Assignment 14, Infinitesimal Calculus

Oleg Sivokon

<2015-04-03 Fri>

Contents

1	Pro	bblems			
	1.1	Problem 1	3		
		1.1.1 Answer 1	3		
		1.1.2 Answer 2	4		
	1.2	Problem 2	4		
		1.2.1 Answer 3	5		
		1.2.2 Answer 4	5		
		1.2.3 Answer 5	5		
		1.2.4 Answer 6	5		
		1.2.5 Anser 7	5		
	1.3	Problem 3	6		
		1.3.1 Answer 8	6		
		1.3.2 Answer 9	7		
	1.4	Problem 4	8		

	1.4.1	Answer 10		8
	1.4.2	Answer 11	•	9
1.5	Proble	em 5	•	11
	1.5.1	Answer 12		11
	1.5.2	Answer 13		11
	1.5.3	Answer 14		12
	1.5.4	Answer 15		13
	1 5 5	Angwer 16		19

1 Problems

1.1 Problem 1

- 1. Find the domain of f defined as $f(x) = \sqrt{\tan x 1}$.
- 2. Find all values of x in segment $[0, \pi]$, for which $|\tan x| \leq \sin 2x$.

1.1.1 Answer 1

 $\tan x > 1$ where $\frac{\pi}{4} < x \mod \frac{\pi}{2} < \frac{\pi}{2}$. Since we assume that f is real-valued, we cannot extract roots from negative numbers.

Hence $\operatorname{Dom}(f) = \{x \in \mathbb{R} \mid \frac{\pi}{4} < x \bmod \frac{\pi}{2} < \frac{\pi}{2}\}.$

1.1.2 Answer 2

Both functions attain the same values at 0 and $\frac{\pi}{4}$. But sine is a concave function and tanget is a convex function, thus tangent must be less than sine at this interval. Tangent keeps increasing until $\frac{\pi}{2}$, while sine will be decreasing until $\frac{3\pi}{2}$, thus, on this interval tangent is greater than sine. The functions meet again at $x = \pi$.

```
programmode: false;
gnuplot_pdf_command: %command;
print(plot2d ([abs(tan(x)), sin(2 * x)],
        [x, -2 * %pi, 2 * %pi], [y, -1.5, 3],
        [gnuplot_pdf_term_command,
        "set term cairolatex standalone pdf size 16cm,10.5cm"],
        [gnuplot_postamble,
        "set arrow from pi/4,-1.5 to pi/4,3 nohead
        set arrow from pi,-1.5 to pi,3 nohead
        set arrow from -2*pi,1 to 2*pi,1 nohead
        set key spacing 1.8 left bottom"],
        [xtics, 0, 1, 0], [ytics, 1, 1, 1],
        [label, ["${\displaystyle \\frac{\\pi}{4}}$", 1.4, 2.1],
        ["${\\displaystyle \\pi}$", 3.4, 2.1]],
        [title, "Tangent curve intersecting with sine curve"],
        [pdf_file, %out]));
```

Tangent curve intersecting with sine curve

1.2 Problem 2

Let f, g and h be functions from \mathbb{R} to \mathbb{R} .

1. If $f \circ g = f \circ h$, does it follow g = h?

- 2. If $f \circ g = f \circ h$, and f is one-to-one, does it follow g = h?
- 3. If $f \circ g = f \circ h$, and f is onto, does it follow g = h?
- 4. If $f \circ g$ is increasing, and f is decreasing, does it follow that g is increasing?
- 5. If $f \circ g$ is increasing, and f is one-to-one, does it follow that g is monotonic?

1.2.1 Answer 3

No, g and h are not necessarily equal. Whenever co-domain of f doesn't contain some real number, g and h may differ in that input. For example, let f(x) = 2x, $g(x) = (x \mod 2) + x$ and $h(x) = (x \mod 2) * 2 + x$. Because f in this example will only generate even numbers, the $(x \mod 2)$ term will always be zero, thus $f \circ g = f \circ h$, but, obviously, $g \neq h$.

1.2.2 Answer 4

No, it isn't sufficient for f to be one-to-one to ensure right-cancellation property under composition. The example given in 1.2.1 is applicable in this case too since whenever f(x) = f(y) so is x = y (since multiplication does have the cancellation property).

1.2.3 Answer 5

Yes, if f is onto, then the composition is right-cancellable. Suppose, for contradiction it wasn't, then for some y $g(y) \neq h(y)$, but y = f(x) (since by definition of a total function, every element in its co-domain has an element in its domain). Hence $g(f(x)) \neq h(f(x))$, but we are given that $g \circ f = h \circ f$, which is a contradiction. Hence functions are equal.

1.2.4 Answer 6

No, g doesn't need to be increasing. Put g(x) = f(x) = -x, both f and g are decreasing but $f \circ g = Id$, which is an increasing function.

1.2.5 Anser 7

No, g is not necessarily monotonic. Put $f(x) = x(-1)^x$ and g(x) = |x|. Then $(f \circ g)(x) = |x(-1)^x| = x|(-1)^x| = x$. $f \circ g$ is increasing, f is one-to-one, but g

isn't monotonic: it decreases whenever x is negative and increases whenever x is positive.

1.3 Problem 3

- 1. Prove from $\epsilon \delta$ definition of limit that $\lim_{x\to 2} \sqrt{3x-2} = 2$.
- 2. Prove from ϵM definition of limit that $\lim_{x \to \infty} \frac{x}{x + \sin x} = 1$.

1.3.1 Answer 8

Recall the definition:

For all $\epsilon > 0$ there exists $\sigma > 0$ s.t. for all x in Dom(f(x)) which satisfy $0 < |x - x_0| < \sigma$ the inequality $|f(x) - L| < \epsilon$ holds.

Let ϵ be arbitrary real, put

$$\begin{split} \left|f(x)-L\right| &< \epsilon \iff \\ \left|\sqrt{3x-2}-2\right| &< \epsilon \\ Suppose \sqrt{3x-2}-2 > 0 \\ 0 &< \sqrt{3x-2}-2 \\ 0 &< \sqrt{3x-2} \\ 0 &< 3x-2 \\ 0 &< 3x-2 \\ 0 &< 3x-2 \\ 0 &< 3x-6 \\ 0 &< x-2 \\ Similarly for \sqrt{3x-2}-2 &< \epsilon^2+4\epsilon +4 \iff \\ 0 &> \sqrt{3x-2}-2 \\ 0 &> \sqrt{3x-2}-2 \\ 0 &> \sqrt{3x-2}-2 \\ 0 &> 3x-2 \\ 0 &> 3x-6 \\ 0 &> x-2 \\ \end{cases} \begin{array}{c} <\epsilon &\iff \\ <\epsilon^2+4\epsilon &\iff \\ >-\epsilon+2 &\iff \\ >-\epsilon+2 &\iff \\ >(-\epsilon+2)^2 &\iff \\ >\epsilon^2-4\epsilon+4 &\iff \\ >\epsilon^2-4\epsilon &\iff \\ >\epsilon^2-4\epsilon$$

Hence, we can choose δ to be $\frac{\epsilon^2 - 4\epsilon}{3}$ whenever $x < x_0$ and $\frac{\epsilon^2 + 4\epsilon}{3}$ whenever $x > x_0$, which completes the proof.

1.3.2 Answer 9

Recall the definition:

For all $\epsilon > 0$ there exists M > 0 s.t. for all x in Dom(f(x)) x > M implies $|f(x) - L| < \epsilon$.

Let $\epsilon > 0$, then look for appropriate value for x:

$$\left| \frac{x}{x + \sin x} - 1 \right| < \epsilon \iff$$

$$\left| \frac{x}{x + \sin x} - \sin^2 x - \cos^2 x \right| < \epsilon \iff$$

$$\left| \frac{x - \sin^2 x (x + \sin x) - \cos^2 x (x + \sin x)}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x - x \sin^2 x - \sin^3 x - x \cos^2 x - \cos^2 x \sin x}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x - x \sin^2 x - \sin^3 x - x \cos^2 x - \cos^2 x \sin x}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x - x \sin^2 x - \sin^3 x - x \cos^2 x - \cos^2 x \sin x}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x - x \sin^2 x - \sin^3 x - x \cos^2 x - \cos^2 x \sin x}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x - \sin x}{x + \sin x} \right| < \epsilon \iff$$

Assume x > 0:

Put $M=\max\Big(0,\frac{\sin x(1+\epsilon)}{\epsilon}\Big).$ If x>M, then x>0 and $x>\frac{\sin x(1+\epsilon)}{\epsilon},$ hence:

$$> \frac{\sin x(1+\epsilon)}{\epsilon}$$

... Reverse the calculations above

$$\frac{-\sin x}{x + \sin x} < \epsilon$$

$$\frac{1}{x + \sin x} - 1$$

$$< \epsilon$$

Which completes the proof.

1.4 Problem 4

- 1. Let f be a function defined in the neighborhood of x_0 . Express "f doesn't have a limit at x_0 " using:
 - $\epsilon \sigma$ language.
 - Using Heine definition of limit (for sequences).
- 2. Prove that $f(x) = \frac{x}{x \lfloor x \rfloor}$ doesn't have a finite limit at $x \to 0$ in the following ways:
 - By using $\epsilon \sigma$ definition given above.
 - By using Heine definition of limit (also given above).

1.4.1 Answer 10

Recall the $\epsilon - \delta$ definition:

The limit of f(x) at x_0 is defined to be L s.t. for every $\epsilon > |f(x) - L| > 0$ we can find $\delta > |x - x_0| > 0$.

To negate this is to say that there exists such ϵ for which we can't find a positive δ larger than the distance from x to x_0 .

Heine defines limit to be L whenever for every sequence (x_n) which convergest to x_0 , every sequence of function values $f(x_n)$ converges to L.

To negate this definition we claim that there exists a sequence (x_m) , which convergest to x_0 , however $f(x_m)$ doesn't converge to L.

1.4.2 Answer 11

I'll do the Heine first, because it's easier. We can choose sequences $(x_n) = -\frac{\pi}{2nx}$ and $(x_m) = \frac{\pi}{2mx}$, both are immediately reducible to the limit of a fraction as x approaches zero, hence, the limit for both is zero. Now, if we plug them back into f, we get:

$$\lim_{x \to 0} \frac{x}{x - \lfloor \sin x \rfloor} = \lim_{x \to 0} \frac{x}{x - 0}$$

$$\lfloor \sin x \rfloor = 0 \text{ whenever } 0 < x < \frac{\pi}{2}$$

$$= 1.$$

Similarly:

$$\lim_{x\to 0} \frac{x}{x - \lfloor \sin x \rfloor} = \lim_{x\to 0} \frac{x}{x+1}$$

$$\lfloor \sin x \rfloor = -1 \text{ whenever } 0 > x > -\frac{\pi}{2}$$

$$= 0.$$

Now, the $\epsilon - \sigma$ approach:

Since we can pick arbitrary ϵ , put $\epsilon = \frac{1}{2}$. Now, we could try to find the limit withing π distance from zero. Assuming thus $x \in (\pi, -\pi)$.

$$\begin{split} & -\frac{1}{2} < \frac{\sigma}{\sigma - \lfloor \sin \sigma \rfloor} - L < \frac{1}{2} \\ & -\frac{1}{2} < \frac{\sigma}{\sigma - 0} - L < \frac{1}{2} \\ & -\frac{1}{2} < 1 - L < \frac{1}{2} \\ & -\frac{3}{2} < -L < -\frac{1}{2} \\ & \frac{3}{2} > L > \frac{1}{2} \\ & Similarly: \\ & -\frac{1}{2} < \frac{-\sigma}{\lfloor -\sin \sigma \rfloor - \sigma} - L < \frac{1}{2} \\ & -\frac{1}{2} < \frac{-\sigma}{-\sigma + 1} - L < \frac{1}{2} \end{split}$$

$$\begin{split} &-\frac{1}{2} - \frac{-\sigma}{-\sigma+1} < -L < \frac{1}{2} - \frac{-\sigma}{-\sigma+1} \\ &-\frac{-\sigma+1+2\sigma}{-2\sigma+2} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &-\frac{1+\sigma}{-2\sigma+2} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &-\frac{1-\sigma}{-2\sigma+2} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &-\frac{-1(1+\sigma)}{-1(2\sigma-2)} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &\frac{1+\sigma}{2\sigma-2} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &Since \ \sigma > 0 \\ &\frac{1+\sigma}{2\sigma+2} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &\frac{1}{2} < -L < \frac{1}{2} - \frac{-\sigma}{1-\sigma} \\ &Contradiction: \ L > \frac{1}{2} \ and \ L < \frac{1}{2}. \end{split}$$

1.5 Problem 5

Find limits of:

- 1. $\lim_{x\to 0} \frac{1-\cos x}{x\sin x}$.
- 2. $\lim_{x\to 0} \frac{x+7x^3}{x^3-2x^4}$.
- 3. $\lim_{x\to 0} \frac{x^2-1}{2x^3-x^2-x}$.
- 4. $\lim_{x\to 0} (\sqrt{1+x+x^2} \sqrt{1-x+x^2})$.
- 5. $\lim_{x\to k} \lfloor x \rfloor \tan \frac{\pi x}{2}, k = 0, 1, 2.$

1.5.1 Answer 12

tex(limit((1 - cos(x)) / (x * sin(x)), x, 0));

 $\frac{1}{2}$

Proof:

$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} = \lim_{x \to 0} \frac{(1 - \cos x) * (1 + \cos x)}{x \sin x (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x \sin x (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin^2 x}{x \sin x (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin x}{x (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} * \lim_{x \to 0} \frac{1}{1 + \cos x}$$

$$= 1 * \lim_{x \to 0} \frac{1}{1 + \cos x}$$

$$= \lim_{x \to 0} \frac{1}{1 + 1}$$

$$= \frac{1}{2}$$

1.5.2 Answer 13

tex(limit(($x + 7 * x^3$) / ($x^3 - 2 * x^4$), x, 0));

 ∞

Proof:

$$\begin{split} \lim_{x \to 0} \frac{x + 7x^3}{x^3 - 2x^4} &= \lim_{x \to 0} \frac{1 + 7x^2}{x^2 - 2x^3} \\ &= \lim_{x \to 0} \frac{1 - 4x^2}{x^2 - 2x^3} + \frac{11x^2}{x^2 - 2x^3} \\ &= \lim_{x \to 0} \frac{(1 - 2x)(1 + 2x)}{x^2(1 - 2x)} + \frac{11}{1 + 2x} \\ &= \lim_{x \to 0} \frac{1 + 2x}{x^2} + \frac{11}{1 + 2x} \\ &= \lim_{x \to 0} \frac{1}{x^2} + \frac{2x}{x^2} + \frac{11}{1 + 2x} \\ &= \lim_{x \to 0} \frac{1}{x^2} + \frac{2}{x} + \frac{11}{1 + 2x} \\ &= \lim_{x \to 0} \frac{1}{x^2} + \lim_{x \to 0} \frac{2}{x} + \lim_{x \to 0} \frac{11}{1 + 2x} \\ &= \infty + \infty + 11 \end{split} \qquad Using ifin \\ &= \infty \end{split}$$

 $Using\ ifinite\ limits\ addition$

1.5.3 Answer 14

tex(limit(($x^2 - 1$) / (2 * $x^3 - x^2 - x$), x, 0));

infinity

Proof:

$$\lim_{x \to 0} \frac{x^2 - 1}{2x^3 - x^2 - x} = \lim_{x \to 0} \frac{(x - 1)(x + 1)}{x^2(x - 1) + x(x^2 - 1)}$$

$$= \lim_{x \to 0} \frac{(x - 1)(x + 1)}{x^2(x - 1) + x(x - 1)(x + 1)}$$

$$= \lim_{x \to 0} \frac{(x - 1)(x + 1)}{(x - 1)(x^2 + x(x + 1))}$$

$$= \lim_{x \to 0} \frac{x + 1}{x^2 + x(x + 1)}$$

$$= \lim_{x \to 0} \frac{x + 1}{x^2 + x^2 + x}$$

$$= \lim_{x \to 0} \frac{x+1}{2x^2 + x}$$

$$= \lim_{x \to 0} \frac{x+1}{x(2x+1)}$$

$$= \lim_{x \to 0} \frac{x+1}{x} * \lim_{x \to 0} \frac{1}{2x+1}$$

$$= \lim_{x \to 0} \frac{x+1}{x} * 1$$

$$= \infty$$

1.5.4 Answer 15

```
tex(limit(sqrt(1 + x + x^2) - sqrt(1 - x + x^2), x, 0));
```

0

Proof: this function is continuous at x=0 since square root is continuous at 1 and this function is offset by one. From definition of continuity we know that the limit of the function coincides with its value, hence the limit is $\sqrt{1+0+0^2} - \sqrt{1-0+0^2} = 1-1 = 0$.

1.5.5 Answer 16

```
for i : 0 thru 2 do
    tex(limit(floor(x) * tan((%pi * x) / 2), x, i));
```

 $0 \ und \ 0$