COS-D407. Scientific Modeling and Model Validation

Hands-on excercises

Week 2

University of Helsinki, Finland

26.10.2020 - 09.12.2020

Lecturer: Christina Bohk-Ewald

 $Source: \ https://github.com/christina-bohk-ewald/2020-COS-D407-scientific-modeling-and-deling-an$

model-validation

Table of content:

- 1. Some preparations in R
- ${\bf 2.}\,$ Download, load, and explore COVID-19 data
- 3. Plot confirmed cases and reported deaths attributable to COVID-19
- 4. Calculate and plot case fatality rates attributable to ${\hbox{\rm COVID-19}}$
- 5. Time for you to think both creatively and critically about the meaning of these results

1. Some preparations in R

- 1.1 Open a new script for week 2 in R (e.g., week-2.R) and save it to a folder of your choice (e.g., course-COS-D407).
- 1.2 Create a filepath to this folder from where you would like to load data and to where you would like to save your outcome. For example,

```
the.course-COS-D407.path <- c("C:/course-COS-D407")
```

1.3 You can then set the working directory to this path

```
setwd(the.course-COS-D407.path)
```

2. Download, load, and explore COVID-19 data

In week 2 we explore trends of the COVID-19 pandemic. We will start with downloading freely available data on COVID-19 for multiple countries. We will then continue analyzing numbers and trends of COVID-19-related cases, deaths, and case fatality rates, and finally start to come up with alternative explanations for possible cross-country differences through practicing creative and critical thinking.

2.1 Download confirmed cases and reported deaths attributable to COVID-19

Please go to the website of the Johns Hopkins University CSSE. The files

- $\bullet \quad time_series_covid19_confirmed_global.csv$
- time_series_covid19_deaths_global.csv

contain confirmed cases and reported deaths, respectively, for many countries on a daily basis since January 22, 2020. Please download these two files and save them in your project folder.

2.2 Load COVID-19 data

Please load the numbers of confirmed cases and reported deaths from COVID-19 in R using the function read.csv of the R-package openxlsx.

```
require(openxlsx)
confirmed <- read.csv("time_series_covid19_confirmed_global.csv",header=TRUE,</pre>
stringsAsFactors = FALSE)
confirmed[1:2,1:10]
##
     Province.State Country.Region
                                          Lat
                                                   Long X1.22.20 X1.23.20 X1.24.20
## 1
                        Afghanistan 33.93911 67.70995
                                                                                  0
                            Albania 41.15330 20.16830
                                                                         0
                                                                                  0
## 2
                                                               0
     X1.25.20 X1.26.20 X1.27.20
##
## 1
            0
                      0
## 2
            0
                      0
                               0
deaths <- read.csv("time_series_covid19_deaths_global.csv",header=TRUE,</pre>
stringsAsFactors = FALSE)
deaths[1:2,((ncol(deaths)-5):ncol(deaths))]
##
     X9.10.20 X9.11.20 X9.12.20 X9.13.20 X9.14.20 X9.15.20
## 1
         1420
                   1420
                            1420
                                      1420
                                               1425
                                                         1426
```

2 324 327 330 334 338 340

Describe these data. For which countries and states are they available, for which dates are they available?

2.3 Explore data objects confirmed and deaths.

```
How many confirmed cases and reported deaths are there for Italy and for China most recently?
confirmed[which(deaths[,"Country.Region"] == "Italy"),c(1:4,ncol(confirmed))]
##
       Province.State Country.Region
                                                     Long X9.15.20
                                            Lat
## 150
                                 Italy 41.87194 12.56738
deaths[which(deaths[, "Country.Region"] == "Italy"), c(1:4, ncol(deaths))]
       Province.State Country.Region
##
                                            Lat
                                                     Long X9.15.20
## 150
                                 Italy 41.87194 12.56738
                                                              35633
confirmed[which(deaths[,"Country.Region"] == "China"),c(1:4,ncol(confirmed))]
##
      Province.State Country.Region
                                                   Long X9.15.20
                                          Lat
## 57
                Anhui
                                China 31.8257 117.2264
                                                              991
## 58
             Beijing
                                China 40.1824 116.4142
                                                              935
## 59
           Chongqing
                                China 30.0572 107.8740
                                                              584
## 60
                                China 26.0789 117.9874
              Fujian
                                                              392
## 61
               Gansu
                                China 35.7518 104.2861
                                                              170
## 62
           Guangdong
                                China 23.3417 113.4244
                                                             1783
## 63
             Guangxi
                                China 23.8298 108.7881
                                                              258
## 64
             Guizhou
                                China 26.8154 106.8748
                                                              147
## 65
                                China 19.1959 109.7453
               Hainan
                                                              171
##
  66
               Hebei
                                China 39.5490 116.1306
                                                              365
## 67
        Heilongjiang
                                China 47.8620 127.7615
                                                              948
## 68
                                China 37.8957 114.9042
                                                             1277
               Henan
## 69
           Hong Kong
                                China 22.3000 114.2000
                                                             4975
## 70
               Hubei
                                China 30.9756 112.2707
                                                           68139
## 71
               Hunan
                                China 27.6104 111.7088
                                                             1019
## 72 Inner Mongolia
                                China 44.0935 113.9448
                                                              261
## 73
             Jiangsu
                                China 32.9711 119.4550
                                                              665
## 74
             Jiangxi
                                China 27.6140 115.7221
                                                              935
## 75
                Jilin
                                China 43.6661 126.1923
                                                              157
## 76
                                China 41.2956 122.6085
            Liaoning
                                                              264
## 77
                                China 22.1667 113.5500
               Macau
                                                               46
## 78
                                                              75
             Ningxia
                                China 37.2692 106.1655
## 79
             Qinghai
                                China 35.7452
                                               95.9956
                                                              18
## 80
             Shaanxi
                                China 35.1917 108.8701
                                                              382
## 81
            Shandong
                                China 36.3427 118.1498
                                                              831
## 82
                                China 31.2020 121.4491
                                                              950
            Shanghai
## 83
               Shanxi
                                China 37.5777 112.2922
                                                              203
## 84
                                China 30.6171 102.7103
             Sichuan
                                                              670
## 85
             Tianjin
                                China 39.3054 117.3230
                                                              234
## 86
                Tibet
                                China 31.6927
                                               88.0924
                                                                1
## 87
            Xinjiang
                                China 41.1129
                                               85.2401
                                                              902
## 88
               Yunnan
                                China 24.9740 101.4870
                                                              205
## 89
                                China 29.1832 120.0934
```

Province.State Country.Region Lat Long X9.15.20

deaths[which(deaths[,"Country.Region"] == "China"),c(1:4,ncol(deaths))]

Zhejiang

1282

```
## 57
                Anhui
                               China 31.8257 117.2264
                                                                6
                               China 40.1824 116.4142
## 58
                                                                9
             Beijing
                               China 30.0572 107.8740
## 59
           Chongqing
                                                                6
## 60
                               China 26.0789 117.9874
              Fujian
                                                                1
## 61
                Gansu
                               China 35.7518 104.2861
                                                                2
## 62
                                                                8
           Guangdong
                               China 23.3417 113.4244
## 63
                               China 23.8298 108.7881
                                                                2
             Guangxi
## 64
             Guizhou
                               China 26.8154 106.8748
                                                                2
## 65
              Hainan
                               China 19.1959 109.7453
                                                                6
                                                                6
## 66
               Hebei
                               China 39.5490 116.1306
## 67
        Heilongjiang
                               China 47.8620 127.7615
                                                              13
                                                              22
                               China 37.8957 114.9042
## 68
               Henan
## 69
                               China 22.3000 114.2000
                                                             102
           Hong Kong
## 70
               Hubei
                               China 30.9756 112.2707
                                                             4512
## 71
                               China 27.6104 111.7088
               Hunan
                                                                4
## 72
      Inner Mongolia
                               China 44.0935 113.9448
                                                                1
                                                                0
## 73
                               China 32.9711 119.4550
             Jiangsu
## 74
                               China 27.6140 115.7221
                                                                1
              Jiangxi
## 75
                               China 43.6661 126.1923
                                                                2
                Jilin
## 76
            Liaoning
                               China 41.2956 122.6085
                                                                2
## 77
               Macau
                               China 22.1667 113.5500
                                                                0
## 78
                               China 37.2692 106.1655
                                                                0
             Ningxia
## 79
                               China 35.7452 95.9956
                                                                0
             Qinghai
                               China 35.1917 108.8701
                                                                3
## 80
             Shaanxi
                                                                7
## 81
            Shandong
                               China 36.3427 118.1498
## 82
            Shanghai
                               China 31.2020 121.4491
                                                                7
## 83
              Shanxi
                               China 37.5777 112.2922
                                                                0
## 84
             Sichuan
                               China 30.6171 102.7103
                                                                3
## 85
                                                                3
             Tianjin
                               China 39.3054 117.3230
## 86
                               China 31.6927
                                               88.0924
                                                                0
                Tibet
## 87
            Xinjiang
                               China 41.1129
                                               85.2401
                                                                3
## 88
              Yunnan
                               China 24.9740 101.4870
                                                                2
## 89
            Zhejiang
                               China 29.1832 120.0934
                                                                1
sum(confirmed[which(confirmed[, "Country.Region"] == "China"), ncol(confirmed)])
## [1] 90235
sum(deaths[which(deaths[,"Country.Region"]=="China"),ncol(deaths)])
```

[1] 4736

3. Plot confirmed cases and reported deaths attributable to COVID-19

We now want to visualize the numbers of confirmed cases and reported deaths from COVID-19. We focus on the ten countries with the most confirmed cases or reported deaths so far.

We start with the numbers of confirmed cases:

```
current_pop <- confirmed[order(confirmed[,ncol(confirmed)],decreasing=TRUE),][pop,1:2]</pre>
    if(!current_pop["Province.State"]==''){
        country_labels[pop] <- current_pop["Province.State"]</pre>
    }
    if(current_pop["Province.State"]==''){
        country_labels[pop] <- current_pop["Country.Region"]</pre>
    }
}
axis(side=1,at=seq(0,8000000,1000000),labels=TRUE,lwd=3,pos=0)
axis(side=2,at=seq(0.5,9.5,1),
labels=paste(rev(seq(1,10,1)),". ",rev(country_labels),sep=""),lwd=3,pos=0)
for(pop in 1:10){
    rect(xleft=0,xright=confirmed[order(confirmed[,ncol(confirmed)],
    decreasing=TRUE),][pop,5:ncol(confirmed)],ybottom=9.25-1*(pop-1),
    ytop=9.25-1*(pop-1)+0.5,col="red")
    text(confirmed[order(confirmed[,ncol(confirmed)],decreasing=TRUE),][pop,ncol(confirmed)],
    9.25-1*(pop-1)+0.25, paste(round(confirmed[order(confirmed[,ncol(confirmed)],
    decreasing=TRUE), [pop,ncol(confirmed)]/1000,1), "k", sep=""), pos=4)
}
```

Top 10 countries wrt confirmed cases as of September 15, 2020

... and continue with the numbers of reported deaths:

```
par(fig = c(0,1,0,1), las=1, mai=c(0.4,2.4,1.2,0.4))
    plot(x=-100,y=-100,xlim=c(0,250000),ylim=c(0,10),xlab="",ylab="",
        main="Top 10 countries wrt COVID-19 deaths\n as of September 15, 2020", axes=FALSE)
    country_labels <- c(0)</pre>
    country row number <- c(NA)
    for(pop in 1:10){
        current_pop <- deaths[order(deaths[,ncol(deaths)],decreasing=TRUE),][pop,1:2]</pre>
        country_row_number[pop] <- rownames(current_pop)</pre>
        if(!current_pop["Province.State"] == ' '){
            country_labels[pop] <- current_pop["Province.State"]</pre>
        }
        if(current_pop["Province.State"]==''){
            country_labels[pop] <- current_pop["Country.Region"]</pre>
        }
    }
    axis(side=1,at=seq(0,250000,25000),labels=TRUE,lwd=3,pos=0)
    axis(side=2,at=seq(0.5,9.5,1),labels=paste(rev(seq(1,10,1)),". ",
    rev(country_labels),sep=""),lwd=3,pos=0)
    for(pop in 1:10){
        rect(xleft=0,xright=deaths[order(deaths[,ncol(deaths)],decreasing=TRUE),]
        [pop,5:ncol(deaths)],ybottom=9.25-1*(pop-1),ytop=9.25-1*(pop-1)+0.5,col="red")
        text(deaths[order(deaths[,ncol(deaths)],decreasing=TRUE),][pop,ncol(deaths)],
        9.25-1*(pop-1)+0.25, paste(round(deaths[order(deaths[,ncol(deaths)],
        decreasing=TRUE),][pop,ncol(deaths)]/1000,1),"k",sep=""),pos=4)
```

Top 10 countries wrt COVID-19 deaths as of September 15, 2020

Compare the ranking of the top ten countries with respect to most confirmed cases and reported deaths. What similarities and differences do you observe?

4. Calculate and plot case fatality rates attributable to COVID-19

We now want to calculate and visualize the case fatality rates over time and highlight the development for the ten countries with most reported COVID-19 deaths.

```
dates <- seq(as.Date("\frac{22}{01}/\frac{2020}{01}, format = "\frac{d}{m}"),
      by = "days", length = (ncol(deaths)-4) )
cfr <- as.matrix(deaths[,5:length(deaths)] / confirmed[,5:length(confirmed)])</pre>
cfr[is.nan(cfr)] <- NA
par(fig = c(0,1,0,1), las=1, mai=c(0.4,0.8,0.8,0))
 require(wesanderson)
 pal <- c(wes_palette("Darjeeling1"), wes_palette("Darjeeling2"))</pre>
 plot(x=-100,y=-100,xlim=c(1,length(dates)),ylim=c(0,0.2),xlab="Date",ylab="",
      main="Case fatality rate for ten countries with most COVID-19 deaths
          \nJan 22, 2020 - Sept 15, 2020", axes=FALSE)
  axis(side=2,at=seq(0,0.2,0.025),labels=FALSE,lwd=1,pos=0)
  axis(side=2,at=seq(0,0.2,0.05),labels=TRUE,lwd=3,pos=0)
 for(country in 1:nrow(deaths)){
      lines(x=1:length(dates),y=cfr[country,],col=gray(0.95),lwd=1)
 }
  for(country in 1:10){
      lines(x=1:length(dates),y=cfr[as.numeric(country_row_number[country]),],
          col=pal[country],lwd=1)
      points(x=1:length(dates),y=cfr[as.numeric(country_row_number[country]),],
          col=pal[country],lwd=2)
 }
  axis(side=1,at=seq(1,length(dates),7),labels=FALSE,lwd=1,pos=0)
  axis(side=1,at=c(seq(1,length(dates),14),length(dates)),
      labels=dates[c(seq(1,length(dates),14),length(dates))],lwd=3,pos=0)
 legend(x=length(dates)*0.035,y=0.21,country_labels,
      bty="n",col=c(pal[1:10]),lty=1,lwd=2,text.font=2)
```

Case fatality rate for ten countries with most COVID-19 deaths

Please describe and compare the levels and trends in the case fatality rates attributable to COVID-19 across the countries.

4. Time for you to think both creatively and critically about these empirical findings. What are possible explanations for the large cross-country differences in case fatality rates related to COVID-19?

There are so many things to explore and to think of here.

For example, how reliable are confirmed cases and reported deaths from COVID-19?

As a source of inspiration, you may want to have a look at the papers of Dowd et al. (2020) on *Demographic science aids in understanding the spread and fatality rates of COVID-19* and Dudel et al. (2020) on *Monitoring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality*.