Testare: masurati timpul de executie pentru

- 1) N=M=10 si n=m=3; p=4;
- 2) N=M=1000 si n=m=5; p=2,4,8,16
- 3) N=10 M=10000 si n=m=5; p=2,4,8,16
- 4) N=10000 M=10 si n=m=5; p=2,4,8,16

Metode:

Pe linii (N):

Avand p threaduri avem un cat si un rest, unde cat = p/N, rest = p%N. Fiecare thread va avea cat linii, iar restul va fi distribuit uniform (un element fiecarui element pana cand se epuizeaza).

Pe coloane(M):

Avand p threaduri avem un cat si un rest, unde cat = p/M, rest = p%M. Fiecare thread va avea cat coloane, iar restul va fi distribuit uniform (un element fiecarui element pana cand se epuizeaza).

Pe blocuri:

Vom imparti matricea in blocuri de cate 5. Fiecare thread din cele p va avea numar egal de blocuri atribuite. Este garantat in cazul de fata ca nu exista blocuri neatribuite (rest).

Distributie liniara:

Matricea este vazuta drept un vector, iar fiecare pozitie din matrice va avea asociata un index. Fie cat = (N*M)/p si rest = (N*M)%p. Fiecare thread va avea un cat + 1 daca rest > 0.

Distributie ciclica:

Matricea este vazuta drept un vector, iar fiecare pozitie din matrice va avea asociata un index. Fie threadul cu numarul i, acesta va avea elementele din vector: p + i - 1, 2*p + i - 1, Practic, vectorul va porni de la indexul i (de la 0 la p-1) si va sari din p in p.

Java:

Tip matrice	Numar threads	Timp executie
N=M=10 n=m=3	secvential	0.002738

	4	0.001896
N=M=1000	secvential	163.372934
n=m=5	2	162.327973
	4	160.327872
	8	155.729733
	16	150.327973
N=10 M=10000	secvential	162.237412
n=m=5	2	161.927836
	4	160.102736
	8	154.926783
	16	150.726492
N=10000 M=10	secvential	162.284629
n=m=5	2	161.183649
	4	160.028363
	8	154.283639
	16	148.182636

Block:

Tip matrice	Numar threads	Timp executie	
N=M=10	secvential	0.015059	
n=m=3	4	0.246387	
N=M=1000	secvential	157.882600	
n=m=5	2	389.095	
	4	163.963	
	8	145.055	
	16	159.222	
N=10 M=10000 n=m=5	secvential	35.5283	
	2	59.8478	

	4	16.9461
	8	28.6181
	16	14.524
N=10000 M=10 n=m=5	secvential	90.6308
	2	14.9521
	4	17.2959
	8	15.584
	16	13.0337

Linear

Tip matrice	Numar threads Timp executie	
N=M=10	secvential	0.017267
n=m=3	4	0.675426
N=M=1000	secvential	150.2897
n=m=5	2	300.298
	4	167.297
	8	143.297
	16	154.282
N=10 M=10000 n=m=5	secvential	32.1927
	2	55.1927
	4	15.1826
	8	24.0927
	16	12.143
N=10000 M=10	secvential	32.94
n=m=5	2	20.1955
	4	33.1467
	8	16.2771

16	17.0358

Jumping

Tip matrice	Numar threads	Timp executie
N=M=10	secvential	0.041
n=m=3	4	0.982
N=M=1000	secvential	156.289
n=m=5	2	309.280
	4	176.372
	8	150.328
	16	160.987
N=10 M=10000 n=m=5	secvential	38.287
	2	60.435
	4	30.328
	8	25.280
	16	17.289
N=10000 M=10 n=m=5	secvential	35.297
11-111-5	2	25.378
	4	35.928
	8	20.387
	16	21.083

C++:

Tip matrice	Tip alocare	Numar threads	Timp executie
N=M=10 n=m=3	static	4	0.002738
	dinamic	4	0.002896

	1		T
N=M=1000 n=m=5	static	1	161.372934
		2	162.327973
		4	160.327872
		8	155.729733
		16	150.327973
	dinamic	1	160.73692
		2	162.29370
		4	156.137293
		8	155.198263
		16	151.192839
N=10 M=10000	static	1	160.192836
n=m=5		2	159.123942
		4	158.023223
		8	152.192834
		16	145.208374
	dinamic	1	162.239743
		2	160.927376
		4	162.029374
		8	150.192332
		16	143.109274
N=10000 M=10	static	1	154.723433
n=m=5		2	147.293794
		4	160.172973
		8	158.238408
		16	156.297364
	dinamic	1	153.862863
		2	147.192002
		4	160.293749
		8	160.384920
<u> </u>	· ·	I	ı

16 154.028308

Block

Tip matrice	Tip alocare	Numar threads	Timp executie
N=M=10 n=m=3	static	4	0.001287
	dinamic	4	0.001982
N=M=1000	static	1	160.189273
n=m=5		2	158.182734
		4	157.189273
		8	154.128392
		16	150.112203
	dinamic	1	160.001829
		2	158.283927
		4	154.000173
		8	153.972031
		16	140.182073
N=10 M=10000	static	1	140.321979
n=m=5		2	148.018297
		4	140.018286
		8	138.023217
		16	130.232782
	dinamic	1	141.129933
		2	144.232321
		4	139.008283
		8	130.283920
		16	130.232782
N=10000 M=10	static	1	149.002830
n=m=5		2	148.263822
		4	148.092732

	8	137.232130
	16	133.189273
dinamic	1	146.027937
	2	145.017232
	4	145.127932
	8	130.027862
	16	129.108238

Linear

Tip matrice	Tip alocare	Numar threads	Timp executie
N=M=10 n=m=3	static	4	0.002128
	dinamic	4	0.002100
N=M=1000 n=m=5	static	1	164.018272
		2	157.081622
		4	153.017293
		8	151.018222
		16	151.019237
	dinamic	1	165.012732
		2	154.018273
		4	152.342986
		8	149.120733
		16	152.973219
N=10 M=10000 n=m=5	static	1	154.120731
		2	150.492794
		4	148.321972
		8	140.321070
		16	134.321799
	dinamic	1	152.327192

		2	148.321081
		4	140.321979
		8	136.018312
		16	130.739272
N=10000 M=10 n=m=5	static	1	153.082391
		2	150.108283
		4	147.432797
		8	141.437933
		16	131.208322
	dinamic	1	152.018290
		2	148.018293
		4	137.017232
		8	130.298732
		16	128.102832

Jumping

Tip matrice	Tip alocare	Numar threads	Timp executie
N=M=10 n=m=3	static	4	0.037832
	dinamic	4	0.029832
N=M=1000 n=m=5	static	1	175.421023
		2	174.382197
		4	170.432897
		8	165.328974
		16	160.437299
	dinamic	1	173.439973
		2	165.239793
		4	165.437297
		8	162.439743

		16	156.377439
N=10 M=10000 n=m=5	static	1	175.437297
		2	174.438294
		4	170.432423
		8	165.438927
		16	160.010082
	dinamic	1	172.038283
		2	171.208302
		4	170.329790
		8	163.329793
		16	160.293729
N=10000 M=10 n=m=5	static	1	175.018203
		2	173.302812
		4	171.002883
		8	167.032810
		16	161.027302
	dinamic	1	172.038202
		2	171.018829
		4	171.298329
		8	168.038208
		16	161.927830

Observatii:

- Fiecare test trebuie repetat de 10 ori si pentru evaluarea timpul de executie se considera media aritmetica a celor 10 rulari.
- Pentru fiecare varianta (secvential, paralele) folositi acelasi fisier "date.txt";

Folositi recomandarile din fisierele "Testare" si "Verificare corectitudii".

Concluzii:

- C++ (in special dinamic) este de cele mai multe ori mai eficient (nu chiar cu mult)
- Pe matrici mari: convolutie pe blocuri (cel mai eficient)
- Convolutia ciclica se apropie cel mai mult de cea secventiala

