

16 april 2020

On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D

Geoffrey Pruvost, Bilel Derbel, Arnaud Liefooghe, Ke Li, Qingfu Zhang

Outline

- General Context
 - Multi-Objective Optimization
 - The MOEA/D algorithm
- Review of MOEA/D by dissociating <u>the Population</u> size and <u>Number of sub-problem selected</u>?
- Experimental study and main results
- Conclusion

Multi-objective & combinatorial optimization

Conflicting objectives

Pareto set/front

Multi-objective & combinatorial optimization

- Find a good Pareto set/front approximation
- Discrete variables

Evolutionary Multi-objective Algorithms (EMOA)

Decompose the original **Multi-Objective Problem** into **multiple** (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

Decompose the original **Multi-Objective Problem** into **multiple** (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original **Multi-Objective Problem** into **multiple** (single-objective) sub-problems solved cooperatively

Decomposition

 $g(x,\lambda|z^*)$ Weighted sum Chebychev

Aggregation function

 $\sum_{i=1}^{m} \lambda_i \cdot |f_i(x) - z_i^*| \quad \max_{i \in \{1, \dots, m\}} \lambda_i \cdot |f_i(x) - z_i^*|$

weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original **Multi-Objective Problem** into **multiple** (single-objective) sub-problems solved cooperatively

Decomposition

 $g(x,\lambda|z^*)$

Weighted sum Chebychev $\sum_{i=1}^{m} \lambda_i \cdot |f_i(x) - z_i^*| \max_{i \in \{1, \dots, m\}} \lambda_i \cdot |f_i(x) - z_i^*|$

Aggregation function

weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

Aggregation function

 weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

- neighborhood
- selection
- replacement

Decompose the original Multi-Objective Problem into multiple (single-objective) sub-problems solved cooperatively

Decomposition

- Aggregation function
- weight vectors / subproblems

- neighborhood
- selection
- replacement

The Population size in MOEA/D

Impact different components of the MOEA/D Framework

- The **population size** N :
 - The number of solutions in the population ¹/₁
 - The number of sub-problems

The Population size in MOEA/D

Impact different components of the MOEA/D Framework

- The population size N :
 - The number of solutions in the population ^{f₂}
 - The number of sub-problems
- Tune with the knowledge from Evolutionary Algorithms
 - A lower population :
 - sufficient to approach quickly the PF
 - insufficient to cover well the whole PF
 - A larger population :
 - better cover all the PF
 - waste of resources

The allocation strategy in MOEA/D

Sub-problems of MOEA/D might have different degrees of difficulty

- The progress over some sub-problem can be **unequal**
- Some MOEA/D variants with a ressource allocation :
 - *State-of-the-art: MOEA/D-DRA*
 - Utility function
 - Tournament selection (1/5 of the population size)

^{*} Q. Zhang, W. Liu and H. Li, "The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances," 2009 IEEE Congress on Evolutionary Computation, Trondheim, 2009.

The allocation strategy in MOEA/D

Sub-problems of MOEA/D might have different degrees of difficulty

- The progress over some sub-problem can be **unequal**
- Some MOEA/D variants with a ressource allocation :
 - *State-of-the-art: MOEA/D-DRA*
 - Utility function
 - Tournament selection (1/5 of the population size)

^{*} Q. Zhang, W. Liu and H. Li, "The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances," 2009 IEEE Congress on Evolutionary Computation, Trondheim, 2009.

The allocation strategy in MOEA/D

Sub-problems of MOEA/D might have different degrees of difficulty

- The progress over some sub-problem can be **unequal**
- Some MOEA/D variants with a ressource allocation :
 - *State-of-the-art : MOEA/D-DRA*
 - Utility function
 - Tournament selection (1/5 of the population size)

^{*} Q. Zhang, W. Liu and H. Li, "The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances," 2009 IEEE Congress on Evolutionary Computation, Trondheim, 2009.

Dissociate the population size of MOEA/D in 3 new components

* μ :

***** \(\lambda\):

* Sps:

Dissociate the population size of MOEA/D in 3 new components

μ: the number of solutions in the f₂
 population

***** λ:

* Sps:

Dissociate the population size of MOEA/D in 3 new components

- ❖ μ : the number of solutions in the population
- * $\underline{\lambda}$: the number of visited sub-problem
- * Sps:

Sub-problems selected for 1 generation

Example of neighborhood

Dissociate the population size of MOEA/D in 3 new components

- ❖ μ: the number of solutions in the population
- ❖ λ: the number of visited sub-problem
- Sps : the sub-problem selection strategy
 - Iteratively or ALL
 - DRA
 - Random

Dissociate the population size of MOEA/D in 3 new components

- ❖ μ: the number of solutions in the population
- ♦ λ: the number of visited sub-problem
- Sps : the sub-problem selection strategy
 - Iteratively or ALL
 - DRA
 - Random

Dissociate the population size of MOEA/D in 3 new components

- ❖ µ: the number of solutions in the population
- ❖ λ: the number of visited sub-problem
- Sps : the sub-problem selection strategy
 - Iteratively or ALL
 - ► <u>DRA</u>
 - Random

Dissociate the population size of MOEA/D in 3 new components

- ❖ μ: the number of solutions in the population
- ♦ λ: the number of visited sub-problem
- Sps : the sub-problem selection strategy
 - Iteratively or ALL
 - ► <u>DRA</u>
 - Random

Dissociate the population size of MOEA/D in 3 new components

- ❖ μ: the number of solutions in the population
- ♦ λ: the number of visited sub-problem
- Sps : the sub-problem selection strategy
 - Iteratively or ALL
 - DRA
 - Random

Experimental Setting

- Benchmark: multi-objective NK-landscapes
 - combinatorial problem
 - representation = bit-strings
 - problem size n = 100 (decision space dimension)
 - k={0, 1, 2, 4} epistatic interactions to manage the ruggedness of the problem
 - m={2,3,4,5} objectives
- Indicators
 - **Hypervolume**, Hypervolume Relative Deviation
- Number of runs : 10
- Number of evaluation : 100 -> 107

The population size µ

Algorithm: classic MOEA/D with $\lambda = \mu$ and sps = ALL

- With a **small** budget :
 - A small population is equal or better
 A larger population is better
- With a larger budget:

Algorithm : MOEA/D with $\mu = 500$

• The best value is **never** $\lambda = \mu$ for **low budget**

• Random strategy :

Depends of budget and difficulty of the problem

• **DRA** strategy:

In original DRA, $\lambda = N/5$

• The best value is **never** $\lambda = \mu$ for **low budget**

• Random strategy :

Depends of budget and difficulty of the problem

• **DRA** strategy:

In original DRA, $\lambda = N/5$

• The best value is **never** $\lambda = \mu$ for **low budget**

• Random strategy :

Depends of budget and difficulty of the problem

• **DRA** strategy:

In original DRA, $\lambda = N/5$

Algorithm : MOEA/D with $\mu = 500$

• The best value is **never** $\lambda = \mu$ for **low budget**

• Random strategy :

Depends of budget and difficulty of the problem

• **DRA** strategy:

In original DRA, $\lambda = N/5$

The sps strategy

Algorithm: MOEA/D with μ =500 and λ =1

 Random (RND) strategy has a better anytime behavior

• DRA and ALL strategies are better at the end of the process

The sps strategy

Algorithm: MOEA/D with μ =500 and λ =1

Budget SPS Strategy	10 ⁴ <i>RND</i> DRA	10 ⁵ <i>RND</i> DRA	10 ⁶ <u>RND</u> DRA	10 ⁷ RND <u><i>DRA</i></u>
Instance M=4 K=0	13.2 20.5	09.9 12.8	09.3 09.4	09.2 09.0

 Random (RND) strategy has a better anytime behavior

• DRA and ALL strategies are better at the end of the process

Conclusion

- We reviewed the design principles of the MOEA/D framework
- Analyse the role of 3 design components
- We are able to derive a parameter setting recommendation
- The perspective would be to extend the analysis to the continuous domain or study the parameter setting (off-line or on-line)

Thank you

Website: https://geoffreypruvost.fr

Email: geoffrey.pruvost@inria.fr

GitHub: https://github.com/geoffreyp/

