03. Finding Area of a Curve

3.1. Area under a Curve, which are entirely above the x-axis.

In this case, we find the area by simply finding the integral:

Area =
$$\int_{a}^{b} f(x)dx$$

Example 25: Find the area underneath the curve $y = x^2 + 2$ from x = 1 to x = 2. Solution:

Figure No # 03

Area =
$$\int_{1}^{b} f(x) dx$$

Area = $\int_{1}^{2} (x^{2} + 2) dx = \int_{1}^{2} x^{2} dx + \int_{1}^{2} 2 dx$
Area = $\left[\frac{x^{2+1}}{2+1} \right]_{1}^{2} + \left[2x \right]_{1}^{2}$ [:: $\int x^{n} dx = \frac{x^{n+1}}{n+1} + c$] and [:: $\int dx = x$]
Area = $\left[\frac{x^{3}}{3} \right]_{1}^{2} + \left[2x \right]_{1}^{2} = \left[\frac{2^{3}}{3} - \frac{1^{3}}{3} \right] + \left[2 \times 2 - 2 \times 1 \right]$
Area = $\left[\frac{8}{3} - \frac{1}{3} \right] + \left[4 - 2 \right] = \left[\frac{8 - 1}{3} \right] + \left[2 \right] = \left[\frac{7}{3} \right] + \left[2 \right]$

Area =
$$\frac{7}{3} + 2 = \frac{7+6}{3} = \frac{13}{3}$$
 square unit

Example 26: The region R is bounded by the curve with equation $y = \cos^2 2x$, the x-axis and the lines x = 0 and $x = \frac{\pi}{6}$. Find the area of R.

Solution: First draw a sketch, showing R:

Given,
$$y = f(x) = \cos^2 2x$$

$$Area = \int_{a}^{b} f(x) dx$$

Area of R =
$$\int_{0}^{\pi/6} \cos^2 2x \, dx$$

Use the identity

$$\cos 2x = 2\cos^2 x - 1.$$

$$\therefore \cos 4x = 2\cos^2 2x - 1$$

$$\therefore \cos 4x + 1 = 2\cos^2 2x$$

$$\therefore \cos^2 2x = \frac{1 + \cos 4x}{2}$$

Area of R =
$$\int_{0}^{\frac{\pi}{6}} \cos^{2} 2x \, dx = \int_{0}^{\frac{\pi}{6}} (\frac{1 + \cos 4x}{2}) \, dx = \int_{0}^{\frac{\pi}{6}} (\frac{1}{2} + \frac{1}{2} \cos 4x) \, dx$$

Area of R =
$$\left[\frac{1}{2}x + \frac{1}{2} \cdot \frac{1}{4} \sin 4x\right]_0^{\pi/6}$$

Area of R =
$$\left[\frac{1}{2}.\frac{\pi}{6} + \frac{1}{2}.\frac{1}{4}\sin 4.\frac{\pi}{6} - \frac{1}{2}.0 - \frac{1}{2}.\frac{1}{4}\sin 4.0\right]$$

Area of R =
$$\frac{\pi}{12} + \frac{1}{8} \sin \frac{2\pi}{3} - (0+0)$$

Area of R =
$$\frac{\pi}{12} + \frac{1}{8} \cdot \frac{\sqrt{3}}{2} \quad [\because \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}]$$

= $\frac{\pi}{12} + \frac{\sqrt{3}}{16}$ Answer

Example 27: Find the area of the region under the curve $y = \sin^2 x$ and above the interval

$$\left[\frac{\pi}{6},\frac{\pi}{3}\right]$$

Solution: We first find an antiderivative of $\sin^2 x$

$$[\because 1 - \cos 2x = 2\sin^2 x; \therefore \sin^2 x = \frac{1 - \cos 2x}{2}]$$

Now,
$$\int \sin^2 x dx$$
$$= \int \frac{1 - \cos 2x}{2} dx$$
$$= \int \frac{dx}{2} - \int \frac{\cos 2x}{2} dx$$
$$= \frac{x}{2} - \frac{1}{2} \frac{\sin 2x}{2} + c.$$

Given, $y = f(x) = \sin^2 x$

Area =
$$\int_{a}^{b} f(x)dx$$

Thus, the area = $\int_{-\pi/6}^{\pi/3} \sin^2 x dx$

$$= \left[\frac{x}{2} - \frac{\sin 2x}{4}\right] \frac{\pi}{3}$$

$$[:: \int \sin^2 x dx = \frac{x}{2} - \frac{1}{2} \frac{\sin 2x}{2}]$$

$$= \left[\frac{\frac{\pi}{3}}{2} - \frac{\sin 2 \cdot \frac{\pi}{3}}{4} - \left[\frac{\frac{\pi}{6}}{2} - \frac{\sin 2 \cdot \frac{\pi}{6}}{4} \right] \right] = \left[\frac{\frac{\pi}{3}}{2} - \frac{\sin 2 \cdot \frac{\pi}{3}}{4} - \frac{\frac{\pi}{6}}{2} + \frac{\sin 2 \cdot \frac{\pi}{6}}{4} \right]$$

$$=\frac{\pi}{6} - \frac{\sin\frac{2\pi}{3}}{4} - \frac{\pi}{12} + \frac{\sin\frac{\pi}{3}}{4} = \frac{\pi}{6} - \frac{\pi}{12} + \frac{\sin\frac{\pi}{3}}{4} - \frac{\sin\frac{2\pi}{3}}{4}$$

$$= \frac{2\pi - \pi}{12} + \frac{\frac{\sqrt{3}}{2}}{4} - \frac{\frac{\sqrt{3}}{2}}{4} = \frac{\pi}{12} + \frac{\frac{\sqrt{3}}{2}}{4} - \frac{\frac{\sqrt{3}}{2}}{4} = \frac{\pi}{12} = \frac{\pi}{12} Answer$$

3.2. Curves which are entirely below the x-axis

Figure No # 06

In this case, the integral gives a negative number. We need to take the absolute value of this to find our area:

$$Area = \left| \int_{a}^{b} f(x) dx \right|$$

Example 28: Find the area bounded by $y = x^2 - 4$, the x-axis and the lines x = -1 and x = 2 Solution:

Figure No # 07

$$Area = \left| \int_{a}^{b} f(x) dx \right|$$

$$\Rightarrow Area = \left| \int_{-1}^{2} (x^{2} - 4) dx \right| = \left| \int_{-1}^{2} x^{2} dx - \int_{-1}^{2} 4 dx \right|$$

$$\Rightarrow Area = \left| \left[\frac{x^{2+1}}{2+1} \right]_{-1}^{2} - \left[4x \right]_{-1}^{2} \right| \qquad [\because \int x^{n} dx = \frac{x^{n+1}}{n+1} + c \text{ }] \text{ and } [\because \int dx = x]$$

$$\Rightarrow Area = \left| \left[\frac{x^{3}}{3} \right]_{-1}^{2} - \left[4x \right]_{-1}^{2} \right| = \left| \left[\frac{2^{3}}{3} - \frac{(-1)^{3}}{3} \right] - \left[4 \times 2 - 4(-1) \right] \right|$$

$$\Rightarrow Area = \left| \left[\frac{8}{3} - \frac{-1}{3} \right] - \left[8 + 4 \right] \right| = \left| \left[\frac{8}{3} + \frac{1}{3} \right] - \left[8 + 4 \right] \right| = \left| \left[\frac{8+1}{3} \right] - \left[12 \right] \right|$$

$$\Rightarrow Area = \left| \left[\frac{9}{3} \right] - \left[12 \right] \right| = \left| \left[3 \right] - \left[12 \right] \right| = \left| -9 \right| \text{ square unit}$$

3.3. Part of the curve is below the x-axis and part of the curve is above the x-axis.

In this case, we have to sum the individual parts, taking the absolute value for the section where the curve is below the x-axis (from x = a to x = c).

Area =
$$\left| \int_{a}^{c} f(x) dx \right| + \int_{c}^{b} f(x) dx$$

Example 29: What is the area bounded by the curve $y = x^3$, x = -2 and x = 1

Figure No # 09

Solution: We can see from the graph that the portion between x = -2 and x = 0 is below the x-axis, so we need to take the absolute value for that portion.

$$Area = \begin{vmatrix} \int_{a}^{c} f(x) dx \\ Area \end{vmatrix} + \int_{c}^{b} f(x) dx$$

$$\Rightarrow Area = \begin{vmatrix} \int_{-2}^{0} f(x) dx \\ -2 \end{vmatrix} + \int_{0}^{1} f(x) dx = \begin{vmatrix} \int_{-2}^{0} x^{3} dx \\ -2 \end{vmatrix} + \int_{0}^{1} x^{3} dx = \begin{vmatrix} \left[\frac{x^{3+1}}{3+1} \right]_{-2}^{0} + \left[\frac{x^{3+1}}{3+1} \right]_{0}^{1}$$

$$\Rightarrow \text{Area} = \left| \left[\frac{x^4}{4} \right]_{-2}^0 \right| + \left[\frac{x^4}{4} \right]_0^1 = \left| \left[\frac{0^4}{4} - \frac{(-2)^4}{4} \right] \right| + \left[\frac{1^4}{4} - \frac{0^4}{4} \right]$$
$$\Rightarrow \text{Area} = \left| \left[0 - \frac{16}{4} \right] \right| + \left[\frac{1}{4} - 0 \right] = \left| \left[-\frac{16}{4} \right] \right| + \left[\frac{1}{4} \right] = \frac{16}{4} + \frac{1}{4} = \frac{16+1}{4} = \frac{17}{4} \text{ Square unit}$$

We have,

Figure No # 10

We are (effectively) finding the area by horizontally adding the areas of the rectangles, width dx and heights y (which we find by substituting values of x into f(x)).

$$Area = \int_{a}^{b} f(x)dx$$

(With absolute value signs where necessary).

3.4. Certain curves are much easier to sum vertically

In this case, we find the area is the sum of the rectangles, heights $\mathbf{x} = \mathbf{f}(\mathbf{y})$ and width \mathbf{dy} . If we are given $\mathbf{x} = \mathbf{f}(\mathbf{y})$, then we need to re-express this as $\mathbf{x} = \mathbf{f}(\mathbf{y})$ and we need to sum from bottom to top.

So, in case 4 we have: $Area = \int_{c}^{d} f(y)dy$

Example 30: Find the area of the region bounded by the curve, $y = \sqrt{x-1}$, the y-axis and the lines y = 1 and y = 5

Solution:

In this case, we express x as a function of y:

Given,
$$y = \sqrt{x-1}$$

 $\Rightarrow y^2 = x-1$
 $\Rightarrow x = y^2 + 1$
 $\therefore x = f(y) = y^2 + 1$

Figure No # 12

So the area is given by

Area =
$$\int_{1}^{d} f(y)dy$$

 \Rightarrow Area = $\int_{1}^{5} f(y)dy = \int_{1}^{5} (y^{2} + 1) dy = \int_{1}^{5} y^{2} dy + \int_{1}^{5} 1 dy$
 \Rightarrow Area = $\left[\frac{y^{2+1}}{2+1}\right]_{1}^{5} + \left[y\right]_{1}^{5} \left[\because \int dy = y\right]$
 \Rightarrow Area = $\left[\frac{y^{3}}{3}\right]_{1}^{5} + \left[y\right]_{1}^{5} = \left[\frac{5^{3}}{3} - \frac{1^{3}}{3}\right] + \left[5 - 1\right] = \left[\frac{125}{3} - \frac{1}{3}\right] + \left[5 - 1\right]$
 \Rightarrow Area = $\left[\frac{125 - 1}{3}\right] + \left[4\right] = \left[\frac{124}{3}\right] + \left[4\right] = \frac{124 + 12}{3}$

Example 31: The region R shown is bounded by the curve with equation $y = \ln x$, the y-axis and the lines y = 2 and y = 5. Find the area of R

Solution: Area =
$$\int_{c}^{d} f(y)dy$$

 \Rightarrow Area = $\int_{2}^{5} f(y)dy$
Given, $y = \ln x$
 $\Rightarrow e^{y} = e^{\ln x}$
 $\Rightarrow e^{y} = x \ln e$

 \Rightarrow Area = $\frac{136}{3}$ Square unit

$$\Rightarrow e^{y} = x.1$$

$$\Rightarrow e^{y} = x$$

$$\Rightarrow x = f(y) = e^{y} - (1)$$

$$Area = \int_{2}^{5} f(y) dy$$

$$\Rightarrow Area = \int_{2}^{5} x dy = \int_{2}^{5} e^{y} dy \text{ [From (1)]}$$

$$\Rightarrow Area \text{ of } R = \left[e^{y} \right]_{2}^{5} = e^{5} - e^{2} \approx 141 \text{units}^{2}$$

3.5. Area between 2 Curves

Figure No # 14

We are trying to find the area between 2 curves, $y_1 = f_1(x)$ and $y_2 = f_2(x)$, the lines x = a and x = b. We see that if we subtract the area under lower curve $y_1 = f_1(x)$

From the area under the upper curve $y_2 = f_2(x)$

Then we will find the required area. This can be achieved in one step:

Area = upper curve – lower curve =
$$\int_{a}^{b} (y_2 - y_1) dx$$

Example 32: Find the area between the curves $y = x^2 + 5x$ and $y = 3 - x^2$ between x = -2 and x = 0

Solution: Sketching first:

Here, Upper curve, $y_2 = f_2(x) = 3 - x^2$ and Lower Curve, $y_1 = f_1(x) = x^2 + 5x$

Figure No # 15

Area = upper curve – lower curve = $\int_{a}^{b} (y_2 - y_1) dx$

So we need to find:

Area =
$$\int_{-2}^{6} (y_2 - y_1) dx$$

 \Rightarrow Area = $\int_{-2}^{6} \{(3 - x^2) - (x^2 + 5x)\} dx = \int_{-2}^{6} \{3 - x^2 - x^2 - 5x\} dx$
 \Rightarrow Area = $\int_{-2}^{6} \{3 - 2x^2 - 5x\} dx = \int_{-2}^{6} 3 dx - 2x^2 dx - 5x dx$
 \Rightarrow Area = $\int_{-2}^{6} 3 dx - \int_{-2}^{6} 2x^2 dx - \int_{-2}^{6} 5x dx = 3 \int_{-2}^{6} dx - 2 \int_{-2}^{6} x^2 dx - 5 \int_{-2}^{6} x dx$
 \Rightarrow Area = $3[x]_{-2}^{6} - 2[\frac{x^{2+1}}{2+1}]_{-2}^{6} - 5[\frac{x^{1+1}}{1+1}]_{-2}^{6} [\because \int dx = x]$
 \Rightarrow Area = $3[0 - (-2)] - 2[\frac{0^{2+1}}{2+1} - \frac{(-2)^{2+1}}{2+1}] - 5[\frac{0^{1+1}}{1+1} - \frac{(-2)^{1+1}}{1+1}]$
 \Rightarrow Area = $3[0 + 2] - 2[\frac{0}{3} - \frac{(-2)^3}{3}] - 5[\frac{0}{2} - \frac{(-2)^2}{2}]$
 \Rightarrow Area = $3[2] - 2[0 - \frac{-8}{3}] - 5[0 - \frac{4}{2}] = 3[2] - 2[0 + \frac{8}{3}] - 5[0 - 2]$
 \Rightarrow Area = $3[2] - 2[\frac{8}{3}] - 5[-2] = 3 \times 2 - 2 \times \frac{8}{3} + 5 \times 2$
 \Rightarrow Area = $6 - \frac{16}{3} + 10 = \frac{18 - 16 + 30}{3} = \frac{2 + 30}{3} = \frac{32}{3}$ Square unit
Example 33: Find the area bounded by $y = x^3$, $y = 0$ and $y = 3$

Solution:

We need to use: Area =
$$\int_{c}^{d} f(y)dy$$

In this case, $c = 0$ and $d = 3$
We need to express x in terms of y :
Given, $y = x^{3}$

$$\Rightarrow y^{\frac{1}{3}} = (x^{3})^{\frac{1}{3}}$$

$$\Rightarrow y^{\frac{1}{3}} = x$$

$$\Rightarrow x = f(y) = y^{\frac{1}{3}}$$

Figure No # 16

So, Area =
$$\int_{0}^{d} f(y) dy$$

 \Rightarrow Area = $\int_{0}^{3} y^{\frac{1}{3}} dy$
 \Rightarrow Area = $\left[\frac{y^{\frac{1}{3}+1}}{\frac{1}{3}+1} \right]_{0}^{3} = \left[\frac{y^{\frac{1+3}{3}}}{\frac{1+3}{3}} \right]_{0}^{3} = \left[\frac{y^{\frac{4}{3}}}{\frac{4}{3}} \right]_{0}^{3} = \frac{3}{4} \left[y^{\frac{4}{3}} \right]_{0}^{3}$
 \Rightarrow Area = $\frac{3}{4} \left[3^{\frac{4}{3}} - 0^{\frac{4}{3}} \right] = \frac{3}{4} \left[3^{\frac{4}{3}} - 0^{\frac{4}{3}} \right]$ Square unit

Example 34: Find the area bounded by the curves $y = x^2 + 5x$ and $y = 3 - x^2$

Solution: Sketch first:

We need to use: Area =
$$\int_{a}^{b} (y_2 - y_1) dx$$

Here, Upper curve,
$$y_2 = f_2(x) = 3 - x^2$$

and Lower Curve,
$$y_1 = f_1(x) = x^2 + 5x$$

We note that $v = 3 - x^2$ is above $v = x^2 + 5x$ so we take

$$y_2 = f_2(x) = 3 - x^2$$
 ----(i)

$$y_1 = f_1(x) = x^2 + 5x$$
 ----(ii)

Points of intersection occur where:

$$3-x^{2} = x^{2} + 5x$$

$$\Rightarrow 3-x^{2} - x^{2} - 5x = 0$$

$$\Rightarrow 3-2x^{2} - 5x = 0$$

$$\Rightarrow -2x^{2} - 5x + 3 = 0$$

$$\Rightarrow 2x^{2} + 5x - 3 = 0$$

$$\Rightarrow 2x^{2} + 6x - x - 3 = 0$$

$$\Rightarrow 2x(x+3) - 1(x+3) = 0$$

$$\Rightarrow (x+3)(2x-1) = 0$$

$$\Rightarrow (x+3) = 0 \text{ and } (2x-1) = 0$$

\Rightarrow x = -3 and 2x = 1

$$\Rightarrow$$
 x = -3 and x = $\frac{1}{2}$ = 0.5

$$y_1 = 3 - x^2$$

Figure No # 17

$$\Rightarrow y_1 = 3 - (-3)^2$$

$$\Rightarrow y_1 = 3 - 9$$

$$\Rightarrow y_1 = -6$$

Putting the value of x = -3 in (ii), we get

$$y_2 = x^2 + 5x$$

$$\Rightarrow y_2 = (-3)^2 + 5 \cdot (-3)$$

$$\Rightarrow y_2 = (-3)^2 - 15$$

$$\Rightarrow y_2 = 9 - 15$$

$$\Rightarrow y_2 = -6$$

Hence the point of intersection (-3,-6)

Again, putting the value of $x = \frac{1}{2}$ in (i), we get

$$y_1 = 3 - x^2$$

$$\Rightarrow y_1 = 3 - (\frac{1}{2})^2$$

$$\Rightarrow y_1 = 3 - \frac{1}{4}$$

$$\Rightarrow y_1 = \frac{12 - 1}{4} = \frac{11}{4}$$

Again, putting the value of $x = \frac{1}{2}$ in (ii), we get

$$y_2 = x^2 + 5x$$

$$\Rightarrow y_2 = (\frac{1}{2})^2 + 5 \cdot \frac{1}{2}$$

$$\Rightarrow y_2 = \frac{1}{4} + \frac{5}{2}$$

$$\Rightarrow y_2 = \frac{1 + 10}{4}$$

$$\Rightarrow y_2 = \frac{11}{4}$$

Hence the point of intersection $(\frac{1}{2}, \frac{11}{4})$

Hence the point of intersection (-3,-6) and $(\frac{1}{2},\frac{11}{4})$ between the curves $y = x^2 + 5x$ and $y = 3 - x^2$.

So the area is given by:
$$A = \int_{a}^{b} (y_2 - y_1) dx$$

$$A = \int_{a}^{b} (y_2 - y_1) dx$$

$$= \int_{-3}^{0.5} ([3 - x^2] - [x^2 + 5x]) dx$$

$$= \int_{-3}^{0.5} (3 - 5x - 2x^2) dx$$

$$= \left[3x - \frac{5x^2}{2} - \frac{2x^3}{3} \right]_{-3}^{0.5}$$

$$= 14.29 \text{ sq units}$$

Example 35: Find the area bounded by the curves $y = x^2$, y = 2 - x and y = 1

Solution: Sketch first:

We need to solve $y = x^2$ for x:

Given,
$$y = x^2$$

$$\Rightarrow y^{\frac{1}{2}} = (x^2)^{\frac{1}{2}}$$

$$\Rightarrow y^{\frac{1}{2}} = x$$

$$\Rightarrow \pm \sqrt{y} = x$$

$$\Rightarrow x = \pm \sqrt{y} - (i)$$

Given,
$$y = 2 - x$$

$$\Rightarrow 2 - x = y$$

$$\Rightarrow -x = y - 2$$

$$\Rightarrow x = -y + 2$$

$$\Rightarrow x = 2 - y - (ii)$$

Figure No # 18

We need the left hand portion, so $\mathbf{x} = -\sqrt{\mathbf{y}}$.

Notice that $\Rightarrow x = 2 - y$ is to the *right* of $x = -\sqrt{y}$, so we choose

$$x_2 = 2 - y$$
 -----(iii)
 $x_1 = -\sqrt{y}$ -----(iv)

The intersection of the graphs occurs at

$$2-y = -\sqrt{y}$$

$$\Rightarrow 2-y = -\sqrt{y}$$

$$\Rightarrow (2-y)^2 = (-\sqrt{y})^2$$

$$\Rightarrow (2-y)^2 = y$$

$$\Rightarrow 4-4y+y^2 = y$$

$$\Rightarrow 4 - 4y + y^{2} - y = 0$$

$$\Rightarrow y^{2} - 5y + 4 = 0$$

$$\Rightarrow y^{2} - 4y - y + 4 = 0$$

$$\Rightarrow y(y - 4) - 1(y - 4) = 0$$

$$\Rightarrow (y - 4)(y - 1) = 0$$

$$\Rightarrow y = 4 \text{ and } y = 1$$

Putting the value of y = 4 in (iii), we get

$$x_2 = 2 - y$$

$$\Rightarrow x_2 = 2 - 4 = -2$$

And putting the value of y = 4 in (iv), we get

$$x_1 = -\sqrt{y}$$

$$\Rightarrow x_1 = -\sqrt{4} = -2$$

Hence the point of intersection (-2,4)

Again, putting the value of y = 1 in (iii), we get

$$x_2 = 2 - y$$

$$\Rightarrow x_2 = 2 - 1 = 1$$

And putting the value of y = 1 in (iv), we get

$$x_1 = -\sqrt{y}$$

$$\Rightarrow x_1 = -\sqrt{1} = -1$$

Hence the point of intersection (-1,1)

Hence the point of intersection (-2,4) and (-1,1) between the curves $y=x^2$ and y=2-x.

So we have c = 1 and d = 4

$$A = \int_{a}^{b} (x_2 - x_1) dy$$

$$A = \int_{c}^{d} (x_2 - x_1) dy$$

$$= \int_{1}^{4} ([2 - y] - [-\sqrt{y}]) dy$$

$$= \int_{1}^{4} (2 - y + \sqrt{y}) dy$$

$$= \left[2y - \frac{y^2}{2} + \frac{2}{3} y^{3/2} \right]_{1}^{4}$$

$$= \left(\frac{16}{3} \right) - \left(\frac{13}{6} \right)$$

$$= \frac{19}{6} \text{ sq units}$$

Example 36: Fig shows the curve $y = x^2 - 5x + 4$

 ${\bf A_1}$ is the area bounded by the co-ordinate axes and the curve, ${\bf A_2}$ is the area bounded by the curve and the x-axis and ${\bf A_3}$ is the area bounded by the curve, the x-axis and the line ${\bf x=5}$ Find the area (i) ${\bf A_1}$ (ii) ${\bf A_2}$ (iii) ${\bf A_3}$

Figure No # 19

Solution: We have,

$$A = \int_{a}^{b} (y_2 - y_1) dx$$

Where, $y_1 = f_1(x)$ and $y_2 = f_2(x)$

(i) In the first area: A_1

Here, Upper curve, $y_2 = f_2(x) = x^2 - 5x + 4$

and Lower Curve, $y_1 = f_1(x) = 0$ [Since the equation of the x-axis is y = 0] For the area A_1 :

Here, $y_1 = f_1(x) = 0$ [Since the equation of the x-axis is y = 0] and $y_2 = f_2(x) = x^2 - 5x + 4$

So, Area
$$A_1 = \int_0^1 (y_2 - y_1) dx = \int_0^1 (x^2 - 5x + 4 - 0) dx = \left[\frac{x^3}{3} - \frac{5x^2}{2} + 4x \right]_0^1$$

$$= \left[\frac{1^3}{3} - \frac{5 \times 1^2}{2} + 4 \times 1 - \left[\frac{0^3}{3} - \frac{5 \times 0^2}{2} + 4 \times 0 \right] \right]$$

$$= \left[\frac{1}{3} - \frac{5}{2} + 4 - \left[\frac{0}{3} - \frac{0}{2} + 0 \right] \right] = \left[\frac{1}{3} - \frac{5}{2} + 4 - 0 \right]$$

$$= \left[\frac{1}{3} - \frac{5}{2} + 4 \right] = \frac{2 - 15 + 24}{6} = \frac{11}{6}$$

(ii) In the 2nd area: A_2 Upper Curve, $y_2 = f_2(x) = 0$ [Since the equation of the x-axis is y = 0] and Lower curve, $y_1 = f_1(x) = x^2 - 5x + 4$

The area A_2 is bounded above y=0, below by the curve $y=x^2-5x+4$ and the line x=1 and x=4

Here, $\mathbf{y_2} = \mathbf{f_2}(\mathbf{x}) = \mathbf{0}$ [Since the equation of the x-axis is y = 0] and $\mathbf{y_1} = \mathbf{f_1}(\mathbf{x}) = \mathbf{x^2} - 5\mathbf{x} + 4$

So, Area:
$$A_2 = \int_1^4 (y_2 - y_1) dx = \int_1^4 \{0 - (x^2 - 5x + 4)\} dx = \left[-\frac{x^3}{3} + \frac{5x^2}{2} - 4x \right]_1^4$$

$$= \left[-\frac{4^3}{3} + \frac{5 \times 4^2}{2} - 4 \times 4 - \left[-\frac{1^3}{3} + \frac{5 \times 1^2}{2} - 4 \times 1 \right] \right]$$

$$= \left[-\frac{64}{3} + \frac{80}{2} - 16 \right] + \left[\frac{1}{3} - \frac{5}{2} + 4 \right]$$

$$= \frac{-128 + 240 - 96}{6} + \frac{2 - 15 + 24}{6} = \frac{16 + 11}{6} = \frac{27}{6} \text{ Answer}$$

(iii) In the third area: A_3

Here, Upper curve, $y_2 = f_2(x) = x^2 - 5x + 4$ and Lower Curve, $y_1 = f_1(x) = 0$ [Since the equation of the x-axis is y = 0]

The area
$$A_3 = \int_4^5 (y_2 - y_1) dx = \int_4^5 \{(x^2 - 5x + 4) - 0\} dx$$

$$= \left[\frac{x^3}{3} - \frac{5x^2}{2} + 4x \right]_4^5$$

$$= \left[\frac{5^3}{3} - \frac{5.5^2}{2} + 4.5 - \left[\frac{4^3}{3} - \frac{5.4^2}{2} + 4.4 \right] \right]$$

$$= \left[\frac{125}{3} - \frac{125}{2} + 20 - \frac{64}{3} + \frac{80}{2} - 16 \right] = \left[\frac{125}{3} - \frac{125}{2} + 4 - \frac{64}{3} + \frac{80}{2} \right]$$

$$= \left[\frac{125}{3} - \frac{64}{3} + \frac{80}{2} - \frac{125}{2} + 4 \right] = \left[\frac{125 - 64}{3} + \frac{80 - 125}{2} + 4 \right]$$

$$= \left[\frac{61}{3} - \frac{45}{2} + 4 \right] = \left[\frac{122 - 135 + 24}{6} \right] = \left[\frac{146 - 135}{6} \right] = \frac{11}{6} \text{ Answer}$$

Example 37: Calculate the area enclosed by the curves $y=4-x^2$ and $y=x^2-2x$. Solution:

Here, Upper curve, $y_2 = f_2(x) = 4 - x^2$ and Lower Curve, $y_1 = f_1(x) = x^2 - 2x$ Here, $y_2 = f_2(x) = 4 - x^2$

X	0	1	2	-1	-2	3
$y_2 = f_2(x) = 4 - x^2$	4	3	0	3	0	-5

Here, $y_1 = f_1(x) = x^2 - 2x$

X	0	1	2	-1	-2	3
$y_1 = f_1(x) = x^2 - 2x$	0	-1	0	3	8	3

The x co-ordinate of the point A and B (the points at which the curves intersects) in the figure # 20 are found as follows:

$$4-x^{2} = x^{2} - 2x$$

$$\Rightarrow 4-x^{2} = x^{2} - 2x$$

$$\Rightarrow 4-x^{2} - x^{2} + 2x = 0$$

$$\Rightarrow 4-2x^{2} + 2x = 0$$

$$\Rightarrow -2x^{2} + 2x + 4 = 0$$

$$\Rightarrow 2x^{2} - 2x - 4 = 0$$

$$\Rightarrow 2x(x-2) + 2(x-2) = 0$$

$$\Rightarrow (x-2)(2x+2) = 0$$

$$\Rightarrow x-2 = 0 \quad \text{and} \quad 2x + 2 = 0$$

$$\Rightarrow x = 2 \quad \text{and} \quad 2x = -2$$

$$\Rightarrow x = 2 \quad \text{and} \quad x = -1$$

The x co-ordinate of A is -1 and of B is 2.

Area =
$$\int_{-1}^{2} (y_2 - y_1) dx = \int_{-1}^{2} \{(4 - x^2) - (x^2 - 2x)\} dx$$

= $\int_{-1}^{2} (4 - x^2 - x^2 + 2x) dx$
= $\int_{-1}^{2} (4 - 2x^2 + 2x) dx = \left[4x - 2\frac{x^3}{3} + 2\frac{x^2}{2} \right]_{-1}^{2}$
= $\left[4.2 - 2\frac{2^3}{3} + 2\frac{2^2}{2} - \left[4.(-1) - 2\frac{(-1)^3}{3} + 2\frac{(-1)^2}{2} \right] \right]$
= $\left[4.2 - 2\frac{2^3}{3} + 2\frac{2^2}{2} - 4.(-1) + 2\frac{(-1)^3}{3} - 2\frac{(-1)^2}{2} \right]$

$$= \left[8 - 2\frac{8}{3} + 2\frac{4}{2} + 4 - \frac{2}{3} - 2\frac{1}{2}\right] = \left[8 - \frac{16}{3} + 4 + 4 - \frac{2}{3} - 1\right]$$

$$= \left[15 - \frac{16}{3} - \frac{2}{3}\right] = \left[\frac{45 - 16 - 2}{3}\right] = \left[\frac{45 - 18}{3}\right]$$

$$= \left[\frac{27}{3}\right] = 9 \text{ Answer}$$

3.6. Finding Area using derivative method

Example 38: Find the area of the region bounded by the curve $y = 2x - x^2$ and the x-axis. Figure shows a sketch of the curve which cuts the axis of x at (0.0) and (2.0).

Solution: We wish to find the area A when $\mathbf{x} = \mathbf{2}$. Given that $\frac{d\mathbf{A}}{d\mathbf{x}} = \mathbf{2}\mathbf{x} - \mathbf{x}^2$ (Since integration and differentiation vice versa) and that $\mathbf{A} = \mathbf{0}$ when $\mathbf{x} = \mathbf{0}$.

$$\frac{dA}{dx} = 2x - x^{2}$$

$$\Rightarrow dA = (2x - x^{2})dx$$

$$\Rightarrow \int dA = \int (2x - x^{2})dx$$

$$\Rightarrow A = 2\frac{x^{2}}{2} - \frac{x^{3}}{3} + c$$

$$\Rightarrow A = x^{2} - \frac{x^{3}}{3} + c$$
When $x = 0$, $A = 0$. $\therefore c = 0$

$$\Rightarrow A = x^{2} - \frac{x^{3}}{3} + c$$

Example 39: Find the area of the region bounded by the curve $y = x^2$ the line y = x and the x-axis

Solution: Figure shows a sketch of the curve and line. They meet where $y = x^2$ i.e. at the points (0,0) and (1,1)

To find the area of the region under the curve between x = 0 and x = 1 we find the value of A when x = 1 given that $\frac{dA}{dx} = x^2$ and that A = 0 when x = 0.

$$\frac{dA}{dx} = x^{2}$$

$$\Rightarrow dA = x^{2}dx$$

$$\Rightarrow \int dA = \int x^{2}dx$$

$$\Rightarrow A = \frac{x^{3}}{3} + c$$

Since A = 0, when x = 0, c = 0 : $A = \frac{1}{3} x^3$

The area of the region bounded by the curve $y = x^2$, the line y = x and the x-axis is

$$(\frac{1}{2} - \frac{1}{3}) = \frac{1}{6}$$
 Square units

Example 40: Find the area of the region bounded by the curve $y = x^2 + 1$, the ordinates x = 1, x = 2 and the x-axis.

$$\frac{dA}{dx} = x^2 + 1$$

$$\Rightarrow dA = (x^2 + 1)dx$$

$$\Rightarrow \int dA = \int (x^2 + 1)dx$$

$$\Rightarrow A = \frac{x^3}{3} + x + c \left[\because \int x^n dx = \frac{x^{n+1}}{n+1} + c\right]$$

$$\therefore A = \int_1^2 \left(x^2 + 1\right) dx = \left[\frac{x^3}{3} + x\right]_1^2$$

$$= \left(\frac{8}{3} + 2\right) - \left(\frac{1}{3} + 1\right) = 3\frac{1}{3}$$

