Double Integrals

| Double integrals in Cartesian coordinates

Description	Equations
Double integrals	$egin{aligned} \iint\limits_R f(x,y) \; dA \ &= \lim_{m,n o\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A \end{aligned}$
Fubini's Theorem $R = [a,b] imes [c,d]$	$egin{aligned} \iint\limits_R f(x,y) \; dA \ &= \int_a^b \int_c^d f(x,y) \; dx \; dy \ &= \int_c^d \int_a^b f(x,y) \; dy \; dx \end{aligned}$
Separation of iterative integrals $R = [a,b] imes [c,d]$	$\iint\limits_R g(x)h(y)\;dA=\int_a^b g(x)\;dx\int_c^d h(y)\;dy$
Type I region $D=x imes y=[a,b] imes [g_1(x),g_2(x)]$	$\iint\limits_D f(x,y) \; dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \; dx \; dy$
Type II region $D = x imes y = [h_1(x), h_2(x)] imes [c,d]$	$\iint\limits_D f(x,y) \; dA = \int_c^d \int_{h_1(x)}^{h_2(x)} f(x,y) \; dy \; dx$
Addition of double integrals	$egin{aligned} \iint\limits_D [f(x,y) + g(x,y)] \; dA \ &= \iint\limits_D f(x,y) \; dA + \iint\limits_D g(x,y) \; dA \end{aligned}$
Constant multiple of double integrals	$\iint\limits_{D}cf(x,y)~dA=c\iint\limits_{D}f(x,y)~dA$
Region separation of double integrals	$\int\limits_D f(x,y) \; dA \ = \int\limits_{D_1} f(x,y) \; dA + \int\limits_{D_2} f(x,y) \; dA$
Area of a region ${\cal D}$	$A(D)=\iint\limits_{D}dA$
Average value of a function	$ar{f} = rac{1}{A(R)} \iint\limits_R f(x,y) \ dA$

| Double integrals in polar coordinates

Description	Equations
Transformation to polar coordinates	$egin{aligned} x &= r\cos heta \ y &= r\sin heta \ x^2 + y^2 &= r^2 \ dA &= r\ dr\ d heta \end{aligned}$
Double integrals in polar coordinates $R = r imes heta = [a,b] imes [lpha,eta]$	$egin{aligned} &\iint\limits_R f(x,y) \; dA \ &= \int_lpha^eta \int_a^b f(r\cos heta,r\sin heta) \; r \; dr \; d heta \end{aligned}$
Double integrals in general polar region $R = r imes heta = [h_1(heta), h_2(heta)] imes [lpha, eta]$	$\iint\limits_R f(x,y) \ dA$

| Change of variables for double integrals

Description	Equations
Transformation of two variables	$T(u,v)=\left(x(u,v),y(u,v) ight)$
Jacobian of transformation of two variables	$rac{\partial(x,y)}{\partial(u,v)} = egin{array}{ccc} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \ \end{pmatrix}$
Change of variables for differentials	$dA = dx dy = \left rac{\partial(x,y)}{\partial(u,v)} ight du \ dv$
Change of variables for double integrals	$egin{aligned} &\iint\limits_R f(x,y) dA \ &= \iint\limits_S f(x(u,v),y(u,v)) \left rac{\partial (x,y)}{\partial (u,v)} ight du \ dv \end{aligned}$

| Applications of double integrals

Description	Equations
Density function	$ ho(x,y)=rac{dm}{dA}$
Mass	$m = \iint\limits_{D} ho(x,y) \; dA$
Moment about x-axis	$M_x = \iint\limits_D y ho(x,y) \; dA$
Moment about y-axis	$M_x = \iint\limits_D x ho(x,y) \; dA$
Center of mass $(ar{x},ar{y})$	$egin{aligned} ar{x} &= rac{M_y}{m} = rac{\iint\limits_D x ho(x,y) \ dA}{\iint\limits_D ho(x,y) \ dA} \ ar{y} &= rac{M_x}{m} = rac{\iint\limits_D y ho(x,y) \ dA}{\iint\limits_D ho(x,y) \ dA} \end{aligned}$
Moment of inertia about x-axis (second moment)	$I_x = \iint\limits_D y^2 ho(x,y) \; dA$
Moment of inertia about y-axis (second moment)	$I_y = \iint\limits_D x^2 ho(x,y) \; dA$
Moment of inertia about the origin (polar moment of inertia)	$I_0=I_x+I_y=\iint\limits_D(x^2+y^2) ho(x,y)~dA$
Surface area	$A=\iint\limits_{D}\sqrt{1+\left(rac{\partial z}{\partial x} ight)^{2}+\left(rac{\partial z}{\partial y} ight)^{2}}dA$

Triple Integrals

| Triple integrals in Cartesian coordinates

Description	Equations
Triple integrals	$egin{aligned} & \iiint\limits_B f(x,y,z) \; dV \ = & \lim\limits_{l,m,n o\infty} \sum\limits_{i=1}^l \sum\limits_{j=1}^m \sum\limits_{k=1}^n f(x^*_{ijk},y^*_{ijk},z^*_{ijk}) \Delta V \end{aligned}$
Fubini's Theorem \$B = x\times y\times z = \newline [a, b]\times[c, d]\times[r, s]\$	$\iiint\limits_B f(x,y,z) \ dV$ $= \int_r^s \int_c^d \int_a^b f(x,y,z) \ dx \ dy \ dz$ $= \int_c^d \int_r^s \int_a^b f(x,y,z) \ dx \ dz \ dy$ $= \dots$
Type 1 region $D=x imes y$ $E=D imes z=D imes [u_1(x,y),u_2(x,y)]$	$\mathop{\iiint}\limits_{E}f(x,y,z)\;dV=\mathop{\iint}\limits_{D}\left(\int_{u_{1}(x,y)}^{u_{2}(x,y)}f(x,y,z)dz ight)dA$
Type 2 region $D=y imes z$ $E=D imes x=D imes [u_1(y,z),u_2(y,z)]$	$\mathop{\iiint}\limits_{E}f(x,y,z)\;dV=\mathop{\iint}\limits_{D}\left(\int_{u_{1}(y,z)}^{u_{2}(y,z)}f(x,y,z)dx ight)dA$
Type 3 region $D=x imes z$ $E=D imes y=D imes [u_1(x,z),u_2(x,z)]$	$\mathop{\iiint}\limits_{E}f(x,y,z)\;dV=\mathop{\iint}\limits_{D}\left(\int_{u_{1}(x,z)}^{u_{2}(x,z)}f(x,y,z)dy ight)dA$
Example of a general region (6 general regions) $E=[a,b] imes[g_1(x),g_2(x)] imes[u_1(x,y),u_2(x,y)]$	$\iint\limits_{E} f(x,y,z) \; dV = \ \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \; dz \; dy \; dx$
Volume of a solid ${\cal E}$	$V(E)=\mathop{\iiint}\limits_E dV$

| Triple integrals in cylindrical coordinates

Description	Equations
Transformation to cylindrical coordinates	$egin{aligned} x &= r\cos \theta \ y &= r\sin \theta \ z &= z \ x^2 + y^2 &= r^2 \ dV &= r \ dz \ dr \ d heta \end{aligned}$
Range of cylindrical coordinates	$egin{aligned} r \in [0,\infty) \ heta \in [0,2\pi] \ z \in [0,\infty) \end{aligned}$
Triple integrals in general cylindrical region $E=r imes heta imes z=[lpha,eta] imes [h_1(heta),h_2(heta)] imes [u_1(x,y),u_2(x,y)]$	$igsim_E f(x,y,z) \ dV = \ \int_lpha^eta \int_{h_1(heta)}^{h_2(heta)} \int_{u_1(r\cos heta,r\sin heta)}^{u_2(r\cos heta,r\sin heta)} \cdots \ \dots f(r\cos heta,r\sin heta,z) \ r \ dz \ dr \ d heta$

| Triple integrals in spherical coordinates

Description	Equations
Transformation to spherical coordinates	$(r = ho \sin \phi)$ $x = ho \sin \phi \cos heta$ $y = ho \sin \phi \sin heta$ $z = ho \cos \phi$ $ ho^2 = x^2 + y^2 + z^2$ $dV = ho^2 \sin \phi d ho d heta d\phi$
Range of spherical coordinates	$egin{aligned} ho &\in [0,\infty) \ heta &\in [0,2\pi] \ \phi &\in [0,\pi] \end{aligned}$
Triple integrals in general spherical region $E= heta imes\phi imes ho= [lpha,eta] imes[c,d] imes[g_1(heta,\phi),g_2(heta,\phi)]$	$egin{aligned} & \iiint\limits_E f(x,y,z) dV = \ \int_c^d \int_{lpha}^{eta} \int_{g_1(heta,\phi)}^{g_2(heta,\phi)} \cdots \ \cdots f(ho\sin\phi\cos heta, ho\sin\phi\sin heta, ho\cos\phi) \ldots \ \cdots ho^2 \sin\phi \ d ho \ d heta \ d\phi \end{aligned}$

| Change of variables for triple integrals

Description	Equations
Transformation of three variables	$T(u,v,w)=\left(x(u,v,w),y(u,v,w),z(u,v,w) ight)$
Jacobian of transformation of three variables	$rac{\partial (x,y,z)}{\partial (u,v,w)} = egin{array}{cccc} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} & rac{\partial x}{\partial w} \ & & & & & & & & & & & & & & & & & & $
Change of variables for differentials	$dV = dx \; dy \; dz = \left rac{\partial(x,y,z)}{\partial(u,v,w)} ight du \; dv \; dw$
Change of variables for triple integrals	$egin{aligned} & \iint\limits_R f(x,y,z) dV \ &= \iint\limits_S f(x(u,v,w),y(u,v,w),z(u,v,w)) \dots \ & \dots \left rac{\partial (x,y,z)}{\partial (u,v,w)} ight du dv dw \end{aligned}$

| Applications of triple integrals

Description	Equations
Mass	$m = \iiint\limits_E ho(x,y,z) \; dV$
Moments about coordinate planes	$egin{aligned} M_{yz} &= \iiint\limits_E x ho(x,y,z) \ dV \ M_{xz} &= \iiint\limits_E y ho(x,y,z) \ dV \ M_{xy} &= \iiint\limits_E z ho(x,y,z) \ dV \end{aligned}$
Center of mass $(ar{x},ar{y},ar{z})$	$ar{x} = rac{M_{yz}}{m} = rac{\iint\limits_E x ho(x,y,z) \ dV}{\iint\limits_E ho(x,y,z) \ dV}$

$$ar{y} = rac{M_{xz}}{m} = rac{\iint\limits_E y
ho(x,y,z) \ dV}{\iint\limits_E
ho(x,y,z) \ dV}$$
 $ar{z} = rac{M_{xy}}{m} = rac{\iint\limits_E z
ho(x,y,z) \ dV}{\iint\limits_E
ho(x,y,z) \ dV}$ Moments of inertia about coordinate axes $I_x = \iint\limits_E (y^2 + z^2)
ho(x,y,z) \ dV$ $I_y = \iint\limits_E (x^2 + z^2)
ho(x,y,z) \ dV$ $I_z = \iint\limits_E (x^2 + y^2)
ho(x,y,z) \ dV$

Partial Differentiation

| Chain rule

Description	Equations
Chain rule $z=f(x(t),y(t))$	$rac{dz}{dt} = rac{\partial z}{\partial x}rac{dx}{dt} + rac{\partial z}{\partial y}rac{dy}{dt}$
Chain rule $z = f(x(s,t),y(s,t))$	$egin{aligned} rac{\partial z}{\partial s} &= rac{\partial z}{\partial x} rac{\partial x}{\partial s} + rac{\partial z}{\partial y} rac{\partial y}{\partial s} \ & \ rac{\partial z}{\partial t} &= rac{\partial z}{\partial x} rac{\partial x}{\partial t} + rac{\partial z}{\partial y} rac{\partial y}{\partial t} \end{aligned}$
Chain rule (general) $z=f(x_1,\ldots,x_n)$, where $x_i=x_i(t_1,\ldots,t_m)$	$rac{\partial z}{\partial t_i} = rac{\partial z}{\partial x_1} rac{\partial x_i}{\partial t_i} + \ldots + rac{\partial z}{\partial x_n} rac{\partial x_n}{\partial t_i}$

| Directional derivatives and gradient vector

Description	Equations
Assumptions	Unit vector $\mathbf{u}=\langle u_1,\dots,u_i angle$ Independent variables $\mathbf{x}=\langle x_1,\dots,x_i angle$
General directional derivatives	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{h o 0}rac{f(\mathbf{x}+h\mathbf{u})-f(\mathbf{x})}{h}$
General gradient vectors	$ abla f(\mathbf{x}) = \left\langle rac{\partial f}{\partial x_1}, \ldots, rac{\partial f}{\partial x_i} ight angle$
General directional derivatives and gradient vectors	$D_{\mathbf{u}}f(\mathbf{x}) = abla f(\mathbf{x}) \cdot \mathbf{u}$
Directional derivative in 2D	$D_{\mathbf{u}}f(x,y)=f_x\cos\theta+f_y\sin\theta$
Gradient vector and maximum values	$\max(D_{\mathbf{u}}f(\mathbf{x})) = abla f(\mathbf{x}) $ where $\mathbf{u} = rac{ abla f(\mathbf{x})}{ abla f(\mathbf{x}) }$
Gradient vector ot tangent vector for level surface $F(x,y,z)=k$	$egin{aligned} abla F(x(t),y(t),z(t))\cdot \mathbf{r}'(t) &= 0 \ abla F(x_0,y_0,z_0)\cdot \mathbf{r}'(t_0) &= 0 \end{aligned}$

Description	Equations
Tangent plane in terms of gradient vector (normal vector)	$ abla F(x,y,z)\cdot \langle x-x_0,y-y_0,z-z_0 angle =0$
Symmetric equation of normal line	$rac{x-x_0}{F_x(x_0,y_0,z_0)} = \ rac{y-y_0}{F_y(x_0,y_0,z_0)} = \ rac{z-z_0}{F_z(x_0,y_0,z_0)}$

Vector Calculus

| Arc length and parameterization of curves

Description	Equations
Vector field	$\mathbf{F}(\mathbf{x}) = \langle P(\mathbf{x}), Q(\mathbf{x}), R(\mathbf{x}) angle$
Conservative vector field and potential function	$\mathbf{F} = \nabla f$
Parameterization of line segments	$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t \; \mathbf{r}_1$, for $0 \leq t \leq 1$
Parameterization of circles	$\mathbf{r}(t) = \langle r \cos(t), r \sin(t) angle$
Parameterization of functions	$\mathbf{r}(t) = \langle t, f(t) angle$
Arc length	$L=\int_a^b {f r}'(t) \; dt$
Arc length parameter	$egin{aligned} s(t) &= \int_a^t \mathbf{r}'(u) \; du \ s'(t) &= \mathbf{r}'(t) \ ds &= \mathbf{r}'(t) \; dt \end{aligned}$

| Line integrals

Description	Equations	
Line integral	$\int_C f(x,y) \; ds = \lim_{n o\infty} \sum_{i=1}^n f(x_i^*,y_i^*) \Delta s_i$	
Line integral with respect to arc length	$egin{aligned} &\int_C f(x,y) \; ds \ &= \int_a^b f(x(t),y(t)) \sqrt{\left(rac{dx}{dt} ight)^2 + \left(rac{dy}{dt} ight)^2} dt \ &= \int_a^b f(\mathbf{r}(t)) \; \mathbf{r}'(t) \; dt \end{aligned}$	
Line integral with respect to \boldsymbol{x} and \boldsymbol{y}	$\int_C f(x,y) \; dx = \int_a^b f(x(t),y(t)) \; x'(t) \; dt \ \int_C f(x,y) \; dy = \int_a^b f(x(t),y(t)) \; y'(t) \; dt$	
Line integrals of vector fields	$egin{aligned} &\int_{C} \mathbf{F} \cdot \mathbf{T} \; ds \ &= \int_{C} \mathbf{F} \cdot d\mathbf{r} \ &= \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \; dt \end{aligned}$	
Line integrals of vector fields and scalar fields	$egin{aligned} \mathbf{F} &= \langle P,Q,R angle \ \int_C \mathbf{F} \cdot d\mathbf{r} \ &= \int_C P \ dx + Q \ dy + R \ dz \ &= \int_C P \ x'(t) + Q \ y'(t) + R \ z'(t) \ dt \end{aligned}$	
Orientation properties of line integrals with respect to arc length, \boldsymbol{x} , and \boldsymbol{y}	$egin{aligned} \int_{-C} f(x,y) \; ds &= \int_{C} f(x,y) \; ds \ \int_{-C} f(x,y) \; dx &= -\int_{C} f(x,y) \; dx \end{aligned}$	

Description	Equations
	$\int_{-C} f(x,y) \; dy = -\int_C f(x,y) \; dy$
Orientation properties of line integrals of vector fields	$\int_{-C} {f F} \cdot d{f r} = - \int_C {f F} \cdot d{f r}$
Line integral of a piecewise-smooth curve	$egin{aligned} \int_C f \ ds &= \sum\limits_{i=1}^N \int_{C_i} f \ ds \ C &= C_1 \cup C_2 \cup \ldots \cup C_N \end{aligned}$

| Fundamental theorem of line integrals

- path a smooth curve with initial and terminal point
- simple curve a curve that does not intersect itself anywhere between its endpoints
- closed curve a curve where its terminal point coincides with its initial point
- simple region a region that is bounded by two line segments in one direction (type-1, type-2 regions)
- open region a region that does not contain boundary points
- closed region a region that contains all boundary points
- connected region two points in the region can be joined by a path that lies in the region
- simply-connected region a region that every simple closed curve in D encloses only points that are in D
 - has no hole
 - doesn't consist of separate pieces

Description	Equations
Fundamental theorem of line integrals	$\int_C abla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$
Line integrals of non-conservative fields are not path independent (same end points)	$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} eq \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$
Line integrals of conservative fields are path independent (same end points)	$\int_{C_1} abla f \cdot d\mathbf{r} = \int_{C_2} abla f \cdot d\mathbf{r}$
Line integrals of closed path	$\int_{C_{ m closed}} {f F} \cdot d{f r} = 0 \Leftrightarrow \ \int_C {f F} \cdot d{f r}$ is path independent
Path independence and conservative vector field (open, connected region)	$\int_C {f F} \cdot d{f r}$ is path independent \Rightarrow ${f F} = abla f$ (conservative field)
Property of conservative vector field	$\mathbf{F} = abla f \Rightarrow rac{\partial P}{\partial y} = rac{\partial Q}{\partial x}$
Determine conservative vector field in 2D (open simply-connected region)	$rac{\partial P}{\partial y} = rac{\partial Q}{\partial x} \Rightarrow \mathbf{F} = abla f$

Summary

- Fundamental theorem of line integral (FTL) is always true (with assumptions).
- ullet Other statements are not true for general ${f F}=\langle P,Q
 angle$
 - $\bullet\,$ They have to be verified for each given F or derived from theorems.

$$\begin{array}{l} \operatorname{curl} \mathbf{F} = \mathbf{0} & \text{(checking 3D conservative field)} \\ \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} & \text{(checking 2D conservative field)} \\ \downarrow \text{(popen, simply-connected } D \\ \mathbf{F} = \nabla f & \text{(def. of conservative field)} \\ \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) & \text{(FTL)} \\ \text{open, connected } D \uparrow \downarrow & \text{(path independence)} \\ \downarrow \downarrow & \text{(path independence)} \\ \downarrow \downarrow & \text{(closed path)} \end{array}$$

| Curl and divergence

Description	Equations
Gradient	$egin{aligned} \operatorname{grad} f &= abla f \ &= \langle rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} angle \end{aligned}$
Curl	$egin{aligned} \operatorname{curl} \mathbf{F} &= abla imes \mathbf{F} \ &= \langle rac{\partial R}{\partial y} - rac{\partial Q}{\partial z}, rac{\partial P}{\partial z} - rac{\partial R}{\partial x}, rac{\partial Q}{\partial x} - rac{\partial P}{\partial y} angle \end{aligned}$
Divergence	
Laplace operator on scalar functions	$egin{aligned} abla^2 f &= abla \cdot abla f &= \operatorname{div}(abla f) \ &= rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2} \end{aligned}$
Laplace operator on vector fields	$ abla^2 \mathbf{F} = \langle abla^2 P, abla^2 Q, abla^2 R angle$
Property of conservative vector field	$\operatorname{curl} abla f=0$
Determine conservative vector field in 3D (open simply-connected region)	$\operatorname{curl} \mathbf{F} = 0 \Rightarrow \mathbf{F} = abla f$
Property of divergence and curl	$\mathrm{div}\ \mathrm{curl}\ \mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = 0$
Determine curl field	$\mathrm{div}\mathbf{F} eq 0 \Rightarrow \mathbf{F}$ is not curl of any field

| Green's theorem

Description	Equations
$\begin{tabular}{ll} \textbf{Green's Theorem}\\ (positively oriented, piecewise-smooth, simple, closed curve \\ C \ enclosing \ D) \end{tabular}$	$\oint_C {f F} \cdot d{f r} = \iint\limits_D \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y} ight) dA$
Circulation-Curl form of Green's Theorem	$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint\limits_D (abla imes \mathbf{F}) \cdot \mathbf{k} \ dA$
Flux-Divergence form of Green's Theorem	$\oint_C \mathbf{F} \cdot \mathbf{n} \; ds = \iint\limits_D abla \cdot \mathbf{F} \; dA$
Area of region D enclosed by C	$egin{aligned} A &= \iint\limits_D 1 \; dA \ &= \oint_C x \; dy \ &= -\oint_C y \; dx \ &= rac{1}{2} \oint_C x \; dy - y \; dx \end{aligned}$

| Surface area and parameterization of surfaces

Description	Equations	
General parametric surface	$\mathbf{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$	
Parametric equation of a plane	$\mathbf{r}(u,v) = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}$	
Parametric equation of a sphere	$\mathbf{r}(\phi, heta) = \langle a\sin\phi\cos heta, a\sin\phi\sin heta, a\cos\phi angle$	
Parametric equation of an explicit function	$\mathbf{r}(u,v) = \langle u,v,f(u,v) \rangle$	
Parametric equation of a surface of revolution	$\mathbf{r}(u, heta) = \langle u, f(u)\cos heta, f(u)\sin heta angle$	
Normal vector of a tangent plane	$\mathbf{r}_u imes \mathbf{r}_v$	
Surface area of a parametric surface	$\iint\limits_{D} \mathbf{r}_{u} imes \mathbf{r}_{v} \; dA$	
Surface area of the graph of an explicit function $z=f(x,y)$	$\iint\limits_{D}\sqrt{1+(rac{\partial z}{\partial x})^2+(rac{\partial z}{\partial y})^2}dA$	
Surface area of the graph of an implicit function $C=f(x,y,z)$	$\iint\limits_{D} rac{ abla f }{ abla f \cdot \mathbf{k} } \; dA$	

| Surface integral

Description	Equations
Surface integral of a function over a parametric surface	$\iint\limits_{S} f(x,y,z) \ dS \ = \iint\limits_{D} f(\mathbf{r}(u,v)) \mathbf{r}_{u} imes \mathbf{r}_{v} \ dA$
Surface integral of an explicit function $z=f(x,y)$	$egin{aligned} &\iint\limits_S f(x,y,z) \ dS \ &= \iint\limits_D f(x,y,g(x,y)) \sqrt{1 + (rac{\partial z}{\partial x})^2 + (rac{\partial z}{\partial y})^2} \ dA \end{aligned}$
Surface integral of piecewise smooth surface	$\iint\limits_S f \ dS = \sum\limits_{i=1}^N \iint\limits_{S_i} f \ dS \ S = S_1 \cup S_2 \cup \ldots \cup S_N$
Unit normal vector	$\mathbf{n} = rac{\mathbf{r}_u imes \mathbf{r}_v}{ \mathbf{r}_u imes \mathbf{r}_v }$
Surface integral of a vector field over a parametric surface	$egin{aligned} \iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} &= \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \; dS \ &= \iint\limits_{D} \mathbf{F} \cdot (\mathbf{r}_{u} imes \mathbf{r}_{v}) \; dA \ &= \iint\limits_{D} \left(-P rac{\partial g}{\partial x} - Q rac{\partial g}{\partial y} + R ight) dA \end{aligned}$

| Stoke's theorem

Description	Equations
Stoke's Theorem (S: oriented, piecewise-smooth surface C: simple, closed, piecewise-smooth curve F: continuous partial derivatives in open region)	$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (abla imes \mathbf{F}) \cdot d\mathbf{S}$
Alternative surface $(C ext{ is a common curve of } S_1 ext{ and } S_2)$	$\iint\limits_{S_1} (abla imes {f F}) \cdot d{f S}$

| Divergence theorem (Gauss's theorem)

Description

Equations

Divergence Theorem

(E: simple, solid region S: positively oriented surface

F: continuous partial derivatives in open region)

 $\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{E} \nabla \cdot \mathbf{F} \; dV$

Appendix

| Types of functions

Function Type	$\mathbf{Domain} \to \mathbf{Range}$	Equation	Example
Function of several variables	$\mathbb{R}^n o \mathbb{R}$	$f(\mathbf{x})$	$f(x,y,z) = \ 2x^2 + e^y - 5z^3 - 7$
Vector-valued function	$\mathbb{R} o \mathbb{R}^n$	$\mathbf{v}(t)$	$egin{aligned} \mathbf{v}(t) = \ \langle t^2, -2t, e^t angle \end{aligned}$
Vector field	$\mathbb{R}^n o \mathbb{R}^n$	$\mathbf{F}(\mathbf{x})$	$\mathbf{F}(x,y,z) = \ \langle 3x-y,z,z^2-x angle$