Семинар: арифметическое (интервальное) кодирование. Побайтовая запись кода. Случай сообщения без кода

Александра Игоревна Кононова

ТЕИМ

8 июля 2024 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

$$C=5111,\ n=4,\ T=2,$$
 $\begin{picture}(60,0) \put(0,0){\line(0,0){150}} \put(0,0){\line(0,0){150}}$

ПИ $[l_i,t_i)$ делится 3:1, границы $\Omega_0=l_i$, $\Omega_1=l_i+rac{3\Delta_i}{4}$, $\Omega_2=l_i+\Delta_i=t_i$, где $\Delta_i=t_i-l_i$:

i	c_i	l_i	t_i	Δ_i
0	_	0	1	1
1	5	$\frac{3}{4}$	1	$\frac{1}{4}$
$\frac{2}{3}$	1	3 4 3 4 3 4 3	$\frac{15}{16}$ $\frac{57}{}$	$\frac{3}{16}$
3	1	$\frac{3}{4}$	$\frac{57}{64}$	$\frac{9}{64}$
4	1	$\frac{3}{4}$	$\frac{64}{219}$ $\frac{219}{256}$	$ \begin{array}{r} \frac{3}{16} \\ \frac{9}{64} \\ \hline \frac{27}{256} \end{array} $
_				

Далее выбираем $z \in \left[\frac{3}{4}, \frac{219}{256}\right]$ с самым коротким двоичным представлением $\implies z = \frac{3}{4} = 0,11_2$. Числу $z=0,1100\ldots_2$ соответствует битовый поток B=110 и, если первый бит потока записывается старшим разрядом, байт $110_2 = 6$ (если первый младшим, то $011_2 = 3$; здесь не рассматриваем).

В файл записываются 0004, 03000100 и код 6.

<ロ> <問> < 置> < 置> < 置> < 置 > の< で

Концепт $AC(\mathbb{R})$

Целочисленный АС: параметры и кодирование Целочисленный АС: декодирование Целочисленный АС: побайтовая запись Подбор плохого случая для цел. АС с побайтовой записью

Кодирование

$$\underbrace{0004}_{n},\;\underbrace{0300\,0100}_{\vec{\nu}},\;\underbrace{6}_{\text{код}},\;$$
откуда $n=4,\;\underbrace{\frac{2}{\xi}}_{\nu}$

Пусть после прочтения всех байтов кода битовый поток выдаёт отказ:

k	b_k	λ_k	$ au_k$	δ_k
0	_	0	1	1
1	1	$\frac{1}{2}$	1	$\frac{1}{2}$
$\frac{2}{3}$	1	$\frac{3}{4}$	1	$\frac{1}{4}$
	0	$\frac{\frac{1}{2}}{\frac{3}{4}}$ $\frac{3}{4}$ $\frac{3}{4}$	$\frac{7}{8}$	$\frac{1}{8}$
4	_	$\frac{3}{4}$	_	0
\overline{i}	c_i	l_i	t_i	Δ_i

битовый поток прочитан до конца, $z = \frac{3}{4} = 0.11_2$.

Пусть после прочтения всех байтов кола битовый поток вылаёт нули:

ııy	CIBI	IOCHE	11po	пспи	л вс		anic	ъ код	а Оитс		HOTOK I		і пули.
k	b_k	λ_k	$ au_k$	δ_k	i	c_i	l_i	t_i	Δ_i	Ω_i^0	Ω^1_i	Ω_i^2	комментарий
0	_	0	1	1									
1	1	$\frac{1}{2}$	1	$\frac{1}{2}$									
2	1	$\frac{3}{4}$	1	$\frac{1}{4}$									_
3	0	$\frac{3}{4}$	$\frac{7}{8}$	$\frac{1}{8}$									
$\overline{4}$	0	$\frac{3}{4}$	$\frac{8}{16}$ $\frac{13}{16}$ $\frac{25}{32}$	$\frac{1}{16}$									$\frac{13}{16} = \frac{52}{64} = \frac{208}{256}$
5	0	$\frac{3}{4}$	$\frac{25}{32}$	$\frac{1}{32}$									$\frac{13}{16} = \frac{52}{64} = \frac{208}{256}$ $\frac{25}{32} = \frac{50}{64} = \frac{200}{256}$
					0	_	0	1	1	0	$\frac{3}{4}$	1	_
					1	5	$\frac{3}{4}$	1	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{15}{16}$	1	
					2	1	$\frac{4}{3}$	$\frac{15}{16}$	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{57}{64}$	$\frac{15}{16}$	
					3	1	$\frac{\frac{3}{4}}{\frac{3}{4}}$	$ \begin{array}{r} \overline{16} \\ \overline{57} \\ \overline{64} \\ \underline{219} \end{array} $	$ \begin{array}{r} $	$\frac{3}{4}$	$ \begin{array}{r} \frac{4}{15} \\ \hline 16 \\ \hline 57 \\ \hline 64 \\ \hline 219 \\ \hline 256 \\ 849 \\ \hline \end{array} $	$\frac{15}{16}$ $\frac{57}{64}$ $\frac{219}{64}$	
					4	1	$\frac{3}{4}$	$\frac{219}{256}$	$\frac{27}{256}$	$\frac{3}{4}$	$\frac{849}{1024}$	$\frac{219}{256}$	i = n
$\overline{\alpha}$	E 1	11											

C = 5111

На каком k остановиться?

<ロ> (回) (回) (注) (注) 注 り(で

b_k	λ_k	$ au_k$	δ_k	$\mid i \mid$	c_i	l_i	t_i	Δ_i	Ω_i^0	Ω^1_i	Ω_i^2	комментарий
_	0	1	1	0	_	0	1	1	0	$\frac{3}{4}$	1	
1	$\frac{1}{2}$	1	$\frac{1}{2}$									$\lambda_k \in [\Omega_i^0, \Omega_i^1), \tau_k \in [\Omega_i^1, \Omega_i^2)$
1	$\frac{3}{4}$	1	$\frac{1}{4}$									$[\lambda_k, au_k) \subseteq [\Omega_i^1, \Omega_i^2)$
				1	5	$\frac{3}{4}$	1	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{15}{16}$	1	$\lambda_k \in [\Omega_i^0, \Omega_i^1), \tau_k \in [\Omega_i^1, \Omega_i^2)$
0	$\frac{3}{4}$	$\frac{7}{8}$	$\frac{1}{8}$									$ \begin{array}{c} \frac{7}{8} = \frac{14}{16} \implies [\lambda_k, \tau_k) \subseteq [\Omega_i^0, \Omega_i^1) \\ \hline 7 = \frac{56}{4} \end{array} $
				2	1	$\frac{3}{4}$	$\frac{15}{16}$	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{57}{64}$	$\frac{15}{16}$	$ \bar{8} - \bar{64} $
				3	1	$\frac{3}{4}$	$\frac{57}{64}$	$\frac{9}{64}$	$\frac{3}{4}$	$\frac{219}{256}$	$\frac{57}{64}$	$\frac{7}{8} = \frac{224}{256}$
0	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{1}{16}$									$\frac{13}{16} = \frac{208}{256}$
				4	1	$\frac{3}{4}$	$\frac{219}{256}$	$\frac{27}{256}$	$\frac{3}{4}$	$\frac{849}{1024}$	$\frac{219}{256}$	i = n
	- 1 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								

C = 5111

Варианты 1 и 2 — крайние случаи; при точных вычислениях можно комбинировать шаги по k и iпроизвольно (i — не раньше, чем в варианте 2).

Выбор N; параметры

В общем случае $N \gg 4D^2$ (при D = 4: $4D^2 = 64$) и $N \cdot D \leq \max(type)$; в частности, при D>10 возможно $N=4D^3$. Для D=4 нельзя сказать $4D^3\gg 4D^2$, но при $D=2^\kappa$ вычисления точнее (но никогда не абсолютно точны!) \implies возьмём $N=4D^3=256$.

 $N=2^{\alpha} \geqslant 4D^{3}$ — для побитовой записи со своевременным масштабированием, включая масштабирование «из средней половины» $\left[\frac{N}{4},\frac{3N}{4}\right] \to [0,N)$ (переменная β).

- lacktriangle Любое снижение точности побайтовая запись, отложенное масштабирование \implies увеличение N.
- Отказ от $\beta \implies \Delta \geqslant 1$ вместо $\Delta \geqslant \frac{N}{4} \implies$ невозможность оценить необходимое N. Худший случай без β для T>2: рабочий ПИ $[l,t)=\lceil \frac{N}{2}-1,\frac{N}{2}\rceil=\lceil \frac{N}{2}-1,\frac{N}{2}+1
 ceil$ из двух пикселей и на границе 0/1 — невозможно ни масштабирование, ни деление на T частей. Возможен без β для любых $\frac{N}{D}$ при особенно неудачном исходном тексте.

j	0	1	2
ξ_j	_	1	5
ν_j	_	3	1
ω_{j}	0	3	4

 $D = \omega_0 = 4$. деление ПИ [l,t) длины $\Delta = t-l$ на ПИ $[\Omega_0, \Omega_1)$ для $\xi_1 = 1$ и ПИ $[\Omega_1, \Omega_2)$ для $\xi_2 = 5$:

$$\overline{\Omega_0 = l + \frac{\omega_0 \cdot \Delta}{D}} = l;$$
 $\Omega_1 = l + \frac{\omega_1 \cdot \Delta}{D} = l + \frac{3\Delta}{4};$
 $\Omega_2 = l + \frac{\omega_2 \cdot \Delta}{D} = l + \Delta = t;$

$$\Omega_2 = l + \frac{\omega_2 \cdot \Delta}{D} = l + \Delta = t;$$

округление вниз.

Рассмотрим, кроме C=5111, ещё $\widetilde{C}=5111\,1115$ с той же таблицей частот.

Концепт $AC(\mathbb{R})$ **Целочисленный АС:** параметры и кодирование Целочисленный АС: декодирование Целочисленный АС: побайтовая запись Подбор плохого случая для цел. АС с побайтовой записью

Выбор N; параметры

$$C = 5111$$
: $\vec{\omega} = (0, 3, 4)$, $D = 4$; $N = 256 \left(\frac{N}{4} = 64, \frac{N}{2} = 128, \frac{3N}{4} = 192 \right)$:

i	c_i	k	b_k	β	l	t	Δ	комментарий	z (двоичное)
0	_	0	_	0	0	256	256		$0,b_1b_2b_3b_4\dots$
1	5				192	256	64	$[l,t) \subseteq \left[\frac{N}{2},N\right) \implies 1; \left[\frac{N}{2},N\right) \to [0,N)$	$0,1b_2b_3b_4\dots$
		1	1	0	128	256	128	$[l,t)\subseteq \left[\frac{\tilde{N}}{2},N\right) \implies 1; \left[\frac{\tilde{N}}{2},N\right) \rightarrow [0,N)$	$0,11b_3b_4$
		2	1	0	0	256	256	-	
$\overline{2}$	1				0	192	192		
3	1				0	144	144		
$\overline{4}$	1				0	108	108	$[l,t)\subseteq \left[0,\frac{N}{2}\right) \implies 0; \left[0,\frac{N}{2}\right) \rightarrow \left[0,N\right)$	$0,110b_4$
		3	0	0	0	216	216	i=n, нельзя масштабировать $ ightarrow$ завершение	
П					110			0 (

В выходном потоке 110 — это дробная часть пикселя 0 (код пикселя N-110(1)); код сообщения — дробная часть *любой* точки, изображение которой лежит в [l,t).

 $0 \in [l,t)$, поэтому код остаётся как есть: $110_2 = 6$; в файл записываются $0004,\ 0300\ 0100$ и код 6.

Если $0 \notin [l,t)$: раз нельзя масштабировать, то $\frac{N}{2} \in [l,t) \implies$ к коду добавляется одна 1.

Концепт AC (\mathbb{R}) Целочисленный АС: параметры и кодирование Целочисленный АС: декодирование Целочисленный АС: побайтовая запись Подбор плохого случая для цел. АС с побайтовой записью

Выбор N: параметры Кодирование 5111, N=256

Кодирование 5111 1115, N=256

$$\widetilde{C}=5111\,1115$$
: $ec{\omega}=(0,3,4)$, $D=4$; $N=256$ $\left(rac{N}{4}=64,rac{N}{2}=128,rac{3N}{4}=192
ight)$; начало как $C=5111$:

i	c_i	k	b_k	β	l	t	Δ	комментарий
$\overline{4}$	1				0	108	108	
		3	0	0	0	216	216	завершение для 5111, но здесь $i < n$
5	1				0	81	81	
		4	0	0	0	162	162	
6	1				0	121	121	$rac{3\cdot 162}{4}=121,5;$ округление всегда вниз
		5	0	0	0	242	242	
7	1				0	181	181	
8	5				135	181	46	
		6	1	0	14	106	92	
		7	0	0	28	212	184	завершение: $i=n,$ нельзя масштабировать

В выходном потоке B уже находится код 110010, но $z=0,1100100000\dots$ соответствует пикселю 0, который не лежит в [l,t). Несуществующему (и, соответственно, не лежащему в [l,t)) пикселю N=256 соответствует бесконечная дробь z=0,110010(1).

Пикселю $\frac{N}{2}=128$ соответствует $z=0,\!1100101$, и $128\in[l,t)$ \implies добавляем в выходной поток ещё 1.

Код $B=110\ 010\ 100=624$; в файл: $\underline{0008},\ \underline{0300}\ 0\underline{100},\ 624.$

←□ → ←□ → ← = → ← = → へ < ○</p>

Концепт АС (\mathbb{R}) **Целочисленный АС: параметры и кодирование Целочисленный АС: декодирование Целочисленный АС: побайтовая запись Подбор плохого случая для цел. АС с побайтовой запись**

Выбор N; параметры Кодирование 5111, N=256 Кодирование 5111 1115, N=256 Всегда ли при большом $N=2^{\alpha}$ и D=4 вычисления точные

Для любого N при частотах $0300\,0100$ и достаточно большой последовательности $1111111\dots$ вычисления станут неточными:

- на два-три шага чтения 1 придётся в среднем одно масштабирование (за два Δ изменится в $\frac{9}{16}>\frac{1}{2}$ раз, за три в $\frac{27}{64}<\frac{1}{2}$);
- шаг чтения 1 увеличивает знаменатель в 4 раза;
- масштабирование уменьшает знаменатель только в 2 раза.

В общем случае целочисленного АС код а) не совпадает с концептом и б) может различаться:

- ullet при разных N;
- при разной частоте масштабирования;
- выполняется или нет масштабирование $\left[rac{N}{4}, rac{3N}{4}
 ight) o [0, N)$ («из средней половины»).

Д-1 0004 0300 0100 6=110, N=256 $\left(\frac{N}{4}=64,\frac{N}{2}=128,\frac{3N}{4}=192\right)$

k	b_k	δ	λ	au	i	c_i	l	t	Δ	Ω_0	Ω_1	Ω_2	комментарий
0	_	256	0	256	0	_	0	256	256	0	192	256	
1	1	128	128	256									
2	1	64	192	256									
3	0	32	192	224									
$\overline{4}$	0	16	192	208									
5	0	8	192	200									
6	0	4	192	196									
7	0	2	192	194									
8	0	1	192	193									$\delta=1$: если $\lambda\in \Pi M$, то и $[\lambda,\lambda+1)$ там же
					1	5	192	256	64				
		2	128	130			128	256	128				
		4	0	4			0	256	256				
9	0	2	0	2									
10	0	1	0	1									
										0	192	256	сравниваем λ с Ω_j
					2	1	0	192	192	0	144	192	
					3	1	0	144	144	0	108	144	
					4	1	0	108	108				i = n
		2	0	2			0	216	216				
													<u> </u>

Концепт AC (\mathbb{R})

Целочисленный АС: параметры и кодирование Целочисленный АС: декодирование Целочисленный АС: побайтовая запись Д-1 0004 0300 0100 6=110, N=256 $\left(\frac{N}{4}=64,\frac{N}{2}=128,\frac{3N}{4}=192\right)$ Д-2 0004 0300 0100 6, N=256 $\left(\frac{N}{4}=64,\frac{N}{2}=128,\frac{3N}{4}=192\right)$ Д-1 0008 0300 0100 624=110 010 100, N=256 $\left(\frac{N}{4}=64,\frac{N}{2}=128,\frac{3N}{4}=128,\frac{3N}{4}=128\right)$

10 / 22

k	b_k	δ	λ	au	i	c_i	l	t	Δ	Ω_0	Ω_1	Ω_2	комментарий
0	_	256	0	256	0	_	0	256	256	0	192	256	
1	1	128	128	256									
2	1	64	192	256									$[\lambda, \tau) \subseteq [\Omega_1, \Omega_2)$
					1	5	192	256	64				$[l,t)\subseteq \left[\frac{N}{2},N\right)$
		128	128	256			128	256	128				-

Д-1 0008 0300 0100 624=110 010 100, N=256 $\left(\frac{N}{4}=64,\frac{N}{2}=128,\frac{3N}{4}=192\right)$

k	b_k	δ	λ	au	i	c_i	l	t	Δ	Ω_0	Ω_1	Ω_2	комментарий
0	_	256	0	256	0	_	0	256	256	0	192	256	
1	1	128	128	256									
2	1	64	192	256									
3	0	32	192	224									
$\overline{4}$	0	16	192	208									
5	1	8	200	208									
6	0	4	200	204									
7	1	2	202	204									
8	0	1	202	203									$\lambda = 202_{10} = 11001010_2 = B[18]$
					1	5	192	256	64				
-		2	148	150			128	256	128				
		4	40	44			0	256	256				
9	0	2	40	42									
10	0	1	40	41						0	192	256	

k	b_k	δ	λ	au	i	c_i	l	t	Δ	Ω_0	Ω_1	Ω_2	комментарий
10	0	1	40	41			0	256	256	0	192	256	
					2	1	0	192	192	0	144	192	
					3	1	0	144	144	0	108	144	
					4	1	0	108	108				
		2	80	82			0	216	216				
11	0	1	80	81									
					5	1	0	162	162	0	121	162	
					6	1	0	121	121				
		2	160	162			0	242	242				
12	0	1	160	161						0	181	242	
					7	1	0	181	181	0	135	181	
					8	5	0	135	181				i = n

Целочисленный АС: побайтовая запись

- ullet В начале Д-1 для $N=2^lpha$ читается lpha бит до $\delta=1.$ Целое число k-битных байтов $\implies lpha$ делится на k.
- Запись кода байтами вместо битов отложенное масштабирование $\implies N$ должно быть больше, чем для побитовой записи.
- **1** Для чтения/записи кода 3-битными байта рассмотрим $N=2^9=512$, тогда все пиксели (в том числе l и t) имеют координаты из $[0,512)-\frac{\alpha}{k}=\frac{9}{3}=3$ -байтовые. Все числа запишем в восьмеричной системе (цифра=трёхбитный байт): все пиксели $\frac{\alpha}{L}=3$ -значные.
- $oldsymbol{2}$ При масштабировании записывается целый $oldsymbol{6}$ айт, а длины Δ и δ увеличиваются не в два, а в 2^k раз (для трёхбитного байта — в восемь раз):
- ullet ПИ [0,N) делится не на две половины (бит 0 и бит 1), а на $S=2^k$ частей (для k=3 на восемь): для $0 \leqslant b < S$ границы байта b: $\left[\frac{b \cdot N}{S}, \frac{(b+1) \cdot N}{S}\right) \left[b00, (b+1)00\right) = \left[b00, b77\right]$
- ullet все пиксели, принадлежащие ПИ $\left[rac{b\cdot N}{S},rac{(b+1)\cdot N}{S}
 ight)$, имеют одинаковый старший байт b (старший из $rac{lpha}{k}$ значащих, а не в целом типе);
- \Longrightarrow запись байта b и $\left\{ egin{array}{l} l_{ ext{HOBOR}} = 2^k \cdot (l rac{b \cdot N}{2^k}) = 10_8 \cdot (l b00), \\ t_{ ext{HOBOR}} = 2^k \cdot (t rac{b \cdot N}{2^k}) = 10_8 \cdot (t b00). \end{array} \right.$ • $[l,t) \subseteq \left[\frac{b \cdot N}{2^k}, \frac{(b+1) \cdot N}{2^k}\right]$
- ③ Из статей: аналога $\left[\frac{N}{4},\frac{3N}{4}\right) o [0,N)$ нет, поэтому eta не используется (аналог можно придумать, но побитовое со всем возможным масштабированием всё равно точнее; редлизация без β — быстрее).

Масштабирование битовыми операциями

• Масштабирование арифметическими операциями выполняется единообразно:

$$\exists b: \ \frac{b \cdot N}{2^k} \leqslant l \ \text{и} \ t \leqslant \frac{(b+1) \cdot N}{2^k} \qquad \Longrightarrow \qquad \text{запись байта} \ b \ \text{и} \ \left\{ \begin{array}{l} l_{\mathsf{HOBOe}} = 2^k \cdot (l - \frac{b \cdot N}{2^k}) = 10_8 \cdot (l - b00), \\ t_{\mathsf{HOBOe}} = 2^k \cdot (t - \frac{b \cdot N}{2^k}) = 10_8 \cdot (t - b00); \end{array} \right.$$

- ullet для l это побитовый сдвиг влево на байт $(l=bx_1x_2 \ o \ l_{ exttt{hosoe}}=x_1x_20)$ в рамках lpha бит;
- если $t < \frac{(b+1) \cdot N}{2k}$, то для t это тоже сдвиг $(t = by_1y_2 \rightarrow t_{\text{HOBOe}} = y_1y_20)$ в рамках α бит; но если $t = \frac{(b+1)\cdot N}{2k} = (b+1)00$, то $t_{\text{новое}} = N = 1000$ вместо 000;

таким образом,
$$t_{\text{новое}} = \left\{ \begin{array}{ll} (t \sinh k) \ \& \ (N-1), & t < \frac{(b+1) \cdot N}{2^k}, \\ N, & t = \frac{(b+1) \cdot N}{2^k} \Leftrightarrow (t \sinh k) \ \& \ (N-1) = 0; \\ \text{пусть } t_{\text{HH}} = (t \sinh k) \ \& \ (N-1), \ \text{тогда} \ t_{\text{новое}} = \left\{ \begin{array}{ll} t_{\text{HH}}, & t_{\text{HH}} \neq 0 \\ N, & t_{\text{HH}} = 0 \end{array} \right. = t_{\text{HH}} + N \cdot (t_{\text{HH}} = 0). \end{array} \right.$$

• в итоге для реализации битовыми операциями на ПИ:

для
$$b = \mathrm{hi}(l)$$
 верно $t \leqslant \frac{(b+1) \cdot N}{2^k} \implies$ запись b и $\left\{ \begin{array}{l} l_{\mathsf{HOBOe}} = (l \sh k) \& (N-1), \\ t_{\mathsf{HOBOe}} = t_{\mathsf{HH}} + N \cdot (t_{\mathsf{HH}} = 0), \end{array} \right.$ где $t_{\mathsf{HH}} = (t \sh k) \& (N-1);$

• для реализации на отрезках можно обнаружить попадание в одну из 2^k частей как hi(l) = hi(h) = b; $h_{\mathsf{HOBOe}} = t_{\mathsf{HOBOe}} - 1 = t_{\mathsf{HH}} + N \cdot (t_{\mathsf{HH}} = 0) - 1,$ где $t_{\mathsf{HH}} = \left((h+1) \operatorname{shl} k \right) \& (N-1).$

Концепт АС (П) Целочисленный АС: параметры и кодирование Целочисленный АС: декодирование

Кодирование 5111 1115, $N = 512_{10} = 1000_8$

~		
$\widetilde{C} = 5111 1115 \colon \vec{\omega} =$	(0,3,4), $D=4$;	$N = 1000_8$:

i	c_i	$\mid k \mid$	b_k	l(8)	t(8)	h = t - 1(8)	$\Delta(8)$	l(10)	t(10)	$\Delta(10)$
0	_	0	_	000	1000	777	1000	0	512	512
1	5			$l + \frac{3\Delta}{4} = 600$	1000	777	200	384	512	128
2	1			600	$l + \frac{3\Delta}{4} = 740$	737	140	384	480	96
3	1			600	$l + \frac{3\Delta}{4} = 710$	707	110	384	456	72
4	1			600	$l + \frac{3\Delta}{4} = 666$	665	66	384	438	54
		1	6	$(l - 600) \cdot 10_8 = 000$	$(t - 600) \cdot 10_8 = 660$	657	660	0	432	432
5	1			000	$l + \frac{3\Delta}{4} = 504$	503	504	0	324	324
6	1			000	$l + \frac{3\Delta}{4} = 363$	362	363	0	243	243
7	1			000	$l + \frac{3\Delta}{4} = 266$	265	266	0	182	182
8	5			$l + \frac{3\Delta}{4} = 210$	266	265	56	136	182	46
		2	2	100	660	657	560	64	432	368

i=n, масштабировать не можем, но кода 62 недостаточно (так как $l \neq 000$): к нему необходимо добавить один из байтов 1, 2, 3, 4, 5, 6 (значения b, для которых b00 лежит в [l, t)). Как правило, это hi(l) + 1, здесь 2 \implies код 622.

В общем случае не совпадает ни с концептом, ни с побитовыми: вычисления менее точны \implies длиннее.

◆ロ → ◆ ● → ◆ き → を ● り へ ○

Д-1 0008 0300 0100 622, $N = 512_{10} = 1000_8$

k	b_k	$\delta(8)$	$\lambda(8)$	$\tau(8)$	$\mid i \mid$	c_i	l(8)	$\Omega_1 = l + \frac{3\Delta}{4}(8)$	t(8)	$\Delta(8)$	
0	_	1000	0	1000	0	_	0	600	1000	1000	
1	6	100	600	700							$\overline{}$
2	2	10	620	630							
3	2	1	622	623							
					1	5	600	740	1000	200	
					2	1	600	710	740	140	
					3	1	600	666	710	110	
					4	1	600	650	666	66	
		10	220	230			000	504	660	660	
$\overline{4}$	0	1	220	221							
					5	1	000	363	504	504	
					6	1	000	266	363	363	
					7	1	000	210	266	266	$\overline{}$
					8	5	210		266	56	

 Ω_i , как и ранее, не масштабируются, а пересчитываются из отмасштабированных l и t ($650 \to 504$, а не 500).

←□ → ←□ → ←□ → □ → ○○○

Д-2 0008 0300 0100 622, $N = 512_{10} = 1000_8$

k	b_k	$\delta(8)$	$\lambda(8)$	$\tau(8)$	$\mid i \mid$	$ c_i $	l(8)	$\Omega_1 = l + \frac{3\Delta}{4}(8)$	t(8)	$\Delta(8)$	
0	_	1000	0	1000	0	_	0	600	1000	1000	
1	6	100	600	700							_
					1	5	600	740	1000	200	
					2	1	600	710	740	140	
					3	1	600	666	710	110	
2	2	10	620	630							
					4	1	600	650	666	66	
		100	200	300			000	504	660	660	
					5	1	000	363	504	504	
					6	1	000	266	363	363	
3	2	10	220	230							
					7	1	000	210	266	266	
$\overline{4}$	0	1	220	221							
					8	5	210		266	56	

Выбор частот и $N=2^{12}=4096_{10}=10000_8$

Плохой случай — сообщение m с I(m) > 0 (то есть $p(m) > 0 \Leftrightarrow$ без $c: \nu(c) = 0$), которое не имеет кода. При кодировании на каком-то шаге началу такого m (возможно, всему m) соответствует ПИ нулевой длины; значит, на предыдущем шаге был ПИ длины $\Delta < D$, а масштабирование было невозможно.

- **1** Такого не будет при T = 2 (в частности, 3:1):
- ullet ПИ [l,l+2) длины 2 можно разделить на два ПИ ненулевой длины: [l,l+1) и [l+1,l+2), причём при $u_1 \geqslant \nu_2$ деление именно такое: $\Omega_1 - l = \left\lfloor \frac{\omega_1 \cdot 2}{D} \right\rfloor = \left\lfloor \frac{\nu_1 \cdot 2}{\nu_1 + \nu_2} \right\rfloor \geqslant \left\lfloor \frac{\nu_1 \cdot 2}{\nu_1 + \nu_1} \right\rfloor = 1$, но $\Omega_1 - l < \left\lfloor \frac{\nu_1 \cdot 2}{\nu_1 + 0} \right\rfloor = 2$;
- ullet ПИ [l,l+1) длины 1 гарантированно попадает внутрь ПИ байта и масштабируется до приемлемой длины.
- ② Сообщений без кода не будет при частотах 2:1:1 в числителе степени двойки; l и t либо точно совпадают с границами байтов (масштабирование до приемлемой длины), либо достаточно далеко.

При D=4 возможны только 3:1,2:2 и 2:1:1—сообщений без кода быть не может. При D=8, вероятно, может, но короткий пример подобрать не удалось. Рассмотрим D=16 и максимально нечётные частоты:

_	
7	8
6	7
1	1
$15_{10} = 17_8$	$16_{10} = 20_8 = D$
_	$ \begin{array}{r} 7 \\ \hline 6 \\ \hline 1 \\ 15_{10} = 17_8 \end{array} $

возьмём $N = 2^{12} = 4096_{10} = 10000_8$.

◆ロ → ◆ ● → ◆ き → を ● り へ ○

Концепт AC (\mathbb{R}) Целочисленный АС: параметры и кодирование Целочисленный АС: декодирование Целочисленный АС: побайтовая запись Подбор плохого случая для цел. АС с побайтовой записью Выбор частот и $N = 2^{12} = 4096_{10} = 10000_8$

Короткие сообщения без кода (восьмеричное представление чисел!)

ξ	j	-	()	1	2		3	4	5	6		7
ω	j	0	$7_{10} =$	$=7_{8}$	$10_{10} = 12_8$	$11_{10} = 13_8$	1210	$_{0}=14_{8}$	$13_{10} = 15_8$	$14_{10} = 16_8$	$15_{10} = 17_8$	16 ₁₀ =	$=20_8=D$
\overline{i}	c_i	$\mid k \mid$	b_k		l(8)	t(8)		$\Delta(8)$					
0	_	0	_		0000	10000		10000					
1	1			l +	$\frac{7\Delta}{20_8} = 3400$	$l + \frac{12_8 \Delta}{20_8} = 5$	5000	1400					
2	0				3400	$l + \frac{7\Delta}{208} = 4$	120	520	далее выби	раем c_i так, ч	нтобы $l < 400$	00 < t	
3	5			$l + \frac{1}{2}$	$\frac{14_8\Delta}{20_8} = 3774$	$l + \frac{15_8 \Delta}{20_8} = 4$	1021	25					
$\overline{4}$	0				3774	$l + \frac{7\Delta}{20_8} = 4$	005	11	$\Delta < D$: $\vec{\Omega}$ -	-l = (0, 3, 5, 6)	6, 6, 7, 7, 10, 11	l)	

Так как l < 4000 < t, а аналога β нет — масштабирование невозможно (невозможно записать ни одного байта).

На следующем шаге уже не все символы имеют код — в $\vec{\Omega}-l$ есть повторы, $\Omega_2=\Omega_3=l+6$ и $\Omega_4=\Omega_5=l+7$: l(8)t(8) $\Delta(8)$ b_k $\vec{\Omega} - l = (0, 3, 5, 6, 6, 7, 7, 10, 11)$ 3774 0 4005 11 $\overline{5_3}$ $l + \frac{138\Delta}{200} = 3774 + 6 = 4002$ $l + \frac{148\Delta}{200} = 3774 + 6 = 4002$ нет кода, авост $l + \frac{13_8 \Delta}{20_1} = 3774 + 7 = 4003$ $l + \frac{14_8 \Delta}{20_1} = 3774 + 7 = 4003$ $\overline{5_5}$ 5 нет кода, авост

 $\overline{\mathsf{T}}$ аким образом, все сообщения, которые имеют частоты $7311\,1111$ и начинаются с 10503 или с 10505 (см. эту страницу) или с 105010, 105012, 105013, 105014, 105015, 105016 (см. следующую страницу) не получат кода.

4□ > 4回 > 4 = > 4 = > = 900

Концепт AC (\mathbb{R}) Целочисленный АС: параметры и кодирование

Целочисленный АС: декодирование

Выбор частот и $N = 2^{12} = 4096_{10} = 10000_8$ Короткие сообщения без кода (восьмеричное представление чисел!)

Выход из наихудшего случая (или его отсутствие)

Сим	1ВОЛ	ты (, 1, 1	2,4,6 и 7 пока зако	одировать можно:		
4	0			3774	4005	11	$\Delta < D: \vec{\Omega} - l = (0, 3, 5, 6, 6, 7, 7, 10, 11)$
$\overline{5_0}$	0			3774	3774 + 3 = 3777	3	$\Delta \ll D,$ но можем записать байт
		1	3	7740	7770	30	
		2	7	7400	7700	300	
		3	7	4000	7000	3000	точность потеряна, но из «ямы» выбрались
51	1			3774 + 3 = 3777	3774 + 5 = 4001	2	наихудший случай: не можем масштабировать и $\vec{\Omega}=(0,0,1,1,1,1,1,1,2)$: ещё не авост, но на следующем шаге сможем записать только 1 или 7
$\overline{5_2}$	2			3774 + 6 = 4002	3774 + 7 = 4003	1	
		1	4	0020	0030	10	
		2	0	0200	0300	100	
		3	0	2000	3000	1000	
		4	2	0000	10000	10000	точность потеряна, но из «ямы» выбрались

Все сообщения, которые имеют частоты 73111111 и начинаются с 10503 или с 10505 (см. пред. страницу) или с 105010, 105012, 105013, 105014, 105015, 105016 (см. эту страницу) не получат кода.

Некоторые (возможно, не все) сообщения, которые имеют частоты 7311 1111 и начинаются с 10500,

с $105011,\ 105017,\ 10502$ получат код (но существенно длиннее I(m) из-за потери $^{\circ}$ точности) $^{\circ}$ Концепт АС (ℝ)

Выход из наихудшего случая (или его отсутствие)

Целочисленный АС: параметры и кодирование

- **1** Плохое (не имеющее кода) сообщение m найдётся для любого N, любого D>4 и почти любого набора частот. Необходимо проверять Δ и корректно обрабатывать авост.
- 2 Можно всё-таки ввести аналог β , чтобы не допускать $\Delta < D$.
- Сообщение m, которое не имеет кода для одной связки $\vec{v} + N$, может иметь код для немного другой ⇒ если есть несколько реализаций целочисленного АС с побайтовой записью (которым присвоены разные коды алгоритма), отличающихся:
 - подбором N;
 - значением $D_{\text{жел}}$;
 - ullet способом перенормировки частот из хранящихся в файле $ec{u}$ ($\max(u_i)=255$) к требуемым $ec{
 u}$ $(\sum \nu_i \approx D_{\text{жел}}) \Longrightarrow$ могут получиться немного другие $\vec{\nu}$ и/или другое итоговое D;
 - порядком сортировки по умолчанию (выше при $\Omega-l=(0,3,5,6,6,7,7,10,11)$ часть символов с частотой 1 получила код, часть нет);

то можно подобрать для сообщения m подходящий (без авоста) цел. AC с побайтовой записью.

