Expanding & Combining Logarithmic Expressions ()

Eq:allog 2(6x) =
$$\log_2(6) + \log_2(x)$$

Soly you want to solve $\log_2(6x) = 5$

for x .

 $\log_2(6x) = \log_2(6) + \log_2(x) = 5$
 $\log_2(6x) = 5 - \log_2(6x)$
 $f(x) = 2^x$
 $f(x)$

(8)

d)
$$\log \left(\frac{9b}{3c}\right) = \log(ab) - \log(3c)$$

= $\log(ab) - \log(c^{1/3})$
= $\log(a) + \log(b) - \frac{1}{3}\log(c)$.

Eq.: (ombining
a)
$$3 \log(x) + 2 \log(x-5) = \log(x^3) + \log((x-5)^2)$$

= $\log(x^3(x-5)^2)$

b)
$$3(og(s) - \frac{1}{2}log(++1) = log(s^3) - log(\sqrt{t+1})$$

= $log(\frac{s^3}{t+1})$.

Change of base formula
$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Eig.:
$$log_2(15) = log(15)$$
. $log(2)$