

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

February/March 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

Find the exact value of $\int_3^\infty \frac{2}{x^2} dx$.	

© UCLES 2024

2

The diagram shows part of the curve with equation $y = k \sin \frac{1}{2}x$, where k is a positive constant and x is measured in radians. The curve has a minimum point A.

(a)	State the coordinates of <i>A</i> . [1]
(b)	A sequence of transformations is applied to the curve in the following order.
	Translation of 2 units in the negative y-direction
	Reflection in the <i>x</i> -axis
	Find the equation of the new curve and determine the coordinates of the point on the new curve corresponding to A .

Find the val	ue of a					
rina me vai	ue or a.					
			,			
				•		
				•••••		
•••••				•••••		
				••••••		
		•••••				
•••••				•••••	•••••	
						••••••
				•••••		
				•••••		

Prove that $\frac{(s)}{s}$	$\frac{\cos^2\theta}{\cos^2\theta}$	$\frac{1}{2} \equiv 2 \tan \theta$.		[3
				 •••••
		$\cos^2\theta$	$-= 5 \tan^3 \theta \text{ for } -90^\circ <$	 [3
				 •••••
				 •••••
•••••				

A curve has the equation $y = \frac{3}{2x^2 - 5}$.
Find the equation of the normal to the curve at the point $(2,1)$, giving your answer in the $ax + by + c = 0$, where a , b and c are integers.

It is given that the coefficient of x^3 in the expansion of

6

$(2+ax)^4(5-ax)$	
is 432.	
Find the value of the constant a .	[5

Find the value of the co	onstant k.		[4]
Find the coordinates of	P.		[2]
			L
		• • • • • • • • • • • • • • • • • • • •	

(a)	An arithmetic progression is such that its first term is 6 and its tenth term is 19.5.	
	Find the sum of the first 100 terms of this arithmetic progression.	[4]
(b)	A geometric progression a_1 , a_2 , a_3 , is such that $a_1 = 24$ and the common ratio is	$\frac{1}{2}$.
	even-numbered terms (i.e. a_2 , a_4 , a_6 ,) is denoted by S_E . Find the values of S and S_E .	[4]
	E	

9 The functions f and g are defined for all real values of x by

$$f(x) = (3x-2)^2 + k$$
 and $g(x) = 5x-1$,

where k is a constant.

Given that the range of the function gf is gf $(x) \ge 39$, find the value of k .	
For this value of k , determine the range of the function fg.	

The function h is defined for all real values of x	and is such that $gh(x) = 35x + 19$	
Find an expression for $g^{-1}(x)$ and hence, or other		[2]
rind an expression for g (x) and hence, or other	is wise, find an expression for $\Pi(x)$.	[3]
		•••••
		•••••
		•••••

10

The diagram shows the circle with centre C(-4,5) and radius $\sqrt{20}$ units. The circle intersects the *y*-axis at the points A and B. The size of angle ACB is θ radians.

(a)	Find the equation of the tangent to the circle at the point $(-6,9)$.	[3]
(b)	Find the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$.	[2]

	•••••
d the perimeter and area of the segment shaded in the diagram.	
	•••••
	•••••
	•••••
	d the perimeter and area of the segment shaded in the diagram.

11

The diagram shows the curve with equation $y = 2x^{-\frac{2}{3}} - 3x^{-\frac{1}{3}} + 1$ for x > 0. The curve crosses the x-axis at points A and B and has a minimum point M.

Find the exact coordinates of M .	

Find the area of the region bounded by the curve and the line segment AB .	
	•••••
	•••••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.				
	•••			
	•••			
	•••			
	•••			
	••••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.