

May 2020

Version 1.01

The Australian National University

GROUP MEMBER: MENGZHOU WANG, TIANHAO YU, ZI'ANG LIU, BIN DONG, YUNJIE JIN, WEICONG ZHANG

Table of Contents

1	Installation and setup		
	1.1	Environment requirement	3
	1.1.1	Test Environment	3
	1.2	Prerequisites Key parts of this project require the following scientific software packa	iges .3
	1.2.1	Packages used	_
	1.3	Installation	3
2	Sub-	system usage	4
	2.1	Room Model	4
	2.1.1	Variables introduction	
	2.1.2	Parameters introduction	4
	2.1.3	How to change and print parameters	4
	2.1.4	Usage	4
	2.2	Heat Pump Model	5
	2.2.1	Parameters and Variables Declaration	
	2.2.2	How to change Variables	5
	2.2.3	Variables and Outputs declaration	
	2.2.4	Usage	6
	2.3	Control system	6
	2.3.1	Parameters and Variables Declaration	6
	2.3.2	How to change Variables	7
	2.3.3	Variables and Outputs declaration	7
	2.3.4	Usage	8

1 Installation and setup

1.1 Environment requirement

1.1.1 Test Environment

- 1. Python 3.7.0
- 2. TESpy 0.2.2
- 3. Git 2.21.0

1.2 Prerequisites

Key parts of this project require the following scientific software packages

1.2.1 Packages used

All the following packages can be installed by terminal

Command: "pip install ..."

- 1. NumPy
- 2. Matplotlib
- 3. Pandas
- 4. Warnings
- 5. Math
- 6. Prettytable
- 7. Time

1.3 Installation

Type "git clone https://github.com/Tianhao-Y/Automatic-Control-System-for-Heat-Pump.git" in terminal

2 Sub-system usage

2.1 Room Model

2.1.1 Variables introduction

```
:param Printer: Print information or not --> boolean
  :param room temp: room temperature in Degrees Celsius --> float
  :param environment_temperature: environment temperature in Degrees Celsius --> float
  :param power: input heat pump power W --> float
  :param method_heatpump: whether it is heater or not --> string "Heater" or "Cooler"
  :return: the Update Temperature
       Parameters introduction
2.1.2
r"""
       :param density_a: air density in kg/m^3
       :param capacity_a: the heat capacity of the air J/ (kg·°C)
       :param area: the size of the room in m^2
       :param height: the height of the room in m
       :param wall: The heat loss of the walls W/m^2*^{\circ}C
       :param window: The heat loss of the windows W/m^2*°C
       :param ventilation: coefficient of ventilation W/m^3*°C
      :param wallArea: the area of walls and windows should be a list --> [area_walls,
area_windows] m^2
2.1.3
       How to change and print parameters
       room = Room(room_temp, environment_temperature, power)
       room.setRoomInfo()
```

2.1.4 Usage

The output is the temperature after certain amount of time.

room.getRoomInfo()

1. Method 1:

temp = roomTemp(room_temp, environment_temperature, power, method_heatpump, Printer)

2. Method 2:

```
room = Room(room_temp, environment_temperature, power)
```

 $temp = room.heatUp(Printer, method_heatpump)$

2.2 Heat Pump Model

2.2.1 Parameters and Variables Declaration

pr1	Pressure ratio outlet 1	0.99
pr2	Pressure ratio outlet 2	0.98
amb_p.T	Groud source Temperature	12
amb_p.p	Groud source pressure	2
amb_out.T	Coolent Temperature	9
cp1.h0	flow entropy	1700
cd.ttd_u	upper terminal temperature difference of condersor	15
ev.ttd_l	lower terminal temperature difference of evaperater	5
su.ttd_l	lower terminal temperature difference of the heat exchanger	2
cb_dhp.T	input air flow Temperature	20
cd_cons.T	output air flow Temperature	Variable
eta_s	motor efficiency of the pumps	Variable
cons.Q	Output heat energy	Variable
design	Geometry independent friction coefficient heating loop	zeta2 :ζ/1 m4.

2.2.2 How to change Variables

```
Hp = HeatPump(q, eff, Temp)
r"""

:param Temp: Temperature at the air outlet --> float
:param q: q output
:param eff: efficient of each part in pump
```

2.2.3 Variables and Outputs declaration

r"""

:param state: the gears of the heat pump --> int 0 - 10

:param last_q: the heat output of last seconds --> float

:param method: type of String, should be 'heater' or 'cooler' to indicate the type of heat pump

:return: current heat output of the heat pump --> float

Power Consumption in total --> float

The efficiency of the heat pump COP --> float

Power Consumption for each part --> list

The efficiency of the Motor --> float

Temperature at the air outlet --> float

The heat output in current seconds --> float

,,,,,,

2.2.4 Usage

1. Method 1:

Q, P_total, COP, P, eff, T, current_q = operation (state, last_q, method)

1. **Method 2:**

 $hp = HeatPump(Q_out, eff, T)$

P, P_total, COP = hp.caculation()

2.3 Control system

2.3.1 Parameters and Variables Declaration

Parameters & Variables	Declaration	Units
date	Date	Day
room_t	Room temperature	Celsius
deamand	Demand temperature (User demand)	Celsius
price	Price forecast data (input .csv files)	dollars per hundred kilowatts

temp | Weather forecast data (input .csv files)

Celsius

```
How to change Variables
2.3.2
control= control(demand, date, room_t)
r"""
  :param time: total minute which need to analyying--> int should be delete 120
  :param date: choose the data to analysing --> int
  :param method_heatpump: type of String, should be 'heater' or 'cooler' to indicate the type of
heat pump
  :param demand: user demand data --> list
  :param price_list: daily price data (name) --> 'name.csv' type
,,,,,,
2.3.3
        Variables and Outputs declaration
r"""
  :param time: total minute which need to analyying--> int should be delete 120
  :param date: choose the data to analysing --> int
  :param method_heatpump: type of String, should be 'heater' or 'cooler' to indicate the type of
heat pump
  :param demand: user demand data --> list
  :param price_list: daily price data (name) --> 'name.csv' type
  :param temp: daily weather temperature data (name) --> 'name.csv' type
  :return: costlist --> list
        p_list --> list
        T_room --> list
        cost --> float
        newP --> float
```

2.3.4 Usage

Method 1:

 $Costlist, p_list, T_room, cost, new P = control optimal (time, date, Method, demand, `Price data name.csv', `weather data name.csv')$