CS & IT ENGINEERING

Graph Theory

Discrete Mathematics

DPP 08 Discussion Notes

SATISH YADAV SIR

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider the following statements:

 S_1 : If a connected graph G has a cut vertex, then G has a cut edge. (false)

S₂: If a connected graph G has a cut edge then G has a cut vertex.

Which of the following is true?

 S_2 only

C. Both S₁ and S₂

D. Neither S_1 nor $S_2 \vee$

For the graph shown below, the chromatic number is 2.

[NAT]

If G is a connected graph with 10 vertices and vertex connectivity is 3, then minimum number of edges necessary in G is 5.

Which of the following options is/are correct?

- The chromatic number of a graph with at least 1 edge is at least 2.
- A graph is null graph if and only if its chromatic number is 2.
- For any graph, $K_G \le 1 + \Delta(G) \le n$ where $\Delta(G)$ is maximum degree and K_G is chromatic number. $\frac{\times (G) \le 1 + \Delta(G) \le n}{3 \le 1 + \vartheta \le 3}$
- The chromatic number of a multi graph is equal to its equivalent simple graph chromatic number.

Consider the following statements:

- S_1 : A graph is bipartite graph if and only if its chromatic number is 2. (7)
- S₂: The chromatic number of a tree is 2. Thus, every tree is bipartite graph.

Which of the following statement is False?

- A. S_1 only
- S_2 only
- C. Both S_1 and S_2
- D. Neither S₁ nor S₂

What is the chromatic number of the given graph?

[NAT]

