

Chương 2: QUAN HỆ (Relation)

- Các khái niệm
- Quan hệ tương đương
- Quan hệ tứ tự
- Biểu diễn quan hệ hai ngôi hữu hạn

CÁC KHÁI NIỆM

- Quan hệ hai ngôi
- Quan hệ n-ngôi

QUAN HỆ HAI NGÔI

- Quan hệ hai ngôi: Một quan hệ giữa tập A và tập B (từ A đến
 B) là một tập con R ⊂ của tập A × B
 - Nếu (a, b) ∈ R, ký hiệu a R b, ta nói a quan hệ R với b
 - Một quan hệ giữa A và A được gọi là quan hệ trên A

QUAN HỆ HAI NGÔI

- Ví dụ 1: Cho A = {0, 1, 2}, B = {a, b}
 thì R= {(0, a), (0, b), (1, a)}
 là một quan hệ hai ngôi giữa A và B
- Ví dụ 2: Quan hệ bằng nhau "=" là một quan hệ hai ngôi R trên tập A bất kỳ: a R b khi và chỉ khi a = b

QUAN HỆ HAI NGÔI

• Ví dụ 3: Cho n > 1, định nghĩa quan hệ:

a R b \Leftrightarrow a - b chia hết cho n

thì R là một quan hệ hai ngôi trên Z

Quan hệ này được gọi là quan hệ đồng dư modulo n trên Z

Nếu a R b thì ta viết $a \equiv b \pmod{n}$

Với n = 5, 2 R 7 vì 2 - 7 chia hết cho 5 hay $2 \equiv 7 \pmod{5}$

QUAN HỆ n-NGÔI

- Một quan hệ n-ngôi trên n tập hợp $A_1, A_2, ..., A_n$ là một tập con R của tích Descartes $A_1 \times A_2 \times ... \times A_n$, ký hiệu $R(A_1, A_2, ..., A_n)$
- Ví dụ: Quan hệ R(Z, Z, Z), tập con của Z× Z× Z, gồm các bộ ba (a, b, c), trong đó a, b, c là các số nguyên với a< b < c là một quan hệ
 3-ngôi trên Z

- Một quan hệ hai ngôi R trên tập A có tính chất:
 - Phản xạ: nếu $\forall x \in A \Rightarrow x R x$
 - Đối xứng: nếu $\forall x, y \in A, x R y \Rightarrow y R x$
 - Bắc cầu: nếu $\forall x, y, z \in A, x R y và y R z \Rightarrow x R z$
- Quan hệ tương đương: Một quan hệ R có các tính chất phản xạ, đối xứng và bắc cầu được gọi là quan hệ tương đương.
- Ký hiệu: ~
 nếu xRy thì ta nói x tương đương với y và viết x ~ y

Ví dụ 1:

- Quan hệ "=" là các quan hệ tương đương
- Quan hệ tương đương "⇔" trên tập các mệnh đề là quan hệ tương đương
- Cho ánh xạ f: $A \rightarrow B$, định nghĩa quan hệ R trên A như sau:

$$x R y \Leftrightarrow f(x) = f(y)$$

thì R là một quan hệ tương đương (bài tập)

Ví dụ 2:

- Cho quan hệ φ trên tập số thực R được xác định như sau: ∀x,
 y ∈ R, x φ y ⇔ x-y ∈ Z. Chứng minh φ là một quan hệ
 tương đương
- Chứng minh: φ có tính phản xạ, đối xứng, bắc cầu
 - $\forall x \in R, x x \in Z \Rightarrow x \varphi x$ (phản xạ).
 - $\forall x, y \in R \text{ và } x \phi \text{ y thì } x-y \in Z \Rightarrow y-x \in Z \Rightarrow y \phi \text{ x (đổi xứng)}$
 - $\forall x, y, z \in R \text{ và } x \varphi y, y \varphi z \text{ thì } x-y \in Z, y-z \in Z \Rightarrow x-z = (x-y)+(y-z) \in Z \Rightarrow x \varphi z \text{ (bắc cầu)}$

LÓP TƯƠNG ĐƯƠNG

- Lóp tương đương: cho R là một quan hệ tương đương trên A và x ∈ A, tập hợp {y∈A |y ~ x } được gọi là lớp tương đương chứa x, ký hiệu x, x/~ hay [x]. Tập tất cả các lớp tương đương gọi là tập thương, ký hiệu A/~
- Ví dụ: xét quan hệ xRy ⇔ x y nguyên, thì

$$\rightarrow x = \{y \in A \mid y - x \text{ nguyên } \}$$

$$> \overline{1.5} = \{..., -1.5, -0.5, 0.5, 1.5,...\}$$

• Định lý 1: Giả sử R là một quan hệ tương đương trên A khi ấy:

$$\triangleright \forall x \in A, x \in X$$

$$\triangleright \forall x, y \in A, xRy \Leftrightarrow x = y$$

ightharpoonup Hai lớp tương đương x và y sao cho $\overline{x} \cap \overline{y} \neq \emptyset$ thì $\overline{x} = \overline{y}$

- Chứng minh:
 - \triangleright Do tính phản xạ x \sim x \Rightarrow x \in \overline{x}
 - ➤ Giả sử xRy và $z \in \overline{x}$ suy ra $z \sim x$ nên $z \sim y \Rightarrow z \in \overline{y}$. Vậ \overline{y} x $\overline{\subset}$ \overline{y} . Chứng minh tương tự \overline{y} $\overline{\subset}$ x $\overline{\longrightarrow}$
 - ightharpoonup Giả sử $\overline{x} \cap \overline{y} \neq \emptyset$ thì có $z \in \overline{x} \cap \overline{y}$, nghĩa là $z \sim x$ và $z \sim y$ Từ kết quả phần hai ta suy ra $\overline{x} = \overline{z} = \overline{y}$

Ví dụ 3: xét quan hệ $\equiv \pmod{3}$ trên Z thì

$$\triangleright$$
 Lóp $\overline{0} = \{..., -6, -3, 0, 3, ...\}$

$$ightharpoonup L\acute{o}p \ \overline{1} = \{..., -5, -2, 1, 4, ...\}$$

$$\triangleright$$
 Lóp $\overline{2} = \{..., -4, -1, 2, 5, ...\}$

- Lưu ý: mọi $x \in Z$ đều thuộc một trong 3 lớp trên. Tập Z bị phân hoạch thành 3 lớp đôi một rời nhau. $Z/\sim = \{\overline{0}, \overline{1}, \overline{2}\}$
- Khái quát: quan hệ \equiv (mod n) phân hoạch Z thành n lớp tương đương, ký hiệu $Z_n = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$

• Phản đối xứng (phản xứng): quan hệ hai ngôi R trên tập A có tính chất:

Nếu $\forall x, y \in A, x R y và y R x \Rightarrow x=y gọi là phản đối xứng$

 Quan hệ thứ tự: một quan hệ R có tính chất phản xạ, phản đối xứng và bắc cầu quan hệ R được gọi là quan hệ thứ tự.

ký hiệu: <

Tập có thứ tự: nếu ∀x, y ∈ A, xRy là quan hệ thứ tự thì ta nói "x nhỏ hơn y" và viết x < y. Khi đó tập A với quan hệ thứ tự R gọi là một tập có thứ tự

Ví dụ 1:

- Quan hệ "≤" thông thường trên tập số thực R là một quan hệ thứ tự
- Trên tập $\wp(X)$ ta định nghĩa quan hệ

$$A < B \Leftrightarrow A \subset B$$

thì quan hệ "<" là một quan hệ thứ tự trên $\wp(X)$ (bài tập)

Ví dụ 2:

- Gọi R là quan hệ hai ngôi trên N xác định: ∀m, n ∈ N, n R m ⇔
 n|m (n chia hết m), chứng minh R là một quan hệ thứ tự trên N
- Chứng minh: R có tính phản xạ, phản đối xứng, bắc cầu
 - \forall n ∈ N, n|n \Rightarrow n R n (phản xạ)
 - \forall m, n ∈ N và nRm, mRn \Rightarrow n|m, m|n thì n = m (phản đối xứng)
 - ∀m, n, p ∈ N và nRm, mRp (có nghĩa: n|m, m|p) ⇒ n|p hay nRp (bắc cầu)

Luu ý:

- Một quan hệ thứ tự < trên A gọi là toàn phần, nếu ∀x, y ∈ A
 thì x < y hoặc y < x; ngược lại gọi là quan hệ thứ tự bộ phận.
- Ví dụ: Quan hệ "≤" trên R là toàn phần còn quan hệ "|" (chia hết) là bộ phận.

- Cho tập A và quan hệ thứ tự < trên A, giả sử $B \subset A$
 - Phần tử m ∈ B gọi là nhỏ nhất của B ký hiệu min(B) nếu ∀x ∈
 B ta có m < x
 - Phần tử n ∈ B gọi là lớn nhất của B ký hiệu max(B) nếu ∀x ∈ B ta có x < n</p>
 - Phần tử $a \in A$ gọi là một chặn trên của B nếu $\forall x \in B$ ta có x < a
 - Phần tử b ∈ A gọi là một chặn dưới của B nếu ∀x ∈ B ta có b <

• Nhận xét

- Phần tử bé nhất (lớn nhất) của B nếu có là duy nhất
- Thật vậy: gọi m và m' là 2 phần tử bé nhất của B ⇒ ∀x ∈B ta có m' < x và m < x ⇒ m' < m và m < m' suy ra m = m' (tính phản đối xứng)</p>
- Chứng minh tương tự cho phần tử lớn nhất

Ví dụ 3:

- Cho tập X = {a, b, c}, A = ℘(X) và quan hệ thứ tự trên A là: ∀x, y
 ∈ A, x ≤ y ⇔ x ⊂ y (x và y là các tập con của X)
- Xét B = $\{\{a\}, \{a, b\}, \{a, c\}\}, thì$
- \rightarrow min(B) = {a}, không có max(B)
- ➤ Chặn dưới của B là Ø và {a}, B có một chặn trên là {a, b, c}

- Cho tập A và quan hệ thứ tự < trên A, giả sử $B \subset A$
 - Tập B được gọi là bị chặn trên nếu B có ít nhất một chặn trên
 - Tập B được gọi là bị chặn dưới nếu B có ít nhất một chặn dưới
 - Tập B được gọi là bị chặn nếu B vừa bị chặn trên vừa bị chặn dưới

- Cho tập A và quan hệ thứ tự < trên A, giả sử $B \subset A$
 - Giả sử B bị chặn trên, thì phần tử bé nhất nếu có của tập các
 chặn trên của B gọi là chặn trên nhỏ nhất của B, ký hiệu supB
 - Giả sử B bị chặn dưới, thì phần tử lớn nhất nếu có của tập các
 chặn dưới của B gọi là chặn dưới lớn nhất của B, ký hiệu infB

Ví dụ 4

- Cho tập $X = \{a, b, c\}, A = P(X)$ và quan hệ thứ tự trên A là: $\forall x, y \in A, x \le y \Leftrightarrow x \subset y$
- $X \notin B = \{\{a\}, \{a, b\}, \{a, c\}\}, thi$
 - Tập các chặn trên của B là {{a, b, c}}, supB = {a, b, c}
 - Tập các chặn dưới của B là {Ø, {a}}, infB = {a}

- Cho tập A và quan hệ thứ tự < trên A, giả sử $B \subset A$
 - Nếu min(B) tồn tại thì infB = min(B)
 - Nếu max(B) tồn tại thì supB = max(B)
 - Nếu infB tồn tại và infB \in B thì min(B) tồn tại và min(B) = infB
 - Nếu supB tồn tại và supB ∈ B thì max(B) tồn tại và max(B) = supB

- Chứng minh: mệnh đề thứ nhất và thứ ba
 - Gọi L là tập các chặn dưới của B, ta có min(B) ∈ L. Mặt khác
 ∀x ∈ L thì x < minB (do minB ∈ B). Theo định nghĩa ⇒ minB
 là chặn dưới lớn nhất hay min(B) =infB.
 - Giả sử infB tồn tại và ta có infB \in B $\Rightarrow \forall x \in$ B, infB $\leq x$. Theo định nghĩa infB = min(B).

- Xét một tập có thứ tự (A, ≤), x và y là hai phần tử bất kỳ của
 A
 - Nếu x ≤ y ta nói y là trội của x (y lớn hơn x) hay x được trội bởi
 y
 - y là trội trực tiếp của x nếu y trội x và không tồn tại một trội z của x sao cho:

$$x \le z \le y \ va \ x \ne z \ne y$$

- Biểu đồ Hasse của một tập hữu hạn có thứ tự (A, ≤) bao gồm:
 - Một tập các điểm trong mặt phẳng tương ứng 1-1 với tập A, gọi
 là các đỉnh
 - Một tập các cung có hướng nối một số đỉnh: hai đỉnh x, y được
 nối bởi một cung có hướng từ x tới y nếu y là trội trực tiếp của x

Ví dụ 5:

• Cho tập {a₁, a₂, a₃, a₄, a₅, a₆} trong đó a₁< a₂< a₃ và a₄< a₅< a₃, thì biểu đồ Hasse như sau:

Phần tử a₆ không so sánh được với các phần tử khác nên không có cung nào đến và ra khỏi nó

- Biểu diễn quan hệ thứ tự theo ma trận: Một quan hệ hai ngôi giữa các tập hữu hạn có thể được biểu diễn bởi một ma trận 0-1
- Giả sử R là quan hệ giữa tập A = {a₁, a₂,..., a_m} và tập B = {b₁, b₂,..., b_n}. Quan hệ R có thể được biểu diễn bằng ma trận MR = [r_{ij}], cấp m× n trong đó:

$$r_{ij} = \begin{cases} 1 & \textit{ne\'a}(a_i, b_j) \in R \\ 0 & \textit{ne\'a}(a_i, b_j) \notin R \end{cases}$$

BIỂU DIỄN QUAN HỆ HAI NGÔI

Ví dụ 1: cho A = {0, 1, 2}, B= {a, b}
quan hệ giữa A và B là R= {(0, a), (0, b), (1, a)}, thì ma trận biểu diễn R như sau:

$$M_{R} = \begin{bmatrix} a & b \\ 1 & 1 \end{bmatrix}$$

$$M_{R} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$