Tema 2. Resolución numérica de ecuaciones no lineales.

Computación Numérica

Antonio Palacio

Departamento de Matemáticas Universidad de Oviedo

palacioantonio@uniovi.es

Curso 2021-2022

Antonio Palacio Resolución numérica ecuaciones no lineales Curso 2021-2022

Introducción

Contenidos

- Introducción
- 2 Métodos que usan intervalos
 - Método de bisección
 - Método de Regula Falsi
- Métodos de punto fijo
- Método de Newton
 - El método de Newton
 - Variantes del método de Newton
- **(5)** Ecuaciones algebraicas
 - Resultados sobre existencia y acotación de raíces
 - Algoritmo de Horner
 - Cálculo de raíces por deflacción
 - Método de Muller

Contenidos I

- Introducción
- 2 Métodos que usan intervalos
 - Método de bisección
 - Método de Regula Falsi
- Métodos de punto fijo
- 4 Método de Newton
 - El método de Newton
 - Variantes del método de Newton
- 5 Ecuaciones algebraicas
 - Resultados sobre existencia y acotación de raíces
 - Algoritmo de Horner
 - Cálculo de raíces por deflacción
 - Método de Muller

Antonio Palaci

solución numérica ecuaciones i

Curso 2021-2022

2022

Introducción

¿Para qué usamos métodos numéricos?

Las cuotas mensuales para pagar un préstamo de d euros en n meses y con un interés anual i es

$$c = \frac{d\frac{i}{12}}{1 - \left(1 + \frac{i}{12}\right)^{-n}}$$

Si nos hacen un préstamo de 18030,36 euros a devolver en 10 años con cuotas mensuales de 258,68 euros, ¿qué interés nos están aplicando?. Sustituyendo en la fórmula los datos del problema, denotando por *x* la incógnita (el interés) y agrupando en el primer miembro se obtiene la ecuación:

$$f(x) = 5,8085x + \left(1 + \frac{x}{12}\right)^{-120} - 1 = 0 \tag{1}$$

En esta ecuación no es posible "despejar" x y necesitamos el uso de algún método numérico.

untonio Palacio Resolución numérica ecuaciones no lineales Curso 2021-2022 3/46 Antonio Palacio Resolución numérica ecuaciones no lineales Curso 2021-2022 4/4

Introducción

¿Cómo funcionan los métodos numéricos?

Los métodos numéricos pueden diseñarse utilizando directamente la función f, como en el **método de bisección y en el de Newton**, o introducir una nueva función que cambie el enfoque del problema como ocurre en los **métodos de punto fijo**.

Por ejemplo, si conocemos un valor aproximado x_0 del interés buscado x, podemos simplificar la ecuación 1 del siguiente modo:

$$5,8085x + \left(1 + \frac{x_0}{12}\right)^{-120} - 1 = 0$$
 y podemos despejar x fácilmente,

$$x = \frac{1}{5,8085} \left(1 - \left(1 + \frac{x_0}{12} \right)^{-120} \right) \tag{2}$$

Pero el valor obtenido solo será el correcto si $x=x_0$. Estaríamos entonces resolviendo el problema g(x)=x siendo

$$g(x) = \frac{1}{5,8085} \left(1 - \left(1 + \frac{x}{12} \right)^{-120} \right) \tag{3}$$

Antonio Palaci

Resolución numérica ecuaciones no lineale

Curso 2021-2022

2 5/

Introducción

Introducción

Convergencia

El error absoluto se denota $e_n = |x_n - r|$. Para que un método sea convergente debe verificarse que

$$e_n \xrightarrow[n \to \infty]{} 0$$

La rapidez con la que la sucesión de errores $\{e_n\}$ converge a 0 influye en la eficacia de un método.

Por ejemplo, para $a = 1 - 10^{-16}$ las sucesiones $e_n = a^n$ y $e'_n = a^{2^n}$ convergen a 0 con rapidez muy distinta:

- $e_n = 0.9999999888977699$ para n = 1000000000
- $e'_n = 0$ para n = 63 (operando con números reales en doble precisión)

Problema planteado

Dada la ecuación f(x) = 0 o g(x) = x con f y g funciones reales de variable real, se quiere encontrar $r \in \mathbb{R}$ tal que:

$$f(r) = 0$$
 o $g(r) = r$

Procedimiento

Se construye una sucesión de aproximaciones que converja a la solución:

$$x_0, x_1, \cdots, x_n, \cdots \xrightarrow[n \to \infty]{} r$$

y se realiza la aproximación:

$$x_N \approx r$$

para algún $N \in \mathbb{N}$.

Métodos que usan intervalos

Contenidos

- Introducción
- Métodos que usan intervalos
 - Método de bisección
 - Método de Regula Falsi
- Métodos de punto fijo
- Método de Newton
 - El método de Newton
 - Variantes del método de Newton
- 6 Ecuaciones algebraicas
 - Resultados sobre existencia y acotación de raíces
 - Algoritmo de Horner
 - Cálculo de raíces por deflacción
 - Método de Muller

Método de bisección

Teorema 2.1 (Teorema de Bolzano)

Sea $f:[a,b]\to\mathbb{R}$ continua. Si f(a)f(b)<0 entonces existe al menos una raíz de f en (a,b).

Teorema 2.2

Sea $f:[a,b]\to\mathbb{R}$ derivable k veces en (a,b) y verificando $f^{(k)}(x)\neq 0$ para todo $x \in (a,b)$. Entonces f posee a lo sumo k raíces reales.

Problema 2.1

Razone que $f(x) = x^5 + x - 1$ tiene una única raíz real.

Métodos que usan intervalos Método de bisección

Método de bisección

Teorema 2.3

Sea $f:[a,b]\to\mathbb{R}$ continua con f(a)f(b)<0. Entonces, la sucesión $\{x_n\}$ generada por el método de bisección converge a alguna una raíz r de f verificándose además:

$$e_n = |x_n - r| \le \frac{1}{2^n} (b - a)$$

Ejemplo 2.1

Sea $f(x) = x^5 + x^3 + x - 3$.

- Razone que f tiene raíz única en [0,3] y que el método de bisección, comenzando en [0,3], converge a dicha raíz.
- **2** Calcule el término x_3 de la sucesión obtenida por bisección.
- **3** Halle $N \in \mathbb{N}$ de forma que el término x_N de la sucesión obtenida por bisección aproxime la raíz con al menos ocho dígitos.

Procedimiento

Se conoce como método de bisección al siguiente procedimiento:

- Sea $f: [a,b] \to \mathbb{R}$ continualy con f(a)f(b) < 0.
- Se denota $\begin{cases} a_1 = a \\ b_1 = b \end{cases}$ y $x_1 = \frac{a_1 + b_1}{2}$.
- Si $f(x_1) = 0$ entonces x_1 es raíz. En caso contrario:

$$\bullet \ \, \mathrm{Si} \, \, f(a_1) f(x_1) < 0 \, \, \mathrm{se \, \, denota:} \, \left\{ \begin{array}{l} a_2 = a_1 \\ b_2 = x_1 \end{array} \right. \, \, \, \mathrm{y} \, \, x_2 = \frac{a_2 + b_2}{2} \, .$$

• Si
$$f(a_1)f(x_1) > 0$$
 se denota:
$$\begin{cases} a_2 = x_1 \\ b_2 = b_1 \end{cases} \quad \text{y } x_2 = \frac{a_2 + b_2}{2}.$$

- Al cabo de n etapas, se obtiene un intervalo $[a_n, b_n]$ que verifica:
 - Su longitud es la mitad que el anterior.
 - Contiene al menos una raíz r de f.
 - Se toma $x_n = \frac{a_n + b_n}{2}$ como aproximación de r.

Métodos que usan intervalos Método de Regula Falsi

Método de Regula Falsi

Procedimiento

- Se genera una colección de intervalos $[a_n, b_n]$ que contienen una raíz como en el método de bisección.
- Cambia la forma de elegir el valor de x_n :
 - Se construye la recta que une los puntos $(a_n, f(a_n))$ y $(b_n, f(b_n))$
 - Se define x_n como la intersección de esta recta con el eje X.

Figura: Método de bisección. Método de Regula Falsi.

Métodos de punto fijo

Métodos de punto fijo

Definición 2.1

Sea $A \subset \mathbb{R}^n$ y $g : A \to \mathbb{R}^n$. Se dice que $r \in A$ es punto fijo de g si g(r) = r.

Procedimiento

- Dada la ecuación f(x) = 0, se busca g (función de iteración) tal que: $g(x) = x \Rightarrow$ f(x) = 0
- Se plantea: $\begin{cases} x_0 \text{ dado} \\ x_{n+1} = g(x_n), & n \in \mathbb{N} \end{cases}$

2 Métodos que usan intervalos

- Método de bisección
- Método de Regula Falsi
- Métodos de punto fijo
- Método de Newton
 - El método de Newton
 - Variantes del método de Newton
- 5 Ecuaciones algebraicas
 - Resultados sobre existencia y acotación de raíces
 - Algoritmo de Horner
 - Cálculo de raíces por deflacción
 - Método de Muller

Métodos de punto fijo

Métodos de punto fijo

Ejemplo 2.2

Sea $f(x) = x^3 + 4x^2 - 10$. Razone que f posee una única raíz en el intervalo [1,2] y plantee dos métodos de punto fijo asociados al cálculo de las raíces de f.

Métodos de punto fijo

Teorema 2.4 (Teorema de convergencia local)

Sea $g:[a,b]\to\mathbb{R}$ una función con derivada continua y sea $r\in[a,b]$ un punto fijo de g en el que se cumple |g'(r)|<1. Entonces existe $\delta>0$ tal que si $x_0\in[r-\delta,r+\delta]$ la sucesión $x_{n+1}=g(x_n)$, n=0,1,.. converge a r.

Problema 2.2

Sea f(x) = x - 0.5 sen x - 2.

- Razone que la ecuación f(x) = 0 tiene una única raíz real en [0,3].
- Verifique que los puntos fijos de $g(x) = 2 + 0.5 \operatorname{sen} x$ son raíces de f
- **Ompruebe** que g verifica las hipótesis del teorema convergencia local en [0,3].

Antonio Palaci

Resolución numérica ecuaciones no lineal

Curso 2021-202

17 / 46

Métodos de nunto fiio

Métodos de punto fijo

Corolario

Con las hipótesis del Teorema 2.4, si además $e_n = |x_n - r|$ es no nulo para todo n, entonces:

$$\lim_{n\to\infty}\frac{e_{n+1}}{e_n}=|g'(r)|$$

Si $|g'(r)| \neq 0$, se dice que e_n converge a 0 con orden 1 o que el método tiene convergencia de orden 1.

Nota 2.1

La convergencia teórica no garantiza la convergencia en la práctica: Por ejemplo, g(x) = cx para $x \in [0,1]$, con $c \in (0,1)$ verifica las hipótesis del teorema de convergencia local en [0,1] siendo x=0 su punto fijo. Sin embargo, para $x_0=1$ y $c=1-10^{-10}$ se obtiene $x_n=0.99$ con $n=10^8$ (recuerde que x_n debe converger al punto fijo x=0) y para $c=1-10^{-20}$, se obtiene $x_n=1$ para todo n con aritmética de 16 dígitos.

Métodos de punto fijo

Métodos de punto fijo

Figura: Equivalencia entre raíz y punto fijo (ejercicio 2.2).

Antonio Palaci

solución numérica ecuaciones no l

Curso 2021-2022

22. 1

Métodos de punto

Métodos de punto fijo

Teorema 2.5 (de no convergencia)

Sea $g:[a,b] \to \mathbb{R}$ una función con derivada continua y sea $r \in (a,b)$ un punto fijo de g en el que se cumple |g'(r)| > 1. Entonces las únicas sucesiones de la forma $x_{n+1} = g(x_n)$, n = 0, 1, ... que convergen a r son aquellas en las que los términos son igual a r a partir de uno en adelante.

Nota 2.2

No es razonable aplicar el método del punto fijo cuando la función g está en las hipótesis del teorema anterior.

Problema 2.3

Sea
$$g(x) = \frac{1}{4}x^2 + \frac{1}{4}x + \frac{1}{2}$$
.

- **1** Demuestre que x = 1 y x = 2 son los únicos puntos fijos de g.
- **②** Demuestre que en x = 1 se cumplen las hipótesis del teorema de convergencia local (Teorema 2.4) pero no en x = 2.
- **1** Halle $x_0 \neq 2$ tal que la sucesión $x_{n+1} = g(x_n)$, $n \geq 0$ converja a 2.

Antonio Delegio Desedución numérica equaciones no lingulas Curso 2021 2022 10 / 46

Antonio Palacio Resolución numérica ecuaciones no lineales Cur-

Métodos de punto fijo

Métodos de punto fijo

Método de Newton

Contenidos

Introducción

Métodos que usan intervalos

- Método de bisección
- Método de Regula Falsi
- Métodos de punto fijo
- 4 Método de Newton
 - El método de Newton
 - Variantes del método de Newton

6 Ecuaciones algebraicas

- Resultados sobre existencia y acotación de raíces
- Algoritmo de Horner
- Cálculo de raíces por deflacción
- Método de Muller

Métodos de punto fijo

Métodos de punto fijo

M

Método de Newton El método de Newton

Método de Newton

Procedimiento

- Sean $f \in \mathcal{C}^1([a,b])$ y $r \in [a,b]$ una raíz de f.
- x_0 aproximación inicial de r.
- Se aproxima la curva y = f(x) por su recta tangente en x_0 :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

• Se utiliza el cero de la recta tangente como nueva aproximación de r:

$$f(x_0) + f'(x_0)(x - x_0) = 0 \Rightarrow x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

ntonio Palacio Resolución numérica ecuaciones no lineales Curso 2021-2022 23/46 Antonio Palacio Resolución numérica ecuaciones no lineales Curso 2021-2022 24/-

Método de Newton

Método de Newton

Método de Newton

Teorema 2.6 (Convergencia local del método de Newton-Raphson)

Sean $f:[a,b] \to \mathbb{R}$ de clase dos y $r \in [a,b]$ una raíz de f. Si $f'(r) \neq 0$, entonces:

- **3** ∃ δ > 0 tal que si $x_0 \in [r-\delta, r+\delta]$ la sucesión $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$, $n \in \mathbb{N}$ converge
- ② Si f es \mathscr{C}^3 y $e_n = |x_n r|$ es no nulo para todo n, se verifica que

$$\lim_{n\to\infty}\frac{e_{n+1}}{e_n^2}=\left|\frac{f''(r)}{2f'(r)}\right|$$

Nota 2.3

Si $|f''(r)| \neq 0$, se dice que el método tiene convergencia de orden 2.

Método de Newton-Raphson

$$x_0 \in [a,b]$$
 dado
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n \in \mathbb{N}$

• Es un método de punto fijo para la función:

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Además, esta función verifica que g'(r) = 0.

• Si $f'(x_n) = 0$ para algún n, el método no puede ser implementado.

Método de Newton El método de Newton

Método de Newton

Problema 2.4

Razone que $f(x) = x^3 + 4x^2 - 10$ verifica las hipótesis del teorema de convergencia local del método de Newton en [1,2] y realice dos iteraciones de dicho método con $x_0 = 1,5.$

Variantes del método de Newton

Intentan evitar o reducir el uso de f'.

Métodos Cuasi-Newton.

La derivada $f'(x_n)$ solo se actualiza cada cierto número de iteraciones. Cuando se sustituye f' por un valor constante en todas las iteraciones se conoce como el método de Whittaker.

Cálculo aproximado de la derivada

Se realiza la aproximación

$$f'(x_n) \approx \frac{f(x_n+h) - f(x_n)}{h}$$

siendo h un parámetro a elegir.

$$f'(x_n) \approx \frac{f(x_n+h) - f(x_n)}{h}$$

Método de Newton Variantes del método de Newton

Variantes del método de Newton

Problema 2.5

Sea $f(x) = x^3 + 4x^2 - 10$. Realice una iteración del método de la secante con $x_0 = 1$ $y x_1 = 2$.

Nota 2.4

Tomando $x_0 = 1.5$ y utilizando r = 1.365230013 como la única raíz de f en [1,2], se obtiene que con el método del punto fijo para $g(x) = \frac{\sqrt{10 - x^3}}{2}$ son necesarias 30 iteraciones para aproximar r con una precisión de 10 dígitos, mientras que el método de Newton solamente necesita 4 iteraciones.

Observaciones

- La ventaja principal del método es que tiene convergencia cuadrática.
- Es un método esencialmente local, con una dependencia importante del punto de partida. Se suele combinar con otros métodos (por ejemplo, bisección) para obtener una buena estimación inicial.
- Se necesita evaluar f' en cada iteración lo que puede reducir su eficiencia.
- Cuando f(r) = f'(r) = 0 no se verifica la hipótesis del teorema. No obstante, si $f'(x) \neq 0$ en torno a r, el método se puede implementar, aunque la convergencia obtenida ya no es cuadrática.

Método de Newton Variantes del método de Newton

Variantes del método de Newton

Método de la secante.

Dados x_0 y x_1 se plantea el método:

$$x_{n+1} = x_n - \frac{f(x_n)}{\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Geométricamente, consiste en aproximar la curva por la secante en dos puntos y calcular la raíz generada por esta secante.

Tiene convergencia local de orden $\frac{1+\sqrt{5}}{2}\approx 1{,}62$ bajo las mismas hipótesis que el método de Newton.

Método de Newton para raíces múltiples.

Sea $f(r) = f'(r) = \cdots = f^{(k)}(r) = 0$ y $f^{(k+1)}(r) \neq 0$. Para k > 1 la función f no verifica la hipótesis del teorema de convergencia del método de Newton. Se define entonces la función

$$h(x) = \begin{cases} \frac{f(x)}{f'(x)} & \text{si} \quad x \neq r \\ 0 & \text{si} \quad x = r \end{cases}$$

que tiene en x = r un cero simple. Se aplica el método de Newton a la función h para obtener dicha raíz.

Ecuaciones algebraicas

Ecuaciones algebraicas Resultados sobre existencia y acotación de raíces

Resultados sobre existencia y acotación de raíces

Definición 2.2

Una ecuación algebraica o polinómica es una expresión de la forma

Ecuaciones algebraicas

 $P(x) = a_0 + a_1 x + \dots + a_n x^n = 0$, con $a_i \in \mathbb{R} \ \forall i = 0, 1, \dots, n \ y \ a_n \neq 0$.

Observaciones

- Un polinomio está determinado unívocamente por sus coeficientes. Por ejemplo, en Matlab se representa por: $P=[a_n \ a_{n-1} \cdots a_1 \ a_0]$
- Son un caso particular de ecuaciones en una variable y por tanto son aplicables los métodos de la sección anterior.
- Existen resultados específicos para este tipo de ecuaciones.

Contenidos

Introducción

2 Métodos que usan intervalos

 Método de bisección • Método de Regula Falsi

• El método de Newton

5 Ecuaciones algebraicas

Algoritmo de Horner

• Método de Muller

• Variantes del método de Newton

• Cálculo de raíces por deflacción

Método de Newton

• Resultados sobre existencia y acotación de raíces

Propiedades

• Si r es raíz de un polinomio P entonces

$$P(x) = (x - r)Q(x) \quad \text{con} \quad gr(Q) < gr(P)$$

y toda raíz de Q lo es también de P.

• Todo polinomio puede ser factorizado en C del siguiente modo:

$$P(x) = a_n (x - r_1)^{k_1} \cdots (x - r_m)^{k_m}$$

siendo
$$r_i \in \mathbb{C}$$
 y $k_1 + \cdots + k_m = n$.

- Si un complejo r es raíz de P entonces también lo es su conjugado \bar{r} .
- Si *n* es impar, existe al menos una raíz real.
- Si $P^{(k)}(x)$ no tiene ceros reales, entonces P(x) tiene a lo sumo k raíces reales.

Teorema 2.7

Supongamos que $a_0 \neq 0$ y sean $\lambda = \frac{\max\{|a_0|,...,|a_{n-1}|\}}{|a_n|}$ y $\mu = \frac{\max\{|a_1|,...,|a_n|\}}{|a_0|}$.

Entonces si r es raíz de P(x) (real o compleja) debe verificar que $\frac{1}{1+u} \le |r| \le 1+\lambda$.

Ejemplo 2.3

Se considera el polinomio $x^5 + 2x^4 + 6x^3 + 24x^2 + 2x$. Puesto que x = 0 es una de las raíces, podemos realizar la descomposición: $x^5 + 2x^4 + 6x^3 + 24x^2 + 2x = P(x)x$, siendo $P(x) = x^4 + 2x^3 + 6x^2 + 24x + 2$ y en el que el coeficiente a_0 es no nulo. Razone que P tiene, a lo sumo, dos raíces reales. Halle $a,b \in \mathbb{R}$ tal que las raíces de P *verifiquen* $a \le |r| \le b$.

Ecuaciones algebraicas Algoritmo de Horner

Algoritmo de Horner

Ejemplo 2.4

Sean $P(x) = x^3 - 6x^2 + 3x - 0.149$, a = 4.71 y P(a) = -14.636489. Usando aritmética de tres dígitos, halle el error relativo cometido al evaluar P(a) directamente y por método de Horner.

Algoritmo de Horner

Procedimiento

$P(\alpha) = a_0 + \alpha \left(a_1 + \alpha \left(a_2 + \cdots \left(a_{n-2} + \alpha \left(a_{n-1} + \alpha \underbrace{a_n} \right) \right) \right) \right)$

Ecuaciones algebraicas Algoritmo de Horne

Programación

- $b_{n-1} = a_n$
- Para $j = n 2, \dots, 0, b_i = a_{j+1} + \alpha b_{j+1}$
- $P(\alpha) = a_0 + \alpha b_0$

Nota 2.5

En general, el método de Horner necesita n sumas/restas y n multiplicaciones para calcular $P(\alpha)$ mientras que el método directo utiliza n sumas/restas y 2n-1multiplicaciones.

Ecuaciones algebraicas Algoritmo de Horner

Algoritmo de Horner

Teorema 2.8

Sean b_0, b_1, \dots, b_{n-1} los coeficientes asociados al número real α siguiendo el Algoritmo de Horner. Entonces:

- $P(x) = Q(x)(x-\alpha) + P(\alpha)$ siendo $Q(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}$.
- $P'(\alpha) = Q(\alpha).$

Ejemplo 2.5

Sea $P(x) = 2x^4 - 3x^2 + 3x - 4$. Realice una iteración del método de Newton con $x_0 = -2$ y utilizando el algoritmo de Horner para evaluar P(-2) y P'(-2).

Ecuaciones algebraicas Cálculo de raíces por deflacción

Cálculo de raíces por deflacción

Procedimiento

- Sea r una raíz del polinomio P(x). Entonces:
- $P(x) = Q(x)(x-r) \operatorname{con} gr(Q) < gr(P)$.
- Se obtiene una nueva raíz de P calculando una raíz de Q.
- El procedimiento se reitera hasta que gr(Q) = 1.

Ejemplo 2.6

Sea $P(x)=x^4-1$, cuyas raíces reales son $r_1=1$ y $r_2=-1$. Calcule, mediante el método de Horner y con aritmética de 4 dígitos, la descomposición:

$$P(x) = Q^*(x)(x - 0.9999) + P(0.9999).$$

Realice una iteración del método de Newton para Q^* con $x_0 = 1$.

Ecuaciones algebraicas Cálculo de raíces por deflacción

Cálculo de raíces por deflacción

Ecuaciones algebraicas Cálculo de raíces por deflacción

Cálculo de raíces por deflacción

Ecuaciones algebraicas Método de Muller

Método de Muller

Procedimiento

- Sean x_0, x_1 y x_2 aproximaciones de r tal que:
 - Son distintas entre si.
 - Ninguna de ellas es raíz de P.
 - $P(x_2) \neq P(x_1)$ ó $P(x_2) \neq P(x_0)$ (es decir, los tres puntos no están sobre una recta horizontal).
- Se construye h(x), polinomio de grado menor o igual que dos que pasa por $(x_0, P(x_0)), (x_1, P(x_1)) y (x_2, P(x_2)).$
- Se elige como nueva aproximación x_3 de r la raíz de h mas cercana a x_2 .
- Se comienza de nuevo con x_1, x_2, x_3 .

Ecuaciones algebraicas Método de Muller

Método de Muller

Ecuaciones algebraicas Método de Muller

Problema 2.6

Método de Muller

Se considera la ecuación $e^x + x - 2 = 0$ y se pide:

- Razone que posee una única raíz real.
- Demuestre que el método de Newton converge localmente.
- **§** Realice una iteración de dicho método siendo x = 0 la estimación inicial.
- **1** Realice una iteración del método de la secante siendo $x_0 = 0$ y $x_1 = 1$ las estimaciones iniciales.
- **5** Halle $n \in \mathbb{N}$ de forma que el término x_n de la sucesión obtenida por bisección en [0,1] garantice una aproximación a la raíz de al menos dos dígitos.