

ANOVA: for comparing multiple means numeric outcome, 3 or more groups

 $\textbf{test statistic} \ \text{reflects the total variability } SS_{tot}$

$$SS_{tot} = SS_b + SS_w$$

between- SS_b groups

within-

groups

VS

VS

correct for **degrees of freedom**

between-groups MS_b: divide by G-1 where G=# of groups within-groups MS_w: divide by N-G where N=total sample size

F-statistic is ratio of these: MSb/MSw

Between-groups variability

So the means are more different when F is larger

4

ANOVA in R requires two commands

aov creates an aov object with all the info summary runs the actual hypothesis test on that info

modelName <- aov(outcome ~ predictor, dataset)
summary(modelName)</pre>

6

effect size eta-squared is proportion of the variance attributable to the grouping variable

$$\eta^2 = \frac{\mathrm{SS}_b}{\mathrm{SS}_{tot}}$$
 etaSquared(modelName)

problem of multiple comparisons

ANOVA only tells you *that* there is a difference, not *which* groups are different

running many t-tests inflates Type 1 error

solve with Bonferroni or Holm corrections

Bonferroni: simple, but way conservative.

Holm: better, more complicated

library(lsr)
posthocPairwiseT(x=modelName)

default: Holm

Bonferroni: p.adjust.method = "bonferroni"

posthoc test: ran after ANOVA, don't have particular hypothesis. need a correction. planned comparison one of only a few tests you planned in advance. no correction needed but be honest and careful!

Assumption: residuals are normal

- check with Shapiro-Wilk on the residuals
- if violated, run Kruskal-Wallis

get residuals: model <- aov(blahblah)</pre>

model\$residuals

Shapiro-Wilk: shapiro.test(model\$residuals)

Kruskal-Wallis:

kruskal.test(outcome ~ predictor, data=d)

library(rstatix)
kruskal_effsize(outcome ~ predictor, data=d)

Assumption: variance homogeneous

Use Levene Test to check
If violated, do Welch one-way ANOVA

Levene Test:

library(car)
LeveneTest(outcome ~ predictor, data=d)

Welch one-way ANOVA

oneway.test(outcome ~ predictor, data=d)

Two-way ANOVA

Has two factors instead of one, with a continuous outcome (comparing means)

Data must be in long form!

Between groups SS (SS_A , SS_B): for each factor A and B, how different are the group means from one another?

Residual SS (SS_R): how much variation in the outcome is there after taking into account the variation associated with *both* factors?

$$MS_b = SS_b/(G-1)$$

 $MS_R = SS_R/(N-R-C+1)$
 $F = MS_b/MS_R$

Running in R

add + to formula to indicate multiple factors

aov(outcome ~ pred1 + pred2, data=d)

Each group has an F-statistic and can be significant or not.

If a group is significant, that's a main effect

Different from testing each factor separately because the residuals are different!

Interactions

Occur when the effect of one factor is different depending on the level of the other

Magnitude of effect of a factor depends on the level of the other factor

Same idea, just get an interaction sum of squares as well as for each group

Running interactions in R

Indicate with a: in between the two variables

```
aov(outcome ~ pred1 + pred2 + pred1:pred2, data=d)
```

Or can use shorthand to tell R to do all three:

```
aov(outcome ~ pred1*pred2, data=d)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
type 2 201 100 1.205 0.302
food 2 63852 31926 383.612 < 2e-16 ***
type:food 4 5551 1388 16.675 1.47e-11 ***
Residuals 171 14231 83
```

Each factor and the interaction have an F-statistic and can be significant or not

Effect size for ANOVA

Same as one-way: eta-squared But partial eta squared needs to be interpreted

etaSquared(model)

 η^2 : proportion of total variance due to each factor

Partial η^2 : proportion of variance due to each factor assuming you pretend the effect size of all of the others is zero