Approximation and Online Algorithms - Tutorial no. 10

2022/05/09, 14:00

Deterministic online matching

In the BIPARTITE MATCHING problem, the input is given by a bipartite graph G=(U,V,E) such that $E\subseteq U\times V$. The goal is to compute a *matching* of G of maximum size, that is a subset of edges $M\subseteq E$ such that every vertex of G is incident to at most one edge of M.

In the online version of this problem¹, we get only vertices U on input. In particular, vertices V, its size, and edges of G are not known in advance. The goal is to build a matching M of maximum size. In each "step", we receive a vertex $v \in V$ and edges v is incident to. After receiving v, we can decide to add an edge incident to v to M. However, adding edges to M is irrevocable, that is, we can only add edges to M and M has to be a matching at every step of the algorithm. You can assume that the final graph has a perfect matching², which is also the optimum.

- 1. Design a (simple) deterministic algorithm for Online Bipartite Matching and analyze it.
- 2. Show that the algorithm you designed in Task 1 is optimal.

And if it is not, then find a better one.

Randomized online matching

3. Consider the following algorithm: after receiving vertex v, we select a random unmatched neighbor $u \in U$ of v and add $\{u,v\}$ to M. Show that this algorithm does not have a better competitive ratio that the optimal deterministic algorithm.

Hint. Creating an instance where the algorithm creates a matching with at most $\frac{n}{2}$ edges will not be easy. However, creating an instance where the algorithm produces a matching of size $\frac{n}{2} + \mathcal{O}(\log n)$ is doable.

Probabilistically checkable proofs

Definition (Class PCP). A decision problem belongs to complexity class $PCP_{c,s}(r(n), q(n))$ if there exists a verifier which

- 1. uses at most r(n) random bits and accesses at most q(n) bits of a $proof^{\beta}$,
- 2. if the input is a YES instance, then the verifier answers YES with probability at least c,
- 3. if the input is a NO instance, then the verifier answers YES with probability at most s.

Today we use c=1 and $s=\frac{1}{2}$.

Theorem (PCP theorem). $PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP$.

- 4. Show that $PCP(\mathcal{O}(\log n), 0) = P$.
- 5. Show that $PCP(0, \mathcal{O}(\log n)) = P$.
- 6. Show that PCP(0, poly(n)) = NP.
- 7. Show that Graph Non-isomorphism belongs to $PCP(poly(n), \mathcal{O}(1))$.

Approximation and Online Algorithms - Tutorial no. 10

2022/05/09, 14:00

Deterministic online matching

In the BIPARTITE MATCHING problem, the input is given by a bipartite graph G = (U, V, E) such that $E \subseteq U \times V$. The goal is to compute a *matching* of G of maximum size, that is a subset of edges $M \subseteq E$ such that every vertex of G is incident to at most one edge of M.

In the online version of this problem¹, we get only vertices U on input. In particular, vertices V, its size, and edges of G are not known in advance. The goal is to build a matching M of maximum size. In each "step", we receive a vertex $v \in V$ and edges v is incident to. After receiving v, we can decide to add an edge incident to v to M. However, adding edges to M is irrevocable, that is, we can only add edges to M and M has to be a matching at every step of the algorithm. You can assume that the final graph has a perfect matching², which is also the optimum.

- 1. Design a (simple) deterministic algorithm for Online Bipartite Matching and analyze it.
- 2. Show that the algorithm you designed in Task 1 is optimal.

And if it is not, then find a better one.

Randomized online matching

3. Consider the following algorithm: after receiving vertex v, we select a random unmatched neighbor $u \in U$ of v and add $\{u,v\}$ to M. Show that this algorithm does not have a better competitive ratio that the optimal deterministic algorithm.

Hint. Creating an instance where the algorithm creates a matching with at most $\frac{n}{2}$ edges will not be easy. However, creating an instance where the algorithm produces a matching of size $\frac{n}{2} + \mathcal{O}(\log n)$ is doable.

Probabilistically checkable proofs

Definition (Class PCP). A decision problem belongs to complexity class $PCP_{c,s}(r(n), q(n))$ if there exists a verifier which

- 1. uses at most r(n) random bits and accesses at most q(n) bits of a $proof^3$,
- 2. if the input is a YES instance, then the verifier answers YES with probability at least c,
- 3. if the input is a NO instance, then the verifier answers YES with probability at most s.

Today we use c=1 and $s=\frac{1}{2}$.

Theorem (PCP theorem). $PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP$.

- 4. Show that $PCP(\mathcal{O}(\log n), 0) = P$.
- 5. Show that $PCP(0, \mathcal{O}(\log n)) = P$.
- 6. Show that PCP(0, poly(n)) = NP.
- 7. Show that Graph Non-isomorphism belongs to $PCP(polv(n), \mathcal{O}(1))$.

¹ Known as Online Bipartite Matching.

² That is |U| = |V| and there exists a matching of size |U|.

³ Also called a certificate.

¹ Known as Online Bipartite Matching.

That is |U| = |V| and there exists a matching of size |U|.

³ Also called a certificate.