TensorFlow Hub is a repository of trained machine learning models.

TensorFlow Hub is a repository of trained machine learning models ready for fine-tuning and deployable anywhere. Reuse trained models like BERT and Faster R-CNN with just a few lines of code.

See the guide

(https://www.tensorflow.org/hub/ (https://w
overview)

ww.tensorfl
ow.org/hub
/overview)

Learn
about how
to use
TensorFlow
Hub and
how it

works.

Hub.

!pip install --upgrade tensorflow
import tensorflow_hub as hub

model = hub.KerasLayer("https://rembeddings = model(["The rain in "mainly", "In print(embeddings.shape) #(4,128)

See tutorials
(https://www.tensorflow.org/hub/ (https://w
tutorials) www.tensorfl
ow.org/hub
/tutorials)
Tutorials
show you
end-to-end
examples
using
TensorFlow

See models

(https://tfhub.dev) (https://tfhub.dev)

Find trained TF, TFLite, and

TF.js models for your use case.

Models

Find trained models from the TensorFlow community on <u>TFHub.dev</u> (https://tfhub.dev)

(https://tfhub.dev/te nsorflow/bert_en_un cased_L-12_H-768_A-12/3)

BERT

(https://tfhub.d ev/tensorflow/ bert_en_uncase d_L-12_H-768_A-12/3)

Check out BERT for NLP tasks including text classification and question answering.

(https://tfhub.dev/te nsorflow/faster_rcnn /inception_resnet_v2 _640x640/1)

Object detectio

<u>n</u>

(https://tfhub.d ev/tensorflow/f aster_rcnn/ince ption_resnet_v2 _640x640/1)

Use the Faster R-CNN Inception ResNet V2 640x640 model for detecting

(https://tfhub.dev/g oogle/magenta/arbit rary-imagestylization-v1-256/2)

<u>Style</u> <u>transfer</u>

(https://tfhub.d ev/google/mag enta/arbitraryimagestylization-v1-256/2)

Transfer the style of one image to another using the image style transfer model.

(https://tfhub.dev/g oogle/litemodel/aiy/vision/cla ssifier/food_V1/1)

Ondevice food classifier

(https://tfhub.d ev/google/litemodel/aiy/visio n/classifier/foo d_V1/1)

Use this
TFLite model
to classify
photos of
food on a

See the model

objects in images.
See the model

mobile device. <u>See the model</u>

News & announcements

Check out <u>our blog</u> (https://blog.tensorflow.org/search?label=TensorFlow+Hub) for more announcements and view the latest <u>#TFHub updates</u>

 $(https://twitter.com/search?q=\%23TFHub\%20from\%3ATensorFlow\&src=typed_query\&f=live) \ ON \\ Twitter$

TensorFI
ow Hub
for Real
World
Impact
at
Google
I/O

(https://www.y outube.com/w atch? v=BE5nkhFe3A E)

Learn how you can use TensorFlow Hub to build ML solutions

(https://g.co/ondevice-ml)

Ondevice
ML
solutions
(https://g.co/o
n-device-ml)

To explore
ML solutions
for your
mobile and
web apps
including
TensorFlow
Hub, visit the
Google ondevice
machine

(https://blog.tensor flow.org/2020/12/m aking-bert-easierwith-preprocessingmodels-fromtensorflow-hub.html)

Making
BERT
Easier
with
Preproc
essing
Models
From
TensorFl

(https://blog.tensor flow.org/2020/06/es timating-pitch-withspice-andtensorflow-hub.html)

From
singing
to
musical
scores:
Estimati
ng pitch
with
SPICE
and
Tensorfl

with real learning ow Hub ow Hub world impact. page. (https://blog.te (https://blog.te nsorflow.org/2 nsorflow.org/2 020/12/making 020/06/estimat -bert-easiering-pitch-withwithspice-andtensorflowpreprocessing-TensorFlow Learn how to hub.html) models-from-Hub makes tensorflowuse the **REPATURIMPLE** SPICE model to use with to new automatically preprocessing transcribe models. sheet music from live audio. Watch the vid... Visit the site Read the blog Read the blog

Community

Join the TensorFlow Hub community

<u>o</u>	<u>o</u>	<u>d</u>	<u>us</u>
<u>n</u>	<u>n</u>	<u>el</u>	<u>si</u>
<u>St</u>	<u>Gi</u>	<u>s</u>	<u>0</u>
<u>ac</u>	<u>tH</u>	(ht tps	<u>n</u>
<u>k</u>	<u>u</u>	://	<u>fo</u>
<u>O</u>	<u>b</u>	ww w.t	<u>ru</u>
<u>ve</u>	(ht tps	en sor	<u>m</u>
<u>rfl</u>	://g	flo	(ht
<u>o</u>	ith ub.	w.o rg/	tps ://g
<u>w</u>	co m/	hu b/p	rou ps.
(ht	ten	ubl	go
tps ://s	sor flo	ish)	ogl e.c
tac kov	w/ hu		om /a/
erfl	b)		ten
ow. co			sor flo
m/ qu			w.o rg/
est			for um
ion s/t			/#!
ag ge			for um
d/t			/hu b)
en sor			5)
flo w-			
hu b)			
, b)			

Get started with TensorFlow Hub (https://tfhub.dev)