Formulas & Definitions: Section 16-4

Definition: A simple closed curve C has a positive orientation if it refers to a single *counter-clockwise* traversal of C.

Green's Theorem: Let C be positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Particular cases:

$$P(x,y) = 0$$
, $P(x,y) = -y$, $P(x,y) = -\frac{1}{2}x$

$$Q(x,y) = x$$
, $Q(x,y) = 0$, $Q(x,y) = \frac{1}{2}x$

Then Green's Theorem gives the following formulas for the area of D:

$$A = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$