MATH 327 HW1

Jingyi Cui

July 2019

- Exercise 1 1. Assume that $x \geq z$, then $x-z \geq 0$. Since z is a positive number, z>0. Thus, $z(x-z)\geq 0$ and $zx-z^2\geq 0$. Thus, $zx\geq z^2$. Similarly, since x is a positive number, x>0. Thus, $x(x-z)\geq 0$ and $x^2-zx\geq 0$. Thus, $x^2\geq zx$ and $x^2\geq zx\geq z^2$.
 - 2. Assume m > 1 and so $1 \in L$, since $1^2 = 1 < m$. Thus, L is not empty. Since m > 1 and m > 0, $m \cdot m > 1 \cdot m$ and so $m^2 > m$. If $x \in L$, $x^2 < m < m^2$. From part 1, since $x^2 < m^2$, then x < m. Thus, L is bounded above by m.
 - 3. According to Axiom 3, since L is bounded above, then L has least upper bound, c. Thus, c exists. Taking $b = \frac{1}{z} > 0$ and a = 1. By Archimedean Law, there exists $n \in \mathbb{N}$ such that $n > \frac{1}{z}$. Hence, nz > 1 and $z > \frac{1}{n} > 0$. Thus, if z > 0, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < z$.

z > 0, there exists $n \in \mathbb{N}$ such that $0 < \frac{\pi}{n} < z$. Initially, assume m > 1. Thus, $1 \in L$ since 1 > 0 and $1^2 = 1 < m$.

Thus, c>1 and $c^2>c$. Suppose $c^2>m$. For $k\in\mathbb{N},\ (c-\frac{1}{k})^2=c^2-\frac{2c}{k}+\frac{1}{k^2}>c^2-\frac{2c}{k}$. Since $c^2>m,\ c^2-m>0$. Since $c>0,\ \frac{c^2-m}{2c}>0$. Thus, by the proof above, there exists a $k\in\mathbb{N}$ such that $\frac{c^2-m}{2c}>\frac{1}{k}$. Thus,

the proof above, there exists a $k \in \mathbb{N}$ such that $\frac{c^2-m}{2c} > \frac{1}{k}$. Thus, $(c-\frac{1}{k})^2 > c^2 - \frac{2c}{k} > c^2 - 2c \cdot \frac{c^2-m}{2c} = c^2 - c^2 + m = m$. Suppose $y \in L$ and then $y^2 < m < (c-\frac{1}{k})^2 < c^2$ which implies that $y < c-\frac{1}{k}$ contradicting that c is the elast upper bound of L.

Suppose $c^2 < m$. For $k \in \mathbb{N}$, $(c+\frac{1}{k})^2 = c^2 + \frac{2c}{k} + \frac{1}{k^2} < c^2 + \frac{2c}{k} + \frac{1}{k} = c^2 + \frac{2c+1}{k}$. Since $c^2 < m$, $m-c^2 > 0$. Since c > 0, 2c+1 > 0 and $\frac{m-c^2}{2c+1} > 0$. Thus, by the proof above, there exists a $k \in \mathbb{N}$ such that $0 < \frac{1}{k} < \frac{m-c^2}{2c+1}$. Thus, $(c+\frac{1}{k})^2 < c^2 + \frac{2c+1}{k} < c^2 + (2c+1) \cdot \frac{m-c^2}{2c+1} = c^2 + m - c^2 = m$. Thus, we get $c + \frac{1}{k} \in L$ contradicting that c is the least upper bound since $c + \frac{1}{k} > c$.

Thus, $c^2 = m$. If m = 1, then x = 1 works and if 0 < m < 1, then $\frac{1}{m} > 1$, thus there exists c > 0 such that $c^2 = \frac{1}{m}$ and $m = \frac{1}{c^2} = (\frac{1}{c})^2$.

Exercise 2 1 Suppose F satisfies the Archimedean Law, we want to prove another two propositions.

Since $1>0,\ z>0,$ there exists $n\in\mathbb{N}$ such that $n\cdot 1>z.$ Thus, there exists n in \mathbb{N} such that n>z.

Since z > 0, $z^{-1} > 0$. Since 1 > 0 and $z^{-1} > 0$, there exists $n \in \mathbb{N}$ such that $n \cdot 1 > z^{-1}$. Since $n > z^{-1}$ and z > 0, $n \cdot z > z^{-1} \cdot z = 1$. Since $n \in \mathbb{N}$, $n^{-1} > 0$. Thus, $n \cdot n^{-1} \cdot z > 1 \cdot n^{-1}$. Since $n \cdot n^{-1} = 1$ and $\frac{1}{n} = n^{-1}$, $1 \cdot z = z > 1 \cdot n^{-1} = \frac{1}{n}$ and so $\frac{1}{n} < z$.

2 Suppose 2 is true, we want to prove that 1 and 3 are true.

Assume $z = \frac{b}{a} > 0$. Thus, there exists a $n \in \mathbb{N}$ such that $n > \frac{b}{a}$ which implies na > b. 1 has been proven true and we can use Archimedean Law for proving $2 \to 3$.

Since $z>0,\ z^{-1}>0$. Since 1>0 and $z^{-1}>0$, there exists $n\in\mathbb{N}$ such that $n\cdot 1>z^{-1}$. Since $n>z^{-1}$ and $z>0,\ n\cdot z>z^{-1}\cdot z=1$. Since $n\in\mathbb{N},\ n^{-1}>0$. Thus, $n\cdot n^{-1}\cdot z>1\cdot n^{-1}$. Since $n\cdot n^{-1}=1$ and $\frac{1}{n}=n^{-1},\ 1\cdot z=z>1\cdot n^{-1}=\frac{1}{n}$ and so $\frac{1}{n}< z$.

3 Suppose 3 is true, and we want to prove 1 and 2 are true.

Assue $z=\frac{a}{b}>0$. Thus, there exists a rational number in the form $\frac{1}{n}$ such that $o<\frac{1}{n}<\frac{a}{b}$. Since $\frac{1}{n}<\frac{a}{b}$, then $(\frac{1}{n})^{-1}>(\frac{a}{b})^{-1}$ and $n>\frac{b}{a}$. Thus, na>b which implies that 1 is true. We can use Archimedean Law for proving that 2 is right.

Since z > 0 and 1 > 0, then use the Archimedean Law, there exists $n \in \mathbb{N}$ such that $n \cdot 1 > z$ and thus, n > z.

Exercise 3 1. P(m): $\forall n, m, a^m a^n = a^{m+n}$.

Base case: m = 1. $a^{1}a^{n} = aa^{n} = a^{n+1}$.

Induction process: Assume for a given $m \ge 1$, P(m) is true.

Goal prove P(m+1) is true.

Assume $a^na^m=a^{m+n}$ is true. $a^na^{m+1}=a^na^ma=a^{m+n}a$. Since $n,m\in\mathbb{N},\ m+n\in\mathbb{N}$ and so $a^{m+n}a=a^{m+n+1}$. Thus, $a^na^{m+1}=a^{m+n+1}$. P(m+1) is true.

Conclusion: $\forall m, n, a^m a^n = a^{m+n}$.

2. P(n): $\forall n, a^n b^n = (ab)^n$.

Base case: n = 1. $a^1b^1 = ab = (ab)^1 = ab$.

Induction process: Assume for a given $n \ge 1$, P(n) is true.

Goal prove P(n+1) is true.

Assume $a^nb^n=(ab)^n$ is true. $a^{n+1}b^{n+1}=a^nab^nb=(ab)^nab=(ab)^{n+1}$. P(n+1) is true.

Conclusion: $\forall n, a^n b^n = (ab)^n$.