

74= 2 Sdr [giri] - i Sdr winger, - n log Q[iw] why do this?

- no for I inverse needed, can have more cox wer)

or terms ~ [g(r)]3 - Very easy to calculate (ger) g(r')) = (ger)g(r')) in k-gover in Lond. u/ RPA approx for Q, g Will get S(1) for Model A, + Diblocks - Use SH=D to get a relation b/t w(r), g(r) at RPA level
- Eliminate w(r) from H
- Solve (g(11g(r))) as 2 = moment of a Grossian Q[w] = 2 [1-w Zg Ww] 57/2 iger) - 1 Styleting = 0 - ig(n) +ig(r;[iu])=0=ig(n) + g,Ng,Wk Wx = RNg Plug into H: H= 40 E Sk Sk + To I sk Jk Jk + 2NU + St I Ship Serie S-k Sk = 20 = 20 = 1 = 20 = 8/ = a + gNgk

Ok - Up PoNgk	
Z= 20 SD3 R = 20 E 1/2 Su Su Su	(SuSe) = SD3 SuSe = H SD3 = H , 2 Monet of a Graussel
$ S(k) = \sqrt{\frac{1}{5!N_{K}}} = \sqrt{\frac{5}{5!N_{K}}}$	PNG PLANTED THE PROPERTY OF TH
What about diblocks? Basically the s	Tame approach, jest more equations
-Bonding patential	- Incompressibility SIECO-57
- Flory: Bu = 2 Ser 3 (1) 38 (1)	
Use 2 delta foils in Z:	SD94 SD9B S(8461) - 34(1) J [3B(1) - 3B(1)]
Z= 2. SD{sw} = 21, 21= 25 Sdr 5	Pacrisqueri - i Sdr [wy 84 + 48 58] - nlg Q EMAING]
{S, w}= St, So, w, wo, w,	-i Strzwiri
$\mu_{t} = \lambda \omega_{t} + \lambda \omega_{t}$	
MB = i wy + i Wig ing: enforces in compressibility: S.	(c) ~ P - P (c)
Won't need to consider swy Leyens	

As before we assume fields War (+)= W* + d(+), WET) = WE + B(+) NOW WE USE 2 MF egos to relate 2(1) to 5.4(1), So(1) At he look of RPA, partition function + deasity operators are: Q=e e [1-20 [(a)]

Q=e e [1-20 [(a)]

[1-20 [(a)]

[2] [(a)]

[3] [(a)]

[4] [(a)]

[5] [(a)]

[6] [(a)]

[6] [(a)]

[7] [(a)]

[8] [(a)]

[9] [(a)]

[9] [(a)]

[1] [(a)]

[2] [(a)]

[3] [(a)]

[4] [(a)]

[5] [(a)]

[6] [(a)]

[7] [(a)]

[7] [(a)]

[8] [(a)]

[9] [(a)] 9x = go (f,k) 9B = go (1-f,W) 91B = 940(K) St. - n Skako 8 3/(k) = 9.N(g, 0 k + 9/18 Pk) = 9/(6) - fg 8(6) STB(4) = SN(9B PK + 9HB CK) = FB(4)-(1-8/9. S/4) From incompressibility, Squ(L) = - Squ(L) = 9k Oure Mean-Field equations: 524 = ig - 1 Slad = ig - SON (gax + gas /3) =0 () 54 - 18 - 184 - - 18 - 5N (98 /2 + 918 xk) = 0 (2) Solve for BK, Xx to eliminate from the equations

From D: 90 Pk + 918 de = IN Sk B = = 1 52 - 948 a = -196-9. N9 1804 3 My into 0: igh - go N [g ak - g43 igh + go Ng 40 dk] = 0 i (1 + 8N96) Sk - SN94 - SN 8N96 Jak = 0 i (g+ g+ b) gk - gN[g+ gs - g+ b] xk =0 = 10k: Note this is deapnization of 5.34 in ETIP. Prove w/ $q_0(f=1,k) = q_{44} + 2q_{49} + q_{88}$ 0 = i 90 1949 Jk 4 Mug & into 3: B= = 1 5k - 9t : 90+948 Sk $=\frac{-i}{gN}\left(\frac{B_{k}+g_{5}g_{4b}+g_{1b}}{g_{5}B_{k}}\right)g_{k}=\frac{-i}{gN}\left(\frac{g_{4}g_{5}+g_{5}g_{4b}}{g_{5}B_{k}}\right)g_{k}$ B = 3N (9+ 1900) SK Now we go agallell the way bock to H+ plag in W= 2 = i 95+918 Sk W= = -1 PAT915 Sk

$$H = \frac{g_{k}}{g_{k}} \sum_{k} \frac{g_{k}}{g_{k}}$$