CS 154

Lecture 16:
More Examples of NP-Complete
Problems – and coNP

CS 154

Final Exam:
March 19, 7pm-10pm
Hewlett 200

One double-sided letter-sized sheet of notes

Subset Sum

Given: Set $S = \{a_1, ..., a_n\}$ of positive integers positive integer t

Is there an S' $\subseteq \{1,...,n\}$ such that $t = \sum_{i \in S'} a_i$?

SUBSET-SUM = {(S, t) | \exists S' \subseteq S s.t. t = $\sum_{l:a_i \in S'} a_i$ }

Theorem (cs161): There is a O(n · t) time algorithm for solving SUBSET-SUM.

But t can be specified in (log t) bits... this isn't an algorithm that runs in polytime in the input!

VC ≤_P SUBSET-SUM

Want to reduce a graph to a set of numbers

Given (G, k), let
$$E = \{e_0, ..., e_{m-1}\}$$
 and $V = \{1, ..., n\}$

The subset sum instance (S, t) will have |S| = n+m

"Edge numbers":

For every $e_j \in E$, put $b_j = 4^j$ in S

"Node numbers":

For every
$$i \in V$$
, put $a_i = 4^m + \sum_{j:i \in e_i} 4^j$ in S

Set the target number:
$$t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$$

For every
$$e_i \in E$$
, put $b_i = 4^j$ in S

For every
$$i \in V$$
, put $a_i = 4^m + \sum_{j:i \in e_i} 4^j$ in S

Set
$$t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$$

Claim: If $(G,k) \in VC$ then $(S,t) \in SUBSET-SUM$

Suppose $C \subseteq V$ is a VC with k vertices.

Let
$$S' = \{a_i : i \in C\} \cup \{b_i : |e_i \cap C| = 1\}$$

S' = the *node numbers* corresponding to nodes in C, plus the *edge numbers* corresponding to edges covered *only once* by C.

Claim: The sum of all numbers in S' equals t!

Think of the numbers as being in "base 4"... as vectors with m+1 components

For every
$$e_j \in E$$
, put $b_j = 4^j$ in S

For every
$$i \in V$$
, put $a_i = 4^m + \sum_{j:i \in e_j} 4^j$ in S

Set
$$t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$$

Claim: If $(S,t) \in SUBSET-SUM$ then $(G,k) \in VC$

Suppose $C \subseteq V$ and $F \subseteq E$ satisfy

$$\sum_{i \in C} a_i + \sum_{e_j \in F} b_j = t$$

Claim: C is a vertex cover of size k.

Proof: Subtract out the b_j numbers from the above sum.

What remains is a sum of the form:

$$\sum_{i \in C} a_i = k \cdot 4^m + \sum_{j=0}^{m-1} (c_j \cdot 4^j)$$

where each $c_j > 0$. But $c_j = number of nodes in C covering <math>e_j$ This implies C is a vertex cover!

The Knapsack Problem

```
Given: S = \{(p_1, c_1), (p_n, c_n)\} of pairs of positive integers a cost budget C a profit target P

Is there an S' \subseteq \{1, ..., n\} such that (\sum_{i \in S'} p_i) \ge P and (\sum_{i \in S'} c_i) \le C?
```

Define KNAPSACK = {(S, C, P) | the answer is yes}

A classic economics problem!

Theorem: KNAPSACK is NP-complete

KNAPSACK is NP-complete

KNAPSACK is in NP?

Theorem: SUBSET-SUM ≤_P KNAPSACK

```
Proof: Given an instance (S = \{a_1,...,a_n\}, t)
of SUBSET-SUM, create a KNAPSACK instance:
For all i, set (p_i, c_i) := (a_i, a_i)
Define T = \{(p_1, c_1),...,(p_n, c_n)\}
Define C := P := t
```

Then, (S,t) ∈ SUBSET-SUM ⇔ (T,C,P) ∈ KNAPSACK

Subset of S that sums to t =

Solution to the Knapsack instance!

The Partition Problem

Given: Set $S = \{a_1, ..., a_n\}$ of positive integers Is there an $S' \subseteq S$ such that $(\sum_{a_i \in S'} a_i) = (\sum_{a_i \in S-S'} a_i)$?

(Formally, PARTITION is the set of all S such that the answer to this question is yes.)

In other words, is there a way to partition S into two parts, with equal sum in both parts?

A problem in fair division

Theorem: PARTITION is NP-complete

PARTITION is NP-complete

- (1) PARTITION is in NP
- (2) SUBSET-SUM \leq_{P} PARTITION

Given: Set S = {a₁,..., a_n} of positive integers positive integer t

Output T := $\{a_1,..., a_n, 2A-t, A+t\}$, where A := $\sum_i a_i$

Claim: (S,t) \in SUBSET-SUM \Leftrightarrow T \in PARTITION

Given: Set S = {a₁,..., a_n} of positive integers positive integer t

Output T := $\{a_1,..., a_n, 2A-t, A+t\}$, where A := $\sum_i a_i$

Claim: (S,t) \in SUBSET-SUM \Leftrightarrow T \in PARTITION

What's the sum of all numbers in T? 4A

Therefore: T ∈ PARTITION

 \Leftrightarrow There is a $T' \subseteq T$ that sums to 2A.

Proof of (S,t) \in SUBSET-SUM \Rightarrow T \in PARTITION:

If $(S,t) \in SUBSET-SUM$, let $S' \subseteq S$ sum to t.

Then $S' \cup \{2A-t\} \subseteq T$ sums to 2A, so $T \in PARTITION$

```
Given: Set S = \{a_1, ..., a_n\} of positive integers
               positive integer t
   Output T := \{a_1,..., a_n, 2A-t, A+t\}, where A := \sum_i a_i
   Claim: (S,t) \in SUBSET-SUM \Leftrightarrow T \in PARTITION
  T \in PARTITION \Leftrightarrow There is a T' \subseteq T that sums to 2A.
Proof of T \in PARTITION \Rightarrow (S,t) \in SUBSET-SUM
If T \in PARTITION, let T' \subseteq T be a subset that sums to 2A.
Observation: Exactly one of {2A-t,A+t} is in T'.
If (2A-t) \in T', then T' - \{2A-t\} sums to t.
But T' - \{2A-t\} is a subset of S! So (S,t) \in SUBSET-SUM
If (A+t) \in T', then (T-T') - \{2A-t\} sums to (2A - (2A-t)) = t
               Note that (T - T') - \{2A-t\} is a subset of S.
               Therefore (S,t) \in SUBSET-SUM
```

The Bin Packing Problem

Given: Set S = {a₁,..., a_n} of positive integers, a bin capacity B, and a target integer K. Can we partition S into K subsets such that each subset sums to at most B?

Is there a way to pack the items of S into K bins, with each bin having capacity B?

Ubiquitous in shipping and optimization

Theorem: BIN PACKING is NP-complete

BIN PACKING is NP-complete

BIN PACKING is in NP?

Theorem: PARTITION ≤_P BIN PACKING

Proof: Given an instance $S = \{a_1, ..., a_n\}$ of PARTITION, create an instance of BIN PACKING with:

S = {a₁,..., a_n}
B =
$$(\sum_i a_i)/2$$

k = 2

Then, $S \in PARTITION \Leftrightarrow (S,B,k) \in \overline{BIN PACKING}$:

Partition of S into two equal sums = Solution to the Bin Packing instance!

Two Problems

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH

= {(G, s, t, k) | G has a simple path of length < k from s to t }

LONGEST PATH

= {(G, s, t, k) | G has a simple path of length > k from s to t }

Are either of these in P? Are both of them?

Hamiltonian Path

HAMPATH = { (G,s,t) | G is an directed graph with a Hamiltonian path from s to t}

Theorem: HAMPATH is NP-Complete

(1) $HAMPATH \in NP$

(2) 3SAT \leq_{p} HAMPATH

See Sipser for the proof

$HAMPATH \leq_{P} LONGEST-PATH$

LONGEST-PATH
= {(G, s, t, k) |
G has a simple path of length > k from s to t }

Can reduce HAMPATH to LONGEST-PATH by observing:

$$(G, s, t) \in HAMPATH$$

 $\Leftrightarrow (G, s, t, |V|) \in LONGEST-PATH$

Therefore LONGEST-PATH is NP-hard.

coNP and Friends

Definition: $coNP = \{ L \mid \neg L \in NP \}$

What does a coNP computation look like?

A co-nondeterministic machine has multiple computation paths, and has the following behavior:

- the machine accepts
 if all paths reach accept state
- the machine rejects
 if at least one path reaches
 reject state

Is $P \subseteq coNP$?

Yes!

 $L \in P$ implies that $\neg L \in P$ (hence $\neg L \in NP$)

In general, deterministic complexity classes are closed under complement

Is NP = coNP?

Nobody knows! It is believed that NP ≠ coNP

Could we define something similar for P?

Definition: $A \in coP$ if and only if $\neg A \in P$

$$P = coP$$

since a deterministic decision algorithm for ¬A can be used to decide A by just flipping accept/reject states

Definition: A language B is coNP-complete if

- 1. $B \in coNP$
- 2. For every A in coNP, there is a polynomial-time reduction from A to B(B is coNP-hard)

UNSAT = $\{ \phi \mid \phi \text{ is a Boolean formula and } no$ variable assignment satisfies $\phi \}$

Theorem: UNSAT is coNP-complete

Proof: UNSAT \in coNP because \neg UNSAT \approx SAT

(2) UNSAT is coNP-hard:

Let $A \in coNP$. We show $A \leq_p UNSAT$

On input w, transform w into a formula ϕ using Cook-Levin via an NP machine for $\neg A$

$$\mathbf{w} \in \neg \mathbf{A} \Rightarrow \mathbf{\phi} \in \mathsf{SAT}$$

$$w \notin A \Rightarrow \phi \notin UNSAT$$

$$\mathbf{w} \notin \neg \mathbf{A} \Rightarrow \emptyset \notin \mathsf{SAT}$$

$$w \in A \Rightarrow \phi \in UNSAT$$

TAUT = {
$$\phi$$
 | ϕ is a Boolean formula and every variable assignment satisfies ϕ } = { ϕ | $\neg \phi \in UNSAT$ }

TAUT is coNP-complete

- (1) TAUT \in coNP, since \neg TAUT \in NP
- (2) TAUT is coNP-hard:

We show UNSAT \leq_P TAUT: Given formula ϕ , output $\neg \phi$ Is $P = NP \cap coNP$?

THIS IS AN OPEN QUESTION!