Physik 1 (PH1-B-REE1)

Michael Erhard

Themen heute

8. Kräfte (Fortsetzung)

9. Reibung

8. Addition von Kräften (Wiederholung)

Mehrere Kräfte an einem Angriffspunkt

Im *statischen Gleichgewicht* (in Ruhe bzw. keine Bewegungsänderung), muss nach Newton gelten

$$\sum_{i=1}^{N} \underline{F}_i = 0$$

Berechnung über Vektoren oder trigonometrisch über Dreieck (Polygon).

8. Addition von Kräften

Mehrere Kräfte an einer Masse (ein Angriffspunkt)

Mit Trägheitskraft und dem d'Alembert-Prinzip folgt

$$\underline{F}_{\mathrm{T}} + \sum_{i=1}^{N} \underline{F}_{i} = 0$$
 \Rightarrow $\underline{F}_{\mathrm{B}} = -\underline{F}_{\mathrm{T}} = \sum_{i=1}^{N} \underline{F}_{i}$

Beispiel

An Tafel

- Beispiel 4: Beschleunigung Wagen auf schiefer Ebene
- Beispiel 5: Zentripetalkraftversuch: Kugel in Halbkreis-Rinne

8. Versuch zur Zentripetalkraft

8. Ausblick: Linienflüchtigkeit

Linienflüchtigkeit: Ein Kraftvektor kann entlang Wirkungslinie verschoben werden ohne Wirkung auf System zu ändern.

Anwendung: Addition von Kräften

Achtung: physikalischer Kraftangriffspunkt kann <u>nicht</u> analog verschoben werden, wenn sich Kraftrichtung oder Körperorientierung ändern, ändert sich die Wirkungslinie!

8. Ausblick: Hilfskräfte

Hilfskräfte: entgegengesetzte gleich große Kräfte auf einer Wirkungslinie können ohne Wirkung dem System hinzugefügt werden.

$$-\underline{F}_{h} \longrightarrow \underline{F}_{h}$$

Anwendung: Addition paralleler Kräfte

9. Reibung

9. Reibung

An Tafel

- Haft-, Gleitreibung
- Vorführen: proportional zur Normalkraft, unabh. von Fläche!
- Versuch auswerten: Haft und Gleitreibung

9. Übersicht: weitere Reibungskräfte

	äußere Reibung Festkörperreibung	innere Reibung Flüssigkeitsreibung	turbulente Reibung Luftreibung
Reibungskraft	F _R	v = F _R	000 000 000 000
Ansatz	$F_{R} = \mu F_{N}$	$F_{R} = b v$	$F_{R} = d v^{2}$
Proportionalitäts- faktor	μ: Reibungszahl μ ist unabhängig von der Kontaktfläche zwischen Körper und Unterlage; hängt ab von der Kontakt- geometrie und den Materialien von Körper und Unterlage.	b: Zähigkeitskoeffizient b hängt von der Form des Körpers und der Viskosität η der Flüssigkeit ab. Es wird laminare Strömung vorausgesetzt.	d: Luftreibungskoeffizient d hängt von der Anström- fläche und der Ober- flächenbeschaffenheit des Körpers sowie von der Dichte und Art des strö- menden Mediums ab.
Spezialfälle	$\mu_{\rm R}$: Rollreibung $\mu_{\rm G}$: Gleitreibung $\mu_{\rm H}$: Haftreibung	b = 6πη r laminare Umströmung einer Kugel vom Radius r in einem Medium mit der Zähigkeit η	$d=rac{1}{2} c_W \varrho A$ Körper mit Anströmfläche A und dem Widerstands- beiwert c_W im Medium der Dichte ϱ

Bild 2-20. Reibungskräfte.

Quelle: Hering et al., Physik für Ingenieure, 4. Aufl., VDI

9. Beispiel: Seilreibung

Seilreibungsformel (Euler-Eytelwein-Formel)

Leonhard Euler (1707–1783) und Johann Albert Eytelwein (1764–1848)

Für das Verhältnis zwischen ziehender Kraft $F_{\rm z}$ und haltender Kraft $F_{\rm h}$ bei Umschlingungswinkel $\alpha, \ [\alpha] = {\rm rad}$ gilt:

$$F_{\rm z} \leq F_{\rm h} e^{\mu_{\rm H} \alpha}$$

Aufgabe: welchen Prozentanteil der Seilkraft eines Schiffes muss man zum Halten aufbringen, bei einfacher bzw. dreifacher Umschlingung des Pollers? ($\mu_{\rm H}=0.15~({\rm Stahl-Stahl})$)

