Лекция 2: Деления в кольце многосленов от п пероменных (1) Проблена принадлению сти идеалу в кольце k[x]. Увидии, гто кольцо в [2] является кольцом главитя пдеалов, т.е. no son ngear & R[x] ognoropomgén. Предложение 2.1: Любой прем в k[x] может бого записан в виде < f>, где f - некотории многоглен из k[x] более того, з един ственный с точностью до умионения на ненулевую константу из поия к. Donazarenocho: Bauerun emo nyueboù ugear l k[x] uneen bug < 0> Dance novaragu zmo I - repujuebor regear & k(2) Jiyaro f - reny rebai en vororien nan revisuer come ne re remanyuri f I. O rebuguo, romo < f > I Donamen o o par no e bano e cence, c f or 9=97+1, rge u = 0 v = 0 u = 0 Ec. $u < f > = \langle g \rangle$ mo $f \in \langle g \rangle$ is not nomen zamicato f = hg que nenotopos sinovorieria $h \in k[x]$. Toega enpoleginho pabenembo $(2.1) \quad \deg(f) = \deg(h) + \deg(g),$ brezywee $\deg(f) \ge \deg(g)$. Tak kak $g \in \{1\}$, no anarow we harpearmae reparements $\deg(g) \ge \deg(f)$. Tex canon energy successful f u g cobragaion. Kak creggen up (2.1) $\deg(h) = 0$, m.e. h shreete resymbles:

Пример 2.1: Ваким, лечий м $x^3 + 4x^4 + 3x - 7$ в идеале $(x^3 - 3x + 2, x^4 - 1, x^6 - 1)$?

1) Идеал $(x^3 - 3x + 2, x^4 - 1, x^6 - 1)$ поротдается наибольний общий деньтеми $g \in (x^3 - 3x + 2, x^4 - 1, x^6 - 1)$. Известно, гто $g \in (x^3 - 3x + 2, x^4 - 1, x^6 - 1) = g \in (x^3 - 3x + 2, g \in (x^4 - 1, x^6 - 1))$.

kouc man moi

Hange'n $gcd(x^4-1, x^6-1) = gcd(x^6-1, x^4-1) = gcd(x^4-1, x^4-1) = gcd(x^2-1, 0) = x^2-1,$ $gcd(x^3-3x+2, x^2-1) = gcd(x^2-1, -2x+2) = gcd(x-1, 0) = x-1.$ Takun $o\delta\rho\sigma\sigma\rho\nu$, $< x^3-3x+2, x^4-1, x^6-1> = < x-1>.$

2) Des ombema на вопрос 323+422+32-7 € < I-179 goemamoru поделить исследуемый миогоглем на поротдающую: $x^3 + 4x^2 + 3x - 7 = (x^2 + 5x + 8)(x - 1) + 1$ Госкольку остаток не равен в, то мог заключаем, гто 4 x 3 + 4x2 + 3x - 7 & (x3-3x+2, x4-1, x6-1) Due pewerus zagaru rpunagiemnocmu ugeay & k[x1,..., xn] mor буден поетупать схожим образом: 1) находить , хороший вазис дия идеаля (так назправичний базис Гребнера); г) применей алгорити garenus & koraye klas, ..., 2, 7. (2.2) Мономиальные порядки Алгориям деления многосленов из в[2] опираетае 1) на там факте, this us homen gropegorus nonous on equal repensation no возрастанию степеней: $1 < x < x^2 < \dots < x^m < x^{m+1} < \dots ;$ 2) coomnowered very veroused \mathcal{Z}^k to coapsisemes now ynextend that the monow \mathcal{X}^m : $\mathcal{X}^k < \mathcal{X}^L \Rightarrow \mathcal{X}^{k+m} < \mathcal{X}^{k+l}$. Hama zagara ввести упорядочение на иножестве вих монашов из $k[x_1,...,x_n]$ максимально пожожим на естественное упорядочение для моношов от одной переменной образом. Запетии, то существует 1-1 егот ветствие методу мономами $\mathbb{Z}_{>0}^{h}: \mathbb{Z}^{d}:=\mathbb{Z}_{+}^{d}: \mathbb{Z}_{+}^{d}:=\mathbb{Z}_{+}^{d}: \mathbb{Z}_{+}^{d}$ Уюзтому мовой порядок на \mathbb{Z}_{20}^n задаёт порядок на мистестве нономов n nao $\delta o pom$: $\alpha < \beta \Leftrightarrow \alpha^{\alpha} < \beta c^{\beta}$ On pegenerue 21. Mono masonon no pegran < na $k[x_1,...,x_n]$ nazorbaетая минейный порядок на Z'20 (ими на мнотеже мономов) т.г. 1) eau $d < \beta$ u $g \in \mathbb{Z}_{>0}^n$, mo $d + g < \beta + g$;
2) $\mathbb{Z}_{>0}^n < g$ shereter browne znorzgozekhoru unomechou, $\overline{}$. But see henyemoe nog unomecho $\mathbb{Z}_{>0}^n$ cogepmus hannenbuum reneus

Nema 2.1: Tryoto < - merenisari nopegox na Zzo Tronga (Z; n, <) - вполне упоредоченное мношество ⇔ когда всенае строго ублвающая последовательнося $\alpha_1 > \alpha_2 > \alpha_3 > \dots$, $\alpha_i \in \mathbb{Z}_{\geqslant 0_i}^n$ Обраваетая Dokamess, что $(\mathbb{Z}_{>0}^n,<)$ -не $BYM \Leftrightarrow korga$ существует Оесконегная строго убывающая последовательность в $\mathbb{Z}_{\geq 0}^n$ Eeu (Zzo, <) - re BYM, mo eyyectbyen nogusiomecto SCZzo, которы не содержит наименьшего эмиента. Вогберей о Е. С. nocuously & S het mannenemero enementa, mangémas de ES: di 7d2. Arasourno, rangêmes «3 ES: «4 > «3. Spogoimas non nongum бескопетную строго убивающую последовательность (2.2) $\alpha_1 > \alpha_2 > \alpha_3 > \dots$ Пучто нап дана басконегная строго ублючицая последовательность (2.2) Fiorga renyone nogrummecibo $\{a_1, a_2, a_3, \dots\} \subset \mathbb{Z}_{\geq 0}^n$ ne une es manners mero sumerona, nooromy (Z", <) he shister BYM Onpegerence 2.3: (rencunorpaquire cuier nopagon) Myero &= (de,..., dn) и В= (В1, ..., Вп) Е Z. ... будем говорить, гто d<В менсиноградически (d <iex В), если первае ненульвая координата вектора в « посожительна Corragio goro boponisio comu & d < MX IP, ecui a < MX f. NB: 3gecs un crumeen, zmo I, > I2 >... > In Предиотение 2.2: Лексикоградический порядок является ионашакням порядком на Zzo. Доказатель ство: Из определения очевидно, что менсинографический порядок - это линейной порядок 1) Pyer $d < \{ex \mid \beta \mid u \mid \chi \in \mathbb{Z}_{\geq 0}^n \}$ Fockorway $(\beta + \gamma) - (d + \gamma) = \beta - d$, replax or usuas on nyus koopdus ara beamopa $(\beta + \gamma) - (d + \gamma)$ такае те как у вектора В-а. Следовательно, 2+8< В+8.

2) Tipegnosomers, amo (Zzo, < lex) - ne BYN To предложению 1.2 тогда должна существовай бесконегно убывающая последовательного $|\alpha_1| > |\alpha_2| > |\alpha_3| > |\alpha_3| > |\alpha_3|$ answerrob di E Zzo. Из определения лексикографичесного порядка следует, сто первые координаты векторов «і Образуют невозрастающую последовательность неотрицательных чисел. Ко тогда напуётся цегое к то такое, rmo nephre koopquearn beumopob di colnagaam, ecur i th Исходя, из определения лексино графического порядка, нетрудия увидет, сто вторпе кординат векторов оби обил, ... тоже образуют невозрастающую поспедовательность в 230 ведовательно, начиная с нешьторого номера, вторае координами векторов «к. ок. 1,... будут совпадал Таким обрезом, рассматривая последовачельности оставиштия координат, мых получими, гто для накоторого в все векторя в последоваченности « , «ін, ... Sygym pabus A smo rpotubopezui rouy, and of > lex off. Spognowance (Zro <) ne sbeseice BYM, npubogum & nporuloperus. Определение 24: (степенной менсикографический порядок) Определение 1.5. (степечного ображивый менси поградический порядок) Tycomi &, B & Z 20. Sygen robopus, and a <drever B 👄 moso Id | < 181, moso Id = 101 n ommenae om myne рдината вектора в- « с наибольший номером отринательна. Eем задинсирован мономиальный порядок < на $k[x_1,...,x_n]$, то дле мно гослена $f=\sum_{n=1}^\infty a_n x_n^n\in k[x_1,...,x_n]$ in the sequence of $f := \max\{d \in \mathbb{Z}_{\geq 0}^n : a_n \neq 0\}$; стариний кого диниент — $fcf := a_{mdegf}$; стариний моном — $hmf := x^{mdegf}$. 2) 3) comapulation - ltf: = lcf · lonf.

Ocebugno, ano que nenyellore of g & k[x1,...,xn] bornaeneromal 1) mdeg (fg) = mdeg f + mdegg; npu f+g = 0. 2) mdeg (f+9) ≤ max { mdeg f, mdeg g } (2.3) Anopumu generue & k[x1,...,xn] Hama yers - nogenite unovocien fek[x1,...,xn] na nasop removerend for, ..., fo & k[x, ..., x,], m.e. noryeurs npegenabrenue $(2.3) f = a_1 f_1 + ... + a_s f_s + r,$ где кастьюте $a_1,...,a_5$ и остаток r летат b $k[x_1,...,x_n]$. При этом лип дантиот отоворить, rто будем понимать под ретативам. Пример 2.2: будем работать в кольце Q[x,y], использул lex: x > y. Singenese $f = x^2y + xy^2 + y^2$ na $(f_1, f_2) = (xy-1, y^2-1)$. Угервоначально имеем $f = 0 \cdot (xy-1) + 0 \cdot (y^2-1) + x^2y + xy^2 + y^2$. (0-maz) Dance compared lt f c nouseus lt f1, nouseus $f - x f_1 = xy^2 + x + y^2$, ши по-другому f = x (xy-1) + D(y2-1) + xy2+x+y2, (1 maz) Гродолжал, пригодии к сигуации, к-ой не бываей в слугая одной перененной: $f = (x+y)(xy-1) + O(y^2-1) + x + y^2 + y,$ (2 maz) ege x ne genizae nu na ltf1, nu na ltf2, no y^2 genizae na ltf2. Conpanyane y^2 , rpuxogun x q_2 $f = (x+y)(xy-1) + 1 \cdot (y^2-1) + x+y+1$, (3 mar). x = x + y + 1 уте можно сгитать остатном, посномну им один его моном не демето на стариме глемог пногосленов ng nadopa (fi,fi).

Теорена 2.1: Пусть < - моношинаньной порадок на К[х, ..., хи], F=(f, ... fs) ck[х, л] Torga motor unavocure 1 & R[zz,..., zn] morem bout zarucare 6 buge (23) 29e mão r=0, mão rue ogun uz monomos, cocrabisvorque r, ne gammae mi na ogun ny ltfs, ..., llfs (maxois r sygne nagobato ocmanicou om generus of na F). Tance moro ecus a; fi +0, (24) $m \deg f \ge m \deg(a_i f_i)$ Доказатальство: Мог покатен, что тенаемое представление (2.3) есть результаї pasomor arropumma general δ $k[x_1,...,x_n]$: Вход: 🔑 ,..., 💤 🕺 Инициализация: $a_i := 0$, ..., $a_s := 0$, p := 1i := min ({j: lt f; gew ltp} v {s+1}) # м.е. і - номер **Если** *i* ≠ S+1 # первого иногослена # в наборе Е стариние # глен которого делий ИР. $r := r + lt\rho$ p = p - ltpБуден нумертвать еостояние пероментих перед итерациями умера с помощью вержнего индекса: $a_1^{(K)}, a_2^{(K)}, p^{(K)}$ Тогда для всех возможения змагений к страводного рабенство $f = a_1^{(k)} f_1 + ... + a_s^{(k)} f_s + p^{(k)} + r^{(k)}$ Алюрийн остановитах, если при некотором ко многочем $p^{(k_0)} = 0$, в эти слугая на помужи пребусног разно жения (23). Nokamen, zmo aszopuin gensibuienen zalepuaer chow pasomy za kontense zueno masok Een $p^{(k+1)} = p^{(k)} - (Up^{(k)}/Ut+i)f_i$, mo (1.5) m deg $p^{(k+1)} < m \deg p^{(k)}$, max κακ $U(Up^{(n)}/Ufi)f_i$ = $(Up^{(n)}/Ufi)Ufi$ = $U(p^{(n)})$. Com me $p^{(n+1)} = p^{(n)} - Up^{(n)}$ mo un cuola unexu repalencibo (£.5). Τακικι οδραζομ πος εισβατελείνος εξ mdeg $p^{(n)}$ yōnbaem. Εσιώ δτι αιτορώτω не завершалах, то это была бескопично убывающая последовательност, и мл получим бы противорегия с тем, гто < - монимальным порядок Formory you kakes -mo Ko reference p(Ka) = 0, T.E. assopute ocmaratubae mas.

Остаєтая установий неравенство (24). Замения, гто каторе ciaracuoe 6 a: incem bug ltp(10) lt fi. Haraisuoe zuarenne p(0)= f, no story & cury morono smo gorazannozo, ltp(x) < ltf ger beex K. $\ell\ell(a_i f_i) = \ell\ell a_i \ell\ell f_i = \frac{\ell\ell p^{(k_i)}}{\ell\ell f_i} \cdot \ell\ell f_i = \ell\ell p^{k_i} < \ell\ell f_i$ Ecu & pezy simane generus of na (fr..., fs) comamor r=0, mo многоглен f E < 91,..., Яб > Одноко обратное неверно. Пример 23: Пуст f1 = xy+1, f2 = y'-1 из Q[x,y] с lex: x ту. Jogans improvem 4 = xy2 x na (fi, f2), nongrum $xy^2-x=y(xy+1)+O(y^2-1)+(-x-y).$ Ognaro xy2-x = x(y2-1) 6 < 1, f2>.