1 Baum

- 1. Baum besteht aus Knoten (Kreise) und Kanten (Pfeile)
- 2. Kanten verbinden Knoten mit ihren Kind-Knoten
- 3. jeder Knoten (außer der Wurzel) hat genau ein Elternteil
- 4. Knoten ohne Kinder heißen "Blätter" (leaf nodes)
- 5. Teilbaum
 - (a) wähle beliebigen Knoten

Infix Notation:

$$1+2+3*4/(1+5)-2$$

Präfix Notation:

sub(add(add(1,2), div(mul(3,4), add(1,5))), 2)

Präfix Notation aus dem Baum rekonstruieren

- 1. Wenn die Wurzel ein Blatt ist, dann "Drucke die Zahl"
- 2. sonst (Operator):
- 3. Drucke Funktionsnamen
- 4. Drucke $\ddot{(}^{\circ}$

wiederhole ab 1) fr das linke Kind

- 6. Drucke
- 7. wiederhole den Algorithmus ab 1) für das rechte Kind
- 8. Drucke ")

Beachte Reihenfolge: Wurzel - Links - Rechts (Pre-Order Traversal) Ergebnis: sub(add(add(1,2),div(mul(3,4),add(1,5))),2)

Definition: Rekursion Rekursion meint Algorithmus für Teilproblem von vorn

Infix Notation

- 1. wie bei Präfix
- 2. sonst
 - (a) entfällt
 - (b) wie bei Präfix
 - (c) wie bei Präfix
 - (d) Drucke Operatorsymbol
 - (e) wie bei Präfix
 - (f) wie bei Präfix
 - (g) wie bei Präfix

Beachte Reihenfolge: Links - Wurzel - Rechts (In-Order Traversal)

```
Ergebnis: (((1+2)+((3*4)/(1+5)))+2)
```

Berechne den Wert mit Substitutionsmethode

- 1. Wenn Wurzel ein Blatt hat, gib die Zahl zurück
- 2. sonst
 - (a) entfällt
 - (b) entfällt
 - (c) wiederhole ab 1) für linken Teilbaum und speichere Ergebnis als left-result"
 - (d) entfällt
 - (e) wiederhole ab 1) für rechten Teilbaum, speichere Ergebnis als right-result"
 - (f) berechne $fkt_name(left-result,right-result)$ und gib Ergebnis zurück

Beachte Reihenfolge: Links - Rechts - Wurzel (Post-Order Traversal)

```
\begin{split} sub(add(add(1,2), div(mul(3,4), add(1,5))), 2) \\ = sub(add(add(1,2), div(12,6)), 2) \\ = sub(add(3,2)2) \\ = sub(5,2) \\ = 3 \end{split}
```

Maschinensprache

- optimiert für die Hardware (viele verschiedene)
- \bullet Gegensatz: höhere Programmiersprache (C++)ist optimiert für Programmierer
- Compiler oder Interpreter übersetzen Hoch- in Maschinensprache

Vorgang des Übersetzens

- 1. Eingaben (und Zwischenergebnisse) werden in Speicherzellen abgelegt \Rightarrow jeder Knoten im Baum bekommt eine Speicherzelle (Maschinensprache: durchnumeriert ; Hochsprache: sprechende Namen)
- 2. Speicherzellen für die Eingaben $\underline{initialisieren}$; Notation: SpZ \leftarrow Wert
- 3. Rechenoperationen in der Reihenfolge des Substitutionsmodells ausführen und in der jeweiligen Speicherzelle speichern ; Notation: SpZ_Ergebnis \leftarrow fkt_name SpZ_Arg1 SpZ_Arg2
- 4. alles in Zahlencode umwandeln
 - Funktionsname \Rightarrow Opcodes
 - Speicherzellen: nur die Nummer
 - Werte sind schon Zahlen
 - Notation: Opcode Ziel SpZ SpZ_Arg1 SpZ_Arg2 oder Opcode Ziel SpZ Initialwert