Functions

f(x)	f(x)	Application
$(\lambda x:T \mid P \bullet E)$	(\lambda)	Lambda-expression
$X \longrightarrow Y$	X \pfun Y	Partial functions
$X \longrightarrow Y$	X \fun Y	Total functions
$X \rightarrowtail Y$	X \pinj Y	Partial injections
$X \rightarrowtail Y$	X \inj Y	Total injections
$X +\!$	X \psurj Y	Partial surjections
$X \longrightarrow Y$	X \surj Y	Total surjections
$X \rightarrowtail Y$	X \bij Y	Bijections
$X \twoheadrightarrow Y$	X \ffun Y	Finite functions
$X \rightarrowtail Y$	X \finj Y	Finite injections

Numbers and arithmetic

\mathbb{N}	\nat	Natural numbers
Z	\num	Integers
$+-*div\;mod$	+ - * \div \mod	Operations
$<\leq\geq>$	< \leq \geq >	Comparisons
\mathbb{N}_1	\nt_1	Integers > 0
succ	succ	Successor function
$m \dots n$	m \upto n	Number range
#S	\# S	Size of a set
$min \ S$	min~S	Minimum of a set
max S	max~S	Maximum of a set

Sequences

\mathbf{v}	\	T3: :4
$\operatorname{seq} X$	\seq X	Finite sequences
$\operatorname{seq}_1 X$	$\searrow 1 X$	Sequences $\neq \langle \rangle$
$\operatorname{iseq} X$	\iseq X	Injective sequences
$\langle x_1,\ldots,x_n\rangle$	\langle \rangle	Sequence display
$s \cap t$	s \cat t	Concatenation
rev s	rev~s	Reverse
head s	head~s	Head of sequence
$last\ s$	last~s	Last element
$tail\ s$	tail~s	Tail of sequence

front s	front~s	All but last element
$U \uparrow s$	U \extract S	Extraction
$s \upharpoonright V$	s \filter V	Filtering
squashf	squash~f	Compaction
s prefix t	s \prefix t	Prefix relation
$s \; suffix \; t$	s \suffix t	Suffix relation
s in t	s \inseq t	Segment relation
$^{\smallfrown}/ss$	\dcat ss	Distributed concat.
disjoint SS	\disjoint SS	Disjointness
SS partition T	SS \partition T	Partition relation

Z Reference Card

Mike Spivey
The Spivey Partnership

Bags

$\operatorname{bag} X$	\bag X	Bags
0		0
$\llbracket x_1,\ldots,x_n \rrbracket$	\lbag \rbag	Bag display
count B x	count~B~x	Count of element
$B \sharp x$	B \bcount x	Infix count operator
$n \otimes B$	n \otimes B	Bag scaling
$x \in B$	x \inbag B	Bag membership
$B \sqsubseteq C$	B \subbageq C	Sub-bag relation
$B \uplus C$	B \uplus C	Bag union
$B \cup C$	B \uminus C	Bag difference
$items\ s$	items~s	Items in a sequence

fUZZ flags

Usage: fuzz [-aqstv] [-p prelude] [file ...]

-a Don't use type abbreviations

-p predude Use prelude in place of the standard one

-q Implicit quantifiers

-d Dependency analysis

-s Syntax check only

-t Report types of global definitions

-v Echo formal text as it is parsed

Specifications

Schema box	\begin{schema}{Name}[Params]
$_Name[Params]$	_ Declarations
Declarations	\where
D 1: t	Predicates
Predicates	_ \end{schema}

Axiomatic description \begin{axdef}

Declarations	Declarations
Predicates	\where
rrearcates	Predicates
	\end{axdef}

Generic definition	\begin{gendef}[Params]
[70]	

\blacksquare [Params] \blacksquare	<pre>Declarations</pre>
Declarations	\where
Doodinaton	Predicates
Predicates	\end{gendef}

\begin{zed} ...

Basic type definition

[NAME, DATE] [NAME, DATE]

Abbreviation definition

 $DOC == \operatorname{seq} CHAR$ DOC == \seq CHAR

Constraint

Schema definition

 $Point = [x, y : \mathbb{Z}]$ Point \defs [x, y: \num]

Free type definition

 $Ans ::= ok \langle\!\langle \mathbb{Z} \rangle\!\rangle \mid error \text{ Ans } ::= \text{ok } \exists \text{num} \exists \text{data} .$

 $\dots \setminus end\{zed\}$

Logic and schema calculus

true, false	true, false	Logical constants
$\neg P$	\lnot P	Negation
$P \wedge Q$	$P \setminus land Q$	Conjunction
$P \vee Q$	P \lor Q	Disjunction
$P \Rightarrow Q$	P \bigvee implies Q	Implication
$P \Leftrightarrow Q$	P \iff Q	Equivalence
$\forall x: T \mid P \bullet Q$	\forall	Universal quantifier
$\exists x : T \mid P \bullet Q$	\exists	Existential quant.
$\exists_1 x : T \mid P \bullet Q$	\exists_1	Unique quantifier

Special schema operators

$S[y_1/x_1, y_2/x_2]$	S[y1/x1, y2/x2]	Renaming
$S\setminus(x_1,x_2)$	$S \setminus (x1, x2)$	Hiding
$S \upharpoonright T$	S \project T	Projection
pre Op	\pre Op	Pre-condition
$Op1 \ \c Op2$	Op1 \semi Op2	Sequential comp.
$Op1 \gg Op2$	Op1 \pipe Op2	Piping

Basic expressions

x = y	x = y	Equality
$x \neq y$	x \neq y	Inequality
if P then E_1	\IF P \THEN E_1	Conditional
else E_2	\ELSE E_2	expression
θS	\theta S	Theta-expression
E.x	E.x	Selection
$(\mu x: T \mid P \bullet E)$	(\mu x:T P @ E)	Mu-expression
$(\mathbf{let} \ x = = E_1 \bullet E_2)$	(\LET x==E1 @ E2)	Let-expression

Sets

$x \in S$	x \in S	Membership
$x \notin S$	x \notin S	Non-membership

$\{x_1,\ldots,x_n\}$	$\{x_1,\ldots,x_n\}$	Set display
$\{x:T\mid P\bullet E\}$	\{~x:T P @ E~\}	
Ø	\emptyset	Empty set
$S \subseteq T$	S \subseteq T	Subset relation
$S \subset T$	S \subset T	Proper subset
$\mathbb{P} S$	\power S	Power set
$\mathbb{P}_1 S$	\power_1 S	Non-empty subsets
$S \times T$	S \cross T	Cartesian product
(x, y, z)	(x, y, z)	Tuple
first p	first~p	First of pair
second p	second~p	Second of pair
$S \cup T$	S \cup T	Set union
$S \cap T$	S \cap T	Set intersection
$S \setminus T$	S \setminus T	Set difference
$\bigcup A$	\bigcup A	Generalized union
$\bigcap A$	\bigcap A	Gen. intersection
$\mathbb{F} X$	\finset X	Finite sets
\mathbb{F}_1X	\finset_1 X	Finite sets $\neq \emptyset$

Relations

$X \longleftrightarrow Y$	X \rel Y	Binary relations
$x \mapsto y$	x \mapsto y	Maplet
$\operatorname{dom} R$	\dom R	Domain
$\operatorname{ran} R$	\ran R	Range
$\operatorname{id} X$	\id X	Identity relation
$Q \S R$	Q \comp R	Composition
$Q \circ R$	Q \circ R	Backwards comp.
$S \lhd R$	S \dres R	Domain restriction
$R \rhd S$	R \rres S	Range restriction
$S \triangleleft R$	S \ndres R	Domain anti-res.
$R \triangleright S$	R \nrres S	Range anti-restrict.
R^{\sim}	R \inv	Relational inverse
R(S)	R \limg S\rimg	Relational image
$Q \oplus R$	Q \oplus R	Overriding
R^k	R^{k}	Iteration
R^+	R \plus	Transitive closure
R^*	R \star	Refltrans. closure