Feuille 2: Congruences

Exercice 1. Soit $X = x^2$ le carré d'un entier.

- 1. Quels sont les restes possibles de X dans la division par 4?
- 2. Quels sont les restes possibles de X dans la division par 3?

Exercice 2. Montrer que 4 ne peut diviser aucun nombre de la forme $n^2 + 1$.

Exercice 3. Démontrer que le nombre $7^n + 1$ est divisible par 8 si n est un entier naturel impair; dans le cas n pair, donner le reste de sa division par 8.

Exercice 4. Résoudre dans \mathbb{Z} le système suivant :

$$S: \left\{ \begin{array}{ccc} x & \equiv & 4 \mod 6 \\ x & \equiv & 7 \mod 9 \end{array} \right.$$

Exercice 5.

1. Soit p un nombre premier. Justifier que

$$x^2 \equiv 1 \pmod{p}$$

si et seulement si

$$x \equiv 1 \pmod{p}$$
 ou $x \equiv -1 \pmod{p}$.

2. Résoudre le système de congruences

$$\begin{cases} 2x \equiv 3 \pmod{5} \\ 4x \equiv 3 \pmod{7} \end{cases}$$

Exercice 6. Soit n un entier.

- 1. Déterminer le pgcd de 9n + 15 et 4n + 7 en fonction de n.
- 2. Montrer que n^2 et 2n+1 sont premiers entre eux.

Exercice 7. Soit n un entier naturel à 6 chiffres tel que lorsque l'on échange les trois premiers chiffres avec les trois derniers, le résultat obtenu est 6n + 21. Déterminer n.

Exercice 8. Pour tout $n \in \mathbb{N}$, on pose $P(n) = n^2 - n + 41$.

- 1. La quantité P(n) est-elle un nombre premier pour tout $n \in \mathbb{N}$?
- 2. Montrer qu'il existe une infinité d'entiers $n \in \mathbb{N}$ tels que 43 divise P(n).

Exercice 9.

1. Soit $a, b \in \mathbb{R}$. Montrer que pour tout entier $n \in \mathbb{N}^*$

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}.$$

- 2. Soient n et m deux entiers positifs et $a \in \mathbb{N}^*, a \neq 1$. Montrer que $a^m 1$ divise $a^n 1$ si et seulement si m divise n.
- 3. Soit a un entier, a > 2. Montrer que pour n > 1, $a^n 1$ n'est pas premier.
- 4. Montrer que si $2^n 1$ est premier, alors n est premier.

Exercice 10. Déterminer :

- 1. Quel est le dernier chiffre de 7777⁷⁷⁷⁷?
- 2. Quels sont les restes des divisions euclidiennes de 900^{2000} et de $101^{102^{103}}$ par 13?
- 3. Quel est le reste de la division euclidienne de $31^{32^{33}}$ par 7?
- 4. Quel est le reste de la division euclidienne de $100^{100^{100}}$ par 12?

Exercice 11. Montrer que $5^{6614} - 12^{857} \equiv 1 \mod 7$.

Exercice 12. Résoudre les congruences suivantes :

- $2x \equiv 1 \mod 7$
 - b) $4x \equiv 6 \mod 18$
- c) $12x \equiv 9 \mod 6$ d) $23x \equiv 41 \mod 52$

- e) $68x \equiv 100 \mod 120$
- f) $5x \equiv -1 \mod 8$ g) $20x \equiv 4 \mod 30$ h) $20x \equiv 30 \mod 4$

Exercice 13. Résoudre dans $\mathbb{Z}/212\mathbb{Z}$: $\overline{171}x = \overline{7}$.