Classification of X-ray images using different models

LifeSavers

Garim Lee, Hyunwoo Kim, Moon-ki Choi, Won Joon Choi

CSCI 5523 - Spring 2021

Motivation

- 1. Machine learning (ML) model can quantify the progress the how far pneumonia has progressed
- 2. ML model as an assistance tool can prevent a mistake from the human expert.
- 3. ML model can capture the pneumonia from the x-ray image for other disease.

Figure 1. Illustrative Examples of Chest X-Rays in Patients with Pneumonia

Data & Data pre-processing

Original

	Normal	Pneumonia
Train	1341	3875
Validation	8	8
Test	234	390

Balanced

	Normal	Pneumonia
Train	1241	1241
Validation	108	108
Test	234	234

Unbalanced

	Normal	Pneumonia
Train	1239	3773
Validation	110	110
Test	234	390

Example of the original and transformed image

Support Vector Machine (SVM)

- SVM complexity
 - Kernel (Gaussian RBF)
 - Parameters C (1), Gamma (0.005)
- SVM Advantages and disadvantages
 - o Highly accurate & Less overfitted
 - Expensive computation & classification

Artificial Neural Network (ANN)

- Time, computational complexity
 → Grayscale (vs. RGB)
- Activation function: RELU
- Batch size = 1
- Epochs = 15
- Learning rate = 0.001
- Forward propagation & backpropagation

Convolutional Neural Network (CNN)

- CNN can reduce the size of image data while keeping important features.
- Combination of 2d convolutional layer and pooling is a key point.

Convolutional Neural Network (CNN)

Model specification

```
Batch size = 16; Dimension of data = 3; Number of epoch = 5
```

- 1. 2D convolutional layer (input dimension = 3, output dimension = 3, kernel size = 4)
- 2. 2D Max pooling (kernel size = 4)
- 3. 2D convolutional layer (input dimension = 3, output dimension = 3, kernel size = 4)
- 4. 1st Linear transformation (input size = 507, output size = 128)
- 5. 2nd Linear transformation (input size = 128, output size = 64)
- 6. 3rd Linear transformation (input size = 64, output size = 2)

Transfer Learning

• GoogleNet, ResNet18

GoogleNet Architecture

- Deep neural network
- 22 layers
- "Inception" module
- Batch normalization
- 4 million parameters (60 million for AlexNet)

ResNet

- Different layers: 18, 34, 50, 101, 152
- Residual learning
- Batch normalization after each convolution

Layer Name	Output Size	ResNet-18	
conv1	$112\times112\times64$	7×7 , 64, stride 2	
conv2_x	56 × 56 × 64	3×3 max pool, stride 2	
		$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	
conv3_x	$28 \times 28 \times 128$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	
conv4_x	$14\times14\times256$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	
conv5_x	$7 \times 7 \times 512$	$\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 2$	
average pool	$1 \times 1 \times 512$	7×7 average pool	
fully connected	1000	512×1000 fully connections	
softmax	1000		

Test accuracy

	SVM	ANN	CNN	ResNet
Balanced DataSet	0.761	0.759	0.770	0.821
Unbalanced DataSet	0.765	0.800	0.802	0.886

- Highest test accuracy: ResNet
- Test accuracy on Balanced vs. Unbalanced data

***** Future works: Try various designs!

Thank you for watching!

References

- Tan, P. N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. Pearson Education India.
- Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. *Cell*, 172(5), 1122-1131.https://doi.org/10.1016/j.cell.2018.02.010