### **Classification of two varieties of Raisins**

Source: https://www.kaggle.com/datasets/muratkokludataset/raisin-dataset

### by Madhura Ashtekar

```
In [357]:
```

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report, f1 score, precision score, recall scor
e, confusion matrix
from sklearn.svm import SVC
from sklearn.model selection import cross_validate
from sklearn.model selection import KFold
from statistics import mean
from sklearn.metrics import accuracy score
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
from sklearn.model selection import GridSearchCV
from sklearn.datasets import make classification
from sklearn.metrics import confusion matrix, plot precision recall curve
import warnings
warnings.filterwarnings("ignore")
from sklearn import metrics
from sklearn.metrics import roc curve, roc auc score
```

### In [205]:

```
#reading the file from the device
df = pd.read_csv('Raisin_Dataset.csv')
#printing the first 5 rows
df.head()
```

#### Out[205]:

|   | Area  | MajorAxisLength | MinorAxisLength | Eccentricity | ConvexArea | Extent   | Perimeter | Class   |
|---|-------|-----------------|-----------------|--------------|------------|----------|-----------|---------|
| 0 | 87524 | 442.246011      | 253.291155      | 0.819738     | 90546      | 0.758651 | 1184.040  | Kecimen |
| 1 | 75166 | 406.690687      | 243.032436      | 0.801805     | 78789      | 0.684130 | 1121.786  | Kecimen |
| 2 | 90856 | 442.267048      | 266.328318      | 0.798354     | 93717      | 0.637613 | 1208.575  | Kecimen |
| 3 | 45928 | 286.540559      | 208.760042      | 0.684989     | 47336      | 0.699599 | 844.162   | Kecimen |
| 4 | 79408 | 352.190770      | 290.827533      | 0.564011     | 81463      | 0.792772 | 1073.251  | Kecimen |

We are classifying two varieties, that is, classes of raisins - Kecimen and Besni.

## Checking the rows and columns in the dataframe

```
In [206]:
```

```
df.shape
```

(900, 8)

#### There are 900 rows (grains of raisins) and 8 features out of which 1 is the class label.

```
In [207]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 900 entries, 0 to 899
Data columns (total 8 columns):
    Column
                          Non-Null Count Dtype
____
                            -----
 0
    Area
                            900 non-null int64
 1 MajorAxisLength 900 non-null float64
2 MinorAxisLength 900 non-null float64
3 Eccentricity 900 non-null float64
4 ConvexArea 900 non-null int64
5 Extent 900 non-null float64
6 Perimeter 900 non-null float64
7 Class 900 non-null object
dtypes: float64(5), int64(2), object(1)
memory usage: 56.4+ KB
In [208]:
df.describe()
```

#### Out[208]:

|       | Area          | MajorAxisLength | MinorAxisLength | Eccentricity | ConvexArea    | Extent     | Perimeter   |
|-------|---------------|-----------------|-----------------|--------------|---------------|------------|-------------|
| count | 900.000000    | 900.000000      | 900.000000      | 900.000000   | 900.000000    | 900.000000 | 900.000000  |
| mean  | 87804.127778  | 430.929950      | 254.488133      | 0.781542     | 91186.090000  | 0.699508   | 1165.906636 |
| std   | 39002.111390  | 116.035121      | 49.988902       | 0.090318     | 40769.290132  | 0.053468   | 273.764315  |
| min   | 25387.000000  | 225.629541      | 143.710872      | 0.348730     | 26139.000000  | 0.379856   | 619.074000  |
| 25%   | 59348.000000  | 345.442898      | 219.111126      | 0.741766     | 61513.250000  | 0.670869   | 966.410750  |
| 50%   | 78902.000000  | 407.803951      | 247.848409      | 0.798846     | 81651.000000  | 0.707367   | 1119.509000 |
| 75%   | 105028.250000 | 494.187014      | 279.888575      | 0.842571     | 108375.750000 | 0.734991   | 1308.389750 |
| max   | 235047.000000 | 997.291941      | 492.275279      | 0.962124     | 278217.000000 | 0.835455   | 2697.753000 |

## Plotting a histogram to see the distribution of the classes

```
In [209]:
```

```
class_counts = df['Class'].value_counts()
class_counts.plot(kind='bar')
plt.title('Class Count')
plt.xlabel('Class')
plt.ylabel('Count')
plt.show()
```

### Class Count





The two classes are almost equally distributed from the above graph.

## Analyzing the relationship of the features

```
In [210]:
```

```
corr = df.corr()
corr
```

Out[210]:

|                 | Area      | MajorAxisLength | MinorAxisLength | Eccentricity | ConvexArea | Extent    | Perimeter |
|-----------------|-----------|-----------------|-----------------|--------------|------------|-----------|-----------|
| Area            | 1.000000  | 0.932774        | 0.906650        | 0.336107     | 0.995920   | -0.013499 | 0.961352  |
| MajorAxisLength | 0.932774  | 1.000000        | 0.728030        | 0.583608     | 0.945031   | -0.203866 | 0.977978  |
| MinorAxisLength | 0.906650  | 0.728030        | 1.000000        | -0.027683    | 0.895651   | 0.145322  | 0.827417  |
| Eccentricity    | 0.336107  | 0.583608        | -0.027683       | 1.000000     | 0.348210   | -0.361061 | 0.447845  |
| ConvexArea      | 0.995920  | 0.945031        | 0.895651        | 0.348210     | 1.000000   | -0.054802 | 0.976612  |
| Extent          | -0.013499 | -0.203866       | 0.145322        | -0.361061    | -0.054802  | 1.000000  | -0.173449 |
| Perimeter       | 0.961352  | 0.977978        | 0.827417        | 0.447845     | 0.976612   | -0.173449 | 1.000000  |

## Checking distribution of each variable

### In [211]:

```
df.hist(bins=50, figsize=(20,15))
plt.show()
```

















The above histograms show a distribution of each feature in the dataset. The distribution for Area, MajorAxisLength, MinorAxisLength, ConvexArea, Perimeter are positively skewed in distribution. Whereas, Eccentricity and Extent have a negatively skewed distribution.

## Plotting pairplot to see scatter plots of the features

```
In [212]:
```

```
plt.figure(figsize=(15,20))
sns.pairplot(data=df)
plt.show()
```

<Figure size 1500x2000 with 0 Axes>





## Plotting a heatmap to see the correlations

```
In [213]:
```

```
corr.style.background_gradient(cmap='coolwarm').set_precision(2)
```

Out[213]:

|                 | Area  | MajorAxisLength | MinorAxisLength | Eccentricity | ConvexArea | Extent | Perimeter |
|-----------------|-------|-----------------|-----------------|--------------|------------|--------|-----------|
| Area            | 1.00  | 0.93            | 0.91            | 0.34         | 1.00       | -0.01  | 0.96      |
| MajorAxisLength | 0.93  | 1.00            | 0.73            | 0.58         | 0.95       | -0.20  | 0.98      |
| MinorAxisLength | 0.91  | 0.73            | 1.00            | -0.03        | 0.90       | 0.15   | 0.83      |
| Eccentricity    | 0.34  | 0.58            | -0.03           | 1.00         | 0.35       | -0.36  | 0.45      |
| ConvexArea      | 1.00  | 0.95            | 0.90            | 0.35         | 1.00       | -0.05  | 0.98      |
| Extent          | -0.01 | -0.20           | 0.15            | -0.36        | -0.05      | 1.00   | -0.17     |
| Perimeter       | 0.96  | 0.98            | 0.83            | 0.45         | 0.98       | -0.17  | 1.00      |

The above correlation matrix shows that Area has positive correlation with MajorAxisLength, MinorAxisLength, Eccentricity, ConvexArea and Perimeter. However, it has negative correlation with Extent of the raisins.

## **Checking for null values**

```
In [214]:
```

```
df.isnull().sum()
```

#### Out[214]:

Area 0
MajorAxisLength 0
MinorAxisLength 0
Eccentricity 0
ConvexArea 0
Extent 0
Perimeter 0
Class 0
dtype: int64

No null values were found

## Replacing categorical values of Class with 0 and 1

```
In [215]:
```

```
df['Class'] = df['Class'].str.replace('Kecimen', '1')
df['Class'] = df['Class'].str.replace('Besni', '0')
df
```

```
Out[215]:
```

|     | Area  | MajorAxisLength | MinorAxisLength | Eccentricity | ConvexArea | Extent   | Perimeter | Class |
|-----|-------|-----------------|-----------------|--------------|------------|----------|-----------|-------|
| 0   | 87524 | 442.246011      | 253.291155      | 0.819738     | 90546      | 0.758651 | 1184.040  | 1     |
| 1   | 75166 | 406.690687      | 243.032436      | 0.801805     | 78789      | 0.684130 | 1121.786  | 1     |
| 2   | 90856 | 442.267048      | 266.328318      | 0.798354     | 93717      | 0.637613 | 1208.575  | 1     |
| 3   | 45928 | 286.540559      | 208.760042      | 0.684989     | 47336      | 0.699599 | 844.162   | 1     |
| 4   | 79408 | 352.190770      | 290.827533      | 0.564011     | 81463      | 0.792772 | 1073.251  | 1     |
|     |       |                 |                 |              |            |          |           |       |
| 895 | 83248 | 430.077308      | 247.838695      | 0.817263     | 85839      | 0.668793 | 1129.072  | 0     |
| 896 | 87350 | 440.735698      | 259.293149      | 0.808629     | 90899      | 0.636476 | 1214.252  | 0     |
| 897 | 99657 | 431.706981      | 298.837323      | 0.721684     | 106264     | 0.741099 | 1292.828  | 0     |
| 898 | 93523 | 476.344094      | 254.176054      | 0.845739     | 97653      | 0.658798 | 1258.548  | 0     |
| 899 | 85609 | 512.081774      | 215.271976      | 0.907345     | 89197      | 0.632020 | 1272.862  | 0     |

#### 900 rows × 8 columns

```
In [216]:

X = df.drop(['Class'], axis = 1)
y = df['Class']
```

## Splitting training and testing data

```
In [217]:

# Split the data into training and testing with test size as 20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("Size of X_train: ", X_train.shape)
print("Size of X_test: ", X_test.shape)
print("Size of y_train: ", y_train.shape)
print("Size of y_test: ", y_test.shape)
```

```
Size of X_train: (720, 7)
Size of X_test: (180, 7)
Size of y_train: (720,)
Size of y_test: (180,)
```

## Converting X and y to numpy arrays to perform further operations

```
In [364]:
```

```
X_trainn = np.array(X_train, dtype="float32")
y_trainn = np.array(y_train, dtype="float32")
X_testt = np.array(X_test, dtype="float32")
y_testt = np.array(y_test, dtype="float32")
```

## Scaling the values of X

```
In [365]:
```

```
#scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_trainn)
X_test_scaled = scaler.fit_transform(X_testt)
```

```
In [220]:
```

```
X_train_scaled[0]
```

^--± [0001 -

```
out[220]:

array([-0.1975479 , 0.14897284, -0.44638428, 0.81034476, -0.1745895 ,

-0.45516506, 0.02725015], dtype=float32)
```

### **Function to plot confusion matrix**

## **Function for evaluating models**

```
•
```

In [292]:

```
def evaluate model(X train, y train, model):
   X \text{ neww} = X \text{ train}
   y neww = y train
    # Create a StratifiedKFold object
    kfold = StratifiedKFold(n splits=4, shuffle=True, random state=42)
    # Initialize lists to store training and validation accuracies
    train acc = []
   val acc = []
    confusion matrices = []
    classification reports = []
    # Initialize variables to store best validation accuracy and associated confusion mat
rix
   best val acc = 0
   best cm = None
    # Loop over the folds
    fold count = 1
    for train, validation in kfold.split(X neww, y neww):
        print(f"Fold {fold count}")
        fold count = fold count + 1
        # Split the data into training and validation sets
        X train, y train = X_neww[train], y_neww[train]
        X_val, y_val = X_neww[validation], y_neww[validation]
        # Train the model on the training set
        history = model.fit(X_train, y_train)
        # Evaluate the model on the training set
        train scores = model.score(X train, y train)
        train acc.append(train scores)
        # Evaluate the model on the validation set
        val scores = model.score(X val, y val)
```

```
val acc.append(val scores)
    # Calculate the confusion matrix and classification report for the validation set
    y pred = model.predict(X val)
    cm = confusion matrix(y val, y pred)
    cr = classification report(y val, y pred)
    # Append the confusion matrix and classification report to lists
    confusion matrices.append(cm)
    classification reports.append(cr)
    # Check if the current fold has the highest validation accuracy so far
    if val scores > best val acc:
        best val acc = val scores
        best cm = cm
# Plot the training and validation accuracies
print("train_acc:", train_acc)
print("val_acc:", val_acc)
mean train acc = mean(train acc)
mean val acc = mean(val acc)
train_acc_percent = round(mean_train_acc * 100, 2)
val_acc_percent = round(mean_val acc * 100, 2)
print("Mean train acc: {:.2f}%".format(train acc percent))
print("Mean val acc: {:.2f}%".format(val acc percent))
plt.plot(train acc, label='Training accuracy')
plt.plot(val acc, label='Validation accuracy')
plt.xlabel('Fold')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Plot the confusion matrix for the fold with the highest validation accuracy
if best cm is not None:
    plt.figure(figsize=(6, 4))
    sns.heatmap(best_cm, annot=True, cmap="Blues", fmt="d", cbar=False)
    plt.title("Confusion Matrix (Best Validation Accuracy)")
    plt.xlabel("Predicted label")
    plt.ylabel("True label")
    plt.show()
# Print the classification report for the last fold
print("Classification report:")
print(classification reports[-1])
```

## **Multinomial Logistic Regression**

```
In [293]:
```

0.88



### Confusion Matrix (Best Validation Accuracy)



| Classificatio                         | n report: precision | recall       | f1-score             | support           |
|---------------------------------------|---------------------|--------------|----------------------|-------------------|
| 0.0                                   | 0.88<br>0.87        | 0.87<br>0.88 | 0.87<br>0.87         | 91<br>89          |
| accuracy<br>macro avg<br>weighted avg | 0.87<br>0.87        | 0.87<br>0.87 | 0.87<br>0.87<br>0.87 | 180<br>180<br>180 |

The above graph shows increasing training and validation accuracies with increasing value of k folds. The mean accuracy is about 86%. Thus, we can say that the Multinomial Logistic Regression has fit well on the data.

The mean accuracy for training and validation has come out to be very close at 86%. From the graph we can say that since both the accuracies are increasing, the model is well fit.

## **Grid search for logostic regression**

```
In [226]:
```

```
logistic_regression = LogisticRegression(multi_class='multinomial', solver='lbfgs')
# define the hyperparameter search space
param_grid = {
```

```
'C': [0.1, 1, 10],
    'penalty': ['11', '12'],
    'max_iter': [100, 500, 1000]

# define the grid search
grid_search = GridSearchCV(
    logistic_regression, param_grid=param_grid,
    cv=None, n_jobs=-1, verbose=1
)

# fit the grid search to the data
grid_search.fit(X_train_scaled, y_train)

# print the best hyperparameters and validation accuracy
print("Best hyperparameters: ", grid_search.best_params_)
print("Best validation accuracy: ", grid_search.best_score_)
Fitting 5 folds for each of 18 candidates_totalling 90 fits
```

```
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Best hyperparameters: {'C': 1, 'max_iter': 100, 'penalty': '12'}
Best validation accuracy: 0.8625
```

We know that the best parameters using grid search have come out to be c=1, maximum iterations=100, and penalty=12. We will now use it to find the confusion matrix and the classification report.

# Function to run the best model with parameters found from grid search

```
In [300]:
```

```
def run_the_best_model(X_train, y_train, model):
    X_trainn, X_val, y_trainn, y_val = train_test_split(X_train, y_train, test_size=0.3,
    random_state=42)
    model.fit(X_trainn, y_trainn)
    y_pred = model.predict(X_val)
    cm = confusion_matrix(y_val, y_pred)
    sns.heatmap(cm, annot=True)
    report = classification_report(y_val, y_pred)
    print(report)
    val_scores = model.score(X_val, y_val)
    print(val_scores)
```

### In [353]:

```
LR = run_the_best_model(X_train_scaled, y_trainn, model = LogisticRegression(C =1, max_i
ter =100, multi_class = 'multinomial', penalty = '12', solver= 'lbfgs'))
```

|                                       | precision    | recall | f1-score             | support           |
|---------------------------------------|--------------|--------|----------------------|-------------------|
| 0.0                                   | 0.96<br>0.83 | 0.83   | 0.89                 | 116<br>100        |
| accuracy<br>macro avg<br>weighted avg | 0.89         | 0.89   | 0.89<br>0.89<br>0.89 | 216<br>216<br>216 |



Previously, the mean training and validation accuracy for Logistic regression was about 86%. With the best parameters it has come out to be 88% which is higher. The True Positives are also more in the second confusion matrix (96) than before (86). Thus, this confusion matrix with the best parameters overall has classified better than the previous one.

### **Testing**

```
In [368]:
```

```
def run_the_best_model(X_train, y_train, X_test, y_test ,model):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True)
    report = classification_report(y_test, y_pred)
    print(report)

val_scores = model.score(X_test, y_test)
    print(val_scores)

return val_scores
```

#### In [372]:

```
run_the_best_model(X_train_scaled, y_trainn, X_test_scaled, y_test, model=LogisticRegres
sion(C=1, max iter=100, multi class='multinomial', penalty='12', solver='lbfgs'))
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0.0          | 0.84      | 0.90   | 0.87     | 86      |
| 1.0          | 0.90      | 0.84   | 0.87     | 94      |
|              |           |        |          |         |
| accuracy     |           |        | 0.87     | 180     |
| macro avg    | 0.87      | 0.87   | 0.87     | 180     |
| weighted avg | 0.87      | 0.87   | 0.87     | 180     |

0.8666666666666667

### Out[372]:

0.866666666666667



## **Function to plot ROC and AUC curve**

```
In [361]:
```

```
def roc curve(X train scaled, y train, model):
    # Split the data into training and testing sets
   X_trainb, X_testb, y_trainb, y_testb = train_test_split(X_train_scaled, y_train, tes
t size=0.3, random state=42)
   model.fit(X trainb, y trainb)
    # Make predictions on the testing data
    y pred prob = model.predict proba(X testb)[:, 1]
    fpr, tpr, thresholds = roc_curve(y_testb, y_pred_prob)
    # Calculate the AUC score
    auc score = roc auc score(y testb, y pred prob)
    # Plot the ROC curve
   plt.plot(fpr, tpr, label=f'ROC curve (AUC = {auc score:.2f})')
   plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
   plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
   plt.title('ROC Curve')
    plt.legend()
    plt.show()
```

### Plotting roc curve for logistic regression with best parameters

```
In [362]:
```

```
roc_curve(X_train_scaled, y_trainn, model = LogisticRegression(C =1, max_iter =100, multi
_class = 'multinomial', penalty = '12', solver= 'lbfgs', probability = True))
```

## **SVM**

### **Linear kernel**

In [302]:

```
#svm with linear kernel
evaluate_model(X_train_scaled, y_trainn, model = SVC(kernel='linear', C=1))
Fold 1
```

Fold 2 Fold 3

Fold 4

train\_acc: [0.8740740740740741, 0.8666666666666667, 0.88888888888888, 0.864814814814

8]

Mean train\_acc: 87.36%
Mean val\_acc: 86.94%



### Confusion Matrix (Best Validation Accuracy)





The above graph shows that training accuracy and validation accuracy are very close. The best accuracy for training and validation is about 87% after performing 5 fold cross validation. This tells us that the linear kernel in SVM is well fit.

### **SVM** with RBF kernel

```
In [311]:
```

```
# svm with rbf kernel
evaluate_model(X_train_scaled, y_trainn, model = SVC(gamma = 'scale', kernel='rbf', C=5)

Fold 1
Fold 2
Fold 3
Fold 4
train_acc: [0.8796296296296297, 0.8703703703703703, 0.8981481481481481, 0.874074074074074
1]
val_acc: [0.86111111111111112, 0.894444444444445, 0.8166666666666667, 0.8944444444444445]
Mean train_acc: 88.06%
Mean val_acc: 86.67%
```



### Confusion Matrix (Best Validation Accuracy)



| Classifica                      | atio       | n report:<br>precision | recall       | f1-score             | support           |
|---------------------------------|------------|------------------------|--------------|----------------------|-------------------|
|                                 | 0.0<br>L.0 | 0.93                   | 0.86<br>0.93 | 0.89                 | 91<br>89          |
| accura<br>macro a<br>weighted a | avg        | 0.90<br>0.90           | 0.89         | 0.89<br>0.89<br>0.89 | 180<br>180<br>180 |

The true positives are 75 here and false positives are 16. Let's check these further after grid search.

The above graph shows that training accuracy and validation accuracy are very close. The average accuracy for training and validation is about 87%. This tells us that the rbf kernel is well fit.

## **Grid search for SVM to check the best parameters**

In [310]:

```
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
svc = SVC()
# define the hyperparameter search space
param grid = {
    'C': [0.1, 1, 10],
    'kernel': ['linear', 'rbf'],
    'degree': [2, 3],
    'gamma' :['scale', 'auto', 0.1, 1, 10]
# define the grid search
grid search = GridSearchCV(
    svc, param_grid=param_grid,
   cv=None, n jobs=-1, verbose=1
# fit the grid search to the data
grid search.fit(X train scaled, y train)
# print the best hyperparameters and validation accuracy
```

```
print("Best hyperparameters: ", grid_search.best_params_)
print("Best validation accuracy: ", grid_search.best_score_)
```

Fitting 5 folds for each of 60 candidates, totalling 300 fits
Best hyperparameters: {'C': 10, 'degree': 2, 'gamma': 1, 'kernel': 'rbf'}
Best validation accuracy: 0.8777777777779

We know that the best parameters using grid search have come out to be rbf kernel, c=10, degree=2 and gamma=1. We will now use it to find the confusion matrix and the classification report.

### In [313]:

run\_the\_best\_model(X\_train\_scaled, y\_trainn, model=SVC(kernel='rbf', C=10, degree=2, gam
ma=1))

|              | precision    | recall       | f1-score | support    |
|--------------|--------------|--------------|----------|------------|
| 0.0          | 0.96<br>0.82 | 0.82<br>0.96 | 0.88     | 116<br>100 |
| accuracy     |              |              | 0.88     | 216        |
| macro avg    | 0.89         | 0.89         | 0.88     | 216        |
| weighted avg | 0.90         | 0.88         | 0.88     | 216        |

#### 0.8842592592592593



## **Testing on Svm rbf kernel**

### In [373]:

run\_the\_best\_model(X\_train\_scaled, y\_trainn, X\_test\_scaled, y\_test, model=SVC(kernel='rb
f', C=10, degree=2, gamma=1))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.82      | 0.91   | 0.86     | 86      |
| 1.0          | 0.91      | 0.82   | 0.86     | 94      |
| 1.0          | 0.71      | 0.02   | 0.00     | 24      |
| accuracy     |           |        | 0.86     | 180     |
| macro avg    | 0.86      | 0.86   | 0.86     | 180     |
| weighted avg | 0.87      | 0.86   | 0.86     | 180     |

0.8611111111111112

oucto, oj.

0.8611111111111112



We can see that true positives have increased and are 95 now and false positives are 21.

## **SVM** Polynomial kernel

```
In [305]:
```









Classification report:

| OTABBITTOACTO         | TI TOPOTO.   |              |              |            |
|-----------------------|--------------|--------------|--------------|------------|
|                       | precision    | recall       | f1-score     | support    |
| 0.0<br>1.0            | 0.82<br>0.82 | 0.82<br>0.82 | 0.82<br>0.82 | 91<br>89   |
| accuracy<br>macro avg | 0.82         | 0.82         | 0.82         | 180<br>180 |
| weighted avg          | 0.82         | 0.82         | 0.82         | 180        |

The above graph shows that training accuracy and validation accuracy are very close. The average accuracy for training and validation is about 82%. This tells us that the polynomial kernel is well fit but not as good as rbf.

## **SVM** with Sigmoid kernel

```
In [303]:
```

```
#svm with sigmoid kernel
evaluate model(X train scaled, y trainn, model = SVC(kernel='sigmoid'))
Fold 1
```

Fold 2 Fold 3

Fold 4

train acc: [0.7777777777778, 0.7611111111111111, 0.7870370370370371, 0.759259259259259

val acc: [0.75, 0.783333333333333, 0.75, 0.788888888888888888888]

Mean train\_acc: 77.13% Mean val acc: 76.81%





### Confusion Matrix (Best Validation Accuracy)



|                                  | p  | recision     | recall       | f1-score             | support           |
|----------------------------------|----|--------------|--------------|----------------------|-------------------|
| -                                | .0 | 0.80<br>0.78 | 0.78<br>0.80 | 0.79                 | 91<br>89          |
| accurac<br>macro a<br>weighted a | vg | 0.79<br>0.79 | 0.79<br>0.79 | 0.79<br>0.79<br>0.79 | 180<br>180<br>180 |

The above graph shows that training accuracy and validation accuracy are very close. The best accuracy for training and validation is about 77% after performing 5 fold cross validation. This tells us that the sigmoid kernel is not the best fit as compared to the other kernels.

## **Random Forest Classifier**

```
In [314]:
```

```
#random forest
evaluate_model(X_train_scaled, y_trainn, model = RandomForestClassifier(n_estimators=100,
max_depth=5, random_state=42))
```

```
Fold 1
Fold 2
```

Fold 3

train\_acc: [0.9277777777778, 0.9203703703704, 0.92222222222223, 0.929629629629629

6]

val\_acc: [0.8666666666666667, 0.86666666666667, 0.8111111111111111, 0.9]

Mean train\_acc: 92.50% Mean val acc: 86.11%



### Confusion Matrix (Best Validation Accuracy)



| Classi | fication | report: |
|--------|----------|---------|
|        |          |         |

| CIASSIIICACIC                         | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0.0<br>1.0                            | 0.94<br>0.87 | 0.86         | 0.90<br>0.90         | 91<br>89          |
| accuracy<br>macro avg<br>weighted avg | 0.90         | 0.90<br>0.90 | 0.90<br>0.90<br>0.90 | 180<br>180<br>180 |

The above graph shows that training accuracy and validation accuracy is increasing at 92% and 86% respectively. This tells us that the random forest classifier model is well fit. It does not seem to be overfitting. The data is very small to be trained on and hence we see these graphs.

## **Hyperparameter tuning for Random Forest**

```
In [315]:
```

```
def variation wtih esti(X trainn, y trainn, model):
    estimators = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 650]
   MCV list = []
    for e in estimators:
        # Initialize RBF Kernel SVM classifier
        current rf = RandomForestClassifier(n estimators= e, max depth=5, random state=
42)
        #current svm = model
        kf = KFold(n splits=3, random state=1, shuffle=True)
        # Cross validation 3-Fold scores
       mean crossval = np.mean(cross val score(current rf, X trainn, y trainn, cv=kf))
        MCV list.append(mean crossval)
        #print("On C=", C, "\tMCV=", mean crossval)
   plt.plot(estimators, MCV_list, color= 'teal')
   plt.title("Mean Cross Validation accuracy across estimators", fontsize=15, fontweigh
t="bold")
   plt.xlabel('Estimator value', fontsize = 15)
   plt.xscale("log")
   plt.ylabel('Mean Cross Validation', fontsize = 15)
   plt.show()
   print("Highest val_accuracy : ", max(MCV_list))
   print("The optimum estimator value being: ",estimators[MCV list.index(max(MCV list))]
```

#### In [316]:

```
variation_wtih_esti(X_train_scaled, y_trainn, model = "rf")
```

## Mean Cross Validation accuracy across estimators



Estimator value

Highest val\_accuracy : 0.855555555555555
The optimum estimator value being: 200

### Trying to find the best values of gamma and and C below and creating a 3D visualization.

```
In [317]:
```

```
from sklearn.model selection import cross val score
from sklearn.svm import SVC
import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
X = X_{train_scaled}
y = y trainn
# Define a range of gamma and C values
depth range = [i \text{ for } i \text{ in } range(5, 21, 5)]
esti_range = [100,150,200,250]
# Create a grid of gamma and C values
depth grid, esti grid = np.meshgrid(depth range, esti range)
# Calculate the validation accuracy for each combination of gamma and C
scores = np.zeros like(depth grid)
for i in range(len(depth range)):
    for j in range(len(esti range)):
        clf = RandomForestClassifier(n estimators= esti range[j], max depth=depth range[
i], random state=42)
        scores[j, i] = np.mean(cross val score(clf, X, y, cv=4))
# Create a 3D plot of the validation accuracy surface
fig = plt.figure()
ax = fig.add subplot(111, projection='3d')
ax.plot surface (depth grid, esti grid, scores)
ax.set xlabel('depth')
ax.set ylabel('estimators')
ax.set zlabel('Validation Accuracy')
plt.show()
# Get the combination of gamma and C values for which the validation accuracy was the hig
max indices = np.unravel index(np.argmax(scores), scores.shape)
best depth = depth range[max indices[1]]
best esti = esti range[max indices[0]]
print("Best combination of depth and esti:", (best depth, best esti))
```



## Grid search for random forest to find best parameters

In [319]:

Best hyperparameters: {'max\_depth': 10, 'max\_features': 'sqrt', 'min\_samples\_leaf': 2, 'min\_samples\_split': 5, 'n\_estimators': 100}
Best validation accuracy: 0.8638888888888888

#### In [321]:

```
run_the_best_model(X_train_scaled, y_trainn, model=RandomForestClassifier(max_depth= 10,
max_features= 'sqrt', min_samples_leaf= 2, min_samples_split= 5, n_estimators= 100))
```

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0.0<br>1.0                            | 0.94<br>0.82 | 0.82<br>0.94 | 0.88<br>0.87         | 116<br>100        |
| accuracy<br>macro avg<br>weighted avg | 0.88         | 0.88         | 0.88<br>0.87<br>0.88 | 216<br>216<br>216 |

0.875



We can see the validation accuracy with the best parameters has come out to be 87.5% which was previously 86.38%. This model has overall performed better.

## **Testing for random forest**

### In [375]:

run\_the\_best\_model(X\_train\_scaled, y\_trainn, X\_test\_scaled, y\_test, model=RandomForestCl
assifier(max\_depth= 10, max\_features= 'sqrt', min\_samples\_leaf= 2, min\_samples\_split= 5,
n\_estimators= 100))

|                        | precision    | recall       | f1-score     | support    |
|------------------------|--------------|--------------|--------------|------------|
| 0.0<br>1.0             | 0.87<br>0.87 | 0.86         | 0.87<br>0.88 | 86<br>94   |
| accuracy               | 0.05         | 0.05         | 0.87         | 180        |
| macro avg weighted avg | 0.87<br>0.87 | 0.87<br>0.87 | 0.87         | 180<br>180 |

0.87222222222222

#### Out[375]:

#### 0.87222222222222



### In [326]:

```
clf = clf1 = RandomForestClassifier(max_depth= 10, max_features= 'sqrt', min_samples_lea
f= 2, min_samples_split= 5, n_estimators= 100)
clf.fit(X_train_scaled, y_trainn)
importances = clf.feature_importances_
```

### In [327]:

```
feature_names = df.columns.tolist()
```

#### In [328]:

```
plt.bar(range(X_train_scaled.shape[1]), importances)
plt.xticks(range(X_train_scaled.shape[1]), range(1, X_train_scaled.shape[1]+1), rotation
=90)
plt.xlabel('Feature')
```





The feature number 2 and 7 are MajorAxisLength and Perimeter are the highest and have the most importance. This will be useful in the overall process of classifying raisins.

```
In [329]:

df.head()
Out[329]:
```

|   | Area  | MajorAxisLength | MinorAxisLength | <b>Eccentricity</b> | ConvexArea | Extent   | Perimeter | Class |
|---|-------|-----------------|-----------------|---------------------|------------|----------|-----------|-------|
| 0 | 87524 | 442.246011      | 253.291155      | 0.819738            | 90546      | 0.758651 | 1184.040  | 1     |
| 1 | 75166 | 406.690687      | 243.032436      | 0.801805            | 78789      | 0.684130 | 1121.786  | 1     |
| 2 | 90856 | 442.267048      | 266.328318      | 0.798354            | 93717      | 0.637613 | 1208.575  | 1     |
| 3 | 45928 | 286.540559      | 208.760042      | 0.684989            | 47336      | 0.699599 | 844.162   | 1     |
| 4 | 79408 | 352.190770      | 290.827533      | 0.564011            | 81463      | 0.792772 | 1073.251  | 1     |

## Ensemble modeling with best parameters of all three models

```
In [334]:
```

```
def ensemble_accuracy(X_train_scaled, y_train):
    clf1 = RandomForestClassifier(max_depth= 10, max_features= 'sqrt', min_samples_leaf=
2, min_samples_split= 5, n_estimators= 100)
    clf2 = LogisticRegression(C = 3.90, max_iter = 500, penalty = '12', solver= 'lbfgs')
    clf3 = SVC(kernel='rbf', C=10, degree=2, gamma=1)

# Create the voting classifier
    ensemble_clf = VotingClassifier( estimators=[('dt', clf1), ('lr', clf2), ('svm', clf
3)], voting='hard')

# Load data and target variables
    X_new = X_train_scaled # input features
    y_new = y_train # target variable
```

```
#aplitting the into training and validation set
   X_train, X_val, y_train, y_val = train_test_split(X_new, y_new, test_size=0.3, rando
m_state=42)
   ensemble_clf.fit(X_train, y_train)

# Test the ensemble classifier
   acc = ensemble_clf.score(X_val, y_val)

print(f"Best validation accuracy: {acc}")
```

### In [335]:

```
ensemble_accuracy(X_train_scaled, y_trainn)
```

Best validation accuracy: 0.8842592592592593

#### In [336]:

```
run_the_best_model(X_train_scaled, y_trainn, model=VotingClassifier(estimators=[('dt', cl
f1), ('lr', clf2), ('svm', clf3)], voting='hard'))
```

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0.0<br>1.0                            | 0.97<br>0.82 | 0.81<br>0.97 | 0.88<br>0.89         | 116<br>100        |
| accuracy<br>macro avg<br>weighted avg | 0.89<br>0.90 | 0.89         | 0.88<br>0.88<br>0.88 | 216<br>216<br>216 |

#### 0.8842592592592593



The Ensemble of all three models have given a best accuracy of 88.42% which is higher than the validation accuracies of all three models even with the best parameters.

#### In [376]:

```
values = [(87.5)*100, (88.8)*100, (88.42)*100, 90.47]
labels = ['RF_acc', 'multi_acc', 'SVM_acc', 'Ensemble_acc']
# Create a bar plot
plt.bar(labels, values)
```

```
# Set the title and axis labels
plt.title('Bar Graph Example')
plt.xlabel('Models')
plt.ylabel('Accuracies')
plt.ylim(80, 100)
# Show the plot
plt.show()
print("The accuracy of the ensemble data is the highest and outperforms the individual classifiers")
```



The accuracy of the ensemble data is the highest and outperforms the individual classifiers

## Testing on the test set

```
In [366]:
ensemble_accuracy(X_test_scaled, y_testt)

Best validation accuracy: 0.8703703703703
```

The testing accuracy is 87.03% which is quiet close to the validation accuracy.

```
In []:
In []:
In []:
```

References: Github: <a href="https://github.com/ageron/handson-">https://github.com/ageron/handson-</a>

ml2/blob/master/07 ensemble learning and random forests.ipynb Textbook : Hands on machine learning with

scikit-learn and tensorflow