

14.508 Practice of Structural Engineering By: Susan Faraji

2-Story Steel Framed Building

Take Home Exam #2

Ana Clara R. Gouveia 05/06/2015

Problem 1

In order to determine the typical forces for an earthquake it was necessary to calculate the floor weight per story in the building. Seismic Weight load calculations can be found in Section A-3 in Appendix A of this report. After determining the floor weight, equation 14.10 from Faraji and Connor's Practice of Structural Engineering book was applied in order to determine the building base shear. These values were then further used in order to determine the shear and overturning moment of each individual story studied. Calculations pertaining to this part of the problem can be found in section A-4 of this report. Figures 2-4 on page A-4 in appendix A of this report represent respectively: the force distribution per story, shear and overturning distribution obtained from this initial seismic analysis.

Problem 2

The Portal Method was applied to the N-S and E-W frames in order to determine an estimate of the axial, shear and moment forces of the beams and columns. Results can be found on section A-5 in Appendix A. Figure 5 and 6, show the column moment distribution for members and shear and axial force distribution, respectively for the frame in the N-S direction. Section A-6 and figures 7 and 8 show likewise results for braced frame in the E-W direction.

Problem 3

From the initial values obtained in part 2 of this project, additionally using Equations 11.11 and 11.17 from Faraji and Connor's Practice of Structural Engineering book, brace-forces were estimated and can be found in Tables 1 through 5 appended to part A of this report.

Problem 4

Application of the Muller-Breslau principle can be found in the hand-calculations appended in part B of this report.*

Problem 5

Figure 1. Moment diagram resulting from GTStrudl

14.508 Practice of Structural Engineering

Take-Home Exam #2

Ana Gouveia 01304683

Where maximum/minimum values are:

• For Beams:

Maximum axial = 71 k

Shear = 170 k

Maximum moment = 1258k.ft

• For Columns:

Maximum axial = 972.53k

Shear = 170k

Maximum moment = -587k

Problem 6

Given results above a W21x50 from p.6-89 AISC 14th

Problem 7

Given results above a W10x33 from p.6-89 AISC 14th

Appendix A: Calculations

Calculations used or complimentary to this project are attached to this report in Appendix A.

Appendix B: Hand-Calculations

Hand-Calculations used or complimentary to this project are attached to this report in Appendix B.

Appendix A

Appendix A: Calculations

Calculations used or complimentary to this project are attached to this report in Appendix A.

1. BUILDING SPECIFICATIONS:

A. CLASSIFICATIONS:

Occupancy:	В	Office		
Construction Type:	П	В		
Risk Category:	П			
Seismic Site Class:	С		Importance Factor: 1	
Environmental Exposure:	C			

B. BUILDING LAYOUT

Number Columns:	4				End Clearance:	0	in
Total Area:	8100	ft ²					
Floor Plan:	60	ft	Х	135	ft		
Column Grid:	20	ft	Х	45	ft		
Total Height:	46	ft					
Individual Height:	11.5	ft			# Stories:	4	
Structural Allowance:	-	ft					

C. LATERAL LOAD RESISTING SYSTEMS:

Regular Frame Lateral Braced Frame

1. BUILDING LOADS AS REQUIRED BY CODE:

2012 IBC Loads are in accordance to:

Modified by: Massachusetts Building Code (CMR780)

Snow Lowell MA Wind Lowell MA Seismic Lowell MA Construction Live Load: 20 psf Uniform Live Load: 100

2.1 BUILDINGLOADS:

	Ro	of	All c	other floors
2.1. Dead Load (D)		psf	70	psf
2.2. Live Load (L)		psf	80	psf
2.3. Roof Live Load (Lr)		psf		psf
2.4. Snow Load (S)		psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)	165.6	psf	125	psf
2.7. Wind Load (W)	8.0	psf	30	psf

psf

Total / Service Load: 173.6 305 psf

2.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	Roof		All other floors
1. 1.4D	0.0	psf	98.0 psf
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	psf	212 psf
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	4.0	psf	164 psf
4. 1.2D + 1.0W + L + .5(Lr or S or R)	8.0	psf	114 psf
5. 1.2D + 1.0E + L + .2S	165.6	psf	289 psf
6. 0.9D + 1.0W	8.0	psf	93 psf
7. 0.9D + 1.0E	165.6	psf	188 psf
•			

Controlling Load: 165.6 psf 289.0

3.1 BUILDING LATERAL LOAD ON LONGITUDINAL DIRECTION: BRACED-FRAME

	Roof	1st Floor
2.1. Dead Load (D)	kip	kip
2.2. Live Load (L)	kip	kip
2.3. Roof Live Load (Lr)	kip	kip
2.4. Snow Load (S)	psf	psf
2.5. Rain Load (R)	psf	psf
2.6. Seismic Load (E)	kip	kip
2.7. Wind Load (W)	kip	kip
Total / Service Load:	0.0 psf	0.0 psf

3.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

_	Roof		1st Floor
1. 1.4D	0.0	kip	0.0 kip
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	kip	0.0 kip
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	0.0	kip	0.0 kip
4. 1.2D + 1.0W + L + .5(Lr or S or R)	0.0	kip	0.0 kip
5. 1.2D + 1.0E + L + .2S	0.0	kip	0.0 kip
6. 0.9D + 1.0W	0.0	kip	0.0 kip
7. 0.9D + 1.0E	0.0	kip	0.0 kip
-			
Controlling Load:	0.0	kip	0.0 kip

4.1 BUILDING LATERAL LOAD ON TRANSVERSE DIRECTION: MOMENT-FRAME

	Roof		1st Floor	
2.1. Dead Load (D)	kip		kip	
2.2. Live Load (L)	kip		kip	
2.3. Roof Live Load (Lr)	kip		kip	
2.4. Snow Load (S)	kip		kip	
2.5. Rain Load (R)	kip		kip	
2.6. Seismic Load (E)	kip	8.03	kip	7
2.7. Wind Load (W)	kip		kip	

kip

0.0

0.0

psf

kip

4.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

Total / Service Load:

Controlling Load:

_	R	toof	1st Floor
1. 1.4D	0.0	psf	0.0 psf
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	psf	0.0 psf
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	0.0	psf	0.0 psf
4. 1.2D + 1.0W + L + .5(Lr or S or R)	0.0	psf	0.0 psf
5. 1.2D + 1.0E + L + .2S	0.0	psf	0.0 psf
6. 0.9D + 1.0W	0.0	psf	0.0 psf
7. 0.9D + 1.0E	0.0	psf	0.0 psf
=			

psf

0.0

0.0

Reference: Section

3

ASCE

7-10 Eq/Fig/Table/Notes

DEAD LOAD

Roof 2nd Floor: Units Quantity **Jnit Weigh** Weight Quantity Units **Unit Weight** Weight Item Item (ksf or klf) (Area) (kip) (Area) (ksf or klf) (kip) 570 8140 sf 0.070 **Dead Load** 8140 sf 0.070 **Dead Load** 570 Steel 540 lf 0.6 324 540 lf 0.6 324 Steel lf 0.6 Steel W-E 0.6 144 Steel W-E 240 144 240 lf 0 0 0 Subtotal 1038 1038 0.635 1038 1.270 1038 1038 Cummulative 1038 2076 2076

^{*}Unit Weights per ASCE 7-10

ASSUMPTIONS:

Building Frame System: Steel moment-resisting frame

Reference: ASCE 7-10
Section Eq/Fig/Table/Notes

1. SEISMIC GROUD MOTION VALUES 11.4

Seismic Site Class: C Assumption 11.4.2

Maximum Considered Earthquake Spectral Response:

 $S_a = 0.120$ g Given Fig 22-1 / 22-4 $S_a/g = 0.120$

ke = Sa/g = 0.120Seismic Base Shear: 12.8.1

Seismic Base Shear 415.1 kip Faraji's Book Eq 14.10

Vertical Distribution of Seismic Forces: 12.8.3

Lateral force per level $F_x = C_{vx}V$ Faraji's Book Eq 14.11

 $C_{vx} = (w_x h_x^k)/(\sum w_i h_i^k)$ Vertical Distribution Factor k = 1.00 0.96 12.8.3

Horizontal Distribution of Seismic Forces: 12.8.4 $V_x = \sum F_i = Eq \qquad 12.8-13$

Table 1. Building Floor force, shear and overturning moment distribution:

Floor	Height	Weight	w _x h _x ^k	C _{vx}	F _x	V _x	Overturning Moment	Total Height
	(ft)	(kip)			(kip)	(kip)	(kip.ft)	(ft)
Roof	11.5	1038	47739	0.400	166.0	166.0		46
						166.0		46
4th	11.5	1038	35804	0.300	124.5	290.6	1910	34.5
						290.6		34.5
3rd	11.5	1038	23869	0.200	83.0	373.6	5251	23
						373.6		23
2nd	11.5	1038	11935	0.100	41.5	415.1	9548	11.5
						415.1		11.5
First Floor	0	0	0	0	0	415.1	14322	0
SUM	46	4151	119347	1	415.1			0

Figure 2. Lateral force per floor

Figure 3. Base shear force variation per story height

Figure 4. Overturning Moment per story height

Portal Method Internal Load Estimate

ASSUMPTIONS:

Using the Portal Method, assuming Ve=1/2*Vi

Beam Length: 45 ft Reference: Faraji

Section *Eq/Fig/Table/Notes*

1. N-S FRAME: 11.4

Table 2. Wind and Seismic lateral loading, total story shear and overturning moment.

Floor/Load	Wind	Seismic	Total	Factored Load	Total Shear	h	Moment
Roof	8	165.6	173.6	165.60	165.60	5.75	952.2
KOOI	٥	105.0	1/3.0	105.00	105.00	5.75	952.2
4th	13	124.2	137.2	130.88	296.47	5.75	1704.7
3rd	13	82.8	95.8	91.38	387.86	5.75	2230.2
2nd	12	41.4	53.4	50.94	438.79	11.5	5046.1
1st							
Sum			460	438.79			

^{*}These relationships are based on the portal method: Vt=3Vi

Table 3. Total story shear and overturning moment per column.

Floor/Lood	Total	Shear	Shear	Moment	Moment	L	Moment
Floor/Load	Shear	Interior	Exterior	Interior	Exterior	h	Checks
Roof	165.60	55.20	27.60	317.39	158.70	5.75	952.2
4th	296.47	98.82	49.41	568.24	284.12	5.75	1704.7
3rd	387.86	129.29	64.64	743.39	371.70	5.75	2230.2
2nd	438.79	146.26	73.13	1682.04	841.02	11.5	5046.1
1st							
Sum							

j		-158.70	-158.70		158.70	158.70		-158.70	-158.70	
	158.70			317.39			317.39			158.70
_										
	158.70			317.39			317.39			158.70
		-442.82	-442.82		442.82	442.82		-442.82	-442.82	
L	284.12			568.24			568.24			284.12
	284.12			568.24			568.24			284.12
		-655.81	-655.81		655.81	655.81		-655.81	-655.81	
	371.70			743.39			743.39			371.70
	371.70			743.39			743.39			371.70
		-1212.72	-1212.72		1212.72	1212.72		-1212.72	-1212.72	
	841.02			1682.04			1682.04			841.02

Figure 5. Column Moment Distribution through frame Joints

	7.05	-7.05		7.05	7.05		-7.05	-7.05	
7.05		•	0.00			0.00		•	7.05
7.05		_	0.00		_	0.00		_	7.05
	-19.68	-19.68		19.68	19.68		-19.68	-19.68	
0.00			3.00			3.00			0.00
0.00		_	3.00		_	3.00		_	0.00
	-29.15	-29.15		29.15	29.15		-29.15	-29.15	
0.00			0.00			0.00			0.00
0.00		_	0.00		_	0.00		_	0.00
	-53.90	-53.90		-53.90	53.90		-53.90	-53.90	
0.00			0.00			0.00			0.00

Portal Method

Figure 6. Shear and Axial Force Distribution through frame Joints

ASSUMPTIONS:

Using the Portal Method, assuming Ve=1/2*Vi

Beam Length: 20 ft Reference: Faraji

Section Eq/Fig/Table/Notes

1. E-W FRAME: 11.4

Table 4. Wind and Seismic lateral loading, total story shear and overturning moment.

Floor/Load	Wind	Seismic	Total	Factored	Total	h	Moment
Fi001/L0au		Seisinic	Total	Load	Shear	"	
Roof	18	165.6	183.6	183.60	183.60	5.75	1055.7
4th	30	124.2	154.2	154.20	337.80	5.75	1942.4
3rd	30	82.8	112.8	112.80	450.60	5.75	2591.0
2nd	27	41.4	68.4	68.40	519.00	11.5	5968.5
Sum			519	519.00			

^{*}These relationships are based on the portal method: Vt=3Vi

Brace forces can be obtained by applying the coefficient obtained with Mathcad to the total force found above.

$$\mathbf{h} := 11.5 \quad \text{ft} \qquad \mathbf{b} \mathbf{x} := 20 \quad \text{ft} \qquad \qquad \mathbf{E} := 29 \cdot 10^3 \quad \mathbf{k} \mathbf{s} \mathbf{i} \qquad \quad \theta := \mathbf{a} \mathbf{t} \mathbf{a} \mathbf{n} \left(2 \cdot \frac{\mathbf{h}}{\mathbf{b} \mathbf{x}} \right) = 0.855$$

Assumptions:

Assuming W21x93 Ib := 2070 in^4

Assuming W10x45 Ic := 248 in 4

Using a L shaped brace, with Area: L8x4x

$$A := 6.45 \text{ in}^2$$

Assuming Hinged Support for the braced frame, applying EQ. chapter 11:

Upper Stories Sub-Element:

For base story:

$$ke := 6 \cdot E \cdot \frac{Ic}{h^3} = 2.837 \times 10^4$$

$$kex := 2 \cdot E \cdot \frac{Ic}{h^3} = 9.458 \times 10^3$$

$$ki := 8 \cdot E \cdot \frac{Ic}{b^3} = 3.783 \times 10^4$$

kib :=
$$2.4 \cdot E \cdot \frac{Ic}{h^3} = 1.135 \times 10^4$$

kframeup :=
$$1(2 \cdot ke + 2 \cdot ki) = 1.324 \times 10^5$$

kframeb :=
$$2 \cdot ke + 2 \cdot ki = 1.324 \times 10^5$$

kframe := kframeup + kframeb = 2.648×10^{3}

Finally, we have kbrace:

kbrace :=
$$2 \cdot A \cdot E \cdot \frac{\left[\sin(\theta) \cdot (\cos(\theta))^2\right]}{h} = 1.057 \times 10^4$$
 kr= 0.04

Therefore the force per brace can be obtained by iterating the equation below through the different forces estimated through the different building stories, ie:

Table 5. Total story shear and overturning moment per column.

Floor/Load	Total Shear	Shear Interior	Shear Exterior	Brace Forces	Moment Interior			Moment Checks	
Roof	183.60	61.20	30.60	7.34	351.90	175.95	5.75	1055.7	
4th	337.80	112.60	56.30	6.17	647.45	323.73	5.75	1942.4	
3rd	450.60	150.20	75.10	4.51	863.65	431.83	5.75	2591.0	
2nd	519.00	173.00	86.50	2.74	1989.50	994.75	11.5	5968.5	
1st									
Sum									

j		-175.95	-175.95		175.95	175.95		-175.95	-175.95	
	175.95			351.90			351.90			175.95
	175.95			351.90			351.90			175.95
		-499.68	-499.68		499.68	499.68		-499.68	-499.68	
	323.73			647.45			647.45			323.73
	323.73			647.45			647.45			323.73
		-755.55	-755.55		755.55	755.55		-755.55	-755.55	
	431.83			863.65			863.65			431.83
	431.83			863.65			863.65			431.83
		-1426.58	-1426.58		1426.58	1426.58		-1426.58	-1426.58	
	994.75			1989.50			1989.50			994.75

Figure 7. Column Moment Distribution through braced-frame Joints

	17.60	-17.60		17.60	17.60		-17.60	-17.60	
17.60			0.00			0.00		-	17.60
17.60			0.00			0.00			17.60
	-49.97	-49.97		49.97	49.97		-49.97	-49.97	
0.00			3.00		_	3.00		-	0.00
0.00			3.00			3.00			0.00
	-75.56	-75.56		75.56	75.56		-75.56	-75.56	
0.00			0.00			0.00		-	0.00
0.00			0.00			0.00			0.00
	-142.66	-142.66		-142.66	142.66		-142.66	-142.66	
0.00			0.00		_	0.00		_	0.00

Figure 8. Shear and Axial Force Distribution through braced-frame Joints

Appendix B

Appendix B: Hand-Calculations.

Hand-Calculations used or complimentary to this project are attached to this report in Appendix B.

References:

Connor, Jerome J. and Faraji, Susan, "Introduction to Structural Engineering."