Inhaltsverzeichnis

1	Mathematische Modellierung des Zufalls												5				
	1.1	Zufalls	sexperimente														5
		1.1.1	Das Würfeln .														5
		1.1.2	Das Lottospiel														5

Kapitel 1

Mathematische Modellierung des Zufalls

1.1 Zufallsexperimente

1.1.1 Das Würfeln

Vorlesung vom 14.4.2010

 $\Omega = \{1,...,n\}, n \in \mathbb{N}$ Wir möchten zufällig genau eine Zahl aus Ω ziehen. Eine

Möglichkeit: n-seitiger Würfel Ansatz: $Pr[i] = \frac{1}{n} \forall i \in \Omega$

 $Pr \cong "Probability"$

Sei $A = \{a_1, ..., a_k\} \subset \Omega$, dann ist $Pr[A] = \frac{|A|}{n} = \frac{k}{n}$ die Wahrscheinlichkeit, dass $a_1, ..., a_{k-1}$ oder a_k ausgewählt werden.

A nennt man Ergeignis

Wenn alle Pr[i] gleich sind so spricht man von einer Gleichverteilung.

Bei Spielen: n=6 Es herrscht Unabhängigkeit der Würfe, d.h. Ergebnisse beeinflussen sich nicht.

Ergeignis

Gleichverteilung

1.1.2 Das Lottospiel

Es werden 6 Zahlen aus 49 gezogen, sagen wir $a_1,...a_6$. Wir nehmen an, dass wir diese schon geordnet haben: $a_1 < ... < a_6$. Eine Ziehung ist ein Vektor $(a_1,...,a_6)$ mit $a_1 < ... < a_6$. Ergebnisse sind diese Vektoren. Man fasst die Ergebnisse zu einem *Grundraum* zusammen, den wir üblicherweise Ω nennen.

Grundraum

$$\Omega = \{ \{a_1, ..., a_6\} \mid a_i \in \{1, ..., 49\} \forall i = 1...6 \}$$
$$|\Omega| = \binom{49}{6} = 13983816$$

Wie hoch ist die Wahrscheinlichkeit, dass ein Tipp 6 Richtige hat? Allgemeiner: k Richtige? Welche $\{a_1,...,a_6\} \in \Omega$ haben k Stellen gemeinsam mit dem Tipp? Die bezeichnen wir als günstige Ereignisse .

günstige Ereignisse

$$A = \{\{a_1, ..., a_6\} \in \Omega \mid \left| \{a_1, ..., a_6\} \bigcup \{b_1, ..., b_6\} \right| = k\}$$

Wenn ein Element aus A gezogen wird haben wir k Richtige.

$$Pr[k$$
Richtige] = $\frac{|A|}{|\Omega|} = \frac{\binom{6}{k} \cdot \binom{43}{6-k}}{\binom{49}{6}}$

$$\Rightarrow Pr[6\text{Richtige}] = \frac{\binom{6}{6}\binom{43}{0}}{\binom{49}{6}} = \binom{1}{49}$$