計算機結構 (算術單元 ALU 的設計)

陳鍾誠 於金門大學

半加器

S = A XOR B

C = A AND B

全加器

Inputs			Outputs		
A	B	c_{in}	Cout	S	
0	0	0	0	0	
1	0	0	0	1	
0	1	0	0	1	
1	1	0	1	0	
0	0	1	0	1	
1	0	1	1	0	
0	1	1	1	0	
1	1	1	1	1	

Schematic symbol for a 1-bit full adder with C_{in} and C_{out} drawn on sides of block to emphasize their use in a multi-bit adder

http://en.wikipedia.org/wiki/Adder_(electronics)

4 位元鏈波加法器

4-bit adder with logic gates shown

4 位元前瞻進位快速加法器

4-bit adder with carry lookahead

64 位元加法器

A 64-bit adder

乘法的計算 (10 進位)

```
123
x 456
=====

738 (this is 123 x 6)
615 (this is 123 x 5, shifted one position to the left)
+ 492 (this is 123 x 4, shifted two positions to the left)
=====

56088
```

乘法的計算 (2 進位)

浮點數 (Floating Point)

$$1.2345 = \underbrace{12345 \times 10^{-4}}_{\text{mantissa}}$$

http://en.wikipedia.org/wiki/Floating_point

浮點數加法 (科學記號版)

```
123456.7 = 1.234567 \times 10^5

101.7654 = 1.017654 \times 10^2 = 0.001017654 \times 10^5
```

Hence:

```
123456.7 + 101.7654 = (1.234567 \times 10^5) + (1.017654 \times 10^2)
= (1.234567 \times 10^5) + (0.001017654 \times 10^5)
= (1.234567 + 0.001017654) \times 10^5
= 1.235584654 \times 10^5
```

浮點數加法 (定點運算版)

```
e=5; s=1.234567 (123456.7)
+ e=2; s=1.017654 (101.7654)
```

```
e=5; s=1.234567
+ e=5; s=0.001017654 (after shifting)
------
e=5; s=1.235584654 (true sum: 123558.4654)
```

注意:會有捨去誤差 (rounded error)

如果數字太小,有時完全被捨去

```
e=5; s=1.234567
+ e=-3; s=9.876543
```

浮點數乘法

IEEE 754 浮點數標準 (2008)

Name	Common name	Base	Digits	E min	E max	Notes	Decimal digits	Decimal E max
binary16	Half precision	2	10+1	-14	+15	storage, not basic	3.31	4.51
binary32	Single precision	2	23+1	-126	+127		7.22	38.23
binary64	Double precision	2	52+1	-1022	+1023		15.95	307.95
binary128	Quadruple precision	2	112+1	-16382	+16383		34.02	4931.77
decimal32		10	7	-95	+96	storage, not basic	7	96
decimal64		10	16	-383	+384		16	384
decimal128		10	34	-6143	+6144		34	6144

http://en.wikipedia.org/wiki/IEEE_754-2008

IEEE 754 浮點數標準 (1985)

level	width	range	precision*
single precision	32 bits	$\pm 1.18 \times 10^{-38}$ to $\pm 3.4 \times 10^{38}$	approx. 7 decimal digits
double precision	64 bits	$\pm 2.23 \times 10^{-308}$ to $\pm 1.80 \times 10^{308}$	approx. 15 decimal digits

http://en.wikipedia.org/wiki/IEEE_754-1985

IEEE 754 單精度浮點數

The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation.

IEEE 754 雙精度浮點數

value =
$$(-1)^{\text{sign}} (1 + \sum_{i=1}^{52} b_{52-i} 2^{-i}) \times 2^{e-1023}$$