Математична логіка

Зміст

1	Лекція 2. Алгебра формул. 24.02			
	1.1	Алгеб	ебра формул	
		1.1.1	Інтерпретації	4
		1.1.2	Алгебра Лінденбаума*	6
		1 1 3	Властивості рівносильних формул	g

1 Лекція 2. Алгебра формул. 24.02

Формула логіки висловлювань називається виконливою, якщо її область істинності не є пустою. Виконлива формула називається тавтологією (або тотожно істинною), якщо її область істинності містить усі булеві вектори відповідної довжини (або, що те саме, область хибності є порожньою). Формули з непорожньою областю хибності називаються спростовуваними. Спростовувана формула називається суперечністю (або тотожно хибною), якщо її область істинності — порожня множина. Формули, для яких і область істинності, і область хибності — непорожні, називаються нейтральними.

Однією з центральних задач у логіці висловлювань (до неї зводиться багато інших) є задача встановлення типу формули (тавтологія, тотожно хибна чи нейтральна). Легко зрозуміти, що досить вміти перевіряти формули лише на тавтологічність. Справді, формула F є тотожно хибною, якщо її заперечення $\neg F$ є тавтологією, і нейтральною, якщо ні F, ні $\neg F$ не є тавтологіями. Найпростішим, хоча й громіздким, методом перевірки формули на тавтологічність є побудова її таблиці істинності.

Ми вкажемо ще два методи перевірки формули на тавтологічність, які інколи бувають зручнішими.

А. Міркування від супротивного. Цей метод полягає в пошуку такого набору значень простих висловлювань, при яких формула стає хибною. Він особливо ефективний, коли аналізована формула включає багато імплікацій.

Для прикладу розглянемо формулу

$$F = ((p \land q) \to r) \to (p \to (q \to r)).$$

Ця формула буде хибною лише в тому випадку, коли $(p \land q) \to r$ є істинною, а $p \to (q \to r)$ — хибною. Друга формула буде хибною лише тоді, коли p=1, а формула $q \to r$ є хибною (що можливе лише тоді, коли q=1 і r=0). Отже, формула F може бути хибною лише у випадку p=1, q=1, r=0.

Безпосередньо перевіряється, що на наборі $p=1,\,q=1,\,r=0$ формула F набуває значення 1. Тому F є тавтологією.

Зауважимо, що хоча нам і довелося використати певні додаткові міркування, зате замість 8 можливих наборів значень для p, q і r ми обчислювали значення формули F лише на одному наборі.

Б. Арифметизація формул.

Інколи зручно вважати, що змінні із формул логіки висловлювань набувають не логічних, а числових значень 0 і 1 (дійсних чи з поля \mathbb{Z}_2). Тоді логічним операціям відповідатимуть певні арифметичні операції:

над
$$\mathbb{R}$$
 над \mathbb{Z}_2

$$\neg p \qquad 1-p \qquad 1+p$$

$$p \lor q \qquad p+q-pq \qquad p+q+pq$$

$$p \land q \qquad pq \qquad pq$$

$$p \to q \qquad 1-p+pq \qquad 1+p+pq$$

$$p \leftrightarrow q \quad 1-p-q+2pq \qquad 1+p+q$$

$$p \oplus q \qquad p+q-2pq \qquad p+q$$

Алгоритм перевірки формули на тавтологічність виглядає наступним чином: спочатку замінюємо всі логічні операції відповідними арифметичними, а потім, користуючись арифметичними тотожностями, спрощуємо отриманий вираз. Зауважимо, що наші змінні набувають лише значень 0 і 1, а тому для них виконується ще й тотожність $x^2 = x$. Крім того, над полем \mathbb{Z}_2 маємо ще й тотожність x + x = 0. Ці тотожності значно полегшують обчислення.

Якщо після всіх спрощень отримаємо 1, формула є тавтологією. У противному разі формула є спростовуваною.

Розглянемо два приклади.

1. Для перевірки на тавтологічність формули

$$(q \to r) \to ((p \lor q) \to (p \lor r))$$

застосуємо арифметизацію над полем \mathbb{Z}_2 :

Отже, формула є тавтологією.

2. Для перевірки на тавтологічність формули

$$(q \to (p \land r)) \land \neg ((p \lor r) \to q)$$

застосуємо арифметизацію над полем \mathbb{R} :

$$F = (1 - q + qpr)(1 - (1 - (p + r - pr) + (p + r - pr)q)) =$$

$$= (1 - q + qpr)(p + r - pr - pq - rq + pqr) =$$

$$= p + r - pr - pq - rq + pqr - pq - rq + prq + pq^2 + rq^2 + pq^2r =$$

$$= p + r - pr - pq - rq + pqr.$$

Останній вираз не дорівнює 1, тому формула не є тавтологією. З отриманого виразу, видно, зокрема, що F=0 при p=q=r=0 і при p=q=r=1.

Зауваження. 1. Пізніше у нас з'явиться ще один метод перевірки формул на тавтологічність — за допомогою рівносильних перетворень.

2. Позаяк є чисто алгоритмічна процедура перевірки формули на тавтологічність за допомогою таблиць істинності, то надалі доведення того, що дана формула логіки висловлювань є тавтологією, зазвичай буде опускатися.

1.1 Алгебра формул

1.1.1 Інтерпретації

Множина \mathfrak{F} всіх формул логіки висловлювань, записаних з використанням логічних зв'язок \neg , \lor , \land , \rightarrow , \leftrightarrow , \oplus , природно перетворюється в універсальну алгебру сигнатури $(0,1,\neg,\lor,\land,\rightarrow,\leftrightarrow,\oplus)$ (наприклад, результатом застосування бінарної операції * до формул A і B ε формула (A*B)).

Як алгебра \mathfrak{F} породжується множиною $\mathcal{A} = \{a, a_1, a_2, \ldots, b, b_1, \ldots\}$ символів простих висловлювань. Дійсно, застосовуючи до елементів цієї множини операції даної сигнатури, ми зможемо одержати довільну формулу алгебри висловлювань. Навіть більше, з означення формули випливає, що таким шляхом кожну формулу можна одержати лише одним способом. 1

Універсальна алгебра такої ж сигнатури природно визначається і на множині $B = \{0,1\}$ логічних значень (результат застосування операції

 $^{^1}$ Якщо універсальна алгебра має систему твірних з такою властивістю, то вона називається *вільною*.

до відповідних логічних значень визначається таблицею істинності цієї операції). Алгебру $\langle \{0,1\}; 0,1,\neg,\vee,\wedge,\to,\leftrightarrow,\oplus \rangle$ будемо позначати \mathfrak{B} .

Оскільки алгебри $\mathfrak F$ і $\mathfrak B$ мають однаковий набір операцій, то можна розглядати гомоморфізми $\varphi:\mathfrak F\to\mathfrak B$. Такі гомоморфізми будемо називати *інтерпретаціями* алгебри формул логіки висловлювань. Зокрема, образ $\varphi(F)$ формули F при деякому гомоморфізмі φ будемо називати *інтерпретацією* формули F.

Зрозуміло, що гомоморфізм алгебри повністю задається своїми значеннями на множині твірних. У нашому випадку гомоморфізм $\varphi:\mathfrak{F}\to\mathfrak{B}$ повністю задається своїми значеннями на множині \mathcal{A} простих висловлювань. А позаяк кожна формула отримується з простих висловлювань тільки одним способом, то образи змінних можна задавати довільно. Іншими словами, кожне відображення $\widetilde{\varphi}:\mathcal{A}\to\mathfrak{B}$ однозначно продовжується до гомоморфізму $\varphi:\mathfrak{F}\to\mathfrak{B}$.

Присвоєння $\widetilde{\varphi}: \mathcal{A} \to \mathfrak{B}$ символам простих висловлювань певних значень істинності часто називають *оцінкою*. При оцінці кожна формула F отримує значення істинності $\varphi(F)$.

Інтерпретацію $\varphi: \mathfrak{F} \to \mathfrak{B}$ (і її обмеження $\widetilde{\varphi}$ на множину \mathcal{A} символів простих висловлювань) будемо називати моделлю формули F, якщо $\varphi(F)=1$. Зокрема, формула F буде виконливою, якщо вона має модель, і буде тавтологією, якщо кожна інтерпретація буде її моделлю F.

Будемо говорити, що формули A і B рівносильні (і позначати $A \equiv B$), якщо при кожній інтерпретації образи цих формул збігаються (тобто $\varphi(A) = \varphi(B)$ для кожного гомоморфізму $\varphi: \mathfrak{F} \to \mathfrak{B}$). Іншими словами, якщо на кожному наборі логічних значень змінних, що зустрічаються хоча б в одній із формул A і B, ці формули набувають однакових логічних значень. У термінах моделей це означає, що вони мають ті самі моделі.

Два висловлювання називаються piвносильними, якщо їх можна одержати з рівносильних формул A і B за допомогою заміни усіх змінних, що входять до цих формул, конкретними висловлюваннями.

Вправа 1.1. Доведіть, що формули A і B будуть рівносильними тоді й лише тоді, коли формула $A \leftrightarrow B$ буде тавтологією.

Вправа 1.2. Доведіть такі рівносильності:

- а) для штриха Шефера: $a \mid b \equiv \neg(a \land b)$;
- b) для стрілки Пірса (стрілки Лукасевича) : $a \downarrow b \equiv \neg (a \lor b)$.

1.1.2 Алгебра Лінденбаума*

Нагадаємо, що конґруенцією на алгебрі \mathcal{A} називається відношення еквівалентності \sim на цій алгебрі, узгоджене з усіма операціями в \mathcal{A} . Тобто для кожної унарної операції $\hat{\ }$ із $a \sim a_1$ має випливати $\hat{a} \sim \hat{a_1}$, для кожної бінарної операції * із $a \sim a_1$ і $b \sim b_1$ має випливати $a * b \sim a_1 * b_1$, і т.д.

Для конґруенції \sim через \overline{a} позначимо той клас еквівалентності, що містить a. На множині \mathcal{A}/\sim усіх класів еквівалентності конґруенції \sim можна природним чином визначити всі операції, які ϵ в алгебрі \mathcal{A} :

$$\widehat{\overline{a}} := \overline{\widehat{a}}, \quad \overline{a} * \overline{b} := \overline{a * b}, \quad \dots$$

Коректність визначення цих операції, тобто незалежність результату $\widehat{\overline{a}}$, $\overline{a}*\overline{b}$, тощо від вибору конкретних представників a,b,\ldots відповідних класів еквівалентності, випливає із узгодженості відношення \sim з операціями в алгебрі \mathcal{A} . Отримана таким чином алгебра \mathcal{A}/\sim називається фактор-алгеброю алгебри \mathcal{A} за конґруенцією \sim .

Теорема 1.1. Bidношення рівносильності $\equiv e$ конґруенцією на алгебрі \mathfrak{F} всіх формул логіки висловлювань.

Доведення. Із означення відношення ≡ одразу випливає, що воно є відношенням еквівалентності. Тому треба перевірити лише узгодженість відношення ≡ з операціями.

Очевидно, що з $A \equiv B$ випливає $\neg A \equiv \neg B$. Нехай тепер $A_1 \equiv A_2$, $B_1 \equiv B_2$, $\varphi : \mathfrak{F} \to \mathfrak{B}$ — довільна інтерпретація, а * — якась із бінарних операцій. Оскільки $\varphi(A_1) = \varphi(A_2)$ і $\varphi(B_1) = \varphi(B_2)$, то

$$\varphi(A_1 * B_1) = \varphi(A_1) * \varphi(B_1) = \varphi(A_2) * \varphi(B_2) = \varphi(A_2 * B_2).$$

Позаяк інтерпретація φ — довільна, то $A_1 * A_1 \equiv A_2 * B_2$.

Тому можна розглянути факторалгебру $\mathfrak{L}=\mathfrak{F}/_{\equiv}$ алгебри \mathfrak{F} за відношенням рівносильності. Її елементами є *класи рівносильних формул*. Дії у факторалгебрі \mathfrak{L} визначаються стандартно: якщо \overline{A} — клас рівносильності, що містить формулу A, то

$$\neg \overline{A} := \overline{\neg A}$$
 і $\overline{A} * \overline{B} := \overline{A * B}$ для довільної бінарної дії $*$.

Факторалгебра \mathfrak{L} називається алгеброю Лінденбаума (інші назви: алгебра висловлювань, алгебра класів рівносильних формул).

Оскільки

$$\begin{split} A \to B &\equiv \neg A \vee B \,; \\ A \leftrightarrow B &\equiv (A \to B) \wedge (B \to A) \,; \\ A \oplus B &\equiv \neg (A \leftrightarrow B) \,, \end{split}$$

то в алгебрі Лінденбаума операції \to , \leftrightarrow , \oplus можна розглядати як похідні від операцій \lor , \land та \neg . Аналогічне зауваження стосується і алгебри \mathfrak{B} . Тому далі ми розглядатимемо \mathfrak{L} і \mathfrak{B} як алгебри сигнатури $(0,1,\neg,\lor,\land)$.

Булевою алгеброю назвемо довільну універсальну алгебру сигнатури $(0,1,\neg,\lor,\land)$, в якій виконуються всі ті закони (= тотожності), що виконуються в алгебрі $\mathfrak{B} = \langle \{0,1\}; 0,1,\neg,\lor,\land \rangle$. Таке задання класу універсальних алгебр є трохи незвичним, зазвичай це робиться за допомогою явно вказаного списку аксіом. Трохи пізніше ми доведемо, що це можна зробити й для булевих алгебр; і навіть вкажемо одну з можливих аксіоматик. Але при цьому ми вже розумітимемо, звідки взявся саме такий набір аксіом і чому алгебри, які задовольняють цим аксіомам, є важливими.

Теорема 1.2. Алгебра Лінденбаума £ є булевою.

Доведення. Нехай

$$F_1(x_1, \dots, x_n) = F_2(x_1, \dots, x_n)$$
 (1)

— закон алгебри $\mathfrak{B}, \overline{A_1}, \ldots, \overline{A_n}$ — довільні елементи алгебри $\mathfrak{L}, A_1, \ldots, A_n$ — представники відповідних класів рівносильних формул. Розглянемо довільний гомоморфізм $\varphi : \mathfrak{F} \to \mathfrak{B}$. Із означення гомоморфізму та (1) випливає, що

$$\varphi(F_1(A_1,\ldots,A_n)) = F_1(\varphi(A_1),\ldots,\varphi(A_n)) =$$

= $F_2(\varphi(A_1),\ldots,\varphi(A_n)) = \varphi(F_2(A_1,\ldots,A_n)).$

Отже,

$$F_1(A_1,\ldots,A_n) \equiv F_2(A_1,\ldots,A_n),$$

тобто

$$\overline{F_1(A_1,\ldots,A_n)}=\overline{F_2(A_1,\ldots,A_n)}.$$

Але, за означенням дій у факторалгебрі,

$$\overline{F_1(A_1,\ldots,A_n)} = F_1(\overline{A_1},\ldots,\overline{A_n}), \quad \overline{F_2(A_1,\ldots,A_n)} = F_2(\overline{A_1},\ldots,\overline{A_n})$$

Тому

$$F_1(\overline{A_1},\ldots,\overline{A_n})=F_2(\overline{A_1},\ldots,\overline{A_n}).$$

Позаяк $\overline{A_1}, \ldots, \overline{A_n}$ — довільні, то закон (1) виконується і в алгебрі $\mathfrak L$.

Нехай M — деяка множина. Множину $\mathfrak{B}(M)$ всіх її підмножин можна розглядати як алгебру сигнатури $(\varnothing, M, {}^-, \cup, \cap)$. Очевидно, що алгебра $\mathfrak{B}(M)$ однотипна алгебрі $\mathfrak{B} = \langle \{0,1\}; 0,1,\neg,\vee,\wedge \rangle$.

Теорема 1.3. Алгебра $\mathfrak{B}(M)$ всіх підмножин даної множини M є булевою.

 $^{^2 {\}rm Tak},$ наприклад, задаються групи, кільця, векторні простори і багато інших класів алгебр.

Доведення. Для кожного $a \in M$ розглянемо відображення $\varphi_a \colon \mathfrak{B}(M) \to \mathfrak{B}$, визначене правилом:

$$\varphi_a(N)=1$$
 тоді й лише тоді, коли $a\in N$.

Легко перевіряється, що відображення φ_a є гомоморфізмом алгебр. Зрозуміло також, що для довільних підмножин $N_1, N_2 \subseteq M$ рівність $N_1 = N_2$ виконується тоді й лише тоді, коли $\varphi_a(N_1) = \varphi_a(N_2)$ для всіх a.

Нехай тепер $F_1(x_1,\ldots,x_n)=F_2(x_1,\ldots,x_n)$ — закон алгебри $\mathfrak{B},$ а N_1,\ldots,N_n — довільні підмножини з M. Тоді для довільного $a\in M$

$$\varphi_a(F_1(N_1,...,N_n)) = F_1(\varphi_a(N_1),...,\varphi_a(N_n)) =$$

= $F_2(\varphi_a(N_1),...,\varphi_a(N_n)) = \varphi_a(F_2(N_1,...,N_n)).$

Отже,
$$F_1(N_1, ..., N_n) = F_2(N_1, ..., N_n)$$
.

Підалгебри алгебр $\mathfrak{B}(M)$ називаються алгебрами множин.

Теорема 1.4. Алгебра Лінденбаума $\mathfrak L$ ізоморфна деякій алгебрі множин.

Доведення. Нехай M — множина всіх інтерпретацій алгебри формул \mathfrak{F} . Кожному класу \overline{A} рівносильних формул поставимо у відповідність множину N_A тих інтерпретацій, які на формулах з цього класу набувають значення $1\colon N_A = \{\varphi \in M \mid \varphi(A) = 1\}$. Розглянемо відображення

$$\psi: \mathfrak{L} \to \mathfrak{B}(M), \quad \overline{A} \mapsto N_A.$$

Покажемо, що ψ є ін'єктивним гомоморфізмом.

 $In'ermuвність \psi$. Якщо $\overline{A} \neq \overline{B}$, то $A \not\equiv B$ і існує інтерпретація φ , при якій $\varphi(A) \neq \varphi(B)$. Скажімо, $\varphi(A) = 1$, $\varphi(B) = 0$. Але тоді $\varphi \in N_A$ і $\varphi \not\in N_B$. Отже, $\psi(\overline{A}) \neq \psi(\overline{B})$.

Гомоморфність ψ . Очевидно, що $\psi(0) = \emptyset$, $\psi(1) = M$. Далі маємо:

$$\varphi \in \psi(\overline{A} \vee \overline{B}) \iff \varphi(A \vee B) = 1 \iff \varphi(A) = 1 \text{ afo } \varphi(B) = 1 \iff \varphi \in N_A \text{ afo } \varphi \in N_B \iff \varphi \in N_A \cup N_B \iff \varphi \in \psi(\overline{A}) \cup \psi(\overline{B}).$$

Отже, $\psi(\overline{A} \vee \overline{B}) = \psi(\overline{A}) \cup \psi(\overline{B})$. Узгодженість ψ з іншими діями перевіряється аналогічно.

Позаяк ψ є гомоморфізмом, то його образ $\psi(\mathfrak{L})$ буде підалгеброю в $\mathfrak{B}(M)$, тобто алгеброю множин. А з ін'єктивності ψ випливає, що відображення ψ : $\mathfrak{L} \to \psi(\mathfrak{L})$ ізоморфізмом.

Зауваження. Теорема 1.4 легко узагальнюється: кожна булева алгебра ізоморфна деякій алгебрі множин.

1.1.3 Властивості рівносильних формул

В алгебрі висловлювань використання рівносильностей відіграє приблизно таку ж роль, як у шкільній алгебрі використання тотожностей. Тому зупинимося на властивостях рівносильних формул детальніше.

Теорема 1.5 (про рівносильну заміну). *Нехай* $A_B - \phi opмула$ A з виділеним входженням підформули B, а $A_{B'} - \phi opмула$, яка одержується з A заміною виділеного входження B в A на формулу B'. Тоді якщо $B \equiv B'$, то $A_B \equiv A_{B'}$.

Доведення. Опустимо в таблицях істинності для формул A_B та $A_{B'}$ ті стовпці, які відповідають власним підформулам виділеної формули B (відповідно формули B'). Далі поставимо у відповідність кожному стовпцю таблиці для A_B , який відповідає підформулі C, що містить B, той стовпець таблиці для $A_{B'}$, який одержується з C заміною B на B'. Із рівносильності формул B і B' випливає, що отримані таблиці будуть однаковими. Зокрема, однаковими будуть і ті стовпці цих таблиць, що відповідають формулам A_B і $A_{B'}$. Тому $A_B \equiv A_{B'}$.

Нехай A і B — деякі формули. $One pamop\ nid cmano вки <math>\prod_A^B$ — це правило перетворення формул логіки висловлювань, за яким у довільній формулі F усі підформули A одночасно замінюються на підформули B. Оператор підстановки найчастіше вживається тоді, коли A=x — символ змінної. Крім того, у випадку формули $F=F(x_1,\ldots,x_n)$ замість $\prod_{x_1}^{B_1}\cdots\prod_{x_n}^{B_n}F$ зазвичай пишуть просто $F(B_1,\ldots,B_n)$. Із теореми 1.5 по рівносильну заміну одразу випливає

Наслідок 1.1. Якщо $A \equiv B$, то для довільної формули F буде $\prod_A^B F \equiv F$.

Наступна теорема є очевидною:

Теорема 1.6 (про підстановку). Якщо $F = F(x_1, ..., x_n) - mавтологія, то для довільних формул <math>B_1, ..., B_n$ формула $F = F(B_1, ..., B_n)$ також буде тавтологією.

Якщо $B \equiv B'$, то перехід від формули A_B до $A_{B'}$ часто називають рівносильним перетворенням формули A. Рівносильні перетворення часто використовуються для зведення формули A до зручнішого або простішого вигляду або для доведення рівносильності двох формул.

Наведемо список основних рівносильностей, які використовуються при рівносильних перетвореннях формул логіки висловлювань:

- 1. Закон подвійного заперечення: $\neg \neg A \equiv A$.
- 2. Комутативні закони: $A \vee B \equiv B \vee A$, $A \wedge B \equiv B \wedge A$, $A \leftrightarrow B \equiv B \leftrightarrow A$, $A \oplus B \equiv B \oplus A$.
 - 3. Асоціативні закони: $(A \lor B) \lor C \equiv A \lor (B \lor C)$, $(A \land B) \land C \equiv A \land (B \land C)$, $(A \leftrightarrow B) \leftrightarrow C \equiv A \leftrightarrow (B \leftrightarrow C)$, $(A \oplus B) \oplus C \equiv A \oplus (B \oplus C)$.
 - 4. Дистрибутивні закони: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$, $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$.
 - 5. Закони ідемпотентності: $A \lor A \equiv A, \ A \land A \equiv A.$
 - 6. Закони де Моргана: $\neg (A \lor B) \equiv \neg A \land \neg B, \neg (A \land B) \equiv \neg A \lor \neg B.$
 - 7. Закони поглинання (адсорбції): $A \vee (A \wedge B) \equiv A, \ A \wedge (A \vee B) \equiv A.$
 - 8. Закони поглинання константами: $A \lor 1 \equiv 1, \ A \land 1 \equiv A, \ A \lor 0 \equiv A, \ A \land 0 \equiv 0.$
 - 9. Закон виключення третьої можливості (tertium non datur): $A \vee \neg A \equiv 1$.
 - 10. Закон суперечності: $A \wedge \neg A \equiv 0$.

До найважливіших рівносильностей логіки висловлювань відносять і так звані *закони виключення логічних зв'язок*:

- 11. $A \oplus B \equiv \neg (A \leftrightarrow B)$;
- 12. $A \leftrightarrow B \equiv (A \to B) \land (B \to A);$
- 13. $A \to B \equiv \neg A \lor B$;
- 14. $A \lor B \equiv \neg(\neg A \land \neg B);$
- 15. $A \wedge B \equiv \neg(\neg A \vee \neg B)$.