Application Development For ZigBee Wireless Networking

By San Juan Software

Presented by Drew Gislason

drewg@sanjuansw.com

Voice: (360) 243-7407 Mobile: (206) 214-7884

Presentation Overview

- Why ZigBee?
- ZigBee Architecture
- ZigBee Application Development
- Sample Application Lighting Demo

Why ZigBee?

A global hardware and software <u>standard</u> for wirelessly networking devices

- Highly reliable
- Low cost
- Low power
- Low data rate
- Highly secure

ZigBee Standard - Ecosystem

- OEMS
- Platform
- Development Tools
- Training
- Custom Engineering & Services
- Gateways
- Modules

ZigBee Standard - Interoperable

- ZigBee Alliance ensures interoperability with conformance tests
- Level 1 (L1) MAC/PHY
- Level 2 (L2) Networking profile
- Level 3 (L3) Application profile
- Compatibility ensured through approved test houses and at ZigBee interop events

ZigBee Wireless Networking

Star Network (Simplest)

Coordinator

Mesh Network (Best Reliability)

Router (FFD)

Cluster Tree Network (Large Scale Networks)

End Device (RFD)

ZigBee Mesh Networking

Increase range, increased reliability (self-healing), and ad-hoc network formation

ZigBee Mesh Networking

Increase range, increased reliability (self-healing), and ad-hoc network formation

ZigBee – Highly Reliable

- Mesh and tree networking protocol provides redundant paths
- Automatic retries and acknowledgements
- Broadcast delivery scheme ensures
 reliable broadcasts across the network
- Parents keep track of messages for sleeping children

ZigBee - Highly Secure

- Utilizes AES 128-bit encryption
- Concept of a "trust center"
- Link and network keys
- Authentication and encryption
- Security can be customized for the application
- Keys can be "hard-wired" into application

security
HVAC
AMR
lighting control
access control

CONSUMER ELECTRONICS

TV DVD/CD remote cell phone

patient monitoring

fitness monitoring

PERSONAL HEALTH CARE

INDUSTRIAL CONTROL

ZigBee
Wireless Control that
Simply Works

RESIDENTIAL/ LIGHT COMMERCIAL CONTROL

PRECISION AGRICULTURE

irrigation fertilizer golf course farm ranch

security
HVAC
lighting control
access control
lawn & garden
irrigation

asset mgt process control environmental energy mgt

Presentation Overview

- Why ZigBee?
- ZigBee Architecture
- ZigBee Application Development
- Sample Application Lighting Demo

ZigBee Framework

Application & Profiles

Application Framework

Network & Security Layers

MAC Layer

PHY Layer

Hardware

IEEE 802.15.4 Frequency and Data Rates

	BAND	COVERAGE	DATA RATE	# OF CHANNE	L(S)
2.4 GHz	ISM	Worldwide	250 kbps	16	
868 MHz		Europe	20 kbps	1	
915 MHz	ISM	Americas	40 kbps	10	

802.15.4 Technical Details

- Direct Sequence Spread Spectrum provides excellent performance in low SNR environments
- CSMA-CA used for collision avoidance
- O-QPSK and BPSK minimize power consumption and reduce complexity
- Half-duplex operation

ZigBee Framework

Application & Profiles

Application Framework

Network & Security Layers

MAC Layer

PHY Layer

ZigBee Architecture

ZigBee Networking Stack Features

- Reliable 2-way wireless communications
- Choice of star, mesh and tree topologies
- Device service discovery
- Broadcast services
- Gateway (multi-network) services
- Device interoperability through profiles
- Security management
- No common C API among stack vendors

Presentation Overview

- Why ZigBee?
- ZigBee Architecture
- ZigBee Application Development
- Sample Application Lighting Demo

Components For ZigBee Development

- Development platform
 - 802.15.4 radio
 - Development board
 - ZigBee compatible networking stack
- Development tools
 - Editor/IDE
 - Cross compiler
 - Debugging tools
- Workstation

Freescale SARD (DIG 536) Board

ZigBee RF Modules

- Panasonic ZigBee Module
 - Will be available through Arrow Q2 2005
 - Freescale MC13193, HCS08, Dipole Antenna
- Maxstream XBee™ ZigBee Module
 - Available now
 - Freescale MC13193,HCS08, Dipole Antenna

Development Process

- Write the ZigBee application
- Compile for target MCU
- Download binary code into ZigBee nodes using BDM/JTAG, serial port or over-the-air
- Reset nodes and debug them
- Repeat as necessary

Debugging The Network

- BDM/JTAG one node at a time
- Packet "Sniffers"
- Debug info (e.g. printf() / monitor)
- LEDs, other on-board indicators
- Simulation NS2
- Keep it simple

Daintree Sensor Network Analyzer

- Capture network data
- View based on field
- Customizable for application
- Visual view into the network

Presentation Overview

- Why ZigBee?
- ZigBee Architecture
- ZigBee Application Development
- Sample Application Lighting Demo

ZigBee Interoperable Application

Buy products from multiple vendors... that simply work

Home Lighting Control

Light Switch

Light

APSDE-DATA.request

APSDE-DATA.request

DstAddrMode, Not present, 16-bit or 64-bit

DstAddress, According to DstAddrMode

DstEndpoint, Target endpoint: 0x00-0xff

ProfileId, Profile to use (broadcast transmissions only)

ClusterId, Binding object to use (indirect transmissions only)

SrcEndpoint, Source endpoint: 0x00-0xfe

asduLength, The length of asdu and <= apscMaxPayloadSize

asdu, The application data

TxOptions, Security, NWK key, acknowledgement select

DiscoverRoute, Route discovery override

RadiusCounter Broadcast radius (broadcast transmissions only)

San Juan Software

afFillAndSendMessage

```
afStatus t afFillAndSendMessage (
   afAddrType t *dstAddr, byte srcEndPoint, byte clusterID,
   byte TransCount,
    byte FrameType,
    byte *TransSeqNumber,
   byte CommandType,
    byte AttribDataType,
   uint16 AttribId,
    byte ErrorCode,
    byte DataLength, byte *Data,
    byte txOptions, byte DiscoverRoute, byte RadiusCounter);
```


Switch Load Control Source Code

```
SLC03394 RcvSET OnOffSRC
* Qfn
*/
byte SLC03394_RcvSET_OnOffSRC( byte endPoint, uint16 AttribId, byte State)
   byte leds;
   if (State == OnOffSRC_ON)
       SLC03394_State = OnOffSRC_ON;
   else if (State == OnOffSRC_OFF)
       SLC03394_State = OnOffSRC_OFF;
   else if (State == OnOffSRC TOGGLE)
       // Make sure SLC03394_State matches LEDs
       leds = SetLed( LED NONE, LED ON );
       SLC03394_State = ( leds & LED4 ) ? OnOffSRC_ON : OnOffSRC_OFF;
       // Toggle, if current state is ON --> OFF, OFF --> ON
       if (SLC03394 State == OnOffSRC ON)
         SLC03394 State = OnOffSRC OFF;
       else
         SLC03394 State = OnOffSRC ON;
   osal_set_event( SLC03394_taskID, SLC03394_STATE_CHANGED_EVT );
   return ( ERRORCODE SUCCESS );
```

San Juan

Software

31

Switch Remote Control Source Code

```
* Ofn
        SRC03391 Set OnOffSRC
* Obrief Sends a SET command for OnOffSRC Cluster.
* Oparam dstAddr - NULL or DSTINDIRECT, if indirect
* @param epDesc - pointer to the originating endpoint descriptor
* @param State - OnOffSRC Off or OnOffSRC On.
* @return 0 - Sent it on its way, !0 if error
byte SRC03391 Set OnOffSRC( afAddrType t *dstAddr, endPointDesc t *epDesc,
                byte State )
   byte status:
   status = afFillAndSendMessage( dstAddr, epDesc->endPoint,
       CLUSTERID OnOffSRC, 1, FRAMETYPE KVP,
       &SRC03391 TransSeqNumber,
       CMDTYPE SET, DATATYPE UINT8, OnOffSRC OnOff,
       ERRORCODE_SUCCESS,
       sizeof(State), &State,
       AF_MSG_ACK_REQUEST, true, AF_DEFAULT_RADIUS );
   return ( status );
San Juan
```

Software

Summary

- ZigBee designed for highly-reliable, lowcost, low-power, low-data rate, highlysecure wireless applications
- ZigBee built on global, robust IEEE802.15.4 radio standard
- Large ZigBee ecosystem available today equates to fast time to market

