

Modello bidimensionale

Contenuto

Ş	3.1	Definizione del sistema di riferimento secondario	12
Ę	3.2	Descrizione della semplificazione	12
3	3.3	Rigidezza del sistema nel piano xy : k_r	12
		3.3.1 Caso di tre molle	12
		3.3.2 Caso di n molle	16
3	3.4	Rigidezza del sistema lungo l'asse z : k_z	17
		3.4.1 Caso di una molla	17
		3.4.2 Caso di n molle	18
Ş	3.5	Analisi delle rigidezze k_z e k_r	18
9	3.6	Forze esercitate dalle molle	20
		3.6.1 Modulo	20
		3.6.2 Direzione	21
3	3.7	Condizioni di equilibrio per la parte mobile della bilancia	22
		3.7.1 Equilibrio delle forze	22
		3.7.2 Equilibrio dei momenti	22
5	3.8	Sistema di equazioni	24

In questo capitolo si sviluppa un modello bidimensionale del sistema da utilizzare per l'analisi statica, valido per un numero di molle per attacco qualunque purché maggiore o uguale a tre. In primo luogo si dimostra che il modello svi-