■ NetApp

How FPolicy works

ONTAP 9

NetApp June 13, 2023

This PDF was generated from https://docs.netapp.com/us-en/ontap/nas-audit/two-parts-fpolicy-solution-concept.html on June 13, 2023. Always check docs.netapp.com for the latest.

Table of Contents

Н	low FPolicy works	1
	What the two parts of the FPolicy solution are	1
	What synchronous and asynchronous notifications are	1
	Roles that cluster components play with FPolicy implementation	2
	How FPolicy works with external FPolicy servers	2
	What the node-to-external FPolicy server communication process is	4
	How FPolicy services work across SVM namespaces	6

How FPolicy works

What the two parts of the FPolicy solution are

FPolicy is a file access notification framework that is used to monitor and manage file access events on storage virtual machines (SVMs).

There are two parts to an FPolicy solution. The ONTAP FPolicy framework manages activities on the cluster and sends notifications to external FPolicy servers. External FPolicy servers process notifications sent by ONTAP FPolicy.

The ONTAP framework creates and maintains the FPolicy configuration, monitors file events, and sends notifications to external FPolicy servers. ONTAP FPolicy provides the infrastructure that allows communication between external FPolicy servers and storage virtual machine (SVM) nodes.

The FPolicy framework connects to external FPolicy servers and sends notifications for certain file system events to the FPolicy servers when these events occur as a result of client access. The external FPolicy servers process the notifications and send responses back to the node. What happens as a result of the notification processing depends on the application and whether the communication between the node and the external servers is asynchronous or synchronous.

What synchronous and asynchronous notifications are

FPolicy sends notifications to external FPolicy servers via the FPolicy interface. The notifications are sent either in synchronous or asynchronous mode. The notification mode determines what ONTAP does after sending notifications to FPolicy servers.

· Asynchronous notifications

With asynchronous notifications, the node does not wait for a response from the FPolicy server, which enhances overall throughput of the system. This type of notification is suitable for applications where the FPolicy server does not require that any action be taken as a result of notification evaluation. For example, asynchronous notifications are used when the storage virtual machine (SVM) administrator wants to monitor and audit file access activity.

If an FPolicy server operating in asynchronous mode experiences a network outage, FPolicy notifications generated during the outage are stored on the storage node. When the FPolicy server comes back online, it is alerted of the stored notifications and can fetch them from the storage node. The length of time the notifications can be stored during an outage is configurable up to 10 minutes.

Synchronous notifications

When configured to run in synchronous mode, the FPolicy server must acknowledge every notification before the client operation is allowed to continue. This type of notification is used when an action is required based on the results of notification evaluation. For example, synchronous notifications are used when the SVM administrator wants to either allow or deny requests based on criteria specified on the external FPolicy server.

Synchronous and asynchronous applications

There are many possible uses for FPolicy applications, both asynchronous and synchronous.

Asynchronous applications are ones where the external FPolicy server does not alter access to files or directories or modify data on the storage virtual machine (SVM). For example:

- · File access and audit logging
- · Storage resource management

Synchronous applications are ones where data access is altered or data is modified by the external FPolicy server. For example:

- · Quota management
- · File access blocking
- · File archiving and hierarchical storage management
- · Encryption and decryption services
- · Compression and decompression services

Roles that cluster components play with FPolicy implementation

The cluster, the contained storage virtual machines (SVMs), and data LIFs all play a role in an FPolicy implementation.

cluster

The cluster contains the FPolicy management framework and maintains and manages information about all FPolicy configurations in the cluster.

· SVM

An FPolicy configuration is defined at the SVM level. The scope of the configuration is the SVM, and it only operates on SVM resources. One SVM configuration cannot monitor and send notifications for file access requests that are made for data residing on another SVM.

FPolicy configurations can be defined on the admin SVM. After configurations are defined on the admin SVM, they can be seen and used in all SVMs.

· data LIFs

Connections to the FPolicy servers are made through data LIFs belonging to the SVM with the FPolicy configuration. The data LIFs used for these connections can fail over in the same manner as data LIFs used for normal client access.

How FPolicy works with external FPolicy servers

How FPolicy works with external FPolicy servers overview

After FPolicy is configured and enabled on the storage virtual machine (SVM), FPolicy runs on every node on which the SVM participates. FPolicy is responsible for establishing and maintaining connections with external FPolicy servers (FPolicy servers), for notification processing, and for managing notification messages to and from FPolicy

servers.

Additionally, as part of connection management, FPolicy has the following responsibilities:

- Ensures that file notification flows through the correct LIF to the FPolicy server.
- Ensures that when multiple FPolicy servers are associated with a policy, load balancing is done when sending notifications to the FPolicy servers.
- Attempts to reestablish the connection when a connection to an FPolicy server is broken.
- Sends the notifications to FPolicy servers over an authenticated session.
- Manages the passthrough-read data connection established by the FPolicy server for servicing client requests when passthrough-read is enabled.

How control channels are used for FPolicy communication

FPolicy initiates a control channel connection to an external FPolicy server from the data LIFs of each node participating on a storage virtual machine (SVM). FPolicy uses control channels for transmitting file notifications; therefore, an FPolicy server might see multiple control channel connections based on SVM topology.

How privileged data access channels are used for synchronous communication

With synchronous use cases, the FPolicy server accesses data residing on the storage virtual machine (SVM) through a privileged data access path. Access through the privileged path exposes the complete file system to the FPolicy server. It can access data files to collect information, to scan files, read files, or write into files.

Because the external FPolicy server can access the entire file system from the root of the SVM through the privileged data channel, the privileged data channel connection must be secure.

How FPolicy connection credentials are used with privileged data access channels

The FPolicy server makes privileged data access connections to cluster nodes by using a specific Windows user credential that is saved with the FPolicy configuration. SMB is the only supported protocol for making a privileged data access channel connection.

If the FPolicy server requires privileged data access, the following conditions must be met:

- · A SMB license must be enabled on the cluster.
- The FPolicy server must run under the credentials configured in the FPolicy configuration.

When making a data channel connection, FPolicy uses the credential for the specified Windows user name. Data access is made over the admin share ONTAP_ADMIN\$.

What granting super user credentials for privileged data access means

ONTAP uses the combination of the IP address and the user credential configured in the FPolicy configuration to grant super user credentials to the FPolicy server.

Super user status grants the following privileges when the FPolicy server accesses data:

· Avoid permission checks

The user avoids checks on files and directory access.

· Special locking privileges

ONTAP allows read, write, or modify access to any file regardless of existing locks. If the FPolicy server takes byte range locks on the file, it results in immediate removal of existing locks on the file.

Bypass any FPolicy checks

Access does not generate any FPolicy notifications.

How FPolicy manages policy processing

There might be multiple FPolicy policies assigned to your storage virtual machine (SVM); each with a different priority. To create an appropriate FPolicy configuration on the SVM, it is important to understand how FPolicy manages policy processing.

Each file access request is initially evaluated to determine which policies are monitoring this event. If it is a monitored event, information about the monitored event along with interested policies is passed to FPolicy where it is evaluated. Each policy is evaluated in order of the assigned priority.

You should consider the following recommendations when configuring policies:

- When you want a policy to always be evaluated before other policies, configure that policy with a higher priority.
- If the success of requested file access operation on a monitored event is a prerequisite for a file request
 that is evaluated against another policy, give the policy that controls the success or failure of the first file
 operation a higher priority.

For example, if one policy manages FPolicy file archiving and restore functionality and a second policy manages file access operations on the online file, the policy that manages file restoration must have a higher priority so that the file is restored before the operation managed by the second policy can be allowed.

• If you want all policies that might apply to a file access operation to be evaluated, give synchronous policies a lower priority.

You can reorder policy priorities for existing policies by modifying the policy sequence number. However, to have FPolicy evaluate policies based on the modified priority order, you must disable and reenable the policy with the modified sequence number.

What the node-to-external FPolicy server communication process is

To properly plan your FPolicy configuration, you should understand what the node-to-external FPolicy server communication process is.

Every node that participates on each storage virtual machine (SVM) initiates a connection to an external FPolicy server (FPolicy server) using TCP/IP. Connections to the FPolicy servers are set up using node data LIFs; therefore, a participating node can set up a connection only if the node has an operational data LIF for

the SVM.

Each FPolicy process on participating nodes attempts to establish a connection with the FPolicy server when the policy is enabled. It uses the IP address and port of the FPolicy external engine specified in the policy configuration.

The connection establishes a control channel from each of the nodes participating on each SVM to the FPolicy server through the data LIF. In addition, if IPv4 and IPv6 data LIF addresses are present on the same participating node, FPolicy attempts to establish connections for both IPv4 and IPv6. Therefore, in a scenario where the SVM extends over multiple nodes or if both IPv4 and IPv6 addresses are present, the FPolicy server must be ready for multiple control channel setup requests from the cluster after the FPolicy policy is enabled on the SVM.

For example, if a cluster has three nodes—Node1, Node2, and Node3—and SVM data LIFs are spread across only Node2 and Node3, control channels are initiated only from Node2 and Node3, irrespective of the distribution of data volumes. Say that Node2 has two data LIFs—LIF1 and LIF2—that belong to the SVM and that the initial connection is from LIF1. If LIF1 fails, FPolicy attempts to establish a control channel from LIF2.

How FPolicy manages external communication during LIF migration or failover

Data LIFs can be migrated to data ports in the same node or to data ports on a remote node.

When a data LIF fails over or is migrated, a new control channel connection is made to the FPolicy server. FPolicy can then retry SMB and NFS client requests that timed out, with the result that new notifications are sent to the external FPolicy servers. The node rejects FPolicy server responses to original, timed-out SMB and NFS requests.

How FPolicy manages external communication during node failover

If the cluster node that hosts the data ports used for FPolicy communication fails, ONTAP breaks the connection between the FPolicy server and the node.

The impact of cluster failover to the FPolicy server can be mitigated by configuring the LIF manager to migrate the data port used in FPolicy communication to another active node. After the migration is complete, a new connection is established using the new data port.

If the LIF manager is not configured to migrate the data port, the FPolicy server must wait for the failed node to come up. After the node is up, a new connection is initiated from that node with a new Session ID.

The FPolicy server detects broken connections with the keep-alive protocol message. The timeout for purging the session ID is determined when configuring FPolicy. The default keep-alive timeout is two minutes.

How FPolicy services work across SVM namespaces

ONTAP provides a unified storage virtual machine (SVM) namespace. Volumes across the cluster are joined together by junctions to provide a single, logical file system. The FPolicy server is aware of the namespace topology and provides FPolicy services across the namespace.

The namespace is specific to and contained within the SVM; therefore, you can see the namespace only from the SVM context. Namespaces have the following characteristics:

- A single namespace exists in each SVM, with the root of the namespace being the root volume, represented in the namespace as slash (/).
- All other volumes have junction points below the root (/).
- Volume junctions are transparent to clients.
- A single NFS export can provide access to the complete namespace; otherwise, export policies can export specific volumes.
- SMB shares can be created on the volume or on qtrees within the volume, or on any directory within the namespace.
- The namespace architecture is flexible.

Examples of typical namespace architectures are as follows:

- A namespace with a single branch off of the root
- · A namespace with multiple branches off of the root
- A namespace with multiple unbranched volumes off of the root

Copyright information

Copyright © 2023 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.