ΘΕΜΑ 4

Δύο φορτισμένα σωματίδια Σ_1 και Σ_2 έχουν μάζες $m_1=10^{-6}Kg$ και $m_2=2\cdot 10^{-6}Kg$ και ηλεκτρικά φορτία $q_1=-5\mu C$ και $q_2=-10\mu C$ αντίστοιχα. Τα σωματίδια Σ_1 και Σ_2 βρίσκονται αρχικά σε άπειρη απόσταση μεταξύ τους. Τη χρονική στιγμή $t_0=0$ εκτοξεύουμε το Σ_1 με ταχύτητα \vec{v}_0 που έχει κατεύθυνση προς το Σ_2 και μέτρο $v_0=3\cdot 10^4\frac{m}{s}$. Το σωματίδιο Σ_2 συγκρατείται ακίνητο με κατάλληλο μηχανισμό. Η αντίσταση του αέρα, οι τριβές και η επίδραση της βαρύτητας θεωρούνται αμελητέες. Δίνεται η ηλεκτρική σταθερά $K_C=9\cdot 10^9\frac{N\cdot m^2}{C^2}$.

4.1. Να υπολογίσετε την ελάχιστη απόσταση r_1 , από το Σ_2 , στην οποία θα φτάσει το Σ_1 .

Μονάδες 6

Τη χρονική στιγμή t_1 που τα σωματίδια βρίσκονται σε απόσταση r_1 απελευθερώνουμε το σωματίδιο Σ_2 . **4.2.** Να υπολογίσετε το λόγο $\frac{a_1}{a_2}$ των μέτρων των επιταχύνσεων των δύο σωματιδίων αμέσως μετά τη χρονική στιγμή t_1 .

Μονάδες 6

4.3. Να υπολογίσετε την ταχύτητα κάθε σωματιδίου τη χρονική στιγμή t_2 κατά την οποία η απόσταση των σωματιδίων είναι $r_2=3r_1$.

Μονάδες 8

4.4. Να υπολογίσετε το μέτρο του ρυθμού μεταβολής της ορμής κάθε σωματιδίου τη χρονική στιγμή t_2 .

Μονάδες 5