Show his server while which

Shared Queues – where is my workload running

Steve Bohn – bohns@us.ibm.com

Mitch Johnson – mitchj@us.ibm.com

Lyn Elkins – elkinsc@us.ibm.com

Agenda

- What are shared queues briefly
- What is workload skewing and why is it a problem?
 - What are the symptoms and causes
 - Asymmetrical Sysplex
 - Connection Skewing
 - Put to Waiting Getter
 - ' Local' favoritism
- Mitigation Techniques:
 - Queue Manager Clustering
 - Gateway queue managers
 - CICS CPSM options

Briefly – What is a Shared Queue

What is a shared queue?

- Unique to z/OS
 - Requires a coupling facility to host the queues
 - DB2 data sharing for the queue definitions
 - The gold standard for message availability
- Treats a shared queues as local to each queue manager in the QSG
 - Applications can PUT and GET
- Messages are available as long as one QMGR in the QSG can access the Coupling Facility Structure.
- Nonpersistent messages are only 'lost' if the structure or CF itself are lost.

What is MQ Workload Skewing?

 Workload skewing is detected when MQ driven work, typically transactions, is not close to being evenly distributed across the queue managers.

Why is MQ Workload Skewing a problem?

- This is often less a technical problem, more of a COST problem
 - If the MLC 'rolling average' is taken from the LPAR that is heavily favored, usage pricing is not going to reflect reality
 - Technical solutions to this problem may prove to be less efficient overall lower throughput, slower response

Why is MQ Workload Skewing a problem?

- Can cause increased capacity demands in downstream workload
 - Known to produce responsiveness problems
 - Overloading the processing programs
 - Again, this can contort MLC charges

MQ Workload Skewing Causes

- Workload skewing in a QSG is often a result of the efficiencies of working locally
 - z/OS, and all subsystems, try to process requests locally to take advantage of CPU efficiency
- Workload skewing may be intentional
 - Some applications may be affinity bound to an LPAR, but are using shared queues for the additional availability
 - Some applications are not yet Sysplex enabled
 - Software licensing agreements requiring LPAR restriction
 - Recommendation know when this is the case and document.

MQ Workload Skewing Causes - Hardware

- Asymmetric Sysplex
 - When the LPARs in the Sysplex are not equally weighted
 - Examples include:
 - Two LPARs have z14s, two have z15s
 - Two LPARs have 12 dedicated engines, two have 12 shared
 - All links to the CF are equally distant and are the same type

MQ Workload Skewing Causes - Hardware

Asymmetric Sysplex

- Most common example One LPAR is co-located with the primary coupling facility, the others are on different CECs
- ► ICF links give much better service times than CBP

Physical Skewing – CF Activity Report

STRUCTURE SYSTEM NAME	NAME = QSGBUSER # REQ TOTAL AVG/SEC	# REQ	TYPE REQUE % OF ALL	= LIST STATUS = STS -SERV TIME(MIC) - AVG STD_DEV	ACTIVE REASON	# REQ	DE %
MPX1	295K SYNC 492.1 ASYNC CHNGD SUPPR	295K 0 0 0	26.9 0.0 0.0 0.0	4.3 0.0 0.0 INCLUDED IN ASYNC	NO SCH PR WT PR CMP DUMP	0 0 0	0 0 0
MPX2	802K SYNC 1339 ASYNC CHNGD SUPPR	802K 0 0 0	73.1 0.0 0.0 0.0	17.8 2.5 0.0 0.0 INCLUDED IN ASYNC	NO SCH PR WT PR CMP DUMP	0 0 0	0 0 0

- We (the WSC) first look at the CF Activity report usually before the MQ Statistics when looking at shared queue usage
- In the example shown above it is easy to see that the MPX2 LPAR is getting a much longer service time (almost 4 times!) than the MPX1 LPAR and that MPX2 is making many more requests.
 - In this particular case, this exposed some internal workload skewing that was not apparent to the customer - except that they were missing SLAs consistently!

MQ Workload Skewing Causes - Hardware

- Location of the Coupling Facility
 - When the coupling facility is internal, LPARs on the same CEC tend to get faster response
 - When the coupling facility is external and one LPAR has more, faster, or less heavily used links it will get faster service

Connection Skewing

- Connection skewing may be historical
 - Hard-coded connections to specific queue managers
- Connection skewing may be the result of a queue manager outage

© IBM Corporation 2021

'Downstream' consequences

- We've talked about the MLC impact
- Resource use
 - Not every queue manager is sized to absorb the entire workload
 - Log impact of skewing has been seen
 - Rapid Log switches due to heavier workload increasing I/O and CPU costs
 - Bufferpool/Pageset impact
 - Filling the bufferpool, forced into I/O
 - SMDS impact
 - One queue manager in QSG gets all offloaded messages

MQ Workload Skewing Causes

- Put to waiting getter
 - In V6 a performance feature was added called 'put to waiting getter'
 - If a local put, from an application or message channel agent, is done and there is a getting application waiting the message is moved directly to the getting applications buffer
 - There is no posting to a shared queue
 - There is no notification to other available waiting applications
 - The CPU savings can be substantial

Put to Waiting Getter – SMF

This shows messages flowing across a channel taking advantage of P2WG

		0			0	
	Q					
						Puts not to
		Total_Val	Total_Bytes	Total_Val	Total_Put2_Wa	Waiting
Base_Name	CF Struct	id_Gets	_Put	id_Puts	iting_Getter	Getter
SYSTEM.QSG.CHANNEL.SYNCQ	CSQSYSAP	0	0	0	0	0
SHARED.INPUT.QUEUE	APP1	0	4501092223	2095814	2012394	83420

The CPU comparison shows why it can be a good thing!

		PUT_ELAPSE		PUT2_W AITING_G	Average	Average	
BASE_NAME	VALID_PUTS	D_TIME	PUT_CPU_TIME	ETTER	PUT ET	PUT CT	
QLOCAL.PUT2WG	14879	127753	117956	14793	8.59	7.93	
QLOCAL.NO.PUT2WG	41547	1025028	1010038	0	24.67	24.31	

• The CPU costs can be 3 times as high!

MQ Workload Skewing Causes

- Local Favoritism
 - When a message is posted to a shared queue, the queue manager where the message is put is typically notified FIRST about the availability.
 - Normal processing by XCF, taking advantage of the efficiency of local processing.

Skewing Mitigation Techniques

- Queue Manager Clusters
 - Clusters provide workload balancing across queue managers
 - Works with shared queues to distribute message 'puts' across queue managers in the QSG
- Connection skewing mitigation
 - Gateway queue managers
 - Re-driving connections
- CPSM mitigation

Queue Manager Clustering

- •When messages are not bound to a specific queue manager ('bind not fixed'), the messages are routed evenly across the receiving queue managers
 - Black arrows show the first message put to the clustered queue
 - Green arrows show the second message

Connection Skewing Mitigation

- The slides that follow outline two mitigation techniques for connection skewing:
 - Gateway queue managers
 - Re-driving connections

Connection Skewing – No Gateway queue managers

- When external queue managers or clients are passing work directly to application hosting queue managers, every attempt is made to process the work locally
- Environments that use gateway queue managers into the Queue Sharing group often eliminate connection skewing.

Gateway queue managers – the mitigation

Re-driving Connections

- When a queue manager is unavailable, inbound connections can get skewed to the other queue manager(s) in the group.
 - This is normal availability processing!

Once a connection is live and active, no attempt is made to balance the
 connections once all the queue managers are available.

CICS – CPSM Mitigation

 The slides that follow outline a CPSM solution to the skewing problem based on the interaction between MQ triggering (CKTI) and CICS

Trigger monitor (CKTI)

- Each business transaction processes few (~1) request messages
- Fastest CKTIs take lion's share of work

End

Trigger monitor (CKT)

- many (~all) request messages
- Fastest CKTI takes lion's share of work
- Corresponding business transaction takes lion's share of the work

© IBM Corporation 2021

Trigger monitor (CKTI)

Trigger-first/depth staged (schematic)

 Staging transaction processes all request messages

Staging transaction

Business logic

 Business transaction processes one request message

Highlights

- Solution uses proven technology for CPSM routing:
 - Each TOR/QOR uses link-neutral goal algorithm
 - Selects target AOR based on AOR load and health
 - Does not "prefer" local (= same LPAR) AORs
 - Even distribution across AORs, but ...
 - ... responds to transient load/health variation
 - XCF MRO for "remote" STARTs or LINKs
 - High-performance System z sysplex technology
 - Uses coupling facility (CF) instead of TCP/IP stack
 - Sysplex-optimised workload routing
 - Highly responsive to transient variations
 - Uses CF to maintain current status for AORs
- Continuous operation and high availability through IBM MQ shared queues:
 - "Glitchless" recovery from region/LPAR/CEC outage
 - "Instant" redistribution of workload
 - In-flight messages backed-out, restart in another CICS region
- High throughput:
 - Exploits all available capacity
 - Highly responsive to transient spare capacity

MQ Workload Balance Summary

- MQ is a message delivery system, it does not try to balance workload
- Balancing the workload is attempting a technical solution for what is often a pricing problem
 - Beware spending a lot of effort for a solution to a temporary problem as well!
 - Turning off performance improvements like put to waiting getter will impact all applications, not just the skewed ones
- There are some mitigation techniques that can help the overall environment
 - Clustering!
 - Gateway queue managers
 - Using CPSM to make appropriate routing decisions

Additional Resources

- The following links are to additional information about IBM MQ
 - Queue Sharing Groups: https://www.ibm.com/docs/en/ibm-mq/9.2?topic=groups-what-is-queue-sharing-group
 - Clustering: https://www.ibm.com/docs/en/ibm-mq/9.2?topic=explorer-queue-manager-clusters
 - Shared Channels: https://www.ibm.com/docs/en/ibm-mq/9.2?topic=groups-shared-channels
 - Redbooks:
 - IBM WebSphere MQ V7.1 and V7.5 Features and Enhancements http://www.redbooks.ibm.com/abstracts/sg248087.html?Open
 - High Availability in WebSphere Messaging Solutions http://www.redbooks.ibm.com/abstracts/sg247839.html?Open
 - First 'Redpiece' about Shared queues http://www.redbooks.ibm.com/abstracts/sg246864.html?Open
 - Lyn's first YouTube video: http://www.youtube.com/playlist?list=PL9N7JP2yU3T8JycrCOvEPM8c-0UdE97VT