Logic and Foundation with Haskell

Exercise sheet 4

Exercise 1. Prove the following sequents involving conjunction:

- (i) $\{\varphi\} \vdash (\varphi \land \varphi)$,
- (ii) $\{\varphi, \psi, \chi\} \vdash (\varphi \land (\psi \land \chi)).$

Solution: (i): $\frac{\varphi}{(\varphi \wedge \varphi)}$ (\wedge I) (ii): $\frac{\psi}{(\varphi \wedge \chi)} \frac{\chi}{(\psi \wedge \chi)}$ (\wedge I)

(ii):
$$\frac{\varphi}{(\varphi \wedge (\psi \wedge \chi))} \frac{\psi \quad \chi}{(\wedge I)} (\wedge I)$$

Exercise 2. Show that $\{\varphi_1, \varphi_2\} \vdash \psi$ if and only if $\{(\varphi_1 \land \varphi_2)\} \vdash \psi$. Hence, we can view the set of assumptions as being a big conjunction.

Solution: Suppose that $\{\varphi_1, \varphi_2\} \vdash \psi$. Then there is a natural deduction derivation D with premises included in $\{\varphi_1, \varphi_2\}$, and conclusion ψ . By $(\wedge E)$, we have derivations

$$\frac{(\varphi_1 \wedge \varphi_2)}{\varphi_1} \qquad \frac{(\varphi_1 \wedge \varphi_2)}{\varphi_2}$$

which we can append at the beginning of D to get a derivation witnessing $\{(\varphi_1 \wedge \varphi_2)\} \vdash \psi$. Conversely, suppose that $\{(\varphi_1 \wedge \varphi_2)\} \vdash \psi$. Then there is a derivation D' that proves ψ from premises in $\{(\varphi_1 \wedge \varphi_2)\}$. We can append the introduction rule $(\land I)$

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)}$$

to the beginning of D' to get a derivation witnessing $\{\varphi_1, \varphi_2\} \vdash \psi$.

Exercise 3. Show the following sequents involving implication:

- (i) $\vdash (\varphi \rightarrow (\psi \rightarrow \psi))$,
- (ii) $\vdash ((\varphi \rightarrow \varphi) \land (\psi \rightarrow \psi)),$
- (iii) $\{(\varphi \to \psi), (\varphi \to \chi)\} \vdash (\varphi \to (\psi \land \chi)).$

Solution: Note that $\frac{\psi}{(\psi \to \psi)}$ is a valid application of the $(\to I)$ rule. Hence $\vdash (\psi \to \psi)$ for any formula ψ . Moreover, whenever $\vdash \psi$, then also $\vdash (\varphi \to \psi)$ for any φ by

$$\frac{\frac{\cdots}{\psi}}{(\varphi \to \psi)} (\to I)$$

where we use the version that does not cancel any premises.

(i): By the previous arguments $\vdash (\psi \to \psi)$, and hence also $\vdash (\varphi \to (\psi \to \psi))$. Explicitly, one can also write down the following derivation

$$\frac{\frac{\psi}{(\psi \to \psi)}}{(\varphi \to (\psi \to \psi))}$$

- (ii): Since both $\vdash (\varphi \to \varphi)$ and $\vdash (\psi \to \psi)$ hold, we conclude $\vdash ((\varphi \to \varphi) \land (\psi \to \psi))$ by the sequent rule for $(\land I)$.
 - (iii): The sequent is proved by the following derivation

$$(\rightarrow E) \frac{\varphi \qquad (\varphi \rightarrow \psi)}{\psi} \qquad \frac{\varphi \qquad (\varphi \rightarrow \chi)}{\chi} (\rightarrow E)$$
$$\frac{(\psi \land \chi)}{(\varphi \rightarrow (\psi \land \chi))} (\rightarrow I)$$

Exercise 4. Show that $\Gamma \cup \{\varphi\} \vdash \psi$ if and only if $\Gamma \vdash (\varphi \to \psi)$. Hence implication 'internalizes' \vdash .

Solution: Suppose that $\Gamma \cup \{\varphi\} \vdash \psi$. Then there is a derivation D of ψ from premises in $\Gamma \cup \{\varphi\}$. We can apply the $(\to I)$ rule to the end of D, while canceling φ to get a derivation of $(\varphi \to \psi)$ from premises in Γ . Conversely, suppose that $\Gamma \vdash (\varphi \to \psi)$. Then there is a derivation D' of $(\varphi \to \psi)$ from premises in Γ . Then the following derivation witnesses $\Gamma \cup \{\varphi\} \vdash \psi$:

$$\frac{\varphi}{\varphi} \frac{\frac{\Gamma}{D'}}{(\varphi \to \psi)} (\to E)$$

Exercise 5. Write down sequent rules $(\leftrightarrow I)$ and $(\leftrightarrow E)$ for equivalence.

Solution:

 $(\leftrightarrow I)$: If $\Gamma \vdash (\varphi \rightarrow \psi)$ and $\Delta \vdash (\psi \rightarrow \varphi)$, then $\Gamma \cup \Delta \vdash (\varphi \leftrightarrow \psi)$.

 $(\leftrightarrow \! E) \colon \ \text{If } \Gamma \vdash (\varphi \leftrightarrow \psi), \text{ then } \Gamma \vdash (\varphi \to \psi) \text{ and } \Gamma \vdash (\psi \to \varphi).$

Exercise 6. Prove the following sequents involving equivalence:

- (i) $\{\varphi, (\varphi \leftrightarrow \psi)\} \vdash \psi$,
- (ii) $\vdash (\varphi \leftrightarrow \varphi)$,
- (iii) $\{(\varphi \leftrightarrow (\psi \leftrightarrow \psi))\} \vdash \varphi$.

Solution: (i):
$$\varphi = \frac{(\varphi \leftrightarrow \psi)}{\varphi \to \psi} \stackrel{(\leftrightarrow E)}{(\leftrightarrow E)}$$
 (ii): $\frac{\psi}{(\psi \to \psi)} = \frac{\psi}{(\psi \to \psi)} \stackrel{(\leftrightarrow I)}{(\leftrightarrow I)}$

(iii):
$$\frac{D}{\underbrace{(\psi \leftrightarrow \psi)}} \quad \frac{(\varphi \leftrightarrow (\psi \leftrightarrow \psi))}{((\psi \leftrightarrow \psi) \to \varphi)} \stackrel{(\leftrightarrow E)}{(\to E)}$$
 where D is the derivation from (ii).

Exercise 7. Show that the relation $\varphi \sim \psi$ defined by $\vdash (\varphi \leftrightarrow \psi)$ is an equivalence relation.

Solution: We need to show that \sim is reflexive, symmetric and transitive. Reflexivity requires $\vdash (\varphi \leftrightarrow \varphi)$. This holds by Exercise 6(ii). Symmetry requires that $\vdash (\varphi \leftrightarrow \psi)$ implies $\vdash (\psi \leftrightarrow \varphi)$. This holds because $\vdash (\varphi \leftrightarrow \psi)$ implies both $\vdash (\psi \to \varphi)$ and $\vdash (\varphi \to \psi)$ by the sequent rule for $(\leftrightarrow E)$, and hence $\vdash (\psi \leftrightarrow \varphi)$ by the sequent rule for $(\leftrightarrow I)$.

Finally, transitivity requires that $\vdash (\varphi \leftrightarrow \psi)$ and $\vdash (\psi \leftrightarrow \chi)$ imply $\vdash (\varphi \leftrightarrow \chi)$. Using the $(\leftrightarrow E)$ sequent rule, we conclude $\vdash (\varphi \to \psi)$ and $\vdash (\psi \to \chi)$. By Exercise 4, $\varphi \vdash \psi$ and $\psi \vdash \chi$. Applying the transitivity sequent rule (composing the witnessing derivations together) shows that $\varphi \vdash \chi$, and hence also $\vdash (\varphi \to \chi)$. A symmetric argument shows $\vdash (\chi \to \varphi)$. Thus $\vdash (\varphi \leftrightarrow \chi)$ by $(\leftrightarrow I)$.

Exercise 8. Prove the following sequents without (RAA):

- (i) $\vdash (\neg(\varphi \land (\neg\varphi))),$
- (ii) $\vdash ((\neg(\varphi \to \psi)) \to (\neg\psi)),$
- (iii) $\{(\varphi \to \psi)\} \vdash ((\neg \psi) \to (\neg \varphi)),$
- (iv) $\{(\varphi \to \psi)\} \vdash (\neg(\varphi \land (\neg \psi))).$

Solution:

(i):

$$(\wedge E) \frac{(\varphi \wedge (\neg \varphi))}{\varphi} \frac{(\varphi \wedge (\neg \varphi))}{(\neg \varphi)} (\wedge E)$$

$$\frac{\bot}{(\neg (\varphi \wedge (\neg \varphi)))} (\neg I)$$

(ii):

$$(\rightarrow I) \frac{\psi}{(\varphi \rightarrow \psi)} \qquad (\neg(\varphi \rightarrow \psi)) \qquad (\neg E)$$

$$\frac{\bot}{(\neg\psi)} (\neg I) \qquad (\rightarrow I)$$

$$((\neg(\varphi \rightarrow \psi)) \rightarrow (\neg\psi)) \qquad (\rightarrow I)$$

(iii):

$$(\rightarrow E) \frac{\varphi \qquad (\varphi \rightarrow \psi)}{\psi \qquad \qquad (\neg \psi)} \frac{\psi \qquad \qquad (\neg \psi)}{(\neg \varphi)} \frac{\bot}{(\neg \varphi)} (\neg I)}{((\neg \psi) \rightarrow (\neg \varphi))} (\rightarrow I)$$

(iv:)
$$\frac{(\wedge E) \frac{(\varphi \wedge (\neg \psi))}{\varphi}}{(\rightarrow E) \frac{\varphi}{\varphi}} \frac{(\varphi \rightarrow \psi)}{(\varphi \rightarrow \psi)} \frac{(\varphi \wedge (\neg \psi))}{(\neg \psi)} (\wedge E)}{(\neg (\varphi \wedge (\neg \psi)))} (-I)$$

Exercise 9. Show using (RAA) that $\{((\neg \psi) \to (\neg \varphi))\} \vdash (\varphi \to \psi)$.

Solution:

$$(\rightarrow E) \frac{(\neg \psi) \qquad ((\neg \psi) \rightarrow (\neg \varphi))}{(\neg \varphi) \qquad \qquad \varphi \qquad (\neg E)} \frac{\bot}{\psi} (RAA) \\ \hline (\varphi \rightarrow \psi) \qquad (\rightarrow I)$$

Exercise 10. Prove the following sequents without $(\vee E)$:

- (i) $\vdash (\varphi \rightarrow (\varphi \lor \psi)),$
- (ii) $\{(\neg(\varphi \lor \psi))\} \vdash ((\neg\varphi) \land (\neg\psi)),$
- (iii) $\vdash ((\varphi \rightarrow \psi) \rightarrow ((\neg \varphi) \lor \psi)).$

Solution:

(i):

$$\frac{\varphi}{(\varphi \vee \psi)} (\vee I)$$
$$(\varphi \to (\varphi \vee \psi))$$

(ii):

$$(\neg E) \frac{(\neg(\varphi \lor \psi)) \qquad \frac{\varphi}{(\varphi \lor \psi)}}{(\neg I) \frac{\bot}{(\neg \varphi)}} (\lor I) \qquad (\neg E) \frac{(\neg(\varphi \lor \psi)) \qquad \frac{\psi}{(\varphi \lor \psi)}}{(\neg I) \frac{\bot}{(\neg \psi)}} (\lor I)$$

$$((\neg \varphi) \land (\neg \psi))$$

(iii): Using Exercise 4, we show the equivalent $\{(\varphi \to \psi)\} \vdash ((\neg \varphi) \lor \psi)$:

Exercise 11. Prove the following sequents with $(\vee E)$:

(i)
$$\{(\varphi \lor \psi)\} \vdash (\psi \lor \varphi)$$
,

(ii)
$$\{(\varphi \lor \psi), (\varphi \to \chi), (\psi \to \chi)\} \vdash \chi$$
,

(iii)
$$\{(\varphi \lor \psi), (\neg \varphi)\} \vdash \psi$$
,

(iv)
$$\{((\neg \varphi) \land (\neg \psi)\} \vdash (\neg(\varphi \lor \psi)).$$

Solution:

(i):

$$(\forall I) \frac{\varphi}{(\psi \vee \varphi)} \qquad \frac{\psi}{(\psi \vee \varphi)} (\forall I) \qquad (\varphi \vee \psi) \\ (\psi \vee \varphi) \qquad (\forall E)$$

(ii):

$$(\rightarrow E) \frac{\varphi \qquad (\varphi \rightarrow \chi)}{\chi} \qquad \frac{\psi \qquad (\psi \rightarrow \chi)}{\chi} (\rightarrow E) \qquad (\varphi \lor \psi) \qquad (\lor E)$$

(iii):

$$\frac{\varphi \qquad (\neg \varphi)}{\frac{\bot}{\psi} \text{ (RAA)}} (\neg E) \\
\frac{\psi}{\psi} \qquad (\varphi \lor \psi) (\lor E)$$

(iv): Using Exercise 2, we show the equivalent $\{(\neg \varphi), (\neg \psi)\} \vdash (\neg(\varphi \lor \psi))$.

$$(\neg E) \xrightarrow{\varphi} \begin{array}{cccc} (\neg \varphi) & & \psi & (\neg \psi) \\ & \bot & & \bot & (\neg E) \\ \hline & & \bot & (\neg E) & & (\varphi \lor \psi) \\ \hline & & & \bot & (\neg (\varphi \lor \psi)) \end{array} (\neg E)$$