TP NN (Neural Networks) Techniques of AI [INFO-H-410]

v1.0.0

Source files, code templates and corrections related to practical sessions can be found on the UV or on github (https://github.com/iridia-ulb/INFOH410).

Feed forward neural network

Question 1. Consider the following fully connected feed forward NN:

- a) Give the equation for the output value of the network, given the network is linear.
- b) Show that the output equation of the perceptron is the same as the one of the neural net shown above.
- c) Now add an activation function f to each neuron and rewrite the first equation.
- d) Using the following inputs and weights, compute the output of the network using the sigmoid activation function first, and then the ReLU activation function.

inp	inputs		weights					
x_1	x_2	w_1	w_2	w_3	w_4	w_5	w_6	
1	1.5	1	2	3	2	1	3	

Question 2. We will now implement, create, and train a 4 layer fully connected feed forward neural network to solve a classification problem. The dataset for this problem will be generated automatically by the create_dataset function in utils.py

- a) Using the provided templates, implement a simple neural network. Start by filling the nn_template.py to implement the forward pass, the backpropagation, and the training function.
- b) Train your network using the automatically generated dataset, use the template ex2_template.py
- c) Observe the effect when changing some of the hyperparameters

Question 3. Use tensorflow with keras to instanciate, train and test the same network as in the previous question (use ex3_template.py).