1 Task 1

1.1 Introduction

The ANSI/ASHRAE Standard defines a series of test procedures that can be employed to evaluate the capability of programs. The purpose of tests is trying to identify the algorithmic differences, coding errors and modelling limitations of a tested software by comparing the predictions with its peer programs(ASHRAE, 2017). Aside from 8 official data provided by ASHRAE, this report will integrate extra three published result, namely EnergyPlus8.4, DesignBuilder4.2 and ApacheSim2015. The aim of this report is to validate two programs including EnergyPlus8.9 and DesignBuilder5.5 by referring to total 11 officially published results. Each program is tested with two cases, namely Base Case 600 and Free-float basic test Cases 600FF.

1.2 Methodology and assumptions

The universal input parameters are obtained from ASHRAE, however modifications are necessary due to the different algorithm of each program. A simple sensitivity analysis will be conducted to spot out the most influential factors for decision making. To confirm the validity of tested programs using Case 600, hourly heating and cooling loads are simulated. A comparative evaluation is performed to verify if the annual energy and peak loads are compatible with the official data. Additionally, the annual incident solar radiation is collected and compared to assess the program's capability of processing the site characteristics. Concerning the Case 600FF, the minimum, maximum and average free-floating temperature are comparatively evaluated. The temperature variation at 4th Jan. is plotted to understand how EnergyPlus8.9 and DesignBuilder5.5 cope with the large outside temperature variations. The global workflow is concisely documented and shown in the schematic.

Figure 1 Schematic of workflow

1.2.1 Case 600(FF) Settings

Figure 2 illustrates the form of base case 600(FF), which is a single-zone rectangular building with no interior partitions. The dimension is 8x6x2.7m with two windows(3x2m) placed on the south exposure. The construction is lightweight, ideal HVAC system with 100% efficiency and infinite capacity limit. 200W internal gains and 0.5 ach infiltration is set to be always on, thermostat is introduced to keep the space between 20°C-27°C. The weather file informs a series of climate data at Denver-Stapleton (Latitude: 39.76°, Longitude: -104.86°). More construction characteristics and details are displayed in the following tables. Note that the green fill stands for No Uncertainty, yellow for Low Uncertainty, brown for Medium Uncertainty and red for High Uncertainty.

Figure 2-Case 600(FF) Geometry

Table 1- Opaque Elements Properties

				Opaqu	e Elements P	roperties		•	_
	k (W/mK)	Thickness (m)	U (W/m ² K)	R (m ² K/W)	Density (kg/m ³)	Cp (J/ kg K)	Area (m²)	Source	Notes
Exterior wall (in:	side to outs	ide)					63.6		
Int surf coeff			8.29	0.121					Unused, See Note 1
Plasterboard	0.16	0.012	13.333	0.075	950	840			
Fiberglass quilt	0.04	0.066	0.606	1.65	12	840			
Wood siding	0.14	0.009	15.556	0.064	530	900			
Ext surf coeff			29.3	0.034					Unused, See Note 1
Total air+air			0.514	1.944					
Total surf surf			0.559	1.789					
Floor (inside to	outside)						48		
Int surf coeff			8.29	0.121					Unused, See Note 1
Timber flooring	0.14	0.025	5.6	0.179	650	1200		Coursework	
Insulation	0.04	1.003	0.04	25.075				Brief	Thermal Decouple, See Note 2
Total air+air			0.039	25.374					
Total surf surf			0.04	25.254					
Roof (inside to c	utside)						48		
Int surf coeff			8.29	0.121					Unused, See Note 1
Plasterboard	0.16	0.01	16	0.063	950	840			
Fiberglass quilt	0.04	0.1118	0.358	2.794	12	840			
Wood siding	0.14	0.019	7.368	0.136	530	900			
Ext surf coeff			29.3	0.034					Unused, See Note 1
Total air+air			0.318	3.147					
Total surf surf			0.334	2.992					

Note 1: The convective and radiative surface properties were not used in either in EnergyPlus nor DesingBuilder. Those surface properties could be neglected if the programs automatically account for air film effect (U.S. Department of Energy, 2015).

Note 2: The floor insulation has been made very thick to effectively decouple the floor thermally from the ground that helps to largely eliminate the uncertainty associated with heat transfer with ground(ASHRAE, 2017). EnergyPlus 8.9 treats floor as "NoMass" object that essentially reduce the uncertainty of the heat transfer with ground.

The detailed window properties can be found in Appendix A. Case 600FF is built based on Case 600 sharing the same parameters exhibited above. The only difference is that the heating and cooling system is switched off.

1.2.2 Case 600(FF) Modelling Notes

Table 2-EnergyPlus Modelling Information

	Ener	gyPlus Modeling No	tes
Objects	Value	Source	Comments
Simulationcontrol	Run simulation for weather file run period	EDE_EnergyPlus_Guide_2 018	HVACTemplate:Zone:IdealLoadsAirSystem is applied offering infite conditioning capacity, no sizing required and check simulation for weather only (EDE pp15)
Terrain	Country	Google Map	Flat, Open Country, observed from google map satllite using given coordinates
Loads Convergence Tolerance Value	0.039999999	EnergyPlus_ASHRAE140- Envelope-8.4.0	Default 0.04, no HVAC sizing required, the loads convergence is less important
Temperature Convergence Tolerance Value	0.0040000002	EnergyPlus_ASHRAE140- Envelope-8.4.0	Default 0.4 in two tested programs, marginal tolerences in this case (0.004) are allowed for max and min temperature convergence for better result accuracy, Medium uncertainty
Solar distribution	MinimalShado wing	EnergyPlus I/O	No exterior shadowing devices such as overhang in Case 600 (EnergyPlus ASHRAE use FullInteriorAndExterior)
ShawdowCalculation	AverageOverD aysInFrequenc y	EnergyPlus I/O	TimestepFrequency method is only chosen for dynamic fenestration and shades
SurfaceConvectionAlgorithm:Inside	TARP	EnergyPlus_ASHRAE140- Envelope-8.4.0	The TARP model correlates the heat transfer coefficient to the temperature difference for various orientations. Indeed, the temperature at different orientation is different due to the change of sun position and the amount of solar radiation entering due to fenestration arrangement
SurfaceConvectionAlgorithm:Outside	DOE-2	EnergyPlus_ASHRAE140- Envelope-8.4.0	DOE-2 can measure both rough (wall) and smooth (glass) surfaces. (Engineering reference pp96) Therefore, using DOE-2 is appropriate here
HeatBalanceAlgorithm	ConductionTra nsferFunction	EnergyPlus I/O	The specification provided does not indicate a moisture material property information and it is assumed to discount moisture storage or diffusion in construction element, choosing ConductionTransferFunction instead of MoisturePenetrationDepthConductionTransferFunction
Timestep	4	EnergyPlus_ASHRAE140- Envelope-8.4.0	Results are reported hourly, simulation is done every 15min
Internal Gains	OtherEquipme nt	/	Constant 200W, 100%sensible, 0% latent. 60%radiative, 40%convective, assume all internal gains are produced by otherequipment, which uses always on schedule. Additionally, it does not follow the FAQ which spreads the gains to people and equipment

Table 3-DesingBuilder Modelling Information

	Design	Builder Modeling N	otes
Objects	Value	Source	Comments
Exposure to wind	3-Exposed	DesignBuilder_v4.2_ASHR AE140_2	Accounting for convection heat transfer for all external surfaces and hence the U-value of construction
Use daylight saving	Unchecked	DesignBuilder Help	The clock moves forward one hour in the summer months to model the daylighting, uncheck this to obtain more accurte data without savings
Ground and soil construction	Undefined	DesignBuilder_v4.2_ASHR AE140_2	It is defined in DB paper but not available in our version at Location tab, uncertainty
Geometry	8x6x2.7	ANSI/ASHRAE Standard 140-2017	8x6x2.7m was drawn for this report which is an uncertainty, because DesignBuilder draws the out envelop. To account fot the wall thickness, it is recommended to draw the geometry 8.2x6.2x2.7
Outside solar reflectance	0.075	DesignBuilder_v4.2_ASHR AE140_2	0.07846 in Energyplus, 0.075 for the DesingBuilder is instructed by the source. This difference will give rise to uncertainty to some extent
Inside solar reflectance	0.075	DesignBuilder_v4.2_ASHR AE140_2	0.07846 in Energyplus, same as above
Outside emissivity	0.9	DesignBuilder_v4.2_ASHR AE140_2	0.84 in Energyplus, same as above
Inside emissivity	0.9	DesignBuilder_v4.2_ASHR AE140_2	0.84 in Energyplus, same as above
HVAC	Simple HVAC system	DesignBuilder_v4.2_ASHR AE140_2	Simple HVAC is equivalent to ideal loads template where cooling and heating are infinite
Roughness	Rough	/	All assume to be rough
Process Gain	On	DesignBuilder_v4.2_ASHR AE140_2	Internal gain is expressed in form of process gain, given the floor area 48m2, the power density should be 4.16667w/m2.
Timestep	4	/	6 was used by DesignBuilder_Ashrae
Solar distribution	MinimalShado wing	1	FullInterior And Exterior on Design Builder_Ashrae, Medium uncertainty
Loads Convergence Tolerance Value	0.039999999	/	0.04 on DesignBuilder_Ashrae
Temperature Convergence Tolerance	0.0040000002	/	0.4 on DesignBuilder_Ashrae

1.2.3 Sensitivity analysis

Table 4 shows a simple local sensitivity analysis to locate the most influential factor among those highlighted with medium to high uncertainties. The total energy is the reference point for comparison.

	Simple sensitivity analysis								
		x +	x-	Total Energy + (MWh)	Total Energy - (MWh)	ΔEnergy	Rank		
	Temperature								
	Convergence	0.4	0.004	11.276	11.276	0	2		
EnergyPlu	Tolerance Value								
s	Solar	FullInteriorAndEx teriorWithReflect	MinimalShado	11.192	11.276	0.084	1		
	distribution	ions	wing	11.192	11.276	0.084	1		
	Temperature								
DesignBui	Convergence	0.4	0.004	12.122	12.122	0	2		
•	Tolerance Value								
lder	Solar	FullInterior And Ex	MinimalShado	12.106	12.122	0.016	1		
	distribution	terior	wing	12.106	12.122	0.010	1		

1.3 Results and discussion

The results of EnergyPlus, DesignBuilder, and ApacheSim are graphically presented in Appendix B. It is noted that the Designbuider5.5(Figure6), tested by the modeler gives 6.039MWh while the official data from DesignBuilder4.2 indicates a cooling around 6.71MWh. The difference is likely associated with the "Groundandsoilconstruction" and the "Geometry". Although the former option is undefined and the connection to the cooling demand remains uncertain, the geometry does induce some influences on the cooling energy. DesignBuilder treats the geometry as outer layer, thus it underestimates the conditioned area leading to less cooling consumption. The similar deviation also happens to the peak cooling(Figure8). Regarding the Annual Incident Solar Radiation(Figure9), two tested programs perform consistently well. However, one discrepancy is observed on the West façade where two tested programs along with DesingBuilder4.2 give 1040kWh/m², but EnergyPlus8.4 shows 1000kWh/m². The difference is likely happened due to the "Solar distribution", this report selected "MinimalShadowing" but the input in the EnergyPlus8.4 is unavailable. One thing for certain is that that "Solar distribution" does have some influences on the energy consumption based on the sensitivity analysis. Furthermore, the temperature variation on 4th Jan. for Case 600FF(Figure 13) worth interpretations. The temperature for all programs including the officially published results at 9am is approximate -14°C. However, the temperature at 4pm ranges from 28.97°C(TASE) to 35.51°C(ESP), averaged to 31.77°C. The examined program EnergyPlus8.9 shows 32.45°C while DesignBuilder5.5 gives 29.26°C. One interpretation is that different programs are computed differently to take account of the thermal mass. It has been observed that the diurnal range is large, thermal mass plays a crucial role to transfer the energy. Programs start with similar point at 9am, then after 7 hours to 4pm, the thermal mass effect is calculated by each individual program leading to different inside temperature.

1.4 Conclusion

Although the difference exists, they do not indicate any modelling limitations in the tested programs. A sensitivity analysis was conducted which is too simple to reflect the genuine uncertainties, for instance, two values are assigned to calculate the energy instead of using the statistical distribution. Generally, EnergyPlus8.9 performs better than DesignBuilder5.5, "Goundandsoilconstruction" and "Geometry" is responsible for that gap. Moreover, it remains unclear that the geometry affects the cooling energy, but why the heating is consistent? The official EnergyPlus8.4 yields 1000W/m2 on West façade, the detailed inputs for this should be investigated and prove the accuracy of hypothesis made. Finally, the input errors by modeler are not fully eliminated that may affect the quality of results.

2 Task 2

2.1 Introduction

Task 2 moves to the parametric analysis using jEPlus and sensitivity analysis with the aid of Simlab. jEPlus considerably increases the efficiency of simulation, achieved by setting a range for interested parameters that will be run automatically in EnergyPlus instead of adjusting each parameter manually. The result obtained can be sorted and help to identify the minimum energy consumption option. Moreover, the results from jEPlus could be processed in the Simlab, which is a powerful tool to analyse the sensitivity of inputs, such that the most sensitive input worth more careful evaluation.

jEPlus

2.2 Methodology and assumptions

The internal gain 200W, originally assumed in the "OtherEquipment" field, is transferred to the "Light" object. The intention of this reassignment ensures the integrity of Case 600 with constant 200W internal gains and creates a variation of electricity consumption profile, which is dominated by the availability of daylight. The maximum and minimum energy consumption for each type is tabulated and discussed accompany with the corresponding inputs. Additionally, multi-regression analysis is conducted to find the connection between the total energy and input parameters that can be employed to roughly estimate the total energy conveniently in the future.

2.3 Result and discussion

A full-factorial parametric simulation was performed accounting for the influences of Terrain, Building Orientation, Insulation Thickness, and the Overhang Depth. The Sensible heating and cooling loads, district energy and electricity consumption are computed.

7D 1 1	_	TDI		1	1.
Table	5-	1EPlus	simu	lation	result

		Тур	es of Energy Co	onsumpt	ion in Differe	nt Cases	
		Energy (J)	Energy (MWh)	Terrain	Orientation (°)	Insulation thickness (m)	Overhang depth (m)
Zone Sensible	Max	1.07E+10	2.968	City	270	0.175	0.5
Cooling Energy	Min	1.68E+09	0.467	Country	180	0.05	2
Zone Sensible	Max	2.41E+10	6.686	Country	180	0.025	2
Heating Energy	Min	4.2E+09	1.167	City	0	0.175	0.5
Electricity:Facility	Max	4.66E+09		/	180	/	2
Electricity:racility	Min	4.3E+09		/	90	/	0.5
DistrictHeating:Faci	Max	2.41E+10		Country	180	0.025	2
lity	Min	4.2E+09		City	0	0.175	0.5
DistrictCooling:Facil	Max	1.09E+10		City	270	0.175	0.5
ity	Min	1.74E+09		Country	180	0.05	2
Total	Max	3.05E+10		Country	180	0.025	2
iotai	Min	1.44E+10		Country	0	0.175	1.5

Table 5 is a truncated version of the summary table (Appendix C) since there are more than one max and min value for electricity consumption. The rationale behind is that the electricity, consumed by the lighting appliances, depends solely on the overhang depth, which affects the obtainability of daylight. Only four values, namely 0.5m, 1.0m, 1.5m, 2.0m for the overhang depth, the electric consumption keep repeating and create a bunch of max and min results. Besides, because only one zone exits, the district energy, and zone energy are pretty much the same. More explicitly, both max and min values are the same for the heating energy whilst the cooling part is not. Given that sensible energy is the energy used to change the temperature whereas the district energy is the sum of sensible and latent energy which accounts for both energy used to change the temperature and the phases. This means that the latent heating does not occur but latent cooling that is likely owing to the dehumidification of outside air that entering through windows or cracks to the inside conditioned room in summer. In terms of locating the min total energy consumption, the total energy contains just district heating, cooling and electricity consumption excluding the sensible energy to avoid repetition.

2.3.1 Multi-regression analysis

By learning from the existing inputs, the total energy can be explained and predicted using multi-regression analysis. In this case, the Terrain is excluded which affects the wind, hence affect the cooling and heating(Lawrence Berkeley National Laboratory, 2018). However, confirmed by the simulation results, the variation due to change of terrain is marginal and can be ignored. After implementing the regression analysis, the coefficient of determination R² indicates that 72% of response variable (total energy) can be explained. The P value of Orientation, Insulation Thickness and Overhang Depth are all less than 0.05, rejecting the nullhypothesis and they are all meaningful to predict the total energy(Frost, 2018). The function to estimate the total energy (J) is

 $\hat{E} = 2.56 \times 10^{10} + 2.14 \times 10^7 Orientation - 4.86 \times 10^{10} Insulation Thickness - 1.08 \times 10^{10} Ins$ 10⁹OverhangDepth.

Generally, it can be summarised that increasing wall azimuth leads to larger energy consumption while the increase of insulation thickness and overhang depth reduces the overall energy use.

Simlab

2.4 Methodology and assumptions

It is instructed to set the terrain as city and add extra variables, namely the ventilation and window thickness. The statistical distribution and corresponding parameters are given which are used to configure jEPlus and Simlab. The Simlab for sensitivity analysis is performed twice with extra parameters, which is identified as important factors after first simulation. The most two influential parameters are tabulated and discussed.

2.5 Result and discussion

- c1: ZONE 1 IDEAL LOADS AIR SYSTEM:Zone Ideal Loads Zone Sensible Heating Energy [J](RunPeriod)
- c2: Electricity:Facility [J](RunPeriod)
- c3: DistrictHeating:Facility [J](RunPeriod)
- c4: DistrictCooling:Facility [J](RunPeriod)

Figure 3-Simlab analysis result

It is evident that the sensible energy and district energy is nearly the same and the later analysis will focus on the district energy and electricity consumption. Visually, the most influential factor is the overhang depth, followed by the orientation for the electricity consumption (c2). The ventilation rates and insulation thickness govern the district heating (c3). In terms of the district cooling (c4), the overhang depth is the dominating factor and ventilation also plays a role. The sensitivity result is summarised in the Table 6, the Pearson correlation coefficient is also displayed for better interpretation.

Table 6-Simlab analysis result for first two influential factors

	Sensitivity analysis result								
Energy types	Energy types Most influential factor PEAR Second Influential factor PEAR								
c2: Electricity:Facility	Overhang dep.	0.7343	Orientation	0.3169					
c3: DistrictHeating:Facility	Ventilation	0.4463	Insulation	-0.284					
c4: DistrictCooling:Facility	c4: DistrictCooling:Facility Overhang dep0.664 Ventilation -0.187								

As regards the electricity usage c2, which is primarily for the lighting appliances, it is reasonable that the overhang depth and orientation are significant since they affect the daylighting. About the heating, higher ventilation rate takes more heat away resulting in higher heating demand in winter while thicker insulation keeps the room warm with less heating requirements. Apart from constant 200W internal gains, the solar gain, affected by the overhang depth, is a crucial element affecting the district cooling. Ventilation rate as the second influential factor can take away heat and help reduce the cooling requirement in summer. Furthermore, in terms of electricity consumption, it is worth running another test for the visible transmittance of glazing, which has important implications on the admittance of light. Insulation conductivity and g-value are also considered as sensitive parameters for the heating and cooling consumption. The executions are increased to 800 times. The assumptions and sensitivity analysis result are tabulated in Table 7 and Table 8 respectively.

Table 7-Assumptions for second sensitivity analysis

	Assumptions for the extra elements								
	Uniform dist	tribution		Normal di	stribution		Uniform dis	stribution	
~	Upper	0.9	Insulation conductivity	Mean	0.04	Visible transmittance	Upper	0.9	
g	Lower	0.1	insulation conductivity	Sd	0.01	Visible transmittance	Lower	0.1	
	Weight	1					Weight	1	

Table 8-Second sensitivity analysis result

	New sensitivity analysis result								
Energy types Most influential factor PEAR Second Influential factor PEAR									
c2: Electricity:Facility	Visible Trans.	-0.945	Overhang dep.	0.1911					
c3: DistrictHeating:Facility	Ventilation	0.4711	g-value	-0.38					
c4: DistrictCooling:Facility	0 ,								

It is much more cost-effective to concentrate on the window properties, such as the visible transmittance and g-value. Overhang depth has significance to the electricity and cooling energy that should be carefully designed to meet both thermal comfort and lighting requirement. Last but not least, the ventilation operates constantly at the expense of heating energy in winter. It is strongly suggested to adjust the ventilation rate seasonally to take the most of it in practice.

2.6 Conclusion

This task gives an insight that insulation thickness, which is often regarded as the most important aspect to reduce energy, is less significant in this case. This information is valuable in practice to identify the most cost-effective way to design instead of blindly using the "common" knowledge. The statistical distributions are assumed with best knowledge, it is strongly recommended to refer to literature or in-situ data for more accurate distribution types in the future study.

3 Task 3

3.1 Introduction

Task 3 is split into two sections. The first part records the necessary modifications and assumptions for three cases, namely case controlled by daylighting, automated blinds and occupant's behaviour. The simulation results are compared and discussed. The second part focuses on the optimisation of window sizes, blinds setpoints, blind g-values, and slat angles. The Reinhard model is modified from the energy perspective, the best control mode is identified and discussed.

Subtask B - Simulation

3.2 Methodology and assumptions

Case600_DDLC puts emphasis on the lighting control with the sensor in the middle of the room. The internal gain, originally assumed in the "OtherEquipment" field is transferred to the "Lighting" object with the same constant 200W. This creates a varying electricity profile due to the availability of daylight. Case600_DDLC_OBM1 tends to simulate the automated blind, the assumed setpoints for activating the blinds are 14°C and 230W/m2. This is obtained by firstly ranking 8760 temperature and solar radiation data, and then averaging the central half data for each setpoint. The average annual data (9.7°C, 270W/m2) are not employed since they are less convincible owing to the dispersed distribution. Regarding to Case600_DDLC_OBM2, the south windows are combined with the same area for the convenience of EnergyManagmentSystem, the "People" object is added.

3.3 Result and discussion

The simulation for each case was performed and the results were tabulated in Table 9.

Table 9	-Simulation	result for	three cases

	Simulation Models and Results							
Models	Description	Annual heating demand per conditioned floor area (kWh/m2)	Annual cooling demand per conditioned floor area (kWh/m2)	Annual lighting electricity demand per conditioned floor area (kWh/m2)				
Case600_DD LC	Daylight-dimming lighting control	49.9	64.09	5.52				
Case600_DD LC_OBM1	Automated blind with setpoints	55.15	23.91	5.67				
Case600_ DDLC_OBM2	Reinhart model to represent occupancy behaviour	62.94	63.42	5.54				

It is observed that the annual lighting demand is little and similar in each case. This brings about a thought that the setpoint 500 lux for lighting is consistently reached throughout the year, regardless existence of blinds. More explicitly, the sunlight is strong in the entire year and the blinds allow them to enter. The first hypothesis is confirmed by the solar radiation data in weather file that the radiation reaches 900W/m² in both summer and winter. Secondly, given the assumption that the slat is transparent, and the visible transmittance is 100% diffuse, irrespective of the solar incidence angle(Lawrence Berkeley National Laboratory, 2018). Therefore, the translucent slats allow visible light to light the room up with the constantly intense sunlight, reaching the setpoint 500 lux throughout the year.

In terms of the annual heating demand, Case 600_DDLC_OBM1 consumes more energy compared with the base case. This is likely because the blind is activated and hinder the solar gains when the setpoints are attained (14°C, 230W/m²) while the interior temperature is lower than the heating setpoint 20°C. This reveals a drawback that setting the fixed setpoints for blind can hardly be considerate for both heating and cooling periods. Case 600_ DDLC_OBM2 creates the coldest winter and uses the most heating, a potential explanation is that the blind mainly keeps closing in the winter time leading to no useful solar gains. This theory is verified in Figure 4 by outputting the beam solar radiation at the work plane. It is noticed that the beam solar radiation on desk often exceeds 50W/m² in the winter time where occupants tend to close the blinds, hence consume more heating energy.

Timestep Frequency

Figure 4-Annual BeamSolarOnDesk

In comparison with base case, the automated blinds considerably reduce the solar gains in summer, such that less cooling is required. Reinhart model requires similar amount of energy as base case which is potentially dictated by the overheating in the room due to the fact that blinds are opening all the summer (rarely exceed 50W/m²), allowing unwanted solar heat entering the room. Reinhart model does not accurately represent occupant behaviour under the given climate, some modifications of the model are expected for the further work. Optimisation will be performed to find the optimal setpoints mainly for the automated blinds and appropriate size of windows. Moreover, some adjustments of Reinhart model and other relevant factors will be attempted.

Genopt

3.4 Methodology and assumptions

South windows are combined for the sake of optimisation process. Window size will be optimised for all three cases. Blind setpoints and blind slat angles will be optimised for Case 600_DDLC_OBM1. Moreover, there is an intention to modify the Reinhart model and calculate the optimal point where people are expected to close the blind from the perspective of energy saving. Optimisation settings for each case are tabulated in Table 10.

Table 10-Optimisation parameters in Genopt

				Op	timisati	on settings			
Optimisation parameter	Setti	ings	Optimisation parameter	Sett	ings	Optimisation parameter	Setti	ings	Notes
Length of window (m)	Min Initial Max	0.2 0.2 6.5	Width of window (m)	Min Initial Max	0.2 0.2 2.2				The Z coordinate of window is fixed at 0.2m. Optimisation
,	Step	0.1	,	Step	0.1				applies to all three cases
ShadingControl:	Min	5	ShadingContro	Min	100		Min	10	Max temperature and solar
Temperature	Initial	5	l: solar	Initial	100	Blind slat angle	Initial	10	radiation is obtained from
•	Max	35	setpoint	Max	980	(°)	Max	90	weather file. Applied to Case
setpoint (°C)	Step	0.5	(W/m ²)	Step	20		Step	5	600_DDLC_OBM1
	Min	5							
Beam solar on	Initial	5							Applied to Case
desk (W/m²)	Max	90							600_DDLC_OBM2
	Step	5							

3.5 Result and discussion

Table 11-Optimised parameters for each case

Optimisation results									
	Opt_Case600_DDLC	Opt_Case600_DDLC_OBM1	Opt_Case600_ DDLC_OBM2						
Optimised window length (m)	2.97	3.58	2.81						
Optimised window width (m)	2.20	2.20	2.07						
Optimised WWR	30.3%	36.4%	26.9%						
Optimised Temperature setpoint (°C)		18.75							
Optimised solar setpoint (W/m²)		237.50							
Optimised slat angle (°)		52.20							
Beam solar on desk (W/m²)			27.50						
Annual heating per conditioned area (kWh/m2)	59.45	56.52	56.51						
Annual cooling per conditioned area (kWh/m2)	16.75	9.65	18.47						
Annual lighting per conditioned area (kWh/m2)	5.67	5.73	5.76						
Primary heating (kWh)	4565.60	4340.50	4339.98						
Primary cooling (kWh)	884.30	509.60	975.31						
Primary lighting (kWh)	897.40	907.60	912.02						
Total primary energy (kWh)	6347.30	5757.70	6227.31						

In terms of annual heating per conditioned area, there are not too many differences from the un-optimised model. On the contrary, the cooling energy has seen a substantial reduction, correctly use of blinds based on temperature and solar radiation is the most effective way to reduce energy consumption. Although lighting does not see a significant change and constitute a small amount of total energy consumption, the high conversion factor leads to high primary energy. Therefore, considering alternative energy source, such as cogeneration can effectively minimise the total primary energy consumption. The Reinhart model is optimised to 27.5 W/m2 instead of 50 W/m2. In general, the Case 600_DDLC_OBM1 is the most energy efficient model and it is suggested to have a varying setpoint programmed into an automated blind to boost the performance seasonally. However, it is not the best on in practice, because the frequent blind opening and closing mechanism may give rise to noise and high maintenance cost.

3.6 Conclusion

This work finds the optimal setting for each case and identified the best option among three. However, the optimised Reinhard, purely from the perspective of energy saving, does not necessarily means that is the point where people tend to close the blind. The occupant's behaviour is greatly associated with many uncertainties, such as human comfort and psychological factors. More occupancy models should be tested to find the most representative behaviour in future work. It is also worth to work more on how the cogeneration will affect the overall performance as an alternative energy source. Furthermore, it is suggested to conduct a sensitivity analysis prior to the optimisation that greatly helps to identify the most influential factors for energy consumption and produce more convincible optimisation result.

Appendix A: Window properties

Window properties								
Properties	Value	Units	Source	Notes				
Extinction coefficient	0.0196	/mm						
Number of panes	2							
Pane thickness	3.175	mm						
Air-gap thickness	13	mm						
Index of refraction	1.526							
Normal direct-beam transmittance through one pane	0.86156							
Thermal Conductivity of glass	1.06	W/m·K						
Conductance of each glass pane	333	W/m2·K						
Combined radiative and convective coefficient of air gap	6.297	W/m2·K	Coursework	See				
Exterior combined surface coefficient	21	W/m2·K	Brief	Note 1				
Interior combined surface coefficient	8.29	W/m2·K						
U-value from interior air to ambient air	3	W/m2·K						
Hemispherical infrared emittance of ordinary uncoated glass	0.9							
Density of glass	2500	kg/m3						
Specific heat of glass	750	J/kg·K						
Interior shade devices	None							
Double-pane shading coefficient at normal incidence	0.907							
Double-pane solar heat gain coefficient at normal incidence	0.789							

Appendix B: Task 1 simulation result for Case 600 and Case 600FF

Figure 5-Annual Heating - Case 600

BESTEST BASIC Low Mass Annual Sensible Cooling

Figure 6-Annual Sensible Cooling -Case 600

Figure 7-Peak Heating - Case 600

BESTEST BASIC Low Mass Peak Sensible Cooling Case 600 6.827 6.812 6.656 6.658 6.565 6.603 6.486 Peak Cooling (W) 6.194 6.121 5 965 6 2 DesingBuilder 4.2/DesingBuilder ApacheSim 2015/IES JUS 8.9/UCL ApacheSim 2015/IES DesingBuilder ApacheSim 2015/IES 0.000 TASE/FINLAND EnergyPlus 8.9/DCL L-BRE DOE21D/NREL SRES-SUN/NREL BLAST/US-IT ESP/DMU S3PAS/SPAIN TASE/A RE TSYS/BEL-BRE

Figure 8-Peak Sensible Cooling - Case 600

BESTEST BASIC Annual Incident Solar Radiation

Figure 9-Annual Incident Solar Radiation at Different Orientation

BESTEST BASIC Maximum Hourly Annual Temperature Free-Float Case 600FF

Figure 10-Maximum Hourly Temperature - Case 600FF

 $Figure~11\hbox{-}Minimum~Hourly~Temperature~-~Case~600FF$

Figure 12-Average Hourly Temperature - Case 600FF

BESTEST HOURLY FREE-FLOAT TEMPERATURES Clear Cold Day, Case 600FF, 4th Jan.

Figure 13-Temperature Variation at 4th JAN - Case 600FF

BESTEST HOURLY LOADS Clear Cold Day, Case 600 Heating (+), Sensible Cooling (-), 4th Jan

Figure 14-Heating/Cooling Load at 4th JAN - Case 600

Appendix C: Full jEPlus result

		Energy (J)	Energy (MWh)	Terrain	Orientation (°)	Insulation thickness (m)	Overhang depth (m
Zone Sensible	Max	1.07E+10	2.968	City	270	0.175	0.5
Cooling Energy	Min	1.68E+09	0.467	Country	180	0.05	2
Zone Sensible	Max	2.41E+10	6.686	Country	180	0.025	2
Heating Energy	Min	4.2E+09	1.167	City	0	0.175	0.5
ricuting Energy	Max	4.66E+09	1.107	Country	180	0.025	2
		4.66E+09		Country	180	0.05	2
		4.66E+09		Country	180	0.075	2
		4.66E+09		Country	180	0.1	2
		4.66E+09		Country	180	0.125	2
		4.66E+09		Country	180	0.15	2
		4.66E+09		Country	180	0.175	2
		4.66E+09		Suburbs	180	0.025	2
		4.66E+09		Suburbs	180	0.05	2
				Suburbs	180	0.05	2
		4.66E+09		Suburbs	180	0.075	2
		4.66E+09					
		4.66E+09		Suburbs	180	0.125	2
		4.66E+09		Suburbs	180	0.15	2
		4.66E+09		Suburbs	180	0.175	2
		4.66E+09		City	180	0.025	2
		4.66E+09		City	180	0.05	2
		4.66E+09		City	180	0.075	2
		4.66E+09		City	180	0.1	2
		4.66E+09		City	180	0.125	2
		4.66E+09		City	180	0.15	2
Electricity:Facility		4.66E+09		City	180	0.175	2
	Min	4.3E+09		Country	90	0.025	0.5
		4.3E+09		Country	90	0.05	0.5
		4.3E+09		Country	90	0.075	0.5
		4.3E+09		Country	90	0.1	0.5
		4.3E+09		Country	90	0.125	0.5
		4.3E+09		Country	90	0.15	0.5
		4.3E+09		Country	90	0.175	0.5
		4.3E+09		Suburbs	90	0.025	0.5
		4.3E+09		Suburbs	90	0.05	0.5
		4.3E+09		Suburbs	90	0.075	0.5
		4.3E+09		Suburbs	90	0.1	0.5
		4.3E+09		Suburbs	90	0.125	0.5
		4.3E+09		Suburbs	90	0.15	0.5
		4.3E+09		Suburbs	90	0.175	0.5
		4.3E+09		City	90	0.025	0.5
		4.3E+09		City	90	0.05	0.5
		4.3E+09		City	90	0.075	0.5
		4.3E+09		City	90	0.1	0.5
		4.3E+09		City	90	0.125	0.5
		4.3E+09		City	90	0.15	0.5
		4.3E+09		City	90	0.175	0.5
istrictHeating:Faci	Max	2.41E+10		Country	180	0.025	2
lity	Min	4.2E+09		City	0	0.175	0.5
istrictCooling:Facil	Max	1.09E+10		City	270	0.175	0.5
ity	Min	1.74E+09		Country	180	0.05	2
	Max	3.05E+10		Country	180	0.025	2
Total	Min	1.44E+10		Country	0	0.025	1.5

References

ASHRAE (2017) ANSI/ASHRAE Standard 140-2017: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, Ashrae Standard. doi: 10.1021/ja805845q.

Design Builder (2014) 'ANSI / ASHRAE Standard 140-2011 Building Thermal Envelope and Fabric Load Tests, Design Builder Version 4.2', 0. Available at: http://www.designbuilder.co.uk/.

Frost, J. (2018) *How to Interpret P-values and Coefficients in Regression Analysis*. Available at: http://statisticsbyjim.com/regression/interpret-coefficients-p-values-regression/ (Accessed: 27 December 2018).

IES (2015) 'Building Envelope and Fabric Load Tests performed on ApacheSim in accordance with ANSI/ASHRAE Standard 140-2007', (June). Available at: http://www.iesve.com/software/validation/ashrae 140-2007 iesve 6 1.zip.

Lawrence Berkeley National Laboratory (2018) 'Input Output Reference. EnergyPlus', p. 40,160,181.

Raslan, R. and Korolija, I. (2018) BENV0086 EnergyPlus Manual.

U.S. Department of Energy (2015) 'EnergyPlus 8.4.0-832e4bb9cb Testing with Building Thermal Envelope and Fabric Load Tests from ANSI/ASHRAE Standard 140-2011', pp. 1–58. doi: http://dx.doi.org/10.1016/j.radonc.2011.01.027.