2. Inverzní funkce

Úloha 1. Dokreslete k zadaným grafům funkcí grafy k ním inverzních funkcí.

Úloha 2. Nalezněte zcela obecně předpis inverzní funkce k lineární funkci f(x) = kx + q, kde k a q jsou reálná čísla (výsledkem bude předpis funkce, ve kterém budou vystupovat k a q). Bude inverzní funkce existovat vždy?

Úloha 3. Funkce f je definována po částech:

$$f(x) = \begin{cases} x+2 & \text{pro } x < -1\\ \frac{1}{2}x + \frac{3}{2} & \text{pro } x \ge -1 \end{cases}$$

Načrtněte graf funkce, ujistěte se, že jde o prostou funkci, a nalezněte obdobný předpis ("po částech") pro f^{-1} .

Úloha 4. Rozhodněte, které výroky platí pro každou funkci f:

- (a) Je-li f prostá, pak je f^{-1} také prostá.
- (b) Je-li f rostoucí, pak je f^{-1} také rostoucí.
- (c) Je-li f klesající, pak je f^{-1} také klesající.
- (d) Je-li f neklesající a prostá, pak už musí být rostoucí.

Úloha 5. Rozhodněte, v jakém vztahu jsou funkce f^{-1} a g^{-1} , je-li f libovolná prostá funkce a g je zadaná předpisem níže; např. pokud je g(x) = f(x) + 1, tak $g^{-1}(x) = f^{-1}(x-1)$ (proč?).

- (a) g(x) = f(x+1)
- (b) g(x) = -f(x)
- (c) g(x) = 2f(x)
- (d) g(x) = f(2x).

Můžete na to jít tak, že si představíte (či rovnou načrtnete) grafy f a g a co se s nimi stane po přechodu k inverzním funkcím.

 \star Úloha 6. Rozhodněte, co musí splňovat čtveřice reálných čísel $a,\,b,\,c,\,d,$ aby funkce s předpisem

$$y = \frac{ax + b}{cx + d}$$

byla prostá.

* Úloha 7. Známe již tři "překlápěcí operace" s grafem funkce: $f(x) \to -f(x)$, $f(x) \to f(-x)$ a $f(x) \to f^{-1}(x)$. Kolik nejvíc různých grafů funkcí můžeme aplikováním těchto operací dostat z jednoho grafu funkce?

1.

2. Inverzní funkce existuje, právě když $k \neq 0$. Její předpis je $f^{-1}(x) = \frac{1}{k}x - \frac{q}{k}$

3.

$$f^{-1}(x) = \begin{cases} x - 2 & \text{pro } x < 1\\ 2x - 3 & \text{pro } x \ge 1 \end{cases}$$

4. (a) ano (b) ano (c) ano (d) ano

5. (a)
$$g^{-1}(x) = f^{-1}(x) - 1$$
 (b) $g^{-1}(x) = f^{-1}(-x)$ (c) $g^{-1}(x) = f^{-1}(\frac{1}{2}x)$

(d) $g^{-1}(x) = \frac{1}{2}f^{-1}(x)$ 6. Musí platit $ad \neq bc$.

7. 8 (se započítáním i toho původního)