Lecture 2: Regression

James D. Wilson MATH 373

Plan for this Lecture

- Regression Framework
- Prediction, Interpretability, and Accuracy
- Nonparametric vs. Parametric Methods
- Bias-Variance Trade-off

Setting

Given:

- Response $y = (y_1, ..., y_n)^T continuous-valued$
- Design matrix / data $X \in \mathbb{R}^{n \times p}$

Aim: Estimate a function *f* that best represents the relationship between *X* and *y*:

$$y = f(X) + \epsilon$$

Important Questions:

- How do we *choose* and *estimate f*?
- How do we assess our model choice?
- Are we concerned with inference or prediction?

No Free Lunch Principle

There are *many* models and methods to choose from in regression (and classification / clustering for that matter).

No Free Lunch Principle: There is no *one* method that dominates all others over all possible data sets.

Focus of this course: introduce a wide array of methods for a variety of problems.

Motto: "All models are wrong but some are useful" - George Box

Example: Multiple Linear Regression

A parametric model that supposes a linear relationship between *y* and data observations *X*:

$$y = \underbrace{X\beta}_{f(X)} + \epsilon$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ is assumed to satisfy either

- ① $\mathbb{E}[\epsilon_i] = 0$, $Var(\epsilon_i) = \sigma^2$, $\mathbb{E}[\epsilon_i \epsilon_j] = 0$ for all $i \neq j$, or

Prediction vs. Inference

When choosing a model f, we are usually concerned with one of two primary goals: prediction or inference. It is possible to choose a model that is reasonably well-calibrated for both prediction and inference.

Prediction

Main Objective: Predicting new Y using $\hat{Y} = \hat{f}(X)$

Model Choice: models that have the highest prediction performance. Often black box methods, which have no concern with the exact form of \hat{f} .

Prediction vs. Inference

Inference

Main Objective: Understand the relationship between *Y* and *X*:

- Variable Selection: what predictors are most associated with the response
- Focus is functional relationship of Y and X
- Strive for parsimony! KISS: Keep It Simple Stupid!

Model Choice: models that have high interpretability. Often parametric methods, which explicitly dictate the form of \hat{f} via parameters.

Model Choice: Parametric vs. Non-Parametric

Parametric Methods

- Makes an assumption about the functional form of f
- Identifying f reduces to the estimation of a set of parameters
- Often simpler than estimating the entire function (that's the aim anyway)
- Caution: Can result in overly-simplistic models
- Examples: linear regression, logistic regression

Model Choice: Parametric vs. Non-Parametric

Non-parametric Methods

- Not restricted to assumptions about the functional form of f
- Can accurately fit a wider range of possible shapes / forms for f
- Often requires a very large number of observations
- Caution: Can quickly over-fit data!
- Examples: polynomial splines, smoothing splines

Assessing Model Accuracy

Question: How well does your method perform on *new* data, i.e., data you have *not* seen during learning?

Example: You get a new data instance:

 X_{new} = (No history of cancer, smoker, male)

Can you assess the goodness of your throat cancer predictor?

Training vs. Test Set Evaluation

- Divide the data (X, y) into two sets:
 - Training set: (*X*_{train}, *y*_{train})
 - Test set: (X_{test}, y_{test})
- ② Use training set to produce a predictor $\hat{f}()$ via

$$y_{train} = f(X_{train}) + \epsilon$$

Use test set to evaluate performance of predictor:

$$\widehat{y}_{test} = \widehat{f}(X_{test})$$

Assess difference between \hat{y}_{test} and y_{test}

Choosing Training and Test Sets

- Random sampling: choose a test set at random from data and test all models on the same set
- k-fold cross validation: split data into k subsets. In turn treat
 each subset as held-out and train on the remaining. Performance
 is evaluated as average performance of each of k test sets.

3 Leave-one-out cross validation: special case of k-fold cross validation where k = n, and test sets are of size 1.

Training and Test Sets: Important considerations

- Never let information from the test set make its way into the training data! This is the #1 most common mistake in model assessment.
- Difference between prediction and estimation error:
 - Prediction Error: error associated with predictions on the test set

 y_{test} vs. \hat{y}_{test}

• Estimation Error: error associated with estimates in the *training* set

 y_{train} vs. \hat{y}_{train}

Training and Test Sets: Important considerations

- By splitting data in cross validation, the variance of the estimated regression coefficients can increase if the data set is not large.
- Once a model has been validated and compared against other potential models, we typically use the entire data set for estimating the final regression model.
- Sometimes the training and test sets are chosen in a systematic way (e.g., up-sampling and down-sampling) so as to avoid bias in the analysis. We'll come back to this in classification.

Assessing Model Accuracy

Mean squared error

The mean squared error (MSE) of a model *f* is given by:

$$MSE(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$

The MSE measures acts as a yardstick for model assessment for continuous data.

Note: In prediction, the mean squared difference between y_{new} and $\hat{f}(\mathbf{x}_{new})$ is known as the mean square prediction error (MSPE).

Note: There are many choices for measuring accuracy. The choice depends on the possible values of y.

Assessing Model Accuracy

Let Ω = index (which rows of X) that represent the training set

Let $\Theta = \Omega^c$ = index that represent the test set

General Approach:

• Estimate model \hat{f} :

$$\hat{f} = \operatorname{argmin}_{f} \left(\frac{1}{|\Omega|} \sum_{j \in \Omega} (y_{j} - f(\mathbf{x}_{j}))^{2} \right) = \operatorname{argmin}_{f} (MSE(f))$$

Evaluate model on test set:

$$MSPE(\hat{f}) = \frac{1}{|\Theta|} \sum_{j \in \Theta} (y_j - \hat{f}(\mathbf{x}_j))^2$$

MSE vs. MSPE

MSE vs. MSPE

MSE vs. MSPE

MSE vs. MSPE: Noticeable Trends

- Fact: $\mathbb{E}[MSPE(f(X_{test}))] \ge \mathbb{E}[MSE(f(X_{train}))]$
- Trend 1: After a certain point in complexity (the blue boxes in the previous plots), there is an inverse relationship between MSE and MPSE. We say that a model is overfitting the data when we are in this range of complexity!
- Trend 2: The MSE tends to decrease as complexity increases.

An important means of understanding MPSE $(\hat{f}) = \frac{1}{|\Theta|} \sum_{j \in \Theta} (y_j - \hat{f}(\mathbf{x}_j))^2$ comes from the following decomposition for new data (X_0, y_0) .

$$\mathbb{E}[MPSE(\hat{f})] = \mathbb{E}[(y_o - \hat{f}(X_o))^2 + \text{Var}(\hat{f}(X_o)) + \text{Var}(\epsilon)$$

$$= Bias(\hat{f}(X_o))^2 + \text{Var}(\hat{f}(X_o)) + \text{Var}(\epsilon)$$

Result: the expected MSPE of a model is a function of the bias and variance of \hat{f} , as well as the variance of the error term ϵ .

Example: Point estimation. What is bias and variance of an estimate?

Components of MSPE

- Bias $(\hat{f}(X_0))^2$: quantifies distance between model and truth
 - Non-negative
 - Generally decreases as the model becomes more complex
- $Var(\hat{f}(X_0))$: quantifies variance of the model
 - Non-negative
 - High variance implies that the model is highly sensitive to small changes in training data
 - Generally increases as the model becomes more complex
- $Var(\epsilon)$: variance of the error terms
 - Non-negative
 - Is not affected by complexity of the model; constant value

Bias-Variance Trade-off Example

Bias-Variance Trade-off Example

Resulting Trade-off: Since $Var(\epsilon)$ is constant, we'd like to choose a model with minimum bias and minimum variance.

Primary Issues:

- Both the bias and variance terms are non-negative
- The bias and variance terms are often inversely related
- The bias and variance change at different rates

Solution: Decide what is important in application (prediction vs. interpretation) and choose model accordingly. Seek optimal model complexity if possible.

Next Up

Regression Methods

- Regularization: low variance, high interpretability
- Non-parametric: low bias, low interpretability
- Dimension reduction: low variance, low interpretability