Space Curvature in Real Life

Jim Pivarski

Texas A&M University

10 May 2007

"The Einstein Tensor is traceless."

▶ No, it's not.

$$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R$$

Only half of the trace is subtracted off.

And yet, many sources say this or something like it.

▶ No, it's not.

$$G^{\mu\nu}=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R$$

Only half of the trace is subtracted off.

And yet, many sources say this or something like it.

• Key point: $\nabla_{\nu}G^{\mu\nu}=0$ "traceless in the identity." What is "The Identity?"

▶ No, it's not.

$$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R$$

Only half of the trace is subtracted off.

And yet, many sources say this or something like it.

- ► Key point: $\nabla_{\nu}G^{\mu\nu}=0$ "traceless in the identity." What is "The Identity?"
- ► Bianchi Identity

$$\nabla_{\lambda}R_{\alpha\beta\mu\nu} + \nabla_{\nu}R_{\alpha\beta\lambda\mu} + \nabla_{\mu}R_{\alpha\beta\nu\lambda} = 0$$

Derived from symmetry of indices and the fact that $g^{\mu\nu}$ commutes with covariant derivatives

For Ricci:
$$\nabla_{\mu}\left(R_{\lambda}^{\mu}-\frac{1}{2}\delta_{\lambda}^{\mu}R\right)=0$$

The importance of $abla_ u G^{\mu u} = 0$

Generic description of a fluid in space

$$T^{\mu\nu}(t,\vec{x}) = \begin{pmatrix} \rho & \rho_{x} & \rho_{y} & \rho_{z} \\ \rho_{x} & \rho_{x} & \tau_{xy} & \tau_{xz} \\ \rho_{y} & \tau_{xy} & \rho_{y} & \tau_{yz} \\ \rho_{z} & \tau_{xz} & \tau_{yz} & \rho_{z} \end{pmatrix} (t,\vec{x})$$

• Satisfies $\nabla_{\nu} T^{\mu\nu} = 0$

The importance of $\nabla_{\nu}G^{\mu\nu}=0$

Generic description of a fluid in space

$$T^{\mu\nu}(t,\vec{x}) = \begin{pmatrix} \rho & \rho_{x} & \rho_{y} & \rho_{z} \\ \rho_{x} & \rho_{x} & \tau_{xy} & \tau_{xz} \\ \rho_{y} & \tau_{xy} & \rho_{y} & \tau_{yz} \\ \rho_{z} & \tau_{xz} & \tau_{yz} & \rho_{z} \end{pmatrix} (t,\vec{x})$$

- Satisfies $\nabla_{\nu} T^{\mu\nu} = 0$
- $\nabla_0 T^{\mu 0} = 0$ is $\frac{\partial m}{\partial t} + \nabla \cdot \vec{p} = 0$, the continuity equation
- $ightharpoonup
 abla_i T^{\mu i} = 0 \text{ is } \rho \left(\frac{\partial \vec{p}}{\partial t} + (\vec{p} \cdot \nabla) \vec{p} \right) = -\nabla P, \text{ Navier-Stokes}$

The importance of $abla_ u G^{\mu u} = 0$

Generic description of a fluid in space

$$T^{\mu\nu}(t,\vec{x}) = \begin{pmatrix} \rho & \rho_{x} & \rho_{y} & \rho_{z} \\ \rho_{x} & P_{x} & \tau_{xy} & \tau_{xz} \\ \rho_{y} & \tau_{xy} & P_{y} & \tau_{yz} \\ \rho_{z} & \tau_{xz} & \tau_{yz} & P_{z} \end{pmatrix} (t,\vec{x})$$

- Satisfies $\nabla_{\nu} T^{\mu\nu} = 0$
- $\nabla_0 T^{\mu 0} = 0$ is $\frac{\partial m}{\partial t} + \nabla \cdot \vec{p} = 0$, the continuity equation
- $ightharpoonup
 abla_i T^{\mu i} = 0 ext{ is }
 ho \left(rac{\partial \vec{p}}{\partial t} + (\vec{p} \cdot
 abla) \vec{p}
 ight) = abla P$, Navier-Stokes

The Einstein equation is

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = \boxed{G^{\mu\nu} = kT^{\mu\nu}}$$

Motivated by aesthetics

$$\underbrace{G^{\mu\nu}}_{\text{geometry}} = \underbrace{kT^{\mu\nu}}_{\text{matter}}$$

lacktriangle While we're equating things like this, note that $abla_
u g^{\mu
u}=0$

$$G^{\mu\nu} = kT^{\mu\nu} + \Lambda g^{\mu\nu}$$

 Λ , the cosmological constant, is approximately $10^{-29}~{\rm g/cm^3}$

- \blacktriangleright Can also be derived from an action principle, yielding k and Λ as constants of integration
- ► Calculations go from matter distribution \leftrightarrow $G^{\mu\nu}$ \leftrightarrow metric \leftrightarrow geodesics \leftrightarrow matter distribution

- William Clifford wrote about a possible connection between matter and curved space in 1873, but he did not include time in the manifold
- ▶ In 1905, Hermann Minkowski and Henri Poincaré reformulated Einstein's special relativity into ordinary mechanics in a spacetime with a pseudometric

$$g_{\mu
u} = egin{pmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- ▶ Albert Einstein and Marcel Grossmann worked closely on the development of the Einstein equation, the most difficult part being the choice of curvature tensor $G_{\mu\nu}$
- In 1913, Grossmann distances himself from the physical interpretation; in 1915, Einstein presents the theory in its final form (except for Λ)

Newtonian limit (1): apparent forces from curvature 10/61

▶ Take
$$g_{\mu\nu}=\left(egin{array}{cc} -1-2\phi(ec x)/c^2 & 0 \ 0 & 1-2\phi(ec x)/c^2 \end{array}
ight)$$
 in ct and $ec x$

Newtonian limit (1): apparent forces from curvature $^{11/61}$

► Take
$$g_{\mu\nu}=\left(egin{array}{cc} -1-2\phi(ec x)/c^2 & 0 \ 0 & 1-2\phi(ec x)/c^2 \end{array}
ight)$$
 in ct and $ec x$

$$ightharpoonup \Gamma^t_{t\vec{y}} = \Gamma^t_{\vec{y}t} = \Gamma^{\vec{x}}_{tt} = -\Gamma^{\vec{x}}_{\vec{y}\vec{y}} = \nabla\phi/c^2$$
 and the others are 0

Newtonian limit (1): apparent forces from curvature 12/61

- ► Take $g_{\mu\nu}=\left(egin{array}{cc} -1-2\phi(ec x)/c^2 & 0 \ 0 & 1-2\phi(ec x)/c^2 \end{array}
 ight)$ in ct and ec x
- ▶ $\Gamma^t_{t\vec{x}} = \Gamma^t_{\vec{x}t} = \Gamma^{\vec{x}}_{tt} = -\Gamma^{\vec{x}}_{t\vec{x}} = \nabla \phi/c^2$ and the others are 0
- ▶ Particle with momentum \vec{p} follows a geodesic $\nabla_{\vec{p}}\vec{p}=0$

$$p^{\nu}\partial_{\nu}p^{\mu} + \Gamma^{\mu}_{\nu\lambda}p^{\nu}p^{\lambda} = 0$$

Newtonian limit (1): apparent forces from curvature 13/61

▶ Take
$$g_{\mu\nu}=\left(egin{array}{cc} -1-2\phi(ec x)/c^2 & 0 \ 0 & 1-2\phi(ec x)/c^2 \end{array}
ight)$$
 in ct and $ec x$

- ▶ $\Gamma^t_{t\vec{x}} = \Gamma^t_{\vec{x}t} = \Gamma^{\vec{x}}_{tt} = -\Gamma^{\vec{x}}_{t\vec{x}} = \nabla \phi/c^2$ and the others are 0
- ightharpoonup Particle with momentum \vec{p} follows a geodesic $\nabla_{\vec{p}}\vec{p}=0$

$$p^{\nu}\partial_{\nu}p^{\mu}+\Gamma^{\mu}_{\nu\lambda}p^{\nu}p^{\lambda}=0$$

 $ightharpoonup \mu = \vec{x}$ equation is

$$p^{t}\partial_{t}p^{\vec{x}} + p^{\vec{x}}\partial_{\vec{x}}p^{\vec{x}} + \Gamma_{tt}^{\vec{x}}p^{t}p^{t} + \Gamma_{\vec{x}\vec{x}}^{\vec{x}}p^{\vec{x}}p^{\vec{x}} = 0$$

Newtonian limit (1): apparent forces from curvature $^{14/61}$

▶ Take
$$g_{\mu\nu}=\left(egin{array}{cc} -1-2\phi(ec x)/c^2 & 0 \ 0 & 1-2\phi(ec x)/c^2 \end{array}
ight)$$
 in ct and $ec x$

- $ightharpoonup \Gamma^t_{t\vec{x}} = \Gamma^t_{\vec{x}t} = \Gamma^{\vec{x}}_{tt} = -\Gamma^{\vec{x}}_{\vec{x}\vec{x}} = \nabla \phi/c^2$ and the others are 0
- Particle with momentum \vec{p} follows a geodesic $\nabla_{\vec{p}}\vec{p}=0$

$$p^{\nu}\partial_{\nu}p^{\mu}+\Gamma^{\mu}_{\nu\lambda}p^{\nu}p^{\lambda}=0$$

 $\blacktriangleright \mu = \vec{x}$ equation is (with $p \approx (mc, \vec{p})$, where $mc \gg |\vec{p}|$)

$$\begin{split} p^t\partial_t p^{\vec{x}} + p^{\vec{x}}\partial_{\vec{x}} p^{\vec{x}} + \Gamma^{\vec{x}}_{tt} p^t p^t + \Gamma^{\vec{x}}_{\vec{x}\vec{x}} p^{\vec{x}} p^{\vec{x}} &= 0 \\ mc\frac{\partial \vec{p}}{\partial ct} + \vec{p}\frac{\partial \vec{p}}{\partial ct} + m^2 c^2 \nabla \phi/c^2 - |\vec{p}|^2 \nabla \phi/c^2 &= 0 \\ \text{which is } \frac{\partial \vec{p}}{\partial ct} + mc \nabla \phi/c^2 &= 0 \text{ or } \boxed{-m\nabla \phi = \frac{\partial \vec{p}}{\partial t} = \vec{F}_{\text{gravity}}} \end{split}$$

▶ Newton's theory: $\nabla^2 \phi = 4\pi G_N \rho$

- Newton's theory: $\nabla^2 \phi = 4\pi G_N \rho$
- $R_{\mu\nu} = \partial_{\alpha} \Gamma^{\alpha}_{\mu\nu} \partial_{\nu} \Gamma^{\alpha}_{\mu\alpha} + \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\alpha\beta} \Gamma^{\beta}_{\mu\alpha} \Gamma^{\alpha}_{\nu\beta}$ $R_{tt} = \nabla^{2} \phi / c^{2} 2(\nabla \phi)^{2} / c^{4} \approx \nabla^{2} \phi / c^{2}$ $R_{\vec{x}\vec{x}} = -\nabla^{2} \phi / c^{2} 2(\nabla \phi)^{2} / c^{4} \approx -\nabla^{2} \phi / c^{2}$ $R_{t\vec{x}} = R_{\vec{x}t} = 0$

- Newton's theory: $\nabla^2 \phi = 4\pi G_N \rho$
- $P_{\mu\nu} = \partial_{\alpha} \Gamma^{\alpha}_{\mu\nu} \partial_{\nu} \Gamma^{\alpha}_{\mu\alpha} + \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\alpha\beta} \Gamma^{\beta}_{\mu\alpha} \Gamma^{\alpha}_{\nu\beta}$ $R_{tt} = \nabla^{2} \phi / c^{2} 2(\nabla \phi)^{2} / c^{4} \approx \nabla^{2} \phi / c^{2}$ $R_{\vec{x}\vec{x}} = -\nabla^{2} \phi / c^{2} 2(\nabla \phi)^{2} / c^{4} \approx -\nabla^{2} \phi / c^{2}$ $R_{t\vec{x}} = R_{\vec{x}t} = 0$
- ▶ For the trace, it really matters that $g_{\mu\nu}$ is 4-dimensional

$$R = R_{tt} + R_{xx} + R_{yy} + R_{zz} = -2\nabla^2 \phi/c^2$$

• Newton's theory: $\nabla^2 \phi = 4\pi G_N \rho$

$$P_{\mu\nu} = \partial_{\alpha} \Gamma^{\alpha}_{\mu\nu} - \partial_{\nu} \Gamma^{\alpha}_{\mu\alpha} + \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\alpha\beta} - \Gamma^{\beta}_{\mu\alpha} \Gamma^{\alpha}_{\nu\beta}$$

$$R_{tt} = \nabla^{2} \phi / c^{2} - 2(\nabla \phi)^{2} / c^{4} \approx \nabla^{2} \phi / c^{2}$$

$$R_{\vec{x}\vec{x}} = -\nabla^{2} \phi / c^{2} - 2(\nabla \phi)^{2} / c^{4} \approx -\nabla^{2} \phi / c^{2}$$

$$R_{t\vec{x}} = R_{\vec{x}t} = 0$$

lacktriangle For the trace, it really matters that $g_{\mu\nu}$ is 4-dimensional

$$R = R_{tt} + R_{xx} + R_{yy} + R_{zz} = -2\nabla^2 \phi/c^2$$

Newton's theory: $\nabla^2 \phi = 4\pi G_{MD}$

$$P_{\mu\nu} = \partial_{\alpha} \Gamma^{\alpha}_{\mu\nu} - \partial_{\nu} \Gamma^{\alpha}_{\mu\alpha} + \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\alpha\beta} - \Gamma^{\beta}_{\mu\alpha} \Gamma^{\alpha}_{\nu\beta}$$

$$R_{tt} = \nabla^{2} \phi/c^{2} - 2(\nabla \phi)^{2}/c^{4} \approx \nabla^{2} \phi/c^{2}$$

$$R_{\vec{x}\vec{x}} = -\nabla^{2} \phi/c^{2} - 2(\nabla \phi)^{2}/c^{4} \approx -\nabla^{2} \phi/c^{2}$$

$$R_{t\vec{x}} = R_{\vec{x}t} = 0$$

▶ For the trace, it really matters that $g_{\mu\nu}$ is 4-dimensional

$$R = R_{tt} + R_{xx} + R_{yy} + R_{zz} = -2\nabla^2 \phi/c^2$$

$$2\nabla^2 \phi / c^2 = G_{tt} = kT_{tt} = k\rho c^2$$

►
$$2\nabla^2 \phi / c^2 = G_{tt} = kT_{tt} = k\rho c^2$$
 $G^{\mu\nu} = \frac{8\pi G_N}{c^4} T^{\mu\nu} + \Lambda g^{\mu\nu}$

$$g_{\mu
u}=\left(egin{array}{ccc} -c^2\left(1-rac{2G_NM}{c^2r}
ight) & 0 & & \ & 0 & \left(1-rac{2G_NM}{c^2r}
ight)^{-1} & & \ & \ddots & \end{array}
ight)$$

► *M* is the mass of the Earth, *r* is the radius

$$g_{\mu
u}=\left(egin{array}{ccc} -c^2\left(1-rac{2G_NM}{c^2r}
ight) & 0 & & \ & 0 & \left(1-rac{2G_NM}{c^2r}
ight)^{-1} & & \ & \ddots & \end{array}
ight)$$

- M is the mass of the Earth, r is the radius
- ► There's a singularity at $r_s = \frac{2G_N M}{c^2} = 8.8$ mm, if this solution is valid inside the Earth (it's not)

$$g_{\mu
u}=\left(egin{array}{ccc} -c^2\left(1-rac{2G_NM}{c^2r}
ight) & 0 & & \ & 0 & \left(1-rac{2G_NM}{c^2r}
ight)^{-1} & & \ & \ddots & \end{array}
ight)$$

- ▶ *M* is the mass of the Earth, *r* is the radius
- ► There's a singularity at $r_s = \frac{2G_N M}{c^2} = 8.8$ mm, if this solution is valid inside the Earth (it's not)
- $R_{\sf space} = {\sf Gaussian\ curvature} = -3.07 imes 10^{-31}/{\sf m}^2 pprox R_{\sf complete}$

$$g_{\mu
u}=\left(egin{array}{ccc} -c^2\left(1-rac{2G_NM}{c^2r}
ight) & 0 & \ 0 & \left(1-rac{2G_NM}{c^2r}
ight)^{-1} & \ & \ddots \end{array}
ight)$$

- ▶ *M* is the mass of the Earth, *r* is the radius
- ► There's a singularity at $r_s = \frac{2G_N M}{c^2} = 8.8$ mm, if this solution is valid inside the Earth (it's not)
- ho $R_{\rm space} = {
 m Gaussian \ curvature} = -3.07 imes 10^{-31}/{
 m m}^2 pprox R_{\rm complete}$

Satellites lose a microsecond every 10 minutes (Phys. Today)

That wierd singularity

$$R_{\text{space}} = \frac{-26 \, G_N^2 M^2}{c^4 r^4 - 2 c^2 \, G_N M r^3} \quad \text{and} \quad R_{\text{complete}} = \frac{-30 \, G_N^2 M^2}{c^4 r^4 - 2 c^2 \, G_N M r^3}$$

667

Figure 25.5.

Fall toward a Schwarzschild black hole as described (a) by a comoving observer (proper time τ) and (b) by a faraway observer (Schwarzschild-coordinate time t). In the one description, the point r=0 is attained, and quickly [see equation (25.28)]. In the other description, r=0 is never reached and ever t=2M is attained only asymptotically [equations (25.35)] and (25.37)]. The qualitative features of the motion in both cases are most easily deduced by inspection of the "effective potential-per-unit-mass" \bar{V} in its dependence on t=0 (Figure 25.2) when one is interested in proper time; or the same effective potential \bar{V} in its dependence on the "tortoise coordinate" t=0 (Figure 25.4 and equation (25.31)] when one is interested in Schwarzschild-coordinate time t=0.

Also related to perihelion of Mercury...

A real-life black hole

The Motion of a Star around the Central Black Hole in the Milky Way

Gravity waves (general idea)

▶ Small perterbation from flat pseudometric η_{ab}

$$g_{ab}(t, \vec{x}) = \eta_{ab} + \varepsilon h_{ab}(t, \vec{x})$$

► Keep only first-order terms in expansion (linearized gravity)

$$G_{ab} = \frac{\varepsilon}{2} (h_{a,bc}^c + h_{b,ac}^c - \eta^{cd} h_{ab,cd} - h_{,ab} - \eta_{ab} h_{,cd}^{cd} + \eta_{ab} \eta^{cd} h_{,cd}) + \mathcal{O}(\varepsilon^2)$$

▶ Solve Einstein equation in vacuum: $G_{ab} = 0$ and choose coordinates (choose a gauge) such that

$$h_{b,a}^{a} - \frac{1}{2} \eta_{b}^{a} h_{,a} = 0$$

► It simplifies to $\eta^{cd} h_{ab,cd} = \left| \frac{\partial^2 h_{ab}}{\partial t^2} - \nabla^2 h_{ab} = 0 \right|$

Gravity waves (indirect evidence)

- ▶ Binary pulsar PSR1913+16 loses rotational energy due to gravitational radiation
- ▶ Not a fit!
- ▶ Perihelion advances 4.2°/yr, Mercury 43"/yr
- No news from LIGO...

- There's no preferred origin in space (translation symmetry)
- In special relativity, there's no preferred origin in velocity ("no preferred reference frame," Lorentz symmetry)
- In general relativity, there's no preferred origin in acceleration: "falling" objects are following geodesics

- ► There's no preferred origin in space (translation symmetry)
- In special relativity, there's no preferred origin in velocity ("no preferred reference frame," Lorentz symmetry)
- In general relativity, there's no preferred origin in acceleration: "falling" objects are following geodesics
- ► Ernst Mach speculated that *angular momentum* is relative

- ► There's no preferred origin in space (translation symmetry)
- ▶ In special relativity, there's no preferred origin in velocity ("no preferred reference frame," Lorentz symmetry)
- In general relativity, there's no preferred origin in acceleration: "falling" objects are following geodesics
- ▶ Ernst Mach speculated that angular momentum is relative

Two measures of angular momentum for a spinning bowl of water:

- 1. water level is curved (local)
- 2. stars revolve around bowl (global)

- ► There's no preferred origin in space (translation symmetry)
- ▶ In special relativity, there's no preferred origin in velocity ("no preferred reference frame," Lorentz symmetry)
- In general relativity, there's no preferred origin in acceleration: "falling" objects are following geodesics
- ► Ernst Mach speculated that *angular momentum* is relative

Two measures of angular momentum for a spinning bowl of water:

- 1. water level is curved (local)
- 2. stars revolve around bowl (global)
- ▶ In general relativity, these descriptions of angular momentum don't always agree. Angular momentum is relative!

Frame dragging

 Massive rotating body (Earth) causes locally inertial frame to rotate with respect to distant stars

Gravity Probe B will release final results in December 2007

Pressure is a source for gravity

White dwarf:
$$G_{\mu\nu} = 8\pi G_N \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{pmatrix}$$

- As pressure increases, gravitational force increases, increasing pressure...
- ➤ Tipping point is the Chandrasekhar limit, a balance of gravity and electron degeneracy pressure: all white dwarfs have masses below 1.44 solar masses

White dwarf orbiting Sirius, the brightest star

Type I-A Supernovae

- ► A white dwarf that accretes matter from a nearby source can slowly approach the limit
- ▶ When reached, it violently implodes, suddenly fusing most of its mass and blowing it into space at 3% of *c*
- ► Chandrasekhar limit is a universal constant, so the supernova's intrinsic brightness is precisely known...keep this in mind...

Type I-A Supernovae

- ► A white dwarf that accretes matter from a nearby source can slowly approach the limit
- ▶ When reached, it violently implodes, suddenly fusing most of its mass and blowing it into space at 3% of *c*
- ► Chandrasekhar limit is a universal constant, so the supernova's intrinsic brightness is precisely known...keep this in mind...

Remnant from a type I-A supernova observed by Tycho Brahe in 1572 (now a neutron star)

(Cloud of plasma surrounded by high-energy electron shell)

Curvature on a grand scale: cosmology

- "The Universe is expanding!" What does that mean?
- ▶ It means the large-scale metric is non-trivial:

$$g_{\mu
u} = \left(egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & a(t) & 0 & 0 \ 0 & 0 & a(t) & 0 \ 0 & 0 & 0 & a(t) \end{array}
ight)$$

Curvature on a grand scale: cosmology

- "The Universe is expanding!" What does that mean?
- It means the large-scale metric is non-trivial:

$$g_{\mu
u} = \left(egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & a(t) & 0 & 0 \ 0 & 0 & a(t) & 0 \ 0 & 0 & 0 & a(t) \end{array}
ight)$$

► We need to enlarge our sense of scale

(map of universe)

Curvature on a grand scale: cosmology

- "The Universe is expanding!" What does that mean?
- It means the large-scale metric is non-trivial:

$$g_{\mu
u} = \left(egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & a(t) & 0 & 0 \ 0 & 0 & a(t) & 0 \ 0 & 0 & 0 & a(t) \end{array}
ight)$$

- ► We need to enlarge our sense of scale (map of universe)
- lacktriangle Derivatives such as $\Gamma^{\lambda}_{\mu\nu}$ and $R_{\mu\nu\alpha\beta}$ derive from a $\lim_{arepsilon o 0}$
- ε must be small, like a billion light years
 (any smaller and you get into the bumpy stuff...)

$$T^{\mu
u} = \left(egin{array}{cccc}
ho & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & P & 0 \ 0 & 0 & 0 & P \end{array}
ight)$$

$$T^{\mu
u} = \left(egin{array}{cccc}
ho & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & P & 0 \ 0 & 0 & 0 & P \end{array}
ight)$$

- Several cases:
 - ▶ Normal, non-relativistic matter: $\rho \gg P$, so let P = 0
 - ▶ Nothing but photons: $\rho = P/3$

$$T^{\mu
u} = \left(egin{array}{cccc}
ho & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & P & 0 \ 0 & 0 & 0 & P \end{array}
ight)$$

- Several cases:
 - Normal, non-relativistic matter: $\rho \gg P$, so let P=0
 - ▶ Nothing but photons: $\rho = P/3$
 - Remember Λ?

$$G^{\mu\nu} = 8\pi G_N T^{\mu\nu} + \Lambda g^{\mu\nu}$$

$$T^{\mu
u} = \left(egin{array}{cccc}
ho & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & P & 0 \ 0 & 0 & 0 & P \end{array}
ight)$$

- Several cases:
 - ▶ Normal, non-relativistic matter: $\rho \gg P$, so let P = 0
 - ▶ Nothing but photons: $\rho = P/3$
 - Remember Λ ? $G^{\mu\nu}=8\pi\,G_N\,T^{\mu\nu}+\Lambda g^{\mu\nu}$ $\rho=-P$: "negative pressure"

$$T^{\mu
u} = \left(egin{array}{cccc}
ho & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & P & 0 \ 0 & 0 & 0 & P \end{array}
ight)$$

- Several cases:
 - Normal, non-relativistic matter: $\rho \gg P$, so let P=0
 - ▶ Nothing but photons: $\rho = P/3$
 - Problem Remember Λ ? $G^{\mu\nu}=8\pi\,G_N\,T^{\mu\nu}+\Lambda g^{\mu\nu}$ $\rho=-P$: "negative pressure"
- ▶ Characterized by $w = P/\rho$: 0 is matter, 1/3 is light, -1 is Λ

$$T^{\mu
u} = \left(egin{array}{cccc}
ho & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & P & 0 \ 0 & 0 & 0 & P \end{array}
ight)$$

- Several cases:
 - Normal, non-relativistic matter: $\rho \gg P$, so let P=0
 - ▶ Nothing but photons: $\rho = P/3$

Remember
$$\Lambda$$
? $G^{\mu\nu}=8\pi G_N T^{\mu\nu}+\Lambda g^{\mu\nu}$ $\rho=-P$: "negative pressure"

- ▶ Characterized by $w = P/\rho$: 0 is matter, 1/3 is light, -1 is Λ
- Most general metric: $g_{\mu\nu}=\left(egin{array}{cc} -1 & 0 \\ 0 & a(t)^2 \end{array}
 ight)$ with constant spacial curvature

The universe as a simple calculus problem

▶ Two theorems carry over from Newtonian gravity:

The universe as a simple calculus problem

▶ Two theorems carry over from Newtonian gravity:

- ► Force law: $ma = F = -G_N mM/x^2$ or $d^2x/dt^2 = -M_{enc}/x^2$
- $M_{\rm enc} = \int (\rho + 3P) \, dV = \int \rho (1 + 3w) \, dV$

The universe as a simple calculus problem

▶ Two theorems carry over from Newtonian gravity:

- Force law: $ma = F = -G_N mM/x^2$ or $d^2x/dt^2 = -M_{enc}/x^2$
- $M_{\rm enc} = \int (\rho + 3P) \, dV = \int \rho (1 + 3w) \, dV$
- ▶ Imagine a ball with radius $a(t)r_0$. $M_{\rm enc} = \frac{4}{3}\pi a^3 r_0^3 \rho (1+3w)$

$$rac{d^2a}{dt^2}\propto a
ho$$

▶ Definitions of energy density and pressure: $d(\rho V) = -P dV$

▶ Definitions of energy density and pressure: $d(\rho V) = -P dV$

$$\rho \, dV + V \, d\rho = -P \, dV$$

$$d\rho = -3(\rho + P) \frac{da}{a}$$

$$\int \frac{d\rho}{\rho} = -3(1+w) \int \frac{da}{a}$$
(intuition for three cases)

▶ Definitions of energy density and pressure: $d(\rho V) = -P dV$

$$\rho \, dV + V \, d\rho = -P \, dV$$

$$d\rho = -3(\rho + P) \frac{da}{a}$$

$$\int \frac{d\rho}{\rho} = -3(1+w) \int \frac{da}{a}$$
 (intuition for three cases)

Combine equations

$$\frac{d^2a}{dt^2}\propto a
ho\propto a\left(a^{-3(1+w)}\right)$$

▶ Definitions of energy density and pressure: $d(\rho V) = -P dV$

$$\rho \, dV + V \, d\rho = -P \, dV$$

$$d\rho = -3(\rho + P) \frac{da}{a}$$

$$\int \frac{d\rho}{\rho} = -3(1+w) \int \frac{da}{a}$$
 (intuition for three cases)

► Combine equations

$$\frac{d^2a}{dt^2}\propto a
ho\propto a\left(a^{-3(1+w)}
ight)$$

▶ Solve a one-variable differential equation For The Universe!

$$a \propto t^{\frac{2}{3(1+w)}}$$

The universe embedded in \mathbb{R}^3

- ► Space-time curvature we can visualize!
- Represent time with one axis and space with a periodic loop

Radiation dominated early universe $a \propto t^{1/2}$

Matter dominated later universe $a \propto t^{2/3}$

Cosmological constant-dominated universe

▶ w = -1 solved by $a \propto e^t$

► This solution actually accelerates

- ► Cosmic expansion makes galaxies drift apart
- ▶ D(t) = a(t)D(now) and v(t) = (da/dt)D(now)
- Measure acceleration through the departure of v(t) vs. D(now) from proportionality
- ▶ Need to know v(t) (easy) and D(now) (hard)

- Cosmic expansion makes galaxies drift apart
- ▶ D(t) = a(t)D(now) and v(t) = (da/dt)D(now)
- Measure acceleration through the departure of v(t) vs.
 D(now) from proportionality
- ▶ Need to know v(t) (easy) and D(now) (hard)
- We measure v(t) from redshifted atomic spectra, knowing what the spectra are supposed to look like, what they would look like up close
- We measure D(now) through a galaxy's brightness.
 This is a problem because galaxies come in all different sizes

Type I-A supernovae save the day!

▶ By creeping up to the Chandrasekhar limit slowly, they guarantee that they explode with a specific energy

Apparent brightness tells us the distance

The universe is, in fact, accelerating

Expansion History of the Universe

Constraints on cosmology!

- Spacial curvature is consistent with zero
- Accelerating source is consistent with w = -1

A mari, i a mari, i a mar,
Crep tin tas pettipace, a diea, a diea,
An aoul a esterdis as bu litten fola a veh a dusti det.
Aoght! Aoght, brefe gandele!
Fur lif ei buut a schmaga yaga,
a pur-a plaiya qi strutti-fretti heur upona stache,
an es hare na mare.
Esa talea tola bi an iti-ito,
Folla sond i fern,
Signifya noot.