15

20

25

5

10

detecting a nucleic acid. If the temperature is below the Tm (the temperature at which one-half of an oligonucleotide is bound to its complementary strand) for the binding of the oligonucleotides on the nanoparticles to the nucleic acid, then sufficient time is needed for the aggregate to settle. The temperature of hybridization (e.g., as measured by Tm) varies with the type of salt (NaCl or MgCl₂) and its concentration. Salt compositions and concentrations are selected to promote hybridization of the oligonucleotides on the nanoparticles to the nucleic acid at convenient working temperatures without inducing aggregation of the colloids in the absence of the nucleic acid.

The invention also provides a method of nanofabrication. The method comprises providing at least one type of linking oligonucleotide having a selected sequence. A linking oligonucleotide used for nanofabrication may have any desired sequence and may be single-stranded or double-stranded. It may also contain chemical modifications in the base, sugar, or backbone sections. The sequences chosen for the linking oligonucleotides and their lengths and strandedness will contribute to the rigidity or flexibility of the resulting nanomaterial or nanostructure, or a portion of the nanomaterial or nanostructure. The use of a single type of linking oligonucleotide, as well as mixtures of two or more different types of linking oligonucleotides, is contemplated. The number of different linking oligonucleotides used and their lengths will contribute to the shapes, pore sizes and other structural features of the resulting nanomaterials and nanostructures.

The sequence of a linking oligonucleotide will have at least a first portion and a second portion for binding to oligonucleotides on nanoparticles. The first, second or more binding portions of the linking oligonucleotide may have the same or different sequences.

If all of the binding portions of a linking oligonucleotide have the same sequence, only a single type of nanoparticle with oligonucleotides having a complementary sequence attached thereto need be used to form a nanomaterial or nanostructure. If the two or more binding portions of a linking oligonucleotide have different sequences, then two or more nanoparticle-oligonucleotide conjugates must be used. See, e.g., Figure 17. The oligonucleotides on each of the nanoparticles will have a sequence complementary to one of

25

5

10

the two or more binding portions of the sequence of the linking oligonucleotide The number, sequence(s) and length(s) of the binding portions and the distance(s), if any, between them will contribute to the structural and physical properties of the resulting nanomaterials and nanostructures. Of course, if the linking oligonucleotide comprises two or more portions, the sequences of the binding portions must be chosen so that they are not complementary to each other to avoid having one portion of the linking nucleotide bind to another portion.

The linking oligonucleotides and nanoparticle-oligonucleotide conjugates are contacted under conditions effective for hybridization of the oligonucleotides attached to the nanoparticles with the linking oligonucleotides so that a desired nanomaterial or nanostructure is formed wherein the nanoparticles are held together by oligonucleotide connectors. These hybridization conditions are well known in the art and can be optimized for a particular nanofabrication scheme (see above). Stringent hybridization conditions are preferred.

The invention also provides another method of nanofabrication. This method comprises providing at least two types of nanoparticle-oligonucleotide conjugates. The oligonucleotides on the first type of nanoparticles have a sequence complementary to that of the oligonucleotides on the second type of nanoparticles. The oligonucleotides on the second type of nanoparticles have a sequence complementary to that of the oligonucleotides on the first type of nanoparticles. The nanoparticle-oligonucleotide conjugates are contacted under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles to each other so that a desired nanomaterial or nanostructure is formed wherein the nanoparticles are held together by oligonucleotide connectors. Again, these hybridization conditions are well-known in the art and can be optimized for a particular nanofabrication scheme.

In both nanofabrication methods of the invention, the use of nanoparticles having one or more different types of oligonucleotides attached thereto is contemplated. The number of different oligonucleotides attached to a nanoparticle and the lengths and sequences of the

5

10

15

25

one or more oligonucleotides will contribute to the rigidity and structural features of the resulting nanomaterials and nanostructures.

Also, the size, shape and chemical composition of the nanoparticles will contribute to the properties of the resulting nanomaterials and nanostructures. These properties include optical properties, optoelectronic properties, electrochemical properties, electronic properties, stability in various solutions, pore and channel size variation, ability to separate bioactive molecules while acting as a filter, etc. The use of mixtures of nanoparticles having different sizes, shapes and/or chemical compositions, as well as the use of nanoparticles having uniform sizes, shapes and chemical composition, are contemplated.

In either fabrication method, the nanoparticles in the resulting nanomaterial or nanostructure are held together by oligonucleotide connectors. The sequences, lengths, and strandedness of the oligonucleotide connectors, and the number of different oligonucleotide connectors present will contribute to the rigidity and structural properties of the nanomaterial or nanostructure. If an oligonucleotide connector is partially double-stranded, its rigidity can be increased by the use of a filler oligonucleotide as described above in connection with the method of detecting nucleic acid. The rigidity of a completely double-stranded oligonucleotide connector can be increased by the use of one or more reinforcing oligonucleotides having complementary sequences so that they bind to the double-stranded oligonucleotide connector to form triple-stranded oligonucleotide connectors. The use of quadruple-stranded oligonucleotide connectors based on deoxyquanosine or deoxycytidine quartets is also contemplated.

Several of a variety of systems for organizing nanoparticles based on oligonucleotide hybridization are illustrated in the figures. In a simple system (Figure 1) one set of nanoparticles bears oligonucleotides with a defined sequence and another set of nanoparticles bears oligonucleotides with a complementary sequence. On mixing the two sets of nanoparticle-oligonucleotide conjugates under hybridization conditions, the two types of particles are linked by double stranded oligonucleotide connectors which serve as spacers to position the nanoparticles at selected distances.