Math. 304 Number Theory (Spring 2019) Preparation and Assignment No. 2

March 4, 2019

- 1. Let n be a natural number and a an integer relatively prime to n. Prove:
 - (a) If $\{a_1, a_2, \dots, a_n\}$ is a complete set of residues modulo n, so is $\{aa_1, aa_2, \dots, aa_n\}$.
 - (b) If $\{a_1, a_2, \dots, a_{\phi(n)}\}\$ is a reduced set of residues modulo n, so is $\{aa_1, aa_2, \dots, a_{\phi(n)}\}\$.
- **2.** Solve the linear congruence $3x \equiv 9 \pmod{24}$.
- **3.** Solve the simultaneous linear congruences $x \equiv 1 \pmod{9}, x \equiv 5 \pmod{7}, x \equiv 3 \pmod{5}$.
- **4.** Use congruence technique to show that the following Diophantine equations are not soluble in integers.
 - (i) $x^2 + y^2 = 103$.
 - (ii) $x^2 + y^2 + z^2 = 95$.
- **5.** Show that x = 6 is the only solution to the equation $x^3 = (x-1)^3 + (x-2)^3 + (x-3)^3$ in positive integers.
- **6.** Find the last digit of 7^{139} and 13^{2018} .
- 7. Show that the Diophantine equation $x^2 + 1 = 23y$ has no integer solutions.
- **8.** Let a be an odd integer. Show that if $k \geq 3$, $a^{2^{k-2}} \equiv 1 \pmod{2^k}$.

The End