

Блок управления AUMATIC AC 01.2 Modbus RTU

Применять только с инструкцией по эксплуатации!

- Краткое руководство не является заменой инструкции по эксплуатации!
- Оно предназначено только для специалистов, которые ознакомлены с инструкцией, в которой приводятся сведения по технике безопасности, монтажу, управлению и вводу в эксплуатацию.
- Инструкция по эксплуатации должна всегда быть в распоряжении персонала!

Оглав	вление стра	страница	
1.	Краткое описание	3	
2.	Оптоволоконное соединение	4	
2.1.	Общие указания	4	
2.2.	Порядок открытия отсека оптоволоконных соединений	5	
2.3.	Подключение оптоволоконных кабелей	6	
2.4.	Порядок закрытия отсека оптоволоконных соединений	7	
3.	Топология сети	8	
3.1.	Линейная топология	8	
3.2.	Топология типа "звезда"	9	
3.3.	Топология типа "кольцо" (двойное кольцо)	10	
4.	Поиск и устранение неисправностей	12	
4.1.	Светодиодная индикация	12	
5.	Технические характеристики	13	
5.1.	Оптоволоконная соединительная плата	13	
6.	Приложение	15	
6.1.	Методики измерения	15	
6.2.	Контакты поставщика	15	
6.3.	Справочная литература	15	
	Алпеса	2	

1. Краткое описание

Блоки управления электроприводами AUMA с оптоволоконным соединением предназначены для подключения к оптических сетям полевой шины.

Оптоволоконное соединение в схеме электрического подключения позволяет преобразовывать электрические сигналы RS-485 в оптические сигналы и наоборот.

Оптоволоконное соединение интегрировано в шину, то есть управление приводами AUMA через шину с оптоволоконными участками осуществляется так же, как и при кабельном соединении с медными проводниками (RS-485).

В отличие от систем RS-485 оптоволоконные соединения позволяют применять различные топологии:

- Линейная топология
- Топология типа "звезда"
- Дублирующая топология типа "кольцо"

Кроме передачи данных на большие расстояния, оптоволоконная система обладает и другими преимуществами:

- Повышенная электромагнитная совместимость
- Защита от ударов молний и повышенного напряжения
- Выравнивание потенциалов и заземление
- Гальваническая развязка приводов
- Применение общих трасс для силовых и сигнальных кабелей
- Недопустимость воздействия излучений на участке передачи

Эти преимущества позволяют использовать оптоволоконные системы в различных сферах применения, таких как водоснабжение, установки сточных вод, туннельные системы, электростанции, теплостанции, телемеханика и др.

2. Оптоволоконное соединение

2.1 Общие указания

Л ОПАСНО

Опасное напряжение!

Берегись удара электрическим током! Несоблюдение инструкции может привести к смерти или материальному ущербу.

- → Подключение разрешается выполнять только квалифицированному персоналу.
- ightarrow Подготовка к открытию: Отключить питание системы и оконечного устройства.
- → Ознакомиться с инструкциями настоящей главы.
- → Соблюдать правила техники безопасности, изложенные в инструкции по эксплуатации электропривода.

Возможно повреждение глаз от лучей открытых концов оптоволоконного кабеля!

→ Запрещается смотреть на открытые концы кабелей и оптоволоконных разъемов.

УВЕДОМЛЕНИЕ

Несоблюдение инструкций по монтажу ведет к потере соединения и приема!

- → Разрешается применять только те оптоволоконные соединители (типы штекеров), которые соответствуют характеристикам, указанным в настоящем руководстве.
- → Штекеры с блокировкой применять только для соответствующих позиций.
- ightarrow Неиспользуемые оптоволоконные соединители закрыть от загрязнения и пыли с помощью защитных колпачков и заглушек (в комплекте поставки).
- → Входные ОВК подключить к оптическому приемнику. Выходные ОВК соединить с оптическим передатчиком. НЕ НАОБОРОТ!
- → Запрещается перегибать оптоволоконные кабели! Соблюдать радиус изгиба согласно инструкции производителя кабеля.

Кабель и типы проводников

Таблица 1: Кабель и проводники в соответствии с DIN VDE 0888, часть 3

Волокно	Многорежимный 62,5 (50)/125 мкм, Однорежимный 9/125 мкм
Дальность действия	62,5 (50)/125 мкм, стекловолокно (многорежимный): 2500 м 9/125 мкм, стекловолокно (однорежимный): 15 км
Коэффициент затухания	Рекомендуется: < 2,0 дБ/км (многорежимный) или < 0,4 дБ/км (однорежимный)

Снять прибл. 42 см внешней оболочки с тем, чтобы оптоволоконный кабель можно было кольцеобразно проложить в отсеке контактов.

рис. 1: Типы штекера: ST или SC (в зависимости от исполнения)

Блок управления на настенном креплении

При сильных вибрациях арматуры блок управления рекомендуется монтировать на настенном креплении отдельно от привода. Подробнее о настенном креплении смотрите инструкцию по эксплуатации привода.

2.2 Порядок открытия отсека оптоволоконных соединений

Для подключения оптоволоконных соединений в штепсельном разъеме AUMA (шина SDE) предусмотрена соединительная плата. Для доступа к ней требуется снять крышку [1].

рис. 2: Штепсельный разъем AUMA шины SDE

- [1] Крышка отсека оптоволоконных соединений
- [2] Болты крышки
- [3] Уплотнительное кольцо
- [4] Ввод для оптоволоконных кабелей
- [5] Заглушка
- 1. Открутить болты [2] и снять крышку [1].
- 2. Закрепить на оптоволоконных кабелях соответствующие вводы.
- Указанная на заводской табличке степень защиты (IP...) гарантируется только при применении соответствующих кабельных вводов.
- Пример: Заводская табличка для степени защиты IP68.

- 3. Неиспользуемые кабельные вводы [4] закрыть заглушки [5].
- 4. Вставить кабели в кабельные вводы.

2.3 Подключение оптоволоконных кабелей

рис. 4: Соединительная плата со штекером SC (левый), ST (правый)

- [1] Канал 1
- [2] Канал 2 (для линейной типологии или типа "кольцо")
- [3] Защитный колпачок/заглушка
- ТХ Оптический выход
- **RX** Оптический вход

Наклейка на штекере обозначает технологию соединения (тип волокна и тип штекера).

Таблица 2: Маркировка на наклейке

Тип оптоволокна	Тип оптоволоконного штекера
SM - однорежимный	ST - "straight tip" (фиксация байонетом)
MM - многорежимный	SC - "subscriber connector" (фиксация защелкой)

Подключение оптоволоконных кабелей:

1. Проложить кабели в отсеке контактов кольцеобразно с максимально большим радиусом изгиба.

рис. 5: Прокладка кабеля в отсеке контактов

2. Перед подключением измерить и занести в протокол величину затухания оптоволоконных кабелей.

3. Подключение штекерных соединений крест-накрест:

Выход **ТХ** привода 1 с входом **RX** привода 2 Вход **RX** привода 1 с выходом **TX** привода 2 рис. 6: Пример для штекера ST с байонетом

- Соблюдать следующее:
- Убедиться в надежности фиксации байонета штекера ST.
- Штекер SC должен полностью войти в оптоволоконное гнездо.
- 4. Неиспользуемые оптоволоконные соединители закрыть от загрязнения и пыли с помощью защитных колпачков и заглушек (в комплекте поставки).

2.4 Порядок закрытия отсека оптоволоконных соединений

рис. 7: Штепсельный разъем AUMA шины SDE

- [1] Крышка
- [2] Болты крышки
- [3] Уплотнительное кольцо
- [4] Ввод для оптоволоконных кабелей
- [5] Заглушка
- 1. Почистить уплотнительные поверхности крышки [1] и корпуса.
- 2. Слегка смазать уплотнительные поверхности некислотной смазкой, например, вазелином.
- 3. Проверить и при необходимости поправить уплотнительное кольцо [3].
- 4. Надеть крышку [1] и равномерно крест-накрест притянуть винты [2].
- 5. Для обеспечения соответствующей степени защиты подтянуть кабельные вводы с предписанным моментом.

3. Топология сети

Структура расположения и соединения сетевых устройств (приводов) называется топологией сети. Для оборудования компании AUMA могут применяться различные типы топологии.

3.1 Линейная топология

рис. 8: Структура линейной топологии

- Макс. длина оптоволоконных кабелей в км (Соблюдать технические характеристики!)
- [1] Канал 1
- [2] Канал 2
- [3] Любое устройство Modbus RTU
- [4] Оптоволоконный разъем для РСУ (необходимо)
- [5] Оптоволоконный разъем для любого устройства Profibus DP

Особенности линейной топологии

Оптический сигнал преобразуется в электрический в каждом устройстве. Для передачи к следующему устройству применяется обратное преобразование электрического сигнала в оптический.

При обрыве оптоволоконного кабеля (событие A) или при сбое соединительной платы оптоволоконной связи (событие B) происходит потеря управления приводов, расположенных дальше по цепи.

Событие А (стандарт)

Если электрическое соединение AC 01.2 отключается, оптоволоконное соединение этого привода также отключается. Как следствие, связь с последующими приводами невозможна. В качестве вспомогательного средства оптоволоконное соединение AC 01.2 можно подключить к внешнему источнику напряжения 24 В постоянного тока.

Событие В (опция)

При отключении привода (напряжение электродвигателя) соединительная плата оптоволоконной связи становится недоступной. Как следствие, связь с последующими приводами невозможна. В качестве вспомогательного средства все блоки АС 01.2 можно подключить к внешнему источнику напряжения 24 В постоянного тока.

Информация

- Связь с последующими устройствами контролируется по каналу 2. В случае потери связи (нет обратной связи от последующих устройств) блок АС 01.2 подает сообщение: ПР ОВК.
- Если привод является последним устройством в линейной топологии, мониторинг необходимо отключить (параметр ОВК мониторинг М0709 = Выкл(посл.устр-во)).
- Если оптоволоконное соединение выполнено с помощью кабеля RS-485, необходимо обеспечить соответствующую оконечную нагрузку.

3.2 Топология типа "звезда"

рис. 9: Структура линейной топологии

- Макс. длина оптоволоконных кабелей в км (Соблюдать технические характеристики!)
- [1] Канал 1
- [2] Канал 2
- [3] Любое устройство Modbus RTU
- [4] Оптоволоконный разъем для РСУ (необходимо)
- [5] Оптоволоконный разъем для любого устройства Profibus DP

Особенности топологии типа "звезда"

Потеря связи с оптоволоконным участком или соединительной платой оптоволоконной связи привода не оказывает влияние на функциональность остальных приводов.

Информация

- Так как все приводы AUMA эксплуатируются в конце оптоволоконного участка и управляются по каналу 1, для параметра ОВК мониторинг М0709 необходимо установить значение Выкл(посл.устр-во).
- Если оптоволоконное соединение выполнено с помощью кабеля RS-485, необходимо обеспечить соответствующую оконечную нагрузку.

3.3 Топология типа "кольцо" (двойное кольцо)

рис. 10: Структура топологии типа "кольцо"

- Макс. длина оптоволоконных кабелей в км (Соблюдать технические ссссссс!)
- [1] Канал 1
- [2] Канал 2
- [3] Интеграция любого устройства Modbus RTU (опция)
- [4] Оптоволоконный разъем для РСУ (необходимо)
- [5] Оптоволоконный разъем для любого устройства Profibus DP

Особенности топологии типа "кольцо"

- Потеря оптоволоконного соединения между двумя приводами обнаруживается модулями дублирования (параметр ОВК мониторинг = Вкл(нет посл.устр-ва)). Одновременно через дисплей и шину подается сообщение: ПР ОВК. В этом случае сеть работает как оптическая шина, при этом управление всеми приводами сохраняется.
- При отказе модуля (потеря питания и т.п.) подключенный к данному модулю привод отключается от кольца, а остальная сеть продолжает функционировать как оптическая шина. Управление остальным приводами сохраняется.
- Приводы оснащены дублирующим оптоволоконным соединением со стандартным интерфейсом Modbus RTU (без дублирования).

Прокладка кабеля и анализ отказов ПЛК

- Для повышения безопасности системы прямые и обратные кабели кольца прокладываются по раздельным трассам.
- Чтобы обеспечить полный мониторинг дублирующего оптического кольца, все сигналы отказов оптоволоконных линий (в т.ч. выход отказов оптоволоконного соединения главного устройства) должны быть обработаны системой ПЛК.

4. Поиск и устранение неисправностей

4.1 Светодиодная индикация

рис. 11: Лампы на соединительной плате

- [1] Канал 1
- [2] Канал 2

Лампа	Наименование	Цвет	Функция
1	PWR	ээлэн ая	Устройство готово к работе (питание подается).
2	ERROR	красная	Общая ошибка ОВК: горят лампы 5 и 6, или 8, или 9, либо сбой внутреннего соединения RS-485.
3	STATUS	красная	Получен байт с ошибкой формата на RS-485.
4	RX	ээлэн ая	Получен байт на RS-485.
5	Fail	креонея	Ошибка оптического приемного сигнала (канал 1), отсутствует сигнал или недостаточный уровень приема. Одновременно на дисплей или через Modbus подается сообщение: ПР ОВК
6	Limit	желтая	Горит с лампой 7 (зеленая): Достигнут резерв системы (канал 1). Критический, но еще допустимый уровень приема. На дисплее отображается сообщение: Диагностика > FOC > OBK уровень канал 1 = Предел достиг, нетRx bzw. Предел достигнут, Rx Также на дисплей блока AUMATIC и через Modbus подается сообщение: ПР FOC бюджет
7	Link/Act	3970-1297	Горит, лампа 6 (желтая) не горит: Хороший уровень приема (канал 1). мигает: Идет прием данных (канал 1). На дисплее отображается сообщение: Диагностика > FOC > OBK уровень канал 1 = Хорошо, нет Rx bzw. Хорошо, Rx
8	Fail	креонея	Ошибка оптического приемного сигнала (канал 2), отсутствует сигнал или недостаточный уровень приема. Одновременно на дисплей или через Modbus подается сообщение: ПР ОВК
9	Limit	желтая	Горит с лампой 10 (зеленая): Достигнут резерв системы (канал 2). Критический, но еще допустимый уровень приема. На дисплее отображается сообщение: Диагностика > FOC > OBK уровень канал 2 = Предел достиг, нетRx bzw. Предел достигнут, Rx Также на дисплей блока AUMATIC и через Modbus подается сообщение: ПР FOC бюджет
10	Link/Act	ээлэ-а я	Горит, лампа 9 (желтая) не горит: Хороший уровень приема (канал 2). мигает: Идет прием данных (канал 2). На дисплее отображается сообщение: Диагностика > FOC > ОВК уровень канал 2 = Хорошо, нет Rx bzw. Хорошо, Rx

5. Технические характеристики

Информация

В таблице ниже, рядом со стандартным исполнением также приводятся возможные опции. Фактическое исполнение указано в соответствующей заказу технической документации. Техническую документацию по своему заказу на английском и немецком языках можно загрузить с сайта http://www.auma.com (необходимо указать комиссионный номер).

5.1 Оптоволоконная соединительная плата

Оптоволоконное соединение	ST (фиксация байонетом) или SC (фиксация защелкой)
Каналы (оптические)	Для линейной топологии: 2 x IN/OUT Для топологии типа "звезда": 1 x IN/OUT Для топологии типа "кольцо": 2 x IN/OUT
Скорость передачи данных	до 115,2 кбит/с Автоматическое определение следующих скоростей передачи данных: 9,6 кбит/с, 19,2 кбит/с, 38,4 кбит/с, 57,6 кбит/с, 115,2 кбит/с
Тип передачи	полудуплекс
Время распространения сигнала	RS-485 ↔ оптоволокно: < 3 Тбит Тх ↔ Rx: 11 Тбит
Волокно	Многомодовое 62,5 (50)/125 мкм Одномодовое 9/125 мкм
Оптический баланс	Для многомодового волокна: 13 дБ Для одномодового волокна: 17 дБ
Макс. длина ОВК	62,5/125 мкм, стекловолокно (многмодовое): 2500 м (затухание ОВК: до 2,0 дБ/км без дополнительного затухания).
	50/125 мкм, стекловолокно (многомодовое): 2500 м (затухание ОВК: до 2,0 дБ/км без дополнительного затухания).
	9/125 мкм, стекловолокно (одномодовое): 15 км (затухание ОВК: до 0,4 дБ/км без дополнительного затухания).
Длина волны	1310 нм
Рабочая температура	от – 25 °C до +50 °C
Питание	24 B=/70 мА от встроенного блока питания AUMATIC. Возможен внешний источник питания AUMATIC 24 B=/500 мА. В случае сбоя питания привода соединение шины сохраняется только при внешнем источнике питания AUMATIC.

Светодиодная индикация	 2 лампы для общей диагностики: Лампа PWR (зеленая) = устройство готово к работе (питание подается) Лампа ERROR (красная) = ошибка 2 лампы состояния для интерфейса RS-485: Лампа RX (зеленая) = на RS-485 получен байт Лампа STATUS (красная) = на RS-485 получен байт с ошибкой формата 3 лампы состояния на каждый канал: Лампа FAIL (красная) = недостаточный уровень приема или сигнал не принят Лампа LIMIT (желтая) = критический, но еще допустимый уровень приема Лампа Link/Act (зеленая) = хороший уровень приема Прием данных по каналу RS-485
Системы шины	Modbus RTU
Необходимые оптоволоконные модули для главного устройства	d-Light RS485 производства eks Engel GmbH & Co. KG, поставщик AUMA или www.eks-engel.deИсполнения: 13-MM-ST, 13-MM-SC, 13-SM-ST, 13-SM-SC• Оптоволоконное соединение для линейной топологии и топологии типа "звезда":- RS485/MOD-1KANAL-MM-ST-AC2 (номер изделия AUMA:

6. Приложение

6.1 Методики измерения

рис. 12: Измерение затухания

6.2 Контакты поставщика

 Необходимый оптоволоконный модуль для главного устройства: eks Engel GmbH & Co. KG Sch tzenstr. 2, 57482 Wenden-Hillmicke, Германия Тел.: 02762 - 9313 - 60, www.eks-engel.de

6.3 Справочная литература

Christoph P. Wrobel
 Optische bertragungstechnik in der Praxis
 Grundlagen, Komponenten, Installation, Anwendungen
 H thig Verlag
 ISBN 3-7785-2638-3

AUMA Riester GmbH & Co. KG P.O.Box 1362 D 79373 Muellheim Tel +49 7631 809 - 0 Fax +49 7631 809 - 1250 riester@auma.com www.auma.com

Ближайший филиал:

ООО "ПРИВОДЫ АУМА" **RU 141402 Московская область, г.Химки, квартал Клязьма 1Г**Тел. +7 495 221 64 28
Факс +7 495 221 64 38
aumarussia@auma.ru
www.auma.ru

