Problème SAT

Quentin Fortier

July 2, 2022

Théorème

Toute formule logique φ est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $\varphi = c_1 \vee ... \vee c_n$ où c_i est de la forme $x_1 \wedge ... \wedge x_p$ avec $x_1, ..., x_p$ des littéraux (variable ou négation d'une variable).

Théorème

Toute formule logique φ est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $\varphi = c_1 \vee ... \vee c_n$ où c_i est de la forme $x_1 \wedge ... \wedge x_p$ avec $x_1, ..., x_p$ des littéraux (variable ou négation d'une variable).

Preuve:

$$\varphi \ = \ \bigvee_{ \substack{ v \text{ valuation} \\ \operatorname{tq} \ [\![\varphi]\!]_v = 1 }} \ \bigwedge_{ \substack{ x \in V \\ \operatorname{tq} \ v(x) = 1 }} x$$

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Preuve:

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

 $\begin{array}{l} \underline{\mathsf{Preuve}} : \neg \varphi \text{ est \'equivalente \`a une forme normale disjonctive, c'est \`a} \\ \mathsf{dire} \ \neg \varphi \longleftrightarrow c_1 \lor \dots \lor c_k \ \mathsf{o\`u} \ \mathsf{chaque} \ c_i \ \mathsf{est} \ \mathsf{de} \ \mathsf{la} \ \mathsf{forme} \ \ell_1 \land \dots \land \ell_p. \\ \mathsf{Alors} \ \neg \neg \varphi = \neg (c_1 \lor \dots \lor c_k) \longleftrightarrow \neg c_1 \land \dots \land \neg c_k \ \mathsf{(de \ Morgan)}. \\ \mathsf{Et} \ \neg c_i = \neg (\ell_1 \land \ell_2 \land \dots \land \ell_p) \longleftrightarrow \neg \ell_1 \lor \dots \lor \neg \ell_p \ \mathsf{(de \ Morgan)}. \end{array}$

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

 $\begin{array}{l} \underline{\mathsf{Preuve}} : \neg \varphi \text{ est \'equivalente \`a une forme normale disjonctive, c'est \`a} \\ \underline{\mathsf{dire}} \ \neg \varphi \longleftrightarrow c_1 \lor \dots \lor c_k \text{ où chaque } c_i \text{ est de la forme } \ell_1 \land \dots \land \ell_p. \\ \mathsf{Alors} \ \neg \neg \varphi = \neg (c_1 \lor \dots \lor c_k) \longleftrightarrow \neg c_1 \land \dots \land \neg c_k \text{ (de Morgan)}. \\ \mathsf{Et} \ \neg c_i = \neg (\ell_1 \land \ell_2 \land \dots \land \ell_p) \longleftrightarrow \neg \ell_1 \lor \dots \lor \neg \ell_p \text{ (de Morgan)}. \\ \mathsf{Donc} \ \varphi \longleftrightarrow \neg \neg \varphi \text{ est bien \'equivalente \`a une forme normale conjonctive.} \\ \end{array}$

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

 $\begin{array}{l} \underline{\mathsf{Preuve}} : \neg \varphi \text{ est \'equivalente \`a une forme normale disjonctive, c'est \`a} \\ \mathsf{dire} \ \neg \varphi \longleftrightarrow c_1 \lor \dots \lor c_k \ \mathsf{o\`u} \ \mathsf{chaque} \ c_i \ \mathsf{est} \ \mathsf{de} \ \mathsf{la} \ \mathsf{forme} \ \ell_1 \land \dots \land \ell_p. \\ \mathsf{Alors} \ \neg \neg \varphi = \neg (c_1 \lor \dots \lor c_k) \longleftrightarrow \neg c_1 \land \dots \land \neg c_k \ \mathsf{(de \ Morgan)}. \\ \mathsf{Et} \ \neg c_i = \neg (\ell_1 \land \ell_2 \land \dots \land \ell_p) \longleftrightarrow \neg \ell_1 \lor \dots \lor \neg \ell_p \ \mathsf{(de \ Morgan)}. \\ \mathsf{Donc} \ \varphi \longleftrightarrow \neg \neg \varphi \ \mathsf{est} \ \mathsf{bien} \ \mathsf{\acute{e}quivalente} \ \mathsf{\grave{a}} \ \mathsf{une} \ \mathsf{forme} \ \mathsf{normale} \\ \mathsf{conjonctive}. \end{array}$

Autre preuve possible : par induction structurelle sur φ .

Exercice X2016

Question 20 Pour chacune des formules suivantes, utiliser l'involutivité de la négation, l'associativité et la distributivité des connecteurs \wedge et \vee , ainsi que les lois de De Morgan pour transformer la formule en FNC. Seul le résultat du calcul est demandé :

- a) $(x_1 \vee \neg x_0) \wedge \neg (x_4 \wedge \neg (x_3 \wedge x_2))$
- b) $(x_0 \wedge x_1) \vee (x_2 \wedge x_3) \vee (x_4 \wedge x_5)$

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

1-SAT :

Problème *k*-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- \bullet 1-SAT : satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité : O(n), n étant le nombre de variables dans φ .
- **2**-SAT:

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- \bullet 1-SAT : satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité : O(n), n étant le nombre de variables dans φ .
- 2-SAT : se ramène à un problème de graphe dont les sommets sont les littéraux de φ .
 - Pour toute clause $\ell_1 \vee \ell_2$, équivalente à $\neg \ell_1 \implies \ell_2$, on ajoute un arc $(\neg \ell_1, \ell_2)$.
 - φ est alors satisfiable ssi aucune composante fortement connexe ne contient une variable et sa négation.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT (pour k quelconque) en complexité polynomiale.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT (pour k quelconque) en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT (pour k quelconque) en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses. Alors :

$$c \longleftrightarrow (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT (pour k quelconque) en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses. Alors :

$$c \longleftrightarrow (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

On peut donc transformer φ en une formule 3-SAT, en multipliant au plus par k le nombre de variables.

Réduction

Le fait de passer d'une instance de k-SAT à une instance de 3-SAT est une **réduction**. Beaucoup de problèmes peuvent se réduire à 3-SAT et ainsi être résolu par un SAT-solver :

Réduction

Le fait de passer d'une instance de k-SAT à une instance de 3-SAT est une **réduction**. Beaucoup de problèmes peuvent se réduire à 3-SAT et ainsi être résolu par un SAT-solver :

Exercice

Soit G un graphe et k un entier. Un k-coloriage de G consiste à associer à chaque sommet de G un entier (une couleur) entre 1 et k de façon à ce que deux sommets adjacents soient de couleur différente. Construire une formule logique qui soit vraie si et seulement si G possède un k-coloriage.

Réduction

Le fait de passer d'une instance de k-SAT à une instance de 3-SAT est une **réduction**. Beaucoup de problèmes peuvent se réduire à 3-SAT et ainsi être résolu par un SAT-solver :

Exercice

Soit G un graphe et k un entier. Un k-coloriage de G consiste à associer à chaque sommet de G un entier (une couleur) entre 1 et k de façon à ce que deux sommets adjacents soient de couleur différente. Construire une formule logique qui soit vraie si et seulement si G possède un k-coloriage.

Exercice

Donner une réduction du problème du sudoku à 3-SAT.

Définition

On appelle **NP** l'ensemble des problèmes possédant un **certificat polynomial**, c'est-à-dire qu'il est possible de vérifier en complexité polynomiale qu'une solution potentielle est correcte.

<u>Exemple</u>: 3-SAT est dans NP puisqu'étant donné une valuation, il est possible de vérifier si une formule est vraie en complexité polynomiale en la taille de la formule (en appelant la fonction eval).

Définition

On appelle **NP** l'ensemble des problèmes possédant un **certificat polynomial**, c'est-à-dire qu'il est possible de vérifier en complexité polynomiale qu'une solution potentielle est correcte.

<u>Exemple</u>: 3-SAT est dans NP puisqu'étant donné une valuation, il est possible de vérifier si une formule est vraie en complexité polynomiale en la taille de la formule (en appelant la fonction eval).

Définition

Si P_1 et P_2 sont des problèmes algorithmiques, une **réduction** de P_1 à P_2 est une transformation polynomiale d'une instance (entrée) I_1 de P_1 en une instance I_2 de P_2 , telle que la résolution de I_2 permette de résoudre I_1 .

Dans ce cas, P_2 est considéré comme étant « plus difficile que P_1 ».

Définition

On appelle **NP** l'ensemble des problèmes possédant un **certificat polynomial**, c'est-à-dire qu'il est possible de vérifier en complexité polynomiale qu'une solution potentielle est correcte.

<u>Exemple</u>: 3-SAT est dans NP puisqu'étant donné une valuation, il est possible de vérifier si une formule est vraie en complexité polynomiale en la taille de la formule (en appelant la fonction eval).

Définition

Si P_1 et P_2 sont des problèmes algorithmiques, une **réduction** de P_1 à P_2 est une transformation polynomiale d'une instance (entrée) I_1 de P_1 en une instance I_2 de P_2 , telle que la résolution de I_2 permette de résoudre I_1 .

Dans ce cas, P_2 est considéré comme étant « plus difficile que P_1 ».

Définition

Un problème P est **NP-difficile** si tout problème de NP se réduit à P. Un problème est **NP-complet** s'il est NP-difficile et qu'il est dans NP.

Conjecture à 1 million : il est impossible de résoudre un problème NP-complet en complexité polynomiale.

Définition

Un problème P est **NP-difficile** si tout problème de NP se réduit à P. Un problème est **NP-complet** s'il est NP-difficile et qu'il est dans NP.

Conjecture à 1 million : il est impossible de résoudre un problème NP-complet en complexité polynomiale.

Théorème de Cook

SAT est NP-complet.

On a vu précédemment que SAT se réduit à 3-SAT, donc 3-SAT est aussi NP-complet.

La technique classique pour montrer qu'un problème est NP-complet est de montrer une réduction depuis 3-SAT :

Problème CLIQUE

 $\underline{\mathsf{Entr\acute{e}e}}$: un graphe G et un entier k.

Sortie: true si G possède une clique de taille k (un sous-graphe

complet à k sommets), false sinon.

La technique classique pour montrer qu'un problème est NP-complet est de montrer une réduction depuis 3-SAT :

Problème CLIQUE

Entrée : un graphe G et un entier k.

 $\underline{ ext{Sortie}}$: true si G possède une clique de taille k (un sous-graphe

complet à k sommets), false sinon.

Exercice

Montrer que CLIQUE est NP-complet.

Exercice

Montrer que CLIQUE est NP-complet.

On montre que 3-SAT se réduit à CLIQUE. Soit $\varphi=c1 \wedge c2 \wedge ... \wedge c_k$ une formule 3-SAT. On va construire un graphe G à partir de φ .

Exercice

Montrer que CLIQUE est NP-complet.

On montre que 3-SAT se réduit à CLIQUE. Soit $\varphi=c1 \wedge c2 \wedge ... \wedge c_k$ une formule 3-SAT. On va construire un graphe G à partir de φ . Pour chaque clause c, on met un sommet pour chaque littéral apparaissant dans c.

Exercice

Montrer que CLIQUE est NP-complet.

On montre que 3-SAT se réduit à CLIQUE. Soit $\varphi=c1 \wedge c2 \wedge ... \wedge c_k$ une formule 3-SAT. On va construire un graphe G à partir de φ .

Pour chaque clause c, on met un sommet pour chaque littéral apparaissant dans c.

On relie deux sommets si les littéraux correspondants sont dans des clauses différentes et qu'ils ne sont pas négation l'un de l'autre.

Exercice

Montrer que CLIQUE est NP-complet.

On montre que 3-SAT se réduit à CLIQUE. Soit $\varphi=c1 \wedge c2 \wedge ... \wedge c_k$ une formule 3-SAT. On va construire un graphe G à partir de φ . Pour chaque clause c, on met un sommet pour chaque littéral

Pour chaque clause c, on met un sommet pour chaque littéral apparaissant dans c.

On relie deux sommets si les littéraux correspondants sont dans des clauses différentes et qu'ils ne sont pas négation l'un de l'autre. Si G a une clique C de taille k, on peut assigner T à chaque sommet de C, ce qui satisfait chacune des k clauses.

Réduction pour la formule $C_1 \wedge C_2 \wedge C_3$:

