Name:			
Instruct	or.		

Math 10560, Quiz Tutorial 1 January 24, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.

PLE	ASE MA	ARK YOUR ANS	WERS WIT	H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)

Name: Instructor:

Multiple Choice

1.(6 pts) The function

$$f(x) = 4 + 2x + \ln(x)$$

is a one-to-one function (there is no need to check this). What is $(f^{-1})'(6)$?

- (a) $\frac{1}{3}$

- (b) $\frac{1}{7}$ (c) 3 (d) $\frac{3}{2}$ (e) $\frac{1}{2}$

2.(6 pts) Use logarithmic differentiation to compute the derivative of the function

$$y = \frac{2^x(x^3 + 2)}{\sqrt{x - 1}}.$$

- (a) $\frac{dy}{dx} = \frac{\ln 2}{2} \left[\frac{2^x (x^3 + 2)}{\sqrt{x 1}} \right] \left[\frac{(3x^2)(x 1)}{x^3 + 2} \right]$
- (b) $\frac{dy}{dx} = \left[\frac{2^x(x^3+2)}{\sqrt{x-1}} \right] \left[\frac{x + \ln(x^3+2)}{\ln(\sqrt{x-1})} \right]$
- (c) $\frac{dy}{dx} = \ln 2 + \frac{3x^2}{x^3 + 2} \frac{1}{2(x-1)}$
- (d) $\frac{dy}{dx} = \frac{2^x(x^3+2)}{\sqrt{x-1}} \left[\ln 2 + \frac{3x^2}{x^3+2} \frac{1}{2(x-1)} \right]$
- (e) $\frac{dy}{dx} = \frac{2^x(x^3+2)}{\sqrt{x-1}} \left[\frac{(2^{x+1}\ln 2)(3x^2)\sqrt{x-1}}{(x^3+2)} \right]$

Name: ______
Instructor: _____

3.(6 pts) Compute the integral

$$\int_{1}^{5} \frac{1}{(1+x^2)\tan^{-1}(x)} dx.$$

- (a) $\ln(\pi/3) \ln(\pi/4)$
- (b) $\ln(\tan^{-1}(5))$
- (c) $\ln(\tan^{-1}(5)) \ln(\pi/4)$
- (d) $-\ln(\tan(5))$
- (e) $\frac{\ln(5)}{2}$

4.(6 pts) Find the derivative of $(x^2 + 1)^{x^2+1}$.

- (a) $(x^2+1)^{x^2+1} 2x(\ln(x^2+1)+1)$
- (b) $(x^2+1)^{x^2+1}(2x\ln(x^2+1))$
- (c) $2x(x^2+1)^{x^2}$
- (d) This function is not defined and hence has no derivative.
- (e) $(x^2+1)^{x^2+1}$

Name: ______Instructor:

5.(6 pts) Which of the following is true about $y = f(x) = x \ln(x), x > 0$.

- (a) The function is increasing for all x and concave up for all x > 0
- (b) The function is decreasing for 0 < x < e, increasing for x > e, and concave up for all x > 0
- (c) The function is concave down for all x > 0
- (d) The function is decreasing for $0 < x < \frac{1}{e}$, increasing for $x > \frac{1}{e}$, and concave up for all x > 0
- (e) The function is decreasing for 0 < x < 1, increasing for x > 1, and concave up for all x > 0

The following is the list of useful trigonometric formulas:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\int \sec \theta = \ln|\sec \theta + \tan \theta| + C$$

Name:		
- .	ANGINEDO	

Instructor: <u>ANSWERS</u>

Math 10560, Quiz Tutorial 1 January 24, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(ullet)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(•)	(e)	
3.	(a)	(b)	(•)	(d)	(e)	
4.	(●)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(•)	(e)	