Semi-normed Rings and Modules

1 Semi-normed algebraic structures

Definition 1. Let M be an abelian group. A *semi-norm* on M is a function $\|\cdot\|: M \to \mathbb{R}_+$ such that

- ||0|| = 0;
- $\forall x, y \in M, ||x + y|| \le ||x|| + ||y||$.

If we further have $||x|| = 0 \iff x = 0$, then we say $||\cdot||$ is a norm. A semi-normed abelian group (resp. normed abelian group) is an abelian group equipped with a semi-norm (resp. norm).

Definition 2. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two semi-norms on an abelian group M. We say $\|\cdot\|_1$ is bounded by $\|\cdot\|_2$ if there exists a constant C > 0 such that $\forall x \in M, \|x\|_1 \le C\|x\|_2$.

Remark 3. If two semi-norms (resp. norms) on an abelian group M are bounded by each other, then they induce the same topology on M.

Definition 4. Let M be a semi-normed abelian group and $N \subseteq M$ be a subgroup. The *residue* semi-norm on the quotient group M/N is defined as

$$||x + N||_{M/N} = \inf_{y \in N} ||x + y||_M.$$

Remark 5. The residue semi-norm is a norm if and only if N is closed in M.

Definition 6. Let M and N be two semi-normed abelian groups. A group homomorphism $f: M \to N$ is called bounded if there exists a constant C > 0 such that $\forall x \in M, \|f(x)\|_N \le C\|x\|_M$. A bounded homomorphism $f: M \to N$ is called admissible if the induced isomorphism $M/\ker f \to \operatorname{Im} f$ is an isometry, i.e., $\forall x \in M, \|f(x)\|_N = \inf_{y \in \ker f} \|x + y\|_M$.

Definition 7. Let R be a ring (commutative with unity). A *semi-norm* on R is a semi-norm $\|\cdot\|$ on the underlying abelian group of R such that $\forall x, y \in R, \|xy\| \le \|x\| \|y\|$ and $\|1\| = 1$. A *semi-normed ring* is a ring equipped with a semi-norm.

Definition 8. A semi-norm $\|\cdot\|$ on a ring R is called *multiplicative* if $\forall x, y \in R, \|xy\| = \|x\| \|y\|$. It is called *power-multiplicative* if $\forall x \in R, \|x^n\| = \|x\|^n$ for all integers $n \ge 1$.

Definition 9. Let $(R, \|\cdot\|_R)$ be a normed ring. A *semi-normed R-module* is a pair $(M, \|\cdot\|_M)$ where M is an R-module and $\|\cdot\|_M$ is a semi-norm on the underlying abelian group of M such that there exists C > 0 with $\forall a \in R, x \in M, \|ax\|_M \le C \|a\|_R \|x\|_M$.

One can talk about boundedness, admissibility and residue semi-norms in the contexts of semi-normed rings and semi-normed modules similar to those in semi-normed abelian groups.

Date: October 24, 2025, Author: Tianle Yang, My Homepage

2 banach rings

Definition 10. A (semi-)norm on an abelian group M induces a (pseudo-)metric d(x,y) = ||x - y|| on M. A (semi-)normed abelian group M is called *complete* if it is complete as a (pseudo-)metric space.

Definition 11. A banach ring is a complete normed ring.

Definition 12. Let $(A, \|\cdot\|_A)$ be a (semi-)normed algebraic structure, e.g., a (semi-)normed abelian group, a (semi-)normed ring, or a (semi-)normed module. The *completion* of A, denoted by \widehat{A} , is the completion of A as a (pseudo-)metric space. Since A is dense in its completion, the algebraic operations and (semi-)norms on A can be uniquely extended to the completion.

Let R be a normed ring and M,N be semi-normed R-modules. There is a natural semi-norm on the tensor product $M \otimes_R N$ defined as

$$\|z\|_{M\otimes_{R}N} = \inf\left\{\sum_{i} \|x_{i}\|_{M} \|y_{i}\|_{N} \ : \ z = \sum_{i} x_{i} \otimes y_{i}, x_{i} \in M, y_{i} \in N\right\}.$$

Definition 13. Let R be a complete normed ring and M, N complete semi-normed R-modules. The complete tensor product $M \widehat{\otimes}_R N$ is defined as the completion of the semi-normed R-module $M \otimes_R N$.

Definition 14. Let R be a banach ring. For each $f \in R$, the spectral radius of f is defined as

$$\rho(f) = \lim_{n \to \infty} ||f^n||^{1/n}.$$

Definition 15. A banach ring R is called *uniform* if its norm is power-multiplicative.

Proposition 16. Let $(R, \|\cdot\|)$ be a banach ring. The spectral radius $\rho(\cdot)$ defines a power-multiplicative semi-norm on R that is bounded by $\|\cdot\|$.

Proof. Yang: To be continued.

Definition 17. Let R be a banach ring. An element $f \in R$ is called *quasi-nilpotent* if $\rho(f) = 0$. All quasi-nilpotent elements of R form an ideal, denoted by $\operatorname{Qnil}(R)$.

Definition 18. Let R be a banach ring. The *uniformization* of R, denoted by $R \to R^u$, is the banach ring with the universal property among all bounded homomorphisms from R to uniform banach rings. Yang: To be continued.

Proposition 19. Let R be a banach ring. The completion of $R/\operatorname{Qnil}(R)$ with respect to the spectral radius $\rho(\cdot)$ is the uniformization of R.

Proof. Yang: To be continued.

3 Complete field

Definition 20. A multiplicative norm on a field is also called an *absolute value*. A valuation field is a field equipped with an absolute value.

Remark 21. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y);$
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) \ge \min\{v(x), v(y)\}.$

We can extend v to the whole field \mathbf{k} by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0,1)$. Then v induces an absolute value $|\cdot|_v : \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_{v}$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Definition 22. A valuation field $(\mathbf{k}, |\cdot|)$ is called *non-Archimedean* if $\forall x, y \in \mathbf{k}, |x+y| \leq \max\{|x|, |y|\}$, i.e., the norm satisfies the ultrametric inequality. Otherwise, it is called *Archimedean*.

Definition 23. A complete field is a valuation field which is complete as a metric space.

Lemma 24. Let **k** be a non-Archimedean complete field. Then the set $\mathbf{k}^{\circ} = \{x \in \mathbf{k} : |x| \leq 1\}$ is a subring of **k**, which is a local ring. Moreover, the set $\mathbf{k}^{\circ \circ} = \{x \in \mathbf{k} : |x| < 1\}$ is the maximal ideal of \mathbf{k}° .

Definition 25. Let **k** be a non-Archimedean complete field. The subring **k**° is called the *ring of integers* of **k**. The set $\mathbf{k}^{\circ\circ} = \{x \in \mathbf{k} : |x| < 1\}$ is the maximal ideal of \mathbf{k}° . The residue field $\mathcal{R}_{\mathbf{k}} = \mathbf{k} = \mathbf{k}^{\circ}/\mathbf{k}^{\circ\circ}$ is called the *residue field* of **k**. Yang: To be revised.

Notation test $\mathcal{k}_{\mathbf{k}}$ or $\widetilde{\mathbf{k}}$ or $\kappa_{\mathbf{k}}$ for the residue field of \mathbf{k} . $\mathcal{k}_{\mathbb{Q}_p}$

4 Examples

Example 26. Let R be arbitrary ring. The *trivial norm* on R is defined as ||x|| = 0 if x = 0 and ||x|| = 1 if $x \neq 0$. The ring R equipped with the trivial norm is a normed ring.

Example 27. The fields \mathbb{C} and \mathbb{R} equipped with the usual absolute value are complete fields.

Example 28. The field \mathbb{Q}_p of p-adic numbers equipped with the p-adic norm is a complete non-Archimedean field.

Example 29. Let R be a banach ring and r > 0 be a real number. We define the ring of absolutely convergent power series over \mathbf{k} with radius r as

$$R \left\langle T/r \right\rangle \coloneqq \left\{ \sum_{n=0}^{\infty} a_n T^n \in R[[T]] \, : \, \sum_{n=0}^{\infty} \|a_n\| r^n < \infty \right\}.$$

Equipped with the norm $\|\sum_{n=0}^{\infty}a_nT^n\|=\sum_{n=0}^{\infty}\|a_n\|r^n$, the ring $R\langle T/r\rangle$ is a banach ring.

When $R = \mathbf{k}$ is a Yang: To be checked.

$$\mathbf{k}\{T_1/r_1,\dots,T_n/r_n\} := \left\{ \sum_{I \in \mathbb{N}^n} a_I T^I \in \mathbf{k}[[T_1,\dots,T_n]] : \lim_{|I| \to \infty} |a_I| r^I = 0 \right\},\,$$

where $r=(r_1,\ldots,r_n)$ is an n-tuple of positive real numbers, $T^I=T_1^{i_1}\cdots T_n^{i_n}$ for $I=(i_1,\ldots,i_n)$, and $|I|=i_1+\cdots+i_n$. Equipped with the norm $\|\sum_{I\in\mathbb{N}^n}a_IT^I\|=\sup_{I\in\mathbb{N}^n}|a_I|r^I$, the affinoid **k**-algebra $\mathbf{k}\{T_1/r_1,\ldots,T_n/r_n\}$ is a banach **k**-algebra. This is called the *Tate algebra* over **k** with polyradius r equipped with the *Gauss norm*. We will denote $\mathbf{k}\{\underline{T/r}\}=\mathbf{k}\{T_1/r_1,\ldots,T_n/r_n\}$ for simplicity.

Yang: To be continued...

Appendix