Sample Problems—Advanced Probability

1 Suppose that F is a d.f. and $F(x) = \int_{-\infty}^{x} f(t)dt$ for any x with a continuous f. Then $F' = f \ge 0$ everywhere.

Answer: For an arbitrary x, we show that $F'(x) = \lim_{\Delta x \to 0^+} (F(x + \Delta x) - F(x))/\Delta x$ is in existence and equal to f(x). Since f is continuous, we have for any $\epsilon > 0$ that $|f(x') - f(x)| < \epsilon$ when $|x - x'| < \delta$ for some $\delta > 0$. Thus, due to the nature of Lebesgue integration, as long as $0 < |\Delta x| < \delta$.

$$f(x) - \epsilon < \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{\int_x^{x + \Delta x} f(t)dt}{\Delta x} < f(x) + \epsilon.$$

In the above, $\int_x^{x+\Delta x} f(t)dt/\Delta x$ would mean $\int_{x+\Delta x}^x f(t)dt/(-\Delta x)$ when $\Delta x < 0$. This shows that F'(x) is well defined and equal to f(x). Finally, $F'(x) \ge 0$ because as a d.f., F is increasing.

2 The collection \mathscr{T} of all subsets of Ω is a B.F. called the total B.F. If Ω has exactly n points, show that \mathscr{T} has 2^n members.

Answer: Any element ω in Ω is either selected or not selected in a subset A of \mathscr{T} . Thus, each element A of \mathscr{T} can be denoted as an n-bit string; for instance, \emptyset corresponds to the all-0 string and Ω the all-1 string. There are 2^n such strings.

3 If Ω is countable, then the total B.F. \mathscr{T} is the same as \mathscr{F} that is the minimal B.F. containing all the singletons.

Answer: For (a), since $\mathscr{F} \subseteq \mathscr{T}$, we just need to show $\mathscr{T} \subseteq \mathscr{F}$. For any $A \in \mathscr{T}$ and equivalently $A \in \Omega$, note A is countable since Ω is. So $A = \{\omega_1, \omega_2, ...\}$ for some sequence $(\omega_i)_{i=1,2,...}$ inside Ω . But by \mathscr{F} 's closure under countable unions and the fact that each $\{\omega_i\}$ is an element of \mathscr{F} , we have $A = \bigcup_{i=1}^{+\infty} \{\omega_i\} \in \mathscr{F}$ as well.

4 Let \mathscr{N} be the collection of sets that are subsets of null sets, and let $\overline{\mathscr{F}}$ be the collection of subsets of Ω each of which differs from a set in \mathscr{F} by a set in \mathscr{N} :

$$\overline{\mathscr{F}} = \{ E \subseteq \Omega : E \triangle F \in \mathscr{N} \text{ for some } F \in \mathscr{F} \}.$$

Show that $\overline{\mathscr{F}}$ is also the collection of sets of the form $F \cup N$.

Answer: For any $E \subseteq \Omega$ such that $E \triangle F \in \mathscr{N}$ for some $F \in \mathscr{F}$, let N be the null

set that contains $E\triangle F$. For convenience, let $N'=E\setminus F$, $F'=E\cap F$, $C=F\setminus E$, and $D=N\setminus (E\triangle F)$. Note the four sets are disjoint, $F=F'\cup C\in \mathscr{F}$, and $N=N'\cup C\cup D\in \mathscr{F}$. Thus, $F'=(F'\cup C)\setminus (N'\cup C\cup D)$ is in \mathscr{F} as well. But $E=F'\cup N'$ with $F'\in \mathscr{F}$ and $N'\subseteq N$.

On the flip side, suppose $E = F \cup N$ for some $F \in \mathscr{F}$ and $N \in \mathscr{N}$. Then $E \triangle F = N$ which is a member of \mathscr{N} .

5 If two r.v.'s are equal a.e., then they have the same p.m.

Answer: When random variables X and Y are equal a.e., we have $\mathbb{P}[X \neq Y] = 0$. Now for any $B \in \mathcal{B}^1$, we have $\mathbb{P}[X \in B] = \mathbb{P}[X \in B \text{ and } X = Y] + \mathbb{P}[X \in B \text{ and } X \neq Y] \leq \mathbb{P}[Y \in B] + \mathbb{P}[X \neq Y] = \mathbb{P}[Y \in B]$. But symmetrically, $\mathbb{P}[Y \in B] \leq \mathbb{P}[X \in B]$ as well. Thus, X and Y must have the same probability measure.

6 If f is Borel measurable, and X and Y are identically distributed, then so are f(X) and f(Y).

Answer: For any $B \in \mathcal{B}^1$, we have

$$\mathbb{P}[f(X) \in B] = \mathbb{P}[X \in f^{-1}(B)] = \mathbb{P}[Y \in f^{-1}(B)] = \mathbb{P}[f(Y) \in B].$$

So f(X) and f(Y) are sharing the same distribution.

7 Let $X \geq 0$ and $\int_{\Omega} X d\mathbb{P} = A$ for some $A \in (0, +\infty)$. Then the set function ν defined on \mathscr{F} through $\nu(\Lambda) = \int_{\Lambda} X d\mathbb{P}/A$ is a probability measure on \mathscr{F} .

Answer: First, $\nu(\Lambda) \geq 0$ for any $\Lambda \in \mathcal{F}$. Second, let $\Lambda_1, \Lambda_2, ...$ be disjoint subsets in \mathcal{F} . Then, 证明probability measure 的三个性质

$$\nu\left(\bigcup_{n=1}^{+\infty}\Lambda_n\right) = \frac{1}{A} \int_{\bigcup_{n=1}^{+\infty}\Lambda_n} Xd\mathbb{P} = \frac{1}{A} \sum_{n=1}^{+\infty} \int_{\Lambda_n} Xd\mathbb{P} = \sum_{n=1}^{+\infty} \nu(\Lambda_n).$$

Lastly, $\nu(\Omega) = \int_{\Omega} X d\mathbb{P}/A = A/A = 1$.

8 Prove that if $0 \le r < r'$ and $\mathbb{E}[|X|^{r'}] < +\infty$, then $\mathbb{E}[|X|^r] < +\infty$.

Answer: By Hölder's inequality with p = r'/r,

$$\mathbb{E}[|X|^r] \le (E[(|X|^r)^{r'/r}])^{r/r'} = (\mathbb{E}[|X|^{r'}])^{r/r'}.$$

Therefore, $\mathbb{E}[|X|^r]$ would be finite when $\mathbb{E}[|X|^{r'}]$ is.

9 Suppose that $\nu(y:(x,y)\in E)=\nu(y:(x,y)\in F)$ for all x. Show that $(\mu\times\nu)(E)=(\mu\times\nu)(F)$.

Answer: By the definition of the product measure $\mu \times \nu$,

$$(\mu \times \nu)(E) = \int_X \nu(y : (x, y) \in E) \mu(dx) = \int_X \nu(y : (x, y) \in F) \mu(dx) = (\mu \times \nu)(F).$$

10 If $0 \le X_n$, $X_n \le X \in \mathcal{L}^1$ and $X_n \to X$ in probability, then $X_n \to X$ in \mathcal{L}^1 .

Answer: Since $X_n \leq X$, we need to show $\mathbb{E}[X - X_n] \to 0^+$. Now for any $\epsilon > 0$,

$$\mathbb{E}[X - X_n] = \int_{X - X_n < \epsilon} (X - X_n) d\mathbb{P} + \int_{X - X_n > \epsilon} (X - X_n) d\mathbb{P} \le \epsilon + \int_{X - X_n > \epsilon} X d\mathbb{P},$$

where the inequality takes advantage of $X_n \geq 0$. But $\mathbb{P}[X - X_n > \epsilon] \to 0^+$ would lead to the convergence of the second term to 0^+ as well; see Exercise 2 of Section 3.2. Due to the arbitrariness of ϵ , we therefore have $\mathbb{E}[X - X_n] \to 0^+$.

11 Convergence in \mathcal{L}^p implies that in \mathcal{L}^r for r < p.

Answer: By Hölder's inequality,

$$\mathbb{E}[|X_n|^r] \le (\mathbb{E}[|X_n|^p])^{r/p}.$$

12 Suppose that for any a < b,

$$\mathbb{P}[X_n < a \text{ i.o. and } X_n > b \text{ i.o.}] = 0.$$

Then, $\lim_{n\to+\infty} X_n$ exists a.e. but it may be infinite.

Answer: Denote the set mentioned in the problem by A(a,b). The hypothesis is that $\mathbb{P}[A(a,b)] = 0$ for any a < b. Now let B be the set of ω 's at which $X_n(\omega)$ does not converge. Also, let $(a_n, b_n)_{n=1,2,...}$ be the sequence of rational-number pairs satisfying $a_n < b_n$. The key observation, due to the denseness of rational numbers in \Re , is

$$B = \bigcup_{n=1}^{+\infty} A(a_n, b_n).$$

Therefore, $\mathbb{P}[B] \leq \sum_{n=1}^{+\infty} \mathbb{P}[A(a_n, b_n)] = 0.$

13 Suppose that $X_n \Rightarrow X$ and that h_n and h are Borel functions. Let E be the set of x for which $h_n(x_n) \to h(x)$ fails for some sequence $x_n \to x$. Suppose $E \in \mathcal{B}^1$ and $\mathbb{P}[X \in E] = 0$. Show that $h_n(X_n) \Rightarrow h(X)$.

Answer: Consider random variables Y_n and Y defined on the same probability space $(\Omega, \mathscr{F}, \mathbb{Q})$ such that each Y_n has the same distribution as X_n , Y has the same distribution as X, and $Y_n(\omega) \to Y(\omega)$ at each $\omega \in \Omega$. When $Y(\omega) \notin E \in \mathscr{B}^1$, we have $h_n(Y_n(\omega)) \to h(Y(\omega))$. But $\mathbb{Q}[Y \in E] = \mathbb{P}[X \in E] = 0$. So $h_n(Y_n) \to h(Y)$ a.e. and hence by Theorem 25.2 of Billingsley (1995), $h_n(Y_n) \to h(Y)$. Due to the common distributions, we have $h_n(X_n) \to h(X)$.

14 If F_1 and F_2 are d.f.'s such that $F_1 = \sum_j b_j \delta_{a_j}$ and F_2 has density p, show that $F_1 * F_2$ has a density and find it.

Answer: Note that

$$(F_1 * F_2)(x) = \int_{-\infty}^{+\infty} F_1(x - y) dF_2(y) = \int_{-\infty}^{+\infty} \sum_j b_j \mathbf{1}(x - y \ge a_j) p(y) dy$$

= $\int_{-\infty}^{+\infty} \sum_j b_j \mathbf{1}(y + a_j \le x) p(y) dy = \int_{-\infty}^x \sum_j b_j p(y - a_j) dy.$

Therefore, $(F_1 * F_2)(x)$ has a density function $\sum_j b_j p(x - a_j)$.

15 The convolution of two discrete distributions with exactly m and n atoms, respectively, has at least m + n - 1 and at most mn atoms.

Answer: Let $x_1 < x_2 < \cdots < x_m$ be the atoms of F and $y_1 < y_2 < \cdots < y_n$ the atoms of G. Note F * G is the distribution of the sum of two independent random variables say X and Y such that X has distribution F and Y distribution G. Thus, the atoms of F * G must come from the set $\{x_i + y_j\}_{i=1,2,\dots,m,j=1,2,\dots,n}$. However,

$$x_1 + y_1 < x_1 + y_2, x_2 + y_1 < x_2 + y_2 < x_2 + y_3, x_3 + y_2 < \dots < x_{m-1} + y_n, x_m + y_{n-1} < x_m + y_n.$$

So the number of atoms is at least m+n-1. The number is certainly at most mn.

16 Show that the independence of X and Y implies that $\mathbb{E}[Y|X] = E[Y]$.

Answer: By definition, $\mathbb{E}[Y|X]$ is $\sigma(X)$ -measurable and for any $G \in \sigma(X)$,

$$\int_{G} \mathbb{E}[Y|X]d\mathbb{P} = \int_{G} Yd\mathbb{P}.$$

The right-hand side is $\mathbb{E}[Y\mathbf{1}_G]$ which due to the independence between X and Y is equal to $\mathbb{E}[\mathbf{1}_G]\mathbb{E}[Y] = \mathbb{P}[G]\mathbb{E}[Y] = \int_G \mathbb{E}[Y]d\mathbb{P}$. Hence, $\mathbb{E}[Y|X] = \mathbb{E}[Y]$ a.e.

17 Prove for bounded X and Y that $\mathbb{E}[Y\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X\mathbb{E}[Y|\mathcal{G}]]$.

Answer: Since X and Y are bounded, we always have integrability. As $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable, we have by Theorem 34.3 of Billingsley (1995) that $\mathbb{E}[Y\mathbb{E}[X|\mathcal{G}]|\mathcal{G}] = \mathcal{E}[X|\mathcal{G}]\mathbb{E}[Y|\mathcal{G}]$. By the same token, the right-hand side also equals $\mathbb{E}[X\mathbb{E}[Y|\mathcal{G}]|\mathcal{G}]$. Integrating over the entire Ω , we have

$$\begin{split} \mathbb{E}[Y\mathbb{E}[X|\mathcal{G}]] &= \mathbb{E}[\mathbb{E}[Y\mathbb{E}[X|\mathcal{G}]|\mathcal{G}]] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{E}[Y|\mathcal{G}]] \\ &= \mathbb{E}[\mathbb{E}[X\mathbb{E}[Y|\mathcal{G}]|\mathcal{G}]] = \mathbb{E}[X\mathbb{E}[Y|\mathcal{G}]]. \end{split}$$

18 Show that, if $\mathscr{H} \subseteq \mathscr{G}$ and $\mathbb{E}[X^2] < +\infty$, then

$$\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2] \le \mathbb{E}[(X - \mathbb{E}[X|\mathscr{H}])^2].$$

The dispersion of X about its conditional mean becomes smaller as the B.F. grows.

Answer: We would achieve the desired inequality if we could show

$$\mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}] \le \mathbb{E}[(X - \mathbb{E}[X|\mathcal{H}])^2|\mathcal{G}].$$

But the left-hand side is equal to

$$\mathbb{E}[X^2|\mathcal{G}] - 2\mathbb{E}[X\mathbb{E}[X|\mathcal{G}]|\mathcal{G}] + (\mathbb{E}[X|\mathcal{G}])^2,$$

which, due to Theorem 34.3 of Billingsley (1995), is equal to $\mathbb{E}[X^2|\mathcal{G}] - (\mathbb{E}[X|\mathcal{G}])^2$. For the same reason, the right-hand side is equal to $\mathbb{E}[X^2|\mathcal{G}] - 2\mathbb{E}[X|\mathcal{G}]\mathcal{E}[X|\mathcal{H}] + (\mathbb{E}[X|\mathcal{H}])^2$. Just because

$$(\mathbb{E}[X|\mathcal{G}])^2 + (\mathbb{E}[X|\mathcal{H}])^2 \ge 2\mathbb{E}[X|\mathcal{G}]\mathbb{E}[X|\mathcal{H}],$$

we have the left-hand side being less than the right-hand side.

19 Define
$$Var[X|\mathscr{G}] = \mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2|\mathscr{G}]$$
. Prove that

$$\mathrm{Var}[X] = \mathbb{E}[\mathrm{Var}[X|\mathcal{G}]] + \mathrm{Var}[\mathbb{E}[X|\mathcal{G}]].$$

Answer: Again by Theorem 34.3 of Billingsley (1995),

$$\mathbb{E}[X\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[\mathbb{E}[X\mathbb{E}[X|\mathcal{G}]|\mathcal{G}]] = \mathbb{E}[\mathbb{E}[(\mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}]] = \mathbb{E}[(\mathbb{E}[X|\mathcal{G}])^2].$$

Now we have

$$\mathbb{E}[\operatorname{Var}[X|\mathscr{G}]] = \mathbb{E}[\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2|\mathscr{G}]] = \mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2]$$
$$= \mathbb{E}[X^2] - 2\mathbb{E}[X\mathbb{E}[X|\mathscr{G}]] + \mathbb{E}[(\mathbb{E}[X|\mathscr{G}])^2],$$

which according to the just established equation is $\mathbb{E}[X^2] - \mathbb{E}[(\mathbb{E}[X|\mathcal{G}])^2]$. Meanwhile,

$$Var[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[(\mathbb{E}[X|\mathcal{G}] - \mathbb{E}[\mathbb{E}[X|\mathcal{G}]])^2] = \mathbb{E}[(\mathbb{E}[X|\mathcal{G}] - \mathbb{E}[X])^2$$
$$= \mathbb{E}[(\mathbb{E}[X|\mathcal{G}])^2] - 2\mathbb{E}[\mathbb{E}[X]\mathbb{E}[X|\mathcal{G}]] + \mathbb{E}[(\mathbb{E}[X])^2],$$

which is merely $\mathbb{E}[(\mathbb{E}[X|\mathscr{G}])^2] - (\mathbb{E}[X])^2$. Therefore,

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}[\operatorname{Var}[X|\mathcal{G}]] + \operatorname{Var}[\mathbb{E}[X|\mathcal{G}]].$$

20 A fair coin is flipped until the first head occurs. Let X denote the number of heads required. Find the entropy H(X) in bits.

Answer: For $n = 1, 2, ..., \text{ note } p(n) \equiv \mathbb{P}[X = n] = (1/2)^n$. Now

$$H(X) = \sum_{n=1}^{+\infty} p(n) \log \left(\frac{1}{p(n)}\right) = \sum_{n=1}^{+\infty} \frac{n}{2^n} = 2.$$

21 Let $\mathcal{X} \equiv \{1, 2, ..., m\}$. Show that the number of sequences $\mathbf{x} \in \mathcal{X}^n$ satisfying $\sum_{i=1}^n g(x_i)/n \geq \alpha$ is approximately equal to 2^{nH^*} , to the first order in the exponent, for n sufficiently large, where

$$H^* = \max_{P: \sum_{i=1}^m P(i)q(i) > \alpha} H(P).$$

Answer: Let Q the uniform distribution on \mathcal{X} . Note

$$D(P||Q) = \sum_{i=1}^{m} P(i) \log \left(\frac{P(i)}{Q(i)}\right) = \log(m) - H(P).$$

For $E = \{P : \sum_{i=1}^{m} P(i)g(i) \geq \alpha\}$, the P^* that maximizes H(P) for $P \in E$ is the same as the one that minimizes D(P||Q) for $P \in E$. By Sanov's theorem, we have $Q^n(E) = 2^{nD(P^*||Q)} = 2^{nH(P^*)}/m^n$ when n is large.

At the same time, note that $\mathbf{x} \in \mathcal{X}^n$ satisfying $\sum_{i=1}^n g(x_i)/n \geq \alpha$ if and only if $P_{\mathbf{x}} \in E$. So the count is just $m^n Q^n(E)$ which is close to $2^{nH(P^*)}$.

- **22** Suppose that an atom is equally likely to be in each of six states, $X \in \{s_1, s_2, ..., s_6\}$. One observes the states $X_1, X_2, ..., X_n$ of n atoms independently drawn according to this uniform distribution. It is observed that the frequency of occurrence of state s_1 is twice the frequency of occurrence of state s_2 .
 - (a) To first order in the exponent, what is the probability of observing this?
- (b) Assuming n large, find the conditional distribution of the state of the first atom X_1 , given this observation.

Answer: Let $E = \{(P(1), ..., P(6)) \in [0, 1]^6 : P(1) = 2P(2), P(1) + \cdots + P(6) = 1\}$ and $Q(1) = Q(2) = \cdots = Q(6) = 1/6$. Note

$$D(P||Q) = \sum_{i=1}^{6} P(i) \log \left(\frac{P(i)}{Q(i)}\right) = \log(6) + \sum_{i=1}^{6} P(i) \log(P(i)).$$

The problem of $\min_{P \in E} D(P||Q)$ can be solved through the following:

min
$$\sum_{i=1}^{6} P(i) \log(P(i))$$

s.t $P(1) - 2P(2) = 0$
 $P(1) + P(2) + \dots + P(6) = 1$
 $P(1), P(2), \dots, P(6) \ge 0$.

Note this is a convex program. So a feasible (P(1),...,(P(6))) will be optimal if and only if there exist α , β , and $\gamma(1) \geq 0,...,\gamma(6) \geq 0$, so that $\log(P(1)) + 1 - \alpha - \beta - \gamma(1) = 0$, $\log(P(2)) + 1 + 2\alpha - \beta - \gamma(2) = 0$, $\log(P(3)) + 1 - \beta - \gamma(3) = 0$, ..., $\log(P(6)) + 1 - \beta - \gamma(6) = 0$, and $\gamma(1)P(1) = \cdots = \gamma(6)P(6) = 0$. We can get

$$P(1) = \frac{2^{1/3}}{2^{1/3} + 2^{-2/3} + 4}, \qquad P(2) = \frac{2^{-2/3}}{2^{1/3} + 2^{-2/3} + 4},$$

$$P(3) = P(4) = P(5) = P(6) = \frac{1}{2^{1/3} + 2^{-2/3} + 4},$$

 $\alpha = 1/3$, $\beta = \log(2/(2^{1/3} + 2^{-2/3} + 4))$, and $\gamma(1) = \cdots = \gamma(6) = 0$.

- (a) To first order in the exponent, the chance to observe this event is $e^{-nD(P||Q)}$ where the P(i)'s provided as in the above and the Q(i)'s are all equal to 1/6.
- (b) The conditional distribution of the state of the first atom will be P = (P(1), ..., P(6)) as provided in the above.