ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Π рофиль: «Анализ данных и принятие решений в экономике и финанcax» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 123

- 1. Дайте определение случайной величины, которая имеет гамма-распределение $\Gamma(\alpha,\lambda)$, и выведите основные свойства гамма-расределения. Запишите формулы для математичсекого ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ гамма-распределения Здесь написанно много всего интересного и полезного о гамма-распределении
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;9] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.059 \le Z \le 0.348)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{3x}{2}, 0 \leqslant x \leqslant \frac{1}{3} \approx 0,333; \\ 1 \frac{1}{6x}, x \geqslant \frac{1}{3}; \end{cases}$ 2) Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x < 0; \\ \frac{3}{2}, 0 \leqslant x \leqslant \frac{1}{3} \approx 0,333; \\ \frac{1}{6x^2}, x \geqslant \frac{1}{3}; \end{cases}$

3) вероятность равна: $\P(0.059 \le Z \le 0.348) = 0.43307$.

3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 85, 7143%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 96%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 782757789696

- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i=1...25. Все оценки известны $x_0 = 55, y_0 = 55, \ x_1 = 88, y_1 = 86, \ x_2 = 42, y_2 = 96, \ x_3 = 69, y_3 = 93, \ x_4 = 43, y_4 = 64, \ x_5 = 42, y_5 = 86, \ x_6 = 35, y_6 = 45, \ x_7 = 60, y_7 = 55, \ x_8 = 41, y_8 = 90, \ x_9 = 62, y_9 = 57, \ x_{10} = 52, y_{10} = 53, \ x_{11} = 67, y_{11} = 32, \ x_{12} = 72, y_{12} = 98, \ x_{13} = 42, y_{13} = 84, \ x_{14} = 97, y_{14} = 51, \ x_{15} = 32, y_{15} = 89, \ x_{16} = 38, y_{16} = 84, \ x_{17} = 42, y_{17} = 84, \ x_{18} = 61, y_{18} = 94, \ x_{19} = 96, y_{19} = 31, \ x_{20} = 67, y_{20} = 56, \ x_{21} = 66, y_{21} = 67, \ x_{22} = 41, y_{22} = 95, \ x_{23} = 54, y_{23} = 95, \ x_{24} = 36, y_{24} = 80$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
 - 1) Ковариация = 92.6667 2) Коэффициент корреляции = 0.3814
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	28	23	3
X = 300	2	12	32

Из Ω случайным образом без возвращения извлекаются 5 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.75 2) стандартное отклонение $\sigma(\bar{X})$: 244.6913
- 3) ковариацию $Cov(\bar{X}, \bar{Y})$: 3.7904
- 6. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X = -6	X=-5	X=-4
Y = 5	0.039	0.207	0.054
Y = 6	0.035	0.255	0.41

Дарья получила, что E(Y|X+Y=1)=5.82286. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

$$E(Y|X + Y = 1) = \frac{\sum (P(X=1-y_i, y=y_i) * y_i)}{\sum (P(X=1-y_i, y=y_i)}$$

Ответ: 5.82286

Подготовил

Рябов П.Е. Рябов

Утверждаю:

Первый заместитель

руководителя департамента

Дата 01.06.2021

Режии Феклин В.Г.