

Machine Learning

Logistic one of the most popular and widely used learning algorithm today.

Regression

Classification

output y is discrete value

Classification examples

- → Email: Spam / Not Spam?
- → Online Transactions: Fraudulent (Yes / No)?
- Tumor: Malignant / Benign ?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)
$$y \in \{0,1\}$$
 1: "Positive Class" (e.g., malignant tumor)

one method to do this using linear regression

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

$$\longrightarrow$$
 If $h_{\theta}(x) \geq 0.5$, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Classification:
$$y = 0$$
 or

$$h_{\theta}(x)$$
 can be ≥ 1 or ≤ 0 if we use linear regression method

Logistic Regression:

$$0 \le h_{\theta}(x) \le 1$$

logistic regression has this property output is bounded by [0,1]

Machine Learning

Logistic Regression

Hypothesis Representation we want our function to satisfy this property

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x)$$

Sigmoid function

Logistic function

liternative names

objective: fitting parameter theta

Interpretation of Hypothesis Output

hypothesis function

$$h_{\theta}(x)$$
 = estimated probability that $y = 1$ on input $x \leftarrow$

Example: If
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(\underline{x}) = 0.7$$

interpretation of the output value

Tell patient that 70% chance of tumor being malignant

he(x) =
$$P(y=1|x;\theta)$$
 — "probability that $y=1$, given x, parameterized by θ "

$$P(y=0|x;\theta) + P(y=1|x;\theta) = 1$$
only value y can take is 1 or 0
$$P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Andrew Ng

Machine Learning

Logistic Regression

Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x) = P(y=1/x; \theta)$$

$$g(z) = \frac{1}{1+e^{-z}}$$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x) \geq 0.5$

predict "
$$y=0$$
" if $h_{\theta}(x)<0.5$

$$g(z) \geqslant 0.5$$

when $z \geqslant 0$

he(x)= $g(0)$

whenever theta'*x >=0

Non-linear decision boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

Logistic Regression

Cost function

Machine Learning

 $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \xrightarrow[n \text{ features}]{} x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\underline{\theta}^T x}}$$

my hypothesis

How to choose parameters θ ?

Cost function

-> Linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

we want to minimize a cost function $\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) =$

$$=\frac{1}{2}(h_{\theta}(x^{\bullet})-y^{\bullet})^{2}$$

Logistic regression cost function

cost function is linear regression for logistic regression is not convex, we have to define a new cost function so that it can be convex!

Logistic regression cost function

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$-\log(h_{\theta}(x)) \quad \text{if } y = 0$$

Note:
$$y = 0$$
 or 1 always

Note:
$$y = 0$$
 or 11 always combine them into a single equation

here y can either be 1 or 0, therefore we can write in this way

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$
This is the cost function that

To fit parameters θ :

$$\min_{\theta} J(\theta)$$
 Great \bigcirc objective!

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

output of hypothesis can be interpreted as the probability of y=1

everyone uses, and it is convex!!!

Gradient Descent We use gradient descent to minimize the cost function

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Gradient Descent

$$J(\theta) = -\frac{1}{m} \big[\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log \big(1-h_\theta(x^{(i)})\big) \big]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$ we would like to use vector notation to improve the efficiency!
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)} \}$$
 Invest regression
$$\{$$
 is improve the efficiency in the efficiency

Algorithm looks identical to linear regression!

feature scaling can also help your gradient descent algorithm to run faster!

Machine Learning

Logistic Regression

Advanced optimization

Optimization algorithm gradient descent review

Cost function $J(\theta)$. Want $\min_{\theta} J(\theta)$.

Given θ , we have code that can compute

Gradient descent:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

Optimization algorithm

Given θ , we have code that can compute

Optimization algorithms:

- Gradient descent
 - Conjugate gradient
 - BFGS
 - L-BFGS

more sophisticated algorithms beyond the scope of this course! Advantages:

- No need to manually pick lpha
- Often faster than gradient descent. details are beyond the scope of this course!

Disadvantages:

- More <mark>complex</mark> \leftarrow

It is possible to implement (use software) them without understand them thoroughly!

compute cost function gradient, 2x1 vector min 310) Example: function [jVal, |gradient] exact solution! = costFunction(theta) $jVal = (theta(1)-5)^2 + ...$ $(theta(2)-5)^2;$ gradient = zeros(2,1); $\rightarrow \frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$ gradient(1) = 2*(theta(1)-5);gradient(2) = 2*(theta(2)-5); $ag{\partial} \frac{\partial}{\partial heta_2} J(heta) = 2(heta_2 - 5)$ means you are going to provide the gradient max iterations -> options = optimset(\(\frac{\text{GradObj'}, \text{\text{on'}}}{\text{on'}}, \text{\text{MaxIter'}, \text{\text{100'}}}); \rightarrow initialTheta = zeros(2,1); [optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options); @ is a pointer of our defined function we have to have at least 2 variables! unc = unconstrained we can then can this function!

Apply in logistic regression Note: These algorithms are faster than gradient descent but they are hard to debug. When you have a large ML problem, you should use these advanced optimization al gori thms! our function has to return the cost function and the gradients = costFunction(theta) function (jVal) (gradient)] This is the template [code to compute J[code to compute code to compute gradient(n+1) = [code to compute $\frac{\partial}{\partial \theta}$

Machine Learning

Logistic Regression

Multi-class classification:

One-vs-all

Multiclass classification not just 0,1, but with multiple cases

Examples!

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

$$y=1 \qquad 2 \qquad 3 \qquad 4 \leftarrow \frac{3}{2}$$

Binary classification:

X_2

Multi-class classification:

One-vs-all (one-vs-rest):

we create as a new sort of fake training set where classes two and three get assigned to the negative class X_2

-ve: 0

 $h_{\theta}^{(i)}(x) = P(y = i|x;\theta)$ (i = 1, 2, 3)

Andrew Ng

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i.

To make a prediction

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{\underline{i}} \underline{h_{\theta}^{(i)}(x)}$$

test h(x) for all classes and choose whichever the hoives us the largest value