Total Marks: 10

Name:

Roll No .:

Time: 45 min

Q1. A simple linear regression model is usually written as $\hat{y}_i = bx_i + a$. Using the matrix notation, I have written the same model as $\hat{\mathbf{y}} = \mathbf{Z}\mathbf{y}$. Here, \mathbf{y} is the vector for the dependent variable data. $\hat{\mathbf{y}}$ is the vector for the fitted or regressed values of \mathbf{y} . The data matrix for this regression is \mathbf{X} . Express \mathbf{Z} in terms of \mathbf{X} . You **MUST** show a few lines of your derivation.

Ans 1: In Linear Tregression, $\vec{g} = \times \vec{B}$. By the least square method, $\vec{B} = (\times^T \times)^T \times^T \vec{g}$. $\vec{\varphi} = \times \vec{B} = \times (\times^T \times)^T \times^T \vec{q} = \vec{Z} \vec{q}$ $\vec{\varphi} = \times \vec{B} = \times (\times^T \times)^T \times^T \vec{q} = \vec{Z} \vec{q}$

Q2. We have performed linear regression, considering x as a predictor for the following data. The outcome or dependent variable is y. Calculate the TSS of this regression. **M** is the last digit of your roll number. For example, if your roll number is 210106090, then $\mathbf{M} = 0$.

X	1	2	3	5
У	2	6	8	M

Ans 2:

Q3. You fitted $y = b_1 x + b_2 x^2 + a$ to a data set. The population regression coefficients corresponding to b_1 , b_2 , and a are β_1 , β_2 and α , respectively. What is the Null hypothesis for the F-test for this regression?

Q4. In the following table, P and Q are two random variables. Calculate the sum of the diagonal elements of the covariance matrix for these two variables. M is the last digit of your roll number. For example, if your roll number is 210106090, then $\mathbf{M} = 0$.

P	Q
1	6
2	M
3	4

Ans 4: Covariance matrix
$$S = \frac{| vav(P) |}{| vav(Q) |} = \frac{1}{|vav(Q)|} = \frac{1}{|vav(Q)|}$$

Total Marks: 10 Roll No.

Name:

Time: 45 min

Q1. We performed a multiple linear regression to fit the following model to our data. The number of data points is (M+10). M is the last digit of your roll number. For example, if your roll number is 210106090, then M=0. The adjusted R-squared value for this regression is 0.5. Calculate the R-squared or the coefficient of determination for this regression.

$$y = a + b_1 x_1 + b_2 x_2$$

Ans 1: Adjusted R^2 , $R^2 = 1 - \frac{RES}{TSS} \cdot \frac{(N-1)}{(N-K-1)} = 1 - (1-R^2) \frac{(N-K-1)}{(N-K-1)}$
 $R^2 = 1 - (1-R^2) \frac{(N-K-1)}{(N-1)}$

For, $M = 0$; number of data points, $N = M + 10 = 0 + 10 = 10$.

Number of predictors, $K = 2$.

 $R^2 = 1 - (1-0.5) \frac{(10-2-1)}{(10-1)} = 1 - 0.5 \times \frac{7}{9}$
 $R^2 = 1 - (1-0.5) \frac{(10-2-1)}{(10-1)} = 0.61$ Am

Q2. In the following table, x is the predictor or independent variable, and y is the outcome or dependent variable. We have performed linear regression to fit the following linear model $\hat{y}_i = bx_i + a$ to this data set. Calculate the mean of the predicted or regressed values of y (i.e. mean of \hat{y}_i s). **M** is the last digit of your roll number. For example, if your roll number is 190106050, then $\mathbf{M} = 0$.

X	1	2	3	4
Y	3	7	12	M

Ans 2:

We know,
Mean of dependent variable,
$$\overline{y} = \frac{Mean}{Values}$$
 of $\frac{1}{9}$;

Mean of $\frac{1}{9}$; $\frac{1}{9}$; $\frac{1}{9}$; $\frac{1}{9}$;

Mean of $\frac{1}{9}$; $\frac{1$

Q3. We want to detect the multi-collinearity issue in a regression problem. For that, we are performing auxiliary regression on each predictor. The R-squared of the auxiliary regression for the predictor x5 is AB/100. Here, AB represents the last two digits of your roll number. For example, if your roll number is 210106090, then A is 9 and B is 0; so AB = 90. Calculate the Variance Inflation Factor for this predictor.

Q4. In the following table, y is the dependent variable, and x is the predictor. We fit a quadratic polynomial to this data using regression. For regression, we are using the linear algebra-based method. In this method, we use the relationship $\mathbf{B} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$. Here, \mathbf{B} is the vector with unknown parameters/coefficients of the polynomial. X is a matrix, and Y is a vector. What is the sum of all elements in the first row of the X matrix? M is the last digit of your roll number. For example, if your roll number is 210106090, then M = 0. Very briefly show your calculation (only the essential steps).

X	M	3	7	9	13	15	19
у	12	36	79	92	103	121	137

Ans 4:

$$X = \begin{vmatrix} x_1 & x_1^2 & 1 \\ x_2 & x_2^2 & 1 \end{vmatrix} = \begin{vmatrix} M & M^2 & 1 \\ 3 & 9 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} x_1 & x_2^2 & 1 \\ x_2 & x_2^2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1$$

Arswer will depend on

Total	Marks:	10
-------	--------	----

Name:

Roll No .:

Time: 45 min

Q1. You fitted $y = b_1 x + b_2 x^2 + a$ to a data set. The population regression coefficients corresponding to b_1 , b_2 , and a are β_1 , β_2 and α , respectively. What is the Null hypothesis for the F-test for this regression?

Ans 1:

Check the answer given for similar question.

Q2. We want to detect the multi-collinearity issue in a regression problem. For that, we are performing auxiliary regression on each predictor. The R-squared of the auxiliary regression for the predictor x_5 is **AB**/100. Here, AB represents the last two digits of your roll number. For example, if your roll number is 210106090, then A is 9 and B is 0; so AB = 90. Calculate the Variance Inflation Factor for this predictor.

Ans 2:

Check answer given for timilar question.

Q3. A simple linear regression model is usually written as $\hat{y}_i = bx_i + a$. Using the matrix notation, I have written the same model as $\hat{y} = Zy$. Here, y is the vector for the dependent variable data. \hat{y} is the vector for the fitted or regressed values of y. The data matrix for this regression is x. Express z in terms of z. You MUST show a few lines of your derivation.

Ans 3:

check answer for imilar america.

Q4. We have performed linear regression, considering x as a predictor for the following data. The outcome or dependent variable is y. Calculate the TSS of this regression. **M** is the last digit of your roll number. For example, if your roll number is 210106090, then $\mathbf{M} = 0$.

X	1	2	3	5
y	2	4	8	M

Ans 4:

check answer for similar question.

Time: 45 min Roll No.

Total Marks: 10

Name:

Q1. In the following table, y is the dependent variable, and x is the predictor. We fit a cubic polynomial to this data using regression. For regression, we are using the linear algebra-based method. In this method, we use the relationship $\mathbf{B} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$. Here, \mathbf{B} is the vector with unknown parameters/coefficients of the polynomial. X is a matrix, and Y is a vector. What is the sum of all elements in the first row of the X matrix? \mathbf{M} is the last digit of your roll number. For example, if your roll number is 210106090, then $\mathbf{M} = 0$.

X	M	13	17	37	45	65	79
у	21	36	42	52	65	79	91

Ans 1:

 $X = \begin{vmatrix} x_1 & x_1^2 & x_1^3 & 1 \\ x_2 & x_2^2 & x_2^3 & 1 \end{vmatrix} = \begin{vmatrix} M & M^2 & M^3 & 1 \\ 13 & 13^2 & 13^3 & 1 \end{vmatrix}$ $= \begin{vmatrix} x_1 & x_2^2 & x_2^3 & 1 \\ x_2 & x_2^2 & x_2^3 & 1 \end{vmatrix} = \begin{vmatrix} 79 & 79^2 & 79^3 & 1 \\ 79 & 79^2 & 79^3 & 1 \end{vmatrix}$ Sum of first you elements of X

= M+M2+M3+1=0+0+0+1=1 Am. H=0]

Q2. In the following table Pands

the course

Q2. In the following table, P and Q are two random variables. Calculate the sum of the diagonal elements of the covariance matrix for these two variables. M is the last digit of your roll number. For example, if your roll number is 210106090, then M = 0.

P	Q
1	6
2	M
3	5

Ans 2:

check answer to

timilar anostin

Q3. We performed a multiple linear regression to fit the following model to our data. The number of data points is (M+10). M is the last digit of your roll number. For example, if your roll number is 210106090, then M=0. The adjusted R-squared value for this regression is 0.6. Calculate the R-squared or the coefficient of determination for this regression.

$$y = a + b_1 x_1 + b_2 x_2$$

Ans 3:

si cheh answer to similar annhan

Q4. In the following table, x is the predictor or independent variable, and y is the outcome or dependent variable. We have performed linear regression to fit the following linear model $\hat{y}_i = bx_i + a$ to this data set. Calculate the mean of the predicted or regressed values of y (i.e. mean of \hat{y}_i s). M is the last digit of your roll number. For example, if your roll number is 190106050, then M = 0.

X	1	2	3	4
Y	3	7	9	M

Ans 4:

chick answer to similar question