

Práctico 5: Álgebras de Boole, Decrecientes e Irreducibles.

```
Ejercicio 1
Ejercicio 2 (no completado)
Ejercicio 3
   a)
   b)
Ejercicio 4 (no completado)
Ejercicio 5
   a)
   b)
   C)
Ejercicio 6
   a)
   (completado a media)
Ejercicio 7
   a)
   b)
```

Ejercicio 1

Probar que todo átomo es irreducible.

Haber intuitivamente, es bastante obvio no? Porque un irreducible cubre exactamente 1 elemento, y un átomo también solo que tiene la particularidad que cubre a 0.

Entonces tratemos de demostrarlo formalmente:

Queremos demostrar que si a es un átomo, entonces a es irreducible.

Supongamos que a es un átomo en el reticulado L, y que $a=x \land y$ para algún $x,y \in L$.

Debemos probar que a=x o a=y.

Dado que a es un átomo, podemos usar la definición de átomo: no hay ningún elemento estrictamente entre 0 y a, es decir, si $a \le x$, entonces x=a o x=1.

Caso 1:

Supongamos que $a=x \land y$ y que a< x. Entonces, por la definición de átomo, se tiene que x=a, ya que a cubre a 0.

Caso 2:

De manera similar, si a<y, entonces y=a por lo visto anteriormente.

Como consecuencia, si $a=x \land y \ y \ a \neq x$, entonces debe ser a=y, entonces debe ser a=x.

Por lo tanto, hemos demostrado que si $a=x \land y$, entonces a=x o a=y, lo que implica que a es irreducible.

Por lo tanto podemos demostrar que todo átomo es irreducible en un reticulado.

Ejercicio 2 (no completado)

Sea L un reticulado. Demostrar que si $x \in L$ es irreducible y x1, ..., xn $\in L$ son todos distintos de x, entonces $x \in L$ es irreducible y x1, ..., xn}.

Ejercicio 3

Determine si se cumplen las siguientes relaciones de isomorfismo.

a)

D2310 \sim = P({a, b, c, d, e}).

Si son isomorfos tienen la misma descomposición.

Entonces la descomposición en primos de 2310 = 2 * 3 * 5 * 7 * 11

Y como tienen la misma cantidad de átomos son isomorfos.

Ahora definimos nuestra función biyectiva:

- a → 2
- $b \rightarrow 3$
- $c \rightarrow 5$
- $d \rightarrow 7$
- $e \rightarrow 11$

Entonces un divisor de 2310 como por ejemplo, (5 * 7 * 11) se podría mapear con $(\{c, d, e\})$

Ahora nos falta ver si preserva la relación de orden.

- Relación de orden de 2310
 - Los elementos son los divisores de 2310, y el orden se define mediante la relación de divisibilidad. Es decir, para dos divisores d1 y d2 de 2310, se dice que d1≤d2 si y solo si d1 divide a d2.
 - Es decir, los factores primos de d1son un subconjunto de los factores primos de d2.
- Relación de orden de {a, b, c, d, e}
 - Los elementos son los subconjuntos de {a,b,c,d,e}, y el orden se define mediante la relación de inclusión. Es decir, para dos subconjuntos A y B, se dice que A≤B si y solo si A⊆B.

Para preservar el orden, necesitamos que si un divisor d1 divide a d2 en D2310, entonces el subconjunto correspondiente a d1 debe estar contenido en el subconjunto correspondiente a d2 en P({a,b,c,d,e}).

Descomponemos 90 en factores primos:

$$90 = 2 * 3^2 * 5$$

Como tenemos un 3², los átomos de D90 serian: 2, 3 y 5

y los átomos de P({a, b, c, d}) son: a, b, c, y d.

Por lo tanto como no tienen la misma cantidad de átomos no son isomorfos.

Ejercicio 4 (no completado)

Probar que \emptyset es decreciente y que si D1 y D2 son decrecientes entonces D1 \cup D2 también lo es.

Ejercicio 5

Considere los reticulados L3, L6 y L7 dibujados en el Practico 4.

Recordemos a L3, L6, Y L7:

a)

Halle en cada caso At(L).

Los marcado en rojo son los átomos:

b)

Dibuje en cada caso el diagrama de Hasse de P(At(L)).

c)

Ahora usando esta información, determine cuales de ellos eran álgebras de Boole.

Recordemos que un álgebra de boole es un reticulado, acotado, complementado y distributivo.

- L3 →
 - Reticulado (y si lo dice el ejercicio pa)
 - Acotado → Si, ya que tiene dos elementos, el de arriba el mas grande y el de abajo el mas chico.
 - Complementado → Si. Todos sus elementos tienen complemento.
 - Distributivo → Si, ya que no tiene subreticulos isomorfos a M3 y N5.
- L6 →
 - Reticulado (y si lo dice el ejercicio pa)
 - Acotado → Si, se puede ver en el grafico que tiene un elementos mas chico y otro mas grande.

- Complementado → No, ya que los elementos del costado, no tienen complemento.
- L7 →
 - Reticulado (y si lo dice el ejercicio pa)
 - Acotado → Si, también se observa en el diagrama.
 - Complementado → No, ya que el del medio no tiene complemento

Por lo tanto L3 es un álgebra de boole, los otros no, porque no cumplen las condiciones.

Ejercicio 6

a)

Defina de manera explicita el mapa F del Teorema de Representación de Álgebras de Boole finitas para el Álgebra de Boole D30.

b) (completado a media)

De una caracterización de dicho mapa F para los Dn con n un producto de primos distintos.

Suponemos que podemos escribir n = p1 * p2 * p3 * pk, donde p1 * p2 * p3 * pk son primos diferentes.

Estos primos serian los átomos del mapa.

La combinación de cada subconjunto de estos k primos, son parte del mapa.

Un quilombo generalizarlo bldo.

Que ejercicio choto.

Ejercicio 7

Para los reticulados L4, L6 y L10 dibujados en el Practico 4:

Recordemos a L4, L6 Y L10:

a)

Señale en el diagrama los elementos irreducibles.

b)

En cada caso, dibujar el diagrama de Hasse de los irreducibles con el orden heredado.

En el diagrama se muestras marcado los irreducibles y abajo el diagrama de hasse de los irreducibles con el orden heredado. Los números son diferentes porque agarre otra imagen y no me di cuenta.

