Lecture on Parallelization

- Basic Parallelization
- II. Data dependence analysis
- III. Interprocedural parallelization

Chapter 11.1-11.1.4

Parallelization of Numerical Applications

- DoAll loop parallelism
 - Find loops whose iterations are independent
 - Number of iterations typically scales with the problem
 - Usually much larger than the number of processors in a machine
 - Divide up iterations across machines

Basic Parallelism

Examples:

```
FOR i = 1 to 100

A[i] = B[i] + C[i]

FOR i = 11 TO 20

a[i] = a[i-1] + 3

FOR i = 11 TO 20

a[i] = a[i-10] + 3
```

- Does there exist a data dependence edge between two different iterations?
- A data dependence edge is loop-carried if it crosses iteration boundaries
- DoAll loops: loops without loop-carried dependences

Recall: Data Dependences

• True dependence:

• Anti-dependence:

Output dependence

Affine Array Accesses

Common patterns of data accesses: (i, j, k are loop indexes)

- Array indexes are affine expressions of surrounding loop indexes
 - Loop indexes: i_n , i_{n-1} , ..., i_1
 - Integer constants: c_n , c_{n-1} , ..., c_0
 - Array index: $c_{n}i_{n} + c_{n-1}i_{n-1} + ... + c_{1}i_{1} + c_{0}$
 - Affine expression: linear expression + a constant term (c_0)

II. Formulating Data Dependence Analysis

FOR
$$i := 2$$
 to 5 do $A[i-2] = A[i]+1;$

- Between read access A[i] and write access A[i-2] there is a dependence if:
 - there exist two iterations i_r and i_w within the loop bounds, s.t.
 - iterations i, & i, read & write the same array element, respectively

$$\exists$$
 integers $i_w, i_r \quad 2 \leq i_w, i_r \leq 5 \quad i_r = i_w - 2$

 Between write access A[i-2] and write access A[i-2] there is a dependence if:

$$\exists$$
 integers $i_w, i_v = 2 \le i_w, i_v \le 5$ $i_w - 2 = i_v - 2$

- To rule out the case when the same instance depends on itself:
 - add constraint i_w ≠ i_v

Memory Disambiguation

is Undecidable at Compile Time

```
read(n)
For i =
    a[i] = a[n]
```

Domain of Data Dependence Analysis

Only use loop bounds and array indexes that are affine functions of loop variables

- Assume a data dependence between the read & write operation if there exists:
 - a read instance with indexes i_r, j_r and
 - a write instance with indexes i_w , j_w

$$\exists$$
 integers i_r, j_r, i_w, j_w $1 \le i_w, i_r \le n$ $2i_w \le j_w \le 100$ $2i_r \le j_r \le 100$ $i_w + 2j_w + 3 = 1$ $4i_w + 2j_w = 2i_r + 1$

- Equate each dimension of array access; ignore non-affine ones
 - No solution → No data dependence
 - Solution \rightarrow there may be a dependence

Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct (F_1, f_1) and (F_2, f_2) one must be a write operation

Let $B_1i_1+b_1 \ge 0$, $B_2i_2+b_2 \ge 0$ be the corresponding loop bound constraints,

$$\exists$$
 integers i_1 , i_2 $B_1i_1 + b_1 \ge 0$, $B_2i_2 + b_2 \ge 0$
 $F_1i_1 + f_1 = F_2i_2 + f_2$

• Equivalent to integer linear programming the constraint $i_1 \neq i_2$

$$\exists$$
 integer \dot{a} $A_1 \dot{s} \dot{b}$ $A_2 \dot{a} = \dot{b}$

- Integer linear programming is NP-complete
 - $O(size of the coefficients) or <math>O(n^n)$

Data Dependence Analysis Algorithm

- Typically solving many tiny, repeated problems
 - Integer linear programming packages optimize for large problems
 - Use memoization to remember the results of simple tests
- Apply a series of relatively simple tests
 - GCD: 2*i, 2*i+1; GCD for simultaneous equations
 - Test if the ranges overlap
- Backed up by a more expensive algorithm
 - Use Fourier-Motzkin Elimination to test if there is a real solution
 - Keep eliminating variables to see if a solution remains
 - If there is no solution, then there is no integer solution

Fourier-Motzkin Elimination

- To eliminate a variable from a set of linear inequalities.
- To eliminate a variable x_1
 - Rewrite all expressions in terms of lower or upper bounds of x_1
 - Create a transitive constraint for each pair of lower and upper bounds.
- Example: Let L, U be lower bounds and upper bounds resp
 - To eliminate x_1 :

$$L_{1}(x_{2}, ..., x_{n}) \leq x_{1} \leq U_{1}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq x_{1} \leq U_{2}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq U_{2}(x_{2}, ..., x_{n})$$

Example

$$1 \le i$$
 $1 \le i'$
 $i \le 5$ $i' \le 5$
 $i + 1 \le j$ $i' + 1 \le j'$
 $j \le 5$ $j' \le 5$

Data Dependence Analysis Algorithm

- Typically solving many tiny, repeated problems
 - Integer linear programming packages optimize for large problems
 - Use memoization to remember the results of simple tests
- Apply a series of relatively simple tests
 - GCD: 2*i, 2*i+1; GCD for simultaneous equations
 - Test if the ranges overlap
- Backed up by a more expensive algorithm
 - Use Fourier-Motzkin Elimination to test if there is a real solution
 - Keep eliminating variables to see if a solution remains
 - Add heuristics to encourage finding an integer solution.
 - Create 2 subproblems if a real, but not integer, solution is found.
 - For example, if x = .5 is a solution, create two problems, by adding $x \le 0$ and $x \ge 1$ respectively to original constraint.

Relaxing Dependences

Privatization:

Scalar

```
for i = 1 to n
    t = (A[i] + B[i]) / 2;
C[i] = t * t;
```

Array

```
for i = 1 to n
  for j = 1 to n
    t[j] = (A[i,j] + B[i,j]) / 2;
  for j = 1 to n
    C[i,j] = t[j] * t[j];
```

Reduction:

```
for i = 1 to n
  sum = sum + A[i];
```


Interprocedural Parallelization

- Why? Amdahl's Law
- Interprocedural symbolic analysis
 - Find interprocedural array indexes
 which are affine expressions of outer loop indices
- Interprocedural parallelization analysis
 - Data dependence based on summaries of array regions accessed
 - If the regions do not intersect, there is parallelism
 - Find privatizable scalar variables and arrays
 - Find scalar and array reductions

Conclusions

- Basic parallelization
 - Doall loop: loops with no loop-carried data dependences
 - Data dependence for affine loop indexes = integer linear programming
- Coarse-grain parallelism because of Amdahl's Law
 - Interprocedural analysis is useful for affine indices
 - Ask users for help on unresolved dependences