

 $\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$

 $\exists_{x \in \Re} \exists_{y \in \Re} (x = y)$

 $\forall_x (\Re/x)$

The Foundations: Logic and Proofs

RIZOAN TOUFIQ

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY

Section Summary

- Mathematical Proofs
- Forms of Theorems
- Direct Proofs
- Indirect Proofs
 - Proof of the Contrapositive
 - Proof by Contradiction

Proofs of Mathematical Statements

- A *proof* is a valid argument that establishes the truth of a statement.
- In math, CS, and other disciplines, informal proofs which are generally shorter, are generally used.
 - More than one rule of inference are often used in a step.
 - Steps may be skipped.
 - The rules of inference used are not explicitly stated.
 - Easier for to understand and to explain to people.
 - But it is also easier to introduce errors.
- Proofs have many practical applications:
 - verification that computer programs are correct
 - establishing that operating systems are secure
 - enabling programs to make inferences in **artificial intelligence**
 - showing that **system specifications** are consistent

Some Terminology

- A **theorem** is a statement that can be shown to be true using:
 - definitions
 - other theorems
 - axioms (statements which are given as true)
 - rules of inference
- A **lemma** is a 'helping theorem' or a result which is needed to prove a theorem.
- A **corollary** is a result which follows directly from a theorem.
- Less important theorems are sometimes called **propositions**.
- A **conjecture** is a statement that is being proposed to be true. Once a proof of a conjecture is found, it becomes a theorem. It may turn out to be false.

Understanding How Theorems Are Stated

- Many theorems assert that a property holds for all elements in a domain, such as the integers, the real numbers, or some of the discrete structures that we will study in this class.
- Often the universal quantifier (needed for a precise statement of a theorem) is omitted by standard mathematical convention.

For example, the statement:

"If x > y, where x and y are positive real numbers, then $x^2 > y^2$ " really means

"For all positive real numbers x and y, if x > y, then $x^2 > y^2$."

Methods of Proving Theorems

• Many theorems have the form:

$$\forall x (P(x) \to Q(x))$$

- To prove them, we show that where c is an arbitrary element of the domain, $P(c) \rightarrow Q(c)$
- By universal generalization the truth of the original formula follows.
- So, we must prove something of the form: $p \to q$

Even and Odd Integers

Definition: The integer n is **even** if there exists an integer k such that n = 2k, and n is **odd** if there exists an integer k, such that n = 2k + 1. Note that every integer is either even or odd and no integer is both even and odd.

Direct Proof

(Proving Conditional Statements: $p \rightarrow q$)

• **Direct Proof:** Assume that p is true. Use rules of inference, axioms, and logical equivalences to show that q must also be true.

Example: Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

Solution: Assume that n is odd. Then n = 2k + 1 for an integer k. Squaring both sides of the equation, we get:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2r + 1$$
, where $r = 2k^2 + 2k$, an integer.

We have proved that if n is an odd integer, then n^2 is an odd integer.

(◀ marks the end of the proof. Sometimes **QED** is used instead.)

Direct Proof

(Proving Conditional Statements: $p \rightarrow q$)

Definition: The real number r is rational if there exist integers p and q where $q\neq 0$ such that r=p/q

Example: Prove that the sum of two rational numbers is rational.

Solution: Assume r and s are two rational numbers. Then there must be integers p, q and also t, u such that

$$r = p/q, \ s = t/u, \ u \neq 0, \ q \neq 0$$

Thus the sum is rational.

$$r + s = \frac{p}{q} + \frac{t}{u} = \frac{pu + qt}{qu} = \frac{v}{w} \quad \text{where } v = pu + qt$$

$$w = qu \neq 0$$

Direct Proof

(Proving Conditional Statements: $p \rightarrow q$)

Example: Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square.

(An integer a is a perfect square if there is an integer b such that $a = b^2$.)

Solution:

Home Task

Proof by Contraposition

(Proving Conditional Statements: $p \rightarrow q$)

Proof by Contraposition: Assume $\neg q$ and show $\neg p$ is true also. This is sometimes called an *indirect proof* method. If we give a direct proof of $\neg q \rightarrow \neg p$ then we have a proof of $p \rightarrow q$.

Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: Assume n is even. So, n = 2k for some integer k. Thus

$$3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) = 2j$$
 for $j = 3k + 1$

Therefore 3n + 2 is even. Since we have shown $\neg q \rightarrow \neg p$, $p \rightarrow q$ must hold as well. If n is an integer and 3n + 2 is odd (not even), then n is odd (not even).

Proof by Contraposition

(Proving Conditional Statements: $p \rightarrow q$)

Example: Prove that for an integer n, if n^2 is odd, then n is odd.

Solution: Use proof by **contraposition**. Assume n is even (i.e., not odd). Therefore, there exists an integer k such that n = 2k. Hence,

$$n^2 = 4k^2 = 2(2k^2)$$

and n^2 is even(i.e., not odd).

We have shown that if n is an even integer, then n^2 is even. Therefore by contraposition, for an integer n, if n^2 is odd, then n is odd.

Vacuous And Trivial Proofs

Proving Conditional Statements: $p \rightarrow q$

• **Trivial Proof:** If we know q is true, the $p \rightarrow q$ is true as well.

"If it is raining then 1=1."

• Vacuous Proof: If we know p is false then $p \rightarrow q$ is true as well.

"If I am both rich and poor then 2 + 2 = 5."

[Even though these examples seem silly, both trivial and vacuous proofs are often used in mathematical induction, as we will see in Chapter 5)]

Proof by Contradiction

(Proving Conditional Statements: $p \rightarrow q$)

Proof by Contradiction:

- \checkmark To prove p
- \checkmark Assume $\neg p$
- ✓ Derive a contradiction such as $p \land \neg p$ (an indirect form of proof).

Since we have shown that $\neg p \rightarrow \mathbf{F}$ is true, it follows that the contrapositive $\mathbf{T} \rightarrow p$ also holds.

Proof by Contradiction

(Proving Conditional Statements: $p \rightarrow q$)

• **Example**: Use a proof by contradiction to give a proof that $\sqrt{2}$ is irrational.

Solution: Suppose $\sqrt{2}$ is rational. Then there exists integers a and b with $\sqrt{2} = a/b$, where $b \neq 0$ and a and b have no common factors (see Chapter 4). Then $2 = \frac{a^2}{\sqrt{12}} \qquad 2b^2 = a^2$

Therefore a^2 must be even. If a^2 is even then a must be even (an exercise). Since a is even, a=2c for some integer c. Thus,

$$2b^2 = 4c^2$$
 $b^2 = 2c^2$

Therefore b^2 is even. Again then b must be even as well.

But then 2 must divide both a and b. This contradicts our assumption that a and b have no common factors. We have proved by contradiction that our initial assumption must be false and therefore $\sqrt{2}$ is irrational.

Proofs Of Equivalence

• To prove a theorem that is a **biconditional** statement, that is, a statement of the form $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are both true.

Example: Prove the theorem: "If n is an integer, then n is odd if and only if n^2 is odd."

Solution: We have already shown (previous slides) that both $p \rightarrow q$ and $q \rightarrow p$. Therefore we can conclude $p \leftrightarrow q$.

Sometimes *iff* is used as an abbreviation for "if an only if," as in "If n is an integer, then n is odd iif n^2 is odd."

Counterexamples

- $\forall_{x} P(x)$ is false, we need only find a counterexample.
- **Example**: x for which P(x) is false

Example: Show that the statement "Every positive integer is the sum of the squares of two integers" is false.

Solution: there is no way to get 3 as the sum of two terms each of which is 0 or 1.

$$2^{2} = 4$$
 $\{0,1\},$
 $0+1=1 \neq 3$

Mistakes in Proofs

"Proof" that
$$1 = 2$$

Step

1.
$$a = b$$

2.
$$a^2 = a \times b$$

3.
$$a^2 - b^2 = a \times b - b^2$$

4.
$$(a - b)(a + b) = b(a - b)$$
 Algebra on (3)

5.
$$a + b = b$$

6.
$$2b = b$$

$$7. \ 2 = 1$$

Reason

Premise

Multiply both sides of (1) by a

Subtract b^2 from both sides of (2)

Divide both sides by a - b

Replace a by b in (5) because a = b

Divide both sides of (6) by b

Solution: Step 5. a - b = 0 by the premise and division by 0 is undefined.

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall x (\Re /x) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$