Connectivity Verification: Mathematical Rules and Procedures

1 Notation

- Multiset of atoms: $A = \{a_1, \dots, a_n\}$; element symbol of a_i is e_i .
- Heavy atoms: $H = \{i : e_i \neq H\}, n_h = |H|.$
- Count of element $E: N_E = |\{i : e_i = E\}|.$
- Base valence $v_0(E)$ for $E \in \{H,C,N,O,F,Cl,Br,I,P,S,B,Si,Ge,As,Se,Te\}$ as in Table 1.
- Net skeleton charge parameter (after salt handling): $Q \in \mathbb{Z}$.
- Degree/bond multiplicity on heavy pair (i, j): $m_{ij} \in \{0, 1, 2, 3\}$, symmetric, with $m_{ij} = 0$ if not used.
- Halogen set: $\mathcal{X} = \{F,Cl,Br,I\}.$

Table 1: Base valence used by the verifier.

2 DBE (Double Bond Equivalents)

Let

$$s = \sum_{E} N_E (v_0(E) - 2).$$

The verifier uses an integer, charge-aware DBE:

DBE =
$$1 + \frac{s+Q}{2}$$
 interpreted as integer via $1 + \left| \frac{s+Q}{2} \right|$

(equivalently 1 + (s + Q)/(2).

3 Pair Capacities

Bond multiplicity cap $c(e_i, e_j) \in \{0, 1, 2, 3\}$:

$$c(e_i, e_j) = \begin{cases} 0, & e_i, e_j \in \mathcal{X} \\ 1, & |\{e_i, e_j\} \cap \mathcal{X}| = 1 \\ 1, & \{e_i, e_j\} = \{\text{O,O}\} \\ 3, & \{e_i, e_j\} \in \{\{\text{C,C}\}, \{\text{C,N}\}, \{\text{N,N}\}\} \\ 2, & \{e_i, e_j\} \in \{\{\text{C,O}\}, \{\text{N,O}\}, \{\text{S,O}\}\} \\ 2, & \text{otherwise.} \end{cases}$$

The π capacity is $c_{\pi}(e_i, e_j) = \max\{0, c(e_i, e_j) - 1\}$

4 Rung Weights and Rulesets

Define a rung value $\nu(E)$ from atomic mass m(E) (in u):

$$\nu(E) = 3 + 13 \frac{\ln\left(\frac{m(E) \cdot 931.49410242}{0.51099895}\right)}{\ln(105.6583755/0.51099895)}.$$

Gaussian kernel on $d = |\nu(e_i) - \nu(e_j)|$:

$$K(d) = W_0 e^{-(d/\sigma_0)^2} + W_1 e^{-(d-\Delta_1)^2/2\sigma_1^2}$$

with $W_0=1.124462$, $W_1=1.551250$, $\sigma_0=0.9$, $\sigma_1=1.2$, $\Delta_1=6.5$.

For each pair (i, j) the σ and π weights are:

$$(w_{ij}^{\sigma}, w_{ij}^{\pi}) = \begin{cases} (K, \alpha_{\pi}K) & \text{RS1} \\ (K, \alpha_{\pi} \gamma_{ij}K) & \text{RS2, with } \gamma_{ij} = 1.35 \text{ if } \{e_i, e_j\} = \{\text{C,O}\} \text{ else } 1 \\ (K + \delta_{ij}^{\sigma}, \alpha_{\pi} (K + \delta_{ij}^{\pi})) & \text{RS3} \end{cases}$$

where for RS3, letting $L(d) = e^{-(d/0.80)^2}$ and χ_{ij} true if $\{e_i, e_j\} \in \{\{C, C\}, \{C, N\}\},$

$$\delta_{ij}^{\sigma} = \begin{cases} 0.20 L(d) & \chi_{ij} \\ 0 & \text{else} \end{cases}, \qquad \delta_{ij}^{\pi} = \begin{cases} 0.10 L(d) & \chi_{ij} \\ 0 & \text{else.} \end{cases}$$

5 Dynamic Valence Assignment (Heavy Atoms)

Let DBE be as above, and let $H = N_H$. Over heavy indices $i \in H$:

$$\sum_{i \in H} v_i = H + 2 DBE + 2 (n_h - 1).$$

Start with $v_i = v_0(e_i)$ and raise minimally by these promotions until the identity holds:

- (a) $N: 3 \to 4$ as needed,
- (b) $P: 3 \to 4$, then $4 \to 5$ if still needed,
- (c) $S: 2 \to 3$, then (only if large residual) up to 6 in unit steps.

6 Graph Construction

6.1 Phase 1: Core Tree + Halogens

- 1. Build candidate heavy-heavy pairs with caps $c(\cdot,\cdot)$ and weights w^{σ}, w^{π} .
- 2. Core set $H_{\text{core}} = \{i \in H : e_i \notin \mathcal{X}\}$. Run a maximum-weight spanning tree (Kruskal) on H_{core} using w^{σ} , under degree constraints $\deg(i) \leq v_i$. If impossible, fail with tree_disconnected.
- 3. If DBE > 0, reserve \leq 2 disjoint core—core edges with highest w^{π} (1 unit headroom on both ends).
- 4. Attach each halogen $h \in H \setminus H_{\text{core}}$ as a leaf to the best core neighbor by (available capacity, w^{σ}).

6.2 Phase 2: Spend DBE (Merged Greedy)

Let current multiplicities $m_{ij} = 1$ on tree edges and 0 elsewhere. Headroom per node i is $r_i = v_i - \deg(i) - \pi_i$ (with $\pi_i = \sum_j \max(0, m_{ij} - 1)$).

- 1. Maintain two streams:
 - extra- σ : non-tree pairs (i,j) with $m_{ij}=0$ (costs 1 headroom each end, adds one cycle),
 - π -tickets: on each used edge (i, j), up to $c_{\pi}(e_i, e_j)$ increments (costs 1 headroom each end, increases π).
- 2. While remaining DBE > 0: pick the feasible item with larger weight between next best extra- σ (w^{σ}) and next best π -ticket (w^{π}); apply it and update headrooms. If neither feasible exists, fail with dbe_unspendable.

7 Verification Conditions

Given multiplicities m_{ij} over heavy pairs:

- (V1) (No H edges) $m_{ij} = 0$ if $e_i = H$ or $e_j = H$.
- (V2) (Caps) $m_{ij} \leq c(e_i, e_j)$ for all i < j.
- (V3) (Hydrogen slack identity) For each heavy i,

$$h_i = v_i - \deg(i) - \pi_i \ge 0, \quad \sum_{i \in H} h_i = N_{\mathrm{H}}.$$

- (V4) (Connectivity) The heavy subgraph is connected if $n_h \geq 2$.
- (V5) (DBE equality) Let $Y = \#\{(i,j) : m_{ij} \ge 1\}$ and $\Pi = \sum_{i < j} \max(0, m_{ij} 1)$. Then

$$\Pi + (Y - n_h + 1) = DBE.$$

8 Salt & Charge Handling (Deterministic Rules)

8.1 Parsing Charge

From a formula suffix (e.g. +2, -, +++), set initial Q accordingly.

8.2 Spectator Cations

Remove {Li,Na,K,Rb,Cs,Ca,Mg} from A and add their positive charge to Q:

$$Q \leftarrow Q + N_{\text{Li}} + N_{\text{Na}} + \dots + 2N_{\text{Ca}} + 2N_{\text{Mg}}.$$

8.3 Transition/Rare Metals

Remove all TMs from A; estimate counter-anion units needed per metal (typ. 2 for Pt/Pd/Ni/Fe/Co/Ru/Rh/Os/Ir; 1 for Au/Ag/Cu), and remove that many halides (priority I>Br>Cl>F) or common anions (BF₄, NO₃, PF₆, AsF₆, SbF₆, ClO₄, ReO₄, CF₃SO₃, HPO₄²⁻, SO₄²⁻, H₂PO₄, HSO₄, OH⁻), adding their charge to Q. If insufficient anions were found, carry the residual as charge in Q.

8.4 Hydrogen-Balance Fix

On the cleaned core (no spectator cations/TMs; halogens retained), recompute DBE with current Q and assign v_i . Compute

$$H_{\text{need}} = \sum_{i \in H} v_i - 2 \,\text{DBE} - 2 \,(n_h - 1),$$

then add/remove hydrogens to A so that $N_{\rm H} = H_{\rm need}$.

Parity nudge: If $H_{\text{need}} - N_{\text{H}}$ has nonzero parity (or small magnitude), adjust Q by ± 1 or $\pm 2k$ (bounded) to match parity before final H-fix.

8.5 Early Inorganic/Salt Accept (DBE=0)

Accept immediately (skip graphing) as a salt with DBE=0 if any of the following holds:

- no carbon; or non-halogen non-metal organic core size ≤ 2 ;
- small CHO alkali salt: only {C,H,O} plus alkali/alkaline, no halogens, no TMs;
- polyoxo-alkali: ≥ 1 alkali and many O with P/S present; or ≥ 2 alkali with moderately many O and P/S present;
- very halide-rich ion pair: ≥ 6 total halides and no O/P/S;
- aurate-like salts: Au present with alkali and at least 4 of O+S.

9 Determinism

All sorts are by weight with stable tie-breaking on (w, i, j) lexicographic order. Reservations consume headroom one unit at endpoints but do not add m_{ij} .

10 Parameters

Unless specified: RS3, $\alpha_{\pi}=1.15$, reservation ≤ 2 , kernel constants as above.