DSC190/291: Network Science and Graph Theory

Winter 2025

Homework Assignment 3

Topics: Random Networks

Instructor: Prof. Gal Mishne

Deadline: Friday Jan. 31 (1/31/2025)

Submission: Gradescope

Write full answers to the questions below. Show your calculations.

Note: GenAI tools are permitted solely for problems: 3, 4.

1. Understanding Erdős-Rényi Networks

Consider an Erdős-Rényi network with N=3,000 nodes, connected to each other with probability $p=10^{-2}$.

- (a) What is the expected number of links, $\langle L \rangle$?
- (b) In which regime is the network?
- (c) Calculate the probability p_C so that the network is at the critical point.
- (d) Given the new linking probability $p = 10^{-3}$, calculate the number of nodes $N^{C.r}$ so that the network has only one component.
- (e) For the network in (d), calculate the average degree $\langle k^{Cr} \rangle$ and the average distance between two randomly chosen nodes $\langle d \rangle$.
- (f) Calculate the degree distribution p_k of this network (approximate with a Poisson degree distribution).

2. Snobbish Networks

Consider a network of N red and N blue nodes. The probability that there is a link between nodes of identical color is p and the probability that there is a link between nodes of different color is q. A network is snobbish if p > q, capturing a tendency to connect to nodes of the same color. For q = 0 the network has at least two components, containing nodes with the same color.

- (a) Calculate the average degree of the "blue" sub-network made of only blue nodes, and the average degree in the full network.
- (b) Determine the minimal p and q required to have, with high probability, just one component.
- (c) Show that for large N even very snobbish networks (p >> q) display the small-world property.

1 - 1

UCSD

3. Generating Erdős-Rényi Networks (coding question)

Relying on the G(N, p) model, generate networks with N = 100 nodes for each of the following average degrees: $p \in \{0.01, 0.05, 0.1, 0.2\}$. For each network:

- Plot the average degree vs p,
- Plot the clustering coefficient vs p,
- Plot the average shortest path length vs p,
- Visualize the networks

Discuss your result.

4. Generating Small world Networks (coding question)

Relying on the Watts-Strogatz model, generate a network with N=100 with k=3 and rewiring probability $p \in \{0.01, 0.1, 0.2, 0.5\}$. For each network:

- Plot the average degree vs p,
- Plot the clustering coefficient vs p,
- Plot the average shortest path length vs p,
- Visualize the networks

Compare these networks to a random network and discuss your result.

1-2 UCSD