Homework-3

Mustafa Tokat

January 10, 2021

1 Introduction

I analyzed several paper together with our lectures during my homework. I studied to understand those, followed step by step entire of the process. Now, we have to 5 problems and will try to solve step by step these.

2 Analysis of problems

2.1 Problem 1

(1) IP(1248842112488421): In this process only place of values change, not themselves of values. We can figure out it with a little codes snippet.

Listing 1: for to permute IP

```
def permutation(ptext, table, nbit):
   permuted = ""
   for i in range(0, nbit):
        permuted = permuted + ptext[table[i]-1]
   return permuted
```

Result: 2211448844882211

- (2) E(84211248): By changing the parameters of the code snippet above, we can find the E permutation.
- Result: 4081028A4251
 - (3) P(12488421): Similarly;

Result: 41010C4A

(4) Si(110011) for i = 1; 2; : : : ; 8: We can use below codes:

Listing 2: for to S-Box

```
for i in range(0,8):
    val = S_BOX[i][3][9]
    sboxTable = sboxTable + dec2bin(val)
```

Result: 1011 0110 1111 0100 1111 1110 0101 1100

2.2 Problem 2

2.2.1

Suppose that $K_1 = K_2 = \cdots = K_{16}$. Show that all bits in C_1 are equal and all bits in D_1 are equal

Key scheduling is exactly independent a process from making ciphertext. The first half of the 56-bit key is left, also its second half is right are called as. At the same time, entire of the this process is logic and can be inversion. Now, we can establish the logical connection. K_i values is generated after from come side by side C_i and D_i values, and this process cocnsists two of two steps. (a) Left-shift and (b) PC2. C_i and D_i values are make left-shift for each round. After new values are permuted with PC2. According to our suppose, if entire of the our keys are same, this mean entire of C_i are same and also D_i are same. I encrypted the 'CryptoEn' to explain with an example. The result is as follow.

```
Plaintext giriniz: CryptoEn
C 1 :
       FFFFFFF D 1:
                       FFFFFFF K 1:
                                      FFFFFFFFFF
       FFFFFF
               D
                       FFFFFF
                               K
                                 2
                                      FFFFFFFFFF
               D
                       FFFFFF
                                      FFFFFFFFFF
               D
                       FFFFFF
                                      FFFFFFFFFFF
               D
                       FFFFFFF
                                 5
                                 6
               D
               D
               D
                 8
                D 10
                                 K
                                   10
                D
                  11
                         FFFFFF
                                 Κ
                                   11
                                         FFFFFFFFFF
 12
        FEFFFF
                  12
                         FEFFFF
                                 K
                                   12
                                         FFFFFFFFFFF
  13
        FFFFFF
                  13
                         FFFFFF
                                 K
                                   13
                                         FFFFFFFFFF
        FFFFFF
                D
                         FFFFFF
                                   14
                                         FFFFFFFFFF
  14
                  14
                D
                   15
                         FFFFFF
                                 K
                                   15
                                         FFFFFFFFFF
                         FFFFFF
                                         FFFFFFFFFFF
  16
                D
                  16
                                 K
                                   16
           00BEA4A3
                       2EA0A9B5
Round
           2EA0A9B5
Round
                       7520B599
Round
           7520B599
                       0A02D290
Round
           0A02D290
                       344FD080
Round
       5
           344FD080
                       50F9FD50
Round
       6
           50F9FD50
                       F254D34A
                                  FFFFFFFFFFF
Round
           F254D34A
                       DB642A76
                                  FFFFFFFFFF
Round
           DB642A76
                       189C3893
                                  FFFFFFFFFF
Round
       9
           189C3893
                       4F603EE3
                                  FFFFFFFFFF
Round
       10
            4F603EE3
                        1A52C542
Round
       11
            1A52C542
                        2F758704
            2F758704
Round
       12
                        2AEAA316
            2AEAA316
                        AE908DF9
Round
       13
Round
       14
            AE908DF9
                        F3101840
Round
            F310184C
                        6A1126A6
Round
       16
            9AC8C838
                        6A1126A6
Plaintext
             43727970746F456E
             FEFEFEFEFEFEFE
Key
Ciphertext:
             20CA0AD5618B9456
```

Figure 1: if K_i values are the same

2.2.2

Show that there are exactly 4 DES keys for which all round keys are the same. They are called weak DES keys.

If we carefully analyze, we can see that dropped 48-bit of PC2 permutation cocnsists its first half from 1-28nth bits and also second half from 29-48nth bits. Therefore, we can easily say that first 24 bits of the K_i values formed from PC2 are left and second 24 bits of the K_i values formed from PC2 are right. The results is follow:

(a) 1F1F1F1F 0E0E0E0E

(b) E0E0E0E0 F1F1F1F1

(c) FEFEFEFE FEFEFEFE

(d) 01010101 01010101

Figure 2: weak Keys

2.2.3

Determine these 4 weak DES keys.

The 4 weak keys were published by NIST in January 2012¹. These are:

- 01010101 01010101
- FEFEFEFE FEFEFEFE
- E0E0E0E0 F1F1F1F1
- 1F1F1F1F 0E0E0E0E

2.3 Problem 3

There are other modes of block cipher besides the ones we have learned. One of these modes is named Plaintext Block Chaining (PBC) Mode. On the encryption side, the following is executed to obtain the nth ciphertext: $Cn := E_k(M_n) \oplus M_{n-1}$. Suppose that we need to encrypt M1,...,M5 using the PBC mode. Show the explicit formulas to obtain C1,...,C5. What do you need to use for M0? Also, show the steps on the decryption side to obtain M1,...,M5.

 M_0 is Initialization Vector(IV). In this case, we can constitue to encryption and decryption formulas:

- for encryption:
 - $\circ C_1 = E_k(M_1) \oplus IV$
 - $\circ C_2 = E_k(M_2) \oplus M_1$
 - $\circ C_3 = E_k(M_3) \oplus M_2$
 - $\circ C_4 = E_k(M_4) \oplus M_3$
 - $\circ C_5 = E_k(M_5) \oplus M_4$

Interestingly, we continue toward from start to end in order to decryption, because decryption process continue toward from end to start in some algorithm.

 $^{^1\}mathrm{Recommendation}$ for the Triple Data Encryption Algorithm (TDEA) Block Cipher, NIST, January 2012, p.11

• for decryption:

$$\circ M_1 = D_k(C_1) \oplus IV$$

$$\circ M_2 = D_k(C_2) \oplus C_1$$

$$\circ M_3 = D_k(C_3) \oplus C_2$$

$$\circ M_4 = D_k(C_4) \oplus C_3$$

$$\circ M_5 = D_k(C_5) \oplus C_4$$

2.4 Problem 4

Consider the AES/Rijndael algorithm and its Galois field GF(28)

2.4.1 Compute the sum (a7) + (5c) in $GF(2^8)$

At first, we should convert these hex values to binary numbers.

$$(a7) = 10100111$$

$$(5c) = 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0$$

After, we should write to binary numbers as polynomial and should sum to this polynomials(indeed XOR);

$$(x^7 + x^5 + x^2 + x^1 + 1) \oplus (x^6 + x^4 + x^3 + x^2)$$
$$= x^7 + x^6 + x^5 + x^4 + x^3 + x^1 + 1$$

Now, we should convert these polynomials to binary numbers.

$$=\underbrace{1111}_{f}\underbrace{1011}_{b}$$

$$\underline{Result} = (a7) + (5c) = (fb)$$

2.4.2 Compute the product (a7) \times (5c) in GF(2⁸)

At first, we should convert these hex values to binary numbers.

$$(a7) = 10100111$$

$$(5c) = 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0$$

Besides, I want to solve with two method.

First method

$$(x^7 + x^5 + x^2 + x^1 + 1) \times (x^6 + x^4 + x^3 + x^2)$$

$$= x^{13} + x^{11} + x^{10} + x^9 + x^{11} + x^9 + x^8 + x^7 + x^8 + x^6 + x^5 + x^4 + x^7 + x^5 + x^4 + x^3 + x^6 + x^4 + x^3 + x^2$$

$$= x^{13} + x^{10} + x^4 + x^2$$

And now, I will divide to $p(x) = x^8 + x^4 + x^3 + x + 1$

$$=x^5 + x^4 + x^2 + 1$$

Now, we will convert it to binary numbers;

$$=\underbrace{00110101}_{3}$$

Result: $(a7) \times (5c) = (35)$

Second method

At first, we are convert to $x^{13} + x^{10} + x^4 + x^2$ polynomial to binary numbers and will write its under;

 $\underline{1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1}$

 $0\; 0\; 0\; 1\; 1\; 1\; 0\; 1\; 1\; 1\; 0\; 1\; 0\; 0\\$

 $\underline{0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1}$

 $0\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 0\; 1\; 1\; 0\\$

 $\underline{0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1}$

 $0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 1\; 1\; 1\; 0$

 $\underline{0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1}$

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 0\; 1\; 0\; 1$

We take to last 8 numbers and convert it hex number;

$$\underbrace{\frac{0011}{3}}_{3} \underbrace{\frac{0101}{5}}_{5}$$

$$\underline{\text{Result: }}_{(a7)} \ge (5c) = (35)$$

2.4.3 Compute S(a7)

I will explain in details solving of this question in next question, for this reason I prefer to solve by looking to the table.

$$\underline{Result:} S(a7) = (5c)$$

		У															
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
х	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3£	£7	CC	34	a5	e 5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
	8	cd	O	13	ec	5f	97	44	17	c4	a 7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	<mark>8</mark>	37	6d	8d	đ5	4e	a 9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a 6	b4	С6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	ce	55	28	df
	f	8c	a1	89	0d	bf	e 6	42	68	41	99	2d	0f	b0	54	bb	16

Figure 3: The SubByte S-Box

2.4.4 Compute $S^{-1}(5c)$

We will try to find on the c=A.b+d formula. In this formula, if $a(x)\neq 0$ we will compute multiplicative inverse. After, the value found will equal to b(x).

2.5 Problem 5

deded