School of Business and Economics

Maastricht University

March 2023

EBC2089: Forecasting for Economics and Business

Final case

Marek Chadim, Samyog Adhikari

Data and motivation

US Real Gross Domestic Product

Billions of Chained 2012 Dollars, Not Seasonally Adjusted

https://fred.stlouisfed.org/series/ND000334Q

Because of its size and interconnectedness, developments in the US economy are bound to have important effects around the world. The US has the world's single largest economy, accounting for almost a quarter of global GDP (at market exchange rates), one-fifth of global FDI, and more than a third of stock market capitalisation. It is the most important export destination for one-fifth of countries around the world. The US dollar is the most widely used currency in global trade and financial transactions, and changes in US monetary policy and investor sentiment play a major role in driving global financing conditions (World Bank 2016).

Real GDP is a measure of a country's economic output adjusted for inflation. It is calculated by taking the nominal GDP, which is the total value of goods and services produced in a country and adjusting it for inflation to determine the real value of the economic output.

Real Gross Domestic Product for European Union Millions of Chained 2010 Euros, Seasonally Adjusted https://fred.stlouisfed.org/series/CLVMEURSCAB1GQEU272020

Real Gross Domestic Product for Japan Billions of Chained 2015 Yen, Seasonally Adjusted https://fred.stlouisfed.org/series/JPNRGDPEXP

Importance of the real US GDP indicator motivated our choice of the dependent variable. The two explanatory series for real GDP for EU and Japan were chosen based on on the longstanding cooperation, shared values and principles such as democracy, the rule of law, human rights, good governance, multilateralism and open market economies shared among them and the US.

We envision a positive correlation between the evolvement of these series over time.

Univariate analysis

Taking the logs transforms the data from levels to growth rates and stabilizes the variance.

The ADF test resulted in not rejecting the null of unit root in the log series, therefore we proceeded with taking the first difference as a remedy for the stochastic trend. The differenced series now exhibits stationarity.

Null Hypothesis: LOG(US) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.875045 -4.078420 -3.467703 -3.160627	0.1762

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(US)) Method: Least Squares Date: 03/20/23 Time: 14:21 Sample (adjusted): 2003Q2 2022Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(US(-1)) D(LOG(US(-1))) D(LOG(US(-2))) D(LOG(US(-3))) D(LOG(US(-4))) C	-0.335920 -0.139959 -0.134491 -0.218816 0.449227 2.740118	0.116840 0.139899 0.126037 0.114562 0.105680 0.949931	-2.875045 -1.000426 -1.067077 -1.910016 4.250808 2.884543	0.0053 0.3205 0.2895 0.0601 0.0001 0.0052
@TREND("2002Q1") R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001457 0.608585 0.575967 0.018767 0.025357 205.6475 18.65802 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var criterion erion nn criter.	0.0065 0.005518 0.028819 -5.029051 -4.819100 -4.944938 2.104270

The joint F-test indicates strong significance of the seasonal components

Dependent Variable: DLOG(US)
Method: Least Squares
Date: 03/21/23 Time: 14:13
Sample (adjusted): 2002Q2 2022Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@QUARTER=1 @QUARTER=2 @QUARTER=3 @QUARTER=4	-0.037330 0.022892 0.013289 0.021228	0.003347 0.003266 0.003266 0.003266	-11.15379 7.008989 4.068774 6.499312	0.0000 0.0000 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.736665 0.726665 0.014967 0.017698 233.0340 2.386542	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Quir	ent var criterion erion	0.005530 0.028629 -5.518891 -5.402320 -5.472059

Wald Test: Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	58.08222	(4, 79)	0.0000
Chi-square	232.3289	4	0.0000

Null Hypothesis: C(1)=C(2)=C(3)=C(4)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(1)	-0.037330	0.003347
C(2)	0.022892	0.003266
C(3)	0.013289	0.003266
C(4)	0.021228	0.003266

Restrictions are linear in coefficients.

Further improvement was made after inspecting the residual plot and incorporating dummies for the financial crisis of 2008 and the Covid pandemic in 2020.

Dependent Variable: DLOG(US) Method: Least Squares Date: 03/20/23 Time: 14:57 Sample (adjusted): 2002Q2 2022Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C Q2Y08 Q3Y08 Q4Y08 Q1Y20 Q2Y20 Q3Y20	-0.036272 -0.020174 -0.016942 -0.026391 -0.021145 -0.093602 0.070108	0.001468 0.006566 0.006566 0.006558 0.006566 0.006566	-24.70346 -3.072339 -2.580084 -4.024065 -3.220177 -14.25448 10.67663	0.0000 0.0030 0.0119 0.0001 0.0019 0.0000
@QUARTER=2 @QUARTER=3 @QUARTER=4	0.064583 0.047030 0.058757	0.006366 0.002077 0.002077 0.002050	31.10163 22.64857 28.65648	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.955506 0.950020 0.006400 0.002990 306.8240 174.1854 0.000000	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Quii Durbin-Wats	ent var criterion erion nn criter.	0.005530 0.028629 -7.152385 -6.860958 -7.035306 2.404380

Using Schwarz information criterium, the best ARMA(p,q) model was evaluated as ARMA(0,0).

Automatic ARIMA Forecasting Selected dependent variable: DLOGUS

Date: 03/20/23 Time: 15:05 Sample: 2002Q1 2022Q4 Included observations: 83 Forecast length: 0

Model maximums: (4,4)0(0,0)

Regressors: C @EXPAND(@QUARTER, @DROP(1)) Q2Y08 Q3Y08 Q4Y08 Q1Y20 Q2Y20 Q3Y20

Number of estimated ARMA models: 25 Number of non-converged estimations: 0 Selected ARMA model: (0,0)(0,0) SIC value: -6.80771890355 Autocorrelation Q statistics p-values are at the edge of the 5% significance level for the ARMA(0,0) model. Adding the AR(1) makes some of the year dummies become insignificant. However, we get the ACF and PACF to lie inside the bands and the p-values increase considerably.

Dependent Variable: DLOG(US)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/21/23 Time: 14:40 Sample: 2002Q2 2022Q4 Included observations: 83

Convergence achieved after 13 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.036362	0.001288	-28.23158	0.0000
Q2Y08	-0.018436	0.176734	-0.104313	0.9172
Q3Y08	-0.016494	0.049530	-0.333013	0.7401
Q4Y08	-0.029760	0.011008	-2.703392	0.0086
Q1Y20	-0.021164	0.339955	-0.062254	0.9505
Q2Y20	-0.093898	0.092451	-1.015654	0.3132
Q3Y20	0.071899	0.019049	3.774463	0.0003
@QUARTER=2	0.064620	0.002068	31.25512	0.0000
@QUARTER=3	0.047008	0.001946	24.15913	0.0000
@QUARTER=4	0.059012	0.002094	28.18062	0.0000
AR(1)	-0.233981	0.100356	-2.331499	0.0226
SIGMASQ	3.42E-05	5.73E-06	5.972963	0.0000
R-squared	0.957726	Mean depen	dent var	0.005530
Adjusted R-squared	0.951177	S.D. depend	ent var	0.028629
S.E. of regression	0.006326	Akaike info o	riterion	-7.154698
Sum squared resid	0.002841	Schwarz crit	-6.804986	
Log likelihood	308.9200	Hannan-Quir	-7.014204	
F-statistic	146.2293	Durbin-Wats	on stat	1.981343
Prob(F-statistic)	0.000000			

Inverted AR Roots -.23

Date: 03/21/23 Time: 14:32 Sample (adjusted): 2002Q2 2022Q4

Q-statistic probabilities adjusted for 9 dynamic regressors

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
			1	-0.209	-0.209	3.7713	0.052
	ı İ	<u> </u>	2	0.092	0.050	4.5053	0.105
	—		3	-0.194	-0.173	7.8279	0.050
	· 🛅 ·	(<u>)</u>	4	0.147	0.078	9.7462	0.045
	· =	([]	5	-0.166	-0.115	12.224	0.032
	· 🏚 ·		6	0.068	-0.021	12.647	0.049
	1 1 1		7	0.023	0.083	12.697	0.080
	1 j j 1	1 1 1	8	0.063	0.027	13.072	0.109
	1 [] 1		9	-0.083	-0.041	13.726	0.132
	ı 🗀 ı		10	0.183	0.176	16.966	0.075
	1 🗓 1	1 ()	11	-0.074	-0.009	17.509	0.094
	1 [] 1	III	12	-0.073	-0.119	18.031	0.115
	1 j j 1	III	13	0.073	0.141	18.572	0.137
	1 1 1		14	0.084	0.065	19.288	0.154
	1 1	1 1	15	-0.001	0.024	19.289	0.201
	1 1	()	16	-0.002	0.057	19.289	0.254
	· • ·	· 🗐 ·	17	-0.051	-0.101	19.569	0.297
	1 🚺 1		18	-0.019		19.607	0.355
	· III ·	, I II.	19	0.066	0.144	20.087	0.389
	1 1	(II)		-0.031		20.194	0.446
	' " '	· II		-0.100		21.331	0.439
	· = ·	· II		-0.156		24.157	0.339
	· 🗐 ·	1 1 1	23		-0.007	25.950	0.303
	' " '	· 🔲 ·		-0.103		27.217	0.294
	· 🏴 ·	III	25	0.085	0.050	28.105	0.303
	· 🏻 ·	III	26	0.082	0.139	28.932	0.314
	1 1	III	27	0.012	-0.047	28.950	0.363
	' " '	I	28	-0.104	-0.033	30.325	0.348
	1 j i 1	1 1 1	29	0.047	0.036	30.619	0.384
	1 1	III	30	0.023	0.062	30.689	0.431
	' " '	1 1	31	-0.101	-0.017	32.076	0.413
	· • •			-0.058		32.549	0.440
	' J	' ['	33		-0.044	33.446	0.446
	' [] '	' '		-0.102		34.953	0.423
	' _			-0.048		35.291	0.454
_	' Q '	-	36	-0.114	-0.194	37.247	0.411

^{*}Probabilities may not be valid for this equation specification.

Date: 03/21/23 Time: 14:40

Sample (adjusted): 2002Q2 2022Q4 Q-statistic probabilities adjusted for 1 ARMA term and 9 dynamic regressors

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
111		1	0.004	0.004	0.0015	
1 1		2	-0.010	-0.010	0.0102	0.920
· i		3	-0.139	-0.138	1.7024	0.427
ı İn	(b)	4	0.094	0.097	2.4943	0.476
(4)	III	5	-0.158	-0.167	4.7412	0.315
(j) (10	6	0.056	0.050	5.0335	0.412
· 🗓 ·	10	7	0.068	0.090	5.4663	0.486
ı j i ı		8	0.048	-0.009	5.6864	0.577
- 4		9	-0.069	-0.021	6.1352	0.632
· 🛅 ·	<u> </u> -	10	0.157	0.157	8.5148	0.483
· 🗓 ·		11	-0.051	-0.065	8.7736	0.554
· • •	' '		-0.075		9.3380	0.591
· 🏻 ·	<u> </u> -	13	0.097	0.171	10.280	0.591
· 🔟 ·		14	0.092	0.006	11.145	0.599
1 1	ļ ' ļ '	15	0.008	0.043	11.151	0.674
1 1			-0.004	0.041	11.153	0.742
· • •	' □ '		-0.050		11.424	0.783
- I I I	' <u> </u> '		-0.025	0.022	11.494	0.830
· 🏴 ·	'_ ! '	19	0.065	0.125	11.966	0.849
'	<u> </u>		-0.032		12.082	0.882
'- '-	" '	21	-0.158		14.931	0.780
'■_ '	'■ '		-0.162		17.951	0.652
' 🏴 '	']'	23		-0.003	18.823	0.656
, III ,	! ■_'		-0.076		19.508	0.671
' 📙 '	' ! !'	25	0.083	0.108	20.337	0.677
' 📙 '	'" '	26	0.126	0.101	22.315	0.617
' 📗 '	│ ' 씨 '	27		-0.080	22.319	0.671
<u>'</u> ■ '			-0.115	0.004	24.019	0.629
· ! !		29	0.041	0.042	24.244	0.669
<u> </u>		30	0.015	0.023	24.276	0.715
<u> </u>		31	-0.120		26.244	0.663
' Q '			-0.072		26.952	0.675
		33		-0.076	27.327	0.702
¦∰ ¦		-	-0.102		28.835	0.675
:■ :			-0.105		30.444	0.643
<u> </u>	<u> </u>	36	-0.115	-0.209	32.413	0.594

^{*}Probabilities may not be valid for this equation specification.

Since the automatic selection chose no p=q=0, we do not think that we have ARMA common factors. Further, we will maintain the model chosen based on the Scharz criterion.

The LM test does not reject the null of no serial correlation under the ARMA(0,0) specification. Moreover, both the normality and homoskedasticity tests resulted in not rejecting the null hypotheses, providing evidence of no major misspecification issues. Finally, the residual plot reveals no patterns. Instead, the residuals look like white noise, as they should.

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 4 lags

F-statistic	1.604787	Prob. F(4,69)	0.1829
Obs*R-squared	7.064379	Prob. Chi-Square(4)	0.1325

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 03/21/23 Time: 14:55 Sample: 2002Q2 2022Q4 Included observations: 83

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000205	0.001450	-0.141162	0.8882
Q2Y08	0.000788	0.006559	0.120087	0.9048
Q3Y08	0.000227	0.006557	0.034678	0.9724
Q4Y08	0.001343	0.006534	0.205556	0.8377
Q1Y20	0.001747	0.006547	0.266931	0.7903
Q2Y20	-0.001061	0.006542	-0.162110	0.8717
Q3Y20	0.000143	0.006467	0.022063	0.9825
@QUARTER=2	0.000248	0.002052	0.120642	0.9043
@QUARTER=3	0.000117	0.002046	0.057315	0.9545
@QUARTER=4	0.000170	0.002024	0.084051	0.9333
RESID(-1)	-0.179193	0.121687	-1.472577	0.1454
RESID(-2)	0.016289	0.122696	0.132756	0.8948
RESID(-3)	-0.164420	0.124791	-1.317568	0.1920
RESID(-4)	0.096796	0.128389	0.753928	0.4535
R-squared Adjusted R-squared	0.085113 -0.087257	Mean depen		2.20E-18 0.006039

 RESID(-4)
 0.096796
 0.128389
 0.753928
 0.4535

 R-squared Adjusted R-squared S.E. of regression
 0.087513
 Mean dependent var S.D. dependent var S.D. dependent var Akaike info criterion
 2.20E-18

 S.E. of regression
 0.006297
 Akaike info criterion
 -7.144954

 Sum squared resid
 0.002736
 Schwarz criterion
 -6.736956

 Log likelihood
 310.5156
 Hannan-Quinn criter.
 -6.981043

 F-statistic
 0.493781
 Durbin-Watson stat
 1.960185
 Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	0.494528	Prob. F(9,73)	0.8737
Obs*R-squared	4.769645	Prob. Chi-Square(9)	0.8539
Scaled explained SS	4.554014	Prob. Chi-Square(9)	0.8713

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 03/21/23 Time: 14:56
Sample: 2002Q2 2022Q4
Included observations: 83

Collinear test regressors dropped from specification

-					
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
-	C Q2Y08^2 Q3Y08^2 Q4Y08^2 Q1Y20^2 Q2Y20^2 Q3Y20^2 (@QUARTER=2)^2 (@QUARTER=3)^2	5.34E-05 -3.73E-05 -2.68E-05 -3.79E-05 -5.34E-05 -3.73E-05 -2.68E-05 -1.62E-05 -2.67E-05	1.34E-05 6.01E-05 6.01E-05 6.00E-05 6.01E-05 6.01E-05 1.90E-05 1.90E-05	3.975359 -0.620179 -0.445080 -0.631228 -0.888917 -0.620179 -0.445080 -0.849824 -1.403538	0.0002 0.5371 0.6576 0.5299 0.3770 0.5371 0.6576 0.3982 0.1647
	(@QUARTER=4)^2	-1.55E-05	1.88E-05	-0.827794	0.4105
S S L	R-squared Adjusted R-squared S.E. of regression Sum squared resid .og likelihood F-statistic Prob(F-statistic)	0.057466 -0.058737 5.86E-05 2.51E-07 696.3746 0.494528 0.873676	Mean depend S.D. depend Akaike info of Schwarz crit Hannan-Quit Durbin-Wats	lent var criterion erion nn criter.	3.60E-05 5.69E-05 -16.53915 -16.24772 -16.42207 1.647894

As we include the 2020 dummies in our model, the forecast was performed on 2021Q1 - 2022Q4.

- RMSE_dynamic = 77 443 830 000 \$
 - RMSE_static = 52 109 100 000 \$

Dependent Variable: DLOG(US) Method: Least Squares Date: 03/21/23 Time: 15:42 Sample (adjusted): 2002Q2 2020Q4 Included observations: 75 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.035652	0.001399	-25.47928	0.0000
Q2Y08	-0.019506	0.005937	-3.285694	0.0016
Q3Y08	-0.017521	0.005937	-2.951414	0.0044
Q4Y08	-0.025129	0.005927	-4.239550	0.0001
Q1Y20	-0.021766	0.005937	-3.666397	0.0005
Q2Y20	-0.092933	0.005937	-15.65444	0.0000
Q3Y20	0.069529	0.005937	11.71205	0.0000
@QUARTER=2	0.063293	0.001979	31.98509	0.0000
@QUARTER=3	0.046989	0.001979	23.74547	0.0000
@QUARTER=4	0.056875	0.001951	29.14917	0.0000
R-squared	0.963451	Mean depen	dent var	0.005263
Adjusted R-squared	0.958390	S.D. depend		0.028283
S.E. of regression	0.005769	Akaike info criterion		-7.348976
Sum squared resid	0.002163	Schwarz criterion		-7.039978
Log likelihood	285.5866	Hannan-Quinn criter.		-7.225597
F-statistic	190.3794	Durbin-Watson stat		2.197996
Prob(F-statistic)	0.000000			

Forecast: USF_DYNAMIC Actual: US Forecast sample: 2021Q1 2022Q4 Included observations: 8 Root Mean Squared Error 77.44383 Mean Absolute Error 68.64554 Mean Abs. Percent Error 1.373794 Theil Inequality Coef. 0.007867 Bias Proportion 0.785689 0.059801 Variance Proportion Covariance Proportion 0.154510 Theil U2 Coefficient 0.514019 Symmetric MAPE 1.385774

Forecast: USF_STATIC Actual: US Forecast sample: 2021Q1 2022Q4 Included observations: 8 Root Mean Squared Error 52.10910 Mean Absolute Error 43.84350 Mean Abs. Percent Error 0.882316 Theil Inequality Coef. 0.005262 Bias Proportion Variance Proportion 0.029238 Covariance Proportion 0.936842 Theil U2 Coefficient Symmetric MAPE 0.343204 0.883975

Conditional regression models

Our explanatory variables are the log real GDP series of the EU and Japan. Based on the ADF test, both series follow a stochastic trend. Therefore, we apply first differencing to achieve stationarity.

Null Hypothesis: LOG(EU) has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-2.574426	0.2930
Test critical values:	1% level	-4.094550	
	5% level	-3.475305	
	10% level	-3.165046	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(EU)) Method: Least Squares Date: 03/21/23 Time: 16:05 Sample (adjusted): 2002Q3 2019Q4 Included observations: 70 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(EU(-1)) D(LOG(EU(-1))) C @TREND("2002Q1")	-0.061309 0.698329 0.913915 0.000181	0.023814 0.088724 0.354567 7.45E-05	-2.574426 7.870808 2.577554 2.433342	0.0123 0.0000 0.0122 0.0177
@TREND(2002QT)	0.000181	7.43E-03	2.433342	0.0177
R-squared	0.492581	Mean depen	dent var	0.003514
Adjusted R-squared	0.469516	S.D. depend	ent var	0.005776
S.E. of regression	0.004207	Akaike info o	riterion	-8.048845
Sum squared resid	0.001168	Schwarz crit	erion	-7.920360
Log likelihood	285.7096	Hannan-Quir	nn criter.	-7.997809
F-statistic	21.35665	Durbin-Wats	on stat	1.997671
Prob(F-statistic)	0.000000			

Null Hypothesis: LOG(JPN) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-3.158021	0.1002
Test critical values:	1% level	-4.072415	
	5% level	-3.464865	
	10% level	-3.158974	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(JPN)) Method: Least Squares Date: 03/21/23 Time: 16:06 Sample (adjusted): 2002Q2 2022Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(JPN(-1)) C @TREND("2002Q1")	-0.213011 2.795842 0.000251	0.067451 0.884344 0.000112	-3.158021 3.161486 2.233496	0.0022 0.0022 0.0283
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.113864 0.091711 0.014388 0.016560 235.7910 5.139794 0.007944	Mean depend S.D. depend Akaike info of Schwarz crit Hannan-Quit Durbin-Wats	lent var criterion erion nn criter.	0.001550 0.015097 -5.609421 -5.521993 -5.574297 2.125217

dlog(jpn) dlog(eu) q2y08 q3y08 q4y08 q1y20 q2y20 q3y20 dlog(us(-1)) dlog(us(-2)) dlog(us(-3)) dlog(us(-4)) dlog(eu(-1)) dlog(eu(-2)) dlog(eu(-3)) dlog(eu(-4)) dlog(jpn(-1)) dlog(jpn(-2)) dlog(jpn(-3)) dlog(jpn(-4))

Using the search regressors above, the automatic variable selection based on both the stepwise forwards (t-stat = 2) and AutoGets (SIC) methods chose the following model

Dependent Variable: DLOG(US) Method: Variable Selection Date: 03/21/23 Time: 16:26 Sample (adjusted): 2003Q2 2019Q4 Included observations: 67 after adjustments Number of always included regressors: 4 Number of search regressors: 20 Selection method: Stepwise forwards

Stopping criterion: t-stat forwards/backwards = 2/2

Variable	Coefficient	Std. Error	t-Statistic	Prob.*		
С	-0.029155	0.003884	-7.507179	0.0000		
DLOG(EU)	0.696122	0.114413	6.084300	0.0000		
Q2Y08	-0.016899	0.005599	-3.018118	0.0038		
DLOG(JPN(-3))	-0.235518	0.068867	-3.419882	0.0011		
DLOG(US(-4))	0.232050	0.102862	2.255938	0.0278		
@QUARTER=2	0.048311	0.006530	7.398145	0.0000		
@QUARTER=3	0.034489	0.005093	6.772262	0.0000		
@QUARTER=4	0.042582	0.005882	7.239730	0.0000		
R-squared	0.959779	Mean depen	dent var	0.005726		
Adjusted R-squared	0.955007	S.D. depend	lent var	0.025084		
S.E. of regression	0.005321	Akaike info	criterion	-7.522777		
Sum squared resid	0.001670	Schwarz crit	erion	-7.259530		
Log likelihood	260.0130	Hannan-Qui	nn criter.	-7.418609		
F-statistic	201.1261	Durbin-Wats	on stat	2.081863		
Prob(F-statistic)	0.000000					
Selection Summary						
Number of selected regressors: 4						

Added DLOG(EU) Added Q2Y08 Added DLOG(JPN(-3)) Added DLOG(US(-4))

*Note: p-values and subsequent tests do not account for variable

For comparison, the model on the right was obtained using the ARDL method.

Based on the performance metrics, we favor the VARSEL selection, with the following residuals

Dependent Variable: DLOG(US) Method: Variable Selection Date: 03/21/23 Time: 16:51 Sample (adjusted): 2003Q2 2019Q4 Included observations: 67 after adjustments Number of always included regressors: 4 Number of search regressors: 20 Selection method: AutoGets Number of blocks: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.*			
С	-0.029155	0.003884	-7.507179	0.0000			
DLOG(EU)	0.696122	0.114413	6.084300	0.0000			
Q2Y08	-0.016899	0.005599	-3.018118	0.0038			
DLOG(US(-4))	0.232050	0.102862	2.255938	0.0278			
DLOG(JPN(-3))	-0.235518	0.068867	-3.419882	0.0011			
@QUARTER=2	0.048311	0.006530	7.398145	0.0000			
@QUARTER=3	0.034489	0.005093	6.772262	0.0000			
@QUARTER=4	0.042582	0.005882	7.239730	0.0000			
R-squared	0.959779	Mean depen	dent var	0.005726			
Adjusted R-squared	0.955007	S.D. depend	ent var	0.025084			
S.E. of regression	0.005321	Akaike info o	riterion	-7.522777			
Sum squared resid	0.001670	Schwarz crite	erion	-7.259530			
Log likelihood	260.0130	Hannan-Quir	nn criter.	-7.418609			
F-statistic	201.1261	Durbin-Wats	on stat	2.081863			
Prob(F-statistic)	0.000000						
Selection Summary							
Number of selected rec	iressors:	4					
Number of models com	5						
	Number of models compared.						

^{*}Note: p-values and subsequent tests do not account for variable selection.

Dependent Variable: DLOG(US)

Method: ARDL

Date: 03/27/23 Time: 08:53 Sample (adjusted): 2002Q3 2019Q4 Included observations: 70 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Schwarz criterion (SIC)

Dynamic regressors (4 lags, automatic): DLOG(JPN) DLOG(EU) Fixed regressors: @EXPAND(@QUARTER, @DROP(1)) Q2Y08 C

Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0)

Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
DLOG(US(-1)) DLOG(JPN) DLOG(EU) @QUARTER=2 @QUARTER=3 @QUARTER=4 Q2Y08	-0.051437 0.085795 0.567841 0.059218 0.045632 0.054533 -0.013882	0.120655 0.083401 0.176782 0.007129 0.002084 0.002248 0.006138	-0.426316 1.028705 3.212092 8.306303 21.89881 24.25852 -2.261613	0.6714 0.3076 0.0021 0.0000 0.0000 0.0000 0.0272
С	-0.036405	0.002532	-14.37758	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.953797 0.948581 0.005685 0.002004 266.8214 182.8444 0.000000	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wats	lent var criterion erion nn criter.	0.005385 0.025069 -7.394897 -7.137926 -7.292825 2.186567

^{*}Note: p-values and any subsequent tests do not account for model

Misspecification tests conducted on the residuals indicate that the model is specified correctly, namely we do not reject the null of normality, heteroskedasticity and no serial corellation.

Series: Residuals Sample 2003Q2 2019Q4 Observations 67 9.45e-19 -0.000157 0.013749 -0.013379 0.005031

> 3.327373 0.711914 0.700503

Date: 03/21/23 Time: 17:00 Sample (adjusted): 2003Q2 2019Q4 Q-statistic probabilities adjusted for 7 dynamic regressors

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
· d ·		1 -0.047	-0.047	0.1536	0.695
1 📕 1	III	2 -0.112	-0.115	1.0476	0.592
(j		3 0.094	0.084	1.6828	0.641
- I (4 -0.045	-0.050	1.8299	0.767
- III -	(1)	5 -0.069	-0.055	2.1895	0.822
(()	(6 -0.017	-0.042	2.2126	0.899
()		7 0.052	0.045	2.4196	0.933
(l l (8 0.080	0.088	2.9176	0.939
(1		9 -0.061	-0.046	3.2111	0.955
()		10 0.065	0.066	3.5493	0.965
1 ()		11 -0.043	-0.065	3.7022	0.978
(1		12 0.010	0.046	3.7107	0.988
—	= -	13 -0.211	-0.238	7.5385	0.872
. III .		14 -0.118	-0.124	8.7438	0.847
(1)	I	15 -0.027	-0.116	8.8108	0.887
1 ()	1 1	16 -0.019	-0.021	8.8445	0.920
1 1		17 -0.009	-0.030	8.8525	0.945
i 📗 i	1 1	18 0.057	0.016	9.1578	0.956
1 1	1 1 1	19 -0.009	-0.019	9.1661	0.971
_		20 -0.218	-0.247	13.832	0.839
1 (j (j)	21 -0.054	-0.047	14.123	0.864
1 1	j (d)	i	-0.086	14.130	0.897
1 1		23 -0.014	0.049	14.152	0.922
1 1	1 1	24 -0.032	-0.098	14.261	0.941
1 1	j (j)	25 -0.007		14.266	0.957
1 1 1	1 1		-0.103	14.332	0.968
1 1		i	-0.084	14.364	0.977
	III	28 -0.049		14.648	0.982

^{*}Probabilities may not be valid for this equation specification.

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	0.836978	Prob. F(22,44)	0.6671
Obs*R-squared	19.76664	Prob. Chi-Square(22)	0.5976
Scaled explained SS	17.83706	Prob. Chi-Square(22)	0.7156

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 03/21/23 Time: 17:05
Sample: 2003Q2 2019Q4

Included observations: 67
Collinear test regressors dropped from specification

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000177	0.000156	-1.131655	0.2639
DLOG(EU)^2	0.125009	0.114165	1.094982	0.2795
DLOG(EU)*Q2Y08	-0.000889	0.018887	-0.047069	0.9627
DLOG(EU)*DLOG(US(-4))	0.709120	0.336377	2.108108	0.0408
DLOG(EU)*DLOG(JPN(-3))	0.016198	0.220927	0.073317	0.9419
DLOG(EU)*(@QUARTER=2)	-0.041696	0.019260	-2.164935	0.0359
DLOG(EU)*(@QUARTER=3)	-0.031589	0.014388	-2.195464	0.0334
DLOG(EU)*(@QUARTER=4)	-0.039986	0.017765	-2.250835	0.0294
DLOG(EU)	0.024520	0.011055	2.217926	0.0318
DLOG(US(-4))^2	-0.081413	0.113219	-0.719077	0.4759
DLOG(US(-4))*DLOG(JPN(-3))	-0.068072	0.089932	-0.756930	0.4531
DLOG(US(-4))*(@QUARTER=2)	0.011302	0.013896	0.813337	0.4204
DLOG(US(-4))*(@QUARTER=3)	0.010729	0.010636	1.008754	0.3186
DLOG(US(-4))*(@QUARTER=4)	0.010705	0.013001	0.823382	0.4147
DLOG(US(-4))	-0.009156	0.008321	-1.100270	0.2772
DLOG(JPN(-3))^2	0.042932	0.061388	0.699359	0.4880
DLOG(JPN(-3))*(@QUARTER=2)	0.005927	0.005780	1.025324	0.3108
DLOG(JPN(-3))*(@QUARTER=3)	0.004975	0.004494	1.106973	0.2743
DLOG(JPN(-3))*(@QUARTER=4)	0.006104	0.005482	1.113486	0.2715
DLOG(JPN(-3))	-0.005377	0.004123	-1.303953	0.1990
(@QUARTER=2)^2	0.000181	0.000119	1.522715	0.1350
(@QUARTER=3)^2	0.000193	0.000152	1.267294	0.2117
(@QUARTER=4)^2	0.000204	0.000138	1.479222	0.1462
R-squared	0.295024	Mean depen	dent var	2.49E-05
Adjusted R-squared	-0.057463	S.D. depend	lent var	3.83E-05
S.E. of regression	3.94E-05	Akaike info	criterion	-17.17933
Sum squared resid	6.83E-08	Schwarz crit	erion	-16.42249
Log likelihood	598.5075	Hannan-Qui	nn criter.	-16.87985
F-statistic	0.836978	Durbin-Wats	son stat	1.964683
Prob(F-statistic)	0.667101			

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 4 lags

F-statistic	0.392063	Prob. F(4,55)	0.8134
Obs*R-squared	1.857451	Prob. Chi-Square(4)	0.7620

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 03/21/23 Time: 17:01 Sample: 2003Q2 2019Q4 Included observations: 67

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.001281	0.005512	0.232487	0.8170
DLOG(EU)	0.008527	0.120113	0.070988	0.9437
Q2Y08	0.000125	0.005919	0.021054	0.9833
DLOG(US(-4))	0.035396	0.147639	0.239750	0.8114
DLOG(JPN(-3))	0.008798	0.072657	0.121084	0.9041
@QUARTER=2	-0.002345	0.009253	-0.253425	0.8009
@QUARTER=3	-0.001664	0.007087	-0.234853	0.8152
@QUARTER=4	-0.002037	0.008338	-0.244267	0.8079
RESID(-1)	-0.034496	0.144369	-0.238943	0.8120
RESID(-2)	-0.125180	0.137484	-0.910505	0.3665
RESID(-3)	0.082196	0.138077	0.595289	0.5541
RESID(-4)	-0.097515	0.203179	-0.479946	0.6332
R-squared	0.027723	Mean depen	dent var	9.45E-19
Adjusted R-squared	-0.166732	S.D. depend	0.005031	
S.E. of regression	0.005434	Akaike info		-7.431489
Sum squared resid	0.001624	Schwarz crit	erion	-7.036618
Log likelihood	260.9549	Hannan-Quir	nn criter.	-7.275237
F-statistic	0.142568	Durbin-Wats	on stat	1.977847
Prob(F-statistic)	0.999360			

VAR

Based on the lag order selection criteria, the optimal VAR between our stationary series was estimated as VAR(4). The VAR exclusion tests further supports including the 4 lags.

VAR Lag Order Selection Criteria Endogenous variables: DLOG(US) DLOG(EU) DLOG(JPN) Exogenous variables: C Date: 03/31/23 Time: 10:31 Sample: 2002Q1 2022Q4 Included observations: 75

VAR Lag Exclusion Wald Tests
Date: 03/31/23 Time: 10:33
Sample (adjusted): 2003Q2 2022Q4
Included observations: 79 after adjustments

Chi-squared test statistics for lag exclusion:

	7.6556	NA				
4 04		INA	2.60e-11	-15.85748	-15.76478	-15.82047
1 61	9.2685	40.92032	1.86e-11	-16.19383	-15.82303	-16.04577
2 63	0.3136	20.02856	1.76e-11	-16.24836	-15.59947	-15.98927
3 69	6.6291	114.9468	3.84e-12	-17.77678	-16.84978	-17.40664
4 71	8.6976	36.48662*	2.73e-12*	-18.12527*	-16.92018*	-17.64409*
5 72	3.8640	8.128481	3.05e-12	-18.02304	-16.53985	-17.43082
6 72	9.6465	8.635275	3.37e-12	-17.93724	-16.17595	-17.23398
7 73	4.7769	7.250909	3.81e-12	-17.83405	-15.79466	-17.01974
8 74	2.5455	10.35818	4.04e-12	-17.80121	-15.48373	-16.87587

Numbers in [] are p-values						
	DLOG(US)	DLOG(EU)	DLOG(JPN)	Joint		
Lag 1	4.040263	2.069661	3.385236	28.52742		
	[0.2571]	[0.5581]	[0.3360]	[0.0008]		
Lag 2	21.05844	13.00404	10.35518	33.84741		
	[0.0001]	[0.0046]	[0.0158]	[0.0001]		
Lag 3	10.29443	1.249912	7.211884	34.07459		
	[0.0162]	[0.7411]	[0.0654]	[0.0001]		
Lag 4	11.29880	0.319172	1.011191	54.03423		
	[0.0102]	[0.9564]	[0.7985]	[0.0000]		
-14	2	2	2	0		

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

VAR Granger Causality/Block Exogeneity Wald Tests

Date: 03/31/23 Time: 10:40 Sample: 2002Q1 2022Q4 Included observations: 79

Results of the exogeneity tests indicate the following, highly significant, Granger causalities among the series:

Dependent variable: DLOG(US)

Excluded	Chi-sq	df	Prob.
DLOG(EU) DLOG(JPN)	19.16999 22.87020	4 4	0.0007 0.0001
All	64.46497	8	0.0000

dlog(eu) -> dlog(us) dlog(jpn) -> dlog(us)

Dependent variable: DLOG(EU)

Excluded	Chi-sq	df	Prob.
DLOG(US) DLOG(JPN)	1.488650 15.60966	4 4	0.8287 0.0036
All	18.10397	8	0.0205

dlog(jpn) -> dlog(eu)

Dependent variable: DLOG(JPN)

Excluded	Chi-sq	df	Prob.
DLOG(US) DLOG(EU)	2.150748 12.75702	4 4	0.7081 0.0125
All	18.75155	8	0.0162

dlog(eu) -> dlog(jpn)

The estimation output with the respective residual graphs follows.

^{*} indicates lag order selected by the criterion

Vector Autoregression Estimates
Date: 03/31/23 Time: 10:26
Sample (adjusted): 2003Q2 2022Q4
Included observations: 79 after adjustments
Standard errors in () & t-statistics in []

Standard entris in () & t-st	atistics in []		
	DLOG(US)	DLOG(EU)	DLOG(JPN)
DLOG(US(-1))	-0.334327	-0.029274	0.199187
	(0.18698)	(0.23086)	(0.18138)
	[-1.78802]	[-0.12680]	[1.09821]
DLOG(US(-2))	-0.398496	-0.149588	0.122060
2200(00(2//	(0.18806)	(0.23219)	(0.18242)
	[-2.11897]	[-0.64424]	[0.66911]
DLOG(US(-3))	-0.395458	-0.130896	0.170814
2200(00(0))	(0.18628)	(0.22999)	(0.18069)
	[-2.12293]	[-0.56913]	[0.94533]
DLOG(US(-4))	0.624467	-0.067226	0.162933
DE00(00(+))	(0.19261)	(0.23781)	(0.18683)
	[3.24215]	[-0.28269]	[0.87208]
DLOG(EU(-1))	0.209816	-0.056581	0.118755
DLOO(LO(-1))	(0.17961)	(0.22175)	(0.17422)
	[1.16820]	[-0.25515]	[0.68164]
DLOG(EU(-2))	-0.359133	-0.491162	-0.519470
DL00(L0(-2))	(0.18610)	(0.22978)	(0.18052)
	[-1.92975]	[-2.13756]	[-2.87758]
DLOG(EU(-3))	0.280484	0.144601	0.042493
D200(20(0))	(0.18262)	(0.22548)	(0.17715)
	[1.53587]	[0.64131]	[0.23988]
DLOG(EU(-4))	-0.450102	0.125054	-0.103577
DE00(E0(+))	(0.18687)	(0.23072)	(0.18127)
	[-2.40865]	[0.54201]	[-0.57141]
DLOG(JPN(-1))	-0.055689	-0.138817	-0.300551
D200(0111(1))	(0.20212)	(0.24955)	(0.19606)
	[-0.27553]	[-0.55627]	[-1.53297]
DLOG(JPN(-2))	0.832099	0.842226	0.488861
	(0.19128)	(0.23617)	(0.18555)
	[4.35011]	[3.56618]	[2.63471]
DLOG(JPN(-3))	-0.203745	-0.153802	-0.470911
	(0.22027)	(0.27196)	(0.21366)
	[-0.92499]	[-0.56554]	[-2.20400]
DLOG(JPN(-4))	-0.077158	-0.052514	-0.079115
· · · //	(0.20987)	(0.25911)	(0.20357)
	[-0.36765]	[-0.20267]	[-0.38864]
С	0.007575	0.005341	0.000199
	(0.00283)	(0.00350)	(0.00275)
	[2.67250]	[1.52604]	[0.07240]
R-squared	0.779196	0.271714	0.277931
Adj. R-squared	0.739050	0.139298	0.146646
Sum sq. resids	0.014304	0.021806	0.013459
S.E. equation F-statistic	0.014722 19.40900	0.018177 2.051975	0.014280 2.117002
Log likelihood	228.2610	2.051975	230.6662
Akaike AIC	-5.449646	-5.028040	-5.510537
Schwarz SC	-5.059736	-4.638131	-5.120628
Mean dependent	0.005518	0.003332	0.001444
S.D. dependent	0.028819	0.019592	0.015459
Determinant resid covarian		1.50E-12	
Determinant resid covarian	ce	8.77E-13	
Log likelihood Akaike information criterion		760.3395 -18.26176	
Schwarz criterion		-17.09203	
Number of coefficients		39	

VAR Residuals

DLOG(US) Residuals

DLOG(EU) Residuals

DLOG(JPN) Residuals

With autocorrelations well inside the standard error bounds, the lag length is likely to be correctly specified.

Autocorrelations with Approximate 2 Std.Err. Bounds

For comparison, the model reestimation includes observations up to 2020Q4 and period 2021Q1 - 2022Q4 is forecasted again.

RMSE_dynamic = 839 648 800 000 \$RMSE_static = 251 947 200 000 \$

Forecast Evaluation

Date: 03/31/23 Time: 11:05 Sample: 2021Q1 2022Q4 Included observations: 8

Evaluation sample: 2021Q1 2022Q4

Number of forecasts: 1

Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
US_FVD	839.6488	639.9528	12.74530	13.30848	0.085261	5.381669

Forecast Evaluation

Date: 03/31/23 Time: 11:03 Sample: 2021Q1 2022Q4 Included observations: 8

Evaluation sample: 2021Q1 2022Q4

Number of forecasts: 1

Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
US_FVS	251.9472	199.9395	4.095955	4.136174	0.025476	1.262187

The graph depicts the dynamic forecast in green and the static one in red.

Forecast comparison

In terms of included evaluation statistics, the univariate model is almost five times better than the VAR approach for both the static and dynamic forecasting.

Static

Forecast Evaluation Date: 03/31/23 Time: 11:13 Sample: 2021Q1 2022Q4 Included observations: 8

Evaluation sample: 2021Q1 2022Q4

Number of forecasts: 2						
Combination tests Null hypothesis: Foreca	st i includes a	all informatio	n contained	in others		
Forecast	F-stat	F-prob				
USF_UNI_STATIC US_FVS	0.763700 0.797087	0.4158 0.4063				
Diebold-Mariano test (H Null hypothesis: Both fo	, ,		ccuracy			
Accuracy	Statistic	<> prob	> prob	< prob		
Abs Error Sq Error	-2.533817 -1.944014	0.0390 0.0930	0.0195 0.0465	0.9805 0.9535		
Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
USF_UNI_STATIC US_FVS	52.10910 251.9472	43.84350 199.9395	0.882316 4.095955	0.883975 4.136174	0.005262 0.025476	0.343204 1.262187

Dynamic

Forecast Evaluation Date: 03/31/23 Time: 11:15 Sample: 2021Q1 2022Q4 Included observations: 8 Evaluation sample: 2021Q1 2022Q4 Number of forecasts: 2

Combination tests Null hypothesis: Forecast i includes all information contained in others							
Forecast	F-stat	F-prob					
US_FVD USF_UNI_DYNAMIC	0.227683 0.131516	0.6501 0.7293					
Diebold-Mariano test (HLN adjusted) Null hypothesis: Both forecasts have the same accuracy							
Accuracy	Statistic	<> prob	> prob	< prob			
Abs Error Sq Error	2.783488 2.018649	0.0272 0.0833	0.9864 0.9584	0.0136 0.0416			
Evaluation statistics							
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2	
US_FVD USF_UNI_DYNAMIC	839.6488 77.44383	639.9528 68.64554	12.74530 1.373794	13.30848 1.385774	0.085261 0.007867	5.381669 0.514019	

Forecast Comparison Graph

The null of the univariate and VAR forecasts having the same accuracy was rejected for both the static and dynamic forecast

- on the significance level of 5% for absolute error
- and 10% for squared error.

Average of the univariate model and the VAR static and dynamic forecasts performance was better than the former but worse than the latter, namely

- RMSE_static = 122 865 400 000\$,
- RMSE dynamic = 426 425 600 000 \$.

Realizations of the series(blue) together with the forecast (red) are given below.

Forecast Evaluation
Date: 03/31/23 Time: 11:34
Sample: 2021Q1 2022Q4
Included observations: 8

Evaluation sample: 2021Q1 2022Q4

Number of forecasts: 1

Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
USF_AVGS	122.8654	101.6665	2.082937	2.097039	0.012418	0.577189
Forecast Comparison Graph						
6,000						
5,500						/_
5,000					\	
						\
4,500						\vee
4,000 	I III IV	 	II IV I	II III	IV I II	III IV
2018	2019	2020)	2021		2022
		US	USF_AVG	iD		

Forecast Evaluation
Date: 03/31/23 Time: 11:33
Sample: 2021Q1 2022Q4
Included observations: 8

Evaluation sample: 2021Q1 2022Q4

Number of forecasts: 1

Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
USF_AVGD	426.4256	321.6357	6.404765	6.566305	0.043389	2.734775

Conclusion

After a brief introduction, this paper investigated the out-of-sample forecast performances of three approaches using a statistical and econometric package EViews. The real GDP of the United States was chosen as the dependent variable, with the regression framework extended by the real GDP of the EU and Japan. The studied period is from 2002Q1 to 2022Q4.

First, the univariate time series model, including trends, seasonality outliers, and cycles, was identified. Using natural logarithms, the series was transformed from levels to growth rates. Stationarity was obtained by first differencing, seasonal components were incorporated, and the optimal ARMA model was determined. The misspecification test concluded the preparation, and the static and dynamic forecasts for the 2021 and 2022 (the last eight quarters) were obtained.

Second, additional variables were considered based on economic theory and intuition. Unit root tests determined their order of integration. The conditional model in which the dependent variable was regressed on the contemporaneous explanatory variables, necessary deterministic elements, and the history was estimated.

Third, optimal VAR was established, Granger causalities were tested, and the last eight observations were forecasted after re-estimation. Both static and dynamic forecasting models were compared with the univariate ones based on forecast evaluation metrics as well as with the Diebold-Mariano tests. The average forecast of the univariate and the VAR models was obtained, and its results were analyzed.