Jakub Grala 251525 Rok akademicki 2024/25 Michał Kaczmarek 252940 Piatek, 14:15

METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – rozwiązywanie równań nieliniowych

Opis rozwiązania

Zgodnie z wymaganiami zadania, zaimplementowane zostały dwie metody rozwiązywania równań nieliniowych. W obu przypadkach konieczne jest, aby podana funkcja f była określona i ciągła na przedziale [a, b].

Metoda Bisekcji:

Pierwsza metoda to metoda bisekcji, która polega na dzieleniu podanego przedziału liczbowego na połowę, a następnie wybraniu tej połowy, która zawiera poszukiwany pierwiastek. Proces ten jest powtarzany do momentu osiągnięcia wymaganej dokładności lub określonej liczby iteracji. Algorytm:

- 1. Sprawdzamy znaki na krańcach przedziału. Jeżeli są takie same, oznacza to, że w podanym przedziale równanie nie ma pierwiastka lub ma więcej niż jeden pierwiastek, więc kończymy proces.
- Powtarzamy kroki 3-4 do momentu osiągnięcia wymaganej dokładności rozwiązania lub liczby iteracji.
- Obliczamy środek przedziału $x_0 = \frac{(a+b)}{2}$
- Sprawdzamy znaki na lewym krańcu i środku przedziału. Jeżeli znaki są takie same, odrzucamy tę połowę i przyjmujemy za lewy kraniec wartość x_0 . W przeciwnym razie odrzucamy drugą połowę przedziału i przyjmujemy za prawy kraniec wyznaczony środek.

Metoda Siecznych:

Druga metoda to metoda siecznych, która polega na wyznaczaniu punktu przecięcia siecznej poprowadzonej między krańcami podanego przedziału z osią OX. Jeden z krańców przedziału zastępujemy wyliczoną wartością. Czynności te powtarzamy do momentu uzyskania wymaganej dokładności lub osiągnięcia określonej liczby iteracji. Algorytm:

- Sprawdzamy znaki na krańcach przedziału. Jeżeli są takie same, oznacza to, że w podanym przedziale równanie nie ma pierwiastka lub ma więcej niż jeden pierwiastek, więc kończymy proces.
- Przyjmujemy wartości początkowe $x_0 = a$ i $x_1 = b$.
- 3. Powtarzamy krok 4 do momentu uzyskania odpowiedniej dokładności wyrażenia $x_i x_{i-1}$ lub osiągnięcia ustalonej liczby iteracji.

.. Concernity punkt przecięcia siecznej z osią OX według wzoru: $x_n = x_{n-1} - \frac{f(x_{n-1})(x_{n-1} - x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}.$ Obie metody są iteracyjnymi sposobami znajdowania pierwiastków równań nieliniowych, legida – w legid

każda z własnymi zaletami i charakterystyka:

- Metoda bisekcji gwarantuje zbieżność, jeśli funkcja zmienia znak w przedziale, ale zbiega się stosunkowo wolno.
- Metoda siecznych zwykle zbiega się szybciej niż metoda bisekcji, ale nie gwarantuje zbieżności we wszystkich przypadkach.

Wyniki

Warunek stopu: $|x_i - x_{i-1}| < \varepsilon$: Metoda bisekcji

Parametry/funkcja	$x^2 - 2e^{2x}$	$3e^x - cos(x)$	$\cos(x) + 2x - 3$	$\cos(x) + e^{-x} - 1$
Lewy kraniec	-1	-5	0	0
Prawy kraniec	0	0	2	2
Epsilon	0.00001	0.00001	0.00001	0.00001
Ilości iteracji	16	18	17	17
Wynik	-0.701340	-4.738636	1.429672	0.923630

Metoda siecznych

$x^2 - 2e^{2x}$	$3e^x - cos(x)$	$\cos(x) + 2x - 3$	$\cos(x) + e^{-x} - 1$
-1	-5	0	0
0	0	2	2
0.00001	0.00001	0.00001	0.00001
4	6	5	3
-0.701341	-4.738644	1.429672	0.923632
	-1 0 0.00001 4	-1 -5 0 0 0.00001 0.00001 4 6	-1 -5 0 0 0 2 0.00001 0.00001 0.00001 4 6 5

Warunek stopu: określona liczba iteracji: Metoda bisekcji

Parametry/funkcja	$x^2 - 2e^{2x}$	$3e^x - cos(x)$	$\cos(x) + 2x - 3$	$\cos(x) + e^{-x} - 1$
Lewy kraniec	-1	-5	0	0
Prawy kraniec	0	0	2	2
Ilości iteracji	32	36	34	34
Wynik	-0.701338	-4.738644	1.429672	0.923633

Metoda siecznych

Parametry/funkcja	$x^2 - 2e^{2x}$	$3e^x - cos(x)$	$\cos(x) + 2x - 3$	$\cos(x) + e^{-x} - 1$
Lewy kraniec	-1	-5	0	0
Prawy kraniec	0	0	2	2
Ilości iteracji	8	12	10	3
Wynik	-0.701338	-4.738644	1.429672	0.923633

Wnioski

- **Dokładność metod** Zarówno metoda bisekcji, jak i metoda siecznych pozwalają na znalezienie pierwiastka równań nieliniowych z zadaną dokładnością. Metoda bisekcji, ze względu na swoje założenia, gwarantuje zbieżność, natomiast metoda siecznych może szybciej osiągnąć wymaganą precyzję, ale nie daje gwarancji zbieżności w każdym przypadku.
- Efektywność metod Metoda siecznych wymagała znacznie mniejszej liczby iteracji do osiągnięcia zadanej dokładności niż metoda bisekcji. Przykładowo, dla funkcji $x^2 2e^{2x}$, metoda bisekcji potrzebowała 16 iteracji, a metoda siecznych jedynie 4. Oznacza to, że metoda siecznych jest bardziej efektywna pod względem liczby operacji.
- **Porównanie wyników dla określonej liczby iteracji** W przypadku ustalonej liczby iteracji metoda bisekcji konwergowała powoli do dokładniejszego wyniku, natomiast metoda siecznych szybciej osiągała precyzyjne wartości, ale w pewnych przypadkach mogła wymagać większej liczby iteracji w zależności od funkcji
- Zachowanie metod w zależności od założeń Jeśli założenie o stałym znaku pochodnych na przedziale nie jest spełnione, metoda siecznych może nie działać prawidłowo lub wolniej konwergować. Ilustruje to przykład funkcji sin(x) na przedziale od 0 do 5, gdzie metoda siecznych może nie zachowywać regularnej zbieżności, ponieważ kierunek zmiany wartości funkcji nie jest stały.
- Zastosowania praktyczne Metoda bisekcji sprawdza się w sytuacjach, gdy konieczna jest pewność zbieżności, np. w problemach inżynieryjnych i naukowych wymagających niezawodnych wyników. Metoda siecznych jest bardziej efektywna dla dobrze uwarunkowanych problemów, gdzie można sobie pozwolić na ryzyko braku zbieżności w zamian za szybsze uzyskanie wyniku.
- **Wybór metody** W zależności od funkcji i dostępnych zasobów obliczeniowych wybór odpowiedniej metody może wpłynąć na czas wykonania obliczeń. Jeśli konieczna jest gwarantowana zbieżność, preferowaną metodą jest bisekcja. Natomiast gdy zależy nam na szybszym uzyskaniu wyniku i funkcja ma odpowiednie właściwości, lepszym wyborem może być metoda siecznych.