Álgebra Linear I – Prof. José Luiz Neto – Resumo_A17

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986)

Construindo uma transformação linear

Resultado importante!

Dados dois espaços vetoriais reais $V \in W$ e uma base de V, $\{v_1, ..., v_n\}$, sejam w_1 ..., w_n elementos arbitrários de W. Então existe uma única aplicação linear $T: V \to W$ tal que $T(v_1) = w_1$, ..., $T(v_n) = w_n$. Esta aplicação é dada por:

se
$$\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$$
,

$$T(\mathbf{v}) = a_1 T(\mathbf{v}_1) + \dots + a_n T(\mathbf{v}_n)$$

= $a_1 \mathbf{w}_1 + \dots + a_n \mathbf{w}_n$

Verifique que T assim definida é linear e que é a única que satisfaz as condições exigidas.

Problemas

Problema 1: Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 0) = (2, -1, 0) e T(0, 1) = (0, 0, 1)?

Solução: Temos neste caso $e_1 = (1, 0)$ e $e_2 = (0, 1)$ base de \mathbb{R}^2 e $w_1 = (2, -1, 0)$ e $w_2 = (0, 0, 1)$.

Dado $\mathbf{v} = (x_1, x_2)$ arbitrário,

$$\mathbf{v} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

$$\mathbf{e} \quad T(\mathbf{v}) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2)$$

$$= x_1(2, -1, 0) + x_2(0, 0, 1)$$

$$= (2x_1, -x_1, x_2)$$

Problema 2: Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?

Resolva o problema como exercício, mas, cuidado! Aqui não temos base canônica.

Qual & a +. L. $T(R^3 \rightarrow R^2)$ tol que; T(1,1,1) = (1,-1); T(0,1,1) = (0,-1) e + (0,0,1) = (-2,0)Seja $V = (x,y,z) \in R^3$, autor $(x,y,z) = a(1,1,1) + b(0,1,1) + c(0,0,1) \Leftrightarrow$ $(x,y,z) = x(1,1,1) + (y-x)(0,1,1) + (z-y)(0,0,1) \Leftrightarrow$ T(x,y,z) = xT(1,1,1) + (y-x)(0,1,1) + (z-y)T(0,0,1)

T(x|y|z) = xT(3,3,1) + (y-x)T(0,1,1) + (z-y)T(0,0,1) = x(1,-1) + (y-x)(0,-1) + (z-y)(-2,0) = (z+2y-2z,-z-y+z) = (z+2y-2z,-y)

Cuidado! Quando a bose B dada não for canônica, tem muitor contos pora seron Seitos.

 $\begin{cases}
a = z \\
a+b+c = z
\end{cases}$ $\begin{cases}
c = z - y
\end{cases}$ Assim $(x_1y_1z) = x(3_13_13) + (y-x)(0_13_13) + (z-y)(0_10_11)$