Álgebra II Computación Extraordinario 2013 – 2014

Nombre:_____ Grupo:_____

1. Sea $f: M_2(R) \rightarrow C^2$ tal que:

$$f\begin{pmatrix}1&0\\0&1\end{pmatrix}=(1,i) \qquad \qquad f\begin{pmatrix}0&1\\1&0\end{pmatrix}=(i,1) \qquad \qquad f\begin{pmatrix}1&0\\1&0\end{pmatrix}=(1,1) \qquad \qquad f\begin{pmatrix}a&0\\1&1\end{pmatrix}=(2,1+i)$$

- a. Encuentre un valor de a tal que la aplicación lineal exista pero no sea única. Justifique.
- b. Para $\alpha = 0$
 - i. Halle la expresión analítica de f
 - ii. Halle el núcleo de f
 - iii. Determine si f es inyectiva y/o sobreyectiva. Justifique.
- 2. Sea $g: MS_2(\mathbb{R}) \to \mathbb{R}_3[x]$ dada por:

$$g = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = (a+c)x^2 + (a+b)x + b - c$$

- a. Halle la imagen de g .
- b. Encuentre, si es posible, un suplementario de $V = L[x^2 + 2x + 1]$ en la imagen de g.
- c. Halle la matriz asociada a g en las bases $(a_i) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ y $(b_j) = \begin{bmatrix} 1, x, x^2 \end{bmatrix}$
- 3. Para qué valores de \mathbf{a} y \mathbf{b} la matriz $A = \begin{pmatrix} a & b & a-4 \\ b & 1 & 0 \\ 0 & -b+2 & 4 \end{pmatrix}$ representa una forma cuadrática \mathbf{q}

definida en \mathbb{R}^3 .

- b. Escriba la expresión de q para los valores de a y b hallados en el inciso anterior.
- c. Reduzca q a una forma canónica mediante transformaciones ortogonales.
- 4. Demuestre o refute en cada caso.
- a. Sea $q: \mathbb{R}^2 \to \mathbb{R}$ una forma cuadrática dada por la expresión $q(x,y) = ax^2 + bxy + cy^2$. Entonces q es definida positiva si a > 0 y $b^2 ac < 0$.
- b. Sea $H = \{Z \in \mathbb{C} : Z^{p^n} = 1, \ para \ algún \ n\}, \ p \in \mathbb{N} \ . \ H \ \ \text{es un subgrupo del grupo} \ (\mathbb{C}, *), \$ siendo * el producto usual.
- c. Sean E un espacio con producto escalar sobre K, f_*g endomorfismos de E que poseen adjunto, entonces $(f \circ g)$ tienen adjunto y $(f \circ g)^* = g^* \circ f^*$
- d. Def: Sea ${\mathbb E}$ un espacio vectorial euclidiano de dimensión finita y sea V un subespacio vectorial de ${\mathbb E}$, llamaremos ortogonal de V, al conjunto de los elementos de W de ${\mathbb E}$ tal que $w \in E :< v, w >= 0 \ \forall v \in V$. Al ortogonal de V se le denota V^\perp . Es decir: $V^\perp = \left\{ w \in E :< v, w >= 0 \ \forall v \in V \right\} \ V^\perp$ es un subespacio vectorial de E.

Sea E un espacio vectorial con producto escalar de dimensión finita y V y W subespacios de E entonces $\left(V+W\right)^\perp \subset V^\perp \cap W^\perp$