1. Public key Encryption

Public key encryption

Key exchange task

Alice and Bob want to generate a shared key k_{ab} without a central trusted party

Eavesdropper Eve that listen to the conversation must be unable to find the shared key

Trapdoor function

- ullet G key generation algoritm $\emph{probabilistic}$ $(k_{pub}, k_{priv}) \stackrel{R}{=} G()$
- ullet $F: \mathcal{X}
 ightarrow \mathcal{Y}$ a function $extit{deterministic}$ $extit{y}{=}F(k_{pub},x)$
- ullet $I: \mathcal{Y}
 ightarrow \mathcal{X}$ Inverse trapdoor $extit{deterministic}$ $x{=}I(k_{priv},y)$
- F is one way -> given y you can't find x without knowing I

Corectness property

$$Pr[\;I(k_{priv},\;(F(k_{pub},\;x)))=x]=1$$

Figure 10.1: Key exchange using a trapdoor function scheme

Public key algorithm

A public key encryption scheme is a triple of algorithms (G,E,D)

- ullet G key generation algoritm $\emph{probabilistic}$ $(k_{pub}, k_{priv}) \stackrel{R}{=} G()$
- ullet E Encryption algoritm $\emph{probabilistic}$ $c \stackrel{R}{=} E(k_{pub}, m)$
- D Decryption algoritm deterministic $y{=}D(k_{priv},c)$

Corectness property

$$Pr[\ D(k_{priv},\ (E(k_{pub},\ m))) = m] = 1$$

Security

Semantic security

For (G, E, D)

- The challenger computes $(k_{pub}, k_{priv}) \stackrel{R}{=} G()$, and sends k_{pub} to the adversary.
- The adversary computes $m_0, m_1 \in \mathcal{M}$, of the same length, and sends them to the challenger.
- The challenger chooses one of the messages m_0, m_1 and computes $c \stackrel{R}{=} E(k_{pub}, m_b)$, and sends c to the adversary.
- The adversary must find out which message was encrypted

 $\left(G,E,D\right)$ is secure if all efficient adversaries have negligible advantage

Intuition

• The attacker can't distinguish the encryption of a message from random

CPA security

There is not CPA since there is a public key therefore the attacker can encrypt messages at his will

Note

One type security(Semantic) ⇒ Many time security(CPA)

• (Deterministic encryption) If E is not randomized then the attacker can compute the $c_0=E(k_{pub},m_0)$ and can compare it with what he gets back. If he gets the encryption of m_0 then he knows what message was encrypted

CCA security

For (G, E, D)

- ullet The challenger computes $(k_{pub},k_{priv})\stackrel{R}{=} G()$, and sends k_{pub} to the adversary.
- The Attacker can make
 - o encryption queries: Send pair of messages and get encryption of one of them at random
 - o decryption queries: Decrypt ciphertexts not found in the previous encryption queries
- The attacker mustn't be able to distinguish what message was encrypted from a pair of messages (G,E,D) is secure against CCA if for all efficient adversaries their advantage is negligible
- https://en.wikipedia.org/wiki/Malleability_(cryptography)

Resources

• https://en.wikipedia.org/wiki/Public-key_cryptography