

Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Solutions for Work Sheet 4

Problem 1 (Measurability of measure-valued functions)

Let $M(\mathbb{X})$ be the set of all locally finite measures on a separable metric space (\mathbb{X}, ρ) with Borel- σ -field $\mathcal{X} = \mathcal{B}(\mathbb{X})$. For $B \in \mathcal{X}$, denote by $\pi_B : M(\mathbb{X}) \to [0, \infty]$ the map $\mu \mapsto \pi_B(\mu) := \mu(B)$. Let $\mathcal{M}(\mathbb{X})$ be the smallest σ -field on $M(\mathbb{X})$ for which all maps π_B , $B \in \mathcal{X}$, are measurable. Furthermore, let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

- a) Consider a map $\eta: \Omega \to M(X)$. Show the equivalence of the following statements:
 - (i) η is a random measure on E.
 - (ii) For all sets $B \in \mathfrak{X}$, $\eta(B) : \Omega \to [0, \infty]$ is a random variable.
- b) Prove that the mapping $S: M(X) \times M(X) \to M(X), (\mu, \nu) \mapsto \mu + \nu$ is measurable.
- c) Verify that either part a) and part b) imply that the sum of two random measures is itself a random measure.

Proposed solution:

- a) We show the two implications separately:
- (i) \Rightarrow (ii) Let η be a random measure on \mathbb{X} . The maps

$$\pi_B: M(\mathbb{X}) \to [0, \infty], \quad \mu \mapsto \mu(B), \quad B \in \mathcal{X},$$

are measurable by definition of the σ -field $\mathfrak{M}(\mathbb{X})$. Therefore, $\eta(B)=\pi_B\circ\eta$ is measurable.

(ii) \Rightarrow (i) The σ -field $\mathfrak{M}(\mathbb{X})$ is generated by $\{\{\mu \in M(\mathbb{X}) : \mu(B) \in A\} : B \in \mathfrak{X}, A \in \mathfrak{B}(\overline{\mathbb{R}})\}$. If $\eta(B)$ is a random variable (and hence measurable) for every $B \in \mathfrak{X}$, then

$$\eta^{-1} \Big(\big\{ \mu \in \textit{M}(X) : \mu(\textit{B}) \in \textit{A} \big\} \Big) = \big\{ \omega \in \Omega : \eta(\omega,\textit{B}) \in \textit{A} \big\} = \big\{ \eta(\textit{B}) \in \textit{A} \big\} \in \mathcal{A},$$

for all $B \in \mathfrak{X}$ and $A \in \mathfrak{B}(\overline{\mathbb{R}})$. Thus, η is a random measure.

b) Since $\mathfrak{M}(\mathbb{X}) = \sigma(\{M_{B,r} : B \in \mathfrak{X}, r \geqslant 0\})$, where

$$M_{B,r} := \pi_B^{-1} \left((-\infty, r] \right) = \left\{ \mu \in M(\mathbb{X}) : \mu(B) \leqslant r \right\},$$

it suffices to show that $S^{-1}(M_{B,r}) \in \mathcal{M}(X) \otimes \mathcal{M}(X)$, for all $B \in \mathcal{X}$, $r \geqslant 0$. Notice that

$$\begin{split} \mathbb{S}^{-1}(M_{B,r}) &= \left\{ (\mu, \nu) \in M(\mathbb{X}) \times M(\mathbb{X}) : (\mu + \nu) \in M_{B,r} \right\} \\ &= \left\{ (\mu, \nu) \in M(\mathbb{X}) \times M(\mathbb{X}) : \mu(B) + \nu(B) \leqslant r \right\} \\ &= \left\{ (\mu, \nu) \in M(\mathbb{X}) \times M(\mathbb{X}) : \pi_B(\mu) + \pi_B(\nu) \leqslant r \right\} \\ &\in \mathfrak{M}(\mathbb{X}) \otimes \mathfrak{M}(\mathbb{X}), \end{split}$$

where we used that $\pi_B: M(\mathbb{X}) \to [0,\infty]$, and hence also $M(\mathbb{X}) \times M(\mathbb{X}) \to [0,\infty]^2$, $(\mu,\nu) \mapsto \left(\pi_B(\mu),\pi_B(\nu)\right)$ and $M(\mathbb{X}) \times M(\mathbb{X}) \to [0,\infty]$, $(\mu,\nu) \mapsto \pi_B(\mu) + \pi_B(\nu)$, are measurable functions.

c) Assume that $\eta_1, \eta_2 : \Omega \to M(\mathbb{X})$ are random measures on \mathbb{X} (in particular, they are measurable maps). Then $\eta := \eta_1 + \eta_2 = \mathbb{S}(\eta_1, \eta_2)$ is measurable by part b). Moreover, $\eta \in M(\mathbb{X})$ (i.e., η is locally finite), since we have $\eta(B) = \eta_1(B) + \eta_2(B) < \infty$, for every set $B \in \mathcal{X}_b$, as $\eta_1, \eta_2 \in M(\mathbb{X})$. Alternatively, the measurability follows from part a) when considering that $\eta(B) = \eta_1(B) + \eta_2(B)$ is a random variable, for every $B \in \mathcal{X}$, since $\eta_1(B), \eta_2(B)$ are random variables by part a).

Problem 2 (Measurability of point processes)

Let X_1, X_2, \ldots be random elements of a separable metric space (\mathbb{X}, ρ) defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ (where the X_j need not be independent and can have different distributions). Let τ be an \mathbb{N}_0 -valued random variable. Prove that

$$\Phi := \sum_{j=1}^{\tau} \delta_{X_j}$$

is a point process, that is, the map $\Phi: \Omega \to \mathcal{N}(\mathbb{X})$ is measurable.

Note: If X_1, X_2, \ldots are i.i.d. random elements of $\mathbb X$ and τ is independent of $(X_j)_{j \in \mathbb N}$, then the process Φ is the mixed binomial process from Example 2.17.

Proposed solution: Let $B \in \mathcal{X}$. For each $j \in \mathbb{N}$ the map

$$\Omega \ni \omega \mapsto \mathbb{1}\{\tau(\omega) \geqslant j\} \cdot \mathbb{1}\{X_j(\omega) \in B\}$$

is measurable. Thus,

$$\Omega\ni\omega\mapsto\Phi(\omega,B)=\sum_{j=1}^{\tau(\omega)}\delta_{X_{j}(\omega)}(B)=\sum_{j=1}^{\infty}\mathbb{1}\left\{j\leqslant\tau(\omega)\right\}\cdot\delta_{X_{j}(\omega)}(B)=\sum_{j=1}^{\infty}\mathbb{1}\left\{\tau(\omega)\geqslant j\right\}\cdot\mathbb{1}\left\{X_{j}(\omega)\in B\right\}$$

is measurable as a sum and limit of measurable functions. Part a) of Problem 1 implies that $\Phi: \Omega \to M(\mathbb{X})$ is measurable, and we trivially have $\Phi(\omega, \cdot) \in N(\mathbb{X})$ for each $\omega \in \Omega$.

Problem 3

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be the probability space which underlies the following random elements. Let X_1, X_2 be uniformly distributed over the open unit disc $B^{\circ}(0,1) := \{x \in \mathbb{R}^2 : \|x\| < 1\}$, let X_3 be uniformly distributed over the discrete set $\{(0,0),(0,1),(1,0),(1,1)\}$, and let X_4 be uniformly distributed over the segment $[-1,1] \times \{0\}$. Define the point process $\Phi := \sum_{j=1}^4 \delta_{X_j}$. Calculate $\mathbb{E}\big[\Phi(B)\big]$ for any $B \in \mathcal{B}(\mathbb{R}^2)$. Apply this knowledge about the intensity measure to calculate

$$\mathbb{E}\left[\int_{[-1,1]^2} \left(x^2 + y^2\right) \Phi(\mathsf{d}(x,y))\right].$$

Proposed solution: Apparently,

$$\mathbb{E}\big[\Phi(B)\big] = \sum_{j=1}^4 \mathbb{E}\big[\delta_{X_j}(B)\big] = \sum_{j=1}^4 \mathbb{E}\big[\mathbb{1}\{X_j \in B\}\big] = \sum_{j=1}^4 \mathbb{P}\big(X_j \in B\big) = \sum_{j=1}^4 \mathbb{P}^{X_j}(B).$$

In particular, we have

$$\begin{split} \mathbb{P}^{X_1}(\cdot) &= \mathbb{P}^{X_2}(\cdot) = \frac{1}{\pi} \left(\lambda^2 \big|_{\mathcal{B}^{\circ}(0,1)} \right) (\cdot), \\ \mathbb{P}^{X_3}(\cdot) &= \frac{1}{4} \, \delta_{(0,0)}(\cdot) + \frac{1}{4} \, \delta_{(0,1)}(\cdot) + \frac{1}{4} \, \delta_{(1,0)}(\cdot) + \frac{1}{4} \, \delta_{(1,1)}(\cdot), \\ \mathbb{P}^{X_4}(\cdot) &= \frac{1}{2} \, \lambda^1 \circ I^{-1}(\cdot), \quad \text{where} \quad I : \begin{cases} [-1,1] & \to [-1,1] \times \{0\}, \\ t & \mapsto (t,0). \end{cases} \end{split}$$

With Campbell's formula (Theorem 2.21), we obtain

$$\begin{split} \mathbb{E}\left[\int_{[-1,1]^2} \left(x^2 + y^2\right) \Phi(\mathsf{d}(x,y))\right] &= \int_{[-1,1]^2} \left(x^2 + y^2\right) \left(\mathbb{E}\Phi\right) \left(\mathsf{d}(x,y)\right) \\ &= \frac{2}{\pi} \int_{[-1,1]^2} \left(x^2 + y^2\right) \left(\lambda^2\big|_{B^\circ(0,1)}\right) \left(\mathsf{d}(x,y)\right) + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 2 \right) \\ &\quad + \frac{1}{2} \int_{[-1,1]^2} \left(x^2 + y^2\right) \left(\lambda^1 \circ I^{-1}\right) \left(\mathsf{d}(x,y)\right) \\ &= \frac{2}{\pi} \int_0^1 \int_0^{2\pi} \left(r^2 \cdot r\right) d\varphi dr + 1 + \frac{1}{2} \int_{-1}^1 x^2 dx \\ &= 4 \int_0^1 r^3 dr + 1 + \frac{1}{2} \left[\frac{1}{3} x^3\right]_{-1}^1 \\ &= 4 \left[\frac{1}{4} r^4\right]_0^1 + 1 + \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3}\right) \\ &= \frac{7}{3}. \end{split}$$

Problem 4 (Equality in distribution of point processes – A proof of Remark 2.24)

Let Φ and Φ' be point processes on a separable metric space (X, ρ) . Prove that the following are equivalent:

(iv) For all $m \in \mathbb{N}$ and any $B_1, \ldots, B_m \in \mathcal{X}_b$,

$$(\Phi(B_1),\ldots,\Phi(B_m))\stackrel{d}{=} (\Phi'(B_1),\ldots,\Phi'(B_m)).$$

(*iv'*) For all $m \in \mathbb{N}$ and any pairwise disjoint $B_1, \ldots, B_m \in \mathcal{X}_b$,

$$(\Phi(B_1),\ldots,\Phi(B_m))\stackrel{d}{=} (\Phi'(B_1),\ldots,\Phi'(B_m)).$$

Proposed solution: The implication $(iv) \Longrightarrow (iv')$ holds trivially, so we only have to prove that (iv') implies (iv). Let $m \in \mathbb{N}$ and take some arbitrary sets $B_1, \ldots, B_m \in \mathcal{X}_b$. We divide the set $B_1 \cup \ldots \cup B_m$ into disjoint parts such that any of the sets B_1, \ldots, B_m can be recovered from this partition, and then apply (iv') to these disjoint parts.

Let $\ell_1, \ldots, \ell_m \in \mathbb{N}_0$. For an index set $J \subset [m] := \{1, \ldots, m\}$, we define $D_J := \bigcap_{j \in J} B_j \cap \bigcap_{j \notin J} B_j^c$. It holds that $B_i = \bigcup_{J \subset [m]: i \in J} D_J$, for every $i \in [m]$. Indeed,

'c': let $x \in B_i$, and set $J := \{j \in [m] : x \in B_j\}$. Then, $i \in J$ and $x \in D_J$, that is, $x \in \bigcup_{J \subset [m] : i \in J} D_J$, and

' \supset ': if $x \in D_J$ for some $J \subset [m]$ with $i \in J$, then by definition of D_J , $x \in B_i$.

We put

$$M := \left\{ (k_J)_{J \subset [m] : J \neq \varnothing} \in \mathbb{N}_0^{2^m - 1} \mid \forall j \in [m] : \ell_j = \sum_{J \subset [m] : j \in J} k_J \right\}.$$

The set M parameterizes all possible distributions of the total mass of a point process Φ on $B_1 \cup \ldots \cup B_m$, for which $\Phi(B_j) = \ell_j$, $j \in [m]$, to the partition $(D_J)_{J \subset [m], J \neq \varnothing}$. We then have

$$\bigcap_{j=1}^{m} \left\{ \mu \in \mathcal{N}(\mathbb{X}) : \pi_{\mathcal{B}_{j}}(\mu) = \ell_{j} \right\} = \dot{\bigcup}_{k \in \mathcal{M}} \bigcap_{J \subset [m] : J \neq \varnothing} \left\{ \mu \in \mathcal{N}(\mathbb{X}) : \mu(D_{J}) = k_{J} \right\}.$$

For the prove of this fact, we consider the two inclusions separately:

'C': Let $\mu \in \bigcap_{j=1}^m \left\{ \mu \in \textit{N}(\mathbb{X}) : \pi_{\textit{B}_j}(\mu) = \ell_j \right\}$, i.e., $\mu(\textit{B}_i) = \ell_i$, for $i \in [m]$. Put

$$k_J := \mu(D_J) \in \mathbb{N}_0$$
, for $J \subset [m]$, $J \neq \emptyset$.

For $j \in [m]$, we have

$$\sum_{J\subset [m]:j\in J} k_J = \sum_{J\subset [m]:j\in J} \mu(D_J) = \mu\left(\dot\bigcup_{J\subset [m]:j\in J} D_J\right) = \mu(B_j) = \ell_j,$$

so $(k_J)_{J\subset [m]}: J\neq\varnothing\in M$, and, for all $J\subset [m]$ with $J\neq\varnothing$, we have $\mu(D_J)=k_J$.

' \supset ': Now, let $\mu \in \dot{\bigcup}_{k \in M} \bigcap_{J \subset [m]: J \neq \varnothing} \left\{ \mu \in N(\mathbb{X}) : \mu(D_J) = k_J \right\}$. Then, we find $k \in M$ such that $\mu(D_J) = k_J$, for all $J \subset [m]$ with $J \neq \varnothing$, and $\sum_{J \subset [m]: j \in J} k_J = \ell_j$, $j \in [m]$. Therefore,

$$\mu(B_j) = \mu\left(\dot{\bigcup}_{J\subset[m]:j\in J}D_J\right) = \sum_{J\subset[m]:j\in J}\mu(D_J) = \sum_{J\subset[m]:j\in J}k_J = \ell_j, \quad j\in[m],$$

and thus $\mu \in \bigcap_{j=1}^m \big\{ \mu \in \textit{N}(\mathbb{X}) : \pi_{\textit{B}_j}(\mu) = \ell_j \big\}.$

We conclude that

$$\mathbb{P}\left(\Phi(B_1) = \ell_1, \dots, \Phi(B_m) = \ell_m\right) = \mathbb{P}\left(\Phi \in \bigcap_{j=1}^m \left\{\mu \in N(\mathbb{X}) : \pi_{B_j}(\mu) = \ell_j\right\}\right) \\
= \sum_{k \in M} \mathbb{P}\left(\Phi \in \bigcap_{J \subset [m] : J \neq \emptyset} \left\{\mu \in N(\mathbb{X}) : \mu(D_J) = k_J\right\}\right) \\
\stackrel{(iv')}{=} \sum_{k \in M} \mathbb{P}\left(\Phi' \in \bigcap_{J \subset [m] : J \neq \emptyset} \left\{\mu \in N(\mathbb{X}) : \mu(D_J) = k_J\right\}\right) \\
= \mathbb{P}\left(\Phi'(B_1) = \ell_1, \dots, \Phi'(B_m) = \ell_m\right),$$

which immediately implies (iv).