数据库原理

王兴梅 计算机科学与技术学院 Email:wangxingmei@hrbeu.edu.cn

第四章 数据库安全性

- 问题的提出
 - > 数据库的一大特点是数据可以共享
 - > 但数据共享必然带来数据库的安全性问题
 - > 数据库系统中的数据共享不能是无条件的共享

例:军事秘密、国家机密、新产品实验数据、市场需求分析、市场营销策略、销售计划、 客户档案、医疗档案、银行储蓄数据

数据库安全性(续)

- 什么是数据库的安全性
 - ▶ 数据库的安全性是指保护数据库,防止因用户非法使用数据库造成数据泄露、更改或破坏。
- 什么是数据的保密
 - 数据保密是指用户合法地访问到机密数据后能否对这些数据保密。
 - > 通过制订法律道德准则和政策法规来保证。

第四章 数据库安全性

- 4.1 计算机安全性概论
- 4.2 数据库安全性控制
- 4.3 统计数据库安全性
- 4.4 小结

4.1 计算机安全性概论

4.1.1 计算机系统的三类安全性问题

4.1.2 可信计算机系统评测标准

4.1.1 计算机系统的三类安全性问题

- 什么是计算机系统安全性
 - ▶为计算机系统建立和采取的各种安全保护措施,以保护计算机系统中的硬件、软件及数据,防 止其因偶然或恶意的原因使系统遭到破坏,数 据遭到更改或泄露等。

计算机系统的三类安全性问题(续)

- 计算机安全涉及问题
 - ▶ 计算机系统本身的技术问题
 - ○计算机安全理论与策略
 - ○计算机安全技术
 - > 管理问题
 - 〇安全管理
 - ○安全评价
 - ○安全产品
 - > 政策法规

4.1 计算机安全性概论

4.1.1 计算机系统的三类安全性问题

4.1.2 可信计算机系统评测标准

4.1.2 可信计算机系统评测标准

- 为降低进而消除对系统的安全攻击,各国引用或制定了一系列安全标准
 - ➤ TCSEC (桔皮书)
 - ➤ TDI (紫皮书)

可信计算机系统评测标准(续)

■ TCSEC/TDI安全级别划分

安全级别	定义
A1	验证设计(Verified Design)
В3	安全域(Security Domains)
B2	结构化保护(Structural Protection)
B1	标记安全保护(Labeled Security Protection)
C2	受控的存取保护(Controlled Access Protection)
C1	自主安全保护(Discretionary Security Protection)
D	最小保护(Minimal Protection)

可信计算机系统评测标准(续)

- > 四组(division)七个等级
 - O D
 - O C (C1, C2)
 - O B (B1, B2, B3)
 - O A (A1)
- > 按系统可靠或可信程度逐渐增高
- ▶ 各安全级别之间具有一种偏序向下兼容的关系,即较高安全性级别提供的安全保护要包含较低级别的所有保护要求,同时提供更多或更完善的保护能力。

计算机科学与技术学院

可信计算机系统评测标准(续)

不同安全级别对安全指标的支持情况

	自	客	标	标	主	设	强	标	可	审	系	系	屏	可	可	安	设	配	可	安	可	测	设
	主	体	记	记	体	备	制	识	信	भ	统	统	蔽	信	信	全	ਜ	置	信	全	信	试	भ
	存	重	完	信	緀	标	存	与	路		体	完	信	设	恢	测	规	管	分	特	设	文	文
	取	用	整	息	恳	记	取	垄	径		系	整	道	施	复	试	范	理	配	性	施	档	档
	控	ж	性	的	度		控	别			结	性	分	管			和			用	手		
	制			扩	标		制				构		析	理			验			户	册		
				散	记												证			指			
																				搟			
C1																							
C2																							
B1																							W)
B2																							
B3																							
A1																							

可信计算机系统评测标准(续)

- □ 表示该级不提供对该指标的支持;
- 表示该级新增的对该指标的支持;
- 表示该级对该指标的支持与相邻低一级的等级一样;
- 表示该级对该指标的支持较下一级有所增加或改动。

第四章 数据库安全性

- 4.1 计算机安全性概论
- 4.2 数据库安全性控制
- 4.3 统计数据库安全性
- 4.4 小结

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.1 数据库安全性控制概述

- 非法使用数据库的情况
 - ▶用户编写一段合法的程序绕过DBMS及其授权 机制,通过操作系统直接存取、修改或备份数 据库中的数据;
 - >直接或编写应用程序执行非授权操作;

数据库安全性控制概述 (续)

- ▶通过多次合法查询数据库从中推导出一些保密数据例:某数据库应用系统禁止查询单个人的工资,但允许查任意一组人的平均工资。用户甲想了解张三的工资,于是他:首先查询包括张三在内的一组人的平均工资 然后查用自己替换张三后这组人的平均工资 从而推导出张三的工资
- >破坏安全性的行为可能是无意的,故意的,恶意的。

计算机系统中的安全模型

数据库安全性控制概述 (续)

- 数据库安全性控制的常用方法
 - > 用户标识和鉴定
 - > 存取控制
 - >视图
 - ▶审计
 - > 密码存储

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.2 用户标识与鉴别

- 用户标识与鉴别(Identification & Authentication)
 - > 系统提供的最外层安全保护措施

4.2.2 用户标识与鉴别

基本方法

- 系统提供一定的方式让用户标识自己的名字或身份;
- 系统内部记录着所有合法用户的标识;
- 每次用户要求进入系统时,由系统核对用户提供的身份标识;
- 通过鉴定后才提供机器使用权。
- 用户标识和鉴定可以重复多次

用户标识自己的名字或身份

- 用户名/口令
 - >简单易行,容易被人窃取
- 每个用户预先约定好一个计算过程或者函数
 - > 系统提供一个随机数
 - ▶用户根据自己预先约定的计算过程或者函数进行计算
 - > 系统根据用户计算结果是否正确鉴定用户身份

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.3 存取控制

- 存取控制机制的功能
 - > 存取控制机制的组成
 - 定义存取权限
 - ○检查存取权限

用户权限定义和合法权检查机制一起组成了 DBMS的安全子系统

存取控制 (续)

▶定义存取权限

○在数据库系统中,为了保证用户只能访问他有 权存取的数据,必须预先对每个用户定义存取 权限。

▶检查存取权限

〇对于通过鉴定获得上机权的用户(即合法用户),系统根据他的存取权限定义对他的各种操作请求进行控制,确保他只执行合法操作。

存取控制 (续)

- ■常用存取控制方法
 - ▶自主存取控制(Discretionary Access Control, 简称DAC)
 - C2级—— 灵活
 - ➤ 强制存取控制 (Mandatory Access Control, 简称 MAC)
 - B1级——严格

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.4 自主存取控制方法

- 定义存取权限
 - > 存取权限
 - 存取权限由两个要素组成
 - >数据对象
 - >操作类型

自主存取控制方法(续)

> 关系系统中的存取权限

O类型

	数据对象	操作类型
模式	模 式	建立、修改、删除、检索
	外模式	建立、修改、删除、检索
	内模式	建立、删除、检索
数据	表	查找、插入、修改、删除
	属性列	查找、插入、修改、删除

自主存取控制——授权与回收

- 概述
- 授权
- 收回权限
- ■小结

安全性(续)

- 谁定义? DBA和表的建立者(即表的属主)
- 如何定义?SQL语句:GRANTREVOKE

授权

■ GRANT语句的一般格式:

GRANT 〈权限〉[,〈权限〉]...

[ON 〈对象类型〉 〈对象名〉]

TO 〈用户〉[,〈用户〉]...

[WITH GRANT OPTION];

- 谁定义? DBA和表的建立者(即表的属主)
- GRANT语义功能:将对指定操作对象的指定操作权限授予指定的用户。

(1) 操作权限

对 象	对象类型	操作权限
属性列	TABLE	SELECT, INSERT, UPDATE
		DELETE, ALL PRIVILEGES
视图	TABLE	SELECT, INSERT, UPDATE
		DELETE, ALL PRIVILEGES
		SELECT, INSERT, UPDATE
基本表	TABLE	DELETE ALTER, INDEX,
		ALL PRIVILEGES
数据库	DATABASE	CREATE TABLE

(2) 用户的权限

- 建表 (CREATETAB) 的权限:属于DBA
- DBA授予一>普通用户
- 基本表或视图的属主拥有对该表或视图的一切操作权限
- 接受权限的用户:
 - 一个或多个具体用户 PUBLIC(全体用户)

(3) WITH GRANT OPTION子句

■ 指定了WITH GRANT OPTION子句: 获得某种权限的用户还可以把这种权限再授予 别的用户。

没有指定WITH GRANT OPTION子句:
 获得某种权限的用户只能使用该权限,不能传播该权限

例题

[例] 把查询Student表权限授给用户U1

GRANT SELECT
ON TABLE Student
TO U1;

例题 (续)

[例] 把对表SC的INSERT权限授予U5用户, 并允许他再将此权限授予其他用户

GRANT INSERT

ON TABLE SC

TO U5

WITH GRANT OPTION;

传播权限

执行例5后,U5不仅拥有了对表SC的INSERT权限,还可以传播此权限:

GRANT INSERT ON TABLE SC TO U6

WITH GRANT OPTION;

同样, U6还可以将此权限授予U7:

GRANT INSERT ON TABLE SC TO U7;

但U7不能再传播此权限。

U5--> U6--> U7

例题 (续)

[例] DBA把在数据库S_C中建立表的权限授予用户U8 GRANT CREATE TABLE ON DATABASE S_C TO U8;

授权与回收

- 概述
- 授权
- 收回权限
- ■小结

收回权限的功能

■ REVOKE语句的一般格式为:

REVOKE <权限>[, <权限>]...

[ON〈对象类型〉〈对象名〉]

FROM <用户>[, <用户>]...

[CASCADE | RESTRICT];

■ 功能: 从指定用户那里收回对指定对象的指定权限

例题

[例] 把用户U4修改学生学号的权限收回

REVOKE UPDATE (Sno)
ON TABLE Student
FROM U4;

例题 (续)

[例] 把用户U5对SC表的INSERT权限收回 REVOKE INSERT ON TABLE SC FROM U5 CASCADE;

权限的级联回收

系统将收回直接或间接从U5处获得的对SC表的INSERT权限:

-->U5--> U6--> U7

收回U5、U6、U7获得的对SC表的INSERT权限:

<--U5<-- U6<-- U7

小结:SQL灵活的授权机制

- DBA拥有对数据库中所有对象的所有权限,并可以根据应用的需要将不同的权限授予不同的用户。
- 用户对自己建立的基本表和视图拥有全部的操作权限,并且可以用GRANT语句把其中某些权限授予其他用户。
- 被授权的用户如果有"继续授权"的许可,还可以把获得的 权限再授予其他用户。
- 所有授予出去的权力在必要时又都可以用REVOKE语句收回。

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.5 强制存取控制方法

- 什么是强制存取控制
 - ➤ 强制存取控制(MAC)是指系统为保证更高程度的安全性,按照TDI/TCSEC标准中安全策略的要求,所采取的强制存取检查手段。
 - > MAC不是用户能直接感知或进行控制的。
 - > MAC适用于对数据有严格而固定密级分类的部门
 - 军事部门
 - 〇 政府部门

- 主体与客体
 - ➤ 在MAC中,DBMS所管理的全部实体被分为主体和客体两大类
 - > 主体是系统中的活动实体
 - DBMS所管理的实际用户
 - 代表用户的各进程
 - > 客体是系统中的被动实体,是受主体操纵的
 - 0 文件
 - ○基表
 - 索引
 - 视图

- 敏感度标记
 - > 对于主体和客体,DBMS为它们每个实例(值) 指派一个敏感度标记(Label)
 - > 敏感度标记分成若干级别
 - 绝密(Top Secret)
 - 机密 (Secret)
 - 可信 (Confidential)
 - 公开 (Public)

- ➤ 主体的敏感度标记称为许可证级别 (Clearance Level)
- ➤ 客体的敏感度标记称为密级(Classification Level)
- ▶ MAC机制就是通过对比主体的Label和客体的 Label,最终确定主体是否能够存取客体

- 强制存取控制规则
 - ➤ 当某一用户(或某一主体)以标记label注册入系统时, 系统要求他对任何客体的存取必须遵循下面两条规则:
 - (1) 仅当主体的许可证级别大于或等于客体的密级时, 该主体才能读取相应的客体;
 - (2) 仅当主体的许可证级别小于或等于客体的密级时, 该主体才能写相应的客体。

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.6 视图机制

- 视图机制把要保密的数据对无权存取这些数据的用户隐藏起来,
- 视图机制更主要的功能在于提供数据独立性,其 安全保护功能太不精细,往往远不能达到应用系 统的要求。

视图机制 (续)

- 视图机制与授权机制配合使用:
- 首先用视图机制屏蔽掉一部分保密数据
- 视图上面再进一步定义存取权限
- 间接实现了支持存取谓词的用户权限定义

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.7 审计

- 什么是审计
 - ➤ 启用一个专用的审计日志(Audit Log) 将用户对数据库的所有操作记录在上面
 - ▶ DBA可以利用审计日志中的追踪信息 找出非法存取数据的人
 - ▶C2以上安全级别的DBMS必须具有审计功能

审计(续)

- 审计功能的可选性
 - ▶审计很费时间和空间
 - > DBA可以根据应用对安全性的要求,灵活地打开或关闭审计功能。

审计(续)

■ 强制性机制:

用户识别和鉴定、存取控制、视图

■ 预防监测手段:

审计技术

4.2 数据库安全性控制

- 4.2.1 数据库安全性控制概述
- 4.2.2 用户标识与鉴别
- 4.2.3 存取控制
- 4.2.4 自主存取控制方法
- 4.2.5 强制存取控制方法
- 4.2.6 视图机制
- 4.2.7 审计
- 4.2.8 数据加密

4.2.8 数据加密

- 数据加密
 - > 防止数据库中数据在存储和传输中失密的有效手段
- 加密的基本思想
 - ▶ 根据一定的算法将原始数据(术语为明文,Plain text) 变换为不可直接识别的格式(术语为密文,Cipher text)
 - > 不知道解密算法的人无法获知数据的内容

数据加密(续)

- 加密方法
 - ▶ 替换方法
 - ○使用密钥(Encryption Key)将明文中的每一个字符转换为密 文中的一个字符
 - > 置换方法
 - ○将明文的字符按不同的顺序重新排列
 - > 混合方法

美国1977年制定的官方加密标准:数据加密标准(Data Encryption Standard,简称DES)

第四章 数据库安全性

- 4.1 计算机安全性概论
- 4.2 数据库安全性控制
- 4.3 统计数据库安全性
- 4.4 小结

4.3 统计数据库安全性

- 统计数据库的特点
 - ▶允许用户查询聚集类型的信息(例如合计、平均值等)
 - > 不允许查询单个记录信息

例:允许查询"程序员的平均工资是多少?" 不允许查询"程序员张勇的工资?"

统计数据库安全性(续)

- 统计数据库中特殊的安全性问题
 - > 隐蔽的信息通道
 - > 从合法的查询中推导出不合法的信息

第四章 数据库安全性

- 4.1 计算机安全性概论
- 4.2 数据库安全性控制
- 4.3 统计数据库安全性
- 4.4 小结

4.4 小结

- 随着计算机网络的发展,数据的共享日益加强,数据的安全保密越来越重要
- DBMS是管理数据的核心,因而其自身必须具有
 - 一整套完整而有效的安全性机制。

小结(续)

- 《可信计算机系统评测标准》TCSEC/TDI是目前 各国所引用或制定的一系列安全标准中最重要的 一个。
- CSEC/TDI从安全策略、责任、保证和文档四个 方面描述了安全性级别的指标

小结(续)

- 实现数据库系统安全性的技术和方法有多种,最重要的是存取控制技术和审计技术。
 - ▶ 目前许多大型DBMS 达到了C2级,其安全版本达到了B1
 - ➤ C2级的DBMS必须具有自主存取控制功能和初步的审 计功能
 - ▶ B1级的DBMS必须具有强制存取控制和增强的审计功能
 - ▶ 自主存取控制功能一般是通过SQL 的GRANT语句和 REVOKE语句来实现的