Real Estate Automated Valuation Model

Jeremy Wizenfeld, Aaron Poulad, and Yair Levie

Problem:

Zillow's Shuttered Home-Flipping Business Lost \$881 Million in 2021

Real-estate company says in a letter to shareholders that it is targeting revenue of \$5 billion by 2025

By Will Parker Follow

Updated Feb. 10, 2022 6:24 pm ET

- Given the rapid pace of real estate markets, manually evaluating numerous properties can be time-consuming and inefficient.
- iBuying- a company makes an offer to buy a home without going out to visit it
- Successful in generic houses of similar quality and size, but less effective for high-end or low-quality homes where construction quality significantly impacts pricing.
- Zillow's Shuttered Home-Flipping Business Lost \$881 Million in 2021

Solution:

- Examine property images to refine price prediction
 - Allows us to account for building quality, not seen in standard property data
- Convolutional Neural Network (CNN) approach
 - Use a CNN to categorize room types and score key visual features such as property condition, style, and quality from specific rooms
- Score refinement
 - Consolidate multiple image scores into an overall property quality score, and combine with structured data to attain a more accurate property value estimate

Project Timeline

Q1: August 28th-September 25th

- 1. Researched CNNs
- 2. Researched Regression Models
- 3. Devised a plan for data collection

Q2: September 26th-October 14th

- Deployed Label System on GCP to Collect and Clean Data
- 2. Developed basic Linear Regression models

Q3: October 15th-November 20th

- 1. Created CNN for image classification and scoring
- 2. Linear Regression implemented the image scores
- 3. Pipeline to pull from Zillow API

Q4: November 21st-December 11th

- 1. Merged all components and fixed bugs
- 2. Built a UI to input address and quickly receive prediction

Data Collection: Labeling and Scoring

Keyboard Shortcuts

Common Areas

- B Bathroom
- K Kitchen
- L Living Room
- D Dining Room
- R Bedroom

Extra Rooms

O - Office

.

C - Closet A - Attic

G - Garage

M - Basement

P - Pantry

U - Utility/Laundry

Connecting Spaces

H - Hallway

S - Stairs

E - Exterior T - Patio

Y - Balcony

Q - Deck

X - Other

Space - Skip Image

Tab - Switch to Labeling

Image Labeling System - COM4930

Skip Image

Use keyboard shortcuts or select a label and submit.

Bathroom

Submit Label

Switch to Scoring

Property Scoring Guidelines

Score: 8-9 - Luxury

- · Top-tier, fancy finishes
- · Perfect condition
- · High-tech, modern everything

Score: 6-7 - Above Average

- Good quality
- Nice finishes
- No major issues

Score: 4-5 - Average

- Basic features
- Okay condition
- · Nothing special

Score: 2-3 - Below Average

- Outdated
- Needs repairs
- Worn out

Score: 1 - Poor

- Major repairs needed
- Lots of damage
- Old and broken

Keyboard Shortcuts:

- 1-9: Quick score
- Space: Skip image
- N: Not שייך for scoring

Property Quality Rating

Skip Image

Rate the property quality from 1 to 9

CNN

ResNet18-Based Room Classifier (11,181,642 parameters)

- Task: Multi-class classification (predict room type among 10 categories).
- Architecture:
 - Pretrained ResNet18
 - Final fully connected (FC) layer replaced with nn.Linear(in_features, num_classes=10).
 - Retains strong feature-extraction capacity from ImageNet pretraining.
- Loss Function:
 - nn.CrossEntropyLoss for multi-class classification.
- Optimizer & Scheduler:
 - Adam optimizer with a learning rate of 0.001.
 - ReduceLR0nPlateau scheduler to adjust learning rate when loss plateaus.

MobileNetV2-Based Score Regressor (2,305,921 parameters)

- Task: Regression (predict a continuous "score").
- Architecture:
 - Pretrained MobileNetV2 (smaller version of ImageNet, training was taking too long).
 - Final classifier replaced with a small FC "head":
 - nn.Dropout(0.2) > nn.Linear(...)
 > nn.ReLU() >
 nn.Dropout(0.2) > nn.Linear(...,
 1)
 - Lightweight and efficient, suitable for large-scale or MPS (Metal Performance Shaders) usage.
- Loss Function:
 - o nn.MSELoss for regression tasks.
- Optimizer:
 - Adam optimizer with a learning rate of 0.001.

Label CNN Demo

Price Prediction Model

• Linear Regression

Finds linear relationships between features and price

Decision Tree

 Partitions data into regions based on feature values and averages price within those regions

Random Forest

 Creates multiple decision trees and averages them, being less sensitive to overfitting

Gradient Boosting (XGBoost)

 Error correction on top of random forest, and can handle complex relationships and interactions in the data.

Results

Data incorporated	MAE	RMSE	SMAPE	R ²
Only elementary data	\$50,931	\$82,732	18.73%	86.50%
With Zestimate	\$30,183	\$52,946	12.71%	94.47%
With image scores	\$29,647	\$52,171	12.74%	94.63%

Zestimate accuracy \$34,910 \$61,141 14.32% 9	93.28%
---	--------

Data used for all stages: bathrooms, bedrooms, living area, lot size, tax assessed value, yearBuilt Trained on 5441 properties; tested on 1361.

Putting It All Together

- 1. **User Input**: The user enters a property address.
- Data Retrieval: A Flask server queries the Zillow API to fetch property details (e.g., beds, baths, square footage) and corresponding image URLs.
- 3. **Room Classification**: Each image is passed through a *Room Label CNN* to identify the type of room (kitchen, bedroom, etc.).
- 4. **Image Quality Scoring**: The images are then fed into a *Quality Score CNN*, which assigns a quality rating based on visual and aesthetic criteria.
- 5. **House Quality Score**: The individual image scores are combined (weighted sum) into an overall "house quality" metric.
- 6. **Price Prediction**: A *Linear Regression* model uses both the property's features (e.g., size, location) and the house quality score to estimate the final home value.
- 7. **Results**: The predicted price, along with relevant statistics, is sent back to the user interface.

Demo

```
def index():
                 ា 20 ១៣
∨ REAL-ESTATE-AVM
                                          logger.info("Serving index page")
 > pycache_
                                          return render template("index.html")
 > pytest_cache
> 💋 .vscode
                                       @app.route("/get-property-data", methods=["POST"])
def fetch_property_data():
                                          with RequestTimer("/get-property-data"):
   room_scorer.pth
                                                  logger.info("Received property data request")
                                                  data = request.get_json()
> 💼 data
 > iii docs
                                                  if not data:
 > image_dataset
                                                      logger.warning("No JSON data provided in request")
> if logs
                                                     return jsonify({"error": "No JSON data provided"}), 400
> iii secrets
                                                  address = data.get("address")
∨ ∉ templates
                                                  logger.info(f"Processing request for addres
    index.html
                                                                                           (variable) address: Any
∨ 🙀 utils
                                                  is_valid, error_message = validate_address(address)
 > 💋 __pycache__
                                                  if not is valid:
                                                     return jsonify({"error": error_message}), 400
   init_.py
    bing_download.py
                                                  if address in property data cache:
   kaggle_to_csv.py
                                                     logger.info(f"Cache hit for address: {address}")
   quality_score_for_csv.py
                                                     return jsonify(
    test_image.py
                                                             "message": "Data retrieved from cache",
 > iii venv
                                                             "property data": property data cache[address],
  t env
                                                             "status": "success",
  .gitignore
  kaggle_labels.csv
  main.py
                                                                                                                                                              TERMINAL PORTS COMMENTS
  quality_score.py
     README.md
                                 (venv) jeremywizenfeld@Jeremys-MacBook-Pro-2 ~/Desktop/Real-Estate-AVM / main ±
   m requirements.txt
  room_labeled_properties.csv
   room_labeler_cnn.py
   room_scoring_cnn.py
OUTLINE
 TIMELINE
```

@app.route("/")

P main* ← ⊗ 0 ∧ 0 ₩ 0 ♪

DEBUG CONSOLE

Ln 213, Col 46 Spaces: 4 UTF-8 LF {} Python 3.12.4 ('yeny': yeny) @ Go Live O Prettier

Figure 1 and 1 and

Future Improvements

Crowdsourced Quality Scores

Gather user-based ratings from many more properties to refine the **Quality Score**. A larger dataset would improve both accuracy and confidence in the predicted price.

Geolocation & Comps

Incorporate geospatial data to identify recently sold homes nearby. **Comparable Sales (Comps)** data can be automatically fed into the model to better reflect local market conditions.

Economic Indicators

Pull in **macroeconomic data** (e.g., interest rates, GDP trends) so the model can adjust dynamically for broader market shifts—a key lesson from Zillow's 2021 iBuying challenges.

Model Fine-Tuning

Experiment with different **weights for room scores** and **hyperparameters** (e.g., learning rates, number of layers) to further optimize accuracy and reliability.

Technologies

