24.08.2021

Digital Image Processing (CSE/ECE 478)

Lecture-2: Recap

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Image as a function / 3D surface

$$f(x,y) = z$$

Domain: (x,y)

Range = Intensity

Demo:

https://colab.research.google.com/drive/ 11qIL0VKleZnONtPuxAryAf9WkUC7kEMI #scrollTo=ViONAp9VVzpB

Shades of grey

Summary

Sampling

 256×256

 32×32

 16×16

Quantization

8 bits per pixel

4 bits per pixel

2 bits per pixel

1 bit per pixel

Temporal Sampling

Temporal Sampling

Temporal Sampling

24.08.2021

Digital Image Processing (CSE/ECE 478)

Lecture-3: Intensity Transforms, Histogram
Processing

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Image Processing – Two Paradigms

Directly manipulating pixels in spatial domain

Manipulating in transform domain

Spatial Domain Processing

- Manipulating Pixels Directly in Spatial Domain
- ▶ 3 approaches
- ▶ 1. Point to Point

Intensity Transforms – Point to Point

$$z = a(x,y)$$

$$z' = b(x,y) = T(z) = T(a(x,y))$$

Intensity levels r:[0,L-1]

Image Negatives

Intensity levels r:[0,L-1] s = T(r) =

$$s = T(r) =$$

a b

FIGURE 3.4

(a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Intensity Transforms

$$T(z) = z + K$$

$$T(z) = z - K$$

Demo:

https://colab.research.google.com/drive/11qIL0VKleZnONtPuxAryAf9WkUC7kEMI#scrollTo=WkBKnKz7aS6O&line=1&uniqifier=1

Storage v/s Display

- 8-bit image : [0,255]
- 4-bit image : [0,15]
- Demo:

```
https://colab.research.google.com/drive/11qIL0VKleZnONtPuxAryAf9WkUC7kEMI#scrollTo=WkBKnKz7aS60&line=1&uniqifier=1
```

Linear Intensity Transforms

$$T(z) = z + K$$

$$T(z) = z - K$$

$$T(z) = Kz$$

$$T(z) = K_1 z + K_2$$

Data visualization: Map to display range

Normalize to range:

$$J = \operatorname{round}\left(255 * \frac{I - min(I)}{max(I) - min(I)}\right)$$

Shades of grey

Piecewise-Linear Transformations

- Can be arbitrarily complex
- Finer control over transformation

Piecewise-Linear Transformations

Piecewise-Linear Transformations - Contrast stretching

Expand intensity range to full intensity range

What are the constraints on (r1,s1) and (r2,s2)?

Non-linear Intensity Transformations

Demo:

https://colab.research.google.com/driv e/11qIL0VKleZnONtPuxAryAf9WkUC7k EMI#scrollTo=PQ4N62YyFesG

Range : $[0, 10^6]$

Log Transformations

a b

FIGURE 3.5

(a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

$$s = T(r) = c \log(1+r)$$

Power-Law Transformations

Power-Law Transformations

Shades of grey

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0,4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Power-Law Transformations

Demo:

https://colab.research.google.com/drive/11qI LOVKleZnONtPuxAryAf9WkUC7kEMI#scrollTo =aU5WQaqOpSCr&line=12&uniqifier=1

Intensity Slicing

Bit plane slicing

a b c d e f g h i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

$$h_r(i) = n_i$$

Different images can have same histogram

No information about spatial distribution of intensity values

What can we infer from histograms?

Histogram viewing standard in most DSLR cameras

Histograms and brightness

Under exposure

Histograms and brightness

Over exposure

Histograms and brightness

Over exposure

Histogram and contrast

Histograms for RGB images

Grayscale Histograms and Contrast Levels in Digital Images

Summary

- Manipulating Pixels Directly in Spatial Domain
- ▶ 3 approaches
- ▶ 1. Point to Point
- Linear Intensity Transforms
 - E.g. Negative
- Non-linear Transforms
 - E.g. Logarithm
- Histogram

