# Chapter ML:II (continued)

#### II. Machine Learning Basics

- □ Rule-Based Learning of Simple Concepts
- □ From Regression to Classification
- Evaluating Effectiveness

ML:II-57 Machine Learning Basics © STEIN 2022

# Regression versus Classification

 $\ \square$  X is a multiset of p-dimensional feature vectors:

| Customer 1       |            |  |
|------------------|------------|--|
| house owner      | yes        |  |
| income (p.a.)    | 51 000 EUR |  |
| repayment (p.m.) | 1 000 EUR  |  |
| credit period    | 7 years    |  |
| SCHUFA entry     | no         |  |
| age              | 37         |  |
| married          | yes        |  |
|                  | -          |  |

| Customer n                                                                        |                                                            |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|
| house owner income (p.a.) repayment (p.m.) credit period SCHUFA entry age married | no<br>55 000 EUR<br>1 200 EUR<br>8 years<br>no<br>?<br>yes |

ML:II-58 Machine Learning Basics ©STEIN 2022

Regression versus Classification (continued)

 $\square$  *X* is a multiset of *p*-dimensional feature vectors:

| Customer 1       |            |
|------------------|------------|
| house owner      | yes        |
| income (p.a.)    | 51 000 EUR |
| repayment (p.m.) | 1 000 EUR  |
| credit period    | 7 years    |
| SCHUFA entry     | no         |
| age              | 37         |
| married          | yes        |
|                  |            |

#### Regression setting:

- ightharpoonup R is the range of the regression function.
- $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \subseteq X \times \mathbf{R}$  is a multiset of examples.

ML:II-59 Machine Learning Basics © STEIN 2022

Regression versus Classification (continued)

 $\square$  X is a multiset of p-dimensional feature vectors:

| Customer 1       |            |
|------------------|------------|
| house owner      | yes        |
| income (p.a.)    | 51 000 EUR |
| repayment (p.m.) | 1 000 EUR  |
| credit period    | 7 years    |
| SCHUFA entry     | no         |
| age              | 37         |
| married          | yes        |
|                  | -          |

| Customer n                                                                        |                                                            |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|--|
| house owner income (p.a.) repayment (p.m.) credit period SCHUFA entry age married | no<br>55 000 EUR<br>1 200 EUR<br>8 years<br>no<br>?<br>yes |  |
|                                                                                   |                                                            |  |

#### Regression setting:

- ightharpoonup R is the range of the regression function.
- $y_i$  is the ground truth of the credit line value for  $x_i$ ,  $x_i \in X$ .
- $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \subseteq X \times \mathbf{R}$  is a multiset of examples.

#### Classification setting:

- $C = \{-1, 1\}$  is a set of two classes. Similarly:  $\{0, 1\}, \{\ominus, \ominus\}, \{no, yes\}, etc.$
- $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$  is a multiset of examples.

ML:II-60 Machine Learning Basics

#### The Linear Regression Model

f a Given f x, predict a real-valued output under a linear model function:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot x_j$$

 $\Box$  Vector notation with  $x_0 = 1$  and  $\mathbf{w} = (w_0, w_1, \dots, w_p)^T$ :

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

ML:II-61 Machine Learning Basics ©STEIN 2022

The Linear Regression Model (continued)

 $\Box$  Given x, predict a real-valued output under a linear model function:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot x_j$$

 $\Box$  Vector notation with  $x_0 = 1$  and  $\mathbf{w} = (w_0, w_1, \dots, w_p)^T$ :

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

 $\Box$  Given  $\mathbf{x}_1, \dots, \mathbf{x}_n$ , assess goodness of fit as residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{i=1}^{n} (y_i - y(\mathbf{x}_i))^2 = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
 (1)

ML:II-62 Machine Learning Basics © STEIN 2022

The Linear Regression Model (continued)

 $\Box$  Given x, predict a real-valued output under a linear model function:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot x_j$$

ullet Vector notation with  $x_0=1$  and  $\mathbf{w}=(w_0,w_1,\ldots,w_p)^T$ :

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

 $\Box$  Given  $\mathbf{x}_1, \dots, \mathbf{x}_n$ , assess goodness of fit as residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{i=1}^{n} (y_i - y(\mathbf{x}_i))^2 = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
 (1)

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\operatorname{argmin}} \ \mathsf{RSS}(\mathbf{w})$$
 (2)

ML:II-63 Machine Learning Basics © STEIN 2022



- □ The RSS term quantifies the regression error—or similarly, the goodness of fit—in the form of a single value.
- RSS provides several numerical and theoretical advantages, but it is not the only possibility to assess the goodness of fit (= error) between observed values and the model function. Alternative approaches for quantifying the error include absolute residual values or likelihood estimates.
- The error computation is also called loss computation, cost computation, or generally, performance computation. Similarly, for the right-hand side of Equation (1) the following names are used: error function, loss function, cost function, or generally, performance term. Measures that quantify this kind of performance are called *effectiveness* measures. This term must not be confused with *efficiency* measures, which quantify the computational effort or runtime performance of a method.
- □ Residual ≠ Loss. Observe the subtle difference between the two concepts "residual" and "loss" (similarly: "error", "cost"). The former denotes the difference between a target value (ground truth, observation) and its estimate, whereas the latter denotes the *interpretation of this difference*.

ML:II-64 Machine Learning Basics ©STEIN 2022

Remarks (randomness and distributions):

- $\Box$  The  $y_i$  are considered as realizations of n respective random variables  $Y_i$ . Btw., do not confuse the function y() with a realization  $y_i$ .
- $\Box$  Equation (2): Estimating  $\hat{\mathbf{w}}$  by RSS minimization is based on the following assumptions:
  - 1. The probability distributions of the  $Y_i$  have the same variance.
  - 2. The expectations  $E[Y_i]$  of the  $Y_i$  lie on a straight line, known as the true (population) regression line:  $E[Y_i] = \mathbf{w}^{*T}\mathbf{x}_i$ . I.e., the relation between the  $\mathbf{x}_i$  and the observed  $y_i$  can be explained completely by a linear model function.
  - 3. The random variables  $Y_i$  are statistically independent.

These assumptions are called the *weak set* (of assumptions). Along with a fourth assumption about the distribution shape of  $Y_i$  they become the *strong set* of assumptions.

- $\Box$   $Y_i$  may also be defined as  $y(\mathbf{x}_i) + E_i$ , in which case the *disturbance term*  $E_i$  has the same distribution as  $Y_i$  but the mean 0 (while  $Y_i$  has the mean  $\mathbf{w}^T \mathbf{x}_i$ ).
- Within the classical regression setting the variable  $\mathbf{x}$ , also called regressor, is a controlled variable. I.e., its instances  $\mathbf{x}_i$ ,  $i=1,\ldots,n$ , are not considered as outcomes of a random experiment: the  $\mathbf{x}_i$  are given, chosen with intent, or constructed without any effect of chance.

Within the typical machine learning setting, the occurrence of feature vectors—more general, the sample formation process underlying X—is governed by a probability distribution: certain observations may be more likely than others, and hence each feature vector  $\mathbf{x}_i$  is considered as the realization of a random vector  $\mathbf{X}_i$ .

ML:II-65 Machine Learning Basics ©STEIN 2022

One-Dimensional Feature Space



ML:II-66 Machine Learning Basics © STEIN 2022

One-Dimensional Feature Space (continued)



ML:II-67 Machine Learning Basics ©STEIN 2022

One-Dimensional Feature Space (continued)



$$\mathsf{RSS} = \sum_{i=1}^n (y_i - y(x_i))^2$$

ML:II-68 Machine Learning Basics ©STEIN 2022

One-Dimensional Feature Space (continued)



$$y(x) = w_0 + w_1 \cdot x,$$
 RSS $(w_0, w_1) = \sum_{i=1}^{n} (y_i - w_0 - w_1 \cdot x_i)^2$ 

ML:II-69 Machine Learning Basics ©STEIN 2022

One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize  $RSS(w_0, w_1)$  via a direct method:

1. 
$$\frac{\partial}{\partial w_0} \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$

$$\Rightarrow \dots \Rightarrow w_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{w_1}{n} \sum_{i=1}^n x_i = \bar{y} - w_1 \cdot \bar{x}$$

ML:II-70 Machine Learning Basics ©STEIN 2022

One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize  $RSS(w_0, w_1)$  via a direct method:

1. 
$$\frac{\partial}{\partial w_0} \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$
  
 $\cdots \longrightarrow w_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{w_1}{n} \sum_{i=1}^n x_i = \bar{y} - w_1 \cdot \bar{x}$ 

2. 
$$\frac{\partial}{\partial w_1} \sum_{i=1}^{n} (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$

ML:II-71 Machine Learning Basics © STEIN 2022

One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize  $RSS(w_0, w_1)$  via a direct method:

1. 
$$\frac{\partial}{\partial w_0} \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$
  
 $\rightarrow \dots \rightarrow \hat{w}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{w_1}{n} \sum_{i=1}^n x_i = \bar{y} - \hat{w}_1 \cdot \bar{x}$ 

2. 
$$\frac{\partial}{\partial w_1} \sum_{i=1}^{n} (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$

ML:II-72 Machine Learning Basics © STEIN 2022

One-Dimensional Feature Space (continued)

Illustration of the task of minimizing 
$$\mbox{RSS}(\mathbf{w}) = \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
.



ML:II-73 Machine Learning Basics ©STEIN 2022

Higher-Dimensional Feature Space

Recall Equation (1):

$$\mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Let X denote the  $n \times (p+1)$  matrix where row i is the extended input vector  $(1 \ \mathbf{x}_i^T)$  with  $(\mathbf{x}_i, y_i) \in D$ .

Let y denote the *n*-vector of target values  $y_i$  in the training set D.

ML:II-74 Machine Learning Basics © STEIN 2022

Higher-Dimensional Feature Space (continued)

Recall Equation (1):

$$\mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Let X denote the  $n \times (p+1)$  matrix where row i is the extended input vector  $(1 \ \mathbf{x}_i^T)$  with  $(\mathbf{x}_i, y_i) \in D$ .

Let y denote the *n*-vector of target values  $y_i$  in the training set D.

$$\rightarrow$$
 RSS(w) = (y - Xw)<sup>T</sup>(y - Xw)

 $RSS(\mathbf{w})$  is a quadratic function in p+1 parameters.

ML:II-75 Machine Learning Basics © STEIN 2022

Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

$$\frac{\partial \operatorname{RSS}}{\partial \mathbf{w}} = -2X^T(\mathbf{y} - X\mathbf{w}) = 0, \qquad \frac{\partial^2 \operatorname{RSS}}{\partial \mathbf{w} \partial \mathbf{w}^T} = -2X^T X \quad \text{[Wikipedia 1, 2, 3]}$$

$$X^T(\mathbf{y} - X\mathbf{w}) = 0$$

$$\Leftrightarrow X^T X \mathbf{w} = X^T \mathbf{y}$$

$$\rightsquigarrow \qquad \mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

ML:II-76 Machine Learning Basics ©STEIN 2022

Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

$$\frac{\partial \operatorname{RSS}}{\partial \mathbf{w}} = -2X^T(\mathbf{y} - X\mathbf{w}) = 0, \qquad \frac{\partial^2 \operatorname{RSS}}{\partial \mathbf{w} \partial \mathbf{w}^T} = -2X^T X \quad \text{[Wikipedia 1, 2, 3]}$$

$$X^T(\mathbf{y} - X\mathbf{w}) = 0$$

$$\Leftrightarrow X^T X \mathbf{w} = X^T \mathbf{y} \qquad \text{Normal equations. [Mathworld]}$$

$$\rightsquigarrow \mathbf{w} = (X^T X)^{-1} X^T \mathbf{y} \qquad \text{If } X \text{ has full column rank } p+1.$$

Pseudoinverse of X [Wikipedia]

Normal equations. [Mathworld]

If X has full column rank p+1.

ML:II-77 Machine Learning Basics © STEIN 2022

Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

$$\frac{\partial \, \mathrm{RSS}}{\partial \mathbf{w}} = -2X^T (\mathbf{y} - X\mathbf{w}) = 0, \qquad \frac{\partial^2 \, \mathrm{RSS}}{\partial \mathbf{w} \partial \mathbf{w}^T} = -2X^T X \quad \text{[Wikipedia 1, 2, 3]}$$

$$X^T(\mathbf{y} - X\mathbf{w}) = 0$$

$$\Leftrightarrow X^T X \mathbf{w} = X^T \mathbf{y}$$

$$\sim$$
  $\hat{\mathbf{w}} \equiv \mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$ 

Pseudoinverse of X [Wikipedia]

Normal equations. [Mathworld]

If X has full column rank p+1.

$$\hat{y}(\mathbf{x}_i) = \hat{\mathbf{w}}^T \mathbf{x}_i$$
 Regression function with least squares estimator  $\hat{\mathbf{w}}$ .

$$\hat{\mathbf{y}} = X\hat{\mathbf{w}}$$
 The *n*-vector of fitted values at the training input.  
=  $X(X^TX)^{-1}X^T\mathbf{y}$ 

ML:II-78 Machine Learning Basics © STEIN 2022

#### Remarks:

- □ A curve fitting (or regression) method that is based on the minimization of squared residuals is called a *method of least squares*.
- □ Various approaches for operationalizing the method of least squares have been devised, in particular for the case of linear model functions. From a numerical viewpoint one can distinguish iterative methods, such as the LMS algorithm, and direct methods, such as solving the normal equations via computing the pseudoinverse.
- More on direct methods. While solving the normal equations is usually fast, it suffers from several deficits: it is numerically unstable and requires singularity handling. Numerically more stable and more accurate methods are based on the QR decomposition and the singular value decomposition, SVD.
- □ QR decomposition can deal with problems of up to 10<sup>4</sup> variables, provided a dense problem structure. For significantly larger problems (additional 1-2 orders of magnitudes) as well as for sparse matrices <u>iterative solvers</u> are the choice. Even larger, dense problems may be tackled with Artificial Neural Networks.

ML:II-79 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 1)

Regression learns a real-valued function given as  $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$ 



$$y(x) = (w_0 \ w_1) \begin{pmatrix} 1 \\ x \end{pmatrix}$$

ML:II-80 Machine Learning Basics © STEIN 2022

Linear Regression for Classification (illustrated for p = 1) (continued)

Binary-valued ( $\pm 1$ ) functions are also real-valued.



ML:II-81 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



ML:II-82 Machine Learning Basics © STEIN 2022

Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



The function "sign( $\mathbf{w}^T \mathbf{x}_i$ )" is likely to agree with  $y_i = \pm 1$ .

- $\Box$  Regression:  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- $\Box$  Classification:  $y(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x})$

ML:II-83 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



The function "sign( $\mathbf{w}^T\mathbf{x}_i$ )" is likely to agree with  $y_i = \pm 1$ .

- $\Box$  Regression:  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- $\Box$  Classification:  $y(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$

ML:II-84 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



The function "sign( $\mathbf{w}^T \mathbf{x}_i$ )" is likely to agree with  $y_i = \pm 1$ .

- $\Box$  Regression:  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- $\Box$  Classification:  $y(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$

ML:II-85 Machine Learning Basics © STEIN 2022

Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



- $\Box$  The discrimination point, •, is defined by  $w_0 + w_1 \cdot x' = 0$ .
- □ For p = 2 we are given a discrimination *line*.

ML:II-86 Machine Learning Basics © STEIN 2022

#### Remarks:

- (\*) We consider the feature vector  $\mathbf{x}$  in its extended form when used as operand in a scalar product with the weight vector,  $\mathbf{w}^T \mathbf{x}$ , and consequently, when noted as argument of the model function,  $y(\mathbf{x})$ . I.e.,  $\mathbf{x} = (1, x_1, \dots, x_n)^T \in \mathbf{R}^{p+1}$ , and  $x_0 = 1$ .
  - The <u>sign function</u> is three-valued, with sign(z) = -1 (0, 1) for z < 0 (z = 0, z > 0)—i.e., the case with  $\mathbf{w}^T\mathbf{x} = 0$  needs special treatment. Without loss of generality we will label y(0) with the "positive" class (1,  $\oplus$ , yes, etc.) and define sign(0) = 1 in the respective algebraic expressions.

ML:II-87 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 2)



ML:II-88 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p=2) (continued)



ML:II-89 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



$$y(x_1, x_2) = (w_0 \ w_1 \ w_2) \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}$$

ML:II-90 Machine Learning Basics © STEIN 202

Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



The function "sign( $\mathbf{w}^T \mathbf{x}_i$ )" is likely to agree with  $y_i = \pm 1$ .

- $\Box$  Regression:  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- $\Box$  Classification:  $y(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x})$

Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



The function "sign( $\mathbf{w}^T\mathbf{x}_i$ )" is likely to agree with  $y_i = \pm 1$ .

- $\Box$  Regression:  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- $\Box$  Classification:  $y(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x})$

Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



- $\Box$  The discrimination line, —, is defined by  $w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 = 0$ .
- $\neg$  For p=3 (p>3) we are given a discriminating (hyper)plane.

ML:II-93 Machine Learning Basics ©STEIN 2022

Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where  $y_i = \pm 1 \approx y(\mathbf{x}_i) \stackrel{(\star)}{=} \mathbf{w}^T \mathbf{x}_i$ .



- $\Box$  The discrimination line, —, is defined by  $w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 = 0$ .
- $\Box$  For p=3 (p>3) we are given a discriminating *(hyper)plane*.

ML:II-94 Machine Learning Basics ©STEIN 2022

#### Remarks:

- The shown figures illustrate how (linear) regression methods that are applied in the input-output space implicitly define a hyperplane in the input space.
   In general, linear regression is not the best choice to solve classification problems: imbalanced class distributions and outliers can severely impair the classification effectiveness.
- A suited regression method for classification is logistic regression, introduced in the part Linear Models, which estimates the probability of class membership. Note that also logistic regression is a linear classifier since its encoded hypothesis is a linear function in the parameters w. The shown figures illustrate how (linear) regression methods that are applied in the input-output space implicitly define a hyperplane in the input space.

An illustration of the input-output space of the logistic regression model along with the implicitly defined hyperplane is shown here.

ML:II-95 Machine Learning Basics ©STEIN 2022

#### **Linear Model Function Variants**

The components (features) of the input vector  $\mathbf{x} = (x_1, \dots, x_p)$  can stem from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as  $\log x_j$ ,  $\sqrt{x_j}$
- 3. basis expansions, such as  $x_j = (x_1)^j$
- 4. encoding of a qualitative variable  $g, g \in \{1, \dots, p\}$ , as  $x_j = \mathcal{I}(g \doteq j)$
- 5. interactions between variables, such as  $x_3 = x_1 \cdot x_2$

ML:II-96 Machine Learning Basics ©STEIN 2022

Linear Model Function Variants (continued)

The components (features) of the input vector  $\mathbf{x} = (x_1, \dots, x_p)$  can stem from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as  $\log x_j$ ,  $\sqrt{x_j}$
- 3. basis expansions, such as  $x_j = (x_1)^j$
- 4. encoding of a qualitative variable  $g, g \in \{1, \ldots, p\}$ , as  $x_j = \mathcal{I}(g \doteq j)$
- 5. interactions between variables, such as  $x_3 = x_1 \cdot x_2$

No matter the source of the  $x_j$ , the model is still linear in its parameters w:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^{p} w_j \cdot \phi_j(x_j)$$

ML:II-97 Machine Learning Basics © STEIN 2022

Linear Model Function Variants (continued)

The components (features) of the input vector  $\mathbf{x} = (x_1, \dots, x_p)$  can stem from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as  $\log x_j$ ,  $\sqrt{x_j}$
- 3. basis expansions, such as  $x_i = (x_1)^j$
- 4. encoding of a qualitative variable  $g, g \in \{1, \ldots, p\}$ , as  $x_j = \mathcal{I}(g \doteq j)$
- 5. interactions between variables, such as  $x_3 = x_1 \cdot x_2$

No matter the source of the  $x_j$ , the model is still linear in its parameters w:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot \phi_j(x_j)$$

 $oldsymbol{\square}$  linear in the parameters:  $y(\mathbf{w})$  is a linear function

ML:II-98 Machine Learning Basics © STEIN 2022

Linear Model Function Variants (continued)

The components (features) of the input vector  $\mathbf{x} = (x_1, \dots, x_p)$  can stem from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as  $\log x_j$ ,  $\sqrt{x_j}$
- 3. basis expansions, such as  $x_i = (x_1)^j$
- 4. encoding of a qualitative variable  $g, g \in \{1, \ldots, p\}$ , as  $x_j = \mathcal{I}(g \doteq j)$
- 5. interactions between variables, such as  $x_3 = x_1 \cdot x_2$

No matter the source of the  $x_j$ , the model is still linear in its parameters w:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot \phi_j(x_j)$$

- $\Box$  linear in the parameters:  $y(\mathbf{w})$  is a linear function
- basis functions: input variables (space) become(s) feature variables (space)

ML:II-99 Machine Learning Basics ©STEIN 2022

Non-Linear Decision Boundaries [logistic regression]



Higher order polynomial terms in the features (linear in the parameters):

$$y(\mathbf{x}) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_1^2 + w_4 \cdot x_2^2$$

ML:II-100 Machine Learning Basics © STEIN 2022

Non-Linear Decision Boundaries (continued) [logistic regression]



Higher order polynomial terms in the features (linear in the parameters):

$$y(\mathbf{x}) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_1^2 + w_4 \cdot x_2^2$$

ML:II-101 Machine Learning Basics © STEIN 2022

Non-Linear Decision Boundaries (continued) [logistic regression]



Higher order polynomial terms in the features (linear in the parameters):

$$y(\mathbf{x}) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_1^2 + w_4 \cdot x_2^2$$
 with  $\mathbf{w} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$   $\rightsquigarrow$   $y(\mathbf{x}) = -1 + x_1^2 + x_2^2$ 

Non-Linear Decision Boundaries (continued) [logistic regression]



Higher order polynomial terms in the features (linear in the parameters):

$$y(\mathbf{x}) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_1^2 + w_4 \cdot x_2^2$$
 with  $\mathbf{w} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$   $\rightsquigarrow$   $y(\mathbf{x}) = -1 + x_1^2 + x_2^2$  
$$\text{Classification: Predict } \begin{cases} c = 1, & \text{if } x_1^2 + x_2^2 \geq 1 & \Leftrightarrow \mathbf{w}^T \mathbf{x} \geq 0 \\ c = -1, & \text{if } x_1^2 + x_2^2 < 1 & \Leftrightarrow \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

Non-Linear Decision Boundaries (continued) [logistic regression]



More complex polynomials entail more complex decision boundaries:

$$y(\mathbf{x}) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_1^2 + w_4 \cdot x_1^2 \cdot x_2 + w_5 \cdot x_1^2 \cdot x_2^2 + \dots$$

Methods of Least Squares: Iterative versus Direct Methods

$$\underset{\mathbf{w}}{\mathsf{argmin}} \ \mathsf{RSS}(\mathbf{w}), \quad \mathsf{with} \ \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$



ML:II-105 Machine Learning Basics ©STEIN 2022

Methods of Least Squares: Iterative versus Direct Methods (continued)

$$\underset{\mathbf{w}}{\mathsf{argmin}} \; \mathsf{RSS}(\mathbf{w}), \quad \mathsf{with} \; \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$



#### LMS algorithm:

- applicable as online algorithm
- robust algorithm structure
- unsatisfactory convergence
- allows stochastic sampling



ML:II-106 Machine Learning Basics © STEIN 2022

Methods of Least Squares: Iterative versus Direct Methods (continued)

$$\underset{\mathbf{w}}{\mathsf{argmin}} \; \mathsf{RSS}(\mathbf{w}), \quad \mathsf{with} \; \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$



#### LMS algorithm:

- □ applicable as online algorithm
- □ robust algorithm structure
- unsatisfactory convergence
- allows stochastic sampling

# Adaptive $\mathbf{w}_i$ $\mathbf{w}_i$ $\mathbf{v}_i$ Unknown system $\mathbf{v}_i$ $\mathbf{v}_i$

#### Normal equations:

- needs complete data
- numerically unstable
- requires singularity handling
- hardly applicable to big data

$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T \mathbf{y}$$

ML:II-107 Machine Learning Basics

#### Remarks:

- The principle of RSS minimization is orthogonal to (= independent of) the type of the model function y(), i.e., independent of its dimensionality as well as its linearity or nonlinearity.
- To fit the parameters w of a (one-dimensional, multi-dimensional, linear, nonlinear) model function y(), both the LMS algorithm and direct methods exploit information about the derivative of the RSS term with respect to w. I.e., even if *classification* and not regression is the goal, the distance to the decision boundary (and not the zero-one-loss) is computed, since the zero-one-loss is non-differentiable.
- ullet For a linear model function y(), RSS is a convex function and hence a single, global optimum exists.
- A main goal of machine learning approaches is to avoid overfitting. Overfitting, in turn, is caused by an inadequate (too high) model function complexity—or, similarly, by insufficient data. A means to reduce the model function complexity is regularization. Both topics are treated in the part Linear Models.
- Regularization will introduce additional constraints for the model function y() or the parameter vector  $\mathbf{w}$ . With regularization the minimization expression (2) will have two summands: a performance term such as the RSS term, and a penalizing term such as a norm. As before, the first term captures the model function's goodness depending on  $\mathbf{w}$ , whereas the second term restricts the absolute values of the model function's parameters  $\mathbf{w}$ .

ML:II-108 Machine Learning Basics ©STEIN 2022

Properties of the Solution

#### **Theorem 1 (Gauss-Markov)**

Let  $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$  be a multiset of examples to be fitted with a <u>linear</u> model function as  $y(\mathbf{x}) \stackrel{(\star)}{=} \mathbf{x}^T \mathbf{w}$ . Within the class of linear <u>unbiased</u> estimators for  $\mathbf{w}$ , the least squares estimator  $\hat{\mathbf{w}}$  has minimum variance, i.e., is most efficient.

ML:II-109 Machine Learning Basics ©STEIN 2022

Properties of the Solution (continued)

#### **Theorem 1 (Gauss-Markov)**

Let  $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$  be a multiset of examples to be fitted with a <u>linear</u> model function as  $y(\mathbf{x}) \stackrel{(\star)}{=} \mathbf{x}^T \mathbf{w}$ . Within the class of linear <u>unbiased</u> estimators for  $\mathbf{w}$ , the least squares estimator  $\hat{\mathbf{w}}$  has minimum variance, i.e., is most efficient.

#### Related follow-up issues:

- $\Box$  mean and variance of  $\hat{\mathbf{w}}$
- proof of the Gauss-Markov theorem
- weak set and strong set of assumptions
- efficiency and consistency of unbiased estimators
- relation between least squares and maximum likelihood estimators / methods

ML:II-110 Machine Learning Basics © STEIN 2022

#### Remarks:

| The Gauss-Markov Theorem is important since it follows already from the weak s | et c | ) |
|--------------------------------------------------------------------------------|------|---|
| assumptions.                                                                   |      |   |

□ Under the strong set of assumptions the maximum likelihood estimates are identical to the least-squares estimates.

ML:II-111 Machine Learning Basics © STEIN 2022