Лабораторная работа 3.3.1

Измерение удельного заряда электрона методами магнитной фокусировки и магнетрона

Попова Софья Б04-401

September 2025

Цель работы

Определение отношения заряда электрона к его массе методом магнитной фокусировки и методом магнетрона.

Оборудование

- А) электронно-лучевая трубка (с блоком питания), соленоид, регулируемый источник постоянного тока, вольтметр, магнитометр (миллитесламетр или милливеберметр);
- Б) электронная лампа с цилиндрическим анодом, регулируемый источник постоянного тока, соленоид, вольтметр, два амперметра.

Теоретическая часть

А. Метод магнитной фокусировки

В постоянном однородном магнитном поле траектории заряженных частиц представляют собой спирали. За время T (циклотронный период), заряд сместится вдоль магнитного поля на расстояние L (шаг спирали). При малых углах расстояние L не зависит от угла вылета, так что все электроны, вышедшие из одной точки, после одного оборота вновь соберутся в одной точке — сфокусируются. Индукция поля B, при которой точка фокусировки отстоит от точки вылета на расстоянии L, определяется величиной e/m — удельным зарядом частицы. Используемые формулы:

$$\Phi = BSN \tag{1}$$

$$\frac{e}{m} = \frac{8\pi^2 U_A}{L^2} \cdot \frac{n^2}{B_{\Phi}^2(n)} \tag{2}$$

Б. Метод магнетрона

В так называемом методе магнетрона отношение e/m измеряется на основе исследования движения электрона в скрещенных (перпендикулярных друг другу) электрическом и магнитном полях. При наличии магнитного поля траектории электронов искривляются, вследствие чего при достаточно большом В ни один электрон не достигнет анода. Таким образом, при заданном напряжении U между пластинами существует некоторое критическое значение магнитной индукции Bkp(U), при котором траектории касаются поверхности анода. Если B < Bkp, то все электроны достигают анода, и ток через магнетрон имеет то же значение, что и без магнитного поля. Если же B > Bkp, то электроны не достигают анода, и ток через вакуумный диод равен нулю.

Используемые формулы:

$$\frac{e}{m} = \frac{8U_A}{B_{kp}^2 r_A^2} \tag{3}$$

Практическая часть

Часть А

Характеристики приборов

• Амперметр источника тока: $\Delta_I = 0,01$ A;

• Вольтметр источника тока: $\Delta_U = 0, 1$ В;

• Вольтметр ускоряющего напряжения: $\Delta_{U_A} = 0,01$ кВ;

• Милливеберметр: $\Delta_B=0,1$ мВб (потому что стрелка чуть двигалась во время измерений)

• Параметр катушки $SN = 3000 \text{ см}^2$;

 \bullet Длина трубки $L=26,5~{
m cm}.$

Измерение калибровочной кривой B(I)

		Первое направление тока												
I, A	3.64	3.64 2.89 2.32 1.67 1.31 0.55 0.35												
Ф, мВб	5	4	3.2	2.3	2.3 1.8		0.8 0.5							
$B, \frac{B6}{M^2} \cdot 10^{-2}$	1.66	1.33	1.06	0.76	0.6	0.26	0.16	0.06						
	П	Противоположное направление тока												
I, A	3.6	2.8	2.11	1.5	1.23	0.8	0.54	0.22						
Ф, мВб	4.9	3.8	2.8	2.2 1.7		1.15	0.8	0.3						
$B, \frac{B6}{M^2} \cdot 10^{-2}$	1.63	1.26	0.93	0.73	0.56	0.38	0.26	0.1						

Таблица 1: Зависимость магнитного поля в соленоиде от тока в его обмотке

Рис. 1: Зависимость магнитного поля в соленоиде от тока в его обмотке

	Первое направление тока												
номер фокуса	1	2	3	4	5								
I_{Φ}, A	0.64	1.3	1.96	2.61	3.35								
	Противоположное направление тока												
номер фокуса	1	2	3	4	5	6							
I_{Φ}, A	0.67	1.34	1.98	2.38	2.92	3.48							

Таблица 2: Значения тока I_{Φ} в точках фокусов

Определение фокусов

Значение ускоряющего напряжения - $U_A = 960~\mathrm{B}$

Определение значений $B_{\mathbf{\Phi}}$

номер фокуса	1	2	3	4	5	6
$B_{\Phi}, \frac{B6}{M^2} \cdot 10^{-2}$	0.3	0.6	0.9	1.15	1.4	1.6

Таблица 3: Усреднённые значения B_{Φ}

Наклон графика: 0,2614

L = 0.265

По формуле (2) и используя наклон графика и значение L определим удельный заряд электрона:

 $e/m=1.58*10^{11}~{
m K}{
m J/kr}$ Табличное значение: ${e\over m}=1,76\cdot 10^{11}~{
m K}{
m J/kr}$

Часть Б

Характеристики приборов

- Миллиамперметр: $\Delta_{I_a} = 0,002$ мА (потому что стрелка чуть двигалась во время измерений);
- Амперметр соленоида: $\Delta_{I_m}=0,004$ мА (потому что стрелка чуть двигалась во время измерений);
- Вольтметр: $\Delta_U = 0, 5 \text{ B};$
- Параметр лампы $k = 2, 8 \cdot 10^{-2} \frac{T}{A}$;
- ullet Параметр лампы $r_a=12$ мм.

Измерение зависимости анодного тока I_A от тока через соленоид I_C

Таблица со значениями I_A и I_C для разных значений напряжения U_A приведена в конце отчёта.

Рис. 2: Зависимость анодного тока I_A от магнитного поля B

По графику определяется $B_{\rm kp}$:

U_A , B	70	80	90	100	110	120
$B_{\rm \kappa p}$, мТл	4.94	5.12	5.52	5.98	6.23	6.75

Таблица 4: Критичесие значения $B_{\kappa p}$

Угловой коэффициент: 0.4254

По формуле (3) по угловому коэффициенту из графика определим заряд электрона $\frac{e}{m}$:

$$\frac{e}{m} = \frac{8}{0,4254 \cdot 12^2} = 1,306 \cdot 10^{11} \mathrm{K}\text{s.t.}$$

Табличное значение: $\frac{e}{m} = 1,76 \cdot 10^{11} \, \, \mathrm{Kp/kp}$

Рис. 3: Зависимость $B_{\kappa \mathrm{p}}^2$ от U_A

Вывод

Методом магнитной фокусировки: $e/m=(1,54\pm0,03)\cdot10^{11}~{\rm K}{\rm J/kr};$ Методом магнетрона: $e/m=(1,29\pm0,09)\cdot10^{11}~{\rm K}{\rm J/kr}.$ Табличное значение удельного заряда $(e/m)_{\rm Teop}=1,76\cdot10^{11}~{\rm K}{\rm J/kr}.$ Оба метода дали результаты, сходящиеся по порядку с табличным значениием, однако первый метод (магнитной фокусировки) оказался точнее. Это можно объяснить низкой точностью миллиамперметра и определением $B_{\mathrm{\kappa p}}$ по графику.

Напряже	ение U_A	=70B																
I_M , A	0,026	0,086	0,126	0,148	0,158	0,166	0,174	0,176	0,18	0,182	0,184	0,1856	0,188	0,192	0,198	0,286	0,6	0,9
I_A , MA	0,3	0,31	0,282	0,25	0,23	0,206	0,18	0,156	0,128	0,114	0,098	0,08	0,056	0,038	0,022	0,002	0	0
В, мТл	0,728	2,408	3,528	4,144	4,424	4,648	4,872	4,928	5,04	5,096	5,152	5,1968	5,264	5,376	5,544	8,008	16,8	25,2
Напряже	ение U_A	$=80\mathrm{B}$																
I_M , A	0,082	0,13	0,14	0,146	0,162	0,17	0,176	0,178	0,18	0,182	0,184	0,188	0,19	0,202	0,23	0,7		
I_A , MA	0,31	0,302	$0,\!28$	0,262	0,238	0,224	0,198	$0,\!186$	0,17	$0,\!156$	0,142	0,112	0,074	0,03	0,01	0		
В, мТл	2,296	3,64	3,92	4,088	4,536	4,76	4,928	4,984	5,04	5,096	5,152	5,264	5,32	5,656	6,44	19,6		
Напряже	ение U_A	=90B																
I_M , A	0,095	0,102	0,15	0,176	0,192	0,196	0,198	0,2	0,206	0,214	0,222	0,262	0,295					
I_A , MA	0,31	0,298	$0,\!28$	0,24	0,198	0,164	0,138	0,116	0,078	0,04	0,022	0,008	0					
В, мТл	2,66	2,856	4,2	4,928	$5,\!376$	$5,\!488$	5,544	5,6	5,768	5,992	6,216	7,336	8,26					
Напряже	ение U_A	= 100E	3															
I_M , A	0,154	0,166	0,184	0,202	0,208	0,212	0,214	0,218	0,222	0,224	0,23	0,248	0,31					
I_A , MA	0,31	0,29	0,262	0,228	$0,\!196$	0,174	0,148	0,118	0,084	0,058	0,038	0,016	0					
В, мТл	4,312	4,648	5,152	5,656	5,824	5,936	5,992	6,104	6,216	6,272	6,44	6,944	8,68					
Напряже	ение U_A	= 110E	3															
I_M , A	0,166	0,182	0,204	0,216	$0,\!22$	0,222	0,224	$0,\!226$	0,23	0,238	0,254	0,55						
I_A , MA	0,306	0,278	$0,\!226$	0,216	0,19	0,164	0,144	0,108	0,084	0,044	0,018	0						
В, мТл	4,648	5,096	5,712	6,048	6,16	6,216	6,272	6,328	6,44	6,664	7,112	15,4						
Напряже	ение U_A	= 120E																
I_M , A	0,058	0,186	0,202	0,218	$0,\!228$	0,234	0,238	$0,\!24$	0,244	0,248	$0,\!256$	0,272	0,34					
I_A , MA	0,31	0,302	$0,\!276$	$0,\!258$	$0,\!228$	0,202	0,178	$0,\!138$	0,104	0,07	0,038	0,018	0					
В, мТл	1,624	5,208	5,656	6,104	6,384	6,552	6,664	6,72	6,832	6,944	7,168	7,616	9,52					