Exercícios Tema 2 - N126

Ano Letivo 2017/2018

- 1. Considere o seguinte algoritmo:
 - 1) Dados iniciais: intervalo [a,b] e precisões $arepsilon_1$ e $arepsilon_2$
 - 2) Se $(b-a)<arepsilon_1$, então escolha x qualquer do intervalo [a,b] .
 - se $|f(a)|<arepsilon_2$ ou se $|f(b)|<arepsilon_2$ escolha a ou b, respetivamente. FIM.
 - 3) k=1
 - 4) M=f(a)
 - 5) x=(a*f(b)-b*f(a))/(f(b)-f(a))
 - 6) Se $|f(x)| < \varepsilon_2$, escolha esse x. FIM.
 - 7) Se M*f(x)>0, faça a=x. Vá para o passo 9.
 - 8) b=x
 - 9) Se (b-a) $<\varepsilon_1$, então escolha x qualquer do intervalo [a,b]. FIM
 - 10) k=K+1.Volte ao passo 5.
 - (a) Que método está a ser implementado neste algoritmo?
 - (b) Como seriam as primeiras iterações deste método aplicado a f(x) = xlog(x) 1, sabendo que esta tem pelo menos uma raiz no intervalo [2, 3]?
 - (c) Implemente este código em Octave e obtenha os mesmos valores da alínea anterior.
- 2. Considere a equação $x^5 + x^3 + 123x 247 = 0$
 - (a) Usando considerações de ordem gráfica, determine o número de raízes imaginárias da equação.
 - (b) Prove que existe uma e uma só raiz em $x \in [1, 2]$.
 - (c) Usando o método da bissecção, determine uma aproximação da raiz real da equação, com um erro absoluto inferior a 0.005.
- 3. Considere a equação $111x e^{x-1} + 1 = 0$
 - (a) Efetue a separação e contagem das raízes reais de equação.
 - (b) Usando o método da bissecção, determine um valor aproximado da maior raiz, com erro absoluto não excedendo 0.05.

- (c) Estabeleça a garantia de convergência do método de Newton-Raphson no intervalo [7.7, 7.8], indicando o extremo favorável para iniciar o algoritmo.
- (d) Faça iterações pelo método da secante até esbilizarem 9 casas decimais; determine um majorante para o erro de aproximação da maior raiz e o número de algarismos significativos.
- 4. Considere a equação $ln(x+1) \frac{3}{x+2} = 0 (x > -1 \land x \neq 2)$
 - (a) Efetue a separação e contagem das raízes reais da equação.
 - (b) Usando o método da bisseção, determine, com dois algarismos significativos, um valor aproximado da maior raiz.
 - (c) Determine um valor aproximado da maior raiz, pelo método de Newton-Raphson, iterando, até estabilizar sete casas decimais.

Soluções:

- 1. Falsa Posição; $x_0=2.4798,\ f(x_0)=-0.0219,\ x_1=2.5049$ e $f(x_1)=-0.0011$
- 2. 4; 1.805.
- 3. duas raízes; 7.75 \pm 0.05; 7.8; 7.759624480, 1.1 $\times\,10^{-10}$ e 10 algarismos.
- 4. 2 raízes, $x_1 < 0$ e $x_2 > 2$; 3.85; 3.8901046.