Homework1 Rostagno File2

295706

November 7, 2024

Esercizio 1

• Punto 1: Dopo aver impostato correttamente i parametri forniti, ho simulato un campione di 1000 elementi come richiesto di una Bernulli. Successivamente ho simulato un campione di una poisson o un campione di una gamma in base se fosse presente un 1 o uno 0 in ogni posizione del campione Bernoulli. Infine ho plottato la cdf tramite il comando R ecdf().

Figure 1: Stima monte carlo della CDF

• Punto 2 : Una volta ottenuto il vettore campione Y, ho calcolato la probabilità che gli elementi del vettore fossero fossero presenti nell'intervallo richiesto. Di conseguenza ho contato quanti valori di Y fossero presenti nell'intervallo e ho diviso per il numero totale di elementi del vettore.

Stesso procedimento eseguito per il secondo intervallo condizionato, con la differenza che qua ho usato solo gli elementi di Y generati dagli elementi di Z uguali a 0.

Ho ottenuto che la prima probabilità vale 0.173 mentre la seconda vale 0.172. Plausibile in quanto il vettore Z è una Bernoulli di probabilità 0.5. Successivamente devo stimare la varianza, possiamo dire che se un campione cade nell'intervallo è un successo altrimenti no, quindi come una Bernoulli. Di conseguenza la varianza di una Bernoulli è $Var = p \cdot (1-p)$ ed essendo applicata su n campioni diventa: $\hat{Var} = \frac{p \cdot (1-p)}{n}$, dove p rappresenta le due probabilità precedentemente calcolate. Ottengo che la prima varianza vale 0.000143071, mentre la seconda vale 0.0002756526.

• Punto 3: Devo nuovamente calcolare delle probabilità condizionate, ma sta volta uso il teorema di Bayes che nel nostro caso diventa:

$$f(Z = 0 \mid Y \in [1.5, 3.5]) = \frac{f(Y \in [1.5, 3.5] \mid Z = 0) \cdot f(Z = 0)}{f(Y \in [1.5, 3.5])}$$

Quindi calcolo singolarmente le varie probabilità e ottengo nel caso Z=0 una probabilità di 0.6353276, mentre nel caso di Z=1 ottengo 0.3646724. Ovviamente sommano a 1.

• Punto 4: Ho calcolato i quantili tramite l'inversa generalizzata: ho creato una funzione che dato in input un campione e il valore di probabilità di cui si vuole calcolare il quantile, ordina in maniera crescente il campione e verifica che

$$F^{-1}(u) = \inf\{x : F(x) \ge u\}$$

Ottenendo per Y i seguenti quantili:

10%	20%	50%	75%
1.000000	2.000000	3.977563	5.236074

Ottenendo per Z i seguenti quantili:

		0	
10%	20%	50%	75%
0	0	0	1

• Punto 5: Dato un vettore di punti y, devo calcolare rispetto ai campioni poisson e gamma separatamente la probabilità di ottenerli. Creo un ciclo per i Poisson e ottengo un vettore che in ogni posizione memorizza la probabilità di ottenere un punto y rispetto al campione Poisson dato. Creo un ciclo per i gamma e tramite il comando dgamma() calcolo la probabilità di ottenere quel valore. Infine plotto le due densità:

Figure 2: Stima monte carlo della gamma e della Poisson

Esercizio 2

• **Punto 1**: Imposto i vari parametri iniziali e scrivo le funzioni della logistic-normal. Per trovare il valore massimo da usare nel metodo accept-reject ho utilizzato il comando optimize(). Dopodichè ho impostato un ciclo while che mi trovasse n=10 campioni come da richiesta. Simulo le variabili y e u come uniformi nei corrispettivi intervalli [a,b] e $[0,M_1]$. Infine imposto la condizione che se il valore di u è minore della funzione calcolata in y allora accetto y come campione. Il campione da me ottenuto è:

$$\left[\begin{array}{l} 0.5248998, 0.9051011, 0.6753934, 0.9386260, \\ 0.4489482, 0.6732017, 0.9271019, 0.7919059, \\ 0.8590266, 0.8970273 \end{array} \right]$$

Successivamente ho svolto un plot grafico generale su 10000 simulazioni imitando quello che è stato mostrato a lezione.

Figure 3: campioni accettati e non

• **Punto 2**: Imposto la prior di mu, la verosomiglianza e l'integrale del loro prodotto in modo da poter ottenere la a posteriori di mu secondo questa proporzione:

$$f(\mu|y) = \frac{f(y|\mu)f(\mu)}{\int f(y|\mu)f(\mu) d\mu} = \frac{f(y|\mu)f(\mu)}{f(y)}$$

Per calcolare la verosomiglianza ho utilizzato la funzione sapply() che mi permetteva di calcolare per ogni campione la logistic-normal in modo da farne poi il prodotto, mentre per il denominatore ho utilizzato integrate(). Ho utilizzato la log-verosomiglianza per problemi sui numeri(a volte mi dava tutti zeri).

Infine ho plottato la a posteriori di μ :

Figure 4: Posteriori di μ con 10 campioni (integra a 1)

Successivamente ho ricalcolato il massimo della funzione con optimize() e ho utilizzato nuovamente il metodo accept-reject per simulare. Ho generato delle variabili uniformi negli intervalli [0,3] e $[0,M_2]$ (siccome osservando dal grafico oltre questo intervallo la posteriori tende a zero, di conseguenza non ci sarebbero campioni accettati). Dopodichè ho verificato la condizione del metodo accept-reject e su 10000 simulazioni ne sono state accettate 2727. Durante questo procedimento non ho utilizzato la a posteriori ma il suo kernel (indicato nel codice come posteriori non normalizzata) calcolato in questo modo:

$$f(\mu|y) \propto f(y|\mu)f(\mu) = k(\mu|y)$$

Ovvero il prodotto tra la verosomiglianza e la prior di μ . Infine ho plottato il kernel (linea nera che non integra ovviamente a 1) e la densità dei campioni accettati (linea rossa che integra a 1):

Figure 5: Kernel di μ con 10000 simulazioni

• Punto 3:Ho ripetuto gli stessi passaggi del punto 1 solamente che sta volta ho ottenuto n=100 campioni.

0.8200730	0.9766341	0.5195689			
0.9149938	0.8464283	0.3580351	0.3558162	0.7862829	0.1810185
0.5289565	0.3719082	0.7550035	0.8424244	0.4989451	0.7289479
0.9395934	0.9243186	0.8968904	0.4723443	0.6836072	0.7331385
0.6235714	0.7779817	0.5614645	0.8361606	0.8083573	0.9204226
0.7073175	0.6153744	0.5216030	0.5210493	0.7945621	0.8267510
0.6523458	0.9802073	0.8395061	0.4547318	0.9198564	0.7711883
0.3464938	0.7902977	0.8326690	0.4742612	0.8156803	0.4158713
0.6593640	0.5223830	0.8117120	0.4838693	0.5465645	0.6496274
0.6366217	0.7724653	0.5748576	0.7193799	0.8518997	0.6583162
0.4673837	0.5511715	0.9426912	0.8801333	0.9472494	0.7564934
0.6702257	0.3384507	0.8555560	0.7313662	0.8793952	0.4595126
0.6195584	0.8676528	0.3963593	0.8223757	0.9525271	0.8349073
0.8504673	0.6986789	0.8230364	0.2825807	0.6507637	0.7686445
0.4457116	0.7939180	0.7037669	0.2683472	0.9384173	0.8597782
0.3220384	0.6206862	0.8668681	0.8343941	0.7431865	0.8395818
0.7519205	0.5881544	0.9404489	0.8170014	0.8044540	0.6936061

Successivamente ho ripetuto i passaggi del punto 2 ma ricalcolando il massimo e adattando la a posteriori ai nuovi campioni. Ho ottenuto 1264 campioni accettati e la nuova a posteriori diventa:

Figure 6: Posteriori di μ con 100 campioni

Infine ho plottato la prior di μ in modo da poterla paragonare con le due a posteriori:

Figure 7: Prior di μ

• **Punto 4**: Imposto i parametri dati e ottengo un campione di una Beta(1.2,1.2) con il comando rbeta(). Successivamente applico il metodo dell'importance sampling che consiste nello stimare E(X) tramite la formula:

$$\frac{\sum_{i=1}^{n} \frac{h(x_i)f(x_i)}{g(x_i)}}{n} \approx E_g\left(\frac{h(X)f(X)}{g(X)}\right) = E_f(h(X))$$

Dove $h(x_i) = x_i$

 $f(x_i)$ è la nostra logistic-normal

 $g(x_i)$ è la densità della nostra beta

n è il numero di campioni

 x_i sono i valori campionati dalla beta

Quindi sostituisco con i miei valori e ottego che l'attesa di X è 0.7486497.