MANUFACTURE TEST REQUIREMENT

MODELNAME	:	PS-2251-3S

CUSTOMER : CISCO

DATE : _Mar. 24 , 2020 _

REV : <u>A</u>

PREPARED BY : Pippen Huang

Ellen Liao ____

CHECKED BY:_____

APPROVED BY:

Modification History

Revision	Date	Description	Sections Affected	Originator
X01	8/6/2019	Initial	All	Pippen Huang
	10/17/2019	1. Change Accuracy 30% load Pin SPEC	1.2.1	Pippen Huang
		Delete ripple noise 100MHz test condition Add AC_OK, SCL and SDA signal ripple SPEC	3	Pippen Huang
X02	11/01/2019	3. Change 12V overshoot SPEC	4	Pippen Huang
		4. Change 12V dynamic load SPEC	5	Pippen Huang
		5. Change surge, ESD and EFT SPEC	22, 23, 24	Pippen Huang
	11/05/2019	6. Calibration change: Vout Setpoint formula	1.1.3	Ellen Liao
V02	44/40/2040	1. Change 12V overshoot SPEC	4	Pippen Huang
X03	11/18/2019	2. Change FW version from D5h to EBh	1.2.2	Ellen Liao
X04	12/02/2019	update Vout Setpoint/Droop Calibration	1.1.3	Ellen Liao
Α	03/24/2020	1. Change Accuracy 30% load lin, lout and Pout	1.2.1	Pippen Huang

1. Initial Test (Pre-Check)

1.1 Trimming and Calibration

1.1.1 Background

Factory Mode Enable Command
S + ADDRw + 0xD1 + 0x4C + 0x69 + 0x6F + 0x6E + P
Calibration Clear Command
S + ADDRw + 0xBD + 0x01 + 0x02 + P
Calibration Write Command
S + ADDRw + 0xBD + 0x08 + 0x00 + Index + Slope ₀ + Slope ₁ + Offset ₀ + Offset ₁ + Offset ₂ + Offset ₃ + P
Calibration Read Command
S + ADDRw + 0xBD + 0x02 + 0x01 + Index + RS + ADDRr + 0x06 + Slope ₀ + Slope ₁ + Offset ₀ + Offset ₂ + Offset ₃ + P
Enable the Calibration Save Command
S + ADDRw + 0xEA + 0x9A + P
Disable the Calibration Save Command
S + ADDRw + 0xEA + 0x56 + P

1.1.2 Calibration Setup

- PSON Low, 12V/1A
- Power up UUT with 115VAC
- I2C Address 0xB4 or 0xB6
- Enable factory mode by Factory Mode Enable Command.
- Clear all calibration data by Calibration Clear Command.
- Calibration Write Command is used to write trim data.
- Related Pmbus commands as below.

Command	Code	Format
Input Voltage	0x88	Linear Format (N = -1)
Input Current	0x89	Linear Format (N = -7)
Input Power	0x97	Linear Format (N = 0)
Output Voltage	0x8B	Linear Format (direct with one
Output Voltage	UXOD	decimal place)
Output Current	0x8C	Linear Format (direct with one
		decimal place)
Output Power	0x96	Linear Format (N = 0)

- Calibration Data Index as below.

Item	Index
Vin Reporting	0x00
Reserved	0x01
Reserved	0x02
lin Reporting Low#1	0x03
lin Reporting Low#2	0x04
Reserved	0x05
lin Reporting High#1	0x06
lin Reporting High#2	0x07
Reserved	0x08
Pin Reporting Low#1	0x09
Pin Reporting Low#2	0x0A
Reserved	0x0B
Pin Reporting High#1	0x0C
Pin Reporting High#2	0x0D
Reserved	0x0E
Reserved	0x0F
Vout Setpoint	0x10
Vout Reporting	0x11
Reserved	0x12
lout Reporting#1	0x13
lout Reporting#2	0x14
Reserved	0x15
DroopRef	0x16
Reserved	0x17
Reserved	0x18
Reserved	0x19

1.1.3 Vout Setpoint/Droop Calibration

Item	Offset1								
Setup	PSON# Low								
Parameter	Input Voltage	Source							
Α	445)/40	40)//40.54	Meter						
A' = 12.0V	115VAC	115VAC 12V/10.5A							
	Write Command Line								
S + ADDRw + 0xBD + 0x08 + 0x00 + 0x10 + 0x00 + 0x00 + 0xF4 + 0x01 + 0x00 +									
0x00 + P									
Parameter	Input Voltage	Output Load	Source						
D	115VAC	12V/10.5A	Meter						
K1 = 500									
Equation	$R = \frac{(A - D) \times 1}{K1}$	000							

Item	Slope1 + Offset1
Equation	$O1 = \frac{\left(A - A'\right) \times 1000}{R}$
Slope1 = M	M = 0xFFFF
Offset1 = O1	
$Index = \frac{0x10}{}$	
	Write Calibration Data
- Represent Slope2 to	A 2 Byte Hex value. (Slope ₁ + Slope ₀)
- Represent Offset2 to	A 4 Byte Hex value. (Offset ₃ + Offset ₂ + Offset ₁ +
Offset ₀)	•
- Write calibration data	by Calibration Write Command, Index 0x10
	Design Requirement
- 12V/10.5A = 12.00V	± 0.01 Vdc

1.1.4 **Vout Reporting Calibration**

Item	Slope		
Setup	PSON# Low		
Equation	$X = \frac{B}{A} \times N$		
Parameter	Input Voltage	Output Load	Source
А	115\/\C	40)//40 EA	Cmd 0x8B
B = 12V	115VAC	12V/10.5A	Spec
N = 1024			
Slope = X			
Index = 0x11			
	Write Calibra	ation Data	
- Represent Slope to	A 2 Byte Hex valu	ie. (Slope1+ Slope0)	
- Represent 0x000000	000 to A 4 Byte H e	ex value. (Offset3+ Offset2	+ Offset ₁ +
Offseto)			

Write calibration data by Calibration Write Command, Index 0x11

Cmd $0x8B/10.5A = 12V \pm 5\%$

Design Requirement

1.1.5 <u>lout Reporting Calibration</u>

Item	Slope1 + Offset1	1							
Setup	PSON# Low								
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M}\right)\right)$								
Parameter	Input Voltage	Output Load	Source						
A		40)//4/\	Meter						
В	445\/AC	12V/1A	Cmd 0x8C						
A'	115VAC	12V/4A							
B'		12V/4A	Cmd 0x8C						
M = 1024									
N = 65536									
Slope1 = X									
Offset1 = Y									
Index = 0x13									
Item	Slope2 + Offset2	2							
Setup	PSON# Low								
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M}\right)\right)$								
Parameter	Input Voltage	Output Load	Source						
А		12V/4A	Meter						
В	115VAC	12V/4A	Cmd 0x8C						
A'	ITOVAC	12V/20A	Meter						
B'		12V/ZUA	Cmd 0x8C						
M = 1024									
N = 65536									

Slope2 = X										$/\!\!/$	\mathscr{U}	\mathscr{U}	\mathscr{U}	\mathscr{U}	\mathscr{U}			\mathscr{U}	\mathscr{U}	\mathscr{U}	\mathscr{U}		$/\!\!/$			\mathscr{U}	//	2
Offset2 = Y																//	//											
Index = 0x14														\mathbb{Z}	\mathbb{Z}			\mathbb{Z}		\mathbb{Z}			\mathbb{Z}			\mathbb{Z}		

Write Calibration Data

- Represent Slope1 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset1 to **A 4 Byte Hex value**. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by <u>Calibration Write Command</u>, Index 0x13
- Represent Slope2 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset2 to **A 4 Byte Hex value**. (Offset₃+ Offset₂+ Offset₁+ Offset₀)
- Write calibration data by Calibration Write Command, Index 0x14

Design Requirement

- See 1.2.1

1.1.6 <u>lin Reporting Calibration</u>

1.1.6.1 Low Line

Item	Slope1 + Offset1		
Setup	PSON# Low		
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M}\right)\right)$		
Parameter	Input Voltage	Output Load	Source
Α	115VAC	12V/1A	Meter
В	TISVAC	12V/1A	Cmd 0x89
A'	445)/AC	40)//40	Meter
B'	115VAC	12V/4A	Cmd 0x89
M = 1024			
N = 262144			
Slope1 = X			
Offset1 = Y			
Index = 0x03			
Item	Slope2 + Offset2	2	
Setup	PSON# Low		

Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M}\right)\right)$	B $) \times N$							
Parameter	Input Voltage	Output Load	Source						
А	115\/\C	40\//44	Meter						
В	115VAC	12V/4A	Cmd 0x89						
Α'	115VAC	12V/20A	Meter						
B'	TISVAC	12V/2UA	Cmd 0x89						
M = 1024									
N = 262144									
Slope2 = X									
Offset2 = Y									
Index = 0x04									
	Write Calibra	ation Data							
- Represent Slope1 to	A 2 Byte Hex val	lue. (Slope1+ Slope0)							
- Represent Offset1 to	A 4 Byte Hex va	lue . (Offse t_3 + Offse t_2 + Off	f se t_1 +						
Offset ₀)									
- Write calibration data	a by <u>Calibration W</u>	rite Command, Index 0x03							
- Represent Slope2 to	A 2 Byte Hex val	lue. (Slope1+ Slope0)							
- Represent Offset2 to	A 4 Byte Hex va	lue . (Offset ₃ + Offset ₂ + Off	fset ₁ +						
Offset ₀)									
- Write calibration data	a by <u>Calibration W</u>	rite Command, Index 0x04							

Design Requirement

See 1.2.1

1.1.6.2 <u>High Line</u>

Item	Slope1 + Offset1			
Setup	PSON# Low			
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M} \times B\right)\right) \times N$			
Parameter	Input Voltage	Output Load	Source	
Α	000)/40	40)//40	Meter	
В	230VAC	12V/1A	Cmd 0x89	
A'	020)/40	40)//40	Meter	
B'	230VAC	12V/4A	Cmd 0x89	
M = 1024				
N = 262144				
Slope1 = X				
Offset1 = Y				
Index = 0x06				
Item	Slope2 + Offset2	2		
Setup	PSON# Low			
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M}\right)\right)$			
Parameter	Input Voltage	Output Load	Source	
Α		12V/4A	Meter	
В	230VAC	12 1/7/	Cmd 0x89	
A'	250 77 (0	12V/20A	Meter	
B'	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Cmd 0x89	
M = 1024				
N = 262144				
Slope2 = X				
Offset2 = Y				
Index = 0x07				
	Write Calibration Data			

- Represent Slope1 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset1 to **A 4 Byte Hex value**. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by <u>Calibration Write Command</u>, Index 0x06
- Represent Slope2 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset2 to **A 4 Byte Hex value**. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by Calibration Write Command, Index 0x07

Design Requirement

- See 1.2.1

1.1.7 Pin Reporting Calibration

1.1.7.1 Low Line

Item	Slope1 + Offset1			
Setup	PSON# Low			
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M} \times B\right)\right) \times N$			
Parameter	Input Voltage	Output Load	Source	
Α	445\/AC	40)//4.6	Meter	
В	115VAC	12V/1A	Cmd 0x97	
A'	445\/AC	40)//40	Meter	
B'	115VAC	12V/4A	Cmd 0x97	
M = 1024				
N = 1024				
Slope1 = X				
Offset1 = Y				
Index = 0x09				
Item	Slope2 + Offset2			
Setup	PSON# Low			
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M}\right)\right)$	B $))\times N$		
Parameter	Input Voltage	Output Load	Source	
А		40)//40	Meter	
В	115)/^0	12V/4A	Cmd 0x97	
A'	115VAC	40\//004	Meter	
B'	12V/20A C		Cmd 0x97	
M = 1024				

N = 1024	
Slope2 = X	
Offset2 = Y	
Index = 0x0A	

Write Calibration Data

- Represent Slope1 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset1 to **A 4 Byte Hex value**. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by Calibration Write Command, Index 0x09
- Represent Slope2 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset2 to A 4 Byte Hex value. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by Calibration Write Command, Index 0x0A

Design Requirement

- See 1.2.1

1.1.7.2 High Line

Item	Slope1 + Offset1			
Setup	PSON# Low	PSON# Low		
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M} \times B\right)\right) \times N$			
Parameter	Input Voltage	Output Load	Source	
Α		40)//4/	Meter	
В	000) (4.0	12V/1A	Cmd 0x97	
A'	230VAC	40)//40	Meter	
B'		12V/4A	Cmd 0x97	
M = 1024				
N = 1024				
Slope1 = X				
Offset1 = Y				

Index = 0x0C				
Item	Slope2 + Offset2			
Setup	PSON# Low			
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M} \times B\right)\right) \times N$			
Parameter	Input Voltage	Output Load	Source	
А		40)//40	Meter	
В	2201/40	12V/4A	Cmd 0x97	
Α'	230VAC	401//201	Meter	
B'		12V/20A	Cmd 0x97	
M = 1024				
N = 1024				
Slope2 = X				
Offset2 = Y				
Index = 0x0D				
	Write Calibra	ation Data		

- Represent Slope1 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset1 to **A 4 Byte Hex value**. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by Calibration Write Command, Index 0x0C
- Represent Slope2 to A 2 Byte Hex value. (Slope1 + Slope0)
- Represent Offset2 to **A 4 Byte Hex value**. (Offset3+ Offset2+ Offset1+ Offset0)
- Write calibration data by Calibration Write Command, Index 0x0D

Design Requirement

- See 1.2.1

1.1.8 Vin Reporting Calibration

Item	Slope + Offset				
Setup	PSON# Low				
Equation	$X = \frac{A' - A}{B' - B} \times M$ $Y = \left(A - \left(\frac{X}{M} \times B\right)\right) \times N$				
Parameter	Input Voltage	Output Load	Source		
A	90VAC		Meter		
В	90VAC	40)//4/	Cmd 0x88		
A'	004)/40	12V/1A	Meter		
B'	264VAC		Cmd 0x88		
M = 1024					
N = 65536					
Slope1 = X					
Offset1 = Y					
Index = 0x00					
	Write Calibration Data				
- Represent Slope to A	- Represent Slope to A 2 Byte Hex value. (Slope1+ Slope0)				
- Represent Offset to	A 4 Byte Hex valu	ue. (Offset3+ Offset2+ Offs	set ₁ + Offset ₀)		
- Write calibration data by Calibration Write Command, Index 0x00					
	Design Requirement				
- See 1.2.1	- See 1.2.1				

After finishing the calibration steps, we need to disable calibration save key. (Write the disable calibration save key 0x56 to PMbus command 0xEA.)

1.1.9 <u>Note</u>

- All of the calculate results shall be **Rounded Off**.
- The actual 12V Output Voltage should be measured by 6-1/2 digital multimeter (Agilent-34401A or equal).
- The actual Output Current should be sensed from electronic load.
- All the data measured and read from power meter, multimeter, electric load should have 1% accuracy to prevent calibration fail.

1.2 Reporting and Accuracy

1.2.1 Accuracy

Vin	Load	+12V	+12Vsb	Line	Input line	Input Power	Output Voltage	Output	Output Power
Vac/Hz	%	(A)	(A)	Voltage Accuracy	Accuracy			Current Accuracy	Accuracy
	100	21	0.5						
	90	18.9	0.45						
	80	16.8	0.4						
115V/60Hz	70	14.7	0.35		+/-5%	+/-5%		+/-5%	+/-5%
208V/60Hz	60	12.6	0.3	+/-5%			+/-5%		
230V/50Hz	50	10.5	0.25						
	40	8.4	0.2						
	30	6.3	0.15		+/-10%	+/-10%		+/-10%	+/-10%
	20	4.2	0.1		T/-10/0	- 7-10/6		+ /-10 /6	+ /-10/6

Note:

- Vin (ac), Iin (ac), Pin (ac) real data must using power analyzer to measurement. Test input voltage: 115VAC/60Hz, 208VAC/60Hz, 230VAC/50Hz
- Minimum settling time for readings is 5 sec.

1.2.2 Reporting

Command	Code	Test Condition	Design Requirement			
Read_FAN_SPEED_1	0x90 Any		0,400	d FAN SDEED 1 0v00 Anv	Λny	> 1000 rpm
Reau_FAN_SPEED_1			< 20000 rpm			
Inlet Temperature	0x8D	Any	125°C > Temp > -30°C			

Internal Temperature (Primary hot-spot)	0x8E	Any	125°C > Temp > -30°C
Internal Temperature (Secondary hot-spot)	0x8F	Any	125°C > Temp > -30°C
Firmware Revision (Under Factory Mode)	0x <mark>EB</mark>	Read <mark>2</mark> bytes (<mark>01XX</mark>)	Refer to the most recent firmware control list/DN

Note:

- The actual 12V Output Voltage should be measured by 6-1/2 digital multi-meter (Agilent-34401A or equal).
- The actual Output Current should be sensed from electronic load.
- All the data measured and read from power meter, multi-meter, electric load should have 1% accuracy to prevent calibration fail.

1.3 I2C Address Pin

- I2C Address Pin is pulled up internally inside UUT.
- I2C Address Pin has to be pulled up/down externally on test fixture to decide which I2C address is going to be recognized by UUT.
- While I2C Address Pin is pulled up externally, the I2C address of UUT is 0xB6.
- While I2C Address Pin is pulled down externally, the I2C address of UUT is 0xB4.
- The resistance of Pull up/down resister is 1Kohm.
- See below table for electrical requirement.

I2C Address Pin	Min.	Max.	Unit
Pull up	3.0	3.4	V
Pull down	0	0.8	V

1.4 FRU

- Refer to the most recent DN for FRU spec.
- FRU data should be flashed into an EEPROM device inside UUT through I2C address 0xA0/0xA2/0xA4/0xA6 (depending on I2C Address Pin).
- FRU Write should be enabled through Pmbus command 0xEA followed by a data byte with designated key before flashing FRU data into EEPROM.
- FRU Write should be disabled through Pmbus command 0xEA followed by a data byte with designated key after FRU data flashing completed.
- S + ADDRw + 0xEA + KEY + P

KEY	Description		
0x56	Write access to the EEPROM is		
OCCO	disabled		
0x9A	Write access to the EEPROM is		
UX9A	enabled		

1. Initial output voltage confirm for ATE

Input Voltage	Output Current	Output Voltage
230Vac/50Hz	+12V/10.5A +12Vsb /0A	+12Vsb : 11.4~12.6V +12V : 11.94~12.06V

2. Regulation(Load 變動率請參照 Dynamic test 勿超出 50%, AC input voltage 變動率勿超過 120V)

Test Condition	Output Current	Design Requirement
85Vac/47Hz 115Vac/60Hz 230Vac/50Hz	+12V/1A, +12Vsb/0A +12V/1A, +12Vsb/0.5A +12V/10.5A, +12Vsb/0.25A +12V/21A, +12Vsb/0A +12V/21A, +12Vsb/0.5A	+12V : 11.4V~12.6V +12Vsb : 11.4V~12.6V

3. Ripple noise

Test Condition	Output Current	Design requirement
85Vac/47Hz		+12V < 240mVpp
115Vac/60Hz	+12V/1A, +12Vsb/0A	+12Vsb < 240mVpp
230Vac/50Hz	+12V/21A, +12Vsb/0.5A	(20M bandwidth)
264Vac/63Hz		
1000		AC_OK Signals ≤ 300mVpp
With 10.1uf + 500uf on +12V With 10.1uf + 20uf on +12VSB		PW_OK Signals ≤ 300mVpp
With 10.101 + 2001 011 + 1203B With 0.01uf on Signals		SCL & SDA Signals ≤ 200mVpp
January State of Signato		(20M bandwidth)

4. Overshoot / Undershoot

Test Condition	Output Current	Design requirement
85Vac/47Hz		
115Vac/60Hz	+12V/1A, +12Vsb/0A	+12V Max load <= +-10% (12.87V)
230Vac/50Hz	+12V/21A, +12Vsb/0.5A	+12V Min load <= +-10% (13.5V)
264Vac/63Hz		+12V tviii load <= 1 10% (13.3V)
With 500uf on +12V and 20uf on	112 135 <= 1 10 /0(13.21)	
With 11000uf on +12V and 1000u		

5. Dynamic Load Response

Test Condition	Output Current			Design Requirement	
85Vac/47Hz	Case		12V mic (A)	+12V SB	
264Vac/63Hz	1	1	12	0	C000182
With 500uf on +12V With 20uf on +12VSB	2	1	12	0.5	Case1&2 +12V : 11.64V~12.67V
	3	1	21	0	Case3&4
	4	1	21	0.5	+12V : 11.115V~12.915V
With 1A/us on +12V With 1A/us on +12VSB	Case		2Vsb mic (A)	+12V	+12Vsb : 11.40V~12.60
1. 10ms (50%~50% DUTY)	5	0	0.5	1	
2. 50ms (50%~50% DUTY)	6	0	0.5	21	

6. AC Sweep

Test Condition	Output Current	Design Requirement
	+12V/1A, +12Vsb/0A +12V/21A, +12Vsb/0.5A	+12V : 11.40~12.60 +12Vsb : 11.40~12.60

7. AC Line Sag/Surge Transient

Test (Condition	Outp	out Current	Design Requirement
		+12V/1A, +1 +12V/21A, +		
Duration	Sag	Operating AC Voltage	Line Frequency	Performance Criteria
Continuous	10%	115Vac 230Vac	50/60 Hz	No loss of function or performance
0 to 1 AC cycle	100%	115Vac 230Vac	50/60 Hz	No loss of function or performance preferred. If unit shuts down due to hold up time limit, unit shall recover into full performance after the sag.
> 1 AC cycle	>10%	115Vac 230Vac	50/60 Hz	Loss of function acceptable, self-recoverable
Duration	Surge	Operating AC Voltage	Line Frequency	Performance Criteria
Continuous	10%	115Vac 230Vac	50/60 Hz	No loss of function or performance
0 to ½ AC cycle	30%	115Vac 230Vac	50/60 Hz	No loss of function or performance
100ms	300Vac	264Vac	50/60 Hz	No loss of function or performance

8. AC Line Distortion (VTHD 10%)

Test Condition	Output Current	Design Requirement
	+12V/1A, +12Vsb/0A +12V/21A, +12Vsb/0.5A	Outputs turn on monotonically. +12V: 11.4V~12.6V +12Vsb: 11.4V~12.6V

9. Efficiency

Test condition	Output Current	Design requirement
	+12V/21A, +12Vsb/0.5A	>=85%
115Vac/60Hz	+12V/10.5A, +12Vsb/0.25A	>=88% , PF>0.90
	+12V/ 4.2A, +12Vsb/0.1A	>=85%
	+12V/21A, +12Vsb/0.5A	>=85%
230Vac/50Hz	+12V/10.5A, +12Vsb/0.25A	>=89%, PF>0.90
	+12V/ 4.2A, +12Vsb/0.1A	>=85%

Notes:

1. Fan loading is included for efficiency measurement

10. Inrush current (測試值不包含 X 電容充電流,由 DQE 拔除 X 電容驗證測試)

Test Condition	Output Current	Design Requirement
115Vac/60Hz 230Vac/50Hz	+12V/21A, +12Vsb/0.5A	Cold start <30A Cold start <60A

11. Input Current

Test Condition	Output Current	Design Requirement
115Vac/60Hz 230Vac/50Hz	+12V/21A, +12Vsb/0.5A	<2.7A <1.4A

12. Harmonic Current

Test Condition	Output Current	Design Requirement
	+12V/21A, +12Vsb/0.5A Input 75W	Class A

13. Signal outputs test

Signal Name	PS I/O		Description		
AC_OK	Output Open-Collect	tor	High = AC Present (The AC Present Low = AC Not Present (The AC (PS internal pull-up = 4.7K 3.3V,	Range is out of the	
PS_OK	Output Open-Collect	tor	Indicates that the 12v Main and Standby of operational. High = 12VDC main output is and less than (<) 13.2V, AND when 12VSB 13.2V. If any of the outputs fail due to over voltage protection, output under voltage protection, then this output will be driven L0 up = 4.7K 3.3v, MB pull-up 10K)		er than (>) 10.9V is > 10.9V and < ent protection, ver temperature
Test Condition			Output Current	Design re	quirement
				Referer	ice table
85Vac/4	l7Hz			Parameter	Voltage Level
115Vac/6			2V/1A, +12Vsb/0A	Output High	2.4V (2.4~3.5)
230Vac/			2V/21A, +12Vsb/0.5A	Output Low	0.4V (0~0.4)
264Vac/63Hz			Input High	2.1V (2.1~3.2)	
				Input Low	0.7V(0~0.7)

14. LED Indicators

Fund	ction	Green	Amber
OCP	12V Warning (optional)	Off	Blinking
OCP	12V Protection	Off	Solid On
OVP	12V	Off	Solid On
SCP	12V	Off	Solid On
UVP	12V	Off	Solid On
FAN Fault	Lock (before OTP)	Off	Blinking
FAN Fault	Lock (after OTP)	Off	Solid On
OTP	Warning	Off	Blinking
OTP	Protection	Off	Solid On
12V Main On		Solid on	Off
12V Main Off (Standby mode	e)	Blinking	Off
No AC Power input (all pre	esent supplies)	Off	Off
No AC Power input Other 2nd	supply functioning	Off	Solid On
12V Main On (CR Slave PSL	J is in Sleep mode)	Blinking	Off
12V Main and 12V Standby (NC)	Outputs Off (PSKILL High or	Blinking	Off

15. Dropout

Test Condition	Output Current	Design requirement
85Vac/47Hz 264Vac/63Hz		Case 1: Outputs and PS_OK keep in regulation (11.4V~12.6V)(2.4V~3.5V)
Case 1: drop to 0V for 5ms Case 2 drop to 0V for 20ms Case 3: drop to 0V for 50ms Case 4: drop to 0V for 100ms	+12V/1A, +12Vsb/0A +12V/21A, +12Vsb/0.5A	Case 2: Outputs keep in regulation and PS_OK turn on monotonically
Case 5: drop to 0V for 500ms		Case 3: Outputs and PS_OK turn on monotonically

16. Brown-in and Brown-out

Test Condition	Output Current	Design requirement
85Vac to 0Vac then back	+12V/1A, +12Vsb/0A	Output no oscillation
With 500uf on +12V and	+12V/21A, +12Vsb/0A	Brown In: 80 ~ 85Vac
20uf on +12VSB	T Z V Z T X T Z V SD U ST	Brown Out: 70 ~ 82Vac

17.TIMING

Item	Description	MIN	MAX	UNITS
Tvout_rise	Output voltage rise time (each output)	1.5	300	msec
Tsb_on_delay	Delay from AC being applied to 12VSB being within regulation.		2000	msec
Tac_on_delay	Delay from AC being applied to all output voltages being within regulation.		2000	msec
Tvout_holdup	Time all output voltages, including 12VSB, stay within regulation after loss of AC.	20		msec
Tpw_ok_holdup	Delay from loss of AC to de-assertion of PW_OK	20		msec
Tps_on_l_delay	Delay from PS_ON active to output voltages within regulation limits.	5	3000	msec
Tps_on_l_pw_ok	Delay from PS_ON deactive to PW_OK being deasserted.		20	msec
Tac_ok_on	Delay from AC input turn on to assertion of AC_OK.	100	1000	msec
Tac_ok_off	Delay from loss of AC input to deassertion of AC_OK		20	msec
Tpw_ok_on	Delay from output voltages within regulation limits to PW_OK asserted at turn on.	100	1000	msec
Tpw_ok_off	Delay from PW_OK deasserted to 12VDC dropping out of regulation limits.	1	700	msec
Tpw_ok_low	Duration of PW_OK being in the deasserted state during an off/on cycle using AC or the PS_ON signal.	100		msec
Tsb_vout	Delay from 12VSB being in regulation to 12VDC being in regulation at AC turn on.	50	1500	msec

Test Condition	Output Current	Design Requirement
	+12V/1A, +12Vsb/0A +12V/21A, +12Vsb/0.5A	Reference graph and table

18. SCP.

Test Condition	Output Current	Design Requirement
	+12V/1A, +12Vsb/0A +12V/21A, +12Vsb/0.5A	Short on +12V: +12V: Hiccup +12Vsb: Remain
		Short on +12Vsb: Hiccup

19.OCP

Test Condition	Output Current	Design Requirement
85Vac/47Hz 264Vac/63Hz	+12V/21A, +12Vsb/0.5A	OCP +12V: 24~28A +12V: Hiccup +12Vsb: Remain OCP +12VSB: 0.8A~1.3A +12Vsb: Hiccup

20.OVP

Test Condition	Output Current	Design Requirement
		OVP on +12V: 13.0.~15V +12V latch off,
85Vac/47Hz	+12V/1A, +12Vsb/0A	+12Vsb: Remain
264Vac/63Hz	+12V/21A, +12Vsb/0.5A	OVP on +12VSB: 13.0~15V
		+12V latch off,
		+12Vsb: Hiccup

21. Hi-POT TEST

Test Condition	Output Current	Design Requirement
2121 V _{DC}	Input/Case Input/Output	No error and No damage

22. Lightning Surge

Test Condition		Design Requirement
BI Wave 110Vac/60Hz 220Vac/50Hz	2KV Differential mode(Criteria A) 4KV Common mode(Criteria A)	No error and No damage

23. **ESD**

Test Condition		Design Requirement
EN61000-4-2 110Vac/60Hz 220Vac/50Hz	+/- 15KV air discharge +/- 8KV contact discharge	No error and No damage

24. EFT

Test Condition		Design Requirement
EN 61000-4-4 110Vac/60Hz 220Vac/50Hz	0.5KV min (Criteria A)	No error and No damage

25. LEAKAGE CURRENT

Test Condition		Design Requirement
240Vac/50Hz	L/N	< 1.0mA
264Vac/60Hz	L/N	< 3.5mA

26.IR

Test Condition		Design Requirement
500Vdc, 60s		> 2M ohm

27. EMI

Test Condition		Design Requirement
EN55022 115Vac/60Hz 230Vac/50Hz	Class A	Under 6dB

28. Oring-FET Test

Test Condition		Design Requirement
115Vac/60Hz 230Vac/50Hz	+12V/1A, +12Vsb/0.1A	External supply OVP (13.0V~ 16.0V) Detect PG signal Failed if PG drops

29. IR/GROUNDING

Each unit(100% of production) must pass a production ground continuity test at 25A for at least 2s with less than 0.1 ohm from the safety ground(third wire) input pin to the power supply chassis. Each unit must be marked to indicate it passed the test. Reference Standard EN50116