Exercises in Foundations in Representation Theory

Exercise Sheet 1

Jendrik Stelzner

Exercise 1.

We convince ourselves that A^{\times} is a group with respect to the multiplication of A.

• If $a_1, a_2 \in A^{\times}$ are units in A then there exist $b_1, b_2 \in A$ with $a_i b_i = 1 = b_i a_i$ for both i = 1, 2. It then follows that

$$(a_1a_2)(b_2b_1) = a_1a_2b_2b_1 = a_1 \cdot 1 \cdot b_1 = a_1b_1 = 1$$

and similarly $(b_2b_1)(a_1a_2) = 1$. This shows that a_1, a_2 is again a unit, which shows that A^{\times} is closed under the multiplication of A.

- It follows from the equation $1 \cdot 1 = 1$ that $1 \in A$ is a unit with inverse given by 1, and that 1 is a neutral element for A^{\times} .
- If $a \in A^{\times}$ is a unit with ab = 1 = ba for some $b \in A$ then b is again a unit and an inverse for a in A^{\times} .

If $f: A \to B$ is a k-algebra homomorphism then it holds for $a \in A^{\times}$ that

$$f(a)f(a^{-1}) = f(aa^{-1}) = f(1) = 1$$

and similarly $f(a^{-1})f(a) = 1$, which shows that f(a) is a unit in B. This shows that f restricts to a map $f: A^{\times} \to B^{\times}$, which is then still multiplicative and therefore a group homomorphism.

(i)

It follows from G being a k-basis of k[G] that there exists a unique k-linear extension $f: k[G] \to A$ of ψ , which is given by $f(g) = \psi(g)$ for every $g \in G$. It remains to

show that f is already a homomorphism of k-algebra: The map f is multiplicative on the k-basis G of k[G] and therefore multiplicative on the whole of k[G], because both

$$k[G] \times k[G] \to k[G], \quad (x,y) \mapsto f(xy)$$

and

$$k[G] \times k[G] \to k[G], \quad (x,y) \mapsto f(x)f(y)$$

are k-linear. It also holds that $f(1) = \psi(1) = 1$.

(ii)

The group algebra $k[\mathbb{Z}^n]$

We denote the basis element of $k[\mathbb{Z}^n]$ associated to the group element $(a_1,\ldots,a_n)\in\mathbb{Z}^n$ by $t_1^{a_1}\cdots t_n^{a_n}$. The group algebra $k[\mathbb{Z}^n]$ has then a basis $t_1^{a_1}\cdots t_n^{a_n}$ with $a_1,\ldots,a_n\in\mathbb{Z}$ on which the k-bilinear multiplication of $k[\mathbb{Z}^n]$ is given by

$$t_1^{a_1} \cdots t_n^{a_n} \cdot t_1^{b_1} \cdots t_n^{b_n} = t_1^{a_1 + b_1} \cdots t_n^{a_n + b_n}$$
.

This shows that $k[\mathbb{Z}^n] \cong k[t_1, t_1^{-1}, \dots, t_n, t_n^{-1}]$ is the k-algebra of Lauraunt polynomials in n variables t_1, \dots, t_n over k.

The group algebra $k[\mathbb{Z}/2]$

The group algebra $k[\mathbb{Z}/2]$ has a k-basis consisting of two elements 1, s, with 1 being the unit of A and s satisfying the equation $s^2 = 1$. This shows that $k[\mathbb{Z}/2] \cong k[x]/(x^2 - 1)$. If $\operatorname{char}(k) = 2$ then it follows that

$$k[\mathbb{Z}/2] \cong k[x]/(x^2-1) = k[x]/((x-1)^2) \cong k[x]/(x^2)$$

is the algebra of dual numbers. If $\operatorname{char}(k)=2$ then it follows from the chinese remainder theorem that

$$k[\mathbb{Z}/2] \cong k[x]/(x^2 - 1) = k[x]/((x+1)(x-1))$$

 $\cong k[x]/(x+1) \times k[x]/(x-1) \cong k \times k$.

Exercise 2.

In the given quiver Q there exists for every pair (i,j) of vertices $i,j \in \{1,\ldots,n\} = Q_0$ a unique path e_{ij} from i to j in Q if $i \leq j$, and no path otherwise. The paths e_{ij} with $1 \leq i \leq j \leq n$ are by definition a k-basis of kQ.

The quiver Q has a representation over k with vertices k and edges $k \xrightarrow{1} k$:

$$k \xrightarrow{1} k \xrightarrow{1} k \xrightarrow{1} \cdots \xrightarrow{1} k \xrightarrow{1} k$$

This representation of Q over k corresponds to a kQ-module structure on $k^{\oplus n} = k^n$ as discussed in the lecture (i.e. as in the standard way). The action of e_{ij} on k^n is with

respect to the standard basis given by the lower triangular matrix E_{ij} . The k-algebra homomorphism $\varphi \colon kQ \to \operatorname{End}_k(k^n) = \operatorname{M}_n(k)$ which corresponds to this kQ-module structure therefore maps e_{ij} onto E_{ij} . The homomorphisms φ therefore maps the path k-basis of kQ bijectively onto the standard k-basis of L_n , and it is hence an isomorphism of k-algebras.

Exercise 3.

(i) + (ii)

Recall that we have for all sets X, Y and Z the usual adjuction

$$\operatorname{Maps}(X \times Y, Z) \xrightarrow{\sim} \operatorname{Maps}(X, \operatorname{Maps}(Y, Z)), \quad \mu \mapsto [y \mapsto \mu(y, -)]$$

is a bijection. It follows in particular that for a k-vector space V we get a bijection

$$\operatorname{Maps}(A \times V, V) \to \operatorname{Maps}(A, \operatorname{Maps}(V, V)), \quad \mu \mapsto [a \mapsto \mu(a, -)].$$

It sufficies to show that $\mu \in \operatorname{Maps}(A \times V, V)$ is an A-module structure if and only if the corresponding element $\varphi \in \operatorname{Maps}(A, \operatorname{Maps}(V, V))$ is a homomorphism of k-algebra into $\operatorname{End}_k(V)$.

The map $\mu \in \text{Maps}(A \times V, V)$ is an A-module structure if and only if the following axioms are satisfied for all $a, a_1, a_2 \in A$, all $\lambda \in k$ and all $m, m_1, m_2 \in M$:

(MS1)
$$\mu(a, m_1 + m_2) = \mu(a, m_1) + \mu(a, m_2),$$

(MS2)
$$\mu(a_1 + a_2, m) = \mu(a_1, m) + \mu(a_2, m),$$

(MS3)
$$\mu(a_1, \mu(a_2, m)) = \mu(a_1 a_2, m),$$

(MS4)
$$\mu(1, m) = m$$
,

(MS5)
$$\mu(\lambda a, m) = \lambda \mu(a, m) = \mu(a, \lambda m)$$
.

The map φ is a homomorphism of k-algebra into $\operatorname{End}_k(V)$ if and only if the following conditions are satisfied for all $a, a_1, a_2 \in A$ and all $\lambda \in k$:

(AH1)
$$\varphi(a) \in \operatorname{End}_k(M)$$
,

(AH2)
$$\varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2),$$

(AH3)
$$\varphi(a_1a_2) = \varphi(a_1)\varphi(a_2),$$

(AH4)
$$\varphi(\lambda a) = \lambda \varphi(a)$$
,

(AH5)
$$\varphi(1) = \mathrm{id}_V$$
.

Spelling out these conditions in more detail, we see that the following conditions need to be satisfied for all $a, a_1, a_2 \in A$, all $\lambda \in k$ and all $m, m_1, m_2 \in M$

(AH1*)
$$\varphi(a)(m_1 + m_2) = \varphi(a)(m_1) + \varphi(m_2),$$

(AH2*) $\varphi(a)(\lambda m) = \lambda \varphi(a)(m),$
(AH3*) $\varphi(a_1 + a_2)(m) = \varphi(a_1)(m) + \varphi(a_2)(m),$
(AH4*) $\varphi(a_1 a_2)(m) = \varphi(a_1)(\varphi(a_2)(m)),$
(AH5*) $\varphi(\lambda a)(m) = \lambda \varphi(a)(m),$
(AH6*) $\varphi(1) = \mathrm{id}_V.$

The relation between μ and φ is so that $\mu(a, m) = \varphi(a)(m)$ for all $a \in A$ and all $m \in M$. We therefore find that condition (MS1) is equivalent to (AH1*), (MS2) is equivalent to (AH3*), (MS3) is equivalent to (AH4*), (MS4) is equivalent to (AH6*), and (MS5) is equivalent to the combination of (AH2*) and (AH5*).

(iii)

Since the map f is already k-linear, we find that

$$f \text{ is a homomorphism of } A\text{-module} \\ \iff f(av) = af(v) \text{ for all } a \in A, \, v \in V \\ \iff f(\varphi(a)) = \psi(a)(f(v) \text{ for all } a \in A, \, v \in V \\ \iff f \circ \varphi(a) = \psi(a) \circ f \text{ for all } a \in A \,.$$

Exercise 4.

(i)

We give two solutions.

First Solution

Lemma 1. Let R be a ring and let $n \ge 1$. Then the map

$$\{two\text{-}sided ideals } I \subseteq R\} \longrightarrow \{two\text{-}sided ideals } J \subseteq M_n(R)\}, \quad I \mapsto M_n(I)$$

 $is\ a\ well-defined\ bijection.$

Proof. If $I \subseteq R$ is a two-sided ideal then the canonical projection $\pi \colon R \to R/I$ is a ring homomorphism with kernel I. The kernel of the induced ring homomorphism $\pi_* \colon \mathrm{M}_n(R) \to \mathrm{M}_n(R/I)$ is given by $\ker(\pi_*) = \mathrm{M}_n(I)$, which shows that $\mathrm{M}_n(I)$ is a two-sided ideal in $\mathrm{M}_n(R)$. This shows that the proposed map is well-defined. The map is injective because one can retrieve I from $\mathrm{M}_n(I)$ as the set of all possible entries of matrices in $\mathrm{M}_n(I)$.

To show the surjectivity let $J \subseteq M_n(R)$ be a two-sided ideal. For all entry positions i, j = 1, ..., n let

$$I_{ij} = \{a \in R \mid \text{there exists a matrix } A \in J \text{ whose } (i, j)\text{-th entry is } a\}$$
 .

If $\pi_{ij}: M_n(R) \to R$ denotes the projection onto the (i,j)-th component then π_{ij} is a homomorphism of both left R-modules and of right R-modules. It follows that $I_{ij} = \pi_{ij}(I)$ is both a left R-submodule of R and a right R-submodule of R, and therefore a two-sided ideal in R.

For $A \in J$ and i, j = 1, ..., n we can multiply A from the left and from the right with permutation matrices to move the (i, j)-th entry of A to any other position. We don't leave J when doing so because J is a two-sided ideal in $M_n()$. This shows that the two-sided ideal I_{ij} does not depend on the choice of position (i, j), i.e. that there exists a unique two-sided ideal $I \subseteq R$ with $\pi_{ij}(J) = I$ for all i, j. It follows from the construction of I that $J = M_n(I)$.

We now get the statement from the exercise for free: If n=0 then $M_n(k)=0$ and there exist no nonzero two-sided ideals. If $n \geq 1$ then the two-sided ideals in $M_n(k)$ correspond bijectively to the two-sided ideals in k, of which there are only two. It then follows from $M_n(k) \neq 0$ that $M_n(k)$ contains no proper nonzero ideal.

Second Solution

Let $I \subseteq M_n(k)$ be a nonzero two-sided ideal. There then exists some matrix $A \in I$ whose (i, j)-th entry is nonzero for suitable i, j. It follows with $c := A_{ij} \neq 0$ that

$$E_{ij} = \frac{1}{c} E_{ii} A E_{jj} \in I.$$

By multiplying E_{ij} from both sides with permutation matrices it then follows that I contains the standard k-basis of $M_n(k)$. This shows that $I = M_n(k)$ because I is a k-submodule of $M_n(k)$.

(ii)

We give three solutions.

First Solution

Let M be a nonzero A-modules and let $\varphi \colon A \to \operatorname{End}_k(M)$ be the associated k-algebra homomorphism. The homomorphism φ is nonzero since its image contains the identity id_M (which is nonzero because M is nonzero). This shows that the kernel $\ker(\varphi)$, which is a two-sided ideal in A, is a proper ideal. It follows from part (i) of the exercise that $\ker(\varphi) = 0$ and therefore that φ is injective. It follows that

$$\dim_k \operatorname{End}_k(V) \ge \dim_k A = n^2$$

and therefore that $\dim_k M \geq n$.

Second Solutions

Recall that the k-algebra A is semisimple, and that k^n is up to isomorpism the only simple A-modules. It follows that every A-modules M is of the form $M = (k^n)^{\oplus I}$ for some index set I, and thus in particular that $\dim_k M \ge \dim_k k^n = n$ if M is nonzero.

Third Solution

We can also give a more ad hoc version of the above argument: For every i = 1, ..., n let $C_i = AE_{ii}$ be the left ideal of A which consist of all matrices for which all columns except for the i-th one vanish. It then holds that $A = C_1 \oplus \cdots \oplus C_n$. It holds for every i that $C_i \cong k^n$ as A-modules, and k^n is simple as an A-modules (because every nonzero element $x \in k^n$ generates k^n as an A-modules).

Let M be a nonzero A-modules and let $m \in M$ be a nonzero element. The map

$$\varphi \colon A \to M$$
, $a \mapsto am$

is then a nonzero homomorphism of A-modules. It follows from $A = C_1 + \cdots + C_n$ that the kernel $\ker(\varphi)$ does not contain C_i for some i. It then follows that $C_i \cap \ker(\varphi)$ is a proper A-submodule of C_i , and therefore that $C_i \cap \ker(\varphi) = 0$. This shows that the restriction $\varphi|_{C_i} : C_i \to M$ is injective, from which it follows that

$$\dim_k M \ge \dim_k C_i = \dim_k k^n = n.$$