Vorlesung 10 (Freitag 2.3.2018)

9 Ereignisgesteuerte Simulationen

9.1 Eindimensionale Kette harter Teilchen

Modell: "Kette" von n harten Teilchen i mit Masse m_i , Ort x_i , Geschwindigkeit v_i

Wände bei x = 0/x = L mit Wärembädern (Temperatur T_1/T_2). Wechselwirkung der Teilchen i.i + 1: idealer Stoß (vorher v_i , nachher v'_i)

$$v_{i}' = \frac{m_{i} - m_{i+1}}{m_{i} + m_{i+1}} v_{i} + \frac{2m_{i+1}}{m_{i} + m_{i+1}} v_{i+1}$$
$$v_{i+1}' = \frac{2m_{i}}{m_{i} + m_{i+1}} v_{i} - \frac{m_{i} - m_{i+1}}{m_{i} + m_{i+1}} v_{i+1}$$

___ [Selbsttest] ____

Was passiert wenn alle Teilchen die gleiche Masse haben?

Wechselwirkung mit Wänden:

Geschwindigkeit gemäß "Maxwell-Verteilung" verteilt [8] .

$$P_{1/2}(v) = \theta(\pm v) \frac{mv}{T} \exp(-mv^2/2T_{1/2})$$
(71)

_ [Selbsttest]

Wie lost man Zufallszahlen gemäß $P_{1/2}$ aus?

Ziel: Untersuchung des Wärmetransports zwischen den Bädern.

9.2 Ereignisse

	[Selbsttest]
Wie winder Sie generall des Mei	[]

Wie würden Sie generell das Modell simulieren?

Überlegen Sie 2 Minuten alleine und diskutieren Sie dann mit Ihrem Nachbarn.

9.3 Implementierung

```
____ [Selbsttest] _____
```

Stellen Sie Vorüberlegungen zur Programmdesign an:

Welche Datenstrukturen braucht man

Welche grundlegenden C-Funktionen muss das Programm beinhalten?

Teilchen:

Initialisierung: Teilchen gleichmäßig zwischen x=0 und x=L verteilen, Geschwindigkeiten zufällig in [-1,1]. Speziell: Wände sind Teilchen 0,n+1, bei $x=0,\,X=L$ ohne Geschwindigkeit.

Ereignisse:

Ereignis i beschreibt den Stoß zwischen Teilchen i und i+1. Stoßzeit = " ∞ ", falls kein Stoß.

typische Situation:

vorher

nachher

(Zunächst nur die Stoßzeit, wir später noch erweitert.)

Es wird immer das $n\ddot{a}chste$ Ereignis ausgeführt \rightarrow man muß alle Ereignisse durchsuchen und das mit der kleinsten Zeit finden (SPÄTER: bessere Implementierung mit Heap).

Abarbeitung eines Ereignisses:

Beim Ereignis i werden Ereignisse i-1 und i+1 (Sonderfall Wände) neu ausgerechnet, neue Stoßzeit für Ereignis $i=\text{``}\infty$.

Routine treat_event()

```
/************* treat_event() ************/
/** Treat event 'ev' from 'event' array:
                                                  **/
/** calculate new velocities of particles ev,ev+1
                                                  **/
/** recalculate events ev-1, ev, ev+1
                                                  **/
/** PARAMETERS: (*)= return-paramter
                                                  **/
/**
        glob: global data
                                                  **/
/**
        part: data of particles
                                                  **/
/**
        event: array of events
                                                  **/
/*
       ev: id of event
                                                  **/
/** RETURNS:
                                                  **/
/** nothing
/****************/
void treat_event(global_t *glob, particle_t *part, event_t *event, int ev)
                          /* particles of collision */
 int pl, pr;
 double vl, vr;
                        /* velocities of particles */
 pl = ev;
 pr = ev+1;
 part[pl].x += (event[ev].t- part[pl].t)*part[pl].v;
 part[pr].x += (event[ev].t - part[pr].t)*part[pr].v;
 part[pl].t = event[ev].t;
 part[pr].t = event[ev].t;
 if(pl==0)
                          /* collision w. left wall */
   part[pr].v = generate_maxwell(part[pr].m, glob->T1);
   event[pl].t = glob->t_end+1;
   event[pr].t = event_time(pr, pr+1, glob, part);
 else if(pr==(glob->n+1)) /* collision w. right wall */
   part[pl].v = -generate_maxwell(part[pl].m, glob->T2);
   event[pl].t = glob->t_end+1;
   event[pl-1].t = event_time(pl-1, pl, glob, part);
 }
 else
   vl = part[pl].v; vr = part[pr].v;
   part[pl].v = ( (part[pl].m-part[pr].m)*vl + 2*part[pr].m*vr )/
     (part[pl].m + part[pr].m);
   part[pr].v = ( 2*part[pl].m*vl - (part[pl].m-part[pr].m)*vr )/
     (part[pl].m + part[pr].m);
   event[pl-1].t = event_time(pl-1, pl, glob, part);
   event[pl].t = glob->t_end+1;
   event[pr].t = event_time(pr, pr+1, glob, part);
 }
}
```

Achtung: möglicherweise zeitweise KEIN Ereignis für ein Teilchen (weder Stoß rechts noch links), ist aber kein Problem.

9.4 Dichte

```
Meßgröße: Dichte als Funktion des Ortes. (auch möglich: Wärmeleitung etc)
Realisierung:(glob.L= Größe des Systems)
```

```
double *density;
                                  /* for measuring rho(x) */
  int bin, num_bins;
  double delta_x;
  num_bins = 50;
  delta_x = glob.L/num_bins;
  density = (double *) malloc(num_bins*sizeof(double));
  for(bin=0; bin<num_bins; bin++)</pre>
    density[bin] = 0;
Messung (part [p] = Daten für Teilchen p, glob.n= Anzahl der Teilchen):
        for(p=1; p<=glob.n; p++)</pre>
           bin = (int) floor(
              (part[p].x+(t_measure-part[p].t)*part[p].v)/
              delta_x);
           density[bin]+= 1/delta_x;
        }
Aufbau der Hauproutine. Grobplanung durch Pseudocode
algorithm main()
begin
   Initialisierung
   t = erstes Ereignis
   while t < t_{\text{end}}
   begin
     Messungen;
     bearbeite Ereignis;
     t =nächstes Ereignis
   end
end
```

(siehe main() in chain.c)

Hier: alternierende Massen $(m^a=1/m^b=2.6)$ n=100 Teilchen, Laufzeit $t_{\rm end}=100$. Messung der Dichte nach der Hälfte der Laufzeit alle 10 Zeiteinheiten. System noch nicht equilibriert:

Figure 21: mittlere Dichte als Funktion des Ortes im Zeitintervall [50, 100].

 $t_{\rm end} = 10000.$

Figure 22: Mittlere Dichte als Funktion des Ortes im Zeitintervall [5000, 10000].

Dicht geringer, dort wo die Temperatur höher ist. Weitere Ergebnisse siehe [8].

9.5 Heaps

Laufzeit des Programms:

Anzal der Stöße pro Zeiteinheit: O(n)Suche des nächsten Ereignisses: O(n) $\Rightarrow O(n^2) =$ "langsam".

Verbesserung: $O(n \log n)$, wenn man einen Heap verwendet.

Vorschau:

Lauzeitbeispiel: $n = 500, t_{\text{end}} = 10000.$

time chain 500 10000

21.36user 0.07system 0:21.70elapsed 98%CPU (Oavgtext+Oavgdata Omaxresident)k Oinputs+Ooutputs (133major+20minor)pagefaults Oswaps

time chain_heap 500 10000

7.92user 0.01system 0:08.08elapsed 98%CPU (Oavgtext+Oavgdata Omaxresident)k Oinputs+Ooutputs (133major+23minor)pagefaults Oswaps

mit Heap \rightarrow schnellere Programm \rightarrow größere Systeme (n=16383 zu n=1281)

→ verlässlichere, ANDERE Ergebnisse [9] (Crossover).

Heap = teilgeordneter Baum, der für jeden Unterbaum das (hier) kleinste Element an der Wurzel stehen hat

 \rightarrow jedes Element ist kleiner als seine Söhne Bsp:

Damit: das erste Element ist IMMER das kleinste, also z.B. das nächste Ereignis \rightarrow schneller Zugriff (O(1)).

Für Heaps: effiziente Realisierung als Array:

Knoten i:

Vater: (i-1)/2 (int Operation)

linker Sohn: 2i + 1 rechter Sohn: 2i + 2

Grundlegende Heap Operationen:

Einfügen:

algorithm heap_insert()
begin

füge Element am Ende hinzu;

while (Element kleiner als Vater) vertausche mit Vater; end

(siehe heap_insert() in chain_heap.c)

Bsp: Einfügen von "17"

ergibt

maximal ein Durchlauf von einem Blatt zur Wurzel \rightarrow Zeit $O(\log N)$ Entfernen:

```
\begin{array}{l} \textbf{algorithm} \ \text{heap\_remove}() \\ \textbf{begin} \end{array}
```

ersetze Element durch letztes Element;
if (Element kleiner als Vater) then
while (Element kleiner als Vater)
vertausche mit Vater;
else
while (Element größer als ein Sohn)
vertausche mit kleinerem Sohn;

end

Fall A:

Fall B:

 \rightarrow Zeit $O(\log N)$

Implementierungshinweis: Es werden auch Ereignisse mitten aus dem Heap entfernt (wenn sich die Zeiten benachbarter Ereignisse ändern).

 \rightarrow damit das schnell geht, wird für jedes Ereignis in dem nach Ort geordnetem Ereignis Array auch seine Position im Heap gespeichert. (siehe Typ heap_elem_t in chain_heap.c). Diese Position muß bei jeder Verschiebung im Heap mit aktualisiert werden. (Ohne diese Abspeicherung müsste wieder der ganze Heap durchsucht werden, wenn ein Ereignis mitten aus dem Heap entfernt wird \rightarrow wieder O(N)). Solche "Doppelverweise" (hier Heap \rightarrow Array, Array \rightarrow Heap) sind oft nötig, wenn man effiziente Programme schreiben will.

(siehe heap_remove() in chain_cheap.c)

Zugriff auf das erste Element im Heap: O(1) (im Vergleich zu O(N) bei der einfachen Implementierung).

 \rightarrow Gesamtlaufzeit $O(N \log N)$.

References

- [1] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong. Monte Carlo simulations: Hidden errors from "good" random number generators. *Phys. Rev. Lett.*, 69:3382, 1992.
- [2] B.J.T. Morgan. *Elements of Simulation*. Cambridge University Press, Cambridge, 1984.
- [3] W. H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery. *Numerical Recipes in C.* Cambridge University Press, Cambridge, 1995.
- [4] A. K. Hartmann. *Practical Guide to Computer Simulations*. World Scientific, Singapore, 2009.
- [5] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. *Bull. Math. Biophys.*, 5:115–133, 1943.
- [6] D. Hebb. Organisation of Behavior. Wiley, New York, 1949.
- [7] A. C. Maggs and V. Rossetto. Local simulation algorithms for coulomb interactions. *Phys. Rev. Lett.*, 88(19):196402, 2002.
- [8] A. Dhar. Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. *Phys. Rev. Lett.*, 86:3554, 2001.
- [9] P. Grassberger, W. Nadler, and Lei Yang. Heat conduction and entropy production in a one-dimensional hard-particle gas. *Phys. Rev. Lett.*, 89:180601, 2002.