Precalculus Quadratic trigonometric inequalities

Todor Miley

2019

Example

- Solve the inequality $2u^2 + 2u + 1 \le u + 2$.
- Find all solutions of $2\cos^2\theta + 2\cos\theta + 1 \le \cos\theta + 2$ lying in $[-360^\circ, 360^\circ]$.

$$\begin{array}{rcl} 2u^2 + 2u + 1 & \leq & u + 2 \\ 2u^2 + u - 1 & \leq & 0 \\ 2\left(u - \frac{1}{2}\right)\left(u + 1\right) & \leq & 0 \\ u & \in & \left[-1, \frac{1}{2}\right] \end{array}$$

$$2\cos^{2}\theta + 2\cos\theta + 1 \leq \cos\theta + 2 \quad \text{Set } \cos\theta = u$$

$$2u^{2} + 2u + 1 \leq u + 2$$

$$u \in \left[-1, \frac{1}{2}\right] \quad \text{(solved above)}$$

$$\cos\theta \in \left[-1, \frac{1}{2}\right]$$

$$-1 \leq \cos\theta \leq \frac{1}{2}$$

Example

- Solve the inequality $2u^2 + 2u + 1 \le u + 2$.
- Find all solutions of $2\cos^2\theta + 2\cos\theta + 1 \le \cos\theta + 2$ lying in $[-360^\circ, 360^\circ]$.

$$\begin{array}{rcl} \cos\theta & \in & \left[-1,\frac{1}{2}\right] \\ -1 \leq \cos\theta & \leq & \frac{1}{2} \end{array}$$

$$\theta \in [-180^{\circ} + k360^{\circ}, -60^{\circ} + k360^{\circ}] \cup [60^{\circ} + k360^{\circ}, 180^{\circ} + k360^{\circ}]$$

$$\theta \in$$

$$k = -1$$

$$k = 0$$

$$k = 1$$

$$\theta \in$$

$$[-300^{\circ}, -60^{\circ}] \cup [60^{\circ}, 300^{\circ}]$$

Example

- Solve the inequality $2u^2 + 2u + 1 \le u + 2$.
- Find all solutions of $2\cos^2\theta + 2\cos\theta + 1 \le \cos\theta + 2$ lying in $[-360^\circ, 360^\circ]$.

$$\theta \in [-300^{\circ}, -60^{\circ}] \cup [60^{\circ}, 300^{\circ}]$$

