5.7. TEOREMA DE JORDAN (Clasificación de endomorfismos)

Denominaremos matriz elemental de Jordan de orden k y autovalor $\lambda \in \mathbb{K}$ a la matriz $J_k(\lambda)$ de orden k cuyos elementos son todos nulos, excepto los de la diagonal principal, que valen λ , y los situados inmediatamente encima de la diagonal principal, que son unos. Por ejemplo:

$$J_1(\lambda) = (\lambda), \quad J_2(\lambda) = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \quad J_3(\lambda) = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}, \quad J_4(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

y así sucesivamente.

Llamaremos matriz de Jordan a cualquier matriz cuadrada formada por yuxtaposición de matrices elementales de Jordan a lo largo de la diagonal, de la forma

$$\begin{pmatrix}
\frac{J_{k_1}(\lambda_1)}{J_{k_2}(\lambda_2)} & 0 \\
0 & \frac{J_{k_1}(\lambda_s)}{J_{k_1}(\lambda_s)}
\end{pmatrix}$$
(7.1)

Teorema 5.7.1 (Teorema de Jordan)

Sea $A: V \to V$ una aplicación lineal en un espacio vectorial V de dimensión finita n sobre un cuerpo \mathbb{K} . Sean $\lambda_1, ..., \lambda_r$ los valores propios distintos de A en \mathbb{K} . Sean $m_1, ..., m_r$ números naturales no nulos tales que

$$\prod_{i=1}^{r} (A - \lambda_i I)^{m_i} = 0. (7.2)$$

Entonces, existe una base B, llamada base de Jordan de V para A, respecto de la cual la matriz de A es de la forma (7.1).

NOTA 1.
$$(A - \lambda_i I)^{m_i}$$
 significa $(A - \lambda_i I)_0 \cdot \overset{m_i}{\longrightarrow} o(A - \lambda_i I)_j$

The
$$(A-\lambda_i I)^{M_i}$$
 significa $(A-\lambda_i I)^{M_1} \circ \ldots \circ (A-\lambda_r I)^{M_r}$.

La iqualdad $T(A-\lambda_i I)^{M_i} = 0$ significa que la parte l'équienda es la aplicación ruela.

NOTA ? Para e. V. sobx $(I, P_A(x) = |A - XI|)$ stempt puede fectorizare en factores simples, $P_A(x) = cTI(x-1i)^{MC}$, I=1 $I_{11-}, I_r \in I$. Por el teorema de Cayley-Hamilton, $P_A(A) = 0$ I_r , por tento, se cumple la cardición (7.2). Entonies, cuardo I_r stempt se pued encontra una base de Jordan de V.

gue $p(A)q(A) = q(A) \circ p(A)$ Sugeronua; prueba premoco que $A \circ q(A) = q(A) \circ A$

NOTA 3 (Identidad de Bezout)

Seam $m_1(x)$, $m_2(x) \in P_{lk}[x]$ y $d(x) = m.c.d(m_1(x), m_2(x))$. Existen $a_1(x)$, $b_2(x) \in P_{lk}[x]$ tel que $d(x) = a_1(x)m_1(x) + a_2(x)m_2(x)$

Est resultado se deduce del algoratmo de Euclides para hallar el M.C. d de dos polinomios. Cuando los polinomios son nulmous puede veex una demostración en la sección 2.2 de J. Dorronsono, E. Hernández, Números, grupos y axillos, Addison Wesley / UAM (1996). La adaptación para palinomios con coeficientes en H. es sencilla

Lema 5.7.2

Sea A: $V \to V$ una aplicación lineal como en el Teorema de Jordan. Si $q_1(x)$, ..., $q_r(x) \in P_K[x]$ son polinomios con coeficientes en K tales que

m.c.d.
$$(q_i(x), q_i(x)) = 1$$
 si $i \neq j$,

entonces

$$\operatorname{Ker} q_i(A) \cap \left(\sum_{\substack{j=1\\j\neq i}}^r \operatorname{Ker} q_j(A)\right) = \{\vec{0}\}, \qquad i = 1, ..., r.$$

Demostración. Comenzaremos demostrando que si fijamos $i_0 \in \{1, ..., r\}$, para cada $l \in \{1, ..., r\} \setminus \{i_0\}$ se tiene

$$\operatorname{Ker} q_l(A) \subset \operatorname{Ker} \left(\prod_{j \neq i_0} q_j(A) \right).$$
 (7.4)

En efecto, si $\vec{v} \in \text{Ker } q_l(A)$, se tiene que $q_l(A)(\vec{v}) = \vec{0}$, y usando et ejer. 5.7.1

$$\left(\prod_{j\neq i_0}q_j(A)\right)(\vec{v}) = \left(\prod_{j\neq i_0,l}q_j(A)\right)\circ q_l(A)(\vec{v}) = \left(\prod_{j\neq i_0,l}q_j(A)\right)(\vec{0}) = \vec{0}.$$

Como la suma de subespacios vectoriales contenidos en uno fijo W es un subespacio vectorial de W, de (7.4) concluimos

$$\sum_{l \neq i_0} \operatorname{Ker} q_l(A) \subset \operatorname{Ker} \left(\prod_{j \neq i_0} q_j(A) \right). \tag{7.5}$$

Ahora bien, nuestra hipótesis implica que $q_{i_0}(x)$ y $\prod_{j \neq i_0} q_j(x)$ son polinomios primos entre sí. Por la identidad de Bezout (Nobel 3) existen a(x), $b(x) \in P_{\mathbb{K}}[x]$ tales que

$$a(x)q_{i_0}(x) + b(x) \prod_{j \neq i_0} q_j(x) = 1.$$

Luego

$$a(A)\circ q_{i_0}(A)+b(A)\circ\prod_{j\neq i_0}q_j(A)=I.$$

Entonces, si $\vec{v} \in \operatorname{Ker} q_{i_0}(A) \cap \operatorname{Ker} \left(\prod_{j \neq i_0} q_j(A) \right)$ se tiene

$$\vec{v} = I(\vec{v}) = a(A) \circ q_{i_0}(A)(\vec{v}) + b(A) \circ \prod_{j \neq i_0} q_j(A)(\vec{v}) = \vec{0} + \vec{0} = \vec{0}.$$

Esto prueba que

$$\operatorname{Ker} q_{i_0}(A) \cap \operatorname{Ker} \left(\prod_{j \neq i_0} q_j(A) \right) = \{ \vec{0} \}. \tag{7.6}$$

اس

De (7.5) y (7.6) se deduce la conclusión del lema.

Corolario, 5,7.3

Sea $A: V \to V$ una aplicación lineal como en el Teorema de Jordan. Si $\lambda_1, ..., \lambda_r \in \mathbb{K}$ son valores propios distintos de A y $m_1, ..., m_r$ son números naturales no nulos

$$\operatorname{Ker}(A - \lambda_i I)^{m_i} \cap \left(\sum_{\substack{i=1\\i \neq i}}^r \operatorname{Ker}(A - \lambda_j I)^{m_j}\right) = \{\vec{0}\}, \qquad i = 1, ..., r.$$

Lema 5.7.4

Sean $A_1, A_2: V \to V$ dos aplicaciones lineales en un espacio vectorial V de dimensión finita sobre un cuerpo \mathbb{K} que conmutan. Entonces

$$\dim \operatorname{Ker}(A_1 \circ A_2) \leq \dim \operatorname{Ker}(A_1) + \dim \operatorname{Ker}(A_2). \tag{7.7}$$

Demostración. Sea W= ker (A10 A2).

We sinvariante por A_1 ; e.d. $A_1(\vec{w}) \in W \; \forall \; \vec{w} \in W$: $A_1 \circ A_2 (A_1(\vec{w})) = A_1 \circ A_2 \circ A_1(\vec{w}) = A_1 \circ (A_2 \circ A_2)(\vec{w}) = \vec{0}$ donde se ha usado que A_1 y A_2 connectan.

De marera simila, W es invariente por A2.

Entonus

$$\tilde{A}_{\hat{L}} = A_{\hat{L}_{W_{\hat{L}}}} : W \longrightarrow W , \hat{L} = 1, 2.$$

Pox la fóxemula de las dimensiones (Teorema 4.3 del Tema 3 dim (N) = dim (Img (\tilde{A}_{2}) + dim ($ker(\tilde{A}_{2})$) (7.8)

Pero Img(Ã) < ker(Ã):

Si $\vec{V} \in \text{Img}(\vec{A}_2)$, $\vec{V} = \vec{A}_2(\vec{u})$ we $\vec{M} \in W$; entonus $\vec{A}_1(\vec{V}) = \vec{A}_1 \circ \vec{A}_2(\vec{u}) = \vec{O} \implies \vec{V} \in \text{Ker}(\vec{A}_1)$

Por tanto, dim (Img (\tilde{A}_{2})) \in dim ($\text{ker}(\tilde{A}_{2})$). De (7.8) le deduce

dim W & dim (ker (Az)) + dim (kor (Az)) & dim (ker (A))+dim (for (Az)).

Lema 5.7.5

Sean $A_1, ..., A_r: V \to V$ aplicaciones lineales en un espacio vectorial V de dimensión finita sobre un cuerpo \mathbb{K} que conmutan entre sí. Entonces

$$\dim \operatorname{Ker}(A_1 \circ \cdots \circ A_r) \leqslant \sum_{i=1}^r \dim \operatorname{Ker}(A_i).$$

Demostración. El Lema 5.7.4 nos da el resultado para dos aplicaciones lineales. Supongamos, por inducción, que el resultado es cierto para cualquier número s de aplicaciones

lineales B_1 , ..., B_s en un espacio vectorial con s < r. Tomemos ahora A_1 , ..., A_r . Sea $W_r = \text{Ker}(A_1 \circ \cdots \circ A_r)$ y consideremos

$$\widetilde{A}_1 = A_1|_{W_r} \circ \cdots \circ A_{r-1}|_{W_r}$$
, $\widetilde{A}_2 = A_r|_{W_r}$.

Como las A_i conmutan entre sí A_i : $W_r \rightarrow W_r$ y por tanto

$$\widetilde{A}_i: W_r \to W_r$$
 , $i = 1, 2$.

Aplicamos el Lema 5.7.4 a \tilde{A}_1 , \tilde{A}_2 y W, para obtener

$$\dim \operatorname{Ker}(\widetilde{A}_1 \circ \widetilde{A}_2) \leq \dim \operatorname{Ker}(\widetilde{A}_1) + \dim \operatorname{Ker}(\widetilde{A}_2)$$

Por la hipótesis de inducción para $A_1|_{W_r}, ..., A_{r-1}|_{W_r}$ deducimos

$$\dim \operatorname{Ker}(\widetilde{A}_{1} \circ \widetilde{A}_{2}) \leq \sum_{j=1}^{n-1} \dim \operatorname{Ker}(A_{j}|_{W}) + \dim \operatorname{Ker}(A_{2}|_{W})$$

$$\leq \sum_{j=1}^{r} \dim \operatorname{Ker}(A_{j}).$$

Pero Ker $(\tilde{A}_1 \circ \tilde{A}_2) = W_r = \text{Ker } (A_1 \circ \cdots \circ A_r)$ por lo que queda probado el resultado.

Lema 5.7.6

Sea A: $V \to V$ una aplicación lineal como en el Teorema de Jordan. Sean $q_1(x)$, ..., $q_r(x) \in P_{\mathbf{K}}[x]$ polinomios con coeficientes en \mathbb{K} tales que

m.c.d.
$$(q_i(x), q_j(x)) = 1$$
 si $i \neq j$

Si $q_1(A) \circ \cdots \circ q_r(A) = \prod_{j=1}^r q_j(A) = 0$ se tiene que

$$V = \operatorname{Ker} q_1(A) \oplus \cdots \oplus \operatorname{Ker} q_r(A).$$

Demostración. Las aplicaciones $q_j(A)$, j=1, ..., r, conmutan entre sí por el Gen 517.1. Por el lema 5.7.5,

$$\dim \operatorname{Ker}\left(\prod_{j=1}^r q_j(A)\right) \leqslant \sum_{j=1}^r \dim (\operatorname{Ker} q_j(A)).$$

Puesto que $\prod_{j=1}^{r} q_j(A) = 0$, se da la igualdad $\operatorname{Ker}\left(\prod_{j=1}^{r} q_j(A)\right) = V$ y tenemos

$$\dim(V) \leqslant \sum_{j=1}^{r} \dim(\operatorname{Ker} q_{j}(A)).$$

La conclusión del Lema 5.7.2 y la fórmula de Grassmann (Nez Tema 2) nos permiten escribir

$$\dim(V) \leq \sum_{j=1}^{r} \dim \operatorname{Ker} q_{j}(A) = \dim \left(\sum_{j=1}^{r} \operatorname{Ker} q_{j}(A) \right).$$
Pero
$$\sum_{j=1}^{r} \ker q_{i}(A) < V, \text{ pox lo que } V = \sum_{j=1}^{r} \ker q_{j}(A). \text{ Que la}$$
Suppa en directa & Abe al long 5 7 2

Corolario 5_7.7

Sea A: $V \to V$ una aplicación lineal como en ef Teorema de Jordan. Si λ_1 , ..., λ_r son valores propios distintos de A y m_1 , ..., m_r son números naturales no nulos tales que

$$(A - \lambda_1 I)^{m_1} \circ \cdots \circ (A - \lambda_r I)^{m_r} = 0,$$

entonces

$$V = \operatorname{Ker} (A - \lambda_1 I)^{m_1} \oplus \cdots \oplus \operatorname{Ker} (A - \lambda_r I)^{m_r}.$$

Demostración. Aplicar el Lema 6.7.6 con $q_i(x) = (x - \lambda_i)^{m_i}$, i = 1, ..., r, observando que los $q_i(x)$ son primos entre sí.

Comenzamos con la demostración del teorema de Jordan (Teorema 5.7.1). Escalbamos $E_5(\lambda) = \ker((A-\lambda I)^5)$. Entonos, el Corolardo 5.7.7 se puede escalbir

$$V = \bigoplus_{i=1}^{r} E_{m_i}(\lambda_i)$$
.

Por el lema 5.6.3, los $E_{m_i}(\lambda_i)$ son invariantes por A. Por la observación que sigue a la demostración del lema 5.6.3, al degen β_i como bax de $E_{m_i}(\lambda_i)$, $\lambda_i=1,2,...,r$,

es una base de V y en esta base la matriz de A es diagonal

por cajas

$$\begin{pmatrix} J_{21} & 0 \\ 0 & +J_{2r} \end{pmatrix} \tag{7.9}$$

donde cada Jr es la matriz de A/Emc(20).

lo que teremos que hacer atora es clegin la bax Bi de Emili) de marora que Jzi sea diagonal por cajas y cada caja sea una matrit elemental de Jardan (de sozites en (7.1)).

Fijemos 2 autovalor de A y Parmemas la "cadena"

$$E_1(\lambda) \subset E_2(\lambda) \subset \cdots \subset E_p(\lambda) \subset \cdots \subset V$$

Como V trene dimensión finita, existe $S \in IN$ tal que $E_s(\lambda)$ = $E_{S+1}(\lambda)$; sea m el menor de estas números. Probaremos que a partor de $E_m(\lambda)$ todos los subespacios $E_{m+1}(\lambda)$, $E_{m+2}(\lambda)$,.... (où huiden (on $E_m(\lambda)$).

Lema 5.7.8

Si $E_m(\lambda) = E_{m+1}(\lambda)$, entonces $E_m(\lambda) = E_q(\lambda)$ para todo q > m.

Demostración. La demostración la realizamos por inducción en r, donde q = m + r. Si r = 1 la conclusión coincide con la hipótesis y no es necesario demostrar nada. Supongamos que el lema es cierto para q = m + r y demostrémoslo para q = m + r + 1. Sea $\vec{x} \in E_{m+r+1}(\lambda)$, es decir,

$$(A - \lambda I)^{m+r}(A - \lambda I)\vec{x} = (A - \lambda I)^{m+r+1}\vec{x} = \vec{0}.$$

Por tanto, $(A - \lambda I)\vec{x} \in E_{m+r}(\lambda) = E_m(\lambda)$ (por la hipótesis de inducción); entonces $\vec{0} = (A - \lambda I)^m (A - \lambda I)\vec{x} = (A - \lambda I)^{m+1}\vec{x}$ y, por tanto, $\vec{x} \in E_{m+1}(\lambda) = E_m(\lambda)$. Hemos probado que $E_{m+r+1}(\lambda) \subset E_m(\lambda)$, de donde se deduce la igualdad puesto que la otra inclusión es trivial de verificar.

Para cada i = 2, 3, ..., m consideremos la aplicación lineal

$$L_{i}: E_{i}^{(\lambda)} \underset{E_{i-1}(\lambda)}{\longleftarrow} E_{i-2}^{(\lambda)}$$

entre espacios cociente dada por

$$L_i(\vec{v} + E_{i-1}(\lambda)) = (A - \lambda I)(\vec{v}) + E_{i-2}(\lambda).$$

Cada L_i es una aplicación inyectiva, i=2,3,...,m. En efecto, si $L_i(\vec{v}+E_{i-1}(\lambda))=\vec{0}+E_{i-2}(\lambda)$ se tendría $(A-\lambda I)(\vec{v})\in E_{i-2}(\lambda)$ y por tanto

$$(A - \lambda I)^{i-2}(A - \lambda I)(\vec{v}) = \vec{0}.$$

Es decir, $\vec{v} \in E_{i-1}(\lambda)$, luego $\vec{v} + E_{i-1}(\lambda) = \vec{0} + E_{i-1}(\lambda)$. En consecuencia, la imagen por L_i de una base de $E_i(\lambda)/E_{i-1}(\lambda)$ es un conjunto de vectores linealmente independiente en $E_{i-1}(\lambda)/E_{i-2}(\lambda)$.

Sea $p_i = \dim E_i(\lambda)$, i = 1, 2, ..., m. Con $p_0 = 0$ se tiene

$$q_i = \dim E_i(\lambda)/E_{i-1}(\lambda) = p_i - p_{i-1}, \quad i = 1, 2, ..., m.$$

Además, por ser cada L_i inyectiva, i = 2, ..., m, se tiene

$$q_m \leqslant q_{m-1} \leqslant \cdots \leqslant q_2 \leqslant q_1 = p_1 - p_0 = p_1 = \dim E_1(\lambda).$$

Escribamos la secuencia de aplicaciones inyectivas L_i como

$$E_{m}(\lambda)/E_{m-1}(\lambda) \xrightarrow{L_{m}} E_{m-1}(\lambda)/E_{m-2}(\lambda) \xrightarrow{L_{m-1}} E_{m-2}(\lambda)/E_{m-3}(\lambda) \to \cdots \to E_{2}(\lambda)/E_{1}(\lambda) \xrightarrow{L_{2}} E_{1}(\lambda).$$

Construyamos ahora la base de Jordan que nos permitirá escribir cada matriz J_{λ} de (7.9) como una matriz diagonal por cajas y que cada caja sea una matriz elemental de Jordan.

1. PASO. Tomemos $S_m = \{\vec{v}_{m,1}, ..., \vec{v}_{m,q_m}\}$ en $E_m(\lambda)$ tales que

$$\{\vec{v}_{m,1} + E_{m-1}(\lambda), ..., \vec{v}_{m,q} + E_{m-1}(\lambda)\}$$

sea una base de $E_m(\lambda)/E_{m-1}(\lambda)$ (basta terman $\{\vec{v}_{m,1}, \vec{v}_{m,g_m}\} \in E_m(\lambda) \setminus E_m(\lambda)$). Como L_m es inyectiva, los vectores

$$\vec{v}_{m-1,1} + E_{m-2}(\lambda) = L_m(\vec{v}_{m,1} + E_{m-1}(\lambda))$$

$$\vec{v}_{m-1, q_m} + E_{m-2}(\lambda) = L_m(\vec{v}_{m, q_m} + E_{m-1}(\lambda))$$

son linealmente independientes en $E_{m-1}(\lambda)/E_{m-2}(\lambda)$. Sea

$$S_{m-1} = \{\vec{v}_{m-1,1}, ..., \vec{v}_{m-1,q_m}\} \subset E_{m-1}(\lambda).$$

2.º PASO. A los vectores de S_{m-1} obtenidos en el paso anterior añadir vectores $\vec{v}_{m-1,\,q_m+1},\,...,\,\vec{v}_{m-1,\,q_{m-1}}$, en $E_{m-1}(\lambda)$ tales que

$$\{v_{m-1,j}+E_{m-2}(\lambda)\}_{j=1}^{q_{m-1}}$$

sea una base de $E_{m-1}(\lambda)/E_{m-2}(\lambda)$

Como L_{m-1} es inyectiva, los vectores

$$\vec{v}_{m-2,1} + E_{m-3}(\lambda) = L_{m-1}(\vec{v}_{m-1,1} + E_{m-2}(\lambda))$$

$$\vec{v}_{m-2,q_{m-1}} + E_{m-3}(\lambda) = L_{m-1}(\vec{v}_{m-1,q_{m-1}} + E_{m-2}(\lambda))$$

son linealmente independientes en $E_{m-2}(\lambda)/E_{m-3}(\lambda)$. Construimos así

$$S_{m-2} = \{\vec{v}_{m-2,1}, ..., \vec{v}_{m-2,q-1}\} \subset E_{m-2}(\lambda).$$

Continuaríamos este proceso m-2 veces, habiendo elegido

$$S_2 = {\vec{v}_{2,1}, ..., \vec{v}_{2,q_3}} \subset E_2(\lambda)$$

de manera que

$$\vec{v}_{2,1} + E_1(\lambda), ..., \vec{v}_{2,q_3} + E_1(\lambda)$$

sean linealmente independientes en $E_2(\lambda)/E_1(\lambda)$. En el siguiente paso se añaden vectores $\vec{v}_{2,\,q_3+1},\,...,\,\vec{v}_{2,\,q_2}$ en $E_2(\lambda)$ tales que

$$\{\vec{v}_{2,j}+E_1(\lambda)\}_{j=1}^{q_2}$$

sea una base de $E_2(\lambda)/E_1(\lambda)$

Como L_2 es inyectiva, los vectores

$$\vec{v}_{1,1} = L_2(\vec{v}_{2,1} + E_1(\lambda)), ..., \vec{v}_{1,q_2} = L_2(\vec{v}_{2,q_2} + E_1(\lambda))$$

son linealmente independientes en $E_1(\lambda)$. Construimos así $S_1 = \{\vec{v}_{1,1}, ..., \vec{v}_{1,q_2}\} \subset E_1(\lambda)$ que es un conjunto de vectores linealmente independiente en $E_1(\lambda)$. Finalizar añadiendo vectores $\vec{v}_{1,q_2+1}, ..., \vec{v}_{1,q_1}$ en $E_1(\lambda)$ de manera que

$$\{\vec{v}_{1,1},...,\vec{v}_{1,q_m},...,\vec{v}_{1,q_2+1},...,\vec{v}_{1,q_1}\}$$

sea una base de $E_1(\lambda)$.

Sea β_{λ} el conjunto de vectores que hemos hallado (vez la figura de la página 5.39) puestas por calummes de cizquiorda a derecha, y en cada calumna de abejo a avriba: $\beta_{\lambda} = \{\vec{Y}_{1,1}, \dots, \vec{Y}_{m,1}, \dots, \vec{Y}_{1,q_m}, \dots, \vec{Y}_{m,q_m}\} \cup$

 $U \left\{ \vec{V}_{1}, q_{m} \neq 1, \dots, \vec{V}_{m-1}, q_{m} \neq 1, \dots, \vec{V}_{1,q_{m-1}}, \dots, \vec{V}_{m-1}, \vec{q}_{m-1} \right\} U$ $--- U \left\{ \vec{V}_{1}, q_{3} + 1, \vec{V}_{2}, q_{3} + 1, \dots, \vec{V}_{2}, q_{2}, \vec{V}_{3}, q_{2} \right\} U \left\{ \vec{V}_{1}, q_{2} + 1, \dots, \vec{V}_{1}, q_{3} \right\}$

El númoro de victores que trère \$1 es:

 $q_m + q_{m-1} + \dots + q_2 + q_1 = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_2 - p_1) + (p_1 - p_0) = p_m - p_0 = p_m = dim (E_m(\lambda)).$

luego, β_{λ} será una bax de $\xi_{m}(1)$ ce demostramos que β_{λ} son live almente independientes. Suporgamos $\sum_{i=1}^{m}\sum_{j=1}^{2i}C_{i,j}\nabla_{i,j}=\vec{0}.$

Si no todos los Cij fueram cero, sea r el mayor úndice tal que Cr, s 70 para alguín S. Pour tanto,

$$\sum_{i=1}^{r-1} \sum_{j=1}^{q_i} c_{ij} \vec{\nabla}_{ij} + \sum_{j=1}^{q_r} e_{r,j} \vec{\nabla}_{r,j} = \vec{0}$$

$$\vec{v}_{m-1,1} = (A-\lambda I)\vec{v}_{m,1}, \dots, \vec{v}_{m-1,q_m} = (A-\lambda I)\vec{v}_{m,q_m}$$

$E_m(\lambda)$	₹ _{m, 1}		\vec{v}_{m,q_m}									
$E_{m-1}(\hat{\lambda})$	$\vec{v}_{m-1, 1}$		\vec{v}_{m-1, q_m}	\vec{v}_{m-1, q_m+1}		$\vec{v}_{m-1, q_{m-1}}$						
	·			·		·	·					
							·					
$E_2(\lambda)$	₹2, 1		\vec{v}_{2,q_m}	$\vec{v}_2, q_m + 1$		$\vec{v}_{2, q_{m-1}}$		\vec{v}_{2, q_3+1}	 \vec{v}_{2,q_2}	·		
$E_1(\lambda)$	v 1, 1	,	\vec{v}_{1,q_m}	$\vec{v}_{1, q_m + 1}$		$\vec{v}_{1, q_{m-1}}$		\vec{v}_{1,q_3+1}	 \vec{v}_{1,q_2}	$\vec{v}_1, q_2 + 1$	 \vec{v}_{1,q_1}	
		Bloque	: 1	Bloque 2			J i			1		
						Figura 6.	3					

$$\vec{\nabla}_{1,1} = (A-\lambda I)\vec{\nabla}_{2/1}, \dots, \vec{\nabla}_{1,q_3+1} = (A-\lambda I)\vec{\nabla}_{2,q_{3+1}}, \dots, \vec{\nabla}_{1,q_2} = (A-\lambda I)\vec{\nabla}_{2,q_2}$$

En el espació cociente $E_r(\lambda)/E_{r-1}(\lambda)$ se tiene la igualdad $\begin{pmatrix} r_{-1} & q_i \\ \sum_{i=1}^{r} C_{i,j}(\vec{V}_{i,j} + \vec{E}_{r-1}(1)) \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{r} C_{r,j}(\vec{V}_{r,j} + \vec{E}_{r-1}(1)) \end{pmatrix} = \vec{O} + \vec{E}_{r-1}(\lambda).$

Pero $\vec{V}_{i,j} \in \vec{E}_{p,1}(1)$ mando i=1,...,r-1, por lo que el pramor sumando de la i gualdad anterior es $\vec{E}_{p,1}(1)$ y teremos

$$\sum_{j=1}^{q_r} G_{ij}(\vec{V}_{r,j} + \vec{E}_{r-1}(2)) = \vec{O} + \vec{E}_{r-1}(2).$$

Los vectores $\{\vec{V}_{r,1} + \vec{E}_{r,1}(1), \dots, \vec{V}_{r,q_r} + \vec{E}_{r,1}(1)\}$ son base de $\vec{E}_r(1)/\vec{E}_{r,1}(1)$, por lo que $\vec{C}_{r,j} = 0$ $\forall j'=1,\dots,q_r$. Esto contradúe que $\vec{C}_{r,5} \neq 0$ para algún \vec{S} . Por tento $\vec{C}_{r,j} = 0$ para todo \vec{X}, \vec{j} .

Veamos ahora cuál es la matriz de A|Em(1) en la base \$\frac{1}{2}. Fijémonos en los vectores de la premera valumna de la izquierda de la tabla de la figura de la pagina 5-39:

$$\vec{\nabla}_{1,1} \in E_{1}(\lambda) \Rightarrow (\lambda - \lambda \Gamma) \vec{\nabla}_{1,1} = \vec{O} \Rightarrow A(\vec{\nabla}_{1,1}) = \lambda \vec{\nabla}_{1,1}$$

$$\vec{\nabla}_{1,1} = (A - \lambda \Gamma) \vec{\nabla}_{2,1} \Rightarrow A(\vec{\nabla}_{2,1}) = \vec{\nabla}_{1,1} + \lambda \vec{\nabla}_{2,1}$$

$$\vdots$$

$$\vec{\nabla}_{m-1,1} = (A - \lambda \Gamma) \vec{\nabla}_{m,1} \Rightarrow A(\vec{\nabla}_{m+1}) = \vec{\nabla}_{m-1,1} + \lambda \vec{\nabla}_{m,1}$$

$$(7.11)$$

Esto produce una matriz elemental de Jordan de orden m y autovalor l, e.d.

$$J_{m}(\lambda) = \begin{pmatrix} \lambda_{A}^{1} & 0 \\ 0 & \lambda_{A}^{1} \end{pmatrix}.$$

El resto de las calumnos del bloque 1 de la figura de la página 5.39 también producen cajas de la forma $J_m(1)$ sen mezdarese ontré sé. Tenemos g_m matrices $J_m(1)$ colocados en la diagonal de J_A . Análogamente, el bloque 2 de la figura produce $g_{m-1}-g_m$ matrices elementales de Jozdam de la forma $J_{m+1}(1)$ colocados en la diagonal de J_A . Finalmente, el último bloque de la figura produce $g_{4}-g_{2}$ matrices elementales de Jozdam de la diagonal de J_A . Colocados en la diagonal de J_A . Matrices elementales de Jozdam de la forma $J_{4}(1)=(2)$ colocados en la diagonal de J_{4} .

Poniendo este resultado en (7.9) queda demostrado el teorema de Josedan.

Al wonstruir la ban β en la demostración del teorerma de Jordan hemos necesitado hallar, para cada Ii, i=1,-, V, el número natural no rulo mi tal que la sucesión de necleos

 $E_1(1_2) < E_2(1_1) < ... < E_{n_i}(1_i) < ... < V$ se estabiliza, es deux $E_{m_i}(1) = E_q(1)$ $u'q>m_i$ y m_i es el menor de estos números. Elamemos a $E_{m_i}(1)$ el <u>autoespacio</u> <u>maximo</u> asociado a I_i

Se puede calcular M_i si $\mathcal{A}_A(x)$ se puede factoraicas en factoras lineales en IK (esto siempue para en I) y si' $P_A(x) = \prod_{i=1}^{r} (x-1i)^{Si}$, $1i \in IK$, en tonus

dim (Em (20)) = 50 , 1 = 1, . . ,

es deur, mi es el numero tal que dim (Emildi) conhude con la multiplicidad de di.