— HPDDM —

https://github.com/hpddm/hpddm

All keywords must be prefixed by -hpddm.. When no default value is specified in the last column for an option with literal values (e.g., orthogonalization), the value used is the first on the list of possible values (e.g., cgs) unless another value is set by the user. Options highlighted in red should be reserved for expert users.

Keyword	Description	Possible values	Default
help	Display available options	Anything	
tol	Relative decrease in residual norm to reach in order to stop iterative methods	Numeric	10^{-8}
max_it	Maximum number of iterations of iterative methods	Integer	100
verbosity	Number of messages printed to screen	Integer	
reuse_preconditioner	Do not factorize again the local matrices when solving subsequent systems	Boolean	
local_operators_not_spd	Assume local operators are general symmetric (instead of symmetric or Hermitian	Boolean	
	positive definite)		
orthogonalization	Method used to orthogonalize a vector against a previously generated orthogonal	cgs, mgs	
	basis		
qr	Method used to perform the distributed QR factorizations	cholqr, cgs, mgs	
<pre>dump_local_matri(ces x_[[:digit:]]+)</pre>	Save either one or all local matrices to disk	String	
krylov_method	Type of iterative method used to solve linear systems	gmres, bgmres, cg,	
		gcrodr	
initial_deflation_tol	Tolerance for deflating right-hand sides inside Block GMRES	Numeric	
gmres_restart	Maximum number of Arnoldi vectors generated per cycle	Integer	50
gmres_recycle	Number of harmonic Ritz vectors to compute	Integer	
variant	Select the preconditioning side	left, right,	
		flexible	
geneo_nu	Number of local eigenvectors to compute for adaptive methods	Integer	20
geneo_threshold	Threshold for selecting local eigenvectors for adaptive methods	Numeric	
geneo_eigensolver_tol	Tolerance for computing eigenvectors by ARPACK or LAPACK	Numeric	10^{-6}
master_p	Number of master processes	Integer	1
master_distribution	Distribution of coarse right-hand sides and solution vectors	centralized, sol,	
		sol_and_rhs	
master_topology	Distribution of the master processes	0, 1, 2	
master_filename	Save the coarse operator to disk	String	
master_exclude	Exclude the master processes from the domain decomposition	Boolean	
master_not_spd	Assume the coarse operator is general symmetric (instead of symmetric positive	Boolean	
	definite)		

When using Schwarz methods, there are additional options.

Keyword	Description	Possible values
schwarz_method	Type of Schwarz preconditioner used to solve linear systems	ras, oras, soras, asm, osm, none
schwarz_coarse_correction	Type of coarse correction used in two-level methods	deflated, additive, balanced

When using substructuring methods, there is an additional option.

Keyword	Description	Possible values
substructuring_scaling	Type of scaling used in the definition of the Schur complement preconditioner	multiplicity, stiffness, coefficient

When using MKL PARDISO has a subdomain solver (resp. coarse operator solver), there are additional options, cf. https://software.intel.com/en-us/node/470298 (resp. https://software.intel.com/en-us/node/590089).

Keyword	Description	Possible values
mkl_pardiso_iparm_(2 8 1[013] 2[147])	Integer control parameters of MKL PARDISO for the subdomain solvers	Integer
master_mkl_pardiso_iparm_(2 1[013] 2[17])	Integer control parameters of MKL PARDISO for the coarse operator solver	Integer

When using MUMPS has a subdomain solver (resp. coarse operator solver), there are additional options, cf. http://mumps.enseeiht.fr/index.php?page=doc.

Keyword	Description	Possible values
mumps_icntl_([6-9] [1-3][0-9] 40)	Integer control parameters of MUMPS for the subdomain solvers	Integer
master_mumps_icntl_([6-9] [1-3][0-9] 40)	Integer control parameters of MUMPS for the coarse operator solver	Integer

When using hypre has a coarse operator solver, there are additional options, cf. http://acts.nersc.gov/hypre/#Documentation.

Keyword	Description	Possible values	Default
master_hypre_solver	Solver used by hypre to solve coarse linear systems	fgmres, pcg, amg	
master_hypre_tol	Relative convergence tolerance	Numeric	10^{-12}
master_hypre_max_it	Maximum number of iterations	Integer	500
master_hypre_gmres_restart	Maximum number of Arnoldi vectors generated per cycle when using FlexGMRES	Integer	100
master_boomeramg_coarsen_type	Parallel coarsening algorithm	Integer	6
master_boomeramg_relax_type	Smoother	Integer	3
master_boomeramg_num_sweeps	Number of sweeps	Integer	1
master_boomeramg_max_levels	Maximum number of multigrid levels	Integer	10
master_boomeramg_interp_type	Parallel interpolation operator	Integer	0