MARR	12%					
N	(F/P, i, N)	(P/F, i, N)	(F/A, i, N)	(A/F, i, N)	(P/A, i, N)	(A/P, i, N)
1	1.1200	0.8929	1.0000	1.0000	0.8929	1.1200
2	1.2544	0.7972	2.1200	0.4717	1.6901	0.5917
3	1.4049	0.7118	3.3744	0.2963	2.4018	0.4163
4	1.5735	0.6355	4.7793	0.2092	3.0373	0.3292
5	1.7623	0.5674	6.3528	0.1574	3.6048	0.2774
6	1.9738	0.5066	8.1152	0.1232	4.1114	0.2432
7	2.2107	0.4523	10.0890	0.0991	4.5638	0.2191
8	2.4760	0.4039	12.2997	0.0813	4.9676	0.2013
9	2.7731	0.3606	14.7757	0.0677	5.3282	0.1877
10	3.1058	0.3220	17.5487	0.0570	5.6502	0.1770
N	1	2	3	4	5	6
(F/P, i, N)	1.1200	1.2544	1.4049	1.5735	1.7623	1.9738
(P/F, i, N)	0.8929	0.7972	0.7118	0.6355	0.5674	0.5066
(F/A, i, N)	1.0000	2.1200	3.3744	4.7793	6.3528	8.1152
(A/F, i, N)	1.0000	0.4717	0.2963	0.2092	0.1574	0.1232
(P/A, i, N)	0.8929	1.6901	2.4018	3.0373	3.6048	4.1114
(A/P, i, N)	1.1200	0.5917	0.4163	0.3292	0.2774	0.2432

Table_Values Page 1 of 20

7	8	9	10
2.2107	2.4760	2.7731	3.1058
0.4523	0.4039	0.3606	0.3220
10.0890	12.2997	14.7757	17.5487
0.0991	0.0813	0.0677	0.0570
4.5638	4.9676	5.3282	5.6502
0.2191	0.2013	0.1877	0.1770

Table_Values Page 2 of 20

Recovery	3-Year	5-Year	7-Year	10-Year	15-Year	20-Year
Year	Property	Property	Property	Property	Property	Property
1	33.33%	20.00%	14.29%	10.00%	5.00%	3.75%
2	44.45%	32.00%	24.49%	18.00%	9.50%	7.22%
3	14.81%	19.20%	17.49%	14.40%	8.55%	6.68%
4	7.41%	11.52%	12.49%	11.52%	7.70%	6.18%
5		11.52%	8.93%	9.22%	6.93%	5.71%
6		5.76%	8.92%	7.37%	6.23%	5.29%
7			8.93%	6.55%	5.90%	4.89%
8			4.46%	6.55%	5.90%	4.52%
9				6.56%	5.91%	4.46%
10				6.55%	5.90%	4.46%
11				3.28%	5.91%	4.46%
12					5.90%	4.46%
13					5.91%	4.46%
14					5.90%	4.46%
15					5.91%	4.46%
16					2.95%	4.46%
17						4.46%
18						4.46%
19						4.46%
20						4.46%
21	_					2.23%

Assume that the expected inflation rate is 5%. If the market interest rate is 10%, what should the interest-free inflation rate be? [3 points] Assume that the expected inflation rate is 5%. If th

 \overline{f} , general inflation rate **5.00%** i, market interest rate 10.00%

Find i' using the following relationship:

$$i = i^{'} + \overline{f} + i^{'} \overline{f}$$

$$i' = 10.00\% - 5.00\% / [1 + 5.00\%]$$

$$i' = 4.76\%$$

The Shakalaka investment company plans to make a series of five constant dollar (or real-dollar) payments are made over a five-year period to offset its one bad debt in an account . The payments begin with a \$35,000 payment at the end of the first year. The payments then increase at the rate of 7% per year. The average general inflation rate is 9%, and the market interest rate is 12% during this five-year period.

Calculate the inflation free interest rate. [3 points]

What is the equivalent present worth of the series? [4 points]

Given:

F at EOY 1 \$35,000 (Constant Dollars) 7.00% Rate of increase 12.00% Market interest rate, i 9.00% General inflation rate (f bar)

Given constant dollars, therefore need to use the inflation-free interest rate, i '

$$i = i' + f + i'f$$

therefore

$$\vec{l} = \frac{\vec{i} - \vec{f}}{1 + \vec{f}} \qquad \qquad i' \qquad = \qquad 2.75\%$$

$$(P/F, i', N) = (1 + i')^{-N}$$
Net Cash Flow
Const \$
eriod, n F (P/F, i', n) (P/F, i', n)

\$184,988

	COLISE #	_	
Period, n	F	(P/F, i ',	n F(P/F, i ', n)
1	\$35,000	0.9732	\$34,063
2	\$37,450	0.9471	\$35,471
3	\$40,072	0.9218	\$36,937
4	\$42,877	0.8971	\$38,464
5	\$45,878	0.8731	\$40,054

PW

The Shakalaka investment company plans to make

on rate is 5%. If the marketinterest rate is 10%, what should the interest-free inflation rate be? [3 points] any plans to make a series of five constant dollar (or real-dollar) payments are made over a five-year period to offset its one bad debt in an account . The payments begin with a \$35,000 payment at th

Question1 Page 5 of 20

begin with a \$35,000 payment at the end of the first year. The payments then increase at the rate of 7% per year. The average general inflation rate is 9%, and the market interest rate is 12% during

Question1 Page 6 of 20

e market interest rate is 12% during this five-year period.

Question1 Page 7 of 20

a. 5 Points i ' 12.0%

Period, n	et Cash Flow in Constant Do	llar (P/F, i ', n)	ВХС
0	-\$125,000	-	-\$125,000
1	\$90,000	0.8929	\$80,357
2	\$60,000	0.7972	\$47,832
3	\$70,000	0.7118	\$49,825
4	\$80,000	0.6355	\$50,841
5	\$80,000	0.5674	\$45,394
		ΡW	\$149 249

b. f bar i '	5 Points 4.00% 5.00%		
i	9.20%		
Period, n	Net Cash Flow in Actual	Dollars (P/F, i, n)	вхс
0	-\$75,000	-	-\$75,000
1	\$35,000	0.9158	\$32,051
2	\$37,000	0.8386	\$31,028
3	\$38,250	0.7679	\$29,374
4	\$42,500	0.7032	\$29,888
5	\$45,000	0.6440	\$28,980
		PW	\$76,322

If the wrong method is used but the right answer is found award 2.5 points.

Chavez Villas is considering an expansion to their Acapulco resort. The financial data is as follows:

Investment: \$3,000,000

45% debt equity ratio. Loan borrowed at 6% interest.

45% 6%

Project life: 6 years

Salvage value: \$300,000

Year 6 dollars

Depreciation method: 5-year MACRS

Income tax rate: 30%

Annual Revenue: \$1,500,000

Year 1 dollars

Annual Expense: \$450,000

Year 1 dollars

Does NOT include depreciation Does NOT include interest

Market Interest rate (i): 12%

If the general inflation rate (effects revenues, expenses, salvage value) during the next 6 years i increase by 3% annually:

General Inflation Rate: 4.0%

- a. Develop the income statement for the project. [12 points]
- b. Develop the cash flow statement for the project. [3 points]
- c. Determine the PW of the project. Is the project economically viable? Why? [4 + 1 points]

a. Develop the income statement for the project. [3 points]

GIVEN:

I \$3,000,000
N 6
S \$300,000
MACRS 5-year MACRS

general inflation rate 4.0% (f bar)
Market Interest rate (i): 12.0% i

Step 1: Determine the allowed depreciation amounts

3 points

n	BV _{n-1}	MACRS	D_n
1	\$3,000,000	20.00%	\$600,000
2	\$2,400,000	32.00%	\$960,000
3	\$1,440,000	19.20%	\$576,000

Question3 Page 9 of 20

4	\$864,000	11.52%	\$345,600
5	\$518,400	11.52%	\$345,600
6	\$172,800	5.76%	\$172,800

Step 2: Determine the loan repayment schedule

3 points

P, amt borrowe	\$1,350,000
i	6.00%
N	6
AE	\$274,540 (Actual)

	Beginning	Interest	Principal	Ending
Year	Balance	Payment	Payment	Balance
1	\$1,350,000	\$81,000	\$193,540	\$1,156,460
2	\$1,156,460	\$69,388	\$205,152	\$951,309
3	\$951,309	\$57,079	\$217,461	\$733,847
4	\$733,847	\$44,031	\$230,509	\$503,339
5	\$503,339	\$30,200	\$244,339	\$259,000
6	\$259,000	\$15,540	\$259,000	\$0

Question3 Page 10 of 20

Step 3: Calculate the Gains (Losses) associated with Asset Disposal

Salvage Value Year 6 S \$300,000

Book Value

BV₆ \$0

Taxable Gains (Losses)

\$300,000

Taxes (Capital Gains, rate = 30%)

Rate (S - BV_5) \$90,000

Step 4: Create the Income Statement

Income Statement	0	1	2	3
Revenues		\$1,500,000	\$1,622,400	\$1,687,296
Expenses:				
General		\$450,000	\$486,720	\$506,189
Interest		\$81,000	\$69,388	\$57,079
Depreciation		\$600,000	\$960,000	\$576,000
Taxable Income		\$369,000	\$106,292	\$548,029
Income Taxes		\$110,700	\$31,888	\$164,409
(30%)				
Net Income		\$258,300	\$74,405	\$383,620

b. Develop the cash flow statement for the project. [3 points]

Step 5: Develop a Cash Flow Statement

Cash Flow State	0	1	2	3
Operating Activiti	es:			
Net Income		\$258,300	\$74,405	\$383,620
Depreciation		\$600,000	\$960,000	\$576,000
Investment Activ	ities:			
Investment	-\$3,000,000			
Salvage				
Gains Tax				
Financing Activition	es:			
Loan	\$1,350,000	-\$193,540	-\$205,152	-\$217,461
Net Cash Flow	-\$1,650,000	\$664,760	\$829,253	\$742,159

Market Interest rate (i): 12%

(P/F,i,...)

Question3 Page 11 of 20

n	Р	F	(P/F, i , n)	F(P/F, i , n)
0	-\$1,650,000	-	•	-
1	-	\$664,760	0.8929	\$593,536
2	-	\$829,253	0.7972	\$661,075
3	-	\$742,159	0.7118	\$528,254
4	-	\$702,196	0.6355	\$446,258
5	-	\$732,440	0.5674	\$415,606
6	-	\$921,972	0.5066	\$467,100

PW manual

\$1,461,830

YES this project is economically viable. It has a PW > 0.

Question3 Page 12 of 20

xt 6 years is expected to

BV_n \$2,400,000 \$1,440,000 \$864,000

Question3 Page 13 of 20

\$518,400
\$172,800
\$0

Question3 Page 14 of 20

3 points

3 points

4	5	6		
\$1,754,788	\$1,824,979	\$1,897,979		
\$526,436	\$547,494	\$569,394		
\$44,031	\$30,200	\$15,540		
\$345,600	\$345,600	\$172,800		
\$838,721	\$901,685	\$1,140,245		
\$251,616	\$270,506	\$342,073		
\$587,104	\$631,180	\$798,171		

4	5	6		
\$587,104	\$631,180	\$798,171		
\$345,600	\$345,600	\$172,800		
		\$300,000		
		-\$90,000		
-\$230,509	-\$244,339	-\$259,000		
\$702,196	\$732,440	\$921,972		

$$\overline{N) = (1+i)^{-N}}$$

Question3 Page 15 of 20

EM600-Spring 2018-HW4 Solution.xlsx

Question3 Page 16 of 20

Two alternatives are being considered by a food processor for the warehousing and distribution of its canned product in a sales region. These canned products come in standard cartons of 24 cans per carton. A summary of the financial of these 2 alternatives are listed as follows:

Alternative 1: Build its Own Distribution System

Investment cost \$70,000 (installed)

Estimated useful life of 5 years

Salvage value of \$52,000 after the first year, decreasing at a rate of 4% each year.

Operating and maintenance costs are expected to be \$12,000 in the first year increasing at a rate of 15%

Alternative 2: Buy a Distribution System from a Distribution Company

Estimated useful life of 5 years

Salvage value of \$38,000 after the first year (year 1), decreasing at a rate of 5% each year.

Current market value of \$55,000

Operating and maintenance costs for the next 5 years are expected to be \$11,000 in the first year increas 15% each year.

With a MARR of 12%, calculate the following:

a. Calculate the economic service life for each alternative. [4 + 4 points]

MARR 12%

Alternative 1

Investment	\$70,000	
Salvage	\$52,000	EOY 1
S decrease	4%	(per year)
O&M	\$12,000	EOY 1
OC increase	15%	(per year)

I \$70,000

Year	Investment	Annual OC	Annual S	(A/P, i, N)	(A/F, i, N)	CR(i)	(P/F, i, N)	OC(i)	EUAC(i)
0	\$70,000	\$0	\$0	-	-	-	-	-	-
1	\$0	\$12,000	\$52,000	1.1200	1.0000	\$26,400	0.8929	\$12,000	\$38,400
2	\$0	\$13,800	\$49,920	0.5917	0.4717	\$17,872	0.7972	\$12,849	\$30,721
3	\$0	\$15,870	\$47,923	0.4163	0.2963	\$14,942	0.7118	\$13,744	\$28,687
4	\$0	\$18,251	\$46,006	0.3292	0.2092	\$13,420	0.6355	\$14,687	\$28,107
5	\$0	\$20,988	\$44,166	0.2774	0.1574	\$12,467	0.5674	\$15,679	\$28,146

Economic Life of the Challenger = N_c^* = 4

 $EUAC_{C} = $28,107$

Question4 Page 17 of 20

Defender

Mkt Value	\$55,000	
Salvage	\$38,000	EOY 1
S decrease	5%	(per year)
O&M	\$11,000	EOY 1
OC increase	15%	(per year)

I \$55,000 (opportunity cost of not selling defender)

Year	Investment	Annual OC	Annual S	(A/P, i, N)	(A/F, i, N)	CR(i)	(P/F, i, N)	OC(i)	EUAC(i)
0	\$55,000	\$0	\$0	-	-	-	-	-	-
1	\$0	\$11,000	\$38,000	1.1200	1.0000	\$23,600	0.8929	\$11,000	\$34,600
2	\$0	\$12,650	\$36,100	0.5917	0.4717	\$15,515	0.7972	\$11,778	\$27,293
3	\$0	\$14,548	\$34,295	0.4163	0.2963	\$12,736	0.7118	\$12,599	\$25,335
4	\$0	\$16,730	\$32,580	0.3292	0.2092	\$11,291	0.6355	\$13,463	\$24,754
5	\$0	\$19,239	\$30,951	0.2774	0.1574	\$10,386	0.5674	\$14,372	\$24,758

Economic Life of the Defender = $N_D^* = 4$ EUAC_D = \$24,754

b. What are your conclusions? [2 points]

Summary:

 $N_1^* = 4$ $EUAC_1 = $28,107$ $N_2^* = 4$ $EUAC_2 = $24,754$

EUAC₁ > EUAC₂

The defender will have an equivalent annual cost of \$24,754 per year for the next 4 years. whereas.

The challenger will have an equivalent annual cost of \$28,107 per year for the next to be kept for a total of 4 years).

Therefore, as the EUAC of the defender (if kept for **4** years), the defender should be kept for

additional years) is lower than that of the challenger (if kept for years.

Keep the defender for 4 years.

Question4 Page 18 of 20

anned products f the financial information

a rate of 15% each year.

t year increasing at a rate of

Question4 Page 19 of 20

ing

_

Question4 Page 20 of 20