Bootstrap (Part 4)

Christof Seiler

Stanford University, Spring 2016, Stats 205

Overview

So far:

- ► Nonparametric bootstrap on the rows (e.g. regression, PCA with random rows and columns)
- Nonparametric bootstrap on the residuals (e.g. regression)
- ▶ Parametric bootstrap (e.g. PCA with fixed rows and columns)
- Studentized bootstrap
- ▶ Today:
 - ▶ Bias-Corrected-accelerated (BCa) bootstrap
 - From BCa to ABC

lacktriangle Correlation coefficient of bivariate normal with ho=0.577

```
sigma = matrix(nrow = 2,ncol = 2)
diag(sigma) = 1
rho = 0.577
sigma[1,2] = sigma[2,1] = rho
sigma
```

```
## [,1] [,2]
## [1,] 1.000 0.577
## [2,] 0.577 1.000
```

- ▶ Distribution of sample correlation coefficient (n = 10)
- ► Compare: Percentile, Studentized, and Bias-Corrected-Accelerated (BCa) bootstrap

Histogram of corhat

[1] 0.0217078

Percentile Bootstrap

 Studentized bootstrap with variance stabilization fails due to numerical problems

Studentized Bootstrap Without Variance Stabilization

BCa Bootstrap

Percentile Bootstrap

Studentized Bootstrap Without Variance Stabilization

BCa Bootstrap

- The bias-corrected bootstrap is similar to the percentile bootstrap
- Recall the percentile bootstrap:
- Take bootstrap samples

$$\hat{\theta}^{*1}, \dots, \hat{\theta}^{*B}$$

Order them

$$\hat{\theta}^{(*1)},\ldots,\hat{\theta}^{(*B)}$$

Define interval as

$$(\hat{\theta}^{(*B\alpha)}, \hat{\theta}^{(*B(1-\alpha))})$$

(assuming that $B\alpha$ and $B(1-\alpha)$ are integers)

 Assume that there is an monotone increasing transformation g such that

$$\phi = g(heta)$$
 and $\hat{\phi} = g(\hat{ heta})$

▶ The BCa bootstrap is based on this model

$$rac{\hat{\phi}-\phi}{\sigma_{\phi}}\sim extstyle extstyle N(-z_0,1) \quad ext{ with } \quad \sigma_{\phi}=1+ extstyle a \phi$$

Which is a generalization of the usual normal approximation

$$rac{\hat{ heta}- heta}{\sigma}\sim extstyle extstyle extstyle N(0,1)$$

- \triangleright \hat{z}_0 is the bias estimate
- $ightharpoonup \hat{z}_0$ measures discrepancy between the median of $\hat{ heta}^*$ and $\hat{ heta}$
- ▶ It is estimated with

$$\hat{z}_0 = \Phi^{-1} \left(\frac{\# \{ \hat{\theta}^{*b} < \hat{\theta} \}}{B} \right)$$

• We obtain $\hat{z}_0=0$ if half of the $\hat{\theta}^{*b}$ values are less than or equal to $\hat{\theta}$

- â is the skewness estimate
- \blacktriangleright â measures the rate of change of the standard error of $\hat{\theta}$ with respect to the true parameter θ
- It is estimated using the Jackknife
 - ▶ Delete ith observation in original sample denote new sample by $\hat{\theta}_{(i)}$ and estimate

$$\hat{\theta}_{(\cdot)} = \sum_{i=1}^{n} \frac{\hat{\theta}_{(i)}}{n}$$

Then

$$\hat{a} = \frac{\sum_{i=1}^{n} (\hat{\theta}_{(\cdot)} - \hat{\theta}_{(i)})^{3}}{6\{\sum_{i=1}^{n} (\hat{\theta}_{(\cdot)} - \hat{\theta}_{(i)})^{2}\}^{3/2}}$$

- ► The bias-corrected version makes two additional corrections to the percentile version
- ▶ By redefining lower α_1 and upper α_2 levels as

$$\alpha_1 = \Phi\left(\hat{z}_0 + \frac{\hat{z}_0 + z^{(\alpha)}}{1 - \hat{a}(\hat{z}_0 + z^{(\alpha)})}\right) \qquad \alpha_2 = \Phi\left(\hat{z}_0 + \frac{\hat{z}_0 + z^{(1-\alpha)}}{1 - \hat{a}(\hat{z}_0 + z^{(1-\alpha)})}\right)$$

with $z^{(\alpha)}$ being the 100α percentile of standard normal and Φ normal CDF

- ▶ When \hat{a} and \hat{z}_0 are equal to zero then $\alpha_1 = \alpha$ and $\alpha_2 = 1 \alpha$
- ▶ The interval is then given by

$$(\hat{\theta}^{(*B\alpha_1)},\hat{\theta}^{(*B\alpha_2)})$$

(assuming that $B\alpha_1$ and $B\alpha_2$ are integers)

- Same asymptotic accuracy as the studentized bootstrap
- Can handle out of range problem as well
- ▶ Efron (1987) for detailed justification of this model

BCa Bootstrap in R

```
## alpha bca point
## [1,] 0.025 -0.39659
## [2,] 0.975 0.69326
```

Properties of Different Boostrap Methods

	Standard	Percentile	${\sf Studentized}^*$	BCa
Asymptotic Acurracy Range-Preserving Transformation-Invariant Bias-Correcting Skeweness-Correcting $\hat{\sigma}, \hat{\sigma}^*$ required Analytic constant or	$O(\sqrt{n})$ No No No No No	$O(\sqrt{n})$ Yes Yes No Yes No	O(1/n) No No No Yes Yes	O(1/n) Yes Yes Yes Yes No
variance stabilizing tranformation required	No	No	Yes	Yes

^{*} with variance stabilization

Properties of Different Boostrap Methods

For nonparametric boostrap:

Source: Carpenter and Bithell (2000)

Many More Topics

- Using the boostrap for better confidence in model selection (Efron 2014)
- Using the jackknife and the infinitesimal jackknife for confidence intervals in random forests prediction or classification (Wager, Hastie, and Efron 2014)

Approximate Bayesian Computation (ABC)

▶ Goal: We wish to sample from the posterior distribution $p(\theta|D)$ given data D

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

- Setting:
 - ► The likelihood $p(D|\theta)$ is hard to evaluate or expensive to compute (e.g. missing normalizing constant)
 - Easy to sample from likelihood $p(D|\theta)$
 - Easy to sample from prior $p(\theta)$
- Examples:
 - ► Population genetics (latent variables)
 - Ecology, epidemiology, systems biology (models based on differential equations)

Approximate Bayesian Computation (ABC)

- ▶ Sampling algorithm (with data $D = \{y_1, ..., y_n\}$):
 - 1. Sample $\theta_i \sim p(\theta)$
 - 2. Sample $x_i \sim p(x|\theta_i)$
 - 3. Reject θ_i if

$$x_i \neq y_j$$
 for $j = 1, \ldots, n$

- ▶ ABC sampling (define statistics μ , distance ρ , and tolerance ϵ):
 - 1. Sample $\theta_i \sim p(\theta)$
 - 2. Sample $\hat{D}_i = \{x_1, \dots, x_k\} \sim p(x|\theta_i)$
 - 3. Reject θ_i if

$$\rho(\mu(\hat{D}_i), \mu(D)) > \epsilon$$

References

- ▶ Efron (1987). Better Bootstrap Confidence Intervals
- ▶ Hall (1992). The Bootstrap and Edgeworth Expansion
- Efron and Tibshirani (1994). An Introduction to the Bootstrap
- ► Carpenter and Bithell (2000). Bootstrap Conidence Intervals: When, Which, What? A Practical Guide for Medical Statisticians
- Marin, Pudlo, Robert, and Ryder (2012). Approximate Bayesian Computational Methods
- ► Efron (2014). Estimation and Accuracy after Model Selection
- ▶ Wager, Hastie, and Efron (2014). Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife