10

நேர் விகிதசமன்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- நேர் விகிதசமன்களை அறிந்துகொள்வதற்கும்
- அலகு முறையைப் பயன்படுத்தி நேர் விகிதசமப் பிரசினங்களைத் தீர்ப்பதற்கும்
- விளக்கமளிப்பதன் மூலம் நேர் விகிதசமப் பிரசினங்களைத் தீர்ப்பதற்கும்
- நேர் விகிதசமனாகும் இரு கணியங்களுக்கிடையிலான தொடர்பை y=kxஎன்னும் வடிவத்தில் எழுதிக் காட்டுவதற்கும்
- நேர் விகிதசமன் தொடர்பான அறிவைப் பயன்படுத்தி வெளிநாட்டு நாணய மாற்றீடுகள் தொடர்பான பிரசினங்களைத் தீர்ப்பதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

10.1 நேர் விகிதசமன்களின் அறிமுகம்

குறித்த ஒரு வகை பேனாக்களின் எண்ணிக்கையுடன் அவற்றின் விலை மாறும் விதம் பின்வரும் அட்டவணையில் காட்டப்பட்டுள்ளது.

பேனாக்களின் எண்ணிக்கை	விலை (ரூ.)
1	15
2	30
3	45
4	60
5	75
6	90

பேனாக்களின் எண்ணிக்கைக்கும் அவற்றின் விலைக்கும் இடையில் உள்ள கணித ரீதியிலான தொடர்பை விகிதமாக எழுதி அதனை எளிய வடிவில் காண்பிக்கும் விதத்தை நோக்குவோம். மேலேயுள்ள அட்டவணைக்கேற்பப் பேனாக்களின் எண்ணிக்கை அதிகரிக்கும்போது அதற்கேற்ப விலையும் அதிகரிக்கிறது எனத் தெரிகிறது.

இலவசப் பாடநூல்

பேனாக்களின் எண்ணிக்கையையும் அவற்றின் விலைகளையும் இரண்டு கணியங்களாகக் கருதுவோம். மேலேயுள்ள உதாரணத்துக்கேற்பப் பேனாக்களின் எண்ணிக்கையின் இரண்டு பெறுமானங்களுக்கும் ஒத்த விலைகளின் இரண்டு பெறுமானங்களுக்கும் இடையிலான சில விகிதங்கள் கீழேயுள்ள அட்டவணையில் தரப்பட்டுள்ளன. இவ்விகிதங்கள் சமமானவை என்பதை அவதானிக்க.

பேனாக்களின் எண்ணிக்கைக்கு இடையில் உள்ள விகிதம்	அதற்கு ஒத்த விலைகளுக்கு இடையில் உள்ள விகிதம்
1:2	15:30 = 1:2
1:3	15:45 = 1:3
2:3	30:45 = 2:3
3:5	45:75 = 3:5
2:5	30:75 = 2:5

ஒன்றுக்கொன்று வேறுபட்ட இரு கணியங்கள் ஒரே விகிதத்தில் அதிகரிக்குமாயின் அல்லது குறையுமாயின், அக்கணியங்கள் நேர் விகிதசமனானவை எனப்படும்.

நேர் விகிதசமமாகவுள்ள இரண்டு கணியங்களில் ஒரு கணியம் அதிகரிக்கும்போது மற்றைய கணியமும் அதற்கு ஒத்ததாக அதே விகிதத்தில் அதிகரிப்பதை அவதானிக்கக் கூடியதாக இருக்கின்றது. இவ்வாறே நேர் விகிதசமனாகவுள்ள இரண்டு கணியங்களுள் ஒரு கணியம் குறையும்போது மற்றைய கணியமும் அதற்குச் சமனான விகிதத்தில் குறையும்.

பயிற்சி 10.1

- 1. பின்வரும் ஒவ்வொரு சந்தர்ப்பத்திலும் தரப்படும் இரண்டு கணியங்களும் நேர் விகிதசமமானவையா, இல்லையா எனக் குறிப்பிடுக.
 - (i) ஒரே வகையான புத்தகங்களின் எண்ணிக்கையும் அவற்றின் விலையும்.
 - (ii) சீரான கதியில் அசையும் பொருள் ஒன்று சென்ற தூரமும் அதற்காக எடுத்த நேரமும்.
 - (iii) மோட்டர் வாகனம் ஒன்றின் வேகமும் குறித்தவொரு தூரத்தைச் செல்வதற்கு எடுக்கும் நேரமும்.
 - (iv) ஒரு சதுரத்தின் ஒரு பக்கத்தின் நீளமும் அதன் சுற்றளவும்.
 - (v) யாதாயினுமொரு வேலையில் ஈடுபடும் மனிதர்களின் எண்ணிக்கையும் அதற்கு எடுக்கும் நாட்களின் எண்ணிக்கையும்.
 - (vi) சதுரம் ஒன்றின் பக்கம் ஒன்றின் நீளமும் அதன் பரப்பளவும்
 - (vii) ஒரு வீட்டில் பயன்படுத்தும் மின் அலகுகளின் எண்ணிக்கையும் மாதக் கட்டணமும்.

10.2 அலகு முறையைப் பயன்படுத்தி நேர் விகிதசமன் தொடர்பான பிரசினங்களைத் தீர்த்தல்

குறித்தவொரு வகையில் 3 சவர்க்காரக்கட்டிகளின் விலை ரூ. 120 எனத் தரப்பட்டபோது அதே வகையான 5 சவர்க்காரக்கட்டிகளின் விலையைக் காணவேண்டும் எனக் கொள்வோம். இங்கே ஒரு சவர்க்காரக்கட்டியின் விலையைக் கண்டு அதிலிருந்து 5 சவர்க்காரக்கட்டிகளின் விலையை இதற்கு முன்னைய வகுப்புகளில் கற்றவாறு இலகுவில் கணித்து விடலாம்.

3 சவர்க்காரக்கட்டிகளின் விலை = ரூ. 120

1 சவர்க்காரக்கட்டியின் விலை = ரூ. 120 ÷ 3

 $= e^{-6}$. 40

5 சவர்க்காரக்கட்டிகளின் விலை = ரூ. 40 imes 5

 $= e^{-7}$. 200

இக்கணிப்பு முறையை இவ்வாறும் விவரிக்கலாம்.

இங்கு இரு கணியங்கள் உள்ளன. சவர்க்காரக்கட்டிகளின் எண்ணிக்கையும் அவற்றின் விலையுமே அவையாகின்றன. முதலில் ஒரு சவர்க்காரக்கட்டியின் விலையாகிய ரூ. 40 ஐக் கணித்தோம். பின்பு 5 சவர்க்காரக்கட்டிகளின் விலையைக் காண அப்பெறுமானத்தை 5 ஆல் பெருக்கினோம். ஒரு சவர்க்காரக்கட்டியின் விலை என்பது

மாறாப் பெறுமானமான <u>சவர்க்காரக்கட்</u>டிகளின் விலை சவர்க்காரக்கட்டிகளின் எண்ணிக்கை

என்னும் பின்னத்தின் பெறுமானமாகும்.

அலகு ஒன்றின் பெறுமானத்தைக் காண்பதன்மூலம் பிரசினங்களைத் தீர்க்கும் முறை அலகு முறை எனப்படும்.

அலகு முறையையைப் பயன்படுத்தி நேர் விகிதசமப் பிரசினங்கள் சிலவற்றைத் தீர்க்கும் விதத்தை நோக்குவோம்.

சீரான வேகத்தில் நடந்து செல்லும் ஒரு நபர் 5 நிமிடங்களில் 800 மீற்றர் தூரம் செல்வாராயின், 12 நிமிடங்களில் அவர் செல்லும் தூரத்தைக் கணிக்க.

 $= 160 \, \mathrm{m}$

். 12 நிமிடங்களில் நடந்து செல்லும் தூரம் = 160 × 12

= 1 920 m ஆகும்.

உதாரணம் 2

கிறிகெற் போட்டியின்போது பயன்படுத்தப்படும் ஒரேயளவான 10 பந்துகளின் திணிவு 3 கிலோகிராம் எனின், அதே வகையான 3 பந்துகளின் திணிவு எவ்வளவு ?

= 300 g

3 பந்துகளின் திணிவு = 300 × 3

= 900 g ஆகும்.

அலகு முறையைப் பயன்படுத்திப் பின்வரும் பிரசினங்களைத் தீர்க்க.

பயிற்சி 10.2

- 1. 8 தோடம்பழங்களின் விலை ரூ. 320 எனின், 5 தோடம்பழங்களின் விலை எவ்வளவு?
- 2. 5 மீற்றர் சீத்தைத் துணியின் விலை ரூ. 750 எனின், 12 மீற்றர் சீத்தைத் துணியின் விலை எவ்வளவு?
- 3. 15 அப்பிள்கள் அடங்கிய ஒரு பொதியின் திணிவு 3.6 கிலோகிராம் ஆயின் 8 அப்பிள்களின் திணிவு யாது? (எல்லா அப்பிள்களும் சம திணிவு உடையன எனக் கொள்க.)
- 4. 5 நிமிடங்களில் 240 பிரதிகளை அச்சிடும் அச்சு இயந்திரம் ஒன்று 12 நிமிடங்களில் அச்சிடும் பிரதிகளின் எண்ணிக்கையைக் காண்க.
- 5. சீரான வேகத்தில் செல்லும் மோட்டர் வாகனம் ஒன்று 15 நிமிடங்களில் 12 கிலோமீற்றர் தூரம் செல்லும் எனின், 40 நிமிடங்களில் செல்லும் தூரத்தைக் கணிக்க.
- 6. மோட்டர்ச் சைக்கிள் ஒன்று 2 லீற்றர் எரிபொருளைப் பயன்படுத்தி 90 கிலோமீற்றர் தூரம் செல்லும் எனின், அது 5 லீற்றர் எரிபொருளைப் பயன்படுத்தி எவ்வளவு தூரம் செல்லும் எனக் காண்க.
- 7. சீரான வேகத்தில் நீர் வடிந்தோடும் ஒரு நீர்க் குழாய் 1000 லீற்றர் கொள்ளவுள்ள தாங்கி ஒன்றை நிரப்புவதற்கு 5 நிமிடங்கள் எடுக்குமாயின், 1600 லீற்றர் கொள்ளளவுள்ள தாங்கி ஒன்றை நிரப்புவதற்கு எடுக்கும் நேரத்தைச் செக்கனில் காண்க.

10.3 விளக்கமளிக்கும் முறையைப் பயன்படுத்தி நேர் விகிதசமப் பிரசினங் களைத் தீர்த்தல்

நேர் விகிதசமனுள்ள இரு கணியங்களில் முதலாவது கணியத்தின் எவையேனும் இரண்டு பெறுமானங்களுக்கிடையிலான விகிதம் மற்றைய கணியத்தின் அதற்கொத்த இரண்டு பெறுமானங்களுக்கிடையிலான விகிதத்திற்குச் சமனாகுமெனப் பாடத்தின் தொடக்கத்தில் கற்றோம். அதனைப் பின்வருமாறு அட்சரங்களால் குறிப்பிடலாம்.

a எண்ணிக்கையுள்ள ஏதேனும் ஒரு பொருளின் விலை ரூ. u எனவும் b எண்ணிக்கையுள்ள அதே பொருளின் விலை ரூ. v எனவும் கருதும்போது

அப்போது a : b=u : v என எழுதலாம். இதனைப் பின்னமாக $\frac{b}{a}=\frac{v}{u}$ (அல்லது $\frac{a}{b}=\frac{u}{v}$) என எழுதலாம்.

இதனை av=bu எனவும் குறுக்குப் பெருக்கத்தின் மூலம் கூறலாம்.

இப்பண்பைப் பயன்படுத்தி நேர் விகிதசமன் தொடர்பான பிரசினங்களைத் தீர்க்கும் விதத்தைப் பின்வரும் உதாரணங்களின் மூலம் அறிந்துகொள்வோம்.

உதாரணம் 1

5 மாம்பழங்களின் விலை ரூ. 75 எனின், 8 மாம்பழங்களின் விலை என்ன?

8 மாம்பழங்களின் விலையை ரூ. x எனக் கருதும்போது அவற்றின் தொடர்பைப் இவ்வாறு காட்டலாம்.

மாம்பழங்களின் எண்ணிக்கை விலை (ரூ.)
$$5 \longrightarrow 75$$
 $8 \longrightarrow x$

இத்தரவுகளைச் சமன்பாடு வடிவத்தில் எழுதி x இன் பெறுமானத்தைப் பெற்று விடலாம். அதன் மூலம் 8 மாம்பழங்களின் விலை பெறப்படும்.

$$5: 8 = 75: x$$

$$y_{s} = 30 \quad \frac{5}{8} = \frac{75}{x}$$

$$5x = 75 \times 8$$

$$x = \frac{75 \times 8}{5}$$

$$x = 120$$

எனவே 8 மாம்பழங்களின் விலை ரூ. 120 ஆகும்.

15 % இலாபம் கிடைக்குமாறு ரூ. 500 இற்குக் கொள்வனவு செய்த பொருள் ஒன்றை விற்க வேண்டிய விலையைக் காண்க.

இப்பிரசினத்தில் உள்ள தரவுகளை விகிதசமனைப் பயன்படுத்தி இவ்வாறு எழுதுவோம். ரூ. 100 இற்குக் கொள்வனவு செய்த பொருளின் விற்பனை விலை ரூ. 115 ஆயின் (இலாபம் 15% என்பதால்), ரூ 500 இற்குக் கொள்வனவு செய்த பொருளின் விற்பனை விலை என்ன?

ரூ. 500 இற்குக் கொள்வனவு செய்த பொருளின் விற்பனை விலை ரூ. x என்போம்.

கொள்விலை (ரூ.)		விற்பனை விலை (ரூ.)
100	→	115
500		\boldsymbol{x}

$$100:500 = 115: x$$

$$\frac{100}{500} = \frac{115}{x}$$

$$100 x = 115 \times 500$$

$$x = \frac{115 \times 500}{100}$$

ஆகவே, விற்க வேண்டிய விலை ரூ. 575 ஆகும்.

பயிற்சி 10.3

x = 575

- 1. கீழே தரப்பட்டுள்ள விகிதசமன்களில் வெற்றிடத்திற்குப் பொருத்தமான பெறுமானங்களை எழுதுக.

 - (i) 2:5=8:... (ii) 3:4=...:20
 - (iii) 5:3=40:....
- (iv) 4:1 = ...:8
- $(v) \dots : 6 = 35 : 30$ $(vi) 8 : \dots = 24 : 15$
- 2. பின்வரும் பிரசினங்களில் உள்ள தரவுகளை அம்புக்குறி மூலம் காண்பித்து, பின்னர் சமன்பாடு ஒன்றை எழுதி விகிதசம முறையில் தீர்க்க.
 - (i) 10 கிலோகிராம் அரிசியின் விலை ரூ. 850 ஆகும். இவ்வகையான 7 கிலோகிராம் அரிசியின் விலையைக் காண்க.
 - (ii) 9 cm³ கனவளவுள்ள ஒரு வகை உலோகத்தின் திணிவு 108 கிராம் ஆகுமாயின், $12~{
 m cm}^3$ கனவளவுள்ள அதே வகை உலோகத்தின் திணிவைக் காண்க.

- (iii) சீரான கதியில் செல்லும் ஒரு மோட்டர்ச் சைக்கிள் 4 மணித்தியாலங்களில் 240 கிலோமீற்றர் தூரம் செல்லுமாயின், 3 மணித்தியாலங்களில் அவ்வாகனம் செல்லும் தூரத்தைக் காண்க.
- (iv) பொருள் ஒன்றை விற்பனை செய்யும்போது 3% கழிவு வழங்கப்படும் ஒரு விற்பனை நிலையத்தில் ரூ. 800 விலையுள்ள குறித்த பொருள் ஒன்றைக் கொள்வனவு செய்யத் தேவைப்படும் பணம் யாது ?
- (v) 4 பென்சில்கள் ரூ. 48 ஆகுமெனின், ரூ 132 இற்குக் கொள்வனவு செய்யத்தக்கப் பென்சில்களின் எண்ணிக்கையைக் காண்க.
- (vi) 12 பழப்பானப் போத்தல்களின் விலை ரூ. 4800 ஆயின், ரூ. 6000 இற்கு வாங்கத்தக்க போத்தல்களின் எண்ணிக்கையைக் காண்க.
- (vii) ஒரு பொருளை விற்கும்போது 12% தரகுக் கட்டணம் வழங்கப்படுமாயின், ரூ. 15 000 பெறுமதியுள்ள பொருளை விற்கும்போது கிடைக்கும் தரகுக் கட்டணம் யாது ?

10.4 அட்சரகணித முறையில் எழுதி நேர் விகிதசமன் தொடர்பான பிரசினங்களைத் தீர்த்தல்

பேனா ஒன்றின் விலை ரூ. 15 ஆகுமெனின்,

- 2 பேனாக்களின் விலை ரூ. 30 ஆகும்.
- 3 பேனாக்களின் விலை ரூ. 45 ஆகும்.
- 4 பேனாக்களின் விலை ரூ. 60 ஆகும்.

மேலே தரப்பட்ட நான்கு சந்தர்ப்பங்களிலும் செலவாகும் தொகையைப் பேனாக்களின் எண்ணிக்கையால் வகுக்கும்போது பெறப்படும் பெறுமானம் மாறாப் பெறுமானம் என நோக்கினோம்.

இங்கே மாறாப் பெறுமானம் பேனா ஒன்றின் விலையாகும். அதற்கேற்ப x எண்ணிக்கையுள்ள பேனாக்களின் விலை ரூ. y எனின்,

 $\frac{y}{x} = k$ எனக் குறிக்கலாம். k என்பது ஒரு மாறாப் பெறுமானமாகும். இச்சமன்பாட்டை y = kx எனவும் எழுதலாம்.

இவ்வட்சரகணிதச் சமன்பாட்டைப் பயன்படுத்தி நேர் விகிதசமப் பிரசினங்களைத் தீர்க்கும் விதத்தைப் பின்வரும் உதாரணங்கள் மூலம் அறிந்து கொள்வோம்.

3 அப்பியாசப் புத்தகங்களின் விலை ரூ. 75 எனின், 5 அப்பியாசப் புத்தகங்களின் விலை என்ன?

அப்பியாசப் புத்தகங்களின் எண்ணிக்கையை x எனவும் அவற்றின் விலையை y எனவும் கொண்டால், இத்தொடர்பு y=kx என எழுதலாம். இங்கே, k ஒரு மாறிலியாகும். பிரசினத்தில் தரப்பட்டுள்ள தகவல்களிலிருந்து k இன் பெறுமானத்தைக் காணலாம்.

3 அப்பியாசப் புத்தகங்களின் விலை ரூ. 75 ஆகையால், x=3 உம் y=75 உம் ஆகும்.

இப்பெறுமானங்களைச் சமன்பாட்டில் பிரதியிடுவதனால் $75=k\times 3$ ஆகும். இதனைத் தீர்ப்பதால் k=25 என்னும் பெறுமானம் கிடைக்கும்.

k இற்குரிய பெறுமானத்தை முதலிற் பெற்ற சமன்பாட்டில் பிரதியிடும்போது $y=25\ k$ என்னும் x இற்கும் y இற்கும் இடையில் உள்ள தொடர்பு பெறப்படுகின்றது. இப்போது இச்சமன்பாட்டைப் பயன்படுத்தி எந்தவொரு x பெறுமானத்துக்கும் ஒத்த y பெறுமானத்தையும் அல்லது எந்தவொரு y இன் பெறுமானத்துக்கு ஒத்த x இன் பெறுமானத்தையும் காணலாம்.

பிரசினத்தில் 5 அப்பியாசப் புத்தகங்களின் விலையைக் காணவேண்டும் ஆகையால், x=5 இற்கு ஒத்த y இன் பெறுமானத்தைக் காணவேண்டியுள்ளது. இதனை

$$y=25x$$
 இல் $x=5$ ஐப் பிரதியிடுவதன் மூலம் $y=25\times 5$

= 125 எனப் பெறப்படும்.

இதற்கேற்ப 5 அப்பியாசப் புத்தகங்களின் விலை ரூ. 125 ஆகும்.

உதாரணம் 2

குறித்த ஒரு வியாபாரி 20% இலாபத்துடன் ரூ. 500 இற்குக் கொள்வனவு செய்த பொருள் ஒன்றை என்ன விலைக்கு விற்பார்?

பொருளின் கொள்விலையை x எனவும் விற்பனை விலையை y எனவும் கொண்டு

$$\frac{y}{x} = k$$
 இல் பிரதியிடும்போது

$$\frac{120}{100} = k$$

 $\frac{y}{500} = k$ என்னும் சமன்பாடுகள் பெறப்படும்.

k ஒரு மாறிலி ஆகையால்,

$$rac{y}{500}=rac{120}{100}$$
 என எழுதலாம்.
அப்போது $y=rac{120 imes 500}{100}$ $y=600$

எனவே பொருளின் விற்பனை விலை ரூ. 600 ஆகும்.

இப்பிரசினங்களை அட்சரகணிதச் சமன்பாட்டு முறையைப் பயன்படுத்தித் தீர்க்க.

- 1. 3 காற்சட்டைகளின் விலை ரூ. 1200 எனின், 5 காற்சட்டைகளின் விலையைக் காண்க.
- 2. சமனான வேதனத்தைப் பெறும் 8 தொழிலாளர்களுக்கு நாள் ஒன்றில் ரூ. 7200 வேதனம் வழங்கப்பட்டது. அவ்வாறெனின், மூன்று தொழிலாளர்கள் நாள் ஒன்றுக்குப் பெற்ற வேதனத்தைக் காண்க.
- 3. அளவிடைக்கேற்ப வரையப்பட்ட தேசப்படம் ஒன்றில் 5 சென்ரிமீற்றரினால் 25 மீற்றர் குறிக்கப்படுகின்றது. அவ்வாறெனின், 8 சென்ரிமீற்றரினால் குறிக்கப்படும் உண்மையான தூரம் எவ்வளவு?
- 4. மென்பானத்தை உற்பத்திசெய்யும் ஒரு இயந்திரம் 5 மணித்தியாலங்களில் 7 500 மென்பானப் போத்தல்களை உற்பத்திசெய்கின்றது. அவ்வியந்திரம் 7 மணித்தியாலங்களில் எத்தனை போத்தல்களை உற்பத்திசெய்யும்?
- 5. புத்தக விற்பனை நிலையம் ஒன்று ஒவ்வொரு கொள்வனவிலும் 8% கழிவு வழங்குகின்றது. குறித்த ஒருவர் ரூ. 1 200 இற்கு அங்கு புத்தகங்களைக் கொள்வனவு செய்யும்போது செலுத்த வேண்டிய பணத்தொகை எவ்வளவு?

10.5 வெளிநாட்டு நாணயங்கள்

ஒவ்வொரு நாட்டிலும் அவற்றுக்கே உரித்தான பண அலகுகள் இருப்பதையும் அப்பண அலகின் பெறுமதியை இன்னொரு நாட்டின் பண அலகுடன் ஒப்பிடும்போது அவற்றின் பெறுமானம் ஒன்றுக்கொன்று வேறுபடுவதையும் நாம் அறிவோம். ஒரு நாட்டின் பண அலகை இன்னொரு நாட்டின் பண அலகாக மாற்றும் விதத்தைக் குறிப்பதற்கு நாணயமாற்று விகிதம் என்னும் பதம் பிரயோகிக்கப்படுகின்றது. அவ்விகிதம் நிரந்தரமான பெறுமானமாக இருக்காது. பல காரணங்களால் நாணயமாற்று விகிதம் தினந்தோறும் மாற்றமடைவது வழக்கமாகும்.

இலவசப் பாடநூல்

நாடுகள் சிலவற்றில் பயன்படுத்தப்படும் பண அலகுகளும் குறித்தவொரு தினத்தில் அப்பண அலகுகளின் நாணயமாற்று விகிதமும் இலங்கை ரூபாயில் நாணயமாற்று விகிதமாகக் கீழே தரப்பட்டுள்ளன.

நாடு	வெளிநாட்டு நாணய அலகு	நாணயமாற்று விகிதம்
		(இலங்கை ரூ.)
அமெரிக்கா	அமெரிக்க டொலர்	151.20
இங்கிலாந்து	ஸ்ரேலிங் பவுண்	185.90
ஐரோப்பா	யூரோ	160.60
யப்பான்	யென்	1.33
இந்தியா	இந்திய ரூபாய்	2.26
சவுதி அரேபியா	சவுதி ரியால்	40.32
சிங்கப்பூர்	சிங்கப்பூர் டொலர்	107.30

(2017-03-05 இணையத்தளத்திலிருந்து பெறப்பட்டது)

விகிதசமன் பற்றிய அறிவைப் பயன்படுத்தி நாணயமாற்று விகிதம் தொடர்பான பிரசினங்களைத் தீர்க்கும் விதத்தை நோக்குவோம்.

உதாரணம் 1

அமெரிக்க டொலர் ஒன்றின் நாணயமாற்று விகிதம் ரூ. 151 ஆக இருந்த ஒரு நாளில் 50 அமெரிக்க டொலர்களை இலங்கை ரூபாயாக மாற்றிய ஒருவர் பெற்ற பணத்தொகை இலங்கை ரூபாயில் எவ்வளவு?

உதாரணம் 2

இங்கிலாந்துக்குச் சுற்றுலா ஒன்றை மேற்கொண்ட ஒரு நபர் ஸ்ரேலிங் பவுண் ஒன்றின் நாணயமாற்று விகிதம் ரூ. 185 ஆக இருந்த ஒரு தினத்தில் ரூ. 74 000 ஐ ஸ்ரேலிங் பவுண்களாக மாற்றிய அவர் பெறும் தொகையை ஸ்ரேலிங் பவுண்களில் காண்க.

ரூ.
$$185$$
 இன் பெறுமானம் $=1$ ஸ்ரேலிங் பவுண் $\frac{1}{185}$

ரூ. 74 000 இன் பெறுமானம் = ஸ்ரேலிங் பவுண்
$$\frac{1}{185} \times 74~000$$
 = ஸ்ரேலிங் பவுண் 400

(இங்கு $\frac{1}{185}$ ஐத் தசம வடிவில் மாற்றாது வைத்திருப்பின் சுருக்குவது இலகுவாகும்). எனவே பெறும் ஸ்ரேலிங் பவுண்களின் எண்ணிக்கை 400 ஆகும்.

பயிற்சி 10.5

மேலே தரப்பட்ட நாணயமாற்று விகித அட்டவணையைப் பயன்படுத்திப் பின்வரும் பயிற்சியில் ஈடுபடுக.

- 1. வெளிநாடு ஒன்றில் பணிபுரியும் நபர் ஒருவரின் மாதச் சம்பளம் 1500 அமெரிக்க டொலர் ஆகும். அவரது மாதச் சம்பளம் இலங்கை ரூபாயில் எவ்வளவு ?
- 2. யப்பானிலிருந்து இறக்குமதி செய்யப்பட்ட தொலைக்காட்சிப்பெட்டி ஒன்று 12500 யென் எனின், அதன் பெறுமானம் இலங்கை ரூபாயில் எவ்வளவு?
- 3. மேற்படிப்புக்காக ஐக்கிய இராச்சியத்திற்குச் செல்லும் புலமைப் பரிசில் பெற்ற ஒருவர் மாதந்தோறும் 2500 ஸ்ரேலிங் பவுண்களைக் கொடுப்பனவாகப் பெறுகிறார். அவர் பெறும் பணத்தின் தொகையை இலங்கை ரூபாயில் காண்க.
- 4. குறித்தவொரு விற்பனை நிலையத்தில் தீர்வையின்றி விற்பனைக்கு வைக்கப்பட்டிருந்த விளையாட்டுப் பொருள் ஒன்றின் விலை 750 யூரோ எனக் குறிக்கப்பட்டிருந்தது. இப்பொருளைக் கொள்வனவு செய்யச் செலுத்த வேண்டிய இலங்கை ரூபாய் எவ்வளவு?
- 5. இந்தியாவுக்கு யாத்திரை செல்லும் ஒருவர் ரூ. 56 500 இலங்கை ரூபாயை இந்திய ரூபாயாக மாற்றிக் கொண்டார். அவர் பெற்ற தொகை இந்திய ரூபாயில் எவ்வளவு?
- 6. இலங்கையிலிருந்து சிங்கப்பூருக்கு ஏற்றுமதி செய்யப்படும் 600 880 ரூபாய் பெறுமதியான ஆடைத் தொகை ஒன்றுக்காகக் கிடைக்கும் பணத்தின் தொகையைச் சிங்கப்பூர் டொலரில் தருக.

 11

கணிகருவி

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

• விஞ்ஞானக் கணிகருவியின் =, %, x^2 , \sqrt{x} என்னும் சாவிகளை இனங்கண்டு பயன்படுத்துவதுவதற்குத்

தேவையான ஆற்றலைப் பெறுவீர்கள்.

11.1 கணிகருவி

ஆதிகாலத்திலிருந்து மனிதன் கணிப்புகளைச் செய்வதற்குப் பல்வேறு உபகரணங்களைப் பயன்படுத்தி வருகின்றான். இடையர் காலத்தில் மனிதனிடமிருந்த விலங்குகளின் எண்ணிக்கையைக் கணக்கிடுவதற்குக் கற்களைப் பயன்படுத்தினான். பின்னர் அவன் கோடுகளை வரைவதன் மூலம் அப்பணியைச் செய்தான். இதற்காகக் களிமண் பலகைகள் பயன்படுத்தப்பட்டமைக்குச் சான்றுகள் உள்ளன. கி. மு. 1000 இல் எகிப்தியர் கணிப்புகளுக்காக எண்சட்டம் என்னும் உபகரணத்தைப் பயன்படுத்தினர். நாம் தற்போது பயன்படுத்தும் விதத்தில் அமைந்த எண்சட்டம் சீனர்களினால் 15 ஆம் நூற்றாண்டில் தயாரிக்கப்பட்டது. அதே வேளை 17 ஆம் நூற்றாண்டில் வாழ்ந்த ஜோன் நேப்பியரினால் எண் கீற்றுகள் உள்ள உபகரணம் தயாரிக்கப்பட்டது. அது நேப்பியர் கீற்றுகள் எனப்படும்.

புராதன எகிப்து எண்சட்டம்

தற்கால எண்சட்டம்

பிரெஞ்சு இனத்தவராகிய பிளேஸ் பஸ்கால் (Blaise Pascal 1623 - 1662) என்பவர் பொறிமுறையாகத் தொழிற்படும் கணிகருவியை உற்பத்திசெய்தார். 1833 ஆம் ஆண்டில் ஆங்கிலேயராகிய சாள்ஸ் பெபேஜ் (1791 - 1871) மேலும் மேம்பட்ட கணிகருவியை அறிமுகஞ்செய்தார். இப்பொறியை அடிப்படையாகக் கொண்டு மின் வலுவினால் தொழிற்படுத்தப்படும் கணினி உருவாகியது. இலத்திரனியலின் மேம்பாட்டுடன் தற்போது பயன்படுத்தப்படும் சிறிய அளவிலான கணிகருவி உற்பத்தி செய்யப்பட்டது.

Blaise Pascal

Charles Babbage

தற்போது கணிகருவிகள் சாதாரண கணிகருவி, விஞ்ஞானக் கணிகருவி என இரு வகைகளாக உற்பத்திசெய்யப்படுகின்றன. சாதாரண கணிகருவி மூலம் கூட்டல், கழித்தல், வகுத்தல், பெருக்கல் போன்ற சாதாரண கணிதச் செய்கைகளை மாத்திரம் செய்யலாம். விஞ்ஞானக் கணிகருவி மூலம் $x^2, x^3, \sqrt[x]{y}$, 10^x போன்ற சிக்கலான கணிதச் செய்கைகளையும் செய்யலாம்.

விஞ்ஞானக் கணிகருவி

விஞ்ஞானக் கணிகருவி சாதாரண கணிகருவியைப் போன்று தரவுகளை உள்ளிடுவதற்கான சாவிப் பலகையையும் காட்சித் திரையையும் கொண்டுள்ளது. ஆயினும் விஞ்ஞானக் கணிகருவியில் உள்ள சாவிகள், காட்சித் திரையில் காணத்தக்க இலக்கங்களின் எண்ணிக்கை, இலக்க நிரைகளின் எண்ணிக்கை ஆகியன சாதாரண கணிகருவியிலும் பார்க்கக் கூடியனவாகும்.

11.1 கணிகருவியைப் பயன்படுத்திக் கணித்தல்

கணிகருவியைப் பயன்படுத்திக் கணிப்புகளைச் செய்யும்போது சாவிகளைக் குறித்த ஒழுங்கு முறையில் தொழிற்படுத்த வேண்டும்.

உதாரணம் 1

27 + 35 இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை பின்வருமாறு;

$$\boxed{ON \rightarrow 2 \rightarrow 7 \rightarrow + \rightarrow 3 \rightarrow 5 \rightarrow = 62}$$

உதாரணம் 2

208 – 159 இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை பின்வருமாறு;

உதாரணம் 3

 5.25×35.4 இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை பின்வருமாறு;

உதாரணம் 4

5.52 ÷ 6 இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை பின்வருமாறு;

கணிப்பின் இறுதியில் விடையைப் பெற்ற பின்னர் கணிகருவியின் இயக்கத்தை நிறுத்துவதற்கு OFF சாவியைத் தொழிற்படுத்த வேண்டும். அன்றேல், வேறொரு கணிப்பைத் தொடங்க வேண்டிய ஒரு சந்தர்ப்பத்தில் AC சாவியைத் தொழிற்படுத்துவதன் மூலம் தொடக்கக் கணிப்பின் எல்லாத் தகவல்களையும் அழிக்கலாம்.

பின்வரும் சுருக்கல்களுக்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்கு முறையைக் காட்டுக.

(i)
$$53 + 42 - 25$$

(ii)
$$35 \times 45 \div 21$$

$$\boxed{\text{ON}} \rightarrow \boxed{5} \rightarrow \boxed{3} \rightarrow \boxed{+} \rightarrow \boxed{4} \rightarrow \boxed{2} \rightarrow \boxed{-} \rightarrow \boxed{2} \rightarrow \boxed{5} \rightarrow \boxed{=} \boxed{70}$$

பயிற்சி 11.1

1. சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறையைக் காட்டி, கணிகருவியைப் பயன்படுத்திச் சுருக்குக.

a.
$$45 + 205$$

g.
$$7.35 \times 6.2$$

h.
$$134.784 \div 31.2$$

i.
$$12.5 \div 50 \times 4.63$$

i.
$$15.84 - 6.75 \times 3.52$$

k.
$$120.82 \div 0.0021 \times 5$$
 l. $0.006 \div 0.33 \times 0.12$

1.
$$0.006 \div 0.33 \times 0.12$$

சாதாரண கணிகருவியையும் விஞ்ஞானக் கணிகருவியையும் பயன்படுத்திச் சுருக்கல்

ஒன்றுக்கு மேற்பட்ட கணிதச் செய்கைகள் இருக்கும் சந்தர்ப்பங்களில் கணிகருவியைப் பயன்படுத்திச் சுருக்கல் செய்யப்படும் விதத்தை இப்போது கருதுவோம்.

சாதாரண கணிகருவியைப் பயன்படுத்தி 75 + 6 ÷ 3 ஜச் சுருக்கும்போது

 $ON \rightarrow 7 \rightarrow 5 \rightarrow + \rightarrow 6 \rightarrow \div \rightarrow 3 \rightarrow =$ என்னும் ஒழுங்குமுறையில் தரவுகளை உள்ளிடும்போது தரவுகளை வழங்கும் ஒழுங்குமுறையில் கணிதச் செய்கைகள் நடைபெற்று விடையாக 27 பெறப்படும்.

அதாவது $75+6 \div 3=81 \div 3=27$ எனத் தவறான விடை கிடைக்கும்.

(BODMAS விதிக்கு ஏற்பப் பெறப்பட்ட விடை தவறானதாகும்.)

விஞ்ஞானக் கணிகருவிக்கு அவ்வாறு தரவுகளை உள்ளிடும்போது நியம ஒழுங்கு முறைக்கேற்பக் கணிதச் செய்கை நடைபெற்று விடையாக 77 பெறப்படும்.

அது $75+6 \div 3=75+2=77$ எனக் கணிக்கப்படுகின்றது.

சுருக்கும்போது நாம் வழக்காகப் பயன்படுத்தப்படும் BODMAS விதிகளுக்கேற்ப இவ்விடை சரியானது.

சாதாரண கணிகருவி மூலம் கணிக்கும்போது தரவுகளை உள்ளிடும் ஒழுங்குமுறை பற்றிக் கவனமாக இருத்தல் வேண்டும். எனினும் விஞ்ஞானக் கணிகருவியில் இருக்கும் ஒழுங்குமுறைக்கேற்பத் தரவுகளை உள்ளிட்டுச் சரியான விடையைப் பெறலாம். ஆனால் இங்கு விசேடமாகக் குறிப்பிடவேண்டிய ஒரு விடயம் உற்பத்திசெய்யும் உண்(b). கணிகருவிகளை பெரும்பாலான கம்பனிகள் நிகழ்ச்சித்திட்டங்களைத் திட்டமிடும்போது உற்பத்தி BODMAS விதிகளைப் பின்பற்றினாலும் அவற்றிலிருந்து சிறிது வேறுபட்ட விதத்தில் கணிப்புகள் நடைபெறும் கணிகருவிகளும் இருப்பதைக் காணலாம். அத்தகைய கணிகருவிகளுக்குத் தரவுகளை உள்ளிட வேண்டிய விதம் அவற்றுடன் வரும் அறிவுறுத்தற் படிவங்களில் தரப்பட்டிருக்கும். அவ்வாறு அவற்றுள் அறிவுறுத்தற் படிவங்கள் இல்லாத சந்தர்ப்பத்தில் சில எளிய சுருக்கல்களைச் செய்து கணிகருவியின் மூலம் கணிப்பு நடைபெறும் விதம் பற்றிய விளக்கத்தைப் பெறலாம். அவ்வாறில்லாவிட்டால் முதலில் நடைபெற வேண்டிய கோவையை அடைப்புக்குள் இட்டு வேறுபடுத்த வேண்டும். ஓர் உதாரணமாகக் கோவை 1 — 5 + 12 ÷ 3 × 2 இல் உள்ள ஒழுங்குமுறைமைக்கு உள்ளிட்டால், சில கணிகருவிகளில் வகுத்தலுக்கு முன்பாக பெருக்கல் நடைபெறும். எனினும் BODMAS விதிகளுக்கேற்ப வகுத்தலுக்கும் பெருக்கலுக்கும் சம முன்னுரிமை அளிக்கப்படுகின்றமையால், இடமிருந்து வலமாகச் செல்லும்போது முதலில் வகுத்தலைச் செய்தல் வேண்டும்.

11.2 விஞ்ஞானக் கணிகருவியில் 🏸 சாவியைப் பயன்படுத்தல்

சதவீதங்களைக் கணிக்கையில் % சாவி பயன்படுத்தப்படுகின்றது. பெரும்பாலான கணிகருவிகளில் = சாவி மீது % குறிக்கப்பட்டிருக்கும். அதே வேளை Shift சாவியைத் தொழிற்படுத்தி = சாவியை அழுத்துவதன் மூலம் % தொழிற்படுத்தப்படுகின்றது.

உதாரணம் 1

480 இன் 25% ஐக் காண்பதற்குப் பின்வரும் ஒழுங்கு முறையில் சாவிகளைத் தொழிற்படுத்த வேண்டும்.

🚃 16 🥌 இலவசப் பாடநூல்

2 ஐ ஒரு சதவீதமாகக் காட்டுவோம். அதற்காகப் பின்வரும் ஒழுங்குமுறையில் சாவிகளைத் தொழிற்படுத்த வேண்டும்.

உதாரணம் 3

ரூ. 2500 இன் 35% ஐக் காண்பதற்குப் பின்வரும் ஒழுங்கு முறையில் சாவிகளைத் தொழிற்படுத்த வேண்டும்.

உதாரணம் 4

ஒரு கிராமத்தின் சனத்தொகை 550 ஆகும். அதில் 66 பேர் பாடசாலைப் பிள்ளைகளாவர். பாடசாலைக்குச் செல்லும் பிள்ளைகளின் எண்ணிக்கையைக் கிராமத்தின் சனத்தொகையின் சதவீதமாகக் காண்பதற்குப் பின்வரும் ஒழுங்கு முறையில் சாவிகளைத் தொழிற்படுத்த வேண்டும்.

பயிற்சி 11.2

- 1. சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறையைக் காட்டி, கணிகருவியியைப் பயன்படுத்திச் சுருக்குக.
 - (i) $350 \times 3\%$
- (ii) $7520 \times 60\%$
- (iii) 75.3 × 5%
- 2. கணிகருவியைப் பயன்படுத்திச் சதவீதமாகக் காட்டுக.
 - (i) $\frac{1}{5}$

(ii) $\frac{12}{25}$

- (iii) $\frac{7}{20}$
- 3 தொடக்கம் 7 வரையுள்ள பிரசினங்களின் தீர்வுகளைக் காண்பதற்குக் கணிகருவியைப் பயன்படுத்துக.
- 3. ஒருவர் ரூ. 450 ஐச் செலவழித்து உற்பத்திசெய்த ஒரு கதிரையை விற்று ரூ. 220 இலாபமாகப் பெறுகின்றார். அவர் பெற்ற இலாபச் சதவீதம் யாது ?
- 4. ஒரு பாடசாலையில் உள்ள பிள்ளைகளின் மொத்த எண்ணிக்கை 750 ஆகும். அவர்களில் 20% ஆனோர் பேருந்தில் பாடசாலைக்கு வருகின்றனர். பேருந்தில் பாடசாலைக்கு வரும் பிள்ளைகளின் எண்ணிக்கை யாது?

- 5. நிமலனின் மாதச் சம்பளம் ரூ. 35 000 ஆகும். அவர் அதில் ரூ. 7 000 ஐச் சேமிப்புக் கணக்கில் வைப்புச் செய்கின்றார். அவர் சேமித்த பணம் அவரது சம்பளத்தில் என்ன சதவீதமாகும்?
- 6. 650 பிள்ளைகள் கற்கும் ஒரு பாடசாலையில் 143 பிள்ளைகள் சங்கீதம் கற்கின்றனர். சங்கீதம் கற்கும் பிள்ளைகளின் எண்ணிக்கையைப் பாடசாலையில் உள்ள பிள்ளைகளின் எண்ணிக்கையின் சதவீதமாகக் காட்டுக.
- 7. நெல் இருப்பில் உள்ள பதர்களின் சதவீதம் 2 % இலும் குறைவானது எனக் கூறப்பட்டது. 350 kg நெல்லில் உள்ள பதர்களின் அளவு 6 kg ஆகும். மேற் குறித்த கூற்று உண்மையானதா?

11.3 எண் ஒன்றின் வர்க்கத்தை x^2 சாவியைப் பயன்படுத்திக் கணித்தல்

 2^2 , 5^2 , 3.21^2 போன்ற சுட்டி 2 உள்ள வலுக்களின் பெறுமானத்தைக் காண்பதற்கு $\boxed{x^2}$ சாவி பயன்படுத்தப்படுகின்றது.

உதாரணம் 1

3² இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

$$\boxed{ON} \rightarrow \boxed{3} \rightarrow \boxed{\chi^2} \rightarrow \boxed{=} \rightarrow \boxed{9}$$

உதாரணம் 2

4.1² இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

உதாரணம் 3

 $5^2 imes 12^2$ இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

உதாரணம் 4

ஒரு பக்கத்தின் நீளம் 6 cm ஆகவுள்ள ஒரு சதுரத்தின் பரப்பளவைக் காண்பதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறையை எழுதுக. சதுரத்தின் பரப்பளவு = 6 × 6 cm² ஆகையால்

$$\boxed{\text{ON}} \longrightarrow \boxed{6} \longrightarrow \boxed{x^2} \longrightarrow \boxed{36}$$

். சதுரத்தின் பரப்பளவு = 36 cm²

பயிற்சி 11.3

- 1. கணிகருவியைப் பயன்படுத்திச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்கு முறையைக் காட்டி, வலுக்களைக் காண்க.
 - (i) 2^2

(ii) 8^2

(iii) 127²

- (iv) 3532²
- (v) 3.5^2

- (vi) 6.03^2
- 2. கணிகருவியைப் பயன்படுத்திச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்கு முறையைக் காட்டிப் பின்வருவனவற்றின் பெறுமானங்களைக் காண்க.
 - (i) 3×5^2
- (ii) $3^2 \times 4^2$
- (iii) $(3.5)^2$

- (iv) $4^2 + 3^2$
- (v) $10^2 6^2$
- (vi) $10^2 3^2 \times 5$

11.4 விஞ்ஞானக் கணிகருவியில் 🔽 சாவியைப் பயன்படுத்திக் கணித்தல்

ஓர் எண்ணின் வர்க்க மூலத்தைக் காண்பதற்கு 🕡 சாவி பயன்படுத்தப்படுகின்றது.

உதாரணம் 1

 $\sqrt{25}$ இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

$$\begin{array}{c|c} ON \longrightarrow \overline{ } \end{array} \longrightarrow \begin{array}{c|c} 2 \longrightarrow \overline{ } \end{array} \longrightarrow \begin{array}{c|c} = & 5 \end{array}$$

உதாரணம் 2

 $\sqrt{44\ 521}$ இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

$$\boxed{\text{ON}} \rightarrow \boxed{4} \rightarrow \boxed{4} \rightarrow \boxed{5} \rightarrow \boxed{2} \rightarrow \boxed{1} \rightarrow \boxed{=} \boxed{211}$$

உதாரணம் 3

 $\sqrt{5.29}$ இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

- விஞ்ஞானக் கணிகருவியைப் பயன்படுத்தி, சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறையைக் காட்டிப் பின்வரும் எண்களின் வர்க்க மூலத்தைக் காண்க.
 - (i) 64

- (ii) 81
- (iii) 2704

- (iv) 3356
- (v) 3500
- (vi) 362 404
- 2. சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறையைக் காட்டிப் பின்வரும் எண்களின் பெறுமானங்களைக் காண்க.
 - (i) $\sqrt{49}$
- (iii) $\sqrt{625}$

- (iv) $\sqrt{20.25}$
- (v) $\sqrt{5.76}$
 - $(vi)_{1}\sqrt{0.1225}$

பலவினப் பயிற்சி

- சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறையைக் காட்டி விஞ்ஞானக் கணிகருவியின் மூலம் சுருக்குக.
 - (i) $5+6 \div 2+4 \times 5$ (ii) $2562+37 \times 0.25$
- (iii) $42.48 \div 5.31$

- (iv) $428 + 627 \times 5\%$ (v) $5.3^2 \div 6.01$ (vi) $\frac{7}{130} \times 2\% + 560$
- மோகன் நாற்று மேடையில் முளைப்பதற்கு இட்ட 35 வித்துகளில் 21 வித்துகள் முளைத்தன. முளைத்த வித்துகளின் எண்ணிக்கை நாற்றுமேடையில் இடப்பட்ட வித்துகளின் எண்ணிக்கையின் என்ன சதவீதம் என்பதை விஞ்ஞானக் கணிகருவியைப் பயன்படுத்திக் காண்க.
- 3. நிமலனின் சம்பளம் 12% இனால் அதிகரித்தது. அது அதிகரிப்பதற்கு முன்னர் நிமலனின் சம்பளம் ரூ 45 200 எனின், அதிகரித்த பின் நிமலனின் சம்பளம் எவ்வளவு?
- **4.** $a = 1.33^2$ எனின், a இன் பெறுமானத்தைக் காண்க.
- 5. $p = \sqrt{18.49 2}$ ஆகும். p இன் பெறுமானத்தைக் காண்க.

மேலதிக அறிவிற்கு

 $\sqrt{4^2 + 3^2}$ இன் பெறுமானத்தைப் பெறுவதற்குச் சாவிகளைத் தொழிற்படுத்த வேண்டிய ஒழுங்குமுறை

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- வலுக்களைப் பெருக்குதல், வலுக்களை வகுத்தல், வலுவின் வலு ஆகிய ஒவ்வொரு சந்தர்ப்பத்துக்குமுரிய சுட்டி விதிகளை அறிந்துகொள்வதற்கும்
- மேற்குறித்த சுட்டி விதிகளைப் பயன்படுத்தி அட்சரகணிதக் கோவைகளைச் சுருக்குவதற்கும்
- பூச்சியச் சுட்டியையும் மறைச் சுட்டியையும் அறிந்துகொள்வதற்கும் அவற்றுக்குரிய அட்சரகணிதக் கோவைகளைச் சுருக்குவதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள.

சுட்டிகள்

நீங்கள் இதற்கு முன்னைய வகுப்புகளில் 2^1 , 2^2 , 2^3 போன்ற எண்களின் வலுக்கள் பற்றிக் கற்றுள்ளீர்கள் அவற்றின் பெறுமானங்களை இவ்வாறு காணலாம்.

$$2^{1} = 2$$

 $2^{2} = 2 \times 2 = 4$
 $2^{3} = 2 \times 2 \times 2 = 8$
 \vdots

இவ்வாறே, x^1 , x^2 , x^3 போன்ற அட்சரகணிதக் குறியீடுகளைக் கொண்ட வலுக்கள் பற்றியும் கற்றுள்ளீர்கள். அவற்றையும் கீழே உள்ளவாறு விரித்து எழுதலாம்.

$$x^{1} = x$$

$$x^{2} = x \times x$$

$$x^{3} = x \times x \times x$$

$$\vdots$$

இவ்வாறே எண்களினதும் அட்சரகணித உறுப்புகளினதும் வலுக்கள் பெருக்கப்பட்டிருக்கும்போதும் அவற்றை விரித்து எழுதும் முறையை நீங்கள் கற்றுள்ளீர்கள். உதாரணமாக

$$5^2\,a^3\,b^2 = 5 \times 5 \times a \times a \times a \times b \times b$$
 என எழுதலாம்.

இவ்வாறே $(xy)^2$ என்னும் வடிவத்திலான ஒரு பெருக்கத்தின் வலுவை $x^2\,y^2$ என வலுக்களின் பெருக்கமாகக் காட்ட முடியும் எனவும் $\left(\frac{x}{y}\right)^2$ என்னும் வடிவத்திலான ஒரு வகுத்தலின் வலுவை $\frac{x^2}{v^2}$ எனக் காட்ட முடியும் எனவும் கற்றுள்ளீர்கள்.

இவ்விடயங்களை மேலும் நினைவுகூர்வதற்குத் தரப்பட்டுள்ள மீட்டற் பயிற்சியில் ஈடுபடுக.

மீட்டற் பயிற்சி

1. பெறுமானத்தைக் காண்க.

(i)
$$2^5$$

$$(ii) (-3)^2$$

$$(iii) (-4)^2$$

(iv)
$$\left(\frac{2}{3}\right)^2$$
 (v) $(-3)^3$

$$(v)(-3)^3$$

$$(vi) (-4)^3$$

2. கீறிட்ட இடங்களை நிரப்புக.

(i)
$$(xy)^2 = (xy) \times \dots$$

= $\dots \times \dots \times x \times y$
= $x \times x \times \dots \times \dots$
= $x^2 \times y^2$

(ii)
$$(pq)^3 = \dots \times \dots \times \dots$$

 $= p \times q \times \dots \times \dots \times \dots \times \dots$
 $= p \times p \times p \times \dots \times \dots \times \dots$
 $= p^3 \times q^3$

(iii)
$$(2ab)^2 = \dots \times \dots$$

= $\dots \times \dots \times a \times \dots \times \dots \times b$
= $2 \times 2 \times \dots \times \dots \times \dots \times \dots$
= $4a^2 \times b^2$

(iv)
$$9p^2q^2 = \dots^2 \times p^2 \times q^2$$

 $= \dots \times \dots \times p \times p \times \dots \times \dots$
 $= (3 \times p \times q) \times (\dots \times \dots \times \dots)$
 $= (3pq)^2$

3. கீழே தரப்பட்டுள்ள ஓவ்வொரு கோவையையும் பெருக்கமாக விரித்து எழுதுக.

(i)
$$2a^2$$

(ii)
$$3x^2y^2$$

(iii)
$$-5p^2q$$

$$(iv) (-3)^5$$

$$(v) (ab)^3$$

(vi)
$$x^4 \times y^4$$

12.1 சமமான அடிகளை உடைய வலுக்களைப் பெருக்குதல்

 $2^3,\ 2^5$ ஆகியன சமமான அடியை உடைய இரண்டு வலுக்களாகும்.

$$2^3 = 2 \times 2 \times 2$$
 எனவும்

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2$$
 எனவும் விரித்து எழுதலாம்.

இந்த இரண்டு வலுக்களினதும் பெருக்கத்தைப் பெறுவோம்.

$$2^{3} \times 2^{5} = (2 \times 2 \times 2) \times (2 \times 2 \times 2 \times 2 \times 2)$$
$$= 2 \times 2$$
$$= 2^{8}$$

 2^3 இல் 2 ஆனது மீண்டும் மீண்டும் மூன்று தடவைகளும்

 2^{5} இல் 2 ஆனது மீண்டும் மீண்டும் ஐந்து தடவைகளும் பெருக்கப்படுவதால்

அவை இரண்டும் பெருக்கப்படும்போது 2 ஆனது மீண்டும் மீண்டும் (3 + 5 =) 8 தடவைகள் பெருக்கப்படுகின்றது.

இதனை இவ்வாறு எழுதுலாம்.

$$2^3 \times 2^5 = 2^{3+5} = 2^8$$
.

அடிகள் சமனாகவுள்ள இரண்டு வலுக்கள் பெருக்கப்படும்போது அவற்றின் சுட்டிகள் கூட்டப்படும். அத்துடன் பெறப்படும் வலுவும் அதே அடியைக் கொண்டிருக்கும்.

இதற்கேற்ப $x^3 \times x^5$ இன் பெருக்கத்தைப் பெற்றுக் கொள்வோம். x^3 , x^5 ஆகியன ஒரே அடியில் இருப்பதால் பெருக்கத்தைப் பெறுவதற்குச் சுட்டிகளைக் கூட்ட முடியும்.

$$\chi^3 \times \chi^5 = \chi^{3+5} \\
= \chi^8$$

இதனை ஒரு சுட்டி விதியாக இவ்வாறு குறிப்பிடலாம்.

$$a^m \times a^n = a^{m+n}$$

இவ்விதியை எத்தனை வலுக்களுக்கும் விரிவுபடுத்தலாம். உதாரணமாக $a^m imes a^n imes a^p = a^{m+n+p}$

கோவைகளைச் சுருக்கும்போது இவ்விதியைப் பயன்படுத்தும் முறையை உதாரணங்களின் மூலம் பார்ப்போம்.

உதாரணம் 1

சுருக்குக.

(i)
$$x^2 \times x^5 \times x$$
 (ii) $a^2 \times b^2 \times a^2 \times b^3$ (iii) $2x^2 \times 3x^5$

(i)
$$x^2 \times x^5 \times x = x^{2+5+1}$$
 ($x = x^1$ ஆகையால்) (ii) $a^2 \times b^2 \times a^2 \times b^3 = a^2 \times a^2 \times b^2 \times b^3$ $= a^2 \times a^2 \times b^2 \times b^3$ $= a^2 \times a^2 \times b^2 \times b^3$ $= a^2 \times b^2 \times b^3$ $= a^4 \times b^5$ $= a^4 b^5$

(iii)
$$2x^2 \times 3x^5 = 2 \times x^2 \times 3 \times x^5$$

= $2 \times 3 \times x^2 \times x^5$
= $6x^{2+5}$
= $6x^7$

வலுக்களைப் பெருக்குவதற்கான சுட்டி விதியைப் பயன்படுத்திக் கீழே தரப்பட்டுள்ள பயிற்சிகளில் ஈடுபடுக.

பயிற்சி 12.1

1. வெற்றிடங்களை நிரப்புக.

(i)
$$2^5 \times 2^2 = 2^{---+---}$$
 (ii) $x^4 \times x^2 = x^{---+---}$ (iii) $a^3 \times a^4 \times a = a^{---+---+---}$ $= a^{----}$

(iv)
$$5p^3 \times 3p = 5 \times \times 3 \times$$

= $15p - + -$
= $15....$

 நிரல் A இலுள்ள ஒவ்வொரு கோவையினதும் பெருக்கத்திற்குச் சமமான கோவையை நிரல் B இல் தெரிந்து இணைக்க.

A

B

3. சுருக்கிப் பெறுமானத்தைக் காண்க.

(i)
$$3^4 \times 3^3$$

(ii)
$$7^2 \times 7^3 \times 7$$

4. சுருக்குக.

(i)
$$x^3 \times x^6$$

(ii)
$$x^2 \times x^2 \times x^2$$

(iii)
$$a^3 \times a^2 \times a^4$$

(iv)
$$2x^3 \times x^5$$

(v)
$$5p^2 \times 2p^3$$

(vi)
$$4x^2 \times 2x \times 3x^5$$

(vii)
$$m^2 \times 2n^2 \times m \times n$$

(viii)
$$2a^2 \times 3b^2 \times 5a \times 2b^3$$

- 5. $x^m \times x^n = x^8$ என்னும் சமன்பாடு உண்மையாவதற்கு m, n ஆகியன எடுக்கத்தக்க ஓர் எண் பெறுமானச் சோடி 3, 5 ஆகும். இவ்வாறு அமையத்தக்க நேர் நிறைவெண் பெறுமானச் சோடிகள் அனைத்தையும் எழுதுக.
- 6. $a^2 + a^3 = a^5$ என்னும் கோவை பொய்யாகும் a இன் ஒரு பெறுமானத்தையும் மெய்யாகும் a இன் ஒரு பெறுமானத்தையும் தருக.

12.2 சமமான அடிகளை உடைய வலுக்களை வகுத்தல்

சமமான அடிகளையுடைய வலுக்களைப் பெருக்கும்போது உள்ளது போன்று வகுக்கும் போதும் சுட்டிகளுக்கிடையில் தொடர்பு ஒன்று உண்டா எனப் பார்ப்போம்.

 $x^{\scriptscriptstyle 5}$ \div $x^{\scriptscriptstyle 2}$ என்பதை $rac{x^{\scriptscriptstyle 5}}{x^{\scriptscriptstyle 2}}$ எனவும் எழுதலாம்.

அப்போது
$$\frac{x^5}{x^2} = \frac{x \times x \times x \times x \times x}{x \times x}$$

$$= x \times x \times x$$
$$= x^3$$

 $\therefore \frac{x^5}{x^2} = x^3$ ஆகும். தொகுதியில் உள்ள வலுவின் சுட்டி 5 ஆகவும் பகுதியில் உள்ள வலுவின் சுட்டி 2 ஆகவும் இருக்கும்போது வகுப்பதால் கிடைக்கும் விடையில் x இன் அடியின் சுட்டி 5-2=3 ஆகும்.

ത്താൻ
$$x^5 \div x^2 = x^{5-2}$$

= x^3

என இலகுவில் சுருக்கலாம்.

அடிகள் சமனாகவுள்ள வலுக்களை வகுக்கும்போது சுட்டியானது வகுபடுமெண்ணின் சுட்டியிலிருந்து வகுக்கும் எண்ணின் சுட்டியைக் கழித்து பெறப்படும். அத்துடன் பெறப்படும் வலுவும் அதே அடியைக் கொண்டிருக்கும்.

$$a^m \div a^n = a^{m-n}$$

இதுவும் சுட்டிகள் பற்றிய ஒரு விதி என்பதை நினைவில் வைத்திருப்பது முக்கியமாகும். கோவைகளைச் சுருக்குவதற்காக அவ்விதியைப் பயன்படுத்தும் முறையை உதாரணங்களின் மூலம் ஆராய்வோம்.

உதாரணம் 1

சுருக்குக.

(i)
$$x^5 \times x^2 \div x^3$$
 (ii) $4x^8 \div 2x^2$ (iii) $\frac{a^3 \times a^2}{a}$

(i)
$$(x^5 \times x^2) \div x^3 = x^{5+2} \div x^3$$
 (ii) $4x^8 \div 2x^2 = \frac{2}{4}x^8$ (iii) $\frac{a^3 \times a^2}{a} = a^{3+2-1}$
 $= x^4$ $= 2x^8 - 2$ $= a^4$

தற்போது இவை தொடர்பான பயிற்சியில் ஈடுபடுவோம்.

பயிற்சி 12.2

1. சுட்டி விதிகளைப் பயன்படுத்திச் சுருக்குக.

(i)
$$a^5 \div a^3$$
 (ii) $\frac{x^7}{x^2}$ (iii) $2x^8 \div x^3$ (iv) $4p^6 \div 2p^3$

(ii)
$$\frac{x^7}{x^2}$$

(iii)
$$2x^8 \div x^3$$

(iv)
$$4p^6 \div 2p^3$$

(v)
$$\frac{10m^5}{2m^2}$$

(vi)
$$\frac{x^2 \times x^4}{x^3}$$

(vii)
$$n^5 \div (n^2 \times n)$$

(v)
$$\frac{10m^5}{2m^2}$$
 (vi) $\frac{x^2 \times x^4}{x^3}$ (vii) $n^5 \div (n^2 \times n)$ (viii) $\frac{2x^3 \times 2x}{4x}$

(ix)
$$\frac{x^5 \times x^2 \times 2x^6}{x^7 \times x^2}$$
 (x) $\frac{a^5 \times b^3}{a^2 \times b^2}$ (xi) $\frac{2p^4 \times 2q^3}{p \times q}$

(x)
$$\frac{a^5 \times b^3}{a^2 \times b^2}$$

(xi)
$$\frac{2p^4 \times 2q}{p \times q}$$

 $a^m \div a^m = a^8$ என்னும் சமன்பாடு உண்மையாவதற்கு m, n ஆகியவை எடுக்கத்தக்க நேர்நிறைவெண் பெறுமானச் சோடிகள் ஐந்தை எழுதுக.

இலுள்ள ஒவ்வொரு அட்சரகணிதக் கோவைக்கும் சமனாக உள்ள அட்சரகணிதக் கோவையை நிரல் B இலிருந்து தெரிந்தெடுத்து கோவைகளுக்குமிடையில் '=' அடையாளத்தை இட்டு மீண்டும் எழுதுக.

$$\frac{A}{(i) 2a^5 \cdot 2a^6}$$

(ii)
$$a^6 \div a^4$$

$$(iii) \frac{a^7 \times a^2}{a^6}$$

(iv)
$$\frac{a^3}{a}$$

(v)
$$\frac{4a^5 \times a}{4a^3}$$

 a^2

 a^3

12.3 மறைச் சுட்டி

 $x^5 \div x^2 = x^3$ என இப்பாடத்தில் முன்னர் நாம் கற்றோம்.

அது $\frac{\cancel{x} \times \cancel{x} \times x \times x \times x}{\cancel{x} \times \cancel{x}_1} = x^3$ என விரித்து எழுதுவதன் மூலமும் பெறப்படும் என்பதை அறிவோம்.

இம்முறையில்

 $x^2 \div x^5$ ஐச் சுருக்குவோம்.

$$(i)$$
 விரித்து எழுதுவதன் மூலம் $rac{oldsymbol{x}^2}{oldsymbol{x}^5} = rac{oldsymbol{x}^1 imes oldsymbol{x}^1}{oldsymbol{x}^1 imes oldsymbol{x}^1 imes oldsymbol{x} imes oldsymbol{x} imes oldsymbol{x} imes oldsymbol{x} imes oldsymbol{x} imes oldsymbol{x}$ $= rac{1}{oldsymbol{x}^3}$

$$(ii)$$
 சுட்டி விதியின் மூலம் $rac{x^2}{x^5} = x^{2-5} = x^{-3}$

 $x^2 \div x^5$ இற்கு (i), (ii) ஆகிய இரண்டு முறைகளிலும் பெறப்பட்டுள்ள இரண்டு விடைகளும் சமனாக வேண்டும்.

எனவே $\frac{1}{x^3}=x^{-3}$ ஆக வேண்டும். இங்கு பகுதியிலுள்ள வலுவின் சுட்டியின் குறி மாறித் தொகுதிக்கு வந்துள்ளது என்பதையும் புரிந்து கொள்க.

இது சுட்டி தொடர்பான முக்கியமான ஒரு பண்பாகும். மறைச் சுட்டி வடிவத்தில் உள்ள வலு ஒன்றை நேர்ச் சுட்டியாக எழுதிக் கொள்வதற்கான தேவை ஏற்படும்போது இப்பண்பைப் பயன்படுத்திக் கொள்ளலாம்.

இதே முறையில் $x^3=\frac{1}{x^{-3}}$ எனவும் எழுதலாம். இவ்வாறு நடைபெறுவதற்கான காரணத்தை விளங்கிக் கொள்வதற்காக $\frac{x^5}{x^2}$ என்னும் இரு கோவைகளையும் மேற்குறித்த உதாரணத்திலுள்ளவாறு வெவ்வேறாகச் சுருக்கலாம்.

இவ்விதியை இவ்வாறு காட்டலாம்.

$$x^n = \frac{1}{x^{-n}}$$

இதற்கேற்ப

•
$$a^{-m} = \frac{1}{a^m}$$

$$\bullet \ \frac{a^m}{1} = \frac{1}{a^{-m}}$$

•
$$\frac{a^{-m}}{a^{-n}} = \frac{a^n}{a^m}$$
 (இரண்டு வலுக்களுக்கும் மேற்குறித்த பண்பை ஒரே தடவையில் பிரயோகிப்பதால்)

அட்சரகணிதக் கோவைகளைச் சுருக்குவதற்குச் சுட்டிகளின் இப்பண்பைப் பயன்படுத் தலாம். கீழே தரப்பட்டுள்ள உதாரணங்களின் மூலம் இதனைப் பார்ப்போம்.

பெறுமானத்தைக் காண்க.

(i)
$$2^{-5}$$

(i)
$$2^{-5}$$
 (ii) $\frac{1}{5^{-2}}$

(i)
$$2^{-5} = \frac{1}{2^5}$$

$$= \frac{1}{2 \times 2 \times 2 \times 2 \times 2}$$

$$= \frac{1}{32}$$

(ii)
$$\frac{1}{5^{-2}} = 5^2$$

= 25

உதாரணம் 2

சுருக்குக.
$$\frac{2x^{-2} \times 2x^3}{2x^{-4}}$$

$$\frac{2x^{-2} \times 2x^3}{2x^{-4}} = \frac{2 \times x^{-2} \times 2 \times x^3}{2 \times x^{-4}}$$

$$= \frac{2 \times x^4 \times 2 \times x^3}{2 \times x^2} \quad (x^{-2} = \frac{1}{x^2}, \frac{1}{x^{-4}} = x^4 \text{ எனக் கொள்வதால்})$$

$$= \frac{2x^7}{x^2}$$

$$= 2x^{7-2}$$

$$= 2x^5$$

பயிற்சி 12.3

1. நேர்ச் சுட்டியில் எழுதுக.

(i)
$$3^{-4}$$

(ii)
$$r^{-5}$$

(iii)
$$2r^{-1}$$

(iv)
$$5a^{-2}$$

(i)
$$3^{-4}$$
 (ii) x^{-5} (iii) $2x^{-1}$ (iv) $5a^{-2}$ (v) $5p^2q^{-2}$

(vi)
$$\frac{1}{x^{-5}}$$

(vii)
$$\frac{3}{a^{-2}}$$

(viii)
$$\frac{2x}{x-4}$$

$$(ix) \frac{a}{2b^{-3}}$$

(vi)
$$\frac{1}{x^{-5}}$$
 (vii) $\frac{3}{a^{-2}}$ (viii) $\frac{2x}{x^{-4}}$ (ix) $\frac{a}{2b^{-3}}$ (x) $\frac{m}{(2n)^{-2}}$

$$(xi)\frac{t^{-2}}{m}$$

$$(xii) \frac{p}{q^{-2}}$$

$$(xiii) \frac{x^{-2}}{2y^{-2}}$$

(xi)
$$\frac{t^{-2}}{m}$$
 (xii) $\frac{p}{q^{-2}}$ (xiii) $\frac{x^{-2}}{2y^{-2}}$ (xiv) $\left(\frac{2x}{3y}\right)^{-2}$

2. பெறுமானத்தைக் காண்க.

(i)
$$2^{-2}$$

(ii)
$$\frac{1}{4^{-2}}$$

(i)
$$2^{-2}$$
 (ii) $\frac{1}{4^{-2}}$ (iii) 2^{-7} (iv) $(-4)^{-3}$ (v) 3^{-2}

$$(v) 3^{-2}$$

(vi)
$$\frac{5}{5^{-2}}$$

(vi)
$$\frac{5}{5^{-2}}$$
 (vii) 10^{-3} (viii) $\frac{3^{-2}}{4^{-2}}$

3. சுருக்கி விடையை நேர்ச் சுட்டியில் தருக.

(i)
$$a^{-2} \times a^{-3}$$

(ii)
$$a^2 \times a^{-1}$$

(i)
$$a^{-2} \times a^{-3}$$
 (ii) $a^2 \times a^{-3}$ (iii) $\frac{a^2}{a^{-5}} \times a^{-8}$ (iv) $2a^{-4} \times 3a^2$

(iv)
$$2a^{-4} \times 3a^{2}$$

(v)
$$3x^{-2} \times 4x^{-2}$$

(vi)
$$\frac{10x^{-5}}{5x^2}$$

(vii)
$$\frac{4x^{-3} \times x^{-4}}{2x^2}$$

(v)
$$3x^{-2} \times 4x^{-2}$$
 (vi) $\frac{10x^{-5}}{5x^2}$ (vii) $\frac{4x^{-3} \times x^{-5}}{2x^2}$ (viii) $\frac{(2p)^{-2} \times (2p)^3}{(2p)^4}$

12.4 பூச்சியச் சுட்டி

சுட்டி 0 ஆகவுள்ள ஒரு வலு பூச்சியச் சுட்டியான வலு எனப்படும். 2^0 என்பது அவ்வாறன பூச்சியச் சுட்டியுடனான ஒரு வலுவாகும்.

 $x^5 \div x^5$ ஐச் சுட்டி விதிக்கேற்பச் சுருக்கும்போது,

$$x^5 \div x^5 = x^{5-5} = x^0$$

அதனை விரித்தெழுதிச் சுருக்கும்போது $x^5 \div x^5 = \frac{x \times x \times x \times x \times x \times x}{x \times x \times x \times x \times x \times x}$

$$= 1$$

 $x^5 \div x^5$ என்பதை இரண்டு முறைகளிலும் சுருக்கும்போது பெறப்படும் விடை சமனாக வேண்டும் என்பதால் $x^0 = 1$ ஆகும்.

x பூச்சியமல்லாதபோது $x^0 = 1$ ஆகும்.

அட்சரகணிதக் கோவைகளைச் சுருக்கும்போது இது பயன்படுத்தப்படும்.

உதாரணம் 1

சுருக்குக.

(i)
$$\frac{x^0 \times x^7}{x^2}$$

(ii)
$$\left(\frac{x^5 \times x^2}{a}\right)^0$$

(i)
$$\frac{x^0 \times x^7}{x^2} = 1 \times x^7 \div x^2$$

= $1 \times x^{7-2}$
= x^5

(ii)
$$\left(\frac{x^5 \times x^2}{a}\right)^0 = 1$$

(அடைப்பினுள்ளே உள்ள முழுக் கோவையும் அடியாகக் கருதப்பட்டு அதன் சுட்டி 0 ஆக இருப்பதனால் அதன் பெறுமானம் 1 ஆகும்.)

பூச்சியச் சுட்டியான வலுக்களைக் கொண்ட கோவைகளைச் சுருக்குவதைக் கீழே தரப்பட்டுள்ள பயிற்சியின் மூலம் உறுதிப்படுத்திக் கொள்வோம்.

1. சுருக்குக.

(i)
$$x^8 \div x^8$$

(ii)
$$(2p)^4 \times (2p)^{-4}$$

(iii)
$$\frac{a^2 \times a^3}{a \times a^4}$$

(iv)
$$\frac{y^4 \times y^2}{y^6}$$

$$(v) \frac{p^3 \times p^5 \times p}{p^6 \times p^3}$$

(i)
$$x^8 \div x^8$$
 (ii) $(2p)^4 \times (2p)^{-4}$ (iii) $\frac{a^2 \times a^3}{a \times a^4}$ (iv) $\frac{y^4 \times y^2}{y^6}$ (v) $\frac{p^3 \times p^5 \times p}{p^6 \times p^3}$ (vi) $\frac{x^{-2} \times x^{-4} \times x^6}{y^{-2} \times y^8 \times y^{-6}}$

2. பெறுமானத்தைக் காண்க.

(i)
$$2^{0} \times 3$$

$$(ii) (-4)^0$$

பெறுமானத்தைக் காண்க. (i)
$$2^0 \times 3$$
 (ii) $(-4)^0$ (iii) $\left(\frac{x}{y}\right)^0 + 1$ (iv) $\left(\frac{x^2}{y^2}\right)^0$

(iv)
$$\left(\frac{x^2}{v^2}\right)^0$$

$$(v) 5^0 + 1$$

$$(vi)\left(\frac{2}{3}\right)^0$$

(v)
$$5^0 + 1$$
 (vi) $\left(\frac{2}{3}\right)^0$ (vii) $(2ab)^0 - 2^0$ (viii) $(abc)^0$

12.6 வலுவின் வலு

 $(x^2)^3$ என்பது x^2 என்னும் வலுவின் மூன்றாம் வலுவாகும். இவ்வாறான வலுக்கள் வலுவின் வலு என அழைக்கப்படும். இதனை, இவ்வாறு சுருக்கலாம்.

$$x^{2} \times x^{2} \times x^{2} = (x \times x) \times (x \times x) \times (x \times x)$$
$$= x \times x \times x \times x \times x \times x$$
$$= x^{6}$$

எனவே $(x^2)^3 = x^6$ ஆகும்.

இந்த 6 பெறப்படுவது 2 கள் 3 இலிருந்து என்பதை அதாவது 2 imes 3 இலிருந்து என்பதை அவதானிக்க. அதாவது

 $(x^2)^3 = x^{2 \times 3} = x^6$ என எழுதலாம்.

வலுவின் வலுவாக உள்ள ஒரு கோவையைச் சுருக்கும்போது சுட்டிகளை ஒன்றோடொன்று பெருக்கலாம். இதுவும் ஒரு சுட்டி விதியாகக் கருதப்படுகின்றது.

அதாவது
$$(a^m)^n = a^{m \times n} = a^{mn}$$

சுருக்குக.

(i)
$$(a^5)^2 \times a^4$$

(i)
$$(a^5)^2 \times a$$
 (ii) $(p^3)^4 \times (x^2)^0$ (iii) $(2x^2y^3)^2$

(iii)
$$(2x^2y^3)^2$$

(i)
$$(a^5)^2 \times a = a^{5 \times 2} \times a^{6}$$

= $a^{10} \times a^{1}$
= a^{10+1}
= a^{11}

(i)
$$(a^5)^2 \times a = a^{5 \times 2} \times a$$
 (ii) $(p^3)^4 \times (x^2)^0 = p^{3 \times 4} \times (x^2)^{\times 0}$ (iii) $(2x^2y^3)^2 = (2 \times x^2 \times y^3)^2$
 $= a^{10} \times a^1$ $= p^{12} \times 1$ $= 2^2 \times x^4 \times y^6$
 $= a^{10+1}$ $= p^{12}$ $= 4 x^4 y^6$

வலுவின் வலுவைக் கொண்டு கோவைகளைச் சுருக்குவதைக் கீழே தரப்பட்டுள்ள பயிற்சிகளின் மூலம் உறுதிப்படுத்திக் கொள்வோம்.

பயிற்சி 12.5

1. பெறுமானத்தைக் காண்க.

$$(i) (2^4)^2$$

(ii)
$$(3^2)^{-1}$$

(ii)
$$(3^2)^{-1}$$
 (iii) $(2^3)^2 + 2^0$

(iv)
$$(5^2)^{-1} + \frac{1}{5}$$
 (v) $(4^0)^2 \times 1$ (vi) $(10^2)^2$

(v)
$$(4^0)^2 \times 1$$

$$(vi) (10^2)^2$$

2. விடையைச் சுருக்கி நேர்ச் சுட்டியுடன் தருக.

(i)
$$(x^3)^4$$

(ii)
$$(p^{-2})^2$$

(iii)
$$(a^2b^2)^2$$

(iv)
$$(2x^2)^3$$

(v)
$$\left(\frac{x^5}{x^2}\right)^2$$

$$(vi) \left(\frac{a^3}{b^2}\right)^2$$

(v)
$$\left(\frac{x^5}{x^2}\right)^3$$
 (vi) $\left(\frac{a^3}{b^2}\right)^2$ (vii) $\left(\frac{m^3}{n^2}\right)^{-2}$

(viii)
$$(y^4)^{\frac{1}{2}}$$

(ix)
$$(p^{-2})^{-4}$$

$$(\mathbf{x}) (a^0)^2 \times a$$

பலவினப் பயிற்சி

1. பெறுமானத்தைக் காண்க.

(i)
$$5^3 \times 5^2$$

(i)
$$5^3 \times 5^2$$
 (ii) $5^3 \div 5^2$ (iii) $5^3 \times 5^2$

(iii)
$$5^3 \times 5^2$$

(iv)
$$5^0 \times 5 \times 5^2$$

$$(v) (5^{-1})^2$$

$$(vi) (5^{-1})^{0}$$

(v)
$$(5^{-1})^2$$
 (vi) $(5^{-1})^0$ (vii) $\{(5^2)^3\}^4$

(viii)
$$\frac{5^3 \times 5^{-1}}{(5^2)^2}$$

(ix)
$$5^2 \div 10^2$$

(ix)
$$5^2 \div 10^2$$
 (x) $5^2 \times 10^3 \times 5^{-1} \times 10^{-2}$

2. சுருக்குக.

(i)
$$(2x^5)^2$$

(ii)
$$(2ab^2)^3$$

(iii)
$$2x \times (3x^2)^2$$

(iv)
$$\frac{(4p^2)^3}{(2p^2q)^2}$$

$$(v) \frac{(2p^2)^3}{3pq}$$

(vi)
$$\frac{(2a^2)^2}{5b^3} \times \frac{(3b^2)^2}{2a}$$

பொழிப்பு

இந்தப் பாடத்தில் கீழ்வரும் சுட்டி விதிகளைக் கற்றுள்ளோம்.

- ullet அடிகள் சமனாகவுள்ள வலுக்கள் பெருக்கப்படும்போது சுட்டிகள் கூட்டப்படும். $a^m imes a^n = a^{m+n}$
- ullet அடிகள் சமானாகவுள்ள வலுக்கள் வகுக்கப்படும்போது சுட்டிகள் கழிக்கப்படும். $a^m \div a^n = a^{m-n}$
- பூச்சியமல்லாத எந்தவோர் எண்ணினதும் பூச்சியச் சுட்டி 1 ஆகும்.
- வலு ஒன்றின் வலுவைக் காணும்போது சுட்டிகள் பெருக்கப்படும். (a^m $)^n = a^{mn}$
- மறைச் சுட்டியை நேர்ச் சுட்டியாக மாற்றுவதற்கு அதன் நேர்மாறாக சுட்டியின் குறி மாற்றி எழுதப்படும்.

$$\mathcal{X}^{-n} = \frac{1}{\mathcal{X}^n}$$

13

மட்டந்தட்டலும் விஞ்ஞானமுறைக் குறிப்பீடும்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- விஞ்ஞான முறைக் குறிப்பீட்டை இனங்காண்பதற்கும் மில்லியன் வலயம் வரையுள்ள எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுவதற்கும்
- விஞ்ஞானமுறைக் குறிப்பீட்டில் காட்டப்பட்ட எண் ஒன்றைச் சாதாரண வடிவத்தில் மாற்றி எழுதுவதற்கும்
- எண் ஒன்றை மட்டந்தட்டும்போது பயன்படுத்தும் விதிமுறைகளை அறிந்துகொள்வதற்கும்
- தரப்பட்ட எண் ஒன்றைக் கிட்டிய பத்துக்கு, கிட்டிய நூறுக்கு, கிட்டிய ஆயிரத்துக்கு, தரப்பட்ட கிட்டிய தசம எண் ஒன்றுக்கு மட்டந்தட்டுவதற்கும்
- மட்டந்தட்டல் தொடர்பான பிரசினங்களைத் தீர்ப்பதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

அறிமுகம்

- டைனசோர்கள் இற்றைக்கு 140 000 000 ஆண்டுகளுக்கு முன்னர் புவியில் வாழ்ந்ததாக விஞ்ஞானிகள் கருதுகின்றனர்.
- 🗲 ஐதரசன் அணுவின் அணுவாரை 0.000 000 000 053 m ஆகும்.
- சூரியனிலிருந்து புவிக்கு உள்ள தூரம் ஏறக்குறைய
 149 600 000 000 m ஆகும்.
- 🦒 ஒளியின் வேகம் செக்கனுக்கு 299 790 000 m ஆகும்.

தகவல்களை வெளிப்படுத்துவதற்காக எண்களைப் பயன்படுத்தியுள்ள நான்கு சந்தர்ப்பங்கள் மேலே தரப்பட்டுள்ளன. இவற்றின் இறுதித் தகவல்கள் இரண்டையும் கொண்டு சூரியனிலிருந்து ஒளிக்கதிர் புவியை அடைய எடுக்கும் காலத்தைக் கணிப்போம்.

அக்காலம் = 149 600 000 000 ÷ 299 790 000 செக்கன்கள் ஆகும்.

இவ்வொவ்வோர் எண்ணும் அதிக இலக்கங்களைக் கொண்டிருப்பதால் எண் வடிவம் நீண்டுள்ளது. எழுதுவதற்கு அதிக இடத்தைப் பிடிக்கின்றது. அத்தோடு எண்ணுவதும் சிரமமானதாகும். ஒரு கணிகருவியைப் பயன்படுத்தும்போதுகூட அதன் திரையில் காட்டக்கூடிய இலக்கங்களின் எண்ணிக்கை குறைவானதான இருப்பதனால் இக்கணித்தலுக்காகச் சாதாரண கணிகருவி ஒன்றைப் பயன்படுத்துவது சிரமமானதாகும். எனவே இவ்வாறான எண்களை எழுதுவதற்கும் இவை அடங்கிய கணித்தல்களை இலகுவாக்குவதற்கும் இவற்றை வேறொரு முறையில் எழுதுவதற்கான தேவை ஏற்படுகின்றது.

இப்பாடத்தில் இவ்வெண்களைப் பயன்படுத்துவதற்கு இலகுவான முறையில் எழுதக்கூடிய ஒரு முறை பற்றிக் கற்போம். இதற்காக முன்னர் கற்றுள்ள அதற்கான விடயங்களை நினைவுகூர்வதற்காகக் கீழே தரப்பட்டுள்ள பயிற்சியில் ஈடுபடுவோம்.

மீட்டற் பயிற்சி

1. கீழே உள்ள அட்டவணையைப் பூரணப்படுத்துக.

எண்	10 இன் வலுவாக
1	$1 = 10^{0}$
10	$10 = 10^{1}$
100	10 × 10 = 10···
1000	×× = 10···
10000	= 10
100000	=
	$= 10^6$
	$10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = \dots$

2. பின்வரும் எண்களைக் கீழே தரப்பட்ட அட்டவணையில் உள்ள அறிவுறுத்தல் களுக்கு ஏற்பப் பொருத்தமாக இடுக.

5.37, 87.5, 0.75, 4.02, 1.01, 10.1, 4575, 0.07, 9, 12.3, 2.7, 9.9

1 இற்கும் 10 இற்கும் இடையில் உள்ள எண்கள்	
1 இற்கும் 10 இற்கும் இடையில் அமையாத எண்கள்	

13.1 விஞ்ஞானமுறைக் குறிப்பீடு

இம்முறை க.பொ.த. (சா/த)ப் பரீட்சைக்குத் தோற்றும் மாணவர்களின் எண்ணிக்கை 700 000 ஐ விட அதிகமாக இருக்கும்.

- ஒரு செய்தி

இச்செய்தியில் குறிப்பிடப்பட்டுள்ள ஆறு இலக்கங்களைக் கொண்ட ஓர் எண்ணைப் பின்வரும் முறைகளில் எழுதலாம்.

(i)
$$700 \times 1000 \longrightarrow 700 \times 10^3$$

(ii)
$$70 \times 10\ 000 \longrightarrow 70 \times 10^4$$

(iii)
$$7 \times 100\ 000 \longrightarrow 7 \times 10^5$$

இவற்றுள் இறுதியாக எழுதப்பட்ட முறையே பெரும்பாலும் பயன்படுத்தப் படுகின்றது. இது இரண்டு பகுதிகளின் பெருக்கமாகும். அதன் முற்பகுதி 1 இலிருந்து 10 இற்கு இடைப்பட்ட ஓர் எண் ஆவதோடு இரண்டாம் பகுதி 10 இன் வலுவாகும்.

இவ்வாறு 1 இலிருந்து 10 இற்கு இடைப்பட்ட எண் ஒன்றினதும் 10 இன் வலுவினதும் பெருக்கமாகக் காண்பிக்கும் முறை விஞ்ஞானமுறைக் குறிப்பீடு எனப்படும்.

A என்பது 1 அல்லது 1 இற்கும் 10 இற்கும் இடைப்பட்ட ஓர் எண்ணாகவும் n என்பது ஒரு நிறைவெண்ணாகவும் இருக்குமெனின், விஞ்ஞானமுறைக் குறிப்பீட்டில் $A \times 10^n$ என்னும் வடிவத்தில் குறிக்கலாம். (இங்கு $1 \le A < 10$ ஆகும்.)

 $280\ 000$ ஐ விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுவோம்.

280 000 இன் இலக்கங்களை உபயோகித்து இதனை 1 இற்கும் 10 இற்கும் இடைப்பட்ட எண்ணாக எழுதும்போது 2.8 பெறப்படும்.

$$\therefore 280\ 000 = 2\ 80000.$$

$$= 2.8 \times 10\ 0000$$

$$= 2.8 \times 10^{5}$$

ஆகவே $280\,000$ என்பது விஞ்ஞானமுறைக் குறிப்பீட்டில் 2.8×10^{5} என எழுதப்படும்.

பின்வரும் எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுக.

- (i) 20 000
- (ii) 4240
- (iii) ஒரு மில்லியன்
- (iv) 3.47

- (v) 34.7
- (vi) 6
- (vii) 289.325
- (viii) 2491.32

- (i) $20\ 000 = 2.0 \times 10\ 000$ = 2×10^4
- (ii) $4240 = 4.24 \times 1000$ = 4.24×10^3
- (iii) ஒரு மில்லியன் = 1000 000 = 1 × 106
- (iv) $3.47 = 3.47 \times 1$ = $3.47 \times 10^{0} \ (1 = 10^{0}$ ஆகையால்)

(v) $34.7 = 3.47 \times 10$ = 3.47×10^{1}

- (vi) $6 = 6 \times 1$ = 6×10^{0}
- (vii) $289.325 = 2.89325 \times 100$ = 2.89325×10^2
- (viii) 2491.32 2491.32 = 2.49132 × 10³ தசமதானம் 3 இலக்கம் இடப் பக்கம் நகர்த்தப்படுதல்

2.49132 × 10³ ஆகும்.

பயிற்சி 13.1

1. தரப்பட்ட உதாரணங்களுக்கேற்ப அட்டவணையைப் பூரணப்படுத்துக.

எண்	1 அல்லது 1 இற்கும் 10 இற்கும் இடைப்பட்ட எண் × 10 இன் ஒரு வலு	விஞ்ஞான முறைக் குறிப்பீடு
48	4.8 × 10	4.8×10^{1}
8 99 78		
548	5.48 × 100	5.48×10^{2}
999 401 111		
34 700	3.47 × 10000	3.47×10^{4}
54 200 49 40000 10 00000		

- 2. கீழே தரப்பட்டுள்ள ஒவ்வோர் எண்களையும் விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுக.
 - (i) 74300
- (ii) 5290
- (iii) 200
- (iv) 4 340 000

- (v) 6581200
- (vi) 1010
- (vii) 254
- (viii) 18.5

- (ix) 7.34
- (x) 715.8
- 3. இலங்கை தொடர்பான சில முக்கிய தகவல்கள் கீழே தரப்பட்டுள்ளன. அத்தகவல்களில் உள்ள எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுக.
 - பீதுருதாலகால மலையின் உயரம் 2524 மீற்றர் ஆகும்.
 - சிங்கராஜ வனத்தின் பரப்பளவு 9300 ஹெக்ரெயர் ஆகும்.
 - மகாவலி கங்கையின் நீளம் 335 கிலோமீற்றர் ஆகும்.
 - இலங்கையின் நிலப்பரப்பு 65610 சதுரக் கிலோமீற்றர் ஆகும்.

13.2 0 இற்கும் 1 இற்கும் இடையிலுள்ள எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுதல்

பின்வரும் கோலத்தின் மீது கவனம் செலுத்துக.

$$10\ 000 = 10^4$$

$$1000 = 10^3$$

$$100 = 10^2$$

$$10 = 10^{1}$$

$$1 = 10^{0}$$

$$0.1 = \frac{1}{10} = \frac{1}{10^{1}} = 10^{-1}$$

$$0.01 = \frac{1}{100} = \frac{1}{10^2} = 10^{-2}$$

$$0.001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}$$

- 0.1 என்பதை 10 இன் வலுவாக எழுதும்போது அதன் சுட்டி —1 உம்
- 0.01 என்பதை 10 இன் வலுவாக எழுதும்போது அதன் சுட்டி -2 உம்
- 0.001 என்பதை 10 இன் வலுவாக எழுதும்போது அதன் சுட்டி -3 உம் ஆகும் என்பது தெளிவாகும்.

0.75 என்பது 1 இலும் சிறிய ஓர் எண்ணாகும். அதனை 1 இற்கும் 10 இற்கும் இடைப்பட்ட எண்ணாக மாற்றி எழுதும்போது 7.5 என எழுதி 10 ஆல் வகுக்க வேண்டும். இதனைக் கணிதரீதியில் இவ்வாறு எழுதலாம்.

$$0.75 imes 10 = 7.5$$
 ஆகையால் $0.75 = \frac{7.5}{10}$ $= \frac{7.5}{10^1} \quad (10 = 10^1$ ஆகையால்) $= 7.5 imes 10^{-1} \quad (\frac{1}{10^1} = 10^{-1}$ ஆகையால்)

இதற்கேற்ப 0.75 என்னும் எண் 1 இற்கும் 10 இற்கும் இடைப்பட்ட எண்ணினதும் 10 இன் வலுவினதும் பெருக்கமாக எழுதப்பட்டுள்ளது.

 $\therefore 0.75$ என்பது விஞ்ஞானமுறைக் குறிப்பீட்டில் 7.5×10^{-1} என எழுதப்படும்.

இவ்விதமாக 0.0034 ஐயும் விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதுவோம்.

0.0034 imes 1000 = 3.4 என்பதால்

$$0.0034 = \frac{3.4}{1000}$$
$$= \frac{3.4}{10^3}$$
$$= 3.4 \times 10^{-3}$$

குறிப்பு

0 இ**ற்கும் 1 இற்கும் இடைப்பட்ட** ஓர் எண்ணை விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதும்போது 10 இன் வலு மறைச் சுட்டியாக அமையும்.

உதாரணம் 1

பின்வரும் எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் தருக.

a.
$$0.8453 = 8.453 \div 10$$
 b. $0.047 = 4.7 \div 100$ **c.** $0.000017 = 1.7 \div 100000$

$$= \frac{8.453}{10} = \frac{4.7}{10^{0}} = \frac{4.7}{10^{2}} = \frac{1.7}{10^{5}}$$

$$= 8.453 \times 10^{-1} = 4.7 \times 10^{-2} = 1.7 \times 10^{-5}$$

பயிற்சி 13.2

1. பின்வரும் அட்டவணையைப் பிரதிசெய்து பூரணப்படுத்துக.

	0 இற்கும் 1 இற்கும் இடைப்பட்ட எண்	1 அல்லது 1 இற்கும் 10 இற்கும் இடைப்பட்ட எண்ணாக எழுதும்போது	விஞ்ஞானமுறைக் குறிப்பீடு
(i)	0.041	$\frac{4.1}{100} = \frac{4.1}{10^2}$	4.1×10^{-2}
(ii)	0.059		
(iii)	0.0049		
(iv)	0.000 135	$\frac{1.35}{10000} = \frac{1.35}{10^4}$	× 10 ⁻⁴
(v)	0.000 005		
(vi)	0.000 003 9		
(vii)	0.111345		

- 2. பின்வரும் எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் தருக.
 - (i) 0.543

(ii) 0.00095

(iii) 0.0019

(iv) 0.08

(v) 0.0004

- (vi) 0.000 000 054
- 3. பின்வரும் எண்களை விஞ்ஞானமுறைக் குறிப்பீட்டில் தருக.
 - (i) அணுவொன்றின் ஆரை 0.000 000 01 cm ஆகும்.
 - (ii) ஒரு கன சென்ரிமீற்றரிலுள்ள வளியின் திணிவு 0.00129 g ஆகும்.
 - (iii) ஒரு கன சென்ரிமீற்றரிலுள்ள ஐதரசனின் திணிவு $0.\ 000\ 088\ 9\ g$ ஆகும்.

13.3 விஞ்ஞானமுறைக் குறிப்பீட்டில் உள்ள எண்களைச் சாதாரண வடிவத்தில் தருதல்

உதாரணமாக விஞ்ஞானமுறைக் குறிப்பீட்டில் 5.43×10^4 என எழுதப்பட்ட ஓர் எண்ணைச் சாதாரண வடிவத்தில் எழுதுவோம்.

முறை I

$$5.43 \times 10^4 = 5.43 \times 10000$$

= 54300
 $\therefore 5.43 \times 10^4 = 54300$

முறை II

10⁴ இனால் பெருக்கப்படுவதால் 4 தானங்கள் வலப்பக்கமாக தசமப் புள்ளி நகர்ந்து, 54300 பெறப்படும். 54300.

இன்னுமொரு உதாரணம் கீழே தரப்பட்டுள்ளது. அதில் 10 இன் வலு மறைச் சுட்டியாக அமைந்துள்ளது.

 5.43×10^{-4} ஐச் சாதாரண வடிவத்தில் தருக.

முறை I

$$5.43 \times 10^{-4} = 5.43 \times \frac{1}{10^4}$$

= $5.43 \div 10000$
= 0.000543

முறை II

10⁴ இனால் வகுபடுவதால் 5.43 இன் தசமப் புள்ளி இடப்பக்கமாக 4 தானங்கள் நகர்த்தப்பட்டடு 0.000543 எனப் பெறப்படும்.

.000543

உதாரணம் 1

விஞ்ஞானமுறைக் குறிப்பீட்டில் உள்ள எண்களைச் சாதாரண வடிவத்தில் தருக.

i.
$$8.9 \times 10^{3}$$

ii.
$$8.9 \times 10^{-3}$$

i.
$$8.9 \times 10^3 = 8.9 \times 1000$$

= 8900 8900 .

ii.
$$8.9 \times 10^{-3} = 8.9 \times \frac{1}{10^3}$$

= 0.0089 0.0089

இங்கு உதாரணமாக 8.9×10^3 என்பதை நேரடியாக 8900 என எழுதலாம். 10 இன் வலு நேர் நிறைவெண்ணாக இருந்தால் அவ்வெண்ணுக்குச் சமனாகத் தசமப் புள்ளியை வலப் பக்கமாக நகர்த்த வேண்டும். (தேவையானபோது பூச்சியங்களை இணைக்க வேண்டும்.)

10 இன் வலு நேராக உள்ளபோது தசமம் வலப் பக்கமாகவும் 10 இன் வலு மறையாக உள்ளபோது தசமம் இடப் பக்கமாகவும் நகர்த்தப்படும்.

பயிற்சி 13.3

1. விஞ்ஞானமுறைக் குறிப்பீட்டில் தரப்பட்ட எண்களைச் சாதாரண வடிவத்தில் மாற்றுவதற்குக் கீறிட்ட இடங்களைப் பொருத்தமானவாறு நிரப்புக.

(i)
$$5.43 \times 10^3 = 5.43 \times \dots$$

(iii)
$$6.02 \times 10^{1} = \dots \times \dots$$
 (iv) $5.99 \times 10^{-2} = 5.99 \times \frac{1}{10^{-1}} = \frac{5.99}{10^{-1}}$

(v)
$$1.06 \times 10^{-6} = 1.06 \times \dots$$

= $\frac{1.06}{}$

$$=0.0599$$

- 2. பின்வரும் விஞ்ஞானமுறைக் குறிப்பீட்டில் தரப்பட்டுள்ள எண்களைச் சாதாரண வடிவத்தில் மாற்றியமைக்க.

 - (i) 8.9×10^2 (ii) 1.05×10^4
- (iii) 7.994×10^5 (iv) 8.02×10^3

- (v) 9.99×10^7 (vi) 7.2×10^{-1} (vii) 8.34×10^{-3} (viii) 5.97×10^{-4}
- (ix) 9.12×10^{-5} (x) 5.00×10^{-6}
- 3. ஒவ்வோர் எண் சோடியிலிருந்தும் பெரிய எண்ணைத் தெரிக.
 - (i) 2.1×10^4 , 3.7×10^4
- (ii) 2.1×10^4 , 3.7×10^3
- (iii) 2.1×10^4 , 3.7×10^5
- (iv) 2.1×10^4 . 2.1×10^{-4}
- (v) 2.1×10^4 , 3.7×10^{-3}
 - (vi) 2.1×10^{-4} , 3.7×10^{-3}
- 4. பின்வரும் விஞ்ஞானமுறைக் குறிப்பீடுகளைச் சாதாரண வடிவத்தில் தருக.
 - ullet புவியின் நிலப் பரப்பளவு $1.488 imes 10^8$ சதுரக் கிலோமீற்றர் ஆகும்.
 - ullet புவியின் கடல் நீர்ப் பரப்பளவு $3.613 imes 10^8$ சதுரக் கிலோமீற்றர் ஆகும்.
 - புவியின் முழு மேற்றளப் பரப்பளவு 5.101 × 108 சதுரக் கிலோமீற்றர் ஆகும்.

எண்களை மட்டந்தட்டல்

மண்டபத்தில் நடைபெற்ற புத்தகக் கண்காட்சியைப் கல்யாணி பார்வையிடுவதற்கு வார இறுதியில் 2500 பேர் வருகை தந்தனர் என அறிக்கைகள் குறிப்பிடுகின்றன.

– ஒரு செய்தி

இச்செய்தியில் குறிப்பிடப்பட்ட கண்காட்சியைப் பார்வையிடுவதற்கு வார இறுதியில் வருகை தந்தவர்களுக்காக 2483 நுழைவுச் சீட்டுகள் விற்பனையாகின. எனவே கண் காட்சியைக் பார்வையிட்டவர்களின் உண்மையான எண்ணிக்கை 2483 ஆகும். செய்தியில் குறிப்பிடப்பட்ட 2500 என்னும் எண் 2483 இற்கு அண்மித்த ஒரு பெறுமானமாகும். இவ்வெண்ணை நினைவில் வைத்திருப்பது இருப்பதோடு அதில் ஒரு சிறப்புத் தன்மையும் காணக்கூடியதாக இருக்கின்றது. இவ்வெண் தொடர்பாடலுக்கு இலகுவாக உள்ளது.

எண் ஒன்றை மட்டந்தட்டுதல் என்பது அவ்வெண் சார்ந்த பெறுமானத்தை அதற்கு மிகவும் அண்மித்த, அதனைவிடச் சுருக்கமான, அறிக்கையிட இலகுவான அல்லது சிறப்புத் தன்மையுள்ள வேறொரு பெறுமானமாகக் குறிப்பிடுதல் ஆகும். மட்டந் தட்டும் முறைகள் பல உள்ளன. அவற்றில் சிலவற்றை நோக்குவோம்.

13.4 கிட்டிய 10 இற்கு மட்டந்தட்டல்

ஓர் எண்ணை அதற்கு அண்மித்த 10 இன் மடங்காக எழுதும் முறை ''கிட்டிய பத்துக்கு மட்டந்தட்டல்'' எனப்படும்

மேற்குறிப்பிட்ட நிகழ்வில் உள்ள 2483 பேரை கிட்டிய 10 இற்கு மட்டந்தட்டுவோம். 2483 என்னும் எண் 2480 இற்கும் 2490 இற்கும் இடைப்பட்ட பத்தின் மடங்கில் அமைந்துள்ளது. இவ்வெண் 2480 என்னும் எண்ணையே அண்மித்துள்ளது. அதற்கேற்ப 2483 என்பதை கிட்டிய 10 இற்கு மட்டந்தட்டும்போது 2480 பெறப்படும்.

இதனை மேலும் இவ்வாறு விளக்கலாம்.

2481, 2482, 2483, 2484 என்னும் எண்களைக் கிட்டிய 10 இற்கு மட்டந்தட்டும்போது 2480 பெறப்படும். இவ்வனைத்து எண்களும் 10 இன் மடங்கான 2480 இற்கே அண்மையில் அமைந்துள்ளன. அவ்வாறே 2486, 2487, 2488, 2489 என்னும் எண்களைக் கிட்டிய 10 இற்கு மட்டந்தட்டும்போது 2490 பெறப்படும். இதற்குக் காரணம் இவை 2490 ஐ அண்மித்து இருப்பதால் ஆகும். எஞ்சியுள்ள 2485 ஆனது 2480, 2490 ஆகிய எண்களுக்கு சமதூரத்தில் இருக்கும்போதிலும் அது கிட்டிய 10 இற்கு மட்டந்தட்டும்போது அதனைவிடப் பெறுமானம் கூடிய அண்மித்த 10 இன் மடங்கான 2490 என இணக்கம் கொள்ளப்படும். இறுதியாக 2480 ஐக் கிட்டிய 10 இற்கு மட்டந்தட்டும்போது 2480 எனவும் 2490 ஐக் கிட்டிய 10 இற்கு மட்டந்தட்டும்போது 2480 எனவும் 2490 ஐக் கிட்டிய 10 இற்கு மட்டந்தட்டும்போது 2480

உதாரணம் 1

- (i) 273 (ii) 1428 (iii) 7196 ஆகிய பெறுமானங்களைக் கிட்டிய 10 இற்கு மட்டந்தட்டுக.
- (i) 270
- (ii) 1430
- (iii) 7200

பயிற்சி 13.4

- 1. பின்வரும் ஒவ்வோர் எண்ணையும் கிட்டிய 10 இற்கு மட்டந்தட்டுக.
 - (i) 33

(ii) 247

(iii) 3008

(iv) 59

(v) 309

(vi) 4017

(vii) 85

(viii) 1514

(ix) 1895

(x) 12345

(xi) 234 532

- (xii) 997287
- 2. பீதுருதாலகால மலையின் உயரம் 2524 m ஆகும். இவ்வெண்ணைக் கிட்டிய 10 இற்கு மட்டந்தட்டுக.

- 3. ஓர் எண்ணைக் கிட்டிய 10 இற்கு மட்டந்தட்டியபோது 140 பெறப்பட்டது. அவ்வெண்ணாக இருக்கத்தக்க சகல முழுவெண் பெறுமானங்களையும் எழுதுக.
- 4. ஓர் எண்ணைக் கிட்டிய பத்துக்கு மட்டந்தட்டியபோது 80 பெறப்பட்டது. அவ்வெண்ணாக இருக்கத்தக்க சகல முழுவெண் பெறுமானங்களையும் எழுதுக. மிகச் சிறிய முழுவெண் பெறுமானம் எது ? மிகப் பெரிய முழுவெண் பெறுமானம் எது ?
- 5. ஏதேனும் ஒரு முழுவெண்ணைக் கிட்டிய 10 இற்கு மட்டந்தட்டியபோது 260 எனப் பெறப்பட்டது. அவ்வெண்ணாக இருக்கத்தக்க மிகச் சிறிய எண்ணையும் மிகப் பெரிய எண்ணையும் தனித்தனியே எழுதுக.

13.5 கிட்டிய 100 இற்கு, கிட்டிய 1000 இற்கு மட்டந்தட்டல்

எண்கள் கிட்டிய பத்துக்கு மட்டந்தட்டப்பட்ட விதத்திலேயே கிட்டிய 100 இற்கும் கிட்டிய 1000 இற்கும் மட்டந்தட்டப்படும்.

உதாரணமாக 7346 என்னும் எண் 100 இன் மடங்கான 7300 இற்கும் 7400 இற்கும் இடையில் அமைந்திருக்கிறது. அவ்வெண் 7300 ஐயே அண்மித்திருக்கின்றது. எனவே 7346 ஐக் கிட்டிய 100 இற்கு மட்டந்தட்டும்போது 7300 பெறப்படுகின்றது. 7675 என்னும் எண்ணைக் கிட்டிய 100 இற்கு மட்டந்தட்டும்போது 7700 பெறப்படும். 7300 இல் இருந்து 7349 வரையுள்ள (இவ்வெண்கள் அடங்கலாக) எண்களைக் கிட்டிய 100 இற்கு மட்டந்தட்டும்போது 7300 பெறப்படும். அத்துடன் 7350 இல் இருந்து 7449 வரையுள்ள எண்களை (இவ்வெண்கள் அடங்கலாக) கிட்டிய 100 இற்கு மட்டந்தட்டும்போது 7300 பெறப்படும்.

அடுத்தாகக் கிட்டிய 1000 இற்கு மட்டந்தட்டுவதைக் கருதுவோம். உதாரணமாக 41 873 என்னும் எண்ணைக் கிட்டிய 1000 இற்கு மட்டந்தட்டுகையில் 42000 பெறப்படும். இதற்குக் காரணம் 41 873 ஆனது 42000 ஐ அண்மித்து இருப்பதாலாகும்.

இதனை மேலும் விரிவாகப் பார்ப்போம்.

• 2 435 ஐக் கிட்டிய 100 இற்கு மட்டந்தட்டல்

2435

_____ இவ்வெண் 100 இன் மடங்காகிய 2400 இற்கும் 2500 இற்கும் இடையில் அமைந்துள்ளது. 2435 ஆனது 2400, 2500 என்பவற்றின் நடு உறுப்பான 2 450 இலும் குறைவானதாகும்.

43

். 2435 இற்கு மிகக் கிட்டியது 2400 ஆகும்.

• 2485 ஐக் கிட்டிய 100 இற்கு மட்டந்தட்டல்

2485

- _____ இவ்வெண் 100 இன் மடங்காகிய 2400 இற்கும் 2500 இற்கும் இடையில் அமைந்துள்ளது. 2485 ஆனது 2400, 2500 என்பவற்றின் நடு உறுப்பான 2450 இலும் அதிகமானதாகும்.
- ். 2485 இற்கு மிகக் கிட்டியது 2500 ஆகும்.
- 2450 ஐக் கிட்டிய 100 இற்கு மட்டந்தட்டல்

2450

- _____ இவ்வெண் 100 இன் மடங்காகிய 2400 இற்கும் 2500 இற்கும் இடையில் அமைந்துள்ளது. 2450 ஆனது இரண்டிற்கும் சம தூரத்தில் இருக்கும் போதிலும் மட்டந்தட்டும்போது அதனைவிடப் பெறுமானம் கூடிய அண்மித்த நூறிற்கு மட்டந்தட்டப்படும்.
- ். 2450 இற்கு மிகக் கிட்டியது 2500 ஆகும்.
- 2485 ஐக் கிட்டிய 1000 இற்கு மட்டந்தட்டல்

2485

- இவ்வெண் 1000 இன் மடங்காகிய 2000 இற்கும் 3000 இற்கும் இடையில் அமைந்துள்ளது. 2485 ஆனது 2000, 3000 என்பவற்றின் நடு உறுப்பான 2500 இலும் குறைவானதாகும்.
- ். 2485 இற்கு மிகக் கிட்டியது 2000 ஆகும்.
- 2754 ஐக் கிட்டிய 1000 இற்கு மட்டந்தட்டல்

- _____ இவ்வெண் 1000 இன் மடங்காகிய 2000 இற்கும் 3000 இற்கும் இடையில் அமைந்துள்ளது. 2454 ஆனது 2000, 3000 என்பவற்றின் நடு உறுப்பான 2500 இலும் அதிகமானதாகும்.
- ். 2754 இற்கு மிகக் கிட்டியது 3000 ஆகும்.
- 12500 ஐக் கிட்டிய 1000 இற்கு மட்டந்தட்டல்
- 12500
 - இவ்வெண் 1000 இன் மடங்காகிய 12000 இற்கும் 13000 இற்கும் இடையில் அமைந்துள்ளது. 12500 ஆனது இரண்டிற்கும் சம தூரத்தில் இருக்கும் போதிலும் மட்டந்தட்டும்போது அதனைவிடப் பெறுமானம் கூடிய அண்மித்த ஆயிரத்திற்கு மட்டந்தட்டப்படும்.
- ். இதற்கேற்ப 12 574 இற்கு மிகக் கிட்டியது 13 000 ஆகும்.

உதாரணம் 1

(i) 5654 (ii) 8477 ஆகிய எண்களைக் கிட்டிய 100 இற்கும் கிட்டிய 1000 இற்கும் மட்டந் தட்டுக.

கிட்டிய 100 இற்கு மட்டந்தட்டல் (i) 5700 (ii) 8500

கிட்டிய 1000 இற்கு மட்டந்தட்டல் (i) 6000 (ii) 8000

பயிற்சி 13.5

- 1. பின்வரும் ஒவ்வோர் எண்ணையும் கிட்டிய 100 இற்கு மட்டந்தட்டுக.
 - (i) 54
- (ii) 195
- (iii) 1009
- (iv) 2985
- (v) 72324
 - (vi) 7550
- 2. பின்வரும் ஒவ்வோர் எண்ணையும் கிட்டிய 1000 இற்கு மட்டந்தட்டுக.
 - (i) 1927
- (ii) 2433
- (iii) 19999
- (iv) 45 874
- (v) 38 000
- (vi) 90 500
- 3. ஒரு பாடசாலையில் உள்ள மாணவர்களின் எண்ணிக்கை 2 059 ஆகும்.
 - இவ்வெண்ணை
 - (i) கிட்டிய 10 இற்கு
 - (ii) கிட்டிய 100 இற்கு
 - (iii) கிட்டிய 1000 இற்கு

மட்டந்தட்டுக.

- 4. ஓர் எண்ணைக் கிட்டிய 100 இற்கு மட்டந்தட்டியபோது 4 500 எனப் பெறப்பட்டது. அவ்வெண்ணாக இருக்கத்தக்க
 - (i) மிகச் சிறிய முழுவெண் யாது?
 - (ii) மிகப் பெரிய முழுவெண் யாது?

13.5 தசம எண்களை மட்டந்தட்டல்

ஐந்து வயதுள்ள குழந்தை ஒன்றின் திணிவு 12.824 kg எனக் குறிக்கப் பட்டிருந்தது. அது 12.824 g ஆகும். திணிவை அளக்கப் பயன்படுத்திய தராசு கிட்டிய கிராமுக்கு அளவைக் காட்டுவதால் இப்பெறுமானம் பெறப்பட்டது. இருந்தபோதும் நடைமுறை நிகழ்வுகளில் கிட்டிய கிலோகிராமிற்கு அல்லது கிட்டிய கிலோகிராமின் பத்தின் பங்குகளுக்கு அல்லது கிட்டிய கிலோகிராமின் 100 இன் பங்குகளுக்குத் திணிவு அளந்து குறிக்கப்படும்.

இவ்வாறான தசம எண்களை கிட்டிய முழுவெண், கிட்டிய முதலாம் தசம தானம், கிட்டிய இரண்டாம் தசம தானம், போன்ற சந்தர்ப்பங்களுக்கு மட்டந்தட்ட வேண்டிய தேவை ஏற்படும்.

இலவசப் பாடநூல்

இப்பாடத்தில் நாம் தசம எண்களை மட்டந்தட்டும் முறை பற்றிக் கற்போம். முதலில் ஒரு தசம தானத்தை உடைய ஓர் எண்ணைக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டும் முறையைக் கவனிப்போம்.

12.7 ஐக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டுவோம்.

12.7 இன் இரு பக்கங்களிலும் அமைந்த முழுவெண்கள் 12 உம் 13 உம் ஆகும்.

12.1, 12.2, 12.3, 12.4 என்னும் எண்கள் 12 ஐ அண்மித்துள்ளன. அவற்றைக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டும்போது 12 பெறப்படும். 12.6, 12.7, 12.8, 12.9 என்னும் எண்கள் 13 ஐ அண்மித்துள்ளன. எனவே அவற்றைக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டும்போது 13 பெறப்படும். முன்னர் குறிப்பிட்டது போல் 12.7 ஆனது கிட்டிய முழுவெண்ணுக்கு 13 என மட்டந்தட்டப்பட்டுள்ளது.

அவ்வாறே

12.3 ஐக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டும்போது 12 உம் 12.5 ஐக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டும்போது 13 உம் பெறப்படும்.

தரப்பட்ட தசம தானத்திற்கு மட்டந்தட்டல்

• 3.74 ஐக் கிட்டிய முதலாம் தசம தானத்துக்கு மட்டந்தட்டுக.

மட்டந்தட்டும் விதிகள் இங்கேயும் பொருந்தும். 3.71, 3.72, 3.73, 3.74 என்னும் எண்களுக்கு மிகவும் அண்மித்த ஒரு தசம தானத்தைக் கொண்ட எண் 3.7 ஆகையால் ஒவ்வொரு தசம எண்ணையும் முதலாம் தசமதானத்திற்கு மட்டந்தட்டும்போது 3.7 பெறப்படும். அவ்வாறே 3.75, 3.76, 3.77, 3.78, 3.79 என்னும் எண்களைக் கிட்டிய முதலாம் தசம தானத்துக்கு மட்டந்தட்டும்போது 3.8 பெறப்படும். இதற்கேற்ப 3.74 ஐ முதலாம் தசம தானத்துக்கு மட்டந்தட்டும்போது 3.7 பெறப்படும். வேறு தசம தானங்களையும் இவ்விதிகளுக்கு அமைய மட்டந்தட்டலாம். பின்வரும் உதாரணத்தை நோக்குவோம்.

== 46 =

உதாரணம் 1

(i) 3.784 (ii) 3.796 ஆகிய எண்களை இரண்டாம் தசம தானத்துக்கு மட்டந் தட்டுக.

இரண்டாம் தசம தானத்துக்கு மட்டந்தட்டும்போது மூன்றாம் தசம தானத்தின் இலக்கத்தைக் கவனத்திற் கொள்ள வேண்டும்.

- (i) 3.784 இவ்வெண் 3.78 இற்கும் 3.79 இற்கும் இடையில் அமைந்துள்ளது. 3.784 ஆனது 3.78, 3.79 என்பவற்றின் நடு உறுப்பான 3.785 இலும் குறைவானதாகும். ஆகவே கிட்டிய இரண்டாம் தசம தானம் 3.78 ஆகும்.
- (ii) 3.796 இவ்வெண் 3.79 இற்கும் 3.80 இற்கும் இடையில் அமைந்துள்ளது. 3.796 ஆனது 3.79, 3.80 என்பவற்றின் நடு உறுப்பான 3.795 இலும் கூடியதாகும். ஆகவே கிட்டிய இரண்டாம் தசம தானம் 3.80 ஆகும்.

பயிற்சி 13.6

1. பின்வரும் எண்களைக் கிட்டிய முழுவெண்ணுக்கும் கிட்டிய முதலாம் தசம தானத்துக்கும் மட்டந்தட்டுக.

(i) 5.86

(ii) 12.75

(iii) 10.43

(iv) 123.79

(v) 8.04

(vi) 13.99

(vii) 101.98

(viii) 100.51

2. π இன் பெறுமானம் 3.14159... ஆகும். இப்பெறுமானத்தை

(i) கிட்டிய முழுவெண்ணுக்கு (ii) கிட்டிய முதலாம் தசம தானத்துக்கு

(iii) கிட்டிய இரண்டாம் தசம தானத்துக்கு மட்டந்தட்டுக.

3. கோளம் ஒன்றின் விட்டம் 3.741 cm ஆகும். அப்பெறுமானத்தை

(i) கிட்டிய முதலாம் தசம தானத்துக்கு

(ii) கிட்டிய இரண்டாம் தசம தானத்துக்கு மட்டந்தட்டுக.

4. ஒரு காணியின் பரப்பளவு 0.785 ha என கிடைப்படம் ஒன்றில் குறிப்பிடப்பட் டுள்ளது. அப்பெறுமானத்தை

(i) கிட்டிய முதலாம் தசம தானத்துக்கு (ii) கிட்டிய இரண்டாம் தசம தானத்துக்கு மட்டந்தட்டுக.

- 5. விலங்குப் பண்ணை ஒன்றில் சுகதேகியான பசு ஒன்றிலிருந்து தினமும் பெறப்படும் பாலின் இடைப் பெறுமானம் 5.25 | ஆகும். அங்கு அவ்வாறான 42 பசுக்கள் இருப்பின், நாள் ஒன்றில் பெறப்படும் பாலின் அளவை
 - (i) கிட்டிய லீற்றருக்கு
 - (ii) கிட்டிய முதலாம் தசம தானத்துக்கு மட்டந்தட்டுக.

பலவினப் பயிற்சி

- 1. பின்வரும் ஒவ்வொரு எண் தொகுதிகளையும் தனித்தனியே ஏறுவரிசையில் எழுதுக.
 - (i) 3.10×10^2 , 3.10×10^{-4} , 3.10×10^0 , 3.10×10^5
 - (ii) 4.78×10^{-2} , 1.43×10^{4} , 9.99×10^{-3} , 2.32×10^{1}
- (iii) 7.85×10^{0} , 7.85×10^{-4} , 7.85×10^{2} , 7.85×10^{-2}
- 2. நாள் ஒன்றுக்கு ரூ. 1230 வீதம் கொடுப்பனவைப் பெறும் 250 தொழிலாளர்கள் தொழிற்சாலை ஒன்றில் பணி புரிகின்றனர்.
 - (i) அவர்களின் கொடுப்பனவுக்காக நாள் ஒன்றுக்குத் தேவைப்படும் பணம் எவ்வளவு?
 - (ii) 1230 ஐயும் 250 ஐயும் விஞ்ஞானமுறைக் குறிப்பீட்டில் தருக.
 - (iii) மேலே (ii) இல் எழுதிய விஞ்ஞானமுறைக் குறிப்பீட்டில் எழுதிய எண்களைக் கொண்டு நாள் ஒன்றுக்குத் தேவைப்படும் பணத்தின் தொகையைக் காண்க.
 - (iv) மேலே (i) இனதும் (ii) இனதும் விடைகளை ஒப்பிடுக.
- 3. தேயிலைத் தொழிற்சாலை ஒன்றில் நாள் ஒன்றில் உற்பத்திசெய்த தேயிலையின் அளவு 1500 kg ஆகும். ஒவ்வொரு மாதமும் 30 நாட்கள் தொழிற்சாலை இயங்குமாயின், மாதம் ஒன்றில் உற்பத்திசெய்த தேயிலையின் அளவு 4.5 × 10⁴ kg எனக் காட்டுக.

4. பின்வரும் அட்டவணையைப் பூரணப்படுத்துக.

(a)	கோவை	கோவையில் உள்ள எண்களைக் கிட்டிய முழுவெண்ணுக்கு மட்டந்தட்டும்போது பெறப்படும் பெறுமானம்	மட்டந்தட்டிய பின்னர் கோவையின் பெறுமானம்
	59.2×9.97	60 × 10	600
	8.4×5.7	×	
	12.3×11.95	×	
	10.15×127.6	×	
	459.7×3.51	×	
	109.5 × 4.49	×	

(b)	கோவை	மட்டந்தட்டாமல் பெருக்கம்	மட்டந் தட்டிய பின்னர்
			கோவையின் பெறுமானம்
	59.2 × 9.97	590.224	590
	8.4×5.7		
	12.3 × 11.95		
	10.15×127.6		
	459.7 × 3.51		
	109.5×4.49		

பொழிப்பு

- கணப்பீடுகளை இலகுவாக்கிக் கொள்வதற்கு எண்களைச் சுருக்கி எழுதும் ஒரு முறை விஞ்ஞானமுறைக் குறிப்பீடு எனப்படும்.
- ஏதேனும் ஓர் எண் $1 \le A < 10$ ஆகவும் $n \blacksquare \mathbb{Z}$ ஆகவும் இருக்கும்போது $A \times 10^n$ என எழுதும் முறை விஞ்ஞானமுறைக் குறிப்பீடு ஆகும்.
- எண்களை மட்டந்தட்டும்போது அவ்வெண்ணை மட்டந்தட்டுவதற்கு எதிர்பார்க்கப்படும் தானத்துக்கு அடுத்துள்ள தானத்தின் இலக்கத்தைப் பரீட்சித்து அதற்கேற்ப மட்டந்தட்டல் செய்யப்படும்.

14

ஒழுக்குகளும் அமைப்புகளும்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- நான்கு அடிப்படை ஒழுக்குகளை இனங்காண்பதற்கும்
- ஒரு கோட்டிற்குச் செங்குத்தான ஒரு கோட்டினை அமைப்பதற்கும்
- ஒரு நேர்கோட்டுத் துண்டத்திற்குச் செங்குத்து இருசமகூறாக்கியை அமைப் பதற்கும்
- கோணங்களை அமைப்பதற்கும் பிரதிசெய்வதற்கும்
- ஒழுக்குகளுடனும் அமைப்புகளுடனும் தொடர்புபட்ட பிரசினங்களைத் தீர்ப்பதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

ஒழுக்குகள்

நீங்கள் அவதானிக்கத்தக்க சில இயக்கங்கள் கீழே தரப்பட்டுள்ளன. அவை செல்லும் பாதைகள் தொடர்பாகக் கவனஞ் செலுத்துக.

- 1. காற்றில் மிதக்கும் பஞ்சு
- 2. பறக்கும் பறவை
- 3. துடுப்பினால் அடிக்கப்பட்ட பந்து
- 4. மரத்திலிருந்து விழும் பழம்
- 5. தொழிற்படும் மணிக்கூட்டின் முள் ஒன்றின் நுனி
- 6. நிறுத்தாடுவளையில் (see saw) இருக்கும் பிள்ளை

மேலே 1, 2 ஆகியவற்றினால் காட்டப்படும் இயக்கங்கள் சிக்கலானவையாகவும் நிச்சயமற்றனவாகவும் இருக்கின்றபோதிலும் 3 தொடக்கம் 6 வரையுள்ள இயக்கங்கள் நிச்சயமானவையாக இருப்பதை அவதானிக்கலாம். இத்தகைய இயக்கங்களில் ஈடுபடுவன செல்லும் பாதைகள் பற்றி நல்ல விளக்கத்தைப் பெறுவதற்குக் கேத்திரகணித்தில் உள்ள ஒழுக்குகள் பற்றிக் கற்றல் முக்கியமானதாகும்.

ஒரு குறித்த நிபந்தனையை அல்லது சில நிபந்தனைகளைத் திருப்தியாக்குமாறு உள்ள புள்ளிகளின் தொடையானது ஒழுக்கு எனப்படும்.

14.1 அடிப்படை ஒழுக்குகள்

இப்போது நாம் அடிப்படை ஒழுக்குகளில் கவனஞ் செலுத்துவோம்.

1. ஒரு நிலைத்த புள்ளியிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு

மேற்குறித்த செயற்பாட்டிலிருந்து நீங்கள் வட்டமாகச் செல்லும் பாதையைப் பெறுவீர்கள். இதற்கேற்ப

ஒரு நிலைத்த புள்ளியிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு ஒரு வட்டமாகும்.

உதாரணம் 1

ஒரு தொழிற்படும் கடிகாரத்தின் ஊசற் குண்டின் ஆகவும் கீழேயுள்ள புள்ளியின் ஒழுக்கை ஒரு பரும்படி உருவில் காட்டுக.

இவ்வியக்கத்துக்குரிய ஒழுக்கானது ஊசற் குண்டு தொங்க விடப்பட்டுள்ள புள்ளியை மையமாகக் கொண்ட கோலின் நீளத்தை ஆரையாகக் கொண்ட வட்டத்தின் பகுதியாகும்.

2. இரு நிலைத்த புள்ளிகளிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு

செயற்பாடு 2

படி ${\bf 1}$: ஓர் எண்ணெய்த் தாளில்/திசுத் தாளில் ஏறத்தாழ $10~{\rm cm}$ நீளமுள்ள ஒரு கோட்டுத் துண்டத்தை வரைந்து அதனை AB எனப் பெயரிடுக.

படி 2 : A, B ஆகிய இரு புள்ளிகளும் பொருந்துமாறு திசுத் தாளை மடிப்பதன் மூலம் கோடு AB இன் சமச்சீரச்சை இனங்கண்டு அதனை ஒரு முறிந்த கோட்டினால் குறிக்க.

படி ${\bf 3}$: முறிந்த கோட்டின் மீது ஒரு புள்ளியை P_1 எனக் குறித்து $P_1 A,\ P_1 B$ ஆகிய கோடுகளை வரைந்து அவற்றின் நீளங்களை அளந்து எழுதுக.

படி 4 : முறிந்த கோட்டின் மீது வேறு சில புள்ளிகளைக் குறித்து அப்புள்ளிகள் ஒவ்வொன்றிலிருந்தும் A, B ஆகிய புள்ளிகளின் தூரங்களை அளந்து எழுதுக.

படி 5 : A, B ஆகிய புள்ளிகளிலிருந்து முறிந்த கோட்டின் மீது உள்ள யாதாயினும் ஒரு புள்ளிக்கு உள்ள தூரங்கள் சமமா எனச் சோதித்துப் பார்த்து முடிபை எழுதுக.

மேலே A, B ஆகியன பொருந்துமாறு தாளை மடிக்கும்போது கிடைக்கும் மடிப்புக் கோடானது கோடு AB இற்குச் செங்குத்தானது என்பதையும் அது AB இன் நடுப் புள்ளியினூடாகச் செல்கின்றது என்பதையும் விளங்கிக்கொள்க. இக்கோடானது கோட்டுத் துண்டம் AB இன் செங்குத்து இருசமகூறாக்கி எனப்படும். AB இன் செங்குத்து இருசமகூறாக்கி மீது நீங்கள் தெரிந்தெடுத்த புள்ளிகள் ஒவ்வொன்றிலு மிருந்தும் A இற்கும் B இற்கும் உள்ள தூரங்கள் சமம் என்பதை அவதானிக்க.

நிலைத்த இரு புள்ளிகளிலிருந்து சம தூரங்களில் உள்ள புள்ளியின் ஒழுக்கு அவ்விரு புள்ளிகளையும் தொடுக்கும் கோட்டின் செங்குத்து இருசமகூறாக்கியாகும்.

உதாரணம் 2

தரப்பட்டுள்ள $P,\ Q$ என்னும் இரு புள்ளிகளிலிருந்து சம தூரத்தில் உள்ள புள்ளிகளின் அமைவைக் காட்டும் ஒழுக்கை ஒரு பரும்படி உருவில் காட்டுக. அதன் மீது உள்ள புள்ளிகளை $P_1,\ P_2,\ P_3, P_4, P_5$ எனப் பெயரிடுக.

- 1. பின்வரும் இயக்கங்கள் ஒவ்வொன்றுக்கும் உரிய ஒழுக்கை ஒரு பரும்படி உருவில் காட்டுக.
 - (i) 50 cm நீளமுள்ள ஒரு கயிற்றின் ஒரு நுனியில் மரக் குற்றி ஒன்றைக் கட்டி, கயிற்றின் மற்றைய நுனியைப் பிடித்து கயிறு இழுக்கப்பட்டிருக்குமாறு சுற்றும்போது மரக் குற்றி செல்லும் பாதை.

- (ii) ஒரு தொழிற்படும் கடிகாரத்தின் ஒரு நிமிட முள்ளின் அந்தம் செல்லும் பாதை.
- (iii) உருவில் உள்ள கிடைப்படத்தில் A, B என்னும் இரண்டு வீடுகள் $50 \, \mathrm{m}$ இடைத்தூரத்தில் காணப்படுகின்றன. இவ்வீடுகளிலிருந்து சம தூரத்தில் மதில் ஒன்றை அமைக்க வேண்டும். அம்மதில் அமையும் இடம்.

A B

 (iv) ஓர் ஊர்வலத்தில் தீப்பந்தைச் சுழற்றுபவரின் பந்தத்தில் உள்ள தீப்பிழம்பு செல்லும் பாதை.
 (பந்தத்தைப் பிடிப்பவர் அசையாமல் இருக்கும் போது)

(v) ஓர் இராட்டினத்தில் இருப்பவர் செல்லும் பாதை.

(vi) நிறுத்தாடுவளையிலே ஒரு சந்தர்ப்பத்தில் அதன் குறுக்குத் தண்டின் இரு அந்தங்களிலும் அமர்ந் திருக்கும் பிள்ளைகள் செல்லும் பாதை.

2. தரப்பட்டுள்ள உருவில் P, Q ஆகியன கிடைத் தரையில் ஒன்றிலிருந்தொன்று 25 m தூரத்தில் உள்ள இரு மரங்களாகும். ஒவ்வொரு மரத்திலிருந்தும் 15 m தூரத்தில் ஒரு நீர்த் திருகுபிடியைப் பொருத்தவேண்டி உள்ளது. ஒழுக்குகள் பற்றிய அறிவிற்கேற்பத் திருகுபிடி பொருத்தப்படத்தக்க இடங்களைக் காணும் விதத்தை ஒரு பரும்படி உருவைக் கொண்டு காட்டுக.

3. உருவில் உள்ளவாறு ஓர் 50° கோணத்தை வரைந்து அதனை PQR எனப் பெயரிடுக. Q, R என்பவற்றிலிருந்து சம தூரங்களில் புயம் PQ மீது உள்ள புள்ளி காணப்படும் விதத்தை ஒழுக்குகள் பற்றிய உங்கள் அறிவைப் பயன்படுத்திக் காண்க. இவற்றை ஒரு பரும்படி உருவில் குறித்து அப்புள்ளியை S எனப் பெயரிடுக.

- A, B ஆகியன ஒன்றிலிருந்தொன்று 10 m தூரத்தில் இருக்கும் இரு விளக்குக் கம்பங் களாகும்.
 - (i) A இலிருந்து 6 m தூரத்திலும் B இலிருந்து 8 m தூரத்திலும் இருக்குமாறு ஒரு கம்பம் C ஐ நடுதல் வேண்டும். ஓர் உகந்த பரும்படி உருவில் கம்பம் C இன் அமைவைக் குறிக்க.

(i) A, B இற்கு நடுவில் இன்னுமொரு விளக்குக் கம்பம் வர வேண்டும் எனின், ஒழுக்கு பற்றிய அறிவைக் கொண்டு அக்கம்பம் வரவேண்டிய இடத்தைப் பரும்படிப் படம் ஒன்றில் குறித்துக் காட்டுக. அதை D எனக் குறிக்க.

14.2 அடிப்படை ஒழுக்குகள் (மேலும்)

3. ஒரு நிலைத்த கோட்டிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு

ஒரு புள்ளியிலிருந்து ஒரு கோட்டிற்கு வரையப்பட்டுள்ள செங்குத்துக் கோட்டின் நீளம் அக்கோட்டிற்கு உள்ள தூரமாகக் கருதப்படும்.

இதற்கேற்பக் கோடு *AB* இற்கு

P இலிருந்து உள்ள தூரம் PL ஆகும்.

Q இலிருந்து உள்ள தூரம் QM ஆகும்.

இப்போது நாம் ஒரு கோட்டிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கைக் காண்பதற்குப் பின்வரும் செயற்பாட்டில் ஈடுபடுவோம்.

இலவசப் பாடநூல்

செயற்பாடு 1

படி 1: பயிற்சிப் புத்தகத்தில் ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து அதனை AB எனப் பெயரிடுக.

படி 2: கோடு AB மீது நேர் விளிம்பை வைத்து அதனைத் தொடுமாறு ஒரு மூலைமட்டத்தின் ஒரு விளிம்பைப் பின்வரும் உருவில் உள்ளவாறு வைக்க. AB இலிருந்து 3 cm தூரத்தில் உள்ள புள்ளியைக் குறித்து அதனை P எனப் பெயரிடுக.

படி 3: மூலைமட்டத்தின் அமைவை மாற்றி AB இலிருந்து 3 cm தூரத்தில் உள்ள வேறு சில புள்ளிகளைக் குறிக்க.

படி 4: மேலே குறித்த P, Q, R ஆகிய புள்ளிகளை ஒரு நேர்விளிம்பைப் பயன்படுத்தித் தொடுக்க.

படி 5: கோடு AB இலிருந்து $3~{\rm cm}$ தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு யாதென விளக்குக. அத்தகைய வேறோர் ஒழுக்கை AB இல் P இருக்கும் பக்கத்திற்கு எதிரான பக்கத்திலும் வரையமுடியும் என்பதை அவதானிக்க.

மேற்குறித்த செயற்பாட்டிற்கேற்பக் கோடு AB இலிருந்து $3~{\rm cm}$ தூரத்தில் இயங்கும் ஒரு புள்ளியின் ஒழுக்கானது AB இலிருந்து $3~{\rm cm}$ தூரத்தில் உள்ள AB இற்குச் சமாந்தரமான ஒரு நேர்கோடு என்பது தெளிவாகும். அவ்வாறே கோடு AB இன் இரு பக்கங்களிலும் இத்தகைய இரு ஒழுக்குகளை வரையலாம்.

ஒரு நேர்கோட்டிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கானது அந்நேர்கோட்டிற்குச் சமாந்தரமாக அம்மாறாத் தூரத்தில் நேர்கோட்டின் இரு பக்கங்களிலும் இருக்கும் இரு நேர்கோடுகளாகும்.

4. இரு இடைவெட்டும் நேர்கோடுகளிலிருந்து சம தூரத்தில் இயங்கும் ஒரு புள்ளியின் ஒழுக்கு

செயற்பாடு 2

படி 1: ஓர் ஊடுகாட்டும் தாளில் (எண்ணெய்த் தாள்) உருவில் உள்ளவாறு ஒரு நேர்கோட்டுச் சோடியை வரைந்து அவற்றை OA, OB எனப் பெயரிடுக.

படி 2: OA, OB ஆகிய கோடுகள் பொருந்துமாறு திசுத் தாளை மடித்து மடிப்புக் கோட்டினை ஒரு முறிந்த கோட்டினால் குறிக்க. அதனை OX எனப் பெயரிடுக.

படி 3: மேலே வரைந்த முறிந்த கோடு மீது ஒரு புள்ளியைக் குறித்து அதனை P_1 எனப் பெயரிடுக. மூலைமட்டத்தைப் பயன்படுத்தி P_1 இலிருந்து OA இற்கும் OB இற்கும் செங்குத்துக் கோடுகளை வரைந்து அச்செங்குத்துக் கோடுகளின் நீளங்களை அளந்து எழுதுக.

படி 4: கோடு OX மீது மேலும் சில புள்ளிகளைப் பின்வரும் உருவில் உள்ளவாறு குறித்து அவற்றை P_2 , P_3 , ... எனப் பெயரிடுக. அப்புள்ளிகள் ஒவ்வொன்றிலிருந்தும் OA இற்கும் OB இற்கும் செங்குத்துக் கோடுகளை வரைந்து அவற்றின் நீளங்களையும் அளந்து எழுதுக.

படி 5: $\stackrel{ o}{AOX}$, $\stackrel{ o}{BOX}$ ஆகியவற்றை அளந்து கோடு தொடர்பாகப் பெறத்தக்க முடிபையும் எழுதுக.

மேற்குறித்த செயற்பாட்டிற்கேற்ப $\stackrel{\frown}{AOB}$ ஐ இருசமகோணங்களாக வேறுபடுத்தும் கோடு OX என்பதும் கோடு OX மீது உள்ள யாதாயினும் ஒரு புள்ளியிலிருந்து OA இற்கும் OB இற்கும் உள்ள தூரங்கள் சமம் என்பதும் தெளிவாகும்.

மேலும் $OA,\ OB$ ஆகிய கோடுகள் பொருந்துமாறு தாள் மடிக்கப்படுகின்றமையால் $A \stackrel{\circ}{O} X,\ B \stackrel{\circ}{O} X$ ஆகிய கோணங்கள் சமமாகும்.

கோடு OX ஆனது $\stackrel{\smallfrown}{AOB}$ இன் கோண இருசமகூறாக்கி எனப்படும்.

ஒன்றையொன்று இடைவெட்டும் இரு நேர்கோடுகளிலிருந்து சம தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு அவ்விரு கோடுகளும் இடைவெட்டுவதால் உண்டாகும் கோணத்தின் இருசமகூறாக்கியாகும்.

உதாரணம் 1

OP, OQ ஆகியன சந்தி O இலிருந்து இரு பக்கங்களுக்கும் செல்லும் இரு பாதைகளாகும். அவ்விரு பாதைகளிலிருந்தும் சம தூரத்தில் சந்தி O இலிருந்து 20 m தூரத்தில் ஓர் அறிவிப்புப் பலகையைப் பொருத்த வேண்டியுள்ளது. ஒழுக்குகள் பற்றிய அறிவைப் பயன்படுத்தி, அறிவிப்புப் பலகை பொருத்தப்பட வேண்டிய இடத்தைக் காணும் விதத்தை ஓர் உருவில் காட்டுக.

இங்கு QOP இன் இருகூறாக்கி மீது புள்ளி N இருக்க வேண்டும். $ON=20~{\rm m}$ ஆகையால் O இலிருந்து $20~{\rm m}$ தூரத்தில் இருசமகூறாக்கி மீது புள்ளி N இருக்கும்.

பயிற்சி 14.2

- ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து XY எனப் பெயரிடுக. இதிலிருந்து 4 cm தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கை ஒரு பரும்படி உருவில் காட்டுக.
- 2. ஒரு மாணவன் ஒரு நேர்கோட்டுப் பாதையில் கைப்பிடி பொருத்தப்பட்ட 20 cm விட்டமுள்ள ஒரு சில்லை உருட்டிக் கொண்டு செல்கின்றான். சில்லின் மையத்தின் ஒழுக்கை ஒரு பரும்படி உருவில் காட்டுக.
- 3. உருவில் காட்டப்பட்டுள்ள கடிகாரத்தில் நிமிட முள்ளுக்கும் மணி முள்ளுக்கும் சம தூரத்தில் செக்கன் முள் காணப்படுகின்றது எனின், செக்கன் முள்ளின் அமைவை ஒழுக்கைப் பயன்படுத்தி ஒரு பரும்படி உருவில் காட்டுக. (விரிகோணம், பின்வளை கோணம் ஆகிய இரு சந்தர்ப்பங்களுக்கும் வரைக.)
- 4. ஒரு காணியில் இருக்கும் 50 மீற்றர் நீளமுள்ள ஒரு வடிகால் PQ ஆனது உருவில் காணப்படுகின்றது. வடிகால் PQ இலிருந்து 10 மீற்றர் தூரத்திலும் P, Q ஆகிய இரு அந்தங்களிலிருந்தும் சம தூரத்திலும் ஒரு நீர்த் திருகுபிடி பொருத்தப்பட வேண்டியுள்ளது. நீரித் திருகுபிடி பொருத்தப்பட வேண்டிய இடத்தை ஒரு பரும்படி உருவில் காட்டுக.

5. உருவில் காட்டப்பட்டுள்ள கேக் துண்டை ஒழுக்கைப் பயன்படுத்தி இரண்டு சம பகுதிகளாகப் பிரிக்கக்கூடிய முறையை ஒரு பரும்படி உருவில் காட்டுக.

6. ஒரு செவ்வகக் காணியின் இரு எல்லைகள் PQ, PS P ஆகும். எல்லை PQ இலிருந்து 8 மீற்றர் தூரத்திலும் எல்லை PS இலிருந்து 5 மீற்றர் தூரத்திலும் $20~\mathrm{m}$ இருக்குமாறு காணியினுள்ளே ஒரு மரத்தை நட வேண்டியுள்ளது. மரம் நடப்பட வேண்டிய இடத்தை S ஒரு பரும்படி உருவில் காட்டி அதனை T எனப் பெயரிடுக.

14.3 தரப்பட்ட நேர்கோடு ஒன்றிற்குச் செங்குத்துக் கோடுகளை அமைத்தல்

அமைப்புகளில் பெரும்பாலும் பயன்படுத்தப்படும் இரு சொற்களை விளக்குவோம். கவராயத்தைப் பயன்படுத்தி வட்டங்களை வரைகையில் "யாதாயினும் ஒரு புள்ளியை மையமாகக் கொண்டும்", "ஒரு குறித்த தூரத்தை ஆரையாகக் கொண்டும்" என்னும் பதங்கள் பயன்படுத்தப்படுகின்றன. உதாரணமாகப் புள்ளி A ஐ மையமாகக் கொண்டு என்பது கவராயத்தின் முனையைப் புள்ளி A மீது வைத்து வட்டத்தை அல்லது வில்லை வரைய வேண்டும் என்பதைக் கருதுகின்றது. "AB ஐ ஆரையாகக் கொண்டு" என்பது கவராயத்தின் முனைக்கும் பென்சிலுக்கும் இடையில் உள்ள நீளம் AB இற்குச் சமமாக இருக்க வேண்டும் என்பதைக் கருதுகின்றது.

1. ஒரு கோட்டிற்கு வெளியே இருக்கும் ஒரு புள்ளியிலிருந்து அக்கோட்டிற்கு ஒரு செங்குத்துக் கோட்டினை அமைத்தல்

செயற்பாடு 1

படி $\mathbf{1}$: பயிற்சிப் புத்தகத்தில் ஒரு நேர்கோட்டுத் துண் டத்தை வரைந்து அதனை PQ எனப் பெயரிடுக. PQ இற்குப் புறத்தே ஒரு \mathbf{p} ் புள்ளியைக் குறித்து அதனை L எனப் பெயரிடுக.

படி 2: L இலிருந்து PQ இற்கு உள்ள தூரத்திலும் பார்க்கக் கூடிய தூரத்தை ஆரையாகவும் L ஐ மையமாகவும் கொண்டு கோடு PQ ஐ இடைவெட்டுமாறு ஒரு வில்லை வரைக. வெட்டுப் புள்ளிகளை X, Y எனப் பெயரிடுக.

படி 3: X, Y ஆகிய புள்ளிகள் ஒவ்வொன்றையும் மையமாகக் கொண்டு ஒரே ஆரையுடன் ஒன்றையொன்று இடைவெட்டுமாறு வேறு p^{-} இரு விற்களை உருவில் காட்டப்பட் டுள்ளவாறு வரைக. வெட்டுப் புள்ளியை M எனப் பெயரிடுக.

படி 4: L, M ஆகிய புள்ளிகளைத் தொடுத்துக் கோடு LM ஆனது கோடு PQ ஐ இடை வெட்டும் புள்ளியை D எனப் பெயரிடுக. $L\stackrel{\wedge}{DP}$ இன் பெறுமானத்தை அளந்து எழுதுக.

மேற்குறித்த அமைப்பின் இறுதியில் $L \hat{D}P = 90^\circ$ எனப் பெறுவீர்கள். அதாவது LD ஆனது கோடு PQ இற்குப் புள்ளி L இலிருந்து வரையப்பட்டுள்ள செங்குத்தாகும்.

2. கோட்டின் மீது உள்ள ஒரு புள்ளியிலிருந்து அக்கோட்டிற்கு ஒரு செங்குத்துக் கோட்டினை அமைத்தல்

செயற்பாடு 2

படி 1 : ஒரு கோட்டினை வரைந்து அதனை AB எனப் $\frac{1}{A}$ பெயரிடுக. அதன் மீது ஒரு புள்ளியைக் குறித்து அதனை P எனப் பெயரிடுக.

படி 2 : கவராயத்தில் PA இலும் பார்க்கக் குறைந்த A ஓர் ஆரையை எடுத்து P ஐ மையமாகக் A L கொண்டு PA, PB ஆகிய கோட்டுத் துண்டங்களை வெட்டுமாறு இரு விற்களை வரைக. வெட்டுப் புள்ளிகளை L, M எனப் பெயரிடுக.

படி 3 : கவராயத்தில் படி 2 இல் எடுத்த ஆரையிலும் பார்க்கக் கூடிய ஓர் ஆரையை எடுத்து L, M ஆகியவற்றை மையங்களாகக் கொண்டு μ ஒன்றையொன்று வெட்டுமாறு இரு விற்களை μ வரைக. வெட்டுப் புள்ளியை μ எனப் பெயரிடுக.

படி 4:NP ஐ இணைத்து $N\stackrel{\frown}{P}A$ பெறுமானத்தை அளந்து எழுதுக.

மேற்குறித்த அமைப்பின் இறுதியில் $N\stackrel{\wedge}{PA}=90^\circ$ எனப் பெறுவீர்கள். அதாவது கோடு AB இற்கு P இல் வரைந்த செங்குத்துக் கோடு PN ஆகும்.

3. ஒரு நேர்கோட்டுத் துண்டத்தின் ஒரு முனைப் புள்ளியிலிருந்து அக்கோட்டிற்கு ஒரு செங்குத்துக் கோட்டினை அமைத்தல்

கோட்டுத் துண்டம் XY இற்கு X இல் ஒரு செங்குத்துக் கோட்டினை அமைக்க வேண்டி உள்ளதெனக் கொள்வோம்.

கோடு YX ஐ நீட்டி மேலே இனங்கண்ட அதே முறையில் இவ்வமைப்பைச் செய்க.

4. ஒரு நேர்கோட்டுத் துண்டத்தின் செங்குத்து இருசமகூறாக்கியை அமைத்தல்

நேர்கோட்டுத் துண்டத்தின் நடுப் புள்ளியினூடாக அக்கோட்டிற்குச் செங்குத்தான கோடு செங்குத்து இருசமகூறாக்கியாகும் என்பதை நாம் அறிவோம்.

கோடு ஒன்றின் செங்குத்து இருசமகூறாக்கியை அமைப்பதற்குப் பின்வரும் செயற்பாட்டில் ஈடுபடுவோம்.

செயற்பாடு 3 படி ${f 1}$ ் ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து அதனைXY ் $\overline{\chi}$ எனப் பெயரிடுக. **படி 2** : நீளம் *XY* இன் அரைவாசியிலும் கூடிய ஒரு தூரத்தை ஆரையாகக் கொண்டு ஆரையை மாற்றாமல் $X,\ Y$ ஆகியவற்றை மையங்களாகக் கொண்டு ஒன்றை யொன்று இடைவெட்டுமாறு இரு விற்களை வரைக. \overline{X} வெட்டுப் புள்ளியை P எனப் பெயரிடுக. படி ${f 3}$: மேலே உள்ளவாறு X, Y ஆகியவற்றை மையங்க கொண்டு மேலும் விற்களை ளாகக் இரு இடைவெட்டுமாறு ஒன்றையொன்று வரைந்து வெட்டுப் புள்ளியை Q எனப் பெயரிடுக. இது XY^{-X} இலிருந்து P இருக்கும் பக்கத்திற்கு எதிர்ப் பக்கத்தில் $\times \varrho$ பெறப்படும்.

குறிப்பு : இரு சந்தர்ப்பங்களிலும் ஆரைகளைச் சமமாக எடுத்தல் அவசியமன்று.

படி 3 : கோடு PQ ஐ வரைந்து அது XY ஐ இடைவெட்டும் புள்ளியை M எனப் பெயரிடுக. XM, MY, XMP ஆகியவற்றை அளந்து எழுதுக. PQ பற்றிப் பெறத்தக்க முடிபுகள் யாவை ?

மேற்குறித்த அமைப்புக்கேற்ப XM = MY என்பதையும் $X\stackrel{\wedge}{M}P = 90^\circ$ என்பதையும் நீங்கள் இனங்காண்பீர்கள். அதற்கேற்ப PQ ஆனது கோடு XY ஐச் செங்குத்தாக இருகூறிடும் கோடாகும். அதாவது XY இன் செங்குத்து இருசமகூறாக்கியாகும்.

பயிற்சி 14.3

- 1. உருவில் உள்ளவாறு BC என்னும் நேர்கோட்டினை வரைக. புள்ளி A இலிருந்து BC இற்கு ஒரு செங்குத்துக் கோட்டினை அமைக்க. B
- 2. AB = 7 cm ஆக இருக்குமாறு கோடு AB ஐ வரைக. AP = 3 cm ஆக இருக்குமாறு AB மீது புள்ளி P ஐக் குறித்து P இலிருந்து AB இற்கு ஒரு செங்குத்துக் கோட்டினை அமைக்க.
- 3. யாதாயினும் ஒரு கூர்ங்கோண முக்கோணியை வரைந்து அதனை PQR எனப் பெயரிடுக.
 - (i) P இலிருந்து கோடு QR இற்கு ஒரு செங்குத்துக் கோட்டினை அமைக்க.
 - (ii) Q இலிருந்து கோடு PR இற்கு ஒரு செங்குத்துக் கோட்டினை அமைக்க.
 - $(iii)\ R$ இலிருந்து கோடு PQ இற்கு ஒரு செங்குத்துக் கோட்டினை அமைக்க.
- 4. (i) உருவில் உள்ளவாறு பாகைமானியைப் X^{\sim} பயன்படுத்தி 130° கோணத்தை வரையுங்கள். அதன் புயங்கள் இரண்டும் 5 cm ஆக 5 இருக்கத்தக்கதாக ΔXYZ ஐப் பூரணப்படுத்துக.

- (ii) Y இலிருந்து கோடு XZ இற்கு ஒரு செங்குத்துக் கோட்டினை அமைத்து அது XZ ஐச் சந்திக்கும் புள்ளியை D எனப் பெயரிடுக.
- (iii) XD ஐயும் ZD ஐயும் அளந்து எழுதுக.
- 5. 6 cm நீளமும் 4 cm அகலமும் உள்ள ஒரு செவ்வகத்தை அமைக்க.
- 6. (i) PQ = 10 cm ஆக இருக்குமாறு ஒரு நேர்கோட்டுத் துண்டம் PQ ஐ வரைக.
 - (ii) PB = 2 cm ஆக இருக்குமாறு கோடு PQ மீது புள்ளி B ஐக் குறிக்க.
 - (iii) B இலிருந்து PQ இற்கு ஒரு செங்குத்துக் கோட்டினை அமைக்க.
 - (iv) மேலே வரைந்த செங்குத்துக் கோடு மீது BA = 6 cm ஆக இருக்குமாறு புள்ளி A ஐக் குறித்து முக்கோணி ABQ ஐப் பூரணப்படுத்துக.
 - (v) கோடு BQ இன் செங்குத்து இருகூறாக்கியை அமைத்து அது AQ ஐ இடைவெட்டும் புள்ளியை O எனப் பெயரிடுக.
 - (vi) புள்ளி O ஐ மையமாகக் கொண்டு ஆரை OA ஐ ஆரையாக உடைய வட்டத்தை வரைக.

14.4 கோணங்களுடன் தொடர்புபட்ட அமைப்புகள்

கோண இருசமகூறாக்கியை அமைத்தல்

ஒரு தரப்பட்ட கோணத்தை இரு சம கோணங்களாக வேறுபடுத்திக் காட்டுவதற்கு வரையப்படும் கோடு **கோண இருசமகூறாக்கி** எனப்படும்.

யாதாயினும் ஒரு கோணத்தை வரைந்து அதனை AOB எனப் பெயரிடுக. இக் கோணத்தின் இருசமகூறாக்கியை வரைவதற்குப் பின்வரும் படிமுறைகளைப் பின்பற்றுக.

செயற்பாடு 1

படி 1 : OA, OB ஆகிய புயங்களை வெட்டுமாறு O ஐ மையமாகக் கொண்டு ஒரு வில்லை வரைக. வெட்டுப் புள்ளிகளை X, Y எனப் பெயரிடுக.

படி 2 : கவராயத்தில் ஓர் உகந்த ஆரையை எடுத்து X, Y ஆகிய புள்ளிகளை மையங்களாகக் கொண்டு ஒன்றையொன்று இடைவெட்டுமாறு இரு விற்களை உருவில் உள்ளவாறு வரைக. வெட்டுப் புள்ளியை P எனப் பெயரிடுக.

படி 3 : OP ஐத் தொடுக்க. $A\stackrel{\wedge}{OP}$, $B\stackrel{\wedge}{OP}$ ஆகியவற்றை அளந்து அவை சமமா எனப் பரீட்சிக்க.

மேற்குறித்த செயற்பாட்டின் இறுதியில் உங்களுக்கு $\stackrel{ riangle}{AOP} = \stackrel{ riangle}{BOP}$ என்பது தெளிவாகும். அதாவது $\stackrel{ riangle}{OP}$ ஆனது $\stackrel{ riangle}{AOB}$ இன் கோண இருசமகூறாக்கியாகும்.

14.5 கோணங்களை அமைத்தல்

பாகைமானியைப் பயன்படுத்திப் பல்வேறு கோணங்களை வரைதல் பற்றி நாம் கற்றோம். எனினும் நேர்விளிம்பையும் கவராயத்தையும் மாத்திரம் பயன்படுத்திச் சில விசேட கோணங்களை அமைக்கலாம். தரம் 8 இல் கவராயத்தைப் பயன்படுத்தி ஓர் ஒழுங்கான அறுகோணியை அமைத்த விதத்தை நினைவுகூர்வோம்.

இங்கு வரையத் தேவையான அறுகோணியின் ஒரு பக்கத்தின் நீளத்திற்குச் சமமான ஒரு தூரத்தை ஆரையாகக் கொண்டு ஒரு வட்டத்தை வரைந்து அதன் மீது மேற்குறித்த அதே ஆரையுடன் விற்கள் வரையப்பட்டன. அப்போது உருவாகும் ஒரு சமபக்க முக்கோணியின் ஒரு கோணம் 60° ஆகும்.

மேலும், $A\hat{O}B=60^\circ$, $A\hat{O}C=120^\circ$. கோணங்களை அமைப்பதற்கு இவ்வமைப்பில் பயன்படுத்திய கோட்பாடுகளைப் பயன்படுத்துவோம்.

$1.\ 60^{ m o}$ கோணத்தை அமைத்தல்

செயற்பாடு 1

OA ஒரு புயமாக இருக்குமாறு O இல் ஓர் 60° கோணத்தை அமைக்க வேண்டியுள்ளதெனக் கொள்வோம்.

படி 1 : ஒரு நேர்கோட்டுத் துண்டத்தைப் பயிற்சிப் புத்தகத்தில் $\frac{}{O}$ வரைந்து அதனை OA எனப் பெயரிடுக.

 \overline{O} A

படி 2: O ஐ மையமாகக் கொண்டு பின்வரும் உருவில் உள்ளவாறு OA ஐ இடைவெட்டுமாறு ஒரு வில்லை வரைக. வெட்டுப் புள்ளியை X எனப் பெயரிடுக.

படி 3 : கவராயத்தில் மேற்குறித்த ஆரையை மாற்றாமல் X ஐ மையமாகக் கொண்டு முதல் வில்லை வெட்டுமாறு மேலும் ஒரு வில்லை வரைக. அவ்வெட்டுப் புள்ளியை Y எனப் பெயரிடுக.

படி 4 : O ஐயும் Y ஐயும் தொடுத்துத் தேவைக்கேற்ப நீட்டுக. $\stackrel{\wedge}{AOY}$ ஐ அளந்து அது 60° ஆக உள்ளதா எனப் பரீட்சிக்க.

மேற்குறித்த அமைப்பில் கிடைத்த ΔOXY ஆனது ஒரு சமபக்க முக்கோணியாகும். அதற்குரிய காரணத்தைப் பின்வருமாறு விளக்கலாம்.

OX, OY ஆகியன O ஐ மையமாகக் கொண்ட வட்டத்தின் ஆரைகள் ஆகையால் OX = OY ஆகும்.

அவ்வாறே XO, XY ஆகியன X ஐ மையமாகக் கொண்ட வட்டத்தின் ஆரைகள் ஆகையால் XO=XY.

இதற்கேற்பOX = XY = OY ஆகும்.

அதாவது ΔOXY ஆனது ஒரு சமபக்க முக்கோணியாகும்.

எனவே அதன் ஒவ்வொரு கோணமும் 60° ஆகும்.

ஆகவே $\chi \hat{O} \gamma = 60^{\circ}$ ஆகும்.

$2.~120^{\circ}$ கோணத்தை அமைத்தல்

செயற்பாடு 2

படி ${f 1}$: ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து OA எனப் \overline{O} A பெயரிடுக.

படி 2:O ஐ மையமாகக் கொண்டு பின்வரும் உருவில் உள்ளவாறு OA ஐ இடை வெட்டுமாறு ஒரு வில்லை வரைக. வெட்டுப் புள்ளியை P எனப் பெயரிடுக.

படி 3 : கவராயத்தில் மேற்குறித்த ஆரையை மாற்றாமல் P ஐ மையமாகக் கொண்டு R உருவில் உள்ளவாறு முதல் வில்லை இடைவெட்டுமாறு ஒரு சிறிய வில்லை O P A வரைந்து அவ்வெட்டுப் புள்ளியை Q எனப் பெயரிடுக. Q ஐ மையமாகக் கொண்டு ஆரையை மாற்றாமல் மேலும் ஒரு சிறிய வில்லை முதல் வில்லை இடைவெட்டுமாறு வரைந்து, வெட்டுப் புள்ளியை R எனப் பெயரிடுக.

படி f 4 : OR ஐத் தொடுத்துத் தேவைக்கேற்ப நீட்டுக. $\stackrel{\wedge}{AOR}$ ஐ அளந்து பார்க்க.

இங்கு $A\hat{O}R=120^\circ$ ஆக இருப்பதற்குரிய காரணம் பின்வருமாறாகும். மேலே ஆராய்ந்துள்ளவாறு $A\hat{O}Q=60^\circ$ ஆகும். மேலும் $Q\hat{O}R$ உம் ஒரு சமபக்க முக்கோணியாகும். ஆகவே $Q\hat{O}R=60^\circ$ ஆகும். இதற்கேற்ப

$$A\hat{O}R = A\hat{O}Q + Q\hat{O}R$$
$$= 60^{\circ} + 60^{\circ}$$
$$= 120^{\circ}$$

$3.\ 30^{\circ},\ 90^{\circ},\ 45^{\circ}$ கோணங்களை அமைத்தல்

உகந்தவாறு கோண இருகூறாக்கிகளை அமைப்பதன் மூலம் 30° , 90° , 45° கோணங்களை அமைக்கலாம். பின்வரும் தகவல்களையும் உருக்களையும் அவதானிப்பதன் மூலம் தரப்பட்டுள்ள கோணங்களை அமைக்க.

30° கோணம்

 $60^{\rm o}$ கோணத்தை அமைத்துக் கோண இருசமகூறாக்கியை அமைக்க. $\stackrel{\wedge}{AOB} = 30^{\rm o}$.

90° கோணம்

முறைI

கோட்டுத் துண்டம் AO இற்கு O இல் ஒரு செங்குத்துக் கோட்டினை அமைக்க. $A \stackrel{\wedge}{O} P = 90^\circ$.

முறை $\, { m II} \,$

ஒரு 120° கோணத்தை வரைந்து அதிலிருந்து ஓர் 60° கோணத்தை இருகூறிடுக. $\stackrel{\wedge}{AOB}=90^\circ$.

45°கோணத்தை அமைத்தல்

முறை I

ஒரு 90° கோணத்தை வரைந்து இருசமகூறிடுக. $P\hat{O}Q=45^{\circ}$.

முறை II

 60° கோணத்தை வரைந்து அதனை இருசமகூறிடுக. அப்போது கிடைக்கும் ஒரு 30° கோணத்தை மறுபடியும் இருசமகூறிடுக. $P\hat{O}Q=30^{\circ}+15^{\circ}=45^{\circ}$

உதாரணம் 1

 135° கோணத்தைப் பாகைமானியைப் பயன்படுத்தாமல் வரைக. $135^{\circ} = 90^{\circ} + 45^{\circ}$ என எழுதலாம்.

ஒரு 90° பாகையை இருசமகூறிடும்போது 135° ஐப் பெறலாம்.

ஒரு தரப்பட்ட கோணத்தைப் பிரதிசெய்தல்

தரப்பட்டுள்ள $\stackrel{\wedge}{AOB}$ இற்குச் சமமான ஒரு கோணத்தைத் தரப்பட்டுள்ள புயம் PQ மீது P இல் பிரதிசெய்ய வேண்டி உள்ளதெனக் கொள்வோம். அதற்காகப் பின்வருமாறு செயற்பாட்டில் ஈடுபடுக.

- படி ${f 1}$: யாதாயினும் ஒரு கோணத்தை வரைந்து $A\hat{O}B$ எனப் பெயரிடுக. $A\hat{O}B$ ஐப் பிரதிசெய்ய வேண்டிய புயம் PQ ஐயும் வரைக.
- படி 2 : O ஐ மையமாகக் கொண்டு உருவில் உள்ளவாறு OA, OB ஆகிய இரு புயங்களையும் இடைவெட்டுமாறு ஒரு வில்லை வரைந்து புயங்களை இடைவெட்டும் புள்ளிகளை X, Y எனப் பெயரிடுக. அதே ஆரையுடன் P ஐ மையமாகக் கொண்டு PQ ஐ இடைவெட்டுமாறு மேற்குறித்த XY வில்லின் அளவிலும் பார்க்க நீளங் கூடிய ஒரு வில்லை வரைக. அவ்வில்லினால் PQ இடைவெட்டப்படும் புள்ளியை K எனப் பெயரிடுக.

- படி 3 : கவராயத்தில் XY ஐ ஆரையாக எடுத்து K ஐ மையமாகக் கொண்டு முதல் வில்லை இடைவெட்டுமாறு ஒரு சிறிய வில்லை வரைந்து வெட்டுப் புள்ளியை L எனப் பெயரிடுக.
- படி $\bf 4$: PL ஐத் தொடுத்துத் தேவைக்கேற்ப நீட்டுக. பாகைமானியைப் பயன்படுத்தி (அல்லது வேறுவிதமாக) $A \hat{O} B$ உம் $Q \hat{P} L$ உம் சமமாக உள்ளனவா எனப் பரீட்சிக்க.

பயிற்சி 14.4

- 1. (i) 8 cm நீளமுள்ள ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து அதனை PQ எனப் பெயரிடுக.
 - (ii) PQ ஒரு புயமாக இருக்குமாறு P இல் ஓர் 60° கோணத்தை அமைக்க.
 - (iii) QP ஒரு புயமாக இருக்குமாறு Q இல் ஓர் 60° கோணத்தை அமைக்க.
- 2. (i) 6.5 cm நீளமுள்ள ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து அதனை AB எனப் பெயரிடுக.
 - (ii) AB ஒரு புயமாக இருக்குமாறு A இல் ஒரு 90° கோணத்தை அமைக்க.
 - $(iii)\ BA$ ஒரு புயமாக இருக்குமாறு B இல் ஒரு 30° கோணத்தை அமைக்க.
 - (iv) அமைப்புக் கோடுகளை உகந்தவாறு நீட்டுவதன் மூலம் அவற்றின் வெட்டுப் புள்ளியை C எனப் பெயரிட்டு முக்கோணி ABC ஐப் பூரணப்படுத்துக.
- 3. பாகைமானியைப் பயன்படுத்தாமல் 15° , 75° என்னும் பருமனுள்ள இரு கோணங்களை அமைக்க.
- 4. உருவில் உள்ளவாறு முக்கோணியை அமைப்பதற்குப் பின்வரும் அமைப்பைச் செய்க.
 - (i) $7~{\rm cm}$ நீளமுள்ள ஒரு நேர்கோட்டுத் துண்டத்தை வரைந்து அதனை PQ எனப் பெயரிடுக.
 - (ii) PQ ஒரு புயமாக இருக்குமாறு P இல் ஒரு 30° கோணத்தை அமைக்க.
 - (iii) QP ஒரு புயமாக இருக்குமாறு Q இல் ஒரு 45° கோணத்தை அமைக்க.
 - (iv) முக்கோணி PQR ஐப் பூரணப்படுத்தி PRQஇன் பெறுமானத்தை அளந்து எழுதுக.

- 5. (i) 10 cm நீளமுள்ள நேர்கோட்டுத் துண்டம் *OA* ஐ வரைக.
 - (ii) AOB ஆனது விரிகோணமாக இருக்குமாறு ஒரு புயம் BO ஐ வரைக.
 - (iii) $OP = 7 \, \mathrm{cm}$ ஆக இருக்குமாறு OA மீது புள்ளி P ஐக் குறிக்க.
 - (iv) $A\hat{P}C = A\hat{O}B$ ஆக இருக்குமாறு OA இலிருந்து B இருக்கும் அதே பக்கத்தில் C இருக்குமாறு ஒரு கோட்டுத் துண்டம் PC ஐ அமைக்க.

- 6. (i) யாதாயினும் ஒரு கூர்ங்கோணத்தை வரைந்து அதனை KLM எனப் பெயரிடுக.
 - (ii) $K\hat{L}M = L\hat{M}N$ ஆகுமாறு புள்ளி N ஆனது K இருக்கும் \swarrow அதே பக்கத்தில் இருக்குமாறு \hat{L} இற்குச் சமமான ஒரு $\stackrel{L}{}$ கோணத்தை M இல் பிரதிசெய்க.
 - (iii) KL, MN ஆகிய கோடுகள் (அவசியமெனின் நீட்டுக) இடைவெட்டும் புள்ளியை P எனப் பெயரிட்டு, PL, PM ஆகியவற்றின் நீளங்களை அளந்து எழுதுக.

பலவினப் பயிற்சி

1. ஒரு தொழிற்சாலையில் இருக்கும் 20 மீற்றர் நீளமுள்ள ஒரு தண்டவாளத்தில் பொருத்தப்பட்டுள்ள ஒரு கிரேனின் புயத்தின் நீளம் 15 மீற்றர் ஆகும். அது தண்டவாளத்தின் வழியே இங்கும் அங்கும் கொண்டு செல்லப்படத்தக்கதாக இருக்கும் அதே வேளை அது தண்டவாளத்தில் பொருத்தப்பட்டிருக்கும்

- புள்ளியைப் பற்றி ஒரு கிடைத் தளத்தில் சுழலத்தக்கதாகும். இக்கிரேனின் மூலம் பொருள்கள் பரிமாற்றப்படத்தக்க கிடைத் தளத்திலான பிரதேசத்தை அளவீடுகளுடன் ஒரு பரும்படி உருவில் காட்டுக.
- 2. உருவில் உள்ள முக்கோணியை அமைப்பதற்குப் பின்வரும் படிமுறைகளைப் பின்பற்றுக.
 - (i) $PQ=5~{
 m cm}$ ஆக இருக்குமாறு ஒரு நேர்கோட்டுத் துண்டம் PQ ஐ நிலைக்குத்தாக வரைக.
 - (ii) P இல் ஒரு 90° கோணத்தை அமைக்க.

M

- (iii) Q இல் ஓர் 60° கோணத்தை அமைக்க.
- (iv) முக்கோணி PQR ஐப் பூரணப்படுத்தி R ஐ அளந்து எழுதுக.

- 3. (i) உருவில் உள்ளவாறு ஒரு விரிகோணம் *ABP* ஐ வரைக.
 - (ii) $A\hat{B}P = B\hat{P}K$ ஆகவும் அக்கோணங்கள் ஓர் ஒன்றுவிட்ட கோணச் சோடியாகவும் இருக்குமாறு உள்ள ஒரு புள்ளி K ஐக் கண்டு PK ஐத் தொடுக்க. A

- 4. (i) 4 ஆரையுள்ள ஒரு வட்டத்தை வரைந்து அதன் மையத்தை O எனப் பெயரிடுக.
 - (ii) வட்டத்தின் மீது ஒன்றிலிருந்தொன்று 6 cm தூரத்தில் $A,\ B$ என்னும் இரு புள்ளிகளைக் குறித்து கோடு AB ஐ வரைக.
 - (iii) புள்ளி O இலிருந்து AB இற்கு ஒரு செங்குத்துக் கோட்டினை அமைத்து அது AB ஐச் சந்திக்கும் புள்ளியை N எனப் பெயரிடுக.
 - (iv) AN, BN ஆகியவற்றின் நீளங்களை அளந்து எழுதுக.

பொழிப்பு

- ஒரு நிலைத்த புள்ளியிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு ஒரு வட்டமாகும்.
- இரு நிலைத்த புள்ளிகளிலிருந்து சம தூரங்களில் உள்ள புள்ளியின் ஒழுக்கு அவ்விரு புள்ளிகளையும் இணைக்கும் கோட்டின் செங்குத்து இருசமகூறாக்கியாகும்.
- ஒரு நேர்கோட்டிலிருந்து மாறாத் தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கானது அந்நேர்கோட்டிற்குச் சமாந்தரமாக அம்மாறாத் தூரத்தில் நேர்கோட்டின் இரு பக்கங்களிலும் இருக்கும் இரு நேர்கோடுகளாகும்.
- ஒன்றையொன்று இடைவெட்டும் இரு நேர்கோடுகளிலிருந்து சம தூரத்தில் இருக்கும் புள்ளிகளின் ஒழுக்கு அவ்விரு கோடுகளும் இடைவெட்டுவதால் உண்டாகும் கோணத்தின் இருசமகூறாக்கியாகும்.

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- அடைப்புகளைக் கொண்ட எளிய சமன்பாடுகளைத் தீர்க்கவும்
- பின்னங்களைக் கொண்ட சமன்பாடுகளைத் தீர்க்கவும்
- ஒரு தெரியாக் கணியத்தின் குணகம் சமனாகவுள்ள ஒருங்கமை சமன்பாடுகளைத் தீர்க்கவும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

எளிய சமன்பாடுகள்

எளிய சமன்பாடுகளைத் தீர்ப்பது தொடர்பாக இதற்கு முன்னர் நீங்கள் விடயங்களை நினைவுகூர்வதற்குப் பின்வரும் மீட்டற் பயிற்சியில் ஈடுபடுக.

மீட்டற் பயிற்சி

1. பின்வரும் சமன்பாடுகளைத் தீர்க்க.

(i)
$$x + 12 = 20$$

(ii)
$$x - 7 = 2$$

(iii)
$$5 + m = 8$$

(iv)
$$2x = 16$$

$$(v) - 3x = 6$$

$$(vi) 2p + 1 = 5$$

(vii)
$$3b - 7 = 2$$

(iv)
$$2x = 16$$
 (v) $-3x = 6$ (viii) $\frac{x}{2} = 3$

(vi)
$$2p + 1 = 5$$

(ix) $\frac{2p}{3} = 5$

$$(x)\frac{m}{5}-1=8$$

$$(x)\frac{m}{5} - 1 = 8$$
 $(xi) 2 (x + 3) = 11$

$$(xii) 3 (1-x) = 9$$

15.1 இரண்டு அடைப்புகளுடனான சமன்பாடுகளைத் தீர்த்தல்

மீட்டற் பயிற்சியில் இருந்த சில சமன்பாடுகளில் அடைப்புக்குறிகளும் அடங்கியிருந்தன. இரண்டு அடைப்புகளுடனான எளிய சமன்பாடுகளைத் தீர்க்கும் விதத்தை இவ்வலகில் கற்கவுள்ளோம்.

இப்போது பல அடைப்புகளுடனான எளிய சமன்பாடு ஒன்றை உருவாக்கித் தீர்க்கும் விதத்தை நோக்குவோம்.

குறிப்பு

அடைப்புகளைப் பிரயோகிக்கும்போது பயன்படுத்தும் அடைப்பு வகைகள்

எளிய அடைப்பு சங்கிலி அடைப்பு இரட்டை அடைப்பு

அடைப்புக்குறிகளை இடும்போது முதலில் எளிய அடைப்பையும் இரண்டாவதாகச் சங்கிலி அடைப்பையும் மூன்றாவதாக இரட்டை அடைப்பையும் இடுவது வழக்கம்.

''யாதாயினுமோர் எண்ணுடன் 3 ஐக் கூட்டி அதன் இரு மடங்கிலிருந்து 1 ஐக் கழித்துப் பெறப்படும் எண்ணின் ஐந்து மடங்குடன் 2 ஐக் கூட்டும்போது வரும் விடை 47 இற்குச் சமனாகும்'' எனத் தரப்பட்ட தரவிற்குச் சமன்பாடு ஒன்றை உருவாக்கித் தீர்க்கும் விதத்தை நோக்குவோம்.

அவ்வெண் x எனின்,

அவ்வெண்ணுடன் 3 ஐக் கூட்டப்படும்போது x+3 எனப் பெறப்படும்.

அவ்வெண்ணின் இரு மடங்கை 2(x+3) என எழுதலாம்.

இக்கோவையிலிருந்து 1 ஐக் கழிக்கும்போது 2(x+3)-1 எனப் பெறப்படும்.

இக்கோவையின் ஐந்து மடங்கைப் பெறுவதற்குச் சங்கிலி அடைப்பைப் பயன்படுத்தலாம். அப்போது $5\{2(x+3)-1\}$ என எழுதப்படும்.

அதனுடன் 2 ஐக் கூட்டும்போது $5\{2(x+3)-1\}+2$ ஆகும்.

இது 47 இற்குச் சமன் என்று கொடுக்கப்பட்டிருப்பதால்,

$$5\{2(x+3)-1\}+2=47$$
 என்று எழுதப்படும்.

இனி இச்சமன்பாட்டைத் தீர்த்து x இன் பெறுமானத்தைக் காண்போம்.

முதலில் எளிய அடைப்பை நீக்குவோம்.

$$5\{2(x+3)-1\}+2=47$$
 எனப் பெறப்படும். $5\{2x+5\}+2=47$

சங்கிலி அடைப்பை நீக்குவதனால்

$$10x + 25 + 2 = 47$$

சமன்பாட்டின் இரு பக்கங்களிலிருந்தும் 27 ஐக் கழிக்கும்போது

$$10x + 27 - 27 = 47 - 27$$
 எனப் பெறப்படும்

அதாவது 10x = 20 எனப் பெறப்படும்.

சமன்பாட்டின் இரு பக்கங்களையும் 10 ஆல் வகுக்கும்போது

$$\frac{10x}{10} = \frac{20}{10}$$

x=2 எனப் பெறப்படும்.

ஆகவே அவ்வெண் 2 ஆகும்.

ஒரு சமன்பாட்டைத் தீர்ப்பதற்குக் குறிப்பிட்ட ஒரு முறையைப் பின்பற்ற வேண்டும் என்ற கட்டாயமில்லை. இலகுவான முறையைப் பயன்படுத்தித் தீர்க்கலாம். அடைப்புகளுடனான சமன்பாடுகளைத் தீர்க்கும் விதத்தை மேலும் உறுதிப்படுத்திக் கொள்வதற்குச் சில உதாரணங்களைக் கற்போம்.

உதாரணம் 1

தீர்க்க.
$$2{3(2x-1)+4}=38$$

$$2{3(2x-1)+4} = 38$$

இரு பக்கங்களையும் 2 ஆல் வகுத்தல்

$$3(2x-1)+4=19$$

இரு பக்கங்களிலிருந்தும் 4 ஐக் கழித்தல்

$$3(2x-1)+4-4=19-4$$

$$3(2x-1) = 15$$

இரு பக்கங்களையும் 3 ஆல் வகுத்தல்

$$2x - 1 = 5$$

இரு பக்கங்களுக்கும் 1 ஐக் கூட்டல்

$$2x - 1 + 1 = 5 + 1$$

$$\frac{2x}{2} = \frac{6}{2}$$
 (இரு பக்கங்களையும் 2 ஆல் வகுப்பதனால்)

$$x = 3$$

உதாரணம் 2

தீர்க்க.
$$5{4(x+3)-2(x-1)} = 72$$

$$5{4(x+3)-2(x-1)} = 72$$

$$5\{2x+14\} = 72$$

$$10x + 70 = 72$$
 (சங்கிலி அடைப்பை நீக்குதல்)

$$10x + 70 - 70 = 72 - 70$$
 (இரு பக்கங்களில் இருந்தும் 70 ஐக் கழித்தல்)
$$\frac{10x}{10} = \frac{2}{10}$$

$$x = \frac{1}{5}$$

பயிற்சி 15.1

1. பின்வரும் சமன்பாடுகளைத் தீர்க்க.

(i)
$$3{2(x-1)+2} = 18$$

(ii)
$$5{3(x+2)-2(x-1)} = 60$$

(iii)
$$6+2 \{x+3 (x+2)\} = 58$$

(iv)
$$5{2+3(x+2)} = 10$$

(v)
$$2 \{3(y-1)-2y\} = 2$$

(vi)
$$7x + 5 \{4 - (x + 1)\} = 17$$

15.2 பின்னங்களைக் கொண்ட எளிய சமன்பாடுகளைத் தீர்த்தல்

இனி நாங்கள் பின்னங்களைக் கொண்ட எளிய சமன்பாடு ஒன்றை உருவாக்கித் தீர்க்கும் விதத்தை நோக்குவோம்.

குறித்தவொரு வியாபாரி விற்பனை செய்வதற்காகக் கொண்டு வந்த ஒரு தொகை மாம்பழங்களில் 10 பழுதடைந்துவிட்டதால் அவை அகற்றப்பட்டுவிட்டன. எஞ்சியவை 5 வீதம் கொண்ட 12 குவியல்களாக வகுக்கப்பட்டன.

இத்தரவுகளைக் குறிப்பதற்குச் சமன்பாடு ஒன்றை உருவாக்குக. வியாபாரி விற்பனைக்குக் கொண்டு வந்த மாம்பழங்களின் எண்ணிக்கையை x எனக் கொள்வோம் எனவே பழுதடைந்த 10 ஐ அகற்றியபோது அக்கோவை x-10 ஆகும். எஞ்சியவற்றை 5 வீதம் கொண்ட குவியல்களாக்கும்போது $\frac{x-10}{5}$ எனக் கிடைக்கும்.

குவியல்களாக வேறாக்கும்போது 12 குவியல்கள் கிடைக்கின்றன.

$$\therefore \frac{x-10}{5} = 12$$
 என எழுதலாம்.

தற்போது சமன்பாட்டைத் தீர்ப்பதன் மூலம் x இன் பெறுமானத்தைக் காண்போம்.

$$\frac{x-10}{5} = 12$$

சமன்பாட்டின் இரு பக்கங்களையும் 5 ஆல் பெருக்கும்போது

$$5 \times \frac{x - 10}{5} = 12 \times 5$$

$$x - 10 = 60$$
 எனக் கிடைக்கும்.

சமன்பாட்டின் இரு பக்கங்களுடனும் 10 ஐக் கூட்டும்போது

$$x - 10 + 10 = 60 + 10$$
 $x = 70$ எனப் பெறப்படும்.

இதற்கேற்ப வியாபாரி 70 மாம்பழங்களை விற்பனைக்காகக் கொண்டு வந்தார். பின்னங்களைக் கொண்ட சமன்பாடுகளைத் தீர்க்கும் விதத்தை மேலும் உறுதிப் படுத்திக்கொள்வதற்கு மேலும் சில உதாரணங்களைக் கற்போம்.

உதாரணம் 1

தீர்க்க.
$$\frac{x+3}{2}=15$$
 $2 \times \frac{x+3}{2}=2 \times 15$ (இரு பக்கங்களையும் 2 ஆல் பெருக்குதல்) $x+3=30$ $x+3-3=30-3$ (இரு பக்கங்களிலிருந்தும் 3 ஐக் கழித்தல்) $x=27$

உதாரணம் 2
தீர்க்க.
$$\frac{y}{2} - \frac{y}{3} = 9$$

 $\frac{y}{2} - 6 \times \frac{y}{3} = 9 \times 6 \ (2, 3$ ஆகிய எண்களின் பொ.ம. சி ஆகிய 6
இனால் இரு பக்கங்களையும் பெருக்குதல்)
 $3y - 2y = 54$

உதாரணம் 3

v = 54

இர்க்க.
$$2\left(\frac{m}{3}-1\right)=10$$

$$2\left(\frac{m}{3}-1\right)=10$$

$$\frac{2}{2}\left(\frac{m}{3}-1\right)=\frac{10}{2}\;($$
இரு பக்கங்களையும் 2 ஆல் வகுத்தல்)
$$\frac{m}{3}-1=5$$

$$\frac{m}{3}-1+1=5+1\;($$
இரு பக்கங்கடனும் 1 ஐக் கூட்டுதல்)
$$\frac{m}{3}=6$$

$$3\times\frac{m}{3}=6\times3\;($$
இரு பக்கங்களையும் 3 ஆல் பெருக்குதல்) $m=18$

குறிப்பு

சமன்பாடுகளைத் தீர்க்கும்போது ஒவ்வொரு படிமுறையின் செயற்பாடுகளையும் விவரித்து எழுத வேண்டியதில்லை. பின்வரும் சமன்பாடுகளைத் தீர்க்க.

(i)
$$\frac{x-2}{5} = 4$$

(ii)
$$\frac{y+8}{3} = 5$$

(ii)
$$\frac{y+8}{3} = 5$$
 (iii) $\frac{2a}{3} + 1 = 7$

(iv)
$$\frac{5b}{2} - 3 = 2$$

(v)
$$\frac{p+3}{2} = 5$$

(v)
$$\frac{p+3}{2} = 5$$
 (vi) $\frac{3m-2}{7} = 4$

(vii)
$$\frac{3x}{2} + \frac{x}{4} = 7$$

$$(viii) \frac{2m}{3} - \frac{3m}{5} = 1$$

(viii)
$$\frac{2m}{3} - \frac{3m}{5} = 1$$
 (ix) $4\left(\frac{3x}{2} - 1\right) = 12$

$$(x) \frac{1}{3} \left(\frac{2a}{3} - 3 \right) = 2$$

(xi)
$$\frac{m-3}{2} + 1 = 4$$

(xi)
$$\frac{m-3}{2} + 1 = 4$$
 (xii) $\frac{x+1}{2} + \frac{x}{3} = 8$

(xiii)
$$\frac{y+1}{2} + \frac{y-3}{4} = \frac{1}{2}$$
 (xiv) $\frac{x+3}{2} - \frac{x+1}{3} = 2$

$$(xiv) \frac{x+3}{2} - \frac{x+1}{3} = 2$$

15.3 ஒருங்கமை சமன்பாடுகளைத் தீர்த்தல்

ஒரு தெரியாக் கணியத்தை மட்டும் கொண்ட சமன்பாடுகளை எளிய சமன்பாடுகள் எனக் கற்றுள்ளோம். இதற்கு முன்னைய தரங்களிலும் இப்பாட ஆரம்பத்திலும் எளிய சமன்பாடுகளைத் தீர்க்கும் முறைகளைக் கற்றோம்.

தெரியாக் கணியங்களைக் கொண்ட சமன்பாடுகளைத் தீர்ப்பதை இனி நோக்குவோம். அதற்காகப் பின்வரும் உதாரணத்தைப் பார்ப்போம்.

இரு எண்களின் கூட்டுத்தொகை 6 எனக் கொள்வோம்.

அவ்விரு எண்களையும் x, y எனக் கொள்வோம் எனின், கிடைக்கும் சமன்பாடு x + y = 6 ஆகும்.

x, y என்பவற்றின் பெறுமானங்களை நிச்சயித்துக் கூற முடியாததால் x, ஆகியவற்றுக்குப் பொருத்தமான சில பெறுமானங்கள் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளன.

அட்டவணை 15.1

x	У	x + y	
- 1	7	6	
0	6	6	
1	5	6	
2	4	6	
3	3	6	
4	2	6	
5	1	6	
6	0	6	

மேலேயுள்ள அட்டவணையை அவதானிப்பதால் x, y ஆகியவற்றுக்குரிய பெறுமானங்கள் **எண்ணற்றவையாக** இருப்பதைக் காணக்கூடியதாக இருக்கின்றது. x, y ஆகியவற்றுக்கு இடையில் இன்னொரு தொடர்பைப் பெற்றுக் கொண்ட பின்னர் அவ்விரு சமன்பாடுகளையும் ஒன்றாகத் தீர்ப்பதன் மூலம் x, y ஆகியவற்றுக்குரிய பெறுமானங்களைப் பெற்றுகொள்ளலாம்.

பெரிய எண்ணிலிருந்து சிறிய எண்ணைக் கழிக்கும்போது கிடைப்பது 2 எனின், அச்சந்தர்ப்பத்தில் உள்ள பெரிய எண்ணை x எனக் கொண்டு x-y=2 என்னும் சமன்பாட்டை உருவாக்கலாம். அச்சமன்பாட்டையும் தனியாகக் கருதும்போது அதற்குரிய பெறுமானங்களும் எண்ணற்றவையாகக் காணப்படுகின்றன என்பதைப் பின்வரும் அட்டவணை உணர்த்துகிறது.

அட்டவணை 15.2

	0,				
x	y	x-y			
6	4	2			
5	3	2			
4	2	2			
3	1	2			
2	0	2			
1	-1	2			

அட்டவணைகள் 15.1 ஐயும் 15.2 ஐயும் அவதானிக்கும்போது x+y=6, x-y=2 என்னும் இரு சமன்பாடுகளையும் திருப்திப்படுத்தும் ஒரு சோடி பெறுமானங்கள் மாத்திரம் உள்ளதை அறிகிறோம். அதிலிருந்து x=4, y=2 ஆகிய பெறுமானங்கள் பெறப்படுகின்றன. எனவே இவை அவ்விரு சமன்பாடுகளின் தீர்வுகளாகின்றன.

இரு தெரியாக் கணியங்களைக் கொண்ட இவ்வாறான இரு சமன்பாடுகள் ஒருங்கமை சமன்பாடுகள் எனப்படுகின்றன. ஒரே தடவையில் நடைபெறுவது "ஒருங்கமை" யின் பொருளாகும். ஒருங்கமை சமன்பாடுகளைத் தீர்க்கும் இலகுவான முறைகள் சிலவற்றைப் பின்வரும் உதாரணங்களின் மூலம் கற்றறிவோம்.

உதாரணம் 1

கீர்க்க.

$$x + v = 6$$

$$x - v = 2$$

தீர்த்தலை இலகுவாக்குகிக் கொள்வதற்காகச் சமன்பாடுகளை 1, 2 எனக் குறிப்போம்.

முறை 1

இது **''பிரதியிடல் முறை''** மூலம் தீர்த்தல் எனப்படும்.

சமன்பாடு 2 இல் x ஐ எழுவாயாக மாற்றும்போது x இல் ஒரு சமன்பாடு பெறப்படும்.

$$x = 2 + y$$
 கிடைக்கும்.

இங்குள்ள x இற்குப் பெற்ற கோவையைச் சமன்பாடு 1 இல் பிரதியிடுவதால் 2+y+y=6 எனக் கிடைக்கும்.

இது ஓர் எளிய சமன்பாடாகும். இதனைத் தீர்த்து y இன் பெறுமானத்தைப் பெறலாம்.

$$2-2+2y=6-2$$

$$2y=4$$

$$\frac{2y}{2} = \frac{4}{2}$$

$$y=2$$

y=2 ஐ x=2+y இல் பிரதியிடும்போது x இன் பெறுமானத்தைப் பெறலாம்.

$$x = 2 + 2$$
$$x = 4$$

முறை 2

இது **''ஒரு மாறியை அகற்றும் முறை''** எனப்படும்.

$$x + y = 6$$
 _____ (1)
 $x - y = 2$ _____ (2)

சமன்பாடு 1 இல் y உம் சமன்பாடு 2 இல் -y உம் உள்ளதை அவதானிக்கலாம். இவ்விரு சமன்பாடுகளையும் கூட்டும்போது

$$(1) + (2)$$
 $x + y + x - y = 6 + 2$ எனப் பெறப்படும்.

இரு சமன்பாடுகளையும் கூட்டுதல் என்பது, ''சமனான கணியங்களுடன் சமனான கணியங்களைக் கூட்டுவதால் பெறப்படும் கணியங்களும் சமனாகும்'' என்னும் வெளிப்படையுண்மையைப் பிரயோகித்தலாகும். இப்போது $+\ y\ ,\ -\ y$ ஆகியன அகற்றப்பட்டு x ஐ மாத்திரம் கொண்ட எளிய சமன்பாடு ஒன்று பெறப்படும். இதனைத் தீர்த்து x இன் பெறுமானத்தைக் காணலாம்.

$$2x = 8$$

$$\frac{2x}{2} = \frac{8}{2}$$

$$x = 4$$

x=4 ஐச் சமன்பாடு ① இல் பிரதியிடுவதன் மூலம் y இன் பெறுமானத்தைக் காணலாம்.

$$4+ y = 6$$
$$4-4+y=6-4$$
$$y = 2$$

மேலுள்ள ஒருங்கமை சமன்பாடுகளின் சோடியில் y இன் குணகங்கள் 1, -1 ஆக அமைந்துள்ளன. அதாவது குணகங்களின் எண்ரீதியிலான பெறுமானங்கள் சமனானவை (குறிகளைக் கருதாது). மேலும் சில உதாரணங்களை நோக்குவோம். இங்கே முறை 2 ஐப் பயன்படுத்திச் சமன்பாடுகளைத் தீர்க்கும் விதத்தை நோக்குவோம்.

உதாரணம் 2

தீர்க்க.
$$2m + n = 10$$

 $m - n = 2$

① + ②,
$$2m + n + m - n = 10 + 2$$

$$\frac{3m}{3} = \frac{12}{3}$$

$$m = 4$$

இதனைச் சமன்பாடு (1) இல் பிரதியிடும் போது

$$2 \times 4 + n = 10$$

$$8 + n = 10$$

$$n = 10 - 8$$

$$n = 2$$

உதாரணம் 3

தீர்க்க.
$$2a + 3b = 7$$

 $a + 3b = 4$

$$2a + 3b = 7$$
 _____ ① $a + 3b = 4$ ____ ②

இங்கு தெரியாக் கணியம் b இன் குணகங்கள் சமனாகின்றன. எனவே b அகற்றப்படும் விதத்தில் ஒன்றிலிருந்து மற்றைய சமன்பாட்டைக் கழிப்போம்.

① - ②, 2a + 3b - (a + 3b) = 7 - 4 (b இன் குணகங்கள் சமனாகின்றன. b அகற்றப்படுமாறு சமன்பாடுகள் இரண்டையும் கழிப்போம்.)

$$2a + 3b - a - 3b = 3$$
$$a = 3$$

a = 3 ஐச் சமன்பாடு ② இல் பிரதியிடும்போது

$$3 + 3b = 4$$
$$3b = 4 - 3$$
$$b = \frac{1}{3}$$

உதாரணம் 4

இர்க்க.
$$x + 2y = 11$$

 $x - 4y = 5$
 $x + 2y = 11$ ______ ①
 $x - 4y = 5$ ______ ②

x இன் குணகங்கள் சமனாகின்றன. எனவே ஒரு சமன்பாட்டிலிருந்து மற்றையதைக் கழிப்பதனால் x ஐ நீக்கலாம்.

① - ②,
$$x + 2y - (x - 4y) = 11 - 5$$

 $x + 2y - x + 4y = 6$
 $\frac{6y}{6} = \frac{6}{6}$
 $y = 1$

y=1 ஐச் சமன்பாடு 1 இல் பிரதியிடும்போது

$$x + 2 \times 1 = 11$$

 $x + 2 = 11$
 $x + 2 - 2 = 11 - 2$
 $x = 9$

பயிற்சி 15.3

1. பின்வரும் ஒருங்கமை சமன்பாட்டுச் சோடிகளைத் தீர்க்க.

(i)
$$a + b = 5$$

 $a - b = 1$

(ii)
$$x + y = 8$$

 $2x + y = 2$

(iii)
$$m + 2n = 7$$

 $m - n = 1$

(iv)
$$4c - b = 7$$

 $4c - 2b = 2$

(v)
$$2a + 3b = 16$$

 $4a + 3b = 26$

(vi)
$$3k + 4l = 4$$

 $3k - 2l = 16$

(vii)
$$x + 3y = 12$$

- $x + y = 8$

(viii)
$$3m - 2n = 10$$

 $-3m + n = -14$

- 2. இரு எண்களின் கூட்டுத்தொகை 10 ஆகவும் அவற்றின் வித்தியாசம் 2 ஆகவும் இருப்பின், அவ்விரு எண்களையும் x, y எனக் கொண்டு ஒருங்கமை சமன்பாட்டுச் சோடியை உருவாக்கி அவ்வெண்களைக் காண்க.
- 3. இரு பேனாக்களையும் ஒரு பென்சிலையும் வாங்குவதற்கு ரூ. 40 உம் இரு பேனாக்களையும் மூன்று பென்சில்களையும் வாங்குவதற்கு ரூ. 60 உம் செலவாகின்றன. பேனா ஒன்றின் விலை ரூ. q எனவும் பென்சில் ஒன்றின் விலை ரூ. p எனவும் கொண்டு ஒருங்கமை சமன்பாட்டுச் சோடிகளை அமைத்துப் பேனா ஒன்றினதும் பென்சில் ஒன்றினதும் விலைகளைத் தனித்தனியே காண்க.

16

முக்கோணியின் கோணங்கள்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- முக்கோணி ஒன்றின் அகக் கோணங்கள் மூன்றினதும் கூட்டுத்தொகை 180° ஆகும் என்ற தேற்றத்தைப் பயன்படுத்தி எளிய பிரசினங்களைத் தீர்ப்பதற்கும்
- முக்கோணி ஒன்றின் ஒரு பக்கத்தை நீட்டுவதால் உருவாகும் புறக்கோணம் அதன் அகத்தெதிர்க் கோணங்கள் இரண்டினதும் கூட்டுத்தொகைக்குச் சமனாகும் என்ற தேற்றத்தைப் பயன்படுத்தி எளிய பிரசினங்களைத் தீர்ப்பதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

நேர்கோடுகள் தொடர்பாக நீங்கள் கற்றுள்ள கேத்திரகணிதப் பேறுகள் சிலவற்றை நினைவுகூர்வோம்.

• நேர்கோடு ஒன்றின் மீது அமைந்துள்ள அடுத்துள்ள இரண்டு கோணங்கள் மிகைநிரப்பு கோணங்கள் ஆகும்.

• புள்ளி ஒன்றைச் சுற்றியுள்ள கோணங்களின் கூட்டுத்தொகை 360° ஆகும்.

 இரு நேர்கோடுகள் ஒன்றையொன்று வெட்டுவதால் உருவாகும் குத்தெதிர்க் கோணங்கள் சமனாகும்.

• சமாந்தர நேர்கோடுகளை குறுக்கோடி ஒன்று வெட்டும்போது உண்டாகும்

- ஒத்த கோணங்கள் சமன் $a=k,\;b=l,\;\;c=m,\;d=n$
- ஒன்றுவிட்ட கோணங்கள் சமன் $c=k,\;d=l$
- நேயக் கோணங்களின் கூட்டுத்தொகை 180° ஆகும். $d+k=180^{\circ},\ c+l=180^{\circ}$
- மேலும் தரம் 8 இல் முக்கோணிகளும் நாற்பக்கல்களும் என்ற பாடத்தின் கீழ் முக்கோணி ஒன்றின் அகக் கோணங்கள் மூன்றினதும் கூட்டுத்தொகை 180° எனவும் நாற்பக்கல் ஒன்றின் அகக் கோணங்கள் நான்கினதும் கூட்டுத்தொகை 360° எனவும் கற்றுள்ளீர்கள்.

கீழே உருக்களில் உள்ள தரவுகளுக்கு ஏற்ப,

• முக்கோணி ஒன்றினதும் நாற்பக்கல் ஒன்றினதும் புறக்கோணங்களின் கூட்டுத்தொகை 360° ஆகும்.

மேலே அறிந்துகொண்ட விடயங்களை மேலும் உறுதிசெய்து கொள்வதற்காகக் கீழே தரப்பட்டுள்ள மீட்டற் பயிற்சியில் ஈடுபடுக.

மீட்டற் பயிற்சி

 ${f a}$. AOB ஒரு நேர்கோடாகும். x இன் பெறுமானத்தைக் காண்க.

(i) (ii)

b. உருவில் காட்டப்பட்டுள்ள தரவுகளுக்கேற்ப $a,\ b,\ x$ எனக் குறிக்கப்பட்டுள்ள கோணங்களின் பெறுமானங்களைக் காண்க.

 ${f c}$. AOB, POQ என்பன நேர்கோடுகள் ஆகும். $P \hat{O}B$, $B \hat{O}R$, $A \hat{O}P$ என்பவற்றின் பெறுமானங்களைக் காண்க.

 ${f d}$. உருவில் காட்டப்பட்டுள்ள தரவுகளுக்கேற்ப $A \hat{B} C$ இன் பெறுமானத்தைக் காண்க.

 ${f e}$. உருவில் காட்டப்பட்டுள்ள தரவுகளுக்கேற்ப ${f x}$ இன் பெறுமானத்தைக் காண்க.

16.1 முக்கோணி ஒன்றின் அகக்கோணங்கள்

உருவில் காட்டப்பட்டுள்ள முக்கோணி ABC இல் a, b, c என்பவற்றால் காட்டப்பட்டுள்ள கோணங்கள் முக்கோணியின் அகக்கோணங்கள் ஆகும். முக்கோணியின் அகக்கோணங்களின் கூட்டுத்தொகை 180° ஆகும்.

$$A\hat{B}C + B\hat{C}A + C\hat{A}B = 180^{\circ}$$
.

இத்தொடர்பினை வாய்ப்புப் பார்ப்பதற்காகப் பின்வரும் செயற்பாட்டைச் செய்க.

செயற்பாடு 1

படி 1 : பயிற்சிப் புத்தகத்தில் யாதேனும் ஒரு முக்கோணியை வரைந்து அதனை *ABC* எனப் பெயரிடுக. (அதன் அகக்கோணங்கள் a,b,cஎனக் குறிப்பிடப்பட்டுள்ளன.)

படி 2 : பயிற்சிப் புத்தகத்தில் வேறோர் இடத்தில் நேர்கோட்டுத் துண்டம் ஒன்றை வரைந்து அதனை *OP* எனப் பெயரிடுக.

படி 3 : OP ஐ ஒரு புயமாகவும் O ஐ உச்சியாகவும் கொண்டு கவராயத்தையும் நேர் விளிம்பையும் பயன்படுத்தி $C\hat{A}B$ ஐ O இல் பிரதிசெய்க. (அது $P\hat{O}Q$ என உருவில் காட்டப்பட்டுள்ளது.)

படி 4: OQ ஐ ஒரு புயமாகவும் O ஐ உச்சியாகவும் கொண்டு ABC ஐ முன்பு போல் O இல் பிரதிசெய்க. (அது $Q\^OR$ என உருவில் காட்டப்பட்டுள்ளது.)

படி 5: OR ஐ ஒரு புயமாகவும் O ஐ உச்சி யாகவும் கொண்டு $A \stackrel{\wedge}{C}B$ ஐ O இல் பிரதிசெய்க. (அது $R \stackrel{\wedge}{O}S$ என உருவில் காட்டப்பட்டுள்ளது.)

மேலே கோணம் $P\hat{O}S$ ஐ அளந்து பார்ப்பதன் மூலம் $P\hat{O}S=180^\circ$ எனப் பெற்றிருப்பீர்கள். ஆகவே முக்கோணி ABC இன் அகக்கோணங்களின் கூட்டுத்தொகை 180° ஆகும்.

தேற்றம்: முக்கோணி ஒன்றின் மூன்று கோணங்களினதும் கூட்டுத்தொகை 180° ஆகும்.

தற்போது இதைப் பயன்படுத்திப் பிரசினங்கள் தீர்ப்பது தொடர்பான உதாரணங் களைப் பார்போம்.

உதாரணம் 1

உருவில் குறிப்பிடப்பட்டுள்ள தரவுகளுக்கேற்ப முக்கோணி ABC இன் $A\hat{C}B$, $A\hat{B}C$ என்பவற்றின் பெறுமானங்களைக் காண்க.

$$75^{\circ} + 2x + x = 180^{\circ}$$

$$3x = 180^{\circ} - 75^{\circ}$$

$$3x = 105^{\circ}$$

$$x = \frac{105^{\circ}}{3}$$

$$= 35^{\circ}$$

$$\therefore A\hat{C}B = x = 35^{\circ}$$
$$A\hat{B}C = 2x = 2 \times 35^{\circ} = 70^{\circ}$$

உதாரணம் 2

முக்கோணி ஒன்றின் அகக்கோணங்கள் 2 : 3 : 4 என்ற விகிதத்தில் உள்ளன. அம்மூன்று அகக்கோணங்களையும் கண்டு, அது எவ்வகையான முக்கோணி எனக் காரணங்களுடன் எழுதுக.

கோணங்களுக்கு இடையிலான விகிதம் = 2:3:4

$$\therefore$$
 கோணங்களுக்கு உரிய பின்னங்கள் $=\frac{2}{9}$, $\frac{3}{9}$, $\frac{4}{9}$

மூன்று கோணங்களினதும் கூட்டுத்தொகை = 180°

$$\therefore$$
 சிறிய கோணம் = $180^{\circ} \times \frac{2}{9}$ = 40°

நடுத்தர அளவிலான கோணம் =
$$180^{\circ} imes rac{3}{9} \ = 60^{\circ}$$

பெரிய கோணம் =
$$180^{\circ} \times \frac{4}{9} = 80^{\circ}$$

எனவே முக்கோணிகளின் மூன்று கோணங்களும் 40° , 60° , 80° ஆகும். மூன்று கோணங்களும் 90° இலும் குறைவு என்பதால் இது கூர்ங்கோண முக்கோணி ஆகும்.

பயிற்சி 16.1

1. கீழே தரப்பட்டுள்ள ஒவ்வொரு உருவிலும் குறிப்பிடப்பட்டுள்ள தரவுகளுக்கேற்ப ஆங்கிலச் சிறிய எழுத்துகளால் காட்டப்பட்டுள்ள கோணங்களின் பெறுமானங் களைக் காண்க.

(v)

(vi)

(vii)

2. தரப்பட்டுள்ள உருவில் $A\stackrel{\triangle}{B}C = C\stackrel{\triangle}{B}E, B\stackrel{\triangle}{C}E = 70^\circ$ ஆகும். $D\stackrel{\triangle}{E}F$ இன் பெறுமானத்தைக் காண்க.

3. முக்கோணி PQR இல் QR என்ற பக்கத்தின் மீது S என்னும் புள்ளியானது $Q \stackrel{\wedge}{P} S = R \stackrel{\wedge}{P} S$ ஆகுமாறு அமைந்துள்ளது.

$$PQS = 35^{\circ}$$
, $PRS = 55^{\circ}$ ஆகும்.

- (i) *QPR* இன் பருமனைக் காண்க.
- (ii) *PSR* இன் பருமனைக் காண்க.

- 4. முக்கோணி XYZ இல் $\hat{X}+\hat{Y}=115^\circ$, $\hat{Y}+\hat{Z}=100^\circ$ ஆகும். \hat{X},\hat{Y},\hat{Z} என்பவற்றின் பருமனைக் காண்க.
- 5. முக்கோணி ஒன்றின் அகக்கோணங்களுக்குகிடையே உள்ள விகிதம் 1 : 2 : 3 ஆகும். அதன் ஒவ்வொரு கோணத்தினதும் பருமனைக் கண்டு, கோணங்களுக்கு ஏற்ப அது எவ்வகை முக்கோணி எனக் காரணத்துடன் எழுதுக.
- 6. முக்கோணி ஒன்றின் ஓர் அகக்கோணம் 75° ஆகும். எஞ்சிய இரண்டு கோணங்களினதும் விகிதம் 1 : 2 ஆகும். அவ்விரண்டு கோணங்களினதும் பருமனைக் காண்க.

16.2 முக்கோணி ஒன்றின் புறக்கோணங்கள்

உருவில் காட்டப்பட்டுள்ள முக்கோணி ABC இல் நீட்டப்பட்டுள்ள பக்கம் BC யில் புள்ளி D குறிக்கப்பட்டுள்ளது. இப்போது முக்கோணிக்குப் புறத்தே உருவாகியுள்ள $A\hat{C}D$ என்னும் கோணம் முக்கோணியின் ஒரு **புறக்கோணம்** எனப்படும்.

புறக்கோணம் $A\hat{C}D$ இற்கு அடுத்துள்ள கோணம் $A\hat{C}B$ ஆகும். முக்கோணியின் உள்ளிருக்கும் அடுத்த இரண்டு கோணங்களும் புறக்கோணம் $A\hat{C}D$ தொடர்பான அகத்தெதிர்க் கோணங்கள் எனப்படும்.

 \hat{CAB} , \hat{ABC} என்பன புறக்கோணம் \hat{ACD} உடன் தொடர்பான அகத்தெதிர்க் கோணங்கள் ஆகும்.

இப்போது மற்றுமொரு சந்தர்ப்பத்தைப் பார்ப்போம்.

உருவில் காட்டப்பட்டுள்ள முக்கோணி KLM இன் அகக் கோணங்கள் k, l, m ஆகும். அதன் பக்கங்கள் நீட்டப்பட்டு மூன்று புறக்கோணங்கள் பெறப்பட்டுள்ளன. புறக்கோணம் KMY உடன் தொடர்பான அகத்தெதிர்க் கோணங்கள் k, l ஆகும்.

புறக்கோணம் $M\dot{K}Z$ உடன் தொடர்பான அகத்தெதிர்க் கோணங்கள் l, m ஆகும். புறக்கோணம் $X\dot{L}K$ உடன் தொடர்பான அகத்தெதிர்க் கோணங்கள் k, m ஆகும்.

இப்போது முக்கோணி ஒன்றின் புறக்கோணம் ஒன்றிற்கும் அகத்தெதிர்க் கோணங்களுக்குமிடையே உள்ள ஒரு தொடர்பைப் பெறுவோம்.

90

செயற்பாடு 1

படி 1: பிறிஸ்டல் அட்டைத் துண்டு ஒன்றின் மீது அதாவது ஓரளவு தடித்த அட்டைத் துண்டு ஒன்றின் மீது உருவில் காட்டப்பட்டுள்ளவாறு முக்கோணி ஒன்றை வரைக. அதன் ஒரு பக்கத்தை நீட்டிப் புறக்கோணம் ஒன்றைப் பெற்றுக் கொண்டு அவற்றுடன் தொடர்பான அகத்தெதிர்க் கோணங்கள் இரண்டையும் நிழற்றுக. (உருவில் அகத்தெதிர்க் கோணங்கள் p, q எனக் காட்டப்பட்டுள்ளன.)

படி 2: மேலே குறிப்பிட்ட அகத்தெதிர்க் கோணங்கள் இரண்டையும் வெட்டி அடர்களாக வேறாக்குக.

படி 3: வெட்டி வேறாக்கிய அகத்தெதிர்க் கோணங்களான அடர்கள் இரண்டையும் புறக்கோணத்துடன் பொருந்துமாறு வைத்துக் கொள்க.

நீர் பெற்றுக் கொண்ட இப்பேற்றை வகுப்பில் உள்ள மற்றவர்களுடன் ஒப்பிட்டுப் பார்க்க. இச்செயற்பாட்டிலிருந்து பெறக்கூடிய முடிபை எழுதுக.

மேலே உள்ள செயற்பாட்டினூடாக முக்கோணி ஒன்றின் புறக்கோணம் அதன் அகத்தெதிர்க் கோணங்களின் கூட்டுத்தொகைக்குச் சமனாகும் என்பது புலனாகின்றது.

இலவசப் பாடநூல்

உங்களது பயிற்சிப் புத்தகத்தில் கூர்ங்கோண முக்கோணி, செங்கோண முக்கோணி, விரிகோண முக்கோணி என்னும் ஒவ்வொரு வகைக்கும் ஒரு முக்கோணி வீதம் பயிற்சிப் புத்தகத்தில் வரைந்து, அவை ஒவ்வொன்றினதும் புறக்கோணம் ஒன்றை வரைந்து பாகைமானியைப் பயன்படுத்தி அப்புறக்கோணத்தையும் அதனுடன் தொடர்பான அகத்தெதிர்க் கோணங்களையும் அளந்து புறக்கோணத்தின் பெறுமானம் அகத்தெதிர்க் கோணங்களின் கூட்டுத்தொகைக்குச் சமன் என்பதை உறுதிசெய்க.

இப்பேறினைப் பின்வருமாறு காட்டலாம்.

அதாவது

$$PRS = RPQ + PQR$$

அதாவது,

தேற்றம்: முக்கோணி ஒன்றின் பக்கம் ஒன்றை நீட்டுவதனால் உண்டாகும் புறக்கோணம் அதன் அகத்தெதிர்க் கோணங்களின் கூட்டுத் தொகைக்குச் சமனாகும்.

இப்போது இப்பேறினைப் பயன்படுத்திப் பிரசினங்களைத் தீர்க்கும் முறைகளை உதாரணங்களின் மூலம் பார்ப்போம்.

உதாரணம் 1

தரப்பட்டுள்ள உருவில் x இனால் குறிப்பிடப்பட்டுள்ள கோணத்தின் பருமனைக் காண்க.

உதாரணம் 2

தரப்பட்டுள்ள உருவில் x,y எனக் குறிப்பிடப்பட்டுள்ள கோணங்களின் பருமன்களைக் காண்க.

 $x+150^{\circ}=180^{\circ}\,($ AB ${\it 147}$ CD ; நேயக் கோணங்கள் மிகைநிரப்புக் கோணங்களாகும்)

$$x = 180^{\circ} - 150^{\circ}$$

= 30°

y = x + 20° (
$$\Delta$$
 PCQ இன் புறக்கோணம் = அகத்தெதிர்க் கோணங்களின் கூட்டுத்தொகை)

$$=50^{\circ}$$

 $y = 30^{\circ} + 20^{\circ}$

பயிற்சி 16.2

1. கீழே தரப்பட்டுள்ள ஒவ்வொரு உருவிலும் ஆங்கிலச் சிறிய எழுத்துகளால் குறிப்பிடப்பட்டுள்ள கோணங்களில் முக்கோணியின் புறக்கோணங்களைத் தெரிவுசெய்க.

(i)

(ii)

2. கீழே தரப்பட்டுள்ள முக்கோணிகளில் ஆங்கிலச் சிறிய எழுத்துகள் குறிக்கும் கோணங்களின் பருமன்களைக் காண்க.

(i)

(ii)

3. உருவில் முக்கோணி ABC இல் பக்கம் BC இன் மீது P, Q ஆகிய புள்ளிகள் $B\hat{A}P = C\hat{A}Q$ ஆகுமாறு அமைந் துள்ளன. பக்கம் BA ஆனது S இற்கு நீட்டப்பட்டுள்ளது.

- (ii) AQP ஐக் காண்க.
- (iii) SAQ ஐக் காண்க.

4. உருவில் தரப்பட்டுள்ள முக்கோணி PQR இல் \hat{P} இன் இருசமகூறாக்கி PS ஆனது QR ஐ S இல் சந்திக்கின்றது. $S\hat{P}Q=S\hat{Q}P$ ஆகும். $S\hat{Q}P=a^{\circ}$ எனின், $P\hat{R}T$ இன் பருமனை a சார்பாகக் காண்க.

பலவினப் பயிற்சி

1. முக்கோணிKLM இல் \hat{M} , \hat{L} ஆகியகோணங்களின் இருசமகூறாக்கிகள் O இல் சந்திக்கின்றன. $\hat{K}=70^{\circ}$ ஆகும். $L\hat{O}M$ இன் பருமனைக் காண்க.

2. உருவில் $A\hat{P}D=140^\circ,\ P\hat{D}C=85^\circ$ ஆகும். $A\hat{B}Q$ ஐக் காண்க.

பொழிப்பு

- முக்கோணி ஒன்றின் அகக்கோணங்களின் கூட்டுத்தொகை 180° ஆகும்.
- முக்கோணியின் பக்கம் ஒன்றை நீட்டுவதனால் உண்டாகும் புறக்கோணம்
 அதன் அகத்தெதிர்க் கோணங்களின் கூட்டுத்தொகைக்குச் சமமாகும்.

இலவசப் பாடநூல்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- ஒரு சூத்திரத்தில் உள்ள எந்தவோர் உறுப்பையும் எழுவாயாக மாற்றுவதற்கும்
- ஒரு சூத்திரத்தில் உள்ள ஒரு மாறி தவிர்ந்த ஏனைய மாறிகளின் பெறுமானங்கள் தரப்படும்போது பெறுமானம் தெரியாத மாறியின் பெறுமானத்தைக் காண்பதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

சூத்திரங்களின் அறிமுகம்

ஒரு திண்மப் பொருளில் உள்ள விளிம்புகள், உச்சிகள், முகங்கள் ஆகியவற்றின் எண்ணிக்கைகள் தொடர்பாக உள்ள ஒயிலரின் தொடர்பை ஒரு சமன்பாடாகத் தரம் 8 இல் நீங்கள் கற்றீர்கள்.

அத்தொடர்பு பின்வருமாறாகும்.

விளிம்புகளின் எண்ணிக்கை = உச்சிகளின் எண்ணிக்கை + முகங்களின் எண்ணிக்கை – 2

விளிம்புகளின் எண்ணிக்கை E எனவும் உச்சிகளின் எண்ணிக்கை V எனவும் முகங்களின் எண்ணிக்கை F எனவும் குறிப்பிட்டு அச்சமன்பாட்டை இவ்வாறு எழுதலாம்.

$$E = V + F - 2$$

இவ்வாறு ஒன்றுடனொன்று தொடர்புபட்ட பல மாறிகளுக்கிடையே (இரண்டு அல்லது அதிலும் கூடிய எண்ணிக்கை) உள்ள தொடர்பைக் காட்டும் சமன்பாடுகள் சூத்திரங்கள் எனப்படும். சூத்திரத்தில் உள்ள கணியங்கள் மாறிகள் எனப்படும். ஒரு சூத்திரத்தில் சமன் அடையாளத்தின் ஒரு பக்கத்தில் (பொதுவாக இடப் பக்கம்) பெரும்பாலும் ஓர் உறுப்பு (மாறி) மாத்திரம் இருக்குமாறும் மற்றைய உறுப்புகள் மறுபக்கத்தில் இருக்குமாறும் எழுதப்படும். இவ்வாறு ஒரு சூத்திரத்தின் ஒரு பக்கத்தில் உள்ள இத்தனி உறுப்பானது அச்சமன்பாட்டின் **எழுவாய்** எனப்படும். இதற்கேற்ப, மேற்குறித்த E = V + F - 2 என்ற சமன்பாட்டில் எழுவாய் E ஆகும்.

இன்னொரு சூத்திரத்தைக் கவனிப்போம். வெப்பத்தை அளக்கும்போது வெப்பத்தை செல்சியஸ் பாகை (°C), பரனைற்று பாகை (°F) ஆகிய அலகுகளில் எடுத்துரைக்கலாம். வெப்பத்தை அளக்கும் இரண்டு வகையான அலகுகளுக்கிடையிலான தொடர்பு பின்வருமாறாகும்.

$$F = \frac{9}{5} C + 32$$

இங்கு F இன் மூலம் வெப்பநிலை பரனைற்றுகளிலும் C இன் மூலம் அது செல்சியஸிலும் தரப்படுகின்றது. இச்சூத்திரத்தின் எழுவாய் F ஆகும்.

கணிதம், விஞ்ஞானம் ஆகிய பாடங்களில் பயன்படுத்தப்படும் சில சூத்திரங்கள் கீழே தரப்பட்டுள்ளன.

$$p = 2(a+b)$$

$$v = u + at$$

$$s = \frac{n}{2}(a+l)$$

$$y = mx + c$$

$$C = 2 \pi r$$

$$A = \pi r^2$$

ஒரு சூத்திரத்தில் உள்ள ஓர் உறுப்பை எழுவாயாக மாற்றுதல்

E=V+F-2 என்னும் சூத்திரத்தின் எழுவாய் E ஆகும். எமக்குத் தேவையாயின், V ஐ அல்லது F ஐ இச்சூத்திரத்தின் எழுவாயாக மாற்றலாம். பொதுவாக வெளிப்படை யுண்மைகளைப் பயன்படுத்திச் சமன்பாடுகளைத் தீர்க்கும் முறையில் இதனைச் செய்யலாம். உதாரணமாக E=V+F-2 இல் V ஐ எழுவாயாக மாற்றக்கூடிய முறையை ஆராய்வோம்.

V ஆனது சமன்பாட்டின் வலது பக்கத்தில் உள்ளது. V உடன் சேர்ந்து வலது பக்கத்தில் F உம் -2 உம் உள்ளன. F ஐயும் -2 ஐயும் வலது பக்கத்திலிருந்து நீக்குமாறு சமன்பாட்டின் இரு பக்கங்களுடன் -F ஐயும் +2 ஐயும் கூட்டலாம். அப்போது E+(-F)+2=V+F-2+(-F)+2 எனப் பெறப்படும்.

இதனைச் சுருக்கிப் பின்வருமாறு எழுதலாம்.

$$\widetilde{E} - F + 2 = V$$
 ($F + (-F) = 0$, $-2 + 2 = 0$ ஆகையால்)

இங்கு வலது பக்கத்தில் V எழுவாயாக உள்ளது. பொதுவாக எழுவாயை இடது பக்கத்தில் எழுதுவதால் அச்சமன்பாட்டை V ஐ எழுவாயாகக் கொண்டு பின்வருமாறு எழுதலாம்.

$$V = E - F + 2$$

கீழே தரப்பட்டுள்ள உதாரணங்களின் மூலம் வெவ்வேறு விதங்களிலான சமன்பாடுகளில் எழுவாய் மாற்றப்படும் முறை விளக்கப்பட்டுள்ளது.

உதாரணம் 1

v=u+at என்னும் சூத்திரத்தில் a ஐ எழுவாயாக்குக.

இங்கு மாறி *a* ஆனது வேறொரு மாறியினால் (*t* இனால்) பெருக்கப்பட்டுள்ளது. இங்கு முதலில் *at* ஐ எழுவாயாக மாற்ற வேண்டும்.

$$v = u + at$$

இரு பக்கங்களிலிருந்தும் u ஐக் கழிக்கும்போது

$$v - u = u + at - u$$

$$v - u = at$$

இரு பக்கங்களையும் t இனால் வகுக்கும்போது

$$\frac{v-u}{t} = \frac{at}{t}$$

 $a=rac{v-u}{t}$ என a ஐ எழுவாயாகக் கொண்ட சூத்திரம் பெறப்படும்.

உதாரணம் 2

 $S=rac{n}{2}\;(a+l)$ என்னும் சூத்திரத்தில் n ஐ எழுவாயாக்குக.

$$S = \frac{n}{2} (a + l)$$

இங்கு எழுவாயாக்க வேண்டிய மாறி n ஆனது 2 ஆல் வகுக்கப்பட்டுள்ளதுடன் (a+l) இனால் பெருக்கப்பட்டுள்ளது. எனவே சமன்பாட்டின் இரு பக்கங்களையும் 2 ஆல் பெருக்கி (a+l) இனால் வகுக்க வேண்டும்.

இரு பக்கங்களையும் 2 ஆல் பெருக்கும்போது

$$2S = 2^{1} \times \frac{n}{2^{1}} \times (a+l)$$

$$2S = n(a+l)$$

இரு பக்கங்களையும் (a+l) இனால் வகுக்கும்போது

$$\frac{2S}{a+l} = \frac{n(a+l)}{(a+l)}$$

$$\frac{2S}{a+l} = n$$

$$n = \frac{2S}{a+l}$$

உதாரணம் 3

l=a+(n-1)d என்னும் சூத்திரத்தில் n ஐ எழுவாயாக்குக. $l=a+(n-1)\,d$

இங்கு எழுவாயாக்க வேண்டிய மாறியாகிய n இன் மீது கவனத்தைச் செலுத்துக. n இலிருந்து 1 ஐக் கழித்து (n-1) ஐயும் (n-1) ஐ d இனால் பெருக்கி (n-1) d ஐயும் இறுதியில் (n-1) d உடன் a ஐக் கூட்டி a+(n-1) d ஐயும் பெற்று வலப் பக்கத்தில் உள்ள கோவை உருவாக்கப்பட்டுள்ளது.

n ஐ எழுவாயாக்குவதற்கு மேலே குறிப்பிட்ட கணிதச் செய்கைகளின் மறுதலைகளை (அதாவது கழித்தலின் மறுதலை கூட்டலாகவும் பெருக்கலின் மறுதலை வகுத்தலாகவும்) பின்னிருந்து முன்னாகச் செய்ய வேண்டும். வேறொரு விதமாகக் கூறுவதாயின் பொருத்தமானவாறு வெளிப்படையுண்மைகளைப் பயன்படுத்தி n ஐ எழுவாயாக்க வேண்டும்.

இதற்கேற்ப, முதலில் சமன்பாட்டின் இருபக்கங்களிலிருந்தும் a ஐக் கழித்துச் சுருக்குவோம்.

$$l-a = a + (n-1)d - a$$

 $l-a = (n-1)d$

இப்போது இரு பக்கங்களுடனும் $\,d\,$ இனால் வகுத்துச் சுருக்குவோம்.

$$\frac{l-a}{d} = \frac{(n-1)d}{d}$$

$$\frac{l-a}{d} = n-1$$

இறுதியாக இருபக்கங்களுடனும் 1 ஐக் கூட்டிச் சுருக்குவோம்.

$$\frac{l-a}{d} + 1 = n - 1 + 1$$

$$\frac{l-a}{d} + 1 = n$$

$$n = \frac{l-a}{d} + 1$$

தேவையாயின் இச்சூத்திரத்தின் இடது பக்கத்தை ஒரு பொதுப் பகுதியெண் கிடைக்குமாறு சுருக்க முடியுமாயினும் அவ்வாறு செய்வது கட்டாயமானதல்ல.

பயிற்சி 17.1

- 1. $C=2\pi r$ என்னும் சூத்திரத்தில் r ஐ எழுவாயாக்குக.
- 2. a=b-2c என்னும் சூத்திரத்தில் c ஐ எழுவாயாக்குக.
- 3. v = u + at என்னும் சூத்திரத்தில் t ஐ எழுவாயாக்குக.
- 4. y = mx + c என்னும் சூத்திரத்தில்
 - (i) *c* ஐ எழுவாயாக்குக.
 - (ii) *m* உ எழுவாயாக்குக.
- 5. $a=2\ (b+c)$ என்னும் சூத்திரத்தில் c ஐ எழுவாயாக்குக.
- 6. $F = \frac{9}{5} \, C + 32$ என்னும் சூத்திரத்தில் C ஐ எழுவாயாக்குக.
- 7. l=a+(n-1)d என்னும் சூத்திரத்தில்
 - (i) a உ எழுவாயாக்குக.
 - (ii) d ஐ எழுவாயாக்குக.
- 8. $\frac{x}{a} + \frac{y}{b} = 1$ என்னும் சூத்திரத்தில் y ஐ எழுவாயாக்குக.
- 9. $\frac{1}{R}=rac{1}{r_{_1}}+rac{1}{r_{_2}}$ என்னும் சூத்திரத்தில் $r_{_2}$ ஐ எழுவாயாக்குக.
- 10. ax = m(x t) என்னும் சூத்திரத்தில் x ஐ எழுவாயாக்குக.
- 11. $P = \frac{at}{a-t}$ என்னும் சூத்திரத்தில் a ஐ எழுவாயாக்குக.

17.2 பிரதியீடு

ஒரு சூத்திரத்தில் ஒரு மாறியைத் தவிர மற்றைய மாறிகளின் பெறுமானங்கள் தரப்பட்டுள்ளபோது அப்பெறுமானங்களைச் சூத்திரத்தில் பிரதியிடுவதன் மூலம் பெறுமானம் தெரியாத மாறியின் பெறுமானத்தைக் காணலாம்.

ஆறு உச்சிகளையும் ஐந்து முகங்களையும் நேர் விளிம்புகளையும் மாத்திரம் கொண்டுள்ள ஒரு திண்மப் பொருளின் விளிம்புகளின் எண்ணிக்கையைக் காண்போம்.

உதாரணமாக மேலே உள்ள உருவைக் கருத்தில் கொண்டு, E=V+F-2

என்னும் சூத்திரத்தில் V, F ஆகியவற்றின் பெறுமானங்கள் முறையே 6, 5 ஆயின் (உருவில் தரப்பட்டுள்ள முக்கோண அரியம் இச்சந்தர்ப்பத்துக்கான உதாரணம் ஆகும்), அப்போது E ஐக் காணலாம். V, F ஆகியவற்றின் பெறுமானங்களைச் சூத்திரத்தில் பிரதியிடும்போது E=6+5-2

எனப் பெறப்படும்.

இதற்கேற்ப ஒரு முக்கோண வடிவ அரியத்தில் உள்ள விளிம்புகளின் எண்ணிக்கை 9 ஆகும்.

மேலும் சில உதாரணங்களைக் கவனத்தில் கொள்வோம்.

ஒரு சூத்திரத்தில் உள்ள தெரியாக் கணியங்களுக்குத் தரப்பட்டுள்ள பெறுமானங்களைப் பிரதியிட்டுத் தெரியாக் கணியத்தின் பெறுமானத்தைக் காணும்போது பின்பற்ற வேண்டிய இரண்டு முறைகள் உள்ளன. சூத்திரத்தில் உள்ளவாறே அதனை வைத்துக் கொண்டு தரப்பட்டுள்ள பெறுமானங்களைப் பிரதியிடுதல் முதலாவது முறையாகும். பெறுமானம் காணப்படவேண்டிய மாறியை எழுவாயாக்கி அதன் பின்னர் தரப்பட்டுள்ள பெறுமானங்களைப் பிரதியிட்டுப் பெறுமானத்தைக் காணல் இரண்டாவது முறையாகும். இரண்டு முறைகளினாலும் ஒரு சூத்திரத்தில் உள்ள மாறியின் பெறுமானத்தைக் காணும் முறையை ஆராய்வோம்.

உதாரணம் 1

7 முகங்களையும் 12 விளிம்புகளையும் கொண்ட ஒரு திண்மப் பொருளில் உள்ள உச்சி களின் எண்ணிக்கையைக் காண்க. விளிம்புகளின் எண்ணிக்கை E எனவும் உச்சிகளின் எண்ணிக்கை V எனவும் முகங்களின் எண்ணிக்கை F எனவும் கொள்வோம்.

இங்கு பயன்படுத்த வேண்டிய சூத்திரம் E=V+F-2 ஆகும். இச்சூத்திரத்தில் $F,\ E$ ஆகியவற்றின் பெறுமானங்கள் தரப்பட்டுள்ளன. V இன் பெறுமானம் காணப்படவேண்டியதாகும். V இன் பெறுமானத்தை இரண்டு முறைகளில் காணலாம். E=V+F-2 இல் தரப்பட்டுள்ள பெறுமானங்களைப் பிரதியிட்டுப் பெறப்படும் சமன்பாட்டை V இற்காகத் தீர்ப்பது ஒரு முறையாகும். சூத்திரத்தில் V ஐ முதலில் எழுவாயாக்கிப் பின்னர் $E,\ F$ ஆகியவற்றின் பெறுமானங்களைப் பிரதியிட்டுச் சுருக்குவது மற்றைய முறையாகும். இரண்டு முறைகளையும் கவனிப்போம்.

முறை (i)

E = V + F - 2 என்னும் சூத்திரத்தில் E = 12, F = 7 என்பவற்றைப் பிரதியிடும்போது 12 = V + 7 - 2 12 = V + 5 12 - 5 = V

$$12 - 5 = V$$

$$7 = V$$

$$V = 7$$

். உச்சிகளின் எண்ணிக்கை 7 ஆகும்.

முறை (ii)

V ஐ எழுவாக்கிய பின்னர் பெறுமானங் களைப் பிரதியிடல்

$$E = V + F - 2$$

$$E + 2 = V + F$$

$$E + 2 - F = V$$

$$V = E + 2 - F$$

$$V = 12 + 2 - 7$$

$$V = 7$$

். உச்சிகளின் எண்ணிக்கை 7 ஆகும்.

குறிப்பு

ஒரு சூத்திரத்தில் எழுவாயை மாற்றுவதன் ஒரு நோக்கம் அச்சூத்திரத்தில் உள்ள மாறிகளின் பெறுமானங்களை நேரடியாகப் பிரதியிட்டுப் பெறுமானம் தெரியாத மாறியின் பெறுமானத்தை இலகுவில் கண்டுகொள்வதை இலகுவாக்கிக் கொள்வதற்காகும்.

உதாரணம் 2

 $C = \frac{5}{9} \, (F - 32)$ என்னும் சூத்திரத்தைப் பயன்படுத்தி $35^{\circ} \, C$ என்பதைப் பரனைற்றுகளில் காண்க.

இங்கு C இன் மூலம் செல்சியஸ் வெப்பநிலையும் F இன் மூலம் பரனைற்று வெப்பநிலையும் தரப்பட்டுள்ளன எனக் கருதுக.

 $C = \frac{5}{9} \; (F - 32)$ இல் C = 35 ஐப் பிரதியிடும்போது

$$35 = \frac{5}{9} (F - 32)$$

$$35 \times 9 = 5 (F - 32)$$

$$\frac{{}^{7}35 \times 9}{5} = F - 32$$

$$63 = F - 32$$

$$63 + 32 = F$$

95 =
$$F$$

$$F = 95$$

 \therefore தரப்பட்டுள்ள வெப்பநிலை $95^{
m o}F$ ஆகும்

பயிற்சி 17.2

- 1. a=(b+c) -2 என்னும் சூத்திரத்தில் $b=7,\ c=6$ எனின், a இன் பெறுமானத்தைக் காண்க.
- 2. $C = \frac{5}{9} \ (F 32)$ என்னும் சூத்திரத்தில் F = 104 ஆயின், C இன் பெறுமானத்தைக் காண்க.
- 3. y = mx + c என்னும் சூத்திரத்தில் y = 11, x = 5, c = -4 எனின், m இன் பெறுமானத்தைக் காண்க.
- 4. $C=2\pi r$ என்னும் சூத்திரத்தில் $C=88,\ \pi=\frac{22}{7}$ எனின், r இன் பெறுமானத்தைக் காண்க.
- 5. l=a+(n-1)d என்னும் சூத்திரத்தில் $l=22,\,a=-5,\,n=10$ எனின், d இன் பெறுமானத்தைக் காண்க.
- 6. $S = \frac{n}{2} \; (a+l)$ என்னும் சூத்திரத்தில் $S = -330, \, a = 15, \, l = -48$ எனின், n இன் பெறுமானத்தைக் காண்க.

பலவினப் பயிற்சி

- 1. $P = C(1 + \frac{r}{100})$ என்னும் சூத்திரத்தில்
 - (i) r உ எழுவாயாக்குக.
 - (ii) P = 495, C = 450 எனின், r இன் பெறுமானத்தைக் காண்க.
- 2. $\frac{y-c}{x}=m$ என்னும் சூத்திரத்தில்
 - (i) X ஜ எழுவாயாக்குக.
 - (ii) y = 20, c = -4, m = 3 எனின், x இன் பெறுமானத்தைக் காண்க.
- 3. ax = bx c என்னும் சூத்திரத்தில்
 - (i) x ஐ எழுவாயாக்குக.
 - (ii) $a=3,\,b=4,\,c=6$ எனின், x இன் பெறுமானத்தைக் காண்க.

- 4. $a = \frac{bx + c}{b}$ என்னும் சூத்திரத்தில்
 - (i) b ஐ எழுவாயாக்குக.
 - (ii) a=4, c=5, x=3 எனின், b இன் பெறுமானத்தைக் காண்க.
- 5. $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ என்னும் சூத்திரத்தில் v = 20, u = 5 எனின், f இன் பெறுமானத்தைக் காண்க.
- 6. $\frac{a}{b} = \frac{p}{q}$ என்னும் சூத்திரத்தில் $a=6, p=3, \ q=4$ எனின், b இன் பெறுமானத்தைக் காண்க.
- 7. $S=rac{n}{2}\,\left(a+l
 ight)$ என்னும் சூத்திரத்தில்
 - (i) l ஐ எழுவாயாக்குக.
 - (ii) S = 198, n = 12, a = 8 எனின், l இன் பெறுமானத்தைக் காண்க.
- 8. y = mx + c என்னும் சூத்திரத்தில்
 - (i) *m* ஐ எழுவாயாக்குக.
 - (ii) y=8, x=9, c=2 எனின், m இன் பெறுமானத்தைக் காண்க.

1

பொழிப்பு

- அட்சரகணிதக் கோவைகளைக் கொண்ட சமன்பாடு சூத்திரம் எனப்படும்.
- ஒரு சூத்திரத்தின் ஒரு பக்கத்தில் ஓர் உறுப்பை மாத்திரம் கொண்டிருந்தால் அவ்வுறுப்பு அதன் எழுவாய் எனப்படும்.
- வெளிப்படையுண்மைகளைப் பயன்படுத்திச் சூத்திரத்தின் மாறிகளை எழுவாயாக மாற்றலாம்.
- சூத்திரத்தின் ஒரு மாறியைத் தவிர மற்றைய மாறிகள் தெரியும்போது
 அம்மாறியின் பெறுமானத்தைக் காணலாம்.

ஒரு வட்டத்தின் பரிதி

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- பல்வேறு முறைகளைப் பயன்படுத்தி ஒரு வட்டத்தின் விட்டத்தைக் காண்பதற்கும்
- சூத்திரங்களைப் பயன்படுத்தி ஒரு வட்டத்தின் பரிதியையும் ஓர் அரைவட்டத்தின் சுற்றளவையும் காண்பதற்கும்
- ஒரு வட்டத்தின் பரிதியுடன் தொடர்புபட்ட பிரசினங்களைத் தீர்ப்பதற்கும் தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

வட்டங்களைப் பற்றி நீங்கள் கற்றுள்ள விடயங்களை நினைவுகூர்வதற்குப் பின்வரும் மீட்டற் பயிற்சியில் ஈடுபடுக.

மீட்டற் பயிற்சி

- 1. (a) பொருத்தமான சொற்களைப் பயன்படுத்தி வெற்றிடங்களை நிரப்புக.
 - (i) ஒரு நிலைத்த புள்ளியிலிருந்து ஒரு மாறாத் தூரத்தில் இயங்கும் ஒரு புள்ளியின் ஒழுக்கு ஆகும்.
 - (ii) ஒரு வட்டத்தின் நடுவில் உள்ள புள்ளி அதன் எனப்படும்.
 - (b) $A,\ B$ ஆகிய கூட்டங்களைப் பிரதிசெய்து தரப்பட்டுள்ள உருவைக் கொண்டு பொருத்தமான சோடிகளை இணைக்க.

A	В
புள்ளி O	ஆரை
OA BC	விட்டம்
OB	நாண்
PQ	மையம்

- 2. (i) 5 cm ஆரையுள்ள ஒரு வட்டத்தின் விட்டத்தின் நீளம் யாது?
 - (ii) 7 cm விட்டமுள்ள ஒரு வட்டத்தின் ஆரை யாது?
 - (iii) ஆரை r ஐ உடைய ஒரு வட்டத்தின் விட்டம் d எனின், d இற்கும் r இற்குமிடையே உள்ள தொடர்பைக் காட்டும் சமன்பாட்டை எழுதுக.

18.1 ஒரு வட்டத்தின் விட்டத்தையும் பரிதியையும் அளத்தல்

ஒரு வட்டத்தின் சுற்றளவு அதன் பரிதி எனப்படும்.

25 cm நீளமுள்ள ஒரு கம்பியை உருகிணைத்துச் செய்யப்பட்டுள்ள ஒரு வட்ட வளையம் உருவில் காணப்படுகின்றது. கம்பியின் நீளம் 25 cm ஆகையால் வளையத்தின் சுற்றளவு அல்லது வட்டத்தின் பரிதி 25 cm ஆகும்.

இவ்வளையத்தின் விட்டம் எவ்வளவென ஒரே தடவையில் தீர்மானிக்க முடியாது. தரப்பட்டுள்ள ஒரு வட்டத்தின் விட்டத்தைக் காணத்தக்க பல்வேறு முறைகளையும் இனங்காண்பதற்குப் பின்வரும் செயற்பாடுகளில் ஈடுபடுக.

செயற்பாடு 1

- (a) cm/mm அளவிடை உள்ள ஒரு வரைகோலைப் பயன்படுத்தி விட்டத்தை அளத்தல்.
 - **படி 1** : கவராயத்தைப் பயன்படுத்தி ஒரு விருப்பமான ஆரையுள்ள ஒரு வட்டத்தை வரைந்து அதன் மையத்தைக் குறிக்க.
 - படி 2 : வட்டத்தில் ஒரு விட்டத்தை வரைந்து cm/mm அளவிடையுள்ள ஒரு வரைகோலைப் பயன்படுத்தி அதன் நீளத்தை அளந்து எழுதுக.
- (b) ஒரு வட்ட அடரின் சமச்சீரச்சைப் பெற்று அதனை அளத்தல்
 - படி 1 : வளையல், நாணயம் போன்ற ஒரு வட்டவடிவப் பொருளைப் பயன்படுத்தி ஒரு தாளின் மீது ஒரு வட்டத்தை வரைந்து அதனை வெட்டி வேறுபடுத்துக.
 - படி 2 : வேறுபடுத்திய வட்ட அடரை இரண்டாக மடிப்பதன் மூலம் (இரு பகுதிகளும் பொருந்துமாறு) அதன் சமச்சீரச்சை குறிக்க.
 - படி 3 : சமச்சீர் அச்சு வட்டத்தின் ஒரு விட்டம் ஆகையால் அதன் நீளத்தை அளப்பதன் மூலம் வட்டத்தின் விட்டத்தைப் பெறுக.

=106

(c) - மூலைமட்டங்களைப் பயன்படுத்தி விட்டத்தை அளத்தல்

- படி 1: ஒரு நாணயம், ஒரு வளையம், ஒரு உருளைத் தகரப் பேணி, இரு மூலைமட்டங்கள், ஒரு வரைகோல் ஆகியவற்றைப் பெறுக.
- படி 2 : உருவில் உள்ளவாறு வரைகோலைத் தொடுமாறு வளையத்தையும் இரு மூலைமட்டங்களையும் வைத்து A, B எனக் காட்டப்பட்டுள்ள வாசிப்புகளைக் கொண்டு வட்டத்தின் விட்டத்தைக் காண்க.

படி 3 : எஞ்சியுள்ள பொருள்களுக்காகவும் மேற்குறித்தவாறு செயற்பாட்டில் ஈடுபட்டு, வட்ட முகங்களின் விட்டங்களைக் கண்டு பயிற்சிப் புத்தகத்தில் எழுதுக.

விட்டத்தைக் காண்பதற்கான மேலதிக முறைகள்

1. ஒரு தாளில் ஒரு செங்கோண மூலையை அமைத்து அதனை உருவில் உள்ளவாறு வட்டத்தின் மீது வைக்கும்போது 90° கோணத்தின் புயங்கள் வட்டத்தைச் சந்திக்கும் இரு புள்ளிகளுக்கும் (P உம் Q உம்) இடையே உள்ள தூரம் அவ்வட்டத்தின் விட்டமாகும்.

2. ஒரு பிறிஸ்ரல் அட்டையில் ஒரு கோணத்தை வரைந்து, அதன் கோண இருசமகூறாக்கியையும் வரைந்து கோண இருசம கூறாக்கியின் உச்சியிலிருந்து அளவு கோல் ஒன்றினைப் பயன் படுத்தியும் உருவில் காட்டப் பட்டுள்ளவாறு ஒரு வட்டத்தின் விட்டத்தைப் பெறலாம்.

ஒரு வட்டத்தின் பரிதியை அளத்தல்

நாணயம் போன்ற ஒரு வட்ட அடரின் பரிதியைக் காண்பதற்குப் பயன்படுத்தத்தக்க முறைகள் பற்றிய விளக்கத்தைப் பெறுவதற்குப் பின்வரும் செயற்பாடுகளில் ஈடுபடுக.

செயற்பாடு 2

- 1. ஒரு நூல் துண்டில் ஒரு குறியை இட்டு அவ்விடத்திலிருந்து தொடங்கி அந்நூலை வட்ட வடிவ இரண்டு ரூபாய் நாணயத்தைச் சுற்றி இழுத்து ஒரு சுற்றை அமைக்க. சுற்று முடிவடைந்த இடத்திலும் நூலின் ஒரு குறியை இட்டு, இரு குறிகளுக்குமிடையே உள்ள தூரத்தை அளவு நாடாவைப் பயன்படுத்தி அளப்பதன் மூலம் பரிதியைப் பெறுக.
- 2. ஒரு தாளின் மீது ஒரு நேர்கோட்டினை வரைக. வட்ட தட்டின் மீது ஒரு குறியை இடுக. நேர்கோடு மீதும் ஒரு குறியை இடுக. இரு குறிகளும் பொருந்துமாறு வைத்து வட்ட தட்டை நேர்கோடு வழியே ஒரு முழுச் A சுற்றுக்குச் சுற்றுக. வட்டத் தட்டு முன்னோக்கிச் சென்ற தூரத்தை அளப்பதன் மூலம் அதன் பரிதியைப் பெறுக.

கு வந் இந்தனத் அள்படத்தை முக்கம் அதன் பாதின்பட செயூக

வட்டத்தின் பரிதிக்கான சூத்திரத்தை உருவாக்கல்

ஒரு வட்டத்தின் விட்டத்திற்கும் அதன் பரிதிக்குமிடையே உள்ள தொடர்பை இனங்காண்பதற்குப் பின்வரும் செயற்பாட்டில் ஈடுபடுக.

செயற்பாடு 3

வட்ட முகம் உள்ள சில பொருள்களைப் பெற்று மேலே இனங்கண்ட முறைகளைப் பயன்படுத்திப் பரிதியையும் விட்டத்தையும் அளந்து பின்வரும் அட்டவணையைப் பூரணப்படுத்துக.

பொருள்	விட்டம் (d)	பரிதி <i>c</i> (c)	$\frac{c}{d}$ மூன்று தசம தானங்களுக்கு
1. அட்டைத் தாளிலிருந்து வெட்டி			
எடுத்த ஒரு வட்ட அடர்			
2. 2 ரூபாய் நாணயம்			
3. ஒரு தகரப் பேணியின் மூடி			
4. இறுவட்டு (CD)			

மேற்குறித்த செயற்பாட்டில் $\frac{c}{d}$ இற்குப் பெற்ற பெறுமானங்களை நண்பர்களின் விடையுடன் ஒப்பிட்டுப் பார்த்து உங்கள் முடிபை எழுதுக.

மேற்குறித்த செயற்பாட்டில் நீங்கள் அமைத்த எல்லா வட்டங்களுக்கும் $\frac{c}{d}$ இன் பெறுமானமாக 3.14 அல்லது அதற்குக் கிட்டிய ஒரு பெறுமானத்தைப் பெற்றிருப்பீர்கள். இப்பெறுமானம் எந்தவொரு வட்டத்திற்கும் பொருந்துமெனக் கணித அறிஞர்கள் கண்டுபிடித்துள்ளனர். இதற்கேற்ப ஒரு வட்டத்திற்கும் இந்த விகிதம் $\frac{c}{d}$ ஒரு மாறாப் பெறுமானமாக இருக்கும் அதே வேளை அது π என்னும் குறியீட்டினால் காட்டப்படுகின்றது. அப்பெறுமானம் இரண்டு தசமதானங்களுக்கு அண்ணளவாக 3.14 எனவும் அது ஒரு பின்ன எண்ணாகிய $\frac{22}{7}$ இற்கு அண்ணளவாகச் சமம் எனவும் நிறுவப்பட்டுளள்ளது.

$$\frac{c}{d} = \pi$$

அதாவது

$$c = \pi d$$

எனவும் ஒரு சமன்பாடாக எழுதிக் காட்டலாம். இது ஒரு வட்டத்தின் விட்டத்திற்கும் பரிதிக்குமிடையே உள்ள தொடர்பைக் காட்டும் சமன்பாடாகும். அவ்வாறே ஆரைக்கும் பரிதிக்குமிடையே உள்ள தொடர்பைக் காட்டும் சமன்பாட்டையும் இவ்வாறு பெறலாம்.

$$d=2r$$
 ஆகையால் $c=\pi\times 2r$

அதாவது

$$c = 2\pi r$$

ஒரு வட்டத்தின் பரிதி $\,c\,$ ஆகவும் விட்டம் $d\,$ ஆகவும் ஆரை $r\,$ ஆகவும் இருக்கும்போது

$$c = \pi d$$

அல்லது
$$c=2\pi r$$
 ஆகும்.

உதாரணம் 1

 $7~{
m cm}$ ஆரையுள்ள ஒரு வட்டத்தின் பரிதியைக் காண்க. $\pi=rac{22}{7}$ எனப் பயன்படுத்துக. பரிதி $c=2\pi r$ $=2 imesrac{22}{7} imes^1$

். பரிதி 44 cm ஆகும்.

பயிற்சி 18.1

 பின்வரும் அளவுகளை ஆரையாக/விட்டமாகக் கொண்ட வட்டங்களின் பரிதியைக் காண்க. π இன் பெறுமதி 22/7 எனக் கொள்க.

$$(v)$$
 விட்டம் $\frac{7}{2}$ m

(iv) ஆரை
$$17\frac{1}{2}$$
 m

18.2 அரை வட்ட அடர் ஒன்றின் சுற்றளவு

வட்ட அடர் ஒன்றை விட்டத்தினூடாக இரண்டாக வேறுபடுத்தும்போது இரு சம பகுதிகள் கிடைக்கும். அந்த ஒரு பகுதி அரைவட்ட அடர் (அரைவட்டம்) எனப்படும்.

ஓர் அரைவட்டத்தின் வளைந்த கோட்டின் நீளம் வில்லின் நீளம் எனப்படும். அது வட்டத்தின் பரிதியில் அரைவாசியாகும். அதற்கேற்ப

அரைவட்ட வில்லின் நீளம்
$$= \frac{1}{2} imes (\stackrel{1}{2}\pi r)$$

 $= \pi r$

ஓர் அரைவட்டத்தின் சுற்றளவைக் காண்பதற்கு இவ்வில் நீளத்துடன் விட்டத்தைக் கூட்ட வேண்டும் என்பது உருவிற்கேற்ப தெளிவாகும். இதற்கமைய

அரைவட்டத்தின் சுற்றளவு $=\pi r+d$

$$=\pi r+2r$$
 ($d=2r$ என்பதால்)

 \therefore அரைவட்டத்தின் சுற்றளவு = $\pi r + 2r$

உதாரணம் 1

உருவில் காணப்படும் அரைவட்டத்தின் சுற்றளவைக் காண்க.

விட்டம் d ஆகவுள்ள அரைவட்டத்தின் வில்லின் நீளம் $=rac{1}{2} \; \pi d$

். விட்டம் 21 cm ஆகவுள்ள அரைவட்டத்தின் வில்லின் நீளம் =
$$\frac{1}{2} \times \frac{22}{7} \times 21$$
 = 33

உதாரணம் 2

14 cm ஆரையும் 14 cm விட்டமும் உள்ள இரு அரைவட்டங்களைக் கொண்ட ஒரு கூட்டுரு இங்கு காணப்படுகின்றது. அதன் சுற்றளவைக் காண்க.

ஆரை
$$r$$
 ஐ உடைய அரைவட்டத்தின் வில்லின் நீளம் $\frac{1}{2} \times 2\pi r$ ஆகும்.
 $\therefore 14 \text{ cm}$ ஆரையுள்ள அரைவட்டத்தின் வில்லின் நீளம் $=\frac{1}{2} \times 2 \times \frac{22}{\sqrt{1}} \times 14 \text{ cm}$ $= 44 \text{ cm}$

விட்டம் d ஐ உடைய அரைவட்டத்தின் வில்லின் நீளம் $=rac{1}{2}\pi d$

$$\therefore 14 \, \mathrm{cm}$$
 விட்டமுள்ள அரைவட்டத்தின் வில்லின் நீளம் $= \frac{1}{2} \times \frac{22}{7} \times 14 \, \mathrm{cm} = 22 \, \mathrm{cm}$

$$= 80 \text{ cm}$$

பயிற்சி 18.2

- 1. பின்வரும் அளவுகளை உடைய அரைவட்ட அடர்களின் சுற்றளவுகளைக் காண்க. π இன் பெறுமானம் $\frac{22}{7}$ எனக் கொள்க.
 - (i) ஆரை 14 cm

- (ii) விட்டம் 7 cm
- 2. பின்வரும் தள உருக்கள் ஒவ்வொன்றிலும் நிழற்றப்பட்டுள்ள பகுதியின் சுற்றளவைக் காண்க. π இன் பெறுமானம் $\frac{22}{7}$ எனக் கொள்க.

i.

ii.

iii.

18.4 வட்டத்தின் பரிதியுடன் தொடர்புபட்ட பிரசினங்கள்

உதாரணம் 1

35 cm ஆரையுள்ள ஒரு சில்லு ஒரு நேர்கோட்டுப் பாதையில் சுழல்கின்றது.

- (i) சில்லு 1 சுற்று சுழலும்போது அது முன்னோக்கிச் செல்லும் தூரத்தை மீற்றரில் காண்க.
- (ii) 100 சுற்றுகள் சுழலும்போது எத்தனை மீற்றர் செல்லும் ?
- (iii) 1.1 km தூரம் செல்வதற்குச் சில்லு குறைந்தபட்சம் எத்தனை முழுச் சுற்றுகள் சுழல வேண்டும்?
- (i) சில்லு ஒரு முழு சுற்றுக்குச் சுழலும்போது அதன் பரிதிக்குச் சமமான தூரத்திற்கு முன்னோக்கிச் செல்கின்றது.

பரிதி =
$$2 \times \frac{22}{7} \times 35$$
 cm = 220 cm

∴ அது 1 சுற்றில் செல்லும் தூரம் = 2.2 m

(ii)~100 சுற்றுகளில் செல்லும் தூரம் $= 2.2~\mathrm{m} \times 100$

$$= 220 \text{ m}$$

1.1 km தூரம் செல்வதற்கு 500 முழுச் சுற்றுகள் சுழல வேண்டும்.

உதாரணம் 2

66 cm நீளமுள்ள ஒரு கம்பியின் இரு நுனிகளையும் உருகிணைப்பதன் மூலம் ஒரு வட்ட வடிவமான வளையம் செய்யப்பட்டுள்ளது. அதன் ஆரையைக் காண்க. ஆரை r எனின்,

 $c=2\pi r$ ஆகையால்

$$2 \times \frac{22}{7} \times r = 66$$

$$r = 66 \times \frac{7}{22} \times \frac{1}{2}$$

$$= \frac{21}{2}$$

$$= 10.5 \text{ cm}$$

∴ ஆரை = 10.5 cm

பயிற்சி 18.3

பயிற்சிகளில் π இன் பெறுமானத்தை $\pi=rac{22}{7}$ எனக் கொள்க.

1. 4.2 cm ஆரையுள்ள ஓர் அரைவட்டத்தையும் 4.2 cm விட்டமுள்ள ஓர் அரைவட்டத்தையும் சேர்த்துத் தயாரிக்கப்பட்டுள்ள ஓர் அடர் உருவில் காணப்படுகின்றது. ஓர் அலங்காரப் பெட்டியில் ஓட்டுவதற்குத் தயாரிக்கப் பட்டுள்ள இவ்வடரைச் சுற்றி ஒரு பொன்னிற றிபன் ஓட்டப்பட்டுள்ளது.

- (i) அடரைச் சுற்றி ஒட்டுவதற்குத் தேவையான றிபனின் குறைந்தபட்ச நீளத்தைக் காண்க.
- (ii) இத்தகைய 500 அடர்களில் ஒட்டுவதற்குத் தேவையான றிபனின் குறைந்தபட்ச நீளத்தைக் காண்க.
- 2. ஒரு வட்ட நிலப் பகுதியின் பரிதி 440 m ஆகும். அதன் ஆரையைக் காண்க.

3. ஓர் அரைவட்ட அடரின் சுற்றளவு 39.6 cm ஆகும். அந்த அரைவட்டத்தின் விட்டத்தைக் காண்க.

4. உருவில் ஒரு செவ்வகப் பகுதியையும் இரு அரைவட்டப் பகுதிகளையும் கொண்ட ஒரு மைதானத்தின் பரும்படிப் படம் காணப்படுகின்றது.

(i) மைதானத்தின் சுற்றளவைக் காண்க.

(ii) மைதானத்தைச் சுற்றி 2 $\frac{1}{2}$ சுற்றுகளுக்கு ஓடும்போது சென்றுள்ள தூரம் 1 km இலும் கூடியதெனக் காட்டுக.

5. ஒரு விளையாட்டு வீரர் ஒரு நேர்கோட்டுப் பாதையில் சைக்கிளைச் செலுத்து கின்றார். சைக்கிளின் ஒரு சில்லின் ஆரை 28 cm ஆகும்.

(i) சில்லு ஒரு முழுச் சுற்று சுழலும்போது சைக்கிள் முன்னோக்கிச் செல்லும் தூரத்தைக் காண்க.

(ii) சில்லு 50 சுற்றுகள் சுழலும்போது சைக்கிள் முன்னோக்கிச் செல்லும் தூரத்தை மீற்றரில் காண்க.

(iii) 1500 m தூரம் செல்கையில் சைக்கிள் சில்லு குறைந்தபட்சம் 800 சுற்றுகளேனும் சுழலுமென விளையாட்டு வீரர் கூறுகின்றார். இக்கருத்துடன் நீர் இணங்குகிறீரா? விடையை விளக்குக.

பலவினப் பயிற்சி

1. நிழற்றப்பட்ட பகுதியின் சுற்றளவைக் காண்க.

i.

ii.

2.

உருவில் காணப்படும் நான்கு அரைவட்டப் பகுதிகளைக் கொண்ட ஓர் ஒழுங்கமைப்பைத் தயார்செய்வதற்குத் தேவையான கம்பியின் குறைந்தபட்ச நீளம் $\frac{135a}{28}$ எனக் காட்டுக. ($\pi=\frac{22}{7}$)

3. கீழே உருவில் கடதாசிக் கௌவி (paper clip) ஒன்று தரப்பட்டுள்ளது. உருவில் தரப்பட்டுள்ள தகவல்களுக்கு அமைய அவ்வாறான கௌவி ஒன்றைத் தயாரிப்பதற்குத் தேவையான கம்பித் துண்டின் நீளத்தைக் காண்க.

பொழிப்பு

- ullet வட்டம் ஒன்றின் பரிதி c ஆனது $c=\pi d$ அல்லது $c=2\pi r$ இனால் தரப்படும்.
- அரைவட்ட அடர் ஒன்றின் சுற்றளவு $\pi r + 2r$ இனால் தரப்படும்.

பைதகரசின் தொடர்பு

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- செங்கோண முக்கோணியுடன் தொடர்புபட்ட பைதகரசின் தொடர்பைப் பெறுவதற்கும்
- பைதகரசின் தொடர்பின் மூலம் பிரசினங்களைத் தீர்ப்பதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

செங்கோண முக்கோணி

முக்கோணி ஒன்றின் ஒரு கோணம் 90° (செங்கோணம்) எனின், அது செங்கோண முக்கோணி எனப்படும். செங்கோணத்திற்கு எதிரான பக்கம் செம்பக்கம் எனவும் ஏனைய இரண்டு பக்கங்களும் செங்கோணத்தை ஆக்கும் பக்கங்கள் எனவும் அழைக்கப்படும்.

கீழே தரப்பட்டுள்ள முக்கோணி ABC ஐக் கருதும்போது,

 $A\hat{B}C=90^\circ$ AC என்பது செம்பக்கம் ஆகும். $AB,\ BC$ என்பன செங்கோணத்தை ஆக்கும் பக்கங்கள் ஆகும்.

செயற்பாடு 1

கீழே தரப்பட்டுள்ள உருவில் உள்ள செங்கோண முக்கோணிகளை இனங்கண்டு, தரப்பட்டுள்ள அட்டவணையைப் பூரணப்படுத்துக.

முக்கோணி	செம்பக்கம்	செங்கோணத்தை ஆக்கும் பக்கங்கள்
AOB	AB	AO,BO

19.1 பைதகரசின் தொடர்பு

கிரேக்கத்தில் வாழ்ந்த பைதகரஸ் என்னும் கணிதவியலாளர் செங்கோண முக்கோணியின் பக்கங்களின் நீளங்களுக்கு இடையிலான தொடர்பை முன்வைத்தார். இத்தொடர்பைச் செயற்பாடு ஒன்றின் மூலம் விளங்குவோம்.

பைதகரஸ்

செயற்பாடு 1

படி 1 : உருவில் காட்டப்பட்டுள்ளவாறு $QR=3~{\rm cm},~QP=4~{\rm cm},~P\hat{Q}R=90^\circ$ ஆகுமாறு செங்கோணமுக்கோணிPQRஐ வரைக. இதற்கு மூலைமட்டத்தைப் பயன்படுத்துக.

படி 2 : செம்பக்கம் *PR ஐ அ*ளந்து அது 5 cm என்பதை உறுதிப்படுத்துக.

படி 3: பக்கம் ஒன்றின் நீளம் 3 cm, 4 cm, 5 cm ஆகவுள்ள மூன்று சதுரங்களை வரைந்து, அவற்றை வெட்டியெடுத்து முறையே QR, QP, PR ஆகிய பக்கங்களின் மீது வைத்து, கீழே உருவில் காட்டியவாறு ஒட்டுக.

படி 4 : ஓவ்வொரு சதுரத்தினதும் பரப்பளவைக் கணிக்க.

QR இன் மீதுள்ள சதுரத்தின்

பரப்பளவு =
$$3 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$

QP இன் மீதுள்ள சதுரத்தின்

பரப்பளவு =
$$4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$$

PR இன் மீதுள்ள சதுரத்தின்

பரப்பளவு =
$$5 \text{ cm} \times 5 \text{ cm} = 25 \text{ cm}^2$$

இப்போது இப்பரப்பளவுகளுக்கிடையில் கீழே தரப்பட்டவாறான ஒரு தொடர்பு காணப்படுவதை அவதானிக்க.

செம்பக்கம் PR இன் $_{\pm}$ பக்கம் QR இன் $_{\pm}$ பக்கம் PQ இன் மீதுள்ள சதுரத்தின் மீதுள்ள சதுரத்தின் பரப்பளவு பரப்பளவு

செங்கோணத்தை ஆக்கும் பக்கங்களின் நீளங்கள் 6 cm, 8 cm ஆகவுள்ள செங்கோண முக்கோணி ஒன்றை வரைந்து, மேலே பெற்ற தொடர்பு காணப்படுகின்றதா என்பதைப் பரீட்சித்துப் பார்க்க.

செங்கோண முக்கோணியுடன் தொடர்புபட்ட பைதகரசின் தொடர்பைப் பின்வருமாறு கூறலாம்.

செங்கோண முக்கோணி ஒன்றின் செம்பக்கத்தின் மீது வரையப்படும் சதுரத்தின் பரப்பளவானது செங்கோணத்தை ஆக்கும் இரண்டு பக்கங்களின் மீதும் வரையப்படும் சதுரங்களின் பரப்பளவுகளின் கூட்டுத்தொகைக்குச் சமனாகும்.

பைதகரசின் தொடர்பானது பரப்பளவுகளின் மூலம் எடுத்துரைக்கப்பட்டாலும், அதனைப் பின்வருமாறு முக்கோணியின் பக்கங்களின் மூலம் இலகுவாக எழுதலாம். பைதகரசின் தேற்றத்தை முக்கோணியின் பக்கங்களின் மூலம் எழுதும் முறை

பக்கம் AB இன் மீது வரையப்படும் சதுரத்தின்

பரப்பளவு = $AB imes AB = AB^2$

BC இன் மீது வரையப்படும் சதுரத்தின்

பரப்பளவு = $BC \times BC = BC^2$

AC இன் மீது வரையப்படும் சதுரத்தின்

பரப்பளவு = $AC \times AC = AC^2$

எனவே பைதகரசின் தொடர்பிற்கு ஏற்ப,

$$AC^2 = AB^2 + BC^2$$

இதனைப் பின்வரும் முறையிலும் எழுதலாம்.

பைதகரசின் தொடர்பிற்கு ஏற்ப

$$c^2 = a^2 + b^2$$

உதாரணம் 1

செங்கோண முக்கோணி PQR இல் PQ=8 cm, QR=6 cm ஆகும். பக்கம் PR இன் நீளத்தைக் காண்க.

செங்கோண முக்கோணி PQR இற்குப் பைதகரசின் தொடர்பைப் பிரயோகிக்கும்போது

$$PR^{2} = PQ^{2} + QR^{2}$$

$$PR^{2} = 8^{2} + 6^{2}$$

$$= 64 + 36$$

$$= 100$$

$$PR = \sqrt{100}$$

$$= 10$$

∴ PR இன் நீளம் 10 cm ஆகும்.

பயிற்சி 19.1

1. கீழே தரப்பட்டுள்ள ஒவ்வொரு செங்கோண முக்கோணியிலும் தரப்பட்டுள்ள பக்கங்களின் நீளங்கள் சார்பில் பைதகரசின் தொடர்பை எழுதுக.

2. தரப்பட்டுள்ள ஒவ்வொரு உருவையும் அவதானித்து அதன் கீழே தரப்பட்ட கூற்றுக்களில் உள்ள இடைவெளிகளை நிரப்புக.

$$AC^2 = AB^2 + \dots$$

$$PR^2 = ... + ...$$

- (a) $AD^2 = \dots + \dots$
- (b) = $BO^2 + \dots$
- (c) = $BO^2 + OC^2$
- (d)+

3. கீழே தரப்பட்டுள்ள ஒவ்வொரு உருவிலும் காணப்படும் செங்கோண முக்கோணிகளை இனங்கண்டு, அம்முக்கோணிகளுக்கான பைதகரசின் தொடர்பை அதன் பக்கங்கள் சார்பில் எழுதுக.

4. தரப்பட்டுள்ள முக்கோணிக்கு ஏற்ப, அதன் கீழ்த் தரப்பட்டுள்ள கூற்றுகளின் இடைவெளிகளை நிரப்புக.

19.2 பைதகரசின் தொடர்பைப் பயன்படுத்திப் பிரசினங்களைத் தீர்ப்போம்.

உதாரணம் 1

5 m நீளமுள்ள நேர்க் கோல் ஒன்று அதன் ஒரு முனை 4 m உயரமுள்ள நிலைக்குத்தான மதில் ஒன்றின் மேல் விளிம்பைத் தொட்டுக்கொண்டும் மற்றைய முனை மதிலின் அடியிலிருந்து குறிப்பிட்ட தூரத்தில் கிடைத் தரையில் உள்ள ஒரு புள்ளியைத் தொட்டுக் கொண்டும் இருக்குமாறு வைக்கப்பட்டுள்ளது. மதிலின் அடியிலிருந்து கோல் தரையைத் தொடும் புள்ளிக்குள்ள தூரத்தைக் காண்க.

மதில் BA இனாலும் கோல் AC இனாலும் காட்டப்படுமாறு வரிப்படம் வரையப் பட்டுள்ளது.

செங்கோண முக்கோணி ABC இற்குப் பைதகரசின் தொடர்பு பயன்படுத்தப்படுகின்றமையால்

$$AC^{2} = AB^{2} + BC^{2}$$
$$5^{2} = 4^{2} + BC^{2}$$

$$25 = 16 + BC^2$$

$$BC^2 = 9$$

$$BC = \sqrt{9} = 3$$

். மதிலின் அடியிலிருந்து கோல் தரையைத் தொடும் புள்ளிக்குள்ள தூரம் 3 m ஆகும்.

பயிற்சி 19.2

1. தரப்பட்ட ஒவ்வொரு உருவிலும் அட்சரத்தால் குறிக்கப்பட்ட பக்கத்தின் நீளத்தைக் காண்க.

i.

ii.

iii.

iv.

2. தரப்பட்ட ஒவ்வொரு உருவினதும் சுற்றளவைக் காண்க.

i.

ii.

iv.

(i) சாய்சதுரம் *ABCD* இல் மூலைவிட்டம் *D* 3. BD = 16 cm, AC = 12 cm ஆகும். அவை O இல் ஒன்றையொன்று செங்குத்தாக இருசமகூறிடுகின்றன. சாய்சதுரத்தின் சுற்றளவைக் காண்க.

(ii) சதுரம் ABCD இல் மூலைவிட்டம் AC இன் நீளம் $10\,\mathrm{cm}$ எனின், சதுரத்தின் பரப்பளவைக் காண்க.

(iii) O ஐ மையமாகக் கொண்ட ஒரு வட்டத்தில் PQ என்ற நாணின் நடுப்புள்ளி R ஆகும். நீட்டப்பட்ட கோடு OR ஆனது வட்டத்தை S இல் சந்திக்கின்றது. $O\hat{R}P = 90^{\circ}, PQ = 12$ cm, OR = 8 cm எனின்,

- a. RQ இன் நீளம்
- b. வட்டத்தின் ஆரை
- c. *RS* இன் நீளம் ஆகியவற்றைக் காண்க.
- 4. முக்கோணி ABC இல் $ABC = 90^{\circ}$, AB = 8 cm, BC = 6 cm ஆகும். பக்கங்கள் AB, BC என்பவற்றின் நடுப்புள்ளிகள் முறையே P, R ஆகும். நாற்பக்கல் APRC இன் சுற்றளவைக் காண்க.

பலவினப் பயிற்சி

 ஆள்கூற்றுத் தளம் ஒன்றின் மீது A = (4, 5),
 B = (10, 13) என்னும் புள்ளிகள் அமைந்துள்ளன. A இலிருந்து B இற்கான கிட்டிய தூரம் எவ்வளவு?

- 2. நகரம் P இற்குக் கிழக்கே 5 km தூரத்தில் நகரம் Q அமைந்துள்ளது. நகரம் Q இற்கு வடக்கே 12 km தூரத்தில் நகரம் R அமைந்துள்ளது. நகரம் P இற்கும் நகரம் R இற்கும் இடையிலான நேர்கோட்டுத் தூரத்தைக் காண்க.
- 3. 16 m உயரமுள்ள கொடிக் கம்பம் ஒன்றை நிலைக்குத்தாகப் பேணுவதற்காக அதன் உச்சியுடன் இணைக்கப்பட்ட தாங்கு கம்பி ஒன்று கொடிக் கம்பத்தின் அடியிலிருந்து 12 m தூரத்தில் கிடைத்தரையின் மீது இணைக்கப்பட்டுள்ள தோடு அதற்கு எதிர்ப் பக்கத்தில் மற்றுமொரு தாங்கு கம்பியானது கொடிக் கம்பத்தின் அடியிலிருந்து 9 m தூரத்தில் கிடைத் தரையில் உள்ள புள்ளி ஒன்றுடனும் கம்பத்தின் அடியிலிருந்து 12 m உயரத்தில் கம்பத்துடனும் இணைக்கப்பட்டுள்ளது. பயன்படுத்தப்பட்டுள்ள கம்பிகளின் மொத்த நீளத்தைக் காண்க.

4. சூறாவளியின் காரணமாக மரம் ஒன்று முறிந்துள்ளதை வரிப்படம் காட்டு கின்றது. முறிவதற்கு முன்னர் மரத்தின் உயரத்தைக் காண்க.

பொழிப்பு

• பைதகரசின் தொடர்பு

செங்கோண முக்கோணி ஒன்றின் செம்பக்கத்தின் மீது வரையப்படும் சதுரத்தின் பரப்பளவானது செங்கோணத்தை ஆக்கும் இரண்டு பக்கங்களின் மீதும் வரையப்படும் சதுரங்களின் பரப்பளவுகளின் கூட்டுத்தொகைக்குச் சமனாகும்.

செங்கோண முக்கோணி ABC இற்குப் பைதகரசின் தேற்றத்திற்கேற்ப

$$AC^2 = AB^2 + BC^2$$
 அல்லது $c^2 = a^2 + b^2$ எனக் குறிக்கலாம்.

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- சார்புகளை இனங்காண்பதற்கும்
- y = mx, y = mx + c என்னும் வடிவங்களில் உள்ள சார்புகளின் வரைபுகளை வரைவதற்கும் அவற்றின் இயல்புகளை இனங்காண்பதற்கும்
- ஒரு நேர்கோட்டு வரைபின் படித்திறனையும் வெட்டுத்துண்டையும் எழுதுவதற்கும்
- ullet வடிவம் ax + by = c இல் உள்ள சமன்பாடுகளின் வரைபுகளை வரைவதற்கும் அவற்றின் இயல்புகளை இனங்காண்பதற்கும்
- ஒன்றுக்கொன்று சமாந்தரமான வரைபுகளின் படித்திறன்களுக்கிடையேயான தொடர்பை அறிந்துகொள்வதற்கும்

தேவையான ஆற்றல்களைப் பெறுவீர்கள்.

வரைபுகள் பற்றி நீங்கள் முந்திய தரங்களில் கற்ற விடயங்களை நினைவுகூர்வதற்குப் பின்வரும் மீட்டற் பயிற்சியில் ஈடுபடுக.

மீட்டற் பயிற்சி

- 1. (i) x, y அச்சுகள் ஒவ்வொன்றின் வழியேயும் -5 தொடக்கம் 5 வரையுள்ள பெறுமானங்கள் இடம்பெறும் ஓர் ஆள்கூற்றுத் தளத்தை வரைந்து அதில் A (-4, -4) , B (4, -4)என்னும் புள்ளிகளைக் குறிக்க. ABCD ஒரு சதுரமாக இருக்குமாறு C, D ஆகிய புள்ளிகளைக் குறித்து C, D ஆகியவற்றின் ஆள்கூறுகளை எழுதுக.
 - (ii) தள உருவம் ABCD இன் ஒவ்வொரு பக்கத்தினதும் சமன்பாட்டை எழுதுக.
- 2. x, y அச்சுகள் ஒவ்வொன்றின் வழியேயும் -4 தொடக்கம் 4 வரையுள்ள பெறுமானங்கள் இடம்பெறும் ஓர் ஆள்கூற்றுத்தளத்தை வரைக.
 - (i) புள்ளி (4, -4)இனூடாக x அச்சிற்குச் சமாந்தரமான ஒரு நேர்கோட்டையும் y அச்சிற்குச் சமாந்தரமான ஒரு நேர்கோட்டையும் வரைக.
 - (ii) (- 3, 2) இனூடாக *x* அச்சிற்குச் சமாந்தரமான ஒரு நேர்கோட்டையும் *y* அச்சிற்குச் சமாந்தரமான ஒரு நேர்கோட்டையும் வரைக.
 - (iii) மேலே (i) இலும் (ii) இலும் வரையப்பட்டுள்ள கோடுகள் ஒன்றையொன்று இடைவெட்டும் இரு புள்ளிகளினதும் ஆள்கூறுகளை எழுதுக.
 - (iv) மேலே (iii) இற் பெற்ற தள உருவத்தின் சமச்சீரச்சுகளின் சமன்பாடுகளை எழுதுக.

20.1 சார்புகள்

பல்வேறு கணியங்களுக்கிடையே உள்ள தொடர்புடைமைகள் பற்றி நாம் வெவ்வேறு சந்தர்ப்பங்களில் கற்றுள்ளோம். கீழே தரப்பட்டுள்ள இரு கணியங்களுக்கிடையே உள்ள தொடர்புடைமையை நன்றாக அவதானிக்க.

ஒரு குறித்த வகை மணிகளின் \lg இன் விலை ரூ. 10 எனக் கொள்வோம். அவ்வகையைச் சேர்ந்த மணிகளின் அளவும் விலைகளும் கீழே தரப்பட்டுள்ளன.

மணிகளின் திணிவு (g)	வിலை (ரூ.)
1	- 1	$\times 10 = 10$
2	- 2	$\times 10 = 20$
3	- 3	$\times 10 = 30$
4	- 4	$\times 10 = 40$

இதற்கேற்ப மணிகளின் திணிவு x g இன் எண்ணிக்கையின் விலை ரூ. 10x என்பது தெளிவாகும். மணிகளின் திணிவு x g இன் விலையை ரூ. y இனால் காட்டினால், y=10x என எழுதலாம் என்பதும் தெளிவாகும்.

இங்கு மணிகளின் திணிவு $(x \ g)$ எனவும் அவற்றின் திணிவுகளுக்கு ஒத்த விலை $e_{\rm T}$. (y) எனவும் கொள்வோம்.

இத்தொடர்பில் x இன் மூலம் வகைகுறிக்கப்படும் கணியமாகிய மணிகளின் திணிவை x அச்சு வழியே குறித்து அதற்கு ஒத்த கணியத்தை வகைகுறிக்கும் விலையின் பல்வேறு பெறுமானங்களை y அச்சு வழியே குறிப்பதன் மூலம் பின்வரும் நேர்கோட்டு வடிவத்தில் உள்ள ஒரு வரைபைப் பெறலாம்.

y=10x என முன்வைத்த சார்பின் சாரா மாறியை வகைகுறிக்கும் x இன் சுட்டி 1 ஆகையால், அது ஓர் ஏகபரிமாணச் சார்பு எனப்படும்.

ஓர் ஏகபரிமாணச் சார்பு தரப்படும்போது பின்வருமாறு அதன் x இன் பெறுமானங்களை ஒத்த y இன் பெறுமானங்களைப் பெறலாம்.

உதாரணம் 1

பின்வரும் ஏகபரிமாணச் சார்புகளின் தரப்பட்டுள்ள x இன் பெறுமானங்களுக்கு ஒத்த y இன் பெறுமானங்களைக் கணித்து வரிசைப்பட்ட சோடிகளாக எழுதுக.

i.
$$y = 2x$$
 (x இன் பெறுமானம் $-2, -1, 0, 1, 2$)

ii.
$$y = -\frac{3}{2}x + 2$$
 (x இன் பெறுமானம் $-4, -2, 0, 2, 4$)

i.
$$y = 2x$$

ii.
$$y = -\frac{3}{2}x + 2$$

x	2x	У	வரிசைப்பட்ட சோடி (x, y)
-2	2×-2	-4	(-2, -4)
- 1	2×-1	-2	(-1, -2)
0	2×0	0	(0, 0)
1	2×1	2	(1, 2)
2	2×2	4	(2, 4)

x	$-\frac{3}{2}x+2$	У	வரிசைப்பட்ட சோடி (x, y)
-4	$-\frac{3}{2} \times -4 + 2$	8	(-4, 8)
-2	$-\frac{3}{2} \times -2 + 2$	5	(-2,5)
0	$-\frac{3}{2} \times 0 + 2$	2	(0, 2)
2	$-\frac{3}{2} \times 2 + 2$	- 1	(2,-1)
4	$-\frac{3}{2} \times 4 + 2$	-4	(4, -4)

பயிற்சி 20.1

- 1. பின்வரும் சார்புகளின் தரப்பட்டுள்ள x இன் பெறுமானங்களிற்கு ஒத்த y இன் பெறுமானத்தைக் கண்டு வரிசைப்பட்ட சோடியாக எழுதுக.
 - (i) y = 3x (x இன் பெறுமானங்கள் -2, -1, 0, 1, 2 ஆகும்.)
 - (ii) y = 2x + 3 (x இன் பெறுமானங்கள் -3, -2, -1, 0, 1, 2, 3 ஆகும்.)
 - (iii) $y = -\frac{1}{3}x 2$ (xஇன் பெறுமானங்கள் -6, -3, 0, 3, 6 ஆகும்.)

20.2 வடிவம் y=mx இல் உள்ள சார்புகளும் அவ்வாறான ஒரு சார்பின் வரைபின் படித்திறனும்

 $y=3x,\ y=-2x,\ y=x$ என்னும் ஏகபரிமாணச் சார்புகள் வடிவம் y=mx இல் உள்ள ஏகபரிமாணச் சார்புகளுக்கு உதாரணங்களாகும். சார்பு y=3x ஐ வரைபு முறையாக x இன் பெறுமானம் -2 இலிருந்து +2 வரைக்கும் வகைகுறிப்பதற்குத் தேவையான வரிசைப்பட்ட சோடிகளைப் பின்வருமாறு ஓர் அட்டவணையைக் கொண்டு பெறுவோம்.

y=3	y = 3x					
x	3x	у	(x, y)			
-2	3 × - 2	-6	(-2, -6)			
- 1	3 × –1	- 3	(-1, -3)			
0	3 × 0	0	(0, 0)			
1	3 × 1	3	(1, 3)			
2	3 × 2	6	(2, 6)			

பெற்ற வரிசைப்பட்ட சோடிகளைப் பின்வரும் ஆள்கூற்றுத் தளத்தின் மீது குறிப்பதன் மூலம் சார்பு y=3x இன் வரைபைப் பின்வருமாறு வரையலாம்.

மேலே வரைந்த வரைபின் சில இயல்புகள் பற்றி ஆராய்வோம்.

- வரைபு ஒரு நேர்கோடாகும்.
- ullet அது புள்ளி (0,0) இனூடாகச் செல்கின்றது.
- அது x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக ஒரு கூர்ங்கோணத்தை
 உண்டாக்குகின்றது.
- கோடு மீது உற்பத்தி தவிர்ந்த எந்தவொரு புள்ளியையும் எடுக்கும்போது அப்புள்ளியின் $\frac{y}{x}$ ஆள்கூறு மூலம் கிடைக்கும் விகிதம் மாறாததாகும் (ஒரு மாறிலி).

உதாரணமாக, புள்ளி
$$P$$
 ஐ எடுக்கும்போது $\dfrac{y}{x}$ ஆள்கூறு $\dfrac{6}{2}=3$

புள்ளி
$$Q$$
 ஐ எடுக்கும்போது $\frac{y}{x}$ ஆள்கூறு $=\frac{-3}{-1}=3$

மேலும் இம்மாறாப் பெறுமானம் y = mx வடிவத்திலான சமன்பாட்டில் குறிப்பிடப்படும் x இன் குணகத்தின் பெறுமானமாகிய m இற்குச் சமமாகும்.

இம்மாறாப் பெறுமானம் வரைபின் **படித்திறன்** எனப்படும்.

படித்திறனுக்கு நேர்ப் பெறுமானத்தைப் போன்று மறைப் பெறுமானமும் இருக்கலாம். y = mx இன் நடத்தையைப் பின்வரும் செயற்பாட்டினூடாக விளங்கிக் கொள்வோம்.

செயற்பாடு 1

1. a. படித்திறன் நேர்ப் பெறுமானமுள்ள சார்பு y = mx என்னும் வடிவத்தில் தரப்பட்டுள்ள சார்புகளில் வரைபுகளை வரைவதற்குத் தேவையான பெறு மான அட்டவணைகளைப் பூரணப்படுத்தி உரிய வரைபுகளை ஒரே ஆள்கூற்றுத் தளத்தில் வரைக.

(i)
$$y = x$$

(ii)
$$y = +3x$$

$$(iii) y = +\frac{1}{3} x$$

x	-2	0	2
y			+2

x	- 1	0	1
у	- 3		

х	- 3	0	3
у			+ 1

b. படித்திறன் மறைப் பெறுமானமுள்ள சார்பு y = -mx என்னும் வடிவில் தரப்பட்டுள்ள சார்புகளை வரைவதற்குத் தேவையான பெறுமான அட்டவணை களைப் பூரணப்படுத்தி உரிய வரைபுகளை ஒரே ஆள்கூற்றுத் தளத்தில் வரைக.

(i)
$$y = -x$$

(ii)
$$y = -3x$$

(iii)
$$y = -\frac{1}{3}x$$

X	-2	0	2
у			-2

X	- 1	0	1
у		0	

x	- 3	0	3
у	1		

மேலே (a), (b) ஆகிய சந்தர்ப்பங்களில் பெற்ற வரைபுகளைக் கொண்டு சார்புகளில் படித்திறன்களின் (m) மாற்றத்திற்கேற்ப வரைபு x அச்சின் நேர்த் திசையுடன் இடஞ் சுழியாக ஆக்கும் கோணங்களுக்கிடையே உள்ள தொடர்புடைமையை அவதானிக்க.

மேற்குறித்த செயற்பாட்டில் ஈடுபட்ட உங்களுக்குப் பின்வருமாறான வரைபுகள் கிடைத்திருக்கும்.

(a) படித்திறன் நேர்ப் பெறுமானமாக இருக்கும்போது கிடைக்கும் வரைபுகள்

- \star படித்திறன் (m இன் பெறுமானம்) நேர்ப் பெறுமானமாக இருக்கும்போது வரைபு x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக ஆக்கும் கோணம் கூர்ங்கோணம் ஆகும்.
- ★ படித்திறனின் பெறுமானம் அதிகரிக்கும்போது உரிய வரைபானது x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக அமைக்கும் கோணத்தின் பருமனும் அதிகரிக்கின்றது.
- (b) படித்திறன் மறைப் பெறுமானமாக இருக்கும்போது பெறப்படும் வரைபுகள்

- \star படித்திறன் (m இன் பெறுமானம்) மறைப் பெறுமானமாக இருக்கும்போது வரைபு x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக ஆக்கும் கோணம் விரிகோணம் ஆகும்.
- ⋆ படித்திறன் (mஇன் பெறுமனம்) மறையாக அதிகரித்துச் செல்லும்போது உரிய வரைபானது x அச்சின் நேர்த்திசையுடன் அமைக்கும் கோணத்தின் பருமனும் அதிகரிக்கும்.

ஒரு வரைபின் படித்திறன்

சார்பு y = x இன் வரைபின் படித்திறன் 1 ஆகும். x இன் பெறுமானம் ஓர் அலகினால் அதி கரிக்கும்போது அதனை ஒத்த y இன் பெறுமானம் ஓர் அலகினால் அதிகரிக்கும் என்பதாகும்.

சார்பு y=-x இல் x இன் பெறுமானம் 1 அலகினால் அதிகரிக்கும்போது y இன் பெறுமானம் 1 அலகினால் குறையும் என்பதாகும்.

உதாரணம் 1

வரைபை வரையாமல் தரப்பட்டுள்ள ஒவ்வொரு சார்பினதும் வரைபின் படித்திறனை எழுதுக.

i.
$$y = 2x$$

ii.
$$y = -5x$$

iii.
$$y = -\frac{1}{2}x$$

i. படித்திறன்
$$(m) = 2$$

$$ii$$
. படித்திறன் $(m) = -5$

iii. படித்திறன்
$$(m) = -\frac{1}{2}$$

உதாரணம் 2

- i. y = 2x, y = -3x ஆகிய நேர்கோடுகளின் வரைபுகளை x இற்குப் பொருத்தமான பெறுமானங்களை எடுத்து ஒரே ஆள்கூற்றுத் தளத்தில் வரைக.
- ii. மேலே வரைந்த வரைபுகளைப் பயன்படுத்தி y=3 ஆகும்போது x இன் பெறுமானங்களையும் x=2.5 ஆகும்போது y இன் பெறுமானங்களையும் வெவ் வேறாகக் காண்க.

i.	ν	=	2x

x	-2	-1	0	1	2
+2x	2×-2	2×-1	2×0	2 × 1	2×2
у	-4	-2	0	2	4

$$y = -3x$$

Ī	х	-2	-1	0	1	2
	-3x	-3×-2	-3×-1	-3×0	-3×1	-3×2
	у	6	3	0	- 3	-6

மேற்குறித்த வரிசைப்பட்ட சோடிகளை ஒரே ஆள்கூற்றுத் தளத்தில் குறிக்கும்போது பின்வருமாறான வரைபுகள் பெறப்படும்.

ii. x = 2.5 ஆகும்போது y இன் பெறுமானத்தைப் பெற்றுக் கொள்வதற்குக் கோடு x = 2.5 ஐ வரைந்து (சிவப்பு நிறத்தினால் தரப்பட்டுள்ளது) அது வரைபுகளை இடைவெட்டும் புள்ளிகளின் x ஆள்கூறுகளைப் பெற்றுக் கொள்ள வேண்டும்.

அப்போது x இன் பெறுமானம் 2.5 ஆகும்போது,

சார்பு y=2x இல் x இன் பெறுமானம் 5 ஆகும்.

சார்பு y = -3x இல் y இன் பெறுமானம் -7.5ஆகும்.

y=3 ஆகும்போது x இன் பெறுமானத்தைப் பெற்றுக் கொள்வதற்குக் கோடு y=3 ஐ வரைந்து (பச்சை நிறத்தினால் தரப்பட்டுள்ளது.) அது வரைபுகளை இடைவெட்டும் புள்ளிகளின் x ஆள்கூறுகளைப் பெற்றுக் கொள்ள வேண்டும்.

அப்போது y இன் பெறுமானம் 3 ஆகும்போது,

சார்பு y=2xஇல், x இன் பெறுமானம் $1\frac{1}{2}$ ஆகும்.

சார்பு y = -3x இல், x இன் பெறுமானம் -1 ஆகும்.

பயிற்சி 20.1

1. $l_{_1}$, $l_{_2}$, $l_{_3}$, $l_{_4}$ இனால் காட்டப்படும் வரைபுகளுக்கு உரிய சார்புகளைப் பின்வருவனவற்றிலிருந்து தெரிந்தெடுத்து எழுதுக.

i.
$$y = 3x$$

ii. $y + 2x = 0$
iii. $2y - x = 0$
iv. $y + \frac{3}{2}x = 0$

- 2. குறித்த ஒரு தினத்தில் சிங்கப்பூர் டொலர் ஒன்றின் பெறுமதி இலங்கை ரூபாயில் ரூ. 100 ஆகும். சிங்கப்பூர் டொலரின் எண்ணிக்கையை x எனவும் அதன் ஒத்த இலங்கை ரூபாயின் பெறுமதியை y எனவும் கொண்டு அவற்றிற்கிடையேயான தொடர்புடைமையை y=100x என எழுதலாம்.
 - (i) மேற்குறித்த வரைபை வரைவதற்குப் பொருத்தமான ஒரு பெறுமான அட்ட வணையைத் தயாரிக்க (x இற்கு 1, 2, 3, 4 ஆகிய பெறுமானங்களை எடுக்க).
 - (ii) மேற்குறித்த சார்பின் வரைபை வரைக.
 - (iii) மேலே வரைந்த வரைபைக் கொண்டு 4.3 சிங்கப்பூர் டொலரின் விலையைப் பெறுக.
 - (iv) ரூ. 250 இற்கு எத்தனை சிங்கப்பூர் டொலர்களை வாங்கலாம் என்பதை வரைபைப் பயன்படுத்திக் காண்க.

- 3. பின்வரும் கூற்றுகளுக்கிடையே சரியான கூற்றுக்கு எதிரே '✔' அடையாளத்தையும் பிழையான கூற்றுக்கு எதிரே '⊁' அடையாளத்தையும் இடுக.
 - (i) வடிவம் y=mx இல் உள்ள ஒரு சார்பில் m இன் குறியின் மூலம் கோட்டின் திசை துணியப்படும். ()
 - (ii) வடிவம் y=mx இல் உள்ள ஒரு சார்பின் வரைபு தரப்படும்போது y அச்சு மீது உள்ள சமச்சீரைப் பயன்படுத்தி y=-mx இன் வரைபை அமைக்க முடியாது.
 - (iii) உற்பத்தியினூடாகச் செல்லும் ஒரு நேர்கோட்டின் உற்பத்தி தவிர அதன் மீது இருக்கும் வேறொரு புள்ளியின் y ஆள்கூறுக்கும் x ஆள்கூறுக்குமிடையே உள்ள விகிதம் அதன் படித்திறனுக்குச் சமமாகும்.
 - (iv) புள்ளி (-2,3) ஆனது கோடு 2y+3x=0 மீது இருக்கின்ற போதிலும் கோடு 2y-3x=0 மீது இருப்பதில்லை. ()
 - (v) y = mx இன்மூலம் காட்டப்படும் நேர்கோட்டுத் தொகுதியைத் திருப்தியாக்கும் ஒரே புள்ளி (0,0) அன்று.
- 4. (i) x இற்கு -6, -3, 0, 3, 6 என்னும் பெறுமானங்களைக் கொண்டு $y=\frac{1}{3}x$, 3y=2x, $y=-1\frac{1}{3}x$ ஆகியவற்றின் வரைபுகளை வரைவதற்கு ஒரு பெறுமான அட்டவணையை உருவாக்குக.
 - (ii) மேற்குறித்த வரைபுகளை ஒரே ஆள்கூற்றுத் தளத்தில் வரைக.
 - (iii) வரைபுகள் x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக ஆக்கும் கோணங்களின் பருமனுக்கேற்ப ஏறுவரிசையில் இருக்குமாறு மேற்குறித்த சார்புகளை எழுதுக.
- 5. (i) சார்பு $y = -\frac{2}{3} x$ இன் வரைபை வரைவதற்குப் பின்வரும் பூரணமற்ற அட்டவணையைப் பூரணப்படுத்துக.

x	-6	-3	0	3	6
y	4			-2	

- (ii) பூரணப்படுத்திய அட்டவணையைக் கொண்டு மேற்குறித்த சார்பின் வரைபை வரைக.
- (iii) x=-2 ஆக இருக்கும்போது y இன் பெறுமானத்தை வரைபைக் கொண்டு பெறுக.
- (iv) புள்ளி $\left(-\frac{2}{3}, \frac{2}{3}\right)$ ஆனது மேற்குறித்த வரைபு மீது இருக்கின்றதா? காரணங்களுடன் விளக்குக.
- (v) கோடு மீது உள்ள மூன்று புள்ளிகளின் ஆள்கூறுகளைத் தெரிந்தெடுத்து அவற்றின் y ஆள்கூறுக்கும் x ஆள்கூறுக்குமிடையே உள்ள விகிதத்தைக் காண்க. அதன் பெறுமானத்திற்கும் கோட்டின் படித்திறனுக்குமிடையே உள்ள தொடர்பை எழுதுக.

20.3 y = mx + c, ax + by = c வடிவத்திலான சார்புகளின் வரைபுகள்

• y=mx+c வடிவத்திலான சார்புகளின் வரைபுகள்

முதலில் y = mx + c வடிவத்திலான சார்புகளின் வரைபு பற்றி ஆராய்வோம். இதற்காக y = 3x + 1 என்னும் சார்பின் வரைபை வரைவோம்.

இச்சார்பை வரைவதற்குப் பின்வருமாறு ஒரு பெறுமான அட்டவணையை உருவாக்குவோம்.

y = 3x + 1

y JA	' 1		
х	3x + 1	У	(x, y)
-2	$3 \times (-2) + 1$	- 5	(-2, -5)
- 1	$3 \times (-1) + 1$	-2	(-1, -2)
0	$3 \times (0) + 1$	1	(0, 1)
1	$3 \times (1) + 1$	4	(1, 4)
2	$3 \times (2) + 1$	7	(2, 7)

இப்பெறுமான அட்டவணையினூடாகப் பெற்ற வரிசைப்பட்ட சோடிகளை ஓர் ஆள்கூற்றுத் தளத்தில் குறிக்கும்போது கிடைக்கும் வரைபு கீழே உள்ளவாறு இருக்கும்.

இவ்வரைபை நோக்குவதன் மூலம் பின்வரும் இயல்புகளை அறிந்து கொள்ளலாம்.

- ஒரு நேர்கோட்டு வரைபாகும்.
- நேர்கோடு y அச்சை (0, 1) இல் இடைவெட்டுகின்றது.
- நேர்கோடு x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக ஒரு கூர்ங்கோணத்தை ஆக்குகின்றது. இக்கோட்டில் m இன் பெறுமானம் +3 ஆகும். மாறி x ஆனது 1 அலகினால் அதிகரிக்கும்போது அதனை ஒத்த மாறி y உம் 3 அலகுகளினால் அதிகரிக்கின்றது என்பது இதன் மூலம் தெளிவாகின்றது.
- சமன்பாடு y = 3x + 1 இல் c ஐ வகைகுறிக்கும் பெறுமானம் + 1 ஆகும். நேர்கோடு y அச்சை இடைவெட்டும் புள்ளியிலிருந்து உற்பத்திக்கு உள்ள தூரமும் ஓரலகாகும். இவ்விரு பெறுமானங்களும் சமம்.

வரைபு y அச்சைச் சந்திக்கும் புள்ளியின் y ஆள்கூறு **வெட்டுத்துண்டு** எனப்படும். இந்நேர்கோட்டின் வெட்டுத்துண்டு +1 ஆகும்.

இதற்கேற்ப வடிவம் y=mx+c இல் உள்ள ஒரு சார்பின் வரைபின் படித்திறன் m இனாலும் வெட்டுத்துண்டு c இனாலும் காட்டப்படும்.

உதாரணம் 1

சார்பு y=x-2 இன் வரைபைப் பொருத்தமான ஓர் அட்டவணையைத் தயாரித்து வரைக. வரைபிலிருந்து

i. வெட்டுத்துண்டு

 ${f ii.}$ x=2.5 ஆகும்போது y இன் பெறுமானம்

iii. $y = -\frac{1}{2}$ ஆகும்போது x இன் பெறுமானம் ஆகியவற்றைக் காண்க.

$$y = x - 2$$
 x
 $y = x - 2$
 $y = x - 2$

ii.
$$x = 2.5$$
 ஆகும்போது $y = \frac{1}{2}$.

iii.
$$y = -\frac{1}{2}$$
 ஆகும்போது $x = 1\frac{1}{2}$.

உதாரணம் 2

வரைபை வரையாமல் ஒவ்வொரு சார்பினதும் படித்திறனையும் வெட்டுத்துண்டையும் எழுதுக.

i.
$$y = -2x + 5$$

ii.
$$y + 3x = -2$$

i. சார்பு
$$y = -2x + 5$$
 ஆனது $y = mx + c$ வடிவத்தில் உள்ளது.
இதற்கேற்ப, படித்திறன் $(m) = (-2)$
வெட்டுத்துண்டு $(c) = 5$

ii. சார்பு
$$y+3x=-2$$
 ஐ முதலில் $y=mx+c$ வடிவத்தில் எழுதுவோம். அப்போது, $y=-3x-2$ ஆகும். படித்திறன் $=-3$

உதாரணம் 3

 $y=2x,\ y=2x+1,\ y=2x-3$ ஆகிய மூன்று வரைபுகளையும் பொருத்தமான பெறுமான அட்டவணைகளிலிருந்து ஒரே ஆள்கூற்றுத் தளத்தில் வரைக.

- i. சார்பை அவதானித்து ஒவ்வொரு வரைபினதும் படித்திறனையும் வெட்டுத்துண் டையும் எழுதுக.
- ii. வரைபுகள் பற்றி நீர் அவதானிக்கக்கூடிய ஒரு சிறப்புப் பண்பை எழுதுக.

$$y = 2x$$

х	-1	0	1
у	-2	0	2

$$y = 2x + 1$$

$$y = 2x - 3$$

х	-1	0	1
у	-5	-3	-1

- y = 2x
 படித்திறன் = 2
 வெட்டுத்துண்டு = 0
- y = 2x + 1
 படித்திறன் = 2
 வெட்டுத்துண்டு = 1
- y = 2x 3
 படித்திறன் = 2
 வெட்டுத்துண்டு = 3

ii. சார்புகளை அவதானிக்கும்போது மேற்குறித்த வரைபுகளின் படித்திறன்கள் சமனானவை என்பது தெளிவாகும். வரைபை அவதானிப்பதன் மூலம் அவை ஒன்றுக்கொன்று சமாந்தரமானவை என்பதை நீங்கள் காண்பீர்கள்.

இதற்கேற்ப, இரண்டு அல்லது இரண்டுக்கு மேற்பட்ட சார்புகளின் படித்திறன்கள் சமனாயின், அவற்றின் வரைபுகள் ஒன்றுக்கொன்று சமாந்தரமானவை என்பது தெளிவாகிறது.

ullet ax+by=c வடிவத்திலான சார்புகளின் வரைபுகள்

ax + by = c வடிவத்திலான சார்புகளின் வரைபுகள் பற்றி ஆராய்வோம். இவ்வரைபு களை y = mx + c என்னும் வடிவத்தில் அமைத்துக் கொள்வது இலகுவானதாகும். கீழே தரப்பட்டுள்ள உதாரணத்தின் மீது கவனத்தைச் செலுத்துக.

உதாரணம் 1

சார்பு 3x+2y=6 இன் வரைபைப் பொருத்தமான ஓர் அட்டவணையைத் தயாரித்து வரைக.

வரைபிலிருந்து

- i. வரைபு பிரதான அச்சுகளை இடைவெட்டும் புள்ளிகளின் ஆள்கூறுகளை எழுதுக.
- ii. வரைபின் படித்திறனையும் வெட்டுத்துண்டையும் எழுதுக.

முதலில் மேற்குறித்த சார்பை y=mx+c என்னும் வடிவத்தில் எழுதுவோம்.

அப்போது
$$3x + 2y = 6$$
 $2y = -3x + 6$ $y = -\frac{3}{2}x + 3$ ஆகும்.

இச்சார்பை வரைவதற்குத் தேவையான ஆள்கூற்றுச் சோடிகளைக் கீழே தரப்பட்டுள்ள அட்டவணையிலிருந்து கணித்து உரிய வரைபை வரைவோம்.

$$y = -\frac{3}{2}x + 3$$

x	$-\frac{3}{2}x+3$	y
-2	$-\frac{3}{2}\times-2+3$	6
0	$-\frac{3}{2}\times 0+3$	3
2	$-\frac{3}{2} \times 2 + 3$	0
4	$-\frac{3}{2}\times 4+3$	- 3

i. y அச்சை (0,3) இலும் x அச்சை (2,0) இலும் இடைவெட்டுகின்றது.

$$\mathbf{ii.}$$
 படித்துறன் $(m)=\frac{3}{2}$, வெட்டுத்துண்டு $(c)=3$

மேலே உள்ள 3x + 2y = 6 இன் வரைபிலிருந்து

- வரைபு y அச்சை வெட்டும் புள்ளியின் ஆள்கூறுகள் (0,3) ஆகும். இதில் xஇன் குணகமாகிய 3 ஆனது y ஆள்கூறாக அமைகின்றது.
- ullet வரைபு x அச்சை வெட்டும் புள்ளியின் ஆள்கூறு (2,0) ஆகும். x ஆள்கூறு y இன் குணகமாக அமைகின்றது.
- இவ்விரு புள்ளிகளையும் இணைப்பதன் மூலம் நாம் வரைபை வரையலாம்.

1. பின்வரும் தொகுதி (a), (b) இல் தரப்பட்டுள்ள சார்புகள் ஒவ்வொன்றினதும் வரைபுகளை வரையாமல் படித்திறனையும் வெட்டுத்துண்டையும் அவ்வரைபுகள் x அச்சின் நேர்த் திசையுடன் இடஞ்சுழியாக ஆக்கும் கோணம் கூர்ங்கோணமா, விரிகோணமா என எழுதுக.

(a) i.
$$v = x + 3$$

ii.
$$y = -x + 4$$

iii.
$$y = \frac{2}{3}x - 2$$

iv.
$$y = 4 + \frac{1}{2}x$$

(b) i.
$$2y = 3x - 2$$

ii.
$$4y + 1 = 4x$$

(a) i.
$$y = x + 3$$
 ii. $y = -x + 4$ iii. $y = \frac{2}{3}x - 2$ iv. $y = 4 + \frac{1}{2}x$
(b) i. $2y = 3x - 2$ ii. $4y + 1 = 4x$ iii. $\frac{2}{3}x + 2y = 6$

 $oldsymbol{2}$. பின்வரும் வரைபுகள் ஒவ்வொன்றும் $oldsymbol{x}$ அச்சைச் சந்திக்கும் புள்ளியின் ஆள்கூறுக ளையும் y அச்சைச் சந்திக்கும் புள்ளியின் ஆள்கூறுகளையும் எழுதி, ஒவ்வொரு வரைபையும் வரைக.

(a) i.
$$y = 2x + 3$$

ii.
$$y = \frac{1}{2}x + 2$$

(b) i.
$$2x - 3y = 6$$

(b) i.
$$2x - 3y = 6$$
 ii. $-2x + 4y + 2 = 0$

3. பின்வரும் தகவல்களைக் கொண்டு ஒவ்வொரு நேர்கோட்டினதும் சமன்பாட்டை எழுதுக.

படித்திறன் (m)	வெட்டுத்துண்டு (c)	சார்பின் சமன்பாடு
+ 2	-5	y = 2x - 5
-3	+4	
$-\frac{1}{2}$	-3	
$\frac{3}{2}$	+1	
1	0	

சார்பு y=-3x-2 இன் வரைபை வரைவதற்குத் தேவையான, பெறுமானங்கள் இடம்பெறும் ஒரு பூரணமற்ற பெறுமான அட்டவணை கீழே தரப்பட்டுள்ளது.

х	-2	-1	0	1	2
у			-2		-8

- (i) வெற்றிடங்களை நிரப்புக.
- (ii) மேற்குறித்த சார்பின் வரைபை வரைக.
- (iii) மேற்குறித்த ஆள்கூற்றுத் தளத்தின் மீதே கோடு y=x ஐ வரைந்து கோட்டுச் சோடி இடைவெட்டும் புள்ளியின் ஆள்கூறுகளை எழுதுக.
- 5. x இன் பொருத்தமான பெறுமானங்களைத் தெரிந்தெடுத்துப் பின்வரும் சார்புகள் ஒவ்வொன்றினதும் வரைபுகளை ஒரே ஆள்கூற்றுத் தளத்தில் வரைக.

i.
$$y = x$$

ii.
$$y = -2x + 2$$

iii.
$$y = \frac{1}{2}x + 1$$

ii.
$$y = -2x + 2$$
 iii. $y = \frac{1}{2}x + 1$ iv. $y = -\frac{1}{2}x - 3$

- ஆயிடையில் வரைக.
 - **a.** -3x + 2y = 6, 3x + 2y = -6 ஆகிய வரைபுகள் (x பெறுமானங்கள் -4, -2, 0, 2, 4 இற்கு)
 - **b.** y + 2x = 4, -2x + y = -4 ஆகிய வரைபுகள் (x பெறுமானங்கள் -2, -1, 0, 2 இற்கு)
- 7. கீழே தரப்பட்டுள்ள வரைபுகளிலிருந்து $AB,\ PQ$ ஆகிய நேர்கோடுகளின் சமன்பாடுகளை எழுதுக.

பலவினப் பயிற்சி

- 1. பின்வரும் கூற்றுகள் ஒவ்வொன்றும் சரியாயின் '✓' அடையாளத்தையும் பிழை யாயின் '≭' அடையாளத்தையும் இடுக.
 - (i) வடிவம் y = mx + c இல் உள்ள ஒரு சார்பில் m இன் எல்லாப் பெறுமானங்களுக்கும் பிரதான அச்சுகளுக்குச் சமாந்தரமல்லாத கோடுகள் கிடைக்கும். (..........)
 - (ii) வடிவம் y = mx + c இல் உள்ள ஒரு சார்பில் m இன் பெறுமானத்தின் மூலம் கோட்டின் திசை துணியப்படும் அதே வேளை c இன் மூலம் கோடு உற்பத்தியிலிருந்து எவ்வளவு தூரத்தில் உள்ளது என்பது வெளிப்படுத் தப்படும்.
 (..........)
 - (iii) வடிவம் y = mx + c இல் உள்ள ஒரு சார்பின் வரைபு உற்பத்தியினூடாகச் செல்வதற்கு c = 0 ஆக இருக்க வேண்டியதில்லை. (..........)
 - (iv) $y_1 = m_1 x + c_1$ ஆகவும் $y_2 = m_2 x + c_2$ ஆகவும் இருக்கும்போது $m_1 \neq m_2$ எனின், இரு கோடுகளும் சமாந்தரமாகும். (...........)
 - (v) ஒரு கோடு y = mx + c இல் m > 0, c > 0 ஆக இருக்கும்போது மாத்திரம் x அச்சுக்கு மேலே y அச்சை வெட்டும் ஒரு கோடு கிடைக்கும். (..........)
- கீழே தரப்பட்டுள்ள வரைபுகளின் பரும்படிப் படங்களைப் பயன்படுத்திச் சார்புகளின் சமன்பாடுகளை எழுதுக.

3. கீழே தரப்பட்டுள்ள வரைபுகளின் பரும்படிப் படங்களைப் பயன்படுத்தி ஒவ்வொரு வரைபிற்கும் பொருத்தமான சார்புகளைத் தரப்பட்டுள்ள சார்புகளி லிருந்து தெரிவுசெய்து எழுதுக.

i.
$$y = 3x - 4$$

ii.
$$y = -2x + 1$$

iii.
$$y = -x - 5$$

iv.
$$y = -3x + 3$$

v.
$$y = +3x$$

- 4. 4x + py = 10 என்னும் நேர்கோட்டின் படித்திறன் $-\frac{4}{3}$ ஆகும்.
 - $(i)\ p$ இன் பெறுமானத்தைக் காண்க.
 - (ii) வெட்டுத்துண்டை எழுதுக.
 - (iii) மேற்குறித்த நேர்கோடு *y* அச்சை வெட்டும் புள்ளிக்கூடாகச் செல்லும் படித்திறன் 2 ஆக உள்ள நேர்கோட்டின் சமன்பாட்டை எழுதுக.

பொழிப்பு

- y = mx + c என்னும் வடிவத்தில் உள்ள சார்பின் வரைபின் படித்திறன் m இனாலும் வெட்டுத்துண்டு c இனாலும் காட்டப்படும்.
- சார்புகள் இரண்டின் வரைபுகளின் படித்திறன்கள் சமனாயின், அவ்விரு வரைபுகளும் சமாந்தரமாக இருக்கக் காணப்படும்.