1. (a)

If we choose $\{(S,A),(S,C),(S,E)\}$, the total cost is 10+15+18=43 If we choose $\{(S,A),(S,C),(E,F)\}$, the total cost is 10+15+15=40 If we choose $\{(S,A),(S,C),(F,G)\}$, the total cost is 10+15+10=35 If we choose $\{(S,A),(C,B),(S,E)\}$, the total cost is 10+15+18=43 If we choose $\{(S,A),(C,B),(E,F)\}$, the total cost is 10+15+15=40 If we choose $\{(S,A),(C,B),(E,F)\}$, the total cost is 10+15+10=35 If we choose $\{(A,B),(S,C),(S,E)\}$, the total cost is 8+15+18=41 If we choose $\{(A,B),(S,C),(E,F)\}$, the total cost is 8+15+10=33 If we choose $\{(A,B),(C,B),(E,E)\}$, the total cost is 8+15+10=33 If we choose $\{(A,B),(C,B),(E,F)\}$, the total cost is 8+15+15=38 If we choose $\{(A,B),(C,B),(E,F)\}$, the total cost is 8+15+15=38 If we choose $\{(A,B),(C,B),(E,F)\}$, the total cost is 8+15+15=38 If we choose $\{(A,B),(C,B),(E,F)\}$, the total cost is 8+15+10=33

Among all the cases, the min-cut is $\{(A,B),(S,C),(F,G)\}$, which value is 33. According to the max-flow min-cur theorem, the max-flow is 33.

(b)(i)

According to Fold-Fulkerson algorithm.

Initialization: Flow=0

Iteration 1: Augmented Path 1: S-A-B-T
ightarrow Flow = Flow + 8 = 8

Iteration 2: Augmented Path 2: $S-C-B-T \rightarrow Flow = Flow + 7 = 15$

Iteration 3: Augmented Path 3: $S-C-B-G-D-T \rightarrow Flow = Flow + 8 = 23$

Iteration 4: Augmented Path 4: S-E-F-G-T o Flow = Flow + 10 = 33

No more possible augmented paths left $\label{eq:homogeneous} \mbox{Hence, maximum } Flow = 33$

(ii)

Iteration 1: Augmented Path 1: $S-A-B-T \rightarrow Flow=Flow+8=8$

Iteration 2: Augmented Path 2: S-C-B-T o Flow = Flow + 7 = 15

Iteration 4: Augmented Path 4: $S-E-F-G-T \rightarrow Flow = Flow + 2 = 25$

Iteration 5: Augmented Path 5: S-E-F-G-D-T
ightarrow Flow = Flow + 8 = 33

No more possible augmented paths left

Hence, maximum Flow=33

(c)

Initial

Vertex Sets: $\{S\}, \{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{F\}, \{G\}, \{H\}, \{T\}$

 ${\it Edge chose:} \left\{\right\}$

Iteration 1: For edge (D,B)=5 , B and D are not in a set, choose.

Vertex Sets: $\{S\}, \{A\}, \{B, D\}, \{C\}, \{E\}, \{F\}, \{G\}, \{H\}, \{T\}\}$

Edge chose: $\{(D, B)\}$

Iteration 2: For edge (G,C)=5 , G and C are not in a set, choose.

Vertex Sets: $\{S\}, \{A\}, \{B, D\}, \{C, G\}, \{E\}, \{F\}, \{H\}, \{T\}$

Edge chose: $\{(D, B), (G, C)\}$

Iteration 3: For edge (H,G)=5 , H and G are not in a set, choose.

Vertex Sets: $\{S\}, \{A\}, \{B, D\}, \{C, G, H\}, \{E\}, \{F\}, \{T\}$

Edge chose: $\{(D,B),(G,C),(H,G)\}$

Iteration 4: For edge (H,T)=5 , H and T are not in a set, choose.

Vertex Sets: $\{S\}, \{A\}, \{B, D\}, \{C, G, H, T\}, \{E\}, \{F\}$

Edge chose: $\{(D, B), (G, C), (H, G), (H, T)\}$

Iteration 5: For edge (A,B)=8 , A and B are not in a set, choose.

Vertex Sets: $\{S\}, \{A, B, D\}, \{C, G, H, T\}, \{E\}, \{F\}$

Edge chose: $\{(D, B), (G, C), (H, G), (H, T), (A, B)\}$

Iteration 6: For edge (G,D)=8 , G and D are not in a set, choose.

Vertex Sets: $\{S\}, \{A, B, C, D, G, H, T\}, \{E\}, \{F\}$

Edge chose: $\{(D,B),(G,C),(H,G),(H,T),(A,B),(G,D)\}$

Iteration 7: For edge (D,T)=8 , D and T are in a set, not choose.

Iteration 8: For edge (H,D)=8 , H and D are in a set, not choose.

```
Iteration 9: For edge (S,A)=10 , S and A are not in a set, choose.
```

Vertex Sets: $\{S, A, B, C, D, G, H, T\}, \{E\}, \{F\}$

Edge chose: $\{(D, B), (G, C), (H, G), (H, T), (A, B), (G, D), (S, A)\}$

Iteration 10: For edge (B,G)=10 , B and G are in a set, not choose.

Iteration 11: For edge (F,G)=10 , F and G are not in a set, choose.

Vertex Sets: $\{S, A, B, C, D, F, G, H, T\}, \{E\}$

Edge chose: $\{(D, B), (G, C), (H, G), (H, T), (A, B), (G, D), (S, A), (F, G)\}$

Iteration 12: For edge $\left(G,T\right)=10$, G and T are in a set, not choose.

Iteration 13: For edge (S,C)=15 , S and C are in a set, not choose.

Iteration 14: For edge (C,B)=15 , C and B are in a set, not choose.

Iteration 15: For edge (E,F)=15 , E and F are not in a set, choose.

Vertex Sets: $\{S, A, B, C, D, E, F, G, H, T\}$

Edge chose: $\{(D, B), (G, C), (H, G), (H, T), (A, B), (G, D), (S, A), (F, G), (E, F)\}$

Now, all the vertexes are in a set.

We obtain the final spanning tree is (D,B), (G,C), (H,G), (H,T), (A,B), (G,D), (S,A), (F,G), (E,F)

whose value is 5 + 5 + 5 + 5 + 5 + 8 + 8 + 10 + 10 + 15 = 71

2.(a)

We use vertexes A, B, C, D, E to represent **Adam**, **Bob**, **Cathy**, **David**, **Elise** respectively.

And we use vertexes 1,2,3,4,5 to represent **TJ1**, **TJ2**, **TJ3**, **TJ4**, **TJ5** respectively.

We can get graph as below.

(b)

We use the Ford-Fulkerson algorithm because the maximum flow is not exceed 5. We can create the initial graph below Initial Flow=0

Iteration 1: Augmented path 1: S-A-1-T o Flow = Flow+1=1

Iteration 2: Augmented path 1: S-B-1-A-2-T o Flow = Flow+1=2

Iteration 3: Augmented path 1: S-C-3-T o Flow = Flow+1=3

Iteration 4: Augmented path 1: $S-D-4-T \rightarrow Flow = Flow+1=4$

Iteration 5: Augmented path 1: $S-E-5-T \rightarrow Flow = Flow + 1 = 5$

No more possible augmented paths left

Hence, maximum Flow=5

Thus, the final assignment is (Adam o TJ2), (Bob o TJ1), (Cathy o TJ3), (David o TJ4), (Elise o TJ5)

(b)

It's not a balanced tree. Because for leaves 6 are not at height h=4 or h-1=3, their height is 2

(c)

 $\mathsf{pre}\text{-}\mathsf{order}\text{:}\ 46, 9, 6, 42, 21, 45, 99, 56, 76, 82$

(d)

 ${\it post-order:}\ 6,21,45,42,9,82,76,56,99,46$

(e)

in-order: 6, 9, 21, 42, 45, 46, 56, 76, 82, 99

(f)

First, when we delete 46, we need to replace it by the minimum node in its right subtree: $56\,$

When we need to delete 56, it has one child, we replace $56\ \mbox{by }76$

Thus the final tree is

4. (a)

The K-map can be represented as below

	BC	$\overline{B}C$	\overline{BC}	$B\overline{C}$
A	1	1		1
\overline{A}	1			

Thus, F(A,B,C) can be simplify as F(A,B,C)=BC+AB+AC

(b)(i)

The table can be represented as below

A	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(ii) The logic of S is $S=A\oplus B\oplus C_{in}$

(iii) The logic of C_{out} is $C_{out}=AB+BC_{in}+AC_{in}=C_{in}(A\oplus B)+AB$, which is the same as 4(a)

 $\left(iv\right)$ It can be represented by the graph below.

5. (a)

It can be represented by the graph below (Note that all the unit of length is **Meter(s)**)

(b)

Suppose that in this situation ${\cal M}$ cannot directly go to ${\cal V}{\cal A}$

We use Dijkstra's algorithm start from point ${\cal Q}$

Initialization:

$$Dis = (Q:0), (M:\infty), (VA:\infty), (R:\infty), (S:\infty), (T:\infty), (W:\infty)$$

Iteration 1:

Exact vertex ${\cal Q}$, update vertex ${\cal M}, {\cal R}, {\cal T}$

 $Q:d=0\;meter$

$$Dis = (M:20), (VA:\infty), (R:40), (S:\infty), (T:50), (W:\infty)$$

Iteration 2:

Exact vertex M, update vertex R,S

$$Q: d=0 \ meter, M: d=20 \ meters$$

$$Dis = (VA:\infty), (R:30), (S:35), (T:50), (W:\infty)$$

Iteration 3:

Exact vertex R, update vertex VA

 $Q: d=0 \ meter, M: d=20 \ meters, R: d=30 \ meters$

 $Dis = (VA:100), (S:35), (T:50), (W:\infty)$

Iteration 4:

Exact vertex S, update vertex VA, W, T

 $Q: d=0 \ meter, M: d=20 \ meters, R: d=30 \ meters, S=35 \ meters$

Dis = (VA:95), (T:50), (W:85)

Iteration 5:

Exact vertex T, update vertex \boldsymbol{W}

 $Q: d=0 \ meter, M: d=20 \ meters, R: d=30 \ meters, S=35 \ meters, T=50 \ meters$

Dis = (VA:95), (W:85)

Iteration 6:

Exact vertex \boldsymbol{W}

 $Q: d=0 \ meters, M: d=20 \ meters, R: d=30 \ meters, S=35 \ meters, T=50 \ meters, W=85 \ meters$

Dis = (VA:95)

Iteration 7:

Exact vertex VA

 $Q: d=0 \ meters, M: d=20 \ meters, R: d=30 \ meters, S=35 \ meters, T=50 \ meters, W=85 \ meters, VA=95 \ meters$

So the final result is:

 $Q: d=0 \ meter, M: d=20 \ meters, R: d=30 \ meters, S=35 \ meters, T=50 \ meters, W=85 \ meters, VA=95 \ meters, T=50 \ mete$

(c)

According to the description, we need to go from ${\cal W}$ to ${\cal Q}.$

Because of all the path is undirected. So the minimum distance from $W \to Q$ is equal to the minimum distance from $Q \to W$. According to the steps in (b),

 $d_W = d_S + d(S, W) = d_M + d(M, S) + d(S, W) = d_Q + d(Q, M) + d(M, S) + d(S, W) \\$

So the path from W to Q is $W \to S \to M \to Q$, whose length is 85~meters.