МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №3.7.1

Скин-эффект

Пилюгин Л.С. Б02-212 Победин Н.К. Б02-212 17 января 2024 г.

1 Аннотация

Цель работы: исследовать явление проникновение переменного магнитного поля в медный полый цилиндр

Оборудование: генератор сигналов АКИП-3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS-620, RLC-метр

2 Теоритические сведения

В работе изучается скин-эффект в длинном тонкостенном медном цилиндре, помещённом внутрь соленоида.

Пусть цилиндр достаточно длинный, так что в нём можно пренебречь краевыми эффектами. В этом приближении магнитное поле \vec{H} всюду направлено по оси системы, а вихревое электрическое поле \vec{E} будет всюду перпендикулярно радиусу. Все величины будем считать колеблющимися по гармоническому закону с некоторой частотой w. Тогда

$$H_z = H(r)e^{iwt}$$

$$E_{\varphi} = E(r)e^{iwt}$$

где H(r) и E(r) — комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть

непрерывны касательные к поверхности компоненты как \vec{E} , так и \vec{B} , поэтому E(r) и H(r) непрерывны во всей исследуемой области.

Пусть длинный полый цилиндр имеет радиус a и толщину стенки $h \ll a$. Последнее условие позволяет для описания поля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным

$$H_z(r,t) = H_1 e^{iwt}$$

где $H_1 = {\rm const} - {\rm amnлитуда}$ поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции в интегральной форме:

$$E(r) = -\frac{1}{2}\mu_0 r \cdot iw H_1$$

Отсюда получим связь амплитуд колебаний электрического и магнитного полей на внутренней границе цилиндра:

$$E_1 = -\frac{1}{2}iwa\mu_0 H_1$$

Поле внутри тонкой стенки цилиндра описывается уравнением скин-эффекта в плоской геометрии.

$$\frac{d^2H}{dx^2} = iw\sigma\mu_0H$$

 $\mu \approx 1$.

Граничные условия

$$H(0) = H_0, \quad H(h) = H_1$$

 H_0 — амплитуда колебаний магнитного поля на внешней границе цилиндра. Её значение определяется только током в обмотке соленоида, и совпадает с полем внутри соленоида в отсутствие цилиндра. Величина H_1 также поддаётся непосредственному измерению — это амплитуда колебаний однородного поля внутри цилиндра. Поля H_0 и H_1 не являются независимыми — они связаны через решение уравнений поля вне проводника.

$$H(x) = H_0 e^{-\alpha x} + 2B \operatorname{sh} \alpha x$$

$$\alpha = \sqrt{iw\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta} e^{i\pi/4}$$

$$\delta = \sqrt{\frac{2}{w\sigma\mu_0}}$$

 δ — глубина скин-слоя.

$$H_1 = \frac{H_0}{\operatorname{ch}\alpha h + \frac{1}{2}\alpha a \operatorname{sh}\alpha h}$$

При малых частотах ($\alpha h \ll 1$)

$$H_1 \approx \frac{H_0}{1 + i\frac{\alpha h}{\delta^2}}$$

При $h \ll \delta \ll \alpha$

$$\frac{H_1}{H_0} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4} \left(ah\sigma\mu_0 w\right)^2}}$$

Колебания H_1 отстают по фазе от H_2 на ψ

$$tg \, \psi = \frac{ah}{\delta^2}$$

При больших чатотах $\delta \ll h$ и $\alpha h \gg 1$ и $\alpha a \gg 1$

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}}{a} e^{-h/\delta} e^{-i(\pi/4 + h/\delta)}$$

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{w\sigma\mu_0}{2}}$$

3 Оборудование

Переменное магнитное поле создается с помощью соленоида 1, намотанного на цилиндрический каркас 2 из поливинилхлорида, который подключается к генератору сигналов ЗГ (канал A). Внутри каркаса расположен медный экран 3 в виде полого цилиндра.

Действующее значение переменного тока в цепи соленоида измеряется цифровым амперметром А Действующее значение переменного напряжения на измерительной катушке 4 измеряется цифровым вольтметром V.

Рис. 3. Распределение амплитуды колебаний магнитного поля (пунктир) и его мгновенного значения при некотором t (сплошная) в зависимости от расстояния до внешней стенки цилиндра. Слева случай низких частот ($\delta \gg h$), справа — скин-эффект при высоких частотах ($\delta \ll h$)

Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На канал Y осциллографа подается напряжение с измерительной катушки, а на канал X — напряжение с резистора R, которое пропорционально току в цепи соленоида.

Для другой схемы RLC-метр, измеряющий индуктивность, подключается к катушке 1 через клеммы 5 и 6 на панеле установки. Другие приборы при этом должны быть отсоединены от цепи, т.к. RLC-метр измеряет индуктивность активным образом.

Рис. 5. Схема подключения RLC-метра

3.1 Измерение отношения амплитуд магнитного поля внутри и вне экрана

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле H_1e^{iwt} . Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN \frac{dB_1(t)}{dt} = -iw\mu_0 SN H_1 e^{iwt}$$

Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SNw}{\sqrt{2}}\mu_0 H_1$$

$$H_1 \ U/\nu$$

$$H_0 \ I$$

$$\frac{H_1}{H_0} = \text{const} \cdot \frac{U}{\nu I}$$

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана может быть измерено по отношению $U/\nu I$ при разных частотах. При низких частотах

$$\frac{H_1}{H_0} \to 1$$

3.2 Определение проводимости материала экрана по фазовому сдвигу

В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения в меньшую сторону. Для определения σ предлагается использовать частотную зависимость фазового сдвига между магнитными полями внутри и вне экрана при низких частотах и зависимость при высоких частотах.

 $\operatorname{tg}\psi(\nu)$ — линейная зависимость, проходящая через 0 (для низких частот). Для высоких частот такой зависимостью аппроксимируется $\psi(\sqrt{\nu}) - \pi/4$.

На входной канал Y осциллографа подаётся сигнал с измерительной катушки, который пропорционален не полю внутри экрана, а его производной по времени, а это означает, что появляется дополнительный сдвиг по фазе на $\pi/2$. Поэтому

$$\varphi = \psi + \pi/2$$

3.3 Влияние скин-эффекта на индуктивность катушки

Из-за скин эффекта индуктивность соленоида с медным цилиндрическим экраном внутри будет зависеть от частоты тока. На высоких частотах магнитное поле не проникает внутрь соленоида (за экран), поэтому суммарный магнитный поток, пронизывающий катушку, уменьшается, и, соответственно, уменьшается и индуктивность. При низких частотах, когда толщина скин-слоя δ больше толщины медного экрана h, магнитное поле проникает внутрь катушки, однако его амплитуда падает и возникает разность фаз между колебаниями поля за экраном и перед ним. Из-за чего также изменяется магнитный поток, а следовательно — и индуктивность.

Рассмотрим магнитный поток через катушку как сумму двух магнитных потоков: пронизывающий область между катушкой и цилиндрическим экраном Φ_{out} и пронизывающий область за экраном Φ_{in} .

$$\Phi = \Phi_{out} + \Phi_{in} = H_0 S_0 + H_1 S_1 = LI$$

 H_0 и H_1 — мгновенные значения магнитного поля внутри и снаружи цилиндра при данном токе I, S_0 и S_1 — площади внешней и внутренней (по отношению к цилиндрическому экрану) областей соответственно.

Очевидно, что минимальная индуктивность будет в случае, когда $\Phi_{in} = 0$.

$$L_{min} = \frac{\Phi_{out}}{I}$$

$$\Phi_{in} = H_1 S_1 = \frac{H_1 S_1}{H_0 S_0} \Phi_{out} = \frac{\Phi_{out}}{n} \frac{S_1}{S_0}$$

$$n = \frac{H_0}{H_1} \frac{1}{\cos \psi}$$

$$\Phi_{max} = \Phi_{out} + \Phi_{in_{max}} = H_0 \left(S_0 + S_1 \right) = L_{max} I_m$$

$$\frac{S_1}{S_0} = \frac{L_{max} - L_{min}}{L_{min}}$$

$$L = L_{min} + \frac{L_{max} - L_{min}}{n}$$

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0 \sigma \nu)^2$$

По углу наклона прямой можно определить σ .

4 Результаты измерений

$$D=45 \ \mathrm{mm}$$
 $a=D/2$ $h=1.5 \ \mathrm{mm}$

Таблица 1. Низкие частоты

ν, Гц	V, B	I, MA
$20,00 \pm 0,10$	$(1389,0 \pm 1,0) \cdot 10^{-4}$	$495,550 \pm 0,010$
$30,00 \pm 0,10$	$(2047,0\pm1,0)\cdot10^{-4}$	$492,800 \pm 0,010$
$40,00 \pm 0,10$	$(2666,0\pm1,0)\cdot10^{-4}$	$488,080 \pm 0,010$
$50,00 \pm 0,10$	$(3240,0\pm1,0)\cdot10^{-4}$	$482,240 \pm 0,010$
$60,00 \pm 0,10$	$(3766,0\pm1,0)\cdot10^{-4}$	$475,740 \pm 0,010$
$70,00 \pm 0,10$	$(4243,0 \pm 1,0) \cdot 10^{-4}$	$468,820 \pm 0,010$
$80,00 \pm 0,10$	$(4670,0\pm1,0)\cdot10^{-4}$	$461,730 \pm 0,010$
$90,00 \pm 0,10$	$(5050,0\pm1,0)\cdot10^{-4}$	$454,680 \pm 0,010$
$100,00 \pm 0,10$	$(5387,0\pm1,0)\cdot10^{-4}$	$447,810 \pm 0,010$
$110,00 \pm 0,10$	$(5684,0\pm1,0)\cdot10^{-4}$	$441,220 \pm 0,010$
$120,00 \pm 0,10$	$(5946,0\pm1,0)\cdot10^{-4}$	$434,940 \pm 0,010$

$$b = 5116 \pm 4 \ \Gamma \text{u}^2 \cdot \text{A}^2/\text{B}^2$$

$$k = (17844 \pm 9) \cdot 10^{-5} \ \text{A}^2/\text{B}^2$$

$$\xi_0 = \sqrt{1/b} = (13981 \pm 6) \cdot 10^{-6} \ \text{B}/\Gamma \text{u} \cdot \text{A}$$

$$\sigma = \frac{\sqrt{k/b}}{\pi a h \mu_0} = (4432 \pm 2) \cdot 10^4 \ \text{Cm/m}$$

Таблица 2. Высокие частоты

ν, Гц	V, B	I, MA	φ	T
$120,0 \pm 1,0$	$(5946,0\pm1,0)\cdot10^{-4}$	$(4349400,0\pm 1,0)\cdot 10^{-4}$	$2,80 \pm 0,05$	$8,40 \pm 0,05$
$170,0 \pm 1,0$	$(6847,0\pm1,0)\cdot10^{-4}$	$(4081000,0\pm1,0)\cdot10^{-4}$	$2,20 \pm 0,05$	$5,90 \pm 0,05$
$220,0 \pm 1,0$	$(7327,0\pm1,0)\cdot10^{-4}$	$(3904800,0 \pm 1,0) \cdot 10^{-4}$	$2,70 \pm 0,05$	$4,60 \pm 0,05$
$270,0 \pm 1,0$	$(7590,0\pm1,0)\cdot10^{-4}$	$(3783600,0\pm1,0)\cdot10^{-4}$	$3,10 \pm 0,05$	$7,50 \pm 0,05$
$320,0 \pm 1,0$	$(7735,0\pm1,0)\cdot10^{-4}$	$(3694500,0\pm1,0)\cdot10^{-4}$	$3,60 \pm 0,05$	$6,30 \pm 0,05$
$370,0 \pm 1,0$	$(7803,0\pm1,0)\cdot10^{-4}$	$(3625700,0\pm 1,0)\cdot 10^{-4}$	$2,70 \pm 0,05$	$5,50 \pm 0,05$
$420,0 \pm 1,0$	$(7839,0 \pm 1,0) \cdot 10^{-4}$	$(3568900,0\pm1,0)\cdot10^{-4}$	$2,60 \pm 0,05$	$4,80 \pm 0,05$
$470,0 \pm 1,0$	$(7844,0 \pm 1,0) \cdot 10^{-4}$	$(3519300,0\pm 1,0)\cdot 10^{-4}$	$2,40 \pm 0,05$	$4,30 \pm 0,05$
$520,0 \pm 1,0$	$(7824,0\pm1,0)\cdot10^{-4}$	$(3473700,0\pm 1,0)\cdot 10^{-4}$	$2,10 \pm 0,05$	$3,90 \pm 0,05$
$570,0 \pm 1,0$	$(7789,0 \pm 1,0) \cdot 10^{-4}$	$(3430600,0\pm 1,0)\cdot 10^{-4}$	$1,80 \pm 0,05$	$3,60 \pm 0,05$
$620,0 \pm 1,0$	$(7743,0 \pm 1,0) \cdot 10^{-4}$	$(3389000,0\pm 1,0)\cdot 10^{-4}$	$1,70 \pm 0,05$	$3,20 \pm 0,05$
$670,0 \pm 1,0$	$(7688,0 \pm 1,0) \cdot 10^{-4}$	$(3348200,0\pm 1,0)\cdot 10^{-4}$	$3,60 \pm 0,05$	$7,50 \pm 0,05$
$720,0 \pm 1,0$	$(7628,0\pm1,0)\cdot10^{-4}$	$(3307300,0 \pm 1,0) \cdot 10^{-4}$	$3,60 \pm 0,05$	$7,00 \pm 0,05$
$770,0 \pm 1,0$	$(7561,0\pm1,0)\cdot10^{-4}$	$(3267500,0\pm1,0)\cdot10^{-4}$	$3,40 \pm 0,05$	$6,60 \pm 0,05$
$820,0 \pm 1,0$	$(7488,0 \pm 1,0) \cdot 10^{-4}$	$(3227400,0\pm 1,0)\cdot 10^{-4}$	$3,10 \pm 0,05$	$6,20 \pm 0,05$
$870,0 \pm 1,0$	$(7411,0 \pm 1,0) \cdot 10^{-4}$	$(3187700,0 \pm 1,0) \cdot 10^{-4}$	$2,90 \pm 0,05$	$5,80 \pm 0,05$
$920,0 \pm 1,0$	$(7331,0 \pm 1,0) \cdot 10^{-4}$	$(3147600,0\pm 1,0)\cdot 10^{-4}$	$2,70 \pm 0.05$	$5,50 \pm 0,05$
$970,0 \pm 1,0$	$(7247,0\pm1,0)\cdot10^{-4}$	$(3107400,0\pm 1,0)\cdot 10^{-4}$	$5,20 \pm 0,05$	$10,40 \pm 0,05$
$1020,0 \pm 1,0$	$(7161,0 \pm 1,0) \cdot 10^{-4}$	$(3067200,0\pm1,0)\cdot10^{-4}$	$4,90 \pm 0,05$	$9,80 \pm 0,05$
$1070,0 \pm 1,0$	$(7074,0 \pm 1,0) \cdot 10^{-4}$	$(3026800,0 \pm 1,0) \cdot 10^{-4}$	$4,70 \pm 0.05$	$9,40 \pm 0,05$
$1120,0 \pm 1,0$	$(6984,0 \pm 1,0) \cdot 10^{-4}$	$(2986500,0\pm1,0)\cdot10^{-4}$	$4,50 \pm 0,05$	$9,00 \pm 0,05$
$1407,0 \pm 1,0$	$(6459,0\pm1,0)\cdot10^{-4}$	$(2756000,0 \pm 1,0) \cdot 10^{-4}$	$3,60 \pm 0,05$	$7,20 \pm 0,05$
$1767,0 \pm 1,0$	$(5819,0\pm1,0)\cdot10^{-4}$	$(2483700,0\pm 1,0)\cdot 10^{-4}$	$2,70 \pm 0,05$	$5,70 \pm 0,05$
$2219,0 \pm 1,0$	$(5099,0 \pm 1,0) \cdot 10^{-4}$	$(2182700,0 \pm 1,0) \cdot 10^{-4}$	$4,90 \pm 0,05$	$9,20 \pm 0,05$
$2787,0 \pm 1,0$	$(4346,0\pm1,0)\cdot10^{-4}$	$(1872300,0 \pm 1,0) \cdot 10^{-4}$	$3,90 \pm 0,05$	$7,20 \pm 0,05$
$3501,0 \pm 1,0$	$(3611,0 \pm 1,0) \cdot 10^{-4}$	$(1572100,0 \pm 1,0) \cdot 10^{-4}$	$3,30 \pm 0,05$	$5,80 \pm 0,05$
$4397,0 \pm 1,0$	$(2933.0 \pm 1.0) \cdot 10^{-4}$	$(1297400,0\pm 1,0)\cdot 10^{-4}$	$2,70 \pm 0.05$	$4,60 \pm 0,05$
$5523,0 \pm 1,0$	$(2331,0\pm1,0)\cdot10^{-4}$	$(1055900,0 \pm 1,0) \cdot 10^{-4}$	$5,50 \pm 0,05$	$8,80 \pm 0,05$
$6936,0 \pm 1,0$	$(1814.0 \pm 1.0) \cdot 10^{-4}$	$(849200,0\pm 1,0)\cdot 10^{-4}$	$4,50 \pm 0,05$	$7,10 \pm 0,05$
$8712,0 \pm 1,0$	$(1386,0\pm1,0)\cdot10^{-4}$	$(675400,0 \pm 1,0) \cdot 10^{-4}$	$3,90 \pm 0,05$	$5,60 \pm 0,05$
$10942,0 \pm 1,0$	$(1042,0\pm1,0)\cdot10^{-4}$	$(528000,0\pm 1,0)\cdot 10^{-4}$	$6,50 \pm 0,05$	$9,00 \pm 0,05$
$13744,0 \pm 1,0$	$(766,0 \pm 1,0) \cdot 10^{-4}$	$(396710,0 \pm 1,0) \cdot 10^{-4}$	$5,50 \pm 0,05$	$7,20 \pm 0,05$
$17262,0 \pm 1,0$	$(573.0 \pm 1.0) \cdot 10^{-4}$	$(288010,0\pm 1,0)\cdot 10^{-4}$	$4,80 \pm 0,05$	$5,80 \pm 0,05$
$21681,0 \pm 1,0$	$(387.0 \pm 1.0) \cdot 10^{-4}$	$(188040,0\pm1,0)\cdot10^{-4}$	$3,90 \pm 0,05$	$4,60 \pm 0,05$
$27232,0 \pm 1,0$	$(265,0\pm1,0)\cdot10^{-4}$	$(92870,0\pm1,0)\cdot10^{-4}$	$6,60 \pm 0,05$	$7,30 \pm 0,05$
$34203,0 \pm 1,0$	$(149,0 \pm 1,0) \cdot 10^{-4}$	$(29238,0 \pm 1,0) \cdot 10^{-4}$	$6,40 \pm 0,05$	$6,80 \pm 0,05$

$$k = (-7 \pm 7) \cdot 10^{-3} \; \Gamma \text{L}^{-1}$$

$$\sigma = \frac{2k}{ah\mu_0} = (-3 \pm 3) \cdot 10^8 \text{ Cm/m}$$

Значение сильно отличается от истины и погрешность велика, т.к. погрешность тангенса сильно растет при приближении к π , а также точности определения разности фаз

Таблица 3. Индуктивность

ν, Гц	L , м Γ н
50,0	9,6
75,0	9,02
100,0	8,29
150,0	6,91
250,0	5,02
300,0	4,46
500,0	3,314
800,0	2,816
1500,0	2,525
2000,0	2,44
2500,0	2,38
3000,0	2,35
5000,0	2,37
6000,0	2,402
7500,0	2,426
10000,0	2,475
15000,0	2,744
20000,0	3,25
25000,0	4,4
30000,0	11,629

осциллографом не хватает.

$$k = (193 \pm 7) \cdot 10^{-4} \, \Gamma \text{H}^{-0.5}$$

$$\sigma = \frac{k^2}{h^2 \pi \mu_0} = (42 \pm 3) \cdot 10^6 \text{ Cm/m}$$

$$L_{max}=9,6$$
 м Γ н $L_{min}=2,38$ м Γ н

$$k = (28.2 \pm 1.4) \cdot 10^{-6} \, \text{Гц}^{-2}$$

$$\sigma = \frac{\sqrt{k}}{\pi a h \mu_0} = (39.8 \pm 1.0) \cdot 10^6 \text{ Cm/m}$$
$$\sigma_0 = 5.9 \cdot 10^7 \text{ Cm/m}$$

5 Вывод

В работе были получены значения удельной проводимости меди 4-мя способами и исследована зависимость ослабления магнитного поля от частоты.