

- 22 -

WHAT IS CLAIMED IS:

1. A compound of formula I having the structure

5

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms,

haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO₃H;

10 R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

15

Z is O or S;

R¹¹ is an α-amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid,

20 the non-α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

- 23 -

R^{13} is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;
or a pharmaceutically acceptable salt thereof.

5

2. The compound according to claim 1, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acyl of 2-7 carbon atoms or
 $-SO_3H$;

Z is O;

10 or a pharmaceutically acceptable salt thereof.

3. The compound according to claim 2, wherein

$R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acetyl or $-SO_3H$;

R^{10} is hydrogen, $-NO_2$, $-NHR^{13}$, $-N(R^{13})_2$,

15 R^{13} is hydrogen, or acyl of 2-7 carbon atoms;
or a pharmaceutically acceptable salt thereof.

4. The compound of claim 1 which is:

20 a) N -Benzyl-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

b) N -Benzyl-octa- O -sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;

25 c) N -(4-Nitro-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

d) N -(4-Amino-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

30

- 24 -

e) *N*-(3-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

5 f) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or

10 g) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.

15 5. A method of treating or inhibiting hyperproliferative vascular disorders in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

15

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO₃H;

20 R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

25 R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, 5 the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 10 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof.

6. A method of treating or inhibiting restenosis in a mammal in need thereof, 15 which comprises administering to said mammal an effective amount of a compound of formula I having the structure

20 wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO₃H;

R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 25 carbon atoms;

- 26 -

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

5

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

15 or a pharmaceutically acceptable salt thereof.

7. The method according to claim 6, wherein the restenosis results from a vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue 20 transplantation.

8. A method of inhibiting angiogenesis in a malignant tumor, sarcoma, or neoplastic tissue in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

25

- 27 -

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7

5 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO₃H;
R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6
carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein
the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon
10 atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the
15 nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid,
the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains
from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon
atoms, acyl of 2-7 carbon atoms, or benzoyl;

20 R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of
2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8
carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof.

- 28 -

9. A pharmaceutical composition which comprises a compound of formula I having the structure

5

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO₃H;

10 R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

15

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid,

20 the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

- 29 -

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;
or a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.