Nome Cognome Matricola

PROVA 4

Domande aperte (articolare le risposte) [3 punti]

- Descrivi il principio di Avogadro e le sue implicazioni nella determinazione delle formule molecolari.
- Definisci la velocità di una reazione chimica e spiega come si determina la legge di azione di massa.
- Analizza il concetto di ibridazione degli orbitali, spiegando come contribuisca alla geometria molecolare e fornendo esempi significativi.
- Analizza in dettaglio il funzionamento di una pila galvanica, spiegando il ruolo di ciascun componente e come si genera la corrente elettrica.

Domande chiuse (risposta corretta = 1, risposta errata = -0.5, mancata risposta = 0)

1 - Cosa prevede la teoria VSEPR?	2 - Una soluzione satura contiene:
a) Che le coppie elettroniche si respingono	a) Una quantità minima di solvente
b) Che gli orbitali sono sovrapposti	b) Soluto in fase solida
c) Che le molecole ruotano	c) Soluzione ipotonica
d) Che le molecole vibrano	d) La massima quantità di soluto disciolta
e) Che gli orbitali si delocalizzano	e) La minima quantità di soluto
3 - L'ordine della reazione è:	4 - La costante di equilibrio K _c è calcolata:
a) Sempre uguale 1	a) Rapporto tra reagenti e prodotti
b) Somma dei coefficienti stechiometrici	b) Sommando le concentrazioni
c) La somma degli esponenti dell'equazione cinetica	c) Utilizzando la costante dei gas
d) Sempre uguale al numero di reagenti	d) Rapporto tra prodotti e reagenti
e) La massa dei reagenti	e) Moltiplicando tutte le concentrazioni
5 - La legge di Raoult si riferisce a:	6 - Quale risultato ha portato Rutherford a proporre il modello
a) Il calore specifico	nucleare dell'atomo?
b) Viscosità	a) L'osservazione di spettri a righe
c) Elevata temperatura	b) Il comportamento dei gas ideali
d) Abbassamento della tensione di vapore	c) La deviazione delle particelle α da una lamina d'oro
e) Velocità di dissoluzione	d) La conservazione della massa nelle reazioni
	e) La variazione del pH in soluzione
7 - Qual è la definizione corretta di raggio ionico?	8 - L'ossidazione comporta:
a) Raggio dell'orbita del nucleo	a) Il guadagno di protoni
b) Raggio medio delle orbite elettroniche	b) La formazione di legami ionici
c) Distanza tra due nuclei ionici	c) La perdita di elettroni
d) Distanza tra nucleo e frontiera dell'orbitale esterno di	d) La perdita di protoni
uno ione	e) Il guadagno di elettroni
e) Dimensione dello ione calcolata al microscopio	

Esercizio 1 (3 pt)

Bilanciare la seguente reazione chimica, in ambiente acquoso, indicando il nome di tutti i composti.

 $NaMnO_4 + HI \longleftrightarrow NaI + MnI_2 + I_2$

Esercizio 2 (3 pt)

Calcolare il pH e la concentrazione di tutte le specie all'equilibrio in una soluzione $3,42 \times 10^{-2}$ M di acido nitroso (HNO₂), sapendo che la costante di dissociazione acida è $K_a = 4,50 \times 10^{-5}$.

Esercizio 3 (3 pt)

$$Zn + HCl \longleftrightarrow ZnCl_2 + H_2$$

Dopo aver bilanciato la reazione, calcolare il volume di idrogeno che si sviluppa sciogliendo 15,23 g di zinco e in 26,16 ml di acido cloridrico 5,0 M e dire quale reagente resta alla fine della reazione e in quale quantità. La reazione avviene a 60,0°C e alla pressione di 2,50 atm.

Porre attenzione alle cifre significative.

Esercizio 4 (1 pt)

Quante molecole sono contenute in 3,5 10⁻¹ mol di metano CH₄?