Instituto Superior de Engenharia de Coimbra

<u>Exame d</u>	<u>le Equipam.</u>	de Imagiologia	Médica/Recurso	<u>- Curso de En</u>	g ^a .Biom.		31/1/2019
				,	_		
NOME						NTO	

IMPORTANTE:

- o Em todas as perguntas considerar uma hipótese E: "nenhuma das anteriores".
- o Cotação: respostas **certas = 2 valores**; respostas **erradas = -0,50 valores**.
- o Identifique **todas** as folhas de resposta.
- o Insira todas as folhas de resposta numa folha de ponto identificada.
- Excepto onde especificamente indicado em contrário, considerar a velocidade do som nos tecidos c=1540m/s.
- o Indicar aqui as escolhas feitas. Conta APENAS o que for aqui indicado:

1	2 a)	2 b)	
3 a)	3 b)	3 c)	3 d)
4	5	6	

1 - Em ecografia, de qual das seguintes formas se pode melhorar a resolução <u>lateral</u> da imagem?

A: Maior frequência do sinal	B: Menor largura da região activa do transdutor
C: Maior declive da compensação tempo-ganho	D: Maior amortecimento do transdutor

- 2 A figura ao lado representa o princípio de operação do transdutor com varrimento faseado (em ecografia).
- **a**) Qual é, aproximadamente, a expressão que dá o ângulo de desvio em função das restantes variáveis?

Tangao das restantes variaveis:	
A: $\cot \theta = \frac{c\Delta t}{\Delta x}$	B: $\sin \theta = \frac{c\Delta t}{\Delta x}$
C: $\theta = 2\pi \frac{c\Delta x}{\Delta t}$	D: $\tan \theta = \frac{\Delta x}{c\Delta t}$

b) Utilizando o princípio do varrimento faseado é possível varrer o feixe em 2 dimensões (elevação e azimute)? Utilizando este princípio é possível simultaneamente focar o feixe?

	 <u> </u>			_
A: SIM/NÃO	B: SIM/SIM	C: NÃO/SIM	D: NÃO /NÃO	
A: SIM/NAO	B: SIM/SIM	C: NAO/SIM	D: NAO/NAO	

Duração: 2h30m. 1/3

Instituto Superior de Engenharia de Coimbra

Exame de Equipam, de Imagiologia Medica/Recurso - Curso de Eng. Biom.	31/1/2019
NOME	N_0

- 3 Em MRI um determinado tecido é caracterizado pelos tempos de relaxação T_1 =500 ms, T_2 =200 ms. A magnetização inicial do tecido é dada por $\overrightarrow{M} = M_0 \left(0 \, \hat{x}' + 0 \, \hat{y}' + 1 \, \hat{z}'\right)$, sendo $\hat{x}', \hat{y}', \hat{z}'$ os versores das direcções coordenadas no referencial girante.
- a) Se for aplicado um campo magnético girante ao longo da direcção \hat{x}' de frequência igual à frequência de Larmor e intensidade de $1,00 \ \mu T$ durante $2,94 \ ms$ qual será a magnetização no final deste processo?

A: $\overrightarrow{M} = M_0 (0 \hat{x}' + 0 \hat{y}' + 1 \hat{z}')$	B: $\overrightarrow{M} = M_0 (0 \hat{x}' + 0 \hat{y}' + 0 \hat{z}')$
C: $\overrightarrow{M} = M_0 (0 \hat{x}' \pm 0.707 \hat{y}' + 0.707 \hat{z}')$	D: $\overrightarrow{M} = M_0 (\pm 0.707 \hat{x}' + 0 \hat{y}' + 0.707 \hat{z}')$

b) Assumir que após o processo descrito na alínea anterior a magnetização é dada por $\overrightarrow{M} = M_0 \left(0 \, \hat{x}' + 0 \, \hat{y}' - 1 \, \hat{z}' \right)$. Ao fim de um tempo $\Delta t = T_2$ qual é a grandeza da magnetização deste tecido?

A: $\left \overrightarrow{M} \right / M_0 = 0,0976$	$B: \left \overrightarrow{M} \right / M_0 = 0.101$
C: É impossível atingir a magnetização indicada.	D: $ \overrightarrow{M} /M_0 = 0.341$

c) Nas condições da alínea anterior, qual deveria ser o valor de T_1 para que a magnetização fosse nula?

A: Essa situação é impossível.	B: 289 ms
C: 433 ms	D: 577 ms

d) Repetir a alínea a) para o caso em que a frequência do campo magnético girante aplicado é dupla da frequência de Larmor.

A: $\vec{M} = M_0 (0 \hat{x}' + 0 \hat{y}' + 1 \hat{z}')$	B: $\overrightarrow{M} = M_0 (0 \hat{x}' \pm 0.707 \hat{y}' - 0.707 \hat{z}')$
C: $\vec{M} = M_0 (0 \hat{x}' + 0 \hat{y}' - 1 \hat{z}')$	D: $\overrightarrow{M} = M_0 (\pm 0.707 \hat{x}' + 0 \hat{y}' - 0.707 \hat{z}')$

Instituto Superior de Engenharia de Coimbra

Exame de Equipam. de Imagiologia Médica/Recurso - Curso de Eng ^a .Biom.	31/1/2019
NOME	N°

4 – Que características se podem inferir deste sinograma relativamente ao objecto que lhe corresponde?

A: Objecto de forma aproximadamente elipsoidal, observado entre 0° e 360°				B: Objecto de forma aproximadamente elipsoidal, observado entre 0º e 180º
C: Objecto	geométrico	de	densidade	D: Objecto esférico descentrado

5 – Relativamente à técnica de radiografia digital conhecida por "computed radiography", qual das seguintes afirmações é verdadeira?

A: A imagem pode ser reconstruída por Retroprojecção Filtrada.	B: É gerado directamente um sinal eléctrico que representa a imagem.
C: A imagem é lida opticamente por "Charge-Coupled Devices" (CCDs).	D: É compatível com sistemas radiográficos baseados em emulsão fotográfica.

6 – De que forma o número atómico dos átomos constituintes de um material afecta a probabilidade de espalhamento (difusão) de fotões por efeito Compton?

A: Maior nº atómico causa um espalhamento maior, principalmente para ângulos de difusão mais elevados.	B: Menor nº atómico causa um espalhamento maior, principalmente para ângulos de difusão mais elevados.
C: A dependência é fraca para todas as energias de interesse para radiografia humana.	D: O efeito é desprezável apenas para energias do fotão incidente acima do "Compton edge".

Duração: 2h30m.