Intelligence artificielle

Théorie des décisions

Motivation

- Très souvent, un agent ne peut pas déterminer avec certitude quel sera l'effet de ses actions
- Par contre, on peut estimer la probabilité de chaque situation pouvant résulter d'une action
- On peut aussi évaluer dans quelle mesure chaque état résultant est utile ou désirable
- Alors, comment choisir la meilleure action?

Principe du maximum d'utilité espérée

- Soit :
 - U(S) une fonction qui retourne la valeur d'utilité de l'état S
 - Résultat_i(A) le ième état résultat possible de l'action A
 - E l'ensemble des informations sur l'état actuel dont l'agent dispose
- L'action choisie devrait être celle qui maximise EU(A|E) définie ainsi:

$$EU(A \mid E) = \sum_{i} P(Résultat_{i}(A) \mid faire(A), E) \times U(Résultat_{i}(A))$$

Loterie

- Une loterie L est un ensemble d'états C₁, C₂, ..., C_n
 pouvant se produire avec des probabilités p₁, p₂, ...
 p_n, respectivement;
- On écrira L = $[p_1,C_1; p_2,C_2; ... p_n,C_n]$
- Chaque état C_i peut lui-même être une loterie
- On écrira
 - A > B si l'agent préfère A à B
 - A ~ B si l'agent est indifférent entre A et B
 - A >~ B si l'agent préfère A ou est indifférent

Conditions sur la fonction d'utilité

- Pour que le principe de maximum d'utilité espérée nous assure un comportement rationnel, certaines conditions doivent être respectées par la fonction d'utilité:
 - A > B ou B > A ou A ~ B
 - Si A > B et B > C, alors A > C
 - Si A > B > C alors il existe une probabilité p telle que [p,A; 1-p,C] ~ B
 - Si A ~ B, alors ils sont interchangeable dans une loterie
 - Soit A > B et deux loteries impliquant seulement A et B. L'agent accordera la préférence à celle où A a la plus forte probabilité (et vice versa)
 - $[p,A; 1-p,[q,B; 1-q,C]] \sim [p,A; (1-p)q,B; (1-p)(1-q),C]$

Comment déterminer la valeur d'utilité?

- La valeur absolue n'est pas importante
- Ce qui importe c'est la valeur d'un état comparé aux autres
- Exemple: valeur monétaire
- On choisit quoi entre [0.5, 0\$; 0.5, 2500\$] et 1000\$?
- Si U(e) = montant, alors on choisit la loterie
- Si U(e) = log(avoir total), alors on décline la loterie si on est pauvre
- S'il nous manque exactement 2500\$ pour faire l'achat de l'objet de nos rêve, on pourrait avoir U(e) = 1 si montant=2500\$, 0 sinon. Dans ce cas, on prendra la loterie

Fonction d'utilité multi-attributs

- $U(x_1,...,x_n) = f[f_1(x_1),...,f_n(x_n)]$
- Un cas particulier souvent utilisé: f est la somme des valeurs (si les préférences sont indépendantes)

Réseaux de décision

- Il s'agit essentiellement de réseaux bayesiens
- On distingue trois types de noeuds:
 - noeuds réguliers, représentant les variables aléatoires
 - noeuds de décision, représentant des variables dont la valeur doit être sélectionnée parmi toutes celles possibles
 - noeuds d'utilité, représentant la valeur d'utilité pour un ensemble de variables

Évaluation d'un réseau de décision

- 1. Établir les valeurs connues parmi les noeuds du réseau
- 2. Pour chaque valeur possible du noeud de décision:
 - a) Fixer le noeud à cette valeur
 - b) Calculer les probabilités de tous les noeuds reliés au noeud d'utilité
 - c) Calculer la valeur d'utilité
- 3. Choisir l'action ayant la valeur d'utilité la plus élevée

Exemple de réseau de décision

Exemple de réseau de décision

Décisions complexes

- Jusqu'à maintenant, on a supposé que l'agent n'a qu'une seule décision à prendre
- Que fait-on lorsque plusieurs actions consécutives sont nécessaires pour atteindre le but visé?
- Nous verrons que, dans ce cas, l'agent doit avoir une politique pour choisir la meilleure action à chaque état

Processus de décision Markovien

- Modèle de transition: T(s,a,s') représente la probabilité d'obtenir l'état s' si on exécute l'action a à l'état s
- État initial: S₀
- Fonction de récompense: R(s)
- La solution est une politique π(s), qui spécifie l'action recommandée pour chaque état s

Politique optimale

- Une politique optimale, notée π*(s), est une politique qui retourne la valeur la plus élevée pour l'utilité espérée
- Si l'horizon n'est pas infini, elle sera nonstationnaire (c'est-à-dire qu'elle ne retournera pas toujours la même action pour le même état)

Comment calculer l'utilité?

- On supposera que la préférence est stationnaire (si l'agent préfère la séquence [s₀,s₁,s₂,...] à la séquence [s₀,s₁',s₂',...], alors il préfère [s₁,s₂,...] à [s₁',s₂',...])
- Dans ce cas, on a une seule fonction d'utilité raisonnable:

```
U([s_0, s_1, s_2,...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...
où \gamma est compris entre 0 et 1
```

Comment choisir entre différentes politiques?

• Une politique optimale π^* est une politique π qui maximise la valeur espérée suivante:

$$\mathsf{E}\left[\sum_{t=0}^{\infty} \ y^t R(s_t) \mid \pi\right]$$

• Par le principe de l'utilité maximale espérée, on déduit que π^* est la politique suivante:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s,a,s') U(s')$$

On a aussi:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s,a,s') U(s')$$

Exemple

Récompense de -0,04 pour chaque case non finale Probabilité d'avancer à la case suivante: 0,8 Probabilité de se déplacer sur une case latérale: 0,1

Exemple – politique optimale

Récompense de -0,04 pour chaque case non finale Probabilité d'avancer à la case suivante: 0,8 Probabilité de se déplacer sur une case latérale: 0,1

Exemple – politique optimale

L'agent se précipite le plus vite possible vers l'état final le plus proche, même s'il est le moins intéressant

Récompense inférieure à -1,6284 pour chaque case non finale Probabilité d'avancer à la case suivante: 0,8

Probabilité de se déplacer sur une case latérale: 0,1

Exemple – politique optimale

L'agent ne prend aucun risque

Récompense entre -0,0221 et 0 pour chaque case non finale Probabilité d'avancer à la case suivante: 0,8 Probabilité de se déplacer sur une case latérale: 0,1

Algorithme – itération de la valeur

```
fonction ITERATION-VALEUR(pdm, \varepsilon) retourne fonction d'utilité
  entrées: pdm, un processus de décision markovien
               ε, erreur maximale permise
  U' est une fonction d'utilité initiale telle que U'(x) = 0
  S est l'ensemble des états de pdm
  répéter:
     U \leftarrow U'
     \delta \leftarrow 0
     pour chaque s \in S faire:
        U'[s] \leftarrow R[s] + \gamma \max_{a} \sum_{s'} T(s,a,s') U[s']
        si |U'[s] - U[s]| > \delta alors \delta \leftarrow |U'[s] - U[s]|
   jusqu'à \delta < \varepsilon (1-\gamma)/\gamma
   retourner U
```

3	0,0	0,0	0,0	0,0
2	0,0		0,0	0,0
1	0,0	0,0	0.0	0,0
	1	2	3	4

$$\gamma = 1$$

meilleure action: droite

$$U = -0.04 + 0.8*1 -$$

$$-0.1*0.04 - 0.1*0.04$$

$$= 0.752$$

meilleure action: gauche

$$U = -0.04 - 0.8*0.04$$
$$-0.1*0.04 - 0.1*0.04$$
$$= -0.08$$

$$\gamma = 1$$

meilleure action: droite

$$U = -0.04 + 0.8*1 -$$

$$+0.1*0.752 - 0.1*0.08$$

$$= 0.827$$

meilleure action: haut

$$U = -0.04 + 0.8*0.752$$
$$-0.1*1 - 0.1*0.08$$
$$= 0.454$$

$$\gamma = 1$$

3	-0,12	0,546	0,827	1
2	-0,12		0,454	-1
1	-0,12	-0,12	-0,12	-0,12
	1	2	3	4

$$y = 1$$

3	0,372	0,731	0,888	1
2	-0,16		0,567	-1
1	-0,16	-0,16	0,299	-0,16
	1	2	3	4

$$y = 1$$

On continue tant que la plus grande variation de U(s) est supérieure au seuil minimal...

Valeurs finales:

	1	2	3	4
1	0,705	0,655	0,611	0,388
2	0,762		0,660	-1
3	0,812	0,868	0,918	1

$$\gamma = 1$$

Algorithme – itération de la politique

```
fonction ITERATION-POLITIQUE(pdm, E) retourne fonction d'utilité
  entrées: pdm, un processus de décision markovien
             ε, erreur maximale permise
  \pi est une politique initialisée aléatoirement
  S est l'ensemble des états de pdm
  répéter:
     U \leftarrow EVALUATION-POLITIQUE(\pi, U, pdm)
     inchangé \leftarrow true
     pour chaque s \in S faire:
       si \max_{a} \sum_{s'} T(s,a,s') U[s'] > \sum_{s'} T(s,\pi[s],s') U[s'] alors
         \pi[s] = \operatorname{argmax} \sum T(s,a,s') U[s']
         inchangé = false
  jusqu'à inchangé
  retourner \pi
```

Algorithme – itération de la politique

- En principe l'évaluation d'une politique exige la résolution d'une série d'équations linéaires
- On peut simplifier en itérant k fois la mise à jour suivante:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{s'} T(s, \pi_i(s), s') U_i[s']$$

État initial

3	0,0	0,0	0,0	0,0
2	0,0		0,0	0,0
1	0,0	0,0	0.0	0,0
	1	2	3	4

Politique fixée au hasard

$$\gamma = 1$$

Évaluation de la politique

3	-1,21	-1,10	-0,60	+1
2	-1,63		-0,69	-1
1	-1,67	-1,54	-1,49	-1,88
	1	2	3	4

$$\gamma = 1$$

Modification de la politique

	4			1
1	-1,67	-1,54	-1,49	-1,88
2	-1,63		-0,69	-1
3	-1,21	-1,10	-0,60	+1
	4.04	4.40	0.00	- 4

$$\gamma = 1$$

Évaluation de la politique

	1	2	3	4
1	-0,20	-0,19	-0,14	-0,54
2	-0,15		0,66	-1
3	0,30	0,41	0,92	+1
				_

$$\gamma = 1$$

Modification de la politique

3	0,30	0,41	0,92	+1
2	-0,15		0,66	-1
1	-0,20	-0,19	-0,14	-0,54
	1	2	3	4

$$\gamma = 1$$

Évaluation de la politique

3	0,811	0,87	0,92	+1
2	0,761		0,66	-1
1	0.688	0,5	0,55	0,15
	1	2	3	4

$$\gamma = 1$$

On continue tant que la politique change...

État final

3	0,0	0,0	0,0	0,0
2	0,0		0,0	0,0
1	0,0	0,0	0.0	0,0
	1	2	3	4

$$\gamma = 1$$