

Chapitre 9 : La segmentation des réseaux IP en sous-réseaux

Initiation aux réseaux

Cisco Networking Academy® Mind Wide Open™

- 9.1 Segmenter un réseau IPv4 en sous-réseaux
- 9.2 Les schémas d'adressage
- 9.3 Critères de conception à prendre en compte pour les réseaux IPv6
- 9.4 Résumé

Chapitre 9 : Les objectifs

- Expliquer pourquoi le routage est indispensable à la communication d'hôtes de différents réseaux
- Décrire IP en tant que protocole de communication utilisé pour identifier un périphérique unique sur un réseau
- À l'aide d'un réseau et d'un masque de sous-réseau, calculer le nombre d'adresses d'hôte disponibles
- Calculer le masque de sous-réseau nécessaire pour répondre aux besoins d'un réseau
- Décrire les avantages des masques de sous-réseau de longueur variable (VLSM)
- Expliquer le principe d'attribution des adresses IPv6 dans un réseau d'entreprise

Pourquoi créer des sous-réseaux ?

Les grands réseaux doivent être segmentés en sous-réseaux plus petits en créant des groupes de périphériques et de services pour :

- Surveiller le trafic notamment le trafic de diffusion dans le sous-réseau
- Réduire le trafic total du réseau et améliorer les performances de ce dernier

Création de sous-réseaux : procédé consistant à segmenter un réseau en portions plus petites appelées sous-réseaux (créer plusieurs réseaux logiques à partir d'un seul bloc d'adresses ou d'une adresse réseau).

chaque sous réseau est considéré comme un réseau à part.

Communication entre les sous-réseaux

- Un routeur est nécessaire pour que les périphériques des différents réseaux et sous-réseaux puissent communiquer.
- Chaque interface de routeur doit comporter une adresse d'hôte IPv4 qui appartient au réseau ou au sous-réseau auquel elle est connectée.
- Les périphériques d'un réseau et d'un sous-réseau utilisent l'interface de routeur associée à son réseau local (LAN) comme passerelle par défaut.

La segmentation en sous-réseaux IP est fondamentale

La planification nécessite la prise de décisions concernant chaque sous-réseau, notamment leur taille, le nombre d'hôtes par sous-réseau et l'attribution des adresses d'hôte.

Notions de base sur les sous-réseaux

- Bits empruntés pour créer des sous-réseaux
- Emprunter 1 bit 2¹ = 2 sous-réseaux

Emprunter 1 bit à la partie hôte crée 2 sous-réseaux avec le même masque de sousréseau

Sous-réseau 0

Réseau: 192.168.1.0/25

Masque: 255.255.255.128

Sous-réseau 1

Réseau: 192.168.1.128/25

Masque : 255.255.255.128

Segmenter un réseau IPv4 en sous-réseaux

Les sous-réseaux dans la pratique

Plage d'adresses du sous-réseau 192.168.1.0/25

Sous-réseau 0

Réseau: 192.168.1.0/25

192.168.1.0/25 PC1 G0/0 PC2 G0/1 192.168.1.128/25

Sous-réseau 1

Réseau: 192.168.1.128/25

Plage d'adresses du sous-réseau 192.168.1.128/25

Adress	e réseau				
192.	168.	1.	1	000 0000	= 192.168.1.128
Premiè	re adress	se d'hôte			
192.	168.	1.	1	000 0001	= 192.168.1.129
Dernièi	e adress	e d'hôte			
192.	168.	1.	1	111 1110	= 192.168.1.25
Adress	e de diffu	ısion			
192.	168.	1.	1	111 1111	= 192.168.1.25

Les formules de calcul des sous-réseaux

Calculer le nombre de sous-réseaux

Calculer le nombre d'hôtes

Créer 4 sous-réseaux

Emprunter 2 bits pour créer 4 sous-réseaux 2² = 4
 sous-réseaux

Créer 8 sous-réseaux

Emprunter 3 bits pour créer 8 sous-réseaux 2³ = 8 sous-réseaux

	Réseau	192.	168.	1.	000	0	0000	192.168.1.0
D. 6 0	Premier	192.	168.	1.	000	0	0001	192.168.1.1
Réseau 0	Dernier	192.	168.	1.	000	1	1110	192.168.1.30
	Diffusion	192.	168.	1.	000	1	1111	192.168.1.31
	Réseau	192.	168.	1.	001	0	0000	192.168.1.32
Df 1	Premier	192.	168.	1.	001	0	0001	192.168.1.33
Réseau 1	Dernier	192.	168.	1.	001	1	1110	192.168.1.62
	Diffusion	192.	168.	1.	001	1	1111	192.168.1.63
	Réseau	192.	168.	1.	010	0	0000	192.168.1.64
Réseau 2	Premier	192.	168.	1.	010	0	0001	192.168.1.65
Reseau Z	Dernier	192.	168.	1.	010	1	1110	192.168.1.94
	Diffusion	192.	168.	1.	010	1	1111	192.168.1.95
	Réseau	192.	168.	1.	011	0	0000	192.168.1.96
Réseau 3	Premier	192.	168.	1.	011	0	0001	192.168.1.97
Neseau S	Dernier	192.	168.	1.	011	1	1110	192.168.1.126
	Diffusion	192.	168.	1.	011	1	1111	192.168.1.127

Créer 8 sous-réseaux (suite)

	Réseau	192.	168.	1.	100	0	0000	192.168.1.128
D: 4	Premier	192.	168.	1.	100	0	0001	192.168.1.129
Réseau 4	Dernier	192.	168.	1.	100	1	1110	192.168.1.158
	Diffusion	192.	168.	1.	100	1	1111	192.168.1.159
	Réseau	192.	168.	1.	101	0	0000	192.168.1.160
D: F	Premier	192.	168.	1.	101	0	0001	192.168.1.161
Réseau 5	Dernier	192.	168.	1.	101	1	1110	192.168.1.190
	Diffusion	192.	168.	1.	101	1	1111	192.168.1.191
	Réseau	192.	168.	1.	110	0	0000	192.168.1.192
Pássau 6	Réseau Premier	192. 192.	168. 168.	1.	110 110	0	0000	192.168.1.192 192.168.1.193
Réseau 6	1000 Be							SO DEED SCHOOL SON SO NAME
Réseau 6	Premier	192.	168.	1.	110	0	0001	192.168.1.193
Réseau 6	Premier Dernier	192. 192.	168. 168.	1.	110 110	0	0001 1110	192.168.1.193 192.168.1.222
	Premier Dernier Diffusion	192. 192. 192.	168. 168. 168.	1. 1.	110 110 110	0 1 1	0001 1110 1111	192.168.1.193 192.168.1.222 192.168.1.223
Réseau 6 Réseau 7	Premier Dernier Diffusion Réseau	192. 192. 192.	168. 168. 168.	1.	110 110 110 111	0 1 1	0001 1110 1111 0000	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224
	Premier Dernier Diffusion Réseau Premier	192. 192. 192. 192.	168. 168. 168. 168.	1. 1. 1.	110 110 110 111 111	0 1 1 0 0	0001 1110 1111 0000 0001	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224 192.168.1.225

Segmenter le réseau en sous-réseaux en fonction des besoins des hôtes

Deux considérations sont à prendre en compte lors de la planification de sous-réseaux :

- Nombre de sous-réseaux nécessaires
- Nombre d'adresses d'hôtes nécessaires
- Formule pour déterminer le nombre d'hôtes utilisables

2ⁿ-2

avec n nombre de bits de la partie hôte

Déterminer le masque de sous-réseau

Segmenter le réseau en fonction des besoins de celui-ci

- Un sous-réseau est nécessaire pour chaque service du schéma
- Calculer le nombre de sous-réseaux
- 2ⁿ sous réseaux (où n est le nombre de bits empruntés)

Réseau d'entreprise

Déterminer le masque de sous-réseau

Segmenter le réseau en fonction des besoins de celui-ci

- Il est important d'équilibrer le nombre de sous-réseaux nécessaires et le nombre d'hôtes nécessaires pour le plus grand sous-réseau.
- Il faut que le schéma d'adressage puisse accueillir le nombre maximal d'hôtes pour chaque sous-réseau.
- Prévision de croissance dans chaque sous-réseau.
- Le plus grand sous réseau a

Besoin de 40 adresses (6 bits sont nécessaires pour la partie host)

Schéma de sous-réseaux

	10101100.00010000.000000	00.00	000000	172.16.0.0/22
0	10101100.00010000.000000	00.00	000000	172.16.0.0/26
1	10101100.00010000.000000	00.01	000000	172.16.0.64/26
2	10101100.00010000.000000	00.10	000000	172.16.0.128/26
3	10101100.00010000.000000	00.11	000000	172.16.0.192/26
4	10101100.00010000.000000	01.00	000000	172.16.1.0/26
5	10101100.00010000.000000	01.01	000000	172.16.1.64/26
6	10101100.00010000.000000	01.10	000000	172.16.1.128/26

Réseaux 7 à 14 non illustrés

```
14 10101100.00010000.000000 11.10 000000 172.16.3.128/26
15 10101100.00010000.000000 11.11 000000 172.16.3.192/26
```

4 bits empruntés à la partie hôte pour créer des sous-réseaux

H. Tounsi © 2008 Cisco Systems, Inc. Tous droits réservés. Confidentiel Cisco

Les avantages des masques de sous-réseau de longueur variable

La segmentation traditionnelle en sous-réseaux entraîne un gaspillage d'adresses

- 7 sous réseaux sont nécessaires
- Partant d'une adresse réseau 192.168.20.0/24, et une segmentation en sous réseaux de même masque, il faut:

H. Tounsi

La segmentation traditionnelle en sousréseaux entraîne un gaspillage d'adresses

- Segmentation traditionnelle : le même nombre d'adresses est attribué à chaque sous-réseau.
- Les sous-réseaux qui n'ont pas besoin de la totalité ont des adresses inutilisées (gaspillées). Par exemple, les liaisons WAN n'ont besoin que de 2 adresses.
- Les masques de sous-réseau de longueur variable (VLSM, Variable Length Subnet Mask) ou la segmentation d'un sous-réseau optimisent l'utilisation des adresses.

La segmentation en sous-réseaux traditionnelle crée des sousréseaux de taille égale

Un sous-réseau a été à nouveau divisé pour créer 8 sous-réseaux plus petits de 4 hôtes chacun

Les avantages des masques de sous-réseau de longueur variable Les masques de sous-réseau de longueur variable (VLSM)

- La technique VLSM permet de décomposer un espace réseau en parties inégales.
- Le masque de sous-réseau varie alors selon le nombre de bits ayant été empruntés pour un sous-réseau particulier.
- Le réseau est segmenté en premier en fonction du nombre d'hôtes le plus élevé, puis les sous-réseaux sont divisés à leur tour pour répondre aux autres besoins (moins d'hôtes).
- Cette opération est répétée autant de fois que nécessaire pour créer des sous-réseaux de différentes tailles.

Schéma de sous réseaux avec VLSM

```
11000000.10101000.00010100.00000000 192.168.20.0/24
0 11000000.10101000.00010100.00000000
                                       192.168.20.0/27
                                                           Réseaux
1 11000000 10101000 00010100 00100000 192.168.20.32/27
                                                           locaux
  11000000.10101000.00010100.01000000 192.168.20.64/27
                                                           A, B, C, D
3 11000000 10101000 00010100 01100000 192.168.20.96/27
4 11000000 10101000 00010100 10000000 192.168.20.128/27 Non
                                                          utilisé/
 11000000.10101000.00010100.10100000
                                        192.168.20.160/27
                                                          disponible
                                       192.168.20.192/27
 11000000.10101000.00010100.11000000
7 11000000.10101000.00010100.11100000
                                        192.168.20.224/27
    3 autres bits empruntés au sous-
    réseau 7 :
7:0 11000000.10101000.00010100.11100000
                                                           Réseaux
7:1 11000000.10101000.00010100.11100100
                                        192.168.20.228/30
                                                           étendus
7:2 11000000 10101000 00010100 11101000 192.168.20.232/30
7:3 11000000 10101000 00010100 11101100 192.168.20.236/30
7:4 11000000 10101000 00010100 11110000 192.168.20.240/30
                                                           Non
                                                           utilisé/
7:5 11000000 10101000 00010100 11110100 192.168.20.244/30
                                                           disponible
7:6 11000000 10101000 00010100 11111000 192.168.20.248/30
7:7 11000000.10101000.00010100.11111100
                                        192.168.20.252/30
```

Les avantages des masques de sous-réseau de longueur variable VLSM dans la pratique

- Avec des sous-réseaux VLSM, les segments LAN et WAN dans l'exemple cidessous peuvent être adressés avec un minimum de perte.
- Un sous-réseau avec le masque /27 sera attribué à chaque réseau local (LAN).
- Un sous-réseau avec le masque /30 sera attribué à chaque liaison WAN.

Topologie du réseau : sous-réseaux VLSM

Les avantages des masques de sous-réseau de longueur variable Tableau VLSM

Segmentation en sous-réseaux VLSM de 192.168.20.0/24

	Réseau /27	Hôtes
Bât.A	.0	.130
Bât.B	.32	.3362
Bât.C	.64	.6594
Bât.D	.96	.97126
Non utilisé	.128	.129158
Non utilisé	.160	.161190
Non utilisé	.192	.193222
	.224	.225254
•	•	<u> </u>
	B740040100	Tur
	Réseau /30	Hôtes
WAN R1–R2	Réseau /30 .224	Hôtes .225226
WAN R2-R3	.224	.225226
WAN R2–R3 WAN R3–R4	.224 .228	.225226 .229230
WAN R2–R3 WAN R3–R4 Non utilisé	.224 .228 .232	.225226 .229230 .233234
WAN R2–R3 WAN R3–R4 Non utilisé Non utilisé	.224 .228 .232 .236	.225226 .229230 .233234 .237238
WAN R1–R2 WAN R2–R3 WAN R3–R4 Non utilisé Non utilisé Non utilisé Non utilisé	.224 .228 .232 .236 .240	.225226 .229230 .233234 .237238 .241242

Conception structurée

Planification de l'adressage réseau

L'attribution des adresses réseau doit être planifiée et documentée pour :

- Éviter la duplication des adresses
- Fournir et contrôler l'accès
- Contrôler la sécurité et surveiller les performances

Adresses pour les clients : généralement attribuées de manière dynamique à l'aide du protocole DHCP (Dynamic Host Configuration Protocol)

Exemple de plan d'adressage réseau

Utilisation	Premier	Dernier	
Périphériques hôtes	.1	.229	
Serveurs	.230	.239	
Imprimantes	.240	.249	
Périphériques intermédiaires	.250	.253	
Passerelle (interface LAN du routeur)	.254		

Segmenter un réseau IPv6 en sous-réseaux

Segmenter le réseau en sous-réseaux à l'aide des ID

Un espace réseau IPv6 est segmenté en sous-réseaux afin de prendre en charge la conception hiérarchique et logique du réseau

Sous-réseau IPv6

Bloc d'adresses: 2001:0DB8:ACAD::/48

2001:0DB8:ACAD:0000::/64

2001:0DB8:ACAD:FFFF::/64

5 sous-réseaux attribués parmi 65 536 sous-réseaux disponibles 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64

Attribution de sous-réseaux IPv6

Segmenter un réseau IPv6 en sous-réseaux

Segmentation en sous-réseaux à partir de l'ID d'interface

Les bits IPv6 peuvent être empruntés à l'ID d'interface pour créer des sous-réseaux IPv6 supplémentaires

Création de sous-réseaux au niveau d'une limite de quartet

Chapitre 9 : Résumé

- La segmentation d'un réseau, autrement dit sa fragmentation en espaces réseau plus petits, consiste à le décomposer en sous-réseaux.
- La segmentation des sous-réseaux, ou l'utilisation des masques de sous-réseau de longueur variable (VLSM), permet d'éviter le gaspillage des adresses.
- L'espace d'adressage IPv6 est énorme. Il est fractionné afin de prendre en charge la conception hiérarchique et logique du réseau pour ne pas conserver les adresses.
- La taille, l'emplacement, l'utilisation et l'accès sont autant de facteurs déterminants lors de la planification de l'adressage.
- Les réseaux IP doivent être testés pour vérifier la connectivité et les performances.

Cisco | Networking Academy® | Mind Wide Open™