Required formulas for IGCSE Physics (not given)

$A.C.\ Norman \\$ ACN.Norman@radley.org.uk

1. the relationship between average speed, distance moved and time taken:

average speed =
$$\frac{\text{distance moved}}{\text{time taken}}$$

2. the relationship between unbalanced force, mass and acceleration:

$$force = mass \times acceleration$$

3. the relationship between acceleration, change in velocity and time taken:

$$acceleration = \frac{\text{change in velocity}}{\text{time}}$$

4. the relationship between density, mass and volume:

$$density = \frac{mass}{volume}$$

5. the relationship between work done, force and distance moved:

work done = force \times distance moved

6. the energy relationships:

energy transferred
$$=$$
 work done

kinetic energy =
$$\frac{1}{2} \times \text{mass} \times \text{speed}^2$$

gravitational potential energy = mass $\times g \times$ height

7. the relationship between weight, mass and gravitational field strength:

weight = mass \times gravitational field strength

8. the relationship between pressure, force and area:

$$pressure = \frac{force}{area}$$

9. the relationship between charge, current, voltage, resistance and electrical power:

$$charge = current \times time$$

 $voltage = current \times resistance$

10. the relationship between energy transferred, charge and voltage:

energy transferred = charge \times voltage

11. the relationship between the speed, frequency and wavelength of a wave:

wave speed = frequency \times wavelength

12. the relationship between refractive index, angle of incidence and angle of refraction:

$$n = \frac{\sin i}{\sin r}$$

13. the relationship between critical angle and refractive index:

$$\sin c = \frac{1}{n}$$

the sine of the critical angle, measured round from the NORMAL (in °) NB the critical angle is the angle above which total internal reflexion occurs $\sin c = \frac{1}{n}$ the reciprocal of the refractive index of the material

14. the relationship for efficiency

$$\text{efficiency} = \frac{\text{useful energy output}}{\text{total energy input}} \times 100\%$$

15. the relationship for pressure difference:

pressure difference = height \times density \times gravitaional field strength

$$p = h \times \rho \times g$$

