Chapter 7: Point Estimation

May 20, 2023

Exercise 7.1

If we take the product of $f(x|\theta)$ as the likelihood function, all 3 values of θ attain maximum likelihood of 0.

Method 1: With perturbation on likelihood function

We will perturb the likelihood function by ϵ . Now even the probability 0 entries get a probability of ϵ . Then

$$L(\theta = 1|x + \epsilon) = \frac{\epsilon(1/3 + \epsilon)^2 (1/6 + \epsilon)^2}{(1 + 5\epsilon)^5}$$

$$L(\theta = 2|x + \epsilon) = \frac{\epsilon(1/4 + \epsilon)^4}{(1 + 5\epsilon)^5}$$

$$L(\theta = 3|x + \epsilon) = \frac{\epsilon^2 (1/4 + \epsilon)^2 (1/2 + \epsilon)}{(1 + 5\epsilon)^5}$$

We can compare the functions by taking the ratio and letting ϵ go to 0.

$$\frac{L(\theta = 2|x)}{L(\theta = 1|x)} = \lim_{\epsilon \to 0} \frac{L(\theta = 2|x + \epsilon)}{L(\theta = 1|x + \epsilon)} = \lim_{\epsilon \to 0} \frac{(1/4 + \epsilon)^4}{(1/3 + \epsilon)^2 (1/6 + \epsilon)^2} = 1.26$$

Similarly,

$$\frac{L(\theta=2|x)}{L(\theta=3|x)} = \lim_{\epsilon \to 0} \frac{(1/4+\epsilon)^4}{\epsilon(1/4+\epsilon)^2(1/2+\epsilon)} = \infty$$

Therefore $\theta = 2$ is the MLE

Method 2: With +1 smoothing

we can assume N trials are performed for each θ and apply laplace smoothing (+1 smoothing).

Then the likelihood functions become

$$L(\theta = 1|x) = \lim_{N \to \infty} \frac{(N/3 + 1)^2 (N/6 + 1)^2}{(N+5)^5}$$

$$L(\theta = 2|x) = \lim_{N \to \infty} \frac{(N/4 + 1)^4}{(N+5)^5}$$

$$L(\theta = 3|x) = \lim_{N \to \infty} \frac{(N/4 + 1/N)^2 (N/2 + 1)}{(N+5)^5}$$

This is essentially the same as method 1.

Exercise 7.2

 $\operatorname{Gamma}(\alpha,\beta)$ has $\operatorname{pdf} f(x|\alpha,\beta) = \frac{x^{\alpha-1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)}$, with α known, the likelihood function is

$$L(\alpha, \beta | x) = \prod_{i=1}^{n} f(x_i | \alpha, \beta) = \prod_{i=1}^{n} \frac{x_i^{\alpha - 1} e^{-\beta x_i} \beta^{\alpha}}{\Gamma(\alpha)} = \frac{(\prod_i x_i)^{\alpha - 1}}{\Gamma^n(\alpha)} \left[\beta^{n\alpha} e^{-\beta(\sum_i x_i)} \right]$$

Let $\frac{\partial L(\beta|x,\alpha)}{\partial \beta} = 0$, we get the MLE for β .

$$\hat{\beta} = \frac{\alpha}{\bar{r}}$$

If α is also unknown,

$$\frac{\partial L(\alpha, \beta | x)}{\partial \alpha} = \frac{\partial}{\partial \alpha} \frac{A^{\alpha - 1} \beta^{n\alpha}}{\Gamma^n(\alpha)} = 0$$

$$\Rightarrow \sum \ln x_i + n \ln \beta = \psi(\alpha) \Rightarrow \sum \ln x_i + n(\ln \alpha - \ln \bar{x}) = \psi(\alpha)$$

where ψ is polygamma function

We can then solve for α numerically.

Exercise 7.3

log is monotonic increasing function, when L attains maximum values, log(L) also attains maximum.

Exercise 7.6

 $f(x|\theta)=\theta x^{-2}$ with $0<\theta\leq x<\infty$. We need to extend the range of x in order to get rid of the θ dependency with indicator function. So $f(x|\theta)=\mathbb{I}_{\theta\leq x}\theta x^{-2}$ and $x\in\mathbb{R}$.

- (a) For a sample X_1, \ldots, X_n , by factorization theorem, $f(x|\theta) = g(T(x)|\theta)h(x)$. So $h(x) = x^-2$ and $g(T(x)|\theta) = \mathbb{I}_{\theta \le x}\theta = \mathbb{I}_{\theta \le x_i, \forall i}\theta = \mathbb{I}_{\theta \le \min x_i}$. Therefore $T(x) = \min x_i$ is a sufficient statistics.
- (b) The likelihood function $L(\theta|x) = \mathbb{I}_{\theta \le x_i} \theta^n (\prod_i x_i)^{-2}$. $L(\theta|x)$ is non zero only when $\theta \le \min x_i$. Then $L(\theta|x) = \theta^n (\prod_i x_i)^{-2}$ when $\theta \le \min x_i$ decreases monotonically as θ decreases. So it attains maximum when $\theta = \min x_i$