Dr hab. Ewa Fratczak

Materiały pomocnicze do wykładu i ćwiczeń

Rozkłady dokładne statystyk z próby

1. $X \in N(m; \sigma)$, gdzie σ jest znane, n- dowolne

$$\overline{X} \in N\left(m; \frac{\sigma}{\sqrt{n}}\right)$$
 $U = \frac{\overline{X} - m}{\sigma} \sqrt{n} \in N(0;1)$

2. $X \in N(m; \sigma)$, gdzie σ jest nieznane, n < 30

$$X \in t$$
 – Studenta $\left(m; \frac{s(x)}{\sqrt{n}}\right)$ $t = \frac{\overline{X} - m}{S(x)} \sqrt{n} \in t$ – Studenta o $v = n-1$ st. swobody

3. $X_1 \in N(m_1; \sigma_1), X_2 \in N(m_2; \sigma_2)$, gdzie σ_1, σ_2 są znane

$$\overline{X}_{1} - \overline{X}_{2} \in N\left(m_{1} - m_{2}; \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}\right), \quad U = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(m_{1} - m_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \in N(0;1)$$

4. $X_1 \in N(m_1; \sigma)$, $X_2 \in N(m_2; \sigma)$, gdzie σ_1 , σ_2 są nie znane, ale identyczne ($\sigma_1 = \sigma_2 = \sigma$), $n_1 < 30$, $n_2 < 30$

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(m_1 - m_2\right)}{\sqrt{\frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \in t - Studenta \quad \text{o } v = n_1 + n_2 - 2 \text{ st. swobody}$$

5. $X \in N(m;\sigma), n<30$

Dla wnioskowania o σ^2 w populacji generalnej wykorzystuje się statystykę

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \in chi - kwadrat \text{ o } v = n-1 \text{ st. swobody}$$

6. $X_1 \in N(m_1; \sigma_1), X_1 \in N(m_2; \sigma_2), \text{ gdzie}$

 $S_{\scriptscriptstyle 1}^{\, 2}$ - wariancja z próby $\, n_{\scriptscriptstyle 1}$ -elementowej populacji $X_{\scriptscriptstyle 1}$

 S_2^2 - wariancja z próby n_2 -elementowej populacji X_2

$$F = \frac{n_1 S_1^2 / \sigma_1^2 (n_1 - 1)}{n_2 S_2^2 / \sigma_2^2 (n_2 - 1)} \in F - Snedecora \circ v_1 = n_1 - 1, \ v_2 = n_2 - 1 \text{ st. swobody}$$

Statystyka F znajduje zastosowanie przy porównywaniu wariancji z prób pochodzących z niezależnych populacji X_1 i X_2

1

Rozkłady graniczne statystyk z próby $(n \rightarrow \infty)$

1. $X \in dwumianowy$ z parametrami (n;p)

$$W = \frac{X}{n} \in dwumianowy$$
 z parametrami $E(W) = p$, $D^2(W) = \frac{p(1-p)}{n}$

Przy
$$n \to \infty$$
 $W = \frac{X}{n} \to N \left(p; \sqrt{\frac{p(1-p)}{n}} \right)$ (graniczny rozkład normalny)

$$U = \frac{W - p}{\sqrt{\frac{p(1-p)}{n}}} \in N(0;1) \text{ (twierdzenie de Moivre'a-Laplace'a)}$$

2. $X_1 \in B(n_1; p_1)$ (rozkład dwumianowy z parametrami n_1, p_1), $n_1 \to \infty$ $X_2 \in B(n_2; p_2)$ (rozkład dwumianowy z parametrami n_2, p_2), $n_2 \to \infty$

$$W_1 - W_2 = \frac{X_1}{n_1} - \frac{X_1}{n_2} \to N \left(p_1 - p_2; \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}} \right)$$
(graniczny rozkład normalny)

$$U = \frac{(W_1 - W_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \to N(0;1)$$

3. *X* - dowolny rozkład z parametrami m i σ , $n \rightarrow \infty$

$$\overline{X} \in N\left(m; \frac{\sigma}{\sqrt{n}}\right), \qquad U = \frac{\overline{X} - m}{\sigma} \sqrt{n} \in N(0;1)$$

4. X_1 - dowolny rozkład z parametrami $m_1, \ \sigma_1, \ n_1 \to \infty$ X_2 - dowolny rozkład z parametrami $m_2, \ \sigma_2, \ n_2 \to \infty$

$$\overline{X}_1 - \overline{X}_2 \rightarrow N \left(m_1 - m_2; \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$$

$$U = \frac{(\overline{X}_1 - \overline{X}_2) - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \to N(0;1)$$

5.
$$X \to N(m; \sigma)$$
, gdy $n \to \infty$
 $S \to N\left(\sigma; \frac{\sigma}{\sqrt{2n}}\right)$ (graniczny rozkład S)