一、原理图参考 Page2

二、参数及功能(以下保护参数仅以 SH367107-AAA 作为参考,其他型号详见 Code 选型表)

	项目	参数	项目	参数	项目	参数	项目	参数
参 数 列 表	过充电保护电压	4.25V±25mV	过充电保护延时	1S±0.5S	充电高温保护	50 ℃± 4 ℃	温度保护延时	3S±1.5S
	过充电恢复电压	4.15V±50mV	过放电保护延时	1S±0.5S	充电高温保护恢复	47 ℃± 4 ℃		
	平衡开启电压	1	平衡开启延时	1	充电低温保护	0°C±4°C		
	过放电保护电压	2.7V±50mV	放电过流 1 保护延时	1S±0.5S	充电低温保护恢复	5℃±4℃		
	过放电恢复电压	3V±100mV	放电过流 2 保护延时	100mS±50mS	放电高温保护	70 ℃± 4 ℃		
	放电保护电流 1	100mV±10mV	放电过流 3 保护延时	250uS±50uS	放电高温保护恢复	55 ℃± 4 ℃		
	放电保护电流 2	200mV±20mV	放电过流恢复延时	125mS±62.5mS	放电低温保护	1		
	放电短路电流	400mV±50mV	放电短路恢复延时	125mS±62.5mS	放电低温保护恢复	1		
	充电保护电流	20mV±10mV	充电过流保护延时	1S±0.5S				
功能	欠压负载锁定	支持						
列表	温度保护调节	支持						

三、Layout 注意事项

- 1. 芯片采用单点接地,即芯片所有的地线汇集后,通过一点连接至 B-端,防止 B-端抖动对芯片产生干扰;芯片的地线网络尽量大面积铺地;
- 2. 芯片 RS1、RS2 到采样电阻端的走线尽量采用差分走线,即等长等宽走线,减小走线对电流采样的干扰;
- 3. 若保护板有均衡功能, 电压采集的走线需足够粗, 放止均衡启动时, 走线的压降太大, 导致电压采用误差: 另外, 均衡回路走线也要尽量粗;
- 4. 芯片最高节 VDD 和 VC1 连接线直接从 B+端子引出,不要从功率电流的地方引出,防止在大电流放电时,功率走线的振荡引起芯片的采样产生误差;
- 5. VCN 端口的滤波网络布线,每一路的采样端需经过 RC 滤波之后,再连接到芯片端口;每一路的滤波电容尽量单独连接至相应的地;
- 6. VDD 处的 RC 滤波电路尽量采用 0805 封装电阻、电容,因为存在尖峰电压的情况下,0603 封装元件由于功率不足容易损坏,可能导致芯片工作异常;
- 7. 大电流回路的线宽和散热要有足够的余量。
- 8. 针对 SH367108, VC5A 和 VC10A 的走线应尽量粗,尽量较少绕线;针对 SH367107, VC5A 的走线应尽量粗,尽量较少绕线;

