5. Dla podanych dalej relacji rozmytych podać trzy kompozycje (złożenia) $\mu_1 \cdot \mu_2, \, \mu_2 \cdot \mu_2^T$ oraz $\mu_2^T \cdot \mu_2$.

ĺ		W			Z	Х	У	V
$\mu_1 =$	a	0.03	$\mu_2 =$	a	0.32	0.85	0.45	0.21
	b	0.98		b	0.09	0.75	0.34	0.23
	С	0.63		С	0.21	0.23	0.12	0.34
	d	0.32		d	0.10	0.54	0.76	0.89

Rozwiazanie:

$$\begin{array}{l} \mu_1 \circ \mu_2(z) = \max_{u_1}(\min(\mu_1(u_1),\mu_2(u_1,z)) = \\ = \max(\min(\mu_1(a),\mu_2(a,z)),\min(\mu_1(b),\mu_2(b,z)),\min(\mu_1(c),\mu_2(c,z)),\\ \min(\mu_1(d),\mu_2(d,z))) = \\ = \max(\min(0.03,0.32),\min(0.98,0.09),\min(0.69,0.21),\min(0.32,0.10)) = \\ = \max(0.03,0.09,0.21,0.10) = 0.21\\ \mu_1 \circ \mu_2(x) = \max(0.03,0.75,0.23,0.32) = 0.75\\ \mu_1 \circ \mu_2(y) = \max(0.03,0.34,0.12,0.32) = 0.34\\ \mu_1 \circ \mu_2(v) = \max(0.03,0.23,0.34,0.32) = 0.34\\ \mu_2 \circ \mu_2^T(a,b) = \max_{u_2}(\min(\mu_1(a,u_2),\mu_2(u_2,b)) = \\ = \max(\min(0.32,0.09),\min(0.85,0.75),\min(0.45,0.34),\min(0.21,0.23)) = \\ = \max(0.09,0.75,0.34,0.21) = 0.75 \end{array}$$

Dla pierwszej kompozycji porownujemy kolejno kolumne w z relacji $\mu 1$ z kolumnami z, x, y, v w relacji $\mu 2$. Obliczenia przeprowadzamy w nastepujacy sposób: pierwsze obliczenie: $\mu 1*\mu 2(z)$ porownujemy kolumne w z kolumna z

W	Z	nie zaglebiajac się we wzory z kazdej z powstalych par (0,03; 0,32)
0.03	0.32	(0,98; 0,09)
0.98	0.09	(0,63; 0,21) (0,32; 0,10) wybieramy minima czyli wartosc która jest mniejsza:
0.63	0.21	dla pary pierwszej 0,03
0.32	0.10	dla pary drugiej 0,09 dla pary trzeciej 0,21
		dla parv czwartej 0 10

potem z otrzymanych wynikow wybieramy maximum czyli wartosc najwieksza: 0,21 i stad $\mu 1*\mu 2(z)=0,21$

tak samo postepujemy dla pozostalych par kolum w,x; w,y; w,v

$$\begin{split} &\mu_2 \circ \mu_2^T(a,b) = \max_{u_2}(\min(\mu_1(a,u_2),\mu_2(u_2,b)) = \\ &= \max(\min(0.32,0.09),\min(0.85,0.75),\min(0.45,0.34),\min(0.21,0.23)) = \\ &= \max(0.09,0.75,0.34,0.21) = 0.75 \\ &\mu_2 \circ \mu_2^T(a,c) = \mu_2 \circ \mu_2^T(c,a) = \max(0.21,0.23,0.12,0.21) = 0.23 \\ &\mu_2 \circ \mu_2^T(a,d) = \mu_2 \circ \mu_2^T(d,a) = \max(0.10,0.54,0.45,0.21) = 0.54 \\ &\mu_2 \circ \mu_2^T(b,c) = \mu_2 \circ \mu_2^T(c,b) = \max(0.09,0.23,0.12,0.23) = 0.23 \\ &\mu_2 \circ \mu_2^T(b,d) = \mu_2 \circ \mu_2^T(d,b) = \max(0.09,0.54,0.34,0.23) = 0.54 \\ &\mu_2 \circ \mu_2^T(c,d) = \mu_2 \circ \mu_2^T(d,c) = \max(0.10,0.23,0.12,0.34) = 0.34 \end{split}$$

Tutaj sprawa przedstawia się nieco inaczej.

 $μ_2 \circ μ_2^T$ porownujemy po koleji wiersz z wierszem z relacji μ2

dodatkowo jest tworzona relacja rozmyta

					-
		a	b	С	d
	a	0.85	0.75	0.23	0.54
$\mu_2 \circ \mu_2^T =$	b	0.75	0.75	0.23	0.54
	c	0.23	0.23	0.34	0.34
	d	0.54	0.54	0.34	0.89

do tej wlasnie relacji wpisywane sa wyniki obliczen

A liczymy następujaco, pierwsze obliczenie dla pary wierszy a,b z relacji μ2

a	0.32	0.85	0.45	0.21
b	0.09	0.75	0.34	0.23

 $\begin{array}{c|c}
 & (0,32;0,09) \\
\hline
 & (0,85;0,75) \\
 & (0,45;0,34)
\end{array}$ (0,21; 0,23) wybieramy minima i

Z powstalych par

otrzymujemy: 0,09; 0,75; 0,34; 0,21 z tych wartości wybieramy maximum i otrzymujemy

wynik 0,75 ta własnie wartosc wpisujemy do stworzonej relacji rozmytej we wspolrzedne okreslone w

liczonej kompozycji w tym przypadku wspolrzedne (a,b) i (b,a) dlatego ze wynik dla pary (a,b) jest taki sam jak dla pary (b,a) ... tak samo postepujemy przy porownywaniu pozostalych wierszy. W pola o takich samych wspolrzednych wpisujemy maximum z danego wiersza dla wspolrzednych (a,a) jest to maximum z wiersza a z relacji µ2 czyli 0,85, dla (b,b) mamy 0,75 itd.

$$\mu_2^T \circ \mu_2(z,x) = \mu_2^T \circ \mu_2(x,z) = \max(0.32,0.09,0.21,0.10) = 0.32$$

$$\mu_2^T \circ \mu_2(z,y) = \mu_2^T \circ \mu_2(y,z) = \max(0.32,0.09,0.12,0.10) = 0.32$$

$$\mu_2^T \circ \mu_2(z,v) = \mu_2^T \circ \mu_2(v,z) = \max(0.21,0.09,0.21,0.10) = 0.21$$

$$\mu_2^T \circ \mu_2(x,y) = \mu_2^T \circ \mu_2(y,x) = \max(0.45,0.34,0.12,0.54) = 0.54$$

$$\mu_2^T \circ \mu_2(x,v) = \mu_2^T \circ \mu_2(v,x) = \max(0.21,0.23,0.23,0.54) = 0.54$$

$$\mu_2^T \circ \mu_2(y,v) = \mu_2^T \circ \mu_2(v,x) = \max(0.21,0.23,0.23,0.54) = 0.54$$
 w tym przypadku postepujemy podobnie ... również jest dodatkowo tworzona relacja rozmyta tylko ze tym razem porownujemy kolejno kolumne z kolumna z relacji μ_2

		Z	X	У	V
_	1 1	0.32	0.32	0.32	0.21
$\mu_2^T \circ \mu_2 =$	Х	0.32	0.85	0.54	0.54
	У	0.32	0.54	0.76	0.76
	V	0.21	0.54	0.76	0.89

tutaj wlasnie wpisujemy otrzymane wyniki

Liczymy tak samo jak dla wierszy tyle ze tym razem bierzemy pod uwage wylacznie pary kolumn z relacji u2:

Z	X
0.32	0.85
0.09	0.75
0.21	0.23
0.10	0.54

z powstalych par:

(0,32;0,85)

(0,09;0,75)

(0,21;0,23)

(0,10; 0,54) wybieramy minima i otrzymujemy: 0,32; 0,09; 0,21; 0,10 z tych wartosci wybieramy maximum i otrzymujemy wynik 0,32 ta wlasnie wartosc wpisujemy do stworzonej relacji rozmytej we wspolrzedne okreslone w liczonej kompozycji w tym przypadku wspolrzedne (z,x) i (x,z) z tego samego powodu co poprzednio.

W pola o takich samych wspolrzednych wpisujemy maximum z danej kolumny dla wspolrzednych (z,z) jest to maximum z wiersza z z relacji µ2 czyli 0,32, dla (x,x) mamy 0,85 itd