3. Forecasting Basics

author: ECONOMIC FORECASTING date: Summer 2017 autosize: true

Figure 1:

Leading Variables

Examples for GDP: - Average weekly number of initial applications for unemployment insurance - Consumer sentiment - S&P500 Stock Index - Number of new orders of capital goods unrelated to defense - Inflation-adjusted money supply (M2) - Speed of delivery of new merchandise to vendors from suppliers

Cross Correlation

Suppose x and y have constant expected values and variances. The **cross covariance** function $(\gamma_k(x,y))$ is:

$$\gamma_k(x,y) = \mathbf{E}[(x_{t+k} - \mu_x)(y_t - \mu_y)]$$

and the **cross correlation** function is:

$$\rho_k(x,y) = \frac{\gamma_k(x,y)}{\sigma_x \sigma_y}$$

Sample Cross Correlation

And the sample cross correlation function is:

$$c_k(x,y) = \frac{1}{n} \sum_{t=1}^{n-k} (x_{t+k} - \bar{x})(y_t - \bar{y})$$

and the sample acf and cross correlation is:

$$r_k(x,y) = \frac{c_k(x,y)}{\sqrt{c_0(x,x)c_0(y,y)}}$$

Cross Correlogram

In R, acf(ts.union())

Figure 2:

Choosing a Forecasting Technique

Factors to Consider - Horizon - Turning Points - Deadlines - Ease of understanding/explaining - Results of an Empirical Evaluation

Empirical Evaluation

More complex models may be better at predicting the past, but not necessarily better at predicting the future.

Forecast Error: - Compare accuracy between techniques - Measure reliability - Help search for optimal technique - Residual: $y - \hat{y} = e$ + difference between forecast and actual value

Measuring Forecast Error

Mean Absolute Deviation (MAD) - Average of magnitude of forecasting errors - Same units as original data

$$MAD = \frac{1}{n} \sum_{t=1}^{n} |y_t - \hat{y}_t|$$

Mean Squared Error (MSE) - Penalizes large forecasting error

$$MSE = \frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2$$

Measuring Forecast Error

Root Mean Squared Error (RMSE) - Same units as original data - Penalizes large forecasting error

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2}$$

Mean Absolute Percentage Error (MAPE) - Converts error to a percentage (useful when y_t is large)

$$MAPE = \left(\frac{1}{n} \sum_{t=1}^{n} \frac{|y_t - \hat{y_t}|}{y_t}\right) \cdot 100$$

Loss Functions

An additional factor to consider when evaluating a model/forecast is the loss incurred due to decisions made from the model/forecast

Example:

A company has a choice - to replenish or deplete their inventory - if demand is high, they would like to replenish - if demand is low, they would rather deplete

Symmetric Loss

	High Demand	Low Demand
Replenish	\$0	\$10,000
Deplete	\$10,000	\$0

Asymmetric Loss

	High Demand	Low Demand
Replenish	\$0	\$10,000
Deplete	\$20,000	\$0

Loss Function

A Loss Function L(e) where $e_t = y_t - \hat{y}_t$, must satisfy 3 conditions.

- 1. $\mathbf{L}(0) = 0 \rightarrow \text{no loss when the forecast error is } 0$.
- 2. $\mathbf{L}(e)$ is continuous
- 3. $\mathbf{L}(e)$ is increasing on both sides of the origin. The bigger the error, the bigger the loss.

Aside from the above restrictions, a loss function can take on any form.

Direction of Change Loss

$$\mathbf{L}(y, \hat{y}) = \begin{cases} 0, & \text{if sign } (\delta y) = \text{sign } (\delta \hat{y}) \\ 1, & \text{if sign } (\delta y) \neq \text{sign } (\delta \hat{y}) \end{cases}$$

With the above loss function, if you predict the direction of the change correctly, you incur no loss; but if your prediction is wrong, you're penalized.

Naive Method

Naive Model:

$$\hat{y}_{t+1} = y_t$$

Assumes most recent period is the best predictor of the future. - Does NOT consider the past What kind of data would this method be used for?

Naive Continued...

What if the data have a trend? - If data is trending upwards, the naive model will consistently under-predict (downward bias)

Enter the Naive Trend Model:

$$\hat{y}_{t+1} = y_t + \delta y_t$$

= $y_t + (y_t - y_{t-1})$
= $2y_t - y_{t-1}$

Seasonal Data

What if the data are seasonal? - Depending on which part is to be forecast, errors could be large or small Enter the Naive Seasonal Model (Quarterly):

$$\hat{y}_{t+1} = y_{t-3}$$

With trend:

$$\hat{y}_{t+1} = y_{t-3} + \frac{y_t - y_{t-4}}{4}$$

Simple Techniques Wrap-Up

PROS - Simple to use - Quick to compute - Adapts quickly to new data - Can be used as a baseline to compare more sophisticated techniques

CONS - Ignores historical data - Random fluctuations and fundamental changes have equal weight.

Averaging Methods

Instead of using all observations, a forecaster can use an averaging method that uses only the more recent observations in its forecast.

Moving Average (MA)

$$\hat{y}_{t+1} = \frac{y_t + y_{t-1} + \dots + y_{t-k+1}}{k}$$

where k is the number of terms in the moving average. - MA(1) is equivalent to the Naive Model - MA(t) is the simple average

Double Moveing Average

-The average of the moving average

Double Moving Average (M)

$$M_t' = \frac{M_t + M_{t-1} + \dots + M_{t-k+1}}{k}$$

where

$$M_t = \hat{y}_{t+1} = \frac{y_t + y_{t-1} + \dots + y_{t-k+1}}{k}$$

helps forecast trend data

Moving Average with Trend

Combining the moving average and double moving average to produce a forecast

"Intercept"

$$a_t = M_t + (M_t - M_t') = 2M_t - M_t'$$

"Slope"

$$b_t = \frac{2}{k-1}(M_t - M_t')$$

Forecast

$$\hat{y}_{t+p} = a_t + b_t p$$

where p is the number of periods to be forecast.

Averaging Methods Wrap-Up

PROS - Fairly easy to use - Can be used to predict stationary or trending data

 ${f CONS}$ - Depending on the number of terms in the moving average, the moving average can be slow to react to structural changes - Judgment must be used to predict the number of terms in the moving average

Exponential Smoothing

Exponential smoothing uses all the observations in producing the forecast - However, recent observations are weighted more heavily than old observations - Forecast is continually updated as more observations are considered

Goal: Estimate the current level and then use this estimate as the forecast for future values

Exponential Smoothing

Exponential Smoothing:

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t \ (0 \le \alpha \le 1)$$

and expanding this...

$$\hat{y}_{t+1} = \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \alpha (1 - \alpha)^2 y_{t-2} + \alpha (1 - \alpha)^3 y_{t-3} + \cdots$$

 α determines the speed at which old observations lose their impact on the forecasted value.

What happens as $\alpha \to 1$?

Applying the Smoothing Equation

Recall...

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$$

Where does the initial level estimate come from? - Typically, the initial level estimate is simply the average of the first half of the data - This becomes the smoothed estimate at t1, which is the estimate for t2.

Exponential Trend with Smoothing

Rarely do data series exhibit constant trending behavior

Linear exponential smoothing (Holt) allows us to model trending data that changes over time

Goal: Estimate current level and slope, then use these estimates to allow us to forecast future values

Smoothing with Trend Model

Current Level Estimate

$$L_t = \alpha y_t + (1 - \alpha)(L_{t-1} + T_{t-1})$$

Current Trend Estimate

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$

Forecast

$$\hat{y}_{t+p} = L_t + pT_t$$

Smoothing with Seasonality

Winter's method is a multiplicative smoothing method that allows us to use a smoothing method that has the ability to control for trend and seasonality

Goal: Estimate current level, trend, and seasonality and use these estimates to forecast future values.

Smoothing with Seasonality Model

Current Level Estimate

$$L_t = \alpha \frac{y_t}{S_{t-s}} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

Current Trend Estimate

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$

Current Seasonality Estimate

$$S_t = \gamma \frac{y_t}{L_t} + (1 - \gamma)S_{t-s}$$

Forecast

$$\hat{y}_{t+p} = (L_t + pT_t)S_{t-s+p}$$

In R

Use HoltWinters()

- \bullet Level only: set beta=FALSE and gamma=FALSE
- Adding trend: set gamma=FALSE
- Full model: allow alpha, beta, and gamma to be estimated
 - additionally, you can choose between additive and multiplicative seasonality

For predictions, use predict() with the HoltWinters outcome as the as the object in predict()

Exponential Smoothing Wrap-Up

 \mathbf{PROS} - Fairly quick, low-cost estimation - When done properly, can provide good short-run forecasts

CONS - Atheoretical - Choices of $\alpha,\beta, \text{and } \gamma$