Insper

Robótica Computacional

Equipe

Diego Pavan Soler

Arnaldo Alves Viana Junior

Licia Lima

Rogério Cuenca

Ninja

Ana Laiz Farias

Rotina semanal

No geral:

- SEG 15:45
- TER/QUI 15:45
 - metade da turma, preferência por usar os robôs reais
- TER/QUI 18:00 atendimento

Site da disciplina:

 https://insper.github.io/roboticacomputacional

Escolha de turma (até 14/08 – 18:00):

 https://forms.office.com/r/kTZh8 Cikji

Formulário de Escolha de Turma

Atividade: Comportamento autônomo

O que os robôs fazem

O que é preciso para montar um carro autônomo?

Facetas da robótica

Design de Mecanismos	 Design de estrutura física Seleção de materiais Design de sistemas de movimento (por exemplo, rodas, pernas, braços)
Eletrônica Embarcada	 Design de circuitos Seleção de componentes eletrônicos Integração de sistemas
Computação e Redes	 Processadores e microcontroladores Redes de comunicação e protocolos Sistemas operacionais e software embarcado
Sensores e Atuadores	 Seleção e integração de sensores (por exemplo, sensores de distância, sensores de temperatura) Atuadores (por exemplo, motores, servos)
Controle	Teoria de controle Algoritmos de controle (por exemplo, PID) Controle em tempo real
Planejamento e Seleção de Ações	 Algoritmos de planejamento de trajetória Tomada de decisão autônoma Aprendizado de máquina e IA para seleção de ações
Visão Robótica	Processamento de imagem Reconhecimento de objetos Navegação baseada em visão

Facetas da robótica

Sensores e Atuadores

- Seleção e integração de sensores (por exemplo, sensores de distância, sensores de temperatura)
- Atuadores (por exemplo, motores, servos)

Controle

- Teoria de controle
- Algoritmos de controle (por exemplo, PID)
- Controle em tempo rea

Planejamento e Seleção de Ações

- Algoritmos de planejamento de trajetória
- Tomada de decisão autônoma
- Aprendizado de máquina e IA para seleção de ações

Visão Robótica

- Processamento de imagem
- Reconhecimento de objetos
- Navegação baseada em visão

Sensores de um Carro Autônomo

Lidar

Oportunidades

Robôs desinfectionam hospitais

DARPA Subterrean Challenge

https://youtu.be/R4IDa3EXvMc

Robótica Computacional

Visão geral do semestre

Papel de Robótica no curso

- Resolver um problema
 - 1. Não trivial
 - 2. Combinando recursos (tutoriais, códigos de exemplo, etc) simples em uma solução complexa
 - 3. Utilizando bibliotecas escritas por terceiros e que temos um domínio superficial do funcionamento
- Primeiro contato com computação envolvendo hardware e todos os desafios que isso traz

Atividades

- Atividades de sala (desafios após alguma expositiva, completar um roteiro guiado, não obrigatórias mas úteis para aprender)
- APS (atividade focada em praticar algum conceito já visto em sala)
- Projeto

Avaliações

- Avaliação Intermediária OpenCV (AI) (20%)
 - Maximo entre:
 - 02/10 ou
 - Substitutiva (SI)
 - Semana de prova
- Prova Final ROS (PF) (25%)
 - Semana de prova
- Projeto (40%)
 - Em grupos, usará obrigatoriamente robô real
- APS (15%)
 - Em duplas
- Bônus (até 1,0)
 - Individual
 - Só aplica se média a final for maior que 5

Critérios completos na página da disciplina https://insper.github.io/robotica-computacional/modulos/00-intrp/sber

APS

- Precisa ter 100% das APS. Se não entregar todas as APS reprova
- 4 APS, cada uma exigindo ~4 horas de trabalho
- Se não entregou a APS a tempo, pode entrega-la até nossa prova final valendo 50% da nota

- 1. Linux ROS (Robot Operating System)
 - Ubuntu 20.04
 - ROS versão 1
 - Python

- 2. Turtlebot
- 3. Simulador Gazebo

- 1. Linux ROS (Robot Operating System)
 - SSD com Linux
 - Tudo já instalado
 - Ambiente padrão

- 2. Turtlebot
- 3. Simulador Gazebo

- 1. Linux ROS (Robot Operating System)
- 2. Turtlebot
 - Robô de ensino
 - Customizações do Insper
 - Sensores:
 câmera, radar, bumper
 odometria
- 3. Simulador Gazebo

- 1. Linux ROS (Robot Operating System)
- 2. Turtlebot
- 3. Simulador Gazebo
 - Turtlebot virtual
 - Sala de aula virtual
 - Permite testar seus programas antes de rodar no robô real

Atividade: início da Infra do curso

- 1. Pegue um SSD
- 2. Ler

https://insper.github.io/robotica
-computacional/guias-infra/

3. Inicie o guia de Linux

Referências - Bibliografia básica

NORVIG, P.; RUSSELL, S. Inteligência Artificial. 3. ed. Campus Elsevier, 2013.
SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D.
Introduction to Autonomous Mobile Robots. 2. ed. MIT Press, 2011
SZELISKI, R. Computer Vision: Algorithms and Applications. Springer, 2011.
INGRAND, F.; GHALLAB, M. Deliberation for autonomous robots: a survey. Artificial Intelligence, v. 247, p. 10 – 44, 2017. Disponível em <

https://www.sciencedirect.com/science/article/pii/S000437021400

1350 >. Acesso em 11 Ago 2018.

Referências – bibliografia complementar

KAEHLER, A.; BRADSKI, G. Learning OpenCV: Computer Vision in C++ with the OpenCV Library. 2. ed. O'Reilly Media, 2015 O'KANE, J. A Gentle Introduction to ROS. CreateSpace Publishing, 2013

SCHERZ, P.; MONK, S. Practical Electronics for Inventors. 3. ed. McGraw-Hill, 2013

ASTRÖM, K.; MURRAY, R. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008 THRUN, S.; BURGARD, W; FOX, D. Probabilistic Robotics. MIT Press, 2006.

TENORTH, M.; BEETZ, M. Representations for robot knowledge in the KnowRob framework. Artificial Intelligence, v. 247, p 151-169, 2017. Disponível em <

http://www.sciencedirect.com/science/article/pii/S0004370215000 843 >, Acesso em 11 Ago 2018.