Fixed-Point Number (EXERCISE)

Examples of 2's complement 11.Q15 fractions

- 0.100 0000 0000 0000 has the value 1/2
- $0.000\ 0000\ 0000\ 0001$ has the value $^{1/(2^{15})}$
- $0.111\ 1111\ 1111\ 1111\ has\ the\ value = 1-1/(2^15)$
- 1.000 0000 0000 0000 has the value -1
- 1.100 0000 0000 0000 has the value -1/2
- 1.111 1111 1111 1111 has the value -1/(2¹⁵)

More examples of 2's complement fractions

0100 0.100 0000 0000 has the value

0000 0000 00.00 0001 has the value

0111 1111 111.1 1111 has the value

1111 0000 0.010 0000 has the value

1111 1111 1111 111.1 has the value

1000 00.00 0000 0000 has the value

Two's complement for fixed point numbers

e.g. 0110.1000 which is 6.5 in decimal

How do we represent -6.5 in fixed point?

```
0110.1000

1001.0111 <---- invert bits

+ 0000.0001 <---- add .0001

Thus,

1001.0111 <---- invert bits

+ 0000.0001 <---- add .0001

1001.1000 <---- answer: -6.5 in (signed) fixed point
```

Overflow

What happens if we add two 2's complement numbers (I1.Q5) 0.75 and 0.5?

The sum is 1.25.		-0./5+0.5 =	-0./5+5
11	01	0 0	10
0.11000	0.11000	1.01000	1.01000
+1.10000	+0.10000	+0.10000	+1.10000
10.01000	01.01000	01.11000	10.11000
1 xor 1 = 0, ans = 00.010	00 0 xor 1 = 1, ans = 01.01000	0 xor 0 = 0, ans = 11.11000	1 xor 0 = 1, ans = 10.11000

- How do you deal with this problem?
 - We can use more bits, i.e., I2.Q5 representation

C(n) xor C(n-1) = 0, No overflow, discard cout bit and sign extend C(n) xor C(n-1) = 1, Overflow, keep cout

Consider two fixed-point numbers A and B where, A = 3/4 and B = -1/4. Use 2's complement number, I1.Q3 format.

Consider two fixed-number numbers A and B where, $A = \frac{74}{374}$ and B = -1/4. Use 2's complement number, I1.Q3 format.

Consider two fixed-point numbers A and B where, A = 19.25 and B = 27.50.

Use 2's complement number, I8.Q4 format, for both A and B.

- 1. What is your **I8.Q4 format** result for A?
- 2. What is your **I8.Q4 format** result for B?
- 3. Calculate A + B and find your final **I9.Q4 format** result. Note: show your bit operation.
- 4. What is your **I8.Q4 format** result for -A?
- 5. What is your **I8.Q4 format** result for -B?
- 6. Calculate A B and find your final **I9.Q4 format** result. Note: show your bit operation.
- 7. Calculate B A and find your final **I9.Q4 format** result. Note: show your bit operation.
- 1. A=0001 0011.0100
- 2. B=0001 1011.1000
- 3.
 - 0001 0011.0100
 - + 0001 1011.1000
 - 0 0010 1110.1100
 - $0 \times 0 = 0$
 - ans = 0 0010 1110.1100
- 4. -A=1110 1100.1100
- 5. -B=1110 0100.1000

- 6.
 - 0001 0011.0100
- + 1110 0100.1000
- 0 1111 0111.1100
- $0 \times 0 = 0$
- ans = 1 1111 0111.1100
- 7. 11
 - 0001 1011.1000
- + 1110 1100.1100
- 1 0000 1000.0100
- $1 \times 0 = 0$
- ans = 0 0000 1000.0100

Consider two fixed-numbers A and B where, A = 19.25 and B = 27.50.

Use 2's complement number, I8.Q4 format, for both A and B.

- 8. Calculate A x B and find your final **I15.Q9 format** result. Note: show your bit operation.
- 9. Calculate (B) x (-A) and find your final **I15.Q9 format** result. Note: show your bit operation.
- 10. Calculate (-B) x (-A) and find your final **I15.Q9 format** result. Note: show your bit operation.

A=0001 0011.0100 -A=1110 1100.1100 B=0001 1011.1000 -B=1110 0100.0111		
8) 0001 0011.0100	9) 1110 1100.1100	10) 1110 1100.1100
x0001 1011.1000	x0001 1011.1000	x 1110 0100.0111
0000000000	0000000000	11111111111111011001100
00000000000_	00000000000_	111111111111011001100_
000000000000000	000000000000000	111111111111011001100
000100110100	11111111111011001100	0000000000000
000100110100	1111111111011001100	00000000000
000100110100	111111111011001100	0000000000
0000000000	0000000000	11111111011001100
000100110100	1111111011001100	000000000
000100110100	111111011001100	0000000000
0000000000	0000000000	11111011001100
0000000000	0000000000	1111011001100
+0000000000	+0000000000	+111011001100
00000011023223221100000	55555544532342122100000	
00000100001000101100000	11111011110111010100000	
0000 0100 0010 001.0 1100 0000	1111 1011 1101 110.1 0100 0000	