Problem Set 8 – Stationarity, Power Spectral Density

Problem 1:

- 1. X(t) is a WSS random process with auto-correlation function $R_X(\tau) = e^{-\alpha|\tau|}$. Calculate its PSD.
- 2. The process Y(t) has the following PSD: $S_Y(\omega) = \begin{cases} 1 & |\omega| \le B \\ 0 & |\omega| > B \end{cases}$. Calculate its auto-correlation function.

Problem 2:

A random process X(t) with expectation zero, auto-correlation function $R_X(\tau)$ and PSD $S_X(\omega)$ is given.

- 1. We define Y(t) = X(t+a) X(t-a). Express Y(t) PSD and auto-correlation function using $R_X(\tau)$ and $S_X(\omega)$.
- 2. We now define $Y(t) = X(t) \cdot G(t)$ where G(t) is a random process, independent of X(t), with expectation 1 and auto-correlation function $R_G(\tau)$. Express $R_{XY}(t,t+\tau)$, $R_Y(t,t+\tau)$ and $E\{Y(t)\}$ with $R_X(\tau)$ and $R_G(\tau)$. Are X(t) and Y(t) **JWSS**?

Problem 3:

An AR process of the form $X_n = 0.5X_{n-1} + W_n$ is given, where W_n is an i.i.d process with expectation 0 and variance 1. It is assumed that the process exists from time $-\infty$ such that the asymptotical conditions take place and it may be assumed that X_n is a WSS process.

- 1. Find the optimal MMSE estimator of X_{n+5} given the sample X_n .
- 2. Find the optimal MMSE estimator of X_{n+5} given all the samples $\{X_k\}_{k=-\infty}^n$.

Now, the process $Y_n = X_n + Z_n$ is defined, where Z_n is an i.i.d process independent of W_n , with expectation 0 and variance 1.

- 3. Find the optimal linear MMSE estimator of Y_{n+5} given the sample Y_n .
- 4. Find the optimal linear MMSE estimator of Y_{n+5} given the samples Y_n, Y_{n-1} .

Problem 4:

Consider the following A.R. linear random process:

$$X_{n} = \frac{1}{2} X_{n-1} + W_{n} \tag{*}$$

where:

$$X_0 = 0,$$
 $W_n = \begin{cases} 1 & w.p. & 1/2 \\ 0 & w.p. & 1/2 \end{cases}$, $\{W_n\}$ i.i.d.

- 1. Find the distribution of X_n .
- 2. Find an expression for X_n as a function of the random process $\{W_i\}$.
- 3. Find the stationary distribution of X_n that suits the equation (*).