Adversarial Examples and Adversarial Training

Ian Goodfellow, OpenAI Research Scientist Presentation at HORSE 2016 London, 2016-09-19

In this presentation

- "Intriguing Properties of Neural Networks" Szegedy et al, 2013
- "Explaining and Harnessing Adversarial Examples" Goodfellow et al 2014
- "Adversarial Perturbations of Deep Neural Networks" Warde-Farley and Goodfellow, 2016
- "Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples" Papernot et al 2016
- "Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples" Papernot et al 2016
- "Adversarial Perturbations Against Deep Neural Networks for Malware Classification" Grosse et al 2016 (not my own work)
- "Distributional Smoothing with Virtual Adversarial Training" Miyato et al 2015 (not my own work)
- "Virtual Adversarial Training for Semi-Supervised Text Classification"
 Miyato et al 2016
- "Adversarial Examples in the Physical World" Kurakin et al 2016

Overview

- What causes adversarial examples?
- How can they be used to compromise machine learning systems?
- Adversarial training and virtual adversarial training
- New open source adversarial example library:

cleverhans

Adversarial Examples

Timeline:

"Adversarial Classification" Dalvi et al 2004: fool spam filter "Evasion Attacks Against Machine Learning at Test Time" Biggio 2013: fool neural nets

Szegedy et al 2013: fool ImageNet classifiers imperceptibly Goodfellow et al 2014: cheap, closed form attack

(Goodfellow 2016)

Attacking a Linear Model

Adversarial Examples from Overfitting

Adversarial Examples from Excessive Linearity

Modern deep nets are very piecewise linear

Rectified linear unit

Carefully tuned sigmoid

LSTM

Maps of Adversarial and Random Cross-Sections

Maps of Random Cross-Sections

Adversarial examples are not noise

Clever Hans

("Clever Hans,
Clever
Algorithms,"
Bob Sturm)

Small inter-class distances

All three perturbations have L2 norm 3.96 This is actually small. We typically use 7!

The Fast Gradient Sign Method

$$J(\tilde{\boldsymbol{x}}, \boldsymbol{\theta}) \approx J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x}).$$

Maximize

$$J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x})$$

subject to

$$||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_{\infty} \leq \epsilon$$

$$\Rightarrow \tilde{\boldsymbol{x}} = \boldsymbol{x} + \epsilon \operatorname{sign} (\nabla_{\boldsymbol{x}} J(\boldsymbol{x})).$$

Wrong almost everywhere

Cross-model, cross-dataset generalization

```
333333
           333333
3333333
           33333333
           33333333
333333
```

Cross-technique transferability

- •Fool cloud ML API
 - Amazon
 - •Google
 - MetaMind
- •Fool malware detector

(Papernot 2016)

Adversarial Examples in the Physical World

(a) Printout

(b) Photo of printout

(c) Cropped image

Adversarial Examples in the Human Brain

These are concentric circles, not intertwined spirals.

(Pinna and Gregory, 2002)

Failed defenses

Generative

pretraining

Removing perturbation with an autoencoder

Adding noise

at test time

Ensembles

Confidence-reducing perturbation at test time

Error correcting codes

Multiple glimpses

Weight decay

Double backprop

Adding noise

Various

non-linear units

Dropout

at train time

Training on Adversarial Examples

Virtual Adversarial Training

Unlabeled; model guesses it's probably a bird, maybe a plane New guess should match old guess (probably bird, maybe plane)

Adversarial perturbation intended to change the guess

cleverhans

Open-source library available at:

https://github.com/openai/cleverhans

Built on top of TensorFlow (Theano support anticipated)

Benchmark your model against different adversarial examples

attacks

Beta version 0.1 released, more attacks and features to be

added

