# Data Mining Lectures - Naive Bayes classification

Piotr Wasiewicz

Institute of Computer Science pwasiewi@elka.pw.edu.pl

6 czerwca 2017

# Probability

$$P(A) = \frac{T^A}{T}$$

- P(A) the measure of likelihood that an event A will occur
  - $\mathcal{T}^A$  all possible results associated with the event A
    - T all possible results

# Conditional probability

$$P(C|A) = \frac{P(C \cap A)}{P(A)}$$
 - conditional probability that a patient

has a disease C, if he has symptoms A

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$
 - conditional probability that a patient

has symptoms A, if he has a disease C

- $P({\it C} \cap {\it A})$  probability that a patient has a disease  ${\it C}$  and symptoms  ${\it A}$ 
  - P(C) probability that a patient has a disease C
  - P(A) probability of symptoms

# Bayes theorem

$$P(C|A) = \frac{P(C \cap A)}{P(A)}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

$$P(C|A) = \frac{P(A|C) * P(C)}{P(A)}$$

# Conditional probability table

Table describing conditional probabilities of diseases, where the given symptom was observed:

|                       | influenza $C_1$ | cold $C_2$   | pneumonia $\mathcal{C}_3$ | allergy $C_4$ |
|-----------------------|-----------------|--------------|---------------------------|---------------|
| headache $A_1$        | $P(C_1 A_1)$    | $P(C_2 A_1)$ | $P(C_3 A_1)$              | $P(C_4 A_1)$  |
| cough A <sub>2</sub>  | $P(C_1 A_2)$    | $P(C_2 A_2)$ | $P(C_3 A_2)$              | $P(C_4 A_2)$  |
| sneeze A <sub>3</sub> | $P(C_1 A_3)$    | $P(C_2 A_3)$ | $P(C_3 A_3)$              | $P(C_4 A_3)$  |
| temperature $A_4$     | $P(C_1 A_4)$    | $P(C_2 A_4)$ | $P(C_3 A_4)$              | $P(C_4 A_4)$  |

$$\sum_{i=1}^{n} P(A_i) = 1 \qquad \sum_{j=1}^{m} P(C_j|A_i) = 1 \qquad P(C_j) = \sum_{i=1}^{n} P(A_i) * P(C_j|A_i)$$

$$P(A_i|C_j) = \frac{P(A_i) * P(C_j|A_i)}{P(C_i)} \qquad P(C_j|A_i) = \frac{P(C_j) * P(A_i|C_j)}{P(A_i)}$$

### More general Bayes Theorem formula

Bayes theorem has the more general form for  $\underline{\mathsf{many}}$  diseases and many symptoms:

$$P(C_{j}|A_{i1} \cap ... \cap A_{ik}) = \frac{P(C_{j}) * P(A_{i1}|C_{j}) * ... * P(A_{ik}|C_{j})}{\sum_{l=1}^{n} P(C_{l}) * P(A_{i1}|C_{l}) * ... * P(A_{ik}|C_{l})}$$

# Bayes Theorem: the comparison of equivalent sets and events

| $\Omega$ - a space of independent elementary observed results; $A \in 2^{\Omega} \Rightarrow A' \in 2^{\Omega}$ - complementarity; $A, B \in 2^{\Omega} \Rightarrow A \cup B \in 2^{\Omega}$ - additivity | $F$ - the independent rule set such that $a\in F\Leftrightarrow b\notin F-\{0,a\}$ this means $b\wedge \neg a=0$ |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| $(2^{\Omega}, \cup, \cap,', \Omega, \phi)$                                                                                                                                                                | $(F, \vee, \wedge, \neg, 1, 0)$                                                                                  |  |
| $P(\phi) = 0$ $P(\Omega) = 1$                                                                                                                                                                             | $P(0) = 0 \qquad P(1) = 1$                                                                                       |  |
| $A \cap A' = \phi  A \cup A' = \Omega$                                                                                                                                                                    | $a \wedge \neg a = 0$ $a \vee \neg a = 1$                                                                        |  |
| $\forall A, B \in 2^{\Omega}  A \cap B = \phi$                                                                                                                                                            | $\forall a, b \in F  a \wedge b = 0$                                                                             |  |
| $P(A \cup B) = P(A) + P(B)$                                                                                                                                                                               | $P(a \lor b) = P(a) + P(b)$                                                                                      |  |
| $\forall A \in 2^{\Omega}  P(A) + P(A') = 1$                                                                                                                                                              | $\forall a \in F  P(a) + P(\neg a) = 1$                                                                          |  |
| $A \subseteq B$ $P(A) \le P(B)$                                                                                                                                                                           | $(a \Rightarrow b) = 1$ $P(a) \leq P(b)$                                                                         |  |

## Bayes model

#### Bayes rule

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)}$$

where h means hypothesis and e denotes an event. Such a rule is just an another form of the usual rule:

$$e \Rightarrow h$$

#### Bayes Theorem

$$\exists \ H = \{h_1, \dots, h_n\}, \ \text{where}$$

$$\forall i \neq j \quad h_i \land h_j = \mathbf{0} \quad \bigcup_{i=1}^n h_i = \mathbf{1}, \quad P(h_i) > 0, \quad i = 1, \dots, n$$

$$\exists \ \{e_1, \dots, e_m\}, \ \text{where}$$

$$P(e_1, \dots, e_m | h_i) = \prod_{j=1}^m P(e_j | h_i), \quad i = 1, \dots, n \Leftrightarrow$$

$$\Leftrightarrow \forall e_j, h_i \quad e_j \text{ conditionally independent on } h_i$$

$$P(h_i | e_1, \dots, e_m) = \frac{P(e_1, \dots, e_m | h_i) P(h_i)}{\sum_{k=1}^m P(e_j | h_i)}$$

$$P(h_i | e_1, \dots, e_m) = \frac{\prod_{j=1}^m P(e_j | h_i)}{\sum_{k=1}^m \prod_{j=1}^m P(e_j | h_k) P(h_k)}$$

Piotr Wasiewicz

EARIN

# PROSPECTOR modifications (1976)

An additional assumption:

$$P(e_1,\ldots,e_m|\neg h_i) = \prod_{j=1}^m P(e_j|\neg h_i), \ i=1,\ldots,n$$
 New Bayes rule: 
$$P(\neg h|e) = \frac{P(e|\neg h)P(\neg h)}{P(e)} \text{ or }$$
 
$$\frac{P(h|e)}{P(\neg h|e)} = \frac{P(e|h)}{P(e|\neg h)} \frac{P(h)}{P(\neg h)}$$
 
$$O(h) = \frac{P(h)}{P(\neg h)} - \text{a chance } \underline{\text{a priori}}$$
 
$$O(h|e) = \frac{P(h|e)}{P(\neg h|e)} - \text{a chance } \underline{\text{a posteriori}}$$
 A reliability coefficient: 
$$\lambda = \frac{P(e|h)}{P(e|\neg h)} \Rightarrow O(h|e) = \lambda O(h)$$

Piotr Wasiewicz

**EARIN** 

#### Further PROSPECTOR modifications

In a general case: 
$$O(h_i|e_1,\ldots,e_m)=O(h_i)\prod_{k=1}^m\lambda_{k_i},$$
 where  $\lambda_{k_i}=rac{P(e_k|h_i)}{P(e_k|\neg h_i)}$ 

$$\overline{\lambda} = \frac{P(\neg e|h)}{P(\neg e|\neg h)} \Rightarrow O(h|\neg e) = \overline{\lambda}O(h)$$

Coefficients  $\lambda$  i  $\overline{\lambda}$  are defined a priori.  $\lambda$  denotes observation sufficiency e (especially for  $\lambda \gg 1$ ) and  $\overline{\lambda}$  denotes necessity e (especially for  $0 \le \overline{\lambda} \le 1$ ).

# Bayes model disadvantages

- Assumptions are not accomplished.
- Ignorance is hidden in a priori probabilities.
- Probabilities are known only for elementary observed independently events, but not for their sets.
- Probabilities are for both negative and positive events at the same time.

## Naive Bayes classifier assumptions

- Each instance x described by attribute values  $a(x) = \langle a_1(x), a_2(x) \dots a_n(x) \rangle$ , where  $a_i(x)$  is the given value of the attribute  $a_i$   $(a_i(x) \in \{a_{ij}\}, j \in (1 \dots A_i))$ .
- Attribute values  $a_i(x)$  of instances x are conditionally independent given the target class  $C_k$ .
- It is so called Naive Bayes assumption:

$$P(a(x)|C_k) = \prod_i P(a_i(x)|C_k)$$

which is usually not true, but incorrect class probabilities very often permit correct classification.

- Conditional probabilities of attribute values  $a_i(x)$  given the class  $C_k$  are  $P(a_i(x)|C_k) = P_{T^{C_k}}(a_i(x)) = \frac{|T^{C_k}_{a_i(x)}|}{|T^{C_k}|}$ .
- $P(C_k|a(x)) = \frac{P(C_k)\prod_i P(a_i(x)|C_k)}{\sum_{C_l \in C} P(C_l)\prod_i P(a_i(x)|C_l)}$

Piotr Wasiewicz

## Naive Bayes classifier

• The final Naive Bayes classifier hypothesis h(x) predicting the correct class is just the greatest conditional probability:

$$P(C_{k}|a(x)) = \frac{P(C_{k})P(a(x)|C_{k})}{\sum_{C_{l} \in C} P(C_{l})P(a(x)|C_{l})}$$
•  $P(C_{k}|a(x)) = \frac{P(C_{k})\prod_{i} P(a_{i}(x)|C_{k})}{\sum_{i} P(C_{l})\prod_{i} P(a_{i}(x)|C_{l})}$ 

- $h(x) = \arg\max_{C_k \in C} P(C_k | a(x))$
- In a case of not present values in training instances to prevent prediction errors the number of values  $A_i$  of the attribute  $a_i$  is added to conditional probability:

$$P(a_i(x)|C_k) = P_{T^{C_k}}(a_i(x)) = \frac{|T^{C_k}_{a_i(x)}|+1}{|T^{C_k}|+A_i}.$$

Piotr Wasiewicz