СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ЗАДАНИЯМ 13

 $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

 $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

1	ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ		
1	$\sin^2\alpha + \cos^2\alpha = 1$		
2	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$		
3	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$		
4	$tg \alpha \cdot ctg \alpha = 1$		

	СИНУС
	$\sin \alpha = \frac{\text{противолежащий катет}}{}$
	гипотенуза
	ТАНГЕНС
	противолежащий катет
	$\operatorname{tg} \alpha = \frac{}{}$ прилежащий катет
	$\tan \alpha = \frac{\sin \alpha}{\alpha}$
	$\operatorname{tg} \alpha = {\cos \alpha}$

	ФОРМУЛЫ ДВОЙНОГО УГЛА
1	$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$
2	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
3	$\cos 2\alpha = 2\cos^2 \alpha - 1$
4	$\cos 2\alpha = 1 - 2\sin^2\alpha$

cos α =	прилежащий катет
.0s α –	гипотенуза
	КОТАНГЕНС
rtgα=	прилежащий катет
igα –	противолежащий катет

 $\operatorname{ctg} \alpha =$

 $\sin \alpha$

КОСИНУС

ФОРМУЛЫ ПРИВЕДЕНИЯ

Если в скобочке нечётное количество $\frac{\pi}{2}$, то функция меняется на кофункцию

Если в скобочке сколько-то π , то функция остаётся прежней

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$tg(\pi + \alpha) = tg\alpha$$

2 ШАГ

Определяем знак по указанной в скобочках четверти (смотреть на изначальную функцию, а не на изменившуюся)

ПРИМЕР:

$$\sin\left(\frac{3\pi}{2} + \alpha\right)$$

Это IV четверть, в ней синус
имеет знак минус, поэтому
 $\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$

ЛОГАРИФМЫ

ОПРЕДЕЛЕНИЕ ЛОГАРИФМА	ОСНОВНОЕ ЛОГАРИФМИЧЕСКОЕ	ОДЗ ЛОГАРИФМА	СВОЙСТВА ЛОГАРИФМОВ
Если $\log_a b = c$, то $a^c = b$	$a^{\log_a b} = b$	(a > 0	$ 1 \log_a b + \log_a c = \log_a (b \cdot c) $
		Для $\log_a b$ $\begin{cases} a \neq 1 \\ b > 0 \end{cases}$	
			$3 \log_a b^m = m \cdot \log_a b$
			$4 \log_{a^n} b = \frac{1}{n} \cdot \log_a b$
			$ \log_a b = \frac{1}{\log_b a} $
			$6 \log_a b = \frac{\log_c b}{\log_c a}$

КОРНИ

	КОРНИ	
1	$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$	
2	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	
3	$\left(\sqrt{a}\right)^2 = a$	
4	$\sqrt{a^2} = a $	
5	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$	

 $4 \cot(-x) = -\cot x$

СТЕПЕНИ

СТЕПЕНИ		
1	$a^n \cdot a^m = a^{n+m}$	
2	$a^n : a^m = a^{n-m}$	
3	$(a^n)^m = a^{n \cdot m}$	
4		
5	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	
6	$a^0 = 1$	
7	$a^{-n} = \frac{1}{-}$	
	a^n	
8	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	
ш	D (00)	

ФСУ

1 $a^2 - b^2 = (a - b)(a + b)$ 2 $(a - b)^2 = a^2 - 2ab + b^2$ 3 $(a + b)^2 = a^2 + 2ab + b^2$ 4 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ 5 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$