Accessing the Tenstorrent device

Using the EPCC RISC-V testbed

- We host a testbed system that enables developers to experiment with RISC-V
 - https://riscv.epcc.ed.ac.uk

- Lots of different RISC-V technologies, but this also contains Wormhole and Blackhole PCIe accelerators
 - This week and next our compute facility is offline due to power maintenance works, so we
 are currently using a single Wormhole for the tutorial and access instructions are slightly
 different than they normally are

Everyone has a visitor account on the machine

- We will provide the details of this to you now
 - Everything is set up in this account so that you can work with the practicals
- You can then use Putty (on Windows) or your inbuilt SSH client (on Linux or MacOS) to SSH into the remote machine

Let's access the machine

Step one – using the visitor account assigned to you, access the login node

ssh user-id@riscv-login.epcc.ed.ac.uk

You are now logged into the login node

Step two – SSH to tenstorrent Wormhole machine

[user-id@riscv-login ~]\$ ssh tenstorrent1

We have set some files up for you already....

```
[user-id@tenstorrent1 ~]$ ls
tt-metal-0.62.2 tt-tutorial
```

- The *tt-metal-0.62.2* directory contains the Tenstorrent software stack
 - You don't need to worry too much about this, but if you issue export you will see that there are some paths (e.g. TT_METAL_HOME) set up which point into this
- We will be working with the tt-tutorial directory today which contains the practicals

```
[user-id@tenstorrent1 ~]$ cd tt-tutorial
[user-id@tenstorrent1 ~/tt-tutorial]$ ls
Lectures LICENCE practical README
[user-id@tenstorrent1 ~/tt-tutorial]$ cd practical
[user-id@tenstorrent1 ~/tt-tutorial/practical]$ ls
five four general one README.md three two
```

These correspond to practicals one through five that we will work with today

A really useful tool

 Tenstorrent System Management Interface (TT-SMI) is a command line utility that enables us to interact with Tenstorrent devices connected to a host

[user-id@tenstorrent1 ~]\$ tt-smi

- Brings up an neurses dialog with information about the card, including telemetry (e.g. power draw, temperature, clock frequency)
- Most usefully this can be used to reset the device if it hangs/gets stuck
 - Please don't use this during the tutorial (unless it really gets stuck!) as multiple people will be running on the same device, so you might reset their run!

Sharing the Wormhole: Your executable is running

```
[user-id@tenstorrent1 ~]$ ./ex five
2025-09-01 18:38:54.566 | info
                                       SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
                                              Device | Opening user mode device driver (tt cluster.cpp:192)
2025-09-01 18:38:54.579 | info
                                       SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
2025-09-01 18:38:54.579 | info
                                       SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
2025-09-01 18:38:54.590 | info
                                       SiliconDriver | Harvesting mask for chip 0 is 0x300 (NOCO: 0x300, simulated harvesting mask: 0x0).
2025-09-01 18:38:54.601 | info
(cluster.cpp:295)
2025-09-01 18:38:54.603 | info
                                       SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
                                       SiliconDriver | Harvesting mask for chip 1 is 0x204 (NOCO: 0x204, simulated harvesting mask: 0x0).
2025-09-01 18:38:54.699 | info
(cluster.cpp:295)
2025-09-01 18:38:54.702 | info
                                       SiliconDriver | Opening local chip ids/pci ids: {0}/[0] and remote chip ids {1} (cluster.cpp:157)
                                       SiliconDriver | All devices in cluster running firmware version: 255.255.0 (cluster.cpp:138)
2025-09-01 18:38:54.705 | info
                                       SiliconDriver | Software version 6.0.0, Ethernet FW version 6.9.0 (Device 0) (cluster.cpp:935)
2025-09-01 18:38:54.705 | info
                                       SiliconDriver | Software version 6.0.0, Ethernet FW version 6.9.0 (Device 1) (cluster.cpp:935)
2025-09-01 18:38:54.705 | info
Completed successfully on the device, with 65536 elements
2025-09-01 18:38:58.053 | info
                                              Device | Closing user mode device drivers (tt cluster.cpp:383)
```

Tenstorrent's kernel driver protects against users concurrently running, but this is a little rudimentary

Sharing the Wormhole: Conflict, you are not running

```
[user-id@tenstorrent1 ~]$ ./ex five
2025-09-01 18:38:19.201 | info
                                      SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
2025-09-01 18:38:19.214 | info
                                              Device | Opening user mode device driver (tt cluster.cpp:192)
                                      SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
2025-09-01 18:38:19.214 | info
                                      SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
2025-09-01 18:38:19.224 | info
2025-09-01 18:38:19.234 | info
                                      SiliconDriver | Harvesting mask for chip 0 is 0x300 (NOCO: 0x300, simulated harvesting mask: 0x0). (cluster.cpp:295)
2025-09-01 18:38:19.236 | info
                                      SiliconDriver | Opened PCI device 0; KMD version: 1.29.0; API: 1; IOMMU: disabled (pci device.cpp:197)
2025-09-01 18:38:19.341 | info
                                      SiliconDriver | Harvesting mask for chip 1 is 0x204 (NOCO: 0x204, simulated harvesting mask: 0x0). (cluster.cpp:295)
2025-09-01 18:38:19.346 | info
                                      SiliconDriver | Opening local chip ids/pci ids: {0}/[0] and remote chip ids {1} (cluster.cpp:157)
2025-09-01 18:38:19.347 | info
                                      SiliconDriver | All devices in cluster running firmware version: 255.255.0 (cluster.cpp:138)
2025-09-01 18:38:19.347 | info
                                      SiliconDriver | Software version 6.0.0, Ethernet FW version 6.9.0 (Device 0) (cluster.cpp:935)
                                      SiliconDriver | Software version 6.0.0, Ethernet FW version 6.9.0 (Device 1) (cluster.cpp:935)
2025-09-01 18:38:19.348 | info
2025-09-01 18:38:20.081 | info
                                               Metal | While initializing device 0, active ethernet dispatch core (x=21,y=17) detected as still running, issuing exit
signal. (metal context.cpp:586)
2025-09-01 18:38:20.082 | info
                                               Metal | While initializing device 0, active ethernet dispatch core (x=18,y=17) detected as still running, issuing exit
signal. (metal context.cpp:586)
2025-09-01 18:38:20.082 | info
                                               Metal | While initializing device 0, active ethernet dispatch core (x=25,y=17) detected as still running, issuing exit
signal. (metal context.cpp:586)
Read unexpected run mailbox value: 0x40 (expected 0x80 or 0x0)
2025-09-01 18:38:20.082 | critical |
                                              Always | Read unexpected run mailbox value from core (x=25,y=17) (assert.hpp:107)
                                             Always | Detected dispatch kernels still running but failed to complete an early exit. This may happen from time to time
2025-09-01 18:38:20.082 | warning
following a reset, continuing to FW intialization... (metal context.cpp:632)
2025-09-01 18:38:20.088 | info
                                              Metal | While initializing device 1, active ethernet dispatch core (x=18, y=16) detected as still running, issuing exit
signal. (metal context.cpp:586)
2025-09-01 18:38:20.088 | info
                                              Metal | While initializing device 1, active ethernet dispatch core (x=25,y=16) detected as still running, issuing exit
signal. (metal context.cpp:586)
Read unexpected run mailbox value: 0x40 (expected 0x80 or 0x0)
2025-09-01 18:38:20.088 | critical |
                                              Always | Read unexpected run mailbox value from core (x=25,y=16) (assert.hpp:107)
2025-09-01 18:38:20.088 | warning |
                                             Always | Detected dispatch kernels still running but failed to complete an early exit. This may happen from time to time
following a reset, continuing to FW intialization... (metal context.cpp:632)
```

- The output is longer, it will pause, and you can see detected as still running, issuing exit
- Ctrl-C (or wait for timeout after around 20 seconds) and then rerun