CS 189 Introduction to Machine Learning Spring 2022 Jonathan Shewchuk Exam

Exam Prep 1 Solutions

This exam-prep discussion section covers Bayesian decision theory and maximum likelihood estimation. In order, the questions were taken from the Spring offerings in 2016, 2016, 2017, 2019, and 2017.

[3 pts] In the usual formulation of soft-margin SVMs, each training sample has a slack variable $\xi_i \geq 0$ and

1 Multiple Choice

we impose a regularization cost $C \sum_{i} \xi_{i}$. Consider an alternous constraints $\xi_{i} = \xi_{j}$ for all i, j . How does the minimum observed compare to the one obtained by the original soft-matrix	jective value $ \mathbf{w} ^2 + C \sum_i \xi_i$ obtained by the new
○ They are always equal.	\bigcirc Original SVM minimum \geq new minimum.
New minimum \geq original SVM minimum.	\bigcirc New minimum is sometimes larger and sometimes smaller.
(f) [3 pts] Which of the following holds true when running an SVM algorithm?	
• Increasing or decreasing α value only allows the decision boundary to translate.	Obecision boundary rotates if we change the constraint to $w^T x + \alpha \ge 3$.
Given n -dimensional points, the SVM algorithm finds a hyperplane passing through the origin in the $(n+1)$ -dimensional space that separates the points by their class.	the SVM algorithm is convex.
(b) [4 pts] Which of the following changes would commonly	cause an SVM's margin $1/ w $ to shrink?
• A: Soft margin SVM: increasing the value of <i>C</i>	\bigcirc C: Soft margin SVM: decreasing the value of C
 B: Hard margin SVM: adding a sample point that violates the margin 	D: Hard margin SVM: adding a new feature to each sample point

The greater the value of C is, the higher the penalty for violating the margin. The soft margin shrinks to compensate.

If you add a sample point that violates the margin, a hard margin always shrinks.

If you add a feature, the old solution can still be used (by setting the weight associated with the new feature to zero). Although the new feature might enable a new solution with a wider margin, the optimal solution can't be worse than the old solution.

2 Free Response

Q2. [20 pts] Hard-Margin Support Vector Machines

Recall that a **maximum margin classifier**, also known as a hard-margin support vector machine (SVM), takes n training points $X_1, X_2, \ldots, X_n \in \mathbb{R}^d$ with labels $y_1, y_2, \ldots, y_n \in \{+1, -1\}$, and finds parameters $w \in \mathbb{R}^d$ and $\alpha \in \mathbb{R}$ that satisfy a certain objective function subject to the constraints

$$y_i(X_i \cdot w + \alpha) \ge 1, \quad \forall i \in \{1, \dots, n\}.$$

For parts (a) and (b), consider the following training points. Circles are classified as positive examples with label +1 and triangles are classified as negative examples with label -1.

(a) [3 pts] Which points are the support vectors? Write it as $\begin{bmatrix} horizontal \\ vertical \end{bmatrix}$. E.g., the bottom right circle is $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$

The support vectors are the points $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$

(b) [4 pts] If we add the sample point $x = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ with label -1 (triangle) to the training set, which points are the support vectors?

The support vectors are the points $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$.

For parts (c)-(f), forget about the figure above, but assume that there is at least one sample point in each class and that the sample points are linearly separable.

- (c) [2 pts] Describe the geometric relationship between w and the decision boundary.

 The weight vector w (called the *normal vector*) is orthogonal to the decision boundary.
- (d) [2 pts] Describe the relationship between w and the margin. (For the purposes of this question, the margin is just a number.)

The margin (the distance from the decision boundary to the nearest sample point) is 1/||w||.

(e) [4 pts] Knowing what you know about the hard-margin SVM objective function, explain why for the optimal (w, α) , there must be at least one sample point for which $X_i \cdot w + \alpha = 1$ and one sample point for which $X_i \cdot w + \alpha = -1$.

The objective is to minimize $||w||^2$ (or equivalently, ||w||). If every sample point has $y_i(X_i \cdot w + \alpha) > 1$, we can simply scale w to make it smaller until there is a point such that $y_i(X_i \cdot w + \alpha) = 1$, thereby improving the "solution."

If we have a positive sample point for which $X_i \cdot w + \alpha = 1$ but every negative sample point has $X_i \cdot w + \alpha < -1$, we can make α a little greater so that every sample point has $y_i(X_i \cdot w + \alpha) > 1$. Then we can shrink w some more. So any such "solution" cannot be optimal. (The symmetric argument applies if a negative sample point touches the slab but not positive sample point does.)

(f) [5 pts] If we add new features to the sample points (while retaining all the original features), can the optimal $||w_{new}||$ in the enlarged SVM be greater than the optimal $||w_{old}||$ in the original SVM? Can it be smaller? Can it be the same? Explain why! (Most of the points will be for your explanation.)

8

It can be smaller, or it can be the same, but it cannot be greater.

If w_{old} and α are an optimal solution of the original SVM, when we add features we can create a w_{new} that has the same values as w_{old} , with zeros added for the new features. Then w_{new} and α satisfy all the constraints of the enlarged SVM. These might not be the optimal solution, but the optimal solution of the enlarged SVM cannot have $||w_{\text{new}}||$ greater than $||w_{\text{old}}||$.

 $\|w_{\text{new}}\|$ can be smaller, because the new features can put an arbitrarily large amount of space between the classes, making the margin arbitrarily large.

 $||w_{\text{new}}||$ will be the same as $||w_{\text{old}}||$ if the new features are all zeros in all the sample points.

Q2. [10 pts] Comparing Classification Algorithms

Find the decision boundary given by the following algorithms. Provide a range of values if the algorithm allows for multiple feasible decision boundaries. If there exists no feasible decision boundary, state "None."

- (a) [1 pt] Perceptron: $X_1 =$ ______
- **(b)** [2 pts] Hard-Margin SVM: $X_1 =$ ______
- (c) [2 pts] Linear Discriminant Analysis: $X_1 =$

Perceptron: [-8, 1] Hard-Margin SVM: -3.5

Linear Discriminant Analysis: -2.5