INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seulls de Toxicité Aiguë

# **Brome**

#### ■ Identification

| Formule Chimique | N°CAS     | N°Index      | N°EINECS  | Dénominations<br>(Designations) | Etat physique (*)  |
|------------------|-----------|--------------|-----------|---------------------------------|--------------------|
| Br <sub>2</sub>  | 7726-95-6 | 035-001-00-5 | 231-778-1 | Bromine                         | Liquide brun rouge |

<sup>(\*)</sup> à T et P ambiante (20°C / 1 atm)

## ■ Principales utilisations

Il est un agent de nombreuses synthèses organiques (ignifuges, pesticides, colorants, produits pharmaceutiques...), de fabrication de bromures inorganiques et il est utilisé dans le traitement des eaux.

## **■** Étiquetage

T+, C, N R26, R35, R50 S1/2, S7/9, S26, S45, S61

## ■ Paramètres physico-chimiques

| • Masse molaire (g/mol)159,82                 | · Solubilité dans l'eau à 20 °C (g/L) 34  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------|--|--|--|--|
| · Pression de vapeur (Pa)                     | · Température de fusion (°C)7,3           |  |  |  |  |
| à 20℃ 24. 10³                                 | · Température d'ébullition (°C) 59,5      |  |  |  |  |
| à 58,2°C101.10 <sup>3</sup>                   | ·Température d'auto-inflammation (°C) (*) |  |  |  |  |
| · Concentration de vapeur saturante à 20°C    | • Point éclair (°C)(*)                    |  |  |  |  |
| en g/m³1 530                                  | · Limites d'explosivité (% dans l'air)    |  |  |  |  |
| en ppm229 500                                 | Inférieure (LIE)(*)                       |  |  |  |  |
| · Densité de la phase vapeur                  | Supérieure (LSE)(*)                       |  |  |  |  |
| (par rapport à l'air)5,5                      |                                           |  |  |  |  |
|                                               | · Facteur de conversion (à 20 ℃ / 1 atm)  |  |  |  |  |
|                                               | 1 ppm = $6.6 \text{ mg/m}^3$              |  |  |  |  |
| • Seuil de perception (SP)0,31 mg/m³0,047 ppm | 1 mg/m <sup>3</sup> = 0,15 ppm            |  |  |  |  |

(\*) Non concerné





INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seulls de toxicité aiguë

## **Brome**

### ■ Seuils des effets toxiques (juillet 2007)

| Concentration                                | Temps (min.) |       |     |     |     |     |     |     |
|----------------------------------------------|--------------|-------|-----|-----|-----|-----|-----|-----|
|                                              | 1            | 10    | 20  | 30  | 60  | 120 | 240 | 480 |
| Seuil des effets létaux significatifs - SELS |              |       |     |     |     |     |     |     |
| · mg/m³                                      | 9 405        | 1 558 | 911 | 660 | 383 | 224 | 132 | 79  |
| • ppm                                        | 1 425        | 236   | 138 | 100 | 58  | 34  | 20  | 12  |
| Seuil des premiers effets létaux - SPEL      |              |       |     |     |     |     |     |     |
| · mg/m³                                      | 7 564        | 1 254 | 733 | 535 | 310 | 178 | 106 | 59  |
| • ppm                                        | 1 146        | 190   | 111 | 81  | 47  | 27  | 16  | 9   |
| Seuil des effets irréversibles – <b>SEI</b>  |              |       |     |     |     |     |     |     |
| · mg/m³                                      | 840          | 139   | 81  | 59  | 34  | 20  | 12  | 7   |
| · ppm                                        | 127          | 21    | 12  | 9   | 5   | 3   | 2   | 1   |
| Seuil des effets réversibles – <b>SER</b>    |              |       |     |     |     |     |     |     |
| · mg/m³                                      | ND           | ND    | ND  | ND  | ND  | ND  | ND  | ND  |
| · ppm                                        | ND           | ND    | ND  | ND  | ND  | ND  | ND  | ND  |

#### ND: Non déterminé

### ■ Justification scientifique

### Effets létaux :

- Etude critique : Schlagbauer et Henschler, 1967<sup>1</sup> (cotation de Klimisch : 2)
- Etude expérimentale chez des souris NMRI, mesures de létalité. Première expérimentation : huit concentrations d'exposition, une durée d'exposition (30 minutes). Deuxième expérimentation : deux concentrations d'exposition, deux durées d'exposition (3 et 6 heures).
- Utilisation du logiciel probit-standard pour détermination des CLx%.
- Pas d'application de facteurs d'incertitude.

#### Effets irréversibles :

- La détermination des SEI n'a pas été possible compte-tenu des études disponibles.
- Utilisation de la méthode par calcul (méthodologie française).
- Application d'un facteur d'incertitude (3 toxicité locale).

#### Effets réversibles :

- La détermination des SER n'a pas été possible compte-tenu des études disponibles.

#### **■** Remarques importantes

Les seuils ont été établies alors que les connaissances en toxicologie aiguë par inhalation sont faibles (une seule étude de bonne qualité disponible).

<sup>&</sup>lt;sup>1</sup> Schlagbauer M. et Henschler D., 1967. Toxicität von Chlor und Brom bei einmaliger und wiederholter Inhalation. Int. Archiv für Gewebepathologie und Gewerbehygiene 23: 91–98.





INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seulls de Toxicité Aiguë

## **Brome**

■ Courbes des seuils SELS, SPEL, SEI et SP en fonction du temps d'exposition





