

GOVERNMENT COLLEGE OF ENGINEERING, JALGAON

(An Autonomous Institute of Government of Maharashtra)

National Highway No.6, JALGAON - 425 002

Phone No.: 0257-2281522 Fax No.: 0257-2281319 Website: www.gcoej.ac.in E-mail: princoej@redifmail.com

Name of Examination: Winter 2020 - (Preview)

Course Code & Course Name: CO303U - Formal Language and Automata Theory

Generated At: 18-04-2022 16:59:11

Maximum Marks: 60 Duration: 3 Hrs

Edit	Print
------	-------

- Instructions: 1. All questions are compulsory.
 - 2. Illustrate your answer with suitable figures/sketches wherever necessary.
 - 3. Assume suitable additional data; if required.
 - 4. Figures to the right indicate full marks.

View Answer Key

- Solve any two sub-questions.
- a.) Construct a minimum state automata equivalent to the finite automata describe by the following table where q_0 is initial and q_2 is final state: [6]

Close Answer Key Submission Type: Marking scheme with model answers and solutions of numerical

State / 2	O	1
$\Rightarrow q_0$	q_1	q_5
q_1	q_6	q_2
q_2	q_0	q_2
q_3	q_2	q_6
q_4	q_7	q_5
q_5	q_2	q ₆
q_6	q_6	q_4
q ₇	q_6	q_2

b.) Define DFA and NDFA with suitable example.

[6]

[6]

c.) Construct a Mealy Machine which is equivalent to the Moore Machine given by following table:

Present State | Next State | Output a=0 $\Rightarrow q_0$ 0 q_3 q_1 1 q_1 q_1 q_2 0 q_2 q_3 $q_2 \\$ 0 q_3 q_3 q_0

2)	Solve any two sub-questions.

a.) Prove $(a+b)^* = a^*(ba^*)^*$. [6]

b.) Prove (1+00*1) + (1+00*1) (0+10*1)* (0+10*1) = 0*1(0+10*1)*. [6]

[6]

c.) Show that $L = \{o^i 1^i | i >= 1\}$ is not regular.

Solve any two sub-questions.

a.) Let G be the grammar S \Rightarrow 0B|1A, A \Rightarrow 0|0S|1AA, B \Rightarrow 1|1S|0BB. For the string 00110101, find: [6]

(i) The leftmost derivation

(ii) The rightmost derivation (iii) The derivation tree.

b.) Construct a reduced grammar equivalent to the grammar [6]

S⇒aAa

 $A \Rightarrow Sb|bCC|DaA$ $C \Rightarrow abb|DD$

 $E \Rightarrow aC$

c.) Construct a grammar in greibach normal form equivalent to the grammar

[6]

4) a.) Construct a PDA accepting $L = \{0^n1^n0^n \mid m,n>=1\}$. [6]

b.) Explain the model of linear bounded automaton. [6]

5) a.) Design a turing machine to recognise the language [6]

 $\{1^n 2^n 3^n \mid n >= 1\}.$ b.) Explain the Halting problem of Turing Machine. [6]

Auto Generated by SsOES v6.2

18/04/2022, 17:01 1 of 1