

AFGL-TR-77-0308 ENVIRONMENTAL RESEARCH PAPERS, NO. 621

Persistence, Runs, and Recurrence of Sky Cover

IVER A. LUND DONALD D. GRANTHAM

30 December 1977

Approved for public release; distribution unlimited.

METEOROLOGY DIVISION PROJECT 6670

AIR FORCE GEOPHYSICS LABORATORY

HANSCOM AFB., MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

	(a)-	
	Unclassified Environment	fal research papers,
0	SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)	A WASHINGTON THE RESIDENCE OF THE PROPERTY OF
(14)	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
4	AFGL-TR-77-0368, AFGL-ERP-621	CIG-FNT'S CATALOG NUMBER
		FE OF REPORT & PERIOD COVERED
(6)	PERSISTENCE, RUNS, AND RECURRENCE	cientific Interim
9	OF SKY COVER &	ERFORMING ORG. REPORT NUMBER
-	AND THE PROPERTY OF THE PROPER	CRP No. 621V
(10)	Iver A/Lund	
0	Donald D./Grantham	
1	Air Force Geophysics Laboratory (LYD)	POGRAM ELEMENT PROJECT, TASK
	Hanscom AFB,	2101F 6700904 (7) Ø9
	Massachusetts 01731	
	Air Force Geophysics Laboratory (LYD)	Ø Dec 77
	Hanscom AFB, Massachusetts 01731	52
	14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. S	ECURITY CLASS. (of this open)
	T .	Inclassifica 12 15 5p
	15a.	DECLASSIFICATION DOWNGRAPING
	16. DISTRIBUTION STATEMENT (of this Report)	
	A	
	Approved for public release; distribution unlimited.	
		don-
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Repo	m) D
		DRO!
		IIV III
	18. SUPPLEMENTARY NOTES	APR 26 1978 kg
		UULS 11 V LS (U
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
	Sky cover Persistence probabilities	
	Recurrence probabilities	
	Duration of cloudiness Clouds	
/	20. ASS RACT (Continue on reverse side if necessary and identify by block number)	
	A total of 511,056 hourly observations of total sky thirteen-year period at nine stations, was studied to of	
	standing of the characteristics of persistence, runs, a	nd recurrence. Each
	hourly total sky cover observation was categorized as (clear), less than or equal to three-tenths, greater that	
	tenths, or ten-tenths (overcast). Probabilities of each	category were estimated
	from relative frequencies determined from this large compared with some theoretical models. The models	
	DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassi	

469 578

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Hu

20. (Cont)

estimate probabilities that any of the above sky cover categories will be observed for sequences of x hours, or more; for exactly x hours; or at time t and also at time t+x hours.

Unclassified

Preface

The authors are grateful to James F. Atkinson, Leonard J. Natoli, Kenneth C. Zwirble, Analysis and Computer Systems, Inc., John F. Kellaher, Air Force Geophysics Laboratory, and Miss Melinda A. Zouvelos, Student Aid, Lower University, for expert computational support and to the USAF Environmental Technical Applications Center and the National Weather Service for hourly sky cover data.

Contents INTRODUCTION 9 DATA 2. 10 DATA PROCESSING 11 PERSISTENCE 11 4.1 Observed 4.2 Modeled 25 5. RUNS 30 5.1 Observed 30 5.2 Modeled 39 6. RECURRENCE 42 6.1 Observed 42 6.2 Modeled 49 7. REMARKS 51 REFERENCES 52

Location of the Nine Stations Whose Winter and Summer Hourly Observations of Total Sky Cover Were Studied

Relative Frequencies of Success, Given x Hours of Consecutive Successes Have Occurred, in Winter (a) and Summer (b)

Illustrations

10

17

		Illustrations
3.	Relative Frequencies of x Hours of Consecutive Successes, in	
	Winter (dots) and in Summer (X's), When Zero-tenths Sky Cover (clear) is Regarded as a Success	23
4.	Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), When LE Three-tenths Sky Cover is Regarded as a Success	23
5.	Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), When GE Eight-tenths Sky Cover is Regarded as a Success	24
6.	Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), When Ten-tenths Sky Cover (overcast), is Regarded as a Success	24
7.	Relative Frequencies of Success Given Exactly x Hours of Consecutive Success Have Occurred, in Winter (a) and	
8.	Summer (b) Relative Frequencies of a Success, Zero-tenths Sky Cover (clear)	40
	# Hours Later Given a Success Has Occurred, in Winter (dots) and in Summer (X's)	42
9.	Relative Frequencies of a Success, LE Three-tenths Sky Cover & Hours Later Given a Success has Occurred in Winter (dots) and in Summer (X's)	43
10.	Relative Frequencies of a Success, GE Eight-tenths Sky Cover, & Hours Later Given a Success Has Occurred in Winter (dots) and in Summer (X's)	
1.	Relative Frequencies of a Success, Ten-tenths Sky Cover	43
	(overcast), & Hours Later Given a Success Has Occurred, in Winter (dots) and in Summer (X's)	44
		Tables
1.	Sky Cover Categories	11
2.	Relative Frequencies of Success Given that x Consecutive Successes Have Occurred, RF(S S _x), Obtained From the Data Sample When Zero-tenths Sky Cover (clear) is	
3.	Considered a Success Relative Frequencies of Success Given that x Consecutive	13
	Successes Have Occurred, RF(S S _X), Obtained From the Data Sample When LE Three-tenths Sky Cover is Considered a	
4.	Success Relative Frequencies of Success Given that x Consecutive	14
	Successes Have Occurred, $RF(S S_x)$, Obtained From Data Sample When GE Eight-tenths Sky Cover is Considered a Succession	s 15

5.	Relative Frequencies of Success Given that x Consecutive Successes Have Occurred, $RF(S S_x)$, Obtained From the Data Sample When Ten-tenths Sky Cover (overcast) is Considered a Success	16
6.	Median Values of RF($S S_X$) Obtained From the Data Samples (Tables 2, 3, 4, and 5) and Probability Estimates $\hat{P}(S S_X)$ Determined From Subjectively Drawn Curves of the Medians Shown in Figure 2	18
7.	Relative Frequencies of x Consecutive Successes, $RF(S_x)$, Obtained From the Data Sample When Zero-tenths Sky Cover (clear) is Considered a Success	19
8.	Relative Frequencies of x Consecutive Successes, $RF(S_x)$, Obtained From the Data Sample When LE Three-tenths Sky Cover is Considered a Success	20
9.	Relative Frequencies of x Consecutive Successes, $RF(S_x)$, Obtained From the Data Sample When GE Eight-tenths Sky Cover is Considered a Success	21
0.	Relative Frequencies of x Consecutive Successes $RF(S_x)$, Obtained From the Data Sample When Ten-tenths Sky Cover (overcast) is Considered a Success	22
11.	The Minimum Number of Hours that Each Sky Cover Category was Estimated to Persist, at Selected Probability Levels (see text)	28
12.	The Minimum Number of Hours that Each Sky Cover Category was Observed to Persist, Given that the Category is Observed, at Selected Probability Levels (see text)	29
13.	Observed Number of Runs, n(FS _x F), of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When Zero-tenths Sky Cover (clear) is Considered a Success	31
14.	Observed Number of Runs, n(FS _x F), of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When LE Three-tenths Sky Cover is Considered a Success	32
15.	Observed Number of Runs, n(FS _x F), of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When GE Eight-tenths Sky Cover is Considered a Success	33
16.	Observed Number of Runs, n(FS _x F), of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When Ten-tenths Sky Cover (overcast) is Considered a Success	34
17.	Relative Frequency of Success Given a Failure and x Hours of Success, RF(S FS _x), Obtained From the Data Sample When Zero-tenths Sky Cover (clear) is Considered a Success	35
18.	Relative Frequency of Success Given a Failure and x Hours of Success, RF(S FS _x), Obtained From the Data Sample When LE Three-tenths Sky Cover is Considered a Success	36
19.	Relative Frequency of Success Given a Failure and x Hours of Success, RF(S[FS _x), Obtained From the Data Sample When GE Eight-tenths Sky Cover is Considered a Success	37
20.	Relative Frequency of Success Given a Failure and x Hours of Success, RF(S FS _x), Obtained From the Data Sample When Ten-tenths Sky Cover (overcast) is Considered a Success	38

Tables

		Tables
21.	Median Values of RF(S \mid FS $_{x}$) Obtained From the Data Sample (Tables 17, 18, 19, and 20) and Probability Estimates $\hat{P}(S\mid$ FS $_{x}$) Determined From Subjectively Drawn Curves of the Medians Shown in Figure 7	41
22.	Relative Frequency of the Recurrence of a Success ℓ Hours After a Success Has Occurred, RF($S_{\ell} S$), Observed in the Data Sample and Estimated Through the Use of Eq. (17) When Zero-tenths Sky Cover (clear) is Considered a Success	45
23.	Relative Frequency of the Recurrence of a Success ℓ Hours After a Success, Has Occurred, RF($S_{\ell} S$), Observed in the Data Sample and Estimated Through the Use of Eq. (17) When LE Three-tenths Sky Cover is Considered a Success	46
24.	Relative Frequency of the Recurrence of a Sucess & Hours After a Success Has Occurred, RF(S& S), Observed in the Data Sample and Estimated Through the Use of Eq. (17) When GE Eight-tenths Sky Cover is Considered a Success	47
25.	Relative Frequency of the Recurrence of a Success ℓ Hours After a Success Has Occurred, RF($S_{\ell} S$), Observed in the Data Sample and Estimated Through the Use of Eq. (17) When Ten-tenths Sky Cover (overcast) is Considered a Success	
26.	Nine-station Median Relative Frequency of Each Sky Cover Category for Each Hour of the Day	48 50
27.	The "a'" Values Used in Eq. (17) to Find the Curves Shown in Figures 8 through 11	50

Persistence, Runs, and Recurrence of Sky Cover

1. INTRODUCTION

Duration, persistence, runs, and recurrence are all interrelated. For this study, they have been defined as follows: duration-continuous successes; persistence-consecutive successes separated by one hour; runs-consecutive successes separated by intervals of one hour beginning and ending with failure; and recurrence-successes occurring at time t and also at time t+x hours.

This study is part of a more comprehensive investigation conducted to obtain a better understanding of persistence, runs, and recurrence of weather events. Duration could not be studied because the data were observed at hourly intervals. Of major interest are those weather events which are usually recorded in categories, for example; precipitation recorded as none, light, moderate, or heavy; or sky cover recorded as clear, scattered, broken, or overcast. Persistence, runs, and recurrence of precipitation are described in a paper by Lund and Grantham. 1

This report includes tables of observed relative frequencies of four sky-cover categories and models for estimating probabilities of each category. The models provide answers to such questions as: What is the probability of observing a sequence of more than five hours of overcast sky; of observing a run of exactly five hours of

⁽Received for publication 20 December 1977)

^{1.} Lund, I.A., and Grantham, D.D. (1977) Persistence, runs, and recurrence of precipitation, J. Appl. Meteor. 16:346-358.

overcast; and, of observing overcast at time t and also at time t+5 hours? The models require a knowledge of the unconditional probability of the event, in this case a sky-cover category, and a measure of the temporal correlation between occurrences of sky-cover categories.

2. DATA

Records of hourly total sky cover observations taken in winter (December, January, February) and summer (June, July, August) during the 13-year period 1951 through 1963, at the following nine stations, shown in Figure 1, were studied:

LGA LaGuardia Airport, New York, NY,

JFK Kennedy International Airport, New York, NY,

EWR Newark Airport, NJ,

PHL Philadelphia International Airport, PA,

BAL Baltimore-Washington International Airport, MD,

DCA National Airport, Washington, DC,

ADW Andrews AFB, MD,

RIC Byrd Field, Richmond, VA,

RDU Raleigh-Durham Airport, NC.

Figure 1. Location of the Nine Stations Whose Winter and Summer Hourly Observations of Total Sky Cover Were Studied

Each hour, approximately on the hour, a weather observer at each of the above stations went outdoors to make a regular hourly observation. One of the weather elements recorded is total sky cover. The Federal Meteorological Handbook² describes how the observations are taken. The four sky-cover categories studied are shown in Table 1. The abbreviations LE and GE stand for "less than or equal to" and "greater than or equal to", respectively. The two ends of the frequency distribution were studied separately to determine whether temporal correlation is a function of cloud amount.

Table 1. Sky Cover Categories

Category	Total Sky Cover
1	0.0 (clear)
2	LE 0.3 (0.0, 0.1, 0.2, and 0.3)
3	GE 0.8 (0.8, 0.9, and 1.0)
4	1.0 (overcast)

3. DATA PROCESSING

Each hourly sky cover observation was categorized as follows: Zero-tenths (clear), less than or equal to (LE) three-tenths, greater than or equal to (GE) eighttenths and ten-tenths (overcast). Some of the stations had no missing observations, others only a very few. These few observations were filled in by estimating the sky cover from observations taken at nearby stations and observations taken before and after the missing observations. There were 28,080 [(24 observations/day) \times (90 days/season) \times (13 seasons)] observations, in winter and 28,704 [(24 observations/day) \times (92 days/season) \times (13 seasons)] observations, in summer, processed for each station.

4. PERSISTENCE

4.1 Observed

The occurrence of a given sky cover category was denoted as a success, S, and non-occurrence as a failure, F. The relative frequency of one success, RF(S₁), is found from the data by dividing the number of times the sky cover category occurred,

2. U.S. Department of Commerce (1975) Federal Meteorological Handbook No. 1, Surface Observations, U.S. Government Printing Office, Washington, D.C. 309 pp.

 $n(S_1)$ by the sample size N. The relative frequency of two successes in a row $RF(S_2)$, is found from the data by dividing the number of times a success was followed by a success, $n(S_2)$, by the sample size N minus the end effect, in this case 13, because there were 13 years when the next season's data were not used to determine the sky cover on the first hour of the next season. The relative frequency of x successes in a row, $RF(S_x)$, is found by dividing the number of times x consecutive successes was observed, $n(S_x)$, by the sample size, N, minus the end effects, in this case 13(x-1).

$$RF(S_{x}) = \frac{n(S_{x})}{N-13(x-1)} \approx \frac{n(S_{x})}{N}$$
(1)

This processing of the data was done for all categories for all nine stations in both winter and summer.

The relative frequency of a success given that x consecutive successes have occurred, $RF(S|S_x)$, is equal to the relative frequency of x+1 consecutive successes, $RF(S_{x+1})$ divided by the relative frequency of x consecutive successes, $RF(S_x)$, that is,

$$RF(S|S_x) \approx \frac{RF(S_{x+1})}{RF(S_x)}$$
 (2)

The conditional relative frequencies $RF(S|S_X)$ were computed for periods up to 72 hours. Selected values for the first 15 hours are shown for all nine stations and all four sky cover categories in Tables 2, 3, 4, and 5. The median relative frequencies are indicated with asterisks.

The first column in each of the tables gives $RF(S|S_0)$ which is defined as RF(S), the unconditional relative frequency of the given sky cover category. Although both the unconditional and conditional relative frequencies vary from station to station, there is often no consistent pattern to the variations. It was subjectively decided to assume that the data from all stations were drawn from the same sample and to use the median values to obtain estimates of the conditional probabilities $\hat{P}(S|S_x)$, required for obtaining estimates of joint probabilities, $\hat{P}(S_{x+1})$, that is, $\hat{P}(S_xS)$.

Table 2. Relative Frequencies of Success Given that x Consecutive Successes Have Occurred, RF(S|S_x), Obtained From the Data Sample When Zero-tenths Sky Cover (clear) is Considered a Success. Median values are identified with asterisks

					×	x (Hours)				
Season	Station	0	1	3	5	7	6	11	13	15
Winter	LGA	. 2481	. 846	. 869	. 872	. 871	. 875	. 871	. 867	. 868
	JFK	.2501	. 847	. 867	.871	.870	. 870	. 863	. 864	. 862
	EWR	. 2634*	*098	878	. 884	. 881	878	. 875	. 873	. 875
	PHL	. 2450	.840	. 865	.870	.875	. 876	. 867	.870	. 880
	BAL	. 2737	998.	.889	968.	. 897	. 897	. 895	. 894*	. 892
	ADW	. 2540	*098	.881*	. 885*	. 885*	. 884*	. 883*	. 883	. 883*
	DCA	. 2716	*098	. 883	. 893	. 893	968.	006.	. 901	. 899
	RIC	. 3073	. 889	.901	806.	806.	806.	906	. 904	. 903
	RDU	.3106	. 886	. 904	. 914	. 915	.915	.911	. 913	. 915
Summer	LGA	. 1867	.782	.816	. 822	. 823	. 837	. 820	. 835	. 837
	JFK	. 1833	.775	. 803	908	908	. 822	. 837	. 847	. 839
	EWR	. 2078*	. 803	.826	. 832	. 835	.851	. 852	.861	. 867*
	PHL	. 1920	.772	. 804	. 825*	.831*	.843*	. 847*	. 859*	. 887
	BAL	. 2301	908	.840	. 849	.851	. 863	. 858	. 871	. 890
	ADW	. 1883	797	. 651	. 819	.831*	. 842	. 839	. 867	. 883
	DCA	.2186	. 793*	. 826	. 844	. 847	. 853	. 862	. 872	. 888
	RIC	. 2093	908	.831	. 841	. 844	. 852	. 850	. 854	. 852
	RDU	.2101	.791	*820*	. 824	. 825	. 818	.816	. 824	. 814

Table 3. Relative Frequencies of Success Given that x Consecutive Successes Have Occurred, RF($S|S_x$), Obtained From the Data Sample When LE Three-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

				×	x (Hours)					
Season	Station	0	1	3	5	7	6	111	13	15
Winter	LGA	.3739	. 882	. 904	.910	. 913	. 912	.911	.911	. 912
	JFK	.3821	. 877	006	.910	. 914	606	606	806	606
	EWR	.3895	. 885*	. 907	.916	.917*	. 917	.915	.915	. 917
	PHL	.3636	.870	668.	906	806.	806	806	. 907	. 910
	BAL	.3911	. 887	. 914	*026	. 922	. 924	. 922	.924*	. 926*
	ADW	.3809	. 889	*016	.921	906	. 921*	. 921*	. 925	. 926*
	DCA	.3849*	. 884	.911	*026	. 925	.926	. 927	. 930	929
	RIC	. 4045	.897	.920	. 926	. 927	. 928	. 927	. 927	. 930
	RDU	.4194	906	. 925	. 933	. 937	. 937	. 936	. 935	. 934
Summer	LGA	.3703	. 850	*880*	. 889	. 893	. 894	. 893	. 892	. 895
	JFK	.3719	.851*	. 885	. 892	*868*	. 895	. 895	968	. 903
	EWR	.3920	. 859	. 887	968.	006	. 901	*668	. 903	. 903
	PHL	.3645	. 835	. 871	. 885	. 887	968	006	. 907	. 910
	BAL	. 4270	. 855	. 886	. 899	. 907	.911	.915	.920	. 926
	ADW	.3646	. 853	. 874	. 887	968.	006	. 904	*805*	906
	DCA	.4066	. 852	988.	. 897	. 903	606	. 914	.916	. 925
	RIC	.3729*	. 842	.875	. 891*	. 894	* 897*	888.	006	* 406
	RDU	. 3923	. 842	. 875	. 884	. 889	068.	. 893	. 894	* 206.

Table 4. Relative Frequencies of Success Given that x Consecutive Successes Have Occurred, RF($S|S_x$), Obtained From Data Sample When GE Eight-tenths Sky Cover Is Considered a Success. Median values are identified with asterisks

					x (H	x (Hours)				
Season	Station	0	1	က	2	7	6	111	13	15
Winter	LGA	. 4962	*606	.931	.940	. 944	. 946	. 948	. 947	. 947
	JFK	. 5022*	906	.930	.940	. 945	. 947	. 948	. 948	. 947
	EWR	. 5073	.910	. 934	. 941*	. 945	*646*	.951*	. 949	. 949
	PHL	. 5306	. 904	.933*	. 943	. 948	.951	. 952	.952*	. 953
	BAL	. 4988	806	. 932	. 939	. 946*	.949*	. 952	. 952*	. 937
	ADW	. 5068	. 912	.933*	. 940	. 945	. 947	.951*	. 951	. 952*
	DCA	. 5165	.910	.934	. 942	*946*	096	. 951*	. 952*	. 953
	RIC	9009	.913	. 935	. 943	. 947	. 950	. 952	. 954	. 954
	RDU	.4761	806.	.933*	. 941*	.946*	. 948	.950	. 953	. 953
Summer	LGA	. 4118	. 865	. 903	. 914	. 922	. 930	. 934*	. 935	. 936*
	JFK	. 4376	. 871	. 903	.916	. 925	. 930	. 935	. 938	. 940
	EWR	. 4282	.871	. 903	. 918	. 925	. 931	. 937	.940	. 941
	PHL	. 4387	.862*	. 899	. 912	.916	. 924	. 930	. 933	. 934
	BAL	.3738	.846	. 889	. 907	. 918	. 927*	. 934*	. 937	. 938
	ADW	. 4344	.865	*882*	*606	.919*	. 927*	. 930	. 936*	*986*
	DCA	. 4033	. 852	. 890	. 905	. 916	. 925	. 934*	. 938	. 942
	RIC	.4160*	.850	. 892	806.	*616.	. 924	. 930	. 934	. 935
	RDU	.3858	. 844	. 885	. 894	906	. 918	.924	. 928	. 930

Table 5. Relative Frequencies of Success Given that x Consecutive Successes Have Occurred, RF(S|S_x), Obtained From the Data Sample When Ten-tenths Sky Cover (overcast) is Considered a Success. Median values are identified with asterisks

					×	x (Hours)				
Season	Station	0	1	3	2	2	6	11	13	15
Winter	LGA	. 4091	. 892	.921	. 933*	.939*	. 941*	.940	. 937	. 937
	JFK	. 4114	. 894	. 922	. 933*	. 939*	.940	. 939	.940	. 936
	EWR	. 4262	*968	.924*	. 934	.940	. 941*	.942*	.940	.941
	PHL	. 4528	. 897	. 930	. 940	. 944	.946	. 947	. 947	. 947
	BAL	.4155	. 899	.924*	.934	*686	. 944	. 945	.946	. 945
	ADW	. 4246	. 897	.921	. 931	. 935	. 940	. 942*	.943	. 943*
	DCA	. 4395	*968	. 924*	. 934	. 939*	. 943	. 945	.946	. 946
	RIC	.4175*	. 899	.924*	. 933*	. 938	.940	. 943	. 945	. 945
	RDU	.3855	. 889	. 920	. 932	. 937	. 939	. 942*	. 944*	. 942
Summer	LGA	. 2801	.836	. 887	. 907	.916	. 923	. 926*	. 930	. 891
	JFK	. 3015	.837	. 880	. 899	*806	*026	. 923	*826*	. 927
	EWR	.3050	. 846	. 890	. 902	. 888	. 919	. 927	.964	. 929
	PHL	.3188	. 824*	. 877	.894	*806	. 943	. 921	. 927	. 883
	BAL	. 2526	. 825	.873*	*892*	606	. 923	. 971	. 930	. 934
	ADW	. 2889	. 817	. 862	. 883	. 902	.916	*926*	. 930	. 932
	DCA	. 2824*	. 812	998.	*892*	.912	.921	*926*	. 927	*826
	RIC	.2736	.815	. 864	. 865	. 928	. 907	.916	.921	. 929
	RDU	. 2534	962.	. 845	. 859	. 880	668.	.910	. 922	. 924

The median values of RF(S|S_x) for winter and summer are shown in Figure 2 for periods up to 15 hours. The median relative frequency, RF(S), of the most frequently occurring category, GE 0.8, was 0.5022 in winter and 0.4160 in summer. Because this is a frequently occurring category there were many long sequences of successes. The median conditional relative frequencies for GE 0.8, given in Table 6 and shown as x's in Figure 2, increase in magnitude for 13 hours in winter and 12 hours in summer. They never vary significantly, that is, by more than 0.015, for the next few hours after hour 15, therefore the estimated conditional probabilities are regarded as constant after hour 15. The conditional relative frequencies of the less frequently occurring categories are more variable as expected but they never depart from the hour 15 conditional relative frequencies by more than 0.069.

Sample relative frequencies of x consecutive successes, $RF(S_x)$, obtained from the data sample, are given in Tables 7, 8, 9, and 10. All of the relative frequencies for hours 1 through 70 are shown in Figures 3, 4, 5, and 6.

Figure 2. Relative Frequencies of Success, Given x Hours of Consecutive Successes Have Occurred, in Winter (a) and Summer (b). The curves were subjectively drawn

Table 6. Median Values of RF(S|S_x) Obtained From the Data Samples (Tables 2, 3, 4, and5) and Probability Estimates $\hat{P}(S|S_x)$ Determined From Subjectively Drawn Curves of the Medians Shown in Figure 2. Also shown are some probability estimates obtained from Gringorten's model

Table 7. Relative Frequencies of x Consecutive Successes, $RF(S_x)$, Obtained From the Data Sample When Zero-tenths Sky Cover (clear) is Considered a success. Median values are identified with asterisks

Winter LGA .248 .210 JFK .250 .212 EWR .263* .226 BML .274 .237 ADW .254 .213 ADW .254 .213 RIC .307 .273 RDU .311 .275 Median .263 .226 Summer LGA .187 .146 JFK .183 .148 EWR .208* .167 PHL .192 .148 ADW .188 .150		0	4	5	9	6	12	18	24	30	36	48	09	7.2
JFK . 250 EWR . 245 FHL . 245 BAL . 274 ADW . 254 ADW . 254 RIC . 307 RDU . 311 Median . 263 LGA . 187 LGA . 187 PHL . 192 BHL . 192 BAL . 230		. 181	. 157	. 137		. 0790	.0526	.0228	.0105	. 00517	.00178	. 000178	0	0
EWR . 263* PHL . 245 BAL . 274 ADW . 254 DCA . 272 RIC . 307 RDU . 311 Wedian . 263 LGA . 187 LGA . 187 PHL . 192 PHL . 192 BAL . 230 ADW . 188		. 182	. 158	. 138		.0790	.0514	. 0215	. 00973	. 00503	.00192	0	0	0
PHL . 245 BAL . 274 ADW . 254 DCA . 272 RIC . 307 REIC . 311 Median . 263 LGA . 187 LGA . 187 PHL . 192 BAL . 230 ADW . 188		*197*	. 173*	. 153*		.0924*	.0623	. 0278	.0129	. 00667	. 00278	. 000143	0	0
BAL . 274 ADW . 254 DCA . 272 RIC . 307 RDU . 311 Median . 263 LGA . 187 JFK . 183 EWR . 208* PHL . 192 BAL . 230 ADW . 188		. 177	. 153	. 133		. 0771	.0511	.0229	.0115	.00570	.00232	. 000606	.000178*	0
ADW . 254 BDCA . 272 BDCA . 307 RDU . 311 Median . 263 LGA . 187 LGA . 187 EWR . 208* PHL . 192 BAL . 230 ADW . 188		. 208	. 185	. 165		. 107	. 07 68	. 0389	. 0219	.0130	. 00759	. 00246	666000	.000143
DCA . 272 RIC . 307 RDU . 311 Median . 263 LGA . 187 LFK . 183 EWR . 208* PHL . 192 BAL . 230 ADW . 188		191	. 168	. 148		8060	.0627*	.0297*	.0155*	.00841*	.00433*	.00132*	.000892	.000464
RDU .311 RDU .311 Median .263 LGA .187 JFK .208* PHL .192 BAL .330 BAL .340		. 205	. 181	. 161		. 103	. 0743	.0392	.0219	.0124	00810	. 0017 7	.00103	. 0000607
Median .263 LGA .187 LFR .208* FWR .208* PHL .192 BAL .330 ADW .188		. 245	. 220	. 200		. 136	. 101	. 0555	.0321	.0177	. 007 63	.00136	. 0000357	0
LGA .187 LFK .183 EWR .208* PHL .192 BAL .230 ADW .188		. 247	. 224	. 203	. 186	. 142	. 108	.0636	.0386	.0228	. 0127	. 00417	. 000954	. 000143
LGA .187 JFK .183 EWR .208* PHL .192 BAL .230 ADW .188	. 226	. 197	. 173	. 153	. 135	.0924	. 0627	.0297	.0155	. 00841	. 00435	. 00132	871000,	0
. 208* . 208* . 230 . 230	. 146	. 117	. 0958	. 0787	. 0647	.0361	.0207	.00722	.00293	.00101	. 000453	0	0	0
. 208* . 230 . 230	. 142	. 113	. 0907	.0730	. 0589	.0310	.0178	.00648	.00258	.00136	. 000767	0	0	0
. 230	. 167	. 137	. 113	. 0935	6240.	. 0455	. 0281	.0120	. 00662	.00394*	.00237*	.00143*	. 00101	.000594
. 230	. 148	. 118	.0948	.0772	.0638	. 0367	. 0223	.0100*	.00624	.00439	. 00328	. 00202	. 00119	. 000454
. 188	. 186	. 153	. 128	. 109	. 0925	.0570	.0365	.0174	.0107	.00757	. 00527	.00286	.00161	. 00119
	. 150	. 121	9 260.	. 07 97	. 0653	. 0377	. 0223	.0100*	*96500	.00453	.00366	. 00234	.00112	.000664
.219	. 173	. 141	. 116	9260.	. 0823	.0499	.0315	.0150	.00934	.00628	.00394	.00150	. 000279	0
. 209	. 169	. 139	. 115	. 0962	8080	.0486	.0301	.0117	.00537	.00300	. 00216	.00126	*869000	.000279*
.210	. 166*	. 134*	. 110*	*9060	. 0747*	. 0414*	.0227*	.00687	. 003 10	.00181	.000802	. 000105	0	0
Median . 208 . 1	. 166	. 134	. 110	9060	. 0747	.0414	.0227	.0100	.00596	.00394	. 00237	. 00143	869000	. 000279

Table 8. Relative Frequencies of x Consecutive Successes, $RF(S_x)$, Obtained From the Data Sample When LE Three-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

Station 1 2
LGA .374 .330 .296 .267 .243 .221
. 382 . 335 . 299 . 269 . 245 .
. 389 . 345 . 310 . 281 .
. 364 .316 .282 .254 .
. 391 . 347 . 314 . 287 .
. 381 .338 .307* .279
.385* .340* .307* .280* .
.404 .363 .331 .304 .
.419 .380 .349 .323
Median .385 .340 .307 .280 .256
.370 .315 .274 .241
.372 .317* .277* .245*
.392 .337 .295 .262
.364 .304 .261 .228
.427 .365 .320 .283
ADW .365 .311 .270 .236 ,208
.407 .346 .303 .268
.373* .314 .271 .237
.392 .330 .285 .249
Median .373 .317 .277 .245 .218

Table 9. Relative Frequencies of x Consecutive Successes, $RF(S_x)$, Obtained From the Data Sample When GE Eight-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

Season	Station	-	2	3	4	2	9	6	12	18	24	30	36	48	09	72
Winter	LGA	.496	.451	.416	.387	.362	.340	. 286	. 243	. 175	. 125	. 0887	.0629	. 0355	.0206	.0118
	JFK	. 502*	. 455	. 420	.390	.365	.343	. 289	. 246	. 177	. 126	. 0883	.0618	. 0332	.0188	.0106
N.	EWR	. 507	. 462	. 427	. 399	. 374	.352	. 298	. 255	. 186*	. 133	.0942	6990	. 0367	.0211	.0126
	PHL	. 531	. 479	. 442	. 412	.387	365	.310	. 267	. 199	. 148	. 110	. 0827	.0490	.0298	.0170
	BAL	. 499	. 453	.419	.390	.365	.343	. 290	. 249	. 185	. 138	. 104*	. 0794*	.0483	.0299	.0178
	ADW	. 507	. 462	. 428	.399	. 374	.351*	*586*	. 253*	. 188	. 141	. 105	9640.	. 0465*	.0263*	.0146*
	DCA	.516	.470	.436	. 407	.382	.360	.304	.260	. 194	. 145	. 110	.0835	. 0497	. 0297	.0167
	RIC	. 501	. 457*	425*	.397*	.373*	.351*	. 299	. 257	. 194	. 146	. 110	. 0829	. 0499	.0294	.0167
	RDU	. 476	. 432	. 400	.373	.350	.329	. 278	. 238	. 178	. 133	. 0991	.0734	.0410	. 0221	.0116
	Median	. 502	. 457	. 425	. 397	.373	.351	. 296	. 253	. 186	. 138	. 104	.0794	.0465	.0263	.0146
Summer	LGA	.412	.356*	.317*	. 286*	.261*	. 238*	. 187*	. 152	. 102	9070.	.0498	. 0345	.0152*	. 00583	.00126
	JFK	. 438	.381	.340	. 307	. 280	. 257	. 203	. 164	. 113	. 0765	. 0522	.0348	.0152*	.00653*	.00293
	EWR	. 428	.373	.332	.300	. 273	. 251	. 199	, 162	. 112	. 0778	.0541	.0368	.0172	.00695	. 00272*
	PHL	. 439	.378	.334	.301	. 272	. 248	191	. 152	. 101*	*8690	.0489	.0339	.0147	. 00478	806000
	BAL	. 374	.316	. 277	. 246	. 221	. 201	. 155	. 125	. 0848	.0599	.0431	.0299	.0142	0.00670	.00311
	ADW	. 434	.376	.332	. 297	. 269	. 244	. 189	. 151*	. 102	.0070	.0483*	.0323*	.0162	.00845	.00381
	DCA	. 403	.343	300	. 267	. 240	. 217	. 167	, 134	. 0924	.0642	. 0447	.0311	.0165	.00855	.00388
	RIC	. 416*	.354	.310	. 277	. 249	. 226	. 175	. 140	. 0932	.0629	. 0425	.0284	.0136	. 00649	.00237
	RDU	.386	.326	. 284	.251	. 224	. 200	. 149	, 116	.0750	.0500	.0334	.0226	. 00977	.00332	. 000873
	Median	.416	.356	.317	. 286	.261	. 238	. 187	, 151	101	8690.	. 0483	. 0323	.0152	.00653	. 00272

Table 10. Relative Frequencies of x Consecutive Successes $RF(S_x)$, Obtained From the Data Sample When Ten-tenths Sky Cover (overcast) is Considered a Success. Median values are identified with asterisks

_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
7.2	. 00810	0100	. 0102	.0103	. 007 10	.00939*	.00950	. 00325	.00939	. 000279	.000524	0	*629000	806000	. 00119	. 00115	.00129	0	. 000629
09	.0137	. 0167	.0196	.0175	.0131	.0172	.0165*	.00846	.0165	.00241*	.00209	.00129	.00223	.00265	.00328	.00311	. 00276	. 000873	.00241
48	. 0227	*6920	. 0340	. 0300	.0241	. 0302	.0300	.0188	. 0269	. 00628	,00548	.00485	.00618*	99900	. 00649	. 00649	.00555	. 00342	.00618
36	. 0395	. 0469	0090	.0536	. 0472*	.0554	. 0509	.0400	. 0472	.0163	.0149	.0158	.0165	.0139*	.0139*	.0131	. 0117	. 0841	.0139
30	. 0559	. 0641	. 0815	. 07 18	*6590	.0751	0690	.0586	. 0659	. 0258	. 0232	. 0256	. 0247	. 0212	. 0213*	. 0208	.0186	.0131	.0213
24	. 0821	. 0915	. 112	. 0984	.0932*	. 103	. 0959	. 0847	. 0932	. 0390	.0362	. 0396	.0375	.0316	. 0322*	. 0321	. 0284	. 0205	. 0322
18	. 123	134*	. 157	. 137	. 132	. 144	. 135	. 120	. 134	. 0586	.0573	.0614	.0571	.0476	. 0495	.0502*	.0436	.0320	.0502
12	. 182	194	. 218	. 192	. 189	. 202	*061.	. 169	. 190	.0895	. 0901	. 0964	. 0899	. 0727	.0764	.0788*	. 0695	.0520	. 0788
6	. 219	. 232	. 257	. 228	. 227*	. 239	. 227*	. 204	. 227	. 113	. 115	. 123	. 116	. 0919	. 0975	*100*	. 0918	. 07 02	. 100
9	. 265	. 280	305	. 275*	. 276	. 289	. 275*	. 248	. 274	. 147	. 154	. 162	. 156	. 122	. 133*	. 132	. 126	. 104	. 133
2	. 284	300	. 325	. 294	. 297	. 309	. 295*	. 266	. 295	. 162	. 171	. 180	. 175	. 137	. 150*	. 148	. 143	. 121	. 150
4	.306	. 323	. 347	.316	. 320	. 333	.317*	. 287	.317	. 180	. 192	. 201	. 197	. 156	. 172*	. 168	. 163	. 142	. 172
3	.332	349	. 373	. 342	. 348	360	.343*	.312	. 343	. 203	. 218	. 226	. 225	. 178	. 200*	. 194	. 188	. 167	. 200
2	.365	. 382	. 406	. 374	.381	. 394	. 376*	. 343	.376	. 234*	. 252	. 258	. 263	. 208	. 236	. 229	. 223	. 202	. 234
1	. 409	. 426	. 453	. 415	. 425	. 439	. 417*	. 385	.417	. 280	301	305	319	, 253	. 289	. 282*	. 274	. 253	. 282
Station	LGA	EWR	PHL	BAL	ADW	DCH	RIC	ADU	Median	LGA	JFK	EWR	PHL	BAL	ADW	DCA	RIC	ADU	Median
Season	Winter									Summer									

Figure 3. Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), Where Zero-tenths Sky Cover (clear) is Regarded as a Success. The solid !ines are solutions to Eqs. (3) and (6) for Winter and the dashed lines are for Summer (see text)

Figure 4. Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), When LE Three-tenths Sky Cover is Regarded as a Success. The solid lines are solutions to Eqs. (3) and (6) for Winter and the dashed lines are for Summer (see text)

Figure 5. Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), When GE Eight-tenths Sky Cover is Regarded as a Success. The solid lines are solutions to Eqs. (3) and (6) for Winter and the dashed lines are for Summer (see text)

Figure 6. Relative Frequencies of x Hours of Consecutive Successes, in Winter (dots) and in Summer (X's), When Ten-tenths Sky Cover (overcast), is Regarded as a Success. The solid lines are solutions to Eqs. (3) and (6) for Winter and the dashed lines are for Summer (see text)

(

4.2 Modeled

The probability of a sequence of x hours of successes is sometimes estimated with the following first order Markov chain

$$\hat{P}(S_x) = P(S) \left[P(S|S_1) \right]^{x-1}$$
(3)

where $P(S \mid S_1)$ is the probability of a success given a success has occurred and x equals the number of hours.

The relative frequencies RF(S) and RF(S \mid S₁), obtained from the data, are given in the first two columns in Tables 2 through 5. The estimated conditional probabilities, $\hat{P}(S \mid S_1)$, shown in Table 6, were used to test Eq. (3). The model fit the observed values, within a few percent, for the first few hours but there were large differences between the model estimates and corresponding sample relative frequencies when probabilities of sequences of successes longer than a few hours were estimated. Figures 3 to 6 illustrate differences between model estimates and observed relative frequencies when the nine station median relative frequencies are used to represent the sample values. These figures illustrate the failure of Eq. (3) to adequately estimate long sequences of successes. For example, note the large departures of the first order Markov model estimates, labelled (3), from the sample relative frequencies of overcast sky cover shown in Figure 6.

To improve the model given in Eq. (3) the following axiomatic expressions can be used to estimate two and x hours of consecutive successes, respectively

$$P'(S_2) = P(S) P(S|S_1)$$
 (4)

$$P'(S_x) = P(S) P(S|S_1)...P(S|S_{x-1})$$
 $x \ge 3$ (5)

where $P(S \mid S_1)$ is the probability of a success given that a success occurred the previous hour and $P(S \mid S_{x-1})$ is the probability of a success following (x-1) hours of unbroken successes.

The probabilities required for the solution of Eq. (5) were estimated from the relative frequencies and it was assumed that the conditional probabilities were always constant beyond 15 hours. To estimate joint probabilities Eq. (5) was expressed as follows

$$\hat{P}'(S_{x}) = \hat{P}(S) \hat{P}(S | S_{x-1}) \qquad x = 2$$

$$\hat{P}'(S_{x}) = \hat{P}(S) \hat{P}(S | S_{1}) \dots \hat{P}(S | S_{x-1}) \qquad 3 \le x \le 15$$

$$\hat{P}'(S_{x}) = \hat{P}(S) \hat{P}(S | S_{1}) \dots \hat{P}(S | S_{14}) [\hat{P}(S | S_{15})]^{x-15} \quad x \ge 16$$
(6)

Curves were drawn for the points in Figure 2 and estimates of $\hat{P}(S \mid S_x)$ for use in Eq. (6) were obtained from the curves. These values are given in Table 6 in the rows labelled $\hat{P}(S \mid S_x)$. The winter curves in Figure 2 follow the median values very closely but the summer curves were drawn smoothly without following as near to the data points. The departures of the points representing the clear and LE threetenths categories from the subjectively drawn curves are not understood, but they may be related to the diurnal period in these two sky cover categories.

Solutions to Eq. (6) are shown by the curves in Figures 3 to 6. They are in better agreement with the relative frequencies than curves based on Eq. (3). This must be the case, because the probability estimates for Eq. (6) are based more closely on the relative frequencies. Modeling is involved in the smoothing of the relative frequencies and in the assumption that $P(S \mid S_x)$ is constant beyond 15 hours.

Gringorten³ simulated probability distributions by a Monte Carlo exercise and prepared charts for use in estimating the duration of weather events. These charts were used to estimate conditional probabilities of the four categories of total sky cover. Hour-to-hour correlation for this application of Gringorten's method was assumed to be 0.950 in winter and 0.932 in summer. Table 6 shows that the conditional probability estimates obtained by Gringorten's method are in generally good agreement with the observed values. One shortcoming of the method is that it is graphical. It is difficult to estimate the probabilities from the charts. A promising analytical method described in the treatise by Keilson and Ross⁴ needs further development before it can be applied to this problem. In the absence of conditional relative frequencies obtained from large data samples, Gringorten's method can provide suitable estimates of the probabilities required for the solution of Eq. (6). Because a large sample of data was available for this study, a smooth subjective fit to the relative frequencies was used to estimate the required probabilities.

Table 11 summarizes some of the information obtainable from Eq. (6) and the data points shown in Figures 3 to 6. It shows the number of hours, x, that each of the four sky cover categories was estimated, and observed, to persist, at six probability levels based on $\hat{P}(S_x)$ and $RF(S_x)$, respectively. For example, Table 11 shows that clear (0.0 sky cover) has a climatic occurrence probability of 0.2634, in winter. Therefore, more than 50% of the time clear would not be expected and a zero is entered in the table. However, more than 25% of the time clear is expected to be observed for at least one hour. Clear is expected to persist for 8, 14, 27, and 46 hours; 10%, 5%, 1%, and 0.1% of the time respectively, as can be seen from the solid curve based on Eq. (6) shown in Figure 3. The corresponding observed values are shown in parentheses in the table.

^{3.} Gringorten, I. I. (1966) A stochastic model of the frequency and duration of weather events, J. Appl. Meteor. 5:606-624.

Keilson, J., and Ross, H.F. (1975) Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes, Selected Tables in Mathematical Statistics Vol. III, American Mathematical Society, Providence, Rhode Island, pp 233-327.

The values given in Tables 11 and 12 are for east-coast stations. They apply elsewhere only to the extent that the probability of the event and the hour-to-hour correlation is the same.

Table 12 summarizes some of the information obtainable from the following equation,

$$\hat{P}(S_x|S) = \frac{P(S_{x+1})}{P(S)}. \tag{7}$$

This equation is used to estimate the conditional probability of observing a sequence of x hours of a weather category. It can be used to answer questions such as: given that it is clear, how many hours will it be before there is a 50% probability that the sequence of clear skies will be broken. The unconditional probability, P(S), is assumed to be known and $\hat{P}(S_x|S)$ must equal 0.50. Substituting, for example, the winter unconditional probability of observing clear, 0.2634, into Eq. (7), it becomes

$$0.50 = \frac{P(S_{x+1})}{0.2634} \tag{7a}$$

$$P(S_{x+1}) = 0.1317$$
 (7b)

Solutions to Eq. (6) for $\hat{P}(S_{x+1})$ for clear are shown in Figure 3. It can be seen that $\hat{P}(S_{x+1}) = 0.1317$ when $x+1 \approx 6$ hours, therefore, clear is expected to persist for more than 5 hours about 50% of the time. The dots in Figure 3 show values of $RF(S_x)$, for winter. It can be seen that $RF(S_x) = 0.1317$ when x=6 hours. At this point the model and the data are in good agreement.

Table 12 shows that from Eq. (7), when clear is observed, it is expected to persist 5, 11, 19, 24, 37, and 56 hours; 50%, 25%, 10%, 5%, 1%, and 0.1% of the time, respectively. Corresponding observed values are shown in parentheses.

The following equation can be used to estimate how long a sequence of successes is expected to persist, given that the sequence has just begun,

$$\hat{P}(S_x \mid FS) = \frac{P(FS_{x+1})}{P(FS)}$$
(8)

The F preceeding the S denotes a failure followed by a success.

Eq. (8) always yields smaller values than Eq. (7), unless the process is first-order Markov in which case the values are identical. A table of values based on solutions to Eq. (8) was not prepared, but sufficient information is included in this report to prepare such a table.

Table 11. The Minimum Number of Hours That Each Sky Cover Category Was Estimated to

a dictors a	11 000000	a control of the control of the cart, conserved values are shown in parenthesis	ומכב ובעו	one of	Ived valu	ce are sin	wn in pare	ntnesis
					Probability	ity		
Category	Season	Climatic Probability	%09	25	10	2	1	0, 1
Clear (0.0)	N S	. 2634	(0) 0	1 (1)	8 (8) 4 (4)	14 (14) 8 (8)	27 (28) 19 (18)	46 (50) 34 (52)
LE 0.3	N &	.3849	0000	5 (5) 4 (4)	16 (16) 12 (12)	25 (27) 19 (19)	46 (48) 35 (39)	>72 (>72) 57 (>72)
GE 0.8	⊗ «	. 5022	1 (1)	12 (12) 5 (5)	31 (31) 18 (18)	45 (46) 28 (29)	>72 (>72) 53 (53)	>72 (>72)
Overcast (1.0)	N S	.4175	000	1 (3)	23 (23) 9 (9)	35 (35) 19 (18)	62 (71) 41 (41)	>72 (>72)

Table 12. The Minimum Number of Hours That Each Sky Cover Category Was Observed to Persist, Given That the Category is Observed, at Selected Probability Levels (see text). Observed values are shown in parenthesis

	270				Probability	ıty			
Category	Season	Climatic Probability	20%	25	10	2	1	0.1	
Clear (0.0)	N S	. 2634 . 2078	5 (5)	11 (11) 1	19 (18) 24 (25) 13 (12) 18 (17)	24 (25) 18 (17)	37 (39) 28 (37)	56 (57)	0
LE 0.3	⊗ ⊗	.3849	7 (7) 8 (6)	16 (16) 12 (12)	28 (30) 21 (22)	37 (39) 28 (31)	57 (58) 44 (56)	>72 (>72) >72 (>72)	20
GE 0.8	⊗ ⊗	. 5022	11 (11)	25 (25) 16 (16)	44 (45) 30 (31)	58 (60) 40 (42)	>72 (>72) > 65 (66) >	2) >72 (>72) >72 (>72)	00
Overcast (1.0)	⊗ ⊗	. 2824	9 (9)	21 (21) 13 (13)	37 (37) 25 (25)	49 (53) 35 (35)	>72 (>72) > 57 (58)	2) >72 (>72) >72 (>72)	90

5. RUNS

5.1 Observed

Another way of examining persistence is to consider the number of runs of exactly x hours in length, that is, $n(FS_1F)$, $n(FS_2F)$..., $n(FS_xF)$. The relative frequency of runs is given by the expression

$$RF(FS_{x}F) = \frac{n(FS_{x}F)}{N-13(x-1)} \approx \frac{n(FS_{x}F)}{N}$$
(9)

where $n(FS_x^F)$ is the observed number of runs of exactly x hours in length and N is the total number of hours in the data sample.

The observed number of runs, based on 28,080 hours of winter observations, and 28,704 hours of summer observations, at each of the nine stations is given, for selected hours, in Tables 13 to 16. The median values are indicated with asterisks. Although the frequencies are based on more than 28,000 observations at each station and season, there are large sampling variations. For example, in Table 13, in winter, ADW had only 88 runs of three hours of clear while the nearby station of DCA had 122, LGA had only 4 runs of eighteen hours while the nearby station JFK had 14, and RDU had 3 runs of 24 hours but 8 runs of 36 hours.

To model the runs it is assumed that one good model can estimate runs at any of the nine stations, at least as well as a 13-year data sample.

A model was considered that is very similar to Eq. (6). This model requires estimates of the conditional probabilities, $\hat{P}(S \mid FS_X)$. Relative frequencies of success given a failure and x-hours of successes were determined from the data with the following expression

$$RF(S \mid FS_x) = \frac{n(FS_{x+1})}{n(FS_x)}.$$
 (10)

These relative frequencies, a selection of which are given in Tables 17 to 20, were used to obtain the required conditional probabilities.

Table 13. Observed Number of Runs, $n(FS_xF)$, of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When Zero-tenths Sky Cover (clear) is Considered a Success. Median values are identified with asterisks

					x (hours	ırs)	1					
Season	Station	-	2	8	4	2	9	12	18	24	30	36
Winter	LGA	251	154	108	99	55	59	26	4	1	1	1
	JFK	244	146	115	89	64	55	*62	14	3*	က	-
	EWR	220	140	103*	75	57	40	33	111	8	1	3*
	PHL	294	137	104	84	10	59	32	10	2	5*	4
	BAL	233*	149	06	80	54*	42	30	17	2	5*	3*
	ADW	213	144	88	73*	47	58	32	13	4	8	0
	DCA	253	142*	122	64	53	46	24	12*	4	2	-
	RIC	157	117	86	69	45	48*	25	16	2	က	8
	RDU	202	122	94	61	41	46	24	9	3*	-	8
2	Iedian	233	142	103	73	54	48	29	12	8	2	8
ĥ(h(FS F)	236	147	100	74	26	47	23	12	9	က	2
Summer	LGA	345	201*	131	88	61	72	21*	4	*	-	*
	JFK	343	201*	132	100	83	58	14	2	8	*0	*0
	EWR	307	187	129	103*	81	61	19	9	0	*0	*
	PHL	389	204	159	118	69	63	17	1		*0	-
	BAL	345*	231	144	85	15*	62	23	6		*0	*0
	ADW	254	186	144	102	93	57	56	**		-	*0
	DCA	367	226	162	104	73	29	20	4		8	*
	RIC	309	183	126	109	15*	*09	21*	10		*	*0
	RDU	349	219	133*	104	77	11	22	=		*0	*
N	Tedian	345	201	133	103	75	09	21	7	-	0	0
Û(ĥ(FS _x F)	324	204	134	86	73	22	19	7	2	-	0

Table 14. Observed Number of Runs, n(FS_xF), of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When LE Three-tenths Sky Cover is Considered a Success. Median values are identified with asterisks.

						x (hours	urs)					
Season	Station	1	2	3	4	5	9	12	18	24	30	36
Winter	LGA	283	158	117	72	61	58	30	20	16	2*	2
	JFK	313	165	142	462	89	57	32	11	8	9	4
	EWR	286	165	119	83	20	54	*97	14	8	2*	2
	PHL	352	174	111*	467	64	58	24	9	*	2	3*
	BAL	321	164	105	58	21*	48*	53	20	9	2*	3*
	ADW	300*	120	113	87	53	35	28	17*	4	4	3*
	DCA	324	163*	111*	84	7.1	45	22	16	9	3	2
	RIC	283	143	85	77	54	37	24	23	42	9	9
	RDU	253	126	26	7.1	22	43	24	17*	6	4	2
	Median	300	163	111	7.9	57	48	26	17	7	2	60
ņ	h(FS F)	302	157	114	82	61	49	24	15	10	9	4
Summer	LGA	420	237	151	111	103	56	28*	23	2*	1	2,
	JFK	447	227	148	06	88	61	31	18	4	2	4
	EWR	405	231	150	108	88	*69	44	14	2*	2	4
	PHL	484	271	169	141	84	64	27	12	0	4	3
	BAL	468	259*	188	124	100	82	34	11	8	*	5*
	ADW	347	211	183	118	112	74	56	12	7	1	5*
	DCA	473	259*	167*	121	*96	20	56	16	2*	4	4
	RIC	451*	265	186	129	83	59	35	17	2	9	-
	RDU	478	282	165	120*	100	88	27	15*	2	2	2*
1	Wedian	451	259	167	120	96	65	28	15	5	3	2
Ü	ĥ(FS _x F)	420	248	166	115	06	22	33	16	8	4	2

Table 15. Observed Number of Runs, $n(FS_xF)$, of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When GE Eight-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

						()	(x) hours	r.s				
Season	Station	1	2	8	4	5	9	12	18	24	30	36
Winter	LGA	277	180	100	96	29*	51*	15	11	11	10	5
	JFK	327	168*	116	06	74	44	17*	17	10*	*8	10
	EWR	302	177	105*	9 2	53	47	13	9	16	2	2
	PHL	376	226	115	95	*69	57	12	2	14	2	42
	BAL	330	159	96	82*	72	09	16	11	8	9	9
	ADW	280	162	107	99	29*	61	19	9	10*	13	7*
	DCA	329	157	108	80	53	55	19	10*	10*	111	2
	RIC	298	146	88	84	28	48	18	6	11	6	10
	RDU	307*	168*	100	7.5	29*	49	30	10*	10*	2	8
2	Median	307	168	105	82	59	51	17	10	10	8	7
)ų	h(FSxF)	317	162	106	80	28	45	19	14	10	7	2
Summer	LGA	47.1	245	144	95	85	63	25*	15	7	5	5
	JFK	444	229	166*	101	98	80	21	12	8	-	4*
	EWR	416	255	164	111	91	28	20	12	6	2	9
	PHL	479*	284	149	140	81	99	52*	13*	2	4*	2
	BAL	524	251	166*	123	93*	65	27	18	8	4*	4*
	ADW	422	261*	181	114*	106	94	33	16	4	4*	3
	DCA	488	279	170	125	101	28	19	12	6	3	3
	RIC	539	290	172	131	96	80	24	14	*9	0	2
	RDU	521	265	151	108	103	36	32	10	*9	8	1
4	Median	479	261	166	114	93	9 2	25	13	9	4	4
ŷ(h(FS_F)	476	264	167	123	26	91	23	11	7	2	က

Table 16. Observed Number of Runs, $n(FS_xF)$, of x Hours in Length Observed in the Data Sample and Estimated Through the Use of Eq. (14) When Ten-tenths Sky Cover (overcast) is Considered a Success. Median values are identified with asterisks

Season Statio Winter LGA JFK FWE						x ()	x (hours)					
	Station	1	2	3	4	2	9	12	18	24	30	36
J. P.	GA	329	172	119	85	89	40	14	14	9	6	5
F	Y.K	311	180	119	73	64	41	24	*6	10	2	4*
1	WR	325	168*	111	19	20	62	12	*6	7	*8	1
P	H	394	185	110	83	20	45*	20	14	*6	2	9
B7	AL	290	160	118	62	64	41	22	13	10	*8	4*
Al	DW	291	161	123	91	*09	46	14	9	8	*8	2
ď	CA	324*	189	110	*08	89	49	19	8	13	7	2
RI	2	287	164	86	85	54	52	17*	*6	11	10	9
R	DO	339	160	116*	84	51	40	21	14	သ	2	4*
Medi	lan	324	168	116	80	09	42	17	6	6	8	4
ĥ(FS _x F)	(F)	309	168	112	7.8	28	46	18	13	6	9	4
Summer LC	GA	425	233*	125	101	57	52	20	*5	2*	4	8
JF	JFK	427	231	149*	110	64	65 *	20	4	9	3*	4
E	WR	414	220	113	92	69	e 2*	18	2*	2*	2	1
PI	HL	514	302	152	109*	92	89	23	2*	2*	4	8
B/	AL	416	204	123	102	85*	52	14	10	2*	1	5*
AI	DW	476	254	161	123	101	69	15	8	2*	2	1
<u> </u>	CA	512	264	176	109*	94	e2 *	15	7	6	3*	-
RI	2	463*	258	156	110	77	*69	19*	9	7	2	2
RI	DO	202	233*	147	112	87	92	19*	က	က	3*	-
Medi	an	463	233	149	109	85	65	19	2	5	8	2
ĥ(FS _x F)	(F)	458	239	152	109	81	63	17	6	2	8	2

Table 17. Relative Frequency of Success Given a Failure and x Hours of Success, $RF(S|FS_X)$, Obtained From the Data Sample When Zero-tenths Sky Cover (clear) is Considered a Success. Median values are identified with asterisks

Season Station Winter LGA JFK EWR PHL BAL BAL ADW DCA RIC RDU	0 0508*			x (nours	(
	0508*	1	8	5	7	6	11	13	15
	.0000	991.	. 838	*888.	. 863	. 886	968.	. 866	. 845
	.0511	.773	. 832	. 873	*8 48	*894*	. 863	. 860	. 833
	. 0502	. 788	. 848*	. 886	. 901	, 884	. 912	*878*	. 837
	. 0521	.734	.846	. 856	. 874	968.	. 874	. 822	968
	. 0507	.775*	. 862	. 888	. 894	. 929	. 918	. 882	.910
	.0475	.786	. 862	. 902	. 893*	. 885	. 910	*878*	879
	. 0522	.763	. 819	. 891	. 869	. 891	*868	. 925	. 935
	. 0494	. 836	. 857	. 913	. 894	. 943	. 920	. 928	898
	. 0512	964.	. 859	. 917	. 897	. 933	968.	. 917	. 874*
	. 0500	.705	.789	. 849	.785	. 859	.786	.817	.789
_	.0504	.710	.793*	964.	962.	.774	808	.818*	800
EWR	.0517*	.739	. 811	. 820	.818*	. 846*	. 821	. 812	.870
PHL	. 0542	069	.760	. 822	. 800	. 800	*810*	. 805	. 870
BAL	. 0579	.730	964.	. 842	. 840	. 862	.810*	. 763	. 872
ADW	. 0472	694.	. 782	.775	. 798	. 854	797	.861	.792
DCA	. 0578	.717	.770	. 833	. 846	. 825	. 828	. 870	.791
RIC	.0514	.735	.813	.830*	. 833	. 850	. 842	878.	. 823
RDU	.0556	.724*	808	. 832	. 858	.810	. 789	. 862	*908

Table 18. Relative Frequency of Success Given a Failure and x Hours of Success, $RF(S|FS_x)$, Obtained From the Data Sample When LE Three-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

					x (hc	x (hours)				
Season	Station	0	1	3	2	7	6	11	13	15
Winter	LGA	9070.	.772	. 854	006.	.911	.916	.914*	. 907	. 933
	JFK	.0759	.762	. 831	. 890	. 931	.921	. 924	. 919	606
	EWR	.0733	.772	. 852	. 917	. 914	. 934	.914*	888	*026
	PHL	.0740	.734	.861	. 895	. 903	. 895	.901	. 913	006
	BAL	.0726*	.741	.861	. 904	. 912	. 939	. 913	. 905	868.
	ADW	.0685	.748	. 853	. 907	.915*	.929*	. 896	. 904	. 932
	DCA	.0727	.742	*828*	9 48 .	.921	606	. 894	. 949	*026
	RIC	.0701	*654	. 886	806	. 925	. 935	. 924	*806	.920*
	RDU	.0682	.772	898.	*806*	. 929	. 934	. 964	. 929	. 937
Summer	LGA	. 0884	.737	. 839	. 848	. 892	006.	. 883	. 888	. 865
	JFK	.0881	.718	. 838	.870	. 907	. 893	*068	.850	906
	EWR	.0910	.745	. 843	. 873	. 902	. 919	. 894	. 895	. 903
	PHL	. 0944	.719	. 825	. 872	. 855	9 48 .	. 853	. 889	*806.
	BAL	. 108	.736	.820	*864*	898.	698.	*885*	. 893	. 935
	ADW	.0842	.774	.813	. 835	*9 18.	. 887	. 919	. 882*	. 880
	DCA	. 101	.726	.832*	*864*	*9 48	. 891*	868.	. 848	668.
	RIC	* 0937*	.733*	808	. 864*	.870	. 896	. 899	.861	. 926
	RDU	. 102	.731	. 838	.864*	. 888	. 872	. 879	. 833	. 844

Table 19. Relative Frequency of Success Given a Failure and x Hours of Success $RF(S|FS_x)$, Obtained From the Data Sample When GE Eight-tenths Sky Cover is Considered a Success. Median Values are identified with asterisks

					x (h	x (hours				
Season	Station	0	1	8	2	7	6	11	13	15
Winter	LGA	.0894	.781	.876	.904*	.938	.916	. 957	.956	. 954
	JFK	. 0944	.752*	. 859	. 880	.936	.939	. 955	. 959	896
	EWR	. 0922	.763	. 868	.914	. 887	. 934	096	926	. 952*
	PHL	. 108	.737	.861	. 905	.956*	. 927*	. 944*	.953*	. 944
	BAL	.0914*	.744	.880	. 884	. 928	. 939	. 949	. 940	. 958
	ADW	. 0902	977.	* 867*	. 907	. 918	006	.940	. 933	. 935
	DCA	. 0954	.746	. 867	. 915	.920	. 925	. 936	. 946	. 955
	RIC	9980.	.754	. 886	. 903	906	. 935	. 914	. 971	. 938
	RDU	. 0833	.749	. 867	. 897	. 927	.914	. 934	. 946	. 923
Summer	LGA	. 0945	.705	.836	.867	. 862	. 898	. 938	. 932	. 926
	JFK	*100*	.725	. 824	. 873	. 888	*068	. 902	. 934	. 940
	EWR	6960	.738	. 822*	. 859	. 883	988	. 907	. 928	.930
	PHL	. 108	.724	. 847	. 881	. 890	. 904	*906	. 905	. 911
	BAL	. 0921	. 683	.811	. 843	. 850	. 895	. 937	. 920	. 945
	ADW	. 104	.749	.819	849	.872*	. 914	968	. 938	. 938
	DCA	*100*	.716*	.821	.846	.852	. 847	. 887	.924*	. 952
	RIC	. 107	669	.821	.854*	. 879	. 875	868	. 899	. 934
	RDII	8 260	869	839	848	828	. 882	. 930	896	920

Table 20. Relative Frequency of Success Given a Failure and x Hours of Success, $RF(S|FS_x)$, Obtained From the Data Sample When Ten-tenths Sky Cover (overcast) is Considered a Success. Median values are identified with asterisks

						x (hours	S			
Season	Station	0	1	3	2	7.	6	11	13	15
Winter	LGA	.0747*	.735	. 839	. 873	.927	. 937	096.	.940	.947*
	JFK	. 0739	.745*	. 837	. 881	.931	.946	. 943	. 962	. 938
	EWR	0770.	.738	. 851	. 910	. 921	*626	.946	. 935	. 933
	PHL	.0856	.700	.850	806.	. 925	. 920	. 950	. 948	. 939
	BAL	. 07 16	.753	. 838	. 883	. 891	. 936	*046*	926	. 952
	ADW	.0759	. 763	.841*	*968	. 891	.940	. 929	. 958	926
	DCA	.0813	.747	. 857	. 882	606	916	.930	.958	.961
	RIC	. 0724	.758	998.	. 902	. 917	906	. 922	. 950	.951
	RDU	7690.	.718	. 835	668.	.920*	.920	. 938	. 952*	606.
Summer	LGA	.0636	. 677	.810	. 868	. 842	806	806	. 910	. 904
	JFK	.0704	769.	. 802	. 870	. 847*	. 920	*868*	. 931	. 927*
	EWR	.0675	. 693	. 842	. 864	828	*878*	. 954	. 926	. 935
	PHL	. 0823	. 681*	808	. 827*	. 882	. 849	. 887	.936	. 894
	BAL	.0584	899.	. 805	.791	. 837	. 880	. 897	.836	. 945
	ADW	.0744	. 687	962.	. 800	908	. 834	. 903	. 937	. 950
	DCA	.0739	. 664	.764	962.	. 854	868.	. 923	. 914	. 915,
	RIC	*1690.	. 682	. 787	. 835	898.	.850	. 891	. 897	606
	RDU	.0693	. 659	. 803*	.821	.821	. 848	.851	.916*	. 932

1

•

٤

5.2 Modeled

The probability of a run of exactly x hours in length, $P(FS_xF)$, is the probability that there will be a failure followed by x successes followed by another failure. This might be estimated as follows, for runs of length one, two, and x hours, respectively:

$$\hat{P}'(FS_1F) = \hat{P}(F) \hat{P}(S|F) \hat{P}(F|FS_1)$$
(11)

$$\hat{P}'(FS_2F) = \hat{P}(F) \hat{P}(S|F) \hat{P}(S|FS_1) \hat{P}(F|FS_2)$$
(12)

$$\hat{\mathbf{P}}'(\mathbf{FS_xF}) = \hat{\mathbf{P}}(\mathbf{F}) \hat{\mathbf{P}}(\mathbf{S} \mid \mathbf{F}) \hat{\mathbf{P}}(\mathbf{S} \mid \mathbf{FS_1}) \hat{\mathbf{P}}(\mathbf{S} \mid \mathbf{FS_2}) \dots \hat{\mathbf{P}}(\mathbf{S} \mid \mathbf{FS_{x-1}}) \hat{\mathbf{P}}(\mathbf{F} \mid \mathbf{FS_x})$$
(13)

where $\hat{P}(S \mid F)$ is the estimated probability of a success given that a failure occurred the previous hour, $\hat{P}(S \mid FS_1)$ is the estimated probability of a success given that a success occurred and a failure occurred two hours earlier...., $\hat{P}(F \mid FS_x)$ is the estimated probability of a failure given that x successes occurred the previous x consecutive hours and a failure occurred x + 1 hours earlier. The unconditional and conditional probabilities can be estimated from the relative frequencies but very large samples of data are required to obtain statistically stable relative frequencies of long runs, because they are rare events.

The points plotted in Figure 7 show the nine-station median relative frequencies of success given a failure and x hours of successes have occurred. The median values are given in Table 21. Smooth curves were subjectively drawn through the points in Figure 7. The probabilities required for the solution of Eqs. (11) to (13) were estimated from these curves.

Table 21 shows values of $\hat{P}(S \mid FS_x)$ that were estimated from the curves shown in Figure 7. The conditional probabilities always increase for at least 8 hours and most of the values increase for at least 11 hours.

The values found in Table 21 were used to solve Eq. (13). By substituting $\hat{P}'(FS_xF)$ from Eq. (13) for $RF(FS_xF)$ in Eq. (9) the following expression is obtained for estimating $n(FS_xF)$

$$\hat{\mathbf{n}}(\mathbf{F}\mathbf{S}_{\mathbf{X}}\mathbf{F}) = \hat{\mathbf{P}}'(\mathbf{F}\mathbf{S}_{\mathbf{X}}\mathbf{F})\mathbf{N}. \tag{14}$$

Solutions to Eq. (14) are given in Tables 13 to 16. The agreements between the observed number of runs and those calculated from Eq. (14) are very good. It should be understood that this is not an independent test of Eq. (14) but rather a subjective fitting to the data to obtain conditional probabilities and an objective method for finding the desired probability estimates.

Figure 7. Relative Frequencies of Success Given Exactly x Hours of Consecutive Success Have Occurred, in Winter (a) and Summer (b). The curves were subjectively drawn

Table 21. Median Values of RF(S | FS_x) Obtained From the Data Sample (Tables 17, 18, 19, and 20) and Probability Estimates P(S | FS_x) Determined From Subjectively Drawn Curves of the Medians Shown in Figure 7

Season		RF(F)	0	1	2	3	4	2	9	7	8	6.	10	11	12	13	14	>15
Winter	Clear Median P(S FS,)	.7366	.0508	.775	.826	.848	.870	. 886	. 894	. 893	.886	. 894	. 896	898.	.869	. 878	. 897	. 874
	LE 0.3 Median P(S FS _x)	. 6151	.0726	.759	. 835	.856	. 885	. 898	910	.915	923	.929	. 928	.914	.920	.908	.913	. 920
	GE 0.8 Wedian P(S FS _x)	. 4978	. 0914	.752	.831	. 867	. 883	. 904	. 905	. 926	. 923	. 927	.940	944	.952	.953	.954	. 952
	Overcast Median P(S FS _x)	. 5825	. 0747	.745	.815	. 850	.876	. 896	. 912	.926	. 919	. 932	. 939	.940	. 939	. 952	. 941	. 947
Summer	Clear Median P(S FS _x)	. 7922	. 0517	.724	.760	.793	. 808	. 830	. 832	.818	. 839	. 846	. 848	.810	.825	.818	. 840	.806
	LE 0.3 Median P(S FS,)	. 6271	. 0937	.733	.799	. 832	. 856	. 864	. 888	.882	888	. 891	. 888	. 888	888	. 888	. 888	. 902
	GE 0.8 Median P(S FS,)	. 5840	. 100	.716	.780	.822	. 853	. 854	.862	.872	. 883	. 890	868.	906	914	924	. 934	. 934
	Overcast Median P(S FS)	9717.	7690.	. 681	.756	.803	.810	. 830	.839	. 855	.872	.878	. 892	898.	. 893	916.	988.	. 927

6. RECURRENCE

6.1 Observed

The relative frequency of the recurrence of a success ℓ hours later given that a success occurred, RF(S_{ℓ}|S), can be determined from the data by dividing the number of occurrences of successes spaced ℓ hours apart, n(SS_{ℓ}), by the total number of successes, n(S), that is,

$$RF(S_{\ell}|S) = \frac{n(SS_{\ell})}{n(S)}.$$
 (15)

Conditional recurrence relative frequencies based on 13 years of hourly observations taken at each of the nine stations are given, for selected hours, in Tables 22 to 25. The median values for each season are also given in the tables and plotted in Figures 8 to 11. Figure 8 shows that there is a pronounced 24-hourly period in clear weather. The period is much stronger in summer than in winter. Figures 10 and 11 show that this period is not found in the overcast of near overcast categories.

Figure 8. Relative Frequencies of a Success, Zero-tenths Sky Cover (clear), & Hours Later Given a Success Has Occurred. In Winter, (dots) and In Summer (X's). The solid curve is the solution to Eq. (17) with a' = 0.225 for winter, and the dashed curve is for summer with a' = 0.265

Figure 9. Relative Frequencies of a Success, LE Three-tenths Sky Cover, & Hours Later Given a Success Has Occurred, in Winter (dots) and in Summer (X's). The solid curve is the solution to Eq. (17) with a' = 0.235 for winter, and the dashed curve is for summer with a' = 0.262

Figure 10. Relative Frequencies of a Success, GE Eight-tenths Sky Cover & Hours Later Given a Success Has Occurred, in Winter (dots) and in Summer (X's). The solid curve is the solution to Eq. (17) with a' = 0.226 for winter, and the dashed curve is for summer with a' = 0.235

Figure 11. Relative Frequencies of a Success, Ten-tenths Sky Cover (overcast), & Hours Later Given a Success Has Occurred, in Winter (dots) and in Summer (X's). The solid curve is the solution to Eq. (17) with a' = 0.232 for winter, and the dashed curve is for summer with a' = 0.234

Table 22. Relative Frequency of the Recurrence of a Success l Hours After a Success Has Occurred, RF(S $_{l}$ |S), Observed in the Data Sample and Estimated Through the Use of Eq. (17) When Zero-tenths Sky Cover (clear) is Considered a Success. Median values are identified with asterisks

Season	Station	P(S)	-	2	3	4	5	9	6	12	18	24	30	36	48	09	7.1
Winter	LGA	.2481	.846	.752	682	625	. 577 .	532	431	.367	320	304	. 244	208	.247	. 220	.278
	JFK	. 2501	. 847	.752	681	625	. 577 .	535	438	373	322	. 303	. 250	212	. 242	. 211	. 266
	EWR	. 2634*	*098	*077	.703*	646	. 599	560	457	389	340	316	. 259	222	. 528*	. 226*	. 287*
	PHL	. 2450	.840	.748	674	615	. 566	525	424	.355	324	.323	. 255 .	500	. 257	. 202	. 266
	BAL	. 2737	998.	.781	720	299	. 624	588	493	. 425	373	356	. 298	254	. 280	. 242	. 297
	ADW	. 2540	*098	*077.	703*	647*	*009	561*	468*	.404*	357*	340*	. 281*	229*	. 253	. 218	. 282
	DCA	. 2716	*098	.773	707	629	. 618 .	580	464	. 437	385	.350	. 295	257	. 269	. 245	. 290
	RIC	3073	. 889	. 811	752	704	. 663	624	538	.472	416	.378	. 323	286	.305	. 276	.321
	RDU	.3106	.886	.810	755	108	. 672	638	299	. 495	432	.391	.327	290	.314	. 295	. 329
_	Median	. 2634	. 860	. 770	703	647	. 600	561	468	404	357	340	. 281	229	. 258	. 226	. 287
Ĭ	Eq. (17)		. 829	.745	685	629	. 585 .	547	459	404	408	427	. 350	298	. 345	. 266	. 313
Summer	LGA	. 1867	.782	. 665	580	515	. 458	410	323	. 274	279	318	. 227	186	. 244	. 142	. 224
	JFK	. 1833	. 775	. 650	564	200	. 444	404	325	. 290	. 284	.321	. 221	194	. 240	. 166	. 205
	EWR	. 2078*	. 803	. 683	. 597	528	. 475 .	436	350	301	312	.350	. 258*	. 203	. 271	. 158	. 243
	PHL	. 1920	.772	. 651	565	200	. 450 .	410	327	. 294*	300	.355	. 245	190	. 274	. 158	. 244*
	BAL	. 2301	908	689	614	556	. 508	466	381	.338	357	.399	. 290	241	. 312	. 186	. 271
	ADW	. 1883	797	. 667	577	510	. 457	416	329	. 292	313*	. 371*	. 252	*961	. 278*	. 159*	. 244*
	DCA	.2186	.793*	678	601	546	. 502 .	466	388	349	357	.373	. 283	241	. 279	. 206	. 253
	RIC	. 2093	908	989	602	539	. 489	450	368	.318	.332	.391	. 283	. 218	. 299	. 198	. 277
	RDU	.2101	.791	. 671*	585*	519*	. 467*	423*	332*	. 289	326	400	. 276	192	. 285	. 156	. 264
-	Median	. 2078	.793	. 671	585	519	. 467	423	332	. 294	313	.371	. 258	196	. 278	. 159	. 244
E	Eq. (17)		.751	. 643	562	501	. 451	409	327	. 294	292	.350	. 249	202	. 280	. 178	. 253
										-						1	

Table 23. Relative Frequency of the Recurrence of a Success l Hours After a Success has Occurred, RF(S_l |S), Observed in the Data Sample and Estimated Through the Use of Eq. (17) When LE Three-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

	_	_	_		_	_	_		_	_		_		_	_	_	_	-	_			_	
7.1	.379	. 386	394	. 372	. 397	.392*	. 387	.416	429	. 392	.418		.377	. 374	. 403	.380	. 442	. 388	.412	*400*	.412	400	420
09	. 353	.361	. 363	.340	.372	.356	.362*	.390	.409	. 362	. 405		. 345	. 357	.365*	. 351	.417	. 351	404	.368	.376	365	393
48	.361	. 371	.375*	. 364	. 384	.378	. 373	. 393	.413	.375	.442		. 402	.406	.423*	.402	.464	.420	.446	. 424	. 425	423	441
36	.350	. 355	.367	. 345	. 387	. 374*	. 382	. 396	. 414	. 374	.436		. 387	.397	. 407	. 383	.453	.402*	.451	.401	.408	402	418
30	.370	. 374	.389	. 368	.408	.405*	.408	. 422	. 443	. 405	. 465		. 421	. 422	.440*	.415	. 485	.436	.472	. 447	.456	440	446
24	404	.418	. 427	.417	.446	. 447	.445*	.462	.491	. 445	. 509		.468	.470	. 485	474	. 532	. 500*	. 525	.511	.511	500	500
18	.451	.459	.475	.453	. 487	.480*	.486	. 509	. 541	.480	. 519	1	.472	.477	.499*	.485	. 547	. 505	. 542	. 497	. 505	499	.491
12	. 520	. 528	.540	. 514	. 560	. 543*	. 554	. 574	.615	. 543	.543		. 512	. 509	. 525	. 507	. 572	.517*	. 568	.510	. 518	517	517
6	. 575	. 578	. 595	. 569	.614	. 598*	.607	.628	. 665	. 598	. 584		.550*	. 549	. 566	.540	.602	. 549	. 591	. 544	. 552	550	549
9	.650	. 654	899.	.646	.684	*919.	.677	692	. 726	929.	.650		.615*	.617	629	. 602	.655	609	.639	.603	. 607	615	611
2	. 683	989.	669	919.	.712	. 705*	901.	. 723	.751	. 705	.677		.641*	. 647	. 656	. 628	849.	. 634	. 662	628	.630	641	.640
4	.717	.721	. 730	.711	. 746	. 737*	. 739	.756	. 777	.737	.710		*919	. 684	689	658	104	665	069	658	664	676	675
က	.759	.761	891.	. 753	. 783	. 777	*922.	. 794	. 810	977.	. 150		.718*	. 725	. 730	669	. 738	. 708	. 726	702	707	718	719
2	. 812	.811	.819	. 804	. 827	. 827	.823*	. 839	. 852	. 823	181.		.772*	.777	. 782	. 753	. 786	. 768	. 777 .	. 758	. 763	. 772	. 777 .
1	. 882	. 877	. 885*	. 870	. 887	. 889	. 884	897	906	885	862	-	850	851*	828	835	855	853	852	842	842	851	855
P(S)	.3739	. 3821	. 3895	.3636	. 3911	.3809	.3849*	. 4045	4194	.3849			.3703	.3719	3920	3645	4270	3646	4066	. 3729*	3923	3729	
Station	LGA	JFK	EWR	PHL	BAL	ADW	DCA	RIC	RDU	Median	(11)		LGA	JFK	EWR	PHL	BAL	ADW	DCA	RIC	RDU	edian	Eq. (17)
Season	Winter									M	Eq		Summer									Me	Eq.

Table 24. Relative Frequency of the Recurrence of a Success & Hours After a Success Has Occurred, $RF(S_{\ell}|S)$, Observed in the Data Sample and Estimated Through the Use of Eq. (17) When GE Eight-tenths Sky Cover is Considered a Success. Median values are identified with asterisks

Season	Station	P(S)	1	2	3	4	2	9	6	12	18	24	30	36	48	09	7.1
Winter	LGA JFK EWR PHL BAL ADW DCA RIC RDU	. 4962 . 5022* . 5073 . 5306 . 4988 . 5068 . 5165 . 5006	. 909* . 906 . 910 . 904 . 908 . 912 . 910 . 914		822 822 825 827 827 829* 835 835 829*	793 794 796 801* 799 802 808 806 806	768 769 773 780 774 775* 783 781	747 746 751 760 753* 751 759 759	688 687 694 708 701 707 707 704	642 640 650 670 657 658 666 660	572 572 585 605 589 589 594 601	. 521 . 527 . 532 . 566 . 544 . 556 . 554 . 549*	. 490 . 590 . 535 . 515* . 525 . 525 . 520	. 478 . 479 . 486 . 523 . 502* . 510 . 521	481 488 492 525 490* 506 490*	4884 4884 490 490 477 484 488 473 473	. 491 . 498 . 506* . 530 . 492 . 511 . 512 . 510 . 482
b∃ Ed	Median Eq. (17)	. 5022	906.	.862	829	. 801	. 775	. 753	689	657	. 591	. 549	.515	. 502	. 551	. 530	. 530
Summer	LGA JFK EWR PHL BAL ADW DCA RIC RDU	.4118 .4376 .4282 .4387 .3738 .4344 .4033 .4160*	. 865 . 871 . 870 . 862 . 865 . 865 . 855	.805 .811 .806 .799 .781 .797* .782	764 765 759 738 748* 743	731 735 732 725 703 712* 703	702 706 706 703 674 683 677 683 677	680 686 684 680 652 662* 655	626 637 632 627 601 601 616 616 617	591 601 598 597 565 597 588 592*	531 549 558 512 554 552 552	.502 .524 .533 .533 .537 .537 .508	465 490 4774 492 497 484 459	444 477 457 473 425 484 460 464	423 455 438* 472 472 441 414	.404 .433 .417* .436 .383 .442 .417* .430	408 433 426* 440 371 440 427 406
Eq.	Median Eq. (17)	.4160	. 862	. 804	748	712	684	662	625	592	544	508	.495	460	438	444	426

Table 25. Relative Frequency of the Recurrence of a Success & Hours After a Success has Occurred, $RF(S_{\underline{\nu}}|S)$, Observed in the Data Sample and Estimated Through the Use of Eq. (17) When Ten-tenths Sky Cover (overcast) is Considered a Success. Median values are identified with asterisks

7.1	.404 .419* .451 .402 .422 .430 .421	.419	. 276 . 299 . 300 . 328 . 257 . 296 . 283	. 287
09	.395 .395 .407 .438 .388 .402* .403	.402	. 274 . 302 . 301* . 321 . 264 . 302 . 305 . 293	.301
48	.399 .395 .410 .411* .418 .428 .428	.411	. 294 . 325 . 317 * . 343 . 324 . 322 . 314	.338
36	.390 .387 .407 .452 .423* .436 .449	.423	.309 .344 .338* .356 .312 .353 .344 .337	.338
30	.403 .402 .416 .451 .452 .452 .462 .462	. 434	.337 .368 .368 .378 .335 .367 .361	.364
24	.440 .439 .453 .491 .472* .483 .480	. 533	.385 .408 .407* .385 .409 .401 .381	.418
18	.504 .503 .516 .529* .528 .542	.529	. 432 . 452 . 455 . 451 . 437 . 437 . 437 . 400	.443
12	.590 .593 .602 .628 .610* .624	.610	. 502* . 520 . 524 . 515 . 487 . 495 . 505 . 450	.502
6	.652 .650 .657 .677 .662* .671	. 662	. 554 . 566 . 566 . 528 . 528 . 530 . 530	. 542
9	716 717 718 738 726 720* 727	. 699	.619 .621 .629 .612 .583 .576 .596*	. 596
5	.741 .745* .760 .749 .749 .751 .751	.745	.650 .650 .655 .638 .611 .600 .618*	618
4	.768 .772 .776 .776 .772 .780 .779	.773	. 688 . 688 . 688 . 646 . 649 . 649 . 595	.649
8	.800 .803 .805* .815 .808 .805* .812	. 781	. 717 . 719 . 726 . 708 . 692* . 674 . 683	. 692
2	. 838 . 841 . 847 . 844 . 846 . 846 . 849	.845	.764 .767 .773 .753 .732 .732	.749
1	892 894 897 897 899 899 889	896	836 837 846 824 825 817 812 796	824
P(S)	.4091 .4114 .4262 .4528 .4155 .4246 .4395 .4175*	. 4175	. 2801 . 3015 . 3050 . 3188 . 2526 . 2889 . 2824* . 2736	. 2824
Station	LGA JFK EWR PHL BAL ADW DCA RIC RDU	Median Eq. (17)	LGA JFK EWR PHL BAL ADW OCA RIC RDU	Median Eq. (17)
Season	Winter	M Eq	Summer	M Eq.

6.2 Modeled

McAllister⁵ proposed an expression of the form

$$\hat{P}(S_{t+k}|S_t) = P(S_{t+k}) + [1-P(S_t)] e^{-ak^b}$$
(16)

for estimating recurrence probabilities of cloud cover. He used a = 0.263 and b = 0.632 as the best estimates of the parameters. Gringorten⁶ showed that Eq. (16) yields probability estimates very close to those obtained from the bivariate normal distribution if the parameter b is fixed at 0.620 and a is allowed to vary with the climatic frequency of the event and the basis persistence of the element.

Eq. (16) was modified to; (1) eliminate any possibility of obtaining probability estimates greater than one; (2) take into account diurnal periods in weather events and (3) obtain climatic estimates independent of the initial hour. The new equation was expressed as follows

$$\hat{P}(S_{\ell}|S) = \frac{1}{P(S)} \left[(1 - e^{-a^{i}\ell^{b}}) (\overline{YZ}) + e^{-a^{i}\ell^{b}} (\overline{W}) \right]$$
(17)

where YZ is the temporal average of the product of the two probabilities, that is,

$$\overline{YZ} = \frac{1}{24} \sum_{t=0}^{23} (Y_t Z_{t+\ell})$$
 (17a)

where Y and Z are probabilities of success at time t and $t+\ell$ hours, respectively; and, \overline{W} is the temporal average of the lower of each pair of probabilities, that is,

$$W = \frac{1}{24} \sum_{i=0}^{23} W_i$$
 (17b)

where $W_i = Y_t$ or $Z_{t+\ell}$ whichever is smaller.

Table 26 shows that there is a pronounced diurnal period in sky cover occurrences. The hourly climatic frequencies of the events were substituted into Eq. (17) using $\ell = 12$ hours and b = 0.620 and the equation was solved to find the parameter a'. The a' values are given in Table 27.

McAllister, C.R. (1969) Cloud-cover recurrence and diurnal variations. J. Appl. Meteor. 8:769-777.

Gringorten, I.I. (1971) Modeling conditional probability, <u>J. Appl. Meteor</u>. 10:646-657.

Table 26. Nine-station Median Relative Frequency of Each Sky Cover Category for Each Hour of the Day

******		Wint				Sumn		
Hour (LST)	0.0	Categ LE 0. 3		1.0	0.0	Categ LE 0. 3		1.0
00	.351	. 458	.463	.399	.339	. 492	. 362	. 27 1
01	.361	. 450	. 469	. 422	.362	. 492	.379	. 272
02	.352	. 444	. 470	. 420	.344	. 503	.377	. 293
03	.349	. 439	. 480	. 422	.350	. 489	.376	. 296
04	.344	. 438	. 480	. 426	. 278	. 454	.391	.300
05	.338	. 439	. 490	. 432	. 168	.372	. 451	. 3 15
06	. 293	. 407	. 498	. 427	. 182	.352	. 483	. 334
07	. 204	.338	. 543	. 439	. 192	. 367	. 474	. 342
08	. 193	.319	. 573	. 458	. 204	.379	. 451	. 3 15
09	. 191	.326	. 567	. 445	. 202	.384	. 428	. 291
10	. 186	. 335	. 550	. 435	. 175	. 375	. 420	. 271
11	. 177	. 317	. 543	. 423	. 126	.329	. 431	. 273
12	. 170	. 315	. 531	. 421	. 093	. 285	. 443	. 265
13	. 164	.321	. 543	. 422	.076	. 256	. 445	. 259
14	. 168	. 309	. 537	. 426	.070	. 252	. 444	. 247
15	. 171	.326	. 532	. 420	.079	. 259	. 426	. 237
16	. 181	. 337	. 531	. 408	.095	.289	.410	. 249
17	. 197	. 359	. 503	.392	. 117	.329	. 421	. 257
18	. 245	. 403	. 478	. 400	. 153	. 352	. 423	. 275
19	. 307	. 429	. 472	. 397	. 149	.350	. 444	. 280
20	.332	. 438	. 467	. 405	. 206	. 387	. 410	. 288
21	.338	. 441	. 462	. 407	.260	. 443	. 384	. 283
22	. 343	. 448	. 466	. 413	.316	. 469	.368	. 278
23	.350	. 447	. 472	. 417	.325	. 487	.366	.279

Table 27. The "a'" Values Used in Eq. (17) to Find the Curves Shown in Figures 8 to 11

Season	Clear	LE 0.3	GE 0.8	Overcast
Winter	0.225	0.235	0.226	0.232
Summer	0.265	0.262	0.235	0.234

Eq. (17) was solved for lags from 1 to 71 hours using the a' values given in Table 27. The resulting curves are shown in Figures 8 to 11. The fits to the summer relative frequencies are excellent for all sky cover categories. The fits to the winter values are poor after 12 hours.

7. REMARKS

Relative frequencies of persistence, runs and recurrence of sky cover along the east coast of the United States between New York and North Carolina, presented in this report, are based on more than 250,000 hourly observations taken in winter and a similar number taken in summer. They are believed to be good approximations of the true probabilities.

Models are presented for use in estimating joint and conditional probabilities. The estimates are usually in good agreement with the relative frequencies when the parameters are carefully chosen. However, the best parameters for the Central East Coast area of the United States may not be the best for other geographical areas. Future studies will be extended to other areas and to improving the models. Other weather elements are under study at the present time.

References

- Lund, I.A., and Grantham, D.D. (1977) Persistence, runs and recurrence of precipitation, J. Appl. Meteor. 16:346-358.
- 2. U.S. Department of Commerce (1975) Federal Meteorological Handbook No. 1, Surface Observations, U.S. Government Printing Office, Washington, D.C. 309 pp.
- Gringorten, I. I. (1966) A Stochastic model of the frequency and duration of weather events, <u>J. Appl. Meteor</u>. <u>5</u>:606-624.
- Keilson, J., and Ross, H.F. (1975) Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes, <u>Selected Tables in</u> <u>Mathematical Statistics Vol. III. American Mathematical Society</u>, <u>Providence</u>, <u>Rhode Island</u>, <u>pp 233-327</u>.
- McAllister, C. R. (1969) Cloud-cover recurrence and diurnal variation,
 J. Appl. Meteor. 8:769-777.
- Gringorten, I.I. (1971) Modeling conditional probability, <u>J. Appl. Meteor.</u> 10:646-657.