Sphère métallique de rayon R_a , charge totale Q_0 , couche diélectrique (lhi, ϵ) d'épaisseur R_b-R_a

Quelle densité de charges pour ce problème?

Sphère métallique de rayon R_a , charge totale Q_0 , couche diélectrique (lhi, ϵ) d'épaisseur R_b-R_a

Quelle densité de charges pour ce problème?

A.
$$\rho_s = Q_0/(4\pi R_a^2)$$

B.
$$\rho = Q_0/(\frac{4}{3}\pi R_a^3)$$

C.
$$\rho_s = Q_0/(4\pi R_b^2)$$

D.
$$\rho = Q_0(\frac{4}{3}\pi R_b^3)$$

E. Aucune bonne réponse.

Comment démarrer pour arriver au champ $ec{E}$?

Comment démarrer pour arriver au champ $ec{E}$?

- A. Loi de Gauss intégrale sur $ec{E}$.
- B. Loi de Gauss intégrale sur $ec{D}$.
- C. Loi de Gauss locale sur $ec{E}$.
- D. Loi de Gauss locale sur \vec{D} .
- E. Trouver les charges de polarisation à partir de $ec{m{P}}$.

Que déduire des symmétries du problème?

Que déduire des symmétries du problème?

A.
$$\vec{m{D}}(\vec{m{r}}) = \vec{m{D}}(r)\hat{m{e}}_{m{r}}$$

B.
$$\vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) = D(\vec{\boldsymbol{r}})\hat{\boldsymbol{e}}_{\boldsymbol{r}}$$

C.
$$\vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) = D(\hat{\boldsymbol{r}})\hat{\boldsymbol{e}}_{\boldsymbol{r}}$$

D.
$$\vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) = D(r)\hat{\boldsymbol{e}}_{\boldsymbol{r}}$$

Quelle surface fictive S pour appliquer la loi de Gauss intégrale?

Quelle surface fictive S pour appliquer la loi de Gauss intégrale?

- A. Un cube.
- B. Un cylindre.
- C. Une sphère.
- D. Peu importe, à condition d'avoir une surface fermée.

Quel rayon pour la sphère fictive S?

Quel rayon pour la sphère fictive S?

A. R_a

B. R_b

C. R_g

D. ρ

E. *r*

Quel est le flux de $\vec{\boldsymbol{D}}$ à travers S?

Quel est le flux de $\vec{\boldsymbol{D}}$ à travers S?

$$\oint_{S} \vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S =$$

Quel est le flux de $\vec{m{D}}$ à travers S?

$$\oint_{S} \vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{n}} \, dS = \oint_{S} D(r) \hat{\boldsymbol{e}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{e}}_{\boldsymbol{r}} \, dS =$$

Quel est le flux de \vec{D} à travers S?

$$\oint_{S} \vec{D}(\vec{r}) \cdot \hat{n} \, dS = \oint_{S} D(r) \hat{e}_{r} \cdot \hat{e}_{r} \, dS =$$

A.
$$D(r) \oint_S dS = D(r) 4\pi r^2$$

B.
$$D(r) \oint_S dS = D(r) 4\pi R_g^2$$

C.
$$D(R_g) \oint_S dS = D(R_g) 4\pi R_g^2$$

D.
$$D(R_g) \oint_S dS = D(R_g) \frac{4}{3} \pi R_g^3$$

E.
$$D(R_g) \oint_S dS = D(R_g) 2\pi R_g$$

Quelle charge $Q_{\rm int\ libres}$ dans les trois cas i. $R_g < R_a$, ii. $R_a < R_g < R_b$ iii. $R_b < R_g$?

Quelle charge $Q_{\mathsf{int\ libres}}$ dans les trois cas

i.
$$R_g < R_a$$
, ii. $R_a < R_g < R_b$ iii. $R_b < R_g$?

A. 0, 0, 0

B. 0, 0, Q_0

C. 0, Q_0 , 0

D. Q_0 , 0, 0

E. 0, Q_0 , Q_0

F.
$$Q_0$$
, 0, Q_0

G.
$$Q_0$$
, Q_0 , 0

H.
$$Q_0$$
, Q_0 , Q_0

I. Aucune bonne réponse.

$$ec{m{D}} = \epsilon ec{m{E}} = \epsilon_0 \epsilon_r ec{m{E}}$$

$$ec{m{D}} = \epsilon ec{m{E}} = \epsilon_0 \epsilon_r ec{m{E}}$$

$$m{ec{D}}(m{ec{r}}) = egin{cases} m{ec{0}} & r < R_a \ rac{Q_0}{4\pi r^2} m{\hat{e}_r} & R_a < r < R_b \ rac{Q_0}{4\pi r^2} m{\hat{e}_r} & R_b < r \end{cases}$$

$$ec{m{D}} = \epsilon ec{m{E}} = \epsilon_0 \epsilon_r ec{m{E}}$$

$$\vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) = \begin{cases} \vec{\boldsymbol{0}} & r < R_a \\ \frac{Q_0}{4\pi r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ \frac{Q_0}{4\pi r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_b < r \end{cases} \qquad \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) = \begin{cases} \vec{\boldsymbol{0}} & r < R_a \\ \frac{Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ \frac{Q_0}{4\pi \epsilon_0 r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_b < r \end{cases}$$

$$ec{m{P}} = \epsilon_0 \chi_e ec{m{E}}$$

$$ec{m{P}} = \epsilon_0 \chi_e ec{m{E}}$$

$$\vec{E}(\vec{r}) = \begin{cases} \vec{0} & r < R_a \\ \frac{Q_0}{4\pi\epsilon_0\epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ \frac{Q_0}{4\pi\epsilon_0 r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_b < r \end{cases}$$

$$ec{m{P}} = \epsilon_0 \chi_e ec{m{E}}$$

$$\vec{E}(\vec{r}) = \begin{cases} \vec{0} & r < R_a \\ \frac{Q_0}{4\pi\epsilon_0\epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ \frac{Q_0}{4\pi\epsilon_0 r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_b < r \end{cases} \qquad \vec{P}(\vec{r}) = \begin{cases} \vec{0} & r < R_a \\ \frac{\epsilon_0 \chi_e Q_0}{4\pi\epsilon_0 \epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ \frac{Q_0}{4\pi\epsilon_0 r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_b < r \end{cases}$$

$$ec{m{P}} = \epsilon_0 \chi_e ec{m{E}}$$

$$\vec{E}(\vec{r}) = \begin{cases} \vec{0} & r < R_a \\ \frac{Q_0}{4\pi\epsilon_0\epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ \frac{Q_0}{4\pi\epsilon_0 r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_b < r \end{cases} \qquad \vec{P}(\vec{r}) = \begin{cases} \vec{0} & r < R_a \\ \frac{\epsilon_0 \chi_e Q_0}{4\pi\epsilon_0\epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ ??? & R_b < r \end{cases}$$

$$\vec{P}(\vec{r}) = \begin{cases} \mathbf{0} & r < R_a \\ \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}} & R_a < r < R_b \\ ??? & R_b < r \end{cases}$$

A. $\frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 r^2} \hat{\boldsymbol{e}}_{\boldsymbol{r}}$

 $C. \vec{0}$

D. Aucune bonne réponse.

$$\vec{P}(\vec{r}) = \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{e}_r$$

$$\vec{P}(\vec{r}) = \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{e}_r = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r$$

$$\vec{P}(\vec{r}) = \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{e}_r = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\vec{P}(\vec{r}) = \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{e}_r = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\rho_{\text{pol}} =$$

$$\vec{P}(\vec{r}) = \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{e}_r = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\rho_{\text{pol}} = -\text{div} \vec{P}$$

$$\vec{P}(\vec{r}) = \frac{\epsilon_0 \chi_e Q_0}{4\pi \epsilon_0 \epsilon_r r^2} \hat{e}_r = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\rho_{\text{pol}} = -\text{div} \vec{P} = 0$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

Quelle densité de charge surfacique de polarisation à R_b ? $\rho_{\rm s~pol} =$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

Quelle densité de charge surfacique de polarisation à R_b ? $\rho_{\rm s~pol} = \vec{P} \cdot \hat{n} =$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

Quelle densité de charge surfacique de polarisation à R_b ?

$$ho_{\sf s\;pol} = ec{m{P}} \cdot \hat{m{n}} =$$

A.
$$\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi r^2}$$
B. $-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi r^2}$
C. $\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$D. -\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$$

E. Aucune bonne réponse.

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

Quelle densité de charge surfacique de polarisation à R_a ? $\rho_{\rm s~pol} = \vec{P} \cdot \hat{n} =$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

Quelle densité de charge surfacique de polarisation à R_a ?

$$ho_{\sf s\;pol} = ec{m{P}} \cdot \hat{m{n}} =$$

A.
$$\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi r^2}$$
B. $-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi r^2}$
C. $\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R^2}$

$$D. -\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$$

E. Aucune bonne réponse.

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$lackbracktriangle$$
 à R_a : $ho_s=rac{Q_0}{4\pi R_a^2}+\left(-rac{\chi_e}{1+\chi_e}rac{Q_0}{4\pi R_a^2}
ight)$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$ightharpoonup$$
 à R_a : $ho_s = rac{Q_0}{4\pi R_a^2} + \left(-rac{\chi_e}{1+\chi_e} rac{Q_0}{4\pi R_a^2}
ight) = rac{1}{1+\chi_e} rac{Q_0}{4\pi R_a^2}$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

▼ à
$$R_a$$
: $\rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}\right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S =$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

▼ à
$$R_a$$
: $\rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}\right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S = \frac{1}{1+\chi_e} Q_0$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

▼ à
$$R_a$$
: $\rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}\right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S = \frac{1}{1+\chi_e} Q_0$$
▼ à R_b : $\rho_s = \frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_s^2}$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

▼ à
$$R_a$$
: $\rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}\right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S = \frac{1}{1+\chi_e} Q_0$$

$$ightharpoonup$$
 à R_b : $ho_s = \frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_b^2} \Rightarrow Q_b = \int_S \rho_s \, \mathrm{d}S = 0$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

$$\grave{a} \ R_a : \rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2} \right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S = \frac{1}{1+\chi_e} Q_0$$

$$ightharpoonup$$
 à R_b : $ho_s = \frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_b^2} \Rightarrow Q_b = \int_S \rho_s \, \mathrm{d}S = \frac{\chi_e}{1+\chi_e} Q_0$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

▼ à
$$R_a$$
: $\rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}\right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S = \frac{1}{1+\chi_e} Q_0$$

$$lackled{ \ \ } \grave{a} \ R_b :
ho_s = rac{\chi_e}{1+\chi_e} rac{Q_0}{4\pi R_b^2} \Rightarrow Q_b = \int_S
ho_s \, \mathrm{d}S = rac{\chi_e}{1+\chi_e} Q_0$$

$$Q_a + Q_b =$$

$$\vec{P}(\vec{r}) = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi r^2} \hat{e}_r \quad (R_a < r < R_b)$$

▼ à
$$R_a$$
: $\rho_s = \frac{Q_0}{4\pi R_a^2} + \left(-\frac{\chi_e}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}\right) = \frac{1}{1+\chi_e} \frac{Q_0}{4\pi R_a^2}$

$$\Rightarrow Q_a = \int_S \rho_s \, \mathrm{d}S = \frac{1}{1+\chi_e} Q_0$$

$$\stackrel{\bullet}{\mathbf{A}} \stackrel{\bullet}{\mathbf{A}} R_b : \rho_s = \frac{\chi_e}{1 + \chi_e} \frac{Q_0}{4\pi R_b^2} \Rightarrow Q_b = \int_S \rho_s \, \mathrm{d}S = \frac{\chi_e}{1 + \chi_e} Q_0$$

$$Q_a + Q_b = Q_0$$