

Probabilistic framework for integration of mass spectrum and retention time information in small molecule identification

Eric Bach ^{1,∞}, Simon Rogers ², John Williamson ², and Juho Rousu ¹

¹Helsinki institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland ²School of Computing Science, University of Glasgow, Glasgow, UK

1. Small Molecule Identification in Untargeted Metabolomics

- Challenge in untargeted metabolomics studies: Identification of the small molecules present in a biological sample
- LC-MS² widely used analysis platform: Liquid chromatography (LC) coupled with tandem mass spectrometry (MS²) (Fig. 1)
- Most machine learning approaches for small molecule identification only utilize MS² information [? ?]
- LC retention times (RT) can improve the small molecule annotation [??]
- Challenges utilizing RT information: (1) LC-system specific RT measurements and (2) public RT databases are limited in size and coverage

Fig. 1: LC-MS² analysis pipeline and resulting data used as input for our framework.

2. Retention Time (RT) Utilization for Small Molecule Identification

- Different approaches proposed in the literature
- Multiple approaches to utilize RT for molecule annotation exist
- (utilization of RT information, scalable, cross laboratories (LC-systems), RT reference free)
- Compare measured RTs with in-house reference RTs
- 2) Compare measured RTs with projected reference RTs
- 3) Compare measured RTs with predicted RTs
- 4) Compare measured RTs with predicted RTs proxies, e.g. LogP
- 5) Compare measured retention orders with predicted ones
- RT comparison to prune candidate lists or (re)ranking [CITATION]

3. LC-MS² Experiment Data: Input and Output of our Framework

• Input: Preprocessed LC-MS² data, i.e. after peak-picking and alignment (Fig.1):

$$\mathcal{D} = \{(x_i, t_i, \mathcal{C}_i)\}_{i=1}^N$$

- x_i : MS Information; MS² or MS¹ (precursor m/z), if no fragmentation available
- t_i : Measured RT
- \mathcal{C}_i : Molecular candidate sets, e.g. molecular structures found in PubChem by exact mass search
- N: Number of MS features
- Precomputed MS scoring assumed: MS¹ deviation of candidate and precursor mass or MS² scores, e.g. by CSI:FingerID [?], MetFrag [?] or IOKR [?]
- Output: Ranking of the molecular candidates in C_i for each MS feature i
- Ranking based on MS and RT information

Probabilistic Framework to integrate MS and Retention Orders

- Definition of a probabilsitic graphical model superimposed on the LC-MS data
- Let G = (E, V) be a complete graph
- Nodes $i \in V$ represent the MS features, Edes $(i, j) \in E$ the feature pairs
- Association of each node with discrete random variable $z_i \in \mathcal{Z}_i = \{1, \ldots, n_i\}$ $(n_i = |\mathcal{C}_i|)$ number of candidates)
- Molecule annotation for complete data $\mathbf{z} = \{z_i \mid i \in V\} \in \mathcal{Z}_1 \times \ldots \times \mathcal{Z}_N = \mathbf{Z}$
- Intuitively: Random variable denotes which candidate is assigned to each feature.
- Pairwise Markov Random Field as probabilsitic model [?]:

$$p(\mathbf{z}) = \frac{1}{Z} \prod_{i \in V} \psi_i(z_i) \prod_{(i,j) \in E} \psi_{ij}(z_i, z_j)$$

Ranking molecular candidates via max-marginals:

$$p_{\max}(z_i = r) = \max_{\{\mathbf{z}' \in \mathcal{Z} \mid z_i' = r\}} p(\mathbf{z}')$$

- Intuitively, maxmimum probabilsity a candidate assignment with $z_i = r$ can achive
- Rank all candidates $r \in \{1, \dots, n_i\}$ according to there max-marginals

Markov Random Field Inference of Max-marginal Probabilties Ranked Candidates for each MS feature using their max-marginal probabilities for all candidate molecules G = (V, E)

Fig. 2: From the MRF probability distribution to the candidate ranking: MS feature i=3 and candidate 4 (m_{34}) .

Node and Edge Potentials

 \checkmark , X, X, X

 \checkmark , X, \bullet , X

✓, **✓**, **○**, **○**

 \checkmark , \checkmark , \checkmark , ×

lacksquare, \checkmark , \checkmark , \checkmark

- Node potential function $\psi_i: \mathcal{Z}_i \to \mathbb{R}_{>0}$: goodness of the match between measured spectrum x_i and candidates of feature i
- Edge potential function $\psi_{ij}: \mathcal{Z}_i \times \mathcal{Z}_j \to \mathbb{R}_{>0}$: consistency between the observed retention order of feature i and j with the predicted retention order of the candidates z_i and z_i

Node and Edge Potential Calculation

Spanning Tree Approximation

- Marginal inference intractable in practice due to exponentail sized candidate assignment space \mathcal{Z}
- Exact inference is feasible if G is tree-like [CITATION]
- Resort to infer the max-marginals a set of trees $\mathbf{T} = \{T_t\}_{t=1}^L$ sampled from G
- Each tree $T_t = (V, E_t)$ is connected graph with all nodes of G but reduces edges set $E_t \subseteq E$
- Avergaged marginals used for ranking

$$\bar{p}_{\max}(z_i = r \mid \mathbf{T}) = \frac{1}{L} \sum_{t=1}^{L} p_{\max}(z_i = r \mid T_t)$$

5. Experiments and Results

- Dataset description
- Show table 4 from the paper
- Show figure 3 from the paper

References

- [1] C. Brouard, H. Shen, K. Dührkop, F. d'Alché-Buc, S. Böcker, and J. Rousu. Fast metabolite identification with Input Output Kernel Regression. *Bioinformatics*, [4] C. Ruttkies, E. L. Schymanski, S. Wolf, J. Hollender, and 32(12):i28-i36, 2016.
- [2] K. Dührkop, M. Fleischauer, M. Ludwig, A. A. Aksenov, A. V. Melnik, M. Meusel, P. C. Dorrestein, J. Rousu, and S. Böcker. Sirius 4: a rapid tool for turning tandem mass [5] J. Stanstrup, S. Neumann, and U. Vrhovsek. Predret: spectra into metabolite structure information. Nat Methods, 2019. Doi 10.1038/s41592-019-0344-8.
- [3] D. J. MacKay. Information theory, inference and learning
- algorithms. Cambridge university press, 2005.
- S. Neumann. Metfrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 8(1):3, Jan 2016.
- Prediction of retention time by direct mapping between multiple chromatographic systems. Analytical Chemistry, 87(18):9421-9428, 2015. PMID: 26289378.