

Hack Session

How to build an in-house platform to conduct thousands of parallel A/B experiments

Speaker

Rama Badrinath
Principal Data Scientist, Meesho

Rama Badrinath
Principal Data Scientist @ Meesho

Previously, DS @ Sharechat, Microsoft Masters in Machine Learning from IISc

Social media app (Ex: Facebook)

Social media app metrics

Metric	Example value
Number of clicks / User	15
Number of shares / User	7
Number of downloads / User	2
Clicks / Views (CTR)	0.03
Shares / Views	0.02
Downloads / Views	0.01
Time spent in a session / User	10 mins
No. of sessions / User	3
D7 Retention	40%

Scaling without testing is dangerous!

Metric	Metrics before scaling up	Metrics after scaling to 100% without testing	% Delta
Number of clicks / User	15	12	-20%
Number of shares / User	7	6	-14.3%
Number of downloads / User	2	1	-50%
Clicks / Views (CTR)	0.03	0.02	-33.33%
Time spent in a session / User	10 mins	9 mins	10%
No. of sessions / User	3	2	-33.33%
D7 Retention	40%	36%	-10%

Marketing team spends crores of \$\$ to improve DAU by 10% over a period time, but we have brought down D7 retention by 10% in 1 day!!

What is A/B testing?

Launch it for a small audience & look at the metrics!

01	What should be the primary metric in an A/B test?	Examples of bad vs good metrics
02	Introduction to hypothesis testing	 Null hypothesis testing One-tailed vs Two-tailed tests Type-1 error vs Type-2 error
03	Sample size calculation	Sample size calculationMinimum Detectable Effect
04	Audience creation to conduct 1000s of parallel A/B tests	 Issues with mutually exclusive users Hashing to achieve random user set User homogenization
05	Statistical Significance calculation	 Statistical significance calculation T-statistic to P-value conversion Scale up decision based on P-value
06	Overall architecture	 Overall architecture Default A/B configs that are common in industry

1. Primary metric

- Agree early on what you are optimizing
- The primary metric should correlate well with the long-term goals
- Generate many other metrics to understand why the primary metric moved / didn't move

Social media (Ex: Facebook)

Bad metric: Number of clicks **Reason:** Clickbait images can easily improve clicks.

Good metric: D7 retention (Proxy: Time spent on the app)
Reason: Users are returning to the app after 7 days. Shows users are genuinely interested in the app.

E-commerce (Ex: Amazon)

Bad metric: Number of orders **Reason:** Easy to move this metric by placing 1000 orders a day & cancelling the next day.

Good metrics: Net orders &

CLTV Reason: Users are not

cancelling & doing repeated purchases.

Search Ads (Ex: Google)

Bad metric: Ads revenue alone **Reason:** Easy to move this metric by increasing the number of ad slots, but users will eventually churn.

Good metric: Ads revenue Check metric: Sessions / User Reason: Users are not churning & still generating revenue.

2. A/B testing & Statistical tests

Is treatment really better than control?

- What's the proof that the increase in time spent is because of the change we introduced?
- It could be because of pure chance also !!

Time spent in Control for different users (in mins)	Time spent in Variant for different users (in mins)
9	21
13	17
10	18
7	25
16	16
6	11
8	10
5	12
Mean = 9.25 mins	Mean = 16.25 mins

2.1 Hypothesis testing

Null Hypothesis

- Time spent in treatment = Time spent in control
- The two groups are from the same population

Alternate Hypothesis in case of Two-tailed test

- Time spent in treatment != Time spent in control
- The two groups are from different populations

Alternate Hypothesis in case of One-tailed test

- Time spent in treatment > Time spent in control
- The two groups are from different populations and mean of treatment > mean of control

$$H_0$$
: $\mu_1 = \mu_2$

$$H_0$$
: $\mu_1 \neq \mu_2$

$$H_0$$
: $\mu_1 > \mu_2$

2.2 Type-1 error (α) vs Type-2 error (β)

Type I and Type II Error			
Null hypothesis is	True	ue False	
Rejected	Type I error False positive Probability = α	Correct decision True positive Probability = 1 - β	
Not rejected	Correct decision True negative Probability = 1 - α	Type II error False negative Probability = β	
	Scribbr Scribbr		

Error	Default
Type-1	5%
Type-2	20%

2.3 Type-1 error (α) vs Type-2 error (β)

Type I Error (false-positive)

3. Sample size

Two-tailed test

$$N = \frac{2(Z_{1-\alpha/2} + Z_{1-\beta})^2 \sigma^2}{\delta^2}$$

$$Z_{1-\alpha/2} = 1.96, Z_{1-\beta} = 0.84$$

$$N = \frac{15.7 * \sigma^2}{\delta^2}$$

One-tailed test

$$N = \frac{2(Z_{1-\alpha} + Z_{1-\beta})^2 \sigma^2}{\delta^2}$$

$$Z_{1-\alpha} = 1.645, Z_{1-\beta} = 0.84$$

$$N = \frac{12.35 * \sigma^2}{\delta^2}$$

N	Number of users required per variant
σ	Variance of the metric
δ	Mean of the metric * Minimum Detectable Effect (MDE)
MDE	Minimum detectable effect
Assumption	Alpha = 0.05, Beta = 0.2

3.1 Sample size demo

4. How to assign users to experiments?

Daily Active Users (DAU) = 30 million

Widget	Number of experiments	Sample size for all experiments assuming mutual exclusion
News feed	5	12 million
Messenger	5	10 million
Groups	5	10 million
Games	5	15 million
Pages	5	13 million
Total	25	60 million

Total users needed for experimentation = 60 million, but DAU = 30 million only 6 3

4.1 Mutual exclusion example

4.2 Replicating user traffic

4.3 Overlapping audience creation

4.4 Avoiding carry-over effect

4.5 Audience creation summary

How to split the traffic so that users can be assigned to experiments dynamically? User ID Experiment Experiment **Solution**: Murmur3_hash(user_id)%1000. Every mod value could correspond to an experiment How to conduct parallel A/B experiments across different widgets? Control Exp 1 Exp 2 Exp 3 Solution: Each widget forms a plane & users can belong to multiple experiments across planes How to assign users to variants so that they are homogeneous? Control Exp2 Exp3 Control Variant **Solution**: Re-randomization to avoid carry-over effect & make groups homogeneous

4.5 User assignment demo

5.1 Statistical significance calculation

When are two distributions different?

5.2 Why do we talk about t-distribution?

1	The difference in the mean is high	The higher the difference, the higher the confidence in two populations being different
2	The standard deviation of the samples is high	The higher the standard deviation, the lower the confidence in two populations being different
3	The number of samples is high	The higher the number of samples we collect, the higher the confidence in two populations being different

$$rac{Signal}{Noise} = rac{ar{X_1} - ar{X_2}}{\sqrt{rac{s_1^2}{N_1} + rac{s_2^2}{N_2}}} = t - statistic$$

Welch's t-test =
Unpaired two-sample
t-test with unequal
variances

- **1. Numerator** = Sampling distribution of sample mean -> Normal distribution -> Difference of two normal distribution is again a normal distribution
- **2. Denominator** = Sampling distribution of sample variance -> Chi-squared distribution -> Sum of two Chi-squared distribution is again a Chi-squared distribution
- **3. Ratio** = Normal distribution divided by Chi-square distribution -> t-distribution

5.3 Normal distribution vs T-distribution

5.4 From t-statistic to p-value

P-value = P(Obtaining a result >= than observed value | Null hypothesis is true)

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

5.5 Taking decision based on p-value

P-value < 0.05

Decision: Reject the null hypothesis (H0)

Conclusion: Significant.

Scale up the treatment & make it as new control

P-value

>= 0.05

Decision: Do not reject the null hypothesis (H0)

Conclusion: Not significant.

Do not scale up treatment

We compare against 0.05 because our Alpha (Type-1 error) is 0.05

5.6 P-value calculation demo

6.1 Overall architecture

6.2 A/B testing defaults

1	Experiment duration	1-2 weeks (to prevent day of the week effect)
2	Alpha (Type-1 error), Beta (Type-2 error)	Alpha = 0.05, Beta = 0.2, Confidence level = 95%, Power = 80%
3	Sample size	Two-tailed test: 15.7 * σ^2 / δ^2 One-tailed test: 12.35 * σ^2 / δ^2
4	Static audience or Dynamic audience	Dynamic audience
5	Assigning users to experiments in widgets	Hashing with salt: mmh3(user_id + "plane_salt")%1000
6	Avoid carry-over effect	Second level of randomization via Hashing: mmh3(user id + "plane_salt" + "exp")%2 == 0

Deck & Code

How to build an in-house platform to conduct thousands of parallel A/B experiments https://github.com/ramab1988/dhs2023

Pyabtest package

https://github.com/ramab1988/pyabtest https://pypi.org/project/pyabtest/

Thank You!

References:

- Overlapping Experiment Infrastructure: More, Better, Faster Experimentation
- Controlled experiments on the web: survey and practical guide