Unit 9 High Performance Distributed Systems

Unit Outcomes. Here you will learn

- how the most powerful computing facilities on Earth are structured, what they are used for
- how clusters and grids are managed, what goes on inside them (but not in depth)
- how one can make use of the ultra-fast message buses inside various supercomputers in a portable way

Contents

1 Case studies

Chess playing

Animation rendering

The World-wide telescope

Other high-throughput applications

High throughput computing architectures

Architectures overview

Supercomputers

Beowulf clusters

Grids

Comparison of clusters and grids

3 Globus grid infrastructure overview

Overview

Grid Resource Allocation and Management (GRAM)

Case studies Chess playing

- need to keep several billion positions at once
 - need to distribute its storage
- generate and analyse over 200 million new positions per sec
 - needs lots of parallel processing
 - needs very fast communication between distributed nodes
 - normal (10Gb/s) ethernet not fast enough, using 40–120Gb/s

Animation rendering

- eg Pixar's Cars took
 2300 CPU years to render
- each frame takes 1–10 hours
 - using 1000s of computers, splitting the task by:
 - stages in the pipeline (eg tessellation, shading)
 - areas in the scene
 - sharing distributed virtual disk
 - data exchange, coordination (eg result assembly)

The World-wide telescope

- motivation:
 - many astronomical teams with many telescopes
 - connect their internal clusters and supercomputers
 - combine data from the teams seamlessly
- challenges:
 - how to store all the combined data?
 - how to process and query the data fast enough?
- solution:
 - organisations share their modest resources (not only astronomical organisations!)

Other high-throughput applications

- why do we need more and more powerful computers?
 - financial simulations
 - aero-dynamic simulation
 - climate-change prediction, weather forecast
 - large-scale agent-based modelling
 - protein folding
 - •

Architectures overview

supercomputers:
 many powerful processors on a super-fast bus

many homogeneous cheap computers on a local network

 grids: very many well-coordinated heterogeneous computers

Supercomputers

- characteristics:
 - 10s–100s of expensive reliable CPUs on separate boards
 - conneceted by superfast network
 - jobs allocated to CPUs and do not move
 - jobs communicate with one another frequently
- middleware optimised for message passing (eg MPI)
 - synchonous and asynchronous sending/receiving
 - efficient streaming of large binary data
 - efficient multicast, data splitting and results gathering
- mainly for:
 - solving complex problems with interrelated data fast

Beowulf clusters

- characteristics:
 - 10s–1000s of cheap off-the-shelf computers
 - administered centrally
 - jobs moving between nodes to optimise load
 - scalable: can dynamically add/remove nodes
- middleware not too complex
 - job management, job scheduling, job migration
 - distributed data management (eg distributed file system)
- · mainly for:
 - high-availability of services (eg Web search engines)
 - load-distribution for medium-sized tasks (eg animation)

Grids

- characteristics:
 - aim: flexible sharing of computing resources
 - not administered centrally many administrative domains
 - trust among participants is limited
 - based on open standards (like SOA)
 - non-trivial quality of service achieved
- needs very sophisticated middleware, combining aspects of
 - SOA, P2P, mobile code, mobile agents
- mainly for:
 - processing gigantic scientific data
 (eg CERN Large Hadron Collider several GB/s)
 - implementing SOA

Comparison of clusters and grids

	clusters	grids
size	thousands	millions
net speed	1-10Gb/s	much slower
admin	global — central	local — distributed
trust	unlimited – inside one organisation	limited — needs contracts & security
openness	varies	open
middleware	simple, many solutions	very complex, only few solutions

Globus grid infrastructure overview Overview

Grid Resource Allocation and Management (GRAM)

allows programs to be started and managed remotely
 VO 1 virtual organisation (VO) 2

Learning Outcomes

Learning Outcomes. You should now be able to

- describe the characteristics of clusters and grids
- name several applications that would make good use of clusters/grids and explain why it is the case
- name three important components of Globus and briefly explain their purpose
- describe the purpose of MPI and explain its advantages and disadvantages against RMI and against Web services