Demo: INT8-based Quantization-aware Training (QAT) via Loss-aware Compensation (LAC)

Latest Version: ver0.8.1-demo, Edited By: ZHOU Qihua, 2021.03.08, Mon.

This demo is based on ver0.8.1

1. Demo Structure

Folder	Description
simplecnn_lac	3-layer CNN (1CONV+2FC) based on QAT&LAC
alexnet_lac	8-layerCNN (5CONV+3FC) based on QAT&LAC
vgg11_lac	11-layerCNN (8CONV+3FC) based on QAT&LAC
quantizer	INT8 quantization module
common	Neural network common modules
dataset	MNIST dataset and data loader

2. Core Files

For example, if we use MNIST dataset to train simplecnn_lac model and the core file is simplecnn lac/train convnet.py.

Python File	Description
simplecnn_lac/train_simplecnn_LAC_mnsit.py	Main entrance of the training procedure
simplecnn_lac/simplecnn_LAC_mnist.py	Build the 3-layer CNN
quantizer/KMQuantizer.py	Quatization functions
common/trainer	Training handler
common/layer	Layers of the neural network

3. Prerequisites

The following Python packages are required:

- Python 3.x (3.6 is recommanded)
- NumPy
- Matplotlib

4. Run

4.1 Run in command-line interface

Shift into simplecnn lac folder and excute Python files:

```
$ cd simplecnn_lac
$ python train_simplecnn_LAC_mnsit.py
```

4.2 Run in Pycharm (recommanded)

Directly open the root folder, choose train simplecnn LAC mnsit.py, click the run button.

Please configure the Python Interpreter correctly

5. Relevant Publications

• "Octo: INT8 Training with Loss-aware Compensation and Backward Quantization for Tiny On-device Learning", In Proc. of USENIX ATC 2021.