Marketing Campaign Outcome

Presenting results to the stakeholders

Problem Statement

- Predict if the client would subscribe to a term deposit based on a marketing campaign.

Potential Business Problems

- Run optimized campaigns to bring in more customers, and thereby increase the bank revenue ?
- Increase long-term holdings which can be further invested in different financial instruments?
- Stakeholders
 - Chief Marketing Officer?
 - Campaign Strategy Manager?
 - Who else?

Why solve this problem?

- Business Impact
 - Improve prediction -> identify common features of subscribing customers -> targeted campaigns
 - Improve prediction -> identify right target audience-> efficient budget for marketing
 - Improve prediction-> identify right frequency interval for campaign -> optimum campaign

Data

<u>Dataset Information</u>: The data consists of records of roughly 41000 clients and 21 features. There are 20 predictors and 1 target that describes whether the client will subscribe or not.

<List the important features only>

Feature	Feature_Type	Description
у	binary	has the client subscribed a term deposit? ('yes','no')

Evaluation Metric

The evaluation metric for this project is **AUC_ROC_score**.

False Positive - predicted subscribe to a term deposit, but actually not subscribed. False Negative - predicted not subscribe to term deposit, but actually subscribed.

First steps - EDA

On the left is the univariate analysis of the feature **poutcome** and on the right is that of **loap**.

Most of the data is of customers where we are not sure about the outcomes of the previous campaign.

Most people already have a personal loan. (Will they be willing to commit to a term deposit?)

EDA - continuous - age, pdays

Age - many in the age bracket 30-40 i.e working population

Pdays - lot of previously non-contacted customers.

EDA - bivariate

Below are the bivariate analysis of features **poutcome** and job w.r.t the **target**.

Customers who have successfully connected in previous campaign tend to subscribe. But we are not capturing those learners.

Lot of people in admin tend to subscribe to a term deposit.

Outlier treatment:

The Outliers in the continuous features were detected and treated using a method called Winsorization.

Column Names	Outliers Before Winsorization	Outliers After Winsorization
age	469	0
duration	2963	0
campaign	2406	0
pdays	1515	0
previous	5625	5625
Cons.conf.idx	447	0

Missing Values:

- 1. There were no missing values in the continuous features
- 2. The categorical features had missing values represented as 'unknown'. These were imputed using the mode values of the respective columns

<u>Class Imbalance</u>: The distribution of the target below shows a clear imbalance in the two classes.

Target variable: y

Feature Selection:

Following methods were used for feature selection:

- Correlation
- RFE

<Explain about the important features selected>

Feature Selection:

Recursive feature elimination was performed using Random forest and Logistic Regression as the estimators. Below are the feature importances obtained using both the methods

Models and Approaches

Three vanilla models were assessed without performing any hyperparameter tuning and without treatment of class imbalance of the target. The models were

- Logistic Regression
- Random Forest Classifier
- XGBoost Classifier

None of the three models were able to give an ROC_AUC score above 70%. This called for performing hyperparameter tuning using Grid Search and also treatment of class imbalance using SMOTE for further improvement of the ROC_AUC score.

Models and Approaches

Models Assessed : The vanilla models used yielded the following results below.

Modelling Method	Precision	Recall	AUC_ROC
Logistic Regression	0 - 0.921 - 0.64	0 - 0.971 - 0.37	67.17 %
Random Forest Classifier	0 - 0.921 - 0.61	0 - 0.981 - 0.39	68.01 %
XGBClassifier	0.920.69	0.980.39	68.19 %

Model Tuning

Modelling Method	Precision	Recall	ROC_AUC
Logistic Regression	0 - 0.701 - 0.75	0 - 0.791 - 0.66	72.4 %
Random Forest Classifier	0 - 0.971 - 0.89	0 - 0.881 - 0.97	92.48 %
XGBoost Classifier	0 - 0.961 - 0.91	0 - 0.911 - 0.97	93.81 %
Ensembling	0 - 0.881 - 0.95	0 - 0.961 - 0.87	91.34 %

Evaluation & Results

Below are the AUC_ROC plots for the after hyperparameter tuning.

Logistic Regression

Random Forest

Final Results

From the above observations and plots it can be inferred that the best performing model was XGBoost giving an AUC_ROC score of 93.81 %. While XGBoost is used a lot, it is always prudent to start from simpler algorithms and then go to complex ones.

Insights & Decisions

- Customers to be targeted
 - Age: 30 50
 - Education : University, High School, Professional Courses
 - Job : Admin, Blue-collar, Technician
- Campaign Targets
 - Customers who were not targeted before
 - Customers successful in previous campaigns
 - Plan campaigns from May through August

Next Steps

With more time:

- Better feature engineering
- An ensemble of different models
- A UI for a real user

Things to Remember

Max 20-25 slides for the entire team

Time: 10 mins for the team.

Put bullet points and pictures. (No code)

Think of it as a short pitch to the stakeholder.

