Demystifying Attention U-net

30.06.2020

Recap: Soft Attention-Additive Attention

Figure 01. Diagram derived from Bahdanau et al., 2015 with addition information from [1]

$$\mathbf{c}_t = \sum_{i=1}^n lpha_{t,i} m{h}_i$$
 ; Context vector for output y_t $lpha_{t,i} = \operatorname{align}(y_t, x_i)$; How well two words y_t and x_i are aligned. $= \frac{\exp(\operatorname{score}(m{s}_{t-1}, m{h}_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(m{s}_{t-1}, m{h}_{i'}))}$; Softmax of some predefined alignment score.. $\operatorname{score}(m{s}_t, m{h}_i) = \mathbf{v}_a^{\top} \operatorname{tanh}(\mathbf{W}_a[m{s}_t; m{h}_i])$

Why U-Net?:

- Convolutional Neural Network (CNN) learn the feature mapping of an image and exploit it's salient features as the network depth increases
- Image is converted into vector for classification task Works well in classification!
- Image segmentation -> Convert feature maps into vector but also reconstruct image from such vector!

Figure 02. Classification task with Convolutional Neural Network [1]

U-Net

Figure 03. U-net model architecture derived from [1]

Intuition for U-Net

Down-Sampling:

- Encode the input image into feature representations at multiple different levels
- Learn local features (Localization)

Up-Sampling:

- Project discriminative features (lower resolution) learnt by the encoder onto the pixel space (higher resolution) for dense classification
- Restore condensed feature maps to the original size of the input image by expanding the feature dimensions
- Learn global features

Skip Connections:

- Concatenate higher resolution feature maps from earlier stage for better representations learning
- Up-sampling is a sparse operation, need good prior from earlier stages to better represent localization

Drawbacks

- Rely on multi-stage cascaded CNNs when the target organs show variation in terms of shape and size
- Leads to excessive and redundant use of computational resources as well as model parameters
- Similar low-level features are repeatedly extracted by all models within the cascade
- Difficult to reduce false-positive predictions for small objects that show large shape variability

Attention U-Net

 Introducing Attention Gate(AG) to attend on salient features useful for specific task

Figure 04. Attention U-net model architecture derived from [1]

Intuition for Attention Gates(AG)

Additive Attention Gate

Figure 05. Attention gate schematic drawing from [1]

g: Gating signal (Next lowest layer/ Upsampling layer)

 x^{l} : Input signal (Features from skip connection)

 ψ : Linear transformation(Convolutional Layer)

: Additive operation

(: Element wise multiplication operation

 α : Attention coefficient $\in [0,1]$

Resampler: Trilinear interpolation (Upsampling)

Attention Gate Example (2D)

2*Grid Based Attention: Vector *g* from the upsampling path rather than the downsampling path, vector would have been conditioned to spatial information from multiple scales by previous attention gates

<u>Summary</u>

- AGs was designed to improve model sensitivity and accuracy by suppressing feature activations in irrelevant regions
- AGs generate soft region proposals implicitly and highlight salient features useful for specific task
- Enable access to introspection for U-Net through the visualization of attention weights

References

- Ronneberger, O., Fishcher, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. pp. 234-241. Springer(2017)
- Oktay. et al.: Attention U-Net: Learning Where to Look for the Pancreas, 2018
- Robin Vinod: A detailed explanation of the Attention U-Net, <u>https://towardsdatascience.com/a-detailed-explanation-of-the-attention-u-net-b371a5590831</u>
- How U-net works?: https://developers.arcgis.com/python/guide/how-unet-works/
- Heet Sankesara, UNet: https://towardsdatascience.com/u-net-b229b32b4a71

Thank You for Your Kind Attention!