Math 260 Exam 2

David L. Meretzky

Monday November 19th, 2018

In problems 1 and 2 your wording may be different than that of book. I am looking for correctness in the concepts. Problems 1-3 are worth 70 points. The test is out of 100.

Problem 1. Give definitions for the following terms: (Careful, pay attention to the vector spaces involved, write them explicitly).

- 1. linear map
- 2. addition and product of linear maps.
- 3. null space/kernel of a linear map, prove it is a subspace
- 4. range of a linear map, prove it is a subspace
- 5. injectivity of a function
- 6. surjectivity of a function
- 7. invertability of a linear map, isomorphism
- 8. operator
- 9. define a linear map $[\]_B:V\to \mathbf{F}^n$
- 10. define a linear map $[\]_{B'}^B: \mathscr{L}(V,W) \to \mathbf{F}^{m \times n}$

Definitions from 10/17 notes: For a vector $v \in V$ and a pair of linear transformations $T: V \to W$ and $S: W \to U$

- 11. define $[T]_{B'}^{B}[v]_{B}$. How should we denote (write down a symbol for) it?
- 12. define $[S]_{B''}^{B'}[T]_{B'}^{B}$. How should we denote (write down a symbol for) it? Hint: it may be easier to figure out first how to denote (write down a symbol for) $[T]_{B'}^{B}[v]_{B}$ and $[S]_{B''}^{B'}[T]_{B'}^{B}$, then figure out how you should define it.

Prove the following (what I call the fundamental theorem of linear maps):

Problem 2 (3.5). Suppose $v_1, ..., v_n$ is a basis of V and $w_1, ..., w_n \in W$. Then there exists a unique linear map $T: V \to W$ such that

$$Tv_j = w_j$$

for each j = 1, ..., n

Problem 3. State and prove (Axler's) Fundamental Theorem of Linear Maps.

Do problems 4-9 to obtain the remaining 30 points:

Problem 4. (5 points) Let E_n be the standard basis for \mathbb{R}^n . Suppose T is a linear map from $\mathbb{R}^3 \to \mathbb{R}^2$ and

$$[T]_{E_2}^{E_3} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Write T as a linear map. What vector spaces are the kernel and range of T subspaces of? Find a basis of the kernel. Find a basis of the range. What are the dimensions of these spaces?

Problem 5. (5 points) Let $T: \mathbf{R}^5 \to \mathbf{R}^3$ be a linear transformation whose kernel is of dimension 3. What is the dimension of the range? What does the set of points in the range look like geometrically? Hint: there are only 4 possible things that it could look like.

Problem 6. (5 points) Show that every linear map from a 1-dimensional space to itself is multiplication by some scalar. More precisely, prove that if dimV = 1 and $T \in \mathcal{L}(V, V)$, then there exists $\lambda \in \mathbf{F}$ such that $Tv = \lambda v$ for all $v \in V$.

Problem 7. (5 points) Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ by T(x, y, z) = (x + y + z, 0, 0) find a basis for the kernel of T. What is the dimension of the range? What is the dimension of the kernel?

Problem 8. (5 points)Let $T: \mathbb{R}^3 \to \mathbb{R}^3$. Suppose

$$[T]_{B'}^B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

where $B = v_1, v_2, v_3$ and $B' = w_1, w_2, w_3$ are both bases for \mathbf{R}^3 . Apply the base change formula to obtain

$$[T]_{C'}^C = \begin{pmatrix} d & e & f \\ g & h & i \\ a & b & c \end{pmatrix}$$

Write the base change matricies out. Begin by figuring out out what C and C' are.

Problem 9. (5 points) Use Problem 2, that is, apply Theorem (3.5) to show that if two finite dimensional vector spaces V and W have the same dimension, then they must be isomorphic.

Problem 10 (Bonus 5 points). Suppose V and W are of dimension n and m respectively, pick a vector $v \in V$. Define

$$E_v = \{ T \in \mathcal{L}(V, W) | Tv = 0 \}$$

that is, E_v is the set of linear transformations which send v to $0 \in W$. Show that E_v is a subspace of $\mathcal{L}(V, W)$. Suppose $v \neq 0$ what is the dimension of E_v ?