TESTE DE REPESCAGEM DE ÁLGEBRA LINEAR

LEE, LEGI, LEIC-T, LERC 16 de janeiro de 2012 (9:00)

Teste 402

Nome:	
Número:	
Curso:	

Repescagem do(s) Teste(s):

O Teste de Repescagem que vai realizar tem a duração total de **90 minutos** para quem faz a Repescagem do $1^{\rm O} + 2^{\rm O}$ testes ou do $3^{\rm O}$ teste, e a a duração total de **180 minutos** para quem faz a Repescagem dos três testes. O teste está assim divido em duas partes: os seis primeiros problemas correspondem à Repescagem do $1^{\rm O} + 2^{\rm O}$ testes e os seis últimos problemas correspondem à Repescagem do $3^{\rm O}$ teste (**nota mínima de 7 em 20, ou 3.5 em 10**). Os problemas estão divididos em alíneas com as cotações indicadas nas alíneas apenas quando a divisão não é uniforme.

O quadro abaixo destina-se à correção da prova. Por favor não escreva nada. Os valores indicados passam a metade para quem está a realizar a Repescagem de todos os testes.

Prob 1	4 Val	
Prob 2	3 Val	
Prob 3	3 Val	
Prob 4	4 Val	
Prob 5	3 Val	
Prob 6	3 Val	
Prob 7	3.5 Val	
Prob 8	3.5 Val	
Prob 9	3.5 Val	
Prob 10	3 Val	
Prob 11	3.5 Val	
Prob 12	3 Val	

NOTA FINAL:

Problema 1 (4 valores)

A matriz aumentada para um dado sistema de equações lineares é dada por

$$\begin{bmatrix} 1 & 4 & -2 & -3 & 1 \\ 0 & 0 & 1 & 3 & 5 \\ -1 & -4 & -2 & -9 & -21 \end{bmatrix}.$$

- (a) Faça a redução da matriz, i.e. leve a matriz até à **forma reduzida**, indicando as operações elementares realizadas.
- (b) Classifique o correspondente sistema quanto à solução e escreva a solução geral na forma vetorial paramétrica.

Apresente e justifique todos os cálculos que tiver de efetuar!

Problema 2 (3 valores)

Sejam $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$ e $\mathbf{v_4}$ vetores não nulos de V e $W=\mathcal{L}\{\mathbf{v_1},\mathbf{v_2},\mathbf{v_3},\mathbf{v_4}\}$ o subespaço por eles gerado. Considerando ainda que

- $\bullet \ v_2 \in \mathcal{L}\{v_1\},$
- $\bullet \ v_1 + 2v_2 v_3 = 0,$
- $\bullet \ v_4 \notin \mathcal{L}\{v_1,v_2,v_3\},$
- (a) como avalia o conjunto $\{\mathbf{v_1},\mathbf{v_2},\mathbf{v_4}\}$ quanto à independência linear?
- (b) como descreve geometricamente o conjunto $\mathcal{L}\{v_1,v_2,v_3\}?$
- (c) qual é o número mínimo de vetores linearmente independentes que são necessários para gerar W?

Justifique todas as afirmações que fizer!

Problema 3 (3 valores)

Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma transformação linear que aplica o vetor $\mathbf{u} = \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix}$ no vetor $\begin{bmatrix} -13 \\ 6 \end{bmatrix}$, que aplica o vetor $\mathbf{v} = \begin{bmatrix} 4 \\ 6 \\ 0 \end{bmatrix}$ no vetor $\begin{bmatrix} 6 \\ -8 \end{bmatrix}$, e que aplica o vetor $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ no vetor $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- (a) Determine o transformado por T do vetor $3\mathbf{u} + \mathbf{v} 7\mathbf{w}$, i.e. determine $T(3\mathbf{u} + \mathbf{v} 7\mathbf{w})$.
- (b) Verifique se T é uma transformação injetiva.

Apresente e justifique todos os cálculos que tiver de realizar!

Problema 4 (4 valores)

Determine as matrizes 3×3 que produzem as transformações descritas, usando **coordenadas** homogéneas:

- (a) Fazer a translação em (3, -4) e depois uma rotação em $\pi/4$.
- (b) Fazer um deslizamento $\mathbf{x} \to A\mathbf{x}$ com $A = \begin{bmatrix} 1 & 0.17 \\ 0 & 1 \end{bmatrix}$ e depois um rescalonamento da coordenada y num fator 0.65.

Apresente e justifique todos os cálculos que tiver de realizar!

Problema 5 (3 valores)

Considere a matriz

$$A = \begin{bmatrix} \beta & \alpha & 0 & 0 \\ 0 & \beta & \alpha & 0 \\ 0 & 0 & \beta & \alpha \\ \alpha & 0 & 0 & \beta \end{bmatrix}.$$

- (a) Usando uma expansão em cofatores na primeira coluna, calcule o determinante da matriz, det A.
- (b) Para que valores de α e β reais, a matriz A é invertível?
- (c) Considere uma matriz $n \times n$ com a mesma estrutura da matriz A: β na diagonal e α nas entradas por cima da diagonal e no canto inferior esquerdo, e calcule o determinante neste caso geral.

Justifique as respostas e apresente os cálculos que efectuar.

Problema 6 (3 valores)

Seja o espaço vetorial \mathcal{P}_n dos polinómios de grau menor ou igual a n. Verifique, justificando com os axiomas correspondentes, quais dos seguintes conjuntos podem definir subespaços de \mathcal{P}_n para n apropriados:

- (a) todos os polinómios da forma $\mathbf{p}(t) = a + bt^2$, em que a e b são reais;
- (b) todos os polinómios de grau exatamente igual a 3 com coeficientes reais;
- (c) todos os polinómios de grau menor ou igual a 4 com coeficientes positivos.

Justifique cuidadosamente todas as afirmações que fizer!

Problema 7 (3.5 valores)

Considere o conjunto
$$W = \left\{ \begin{bmatrix} -2s - 6t + 2v \\ 5t \\ 3s - t - 3v \end{bmatrix} : s, t, v \in \mathbb{R} \right\}$$

- (a) (1 val.) Escreva a matriz A, tal que W = Col A.
- (b) (1 val.) Determine uma base para W e indique a dimensão de W.
- (c) (1.5 val.) Descreva o complemento ortogonal de W, W^{\perp} , como uma expansão linear.

Apresente e justifique todos os cálculos que tiver de efectuar!

Problema 8 (3.5 valores)

Seja a transformação linear entre o espaço de polinómios de grau menor ou igual a 2, \mathcal{P}_2 , e dos vetores de \mathbb{R}^3

$$T: \mathcal{P}_2 \longrightarrow \mathbb{R}^3$$

$$\mathbf{p}(t) \mapsto \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}.$$

- (a) (1.5 val.) Determine a matriz que representa T na base canónica de \mathcal{P}_2 na partida, e base canónica de \mathbb{R}^3 na chegada.
- (b) (1 val.) Descreva explicitamente o núcleo da transformação T. O que pode concluir sobre a injetividade da transformação T?
- (c) (1 val.) Descreva explicitamente o espaço imagem de T. O que pode concluir sobre a sobrejetividade da transformação T?

Justifique as respostas e apresente os cálculos que efetuar.

Problema 9 (3.5 valores)

Considere a matriz

$$A = \begin{bmatrix} 5 & 3 \\ -2 & 10 \end{bmatrix}.$$

- (a) (1 val.) Encontre uma base para o espaço próprio correspondente ao valor próprio $\lambda=7$.
- (b) (1.5) Sabendo que o polinómio característico de A é $p(\lambda)=(\lambda-7)(\lambda-8)$, escreva explicitamente as matrizes P e D que permitem escrever $A=PDP^{-1}$.
- (c) (1 val.) Escreva explicitamente a fórmula para a potência k de A, i.e. A^k .

Justifique as respostas e apresente os cálculos que efectuar.

Problema 10 (3 valores)

Seja $A\mathbf{x} = \mathbf{b}$ o sistema de equações, em que

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 2 \end{bmatrix}.$$

- (a) Verifique se $\mathbf{b} \in \operatorname{Col} A$ e classifique o sistema quanto à solução.
- (b) Determine a solução de mínimos quadrados para $A\mathbf{x} = \mathbf{b}$.

Apresente e justifique todos os cálculos que tiver de efetuar!

Problema 11 (3.5 valores)

Suponha que temos uma transição entre dois estados possíveis: um sinal que consiste apenas num 0 ou num 1, enviado via linha telefónica. De cada vez que se faz uma transmissão na linha, existe uma probabilidade p que o sinal permaneça no seu estado (p.ex, um 0 continue a ser 0 no estado seguinte) e a probabilidade 1-p para que o sinal passe dum estado para outro (p.ex, um 0 passa a ser 1 no estado seguinte).

Resolva as seguintes questões.

- (a) (1 val.) Construa a matriz estocástica P que descreve a dinâmica de transmissão dos sinais 0 e 1 na linha telefónica.
- (b) (1 val.) Supondo que a fiabilidade da linha telefónica é p = 0.99, determine a probabilidade do sinal 0 continuar a ser 0 após dois passos de transmissão.
- (c) (1.5 val.) A longo prazo, qual vai ser a probabilidade dum dado sinal ser transmitido na linha com p = 0.99 sem distorção?

Apresente e justifique todos os cálculos que tiver de efectuar!

Problema 12 (3 valores)

Seja A uma matriz $n \times n$ com entradas **complexas** $a_{ij} \in \mathbb{C}$. Seja ainda A^{\dagger} a sua transposta conjugada, i.e. a matriz com entradas \bar{a}_{ji} (recorde que se $z = a + \mathrm{i}b$, então o seu complexo conjugado é $\bar{z} = a - \mathrm{i}b$). A conjugação hermítica satisfaz $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ e o produto interno complexo é definido como $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\dagger}\mathbf{v} = \sum_{i=1}^{n} \bar{u}_{i}v_{i}$

A matriz A diz-se hermítica quando $A = A^{\dagger}$. Mostre que:

- (a) todos os valores próprios de uma matriz hermítica são reais. Sugestão: comece por considerar o conjugado de $\mathbf{v}^{\dagger}A\mathbf{v}$, em que $\mathbf{v} \in \mathbb{C}^n$ é vetor próprio de A.
- (b) os vetores próprios de uma matriz hermítica, correspondentes a valores próprios **distintos**, são ortogonais.

 $Sugest\~ao$: comece por recordar a demonstração desta propriedade para matrizes simétricas $A=A^T.$

Justifique devidamente as suas respostas.