ΗΥ 360 – Αρχεία και Βάσεις Δεδομένων Χειμερινό Εξάμηνο 20014

Διδάσκων: Δημήτρης Πλεξουσάκης 2η Σειρά Ασκήσεων

1. [100] Θεωρείστε το παρακάτω σχεσιακό σχήμα (υπογραμμίζονται τα κλειδιά):

Student							
SID	FNAME	LNAME	BDATE	ADDR	SEX	SEMESTER	DNUMBER
DepartmentDNUMBERDNAMEChairIID							
Courses CNUMBER CNAME CREDITS DNUMBER							BER
Attends SID CNUMBER							
Instructor							
<u>IID</u>	FN	AME L1	NAME	SEX	BDATE	DNUMBER	SALARY
Teaches		UMBER					

(το ChairIID αντιστοιχεί στο IID του προέδρου)

Να γράψετε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα, σχεσιακό λογισμό πεδίων και πλειάδων και SQL. Αν η ερώτηση δεν μπορεί να εκφραστεί σε κάποια γλώσσα, εξηγείστε γιατί.

1. (10 μονάδες) Βρείτε τα FNAME και LNAME όλων των καθηγητών του τμήματος Χημείας.

Λύση:

Σχεσιακή άλγευρα:

 $\mathsf{RESULT} \leftarrow \pi_{\mathsf{FNAME},\mathsf{LNAME}}(\pi_{\mathsf{DNUMBER}}(\sigma_{\mathsf{DNAME}} = \mathsf{XHMEIAS}(\mathbf{Department})) \bowtie \mathsf{Instructor})$

Σχεσιακός λογισμός πεδίων:

FN, LN | \exists (IID, S, BD, SAL,CIID) (Instructor(IID,FN,LN,S,BD,DN,SAL) \land Department(DN."Xημείας",CIID))

Σχεσιακός λογισμός πλειάδων:

{ t(2) : ((∃ i(7)),(∃d(3)))(Instructor(i) \land Department(d) \land d[2] ='Xημείας' \land d[1]=i[6]) \land t[1] = i[2] \land t[2] = i[3]}

SQL:

select FNAME, LNAME from Instructor I, Department D where D.DNAME='X $\eta\mu\epsilon$ i $\alpha\varsigma$ ' and D.DNUMBER=I.DNUMBER

2. (10 μονάδες) Βρείτε τα CNUMBER όλων των μαθημάτων τα οποία τα παρακολουθεί ο φοιτητής με το όνομα Παπαδόπουλος ή τα διδάσκει ο καθηγητής που ονομάζεται Παπαδόπουλος.

Λύση:

Σχεσιακή άλγευρα:

T1 \leftarrow π CNUMBER(Teaches $\bowtie \pi$ IID(σLNAME=Παπαδόπουλος(Instructor)))

T2 \leftarrow π CNUMBER(Attends \bowtie π SID(σ LNAME=Παπαδόπουλος(Student))) RESULT \leftarrow T1 \cup T2

Σχεσιακός λογισμός πεδίων:

CN | (∃ (IID, IFN, IS, IBT, IDN, ISAL) (Instructor(IID, IFN, "Παπαδόπουλος", IS, IBT, IDN, ISAL) ∧ Teaches(IID, CN))) (∃ (SID, SFN, SBT, SAD, SS, SSEM, SDN) (student(SID, SFN,Παπαδόπουλος", SBT, SAD, SS, SSEM, SDN) ∧ Attends(SID, CN)))

Σχεσιακός λογισμός πλειάδων:

```
{r(1) : (((\exists i(7)), (\exists t(2))) | Instructor(i) \land Teaches(t) \land t[1] = i[1] \land i[3] = \Pi \alpha \pi \alpha \delta \delta \pi \sigma \nu \lambda \sigma \zeta' \land r[1] = t[2]) \lor (((\exists s(8)), (\exists a(2))) | Student(s) \land Attends(a) \land s[1] = a[1] \land s[3] = \Pi \alpha \pi \alpha \delta \delta \pi \sigma \nu \lambda \sigma \zeta' \land r[1] = a[2]))}
```

SQL:

select CNUMBER

from Instructor I, Teaches T, Student S, Attends A where (I.LNAME=' $\Pi\alpha\pi\alpha\delta\delta\pi\omega\lambda\delta$ ' and I.IID = T.IID) OR (S.LNAME=' $\Pi\alpha\pi\alpha\delta\delta\pi\omega\lambda\delta$ ' and S.SID = A.SID)

3. (10 μονάδες) Βρείτε το όνομα του κάθε καθηγητή και τα ονόματα των μαθημάτων που διδάσκει αν υπάρχουν.

Λύση:

Σχεσιακή άλγευρα:

 $\mathsf{RESULT} \leftarrow \pi_{\mathsf{FNAME},\mathsf{LNAME},\mathsf{CNAME}}(Instructor \bowtie \mathsf{LO}\ Teaches \bowtie Courses\)$

Σχεσιακός λογισμός πεδίων:

FN, LN, CNA | $(\forall (IID, S, BT, DN, SAL))$ Instructor(IID, FN, LN, S, BT, DN, SAL)) \land (\exists (CN, CR,DN) (Courses(CN, CNA, CR, DN) \land Teaches(IID,CN))

Σχεσιακός λογισμός πλειάδων:

{ r(3): (($\exists i(7)$),($\exists c(4)$), ($\exists t(2)$) Courses(c) \land Teaches(t) \land Instructor(i) \land c[1] = t[2] \land t[1] = i[1] \land r[1]=i[2] \land r[2] = i[3] \land r[3] = c[2]) V (($\exists i2(7)$) Instructor(i2) \land t[1] = i2[1] \land r[1]=i2[2] \land r[3] = null)}

```
SQL:
```

```
select FNAME, LNAME, CNAME
from Instructor
LEFT OUTER JOIN Teaches
on Instructor. IID = Teaches. IID
JOIN Courses
on Teaches. CNUMBER= Courses. CNUMBER
```

4. (10 μονάδες) Βρείτε τα FNAME και LNAME των φοιτητών που δεν παρακολουθούν τα μαθήματα με αριθμούς 555 και 777.

Λύση:

Σχεσιακή άλγευρα:

RESULT $\leftarrow \pi$ fname, lname (Student) - π fname, lname (σ cnumber = 555 σ cnumber = 777 (Student \bowtie Attends))

Σχεσιακός λογισμός πεδίων:

FN,LN | \exists (SID, BT, AD, S, SEM, DN, CN) ((**Student**(SID, FN, LN, BT, AD, S, SEM, DN) \land **Attends**(SID, CN)) \rightarrow (CN != 555 \land CN != 777))

Σχεσιακός λογισμός πλειάδων:

{ $t(2) : (\exists s(8)) (Student(s) \land t[1] = s[2] \land t[2] = s[3]) \land ((\forall a(2)) Attends(a) \land (a[2] = 555 \ V \ a[2] = 777) \rightarrow a[1] != s[1])$

SQL:

select FNAME, LNAME
from Student S
where S.SID not in
(select SID from Attends A
where A.CNUMBER = 555 or A.CNUMBER = 777)

5. (15 μονάδες) Βρείτε το ΙΙΟ του καθηγητή ο οποίος έχει τον υψηλότερο μισθό.

Λύση:

Σχεσιακή άλγευρα:

$$\begin{split} &\text{I_A} {\leftarrow} \; \pi \; \text{IID} \; , \; \text{SALARY} \; (\; Instructor \;) \\ &\text{I_B} \; {\leftarrow} \; \text{I_A} \end{split}$$

$$\mathsf{RESULT} \leftarrow \pi_{\mathsf{IID}(\mathsf{I}_A)} - \pi_{\mathsf{I}_A.\mathsf{IID}}(\ \sigma_{\mathsf{I}_A.\mathsf{SALARY}} < \mathsf{I}_B.\mathsf{SALARY}(\ \mathsf{I}_A\ \mathsf{X}\ \mathsf{I}_B))$$

Σχεσιακός λογισμός πεδίων:

IID | \exists (FN, LN, S, BT, DN, SAL)(\forall (IID2, FN2, LN2, S2, BT2, DN2, SAL2)(Instructor(IID, FN, LN, S,BT, DN, SAL) \land Instructor(IID2, FN2, LN2, S2, BT2, DN2, SAL2) \land (SAL \geq SAL2)))

Σχεσιακός λογισμός πλειάδων:

$$\{t(2): (\exists i(7)) \ \textbf{Instructor}(i) \land t[1] = i[1] \land ((\forall j(7)) \ \textbf{instructor}(j) \rightarrow j[7] < = i[7])$$

SQL:

select IID
from Instructor I
where I. SALARY in
(select max(salary)
from Instructor)

6. (15 μονάδες) Βρείτε τα SID των φοιτητών που παρακολουθούν όλα τα μαθήματα του τμήματος Βιολογίας.

Λύση:

Σχεσιακή άλγευρα:

RESULT \leftarrow **π**SID(**Attends** \div (**Courses** \bowtie **O**DNAME=BΙΟΛΟΓΙΑΣ(**Department**)))

Σχεσιακός λογισμός πεδίων:

```
SID | \forall(CN, DN, DCID, CNA, CR)(Department(DN, "Βιολογίας", DCID) \land Courses(SID, CN, CNA, CR, DN)) \rightarrow Attends(SID, CN))
```

Σχεσιακός λογισμός πλειάδων:

```
{r(1): ((\forall c(5)), (\exists d(3)))(Courses(c) \land Department(d) \land d[2]='Βιολογίας' \land c[5] = d[1])} \rightarrow (\exists a(2)) Attends(a) ^ r[1] = a[1] ^ a[2] = c[1]}
```

SQL:

```
select SID from Student S where not exists (select * from courses c, department d where c. DNUMBER = d. DNUMBER and d. DNAME = {}^{\prime}\text{Bio}\lambda\text{o}\gamma\text{i}\alpha\text{'} and not exists(select * from Attends a where a. SID = s. SID and c. CNUMBER = a. CNUMBER));
```

7. (15 μονάδες) Βρείτε τα ονόματα των καθηγητών που είναι πρόεδροι και διδάσκουν δύο ή περισσότερα μαθήματα.

```
Λύση:
```

```
Σχεσιακή άλγευρα:
```

```
Chair \leftarrow \sigma_{\text{IID=ChairIID}}(Instructor \bowtie Department)
```

Teach2 ← Teaches

Instr2plus ← **O**Teaches.IID=Teach2.IID (**Teache**s ⋈ Teaches.CNUMBER < Teach2.CNUMBER **Teach2**)

RESULT $\leftarrow \pi$ FNAME,LNAME(Chair $\bowtie \pi$ Teaches.IID(Instr2plus))

Σχεσιακός λογισμός πεδίων:

```
\{F,L|\exists (I,X,B,D,R,N,C1,C2) \ (Instructor(I,F,L,X,B,D,R) \land Department(D,N,I) \land Teaches(I,C1) \land Teaches(I,C2) \land (C1!=C2))\}
```

Σχεσιακός λογισμός πλειάδων:

```
{ t(2): ((\exists i(7)),(\exists d(3)), (\exists t1(2)), (\exists t2(2)) Department(d) \land Teaches(t1) \land Teaches(t2) \land Instructor(i) \land d[3] = i[1] \land t1[1] = i[1] \land t2[1]=i[1] \land t1[2] != t2[2] \land t[1] = i[2] \land t[2] = i[3] }
```

SQL:

```
select FNAME, LNAME
from Instructor I, Department D
where I.IID = D.chairIID and I.IID in
(select I.IID from Teaches T
where I.IID = T.IID
group by I.IID
having count(T.CNUMBER) >= 2);
```

8. (15 μονάδες) Βρείτε τα ονόματα των καθηγητών που διδάσκουν ακριβώς δύο μαθήματα.

Λύση:

Σχεσιακή άλγευρα:

T2 ← Teaches

T3 ← Teaches

Instr2plus $\leftarrow \pi_{T2.IID}(\sigma_{Teaches.IID} = \tau_{T2.IID}(\tau_{Teaches}))$ T2.CNUMBER $\tau_{T2.IID}(\tau_{Teaches})$

Teach3plus ← Teaches ⋈ Teaches.CNUMBER<T2.CNUMBER (T2 ⋈ T2.CNUMBER<T3.CNUMBER T3)

Instr3plus $\leftarrow \pi_{T2.IID}(\sigma_{Teaches.IID}=T2.IID \land T2.IID=T3.IID(Teach3plus))$

RESULT $\leftarrow \pi$ FNAME, LNAME (Instructor \bowtie (Instr2plus - instr3plus))

Σγεσιακός λογισμός πεδίων:

 $\{F,L \mid \exists (I,X,B,D,R,C1,C2) \ (\textbf{Instructor}(I,F,L,X,B,D,R) \land \textbf{Teaches}(I,C1) \ \land \textbf{Teaches}(I,C2) \land (C1!=C2) \land \ \forall (C3) \ (\textbf{Teaches}(I,C3) \rightarrow ((C3=C1) \ V(C3=C2)))) \}$

Σχεσιακός λογισμός πλειάδων:

 $\{ \ t(2): ((\exists i(7)), (\exists t1(2)), \ (\exists t2(2)) \ \textbf{Teaches}(t1) \land \textbf{Teaches}(t2) \land \textbf{Instructor}(i) \land t[1] = i[2] \land t[2] = i[3] \land i[1] = t1[1] \land i[1] = t2[1] \land t1[2] != t2[2]) \land (\forall t3(2)) \ (\textbf{Teaches}(t3) \land t3[1] = i[1]) \rightarrow (\ t3[2] = t1[2] \lor t3[2] = t2[2]) \}$

SQL:

```
select FNAME, LNAME
from Instructor I
where I.IID in
(select I.IID from Teaches T, Instructor I1
where I1.IID = T.IID
group by I1.IID
having count(T.CNUMBER) = 2);
```