ELEC 4700

Assignment 4

Name: Hongzhao Zheng

Student number: 100965369

Part 1

a) C and G matrices

b) Plot of DC sweep

c) Plot of AC gain

d) Step transition at t=0.03s

Sinusoidal Input

Gaussian pulse

e) Fourier Transform plots of frequency response

Step Transition

Sinusoidal Input

Gaussian pulse

PART 2

a) Updated C matrix

b) Plot of Vout with noise source

Vout vs t (Cn=0.00001, dt=0.001)

Plot of Vout with noise source (Zoomed in version)

c) Fourier Transform plot

d) Vout with different Cn

Vout vs t (Cn=0.001)

Vout vs t (Cn=0.01)

e) Vout with different time steps

Vout vs t (dt=0.0001)

Part 3 (i.e. question 4)

In this case, $V=\alpha I_3+\beta I_3^2+\gamma I_3^3$, we will need a B matrix so that the network of the circuit can be described by the following equation.

$$C\frac{dV}{dt} + GV + B = F$$