Spring 2018 (March 21)

1. Name the following compounds (3 x 6 = 18 pts)

(a)

(b)

(c)

(d)

(f)

$$O_2N$$
 OH O_2N OH

2. Classify the following molecules as aromatic, anti-aromatic or non-aromatic (5 pts)

3. Predict the major product(s) expected from the following reaction sequences ($3 \times 14 = 42 \text{ pts}$)

(a)

$$\begin{array}{c|c}
 & SO_3 \\
\hline
 & H_2SO_4
\end{array}$$

(b)

$$0 \longrightarrow \frac{\mathsf{HNO}_3}{\mathsf{H}_2\mathsf{SO}_4}$$

$$\begin{array}{c} \text{HNO}_3 \\ \hline \\ 1/_2 \text{ I}_2 \end{array}$$

(c)

(d)

(f)

(g)

CuCl/AlCl₃

Fe, HCI

(i)

(j)

(k)

$$\frac{\text{Cl}_2}{\text{AlCl}_3}$$

$$D_2O$$
 D_2SO_4

$$\frac{\text{HNO}_3}{\text{H}_2\text{SO}_4}$$

$$\begin{array}{c} \text{Na}_2\text{Cr}_2\text{O}_7 \\ \hline \\ \text{H}_2\text{SO}_4 \end{array}$$

(o)

4. Show how you would synthesize each of the following compounds from the given starting material(s). You must draw all key intermediates to receive full credit ($3 \times 6 = 18 \text{ pts}$)

(a)

(b)

(c)

(d)

(e)

(f)

- 5. Propose a mechanism consistent with the following reactions (you must show all the intermediates to receive full credit) (3 \times 3 = 9 pts)
- (a)

(b)

_

(c)

6. Use the Woodward-Fieser table to estimate the λ_{max} observed in a UV spectra of the following cross-conjugated systems (8 pts)

Acyclic	217 nm
Heteroannular	214 nm
Homoannular	253 nm

For each additional conjugated double bond	+ 30 nm
For each exocyclic double bond	+ 5 nm
For each substituent C-substituent CI Br O-Alkyl OCOCH ₃ N(alkyl) ₂ S-alkyl	+ 5 nm + 5 nm + 5 nm + 6 nm + 0 nm + 60 nm + 30 nm
Solvent correction	+ 0 nm