线性代数(B1) 第八次作业

请于2023年5月9日周二上课前在教室里交.

补充习题可视作思考题,正常情况下不作要求,但是学有余力的同学强烈建议认真完成.

2023年4月23日布置的作业

教材习题. P156-157: #38, #40, #41, #43, #44.

补充习题 1. 求解下列含参数 λ 的线性方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1\\ (\lambda^2 + 1)x_1 + 2\lambda x_2 + (\lambda + 1)x_3 = \lambda + 1\\ x_1 + x_2 + \lambda x_3 = 1\\ 2x_1 + (\lambda + 1)x_2 + (\lambda + 1)x_3 = 2 \end{cases}$$

2023年4月25日布置的作业

教材习题. P157-158: #46, #49. P189: #1.

补充习题 2. 设 $\mathscr{A}: V_1 \to V_2$ 是向量空间之间的线性映射. 验证: $\ker(\mathscr{A})$ 是 V_1 的子空间, $\operatorname{mim}(\mathscr{A})$ 是 V_2 的子空间.

补充习题 3. 设 $\mathscr{A}: V_1 \to V_2$ 是向量空间之间的线性映射, 证明:

$$\dim(V_1) = \dim(\ker(\mathscr{A})) + \dim(\operatorname{im}(\mathscr{A})).$$

(提示: 先找到 $\ker(\mathscr{A})$ 的一组基 $\alpha_1, \ldots, \alpha_s$, 接下来将其扩充为 V_1 的一组基 $\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_t$, 并且验证 $\mathscr{A}(\beta_1), \ldots, \mathscr{A}(\beta_t)$ 构成 $\operatorname{im}(\mathscr{A})$ 的一组基)

2023年4月27日布置的作业

教材习题. P189-190: #2, #3, #4, #6 (并证明这样的必的唯一性), #8.

2023年5月4日布置的作业

教材习题. P190-191: #5, #9.

补充习题 4. 设 $\beta_1, \beta_2, \beta_3$ 构成向量空间 V 的一组基, 而 V 上的线性变换 \mathscr{A} 在这组基 $\begin{pmatrix} 0 & -6 & 1 \\ 0 & r & 1 \end{pmatrix}$ 计算 $\mathscr{A}(3R - 4R + 5R)$

下的矩阵为
$$\begin{pmatrix} 0 & -6 & 1 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{pmatrix}$$
. 计算 $\mathscr{A}(3\beta_1 - 4\beta_2 + 5\beta_3)$.

补充习题 5. 设 \boldsymbol{A} 为 n 阶方阵, 且 \boldsymbol{A} 所在的相似等价类仅有一个元素. 证明: \boldsymbol{A} 是一个数量阵.

补充习题 6. 若同阶方阵满足 $A_1 \sim A_2$, $B_1 \sim B_2$, 我们一般情况下是无法推出 $(A_1 + B_1) \sim (A_2 + B_2)$ 的, 也无法推出 $(A_1B_1) \sim (A_2B_2)$. 请举例说明这一点.

补充习题 7. 设 $\boldsymbol{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2\times 2}$, 而 \boldsymbol{P} 是初等矩阵 \boldsymbol{S}_{12} , $\boldsymbol{D}_{1}(\lambda)$, $\boldsymbol{D}_{2}(\lambda)$, $\boldsymbol{T}_{12}(\lambda)$ 或 $\boldsymbol{T}_{21}(\lambda)$. 在这五种情形下, 计算 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}$. 进一步地, 说明任意 2 阶复数方阵都可以相似于一个上三角矩阵, 也可以相似于一个下三角矩阵.