Note: all the simulations are under TT 25°C

1. Common Source (CS) (50%)

As shown in Fig. 1, we have a common source (CS) stage with V_{DD} =1.8V. Try to design the size of M_1 and the resistance of R_D to achieve AC gain $|A_v| > 3V/V$ and $V_{out,DC} = 0.9V$ (within 1% variation), under the constraint $V_{in,DC} = 0.9V$. You need to make sure that M_1 operates in saturation region.

due date: 2024/04/02

Fig. 1. A common source amplifier

- (a) Design this circuit to achieve the requirements:
 - (1) M_1 operates in saturation region
 - (2) output DC voltage $V_{out,DC} = 0.9V \pm 1\%$
 - (3) AC gain $|A_v| > 3$ (V/V)
 - (4) the resistance of $R_D < 50 k\Omega$

Describe how you choose the size of M1 and the resistance of RD to achieve the requirements. (10%)

(b) Use ".op" command in Hspice and check the ".lis" file to show that M_1 operates in saturation region. Screenshot $V_{in,DC}$, $V_{out,DC}$ and drain current (I_D) of M_1 . (5%)

Hint: use the following Hspice command in your .sp file

.op

After simulation, you will see $V_{\rm in,DC}$ and $V_{\rm out,DC}$ in .lis file:

and MOS characteristic parameters (including operation region, I_D , etc.) in .lis file:

- (c) Use ".tf" command in Hspice to print out:
 - (1) the small signal gain from V_{in} to V_{out} (2.5%)
 - (2) the output impedance (2.5%)

Hint: use the following Hspice command in your .sp file

```
.tf V(vout) Vin
```

After simulation, you will see small-signal parameters in .lis file:

(d) Calculate <u>Vout,DC</u>, <u>AC gain</u> and <u>output impedance</u> **by hand-calculation**. You can use the parameters in ".lis" file in (b). (10%)

Hint: you won't find " r_o " in .lis file. Instead, you can find the value of "gds" and use this relationship " $r_o = \frac{1}{gds}$."

- (e) Compare AC gain and output impedance between those by simulation in (c) and those by hand-calculation in (d). Report the error rate (= $\frac{simulation-hand}{hand}$ × 100%), and describe where the error comes from. (10%)
- (f) Please fill in the following specification table. Make sure you achieve all the requirements. (10%)

	Specification	simulation	hand-calculation
$ m V_{DD}$		1.8V	
$ m V_{in,DC}$		0.9V	
M_1 (W/L, m)	-		
R_{D}	< 50kΩ		
V _{out,DC}	0.9V±1%		
gain A _v	> 3V/V		
output impedence	_		
I_{D}	_		_

Table 1. Specification table for CS

2. Common Gate (CG) (25%)

As shown in Fig. 2, we have a common gate (CG) stage with $V_{DD}=1.8V$.

Try to design the size of M_2 , the bias voltage V_b and the resistance of R_D to achieve AC gain $|A_v| > 9V/V$ and $V_{out,DC} = 0.9V$ (within 1% variation), under the constraint $V_{in,DC} = 0.5V$. You need to make sure that M_2 operates in saturation region.

Fig. 2. A common gate amplifier

- (a) Design this circuit to achieve the requirements:
 - (1) M₂ operates in saturation region
 - (2) output DC voltage $V_{out,DC} = 0.9V \pm 1\%$
 - (3) AC gain $|A_v| > 9 (V/V)$
 - (4) the resistance of $R_D < 100 k\Omega$

Describe how you choose the size of M2, the bias voltage Vb and the resistance of RD to achieve the requirements. (5%)

- (b) Use ".op" command in Hspice and check the ".lis" file to show that M_2 operates in saturation region. Screenshot $V_{out,DC}$ and drain current (I_D) of M_2 . (2%)
- (c) Use ".tf" command in Hspice to print out:
 - (1) the small signal gain from V_{in} to V_{out} (1%)
 - (2) the input impedance (1%)
 - (3) the output impedance (1%)
- (d) Calculate <u>Vout,DC</u>, <u>AC gain</u>, <u>input impedance</u> and <u>output impedance</u> by hand-calculation. You can use the parameters in ".lis" file in (b). Compare <u>AC gain</u>, <u>input impedance</u> and <u>output impedance</u> with those by simulation in (c). Report the error rate (= $\frac{simulation-hand}{hand}$ × 100%), and describe where the error comes from. (10%)

(e) Please fill in the following specification table. Make sure you achieve all the requirements. (5%)

	Specification	simulation	hand-calculation
$ m V_{DD}$	1.8V		
$ m V_{in,DC}$	0.5V		
M_2 (W/L, m)	_		
R_{D}	< 100kΩ		
$ m V_{out,DC}$	0.9V±1%		
gain $ \mathbf{A}_{\mathrm{v}} $	> 9V/V		
input impedence	-		
output impedence	_		
I_{D}	_		_

Table 2. Specification table for CG

3. Common Drain (CD) (a.k.a. Source Follower, SF) (25%)

As shown in Fig. 3, we have a common drain (CD) stage with V_{DD} =1.8V. Try to design the size of M_3 and the resistance of R_S to achieve AC gain $|A_v| > 0.75 \text{V/V}$ and $V_{\text{out},DC} = 0.9 \text{V}$ (within 1% variation), under the constraint $V_{\text{in},DC} = 1.5 \text{V}$. You need to make sure that M_3 operates in saturation region.

Fig. 3. A common drain amplifier

- (a) Design this circuit to achieve the requirements:
 - (1) M₃ operates in saturation region
 - (2) output DC voltage $V_{out,DC} = 0.9V \pm 1\%$
 - (3) AC gain $|A_v| > 0.75(V/V)$
 - (4) the resistance of $R_S < 80k\Omega$

Describe how you choose the size of M3 and the resistance of Rs to achieve the requirements. (5%)

- (b) Use ".op" command in Hspice and check the ".lis" file to show that M_3 operates in saturation region. Screenshot $V_{\text{out},DC}$ and drain current (I_D) of M_3 . (3%)
- (c) Use ".tf" command in Hspice to print out:
 - (1) the small signal gain from V_{in} to V_{out} (1%)
 - (2) the output impedance (1%)
- (d) Calculate <u>Vout,DC</u>, <u>AC gain</u> and <u>output impedance</u> by hand-calculation. You can use the parameters in ".lis" file in (b). Compare <u>AC gain</u> and <u>output impedance</u> with those by simulation in (c). Report the error rate $(=\frac{simulation-hand}{hand} \times 100\%)$, and describe where the error comes from. (10%)
- (e) Please fill in the following specification table. Make sure you achieve all the requirements. (5%)

	Specification	simulation	hand-calculation
$V_{ m DD}$		1.8V	
$ m V_{in,DC}$	1.5V		
M_3 (W/L, m)	_		
R_{s}	< 80kΩ		
$V_{out,DC}$	0.9V±1%		
gain A _v	> 0.75V/V		
output impedence	_		
I_{D}	_		_

Table 3. Specification table for CD