SubHalo Abundance Matching for eBOSS Galaxies

Jiaxi Yu

Supervisors: Prof. Dr. Jean-Paul Kneib Dr. Cheng Zhao

July 7th, 2020

Contents:

- **V** Introductions
 - Galaxy Bias
 - SubHalo Abundance Matching Method
 - Two-point Correlation Function
- > SHAM Implementation
- > Results
- > Conclusions and Outlooks

Introductions: Galaxy Bias Models

Halo/Subhalo N-body Simulations

ELG/LRG Observations

Introductions: Galaxy Bias Models

 $\frac{SHAM}{P(M_{(sub)halo})}$

Select halos (i.e., galaxies) so that they:

Select halos (i.e., galaxies) so that they:

•Have the same number density as observations

Select halos (i.e., galaxies) so that they:

- •Have the same number density as observations
- •Match the galaxy probability distribution function (P.D.F)

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

The most massive halos: all have an LRG, no one hosts an ELG

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

The lightest halos: no galaxy

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

Intermediate halos: smooth transition in between

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

Select halos (i.e., galaxies) so that they:

- •Have the same number density as observations
- •Match the galaxy probability distribution function (P.D.F)
- •Agree with the observed **two-point correlation functions** (2PCF) on small scales

Fig 1. The ideal probability distribution function for halos with a certain mass to have a galaxy inside

Introductions: 2PCF

Figure from LASTRO Tea-Time Talk: Cosmology with large-scale structures

Introductions: 2PCF

For SHAM galaxies:

$$\xi_{\text{PH}}(s) = \frac{DD(s)}{RR(s)} - 1$$
(Peebles & Hauser 1974)

For eBOSS galaxies:

$$\xi_{LS}(s) = \frac{DD(s) - 2DR(s) + RR(s)}{RR(s)}$$

(Landy & Szalay 1993)

Figure from LASTRO Tea-Time Talk: Cosmology with large-scale structures Ref 1. Peebles, P. J. E., & Hauser, M. G. 1974, The Astrophysical Journal Supplement Series, 28, 19 Ref 2. Landy, S., & Szalay, A. 1993, the astropysical journal, 412, 64

Introductions: 2PCF(b) with RSD

density contrast in the real space:

density contrast in the redshift space:

the linear galaxy bias in the real space:

$$\delta(x) = \frac{\rho(x) - \overline{\rho}(x)}{\overline{\rho}(x) \text{peculiar velocity's effect}}$$
$$\delta_{obs}(x) = \delta(x) - \frac{\partial_{d}(v \cdot n)}{H} \text{ (Kaiser 1987)}$$

$$\delta_{gal}(\mathbf{x}) = b \times \delta_{halo}(\mathbf{x})$$

Introductions: 2PCF(b) with RSD

density contrast in the real space:

density contrast in the redshift space:

the linear galaxy bias in the real space:

correlation function in the redshift space:

stronger bias impacts on the monopoles

$$\delta(x) = \frac{\rho(x) - \overline{\rho}(x)}{\overline{\rho}(x) \text{ peculiar velocity's effect}}$$
$$\delta_{obs}(x) = \delta(x) - \frac{\partial_d (v \cdot n)}{H} \text{ (Kaiser 1987)}$$

$$\delta_{gal}(\mathbf{x}) = b \times \delta_{halo}(\mathbf{x})$$

$$\xi_{gal}(\mathbf{s}) = <\delta_{obs}(\mathbf{x})\delta_{obs}(\mathbf{x}-\mathbf{s})>$$

$$\xi_0(s) \propto f(b^2, b)$$
 (Hamilton 1992) $\xi_2(s) \propto f(b)$

Contents:

- **V** Introductions
 - Galaxy Bias: the link of DM and galaxies
 - SHAM: select halos with bias models and calibrate them
 - $2PCF = 2PCF(bias, v_{pec})$
- > SHAM implementation
- > Results
- > Conclusions and Outlooks

Contents:

- > Introductions
- **∀** SHAM Implementation
 - Data Descriptions
 - SHAM using V_{peak}
 - SHAM model Calibration
- > Results
- > Conclusions and Outlooks

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

V_{peak}: the peak maximum circular velocity over the mass accretion history

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

 V_{peak} : the peak maximum circular velocity over the mass accretion history

eBOSS observations:

PIP+ANG weighted galaxy pair counts (Mohammad et al. (2020))

ELGs at 0.6 < z < 1.1, $z_{eff} = 0.845$, $n_{eff} = 2.93e^{-4} (Gpc/h)^{-3}$

LRGs at 0.6 < z < 1.0, $z_{eff} = 0.698$, $n_{eff} = 6.26e^{-5} (Gpc/h)^{-3}$

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

 V_{peak} : the peak maximum circular velocity over the mass accretion history

eBOSS observations:

PIP+ANG weighted galaxy pair counts (Mohammad et al. (2020))

ELGs at 0.6 < z < 1.1, $z_{eff} = 0.845$, $n_{eff} = 2.93e^{-4} (Gpc/h)^{-3}$

LRGs at 0.6 < z < 1.0, $z_{eff} = 0.698$, $n_{eff} = 6.26e^{-5}$ (Gpc/h)⁻³

Covariance matrices:

EZmocks

1000 realisations for one tracer in one galactic cap

Massive Truncation: probable absence of eBOSS heavy galaxies

Fig 2. The eBOSS galaxy P.D.F compared with the ideal one

the same SHAM model for eBOSS LRGs and ELGs

Fig 3. The eBOSS galaxy P.D.Fs

Simply Cut at V_{cut}

Simply Cut at V_{cut}

Scattering with $N(0, \sigma^2)$ Massive-end cut at V_{cut}

SHAM Implementation: SHAM using V_{peak}

SHAM processes:

- Scatter V_{peak} by $V_{\text{peak}}^{\text{scat}} = V_{\text{peak}} (1 + N(0, \sigma^2))$
- ullet Truncate the massive end of $V_{\text{peak}}^{\text{scat}}$ at V_{cut}
- \bullet Assign $\,N_{\rm gal}\text{-th}$ galaxies to the remaining halos that have the largest $V_{\rm peak}^{\rm scat,cut}$

Fig 4. The impacts of σ and Vcut on the 2PCF monopole (left), quadrupole (right) and the Vpeak PDF (the next page)

Fig 4. The impacts of $\boldsymbol{\sigma}$ and Vcut on the Vpeak PDF

Reduce the statistical fluctuation from $N(0,\sigma^2)$

Average over the 2PCFs of 20 catalogues for a single (σ , V_{cut})

Monte-Carlo Nested Samping (Multinest) to obtain the best parameters (iminuit as a contrast)

Contents:

- > Introductions
- **V** SHAM Implementation
 - Data: UNIT, eBOSS galaxies, EZmocks
 - SHAM: scattering, massive cut, assign galaxies
 - Calibration: averaged SHAM, Monte-Carlo Sampling
- > Results
- Conclusions and Outlooks

Contents:

- > Introductions
- > SHAM Implementation
- **V** Results
 - SHAM Models for ELGs
 - SHAM Models for LRGs.
 - LRG Improvement: the Redshift Uncertainty
- Conclusions and Outlooks

Results: ELG NGC 2PCF

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.513^{+0.433}_{-0.081}$	268+124	52.296	1.376

Fig 5. The correlation functions of eBOSS SHAM ELGs in NGC

Results: ELG NGC P.D.F

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.513^{+0.433}_{-0.081}$	268+124	52.296	1.376

Fig 6. The probability distribution function of eBOSS SHAM ELGs in NGC

Results: ELG NGC Posterior

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.513^{+0.433}_{-0.081}$	268+124	52.296	1.376

Fig 7. The posterior distributions of eBOSS SHAM ELGs in NGC $\,$

Results: ELG SGC 2PCF

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356

Fig 8. The correlation functions of eBOSS SHAM ELGs in SGC

Results: ELG SGC P.D.F

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356

Fig 9. The probability distribution function of eBOSS SHAM ELGs in SGC

Results: ELG SGC Posterior

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356

Fig 10. The posterior distributions of eBOSS SHAM ELGs in SGC

Results: LRG NGC 2PCF

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 11. The correlation functions of eBOSS SHAM LRGs in NGC

Results: LRG NGC P.D.F

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 12. The probability distribution function of eBOSS SHAM LRGs in NGC $\,$

Results: LRG NGC Posterior

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 13. The posterior distributions of eBOSS SHAM LRGs in NGC

Results: LRG SGC 2PCF

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Fig 14. The correlation functions of eBOSS SHAM LRGs in SGC

Results: LRG SGC P.D.F

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Fig 15. The probability distribution function of eBOSS SHAM LRGs in SGC $\,$

Results: LRG SGC Posterior

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Fig 16. The posterior distributions of eBOSS SHAM LRGs in SGC

Results: LRG SHAM Improvement

the Ideal effect:

- ✓ Quadrupole on small scales increases
- ✓ Quadrupole on large scales and monopole have minor shifts

A Reminder:

ightharpoonup 2PCF = 2PCF(bias, v_{pec})

Results: LRG Improvement -- Bias

Fig 17. The PDF of a dual-population model

Results: LRG Improvement -- Bias

Fig 18. The dual-model's parameter impact on the monopole (left) and quadrupole (right)

Results: LRG Improvement -- Vpec

Fig 18. The redshift uncertinty of eBOSS LRG pairs, Figure 2 of Ross et al. (2020)

$$\Delta v = c\Delta z (1+z)$$

Results: LRG Improvement -- Vpec

 Δv modelled by a Gaussian smearing $N(0, 91.8^2)$ on the peculiar velocity

⇒Quadrupole shifts larger than the monopole shift

Fig 19. The peculiar velocity's effect on the correlation function monopole (left) and quadrupole (right)

Results: LRG Improvement -- V_{pec}

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915
0.806	1170	33.910	0.916

Fig 20. The peculiar-velocity-smeared SHAM LRG in NGC

Contents:

- > Introductions
- > SHAM Implementation
- **V** Results
 - ELGs: good! degeneracy found
 - LRGs: quadrupole discrepancy on small scales
 - Improvement: the peculiar velocity smearing
- Conclusions and Outlooks

Contents:

- > Introductions
- > SHAM Implementation
- > Results
- **V** Conclusions and Outlooks

Conclusions:

✓ Applied SHAM on UNIT (sub)halo catalogue

Conclusions:

- ✓ Applied SHAM on UNIT (sub)halo catalogue
- ✓ Reproduced the 2PCF of eBOSS LRG and ELG respectively

	σ	V _{cut} (km/s)	χ^2	Reduced χ ²
ELG NGC	$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	52.296	1.376
ELG SGC	$0.790^{\tiny{+0.200}}_{\tiny{-0.285}}$	342^{+58}_{-61}	51.526	1.356
LRG NGC	$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915
LRG SGC	$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

Conclusions:

- ✓ Applied SHAM on UNIT (sub)halo catalogue
- ✓ Reproduced the 2PCF of eBOSS LRG and ELG respectively

	σ	V _{cut} (km/s)	χ^2	Reduced χ ²
ELG NGC	$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	52.296	1.376
ELG SGC	$0.790^{\tiny{+0.200}}_{\tiny{-0.285}}$	342^{+58}_{-61}	51.526	1.356
LRG NGC	$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915
LRG SGC	$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	54.593	1.437

✓ Improved the LRG SHAM by adding the redshift uncertainty effect

Outlooks:

- ✓ Reliable eBOSS LRG & ELG SHAM models
- Robust SHAM models
 - More averaged realisations
 - Implement SHAM models with σ_{pec}
 - ☐ Test the new model in different redshift bins

Outlooks:

- ✓ Reliable eBOSS LRG & ELG SHAM models
- Robust SHAM models
 - More averaged realisations
 - Implement SHAM models with σ_{pec}
 - ☐ Test the new model in different redshift bins
- Multi-tracer SHAM
 - ☐ Generate multiple tracers simultaneously
 - □ Difficulty: overlapped P.D.F
 - ☐ Cross-Correlation Studies

Thanks!

SHAM Implementation: Data Description

the (Sub)Halo catalogue:

the UNIT simulation

Box size: 13 (Gpc/h)3

Employed snapshots z=0.859 and z=0.702

V_{peak}: the peak maximum circular velocity over the mass accretion history

eBOSS observations:

PIP+ANG weighted galaxy pair counts (Mohammad et al. (2020))

Ref 1: Mohammad, F. G., Percival, W. J., Seo, H.-J., et al. submitted