

FCC TEST REPORT

Product : Smart Indicating System

Trade mark : Walk Horizon

Model/Type reference : WH-SR1000

Serial Number : N/A

Report Number : EED32l00332801 FCC ID : 2AKW8-RL04SR Date of Issue : Mar. 30, 2017

Date of Issue : Mar. 30, 2017

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Walk Horizon Technology (Beijing) Co., Ltd.
Room 121, Building B1, Shouxindasha, 5 Jiangtai Road, Chaoyang
District, Beijing, 100015, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom chen (Test Project)

Compiled by:

opproved by

Report Seal

Kevin lan (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Mar. 30, 2017

Check No.: 2447644992

Page 2 of 34

2 Version

Version No.	Date	Description
00	Mar. 30, 2017	Original
	**	

3 Test Summary

Page 3 of 34

Remark:

The tested samples and the sample information are provided by the client.

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Contents

Page

3 TEST SUMMARY	•••••	č
4 CONTENTS		
5 GENERAL INFORMATION		<u>5</u>
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 5.4 TEST ENVIRONMENT AND MODE 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 TEST FACILITY 5.8 DEVIATION FROM STANDARDS 5.9 ABNORMALITIES FROM STANDARD CONDITIONS 5.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER 5.11 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)		5 5 5 6 6 7 7
6 EQUIPMENT LIST		8
7 TEST RESULTS AND MEASUREMENT DATA		10
7.1 ANTENNA REQUIREMENT		

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP......23 APPENDIX 2 PHOTOGRAPHS OF EUT......25

Page 4 of 34

Report No. : EED32l00332801 **5 General Information**

Page 5 of 34

5.1 Client Information

Applicant:	Walk Horizon Technology (Beijing) Co., Ltd.			
Address of Applicant:	Room 121, Building B1, Shouxindasha, 5 Jiangtai Road, Chaoyang District, Beijing, 100015, China			
Manufacturer: Walk Horizon Technology (Beijing) Co., Ltd.				
Address of Manufacturer:	Room 121, Building B1, Shouxindasha, 5 Jiangtai Road, Chaoyang District, Beijing, 100015, China			
Factory:	Jiangyin SINBON Electronics Co., Ltd			
Address of Factory:	No.288, Chengjiang Middle Rd, Jiangyin Economic Development Zone, Jiangsu Province, China.			

5.2 General Description of EUT

Product Name:	Smart Indicating System
Model No.(EUT):	WH-SR1000
Trade Mark:	Walk Horizon
EUT Supports Radios application:	TX: 2450MHz, RX: 2440MHz, 2460MHz
Power Supply:	DC 5V by adapter

5.3 Product Specification subjective to this standard

Frequency Range:	2450MHz			
Modulation Type:	GFSK		(65)	
Sample Type:	Fixed production			
Hardware Version:	V1.0(manufacturer declare)			
Software Version:	V1.0(manufacturer declare)	-11		_0-
Antenna Type:	External antenna			(4)
Antenna Gain:	3.5dBi	6		100
Test voltage:	DC 5V by adapter			
Sample Received Date:	Mar. 13, 2017			
Sample tested Date:	Mar. 13, 2017 to Mar. 30, 2017		(11)	
			1 60 10	

5.4 Test Environment and Mode

Operating Environment:		
Temperature:	24°C	
Humidity:	54% RH	
Atmospheric Pressure:	1010mbar	(0)
Test mode:		
Transmitting mode:	Keep the EUT transmitted the specific channel(s)	continuous modulation test signal at the

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Supplied by
Power Adapter	Apple	A1443	Client

Page 6 of 34

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 7 of 34

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

None.

5.10 Other Information Requested by the Customer None.

5.11 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE power, conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00332801 **6 Equipment List**

Page 8 of 34

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-01-2016	05-31-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017	
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018	
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018	

D	\sim		04
Page	u	α	3/1
I auc	~	()I	.,-

RF Conducted test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	TTF20120434	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	TTF20120435	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	TTF20120436	01-11-2017	01-10-2018	

Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017	
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017	
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018	

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Page 10 of 34

EUT Antenna:

The antenna is External antenna and no consideration of replacement. The best case gain of the antenna is 3.5dBi.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 11 of 34

7.2 AC Power Line Conducted Emission

	Test frequency range :150KHz 1)The mains terminal disturbar		onducted in a shielde	d room.
	2) The EUT was connected to Stabilization Network) which power cables of all other which was bonded to the ground for the unit being measure multiple power cables to a exceeded. 3) The tabletop EUT was placed reference plane. And for flow horizontal ground reference.	AC power source throch provides a 50Ω/50μ inits of the EUT were round reference planed. A multiple socket of single LISN provided the dupon a non-metallipor-standing arrangement.	bugh a LISN 1 (Line In μ H + 5Ω linear impediance connected to a second in the same way as butlet strip was used the rating of the LISN to table 0.8m above the same contains the same contai	mpedance lance. The nd LISN 2, the LISN 1 to connect was not
	4) The test was performed wince EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	ne vertical ground refer ed to the horizontal gro the boundary of the u or LISNs mounted on etween the closest po	ence plane. The verticular reference plane init under test and born top of the ground ints of the LISN 1 and	cal ground The LISN onded to a reference d the EUT.
-/		m omission, the relativ	e positions of equipm	
)	 In order to find the maximur of the interface cables conducted measurement. 			
Limit:	of the interface cables			
Limit:	of the interface cables conducted measurement.		ccording to ANSI (
Limit:	of the interface cables	must be changed a	ccording to ANSI (
Limit:	of the interface cables conducted measurement.	must be changed a	ccording to ANSI (
Limit:	of the interface cables conducted measurement. Frequency range (MHz)	must be changed a Limit (c	CCORDING TO ANSI (
Limit:	of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	must be changed a Limit (c Quasi-peak 66 to 56*	CCORDING TO ANSI (IBμV) Average 56 to 46*	

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Live line:

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	Me	easurer (dBuV)	35	Lir (dB	nit uV)		Margin (dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	44.95		29.70	9.75	54.70		39.45	65.15	55.15	-10.45	-15.70	P	
2	0.2420	37.95		20.85	9.74	47.69		30.59	62.02	52.02	-14.33	-21.43	P	
3	0.3140	29.10		2.80	9.78	38.88		12.58	59.86	49.86	-20.98	-37.28	P	
4	0.8100	38.88		20.66	9.74	48.62		30.40	56.00	46.00	-7.38	-15.60	P	
5	3.5460	23.41		12.41	9.67	33.08		22.08	56.00	46.00	-22.92	-23.92	P	
6	24.7900	18.94		7.13	10.18	29.12		17.31	60.00	50.00	-30.88	-32.69	P	

Page 13 of 34

Neutral line:

No.	Freq.		ling_Le lBuV)	evel	Correct Factor	Me	easurer (dBuV)		Lir (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	43.35		22.88	9.76	53.11		32.64	65.56	55.56	-12.45	-22.92	P	
2	0.2380	37.78		20.59	9.74	47.52		30.33	62.16	52.16	-14.64	-21.83	Р	
3	0.7820	37.05		18.54	9.74	46.79		28.28	56.00	46.00	-9.21	-17.72	Р	
4	2.3420	25.77		14.76	9.71	35.48		24.47	56.00	46.00	-20.52	-21.53	P	
5	5.0939	28.18		15.65	9.62	37.80		25.27	60.00	50.00	-22.20	-24.73	Р	
6	24.0300	25.48		9.62	10.18	35.66		19.80	60.00	50.00	-24.34	-30.20	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00332801 Page 14 of 34

7.3 Radiated Spurious Emission

Test Requirement: 47 CFR Part 15C Section 15.249 and 15.209

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Setup:

Test Procedure:

Receiver Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 15 of 34

Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel, the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	9) i <u>-</u>	- (87)	300
0.490MHz-1.705MHz	24000/F(kHz)	/ -	- 6	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Limit (dBµV/m @3m)

94.0

114.0

Remark

Average Value

Peak Value

Limit:	
(Field strength of	
the fundamental	

signal)

Limit: (Spurious Emissions)

Transmitting mode **Test Mode:**

Instruments Use

Frequency

2400MHz-2483.5MHz

Test Results:

sed:	Refer to se	ection 6 for de	etails		

Page 16 of 34

Measurement Data

Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2450	32.65	4.43	34.40	86.97	89.65	114	-24.35	Pass	Н
2450	32.65	4.42	34.40	87.31	89.98	114	-24.02	Pass	V

Remark: As shown in this section, for field strength of the fundamental signal measurements, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above. So only the peak measurements were shown in the report.

Spurious Emissions

30MHz~1GHz

	GHz Level (dBuV	//m)								
80										
70										
60										
50									FCC CLAS	S-B
										+
40				1				5		+-
30									6	اسرمانهم
30	1					3	udu	Market Market Sand	ALL PARTY BOOK	
20	AND	Whatever has well and	Male	AND PORTER OF	المار المساولة	White day	A STATE OF THE PARTY OF THE PAR	H'Mur.		+
			- Maryay		. Albite .					
10										
0										
-10	30	50		100	F	200	-	500		1000
		Ant	Cable	Read	Freque	ncy (MHz) Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line		Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB			_
	39.576	14.14	0.55	10.73	25 //2	10 00	_1/ 52	Horizontal		
	102.360		1.57	6.45	21.02			Horizontal		
	223.733		2.28	8.94				Horizontal		
	400.432		2.80	15.80				Horizontal		
pp	501.179		3.13	16.30				Horizontal		
	787.851	21.46	3.87	6.63	31.96	46.00	-14.04	Horizontal		

Page	10	of 21	
Page	19	01.34	

Above 1GH	z								
Test mode:	Trans	smitting	Test Fr	equency:	2450MHz	Z			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1232.117	30.30	2.55	34.93	41.32	39.24	74	-34.76	Pass	Н
2179.145	32.10	3.74	34.34	39.28	40.78	74	-33.22	Pass	Н
3168.080	33.45	5.59	34.52	38.03	42.55	74	-31.45	Pass	H
4900.000	34.89	5.08	34.33	34.75	40.39	74	-33.61	Pass	(H)
7350.000	36.44	6.80	34.90	34.85	43.19	74	-30.81	Pass	Н
9800.000	38.09	7.57	35.04	35.95	46.57	74	-27.43	Pass	Н
1235.257	30.31	2.56	34.93	37.29	35.23	74	-38.77	Pass	V
1768.619	31.35	3.06	34.46	35.77	35.72	74	-38.28	Pass	V
3104.217	33.51	5.60	34.51	34.73	39.33	74	-34.67	Pass	V
4900.000	34.89	5.08	34.33	31.60	37.24	74	-36.76	Pass	V
7350.000	36.44	6.80	34.90	33.03	41.37	74	-32.63	Pass	V
9800.000	38.09	7.57	35.04	31.75	42.37	74	-31.63	Pass	V

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading Correct Factor
 - Correct Factor = Preamplifier Factor Antenna Factor Cable Factor
 - Scan from the test data, The average value is lower than limit, and The below the limit need not be reported, so only the peak value had been displayed.
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Page 20 of 34

7.4 Emissions Out of Band-edge

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit(Band Edge): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser

attenuation.

atteriaation.		
Frequency	Limit (dBµV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1CHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Test Setup:

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Instruments Used: Test Mode: Test Results: Refer to section 6 for details

Transmitting mode

st Results: Pass

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test plot as follows:

Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark
32.53	4.28	34.39	56.62	59.04	74	-14.96	H	PK
32.53	4.28	34.39	35.17	37.59	54	-16.41	Н	AV
32.55	4.30	34.39	57.46	59.92	74	-14.08	Н	PK
32.55	4.30	34.39	34.99	37.45	54	-16.55	Н	AV
32.53	4.28	34.39	62.62	65.04	74	-8.96	V	PK
32.53	4.28	34.39	35.95	38.37	54	-15.63	V	AV
32.55	4.30	34.39	63.55	66.01	74	-7.99	V	PK
32.55	4.30	34.39	36.01	38.47	54	-15.53	V	AV
32.71	4.51	34.41	57.78	60.59	74	-13.41	₩	PK
32.71	4.51	34.41	35.39	38.20	54	-15.80	Н	AV
32.71	4.51	34.41	64.08	66.89	74	-7.11	V	PK
32.71	4.51	34.41	35.76	38.57	54	-15.43	V	AV
	Factor (dB/m) 32.53 32.53 32.55 32.55 32.53 32.55 32.55 32.71 32.71 32.71	Factor (dB/m) (dB) 32.53	Factor (dB/m) Loss (dB) Factor (dB) 32.53 4.28 34.39 32.53 4.28 34.39 32.55 4.30 34.39 32.55 4.30 34.39 32.53 4.28 34.39 32.53 4.28 34.39 32.55 4.30 34.39 32.55 4.30 34.39 32.71 4.51 34.41 32.71 4.51 34.41 32.71 4.51 34.41 32.71 4.51 34.41 32.71 4.51 34.41	Factor (dB/m) Loss (dB) Factor (dBμV) Level (dBμV) 32.53 4.28 34.39 56.62 32.53 4.28 34.39 35.17 32.55 4.30 34.39 57.46 32.55 4.30 34.39 34.99 32.53 4.28 34.39 62.62 32.53 4.28 34.39 35.95 32.55 4.30 34.39 63.55 32.55 4.30 34.39 36.01 32.71 4.51 34.41 57.78 32.71 4.51 34.41 35.39 32.71 4.51 34.41 64.08	Factor (dB/m) Loss (dB) Factor (dBμV) Level (dBμV/m) 32.53 4.28 34.39 56.62 59.04 32.53 4.28 34.39 35.17 37.59 32.55 4.30 34.39 57.46 59.92 32.55 4.30 34.39 34.99 37.45 32.53 4.28 34.39 62.62 65.04 32.53 4.28 34.39 35.95 38.37 32.55 4.30 34.39 63.55 66.01 32.55 4.30 34.39 36.01 38.47 32.71 4.51 34.41 57.78 60.59 32.71 4.51 34.41 35.39 38.20 32.71 4.51 34.41 64.08 66.89	Factor (dB/m) Loss (dB) Factor (dBμV) Level (dBμV/m) Level (dBμV/m) Level (dBμV/m) Level (dBμV/m) 32.53 4.28 34.39 56.62 59.04 74 32.53 4.28 34.39 35.17 37.59 54 32.55 4.30 34.39 57.46 59.92 74 32.55 4.30 34.39 34.99 37.45 54 32.53 4.28 34.39 62.62 65.04 74 32.53 4.28 34.39 35.95 38.37 54 32.55 4.30 34.39 63.55 66.01 74 32.55 4.30 34.39 36.01 38.47 54 32.71 4.51 34.41 57.78 60.59 74 32.71 4.51 34.41 35.39 38.20 54 32.71 4.51 34.41 64.08 66.89 74	Factor (dB/m) Loss (dB) Factor (dB/μV) Level (dBμV/m) Level (dBμV/m) Limit (dBμV/m) Limit (dBμV/m) 32.53 4.28 34.39 56.62 59.04 74 -14.96 32.53 4.28 34.39 35.17 37.59 54 -16.41 32.55 4.30 34.39 57.46 59.92 74 -14.08 32.55 4.30 34.39 34.99 37.45 54 -16.55 32.53 4.28 34.39 62.62 65.04 74 -8.96 32.53 4.28 34.39 35.95 38.37 54 -15.63 32.55 4.30 34.39 63.55 66.01 74 -7.99 32.55 4.30 34.39 36.01 38.47 54 -15.53 32.71 4.51 34.41 57.78 60.59 74 -13.41 32.71 4.51 34.41 35.39 38.20 54 -15.80 32.71	Factor (dB/m) Loss (dB) Factor (dB) Level (dBμV) Level (dBμV/m) Limit (dBμV/m) Limit (dBμV/m) Antenna Polaxis 32.53 4.28 34.39 56.62 59.04 74 -14.96 H 32.53 4.28 34.39 35.17 37.59 54 -16.41 H 32.55 4.30 34.39 57.46 59.92 74 -14.08 H 32.55 4.30 34.39 34.99 37.45 54 -16.55 H 32.53 4.28 34.39 62.62 65.04 74 -8.96 V 32.53 4.28 34.39 35.95 38.37 54 -15.63 V 32.53 4.28 34.39 63.55 66.01 74 -7.99 V 32.55 4.30 34.39 36.01 38.47 54 -15.53 V 32.55 4.30 34.39 36.01 38.47 54 -15.53 V

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 22 of 34

7.5 20dB Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.215

Test Method: ANSI C63.10

Test Setup:

Ground Reference Plane

Test Mode: Transmitter mode

Limit: N/A

Instruments Used: Refer to section 6 for details

Test Channel/Frequency	20dB bandwidth (MHz)		
2450MHz	0.73		

Test plot as follows:

2450Mz

Date: 26.MAR.2017 17:49:32

Report No. : EED32I00332801 Page 23 of 34

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: WH-SR1000

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Page 25 of 34

APPENDIX 2 PHOTOGRAPHS OF EUT

Test model No.: WH-SR1000

View of Product-1

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

View of Product-10

View of Product-11

View of Product-12

View of Product-13

View of Product-14

View of Product-15

View of Product-16

View of Product-17

View of Product-18

Report No.: EED32I00332801 Page 34 of 34

View of Product-19

View of Product-20

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 E-mail: info@cti-cert.com www.cti-cert.com