Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

Методы измерений и электромеханические системы Отчёт по лабораторной работе №7

«Измерение отношения заряда электрона к постоянной Больцмана»

Выполнил студент:

Голубев Григорий Альбертович группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Вве	дение	2
	1.1	Цель работы	2
	1.2	Решаемые задачи	2
2		овная часть	2
	2.1	Теоретическая часть	2
	2.2	Эксперимент	3
	2.3	Обработка данных и обсуждение результатов	4
		Исходный код	
		Таблицы	6
		Графики	Ĉ
3	Вы	вод	12

1 Введение

1.1 Цель работы

Цель работы — исследовать зависимость коллекторного тока от напряжения базы в полупроводниковом приборе, вычислить ток насыщения I_0 , а также построить теоретическую кривую зависимости $I_k = I_0 e^{\frac{e}{kT}U_{96}}$ и сравнить её с экспериментальными данными.

1.2 Решаемые задачи

- 1. Измерить зависимость тока короткого замыкания коллектора биполярного транзистора от напряжения между эмиттером и базой.
- 2. По результатам измерений определить отношение заряда электрона к постоянной Больцмана.

2 Основная часть

2.1 Теоретическая часть

Ток короткого замыкания I_k в биполярном транзисторе. Пусть $U_{9\mathrm{B}}$ — напряжение между эмиттером и базой, I_0 — ток насыщения, T — температура в кельвинах, e — заряд электрона, k — постоянная Больцмана. Тогда ток короткого замыкания I_k вычисляется по формуле:

$$I_k = I_0 \left(e^{\frac{U_{\mathfrak{D}} B^e}{kT}} - 1 \right) \tag{1}$$

При комнатной температуре единицей можно пренебречь по сравнению с экспонентой, то есть можно считать:

$$I_k = I_0 e^{\frac{U_{\text{BB}}e}{kT}} \tag{2}$$

Прологарифмировав, получим:

$$\ln I_k = \ln I_0 + \frac{U_{\mathcal{S}B}e}{kT} \tag{3}$$

График $\ln I_k$ как функции от $U_{\mathrm{\Theta B}}$ — прямая. Тангенс угла её наклона равен:

$$\tan \alpha = \frac{e}{kT} \tag{4}$$

Получаем искомое отношение:

$$T\tan\alpha = \frac{e}{k} \tag{5}$$

$$S = \sqrt{\frac{\sum (a_i - \bar{a})^2}{n(n-1)}} \tag{6}$$

где S — стандартная погрешность выборки, a_i — значения наблюдений, \bar{a} — среднее значение, n — количество элементов в выборке.

Измерения проводились дважды с разными шкалами вольтметра.

2.2 Эксперимент

На этой схеме:

- $B\Pi$ блок питания электрической схемы;
- R_1 ограничительный резистор;
- R_2 потенциометр, с помощью которого можно изменять напряжение U_{26} ;
- V_1 вольтметр для измерения U_{96} ;
- R_3 резистор в цепи , по падению напряжения на котором можно измерить ток коллектора I_{κ} ;
- V_2 вольтметр для измерения падения напряжения $U_{\kappa 6}$ на R_3 .

Рис. 1. Принципиальная электрическая схема установки

Рис. 2. Фотография установки - цифровые вольтметры, источник электрического питания УПУ-1У4, транзистор П 702А.

2.3 Обработка данных и обсуждение результатов

Исходный код

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio.

Программа считывает данные из CSV-файла, выполняет ряд математических операций (вычисление разностей, отношений, среднего, отклонений и стандартной ошибки) и выводит результаты в консоль и записывает в файл CSV.

Листинг 1. Функция вычисления среднего

```
double aver(std::vector<double>& a_arr)
{
    double average = 0.0;
    for (int i = 0; i < a_arr.size(); i++)
    {
        average += a_arr[i];
    }
    average /= a_arr.size();
    return average;
}</pre>
```

Этот код выполняет анализ данных с использованием метода парных точек. Он считывает данные из двух файлов, вычисляет наклон для каждой пары точек, а затем проводит статистический анализ этих наклонов. Для каждой пары точек рассчитываются разницы по координатам x и y, а затем вычисляется наклон a_i .

$$\bar{a} = \frac{1}{N} \sum_{i=1}^{N} a_i$$

Для расчетов используется t-критическое значение для 95% доверия:

$$t_{\rm value} = 2.3646$$

Листинг 2. Функции для расчета отклонений

```
std::vector<double> a arr(std::vector<double>& x , std::vector<double</pre>
    >& y_)
2
    std::vector<double> a;
    for (int i = 0; i < x_size(); i++)
      a.push back(y [i] / x [i]);
    return a;
 std::vector<double> a diff(std::vector<double>& a, double average)
12
    std::vector<double> arr;
13
    for (int i = 0; i < a.size(); i++)
14
15
      arr.push back(a[i] — average);
16
17
    return arr;
18
19
 std::vector<double> a2 arr(std::vector<double>& arr)
    std::vector<double> a;
23
    for (int i = 0; i < arr.size(); i++)
24
25
      a.push back(arr[i] * arr[i]);
26
^{27}
    return a;
28
29
```

Листинг 3. Функция вычисление стандартной ошибки среднего

```
double s(std::vector<double>& a2_arr)
{
    double t = 0.0;
    double sum = 0.0;

for (int i = 0; i < a2_arr.size(); i++)
    {
        sum += a2_arr[i];
    }
}</pre>
```

```
t = sqrt(sum / (a2_arr.size() * (a2_arr.size() - 1)));

return t;
}
```

Листинг 4. Код программы реализующим метод парных точек

```
std::vector<double> x_;
std::vector<double> y_;
diff(x_, data1);
diff(y_, data2);

std::vector<double> a = a_arr(x_, y_);
double average = aver(a);
std::vector<double> a_d = a_diff(a, average);
std::vector<double> a2 = a2_arr(a_d);
```

Таблицы

Таблица 1. Грубые измерения

$N_{\overline{0}}\Pi/\Pi$	$U_{ m 96}$	$U_{ m K6}$	$I_k = \frac{U_{ ext{\tiny K6}}}{R_3}$	$\ln I_k$
	В	В	мА	
1	0,30	0,0014	0.117	-9.056
2	0,31	0,0021	0.175	-8.650
3	0,32	0,0041	0.342	-7.981
4	0,33	0,0075	0.625	-7.377
5	0,34	0,0133	1.108	-6.804
6	0,35	0,0178	1.483	-6.513
7	0,36	0,0297	2.475	-6.001
8	0,37	0,0400	3.333	-5.704
9	0,38	0,0588	4.9	-5.319
10	0,39	0,0727	6.058	-5.106
11	0,40	$0,\!1085$	9.042	-4.706
12	0,41	$0,\!1301$	10.841	-4.524
13	0,42	0,1602	13.35	-4.316
14	0,43	0,1809	15.075	-4.195
15	0,44	0,2123	17.691	-4.035
16	0,45	0,2430	20.25	-3.900

Среднее значение $\overline{\ln I_k} = -5.887$. Среднее значение $\overline{U_{96}} = 0.375$.

Таблица 2. Метод парных точек для грубых измерений

$N_{\overline{0}}$	x_2	x_1	$x_2 - x_1$	y_2	y_1	$y_2 - y_1$	a_i	$a_i - a$	$(a_i - a)^2$
1	0.38	0.3	0.08	-5.318	-9.056	3.737	46.721	12.362	152.82
2	0.39	0.31	0.08	-5.106	-8.651	3.544	44.305	9.946	98.926
3	0.4	0.32	0.08	-4.706	-7.982	3.276	40.947	6.588	43.404
4	0.41	0.33	0.08	-4.524	-7.377	2.853	35.668	1.309	1.713
5	0.42	0.34	0.08	-4.316	-6.805	2.489	31.108	-3.251	10.566
6	0.43	0.35	0.08	-4.195	-6.513	2.319	28.984	-5.375	28.886
7	0.44	0.36	0.08	-4.035	-6.002	1.967	24.586	-9.773	95.516
8	0.45	0.37	0.08	-3.899	-5.704	1.804	22.552	-11.806	139.396

Среднее значение a = 34.69.

Рассчитаем стандартную погрешность выборки по формуле (6):

$$S = 3.165 \text{ 1/B}$$

Найдем коэффициент Стьюдента
t для 8 элементов и вероятности 0,95 из таблиц: t=2.3646

$$\tan(\alpha) = 34.69 \pm 7.48 \left(\frac{1}{B}\right)$$

Определим погрешность измерения искомого отношения как погрешность косвенных измерений по формуле:

$$\Delta \frac{e}{k} = \sqrt{\frac{1}{9} \left(\frac{\partial \frac{e}{k}}{\partial T}\right)^2 \Delta T^2 + \left(\frac{\partial \frac{e}{k}}{\partial \tan \alpha}\right)^2 \Delta \tan \alpha^2}$$
 (7)

После преобразований получаем следующую формулу:

$$\Delta \frac{e}{k} = \sqrt{\frac{1}{9}\bar{a}^2\Delta T^2 + T^2\Delta \tan \alpha^2} \tag{8}$$

Где:

$$\Delta T = 0.5 \,\mathrm{K}, \quad \Delta \tan \alpha = S \cdot t = 7.483 \,\frac{1}{\mathrm{B}}$$

Тогда для первого измерения:

$$\frac{e}{k} = (10135.98 \pm 2227.88) \frac{K}{B}$$

Рассчитываем ток насыщения по формуле:

$$I_0 = \exp\left(\overline{\ln I_k} - \frac{e}{kT} \cdot \overline{U_{96}}\right) \tag{9}$$

Таким образом, значение тока насыщения равно:

$$I_0 = 0.7041 \cdot 10^{-8} \text{ MA}$$

Таблица 3. Точные измерения

$N_{\overline{0}}\Pi/\Pi$	$U_{ m 96}$	$U_{ m k6}$	$I_k = \frac{U_{\text{\tiny K6}}}{R_3}$	$\ln I_k$
	В	В	мА	
1	0.3000	0.0012	0.1	-9.210
2	0.3106	0.0021	0.175	-8.651
3	0.3204	0.0039	0.325	-8.032
4	0.3300	0.0064	0.533	-7.536
5	0.3400	0.0108	0.9	-7.013
6	0.3500	0.0168	1.4	-6.571
7	0.3600	0.0264	2.2	-6.119
8	0.3700	0.0411	3.425	-5.676
9	0.3804	0.0531	4.425	-5.420
10	0.3900	0.0725	6.042	-5.109
11	0.4000	0.0937	7.808	-4.852
12	0.4108	0.1201	10.008	-4.604
13	0.4202	0.1470	12.25	-4.402
14	0.4308	0.1810	15.083	-4.194
15	0.4400	0.2086	17.383	-4.052
16	0.4500	0.2346	19.55	-3.935

Среднее значение $\overline{\ln I_k} = -5.961$. Среднее значение $\overline{U_{96}} = 0.375$.

Таблица 4. Метод парных точек для точных измерений

$N_{\overline{0}}$	x_2	x_1	x_2-x_1	y_2	y_1	$y_2 - y_1$	a_i	$a_i - a$	$(a_i - a)^2$
1	0.3804	0.3000	0.0804	-5.420	-9.210	3.789	47.137	12.443	154.83
2	0.3900	0.3106	0.0794	-5.109	-8.651	3.541	44.605	9.910	98.222
3	0.4000	0.3204	0.0796	-4.852	-8.031	3.179	39.938	5.244	27.504
4	0.4108	0.3300	0.0808	-4.604	-7.536	2.932	36.287	1.593	2.537
5	0.4202	0.3400	0.0802	-4.402	-7.013	2.610	32.554	-2.139	4.578
6	0.4308	0.3500	0.0808	-4.194	-6.571	2.377	29.419	-5.274	27.820
7	0.4400	0.3600	0.08	-4.052	-6.119	2.067	25.838	-8.856	78.430
8	0.4500	0.3700	0.08	-3.934	-5.676	1.741	21.773	-12.921	166.952

Аналогично получаем следующие значения:

- 1. S = 3.165 1/B;
- 2. Среднее a = 34.69;

3.
$$\tan(\alpha) = 34.69 \pm 7,48 \left(\frac{1}{B}\right);$$

4.
$$\frac{e}{k} = (10234.8 \pm 2207.6) \frac{K}{B}$$
;

Ток насыщения:

$$I_0 = 0.57 \cdot 10^{-8} \text{ MA}$$

Графики

Рис. 3. Зависимость $\ln I_k$ от $U_{\mathfrak{I}}$ на грубой шкале

Рис. 4. Зависимость тока коллектора от напряжения эмиттер-база на грубой шкале

Рис. 5. Зависимость $\ln I_k$ от $U_{\mathfrak{I}\mathfrak{G}}$ на точной шкале

Рис. 6. Зависимость тока коллектора от напряжения эмиттер-база на точной шкале

3 Вывод

Экспериментально определено отношение элементарного заряда к постоянной Больцмана посредством анализа зависимости тока короткого замыкания коллектора биполярного транзистора от напряжения между эмиттером и базой. Для визуализации зависимости построены графики. Погрешность определения искомой величины оценена как погрешность косвенных измерений.

Список литературы

[1] https://github.com/st117210/Workshop4.git