Algorytmy Numeryczne 3

Autorzy: Bartek Smolibowski Wojciech Balcer Michał Safuryn

H1 Metoda A2 daje dokładniejsze wyniki niż metoda A1.

Nie, nie daje. W naszych testach wyniki zwracane są bardzo podobne, lecz na 63 testowane przykłady 32. Były dla algorytmu A1 czyli metody prostokątów.

H2 Metoda A3 daje dokładniejsze wyniki niż metoda A2.

Tak, algorytm A3 daje dokładniejsze wyniki. Na 63 testowane wszystkie były bliżej.

H4 Dla wszystkich metod błędy maleją wraz ze wzrostem liczby punktów węzłowych rozmieszczonych równomiernie na zadanym przedziale.

Tak, im większa ilość punktów tym dokładniejsze wyniki można otrzymać. Widać to w podanym przykładzie, zwiększając N otrzymujemy mniejsze błędy

w powerful pizymwazio, zwiąmszejąc i wetzymejoniy minojeże ciąwy									
N	MP	MT	MS						
1000	1,99999835506566	1,99999835506566	2,00000000000108						
10000	1,9999998355066	1,9999998355066	1,9999999999999						
100000	1,9999999983549	1,9999999983547	1,9999999999998						
1000000	1,9999999999834	1,9999999999840	2,000000000000002						

N	BMP	BMT	BMS
1000	0,00000164493434	0,00000164493434	0,0000000000108
10000	0,00000001644934	0,00000001644934	0,0000000000001
100000	0,0000000016450	0,0000000016452	0,00000000000002
1000000	0,00000000000165	0,0000000000159	0,00000000000002

H5 Zastosowanie metod całkowania numerycznego pozwalają przybliżyć wartość liczby π z większą dokładnością niż metody z projektu 1.

Nie jest to jednoznaczne. Powoduje to np. to że metoda monte carlo jest rzeczą losową i potrafi być blisko PI jak również daleko od niej.

Widać że błąd monte carlo oscyluje wokół 0,001

	MP1	MT1	MS1	MP	MT	MS	Monte	My_PI
10000	3,13507175	3,13507175	3,135970145	3,14159255	3,14159255	3,14159261	3,1099999	3,141752
100000	3,1395284	3,1395284	3,139813219	3,14159265	3,14159265	3,14159265	3,14784002	3,14525032
1000000	3,1401328	3,1401328	3,140334265	3,14159265	3,14159265	3,14159265	3,13865995	3,11475253
	Błędy MP1	Błędy MT1	Błędy MS1	Błędy MP	Błędy MT	Błędy MS	Błędy Monte	Błędy My_PI
	0,00652091	0,00652091	0,005622508	1,0518E-07	1,0518E-07	4,1077E-08	0,03159275	-0,0001593
	0,00206425	0,00206425	0,001779435	3,3263E-09	3,3259E-09	1,299E-09	-0,0062474	-0,0036577
	0,00145985	0,00145985	0,001258388	1,1759E-09	1,1762E-09	4,5932E-10	0,0029327	0,02684012
	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3	Monte	
	Projekt1	Projekt1	Projekt1	Projekt1	Projekt1	Projekt1		
	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3		
	Projekt1	Projekt1	Projekt1	Projekt3	Projekt3	Projekt3	MY_PI	
	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3		
	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3	Projekt3		

Dla wartości 10.000, 100.000, i 1.000.000 hipoteza jest lepsza dla Projektu3 generuje on mniejsze błędy.

Ostatecznie ciężko to stwierdzić, ale można powiedzieć, że dla Projektu3 są one lepsze.