Computer Networks

Dr. Ali Sayyed

Department of Computer Science

National University of Computer & Emerging

Sciences

Link Access

Link Types

- There are two types of network links
- A point-to-point link consists of a single sender at one end of the link and a single receiver at the other end of the link. Many link-layer protocols have been designed for point-to-point links such as the point-to-point protocol (PPP).
 - Circuit-switched networks require dedicated point-to-point connections
- A broadcast link, can have multiple sending and receiving nodes all connected to the same, single, shared broadcast channel.
 - packet-switched network

Shared Medium

Shared wire

Shared wireless (for example, WiFi)

Satellite

party

Multiple Access Problem

- Traditional one-way broadcast (that is, one fixed node transmitting to many receiving nodes e.g. Television) don't have the multiple access problem.
- However, nodes on a computer network broadcast channel can both send and receive.
- It is necessary to share the broadcast medium (wire / frequency / air)
 efficiently and effectively in a fair manner among the various nodes
- Protocols that enable multiple users to share a finite amount of frequency and time resources are Media Access Control (MAC) Protocol.

Human Analogy for Medium Access

- Party or Classroom, where one person talk and other listen, similarly share the same, single, broadcast medium.
- A central problem here is to determine who gets to talk and when?
- As humans, we've evolved many set of protocols for sharing the broadcast channel
 - "Give everyone a chance to speak."
 - "Don't speak until you are spoken to."
 - "Raise your hand if you have a question."
 - "Don't interrupt when someone is speaking."
 - "Don't fall asleep when someone is talking to you."

MAC Categories

- MAC Protocols can be broadly classified into the following categories
 - 1. Channel Partitioning Protocols or Contention-free Protocols
 - 2. Random Access Protocols or Contention-based Protocols
 - 3. Taking-turns Protocols

Key Concepts

Collisions

- When two or more transmissions are received at the same time, it is said that there is a collision at the receiver (the two transmissions ought to be with the same frequency and at the same time.).
 - Show Me

Capture

- If the strength of one of the signals is sufficiently large than the others, this signal could potentially be captured at the receiver. The other signal is called "INTERFERENCE".
- Attenuation / Path Loss: (Signal Strength is proportional 1/d)
- Shadowing: Due to hills or other large objects

Channel Partitioning Protocols Or Contention-free Protocols

The Concept of Multiplexing

- Multiplexing refer to the combination of information streams from multiple sources for transmission over a shared medium
- Demultiplexing refer to the separation of a combination back into separate information streams
- Multiplexor combines information from the senders for transmission in such a way that the demultiplexor can separate the information for receivers

The Basic Types of Multiplexing

- Basic approaches to multiplexing
 - Frequency Division Multiplexing (FDM)
 - Time Division Multiplexing (TDM)
 - Code Division Multiplexing (CDM)

Frequency Division Multiplexing

- A group of senders can transmit signals simultaneously
 - By using separate channel (i.e., carrier frequency)
- The total bandwidth available in a communication medium is divided into a series
 of non-overlapping frequency bands, each of which is used to carry a separate
 signal. This allows a single transmission medium such as a cable or optical fiber to
 be shared by multiple independent signals.
 - For example a cable television or DSL modems transmit large amounts of data through twisted pair telephone lines, among many other uses.

Frequency Division Multiplexing

 A demultiplexer applies a set of filters that each extract the required range of frequencies for each receiver.

Frequency Division Multiplexing

- FDM allows simultaneous use of a transmission medium by each user
- FDM provides each pair with a private/ separate transmission path
- Practical FDM systems there are some limitations
 - If the frequencies of two channels overlaps or are too close, interference can occur, hence a gap between channels known as a guard band, is required
 - Complex hardware for multiplexing and demultiplexing
 - The overall frequency hence bandwidth is divided by the total number of users

FDM Example

200 KHz to each of 6 channels with a guard band of 20 KHz

between each

Channel	Frequencies Used
1	100 KHz - 300 KHz
2	320 KHz - 520 KHz
3	540 KHz - 740 KHz
4	760 KHz - 960 KHz
5	980 KHz - 1180 KHz
6	1200 KHz - 1400 KHz

Time Division Multiplexing (TDM)

- TDM assigns time slots to each channel repeatedly
 - multiplexing in time simply means transmitting an item from one source, then transmitting an item from another source, and so on

Synchronous TDM

- The multiplexor accepts input from attached devices in a round-robin fashion
- Figure illustrates how synchronous TDM works for a system of five senders

Framing in Synchronous TDM

- Why is synchronization needed?
 - A synchronous TDM sends one slot after another, but does not indicate when a slot begins and when a slot ends
 - So a the demultiplexer cannot tell where a slot begins— a slight difference in the clocks can cause a demultiplexer to misinterpret the bit stream
- To prevent misinterpretation, an extra frame byte is used at the end of each round
- The demultiplexor synchronize with multiplexer using the framing byte

The Problem with Synchronous TDM

- If one device generates data at a faster rate than other devices, then the multiplexor must either give that device more time or buffer its excessive data.
- Similarly, If a device has nothing to transmit, the multiplexor must still insert a piece of data from that device into the multiplexed stream.

The Problem with Synchronous TDM

- Synchronous TDM works well if each source produces data at a uniform, fixed rate
- Many sources generate data at random
 - if the corresponding source has not produced data by the time the slot must be sent, the synchronous multiplexor leaves a slot unfilled, by assigning it a zero value

Statistical TDM

- One technique to increase the overall data rate and channel utilization is known as statistical TDM or asynchronous TDM
- The technique is straightforward:
 - select items for transmission in a round-robin fashion
 - but instead of leaving a slot unfilled, skip any source that does not have data ready
- By eliminating unused slots
 - statistical TDM takes less time to send the same amount of data
- A statistical multiplexor does not require a high speed line since STDM does not assume all sources will transmit all of the time!

Statistical TDM

- Statistical multiplexing incurs extra overhead
 - In a synchronous TDM system a demultiplexor knows that every N slot corresponds to a given receiver
 - In a statistical multiplexing system, the data in a given slot can correspond to any receiver

• Each slot must contain the identification of the receiver to which the data

is being sent

Inverse Multiplexing

- Assume a case where a connection between two points consists of multiple transmission media
 - but no single medium has a bit rate that is sufficient
- To solve the problem, multiplexing is used in reverse
 - split a high-speed digital input over multiple lower-speed outputs for transmission and combine the results at the receiving end

Code Division Multiplexing (CDM)

- CDM used in cellular networks and for some satellite communication
- CDM does not rely on physical properties
 - such as frequency or time
- CDM relies on an interesting mathematical idea
- Each sender is assigned a unique binary code Ci
 - that is known as a chip sequence
- At any point in time, each sender has data Di to transmit
 - The senders multiply Ci x Di and transmit the results
- The senders transmit at the same time
 - and the data are added together
- To extract data Di, a receiver multiplies the sum by Ci

Code Division Multiplexing (CDM)

- Consider we have four stations 1, 2, 3 and 4 (with data d_1 , d_2 and so on).
- The chip code assigned to first station is C₁, to the second is C₂ and so on.
- The codes C₁, C₂, C₃ and C₄ assigned to each station should have two properties:
 - If we multiply each code by another, we get 0.
 - If we multiply each code by itself, we get 4. (No. of stations).
- Each station multiplies its data by its code i.e. d₁. C₁ and so on
- The sum of all stations $(d_1 \cdot C_1 + d_2 \cdot C_2 + d_3 \cdot C_3 + d_4 \cdot C_4)$ is transmitted.
- To get the data sent by station 1, the receiver multiply the signals with the code
 of station 1 and then divide the result by the number of users
- d1. C1 . C1+ d2 . C2. C1+ d3 . C3. C1 + d4 . C4. C1= 4 x d1

CDM Example

Sender	Chip Sequence	Data Value
Α	1 0	1010
В	1 1	0110

• The first step consists of converting the binary values into vectors that use -1 to represent 0:

$$C_1 = (1,-1)$$
 $V_1 = (1,-1,1,-1)$ $C_2 = (1,1)$ $V_2 = (-1,1,1,-1)$

$$C_2 = (1, 1)$$
 $V_2 = (-1, 1, 1, -1)$

Multiplying $C_1 \times V_1$ and $C_2 \times V_2$ produces:

$$((1,-1),(-1,1),(1,-1),(-1,1))$$
 $((-1,-1),(1,1),(1,1),(-1,-1))$

- If we think of the resulting values as a sequence of signal strengths to be transmitted at the same time
 - the resulting signal will be the sum of the two signals

Code Division Multiplexing

Thus, a receiver if want to compute the message of Sender A, computes:

```
(1, -1) \cdot ((0, -2), (0, 2), (2, 0), (-2, 0)) to get: ((0+2), (0-2), (2+0), (-2+0))
```

- Now treats the result as a sequence, and converts the result to binary by interpreting positive values as binary 1 and negative values as 0
 - Interpreting the result as a sequence produces: (2 -2 2 -2)
 - Dividing by the total number of users produce: (1 -1 1 -1)
 - Which becomes the binary value: (1 0 1 0)
 - Note that 1010 is the correct value of Sender A
 - Receiver 2 can extract the data of Sender B from the same transmission

CDM Example 2

- Finding the data sent by Station 2.
 - Multiply the total data on the channel by the code [+ 1 -1 +1 -1], of station 2
 - $[-1 -1 -3 +1] \cdot [+1 -1 +1 -1] = [-1 +1 -3 -1] = -4$
 - Divide by total users = -4/4 = -1
 - -1 --> bit 0

CDM

