CPE 111 Discrete Mathematics for Computer Engineers International Program, 2022 Homework 1, due on LEB2 at noon on 17 Aug 2022

Chapter 1

Sec 1.1

- 1. Which of these are propositions? What are the truth values of those that are propositions?
 - a) Do not eat in the classroom.

Not a proposition; it's a command.

b) What time is it?

Not a proposition; it's a question.

c) There is pollution in Bangkok.

This is a proposition that is true; there have sound and air polution.

d) 4 + x = 5.

Not a proposition; its truth value depends on x

e) The moon is made of green cheese

This is a proposition that is false.

f) $2n \ge 50$.

Not a proposition; its truth value depends on n

2. Suppose that Smartphone A has 256MB RAM and 32GB ROM, and the resolution of its camera is 8 MP; Smartphone

B has 288 MB RAM and 64 GB ROM, and the resolution of its camera is 4 MP; and Smartphone C has 128 MB RAM and 32 GB ROM, and the resolution of its camera is 5 MP. Determine the truth value of each of these propositions.

b) Smartphone C has more ROM or a higher resolution camera than Smartphone B.

It's true because C has 5 MP resolution compared to B is only 4 MP.

d) If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.

It's false due to the hypothesis is true but the conclusion is false.

65070503410 CHARUNTHON LIMSEELO

3. Determine whether these biconditionals are true or false.

a)
$$2 + 2 = 4$$
 if and only if $1 + 2 = 3$.

b)
$$1 + 1 = 2$$
 if and only if $2 + 3 = 5$.

c) 1 + 1 = 3 if and only if monkeys can fly.

d)
$$0 > 1$$
 if and only if $2 > 1$.

4. Construct a truth table for each of these compound propositions.

c)
$$q \oplus (p \land q)$$

р	q	p ∧ q	$\mathbf{q} \oplus (\mathbf{p} \wedge \mathbf{q})$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	F

e)
$$(q \rightarrow \neg p) \rightarrow (p \leftrightarrow q)$$

p	q	¬р	$q \rightarrow \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \to (p \leftrightarrow q)$
T	T	F	F	Τ	Т
T	F	F	T	F	F
F	T	T	T	F	F
F	F	T	T	Τ	Т

5. Evaluate each of these expressions.

a)
$$(1\ 1011 \oplus 1\ 1001) \oplus 1\ 1010$$

Sec 1.2

6. Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output

$$(p \land \neg r) \land (\neg q \lor r)$$
 from input bits p, q, and r.

65070503410 CHARUNTHON LIMSEELO

Sec 1.3

- 7. Use De Morgan's laws to find the negation of each of the following statements.
- a) Kwame will take a job in industry or go to graduate school.

Given
$$p \lor q$$
 Kwame will not take a job in industry and will not go to graduate school $\neg (p \lor q) = ?$ $\neg (p \lor q) = (\neg p) \land (\neg q) \#$

b) James is young and strong.

Given
$$p \wedge q$$
 James is not young, or he is not strong.
 $\neg (p \wedge q) = ? \neg (p \wedge q) = (\neg p) \vee (\neg q) \#$

8. Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology. $\vec{\cdot}$ Proof that it is not a tautology #

р ¬р	q ¬q	$p \rightarrow q$	$(\neg p \land (p \to q)$	$(\neg p \land (p \to q)) \to \neg q$
T F	T F	т	F	Т
T _F	F T	F	F	F
F T	T F	Т	Т	Т
F T	F T	Т	т	Т

9. Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent.

p	q	r	¬р	$q \rightarrow r$	pvr	$\neg p \rightarrow (q \rightarrow r)$	$q \rightarrow (p \ v \ r)$
T	Т	T	F	T	T	Т	T
T	Т	F	F	F	Т	Т	Т
T	F	Т	F	+	T	Т	T
T	F	F	F	Τ	Т	Т	Т
F	Т	Т	T	τ	Т	T	Τ
F	Т	F	Т	F	F	F	F
F	F	Т	T	T	Т	Τ	Т
F	F	F	Т	T	F	Т	T

... They are logically equivalent #

65070503410 CHARUNTHON LIMSEELO

Sec 1.4

- 9. Let Q(x) be the statement "x + 10 > 2x." If the domain consists of all integers, what are these truth values?
 - a) Q(5) True
 - b) $\exists x \ Q(x)$ True
 - c) $\forall x Q(x)$ False
 - g) $\exists x \neg Q(x)$ True
- 10. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.
 - a) $\exists x(x^2=2)$ True
 - b) $\exists x(x^3=-1)$ True
 - c) $\forall x(x^2+1 \ge 2)$ True
 - d) $\exists x(x^2 \neq x)$ True
 - e) $\forall x(x^2 > x)$ False

Sec 1.5

11. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.

a)
$$\forall x \exists y (x = y^2)$$

b)
$$\exists x \forall y (xy = 0)$$
 True

False

c)
$$\exists x \exists y (x - y = y - x)$$
 True

d)
$$\exists x \forall y (y = 0 \rightarrow xy = 1)$$
 False.

e)
$$\forall x \exists y (x+2y = 2 \land 2x + 4y = 5)$$
 False

f)
$$\forall x \forall y \exists z (z = (x + y) / 2)$$
 True.