Теорминимум по теормеху

Драчов Ярослав Факультет общей и прикладной физики, МФТИ

28 июня 2020 г.

Исправления

	Исп	2
	Положение равновесия ред	3
	Добавлена система дифуров, описывающих движение	3
		4
H	Добавлена система дифуров, в соответствии с этим отредактиро-	
		4
	Добавлено упоминание стационарности системы, звёздочки не уби-	
	рал, они общность не умаляют вроде, а показывают что в системе	
	- · · · · · · · · · · · · · · · · · · ·	5
		5
Г	здесь упомянуто про тождественное равенство нулю, полуопреде-	
	лённость всё же больше для форм подходит, я пока что решил	
		6
	Формулировка по Амелькину	6
Ī	Новые определения	7
		7
F	Добавлено упоминание гармоничности	9
H		9
H	Добавлены определение окольного путя, действия по Гамильтону,	
	поставлена вариационная задача	0
	Упомянута гладкость	1
H	Добавлено условие на гессиан	2
H	Добавлено условие на гессиан	2
H	Изм	
H	Добавлены производные по q_i, p_i	
H	Добавлен комментарий	
	дооавлен комментарии	J
C	Содержание	
	. 	
	1	3
		3 3
	2 Устойчивое положение равновесия	٠.

3	Теорема Лагранжа-Дирихле	4	
4	Первая теорема Ляпунова о неустойчивости	4	
5	Вторая теорема Ляпунова о неустойчивости	4	
6	Нормальные координаты	4	
7	Асимптотически устойчивое положение равновесия	4	
8	Теорема Ляпунова о лианеризованных системах	5	
9	Критерии Рауса-Гурвица и Льенара-Шипара устойчивости мно-		
	гочлена	5	
10	Теорема Ляпунова об		
	устойчивости/асимптотической устойчивости	0	
	(функция Ляпунова)	6	
11	Теорема Барбашина-Красовского	6	
12	Теорема Четаева о неустойчивости	7	
13	Понятие о бифуркации положений равновесия	7	
14	Бифуркация Андронова-Хопфа	7	(
15	Метод Пуанкаре приведения к нормальной форме. Понятие		Исп.
	резонанса	7	
16	Вынужденные колебания под действием периодической силы.		
	Частотная характеристика, амплитудно-фазовая характери-		
	стика. Необходимые и достаточные условия возникновения		
	резонанса в таких системах.	8	
Rwo	рое задание	10	
1	Понятие краевой задачи для лагранжевых систем, теорема	10	
1	Гамильтона- Остроградского, формула изменения лагранжи-		
	ана при замене координат и времени, теорема Нётер	10	
2	Переменные Гамильтона. Обобщенные импульсы	12	
3	Функция Гамильтона через функцию Лагранжа	12	
4	Функция Гамильтона через обобщенный потенциал и кин.энерги		
1	(случай обобщенно консервативной системы) (см. 286-287 стр.	10	
	Mapkeeba)	12	
5	Канонические уравнения Гамильтона	12	
6	Понятие первого интеграла динамической системы (не только	12	
	для гамильтоновых систем!)	13	
7	Понятие скобок Пуассона, их свойства (дистрибутивность, ан-		
	тикоммутативность etc). Критерий первого интеграла гамиль-		
	тоновой системы	13	
8	Трубка прямых путей. Интегральные инварианты Пуанкаре		
	и Пуанкаре-Картана	14	
9	Теорема Лиувилля о сохранении фазового объема. Общая фор-		
	мула для изменения фазового объема произвольной динами-		
	ческой системы (не только гамильтоновой!)	14	
10	Классификация интегральных инвариантов, теорема Ли Ху-		
	ачжуна	15	
11	Канонические преобразования. Производящие функции	15	
12	Замена гамильтониана при каноническом преобразовании, (q,p)		
	описание	16	
13	Свободные преобразования, (q,q^*) описание. Формулы преоб-		
	разования импульсов гамильтониана	16	

14	«Наивная» теория возмущений, использование (q,p*) onuca- ния для задания преобразований, близких к тождественным.	
	Метод Биркгофа, понятие резонанса	16
15	Уравнение Гамильтона-Якоби. Полный интеграл уравнения	10
	Гамильтона-Якоби	16
16	Понятие адиабатических инвариантов динамических систем.	17
17	Переменные действие угол. Условие возможности перехода к	
	ним, формулы перехода (случай одной степени свободы)	17
18	Понятие интегрируемых гамильтоновых систем. Теорема Лиувил	ЛЯ-
	Арнольда	17
19	Резонансные и нерезонансные торы	17
20	Невырожденность и изоэнергетическая невырожденность га-	
	мильтониана	17
21	<i>KAM-теорема</i>	17
22	Важные следствия КАМ-теоремы для систем с двумя сте-	
	пенями свободы, обладающих свойством изоэнергетической	
	и обычной невырожденности	18
23	Понятие детерминированного хаоса в динамических системах	18
24	Сечения Пуанкаре	18
25	Φ рактальная размерность	18

Первое задание

1 Определение положения равновесия

Определение. Положение системы материальных точек, определяемое в некоторой системе отсчёта обобщёнными координатами $q_j=q_j^n\ (j=\overline{1,n}),$ называется положением равновесия для наблюдателя, связанного с этой системой отсчёта, если система материальных точек, будучи приведена в это положение с нулевыми скоростями $\dot{q}_j^0\ (j=\overline{1,n}),$ остаётся в нём сколь угодно долго.

Положение равновесия ред.

Добавлена система дифуров,

описывающих движение

2 Устойчивое положение равновесия

Пусть поставлена задача Коши для нахождения движения системы:

$$\mathbf{f}\left(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}},t\right)=\mathbf{0},\qquad \mathbf{q}(t_{0})=\mathbf{q}^{0},\qquad \dot{\mathbf{q}}(t_{0})=\dot{\mathbf{q}}^{0}.$$

Определение. Положение равновесия $\mathbf{q}=\mathbf{0}$ называется *устойчивым*, если для любого $\varepsilon>0$ существует такое $\delta=\delta(\varepsilon)$, что для всех $t>t_0$ выполняются неравенства

$$|q_i(t)| < \varepsilon, \qquad |\dot{q}_i(t)| < \varepsilon \qquad (i = 1, 2, \dots, n)$$

где $q_i(t)$ — решения поставленной задачи Коши, при условии, что в начальный момент $t=t_0$

$$|q_i^0| < \delta, \qquad |\dot{q}_i^0| < \delta.$$

3 Теорема Лагранжа-Дирихле

Теорема (Лагранжа-Дирихле). Если в положении равновесия консервативной системы потенциальная энергия имеет строгий локальный минимум, то это положение равновесия устойчиво.

4 Первая теорема Ляпунова о неустойчивости

Теорема (Ляпунова, 1-я). Если потенциальная энергия консервативной системы в положении равновесия не имеет минимума и это узнаётся уже по членам второго порядка в разложении функции Π в ряд в окрестности положения равновесия без необходимости рассматривания членов высших порядков, то положение равновесия неустойчиво.

5 Вторая теорема Ляпунова о неустойчивости

Теорема (Ляпунова, 2-я). Если в положении равновесия потенциальная энергия имеет максимум и это узнаётся по членам наименее высокого порядка, которые действительно присутствуют в разложении этой функции в ряд в окрестности положения равновесия, то это положение равновесия неустойчиво.

6 Нормальные координаты

Определение. Обобщённые координаты θ_j , в которых кинетическая и потенциальная энергия системы имеют вид

$$T = \frac{1}{2} \sum_{j=1}^{n} \dot{\theta}_{j}^{2}, \qquad \Pi = \frac{1}{2} \sum_{j=1}^{n} \lambda_{j} \theta_{j}^{2},$$

называются нормальными.

Привести систему к нормальным координатам можно в случае, если кинетическая энергия в первоначальных переменных — положительно-определённая квадратичная форма скоростей, а потенциальная энергия произвольная квадратичная форма координат.

Добавлено усло-

В нормальных координатах лианеризованные уравнения движения в окрестности положения равновесия имеют вид n не связанных друг с другом уравнений второго порядка

$$\ddot{\theta}_j + \lambda_j \theta_j = 0, \quad (j = 1, 2, \dots, n).$$

7 Асимптотически устойчивое положение равновесия

Пусть поставлена задача Коши для нахождения движения системы:

$$\mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}, t) = \mathbf{0}, \qquad \mathbf{q}(t_0) = \mathbf{q}^0, \qquad \dot{\mathbf{q}}(t_0) = \dot{\mathbf{q}}^0.$$

Определение. Положение равновесия ${\bf q}={\bf 0}$ называется асимптотически устойчивым, если оно устойчиво и, если, кроме того, существует такая δ -окрестность точки ${\bf q}={\bf 0},$ $\dot{{\bf q}}=0,$ что для всех $|q_j^0|<\delta,$ $|\dot{q}_j^0|<\delta$ выполняются условия

$$\lim_{t \to \infty} q_j(t) = 0, \qquad \lim_{t \to \infty} \dot{q}_j(t) = 0, \qquad (j = 1, \dots, n),$$

где $q_i(t)$ — решения поставленной задачи Коши.

Добавлена система дифуров, в соответствии с этим отредактирована формулировка

вие приводимо-

сти к нормаль-

ной форме

Теорема Ляпунова о лианеризованных системах

Теорема (Ляпунова о лианеризованных системах). Если все корни характеристического уравнения

$$\det \|\mathbf{A}\lambda^2 + \mathbf{B}^*\lambda + (\mathbf{C} + \mathbf{C}^*)\| = 0$$

системы дифференциальных уравнений линейного приближения

$$\mathbf{A\ddot{q}} + \mathbf{B}^*\dot{\mathbf{q}} + (\mathbf{C} + \mathbf{C}^*)\mathbf{q} = 0$$

имеют отрицательные действительные части, то положение равновесия q=0 ucxodhoй стационарной cucmemu, onucus ваемой уравнениями

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{i}} - \frac{\partial T}{\partial q_{i}} = Q_{j}, \qquad Q_{j} = -\frac{\partial V}{\partial q_{j}} + Q_{j}^{*} \quad (j = 1, \dots, n),$$

асимтотически устойчиво. Если хотя бы один корень характеристического уравнения имеет действительную часть, то положение равновесия, определяемое системой, неустойчиво.

умаляют вроде, а показывают связано с обоб-

Добавлено упоминание стаци-

онарности системы, звёздочки не убирал,

они общность не

что в системе

щёнными сила-

МИ

Критерии Рауса-Гурвица и Льенара-Шипара устойчивости многочлена

Определение. Назовём *матрицей Гурвица* квадратную матрицу *т*-го порядка

$$\begin{pmatrix} a_1 & a_3 & a_5 & \dots & 0 \\ a_0 & a_2 & a_4 & \dots & 0 \\ 0 & a_1 & a_3 & \dots & 0 \\ 0 & a_0 & a_2 & \dots & 0 \\ & & & \ddots & \vdots \\ & & & & a_m \end{pmatrix}.$$

Составим главные миноры матрицы Гурвица (определители Гурвица)

$$\Delta_1 = a_1, \ \Delta_2 = \begin{pmatrix} a_1 & a_3 \\ a_0 & a_2 \end{pmatrix}, \ \Delta_3 = \begin{pmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{pmatrix}, \dots, \Delta_m = a_m \Delta_{m-1}.$$

Теорема (Критерий Рауса-Гурвица). Для того чтобы все корни уравнения

$$a_0 \lambda^m + a_1 \lambda^{m-1} + \ldots + a_{m-1} \lambda + a_m = 0$$

с вещественнными коэффициентами и положительным старшим коэффициентом ао имели отрицательные вещественные части, необходимо и достаточно, чтобы выполнялись неравенства

$$\Delta_1 > 0, \quad \Delta_2 > 0, \quad \dots, \quad \Delta_m > 0.$$

Теорема (Критерий Льенара-Шипара). Для того чтобы многочлен $f(\lambda) \equiv$ $a_0\lambda^n+a_1\lambda^{n-1}+\ldots+a_{n-1}\lambda+a_n$ при $a_0>0$ имел все корни с отрицатель- ulletными вещественными частями, необходимо и достаточно, чтобы

Добавлен критерий Льенара-Шипара

1. все коэффициенты многочлена $f(\lambda)$ были положительны

$$a_1 > 0, \qquad a_2 > 0, \qquad \dots, \qquad a_n > 0;$$

2. имели место детерминантные неравенства

$$\Delta_{n-1} > 0, \qquad \Delta_{n-3} > 0, \qquad \dots$$

 $(здесь, как и ранее, \Delta_k обозначает определитель Гурвица <math>k$ -го порядка).

10 Теорема Ляпунова об устойчивости/асимптотической устойчивости (функция Ляпунова)

Теорема (Ляпунова, об устойчивости движения). Если дифференциальные уравнения возмущённого движения таковы, что существует знакоопределённая функция V, производная которой \dot{V} в силу этих уравнений является или знакопостоянной функцией противоположного знака с V, или тождественно равнойнулю, то невозмущённое движение устойчиво.

Теорема (Ляпунова, об асимптотической устойчивости). Если дифференциальные уравнения возмущённого движения таковы, что существует знакоопределённая функция $V(x_1, x_2, \ldots, x_m)$, производная которой \dot{V} в силу этих уравнений есть знакоопределённая функция противоположного знака с V, то невозмущённое движение асимптотически устойчиво.

11 Теорема Барбашина-Красовского

Теорема (Барбашина-Красовского). Пусть существует функция $V(\mathbf{x})$, для которой в некоторой окрестности положения равносвесия $\mathbf{x} = \mathbf{0}$ выполняются условия:

1. Её производная по времени, вычисленная в силу уравнений

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}),\tag{*}$$

знакоотрицательна, т. е.

$$\dot{V}\Big|_{(*)} = \left. \frac{\partial V}{\partial \mathbf{x}} \dot{\mathbf{x}} \right|_{(*)} = \left. \frac{\partial V}{\partial \mathbf{x}} \mathbf{f} \leqslant 0.$$

2. Множество X^0 точек **x**, в которых производная \dot{V} равна нулю:

$$X^0: \dot{V}(\mathbf{x})\Big|_{(\mathbf{x})} = \frac{\partial V}{\partial \mathbf{x}} \mathbf{f} = 0$$

кроме $\mathbf{x}(t) = \mathbf{0}$ не содержит других целых траекторий системы (*). $(\mathbf{x}(t) = \mathbf{0} - e$ динственное решение, полностью лежащее на множестве X^0).

Tог ∂a

- а) Если функция $V(\mathbf{x})$ имеет строгий минимум в точке $\mathbf{x} = \mathbf{0}$, то это положение асимптотически устойчиво.
- б) Если в точке $\mathbf{x} = \mathbf{0}$ функция $V(\mathbf{x})$ не имеет минимума (включая строгий), то это положение неустойчиво.

здесь упомянуто про тождественное равенство нулю, полуопределённость всё же больше для форм подходит, я пока что решил не исправлять

Формулировка по Амелькину

12 Теорема Четаева о неустойчивости

Теорема (Четаева, о неустойчивости). Если дифференциальные уравнения возмущённого движения таковы, что существует функция $V(x_1, x_2, \ldots, x_m)$ такая, что в сколь угодно малой окрестности

$$|x_i| < h \quad (i = 1, 2, \dots, m)$$

существует область V>0 и во всех точках области V>0 производная \dot{V} в силу этих уравнений принимает положительные значения, то невозмущённое движение неустойчиво.

13 Понятие о бифуркации положений равновесия

Дифференциальные уравнения динамических систем часто зависят не только от фазовых переменных, но и от некоторых параметров. Иногда изменение параметров приводит к качественным перестройкам структуры фазовых траекторий системы — изменениям количества положений равновесия, характера их устойчивости, кардинальным трансформациям траекторий и т. п. В окрестности определённых значений параметров перестройки происходят при сколь угодно малом изменении параметров и называются бифуркациями.

14 Бифуркация Андронова-Хопфа

Новые определения

Определение. *Предельным циклом* векторного поля на фазовой плоскости или, более обобщённо, на каком-либо думерном многообразии называется замкнутая (периодическая) траектория этого векторного поля, в окрестности которой нет других периодических траекторий.

Определение. *Бифуркация Андронова-Хопфа* — локальная бифуркация векторного поля на плоскости, в ходе которой особая точка-фокус теряет устойчивость при переходе пары её комплексно-сопряжённых собственных значений через мнимую ось. При этом либо из особой точки рождается небольшой устойчивый предельный цикл, либо, наоборот, небольшой нейстойчивый предельный цикл в момент бифуркации схлопывается в эту точку.

15 Метод Пуанкаре <u>приведения к нормальной форме.</u> Понятие резонанса

Определение. Нормальной формой системы

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x} = [x_1, \dots, x_n]^T, \quad \mathbf{f} = [f_1, \dots, f_n]^T$$

называется форма содержащая лишь линейные и резонансные слагаемые.

При помощи разложения в ряд Тейлора функции \mathbf{f} в окрестности положения равновесия выделим в данной системе линейные слагаемые:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \boldsymbol{g}(\mathbf{x}), \quad \boldsymbol{g} = [g_1, \dots, g_n]^T,$$

$$g_i(\mathbf{x}) = \sum_{k_1, \dots, k_n} g_{k_1, \dots, k_n}^i x_1^{k_1} \dots x_n^{k_n}, \quad k_1 + \dots + k_n \geqslant 2.$$

Здесь **А** — матрица с постоянными коэффициентами размера $n \times n, g_{k_1,\dots,k_n}$ — постоянные коэффициенты в полиномах g.

Определение. *Нормализующим преобразованием* (вплоть до степени k) называется последовательность преобразований

$$\tilde{\mathbf{x}} = \mathbf{y} + \mathbf{p}(\mathbf{y}), \quad \mathbf{p}(\mathbf{y}) = [p_1, \dots, p_n]^T,$$

$$p_i(\mathbf{y}) = \sum_{k_1, \dots, k_n} p_{k_1, \dots, k_n}^i y_1^{k_1} \dots y_n^{k_n}, \quad k_1 + \dots + k_n = k$$

с полиномиальными коэффициентами

$$p_{k_1,\ldots,k_n}^i = \frac{g_{k_1,\ldots,k_n}^i}{k_1\lambda_1 + \ldots + k_n\lambda_n - \lambda_i},$$

приводящее систему к её нормальной форме (вплоть до слагаемых степени k).

Определение. Нелинейные слагаемые системы, показатели k_1, \ldots, k_n которых таковы, что выполняется $\lambda_i = k_1 \lambda_1 + \ldots k_n \lambda_n$, называются резонансными.

В соответствии с описанным выше алгоритмом все нерезонансные слагаемые могут быть исключены из правой части системы при помощи последовательно применяемых полиномиальных замен. В то же время резонансные слагаемые не могут быть ни исключены, ни каким-либо образом ими преобразованы.

16 Вынужденные колебания под действием периодической силы. Частотная характеристика, амплитуднофазовая характеристика. Необходимые и достаточные условия возникновения резонанса в таких системах.

Определение. Колебания, которые возникают благодаря наличию вынуждающей силы, зависящей явно от времени, и к которым в пределе стремится суммарное движение, назывют *вынужденными колебаниями*.

Представим уравнения линейного приближения стационарной системы в виде

$$\sum_{k=1}^{n} (a_{jk}\ddot{q}_k + b_{jk}\dot{q}_k + c_{jk}q_k) = Q_j(t) \quad (j = 1, \dots, n),$$

где $Q_j(t)$ — зависящие явно от времени части обобщённых сил. Предполагается, что в процессе движения они остаются малыми по модулю и не выводят систему из малой окрестности положения равновесия.

В связи с тем, что данная система уравнений является линейной, а для линейных систем имеет место принцип суперпозиции, можно рассмотреть движение системы под действием какой-либо одной силы из $Q_j(t)$ $(j=1,\ldots,n)$, предположив, что все остальные равны нулю. Определив порознь движения, возникающие под действием каждой из таких обобщённых сил, их следует затем сложить.

Учитывая это обстоятельство, положим

$$Q_2(t) = Q_3(t) = \ldots = Q_n(t) = 0,$$

т. е. будем считать, что отлична от нуля только обобщённая сила $Q_1(t)$, относящаяся к первой обобщённой координате, а все остальные обобщённые силы такого рода равны нулю.

Предположим, что обобщённая сила Q_1 является гармонической функцией от t,

$$Q_1(t) = A \sin \Omega t.$$

Здесь A — амплитуда, а Ω — частота внешней вынуждающей силы Q_1 . Если же в системе присутствуют обобщённые периодические силы Q_j , которые гармоническими функциями от t не являются, то их мы можем представить в виде ряда Фурье гармонических функций и далее работать с этим рядом.

Введём обозначения

$$d_{jk}(i\Omega) = a_{jk}(i\Omega)^2 + b_{jk}(i\Omega) + c_{jk},$$

$$\Delta = \det ||d_{jk}(i\Omega)|| = \begin{pmatrix} d_{11}(i\Omega) & \cdots & d_{1n}(i\Omega) \\ \vdots & & \vdots \\ d_{n1}(i\Omega) & \cdots & d_{nn}(i\Omega) \end{pmatrix},$$

$$W_{1k}(i\Omega) = \frac{\Delta_{1k}}{\Delta},$$

где Δ_{1k} — алгебраическое дополнение расположенного в первой строке и k-ом столбце элемента определителя Δ . Тогда при поиске частного решения неоднородной системы дифференциальных уравнений в виде $\tilde{q}_f = Be^{i\Omega t}$ и, выделяя в последствии мнимую часть, получим

$$q_k = A|W_{1k}(i\Omega)|\sin[\Omega t + \arg W_{1k}(i\Omega)] \quad (k = 1, ..., n).$$

Определение. Введённая выше функция $W_{1k}(i\Omega)$ называется *частотной характеристикой системы*, или, как говорят иногда, её *амлитудно-фазовой характеристикой*.

Определение. Если отдельно рассмотреть изменение модуля и аргумента вектора $W(i\Omega)$ в зависимости от Ω , то получатся характеристики, которые называются соответственно *амплитудной* и *фазовой* характеристиками системы.

Определение. Если амплитудная характеристика системы при некотором значении $\Omega = \Omega^*$ имеет отчётливо выраженный пик, то при одной и той же амплитуде внешней силы Q_1 амплитуда отклика резко возрастает, когда частота внешней силы приближается к значению $\Omega = \Omega^*$. Это явление называют резонансом (в геометрическом смысле).

Определение. Резонансом (в смысле существенного изменения частного решения) будем называть случай, когда система не имеет частного решения представленного суперпозицией гармонических функций с частотой внешней вынуждающей силы.

Необходимые и достаточные условия резонанса

Добавлено упо-

минание гармо-

ничности

Пусть

$$A = ||a_{jk}||, \qquad B = ||b_{jk}||, \qquad C = ||c_{jk}||, \qquad \mathbf{Q}(t) = \mathbf{a} \sin \Omega t.$$

Тогда неразрешимость матричного уравения

$$(-A\omega^2 + iB\omega + C)\mathbf{b} = \mathbf{a}$$

для любого вектора обобщённых сил $\mathbf{Q}(t)$, действующих в системе будет необходимым и достаточным условием резонанса (в смысле существенного изменения частного решения).

В данном случае условие

$$\det(-A\omega^2 + iB\omega + C) = 0$$

будет необходимым.

Второе задание

1 Понятие краевой задачи для лагранжевых систем, теорема Гамильтона- Остроградского, формула изменения лагранжиана при замене координат и времени, теорема Нётер

Определение. Прямым путём системыназывают путь этой системы из точки A в точку B в (n+1)-мерном расширенном координатном пространстве q_1,\ldots,q_n,t , удовлетворяющий соответствующим уравнениям Лагранжа.

Определение. Окольным путём системы называют путь этой системы из точки A в точку B в (n+1)-мерном расширенном координатном пространстве q_1, \ldots, q_n, t , не являющийся прямым.

Рассмотрим произвольную голономную систему с независимыми координатами q_1,\dots,q_n и функцией Лагранжа $L\left(t,q_i,\dot{q}_i\right)$.

Определение. Интеграл

$$W = \int_{t_0}^{t_1} Ldt$$

называется действием (по Гамильтону) за промежуток времени (t_0, t_1) .

При построении прямого пути системы решается вариационная задача о нахождении экстремали функционала

$$\int_{t_0}^{t_1} L\left(t, q_i, \dot{q}_i\right) dt$$

с заданными граничными условиями $q_i(t_0)=q_i^0, \dot{q}_i(t_0)=\dot{q}_i^0, q_i(t_1)=q_i^1, \dot{q}_i(t_1)=\dot{q}_i^1$ $(i=\overline{1,n}).$

Добавлены определение окольного путя, действия по Гамильтону, поставлена вариационная задача

Теорема (Гамильтона-Остроградского). Прямой путь является экстремалью рассматриваемой вариационной задачи— на прямом пути действие по Гамильтону достигает стационарного значения.

Рассмотрим преобразования

$$q_i = \varphi_i(q^*, t^*), \quad t = \psi(q^*, t^*), \quad j = 1, \dots, n,$$

где q^* и t^* — «новые» координаты и время, q и t — «старые» координаты и время, а φ_j и ψ — достаточно гладкие функции. Предположим, что данные преобразования разрешимы относительно переменных q^* и t^* .

 Φ ормула изменения лагранжиана при замене координат и времени тогда выглядит следующим образом

$$L^*(q^*, dq^*/dt^*, t^*) = L(\varphi, d\varphi/d\psi, \psi)(d\psi/dt^*),$$

где, в свою очередь,

$$\frac{d\varphi_j}{d\psi} = \frac{\displaystyle\sum_k \frac{\partial \varphi_j}{\partial q_k^*} \frac{dq_k^*}{dt^*} + \frac{\partial \varphi_j}{\partial t^*}}{\displaystyle\sum_k \frac{\partial \psi}{\partial q_k^*} \frac{dq_k^*}{dt^*} + \frac{\partial \psi}{\partial t^*}},$$

а $d\psi/dt^*$ совпадает со знаменателем данной дроби.

Теорема (Hëтер). Пусть задана система движущихся в потенциальном поле материальных точек, имеющая лагранжиан L(q, dg/dt, t), и пусть существует однопараметрическое семейство преобразований

$$q_i^* = \varphi_j(q, t, \alpha) \quad (j = 1, \dots, n), \qquad t^* = \psi(q, t, \alpha),$$

 $(arphi,\psi-dостаточно$ гладкие, обратимые функции) удовлетворяющее условиям

Упомянута гладкость

• тождественности при $\alpha = 0$, т. е.

$$\varphi_j(q, t, 0) = q_j \quad (j = 1, ..., n), \qquad \psi(q, t, 0) = t;$$

• существования обратного преобразования:

$$q_j = \tilde{\varphi}_j(q^*, t^*, \alpha) \quad (j = 1, \dots, n), \qquad t = \tilde{\psi}(q^*, t^*, \alpha).$$

Пусть, далее, лагранжиан L инвариантен по отношению к таким преобразованиям, т. е. «новый» лагранжиан L^* (вычисленный по формуле выше) не зависит от α и как функция $q^*, dq^*/dt^*, t^*$ имеет совершенно такой же вид, как и «старый» лагранжиан L как функция q, dq/dt, t. Тогда существует функция $\Phi(q, p, t)$, которая не изменяется во время движения этой системы, т. е. является первым интегралом движения. Эта функция имеет вид

$$\Phi(q, p, t) = \sum_{j} p_{j} \left(\frac{\partial \varphi_{j}}{\partial \alpha} \right) \bigg|_{\alpha = 0} - H \left(\frac{\partial \psi}{\partial \alpha} \right) \bigg|_{\alpha = 0},$$

где H — гамильтониан рассматриваемой системы.

2 Переменные Гамильтона. Обобщенные импульсы

В предположении, что

Добавлено условие на гессиан

$$\det \left\| \frac{\partial^2 L}{\partial \dot{q}_j \partial \dot{q}_k} \right\|_{j, k=1}^n \neq 0,$$

состояние системы можно задавать при помощи параметров q_i, p_i, t , где p_i — обобщённые импульсы, определяемые равенствами

$$p_i = \frac{\partial L}{\partial \dot{q}_i} \quad (i = 1, \dots, n).$$

Определение. Переменные q_i, p_i, t называют *переменными Гамильтона*.

3 Функция Гамильтона через функцию Лагранжа

В предположении, что

Добавлено условие на гессиан

$$\det \left\| \frac{\partial^2 L}{\partial \dot{q}_j \partial \dot{q}_k} \right\|_{i, k=1}^n \neq 0,$$

функцию Гамильтона через функцию Лагранжа можно получить при помощи преобразования Лежсандра функции $L(q_i,\dot{q}_i,t)$ по переменным $\dot{q}_i,\,(i=1,2,\ldots,n)$

$$H(q_i, p_i, t) = \sum_{i=1}^{n} p_i \dot{q}_i - L(q_j, \dot{q}_j, t),$$

где величины \dot{q}_i выражены через q_j, p_j, t .

4 Функция Гамильтона через обобщенный потенциал и кин. энергию (случай обобщенно консервативной системы) (см. 286-287 стр. Маркеева)

Система называется обобщённо консервативной, если её функция Гамильтона не зависит явно от времени. В этом случае

$$H(q_i, p_i) = T_2 - T_0 + \Pi = h,$$

где

$$T_2 = \frac{1}{2} \sum_{j,k=1}^{m} a_{jk} \dot{q}_j \dot{q}_k, \qquad T_0 = a_0.$$

5 Канонические уравнения Гамильтона

Определение. *Каноническими уравнениями Гамильтона* называются уравнения

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \qquad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}, \quad (i = 1, 2, \dots,).$$

6 Понятие первого интеграла динамической системы (не только для гамильтоновых систем!)

Изм.

Определение. Первым интегралом дифференциальных уравнений движения называется функция $I(\mathbf{q},\mathbf{p},t)$ отличная от постоянной, производная которой в силу уравнений движения

$$\dot{\mathbf{q}} = \mathbf{f}_q(\mathbf{q}, \mathbf{p}, t),$$

 $\dot{\mathbf{p}} = \mathbf{f}_p(\mathbf{q}, \mathbf{p}, t),$

равна нулю:

$$\frac{\partial I}{\partial \mathbf{q}} \mathbf{f}_q + \frac{\partial I}{\partial \mathbf{p}} \mathbf{f}_p + \frac{\partial I}{\partial t} = 0.$$

7 Понятие скобок Пуассона, их свойства (дистрибутивность, антикоммутативность etc). Критерий первого интеграла гамильтоновой системы

Определение. Пусть u и v — дважды непрерывно дифференцируемые функции от $q_1, \ldots, q_n, p_1, \ldots, p_n, t$. Выражение

$$(u,v) = \sum_{i=1}^{n} \left(\frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i} \right)$$

называют скобкой Пуассона функций и и v.

Свойства скобок Пуассона:

- 1. (u, v) = -(v, u),
- 2. (cu, v) = c(u, v) (c = const),
- 3. (u+v,w)=(u,w)+(v,w),

$$\begin{aligned} 4. & \frac{\partial}{\partial t}(u,v) = \left(\frac{\partial u}{\partial t},v\right) + \left(u,\frac{\partial v}{\partial t}\right), \\ & \frac{\partial}{\partial q_i}(u,v) = \left(\frac{\partial u}{\partial q_i},v\right) + \left(u,\frac{\partial v}{\partial q_i}\right), \\ & \frac{\partial}{\partial p_i}(u,v) = \left(\frac{\partial u}{\partial p_i},v\right) + \left(u,\frac{\partial v}{\partial p_i}\right), \end{aligned}$$

Добавлены производные по q_i, p_i

5.
$$((u, v), w) + ((v, w), u) + ((w, u), v) = 0$$
.

Необходимое и достаточное условие того, что f — первый интеграл, можно записать в виде равенства

$$\frac{\partial f}{\partial t} + (f, H) = 0.$$

8 Трубка прямых путей. Интегральные инварианты Пуанкаре и Пуанкаре-Картана

Определение. Множество прямых путей «выпускаемых» из замкнутого несамопересекающегося контура C_0 в (2n+1)-мерном расширенном фазовом пространстве q,p,t динамической системой, движущейся в потенциальном поле и имеющей гамильтониан H образует mpyбкy npsmыx nymeй.

Определение. Контурный интеграл

$$J = \oint_C \left(\sum p_j dq_j - H dt \right),$$

взятый по контуру C, охватывающему трубку прямых путей называют un- тегральным инвариантом Π уанкаре-Картана.

Данный интеграл, взятый по любому контуру C^* , охватывающему определённую трубку прямых путей, не зависит от выбора этого контура на трубке.

Определение. Контурный интеграл, рассматриваемый только на «одновременных» контурах \tilde{C} , имеет вид

$$J_1 = \oint_{\tilde{C}} \sum p_j dq_j = \text{const}$$

и называется универсальным интегральным инвариантом Пуанкаре.

Особенность интегрального инварианта, взятого в такой форме, состоит в том, что в подынтегральное выражение уже не входит гамильтониан, и следовательно, этот интегральный инвариант оказывается одинаковым для всех динамических систем, движущихся в произвольных потенциальных полях.

9 Теорема Лиувилля о сохранении фазового объема. Общая формула для изменения фазового объема произвольной динамической системы (не только гамильтоновой!)

Теорема (Лиувилля). Φ азовый объём V не зависит от t, m. e. является инвариантом движения.

Пусть задана система обыкновенных дифференциальных уравнений $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \mathbf{x} = (x_1, \dots, x_n)$, решения которой продолжаются на всю ось времени. Пусть также D(t) — область в пространстве $\{\mathbf{x}\}$ и v(t) — её объём, тогда справедлива следующая формула

$$\left. \frac{dv(t)}{dt} \right|_{t=t_0} = \int_{D(t_0)} \operatorname{div} \mathbf{f} \, dx \quad (dx = dx_1 \dots dx_n).$$

10 Классификация интегральных инвариантов, теорема Ли Хуачжуна

Универсальный относительный интегральный инвариант первого порядка в общем виде можно записать так

$$\tilde{J}_1 = \oint\limits_{\tilde{C}} \sum \left[A_j(q, p, t) \delta q_j + B_j(q, p, t) \delta p_j \right].$$

Теорема. Любой универсальный относительный инвариант первого порядка \tilde{J}_1 может отличаться от инварианта Пуанкаре лишь постоянным множителем, т. е. для любого J_1 существует константа с (одна и та же на всех трубках прямых путей рассматриваемой гамильтоновой системы) такая, что

 $\tilde{J}_1 = cJ_1$.

Добавлен комментарий

11 Канонические преобразования. Производящие функции

Рассмотрим преобразование

$$q_i^* = \varphi(q, p, t), \quad p_i^* = \psi(q, p, t) \quad (j = 1, \dots, n),$$

которое переводит «старые» гамильтоновы переменные p и q в «новые» гамильтоновы переменные q^* и p^*

Определение. Преобразование выше называется *каноническим*, если оно переводит любую гамильтонову систему

$$\frac{dq_j}{dt} = \frac{\partial H}{\partial p_j}, \quad \frac{dp_j}{dt} = -\frac{\partial H}{\partial q_j} \quad (j = 1, \dots, n)$$

в новую гамильтонову систему

$$\frac{dq_j^*}{dt} = \frac{\partial H^*}{\partial p_j^*}, \quad \frac{dp_j^*}{dt} = -\frac{\partial H^*}{\partial q_j^*} \quad (j = 1, \dots, n).$$

Теорема. Для того чтобы рассматриваемое преобразование было каноническим, необходимо и достаточно, чтобы существовали такая функция F(q, p, t) и такое число c, чтобы тождественно выполнялось равенство

$$\sum \psi_j \delta \varphi_j - c \sum p_j \delta q_j = -\delta F(q, p, t).$$

В последней формуле δ — оператор дифференцирования функции от q,p,t при «замороженном» времени, т. е.

$$\delta \varphi_j = d\varphi_j - \frac{\partial \varphi_j}{\partial t} dt, \quad \delta F = dF - \frac{\partial F}{\partial t} dt..$$

Определение. Функцию F(q, p, t) из последней теоремы называют *производящей*.

12 Замена гамильтониана при каноническом преобразовании, (q,p) описание

Теорема. Пусть преобразование из предыдущего пункта является каноническим, причём с и F(q,p,t), при которых удовлетворяется тождество последней теоремы известны. Тогда «новый» гамильтониан H^* определяется по «старому» гамильтониану H, если в функции

$$H^* = cH + \frac{\partial F}{\partial t} + \sum \psi_j \frac{\partial \varphi_j}{\partial t}$$

выразить переменные q и p через q^* и p^* при помощи обратных преобразований (если таковые существуют).

13 Свободные преобразования, (q, q^*) описание. Формулы преобразования импульсов гамильтониана

Преобразование из пункта 11 называется $\it cвободным, если для первых <math>\it n$ его уравнений

$$q_j^* = \varphi_j(q, p, t) \quad (j = 1, \dots, n)$$

якобиан отличен от нуля:

$$\det \left\| \frac{\partial \varphi}{\partial p} \right\| = \begin{vmatrix} \frac{\partial \varphi_1}{\partial p_1} & \dots & \frac{\partial \varphi_1}{\partial p_n} \\ \vdots & & \vdots \\ \frac{\partial \varphi_n}{\partial 1} & \dots & \frac{\partial \varphi_n}{\partial p_n} \end{vmatrix} \neq 0.$$

Тогда для функции $S(q,q^*,t) = F(q,p,t)$ можем записать следующие соотношения

$$\frac{\partial S}{\partial q_j} = c p_j, \qquad \frac{\partial S}{\partial q_j^*} = -p_j^* \quad (j = 1, \dots, n),$$

и, кроме того, равенство связывающее «старый» и «новый» гамильтонианы:

$$H^* = cH + \frac{\partial s}{\partial t}.$$

14 «Наивная» теория возмущений, использование (q, p^*) описания для задания преобразований, близких к тождественным. Метод Биркгофа, понятие резонанса

15 Уравнение Гамильтона-Якоби. Полный интеграл уравнения Гамильтона-Якоби

Определение. Уравнением Гамильтона-Якоби называют следующее выражение

$$\frac{\partial S}{\partial t} + H\left(q, \frac{\partial S}{\partial q}, t\right) = 0.$$

Определение. Любая функция $S(q,\alpha,t)$, обращающая уравнение Гамильтона-Якоби в тождество, зависящая от n констант α и удовлетворяющая условию

$$\det \left\| \frac{\partial^2 S}{\partial q_k \partial \alpha_j} \right\|_{k, j=1}^n \neq 0$$

называется полным интегралом уравнения Гамильтона-Якоби.

16 Понятие адиабатических инвариантов динамических систем

Пусть $H(p,q;\lambda)$ — фиксированная дважды непрерывно дифференцируемая функция λ . Положим $\lambda = \varepsilon t$ и будем рассматривать полученную систему с медленно меняющимся параметром $\lambda = \varepsilon t$:

$$\dot{p} = -\frac{\partial H}{\partial q}, \quad \dot{q} = \frac{\partial H}{\partial p}, \quad H = H(p, q; \varepsilon t).$$
 (*)

Определение. Величина $I(p,q;\lambda)$ называется адиабатическим инвариантом системы (*), если для всякого $\varkappa>0$ существует $\varepsilon_0>0$ такое, что если $0<\varepsilon<\varepsilon_0,\,0< t<1/\varepsilon$, то

$$|I(p(t),q(t);\,\varepsilon t)-I(p(0),q(0);\,0)|<\varkappa.$$

17 Переменные действие угол. Условие возможности перехода к ним, формулы перехода (случай одной степени свободы)

hi

18 Понятие интегрируемых гамильтоновых систем. Теорема Лиувилля-Арнольда

hi

19 Резонансные и нерезонансные торы

hi

20 Невырожденность и изоэнергетическая невырожденность гамильтониана

hi

 $21 \quad KAM$ -теорема

hi

22 Важные следствия KAM-теоремы для систем с двумя степенями свободы, обладающих свойством изоэнергетической и обычной невырожденности

hi

23 Понятие детерминированного хаоса в динамических системах

hi

24 Сечения Пуанкаре

hi

25 Фрактальная размерность

hi