COMS3261: Computer Science Theory

Fall 2013

Mihalis Yannakakis

Lecture 11, 10/9/13

Pushdown Automata (PDA)

- PDA = ε -NFA + stack (pushdown store)
- Stack is the right data structure (Last-In-First-Out principle) for implementing recursion (recursive procedure calls):
 - A calls B which calls C which calls D ...
 - Keep record of active calls in stack so we know how to return properly when each procedure call ends

Transition of PDA

In one step, depending on:

- current state
- current input symbol or ϵ
- symbol on top of stack

the PDA consumes the input symbol, and:

- moves to next state
- can replace the top of the stack by some string
 (i.e. does nothing, pops the stack or pops and pushes another string)

 ϵ -transition: spontaneous, does not read or consume input

Formal Definition

- PDA A = (Q, Σ , Γ , δ , q₀, Z₀, F)
- Q = finite set of states
- Σ = finite input alphabet
- Γ = finite stack alphabet
- q₀ ∈ Q = initial (start) state
- $Z_0 \in \Gamma$ = initial (start) symbol on stack
- F ⊆ Q = set of accepting states
- $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{\mathbb{Q} \times \Gamma^*} = \text{transition function}$
- $\delta(q,a,X)$ or $\delta(q,\epsilon,X)$ = set of tuples (p,α) , $p \in Q$, $\alpha \in \Gamma^*$, one for each choice of move on state q, input a, stack top=X
- α = ε: pop; α=X: no change; α=Y: replace X by Y;
 α=YX: push Y

Note: no transition on empty stack

Example: $L = \{ ww^R \mid w \in \{0,1\}^* \}$

- PDA reads w and stores it in the stack.
- When it reaches the middle (guess nondeterministically), it pops the stack comparing with the 2nd half of the input
- Nondeterminism critical
- Formally $\Gamma = \{Z_0, 0, 1\}, Q = \{q_0, q_1, q_2\}, F = \{q_2\}$
- q₀: 1st half, q₁: 2nd half, q₂: accept

Transition Table

- Can specify transitions also by transition table
- · Rows: states
- Columns: (a,X) or (ε,X) where a=input symbol, X=stack symbol
- entry= set of (p,α) pairs where p=next state, α =stack string

	0,Z ₀	1,Z ₀
→ q₀	{q ₀ ,0Z ₀ }	$\{q_0, 1Z_0\}$
q ₁		
* q 2		

Language of a PDA

- Instantaneous Description of a PDA:
 ID (q,w,γ) = (state, remaining input, stack)
- Configuration of PDA: (q,γ) =
 "full" state (memory) of PDA = state + stack
 (convention: stack written with top on left, bottom on right)
- Transition = move from ID to ID: If $(p,\alpha) \in \delta(q,a,X)$ then $(q,aw,X\beta)$ |-- $(p,w,\alpha\beta)$ If $(p,\alpha) \in \delta(q,\epsilon,X)$ then $(q,w,X\beta)$ |-- $(p,w,\alpha\beta)$
- |--* = reflexive transitive closure of |-- (move in 0 or more steps)
- Language accepted by PDA A:
- L(A) = { $w \in \Sigma^* \mid (q_0, w, Z_0) \mid --^* (p, \varepsilon, \gamma) \text{ for some } p \in F, \gamma \in \Gamma^* }$

Example of computation tree

• On input 0110

$$\begin{array}{c} (q_{0},0110,Z_{0}) \\ \downarrow \\ (q_{0},110,0Z_{0}) \\ \downarrow \\ (q_{0},110,0Z_{0}) \\ \downarrow \\ (q_{0},10,10Z_{0}) \\ \downarrow \\ (q_{0},0,110Z_{0}) \\ \downarrow \\ (q_{1},0,0Z_{0}) \\ \downarrow \\ (q_{1},\varepsilon,Z_{0}) \\ \downarrow \\ (q_{2},\varepsilon,Z_{0}) \end{array}$$

Properties of computations

- (q,x,α) |--* $(p,y,\beta) \Rightarrow (q,xw,\alpha\gamma)$ |--* $(p,yw,\beta\gamma)$ for all $w \in \Sigma^*, \gamma \in \Gamma^*$
 - i.e. appending a string to end of input or bottom of stack gives another legal computation (these are not examined in computation, so don't matter)
- (q,xw,α) |--* (p,yw,β) ⇒ (q,x,α) |--* (p,y,β)
 i.e. if the computation did not get to the w segment of the input, then it is irrelevant

Example: Proof of language

- $L(A) = \{ ww^R \mid w \in \{0,1\}^* \}$
- Two directions: ⊆ and ⊇
- \supseteq For any string ww^R in the language, show an accepting computation. Formally by induction on length of w, show: (q_0,ww^R,Z_0) |--* (q_0,w^R,w^RZ_0) and (q_1,w^R,w^RZ_0) |--* (q_1,ε,Z_0) Then (q_0,ww^R,Z_0) |--* (q_0,w^R,w^RZ_0) |-- (q_1,ε,Z_0) |-- (q_2,ε,Z_0)
- \subseteq : PDA enters accepting state q_2 only from q_1 when top stack symbol is Z_0 . Suppose (q_0,x,Z_0) |--* (q_1,ϵ,Z_0) |-- (q_2,ϵ,Z_0) , will show $x = ww^R$ for some w.
- Will show by induction on |x| that (q_0,x,α) |--* (q_1,ϵ,α) for some α implies $x=ww^R$ for some w.

Proof ctd.

- Basis: $|x| = 0 \Rightarrow x = \varepsilon \Rightarrow ok$
- Induction step: x= a₁ ...a_n, where n>0
 From ID (q₀,x,α) 2 choices: (q₁,x,α) and (q₀,a₂ ...a_n,a₁α)
- Moves from q_1 consume input and stack symbols, so cannot have (q_1,x,α) |--* $(q_1,\epsilon,\alpha) \Rightarrow 2^{nd}$ choice
- Must have $(q_0,a_2...a_n,a_1\alpha)$ |-- ... |-- $(q_1,a_n,a_1\alpha)$ |-- (q_1,ϵ,α) $\Rightarrow a_n = a_1$. and $(q_0,a_2...a_n,a_1\alpha)$ |--* $(q_1,a_n,a_1\alpha)$ $\Rightarrow (q_0,a_2...a_{n-1},a_1\alpha)$ |--* $(q_1,\epsilon,a_1\alpha)$ (by properties) $\Rightarrow a_2...a_{n-1} = yy^R$ for some y (by induction hypothesis) $\Rightarrow x = ww^R$ for $w = a_1y$

Example: L = $\{0^n1^n | n \ge 0\}$

- Stack with 1 symbol X can be used as a counter that can be incremented (push X), decremented (pop X), tested for 0
- Algorithm: while reading 0's push X's to stack (counter++),
 while reading 1's, pop X's from stack (counter -),
 if Z₀ (bottom-of-stack) accept

Example: Balanced Parentheses

- Examples: (()), () (), (() ()) are balanced
- ((), ())(, ())()) are not balanced
- Essential in many contexts: valid arithmetic expressions, beginning/ends of code blocks: begin—end in Pascal, { } in C
- Extension to different types of parentheses
 - arithmetic expressions
 - tags in markup languages (HTML, XML)
 - beginnings / ends of recursive calls in recursive programs
- Match between corresponding left and right parentheses (of the same type if multiple types), where each right parenthesis matches the first previous unmatched left parenthesis (of the same type)

Example: Balanced Parentheses ctd.

- CFG for balanced parentheses (of one type)
 S → ε | SS | (S)
- Pushdown automaton

Stack symbols Z_0 (bottom-of-stack) and X Algorithm: On a left (, push a X on the stack, on a right) , pop a X from the stack [if top of stack not X then no move: failure] at all times if top= Z_0 , can make ε transition to an accepting state that has no transitions

HW: Translate the algorithm to a formal PDA Extend to parentheses of multiple types