개인 신용도 예측 변수 분석

서울대학교 빅데이터 아카데미 2018-3 고급 빅데이터 분석 기법 BA 노은선 이현호 최의관

GOOD CREDIT

BAD CREDIT

연구 배경, 연구 목적

02 Home Credit Dataset 기업 소개 및 제공 데이터 정보

 04
 Modeling

 분석 방향 소개, 모델 설계

Home Credit Group 제공 데이터 사용

독립변수 X 소개

- 1. 일반 개인 정보
- 2. Credit Bereau 기반 정보
- 3. Home Credit 기반 정보

*변수 종류 : 총 221개

종속변수 Y 정의				
1	0			
시제여체크개				
실제 연체 고객 (상환 능력 부족)	그 외 고객			

CB [Credit Bureau]

개인신용 관련 정보를 토대로 신용도를 평가하는 기관, 개인신용 관련 정보를 토대로 신용도를 평가하는 기관, 정보를 취합하고 평가하는 데 그치지 않고 직접 신용등급을 매기며, 이 신용등급은...

HOME

Client data	application_{train test}	Train & Test data (ex) 성별, 자가유무, 자차유무, 자녀 수, 수입 등	124 columns	158MB /24MB
Credit Bureau	bureau	고객 신용 데이터 (ex) CB 기반 신용 상태, 신용 유지기간, 빚, 신용 유형	17 columns	162MB
	bureau_balance	월별 Balance 데이터 (ex) 월별 대출 상태	3 columns	358MB
Home Credit	POS_CASH_balance	HC기반 대출 정보 (ex) 신용점수 유지 기간,현재 계약 현황, 만기기한	8 columns	374MB
	credit_card_balance	기존 신용카드 대출 정보 (ex) 예전 신용 대출 계약 상태, 예전 채권 총액	22 columns	404MB
	previous_application	대출 status 데이터 (ex) 선급금, 이자, 지불 방법	25 columns	386MB
	installments_payments	대출 상환 관련 데이터 (ex) 대출 신청일, 할부 금액	7 columns	689MB
Total	7 files		221 columns	2.49GB

Data Exploration 훈련 데이터 탐색 - Target

Target 0 : 주어진 기간 내 상환에 문제가 발생하지 않은 고객

Target 1 : 대출/분할 할부 상환 문제가 있는 고객

→ 정상 & 문제 고객 데이터 간 불균형 확인 가능

훈련 데이터 탐색 - Gender and Marriage

1. 대출 신청자 성별

Variable name: CODE_GENDER

2. 대출 신청자의 결혼 형태

Variable name : NAME_FAMILY_STATUS

TARGET 0 1

3. 대출 신청자 연령

Variable name: DAYS_BIRTH

The plots show a clear trend!

4-1. 소득 형태

소득 형태별 체납자 비율

40% Maternity Leave

36% Unemployed

5% Pensioner

Variable name : NAME_INCOME_TYPE

4-2. 고객 상태별 근무 일수

Variable name : DAYS_EMPLOYED

훈련 데이터 탐색 - Own real estate or car

5-1. 자가 및 자차 소유 정보

But there's not much difference than we expected

5-2. 고객 상태별 자가 및 자차 상태

훈련 데이터 탐색 - Education and Housing Type

6. 고등 교육 수준

전체 교육 수준 71% & 24% Secondary & Higher education 제납자 교육 수준 10.9% Lower secondary

Variable name: NAME_EDUCATION_TYPE

7. 주거 형태

전체 주거 형태

88%
House &
Apartment

À

12% & 11%
Parted APT %

체납자 주거 형태

Ranted APT & With parents

Variable name: NAME HOUSING TYPE

훈련 데이터 탐색 - 고객 정보 내 금액 관련 데이터

고객 수입, 전체 대출 금액 등 금액 관련 변수들은 일부 체불자의 비율이 높아지는 구간이 있는 것 같다.

훈련 데이터 탐색 - 좀 더 소소한 개인 정보

최근 개인 정보 업데이트 일자

최근 신용 관련 자료 업데이트 일자 DAYS_ID_PUBLISH

최근 휴대폰 변경 일자 DATS_LAST_PHONE_CHANGE

30일 기준 고객 사회적 환경 관찰 자료 CNT_SOCIAL_CIRCLE

체납자의 경우 정도가 약하나 정보가 최근에 변경된 경우가 더 많고, 사회적 환경 관찰 자료는 크게 유의미한 내용은 없는 것으로 보인다.

고객 정보 접근에 있어 신선한 시도였지만, 그래프상 큰 차이는 없는 것으로 확인된다.

Pearson Correlation of features

일부 변수간 높은 상관관계

→ 파생변수로 인한 것으로 확인되었음

Kaggle dataset

8

train.csv

Our new train/ validation set

Random sampling (cv = 5fold)

train.csv

test.csv

90% train set 10% validation set

Model selection

Logistic Regression

- 1. Logistic Regression
- 2. Regularized Logistic Regression

Bagging & Boosting

- 3. Logit Boosting
- 4. Logistic Bagging
- 5. XGBOOST

Modeling Missing values

	Missing Values	% of Total Values
COMMONAREA_MEDI	214865	69.9
COMMONAREA_AVG	214865	69.9
COMMONAREA_MODE	214865	69.9
NONLIVINGAPARTMENTS_MEDI	213514	69.4
NONLIVINGAPARTMENTS_MODE	213514	69.4
NONLIVINGAPARTMENTS_AVG	213514	69.4
FONDKAPREMONT_MODE	210295	68.4
LIVINGAPARTMENTS_MODE	210199	68.4
LIVINGAPARTMENTS_MEDI	210199	68.4
LIVINGAPARTMENTS_AVG	210199	68.4
FLOORSMIN_MODE	208642	67.8
FLOORSMIN_MEDI	208642	67.8
FLOORSMIN_AVG	208642	67.8
YEARS_BUILD_MODE	204488	66.5
YEARS_BUILD_MEDI	204488	66.5
YEARS_BUILD_AVG	204488	66.5

There are too many missing values!

Modeling Missing values

XGboost XGboost (Remove NA values) (MICE package)
AUC: 0,6906 AUC: 0.6965

ROC curve for Train data

False positive rate

XGboost (Replace NA values*) AUC: 0.7056

Modeling

Model Selection - Logistic Regression

1. Logistic Regression AUC: 0.6777

2. Regularized Logistic Regression AUC: 0.6796

Modeling

Model Selection - Boosting & Bagging

3. Logit Boosting AUC: 0,6835

5. XGBoost AUC : 0,7056

Comparison of XGBoost Models EXT_SOURCE values

Value Description says....

EXT_SOURCE_1	Normalized score from external data source
EXT_SOURCE_2	Normalized score from external data source
EXT_SOURCE_3	Normalized score from external data source

EXT_SOURCE values(1~3) : 고객 정보가 아닌 Home credit 자체 정규화 된 <mark>신용 데이터</mark>로,

데이터를 구성하는 정보에 대한 설명이 전혀 없지만 예측력을 향상시키는데 <mark>매우 도움이 되는 변수</mark> → 실제 고객 평가 시 사용되는 지표일 가능성

Comparison of XGBoost Models EXT_SOURCE values - Target별 분포

We sure they know something ...

Comparison of XGBoost Models EXT_SOURCE values

XGBoost (Exclude EXT_SOURCE values) AUC: 0.7056

XGBoost (Include EXT_SOURCE values) AUC: 0.7639

Coefficient (L1, L2 규제 Elastic Net) - Regularized Logistic Regression

변수명	계수
CODE_GENDERM	-0.1733931
FLAG_OWN_CARY	0.1669117
AMT_CREDIT	-0.8405804
AMT_ANNUITY	-0.1027895
AMT_GOODS_PRICE	0.9639024
DAYS_BIRTH	-0.2049486
DAYS_ID_PUBLISH	-0.1085002
REGION_RATING_CLIENT_W_CITY	-0.1367554
DAYS_LAST_PHONE_CHANGE	-0.1683624
FLAG_DOCUMENT_3	-0.1067521
Bias	2.6002799

높은 계수를 가진 변수

전체 대출 금액과 대출 상품 가격의 계수가 가장 높게 나타났다.

예상보다 높지 않았던 변수

상대적으로 20대 체납자 비율이 높은 편이기 때문에 연령대별로 차별성이 있다고 EDA에서 확인되었지만, 본 모델에서는 연령 정보가 큰 변수로 작용하지는 않았다.

Full Model Feature Importance - Exclude EXT-SOURCE values

1. Credit or Company data

DAYS_BIRTH가 가장 중요한 변수임을 나타내고 있음

2. 중요한 개인 정보 변수

연령, 연금, 고용 현황 등 개인 정보 또한 상환 능력 평가 지표에 기여하고 있음을 확인할 수 있음

Full Model Feature Importance - Include EXT-SOURCE values

1. Credit or Company data

전체 모델에서 Home credit 신용 평가 지표 (EXT-SOURCE 1~3)이 중요한 변수로 작용하고 있음

2. 중요한 개인 정보 변수

연령, 연금, 고용 현황 등 개인 정보 또한 상환 능력 평가 지표에 기여하고 있음을 확인할 수 있음

1. Exclude EXT-SOURCE values

```
cutoff error rate sensitivity specificity f1 score 0.1400 0.1714 0.3660 0.8681 0.2516 pred response 0 1 0.24595 3736 1 1535 886
```

2.Include EXT-SOURCE values

```
cutoff error rate sensitivity specificity f1 score 0.1600 0.1463 0.3953 0.8928 0.2984 pred response 0 1 0.25295 3036 1 1464 957
```

F1 score를 가장 높게 하는 cutoff를 찾아 예측을 한 결과에 해당하는 cross table

중요한 변수들이 끼치는 확률에 대한 영향

담보 연금

최근 신용 자료 변동일

최근 휴대폰 변경일

결론

- 1. 개인정보 데이터를 통한 모델링 후 연체여부에 중요한 개인정보 변수 확인
- 2. Full model과 고객 개인정보만 사용한 model의 차이
- 3. 두 결과를 통해 현재 금융업에서 연체여부를 판단할 때 어느 부분을 새롭게 체크해야 하는지 알 수 있음.

후속 연구 제안

- 1. 결측치에 대한 통계적 접근
- 2. 주성분분석
- 3. 반응변수 비대칭성 해결을 위한 Case sampling 시도

Any Questions? 개인 신용도 예측 변수 분석 서울대학교 빅데이터 아카데미 2018-3 고급 빅데이터 분석 기법 BA 노은선 이현호 최의관