Package 'IsoplotR'

June 8, 2016

Title Statistical Toolbox for Radiometric Geochronology

Version 0.4

Description An R implementation of Ken Ludwig's popular Isoplot add-in to Microsoft Excel. Currently plots U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Calculates concordia and discordia ages. Performs linear regression of measurements with correlated errors using the 'York' approach. Caclulates Kernel Density Estimates. Future versions will include functionality for the Ar-Ar, Rb-Sr, Sm-Nd, Re-Os, U-Th-He, fission track and cosmogenic nuclide methods, including isochrons, age spectra, ternary diagrams, radial plots, banana diagrams and multidimensional scaling plots. A graphical user interface is provided as an RStudio Shiny app.

Author Pieter Vermeesch [aut, cre]

Maintainer Pieter Vermeesch < p. vermeesch@ucl.ac.uk>

Depends R (>= 3.0.0)

Imports methods

License GPL-2

LazyData true

RoxygenNote 5.0.1

R topics documented:

ge	2
otev	3
oncordia.age	3
oncordia.plot	5
iscordia.age	5
llipse	6
xamples	7
ratio	8
de	9
XDE.plot	C
ambda	1
llot.KDE	2
lot.KDEs	3

age

Index 18

age

2

Calculate isotopic ages

Description

Calculates U-Pb ages

Usage

```
age(x, ...)
## Default S3 method:
age(x, ...)
## S3 method for class 'UPb'
age(x, concordia = 0, ...)
```

Arguments

an object of class UPb Х optional arguments concordia one of either

0: consider each U-Pb analysis separately

1: calculate a concordia age from all U-Pb analyses together

2: fit a discordia line through all the U-Pb analyses

Value

if x has class UPb and concordia = 0, a table with the following columns:

botev 3

botev

Compute the optimal kernel bandwidth

Description

Uses the diffusion algorithm of Zdravko Botev (2011) to calculate the bandwidth for kernel density estimation

Usage

botev(x)

Arguments

Χ

a vector of ordinal data

Value

a scalar value with the optimal bandwidth

Author(s)

Dzdravko Botev

References

Botev, Z. I., J. F. Grotowski, and D. P. Kroese. "Kernel density estimation via diffusion." The Annals of Statistics 38.5 (2010): 2916-2957.

Examples

```
data(examples)
samp <- examples$DZ[['N1']]
bw <- botev(samp)
print(bw)</pre>
```

concordia.age

Calculate U-Pb concordia ages

Description

Evaluates the equivalence of multiple ($^{206}\text{Pb}/^{238}\text{U}-^{207}\text{Pb}/^{235}\text{U}$ or $^{207}\text{Pb}/^{206}\text{Pb}-^{206}\text{Pb}/^{238}\text{U}$) compositions, computes the weighted mean isotopic composition and the corresponding concordia age using the method of maximum likelihood, computes the mswd of equivalence and concordance and their respective Chi-squared p-values.

4 concordia.age

Usage

```
concordia.age(x, ...)
## Default S3 method:
concordia.age(x, wetherill = TRUE, dcu = TRUE, ...)
## S3 method for class 'UPb'
concordia.age(x, wetherill = TRUE, dcu = TRUE, i = NA, ...)
```

Arguments

X	either an object of class UPb, or a list containing two items, x and cov, corresponding to a U-Pb composition and its covariance matrix, respectively.
	optional arguments
wetherill	boolean flag to indicate whether the data should be evaluated in Wetherill (TRUE) or Tera-Wasserburg (FALSE) space
dcu	propagate the decay constant uncertainties?
i	(optional) scalar index of a particular aliquot. If omitted, the concordia age corresponding to the weighted mean composition is calculated

Value

a list with the following items:

```
x: a named vector with the (weighted mean) U-Pb composition cov: the covariance matrix of the (mean) U-Pb composition age: the concordia age (in Ma) age.err: the standard error of the concordia age
And, additionally (if x has class UPb and !is.na(i)):
```

mswd: a list with two items (equivalence and concordance) containing the MSWD (Mean of the Squared Weighted Deviates, a.k.a the reduced Chi-squared statistic outside of geochronology) of isotopic equivalence and age concordance, respectively.

p.value: a list with two items (equivalence and concordance) containing the p-value of the Chi-square test for isotopic equivalence and age concordance, respectively.

```
data(examples)
fit <- concordia.age(examples$UPb)
print(paste('age = ',fit$age,'+/-',fit$age.err,'Ma, MSWD = ',fit$mswd))</pre>
```

concordia.plot 5

concordia.plot	Concordia diagram
----------------	-------------------

Description

Wetherill and Tera-Wasserburg concordia diagrams

Usage

```
concordia.plot(x, limits = NULL, alpha = 0.05, wetherill = TRUE,
    show.numbers = FALSE, ellipse.col = rgb(0, 1, 0, 0.5),
    concordia.col = "darksalmon", dcu = TRUE, show.age = 0)
```

Arguments

x an object of class UPb

limits age limits of the concordia line

alpha confidence cutoff for the error ellipses
wetherill boolean flag (FALSE for Tera-Wasserburg)
show.numbers boolean flag (TRUE to show grain numbers)

ellipse.col background colour of the error ellipses

concordia.col colour of the concordia line

dcu show decay constant uncertainty?

show.age one of either

0: don't show the age

1: calculate the concordia age

2: fit a discordia line

Examples

```
data(examples)
concordia.plot(examples$UPb)
```

discordia.age

Linear regression on a U-Pb concordia diagram

Description

Performs linear regression of U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Computes the upper and lower intercept ages (for Wetherill) or the lower intercept age and the ²⁰⁷Pb/²⁰⁶Pb intercept (for Tera-Wasserburg), taking into account error correlations and decay constant uncertainties.

6 ellipse

Usage

```
discordia.age(x, wetherill = TRUE, dcu = TRUE)
```

Arguments

x an object of class UPb

wetherill boolean flag to indicate whether the data should be evaluated in Wetherill (TRUE)

or Tera-Wasserburg (FALSE) space

dcu propagate the decay constant uncertainties?

Value

a list with the following items:

x: a two element vector with the upper and lower intercept ages (if wetherill==TRUE) or the lower intercept age and ²⁰⁷Pb/²⁰⁶Pb intercept (for Tera-Wasserburg)

cov: the covariance matrix of the elements in x

Examples

```
data(examples)
fit <- discordia.age(examples$UPb)
print(paste('lower intercept = ',fit$x[1],'+/-',sqrt(fit$cov[1,1]),'Ma'))</pre>
```

ellipse

Get coordinates of error ellipse for plotting

Description

Construct an error ellipse age a given confidence level from its centre and covariance matrix

Usage

```
ellipse(x, y, covmat, alpha = 0.05)
```

Arguments

x x-coordinate (scalar) for the centre of the ellipse
 y y-coordinate (scalar) for the centre of the ellipse
 covmat
 covariance matrix of the x-y coordinates
 alpha
 the probability cutoff for the error ellipses

Value

```
a [50x2] matrix of plot coordinates
```

examples 7

Examples

```
x = 99; y = 101;
covmat <- matrix(c(1,0.9,0.9,1),nrow=2)
ell <- ellipse(x,y,covmat)
plot(c(90,110),c(90,110),type='l')
polygon(ell,col=rgb(0,1,0,0.5))
points(x,y,pch=21,bg='black')
```

examples

Example datasets for testing IsoplotR

Description

U-Pb and detrital zircon datasets

Details

examples is a list with two items

UPb: an object of class 'UPb' containing a high precision U-Pb dataset packaged with Ken Ludwig's Isoplot program.

DZ: an object of class 'detrital' containing a detrital zircon U-Pb dataset from Namibia.

```
1: 7/6, s[7/6], 6/8, s[6/8], 7/5, s[7/5]
```

Author(s)

Ken Ludwig and Pieter Vermeesch

References

Ludwig, K. R. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. No. 4. Kenneth R. Ludwig, 2003.

Vermeesch, Pieter, and Eduardo Garzanti. "Making geological sense of 'Big Data' in sedimentary provenance analysis." Chemical Geology 409 (2015): 20-27.

```
data(examples)
concordia.plot(examples$UPb)
```

8 iratio

iratio

Isotopic ratios

Description

Gets or sets natural isotopic ratios.

Usage

```
iratio(ratio, x = NULL, e = NULL)
```

Arguments

```
ratio one of either 'U238U235', 'Ar40Ar36', 'Ar38Ar36', 'Rb85Rb87', 'Sr88Sr86', 'Sr87Sr86', 'Sr84Sr86', 'Re185Re187', 'Os1840s192', 'Os1860s192', 'Os1870s192', 'Os1880s192', 'Os1890s192'

x new value for ratio
e new value for its standard error
```

Value

if x == e == NULL, returns a two-item vector containing the mean value of the requested ratio and its standard error, respectively.

References

Ar: Lee, Jee-Yon, et al. "A redetermination of the isotopic abundances of atmospheric Ar." Geochimica et Cosmochimica Acta 70.17 (2006): 4507-4512.

Rb: Catanzaro, E. J., et al. "Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium." J. Res. Natl. Bur. Stand. A 73 (1969): 511-516.

Sr: Moore, L. J., et al. "Absolute isotopic abundance ratios and atomic weight of a reference sample of strontium." J. Res. Natl.Bur. Stand. 87.1 (1982): 1-8.

Re: Gramlich, John W., et al. "Absolute isotopic abundance ratio and atomic weight of a reference sample of rhenium." J. Res. Natl. Bur. Stand. A 77 (1973): 691-698.

Os: Voelkening, Joachim, Thomas Walczyk, and Klaus G. Heumann. "Osmium isotope ratio determinations by negative thermal ionization mass spectrometry." Int. J. Mass Spect. Ion Proc. 105.2 (1991): 147-159.

U: Hiess, Joe, et al. "238U/235U systematics in terrestrial uranium-bearing minerals." Science 335.6076 (2012): 1610-1614.

```
# returns the 238U/235U ratio of Hiess et al. (2012):
print(iratio('U238U235'))
# use the 238U/235U ratio of Steiger and Jaeger (1977):
iratio('U238U235',138.88,0)
print(iratio('U238U235'))
```

kde 9

kde

Create (a) kernel density estimate(s)

Description

Creates one or more kernel density estimates using a combination of the Botev (2010) bandwidth selector and the Abramson (1982) adaptive kernel bandwidth modifier.

Usage

```
kde(x, ...)
## Default S3 method:
kde(x, from = NA, to = NA, bw = NA, adaptive = TRUE,
  log = FALSE, n = 512, ...)
## S3 method for class 'detritals'
kde(x, from = NA, to = NA, bw = NA,
  samebandwidth = TRUE, adaptive = TRUE, normalise = FALSE, log = FALSE,
  n = 512, ...)
```

Arguments

X	a vector of numbers or an object of class UPb or detrital
	optional arguments to be passed on to density
from	minimum age of the time axis. If NULL, this is set automatically
to	maximum age of the time axis. If NULL, this is set automatically
bw	the bandwidth of the KDE. If NULL, bw will be calculated automatically using botev()
adaptive	boolean flag controlling if the adaptive KDE modifier of Abramson (1982) is used
log	transform the ages to a log scale if TRUE
n	horizontal resolution of the density estimate
samebandwidth	boolean flag indicating whether the same bandwidth should be used for all samples. If samebandwidth = TRUE and bw = NULL, then the function will use the median bandwidth of all the samples.
normalise	boolean flag indicating whether or not the KDEs should all integrate to the same value.

Value

```
an object of class KDE, i.e. a list containing the following items:x: horizontal plot coordinatesy: vertical plot coordinates
```

10 KDE.plot

```
bw: the base bandwidth of the density estimate
```

ages: the data values from the input to the KDE function

or

if class(x)=='detritals', an object of class KDEs, i.e. a list containing the following items:

kdes: a named list with objects of class KDE from: the beginning of the common time scale

to: the end of the common time scale

themax: the maximum probability density of all the KDEs

xlabel: the x-axis label to be used by plot. KDEs

Examples

```
data(examples)
dens <- kde(examples$DZ[['N1']],0,3000,kernel="epanechnikov")
plot(dens)

KDES <- kde(examples$DZ,from=0,to=3000)
plot(KDES)</pre>
```

KDE.plot

Generate and plot (a) kernel density estimate(s)

Description

Plots geochronological datsets as kernel density estimates using a combination of the Botev (2010) bandwidth selector and the Abramson (1982) adaptive kernel bandwidth modifier.

Usage

```
KDE.plot(x, from = NA, to = NA, bw = NA, adaptive = TRUE, log = FALSE, n = 512, pch = NA, xlab = "age [Ma]", ylab = "", kde.col = rgb(1, 0, 1, 0.6), hist.col = rgb(0, 1, 0, 0.2), show.hist = TRUE, bty = "n", binwidth = NA, ncol = NA, ...)
```

Arguments

X	an object of class UPb or detritals
from	minimum age of the time axis. If NULL, this is set automatically
to	maximum age of the time axis. If NULL, this is set automatically
bw	the bandwidth of the KDE. If NULL, bw will be calculated automatically using botev()
adaptive	boolean flag controlling if the adaptive KDE modifier of Abramson (1982) is used
log	transform the ages to a log scale if TRUE

lambda 11

n	horizontal resolution of the density estimate
pch	the symbol used to show the samples. May be a vector. Set $pch = NA$ to turn them off.
xlab	the label of the x-axis
ylab	the label of the y-axis
kde.col	the fill colour of the KDE specified as a four element vector of r, g, b, alpha values
hist.col	the fill colour of the histogram specified as a four element vector of $\mathbf{r},\mathbf{g},\mathbf{b},\mathbf{alpha}$ values
show.hist	boolean flag indicating whether a histogram should be added to the KDE
bty	change to "o", "1", "7", "c", "u", or "]" if you want to draw a box around the plot
binwidth	scalar width of the histogram bins, in Myr if x\$log==FALSE, or as a fractional value if x\$log==TRUE. Sturges' Rule is used if binwidth==NA
ncol	scalar value indicating the number of columns over which the KDEs should be divided. This option is only used if x is of class detritals.
	optional arguments to be passed on to $kde(x,)$

Examples

```
data(examples)
KDE.plot(examples$DZ[['N2']])
```

lambda	Decay constants
--------	-----------------

Description

Gets or sets the decay constants of radioactive istopes

Usage

```
lambda(nuclide, x = NULL, e = NULL)
```

Arguments

nuclide	the nuclide name
x	new value for the decay constant
e	new value for the decay constant uncertainty

Value

if x == e == NULL, returns a two-item vector containing the decay constant [in Ma-1] and its standard error, respectively.

12 plot.KDE

Examples

```
print(lambda('U238'))
# use the decay constant of Kovarik and Adams (1932)
lambda('U238',0.0001537,0.0000068)
print(lambda('U238'))
```

plot.KDE

Plot a kernel density estimate

Description

Plots an object of class KDE

Usage

```
## S3 method for class 'KDE'
plot(x, pch = "|", xlab = "age [Ma]", ylab = "",
   kde.col = rgb(1, 0, 1, 0.6), show.hist = TRUE, hist.col = rgb(0, 1, 0,
   0.2), binwidth = NA, bty = "n", ...)
```

Arguments

x	an object of class KDE
pch	the symbol used to show the samples. May be a vector. Set $pch = NA$ to turn them off.
xlab	the label of the x-axis
ylab	the label of the y-axis
kde.col	the fill colour of the KDE specified as a four element vector of r, g, b, alpha values
show.hist	boolean flag indicating whether a histogram should be added to the KDE
hist.col	the fill colour of the histogram specified as a four element vector of $\mathbf{r},\mathbf{g},\mathbf{b},\mathbf{alpha}$ values
binwidth	scalar width of the histogram bins, in Myr if x\$log==FALSE, or as a fractional value if x\$log==TRUE. Sturges' Rule is used if binwidth==NA
bty	change to "o", "1", "7", "c", "u", or "]" if you want to draw a box around the plot
• • •	optional parameters to be passed on to the graphics object

```
data(examples)
dens <- kde(examples$DZ[['N1']],from=0,to=3000)
plot(dens)</pre>
```

plot.KDEs 13

	plot.KDEs	Plot a list of kernel density estimates	
--	-----------	---	--

Description

Plots an object of class KDEs

Usage

```
## S3 method for class 'KDEs'
plot(x, ncol = NA, pch = NA, xlab = "age [Ma]",
   ylab = "", kde.col = rgb(1, 0, 1, 0.6), show.hist = TRUE,
   hist.col = rgb(0, 1, 0, 0.2), binwidth = NA, bty = "n", ...)
```

Arguments

х	an object of class KDEs
ncol	scalar value indicating the number of columns over which the KDEs should be divided
pch	the symbol used to show the samples. May be a vector. Set $pch = NA$ to turn them off.
xlab	the label of the x-axis
ylab	the label of the y-axis
kde.col	the fill colour of the KDE specified as a four element vector of $\mathbf{r},\mathbf{g},\mathbf{b},\mathbf{alpha}$ values
show.hist	boolean flag indicating whether a histogram should be added to the KDE
hist.col	the fill colour of the histogram specified as a four element vector of $\mathbf{r},\mathbf{g},\mathbf{b},\mathbf{alpha}$ values
binwidth	scalar width of the histogram bins, in Myr if x\$log==FALSE, or as a fractional value if x\$log==TRUE. Sturges' Rule is used if binwidth==NA
bty	change to "o", "1", "7", "c", "u", or "]" if you want to draw a box around the plot
	optional parameters to be passed on to the graphics object

```
data(examples)
KDES <- kde(examples$DZ)
plot(KDES)</pre>
```

14 read.matrix

read.data

Read geochronology data

Description

Cast a .csv file into one of IsoplotR's data classes

Usage

```
read.data(fname, method = "U-Pb", format = 1, ...)
```

Arguments

fname file name (.csv format)

method one of 'U-Pb', 'Ar-Ar', 'Rb-Sr', 'Sm-Nd', 'Re-Os', 'U-Th-He', 'fission tracks',

'cosmogenic nuclides' or 'other'

formatting option, depends on the value of method. If method = 'U-Pb', then

format is one of either:

1: 7/6, s[7/6], 6/8, s[6/8], 7/5, s[7/5]

... optional arguments to the read.csv function

Value

```
an object of class 'UPb', 'ArAr', 'RbSr', 'SmNd', 'ReOs', 'UThHe', 'fission', 'cosmogenics', or 'other'
```

Examples

```
# load one of the built-in .csv files:
fname <- system.file("UPb.csv",package="IsoplotR")
UPb <- read.data(fname,'U-Pb')
concordia.plot(UPb)</pre>
```

read.matrix

Read geochronology data

Description

Cast a matrix into one of IsoplotR's data classes

Usage

```
read.matrix(x, method = "U-Pb", format = 1)
```

settings 15

Arguments

x a matrix

method see read.data for details format see read.data for details

Value

see read. data for details

Examples

```
# load one of the built-in .csv files:
fname <- system.file("UPb.csv",package="IsoplotR")
dat <- read.csv(fname,header=TRUE)
UPb <- read.matrix(dat,method='U-Pb',format=1)
concordia.plot(UPb)</pre>
```

settings

Load settings to and from json

Description

Get and set preferred values for decay constants and isotopic abundances from and to a . json file format

Usage

```
settings(fname = NULL)
```

Arguments

fname the path of a . json file

Value

```
if fname==NULL, returns a . json string
```

```
json <- system.file("defaults.json",package="IsoplotR")
settings(json)
print(settings())</pre>
```

16 yorkfit

yorkfit

Linear regression of X,Y-variables with correlated errors

Description

Implements the unified regression algorithm of York et al. (2004) which, although based on least squares, yields results that are consistent with maximum likelihood estimates of Ludwig and Titterington (1994)

Usage

```
yorkfit(X, Y, sX, sY, rXY)
```

Arguments

Χ	vector of measurements
Υ	vector of measurements
sX	standard errors of X
sY	standard errors of Y
rXY	correlation coefficients between X and Y

Value

a five element list containing

a: the intercept of the straight line fit

b: the slope of the fit

sa: the standard error of the intercept

sb: the standard error of the slope

References

Ludwig, K. R., and D. M. Titterington. "Calculation of 230ThU isochrons, ages, and errors." Geochimica et Cosmochimica Acta 58.22 (1994): 5031-5042.

York, Derek, et al. "Unified equations for the slope, intercept, and standard errors of the best straight line." American Journal of Physics 72.3 (2004): 367-375.

yorkfit 17

```
rXY <- rep(0.8,n)
fit <- yorkfit(X,Y,sX,sY,rXY)
covmat <- matrix(0,2,2)
plot(range(X),fit$a+fit$b*range(X),type='1',ylim=range(Y))
for (i in 1:n){
    covmat[1,1] <- sX[i]^2
    covmat[2,2] <- sY[i]^2
    covmat[1,2] <- rXY[i]*sX[i]*sY[i]
    covmat[2,1] <- covmat[1,2]
    ell <- ellipse(X[i],Y[i],covmat,alpha=0.05)
    polygon(ell)
}</pre>
```

Index

```
age, 2
botev, 3
concordia.\,age,\, \color{red} 3
{\tt concordia.plot, 5}
{\tt discordia.age}, {\tt 5}
ellipse, 6
examples, 7
iratio, 8
kde, 9
\mathsf{KDE}.\mathsf{plot}, \textcolor{red}{\mathbf{10}}
lambda, 11
plot.KDE, 12
plot.KDEs, 13
{\sf read.data}, 14
read.matrix, 14
settings, 15
yorkfit, \color{red} 16
```