UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería de Sistemas e Informática

"LABORATORIO SEMANA 8: Representaciones

Cromosómicas en Algoritmos Genéticos"

ALUMNO:

Aguilar Villafana Juan José

CURSO:

Algoritmos Evolutivos y de Aprendizaje

DOCENTE:

Ms. Ing. Johan Max Alexander López Heredia

NUEVO CHIMBOTE – PERÚ 2025

ÍNDICE

1.1.	ACTIVIDAD 1	3
1.2.	ACTIVIDAD 2	4
1.3.	ACTIVIDAD 3	7
1.4.	ACTIVIDAD 4	8
1.5.	ACTIVIDAD 5	9
1.6.	ACTIVIDAD 6	10
1.7.	REFLEXIÓN	11

1.1. ACTIVIDAD 1

¿Cuál representación logra mejor equilibrio entre los grupos?

Representación	Alumnos por grupo	Promedios (A/B/C)	Desv. Est. entre promedios	Diferencia máxima
Binaria	13 / 13 / 13	15.46 / 15.38 / 15.38	0.0363	0.08
Permutacional	13 / 13 / 13	15.38 / 15.46 / 15.38	0.0363	0.08
Real	13 / 13 / 13	15.38 / 15.38 / 15.46	0.0363	0.08

- > Todas las representaciones logran el mismo nivel de equilibrio final entre grupos.
- ➤ No hay una que supere significativamente a las demás en este aspecto. El valor de desviación estándar es idéntico (0.0363) y los promedios están prácticamente igualados.

¿Cuál converge más rápido? (observa las generaciones)

Representación	Mejoró hasta generación	Fitness final
Binaria	20	-0.0363
Permutacional	10	0.2637
Real	30	-1.0911

- > Se puede apreciar que la representación más rápida es Permutacional debido a que convergió en solo 10 generaciones.
- La segunda más rápida es la binaria (convergió en 20 generaciones)
- La más lenta es la real, ya que necesitó al menos 30 generaciones para converger.

1.2.ACTIVIDAD 2

En representacion binaria.py, modifica la función calcular fitness para:

- > Penalizar grupos con varianza alta de notas
- Premiar diversidad (mezclar alumnos de diferentes rendimientos)

Compara los resultados con la versión original

FUNCIÓN OBJETIVO (FITNESS)

Generación	Original (solo equilibrio)	Nuevo (equilibrio + varianza + diversidad)
Generación 0	-0.1581	-8.3242
Generación 20	-0.0363	-5.2878
Generación 40	-0.0363	-4.6057
Generación 60	-0.0363	-4.4239
Generación 80	-0.0363	-4.0768

- ➤ En el original, el fitness es muy cercano a 0 (mejor), porque solo penaliza el desequilibrio entre promedios.
- En el nuevo, el fitness es más negativo porque además penaliza:
 - Alta varianza dentro de cada grupo,
 - Falta de diversidad.

DISTRIBUCIÓN DE ALUMNOS POR EXAMEN

Examen	Original: Promedio	Nuevo: Promedio	Diferencia
A	15.46	11.77	↓ -3.69
В	15.38	19.08	↑+3.70
С	15.38	15.38	≈ 0.00

> Ambos tienen 13 alumnos por examen, cumpliendo la restricción.

DESVIACIÓN ESTÁNDAR ENTRE PROMEDIOS

Métrica	Original	Nuevo
Desviación estándar	0.0363	2.9834

- > El original logró un equilibrio excelente en los promedios.
- > El nuevo tiene una gran diferencia entre grupos, principalmente por la distribución extrema en A (solo bajos) y B (solo altos).

VARIANZA INTERNA

Examen	Varianza (Nuevo)
A	2.6391
В	0.5325
С	1.7751

- Examen B es el más homogéneo (todos son altos).
- Examen A tiene más dispersión dentro de las notas bajas.
- Examen C es el más balanceado internamente.

DIVERSIDAD

Examen	Bajos	Medios	Altos
A	13	0	0
В	0	0	13
С	5	7	1

- ➤ En el original no se mide diversidad, por lo que los grupos pueden estar desequilibrados en tipos.
- > En el nuevo archivo se observa:
 - $A \rightarrow Solo bajos$
 - $\mathbf{B} \to \text{Solo altos}$
 - $C \rightarrow \text{Único grupo verdaderamente diverso}$

1.3.ACTIVIDAD 3

Sigma	Mejor Fitness	
0.01 0.1 0.5 1.0 2.0	29.6288 50.0023 9.4727 5.8553 7.6118	
Distribución final para σ = 2.0 Ex A: 21 alumnos, prom 15.43, var 14.63 Ex B: 11 alumnos, prom 15.45, var 6.25 Ex C: 7 alumnos, prom 15.29, var 5.06		

- Mutación muy suave (σ =0.01) alcanza fitness ~29 poco cambio.
- Mutación moderada (σ=0.1) logra el mejor fitness (~50), balance ideal exploración/explotación.
- Mutaciones agresivas ($\sigma \ge 0.5$) hunden el fitness (<10) y producen grupos muy desbalanceados.
- > σ≈0.1 es óptimo; Ni muy pequeño ni muy grande.

1.4.ACTIVIDAD 4

```
REPRESENTACIÓN PERMUTACIONAL
Problema: Secuenciar alumnos para asignación ordenada a exámenes
Cromosoma: Permutación de 39 índices de alumnos
Decodificación: Posiciones [0-12] → Examen A, [13-25] → Examen B, [26-38] → Examen C
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
▲Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.</p>
Generación 0: Mejor fitness = 0.2041
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
 Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
Generación 10: Mejor fitness = 0.2275
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
Generación 20: Mejor fitness = 0.2275
Generación 30: Mejor fitness = 0.2637
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
Generación 40: Mejor fitness = 0.2637
△Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
▲Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.</p>
▲Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.</p>
▲Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.</p>
▲Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.</p>
▲Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.</p>
⚠Penalización aplicada: todos los alumnos con nota < 11 en un mismo examen.
```

Estadísticas finales:

Promedios: A=15.38, B=15.38, C=15.46 Rangos de notas: A=9, B=11, C=11

Desviación estándar entre promedios: 0.0363

Evolución del algoritmo: Fitness inicial: 0.2041 Fitness final: 0.2637 Mejora total: 29.2%

La penalización inicial logró evitar que todos los alumnos con nota < 11 se concentraran en un solo examen, y el AG pasó de fitness 0.1187 a 0.2637 (+122 %), convergiendo a una distribución perfectamente equilibrada (13 alumnos/examen, σ de promedios = 0.0363) sin violar la restricción.

1.5.ACTIVIDAD 5

1.6.ACTIVIDAD 6

```
Problema: Distribuir 39 alumnos en 4 exámenes (A, B, C, D) de forma casi equitativa
Cromosoma: 156 bits (39 alumnos x 4 bits cada uno)

Generación 0: Mejor fitness = -0.9451
Generación 20: Mejor fitness = -0.0192
Generación 40: Mejor fitness = -0.0192
Generación 60: Mejor fitness = -0.0192
Generación 80: Mejor fitness = -0.0192

Distribución final:
Examen A: 10 alumnos, promedio = 15.40
Alumnos: ['Alumno1', 'Alumno2', 'Alumno7', 'Alumno10', 'Alumno11']... (mostrando primeros 5)
Examen B: 10 alumnos, promedio = 15.40
Alumnos: ['Alumno4', 'Alumno9', 'Alumno13', 'Alumno14', 'Alumno16']... (mostrando primeros 5)
Examen C: 9 alumnos, promedio = 15.44
Alumnos: ['Alumno3', 'Alumno6', 'Alumno8', 'Alumno18', 'Alumno23']... (mostrando primeros 5)
```

¿Qué cambios necesitas hacer en el cromosoma?

- Cambiar la longitud del gen por alumno de 3 bits a 4 bits.
- > Ajustar la decodificación para reconocer los 4 exámenes posibles.
- ➤ Modificar los métodos de validación de equilibrio y fitness para manejar 4 grupos en vez de 3.

¿Cómo afecta esto a la convergencia del algoritmo?

- Más combinaciones posibles: hay más formas de distribuir a los alumnos (4 en lugar de 3), lo que aumenta el espacio de búsqueda.
- Debido a que 39 no es divisible entre 4, es más difícil lograr igualdad exacta (el algoritmo debe encontrar una distribución como [10,10,10,9] por ejemplo).
- Puede ocurrir una posible ralentización puede requerir más generaciones o más población para converger a una solución válida y óptima.
- Mayor presión de penalización: se vuelve importante penalizar con fuerza las distribuciones desbalanceadas para guiar la búsqueda correctamente.

1.7. REFLEXIÓN

- ➤ Binaria: emplea vectores de bits cuando las decisiones son categóricas y mutuamente excluyentes (p. ej. "¿asigno alumno i al examen j?"). Es simple, fácil de mutar e interpretar, pero puede inflar el tamaño del cromosoma si hay muchas categorías.
- Permutacional: ideal para problemas de ordenamiento o rutas (p. ej. secuenciar alumnos o laboratorios), donde cada posición importa y no deben repetirse elementos.
 Mantiene la validezde la solución tras cruces especializados (PMX, OX).
- Real: usa valores continuos cuando la asignación se basa en pesos, probabilidades o parámetros ajustables (p. ej. ponderar notas). Permite cruces y mutaciones suaves (gaussiana), facilita la exploración en espacios continuos y adapta mejores problemas de optimización con variables reales.