$\begin{array}{c} {\rm XLIX} \\ {\rm KORESPONDENCYJNY\;KURS} \\ {\rm Z\;MATEMATYKI} \end{array}$

PRACA KONTROLNA nr 5 - POZIOM PODSTAWOWY

- 1. Załóżmy, że mamy 12 kul białych i 9 kul czarnych. Na ile sposobów można ustawić te kule w rzędzie w taki sposób, aby żadna czarna kula nie sąsiadowała z czarną? Na ile różnych sposobów można ustawić te kule w rzędzie w taki sposób, aby żadna czarna kula nie sąsiadowała z czarną, jeśli kule białe ponumerujemy kolejnymi liczbami parzystymi, a kule czarne kolejnymi liczbami nieparzystymi?
- 2. Ścianki kostki do gry oznaczono liczbami: -3, -2, -1, 1, 2, 3. Jakie jest prawdopodobieństwo zdarzenia, że przy dwóch rzutach tą kostką: a) otrzymana suma liczb wynosi 2; b) wartość bezwzględna sumy liczb jest równa co najwyżej 3?
- 3. Wyznaczyć ciąg arytmetyczny o pierwszym wyrazie równym 2, wiedząc, że wyrazy: pierwszy, trzeci i jedenasty w podanej kolejności tworzą ciąg geometryczny. Ile pierwszych kolejnych wyrazów tego ciągu należy dodać, aby otrzymana suma była większa niż 1000?
- 4. W zbiorze $[0, 2\pi]$ rozwiązać nierówność

$$\sin x + \sin 3x \geqslant \cos x + \cos 3x.$$

- 5. Znaleźć równania okręgów, które są styczne do obu osi układu współrzędnych oraz do prostej o równaniu x+y=4. Wykonać rysunek.
- 6. Pokazać, że stosunek objętości stożka do objętości wpisanej w ten stożek kuli jest równy stosunkowi pola powierzchni całkowitej stożka do pola powierzchni kuli.

PRACA KONTROLNA nr 5 - POZIOM ROZSZERZONY

- 1. Na ile sposobów można wybrać 5 kart z talii 52 kart tak, aby mieć przynajmniej po jednej karcie w każdym z czterech kolorów? A jaka jest odpowiedź, gdy wybieramy 6 kart z talii?
- 2. Rozpatrujemy zbiór ciągów n—elementowych o wyrazach -1, 0 lub 1. Obliczyć prawdopodobieństwo tego, że losowo wybrany ciąg ma co najwyżej jeden wyraz równy 0 i suma jego wyrazów równa jest 0.
- 3. Suma wszystkich współczynników wielomianu $W_n(x)$ jest równa

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n} \right),\,$$

a suma współczynników przy nieparzystych potęgach zmiennej równa jest sumie współczynników przy jej parzystych potęgach. Wyznaczyć resztę R(x) z dzielenia wielomianu $W_n(x)$ przez dwumian $x^2 - 1$.

4. Rozwiązać nierówność

$$\sin x + \sin 2x + \sin 3x \geqslant \cos x + \cos 2x + \cos 3x.$$

- 5. Zbadać przebieg zmienności funkcji $f(x) = \frac{4x^2 3x 1}{4x^2 + 1}$ i naszkicować jej wykres. Na podstawie sporządzonego wykresu określić liczbę rozwiązań równania f(x) = m w zależności od parametru m.
- 6. W stożku pole podstawy, pole powierzchni kuli wpisanej w ten stożek i pole powierzchni bocznej stożka tworzą ciąg arytmetyczny. Wyznaczyć kąt nachylenia tworzącej stożka do płaszczyzny jego podstawy. Wykonać rysunek.

Rozwiązania (rękopis) zadań z wybranego poziomu prosimy nadsyłać do **18 stycznia 2020r.** na adres:

Wydział Matematyki Politechnika Wrocławska Wybrzeże Wyspiańskiego 27 50-370 WROCŁAW.

Na kopercie prosimy koniecznie zaznaczyć wybrany poziom! (np. poziom podstawowy lub rozszerzony). Do rozwiązań należy dołączyć zaadresowaną do siebie kopertę zwrotną z naklejonym znaczkiem, odpowiednim do formatu listu. Polecamy stosowanie kopert formatu C5 (160x230mm) ze znaczkiem o wartości 3,30 zł. Na każdą większą kopertę należy nakleić droższy znaczek. Prace niespełniające podanych warunków nie będą poprawiane ani odsyłane.

Uwaga. Wysyłając nam rozwiązania zadań uczestnik Kursu udostępnia Politechnice Wrocławskiej swoje **dane osobowe**, które przetwarzamy **wyłącznie** w zakresie niezbędnym do jego prowadzenia (odesłanie zadań, prowadzenie statystyki). Szczegółowe informacje o przetwarzaniu przez nas danych osobowych są dostępne na stronie internetowej Kursu.

Adres internetowy Kursu: http://www.im.pwr.edu.pl/kurs