

Compilers

Regular Languages

• Lexical structure = token classes

- We must say what set of strings is in a token class
 - Use regular languages

Single character

Epsilon

Union

Concatenation

• Iteration $A^* = \bigcup_{i \ge 0} A^i \qquad A^0 = C$ • Iteration $A^0 = C$

• **Def.** The *regular expressions over* Σ are the smallest set of expressions including

$$R = \epsilon$$

$$| c' | c \leq S | grammar$$

$$| R+R$$

$$| RR$$

$$| RR$$

$$\frac{d^{2} + 1d^{2}}{d^{2} + 1d^{2}} = \begin{cases} 0^{2} | i | i | 20 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0^{2} | i | 20 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases}^{2} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases}^{2} = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 \end{cases} \\ = \begin{cases} 0 + 1 \end{cases} \\ = \begin{cases} 0 \end{cases}$$

Alex Aiken

Choose the regular languages that are equivalent to the given regular language: (0 + 1)*1(0 + 1)*

$$\square$$
 $(01 + 11)*(0 + 1)*$

$$\square$$
 $(0+1)*(10+11+1)(0+1)*$

$$\Box$$
 $(1+0)*1(1+0)*$

$$\square$$
 $(0+1)*(0+1)(0+1)*$

$$\Sigma = \{ 0, 1 \}$$

- Regular expressions specify regular languages

 set of strings
- Five constructs
 - Two base cases
 - empty and 1-character strings
 - Three compound expressions
 - union, concatenation, iteration