positive []

n) a (q

non-negative

$$\pi > 0$$

2-) 81- (2

(n)5)
$$\frac{(a)}{27}$$
 (5(4) $\frac{27}{50}$ = $\frac{5}{27}$ = $\frac{5}{5}$ × 5 + $\frac{1}{5}$ 2 $\frac{25}{2(\pi)}$ = $\frac{1}{2}$ $\frac{1}{2}$

$$27 = 5 \times 5 + 92$$

$$\Rightarrow a = qn + \pi$$

$$(2-)$$
 01. $(7-)$ (-4) (-4)

so output = 10

Pt bom 81- 19

型

Zn > set of integers from 0 to n-1

$$Z_{c} = \{0,1,2,3,4,5\}$$

団

$$z = \{..., -6, -5, -4, -3, ..., 0, 1, 2, 3, 4, ...\}$$

$$Z_{10} = ?$$

Satur Library

Date :

for Z10 =>

we have to find mod 10 of all elements of set Z 1 And by doing that, we always get value from 0 to n-1 or o to 9.

Setu Library

HI used to efficiently calculate large powers of a number modulo some integer.

ab mod m

型 By Squarting

L) complexity O(log n)

Setu Library

. pllowit

100 mod 100

binarry of $5 = 101_2$

- Now we will find 29 mod 100.
- Then we will find 29 mod 100 using proevious value
- Then we will find 29 mod 100 using priev value. After that we will stop (as 8>5)
- Finally we will find 205 mod 100 using prev values

=> 291 mod 100 = 29

29 mod 100 = (25×22) mod 100 = 841 mod 100 = 41

294 mod 100 = 292+2 mod 100 $=(29^{\circ} \times 29^{\circ}) \mod 100$ = [(29° mod 100) x (29° mod 100)] mod 100 = (41 × 41) mod 100

Finally,

$$=29^{(4+1)} \mod 100$$

$$= (29^4 \times 29^4) \mod 100$$

Date: Time

田

311 127 mod 211

Binatry of 127 = 011111112 bom 11

the bone

27/	26	25	24	23	2	21	20
178	64	32	16	8	4	2	1
8) 9	1	11	1	1	11.	1	1

and 211

It's born

(1+2+1+2+1+2+1)

311 mod 211 = 100

311 mod 211 = 100 × 100 mod 211 = 83

(311 mod 211) * ... * (31164 mod 211

3114 mod 211 = 83 x83 mod 211 = 137

3118 mod 211 = 137 × 137 mod 211 = 201 × 311 mod 211 = 100

31132 mod 211 = 100 × 100 mod 211 = 83

31164 mod 211 = 83 x83 mod 211 = 137

311 128 = No as 128 > 127 66 × 10 = .

Setu Library

= 21

Ans

Date: Time

141

$$= 311^{(1+2+4+8+16+32+64)} \mod 211$$

mod 211

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

$$= (100 \times 83 \times 137 \times 201 \times 100 \times 83 \times 137)$$

Date

Time

型 if GCD (a,b)=1, then a and b is relatively prime or co-prime

of med in is a number of such

> Multiplicative inverse:

multiplicative invertise of a given number is a number that, when multiplied by the given number, results in 1.

multiplicative inverse of a lesson (a +0) is

the Multiplicoctive Invertee of 3 modulo #:

F bom L = 1 * E

> 3 + 7 mod 7 = 1

7=1 7: 03

3 x 5 mod 7 = 1

Date :

中 MoI min MoA 1= (3.0) (30) 计 (1)

The multiplicative inverse of a number a' mod m is a number n such that

an # n = 1 mod m site of the manufaction must be set of the set of

or number that 1 = n mod mi (n # a) 1 = given

Multiplicative Inverse of a mod m exists Hf a and m are co-prime

I Multiplicative Inverce of 3 modulo 7:

3 * n = 1 mod 7

> 3 * n mod 7 = 1

50 if n=5

3 * 5 mod 7 = 1

e oto sio e-n ot o mosit soilor
EEA

田 what is the multiplicative inverse of 3 mod 5?

Q	А	В	R	71	72	T		
1	5	3	2	0	1	-1		
1	3	2	1	1	-1 ^K	2		
2	2	1	0	-1	2	-5		
7.4	1	0	== \$	2	-5			
Ans								

西

3)
$$\frac{5}{3}$$
 (1) $T = T_1 - Q \times T_2$ $= 0 - 1 \times 1$ $= -1$