The continuity of path Path properties of Brownian motion

Vu Anh Thu

Hanoi National University of Education

April 15, 2022

- Preliminaries
- 2 The continuity of path
- 3 Path properties of Brownian motion
- 4 References

Vu Anh Thu (HNUE) Path properties April 15, 2022 2 / 14

- Preliminaries
- The continuity of path
- Path properties of Brownian motion
- 4 References

Vu Anh Thu (HNUE) Path properties April 15, 2022 3/14

Borel - Cantelli lemma

Let A_n be a sequence of events. Then

- If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\limsup A_n) = 0$
- If $\sum_{n=1}^\infty \mathbb{P}(A_n) = \infty$ and A_n are independent, then $\mathbb{P}(\limsup A_n) = 1$

Vu Anh Thu (HNUE) Path properties April 15, 2022 4/14

Borel - Cantelli lemma

Let A_n be a sequence of events. Then

- If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\limsup A_n) = 0$
- If $\sum_{n=1}^\infty \mathbb{P}(A_n) = \infty$ and A_n are independent, then $\mathbb{P}(\limsup A_n) = 1$

Fatou 's lemma

Let X_n be random variables satisfying $X_n \ge 0$ a.s for all n. Then we have

$$\mathbb{E}(\liminf_{n\to\infty} X_n) \leq \liminf_{n\to\infty} \mathbb{E}(X_n)$$

Vu Anh Thu (HNUE)

Markov 's inequality

Let X be an random variable and a > 0. Then we have

$$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}$$

Vu Anh Thu (HNUE) Path properties April 15, 2022 5/14

Markov 's inequality

Let X be an random variable and a > 0. Then we have

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}(|X|)}{a}$$

Application of martingales

If W_t is a Brownian motion, then for $\lambda > 0$

$$\mathbb{P}(\sup_{s \le t} |W_s| \ge \lambda) \le 2e^{\frac{-\lambda^2}{2t}}$$

Vu Anh Thu (HNUE)

Markov 's inequality

Let X be an random variable and a > 0. Then we have

$$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}$$

Application of martingales

If W_t is a Brownian motion, then for $\lambda > 0$

$$\mathbb{P}(\sup_{s \le t} |W_s| \ge \lambda) \le 2e^{\frac{-\lambda^2}{2t}}$$

Holder continuous

A function $f:[0,1]\to\mathbb{R}$ is called Holder continuous of order α if there exists M>0 s.t $|f(t)-f(s)|\leq M|t-s|^{\alpha}\ \forall s,t\in[0,1].$

- Preliminaries
- 2 The continuity of path
- Path properties of Brownian motion
- References

Vu Anh Thu (HNUE) Path properties April 15, 2022 6/14

The continuity of path

Let
$$\mathcal{D}_n = \{\frac{k}{2^n} : 0 \le k \le 2^n\}$$
 and $\mathcal{D} = \cup \mathcal{D}_n$.

Theorem.

Let $\{X_t : t \in \mathcal{D}\}$ be real-valued process. If there exists $c_1, \varepsilon, p > 0$ s.t

$$\mathbb{E}(|X_t - X_s|^p) \le c_1|t - s|^{1+\varepsilon} \ \forall s, t \in \mathcal{D}$$

Then

- There exists c depending on c_1, ε, p s.t for M > 0 $\mathbb{P}(\sup_{s,t \in \mathcal{D}, s \neq t} \frac{|X_t X_s|}{|t s|^{\frac{\varepsilon}{4p}}} \ge M) \le \frac{c}{M^p}$
- ② X_t is uniformly continuous on \mathcal{D} a.s.

The continuity of path

Theorem (Kolmogorov 's continuity theorem)

Let $\{X_t: t \in [0,1]\}$ be a real-valued process. If there exists $c_1, \varepsilon, p > 0$ s.t

$$\mathbb{E}(|X_t - X_s|^p) \leq c_1 |t - s|^{1+\varepsilon} \,\, \forall s,t \in [0,1]$$

Then there exists a version of the process X which has continuous paths.

- Preliminaries
- The continuity of path
- 3 Path properties of Brownian motion
- 4 References

Vu Anh Thu (HNUE) Path properties April 15, 2022 9/14

Path properties of Brownian motion

Theorem

With probability 1, the paths of Brownian motion are Holder continuous of order $\alpha < \frac{1}{2}$ on [0,1].

10 / 14

Path properties of Brownian motion

Theorem (Law of iterated logarithm)

Let W be a Brownian motion. We have

$$\limsup_{t \to \infty} \frac{|W_t|}{\sqrt{2t \log \log t}} = 1 \ a.s$$

and

$$\limsup_{t o 0} rac{|W_t|}{\sqrt{2t\log\lograc{1}{t}}} = 1 \ \textit{a.s.}$$

Path properties of Brownian motion

Theorem

With probability 1, the paths of Brownian motion are nowhere differentiable on [0,1].

12/14

- Preliminaries
- The continuity of path
- Path properties of Brownian motion
- 4 References

Vu Anh Thu (HNUE) Path properties April 15, 2022 13/14

References

- Richard F.Bass. (2011). Stochastic processes. Cambridge.
- Klenkle, A. (2006). Probability Theory: A Comprehensive Course.
 Springer.
- Jean Jacod, Philip Protter. (1999). Probability Essentials. Springer.
- Rick Durrett. (2010). Probability: Theory and Examples. Cambridge.