Introducción a los Sistemas de Bases de Datos

Jesús Reyes Carvajal

Historia de las BD

Sistemas de archivos:

Surgieron debido a la necesidad de almacenar los datos para su correspondiente reuso (persistencia)

Desventajas:

Muchas aplicaciones usaban sus propios archivos

- •Redundancia de datos
- Alto costo si se cambiaba la estructura de un archivo
- •Riesgo de inconsistencias debido a actualizaciones simultáneas.
- •Dificultad de integración: Los archivos no se puede combinar fácilmente, diferentes formatos y estructuras. \

Informes que requieren datos de diferentes archivos

Historia de las BD

Sistemas de BD:

- Surgieron para solucionar los problemas de los sistemas de archivos
- Capacidades:

Propiedad de los datos para que estos sobrevivan de alguna manera

- Manejo de persistencia
- Soporte por lo menos de un modelo de datos
- Soporte de un lenguaje de alto nivel que permita manipular y definir la estructura de los datos en forma eficiente → SQL Definir usuarios, roles, permisos...
- Control de acceso → Seguridad
- Evitar inconsistencias al compartir los datos

Definiciones

- Base de Datos (BD): Conjunto de datos almacenados en algún medio (como un disco) y usados con diversos propósitos por múltiples usuarios
- Esquema de la BD: Describe la estructura de los datos requeridos por la organización.
 Esta estructura suele permanecer estática durante un gran período
- Instancia de la BD: Son los datos que en un determinado instante posee la BD.
 - Estos datos suelen cambiar (adiciones, borrados, actualizaciones) constantemente

Definiciones

 Usuario final: Interactúa con la BD, usualmente a través de aplicaciones e interfaces.

 Usuario especialista: Diseña y programa aplicaciones para los usuarios finales

 DBA (*DataBase Administrator*): Administra la BD → ¿Funciones?

SGBD

- Sistema de Gestión de Bases de Datos (SGBD*): Sistema computarizado que permite la gestión de las BD
 - Es un conjunto de programas
 - Sirve de interfaz entre los usuarios, los datos y programas de la BD
 - Interactúa con el sistema operativo
 - Ejemplos: Oracle, SQL Server, DB2, PostgreSQL.

*DBMS: Data Base Management System

SGBD

- Soporta DDL (Data Definition Language): Lenguaje para la creación del esquema
- Soporta DML (Data Manipulation Language): Lenguaje para la inserción, actualización, borrado y consulta de datos
- Soporta DCL (Data Control Language): Lenguaje para la gestión de usuarios, roles, permisos, entre otros.

SQL incluye estos (sub) lenguajes

Características de un SGBD

Mantener la independencia entre los programas y la BD. Así se simplifica el mantenimiento de las aplicaciones que acceden a la BD.

Asegurar la coherencia de los datos. En lo posible, no debe existir redundancia de datos, los datos deben estar almacenados una sola vez en la BD.

Permitir a los usuarios almacenar datos, acceder a ellos y actualizarlos. Además, el SGBD debe hacerlo de forma transparente al usuario, ocultando la estructura física interna de los datos y la forma de almacenarlos. Este catálogo se denomina diccionario de datos y permite identificar y eliminar las redundancias y las inconsistencias.

Garantizar que todas las actualizaciones correspondientes a una determinada transacción se realicen, o que no se realice ninguna. Si una transacción falla durante su realización, la BD quedará en un estado inconsistente. Los cambios realizados deberán ser deshechos para devolver la BD a un estado consistente.

Características de un SGBD

Permitir que varios usuarios tengan acceso al mismo tiempo a los datos. Cuando dos o más usuarios acceden a la BD y al menos uno de ellos está actualizando datos, el SGBD deberá gestionar el acceso concurrente, impidiendo que haya datos corruptos o inconsistentes.

Garantizar la recuperación de la BD en caso de algún fallo(avería hardware o software). En todos estos casos, el SGBD debe proporcionar un mecanismo capaz de recuperar la BD llevándola a un estado consistente.

Garantizar la seguridad de la BD. Esto es, sólo los usuarios autorizados pueden acceder a la BD, permitiendo diferentes niveles de acceso. La protección debe ser contra accesos no autorizados, tanto intencionados como accidentales.

Garantizar la integridad de la BD. Esto requiere la validez y consistencia de los datos almacenados. Normalmente se expresa mediante restricciones, que son una serie de reglas que la BD no puede violar.

Características de un SGBD

Mantener la disponibilidad continua. La BD debe estar siempre disponible para su acceso. El SGBD debe proporcionar utilidades de administración, mantenimiento y gestión que puedan realizarse sin detener el funcionamiento de la BD.

Proporcionar herramientas de administración de la BD. Estas herramientas permiten entre otras funcionalidades: importar y exportar datos, monitorear el funcionamiento y obtener estadísticas de utilización de la BD, reorganizar índices y optimizar el espacio liberado para reutilizarlo.

Integrarse con algún software gestor de comunicaciones. Muchos usuarios acceden a la BD desde terminales remotos, por lo que la comunicación con la máquina que alberga al SGBD se debe hacer a través de una red.

Garantizar la escalabilidad y elevada capacidad de proceso. El SGBD debe aprovechar todos los recursos de máquina disponibles en cada momento, aumentando su capacidad de proceso, conforme disponga de más recursos.

ARQUITECTURA DE UN SGBD

De acuerdo con ANSI/SPARC, hay tres niveles:

Nivel externo: Datos que el usuario puede ver (vistas)

Nivel conceptual: Definición de la estructura de la base de datos.

Nivel físico: Define cómo se almacenan los datos físicamente en la máquina.

