

Traitement et Analyse d'Images

Apprentissage profond Réseaux de neurones convolutionnels

Analyse d'images par réseaux de neurones

Perceptron multicouches (MLP)

- Vectorisation d'une image en entrée
- Image 256 x 256

$$x^{(i)} \in \mathbb{R}^{[65536 \times 1]}$$

• Réseau à 1 couches cachée avec $n^{[1]} = n_X$

Beaucoup de paramètres pour des réseaux peu profonds

Analyse d'images par réseaux de neurones

- Comment adapter les réseaux de neurones aux images ?
 - Exploitation de la notion de convolution

- Paramètres partagés
- Connectivité locale

Moins de paramètres pour des architectures plus profondes

Convolutions, cartes de caractéristiques, champ réceptif (*receptive field*)

Rappel sur la convolution

30	3,	2_2	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} * \begin{pmatrix} 3 & 3 & 2 & 1 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 3 & 1 & 2 & 2 & 3 \\ 2 & 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 12 & 17 \\ 10 & 17 & 19 \\ 9 & 6 & 14 \end{pmatrix}$$

filtre

image

sortie

$$G = h * F$$
 $G[i,j] = \sum_{u=-k}^{\kappa} \sum_{v=-k}^{\kappa} h[u,v]F[i-u,j-v]$

☐ Briques fondamentales - convolution

Remplissage / Padding

Sans padding Dimensions spatiales réduites

Avec padding
Dimensions spatiales préservées

☐ Briques fondamentales - convolution

Pas / Stride

Stride = 1
Dimensions spatiales préservées

Stride = 2
Dimensions spatiales réduites

Réseaux de neurones convolutionnels

Paramètres d'apprentissage - poids de chaque filtre

• Ex. filtre de taille 3×3

$$# param = 3 \times 3 \times 3 + 1$$
$$= 28$$

Conv

filtrage de l'image d'entrée + fonction d'activation

feature map / canal

Réseaux de neurones convolutionnels

Plusieurs *feature maps* (canaux) par couche

• Ex. filtre de taille 3×3

$$param$$

= $32 \times (3 \times 3 \times 3 + 1)$
= 896

Réseaux de neurones convolutionnels

Approche multicouches

Réseaux de neurones convolutionnels

Approche multicouches

• Ex. filtre de taille 3×3

$$param$$

= $32 \times (3 \times 3 \times 32 + 1)$
= 9248

Réseaux de neurones convolutionnels

- ► Approche multicouches
 - Taille du filtre = nombre de canaux d'entrée
 - Nombre de canaux de sortie = nombre de filtres
 - Noyau d'une convolution
 2D est un filtre 3D
 - Noyau d'une convolution
 3D est un filtre 4D

Pooling

- Réduction de la résolution spatiale des canaux (feature maps)
- Diminution de l'empreinte mémoire / coût calculatoire
- Invariance pour de petites translations, rotations et changements d'échelle
- Appliqué individuellement à chaque canal d'entrée

Max pooling

135	212	189	56
164	201	204	145
30	126	189	156
36	45	38	12

212	204
126	189

Convolution dilatée (à trous)

- Augmente la taille du filtre en rajoutant des espaces entres les éléments
- Contrôle par le paramètre de dilatation d
- Réduit la dimension spatiale des feature maps en sortie

Proche de l'opération de pooling mais ici des paramètres doivent être appris

Champ réceptif / Receptive field

Région de l'image d'entrée qui affecte la valeur d'un neurone d'une couche

Champ réceptif / Receptive field

- Un champ réceptif large est nécessaire pour capturer une information de contexte spatial
- Au prix du nombre de paramètres
- Le champ réceptif augmente avec la profondeur d'un réseau

Comment avoir un champ réceptif large sans un nombre trop élevé de paramètres ?

Applications

Classification d'images

Classification d'images

Chien - 10%

Chat - 85%

Cheval - 5%

Chaise - 0%

Prédire une seule classe (ou une distribution de probabilité sur un ensemble de classes) pour une image donnée

L Classification d'images

Difficultés

Ce que voit un humain

Ce que voit un ordinateur

D'autres difficultés

Point de vue d'observation

Conditions d'illumination

Variation d'échelle

Déformation

Occlusion

Variation intra-class

Simple pour un humain, qu'en est-il pour un ordinateur?

Applications

L Classification d'images

- Challenge en classification d'images (2010 → 2017)
- 1 000 classes d'objet à reconnaitre
- 1 431 167 images

ImageNet

Classement annuel

AlexNet [Krizhevsky, NIPS, 2012]

AlexNet [Krizhevsky, NIPS, 2012]

AlexNet [Krizhevsky, NIPS, 2012]

- Premier modèle à bien performer sur la base de données ImageNet
- Exploite des techniques encore utilisées (ReLU, augmentation de données, dropout)
- Utilise des GPU pour l'entrainement

Responsable de la révolution de l'apprentissage profond en vision par ordinateur

Input		
11 x 11 conv, 96		
5 x 5 conv, 256		
Pool		
3 x 3 conv, 384		
Pool		
3 x 3 conv, 384		
3 x 3 conv, 256		
Pool		
FC 4096		
FC 4096		
FC 1000		
Softmax		

VGG [Simonyan and Zisserman, arxiv, 2014]

VGG [Simonyan and Zisserman, arxiv, 2014]

Architecture plus simple

Convolutions 3×3 , ReLU et max pooling 2×2

Réseau plus profond

19 couches (8 couches pour AlexNet)

• Idée clé:

Mettre en cascade 2 convolutions 3×3 produit le même champ réceptif qu'un convolution 5×5 mais avec moins de paramètres

lament
Input
3 x 3 conv, 64
3 x 3 conv. 64
Pool
3 x 3 conv, 128
3 x 3 conv. 128
Pool
3 x 3 conv, 256
3 x 3 conv. 256
Pool
3 x 3 conv, 512
3 x 3 conv. 512
3 x 3 conv, 512
3 x 3 conv. 512
Pool
3 x 3 conv, 512
3 x 3 conv. 512
3 x 3 conv, 512
3 x 3 conv, 512
Pool
FC 4096
FC 4096
FC 1000
Softmax

GoogLeNet (Inception v1) [Szegedy, CVPR, 2015]

GoogLeNet (Inception v1) [Szegedy, CVPR, 2015]

Réseau entièrement repensé pour être très profond

Inception module

- Choix pour chaque couche
 - Convolution ou pooling ?
 - Si convolution, quelle taille de filtre ?

Inception module – Idée clé

- Calculer toutes les sorties en parallèle
- Concaténation des résultats
- Laisser l'apprentissage choisir !

Problème: cela produit trop de sorties et de paramètres

Inception module – Idée clé

 \triangleright Convolution 1 \times 1

Réduction de la dimension pour K<F

Agit comme une fonction de « feature pooling » que l'on peut apprendre

Inception module – Idée clé

Réduction des dimensions via l'utilisation de couches d'étranglement composées de convolutions 1×1

L Classification d'images

Efficacité

AlexNet

8 couches # param ~ 62M

GoogLeNet

22 couches # param ~ 5M

GoogLeNet possède 12x moins de paramètres qu'AlexNet!

ResNet [He, CVPR, 2016]

ResNet [He, CVPR, 2016]

Que se passe t'il pour un réseau encore plus profond ?

Erreurs d'entrainement et de test plus grandes !

Problème d'optimisation (vanishing gradient)

ResNet [He, CVPR, 2016]

► Idée clé

Estimer le résidu plutôt que la transformation

- Avantages
 - Modélisation de moins d'information, potentiellement plus simple à apprendre
 - Connections résiduelles préservent le flux de gradient lors de la propagation arrière
 - Conception d'architectures très profondes (> 100 couches)

DenseNet (Densely connected) [Huang, CVPR, 2017]

► Idée clé

Les features calculées dans une couche sont concaténées avec les entrées de toutes les autres couches d'un bloc

Applications

Segmentation sémantique

Segmentation sémantique d'images

► Prédire la bonne classe pour chaque pixel d'une image

Image d'entrée

Segmentation

Peut-être vu comme un problème de classification dense et structuré

Fully-CNN: de la classification à la segmentation

Fully-CNN

Génération de cartes de segmentation très grossières

Ajout d'opérations de sur-échantillonnage à la fin du

Opération de sur-échantillonnage

Padding 2, stride = 1

Dimensions spatiales augmentées

Architectures de type encodeur / decodeur

Résolution spatiale perdue durant le sous-échantillonnage

Ajout de « skip connections » entre l'encodeur et le

U-Net

- Méthode basée sur l'architecture U-Net
 - Mise en forme automatique de la base de données
 - Planification des patchs / topologie de réseaux / batchs
 - Stratégie efficace de généralisation des réseaux
 - ✓ Augmentation de données en entrainement et en inférence
 - ✓ Nombre d'itération maximum
 - ✓ Décroissance progressive du taux d'apprentissage
 - ✓ Fusion de résultats de plusieurs U-Net

- Mise en forme automatique de la base de données
 - Rééchantillonnage de l'ensemble de la base de données suivant la résolution médiane
 - ✓ Permet de travailler sur des images homogènes vis-à-vis des dimensions physiques
 - Normalisation des intensités
 - ✓ Tiens compte uniquement des pixels non nulles.
 - ****

- Planification des patches / topologies de réseaux / mini-batch
 - Dimensionnement en tenant compte de la capacité du GPU
 - Données d'entrées: patches de taille maximale
 - ✓ permet d'éviter de redimensionner les images

Patches

Dimensions max.

Topologie de réseaux

Profondeur max.

Jusqu'à feature map 2x2

Mini-batch

Taille min. = 2

- Stratégie de généralisation des réseaux
 - Sélection aléatoire de patch dans chaque image lors de la création des batch
 - 1000 epoch avec 250 itérations par epoch
 - ✓ On ne verra pas toute la bd par epoch => bagging!
 - Décroissance progressive du taux d'apprentissage au cours des epochs
 - ✓ Convergence progressive vers un optimum

- Stratégie de généralisation des réseaux
 - Augmentation de données lors de la génération de batch
 - ✓ Rotation, changement d'échelle, effet miroir
 - ✓ Changement d'intensité, floutage gaussien, contraste, luminosité
 - Augmentation de données en inférence
 - ✓ Segmentation d'une image et de ses versions miroir
 - ✓ Moyennage des résultats obtenus après effet miroir inverse pour filtrer les zones incertaines

- ► Pour la segmentation d'images 3D
 - Apprentissages indépendants de plusieurs réseaux
 - ✓ U-Net 2D / patches 2D
 - ✓ U-Net 3D / patches 3D
 - ✓ U-Net 3D / volumes entiers sous résolus
 - Approche de type Boosting
 - ✓ Moyennage des résultats de deux architectures sur la base de données de validation au cours de l'apprentissage
 - ✓ La meilleure combinaison de réseaux est utilisée en inférence

- Segmentation en inférence
 - Utilisation d'une fenêtre glissante
 - ✓ Patches avec un chevauchement de la moitié de la taille du patch
 - ✓ Moyennage des résultats obtenus

Modélisation de l'image d'entrée

Architecture basée sur ResNet

Projection / réduction de dimensionnalité

Création d'information

Expansion de l'info au travers de canaux

Régularisation

► Architecture asymétrique

- Performances
 - Qualité de segmentation équivalente voir meilleure que l'état de l'art en apprentissage profond
 - # paramètres: 0.37 M
 - Taille du réseau < 6 MB

Tem	nps d'exécution (NVIDIA TitanX)	640x360 px	7 ms
		1280x720 px	21 ms
		1920x1080 px	46 ms

Applications

Détection d'objets

Détection d'objets

Image d'entrée

Classes détectées

Trouver les objets/classes présents dans une image ainsi que leur localisation

L Objets détection

R-CNN (Region-CNN)

Phase d'entrainement

Plusieurs étapes d'entrainement (CNN, SVM, régression boites englobantes)

L Objets détection

R-CNN

Extraction de régions

Méthode classique par graphe

Génération non négligeable de mauvais candidats

R-CNN (Region-CNN)

Phase d'inférence

 Extraction des propositions de régions

Inférences sur 2000 régions

Très lent ($\sim 50 s$ par image)

• 20x plus rapide que R-CNN en inférence!

Extraction de proposition de régions reste un point faible de la méthode

Faster R-CNN

Réseau de proposition de régions intégré

Réseau global entrainable de bout en bout!

 $W \times H \times 9$ régions détectées

Performance d'exécution (phase d'inférence)

Applications

Segmentation d'instances

Segmentation d'instances

Image d'entrée

Image segmentée

Détecter et segmenter toutes les instances des objets/classes présents dans l'image

Mask R-CNN

That's all folks