Optimisation Convexe

Ivan Lejeune*

2 février 2024

1 Optimisation en dimension finie

Introduction. Méthode d'évaluation :

- · CC noté en CM
- 2TPs notés
- Examen terminal à 40%

Notation. On considère un espace vectoriel normé de dimension n noté $(E, ||\cdot||)$ et U ouvert de E. On considère une fonction $f: U \to \mathbb{R}$. Dans la pratique, E sera égal à \mathbb{R}^n . Soit $x \in U$, on note f'(x) la différentielle (qu'on appellera plus simplement "dérivée") de f en x. On a donc, pour tout $h \in E$ tel que ||h|| soit assez petit,

$$f(x+h) = f(x) + f'(x) \cdot h + ||h|| \varepsilon(x,h)$$

avec $\varepsilon(x,h) \underset{h\to 0}{\to} 0$ et $f'(x) \in \mathscr{L}(E,\mathbb{R})$.

Avec cette notation, si f est dérivable en x, alors f admet des dérivées partielles en x dans toutes les directions, et si (e_1, \ldots, e_n) est une base de E, on note " $\partial_i f(x)$ " ou encore $\frac{\partial f}{\partial x_i}(x)$ " la dérivée partielle de f par rapport à la i-ème variable. On a alors

$$\partial f(x) = f'(x) \cdot e_i \qquad i = 1, \dots n$$

Ainsi, pour $h \in E$ tel que $h = \sum_{i=1}^{n} h_i e_i$; on a

$$f'(x) \cdot h = f'(x) \cdot \left(\sum_{i=1}^{n} h_i e_i\right)$$
$$= \sum_{i=1}^{n} h_i f'(x) e_i$$
$$= \sum_{i=1}^{n} h_i \partial f(x)$$

De même, si $x \mapsto f(x)$ est dérivable en x, on note $f''(x) \in \mathcal{L}(E; \mathcal{L}(E, \mathbb{R}))$ cette dérivée seconde et on considère f''(x) comme une forme bilinéaire

$$f''(x) \in \mathcal{L}(E \times E, \mathbb{R})$$

Avec ces notations, le théorème fondamental de l'analyse (TTA) peut s'énoncer ainsi :

Théorème. Soit $f \in \mathcal{C}'(U,\mathbb{R})$. Alors pour tout $(x,y) \in U$ tel que $\forall t \in [0,1], x+t(y-x) \in U$, on a

$$f(y) = f(x) + \int_0^1 f'(x + t(y - x)) \cdot (y - x) dt$$

^{*}Cours inspiré de M. Charlier et M. Marche

Formule de Taylor à l'ordre 2. Soit $f \in \mathcal{C}^2(U,\mathbb{R}), x \in U$. Alors il existe un voisinage ν de x tel que pour tout $h \in \nu$

$$f(x+h) = f(x) + f'(x) \cdot h + \frac{1}{2}f''(x) \cdot (h,h) + o(||h||^2)$$

Bien entendu, cette expression peut aussi se formuler ainsi:

$$f(x+h) = f(x) + \sum_{i=1}^{n} \partial_i f(x) h_i$$
$$+ \frac{1}{2} \sum_{i,j=1}^{n} \partial_{i,j}^2 f(x) h_i h_j$$
$$+ ||h||^2 \varepsilon(h)$$

avec $\varepsilon(h) \underset{\|h\| \to 0}{\to} 0$, de manière a bien mettre en évidence la linéarité de la dérivée et la bilinéarité

En notant $\nabla f(x)$ le gradient de f évalué en x, et $\nabla^2 f(x)$ la matrice Hessienne de f évaluée en x, on a:

$$f(x+h) = f(x) + \nabla f(x)h + \frac{1}{2}^{T}h\nabla^{2}f(x) \cdot h + o(||h||^{2})$$

Definition. Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 . Alors pour tout $a \in U$, il existe un unique vecteur, noté $\nabla f(a)$ tel que pour tout $h \in E$

$$f'(a) \cdot h = \langle \nabla f(a), h \rangle$$

où $\langle \cdot, \cdot \rangle$ désigne le produit scalaire canonique sur \mathbb{R}^n (qui peut être noté aussi avec · mais dans ce cas attention aux confusions). C'est le gradient de f.

Rappel. Dans une base orthonormée, on a

$$\nabla f(a) = \sum_{i=1}^{n} \partial_i f(a) e_i$$

Résultats d'existence

Un outil fondamental à la compacité

Théorème 1.1.1. Soit K un compact de \mathbb{R}^n et $f:K\to\mathbb{R}$ une fonction continue. Alors f est bornée et atteint ses bornes :

$$\sup_{x \in K} |f(x)| < +\infty$$

et il existe $x \in K$ et $\overline{x} \in K$ tels que

$$f(\underline{x}) = \inf_{x \in K} f(x) = \min_{x \in K} f(x)$$
$$f(\overline{x}) = \sup_{x \in K} f(x) = \max_{x \in K} f(x)$$

$$f(\overline{x}) = \sup_{x \in K} f(x) = \max_{x \in K} f(x)$$

Preuve. Ce résultat à été démontré dans le cours de topologie / analyse fonctionnelle. Puisque f est continue, f(K) est une partie compacte de \mathbb{R} , c'est à dire une partie fermée et bornée de \mathbb{R} . Ainsi on a

$$-\infty < \inf f(K) \le \sup f(k) < +\infty$$

et puisque f(K) est fermée et que inf f(k) et sup f(k) sont adhérents à f(K), on a

$$\inf f(K) = \min f(K) \in f(E)$$

$$\sup f(K) = \max f(K) \in f(E)$$

Definition 1.1.2. Soit $f: \mathbb{R}^n \to \mathbb{R}$. On dit que f est coercive si $f(x) \to +\infty$ lorsque $||x|| \to +\infty$.

Théorème 1.1.3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ continue et coercive. Alors f est minorée et atteint son mini-

Preuve. Posons A = f(0) + 1.

Puisque f est coercive, il existe $\alpha > 0$ tel que

$$\forall x \in \mathbb{R}^n, ||x|| \ge \alpha \Longrightarrow f(x) \ge f(0) + 1$$

La boule $\overline{B}(0,\alpha)$ est un fermé borné de \mathbb{R}^n donc un compact de \mathbb{R}^n et $f|_{\overline{B}(0,\alpha)}$ est continue.

D'après le Théorème 1.1.1, f est minorée sur $\overline{B}(0,\alpha)$ et atteint son minimum en un certain $x_0 \quad (\forall x \in \overline{B}(0,\alpha), f(x) \ge f(x_0))$

Ainsi, soit $x \in \mathbb{R}^n$

- a) si $x \in \overline{B}(0, \alpha)$, alors $f(x) \ge f(x_0)$
- b) $x \notin \overline{B}(0,\alpha)$, alors $||x|| > \alpha$ et donc $f(x) \ge f(0) + 1$ et $f(x) \ge f(x_0) + 1 > f(x_0)$ puisque $0 \in \overline{B}(0,\alpha)$

Ainsi $\forall x \in \mathbb{R}^n, f(x) \geq f(x_0)$ et x_0 est bien le minimum de f sur \mathbb{R}^n

Remarque 1.1.4. Ce dernier résultat peut être généralisé, sous les même hypothèses, au cas d'une fonction $f: K \to \mathbb{R}$ avec K fermé de \mathbb{R}^n .

Caractérisation des extremas sans contraintes

Un outil fondamental au calcul différentiel.

Théorème 1.2.1. Soit $U \subset \mathbb{R}^n$ ouvert et $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 . Si $x_0 \in U$ est extremum local de f sur U alors on a $f'(x_0) = 0$ (ou $\nabla f(x_0) = 0$)

Preuve. Rappelons ce qu'il se passe pour une fonction $\varphi: I \subset \mathbb{R} \to \mathbb{R}$ qui admet par exemple un maximum local en $0 \in I$.

On a d'une part $\varphi'(0) = \lim_{x \to 0^+} \frac{\varphi(x) - \varphi(0)}{x} \le 0$ car x > 0 et $\varphi(x) - \varphi(0) \le 0$

et d'autre part $\varphi'(0) = \lim_{x \to 0^-} \frac{\varphi(x) - \varphi(0)}{x} \ge 0$ car x < 0 et $\varphi(x) - \varphi(0) \le 0$ Dans le cas $E = \mathbb{R}^n$, supposons que f admet un maximum local en $x_0 \in U$. Soit e_i un vecteur de base.

On sait que $\partial_i f(x_0) = f'(x_0) \cdot e_i = \varphi'_{e_i}(0)$ avec $\varphi_{e_i}(t) = f(x_0 + te_i)$

(où on remarque que $t \in]-\delta, \delta[$) puisque U est ouvert et $x_0 \in U$)

Puisque f admet un maximum local en x_0 il existe r > 0 tel que

$$\forall x \in B(x_0, r), \quad f(x) \le f(x_0)$$

Soit $h \in \mathbb{R}^n$ tel que $||h|| \le r$ alors

$$f(x_0 + h) \le f(x_0)$$

et en particulier

$$|t| \le r \Longrightarrow f(x_0 + te_i) \le f(x_0)$$

 $\Longrightarrow \varphi'_{e_i}(0) = 0$

Ainsi, toutes les dérivées partielles de f sont nulles en x_0 et donc $f'(x_0) = 0$