (rounded off to one decimal place) is _____ Hz. (GATE 2021 EC)

Solution:

Parameter	Description	Value
f_m	Message signal frequency	1 kHz
$c\left(t\right)$	Carrier signal	$2\cos\left(2\pi10^6t\right)$
k_p	Phase sensitivity factor	$2 \text{ rad } V^{-1}$
$m\left(t\right)$	message signal	$A_m \sin 2\pi f_m t$
f_c	Carrier signal frequency	1 kHz
A_c	Amplitude of carrier signal	2
A_m	Amplitude of message signal	

TABLE I INPUT PARAMETERS

Parameter	Description	Formula
$m\left(t\right)_{rms}$	rms value of $m(t)$	$\frac{A_m}{\sqrt{2}}$
$s\left(t\right)$	Phase modulation	$A_c \cos \left[2\pi f_c t + \theta_i\left(t\right)\right]$
$\theta_{i}\left(t ight)$	phase	$k_{p} m (t)$

TABLE II FORMULAE

Phase Modulation Signal Proof:

let e_m and e_c be message and carrier signals, $2\pi f_m$ and $2\pi f_c$ be radial frequencies and A_m and A_c be their amplitudes respectively. Then,

$$e_m = A_m \cos\left(2\pi f_m t\right) \tag{1}$$

$$e_c = A_c \sin\left(2\pi f_c t\right) \tag{2}$$

On rewriting the equation 2

$$e = E_c \sin\left(\theta\right) \tag{3}$$

$$\theta = 2\pi f_c t + k_p e_m \tag{4}$$

$$=2\pi f_c t + k_p E_m \cos\left(2\pi f_m t\right) \tag{5}$$

$$m_p = k_p E_m \tag{6}$$

$$\theta = 2\pi f_c t + m_p \cos(2\pi f_m t) \tag{7}$$

$$\implies s(t) = E_c \sin \left(2\pi f_c t + \underbrace{m_p \cos(2\pi f_m t)}_{\theta_i(t)} \right) \tag{8}$$

$$m\left(t\right)_{rms} = 4V\tag{9}$$

$$A_m = 4\sqrt{2} \tag{10}$$

From Table I, eq (9) and eq (10)

$$m(t) = 4\sqrt{2}\sin\left(2\pi 10^3 t\right) \tag{11}$$

$$(12)$$

Fig. 1. Block diagram of phase modulation

From Table I, II and using eq (8) instantaneous frequency is given as,

$$f_i(t) = f_c + \frac{1}{2\pi} \frac{d}{dt} \theta_i(t)$$
(13)

$$= f_c + \frac{1}{2\pi} \frac{d}{dt} \left[k_p m \left(t \right) \right] \tag{14}$$

$$= f_c + \frac{1}{2\pi} \frac{d}{dt} \left(4\sqrt{2} \sin\left(2\pi 10^3 t\right) \right) \tag{15}$$

$$= f_c + \frac{2}{2\pi} 4\sqrt{2} \left(2\pi 10^3\right) \left(\cos\left(2\pi 10^3 t\right)\right)$$
 (16)

$$= 1000 + 8\sqrt{2} \times 10^3 \cos(2\pi 10^3 t) \tag{17}$$

Thus,

$$\implies f_{i_{max}} = 1011313.7 \, Hz \tag{18}$$

Fig. 2. plot of $m\left(t\right)$ and $c\left(t\right)$