ELEC 312 Systems I

Signal-Flow Graphs (Derived from Notes by Dr. Robert Barsanti) (Images from Nise, 7th Edition)

Required Reading: Chapter 5, Control Systems Engineering

February 19, 2015

ELEC 312: Systems I Signal-Flow Graphs [3 of 23]

Equivalent Systems: Cascade (Series)

Signal-Flow Graph:

Block Diagram:

Block Diagram:

 $V_3(s)$

 $G_3(s)$

Signal-Flow Graphs [6 of 23]

Signal-Flow Graphs: Example 1

Convert the block diagram below to a signal-flow graph.

1. Draw the signal nodes.

ELEC 312: Systems I

ELEC 312: Systems I Signal-Flow Graphs [5 of 23]

Equivalent Systems: Feedback

Signal-Flow Graph:

Block Diagram:

ELEC 312: Systems I

Signal-Flow Graphs [7 of 23]

Signal-Flow Graphs: Example 1 (continued)

2. Interconnect the nodes, showing the direction of signal flow and identifying each transfer function.

ELEC 312: Systems I Signal-Flow Graphs [8 of 23]

Signal-Flow Graphs: Example 1 (continued)

3. If desired, simplify the signal-flow graph to the one shown below by eliminating signals that have a single flow in and a single flow out, such as $V_2(s)$, $V_6(s)$, $V_7(s)$, and $V_8(s)$.

ELEC 312: Systems I Signal-Flow Graphs [9 of 23]

Signal-Flow Graphs: Example 2

Convert the block diagram below to a signal-flow graph.

ELEC 312: Systems I Signal-Flow Graphs [10 of 23]

Signal-Flow Graphs: Example 2 (continued)

ELEC 312: Systems I

Signal-Flow Graphs [11 of 23]

Signal-Flow Graphs: Example 2 (continued)

Mason's Gain Rule/Formula

Mason's gain formula is a procedure for determining the transfer function of a system given the signal flow graph. In general, it can be complicated to implement the formula without making mistakes. For systems without non-touching loops, it is easier than performing block reduction of a block diagram. In any event, it provides an alternate procedure for analysis of LTI systems.

Definitions:

Path: A continuous sequence of branches from the input node to the output node of the signal-flow graph, traversed in the direction of the branches, along which no node is encountered more than once.

Forward-Path Gain: The product of gains found by traversing a path from the input node to the output node of the signal-flow graph in the direction of signal flow.

Mason's Gain Rule/Formula

Definitions:

ELEC 312: Systems I

Loop: A continuous sequence of branches, traversed in the indicated branch directions from one node around a closed path back to the same node, along which no other node is encountered more than once.

Loop Gain: The product of branch gains found by traversing a path that starts at a node and ends at the same node, following the direction of the signal flow, without passing through any other node more than once.

Non-touching: Two loops are non-touching if they have no nodes in common. A loop and a path are non-touching if they have no nodes in common.

ELEC 312: Systems I

Signal-Flow Graphs [14 of 23]

Mason's Gain Rule/Formula Example 1

Loop Gains: 1) $L_1 = G_2(s)H_1(s)$

2) $L_2 = G_4(s)H_2(s)$

3) $L_3 = G_4(s)G_5(s)H_3(s)$

4) $L_4 = G_4(s)G_6(s)H_3(s)$

Note that L_1 does not touch L_2 , L_3 , or L_4 .

Forward-Path Gains: 1) $T_1 = G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)$

Note that paths P_1 and P_2 touch all loops.

2) $T_2 = G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s)$

ELEC 312: Systems I

Signal-Flow Graphs [15 of 23]

Mason's Gain Rule/Formula

The transfer function of a system represented by a signal-flow graph is given by

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k} T_{k} \Delta_{k}}{\Delta},$$

where

k = number of forward paths

 $T_k = \mathsf{the}\ k^\mathsf{th}$ forward-path gain

 $\Delta=1-\sum \mathsf{loop\ gains} + \sum \mathsf{nontouching\text{-}loop\ gains\ taken\ two\ at\ a\ time}$

 $-\sum$ nontouching-loop gains taken three at a time

 $+\sum$ nontouching-loop gains taken four at a time $-\dots$

 $\Delta_k = \Delta - \sum$ loop gain terms in Δ that touch the k^{th} forward path.

In other words, Δ_k is formed by elimating from Δ

those loop gains that touch the k^{th} forward path.

Signal-Flow Graphs [16 of 23]

Mason's Gain Rule/Formula: Example 1

$$\begin{split} k &= 2 \\ T_k &= \begin{cases} G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s) & \text{if } k = 1 \\ G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s) & \text{if } k = 2 \end{cases} \\ \Delta &= 1 - \left[G_2(s)H_1(s) + G_4(s)H_2(s) + G_4(s)G_5(s)H_3(s) + G_4(s)G_6(s)H_3(s) \right] \\ &+ G_2(s)H_1(s) \cdot \left[G_4(s)H_2(s) + G_4(s)G_5(s)H_3(s) + G_4(s)G_6(s)H_3(s) \right] \\ \Delta_k &= \begin{cases} 1 & \text{if } k = 1 \\ 1 & \text{if } k = 2 \end{cases} \end{split}$$

ELEC 312: Systems I

Signal-Flow Graphs [18 of 23]

Mason's Gain Rule/Formula: Example 2

Determine the equivalent system transfer function G(s)=C(s)/R(s) by using Mason's gain formula.

ELEC 312: Systems I

Signal-Flow Graphs [17 of 23]

Mason's Gain Rule/Formula: Example 1 (continued)

The transfer function of the system represented by the signal-flow graph above is given by

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k} T_{k} \Delta_{k}}{\Delta} = \frac{T_{1} \Delta_{1} + T_{2} \Delta_{2}}{\Delta}$$

$$= \frac{G_{1}(s)G_{2}(s)G_{3}(s)G_{4}(s)G_{5}(s)G_{7}(s) + G_{1}(s)G_{2}(s)G_{3}(s)G_{4}(s)G_{6}(s)G_{7}(s)}{\Delta},$$

where

$$\Delta = 1 - \left[G_2(s)H_1(s) + G_4(s)H_2(s) + G_4(s)G_5(s)H_3(s) + G_4(s)G_6(s)H_3(s) \right]$$

+ $G_2(s)H_1(s) \cdot \left[G_4(s)H_2(s) + G_4(s)G_5(s)H_3(s) + G_4(s)G_6(s)H_3(s) \right].$

ELEC 312: Systems I

Signal-Flow Graphs [19 of 23]

Mason's Gain Rule/Formula: Example 2 (continued)

ELEC 312: Systems I Signal-Flow Graphs [20 of 23]

Mason's Gain Rule/Formula: Example 2 (continued)

ELEC 312: Systems I Signal-Flow Graphs [21 of 23]

Mason's Gain Rule/Formula: Example 3

Determine the equivalent system transfer function G(s)=C(s)/R(s) by using Mason's gain formula.

ELEC 312: Systems I Signal-Flow Graphs [22 of 23]

Mason's Gain Rule/Formula: Example 3 (continued)

ELEC 312: Systems I Signal-Flow Graphs [23 of 23]

Mason's Gain Rule/Formula: Example 3 (continued)