BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

27th May 2021

Introduction

- ullet K_SKK double tag yields for $\delta_D^{K\pi}$ measurement
- Previously:
 - **1** Selected $K_{S,L}KK$ events tagged with $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$ (and $Ke\nu$)
 - 2 Bin migration matrix and bin efficiencies from MC
- Today: Need help with peaking background subtraction

Fully reconstructed double tags

- K_SKK vs $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$
- ullet Count number of background events inside S from inclusive $D^0ar{D^0}$ MC

K_SKK vs $K\pi$ backgrounds

- Total data yield: 321.5
- Scale with MC luminosity: 6912.3

Background	Total	Bin 1	Bin 2	$Bin\ -1$	Bin -2
$K_SKK o KK\pi\pi$	10	2	1	6	1
$K_SKK o K_LKK$	5	2	0	3	0
Other	4	0	0	2	2

- How does $K_L \to K_S$ swap happen...?
- Can the MC be trusted?

K_SKK vs $K\pi\pi^0$ backgrounds

- Total data yield: 584.5
- Scale with MC luminosity: 12742.1

Background	Total	Bin 1	Bin 2	$Bin\ -1$	Bin -2
$K_SKK o KK\pi\pi$	16	9	1	5	1
$K\pi\pi^0 o K\mu u_\mu$	8	1	2	2	3
$K_SKK o K_LKK$	8	2	0	6	0
$K\pi\pi^0 o K\pi\pi^0\pi^0$	6	2	2	1	1
$K\pi\pi^0 o KK$	4	0	3	0	1
$K\pi\pi^0 o Ke u_e$	3	0	2	0	1
Other	14	0	11	0	3

K_SKK vs $K\pi\pi\pi$ backgrounds

• Total data yield: 399.6

• Scale with MC luminosity: 8711.3

Background	Total	Bin 1	Bin 2	$Bin\ -1$	Bin -2
$K\pi\pi\pi \to K_S K^+\pi^-$	43	3	21	1	18
$K_SKK o K_LKK$	9	1	0	8	0
$K_SKK o KK\pi\pi$	9	4	1	3	1
$K\pi\pi\pi o K\pi\pi^0$	6	0	1	2	3
Other	13	2	5	2	4

Partially reconstructed double tags

- K_LKK vs $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$
- More peaking backgrounds
- More sophisticated sideband subtraction (from K_SKK MEMO):
- S: Signal region, L: Lower sideband, H: Upper sideband

$$Y_S = \frac{(N_S - N_S^P) - \delta(N_L - N_L^P) - \gamma(N_H - N_H^P)}{1 - \delta\alpha - \gamma\beta}$$

$$\delta, \gamma = \frac{\text{Flat background in S}}{\text{Flat background in L, H}}, \quad \alpha, \beta = \frac{\text{Signal in S}}{\text{Signal in L, H}}$$

 General question: Can the inclusive MC backgrounds in each yield be trusted?

K_SKK vs Ke_V peaking backgrounds

Figure 1: U_{miss} for K_SKK vs $Ke\nu$

K_LKK vs $K\pi$ peaking backgrounds

Figure 2: M_{miss}^2 for $K_L K K$ vs $K \pi$

K_LKK vs $K\pi\pi^0$ peaking backgrounds

Figure 3: $M_{\rm miss}^2$ for K_LKK vs $K\pi\pi^0$

K_LKK vs $K\pi\pi\pi$ peaking backgrounds

Figure 4: M_{miss}^2 for $K_L K K$ vs $K \pi \pi \pi$

Next steps

- DCS correction?
- Finalize the final yields
- Propagate the errors