МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

по дисциплине: Исследования операций тема: «Закрытая транспортная задача»

Выполнил: ст. группы ПВ-223

Дмитриев А.А.

Проверил:

Вирченко Ю.П.

Цель работы: изучить математическую модель транспортной задачи, овладеть методами решения этой задачи.

Задания для подготовки к работе:

- 1. Изучить содержательную и математическую постановки закрытой транспортной задачи, методы нахождения первого опорного решения ее системы ограничений. Изучить понятие цикла пересчета в матрице перевозок. Овладеть распределительным методом и методом потенциалов, а также их алгоритмами.
- 2. Составить и отладить программы решения транспортной задачи распределительным методом и методом потенциалов.
- 3. Для подготовки тестовых данных решить задачу по варианту.

Вариант 2:

$$\vec{a} = (18, 12, 22, 19);$$

$$\vec{b} = (14, 11, 17, 15, 14);$$

$$C = \begin{pmatrix} 9 & 21 & 22 & 14 & 10 \\ 30 & 34 & 42 & 23 & 26 \\ 8 & 17 & 30 & 27 & 9 \\ 11 & 20 & 24 & 7 & 25 \end{pmatrix}$$

Задание:

Блок схема:

Листинг кода:

```
import numpy as np

def northwest_corner_method(u, v):
    if u.sum() != v.sum():
        raise Exception("Задача несбалансирована, иди балансируй")

    u_counter = u.copy()
```

```
v counter = v.copy()
    num u = len(u)
    allocation = np.zeros((num u, num v))
    current u = 0
    current v = 0
    while current_u < num_u and current_v < num_v:</pre>
        quantity = min(u[current_u], v[current_v])
        allocation[current u, current v] = quantity
        u counter[current u] -= quantity
        v counter[current v] -= quantity
        if u counter[current u] \leq 0 and current u \leq num u:
            current u += 1
        if v counter[current v] <= 0 and current v < num v:</pre>
            current v += 1
    return allocation
def costs grid free values (costs, u potentials, v potentials, allocation):
    num_u = len(u_potentials)
    num v = len(v potentials)
    costs_grid = np.zeros((num u, num v))
            if allocation[i, j] == 0:
               costs_grid[i, j] = costs[i, j] - (u_potentials[i] + v_potentials[j])
                costs_grid[i, j] = allocation[i, j]
    return costs grid
def find potentials(cost matrix, allocation):
   m, n = allocation.shape
   u = np.full(m, float("-inf"))
   v = np.full(n, float("-inf"))
    non_zero_indices = np.argwhere(allocation > 0)
    while len(non zero indices) > 0:
        if u[non zero indices[0][0]] == float("-inf"):
            u[non zero indices[0][0]] = 0
        elif v[non zero indices[0][1]] == float("-inf"):
            v[non zero indices[0][1]] = 0
        for i, j in non zero indices:
            if u[i] == float("-inf") and v[j] == float("-inf"):
                continue
                u[i] = cost matrix[i][j] - v[j]
            elif v[j] == float("-inf"):
                v[j] = cost matrix[i][j] - u[i]
        non zero indices = non zero indices[1:]
```

```
for index in range(m):
        if u[index] == float("-inf"):
            u[index] = 0
    for index in range(n):
        if v[index] == float("-inf"):
            v[index] = 0
def find loop and redistribute(costs grid, allocation):
    allocation = allocation.copy()
    m, n = allocation.shape
    cycle cord = []
    i begin = 0
    j begin = 0
    neg val indices = np.argwhere(costs grid < 0)</pre>
    def find loop horizontally(i0, j0):
        nonlocal max iterations
        max iterations -= 1
        if max iterations == 0:
            if j == j0:
                continue
            if allocation[i0][j] == 0:
                continue
            if find loop vertically(i0, j):
                cycle cord.append((i0, j))
    def find_loop_vertically(i0, j0):
            if i == i begin and j0 == j begin:
                cycle_cord.append((i, j0))
            if allocation[i][j0] == 0:
            if find loop horizontally(i, j0):
                cycle cord.append((i, j0))
    for index in neg val indices:
        i begin = index[0]
        j begin = index[1]
        if find loop horizontally(i begin, j begin):
            return cycle cord
def redistribution by cycle(cycle cord, allocation):
    theta = None
    sign = "+"
    for indexes in cycle cord:
```

```
i = indexes[0]
        j = indexes[1]
        if sign == "-":
            volume = allocation[i][j]
            if theta is None:
                theta = volume
                if volume < theta:</pre>
                     theta = volume
            sign = "+"
            sign = "-"
    if theta is None:
        raise Exception ("Не удалось вычислить переменную тета")
    if theta == 0:
    sign = "+"
    for indexes in cycle cord:
        i = indexes[0]
        j = indexes[1]
        if sign == "-":
            allocation[i][j] -= theta
            sign = "+"
            allocation[i][j] += theta
            sign = "-"
    u = np.array([18, 12, 22, 19])

v = np.array([14, 11, 17, 15, 14])
    allocation = northwest corner method(u, v)
    print("Начальное распределение:")
    print(allocation)
        u potentials, v potentials = find potentials(costs, allocation)
        print("Потенциалы для отправителей:", u_potentials)
        print("Потенциалы для получателей:", v potentials)
        if np.any(u potentials < 0) or np.any(v potentials < 0):
            costs grid = costs grid free values(costs, u potentials, v potentials,
allocation)
            print(costs grid)
            if np.all(costs grid >= 0):
            cycle cord = find loop and redistribute(costs grid, allocation)
```

```
redistribution_by_cycle(cycle_cord, allocation)
    print("Пересчитанное распределение по циклу:")
    print(allocation)
    else:
        break

print("Итоговая стоимость транспортировки:")
    print(np.sum(allocation * costs))

if __name__ == '__main__':
    main()
```

Тестовые данные:

Результат работы программы:

Начальное распределение:

[[14. 11. 0. 0. 0.]

[0. 0. 12. 0. 0.]

[0. 0. 17. 15. 0.]

[0. 0. 0. 0. 14.]]

Потенциалы для отправителей: [0. 0. -12. 0.]

Потенциалы для получателей: [9. 21. 42. 39. 25.]

Сетка стоимостей для свободных клеток:

[[14. 11. -20. -25. -15.]

[21. 13. 12. -16. 1.]

[11. 8. 17. 15. -4.]

[2. -1. -18. -32. 14.]]

Пересчитанное распределение по циклу:

[[14. 11. 0. 0. 0.]

[0. 0. 0. 12. 0.]

[0. 0. 29. 3. 0.]

[0. 0. 0. 0. 14.]]

Потенциалы для отправителей: [0. 0. 4. 0.]

Потенциалы для получателей: [9. 21. 0. 23. 25.]

Решение вручную:

Поставщики	Потребители				
	14	11	17	15	14
18	9	21	22	14	10
12	30	34	42	23	26
22	8	17	30	27	9
19	11	20	24	7	25

Для первого опорного плана воспользуемся методом наименьшей стоимости, чтобы за меньшее количество шагов прийти к оптимальному решению.

U		V					
	14	11	17	15	14		
18	9	21/7	22/5	14	10/6		
12	30	34	42/12	23	26		
22	8/14	17	30	27	9/8		
19	11	20	24	7/15	25		

Рассчитаем потенциалы для оценки оптимальности решения. Пусть $u_1=0$. $(u_j+v_i=c_{ji})$

U		V						
	14(9)	11(21)	17(22)	15(8)	14(10)			
18(0)	9	21/7	22/5	14	10/6			
12(20)	30	34	42/12	23	26			
22(-1)	8/14	17	30	27	9/8			
19(-1)	11	20	24	7/15	25			

Видим отрицательные потенциалы. Определим оценки незадействованных маршрутов. $(d_{ij}=c_{ij}-(u_i+v_j))$

U		V					
	14	11	17	15	14		
18	9/0	21	22	14/6	10		
12	30/1	34/-7	42	23/-5	26/-4		
22	8	17/-3	30/9	27/20	9		
19	11/3	20	24/3	7	25/16		

По циклу скорректируем решение.

U	V					
	14	11	17	15	14	
18	9/0	21/7	22/5	14/6	10/6	
12	30/1	34/-7	42/12	23/-5	26/-4	
22	8/14	17/-3	30/9	27/20	9/8	
19	11/3	20/4	24/3	7/15	25/16	

U		V					
	14	11	17	15	14		
18	9	21/0	22/12	14	10/6		
12	30	34/7	42/5	23	26		
22	8/14	17	30	27	9/8		
19	11	20	24	7/15	25		

Проверим оптимальность.

U		V					
	14(9)	11(14)	17(22)	15(1)	14(10)		
18(0)	9	21	22/12	14	10/6		
12(20)	30	34/7	42/5	23	26		
22(-1)	8/14	17	30	27	9/8		
19(6)	11	20	24	7/15	25		

План не оптимален. Повторяем шаги.

U		V				
	14	11	17	15	14	
18	9/0	21	22	14/13	10	
12	30	34/7	42	23/2	26/-4	
22	8	17/4	30/9	27/27	9	
19	11/-4	20	24/-4	7	25/9	
U		I	V	I		

	14	11	17	15	14
18	9/0	21/7	22/12	14/13	10/6
12	30/1	34/7	42/5	23/2	26/-4
22	8/14	17/4	30/9	27/27	9/8
19	11/-4	20/4	24/-4	7/15	25/9

U		V					
	14	11	17	15	14		
18	9	21	22/17	14	10/1		
12	30	34/7	42	23	26/5		
22	8/14	17	30	27	9/8		
19	11	20/4	24	7/15	25		

U		V					
	14(9)	11(18)	17(22)	15(5)	14(10)		
18(0)	9	21	22/17	14	10/1		
12(16)	30	34/7	42	23	26/5		
22(-1)	8/14	17	30	27	9/8		
19(2)	11	20	24	7/15	25		

U		V					
	14	11	17	15	14		
18	9/0	21/3	22	14/9	10		
12	30/5	34	42/4	23/2	26		
22	8	17/0	30/9	27/23	9		
19	11/0	20	24/0	7	25/13		

Отрицательных оценок нет. Был получен ответ.

0	0	17	0	1	
0	7	0	0	5	
14	0	0	0	8	
0 0 14 0	0	0	15	0	

Вывод: В ходе лабораторной работы была изучена математическая модель транспортной задачи, также овладели методами решения этой задачи.