# Decision Tree, Random Forest, and XGBoost

Jindal K. Shah (jindal.shah@okstate.edu)
School of Chemical Engineering
Oklahoma State University

9<sup>th</sup> iCoMSE Workshop: Machine Learning for Molecules





Jindal K. Shah

#### **Topics**

- Decision Tree
- Bagging (bootstrap + aggregating)
- Random forests
- Hands-on Exercise
- Gradient Boosting and extreme Gradient Boosting (XGBoost)





#### **Decision Tree**

- Supervised learning method
- Regression/classification
- Non-linear model
- If...then...else...
- Non-parametric model
- Piecewise continuous

x2







Jindal K. Shah

#### **Decision Tree**



Depth of the tree = maximum number of branches to reach a leaf





# **Objective function**

• The objective is to minimize the residual sum of squares

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

• Here *J* represents the number of regions the feature space is partitioned into. The prediction in each of the regions is given by the average response.

$$\hat{y}_{R_j} = \frac{\sum_{i \in R_j} y_i}{N_{R_j}}$$





## Partitioning the Feature Space

- Top-down greedy approach known as recursive binary splitting:
  - Begins at the top of the tree and successively splits the feature space
  - Greedy because the split at a particular step minimizes the RSS at that step rather than splitting in such a way to achieve a better tree in a future step
- Consider a split over a feature j and the corresponding threshold value s, which divides the data such that

$$R_1(j,s) = \{X | X_j < s\}$$

$$R_2(j,s) = \{X | X_j \ge s\}$$







#### Selection of feature and its threshold

#### Minimize the RSS







Jindal K. Shah

#### (Dis)Advantages of Decision-Tree Models

#### Advantages

- Ease of interpretation
- Graphical representation and understanding by a non-expert
- Scaling of features is not required

#### Disadvantages

- Accuracy is usually lower than other regression-based approaches
- Small changes in the data can greatly impact the tree structure
- As outputs are only piecewise continuous, multiple inputs can yield identical results.





# Overcoming disadvantages

- Bagging (bootstrap + aggregating)
  - Using multiple decision-tree models
- Random forests





# **Bootstrap sampling**

 Using the same data set, create multiple data sets by randomly drawing samples with replacement







## **Aggregating**

- For each of the bootstrapped data set i, develop a decision-tree model and predict a response  $f_i(x)$
- Average each of the responses to obtain the response due to bagging.

$$f_{\text{bag}}(x) = \frac{\sum_{i} f_i(x)}{B}$$





#### **Random Forests**

- Multiple decision-tree models
- Bootstrapped data set
- Randomly selected subset of features at every split
- Achieves decorrelation of trees
- Hyperparameters:
  - Number of trees
  - Number of features to select at every split
  - Minimum number of samples required at an internal node
  - Minimum number of samples required at a leaf node





#### **Hands-on Exercise**

- RandomForest.ipynb
- Dataset: Surface tension of deep eutectic solvents





## **Gradient Boosting**

- Borrow concept from RF but build trees sequentially
- Idea is to fit to residuals from the previous prediction
- Consider the following dataset

$$\{x_1, y_1\}, \{x_1, y_1\}, \{x_1, y_1\}, \dots, \{x_n, y_n\}$$

• In the first step, response for each step is predicted to be the average response  $\sum_{i} y_{i}$ 

average response  $y_i^0 = rac{\sum y_i}{N}$ 

Residual for each of the data point is computed as

$$r_i^0 = y_i - y_i^0$$





## **Gradient Boosting**

- A decision-tree is obtained for the residuals, which provides an estimate of the residual for the  $i^{\text{th}}$  datapoint, say  $\hat{r}_i^1$
- New prediction = old prediction + learning parameter \* residual prediction

$$\hat{y}_{i}^{1} = y_{i}^{0} + \nu * \hat{r}_{i}^{1}$$

- New residual = Output New prediction  $\; r_i^1 = y_i \hat{y}_i^1 \;$
- ullet Fit a decision-tree to  $r_i^1$  and update predictions
- As one might imagine, the number of trees becomes a hyperparameter





## **Extreme Gradient Boosting**

- Very similar to the gradient boosting but the split is based on similarity score and gain
- ullet As before, compute residuals:  $r_i^0=y_i-y_i^0$
- Compute similarity score



**Regularization parameter** 





# Splitting a Node in XGBoost



$$Gain = S_{left} + S_{right} - S_{node}$$

Step through different values of the threshold and features; select the pair that maximizes Gain.





# Output of a Leaf



for  $\lambda = 0$ , output is average of the residuals

New predictions are obtained in a similar manner as that for the gradient boosting method – Slide 16





# Thank you!





Jindal K. Shah

22