TAM 251 EQUATION SHEET

Main Equations			
Stress	$\sigma_{avg} = rac{F}{A}$ $ au_{avg} = rac{V}{A}$		
Strain	$\epsilon_{eng} = \frac{\delta}{L_0}$ $\epsilon_{true} = \ln \frac{L_f}{L_0}$ $\gamma = \frac{\delta_x}{L_y} + \frac{\delta_y}{L_x}$		
Constitutive Relations	$\sigma = E \epsilon$ $ au = G \gamma$		
Material Properties (Isotropic)	$\nu = -\frac{\epsilon_{lat}}{\epsilon_{long}} \qquad G = \frac{E}{2(1+\nu)}$		
Thermal Expansion	$\epsilon_{th} = \alpha \Delta T$ $\delta_{th} = \alpha L_0 \Delta T$		
Axial Loading	$\delta = \frac{FL_0}{EA} \qquad \qquad \sigma = \frac{F}{A}$		
Torsion	$\phi = \frac{TL_0}{GJ} \qquad \qquad \tau = \frac{T\rho}{J} \qquad \qquad \gamma = \frac{\phi\rho}{L_0}$		
Stiffness and Flexibility	$k_{ m axial} = rac{EA}{L_0} = rac{1}{f_{ m axial}} \hspace{1cm} k_{ m torsion} = rac{GJ}{L_0} = rac{1}{f_{ m torsion}}$		
Bending	$\sigma = \frac{Mc}{I}$		
Thin-Walled Pressure Vessels	$\sigma_h = rac{pr}{t}$ $\sigma_a = rac{pr}{2t}$		
Transverse Shear	$\tau = \frac{VQ}{It} \qquad \qquad q = \frac{VQ}{I}$		

Miscellaneous			
Distributed Loads, Shear, & Bending Moments	$\frac{dV}{dx} = -w$	$\frac{dM}{dx} = V$	
Inclined Plane: Normal Stress	$\sigma_n = \sigma_x \cos^2 \theta + 2\tau_{xy} \sin \theta \cos \theta + \sigma_y \sin^2 \theta$		
Inclined Plane: Shear Stress	$\tau_{n,s} = (\sigma_y - \sigma_x) \sin \theta \cos \theta + \tau_{xy} (\cos^2 \theta - \sin^2 \theta)$		
Tresca Criterion	$ \sigma_1 = \sigma_{ m yield}, \ \sigma_2 = \sigma_{ m yield}$	when σ_1 , σ_2 have the same sign	
	$ \sigma_1 - \sigma_2 = \sigma_{ m yield}$	when σ_1 , σ_2 have the opposite sign	
Von-Mises Criterion	$\sigma_1^2 - \sigma_1 \sigma_2$	$+\sigma_2^2 = \sigma_{ m yield}^2$	

Stress Transformations			
	$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$		
Plane Stress	$\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) - \tau_{xy} \sin(2\theta)$		
	$ au_{x'y'} = -rac{\sigma_x - \sigma_y}{2}\sin(2\theta) + au_{xy}\cos(2\theta)$		
Mohr's Circle	$\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}$ $R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$		
Principal Stresses	$\sigma_1 = \sigma_{avg} + R$ $\sigma_2 = \sigma_{avg} - R$ $\tau_{max} = R$		
Plane Orientations	$\tan 2\theta_p = rac{2 au_{xy}}{\sigma_x - \sigma_y} \qquad \qquad \tan 2\theta_s = -rac{\sigma_x - \sigma_y}{2 au_{xy}}$		

Moments and Geometric Centroids				
	$Q = \overline{y}A$	$I_x = \int_A y^2 dA$	$J_o = \int_A \rho^2 dA$	$\overline{y} = \frac{1}{A} \int_A y dA$
Rectangle	$\begin{array}{c c} y \\ h \\ \downarrow \\ \downarrow \\ b \\ \rightarrow \end{array}$	$I_x = \frac{1}{12}bh^3$		
Circle		$I_x = rac{\pi}{4} r^4$	$J_z = \frac{\pi}{2} r^4$	
Semicircle	$\frac{\overline{y}}{{\downarrow}}$ $\frac{r}{x}$	$I_x = \frac{\pi}{8} r^4$	$I_{x'} = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$	$\overline{y} = \frac{4r}{3\pi}$
Parallel A	Axis Theorem	$I_c = I_c$	$\gamma + A d_{cc'}^2$	

Buckling			
		pinned-pinned	$L_e = L$
Critical Load	$P_{cr} = \frac{\pi^2 E I}{\left(L_e\right)^2}$	pinned-fixed	$L_e = 0.7L$
Citical Boad 1 cr	$(L_e)^2$	fixed-fixed	$L_e = 0.5L$
		fixed-free	$L_e = 2L$

Beam Deflection				
Diagram	Max. Deflection	Slope at End	Elastic Curve	
Diagram	y_{max}	θ	y(x)	
$\begin{array}{c c} y & \mathbf{P} \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ $	$-rac{PL^3}{3EI}$	$-\frac{PL^2}{2EI}$	$y(x) = \frac{P}{6EI} \left(x^3 - 3Lx^2 \right)$	
y w x y	$-rac{wL^4}{8EI}$	$-\frac{wL^3}{6EI}$	$y(x) = -\frac{w}{24EI} \left(x^4 - 4Lx^3 + 6L^2x^2 \right)$	
y M x y	$-\frac{ML^2}{2EI}$	$-\frac{ML}{EI}$	$y(x) = -\frac{M}{2EI}x^2$	
y w y x y y x	$-\frac{5wL^4}{384EI}$	$\pm \frac{wL^3}{24EI}$	$y(x) = -\frac{w}{24EI} (x^4 - 2Lx^3 + L^3x)$	
$\begin{array}{c c} y & P \\ \hline L & D \\ \hline \end{array}$	$-\frac{PL^3}{48EI}$	$\pm \frac{PL^2}{16EI}$	For $0 \le x \le \frac{L}{2}$ $y(x) = \frac{P}{48EI} (4x^3 - 3L^2x)$	
$ \begin{array}{c c} y & & P \\ A & & & B \\ \hline & x_m & & y_{max} \end{array} $	For $a > b$ $-\frac{Pb\left(L^2 - b^2\right)^{3/2}}{9\sqrt{3}EIL}$ at $x_m = \sqrt{\frac{L^2 - b^2}{3}}$	$ heta_A = -rac{Pb\left(L^2 - b^2\right)}{6EIL}$ $ heta_B = +rac{Pa\left(L^2 - a^2\right)}{6EIL}$	For $x < a$: $y(x) = \frac{Pb}{6EIL} \left[x^3 - x \left(L^2 - b^2 \right) \right]$ For $x = a$: $y = -\frac{Pa^2b^2}{3EIL}$	
X_{m}	$-\frac{ML^2}{9\sqrt{3}EI}$ at $x_m = \frac{L}{\sqrt{3}}$	$\theta_A = -\frac{ML}{6EI}$ $\theta_B = +\frac{ML}{3EI}$	$y(x) = \frac{M}{6EIL} \left(x^3 - L^2 x \right)$	