Расчет линейных электрических цепей Курсовая работа

- 1. Расчет линейной электрической цепи при несинусоидальном входном напряжении
- 1.1. Разложить заданную периодическую несинусоидальную ЭДС $e(\omega t)$ в ряд Фурье ограничившись пятой гармоникой. Примеры несинусоидальной ЭДС приведены на рис. 1.1. Исходные данные для определения формы $e(\omega t)$ приведены в табл. 1.1. Построить в одной системе координат временные графики гармоник, суммарную кривую и заданную ЭДС на периоде несинусоидальной ЭДС (от 0 до 360°).

Номер варианта – номер студента по списку в журнале группы. Вид симметрии задает преподаватель.

1.2. Определить входной ток $i(\omega t)$ и его действующее значение в цепи рис. 1.2 при воздействии ЭДС $e(\omega t)$ из п. 1.1, активную мощность Р и полную S мощность цепи.

Параметры схемы приведены в табл. 1.2.

Номер схемы – номер студента по списку в журнале группы.

Построить временные графики гармоник и суммарную кривую входного тока $i(\omega t)$.

Рис. 1.1 Пример несинусоидальных ЭДС $e(\omega t)$

 $\label{eq:Tadin} \mbox{Tadf}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\mbox{u}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\mbox{u}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\mbox{u}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\mbox{ } \mbox{u}\m$

Номер	1			2	3	
варианта	ωt	e	ωt	е	ωt	e
	градус	В	градус	В	градус	В
1	10	40	50	30	130	100
2	20	50	60	40	140	100
3	30	60	70	50	150	100
4	40	70	80	60	160	100
5	50	80	90	70	170	100
6	10	100	90	70	130	80
7	20	100	100	60	140	70
8	30	100	110	50	150	60
9	40	100	120	40	160	50
10	50	100	130	30	170	40
11	20	20	60	20	170	100
12	40	30	80	30	170	100
13	60	40	100	40	170	100
14	80	50	120	50	170	100
15	100	60	140	60	170	100
16	10	100	40	60	80	60
17	10	100	60	50	100	50
18	10	100	80	40	120	40
19	10	100	100	30	140	30
20	10	100	120	20	160	20
21	30	35	100	-20	150	100
22	30	30	90	-20	140	100
23	30	25	80	-20	130	100
24	30	20	70	-20	120	100
25	30	15	60	-20	110	100
26	30	100	80	-20	150	35
27	40	100	90	-20	150	30
28	50	100	100	-20	150	25
29	60	100	110	-20	150	20
30	70	100	120	-20	150	15

Таблица 1.2 Параметры схемы

Номе	Номер студента в			r_1 ,	r_2 ,	L_1 ,	C_1 ,	L_2 ,	C_1 ,
спи	ске груг	ПЫ	1/c	Ом	Ом	мГн	мкФ	мГн	мкФ
1	11	21	1000	25	20	15	40	10	30
2	12	22	2000	10	10	10	20	15	20
3	13	23	3000	40	35	12	10	10	15
4	14	24	4000	120	90	20	3	5	10
5	15	25	5000	45	65	4	4	6	8
6	16	26	4000	20	25	10	50	20	40
7	17	27	3000	35	40	6	5	5	10
8	18	28	2000	15	20	15	20	10	15
9	19	29	5000	100	100	20	2	15	5
10	20	30	10000	25	30	2	1	3	2

Рис. 1.2, лист 1. Схемы электрических цепей к расчету входного тока при несинусоидальном входном напряжении

Рис. 1.2, лист 2.

Рис. 1.2, лист 3

1.3. Пример разложения периодической несинусоидальной функции в ряд Фурье

В случае, когда периодическая несинусоидальная функция задана графически, например в виде осциллограммы, используется приближенный способ определения коэффициентов ряда.

Исходные данные к рассматриваемому примеру приведены в табл. 1.3. Вид симметрии кривой – симметрия *относительно оси абсцисс*.

Таблица 1.3 Исходные данные к примеру

1			2	3		
ωt	e	ωt	e	ωt	e	
градус	В	градус	В	градус	В	
70	100	120	-20	150	15	

Иллюстрация к примеру разложения периодической несинусоидальной функции в ряд Фурье приведена на рис. 1.3. Для графического построения половины периода исходной кривой несинусоидального напряжения использованы координаты из табл. 1.3. (отсчеты обозначены как 7, 12 и 15). Разобъём половину периода функции на 18 интервалов с шагом 10° (на рисунке отсчеты пронумерованы). Определим амплитуды отсчетов для дальнейшего использования в определении коэффициентов ряда Фурье — в качестве примера на рисунке явно обозначены первые пять амплитуд отсчетов $e_1 - e_5$.

При симметрии относительно *оси абсцисс* ряд Фурье не содержит постоянную составляющую и четные гармоники ($A_0 = B_2 = C_2 = B_4 = C_4 = ... = 0$), т.е. содержит только нечетные синусные и косинусные составляющие:

$$f(\omega t) = B_1 \sin \omega t + C_1 \cos \omega t + B_3 \sin 3\omega t + C_3 \cos 3\omega t + \dots =$$

$$= A_{1m} \sin(\omega t + \Psi_1) + A_{3m} \sin(3\omega t + \Psi_3) + A_{5m} \sin(5\omega t + \Psi_5) + \dots$$
(1.1)

Данные к расчету синусных и косинусных коэффициентов ряда Фурье для первой гармоники приведены в табл. 1.4. Расчет коэффициентов для 3 и 5 гармоник ряда приведен в табл. 1.5 и 1.6 соответственно.

Для определения коэффициентов использовались ординаты отсчетов лишь половины периода несинусоидальной периодической функции, поэтому полученный результат для каждого из коэффициентов B_k и C_k будем удваивать.

Рис. 1.3. Иллюстрация к примеру разложения периодической несинусоидальной функции в ряд Фурье

Таблица 1.4 Расчет коэффициентов ряда Фурье для первой гармоники (k=1)

n	$e(n10^\circ)$	<i>kn</i> 10°	$\sin(kn10^\circ)$	$\cos(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	10	0,174	0,985	2,26	12,80
2	28,00	20	0,342	0,940	9,58	26,31
3	42,50	30	0,500	0,866	21,25	36,81
4	57,00	40	0,643	0,766	36,64	43,66
5	70,50	50	0,766	0,643	54,01	45,32
6	85,00	60	0,866	0,500	73,61	42,50
7	100,00	70	0,940	0,342	93,97	34,20
8	75,00	80	0,985	0,174	73,86	13,02
9	51,00	90	1,000	0,000	51,00	0,00
10	27,50	100	0,985	-0,174	27,08	-4,78
11	2,50	110	0,940	-0,342	2,35	-0,86
12	-20,00	120	0,866	-0,500	-17,32	10,00
13	-8,00	130	0,766	-0,643	-6,13	5,14
14	2,50	140	0,643	-0,766	1,61	-1,92
15	15,00	150	0,500	-0,866	7,50	-12,99
16	10,00	160	0,342	-0,940	3,42	-9,40
17	5,00	170	0,174	-0,985	0,87	-4,92
18	0,00	180	0,000	-1,000	0,00	0,00
	Алгебра	ическа	я сумма по	столбцу	435,55	234,91

Коэффициенты для первой гармоники:

$$B_1 = \frac{2}{18} \sum (e(n10^\circ) \sin(kn10^\circ)) = \frac{435,55}{9} = 48,39;$$

$$C_1 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{234,91}{9} = 26,10.$$

$$E_{1m} = A_{1m} = \sqrt{B_1^2 + C_1^2} = \sqrt{48,39^2 + 26,10^2} = 54,98 \text{ B};$$

$$\Psi_1 = \operatorname{arctg} \frac{C_1}{B_1} = \operatorname{arctg} \frac{26,10}{48,39} = 28,34^{\circ}.$$

Таблица 1.5 Расчет коэффициентов ряда Фурье для третьей гармоники (k=3)

n	$e(n10^\circ)$	<i>kn</i> 10°	$\sin(kn10^\circ)$	$\cos(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	30	0,500	0,866	6,50	11,26
2	28,00	60	0,866	0,500	24,25	14,00
3	42,50	90	1,000	0,000	42,50	0,00
4	57,00	120	0,866	-0,500	49,36	-28,50
5	70,50	150	0,500	-0,866	35,25	-61,05
6	85,00	180	0,000	-1,000	0,00	-85,00
7	100,00	210	-0,500	-0,866	-50,00	-86,60
8	75,00	240	-0,866	-0,500	-64,95	-37,50
9	51,00	270	-1,000	0,000	-51,00	0,00
10	27,50	300	-0,866	0,500	-23,82	13,75
11	2,50	330	-0,500	0,866	-1,25	2,17
12	-20,00	360	0,000	1,000	0,00	-20,00
13	-8,00	390	0,500	0,866	-4,00	-6,93
14	2,50	420	0,866	0,500	2,17	1,25
15	15,00	450	1,000	0,000	15,00	0,00
16	10,00	480	0,866	-0,500	8,66	-5,00
17	5,00	510	0,500	-0,866	2,50	-4,33
18	0,00	540	0,000	-1,000	0,00	0,00
	Алгебра	ическа	я сумма по	столбцу	-8,83	-292,49

Коэффициенты для третьей гармоники:

$$B_3 = \frac{2}{18} \sum (e(n10^\circ) \sin(kn10^\circ)) = \frac{-8,83}{9} = -0,98;$$

$$C_3 = \frac{2}{18} \sum (e(n10^\circ) \cos(kn10^\circ)) = \frac{-292,49}{9} = -32,50.$$

Амплитуда и начальная фаза:

$$E_{3m} = A_{3m} = \sqrt{B_3^2 + C_3^2} = \sqrt{0.98^2 + 32.50^2} = 32.51 \text{ B};$$

$$\Psi_3 = \operatorname{arctg} \frac{C_3}{B_3} = \operatorname{arctg} \frac{-32,50}{-0,98} = 88,27^\circ$$
, но т.к. $B_3 < 0$ то к полученному

значению необходимо добавить или вычесть 180° , т.е. в итоге $\Psi_3=88,27^\circ+180^\circ=268,27^\circ$ или $\Psi_3=88,27^\circ-180^\circ=-91,73^\circ$.

Таблица 1.6 Расчет коэффициентов ряда Фурье для пятой гармоники (k=5)

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$\cos(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	50	0,766	0,643	9,96	8,36
2	28,00	100	0,985	-0,174	27,57	-4,86
3	42,50	150	0,500	-0,866	21,25	-36,81
4	57,00	200	-0,342	-0,940	-19,50	-53,56
5	70,50	250	-0,940	-0,342	-66,25	-24,11
6	85,00	300	-0,866	0,500	-73,61	42,50
7	100,00	350	-0,174	0,985	-17,36	98,48
8	75,00	400	0,643	0,766	48,21	57,45
9	51,00	450	1,000	0,000	51,00	0,00
10	27,50	500	0,643	-0,766	17,68	-21,07
11	2,50	550	-0,174	-0,985	-0,43	-2,46
12	-20,00	600	-0,866	-0,500	17,32	10,00
13	-8,00	650	-0,940	0,342	7,52	-2,74
14	2,50	700	-0,342	0,940	-0,86	2,35
15	15,00	750	0,500	0,866	7,50	12,99
16	10,00	800	0,985	0,174	9,85	1,74
17	5,00	850	0,766	-0,643	3,83	-3,21
18	0,00	900	0,000	-1,000	0,00	0,00
	Алгебра	ическа	я сумма по	столбцу	43,68	85,04

Коэффициенты для пятой гармоники:

$$B_5 = \frac{2}{18} \sum (e(n10^\circ) \sin(kn10^\circ)) = \frac{43,68}{9} = 4,85;$$

$$C_5 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{85,04}{9} = 9,45.$$

Амплитуда и начальная фаза:

$$E_{5m} = A_{5m} = \sqrt{B_5^2 + C_5^2} = \sqrt{4,85^2 + 9,45^2} = 10,62 \text{ B};$$

 $\Psi_5 = \arctan \frac{C_5}{B_5} = \arctan \frac{9,45}{4,85} = 62,82^\circ.$

В итоге функция описывается рядом:

$$e(\omega t) = E_{1m}\sin(\omega t + \Psi_1) + E_{3m}\sin(3\omega t + \Psi_3) + E_{5m}\sin(5\omega t + \Psi_5) =$$

$$= 54,98\sin(\omega t + 28,34^\circ) + 32,51\sin(3\omega t - 91,73^\circ) + 10,62\sin(5\omega t + 62,82^\circ) \text{ B}.$$

График периодической несинусоидальной ЭДС (симметрия относительно оси абсцисс) и ее представление тремя гармониками приведено на рис. 1.4.

Рис. 1.4. График периодической несинусоидальной ЭДС, симметричной относительно оси абсцисс, и ее представление тремя гармониками

Сравнительный анализ графиков исходной и результирующей кривых показывает хорошее совпадение, что позволяет сделать вывод об удовлетворительном результате определения коэффициентов ряда Фурье для заданной периодической несинусоидальной функции.

При симметрии относительно *начала координам* ряд Фурье не содержит постоянную составляющую и косинусные гармоники $(A_0 = C_1 = C_2 = ... = 0)$, т.е. содержит только синусные составляющие:

$$f(\omega t) = B_1 \sin \omega t + B_2 \cos 2\omega t + B_3 \sin 3\omega t + \dots =$$

$$= A_{1m} \sin(\omega t + 0^\circ) + A_{2m} \sin(2\omega t + 0^\circ) + A_{3m} \sin(3\omega t + 0^\circ) + \dots$$
(1.2)

Данные к расчету коэффициентов ряда Фурье для гармоник с первой по пятую приведены в табл. 1.7-1.11.

Аналогично с предыдущим примером, для определения коэффициентов использовались ординаты отсчетов лишь половины периода несинусоидальной периодической функции, поэтому полученные результаты для каждого из коэффициентов будем удваивать.

 $\mbox{ T а б л и ц а } \mbox{ 1.7}$ Расчет коэффициента B_1 ряда Фурье для первой гармоники $\left(k=1\right)$

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$
1	13,00	10	0,174	2,26
2	28,00	20	0,342	9,58
3	42,50	30	0,500	21,25
4	57,00	40	0,643	36,64
5	70,50	50	0,766	54,01
6	85,00	60	0,866	73,61
7	100,00	70	0,940	93,97
8	75,00	80	0,985	73,86
9	51,00	90	1,000	51,00
10	27,50	100	0,985	27,08
11	2,50	110	0,940	2,35
12	-20,00	120	0,866	-17,32
13	-8,00	130	0,766	-6,13
14	2,50	140	0,643	1,61
15	15,00	150	0,500	7,50
16	10,00	160	0,342	3,42
17	5,00	170	0,174	0,87
18	0,00	180	0,000	0,00
	Алгебра	ическа	я сумма по столбцу	435,55

Коэффициент B_1 для первой гармоники:

$$B_1 = \frac{2}{18} \sum (e(n10^\circ)\sin(kn10^\circ)) = \frac{435,55}{9} = 48,39;$$

$$E_{1m} = A_{1m} = B_1 = 48,39 \text{ B};$$

 $\Psi_1 = 0^{\circ}.$

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$
1	13,00	20	0,342	4,45
2	28,00	40	0,643	18,00
3	42,50	60	0,866	36,81
4	57,00	80	0,985	56,13
5	70,50	100	0,985	69,43
6	85,00	120	0,866	73,61
7	100,00	140	0,643	64,28
8	75,00	160	0,342	25,65
9	51,00	180	0,000	0,00
10	27,50	200	-0,342	-9,41
11	2,50	220	-0,643	-1,61
12	-20,00	240	-0,866	17,32
13	-8,00	260	-0,985	7,88
14	2,50	280	-0,985	-2,46
15	15,00	300	-0,866	-12,99
16	10,00	320	-0,643	-6,43
17	5,00	340	-0,342	-1,71
18	0,00	360	0,000	0,00
	Алгебра	ическа	я сумма по столбцу	338,95

Коэффициент B_2 для второй гармоники:

$$B_2 = \frac{2}{18} \sum (e(n10^\circ) \sin(kn10^\circ)) = \frac{338,95}{9} = 37,66;$$

$$E_{2m} = A_{2m} = B_2 = 37,66 \text{ B};$$

 $\Psi_2 = 0^{\circ}.$

 $\mbox{ Таблица } 1.9$ Расчет коэффициента B_3 ряда Фурье для третьей гармоники $\left(k=3\right)$

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$
1	13,00	30	0,500	6,50
2	28,00	60	0,866	24,25
3	42,50	90	1,000	42,50
4	57,00	120	0,866	49,36
5	70,50	150	0,500	35,25
6	85,00	180	0,000	0,00
7	100,00	210	-0,500	-50,00
8	75,00	240	-0,866	-64,95
9	51,00	270	-1,000	-51,00
10	27,50	300	-0,866	-23,82
11	2,50	330	-0,500	-1,25
12	-20,00	360	0,000	0,00
13	-8,00	390	0,500	-4,00
14	2,50	420	0,866	2,17
15	15,00	450	1,000	15,00
16	10,00	480	0,866	8,66
17	5,00	510	0,500	2,50
18	0,00	540	0,000	0,00
	Алгебра	ическа	я сумма по столбцу	-8,83

Коэффициент B_3 для третьей гармоники:

$$B_3 = \frac{2}{18} \sum (e(n10^\circ)\sin(kn10^\circ)) = \frac{-8,83}{9} = -0,98;$$

$$E_{3m} = A_{3m} = B_3 = -0.98 \text{ B};$$

 $\Psi_3 = 0^{\circ}.$

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$
1	13,00	40	0,643	8,36
2	28,00	80	0,985	27,57
3	42,50	120	0,866	36,81
4	57,00	160	0,342	19,50
5	70,50	200	-0,342	-24,11
6	85,00	240	-0,866	-73,61
7	100,00	280	-0,985	-98,48
8	75,00	320	-0,643	-48,21
9	51,00	360	0,000	0,00
10	27,50	400	0,643	17,68
11	2,50	440	0,985	2,46
12	-20,00	480	0,866	-17,32
13	-8,00	520	0,342	-2,74
14	2,50	560	-0,342	-0,86
15	15,00	600	-0,866	-12,99
16	10,00	640	-0,985	-9,85
17	5,00	680	-0,643	-3,21
18	0,00	720	0,000	0,00
	Алгебра	ическа	я сумма по столбцу	-179,01

Коэффициент B_4 для четвертой гармоники:

$$B_4 = \frac{2}{18} \sum (e(n10^\circ)\sin(kn10^\circ)) = \frac{-179,01}{9} = -19,89;$$

$$E_{4m} = A_{4m} = B_4 = -19,89 \text{ B};$$

 $\Psi_4 = 0^{\circ}.$

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$
1	13,00	50	0,766	9,96
2	28,00	100	0,985	27,57
3	42,50	150	0,500	21,25
4	57,00	200	-0,342	-19,50
5	70,50	250	-0,940	-66,25
6	85,00	300	-0,866	-73,61
7	100,00	350	-0,174	-17,36
8	75,00	400	0,643	48,21
9	51,00	450	1,000	51,00
10	27,50	500	0,643	17,68
11	2,50	550	-0,174	-0,43
12	-20,00	600	-0,866	17,32
13	-8,00	650	-0,940	7,52
14	2,50	700	-0,342	-0,86
15	15,00	750	0,500	7,50
16	10,00	800	0,985	9,85
17	5,00	850	0,766	3,83
18	0,00	900	0,000	0,00
	Алгебра	ическа	я сумма по столбцу	43,68

Коэффициент B_5 для пятой гармоники:

$$B_5 = \frac{2}{18} \sum (e(n10^\circ) \sin(kn10^\circ)) = \frac{43,68}{9} = 4,85;$$

$$E_{5m} = A_{5m} = B_5 = 4,85 \text{ B};$$

 $\Psi_5 = 0^{\circ}.$

В итоге функция описывается рядом:

$$e(\omega t) = E_{1m} \sin \omega t + E_{2m} \sin 2\omega t + E_{3m} \sin 3\omega t + E_{4m} \sin 4\omega t + E_{5m} \sin 5\omega t =$$

= 48,39 \sin \omega t + 37,66 \sin 2\omega t - 0,98 \sin 3\omega t - 19,89 \sin 4\omega t + 4,85 \sin 5\omega t B.

График периодической несинусоидальной ЭДС (симметрия относительно начала координат) и ее представление пятью гармониками приведено на рис. 1.5.

Рис. 1.5. График периодической несинусоидальной ЭДС, симметричной относительно начала координат, и ее представление пятью гармониками

Сравнительный анализ графиков исходной и результирующей кривых показывает хорошее совпадение, что позволяет сделать вывод об удовлетворительном результате определения коэффициентов ряда Фурье для заданной периодической несинусоидальной функции.

При симметрии относительно *оси ординат* ряд Фурье не содержит синусные составляющие ($B_1 = B_2 = B_3 ... = 0$), т.е. содержит постоянную и косинусные составляющие:

$$f(\omega t) = A_0 + C_1 \cos \omega t + C_2 \cos 2\omega t + C_3 \cos 3\omega t + \dots =$$

$$= A_0 + A_{1m} \sin(\omega t + 90^\circ) + A_{2m} \sin(2\omega t + 90^\circ) + A_{3m} \sin(3\omega t + 90^\circ) + \dots$$
(1.3)

Данные к расчету коэффициентов ряда Фурье для постоянной составляющей и гармоник с первой по пятую приведены в табл. 1.12 – 1.16.

Аналогично с предыдущим примером, для определения коэффициентов использовались ординаты отсчетов лишь половины периода несинусоидальной периодической функции, поэтому полученные результаты для каждого из косинусных коэффициентов будем удваивать.

 $\mbox{ Таблица } 1.12$ Расчет коэффициентов A_0 и C_1 ряда Фурье для первой гармоники $\left(k=1\right)$

n	$e(n10^\circ)$	kn10°	$\cos(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	10	0,985	12,80
2	28,00	20	0,940	26,31
3	42,50	30	0,866	36,81
4	57,00	40	0,766	43,66
5	70,50	50	0,643	45,32
6	85,00	60	0,500	42,50
7	100,00	70	0,342	34,20
8	75,00	80	0,174	13,02
9	51,00	90	0,000	0,00
10	27,50	100	-0,174	-4,78
11	2,50	110	-0,342	-0,86
12	-20,00	120	-0,500	10,00
13	-8,00	130	-0,643	5,14
14	2,50	140	-0,766	-1,92
15	15,00	150	-0,866	-12,99
16	10,00	160	-0,940	-9,40
17	5,00	170	-0,985	-4,92
18	0,00	180	-1,000	0,00
	Алгебра	ическая сумма по	столбцу	234,91

Коэффициенты:

$$A_0 = \frac{1}{18} \sum (e(n10^\circ)) = \frac{1}{18} 556, 5 = 30,92;$$

$$C_1 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{234,91}{9} = 26,10.$$

Постоянная составляющая, амплитуда и начальная фаза первой гармоники:

$$E_0 = A_0 = 30,92 \text{ B};$$

 $E_{1m} = C_1 = 26,10 \text{ B}; \ \Psi_1 = 90^\circ.$

n	$e(n10^{\circ})$	kn10°	$\cos(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	20	0,940	12,22
2	28,00	40	0,766	21,45
3	42,50	60	0,500	21,25
4	57,00	80	0,174	9,90
5	70,50	100	-0,174	-12,24
6	85,00	120	-0,500	-42,50
7	100,00	140	-0,766	-76,60
8	75,00	160	-0,940	-70,48
9	51,00	180	-1,000	-51,00
10	27,50	200	-0,940	-25,84
11	2,50	220	-0,766	-1,92
12	-20,00	240	-0,500	10,00
13	-8,00	260	-0,174	1,39
14	2,50	280	0,174	0,43
15	15,00	300	0,500	7,50
16	10,00	320	0,766	7,66
17	5,00	340	0,940	4,70
18	0,00	360	1,000	0,00
	Алгебра	ическая сумма по	столбцу	-184,08

Коэффициент C_2 для второй гармоники:

$$C_2 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{-184,08}{9} = -20,45.$$

Амплитуда и начальная фаза второй гармоники:

$$E_{2m} = C_2 = -20,45 \text{ B}; \ \Psi_2 = 90^{\circ}.$$

 $\label{eq: T a f n u ц a 1.14}$ Расчет коэффициента C_3 ряда Фурье для третьей гармоники $\left(k=3\right)$

n	$e(n10^{\circ})$	kn10°	$\cos(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	30	0,866	11,26
2	28,00	60	0,500	14,00
3	42,50	90	0,000	0,00
4	57,00	120	-0,500	-28,50
5	70,50	150	-0,866	-61,05
6	85,00	180	-1,000	-85,00
7	100,00	210	-0,866	-86,60
8	75,00	240	-0,500	-37,50
9	51,00	270	0,000	0,00
10	27,50	300	0,500	13,75
11	2,50	330	0,866	2,17
12	-20,00	360	1,000	-20,00
13	-8,00	390	0,866	-6,93
14	2,50	420	0,500	1,25
15	15,00	450	0,000	0,00
16	10,00	480	-0,500	-5,00
17	5,00	510	-0,866	-4,33
18	0,00	540	-1,000	0,00
	Алгебрат	ическая сумма по	столбцу	-292,49

Коэффициент C_3 для третьей гармоники:

$$C_3 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{-292,49}{9} = -32,50.$$

Амплитуда и начальная фаза третьей гармоники:

$$E_{3m} = C_3 = -32,50 \text{ B}; \ \Psi_3 = 90^{\circ}.$$

 $\label{eq: Taблица 1.15}$ Расчет коэффициента C_4 ряда Фурье для четвертой гармоники $\left(k=4\right)$

n	$e(n10^{\circ})$	kn10°	$\cos(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	40	0,766	9,96
2	28,00	80	0,174	4,86
3	42,50	120	-0,500	-21,25
4	57,00	160	-0,940	-53,56
5	70,50	200	-0,940	-66,25
6	85,00	240	-0,500	-42,50
7	100,00	280	0,174	17,36
8	75,00	320	0,766	57,45
9	51,00	360	1,000	51,00
10	27,50	400	0,766	21,07
11	2,50	440	0,174	0,43
12	-20,00	480	-0,500	10,00
13	-8,00	520	-0,940	7,52
14	2,50	560	-0,940	-2,35
15	15,00	600	-0,500	-7,50
16	10,00	640	0,174	1,74
17	5,00	680	0,766	3,83
18	0,00	720	1,000	0,00
	Алгебрат	ическая сумма по	столбцу	-8,19

Коэффициент C_4 для четвертой гармоники:

$$C_4 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{-8,19}{9} = -0,91.$$

Амплитуда и начальная фаза четвертой гармоники:

$$E_{4m} = C_4 = -0.91 \text{ B}; \ \Psi_4 = 90^{\circ}.$$

 $\label{eq:Taff} \mbox{ T a б л и ц a } \mbox{ 1.16}$ Расчет коэффициента C_5 ряда Фурье для пятой гармоники $\left(k=5\right)$

n	$e(n10^{\circ})$	kn10°	$\cos(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	50	0,643	8,36
2	28,00	100	-0,174	-4,86
3	42,50	150	-0,866	-36,81
4	57,00	200	-0,940	-53,56
5	70,50	250	-0,342	-24,11
6	85,00	300	0,500	42,50
7	100,00	350	0,985	98,48
8	75,00	400	0,766	57,45
9	51,00	450	0,000	0,00
10	27,50	500	-0,766	-21,07
11	2,50	550	-0,985	-2,46
12	-20,00	600	-0,500	10,00
13	-8,00	650	0,342	-2,74
14	2,50	700	0,940	2,35
15	15,00	750	0,866	12,99
16	10,00	800	0,174	1,74
17	5,00	850	-0,643	-3,21
18	0,00	900	-1,000	0,00
	Алгебрат	ическая сумма по	столбцу	85,04

Коэффициент C_5 для пятой гармоники:

$$C_5 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{85,04}{9} = 9,45.$$

Амплитуда и начальная фаза четвертой гармоники:

$$E_{5m} = C_5 = 9,45 \text{ B}; \ \Psi_5 = 90^{\circ}.$$

В итоге функция описывается рядом:

$$e(\omega t) = E_0 + E_{1m} \sin(\omega t + 90^\circ) + E_{2m} \sin(2\omega t + 90^\circ) + E_{3m} \sin(3\omega t + 90^\circ) + E_{4m} \sin(4\omega t + 90^\circ) + E_{5m} \sin(5\omega t + 90^\circ) =$$

$$= 30,92 + 26,10\sin(\omega t + 90^\circ) - 20,45\sin(2\omega t + 90^\circ) -$$

$$-32,50\sin(3\omega t + 90^\circ) - 0,91\sin(4\omega t + 90^\circ) + 9,45\sin(5\omega t + 90^\circ) B.$$

График периодической несинусоидальной ЭДС (симметрия относительно оси ординат) и ее представление пятью гармониками приведено на рис. 1.6.

Рис. 1.6. График периодической несинусоидальной ЭДС, симметричной относительно оси ординат, и ее представление пятью гармониками

Сравнительный анализ графиков исходной и результирующей кривых показывает хорошее совпадение, что позволяет сделать вывод об удовлетворительном результате определения коэффициентов ряда Фурье для заданной периодической несинусоидальной функции.

1.4. Пример расчета входного тока в линейной электрической цепи с источником несинусоидального напряжения

Схема исследуемой цепи к рассматриваемому примеру приведена на рис. 1.7.

Рис. 1.7. Схема исследуемой цепи

Исходные данные: $e(t) = 33 + 54,98 \sin(\omega t + 28,34^\circ) +$ +32,51sin(3 ωt – 91,73 $^\circ$) + 10,62sin(5 ωt + 62,82 $^\circ$) В; r_1 = 10 Ом; r_2 = 100 Ом; L_1 = 5 мГн; L_2 = 5 мГн; C = 10 мк Φ ; ω = 1000 $\frac{1}{c}$.

Эквивалентная схема замещения для расчета на нулевой гармонике приведена на рис. 1.8. Необходимо отметить, что на нулевой гармонике индуктивность имеет нулевое сопротивление, а емкость — бесконечное.

Рис. 1.8. Схема замещения для расчета на нулевой гармонике

Входное эквивалентное сопротивление схемы для нулевой гармоники $Z(0) = r_1 + r_2$; Z(0) = 10 + 100 = 110 Ом.

Входной ток нулевой гармоники

$$I_0 = \frac{E_0}{Z(0)}$$
; $I_0 = \frac{33}{110} = 0.3$ A.

Входное эквивалентное сопротивление первой гармоники

$$Z(\omega) = r_{1} + j\omega L_{1} + \frac{r_{2}\left(-j\frac{1}{\omega C}\right)}{r_{2} - j\frac{1}{\omega C}} + j\omega L_{2} = r_{1} + j\omega(L_{1} + L_{2}) + \frac{\frac{r_{2}}{\omega C}e^{-j90^{\circ}}}{r_{2} - j\frac{1}{\omega C}};$$

$$Z(\omega) = 10 + j1000 \cdot 0,01 + \frac{100 \cdot 100e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + j10 + \frac{10000e^{-j90^{\circ}}}{100 - j100} = 10 + j10 + \frac{1000e^{-j90^{\circ}}}{100 - j100} = 10 + \frac{1000e^{-j90^{\circ}}}{100 - j100} = 10 + \frac{10$$

$$=10+j10+70,7e^{-j45^{\circ}}=10+j10+50-j50=60-j40=71,2e^{-j33,69^{\circ}}$$
 Om.

Комплексная амплитуда тока первой гармоники

$$\dot{I}_{1m} = \frac{\dot{E}_{1m}}{Z(\omega)}; \dot{I}_{1m} = \frac{54,98e^{j28,34^{\circ}}}{71,2e^{-j33,69^{\circ}}} = 0,772e^{j62,03^{\circ}} \text{ A}.$$

Закон изменения тока первой гармоники

$$i_1(t) = 0,772\sin(1000t + 62,03^\circ)$$
 A.

Входное эквивалентное сопротивление третьей гармоники

$$Z(3\omega) = r_1 + j3\omega L_1 + \frac{r_2\left(-j\frac{1}{3\omega C}\right)}{r_2 - j\frac{1}{3\omega C}} + j3\omega L_2 = r_1 + j3\omega(L_1 + L_2) + \frac{\frac{r_2}{3\omega C}e^{-j90^{\circ}}}{r_2 - j\frac{1}{3\omega C}};$$

$$Z(3\omega) = 10 + j3000 \cdot 0,01 + \frac{100 \cdot \frac{100}{3} e^{-j90^{\circ}}}{100 - j\frac{100}{3}} = 10 + j30 + \frac{3333 e^{-j90^{\circ}}}{105,4 e^{-j18,43^{\circ}}} = 10 + j30 + \frac{3333 e^{-j90^{\circ}}}{105,4 e^{-j90^{\circ}}} = 10 + j30$$

=
$$10 + j30 + 31,62e^{-j71,57^{\circ}} = 10 + j30 + 10 - j30 = 20 \text{ Om}.$$

Комплексная амплитуда тока третьей гармоники

$$\dot{I}_{3m} = \frac{\dot{E}_{3m}}{Z(3\omega)}; \dot{I}_{3m} = \frac{32,51e^{-j91,73^{\circ}}}{20} = 1,63e^{-j91,73^{\circ}} \text{ A}.$$

Закон изменения тока третьей гармоники

$$i_3(t) = 1,63\sin(3000t - 91,73^\circ)$$
 A.

Входное эквивалентное сопротивление пятой гармоники

$$Z(5\omega) = r_1 + j5\omega L_1 + \frac{r_2\left(-j\frac{1}{5\omega C}\right)}{r_2 - j\frac{1}{5\omega C}} + j5\omega L_2 = r_1 + j5\omega (L_1 + L_2) + \frac{\frac{r_2}{5\omega C}e^{-j90^\circ}}{r_2 - j\frac{1}{5\omega C}};$$

$$Z(5\omega) = 10 + j5000 \cdot 0,01 + \frac{100 \cdot \frac{100}{5} e^{-j90^{\circ}}}{100 - j\frac{100}{5}} = 10 + j50 + \frac{2000 e^{-j90^{\circ}}}{102 e^{-j11,31^{\circ}}} = 10 + j50 + \frac{2000 e^{-j90^{\circ}}}{102 e^{-j90^{\circ}}} = 10 + j50 + \frac{2000 e^{-j90^{\circ}}}{102 e^$$

$$= 10 + j50 + 19,6e^{-j78,69^{\circ}} = 10 + j50 + 3,84 - j19,2 = 13,84 + j30,8 = 33,8e^{j65,8^{\circ}} \text{ Om}$$

Комплексная амплитуда тока пятой гармоники

$$\dot{I}_{5m} = \frac{\dot{E}_{5m}}{Z(5\omega)}; \dot{I}_{5m} = \frac{10,62e^{j62,82^{\circ}}}{33.8e^{j65,8^{\circ}}} = 0,314e^{-j2,98^{\circ}} \text{ A}.$$

Закон изменения тока пятой гармоники

$$i_5(t) = 0.314\sin(5000t - 2.98^\circ)$$
 A.

Результирующий ток в неразветвленной части цепи

$$i(t) = I_0 + i_1(t) + i_3(t) + i_5(t); i(t) = 0.3 + 0.772\sin(1000t + 62.03^\circ) + 1.63\sin(3000t - 91.73^\circ) + 0.314\sin(5000t - 2.98^\circ)$$
A.

Действующее значение ЭДС

$$E = \sqrt{E_0^2 + \frac{E_{1m}^2}{2} + \frac{E_{3m}^2}{2} + \frac{E_{5m}^2}{2}}; \quad E = \sqrt{33^2 + \frac{54,98^2}{2} + \frac{32,51^2}{2} + \frac{10,62^2}{2}} = \sqrt{1089 + \frac{3022,8}{2} + \frac{1056,9}{2} + \frac{112,8}{2}} = 97,42 \text{ B}.$$

Действующее значение тока в неразветвленной части цепи

$$I = \sqrt{I_0^2 + \frac{I_{1m}^2}{2} + \frac{I_{3m}^2}{2} + \frac{I_{5m}^2}{2}}; \quad I = \sqrt{0,3^2 + \frac{0,772^2}{2} + \frac{1,63^2}{2} + \frac{0,314^2}{2}} =$$

$$= \sqrt{0,09 + \frac{0,596}{2} + \frac{2,66}{2} + \frac{0,0985}{2}} = 1,329 \text{ A}.$$

Полная мощность

$$S = EI$$
; $S = 97,42 \cdot 1,329 = 129,45$ BA.

Активная мощность

$$P = E_0 I_0 + \frac{E_{1m} I_{1m}}{2} \cos \varphi_1 + \frac{E_{3m} I_{3m}}{2} \cos \varphi_3 + \frac{E_{5m} I_{5m}}{2} \cos \varphi_5;$$

$$P = 9.9 + \frac{54.98 \cdot 0.772}{2} \cos(-33.69^{\circ}) + \frac{32.51 \cdot 1.63}{2} \cos(0^{\circ}) + \frac{10.62 \cdot 0.314}{2} \cos(-65.8^{\circ}) = 17.7 + 26.5 + 0.683 = 54.8 \text{ Bt.}$$

Временные графики гармоник и суммарная кривая входного тока приведены на рис.1.9.

Рис. 1.9. Временные графики гармоник и суммарная кривая входного тока

2. Расчет несимметричной трехфазной цепи

В цепи с симметричным трехфазным источником напряжения (рис. 2.1) определить токи, составить баланс мощностей, построить векторную диаграмму токов и напряжений, показав на ней все точки, отмеченные на схеме (рис. 2.2), а так же фазные $(\dot{U}_{AN}, \dot{U}_{BN}, \dot{U}_{CN})$ и линейные $(\dot{U}_{AB}, \dot{U}_{BC}, \dot{U}_{CA})$ напряжения источника.

Рис. 2.1. Трехфазный источник напряжения

Рис. 2.2. Схемы трехфазных электрических цепей

9
$$\stackrel{A}{\circ}$$
 $\stackrel{i}{\circ}$ $\stackrel{$

Рис. 2.2, лист 2

Рис. 2.2, лист 3

Таблица 2.1 Параметры элементов схемы

Номер сту-	I LIOMED I			Сопротивление элементов схемы, Ом						
дента в списке группы	схемы на рис. 3.5	\dot{E}_A , B	r	r_1	r_2	r_3	$x_1 = x_2 = x_3$	$x_4 = x_5 = x_6$		
1	2	3	4	5	6	7	8	9		
1	1	$200e^{j0}$	1,2	4	7	2	8	2		
2	2	$200e^{j90^{\circ}}$	1	3	6	3	9	3		
3	3	$200e^{j0}$	1,2	4	7	2	8	2		
4	4	$200e^{j90^{\circ}}$	1	3	6	3	7	3		
5	5	$200e^{j0}$	1,2	4	7	2	6	2		
6	6	$200e^{j90^{\circ}}$	1	3	6	3	9	3		
7	7	$200e^{j0}$	1,2	4	7	2	8	2		
8	8	$200e^{j90^{\circ}}$	1	3	6	3	7	3		
9	9	$200e^{j0}$	1,2	4	7	2	6	2		
10	10	$200e^{j90^{\circ}}$	1	3	6	3	9	3		
11	11	$200e^{j0}$	1,2	4	7	2	8	2		
12	12	$200e^{j90^{\circ}}$	1	3	6	3	7	3		
13	13	$200e^{j0}$	1,2	4	7	2	6	2		
14	14	$200e^{j90^{\circ}}$	1	3	6	3	9	3		
15	15	$200e^{j0}$	1,2	4	7	2	8	2		
16	1	$200e^{j90^{\circ}}$	1	3	6	3	7	3		
17	2	$200e^{j0}$	1,2	4	7	2	6	2		

Окончание табл. 2.1

1	2	3	4	5	6	7	8	9
18	3	$200e^{j90^{\circ}}$	1	3	6	3	9	3
19	4	$200e^{j0}$	1,2	4	7	2	8	2
20	5	$200e^{j90^{\circ}}$	1	3	6	3	7	3
21	6	$200e^{j0}$	1,2	4	7	2	6	2
22	7	$200e^{j90^{\circ}}$	1	3	6	3	9	3
23	8	$200e^{j0}$	1,2	4	7	2	8	2
24	9	$200e^{j90^{\circ}}$	1	3	6	3	7	3
25	10	$200e^{j0}$	1,2	4	7	2	6	2
26	11	$200e^{j90^{\circ}}$	1	3	6	3	9	3
27	12	$200e^{j0}$	1,2	4	7	2	8	2
28	13	$200e^{j90^{\circ}}$	1	3	6	3	7	3
29	14	$200e^{j0}$	1,2	4	7	2	6	2
30	15	$200e^{j90^{\circ}}$	1	3	6	3	9	3

2.2. Пример расчета несимметричной трехфазной цепи

В цепи с симметричным трехфазным источником напряжения определить токи, составить баланс мощностей, построить векторную диаграмму токов и напряжений, показав на ней все точки, отмеченные на схеме (рис. 2.3), а так же фазные $(\dot{U}_{AN}, \dot{U}_{BN}, \dot{U}_{CN})$ и линейные $(\dot{U}_{AB}, \dot{U}_{BC}, \dot{U}_{CA})$ напряжения источника.

Рис. 2.3. Схема несимметричной трехфазной цепи

Параметры элементов к примеру расчета несимметричной трехфазной цепи приведены в табл. 2.2.

Таблица 2.2

Параметры элементов схемы

ii B		Сопротивление элементов схемы, Ом							
U_{AB}, \mathbf{D}	r	r_1	r_2	r_3	x_1	x_2			
380	2	20	10	4	30	8			

Для симметричного источника, соединенного звездой, при заданном линейном напряжении $\dot{U}_{AB}=380e^{j0^{\circ}}$ ЭДС фаз находятся из выражений:

$$\begin{split} \dot{E}_A &= \frac{\dot{U}_{AB}}{\sqrt{3}} e^{-j30^\circ}; \dot{E}_A = \frac{380 e^{j0^\circ}}{\sqrt{3}} e^{-j30^\circ} = 220 e^{-j30^\circ} \, \mathrm{B}; \\ \dot{E}_B &= \dot{E}_A e^{-j120^\circ}; \dot{E}_B = 220 e^{-j30^\circ} e^{-j120^\circ} = 220 e^{-j150^\circ} \, \mathrm{B}; \\ \dot{E}_C &= \dot{E}_A e^{j120^\circ}; \dot{E}_C = 220 e^{-j30^\circ} e^{j120^\circ} = 220 e^{j90^\circ} \, \mathrm{B}. \end{split}$$

Сопротивления фаз несимметричной звезды:

$$\begin{split} &\underline{Z}_A = r + j x_1 + r_1; \, \underline{Z}_A = 2 + j 30 + 20 = 22 + j 30 = 37, 2 e^{j 53,7^{\circ}} \, \text{Om}; \\ &\underline{Z}_B = r + r_2 - j x_2; \, \underline{Z}_B = 2 + 10 - j 8 = 12 - j 8 = 14, 4 e^{-j 33,7^{\circ}} \, \text{Om}; \\ &\underline{Z}_C = r + r_3; \, \underline{Z}_C = 2 + 4 = 6 = 6 e^{j 0^{\circ}} \, \text{Om}; \\ &\underline{Z}_N = r; \, \underline{Z}_N = 2 = 2 e^{j 0^{\circ}} \, \text{Om}. \end{split}$$

Проводимости фаз:

$$\begin{split} &\underline{Y}_{A} = \frac{1}{\underline{Z}_{A}}; \, \underline{Y}_{A} = \frac{1}{37,2e^{j53,7^{\circ}}} = 0,027e^{-j53,7^{\circ}} \, \text{ Cm}; \\ &\underline{Y}_{B} = \frac{1}{\underline{Z}_{B}}; \, \underline{Y}_{B} = \frac{1}{14,4e^{-j33,7^{\circ}}} = 0,069e^{j33,7^{\circ}} \, \text{ Cm}; \\ &\underline{Y}_{C} = \frac{1}{\underline{Z}_{C}}; \, \underline{Y}_{C} = \frac{1}{6} = 0,167e^{j0^{\circ}} \, \text{ Cm}; \\ &\underline{Y}_{N} = \frac{1}{\underline{Z}_{N}}; \, \underline{Y}_{N} = \frac{1}{2} = 0,5e^{j0^{\circ}} \, \text{ Cm}. \end{split}$$

Напряжение смещения нейтрали:

$$\begin{split} \dot{U}_{nN} &= \frac{\dot{E}_A \underline{Y}_A + \dot{E}_B \underline{Y}_B + \dot{E}_C \underline{Y}_C}{\underline{Y}_A + \underline{Y}_B + \underline{Y}_C + \underline{Y}_N}; \\ \dot{U}_{nN} &= \frac{220e^{-j30^\circ}0,027e^{-j53,7^\circ} + 220e^{-j150^\circ}0,069e^{j33,7^\circ} + 220e^{j90^\circ}0,167e^{j0^\circ}}{0,016 - j0,022 + 0,058 + j0,038 + 0,167 + 0,5} = \\ &= \frac{5,897e^{-j83,7^\circ} + 15,212e^{-j116,3^\circ} + 36,566e^{j90^\circ}}{0,741 + j0,016} = \frac{18,124e^{j109,7^\circ}}{0,741e^{j1,3^\circ}} = 24,5e^{j108,4^\circ} \text{ B.} \end{split}$$

Линейные токи:

$$\begin{split} \dot{I}_A &= \frac{\dot{E}_A - \dot{U}_{nN}}{Z_A}; \, \dot{I}_A = \frac{220e^{-j30^\circ} - 24.5e^{j108.4^\circ}}{37.2e^{j53.7^\circ}} = 6,40e^{-j87.7^\circ} \text{ A}; \\ \dot{I}_B &= \frac{\dot{E}_B - \dot{U}_{nN}}{Z_B}; \, \dot{I}_B = \frac{220e^{-j150^\circ} - 24.5e^{j108.4^\circ}}{14.42e^{-j33.7^\circ}} = 15,6e^{-j110.2^\circ} \text{ A}; \\ \dot{I}_C &= \frac{\dot{E}_C - \dot{U}_{nN}}{Z_C}; \, \dot{I}_C = \frac{220e^{j90^\circ} - 24.5e^{j108.4^\circ}}{6} = 32.7e^{j87.7^\circ} \text{ A}; \\ \dot{I}_N &= \frac{\dot{U}_{nN}}{Z_N}; \, \dot{I}_N = \frac{24.5e^{j108.4^\circ}}{2} = 12.25e^{j108.4^\circ} \text{ A}. \end{split}$$

Ток в нейтральном проводе по первому закону Кирхгофа

$$\dot{I}_N = \dot{I}_A + \dot{I}_B + \dot{I}_C; \dot{I}_N = -3.86 + j11.6 = 12.2e^{j108.4^{\circ}}$$
 A.

Активная мощность цепи

$$P = (r + r_1)I_A^2 + (r + r_2)I_B^2 + (r + r_3)I_C^2 + rI_N^2$$
; $P = 10600$ Bt.

Реактивная мощность цепи

$$Q = x_1 I_A^2 + (-x_2) I_B^2$$
; $Q = -727$ вар.

Комплексная мощность источника

$$\underline{S} = \dot{E}_A I_A^* + \dot{E}_B I_B^* + \dot{E}_C I_C^*; \ \underline{S} = (10600 - j727) \text{ B} \cdot \text{A}.$$

Падения напряжений на элементах несимметричной трехфазной цепи приведены в табл 2.3

Таблица 2.3 Падения напряжений на элементах несимметричной трехфазной цепи

Падения напряжений, В							
rI_A	x_1I_A	r_1I_A	rI_B	r_2I_B	x_2I_B	rI _C	r_3I_C
12,8	192,1	128,1	31,3	156,4	125,1	65,4	130,9

Примем масштаб по напряжению
$$m_U = 25 \, \frac{\mathrm{B}}{\mathrm{cm}}$$
, а по току $m_I = 5 \, \frac{\mathrm{A}}{\mathrm{cm}}$.

Лучевая диаграмма токов приведена на рис. 2.4.

Начинаем построение векторной диаграммы с нанесения осей комплексной плоскости.

Из начала координат проводим токи (строим лучевую диаграмму токов) с соответствующими начальными фазами. В качестве проверки построения на данном этапе используем первый закон Кирхгофа $-\dot{I}_N + \dot{I}_A + \dot{I}_B + \dot{I}_C = 0$ (на рис. 2.4 дополнительное построение показано пунктирными векторами).

Векторная диаграмма для фазы А приведена на рис. 2.5.

Продолжаем построение векторной диаграммы с того, что помещаем точку «N», имеющую нулевой потенциал, в начало координат. Затем откладываем вектор напряжения смещения нейтрали \dot{U}_{nN} и попадаем в точку «n». Далее из точки «n» последовательно откладываем напряжения на элементах фазы А $(\dot{I}_A r_1, \dot{I}_A j x_1, \dot{I}_A r)$ и получаем точку «A». Проведя вектор из точки «N» в точку «A» получим вектор фазного напряжения \dot{U}_{AN} . В качестве проверки

Рис. 2.4. Лучевая диаграмма токов

на данном этапе построения векторной диаграммы используем сумму векторов по уравнению по второму закону Кирфхофа для контура « Aaa_1nNA » $\dot{U}_{AN}=\dot{I}_Ar_1+\dot{I}_Ajx_1+\dot{I}_Ar+\dot{U}_{nN}$. Результирующий вектор фазного напряжения \dot{U}_{AN} должен иметь длину (в масштабе) и начальную фазу соответствующие исходным данным (см. начало решения).

Векторная диаграмма для рассматриваемого примера представлена на рис. 2.6.

Аналогично строятся вектора падений напряжений на элементах фазы В $\left(-\dot{I}_B j x_2, \dot{I}_B r_2, \dot{I}_B r\right)$ и С $\left(\dot{I}_C r_3, \dot{I}_C r\right)$.

При построении диаграммы напряжений не забываем, что напряжение и ток в активном сопротивлении совпадают по фазе, напряжение на индуктивности опережает ток на 90°, а на емкости напряжение отстает от тока на 90°.

Завершаем построение векторной диаграммы построением линейных векторов падений напряжения $(\dot{U}_{AB},\dot{U}_{BC},\dot{U}_{CA})$ соединив векторами точки «В» с «А», «С» с «В» и «А» с «С» соответственно.

Рис. 2.5. Векторная диаграмма для фазы А

Рис. 2.6. Векторная диаграмма

- 3. Расчет переходных процессов в электрических цепях
- 3.1. В цепи с двумя накопителями энергии (рис. 3.1) в переходном режиме классическим методом определить закон изменения напряжения на конденсаторе $u_C(t)$, указанном на схеме, если в цепи действует источник постоянного напряжения (тока). Построить график изменения $u_C(t)$, номер схемы номер студента в списке группы.
- 3.2. В той же цепи при питании ее от источника синусоидального напряжения (тока) определить зависимые начальные условия переходного процесса $u_L(0+)$ и $u_C(0+)$.

Рис. 3.1. Схемы для расчета переходного процесса

Рис. 3.1, лист 2

Рис. 3.1, лист 3

3.2. Пример расчета $u_C(t)$ в цепи с источником постоянного напряжения и зависимых начальных условий $u_L(0+)$ и $i_C(0+)$ при воздействии источника синусоидального напряжения

Расчетная схема для рассматриваемого примера приведена на рис. 3.2.

Рис. 3.2. Расчетная схема

Исходные параметры: источник постоянного напряжения E= 140 B; R_1 = 20 Ом; R = 25 Ом; L = 25 м Γ н; C = 25 м κ Ф.

Определить закон изменения напряжения на емкости $u_C(t)$.

Решение:

1. Установившийся режим до коммутации. Схема замещения для установившегося режима до коммутации приведена на рис. 3.3.

Рис. 3.3. Схема в установившемся режиме до коммутации

В данной схеме ключ замкнут и при постоянном приложенном напряжении U = E сопротивление индуктивности равно нулю, а сопротивление емкости – бесконечно большое. Рассчитаем независимые начальные условия:

$$I_3 = 0$$
; $I_1 = I_2 = \frac{E}{R}$; $I_1 = I_2 = \frac{140}{25} = 5,6 \text{ A}$; $U_C = RI_2 = E$; $U_C = 140 \text{ B}$.

При t = 0—

$$i_1(0-)=5.6 \text{ A}; \quad u_C(0-)=140 \text{ B}.$$

Независимые начальные условия:

$$\begin{cases} i_1(0+) = i_1(0-) = 5, 6 A; \\ u_C(0+) = u_C(0-) = 140 B. \end{cases}$$

2. Уравнения для мгновенных значений токов и напряжений в схеме после коммутации. Схема после коммутации приведена на рис. 3.4.

Рис. 3.4. Схема после коммутации

Составим дифференциальные уравнения по законам Кирхгофа для послекоммутационного состояния схемы при t=0+:

$$\begin{cases} i_{1}(0+) - i_{2}(0+) - i_{3}(0+) = 0; \\ L \frac{di_{1}}{dt}(0+) + R_{1} i_{1}(0+) + R i_{2}(0+) = E; \\ -R i_{2}(0+) + u_{C}(0+) = 0; \\ i_{3}(0+) = C \frac{du_{C}}{dt}(0+). \end{cases}$$
(3.1)

3. Установившийся режим после коммутации. Определение принужденных составляющих. Схема в установившемся режиме после коммутации приведена на рис. 3.5.

В схеме ключ разомкнут и при постоянном приложенном напряжении сопротивление индуктивности равно нулю, а сопротивление емкости – бесконечно большое. Рассчитаем принужденные составляющие:

$$I_{3np} = 0 \text{ A}; I_{1np} = I_{2np} = \frac{E}{R + R_1}; \quad I_{1np} = I_{2np} = \frac{140}{20 + 25} = 3,11 \text{ A};$$

$$U_{Cnp} = RI_{2np}$$
; $U_{Cnp} = 3.11 \cdot 20 = 62.22 \text{ B}.$

Рис. 3.5. Схема в установившемся режиме после коммутации

4. Составление характеристического уравнения и определение его корней. Для составления характеристического уравнения запишем входное комплексное сопротивление схемы (см. рис. 3.4):

$$Z(j\omega) = R_1 + \frac{R\left(\frac{-j}{\omega C}\right)}{R - \frac{j}{\omega C}} + j\omega L = R_1 + \frac{R\left(\frac{1}{j\omega C}\right)}{R + \frac{1}{j\omega C}} + j\omega L,$$
(3.2)

заменим « $j\omega$ » символом «р» и приравняем полученное выражение нулю

$$Z(p) = R_1 + \frac{R\left(\frac{1}{pC}\right)}{R + \frac{1}{pC}} + pL = 0.$$
 (3.3)

Преобразуем полученное уравнение:

$$R_{1} + \frac{R\left(\frac{1}{pC}\right)}{R + \frac{1}{pC}} + pL = \frac{R_{1}\left(R + \frac{1}{pC}\right) + R\left(\frac{1}{pC}\right) + pL\left(R + \frac{1}{pC}\right)}{R + \frac{1}{pC}} = \frac{R_{1}R + \frac{R_{1}}{pC} + \frac{R}{pC} + pLR + \frac{pL}{pC}}{R + \frac{1}{pC}} = \frac{p^{2}LRC + pL + R_{1}RpC + R_{1} + R}{pCR + 1},$$

приравняв числитель к нулю и разделив его на LRC получим

$$p^2 + p\left(\frac{L + R_1RC}{LRC}\right) + \frac{R_1 + R}{LRC} = 0.$$

Характеристическое уравнение при заданных значениях параметров элементов

$$p^2 + 2.4 \cdot 10^3 p + 2.88 \cdot 10^6 = 0$$

имеет корни

$$p_{1,2} = -1200 \pm j1200 = -\delta \pm j\omega_{cb},$$

следовательно переходный режим колебательный, а свободная составляющая имеет вид $u_{C\,{
m cB}}=B\,e^{-\delta\,t}\,\sin\bigl(\omega_{{
m cB}}t+\gamma\bigr).$

5. Определение постоянных, входящих в состав $u_{C \text{ cB}}$.

$$u_C = U_{C \text{ пр}} + u_{C \text{ св}} = 62,22 + B e^{-\delta t} \sin(\omega_{\text{св}}t + \gamma) = 62,22 + B e^{-1200 t} \sin(1200t + \gamma).$$
 Определим неизвестные постоянные B и γ .

Для определения неизвестных постоянных понадобятся зависимые начальные условия. Чтобы их определить, подставим в систему дифференциальных уравнений (3.1) параметры цепи и независимые начальные условия:

$$\begin{cases} 5,6 - i_2(0+) - i_3(0+) = 0; \\ 0,025 \frac{di_1}{dt}(0+) + 20 \cdot 5, 6 + 25 i_2(0+) = 140; \\ -25 i_2(0+) + 140 = 0; \\ i_3(0+) = 0,000025 \frac{du_C}{dt}(0+), \end{cases}$$
(3.4)

из третьего уравнения получаем $i_2(0+)=5,6$ A; затем из первого уравнения определяем $i_3(0+)=0$ A; из четвертого $\frac{du_C}{dt}(0+)=0$ $\frac{B}{c}$.

Запишем при t=0+ уравнения для u_C и u_C'

$$\begin{cases} u_{C}(0+) = U_{C np}(0+) + u_{C ce}(0+) = U_{C np}(0+) + B \sin \gamma; \\ u'_{C}(0+) = U'_{C np}(0+) + u'_{C ce}(0+) = U'_{C np}(0+) - \delta B \sin \gamma + \omega_{ce} B \cos \gamma. \end{cases}$$
(3.5)

После подстановки определенных ранее принужденных составляющих, независимых и зависимых начальных условий система (5) приобретает вид

$$\begin{cases} 140 = 62, 22 + B\sin\gamma; \\ 0 = 0 - 1200 B\sin\gamma + 1200 B\cos\gamma. \end{cases}$$
 (3.6)

Откуда

$$B\sin\gamma = 140 - 62,22 = 77,78;$$

$$B\cos\gamma = \frac{1200 \cdot 77,78}{1200} = 77,78;$$

$$tg \gamma = \frac{B\sin\gamma}{B\cos\gamma} = \frac{77,78}{77,78} = 1;$$

$$\gamma = arctg(tg \gamma) = arctg(1) = 45^{\circ};$$

$$140 = 62,22 + B\sin 45^{\circ};$$

$$B = \frac{140 - 62,22}{\sin 45^{\circ}} = \frac{140 - 62,22}{0,707} = 110;$$

$$u_C = U_{C \text{ mp}} + u_{C \text{ cB}} = 62,22 + 110 e^{-1200 t} \sin(1200t + 45^{\circ}).$$

Построенная в соответствии с расчетом зависимость $u_C(t)$ приведена на рис.3.6. Длительность переходного режима t_{nn} можно принять равной $4\tau = \frac{4}{\delta}$; $t_{nn} = \frac{4}{1200} = 3{,}33$ мс.

Рис. 3.6. Законы изменения принужденной, свободной составляющих и результирующей кривой напряжения на емкости

Определение зависимых начальных условий $u_L(0+)$ и $i_C(0+)$

Расчетная схема для рассматриваемого примера приведена на рис. 3.7.

Исходные параметры: к схеме подключен источник синусоидального напряжения $e(t) = 100 \sin \left(1000t - 45^{\circ}\right)$ В; $R_{\rm l} = 20$ Ом; R = 25 Ом; L = 25 мГн; C = 25 мкФ.

Рис. 3.7. Расчетная схема

1. Установившийся режим до коммутации. Схема замещения для установившегося режима до коммутации приведена на рис. 3.8.

Рис. 3.8. Схема в установившемся режиме до коммутации

В данной схеме ключ замкнут, приложено синусоидальное напряжение. Для расчета токов и напряжений в данной схеме удобно использовать метод комплексных амплитуд. Рассчитаем независимые начальные условия:

$$Z = \frac{R\left(\frac{-j}{\omega C}\right)}{R - \frac{j}{\omega C}} + j\omega L;$$

$$Z = \frac{25 \frac{-j}{1000 \cdot 25 \cdot 10^{-6}}}{25 - j \frac{1}{1000 \cdot 25 \cdot 10^{-6}}} + j1000 \cdot 25 \cdot 10^{-3} = \frac{25 \cdot 40e^{-j90^{\circ}}}{25 - j40} + j25 =$$

$$= \frac{1000e^{-j90^{\circ}}}{47,17e^{-j58^{\circ}}} + j25 = 21, 2e^{-32^{\circ}} + j25 = 17,98 - j11,23 + j25 =$$

$$= 17,98 + j13,76 = 22,64e^{j37,4^{\circ}} \text{ Om.}$$

$$\dot{I}_{1m} = \frac{\dot{E}_m}{Z}; \dot{I}_{1m} = \frac{100e^{-j45^{\circ}}}{22,64e^{37,4^{\circ}}} = 4,417e^{-j82,4^{\circ}} \text{ A};$$

$$\dot{I}_{1}(t) = 4,417\sin(1000t - 82,4^{\circ}) \text{ A};$$

$$\dot{I}_{2} = -i \cdot \left[\frac{R(\frac{-j}{\omega C})}{\omega C}\right] \cdot \dot{I}_{2} = 4.417e^{-j82,4^{\circ}} 21.2e^{-j32,0^{\circ}} = 93.63e^{-j114,4^{\circ}}$$

$$\dot{U}_{Cm} = \dot{I}_{1m} \left(\frac{R \left(\frac{-j}{\omega C} \right)}{R - \frac{j}{\omega C}} \right); \dot{U}_{Cm} = 4,417e^{-j82,4^{\circ}} 21,2e^{-j32,0^{\circ}} = 93,63e^{-j114,4^{\circ}} \text{ B.}$$

$$u_C(t) = 93,63\sin(1000t - 114,4^\circ)$$
 B.

При t = 0—

$$i_1(0-)=4,417\sin(-82,4^\circ)=-4,378 \text{ A};$$

 $u_C(0-)=93,63\sin(-114,4^\circ)=-85,27 \text{ B}.$

Независимые начальные условия:

$$\begin{cases} i_1(0+) = i_1(0-) = -4,378 \text{ A}; \\ u_C(0+) = u_C(0-) = -85,27 \text{ B}. \end{cases}$$

2. Схема после коммутации приведена на рис. 3.9.

Рис. 3.9. Схема после коммутации

Дифференциальные уравнения по законам Кирхгофа для послекоммутационного состояния схемы при t=0+ будут отличаться от (3.1) только правой частью второго уравнения:

$$\begin{cases} i_{1}(0+) - i_{2}(0+) - i_{3}(0+) = 0; \\ u_{L}(0+) + R_{1} i_{1}(0+) + R i_{2}(0+) = e(0+); \\ -R i_{2}(0+) + u_{C}(0+) = 0; \\ i_{3}(0+) = C \frac{du_{C}}{dt}(0+). \end{cases}$$
(3.7)

Для определения зависимых начальных условий $u_L(0+)$ и $i_C(0+)$ воспользуемся системой дифференциальных уравнений (3.7). Подставим в нее известные параметры цепи и определенные независимые начальные условия:

$$\begin{cases}
-4,378 - i_2(0+) - i_3(0+) = 0; \\
u_L(0+) + 20 \cdot (-4,378) + 25 i_2(0+) = -70,711; \\
-25 i_2(0+) - 85,27 = 0; \\
i_3(0+) = 0,000025 \frac{du_C}{dt}(0+),
\end{cases}$$
(3.8)

из третьего уравнения рассчитываем $i_2(0+) = -3,41\,A$; затем из первого уравнения получаем $i_3(0+) = -0,967\,A$; далее из второго $u_L(0+) = 102,1\,\mathrm{B}$.