

Nuevos paradigmas de diseño de Sistemas electrónicos sobre silicio (SoC)

Prof. Dr. Sebastian Eslava G.

Departamento de Ingeniería Eléctrica y Electrónica

Universidad Nacional de Colombia

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema.
 - Exploración del espacio de diseño.
 - Verificación funcional y análisis de desempeño.
 - Modelamiento.
- Conclusiones
- Preguntas

Mundo Digital

Facilitadores

- Procesos de fabricación
- Herramientas de diseño
- Usuarios
- Creatividad

Diseño de Sistemas digitales

GMUN - Grupo de Microelectrónica

Diseño de Sistemas digitales

NACIONAL Ejemplo de sistemas digitales (ASIC)

Sistemas digitales modernos

- Sistemas completos
 - Hardware-software
- Elementos hechos a la medida
 - Escalables
- Implementación en un único circuito integrado
 - System on Chip, SoC

Sistemas digitales modernos

- Sistemas complejos
 - Componentes
 - Funcionalidad

- Metodologías de diseño
 - Top-Down
 - Modularidad
 - Jerarquía

Ejemplo de un *SoC*

Un SoC contiene:

- Procesadores
- Módulos IP reutilizados
- Memorias (internas y externas)
- Interfaces (USB, PCI, Ethernet)
- Software (interno y externo)
- Bloques analógicosdigitales
- Hardware programable (FPGA)
- >> 500K puertas lógicas

Diseño de SoC

- RTL
 - Insuficiente como punto de partida
 - Sistemas con millones de puertas lógicas
 - Esfuerzo computacional → Tiempo de simulación
 - 53 horas para 1seg, procesador de red.
- Gap de productividad

Nuevos paradigmas de diseño

- Reducir el gap
 - Aumentar la productividad
- Manejar la creciente complejidad
 - De ASIC para SoC
- RTL no desaparece

Evolución del diseño

	De ASIC	Para SoC
Objetivo del diseño	Módulo de hardware	Múltiples módulos de <u>hardware</u> y <u>software</u>
Abstracción del diseño	Nivel de circuito	Nivel de Sistema
	RTL	SLD

Evolución del Diseño

GMUN - Grupo de Microelectrónica

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - Verificación funcional y análisis de desempeño
 - Modelamiento
- Conclusiones
- Preguntas

Diseño de SoC

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - Verificación funcional y análisis de desempeño
 - Modelamiento
- Conclusiones
- Preguntas

Diseño a nivel de sistema (SLD)

- Aumentar nivel de abstracción
 - Superior a RTL
- Uso de nuevos lenguajes
 - SystemC, SpecC, Ptolemy, SystemVerilog, otros
- Segmentar el diseño

Funcionalidad	Arquitectura	
Hardware	Software	
Computación	Comunicación	

Diseño a nivel de sistema (SLD)

GMUN - Grupo de Microelectrónica

Tareas del nivel de sistema

- Exploración del espacio de diseño
 - Encontrar la solución mas adecuada
- Verificación funcional y análisis de desempeño
 - Modelos funcionalmente
 - Correctos? Completos?
 - Cumplen especificación?
- Modelamiento
 - Modelos usados en todas las tareas

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - · Verificación funcional y análisis de desempeño
 - Modelamiento
- Conclusiones
- Preguntas

Exploración del espacio de diseño

Encontrar la solución mas adecuada que cumpla las especificaciones y restricciones.

"No existe una solución única"

- Parte de la especificación funcional
- Termina en la Plataforma HW-SW (RTL/C)

- Diseño funcional
 - Qué?
- Diseño de la arquitectura
 - Cómo?
- Mapeo de funciones
 - SW en HW genérico, HW específico.
- Refinamiento elementos
 - Parámetros de configuración
- Selección de componentes

- Diseño funcional
 - Análisis de la especificación
 - Partición HW–SW

- Diseño de la arquitectura
 - Componentes Software

- Componentes Hardware
 - Procesadores
 - Unidades funcionales
 - Memorias
 - Componentes de E/S
 - Estructura de comunicación

Mapeo funcional

Software

El Procesador en su cubierta térmica de cerámica y otros materiales

Hardware

Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica GMUN - Grupo de Microelectrónica

- Refinamiento de los elementos
 - Ajuste de parámetros
- Decisiones guiadas por:
 - Análisis de desempeño
 - Consumo de energía
 - Costo/Otras
 - Metodologías/Herramientas CAD

- Selección de componentes
 - Adquiridos a terceros
 - Desarrollos propios
- Implementación
 - Flujo RTL
 - Integración
 - Prototipos

Ejemplo de exploración: Estructura de comunicación

CMUN - Grupo de Microelectrónica

Facultad de Ingeniería

Estructura de comunicación:

Estructura de comunicación:

Ejemplo de exploración: Metodología MaLOC

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - Verificación funcional y análisis de desempeño
 - Modelaje
- Conclusiones
- Preguntas

Verificación funcional

- Los modelos usados están:
 - Correctos
 - Describen la funcionalidad?
 - Completos
 - Describen todas las características?
- Técnicas de verificación
 - Formal
 - Híbrida
 - Dinámica

Verificación funcional dinámica

- Gran importancia en la industria
- Utilizado en grandes diseños

Departamento de Ingeniería Eléctrica y Electrónica

GMUN - Grupo de Microelectrónica

Verificación funcional dinámica

- Estímulos generados
 - Dirigidos, aleatorios, reales, casos extremos
- Cobertura
 - Objetivos de la verificación a ser observados

Análisis de desempeño

- Las especificaciones son cumplidas?
- Medir el comportamiento
 - Modelos, prototipos
- Cuantificar y evaluar
 - Métricas de desempeño
 - Estrategias de análisis

Análisis de desempeño

- Generadores de tráfico
- Monitores
- Herramientas de análisis
- Motor de simulación

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - Verificación funcional y análisis de desempeño
 - Modelamiento
- Conclusiones
- Preguntas

Modelamiento de sistemas

- Conceptos claves
 - Modelo de computación (MoC)
 - Lenguajes de diseño a nivel de sistema (SLDL)

Dominios de modelos de computación (MoC)

Lenguajes de diseño a nivel de sistema (SLDL)

Modelaje para análisis funcional

- Basado en MoC
 - Ambientes multi-MoC
 - Ptomely (java)
 - Metrópolis (MML)

- Basado en SLDL
 - Sintaxis y semántica de un lenguaje SLDL
 - Soporte a uno o varios MoC

Modelaje para análisis arquitectural

- Soportado por SLDL
- Diferente granularidad funcional y temporal
 - Modelos basados en transacciones
 - Diferentes niveles de abstracción
 - Atemporal
 - Tiempo aproximado
 - Ciclos de reloj

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - Verificación funcional y análisis de desempeño
 - Modelamiento
- Conclusiones
- Preguntas

Conclusiones

- Sistemas completos HW-SW en un único CI (SoC)
- RTL no es eficiente para análisis del diseño
- RTL no desaparece
 - Desplazado
- Nuevos paradigmas de diseño
 - Anticipar decisiones
- Diseño al nivel de sistema
 - Nuevos niveles de abstracción
 - Nuevos lenguajes de diseño
 - Segmentación (divide and conquer)
- NO existen soluciones únicas

Conclusiones

- Futuro del diseño a nivel de sistemas
 - Menthor, Cadence, Synopsys, Coware, Forte.
 - Estándar IEEE (SystemC, TLM)
 - Consorcio OSCI SystemC
 - Patrocinado por diversas empresas
 - · Herramientas académicas, código abierto
 - ArchC, GreenSoCs
- Oportunidad para investigaciones
 - Falta de herramientas/metodologías

Contenido

- Introducción
- Diseño de SoC
 - Diseño a nivel de sistema
 - Exploración del espacio de diseño
 - Verificación funcional y análisis de desempeño
 - Modelamiento
- Conclusiones
- Preguntas

PREGUNTAS?