

www.uneatlantico.es

MATEMÁTICAS

Álgebra Lineal e Inversión de Matriz

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Aprender a Resolver Operaciones Matriciales

- Aritmética de Matrices
- Producto Matriz-Vector y Matriz-Matriz
- Matriz Cuadradas
- Matriz Inversa
- Matriz Traspuesta

Aritmética de Matrices

Dos matrices A y B son **iguales** si tienen el mismo número de filas y columnas, digamos, $n \times m$, y sí $a_{ij} = b_{ij}$, para cada i = 1, 2, ..., n y j = 1, 2, ..., m.

Dos operaciones importantes en matrices son la suma de dos matrices y la multiplicación de una matriz por un número real.

Si A y B son matrices, ambas de $n \times m$, la suma de A y B, denotada A + B, es la matriz $n \times m$ cuyas entradas son $a_{ij} + b_{ij}$, para cada i = 1, 2, ..., n y j = 1, 2, ..., m.

Si A es una matriz $n \times m$ y λ es un número real, entonces la multiplicación escalar de λ y A, denotada λA , es la matriz $n \times m$ cuyas entradas son λa_{ij} , para cada i = 1, 2, ..., n y j = 1, 2, ..., m.

Aritmética de Matrices

Ejemplo:

Determine A + B y λA , cuando:

$$A = \begin{bmatrix} 2 & -1 & 7 \\ 3 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 2 & -8 \\ 0 & 1 & 6 \end{bmatrix}, \quad y \lambda = -2.$$

Aritmética de Matrices

Propiedades:

Si A, B y C son matrices $n \times m$ y λ y μ son números reales. Se cumplen las siguientes propiedades de suma y multiplicación escalar:

i)
$$A + B = B + A$$
,

ii)
$$(A+B)+C=A+(B+C)$$
,

iii)
$$A + O = O + A = A$$
,

iv)
$$A + (-A) = -A + A = 0$$
,

v)
$$\lambda(A+B) = \lambda A + \lambda B$$
,

vi)
$$(\lambda + \mu)A = \lambda A + \mu A$$
,

$$\mathbf{vii}) \quad \lambda(\mu A) = (\lambda \mu) A,$$

viii)
$$1A = A$$
.

Todas estas propiedades siguen resultados similares respecto a los números complejos.

Producto Matriz-Vector

El producto de matrices también se puede definir en ciertas instancias. Primero consideraremos el producto de una matriz $n \times m$ y un vector columna $m \times 1$.

Sea A una matriz $n \times m$ y **b** un vector columna m-dimensional. El **producto matriz-vector** de A y **b**, denotado A**b**, es un vector columna n-dimensional dado por

$$A\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m a_{1i}b_i \\ \sum_{i=1}^m a_{2i}b_i \\ \vdots \\ \sum_{i=1}^m a_{ni}b_i \end{bmatrix}.$$

Para definir este producto, el número de columnas de la matriz A debe concordar con el número de filas del vector b y el resultado es otro vector columna con el número de filas que concuerda con el número de filas en la matriz.

Ejemplo:

Determine el producto Ab si:

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 6 & 4 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Producto Matriz-Matriz

Podemos utilizar la multiplicación matriz-vector para definir la multiplicación general matriz-matriz.

Si A es una matriz $n \times m$ y B una matriz $m \times p$. El **producto de la matriz** de A y B, denotado AB es una matriz C $n \times p$ cuyas entradas c_{ij} son

$$c_{ij} = \sum_{k=1}^{m} a_{ik}b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{im}b_{mj},$$

para cada i = 1, 2, ..., p, j = 1, 2, ..., p.

Producto Matriz-Matriz

Ejemplo:

Determine todos los productos posibles de las matrices:

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 1 & 2 \end{bmatrix},$$

$$C = \begin{bmatrix} 2 & 1 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ 1 & 1 & 2 & 0 \end{bmatrix}, \quad y \quad D = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}.$$

Propiedades:

Si A es una matriz $n \times m$, B es una matriz $m \times k$, C es una matriz $k \times p$, D es una matriz $m \times k$ y λ es un número real. Las siguientes propiedades se mantienen:

a)
$$A(BC) = (AB)C$$
; b) $A(B+D) = AB + AD$; c) $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

Matriz Cuadrada

Las matrices que tienen el mismo número de filas como columnas son especialmente importantes en aplicaciones.

- Una matriz cuadrada tiene el mismo número de filas que de columnas.
- ii) Una matriz diagonal $D = [d_{ij}]$ es una matriz cuadrada con $d_{ij} = 0$ siempre que $i \neq j$.
- iii) La matriz identidad de orden n, $I_n = [\delta_{ij}]$, es una matriz diagonal cuyas entradas diagonales son todas 1. Cuando el tamaño de I_n es claro, en general, la matriz se escribe simplemente como I.

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Matriz Cuadrada

Una matriz $n \times n$ triangular superior $U = [u_{ij}]$ tiene, para cada j = 1, 2, ..., n, las entradas

$$u_{ij} = 0$$
, para cada $i = j + 1, j + 2, ..., n$;

y una matriz **triangular inferior** $L = [l_{ij}]$ tiene, para cada j = 1, 2, ..., n las entradas

$$l_{ij} = 0$$
, para cada $i = 1, 2, ..., j - 1$.

Una matriz diagonal, entonces, es tanto triangular superior como triangular inferior debido a que sus entradas diferentes de cero deben estar en la diagonal principal.

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Matriz Inversa

La **inversa de una matriz** está relacionada con los sistemas lineales.

Se dice que una matriz $A n \times n$ es no singular (o *invertible*) si existe una matriz $A^{-1} n \times n$ con $AA^{-1} = A^{-1}A = I$. La matriz A^{-1} recibe el nombre de **inversa** de A. Una matriz que no tenga inversa recibe el nombre de **singular** (o *no invertible*).

Propiedades:

Para cualquier matriz $n \times n$ no singular A:

- i) A^{-1} es única.
- ii) A^{-1} es no singular y $(A^{-1})^{-1} = A$.
- iii) Si B también es una matriz no singular $n \times n$, entonces $(AB)^{-1} = B^{-1}A^{-1}$.

Matriz Inversa

Ejemplo:

Demuestre que $B = A^{-1}$ y que la solución del sistema de ecuaciones lineales descrito puede resolverse como $B\mathbf{b}$, donde \mathbf{b} es el vector columna de los términos independientes del sistema.

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \qquad y \qquad B = \begin{bmatrix} -\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\ \frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

$$x_1 + 2x_2 - x_3 = 2,$$

 $2x_1 + x_2 = 3,$
 $-x_1 + x_2 + 2x_3 = 4,$

Matriz Inversa

Para calcular la inversa de una matriz no singular se utiliza el Método de Gauss-Jordan, según los siguientes pasos:

- 1. Aumentar la matriz no singular con una matriz identidad.
- 2. Aplicar el método de Gauss-Jordan sobre la matriz aumentada hasta convertir la matriz no singular en una matriz identidad.
- 3. la matriz resultante a la derecha es la inversa de la matriz original.

Ejemplo:

Calcule A^{-1} si:

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{array} \right]$$

Matriz Traspuesta

Otra matriz importante relacionada con una matriz dada A es su transpuesta, denotada A^t .

La **transpuesta** de una matriz $A = [a_{ij}] n \times m$ es la matriz $A^t = [a_{ij}], m \times n$, donde para cada i, la i-ésima columna de A^t es la misma que la i-ésima fila de A. Una matriz cuadrada A recibe el nombre de simétrica si $A = A^t$.

Propiedades:

Las siguientes operaciones relacionadas con la transpuesta de una matriz se mantienen siempre que la operación sea posible

$$\mathbf{i)} \quad (A^t)^t = A,$$

iii)
$$(AB)^t = B^t A^t$$
,

ii)
$$(A + B)^t = A^t + B^t$$
,

iv) si
$$A^{-1}$$
 existe, entonces $(A^{-1})^t = (A^t)^{-1}$.

Matriz Traspuesta

Ilustración:

Las matrices

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 & 7 \\ 3 & -5 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

tienen transpuestas

$$A^{t} = \begin{bmatrix} 7 & 3 & 0 \\ 2 & 5 & 5 \\ 0 & -1 & -6 \end{bmatrix}, \quad B^{t} = \begin{bmatrix} 2 & 3 \\ 4 & -5 \\ 7 & -1 \end{bmatrix}, \quad C^{t} = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}.$$

La matriz C es simétrica porque $C^t = C$. Las matrices A y B no son simétricas.

www.uneatlantico.es