MAJOR

PYL 879: High Power Laser Matter Interaction

November 20, 2015, Time 2 hr, M. Marks 40

Attempt 6 problems.

- \mathcal{J} A laser of frequency $\omega_{_0}=3\omega_{_p}$ undergoes stimulated Raman scattering (in the backward direction) in a plasma of plasma frequency ω_p . Estimate the phase velocity of the plasma wave produced.
- ্যাষ্ঠ) A laser of frequency ω , incident on a metal ($\varepsilon_r=9, \omega_p=\sqrt{11}\omega$) at angle of incidence $\pi \, / \, 6 \, \mathrm{in}$ the presence of a surface ripple of wave number $q \hat{z}$, resonantly (2)excites a surface plasma wave. Estimate q.
- 1C) An intense short pulse laser is normally incident on a metal. Inside the metal, $\vec{E} = \vec{A}_0(t) \exp(-x/\delta) \exp(-i\omega t)$. Obtain the time average heating rate H. How does (2)the electron temperature scale with the fluence F of the pulse?
- \sim 1D) A laser of frequency ω and normalized amplitude $a_0 = e|E|/m\omega c$. is normally incident on an overdense plasma of $\omega_p=2\omega$. Estimate the value of $a_{\scriptscriptstyle 0}$ above which the laser would propagate in the plasma. (2)

[Given, amplitude transmission coefficient $T_A = 2/(1 + \varepsilon_{reff}^{1/2})$.]

- \bullet 1E) Plot j versus E in GaAs with a word of explanation. Indicate the region of (2)instability.
- ZA) A two dimensional Gaussian laser beam with

$$\vec{E} = \hat{y}Ae^{-i(\omega t - kz)}, |A|^2 = \frac{A_{00}^2}{f} \exp(-x^2 / r_o^2 f^2)$$

propagates in a nonlinear medium having $\varepsilon_r = \varepsilon_{r0} + \varepsilon_2 |E|^2$. The equation governing f is

$$\frac{d^2 f}{dz^2} = \frac{1}{R_d^2 f^3} - \frac{\varepsilon_2 A_{00}^2}{\varepsilon_{r0} r_0^2 f^2}$$

where $R_d=kr_0^2$. If $\varepsilon_2A_{00}^2$ / $\varepsilon_{r0}r_0^2=4$ / R_d^2 , obtain the minimum spot size the beam would acquire. Take, at z = 0, f = 1, df / dz = 0. (3)

 ${\mathcal Z}$ B) A fully ionized carbon cluster of ion density $n_{\!\scriptscriptstyle 0}$ and radius $r_{\!\scriptscriptstyle c}$ undergoes ion Coulomb explosion. Estimate the energy an ion initially at $r=r_{\rm c}$ / 2 would have after the explosion. (3)

3) A laser $\vec{E} = \hat{y}Ae^{-\imath(\omega t - kz)}$ propagates through a plasma of $\varepsilon_{reff} = 1 - \omega_p^2 / \omega^2 + \alpha |E|^2$, $\alpha = e^2 \omega_p^2 / (4m^2 c^2 \omega^4)$. Obtain k when $A = A_0$, a constant. For $A = A_0 + A_1(x, z)$, $A_1 \ll A_0$, the wave equation governing A_1 is

$$2ik\frac{\partial A_1}{\partial z} + \frac{\partial^2 A_1}{\partial x^2} + \frac{\omega^2}{c^2}\alpha A_0^2(A_1 + A_1^*) = 0.$$

Obtain the growth rate Γ of filamentation instability (i.e., of amplitude perturbation $A_{\rm l}$). (6)Plot $\,\Gamma$ as a function of transverse ripple wave number q_x .

4) A LCR circuit has a capacitor with $C=C_{00}+C_2\cos(\omega_0t) \ , \ \text{where} \ \ \omega_0=2\omega_r \ ,$ $\omega_r = 1 / \sqrt{LC_{00}}, C_2 << C_{00}, R / \omega_r L << 1.$ Deduce the growth rate of parametric

instability (of current) in the circuit.

- (5) In the presence of a large amplitude plasma wave $\phi = A\cos\psi, \psi = \omega t kz$, the $\gamma-\psi$ relation for an electron is $\gamma-\beta(\gamma^2-1)^{1/2}=A'\cos\psi+C_1$: $\beta=\omega/k=0.99$, A'=0.3 . Plot the separatrix. If an electron initially has $\gamma=2, \psi=\pi$, estimate the (6)maximum energy this electron would attain.
 - 6A) A laser $\vec{E}_0 = \hat{y}A_0e^{-i(\omega_0t-k_0z)}$ propagates through a plasma In the presence of a plasma wave $\phi = Ae^{-i(\omega t - kz)}$. Obtain the nonlinear current density at $\omega_1 = \omega_0 - \omega$. (3)
 - 6B) Obtain the difference frequency ponderomotive force and nonlinear electron density perturbation n_{ω}^{NL} due to lasers $\vec{E}_j = \hat{y}A_je^{-\imath(\omega_jt-k_jz)}, \omega = \omega_1 - \omega_2$, j=1,2.

OR

6) Explain the feedback mechanism of stimulated Raman scattering. The coupled mode equations for plasma wave potential $\phi = Ae^{-i(\omega l - kz)}$ and the scattered wave field $\vec{E}_1 = \hat{y}A_1e^{-i(\omega_1t-k_1z)}$ in the presence of the pump $\vec{E}_0 = \hat{y}A_0e^{-i(\omega_0t-k_0z)}$ are

$$\begin{split} &(\omega^2-\omega_p^2)\phi=\omega_p^2\phi_p\\ &(\omega_1^2-\omega_p^2-k_1^2c^2)\vec{E}_1=-i\omega_l\vec{J}_{\omega_l}^{NL}\,/\,\varepsilon_0,\\ &\text{where }\phi_p=-e\vec{E}_0.\vec{E}_1^*\,/\,(2m\omega_0\omega_1^*)\,,\;\vec{J}_{\omega_l}^{NL}=k^2\varepsilon_0\phi^*e\vec{E}_0\,/\,(2mi\omega_0)\,. \end{split}$$
 Deduce the growth rate.