

Anfängerpraktikum 2015/2016

Biegung elastischer Stäbe

Durchführung: 03.11.15

Clara RITTMANN¹ Anja BECK²

Betreuer:
Max Mustermann

 $^{^{1}} clara.rittmann@tu-dortmund.de\\$

²anja.beck@tu-dortmund.de

Inhaltsverzeichnis

1	The	eorie	2
2	Auf	fbau und Ablauf des Experiments	3
3 Auswertung		swertung	4
	3.1	Statistische Formeln	4
		3.1.1 Fehlerrechnung	4
		3.1.2 Regression	4
	3.2	Bestimmung der Verdampungswärme bei kleinem Druck	5
	3.3	Temperaturabhängigkeit der Verdampfungswärme bei hohem	
		Druck	5
4	Dis	kussion	6

1 Theorie

2 Aufbau und Ablauf des Experiments

3 Auswertung

3.1 Statistische Formeln

3.1.1 Fehlerrechnung

Im folgenden wurden Mittelwerte von N Messungen der Größe x berechnet

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

sowie die Varianz

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (2)

woraus die Standartabweichung folgt

$$\sigma_x = \sqrt{V(x)}. (3)$$

Die Standartabweichung des Mittelwertes, kürzer auch Fehler des Mittelwertes genannt, bezieht noch die Anzahl der Messungen mit ein. Mehr Messungen führen zu einem kleineren Fehler

$$\Delta_x = \frac{\sigma_x}{\sqrt{N}}.\tag{4}$$

3.1.2 Regression

Nachfolgend wird eine lineare Regression für Wertepaare (x_i, y_i) durchgeführt. Dafür müssen die Steigung

$$m = \frac{n \cdot \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(5)

und der y-Achsenabschnitt

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(6)

berechnet werden. Den jeweiligen Fehler erhält man mit

$$s_m^2 = s_y^2 \cdot \frac{n}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$
 (7)

0.00309454	9.53242
0.00304739	9.68657
0.00300165	9.90349
0.00295727	10.1425
0.00291418	10.3417
0.00287233	10.5506
0.00283166	10.7727
0.00279213	10.9785
0.00275368	11.1548
0.00271628	11.3266
0.00267989	11.5229

$$s_b^2 = s_y^2 \cdot \frac{\sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} . \tag{8}$$

 $\boldsymbol{s}_{\boldsymbol{y}}$ ist hierbei die Abweichung der Regressionsgeraden in y-Richtung.

$$s_y^2 = \frac{\sum_{i=1}^n (\Delta y_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - b - mx_i)^2}{n-2}$$
 (9)

- 3.2 Bestimmung der Verdampungswärme bei kleinem Druck
- 3.3 Temperaturabhängigkeit der Verdampfungswärme bei hohem Druck

Abbildung 1: Logarithmus des Dampfdruckes gegen die reziproke absolute Temperatur

4 Diskussion

Abbildung 2: Regressionspolynom dritten Grades des Druckes über die Temperatur

Abbildung 3: Verdampfungswärme in Abhängigkeit der Temperatur