ACM-template

langman

October 9, 2018

Figure 1: stay hungry stay foolish

SHU-langman CONTENTS

Contents

1	头文	件		4
2	图论			5
	2.1	二分图		
	2.2	并查集		
	2.3	最短路		
	2.5			
		2.3.1	dijkstra	
		2.3.2	spfa	
		2.3.3	Flody	
	2.4		成树	
	2.5	最大流		
		2.5.1	Dinic	. 9
•	<i>⇔ k</i> /r	ш		
3	字符			11
	3.1	_		
	3.3	ac自动	机	. 12
	半田	*/+ tP. /-t:	bt a	1.4
4		数据结		14
	4.1			
	4.2	单调栈		
	4.3	莫队算		_
	4.4	树状数	组	. 16
	4.5	前缀和		. 17
	4.6	线段树		. 17
	4.7	高精度		. 20
_	本た 277	+ =		
5	数学			21
	5.1	常见公		
	5.2	三个特	NEL I	
		5.2.1	Fib 数列	
		5.2.2	卡特兰 数	
		5.2.3	斯特林公式	. 22
		5.2.4	伯努力数	. 23
	5.3	数论 .		. 23
		5.3.1	高斯消元	. 23
		5.3.2	线性基	. 26
		5.3.3	素数	. 27
		5.3.4	梅森素数	
		5.3.5	miller-robin快速判素数	
		5.3.6	欧几里得	
		5.3.7	乘法逆元	
		5.3.8	欧拉函数	
		5.3.9	莫比乌斯函数	
	- 1	5.3.10		
	5.4	博弈 .	- · · · · · · · · · · · · · · · · · · ·	
		5.4.1	主要的解题思想	
		5.4.2	题型	
		5.4.3	SG函数	
		5.4.4	解题策略	. 33
	5.5	组合数	学	. 34
		5.5.1	求组合数	. 34
		5.5.2	polay定理	
		5.5.3	Pell方程	
		5.5.4	lucas定理	
		5.5.4	14046/C-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 94

SHU-langman CONTENTS

	5.6	线代
	5.0	
		5.6.1 bm求解n阶递推式
		5.6.2 fwt优化多项式乘法
		5.6.3 ftt优化多项式乘法法
		5.6.4 ntt优化多项式
		5.6.5 矩阵快速幂
		5.6.6 矩阵方面知识
	5.7	计算几何
	0.1	5.7.1 一些定理
		5.7.2 几何基本知识
		5.7.3 判断点是否在多边形中 44
		5.7.4 凸包问题
	5.8	概率论
	5.9	插值法
6	状态	. 转移 dp 47
Ū	6.1	背包
	6.2	
	0.2	— 11: 20: 14: 1 · · · · · · · · · · · · · · · · · ·
		6.2.1 LIS 最长上升子序列
	6.3	树形dp
	6.4	数位dp
	6.5	状压dp
7	常用]公式 48
-	7.1	· 杂 · · · · · · · · · · · · · · · · · ·
		7.1.1 约瑟夫问题
	7.2	积分以及求导
	1.4	- 178 /J PA /X /八寸

SHU-langman 1 头文件

1 头文件

```
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <set>
#include <cstdlib>
#include <functional>
#include <climits>
#include <cctype>
#include <iomanip>
using namespace std;
typedef long long 11;
#define INF 0x3f3f3f3f
const int mod = 1e9+7;
\#define\ clr(a,x)\ memset(a,x,sizeof(a))
#define cle(a,n) for(int i=1;i \le n;i++) a.clear();
const double eps = 1e-6;
int main()
{
  freopen("in.txt","r",stdin);
  freopen("out.txt","w",stdout);
  std::ios::sync_with_stdio(false);
  cin.tie(0);
  //舒服了
  return 0;
```

2 图论

2.1 二分图

```
判断是否二分图
int color[N], graph[N][N];
//0为白色,1为黑色
bool bfs(int s, int n) {
   queue<int> q;
   q.push(s);
   color[s] = 1;
   while(!q.empty()) {
       int from = q.front();
       q.pop();
       for(int i = 1; i <= n; i++) {
           if(graph[from][i] && color[i] == -1) {
               q.push(i);
               color[i] = !color[from];//染成不同的颜色
           }
           if(graph[from][i] && color[from] == color[i])//颜色有相同,则不是二分图
              return false;
       }
   }
   return true;
}
  求出最大匹配数
#define N 202
              //记录y中节点是否使用 o表示没有访问过,1为访问过
int useif[N];
             //记录当前与y节点相连的x的节点
int link[N];
int mat [N] [N]; //记录连接x和y的边,如果i和j之间有边则为1,否则为0
            //二分图中x和y中点的数目
int gn,gm;
int can(int t)
{
   int i;
   for(i=1;i<=gm;i++)
      if(useif[i] == 0 && mat[t][i])
          useif[i]=1;
          if(link[i]==-1 || can(link[i]))
            link[i]=t;
            return 1;
      }
   }
   return 0;
}
int MaxMatch()
{
   int i,num;
   num=0;
   memset(link,0xff,sizeof(link));
```

```
for(i=1;i<=gn;i++)
      memset(useif,0,sizeof(useif));
       if(can(i)) num++;
    return num;
}
      并查集
2.2
 int par[maxn];
 int rank[maxn];
 void init()
   for(int i = 1;i<=n;i++)
    par[i] = i;
     rank[i] = 0;
 }
 int find(int x)
   return x==par[x]?x:find(par[x]);
```

2.3 最短路

两种算法 但是要注意dijkstra无法处理负边的情况

2.3.1 dijkstra

需要注意的在于 可以更优化 我没写了 而且需要注意重边的情况

```
//dijkstra 算法
//无负权
int map[2005][2005];//记录路径 注意双向
int dp[2005];//单源最短路径记录
bool vis[2005];//记录是否用过
int N;//顶点数
void dijkstra(int s)
{
 clr(dp,INF);
 clr(vis,0);
 dp[s] = 0;
 while(true)
  {
   int v = -1;
   for(int u = 1; u <= N; u++) //从没用过的点中找一个距离最小的顶点
     if(!vis[u] && (v==-1 | | dp[u] < dp[v])
     v = u;
   }
   if(v == -1) break;
   vis[v] = true;
   for(int i = 1;i<=N;i++)</pre>
     dp[i] = min(dp[i],dp[v]+map[v][i]);
   }
 }
}
2.3.2 spfa
需要注意的是怎么建边 双向边?
// Bellman Ford 存在最短路 这个比较难看感觉
//这个可以有负权
//但是 spfa 是在bellmen Ford 的基础上的加强
//这里用的是用前向星的方法去建图
//这里不用判重边的还是很舒服
int N,M;
int cnt;
struct edge{
int to,Next,w;
}E[maxn];
int pre[maxn],dp[maxn];//pre 路径结点 dp 最短路
bool vis[maxn];
int in[maxn];//这个的作用在于处理进去过多少次 就能看出是不是存在负环
void addedge(int x,int y,int z)
{
E[++cnt] .to = y;
E[cnt].Next = pre[x];
E[cnt].w = z;
```

```
pre[x] = cnt;
return;
}
bool spfa(int s)//这个算法还能判断是否存在负环
int i,t,temp;
queue<int>Q;
clr(vis,0);
clr(dp,INF);
clr(in,0);
Q.push(s);
vis[s] = true;
dp[s] = 0;
while(!Q.empty())
 t = Q.front();Q.pop();vis[t] = false;
 for(i = pre[t];i;i=E[i].Next)
    temp = E[i].to;
    if(dp[temp] > dp[t]+E[i].w)
      dp[temp] = dp[t]+E[i].w;
      if(!vis[temp])
      {
        Q.push(temp);
        vis[temp] = true;
        if(++in[temp]>N) return false; //负环判定关键
    }
 }
}
return true;
}
2.3.3 Flody
```

这个就不写了,一个小dp

2.4 最小生成树

这是个什么玩意呢 图里面是吧,找到n-1条边使得生成一颗树,然后他的边权之和最小

```
//prime 算法
//还有一个不想去写了 没有这个必要
//注意重边
// 还有这个算法 在树生成不起来的情况下 需要特判一下
// dfs一遍就行 看是否全联通
int map[maxn][maxn];
int dp[maxn];
int vis[maxn];
int prime()
{
   clr(dp,INF);
   clr(vis,0);
```

```
dp[1] = 0;
  int res = 0;
  while(true)
   int v = -1;
   for(int u = 1; u \le N; u++)
     if(!vis[u] && (v==-1 || dp[u] < dp[v])) v = u;
   if(v == -1) break;
   vis[v] = 1;
   res += dp[v];
   for(int u = 1; u \le N; u++)
     dp[u] = min(dp[u],map[v][u]);
   }
  }
 return res;
}
     最大流
2.5
2.5.1 Dinic
板子先存着,坑定用的着
//最大流 dinic算法
//记得有时候要建双向边
const int MAXN = 1000;
                              //用边来存图
struct edge{int to,cap,rev;};
                              //图的链接表表示
vector<edge>G[MAXN];
                              //顶点到源点的距离标号
int level[MAXN];
int iter[MAXN];
                              //当前弧在其之前的边已经没有用了
                                    //为图加一条从from到to的容量为cap的边
void addedge(int from,int to,int cap)
  G[from].push_back((edge){to,cap,(int)G[to].size()});
  G[to].push_back((edge){from,0,(int)G[from].size()-1});
}
                            //bfs计算从源点出发的距离标号
void bfs(int s)
{
  clr(level,-1);
  queue<int>que;
  level[s] = 0;
  que.push(s);
  while(!que.empty())
   int v = que.front();
   que.pop();
   for(int i = 0;i<G[v].size();i++)</pre>
     edge &e = G[v][i];
     if(e.cap>0 && level[e.to]<0)
       level[e.to] = level[v]+1;
       que.push(e.to);
```

```
}
  }
}
                                       //通过dfs寻找增广路
int dfs(int v, int t,int f)
  if(v == t) return f;
  for(int i = iter[v] ;i<G[v].size();i++)</pre>
    edge &e = G[v][i];
    if(e.cap > 0 && level[v] < level[e.to])</pre>
       int d = dfs(e.to,t,min(f,e.cap));
       if(d>0)
       {
          e.cap -=d;
          G[e.to][e.rev].cap += d;
          return d;
       }
    }
  }
  return 0;
int max_flow(int s,int t) //从 s 到 t 的最大流
  int flow = 0;
  while(true)
  {
    bfs(s);
    if(level[t] < 0 ) return flow;</pre>
    clr(iter,0);
    int f;
    while((f = dfs(s,t,INF)) > 0 )
    flow += f;
  }
}
```

SHU-langman 3 字符串

3 字符串

3.1 kmp

适用点:

这个主要用在,一个是:他的那个周期函数的运用.一个是那个单模板串,多个匹配串的形式. 最主要的运用就是他的那个失配函数的运用.这里就随便弄一个板子过来了,为了打的快一点.

```
int f[ 15000];
void getfill(string s)
    memset(f,0,sizeof(f)); //根据其前一个字母得到
    for(int i=1;i<s.size();i++)</pre>
    {
        int j=f[i];
        while(j && s[i]!=s[j])
            j=f[j];
        f[i+1]=(s[i]==s[j])?j+1:0;
    }
}
int find(string a,string s)
{
    int ans=0;
    getfill(s);int j=0;
    for(int i=0;i<a.size();i++)</pre>
        while(j && a[i]!=s[j])
            j=f[j];
        if(a[i]==s[j])
            j++;
        if(j==s.size()){
            ans++;
    }
    return ans;
}
```

3.2 字典树

这个是一个比较高级的东西,一般这个玩意和前缀有点关系.

```
//字典树的板子其实比较简单
//主要就是存一些简单的关系,而且好像可以开的挺大的,但是必须开全局才行
//不过这只是一种数据结构,他的操作还有很多其他的用处,算法也是要靠自己去实现的
//很多题型应该是对那个val进行操作
const int maxnode = 1000100,sigma_size = 26;
int trie[maxnode][sigma_size];
int val[maxnode];//这里最简单的意义在于记录那个点是否是单词结尾节点。
int sz;
inline int idx(char c) { return c-'a'; }
void init()
{
    clr(trie[0],0);
    clr(val,0);
    sz = 1;
}
void insert(char *s,int value)
```

SHU-langman 3 字符串

```
{
   int u=0, n=strlen(s);
   for (int i=0; i<n; i++)
       int c=idx(s[i]);
       if (trie[u][c]==0) //empty
           clr(trie[sz],0);
           val[sz]=0; //not a word
           trie[u][c]=sz++;
       }
       u=trie[u][c];
   val[u] = value;
}
int search(char *s)
   int u=0, n=strlen(s);
   for (int i=0; i<n; i++)
       int c=idx(s[i]);
       if (trie[u][c]==0)
           return -1;
       u=trie[u][c];
   return val[u];
}
     ac自动机
呦呦呦这个就高级了,他是基于那两个东西,字典树和kmp所衍生出来的一个算法.
struct Trie
{
    int next[500010][26],fail[500010],end[500010];
    //第一个是他的边,第二个是那个失配数组,第三个是每个结点的权,字典树里面的东西
   int root,L;
   int newnode()//建新结点
       for(int i = 0; i < 26; i++)
           next[L][i] = -1;
       end[L++] = 0;
       return L-1;
   void init()//初始化这颗树
    {
       L = 0;
       root = newnode();
   void insert(char buf[]) //在字典树中插入单词
       int len = strlen(buf);
       int now = root;
       for(int i = 0; i < len; i++)
           if(next[now][buf[i]-'a'] == -1)
```

SHU-langman 3 字符串

```
next[now][buf[i]-'a'] = newnode();
           now = next[now][buf[i]-'a'];
        end[now]++;
    }
    void build()//这里就是在做那个啥失配数组
        queue<int>Q;
        fail[root] = root;
        for(int i = 0; i < 26; i++)
           if(next[root][i] == -1)
               next[root][i] = root;
           else
           {
               fail[next[root][i]] = root;
               Q.push(next[root][i]);
           }
       while( !Q.empty() )
           int now = Q.front();
           Q.pop();
           for(int i = 0; i < 26; i++)
                if(next[now][i] == -1)
                   next[now][i] = next[fail[now]][i];
               else
                {
                   fail[next[now][i]]=next[fail[now]][i];
                   Q.push(next[now][i]);
               }
       }
    }
    int query(char buf[])
       int len = strlen(buf);
       int now = root;
        int res = 0;
       for(int i = 0;i < len;i++)</pre>
           now = next[now][buf[i]-'a'];
           int temp = now;
           while( temp != root )
           {
               res += end[temp];//其实这里的这个玩意不管怎么说应该都只是1,表示有一个单词
                end[temp] = 0;//这里的意思我感觉是在与去重
               temp = fail[temp];//向上归根
           }
        }
       return res;
    }
};
```

4 常用数据结构

4.1 STL

}

```
//头文件
#include <queue>
#include <stack>
#include <string>
#include <set>
#include <map>
struct cmp1{
    bool operator ()(int &a,int &b){
       return a>b;//最小值优先
};
int main()
{
  //优先队列
 priority_queue<int, vector<int>, cmp1>que1;
  que1.push(i);que1.top();que1.pop();que1.empty();que1.clear();//进,顶,出,空,删,
  sort(shu,shu+n,cmp);//范围,排序方式
  //容器
  vector<int>q2;vector<int> q2_1{1,2,3,4};
  q2.push_back(i);q2.top();q2.pop();q2.empty();q2.clear();q2.size();
  //map的一些常见用法
 map<int,int>q;//前面是key,后面val,这是一个映射的过程
  q.insert(make_pair(a,b)); q[a] = b,q.size()//这个是赋值的方法
  for(map<<del>int,int</del>>::iterator i = q.begin();i != q,end();i++) {cout<<(i->first)<<(i->second);} //这个;
  q.count(a), q.find(a), q.clear(); //这个是查key a是否出现过,前面的返回的是是否,后面的返回的是迭代器,返回
  //set的用法
  set<int>q;
  q.insert(a);q.size();q.clear();
  for(set<<u>int</u>>::iterator j = q.begin();j!=q.end();j++) cout<<*j<<endl; //插入,遍历啥的操作
  //string一些初始化方法
  char shu[100];
  char s1[] = {"dadaa"};
  string a("sssss"), string s = "qqqq", string s1(s,3,4); //s1是s从下标3开始4个字符的拷贝
  string s2(s,2);//从s2的第二个字符开始拷贝
  string s3(shu,3);//复制字符串cs的前3个字符到s当中
}
     单调栈
4.2
//这个是单调栈,用来处理的是右边第一个比他大的
int tot = -1;
st[++tot] = n;
for(int i = n-1;i>=1;i--)
  if(shu[i]>shu[st[tot]])
  {
    while(tot>=0 && shu[i]>shu[st[tot]])
     tot--;
```

```
if(tot == -1)
{
    nextmax[i] = -1; //表示它最大
}
else
{
    nextmax[i] = st[tot];
}
st[++tot] = i;
}
else
{
    nextmax[i] = st[tot];
st[++tot] = i;
}
}
```

4.3 莫队算法

{

处理的东西主要是在于区间,这里的区间不是单纯区间,而是你可以向上向下走的问题,并且有O(1)的 递推式就可以走,这里的关键在于玄学把复杂度降到 $N^{\frac{3}{2}}$ 然后需要处理的就是你走所带来的一个权值变化,这个是关键的问题

```
#include <bits/stdc++.h>
using namespace std;
const int N = 1 << 20;
//莫对经典算法例题
//莫队的意义首先你要可以做到可以离线,其次是你要知道它向上向下走价值的变化
//其他的就是板子的问题了,因为这里的关键就变成了复杂度变成了求曼哈顿距离,如何把这些点变成用曼哈顿距离来解
struct node
{
 int 1,r,id;
}Q[N];
ll ans[N]; //这里的ans存的是最后的答案
int a[N], pos[N]; //这里的 a 存的是原始数组,pos 存的是分块
int n,m,k;
int L = 1,R = 0;
11 \text{ num} = 0;
bool cmp(node a, node b) //这个是块之间与块内排序
 if(pos[a.1] == pos[b.1])
 {
   return a.r<b.r;
 }
 return pos[a.1] < pos[b.1];</pre>
void add(int x) //这里是关键
{
}
void del(int x)
}
int main()
```

```
cin>>n>>m>>k;
int sz = sqrt(n);
for(int i = 1;i<=n;i++)</pre>
  cin>>a[i];
  a[i]^=a[i-1];
  pos[i] = i/sz;
}
for(int i = 1;i<=m;i++)</pre>
{
  cin>>Q[i].1>>Q[i].r;
  Q[i].id = i;
}
sort(Q+1,Q+m+1,cmp);
flag[0] = 1;
for(int i = 1;i<=m;i++)</pre>
  while(L<Q[i].1)
  {
    del(L-1);
    L++;
  }
  while(L>Q[i].1)
    L--;
    add(L-1);
  while(R<Q[i].r)
  {
    R++;
    add(R);
  }
  while(R>Q[i].r)
  {
    del(R);
  ans[Q[i].id] = num;
}
return 0;
```

4.4 点分治

现在还不是很熟,所以放了一道例题,就是给你这个树让你去算这棵树上点对的距离小于等于k。

```
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
```

```
#include <bitset>
#include <vector>
#include <set>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define F(i,a,b) for (int i=a;i < b;i++)
#define FF(i,a,b) for (int i=a;i \le b;i++)
#define mes(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
typedef long long 11;
const int N = 1e5+500;
int n, k, ans, root, num, maxn;
int vis[N], size[N], dis[N], maxv[N]; //size[]表示子树结点数量, maxv[]表示最大子树数量, dis[]表示结点
int head[N], e;
struct Edge { int v,next,w; } edge[N];
void Init()
{
    ans=e=0;
   mes(head, -1); mes(vis, 0);
void Addedge(int u,int v,int w)
    edge[e].v=v;
    edge[e].w=w;
    edge[e].next=head[u];
    head[u]=e++;
}
void dfssize(int u, int fa)
                             //计算u树的结点数量
    size[u]=1; maxv[u]=0;
    for(int i=head[u]; i!=-1; i=edge[i].next) {
       int v=edge[i].v;
       if(v!=fa && vis[v]==0) {
           dfssize(v, u);
           size[u]+= size[v];
           if(size[v]>maxv[u]) maxv[u]=size[v];
                                                //求出最大子树数量
       }
    }
                                   //计算去掉r树后u树的重心,降低复杂度,这里貌似还用到了树形dp;\ r为力
void dfsroot(int r,int u,int fa)
                                                          //如果u树结点数小于r树除去u树的数量,则u树
    if(size[r]-size[u] >maxv[u]) maxv[u]=size[r]-size[u];
    if(maxv[u] < maxn) maxn = maxv[u], root = u;</pre>
                                              //maxv即为最大子树数量,root为重心
    for(int i=head[u]; i!=-1; i=edge[i].next) {
       int v=edge[i].v;
       if(v!=fa \&\& vis[v]==0) dfsroot(r,v,u);
}
void dfsdis(int u,int d,int fa)
                                  //计算u树中各个结点到重心的距离
{
    dis[num++] = d;
    for(int i=head[u]; i!=-1; i=edge[i].next) {
       int v=edge[i].v;
       if (v!=fa \&\& vis[v]==0) dfsdis(v, d+edge[i].w, u);
```

```
}
int calc(int u, int d)
                         //计算在u树中,点对dis() <= k的数量
    int ret=0;
               //num表示u树中点的数量
    num=0;
    dfsdis(u,d,0);
    sort(dis, dis+num);
    int i=0, j=num-1;
                   //经典,相向搜索
    while(i<j) {</pre>
       while(dis[i]+dis[j]>k && i<j) j--;
       ret+= j-i;
       i++;
    }
    return ret;
}
int cal(int v,int cost) // 表示==k的
    d[v] = cost; deep[0] = 0;
    getdeep(v,0);
    sort(deep+1,deep+deep[0]+1);
    int r = deep[0], res = 0;
    for(int 1 = 1;1 < r;1++)
       while(deep[1]+deep[r] >= k) {
           if(deep[1] + deep[r] == k) res++;
           r--;
       }
    return res;
}
void dfs(int u)
{
   maxn=n;
    dfssize(u, 0);
                       //找到u树中的重心root
    dfsroot(u,u,0);
    ans+= calc(root, 0);
    vis[root]=1;
    for(int i=head[root]; i!=-1; i=edge[i].next) { //从重心出发,去掉重心后,再同样搜子树
       int v=edge[i].v;
       if(vis[v]==0) {
           ans-= calc(v, edge[i].w); //减去v子树, 因为下面dfs(v)还要再加上
           dfs(v);
       }
    }
}
int main()
{
    while(~scanf("%d%d", &n,&k)&& (n&&k))
    {
       Init();
       int u,v,1;
       FF(i,1,n-1) {
           scanf("%d%d%d", &u,&v,&l);
           Addedge(u,v,1);
           Addedge(v,u,1);
       }
       dfs(1);
       printf("%d\n", ans);
```

```
}
    return 0;
     树状数组
4.5
适用于的方面是, 单点更新, 多次查询。
//一维的
int tree[maxn];
int lowbit(int t)
 return t&(-t);
}
void add(int x,int y)
  for(int i=x;i<=n;i+=lowbit(i))</pre>
  tree[i]+=y;
}
int getsum(int x)
{
  int ans=0;
 for(int i=x;i>0;i-=lowbit(i))
   ans+=tree[i];
 return ans;
//二维的, 自己感觉一下, 需要容斥一下
int data[MAX][MAX], n;
int lowbit(int x) {
   return x&-x;
}
void Add(int x, int y, int w) {
    for (int i = x; i <= n; i += lowbit(i)) {
        for (int j = y; j \le n; j += lowbit(j)) {
           data[i][j] += w;
        }
    }
}
int Sum(int x, int y) {
    int ans = 0;
    for (int i = x; i > 0; i = lowbit(i)) {
        for (int j = y; j > 0; j = lowbit(j)) {
           ans += data[i][j];
    return ans;
}
```

4.6 前缀和

适用于多次区间更新,一次查询,代码就不搞上去了。

4.7 线段树

现在的我对于这方面还不够熟悉,先留个板子

```
#define lson rt<<1
#define rson rt<<1/1
//单点更新模板题
const int maxn = 50005;
11 a[maxn];
struct node
  int 1,r;
  ll sum;
}tree[maxn<<2];</pre>
void build(int rt, int l, int r)//建树
{
  tree[rt].l = 1;
  tree[rt].r = r;
  if(1 == r)
    tree[rt].sum = a[1];
    return ;
  }
  int mid = (1+r)>>1;
  build(lson,1,mid);
  build(rson,mid+1,r);
  tree[rt].sum = tree[lson].sum+tree[rson].sum;
}
void update_dian(int rt,int a,int val)
{
  if(tree[rt].1 == a && tree[rt].r == a)
    tree[rt].sum += val;
    return;
  }
  int mid = (tree[rt].l+tree[rt].r)>>1;
  if(a<=mid) update_dian(lson,a,val);</pre>
  else update_dian(rson,a,val);
  tree[rt].sum = tree[lson].sum+tree[rson].sum;
}
ll query(int rt,int l,int r)
// cout << l << " " << r << endl;
  if(l == tree[rt].l && r == tree[rt].r) return tree[rt].sum;
  int mid = (tree[rt].l+tree[rt].r)/2;
  if(r <= mid) return query(lson,l,r);</pre>
  if(l>mid)
              return query(rson,1,r);
  return query(lson,1,mid) + query(rson,mid+1,r);
}
//区间加模板
int lazy[maxn<<2];</pre>
struct node
  int 1,r;
  int s;
}tree[maxn<<2];</pre>
void pushup(int rt)
  tree[rt].s = tree[lson].s+tree[rson].s;
```

```
}
void pushdown(int rt ,int len)
  if(lazy[rt]!=0)
    lazy[lson] += lazy[rt];
    lazy[rson] += lazy[rt];
    tree[lson].s += lazy[rt]*(len-(len>>1));
    tree[rson].s += lazy[rt]*(len>>1);
    lazy[rt] = 0;
  }
}
void build(int rt, int l, int r)//建树
  tree[rt].l = 1;
  tree[rt].r = r;
  if(1 == r)
    tree[rt].s = a[1];
    return ;
  }
  int mid = (1+r)>>1;
  build(lson,1,mid);
  build(rson,mid+1,r);
  pushup(rt);
void duan_up(int rt,int l,int r,ll m)
  if(tree[rt].1>=1 && tree[rt].r<=r)
    lazy[rt] += m;
    tree[rt].s += m*(tree[rt].r-tree[rt].l+1);
    return;
  }
  pushdown(rt,tree[rt].r-tree[rt].l+1);
  int mid = (tree[rt].l+tree[rt].r)>>1;
  if(l<=mid) duan_up(lson,l,r,m);</pre>
  if(r>mid) duan_up(rson,l,r,m);
  pushup(rt);
11 query(int rt,int l,int r)
  if(1 <= tree[rt].l && r >= tree[rt].r) return tree[rt].s;
  pushdown(rt,tree[rt].r-tree[rt].l+1);
  int mid = (tree[rt].l+tree[rt].r)/2;
  11 \text{ ans} = 0;
  if(1 <= mid) ans+= query(lson,1,r);</pre>
               ans+= query(rson,1,r);
  if(r>mid)
  return ans;
}
//区间变
11 a[maxn];
int lazy[maxn];
struct node
  int 1,r;
```

```
11 s;
}tree[maxn<<2];</pre>
void pushup(int rt)
  tree[rt].s = tree[lson].s+tree[rson].s;
}
void pushdown(int rt ,int len)
  if(lazy[rt])
  {
    lazy[lson] = lazy[rson] = lazy[rt];
    tree[lson].s = lazy[rt]*(len-(len>>1));
    tree[rson].s = lazy[rt]*(len>>1);
    lazy[rt] = 0;
  }
}
void build(int rt, int l, int r)//建树
  tree[rt].1 = 1;
  tree[rt].r = r;
  if(1 == r)
    tree[rt].s = 1;
    return ;
  int mid = (1+r)>>1;
  build(lson,1,mid);
  build(rson,mid+1,r);
  pushup(rt);
}
void duan_up(int rt,int l,int r,int m)
  if(tree[rt].1>=1 && tree[rt].r<=r)
  {
    lazy[rt] = m;
    tree[rt].s = m*(tree[rt].r-tree[rt].l+1);
    return;
  }
  pushdown(rt,tree[rt].r-tree[rt].l+1);
  int mid = (tree[rt].l+tree[rt].r)>>1;
  if(l<=mid) duan_up(lson,l,r,m);</pre>
  if(r>mid) duan_up(rson,1,r,m);
  pushup(rt);
}
int query(int rt,int l,int r)
  if(1 <= tree[rt].l && r >= tree[rt].r) return tree[rt].s;
  pushdown(rt,tree[rt].r-tree[rt].l+1);
  int mid = (tree[rt].l+tree[rt].r)/2;
  int ans= 0;
  if(l <= mid) ans+= query(lson,l,r);</pre>
  if(r>mid)
               ans+= query(rson,1,r);
  return ans;
}
```

4.8 高精度

我个人习惯使用Java。就是怎么说呢,感觉要学会用自动补全以及几个常用的加减乘除 加add减sub乘mul除div模mod就很ok,然后那个大叔据都是从字符串转过来的,要熟悉一下字符串的一些常用函数.

```
import java.util.*;
import java.math.*;
import java.util.Scanner;
public class Main {
       public static void main(String[] args) {
        Scanner cin = new Scanner(System.in);
        while(cin.hasNext())
          int n = cin.nextInt();//输入的方式比较的麻烦
          BigInteger a = new BigInteger(); //里面是字符串
          BigDecimal b = new BigDecimal();
          //接下来是比较常见的函数以及用法。
          a = a.add(a);a = a.multiply(a);
          BigInteger c = new BigInteger.valueOf(n);//类型转换
          subtract();//减法
          multiply();
                     //相除取整
          divide();
          remainder(); //取余
          pow(); a.pow(b)=a^b
          gcd(); //最大公约数
          abs(); //绝对值
          negate(); //取反数
          mod(); a.mod(b)=a%b=a.remainder(b);
      }
    }
```

5 数学方面

5.1 常见公式

- 1. 约数定理 若 $n = \prod_{i=1}^{k} p_i^{a_i}$
 - (a) 约数个数 $f(n) = \prod_{i=1}^{k} (a_i + 1)$
 - (b) 约数和 $g(n) = \prod_{i=1}^{k} (\sum_{j=0}^{a_i} p_i^j)$
- 2. 小于n且互素的数之和为 $n\varphi(n)/2$
- 3. 若gcd(n, i) = 1,则 $gcd(n, n i) = 1(1 \le i \le n)$
- 4. 错排公式: $D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^{k} n!}{k!} = \left[\frac{n!}{e} + 0.5\right]$
- 5. 威尔逊定理: p is $prime \Rightarrow (p-1)! \equiv -1 \pmod{p}$
- 6. 欧拉定理: $gcd(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- 7. 欧拉定理推广: $gcd(n,p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}$
- 8. 素数定理: 对于不大于n的素数个数 $\pi(n)$, $\lim_{n\to\infty}\pi(n)=\frac{n}{\ln n}$
- 9. 位数公式: 正整数x的位数N = log10(n) + 1

- 10. 设a > 1, m, n > 0,则 $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$
- 11. $[n=1] = \sum_{d|n} u(d)$
- 12. $\sum_{d|n} \phi(d) = n$
- 13. 若gcd(m,n) = 1,则:
 - (a) 最大不能组合的数为m*n-m-n
 - (b) 不能组合数个数 $N = \frac{(m-1)(n-1)}{2}$
- 14. 若gcd(m,n) = 1,则:
 - (a) 最大不能组合的数为m*n-m-n
 - (b) 不能组合数个数 $N = \frac{(m-1)(n-1)}{2}$
- 15. $(n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1)$
- 16. 若p为素数,则 $(x + y + ... + w)^p \equiv x^p + y^p + ... + w^p \pmod{p}$
- 17. NTT常用素数

$r2^{k} + 1$	r	k	g
3	1	1	2
5	1	2	2
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

5.2 三个特别的数

5.2.1 Fib 数列

$$f(x) = f(x-1) + f(x-2)$$
 $f(0) = 0, f(1) = 1$

5.2.2 卡特兰 数

 $\sum_{i=1}^n f_i * f_{n-i} = f_n$ $h(n) = C_{2n}^n - C_{2n-1}^n$ 注意它这个数字来自于什么情况。

5.2.3 斯特林公式

$$\sqrt{2*PI*n}*(\tfrac{n}{e})^n=n!$$

5.2.4 伯努力数

这个数的定义来自于,之前人们对自然数幂的求解的过程中,出现的一种操作,感觉这个的主要目的在于求有关自然数幂和的问题上,所有的问题都不是直接给出的,多点见识。 $\sum_{i=1}^n i^k = \frac{1}{k+1} * \sum_{i=1}^{k+1} C_{k+1}^i * B_{k+1-i} * (n+1)^i \qquad B_0 = 1, \sum_{k=0}^n C_{n+1}^k * B_k = 0$

```
B_n = -\frac{1}{n+1} \sum_{i=1}^{n-1} C_{n+1}^i * B_i 下面是一个求自然数幂和的板子
const int maxn = 2005;
11 C[maxn] (maxn], b[maxn], Inv[maxn], tmp;
//需要预处理组合数,伯努力数,逆元,在o(n^2) 的范围里解决这个问题
void init()
  C[0][0] = 1;//预处理组合数
  for(int i = 1;i<maxn;i++)</pre>
    C[i][0] = 1;
    for(int j = 1; j \le i; j++) C[i][j] = (C[i-1][j-1] + C[i-1][j]) \mod;
  Inv[1] = 1;//预处理逆元
  for(int i = 2;i<maxn;i++) Inv[i] = Inv[mod%i]*(mod-mod/i)%mod;</pre>
  b[0] = 1;
  for(int i = 1;i<maxn;i++)//预处理伯努力数
  {
    b[i] = 0;
    for(int k = 0; k < i; k++) b[i] = (b[i] + C[i+1][k]*b[k] % mod) % mod;
    b[i] = (b[i]*(-Inv[i+1])\mod+mod)\mod;
  }
}
ll slove(ll n,ll k)//处理的是前n项k次幂的情况
  n++;n\%=mod;tmp = n;
  11 \text{ ans} = 0;
  for(int i = 1;i<=k+1;i++)</pre>
    ans = (ans+(C[k+1][i]*b[k+1-i]\%mod)*n\%mod)\%mod;
    n = n*tmp\%mod;
  }
  ans = ans*Inv[k+1]%mod;
  return ans;
}
```

5.3 数论

第一个自然是最基础的欧几里得算法,欧几里得算法的用处有很多,求最大公倍数,解方程,很多。在后面的过程会把一些常见的板子列出来,一般来说这些板子都已经经过验证,但是不好说对吧。简单题我们可以通过一些模板直接得出答案,但是怎么说,这些对于难题估计只能算工具,重要的是如何转换。

5.3.1 高斯消元

```
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <math.h>
using namespace std;
const int MOD = 7;
```

```
const int MAXN = 50;
int a[MAXN][MAXN];//增广矩阵 就是那个方程组左边的东西
int x[MAXN];//解集 这个是那个
bool free_x[MAXN];//标记是否是不确定的变元
inline int gcd(int a,int b)
{
   int t;
   while(b!=0)
       t = b;
       b = a\%b;
       a = t;
   return a;
}
inline int lcm(int a,int b)
   return a/gcd(a,b)*b;//先除后乘防止溢出
}
//高斯消元法接方程组。(-2表示有浮点数解,但无整数解,-1表示无解,
//0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有 equ个方程,var个变元。增广矩阵行数为 equ,分别为 var1,列数为 var1,分别为 var3
int Gauss(int equ,int var)
   int i,j,k;
   int max_r;//当前这列绝对值最大的行
   int col;//当前处理的列
   int ta,tb;
   int LCM;
   int temp;
   int free_x_num;
   int free_index;
   for(int i = 0;i <= var;i++)</pre>
       x[i] = 0;
       free_x[i] = true;
   //转换为阶梯阵
   col = 0;//处理当前的列
   for(k = 0; k < equ && col < var; k++, col++)
   \{//枚举当前处理的行,找到该col列元素绝对值最大的那行与第k行交换。(为了在除法时减小误差)
       \max_r = k;
       for(i = k+1; i < equ; i++)
       {
          if(abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
       }
       if(max_r!=k)
       {//与第k行交换
          for(j = k; j < var+1; j++) swap(a[k][j],a[max_r][j]);
       if(a[k][col]==0)
       \{//说明该col列第k行一下全是0了,则处理当前行的下一列
          k--;
          continue;
       }
```

```
for(i = k+1; i < equ; i++)
   {//枚举要删去的行
       if(a[i][col]!=0)
       {
          LCM = lcm(abs(a[i][col]),abs(a[k][col]));
          ta = LCM/abs(a[i][col]);
          tb = LCM/abs(a[k][col]);
          if(a[i][col]*a[k][col] < 0) tb = -tb; //异号的情况是相加
          for(j = col; j < var+1; j++)
          {
              a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%MOD+MOD)%MOD;
          }
       }
   }
}
//Debug();
//1. 无解的情况: 化简的增广阵中存在(0,0,...,a)这样的行(a!=0)
for(i = k;i < equ;i++)</pre>
【//对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换
   if(a[i][col]!=0) return -1;
//2. 无穷解的情况: 在var*(var*1)的增广阵中出现(0,0,\ldots,0)这样的行,说明没有形成严格的上三角阵
//且出现的行数即为自由变元的个数
if(k < var)
{
   //首先自由变元有(var-k)个,即不确定的变元至少有(var-k)个
   for(i = k-1; i \ge 0; i--)
   {
       //第i行一定不会是(0,0,\ldots,0)的情况,因为这样的行是在第k行到第equ行
       //同样,第i行一定不会是(0,0,\ldots,a),a!=0的情况,这样的无解的
       free_x_num = 0;//用于判断该行中不确定的变元的合数,如果超过1个,则无法求解,他们仍然为不确定的3
       for(j = 0; j < var; j++)
       {
          if(a[i][j]!=0 && free_x[j]) free_x_num++,free_index = j;
       }
       if(free_x_num > 1) continue;//无法求解出确定的变元
       //说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的
       temp = a[i][var];
       for(j = 0; j < var; j++)
       {
          if(a[i][j]!=0 && j!= free_index) temp -= a[i][j]*x[j]%MOD;
          //temp -= (temp%MOD+MOD)%MOD;
       }
       //while(temp%a[i][free_index]!=0) temp+=MOD;
       x[free_index] = (temp/a[i][free_index])%MOD;//求出该变元
       free_x[free_index] = 0;//该变元是确定的
   }
   return (var-k);//自由变元有(var-k)个
}
//3.唯一解的情况: 在var*(var+1)的增广阵中形成严格的上三角阵
//计算出 Xn-1, Xn-2, ..., X0
for(i = var-1;i>=0;i--)
{
   temp = a[i][var];
   for(j = i+1; j < var; j++)
   {
```

```
if(a[i][j]!=0) temp -= a[i][j]*x[j];
            //temp = (temp %MOD + MOD) %MOD;
        }
        //while(temp\%a[i][j]!=0) temp+=MOD;
        //if(temp\%a[i][i]!=0) return -2;
       x[i] = temp/a[i][i];
    return 0;
}
int main()
    int i,j;
    int equ, var; // 方程数和未知解个数
    while(scanf("%d %d", &equ, &var)==2)
       memset(a,0,sizeof(a));
       for(i = 0;i < equ;i++)
            for(j = 0; j < var+1; j++)
                scanf("%d",&a[i][j]);
            }
        }
        //Debug();
        int free_num = Gauss(equ,var);
        if(free_num == -1) printf("No solution\n");
        else if(free_num == -2) printf("Float but no int solution\n");
        else if(free_num > 0)
        {
            printf("Infinite solution,自由变元个数为%d\n",free_num);
            for(i = 0;i < var;i++)</pre>
                if(free_x[i]) printf("x%d 是不确定的\n",i+1);
                else printf("x%d: %d\n",i+1,x[i]);
            }
        }
        else
            for(i = 0;i < var;i++)</pre>
               printf("x%d: %d\n",i+1,x[i]);
            }
        }
       printf("\n");
    }
    return 0;
}
5.3.2 线性基
// 线性基的板子,线性基就是在一堆数中,我最少可以选取多少个数
//作为基地去表示出所有的数
struct Linear_Basis
    LL b[63],nb[63],tot;
    void init()
```

```
{
        tot=0;
        memset(b,0,sizeof(b));
        memset(nb,0,sizeof(nb));
    bool ins(LL x)
    {
        for(int i=62;i>=0;i--)
            if (x&(1LL<<i))
            {
                if (!b[i]) {b[i]=x;break;}
                x^=b[i];
            }
        return x>0;
    }
    LL Max(LL x)
    {
        LL res=x;
        for(int i=62;i>=0;i--)
            res=max(res,res^b[i]);
        return res;
    }
    LL Min(LL x)
        LL res=x;
        for(int i=0;i<=62;i++)</pre>
            if (b[i]) res^=b[i];
        return res;
    }
    void rebuild()
    {
        for(int i=62;i>=0;i--)
            for(int j=i-1;j>=0;j--)
                if (b[i]&(1LL<< j)) b[i]^=b[j];
        for(int i=0;i<=62;i++)
            if (b[i]) nb[tot++]=b[i];
    LL Kth_Max(LL k)
        LL res=0;
        for(int i=62;i>=0;i--)
            if (k&(1LL<<i)) res^=nb[i];</pre>
        return res;
} LB;
5.3.3 素数
素数筛法,线性筛
long long su[MAX],cnt;
bool isprime[MAX];
void prime()
{
    cnt=1;
    memset(isprime,1,sizeof(isprime));//初始化认为所有数都为素数
    isprime[0]=isprime[1]=0;//0和1不是素数
```

```
for(long long i=2;i<=MAX;i++)</pre>
       if(isprime[i])
          su[cnt++]=i;//保存素数i
       for(long long j=1;j<cnt&&su[j]*i<MAX;j++)</pre>
          isprime[su[j]*i]=0;//筛掉小于等于i的素数和i的积构成的合数
          if (!(i%isprime[j]))
              break;
       }
   }
}
5.3.4 梅森素数
一个知识点吧,m是一个正整数,且2^m - 1为素数,那么m一定为素数。
如果m是一个素数, M_p = 2^p - 1是梅森数
如果p是一个素数,并且M_p = 2^p - 1也是素数,那么称M_p为梅森素数
对梅森素数的判定是一个算法:
Lucas-Lehmer: r_k \equiv r_{k-1} - 2 \mod M_p r_1 = 4  当且仅当 r_{p-1} \equiv 0 \mod M_p
5.3.5 miller-robin快速判素数
//快速判素数的一个随机算法。他能处理很大的数字用那个飞马小定理
//其中要注意的点就是 一个别抱longlong 的精度,还有就是乘法也需要经行处理不过都是板子
//第三点就是经量预处理,还有这个算法是随机的所以还是有可能不行的。
const int MAXN = 65;
11 x[MAXN];//这我也不晓得用来干啥的
int flag = 0;
11 multi(11 a, 11 b, 11 p) {
   11 \text{ ans} = 0;
   while(b) {
       if(b&1LL) ans = (ans+a)\%p;
       a = (a+a)\%p;
       b >>= 1;
   return ans;
}
11 qpow(ll a, ll b, ll p) {
   11 \text{ ans} = 1;
   while(b) {
       if(b&1LL) ans = multi(ans, a, p);
```

a = multi(a, a, p);

int s = 5, i, t = 0; //s是随机函数

b >>= 1;

bool Miller_Rabin(ll n) {
 if(n == 2) return true;

while(!(u & 1)) {
 t++;
 u >>= 1;

return ans;

11 u = n-1;

while(s--) {

}

}

}

```
11 a = rand()\%(n-2)+2;
       x[0] = qpow(a, u, n);
       for(i = 1; i <= t; i++) {
           x[i] = multi(x[i-1], x[i-1], n);
           if(x[i] == 1 \&\& x[i-1] != 1 \&\& x[i-1] != n-1) return false;
       if(x[t] != 1) return false;
    return true;
}
5.3.6 欧几里得
//欧几里得求最大公因数
int gcd(int a,int b)
{
   return b == 0?a:gcd(n,a\%b);
}
//扩展欧几里得算法
// a*x + b*y = gcd(a,b) 这个是用于 x 和 y
// 不能肯定 x, y的正负
int exgcd(int a,int b,int &x,int &y)
{
   if(b == 0)
   {
    x = 1;
    y = 0;
    return a;
   int r = exgcd(b,a%b,x,y);
  int t = y;
   y = x - (a/b)*y;
   x = t;
   return r;
}
   然后是基于这个定理得出的一个定理,中国剩余定理
int n;
ll a[maxn], m[maxn]; //a余数 m除数
11 gcd(ll a,ll b) {
   return !b?a:gcd(b,a%b);
}
ll exgcd(ll a,ll b,ll &x,ll &y) {
    if (!b) {
       x=1, y=0;
       return a;
    11 d=exgcd(b,a%b,y,x);
    y=(a/b)*x;
    return d;
11 inv(ll a,ll m) {
    11 x,y;
    11 d=exgcd(a,m,x,y);
    if (d==-1) return -1;
    return (x\%m+m)\%m;
```

```
}
bool merge(ll a1,ll m1,ll a2,ll m2,ll &a3,ll &m3) {
    11 d=gcd(m1,m2),c=a2-a1;
    if (c%d) return false;
    c=(c\%m2+m2)\%m2,
    c/=d,m1/=d,m2/=d,
    c = inv(m1, m2),
    c=(c\%m2+m2)\%m2,
    c=(c*m1*d)+a1;
   m3=m1*m2*d;
    a3=(c\%m3+m3)\%m3;
    return true;
}
11 crt() {
    11 a1=a[1],m1=m[1];
    for (int i=2;i<=n;i++) {
        11 aa,mm;
        if (!merge(a1,m1,a[i],m[i],aa,mm)) return -1;
        a1=aa,m1=mm;
    return (a1%m1+m1)%m1;
}
5.3.7 乘法逆元
思想是通过扩展欧几里得来得出,如果缘分到了,那么 还能用费马小定理来解,上面还有一个打表的方
法O(n).
//扩展欧几里得
int extgcd(int a, int b, int& x, int& y)
{
    int d = a;
    if(b != 0){
       d = extgcd(b, a \% b, y, x);
       y = (a / b) * x;
    }else {
       x = 1;
       y = 0;
    }
    return d;
}
int mod_inverse(int a, int m)
    int x, y;
    extgcd(a, m, x, y);
    return (m + x \% m) \% m;
//费马小定理
//模p, p为素数
return quick(a,p-2);
5.3.8 欧拉函数
p为素数时\phi(p) = p - 1
a与n互质的时候 a^{\phi(n)} \equiv 1 \mod n
```

m,n互质 $\phi(mn) = \phi(m) * \phi(n)$

这个东西好呀,他求的是比n小的,并且和n互质的数的个数

```
//欧拉函数 求的是 1 \rightarrow n-1 中与n 互质的数的个数
ll phi(ll n) //直接实现
{
  ll rea = n;
  for(int i = 2;i*i<=n;i++)
    if(n\%i == 0)
      rea = rea - rea/i;
      while(n\%i == 0) n/=i;
  }
  if(n>1)
  rea = rea - rea/n;
  return rea;
}
//欧拉打表
for(int i = 1;i<=maxn;i++) phi[i] = i;</pre>
for(int i = 2;i<=maxn;i+=2) phi[i]/=2;</pre>
for(int i = 3;i<=maxn;i+=2)</pre>
  if(phi[i] == i)
  {
    for(j = i ; j \le maxn; j = i)
     phi[j] = phi[j]/i*(i-1);
}
   更多的来说我觉得这个东西是一个工具,他对解一些题有很重要的作用,起到一个工具的作用 我目
前学的比较浅,对他的优化作用没有很深的了解。几个定理
                \sum_{i=1}^{n} k_{gcd(k,n)=1} = \frac{n*\phi(n)}{2}
\sum_{d|n} \phi(d) = n
5.3.9 莫比乌斯函数
F_n = \sum_{d|n}^n f_d f_n = \sum_{d|n} u(d) * F(\frac{n}{d})
F_n = \sum_{n|d} f_d f_n = \sum_{n|d} u(\frac{d}{n}) * F(d)
和欧拉函数一样很重要的一个函数他的定义我就不说了,毕竟我latex学的还不好,公式的 插入对我来说
用处不大。
const int MAXN = 100005;
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus()
    clr(check,0);
    mu[1] = 1;
    int tot = 0;
    for(int i = 2; i <= MAXN; i++)</pre>
```

if(!check[i])

prime[tot++] = i;

{

```
mu[i] = -1;
}
for(int j = 0; j < tot; j++)
{
    if(i * prime[j] > MAXN) break;
    check[i * prime[j]] = true;
    if(i % prime[j] == 0)
    {
        mu[i * prime[j]] = 0;
        break;
    }
    else
    {
        mu[i * prime[j]] = -mu[i];
    }
}
}
```

5.3.10 二项式反演

$$f(n) = \sum_{k=0}^{n} C_n^k g(k) \ g(n) = \sum_{k=0}^{n} (-1)^{n-k} C_n^k f(k)$$

5.4 博弈

5.4.1 主要的解题思想

官方说的是通过必败点和必胜点来判定 先通过必败点来推,直接来看必胜点,把问题抽象成图 把状态抽象成点,必败点就是先手必败点,然后通过必败点能走到的搞成必胜点,如过有一个状态没有走过 而且他后面的路都是必胜点那么他就是必败点。感觉就像dp一样,记忆化搜索。当然题目不可能出的那么简单的。不过根据雄爷定理,万事不离期宗,掌握基本,扩展自己去发掘。

5.4.2 题型

巴什博弈

这个是最简单的博弈,就是一堆东西,每个人自己能拿1-n件,谁最后一个拿完谁赢,这个是最简单的,不记录。

威佐夫博弈

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。 这个的解题思路在于通过前面的那个np问题来解决,用局势来思考这些问题,前几个局势在于(0,0),(1,2),(3,5),(4,7).....然后一些大佬就总结出了一些牛逼的结论 (a_k,b_k) , $a_k = \frac{k*(\sqrt{5}+1)}{2}$, $b_k = a_k + k$ 人才。

Fibonacci

有一堆个数为n的石子,游戏双方轮流取石子,满足:

- (1) 先手不能在第一次把所有的石子取完;
- (2) 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。约定取走最后一个石子的人为赢家。 结论是 当n为Fibonacci数时,先手必败尼姆博弈

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取 光者得胜。 这个博弈有点意思 他的必败点的局势在于 $(a,b,c)a \wedge b \wedge c = 0$

5.4.3 SG函数

这个在看之前感觉很高级但是啊,好像也就是一个dp的过程,通过一个必败点,看成起点然后,那个方法看成通向下一个起点的路,然后找所有能直接到这个必败点的必胜点。好像也就那么回事。好像能解决的都是小数字题这是一个板子,f里面存的是方法,多堆问题可以转化成异或来解决。 sg函数的定义是最小整数不属于,然后sg函数在一定程度上是存在一定的技巧,或者说是规律.我们就是需要去找哪些规律,一般都是转化成求异或的问题.

```
void getSG(int n){
   int i,j;
   memset(SG,0,sizeof(SG));
   for(i = 1; i <= n; i++){
       memset(S,0,sizeof(S));
       for(j = 0; f[j] <= i && j <= N; j++)
            S[SG[i-f[j]]] = 1;
       for(j = 0;;j++) if(!S[j]){
            SG[i] = j;
            break;
       }
   }
}</pre>
```

5.4.4 解题策略

- *1:相信自己的第一感觉
- 2 : 博弈都会和一些特别的数搭边 , 所以第一件事坑定是分析局势然后找找看是不是有特别的意义,像什么 卡特兰数 , f i b 数列 ,幂次方,异或的值是否为 0 ;
- 3:不挂怎么说,记得打表。

5.5 组合数学

5.5.1 求组合数

第一个是求组合数,方法很多不去列举,注意的是一般来说,组合数都是需要去模一个数,所以他的分母在计算的时候是需要去求逆元的

5.5.2 polay定理

设 $G=p1, p2, \ldots, pt$ 是 $X=a1,a2,\ldots,an$ 上一个置换群,用m种颜色对X中的元素进行涂色,那么不同的涂色方案数为

$$\frac{1}{G} \sum_{k=1}^{t} m^{Cyc(p_k)}$$

 $Cyc(p_k)$ 是置换 p_k 的循环节个数 注意这里也是可以进行更改的,我们需要知道的是,对于每个循环节的意义是什么,这里要求的是每个循环节里面的颜色必须相同,这也就是为什么polay也是可以做到有条件的使用.我们要用有限的条件对这几个循环节进行赋值,这里的每一个循环节我可以理解成一个点,压缩点,对于限制条件,来看我这个群的操作是否可取

5.5.3 Pell方程

$$x^2 - dy^2 = 1$$

当d不为平方数时,有无穷多的解。接下来是通项的推导

$$x_{n+1} = x_1 * x_n + d * y_1 * y_n, y_{n+1} = x_1 * y_n + y_1 * x_n$$

暴力求 x_1, y_1 然后矩阵快速幂

5.5.4 lucas定理

//卢卡斯定理

当组合数的基数过大的时候进行这些操作但是注意,我们的操作也是要求那个模数为素数,且 模数要小的情况下,素数的情况我们可以用扩展lucas定理来解决。一个工具,一个数论上的分支。

```
//用于求组合数 当那两个玩意特别大的时候
//注意啊,我这里是用快速幂来求乘法逆元
//他的要求为 mod 必须为素数
//好像也没有如果,不然好像还真不知道
int mod;
11 dp[maxn+5];
```

```
11 dp[maxn+5];
void init()
{
   dp[0] = 1;
   for(int i = 1;i<=mod;i++)
   {
      dp[i] = dp[i-1]*i%mod;</pre>
```

```
}
}
ll quick(ll a , ll n)
  11 \text{ res} = 1;
  while(n)
     if(n\&1) res = res*a\%mod;
     a = (a\%mod)*(a\%mod)\%mod;
     n/=2;
  }
  return res;
}
11 lucas(ll n, ll m)
  11 \text{ ret} = 1;
  while(n && m)
    ll a = n\%mod, b = m\%mod;
    if(a<b) return 0;</pre>
    ret = ((ret * dp[a])%mod*quick(dp[b]*dp[a-b]%mod,mod-2))%mod;
    n/=mod;
    m/=mod;
  }
  return ret;
//扩展卢卡斯定理 及p不为素数 p <= 1000000左右吧
//还利用了中国剩余定理
11 n,m,MOD,ans;
ll fast_pow(ll a,ll p,ll Mod)
    ll ans=111;
    for (;p;p>>=1,a=a*a\%Mod)
        if (p&1)
            ans=ans*a%Mod;
    return ans;
}
void exgcd(ll a,ll b,ll &x,ll &y)
    if (!b) x=111,y=011;
    else exgcd(b,a\%b,y,x),y-=a/b*x;
}
11 inv(11 A,11 Mod)
    if (!A) return Oll;
    11 a=A,b=Mod,x=011,y=011;
    exgcd(a,b,x,y);
    x=((x\%b)+b)\%b;
    if (!x) x+=b;
    return x;
11 Mul(ll n,ll pi,ll pk)
    if (!n) return 111;
    ll ans=111;
```

```
if (n/pk)
    {
        for (ll i=2; i <= pk; ++i)
            if (i%pi) ans=ans*i%pk;
        ans=fast_pow(ans,n/pk,pk);
    for (ll i=2;i<=n\%pk;++i)
        if (i%pi) ans=ans*i%pk;
    return ans*Mul(n/pi,pi,pk)%pk;
}
11 C(ll n,ll m,ll Mod,ll pi,ll pk)
    if (m>n) return 011;
    11 a=Mul(n,pi,pk),b=Mul(m,pi,pk),c=Mul(n-m,pi,pk);
    11 k=011,ans;
    for (ll i=n;i;i/=pi) k+=i/pi;
    for (ll i=m;i;i/=pi) k-=i/pi;
    for (ll i=n-m;i;i/=pi) k-=i/pi;
    ans=a*inv(b,pk)%pk*inv(c,pk)%pk*fast_pow(pi,k,pk)%pk;
    return ans*(Mod/pk)%Mod*inv(Mod/pk,pk)%Mod;
ll slove(ll n, ll m, ll p) // 🕏 C(n, m) mod p;
   for(11 x=p,i=2;i<=p;i++)
   {
     if(x\%i == 0)
     {
       11 pk = 1;
       while(x\%i == 0) pk*=i,x/=i;
       ans = (ans + C(n,m,mod,i,pk))\%mod;
     }
   }
   return ans;
}
      线代
5.6
5.6.1 bm求解n阶递推式
const int N = 1 \ll 14;
11 res[N], base[N], _c[N], _md[N];
vector<int> Md;
void mul(ll* a, ll* b, int k)
    for (int i = 0; i < k + k; i++) _c[i] = 0;
    for (int i = 0; i < k; i++)
        if (a[i])
            for (int j = 0; j < k; j++) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
    for (int i = k + k - 1; i >= k; i--)
        if (_c[i])
            for (int j = 0; j < Md.size(); j++) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md
    for (int i = 0; i < k; i++) a[i] = _c[i];
}
int solve(ll n, VI a, VI b)
    11 \text{ ans} = 0, \text{ pnt} = 0;
```

```
int k = a.size();
    assert(a.size() == b.size());
    for (int i = 0; i < k; i++) _md[k - 1 - i] = -a[i];
    _{md[k]} = 1;
    Md.clear();
    for (int i = 0; i < k; i++)
        if (_md[i] != 0) Md.push_back(i);
    for (int i = 0; i < k; i++) res[i] = base[i] = 0;
    res[0] = 1;
    while ((1LL << pnt) <= n) pnt++;
    for (int p = pnt; p >= 0; p--)
    {
        mul(res, res, k);
        if ((n >> p) & 1)
            for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i];
            res[0] = 0;
            for (int j = 0; j < Md.size(); j++) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod
        }
    }
    for (int i = 0; i < k; i++) ans = (ans + res[i] * b[i]) % mod;
    if (ans < 0) ans += mod;
    return ans;
VI BM(VI s)
    VI C(1, 1), B(1, 1);
    int L = 0, m = 1, b = 1;
    for (int n = 0; n < s.size(); n++)</pre>
    {
        11 d = 0;
        for (int i = 0; i \le L; i++) d = (d + (11)C[i] * s[n - i]) % mod;
        if (d == 0)
            ++m;
        else if (2 * L \le n)
            VI T = C;
            ll c = mod - d * Pow(b, mod - 2) \% mod;
            while (C.size() < B.size() + m) C.pb(0);
            for (int i = 0; i < B.size(); i++) C[i + m] = (C[i + m] + c * B[i]) % mod;
            L = n + 1 - L, B = T, b = d, m = 1;
        }
        else
        {
            11 c = mod - d * Pow(b, mod - 2) \% mod;
            while (C.size() < B.size() + m) C.pb(0);
            for (int i = 0; i < B.size(); i++) C[i + m] = (C[i + m] + c * B[i]) % mod;
        }
    }
    return C;
}
int gao(VI a, ll n)
    VI c = BM(a);
    c.erase(c.begin());
```

```
for (int i = 0; i < c.size(); i++) c[i] = (mod - c[i]) % mod;
    return solve(n, c, VI(a.begin(), a.begin() + c.size()));
5.6.2 fwt优化多项式乘法
ftt用的方面在于f_n = \sum_{i+j=n} g_i * g_j fwt用的就是在于f_n = \sum_{i \mid j==n} g_i * g_j
//注意的是因为我们处理的是fwt下的多项式,所以我们这里在乘积的时候去做取模运算。
void FWT(int a[],int n)
{
    for(int d=1;d<n;d<<=1)</pre>
        for(int m=d<<1,i=0;i<n;i+=m)</pre>
            for(int j=0;j<d;j++)</pre>
                int x=a[i+j],y=a[i+j+d];
                a[i+j]=(x+y)\mbox{\mbox{$\%$}mod}, a[i+j+d]=(x-y+mod)\mbox{\mbox{$\%$}mod};
                //xor: a[i+j] = x+y, a[i+j+d] = x-y;
                //and:a[i+j]=x+y;
                //or:a[i+j+d]=x+y;
            }
}
void UFWT(int a[],int n)
    for(int d=1;d<n;d<<=1)</pre>
        for(int m=d<<1,i=0;i<n;i+=m)
            for(int j=0;j<d;j++)</pre>
                int x=a[i+j],y=a[i+j+d];
                a[i+j]=1LL*(x+y)*rev\mod, a[i+j+d]=(1LL*(x-y)*rev\mod+mod)\mod;
                //xor: a[i+j] = (x+y)/2, a[i+j+d] = (x-y)/2;
                //and:a[i+j]=x-y;
                //or:a[i+j+d]=y-x;
            }
}
void solve(int a[],int b[],int n)
    FWT(a,n);
    FWT(b,n);
    for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i]%mod;</pre>
    UFWT(a,n);
}
5.6.3 fft优化多项式乘法法
这个是一个工具,他的作用是加速多项式得乘法。这个点得难处还是在于多项式的构建,其实也不是 非
常复杂得东西, 当然他的原理, 不敢去碰。关键词: 多项式乘法, 并且复杂度为1e5左右。
#include <bits/stdc++11>
using namespace std;
//版子
struct complex
```

double r,i;

complex(double _r = 0.0,double _i = 0.0)

```
{
       r = _r; i = _i;
   }
   complex operator +(const complex &b)
       return complex(r+b.r,i+b.i);
   }
   complex operator -(const complex &b)
       return complex(r-b.r,i-b.i);
   complex operator *(const complex &b)
       return complex(r*b.r-i*b.i,r*b.i+i*b.r);
};
const int MAXN = 200010;
complex x1[MAXN], x2[MAXN]; //这一个是第一个多项式的系数,第二个是第二个多项式的系数
char str1[MAXN/2],str2[MAXN/2];//这是未处理的输入字符
int sum[MAXN];//这是答案所放的位置
 *进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置) 互换
 * len必须去2的幂
 */
void change(complex y[],int len)
   int i,j,k;
   for(i = 1, j = len/2; i < len-1; i++)
       if(i < j)swap(y[i],y[j]);</pre>
       //交换互为小标反转的元素, i<j保证交换一次
       //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
       k = len/2;
       while(j \ge k)
           j -= k;
           k /= 2;
       if(j < k) j += k;
   }
}
/*
 * 做FFT
 * len必须为2~k形式,
 * on==1时是DFT, on==-1时是IDFT
void fft(complex y[],int len,int on)
   change(y,len);
   for(int h = 2; h <= len; h <<= 1)
       complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
       for(int j = 0; j < len; j+=h)
           complex w(1,0);
```

```
for(int k = j; k < j+h/2; k++)
               complex u = y[k];
               complex t = w*y[k+h/2];
               y[k] = u+t;
               y[k+h/2] = u-t;
               w = w*wn;
           }
       }
   }
    if(on == -1)
       for(int i = 0; i < len; i++)
           y[i].r /= len;
}
void ans()
       //step 1
       int len = 1;
       int len1 = strlen(str1),len2 = strlen(str2);
                                            len<<=1;//第一步确定len相当于在确定那个最高能达到什么程
       while(len<2*len1 || len<2*len2)
       //step 2
                                 //第二膊就是把系数表示用点来表示,挺复杂的,首先就是前补0,变成len位
  for(int i = 0;i<len1;i++)</pre>
  x1[i] = complex(str1[len1-1-i]-'0',0);
 for(int i = len1;i<len;i++)</pre>
  x1[i] = complex(0,0);
 for(int i = 0;i<len2;i++)</pre>
  x2[i] = complex(str2[len2-1-i]-'0',0);
 for(int i = len2;i<len;i++)</pre>
  x2[i] = complex(0,0);
       //step 3
       fft(x1,len,1);fft(x2,len,1);//第三步反正就是这意思,我也不懂这个是啥原理
       for(int i = 0; i < len; i++)
               x1[i] = x1[i]*x2[i];
       }
       fft(x1,len,-1);
       for(int i = 0; i < len; i++)
               sum[i] = (int)(x1[i].r+0.5);
       //step 4
       //这就是自己加工了,这里面存的是答案,不过这也是倒着存的,注意去前导0,因为这里1en是在最坏情况下[
}
```

5.6.4 ntt优化多项式

用原根来处理多项式乘法,当数字过大的时候fft就有可能爆精度,ntt就有了用,这里需要注意的是使用条件,以及原根的取值

```
const int mod = (479 << 21)+1; const double eps = 1e-6; #define ll long long //ntt 快速数论变换,相对于fft,它的一个优点在于可以处理模的情况,对于fft //来说,更多的是在于精度不大的时候,因为他是把问题转换成了用原根而不是单位负根去处理问题 //所以我们首先需要对模数找到原根,他这里操作的长度也是2^n次方的数 这里的原根也是会变化的
```

```
//这里的模数必须是梅森素数
//这里是一个板子处理两数相乘;
const int g = 3;
const int maxn = 1 << 18;
11 quick(ll a,ll b)
  11 \text{ res} = 1;
  while(b)
    if(b&1) res = res*a%mod;
    a = a*a\%mod;
    b>>=1;
  }
  return res;
}
int rev(int x,int r)
  int ans = 0;
  for(int i = 0;i<r;i++)</pre>
    if(x&(1<<i))
      ans += 1 << (r-i-1);
  }
  return ans;
}
void NTT(int n,ll A[],int on)
{
  int r = 0;
  for(;;r++)
    if((1 << r) == n) break;
  }
  for(int i = 0; i<n; i++)
    int tmp = rev(i,r);
    if(i<tmp)</pre>
      swap(A[i],A[tmp]);
  for(int s = 1; s \le r; s + +)
  {
    int m = 1 << s;
    11 \text{ wn} = \text{quick}(g, (\text{mod}-1)/m);
    for(int k = 0; k < n; k = m)
      11 w = 1;
      for(int j = 0; j < m/2; j++)
      {
        11 t,u;
        t = w*(A[k+j+m/2]\%mod)\%mod;
         u = A[k+j]\mbox{\em mod};
         A[k+j] = (u+t) \mod;
        A[k+j+m/2] = ((u-t)\%mod+mod)\%mod;
         w = w*wn\%mod;
```

```
}
  }
  if(on == -1)
  {
    for(int i = 1; i < n/2; i++)
      swap(A[i],A[n-i]);
    11 inv = quick(n,mod-2);
    for(int i = 0;i<n;i++)</pre>
      A[i] = (A[i] \% mod) * inv\% mod;
    }
  }
}
11 A[maxn],B[maxn];
11 ans[maxn];
int main()
  string s1,s2;
  while(cin>>s1>>s2)
    int n = s1.size();
    int m = s2.size();
    clr(A,0),clr(B,0);
    int len = 1;
    while(len<max(n,m)) len<<=1; // 理论长度
    for(int i = n-1; i \ge 0; i--)
                                //预处理出来
      A[i] = s1[n-i-1]-'0';
    }
    for(int i = m-1;i>=0;i--)
      B[i] = s2[m-i-1]-'0';
    }
    //处理的关键
    NTT(len*2,A,1);
    NTT(len*2,B,1);
    for(int i = 0; i<2*len; i++)
      A[i] = A[i]*B[i]%mod;
    NTT(len*2,A,-1);
    clr(ans,0);
    for(int i = 0; i<2*len; i++)
      ans[i] += A[i];
      if(ans[i]>=10)
        ans[i+1] += ans[i]/10;
        ans[i]\%=10;
      }
    }
    int e = 0;
    for(int i = 2*len-1;i>=0;i--)
      if(ans[i])
```

```
{
          e = i;
          break;
     }
     for(int i = e;i>=0;i--)
     {
          cout<<ans[i];
     }
     cout<<endl;
}
    return 0;
}</pre>
```

5.6.5 矩阵快速幂

这类方法,很多是用在递推关系式的时候,像什么fib数列什么的。

```
struct node
{
  ll p[2][2];
};
node mut(node a,node b)
{
  node o;
  clr(o.p,0);
  for(int i = 0; i<2; i++)
    for(int j = 0; j<2; j++)
      for(int k = 0; k<2; k++)
        o.p[i][j] = (a.p[i][k] * b.p[k][j] + o.p[i][j])\mod;
      }
    }
  }
  return o;
}
node quick(node a,ll 1)
{
  node origin;
  clr(origin.p,0);
  origin.p[1][1] = origin.p[0][0] = 1;
  while(1)
    if(l&1) origin = mut(a,origin);
    a = mut(a,a);
    1/=2;
  }
  return origin;
```

5.6.6 矩阵方面知识

就是用高斯消元法去解决一些问题,像什么秩和方阵的值。

5.7 计算几何

5.7.1 一些定理

1. 笛卡尔定理:

定义一个圆的曲率是 $k = \frac{1}{r}$ r是半径,若平面有两两相切,且有六个独立切点的四个圆,设其曲率分别为 k_1, k_2, k_3, k_4 (若该圆与其他圆均外切,则曲率取正,否则取负)则满足下面的性质:

$$(k_1 + k_2 + k_3 + k_4)^2 = 2 * (k_1^2 + k_2^2 + k_3^2 + k_4^2)$$

5.7.2 几何基本知识

```
矢量
```

PICK定理 设以整数点为顶点的多边形的面积为S,多边形内部的整数点数为N,多边形边界上的整数点数为L,则 S=L/2+N-1

5.7.3 判断点是否在多边形中

```
const double eps=1e-8; //解析几何中有时并不能保证等于0, 在误差范围就行
struct CPoint//点的存法
    double x,y;
}point[103];
int dcmp(double x)//不晓得干啥
{
    if(x<-eps) return -1;
         return (x>eps);
}
double cross(CPoint p0,CPoint p1,CPoint p2)//点乘
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dot(CPoint p0,CPoint p1,CPoint p2)//叉乘
{
    return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
}
int PointOnSegment(CPoint p0,CPoint p1,CPoint p2)//判断点是否在线段上
    return dcmp(cross(p0,p1,p2))==0&&dcmp(dot(p0,p1,p2))<=0;
int PointInPolygon(CPoint cp, CPoint p[], int n) //判断点是否在多边形中
    int i,k,d1,d2,wn=0;
  // double sum=0;
    p[n]=p[0];
    for( i=0;i<n;i++)</pre>
       if(PointOnSegment(cp,p[i],p[i+1])) return 2;
       k=dcmp(cross(p[i],p[i+1],cp));
       d1=dcmp(p[i+0].y-cp.y);
       d2=dcmp(p[i+1].y-cp.y);
```

```
if (k>0\&\&d1<=0\&\&d2>0) wn++;
        if (k<0\&\&d2<=0\&\&d1>0)wn--;
    return wn!=0;
}
   为1的时候,则在内部。2,应该是边上。
5.7.4 凸包问题
struct node
    int x,y;
} a[105],p[105];
int top,n;
double cross(node p0, node p1, node p2)//计算叉乘,注意p0,p1,p2的位置,这个决定了方向
    return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
double dis(node a, node b) // 计算距离,这个用在了当两个点在一条直线上
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmp(node p1, node p2) //极角排序
    double z=cross(a[0],p1,p2);
    if(z>0||(z==0\&\&dis(a[0],p1)<dis(a[0],p2)))
       return 1;
    return 0;
}
void Graham()//p是凸包的点
    int k=0;
    for(int i=0; i<n; i++)</pre>
        if(a[i].y < a[k].y | | (a[i].y = a[k].y \& \& a[i].x < a[k].x))
        swap(a[0],a[k]);//找p[0]
        sort(a+1,a+n,cmp);
        top=1;
        p[0]=a[0];
        p[1]=a[1];
        for(int i=2; i<n; i++)//控制进栈出栈
            while(cross(p[top-1],p[top],a[i])<0&&top)</pre>
                top--;
            top++;
            p[top]=a[i];
        }
}
```

5.8 概率论

目前做的题目比较少,有次做到过一题,他的解决方法是,对于期望问题,我们是先对子状态进行分析,再去求每个子状态的概率,和期望.思想在这个地方,要不然就是找规律.

5.9 插值法

拉格朗日插值法

{

这个是对于一个n次函数,我用n+1个点去确定的一种方法,相当于对于直线来说,我是两个点去确定这个玩意,但是现在我们是通过n+1个点去确定这个曲线

$$L_n(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i} \frac{x - x_j}{x - x_i} \right) * y_i$$

```
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define clr(shu,x) memset(shu,x,sizeof(shu))
const int mod = 1e9+7;
const double eps = 1e-6;
const double pi = acos(-1);
#define pb push_back
const int INF = 0x3f3f3f3f;
const int N = 1e6+5;
// 这个是一个用拉格朗日插值求自然数幂和的板子
11 dp[N],n,k,q[N],p[N],f[N];
11 quick(ll a, ll b)
      11 \text{ res} = 1;
      while(b)
             if (b&1) res = res*amod;
             a = a*a\%mod;
             b>>=1;
      }
       return res;
}
void init()
       dp[0] = 1;
       for(int i = 1;i<=1000;i++)</pre>
             dp[i] = dp[i-1]*i\%mod;
}
11 solve()
      11 \text{ ans} = 0;
      p[0] = q[k+3] = 1;
      for(int i = 1; i \le k+2; i++) p[i] = p[i-1]*(n-i)%mod;
      for(int i = k+2; i>=1; i--) q[i] = q[i+1]*(n-i)%mod;
      for(int i = 1; i <= k+2; i++) ans += ((k-i+2)\%2?(-1):1)*f[i]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)\%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1]\%mod)%mod *quick(dp[i-1]*dp[k-1]*(p[i-1]*q[i+1])*(p[i-1]*q[i+1]*(p[i-1]*q[i+1])*(p[i-1]*q[i+1]*(p[i-1]*q[i+1])*(p[i-1]*q[i+1]*(p[i-1]*q[i+1])*(p[i-1]*q[i+1]*(p[i-1]*q[i+1])*(p[i-1]*q[i+1]*(p[i-1]*q[i+1])*(p[i-1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*q[i+1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+1]*q[i+1]*q[i+1]*q[i+1]*(p[i-1]*q[i+
      return (ans%mod+mod)%mod;
}
int main()
       std::ios::sync_with_stdio(false);
       cin.tie(0);
       cout.tie(0);
       init();
       while(cin>>n>>k)
```

SHU-langman 6 状态转移 DP

```
f[0] = 0;
for(int i = 1;i<=2*n;i++)
{
    f[i] = f[i-1] + quick(i,k);
    f[i]%=mod;
}
cout<<solve()<<endl;
}
return 0;
}</pre>
```

牛顿插值法

这怎么说了,这个的好处在于我们不断对于一个函数进行加点的时候,不会导致之前的重新计算,好像也没什么用处

$$N_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + \dots + f(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1)\dots(x - x_n)$$
$$f(x_0, x_1 \dots x_n) = \sum_{i=0}^n \left(\frac{f_i}{\prod_{i=0, i \neq j}^n (x_j - x_i)}\right)$$

6 状态转移 dp

dp的定义: 1: 记忆化搜索; 2: 状态转移 所以我们的解决方案总是跟着这个来走,从定义出发。 难点集中于两个方面,状态式的确定和状态转移方程的确定

6.1 背包

背包的问题主要以下几种: 01背包,部分背包,完全背包;[相对来说比较简单],分组背包[个人感觉较难]背包难在如何,确定维数,确定背包的容量是什么以及背包的价值是什么,还有背包的dp关系转移式。

6.2 一些常见的dp

6.2.1 LIS 最长上升子序列

```
LIS(LDS)
template < class Cmp>
int LIS (Cmp cmp)(nlogn)
    static int m, end[N];
    m = 0;
    for (int i=0;i<n;i++)</pre>
        int pos = lower_bound(end, end+m, a[i], cmp)-end;
        end[pos] = a[i], m += pos == m;
    return m;
}
                                             //严格上升
    cout << LIS(less<int>()) << endl;</pre>
    cout << LIS(less_equal<int>()) << endl; //非严格上升
                                              //严格下降
    cout << LIS(greater<int>()) << endl;</pre>
    cout << LIS(greater_equal<int>()) << endl;//非严格下降
```

SHU-langman 7 常用公式

6.3 树形dp

关键点在于找状态点间的关系,他一般只有三个关系,父亲节点 , 儿子节点,还有兄弟节点,去找他们 之间的关系,所以一般是两遍dfs 找父亲与儿子的关系,找儿子与父亲的关系。

6.4 数位dp

这个dp的精髓在于记忆化搜索,也就是在最高位不是被限定的情况下进行记录,这样的话省掉很多多余的步骤。 所有的出发点都处于这个目的。

6.5 状压dp

这个dp的精髓在于状态转移,不过能压缩的情况也是很限定的。像什么每个点的状态在于都是能用两个状态来描述,且这些点不多,但是组合的方式很多。一些状压dp经常用的上的公式。

```
//1 获得当前行的数
int getnum(int x)
 int ret = 0;
 while(x)
   x \&= x-1;
   ret++;
 }
 return ret;
//2 看当前行左右是不是满足题设
bool check(int x)
{
 if(x & x<<1) return 0;
 return 1;
}
// 看是不是可以满足条件,和题目给的图一样,是可以放的,并且和上一个是不是会冲突
bool suit(int x,int y)
 if(x&y) return 0;
 return 1;
}
```

7 常用公式

7.1 杂

7.1.1 约瑟夫问题

7.2 积分以及求导

SHU-langman 7

$$- \lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \begin{cases} \frac{a_0}{b_0} & n = m \\ 0 & n < m \\ \infty & n > m \end{cases}$$

$$\sin x \sim x \qquad \tan x \sim x$$

$$\arcsin x \sim x \qquad \arctan x \sim x$$

$$1 - \cos x \sim \frac{1}{2}x^2 \qquad \ln(1+x) \sim x$$

$$e^x - 1 \sim x \qquad a^x - 1 \sim x \ln a$$

$$(1+x)^{\theta} - 1 \sim \partial x$$

(1)
$$(c)' = 0$$
 (2) $x^{\mu} = \mu x^{\mu - 1}$

$$(3)(\sin x)' = \cos x$$
 $(4)(\cos x)' = -\sin x$

$$(5)(\tan x)' = \sec^2 x$$
 $(6)(\cot x)' = -\csc^2 x$

$$(7)(\sec x)' = \sec x \cdot \tan x \quad (8)(\csc x)' = -\csc x \cdot \cot x$$

$$(9)(e^{x})' = e^{x} \qquad (0)(a^{x})' = a^{x} \ln a$$

$$(1)(\ln x)' = \frac{1}{x} \qquad (1)(\log_{a}^{x})' = \frac{1}{x \ln a}$$

(3)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 (4) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

(15)
$$(\arctan x)' = \frac{1}{1+x^2}$$
 (16) $(\arctan x)' = -\frac{1}{1+x^2}$

$$\operatorname{div}(x)' = 1 \qquad \operatorname{div}(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

啦啦啦

SHU-langman 7

(1)
$$\left[u(x)\pm v(x)\right]^{(n)} = u(x)^{(n)} \pm v(x)^{(n)}$$

$$(2) \left[cu(x) \right]^{(n)} = cu^{(n)}(x)$$

(3)
$$\left[u(ax+b) \right]^{(n)} = a^n u^{(n)}(ax+b)$$

$$(4) \left[u(x) \cdot v(x) \right]^{(n)} = \sum_{k=0}^{n} c_n^k u^{(n-k)}(x) v^{(k)}(x)$$

$$(1) \left(x^n\right)^{(n)} = n!$$

(2)
$$(e^{ax+b})^{(n)} = a^n \cdot e^{ax+b}$$

(3)
$$(a^x)^{(n)} = a^x \ln^n a$$

$$(4) \left[\sin \left(ax + b \right) \right]^{(n)} = a^n \sin \left(ax + b + n \cdot \frac{\pi}{2} \right)$$

(5)
$$\left[\cos\left(ax+b\right)\right]^{(n)} = a^n \cos\left(ax+b+n\cdot\frac{\pi}{2}\right)$$

(6)
$$\left(\frac{1}{ax+b}\right)^{(n)} = \left(-1\right)^n \frac{a^n \cdot n!}{\left(ax+b\right)^{n+1}}$$

(7)
$$\left[\ln\left(ax+b\right)\right]^{(n)} = \left(-1\right)^{n-1} \frac{a^n \cdot (n-1)!}{\left(ax+b\right)^n}$$

http://blog.csdn.net/nantongcjq

SHU-langman 7

(1)
$$\int k dx = kx + c$$
 (2) $\int x^{\mu} dx = \frac{x^{\mu+1}}{\mu+1} + c$ (3) $\int \frac{dx}{x} = \ln|x| + c$ (4) $\int a^{x} dx = \frac{a^{x}}{\ln a} + c$ (5) $\int e^{x} dx = e^{x} + c$ (6) $\int \cos x dx = \sin x + c$

$$(7) \int \sin x dx = -\cos x + c$$

$$(8) \int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + c$$

(9)
$$\int \frac{1}{\sin^2 x} = \int \csc^2 x dx = -\cot x + c$$

$$00\int \frac{1}{1+x^2} dx = \arctan x + c$$

$$00\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

http://blog.csdn.net/nantongcig

积分型	换元公式
$\int f(ax+b)dx = \frac{1}{a} \int f(ax+b)d(ax+b)$	u = ax + b
$\int f(x^{\mu})x^{\mu-1}dx = \frac{1}{\mu}\int f(x^{\mu})d(x^{\mu})$	$u=x^{\mu}$
$\int f(\ln x) \cdot \frac{1}{x} dx = \int f(\ln x) d(\ln x)$	$u = \ln x$
$\int f(e^x) \cdot e^x dx = \int f(e^x) d(e^x)$	$u = e^x$
$\int f(a^x) \cdot a^x dx = \frac{1}{\ln a} \int f(a^x) d(a^x)$	$u=a^x$
$\int f(\sin x) \cdot \cos x dx = \int f(\sin x) d(\sin x)$	$u = \sin x$
$\int f(\cos x) \cdot \sin x dx = -\int f(\cos x) d(\cos x)$	$u = \cos x$
$\int f(\tan x) \cdot \sec^2 x dx = \int f(\tan x) d(\tan x)$	$u = \tan x$
$\int f(\cot x) \cdot \csc^2 x dx = \int f(\cot x) d(\cot x)$	$u = \cot x$