partial order.md 2025-04-28

偏序

等价关系

满足**自反、对称、传递。** 若 $(a,b) \in R$, 称a等价b , 记为 $a \sim b$

相容关系

满足**自反、对称。 相容类**:假设R是A上的相容关系,若 $C\subseteq A$,且对于C中任意两个元素 a_1,a_2 均有 a_1Ra_2 ,则称C是由R产生的**相容类。 最大相容类**:不真包含于任何其他相容类,记为 C_R 。 **完全覆盖**:集合 A中关于相容关系R的最大相容类的集合。

偏序关系

基本性质

满足**自反、反对称、传递**,记作 \preccurlyeq 。 $(a,b) \in \preccurlyeq$ 记为 $a \preccurlyeq b$,读作**a对b有偏序关系**。 集合A和偏序关系R一起称为**偏序集**,记作(A,R)。 偏序集 (A,R^{-1}) 为(A,R)的**对偶**,偏序 R^{-1} 为偏序R的**对偶**。

积偏序

有偏序集 (A, \preccurlyeq) 和 (B, \preccurlyeq) ,则 $(A \times B, \preccurlyeq)$ 也是偏序集,称为**积偏序**。 定义为: 若在A中 $a \preccurlyeq a'$,B中 $b \preccurlyeq b'$,则 $(a,b) \preccurlyeq (a',b')$ 。 **字典顺序**: 在积偏序 $(A \times B, \preccurlyeq)$ 中,如果 $(a_1,b_1) \prec (a_2,b_2)$ 则 $a_1 \prec a_2$ 或 $(a_1 = a_2) \land (b_1 \prec b_2)$ 。

同构偏序

如果对于 (A, \preccurlyeq) 和 (A', \preccurlyeq) ,存在 $f: A \to A'$ 是A与A'之间的——对应。 $(\forall a, b \in A) \land (a \preccurlyeq b) \Leftrightarrow f(a) \preccurlyeq f(b)$,则函数f为从 (A, \preccurlyeq) 到 (A', \preccurlyeq) 的—个**同构**,且 (A, \preccurlyeq) 和 (A', \preccurlyeq) 为**同构的偏序集**。

哈斯图

盖住关系: y盖住x等价于: $x \prec y \land \neg \exists z (z \in A \land x \prec z \prec y)$.

四元四界

设偏序集 (A, \preccurlyeq) , $B \subseteq A, y \in B$

- **最小元**: $\forall x (x \in B \rightarrow y \leq x)$, 则 $y \rightarrow B$ 的最小元 (要求对于全部元素都可比)
- **最大元**: $\forall x (x \in B \to x \leq y)$, $y \in B \to B$, $y \in B$
- 极小元: $\forall x(x \in B \land x \leq y \rightarrow x = y)$, 则 $y \ni B$ 的极小元
- 极大元: $\forall x(x \in B \land y \leq x \rightarrow x = y)$, 则 $y \ni B$ 的极大元
- 上界: $\forall x (x \in B \rightarrow x \preccurlyeq y)$, 则 $y \rightarrow B$ 的上界
- **下界**: $\forall x (x \in B \rightarrow y \leq x)$, 则 $y \land B$ 的下界
- **上确界**: $\Rightarrow C = y|y \rightarrow B$ 的上界, C中的最小元为B的上确界
- **下确界**: $\Diamond C = y|y$ 为B的下界, C中的最大元为B的下确界

partial order.md 2025-04-28

全序关系

对于偏序集 (A, \preceq) ,其中任意两个元素都可比。 **拓扑排序**:每次选择一个极小元并输出,从而形成全序。

良序关系

对于偏序集 (A, \preccurlyeq) ,任何一个非空子集都有最小元素。

格

对于偏序集 (L, \preccurlyeq) ,满足:

- $\forall x, y \in L$, 集合x, y存在最小上界, 记作 $x \vee y$.

基本性质

- $ullet \ \ a \preccurlyeq a \lor b$, $b \preccurlyeq a \lor b$.
- 如果 $a \leq c, b \leq c$, 那么 $a \wedge b \leq c$
- $a \wedge b \preccurlyeq a$, $a \wedge b \preccurlyeq b$
- 如果 $c \leq a, c \leq b$, 那么 $c \leq a \wedge b$

代数性质

- 幂等律: $a \lor a = a \land a = a$
- 结合律: $a \lor (b \lor c) = (a \lor b) \lor c$; $a \land (b \land c) = (a \land b) \land c$
- 吸收率: $a \lor (a \land b) = a$; $a \land (a \lor b) = a$
- 伪传递性: $a \leq b, c \leq d \rightarrow (a \land c \leq b \land d), (a \lor c \leq b \lor d)$
- 分配不等式: $a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$; $(a \land b) \lor (a \land c) \preccurlyeq a \land (b \lor c)$

子格

S = L的一个非空子集,若S对于 Λ 和 \forall 封闭,则S = L的一个**子格**(上下确界都在S中)。

特殊格

1. 链式格: 任意两个元素都可以比较, 即全序

- 2. **菱形格**: $b \lor (c \land a) = (b \lor c) \land a = a$
- 3. **五边形格**: 不满足分配律的最简单格。 $c \lor (b \land d) = c \lor e = c \neq (c \lor b) \land d = a \land d = d$

- 4. 分配格:满足分配律的格特性: 当且仅当它不包含任何同构于菱形格或五边形格的子格。
- 5. **有界格**: 具有最大元素1和最小元素0 **补元**: 对于有界格L中任意的元素a, 若存在元素b, 使得 $a \lor b = 1$ 且 $a \land b = 0$, 则b为a的补元。 (补元具有**唯一性**)