

Oddziaływanie Promieniowania Jonizującego z Materią

Tomasz Szumlak, Agnieszka Obłąkowska-Mucha

WFiIS AGH 2021, Kraków

2 Idealny detektor:

- Rejestruje naładowane cząstki (leptony i hadrony)
- Rejestruje neutralne cząstki (fotony, neutralne hadrony, neutrina)
- Identyfikuje cząstki
- Precyzyjnie mierzy energię i pęd każdej cząstki

Źzyli:

- rekonstruuje 4-pęd wszystkich cząstek powstałych w zderzeniu
- pracuje przy wysokich częstościach zderzeń

Pomiar zdeponowanej energii

- Sygnał elektryczny pochodzący z ładunków wytworzonych dzięki energii zdeponowanej przez naładowane cząstki:
 - detektory gazowe,
 - detektory półprzewodnikowe
- Rejestracja fotonów w scyntylatorach
- Pomiar energii w kalorymetrach:
 - elektromagnetycznych
 - hadronowych

Pomiar energii

Kalorymetry – urządzenia do pomiaru energii cząstek poprzez całkowite ich pochłonięcie. Jedynie miony i neutrina nie zostają zabsorbowane.

- W procesie absorpcji, prawie cała energia jest finalnie zamieniona na ciepło, stąd nazwa "kalorymetry".
- Cząstki wchodzące do bloku absorbenta powodują powstanie tzw. kaskady.
- Ze względu na różnice w oddziaływaniach elektromagnetycznych i silnych, kaskady EM i Had rozwijają się inaczej

Kalorymetry

- W kalorymetrach mierzona jest energia cząstek zarówno natadowanych, jak i obojętnych.
- Z reguły im wyższa energia, tym kalorymetry są bardziej efektywne:

np. ELM:
$$\frac{\sigma_E}{E} \sim \frac{0.4}{\sqrt{E}}$$
, a $\frac{\sigma_p}{p} \sim p$, $\frac{\sigma_p}{p} \sim p$ ok. 5% dla 100 GeV (ATLAS)

 $\mathbf{S} \propto \mathbf{E}$

 Sygnał z kalorymetrów jest szybki, stąd są zwykle używane w systemach trygerujących

- Dominującym procesem przy wysokich energiach jest:
 - dla fotonów: kreacja par,
 - dla elektronów: bremsstrahlung

$$E = E_0 e^{-x/X_0}$$

Po przejściu X_0 elektron ma 1/e energii początkowej (ok.37%)

Kalorymetry ELM mogą zmierzyć energię początkowego elektronu lub fotonu:

$$E_{pocz} = \sum_{i} E_{i}$$

- Model Heitnera rozwoju kaskady elektromagnetycznej:
 - elektron traci (1 1/e) = 63% energii w każdym X_0 ,
 - średnia droga swobodna fotonu wynosi $9/7 X_0$.
 - Powyżej energii krytycznej: $E > E_c$ produkcja par, nie ma jonizacji
 - Poniżej energii krytycznej: $\mathbf{E} < \mathbf{E}_c$ energia tracona jest wyłącznie na jonizację i wzbudzenia.

I Zakłada się, że po każdym X_0 energia dzieli się po równo na wyprodukowane elektrony/fotony: t 1 2 3 4

- po drodze tX_0 jest 2^t cząstek,
- każda cząstka ma energię E/2^t,
- kaskada kończy się, gdy $E < E_c$,
- liczba cząstek w kaskadzie to:

$$N=E/E_c,$$

• długość kaskady to: $t_{max} \propto \ln(E_0/E_c)$

- Kaskady charakteryzuje się:
 - liczbą cząstek w pęku: $N_{max} = 2t^{max} = E/E_c$
 - położeniem maximum: $t_{max} \propto \ln(E_0/E_c)$
 - rozmiarami poprzecznymi
 - rozkładami podłużnymi: $L \propto \ln(E_0/E_c)$

Podłużne rozmiary kaskady ELM rosną logarytmicznie z energią początkową cząstki, tzn, kalorymetry ELM nie muszą być duże.

np.
$$E_c = 10 MeV$$

$$E_0 = 1 \text{ GeV}$$
, $\rightarrow t_{max} = \ln 100 \approx 4.5$; $N_{max} = 100$

$$E_0=100~GeV$$
, $E_c=10~MeV \rightarrow t_{max}=\ln 10~000\approx 9.2;~N_{max}=10~000$

100 GeV elektron będzie pochłonięty w 16 cm Fe lub 5 cm Pb

$$X_0(Fe) = 1.76 cm$$

 $X_0(Pb) = 0.65 cm$

Po t_{max} kaskada powoli jest absorbowana, głownie procesy jonizacji i rozpraszania Comptona, brak zależności od X_0

Funkcja odpowiedzi kalorymetru ELM jest liniowa:

Kalørymetry próbkujące:

 warstwy pasywnego absorbenta (ołów, miedź) ułożone naprzemiennie z warstwami aktywnymi (krzem, scyntylatory, ciekły Ar).

Kalørymetry homogeniczne (jednorodne):

- jeden ośrodek służy jako zarówno absorber jak detektor: gęste kryształy, szkło ołowiowe, ciekłe Xe lub Kr.
- Odczyt w detektorach gazowych lub fotopowielacze

- W kalorymetrach hadronowych dominującym procesem są silne oddziaływania.
- ☐ Pomiary:
 - dla naładowanych hadronów: ostatni etap rekonstrukcji śladu,
 - dla neutralnych: jedyny sposób pomiaru energii.
- W øddz. jądrowych produkowane pęki hadronów:
 - liczne hadrony wtórne produkujące kaskady hadronów
 - hadrony rozpadające się elm (π^0,η) produkują kaskady ELM
 - część energii jest absorbowana w energii wiązania lub jako en. odrzutu (energia nieobserwowalna)
- lacktriangle Rozmiary kaskady mierzone długością oddziaływania λ_i

50

-50

100

Kaskady hadronowe

Hadronic showers

Nuclear evaporation p+

Hadronic interaction:

Incoming

hadron

Ionization loss

Intranuclear cascade

(Spallation 10⁻²² s)

Elastic:

$$p + \text{Nucleus} \rightarrow p + \text{Nucleus}$$

Inelastic:

$$p + \text{Nucleus} \rightarrow \pi^+ + \pi^- + \pi^0 + \dots + \text{Nucleus}^*$$

Nucleus*
$$\rightarrow$$
 Nucleus A + n, p, α , ... \neg
 \rightarrow Nucleus B + 5p, n, π , ...
 \rightarrow Nuclear fission

Heavy Nucleus (e.g. U)

Inter- and intranuclear cascade

Internuclear cascade

Fission

Kaskady hadronowe vs ELM

Symulacja (powietrze)

	λ _{int} [cm]	X ₀ [cm]
Szint.	79.4	42.2
LAr	83.7	14.0
Fe	16.8	1.76
Pb	17.1	0.56
U	10.5	0.32
Q	38.1	18.8

Kalorymetry hadronowe muszą mieć większe rozmiary niż ELM

Kaskady hadronowe vs ELM

Energia unoszona przez neutrony jest często gubiona. W celu "kompensacji" dodawany jest uran, neutrony powodują rozszczepienie i część energii jest odzyskana.

Kalorymetry hadronowe

- W kalorymetrach hadronowych dominującym procesem są silne oddziaływania.
 25
- Opowiedź KH nie jest liniowa.
- ☐ Kozdzielczość KH przybliża się jako:

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} + b$$

$$\sigma/E = (93.8 \pm 0.9)\%/\sqrt{E} \oplus (4.4 \pm 0.1)\%$$

Kalorymetry hadronowe stosuje się do pomiaru energii pęków (jetów) hadronów, a nie do pomiaru energii indywidualnego hadronu

$$\frac{\sigma}{E} = \frac{60\%}{\sqrt{E}} \oplus 3\%$$