discrete math

Bechir Brahem

1 Points About Logic

1.1 Proposition

Definition. A proposition is a statement (communication) that is either true or false.

1.2 Predicate

Definition. A predicate can be understood as a proposition whose truth depends on the value of one or more variables.

2 Induction, WOP and Invariants

2.1 Well Ordering Principle

Theorem. Every nonempty set of nonnegative integers has a smallest element.

scheme of the proof. Principle, you can take the following steps: More generally, to prove that "P(n) is true $\forall n \in \mathbb{N}$." using the Well Ordering

• Define the set, C , of counterexamples to P being true. Namely, define

$$C ::= \{n \in \mathbb{N} | P(n) is false \}$$

- Use a proof by contradiction and assume that C is nonempty.
- By the Well Ordering Principle, there will be a smallest element, n, in C .
- Reach a contradiction (somehow)—often by showing how to use n to find another member of C that is smaller than n. (This is the open-ended part of the proof task.)
- Conclude that C must be empty, that is, no counterexamples exist. QED■

examples. it can be used to prove the sum of integers is: $\sum_{0}^{n} k = \frac{n(n+1)}{2}$ or to show that every integer is a product of primes. (Fundamental theorem of arithmetic without uniqueness)

proof. let the predicate P(n):=" $\forall n \in \mathbb{N} | n = p_1 p_2 ... p_k$ " let S=n — P(n) is false n is a positive integer, we assume that $S \neq \emptyset$ by the WOP S has a smallest element n_0 . if n_0 was a prime it would be in S so n_0 is not a prime $\Rightarrow n_0 = ab \Rightarrow 0 < a, b < n_0$ so $a = p_1 p_2 ... p_k$ and $b = q_1 q_2 ... q_k$ where p_i and q_i are primes $\Rightarrow ab \in S \Rightarrow n_0 \in S$ absurd. hence we have P(n)

2.2 Induction

scheme of the proof. let P(n) be the predicate we want to prove S. If:

$$\begin{cases} P(n_0) \text{ is true} \\ P(n) \Rightarrow P(n+1) \end{cases}$$

Then:

P(m) is true $\forall m \in S$

2.3 Strong Induction

scheme of the proof. let P(n) be the predicate we want to prove in S. If:

$$\begin{cases} P(n_0) \text{ is true} \\ \forall n \in S, \text{ we have } P(0), P(1)...P(n) \Rightarrow P(n+1) \end{cases}$$

Then:

P(m) is true $\forall m \in S$

```
examples. P(n)::="Every integer greater than 1 is a product of primes."
2 is a prime so we have P(2).
assuming we have P(0)...P(n),
if n+1 is a prime then P(n+1)
if n+1 is composite then n+1=ab such that 1 < a, b < n. so we have P(a) and P(b) and so n+1 is a prime.
\Rightarrow P(n+1)
so \forall m \in S, P(m)
```

2.4 Invariants

The idea of the proof by invariant is that for some process there is a proprety X that remains constant for every state.

example. say that a robot on a grid can only move diagonally.from the initial position (0,0) the robot can go to (1,1),(-1,1),(1,-1),(-1,-1)

claim. a robot can never reach (1,0) if (0,0) is its initial position.

<u>proof.</u> the invariant: if (0,0) is the initial state then whatever position the robot gets into (x,y) x+y is even. base case: 0+0 is even.

induction: if the robot is in position (x,y) we assume that x+y is even then the next position (a,b) will be:(x+1,y+1) or (x-1,y-1) or (x-1,y+1) or (x+1,y-1). and so in every case a+b is even.

for any position (x,y) to be reachable x+y must be even.

and so (1,0) is not reachable from (0,0)

scheme of the proof In summary, if you would like to prove that some property X holds for every step of a process, then it is often helpful to use the following method:

- \bullet Define P(t) to be the predicate that X holds immediately after step t .
- Show that P(0) is true, namely that X holds for the start state.
- show that:

$$\forall t \in \mathbb{N}, P(t) \Rightarrow P(t+1)$$

3 Number Theory

3.1 Math theory

3.1.1 Basics

Definition. a divides b (notation a — b) iff there is an integer k such that

$$ak = b$$

Theorem. Let n and d be integers such that $d \neq 0$. Then there exists a unique pair of integers q and r, such that:

$$n=dq+r$$
, $0 \le r \le |d|$

Euclid Algorithm. for $b\neq 0$

$$gcd(a,b)=gcd(b,rem(a,b))$$

Bezout Theorem. The greatest common divisor of a and b is a linear combination of a and b. That is:

$$gcd(a,b)=sa + tb$$

for some t,s

3.1.2 Prime Numbers.

- Twin Prime Conjecture There are infinitely many primes p such that p + 2 is also a prime
- Conjectured Inefficiency of Factoring Given the product of two large primes n=pq, there is no efficient procedure to recover the primes p and q. That is,no polynomial time procedure. Best solution so far

$$e^{1.9(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}}$$

• Goldbach's Conjecture every even integer greater than two is equal to the sum of two primes.

Prime Distribution.

$$\pi(n){::=} card(\{p,\,p \text{ is prime and } 2{\leq} p{\leq} n \ \})$$

Prime Number Theorem.

$$\lim_{x \to \infty} \frac{\pi(n)}{n/ln(n)} = 1$$

Fundamental Theorem of Arithmetic. Every positive integer is a product of a unique weakly decreasing sequence of primes.

3.1.3 Modular Arithmetic

On the first page of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss introduced the notion of "congruence." Now, Gauss is another guy who managed to cough up a half-decent idea every now and then, so let's take a look at this one. Gauss said that a is congruent to b modulo n iff n — (a-b). This is written

$$a \equiv b \pmod{n}$$

$$a \equiv b \pmod{n} \iff rem(a, n) = rem(b, n)$$
(1)

We have $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then:

$$a + c \equiv b + d \pmod{n}$$
$$ab \equiv cd \pmod{n}$$

3.1.4 The Ring \mathbb{Z}_n

```
\mathbb{Z}_n = \{ \mathbf{r} \mid \text{for a} \in \mathbb{Z}, a \equiv r \pmod{n} \} \text{ for example } \mathbb{Z}_n = \{0,1,2...n\}, we define r = a +_{\mathbf{n}} b : (a,b) \in \mathbb{Z}_n \to r \in \mathbb{Z}_n such that \mathbf{a} + \mathbf{b} \equiv \mathbf{r} \pmod{n} for example 5 +_7 4 = 2 we define r = a \cdot_{\mathbf{n}} b : (a,b) \in \mathbb{Z}_n \to r \in \mathbb{Z}_n such that \mathbf{a} \cdot \mathbf{b} \equiv \mathbf{r} \pmod{n} for example 5 \cdot_7 4 = 6
```