[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023 Scribed by : Pallikonda Sai Teja Lecture (Week 01)

Student ID:202011052

1 Introduction

• Cryptography: The part where we develop algorithms to get security / Designing the algorithm.

• Cryptanalysis: It is to break the security of a designed algorithm.

Cryptology = Cryptography + Cryptanalysis. NIST standardizes cryptographic algorithms

2 Encryption and Decryption

 \Rightarrow Encryption: The process of converting plaintext into Ciphertext .

$$E(P,k) = C$$

Plain Text + Secret Key = Cipher Text.

⇒ Decryption: The process of converting Ciphertext into plaintext.

3 Security Services in Cryptograpy

- 1. Confidentiality:Ensuring that no one can read the message except the intended receiver .
- 2. Integrity: Assuring the receiver that the received message has not been altered in any way from the original.
- 3. Authentication: verification of one's identity.
- 4. Non-repudiation: A mechanism to prove that the sender really sent this meassage.
- \Rightarrow Confidentiality:
- i) plaintext $\rightarrow original message$
- ii)EncryptionAlgorithm o function
- $iii) Ciphertext \rightarrow unreadable form of plaintext$
- iV) Decryptional gorithm o function
 - \Rightarrow Encryption function

$$E(M, e_k) = C$$

 $f: P \times e_k \to C$

 \Rightarrow Decryption function

$$D(C, d_k) = M$$

 $f: C \times d_k \to P$

4 Cryptographic Algorithms

4.1 Functions

 $f: A \to B$ is a relation between the elements of A and B with the property that if $a, b \in A$ and a = b, then f(a) = f(b)

- One-to-one: $f(a) = f(b) \Rightarrow a = b$
- Onto: $f: A \to B$ then \forall b ϵ B, \exists a ϵ A such theat f(a) = b.
- Bijective: $f: A \to B$ is bijective iff f is one-to-one and onto.
- Permutation: Let π be a permutation on a set S then $\pi:S\to S$ is a bijective function from S to S.
- One way: $f: X \to Y$ is called a one-way function if given $x \in X$, it is easy(within polynomial time) to compute f(x) but converse is not true.

E.g.: Prime factors of a product of two primes.

4.2 Classical ciphers

4.2.1 Ceaser Cipher

 \Rightarrow Named after Julius Caeser \Rightarrow Shifting the letters of a message by k places.

agreed value of k = 3.

E.g.: $D \to G$ (Right shift by 3).

$$E(x,3) = (x+3)\%26 = C$$

 $D(C,3) = (x+26-3)\%26$

E.g.: INTERNET \rightarrow LQWHUQHW

Substitution Box

$$\Rightarrow S: A \to B \text{ with } |B| \le |A|$$

\Rightarrow E.g.: $S: 1, 2, 3, 4 \to 1, 2, 3$.

4.2.2 TranspositionCipher

 $\Rightarrow M = m_1 m_2 m_3 ... m_t$

 $\Rightarrow e$: permutation on t elements \rightarrow secret key

 \Rightarrow Encryption:

$$C = m_{e(1)} m_{e(2)} m_{e(3)} m_{e(4)} \dots m_{e(t)}$$

 \Rightarrow Decryption:

$$C = m_{e(1)} m_{e^{-1}(2)} m_{e^{-1}(3)} m_{e^{-1}(4)} \dots m_{e^{-1}(t)}$$

E.g.: CAESER

С	A	Е	S	Ε	R
R	S	С	Е	Α	A

4.2.3 Substitution Cipher

E.g.
$$e(A) = Z, e(B) = D, e(C) = A$$

Plain text:	A	В	С
Cipher text:	\mathbf{Z}	D	A

4.2.4 Affine Cipher

A	В	С	 Z
0	1	2	 25

$$A \to \mathbb{Z}_{26}$$

$$k = \text{secret key} = (a, b) \epsilon \mathbb{Z}_{26} \times \mathbb{Z}_{26} \text{ and } \gcd(a, 26) = 1$$

 \Rightarrow Encryption:

$$e(m,k) = (am+b)mod26 = c$$

\Rightarrow Decryption:

$$d(c,k) = ((c-b)a^{-1})mod26$$

$$a*a^{-1} = 1 mod 26$$

Proof of why it is possible to find Multi. Inverse iff gcd(x, m) = 1

$$\Rightarrow 0 \neq x \in \mathbb{Z}_m$$

$$\Rightarrow gcd(x,m) = 1$$

$$\Rightarrow x *_m y = 1$$

$$\Rightarrow xy = 1 mod m$$

$$\Rightarrow m \| (xy - 1)$$

$$\Rightarrow xy - 1 = t \cdot m$$

$$\Rightarrow 1 = t_1 m + xy$$
 for some t_1

 \Rightarrow It is proven that gcd(x,m) can be written in the form of ax + by (linear combination)

$$\therefore gcd(x,m) = t_1m + xy$$

 \Rightarrow To find (t_1, y) , we have to follow the extended euclidean algorithm

4.2.5 Playfair Cipher

E.g.: Secret key = PLAYFAIR EXAMPLE

P	L	Α	Y	F
I	R	\mathbf{E}	X	M
В	С	D	G	Н
K	N	Ο	Q	S
T	U	V	W	Z

 \Rightarrow For odd length, we add an X to the end. ODD \rightarrow OD DX

Plaintext: HIDE			
HI	DE		
\	↓		
BM	OD		
Ciphertext: BMOD			