

WEBENCH® Design Report

VinMin = 3.0V VinMax = 4.2V Vout = 7.0V lout = 0.75A Device = TPS61087DSCR Topology = Boost Created = 10/29/15 2:45:08 PM BOM Cost = \$2.52 BOM Count = 12 Total Pd = 1.39W

Design: 4530725/5 TPS61087DSCR TPS61087DSCR 3.0V-4.2V to 7.00V @ 0.75A

Electrical BOM

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1. Cbyp	TDK	C1005X5R0J105M Series= X5R	Cap= 1.0 uF ESR= 7.618 mOhm VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	1005 3 mm ²
2. Ccomp	Yageo America	CC0805KRX7R9BB821 Series= X7R	Cap= 820.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3. Cin	MuRata	GRM21BR61A106KE19L Series= X5R	Cap= 10.0 uF ESR= 2.0 mOhm VDC= 10.0 V IRMS= 0.0 A	2	\$0.03	0805 7 mm ²
4. Cout	MuRata	GRM32ER61C476ME15L Series= X5R	Cap= 47.0 uF ESR= 2.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.24	1210 15 mm ²
5. Css	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
6. D1	Vishay-Semiconductor	30WQ10FNPBF	VF@Io= 810.0 mV VRRM= 100.0 V	1	\$0.01	DPAK 102 mm ²
7. L1	Coilcraft	XFL4020-472MEB	L= 4.7 μH DCR= 52.2 mOhm	1	\$0.55	XFL4020 25 mm ²
8. Rcomp	Vishay-Dale	CRCW040256K2FKED Series= CRCWe3	Res= 56.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
9. Rfbb	Vishay-Dale	CRCW040234K8FKED Series= CRCWe3	Res= 34.8 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
10. Rfbt	Vishay-Dale	CRCW0402162KFKED Series= CRCWe3	Res= 162.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
11. U1	Texas Instruments	TPS61087DSCR	Switcher	1	\$1.60	DSC0010A 0 mm ²

Operating Values

Operating values								
#	Name	Value	Category	Description				
1.	Cin IRMS	97.632 mA	Current	Input capacitor RMS ripple current				
2.	Cout IRMS	992.725 mA	Current	Output capacitor RMS ripple current				
3.	IC lpk	2.229 A	Current	Peak switch current in IC				
4.	lin Avg	2.06 A	Current	Average input current				
5.	L lpp	338.21 mA	Current	Peak-to-peak inductor ripple current				
6.	BOM Count	12	General	Total Design BOM count				
7.	FootPrint	205.0 mm ²	General	Total Foot Print Area of BOM components				
8.	Frequency	1.2 MHz	General	Switching frequency				
9.	Pout	5.25 W	General	Total output power				
10.	Total BOM	\$2.52	General	Total BOM Cost				
11.	Low Freq Gain	94.54 dB	Op_Point	Gain at 10Hz				
12.	Cross Freq	29.207 kHz	Op_point	Bode plot crossover frequency				
13.	Duty Cycle	63.583 %	Op_point	Duty cycle				
14.	Efficiency	77.54 %	Op_point	Steady state efficiency				
15.	Gain Marg	-8.955 dB	Op_point	Bode Plot Gain Margin				
16.	IC Tj	57.622 degC	Op_point	IC junction temperature				
17.	ICThetaJA	55.3 degC/W	Op_point	IC junction-to-ambient thermal resistance				
18.	IOUT_OP	750.0 mA	Op_point	lout operating point				
19.	Phase Marg	61.909 deg	Op_point	Bode Plot Phase Margin				
20.	VIN_OP	3.0 V	Op_point	Vin operating point				
21.	Vout p-p	17.393 mV	Op_point	Peak-to-peak output ripple voltage				
22.	Cin Pd	9.532 μW	Power	Input capacitor power dissipation				
23.	Cout Pd	1.971 mW	Power	Output capacitor power dissipation				
24.	Coutx Pd	0.0 W	Power	Output capacitor_x power loss				
25.	D1 Pd	797.045 mW	Power	Output Diode Power Dissipation				
26.	IC Pd	499.502 mW	Power	IC power dissipation				
27.	L Pd	221.897 mW	Power	Inductor power dissipation				
28.	Total Pd	1.388 W	Power	Total Power Dissipation				
29.	DiodeFV	533.318 mV	Unknown	Peak-to-peak output ripple voltage				

Design Inputs

#	Name	Value	Description
1.	lout	750.0 m	Maximum Output Current
2.	lout1	750.0 m	Output Current #1
3.	VinMax	4.2	Maximum input voltage
4.	VinMin	3.0	Minimum input voltage
5.	Vout	7.0	Output Voltage
6.	Vout1	7.0	Output Voltage #1
7.	base_pn	TPS61087	Base Product Number
8.	source	DC	Input Source Type
9.	Та	30.0	Ambient temperature

Design Assistance

1. TPS61087 Product Folder: http://www.ti.com/product/TPS61087: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.