

CZ2007 LAB 3 INTRODUCTION TO DATABASE

Zou Zeren U2022422H Zeng Xunyi U2022509A Tan Pei Lun U2022841A Bryan Chatsirichai U2022154D Mulder Choo U2022324D

Contents

1	$\operatorname{CREDIT}_{\operatorname{CARD}}$	3
2	CUSTOMER	3
3	ORDER	5
4	ORDER_ITEM	5
5	PRODUCT_TYPE	5
6	${\bf RESTRICTED_TO}$	6
7	SHIPMENT	6
8	INVOICE	6
9	PAYMENT	7
10	PRODUCT	7
11	PHOTOS	7
12	SHOP	8
13	ERD REFERENCE	9

1 CREDIT_CARD

CREDIT_CARD (card_num, bank, date_valid_to, date_valid_from, customer_id)

Keys: card_num

Primary Key: card_num

FDs: card_num \rightarrow bank, date_valid_to, date_valid_from,customer_id

All the attributes are functionally dependent on solely the Primary Key (card_num)

LHS is a key

∴ The relation is in 3NF

2 CUSTOMER

CUSTOMER (customer_id, username, email,password,full_name,address,phone_num)

Keys: customer_id,username, email

Primary Key: customer_id

FDs:

customer_id \rightarrow username, email,password, full_name,address,phone_num username \rightarrow customer_id , email,password, full_name,address,phone_num email \rightarrow username, customer_id,password, full_name,address,phone_num phone_num \rightarrow full_name, address \therefore The relation is **not** in 3NF

3NF Procedures:

Mninimal Basis for R:

```
CUSTOMER \ (customer\_id(A), \ username(B), \ email(C), password(D), full\_name(E), \\ address(F), phone\_num(G))
```

= CUSTOMER(A,B,C,D,E,F,G)

KEYS: A,B,C

FDS: A \rightarrow BCDEFG, B \rightarrow ACDEFG, C \rightarrow BADEFG , G \rightarrow EF

STEP 1.1: (Keep RHS only 1 attribute):

$$A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, A \rightarrow F, A \rightarrow G$$

$$B \rightarrow A, B \rightarrow C, B \rightarrow D, B \rightarrow E, B \rightarrow F, B \rightarrow G$$

$$C{\rightarrow}A,\ C{\rightarrow}B,\ C{\rightarrow}D,\ C{\rightarrow}E,\ C{\rightarrow}F,\ C{\rightarrow}G$$

$$G \rightarrow E, G \rightarrow F$$

STEP 1.2: (Remove redundant FD):

Original closures:

$$\begin{array}{ll} \{A\}^+ = \{ \texttt{ABCDEFG} \}, & \{B\}^+ = \{ \texttt{ACDEFG} \}, & \{C\}^+ = \{ \texttt{BADEFG} \}, \\ \{G\}^+ = \{ \texttt{EF} \} & \end{array}$$

we remove $A \rightarrow E, A \rightarrow F$

 ${A}^{+}={ABCDEFG}$

we remove $B \rightarrow C$, $B \rightarrow D$, $B \rightarrow E$, $B \rightarrow F$, $B \rightarrow G$ $\{B\}^+=\{ACDEFG\}$

we remove $C \rightarrow B$, $C \rightarrow D$, $C \rightarrow E$, $C \rightarrow F$, $C \rightarrow G$ $\{C\}^+ = \{BADEFG\}$

 $CUSTOMER = \{ A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow G G \rightarrow E, G \rightarrow F, B \rightarrow A, C \rightarrow A \}$

STEP 1.3: (Remove dedundant attributes on LHS):

 $CUSTOMER = \{ A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow G G \rightarrow E, G \rightarrow F, B \rightarrow A, C \rightarrow A \}$

Step 2: (Combine FDs whose LHS are same:)

 $CUSTOMER = \{A \rightarrow BCDG, \quad G \rightarrow EF, \quad B \rightarrow A, \quad C \rightarrow A\}$

Step 3: (Create a table for each FD:)

 R_1 (ABCDG) = R_1 (customer_id, username, email,password,phone_num)

 R_2 (BA) = R_2 (customer_id, username)

 R_3 (CA) = R_3 (customer_id, email)

 R_4 (GEF) = R_4 (phone_num,full_name,address)

Step 4: (If non of the tables contain a key of the original table R, create a table that contains a key of R:)

 R_1 contains all keys. Do not need to create new table

Step 5: (Remove redundant tables:)

 $R_2 \& R_3$ is a sub set of R_1 so we remove them

Final Answer

 R_1 (customer_id, username, email,password,phone_num) R_4 (phone_num,full_name,address) \therefore The relation is in 3NF

3 ORDER

ORDER (order_id, date, status, customer_id)

Keys: order_id

Primary Key: order_id

FDs: order_id \rightarrow date, status, customer_id

All the attributes are functionally dependent on solely the Primary Key (order_id)

LHS is a key

∴The relation is in 3NF

4 ORDER_ITEM

ORDER_ITEM (sequence_num, order_id, product_unit_price, quantity, status, product_id, shipment_id)

Keys: {sequence_num, order_id}

Primary Key: {sequence_num, order_id}

FDs: sequence_num, order_id→ product_unit_price, quantity, status, product_id, shipment_id

All the attributes are functionally dependent on solely the Primary Key {sequence_num, order_id}

LHS is a key

∴The relation is in 3NF

5 PRODUCT_TYPE

PRODUCT_TYPE (product_type_id, description, parent_product_type_id)

Keys: product_type_id

Primary Key: product_type_id

 $\mathbf{FDs:}\ \operatorname{product_type_id} \to \operatorname{description}, \operatorname{parent_product_type_id}$

All the attributes are functionally dependent on solely its Primary Key(product_type_id)

LHS is a key

.: The relation is in 3NF

6 RESTRICTED_TO

RESTRICTED_TO (shop_id, product_type_id)

Keys: {shop_id,product_type_id}

Primary Key: {shop_id,product_type_id}

FDs: shop_id,product_type_id → shop_id,product_type_id

Only trival FD exists in the relation

∴ The relation is in 3NF

7 SHIPMENT

SHIPMENT (shipment_id, tracking_num, date)

Keys: shipment_id, tracking_num

Primary Key: shipment_id

FDs: shipment_id \rightarrow tracking_num, date

 $tracking_num \rightarrow shipment_id$, date

Both FD's LHS are superkey

∴The relation is in 3NF

8 INVOICE

INVOICE(invoice_number,date,status,order_id)

Keys: invoice_number

Primary Key: invoice_number

FDs: invoice_number \rightarrow date,status,order_id

All the attributes are functionally dependent on solely its Primary Key(invoice_number)

LHS is a key

∴The relation is in 3NF

9 PAYMENT

PAYMENT (payment_id, amount, card_num,invoice_number)

Keys: payment_id

Primary Key: payment_id

FDs: payment_id \rightarrow amount,card_num,invoice_number

All the attributes are functionally dependent on solely its Primary Key(payment_id)

LHS is a key

∴The relation is in 3NF

10 PRODUCT

PRODUCT(product_id,name,colour,price,size,description,shop_id,product_type_id)

Keys: product_id

Primary Key: product_id

FDs: product_id → name,colour,price,size,description,shop_id,product_type_id

All the attributes are functionally dependent on solely its Primary Key(payment_id)

LHS is a key

∴The relation is in 3NF

11 PHOTOS

PHOTOS(photo_sequence, product_id, url)

Keys: {photo_sequence, product_id}

Primary Key: {photo_sequence,product_id}

FDs: photo_sequence,product_id \rightarrow url

All the attributes are functionally dependent on solely its Primary Key (photo_sequence,product_id)

LHS is a key

∴The relation is in 3NF

12 SHOP

SHOP (shop_id, shop_name)

Keys: shop_id

Primary Key: shop_id

FDs: $shop_id \rightarrow shop_name$

All the attributes are functionally dependent on solely its Primary Key (${\tt shop_id}$)

LHS is a key

.:.The relation is in 3NF

13 ERD REFERENCE

