Information Theory, Spring 2018	Iftach Haitner
Problem set 1	
March 12, 2018	Due: March 29

- Please submit the handout in class, or email the grader (omer.rotem1 at gmail.com).
- Write clearly and shortly using sub-claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- It is allowed to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")

- 1. Prove that the (Shanon) entropy function satisfies the (basic) grouping axioms A3 (also verify for yourself that it satisfies the axioms A1, A2, A4).
- 2. In Lecture 1, slide 10, we prove that $H^*(p_1, p_2, p_3) = H(p_1, p_2, p_3)$ for any rational p_1, p_2, p_3 , and say that the non-rational case follows by the continuity of H^* . Prove it.
- 3. Let (p_1, \ldots, p_m) and (q_1, \ldots, q_m) be probability distributions (i.e., $p_i \geq 0$ for all i and $\sum_i p_i = 1$). Prove that

$$-\sum_{i} p_{i} \log p_{i} \le -\sum_{i} p_{i} \log q_{i}$$

- 4. For random variables *X* and *Y*, what is larger, prove your answers: (you can use any of the inequalities stated in first two lectures.)
 - (a) H(X|Y) or H(f(X)|Y)?
 - (b) H(X|Y) or H(X|g(Y))?
 - (c) H(X|Y) or H(f(X,Y)|Y)?
 - (d) H(X|Y) or H(X|g(X,Y))?
- 5. For a finite set S of random variables, let H(S) denote the joint entropy of all random variables in S. Prove that for any two finite sets of random variables S and U, it holds that $H(S \cup U) + (S \cap U) \leq H(S) + H(U)$.