Термализация неупругой тёмной материи в Солнце

Товстун А.А.

ИЯИ РАН

3 июля 2025 г.

QFTHEP-270

Термальная темная материя (WIMP)

 Поиски тёмной материи сильно ограничивают сечение рассеяние на нуклоне.

Ограничения на спин-независимое сечение ТМ на нуклоне $\sigma_{\chi p}^{SI}$ и спин-зависимое $\sigma_{\chi p}^{SD}$ ²

¹PDG, DarkMatter

²arXiv:2410.23454

Неупругая тёмная материя

- Неупругая тёмная материя позволяет ослабить ограничения благодаря кинематике.
- Состоит из 2 компонент: χ с массой m_χ и χ^* с массой $m_\chi + \delta$
- Столкновения с ядрами происходят преимущественно неупругим образом.

Пример модели неупругой тёмной материи

Неупругая тёмная материя может естественно возникать в различных теориях.

Простейший пример — дираковский фермион с малой майорановской массой

$$\mathcal{L}_{\textit{kin}} \supset \overline{\chi} (i \gamma^{\mu} \partial_{\mu} - \textit{m}) \chi + \frac{\delta}{4} \overline{\chi} \chi^{\textit{C}} + \frac{\delta}{4} \overline{\chi^{\textit{C}}} \chi$$

Массовыми состояниями являются

$$\chi_1 = \frac{\chi - \chi^C}{\sqrt{2}i} \quad \chi_2 = \frac{\chi + \chi^C}{\sqrt{2}}$$

с массами $m_1=m-rac{\delta}{2}$ и $m_2=m+rac{\delta}{2}$

Пример модели неупругой тёмной материи

 В простейшем случае рассмотрим векторное взаимодействие, которое приводит к неупругому рассеянию.

$$\mathcal{L} \supset g \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q = i \frac{g}{2} \left[\bar{\chi_2} \gamma^{\mu} \chi_1 - \bar{\chi_1} \gamma^{\mu} \chi_2 \right] \bar{q} \gamma^{\mu} q$$

- Данный механизм может встречаться в секторе хиггсино в SUSY расширениях или в моделях с тёмным фотоном³.
- Похожий механизм со скалярными комплексными полями встречается в секторе снейтрино⁴.

³ arXiv:1410.4549.arXiv:1701.03168

⁴arXiv:hep-ph/0101138

Тёмная материя в Солнце

• Тёмная материя с $m_\chi \sim {
m GeV} - {
m TeV}$ может захватываться и аннигилировать в Солнце. Эти процессы описывают уравнением баланса (если пренебречь испарением)

$$\frac{dN(t)}{dt} = C - C_A N^2$$

решение которого имеет вид:

$$N = \sqrt{\frac{C}{C_A}} \operatorname{th} \left[\sqrt{C_A t^2 C} \right] \quad \Gamma(t) = \frac{1}{2} C \operatorname{th}^2 \left[\sqrt{C_A t^2 C} \right]$$

Тёмная материя в Солнце

• Зная зависимость темпа аннигилляции в конечный момент эволюции T_{\odot} (время жизни Солнца) от скорости захвата :

$$\Gamma = \frac{1}{2C_A T_{\odot}^2} F(C_A T_{\odot}^2 C) \quad F(x) = x \operatorname{th}^2 \sqrt{x}$$

можно сделать ограничения на $\sigma_{\chi p}$:

$$\sigma_{\chi p} < \sigma_{\chi p,0} \frac{1}{C_A T_{\odot}^2 \cdot C(\sigma_{\chi p,0})} F^{-1} \left(2 \Gamma_{max} \cdot C_A T_{\odot}^2 \right)$$

• В упругом случае как правило $C_A T_\odot^2 C >> 1$ и $\Gamma = \frac{C}{2}$.

$$\sigma_{\chi p} < \sigma_{\chi p,0} \frac{2\Gamma_{max}}{C(\sigma_{\chi p,0})}$$

Тёмная материя в Солнце

• В термальном равновесии:

$$C_A T_{\odot}^2 pprox 9 \cdot 10^{-23} \mathrm{s} \left(\frac{\langle \sigma_a v \rangle}{3 \cdot 10^{-26} \mathrm{cm}^2 \mathrm{s}^{-1}} \right) \left(\frac{m_{\chi}}{\mathrm{GeV}} \right)^{3/2}$$

- В неупругом сценарии a зависит от сечения рассения $\sigma_{\chi p}$, модели и времени и величина C_A находится с помощью численного расчета линейного уравнения Больцмана.
- Учитывая изотропность задачи, уравнение эволюции на плотность $\mathsf{TM}\ f(E,L)$ в пространстве E-L следующее:

$$\frac{\partial f(E,L)}{\partial t} = C(E,L) + \int dE'dL'S(E,L,E',L')f(E',L')$$

где C — скорость захвата, а S — матрица столкновений.

Моделирование эволюции темной материи

 Для численного решение фазовое пространство разбивается на интервалы по безразмерным переменным Е (энергия) и / (момент импульса)

$$E = \left(\frac{1}{2}v_{\chi}^{2} + \phi(r)\right) \cdot \left(\frac{1}{2}v_{esc}^{2}\right)^{-1}$$

$$L = \frac{|\vec{r} \times \vec{v}|}{R_{\odot}v_{esc}} \quad I = \frac{L}{L_{max}(E)}$$

где v_{esc} — вторая космическая скорость Солнца, R_{\odot} — радиус Солнца, $L_{max}(E)$ — максимальный момент импульса при энергии E.

Нерелятивистское взаимодействие с веществом

 Взаимодействие тёмной материи представляется в виде линейной комбинации нерелятивистских операторов, возникающие из релятивистских операторов. Например:

$$\begin{split} \bar{\chi}\gamma^{\mu}\chi\bar{n}\gamma_{\mu}n \rightarrow & \hat{O}_{1} &= 1\\ \bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{n}\gamma_{\mu}\gamma^{5}n \rightarrow & -4\hat{O}_{4} &= -4\vec{S}_{\chi}\cdot\vec{S}_{n} \end{split}$$

 Взаимодействия с ядром определяется как сумма потенциалов на отдельных нуклонах

$$iM = \langle \chi k', Np' | \sum_{i} \hat{V}(r_{\chi} - r_{i}) | \chi k, Np \rangle$$

• Для нахождения сечения рассеяния на ядре мы используем из arXiv:1501.03729.

Нерелятивистское взаимодействие с веществом

- Сечение рассеяния может быть независимым от спина $\mathsf{ядра}(\mathsf{SI})$ и зависимым (SD) .
- В первом случае когерентное рассеяние на A нуклонах в ядре приводит росту сечения на A^4

$$\sigma_{\chi N}(\hat{O}_1) = \sigma_{\chi p} \cdot A^4 \left(\frac{m_\chi + m_p}{m_\chi + m_N} \right)^2 (q^2 \to 0)$$

• В случае SD сечение растет только как A^2 , из-за чего ограничения на сечение рассеяния слабее.

Моделирование эволюции темной материи

 Линейное уравнение на количество частиц в i-ом промежутке имеет вид:

$$rac{\partial N_i}{\partial t} = rac{1}{T_{\chi p}} \left(N_{\odot} c_i + \sum_j \left[s_{ij} N_j - s_{ji} N_i
ight] - e_i N_i
ight)$$

$$T_{\chi p}^{-1} = \sigma_{\chi p} \langle n_{nuc} \rangle v_{esc}$$

• Скорость захвата в i-ом интервале c_i , вероятности перехода/испарения s_{ij}/e_i определяются интегралом столкновений по всем ядрам, учитывая модель Солнца $(\mathsf{AGS09met})^5$.

Распределение тёмной материи

• При ненулевом δ распределение тёмной материи является нетермальным.

Начальное и конечное радиальное распределение частиц тёмной материи в Солнце для $m_\chi=100~{\rm GeV}$ (предполагается $\sigma_{\chi p}=10^{-42}{\rm cm}^2$, а компонента χ^* долгоживущая)

Захват и аннигиляция

• Решая численно линейное уравнение эволюции, мы получаем в момент T_{\odot} конечное распределение, откуда находится темп аннигилляции, что эквивалентно решению с нелинейной добавкой от аннигиляции.

Зависимость от δ захвата и аннигиляции при линейной и нелинейной эволюции для $m_{\scriptscriptstyle Y}=100\,{\rm GeV}$

Коэффициент аннигиляции

• Коэффициент аннигилляции $C_A T_{\odot}^2 = 2\Gamma(t=T_{\odot})/C^2$ находится из решения линейного уравнения.

Коэффициент аннигиляции ТМ $m_\chi=100~{
m GeV}~(\chi^*-{
m долгоживущая}~)$

Коэффициент аннигиляции

• Коэффициент аннигилляции $C_A T_\odot^2 = 2\Gamma(t=T_\odot)/C^2$ находится из решения линейного уравнения.

Коэффициент аннигиляции $m_\chi=100\, ext{GeV}\,\left(\chi^*- ext{короткоживущая}\,
ight)$

Условие равновесия

• Также находятся параметры m_χ и δ , при которых предположение о равновесии между аннигиляцией и захватом ($\Gamma=\frac{1}{2}\,C$) перестает быть верным.

Область параметров m,δ при которых наступает равновесие между Γ и C (χ^* — долгоживущая)

Условие равновесия

• Также находятся параметры m_χ и δ , при которых предположение о равновесии между аннигиляцией и захватом ($\Gamma=\frac{1}{2}\,C$) перестает быть верным.

Область параметров m,δ при которых наступает равновесие между Γ и C $(\chi^*$ — короткоживущая)

Внешняя аннигиляция

 Часть тёмной материи может аннигилировать снаружи (из-за скопления на траекториях с большим r), однако сигнал очень слабый.

Темп внешней аннигиляции. (χ^* — долгоживущая)

Ограничения

• Зная конечное распределение $(C_A T_{\odot}^2)$ и ограничения на темп аннигиляции Γ из нейтринного сигнала, мы можем ограничить σ_{χ_D} .

Ограничения для $m_\chi=100$ GeV исходя из данных IceCube на Γ в канале $\chi+\chi\to W+W$ (arXiv:1612.05949)

Заключение

- Неупругая тёмная материя может иметь нетермальное распределение внутри Солнца.
- Для получения корректных ограничения на сечение $\sigma_{\chi p}$ нахдится распределение тёмной материи в Солнце.
- В дальнейшем нужно включить в уравнения малое упругое взаимодействие.
- Также представляет интерес случай с саморассеянием $\chi + \chi \to \chi + \chi$?

Спасибо за внимание!

Сходимость численных схем

Упругий случай

Зависимость физических величин (средняя энергия, и темп аннигиляции) от шага решетки $m_{\scriptscriptstyle Y}=100{
m GeV}$

Сходимость численных схем

Неупругий случай

Зависимость темпа аннигиляции от шага решетки по E и / при $m_{\scriptscriptstyle X}=100{\,{\rm GeV}}$