```
In [76]: %matplotlib inline
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import itertools
         import seaborn as sns
         from sklearn import datasets, linear_model
         from sklearn.metrics import mean squared error, r2 score
         from sklearn.metrics import confusion_matrix, make_scorer, accuracy_score,
         from sklearn.model_selection import train_test_split, KFold, cross_val_scor
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.svm import SVC
         from sklearn.gaussian process import GaussianProcessClassifier
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, Gra
         from sklearn.naive_bayes import GaussianNB
         sns.set()
         data = pd.read_csv("diabetes.csv")
```

In [21]: data.head()

Out[21]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Αţ
0	6	148	72	35	0	33.6	0.627	
1	1	85	66	29	0	26.6	0.351	;
2	8	183	64	0	0	23.3	0.672	;
3	1	89	66	23	94	28.1	0.167	2
4	0	137	40	35	168	43.1	2.288	;

```
In [45]: # changing irrelevant values
  data.loc[ data.Pregnancies > 6, 'Pregnancies' ] = 6
  data.loc[ data.Glucose < 70 , 'Glucose' ] = 70
  data.loc[ data.BloodPressure < 60 , 'BloodPressure' ] = 60
  data.loc[ data.BMI < 18 , 'BMI' ] = 18
  data.loc[ data.BMI > 40 , 'BMI' ] = 40
  data.describe()
```

Out[45]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.173177	121.476562	72.717448	20.536458	79.799479	31.651953	
std	2.250878	30.476519	10.950623	15.952218	115.244002	5.941621	
min	0.000000	70.000000	60.000000	0.000000	0.000000	18.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	6.000000	199.000000	122.000000	99.000000	846.000000	40.000000	

In [75]: data.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

In [77]: data.describe().T

Out[77]:

	count	mean	std	min	25%	50%	75%	
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	1
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	19
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	12
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	Ĝ
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	84
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	6
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	8
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	

```
In [78]: print(data.isnull().sum())
                                       0
         Pregnancies
                                       0
         Glucose
         BloodPressure
                                       0
         SkinThickness
                                       0
         Insulin
                                       0
         DiabetesPedigreeFunction
                                       0
         Age
         Outcome
                                       0
         dtype: int64
In [80]: data[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] = data[['
         print(data.isnull().sum())
         Pregnancies
                                         0
         Glucose
                                         5
         BloodPressure
                                        35
         SkinThickness
                                       227
         Insulin
                                       374
                                        11
         DiabetesPedigreeFunction
                                         0
         Age
                                         0
         Outcome
                                         0
         dtype: int64
```

In [81]: p = data.hist(figsize = (20,20))

In [82]: # after analyzing the data distribution, we can choose proper methods to re

data['Glucose'].fillna(data['Glucose'].mean(), inplace = True)
data['BloodPressure'].fillna(data['BloodPressure'].mean(), inplace = True)
data['SkinThickness'].fillna(data['SkinThickness'].median(), inplace = True)
data['Insulin'].fillna(data['Insulin'].median(), inplace = True)
data['BMI'].fillna(data['BMI'].median(), inplace = True)

In [83]: data.describe().T

Out[83]:

<u>. </u>	count	mean	std	min	25%	50%	75%	
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.000000	6.00000	
Glucose	768.0	121.686763	30.435949	44.000	99.75000	117.000000	140.25000	
BloodPressure	768.0	72.405184	12.096346	24.000	64.00000	72.202592	80.00000	
SkinThickness	768.0	29.108073	8.791221	7.000	25.00000	29.000000	32.00000	
Insulin	768.0	140.671875	86.383060	14.000	121.50000	125.000000	127.25000	
ВМІ	768.0	32.455208	6.875177	18.200	27.50000	32.300000	36.60000	
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.372500	0.62625	
Age	768.0	33.240885	11.760232	21.000	24.00000	29.000000	41.00000	
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.000000	1.00000	

In [84]: # Plot again after all NAN are removed.

p = data.hist(figsize = (20,20))


```
In [46]: plt.title('Ratio of Healthy and Diabetic Patients in Dataset')
    plt.pie(data['Outcome'].value_counts(),autopct='%.2f')
    plt.legend(['Healthy','Diabetic'],)
    plt.show()
```

Ratio of Healthy and Diabetic Patients in Dataset


```
In [85]: positive = data.loc[data['Outcome'] == 1]
    negative = data.loc[data['Outcome'] == 0]
    number_positive_each_age = positive.groupby('Age')['Outcome'].count()
    number_negative_each_age = negative.groupby('Age')['Outcome'].count()
    result = pd.DataFrame(dict(positive = number_positive_each_age, negative =
    result.plot.bar(figsize=[20,20])
    plt.xticks(rotation=360)
    plt.title('Variation of Outcome for ages')
    plt.ylabel('Count')
    plt.xlabel('Age');
    plt.show()
```



```
In [48]: def plot(s):
    sns.kdeplot(data.loc[ data.Outcome == 0, s] )
    sns.kdeplot(data.loc[ data.Outcome == 1, s] )
    plt.legend(['Healthy', 'Diabetic'])
    plt.ylabel('Number of Patients')
    plt.yticks([])
    plt.show()

for i in data.columns[:-1]:
    plot(i)
```



```
In [71]: for i in data.columns[:-1]:
    plt.figure(figsize=(12,6))
    plt.title("ATTRIBUTES '%s'"%i)
    sns.countplot(data[i],hue=data['Outcome'])
```



```
In [74]: for i in data.columns[:-1]:
    plt.figure(figsize=(12,6))
    plt.title("ATTRIBUTES '%s'"%i)
    sns.distplot(data[i])
```


In [86]: #heatmap

plt.figure(figsize=(12,10)) # on this line I just set the size of figure t
p=sns.heatmap(dataset.corr(), annot=True,cmap ='YlOrBr')

Analysis:

The value of Correlation Coefficient can be between -1 to +1. 1 means that they are highly correlated and 0 means no correlation. According to the heatmap, we can clearly see the correlations between each attributes.

In [87]: data.corr()

Out[87]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ
Pregnancies	1.000000	0.127911	0.208522	0.081770	0.025047	0.021559
Glucose	0.127911	1.000000	0.218367	0.192686	0.419064	0.231128
BloodPressure	0.208522	0.218367	1.000000	0.191853	0.045087	0.281199
SkinThickness	0.081770	0.192686	0.191853	1.000000	0.155610	0.543205
Insulin	0.025047	0.419064	0.045087	0.155610	1.000000	0.180241
ВМІ	0.021559	0.231128	0.281199	0.543205	0.180241	1.000000
DiabetesPedigreeFunction	-0.033523	0.137060	-0.002763	0.102188	0.126503	0.153438
Age	0.544341	0.266534	0.324595	0.126107	0.097101	0.025597
Outcome	0.221898	0.492928	0.166074	0.214873	0.203790	0.312038

From the above table, we can infer that there are no correlations between the independent variables. So, we do not need to drop any parameter to eliminate multicollinearity

```
In [88]: def plotHistogram(values, label, feature, title):
    sns.set_style("whitegrid")
    plotOne = sns.FacetGrid(values, hue=label, aspect=2)
    plotOne.map(sns.histplot, feature, kde=False)
    plotOne.set(xlim=(0, values[feature].max()))
    plotOne.add_legend()
    plotOne.set_axis_labels(feature, 'Proportion')
    plotOne.fig.suptitle(title)
    plt.show()

attributes = dataset.columns.values
for i in attributes[: -1]:
    plotHistogram(dataset, "Outcome", i, i + ' vs Diagnosis (Blue = Healthy;
```



```
In [89]: def show_used_models():
    print('Decision Tree = DecisionTreeClassifier')
    print('SVC = Support Vector Machine SVC')
    print('KNN = KNeighborsClassifier')
    print('GradientBoosting = GradientBoostingClassifier')
    print('Gaussian NB = GaussianNB')
    print('Random Forest = RandomForestClassifier')
    print('Ada Boost = AdaBoostClassifier')
    print('GradientBoosting = GradientBoostingClassifier \n\n')
```

```
In [90]: # modelling
         X = dataset.iloc[:, :-1]
         y = dataset.iloc[:, -1]
         X train, X test, y train, y test = train test split(X, y, test_size=0.3)
         models = []
         model_names = []
         results = []
         models.append(('Decision Tree', DecisionTreeClassifier()))
         models.append(('SVC', SVC()))
         models.append(('KNN', KNeighborsClassifier()))
         models.append(('GradientBoosting', GradientBoostingClassifier()))
         models.append(('Gaussian NB', GaussianNB()))
         models.append(('Random Forest', RandomForestClassifier()))
         models.append(('Ada Boost', AdaBoostClassifier()))
         for name, model in models:
             model.fit(X train, y train)
             kfold = KFold(n splits=10)
             accuracy results = cross val score(model, X train, y train, cv=kfold, sc
             results.append(accuracy results)
             model_names.append(name)
             accuracyMessage = "%s: %f (%f)" % (name, accuracy_results.mean(), accur
             print(accuracyMessage)
```

```
Decision Tree: 0.709469 (0.041069)

SVC: 0.767051 (0.031590)

KNN: 0.722257 (0.058806)

GradientBoosting: 0.766981 (0.067470)

Gaussian NB: 0.768903 (0.052252)

Random Forest: 0.772711 (0.035685)

Ada Boost: 0.759679 (0.046430)
```

```
In [91]: # boxplot for each model
fig = plt.figure(figsize=[20,20])
fig.suptitle('Algorithm Comparison: Accuracy')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(model_names)
ax.set_ylabel('Cross-Validation: Accuracy Score')
plt.show()
```

Algorithm Comparison: Accuracy


```
In [92]: show used models()
         results = {}
         for name, clf in models:
             scores = cross_val_score(clf, X_train, y_train, cv=5)
             results[name] = scores
         for name, scores in results.items():
             print("%20s | Accuracy: %0.2f%% (+/- %0.2f%%)" % (name, 100*scores.mean
         Decision Tree = DecisionTreeClassifier
         SVC = Support Vector Machine SVC
         KNN = KNeighborsClassifier
         GradientBoosting = GradientBoostingClassifier
         Gaussian NB = GaussianNB
         Random Forest = RandomForestClassifier
         Ada Boost = AdaBoostClassifier
         GradientBoosting = GradientBoostingClassifier
                Decision Tree | Accuracy: 71.51% (+/- 1.94%)
                          SVC | Accuracy: 75.23% (+/- 3.42%)
                          KNN | Accuracy: 72.80% (+/- 7.01%)
             GradientBoosting | Accuracy: 76.90% (+/- 6.24%)
                  Gaussian NB | Accuracy: 76.91% (+/- 2.53%)
                Random Forest | Accuracy: 78.57% (+/- 6.04%)
                    Ada Boost | Accuracy: 73.91% (+/- 8.92%)
```

```
In [93]: def plot confusion matrix(cm, classes,
                                    normalize=False,
                                   title='Confusion matrix',
                                   cmap=plt.cm.Blues):
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
             plt.tight_layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
```

```
In [94]: # according to the analysis above, we picked the top 3 high accuracy model
    candidate_models = [('random forest', RandomForestClassifier()), ('Gradient
    for name, model in candidate_models:
        model.fit(X_train, y_train)
        kfold = KFold(n_splits=10)
        accuracy = cross_val_score(model, X_train, y_train, cv=kfold, scoring='
        mean = accuracy.mean()
        stdev = accuracy.std()
        prediction = model.predict(X_test)
        cnf_matrix = confusion_matrix(y_test, prediction)
        plot_confusion_matrix(cnf_matrix, classes={0:'Healthy', 1:'Diabetes'},t
        plt.show()
```


ROC Curve

```
In [95]: def no skill prediction():
             ns_probs = [0 for _ in range(len(y_test))]
             ns_auc = roc_auc_score(y_test, ns_probs)
             print('No Skill: ROC AUC=%.3f' % (ns_auc))
             ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs)
             plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
         def graph roc auc(model, name):
             # predict probabilities
             lr probs = model.predict proba(X test)
             lr_probs = lr_probs[:, 1]
             # calculate score
             lr auc = roc auc score(y test, lr probs)
             # print score
             print(name + ': ROC AUC=%.3f' % (lr auc))
             # calculate roc curves
             lr_fpr, lr_tpr, _ = roc_curve(y_test, lr_probs)
             # plot the roc curve for the model
             plt.plot(lr_fpr, lr_tpr, marker='.', label=name)
             # axis labels
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             # show the legend
             plt.legend()
```

```
In [96]: no_skill_prediction()
    for name, model in (candidate_models):
        graph_roc_auc(model, name)
    plt.title('ROC AUC comparison')
```

No Skill: ROC AUC=0.500 random forest: ROC AUC=0.797 GradientBoosting: ROC AUC=0.808 AdaBoost: ROC AUC=0.802

Out[96]: Text(0.5, 1.0, 'ROC AUC comparison')


```
In [97]: for name, model in candidate_models:
    model.fit(X_train, y_train)
    print('Accuracy of ' + name + ': {:.2f}'.format(model.score(X_test, y_t

    columns = dataset.columns.values
    coefficients = model.feature_importances_
    absCoefficients = abs(coefficients)
    fullList = pd.concat((pd.DataFrame(columns, columns = ['Variable']), pd
    print('DecisionTreeClassifier - Feature Importance:')
    print('\n',fullList,'\n')
```

Accuracy of random forest: 0.76
DecisionTreeClassifier - Feature Importance:

	Variable	absCoefficient
1	Glucose	0.287808
5	BMI	0.142343
7	Age	0.121921
6	DiabetesPedigreeFunction	0.114688
0	Pregnancies	0.099902
2	BloodPressure	0.084220
4	Insulin	0.082514
3	SkinThickness	0.066602
8	Outcome	NaN

Accuracy of GradientBoosting: 0.77
DecisionTreeClassifier - Feature Importance:

	Variable	absCoefficient
1	Glucose	0.440522
5	BMI	0.152091
7	Age	0.109702
6	DiabetesPedigreeFunction	0.096314
4	Insulin	0.073429
0	Pregnancies	0.067637
2	BloodPressure	0.045053
3	SkinThickness	0.015252
8	Outcome	NaN

Accuracy of AdaBoost: 0.77
DecisionTreeClassifier - Feature Importance:

	Variable	absCoefficient
1	Glucose	0.22
5	BMI	0.18
2	BloodPressure	0.16
4	Insulin	0.14
6	DiabetesPedigreeFunction	0.14
7	Age	0.08
0	Pregnancies	0.06
3	SkinThickness	0.02
8	Outcome	NaN

In [98]: data

Out[98]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148.0	72.0	35.0	125.0	33.6	0.627
1	1	85.0	66.0	29.0	125.0	26.6	0.351
2	8	183.0	64.0	29.0	125.0	23.3	0.672
3	1	89.0	66.0	23.0	94.0	28.1	0.167
4	0	137.0	40.0	35.0	168.0	43.1	2.288
763	10	101.0	76.0	48.0	180.0	32.9	0.171
764	2	122.0	70.0	27.0	125.0	36.8	0.340
765	5	121.0	72.0	23.0	112.0	26.2	0.245
766	1	126.0	60.0	29.0	125.0	30.1	0.349
767	1	93.0	70.0	31.0	125.0	30.4	0.315

768 rows × 9 columns

Out[100]:

	Glucose	ВМІ	Outcome
0	148.0	33.6	1
1	85.0	26.6	0
2	183.0	23.3	1
3	89.0	28.1	0
4	137.0	43.1	1
763	101.0	32.9	0
764	122.0	36.8	0
765	121.0	26.2	0
766	126.0	30.1	1
767	93.0	30.4	0

768 rows × 3 columns

```
In [101]: X = dataset.iloc[:, :-1]
y = dataset.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra)

clf = GradientBoostingClassifier()
clf.fit(X_train, y_train)
print('Accuracy of GradientBoostingClassifier in Reduced Feature Space: {:.
columns = dataset.columns
coefficients = clf.feature_importances_
absCoefficients = abs(coefficients)
fullList = pd.concat((pd.DataFrame(columns, columns = ['Variable']), pd.Dat
print('\n GradientBoostingClassifier - Feature Importance:')
print('\n',fullList,'\n')
```

Accuracy of GradientBoostingClassifier in Reduced Feature Space: 0.75

GradientBoostingClassifier - Feature Importance:

```
Variable absCoefficient
0 Glucose 0.622342
1 BMI 0.377658
2 Outcome NaN
```

Linear Regression Model

```
In [42]: # Load the diabetes dataset
         diabetes X, diabetes y = datasets.load diabetes(return X y=True)
         # Use only one feature
         diabetes X = diabetes X[:, np.newaxis, 2]
         # Split the data into training/testing sets
         diabetes X train = diabetes X[:-20]
         diabetes_X_test = diabetes_X[-20:]
         # Create linear regression object
         regr = linear model.LinearRegression()
         # Train the model using the training sets
         regr.fit(diabetes_X_train, diabetes_y_train)
         # Make predictions using the testing set
         diabetes y pred = regr.predict(diabetes X test)
         # Plot outputs
         plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
         plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
         plt.xticks(())
         plt.yticks(())
         plt.show()
```


k-Nearest Neighbours Model

```
In [39]: train_scores = []

for i in range(1, 25):
    knn_clf = KNeighborsClassifier(n_neighbors=i)
    knn_clf.fit(X_train, y_train)

    train_scores.append(knn_clf.score(X_train, y_train))
    test_scores.append(knn_clf.score(X_test, y_test))

print(f"Max score of Train dataset at K = {train_scores.index(max(train_score))
    print(f"Max score of Test dataset at K = {test_scores.index(max(test_score))
```

Max score of Train dataset at K = 1 and score :- 100.0% Max score of Test dataset at K = 15 and score :- 78.57%

```
In [40]: ## training history graph
    plt.figure(figsize=(12,5))
    p = sns.lineplot(range(1,25),train_scores,marker='*',label='Train Score')
    p = sns.lineplot(range(1,25),test_scores,marker='o',label='Test Score')
```


Decision Tree Model

```
In [52]: from sklearn.model_selection import *
    from sklearn.tree import *
    from sklearn.metrics import *

    X = data.drop('Outcome',axis=1).values
    y = data['Outcome'].values

    X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=42,test_s)

    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

plt.figure(figsize=(20,5))
    plot_tree(clf,feature_names=data.drop('Outcome',axis=1).columns,filled=True
    plt.show()
```


In [54]: plot_tree(clf,feature_names=data.drop('Outcome',axis=1).columns,max_depth=2
plt.show()


```
In [ ]:
```