(NATURAL SCIENCE)

Vol. 62 No. 9 JUCHE105 (2016).

주체105(2016)년 제62권 제9호

지하초염수형성과정에서 주성분이온들의 동래진화

장서익, 현동수, 조영일

지하초염수에서 증발농축과정이 련속 진행되면 용해성분들의 농도증가와 함께 이온들 사이의 호상작용이 급격히 세지면서 용액의 이온세기가 세지고 이온들의 활동도가 변한다. 지하초염수의 고농축단계에서는 이 효과가 더 세게 나타나며 농축단계들에서 단순염, 복 염, 수화염 등 복잡한 구성의 염광물들이 침전석출된다.

우리는 건조염호수단계까지의 고농축초염수들에서 이온세기의 증가와 이온들의 활동 도변화, 그에 따르는 염광물들의 순차적인 석출과정을 정량적으로 해석하였다.

선행연구[2]로부터 계산된 고농축초염수에 풀려있는 주성분이온들의 함유량은 표 1과 같다.

표 1. 고농축초염수들에 풀려있는 주성분이온들의 함유량(mol/kg)

염 도/‰	Na ⁺	K ⁺	Mg ²⁺	Ca ²⁺	Cl ⁻	SO ₄ ²⁻	CO ₃ ²⁻	Br ⁻
35(표준바다물)	0.474 0	0.010 24	0.055 0	0.010 7	0.554 2	0.028 54	0.001 34	0.000 89
130~140(석고석출)	1.696 54	0.032 27	0.235 32	0.039 43	2.038 92	0.115 0	0.003 4	0.002 52
260~270(소금석출)	3.665 6	0.069 80	0.525 0	0.008 58	4.4305 7	0.177 94	0.005 2	0.005 73
320(사리염석출)	0.889 7	0.307 3	0.741 5	1.660 0	4.490 6	0.741 5	0.022 4	0.026 4
380~400 칼리움돌소금석출	0.577 8	0.660 4	2.402 0	_	4.787 0	0.627 6	_	_
광로석석출	0.451 6	0.424 2	2.827 0	0.030 1	5.421 3	0.535 3	0.030 1	0.037 9
혼합염단계	0.237 7	0.025 5	9.865 8	0.045 7	19.273 2	0.331 7	0.045 7	0.058 2

표 1의 주성분이온함유량값들로부터 이온사이호상작용에 의하여 생성되는 화학종들의 평형농도를 계산한 결과는 표 2와 같다.

표 2. 고농축초염수들에서 생성화학종들의 평형농도(mol/kg)

Na ⁺	$NaSO_4^-$	$NaCO_3^-$	K^+	KSO_4^-	Mg^{2+}	${\rm MgCl}^+$	Ca ²⁺	CaCl ⁺
0.407	0.011	$2.6 \cdot 10^{-4}$	$8.3 \cdot 10^{-3}$	$4.6 \cdot 10^{-4}$	0.027	0.024	$4.8 \cdot 10^{-3}$	$5.3 \cdot 10^{-3}$
1.617	0.044	$1.04 \cdot 10^{-3}$	0.029	$1.6 \cdot 10^{-3}$	0.129	0.116	0.020	0.021
4.187	0.113	$2.7 \cdot 10^{-3}$	0.075	$4.1 \cdot 10^{-3}$	0.346	0.310	$5.1 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$
1.092	0.030	$7.0 \cdot 10^{-5}$	0.356	0.020	0.525	0.471	1.060	1.159
0.711	0.019	$4.6 \cdot 10^{-5}$	0.767	0.042	1.704	1.530	_	
	0.407 1.617 4.187 1.092	0.407 0.011 1.617 0.044 4.187 0.113 1.092 0.030			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

양이온을 중심으로 보았을 때

염도/‰		_			•	KSO_4^-		5	KCO_3^-
35	0.469					$4.7 \cdot 10^{-5}$			_
130~140	1.953	0.098	0.021	0.021		$2.1 \cdot 10^{-3}$			_
260~270	5.086	0.254	0.054	0.039		$8.1 \cdot 10^{-4}$			_
320	5.540	0.277	0.059	0.174	0.681	$1.8 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$	$5.4 \cdot 10^{-3}$	_
380~400	6.923	0.296	0.063	0.147	0.578	$1.5 \cdot 10^{-3}$	_	_	_

음이온을 중심으로 보았을 때

표 1, 2의 이온농도값들에 기초하여 산출된 고 농축초염수들의 염도별이온세기값들과 물의 활동 도값은 표 3과 같다. 물의 활동도는 근사식

$$a_w = 1 - 0.004 \sum m_i \tag{1}$$

를 리용하여 계산하였다.(m_i 는 주어진 초염수에 용해되여있는 성분들의 몰랄농도(mol/kg))

표 3. 고농축초염수들의 이온세기의 겉보기값과 진값, 물의 활동도

염도/‰	$I_{2\!\!\!/}$	$I_{ extstyle 2}$	a_{w}
35	0.73	0.53	0.996
135	3.08	2.36	0.980
265	7.84	5.99	0.950
320	13.63	8.37	0.930
390	13.50	9.17	0.930

표 3에서 보는바와 같이 고농축초염수들에서도 이온세기의 겉보기값과 진값의 차이는 크며 농축도가 클수록 그 차이는 급격히 커진다.

이온세기진값으로부터 자유이온종들의 활동도결수를 다음식으로 계산하였다.(표 4)

$$a_i = \gamma_i \left(1 - \sum_{j=1} \alpha_{ji} \right) m_i \tag{2}$$

여기서 α_{ii} 는 주성분이온 i에서 파생된 화학종 j의 분률이다.

표 4. 고농축초염수들에서 자유로운 이온들의 활동도결수와 활동도

염도/‰	구분	Na ⁺	K^+	Mg^{2^+}	Ca ²⁺	Cl^-	SO_4^{2-}	CO_3^{2-}
25	γ_i	0.708	0.615	0.292	0.258	0.639	0.120	0.224
35	a_i	0.288	$5.1 \cdot 10^{-3}$	0.015	$2.9 \cdot 10^{-3}$	0.300	$3.6 \cdot 10^{-3}$	$3.1 \cdot 10^{-4}$
125	1	0.828	0.566	0.440	0.317	0.374	0.104	0.145
135	2	1.339	0.016	0.057	0.014	0.730	0.014	$2.4 \cdot 10^{-4}$
265	1	1.424	0.579	1.897	1.012	0.579	0.058	0.117
203	2	4.188	0.044	0.345	0.012	2.950	0.014	$3.6 \cdot 10^{-4}$
320	1	2.093	0.609	_	2.270	0.609	0.044	0.109
320	2	2.913	0.216	0.524	2.403	3.374	0.048	$3.6 \cdot 10^{-3}$
390	1	2.387	0.607	_	3.020	0.621	0.040	0.108
390	2	1.698	0.465	0.746	_	17.888	$5.9 \cdot 10^{-3}$	_

고농축초염수들에서 주성분이온들의 각이한 조합으로 결합되여 생성되는 여러가지 단 순염, 복염 및 수화염광물들은 여러 농축단계로부터 석출된다.

우리는 초염수들의 농축도가 건조염호수단계에 이르기까지의 구간에서 염들의 포화지 수변화를 계산하는 방법으로 그것들의 석출시작단계의 선후관계를 구분하였다.

석출되는 염광물 $\mathbf{M}^{z_i^{\dagger}}_{im_i}\mathbf{X}^{z_j^{-}}$ 의 포화지수는 다음과 같이 정의된다.

$$I_{s} = \lg \left[\prod_{i} \left(a_{\mathbf{M}_{i}}^{z_{i}^{+}} \right)^{m_{i}} \cdot \prod_{j} \left(a_{\mathbf{X}_{j}}^{z_{j}^{-}} \right)^{n_{j}} \middle/ SP_{\mathbf{M}_{im_{i}}^{z_{i}^{+}} \mathbf{X}_{jn_{j}}^{z_{j}^{-}}} \right]$$
(3)

식 (3)에 의하여 염광물들의 포화지수를 결정할 때 용해도적값들은 편람의 자료들을 리용하였다. 편람들에 소개되지 않은 광물(주로 복염)들의 용해도적값들은 해리반응

$$\mathbf{M}_{im_{i}}^{z_{i}^{+}}\mathbf{X}_{jn_{i}}^{z_{j}^{-}} \longrightarrow m_{1}\mathbf{M}_{1}^{z_{1}^{+}} + m_{2}\mathbf{M}_{2}^{z_{2}^{+}} + \cdots + m_{i}\mathbf{M}_{i}^{z_{i}^{+}} + \cdots + n_{1}\mathbf{X}_{1}^{z_{1}^{-}} + n_{2}\mathbf{X}_{2}^{z_{2}^{-}} + \cdots + n_{j}\mathbf{X}_{j}^{z_{j}^{-}} + \cdots$$

의 기브즈에네르기값들로부터 열력학적관계

$$\Delta G^0_{\parallel \cdot \cdot \circ} = -RT \ln K \tag{4}$$

에 의하여 결정하였다. 각이한 염도의 고농축초염수들에서 석출되는 일부 염광물들의 포화 지수값들은 표 5와 같다.

표 5. 각이한 염도의 고롱축소염수들에서 적출되는 일부 엄팡물들의 포화시수										
광물이름	화학식	$SP_{ m MX}$	염도/‰							
0 2 1 8	411	SI MX	35	135	265	320	390			
방해석	CaCO ₃	$3.9 \cdot 10^{-9}$	2.3	2.6	2.7	_	_			
산석	CaCO ₃	$6.1 \cdot 10^{-9}$	2.3	2.4	2.5	_	_			
고회석	$CaMg(CO_3)_2$	$8.2 \cdot 10^{-18}$	5.7	6.0	7.2	_	_			
석고	$CaSO_4 \cdot 2H_2O$	$2.6 \cdot 10^{-5}$	-0.4	0.8	2.2	2.9	_			
경석고	$CaSO_4$	$4.4 \cdot 10^{-5}$	-0.6	0.6	0.6	2.6	_			
돌소금	NaCl	37.19	-2.6	-1.6	-0.3	-0.4	-0.08			
잡로석	$K_2SO_4 \cdot 2CaSO_4 \cdot MgSO_4 \cdot H_2O$	$1.95 \cdot 10^{-14}$	-7.1	-6.2	-4.4	5.1	_			
사리염	$MgSO_4 \cdot 7H_2O$	$1.3 \cdot 10^{-2}$	-2.4	-1.4	-0.2	0.8	2.2			
6물마그네시움석	$MgSO_4 \cdot 6H_2O$	$2.0 \cdot 10^{-2}$	-2.6	-1.4	-0.5	0.6	_			
염칼리움석	KCl	7.94	-3.7	-2.8	-1.8	-1.0	0.02			

표 5. 각이한 염도의 고농축초염수들에서 석출되는 일부 염광물들의 포화지수

표 5에서 보는바와 같이 초염수농축과정에 염광물들의 포화지수는 탄산염광물들을 제외한 모든 광물에서 부의 값으로부터 포화상태(0)에 도달한 다음 정의 값으로 넘어간다. 탄산염광물들은 표준바다물조건에서 포화상태에 놓이며 1.35‰에서 석고, 경석고석출이, 320‰에서 사리염, 잡로석, 6물마그네시움석 등 마그네시움류산염석출이, 390‰에서 염칼리움석석출이 시작된다. 돌소금의 석출시작염도는 265‰[1]인데 계산값은 이 단계에서 $I_s=-0.3$ 이다. 이것은 염석효과로 설명할수 있다.

맺 는 말

초염수들의 농축과정에 이온세기가 세지는데 35~390‰에서 겉보기값은 0.73~13.50, 진 값은 0.53~9.17이며 농축도가 클수록 겉보기값과 진값의 차이는 커진다. 고농축초염수에서 염광물석출단계의 열력학적모의결과는 선행연구결과[3]와 잘 일치한다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 56, 1, 202, 주체99(2010).
- [2] 김기만 등; 화학공업편람 4(소금공업), 공업출판사, 11~21, 1986.
- [3] Roy Chester et al.; Marine Geochemistry, Wiley, 140~151, 2012.

주체105(2016)년 5월 5일 원고접수

Movement Evolution of Main Ions in the Occurrence Process of Underground Brine

Jang So Ik, Hyon Tong Su and Jo Yong Il

By being concentrated to $35\sim390\%$, the appearance value of ion strength in brine solution changes around $0.73\sim13.50$, the true value $0.53\sim9.17$. The higher degree of enrichment is, the larger difference between the appearance value and the true value is. The thermo-dynamical simulation results about educate stage of salt minerals in higher concentrated underground brine agree very well with reference data[3].

Key words: underground brine, appearance value, true value, salt minerals