ACT: <u>Architectural Carbon</u> Modeling <u>Tools</u>

@ MICRO 2024 Tutorial

Leo Han Udit Gupta

ACT Tutorial: Today

Time	Topic
1:00 – 1:15pm	Welcome to the ACT tutorial!
1:15 – 1:30pm	Motivation: Understanding the source of computing's emissions
1:30 – 2:15pm	Overview of ACT: An Architectural Carbon Modeling Tool
2:15 –2:45pm	Hands-on ACT demo's
2:45 – 3:00pm	Extending ACT
3:00 – 3:30pm	Coffee break

Where does computing's carbon footprint come from?

Where does computing's carbon footprint come from?

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Life Cycle Analysis: key to understanding carbon emissions

Life Cycle Analysis: key to understanding carbon emissions

Life Cycle Analysis: key to understanding carbon emissions

→ Product Transport →

Manufacturing accounts for 74% of Apple's end to end breakdown in 2019

Manufacturing

Integrated circuits Manufacturing account for 33% of Integrated Circuit emissions (SoCs, DRAMs, NAND Flash) Boards & Flexes Aluminum Business travel Recycling Other Product transport -Other iOS macOS Idle macOS Active Displays **Product Use** Electronics Steel Assembly

Product Use

Recycling

Aluminum

Other

Manufacturing accounts for 74% of Apple's end to end breakdown in 2019

Integrated circuits account for 33% of emissions (SoCs, DRAMs, NAND Flash)

Business travel

Product transport

Recycling

Aggregating across hundreds of millions of phones, iPads, and other consumer devices sold every year!

Carbon footprint characteristics vary across devices

Data from public industry validated sustainability reports and life cycle analyses

Carbon footprint characteristics vary across devices

Data from public industry validated sustainability reports and life cycle analyses

Roughly 75% life cycle emissions for battery operated devices comes from hardware manufacturing.

Carbon footprint characteristics vary across devices

Data from public industry validated sustainability reports and life cycle analyses

Roughly 75% life cycle emissions for battery operated devices comes from hardware manufacturing.

Emissions for
always-connected
devices come
mainly from
energy
consumption

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Technology company

Technology company

Technology company

Technology company

Technology company

Technology company

Scope 2 emissions come from <u>opex-related</u> activities Scope 1 and Scope 3 emissions come from <u>capex-related</u> activities

Economic incentives and carbon sequestration

How Microsoft is using an internal carbon fee to reach its carbon negative goal

March 24, 2022 • 2 min read

Thought leadership, Sustainability

Projecting future <u>annual</u> cost of over \$1 billion

Google: Estimates \$50-\$300/tCO2e as carbon sequestration scales up to 20% of the cost of a server!

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Chip manufacturing is energy intensive

Source: 2021 corporate sustainability reports

Semiconductor fab

Wafer & gas (10%)

Gupta et. al. Chasing Carbon: The Elusive Environmental Footprint of Computing (HPCA 2021)

"Green" powered fabs are not enough

TSMC plans for **25% renewable by 2025** and

100% renewable by 2050.

Semiconductor fab
Wafer & gas (10%)
PFCs (10%)
Energy
Chemicals (60%)

(15%)

100% Renewable powered semiconductor fab

Reduces manufacturing footprint by 2.5x

We must elevate carbon as a first order design target and constraint alongside performance, power, energy, and area

ACT Tutorial: Today

Time	Topic
1:00 – 1:15pm	Welcome to the ACT tutorial!
1:15 – 1:30pm	Motivation: Understanding the source of computing's emissions
1:30 – 2:15pm	Overview of ACT: An Architectural Carbon Modeling Tool
2:15 –2:45pm	Hands-on ACT demo's
2:45 – 3:00pm	Extending ACT
3:00 – 3:30pm	Coffee break

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Between 2017 and 2019 the Pareto frontier has shifted to the right prioritizing performance.

Designing sustainable systems requires shifting the frontier down.

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Between 2017 and 2019 the Pareto frontier has shifted to the right prioritizing performance.

Designing sustainable systems requires shifting the frontier down.