Graph: Part 2 - Subgraph and Operations on Graphs

Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

References and acknowledgements

- Materials of these slides are taken from:
 - Kenneth H. Rosen. Discrete Mathematics and Its Applications, 8ed. McGraw-Hill, 2019. Section 10.1.
 - Jean Gallier. Discrete Mathematics Second Edition in Progress, 2017 [Draft].
 Section 4.1, 4.2, 4.4
 - Robin J. Wilson. *Introductio to Graph Theory*, 4ed, 1996. Chapter 2.
- Figures taken from the above books belong to their respective authors. I do not claim any rights whatsoever.

Operations on graphs

We can apply operations on one or more graphs to obtain another graph. Here, we discuss:

- underlying undirected graph of a digraph;
- subgraph operation;
- edge addition and removal;
- edge contraction;
- node addition and removal; and
- graph union.

Underlying undirected graph

Definition

Given a directed graph G = (V, E, s, t), the underlying undirected graph G' = (V', E', st) of G is the graph obtained from G as follows:

- \bullet set $V' \coloneqq V$
- 2 for each $e \in E$, construct an edge $e' \in E'$ such that $st(e') = \{s(e), t(e)\}$ if s(e) = t(e), then st(e') contains a single node.
- That is, the underlying undirected graph of a directed graph is obtained by simply ignoring the direction of its edges.
- |V'| = |V| and |E'| = |E|.
- If the directed graph has an edge from a to b and an edge from b to a, then its underlying undirected graph would contain parallel edges between a and b.

A digraph (left figure) and its underlying undirected graph (right figure).

Subgraph

The following applies to both directed and undirected graphs.

Definition

Given a graph G=(V,E), a **subgraph** of G is a graph G'=(V',E') such that $V'\subseteq V$ and $E'\subseteq E$. If $G'\neq G$ (i.e,. $V'\subsetneq V$ or $E'\subsetneq E$), then G' is a **proper subgraph** of G.

Definition

Given a graph G=(V,E) and a set of nodes $W\subseteq V$, the **induced subgraph** of G with respect to W is a subgraph G whose nodes are in W and edges are those from E that connect only pairs of nodes in W.

Note: if G is a (proper) subgraph of H, then we also say that H is a (proper) supergraph of G.

Given the following complete graph K_5 , give its induced subgraph w.r.t. $\{a, b, c\}$.

Given the following complete graph K_5 , give its induced subgraph w.r.t. $\{a, b, c\}$.

Exercise

Find the induced subgraph w.r.t. $\{a, c, e\}$

Edge addition and removal

Definition

Let G = (V, E) be a graph.

- If $e \in E$ is an edge in E, then $G e = (V, E \{e\})$ is the subgraph obtained from G by removing the edge e.
 - Removing multiple edges can be done analogously.
- If $e \in E$ is a new edge not in E, but already connects the nodes $u, v \in V$, then $G + e = (V, E \cup \{e\})$ is the graph obtained from G by adding the edge e to it.
 - Adding multiple edges can be done analogously.

Let K_5 be the complete graph with nodes $\{a,b,c,d,e\}$. Give the graph obtained by removing edges $\{a,d\},\{b,d\},\{c,d\},\{d,e\},\{c,e\}$. Further, what graph do we obtain by adding $\{c,e\}$ to it?

Node addition and removal

Definition

Let G=(V,E) be a graph and $v\in V$ is a node in it. The removal of v from G yields a subgraph G'=(V',E') such that:

- $V' = V \{v\}$
- if G is undirected: $E'=E-\{e\in E\mid v\in st(e)\}$ if G is directed: $E'=E-\{e\in E\mid v=s(e)\text{ or }v=t(e)\}.$

Meanwhile, adding a node v to G is straightforward: simply add v to the node set V.

Let K_5 be the complete graph with nodes $\{a, b, c, d, e\}$. What is the result of removing a from it? Is the resulting graph still complete?

Edge contraction

Definition

Let G = (V, E) and $e \in E$ is an edge in G connecting u and v. Contracting the edge e from G yields a new graph G' = (V', E') according to the following steps:

- \bigcirc remove e from E;
- $oldsymbol{2}$ create a new node w and add w to V;
- 3 if G is undirected graph: for each edge e' such that $st(e') = \{u, x\}$ or $st(e') = \{v, x\}$ for some node $x \in V$, set $st(e') \coloneqq \{w, x\}$;
- **4** if *G* is directed graph:
 - for each edge e' such that s(e') = u or s(e') = v, set $s(e') \coloneqq w$;
 - for each edge e' such that t(e') = u or t(e') = v, set $t(e') \coloneqq w$;
- **5** remove u and v from V.

Edge contraction is like edge removal, but also accompanied with node merging operation. Hence, the result is not a subgraph of the original graph.

Given the following graph, what is the result of contracting the edge e_7 ?

Exercise

What is the result of contracting the edge e_8 in the following graph?

Graph union

Definition

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs. The union of G_1 and G_2 , denoted $G_1\cup G_2$, is the graph $G=(V_1\cup V_2,E_1\cup E_2)$.


```
Compute G_1 \cup G_2 if G_1 = (V_1, E_1) and G_2 = (V_2, E_2) where V_1 = \{a, b, c, d, e\}, E_1 = \{\{a, b\}, \{a, d\}, \{b, c\}, \{b, e\}, \{c, e\}, \{d, e\}\}, V_2 = \{a, b, c, d, f\}, and E_2 = \{\{a, b\}, \{b, c\}, \{b, d\}, \{b, f\}, \{c, f\}\}.
```