MAP435 - Devoir maison Danilo Marinho Fernandes 13/04/2022

1. Si $u \in \mathbb{R}^n$ est un point minimal de (1), alors $(J(u), u) \in K$ et (J(u), u) est un point minimal de (2), car, si, $(v, u') \in K$ alors pour $1 \le i \le p$ on a $v \ge g_i(u')$, et donc

$$v \ge \max_{1 \le i \le p} g_i(u') = J(u') \Rightarrow v \ge \inf_{x \in \mathbb{R}^n} J(x) = J(u)$$

Inversement, si (v, u) est un point minimal de (2) et $(v', u') \in K$, alors

$$v \le v' \Rightarrow g_i(u) \le v \le v' \quad \forall i = 1, ..., p$$

$$\Rightarrow J(u) < v'$$

Voyons que, pour tout $x \in \mathbb{R}^n$, (J(x), x) est dans K, d'où

$$\forall x \in \mathbb{R}^n \quad J(u) \le J(x) \Rightarrow J(u) = \inf_{x \in \mathbb{R}^n} J(x)$$

Cela montre que u est un point minimal de (1). De plus, v = J(u), car $(J(u), u) \in K$ et $J(u) \leq v'$ pour tout v' tel que $(v', u') \in K$. On peut donc conclure que $F : \mathcal{V} \to \mathcal{K}$ (où \mathcal{V} est l'enseble des points minimaux de (1) et \mathcal{K} est l'enseble des points minimaux de (2)) donnée par F(u) = (J(u), u) définit une bijection, d'où l'équivalence des problèmes.

2. On a p contraintes d'inégalité données par

$$F_i(v, x) = g_i(x) - v \le 0, \quad 1 \le i \le p$$

On a donc $\frac{\partial F_i}{\partial x_0} = -1$ pour tout i. On peut donc prendre la direction w = (1, 0, ..., 0) dans \mathbb{R}^{n+1} qui donne, en tout point (v, x),

$$\langle F'_i(v,x), w \rangle = -1 \langle 0 \quad i = 1, ...p$$

Les contraintes sont donc qualifiées.

3. La fonction minimisée g(v,x) = v (projection dans la première cordonée) et les $F_i(v,x)$, $1 \le i \le p$ sont dérivables sur \mathbb{R}^{n+1} et les contraintes sont qualifiées en tout point de minimum de (2). Si x est un point de minimum de (1), alors (J(x),x) est un point de minimum de (2). Or, par le théorème 2.5.17 du polycopié il existe λ dans \mathbb{R}^p tel que

$$\lambda \ge 0$$
, $g'(J(x), x) + \sum_{i=1}^{p} \lambda_i F'_i(J(x), x) = 0$

$$\Rightarrow 1 + \sum_{i=1}^{p} -\lambda_i = 0, \quad \sum_{i=1}^{p} \lambda_i g_i'(x) = 0$$

De plus, $\lambda_i = 0$ si $F_i(J(x), x) < 0$, i.e. si $g_i(x) < J(x) \iff i \notin I(x)$.

4. La fonction g(v,x) = v et les $F_i, 1 \le i \le p$ sont convexes continues sur R^{n+1} et dérivables sur K. Les contraintes sont qualifiées partout comme vu dans la question 2. Si x est un point critique de J, il existe $\lambda \in \mathbb{R}^p$ tel que (x,λ) satisfait (3) et donc $((J(x),x),\lambda)$ satisfait les conditions du Théorème de Kuhn et Tucker. Cela permet donc de conclure que (J(x),x) est point de minimum de (2), d'où x est un point de minimum de (1).

5. Si n = 1, le résultat est évident. Supposons donc n > 1.

Étant donné $x \in \mathbb{R}^n$, on a $|I(x)| \ge 1$. Si |I(x)| = 1 et j satisfait $g_j(x) = J(x)$, alors $g_j(x) - g_i(x) > 0$ pour tout $i \ne j, 1 \le i \le p$. Prennons $i \ne j$. Par continuité de $g_j - g_i$, il existe $\epsilon_i > 0$ tel que $g_j > g_i$ dans $B_O(x, \epsilon_i)$. En notant ϵ le minimum des ϵ_i , on a $J(x) = g_j(x)$ dans $B_O(x, \epsilon)$. On a donc

$$J'(x,d) = \lim_{t \to 0+} \frac{g_j(x+td) - g_j(x)}{t} = g'_j(x) \cdot d$$

Ce qui correspond à $\max_{i \in I(x)} \{g'_i(x) \cdot d\} \text{ car } |I(x)| = 1.$

Si |I(x)| > 1, On note $S(x) = \{j | g'_j(x) \cdot d = \max_{i \in I(x)} \{g'_i(x) \cdot d, 1 \leq j \leq p\}\}$, et on prend un indice $j \in S(x)$.

S'il existe $i \in I(x) \backslash S(x)$, alors $g'_j(x) \cdot d > g'_i(x) \cdot d$. Or, $g'_j \cdot d - g'_i \cdot d$ est continue, donc il existe $\epsilon_i > 0$ tel que $g'_j \cdot d > g'_i \cdot d$ dans $W_i = \{x + td, |t| < \epsilon_i\}$. En intégrant on obtient $J \geq g_j > g_i$ dans $W_i \backslash \{x\}$. Par le même argument du cas précedent, il y a également un intervalle où $J > g_i$ si $i \notin I(x)$. Cela veut dire que'il existe $\epsilon > 0$ tel que, si $0 < |t| < \epsilon$, on a

$$\frac{J(x+td)-J(x)}{t} \in \left\{ \frac{g_i(x+td)-g_i(x)}{t}, i \in S(x) \right\}$$

Comme tous les éléments dans cet ensemble ont la même limite, qui vaut $\max_{i \in I(x)} \{g'_i(x) \cdot d\}$, on peut conclure que J'(x,d) existe pour tout $(x,d) \in \mathbb{R}^n \times \mathbb{R}^n$ et vaut $J'(x,d) = \max_{i \in I(x)} \{g'_i(x) \cdot d\}$.

6. Si x est un point critique, on a, par (3), l'existence de $\lambda \geq 0$ tel que

$$\sum_{i=1}^{p} \lambda_i g_i'(x) = 0 \Rightarrow \sum_{i=1}^{p} \lambda_i (g_i'(x) \cdot d) = 0 \quad \forall d \in \mathbb{R}^n$$

$$\sum_{i=1}^{p} \lambda_i = 1$$

 λ étant positif, il existe un indice i tel que $g_i'(x) \cdot d \geq 0$ (sinon la somme donnée serait inférieure à zéro). Or, J'(x,d) étant le max des $g_i'(x) \cdot d$, on a $J'(x,d) \geq 0$ pour tout $d \in \mathbb{R}^n$.

Supposons inversement que $J'(x,d) \geq 0$ pour tout $d \in \mathbb{R}^n$. Pour que la condition (3) soit vérifiée, il suffit de montrer que 0 est dans l'enveloppe convexe de $(g'_i(x))_{i\geq 0}$. Or, cet enveloppe convexe est l'intersection de tous les démi-espaces de \mathbb{R}^n qui contiennent tous les $(g'_i(x))$. Un tel démi-espace E est caractérisé par une forme linéire h dans \mathbb{R}^n et un réel α avec $h(u) \leq \alpha$ pour tout $u \in E$. Par la réprésentation de Riez, on peut écrire h(u) comme $d \cdot u$ avec d dans \mathbb{R}^n .

Donc, si d et α caractérisent un tel démi-espace, il faut que $g_i'(x) \cdot d \leq \alpha$, et donc $J'(x) \cdot d = max(g_i'(x) \cdot d) \leq \alpha$ pour $1 \leq i \leq p$. Comme $J'(x,d) \geq 0$, $\alpha \geq 0$ et donc 0 est dans le démi-espace. Cela étant vrai pour tout tel démi-espace, 0 est dans l'enveloppe convexe de $(g_i'(x))_{i\geq 0}$, ce qui permet de conclure que (3) est vérifiée et donc x est un point critique.

7. En prennant d=0, on voit que $\phi(x) \leq J(x)$.

Voyons ensuite que $g_i(x) = J(x)$ si $i \in I(x)$, d'où, pour tout $d \in \mathbb{R}^n$,

$$\max_{1 \le i \le p} \{g_i(x) + g_i'(x) \cdot d\} \ge \max_{i \in I(x)} \{g_i(x) + g_i'(x) \cdot d\} = J(x) + J'(x, d)$$

et donc $\phi(x) \ge J(x) + \inf_{d \in \mathbb{R}^n} J'(x, d)$.

Si x est un point critique, $J'(x,d) \ge 0$ pour tout $d \in \mathbb{R}^n$, d'où l'égalité.

Notons ensuite que, par continuité de g_i et g'_i et par la question 5, il existe $\epsilon > 0$ tel que, si $||d|| < \epsilon$,

$$\max_{1 \le i \le p} \{g_i(x) + g_i'(x) \cdot d\} = J(x) + J'(x, d)$$

Si x n'est pas un point critique, il existe d tel que J'(x,d) < 0, d'où J(x) + J'(x,d) < J(x). Par homogeneité de J'(x,d), il suffit de prendre $d' = \frac{\epsilon d}{2||d||}$ pour retrouver l'inégalité stricte $\phi(x) < J(x)$.

8. Par la définition (4),

$$\phi(x^k) = \max_{1 \le i \le p} \{g_i(x) + g_i'(x) \cdot d_k\} \ge \max_{i \in I(x)} \{g_i(x) + g_i'(x) \cdot d_k\}$$

On a bien $g_i(x) = J(x)$ sur I(x), d'où

$$\phi(x^k) \ge J(x) + \max_{i \in I(x)} \{g_i'(x) \cdot d_k\} = J(x) + J'(x, d)$$

D'où (5).

Si $\phi(x^k) < J(x^k)$, alors $J'(x^k, d^k) < 0$ et donc x^k n'est pas un point critique. Donc il n'existe aucun $\lambda \in \mathbb{R}^p$ tel que (x^k, λ) vérifie (3), d'où x^k n'est pas un point de minimum. Or, $x_k + \mu_k d^k$ est un point de minimum pour un certain $\mu_k \geq 0$ par (iii). Il en résulte que $\mu_k > 0$.

9. Notons que

$$J(x + \mu d) = J(x) + \mu \left(\frac{J(x + \mu d) - J(x)}{\mu}\right) = J(x) + \mu \left(J'(x, d) + r(x, d, \mu)\right)$$

Avec $\lim_{\mu\to 0} r(x,d,\mu) = 0$ par la définition de la dérivée.

Fixons r > 0 et notons $\mu(x, d) = \sup\{\mu \ge 0, r(x, d, \mu) <= r\}$ (en fait, ce \sup peut être infini, mais il suffirait de prendre $\mu(x, d) = 1$ dans ce cas).

Par continuité de $r(x, d, \mu)$, il existe $\epsilon(x, d) > 0$ tel que, si $(x', d') \in B_{\epsilon(x,d)}(x, d)$ alors $r(x', d', \mu(x, d)) - r(x, d, \mu(x, d)) \le r$ et donc $r(x', d', \mu(x, d)) \le 2r$.

Si ||x|| < R et $||d|| < C_R$, l'ensemble des (x,d) est compact. Ainsi, il existe un recouvrement ouvert de l'espace par les boules $B_{\epsilon(x,d)}(x,d)$, et on peut en extraire un recouvrement fini, caractérisé par une famille finie de points $(x_i,d_i)_{i\in P}$. Pour r>0 fixé, il suffit donc de prendre $\mu=\min_{i\in P}(\mu(x_i,d_i))$ pour avoir $r(x,d,\mu)<=2r$ pour tout point (x,d) du compact, d'où la convergence uniforme.

Par la question précédente, on a, pour x donné et d un des points de minimum dans la définition (4):

$$J'(x,d) < \phi(x) - J(x)$$

Il reste juste de prendre $o_R(x,d,\mu) = \mu r(x,d,\mu)$ pour retrouver le résultat

$$J(x + \mu d) \le J(x) + \mu(\phi(x) - J(x)) + o_R(x, d, \mu)$$

- 10. Soit x un point d'adhérence de $(x^k)_{k\geq 1}$, et d un point d'adhérence de $(d^k)_{k\geq 1}$. Par "extraction double" il existe $\phi(k)$ tel que $x^{\phi(k)}\to x$ et $d^{\phi(k)}\to d$. On sait que $(x^{\phi(k)})_{k\geq 1}$ converge vers x. On a deux cas:
 - Si $(d^{\phi(k)})_{k\geq 1}$ converge vers 0, on prend la limite avec $\mu\to 0+$ dans

$$\frac{J(x^{\phi(k)} + \mu d^{\phi(k)}) - J(x^{\phi(k)})}{\mu} \le \phi(x^{\phi(k)}) - J(x^{\phi(k)}) + \frac{o_R(x^{\phi(k)}, d^{\phi(k)}, \mu)}{\mu}$$

Qui donne $J'(x^{\phi(k)}, d^{\phi(k)}) < \phi(x^{\phi(k)}) - J(x^{\phi(k)}).$

On prend ensuite la limite avec $k \to \infty$, qui donne

$$0 = J'(x,0) < \phi(x) - J(x)$$

• Si $(d^{\phi(k)})_{k\geq 1}$ ne converge pas vers 0, on peut montrer par l'étape 4 de l'algorithme que $\mu_{\phi(k)}d^{\phi(k)}$ doit converger vers 0. Donc $(\mu^{\phi(k)})_{k\geq 1}$ converge vers 0. Il reste de montrer que la limite avec $k\to\infty$ de l'expression

$$\frac{J(x^{\phi(k)} + \mu_k d^{\phi(k)}) - J(x^{\phi(k)})}{\mu_k}$$

est plus grande ou égale à 0.

On a, dans les deux cas, $0 \le \phi(x) - J(x) \le 0$, d'où $\phi(x) = J(x)$ et donc x est un point critique.

11. Si l'une des g_i est "l'infinie à l'infini" et $(x^k)_{k\geq 0}$ n'est pas bornée, alors $(g_i(x^k))_{k\geq 0}$ diverge et donc $(J(x^k))_{k\geq 0}$ diverge. Or, le pas (iii) de l'algorithme montre que $(J(x^k))_{k\geq 0}$ est une suite décroissante. Il faut donc que $(x^k)_{k\geq 0}$ soit bornée.

On suppose ensuite que la suite d^k est aussi bornée. Si les g_i sont strictement convexes, J est aussi strictement convexe et admet au plus un point de minimum, qui est donc l'unique point critique, s'il existe. Ainsi, par la question précédente, $(x^k)_{k\geq 0}$ ne peut avoir qu'un unique point d'adhérence. La suite étant bornée, elle converge vers ce point.