RANZCR CLIP

Catheter and Line Position Challenge

INDEX

- 1. 대회 목적 및 배경
 - Kaggle Competition 개요
 - 대회 참여 목적
- 2. 데이터 분석
 - 데이터 분석 결과
 - MongoDB
- 3. 주요 알고리즘 소개 및 선정
- 4. 모델 평가
- 5. 한계점 및 시사점
- 6. 참고 문헌

• 1. 대회 목적 및 배경

흉부 X-ray를 이용한 Tube와 Catheter의 배치 오류 감지 Kaggle 경진대회에 2021년 2월, 2주간 참여

- 전체 대회 기간 : 2020. 12. 15 2021. 03. 15
- 총 참여팀: 1,108 team (2021.02.25 기준)
- 대회 상금: \$50,000
- 실제 대회 참여 기간 : 2021. 02. 10 2021. 02. 24
- 참여인원: 5인
- Kaggle Notebook : https://www.kaggle.com/c/ranzcr-clipcatheter-line-classification

Introduction	Data	Doop Loarning	Model	Cuggostion	Deference
Introduction	analysis	Deep Learning	Evaluation	Suggestion	Reference

역할 분담

- 서강원 : PL, 논문 분석, 알고리즘 분석 (Resnet , ResNeXt)
- 김채진 : 논문 분석, 알고리즘 분석 (EfficientNet)
- 옥진해 : 논문 분석, 알고리즘 분석 (Resnet , ResNeXt)
- 정지희 : 논문 분석, 알고리즘 분석 (Resnet , ResNeXt), 발표
- 강민영: 알고리즘 분석, 몽고DB, 발표
- 공통 역할: 구현 및 모델 학습, PPT 제작

Introduction	Data ,	Doon Loarning	Model	Cuggostion	Deference
Introduction	analysis	Deep Learning	Evaluation	Suggestion	Reference

Data Set 크기 및 자료 구조

Data Explorer

12.23 GB

- ▶ □ test
- ▶ □ test_tfrecords
- ▶ □ train
- ▶ □ train tfrecords
 - **III** sample_submission.csv
 - train.csv
 - train_annotations.csv

- train image : 30083개 6.43GB
- test image : 3582개 805MB
 (총 33,665개, 총 용량 7.22GB, 평균 약 225KB)
- train. csv: image IDs, binary labels, patient IDs 포함
- test TFRecords (554MB) / train TFRecords (4.45GB)
 - : tensorflow training data format
- Train_annotations.csv : label, line의 위치
- sample_submission.csv: 올바른 형식의 제출 샘플 파일

tr	ain. csv	StudyInstanceUID	ETT - Abnormal	ETT - Borderline	ETT - Normal	NGT - Abnormal	 CVC - Normal	Swan Ganz Catheter Present	PatientID
0	1.2.826.0.1.3	3680043.8.498.266	0	0	0	0	 0	0	ec89415d1
1	1.2.826.0.1.3	3680043.8.498.463	0	0	1	0	 1	0	bf4c6da3c
2	1.2.826.0.1.3	3680043.8.498.238	0	0	0	0	 0	0	3fc1c97e5
3	1.2.826.0.1.3	3680043.8.498.682	0	0	0	0	 0	0	c31019814
4	1.2.826.0.1.3	3680043.8.498.100	0	0	0	0	 1	0	207685cd1

Introduction	Data	Dooploarning	Model	Cuggostion	Deference
Introduction	analysis	Deep Learning	Evaluation	Suggestion	Reference

Data Columns 구조

- ETT(endotracheal tube) : 기관 내 tube
- NGT(nasogastric tube) : 비관 내 tube
- CVC(central venous tube) : 중심 정맥 tube
- Swan Ganz Catheter Present : 폐동맥 catheter
- Normal : 알맞은 위치
- Borderline : 정상적으로 작동하나 약간의 재배치가 필요
- Abnormal : 비정상적인 위치로 즉각적인 재배치가 필요
- Incompletely Imaged : image의 정확도가 떨어져 판별 불가

- ETT(endotracheal tube) : 기관 내 tube
- NGT(nasogastric tube) : 비관 내 tube
- CVC(central venous tube) : 중심 정맥 tube
- Swan Ganz Catheter Present : 폐동맥 catheter

ETT - Normal

ETT - Borderline

ETT - Abnormal

- ETT(endotracheal tube) : 기관 내 tube
- NGT(nasogastric tube) : 비관 내 tube
- CVC(central venous tube) : 중심 정맥 tube
- Swan Ganz Catheter Present : 폐동맥 catheter

NGT - Normal

- ETT(endotracheal tube) : 기관 내 tube
- NGT(nasogastric tube) : 비관 내 tube
- CVC(central venous tube) : 중심 정맥 tube
- Swan Ganz Catheter Present : 폐동맥 catheter

CVC - Normal

CVC - Borderline

CVC - Abnormal

Introduction	Data analysis	Deep Learning	Model Evaluation	Suggestion	Reference
	ariaryoro		Lvalaation		

- ETT(endotracheal tube) : 기관 내 tube
- NGT(nasogastric tube) : 비관 내 tube
- CVC(central venous tube) : 중심 정맥 tube
- Swan Ganz Catheter Present : 폐동맥 catheter

Swan Ganz Catheter Present

Introduction Data Deep Learning Model Suggestion Reference

2. 대회 참여 목적

Tube와 Cather의 배치 오류로 인해 발생 가능한 심각한 합병증을 신경망 학습 모델 구축 및 분석으로 예방

대회 목적

흉부 X-ray를 통한 line 위치 확인

: 의사 또는 방사선 전문의를 통해 X-ray 수동확인으로 시간 부담 상승

딥러닝 알고리즘으로 catheter와 line의 위치를 감지

: 이상 발생 시 위치를 변경하거나 제거함으로써

생명을 위협하는 합병증을 예방하고 시간적 부담을 감소

참여 목적

신경망 학습 모델 구축 및 분석 실습

Introduction	Data	Deep Learning	Model	Suggestion	Reference
iiitiodactioii	analysis	beep Learning	Evaluation	Juggestion	Mererence

3. Kaggle Competition 평가 지표

평가 기준 - AUC

Description

Evaluation

Timeline

Prizes

Code Requirements

RANZCR 2021

Acknowledgements

Submissions are evaluated on area under the ROC curve between the predicted probability and the observed target.

A A - -I - I

To calculate the final score, AUC is calculated for each of the 11 labels, then averaged. The score is then the average of the individual AUCs of each predicted column.

Submission File

For each ID in the test set, you must predict a probability for all target variables. The file should contain a header and have the following format:

StudyInstanceUID,ETT - Abnormal,ETT - Borderline,ETT - Normal,NGT - Abnormal,NGT - Borderline,NGT - Incompletely Imaged,NGT - Normal,CVC - Abnormal,CVC - Borderline,CVC - Normal,Swan Ganz Catheter Present

 • 2. 데이터 분석

1. 데이터 분석 결과

train.csv파일과 train image 확인한 결과, 중복된 환자 ID를 확인

총 이미지 수: 약 3만 장

총 환자 수: 3,255명

1. 데이터 분석 결과

데이터 불균형 (CVC) 으로 augmentation 필요

2. MongoDB - data upload

MongoDB 이미지 업로드 방식 별 용량 차이 비교

• 3. 주요 알고리즘 소개 및 선정

1. 알고리즘 선정 기준

RANZCR DATASET에 적합한 딥러닝 모델 조사결과: EfficientNet, ResNext

RANZCR Top 40 Kernel 사용 모델

Introduction Data analysis Deep Learning Evaluation Suggestion Reference

2. 주요 알고리즘 소개 - ResNet (2015)

ResNet의 residual learning(잔여학습)을 통해 neural network의 구조가 깊어질수록 정확도가 감소하는 문제를 해결

- 일반적인 CNN에서 레이어의 깊이가 일정수준을 넘어가면 오히려 성능이 떨어지는 문제가 발생
- 이를 개선하고자 residual learning(잔여학습)을 도입
- 성능이 떨어지는 문제 개선 뿐만 아니라 전반적인 성능이 향상됨
- 레이어를 거쳐 도출된 결과값과 입력값의 차이를 학습시키는 방법

2. 주요 알고리즘 소개 - ResNeXt (2017)

ResNeXt: split-transform-merge 전략을 ResNet에 접목

- 입력 값을 split하여 동일한 grouped convolution에 각각 값을 도출
- 나온 값들을 merge하여 결과값으로 잔여학습을 시킴

2. 주요 알고리즘 소개 - EfficientNet (2019)

EfficientNet : Compound model scaling algorithm을 적용하여 Width, depth, resolution 3가지 요소를 모두 Scaling up에 사용

2. 주요 알고리즘 소개 - EfficientNet (2019)

EfficientNet Architecture

2. 주요 알고리즘 소개 - EfficientNet (2019)

기존 분류 네트워크 모델에서 정확성과 매개변수 및 계산의 양을 감소

• 4. 모델 평가

Introduction Data analysis Deep Learning Model Evaluation Suggestion Reference

0. 개발 환경

개발 환경

- Seaborn version 0.10.0
- Pandas version 1.1.5
- Numpy version 1.17.5
- Cv2 version 4.41
- Tenserflow version 2.4.1
- Sklearn version 0.24.1
- Tenserflow.keras version 2.4.0
- MongoDB server version 4.4.3
- Python 3.9.1
- Pycharm 2020.3.3
- mongoDB Compass 1.25.0

Introduction	Data analysis	Deep Learning	ModelEvaluation	Suggestion	Reference
--------------	------------------	---------------	--	------------	-----------

1. 모형 평가 - train validation

버전 별 image size 및 학습 설정

Base model	Resolution(Image size)
EfficientNetB0	224
EfficientNetB1	240
EfficientNetB2	260
EfficientNetB3	300
EfficientNetB4	380
EfficientNetB5	456
EfficientNetB6	528
EfficientNetB7	600

- Batch size: 32

- Learning rate: 0.001

1. 모형 평가 - train validation

validation train 결과: b7 모델이 Epoch 대비 AUC가 높음을 확인

Introduction	Data analysis	Deep Learning	Model Evaluation	Suggestion	Reference
--------------	------------------	---------------	---------------------	------------	-----------

1. 모형 평가 - train validation

EfficientNet Performance Results on Transfer Learning Datasets

Model	Parameters (Million)	Parameter reduction	Duration of time (Minutes)	Val_AUC
EfficientNet - b7	64.12M	1 X	147.35	0.9717
EfficientNet - b6	40.98M	1.56 X	96.86	0.9696
EfficientNet - b5	28.53M	2.24 X	64.63	0.9656
EfficientNet - b4	17.69M	3.62 X	53.58	0.9637
EfficientNet - b3	10.80M	5.93 X	51.08	0.9582
EfficientNet - b2	7.78M	8.24 X	45.93	0.9565
EfficientNet - b1	6.58M	9.74 X	45.68	0.9511
EfficientNet - b0	4.06M	15.79 X	44.98	0.9489

1. 모형 평가

Test에 따른 각 Model의 AUC 값

2. 대회 평가

최종 결과 : AUC 0.927, Rank 870/1108

• 5. 한계 및 시사점

Introduction Data analysis Deep Learning Model Evaluation Suggestion Reference

1. 한계점

한계점

- MongoDB Cloud 무료 용량은 512MB인데 비용 문제로 Cloud에 업로드하지 못하고 테스트 용으로 활용함 (슬라이드 16장 참조)
- 모델별 트레이닝 시, 논문에서의 정확도와 유사하지만, 실제 본 테스트에서는 과적합 발생하여 성능 저하됨 확인 예) b0이 b1보다 정확도가 높고, b6과 b7의 정확도가 같음
- 모형 개발 시, 과적합 방지를 위한 적절한 이미지 처리 미흡
- 불균형된 클래스 데이터 미처리 후 모형 학습하여 과적합 발생

2. 시사점

시사점

- 프로젝트를 진행하면서 활성화 함수로 sigmoid와 ReLU를 사용하였지만, 다양한 활성화 함수를 적용하여 확인하지 못함
- 한 가지 모델에 집중하여 진행한 것이 아쉬움
- 버전을 다양하게 사용했음에도 불구하고 점수가 크게 개선되지 못하여 아쉬움

• 6. 참고문헌

Introduction	Data	Daan Laannina	Model		Reference
Introduction	analvsis	Deep Learning	Evaluation	Suggestion	Reference

1. 참고 문헌

◎ 논문

- K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi:10.1109/CVPR.2016.90.
- S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He,

 "Aggregated Residual Transformations for Deep Neural Networks,"

 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

 Honolulu, HI, USA, 2017, pp.5987-5995, doi: 10.1109/CVPR.2017.634.
- Tan, M. & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (cite arxiv: 1905.11946Comment: Published in ICML 2019)
- Jia, W., Gao, J., Xia, W. *et al.* A Performance Evaluation of Classic Convolutional Neural Networks for 2D and 3DPalmprint and Palm Vein Recognition. *Int. J. Autom. Comput.* **18,** 18–44 (2021).https://doi.org/10.1007/s11633-020-1257-9

Introduction Data analysis Deep Learning Model Evaluation Suggestion Reference

1. 참고 문헌

◎ 논문 리뷰

- 나동빈. (2020, October 29). ResNet: Deep Residual Learning for Image Recognition (꼼꼼한 딥러닝 논문 리뷰와 코드 실습)[Video].

YouTube. https://www.youtube.com/watch?v=671BsKl8d0E

- 매일매일 딥러닝. (2019, November 24). 초-간단-논문리뷰ResNext. 매일매일 딥러닝. https://everyday-deeplearning.tistory.com/entry/초-간단-논문리뷰ResNext
- Peter Cha. (2021, January 24). ResNext(1) 2016. Stand firm Peter. https://www.stand-firm-peter.me/2021/01/24/resnext/
- Wolf 소신. (2021, December 19). [ResNeXt] 논문 리뷰 & 구현 (Pytorch). Wolfy Story. https://wolfy.tistory.com/244

◎ 캐글 커널

- Bipin Krishnan P. (2020). Efficientnet-b2: No cross validation LB 0.921 [Source code]. https://www.kaggle.com/bipinkrishnan/efficientnet-b2-no-cross-validation-lb-0-921/data
- ameya98. (2020). EfficientNet Submission [Source Code]. https://www.kaggle.com/ameya98/efficientnet-submission
- Ihelon. (2020). Catheter Position Exploratory Data Analysis [Source code]. https://www.kaggle.com/ihelon/catheter-position-exploratory-data-analysis

감사합니다