중간시험 대비

2019142046 한창희 (전기전자공학 / 컴퓨터과학 4학년)

Constants

- Planck's constant. $h = 6.626 imes 10^{-34} ext{J} \cdot ext{s}$
- Reduced planck constant. $\hbar = 1.0546 imes 10^{-34} J \cdot s$
- Boltzmann's constant. $k=1.38065 imes10^{-23} \mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}\cdot\mathrm{K}^{-1}$
- Electron charge. $e=1.602\times 10^{-19}{
 m C}$
- ullet Permittivity. $\epsilon_0=8.854 imes10^{-12} \mathrm{F/m}$
- ullet Permeability. $\mu_0=1.257 imes10^{-6} \mathrm{H/m}$

Equations

- ullet Molecular speed distribution. $f(v) = 4\pi N (m/2\pi kT)^{3/2} \cdot v^2 e^{-mv^2/2kT}$
- EM wave speed. $c=1/\sqrt{\epsilon_0\mu_0}=f\lambda$
- ullet Energy quanta. $E=hf=hc/\lambda$
- Photoelectric Effect
 - $\circ~$ maximum emissive kinetic energy. $KE=hf-\phi$
 - $\circ~$ work function. $\phi=hf_0$
- Compton Effect
 - $\circ~$ photon momentum (massless particle). p=E/c=hf/c
 - $\circ \;\; h(f-f')=KE$ (photon energy loss = electron kinetic gain)
 - \circ compton effect. $\lambda' \lambda = \lambda_C (1 \cos \phi)$
 - $\circ~$ compton wavelength. $\lambda_C=h/mc$
- De Broglie Waves
 - $\circ~$ photon wavelength (massless particle). $\lambda=h/p$
 - $\circ~$ de Broglie wavelength. $\lambda = h/\gamma mv$
 - $\circ~$ relativistic factor. $\gamma=1/\sqrt{1-(v^2/c^2)}$

- $\circ~$ particle total energy. $E=\sqrt{E_0+p^2c^2}=\sqrt{mc^2+p^2c^2}$
- $\circ~$ particle kinetic energy. $KE=E-E_0$

Wave Formula

- $\circ~$ de Broglie phase velocity. $v_p=f\lambda=(\gamma mc^2/h)(h/\gamma mv)=c^2/v$
- $\circ~$ wave formula. $y = A\cos{(\omega t kx)} = A\cos{2\pi f(t x/v_p)}$
- $\circ~$ phase velocity (same as above) $v_p=\omega/k$
- $\circ~$ group velocity $v_g = c\sqrt{1-(1/\gamma^2)} = \varDelta \omega/\varDelta k$

· Particle in a Box

- $\circ~$ de Broglie wavelengths of trapped particle. $\lambda_n=2L/n$
- $\circ~$ kinetic energy of trapped particle. $KE=mv^2/2=h^2/2m\lambda^2$
- $\circ~$ energy of trapped particle. $E_n=n^2h^2/8mL^2$
- Uncertainty Principle. $\Delta x \cdot \Delta p \geq \hbar/2$

Bohr Atom

- $\circ~$ condition for stability. $n\lambda=2\pi r$
- $\circ~$ orbital electron velocity. $v=e/\sqrt{4\pi\epsilon_0 mr}$
- \circ orbital electron wavelength. $\lambda = (h/e) \sqrt{4\pi\epsilon_0 r/m}$
- $\circ~$ orbital radii in Bohr atom. $r_n = n^2 h^2 \epsilon_0 / \pi m e^2$
- $\circ~$ electron energy. $E_n=-e^2/8\pi\epsilon_0 r_n=-me^4/8\pi\epsilon_0{}^2h^2\cdot(1/n^2)$

Lasers

- $\circ~$ absorption rate. BN_1I
- $\circ~$ spontaneous emission rate. AN_2 (where A=1/ au)
- $\circ~$ stimulated emission rate. BN_2I
- Two-level rate equations
 - $ullet dN_2/dt = BI(N_1 N_2) AN_2$
 - $ullet dN_1/dt = BI(N_2-N_1) + AN_2$
 - ullet $\Delta N=(N_1+N_2)/(1+2I/I_{sat})$, $I_{sat}=A/B$
- $\circ~$ Three-level rate equations (level 3 decays so fast, $N_3=0$)

$$ullet dN_1/dt = -BIN_1 + AN_2$$

$$ullet \Delta N = (N_1 + N_2)(1 - I/I_{sat})/(1 + I/I_{sat})$$

- · Schrodinger equation.
 - \circ Time-dependent. $i\hbar(\partial\psi/\partial t)=-(\hbar^2/2m)(\partial^2\psi/\partial x^2)+U\psi$
 - \circ Time-independent. $E\psi(x)=-(\hbar^2/2m)(d^2\psi(x)/dx^2)+V\psi(x)$
 - \circ Probability on position. $P=\int |\psi(x)|^2 \ dx$
 - $\circ~$ Expectation value on position. $\langle x
 angle = \int x |\psi(x)|^2 \ dx$
- Operators
 - \circ total energy of quantum particle. E=KE+U
 - \circ momentum operator. $\hat{p}=(\hbar/i)(\partial/\partial x)$
 - $\circ~$ total energy operator. $\hat{E}=i\hbar(\partial/\partial t)$
 - $\circ~$ Hamiltonian operator. $\hat{H} = -(h^2/2m)(\partial^2/\partial x^2) + U$
 - Schrodinger equation reduces to $\hat{H}\psi_n=E_n\psi_n$
- Hydrogen atoms in steady-state form
 - \circ discrete energy levels (energy eigenvalues) $E_n=-me^4/32\pi^2\epsilon_0{}^2\hbar^2\cdot (1/n^2)$
 - $\circ~$ eigenvalues of the total angular momentum $L=\sqrt{l(l+1)\hbar}$
- · Particle in a Box
 - $\circ~$ Schrodinger equation. $d^2\psi/dx^2+(2m/\hbar^2)E\psi=0$
 - $\circ~$ solution. $\psi = A \sin{(\sqrt{2mE} \cdot x/\hbar)} + B \cos{(\sqrt{2mE} \cdot x/\hbar)}$
 - ullet this subjects to the boundary conditions, $\psi(x=0)=\psi(x=L)=0$
 - $\circ~$ energy of trapped particle. $E_n=n^2\pi^2h^2/2mL^2$