Pertemuan 5

Contoh program Pencabangan

Mata Kuliah : Algoritma & Pemrograman

Dosen: Tessy Badriyah, SKom., MT., PhD.

Tujuan Pembelajaran

- Membahas contoh-contoh persoalan pencabangan yang meliputi :
 - Menemukan akar persamaan kuadratMencari tahun kabisat
 - Memeriksa apakah sebuah karakter termasuk alfabet atau bukan
 - Faktorial dari suatu bilangan
 - Mencari Faktor Persekutuan Terbesar (FPB)

Mencari akar persamaan kuadrat

Bentuk persamaan kuadrat:

$$ax2 + bx + c = 0$$
, dimana
a, b dan c adalah bilangan real dan
 $a \neq 0$

- b2-4ac disebut dengan determinan dari persamaan kuadrat
- Determinan menentukan akar.
 - Jika determinan lebih dari 0, maka akar merupakan bilangan real dan berbeda.
 - Jika determinan sama dengan 0, maka akart adalah bilangan real dan sama.
 - Jika determinan kurang dari 0, maka akar merupakan bilangan kompleks dan berbeda.

If determinant > 0,
$$root1 = \frac{-b + \sqrt{(b^2 - 4ac)}}{2a}$$

$$root2 = \frac{-b - \sqrt{(b^2 - 4ac)}}{2a}$$
If determinant = 0,
$$root1 = root2 = \frac{-b}{2a}$$

$$root1 = \frac{-b}{2a} + i \frac{\sqrt{-(b^2 - 4ac)}}{2a}$$
If determinant < 0,
$$root2 = \frac{-b}{2a} - i \frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

Mencari akar persamaan kuadrat

```
include <stdio.h>
#include <math.h>
int main()
  double a, b, c, determinan, akar1, akar2, realPart,
imaginaryPart;
  printf("Masukkan koefisien a,b dan c: ");
  scanf("%lf %lf %lf",&a, &b, &c);
  determinan = b*b-4*a*c;
  // jika determinan >0 maka ada 2 akar yang berbeda
  if (determinan > 0)
  // sqrt() mengembalikan nilai akar
    akar1 = (-b+sqrt(determinan))/(2*a);
    akar2 = (-b-sqrt(determinan))/(2*a);
    printf("akar1 = %.2lf and akar2 = %.2lf",akar1,
akar2);
```

```
//jika determinan=0 maka terdapat dua akar kembar
  else if (determinan == 0)
    akar1 = akar2 = -b/(2*a);
    printf("akar1 = akar2 = %.2lf;", akar1);
  // jika determinan <0 maka akarnya tidak real
(imaginer)
  else
                                 Masukkan koefisien a,b dan c: 2.3
                                 akars are: -0.87+1.30i and -0.87-1.30i
    realPart = -b/(2*a);
    imaginaryPart = sqrt(-determinan)/(2*a);
    printf("akar1 = %.2lf+%.2lfi and akar2 = %.2f-%.2fi",
realPart, imaginaryPart, realPart, imaginaryPart);
  return 0;
```


Memeriksa apakah suatu bilangan termasuk Kabisat atau tidak

- Tahun kabisat adalah tahun dimana bulan Februari sampai tanggal 29.
- Algoritma tahun kabisat telah dijelaskan pada pertemuan sebelumnya
- Berikut ini adalah program untuk menentukan apakah suatu tahun yang diinputkan adalah kabisat atau tidak.

```
#include <stdio.h>
int main()
{ int tahun;
  printf("Masukkan tahun: "); scanf("%d",&tahun);
  if(tahun%4 == 0)
 { if(tahun%100 == 0)
    { // jika tahun habis dibagi 400, maka tahun adalah kabisat
      if (tahun%400 == 0) printf("%d adalah kabisat.", tahun);
      else printf("%d adalah bukan kabisat.", tahun);
    else printf("%d adalah kabisat.", tahun );
  else printf("%d adalah bukan kabisat.", tahun);
  return 0;
                                 Output:
                                 Masukkan tahun: 1900
```

Masukkan tahun: 1900 1900 adalah bukan kabisat.

Masukkan tahun: 2012 2012 adalah kabisat.

Memeriksa apakah suatu karakter yang diinputkan termasuk alfabet atau bukan

```
#include <stdio.h>
int main()
  char c;
  printf("Masukkan karakter: ");
  scanf("%c",&c);
                                                    Output:
  if( (c>='a' && c<='z') || (c>='A' && c<='Z'))
                                                    Masukkan karakter: *
     printf("%c is an alfabet.",c);
                                                    * bukan alfabet
  else
    printf("%c bukan alfabet.",c);
  return 0;
```


Mencari Faktorial suatu bilangan

 Bilangan factorial dari n didapatkan dengan

Faktorial dari n (n!) = 1*2*3*4....n

 Faktorial dari bilangan negatif adalah tidak ada, dan factorial dari bilangan nol adalah satu, 0! = 1

Output:

Masukkan integer: 10

Faktorial dari 10 = 3628800

```
#include <stdio.h>
int main()
{ int n, i;
  unsigned long long factorial = 1;
  printf("Masukkan integer: ");
  scanf("%d",&n);
  // tampilkan kerror jika user memasukkan integer negatif
  if (n < 0)
printf("Salah! Faktorial dari bilangan negative itu tidak
ada.");
  else
    for(i=1; i<=n; ++i)
       factorial *= i;
                             // factorial = factorial*i;
     printf("Faktorial dari %d = %llu", n, factorial);
  return 0;
```


Mencari Faktor Persekutuan Terbesar (FPB)

- Faktor Persekutuan Terbesar (FPB)
 dari dua bilangan integer adalah
 bilangan integer terbesar yang dapat
 membagi kedua bilangan tanpa ada
 sisa.
- Pada program berikut, dua integer dimasukkan oleh user kemudian disimpan dalam variable n1 dan n2. Kemudian for loop akan melakukan iterasi sampai counter i bernilai kurang dari n1 dan n2.
- Pada setiap iterasi, kedua integer n1 dan secara tepat dapat dibagi oleh bilangan tanpa ada sisa.
- Setelah for loop selesai, maka bilangan pembagi terbesar akan disimpan dalam variable gcd.

```
#include <stdio.h>
int main()
  int n1, n2, i, gcd;
  printf("Masukkan dua bil. integer: ");
  scanf("%d %d", &n1, &n2);
  for(i=1; i <= n1 && i <= n2; ++i)
    // periksa apakah i adalah faktor
    // dari kedua bilangan
    if(n1\%i==0 \&\& n2\%i==0)
      gcd = i;
  printf("FPB dari %d dan %d adalah %d",
n1, n2, gcd);
  return 0;
```


Mencari Faktor Persekutuan Terbesar (FPB)

Penjelasan program:

- Faktor Persekutuan Terbesar (FPB) dari dua bilangan integer adalah bilangan integer terbesar yang dapat membagi kedua bilangan tanpa ada sisa.
- Pada program berikut, dua integer dimasukkan oleh user kemudian disimpan dalam variable n1 dan n2. Kemudian for loop akan melakukan iterasi sampai counter i bernilai kurang dari n1 dan n2.
- Pada setiap iterasi, kedua integer n1 dan secara tepat dapat dibagi oleh bilangan tanpa ada sisa.
- Setelah for loop selesai, maka bilangan pembagi terbesar akan disimpan dalam variable gcd.

Mencari Faktor Persekutuan Terbesar (FPB) (2)

 Berikut ini alternative program dengan cara lain untuk mencari factor persekutuan terbesar (FPB)

Output:

Masukkan dua bil. integer: 81 153 GCD = 9

```
#include <stdio.h>
int main()
  int n1, n2;
  printf("Masukkan dua bil. integer: ");
  scanf("%d %d",&n1,&n2);
  while(n1!=n2)
    if(n1 > n2)
      n1 -= n2;
    else
      n2 -= n1;
  printf("FPB = %d",n1);
  return 0;
```


Mencari Faktor Persekutuan Terbesar (FPB) (3)

```
#include <stdio.h>
int main()
{ int n1, n2;
  printf("Masukkan dua bil. integer: ");
  scanf("%d %d",&n1,&n2);
  // Jika input bil. Negatif, maka tanda akan diubah ke positif
  n1 = (n1 > 0) ? n1 : -n1;
  n2 = (n2 > 0) ? n2 : -n2;
  while(n1!=n2)
  \{ if(n1 > n2) \}
      n1 -= n2;
    else
      n2 -= n1;
  printf("FPB = %d",n1);
  return 0;
```

Output:

Masukkan dua bil. integer: 81 -153 FPB = 9

Mencari Faktor Persekutuan Terbesar (FPB) (3)

Penjelasan program:

- Dua program untuk mencari factor persekutuan terbesar sebelumnya menerima input 2 bilangan integer positif.
- Program berikut ini dapat menerima input bilangan integer positif maupun negatif.

Membalik Bilangan

- Program berikut akan meminta input bilangan (n).
- Kemudian n digunakan sebagai counter pada While loop selama n != 0.
- Pada setiap iterasi dari while loop, sisa dari pembagian n dengan 10 dihitung kemudian nilai dari n direduksi setiap kali iterasi.

Output:

Masukkan integer: 2345 Reversed Number = 5432

```
#include <stdio.h>
int main()
  int n, reversedNumber = 0, remainder;
  printf("Masukkan integer: ");
  scanf("%d", &n);
  while(n != 0)
    sisa = n%10;
    reversedNumber = reversedNumber*10 + sisa;
    n /= 10;
  printf("Reversed Number = %d", reversedNumber);
  return 0;
```


Pangkat dari suatu bilangan

- Program berikut ini mencari pangkat dari dua bilangan.
- Misal dua bilangan yang diinputkan adalah a dan b, a adalah bilangan dasar dan b adalah pangkat.
- Contoh: Jika inputnya 23
 - 2 adalah bilangan dasar
 - 3 adalah pangkat
 - Sehingga 2 dipangkatkan dengan 3 sama dengan 2*2*2

```
#include <stdio.h>
int main()
  int dasar, pangkat;
  long long result = 1;
  printf("Masukkan bilangan dasar: ");
  scanf("%d", &dasar);
  printf("dipangkatkan dengan : ");
  scanf("%d", &pangkat);
  while (pangkat != 0)
                                    Output:
                                    Masukkan bilangan dasar: 3
                                    dipangkatkan dengan: 4
    result *= dasar;
                                    Hasil = 81
    --pangkat;
  printf("Hasil = %Ild", result);
  return 0;
```


Pangkat dari suatu bilangan

- Alternatif program
 yang lain untuk
 mencari pangkat dari
 suatu bilangan
- Dengan
 menggunakan fungsi
 pow() yang ada pada
 math.h

Output:

Masukkan bilangan dasar: 2.3 dipangkatkan dengan : 4.5 2.3^4.5 = 42.44

```
#include <stdio.h>
#include <math.h>
int main()
  double dasar, pangkat, result;
  printf("Masukkan bilangan dasar: ");
  scanf("%lf", &dasar);
  printf("dipangkatkan dengan : ");
  scanf("%lf", &pangkat);
  // calculates the power
  result = pow(dasar, pangkat);
  printf("%.1lf^%.1lf = %.2lf", dasar, pangkat, result);
  return 0;
```


- Program akan memeriksa suatu integer termasuk palindrome atau bukan.
- Bilangan palindrome adalah bilangan yang sama dengan kebalikannya.

Palindrome atau bukan?

```
#include <stdio.h>
int main()
  int n, reversedInteger = 0, sisa, originalInteger;
  printf("Masukkan integer: ");
  scanf("%d", &n);
                                                 Output:
  originalInteger = n;
                                                 Masukkan integer: 1001
  // reversed integer is stored in variable
                                                 1001 adalah palindrome.
  while( n!=0)
  \{ sisa = n\%10; \}
    reversedInteger = reversedInteger*10 + sisa;
    n /= 10;
  // palindrome jika orignalInteger dan reversedInteger sama
  if (originalInteger == reversedInteger)
    printf("%d adalah palindrome.", originalInteger);
  else
    printf("%d adalah bukan palindrome.", originalInteger);
  return 0;
```


Yang sudah dipelajari

 Contoh-contoh dari pencabangan dalam program Bahasa C yang dapat menyelesaikan persoalan dari pengambilan keputusan (decision making)

Referensi

- Robertson, Lesley Anne. (1992). Students' guide to program design. Oxford: Newnes
- Santner, Williams, and Notz (2003), Design and Analysis of Computer Experiments, Springer.
- Deitel & Deitel, C How to Program, Prentice Hall 1994 (2nd edition)
- Brookshear, J.G., Computer Science: An Overview, Benjamin-Cummings 2000 (6th edition)
- Kernighan & Ritchie, The C Programming Language, Prentice Hall