

WWW.MATHEMATICSWEB.ORG POWERED BY SCIENCE @DIRECT*

Applied Numerical Mathematics 43 (2002) 501-502

.....

www.elsevier.com/locate/apnum

Author Index—Volume 43 (2002)

(The issue number is given in front of page numbers)

Bai, Z., Krylov subspace techniques for		Forsgren, A., Inertia-controlling factor-	
reduced-order modeling of large-scale		izations for optimization algorithms	(1,2) 91-107
dynamical systems	(1,2) 9- 44		
Bao, W. and S. Jin, Error estimates on the		García-Archilla, B., J. Novo and	
random projection methods for hyper-		E.S. Titi, Postprocessing Fourier spec-	
bolic conservation laws with stiff reac-		tral methods: The case of smooth solu-	
tion terms	(4) 315 - 333	tions	$(3)\ 191-209$
Barrio, R. and J.M. Peña, Numerical		Gómez, S., see Castellanos, J.L.	(4) 359 - 373
evaluation of the pth derivative of Ja-		Gould, N.I.M. and P.L. Toint, An itera-	
cobi series	(4) 335 - 357	tive working-set method for large-scale	
Börm, S., see Hackbusch, W.	(1,2) 129 -143	nonconvex quadratic programming	$(1,2)\ 109-128$
Brenner, S.C., Smoothers, mesh depen-	(-/-/	Griffiths, D.F. and G.A. Watson, Editor-	
dent norms, interpolation and multigrid	(1,2) 45 - 56	ial	(1,2)
	(1,1)	Guerra, V., see Castellanos, J.L.	(4)359-373
Castellanos, J.L., S. Gómez and			
V. Guerra, The triangle method for		Hackbusch, W. and S. Börm , \mathcal{H}^2 -matrix	
finding the corner of the L-curve	$(4)\ 359 - 373$	approximation of integral operators by	
Dahl, F.A., Variance reduction for simu-		interpolation	(1,2) 129 -143
lated diffusions using control variates		Huang, H.T., see Li, Z.C.	(3) 253 - 273
extracted from state space evaluations	$(4)\ 375 - 381$	Huang, J. and J. Zou, Construction of	
Discacciati, M., E. Miglio and A. Quar-	(1) 575 501	explicit extension operators on general	
teroni, Mathematical and numeri-		finite element grids	(3) 211 - 227
cal models for coupling surface and			
groundwater flows	(1,2) 57 – 74	Iserles, A. , Think globally, act locally:	
Djouad, R. and B. Sportisse , Partitioning	(1,2) 37 - 74	Solving highly-oscillatory ordinary	
techniques and lumping computation		differential equations	(1,2) 145–160
for reducing chemical kinetics. APLA:		W G B W	
An automatic partitioning and lumping		Jin, S., see Bao, W.	$(4)\ 315 - 333$
algorithm	(4) 383-398	Jüngel, A. and S. Tang, A relaxation	
argorithm	(4) 363 – 396	scheme for the hydrodynamic equa-	
Elman, H.C., Preconditioners for sad-		tions for semiconductors	(3) 229 -252
dle point problems arising in compu-		Vormoni V IE Flahorti IT Odon	
tational fluid dynamics	(1,2) 75 – 89	Korneev, V., J.E. Flaherty, J.T. Oden	
Fish I see Kormony V	(4) 399-421	and J. Fish, Additive Schwarz algo-	
Fish, J., see Korneev, V.	* /	rithms for solving hp-version finite el-	(4) 200 421
Flaherty, J.E., see Korneev, V.	(4) 399 - 421	ement systems on triangular meshes	(4)399-421

0168-9274/2002 Published by Elsevier Science B.V. on behalf of IMACS. PII: \$0168-9274(02)00228-3

Kress, R. and L. Kühn, Linear sampling		Oden, J.T., see Korneev, V.	(4) 399 - 421
methods for inverse boundary value problems in potential theory	(1,2) 161–173	O'Riordan, E., see MacMullen, H.	(3) 297 - 313
Kühn, L., see Kress, R.	(1,2) 161 - 173 (1,2) 161 - 173	Peña, J.M., see Barrio, R.	(4) 335 – 357
Leimkuhler, B., An efficient multiple time-scale reversible integrator for the		Quarteroni, A., see Discacciati, M.	(1,2) 57- 74
gravitational N-body problem	(1,2) 175–190	Rice, J.R., P. Tsompanopoulou and	
Li, Z.C. and H.T. Huang, Global su- perconvergence of simplified hybrid		E. Vavalis , Fine tuning interface relaxation methods for elliptic differential	
combinations of the Ritz-Galerkin and		equations	(4) 459 – 481
FEMs for elliptic equations with sin- gularities II. Lagrange elements and		Shishkin, G.I., see MacMullen, H.	(3) 297 - 313
Adini's elements	(3) 253-273	Sportisse, B., see Djouad, R.	(4) 383 – 398
MacMullen, H., E. O'Riordan and		Tang, S., see Jüngel, A.	(3) 229 - 252
G.I. Shishkin, The convergence of		Titi, E.S., see García-Archilla, B.	$(3)\ 191-209$
classical Schwarz methods applied		Toint, P.L., see Gould, N.I.M.	$(1,2)\ 109-128$
to convection-diffusion problems with		Tsompanopoulou, P., see Rice, J.R.	(4) 459 - 481
regular boundary layers	(3) 297 - 313	** ** **	
Maroni, P. and M. Mejri, The $I_{(q,\omega)}$		Vavalis, E., see Rice, J.R.	(4) 459 - 481
classical orthogonal polynomials	(4) 423 - 458	Wang, K. and J. Zhang, Multigrid treat-	
Márquez, A., see Meddahi, S.	(3) 275 - 295	ment and robustness enhancement for	
Meddahi, S. and A. Márquez, A com-		factored sparse approximate inverse	
bination of spectral and finite elements		preconditioning	(4) 483 – 500
for an exterior problem in the plane	(3) 275 - 295	Watson, G.A., see Griffiths, D.F.	(1,2) 1
Mejri, M., see Maroni, P.	(4) 423 - 458	vauson, Gan, see Gillinas, D.F.	(1,2)
Miglio, E., see Discacciati, M.	(1,2) 57 – 74	Zhang, J., see Wang, K.	(4)483-500
Novo, J., see García-Archilla, B.	(3) 191-209	Zou, J., see Huang, J.	(3) 211–227