PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Estudios Generales Ciencias

CÁLCULO APLICADO

Práctica Dirigida 1

Ciclo de Verano 2021-0

Para justificar la asistencia a la Práctica Dirigida 1, resolver el problema 1.

- 1. Calcule las siguientes integrales de línea.
 - a) $\int_{\Gamma} \left(e^x \frac{y}{2\sqrt{2}z} \right) ds$ donde Γ la intersección de las superficies $z = \frac{y^2}{4}$ y $x = \ln\left(\frac{y}{\sqrt{2}}\right)$ con $\sqrt{2} \le y \le 5\sqrt{2}$.
 - b) $\int_{\Gamma} y^2 dx + x^2 dy + x^3 y^3 z^3 dz$, siendo Γ la intersección del paraboloide $x^2 + 2y^2 + z = 4$ con los planos coordenados en el primer octante, recorrida en sentido antihorario si se observa desde el origen, partiendo del punto (0,0,4).
- 2. Un alambre tiene la forma de la intersección del cilindro parabólico $z=4-y^2, z \ge 0$, con el plano x=2-y. Calcule la abscisa del centro de masa del alambre, si la densidad en cada punto es $\rho(x,y,z)=|x|$.
- 3. Calcule el trabajo que realiza el campo de fuerzas $\vec{F}(x,y,z) = (6xy^3 + 2z^2, 9x^2y^2, 4xz + 1)$ para mover una partícula desde el punto P(2,0,0) hasta el punto Q(0,0,2) siguiendo la curva Γ , que es la intersección de la semiesfera $x^2 + y^2 + z^2 = 4$, $z \ge 0$ y el cilindro $x^2 + y^2 = 2x$, recorrida en sentido horario si se observa desde el origen de coordenadas.
- 4. Dados el campo de fuerzas $\vec{F}(x,y,z) = \left(\frac{2x^3y^2}{1+x^4+z^2}, y\ln\left(1+x^4+z^2\right), \frac{y^2z}{1+x^4+z^2}\right)$ y la curva Γ es la intersección de las superficies $\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{9} = 1$ y x = y con $x, y, z \ge 0$,
 - a) demuestre que \vec{F} es un campo conservativo en \mathbb{R}^3 , y
 - b) halle el trabajo que realiza el campo \vec{F} para desplazar una partícula sobre la curva Γ desde el punto A(0,0,3) hasta el punto $B(\sqrt{2},\sqrt{2},0)$.
- 5. Se sabe que el campo vectorial $\vec{F}(x,y) = \left(\frac{x}{\sqrt{1-x^2-y^2}}, \frac{y}{\sqrt{1-x^2-y^2}}\right)$ es conservativo en $\Omega = \left\{(x,y) \in \mathbb{R}^2 : x^2+y^2 < 1\right\}$. Use el primer teorema fundamental de la integral de línea para determinar una función potencial para \vec{F} .
- 6. Calcule $\int_{\Gamma} \left(x + \arcsin \frac{x}{3} \right) dx + \left(2x + \ln \left(y^2 + 3 \right) \right) dy$ si $\Gamma = \Gamma_1 \cup \Gamma_2$ es recorrida en sentido antihorario, donde Γ_1 y Γ_2 son los arcos de las parábolas $y = 4 x^2$ e $y = 1 \frac{x^2}{4}$, respectivamente, comprendidos entre A(2,0) y B(-2,0).
- 7. Sea la curva $\Gamma = \Gamma_1 \cup \Gamma_2$ donde $\Gamma_1 : x^2 + y^2 = 16$ y $\Gamma_2 : (x 6)^2 + y^2 = 4$. Calcule el trabajo realizado por el campo de fuerzas

$$\vec{F}(x,y) = \left(\frac{xy^4}{(x^2+y^2)^2} - \frac{y}{(x-6)^2+y^2}, \frac{x^4y}{(x^2+y^2)^2} + \frac{x-6}{(x-6)^2+y^2}\right)$$

al mover una partícula que parte desde el punto (4,0), recorre una vez Γ_1 en sentido antihorario y luego recorre una vez Γ_2 en sentido horario.