# (T)EE2026 Digital Fundamentals

**Boolean Algebra** 

**Massimo Alioto** 

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

## **Outline**

- What is Boolean Algebra
- Theorems
- Boolean functions and truth table
- Boolean function simplification using algebra manipulation

## What is Boolean Algebra?

#### **Brief History:**

- Boolean was developed in 1854 by George Boole (An English mathematician, philosopher, and logician)
- Huntington formulated the postulates in 1904 as the formal definition
- Boolean Algebra is the mathematical foundation for digital system design, including computers
- It was first applied to the practical problem (Analysis of networks of relays) in late 1930s by C.E Shannon (MIT) who later introduced "Switching algebra" in 1938
- Switching algebra is a Boolean algebra in which the number of elements is precisely two

## **Boolean Algebra**

- Boolean algebra is defined by
  - a set of elements, **B**, and
  - two binary operators,  $\cdot$  (AND), +(OR)
  - unary operator (NOT)
- Boolean algebra satisfies six Huntington postulates

```
*Elements → integer number (i.e. 0, 1, ...)
```

<sup>\*</sup>Variables  $\rightarrow$  symbols (i.e. x, y, z, ...) are natural numbers

## Postulates of Boolean Algebra

#### Six Huntington postulates:

There are 6 Huntington Postulates that define the Boolean Algebra:

- 1. Closure For all elements x and y in the set **B** 
  - i. x + y is an element of **B** and
  - ii.  $x \cdot y$  is an element of **B**
- 2. There exists a 0 and 1 element in **B**, such that
  - *i.* x + 0 = x
  - ii.  $\mathbf{x} \cdot \mathbf{1} = x$
- 3. Commutative Law
  - i. x+y=y+x
  - ii.  $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$

## Postulates of Boolean Algebra – cont.

4. Distributive Law

i. 
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
  $(\cdot over +)$   
ii.  $x + (y \cdot z) = (x + y) \cdot (x + z)$   $(+ over \cdot)$ 

5. For every element x in the set B, there exists an element  $\bar{x}$  in the set B, such that

i. 
$$x + \bar{x} = 1$$
  
ii.  $x \cdot \bar{x} = 0$   
( $\bar{x}$  is called the **complement** of  $x$ )

(x is called the **complement** of x)

6. There exist at least two distinct elements in the set **B** 

## **Switching Algebra**

- Switching algebra is a <u>two-valued</u> Boolean Algebra, that is, the number of elements in the set **B** is two {0,1}
- Switching algebra represents bistable electrical switching circuits (On or Off)
- There are two main operators (AND, OR)
  - Binary operators (two arguments involved)
    - AND → "."
    - OR → "+"
  - Plus, one unary operator (only one argument involved)
    - NOT → "¯" (Complement operator represented by an overbar)
- Switching algebra satisfies six Huntington postulates

## The Three Operators in Two-Valued Boolean Algebra ( $B=\{0,1\}$ )

OR: A + B

| A | В | A + B |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 1     |

$$0 + 0 = 0$$
  
 $0 + 1 = 1$   
 $1 + 0 = 1$   
 $1 + 1 = 1$ 

AND:  $A \cdot B$ 

| A | В | $A \cdot B$ |
|---|---|-------------|
| 0 | 0 | 0           |
| 0 | 1 | 0           |
| 1 | 0 | 0           |
| 1 | 1 | 1           |

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 0$ 
 $1 \cdot 0 = 0$ 
 $1 \cdot 1 = 1$ 

NOT:  $\overline{A}$ 

| A | $\overline{A}$ |
|---|----------------|
| 0 | 1              |
| 1 | 0              |

$$A = 0 \rightarrow \overline{A} = 1$$

$$A = 1 \rightarrow \overline{A} = 0$$

Priority: NOT has highest precedence, followed by AND and OR

 $NOT(A \cdot B + C) = NOT((A \cdot B) + C)$ 

## Boolean vs. Ordinary Algebra

| Boolean algebra                                                                                                                                | Ordinary algebra                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| No associative law. But it can be derived from the other postulates                                                                            | Associative law is included:<br>a + (b + c) = (a + b) + c              |
| Distributive law:<br>$x + (y \cdot z) = (x + y) \cdot (x + z)$ valid                                                                           | Not valid                                                              |
| No additive or multiplicative inverses, therefore there are no subtraction and division operation                                              | Subtraction and division operations exist                              |
| Complement operation available                                                                                                                 | No complement operation                                                |
| Boolean algebra: Undefined set of elements; Switching algebra: a two-valued Boolean algebra, whose element set only has two elements, 0 and 1. | Dealing with real numbers and constituting an infinite set of elements |

## Theorems of Boolean Algebra

| # |                                      | Theorem                                              |                   |
|---|--------------------------------------|------------------------------------------------------|-------------------|
| 1 | A + A = A                            | $A \cdot A = A$                                      | Tautology Law     |
| 2 | A + 1 = 1                            | $A \cdot 0 = 0$                                      | Union Law         |
| 3 | $\overline{(\overline{A}\ )}=A$      |                                                      | Involution Law    |
| 4 | A + (B + C)                          | $A \cdot (B \cdot C) = (A \cdot B) \cdot C$          | Associative Law   |
|   | =(A+B)+C                             |                                                      |                   |
| 5 | $\overline{A+B}=\bar{A}\cdot\bar{B}$ | $\overline{A \cdot B} = \overline{A} + \overline{B}$ | De Morgan's Law   |
| 6 | $A + A \cdot B = A$                  | $A \cdot (A+B) = A$                                  | Absorption Law    |
| 7 | $A + \bar{A} \cdot B = A + B$        | $A \cdot (\bar{A} + B) = A \cdot B$                  |                   |
| 8 | $AB + A\bar{B} = A$                  | $(A+B)(A+\bar{B})=A$                                 | Logical adjacency |
| 9 | $AB + \bar{A}C + BC$                 | $(A+B)(\bar{A}+C)(B+C)$                              | Consensus Law     |
|   | $=AB+\bar{A}C$                       | $= (A+B)(\bar{A}+C)$                                 |                   |

#### When is the output of an AND gate equal to 1?

when all inputs are 1

when some of the inputs are 1

when some of the inputs are 0

#### A + A = ?

When poll is active, respond at **PollEv.com/massimoaliot866** 

Top

#### A + NOT(A) \* B = ?

When poll is active, respond at **PollEv.com/massimoaliot866** 

Top

### **Boolean Functions and Truth Table**

- A Boolean function expresses the logical relationship between binary variables
- It is evaluated by determining the binary value of the expression for all possible values of the variables
- Examples

$$F_1 = A + B$$

$$F_2 = A \cdot B$$

$$F_3 = A + BC$$

$$F_4 = \bar{A}\bar{B}C + AB\bar{C}$$

#### **Truth Table**

 Truth table is a tabular technique for listing all possible combinations of input variables and the values of function for each combination.

$$F_1 = A + B$$

| Α | В | F <sub>1</sub> |
|---|---|----------------|
| 0 | 0 | 0              |
| 0 | 1 | 1              |
| 1 | 0 | 1              |
| 1 | 1 | 1              |

$$F_3 = A + BC$$

| Α | В | С | F <sub>3</sub> |
|---|---|---|----------------|
| 0 | 0 | 0 | 0              |
| 0 | 0 | 1 | 0              |
| 0 | 1 | 0 | 0              |
| 0 | 1 | 1 | 1              |
| 1 | 0 | 0 | 1              |
| 1 | 0 | 1 | 1              |
| 1 | 1 | 0 | 1              |
| 1 | 1 | 1 | 1              |

## **Truth Table - examples**

#### **Prove the De Morgan's Law:**

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

| Α | В | $\overline{A+B}$ | $\overline{A} \cdot \overline{B}$ |
|---|---|------------------|-----------------------------------|
| 0 | 0 | 1                | 1                                 |
| 0 | 1 | 0                | 0                                 |
| 1 | 0 | 0                | 0                                 |
| 1 | 1 | 0                | 0                                 |

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

| Α | В | $\overline{A \cdot B}$ | $\overline{A} + \overline{B}$ |
|---|---|------------------------|-------------------------------|
| 0 | 0 | 1                      | 1                             |
| 0 | 1 | 1                      | 1                             |
| 1 | 0 | 1                      | 1                             |
| 1 | 1 | 0                      | 0                             |

**Prove:**  $A + \bar{A} \cdot B = A + B$ 

| Α | В | $A + \overline{A} \cdot B$ | A + B |
|---|---|----------------------------|-------|
| 0 | 0 | 0                          | 0     |
| 0 | 1 | 1                          | 1     |
| 1 | 0 | 1                          | 1     |
| 1 | 1 | 1                          | 1     |

$$A \cdot (A + B) = A$$

| Α | В | $A \cdot (A + B)$ | A |
|---|---|-------------------|---|
| 0 | 0 | 0                 | 0 |
| 0 | 1 | 0                 | 0 |
| 1 | 0 | 1                 | 1 |
| 1 | 1 | 1                 | 1 |

## Truth Table – examples (cont.)

**Prove :**  $A + (B \cdot C) = (A + B) \cdot (A + C)$ 

| A | В | С | $A + (B \cdot C)$ | $(A+B)\cdot(A+C)$ |
|---|---|---|-------------------|-------------------|
| 0 | 0 | 0 | 0                 | 0                 |
| 0 | 0 | 1 | 0                 | 0                 |
| 0 | 1 | 0 | 0                 | 0                 |
| 0 | 1 | 1 | 1                 | 1                 |
| 1 | 0 | 0 | 1                 | 1                 |
| 1 | 0 | 1 | 1                 | 1                 |
| 1 | 1 | 0 | 1                 | 1                 |
| 1 | 1 | 1 | 1                 | 1                 |

#### **SOP and POS**

#### SOP → Sum of Products

Example:  $F_1(A,B,C) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C$ Products

POS  $\rightarrow$  Products  $F_2(A,B,C) = (A+B+C)(A+\overline{B}+\overline{C}) \cdot (\overline{A}+B+C)(\overline{A}+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})$ Sums

Sum

#### **Minterm and Maxterm**

- Minterm is a <u>product term</u> that contains all variables in the function
- Maxterm is a <u>sum term</u> that contains all variables in the function
- For *n* variables, there are 2<sup>n</sup> different *minterms* or maxterms
- For example, in a Boolean Function: Z = f(A, B, C)
  - ABC,  $A\bar{B}\bar{C}$ ,  $\bar{A}BC$  are minterms in SOP (contain all variables)
  - AB,  $\bar{A}C$ , BC are **not** minterms in SOP
  - (A + B + C),  $(\bar{A} + \bar{B} + C)$ ,  $(A + B + \bar{C})$  are maxterms in POS (contain all variables)
  - (A + C), (B + C),  $(\bar{A} + \bar{B})$  are **not** maxterms in POS

#### Minterm and Maxterm – cont.

| Α | В | С | F | Minterm                               | Maxterm                       |
|---|---|---|---|---------------------------------------|-------------------------------|
| 0 | 0 | 0 | 0 | $ar{A}\cdotar{B}\cdotar{\mathcal{C}}$ | A+B+C                         |
| 0 | 0 | 1 | 0 | $ar{A}\cdotar{B}\cdot C$              | $A+B+\bar{C}$                 |
| 0 | 1 | 0 | 1 | $ar{A} \cdot B \cdot ar{C}$           | $A + \bar{B} + C$             |
| 0 | 1 | 1 | 0 | $\bar{A} \cdot B \cdot C$             | $A + \bar{B} + \bar{C}$       |
| 1 | 0 | 0 | 1 | $A\cdot ar{B}\cdot ar{\mathcal{C}}$   | $\bar{A} + B + C$             |
| 1 | 0 | 1 | 1 | $A \cdot \bar{B} \cdot C$             | $\bar{A} + B + \bar{C}$       |
| 1 | 1 | 0 | 1 | $A \cdot B \cdot \bar{C}$             | $\bar{A} + \bar{B} + C$       |
| 1 | 1 | 1 | 0 | $A \cdot B \cdot C$                   | $\bar{A} + \bar{B} + \bar{C}$ |

minterms (maxterms) that are equal to 1 (0) only for a given input

#### Minterm

- AND all the variables
- If the variable in truth table is "0", take its complement in the minterm

#### Maxterm

- OR all the variables
- If the variable in truth table is "1", take its complement in the maxterm

#### **Canonical Form**

- A Boolean functions is said to be in canonical form if it is expressed as
  - a sum of minterms (Canonical SOP CSOP) or
  - a product of maxterms (Canonical POS CPOS)

**POS**: 
$$F_2(A,B,C) = (A+B+C)(A+B+\overline{C})(A+\overline{B}+\overline{C}) \longleftarrow$$
 Canonical form  $F_2(A,B,C) = (A+B+C)(A+\overline{C})(A+\overline{C})(A+\overline{C}) \longleftarrow$  Non Canonical form Non maxterm

#### **SOP and POS** → Truth Table

#### Are the following two Boolean functions same?

$$F_1(A, B, C) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C$$

$$F_2(A,B,C) = (A+B+C)(A+\overline{B}+\overline{C})(\overline{A}+B+C)(\overline{A}+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})$$

#### Let's use truth table to check:

Truth table

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

#### SOP:

 If any <u>PRODUCT</u> in SOP is "1", the function is "1". Otherwise, the function is "0"

#### POS:

- If any <u>SUM</u> in POS is "0", the function is "0".
   Otherwise, the function is "1"
- SOP and POS are different ways to present the same Boolean function

#### Truth Table → CSOP or CPOS

Write the Boolean function represented by the Truth table below in SOP and POS, respectively

#### Truth table:

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

$$F_1(A, B, C) = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C}$$

CSOP → Only includes the terms that make F = 1

$$F_2(A, B, C) = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})$$
  
 $(\overline{A} + \overline{B} + \overline{C})$ 

• CPOS → Only includes the terms that make F = 0

Any Boolean function can be obtained from a given truth table and expressed in either CSOP or CPOS

(if you can choose, pick CSOP if truth table has few 1's and many 0's, CPOS otherwise)

#### Why did we introduce the canonical form (CSOP, CPOS)?



#### Truth Table $\rightarrow$ SOP $\rightarrow$ POS

#### Truth table:

| A | В | С | $F_1$ | $\overline{F_1}$ |
|---|---|---|-------|------------------|
| 0 | 0 | 0 | 0     | 1                |
| 0 | 0 | 1 | 0     | 1                |
| 0 | 1 | 0 | 1     | 0                |
| 0 | 1 | 1 | 0     | 1                |
| 1 | 0 | 0 | 1     | 0                |
| 1 | 0 | 1 | 1     | 0                |
| 1 | 1 | 0 | 1     | 0                |
| 1 | 1 | 1 | 0     | 1                |

start from CSOP of NOT(F) (otherwise, Use SOP: \_complemented POS is obtained from SOP)

$$\overline{F_1}(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + ABC$$

Apply De Morgan's Law:

$$F_{1}(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + ABC$$

**Use POS directly from truth table:** 



$$F_1(A,B,C) = (A+B+C)(A+B+\overline{C})(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+\overline{C})$$

POS can be obtained from SOP (and vice versa) by starting from complemented SOP of F and applying the De Morgan's Law

## Example-1: Non-Canonical -> Canonical Form via Truth Table

**Example:** For the given Boolean function below, find a canonical *minterm* and *maxterm* expression.

- 1) obtain the truth table from the given function
- 2) find *minterm* or *maxterm* expression from truth table (CSOP or CPOS)

#### Truth table:

| X | У | Z | F |  |
|---|---|---|---|--|
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 | 1 |  |
| 0 | 1 | 1 | 1 |  |
| 1 | 0 | 0 | 0 |  |
| 1 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 0 |  |

Canonical *minterm* expression:

$$F(x, y, z) = \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz + xy\bar{z}$$

(only contains the *minterms* that make the function = 1)

Canonical maxterm expression:

$$F(x, y, z) = (\bar{x} + y + z)(\bar{x} + y + \bar{z})(\bar{x} + \bar{y} + \bar{z})$$

(only contains the *maxterms* that make the function = 0)

### Example-2: Non-Canonical -> Canonical Form via Postulates and Theorems

**Example:** For the given Boolean functions below, convert it to canonical *minterm* or maxterm expression.

(\*Using postulates/theorem to expand the given function to canonical form)

SOP 
$$\rightarrow$$
 CSOP:  $F(x, y, z) = \bar{x}y + xz$   
 $= \bar{x}y \cdot 1 + x \cdot 1 \cdot z$   
 $= \bar{x}y(z + \bar{z}) + x(y + \bar{y})z$   
 $= \bar{x}yz + \bar{x}y\bar{z} + xyz + x\bar{y}z$   
SOP  $\rightarrow$  CPOS:  $F(x, y, z) = \bar{x}y + xz$ 

For missing literals, complete minterms through postulates:  $A \cdot 1 = A$  and  $A + \overline{A} = 1$ 

- b) apply De Morgan's law
- c) expand
- d) re-apply De Morgan's law
- 2) for missing literals, complete maxterms through distribution postulate

maxterms through distributio postulate 
$$\cdot (\bar{x} + y + z) \cdot (\bar{x} + \bar{y} + z)$$

SOP → CPOS: (CSOP – Canonical POS)

Use distribution postulate:

$$A + (BC) = (A + B)(A + C)$$
  
( $A = \text{incomplete sum}$ ,

C = NOT(B) = missing literal

$$x+y = (x + y) + \mathbf{z}\overline{\mathbf{z}}$$
$$= (x + y + \mathbf{z})(x + y + \overline{\mathbf{z}}) - \mathbf{z}$$

 $= \overline{x\overline{x} + x\overline{z} + \overline{x}\overline{y} + \overline{y}\overline{z}} \quad \mathbf{c}_{,/}$  $=(x+y)(\bar{x}+z)(y+z)$  d

$$(x+y+z)\cdot(x+y+\bar{z})\cdot(\bar{x}+y+z)\cdot(\bar{x}+\bar{y}+z)$$

 $= \overline{x}y + xz$ 

 $=(x+\bar{y})(\bar{x}+\bar{z})$  b

 $\cdot (x + y + z) \cdot (\bar{x} + y + z)$ 

## **Summary**

- Postulates and theorems of Boolean algebra
- Three binary operators: AND, OR and NOT
- Boolean Functions
- Truth table and Boolean function evaluation using truth table
- Boolean function in SOP or POS form
- Obtain SOP or POS from truth table
- Minterm and maxterm
- Canonical form of Boolean function
- Convert non-canonical form to canonical SOP or POS expressions.