C52_cours La transformation chimique

Le document sera complété avec le cours en ligne à l'adresse suivante : https://numerix.netlify.app/docs/pc_2nde/chimie/pages/transformation/

Questions du document en ligne :

Question a : Equilibrer l'équation chimique de combustion du propane C₃H₈

$$C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

Question b : combustion de l'éthane C₂H₆

$$C_2H_6(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

Question c : équation de précipitation du chlorure de cuivre CuCl₂

$$Cu^{2+}(aq) + Cl^{-}(aq) \rightarrow CuCl_2(s)$$

Question d : Vérifier que les charges électriques sont bien conservées après avoir équilibré l'équation.

Activité: Situation 2: Le stock du mardi matin

Recette: $1 \ pain + 2 \ steaks + 2 \ cheddars + 3 \ salades \rightarrow 1 \ sandwich$

à vous de jouer : utilisez les méthodes vues plus haut pour déterminer x(max) avec :

200 pains ronds, 410 steaks, 390 cheddar, 570 feuilles de salade.

- 1. Déterminer l'avancement maximum x(max) :
- 2. Déterminer l'ingrédient en défaut : ...
- 3. Mettre les informations dans un tableau :

Compléter les définition suivantes :

- il y a transformation chimique lorsque ...
- Réactifs : ...
- Produits:...
- Loi de conservation de Lavoisier : ...
- Réactif en défaut (limitant) : ...
- Réactif en excès : ...
- On dit que les réactifs sont en proportions stœchiométriques lorsque : ...
- Avancement d'une réaction chimique : ...

Utiliser l'animation « avancement » à l'adresse :

https://numerix.netlify.app/docs/PC_2nde/chimie/pages/avancement/

Pour chacun des systèmes chimiques suivants :

- Représenter le système chimique à l'état initial (repasser en couleur dans le cadre les briques des quantités pour chacune des espèces chimiques).
- Représenter le système chimique à l'état final
- Noter la valeur de l'avancement maximal x(max)
- Noter le réactif en défaut (s'il y en a un, sinon, noter : stoechiométrie)

Cas n°1 : 10 mol de CH_4 , 10 mol de O_2 , 1 mol de CO_2 , et 1 mol de H_2O

Compléter:

x(max) = ... réactif en défaut : ...

Cas $n^{\circ}2:5$ mol de CH_{4} , 10 mol de O_{2} , 0 mol de CO_{2} , et 0 mol de $H_{2}O$

Etat final

Compléter :

x(max) = ... réactif en défaut : ...

Cas $n^{\circ}3:3.5$ mol de CH_{4} , 10 mol de O_{2} , 0 mol de CO_{2} , et 0 mol de $H_{2}O$

État initial

Compléter:

x(max) = ... réactif en défaut : ...