5.2 BCNF

5.2.1 Algoritmo per la BCNF

- 1. Individuare una dipendenza funzionale qualsiasi $\{X \to A\} \in F$ che viola la BNCF in R.
- 2. Scomporre la relazione R nella seguente coppia di relazioni:
 - $R_1(T')$ Con $T' = X^+$ (tutti gli attributi di R derivabili da X) e $F = \pi_{T'}(F_R)$ (tutte le dipendenze funzionali di R contenenti esclusivamente attributi di T')
 - $R_2(T'')$ Con $T'' = R - (T' - \{X\}) e F = \pi_{T''}(F_R)$
- 3. Applicare l'algoritmo sulle eventuali relazioni che violano la BCNF.

5.2.2 Esempio di applicazione dell'algoritmo

$$R(A, B, C, D, E, F, G), F = \{A \rightarrow BC, C \rightarrow EG, G \rightarrow F, D \rightarrow FG\}$$

Applichiamo l'algoritmo per trovare la chiave. AD è la chiave! Tutte le dipendenze violano la BCNF.

Scegliamo la relazione $A \to BC$.

 R_1 :

$$T' = A^+ = \{A, B, C, E, F, G\}$$

$$\pi_{T'}(F) = \{A \to BC, C \to EG, G \to F\}$$

Aè la chiave. Non è in BCNF! R_2 :

$$T'' = R - (\{A, B, C, E, F, G\} - \{A\}) = R - \{B, C, E, F, G\} = \{A, D\}$$
$$\pi_{T''}(F) = \emptyset$$

È in BCNF.

Scomponiamo R_1 in R_3, R_4 . Scegliamo la relazione $A \to BC$.

 R_3 :

$$T' = C^+ = \{C, E, F, G\}$$
$$\pi_{T'}(F) = \{C \to EG, G \to F\}$$

C è la chiave. Non è in BCNF! R_4 :

$$T'' = R_1 - (\{C, E, F, G\} - \{C\}) = R_1 - \{E, F, G\} = \{A, B, C\}$$
$$\pi_{T''}(F) = \{A \to BC\}$$

È in BCNF.

Scomponiamo un'ultima volta R_3 su $G \to F$.

 R_5 :

$$T' = G^+ = \{F, G\}$$

$$\pi_{T'}(F) = \{G \to F\}$$

È in BCNF!

 R_6 :

$$T'' = R_3 - (\{F, G\} - \{G\}) = R_3 - \{F\} = \{C, E, G\}$$

$$\pi_{T''}(F) = \{C \to EG\}$$

.

La scomposizione in BCNF è costituita da R_2, R_4, R_5, R_6 .