

Machine Learning Course - CS-433

Expectation-Maximization Algorithm

Nov 26, 2020

changes by Martin Jaggi 2020, 2019, changes by Rüdiger Urbanke 2018, changes by Martin Jaggi 2016, 2017 © Mohammad Emtiyaz Khan 2015

Last updated on: November 24, 2020

Motivation

Computing maximum likelihood for Gaussian mixture model is difficult due to the log outside the sum.

EM algorithm: Summary

Start with $\boldsymbol{\theta}^{(1)}$ and iterate:

1. Expectation step: Compute a lower bound to the cost such that it is tight at the previous $\boldsymbol{\theta}^{(t)}$:

$$\mathcal{L}(\boldsymbol{\theta}) \geq \underline{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$$
 and $\mathcal{L}(\boldsymbol{\theta}^{(t)}) = \underline{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}).$

2. Maximization step: Update θ :

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \underline{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}).$$

Concavity of log

Given non-negative weights q s.t. $\sum_{k} q_k = 1$, the following holds for any $r_k > 0$:

$$\log\left(\sum_{k=1}^{K} q_k r_k\right) \ge \sum_{k=1}^{K} q_k \log r_k$$

The expectation step love bout to & (0)

with equality when,

$$q_{kn} = rac{oldsymbol{\pi_k^{\prime\prime}}\mathcal{N}(\mathbf{x}_n|oldsymbol{\mu_k^{\prime\prime}},oldsymbol{\Sigma_k^{\prime\prime}})}{\sum_{k=1}^K oldsymbol{\pi_k^{\prime\prime}}\mathcal{N}(\mathbf{x}_n|oldsymbol{\mu_k^{\prime\prime}},oldsymbol{\Sigma_k^{\prime\prime}})}$$

This is not a coincidence.

- · lower bound /
- Coincidy at $\theta = \theta^{(4)}$

$$\mathcal{L}_{n}\left(\theta, \theta^{(t)}\right) \stackrel{?}{=} \mathcal{L}_{n}(\theta^{(t)})$$

$$= \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{N}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{N}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{N}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{H}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \right)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{H}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{H}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \right)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{H}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{H}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_{n}} \right)}_{\mathbf{X}_{n}} \underbrace{\left(\frac{\mathcal{H}_{n}}{\mathcal{H}_{n}} \mathcal{H}(\mathbf{x}_{n}, ...)}_{\mathbf{X}_$$

The maximization step

Maximize the lower bound w.r.t. $\boldsymbol{\theta}$.

$$\begin{split} \boldsymbol{\mu}_k^{(t+1)} &:= \frac{\sum_n q_{kn}^{(t)} \mathbf{x}_n}{\sum_n q_{kn}^{(t)}} \\ \boldsymbol{\Sigma}_k^{(t+1)} &:= \frac{\sum_n q_{kn}^{(t)} (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)})^{\top}}{\sum_n q_{kn}^{(t)}} \end{split}$$

For π_k , we use the fact that they sum to 1. Therefore, we add a Lagrangian term, differentiate w.r.t. π_k and set to 0, to get the following update:

$$\pi_k^{(t+1)} := \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{want:} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

$$= \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)} \qquad \text{maxin'a.} \qquad \underbrace{\sum_n \mathbb{I}_n}_{k} = 1$$

Summary of EM for GMM

Initialize $\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)}, \boldsymbol{\pi}^{(1)}$ and iterate between the E and M step, until $\mathcal{L}(\boldsymbol{\theta})$ stabilizes.

1. E-step: Compute assignments $q_{kn}^{(t)}$:

E-step: Compute assignments
$$q_{kn}^{(t)}$$
:
$$q_{kn}^{(t)} := \frac{\pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}{\sum_{k=1}^K \pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}$$
Compute the marginal likelihood (cost)

2. Compute the marginal likelihood (cost).

$$\mathcal{L}(\boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})$$

3. M-step: Update $\boldsymbol{\mu}_k^{(t+1)}, \boldsymbol{\Sigma}_k^{(t+1)}, \boldsymbol{\pi}_k^{(t+1)}$.

M-step: Update
$$\boldsymbol{\mu}_k^{(t+1)}, \boldsymbol{\Sigma}_k^{(t+1)}, \boldsymbol{\pi}_k^{(t+1)}$$
.

$$\boldsymbol{\mu}_k^{(t+1)} := \frac{\sum_n q_{kn}^{(t)} \mathbf{x}_n}{\sum_n q_{kn}^{(t)}}$$

$$\boldsymbol{\Sigma}_k^{(t+1)} := \frac{\sum_n q_{kn}^{(t)} (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)})^\top}{\sum_n q_{kn}^{(t)}}$$

$$\boldsymbol{\pi}_k^{(t+1)} := \frac{1}{N} \sum_n q_{kn}^{(t)}$$
points as just to k

If we let the covariance be diagonal i.e. $\Sigma_k := \sigma^2 \mathbf{I}$ then EM algorithm is same as K-means as $\sigma^2 \to \overline{0}$.

Figure 1: EM algorithm for GMM

Posterior distribution

EM in general

Given a general joint distribution $p(\mathbf{x}_n, z_n | \boldsymbol{\theta})$, the marginal likelihood can be lower bounded similarly:

The EM algorithm can be compactly

written as follows: nide with
$$m{\mathcal{E}}$$
 $m{ heta}^{(t+1)} := rg \max_{m{ heta}} \sum_{n=1}^N \mathbb{E}_{p(z_n|\mathbf{x}_n,m{ heta}^{(t)})} ig[\log p(\mathbf{x}_n,z_n|m{ heta})ig]$

Another interpretation is that part of the data is missing, i.e. (\mathbf{x}_n, z_n) is the "complete" data and z_n is missing. The EM algorithm averages over the "unobserved" part of the data.