Times series forecasting

Advanced forecasting methods

Julien JACQUES

Université Lumière Lyon 2

Neural network models

Time series regression models

Dynamic regression model

Grouped time series models: VAR models

```
## Warning: package 'forecast' was built under R version 3
## Loading required package: fma
## Loading required package: expsmooth
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.5
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.5.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: tseries
## Loading required package: ggplot2
```


Neuron

A neuron is a *model*, with p features, which map the p inputs x^1, \ldots, x^p to an output y:

$$y = g\left(\alpha_0 + \sum_{j=1}^p \alpha_j x^j\right)$$

Figure 1: Neuron representation

- Σ: linear combination of inputs
- ▶ g: activation function

A specific neuron: linear model

One neuron with linear activation function g(x) = x is the usual *linear model*:

$$y = \alpha_0 + \sum_{j=1}^{p} \alpha_j x^j$$

Figure 2: Neuron representation

Neural networks

A neural network is the association of several neurons, in a more or less complex graph, characterized by:

- ▶ its architecture (layer . . .)
- its complexity (number of neurons, presence of loops)
- activation functions
- ▶ the objective: supervised or unsupervised learning . . .

Multilayer perceptron

- A multilayer perceptron is made up of layers
- Layer: set of neurons without connection between them
- It has an input layer, an output layer, and one or more hidden layers
- ► The neurons are all connected at the input to each of the neurons of the previous layer and at the output to each of the neurons of the next layer

Figure 3: Multilayer perceptron with 1 hidden layer

Neural Network Auto-Regression (NNAR)

For **non seasonal** data:

- ► *NNAR_{p,k}* model:
 - ▶ Inputs: lagged values of the time series x_t, \ldots, x_{t-p}
 - ▶ 1 hidden layer with *k* neurons
 - $\blacktriangleright \text{ Rk: } NNAR_{p,0} = AR_p$

Neural Network Auto-Regression (NNAR)

For **non seasonal** data:

- ► *NNAR_{p,k}* model:
 - ▶ Inputs: lagged values of the time series x_t, \ldots, x_{t-p}
 - ▶ 1 hidden layer with *k* neurons
 - ightharpoonup Rk: $NNAR_{p,0} = AR_p$

For **seasonal** data (of period T), we add lagged values from the same season as last observed values:

- \triangleright *NNAR*_{(p,P,k) $_T$} model:
 - Inputs: lagged values of the time series

$$X_t, X_{t-2}, \dots, X_{t-p}, X_{t-T}, X_{t-2T}, \dots, X_{t-pT}$$

- ▶ 1 hidden layer with *k* neurons
- Rk: $NNAR_{(p,P,0)_T} = SARIMA_{(p,0,0)(P,0,0)_T}$

nnetar function

Estimation of an $NNAR_{(p,P,k)_T}$ with the forecast package:

- if p not specified, it is choosed automatically by minismizing AIC
- if P not specified, P=1 is chosen
- if k not specified, k = (p + P + 1)/2 is chosen

Other options:

- xreg allows to add external regressors
- ▶ lambda allows to use Box-Cox transformation

Neural Network Auto-Regression (NNAR)

- Advantage over a linear model (AR_p) :
 - more flexible, modeling non-linear relation
- ▶ Dis-advantage over a linear model (AR_p) :
 - none well-defined sochastic model -> prediction interval not direct (need boostrap simulations, option PI=TRUE)
 - not possible to integrate differecing

Example: sunspots

autoplot(sunspotarea)

No seasonal but \mathbf{cyclic} $\mathbf{pattern} \Rightarrow \mathbf{can}$ not be modelized by usual linear SARIMA models

Example: sunspots

```
NNAR_{p,k} model estimation, with automatic choice of p and k:
fit=nnetar(sunspotarea)
print(fit)
## Series: sunspotarea
## Model: NNAR(9,5)
## Call: nnetar(y = sunspotarea)
##
## Average of 20 networks, each of which is
## a 9-5-1 network with 56 weights
## options were - linear output units
##
## sigma^2 estimated as 10795
```

Example: sunspots

Forecasting for next 30 years:

autoplot(forecast(fit,h=30))

asymetric cyclicity as been modelled well

Exercice: San Francisco precipitation

San Fransisco precipitation from 1932 to 1966 are available here: http://eric.univ-lyon2.fr/~jjacques/Download/DataSet/sanfran.dat

Try to improve your forecasts obtained with exponential smoothing and SARIMA models with neural network models

Let assume that you want to explain your serie x_t according to k features z_{1t}, \ldots, z_{kt} :

$$x_t = c + \beta_1 z_{1t} + \ldots + \beta_k z_{kt} + \epsilon_t.$$

Usual linear regression model assume that the error ϵ_t are independent and identically distributed according: $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Such model can be estimated with the usual ${\tt lm}$ function or with

?tslm

In addition to the effect of external features, times series often contain:

▶ a **trend**. A linear model including a linear trend can be written:

$$x_t = \underbrace{c + \beta_0 t}_{\text{trend}} + \underbrace{\beta_1 z_{1t} + \ldots + \beta_k z_{kt}}_{\text{covariates}} + \epsilon_t.$$

▶ a seasonal pattern of period T. Corresponding regression model is:

$$x_t = \underbrace{c + \beta_0 t}_{\text{trend}} + \underbrace{\delta_1 d_{1t} + \ldots + \delta_T d_{Tt}}_{\text{seasonal effect}} + \underbrace{\beta_1 z_{1t} + \ldots + \beta_k z_{kt}}_{\text{covariates}} + \epsilon_t.$$

where d_{1t}, \ldots, d_{Tt} are the dummy notations for the T days of the period: $d_{jt} = 1$ if j = t and 0 otherwise.

Let's go back to the uschange time series

```
library(fpp2)
autoplot(uschange)
```


We want to predict Consumption using other times series

```
\label{thm:consumption-Income+Production+Unemployment+Savings, data=uschange) summary (fit) \\
```

```
##
## Call:
## tslm(formula = Consumption ~ Income + Production + Unemployment +
      Savings, data = uschange)
##
## Residuals:
##
       Min
                1Q Median
                                         Max
## -0.88296 -0.17638 -0.03679 0.15251 1.20553
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.26729 0.03721 7.184 1.68e-11 ***
            0.71449 0.04219 16.934 < 2e-16 ***
## Income
## Production 0.04589 0.02588 1.773 0.0778 .
## Unemployment -0.20477 0.10550 -1.941 0.0538 .
## Savings
            -0.04527 0.00278 -16.287 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3286 on 182 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7486
## F-statistic: 139.5 on 4 and 182 DF, p-value: < 2.2e-16
```

We can add a trend and a seasonnal pattern

```
##
## Call:
## tslm(formula = Consumption ~ Income + Production + Unemployment +
      Savings + trend + season, data = uschange)
##
##
## Residuals:
                10 Median
##
       Min
## -0.88653 -0.15100 -0.00713 0.14232 1.10178
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.4535889 0.0717294 6.324
                                             26-09 ***
## Income
           0.7093775 0.0419836 16.897 <2e-16 ***
## Production 0.0389018 0.0264104 1.473 0.1425
## Unemployment -0.2396921 0.1096766 -2.185 0.0302 *
## Savings
              -0.0450622 0.0027690 -16.274 <2e-16 ***
## trend
              -0.0010066 0.0004616 -2.181 0.0305 *
             -0.1294052 0.0669461 -1.933 0.0548 .
## season2
            -0.0602444 0.0671966 -0.897 0.3712
## season3
## season4
              -0.1495544 0.0675787 -2.213 0.0282 *
## ---
## Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.322 on 178 degrees of freedom
## Multiple R-squared: 0.769. Adjusted R-squared: 0.7586
## F-statistic: 74.06 on 8 and 178 DF, p-value: < 2.2e-16
```

Feature selection

As for any multivariate regression model, we have to select which are the best features to include in the model.

Comparison between models can be done with usual criteria (AIC, AICc, BIC, adjusted R^2 , ...)

Those criterion can be obtained as follows:

```
CV(fit)

## CV AIC AICc BIC AdiR2
```

```
## CV AIC AICc BIC AdjR2
## 0.1141794 -413.0495738 -411.7995738 -380.7384876 0.7585933
```

Feature selection

In the previous model we have seen that Production is not significant in the model.

We can remove it and compare the model to the previous one fit2=tslm(Consumption~Income+Unemployment+Savings+trend+season,data=usc CV(fit)

```
##
             CV
                          ATC:
                                       AICc
                                                      BIC
                                                                  AdjR2
      0.1141794 -413.0495738 -411.7995738 -380.7384876
##
                                                             0.7585933
CV(fit2)
##
             CV
                          AIC
                                       AICc
                                                      BIC
                                                                  AdjR2
      0.1136653 -412.7840112 -411.7670620 -383.7040336
                                                             0.7570159
##
```

There is no evident difference between these models (better CV, AIC, AICc and BIC, but worse $AdjR^2$).

Feature selection

Stepwise selection procedure should be used to correctly select the best set of features.

But, to the best of my knowledge, such procedures are not available for the tslm function.

Checking the residuals

Usual checking of linear model can/should be done:

checkresiduals(fit,test=FALSE,plot=TRUE)

Checking the residuals

including test of non correlation of the residuals

```
checkresiduals(fit,test='LB',plot=FALSE)
```

```
##
## Ljung-Box test
##
## data: Residuals from Linear regression model
## Q* = 23.979, df = 3, p-value = 2.524e-05
##
## Model df: 9. Total lags used: 12
```

Here the residual are correlated, which means that this regression model (which assumes independent residuals) is not appropriated.

We saw in the previous model:

$$x_t = c + \beta_1 z_{1t} + \ldots + \beta_k z_{kt} + \epsilon_t.$$

that the residuals ϵ_t are not independent.

Dynamic regression model modelizes the residuals with an $ARIMA_{p,d,q}$ model

We saw in the previous model:

$$x_t = c + \beta_1 z_{1t} + \ldots + \beta_k z_{kt} + \epsilon_t.$$

that the residuals ϵ_t are not independent.

Dynamic regression model modelizes the residuals with an $ARIMA_{p,d,q}$ model

The choice of the orders p, d, q can be done by examining the residuals or automatically with the auto.arima function.

Let's try for instance an $ARIMA_{1,0,2}$:

```
summarv(fit)
## Series: uschange[, "Consumption"]
## Regression with ARIMA(1,0,2) errors
##
## Coefficients:
           ar1
##
                    ma1
                           ma2 intercept
                                             xreg
       0.6922 -0.5758 0.1984
                                   0.5990 0.2028
##
## s.e. 0.1159 0.1301 0.0756 0.0884 0.0461
##
## sigma^2 estimated as 0.3219: log likelihood=-156.95
## AIC=325.91
               AICc=326.37
                            BIC=345.29
##
## Training set error measures:
##
                        ME
                               RMSE
                                          MAE
                                                  MPE
                                                          MAPE
                                                                   MASE
## Training set 0.001714366 0.5597088 0.4209056 27.4477 161.8417 0.6594731
##
                      ACF1
## Training set 0.006299231
```

fit=Arima(uschange[, 'Consumption'], xreg=uschange[, 'Income'], order=c(1,0,2))

We can now check the residuals:

checkresiduals(fit,test=FALSE)

and test their autocorrelation:

```
checkresiduals(fit,plot=FALSE)
```

```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 5.8916, df = 3, p-value = 0.117
##
## Model df: 5. Total lags used: 8
```

It seems that all the auto-correlations of the residuals have been modelled with this model.

The model being validated, we can forecast the future !

Warning: since we use covariate, we should have the value of the covariate for the future !

autoplot(forecast(fit,xreg=rep(mean(uschange[,2]),4)))

Exercice: Electricty demand

Try to find the best model for forecasting electricity demand

autoplot(elecdaily)

Forecasting efficiency will be evaluated on the last 7 days, and will assume that we dispose of a forecasting of the Temperature for the next 7 days (WorkDay are of course also known).

VAR models

- ▶ Data : bivariate time series $(X_{1,t}, X_{2,t})$.
- We want to forecast both time series
- The idea is that each time series can help in forecasting the other one.
- ▶ Vectoriel Auto-Regressive model VAR₁ :

$$X_{1,t} = c_1 + \epsilon_{1,t} + a_{1,1}X_{1,t-1} + a_{1,2}X_{2,t-1},$$

$$X_{2,t} = c_2 + \epsilon_{2,t} + a_{2,1}X_{1,t-1} + a_{2,2}X_{2,t-1},$$

▶ High order model can be also considered VAR_p

We will work with data usconsumption

```
library(fpp)
data(usconsumption)
plot(usconsumption)
```

usconsumption

VAR_n model

Function VARselect allows to choose the best model according to some criteria (among which AIC)

```
library(vars)
VARselect(usconsumption, lag.max=8, type="const")
## $selection
```

SC(n) -1.1513054 -1.0647915 -1.0316689 -0.9648447 -0.8984488

```
## AIC(n) HQ(n) SC(n) FPE(n)
       5
##
```

\$criteria

##

AIC(n) -1.2686075 -1.2602950 -1.3053739 -1.3167512 -1.3285567 ## HQ(n) -1.2209645 -1.1808899 -1.1942068 -1.1738220 -1.1538655

FPE(n) 0.2812256 0.2835828 0.2711039 0.2680733 0.2649835 ## ## AIC(n) -1.2677759 -1.2518870

HQ(n) -1.0295607 -0.9819096 ## SC(n) -0.6812652 -0.5871748 ## FPE(n) 0.2817926 0.2864621

VAR_p model

```
Estimation of an VAR_5
```

```
var <- VAR(usconsumption, p=5,type = "const")</pre>
```

VAR_p model

Forecasting

```
fcst <- forecast(var)
plot(fcst, xlab="Year")</pre>
```

Forecasts from VAR(5)


```
We choose two last years as test data
us_app=ts(usconsumption[1:156,],start=c(1970,1),end=c(2008,4),frequency = 4)
us_test=ts(usconsumption[157:164,],start=c(2009,1),end=c(2010,4),frequency = 4)
We foreacst an VAR_5
var <- VAR(us app, p=5,type = "const")</pre>
check that the residual are a white noise
serial.test(var, lags.pt=10, type="PT.asymptotic")
##
    Portmanteau Test (asymptotic)
##
##
## data: Residuals of VAR object var
## Chi-squared = 13.11, df = 20, p-value = 0.8726
and perform forecast
fcst <- forecast(var,h=8)</pre>
```

plot(fcst)

[1] 0.2508865

```
Forecasting efficiency with a VAR<sub>5</sub>

print(sqrt(mean(us_test[,1]-fcst$forecast$consumption$mean)^2))

## [1] 0.03271834

print(sqrt(mean(us_test[,2]-fcst$forecast$income$mean)^2))
```

Forecasting of consumption and income separately

```
mod1=auto.arima(us_app[,1])
pred1=forecast(mod1,h =8)
mod2=auto.arima(us_app[,2])
pred2=forecast(mod2,h =8)
print(sqrt(mean(us_test[,1]-pred1$mean)^2))
```

```
## [1] 0.04460754
print(sqrt(mean(us_test[,2]-pred2$mean)^2))
```

```
## [1] 0.6388838
```

Quality of prediction is lower when each times series is used separaterly.

Exercice: Data uschange

Try to find the best forecasting model for the 5 uschange time series autoplot(uschange)

Forecasting efficiency will be evaluated on 2016 data, and compare to forecasting each time series separately.