

Environmental Product Declaration

In accordance with ISO 14025 for:

TAÇ Polyester Yarn (Virgin) from KORTEKS

264

(Textile yarn and thread of man-made filaments or staple fibres.)

UN CPC Code

Programme Information

Programme	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden www.environdec.com info@environdec.com				
Product Category Rules (PCR)	PCR 2013:12 Textile yarn and thread of natural fibres, man-made filaments or staple fibres, version 2.11				
Independent third-party verification of the declaration and data, according to ISO 14025:2006	EPD process certification () EPD verification (X)				
Third party verifier	Professor Vladimír Kocí				
Approved by	The International EPD® System				
Procedure for follow-up of data during EPD validity involves third party verifier	Yes () No (X)				

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs for textile products are primarily intended for use in B2B communication, but their use in B2C communication under certain conditions is not precluded. For EPDs intended for B2C communication, refer to ISO 14025.

|2

About Company

Established in 1989 to meet the high-quality polyester yarn needs of the Turkish textile industry, Korteks is one of the world's most important, largest, integrated, and innovative polyester yarn production centers. In addition to the domestic market, it exports its products to more than 50 countries including Germany, Italy, England, the USA, Canada, Mexico, China.

Having an annual production capacity of 170,000 tons, Korteks produces thousands of different types of polyester filament yarns and can differentiate itself from the competition with its product variety. Korteks is one of the leading production facilities in Turkey, especially in the field of technical textiles, thanks to its competent and experienced human resources. The factory has been designed to allow for the production of high quality filament yarns and features such as "high count & micro count". These highly competitive products are used in different fields including automotive, health, outdoor, industrial textiles, carpets, fleece, top and sportswear. Korteks offers super-bright, semi-dull polyester textile chips and super-bright/dull/semi-dull/full dull ecru and polymer-dyed polyester POY, FDY, textured, elasthan, air-textured, plain, bobbin-dyed and twisted, monofilament yarns under the brand name TAÇ.

Having an R&D team that researches and offers new solutions, Korteks has also been a pioneer in many polyester yarn technologies worldwide. As a company that aims to grow through customer-oriented, innovative, and value-added products, Korteks also has intensively invested in R&D. The most prominent products that have been developed are: TAÇ Antistatic, preventing all kinds of static electricity, dust collection and adhesion to the human body; TAÇ UV Resistant, developed for outdoor fabrics such as awnings, tarpaulins, garden furniture; TAÇ Flame Retardant yarns, offering flame retardancy, DRY TOUCH®; a certified performance fabric brand that facilitates moisture management.

Developing many products for the automotive industry, Korteks offers fast, flexible, and reliable service by working in continuous cooperation with customers from the design stage to mass production of automotive fabric projects. Today, the yarns produced in this respect are used in the projects of the world's largest automobile brands by domestic and foreign fabric manufacturers.

Being the technology base in polyester yarn production, Korteks will continue to penetrate into new markets with the yarns it has developed.

CERTIFICATION

SUSTAINABLE

KORTEKS

4 5

Product Information

LCA Information

TAÇ Polyester POY

TAÇ polyester POY is a partially-oriented yarn from which a wide variety of effects etc can be achieved by putting it through texturizing, air-texturizing, and two-stage flat yarn production processes. Dope-dyed versions are also available.

$Y \land R \land$

Processes in which these products are used:

- Texturized polyester yarns are manufactured from ecru and dope-dyed POY made in our own texturizing plant.
- Air-texturized yarns (ATY) are manufactured from ecru and dope-dyed POY made in our own air-texturizing plant.
- Twisted fancy, Knit de Knit (KDK), and carpet yarns are manufactured from ecru and dope-dyed FDY made in our own spinning plant.
- Ecru FDY yarns are used to produce bobbin dyed yarns in desired colors in our bobbin dyeing plant.
- Ecru mother FDY are splitted in our monofilament plant to produce 20/1-30/1 flat and texturized monofilament yarns.
- POY and FDY are packed and shipped to domestic and international markets under the TAÇ Yarn label.

TAÇ Polyester Textured Yarns

TAÇ texturized polyester is a filament yarn which has crimpy and elastic structure by giving false twist to the yarn whose orientation has been completed, that mimic the appearance of natural-fiber yarns.

Products

- IMG (intermingled/slight-soft-strong) texturized yarns
- Non IMG set/stretch texturized yarns
- ICM (2/3/4-folded) texturized yarns
- ASG (torqueless) yarns
- Low-torque texturized yarns
- Embroidery yarns
- Functional (special-feature) yarns

Processes in which these products are used

- Weaving
- Circular knitting
- Warp knitting
- Embroidering
- Narrow weaving
- Fancy yarn's production
- Carpet yarns
- Bobbin dyed
- Twisting
- Elastane covered yarn (air or twisted)

Functional Unit	1 kg of TAÇ Polyester Yarn (Virgin) / Texturized				
Time Representativeness	2021				
Database(s) and LCA Software Used	Ecoinvent 3.6, TLCID (Turkish Lifecycle Inventory Database) and SimaPro 9.1				
System Boundaries	Craddle to Gate - Production of raw materials - Transport of raw materials - Production - Trnasport of product				
Allocation	No allocation performed				
Cut-Off Rules	No cut-off rule was applied within the LCA study underlying this EPD.				

[6 7]

System Boundary

System Description

UPSTREAM

Main raw materials of the polyester yarn is purified terephthalic acid (PTA) and mono ethylene glycol (MEG) chemicals.

Transport mix of PTA:

- 125 km by truck
- 3870 km by ship

Transport mix of MEG:

- 168 km by truck
- 3800 km by ship

Spinning oil is used as a raw material of yarn spinning. Transportation mix (spinning oils are supplied from several countries) of spinning oil is assumed as following:

- 1300 km by truck
- 16000 km by ship

CORE

Chips are prepared for the POY spinning plant, after that spinning of the POY and then it is textured

Chips preparation process consist of two drying step (last one is for the crystallization) and, chips production step.

Yarn form is obtained at POY spinning process. Finally POY is texturized to get natural look. While POY spinning and texturizing process, spin finish oil and cone oil are used.

At the end of the production, TAÇ Polyester yarns are packaged.

DOWNSTREAM

Polyester yarns are transported to numerous customers in Turkey and Europe. Transportation mix is calculated as 500 km in average by truck according to last one year deliveries.

ENVIRONMENTAL PERFORMANCE

POTENTIAL ENVIRONMENTAL IMPACT

Pa	arameter	Unit	Upstream	Core	Downstream	Total
	Fossil	kg CO ₂ eq.	2.47	2.63	82.7 x10 ⁻³	5.18
Global war-	Biogenic	kg CO ₂ eq.	3.21 x10 ⁻³	5.29 x10 ⁻³	20 x10 ⁻⁶	8.52 x10 ⁻³
ming poten- tial (GWP)	Land use and transformation	kg CO ₂ eq.	1.31 x10 ⁻³	13.5 x10 ⁻³	24.3 x10 ⁻⁶	14.8 x10 ⁻³
	Total	kg CO ₂ eq.	2.47	2.65	82.8 x10 ⁻³	5.20
	otential of the stra- one layer (ODP)	kg CFC-11 eq	0.1 x10 ⁻⁶	0.11 x10 ⁻⁶	15.2 x10 ⁻⁹	0.23 x10 ⁻⁶
Acidification	potential (AP)	kg SO ₂ eq.	10.2 x10 ⁻³	12.3 x10 ⁻³	0.3 x10 ⁻³	22.9 x10 ⁻³
Eutrophication	on potential (EP)	kg PO ₄ ³⁻ eq	3.05 x10 ⁻³	7.35 x10 ⁻³	61.8 x10 ⁻⁶	10.5 x10 ⁻³
Photochemic on potential	al oxidant formati- (POFP)	kg NMVOC	8.88 x10 ⁻³	6.23 x10 ⁻³	0.33 x10 ⁻³	15.4 x10 ⁻³
Abiotic deple Elements	etion potential –	kg Sb eq	7.36 x10 ⁻⁶	0.93 x10 ⁻⁶	0.25 x10 ⁻⁶	8.54 x10 ⁻⁶
Abiotic deple Fossil resour	etion potential – ces	MJ, net calorific value	59.7	30.8	1.25	91.8
Water scarcit	y potential	m³ eq	1.21	2.16	8.71 x10 ⁻³	3.38

Global Warming Potential was calculated using IPCC 2013 method with a timeframe of 100 years. Eutrophication, Abiotic Depletion Fossil Fuels and Abiotic Depletion Elements were calculated with CML 2001 baseline method. Acidification was calculated using fate not included version in CML 2001 non-baseline method. Photochemical Oxidant Formation potential was calculated with POFP, LOTOS-EUROS as applied in ReCiPe 2008. Water Scarcity was calculated with AWARE method.

Global Warming Potential

- -47.5% of GWP comes from upstream (raw material production and transport)
- 50.9% of GWP comes from core processes (core production processes)
- 1.6% of GWP comes from downstream (tmasport of end product)

USE OF RESOURCE

Pa	Parameter		Upstream	Core	Downstream	Total
Primary energy Use as energy carrier		MJ, net calorific value	0.57	2.32	5.22 x10 ⁻³	2.89
resources –	Used as raw materials	MJ, net calorific value	0	0	0	0
Renewable	Total	MJ, net calorific value	0.57	2.32	5.22 x10 ⁻³	2.89
Primary energy	Primary energy Use as energy carrier		62.4	31.6	1.27	95.3
resources – Used as raw materials		MJ, net calorific value	0	0	0	0
Non-renewable Total	MJ, net calorific value	62.4	31.6	1.27	95.3	
Secondary mate	rial	kg	0	0	0	0
Renewable seco	ndary fuels	MJ, net calorific value	0	0	0	0
Non-renewable	secondary fuels	MJ, net calorific value	0	0	0	0
Net use of fresh	water	m ³	8.62 x10 ⁻³	38.8 x10 ⁻³	0.22 x10 ⁻³	47.7 x10 ⁻³

Energy calculations were obtained using Cumulative Energy Demand (LHV) v 1.00, which is present in SimaPro's latest version. Net freshwater used was calculated from the life cycle inventory results.

Primary Energy Resources

- -64.2% of primary energy used at upstream (raw material production and transport)
- 34.5% of primary energy used at core processes (core production processes)
- 1.3% of primary energy used at downstream (transport of end product)

Net Use of Fresh Water

- 18.0% of water used at upstream (raw material production and transport)
- -81.5% of water used at core processes (core production processes)
- -0.5% of water used at downstream (transport of end product)

WASTE PRODUCTION

Parameter	Unit	Upstream	Core	Downstream	Total
Hazardous waste disposed	kg	0	11.6 x10 ⁻⁴	0	11.6 x10 ⁻⁴
Non-hazardous waste disposed	kg	0	62.4 x10 ⁻³	0	62.4 x10 ⁻³
Radioactive waste disposed	kg	0	0	0	0

Hazardous and Non-Hazardous waste amounts are allocated from yearly total waste amounts.

OUTPUT FLOWS

Parameter	Unit	Upstream	Core	Downstream	Total
Components for reuse	kg	0	0	0	0
Material for recycling	kg	0	0	0	0
Materials for energy recovery	kg	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0

Output flow amounts are allocated from yearly total waste amounts.

TOXICITY IMPACTS

Parameter	Unit	Upstream	Core	Downstream	Total
Human toxicity, cancer	cases	0.13 x10 ⁻⁶	0.78 x10 ⁻⁶	2.30 x10 ⁻⁹	0.31 x10 ⁻⁶
Human toxicity, non-cancer	cases	0.44 x10 ⁻⁶	0.45 x10 ⁻⁶	11.5 x10 ⁻⁹	0.91 x10 ⁻⁶
Freshwater ecotoxicity	PAF.m3.day	14195.865	20 013	134.46	34 343.45

Toxicity impacts were calculated using USEtox v 2.02 recommended + interim.

13

References

Contact Information

Ecoinvent

Ecoinvent Centre, www.ecoinvent.org

ELCD Database

European Platform on Life Cycle Assessment, https://eplca.jrc.ec.europa.eu/ELCD3/

EN ISO 9001

Quality Management Systems - Requirements

EN ISO 14001

Environmental Management Systems - Requirements

GPI

General Programme Instructions of the International EPD® System. Version 3.0.

ISO 45001

Occupational Health & Safety Management System - Requirements

ISO 14020:2000

Environmental Labels and Declarations — General principles

EN 15804:2012+A2:2019

Sustainability of construction works - Environmental Product Declarations — Core rules for the product category of construction products

ISO 14025 DIN EN ISO 14025:2009-11

Environmental labels and declarations - Type III environmental declarations — Principles and procedures

ISO 14040/44/ DIN EN ISO 14040:2006-10

Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006) and Requirements and guidelines (ISO 14044:2006)

SimaPro

SimaPro LCA Software, Pré Consultants, the Netherlands, www.pre-sustainability.com

The International EPD® System

The International EPD® System is a programme for type III environmental declarations, maintaining a system to verify and register EPD®s as well as keeping a library of EPD®s and PCRs in accordance with ISO 14025. www.environdec.com

TURKEY EPD®

ENVIRONMENTAL PRODUCT DECLARATIONS

THE INTERNATIONAL EPD® SYSTEM

Programme

EPD registered through fully aligned regional programme. EPD Turkey www.epdturkey.org

The International EPD® System www.environdec.com

EPD Turkey

SÜRATAM – Turkish Centre for Sustainable Production Research & Design Nef 09 B Blok No:7/15.

34415 Kagıthane / Istanbul, Turkey www.epdturkey.org info@epdturkey.org EPD International AB
Box 210 60
SE-100 31 Stockholm, Sweden
www.environdec.com

info@environdec.com

Owner of the Declaration

Programme Operator

Organize Sanayi Bölgesi Sarı Cad. No:3 Bursa – TURKEY +90 (224) 219 11 00

> www.korteks.com.tr Korteks.Info@zorlu.com

LCA Practitioner & EPD Designer

United Kingdom Office

4 Clear Water Place Oxford OX2 7NL, UK 0 800 722 0185

Turkey Office

Lalegül Sok. No:7/18 34415 4. Levent-Istanbul, Turkey +90 212 281 13 33

www.metsims.com info@metsims.com

3rd Party Verifier

Professor Vladimír Kocí LCA Studio Šárecká 5,16000 Prague 6 - Czech Republic

www.lcastudio.cz

14 15

KORTEKS