

Pattern Recognition

- Typical Applications
 - Speech Recognition
 - Motion Estimation in Video Coding
 - Data Base Image Retrieval
 - Written Word Recognition
 - Bioinformatis

• The Goal:

- Given a set of reference patterns known as TEMPLATES,
- find the best match for unknown pattern
- each class represented by a single typical pattern.
- requires an appropriate "measure" to quantify similarity or matching.

- The cost "measure":
 - <u>deviations</u> between the template and the test pattern.
 - For example:
 - The word beauty may have been read a beeauty or beuty, etc., due to errors.
 - The same person may speak the same word differently.

Template Matching Method

- Optimal path searching techniques
- Correlation
- Deformable models

 Representation: Represent the template by a sequence of measurement vectors or string patterns

Template: $\underline{r}(1), \underline{r}(2), ..., \underline{r}(I)$

Test pattern: $\underline{t}(1), \underline{t}(2), ..., \underline{t}(J)$

Template:
$$\underline{r}(1), \underline{r}(2), ..., \underline{r}(I)$$

Test pattern:
$$\underline{t}(1), \underline{t}(2), ..., \underline{t}(J)$$

- In general $I \neq J$
- We need to find an appropriate distance measure between test and reference patterns.

- Form a grid with I points (template) in horizontal and J points (test) in vertical
- Each point (i,j) of the grid measures the distance between $\underline{r}(i)$ and $\underline{t}(j)$

- Path: A path through the grid, from an initial node (i_0, j_0) to a final one (i_f, j_f) , is an ordered set of nodes $(i_0, j_0), (i_1, j_1), (i_2, j_2) \dots (i_k, j_k) \dots (i_f, j_f)$

— Path: A path is complete path if:

$$(i_0, j_0) = (0, 0), (i_1, j_1), (i_2, j_2), \dots, (i_f, j_f) = (I, J)$$

Each path is associated with a cost

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

where K is the number of nodes across the path

- The cost up to node (i_k, j_k) is: $D(i_k, j_k)$
- By convention
 - -D(0,0)=0
 - -d(0,0)=0

The equation

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

assumes that each node has been associated with some cost

The equation

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

assumes that each node has been associated with some cost

- However, each transition (i_{k-1}, j_{k-1}) to (i_k, j_k) may also associate with a cost
- The new equation is:

$$D = \sum_{k} d(i_{k}, j_{k}|i_{k-1}, j_{k-1})$$

$$D = \sum_{k} d(i_{k}, j_{k}|i_{k-1}, j_{k-1})$$

- Search for the path with the optimal cost $D_{\it opt.}$
- The matching cost between template \underline{r} and test pattern \underline{t} is $D_{opt.}$
- Costly operation
- Needs efficient computation

Optimal path:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

Optimal path:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

• Let (i,j) be an intermediate node, i.e.

$$(i_0, j_0) \rightarrow \dots \rightarrow (i, j) \rightarrow \dots \rightarrow (i_f, j_f)$$

Optimal path:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

• Let (i,j) be an intermediate node, i.e.

$$(i_0, j_0) \rightarrow \dots \rightarrow (i, j) \rightarrow \dots \rightarrow (i_f, j_f)$$

Then write the optimal path through (i, j)

$$(i_0,j_0) {\displaystyle \mathop {igwap >} \limits_{(i,j)}^{opt}} (i_f,j_f)$$

Bellman's Principle:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$
 can be obtained as

$$(i_0, j_0) \xrightarrow{opt} (i, j) \oplus (i, j) \xrightarrow{opt} (i_f, j_f)$$

• meaning: The overall optimal path from (i_0,j_0) to (i_p,j_p) through (i,j) is the concatenation of the optimal paths from (i_0,j_0) to (i,j) and from (i,j) to (i_p,j_p)

Bellman's Principle:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f) \Leftrightarrow (i_0, j_0) \xrightarrow{opt} (i, j) \oplus (i, j) \xrightarrow{opt} (i_f, j_f)$$

• Let $D_{opt.}(i_{k-1},j_{k-1})$ is the optimal path to reach (i_{k-1},j_{k-1}) from (i_0,j_0) , then Bellman's principle is stated as:

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

- We don't need to search the whole space to find the optimal path
- Global and local constraints may be imposed to reduce the search space

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

- We don't need to search the whole space to find the optimal path
- Global and local constraints may be imposed to reduce the search space

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

- We don't need to search the whole space to find the optimal path
- Global and local constraints may be imposed to reduce the search space

Application of TM in Text Matching: The Edit Distance

- The Edit distance
 - It is used for matching written words.
 Applications:
 - Automatic Editing
 - Text Retrieval

Application of TM in Text Matching: The Edit Distance

- The Edit distance
 - It is used for matching written words.
 Applications:
 - Automatic Editing
 - Text Retrieval
 - The measure to be adopted for matching, must take into account:
 - Wrongly identified symbols
 e.g. "befuty" instead of "beauty"
 - Insertion errors, e.g. "bearuty"
 - Deletion errors, e.g. "beuty"

Examples:

- Input: str1 = "geek", str2 = "gesek"
- Output: 1
- Explanation: We can convert str1 into str2 by inserting a 's'.
- Input: str1 = "cat", str2 = "cut"
- Output: 1
- Explanation: We can convert str1 into str2 by replacing 'a' with 'u'.
- Input: str1 = "sunday", str2 = "saturday"
- Output: 3
- Explanation: Last three and first characters are same. We basically need to convert "un" to "atur". This can be done using below three operations. Replace 'n' with 'r', insert t, insert a

• Edit distance: Minimal total number of changes, *C*, insertions *I* and deletions *R*, required to change pattern *A* into pattern *B*,

$$D(A,B) = \min_{j} [C(j) + I(j) + R(j)]$$

where j runs over All possible variations of symbols, in order to convert $A \longrightarrow B$

<u>Edit distance</u>: <u>Minimal</u> total number of changes, *C*, insertions *I* and deletions *R*, required to change pattern *A* into pattern *B*,

$$D(A,B) = \min_{j} [C(j) + I(j) + R(j)]$$

where j runs over All possible variations of symbols, in order to convert $A \longrightarrow B$

• Example: many ways to change beuty to beauty

- The optimal path search algorithm can be used, provided we know
 - Initial conditions
 - Search space
 - Allowable transitions
 - Distance measure

- Cost D(0,0) = 0,
- Complete path is searched
- Allowable predecessors and costs

$$- (i-1, j-1) \to (i, j)$$

$$d(i, j | i-1, j-1) = \begin{cases} 0, & \text{if } t(i) = r(j) \\ 1, & t(i) \neq r(j) \end{cases}$$

- Horizontal
$$d(i, j|i-1, j) = 1$$

- Vertical
$$d(i, j|i, j-1) = 1$$

$$i-1, j$$

$$i-1, j-1$$

$$i, j-1$$

• Examples:

• Examples:

- The Algorithm
 - D(0,0)=0
 - *− For i*=1, *to I*
 - D(i,0)=D(i-1,0)+1
 - END $\{FOR\}$
 - For j=1 to J
 - D(0,j)=D(0,j-1)+1
 - $END{FOR}$
 - For i=1 to I
 - For j=1, to J
 - $-C_1 = D(i-1,j-1) + d(i,j \mid i-1,j-1)$
 - $C_2 = D(i-1,j)+1$
 - $C_3 = D(i,j-1)+1$
 - $-D(i,j)=min(C_1,C_2,C_3)$
 - *END* {*FOR*}
 - END $\{FOR\}$
 - D(A,B)=D(I,J)

Dynamic Program Table for String Edit

Measure distance between strings

PARK

SPAKE

Edit operations for turning SPAKE into PARK

Dynamic Program Table for String Edit

Measure distance between strings

PARK

SPAKE

		Р	Α	R	K
	c 00	c ₀₂	C ₀₃	C ₀₄	C ₀₅
S	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄
Р	c ₂₀	c ₂₁	c ₂₂	c ₂₃	C ₂₄
Α	C ₃₀	C ₃₁	???		
K					
E					

Dynamic Program Table for String Edit

		Р	Α	R	K
	c ₀₀	c ₀₂	C ₀₃	C ₀₄	C ₀₅
S	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄
Р	c ₂₀	subst C ₂	delete C22	c ₂₃	c ₂₄
Α	c ₃₀	insert 6	???		
K					
E					

D(i,j) =score of **best** alignment from s1..si to t1..tj

$$= min \left\{ \begin{array}{ll} D(i\text{-}1,j\text{-}1), \ if \ si=tj & //copy \\ D(i\text{-}1,j\text{-}1)+1, \ if \ si!=tj & //substitute \\ D(i\text{-}1,j)+1 & //insert \\ D(i,j\text{-}1)+1 & //delete \end{array} \right.$$

Macallana Thean Ambana

Dynamic Program Table Initialized

		Р	Α	R	K
	0	1	2	3	4
S	1				
Р	2				
Α	3				
K	4				
E	5				

D(i,j) =score of **best** alignment from s1..si to t1..tj

$$= min \left\{ \begin{array}{ll} D(i\text{-}1,j\text{-}1) + d(si,tj) & \textit{//substitute} \\ D(i\text{-}1,j) + 1 & \textit{//insert} \\ D(i,j\text{-}1) + 1 & \textit{//delete} \end{array} \right.$$

		Р	Α	R	K
	0	1	2	3	4
S	1	1			
Р	2				
Α	3				
K	4				
E	5				

D(i,j) = score of best alignment from s1..si to t1..tj

$$= min \left\{ \begin{array}{ll} D(i\text{-}1,j\text{-}1) + d(si,tj) & \textit{//substitute} \\ D(i\text{-}1,j) + 1 & \textit{//insert} \\ D(i,j\text{-}1) + 1 & \textit{//delete} \end{array} \right.$$

I Mace Anabaset

		Р	Α	R	K
	0	1	2	3	4
S	1	1	2	3	4
Р	2				
Α	3				
K	4				
E	5				

D(i,j) =score of **best** alignment from s1..si to t1..tj

$$= min \left\{ \begin{array}{ll} D(i\text{-}1,j\text{-}1) + d(si,tj) & \textit{//substitute} \\ D(i\text{-}1,j) + 1 & \textit{//insert} \\ D(i,j\text{-}1) + 1 & \textit{//delete} \end{array} \right.$$

		Р	Α	R	K
	0	1	2	3	4
S	1	1	2	3	4
Р	2	1			
Α	3				
K	4				
E	5				

D(i,j) =score of **best** alignment from s1..si to t1..tj

$$= min \left\{ \begin{array}{ll} D(i\text{-}1,j\text{-}1)\text{+}d(si,tj) & \textit{//substitute} \\ D(i\text{-}1,j)\text{+}1 & \textit{//insert} \\ D(i,j\text{-}1)\text{+}1 & \textit{//delete} \end{array} \right.$$

ms TTMface Amalanest

		Р	Α	R	K
	0	1	2	3	4
S	1	1	2	3	4
Р	2	1	2	3	4
Α	3	2	1 _	2	3
K	4	3	2	2	2
E	5	4	3	3	3

Final cost of aligning all of both strings.

D(i,j) =score of **best** alignment from s1..si to t1..tj

$$= min \left\{ \begin{array}{ll} D(i\text{-}1,j\text{-}1) + d(si,tj) & \textit{//substitute} \\ D(i\text{-}1,j) + 1 & \textit{//insert} \\ D(i,j\text{-}1) + 1 & \textit{//delete} \end{array} \right.$$