

Geometry Formulas List

Shape	Formulas	Figure
Right Triangle	Pythagoras Theorem: $\mathbf{a} + \mathbf{b} = \mathbf{c}$ Area = $\frac{1}{2}$ ab Perimeter = $\mathbf{a} + \mathbf{b} + \sqrt{(\mathbf{a} + \mathbf{b})}$	
Triangle	Perimeter, P = a + b + c Area, A = ½ b.h Height, h = 2(A/b)	a h_b c b
Rectangle	Perimeter = 2(I + w) Area = I.w Diagonal, d = √(I + w)	w d
Parallelogram	Perimeter, P = 2(a + b) Area, A = b.h Height, h = A/b	

	Base, b = A/h	
Trapezium	Perimeter, $P = a + b + c + d$ Area, $A = \frac{1}{2}(a + b).h$ Height, $h = 2$. $A/(a + b)$ Base, $b = 2.(A/h) - a$	
Circle	Circumference = 2.π.r 2 Area = π.r Diameter = 2.r	
Square	Perimeter, P = 4.a $ 2 \\ Area, A = a $ Diagonal, d = $a \cdot \sqrt{2}$ Side, $a = \sqrt{A} = d/2 \cdot \sqrt{2}$	d a
Arc	Arc Length, L = r.0 2 Area, A = ½.r .0 Here, 0 is the central angle is radians.	L e

Cube	Area, A = 6.a Volume, V = \mathbf{a} Edge, $\mathbf{a} = \mathbf{V}^{\frac{1}{3}}$ Space diagonal = $\mathbf{a} \cdot \sqrt{3}$	
Cuboid	Surface Area, A = 2(lb + bh + hl) Volume, V = l.b.h Space diagonal, d = $\sqrt{(l^2 + b^2 + h^2)}$	h
Cylinder	Total Surface Area, $A = 2\pi r h + 2\pi r$ Curved Surface Area, $Ac = 2\pi r h$ Volume, $V = \pi r h$ Base Area, $Ab = \pi r$ Radius, $r = \sqrt{(V/\pi h)}$	
Cone	Total Surface Area, A = $\pi r(r+l) = \pi r[r+\sqrt{(h+r)}]$ Curved Surface Area, Ac = πrl Volume, V = $\frac{2}{3}\pi r h$ Slant Height, $l = \sqrt{(h+r)}$ Base Area, Ab = πr	h

Sphere

Surface Area, A =
$$4\pi r$$

Volume, $V = \frac{3}{3}\pi r^3$

Diameter = 2r

