EECS 336: Introduction to Algorithms Lecture 12 Network Flow Definition, reduction, bipartite matching

Reading: 7.0-7.5

Last time:

 \bullet Shortest-paths (Bellman-Ford Alg)

Today:

- Reductions
- Network flow
- Bipartite matching

Reductions

"to solve problem B given solution to problem A, transform instances from problem B into instances of A, solve, transform solution back"

Problem A: Network Flow

"given a network with bandwidth constraints on links, how much data can we send from source to sink"

Def: a flow graph G = (V, E) is a directed graph with:

- c(e) =capacity of edge e
- $s \in V$ is source.
- $t \in V$ is sink.

Def: a flow f in G is an assignment of flow to edges "f(e)" satisfying:

- capacity: $\forall e, f(e) \leq c(e)$
- conservation: $\forall v \neq s, t,$ $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def: the **value** of a flow is

$$|f| = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ into } t} f(e)$$

Problem: Network Flow

input: flow graph $G, s, t, c(\cdot)$.

output: flow f with maximum value.

Example:

Max flow = 30.

Theorem 1: there is an algorithm to compute the max flow in polynomial time.

Theorem 2: if capacities are integral, then max flow is integral (on each edge).

Problem B: bipartite matching

Def: G = (V, E) is a bipartite if exists partitioning of V into A and B s.t.,

- $u, v \in A \Rightarrow (u, v) \notin E$,
- $u, v \in B \Rightarrow (u, v) \notin E$,

Recall: a **matching** is a set of edges $M \subseteq E$ each node is connected by at most one edge in M

- a **perfect** matching is one where all nodes are connected by exactly one edge.
- a **maximum** matching is one with maximum cardinality.

Problem: bipartite matching

input: bipartite graph G = (A, B, E)

output: a maximum matching M.

Reducing bipartite matching to max flow

"use max flow alg to solve bipartite matching."

Steps:

- 1. convert matching instance into flow instance.
- 2. run flow alg flow instance.
- 3. convert flow soln to matching soln.
- 4. prove flow soln optimal iff matching soln optimal.

Step 1:

- (a) connect s to each $v \in A$ with capacity 1.
- (b) connect t to each $u \in B$ with capacity 1.
- (c) set capacity of each edge $e \in E$ to 1.

Step 2: compute (integral) max flow f

Step 3: matching is $M = \{e \in E : f(e) = 1\}$

Step 4: Proof:

• any matching M' can be turned into a flow f' with |f'| = |M'|

(send form s to each matched edge to t one unit of flow)

• any integral flow f' can be turned into a matching M' with |f'| = |M'|

(capacity constraints imply matching)

 \Rightarrow size of output matching = value of max flow = size of max matching.

Runtime

$$T_{\text{matching}}(n, m) = O(n + m) + T_{\text{max flow}}(n, m)$$

Network Flow

Example:

Max flow = 30.

Idea: repeatedly pus flow on s-t paths until can't push anymore.

Example: Push 20 on P = (s, a, b, t)

Note: when pushing flow, we can undo flow already pushed.

Def: the <u>residual graph</u> G_f for flow f on G is the graph that represents capacity constraints for flows after pushing f

Example: G_f

Construction: $G_f \stackrel{b}{=} (V, E_f), c_f(\cdot)$: For each $e = (u, v) \in E$,

(if
$$f(e) = c(e)$$
 discard e)

- if f(e) < c(e),
 - add e to E_f
 - $c_f(e) = c(e) f(e)$
- if f(e) > 0
 - let e' = (v, u)
 - add e' to E_f
 - $\bullet \ c_f(e') = c(e') + f(e)$

Def: the residual capacity of e in E_f is $c_f(e)$.

Def: the <u>bottleneck</u> capacity of s-t path P in G_f is minimm residual capacity of any edge in P.

Def: an augmenting path P in a residual graph G_f is a path with positive bottleneck capacity.

Example: G_f after pushing 20 on P = (s, a, b, t)

Augmenting path $P \Rightarrow (s, b, a, t)$ with bottleneck capacity 10.

Augment f with flow of 10 on P:

- $f(s,b) \leftarrow f(s,b) + 10$
- $f(a,b) \leftarrow f(a,b) 10$
- $f(a,t) \leftarrow f(a,t) + 10$

Note: can find augmenting paths with BFS.

Algorithm: Augment f with P

• b = bottleneck (P, G_f) .

- for e in P:
 - if e a foward edge:

$$f(e) \leftarrow f(e) + b$$

 \bullet if e a back edge:

let
$$e' = \text{back edge}$$

$$f(e') \leftarrow f(e) - b$$
.

Example: G_f after augmenting with P = (s, b, a, t)

No more augmenting **p**aths!

Algorithm: Ford-Fulkerson

- $f \leftarrow$ null flow.
- $G_f \leftarrow G$.
- while exists s-t path P in G (by BFS)
 - augment f with P.
 - $G_f \leftarrow \text{residual graph for } G \text{ and } f.$
- return f.

Runtime

Each iteration:

- construct G_f : O(m).
- find P: O(m).
- augmentation: O(n).
- (Total: O(m))

Fact: the value of flow increases by bottleneck capacity in each iteration.

Theorem: if C is upper bound on max flow and all capacities are integral then algorithm terminates in O(C) iterations with runtime O(nC)

Proof: (by "measure of progress")

- 1. bottleneck capacities integral:
 - current residual capacities integral
 - \Rightarrow integral bottleneck capacity
 - \Rightarrow next residual capacities integral
 - induction!
- 2. bottleneck capacities ≥ 1
- 3. flow increases by 1 each iteration
- 4. terminates in $\leq C$ iterations.

QED

Note: $C \leq \sum_{e \text{ out of } s} c(e)$.

Note: Clever choice of augmenting paths gives runtime $O(m^2 \log C)$.

Correctness

- 1. f is feasible.
- 2. f is optimal.

Lemma: f is feasible.

Proof: induction!