

Probabilidade e Estatística aplicada à Engenharia

Unidade II: Variáveis Aleatórias e suas Distribuições

Lista de exercícios II

Prof. Rodrigo Andrés Miranda Cerda

21 de Novembro de 2024

1. Considere a seguinte função

$$p(x) = \frac{2x+1}{25}, \qquad x = 0, 1, 2, 3, 4.$$

Calcule as seguintes probabilidades

- (a) P(X = 4)
- (b) $P(X \le 1)$
- (c) $P(2 \le X < 4)$
- (d) P(X > -10)
- 2. Suponha que $f(x) = 1,5x^2$ onde x é uma variável aleatória contínua e -1 < x < 1. Determine as seguintes probabilidades
 - (a) P(0 < X)
 - (b) P(0.5 < X)
 - (c) $P(-0.5 \le X \le 0.5)$
 - (d) P(X < -2)
 - (e) P(X < 0 ou X > -0.5)
 - (f) Determine x tal que P(x < X) = 0.05.
- 3. O Serviço de Atendimento ao Consumidor de uma empresa possui seis linhas telefónicas. Seja X o número de linhas ocupadas em certo momento. Suponha a distribuição de probabilidades de X dada na Tabela 1. Calcule a probabilidade de cada um dos seguintes eventos
 - (a) No máximo três linhas estão ocupadas.
 - (b) Menos de três linhas estão ocupadas.
 - (c) Pelo menos três linhas estão ocupadas.
 - (d) Entre duas e cinco linhas, inclusive, estão ocupadas.
 - (e) Entre dois e quatro linhas, inclusive, não estão ocupadas (dica: defina uma nova variável aleatória Y para o número de linhas não ocupadas).
 - (f) Pelo menos quatro linhas não estão ocupadas.

x	p(x)
0	0,10
1	0,15
2	0,20
3	$0,\!25$
4	0,20
5	0,06
6	0,04
$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	0,20 0,06

Tabela 1: Distribuição de probabilidades do número de linhas ocupadas em uma empresa.

- 4. Um fabricante de refrigeradores submete seus produtos acabados a uma inspeção final. Duas categorias de defeitos são de interesse: falhas no acabamento da porcelana e defeitos mecânicos. O número de cada tipo de defeito é uma variável aleatória. Os resultados da inspeção de 50 refrigeradores estão mostrados na Tabela 2, onde X representa a ocorrência de defeitos de acabamento e Y representa a ocorrência de defeitos mecânicos.
 - (a) Ache as distribuições marginais de X e Y.
 - (b) Ache a distribuição de probabilidade dos defeitos mecânicos, dado que não há defeitos de acabamento.
 - (c) Ache a distribuição de probabilidade dos defeitos de acabamento, dado que não há defeitos mecânicos.

$Y \setminus X$	0	1	2	3	4	5
0	11/50	4/50	2/50	1/50	1/50	1/50
1	8/50	3/50	2/50	1/50	1/50	
2	4/50	3/50	2/50	1/50		
3	3/50	1/50				
4	1/50					

Tabela 2: Resultado da inspeção de refrigeradores.

- 5. Suponha que f(x) = x/8 para 3 < X < 5. Determine as seguintes probabilidades
 - (a) P(X < 4).
 - (b) P(X > 3.5).
 - (c) P(4 < X < 5).
 - (d) P(X < 4.5).
 - (e) P(X < 3.5 ou X > 4.5).
- 6. Em um processo de fabricação de semicondutores, três pastilhas de um lote são testadas. Cada pastilha é classificada como passa (P) ou falha (F). Suponha que a probabilidade de uma pastilha passar no teste seja de 0,8 e que as pastilhas sejam independentes. Determine a função de probabilidade do número de pastilhas de um lote que passa no teste (Dica: escreva o espaço amostral do experimento).