BCD to GRAY CONVERSION

Navya Valmeekam

August 2022

 $\mathbf{2}$

Assignment No.1 Valmeekam Navya

Contents

1 BCD to GRAY Conversion

2 Karnaugh Map

Abstract

This manual explains BCD to GRAY code conversion by finding boolean equations.

1 BCD to GRAY Conversion

The BCD to GRAY code converter takes the numbers 0, 1, . . . , 9 in binary as inputs and generates the converted number as output. Make connections as shown in table 1. Gray code – also known as Cyclic Code, Reflected Binary Code (RBC), Reflected Binary (RB) or Grey code.

Problem : - Implement BCD to GRAY conversion

Connections :-

Arduino	2	3	4	5	6	7	8
Display	f	е	d	c	b	a	g

Figure 1

2 Karnaugh Map

Using Boolean logic or kmaps with dontcare conditions, G0, G1, G2, G3 in the truth table can be expressed in terms of the inputs A,B,C,D

$\setminus CD$										
AB	00	01	11	10						
00	0	1	0	1						
01	0	1	0	1 X						
11	X	X	X							
10	0	1	X	X						
Kmap for G0										

$$G0 = C'D + CD' \tag{1}$$

$$G2 = A + B \tag{3}$$

AB cL	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	
11	X	X	X	X	
10	1	1	X	X	

Kmap for G3

$$G3 = A \tag{4}$$

Using Boolean logic or kmaps with dontcare conditions, a,b,c,d,e,f,g in the truth table can be expressed in terms of G0,G1,G2,G3 as:

$\setminus G_2$	2G3			
G0G1	00	01	11	10
00	0	X	0	1
01	0	X	X	0
11	1	X	X	1
10	1	X	0	0

$\setminus G_2$				
G0G1	00	01	11	10
00	0	X	1	0
01	1	X	X	0
11	0	X	X	0
10	0	X	0	0
				-

$$c = G0'G3 + G0'G1G2'$$
 (7)

$$a = G0G1'G2' + G0'G1'G2G3'$$
 (5)

$$G2G3$$
 $G0G1$
 00
 01
 11
 10
 00
 0
 X
 0
 1
 01
 0
 X
 X
 0
 11
 0
 X
 X
 0
 11
 0
 X
 X
 0
 0

Kmap for d

$$d = G0G1'G2' + G0G1G2 + G0'G1'G2G3'$$
(8)

$$b = G0'G3 + G0'G1G2 + G0G1'G2G3'$$
(6)

 $\sqrt{G2G3}$ G0G1XXXXXX

K
map for ${\bf e}$

K
map for ${\bf g}$

$$g = G3 + G1'G2' + G0G1G2$$
 (11)

$$e = G0G1 + G0G2' + G1'G2G3'$$
 (9)

$$f = G0G1 + G0G2' + G1G2' \quad (10)$$

A	В	С	D	G3	G2	G1	G0	a	b	c	d	е	f	g
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1	1	0
0	0	1	1	0	0	1	0	0	0	1	0	0	1	0
0	1	0	0	0	1	1	0	0	1	0	0	0	0	0
0	1	0	1	0	1	1	1	0	0	0	1	1	1	1
0	1	1	0	0	1	0	1	0	1	0	0	1	0	0
0	1	1	1	0	1	0	0	1	0	0	1	1	0	0
1	0	0	0	1	1	0	0	0	1	1	0	0	0	1
1	0	0	1	1	1	0	1	0	0	0	0	0	0	1
1	0	1	0	1	1	1	1	X	X	X	X	X	X	X
1	0	1	1	1	1	1	0	X	X	X	X	X	X	X
1	1	0	0	1	0	1	0	X	X	X	X	X	X	X
1	1	0	1	1	0	1	1	X	X	X	X	X	X	X
1	1	1	0	1	0	0	1	X	X	X	X	X	X	X
1	1	1	1	1	0	0	0	X	X	X	X	X	X	X

Make the connections and execute the following code. And verify the truth table.

https://github.com/NavyaValmeekam/FWC/blob/main/IDE-ASSIGNMENT-1/A1 $_{B}CD-GRAY/src/main.cpp$