4N25

Phototransistor Optocoupler General Purpose Type

Data Sheet

Description

The 4N25 is an optocoupler for general purpose applications. It contains a light emitting diode optically coupled to a photo-transistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing option and lead bend SMD option. Response time, t_r , is typically 3 μ s and minimum CTR is 20% at input current of 10 mA.

Applications

- I/O interfaces for computers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances

Features

- Response time $(t_r: typ., 3 \mu s \text{ at } V_{CE} = 10 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega)$
- Current Transfer Ratio (CTR: min. 20% at I_F = 10 mA, V_{CE} = 10 V)
- Input-output isolation voltage (V_{iso} = 2500 Vrms)
- Dual-in-line package
- UL approved
- CSA approved
- IEC/EN/DIN EN 60747-5-2 approved
- Options available:
 - Leads with 0.4" (10.16 mm) spacing (W00)
 - Leads bends for surface mounting (300)
 - Tape and reel for SMD (500)
 - IEC/EN/DIN EN 60747-5-2 approvals (060)

4N25 is UL Recognized with 2500 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5, File CA 88324.

Part Number	RoHS Compliant Option Rank '0' 20% <ctr< th=""><th rowspan="2">– Package</th><th rowspan="2">Surface Mount</th><th rowspan="2">Gull Wing</th><th rowspan="2">Tape & Reel</th><th></th><th rowspan="2">Quantity</th></ctr<>	– Package	Surface Mount	Gull Wing	Tape & Reel		Quantity
						IEC/EN/DIN EN 60747-5-2	
	-000E	300 mil DIP-6					65 pcs per tube
	-300E	300 mil DIP-6	Х	Х			65 pcs per tube
	-500E	300 mil CIP-6	Χ	Χ	Χ		1000 pcs per reel
4N25	-060E	300 mil DIP-6				Х	65 pcs per tube
	-360E	300 mil DIP-6	Х	Х		Х	65 pcs per tube
	-560E	300 mil DIP-6	Χ	Χ	Χ	Х	1000 pcs per reel
	-W00E	400 mil DIP-6					65 pcs per tube
	-W60E	400 mil DIP-6				Χ	65 pcs per tube

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

4N25-360E to order product of 300 mil DIP-6 DC Gull Wing Surface Mount package in Tube packaging with 20%<CTR, IEC/EN/DIN EN 60767-5-2 Safety Approval and RoHS compliant.

Example 2:

4N25-W00E to order product of 400 mil DIP-6 DC package in Tube packaging with 20%<CTR and RoHS compliant. Option data sheets are available. Contact your Avago sales representative or authorized distributor for information.

Functional Diagram

Package Outline Drawings

4N25-000E

DIMENSIONS IN MILLIMETERS AND (INCHES)

4N25-060E

4N25-W00E

DIMENSIONS IN MILLIMETERS AND (INCHES)

4N25-300E

DIMENSIONS IN MILLIMETERS AND (INCHES)

Solder Reflow Temperature Profile

- 1. One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.
- 2. When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above.

Note: Non-halide flux should be used.

Absolute Maximum Ratings

Storage Temperature, T _S	−55°C to +150°C		
Operating Temperature, T _A	−55°C to +100°C		
Lead Solder Temperature, max. (1.6 mm below seating plane)	260°C for 10 s		
Average Forward Current, I _F	80 mA		
Reverse Input Voltage, V _R	6 V		
Input Power Dissipation, P ₁	150 mW		
Collector Current, I _C	100 mA		
Collector-Emitter Voltage, V _{CEO}	30 V		
Emitter-Collector Voltage, V _{ECO}	7 V		
Collector-Base Voltage, V _{CBO}	70 V		
Collector Power Dissipation	150 mW		
Total Power Dissipation	250 mW		
Isolation Voltage, V_{iso} (AC for 1 minute, R.H. = $40 \sim 60\%$)	2500 Vrms		

Electrical Specifications ($T_A = 25^{\circ}C$)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V _F	-	1.2	1.5	V	$I_F = 10 \text{ mA}$
Reverse Current	I _R	-	-	10	μА	$V_R = 4 V$
Terminal Capacitance	C _t	-	50	_	pF	V = 0, f = 1 KHz
Collector Dark Current	I _{CEO}	-	-	50	nA	$V_{CE} = 10 \text{ V}, I_F = 0$
Collector-Emitter Breakdown Voltage	BV _{CEO}	30	-	-	V	$I_C = 0.1 \text{ mA}, I_F = 0$
Emitter-Collector Breakdown Voltage	BV _{ECO}	7	-	-	V	$I_E = 10 \mu A$, $I_F = 0$
Collector-Base Breakdown Voltage	BV _{CBO}	70	-	-	V	$I_C = 0.1 \text{ mA}, I_F = 0$
Collector Current	lc	2	-	_	mA	$I_F = 10 \text{ mA}$
*Current Transfer Ratio	CTR	20	-	_	%	V _{CE} = 10 V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	-	0.1	0.5	V	$I_F = 50 \text{ mA}, I_C = 2 \text{ mA}$
Response Time (Rise)	t _r	-	3	_	μs	$V_{CE} = 10 \text{ V, } I_{C} = 2 \text{ mA}$
Response Time (Fall)	t _f	-	3	-	μs	$R_L = 100 \Omega$
Isolation Resistance	R _{iso}	5 x 10 ¹⁰	1 x 10 ¹¹	_	Ω	DC 500 V 40 ~ 60% R.H.
Floating Capacitance	C _f	-	1	-	pF	V = 0, $f = 1$ MHz

* CTR =
$$\frac{I_{\zeta}}{I_F}$$
100%

Figure 1. Forward current vs. temperature.

Figure 2. Collector power dissipation vs. temperature.

Figure 3. Forward current vs. forward voltage.

Figure 4. Current transfer ratio vs. forward current.

Figure 5. Collector current vs. collector-emitter voltage.

Figure 6. Relative current transfer ratio vs. temperature.

 $\label{lem:continuous} \textbf{Figure 7. Collector-emitter saturation voltage vs.} \\ \textbf{temperature.}$

Figure 8. Collector dark current vs. temperature.

Figure 9. Response time vs. load resistance.

Figure 10. Frequency response.

Figure 11. Collector-emitter saturation voltage vs. forward current.

Test Circuit for Response Time

Test Circuit for Frequency Response

For product information and a complete list of distributors, please go to our website: **www.avagotech.com**

