Random Forest

데이터 분석 모델링반(ML1)

Root Short Tall Cannot squeak Can squeak Long neck Short neck Short nose Might be a Long nose Might be a giraffe Might be a rat squirrel In water On land Might be an elephant Might be a Might be a rhinoceros hippo

기존 Decision Tree

기존 DT 단일모델 : 하나의 트리구조, 규칙기반

기존 DT의 변동성이 큰 문제들? -> 보완하기 위해

앙상블, 배깅, 부트스트랩

여러 개의 결정트리 결합하여 예측 성능 향상 분류(Classification), 회귀(Regression) 모두 사용 가능

여러 개 모델을 사용할 수 있고 여러 개 데이터셋을 나눠서 사용할 수도 있다.

앙상블 학습 (Ensemble Learning)

여러 개의 모델, 데이터를 통해서 결합해서 만들어지는 과정을 앙상블

앙상블 학습은 여러 개의 모델을 결합하여 하나의 예측 모델을 만드는 방법

다수결로 인해서 최종 예측은 레이블 값 1로 결정

Classifier 들의 class 확률을 평균을 취해서 결정

부트스트랩 샘플링(Bootstrap Sampling)

신뢰성을 높이기 위해 자주 사용하는 기법, 원본 데이터 셋에서 무작위로 데이터 선택해 새로운 샘플을 여러 번 생성하는 방법 이러한 과정에서 중복을 허용한다는 점이 특징

Why 부트스트랩?

부트스트랩의 샘플링 역할

신뢰구간 및 표준 오차 추정 : 무작위 샘플링을 통해 각 샘플에 대해 관심 있는 통계량 계산, 이를 기반으로 신뢰구간 표준오차 추정

데이터 분포 추정 : 부트스트랩 샘플링은 데이터의 분포를 직접적으로 가정하지 않기 때문에, 비정형적인 경우도 가능

표본의 크기가 작을 때 활용: 표본 크기가 작아도 부트스트랩 샘플링을 통해 여러 번의 샘플링을 수행할 수 있다.

Bagging (bootstrap aggregating)

OOB? (Out - of Bag) 샘플 평가

원본 데이터셋의 일부 데이터 포인트는 선택되지 않고 샘플에 포함되지 않음 이러한 데이터 포인트를 OOB샘플,, 모델 학습하지 않았으므로 평가에 사용

Image copyright: Rukshan Pramoditha

Bagging

Original data

Bootstrapping

(Sampling with replacement)

Model Training

(Different models such as Decision Trees, SVM, Logistic can be used)

Aggregation

(Classification: Majority vote is taken Regression: Average of outputs)

Bagging

Bagging

VS

Boosting

