Recall • Dot Product
$$\vec{u} \cdot \vec{v} = 1\vec{u} | \vec{v} | \cos \theta$$

Determinant of a 2x2 matrix: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Determinant of a 3x3 matrix $\begin{vmatrix} a & b \\ u_1 u_2 u_3 \end{vmatrix} = d \begin{vmatrix} u_2 u_3 \\ v_1 v_2 v_3 \end{vmatrix} = d \begin{vmatrix} u_1 u_3 \\ v_1 v_2 v_3 \end{vmatrix} + c \begin{vmatrix} u_1 u_2 \\ v_1 v_2 v_3 \end{vmatrix}$

Area of parallelogram formed by \vec{u} and \vec{v} is $A = 1\vec{u} | \vec{v} | \vec{$

Example $\langle 3, 2, 1 \rangle \times |\langle 1, 4, 2 \rangle =$ $\begin{vmatrix} \vec{1} & \vec{1} & \vec{k} \\ 3 & 2 & 1 \end{vmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} i - \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} j + \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} \vec{k} = 0\vec{i} - 5\vec{j} + 10\vec{k} = \langle 0, -5, 10 \rangle$ Note this is orthogonal to both $\langle 3, 2, 1 \rangle$ and $\langle 1, 4, 2 \rangle$

Easy to check from the definition (1) that: $\begin{cases} (\vec{u} \times \vec{v}) \cdot \vec{u} = 0 \\ (\vec{u} \times \vec{v}) \cdot \vec{v} = 0 \end{cases}$ Therefore:

The vector $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} \vec{v} \vec{v} \vec{v} Also, from properties of eleterminants, part (2) gives.

Properties

Also, from properties of eleterminants, part (2) gives.

Properties

($\vec{v}\vec{u}$) × ($\vec{s}\vec{v}$) = rs (\vec{u} × \vec{v}) \vec{u} × \vec{v} = $-(\vec{v}$ × \vec{u}) \vec{u} × \vec{v} = $-(\vec{v}$ × \vec{u}) \vec{u} × \vec{v} = \vec{u} × \vec{v} + \vec{u} × \vec{w} \vec{u} × (\vec{v} + \vec{w}) = \vec{u} × \vec{v} + \vec{v} × \vec{w} \vec{v} = \vec{v} × \vec{v} = \vec{v} × \vec{v} + \vec{v} × \vec{w} \vec{v} = \vec{v} × \vec{v} = \vec{v} × \vec{v} + \vec{v} × \vec{w}

Here is another fundamental property of X.

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}| \sin \Theta$$

$$= \left(\text{are a of parallel agram} \right)$$

$$= \left(\text{spanned by } \vec{u} \text{ and } \vec{v}. \right)$$

 $\frac{P_{roof}}{|\vec{u}| |\vec{v}| \sin \Theta}^2 = |\vec{u}|^2 |\vec{v}|^2 (1 - \cos^2 \Theta) = |\vec{u}|^2 |\vec{v}|^2 - |\vec{u}|^2 |\vec{v}|^2 \cos^2 \Theta$ $= |\vec{u} \times \vec{v} \cdot \vec{v}| - (\vec{u} \cdot \vec{v})^2 = \cdots \text{ keep going} \cdots$ $= |\vec{u} \times \vec{v}|^2$

From the above we get the following fundamental interpretation:

The vector $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} , pointing is the direction given by the right-hand rule. Its magnitude is $|\vec{u}||\vec{v}| \sin \theta$ = area of parallelogram spanned by $\vec{u} \in \vec{v}$.

Example Find the area of this parallel gram in
$$\mathbb{R}^3$$
.

$$A = |\vec{u} \times \vec{v}| = |\langle 0, -5, 10 \rangle|$$

$$= |\sqrt{2} + (-5)^2 + 10^2 = |\sqrt{125}$$

$$\approx |11.1803 \text{ square units}$$

Triple Scalar Product

Text shows that the volume of the parallelepiped spanned by vectors \vec{u} , \vec{v} and \vec{w} is $V = (\vec{u} \times \vec{v}) \cdot \vec{w} = \begin{bmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$.

It is possible that this could work out to be negative.

Take the absolute value if you're looking for volume.