

# Fake Review Classifier

•••

Hirva Dhandhukia (B00987633)

#### Motivation

Online product reviews strongly <u>influence customer purchasing</u> decisions. However, fake or AI-generated reviews can mislead buyers and <u>weaken trust</u> in a brand.

In my project, I built a deep learning-based model to detect fake reviews, enabling organizations to monitor and maintain the <u>credibility</u> of their product feedback. This helps businesses protect their reputation and ensure the quality standards they promise to customers.

## Problem of Study

Detecting fake reviews based only on the review text

- Fake reviews can be well-written to mimic genuine ones.
- Labeling isn't inherently reliable my dataset has "genuine" and "fake" labels made using rules, but some reviews might still be unclear.

#### Related Work

Dataset: <u>Kaggle</u> Fake reviews dataset

Size: 40k reviews

Labels: Genuine (CG) / Fake (OR) - generated heuristically



Mexwell, "fake-reviews-dataset," Kaggle, Dataset, Aug. 2025. [Online]. Available: kaggle.com/datasets/mexwell/fake-reviews-dataset.

## Approach

Data Cleaning and Encoding Labels: 0:1

Tokenization: Used bert-base-uncased tokenizer

Splitting (Train-Val-Test): 80-10-10

Model: *Bert* with Sequence Classification of 2 labels

Training loop args with batch-size, learning rate, early stopping, and best model loading.

| Step         Training Loss         Validation Loss         Accuracy         Precision         Recall         F1           100         0.443300         0.235849         0.910710         0.900579         0.923305         0.911801           200         0.215500         0.192481         0.919119         0.954399         0.880257         0.915830           300         0.209900         0.153802         0.939401         0.971838         0.904998         0.937228           400         0.178100         0.307237         0.917883         0.983400         0.850074         0.911890           500         0.210400         0.243006         0.920356         0.990757         0.848590         0.914179 |      |               |                 |          |             |              |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|-----------------|----------|-------------|--------------|-----------------|
| 100     0.443300     0.235849     0.910710     0.900579     0.923305     0.911801       200     0.215500     0.192481     0.919119     0.954399     0.880257     0.915830       300     0.209900     0.153802     0.939401     0.971838     0.904998     0.937228       400     0.178100     0.307237     0.917883     0.983400     0.850074     0.911890                                                                                                                                                                                                                                                                                                                                                           |      |               |                 | [ 5      | 00/8088 59: | 38 < 15:08:4 | 4, 0.14 it/s, E |
| 200     0.215500     0.192481     0.919119     0.954399     0.880257     0.915830       300     0.209900     0.153802     0.939401     0.971838     0.904998     0.937228       400     0.178100     0.307237     0.917883     0.983400     0.850074     0.911890                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step | Training Loss | Validation Loss | Accuracy | Precision   | Recall       | F1              |
| 300     0.209900     0.153802     0.939401     0.971838     0.904998     0.937228       400     0.178100     0.307237     0.917883     0.983400     0.850074     0.911890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100  | 0.443300      | 0.235849        | 0.910710 | 0.900579    | 0.923305     | 0.911801        |
| 400 0.178100 0.307237 0.917883 0.983400 0.850074 0.911890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200  | 0.215500      | 0.192481        | 0.919119 | 0.954399    | 0.880257     | 0.915830        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300  | 0.209900      | 0.153802        | 0.939401 | 0.971838    | 0.904998     | 0.937228        |
| 500 0.210400 0.243006 0.920356 0.990757 0.848590 0.914179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400  | 0.178100      | 0.307237        | 0.917883 | 0.983400    | 0.850074     | 0.911890        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500  | 0.210400      | 0.243006        | 0.920356 | 0.990757    | 0.848590     | 0.914179        |

#### **Evaluation Results**

Accuracy: 94%

Class-wise Performance:

Original: Precision 0.91, Recall 0.97, F1 = 0.94

Fake: Precision 0.97, Recall 0.90, F1 = 0.94

Understanding: more likely to miss a fake review (false negative) than to incorrectly flag an original review as fake (false positive).



## Limitations & Error Analysis

LIME to explain predictions

Misclassifications happened with

"which words influenced the model's decision the most"

Very short reviews

Neutral, generic wording

Mixed sentiment reviews

```
[Sample 24] True: Genuine Review, Predicted: Fake Review super high quality just what i expected to receive from ck the gas lens works great [('the', -0.4757581559434148), ('great', -0.15876293637867295), ('quality', -0.09505542417808734), ('to', -0.087402
```

### Turn this into a Product?

- 1. Browser extension for customers to classify online reviews.
- 2. Companies integrating it in their workflow to analyze manipulated reviews of products.

Q/A