DATA SCIENCE Stochastic Methods

February 7, 2023

Problem 1. [10] Let X_1, X_2 and X_3 be three independent Binomial random variables with parameters (1, p), and define $Y = X_1 + X_2 - X_3$.

- (i) Compute E[Y] and Var[Y];
- (ii) Compute P[Y = k] for any $k \in \mathbb{Z}$;
- (iii) Compute the characteristic function of Y.

(iii)
$$Y = \begin{cases} -4 & P(1-P)^2 \\ 0 & (1-P)^3 + 2 P^2(1-P) \end{cases}$$

$$1 & P^3 + 2 P(1-P)^2$$

$$2 & P^2(1-P)$$

(iii)
$$P(\sigma) = E[e^{i\sigma Y}] = P(n-P)^2 e^{-i\sigma} + (n-P)^3 + 2P^2(n-P)$$

 $+(P^3 + 2P(n-P)^4) e^{i\sigma} + P^2(n-P)e^{i2\sigma}$

or
$$(y(s)) = \mathbb{E}[e^{isX_1}] \cdot \mathbb{E}[e^{isX_2}] \cdot \mathbb{E}[e^{isX_2}]$$

Problem 2. [10] Let $(X_i)_{1 \le i \le n}$ be a family of i.i.d. Uniform (0,3) random variables and define $Z_i = \min\{2, X_i\}$.

- (i) Compute $P[Z_1 > z]$ for any $z \in \mathbb{R}$;
- (ii) Compute $E[Z_1]$;
- (iii) Prove a Chernoff Bound Upper tail estimate for $\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$. Hint: use the Heoffding's inequality.

Problem 3. [12] Let $(X_n)_{n>0}$ be a Markov chain on $\mathbb{N} \setminus \{0\} = \{1, 2, 3, ...\}$ with transition probabilities given by

$$p_{i,1} = \frac{1+2i}{(i+1)^2}$$
, $p_{i,i+1} = \frac{i^2}{(i+1)^2}$, $i \ge 1$

- (i) Is the Markov chain irreducible?
- (ii) Is the Markov chain aperiodic?
- (iii) Compute $E[X_2|X_0=k]$ for any $k \in \mathbb{N} \setminus \{0\}$;

(iv) Determine the invariant distribution.

(i) YES
$$P_{i,1} > 0$$
 $\forall i > 1$ $P_{i,i} > 0$ $\forall i > 1$

(ii) YES $P_{i,1} > 0$ $P_{i,1} > 0$ $P_{i,1} > 0$

(iii) $P_{i,1} = P_{i,1} + P_{i,$

$$= 77_{1} + \frac{1}{2^{1}} 77_{1} + \frac{1}{3^{2}} 77_{1} + \dots + \frac{1}{k^{2}} 77_{1} + \dots + \frac{1}{k^{2}}$$

$$\pi = \frac{6}{7^2} \left(\frac{1}{2^2} \frac{1}{3^2} \frac{1}{3^$$