## 전기이론

## 1. 그림의 회로에서 저항 $R[\Omega]$ 과 전압원 $V_x[V]$ 는?



|   | $R[\Omega]$ | $V_x$ [V] |
|---|-------------|-----------|
| 1 | 12          | 94        |
| 2 | 12          | 166       |
| 3 | 18          | 94        |
| 4 | 18          | 166       |

## 2. 그림의 회로에서 부하저항 $R_L$ 이 최대전력을 소비하기 위한 $R_L$ [ $\Omega$ ]은?



3 9

4 12

## 3. 그림 (a)의 선형 변압기를 그림 (b)와 같이 T형 등가회로로 나타내었을 때, $L_a$ , $L_b$ , $L_c$ 의 각 인덕턴스[H]는?



|            | $L_a$ [H] | $L_b$ [H] | $L_c$ [H] |
|------------|-----------|-----------|-----------|
| 1          | 4         | -2        | 6         |
| 2          | 4         | 6         | -2        |
| 3          | 8         | -2        | 6         |
| <b>(1)</b> | Q         | 6         | -9        |

- 4. 정지해 있는 두 점전하 사이에 작용하는 정전기력에 대한 설명으로 옳지 않은 것은?
  - ① 두 전하량의 곱에 비례한다.
  - ② 주위 매질에 영향을 받지 않는다.
  - ③ 두 전하 사이의 거리 제곱에 반비례한다.
  - ④ 두 전하를 연결하는 직선을 따라 작용한다.
- 5. 그림과 같은 이상적인 단권변압기에서  $Z_{in}$ 과  $Z_{L}$  사이의 관계식은? (단,  $V_{1}$ 은 1차측 전압,  $V_{2}$ 는 2차측 전압,  $I_{1}$ 은 1차측 전류,  $I_{2}$ 는 2차측 전류,  $I_{3}$ 은 1차측 권선수,  $I_{4}$ 는 2차측 권선수이다)



6. 부하에 전압  $\dot{V}=100+j50$  [V]을 인가했을 때,  $\dot{I}=4+j3$  [A]의 전류가 흐른다. 이 부하의 유효전력[W]과 무효전력[VAR]은? (단, 전압과 전류는 실횻값이다)

|   | <u> 우효전력[W]</u> | <u> 무효전력[VAR]</u> |
|---|-----------------|-------------------|
| 1 | 250             | -500              |
| 2 | 250             | 500               |
| 3 | 550             | -100              |
| 4 | 550             | 100               |

7. 그림의 회로에서 입력전압  $v_i(t)$ 와 출력전압  $v_o(t)$ 에 대한 전달함수는? (단, t=0에서 인덕터의 초기전류는 0 [A]이고, 커패시터의 초기전압은 0 [V]이다)



$$\textcircled{4} \quad \frac{1}{RLCs^2 + Ls + R}$$

8. 그림과 같은 평형 3상 회로로 운전되는 3상 유도전동기에서 전력계  $W_1$ ,  $W_2$ , 전압계 V, 전류계 A의 측정값이 각각  $W_1=2$  [kW],  $W_2=2.2$  [kW], V=100 [V],  $A=20\sqrt{3}$  [A]이다. 이 유도전동기의 역률은? (단, 전력계, 전압계, 전류계는 이상적이다)



① 0.7

2 0.8

3 0.9

4 1.0

- 9. 정상순(positive phase sequence)인 평형 3상  $\Delta$ 결선에서 선전류와 상전류의 위상 관계는?
  - ① 상전류가  $\frac{\pi}{3}$  [rad] 앞선다.
  - ② 상전류가  $\frac{\pi}{3}$  [rad] 뒤진다.
  - ③ 상전류가  $\frac{\pi}{6}$  [rad] 앞선다.
  - ④ 상전류가  $\frac{\pi}{6}$  [rad] 뒤진다.

10. 그림의 회로에서 전류 I 가 최소가 되는 저항  $R_2$  [ $\Omega$ ]는? (단, 가변 저항에서 화살표는 10 [ $\Omega$ ]을 저항  $R_1$ 과  $R_2$ 로 분할한다)



- ① 0
- ③ 7.5

4 10

- 11. 정전용량이 같은 2개의 커패시터를 직렬로 연결할 때 합성용량은  $C_1$ 이고, 병렬로 연결할 때 합성용량은  $C_2$ 이다. 합성용량의 비  $\frac{C_2}{C_1}$ 는?
  - $\bigcirc 1$

 $2\frac{1}{2}$ 

3 2

- 4
- **12.** 정전용량 2 [F]인 커패시터에 2 [C]의 전하가 저장되어 있다. 이 커패시터에 저장되는 에너지[J]는?
  - ① 0.5

② 1

③ 1.5

- **4** 2
- 13. 그림의 회로에서 전원측에서 본 역률이 1일 때, 커패시턴스 C [F]는?



②  $\frac{1}{4}$ 

 $3) \frac{1}{2}$ 

- 4
- 14. 그림의 회로에서 전압  $v(t) = 5 + 3\cos(t + 45^\circ) + \cos(2t + 60^\circ)$  [V]일 때, 전원이 부하 전체에 공급하는 평균전력[W]은?



① 1

② 5

③ 10

4 20

15. 그림의 회로에서 스위치 S는 t=0일 때 개방된다. 스위치 S가 닫혀 있을 때 회로의 시정수  $\tau_1$  [sec]과 t>0에서 스위치 S가 개방된 회로의 시정수  $\tau_2$  [sec]는?



| _          | $\tau_1$ [sec] | $\tau_2$ [sec] |
|------------|----------------|----------------|
| 1          | 4              | 4              |
| 2          | 4              | 6              |
| 3          | 6              | 4              |
| <b>4</b> ) | 6              | 6              |

16. 그림의 회로에서 전류 I[A]는?



17. 양전하 Q [C]가 균등하게 분포된 반경이 a [m]인 구형 도체가 자유공간에 있다. 이 도체에서 무한대 떨어진 위치의 전위를 0 [V]이라 할 때, 구형 도체 중심으로부터 반경 b [m]인 곳의 전위[V]는? (단,  $\varepsilon_o$ 는 자유공간의 유전율이고, b < a이다)

$$\bigcirc -\int_{-\infty}^{b} \frac{Qr}{4\pi\varepsilon_{o}a^{3}} dr$$

$$\bigcirc -\int_{-\infty}^{b} \frac{Q}{4\pi\varepsilon_{o}r^{2}} dr$$

$$\textcircled{4} \ - \int_{-\infty}^{a} \frac{Q}{4\pi\varepsilon_{o}r^{2}} dr - \int_{a}^{b} \frac{Qr}{4\pi\varepsilon_{o}a^{3}} dr$$

18. 그림의 평형 3상 Y-Y 회로에서 3상 부하가 흡수하는 전체 평균 전력[W]은? (단, 전압은 실횻값이다)



19. 그림의 회로가 정상상태에서 동작할 때, 인덕터에 흐르는 전류  $i_L(t)$ 의 최댓값[A]과 전압 v(t)와 전류  $i_L(t)$ 의 위상차[°]는?



|            | <u>최댓값[A]</u> | <u>위상차[°.</u> |
|------------|---------------|---------------|
| 1          | $\sqrt{2}$    | 45            |
| 2          | $\sqrt{2}$    | 60            |
| 3          | $2\sqrt{2}$   | 45            |
| <b>4</b> ) | $2\sqrt{2}$   | 60            |

**20.** 그림의 회로에서 t>0일 때, 커패시터 전압  $v_C(t)$  [V]는? (단, u(t)는 단위계단함수이다)



①  $24te^{-4t}$ 

②  $24te^{-2t}$ 

 $348te^{-4t}$ 

 $48te^{-2t}$