Sieci Petriego

Maciej Makowski

1. Wymyślić własną maszynę stanów, za symulować przykład i dokonać analizy grafu osiągalności oraz niezmienników.

Sieci może osiągać wiele różnych stanów, natomiast żaden token nigdy nie znajdzie się w P2.

Graf osiągalności:

S0 {2,0,0}

S1 {1,1,0}

S2 {0,2,0}

Łatwo zauważyć, że tylko jedno miejsce ma zawsze zerową ilość tokenów - P2(nieosiągalny). W pozostałych mogą pojawić się 0, 1 lub 2 tokeny.

Niezmienniki:

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 2$$

Analysis time: 0.0s

Trzeba raz nacisnąć T0 i T1, aby wrócić do stanu początkowego tokenów.

Możemy wskazać trzy podzbiory stanów w których suma jest stała:

$$M(P0) + M(P1) + M(P2) = 2$$

$$M(P0) + M(P1) = 2$$

$$M(P2) = 0$$

2. Za symulować siec jak poniżej.

Graf osiągalności:

Sieć jest nieograniczona, gdyż ilość tokenów stale rośnie(w P3).

Sieć jest żywa, gdyż w każdym momencie możemy wykonać jakieś przejście, świadczy o tym graf osiągalności.

Niezmienniki:

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Analysis time: 0.0s

Gdyby sieć byłaby odwracalna to analiza niezmienników zwróciłaby ilość przejść potrzebnych, aby wrócić do stanu początkowego. Analiza jest pusta, a więc sieć jest nieodwracalna, co jest zgodne z obserwacjami: w P3 z każdą pętlą przybywa tokenów.

3. Za symulować wzajemne wykluczanie dwóch procesów na wspólnym zasobie. Dokonać analizy niezmienników miejsc oraz wyjaśnić znaczenie równań (P-invariant equations). Które równanie pokazuje działanie ochrony sekcji krytycznej?

Niezmienniki:

Petri net invariant analysis results

T-Invariants

T0	T1	T2	ТЗ	
1	1	0	0	
0	0	1	1	

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	Р3	P4
1	1	0	1	0
0	1	1	0	0
0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P3) = 1$$

 $M(P1) + M(P2) = 1$
 $M(P3) + M(P4) = 1$

Analysis time: 0.0s

W stanach {P1, P2} i {P3, P4} zawsze jest jeden token. Natomiast pierwsze równanie chroni sekcję krytyczną. Zapewnia, że w stanach {P0, P1, P3} znajdzie się maksymalnie jeden token - maksymalnie jeden proces się w niej znajdzie.

4. Uruchomić problem producenta i konsumenta z ograniczonym buforem (można posłużyć się przykładem, menu: file, examples). Dokonać analizy niezmienników. Czy siec jest zachowawcza? Które równanie mówi nam o rozmiarze bufora?

Niezmienniki:

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Analysis time: 0.0s

O rozmiarze bufora mówi równanie M(P6) + M(P7) = 3 - bufor ma rozmiar 3.

Sieć jest zachowawcza, ponieważ ilość tokenów jest stała.

5. Stworzyć symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonać analizy niezmienników. Zaobserwować brak pełnego pokrycia miejsc.

Niezmienniki:

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$

Analysis time: 0.001s

Brak ograniczenia rozmiaru bufora.

Graf osiągalności:

Reachability/Coverability Graph Results

There are 8342 states with 10012 arcs. The graph is too big to be displayed properly.

Brak pełnego pokrycia. Sieć jest nieograniczona, w P6 może stale przybywać tokenów.

6. Zasymulować prosty przykład ilustrujący zakleszczenie. Wygenerować graf osiągalności i zaobserwować znakowania, z których nie można wykonać przejść. Zaobserwować właściwości sieci w "State Space Analysis".

Niezmienniki:

Petri net state space analysis results

Bounded true
Safe false
Deadlock true

Shortest path to deadlock: T0 T0

Trafiając do S2 nie da się z niego wyjść - deadlock, co potwierdza State Space Analysis.