# Отчёт по лабораторной работе №1

Операционные Системы

Гибшер Кирилл Владимирович,НКАбд-01-22

# Содержание

| 1  | Цель работы                                                      | 5             |
|----|------------------------------------------------------------------|---------------|
| 2  | Задание                                                          | 6             |
| 3  | Теоретическое введение         3.1       Техническое обеспечение | <b>7</b><br>7 |
| 4  | Выполнение лабораторной работы                                   | 9             |
| 5  | Выводы                                                           | 16            |
| Сп | исок литературы                                                  | 17            |

# Список иллюстраций

| 4.1 | Установка первичных обновлений ОС                             | 9  |
|-----|---------------------------------------------------------------|----|
| 4.2 | Отключение SELinux                                            | 10 |
| 4.3 | Установка пакета DKMS                                         | 10 |
| 4.4 | Установка драйверов после полдлючения образа диска дополнений | 11 |
| 4.5 | Установка драйверов после полдлючения образа диска дополнений | 11 |
| 4.6 | Настройка раскладки, редактирование файла конфигурации        | 12 |
| 4.7 | Настройка имени пользователя и хоста                          | 13 |
| 4.8 | Наличие pandoc в ОС                                           | 13 |
| 4.9 | Название рисунка                                              | 15 |

# Список таблиц

## 1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

### 2 Задание

- 1. Установить и настроить виртуальную машину с операционной системой Linux(Fedora).
- 2. Произвести первоначальные настройки ВМ.
- 3. Настройка хост-клавиш.
- 4. Установка обновлений ОС, после запуска виртуальной машины.
- 5. Отключение SELinux.
- 6. Установить дополнительные драйвера для VirtualBox.
- 7. Настроить раскладку клавиатуры.
- 8. Установка имени пользователя и имя хоста.
- 9. Установка ПО для создания документации.
- 10. Выполнение домашнего задания.

#### 3 Теоретическое введение

#### 3.1 Техническое обеспечение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Fedora). Выполнение работы возможно как в дисплейном классе факультета физико-математических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими характеристиками техники: Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 80 GB свободного места на жёстком диске; ОС Linux Gentoo; VirtualBox версии 7.0 или новее. Для установки в виртуальную машину используется дистрибутив Linux Fedora, вариант с менеджером окон i3. При выполнении лабораторной работы на своей технике необходимо скачать необходимый образ операционной системы.

#### 3.1.1 Соглашение об именовании

При выполнении работ следует придерживаться следующих правил именования:

Пользователь внутри виртуальной машины должен иметь имя, совпадающее с учётной записью студента, выполняющего лабораторную работу. Имя хоста вашей виртуальной машины должно совпадать с учётной записью студента, выполняющего лабораторную работу. Имя виртуальной машины должно совпадать с учётной записью студента, выполняющего лабораторную работу. В дисплейных классах вы можете посмотреть имя вашей учётной записи, набрав в терминале

необходимую команду. При установке на своей технике необходимо использовать имя вашей учётной записи дисплейных классов. Например, если студента зовут Остап Сулейманович Бендер, то его учётная запись имеет вид osbender.

### 4 Выполнение лабораторной работы

Так как виртуальная машина и ОС Linux Fedora были у меня установлены намного раньше, весь процесс настройки ВМ не удалось запечатлить. Таким образом, приступаю сразу к настройке ОС с автоматического обновления с помощью команды dnf install dnf-automatic и запускаю таймер с помощью команды systemctl enable –now dnf-automatic.timer (рис. [4.9]).

```
[[vegitabhere]fedora -]s audo -1
[sudo] napona pna kvgibsher:
[nonpo6yifre eae pas
[sudo] napona pna kvgibsher:
[roote]fedora -]s dnf install tonux ac
[noceptans nposepxa onow-awana pactraus metaganhux: 2:07:38 назад, Пн 13 фев 2023 13:03:51.

Памет tunu-3,a-1.fc37.x86_64 уже установлен.

Памет ac-1:4.6.26-3.fc37.x86_64 уже установлен.

Замисимости разрешени.

Отсутствуют действия для выполнения.

Выполнено!

[roote]fedora -]s dnf install dnf-automatic

Последния проверка окончания срока действия метаданных: 2:08:05 назад, Пн 13 фев 2023 13:03:51.

Памет dnf-automatic-4.14.0-1.fc37.noarch уже установлен.

Замисимости разрешени.

Отсутствуют действия для выполнения.

Выполнено!

[roote]fedora -]s systemctl enable --now dnf-automatic.timer
[roote]fedora -]s systemctl enable --now dnf-automatic.timer
[roote]fedora -]s
```

Рис. 4.1: Установка первичных обновлений ОС

Затем, так как в данном курсе мы не будем рассматривать работу с системой безопасности SELinux я отключаю его с помощью измения необходимого для работы SELinux файла config.(рис. [4.2]).



Рис. 4.2: Отключение SELinux

Затем приступаю к установке драйверов для VirtualBox, для этого открываем с помощью команды tmux терминальный мультиплексор и устанавливаем пакет DKMS. (рис. [4.3]).



Рис. 4.3: Установка пакета DKMS

В меню виртуальной машины подключаем образ диска дополнений гостевой ОС и наблюдаем за установкой драйверов. (рис. [4.4]).

```
VirtualBox Guest Additions installation
                                                                     Q
Verifying archive integrity... All good.
Jncompressing VirtualBox 6.1.30 Guest Additions for Linux......
/irtualBox Guest Additions installer
 emoving installed version 6.1.30 of VirtualBox Guest Additions...
Copying additional installer modules ...
Installing additional modules ..
/irtualBox Guest Additions: Starting.
/irtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
odules. This may take a while.
irtualBox Guest Additions: To build modules for other installed kernels, run
'irtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
irtualBox Guest Additions: or
'irtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
irtualBox Guest Additions: Building the modules for kernel
.1.10-200.fc37.x86_64.
/irtualBox Guest Additions: Look at /var/log/vboxadd-setup.log to find out what
ValueError: File context for /opt/VBoxGuestAdditions-6.1.30/other/mount.vboxsf a
lready defined
irtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted
ress Return to close this window...
```

Рис. 4.4: Установка драйверов после полдлючения образа диска дополнений

Затем подмонтируем диск, с помощью команды mount /dev/sr0 /media, и загрузим еще пакет драйверов.Затем перезагрузим систему. (рис. [4.5]).



Рис. 4.5: Установка драйверов после полдлючения образа диска дополнений

Приступим к настройке раскладки клавиатуры и сделаем это с помощью редактирования конфигурационный файла /etc/X11/xorg.conf.d/00-keyboard.conf и вновь перезапустим систему. (рис. [4.6]).



Рис. 4.6: Настройка раскладки, редактирование файла конфигурации

Хоть я и изначально установил правильное имя хоста и пользователя, для самопроверки я еще раз проведу данную операцию только через терминал. С помощью команд показанных на скриншоте, я проверил и убедился, что все настроено согласно соглашению об наименовании. (рис. [4.7]).



Рис. 4.7: Настройка имени пользователя и хоста

Так как pandoc был устанавлен у меня раннее на скриншоте показано его наличие в моей ОС. (рис. [4.8]).



Рис. 4.8: Наличие pandoc в ОС

Но необходимых для курса расширений у меня нет, поэтому провожу установку данных расширений. (рис. [??]).

[Установка необходимых расширений pandoc] (image/9.jpg){#fig:009 width=70%} Так как ситуация с TexLive у меня такая же как и pandoc и у меня он уже установлен в подтверждение я привожу скриншот ниже, на котором показано завершение установки TexLive. (рис. [??]).

[Наличие TeXLive] (image/14.jpg){#fig:010 width=70%}

Далее приступаю к выполнению домашнего задания и начинаю с того, что дождитесь загрузки графического окружения и открываю терминал. В окне терминала провожу анализ последовательность загрузки системы, выполнив команду dmesg. (рис. [??]).

[Домашнее задание. Аналищ последовательности загрузки системы] (image/11.jpg){#fig:011 width=70%}

Далее с помощью необходимых команд я получаю следующую информацию: Версия ядра Linux, частота процессора, модель процессора, объём доступной оперативной памяти, тип обнаруженного гипервизора, тип файловой системы корневого раздела и последовательность монтирования файловых систем. (рис. [??]).

[Домашнее задание. Вывод ряда информации об системе p.1] (image/12.jpg){#fig:012 width=70%}

Последний пункт - информация об последовательности монтирования файловых систем. (рис. [??]).

[Домашнее задание. Вывод ряда информации об системе p.2] (image/13.jpg){#fig:013 width=70%}

Описываются проведённые действия, в качестве иллюстрации даётся ссылка на иллюстрацию (рис. 4.9).



Рис. 4.9: Название рисунка

# 5 Выводы

Таким образом, благодаря данной лабораторной работе я приобрел практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

# Список литературы