

Marking Scheme and Answers

Chemistry

Production of Materials

Theory Test • 2004

General Instructions

- Reading time 5 minutes
- Working time 45 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A Data Sheet and a Periodic Table are provided at the back of this paper and may be removed for convenience
- Write your Student Number at the top of this page

Total Marks - 28

Part A - 8 marks

- Attempt Questions 1 8
- Allow about 15 minutes for this part

Part B - 20 marks

- Attempt Questions 9 12
- Allow about 30 minutes for this part

This page is intentionally blank.

Part A - 8 marks Attempt Questions 1–8 Allow about 15 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9 A \bigcirc B \bigcirc C \bigcirc D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A \quad \bullet \qquad B \quad M \qquad C \quad \bigcirc \qquad D \quad \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Ans	wer Bo	x for Q	<mark>uestions</mark>	1_ 8
1	A	вО	СО	D O
2	A O	вО	C	DO
3	A O	вО	СО	D
4	A	вО	СО	D O
5	A O	вО	СО	D
6	A O	B	СО	D O
7	A O	B	СО	D O
8	A O	вО	СО	D

- 1 Which of these statements describes the flow of electrons in a galvanic cell?
 - (A) Electrons flow from the anode to the cathode.
 - (B) Electrons flow from the cathode to the anode.
 - (C) Electrons flow through the electrolyte solutions.
 - (D) Electrons flow through the salt bridge between the anode and the cathode.
- What is the IUPAC name for the compound shown below?

- (A) 2–hydroxybutane
- (B) 2–hydroxybutanol
- (C) 2-butanol
- (D) 1-methyl-1-propanol
- 3 Ethanol has good solubility in octane. Which statement best explains this fact?
 - (A) Ethanol and octane are non-polar molecules.
 - (B) Ethanol and octane are highly volatile.
 - (C) Ethanol and octane both have an even number of carbon atoms.
 - (D) Ethanol's ethyl group aids its solubility in octane.
- 4 Which of the following is the industrial source of ethylene?
 - (A) cracking of alkanes
 - (B) dehydration of ethanol
 - (C) recycling of polyethylene
 - (D) fractional distillation of crude oil

5 Saran[™] food wrap is made of an addition polymer processed into a thin, flexible cling film. A segment of the polymer molecule has the structure of...

Which of the following is the structure of the monomer?

- Assuming no heat loss, what mass of ethanol must be burned to increase the temperature of 250 g of water from 25°C to 95°C, given that the heat of combustion of ethanol is 1409 kJ mol ⁻¹?
 - (A) 0.86 g
 - (B) 2.4 g
 - (C) 4.8 g
 - (D) 0.86 kg

Which equation shows the production of ethanol from ethylene?

$$(A) \qquad C_2H_4 \ + \ H_2O \ \xrightarrow{\ yeast \ } \ C_2H_5OH$$

(B)
$$C_2H_4 + H_2O \xrightarrow{\text{dilute H}_2SO_4} C_2H_5OH$$

$$(C) \qquad C_2H_4 \ + \ H_2O \ \xrightarrow{\ zeolite \ } \ C_2H_5OH$$

$$(D) \hspace{0.5cm} C_2H_4 \hspace{0.1cm} + \hspace{0.1cm} HOC1 \hspace{0.1cm} \xrightarrow{\hspace{0.1cm} dilute \hspace{0.1cm} NaOH} \hspace{0.1cm} C_2H_5OH$$

8 Boris fermented a dilute solution of glucose for one week and then analysed the contents of the fermentation vessel as shown below.

Which trend describes the changes in mass during the week of fermentation?

		MASS)F	
	CO ₂ produced	C ₂ H ₅ OH produced	C ₆ H ₁₂ O ₆	Fermentation flask
(A)	increased	increased	decreased	increased
(B)	decreased	increased	increased	increased
(C)	increased	decreased	decreased	decreased
(D)	increased	increased	decreased	decreased

Part B - 20 marks Attempt Questions 9 - 12 Allow about 30 minutes for this part

► Show all relevant working in questions involving calculations.

\mathbf{O}	uestion	Q	(5	mar	ke)
U	uesuon	9	(3	mar	KSI

Charlotte performs a first-hand investigation involving a galvanic cell constructed from these materials... $copper\ metal,\ 1\ mol\ L^{-1}\ copper(II)\ sulfate,\ lead\ metal,\ 1\ mol\ L^{-1}\ lead(II)\ nitrate,\ and\ saturated\ KNO_3\ (aq)$

(a) Identify a hazardous risk in this experiment. (1 mark)

Lead(II) nitrate is toxic.

(b) Identify the anode. (1 mark)

Lead

(c) Describe the role of the salt bridge containing saturated KNO₃ solution? (1 mark)

The salt bridge completes the cell circuit.

The salt bridge allows for ion migration between the anode and cathode compartments.

The salt bridge maintains electrical charge neutrality in the anode and cathode compartments.

(d) Charlotte lets the cell run continuously for a week. Describe TWO changes which would have occurred in the cell after one week. (2 marks)

The lead electrode becomes smaller/loses mass.

The lead(II) nitrate solution becomes more concentrated.

The copper electrode develops a coating (deposit) of copper/gains mass.

The copper(II) sulfate solution becomes less blue/less concentrated.

The cell voltage decreases.

Question 10 (4 marks)

Draw a labelled diagram of the structure of EITHER a dry cell or a lead-acid cell and write the oxidation and reduction half reactions occurring in the cell.

Dry Cell diagram should show...

- Anode 'can' of zinc. (1 mark).
- Central cathode of carbon rod surrounded by a cathodic paste of MnO₂ and carbon. (1 mark)
- Electrolyte of NH₄Cl and ZnCl₂ at the porous separator between the zinc and the cathodic paste and mixed into the cathodic paste also. (1 mark)
- Oxidation reaction... Zn (s) → Zn²⁺(aq) + 2e⁻ (1 mark)
- Reduction reaction... $2MnO_{2 (s)} + 2NH_4^+_{(aq)} + 2H_2O_{(l)} + 2e^- \rightarrow 2NH_3_{(aq)} + 2Mn(OH)_3_{(s)}$ (1 mark)

$$2MnO_{2 (s)} + 2NH_{4 (aq)}^{+} + 2e^{-} \rightarrow Mn_{2}O_{3 (s)} + 2NH_{3 (g)} + H_{2}O_{(l)}$$

Lead-Acid Cell diagram should show...

- Anode plate of lead. (1 mark)
- Cathode plate of PbO₂ (1 mark)
- Electrolyte of 35% H₂SO₄ (1 mark)
- Oxidation reaction... Pb $_{(s)}$ + SO $_4^{2-}$ \rightarrow PbSO $_4$ $_{(s)}$ + 2e $^-$ (1 mark)
- Reduction reaction... $PbO_{2 (s)} + SO_4^{2-}_{(aq)} + 4H^+ + 2e^- \rightarrow PbSO_{4 (s)} + 2H_2O_{(l)}$ (1 mark)

Question 11 (5 marks)

Assess the potential of ethanol as an alternative to octane (petrol) as a car fuel.

Sample Answer

Ethanol is a renewable resource while octane is a non-renewable resource. The production and use of ethanol is carbon dioxide neutral, while petrol adds carbon dioxide to the atmosphere. Ethanol is a high octane fuel. Unlike petrol, ethanol burns cleanly and hence does not release large amounts of pollutants such as CO and aromatic hydrocarbons such as benzopyrene. As a petrol additive, it enhances the combustion of petrol. However, its production from biomass can require almost as much energy as what is obtainable from it when completely combusted. Also, being more oxygenated than petrol, it releases less energy per mole and per gram than petrol. Therefore, to obtain an equivalent amount of mileage from ethanol, more ethanol must be burnt. This requires a bigger fuel tank. The use of greater than 20% ethanol with petrol also necessitates car engine modification. There is also the problem of environmental pollution caused by the release of large quantities of fermentation liquor, soil degradation and soil erosion if vast quantities of agricultural land are devoted to crops for ethanol production.

Overall, if the production of ethanol can be made less energy demanding, such as the use of novel strains of bacteria for a more efficient fermentation, solar powered distillation units and the use of scraps and waste as raw materials, then ethanol has a very promising potential as a car fuel.

Marking Guidelines

- 1 3 Advantages cited = 1 3 marks
- 1 3 Disadvantages cited = 1 3 marks
- ► At least one disadvantage must be given.

Judgement = 1 mark

Ques	tion 12	(5 marks)						
(a)	Identii (2 ma	-	opolymer and the	e name of th	e specific or	ganism or enz	zyme(s) used i	n its production.
	Biopo	lymer name:	Biopol or poly– poly(β–hydroxy					nark)
	► Car	n be a modifie	d natural biopoly	mer, e.g. ra	<mark>yon</mark>			
	Name	of specific or	ganism or enzym	e(s) used in	the producti	on of the nam	ed biopolymer	. (1 mark)
	e.g. A	lcaligenes eu	trophus or bacte	ria. ► Spe	elling errors	ignored.		
(b)			of the biopolyme the biopolymer.	, ,		v this use (or j	potential use)	relates to
	Use of I	biopolymer.	(1 mark)					
	Use of I	biopolymer re	lated to two prop	erties of the	biopolymer.	(2 marks)		

e.g. Biopol is used in the manufacture of shampoo bottles.

Properties related to use: Biopol is flexible, biodegradable, waterproof.

HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

DATA SHEET

Avogadro constant, N _A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at		
_	at 0°C (273.15 K)	22.71 L
	at 25°C (298.15 K)	24.79 L
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $pH = -\log_{10}[H^+] \qquad \Delta H = -mC\Delta T$

Some standard potentials

$K^+ + e^-$	~	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	_	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	~_	Ca(s)	–2.87 V
$Na^+ + e^-$	~	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	₹	Mg(s)	-2.36 V
$A1^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	~>	Mn(s)	-1.18 V
H ₂ O + e ⁻	\rightleftharpoons	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	\leftarrow	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	$\stackrel{\longleftarrow}{}$	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	~	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	/	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^{-}$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	~>	H ₂ O	1.23 V
$\frac{1}{2}\mathrm{Cl}_2(g) + \mathrm{e}^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}$ F ₂ (g) + e ⁻	\rightleftharpoons	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

					_				_		_						\neg			\neg
[223.0] Francium	87 Fr	Caesium	132.9	ზჯ	Rubidium	85.47	37 Rb	Potassium	39.10	K9	Sodium	22.99	N:	Lithium	6.941	Ľ	u	1.008 Hydrogen	H	-
[226.0] Radium	R 28	Barium	137.3	56 Ba	Strontium	87.62	Sr 38	Calcium	40.08	က္က	Magnesium	24.31	Mg 12	Beryllium	9.012	Be	4			
Actinides	89–103	Lanthanides		57-71	Yttrium	88.91	<u>ү</u>	Scandium	44.96	21 Sc										
[261.1]	104 Rf	Hafnium	178.5	72 Hf	Zirconium	91.22	40 Zr	Titanium	47.87	7.22 Ti										
[262.1] Dubnium	Db Db	Tantalum	180.9	T _a	Niobium	92.91	공 <u>+</u>	Vanadium	50.94	~ 23	:									
[263.1] Seaborgium	106 Sg	Tungsten	183.8	₩74	Molybdenum	95.94	42 Mo	Chromium	52.00	Cr Cr										
[264.1]	107 Bh	Rhenium	186.2	Re Re	Technetium	[98.91]	7.43	Manganese	54.94	25 Mn					>		21			TEXIO
[265.1] Hassium	108 Hs	Osmium	190.2	76 Os	Ruthenium	101.1	2°4	Iron	55.85	26 Fe					Atomic Weight		Atomic Number			PERIODIC IABLE
[268] Meitnerium	109 Mt	Iridium	192.2	77 Ir	Rhodium	102.9	₽£	Cobalt	58.93	27 Co				Gold	197.0	Äu	79	KEY		BLE U
Ununnilium	110 Uun	Platinum	195.1	78 Pt	Palladium	106.4	25	Nickel	58.69	N:28				Name of element		Symbol of element				OFIHE
—— Unununium	Uuu	Gold	197.0	79 Au	Silver	107.9	47 Ag	Copper	63.55	C ₁ 29				Ħ		nent				ELEMENIS
Ununbium	112 Uub	Mercury	200.6	Нg	Cadmium	112.4	& <u>Q</u>	Zinc	65.39	Zn 30										
	113	Thallium	204.4	<u>1</u> 22	Indium	114.8	49 In	Gallium	69.72	31 Ga	Aluminium	26.98	<u>2</u> 13	Boron	10.81	B	7			
Ununquadium	114 Uuq	Lead	207.2	P ₅	T _{in}	118.7	50 Sn	Germanium	72.61	Ge Ge	Silicon	28.09	14 Si	Carbon	12.01	C	ý			
	115	Bismuth	209.0	₽.83	Antimony	121.8	51 Sb	Arsenic	74.92	33 As	Phosphorus	30.97	15 P	Nitrogen	14.01	Z-	7			
Ununhexium	116 Uuh	Polonium	[210.0]	84 Po	Tellurium	127.6	52 Te	Selenium	78.96	34 Se	Sulfur	32.07	16 S	Oxygen	16.00	0	×			
	117	Astatine	[210.0]	At 85	Iodine	126.9	53 I	Bromine	79.90	B; 35	Chlorine	35.45	Ω17	Fluorine	19.00	٦J\	٥			
Ununoctium	118 Uuo	Radon	[222.0]	₽8 8	Xenon	131.3	X _e 54	Krypton	83.80	K. 36	Argon	39.95	18 Ar	Neon	20.18	Ne S	10	4.003 Helium	He	٥

Vhere the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷ Np and ⁹⁹ Tc.

90 Th 232.0 Thorium

92 U 238.0 Uranium

97 Bk [249.1] Berkelium

98 Cf [252.1] Californium

> 99 Es [252.1]

102 No [259.1] Nobelium

103 Lr [262.1] Lawrencium 58 Ce 140.1 Cerium

> 59 Pr 140.9

60 Nd 144.2

61 Pm [146.9]

62 Sm 150.4

63 Eu 152.0

65 Tb 158.9 Terbium

67 Ho 164.9 Holmium

69 Tm 168.9 Thulium

70 Yb 173.0 Ytterbium

71 Lu 175.0 Lutetium

Neodymium