Academia Sabatina de Jóvenes Talento

Polinomios Clase #8

Encuentro: 8

Curso: Polinomios

Semestre: I

Fecha: 13 de mayo de 2023

Instructor: Kenny Jordan Tinoco
D. auxiliar: José Adán Duarte

Contenido: Raíces de Polinomios II

1. Desarrollo

Teorema 1.1. Si P(x) es un polinomio con coeficientes enteros, entonces P(a) - P(b) es divisible entre (a - b), para cualesquiera enteros distintos a y b.

En particular, todas las raíces enteras de P(x) dividen a P(0). Esto nos conduce a la siguente propiedad aritmética.

Definición 1.1. Sea $P(x) = a_n x^n + \cdots + a_0$ en los enteros y sea $z \in \mathbb{Z}$. Entonces

$$P(z) = 0 \Leftrightarrow z \mid a_0.$$

En efecto, $a_n z^n + \cdots + a_1 z + a_0 = 0 \Leftrightarrow a_0 = -z(a_n z^{n-1} + \cdots + a_1)$. Además, si $a_n = 1$, entonces cada raíz racional de P es un entero. En efecto, sea $\frac{p}{q}$ una raíz con $p, q \in \mathbb{Z}$ y mcd(p,q) = 1. Entonces

$$\frac{p^n}{q^n} + a_{n-1}\frac{p^{n-1}}{q^{n-1}} + \dots + a_1\frac{p}{q} + a_0 = 0$$

$$\Leftrightarrow \frac{p^n}{q} = -a_{n-1}p^{n-1} - a_{n-2}p^{n-2}q - \dots - a_1pq^{n-2} - a_0q^{n-1}$$

El lado derecho de la ecuación es entera, por lo tanto q = 1.

Teorema 1.2 (Teorema de la raíz racional). Sea $P(x) = a_n x^n + \cdots + a_0$ en los enteros y sea $\frac{p}{q}$ con mcd(p,q) = 1 una raíz cualquiera de P. Entonces se cumple que $p \mid a_0$ y $q \mid a_n$.

Demostración. En efecto, tenemos que

$$a_n \frac{p^n}{q^n} + a_{n-1} \frac{p^{n-1}}{q^{n-1}} + \dots + a_1 \frac{p}{q} + a_0 = 0$$

$$\Leftrightarrow a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0$$

Todos los sumandos excepto, posiblemente, el primero, son múltiplos de q y todos los sumandos excepto, posiblemente, el último son múltiplos de p. Como p y q dividen a 0, se deberá tener que $q \mid a_n p^n$ y $p \mid a_0 q^n$, y de aquí se sigue la afirmación, ya que¹ (p,q) = 1.

 $^{^{1}(}p,q)=1$ es una manera corta de escribir mcd(p,q)=1.

1.1. Agregados culturales y preguntas

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

Problema 2.1. Encontrar todas la raíces racionales del polinomio $x^4 - 4x^3 + 6x^2 - 4x + 1$.

Problema 2.2. Encontrar todas las raíces racionales del polinomio $6x^4 + x^3 - 3x^2 - 9x - 4$.

Problema 2.3. Si la división entre los polinomios $12x^5 - 9x^4 + 14x^3 - mx^2 + nx - p$

Problema 2.4. Si el polinomio $P(x) = 16x^5 + ax^2 + bx + c$ es divisible por $2x^3 - x^2 + 1$, hallar a + b + c.

Problema 2.5. Si el polinomio $P(x) = x^{n+2} + Ax^{n+1} + ABx^n$ es divisible por $C(x) = x^2 - (A+B)x + AB$ con $AB \neq 0$. Hallar el valor de $E = \frac{A}{B}$.

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

4. Extra

Referencias

[BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.

[LN22] Ricardo Largaespada and William Nicoya. Clase 8 y 9. Raíces de Polinomios II. Academia Sabatina de Jóvenes Talento, Mayo 2022.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com