CLIPPEDIMAGE= JP411219926A

PAT-NO: JP411219926A

DOCUMENT-IDENTIFIER: JP 11219926 A

TITLE: REMOVAL OF ORGANIC CONTAMINANT FROM SURFACE OF

SEMICONDUCTOR SUBSTRATE

PUBN-DATE: August 10, 1999

INVENTOR-INFORMATION:

NAME COUNTRY

DE, GENDT STEFAN N/A

SNEE, PETER
MARC, MELIS . N/A

PAUL, MERTENS

HEYNS, MARC N/A

N/A

N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

INTERUNIV MICRO ELECTRONICA CENTRUM VZW N/A

APPL-NO: JP10331555

APPL-DATE: November 20, 1998

INT-CL (IPC): H01L021/304

ABSTRACT:

PROBLEM TO BE SOLVED: To remove organic contaminants which are a photoresist, a

resist residue and a dry etching residue, from the surface of a semiconductor

substrate by a method wherein the semiconductor substrate is held in a tank and

the tank is filled with a gas mixture consisting of water vapor, ozone and an

additional matter, which works as a scavenger.

SOLUTION: A device, which is displayed as a device for wet ozone vapor process,

uses a quartz container filled with a liquid of an amount enough for wetting an

ozone diffuser. The liquid is demineralized water added with

05/13/2002, EAST Version: 1.03.0002

an additional matter, such as an acetic acid. The liquid is heated to 80

COPYRIGHT: (C)1999, JPO

05/13/2002, EAST Version: 1.03.0002

(19)日本国特許庁(JP)

(12) 公開特許公報(A) (11)特許出願公開番号

特開平11-219926

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl. 8

識別記号

FΙ

HO1L 21/304

645

H01L 21/304

645B

審査請求 未請求 請求項の数61 OL (全 17 頁)

(21)出願番号

特願平10-331555

(22)出顧日

平成10年(1998)11月20日

(31)優先権主張番号 60/066261

(32)優先日

1997年11月20日

(33) 優先権主張国 米国(US)

(71)出顧人 591060898

アンテルユニヴェルシテール・ミクローエ レクトロニカ・サントリュム・ヴェー・ゼ

ッド・ドゥブルヴェ

INTERUNIVERSITAIR M

ICRO-ELEKTRONICA CE

NTRUM VZW

ベルギー、ベー-3001ルーヴァン、カベル

ドリーフ75番

(74)代理人 弁理士 青山 葆 (外2名)

最終頁に続く

(54) 【発明の名称】 半導体基板表面からの有機汚染物の除去方法

(57)【要約】

【課題】 半導体基板作製に係るあらゆるプロセスで生 成するフォトレジスト、レジスト残留物そしてドライエ ッチング残留物等の有機汚染物を半導体基板表面から除 去する方法を提供する。

【解決手段】 半導体基板をタンクの中に置き、そのタ ンクを液体又は気体のような流体で満たす。気体を用い る気相プロセスでは、水蒸気、オゾン及び捕捉剤として 働く添加物とからなる気体混合物を用いる。液体を用い る液相プロセスでは、水、オゾン及び捕捉剤として働く 添加物とからなる液体混合物を用い、液体の沸点以下の 温度に保つ。

【特許請求の範囲】

【請求項1】 半導体基板をタンクの中に保持する工程 と、上記タンクを水蒸気、オゾン及び捕捉剤として働く 添加物からなる気体混合物で満たす工程とを含む半導体 基板表面からの有機汚染物の除去方法。

【請求項2】 さらに、上記混合物に酸素、窒素及びア ルゴンからなる群から選ばれた気体を添加する工程を含 む請求項1記載の除去方法。

【請求項3】 上記有機汚染物が、上記半導体基板の少 載の除去方法。

【請求項4】 上記拘束された層が、単分子層以下から 1μmの範囲の厚さを有する請求項3記載の除去方法。

【請求項5】 上記気体混合物が上記半導体基板と接触 する請求項1記載の除去方法。

【請求項6】 上記添加物がOHラジカル捕捉剤として 働く請求項1記載の除去方法。

【請求項7】 上記添加物が、カルボン酸、リン酸及び それらの塩からなる群から選ばれる請求項1記載の除去 方法。

【請求項8】 上記添加物が酢酸である請求項7記載の 除去方法。

【請求項9】 上記気体混合物における上記添加物の比 率が10モル重量%以下である請求項1記載の除去方 法。

【請求項10】 上記気体混合物における上記添加物の 比率が1モル重量%以下である請求項9記載の除去方 法。

【請求項11】 上記気体混合物における上記添加物の 比率が0.5モル重量%以下である請求項10記載の除 30 去方法。

【請求項12】 上記気体混合物における上記添加物の 比率が0.1モル重量%以下である請求項11記載の除

【請求項13】 さらに、溶液で上記半導体基板を濯ぐ 工程を含む請求項1記載の除去方法。

【請求項14】 上記濯ぐ工程に用いる溶液が脱イオン 水である請求項13記載の除去方法。

【請求項15】 さらに、上記溶液が、塩酸、フッ酸、 硝酸、二酸化炭素及びオゾンからなる群から選ばれた少 40 35記載の除去方法。 なくとも一つの溶液を含む請求項14記載の除去方法。

【請求項16】 上記溶液をメガソン超音波攪拌する請 求項14記載の除去方法。

【請求項17】 さらに、上記タンクに水と上記添加物 からなる液体を、上記タンクにおける液面が上記半導体 基板の下になるように満たす工程と、上記液体を加熱す る工程とを含む請求項1記載の除去方法。

【請求項18】 オゾンで上記タンクを満たす工程を含 む請求項17記載の除去方法。

求項18記載の除去方法。

【請求項20】 上記液体の温度が、16℃から99℃ の間である請求項17記載の除去方法。

2

【請求項21】 上記液体の温度が、20℃から90℃ の間である請求項20記載の除去方法。

【請求項22】 上記液体の温度が、60℃から80℃ の間である請求項21記載の除去方法。

【請求項23】 水蒸気が飽和水蒸気である請求項1記 載の除去方法。

なくとも一部を覆う、拘束された層からなる請求項1記 10 【請求項24】 上記混合物中のオゾン濃度が10モル 重量%以下である請求項1記載の除去方法。

> 【請求項25】 上記混合物の温度が150℃以下で上 記半導体基板の温度より高い請求項1記載の除去方法。

> 【請求項26】 上記半導体基板がシリコンウエハーで ある請求項1記載の除去方法。

【請求項27】 半導体基板の少なくとも片側に、水、 オゾン及び捕捉剤として働く添加物を含む液体を接触さ せる工程と、上記液体をその沸点以下の温度に保つ工程 とからなる半導体基板表面からの有機汚染物の除去方 20 法。

【請求項28】 上記温度が100℃以下である請求項 27記載の除去方法。

【請求項29】 上記液体を、上記半導体基板の少なく とも片側に噴霧する請求項27記載の除去方法。

【請求項30】 上記温度が16℃から99℃の間であ る請求項27記載の除去方法。

【請求項31】 上記温度が20℃から90℃の間であ る請求項30記載の除去方法。

【請求項32】 上記温度が60℃から80℃の間であ る請求項31記載の除去方法。

【請求項33】 上記液体をメガソン超音波攪拌する請 求項27記載の除去方法。

【請求項34】 上記液体にオゾンをバブリングする請 求項27記載の除去方法。

【請求項35】 上記有機汚染物が、上記半導体基板の 少なくとも一部を覆う拘束された層からなる請求項27 記載の除去方法。

【請求項36】 上記拘束された層が、単分子層以下か ら1mmの範囲の厚さを有することを特徴とする請求項

【請求項37】 上記添加物がOHラジカル捕捉剤とし て働く請求項27記載の除去方法。

【請求項38】 上記添加物が、カルボン酸、リン酸及 びそれらの塩からなる群から選ばれる請求項27記載の 除去方法。

【請求項39】 上記添加物が酢酸である請求項38記 載の除去方法。

【請求項40】 上記液体中の上記添加物の比率が1モ ル重量%以下である請求項27記載の除去方法。

【請求項19】 オゾンを上記液体にバブリングする請 50 【請求項41】 上記液体中の上記添加物の比率が0.

5モル重量%以下である請求項40記載の除去方法。 【請求項42】 上記液体中の上記添加物の比率が0. 1モル重量%以下である請求項41記載の除去方法。

【請求項43】 オゾンの気泡が上記有機汚染物に接触 する請求項27記載の除去方法。

【請求項44】 さらに、上記半導体基板を溶液で濯ぐ 工程を含む請求項27記載の除去方法。

【請求項45】 上記濯ぐ工程に用いる溶液が脱イオン 水である請求項44記載の除去方法。

【請求項46】 さらに、上記溶液が、塩酸、フッ酸、 硝酸、二酸化炭素及びオゾンからなる群から選ばれた少なくとも一つの溶液を含む請求項45記載の除去方法。

【請求項47】 上記溶液をメガソン超音波攪拌する請求項44記載の除去方法。

【請求項48】 上記半導体基板がシリコンウエハーである請求項27記載の除去方法。

【請求項49】 半導体基板をタンクの中に保持する工程と、上記タンクを水、オゾン及び捕捉剤として働く添加物からなる流体で満たす工程を含む半導体基板表面からの有機汚染物の除去方法であって、上記流体中の上記 20添加物の割合が1モル重量%以下である半導体基板表面からの有機汚染物の除去方法。

【請求項50】 上記半導体基板の少なくとも片側を上記液体の霧に接触させる請求項27記載の除去方法。

【請求項51】 半導体基板をタンクの中に保持する工程と、水とオゾンとからなる流体混合物で上記タンクを満たし、上記半導体基板表面に酸化物を成長させる工程と、酸化物を除去する工程と、シリコンウエハーを乾燥する工程とからなる半導体基板表面からの有機汚染物の除去方法。

【請求項52】 上記流体混合物が、気体、液体、水蒸 気、蒸気及びそれらの混合物からなる群から選ばれた少 なくとも一つを含む請求項51記載の除去方法。

【請求項53】 さらに、上記ウエハーを乾燥する工程の前に、上記ウエハー上に薄い絶縁酸化物層を成長させる工程を含む請求項51記載の除去方法。

【請求項54】 上記薄い絶縁酸化物層を成長させる工程を、希塩酸とオゾンとの混合物中で行う請求項53記載の除去方法。

【請求項55】 上記酸化物を除去する工程を、塩酸等 40 の添加物を含有する又は含有しない希フッ酸溶液中で行 う請求項51記載の除去方法。

【請求項56】 さらに、上記流体混合物が、捕捉剤として働く添加物を含む請求項51記載の除去方法。

【請求項57】 さらに、上記溶液が、酢酸及び硝酸からなる群から選ばれた少なくとも一つの酸を含む請求項56記載の除去方法。

【請求項58】 半導体基板をタンクに保持する工程 ライな酸化物エッチング処理した時にできる。通常のフ と、水とオゾンとの混合物からなる気体混合物で上記タ ルオロカーボン気体を用いる酸化物エッチングでは、垂 ンクを満たし、上記半導体基板上に酸化物を成長させる 50 直の側壁プロファイルとフォトレジストマスクと下層膜

工程と、上記酸化物を除去する工程と、上記半導体基板を乾燥させる工程とからなる半導体基板表面からの有機 汚染物の除去方法。

【請求項59】 さらに、上記半導体基板を乾燥する前に、上記半導体基板上に薄い絶縁酸化物層を成長させる 請求項58記載の除去方法。

【請求項60】 上記薄い絶縁酸化物層を成長させる工程を、希塩酸とオゾンとの混合物中で行う請求項59記載の除去方法。

10 【請求項61】 上記薄い絶縁酸化物層を、希塩酸等の 添加物を含有する又は含有しない希フッ酸溶液中で行う 請求項58記載の除去方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体基板表面からの有機汚染物の除去方法に関する。本発明は、さらに複数の連続した洗浄処理、又はVIAエッチングや他のエッチング処理後の洗浄等の多くの応用に対する本発明の方法の利用に関する。

0 [0002]

【従来の技術】酸化、堆積又は成長プロセス等の様々なプロセス工程の前に行われる半導体基板表面の調製が、半導体技術における最も重要な問題の一つになってきた。〇. 5ミクロン及び〇. 25ミクロン以下のデザインルールの急速な普及とともに、微小な粒子と低レベルの汚染又は不純物(~10¹⁰ a t o m s / c m²、そしてそれ以下)がプロセスの歩止りに重大な影響を及ぼす。半導体基板表面から除去されるべき汚染物には、金属不純物、粒子及び有機物がある。半導体基板表面の異物の汚染レベルを低減するのに通常用いられる方法は、薬品溶液にウエーハを浸漬する方法である。

【0003】有機物は、半導体ウエーハの表面から除去されなくてはならない汚染物の一つである。前洗浄段階においては、吸収された有機分子がウエーハ表面と洗浄用薬品との接触を妨げるため、不均一なエッチングやウエーハ表面の不均一な洗浄の原因となる。汚染のないウエーハ表面を実現するためには、有機不純物は他のウエーハ洗浄プロセスの前に除去されなくてならない。従来の湿式洗浄プロセスは、有機物を除去するための硫酸過酸化物混合物(SPM)の利用を含む。しかし、SPMは高価な薬品を使用し、そして高温で用いる必要があり、また化学廃棄物処理の問題を引き起こす。

【0004】有機汚染の他の発生源は、標準的なICプロセスの流れにおいても起こる。その例としては、半導体基板の上の堆積されるフォトレジスト層又はフルオロカーボンポリマーの残留物がある。フルオロカーボンポリマーの残留物は、半導体(シリコン)半導体基板をドライな酸化物エッチング処理した時にできる。通常のフルオロカーボン気体を用いる酸化物エッチングでは、垂直の側段プロファイルとフォトレジストマスクと下層時

に対するエッチングの選択性を高めるために、ポリマー を意図的に生成させる。SiO2-Si系のおけるエッ チング選択性は、フルオロカーボンを基剤とするポリマ 一の生成を通じて特定のプロセス条件で達成される。重 合反応は、Siの上で起こり易く、保護被膜を形成し、 SiとSiO2間のエッチング選択性をもたらす。選択 エッチングの後、レジストとポリマー状残留物は表面か ら除去される必要がある。もし、そのポリマーが次の金 属堆積の前に完全に除去されないと、ポリマーはスパッ タ金属原子と混ざり合い、信頼性に影響を与える高抵抗 10 の物質を形成する。ポリマーの除去の方法は、プラズマ エッチングの化学的作用、プラズマ源及び堆積フィルム の組成に依存する。しかし、乾式プロセスにおいては、 O2又はH2を含む気体がフルオロカーボンポリマーの 除去に用いられてきた。湿式の洗浄技術においては、ア ミンを基剤とする溶媒 (米国特許第5,279,771号 公報 と 米国特許第5,308,745号公報)がよく 使われている。有機フォトレジストの除去には、通常、 湿式や乾式の酸化的な化学的作用(すなわち、O2プラ ズマ、SPM)又は溶媒剥離に基づく溶解プロセスが含 20 まれる。これらのプロセスは高価であり、また廃棄物処 理に関しては環境的に有害なものである。

[0005]

【発明が解決しようとする課題】Si表面から有機汚染 物(フォトレジストやエッチングの残留物)を除去する 他の有効な洗浄方法を見い出す過程において、オゾン処 理の化学的作用の利用が検討された。オゾンは、その強 力な酸化力により、排水処理や飲料水の殺菌の分野で広 く使われている。さらにオゾンの利点として、分解及び /又は反応の後の残留物 (H₂O、CO₂、O₂) が無害で 30 あることが挙げられる。オゾンの有機汚染物に対する酸 化作用は、2つの異なる酸化経路、直接酸化又は間接的 な酸化を含むものと一般に考えられている。直接酸化又 はオゾン分解は第1の酸化剤として、分子状オゾンを含 む。それは、まず炭素-炭素二重結合で起きる。このタ イプの酸化は排水が低いpH域にある時に、起き易い。 間接的な酸化は、第1の酸化剤のような第2の酸化剤を 含む(たとえば、OHラジカル)。このタイプの酸化 は、より反応性が高いが、あまり鋭敏ではなく、OHラ ジカルの生成し易い、高いpH、高温、促進剤(たとえ 40 れる。 ば、H2O2)の添加、紫外線照射のような条件におい て、起き易い。実際の状況においては、オゾンに対して 異なる反応性を有する汚染物の混合物が処理の対象とな ることが多い。しかし、いずれの酸化経路も同時に起 き、間接的な酸化を進行させるには、分子状オゾンに対 して高い反応性を有する有機汚染物の除去効率を犠牲に する必要がある。オゾン処理の化学的作用により、有機 物の除去効率を最適化するためには、両方の酸化経路に 影響を与えるパラメータを確認することが重要である。 【0006】近年、オゾンは、その強い酸化力ゆえに、

マイクロエレクトロニクス産業に導入された。オゾンが水に溶解した時、その自己分解時間は気相における場合に比べて速くなる。自己分解の間に、オゾンは反応の副生物として〇Hラジカルを生成させる。G. AlderとR. Hill(J. Am. Chem. Soc. 1950,72(1984)))によれば、これは有機物の分解によるものと信じられている。

【0007】米国特許第5.464,480号公報は、半導体ウエハーから有機物を除去する方法を開示している。ウエハーを、1℃から15℃の温度範囲で、オゾンを含む水溶液に接触せしめる。ウエハーは、脱イオン水を含むタンクの中に置かれる。そしてウエハーから有機物を除去するのに十分な時間、オゾンを室温以下の脱イオン水の中に拡散させる。その間脱イオン水の温度は1℃から15℃の間に保つ。次に、ウエハーを脱イオン水ですすぐ。溶液の温度を1℃から15℃の間に保つ理由は、ウエハー上のすべての有機物を酸化し不溶性の気体にするため、十分に高濃度のオゾンを水の中に存在させる必要があるからである。

0 【0008】欧州特許出願EP-A-0548596号は、洗浄工程において、いろいろな液状の薬品や超純水 又はオゾンを含む気体と超純水からなる混合相流体を、 オゾン気体を満たした処理室で半導体基板又は半導体ウ エハーの上に噴霧する、スプレーツールプロセスを開示 している。常に処理液の薄膜を新しくするためと、望ま しくない物質を遠心力による除去を促進するため、回転 させることが必要である。

【0009】米国特許第5,181,985号公報は、湿式法で薬品を用いる半導体ウエハーの表面処理プロセスを開示している。それによれば、1つ又はそれ以上の液状の化学的に活性な物質を含む水相が、霧のように微細に分離した液体の状態でウエハー表面上で反応する。そのプロセスは、ウエハー表面に霧状の水を噴霧する工程と、半導体ウエハー表面で気相と液相との相互作用を起こすため、霧状の水と結合するように気体状の化学的に活性な物質を導入する工程とからなる。化学的に活性な物質は、気体状のアンモニア、塩化水素、フッ化水素、オゾン、オゾン化された酸素、塩素及び臭素からなる群から選ばれる。温度10℃から90℃の水が系に導入される。

【0010】米国特許第5,503,708号公報は、有機膜を除去する方法と装置を開示している。すなわち、アルコールと、オゾン気体又はオゾン含有気体の1つとを含む混合気体を、少なくとも半導体ウエハーを処理室内に置くまでの間、上記処理室内へ導入し、半導体ウエハーの表面に形成された有機膜と混合気体が反応するようにする

【0011】特開昭61-004232号公報は、半導 体基板の洗浄方法を開示している。その方法は、従来技 50 術において、シリコンウエハー上の重金属の還元に用い

られる伝統的な酸・過酸化水素洗浄に代わるものとして開発された。半導体基板は、洗浄タンクに満たされたギ酸や酢酸等の有機酸の濃い溶液に浸漬され、オゾン又は酸素が溶液を撹拌するようにタンクの底から供給される。上記溶液は、温度が100から150℃の間になるように加熱される。有機廃棄物はオゾンにより酸化され、溶解させて除去される。言い換えると、この日本の刊行物は、ギ酸金属化合物や酢酸金属化合物の形にして重金属を除去する方法とオゾンにより有機廃棄物を半導体ウエハー上から除去する方法とを開示している。

【0012】本発明は、有機汚染物質を半導体半導体基板から除去するための改良された方法を提案することを目的とする。さらに、詳しくは、本発明は、半導体基板作製に係るあらゆるプロセスで起こる、フォトレジスト、レジスト残留物、ドライエッチング残留物等の有機汚染物を半導体基板表面から除去する方法を提案することを目的とする。

[0013]

【発明を解決するための手段】本発明の第1の形態は、 半導体基板をタンクの中に保持する工程と、水蒸気、オ 20 ゾン及び捕捉剤として働く添加物からなる気体混合物を 上記タンクに満たす工程とからなる。本発明及び関連す る特許出願の目的において用いられるタンクという言葉 は、洗浄又は有機汚染物を除去するため、物質を保持す るあらゆる種類の道具又は反応容器を意味する。したが って、タンクという言葉には、従来知られているウエッ トベンチ(wet benches)、ベッセル(ve ssels)、スプレープロセッサー(spray p rocessors)、スピニングツール(spinn ing tools), シングルタンク (single 30 tank)、シングルウエハークリーニングツール (single wafer cleaning to ols)などの道具や反応容器が含まれる。本発明の第 2の形態は、半導体基板をタンクの中に保持する工程 と、水、オゾン及び捕捉剤として働く添加物からなる液 体を上記タンクに満たす工程と、上記液体をその沸点以 下の温度に維持する工程とからなる。本発明の第3の形 態は、半導体基板をタンクの中に保持する工程と、水、 オゾン及び捕捉剤として働く添加物からなる液体を上記 タンクに満たす工程とからなり、上記添加物の上記液体 40 中における割合が、上記液体の1モル重量%以下であ

【0014】捕捉剤は、混合物又は系の他の成分による好ましくない効果を妨げるために、混合物又は液体、気体、溶液等のあらゆる系に添加される物質を意味する。上記添加剤は、〇Hラジカルの捕捉剤として働くことが好ましい。ラジカルは、非荷電種(すなわち、1原子又は2原子又は多原子分子である)であり、少なくとも、1つの不対電子を有する。捕捉剤の例としては、酢酸(CH3COOH)、炭酸塩

 $(H_1CO_3^{-(2-x)})$ 、リン酸塩($H_3PO_4^{-(3-x)}$)などのカルボン酸又はリン酸又はそれらの塩が挙げられる。【0015】本発明の第3の形態においては、シリコンを酸化する能力を有するオゾンと蒸留水との混合物を用いる。第3の形態はシリコン表面の効率的な洗浄方法に関するものであり、以下の連続した工程に関する。

工程1:シリコン表面に酸化物を成長させる。

工程2:酸化物を除去する。

工程3(必要に応じて):親水的な表面が望ましい場 10 合、薄い絶縁酸化物層を成長させる。

工程4:シリコンウエハーを乾燥させる。

【0016】以下の上記と異なる連続工程も用いることができる。

工程1:シリコン表面の酸化物の成長を、シリコンを酸化する能力のあるオゾンと水との流体(液体又は気体)混合物を用いて行う。流体は、さらに捕捉剤のような添加物を含んでも良い。

工程2:酸化物を、塩酸等を含有する又は含有しない希フッ酸洗浄剤中で除去する。

) 工程3(必要に応じて):親水的な表面が望ましい場合、薄い絶縁酸化膜を、希塩酸とオゾンの混合物のようなオゾン化された混合物中で成長させる。

工程4:マラゴンニ型の乾燥又はシリコンウエハーの加熱を伴う乾燥により、シリコンウエハーを乾燥させる。この連続した工程は、ウエットベンチ、シングルタンク、スプレープロセッサー、シングルウエハークリーニングツールなどのあらゆる反応容器やタンクを用いて行うことができる。

【0017】本発明は、集積回路用のシリコンウエハーの製造において用いることができる。また、本発明は、 平面デイスプレイ、太陽電池の製造のような関連する分 野において又はマイクロマシニングの応用において又は 半導体基板表面から有機汚染物質を除去する必要のある 他の分野においても用いることができる。

[0018]

【発明の実施の形態】本発明の目的は、半導体基板表面から有機汚染物を除去する方法に関する。上記方法は、シリコン表面からフォトレジスト及びエッチング後の有機残留物を除去するのに用いることができる。上記有機汚染物は、上記半導体基板の少なくとも一部を覆う拘束された層である。上記拘束された層の厚さは、単分子層以下から1μmの範囲である。上記方法は、気相又は液相プロセスに適用できる。以下の説明において、気相プロセスを対象とする本発明の第1の好ましい実施形態と、液相プロセスを対象とする本発明の第2の好ましい実施形態が開示される。

【0019】<気相プロセスを対象とする第1の好ましい実施形態>気相プロセスにおいて、半導体基板は、水蒸気、オゾン及び捕捉剤として働く添加物を含む気体混50 合物と接触するように、タンクの中に置かれる。捕捉剤

(6)

は、他の成分による好ましくない影響を除くために、混 合物に添加される物質である。捕捉剤は、OHラジカル 捕捉剤として主に働く。添加物は、カルボン酸又はリン 酸又はその塩である。さらに好ましくは、添加物は、酢 酸である。

9

【0020】気体混合物中における添加物の割合は、好 ましくは気体混合物の10モル重量%以下である。気体 混合物中における添加物の割合は、より好ましくは気体 混合物の1モル重量%以下である。さらにより好ましく の0.5モル重量%以下である。さらにより好ましく は、気体混合物中における添加物の割合は、気体混合物 の0.1モル重量%以下である。

【0021】気体混合物は、酸素、窒素、アルゴン又は 他のあらゆる不活性気体を含んでもよい。気体混合物の オゾン濃度は、主に10~15モル重量%以下である。 水蒸気は、主に混合物の使用温度で飽和している。混合 物の使用温度は150℃以下であり、半導体基板の温度 より高いことが好ましい。

も良い。濯ぎに用いる溶液は、脱イオン水からなること が好ましい。濯ぎに用いる溶液は、さらに塩酸及び/又 はフッ酸、及び/又は硝酸、及び/又は二酸化炭素、及び /又はオゾンからなっても良い。また、濯ぎに用いる溶 液をメガソン超音波撹拌しても良い。

/【0023】好ましくは、本実施形態においては、タン クに少なくとも水と上記添加物からなる液体を満たす工 程を含み、タンクの液面を半導体基板より下にして、液 体を加熱する。それから、タンクは、添加物を含む飽和 水蒸気で満たされる。タンクは、さらにオゾンで満たさ 30 体は、さらにメガソン超音波撹拌される。 れる。好ましくは、オゾンは液体を通してバブリングさ れる。液体は、好ましくは16℃から99℃の範囲で、 より好ましくは、20℃と90℃の間で加熱される。さ らにより好ましくは、60℃から80℃の間で加熱され る。

【0024】湿潤オゾン気相プロセスと表示された装置 構成においては、完全にオゾン拡散器を浸漬するに十分 な少量の液体のみを満たした石英容器を用いることが好 ましい。液体は、酢酸のような添加物を添加した脱イオ ン水である。液体は石英容器の上に置かれる。液体は8 40 ○℃に加熱される。ウエハーは、直接液体界面の上に浸 漬しないように置かれる。オゾン拡散器は、溶融シリカ から組み立てられ、オゾン発生器(ソルビウス)は、オ ゾン量が最大になるように酸素を流しながら操作され る。望ましくは、酸素流量は31/minが用いられ る。実験の間ずっと、オゾンは液体の中に直接バブリン グされる(気泡は減らさない)。密閉容器で液体を加熱 し、液体を通して連続的にオゾンをバブリングさせるこ とにより、ウエハーを湿潤な周囲に存在するオゾンに曝

ン水は酢酸で酸性にする(1/100体積比)。ウエハ ーは、十分に長い時間処理され、湿潤気相処理の後に濯 ぐ工程を行う。実験においては、ウエハーは10分処理 され、続いて脱イオン水で10分濯ぎを受ける。

【0025】また、酢酸が添加された蒸留水(pH1以 下、好ましくは16M酢酸を100倍に薄める)又は硝 酸を添加した蒸留水(pH1.5以下、好ましくは16 M硝酸を100倍に薄める)を含む静置した石英容器に 全部が浸漬したオゾン拡散器からオゾンをバブリングさ は、気体混合物中における添加物の割合は、気体混合物 10 せても良い。液体は石英容器の上に置かれる。ウエハー は、その液体の上に置かれ、周囲の湿ったオゾンに50 ℃又は80℃で10分間曝される。

> 【0026】さらに、連続する80℃、10分間の湿潤 オゾン気相工程と、5%硫酸を含む過酸化水素溶液を用 いる90℃、10分間の酸洗浄工程との組み合わせを含 む10分間の洗浄処理を行っても良い。

【0027】 <液相プロセスを対象とする第2の好まし い実施形態>液相プロセスにおいて、半導体基板は、 水、オゾン及び捕捉剤として働く添加剤との混合物から 【0022】また半導体基板を溶液で濯ぐ工程を含んで 20 なる液体と接触するように、タンクの中に置かれる。捕 捉剤は、他の成分による好ましくない影響を除去するた めに混合物に添加される物質である。捕捉剤は、主に〇 Hラジカルの捕捉剤として働く。

> 【0028】添加剤は、カルボン酸又はリン酸又はそれ らの塩であり、好ましくは酢酸である。液体における添 加物の割合は、液体の1モル重量%以下である。好まし くは、液体における添加物の割合は、液体の0.5モル 重量%以下である。さらに好ましくは、液体における添 加物の割合は、液体の0.1モル重量%以下である。液

> 【0029】好ましくは、さらに液体をその沸点以下の 温度に維持する工程を含む。液体の温度は、100℃以 下であることが好ましい。さらに好ましくは、16℃か ら99℃の間である。さらに好ましくは、20℃と90 ℃の間である。さらに好ましくは、60℃と80℃の間 である。

> 【0030】オゾンの気泡が半導体基板に接触するよう に、オゾンが液体を通してバブリングされるのが好まし

【0031】さらに好ましくは、さらに、半導体基板を 溶液で濯ぐ工程を含む。濯ぎに用いる溶液は、脱イオン 水からなることが好ましい。濯ぎに用いる溶液は、さら に塩酸及び/又はフッ酸、及び/又は硝酸、及び/又は二 酸化炭素、及び/又はオゾンを含むことがより好まし い。濯ぎに用いる溶液は、メガソン超音波撹拌される。 【0032】本実施形態において、好ましくは、以下の 装置構成が用いられる。気泡試験と表示されるオゾン装 置構成(浸漬型)は、71の液体が入る石英容器とタン クの底に位置するオゾン拡散器とからなる。液体は加熱 す。気相の実験においては、作業温度は80℃、脱イオ 50 される。作業温度は、45℃である。オゾン拡散器は、

溶融シリカから加工され、オゾン発生器(ソルビウス) は気体フローにおいてオゾン量を最大にするように、酸 素流量が調整される。最も好ましくは、31/minの 酸素流量が用いられる。実験の間ずっと、オゾンは直接 石英タンクの中に(減少することなく)バブリングされ る。半導体基板はオゾン拡散器の上に直接置かれ、液体 の中に浸漬される。

【0033】酸素/オゾンの気泡が表面に接触する。半 導体基板は、気泡装置において、酢酸濃度を変えてオゾ え、酢酸濃度を0から11、5mol/1(0、0.1 m1 (0.46 mmol/l), 1.0 ml (2.3 mo)1/1)、及び5.0ml(11.5mmol/1))の 範囲で変えた液体により、オゾン洗浄を受ける。

【0034】さらに好ましくは、捕捉剤と気体状の化学 的に活性な物質を含む水と半導体ウエハーの表面とを互 いに接触させるために、従来の反応容器を用いることが できる。そのような反応容器の例としては、F、S、

I、SEMITOOLそしてSTEAG等の会社により 販売されているものを用いることができる。そのような 20 反応容器を用いる場合、1個又は複数個の半導体ウエハ 一が所定位置に挿入される。そして、水と微細に分離さ れた水及び/又は気体状の化学的に活性な物質の供給そ してそれらがウエハー表面に均一に作用することを制御 することができる。工程において生成した水は、集めら れた後、除かれる。処理後、ウエハーは容易に取り出す ことができ、必要に応じて次に処理するウエハーが挿入 される。

【0035】ウエハーを所定の位置において、例えば回 転等により揺動させる手段を設けることもできる。従来 30 のウエットベンチ、又はスプレーエッチング又はスプレ ー洗浄容器、さらにスプレープロセッサー等に類似又は 基づいて作製された反応容器を用いることができる。い ろいろな溶液を導入するための手段の代わりに、いろい ろな気体と水を供給するための手段が好適に用いられ る。気体と液体を導入する手段を備えた混合システムを 用いることも基本的に可能である。均一でアエロゾルの ような霧を容器内部に噴霧できるノズル装置を用い、反 応容器の中に水を噴霧することも可能である。霧は微細 に分散した液滴からなる。オゾンを含む気体雰囲気で反 40 応容器が満たされ、その反応容器の中で回転している半 導体基板の上の好ましくない物質に処理液を噴霧するこ とも可能である。

【0036】本実施形態に用いる処理液としては、例え ば、液状化学物質、捕捉剤を含む超純水、そしてオゾン 含有気体と超純水との混合相液体が挙げられる。

【0037】半導体基板処理のための装置としては、複 数の半導体基板を固定する半導体基板ホルダーを内部に 備えた密閉処理容器が挙げられる。半導体基板ホルダー は、回転シャフト又は回転シャフトと繋がった回転テー 50 米国特許第5308745号公報に記載のアミンを基剤

ブルを結合した処理容器に結合され、そしてオゾン含有 気体又は処理液を供給するノズル又はオゾン含有気体と 処理液とからなる混合相流体を供給するノズルを備えて

【0038】より詳細には、いろいろな液状化学物質、 超純水そして捕捉剤、又はオゾン含有気体と超純水そし て捕捉剤とを含む混合相流体を、処理容器内の半導体基 板上の好ましくない物質の上に噴霧する。ここで、オゾ ン含有気体又はオゾン含有気体と超純水とからなる混合 ン処理を受ける。半導体基板は、71の脱イオン水に加 10 相流体を処理容器に供給し、オゾン濃度を所定濃度ない し高濃度に保つ様に調整している。そして噴霧する時、 好ましくない物質が表面に存在している半導体基板を回 転させることにより、遠心力で半導体基板上の処理液の 薄い膜が常に更新され、好ましくない物質の除去が促進 される。高速で半導体基板を回転させると、効果が大き くなる。なぜなら、半導体基板上の超純水の膜の厚さは 非常に薄いため、その超純水の膜は連続的に除去される からである。液体を加熱することも大きな効果がある。 [0039]

> 【実施例】本発明は、本発明の2つの好ましい形態に開 示された方法を以下に述べる応用にも用いることができ る。

<応用1: VIA洗浄>本発明の方法は、プラズマエッ チング工程後、特にサブミクロン工程のウエハー洗浄技 術に用いることができる。シリコン及びその化合物のド ライエッチングは、フッ素との反応に基づくものであ り、結果としてフルオロカーボンポリマーによる汚染を もたらす。フルオロカーボン残留物は、半導体(シリコ ン) 半導体基板がドライな酸化物エッチングを受けるこ とにより生成する。従来のフルオロカーボン気体を用い る酸化物エッチングにおいては、垂直な側壁プロファイ ルを作るため及びフォトレジストマスクと下層膜に対す るエッチング選択性を上げるために、意図的にポリマー を生成させる。SiO2-Si系におけるエッチング選 択性は、フルオロカーボンを基剤とするポリマーの生成 を通して特定の条件の下で、達成される。

【0040】重合反応は、Si上で起こることが好まし い。そうすることにより、保護層が形成されるととも に、SiとSiO2の間のエッチング選択性が達成され る。選択エッチング後、レジストとポリマー状の残留物 は表面から除去されなくてはならない。もし、次に金属 積層の前にポリマーが完全に除去されないと、ポリマー はスパッタされた金属原子と混ざり合い、高抵抗の物質 が生成し、信頼性に影響を与える問題を引き起こす。ポ リマー除去の方法は、プラズマエッチングの化学的方 法、プラズマ源及び積層膜の組成による。しかし、乾式 プロセスにおいては、フルオロカーボンポリマーの除去 には、酸素または水素を含む気体が用いられる。湿式洗 浄方法においては、米国特許第5279771号公報と

とする溶剤がよく使われる。これらのプロセスは、大体 において、高価であり、かつ廃棄物処理に関し環境に有

【0041】図1と図2は、p型ウエハー上に調製され た異なるVIA試験構造を示す。第1の構造は、500 nmの酸化物層、30/80nmのTi/TiN層、70 OnmのAlSiCu層、20/60nmのTi/Ti N、250nmの酸化物、400nmのSOG、500 nmの酸化物(シリコン半導体基板から始めて)からな /80nmのTi/TiN、700nmのAlSiCu、 20/60nmのTi/TiN及び500nmの酸化物 (またシリコン半導体基板から始めて)の層からなる。 続いて、これらの構造は、「線レジストでコーティング され、直径0.4から0.8µmのコンタクトホールを備 えたマスクセットを介して露光される。VIA構造は、 CF4/CHF3プラズマ中にエッチングされる。ウエ ハーの最初の工程として、VIA構造は500nm酸化 物/400nmSOG/250nm酸化物を通してエッチ ングされ、TiTiN/Al層の上で止まる。第2のエ 程として、VIA構造は500nm酸化物層を通し、T iTiN/Al層の中までエッチングされる。ウエハー は、直接オゾン洗浄される(レジスト層とウエハー上の 側壁のポリマーを残して)。

【0042】この応用に用いられる装置構成は、図3に 示される。湿潤オゾン気相工程と表示される装置は、オ ゾン拡散器を浸漬するに十分な量の液体のみで満たされ た石英容器を用いる。液体は、たとえば酢酸のような添 加物を添加された脱イオン水である。液体は石英容器の 上に置かれる。液体は80℃に加熱される。ウエハー は、浸漬しないように、直接液体界面の上に置かれる。 オゾン拡散器は、溶融シリカから加工され、ソルビウス 発生器は、酸素流量31/minで操作される。実験の 間ずっと、オゾンは石英タンクの中に直接バブリングさ れる(気泡が減少しないように)。密閉容器の中の液体 を加熱し、さらに連続してオゾンをバブリングすること により、周囲の湿潤なオゾンにウエハーを曝す。気相で の実験において、作業温度は80℃で、脱イオン水は酢 酸で酸性にされる(1/100体積比)。 すべてにおい て、ウエハーは10分処理され、続いて脱イオン水中で 40 10分濯がれる。

【0043】洗浄効率は、SEM観察(0.6μmのV I A構造の上の) に基づいて評価される。比較のため、 ウエハーは、45分間酸素プラズマ処理され、乾式除去 される(ウエハー上の側壁のポリマーを除く)。

【0044】図4は、洗浄処理前(すなわち、レジスト も側壁のポリマーも残っている状態)のVIA構造(図 1)のSEM写真を示す。図5は、図1のVIA構造を 45分間酸素でドライストリップ (dry stri p)した時のSEM写真を示す。図1と図2の構造を1 50 イオン注入されたレジストの結果は、図9に示す。処理

0分間酢酸を添加し最適化された湿潤なオゾン気相プロ セスに曝した後のSEM写真をそれぞれ図6と図7に示

【0045】45分間の酸素によるドライストリップ処 理後、側壁のポリマーがまだはっきりと見えることがわ かる。しかし、気相処理に関しては、すばらしい洗浄効 率が認められた(図6及び7)。気相処理においては、 エッチング後の側壁のポリマーだけでなく、レジストコ ーティングも、表面には認められなかった。酢酸添加に る。第2の構造は、以下の、500nmの酸化物、30 10 よる湿潤オゾン気相処理は、VIAエッチング構造から レジスト層及び側壁のポリマー残留物を除くのに有効で あることが示された。これは、有機汚染物に対するオゾ ンによる除去効率が、物理的及び化学的に促進されたた めである。

> 【0046】 <応用2:レジスト除去>上述の様に、酢 酸のような薬品添加物は、オゾン処理の化学的作用によ り有機汚染物の除去効率に影響を与える。この目的のた めに、レジスト層でコートされたウエハーは、いろいろ なオゾン処理された脱イオン水混合物に曝される。レジ スト除去効率が評価される。ウエハーはポジ(JSR電 子製IX500el)及びネガ (Shipley製UV NF) レジストでコートされる。レジストで覆われたウ エハーは、使用前にレジストを硬くするため、DUVに よる焼き付け処理を行う。ポジレジストを備え、イオン 注入されたウエハー (5el3at/cm2 P) が処 理される。レジストの厚さは処理前後にエリプソメトリ ーによりモニターされる。

【0047】気泡試験と表示され、別の特殊な応用に用 いられるオゾンの比較用装置構成(浸漬型)は、図8に 30 示され、71の液体を入れる石英容器とタンクの底に位 置するオゾン拡散器とからなる。液体は加熱される。作 業温度は、45℃である。オゾン拡散器は溶融シリカか ら加工され、ソルビウス発生器は酸素流量31/min で操作される。処理の間ずっと、オゾンは石英タンクの 中(気泡が減少しないように)に、直接バブリングされ る。ウエハーはオゾン拡散器の上に直接置かれ、液体の 中に浸漬される。そのようにして、酸素/オゾンの気泡 が表面と接触する。ウエハーは、図7に示される気泡セ ットアップにおいて、酢酸濃度を変化させながら、オゾ ン処理を受ける。イオン注入されていないウエハーは、 脱イオン水71に次の量の酢酸を加えた液、0、0.1 m1 (0.46 mmol/1), 1.0 ml (2.3 mmol/1)及び5.0ml(11.5mmol/1)を 用いてオゾン洗浄される。イオン注入されたウエハー は、0又は11.5mmol/1のいずれかの液を用い て、オゾン洗浄される。

【0048】イオン注入されたレジストの場合、決めら れた量の酢酸を添加することにより、除去効率が約50 %(60nm/min対90nm/min) 増加する。

の効率数は次のように定義される。すなわち、オゾン濃度に対して規格化されたレジスト除去効率であり、単位処理時間当たりの除去速度で表わされる。上記のように定義された処理効率数は、ネガレジストでは0.8から1.2 n m/(min*ppm)、ポジレジストでは4.5から8.5 n m/(min*ppm)までである。ポジ及びネガレジストの除去の強度の違いの順序にも拘わらず、全体の傾向は同じである。処理効率数に対する明確

な効果は、酢酸を添加した時に現われる。

【0049】〈応用3:レジスト除去〉上記に基づき、10 実験計画法を適用した。検討した効果は、オゾン処理した物質による、薬品添加物を用いた時のレジスト除去効率である。焼き付けたポジ及びネガレジストを試験に用いた。気泡試験と表示され、図8に示されたオゾンの比較用装置構成(浸漬型)を用いた。評価における個々の変数の影響をより明確にするため、ウエハーは直接オゾンの気泡に接触させなかった。この低いオゾンの利用性(気泡又は気体が接触しない)は、応用2と比べて低い除去速度と低い処理効率に反映される。考慮した変数は、温度や溶液のpHだけでなく、酢酸、過酸化水素及*20

* びオゾン(酸素流量を変えることにより)濃度である。 p Hの影響(硝酸を加えることにより、2から5まで変 化させた)は、酢酸の効果がpHによるものであるかど うかを調べるために、検討に加えた。過酸化水素は、O Hラジカルを発生させることが知られており、添加し た。添加量は、0、0.1、又は0.2ml(英国アッシ ュランド製、30%)である。酢酸(ベーカー製試薬 用、99%)の添加量は、脱イオン水71に0、0.5 又は1mlである。温度は、21から40℃の範囲で変 10 え、オゾン濃度は発生器を通す酸素流量でコントロール した。低い流量は、31/min、高い流量は51/m i nである。ポジ及びネガレジストのいずれの除去にお いても、結果は、単位時間当たりのレジスト除去速度で 表わされる。設定された実験条件と結果を表1に示す。 RS/ディスカバー(Discover)が、実験結果 の解析のために用いられる。これは、最小自乗法と二次 モデルに基づき、段階的多重回帰法を用いて行われる。 このモデルは、実験結果を90%の偏差で説明できる。 [0050]

16

【表1】

ポジレジストネガレジスト平均 酢酸 酸素流量 温度 過酸化水素 pH 除去速度 nm/min 除去速度 nm/min オゾン濃度 flow ml ml ppm 0 5 hi 40 51.2 7.36 18.2 1 21 34.8 3.11 54.6 1 0.2 2 lo 1 0.1 5 hi 40 40.1 5.97 17.2 1 0 5 10 21 36.9 2.60 52.6 0 0.2 2 10 40 14.5 19.3 0.02 1 0 2 hi 21 36.1 2.73 44.8 0 0.2 5 10 21 0.39 3.4 14.7 0.5 0 5 hi 40 36.3 5.91 17.1 O 0.2 5 hi. 40 4.6 1.32 5.7 1 0.2 5 10 40 31.9 5.98 17.9 0 0 2 10 21 33.1 1.46 47.6 0 0.2 2 hi 21 26.8 1.96 37.9 0 Ω 5 hi 21 27.0 2.58 39.8 0 0.1 2 hi 40 20.7 2.62 11.4 0 0 2 hi 40 31.6 3.34 15.6 1 0.2 5 hi 21 31.4 2.85 44.7 1 0.2 2 40 hi 55.9 3.78 15.9 1 0 2 10 40 41.8 3.96 17.7 hi 5 21 0.5 0.1 36.6 3.26 42.4 0.5 0.2 5 10 40 37.0 2.93 15.1 0.5 2 0.2 hi 40 47.3 3.22 14.4 0 0 5 10 40 11.9 1.24 13.6 7 2 1.89 0.1 10 21 34.4 49.9

【0051】ポジレジストの結果のみを、図10と図1※50※1に示すが、ネガレジスト除去の統計量も同様である。

すべての応答に対する主たる効果は図10に示す。レジ スト除去に対する最大の明確な効果は、酢酸濃度の変化 (Oから715μ1添加する)によるものであり、pH にはほとんど関係しないことに注意する必要がある。ま た、レジストの除去速度は、過酸化水素の添加(0から 200μ1)により減少する。このグラフから温度はあ まり重要でないと結論できる。しかし、オゾン濃度は、 温度に強く依存し(溶解度と安定性は、温度に反比例す る)、片寄った結果を与える。そこで、処理効率数が定 義される。すなわち、オゾン濃度に対して規格化された 10 レジスト除去効率であり、単位オゾン及び単位時間当た りの除去速度で表わされる (すなわち、nm/(min* ppm))。以上のように得られた処理効率数は、ボジ レジストで0.2と4nm (min*ppm)の間、ネガ レジストで0.03から0.4 nm/(min*ppm)の 間で変化する。ポジレジストの除去における処理効率数 に対するいくつかのパラメータの影響の結果を図11に 示す。ポジとネガレジスト除去の間の強度の差の順序に も拘わらず、全体の傾向は同じである。酢酸の添加、オ ゾン濃度及び温度の上昇が、処理効率数に明らかな効果 20 を与える。

17

【0052】 <応用4: レジスト除去>本発明の方法の さらなる検討において、他の試験について以下に述べ る。オゾン処理した物質に対する大きな要求は、有機汚 染物(クリーンルームの空気成分、フォトレジスト又は 側壁のポリマー)を速くかつ完全に除去することであ る、除去効率に大きな影響を与えるパラメータを確認さ れなくてはならない。酢酸添加は、結果に影響を与える が、またオゾン濃度や温度などの他のパラメータも重要 の除去効率に対するオゾン濃度及び作業温度の影響が、 実験的に評価された。5 nmの厚さのフォトレジストで コーティングしたウエハーを準備し、脱イオン水を含む 静的な浴に浸漬した (図8における装置構成、しかし浸 漬の間はバブリングを中止する)。オゾン濃度は、〇か ら12ppm、温度は20、45そして70℃の間で変 化させた。故意に、静的状態で(すなわち、オゾンを脱 イオン水に飽和させた後、気体を流すのを止める)、1 分洗浄し、パラメータの影響を調べる。主な結果を図1 2に示す。洗浄効率をオゾン濃度に対して、3つの異な る温度範囲において、プロットした。短い処理時間と静 的条件(オゾンの利用が限定される)のため、除去は5 0%程度である。オゾン濃度当たりの除去効率は、温度 を高くすると向上するが、検討した時間内における全除 去量は、オゾン濃度を高くすると向上することがわか る。しかし、オゾンの溶解度は、温度とともに減少する が、処理効果は温度とともに向上する。

【0053】溶液におけるオゾン濃度、酸化力及び洗浄 ベルであることか 効果は、物理的状態に応じて最大にすることができる。 【0055】以下 米国特許第5464480号公報に開示された1つのプ 50 うことができる。

ロセスは、オゾンの溶解度を増加させるため、温度を下 げて(冷蔵して)、水を処理している。この方法の不利 な点は、反応性が低下し、反応速度が遅いため、処理時 間が長くなる点である。オゾン濃度を高くする他の可能 性としては、より効率の良い、オゾン発生器及び/又は オゾンを脱イオン水に移行させるオゾン拡散器を使うこ とである。しかし、上記の結果から、すべての効率化さ れたプロセスは、作業温度において、オゾン濃度を最大 にすることを目指すべきである。この仮説を、図2及び 図8の装置において、実際に示す。ここでは、気泡接触 (下方の周囲、高い温度で)を備えた従来の浸漬と湿潤 な気相プロセス (高い温度で)とが示されている。両方 の装置構成については、上述されている。ポジレジスト のウエハー (1.2 nm) が10分間、いろいろな温度 で(気泡)、又は80℃(気相)で処理に曝される。結 果を図13に示す。気泡実験の溶解オゾン濃度(棒グラ フ)と洗浄効率(線グラフとクロス)を示す。気泡実験 の挙動に関しては、低温域では速度要因に規制され、ま た高温域ではオゾンの溶解度により規制されていること が理解できる。後者による規制を、周囲に湿潤なオゾン を存在させる実験により、緩和させることができる。ウ エハーを湿潤な雰囲気に曝すことにより、ウエハー上に 薄い縮合層が形成される。周囲のオゾン気体は、連続し て大量のオゾンを供給する(気体中では重量%、溶液中 ではppm)。また、薄い縮合層は拡散律速を減少さ せ、寿命の短い反応性の高いオゾン成分がウエハー表面 に到達し易くし、100%近い除去率をもたらす。重要 なことは、湿潤でない気相プロセスでは、うまくいかな いということである。

であることが、明らかにされた。そこで、ポジレジスト 30 【0054】〈応用5:一連の洗浄における第1の工の除去効率に対するオゾン濃度及び作業温度の影響が、程〉本発明の他の応用は、オゾンと蒸留水とからなる混実験的に評価された。5nmの厚さのフォトレジストで 合物のシリコンに対する酸化力を用いたものである。従コーティングしたウエハーを準備し、脱イオン水を含む 来、シリコンウエハーの洗浄は以下の連続した工程で行静的な浴に浸漬した(図8における装置構成、しかし浸 われていた。

工程1:シリコン表面に酸化物を成長させる。

工程2:酸化物を除去する。

工程3(必要に応じて):親水的な表面が望ましい場合 に、薄い絶縁酸化物層を成長させる。

工程4:シリコンウエハーを乾燥させる。

このような連続した工程に関する詳細は、「New Wet CleaningStrategies for obtaining highly Reliable Thin Oxides], M. Heyns et al, Mat. Res. Soc. Symp. Proc. Vol. 315, p. 35 (1993) に説明されている。他の刊行物にも、上記のような連続した工程によれば、高い除去効率が得られ、かつ金属の混入が低レベルであることが示されている。

【0055】以下に示す上記と異なる連続した工程を行うことができる。

*る。

とができる。

この連続した工程は、ウエットベンチ、シングルタン

ク、スプレープロセッサー又はシングル - ウエハークリ ーニングツール等の反応容器又はタンクにおいて行うこ

【0056】〈オゾンの化学的性質に関する考察〉水溶

る、別の考えられる機構について説明する。水溶液にお

液にオゾンを含む本発明を用いて得られた結果に関す

けるオゾンの分解は、塩基により触媒され、ラジカル

19

工程1:オゾンと水との混合物流体(液体又は気体)の シリコン酸化力を用いて、シリコン表面に酸化物を成長 させる。流体は、さらに捕捉剤のような添加物を含む。 工程2:単独又は塩酸等の添加物を含む希釈されたフッ 酸洗浄剤中で酸化物を除去する。

工程3(必要に応じて):親水的な表面が望ましい場 合、希塩酸/オゾン混合物又はオゾンと水の混合物のよ うなオゾン化された混合物中で、薄い絶縁酸化物層を成 長させる。

工程4:マラゴンニ型の乾燥又はシリコンウエハーの加 10 (A)又はイオン的(B)な開始機構に従う。 **熱を伴う乾燥工程によりシリコンウエハーを乾燥させ ***

(A)
$$O_3 + O_4 + - - O_2 + O_$$

$$(B) O3 + OH ---- HO2- + O2$$
 (3)

$$H_2O_2----+HO_2^-+O_2$$
 (4)
 $O_3+HO_2^-----++O_1^++O_2^-+O_2$ (5)

プには関係なく、反応(6)と(7)を伴う。開始機構 がイオン的であるかラジカル的であるかに拘わらず、少※

【0057】さらに、オゾンの分解は、開始反応のタイ ※なくとも、単位水酸化物イオン当たり3個のオゾン分子 が分解することが理解される。

★成物が反応(2)、(6)及び(7)と結び付くことに

☆のより速くなる。したがって、別の分解機構が必要であ

る。この開始機構は、既に述べた反応(2)、(6)及

び(7)と組み合わせて、反応式(9-11)に示され

(4)

$$O_3 + *O_2 - - - - *O_3^- + O_2$$
 (6)
 $*O_3^- + H_2 O_{---} - *O_1 + O_1 + O_2$ (7)

【0.058】上記のオゾン分解経路に加え、〇Hラジカ ル (反応 (5) と (7) で形成される) が、反応経路

(8)によりさらにオゾンを分解させる。また、反応生★

$$*OH + O_3 \longrightarrow *HO_2 + O_2$$
 (8)

より、連鎖反応が開始される。

【0059】これらの分解機構は、中性又は塩基性の水 性環境でのオゾンの消耗の説明に良いモデルである。し かし、酸性の場合、認められるオゾンの分解速度は、反 応(1-4)において、水酸化物濃度から予想されるも ☆

$$O_3 - \longrightarrow O + O_2$$

$$O + H_2 O - \longrightarrow 2 * O H$$

$$(9)$$

$$(10)$$

【0060】反応(1-10)は、水性環境におけるオ ゾンの消耗を表わしている。しかし、酸化される化合物 が存在すると、状況は複雑になるため、全体の概要を第 14図に示す。オゾンの水溶液への移動は、溶解度によ り規制されるため、パージを行う時にオゾンの損失が生 じる。1次反応は、酸化される溶質Mにより、オゾンが 消費される。

【0061】これらの反応において、水の過酸化水素へ H⁺の平衡が生じる)。この1次反応は、通常遅いた め、オゾンは別の反応経路により分解し易い。たとえ ば、開始剤 I (OH, HO2-,---) とオゾンの反応によ り、1次ラジカル(*OH)が生成し、それは除去され るか、又はさらにオゾンと反応し、さらに多くのラジカ ルを生成するか又は溶質Mのさらなる酸化に関与する。 反応(1-10)と第14図を検討すると、オゾンの化 学的性質は化学的に制御可能である(すなわち、添加物 の選択的な添加により)。

【0062】上記の点から得られたオゾンに対する添加◆50 %)10mlを脱イオン水に添加,することにより、検

◆物の影響は、オーバーフロー浴における酸素/オゾンの 気泡を減らすため、オゾン/水混合物がゴア(Gor e) オゾンモジュール (膜を基材にしたミキサー) で調 製されるオーバーフローの浴で示される。オーバーフロ 一浴の水の流量(201/min)、オゾン発生器を通 す酸素の流量(21/min)及びオゾンモジュールに おける圧力(1バール)が、浴における可能なオゾンレ ベルを決定する。これらの変数は、ここに記載された実 の酸化も起きる(結果として、H2O2 ←--→HO2+ 40 験においては、所定の値で一定の保たれる。脱イオン水 中のオゾンレベルは、薬品を添加する前、飽和の状態に 常に保たれる。用いられるすべての薬品は、ベーカー製 の試薬用酢酸(99%)を除いて、英国アッシュランド 製である。反応速度の影響を減らすため、すべての実験 は室温で行った。オービスフィア-ラボMOCA製電気 化学式オゾンセンサーをオゾンの測定に用いた。

【0063】第15図に示すように、オーバーフローさ せたタンクの中の脱イオン水中のオゾン濃度に対する酢 酸の挙動は、オゾンを飽和レベルにした後、酢酸(99

05/13/2002, EAST Version: 1.03.0002

討されている。非常に速やかにオゾンレベルは、増加し 始める。

【0064】 (オゾン処理された物質のレジスト除去効 率に対する酢酸の影響〉間接的な酸化プロセスは、オゾ ン分解における連鎖を生長させるOHラジカルの存在に 依存する(K. Sehested, H. Corfitz en, J. Holcman, J. Phys. Che m., 1992, 96, 1005-9). G. Alde r&R. Hill (J. Am. Chem. Soc. 19 50, 72, 1984) によれば、OHラジカルが有機 10 物の分解に主な原因である。排水処理プロセスに通常用 いられる方法には、紫外線照射、pH又は過酸化水素の 添加がある。そのようにして、OHラジカルを生成させ ている。

【0065】3つの異なる実験を行った。すなわち、ま ず、過酸化水素、次に酢酸に過酸化水素を添加する、最 後に酢酸のみを添加する実験である。

【0066】オゾン処理した脱イオン水に過酸化水素を 添加した場合の、シリコンウエハーからのポジレジスト の除去効率への影響を表2に示した。添加される過酸化*20

* 水素の濃度は、脱イオン水中の実際のオゾン濃度のオー ダーである。50μ1 (英国アッシュランド製、30 %)のH2O2を7.51タンクに添加した時は(0.08 mmo1/1)、大きな影響が認められた。測定された レジスト除去速度は、4分の1近くに減少した。さらに H₂O₂を添加すると、レジスト除去効率はより低下し、 ついには実質的に処理ができなくなる(2nm/min の除去速度)。これは、OHラジカルの量を増やすと、 有機汚染物の除去速度が向上するという排水処理の場合 とは、逆の結果である。排水処理において除去すべき有 機物は、溶液の中に分散している。一方、我々の目的の ためには、有機汚染物は、少なくとも半導体基板の1部 を覆うような層の中に拘束されている必要がある。我々 の目的にとっては、溶液の中の利用可能なオゾン及びオ ゾンによりもたらされる化合物の全体の量が問題なので はなく、むしろウエハー表面の近傍の有機物が拘束され た層付近で発現する化学的活性が重要である。

[0067]

【表2】

オゾン平均濃度	添加した 過酸化水素量 (ml)	添加した硝酸量 (ml)	レジスト除去速度 (nm/min)
w-ppm	•		ļ
48.0	0	0	. 38.4
37.0	0.05	5.5	11.3
30.9	0.05	0	9.3
24.7	0.1	0	7.7
4.5	0.5	0	2.1

【0068】したがって、この応用においては、〇Hラ ジカルにより触媒されるオゾンの分解機構は、形成され るOHラジカルの除去によりコントロールされる。捕捉 剤は、他の成分による望ましくない影響を除くため、混 合物又は他の系に添加される物質である。酢酸又は酢酸 塩が、水性オゾン溶液の安定化剤である。第16図に、 オゾン濃度に対する、酢酸及び過酸化水素の繰り返し添 加(OHラジカルの生成促進)の協同効果を示す。時間 t=0における添加(0.17mmo1/1)にも拘わら ず、脱イオン水が0.23mmo1/1の酢酸のみで安定 化されている場合、オゾン濃度はわずかに増加する。H 2 O 2 を数回添加した (それぞれ O . 1 7 m m o 1/1) 後 でも、オゾンレベルは最初のスタート時のレベルより低 下しない。このことから、酢酸が、OHラジカルで開始 されるオゾンの連鎖分解を止めるのに、大きな効果を持 つことがわかる。

【0069】少量の酢酸が添加された時の、オゾン処理 した脱イオン水で10分間レジスト除去した時の実験結 果を表3に示す、レジスト除去は処理時間10分として※50 【表3】

※再計算され、除去速度(nm/min)で示されてい る。実験装置の問題で、測定されたオゾン濃度が全く定 性的(オゾンセンサーと酸素/オゾン流の距離に再現性 がない)であるということに注意する必要がある。0. 02mmol/1から0.24mmol/1の酢酸をオゾ ン処理した脱イオン水に添加すると、添加しない比較プ ロセスと比べ50%程度レジスト除去効率が向上する。 酢酸及び過酸化水素添加の協同効果をレジスト除去プロ 40 セスのために評価するとともに、表4に示す。これらの 試験において、オゾン飽和後、脱イオン水は、まず、 0.02mmo1/1の酢酸を添加され、濃度の異なる過 酸化水素が添加され、レジスト除去効率に対する効果が 評価される。酢酸が存在している時、過酸化水素を添加 すると、表2の効果と比べると弱いものではあるが、レ ジスト除去速度は低下する。また、酢酸を添加して得ら れる安定化効果は、溶液を酸性にした時の場合よりも強 い(表2、硝酸を用いて)。

[0070]

オゾン平均浸度	添加した 過酸化水素量 (ml)	添加した酢酸量	レジスト除去速度 (nm/min)
w-bbm		(ml).	
48.0	0	0 .	38.4
49.5	0	0.1	47.1
50.0	0	1.1	51.1
54.3	1	1.1	34.2

[0071]

10【表4】

オゾン平均濃度	添加した 過酸化水素量 (ml)	添加した酢酸量	レジスト除去速度 (nm/min)
w-ppm		(ml)	
49.5	0	01	47.1
45.6	0.1	0.1	21.9
38.6	0.2	0.1	18.1
46.0	1.5	0.1	22.3

【0072】酢酸を添加することにより、脱イオン水中 のオゾン濃度を高くすることができる。しかし、レジス ト除去効率の向上は、酢酸添加によるオゾン濃度の増加 のみによっては説明できない。図9に、レジスト除去処 理効率数に対する酢酸添加の影響を示すが、それはオゾ ン濃度に対して規格化されている。処理効率は、酢酸添 加とともに、増加していることがわかる。したがって、 未知の機構が関与していると考えられる。

[0073]

に溶液の中に分散しているのではなく、シリコン表面の 層の中に閉じ込められている。溶解しているオゾン(t 1/2=20min)と反応性の高いオゾン種の短い寿 命を考えると、廃水処理におけるオゾンの知識は、我々 の応用には適用することはできない。有機物を確実に除※

※去するためには、ウエハー近傍の有機物の拘束された層 の付近で十分な化学的活性(反応性の高いオゾンを利用 できること)が必要である。シリコンウエハー上の有機 物の除去効率は、温度、オゾン濃度及び酢酸の添加に非 常に影響される。温度とオゾン濃度の必要条件は、上記 の湿潤なオゾン気体相の実験条件を満たしている。ウエ ハーを湿潤な雰囲気に曝すことにより、ウエハー表面に 薄い縮合層が形成される。周囲のオゾン気体相により、 薄い縮合層を通してシリコン表面の有機汚染物に向けて 【発明の効果】有機物は、廃水処理の場合のように均一 30 連続してオゾンが供給される。また、気泡実験におい て、気泡を含むオゾンが有機汚染物の拘束された層に常

> 【0074】酸化された酢酸溶液でOHラジカルが除去 されると、以下に示す反応によりH2O2が生成する。

 $*OH+CH_3COOH------*CH_2COOH+H_2O$ (11)*CH₂COOH+O₂-----*OOCH₂COOH(12)

 $2*OOCH_2COOH \longrightarrow 0.7H_2O_2+Products$ (13)

反応(13)で形成される他の生成物には、ホルムアル デヒド、グリオキシル酸、グリコール酸及び有機過酸化 40 【図面の簡単な説明】 物がある。

【〇〇75】酢酸フリーラジカル(反応(11))とレ ジスト表面との反応は、レジスト表面をオゾンと反応し 易くするかもしれない。この反応は、水素原子の引き抜 き反応を含み、不飽和結合を形成させる。この不飽和結 合は、分子状オゾンと反応する。2番目に、レジスト表 面に非常に近いところでフリーのOHラジカルを除去す る。その結果、反応(11−13)により、たとえばH2 O2が生成する。そして今度は、H2O2がレジスト表面

★力な酸化力"(OHラジカル)を生成させる。

に接触している。

【図1】 深いVIAエッチ構造を示す概略図である。

【図2】 過度にAIエッチングされたVIA構造を示 す概略図である。

【図3】 気相プロセスにおいて用いられる装置構成を 示す図である。

【図4】 洗浄処理前のVIA構造を示すSEM写真で ある。

【図5】 45分間O2ドライストリップ後のVIA構 造を示すSEM写真である。

の非常に近くに、コントロールされ局在化した"より強★50 【図6】 本発明の好ましい実施形態の方法に10分間

曝した図1の深いVIA構造を示すSEM写真である。

【図7】 本発明の好ましい実施形態の方法に10分間 曝した図2の過度にAlエッチングされたVIA構造の SEM写真である。

【図8】 液相プロセスにおいて用いられる装置構成を示す図である。

【図9】 酢酸濃度とポジ及びネガレジストの除去におけるレジスト除去工程の効率数の関係を示すグラフである。

【図10】 主たるパラメータのポジレジスト除去速度 10 に対する影響を示すグラフである。

【図11】 主たるパラメータのポジレジスト除去工程

の効率数への影響を示すグラフである。

【図12】 静的システムにおける温度とオゾン濃度と レジスト除去効率との関係を示すグラフである。

【図13】 気泡又は湿潤気相工程における温度とオゾン濃度とレジスト除去効率との関係を示すグラフである。

【図14】 水性オゾンにおける可能な反応式を示す。

【図15】 オーバーフロータンクにおけるOHラジカル捕捉のオゾン濃度に対する影響を示すグラフである。

【図16】 酢酸添加した脱イオン水に、繰り返し過酸 化水素を添加した時の影響を示すグラフである。

05/13/2002, EAST Version: 1.03.0002

【図9】

変換されたポジレジストの除去効率の増加

【図13】

【図14】

【図16】

フロントページの続き

- (72)発明者 ステファン・デ・ヘント ベルギー、ベーー2110ウェイネヘム、リッ ダー・グスターフ・ファン・ハフレ・ラー ン10番
- (72)発明者 ペーター・スネー ベルギー、ベーー3001ウェルテムーベイセ ム、ネクヴィンケルストラート21/2番
- (72)発明者 マルク・メーリスベルギー、ベーー3140ケールベルヘン、デー・リーケンスラーン27番
- (72)発明者 ポウル・メルテンス ベルギー、ベーー3150ハーフト、ベフェル デイク23番
- (72)発明者 マルク・ヘインス ベルギー、ベーー3210リンデン、メレルネ スト14番