Module 3: Protocols and Models

Return to overview

- Communications Protocols
 - Message encoding
 - Message formatting and encapsulation
 - Message size
 - Message timing
 - Message delivery options
- Protocols
 - Network Protocol Functions
 - Protocol Interaction
 - Network Protocol Suites
 - Evolution of Protocol Suites
 - TCP/IP Protocol Example
- Reference Models
 - The benefits of using a layered models
 - The OSI Reference Model IMPORTANT
 - The TCP/IP Reference Model
- Data Encapsulation
 - Segmenting Messages
 - Protocol Data Units (PDU)
- Data Access
 - Addresses
 - Layer 3 Logical Address
 - Devices on the Same Network
 - Devices on a Remote Network
 - Data Link Addresses

Communications Protocols

All communications are governed by protocols. Protocols are the rules that communications will follow.

Message encoding

Encoding is the process of converting information into another acceptable form for transmission. **Decoding** reverses this process to interpret the information.

Message formatting and encapsulation

Message formats depend on the type of message and the channel that is used to deliver the message. The message must use a specific format and or structure.

Message size

When a long message is sent from one host to another over a network, it is necessary to **break the message into smaller pieces**. The rules that govern the size of the pieces, or frames, communicated across the network are very strict. They can also be different, depending on the channel used. **Frames that are too long or too short are not delivered!**

Message timing

Flow Control: Manages the rate of data transmission and defines how much information can be sent and the speed at which it can be delivered. **Response Timeout:** Manages how long a device waits when it does not hear a reply from the destination. **Access method:** Determines when someone can send a message.

- There may be various rules governing issues like "collisions". This is when more than one device sends traffic at the same time and the messages become corrupt.
- Some protocols are proactive and attempt to prevent collisions; other protocols are reactive and establish a recovery method after the collision occurs.

Message delivery options

- Unicast: One to one communication
- Multicast: One to many, typically not all
- Broadcast: one to all
 - The last address of each network is the broadcast address.
 - Broadcasts are used in IPv4 networks, but are not an option for IPv6. (For IPv6 there is as an additional delivery option)

Protocols

Network protocols define a common set of rules. They can be implemented on devices in:

- Software
- Hardware
- Both

Protocols have their own:

- Function
- Format
- Rules

Protocol Type	Description
Network communications	Enable two or more devices to communicate over one or more networks
Network Security	Secure data to provide authentication, data integrity, and data encryption
Routing	Enable routers to exchange route information, compare path information, and select best path
Service Discovery	Used for the automatic detection of devices or services

Not in this module

Network Protocol Functions

Devices use agreed-upon protocols to communicate. Protocols may have one or more functions.

- Addressing: Identifies sender and receiver
- Reliability: Provides guaranteed delivery
- Flow Control: Ensures data flows at an efficient rate
- Sequencing: Uniquely labels each transmitted segment of data
- Error Detection: Determines if data became corrupted during transmission
- Application Interface: Process-to-process communications between network applications

Protocol Interaction

Networks require the use of several protocols. Each protocol has its own function and format.

Protocol	Function	
Hypertext Transfer Protocol (HTTP)	 Governs the way a web server and a web client interact Defines content and format 	
Transmission Control Protocol (TCP)	 Manages the individual conversation Provides guaranteed delivery Manages flow control 	
Internet Protocol (IP)	Delivers messages globally from the sender to the receiver	
Ethernet	Delivers messages from one NIC to another NIC on the same Ethernet Local Area Network (LAN)	

HTTP is always together with TCP!

Network Protocol Suites

Protocols must be able to work with other protocols.

Protocol suite:

- A group of inter-related protocols necessary to perform a communication function.
- Sets of rules that work together to help solve a problem.

The protocols are viewed in terms of layers:

- Higher Layers
- Lower Layers: Concerned with moving data and provide services to upper layers.

Evolution of Protocol Suites

There are several protocol suites. **Internet Protocol Suite or TCP/IP** is the most common protocol suite and is maintained by the Internet Engineering Task Force (IETF). (Only TCP/IP will be important in this course ISO, AppleTalk, Novel Netware)

TCP/IP Layer Name	TCP/IP	ISO	AppleTalk	Novell Netware
Application	HTTP DNS DHCP FTP	ACSE ROSE TRSE SESE	AFP	NDS
Transport	TCP UDP	TP0 TP1 TP2 TP3 TP4	ATP AEP NBP RTMP	SPX
Internet	IPv4 IPv6 ICMPv4 ICMPv6	CONP/CMNS CLNP/CLNS	AARP	IPX
Network Access		Ethernet A	ARP WLAN	

TCP/IP Protocol Example

TCP/IP protocols operate at the application, transport, and internet layers. The most common network access layer LAN protocols are Ethernet and WLAN (wireless LAN).

TCP/IP is:

• An open standard protocol suite that is freely available to the public and can be used by any vendor

• A standards-based protocol suite that is endorsed by the networking industry and approved by a standards organization to ensure interoperability.

A web server **encapsulates** and sends a web page to a client. A client **de-encapsulates** the web page for the web browser.

Reference Models

The benefits of using a layered models

Complex concepts such as how a network operates can be difficult to explain and understand. For this reason, a layered model is used.

Two layered models describe network operations

- Open System Interconnection (OSI) Reference Model
- TCP/IP Reference Model

The difference between these two models is important: The OSI model divides the network access layer and the application layer of the TCP/IP model into multiple layers. The TCP/IP protocol suite does not specify which protocols to use when transmitting over a physical medium.

OSI Data Link layer and Physical layer discuss the necessary procedures to access the media and the physical means to send data over a network.

TCP/IP Model	TCP/IP Protocol Suite	OSI Model
Application	HTTP, DNS, DHCP, FTP	ApplicationPresentationSession
Transport	TCP, UDP Transport	
Network	IPv4, IPv6, ICMPv4, ICMPv6 Network	
Network Access	Ethernet, WLAN, SONET, SDH	Data LinkPhysical

Layered models:

- Assist in protocol design because protocols that operate at a specific layer have defined information that they act upon and a defend interface to the layers above and below.
- Prevent technology or capability changes in one layer from affection other layers above and below.
- Foster coopetition because products from different vendors can work together.
- Provide a common language to describe networking functions and capabilities.

The OSI Reference Model IMPORTANT

Session, presentation and application are closely related.

OSI Model Layer	Description
7 - Application	Contains protocols used for process-to-process communications.
6 - Presentation	Provides for common representation of the data transferred between application layer services.
5 - Session	Provides services to the presentation layer and to manage data exchange.
4 - Transport	Defines services to segment, transfer, and reassemble the data for individual communications.
3 - Network	Provides services to exchange the individual pieces of data over the network.
2 - Data Link	Describes methods for exchanging data frames over a common media.
1 - Physical	Describes the means to activate, maintain, and de-activate physical connections.

The TCP/IP Reference Model

TCP/IP Model Layer	Description
Application	Represents data to the user, plus encoding and dialog control.
Transport	Supports communication between various devices across diverse networks.
Internet	Determines the best path through the network.
Network Access	Controls the hardware devices and media that make up the network.

Data Encapsulation

Segmenting Messages

Segmenting is the process of breaking up messages into smaller units.

Multiplexing is the process of taking multiple streams of segmented data and interleaving them together.

Segmenting messages has two primary benefits:

- **Increases speed:** Large amounts of data can be sent thru the network without tying up a communication link.
- **Increases efficiency:** Only segments which fail to reach the destination need to be retransmitted, not the entire data stream.

Protocol Data Units (PDU)

Encapsulation is the process where protocols add their information to the data.

- At each stage of the process, a PDU has a different name to reflect its new functions.
- There is no universal naming convention for PDUs, in this course, the PDUs are named according to the protocols of the TCP/IP suite.

- PDUs passing down the stack are as follows:
 - o Data (Data Stream)
 - Segment
 - Packet
 - Frame
 - o Bits (Bit Stream)

De-encapsulation: Data is de-encapsulated as it moves up the stack. When a layer completes its process, that layer strips off its header and passes it up to the next level to be processed. This is repeated at each layer until it is a data stream that the application can process.

- 1. Received as Bits (Bit Stream)
- 2. Frame
- 3. Packet
- 4. Segment
- 5. Data (Data Stream)

Data Access

Addresses

Both the data link and network layers use addressing to deliver data from source to destination.

Network layer source and destination addresses: Responsibly for delivering the IP packet <u>from origin</u> <u>source to the final destination</u>. **Data link layer source and destination addresses:** Responsible for delivering the data link frame <u>from one network interface card (NIC) to another NIC on the same network</u>.

Layer 3 Logical Address

The Ip packet contains two IP addresses. These addresses may be on the same link or remote.

- Source IP address
- Destination IP address

An IP address contains two parts:

- Network portion (IPv4) or Prefix (IPv6)
 - The left-most part of the address indicates the network group from which the IP address is a member.
 - Each LAN or WAN will have the same network portion
- Host portion (IPv4) or Interface ID (IPv6)
 - The remaining part of the address identifies a specific device within the group.

• This portion is unique for each device on the network.

Devices on the Same Network

When devices are on the same network the source and destination will have the same number in the network portion of the address.

Devices on a Remote Network

When the final destination is remove, Layer 3 will provide Layer 2 with the local default gateway IP address, also known as the router address.

- The default gateway (DGW) is the router interface IP address that is part of this LAN and will be the "door" or "gateway" to all other remote locations.
- All devices on the LAN must be told about this address or their traffic will be confined to the LAN only.
- Once Layer 2 on PC1 forwards to the default gateway (Router), the router then can start the routing process of getting the information to actual destination.
- The data link addressing is local addressing so it will have a source and a destination for each link.

Data Link Addresses

Since data link addressing is local addressing, it will have a source and destination for each segment or hop of the journey to the destination.

- The MAC addressing for the first segment is:
 - Source (PC1 NIC) sends frame
 - o Destination (First Router DGW interface) receives frame

