Homework 3

Professor: Ziyu Shao Due: 2024/3/24 10:59pm

1. Please reinterpret the following story from the Bayesian perspective.

- 2. A fair die is rolled repeatedly, and a running total is kept (which is, at each time, the total of all the rolls up until that time). Let p_n be the probability that the running total is ever exactly n (assume the die will always be rolled enough times so that the running total will eventually exceed n, but it may or may not ever equal n).
 - (a) Write down a recursive equation for p_n (relating p_n to earlier terms p_k in a simple way). Your equation should be true for all positive integers n, so give a definition of p_0 and p_k for k < 0 so that the recursive equation is true for small values of n.
 - (b) Find p_7 .
 - (c) Give an intuitive explanation for the fact that $p_n \to 1/3.5 = 2/7$ as $n \to \infty$.
- 3. A sequence of $n \ge 1$ independent trials is performed, where each trial ends in "success" or "failure" (but not both). Let p_i be the probability of success in the i^{th} trial, $q_i = 1 p_i$, and $b_i = q_i 1/2$, for i = 1, 2, ..., n. Let A_n be the event that the number of successful trials is even.
 - (a) Show that for n = 2, $P(A_2) = 1/2 + 2b_1b_2$.

(b) Show by induction that

$$P(A_n) = 1/2 + 2^{n-1}b_1b_2 \dots b_n$$

(This result is very useful in cryptography. Also, note that it implies that if n coins are flipped, then the probability of an even number of Heads is 1/2 if and only if at least one of the coins is fair.) Hint: Group some trials into a super-trial.

- (c) Check directly that the result of (b) is true in the following simple cases: $p_i = 1/2$ for some i; $p_i = 0$ for all i; $p_i = 1$ for all i.
- 4. A message is sent over a noisy channel. The message is a sequence x_1, x_2, \ldots, x_n of n bits $(x_i \in \{0, 1\})$. Since the channel is noisy, there is a chance that any bit might be corrupted, resulting in an error (a 0 becomes a 1 or vice versa). Assume that the error events are independent. Let p be the probability that an individual bit has an error $(0 . Let <math>y_1, y_2, \ldots, y_n$ be the received message (so $y_i = x_i$ if there is no error in that bit, but $y_i = 1 x_i$ if there is an error there).

To help detect errors, the *n*th bit is reserved for a parity check: x_n is defined to be 0 if $x_1 + x_2 + \cdots + x_{n-1}$ is even, and 1 if $x_1 + x_2 + \cdots + x_{n-1}$ is odd. When the message is received, the recipient checks whether y_n has the same parity as $y_1 + y_2 + \cdots + y_{n-1}$. If the parity is wrong, the recipient knows that at least one error occurred; otherwise, the recipient assumes that there were no errors.

- (a) For n = 5, p = 0.1, what is the probability that the received message has errors which go undetected?
- (b) For general n and p, write down an expression (as a sum) for the probability that the received message has errors which go undetected.
- (c) Give a simplified expression, not involving a sum of a large number of terms, for the probability that the received message has errors which go undetected.
- 5. For x and y binary digits (0 or 1), let $x \bigoplus y$ be 0 if x = y and 1 if $x \neq y$ (this operation is called exclusive or (often abbreviated to XOR), or addition mod 2).
 - (a) Let $X \sim \text{Bern}(p)$ and $Y \sim \text{Bern}(1/2)$, independently. What is the distribution of $X \bigoplus Y$?
 - (b) With notation as in sub-problem (a), is $X \bigoplus Y$ independent of X? Is $X \bigoplus Y$ independent of Y? Be sure to consider both the case p = 1/2 and the case $p \neq 1/2$.
 - (c) Let X_1, \ldots, X_n be i.i.d. (i.e., independent and identically distributed) Bern(1/2) R.V.s. For each nonempty subset J of $\{1, 2, \ldots, n\}$, let

$$Y_J = \bigoplus_{j \in J} X_j.$$

Show that $Y_J \sim \text{Bern}(1/2)$ and that these $2^n - 1$ R.V.s are pairwise independent, but not independent.

- 6. (**Optional Challenging Problem**) By LOTP for problems with recursive structure, we generate many difference equations.
 - (a) Solve the following difference equation:

$$p \cdot f_{i+1} - f_i + q \cdot f_{i-1} = -1, 1 \le i \le N - 1$$

where 0 , <math>q = 1 - p, N is a constant, $f_0 = 0$, $f_N = 0$.

(b) Solve the following difference equation:

$$f_{i+1} = b \cdot f_i + a \cdot f_{i-1} + h, i \ge 1.$$

where h is a constant.

(c) Solve the following difference equation:

$$f_{i+1} = b \cdot f_i + a \cdot f_{i-1} + g(i), i \ge 1.$$

where g(i) is a function of i.