Scope, challenges, limitations and comparative Analysis of momentum, adagrad, RMSProp, Adam

Presented By Suraj Bhattarai

## Contents

- 1. Momentum
- 2. Adagard
- 3. RMS Prop
- 4. Adam

### Momentum

Momentum usually converges much faster than gradient descent.



### Gradient descent



the gradient computed on the current iteration does not prevent gradient descent from oscillating in the vertical direction

### Momentum



the average vector of the horizontal component is aligned towards the minimum

the average vector of the vertical component is close to O

### continue....

```
V_{0} = \emptyset
V_{1} = \beta * V_{0} + (1-\beta) * \theta_{1}
V_{2} = \beta * V_{1} + (1-\beta) * \theta_{2}
V_{3} = \beta * V_{2} + (1-\beta) * \theta_{3}
V_{4} = \beta * V_{3} + (1-\beta) * \theta_{4}
V_{5} = \beta * V_{4} + (1-\beta) * \theta_{5}
V_{6} = \beta * V_{5} + (1-\beta) * \theta_{6}
V_{7} = \beta * V_{6} + (1-\beta) * \theta_{7}
V_{8} = \beta * V_{7} + (1-\beta) * \theta_{8}
V_{9} = \beta * V_{8} + (1-\beta) * \theta_{9}
```



### Momentum continue....

### Scope:

- **Convergence:** Momentum reduces oscillations and helps the optimizer converge faster towards the minimum
- Application: Momentum is widely used in training deep neural networks, particularly in scenarios where standard gradient descent might be slow.

### **Challenges:**

- Parameter Tuning (usually denoted as  $\beta$  or  $\mu$ ): Recommended value is 0.9, but the optimal value might differ depending on the problem. (Cannot use  $\beta=0$  and  $\beta=1$ )
- Learning rate Sensitivity: While momentum helps with convergence, it still requires a well-tuned learning rate.

#### Limitations:

Momentum does not adapt the learning rate; hence it might still struggle with sparse data or saddle points.

## 2. Adagrad

The adaptive gradient descent algorithm is slightly different from other gradient descent algorithms.

This is because it uses different learning rates for each iteration.

### **Advantages of Adagrad:**

- Adaptive learning rate
- Faster convergence
- Handling sparse data efficiently

### **Challenges**:

• Tends to perform well in the early stages of learning but might lead to too small learning rates over time, which can stall training

#### **Challenges:**

• The learning rate decays(reduction) too aggressively, leading to convergence issues in the long run.

### Continue....



$$v_{t} = v_{t-1} + dw_{t}^{2}$$

$$w_{t} = w_{t-1} - \frac{\alpha}{\sqrt{v_{t} + \epsilon}} dw_{t}$$

### 3. RMS Prop

RMSProp (Root Mean Square Propagation) is designed to resolve the diminishing learning rate problem of Adagrad.

### **Challenges**:

• Requires careful tuning of hyperparameters, particularly the learning rate and the decay rate (usually denoted as  $\beta$ , typically set to 0.9).

#### **Limitations**:

• It is not a universal solution and might still face issues with complex, non-convex loss.

### In RMSProp, it is recommended to choose $\beta$ close to 1.

## 4 Adam Optimizer

### Scope:

Combining Momentum and RMSProp: Adam incorporates the advantages of both Momentum and RMSProp by computing adaptive learning rates.

**Versatility**: Adam is highly versatile and is often the default choice for many deep learning tasks due to its robustness and adaptability.

### Challenges

• **Hyperparameter Sensitivity**: Adam introduces additional hyperparameters ( $\beta$ 1,  $\beta$ 2, and  $\epsilon$ ) that need careful tuning, though default values generally work well.

#### Limitations

- Complexity: Adam is more complex to implement and tune than simpler methods like SGD or Momentum.
- Overfitting: Adam's adaptability can lead to overfitting if not carefully monitored, particularly on small datasets.

According to the <u>Adam paper</u>, good default values for hyperparameters are  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ ,  $\varepsilon = 1e-8$ .

# Implementation using Pythons

# Thank you