ANALYSIS AND EXTENSION OF BERTSERINI

Open-Domain Question Answering framework

IntelligenzeNaturali

Armenia Sara 279590 Lacriola Francesco 292129 Tomasello Noemi 272600

Question Answering

Question Anwering attempts to find out the correct answer to a question posed in natural language by humans.

QA can be addressed using **Information Retrieval systems** that take a natural language question, process it, retrieve and rank the most relevant passages.

The returned answer is in the form of short texts rather than a list of relevant documents.

Closed-domain QA vs open-domain QA

In closed-domain QA
questions and answers
relate to specific fields and
exploit domain-specific
knowledge.

Open-domain question answering deals with questions about nearly anything, and can only rely on world knowledge. These systems usually have much more data available to extract the answer from.

Open-domain Retrieval QA and Reading comprehension

Open-retrieval QA focuses on the most general setting in which we need to retrieve relevant documents from a large corpus. Then they are processed to identify the most relevant answer with machine reading comprehension systems.

Reading comprehension is the ability to read a piece of text and then answer questions about it. Machine reading comprehension assumes that we have access to the "gold" paragraph that contains the answer. The task is to **discover** the shortest fragment of text in the document that answers the user's query.

Open-domain retrieval QA

To implement the retriever we can use the classic information retrieval systems or embedding vectors by neural networks

Before BERT, the reader was mainly implemented with **Bi-directional LSTM**

The retriever and the reader components can be **trained** independently or end-to-end

BERTserini

Wei Yang et al: End-to-End Open-Domain Question Answering with BERTserini

BERTserini system is made up of two main components: the opensource Anserini information retrieval and BERT for machine reading comprehension It is a single-stage retriever that identifies segments of text from Wikipedia to pass to the reader.

Information retrieval searcher is built on top of Lucene.

BM25 is used as ranking function.

Reader: BERT

Pre-training is done taking into account two main objectives

We use the pre-trained model **bert-base-uncased.** It is pre-trained on BookCorpus in a self supervised fashion.

Then, Bert is finetuned on SQuAD dataset.

Masked langauge modeling: taking a sentence, the model randomly masks 15% of the words, run the masked sentence through the model and has to predict them.

Next sentence
prediction: the model
concatenates two masked
sentences as input during
pre-training. It has to
predict whether two
sentences are following
each other or not.

Experiments

Model variation

Data Enrichment

Distilbert: a distilled version of BERT

Knowledge distillation: compression technique in which a compact model, the student, is trained to reproduce the behaviour of a larger model, the teacher.

Distillation loss: the model is trained to return the same probabiltiies as the BERT model

Masked language
modeling: this is part of
the original training loss of
the BERT model

Cosine embedding loss:

the model is trained to generate hidden states as close as possible as the BERT base model

RoBERTa: a robustly optimized BERT pretraining approach

The model
is trained longer, with
larger batches, considering
a bigger dataset

Use of dynamic masking instead of static masking

The training is made on longer sequences without nex sentence prediction objective

Use of larger
byte-level Byte-Pair
Encoding

RESULTS: Finetuning on SQuAD

Model type	EM	F1-score	Training Time
BERT	74,78	86.68	4h 50m
DistilBERT	72.59	81.52	3h 20m
RoBERTa	85.40	91.63	5h 05m

Experiments

Model variation

Data Enrichment

Data Enrichment

1 Trivia QA

Reading comprehension dataset with over 650K question-answerevidence triplets. The evidence documents are taken from Wikipedia and general Web sources.

2 SQuAD

Leading dataset to perform QA.

It is made of question-answer
pairs posed by crowd-workers
on Wikipedia articles.

Experiments

Model variation

Data Enrichment

Metrics

Exact match: percentage of the predictions that strictly match the ground truth answer. It is a binary function, EM=1 if the answer is correct, EM = 0 otherwise.

(Macro-averaged) F1 score: computed over individual words of the prediction against those in the ground truth. It is based on Precision and Recall metrics.

RESULTS: BERTserini

	EM	F1-score
BERTserini (BERT on SQuaD)	25.0	29.76
BERTserini (DistilBERT on SQuAD)	24.3	28.19
BERTserini (RoBERTa on SQuAD)	29.81	32.33
BERTserini (BERT on TriviaQA + SQuAD)	25.0	33.09

Conclusions

The goal of our project was to create a valid replication of BERTserini. Despite the hardware constraints provided by Colab, we can appreciate the results reached with the model variations and the surprising data enrichment experiment.

Thank you