Physique des marchés: TP3.2

26/01/2023

TP à rendre.

Dynamique de la prévisibilité dans le GCMG

Le jeu de la minorité grand-canonique le plus simple est défini de la façon suivante

- N_s spéculateurs possèdent chacun une stratégie a_{i,μ} ∈ {-1,+1}, i = 1,···, N_s, μ = 1,···, P = 2^M étant l'état de marché. Notez que a_{i,μ} est une matrice d'éléments aléatoires -1 et +1 constants, tirés avant la boucle temporelle.
- On ajoute de la prévisibilité à la main, en supposant que N_p autres agents utilisent une stratégie fixe à chaque pas de temps. Cela donne lieu à une contribution total constante pour un état μ donné, que l'on dénote Ω_μ. On peut tirer Ω_μ à partir d'une distribution N(0,N_p). Notez que Ω_μ est la composante μ d'un vecteur constant Ω tiré avant la boucle temporelle.
- La stratégie du speculateur *i* est testée en temps réel et sa performance cumulée est assignée à un scalaire

$$U_i(t+1) = U_i(t) - a_{i,\mu(t)}A(t) - \varepsilon, \tag{1}$$

où $A(t) = \Omega_{\mu(t)} + \sum_{i=1}^{N_s} n_i(t) a_{i,\mu(t)}$, $n_i = \Theta[U_i(t)]$ contrôle la participation de l'agent i au jeu, Θ est la fonction d'Heaviside, et ε est la performance minimale attendue de la stratégie pour que l'agent i la considère comme suffisamment performante et l'utilise.

 La dynamique de μ peut être considérée ou comme totalement aléatoire ou comme un encodage des derniers M signes de A(t); dans ce cas, sa dynamique est donnée par

$$\mu_{t+1} = (2\mu_t) \text{ MOD } 2^M + \Theta[A(t)]$$

- On notera que l'équation (1) peut être écrite sous forme vectorielle.
- En résumé
 - 1. initialisation: définir les valeurs $\Omega \in \mathbb{R}^P, a \in \{-1, +1\}^{N \times P}$ et initialiser un vecteur $U \in \mathbb{R}^{N_\delta}$ et une valeur de μ_t .
 - 2. boucle temporelle

- (a) calculer $n_t \in \{0,1\}^{N_s}$
- (b) mettre à jour U
- (c) mettre à jour μ_t

Indications:

- 1. L'état stationnaire du système est atteint après environ $200P/\varepsilon$ pas de temps. Effectuer les moyennes sur les $200P/\varepsilon$ itérations suivantes.
- 2. Si possible, moyenner les mesurables sur au moins 100 réalisations du jeux.

1 Implémentation:

- 1. Programmer ce modèle dans le langage de votre choix.
- 2. En traçant A(t) en fonction de t, vérifier que les fluctuations explosent si le nombre de spéculateurs est suffisamment grand pour t suffisamment grand. Il est toujours difficile d'explorer l'espace des paramètres. Étudier le cas $\varepsilon = 0.01 \ P \in [10, 20]$ et $N_p = P$

2 Rôle des paramètres sur la dynamique

- 1. Trouvez des paramètres qui produisent des grandes fluctuations de A.
- 2. Varier N_p . Est-ce qu'augmenter N_p stabilise ou déstabilise le marché? Pourquoi?
- 3. Varier N_s . Est-ce qu'augmenter N_s stabilise ou déstabilise le marché? Pourquoi?
- 4. Varier ε . Est-ce que ce paramètre stabilise ou déstabilise le marché? Pourquoi? Comment interpréter ce paramètre?

3 Dynamique de la prévisibilité

- 1. Pour une réalisation du jeu dont les fluctuations explosent, tracer l'évolution de $\sigma^2 = E(A^2)/P$ et $H_0 = \frac{1}{N_s P} \sum_{\mu} E(A|\mu)^2 = \overline{E(A|\mu)^2}$, par exemple par tranche de $10 \times P$ pas temporels. Notez que pour calculer $E(A|\mu)$, il faut créer un vecteur dans lequel cumuler A pour chaque μ , et un autre qui compte le nombre d'occurences de μ , et calculer H_0 après la fin de la boucle temporelle.
- 2. Quelle est la condition pour que les fluctuations explosent?
 - Créer une function qui fasse tourner le modèle ci-dessus et retourne σ^2/N_s et possible H_0 .
 - L'état stationnaire du système est atteint après environ $200P/\varepsilon$. Effectuer les moyennes sur les $200P/\varepsilon$ itérations suivantes.
 - Moyenner les mesurables sur au moins 100 réalisations de $200P/\varepsilon$ chacune.
- 3. Mesurer les fluctuations σ^2 et la prévisibilité H. Tracer σ^2 et H_0 en fonction de $n_s = N_s/P$ en fixant P et en faisant varier N_s (10-15 points suffisent). La moyenne est prise sur plusieurs réalisations du jeu;
- 4. vérifier que $H_0 = 0$ n'est pas possible si $\varepsilon > 0$: comparer H_0 et $2\varepsilon E(N_{active})/N_s$ en fonction de N_s .