Activity Recognition in a home

Patrick, Dong, Stephen

Internet of Things

 Network of physical 'things' to collect and exchange data

Source: Mario Morales, IDC

Activity Recognition

 Recognizing human activities e.g. home occupancy, sleeping, cooking,

Problem definition

 Infer occupant activities using sensors home deployed sensors

Evaluation

- 2 apartments1 home
- Each single occupant
- Duration14 25 days

(a) House A

(c) House C, First floor

(b) House B

(d) House C, Second floor

Dataset

- Binary sensor data:
 - Reed switches: doors or cupboards open or closed
 - Pressure mats: lying on bed or couch
 - Passive infrared: Detect motion in specific area
 - Float sensors: toilet being flushed
- Labels:
 - Handwritten diary
 - Bluetooth diary

Related work

- Van Kasteren, T. L. M., Gwenn Englebienne, and Ben JA Kröse. "Human activity recognition from wireless sensor network data: Benchmark and software." *Activity* recognition in pervasive intelligent environments. Atlantis Press, 2011. 165-186
- Tapia, Emmanuel Munguia, Stephen S. Intille, and Kent Larson. Activity recognition in the home using simple and ubiquitous sensors. Springer Berlin Heidelberg, 2004.

Methods

- Naïve Bayes
- SVM
- HMM
 - Generative probabilistic model
- CRF
 - Discriminative probabilistic model
- Structured SVM
 - Allows training of a classifier for general structured output labels

Evaluation Design

- Feature representations
 - Raw
 - Change
 - Last
- 5 fold cross validation
- Divide the dataset into smaller subsequences of ~2 hours

Comparison: House A

House A Metrics

		Precision	Recall	F-Measure	Accuracy
Model	Feature				
HMM	Change	36.9	35.2	31.8	72.0 ± 3.3
	Raw	30.8	13.8	12.9	58.0 ± 1.2
	Last	21.8	19.3	15.2	66.6 ± 3.0
SVM	Change	34.7	11.4	9.5	53.1 ± 11.0
	Raw	33.2	17.0	17.4	60.6 ± 9.0
	Last	26.7	27.9	27.3	93.7 ± 1.7
SSVM	Change	13.9	10.3	7.5	53.1 ± 0.0
	Raw	23.0	15.2	15.3	61.3 ± 1.6
	Last	30.3	29.2	28.9	93.7 ± 0.2
CRF	Change	3.1	10.0	4.8	31.3 ± 0.0
	Raw	17.9	15.7	14.9	62.1 ± 0.0
	Last	19.4	19.3	14.5	65.9 ± 0.0
$_{\rm HMM}$	Change	36.9	35.2	31.8	72.0 ± 3.3
	Raw	30.8	13.8	12.9	58.0 ± 1.2
	Last	21.8	19.3	15.2	66.6 ± 3.0
NB	Change	38.1	11.6	9.9	53.1 ± 0.0
	Raw	52.7	17.3	17.0	63.0 ± 0.0
	Last	28.3	28.2	27.7	94.5 ± 0.0

Comparison: House B

Comparison: House C

Summary

- Naive Bayes consistently outperforms other methods
- Structured SVM also performs well in sensors based activity recognition.