

Test Report

FCC ID: ZXW-WF68

Date of issue: Jun. 16, 2017

Report Number: MTi170817E129

Sample Description: Mobile Computer

Model(s): WF68, WF68S, WF88

Applicant: Widefly Ltd.

Address: Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue,

Hong Kong Science Park, Shatin, N.T., HONG KONG.

Date of Test: May. 26, 2017 to Jun. 16, 2017

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

TEST RESULT CERTIFICATION				
Applicant's name Widefly Ltd.				
Address:	Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue, Hong Kong Science Park, Shatin, N.T., HONG KONG.			
Manufacture's Name:	Widefly Ltd.			
Address	.: Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue, Hong Kong Science Park, Shatin, N.T., HONG KONG.			
Product description				
Product name	Mobile Computer			
Model and/or type reference :	WF68			
Serial Model	WF68S, WF88			
Standards:	FCC Part27			
Test procedure	ANSI C63.4-2014			

Tested by:	De chai			
	Ace Chai	Jun. 16, 2017		
Reviewed by:	Smithtchen			
	Smith Chen	Jun. 16, 2017		
Approved by:	Tom Xue			
	Tom Xue	Jun. 16, 2017		

Report No. : MTi170710E070 Page 2 of 47

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTEI	
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3 . CONDUCTED OUTPUT POWER&EIRP	12
3.1 APPLIED PROCEDURES / LIMIT	12
3.1.1 TEST PROCEDURE	12
3.1.2 DEVIATION FROM STANDARD	12
3.1.3 TEST SETUP	12
3.1.4 EUT OPERATION CONDITIONS	12
3.1.5 TEST RESULTS	13
4 . OCCUPY BANDWIDTH	14
4.1 APPLIED PROCEDURES / LIMIT	14
4.1.1 TEST PROCEDURE	14
4.1.2 DEVIATION FROM STANDARD	14
4.1.3 TEST SETUP	14 14
4.1.4 EUT OPERATION CONDITIONS 4.1.5 TEST RESULTS	15
5 . FREQUENCY STABLITY	25
5.1 APPLIED PROCEDURES / LIMIT 5.1.1 TEST PROCEDURE	25 25
5.1.2 DEVIATION FROM STANDARD	25 25
5.1.3 TEST SETUP	25 25
5.1.4 EUT OPERATION CONDITIONS	25
5.1.5 TEST RESULTS	26
6 . CONDUCTED SPURIOUS EMISSIONS	27
6.1 APPLIED PROCEDURES / LIMIT	27
6.1.1 TEST PROCEDURE	27
6.1.2 DEVIATION FROM STANDARD	27
6.1.3 TEST SETUP	27
6.1.4 EUT OPERATION CONDITIONS	27

Table of Contents

	Page
6.1.5 TEST RESULTS NOTE: ALL MODE HAS BEEN TESTED, ONLY WORST DATA SHO REPORT.	28 OWN IN THIS 28
7 . RADIATED SPURIOUS EMISSIONS	31
7.1 APPLIED PROCEDURES / LIMIT 7.1.1 TEST PROCEDURE 7.1.2 DEVIATION FROM STANDARD 7.1.3 TEST SETUP 7.1.4 EUT OPERATION CONDITIONS 7.1.5 TEST RESULTS NOTE: ALL MODE HAS BEEN TESTED, ONLY WORST DATA SHORE	31 31 31 31 32 33 OWN IN THIS
8 . BAND EDGE	35
8.1 APPLIED PROCEDURES / LIMIT 8.1.1 TEST PROCEDURE 8.1.2 DEVIATION FROM STANDARD 8.1.3 TEST SETUP 8.1.4 EUT OPERATION CONDITIONS 8.1.5 TEST RESULTS NOTE: ALL MODE HAS BEEN TESTED, ONLY WORST DATA SHO	
REPORT.	36

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Description of Test Item	Standard	Results
Conducted Output power&EIRP	FCC PART 2: 2.1046 FCC PART 27.50(d)	PASS
Occupied bandwidth	No Limit	PASS
Frequency stability	FCC PART 2: 2.1055 FCC PART 27.54	PASS
Conducted spurious emission (Antenna terminal)	FCC PART 2: 2.1051 FCC PART 27.53(h)	PASS
Radiated spurious emissions	FCC PART 2: 2.1051 FCC PART 27.53(h)	PASS
Band edge compliance	FCC PART 2: 2.1051 FCC PART 27.53(h)	PASS

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Report No.: MTi170710E070 Page 5 of 47

1.1 TEST FACILITY

Shenzhen Toby Technology Co., Ltd.

Add.: 10/F., A Block, Jiada R&D Bldg., No.5 Songpingshan, Road, Science & Technology Park,

Shenzhen, 518057

FCC Registration No.:811562

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

Report No.: MTi170710E070 Page 6 of 47

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Computer			
Trade Name	Widefly			
Model Name	WF68			
Serial Model	WF68S, WF88			
Model Difference	N/A			
Product Description	The EUT is a Mobile Computer Operation Frequency: LTE B4 (TX: 1710-1755MHz/RX: 2110-2155MHz) Modulation Type: QPSK,16QAM Antenna Designation: Please see Note 3. Output 23.69dBm Power(Conducted): Antenna Gain (dBi) -1.12dbi Based on the application, features, or specification exhibited i User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Please refer to the Note	e 2.		
	Model: UT-133E-52002			
Adapter	Input: AC100-240~ 50/60Hz 0.3A Max			
	Output: DC 5V 2A			
Battery	DC 3.8V by rechargeable Li-polymer battery			
Connecting I/O Port(s)	Please refer to the Use	r's Manual		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
Α	N/A	N/A	Integrated antenna	/	-1.12	LTE Antenna

Report No.: MTi170710E070 Page 7 of 47

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	LTE B4 QPSK
Mode 2	LTE B4 16QAM
Mode 3	Link Mode

For Conducted Emission		
Final Test Mode	Description	
Mode 3	Link Mode	

For Radiated Emission			
Final Test Mode Description			
Mode 3	LTE B4		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

Report No.: MTi170710E070 Page 8 of 47

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Report No.: MTi170710E070 Page 9 of 47

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Rugged Smartphone	DuraMobi	DK66	N/A	EUT
E-2	Adapter	N/A	UT-133E- 5200ZY	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1.0m	
C-2	NO	NO	0.8m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

Report No. : MTi170710E070 Page 10 of 47

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

For RF conducted test:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Signal Analyzer	Agilent	N9010A	MY48030494	2017/11/4
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063513	2017/11/4
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080019	2017/11/4
vector Signal Generator	Agilent	E4438C	US44271917	2017/11/4
vector Signal Generator	Agilent	E4438C	MY49070163	2017/11/4
Dc Power Supply	GW	GPR-6030D	/	2017/11/4
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2017/11/4
Wideband Radio Communication Tester	ROHDE&SCHWAR Z	CMW500	120909	2017/11/4

For Radiated test:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Broadband TRILOG Antenna	Schwarabeck	VULB9163	9163-872	2017/11/14
Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1145	2017/11/14
Amplifier	HP	8447D	3113A06150	2017/11/4
Amplifier	Agilent	8449B	3008A02400	2018/7/4
Test Receiver	Schwarabeck	ESPI7	100314	2017/11/4
Spectrum analyzer	Agilent	E4407B	MY41441082	2017/11/4
Signal Generator	R&S	SMT 06	832080/007	2017/11/4

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Report No. : MTi170710E070 Page 11 of 47

3. CONDUCTED OUTPUT POWER&EIRP

3.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Result
27.50(d)	Conducted Output power	30dBm(ERP) for LTE B4	PASS

3.1.1 TEST PROCEDURE

- (1) The EUT's RF output port was connected to base station.
- (2) A call is set up by the SS according to the generic call set up procedure
- (3) Set EUT at maximum power level through base station by power level command
- (4) Measure the maximum output power of EUT at each frequency band and mode by base station.

3.1.2 DEVIATION FROM STANDARD

No deviation.

3.1.3 TEST SETUP

3.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. : MTi170710E070 Page 12 of 47

3.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter
Test Mode :	LTE B4		

	Conducted Output Power						
D\\//\\\ \	RB Size	RB	Mode	Channel			
BW(MHz)	KD SIZE	offset	iviode	Lowest(dBm)	Middle(dBm)	Highest(dBm)	
1.4	1	0	QPSK	23.69	23.65	23.68	
	1	0	16QAM	23.62	23.61	23.64	
3	1	0	QPSK	23.62	23.64	23.61	
	1	0	16QAM	23.58	23.61	23.58	
5	1	0	QPSK	23.57	23.58	23.57	
	1	0	16QAM	23.55	23.56	23.58	
10	1	0	QPSK	23.49	23.52	23.54	
	1	0	16QAM	23.57	23.61	23.53	
15	1	0	QPSK	23.52	23.53	23.55	
	1	0	16QAM	23.48	23.47	23.46	
20	200	0	QPSK	23.44	23.56	23.57	
	200	0	16QAM	23.48	23.51	23.54	
Limit				30dBm			

Note: all modes of RB configurations have been tested, and only worst configuration data listed.

		Cond	ucted Outp	ut Power and El	RP	
D\A//N/ILI¬\	RB Size	RB	Mode	Channel		
BW(MHz)	KD SIZE	offset	Mode	Lowest(dBm)	Middle(dBm)	Highest(dBm)
1.4	1	0	QPSK	22.57	22.53	22.56
	1	0	16QAM	22.5	22.49	22.52
3	1	0	QPSK	22.5	22.52	22.49
	1	0	16QAM	22.46	22.49	22.46
5	1	0	QPSK	22.45	22.46	22.45
	1	0	16QAM	22.43	22.44	22.46
10	1	0	QPSK	22.37	22.4	22.42
	1	0	16QAM	22.45	22.49	22.41
15	1	0	QPSK	22.4	22.41	22.43
	1	0	16QAM	22.36	22.35	22.34
20	200	0	QPSK	22.32	22.44	22.45
	200	0	16QAM	22.36	22.39	22.42
Limit				30dBm		

Note1: all modes of RB configurations have been tested, and only worst configuration data listed.

Note2: EIRP=Conducted Output Power + Gain, where Gain=-1.12dBi

Report No.: MTi170710E070 Page 13 of 47

4. OCCUPY BANDWIDTH

4.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Result
2.1049	Occupied bandwidth	/	PASS

4.1.1 TEST PROCEDURE

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. : MTi170710E070 Page 14 of 47

4.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1015 hPa	Test Voltage :	DC 5V from adapter
Test Mode :	LTE B4		

	99% Bandwidth					
BW(MHz)	RB Size	RB	Mode	Channel		
DVV (IVITZ)	KD SIZE	offset	iviode	Lowest(MHz)	Middle(MHz)	Highest(MHz)
1.4	1	0	QPSK	1.09	1.09	1.09
	1	0	16QAM	1.10	1.10	.1.10
3	1	0	QPSK	2.71	2.70	2.71
	1	0	16QAM	2.71	2.71	2.71
5	1	0	QPSK	4.51	4.51	4.50
	1	0	16QAM	4.51	4.52	4.51
10	1	0	QPSK	8.98	8.99	8.99
	1	0	16QAM	8.98	9.00	9.00
15	1	0	QPSK	13.48	13.45	13.48
	1	0	16QAM	13.51	13.50	13.48
20	200	0	QPSK	17.95	17.96	17.95
	200	0	16QAM	18.00	17.98	18.00
Limit				N/A		

Note: all modes of RB configurations have been tested, and only worst configuration data listed.

Note2: All modes have been tested, and only worst data of 16QAM mode data shown.

Report No.: MTi170710E070 Page 15 of 47

LTE B4 Lowest 1.4MHz

LTE B4 Middle 1.4MHz

Report No.: MTi170710E070 Page 16 of 47

LTE B4 Highest 1.4MHz

LTE B4 Lowest 3MHz

Report No.: MTi170710E070 Page 17 of 47

LTE B4 Middle 3MHz

LTE B4 Highest 3MHz

Report No.: MTi170710E070 Page 18 of 47

LTE B4 Lowest 5MHz

LTE B4 Middle 5MHz

Report No.: MTi170710E070 Page 19 of 47

LTE B4 Hightest 5MHz

LTE B4 Lowest 10MHz

Report No. : MTi170710E070 Page 20 of 47

LTE B4 Middle 10MHz

LTE B4 Hightest 10MHz

Report No.: MTi170710E070 Page 21 of 47

LTE B4 Lowest 15MHz

LTE B4 Middle 15MHz

Report No. : MTi170710E070 Page 22 of 47

LTE B4 Hightest 15MHz

LTE B4 Lowest 20MHz

Report No.: MTi170710E070 Page 23 of 47

LTE B4 Middle 20MHz

LTE B4 Hightest 20MHz

Report No. : MTi170710E070 Page 24 of 47

5. FREQUENCY STABLITY

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Result
27.54	Frequency stability	± 2.5 ppm	PASS

5.1.1 TEST PROCEDURE

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -10°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 45°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -10°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from DC 5V to 3.5V
- 3. The variation in frequency was measured for the worst case.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: MTi170710E070 Page 25 of 47

5.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1015 hPa	Test Voltage :	DC 5V from adapter
Test Mode :	LTE B4		

Test (Conditions	(QPSK) / Middle Channel(1732.5MHz)		Limit
Temperature	Voltage	BW 10MHz		Note
(°C)	(Volt)	Deviation (Hz)	Deviation (ppm)	Result
50°C	Normal Voltage	22	0.0127	
30°C	Normal Voltage	19	0.0110	
20°C	Normal Voltage	32	0.0185	
10°C	Normal Voltage	18	0.0104	
0°C	Normal Voltage	-23	-0.0133	
-10°C	Normal Voltage	17	0.0098	PASS
-20°C	Normal Voltage	19	0.0110	
-30°C	Normal Voltage	25	0.0144	
25°C	Maximum Voltage	-14	-0.0081	
25°C	Normal Voltage	17	0.0098	
25°C	Minimum Voltage	-15	-0.0087	

Report No. : MTi170710E070 Page 26 of 47

6. CONDUCTED SPURIOUS EMISSIONS

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Result
27.53(h)	Conducted spurious emissions	−13dBm	PASS

6.1.1 TEST PROCEDURE

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low, middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: MTi170710E070 Page 27 of 47

6.1.5 TEST RESULTS

NOTE: ALL MODE HAS BEEN TESTED, ONLY WORST DATA SHOWN IN THIS REPORT.

Lowest 1.4MHz QPSK

Middle 1.4MHz QPSK

Report No.: MTi170710E070 Page 28 of 47

Highest 1.4MHz QPSK

Lowest 20 MHz QPSK

Report No.: MTi170710E070 Page 29 of 47

Middle 20 MHz QPSK

Highest 20 MHz QPSK

Report No.: MTi170710E070 Page 30 of 47

7. RADIATED SPURIOUS EMISSIONS

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Result
27.53(h)	Radiated Spurious emissions	-13dBm	PASS

7.1.1 TEST PROCEDURE

- 1. The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz,VBW= 1MHz ,peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain –Substitution antenna Loss(only for Dipole antenna) Analyzer reading. Then final

spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

Report No.: MTi170710E070 Page 31 of 47

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: MTi170710E070 Page 32 of 47

7.1.5 TEST RESULTS

NOTE: ALL MODE HAS BEEN TESTED, ONLY WORST DATA SHOWN IN THIS REPORT.

Test result for Lowest Channel QPSK 1.4MHz						
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (dBm)	Limit (dBm)	Margin (dB)
2532.9	Н	-55.19	4.25	-50.94	-13.00	37.94
3421.4	Н	-57.75	4.38	-53.37	-13.00	40.37
2532.9	V	-53.32	4.25	-49.07	-13.00	36.07
3421.4	V	-58.67	4.38	-54.29	-13.00	41.29
/	/	/	/	/	/	/

Test result for Lowest Channel 16QAM 1.4MHz						
Frequency	Antenna	LVL	Correction			
(MHz)	polarization	(dBm)	factor(dB)	Result	Limit	Margin
				(dBm)	(dBm)	(dB)
						, ,
2532.9	Н	-55.63	4.25	-51.38	-13.00	38.38
3421.4	Н	-57.15	4.38	-52.77	-13.00	39.77
2532.9	V	-53.23	4.25	-48.98	-13.00	35.98
3421.4	V	-58.84	4.38	-54.46	-13.00	41.46
/	/	/	/	/	/	/

Report No.: MTi170710E070 Page 33 of 47

	Test result for Highest Channel QPSK 1.4MHz						
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (dBm)	Limit (dBm)	Margin (dB)	
2532.9	Н	-56.33	4.25	-52.08	-13.00	39.08	
3505.8	Н	-58.42	4.42	-54	-13.00	41.00	
2532.9	V	-54.68	4.25	-50.43	-13.00	37.43	
3505.8	V	-58.39	4.42	-53.97	-13.00	40.97	
/	/	/	/	/	/	/	

Test result for Highest Channel 16QAM 1.4MHz						
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (dBm)	Limit (dBm)	Margin (dB)
2532.9	Н	-56.08	4.25	-51.83	-13.00	38.83
3505.8	Н	-58.37	4.42	-53.95	-13.00	40.95
2532.9	V	-54.64	4.25	-50.39	-13.00	37.39
3505.8	V	-58.44	4.42	-54.02	-13.00	41.02
/	/	/	/	/	/	/

Note: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

Report No.: MTi170710E070 Page 34 of 47

8. BAND EDGE

8.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Result
27.53(h)	Band edge	−13dBm	PASS

8.1.1 TEST PROCEDURE

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: MTi170710E070 Page 35 of 47

8.1.5 TEST RESULTS

NOTE: ALL MODE HAS BEEN TESTED, ONLY WORST DATA SHOWN IN THIS REPORT.

Lowest Channel 1.4MHz QPSK

Highest Channel 1.4MHz QPSK

Report No. : MTi170710E070 Page 36 of 47

Lowest Channel 3MHz QPSK

Highest Channel 3MHz QPSK

Report No. : MTi170710E070 Page 37 of 47

Lowest Channel 5MHz QPSK

Highest Channel 5MHz QPSK

Report No.: MTi170710E070 Page 38 of 47

Lowest Channel 10MHz QPSK

Highest Channel 10MHz QPSK

Report No.: MTi170710E070 Page 39 of 47

Lowest Channel 15MHz QPSK

Highest Channel 15MHz QPSK

Report No.: MTi170710E070 Page 40 of 47

Lowest Channel 20MHz QPSK

Highest Channel 20MHz QPSK

Report No.: MTi170710E070 Page 41 of 47

Lowest Channel 1.4MHz 16QAM

Highest Channel 1.4MHz 16QAM

Report No. : MTi170710E070 Page 42 of 47

Lowest Channel 3MHz 16QAM

Highest Channel 3MHz 16QAM

Report No.: MTi170710E070 Page 43 of 47

Lowest Channel 5MHz 16QAM

Highest Channel 5MHz 16QAM

Report No. : MTi170710E070 Page 44 of 47

Lowest Channel 10MHz 16QAM

Highest Channel 10MHz 16QAM

Report No.: MTi170710E070 Page 45 of 47

Lowest Channel 15MHz 16QAM

Highest Channel 15MHz 16QAM

Report No. : MTi170710E070 Page 46 of 47

Lowest Channel 20MHz 16QAM

Highest Channel 20MHz 16QAM

END OF REPORT

Report No.: MTi170710E070 Page 47 of 47