CS113/DISCRETE MATHEMATICS-SPRING 2024

Worksheet 6

Topic: Laws Of Inference For Quantified Statements

Building upon your understanding of the laws of inference, we will now learn these laws for quantified statements. Happy Learning!

Student's Name and ID:	
Instructor's name:	

Table 1: Rules of Inference for Quantified Statements

Rule of Inference	Name
$\forall x P(x)$	
$\therefore P(c)$	Universal instantiation
P(c) for an arbitrary c	
$\therefore \forall x P(x)$	Universal generalization
$\exists x P(x)$	
$\therefore P(c)$ for some element c	Existential instantiation
P(c) for some element c	
$\therefore \exists x P(x)$	Existential generalization

- 1. Identify the error or errors in this argument that supposedly shows that if $\exists x P(x) \land \exists x Q(x)$ is true, then $\exists x (P(x) \land Q(x))$ is true.
 - 1. $\exists x P(x) \lor \exists x Q(x)$ Premise
 - 2. $\exists x P(x)$ Simplification from (1)
 - 3. P(c) Existential instantiation from (2)
 - 4. $\exists x Q(x)$ Simplification from (1)

- 5. Q(c) Existential instantiation from (4)
- 6. $P(c) \wedge Q(c)$ Conjunction from (3) and (5)
- 7. $\exists x (P(x) \land Q(x))$ Existential generalization

2. Use rules of inference to show that if $\forall x (P(x) \lor Q(x))$ and $\forall x ((\neg P(x) \land Q(x)) \to R(x))$ are true, then $\forall x (\neg R(x) \to P(x))$ is also true, where the domains of all quantifiers are the same.

3. Use rules of inference to show that if $\forall x (P(x) \lor Q(x)), \ \forall x (\neg Q(x) \lor S(x)), \ \forall x (R(x) \to \neg S(x)), \ \text{and} \ \exists x \neg P(x) \ \text{are true, then} \ \exists x \neg R(x) \ \text{is true.}$