

Part 1 ops-nn仓介绍

Part 2 开源算子能力深度解析

ops-nn仓基础介绍

ops-nn是CANN (Compute Architecture for Neural Networks) 算子库中提供神经网络计算能力的高阶算子库,包括matmul类、activation类等算子,算子库架构图如下

	算子库	
	高阶算子	
⊜ ops-nn	⊜ ops-cv	⊜ ops-transformer
	基础算子	
	⊜ ops-math	
	框架层	

ops-nn仓典型算子功能介绍

算子类目	算子类目	核心功能介绍
foreach	循环操作	遍历输入数据(如张量、数组)的每个元素或维度,对单个元素 / 维度执行预设操作(如计算、转换),支持批量循环处理,避免手动迭代逻辑,提升代码简洁性与执行效率。
control	控制流	支持在神经网络中实现条件分支(if-else)、循环控制(while)、流程跳转与断言检测,并可依据中间计算结果动态调整计算路径,从而满足复杂模型(如动态层数网络)的流程控制需求。
index	索引操作	对张量进行索引访问、切片或重塑,包括按位置索引(如取特定行 / 列)、布尔索引(按条件筛选元素)、高级索引(如不规则切片),用于提取、重组或筛选张量中的目标数据。
hash	哈希操作	对输入数据(如特征值、张量元素)计算哈希值,支持哈希映射(如将特征映射到固定维度的哈希表)、哈希编码(如特征离散化),常用于高效数据检索、特征降维或哈希 - based 模型(如哈希嵌入)。
vfusion	融合操作	融合多个独立算子的计算逻辑,减少算子间数据传输开销(如内存读写),提升硬件计算利用率,尤其在端侧或高性能推理场景中优化运行速度。
rnn	循环神经网络	处理序列数据 (如文本、时序信号) 的核心算子, 通过隐藏状态传递历史信息。
pooling	池化操作	对特征图进行下采样,降低维度并保留关键特征,常见类型包括最大池化(取局部区域最大值,突出显著特征)、平均池化 (取局部区域平均值,保留整体趋势)、自适应池化(动态调整输出尺寸),用于减少计算量、防止过拟合。
activation	激活函数	为神经网络引入非线性变换,解决线性模型无法拟合复杂数据的问题,常见类型包括 ReLU(修正线性单元,缓解梯度消失)、Sigmoid(将输出映射到 0-1,用于二分类)、Tanh(将输出映射到 - 1-1,增强非线性表达)等。
loss	损失函数	衡量模型预测结果与真实标签的差异,是模型训练的优化目标。
optim	优化器	实现神经网络训练中的参数更新策略,通过计算梯度调整模型权重以最小化损失函数
norm	归一化	对张量数据进行标准化处理,减少内部协变量偏移,加速模型训练并提升稳定性,常见类型包括 BatchNorm(批归一化,按批次统计均值 / 方差)、LayerNorm(层归一化,按特征维度统计)、InstanceNorm(实例归一化,常用于生成模型)等。
quant	量化操作	将高精度数据(如 32 位浮点数)转换为低精度数据(如 8 位整数、16 位浮点数),减少模型存储占用与计算开销,同时尽量保留模型精度,支持训练后量化(PTQ)、量化感知训练(QAT),适用于端侧部署(如手机、嵌入式设备)。
matmul	矩阵乘法	实现两个张量的矩阵乘法运算,是神经网络中全连接层、注意力机制等模块的核心计算单元,支持高维张量广播(如 batch 维度的批量矩阵乘法)、转置乘法(如matmul(A, B, transpose_b=True)),适配不同硬件的并行计算优化
conv	卷积操作	卷积神经网络(CNN)的核心算子,通过卷积核(滤波器)与输入特征图进行滑动窗口计算,提取局部空间特征(如边缘、纹理、形状),支持 2D 卷积(图像处理)、3D 卷积(视频 /volumetric 数据处理)、等类型。

https://gita

ops-nn仓典型算子功能介绍

https://gitcode.com/cann

```
x = self.sigmoid(x)
       return x
# 设置超参数
input size = 10
hidden size = 5
output size = 1
learning rate = 0.01
epochs = 100
device = torch.device("npu:0") # 使用第0块NPU
# 初始化模型并迁移到NPU
model = SimpleNN (input size, hidden size, output size).to(device)
# 损失函数和优化器(使用NPU支持的优化器)
criterion = nn.MSELoss() # 注意修正了原代码中的MseLoss小写问题
# 使用NPU版本的Adam优化器
optimizer = torch.optim.Adam(model.parameters(), lr=learning rate)
```

def init (self, input size, hidden size, output size):

self.fcl = nn.Linear(input size, hidden size) # 底层matmul

self.fc2 = nn.Linear(hidden size, output size) # 底层matmul

import torch

定义网络结构

import torch.nn as nn

class SimpleNN (nn.Module):

def forward(self, x):
 x = self.fcl(x)
 x = self.relu(x)
 x = self.fc2(x)

import torch npu # 导入昇腾NPU支持库

self.relu = nn.ReLU()

self.sigmoid = nn.Sigmoid()

super(SimpleNN, self). init ()

Part 1 ops-nn仓介绍

Part 2 开源算子能力深度解析

ops-nn开源算子能力深度解析——MatMul

矩阵乘法 Matrix multiplication

- 矩阵乘法是一种二元运算,它从两个矩阵生成一个矩阵。
- 对于矩阵乘法来说,第一个矩阵的列数必须等于第二个矩阵的行数。
- 生成的矩阵, 称为矩阵乘积, 具有第一个矩阵的行数和第二个矩阵的列数。

网络类型	矩阵乘法占比 (计算量)	主要来源
全连接网络	90%-100%	全连接层的W·x操作
CNN (如 ResNet)	70%-90%	卷积层 (im2col+matmul)
Transformer	85%-95%	注意力机制(QK^T, AV)和 FFN
RNN/LSTM	60%-80%	门控机制中的矩阵乘法

采用NPU进行计算加速的小知识

标量计算单元

Vector计算单元

Cube计算单元

Cube计算单元负责执行矩阵运算,Fp16算力理论值计算公式:

即一个核可以在1个时钟周期处理完成对FP16的16*16*16的 矩阵乘加运算

$$Tcal = \frac{number\ of\ Flops}{BWcal}$$

MatMul算子能力深度解析

算子的硬件江湖:十八般武艺

Arithmetic Intensity = FLOPs / Bytes Moved

$$Tcal = \frac{number\ of\ Flops}{BWcal}$$

$$Tmem = \frac{number\ of\ bytes}{BWmem}$$

当 $Tcal \geq Tmem$

软件实现才可能是计算bound

与算力共舞:

• 优化分核逻辑, 充分发挥算力

搬运数据少一点:

- 合理分块: 获取最优计算访存比
- 矩阵全载: 小shape矩阵之道
- 外积&混合内外积:提升访存效率

搬运带宽大一点:

- 聚合与调度:提高L2访存
- 大包搬运:提升带宽利用率
- weight预取: 让数据先飞一会儿

搬运计算合理调度:

• 双缓冲流水并行,让计算连续

融合算子, 硬件之上的算法跃动:

- 灵活使用指令跳跃,算子无损消除
- CV融合

与算力共舞

昇腾Cube计算单元负责执行矩阵运算,Fp16算力理论值计算方式:

即一个核可以在1个时钟周期处理完成对FP16的16*16*16的矩阵乘加运算 启动更多的核同时计算,可以提高计算并行度,充分发挥算力空间

20核负载均衡

$$Tcal = \frac{2 \times m \times k \times n}{2 \times 16 \times 16 \times 16 \times \cancel{6} \times \cancel{5} \times \cancel{5} \times \cancel{5}}$$

搬运数据少一点

• 合理分块: 获取最优计算访存比

• 矩阵全载: 小shape矩阵之道

Α

• 外积&混合内外积:提升访存效率

https://gitcode.com/cann

$$Tmem = \frac{number\ of\ bytes}{BWmem}$$

$$= \frac{\left(m \times \frac{n}{baseN} + n \times \frac{m}{baseM}\right) \times k * 2Byte}{BWmem}$$

baseM×baseN× 4Byte ≤ 核输出buffer空间

最优baseM=256, baseN=128; (910B 为例)

搬运带宽大一点

$$Tmem = \frac{number\ of\ bytes}{BWmem}$$

聚合与调度: 提高L2访存

- shape超L2 cache的场景,传统的数据搬运方式, 导致victim严重,影响访存效率
- 增加L2层切分,让多核在同一时间访问相同内存 区域,提升L2命中率
- 控制L2区块访问顺序, 复用L2数据

大包搬运: 提升带宽利用率

- 内轴小于cache line,受小包搬运影响,导致 访存效率低
- 推理场景下将weight预处理成硬件亲和格式, 保证数据搬运搬运满足cache line,提高访存效率

512B	256B	128B		
instr 0	instr1	instr 1		
instr 0	instr 1	instr 1		
instr 0	instr 1	instr1		
instr 0		instr 1		
instr 0		instr 1		
instr 0		instr 1		

weight预取:让数据先飞一会儿

• 在weight矩阵是常量,可以采用weight预取方式(提前读取到L2中),减少数据访存耗时

搬运计算合理调度

充分利用**并行执行单元**,提高硬件利用率,降低处理延迟设计优化**数据并行处理**,提高数据吞吐量,保证计算连续

融合算子, 硬件之上的算法跃动

- ▶ Deepseek网络中存在Transpose+BatchMatMul算子组合,前后两个Tranpose算子增加数据搬运耗时,影响网络竞争力。
- ▶ 通过调整搬运指令的stride,从原来的K适配成Batch*K,N适配成Batch*N,修改输入输出矩阵取址的offset,完成转置排布数据处理;
- ▶ 该方法只修改搬运的排布,没有变更算子搬运的逻辑,是一种无损的优化,能够去掉前后两个Transpose算子耗时。

融合算子, 硬件之上的算法跃动

- ➤ DeepSeek网络中存在QuantBatchMatmul+ReduceSum组合。需要在MM计算结束后,对其batch轴进行ReduceSum,这样会增加一个ReduceSum算子的耗时,影响网络性能竞争力。
- ➤ 融合QuantBatchMatmul和ReduceSum算子:在QuantBatchMatmul输出结果时,直接对batch轴进行atomic累加完成ReduceSum操作。(b,m,k) x (b,k,n)->(m,n);

Thank you.

社区愿景: 打造开放易用、技术领先的AI算力新生态

社区使命:使能开发者基于CANN社区自主研究创新,构筑根深叶茂、

跨产业协同共享共赢的CANN生态

Vision: Building an Open, Easy-to-Use, and Technology-leading Al Computing Ecosystem

Mission: Enable developers to independently research and innovate based on the CANN community and build a win-win CANN ecosystem with deep roots and cross-industry collaboration and sharing.

上CANN社区获取干货

关注CANN公众号获取资讯

