Reti logiche - Prova scritta del 7 Giugno 2016

Cognome e nome: ______ Matricola: _____

Esercizio 1

Sintetizzare in forma PS la rete sequenziale asincrona che sostituisce i Latch SR e i formatori di impulsi in un'interfaccia parallela di uscita con handshake (cap. 6, fig. 17 del libro), riportata nella figura a lato. Dimensionare il tempo minimo di permanenza di uno stato di ingresso a tale rete.

$\sqrt{e_B}$	rfd					
SIP	00	01	11	10	/dav	fo
s_0		6	S ₁		1	1
S ₁		S ₂	S 1		1	0
s_2	S ₃	(S2)			0	0
s_3	S 3	s ₀	_	_	1	0
SIS						

Esercizio 2

Si consideri il sistema riportato in figura.

La Scatola Nera, risponde ad ogni transizione della variabile z con una identica transizione sia della variabile r1 che della variabile r2. I tempi di risposta non sono noti e nessuna ipotesi è fatta su di essi tranne le seguenti: a) la risposta su r2 arriva dopo quella su r1 e b) entrambe le risposte arrivano entro 200 cicli del clock p.

Partendo da una condizione iniziale in cui z, r1 ed r2 sono a 0, l'unità XX compie all'infinito le seguenti azioni:

- 1) Porta z ad 1 e mentre attende che sia r1 che r2 vadano ad 1 compie una semplice elaborazione (vedi specifica successiva)
- 2) Porta z a 0 e attende che sia r1 che r2 vadano a 0
- 3) Attende che passi del tempo (vedi specifica successiva) ed emette tramite l'uscita *out* il risultato dell'elaborazione di cui al punto 1) e torna al punto 1).

Specifiche:

- L'elaborazione di cui al punto 1) è la seguente: Calcolare un unsigned pari al numero dei periodi di clock che intercorrono tra l'arrivo del fronte in salita su r1 e l'arrivo del fronte in salita su r2.
- L'uscita *out* deve essere cambiata esattamente ogni 500 cicli di clock.

Descrivere e sintetizzare la rete XX rispondente alle specifiche sopra riportate.

Reti logiche - Prova scritta del 7 Giugno 2016

Cognome e nome: _____ Matricola: _____

Soluzione Esercizio 1

Si può osservare che la tabella di flusso presenta molti stati successivi non specificati. Pertanto, l'applicazione del teorema di Unger per capire se la rete è soggetta o meno ad alee essenziali risulta malagevole.

La seguente codifica: S0=00, S1=01, S2=11, S3=10, è priva di corse delle variabili di stato. Data questa, la sintesi della rete combinatoria per le uscite è la seguente: $/dav = \overline{y_1 \cdot y_0}$, $fo = \overline{y_1 + y_0}$.

La sintesi PS della RC1 – in accordo ad un modello con elementi neutri di ritardo - è la seguente:

еВ _{у1 у0}	rfd oo	01	11 a0 11	10
00	I	00	01	
01		11	01	
11	10	11		
10	10	00		

еВ _{91 у0}	rfd 00	/a 01	11 /a0 11	10	
00		11	10		
01		00	10		
11	01	00			
10	01	11			

Da cui:
$$\overline{a_1} = e_B + \overline{y_0} \cdot rfd$$
, $\overline{a_0} = \overline{rfd} + \overline{y_0} \cdot \overline{e_B}$, e quindi: $a_1 = \overline{e_B + \overline{y_0} \cdot rfd} = \overline{e_B} \cdot \left(y_0 + \overline{rfd}\right)$,

 $a_0 = \overline{rfd + y_0 \cdot e_B} = rfd \cdot (y_0 + e_B)$. Le sintesi sono prive di alee del primo ordine. Si noti che, dopo aver scelto gli implicanti per RC1, la tabella di flusso risulta tutta specificata come segue:

еВ _{у1 у0}	rfd 00	01	10	
00	S3	SO)	S1	<u>S0</u>
01	S3	S2	S1	S0
11	S3	S2)	S1	S0
10	S3	S0	S1	S0

La tabella sopra disegnata è normale e non soggetta ad alee essenziali. Pertanto si può concludere che – con *questa* implementazione di RC1 – il tempo minimo di permanenza di uno stato di ingresso è $T = T_{RC1} + 1 \cdot (T_{RC1} + 0) = 2 \cdot T_{RC1}$.

Reti logiche - Prova scritta del 7 Giugno 2016

Cognome e nome:	Matricola:

Soluzione Esercizio 2

```
//-----
module XXX(z,r1,r2,out,clock, reset_);
input clock, reset_;
input r1,r2;
output z;
output [7:0] out;
                    assign z=Z;
reg [7:0] RITARDO, OUT; assign out=OUT;
reg [8:0] COUNT;
reg [2:0] STAR; parameter S0=0, S1=1, S2=2, S3=3, S4=4;
parameter Num_Periodi=500;
 always @(reset_==0) begin STAR=S0; COUNT<=Num_Periodi; end</pre>
 always @(posedge clock) if (reset_==1) #3
 casex(STAR)
  S0: begin COUNT<=COUNT-1; Z<=1; RITARDO<=0; STAR<=S1; end
  S1: begin COUNT<=COUNT-1; RITARDO<=RITARDO+(r1&(!r2));
           STAR <= (r2 == 0)?S1:S2; end
  S2: begin COUNT<=COUNT-1; Z \le 0; STAR \le (r2==1)?S2:S3; end
  S3 : begin COUNT<=(COUNT==1)?Num_Periodi:COUNT-1; OUT<=(COUNT==1)?RITARDO:OUT;
           STAR <= (COUNT == 1)?S0:S3; end
 endcase
endmodule
//-----
```