

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
23. Juni 2005 (23.06.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/056712 A1

(51) Internationale Patentklassifikation⁷: **C09K 11/06**,
H01L 51/30

Regensburg (DE). PAWLOWSKI, Valeri [BY/DE];
Grunewaldstrasse 12, 93053 Regensburg (DE).

(21) Internationales Aktenzeichen: PCT/EP2004/013944

(74) Anwalt: ISENBRUCK, Günter; Isenbruck Bösl Hörschler Wichmann Huhn, Patentanwälte, Theodor-Heuss-Anlage 12, 68165 Mannheim (DE).

(22) Internationales Anmeldedatum:
8. Dezember 2004 (08.12.2004)

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL,

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
103 58 665.2 12. Dezember 2003 (12.12.2003) DE

[Fortsetzung auf der nächsten Seite]

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): LENNARTZ, Christian [DE/DE]; Ringstr. 32a, 67141 Neuhofen (DE). VOGLER, Arnd [DE/DE]; Karl-Stieler-Strasse 37, 93051

(54) Title: USE OF PLATINUM II COMPLEXES AS LUMINESCENT MATERIALS IN ORGANIC LIGHT-EMITTING DIODES (OLEDs)

(54) Bezeichnung: VERWENDUNG VON PLATIN(II)-KOMPLEXEN ALS LUMINESZIERENDE MATERIALIEN IN ORGANISCHEN LICHT-EMITTIERENDEN DIODEN (OLEDs)

(57) Abstract: The invention relates to the use of platinum II complexes of formulas I, II, and III as emitter molecules in organic light-emitting diodes (OLEDs), the radicals in said formulas being defined in the claims and the description. The invention further relates to the use of said platinum II complexes as a light-emitting layer in OLEDs, a light-emitting layer containing at least one platinum II complex, an OLED containing said light-emitting layer, and devices comprising an inventive OLED.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft die Verwendung von Platin(II)-Komplexen der Formeln I, II und III als Emittermoleküle in organischen Leuchtdioden (OLEDs), worin die Reste in den Ansprüchen und in der Beschreibung definiert sind. Des Weiteren betrifft die vorliegende Erfindung die Verwendung der Platin(II)-Komplexe als Licht-emittierende Schicht in OLEDs, eine Licht-emittierende Schicht enthaltend mindestens einen Platin(II)-Komplex, ein OLED enthaltend diese Licht-emittierende Schicht sowie Vorrichtungen, die ein erfindungsgemäßes OLED enthalten.

WO 2005/056712 A1

PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Verwendung von Platin(II)-Komplexen als lumineszierende Materialien in organischen Licht-emittierenden Dioden (OLEDs)5 **Beschreibung**

Die vorliegende Erfindung betrifft die Verwendung von Platin(II)-Komplexen als Emittermolkeküle in organischen Leuchtdioden (OLEDs), die Verwendung der Platin(II)-Komplexe als Licht-emittierende Schicht in OLEDs, eine Licht-emittierende Schicht 10 enthaltend mindestens einen Platin(II)-Komplex, ein OLED enthaltend diese Licht-emittierende Schicht sowie Vorrichtungen, die ein erfindungsgemäßes OLED enthalten.

In organischen Leuchtdioden (OLED) wird die Eigenschaft von Materialien ausgenutzt, 15 Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und Flüssigkristall-displays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kompakten Bauweise und des intrinsisch niedrigeren Stromverbrauchs eignen sich Vorrichtungen, enthaltend OLEDs insbesondere für mobile Anwendungen, zum Beispiel für Anwendungen in 20 Handys, Laptops usw.

Es wurden zahlreiche Materialien vorgeschlagen, die bei der Anregung durch elektrischen Strom Licht emittieren.

- 25 WO 02/15645 betrifft OLEDs, die eine Licht-emittierende Schicht aufweisen, die phosphoreszierende Übergangsmetallverbindungen als Gastmaterialien (Dotierstoffe) ent-hält. Die Übergangsmetallverbindungen, unter anderem Platin-Acetylacetonato-Komplexe, zeigen Elektrophosphoreszenz.
- 30 WO 01/41512 betrifft OLEDs, die eine Licht-emittierende Schicht aufweisen, die ein Molekül der allgemeinen Formel L_2MX enthält, wobei M besonders bevorzugt Iridium ist und L ausgewählt ist aus der Gruppe bestehend aus 2-(1-Naphthyl)benzooxazol, 2-Phenylbenzooxazol, 2-Phenylbenzothiazol, 7,8-Benzochinolin, Cumaren, Thienylpyridin, Phenylpyridin, Benzothienylpyridin, 3-Methoxy-2-phenylpyridin und Tolylopyridin 35 und X ausgewählt ist aus der Gruppe bestehend aus Acetylacetonat, Hexafluoracetyl-acetonat, Salicyliden, Picolinat und 8-Hydroxychinolinat. Gemäß der Beschreibung kön-nen die Moleküle der Formel L_2MX als Dotiermaterialien oder in Substanz in der Licht-emittierenden Schicht eingesetzt werden. In den Beispielen wird ein Molekül der For-mel L_2MX (Bis(2-phenyl-benzothiazol)iridiumacetyletonat („BTIr“)) jedoch lediglich als 40 Dotierstoff eingesetzt.

- WO 00/70655 betrifft elektrolumineszierende Schichten, die als Licht-emittierende Substanz eine phosphoreszierende organometallische Iridiumverbindung oder Osmiumverbindung aufweisen. Bevorzugt wird Tris(2-phenylpyridin)iridium ($\text{Ir}(\text{ppy})_3$) als Licht-emittierende Verbindung eingesetzt. ($\text{Ir}(\text{ppy})_3$) kann in Substanz oder als Dotierstoff, in 4,4'-N,N'-Dicarbazol-biphenyl (CBP) als Wirtsubstanz, eingesetzt werden. Gemäß den Beispielen (Beispiel 2) wird bei Einsatz von ($\text{Ir}(\text{ppy})_3$) in Substanz eine starke Verminderung der Effizienz des OLEDs gegenüber einem Einsatz als Dotierstoff festgestellt.
- 10 Obwohl bereits Verbindungen bekannt sind, die im blauen, roten und grünen Bereich des elektromagnetischen Spektrums Elektrolumineszenz zeigen, ist die Bereitstellung von weiteren Verbindungen, die auch in Substanz als Licht-emittierende Schicht einsetzbar sind, wünschenswert. Unter Elektrolumineszenz ist sowohl Elektrofluoreszenz als auch Elektrophosphoreszenz zu verstehen.
- 15 Aufgabe der vorliegenden Anmeldung ist daher die Bereitstellung einer Verbindungs classe, die zur Elektrolumineszenz im blauen, roten und grünen Bereich des elektromagnetischen Spektrums geeignet ist, wodurch die Herstellung von Vollfarbendisplays ermöglicht wird. Des Weiteren ist es Aufgabe der vorliegenden Anmeldung, Verbindungen bereitzustellen, die in Substanz, ohne Wirtsubstanzen, als Licht-emittierende Schicht in OLEDs eingesetzt werden können.
- 20 Diese Aufgabe wird durch die Verwendung von neutralen Platin(II)-Komplexen ausgewählt aus der Gruppe bestehend aus
- 25 Platin(II)-Phosphinkomplexe der Formel (I)

Platin(II)-Bathophen-Komplexe der Formel (II)

3

und

Platin(II)-bipyridyl-Komplexe der Formel (III)

5

worin die Symbole die folgenden Bedeutungen aufweisen:

- 10 $R^1, R^2, R^7,$
 R^8, R^{12}, R^{13} unabhängig voneinander CN, Acetylid, Thiocyanat oder Isocyanat, bevorzugt CN oder Acetylid, wobei sowohl Acetylide, die Alkylreste tragen, insbesondere t-Butylreste, als auch Acetylde, die aromatische Reste tragen, geeignet sind; besonders bevorzugt ist CN;
- 15 $R^3, R^4, R^5, R^6,$
 $R^9, R^{10}, R^{14}, R^{15}$ unabhängig voneinander eine Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe, bevorzugt eine Aryl- oder Alkylgruppe;
 X eine Arylengruppe oder eine Heteroarylenengruppe;
 \circ 0 bis 2, bevorzugt 0;
- 20 p, q unabhängig voneinander 0 bis 4, bevorzugt 0 oder 1, besonders bevorzugt befinden sich die Gruppen R^{14} und R^{15} in 4- und 7-Position des Bipyridyl-Liganden, wenn p und q 1 bedeuten;
- n, m unabhängig voneinander 0 bis 3, bevorzugt 0 oder 1, besonders bevorzugt befinden sich die Gruppen R^9 und R^{10} in 4- und 7-Position des Bathophen-Liganden, wenn n und m 1 bedeuten,
25 wobei für den Fall, dass m, n, o, p bzw. q 0 sind, die entsprechenden Teile der Bathophen- bzw. Bipyridyl-Liganden Wasserstoffatome tragen, d.h. unsubstituiert sind,

als Emittermoleküle in organischen Licht-emittierenden Dioden, gelöst.

Platin(II)-Komplexe sind im Stand der Technik bekannt. So ist in Vogler, J. Am. Chem.

5 Soc. 1990, 112, 5625 bis 5627 des Komplexes Pt(Bathophen)(CN)₂ (Bathophen = 4,7-Diphenyl-1,10-phenanthrolin) offenbart. Bezuglich der Elektrolumineszenz dieses Pt-Komplexes werden keine Angaben gemacht.

Yam et al. Coordination Chemistry Reviews 229 (2002) 123 bis 132 betrifft Lumines-

10 zenzstudien von dinuklearen Platin(II)-Alkinyl-Komplexen und deren Gemischmetall-Platin(II)-Kupfer(I) und Platin(II)-Silber(I)-Komplexen. Die untersuchten Platin(II)-Komplexe sind dinukleare Komplexe. Es wurde eine Rotverschiebung der dinuklearen Komplexe im Vergleich zu einem ebenfalls untersuchten mononuklearen Komplex, trans-[Pt(dppm-P)₂(C≡CR)₂], festgestellt.

15

In Crosby et al. Coordination Chemistry Reviews 171 (1998) 407 bis 417 werden die Charakteristiken von elektronisch angeregten Zuständen von Übergangsmetall-Komplexen untersucht. Die Untersuchung erfolgt an den Komplexen Pt(2,2'-bipyridin)(CN)₂ und Pt(2,2'-bipyridin)Cl₂, die in ihrer festen Form lineare Ketten bilden

20 und an Pt(2-phenylpyridin)₂, das in diskreten dimeren Einheiten kristallisiert.

Che et al. Inorg. Chem. 2002, 41, 3866 bis 3875 betrifft Metall-Metallwechselwirkungen in dinuklearen d⁸-Metallcyanid-Komplexen, die Phosphinliganden aufweisen. Als Komplexe werden trans-[M₂(μ-diphosphin)₂(CN)₄] und trans-[M(phosphin)₂(CN)₂] untersucht, wobei M Pt oder Ni ist. Gemäß Tabelle 3, Seite 3871 ist der mononukleare Komplex [Pt(PCy₃)₂(CN)₂] in Dichlormethan nicht emittierend.

Keines der vorstehend genannten Dokumente betrifft die Elektrolumineszenz der darin

offenbarten Komplexe, auf der der Einsatz von Verbindungen als Emittersubstanzen in

30 OLEDs basiert.

Die Eignung von Platin(II)-Komplexen der Formeln I, II oder III gemäß der vorliegenden

Erfindung als Licht-emittierende Substanzen in OLEDs, wobei die Substanzen dieses

Strukturtyps gemäß Formel I, II oder III zur Elektrolumineszenz im roten, grünen und

35 blauen Bereich des elektromagnetischen Spektrums geeignet sind, ist somit in keinem der vorstehend genannten Dokumente erwähnt.

Es wurde daher gefunden, dass die Platin(II)-Komplexe der Formeln I, II und III gemäß

der vorliegenden Anmeldung als Licht-emittierende Substanzen in OLEDs zur Herstel-

40 lung von Vollfarbendisplays geeignet sind.

Im Sinne der vorliegenden Anmeldung haben die Begriffe Arylrest oder -gruppe, Heteroarylrest oder -gruppe, Alkylrest oder -gruppe, Alkenylrest oder -gruppe, Arylenrest oder -gruppe und Heteroarylenrest oder -gruppe die folgenden Bedeutungen:

- 5 Unter einem Arylrest (oder -gruppe) ist ein Rest mit einem Grundgerüst von 6 bis 30 Kohlenstoffatomen, bevorzugt 6 bis 18 Kohlenstoffatomen zu verstehen, der aus einem aromatischen Ring oder mehreren kondensierten aromatischen Ringen aufgebaut ist. Geeignete Grundgerüste sind zum Beispiel Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl. Dieses Grundgerüst kann unsubstituiert sein (d. h., dass alle Kohlenstoffatome, die substituierbar sind, Wasserstoffatome tragen), oder an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind zum Beispiel Alkylreste, bevorzugt Alkylreste mit 1 bis 8 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, i-Propyl oder t-Butyl, Arylreste, bevorzugt C₆-Arylreste, die wiederum substituiert oder unsubstituiert sein können, Heteroarylreste, bevorzugt Heteroarylreste, die mindestens ein Stickstoffatom enthalten, besonders bevorzugt Pyridylreste, Alkenylreste, bevorzugt Alkenylreste, die eine Doppelbindung tragen, besonders bevorzugt Alkenylreste mit einer Doppelbindung und 1 bis 8 Kohlenstoffatomen, oder Gruppen mit Donor- oder Akzeptorwirkung. Unter Gruppen mit Donorwirkung sind Gruppen zu verstehen, die einen +I- und/oder +M-Effekt aufweisen, und unter Gruppen mit Akzeptorwirkung sind Gruppen zu verstehen, die einen -I- und/oder -M-Effekt aufweisen. Geeignete Gruppen, mit Donor- oder Akzeptorwirkung sind Halogenreste, bevorzugt F, Cl, Br, besonders bevorzugt F, Alkoxyreste, Carbonylreste, Esterreste, Aminreste, Amidreste, CH₂F-Gruppen, CHF₂-Gruppen, CF₃-Gruppen, CN-Gruppen, Thiogruppen oder SCN-Gruppen. Ganz besonders bevorzugt tragen die
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - 40
- Arylreste Substituenten ausgewählt aus der Gruppe bestehend aus Methyl, F, Cl und Alkoxy, oder die Arylreste sind unsubstituiert. Bevorzugt ist der Arylrest oder die Arylgruppe ein C₆-Arylrest, der gegebenenfalls mit mindestens einem der vorstehend genannten Substituenten substituiert ist. Besonders bevorzugt weist der C₆-Arylrest keinen, einen oder zwei der vorstehend genannten Substituenten auf, wobei der eine Substituent bevorzugt in para-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet ist und - im Falle von zwei Substituenten - diese jeweils in meta-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet sind. Ganz besonders bevorzugt ist der C₆-Arylrest ein unsubstituierter Phenylrest.
- Unter einem Heteroarylrest oder einer Heteroarylgruppe sind Reste zu verstehen, die sich von den vorstehend genannten Arylresten dadurch unterscheiden, dass in dem Grundgerüst der Arylreste mindestens ein Kohlenstoffatom durch ein Heteroatom ersetzt ist. Bevorzugte Heteroatome sind N, O und S. Ganz besonders bevorzugt sind ein oder zwei Kohlenstoffatome des Grundgerüsts der Arylreste durch Heteroatome ersetzt. Insbesondere bevorzugt ist das Grundgerüst ausgewählt aus elektronenreichen Systemen wie Pyridyl, cyclischen Estern, cyclischen Amiden und fünfgliedrigen

Heteroaromaten wie Pyrrol, Furane. Das Grundgerüst kann an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind die selben, die bereits bezüglich der Arylgruppen genannt wurden.

- 5 Unter einem Alkylrest oder einer Alkylgruppe ist ein Rest mit 1 bis 20 Kohlenstoffatomen, bevorzugt 1 bis 10 Kohlenstoffatomen, besonders bevorzugt 1 bis 8 Kohlenstoffatomen zu verstehen. Dieser Alkylrest kann verzweigt oder unverzweigt sein und gegebenenfalls mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen sein. Des Weiteren kann dieser Alkylrest mit einem oder mehreren der bezüglich der Arylgruppen genannten Substituenten substituiert sein. Es ist ebenfalls möglich, dass der Alkylrest eine oder mehrere Arylgruppen trägt. Dabei sind alle der vorstehend aufgeführten Arylgruppen geeignet. Besonders bevorzugt sind die Alkylreste ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-Hexyl und sec-Hexyl. Ganz besonders bevorzugt sind Methyl, i-Propyl und n-Hexyl.

Unter einem Alkenylrest oder einer Alkenylgruppe ist ein Rest zu verstehen, der den vorstehend genannten Alkylresten mit mindestens zwei Kohlenstoffatomen entspricht, mit dem Unterschied, dass mindestens eine C-C-Einfachbindung des Alkylrests durch 20 eine C-C-Doppelbindung ersetzt ist. Bevorzugt weist der Alkenylrest eine oder zwei Doppelbindungen auf.

Unter einer Arylengruppe bzw. einem Arylenrest ist eine Gruppe mit 6 bis 60 Kohlenstoffatomen, bevorzugt 6 bis 20 Kohlenstoffatomen zu verstehen. Geeignete Gruppen 25 sind beispielsweise Phenylengruppen, bevorzugt Phenylengruppen, die in 1- und 2-Position mit jeweils einem der P-Atome gemäß Formel I verknüpft sind, Naphthalindiylylgruppen, bevorzugt Naphthalindiylylgruppen, die in 2- und 3-Position oder in 4- und 5-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft sind, Anthracendiylylgruppen, bevorzugt Anthracendiylylgruppen, die in 2- und 3-Position oder 4- und 30 10-Position oder 4- und 5-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft sind, Phenanthrendiylylgruppen, bevorzugt Phenanthrendiylylgruppen, die in der 2- und 3-Position oder in der 4- und 5-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft sind, Biphenylengruppen, bevorzugt 1,1'-Biphenylen, besonders bevorzugt 1,1'-Biphenylengruppen, die in der 2- und 2'-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft sind, Binaphthylengruppen, bevorzugt 1,1'-Binaphthylengruppen, die in der 2- und 2'-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft sind, Xanthylengruppen, bevorzugt Xanthylengruppen, die in 4- und 5-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft sind, besonders bevorzugt Xanthylengruppen, die in 9- und 9'-Position jeweils H oder eine Methylgruppe tragen, des Weiteren sind Triphenylengruppen, Stilbendiylylgruppen, Distilbendiylylgruppen sowie 40

weitere Gruppen, die kondensierte Ringe, bevorzugt kondensierte 6-gliedrige Ringe, aufweisen, als Arylengruppen geeignet.

Die vorstehend genannten Arylengruppen oder -reste können unsubstituiert oder substituiert sein. Geeignete Substituenten sind zum Beispiel Alkylreste, bevorzugt Alkylreste mit 1 bis 8 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, i-Propyl oder t-Butyl, Arylreste, bevorzugt C₆-Arylreste, die wiederum substituiert oder unsubstituiert sein können, Heteroarylreste, bevorzugt Heteroarylreste, die mindestens ein Stickstoffatom enthalten, besonders bevorzugt Pyridylreste, Alkenylreste, bevorzugt Alkenylreste, die eine Doppelbindung tragen, besonders bevorzugt Alkenylreste mit einer Doppelbindung und 1 bis 8 Kohlenstoffatomen, oder Gruppen mit Donor- oder Akzeptorwirkung. Unter Gruppen mit Donorwirkung sind Gruppen zu verstehen, die einen +I- und/oder +M-Effekt aufweisen, und unter Gruppen mit Akzeptorwirkung sind Gruppen zu verstehen, die einen -I- und/oder -M-Effekt aufweisen. Geeignete Gruppen, mit Donor- oder Akzeptorwirkung sind Halogenreste, bevorzugt F, Cl, Br, besonders bevorzugt F, Alkoxyreste, Carbonylreste, Esterreste, Aminreste, Amidreste, CH₂F-Gruppen, CHF₂-Gruppen, CF₃-Gruppen, CN-Gruppen, Thiogruppen oder SCN-Gruppen. Ganz besonders bevorzugt tragen die Arylenreste Substituenten ausgewählt aus der Gruppe bestehend aus Methyl, F, Cl und Alkoxy. Die geeignete Anzahl möglicher Substituenten richtet sich nach der entsprechenden Verbindung und ist dem Fachmann bekannt. Bevorzugt sind die vorstehend genannten Verbindungen unsubstituiert oder weisen einen oder zwei Substituenten auf. Ganz besonders bevorzugt sind die vorstehend genannten Verbindungen unsubstituiert. Bevorzugte Arylengruppen oder -reste sind ausgewählt aus der Gruppe bestehend aus Phenylengruppen, die in 1- und 2-Position mit jeweils einem der P-Atome gemäß Formel I verknüpft sind, und besonders bevorzugt unsubstituiert sind, Naphthalindiylylgruppen, die in 2- und 3-Position oder in 4- und 5-Position mit jeweils einem der P-Atome gemäß Formel I verknüpft sind, und besonders bevorzugt unsubstituiert sind, und 1,1'-Binaphthylengruppen, die in der 2- und 2'-Position mit jeweils einem der P-Atome der Formel I verknüpft sind, und besonders bevorzugt unsubstituiert sind.

Geeignete Heteroarylengruppen sind solche, in denen mindestens eine CH-Einheit der vorstehend genannten Verbindungen durch eine Einheit enthaltend ein Heteroatom, bevorzugt ausgewählt aus Sauerstoff, Schwefel, Stickstoff, Phosphor und Bor, besonders bevorzugt Sauerstoff, Schwefel und Stickstoff, ganz besonders bevorzugt Stickstoff, ersetzt ist. Bevorzugt sind ein oder zwei CH-Gruppen der vorstehend genannten Verbindungen durch eines der vorstehend genannten Heteroatome ersetzt.

Geeignete Heteroarylengruppen, die Stickstoff als Heteroatom aufweisen, sind Pyridindiylylgruppen, Diazaphenylengruppen, Chinolindiylylgruppen, Chinoxalindiylylgruppen, Aziridindiylylgruppen, Bipyridylgruppen, Phenanthrolindiylylgruppen, wobei jeweils eine Ver-

- knüpfung mit jeweils einem der beiden P-Atome der Formel I möglich ist. Geeignete Gruppen, die andere Heteroatome außer Stickstoffatomen enthalten, sind dem Fachmann bekannt. Die Heteroarylengruppen können unsubstituiert oder substituiert sein, wobei die Zahl der Substituenten von der jeweiligen Heteroarylengruppe abhängig ist.
- 5 Geeignete Substituenten sind die selben, die bereits vorstehend bezüglich der Arylreste genannt sind. In einer Ausführungsform sind die Heteroarylengruppen unsubstituiert oder tragen einen oder zwei Substituenten, ganz besonders bevorzugt sind die Heteroarylengruppen unsubstituiert.
- 10 Bevorzugte Platin(II)-Komplexe der Formel I sind solche, in denen R¹ und R² CN oder Acetylid, besonders bevorzugt CN bedeuten und R³, R⁴, R⁵ und R⁶ einen Arylrest, bevorzugt einen Phenylrest, der wie vorstehend genannt substituiert oder unsubstituiert sein kann, besonders bevorzugt einen unsubstituierten Phenylrest bedeuten, und X ausgewählt ist aus der Gruppe bestehend aus einer Phenyengruppe, die in der 1- und 15 2-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist, und besonders bevorzugt unsubstituiert ist, einer Naphthalindiylylgruppe, die in 2- und 3-Position oder 4- und 5-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist, wobei die Naphthalindiylylgruppe besonders bevorzugt unsubstituiert ist, einer Phenanthrendiylylgruppe, die in 2- und 3-Position oder in 4- und 5-Position mit jeweils einem 20 der beiden P-Atome der Formel I verknüpft ist, wobei die Phenanthrenylengruppe besonders bevorzugt unsubstituiert ist, einer 1,1'-Biphenylylgruppe, die in der 2- und 2'-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist, wobei die Biphenylylgruppe besonders bevorzugt unsubstituiert ist, und einer 1,1'-Binaphthylengruppe, die in der 2- und 2'-Position mit jeweils einem der beiden P-Atome 25 der Formel I verknüpft ist, wobei die Binaphthylengruppe besonders bevorzugt unsubstituiert ist. Besonders bevorzugt ist X ausgewählt aus einer unsubstituierten Phenylengruppe, die in 1- und 2-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist, und einer 1,1'-Binaphthylengruppe, die in der 2- und 2'-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist, und unsubstituiert ist.
- 30 Bevorzugte Platin(II)-Bathophenkomplexe der Formel II sind solche, worin R⁷ und R⁸ Acetylid oder CN, besonders bevorzugt CN, bedeuten und m, n und o 0 oder 1 bedeuten, wobei, wenn o = 0 bedeutet, die Bathophen-Gruppe unsubstituiert ist und, wenn m, n und o unabhängig voneinander 1 bedeuten, die Bathophengruppe mit den bereits 35 vorstehend erwähnten Substituenten substituiert ist, wobei die Substituenten R⁹, R¹⁰ und R¹¹ der Bathophen-Gruppe der Formel (II) besonders bevorzugt unsubstituiertes Phenyl bedeuten. Ganz besonders bevorzugt sind m, n und o = 0 oder o ist 0 und m und n sind 1, wobei R⁹ und R¹⁰ ganz besonders bevorzugt unsubstituiertes Phenyl bedeuten. Insbesondere bevorzugt befinden sich die Substituenten R⁹ und R¹⁰ in der 4- und 7-Position des Bathophenrestes, wenn m und n 1 bedeuten.

Bei dem Platin(II)-Bipyridyl-Komplex der Formel III handelt es sich bevorzugt um einen Komplex, worin R¹² und R¹³ Acetylid oder CN, bevorzugt CN, bedeuten und p und q 0 oder 1 bedeuten, wobei bevorzugt entweder sowohl p als auch q 0 bedeuten oder sowohl p als auch q 1 bedeuten. Für den Fall, dass p bzw. q 1 bedeuten, sind R¹⁴ und R¹⁵ 5 Substituenten wie vorstehend definiert. Ganz besonders bevorzugt sind R¹⁴ und R¹⁵ tert-Butyl. Insbesondere bevorzugt befinden sich die Substituenten R¹⁴ und R¹⁵ für den Fall, dass p und q = 1 bedeuten in 4- und 7-Position des Bipyridylrests.

- Ein weiterer Gegenstand der vorliegenden Anmeldung ist die Verwendung von Pt(II)-Komplexen der Formeln II oder III, worin in den Platin(II)-Komplexen der Formel II und den Platin(II)-Komplexen der Formel III R⁷, R⁸, R¹² und R¹³ CN, m, n, p, q 0 oder 1 und o 0 bedeuten, und – wenn m, n = 1 bedeuten – R⁹ und R¹⁰ unsubstituiertes Phenyl bedeuten und – wenn p, q 1 bedeuten – R¹⁴ und R¹⁵ tert-Bu bedeuten.
- 10 Ganz besonders bevorzugte Verbindungen der Formeln I, II und III sind die im Folgenden aufgeführten Formeln
- 15

- 20 Die vorstehend genannten neutralen Übergangsmetall-Komplexe sind hervorragend als Emittermoleküle in organischen Licht-emittierenden Diode (OLEDs) geeignet. Durch einfache Variationen der Liganden ist es möglich, Übergangsmetall-Komplexe bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie insbesondere im blauen Bereich des elektromagnetischen Spektrums zeigen. Die erfindungsgemäß verwendeten neutralen Übergangsmetall-Komplexe eignen sich daher für den Einsatz in technisch verwendbaren Vollfarbendisplays.
- 25

Die Herstellung der Platin(II)-Komplexe erfolgt nach dem Fachmann bekannten Verfahren.

Übliche Verfahren sind zum Beispiel die Deprotonierung von den Liganden der
5 Verbindungen der Formeln I, II und III entsprechenden Ligandvorläufern und anschlie-
ßende, im Allgemeinen *in situ*, Umsetzung mit geeigneten Pt enthaltenden Metallkom-
plexen. Des Weiteren ist die Herstellung der Platin(II)-Komplexe der Formeln I, II, und
III durch direkte Umsetzung der neutralen, den Liganden der Platin(II)-Komplexe ent-
10 sprechenden Ligandvorläufer mit den geeigneten Platin(II)-Komplexen möglich, was
bevorzugt ist.

Geeignete Ligandvorläufer, die zu den Liganden der Platin(II)-Komplexe der Formeln I,
II und III führen, sind dem Fachmann bekannt.

15 Erfolgt eine Deprotonierung der Liganden, so kann diese durch basische Metallate,
basische Anionen wie Metallacetate, Acetylacetonate oder Alkoxylate oder externe
Basen wie $\text{KO}^\ddagger\text{Bu}$, $\text{NaO}^\ddagger\text{Bu}$, $\text{LiO}^\ddagger\text{Bu}$, NaH , Silylamide sowie Phosphazenbasen erfolgen.

20 Geeignete als Ausgangsverbindung einsetzbare Platinkomplexe sind dem Fachmann
bekannt und enthalten bevorzugt Reste der Gruppen R^1 und R^2 , bzw. R^7 und R^8 bzw.
 R^{12} und R^{13} . Somit sind bevorzugte Platinkomplexe Platin-Acetylidkomplexe und Platin-
Cyanidkomplexe wie $\text{Pt}(\text{CN})_2$. Die Platin-Acetylidkomplexe können z.B. durch Umset-
zung des entsprechenden Platin-Chloridkomplex, z.B. $[\text{Pt}(\text{dppm})_2]\text{Cl}_2$ mit einem Acetyl-
lid, z.B. Li-Acetylid oder Quecksilberacetylid erhalten werden. Geeignete Verfahren zur
25 Herstellung von Platin-Acetyliden sind in Yam et al. Coordination Chemistry Reviews
229 (2002) 123-132 und der darin zitierten Literatur offenbart.

Die Umsetzung erfolgt bevorzugt in einem Lösungsmittel. Geeignete Lösungsmittel
30 sind dem Fachmann bekannt und sind bevorzugt ausgewählt aus aromatischen,
aliphatischen Lösungsmitteln, Ethern, Alkoholen, und polaren aprotischen Lösungsmitteln.
Besonders geeignete polare aprotische Lösungsmittel sind Dimethylformamid und
Dimethylacetamid.

35 Das molare Verhältnis von eingesetztem Platinkomplex zu eingesetztem Ligandvorläu-
fer beträgt bevorzugt 0,7 : 1,0 bis 1,5 : 1,0, besonders bevorzugt 0,9 : 1,0 bis 1,1 : 1,
ganz besonders bevorzugt 1 : 1.

40 Bevorzugt werden die Platin(II)komplexe der Formeln I, II und III, durch direkte Umset-
zung des entsprechenden Ligandvorläufers mit einem Platinkomplex erhalten. Diese
Umsetzung erfolgt besonders bevorzugt in einem polaren aprotischen Lösungsmittel in

den bereits vorstehend angegebenen molaren Verhältnissen von Platinkomplexen und eingesetzten Ligandvorläufern.

Die Umsetzung erfolgt im Allgemeinen bei Temperaturen von 20 bis 200 °C, bevorzugt 5 70 bis 180 °C, besonders bevorzugt bei dem Siedepunkt des eingesetzten Lösungsmittels.

Die Reaktionsdauer ist abhängig von dem gewünschten Platin(II)-Komplex und beträgt 10 im Allgemeinen von 1 h bis 50 h, bevorzugt 2 h bis 30 h, besonders bevorzugt 5 h bis 25 h.

Der erhaltene Platin(II)-Komplex der Formeln I, II, bzw. III wird nach dem Fachmann bekannten Methoden aufgearbeitet. Beispielsweise wird das während der Umsetzung ausgefallene Produkt filtriert, gewaschen, zum Beispiel mit Ether, insbesondere Diethylether, und anschließend getrocknet. Durch Umkristallisation, zum Beispiel aus Dichlormethan/Diethylether oder Dichlorethan/Diethylether, werden hocheine Platin(II)-Komplexe erhalten.

Die erfindungsgemäß verwendeten Platin(II)-Komplexe der Formeln (I), (II) oder (III) 20 eignen sich hervorragend als Emittersubstanzen, da sie eine Emission (Elektrolumineszenz) im sichtbaren Bereich des elektromagnetischen Spektrums aufweisen. Mit Hilfe der erfindungsgemäß verwendeten Platin(II)-Komplexe als Emittersubstanzen ist es möglich, Verbindungen bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie im blauen Bereich des elektromagnetischen Spektrums aufweisen. Somit ist es 25 möglich mit Hilfe der erfindungsgemäß verwendeten Platin(II)-Komplexe als Emittersubstanzen technisch einsetzbare Vollfarbendisplays bereit zu stellen.

Bei den Platin(II)-Komplexen, insbesondere bei den Platin(II)-Komplexen der Formel I, handelt es sich bevorzugt um einkernige Komplexe. Diese sind bevorzugt nicht nur in 30 Lösung einkernig, sondern auch im Festkörper. Ein weiterer Gegenstand der vorliegenden Anmeldung betrifft daher die Verwendung der Platin(II)-Komplexe gemäß den Formeln I, II, und III, wobei Platin(II)-Komplexe der Formel I besonders bevorzugt sind, wobei die Komplexe einkernige Komplexe sind. Besonders bevorzugte einkernige Komplexe sind die als besonders bevorzugt bezeichneten Platin(II)-Komplexe, die bereits vorstehend erwähnt wurden.

Eine besondere Eigenschaft der Platin(II)-Komplexe der Formeln I, II und III ist, dass diese im Festkörper Lumineszenz, besonders bevorzugt Elektrolumineszenz, im sichtbaren Bereich des elektromagnetischen Spektrums zeigen. Diese im Festkörper lumi-

- neszierenden Komplexe können in Substanz, also ohne weitere Zusätze, als Emitter-substanzen in OLEDs eingesetzt werden. Dadurch kann ein OLED mit einer Licht-emittierenden Schicht hergestellt werden, wobei keine aufwendige Coverdampfung eines Matrixmaterials mit der Emittersubstanz erforderlich ist. Einkernige Platin(II)-
- 5 Komplexe, die im Festkörper Lumineszenz, insbesondere Elektrolumineszenz, zeigen sind aus dem Stand der Technik nicht bekannt.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher die Verwendung von Platin(II)-Komplexen der Formeln I, II und III, besonders bevorzugt von Platin(II)-

10 Komplexen der Formel I, als Licht-emittierende Schicht in OLEDs.

Organische Licht-emittierende Dioden sind grundsätzlich aus mehreren Schichten aufgebaut:

1. Anode
 - 15 2. Löcher-transportierende Schicht
 3. Licht-emittierende Schicht
 4. Elektronen-transportierende Schicht
 5. Kathode
- 20 Die Platin(II)-Komplexe der Formeln I, II, und III, bevorzugt die Komplexe der Formel I, werden bevorzugt in der Licht-emittierenden Schicht als Emittermoleküle eingesetzt. Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher eine Licht-emittierende Schicht enthaltend mindestens einen Platin(II)-Komplex der Formeln I, II und/oder III, bevorzugt mindestens einen Komplex der Formel I, als Emittermolekül. Bevorzugte
- 25 Platin(II)-Komplexe der Formeln I, II und III, insbesondere Platin(II)-Komplexe der Formel I, sind bereits vorstehend genannt.

Die erfindungsgemäß verwendeten Platin(II)-Komplexe der Formeln I, II und III können in Substanz – ohne weitere Zusätze - in der Licht-emittierenden Schicht vorliegen. Es

30 ist jedoch ebenfalls möglich, dass neben den erfindungsgemäß eingesetzten Platin(II)-Komplexen der Formeln I, II oder III weitere Verbindungen in der Licht-emittierenden Schicht vorliegen. Beispielsweise kann ein fluoreszierender Farbstoff anwesend sein, um die Emissionsfarbe des als Emittermoleküs eingesetzten Platin(II)-Komplexes zu verändern. Des Weiteren kann ein Verdünnungsmaterial eingesetzt werden. Dieses

35 Verdünnungsmaterial kann ein Polymer sein, zum Beispiel Poly(N-vinylcarbazol) oder Polysilan. Das Verdünnungsmaterial kann jedoch ebenfalls ein kleines Molekül sein, zum Beispiel 4,4'-N,N'-Dicarbazolbiphenyl (CDP) oder tertiäre aromatische Amine. Wenn ein Verdünnungsmaterial eingesetzt wird, beträgt der Anteil der erfindungsge-

mäß eingesetzten Platin(II)-Komplexe in der Licht-emittierenden Schicht im Allgemeinen weniger als 20 Gew.-%, bevorzugt 3 bis 10 Gew.-%. Bevorzugt werden die Platin(II)-Komplexe der Formeln I, II und III in Substanz eingesetzt, wodurch eine aufwendige Coverdampfung der Platin(II)-Komplexe mit einem Matrixmaterial (Verdünnungsmaterial oder fluoreszierender Farbstoff) vermieden wird. Dafür ist es wesentlich, dass die Platin(II)-Komplexe im Festkörper lumineszieren. Die Platin(II)-Komplexe der Formeln I, II und III zeigen im Festkörper Lumineszenz. Somit enthält die Licht-emittierende Schicht bevorzugt mindestens einen Platin(II)-Komplex der Formel I, II oder III, bevorzugt einen Platin(II)-Komplex der Formel I und kein Matrixmaterial ausgewählt aus Verdünnungsmaterial und fluoreszierendem Farbstoff.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist in einer bevorzugten Ausführungsform eine Licht-emittierende Schicht bestehend aus mindestens einem Platin(II)-Komplex der Formeln I, II und/oder III, bevorzugt bestehend aus mindestens einem Komplex der Formel I, als Emittermolekül. Bevorzugte Komplexe der Formeln I, II und III wurden bereits vorstehend genannt.

Die einzelnen der vorstehend genannten Schichten des OLEDs können wiederum aus 2 oder mehreren Schichten aufgebaut sein. Beispielsweise kann die Löcher-transportierende Schicht aus einer Schicht aufgebaut sein in die aus der Elektrode Löcher injiziert werden und einer Schicht, die die Löcher von der Loch injizierenden Schicht weg in die Licht-emittierende Schicht transportiert. Die Elektronen-transportierende Schicht kann ebenfalls aus mehreren Schichten bestehen, zum Beispiel einer Schicht, worin Elektronen durch die Elektrode injiziert werden, und einer Schicht, die aus der Elektronen-injizierenden Schicht Elektronen erhält und in die Licht-emittierende Schicht transportiert. Diese genannten Schichten werden jeweils nach Faktoren wie Energieniveau, Temperaturresistenz und Ladungsträgerbeweglichkeit, sowie Energiedifferenz der genannten Schichten mit den organischen Schichten oder den Metallelektroden ausgewählt. Der Fachmann ist in der Lage, den Aufbau der OLEDs so zu wählen, dass er optimal an die erfindungsgemäß als Emittersubstanzen verwendeten Platin(II)-Komplexe angepasst ist.

Um besonders effiziente OLEDs zu erhalten, sollte das HOMO (höchstes besetztes Molekülorbital) der Loch-transportierenden Schicht mit der Arbeitsfunktion der Anode angeglichen sein und das LUMO (niedrigstes unbesetztes Molekülorbital) der elektronentransportierenden Schicht sollte mit der Arbeitsfunktion der Kathode angeglichen sein.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein OLED enthaltend mindestens eine erfindungsgemäße Licht-emittierende Schicht. Die weiteren Schichten in dem OLED können aus einem beliebigen Material aufgebaut sein, das üblicherweise in solchen Schichten eingesetzt wird und dem Fachmann bekannt ist.

5

Die Anode (1) ist eine Elektrode, die positive Ladungsträger bereitstellt. Sie kann zum Beispiel aus Materialien aufgebaut sein, die ein Metall, eine Mischung verschiedener Metalle, eine Metalllegierung, ein Metalloxid oder eine Mischung verschiedener Metalloxide enthält. Alternativ kann die Anode ein leitendes Polymer sein. Geeignete Metalle umfassen die Metalle der Gruppen 11, 4, 5 und 6 des Periodensystems der Elemente sowie die Übergangsmetalle der Gruppen 8 bis 10. Wenn die Anode lichtdurchlässig sein soll, werden im Allgemeinen gemischte Metalloxide der Gruppen 12, 13 und 14 des Periodensystems der Elemente eingesetzt, zum Beispiel Indium-Zinn-Oxid (ITO). Es ist ebenfalls möglich, dass die Anode (1) ein organisches Material, zum Beispiel Polyanilin enthält, wie beispielsweise in Nature, Vol. 357, Seiten 477 bis 479 (11. Juni 1992) beschrieben ist. Zumindest entweder die Anode oder die Kathode sollten mindestens teilweise transparent sein, um das gebildete Licht auskoppeln zu können.

Geeignete Lochtransportmaterialien für die Schicht (2) des erfindungsgemäßen OLEDs sind zum Beispiel in Kirk-Othmer Encyclopedia of Chemical Technologie, 4. Auflage, Vol. 18, Seiten 837 bis 860, 1996 offenbart. Sowohl Löcher transportierende Moleküle als auch Polymere können als Lochtransportmaterial eingesetzt werden. Üblicherweise eingesetzte Löcher transportierende Moleküle sind ausgewählt aus der Gruppe bestehend aus 4,4'-Bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α -NPD), N, N'-Diphenyl-N, N'-Bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamin (TPD), 1,1-Bis[(di-4-tolylamino)-phenyl]cyclohexan (TAPC), N, N'-Bis(4-methylphenyl)-N, N'-Bis(4-ethylphenyl)-[1,1'-(3,3'-dimethyl)biphenyl]-4,4'-diamin (ETPD), Tetrakis-(3-methylphenyl)-N,N,N',N'-2,5-phenylen diamin (PDA), α -Phenyl-4-N,N-diphenylaminostyrol (TPS), p-(Diethylamino)-benzaldehyddiphenylhydrazon (DEH), Triphenylamin (TPA), Bis[4-(N,N-diethylamino)-2-methylphenyl](4-methyl-phenyl)methan (MPMP), 1-Phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazolin (PPR oder DEASP), 1,2-trans-Bis(9H-carbazol-9-yl)cyclobutan (DCZB), N,N,N',N'-tetrakis(4-methylphenyl)-(1,1'-biphenyl)-4,4'-diamin (TTB) und Porphyrinverbindungen wie Kupferphthalocyanine. Üblicherweise eingesetzte Löcher transportierende Polymere sind ausgewählt aus der Gruppe bestehend aus Polyvinylcarbazolen, (Phenylmethyl)polysilanen und Polyanilinen. Es ist ebenfalls möglich, Löcher transportierende Polymere durch Dotieren Löcher transportierender Moleküle in Polymere wie Polystyrol und Polycarbonat zu erhalten. Geeignete Löcher transportierende Moleküle sind die bereits vorstehend genannten Moleküle.

- Geeignete Elektronen transportierende Materialien für die Schicht (4) der erfindungsgemäßen OLEDs umfassen mit oxinoiden Verbindungen chelatisierte Metalle wie Tris(8-hydroxychinolato)aluminium (Alq_3), Verbindungen auf Phenanthrolinbasis wie 5 2,9-Dimethyl-, 4,7-Diphenyl-1, 10-phenanthrolin (DDPA) oder 4,7-Diphenyl-1,10-phenanthrolin (DPA) und Azolverbindungen wie 2-(4-Biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazol (PBD) und 3-(4-Biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazol (TAZ). Dabei kann die Schicht (4) sowohl zur Erleichterung des Elektronentransports dienen als auch als Pufferschicht oder als Sperrsicht, um ein Quenching des Excitons an den Grenzflächen der Schichten des OLEDs zu vermeiden. Vorzugsweise verbessert die Schicht (4) die Beweglichkeit der Elektronen und reduziert ein Quenching des Excitons.
- Die Kathode (5) ist eine Elektrode, die zur Einführung von Elektronen oder negativen Ladungsträgern dient. Die Kathode kann jedes Metall oder Nichtmetall sein, das eine 15 geringere Arbeitsfunktion aufweist als die Anode. Geeignete Materialien für die Kathode sind ausgewählt aus der Gruppe bestehend aus Alkalimetallen der Gruppe 1, zum Beispiel Li, Cs, Erdalkalimetallen der Gruppe 2, Metallen der Gruppe 12 des Periodensystems der Elemente, umfassend die Seltenerdmetalle und die Lanthanide und Aktinide. Des Weiteren können Metalle wie Aluminium, Indium, Calcium, Barium, Samarium und Magnesium sowie Kombinationen davon eingesetzt werden. Weiterhin können Lithium enthaltende organometallische Verbindungen oder LiF zwischen der organischen Schicht und der Kathode aufgebracht werden, um die Betriebsspannung (Operating Voltage) zu vermindern.
- 25 Das OLED gemäß der vorliegenden Erfindung kann zusätzlich weitere Schichten enthalten, die dem Fachmann bekannt sind. Beispielsweise kann zwischen der Schicht (2) und der Licht emittierenden Schicht (3) eine Schicht aufgebracht sein, die den Transport der positiven Ladung erleichtert und/oder die Bänderlücke der Schichten aneinander anpasst. Alternativ kann diese weitere Schicht als Schutzschicht dienen. In analoger Weise können zusätzliche Schichten zwischen der Licht emittierenden Schicht (3) 30 und der Schicht (4) vorhanden sein, um den Transport der negativen Ladung zu erleichtern und/oder die Bänderlücke zwischen den Schichten aneinander anzupassen. Alternativ kann diese Schicht als Schutzschicht dienen.
- 35 In einer bevorzugten Ausführungsform enthält das erfindungsgemäße OLED zusätzlich zu den Schichten (1) bis (5) mindestens eine der im Folgenden genannten weiteren Schichten:

- eine Loch-Injektionsschicht zwischen der Anode (1) und der Löcher-transportierenden Schicht (2);
 - eine Blockschicht für Elektronen zwischen der Löcher-transportierenden Schicht (2) und der Licht-emittierenden Schicht (3);
- 5 - eine Blockschicht für Löcher zwischen der Licht-emittierenden Schicht (3) und der Elektronen-transportierenden Schicht (4);
- eine Elektronen-Injektionsschicht zwischen der Elektronen-transportierenden Schicht (4) und der Kathode (5).

Dem Fachmann ist bekannt, wie er (zum Beispiel auf Basis von elektrochemischen Untersuchungen) geeignete Materialien auswählen muss. Geeignete Materialien für die einzelnen Schichten sind dem Fachmann bekannt und z.B. in WO 00/70655 offenbart.

Des Weiteren kann jede der genannten Schichten des erfindungsgemäßen OLEDs aus zwei oder mehreren Schichten ausgebaut sein. Des Weiteren ist es möglich, dass einige oder alle der Schichten (1), (2), (3), (4) und (5) oberflächenbehandelt sind, um die Effizienz des Ladungsträgertransports zu erhöhen. Die Auswahl der Materialien für jede der genannten Schichten ist bevorzugt dadurch bestimmt, ein OLED mit einer hohen Effizienz zu erhalten.

- 20 Die Herstellung des erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird das OLED durch aufeinanderfolgende Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetes Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas oder Polymerfilme. Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermische Verdampfung, Chemical Vapor Deposition und andere. In einem alternativen Verfahren können die organischen Schichten aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln beschichtet werden, wobei dem Fachmann bekannte Beschichtungstechniken angewendet werden.
- 25
- 30 Im Allgemeinen haben die verschiedenen Schichten folgende Dicken: Anode (2) 500 bis 5000 Å, bevorzugt 1000 bis 2000 Å; Löcher-transportierende Schicht (3) 50 bis 1000 Å, bevorzugt 200 bis 800 Å, Licht-emittierende Schicht (4) 10 bis 1000 Å, bevorzugt 100 bis 800 Å, Elektronen transportierende Schicht (5) 50 bis 1000 Å, bevorzugt 200 bis 800 Å, Kathode (6) 200 bis 10.000 Å, bevorzugt 300 bis 5000 Å. Die Lage der Rekombinationszone von Löchern und Elektronen in dem erfindungsgemäßen OLED und somit das Emissionsspektrum des OLED können durch die relative Dicke jeder Schicht beeinflusst werden. Das bedeutet, die Dicke der Elektronentransportschicht sollte bevorzugt so gewählt werden, dass die Elektronen/Löcher Rekombinationszone
- 35

in der Licht-emittierenden Schicht liegt. Das Verhältnis der Schichtdicken der einzelnen Schichten in dem OLED ist von den eingesetzten Materialien abhängig. Die Schichtdicken von gegebenenfalls eingesetzten zusätzlichen Schichten sind dem Fachmann bekannt.

5

Durch Einsatz des erfindungsgemäß verwendeten Platin(II)-Komplexe der Formeln I, II oder III als Emittermolekül in der Licht-emittierenden Schicht der erfindungsgemäßen OLEDs können OLEDs mit hoher Effizienz erhalten werden. Die Effizienz der erfindungsgemäßen OLEDs kann des Weiteren durch Optimierung der anderen Schichten

- 10 verbessert werden. Beispielsweise können hoch effiziente Kathoden wie Ca, Ba oder LiF eingesetzt werden. Geformte Substrate und neue Löcher-transportierende Materialien, die eine Reduktion der Operationsspannung oder eine Erhöhung der Quanteneffizienz bewirken, sind ebenfalls in den erfindungsgemäßen OLEDs einsetzbar. Des Weiteren können zusätzliche Schichten in den OLEDs vorhanden sein, um die Energiele-
15 vel der verschiedenen Schichten einzustellen und um Elektrolumineszenz zu erleichtern.

Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, worin Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt

- 20 aus stationären und mobilen Bildschirmen. Stationäre Bildschirme sind z.B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z.B. Bildschirme in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen.

- 25 Weiterhin können die erfindungsgemäß eingesetzten Platin(II)-Komplexe der Formeln I, II oder III in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die Platin(II)-Komplexe in diesen inversen OLEDs wiederum in der Licht-emittierenden Schicht, besonders bevorzugt als Licht-emittierende Schicht ohne weitere Zusätze, eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten
30 Materialien sind dem Fachmann bekannt.

Beispiele

1. Herstellung von Platin(II)-Komplexen

35

Allgemeines

Alle Lösungsmittel, die für spektrometrische Messungen verwendet werden, haben die entsprechende für spektrometrische Messungen geeignete Qualität. Pt(CN)₂, dppb (1,2-bis(Diphenylphosphino)benzol) und binap (1,1'-Binaphthyl) sowie Bathophen (4,7-Diphenyl-1,10-phenanthrolin) und tert-Bu₂bpy (4,4'-tert-Butyl-2,2'-bipyridin) sind kommerziell erhältlich und werden ohne weitere Reinigung eingesetzt.

5 a) [Pt(dppb)(CN)₂]

Eine Mischung aus Pt(CN)₂ (0,76 g, 3 mmol) und dppb (1,38 g, 3 mmol) werden in 70 ml Dimethylformamid gelöst und für 6 Stunden unter Rückfluss erhitzt. Es bildet sich langsam ein weißer pulvriger Niederschlag. Der Niederschlag wird durch Filtration gesammelt, mit Diethylether gewaschen und über Silicagel unter reduziertem Druck getrocknet. Das erhaltene weiße Material wird durch Umkristallisation aus Dichlorethan/Diethylether gereinigt und mit einer Ausbeute von 0,92 g (43 %) erhalten.

15

Elementaranalyse:

C 55,42,

H 3,49,

N 4,04;

20 gefunden:

C 55,06,

H 3,60,

N 3,94.

25 b) [Pt(binap)(CN)₂] x H₂O

Eine Mischung von Pt(CN)₂ (0,25g, 1 mmol) und binap (0,63 g, 1 mmol) in 40 ml Dimethylformamid wird für 20 Stunden unter Rückfluss erhitzt. Nach Filtration der Mischung wird Diethylether zu der erhaltenen Lösung hinzu gegeben. Dabei fällt ein leicht gelbes Pulver aus. Das gelbe Pulver wird durch Filtration gesammelt, mit Diethylether gewaschen und über Silicagel bei verminderter Druck getrocknet. Das erhaltene leicht gelbe Material wird aus Dichlormethan/Diethylether umkristallisiert, wobei 0,58 g (65 %) des gewünschten Produktes erhalten werden.

35 Elementaranalyse:

C 62,23,

H 3,86,

N 3,16;

gefunden:

C 62,68,

H 3,90,

N 3,07.

5

c) $[Pt(bathophen)(CN)_2 \times H_2O]$

Die Herstellung von $[Pt(bathophen)(CN)_2 \times H_2O]$ ist in J. Am. Chem. Soc. 112 (1990) 5625 – 5627 offenbart.

10

d) $[Pt(4,4'-Bu_2bpy)(CN)_2]^*$

0.99 g (4.0 mmol) Pt(CN)₂ und 1.10 g (4.0 mmol) 4,4'-Di-tert.-butyl-2,2'-dipyridyl (4,4'-Bu₂bpy) wurden in 70 ml DMF 84 h lang unter Rückfluss erhitzt. Es resultierte eine schwach gelbe Lösung mit grünlichem Niederschlag. Dieser wurde abfiltriert und das Filtrat mit Diethylether versetzt. Es fiel ein feiner schwach gelber Niederschlag aus, der abgesaugt, mit Diethylether gewaschen und über Silicagel getrocknet wurde. Ausbeute: 0.94 g (46 % d. Th.). Die erhaltene Substanz wurde aus DMF/Diethylether umkristallisiert.

20 C₂₀H₂₄N₄Pt (515.53): Ber. C 46.76, H 4.69, N 10.87; Gef. C 45.34, H 4.54, N 11.18.

MS(ESI): 515 (77 %), 516 (MH⁺, 100 %), 517 (82 %)

- Die Herstellung erfolgte analog zu $[Pt(CN)_2(5,5'-Me_2bpy)]$ in Che, C.-M., Wan, K.-T., He, L.-Y., Poon, C.-K., Yam, V.W.-W., J. Chem. Soc., Chem. Commun. 25 1989, 943.

Patentansprüche

- 5 1. Verwendung von neutralen Platin(II)-Komplexen ausgewählt aus der Gruppe bestehend aus
Platin(II)-Phosphinkomplexen der Formel (I)

10

Platin(II)-Bathophen-Komplexe der Formel (II)

15

und

Platin(II)-Bipyridyl-Komplexe der Formel (III)

worin die Symbole die folgenden Bedeutungen aufweisen:

20

$R^1, R^2, R^7,$

R^8, R^{12}, R^{13}

unabhängig voneinander CN, Acetylid, Thiocyanat oder Isocyanat:

$R^3, R^4, R^5, R^6,$
 $R^9, R^{10}, R^{14}, R^{15}$ unabhängig voneinander eine Aryl-, Alkyl-, Heteroaryl- oder
Alkenylgruppe,

X eine Arylengruppe oder eine Heteroarylen gruppe,

5 o 0 bis 2,

p, q unabhängig voneinander 0 bis 4,

n, m unabhängig voneinander 0 bis 3;

als Emittermoleküle in organischen Licht-emittierenden Dioden.

- 10 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass in den Platin(II)-
Phosphinkomplexen der Formel I R^1 und R^2 CN oder Acetylid, bevorzugt CN, und
 R^3, R^4, R^5 und R^6 einen Arylrest, bevorzugt unsubstituiertes Phenyl bedeuten,
und X ausgewählt ist aus der Gruppe bestehend aus einer Phenylengruppe, die
in der 1- und 2-Position mit jeweils einem der beiden P-Atome der Formel I ver-
knüpft ist, und besonders bevorzugt unsubstituiert ist, einer Naphthalindiylylgrup-
pe, die in 2- und 3-Position oder 4- und 5-Position mit jeweils einem der beiden
P-Atome der Formel I verknüpft ist und besonders bevorzugt unsubstituiert ist,
einer Phenanthrendiylylgruppe, die in der 2- und 3-Position oder in der 4- und 5-
Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist und be-
sonders bevorzugt unsubstituiert ist, einer 1,1'-Biphenylengruppe, die in der 2-
und 2'-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft ist,
und besonders bevorzugt unsubstituiert ist, einer 1,1'-Binaphthylengruppe, die in
der 2- und 2'-Position mit jeweils einem der beiden P-Atome der Formel I verknüpft
ist, und besonders bevorzugt unsubstituiert ist, besonders bevorzugt ist X
25 ausgewählt aus einer Phenylengruppe, die in 1- und 2-Position mit jeweils einem
der beiden P-Atome der Formel I verknüpft ist und unsubstituiert ist, und einer
1,1'-Binaphthylengruppe, die in 2- und 2'-Position mit jeweils einem der beiden P-
Atome der Formel I verknüpft ist, und unsubstituiert ist.
- 30 3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass in den Platin(II)-
Komplexen der Formel II und den Platin(II)-Komplexen der Formel III R^7, R^8, R^{12}
und R^{13} CN, m, n, p, q 0 oder 1 und o 0 bedeuten, und - wenn m, n = 1 bedeuten
- R^9 und R^{10} unsubstituiertes Phenyl bedeuten und - wenn p, q 1 bedeuten - R^{14}
und R^{15} tert-Bu bedeuten.
- 35 4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
die Platin(II)-Komplexe einkernige Komplexe sind.
- 40 5. Verwendung von Platin(II)-Komplexen gemäß einem der Ansprüche 1 bis 4 als
Licht-emittierende Schicht in OLEDs.

6. Licht-emittierende Schicht enthaltend mindestens einen Platin(II)-Komplex gemäß einem der Ansprüche 1 bis 4 als Emittermolekül.
7. Licht-emittierende Schicht bestehend aus mindestens einem Platin(II)-Komplex gemäß einem der Ansprüche 1 bis 4 als Emittermolekül.
5
8. OLED enthaltend eine Licht-emittierende Schicht gemäß Anspruch 6 oder 7.
9. Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen wie Bildschirmen von Computern, Fernsehern, Bildschirmen in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen, Hinweistafeln und mobilen Bildschirmen wie Bildschirmen in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen enthaltend ein OLED gemäß Anspruch 8.
10

INTERNATIONAL SEARCH REPORT

International Application No
 PCT/EP2004/013944

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C09K11/06 H01L51/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C09K H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KUNKLEY H., VOGLER A.: J. AM. CHEM. SOC., vol. 112, 1990, pages 5625-5627, XP002325154 cited in the application the whole document -----	1-9
Y	-----	1-9
X	CHE. C.-M. ET AL.: J. CHEM. SOC., CHEM. COMMUN., vol. 14, 1989, pages 943-944, XP002325155 cited in the application the whole document -----	1-9
Y	EP 1 253 151 A (TORAY INDUSTRIES, INC) 30 October 2002 (2002-10-30) claim 1 ----- -/-	1-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*& document member of the same patent family

Date of the actual completion of the international search

19 April 2005

Date of mailing of the International search report

04/05/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Saldamli, S

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/013944

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 648 270 A (KUHN ET AL) 15 July 1997 (1997-07-15) the whole document -----	1-9
A	US 2003/022019 A1 (SEO SATOSHI ET AL) 30 January 2003 (2003-01-30) the whole document -----	1-9
A	US 2003/205707 A1 (CHI-MING CHE ET AL) 6 November 2003 (2003-11-06) the whole document -----	1-9

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/013944

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 1253151	A	30-10-2002		AT 286903 T CN 1390841 A DE 60202548 D1 EP 1253151 A1 JP 2003012676 A TW 565604 B US 2003082406 A1 JP 2003086379 A		15-01-2005 15-01-2003 17-02-2005 30-10-2002 15-01-2003 11-12-2003 01-05-2003 20-03-2003
US 5648270	A	15-07-1997		US 5723218 A US 6013802 A		03-03-1998 11-01-2000
US 2003022019	A1	30-01-2003		CN 1513045 A EP 1386953 A2 WO 03014257 A2 JP 2003007471 A		14-07-2004 04-02-2004 20-02-2003 10-01-2003
US 2003205707	A1	06-11-2003		AU 2003218866 A1 WO 03093283 A1 EP 1499624 A1		17-11-2003 13-11-2003 26-01-2005

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/013944

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C09K11/06 H01L51/30

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C09K H01L

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	KUNKLEY H., VOGLER A.: J. AM. CHEM. SOC., Bd. 112, 1990, Seiten 5625-5627, XP002325154 in der Anmeldung erwähnt das ganze Dokument -----	1-9
Y	CHE. C.-M. ET AL.: J. CHEM. SOC., CHEM. COMMUN., Bd. 14, 1989, Seiten 943-944, XP002325155 in der Anmeldung erwähnt das ganze Dokument -----	1-9
X	EP 1 253 151 A (TORAY INDUSTRIES, INC) 30. Oktober 2002 (2002-10-30) Anspruch 1 -----	1-9
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ^a Besondere Kategorien von angegebenen Veröffentlichungen :
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist
 L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 P Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

19. April 2005

Absendedatum des internationalen Recherchenberichts

04/05/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Saldamli, S

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

FCT/EP2004/013944

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der In Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 648 270 A (KUHN ET AL) 15. Juli 1997 (1997-07-15) das ganze Dokument -----	1-9
A	US 2003/022019 A1 (SEO SATOSHI ET AL) 30. Januar 2003 (2003-01-30) das ganze Dokument -----	1-9
A	US 2003/205707 A1 (CHI-MING CHE ET AL) 6. November 2003 (2003-11-06) das ganze Dokument -----	1-9

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

AT/EP2004/013944

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 1253151	A 30-10-2002	AT 286903 T CN 1390841 A DE 60202548 D1 EP 1253151 A1 JP 2003012676 A TW 565604 B US 2003082406 A1 JP 2003086379 A		15-01-2005 15-01-2003 17-02-2005 30-10-2002 15-01-2003 11-12-2003 01-05-2003 20-03-2003
US 5648270	A 15-07-1997	US 5723218 A US 6013802 A		03-03-1998 11-01-2000
US 2003022019	A1 30-01-2003	CN 1513045 A EP 1386953 A2 WO 03014257 A2 JP 2003007471 A		14-07-2004 04-02-2004 20-02-2003 10-01-2003
US 2003205707	A1 06-11-2003	AU 2003218866 A1 WO 03093283 A1 EP 1499624 A1		17-11-2003 13-11-2003 26-01-2005