Аналитическая геометрия. Модуль 2. Лекции

1 Кривые второго порядка

Общее уравнение кривой второго порядка:

$$x^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0$$

где:

$$A, B, C, D, E, F = const$$
$$A^2 + B^2 + C^2 > 0$$

1.1 Эллипс

Определение 1. Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух фиксированных точек, называемых ϕ окусами, постоянна и равна 2a.

 F_1, F_2 - фокусы эллипса

Расстояние между фокусами называется фокальным расстоянием.

Расстояние от каждой точки эллипса до фокуса называется ϕ окальным радиусом

Прямая, которая проходит через фокусы, и прямая, которая проходит через середину этой прямой и перпендикулярной ей, являются *осями симметрии данного эллипса*. Первая прямая называется *большой осью*, а вторая – *малой осью*.

Точка пересечения осей эллипса называется *центром эллипса*, а точки пересечения эллипса с осями называются *вершинами эллипса*.

Уравнение эллипса

Расположим прямоугольную систему координат так, чтобы её начало совпадало с центром эллипса, а фокусы лежали на оси абцисс.

О – центр эллипса

 F_1, F_2 – фокусы эллипса

 A_1, A_2, A_3, A_4 – вершины эллипса

 $F_1F_2 = 2c$ – фокусное (фокальное) расстояние

Возьмём точку M(x,y), принадлежащей эллипсу, и составим векторы:

$$\overrightarrow{F_1M} = \{x + c, y\}$$

$$\overrightarrow{F_2M} = \{x - c, y\}$$

Тогда:

$$|\overrightarrow{F_1M}| + |\overrightarrow{F_2M}| = 2a$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2xc + c^2 + y^2$$

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4xc$$

$$a\sqrt{(x-c)^2 + y^2} = a^2 - xc$$

$$x^2a^2 - 2a^2xc + a^2y^2 = a^4 - 2a^2xc + x^2c^2$$

$$x^2a^2 + x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Обозначим $b^2 = a^2 - c^2$. Получаем каноническое уравнение эллипса:

$$\boxed{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1}$$

где a — большая полуось эллипса, а b — малая полуось эллипса.

Отношение фокусного расстояния эллипса к большой оси называется эксцентриситетом эллипса.

$$\frac{F_1 F_2}{A_3 A_1} = \frac{2c}{2a} = \varepsilon$$

$$\varepsilon = \frac{c}{a}$$

Замечание. Т.к. a < c, то $0 < \varepsilon < 1$

Центриситет показывает степень "сжатия"эллипса.

Отношение фокального радиуса точки эллипса к расстоянию до некоторой прямой, называемой директрисой, постоянно и равно \mathfrak{I} расстояние \mathfrak{I} \mathfrak{I}

Уравнение директрис:

$$d_1: x = -\frac{a}{\varepsilon}$$
$$d_2: x = \frac{a}{\varepsilon}$$

Замечание. 1. Уравнение эллипса с центром в точке $O(x_0, y_0)$:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

2. Уравнение мнимого эллипса с центром в точке O(0,0)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

3. Если a = b = R, то это уравнение окружности:

$$\frac{x^2}{R^2} + \frac{y^2}{R^2} = 1$$
$$x^2 + y^2 = R^2$$

Для окружности в точке $O(x_0, y_0)$:

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

4. Если a < b, то изображение эллипса "переворачивается"на 90:

1.2 Гипербола

Определение 2. Гиперболой называется геометрическое место точек, разность расстояний от каждой их которых до двух фиксированных точек, называемых ϕ окусами, постоянно и равно 2a.

Прямая, на которой лежат фокусы, и прямая, которая проходит через середину отрезка, соединяющего фокусы и перпендикулярная ей, называеются осями симметрии гиперболы. Первая прямая называется действительной осью, а вторая — мнимой осью.

$$F_1, F_2$$
 — фокусы $F_1F_2 = 2c$ — фокусное (фокальное) расстояние

Точки пересечения действительной и мнимой оси гиперболы называется *центром гиперболы*, а точка пересечения с <u>действительной осью</u> называются *вершинами гиперболы*.

Уравнение гиперболы

Расположим декартову систему координат так, чтобы её начало совпадало с центром гипероболы, а фокусы лежали на оси абцисс.

$$F_1(-c,0), F_2(c,0).$$

Возьмём произвольную точку M(x,y), принадлежащей гиперболе.

$$\overrightarrow{F_1M} = \{x+c,y\}$$

$$\overrightarrow{F_2M} = \{x-c,y\}$$

$$|\overrightarrow{F_1M}| - |\overrightarrow{F_2M}| = 2a$$

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a + \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 + 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$4a\sqrt{(x-c)^2 + y^2} = 4xc - 4a^2$$

$$a\sqrt{(x-c)^2 + y^2} = xc - a^2$$

$$x^2a^2 - 2a^2xc + a^2y^2 = x^2c^2 - 2a^2xc + a^4$$

$$x^2a^2 + x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 + c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Обозначим $b^2 = a^2 - c^2$. Получаем каноническое уравнение эллипса:

$$x^{2} - \frac{y^{2}}{a^{2}} - 1$$

Центриситетом эллипса называется:

$$\varepsilon = \frac{2c}{2a} = \frac{c}{a}$$

Замечание. Т.к. c>a, то $\varepsilon>1$

Замечание. Уравнение сопряжённой гиперболы:

$$\left[-rac{x}{a^2} + rac{y^2}{b^2} = 1
ight]$$
 или $\left[rac{x^2}{b^2} = -1
ight]$

Уравнение гиперболы с центром в точке $M(x_0, y_0)$:

$$\frac{(x-x_0)}{a^2} - \frac{(y-y_0)}{b^2} = 1$$

Если a=b, то гипербола становится равносторонней. Если:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

то получается вырожденной уравнение – две пересекающиеся прямые:

$$b^{2}x^{2} - a^{2}y^{2} = 0(bx - ay)(bx + ay) = 0$$

$$\begin{cases}
bx - ay = 0 \\
bx + ay = 0
\end{cases} \Rightarrow \begin{cases}
y = \frac{b}{a}x \\
y = -\frac{b}{a}x
\end{cases}$$

Эти же уравненения и являются уравнениями ассимптот.

Если центр гиперболы $O(x_0, y_0)$, то:

$$y - y_0 = \frac{b}{a}(x - x_0) \Rightarrow y = \frac{b}{a}x + (y_0 - \frac{b}{a}x_0)$$
$$y - y_0 = -\frac{b}{a}(x - x_0) \Rightarrow y = -\frac{b}{a}x + (y_0 + \frac{b}{a}x_0)$$

1.3 Парабола

Определение 3. *Параболой* называется геометрическое место точек, расстояние от каждой из которых до некоторой точки, называмой ϕ о-кусом, и фиксированной прямой, называемой θ иректрисой, равно.

Уравнение параболы

Расположим декартову систему координат так, чтобы начало координат совпадало с вершиной параболы.

$$A(-\frac{p}{2}), \quad F(\frac{p}{2}, 0)$$

$$\overrightarrow{AM} = \{x + \frac{p}{2}, a\}, \quad \overrightarrow{FM} = \{x - \frac{p}{2}, y\}$$

$$|\overrightarrow{AM}| = |\overrightarrow{FM}|$$

$$\sqrt{\left(x + \frac{p}{2}\right)^2} = \sqrt{\left((x - \frac{p}{2}) + y^2\right)}$$

$$x^2 + xp + \frac{p^2}{4} = x^2 - xp + \frac{p^2}{4} + y^2$$

Тогда получаем каноническое уравнение параболы с вершиной в O(0,0):

$$y^2 = 2px$$

Если p>0, то ветви параболы направлены *вправо*, если p<0, то ветви направлены *влево*.

Если вершина в точке Mx_0, y_0), тогда:

$$(y - y_0)^2 = 2p(x - x_0)^2$$

Уравнение директрисы:

$$d: x = -\frac{p}{2}$$

1.4 Примеры

Пример.

$$2x^{2} - 4y^{2} - 6x + 8y - 10 = 0$$

$$2(x^{2} - 3x) - 4(y^{2} - 2y) - 10 = 0$$

$$2(x^{2} - 3x + \frac{9}{4} - \frac{9}{4}) - -4(y^{2} - 2y + 1 - 1) - 10 = 0$$

$$2(x - \frac{3}{2})^{2} - \frac{9}{2} - 4(y - 1)^{2} + 4 - 10$$

$$2\left(x - \frac{3}{2}\right)^{2} - 4(y - 1)^{2} = \frac{21}{2}$$

$$\frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{21}{4}} - \frac{\left(y - 1\right)^{2}}{\frac{21}{8}} = 1$$

Получили yравнение zunepболы с центром в $O\left(\frac{3}{2},1\right)$, действительная полуось $a=\frac{\sqrt{21}}{2}$ и мнимая полуось $b=\sqrt{\frac{21}{8}}.$

2 Матрицы

Определение 4. *Матрицей* называется таблица чисел, в которой элементы расположены по строкам и столбцам.

Обозначаются заглавными латинскими буквами: $A,B,C\dots$ Размерность матрицы определятся кол-вом строк m и кол-вом столбцов n, и обозначается $m\times n$. Элемент матрицы a_{ij} – элемент, который расположен в i-ой строку и j-ом столбце.

Матрицу можно записать таким образом:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_1 m \\ a_{21} & a_{22} & \dots & a_2 m \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_n m \end{pmatrix}$$

Определение 5. Матрица называется $\kappa вадратной$ если кол-во строк равно кол-ву столбцов (m=n).

Определение 6. Квадратная матрица называется *диагональной* если все элементы матрицы, кроме элементов на главной диагонали, равны нулю.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Определение 7. *Главной диагональю* называется диагональ матрицы, идущая из левого верхнего в правым нижний.

Определение 8. *Побочной диагональю* называется диагональ матрицы, идущая из левого верхнего в правым нижний.

Определение 9. Квадратная матрица, у которой на главной диагонали все элементы равны единице, а остальные равны нулю, называют *единичной*.

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Определение 10. *Нулевой матрицей* называется матрица, все элементы которой равные нулю.

$$\Theta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Определение 11. *Верхне-треугольной матрицей* называется квадратная матрица, у которой под главной диагональю равны нулю.

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

Определение 12. *Нижене-треугольной матрицей* называется квадратная матрица, у которой под главной диагональю равны нулю.

$$D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \\ 6 & 0 & 0 \end{pmatrix}$$

Две матрицы *равны*, если они имеют одинаковую размерность, и их соответствующие элементы равны.

2.1 Действия с матрицами

Определение 13. *Суммой матриц* $A_{m \times n}$ и $B_{m \times n}$ называется матрица $C_{m \times n}$, элементы которой являются суммой соответствующих элементов матриц A и B.

$$C = A + B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} -1 & -1 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 4 \end{pmatrix}$$

Определение 14. Произведением матрицы $A_{m \times n}$ на число k = const называется матрица $C_{m \times n}$, элементы которой равны произведению соответствующего элемента матрицы на данное число $c_{ij} = ka_{ij}$.

2.1.1 Свойства сложения и произведения матриц на число

1.

$$A + B = B + A$$

2.

$$(A+B) + C = A + (B+C)$$

3. Если Θ – нулевая матрица, то:

$$A + \Theta = A$$

4. Найдётся такая матрица B, что:

$$A + B = 0$$

5.

$$\lambda(A+B) = \lambda A + \lambda B$$

6.

$$(\lambda + \rho)A = \lambda A + \rho A$$

7.

$$(\lambda \rho)A =$$

2.2 Транспонирование матрицы

Определение 15. *Транспонированной матрицей* A_{mn} называется матрица размерностью $n \times m$, элементы которой:

$$a_{ij}^{\tau} = a_{ji}$$

 $A_{n\times m}^{ au}$ – транспонированная матрица $A_{m\times n}$

$$A_{2\times3} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$A_{3\times2}^{\tau} = \begin{pmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{pmatrix}$$

2.2.1 Свойства транспонированния

1.

$$(A+B)^{\tau} = A^{\tau} + B^{\tau}$$

2.

$$(\lambda A)^{\tau} = \lambda A^{\tau}$$

8

2 МАТРИЦЫ

2.3 Произведение матриц

Определение 16. *Произведением матриц* A и B назвается матрица C, элементы которой определяются как:

$$c_{ij} = \sum_{l=1}^{k} a_{il} \cdot b_{lj}$$

Замечание. Две матрицы можно перемножить, если количество столбцов одной матрицы равно количеству строк другой матрицы. Тогда результирующая матрица будет иметь количество строк одной матрицы и количеству столбцов другой матрицы.

$$C_{a \times b} = A_{a \times c} \cdot B_{c \times b}$$

Свойство антикомунитативности произведения матриц.

$$A \cdot B \neq B \cdot A$$

Замечание. *Исключения:* Когда A = B:

 $\mathbf{A} \cdot B = A \cdot A = A^2$ Когда матрица B – нулевая матрица:

$$A\cdot\Theta=\Theta$$

Когда матрица B — единичная матрица:

$$A \cdot E = A$$

Когда матрица B – обратная матрица:

$$A \cdot A^{-1} = E$$

2.3.1 Свойства произведения матриц

1. Произведение матриц антикомунитативно.

$$A \cdot B \neq B \cdot A$$

2.

$$1 \cdot A = A$$

3. Ассоциативность

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Доказательство:

$$(A \cdot B) C =$$

$$= \sum_{r=1}^{k} [(A \cdot B)]_{ir} \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{n} \left(\sum_{s=1}^{k} [A]_{is} \cdot [B]_{sn} \right) \cdot [C]_{rj} =$$

$$= \sum_{n=1}^{n} \sum_{k=1}^{k} [A]_{is} \cdot [B]_{sn} \cdot [C]_{rj} =$$

$$= \sum_{s=1}^{k} [A]_{is} \cdot [(B \cdot C)] =$$

$$= A \cdot (B \cdot C)$$

4. Дистрибутивность произведения матриц относительно сложения:

$$(A+B) \cdot C = A \cdot C + B \cdot C$$

Доказательство:

$$(A_{m \times k} + B_{m \times k}) \cdot C_{k \times n} =$$

$$= \sum_{r=1}^{k} [(A+B)]_{ir} \cdot [C]_{ir}$$

$$= \sum_{r=1}^{k} ([A]_{ir} + [B]_{ir}) \cdot [C]_{rj}$$

$$= \sum_{r=1}^{k} ([A]_{ir}[C]_{rj} + [B]_{ir} \cdot [C]_{rj})$$

$$= \sum_{r=1}^{k} [A]_{ir}[C]_{ir} + \sum_{r=1}^{k} [B]_{ir}[C]_{ir}$$

$$= A \cdot C + B \cdot C$$

5. Применение транспорирования к произведению матриц

$$(A \cdot B)^{\tau} = B^{\tau} \cdot A^{\tau}$$

Доказательство:

$$(A \cdot B)^{\tau} =$$

$$= [(A \cdot B)^{\tau}]_{ij}$$

$$= [AB]_{ji} = \sum_{r=1}^{k} [A]_{jr} \cdot [B]_{ri}$$

$$= \sum_{r=1}^{k} [A^{\tau}] \cdot [B^{\tau}]_{ir}$$

$$= \sum_{r=1}^{k} [B^{\tau}]_{ir} [A^{\tau}]_{rj}$$

$$= [B^{\tau} \cdot A^{\tau}]$$

$$= B^{\tau} \cdot A^{\tau}$$

2.4 Элементарные преобразования матриц

- 1. Перестановка строк и столбцов.
- 2. Умножение элементов строк (столбцов) на число.
- 3. Прибавление к элементам одной строки соответствующий элементов другой строки (столбца), умноженного на число.

Используя элементарные преобразования, можно привести любую матрицу к *ступенчатому виду*.

Пример. Пример ступенчатой матрицы для 3×4 :

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 6 & 7
\end{pmatrix}$$

2.5 Минор матрицы. Ранг матрицы

Определение 17. *Минором k-ого порядка* матрицы A называется определитель, составленный из пересечения k строк и k столбцов с сохранением их порядка.

Определение 18. Окаймляющим минором для минора M матрицы A называется минор M', полученный из минора M путём добавления 1 строки и 1 столбца.

Определение 19. *Базисным минором* называется матрицы A называется минор, не равный нулю, порядок которого равен рангу матрицы A.

Определение 20. *Рангом матрицы* называется число A, равное наибольшему порядку, отличному от нуля, минора матрицы A.

Теорема 1. О базисном миноре.

Строки (столбцы) матрицы A, входящие в базисный минор – базисы. Базисные строки (столбцы), входящие в базисный минор – линейнонезависимы.

Любую строку (столбец), не входящую в базисный минор, можно представить в виде линейной комбинации базисных строк (столбцов).

Доказательство. Пусть ранг матрицы A равен R.

Предположим, что строки матрицы A - линейно-зависимы. Тогда одну из ни можно выразить как линейную комбинацию других строк. Тогда в базисном миноре 1-ая строка — линейная комбинация других строк. По свойству определителей этот минор равен нулю, что противоречит определению базисного минора.

Пусть базисный минор состоит из первых r строк и r столбцов матрицы A. Добавим к этому минору произвольную і-ную строку и ј-ный столбец — получим окаймляющий минор. Если $j \leq r$, то в миноре M' 2 одинаковых столбца и минор равен нулю. Если j > r, то в минор M' тоже равен нулю, т.к. ранг матрицы A равен r, наибольний порядок, отличный от нуля, минора равен j.

Определитель можно вычислить путём разложения по каой-нибудь строке или столбцу, поэтому найдем определитель M' путём разложения по j-ному столбцу:

$$a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{ij}A_{ij} = 0$$

$$j = r + 1 \Rightarrow$$

$$a_{1r+1}A_{1r+1} + a_{2r+1}A_{2r+1} + \dots + a_{ir+1}A_{ir+1} = 0$$

 $A_{r+1,r+1}$ – базисный минор, т.к. $M \neq 0$, то $A_{r+1,r+1} \neq 0$.

$$a_{r+1,r+1} = -\frac{A_{1,r+1}}{A_{r+1,r+1}} \cdot a_{1,r+1} - \frac{A_{2,r+1}}{A_{r+1,r+1}} \cdot a_{2,r+1} \dots - \frac{A_{r,r+1}}{A_{r+1,r+1}} \cdot a_{r,r+1}$$

Обозначим $\lambda_i = -rac{A_{i,r+1}}{A_{r+1}r+1}$

$$a_{r+1,r+1} = \lambda_i a_{1,r+1} + \lambda_2 a_{2,r+1} + \dots + \lambda_r \cdot a_{r,r+1}$$

Элементы i-ой строки можно представить в виде линейной комбинации строк. \square

2.5.1 Вычисление ранга матрицы

Ранг матрицы обозначается:

Метод окаймляющего минора

Выбираем любой элемент матрицы $A \neq 0$ — минор. Составляем окаймляющий минор и вычисляем его. Если он не равен 0, то составляющий минор 3 порядка и т.д. Если равен нулю, то берём другой элемент матрицы и соответствующий ему окаймляющий минор. Ранг матрицы будет равен размеру максимального минора, не равному нулю.

Метод элементарных преобразований

Теорема 2. Ранг матрицы не меняется при элементарных преобразований строк (столбцов) матрицы. Ганг матрицы равен количеству ненулевых строк (столбцов) ступенчатой матрицы, полученной путём элементарных преобразований.

2.6 Обратная матрица

Определение 21. Обратная матрица квадратной матрицы $A_{nxn}A_{nxn}^{-1}$ такая, что $A\cdot A^{-1}=A^{-1}\cdot A=E.$

Обратная матрица вычисляется по формуле:

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{\tau}$$

где $A_{ij} = (-1)^{i+j} M_{ij}$ – арифметическое дополнение a_{ij} матрицы A.

Определение 22. Матрица A^* , являющаяся транспонированной матрицей алгебраических дополнений матрицы A называется npucoedu-нённой матрицей.

Теорема 3. Для того, чтобы матрица A имела обратную необходимо и достаточно, чтобы её определитель не равнялся нулю.

Доказательство. 1) Пусть матрица A имеет обратную, тогда по определению:

$$A \cdot A^{-1} = E$$

В таком случае:

$$\begin{split} \det(A\cdot A^{-1}) = \det(E) = 1 \\ \det(A\cdot A^{-1}) = \det(A)\cdot \det(A^{-1}) = 1 \Rightarrow \det A \neq 0 \end{split}$$

2) Пусть $det A \neq 0$. Если матрицн разложить по строке или столбцу:

$$\sum_{j+1}^{n} a_{ij} A_{ij} = a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in} = \det A$$

$$\sum_{j+1}^{n} a_{ij} A_{nj} = a_{i1} A_{n1} + a_{i2} A_{n2} + \dots + a_{in} A_{nn} = 0 \quad i \neq k$$

Пусть существует матрица B:

$$b_{ij} = \frac{A_{ij}}{\det A}$$

Пусть $C = A \cdot B$:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{in} = \sum_{n=1}^{n} a_{ik} \frac{A_{jn}}{\det A}$$

$$= \frac{1}{\det A} \cdot \sum_{n=1}^{n} a_{ik} A_{jn} = \begin{cases} \frac{1}{\det A} \cdot \det A = 1, & \text{если } i = j \\ \frac{1}{\det A} \cdot 0 = 0, & \text{если } i \neq j \end{cases} \Rightarrow C = E$$

$$c_{ij} = 1, \text{ если } i = j$$

$$c_{ij} = 0, \text{ если } i \neq j$$

Получим:

$$A \cdot B = E$$
 $B \cdot A = E$ \Rightarrow по определению $B = A^{-1}$

Теорема 4. Пусть матрицы A_{nxn} и B_{nxn} имеют обратные A_{nxn}^{-1} и B_{nxn}^{-1} , тогда:

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Доказательство.

$$(A \cdot B) \cdot (A \cdot B)^{-1} = (A \cdot B) \cdot (B^{-1} \cdot A^{-1})$$

$$= A \cdot (B \cdot B^{-1}) \cdot A^{-1} = A \cdot E \cdot A^{-1} = A \cdot A^{-1} = E$$

$$(A \cdot B)^{-1} \cdot (A \cdot B) = (A^{-1} \cdot B^{-1}) \cdot (B \cdot A)$$

$$= B^{-1} \cdot (A \cdot A^{-1}) \cdot B = B^{-1} \cdot E \cdot B = B^{-1} \cdot B = E$$

_

Теорема 5. Пусть матрца A_{nxn} имеет обратную A_{nxn}^{-1} . Тогда:

$$(A^{\tau})^{-1} = (A^{-1})^{\tau}$$

Доказательство.

$$A^{\tau} \cdot (A^{\tau})^{-1} = A^{\tau} \cdot (A^{-1})^{\tau} = (A \cdot A^{-1})^{\tau} = E^{\tau} = E$$
$$(A^{\tau})^{-1} \cdot A^{\tau} = (A^{-1})^{\tau} \cdot A^{\tau} = (A^{-1} \cdot A)^{\tau} = E^{\tau} = E$$

Определение 23. Матрица A, определитель которой не равен нулю, называется nesupoxcdenhoù.

Определение 24. Матрица A, определитель которой равен нулю, называется вырожденной.

Замечание. Невырожденную матрицу называют обратимой.

2.7 Вычисление обратной матрицы

Способ 1. По формуле

По формуле:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{\tau}$$

- 1. Находим определитель матрицы A.
- 2. Находим все алгебраические дополнения:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

- 3. Подставляем алгебраические дополнения
- 4. Транспонируем матрицу
- 5. Домножаем на $\frac{1}{det A}$

Проверка получения обратной матрицы

По свойству:

$$A^{-1} \cdot A = A \cdot A^{-1} = E$$

Способ 2. Метод Жордана-Гаусса (с помощью элементарных преобразований)

Данный способ подходит для больших матриц.

1. Приписываем к матрице справа единичную матрицу такой же размерности.

A|E

- 2. С помощью элементарных преобразований строк всей матрицы приводим матрицу A к верхне-треугольному виду. На первом шаге переписываем строку без изменения, и с помощью элементарных преобразований получаем нулевые элементы в первом столбце матрицы A под элементом a_{11} . На втором шаге, переписываем первые две строки матрицы, и спомощью элементарных преобразований строк получаем нулевые элементы в первом столбце под элементом a_{22} .
- 3. С помощью элементарных преобразований строк получаем в левой части диагональную матрицу. На первом шаге переписываем последнюю строку без изменений. С помощью элементарных преобразований получаем нулевые элементы в последнем столбце над элементов a'_{nn} . Во втором шаге переписываем без изменения последние две строки, и с помощью элементарных преолбразований получаем нулевые элементы в предпоследнем столбце над элементом a'_{n-1n-1} . И так далее.
- 4. Делим каждую строку на соответствующий элемент диагональный элемент левой части матрицы. В результате в левой части получаем единичную матрицу, а вправой обратную матрицу матрице A.

Замечание. Если a_{11} равен нулю, то переставляем две строки матрицы так, чтобы a_{11} не был равен нулю.

Пример.

$$A|E = \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ -1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 \\ 0 & 0 & -4 & 7 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} -4 & 0 & 0 & 3 & 1 & -2 \\ 0 & 4 & 0 & 9 & 3 & -2 \\ 0 & 0 & -4 & 7 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -\frac{4}{4} & -\frac{1}{4} & \frac{2}{4} \\ 0 & 1 & 0 & \frac{9}{4} & \frac{3}{4} & -\frac{2}{4} \\ 0 & 0 & 1 & -\frac{7}{4} & -\frac{1}{4} & \frac{2}{4} \end{pmatrix}$$

3 Системы линейных алгебраических уравнений (СЛАУ)

Определение 25. Системой линейных алгебраических уравнений на-

зывается система уравнений вида:

$$a_{11}x_1 + a_{12}x_2 + \dots a_{1n} = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots a_{2n} = b_2$
 \dots
 $a_{m1}x_1 + a_{m2}x_2 + \dots a_{mn} = b_m$

где $a_{ij} = const$, i = 1..m, j = 1..n – коэффициенты СЛАУ, $b_i = const$ – свободный член СЛАУ, x_i , i = 1..n – неизвестная переменная СЛАУ.

Определение 26. Совокупность переменных $(x_1, x_2 \dots x_n)$, при которых каждое уравнение обращается в верное равенство, называется pe-*шением* данной СЛАУ.

Форма записи СЛАУ выше называется координатной.

Матричная форма

Обозначим:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

Тогда СЛАУ можно записать в виде:

$$A \cdot X = B$$

Векторная форма записи

Обозначим:

$$\vec{a}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix} \qquad \vec{a}_2 = \begin{pmatrix} a_{21} \\ a_{22} \\ \dots \\ a_{2m} \end{pmatrix} \qquad \dots \qquad \vec{a}_n = \begin{pmatrix} a_{n1} \\ a_{n2} \\ \dots \\ a_{nm} \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

Тогда вектор \vec{b} , координаты которого являются свободные члены, можно представить в виде линейной комбинаций векторов \vec{a} , координаты которых соответствуют элементам столбцов матрицы.

Определение 27. СЛАУ, имеющая решение, называется совместной.

Определение 28. СЛАУ, не имеющая решение, называется *несовместной*.

Определение 29. Совместная СЛАУ, имеющая единственное решение, называется *совместно-определённой*.

Определение 30. Совместная СЛАУ, имеющая бесконечное кол-во решений, называется *совместно-неопределённой*.

Определение 31. СЛАУ, у которой все свободные члены равны нулю, называется однородной.

Определение 32. СЛАУ, у которой хотя бы один свободный член не равен нулю, называется *неоднородной*.

3.1 Решение матричных уравнений

Ι

Для уравнения вида:

$$A \cdot X = B$$

1. Умножим обе части уравнения на обратную матрицу А слева:

$$A^{-1} \cdot A \cdot X = A^{-1} \cdot B$$

$$E \cdot X = A^{-1} \cdot B$$

$$X = A^{-1} \cdot B$$

II

Для уравнений вида:

$$X \cdot A = B$$

1. Умножим обе части уравнения на обратную матрицу А справа:

$$X \cdot A \cdot A^{-1} = B \cdot A^{-1}$$
$$X \cdot E = B \cdot A^{-1}$$
$$X = B \cdot A^{-1}$$

III

Для уранвения вида:

$$A \cdot X \cdot C = B$$

18 3 СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ)

1. Умножим обе части уравнения на обратную матрицу A слева и на обратную матрицу C справа:

$$A^{-1} \cdot A \cdot X \cdot C \cdot C^{-1} = A^{-1} \cdot B \cdot C^{-1}$$

$$E \cdot X \cdot E = A^{-1} \cdot B \cdot C^{-1}$$

$$X = A^{-1} \cdot B \cdot C^{-1}$$

3.2 Формулы Крамера для решения СЛАУ

Запишем СЛАУ в матричном виде:

$$A \cdot X = B \qquad A_{n \times n}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Пусть матрица не вырожденная. Тогда её обратная матрица будет иметь вид:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{\tau} = \begin{pmatrix} \frac{A_{11}}{\det A} & \frac{A_{12}}{\det A} & \dots & \frac{A_{1n}}{\det A} \\ \frac{A_{21}}{\det A} & \frac{A_{22}}{\det A} & \dots & \frac{A_{2n}}{\det A} \\ \dots & \dots & \dots & \dots \\ \frac{A_{n1}}{\det A} & \frac{A_{n2}}{\det A} & \dots & \frac{A_{nn}}{\det A} \end{pmatrix}$$

$$X = \begin{pmatrix} \frac{A_{11}}{\det A} & \frac{A_{12}}{\det A} & \cdots & \frac{A_{1n}}{\det A} \\ \frac{A_{21}}{\det A} & \frac{A_{22}}{\det A} & \cdots & \frac{A_{2n}}{\det A} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{A_{n1}}{\det A} & \frac{A_{n2}}{\det A} & \cdots & \frac{A_{nn}}{\det A} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$x_{i} = \frac{A_{i1}}{\det A}b_{1} + \frac{A_{i2}}{\det A}b_{2} + \dots + \frac{A_{in}}{\det A}b_{n} =$$

$$= \frac{A_{i1}b_{1} + A_{i2}b_{2} + \dots + A_{in}b_{n}}{\det A}$$

Заметим, что числитель последнего выражения это ничто иное, как:

$$\Delta_1 = egin{array}{cccccc} b_1 & a_{12} & a_{13} & \dots a_{1n} \ b_2 & a_{22} & a_{23} & \dots a_{2n} \ \dots & & & & & \ b_n & a_{2n} & a_{n3} & \dots a_{nn} \ \end{pmatrix}$$
 для $i=1$

Замечание. Определитель Δ_i получается, если элементы і-ного столбца заменить на свободные члены СЛАУ.

Если квадратная матрица невырожденная, то однородная СЛАУ имеет $e \partial u h cm e e h u e$

Если квадратная матрица вырожденная, то однородная СЛАУ имеет *бесконечное количество решений*.

3 СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 19 (СЛАУ)