Machine Learning

Krystian Mikolajczyk & Deniz Gunduz

Department of Electrical and Electronic Engineering
Imperial College London

Machine Learning - Part 2.1 Summary

Department of Electrical and Electronic Engineering Imperial College London

- Feasibility of learning
- Hoeffding's inequality
- Target distribution and error cost

Some simple terms

- A is impossible: P(A) = 0
- A is certain: P(A) = 1
- A is almost certain $P(A) \approx 1$
- A is probable $P(A) > 0 \land P(A) < 1$
- A is correct if error $\varepsilon_A = 0$
- A is approximately correct $\varepsilon_A \approx 0$, very small
- A is probably (how certain?) correct $P(\varepsilon_A = 0) \approx 1$
- A is probably approximately correct P.A.C. $P(\varepsilon_A) > B$ with $B \approx 1$

Terminology

\mathbb{R}	the set of real numbers	log	the natural logarithm
\mathbb{R}_+	the set of non-negative real numbers	\mathbb{P}, P	probability
N	the set of natural numbers	h	hypothesis, predictor
x , w	(column) vectors	${\cal H}$	hypothesis class
x	typically input data	g	best hypothesis trained on data
w	typically hypothesis (model) parameters	$h \sim g$	h is similar to g , close approximation of g
$\ \mathbf{x}\ _{2}^{2}$	ℓ_2 norm of $\mathbf{x} = \mathbf{x}^{\top} \mathbf{x}$	$x \sim P$	${f x}$ is sampled from ${f P}$, i.i.d. according to ${f P}$
$\ \mathbf{x}\ _2$	ℓ_2 norm of $\mathbf{x} = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$	$\mathbb{I}\left(x\right)$	$\mathbb{I}(x) = 1 \text{ if } x = true, \mathbb{I}(x) = 0 \text{ if } x = false$
$\ \mathbf{x}\ _1$	ℓ_1 norm of $\mathbf{x} = \sum_i x_i $	R()	true error on all data, unknown
$\mathbb{E}_{x}\left[g(x)\right]$	expected value of $g(x)$ over x	$\hat{R}()$	empirical error on training data
$\frac{1}{n}\sum_{i}g_{i}(\mathbf{x})$	an estimate of expected value with prob. by Hoeffding	$\check{R}()$	validation error on validation data
$\underset{argmin}{argmin}_{\lambda \in \Lambda} g(\lambda)$	argument λ for which $g(\lambda)$ reaches minimum	$\mathcal{L}_n()$	loss on available data
$\operatorname{argmax}_{\lambda \in \Lambda} g(\lambda)$	argument λ for which $g(\lambda)$ reaches maximum	$f(\mathbf{x})$	target function, unknown, modelled by $oldsymbol{g}$

How can we learn?

$$P(|p_{event} - e_{event}| > \varepsilon) \leqslant \delta$$

Hoeffding's inequality

Expertise

Learning

Predictors. Models

Hypothesis $g: \mathcal{X} \to \mathcal{Y}$

Hypothesis class

 $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$

Learning algorithm

Goal $g \approx f$

 $P(|R(h) - \widehat{R}_n(h)| > \varepsilon) \le 2e^{-2\varepsilon^2 n}$

How can we learn?

- Is finding unknown target $f: \mathcal{X} \to \mathcal{Y}$ possible?
 - N+1 sample can contradict the found target function f.
- Is learning possible?

$$P\left(|R(h)-\widehat{R}_n(h)|>\varepsilon\right)\leqslant 2e^{-2\varepsilon^2n}$$

Hoeffding's inequality Vapnik-Chervonenkis inequality Learning / generalisation theory

$$P\left(\sup_{h\in\mathcal{H}}|\widehat{R}_n(h)-R(h)|\right)>\varepsilon)\leqslant 4\underbrace{m_{\mathcal{H}}(2n)}_{\leqslant (2n+1)^{d_{VC}(\mathcal{H})}}e^{-\varepsilon^2n/8}$$

Relation of P(event) and $\mathbb{E}[event]$

We expect $p_{event} \approx e_{event}$, where the true function $p_{event} = P(event)$ and expectation $e_{event} = \mathbb{E}[event]$. Is this true?

- They can be very different.
- Likely to be true! e.g. Polls.

Hoeffding's inequality

For $\varepsilon > 0$,

$$P\left(e_{event} - p_{event} > \varepsilon\right) \leqslant \delta$$
 $P\left(e_{event} - p_{event} > \varepsilon\right) \leqslant e^{-2\varepsilon^2 n}$ (one-sided) $P\left(|e_{event} - p_{event}| > \varepsilon\right) \leqslant 2e^{-2\varepsilon^2 n}$ (two-sided)

The statement $e_{event} = p_{event}$ is Probably Approximately Correct (PAC).

Relation to learning

For a fixed hypothesis $h \in \mathcal{H}$:

- Training (in sample) error (empirical risk): $e_{event} = \hat{R}_n(h)$
 - $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(h(\mathbf{x}_i) \neq f(\mathbf{x}_i));$
- Test (out of sample) error (risk): $p_{event} = R(h)$.
 - $R(h) = P(h(\mathbf{x}_i) \neq f(\mathbf{x}_i));$
 - $R(h) = \mathbb{E}\left[\widehat{R}_n(h)\right].$

By Hoeffding's inequality

$$P(|\widehat{R}_n(h) - R(h)| > \varepsilon) \le 2e^{-2\varepsilon^2 n}.$$

What assumptions do we make?

Extensions

- i.i.d.
- Cost of error
- Target distribution: is target function a function?
- Fixed Hypothesis: does Hoeffding work for multiple h?

The i.i.d. assumption

- Input: $\mathbf{x} \in \mathcal{X}$
- Output: $y \in \mathcal{Y}$
- Target function $f: \mathcal{X} \to \mathcal{Y}$
- Data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Assume the x_i are drawn independently from a distribution $P(\mathcal{X})$.

i.i.d.: independent and identically distributed

Learning

- Hypothesis class: $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$
- Find $g \in \mathcal{H}$ such that $g \approx f : P(g(x) \neq f(x))$ is small where $\mathbf{x} \sim P(\mathcal{X})$.

Target distribution: Error Measures/Loss Functions

- How to quantify $h \approx f$?
- Usually pointwise error: $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$

$$\ell(h(\mathbf{x}), f(\mathbf{x}))$$

Defined by the user or convenience!

Examples:

squared error
$$\ell(\hat{y},y) = (\hat{y}-y)^2$$
 binary error
$$\ell(\hat{y},y) = \mathbb{I}(\hat{y} \neq y)$$

- Training error: $\widehat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(\mathbf{x}_i), y_i)$
- Test error: $R(h) = \mathbb{E}\left[\ell(h(\mathbf{x}), y)\right]$

Target distribution: Error cost

Two types of error:

+1 -1
+1 no error false accept
-1 false reject no error

How do we penalize them?

• Equally: $\mathbb{I}(h(x) \neq f(x))$

$$\begin{array}{c|ccccc}
 & f \\
 & +1 & -1 \\
\hline
 & +1 & 0 & 1 \\
 & -1 & 1 & 0
\end{array}$$

Aggressive: false negative is expensive

h

• Risk averse: false positive is expensive

$$\begin{array}{c|ccccc}
 & f \\
 & +1 & -1 \\
\hline
 & h & +1 & 0 & 1000 \\
 & -1 & 1 & 0 & 1000 \\
\end{array}$$

Target distribution: Learning problem

- Instead of assuming deterministic $y = f(\mathbf{x})$, y may be probabilistic: $y \sim P(y|\mathbf{x})$
 - allow the same inputs to have different labels
- The data points (\mathbf{x}, y) are generated from $P(\mathbf{x}, y) = P(y|\mathbf{x})P(\mathbf{x})$: $(\mathbf{x}, y) \sim P(\mathbf{x}, y)$
- Noise interpretation:

$$y = f(\mathbf{x}) + noise$$
 where $f(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$ and $\mathbb{E}[noise|\mathbf{x}] = 0$.

Example: $y = w^{\top} \mathbf{x} + N$ where $N \sim \mathcal{N}(0, \Sigma)$ is independent of \mathbf{x} .

• Deterministic is a special case: noise = 0 and $P(y|\mathbf{x})$ is concentrated on the single point $f(\mathbf{x})$.

Learning problem

Learning $P(y|\mathbf{x})$.

Target distribution: Optimal Decisions

Optimal *h* depends on the noise and the loss:

- Squared error: $\ell(\hat{y}, y) = (\hat{y} y)^2$
 - $g(\mathbf{x})$ minimizes $\mathbb{E}\left[(y h(\mathbf{x}))^2 | x\right]$
 - $g(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$
- Binary error: $\ell(\hat{y}, y) = \mathbb{I}(y \neq \hat{y})$
 - $g(\mathbf{x}) = \operatorname{argmax}_{y} P(y|\mathbf{x})$

Learning Setup with $\mathbf{x} \sim P$ and $P(y|\mathbf{x})$

- Input: $\mathbf{x} \in \mathcal{X}$
- Output: $y \in \mathcal{Y}$
- Data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \sim P$ (P is the joint distribution of (\mathbf{x}, y))

Learning

- Hypothesis class: $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$
- Loss function: $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- Find $g \in \mathcal{H}$ such that $g \approx P(y|\mathbf{x})$

How should we choose \mathcal{H} ?

 $g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ R(h) = \mathbb{E} \left[\ell(h(\mathbf{x}), y) \right] \right\}$

Different aggregation (not expectation) may be needed, e.g., when ${\it P}$ is too imbalanced.

Relation to Hoeffding (fixed hypothesis)

For a fixed hypothesis $h \in \mathcal{H}$:

- Training (in sample) error (empirical risk): $e_{event} = \hat{R}_n(h)$
 - $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(h(\mathbf{x}_i) \neq f(\mathbf{x}_i));$
- Test (out of sample) error (risk): $p_{event} = R(h)$.
 - $R(h) = P(h(\mathbf{x}_i) \neq f(\mathbf{x}_i));$
 - $R(h) = \mathbb{E}\left[\widehat{R}_n(h)\right].$

By Hoeffding's inequality

$$P(|\widehat{R}_n(h) - R(h)| > \varepsilon) \le 2e^{-2\varepsilon^2 n}.$$

What assumptions do we make?

Single vs multiple hypotheses

Letting $\mathcal{H} = \{h_1, \ldots, h_M\}$:

$$P\left(\max_{h\in\mathcal{H}}|\widehat{R}_n(h) - R(h)| > \varepsilon\right)$$

$$= P\left(|\widehat{R}_n(h_1) - R(h_1)| > \varepsilon \text{ or } \dots \text{ or } |\widehat{R}_n(h_M) - R(h_M)| > \varepsilon\right)$$

$$\leq \sum_{m=1}^M P\left(|\widehat{R}_n(h_m) - R(h_m)| > \varepsilon\right)$$

$$\leq 2Me^{-2\varepsilon^2n}$$

For any g, selected in any way based on the data

$$P\left(|\widehat{R}_n(g) - R(g)| > \varepsilon\right) \leqslant 2Me^{-2\varepsilon^2 n}$$
.

Generalisation for hypotheses class (multiple hypotheses)

For all $h \in \mathcal{H}$, simultaneously

$$P(|\widehat{R}_n(h) - R(h)| > \varepsilon) \le 2Me^{-2\varepsilon^2 n}$$

Define
$$\delta = 2Me^{-2\varepsilon^2n} \quad \Rightarrow \quad \varepsilon = \sqrt{\frac{\log \frac{2M}{\delta}}{2n}}$$
, and so:

For all $h \in \mathcal{H}$, simultaneously with probability at least $1 - \delta$,

$$|\widehat{R}_n(h) - R(h)| \leq \sqrt{\frac{\log \frac{2M}{\delta}}{2n}}$$
.

Bound for the difference between error on training data and error on test data, for any give n h

Empirical Risk Minimization (ERM)

Let $h^* \in \mathcal{H}$ be the optimal hypothesis in \mathcal{H} : $h^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h)$.

Choose g to be the best hypothesis with the smallest empirical error (the empirical risk minimizer):

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \widehat{R}_n(h)$$
.

Risk of the empirical risk minimizer

With probability at least $1 - \delta$,

$$R(g) - R(h^*) \leqslant \sqrt{\frac{2\log\frac{2M}{\delta}}{n}}$$
.

Feasibility of learning: summary so far

- Learning an arbitrary unknown function: not possible
 - N+1 data sample
 - instead learn: Target distribution $P(y|\mathbf{x})$ with data distribution $\mathbf{x} \sim P(\mathcal{X})$
- Learning under probabilistic assumptions i.i.d. sample

Training error:
$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(h(x_i) \neq f(x_i))$$

Test error:
$$R(h) = P(h(x_i) \neq f(x_i))$$

Guarantees:

▶ For any fixed $h \in \mathcal{H}$,

$$P\left(|\widehat{R}_n(h) - R(h)| > \varepsilon\right) \leqslant 2e^{-2\varepsilon^2 n}$$

For any $g \in \mathcal{H}$ which may depend on the sample $(e.g., g = \operatorname{argmin}_h \widehat{R}_n(h))$,

$$P\left(|\widehat{R}_n(g) - R(g)| > \varepsilon\right) \leqslant 2|\mathcal{H}|e^{-2\varepsilon^2 n}$$

Can we learn infinite function classes?