

CLAIMS

What is claimed is:

- 1 1. A method for storing unstructured XML data into a relational database, comprising:
 - 2 assigning a document identifier to an XML document;
 - 3 parsing the XML document to identify a node;
 - 4 for the identified node in the XML document:
 - 5 storing path information for the node;
 - 6 storing hierarchical information for the node; and
 - 7 storing node data for the node.
- 1 2. The method of claim 1 in which the hierarchical information comprises a
2 hierarchical level within the XML document.
- 1 3. The method of claim 1 in which the node data comprises a start position, end
2 position, node type, or node value.
- 1 4. The method of claim 1 in which the document identifier is a unique identifier for
2 each different XML document.
- 1 5. The method of claim 1 in which the path information comprises a full path for the
2 node.
- 1 6. The method of claim 1 in which the path information comprises a path identifier.

1 7. The method of claim 6 in which the path identifier corresponds to a key to a path
2 entry containing a full path for the node.

1 8. The method of claim 7 in which the path entry resides in a first table structure and
2 the path information, hierarchical information, and node data reside in a second table
3 structure.

1 9. The method of claim 7 in which the path entry comprises node name corresponding
2 to a name of a terminal node.

1 10. The method of claim 1 further comprising:
2 maintaining one or more indexes.

1 11. The method of claim 10 in which the one or more indexes comprise an index on a
2 path identifier, an index on the document identifier and a start position, or an index on the
3 document identifier, start position, and node level.

1 12. The method of claim 10 in which the path identifier corresponds to a key to a path
2 entry containing a full path for the node, the path entry resides in a separate table, and the
3 one or more indexes comprise an index on path identifiers or a unique index on reverse
4 paths.

1 13. A computer-implemented structure for storing XML data in a relational database, the
2 computer implemented structure comprising a first table structure, the first table structure
3 comprising:
4 a document identifier corresponding to an XML document;
5 path information for a node within the XML document;
6 hierarchical information for the node; and
7 node data for the node.

1 14. The computer-implemented structure of claim 13 in which the hierarchical
2 information comprises a hierarchical level within the XML document.

1 15. The computer-implemented structure of claim 13 in which the node data comprises
2 separate columns for a start position, end position, node type, or node value.

1 16. The computer-implemented structure of claim 13 in which the document identifier is
2 a unique identifier for each different XML document.

1 17. The computer-implemented structure of claim 13 in which the path information
2 comprises a full path for the node.

1 18. The computer-implemented structure of claim 13 in which the path information
2 comprises a path identifier.

1 19. The computer-implemented structure of claim 18 in which the path identifier
2 corresponds to a key to a path entry in a second table structure.

1 20. The computer-implemented structure of claim 19 in which the path entry comprises a
2 full path for the node.

1 21. The computer-implemented structure of claim 18 in which the path entry comprises a
2 node name corresponding to a name of a terminal node.

1 22. A method to access a computer-implemented structure for storing XML data in a
2 relational database, the computer implemented structure comprising a first table structure,
3 the first table structure comprising a document identifier corresponding to an XML
4 document, path information for a node within the XML document, hierarchical information
5 for the node, and node data for the node, the method comprising:
6 generating a SQL query against the computer-implemented structure; and
7 producing a result set based upon executing the SQL query.

1 23. The method of claim 22 in which the SQL query reconstructs the XML document.

1 24. The method of claim 23 in which the SQL query provides the same result as the
2 following:

3 select i.nodename, p.startpos, p.endpos, p.nodetype, p.nodeval
4 from path_table p, path_index_table i
5 where p.docid = :1 and p.pid = i.pid

6 order by p.startpos
7 where path_table comprises a first column for the start position of the node (startpos), a
8 second column for the end position of the node (endpos), a node type column (nodetype), a
9 node value column (nodeval), a path identifier column (pid), and a document identifier
10 column (docid), and a path_index_table comprises a path identifier column (pid), a path
11 column (path), and a nodename column (nodename).

1 25. The method of claim 22 in which the SQL query identifier a fragment within the
2 XML document.

1 26. The method of claim 25 in which the SQL query provides the same result as the
2 following:

3
4 select i.nodename, p.startpos, p.endpos, p.nodetype, p.nodeval
5 from path_table p, path_index_table i,
6 (select docid, startpos, endpos from path_table
7 where rowid = :1) p2
8 where p.docid = p2.docid and p.startpos >= p2.startpos
9 and p.endpos <= p2.endpos and p.pid = i.pid
10 order by p.startpos
11
12 where path_table comprises a first column for the start position of the node (startpos), a
13 second column for the end position of the node (endpos), a node type column (nodetype), a
14 node value column (nodeval), a path identifier column (pid), and a document identifier

15 column (docid), and a path_index_table comprises a path identifier column (pid), a path
16 column (path), and a nodename column (nodename).

1 27. The method of claim 22 in which the SQL query corresponds to an XPath
2 expression.

1 28. The method of claim 27 in which the XPath expression is translated to the SQL
2 query by:

3 breaking the XPath expression into multiple components;
4 creating a new SQL query corresponding to each of the multiple components; and
5 joining the new SQL query corresponding a component to its previous component.

1 29. The method of claim 28 in which the XPath expression is broken into multiple
2 components by considering each continuous segment of simple XPath, wherein each
3 occurrence of a predicate within the XPath causes creation of a new component.

1 30. The method of claim 29 wherein a set of node names separated by “/” corresponds to
2 a single XPath component.

1 31. The method of claim 28 in which the new SQL query comprises a join of a
2 path_index_table and a path_table.

1 32. The method of claim 28 in which the new SQL query comprises one or more
2 conditions.

1 33. The method of claim 32 in which the one or more conditions comprises a condition
2 for the path being chosen, a condition for the node type, or a condition for the node value.

1 34. The method of claim 28 in which the act of joining the new SQL query
2 corresponding the component to its previous component uses a join condition comprising a
3 join on a document identifier or a join on a hierarchy relationship.

1 35. A method for managing an unstructured document in a relational database system,
2 comprising:

3 storing the unstructured document in a storage structure in the relational database
4 system, the storage structure corresponding to a universal schema;

5 determining whether to create an index upon the storage structure, wherein one or
6 more indexes are maintained if desired; and

7 accessing the unstructured documents by accessing the storage structure.

1 36. The method of claim 35 in which the unstructured document comprises an XML
2 document.

1 37. The method of claim 36 in which the storage structure comprises:
2 a document identifier corresponding to an XML document;
3 path information for a node within the XML document;
4 hierarchical information for the node; and
5 node data for the node.

1 38. The method of claim 37 in which the one or more indexes comprise an index on a
2 path identifier, an index on the document identifier and a start position, or an index on the
3 document identifier, start position, and node level.

1 39. The method of claim 36 further comprising a second structure for storing path data,
2 the second structure comprising:
3 a path identifier;
4 a full path for the node; and
5 a node name corresponding to a name of a terminal node.

1 40. The method of claim 39 in which the one or more indexes comprise an index on path
2 identifiers or a unique index on reverse paths.

1 41. The method of claim 35 in which the unstructured documents are accessed by
2 accessing the storage structure using a SQL query.

1 42. The method of claim 41 in which the SQL query reconstructs the XML document.

1 43. The method of claim 41 in which the SQL query identifier a fragment within the
2 unstructured documents .

1 44. The method of claim 41 in which an XPath expression is translated to the SQL query
2 by:
3 breaking the XPath expression into multiple components;

4 creating a new SQL query corresponding to each of the multiple components; and
5 joining the new SQL query corresponding a component to its previous component.

1 45. A computer program product comprising a computer usable medium having
2 executable code to execute a process for storing unstructured XML data into a relational
3 database, the process comprising:

4 assigning a document identifier to an XML document;
5 parsing the XML document to identify a node;
6 for the identified node in the XML document:
7 storing path information for the node;
8 storing hierarchical information for the node; and
9 storing node data for the node.

1 46. A system for storing unstructured XML data into a relational database, comprising:
2 means for assigning a document identifier to an XML document;
3 means for parsing the XML document to identify a node;
4 for the identified node in the XML document:
5 means for storing path information for the node;
6 means for storing hierarchical information for the node; and
7 means for storing node data for the node.

1 47. A computer program product comprising a computer usable medium having
2 executable code to execute a process to access a computer-implemented structure for storing

3 XML data in a relational database, the computer implemented structure comprising a first
4 table structure, the first table structure comprising a document identifier corresponding to an
5 XML document, path information for a node within the XML document, hierarchical
6 information for the node, and node data for the node, the process comprising:
7 generating a SQL query against the computer-implemented structure; and
8 producing a result set based upon executing the SQL query.

1 48. A system to access a computer-implemented structure for storing XML data in a
2 relational database, the computer implemented structure comprising a first table structure,
3 the first table structure comprising a document identifier corresponding to an XML
4 document, path information for a node within the XML document, hierarchical information
5 for the node, and node data for the node, the method comprising:
6 means for generating a SQL query against the computer-implemented structure; and
7 means for producing a result set based upon executing the SQL query.

1 49. A computer program product comprising a computer usable medium having
2 executable code to execute a process for managing an unstructured document in a relational
3 database system, the process comprising:
4 storing the unstructured document in a storage structure in the relational database
5 system, the storage structure corresponding to a universal schema;
6 determining whether to create an index upon the storage structure, wherein one or
7 more indexes are maintained if desired; and
8 accessing the unstructured documents by accessing the storage structure.

1 50. A system for managing an unstructured document in a relational database system,
2 comprising:

3 means for storing the unstructured document in a storage structure in the relational
4 database system, the storage structure corresponding to a universal schema;

5 means for determining whether to create an index upon the storage structure, wherein
6 one or more indexes are maintained if desired; and

7 means for accessing the unstructured documents by accessing the storage structure.