

So Far...

- Two kinds of problems:
 - Supervised Learning
 - Unsupervised Learning
- Supervised Learning
 - Training data: a labeled set of input-output pairs
 - Goal: learn a mapping from inputs x to outputs y
 - y is a categorical variable
 - Classification
 - y is real-valued
 - Regression

Basic Concepts of Classification

- Sample, example, pattern
- ▶ Features, representation
- State of the nature, pattern class, class
- Training data
- Model, statistical model, pattern class model, classifier
- Test data
- Training error & test error
- Generalization

Bayesian Decision Theory

- Decision problem posed in probabilistic terms
- \rightarrow x: sample
- ω : state of the nature
- ▶ $P(\omega|x)$: given x, what is the probability of the state of the nature.

Preprocessing

Feature extraction

Classification

"salmon" "sea bass"

Sea bass / Salman Example

Basics of Probability

An experiment is a well-defined process with observable outcomes.

▶ The set or collection of all outcomes of an experiment is called the sample space, S.

▶ An event E is any subset of outcomes from S.

▶ Probability of an event, P(E) is P(E) = number of outcomes in E / number of outcomes in S.

Bayes' Theorem

► Conditional probability: $P(A \mid B) = P(A, B)/P(B)$.

$$P(A,B) = P(A|B)P(B) \qquad P(B,A) = P(B|A)P(A)$$
$$P(A|B) = P(A)$$

• Test of Independence: A and B are said to be independent if and only if P(A, B) = P(A) P(B).

Bayes' Theorem:

rem: likelihood prior
$$P(A|B) = P(B|A)P(A)$$
posterior

Illustration

Α	0	0	1	1	1	0
В	0	1	1	0	1	1

•
$$P(A=1) =$$

$$P(A=0) =$$

▶
$$P(B=1) =$$

$$P(B=0) =$$

•
$$P(A=1, B=1) =$$

$$P(A=1 \mid B=1) =$$

▶
$$P(A=1 \mid B=1) P(B=1)/P(A=1) =$$

- Bayes' Theorem
- ▶ $P(B=1 \mid A=1) =$

Prior

- A priori (prior) probability of the state of nature
 - Random variable (State of nature is unpredictable)
 - Reflects our prior knowledge about how likely we are to observe a sea bass or salmon
 - The catch of salmon and sea bass is equiprobable
 - $P(\omega_1) = P(\omega_2)$ (uniform priors)
 - $P(\omega_1) + P(\omega_2) = 1$ (exclusivity and exhaustivity)
- Decision rule with only the prior information
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$, otherwise decide ω_2

Likelihood

- Suppose now we have a measurement or feature on the state of nature - say the fish lightness value
- ▶ $P(x|\omega_1)$ and $P(x|\omega_2)$ describe the difference in lightness feature between populations of sea bass and salmon
- ▶ $P(x|\omega_j)$ is called the **likelihood** of ω_j with respect to x; the category ω_j for which $P(x \mid \omega_j)$ is large is more likely to be the true category
- Maximum likelihood decision
 - Assign input pattern x to class ω_1 if $P(x \mid \omega_1) > P(x \mid \omega_2)$, otherwise ω_2

Can you tell that whether this feature is "good" based on this figure? How can you get this figure in a real problem?

Amount of overlap between the densities determines the "goodness" of feature

Posterior

Bayes formula

$$P(\omega_i|x) = \frac{P(x|\omega_i)P(\omega_i)}{P(x)}$$

$$P(x) = \sum_{i=1}^{k} P(x|\omega_i)P(\omega_i)$$

- ► **Posterior** = (**Likelihood** × **Prior**) / Evidence
 - Evidence P(x) can be viewed as a scale factor that guarantees that the posterior probabilities sum to 1

Posterior ∝ **Likelihood** × **Prior**

$$P(\omega_1) = \frac{2}{3} \qquad P(\omega_2) = \frac{1}{3}$$

Minimum error rate classification

- For minimum error rate
 - Decide ω_i if $P(\omega_i \mid x) > P(\omega_j \mid x) \ \forall j \neq i$

Minimum error rate classification

- For minimum error rate
 - Decide ω_i if $P(\omega_i \mid x) > P(\omega_j \mid x) \ \forall j \neq i$

Minimum error rate classification

- For minimum error rate
 - Decide ω_i if $P(\omega_i \mid x) > P(\omega_j \mid x) \ \forall j \neq i$

Discriminant Functions and Classifiers

- ▶ Set of discriminant functions: $g_i(x)$, $i = 1, \dots, c$
- Classifier assigns a feature vector \mathbf{x} to class ω_i if:

$$g_i(\mathbf{x}) > g_j(\mathbf{x}), \quad \forall j \neq i$$

Decision Regions and Surfaces

- ▶ Effect of any decision rule is to divide the feature space into *c* decision regions
- ▶ If $g_i(x) > g_j(x) \forall j \neq i$, then $x \in \mathcal{R}_i$

(Region \mathcal{R}_i means assign x to ω_i)

- The two-class case
 - Here a classifier is a "dichotomizer" that has two discriminant functions g_1 and g_2

Let
$$g(x) \equiv g_1(x) - g_2(x)$$

Decide ω_1 if g(x) > 0; Otherwise decide ω_2

The importance of Binary Classification

- ▶ Binary classification → Multi-class classfication
 - One vs. Rest
 - One vs. One
 - ECOC (Error-Correcting Output Codes)

	h₁	h ₂	h₃	h₄_
C_1	1	-1	0	1
C_2	-1	0	-1	-1
C_3	1	1	0	1
C_4	-1	0	1	0

So Far...

- Bayesian framework
 - We could design an optimal classifier if we knew:
 - $P(\omega_i)$: priors
 - $P(x \mid \omega_i)$: class-conditional densities

Unfortunately, we rarely have this complete information!

- Design a classifier based on a set of labeled training samples (supervised learning)
 - Assume priors are known (or, estimate from the data)
 - Need sufficient no. of training samples for estimating class-conditional densities, especially when the dimensionality of the feature space is large

Parameter Estimation

- Assumption about the problem: parametric model of $P(x \mid \omega_i)$ is available
- Normality of $P(x \mid \omega_i)$

$$P(x \mid \omega_i) \sim N(\mu_i, \Sigma_i)$$

- Characterized by 2 parameters
- Estimation techniques
 - Maximum-Likelihood (ML) and Bayesian estimation
 - Results of the two procedures are nearly identical, but the approaches are different

Frequentist & Bayesian

- Parameters in ML estimation are fixed but unknown!
 - MLE: Best parameters are obtained by maximizing the probability of obtaining the samples observed
- Bayesian parameter estimation procedure, by its nature, utilizes whatever prior information is available about the unknown parameter
 - Bayesian methods view the parameters as random variables having some known prior distribution;
 - Bayesian Learning
- In either approach, we use $P(\omega_i \mid x)$ for our classification rule!

MLE & Bayesian Learning

$$P(\omega_i|\mathbf{x}) \propto P(\mathbf{x}|\omega_i, \boldsymbol{\theta}_i)P(\omega_i)$$

• Training set D can be divided into $D_1, D_2, \cdots D_c$. Samples in D_i gives no information about $\boldsymbol{\theta}_j$

- MLE:
 - Goal: estimating the optimal θ
- Bayesian learning
 - Goal: estimating $P(x|\omega_i, \theta_i) P(x|D_i)$

Maximum-Likelihood Estimation

- Has good convergence properties as the sample size increases;
 estimated parameter value approaches the true value as n increases
- Simpler than any other alternative technique
- General principle
 - Assume we have c classes $D_1, \cdots D_c$
 - The samples are drawn according to $p(x|\omega_j)$, iid. $p(x|\omega_j) \equiv p(x|\omega_j, \theta_j)$
 - $p(x|\omega_j) \sim N(\boldsymbol{\mu}_j, \Sigma_j)$
 - $\bullet \; \boldsymbol{\theta}_j = \left(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\right)$
- Use class ω_i samples to estimate class ω_i parameters

Maximum-Likelihood Estimation

- Use the information in training samples to estimate $\theta = (\theta_1, \theta_2, ..., \theta_c)$; θ_i (i = 1, 2, ..., c) is associated with the i-th category
- ▶ Suppose sample set D contains n iid samples, $x_1, x_2, ..., x_n$

$$p(D|\theta) = \prod_{k=1}^{n} p(x_k|\theta)$$

▶ $p(D|\theta)$ is called the likelihood of θ w.r.t. the set of samples.

ML estimate of *θ* is, by definition, the value *θ* that maximizes $p(D \mid \theta)$

"It is the value of θ that best agrees with the actually observed training samples"

FIGURE 3.1. The top graph shows several training points in one dimension, known or assumed to be drawn from a Gaussian of a particular variance, but unknown mean. Four of the infinite number of candidate source distributions are shown in dashed lines. The middle figure shows the likelihood $p(\mathcal{D}|\theta)$ as a function of the mean. If we had a very large number of training points, this likelihood would be very narrow. The value that maximizes the likelihood is marked $\hat{\theta}$; it also maximizes the logarithm of the likelihood—that is, the log-likelihood $I(\theta)$, shown at the bottom. Note that even though they look similar, the likelihood $p(\mathcal{D}|\theta)$ is shown as a function of θ whereas the conditional density $p(x|\theta)$ is shown as a function of x. Furthermore, as a function of θ , the likelihood $p(\mathcal{D}|\theta)$ is not a probability density function and its area has no significance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Log-likelihood

• We define $l(\theta)$ as the log-likelihood function

$$l(\theta) = \ln p(D|\theta)$$
 $p(D|\theta) = \prod_{k=1}^{N} p(x_k|\theta)$

$$l(\theta) = \sum_{k=1}^{n} \ln p(x_k | \theta)$$

New problem statement:

determine θ that maximizes the log-likelihood

$$\theta^* = arg\max_{\theta} l(\theta)$$

Optimal Estimation

$$\theta^* = arg \max_{\theta} l(\theta)$$
 $l(\theta) = \sum_{k=1}^{n} \ln p(x_k | \theta)$

Let $\theta = (\theta_1, \theta_2, ..., \theta_p)^t$ and ∇_{θ} be the gradient operator

$$V_{\theta} = \left[\frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial \theta_2}, \cdots, \frac{\partial}{\partial \theta_p}\right]^T$$

Set of necessary conditions for an optimum is:

$$\nabla_{\theta} l = 0$$

$$\nabla_{\theta} l = \sum_{k=1}^{n} \nabla_{\theta} \ln p(x_k | \theta) = 0$$

Example: Gaussian with unknown μ

 $P(x \mid \mu) \sim N(\mu, \Sigma)$

(Samples are drawn from a multivariate normal population)

The Normal Distribution

- Normal density is analytically tractable
- Continuous density
- A number of processes are asymptotically Gaussian
- Handwritten characters, speech signals and other patterns can be viewed as randomly corrupted versions of a single typical or prototype (Central Limit theorem)

• Univariate density: $N(\mu, \sigma^2)$

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- μ = mean (or expected value) of x
- σ^2 = variance (or expected squared deviation) of x

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$, as shown. The peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi}\sigma$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Normal Distribution

• Multivariate density: $N(\mu, \Sigma)$ (with dimension d)

$$P(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

- $\mathbf{x} = [x_1, \cdots, x_d]^T$
- Σ : $d \times d$ covariance matrix, $|\cdot|$: determinant
- The covariance matrix is always symmetric and positive semidefinite; we assume Σ is positive definite so the determinant of Σ is strictly positive
- ► The multivariate normal density is completely specified by d + d(d+1)/2 parameters
- If x_1 and x_2 are statistically independent then the covariance of x_1 and x_2 is zero.

Multivariate Normal density

Transformation of Normal Variable

Example: Gaussian with unknown µ

►
$$P(x \mid \mu) \sim N(\mu, \Sigma)$$

$$\nabla_{\theta} l = \sum_{k=1}^{n} \nabla_{\theta} \ln p(x_k | \theta) = 0$$

(Samples are drawn from a multivariate normal population)

$$\ln p(x_k|\mu) = -\frac{1}{2} \ln \left[(2\pi)^d |\Sigma| \right] - \frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu)$$

$$\nabla_{\mu} \ln p(x_k|\mu) = \Sigma^{-1}(x_k - \mu)$$

therefore the ML estimate for μ must satisfy:

$$\sum_{k=1}^n \Sigma^{-1}(\boldsymbol{x}_k - \boldsymbol{\mu}) = 0$$

Example: Gaussian with unknown µ

 \blacktriangleright Multiplying by Σ and rearranging, we obtain:

$$\boldsymbol{\mu}^* = \frac{1}{n} \sum_{k=1}^n \boldsymbol{x}_k$$

which is the arithmetic average or the mean of the samples of the training samples!

Example: Gaussian with unknown μ and Σ

• Consider first the univariate case: $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$

$$\ln p(x_k|\theta) = -\frac{1}{2} \ln 2\pi\theta_2 - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

$$\nabla_{\boldsymbol{\theta}} l = \nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{bmatrix}$$

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$$

Example: Gaussian with unknown μ and Σ

Multivariate case is basically very similar

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k$$

$$\overline{X} = [x_1 - \widehat{\mu}, x_2 - \widehat{\mu}, \cdots, x_n - \widehat{\mu}]$$

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \widehat{\boldsymbol{\mu}}) (\mathbf{x}_k - \widehat{\boldsymbol{\mu}})^t$$

$$\widehat{\Sigma} = \frac{1}{n} \overline{\mathbf{X}} \overline{\mathbf{X}}^T$$

- Sample covariance matrix
 - In which case, the covariance matrix is singular?

Bayesian Estimation

$$P(\omega_i|\mathbf{x}) \propto P(\mathbf{x}|\omega_i, \boldsymbol{\theta}_i)P(\omega_i)$$

- ▶ In MLE θ_i was supposed to have a fixed value
- In BE θ_i is a random variable
- Bayesian learning
 - Goal: estimating $P(x|\omega_i)$ $P(x|\omega_i, D_i)$

$$P(x|D_i)$$

- Use a set D of samples drawn independently according to the fixed but unknown probability distribution p(x) to determine
- This is the central problem of Bayesian learning

The Parameter Distribution

- Again, we assume that p(x) has a known parametric form and the only thing assumed unknown is the value of a parameter vector θ
 - $p(x|\theta)$ is completely known
- Any information we might have about θ prior to observing the samples is assumed to be contained in a known prior density $p(\theta)$
- Observation of the samples converts this to a posterior density $p(\theta|D)$, which, we hope, is sharply peaked about the true value of θ

$$p(x|D) = \int p(x, \theta|D) d\theta = \int p(x|\theta, D) p(\theta|D) d\theta$$
class-conditional density
$$= \int p(x|\theta) p(\theta|D) d\theta \qquad p(\mathbf{x}|D) \simeq p(\mathbf{x}|\hat{\theta})$$
Posterior density
$$p(\mathbf{x}|D) = \int p(x|\theta) p(\theta|D) d\theta \qquad p(\mathbf{x}|D) \simeq p(\mathbf{x}|\hat{\theta})$$

▶ In practice, the integration is performed numerically, for instance by Monte-Carlo simulation

Example: Gaussian univariate case with unknown µ

$$p(x|\mu) \sim N(\mu, \sigma^2)$$
 $p(\mu) \sim N(\mu_0, \sigma_0^2)$

$$p(\mu) \sim N(\mu_0, \sigma_0^2)$$

Step 1: $p(\mu|D)$

Conjugate prior

$$p(\mu|\mathcal{D}) = \frac{p(\mathcal{D}|\mu)p(\mu)}{\int p(\mathcal{D}|\mu)p(\mu) d\mu} = \alpha \prod_{k=1}^{n} p(x_k|\mu)p(\mu),$$

Reproducing density

$$p(x_k|\mu)$$

$$p(\mu|\mathcal{D}) = \alpha \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x_k - \mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2} \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right]$$

$$= \alpha' \exp \left[-\frac{1}{2} \left(\sum_{k=1}^{n} \left(\frac{\mu - x_k}{\sigma} \right)^2 + \left(\frac{\mu - \mu_0}{\sigma_0} \right)^2 \right) \right]$$

$$= \alpha'' \exp \left[-\frac{1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} \right) \mu \right] \right]$$

Example: Gaussian univariate case with unknown µ

Step 1: $p(\mu|D)$

$$= \alpha'' \exp \left[-\frac{1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} \right) \mu \right] \right]$$

 $p(\mu|D) \sim N(\mu_n, \sigma_n^2)$

$$p(\mu|\mathcal{D}) = \frac{1}{\sqrt{2\pi}\sigma_n} \exp \left[-\frac{1}{2} \left(\frac{\mu - \mu_n}{\sigma_n} \right)^2 \right]$$

$$\frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \qquad \frac{\mu_n}{\sigma_n^2} = \frac{n}{\sigma_2} \ \bar{x}_n + \frac{\mu_0}{\sigma_0^2},$$

$$\underbrace{\left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)}_{n\sigma_0^2 + \sigma^2} \underbrace{\left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)}_{n\sigma_0^2 + \sigma^2} \underbrace{\left(\frac{\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)}_{n\sigma_0^2 + \sigma^2} \underbrace{\left(\frac{\sigma_0^2}{n\sigma_$$

$$\overbrace{\sigma_n^2} = \underbrace{\sigma_0^2 \sigma^2}_{n\sigma_0^2 + \sigma^2}$$

Example: Gaussian univariate case with unknown µ

Step 2: p(x|D)

$$p(x|\mathcal{D}) = \int p(x|\mu)p(\mu|\mathcal{D}) d\mu$$

$$= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left[-\frac{1}{2}\left(\frac{\mu-\mu_n}{\sigma_n}\right)^2\right] d\mu$$

$$= \frac{1}{2\pi\sigma\sigma_n} \exp\left[-\frac{1}{2}\frac{(x-\mu_n)^2}{\sigma^2+\sigma_n^2}\right] f(\sigma,\sigma_n),$$

$$f(\sigma,\sigma_n) = \int \exp\left[-\frac{1}{2}\frac{\sigma^2+\sigma_n^2}{\sigma^2\sigma_n^2}\left(\mu-\frac{\sigma_n^2x+\sigma^2\mu_n}{\sigma^2+\sigma_n^2}\right)^2\right] d\mu.$$

$$p(x|\mathcal{D}) \sim N(\mu_n, \sigma^2+\sigma_n^2).$$

Bayesian Parameter Estimation: General Theory

- ▶ p(x|D) computation can be applied to any situation in which the unknown density can be parametrized: the basic assumptions are:
 - The form of $p(x|\theta)$ is assumed known, but the value of θ is not known exactly
 - Our knowledge about θ is assumed to be contained in a known prior density $p(\theta)$
 - The rest of our knowledge about θ is contained in a set D of n random variables $x_1, x_2, ..., x_n$ that follows p(x)
 - Compute the posterior $p(\theta|D)$, then estimate the class conditional density p(x|D)

Minimum error rate classification

Discriminant Functions for the Normal Density

 The minimum error-rate classification can be achieved by the discriminant function

$$g_i(\mathbf{x}) = \ln P(\mathbf{x}|\omega_i) + \ln P(\omega_i)$$

▶ In case of multivariate normal densities

$$P(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i)\right]$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

Case
$$\Sigma_i = \sigma^2 I$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

 Features are statistically independent and each feature has the same variance

$$g_i(\mathbf{x}) = -\frac{(\mathbf{x} - \boldsymbol{\mu}_i)^T (\mathbf{x} - \boldsymbol{\mu}_i)}{2\sigma^2} + \ln P(\omega_i)$$
$$= -\frac{1}{2\sigma^2} (\mathbf{x}^T \mathbf{x} - 2\boldsymbol{\mu}_i^T \mathbf{x} + \boldsymbol{\mu}_i^T \boldsymbol{\mu}) + \ln P(\omega_i)$$

Case
$$\Sigma_i = \sigma^2 I$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} (\mathbf{x}^T \mathbf{x} - 2\boldsymbol{\mu}_i^T \mathbf{x} + \boldsymbol{\mu}_i^T \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

Equivalent to

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

$$\mathbf{w}_i = \frac{\mu_i}{\sigma^2}; w_{i0} = -\frac{\mu_i^T \mu_i}{2\sigma^2} + \ln P(\omega_i)$$

Linear discriminant function

Case
$$\Sigma_i = \sigma^2 I$$

► The decision surfaces for a linear machine are pieces of hyperplanes defined by the linear equations:

$$g_i(\mathbf{x}) = g_j(\mathbf{x})$$

$$0 = \left(\frac{\boldsymbol{\mu}_i - \boldsymbol{\mu}_j}{\sigma^2}\right)^T \mathbf{x} - \frac{\boldsymbol{\mu}_i^T \boldsymbol{\mu}_i - \boldsymbol{\mu}_j^T \boldsymbol{\mu}_j}{2\sigma^2} + \ln \frac{P(\omega_i)}{P(\omega_j)}$$

• If $P(\omega_i) = P(\omega_j)$

$$\boldsymbol{x}_0 = \frac{1}{2} (\boldsymbol{\mu}_i + \boldsymbol{\mu}_j)$$

Case
$$\Sigma_i = \Sigma$$
:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

Covariance matrices of all classes are identical but can be arbitrary

$$g_i(\mathbf{x}) = -\frac{1}{2} \left(\mathbf{x}^T \Sigma^{-1} \mathbf{x} - 2\boldsymbol{\mu}_i^T \Sigma^{-1} \mathbf{x} + \boldsymbol{\mu}_i^T \Sigma^{-1} \boldsymbol{\mu}_i \right) + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = \boldsymbol{\mu}_i^T \Sigma^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_i^T \Sigma^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = \boldsymbol{w}_i^T \mathbf{x} + w_{i0}$$

Linear Discriminant Analysis

Case $\Sigma_i = \Sigma$: Linear Discriminant Analysis

• Hyperplane separating R_i and R_j

$$g_i(\mathbf{x}) = g_j(\mathbf{x})$$

$$0 = (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^T \Sigma^{-1} \boldsymbol{x} - \frac{\boldsymbol{\mu}_i^T \Sigma^{-1} \boldsymbol{\mu}_i - \boldsymbol{\mu}_j^T \Sigma^{-1} \boldsymbol{\mu}_j}{2} + \ln \frac{P(\omega_i)}{P(\omega_j)}$$

Case $\Sigma_i = \Sigma$: Linear Discriminant Analysis

$$g_i(\mathbf{x}) = \boldsymbol{\mu}_i^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_i^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$$

- Estimating Parameters
 - $\blacksquare \mu_i$

$$\mu_i = \frac{1}{N_i} \sum_{j \in \omega_i} x_j$$

• $P(\omega_i)$

$$P(\omega_i) = \frac{N_i}{N}$$

Σ

$$\Sigma = \sum_{i=1}^{c} \sum_{j \in \omega_i} \frac{(x_j - \mu_i)(x_j - \mu_i)^T}{N_i}$$

Case Σ_i = arbitrary

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

The covariance matrices are different for each category

$$g_i(\mathbf{x}) = -\frac{1}{2} \left(\mathbf{x}^T \Sigma_i^{-1} \mathbf{x} - 2 \boldsymbol{\mu}_i^T \Sigma_i^{-1} \mathbf{x} + \boldsymbol{\mu}_i^T \Sigma_i^{-1} \boldsymbol{\mu}_i \right) - \frac{1}{2} \ln|\Sigma_i| + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = \mathbf{x}^T W_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

Quadratic Discriminant Analysis

Escriminant Functions for the Normal Density

Real world example

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

X = (Refund = No, Married, Income = 120K)

Naïve Bayes Classifier

- Given $\mathbf{x} = (x_1, \dots x_p)^T$
 - Goal is to predict class ω
 - Specifically, we want to find the value of ω that maximizes $P(\omega|\mathbf{x}) = P(\omega|x_1, \dots x_p)$

$$P(\omega|x_1, \dots x_p) \propto P(x_1, \dots x_p|\omega)P(\omega)$$

Independence assumption among features

$$P(x_1, \dots x_p | \omega) = P(x_1 | \omega) \dots P(x_p | \omega)$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(\omega_k) = \frac{N_{\omega_k}}{N}$$

• e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For discrete attributes:

$$P(x_i|\omega_k) = \frac{|x_{ik}|}{N_{\omega_k}}$$

- where $|x_{ik}|$ is number of instances having attribute x_i and belongs to class ω_k
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (x < v) or (x > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability $P(x_1|\omega)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(x_i \mid \omega_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} \exp\left(-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}\right)$$

- One for each (x_i, ω_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} \exp\left(-\frac{(120 - 110)^2}{2(2975)}\right) = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No
```


Mammals vs. Non-mammals

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
c olphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Can Fly l	Live in Water	Have Legs	Class
no	yes	no	?

$$P(A|M)P(M) > P(A|N)P(N)$$

=> Mammals

Give Birth

Laplace Smoothing

$$P(x_i|\omega_k) = \frac{|x_{ik}|}{N_{\omega_k}}$$

Zero-frequency problem

$$P(x_i|\omega_k) = \frac{|x_{ik}| + 1}{N_{\omega_k} + K}$$

$$P(x_i|\omega_k) = \frac{|x_{ik}| + \alpha}{N_{\omega_k} + \alpha K}$$

Naïve Bayes (Summary)

- Advantages
 - Robust to isolated noise points
 - Handle missing values by ignoring the instance during probability estimate calculations
 - Robust to irrelevant attributes

- Disadvantages
 - Independence assumption may not hold for some attributes
 - Laplace smoothing

$$P(x_i|\omega_k) = \frac{|x_{ik}| + 1}{N_{\omega_k} + K}$$