Estimação pontual e intervalo de confiança

Parte 3

Prof.: Eduardo Vargas Ferreira

Exemplo: trabalhar em casa torna os funcionários mais produtivos?

Cottage industry

United States

of remote work", by Emma Harrington and Natalia Emanuel, 2020.

Effect of remote work on the productivity of call-centre workers, calls per hour

The Economist

Ideia do intervalos de confiança para a média

ightharpoonup Fixando a probabilidade em $1-\alpha$, queremos encontrar os pontos c_1 e c_2 , tal que

$$P(c_1 < \mu < c_2) = 1 - \alpha.$$

$$P(z_1 < \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < z_2) = 1 - \alpha.$$

$$P(t_1 < \frac{\bar{X} - \mu}{S / \sqrt{n}} < t_2) = 1 - \alpha.$$

$$P(z_1 < \frac{\hat{p} - p}{\sqrt{p(1 - p) / n}} < z_2) = 1 - \alpha.$$

$$\downarrow$$

$$\downarrow$$

$$N(0, 1)$$

$$t_{n-1}$$

$$N(0, 1)$$

Agora basta isolar μ

Intervalo de confiança para a média com σ desconhecido

Deseja-se avaliar a média anual dos débitos de cartão de crédito em famílias brasileiras. Uma amostra de n = 11 famílias forneceu uma média de R\$ 5.900,00 e desvio padrão de R\$ 3.058,00.

1. Obtenha um IC com 90% de confiança para μ .

▶ Deseja-se avaliar a média anual dos débitos de cartão de crédito em famílias brasileiras. Uma amostra de n = 11 famílias forneceu uma média de R\$ 5.900,00 e desvio padrão de R\$ 3.058,00.

$$P\left(\ t_1 \ < rac{ar{X} - \mu}{S/\sqrt{n}} \ < t_2 \
ight)$$

1. Obtenha um intervalo com 90% de confiança para μ .

$$P(c_1 < \mu < c_2) = 0.90$$

ν/α	$\alpha = 0.4$	0.25	0.1	0.05	0.025	0.01	0.005	0.0025
v=1	0.3249	1.0000	3.0777	6.3138	12.7062	31.8205	63.6567	127.3213
2	0.2887	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248	14.0890
3	0.2767	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409	7.4533
4	0.2707	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041	5.5976
5	0.2672	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321	4.7733
6	0.2648	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074	4.3168
7	0.2632	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995	4.0293
8	0.2619	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554	3.8325
9	0.2610	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498	3.6897
10	0.2602	0.6998	1.3722	(1.8125)	2.2281	2.7638	3.1693	3.5814
11	0.2596	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058	3.4966
12	0.2590	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545	3.4284
13	0.2586	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123	3.3725
14	0.2582	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768	3.3257

▶ Deseja-se avaliar a média anual dos débitos de cartão de crédito em famílias brasileiras. Uma amostra de n = 11 famílias forneceu uma média de R\$ 5.900,00 e desvio padrão de R\$ 3.058,00.

1. Obtenha um intervalo com 90% de confiança para $\mu.$

$$P(c_1 < \mu < c_2) = 0.90$$

$$P\left(-1.81 < \frac{\bar{X} - \mu}{S/\sqrt{n}} < 1.81\right) = P\left(-1.81 \cdot \frac{S}{\sqrt{n}} < \bar{X} - \mu < 1.81 \cdot \frac{S}{\sqrt{n}}\right)$$

$$= P\left(\underbrace{\bar{X} - 1.81 \cdot \frac{S}{\sqrt{n}}}_{c_1 = 4231} < \mu < \underbrace{\bar{X} + 1.81 \cdot \frac{S}{\sqrt{n}}}_{c_2 = 7568}\right) = 0.90$$

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

