Integrative Genomics: Introduction and application to metagenomics

2024/06 Vincent Manzanilla UMR Quito

Integration: biological motivation

- Deep insights into complex biological phenomenon
- Subtyping and classification (disease, species, varieties)
- Prediction, diagnostic, identify drivers, selection...

Mahmood et al (2022). Multi-omics revolution to promote plant breeding efficiency. Front Plant Sci.

Integration: motivation and challenges

• Integrative genomics is about aggregating heterogeneous data in a statistical fashion.

- Take advantage of the vast amount of available data
 - Data access (local/national regulation, infrastructures...)
 - Data representation (structuration, ontologies...)
 - -> Need of common representation framework
- Improve our understanding of biological phenomena
 - Data heterogeneity (technology, format, biological meaning, stat. distribution...)
 - Data complexity (dependances/independances, ad-hoc assumptions...)
 - Amount a data (time/memory consuming)
 - -> Need of new analysis methods/algorithms

Integration: how?

The Life Sciences Linked Open Data Cloud from lod-cloud

Improve our understanding of biological phenomena

Take advantage of the vast amount of available data

- Semantic Web = framework for:
 - integrating data and knowledge
 - querying
 - reasoning

Integration approaches

Integration approaches: the good one?

- Integration methods are not unique:
 - comparisons exist... for a given application
 - parametrization need expertise
- Integration methods are not magic!
 - check design and confounding factors
 - perform specific data pre-processing for each omic
 - impute missing values* (different meaning → different strategy)
 - choose the integration strategy based on specific objectives and the data
 - (ex. matching between omics) → still no standard pipelines

Integration strategies

Integration strategies - Late

Pros:

- avoid (numerous) challenges of direct omics integration
- use tools designed specifically for each omics
- classical approaches can be used to combine results

Cons:

- cannot capture inter-omics interactions
- complementarity information between omics is not exploited

Integration strategies - Early

Inspired from: Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.

Integration strategies – Mixed: How does that work?

Transform independently each omics dataset into a simpler representation before integration.

Pros:

- new representation is less dimensional and less noisy
- less heterogeneity between omics
- classical approaches can be used on combined representation Cons :
- choice of the transformation method is not trivial
- information loss during transformation
- correspondence between omics in the new representation space

Semantic web / knowledge graph - applications

Scheme of the methodology. First, we define the biological entities (genes/diseases/compounds) to be connected and the specific context to be explored.

Then a source-target network is derived by traversing all the paths available from the source to the target nodes of a given metapath.

The vicinity of each node in the network is then explored by a random walker.

Finally, embeddings are evaluated and characterized.

Take home message

Applications:

Integrative genomics aims to identify patterns, relationships, and interactions between genes, proteins, and other molecular components or organisms.

Design:

Metadata

- document everything for confounding effect
- metadata structure

Design in advance the analysis and the research questions – overview of the downstream analysis.