# Jacobi Algorithm Project

By Sneha Ganesh

11/29/2012

Professor Lounici - MATH 2605

#### DEFINING THE PROBLEM - WHAT IS THE JACOBI ALGORITHM?

The Jacobi algorithm is an approximation method which find the eigenvalues of a matrix by creating similar matrices until the off-diagonal matrices are as small as possible (depending on the precision you want). In the program I created, this is calculated with random 5x5 matrices hence 5 eigenvalues exist.

I decided to create this program in an applet format so it's clear to see the original matrix, the eigenvalues and the graph all in one location.

#### THE APPLET

This program I created runs the Jacobi algorithm on a randomly generated 5x5 matrix until the following statement:

$$Off(B) = \sum_{i \neq j} B^2_{i,j} \leq 10^{-9}$$

The applet graphs this general decrease in sequence of numbers and computes the time taken and the number of steps taken to complete the algorithm.

#### **EXAMPLE GRAPH GENERATED**



Graph generated from a sorted run



Graph generated from an unsorted run

### THE RESULTS

After running the algorithm multiple times, I came up with the following conclusion about each method: Sorted and Unsorted.

The sorted algorithm takes fewer steps than the unsorted algorithm but more time as it has to iterate to find the largest value. This concludes that the unsorted method is not constrained to the same theoretical bounds as the sorted run as it would have a much slower worst-case scenario.

To optimize the algorithm, there should be a way to integrate the sorted iterations and the unsorted runtime to create an enhanced algorithm.

## **COMPILATION OF 15 RUNS**

The following table shows the data generated from running the sorted run 15 times and the unsorted run 15 times. This data clearly emphasizes the conclusion made in the Results section. Sorted Run Unsorted Run

|      | Sorted Run         |                             | Unsorted Run       |                             |
|------|--------------------|-----------------------------|--------------------|-----------------------------|
|      | Number of<br>Steps | Total Run Time<br>(seconds) | Number of<br>Steps | Total Run Time<br>(seconds) |
|      | 26                 | 0.00897                     | 36                 | 0.00415                     |
|      | 25                 | 0.0164                      | 35                 | 0.0141                      |
|      | 28                 | 0.0191                      | 36                 | 0.00976                     |
|      | 26                 | 0.0188                      | 35                 | 0.0113                      |
|      | 25                 | 0.0202                      | 35                 | 0.0139                      |
|      | 27                 | 0.0137                      | 36                 | 0.0143                      |
|      | 26                 | 0.0302                      | 35                 | 0.00433                     |
|      | 25                 | 0.00664                     | 41                 | 0.0177                      |
|      | 27                 | 0.0171                      | 41                 | 0.015                       |
|      | 25                 | 0.0315                      | 31                 | 0.0133                      |
|      | 25                 | 0.00345                     | 32                 | 0.0126                      |
|      | 27                 | 0.0145                      | 36                 | 0.0312                      |
|      | 27                 | 0.0075                      | 38                 | 0.0136                      |
|      | 26                 | 0.00806                     | 35                 | 0.0125                      |
|      | 26                 | 0.0125                      | 35                 | 0.0122                      |
|      | 24                 | 0.0105                      | 36                 | 0.005                       |
| rage | 25.95              | 0.0149                      | 35.81              | 0.0128                      |