Хершел-Максвелл и нормальное распределение

Винни-Пух

2017-12-24

Содержание

Молекулы газа	1
Первый поворот	1
Вид функции плотности $f(v_x, v_y)$	2
Дифференциальное уравнение	3
В поисках k	3
В поисках c	4
Нормальная стандартная величина	5
Другие единицы измерения скорости	5

Молекулы газа

В замкнутом загончике на плоскости хаотично движутся молекулы газа. Мы ловим одну из них случайно и измеряем вектор скоростей

$$V = \begin{pmatrix} V_x \\ V_y \end{pmatrix}.$$

Максвелл предположил, что

М1. Если мы повернём нашу картинку на произвольный угол и повторим измерения, то закон распределения нового вектора V^\prime будет совпадать с законом распределения вектора V.

М2. Если мы знаем горизонтальную составляющую скорости, то это не даёт нам никакой информации о вертикальной составляющей, то есть случайные величины V_x и V_y независимы.

Заметим, что единицы измерения скорости мы можем выбираться произвольно, поэтому давайте дополним предположения Максвелла предположением

М3. Единицы измерения скорости выбраны так, что $\mathbb{V}ar(V_x)=1$.

Первый поворот

Помимо горизонтальной и вертикальной составлящих вектора скорости, V_x и V_y , рассмотрим ещё две величины, U — угол с горизонтальной осью и $R=\sqrt{V_x^2+V_y^2}$ — скалярную скорость, длину вектора скорости.

Естественно, $V_x = R \cos U$, $V_y = R \sin U$.

• Какой вектор получится, если вектор V повернуть на 90° против часовой стрелки?

Получится вектор

$$V' = \begin{pmatrix} -V_y \\ V_x \end{pmatrix}$$

По предпосылке M1 вектор V' должен иметь такое же распределение, как вектор V.

• Чему равны $\mathbb{E}(V_x)$, $\mathbb{E}(V_u)$, $\mathbb{V}ar(V_u)$?

Раз уж $V' \sim V$, то $-V_y \sim V_x$ и $V_x \sim V_y$. Значит $\mathbb{E}(-V_y) = \mathbb{E}(V_x)$, и одновременно $\mathbb{E}(V_x) = \mathbb{E}(V_y)$. Это возможно только в случае $\mathbb{E}(V_x) = \mathbb{E}(V_y) = 0$.

Строго говоря, осталась ещё возможность, что математическое ожидание не существует.

Аналогично, $\mathbb{V}ar(V_x) = \mathbb{V}ar(V_y)$ и по предпосылке М3 $\mathbb{V}ar(V_x) = \mathbb{V}ar(V_y) = 1$.

• Как распределена величина U?

Заметим, что при повороте на произвольный угол α , этот угол прибавляется к величине U. Если при этом сумма выйдет за 2π , то нужно ещё и вычесть 2π . По предпосылке M1 функция плотности U может быть только постоянной, $f(u+\alpha)=f(u)$ при $0\leq u+\alpha<2\pi$.

Значит U распределена равномерно на $[0;2\pi)$ и её функция плотности равна

$$f(u) = egin{cases} rac{1}{2\pi}, \ ext{если} \ u \in [0; 2\pi) \ 0, \ ext{иначе} \end{cases}$$

Вид функции плотности $f(v_x, v_y)$

• Какой вид имеет совместная функция плотности $f(v_x, v_y)$?

По предпосылке М1 совместная функция плотности может зависить только от длины вектора скорости R, но не от угла U. Для удобства запишем её как функцию квадрата R:

$$f(v_x, v_y) = h(v_x^2 + v_y^2)$$

По предпосылке M2 компоненты V_x и V_y независимы, поэтому совместная функция плотности должна раскладываться в произведение частных плотностей. Для удобства выразим их также через квадраты составляющих скорости:

$$f(v_x, v_y) = f(v_x) \cdot f(v_y) = g(v_x^2) \cdot g(v_y^2)$$

В итоге мы получили забавное соотношение

$$h(v_x^2 + v_y^2) = g(v_x^2) \cdot g(v_y^2)$$

Функция от суммы равна произведению функций:

$$h(a+b) = g(a)g(b)$$

Дифференциальное уравнение

• Как связаны h(a) и h'(a)?

Возьмём b = 0, получим, что h(a) = g(a)g(0).

Возьмём производную по b:

$$h'(a+b) = g(a)g'(b)$$

Подставим b=0, получим

$$h'(a) = g(a)g'(0)$$

Итого, получаем, что

$$\frac{h'(a)}{h(a)} = \frac{g'(0)}{g(0)}$$

Другими словами производная h'(a) равна исходной функции h(a), умноженной на константу $k = \frac{g'(0)}{a(0)}$:

$$h'(a) = h(a) \cdot k$$

Этому условию удовлетворяет только функция $h(a)=e^{ka}$ и пропорциональные ей функции, то есть

$$h(a) = c \cdot e^{ka}$$

Таким образом мы нашли вид совместной функции плотности величин V_x и V_y :

$$f(v_x, v_y) = h(v_x^2 + v_y^2) = c \cdot e^{k(v_x^2 + v_y^2)}$$

Величины V_x и V_y одинаково распределены, независимы, поэтому частная функция плотности V_x имеет вид

$$f(v_x) = \sqrt{c} \cdot e^{kv_x^2}$$

Осталось лишь найти константы c и k!

${f B}$ поисках k

Прежде всего заметим, что k<0. Если бы константа k была бы больше нуля, то тогда с ростом x экспонента $e^{kv_x^2}$ уходила бы на бесконечность, и площадь под функцией плотности $f(v_x)$ не равнялась бы единице.

Мы уже знаем, что $\mathbb{E}(V_x)=0$, а единицы измерения скорости выбраны так, что $\mathbb{V}ar(V_x)=1$. Замечаем, что в нашем случае $\mathbb{V}ar(V_x)=\mathbb{E}(V_x^2)$. Осталось решить уравнение $\mathbb{E}(V_x^2)=1$ и найти k.

Переходим к интегралам! Мы будем брать его по частям!

$$\mathbb{E}(V_x^2) = \int_{-\infty}^{+\infty} v_x^2 f(v_x) \, dv_x = \int_{-\infty}^{+\infty} v_x \cdot v_x \cdot \sqrt{c} \cdot e^{kv_x^2} \, dv_x =$$

$$= v_x \cdot \sqrt{c} \cdot e^{kv_x^2} \cdot (k/2) \Big|_{v_x = -\infty}^{v_x = +\infty} - \int_{-\infty}^{+\infty} 1 \cdot \sqrt{c} \cdot e^{kv_x^2} \cdot (1/2k) \, dv_x \quad (1)$$

Замечаем, что уменьшаемое равно нулю:

$$v_x \cdot \sqrt{c} \cdot e^{kv_x^2} \cdot (k/2)\Big|_{v_x = -\infty}^{v_x = +\infty} = 0.$$

А вычитаемое можно записать через исходную функцию плотности:

$$\int_{-\infty}^{+\infty} 1 \cdot \sqrt{c} \cdot e^{kv_x^2} \cdot (1/2k) \, dv_x = \frac{1}{2k} \int_{-\infty}^{+\infty} f(v_x) \, dx = \frac{1}{2k} \cdot 1$$

Следовательно,

$$\mathbb{E}(V_x^2) = -\frac{1}{2k} = 1$$

Отсюда $k=-\frac{1}{2}$.

\mathbf{B} поисках c

Теперь мы знаем, что совместная функция плотности величин V_x и V_y имеет вид

$$f(v_x, v_y) = h(v_x^2 + v_y^2) = c \cdot e^{-\frac{1}{2}(v_x^2 + v_y^2)}$$

• Какой вид имеет совместная функция плотности величин R и U?

Удобнее работать не с плотностями, а с дифференциальными формами

$$\mathbb{P}(V_x \in [v_x; v_x + dv_x], V_y \in [v_y; v_y + dv_y]) \sim f(v_x, v_y) dv_x \wedge dv_y$$

Подставим $v_x = r\cos u$ и $v_y = r\sin u$. После упрощения получим, что $dv_x \wedge dv_y = r\cdot dr \wedge du$.

$$\mathbb{P}(R \in [r; r+dr], U \in [u; u+du]) \sim f(r\cos u, r\sin u)r \cdot dr \wedge du = c \cdot r \cdot e^{-r^2/2} \cdot dr \wedge du$$

Следовательно, совместная функция плотности величин R и U имеет вид

$$f(r,u)=egin{cases} c\cdot r\cdot e^{-r^2/2}, \ ext{при}\ r>0, u\in[0;2\pi) \ 0, \ ext{иначе} \end{cases}$$

Заметим, что функция совместная функция плотности раскладывается в произведение $f(r,u)=f(r)\cdot f(u)$, поскольку величины R и U независимы. Вопрос лишь в том, как поделить константу c в этом разложении f(r,u) на сомножетели f(r) и f(u).

Интеграл $\int re^{-r^2/2}dr$ легко берётся:

$$\int_{-\infty}^{+\infty} re^{-r^2/2} dr = 1$$

Следовательно, $f(r) = re^{-r^2/2}$ и f(u) = c.

Мы уже знаем, что величина U равномерна на $[0;2\pi]$, следовательно, $c=1/2\pi$.

Нормальная стандартная величина

Мы пришли к выводу, что функция плотности величины V_x имеет вид

$$f(v_x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}v_x^2}$$

При этом $\mathbb{E}(V_x) = 0$ и $\mathbb{V}ar(V_x) = 1$.

Величина с такой функцией плотности называется стандартной нормальной случайной величиной и обозначается N(0;1).

Другие единицы измерения скорости

Рассмотрим линейной преобразование величины V_x , $W=\mu+\sigma V_x$. Можно найти ожидаемое значение и дисперсию $W, \mathbb{E}(W)=\mu, \mathbb{V}ar(W)=\sigma^2$.

Найдём функцию плотности W. Естественнее работать не с плотностью, а с дифференциальной формой: достаточно подставить в неё выражение для $v_x, \, v_x = \frac{w-\mu}{\sigma}$.

$$\mathbb{P}(V_x \in [v_x; v_x + dv_x]) \sim f(v_x) dv_x = f\left(\frac{w - \mu}{\sigma}\right) d\frac{w - \mu}{\sigma} = \frac{1}{\sigma} f\left(\frac{w - \mu}{\sigma}\right) dw = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(w - \mu)^2}{2\sigma^2}} \sim \mathbb{P}(W \in [w; w + dw]) \quad (2)$$

Отсюда функция плотности величины W равна

$$f(w) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(w-\mu)^2}{2\sigma^2}}$$

Величина с такой функцией плотностью называется нормальной случайной величиной с математическим ожиданием μ и дисперсией σ^2 и обозначается $N(\mu;\sigma^2)$.