Math 421

September 8, 2025

Announcements

- Homework 1 due Friday
 - LaTeX is optional, but encouraged for proofs!
- MLC opens today
 - Proof table
 - Mon-Thurs: 3pm-7:30pm VV B227
 - Course Assistant
 - Thurs: 4-7 in MLC
- Errors on Set Basics & 1.1
 Reading Quizzes

Conditional

If P and Q are statements, then the statement if P, then Q is

- True when either
 - P and Q are both true
 - P is false
- False when *P* is true and *Q* is false

We sometimes write " $P \Rightarrow Q$ " or "P implies Q".

True or False?

1. If f is differentiable, then f is continuous.

2. If x is prime, then x is odd.

Biconditional/Equivalence

If P and Q are statements, then the statement P if and only if Q is

- \circ True when both P and Q are either both true or both false
- False otherwise

We sometimes write " $P \Leftrightarrow Q$ " or "P iff Q".

True or False?

1. A function f is differentiable if and only if it is continuous.

2. A number is divisible by 6 if and only if it is divisible by 2 and 3.

Converse & Contrapositive

Definition: The converse of "if P, then Q" is "if Q, then P".

Definition: The contrapositive of "if P, then Q" is "if not Q, then not P".

Example: If f is differentiable, then f is continuous.

Converse:

Contrapositive:

Q: Is a statement equivalent to its converse? Its contrapositive?

Activity

Use the following truth table to show that " $P \Rightarrow Q$ " is logically equivalent to the contrapositive "not $Q \Rightarrow$ not P"

P	Q	not P	not Q	$P \Rightarrow Q$	$notQ \Rightarrow notP$
Т	Т				
Т	F				
F	Т				
F	F				

Pairs Activity

Person A: You only know the following information –

- The definition of the integers, i.e. that it is the set $\{..., -2, -1, 0, 1, 2, ...\}$
- The operations of addition, +, and multiplication, ·, and their basic properties, i.e. commutativity, associativity, distributive law, etc.

Person B: Convince Person A that the following theorem is true **Theorem:** If x is an even integer, then x^2 is an even integer.

Definitions, Theorems & Proofs

- Much of class will have the following structure
- 1. We will introduce a mathematical object using a definition.
 - For yourself: Think of an example and a non-example.
- 2. We will state a property of it using a theorem.
 - For yourself: What are the hypotheses and why are they needed? What is the conclusion?
- 3. We will explain why the property is true using a proof.
 - For yourself: What proof technique is being used? What is the big idea? What common strategies are being employed?

Even & Odd – Definition & Examples

Definition:

- An integer x is **even** if there exists an integer k such that x = 2k.
- An integer x is **odd** if there exists an integer k such that x = 2k + 1.

Examples:

Even & Odd – Theorem

Theorem: If x is an even integer, then x^2 is an even integer.

Activity

Theorem: Suppose x is an integer. If x is odd, then $x^2 + 1$ is even.

Discussion:

If and Only If Theorem

Theorem: For all integers x, x is even if and only if x + 1 is odd.

Discussion:

First Proof Techniques

• Direct:

- Basic Direct Use axioms and definitions to go from hypotheses to conclusion.
- Cases First break the proof up into cases that exhaust all possibilities. Then use a basic direct proof for each case.

• Indirect:

- Contrapositive Give a direct proof of the contrapositive of the given conditional statement.
- Contradiction Assume that the hypotheses are true and the conclusion is false, derive a contradiction.

Example

Theorem: Suppose x and y are integers. If $x + y \ge 19$, then $x \ge 10$ or $y \ge 10$.

Discussion:

Proof A: Cases

Theorem: Suppose x and y are integers. If $x + y \ge 19$, then $x \ge 10$ or $y \ge 10$.

Proof B: Contrapositive

Theorem: Suppose x and y are integers. If $x + y \ge 19$, then $x \ge 10$ or $y \ge 10$.

Proof C: Contradiction

Theorem: Suppose x and y are integers. If $x + y \ge 19$, then $x \ge 10$ or $y \ge 10$.

Common Language

- It is a good idea to start a proof by contrapositive with
 - "We prove the contrapositive: If [not Q], then [not P]. Assume [not Q]..."

- It is a good idea to start a proof by contradiction with
 - "We argue by contradiction. Suppose [P] and [not Q]."

OR

"Suppose for a contradiction that [P] and [not Q]."

Activity

Theorem: Suppose a and b are positive real numbers. If $ab \ge 9$, then $a \ge 3$ or $b \ge 3$.

Form groups of 6 and pair off for each of the three proof techniques. Then, use your chosen method to prove the statement. Once complete, discuss the details with the full group.

A – Cases

B - Contrapositive

C – Contradiction