Thunderbird

Eine speziell angepasste Firmware für den Yuneec Typhoon H basierend auf dem PX4 Autopilot von Toni Rosendahl

Benutzer Handbuch

Table of content

Kurzbeschreibung	4
Erste Schritte	
Ein- bzw. Ausschalten	5
Motoren starten/stoppen	5
Fliegen	6
Sensor Einstellungen und Kalibrierungen	7
Einstellen der Kompassausrichtung	7
Kalibrierungen	9
ST16 mit dem Empfänger SR24 im Kopter binden	10
Flug Modi	11
Hochlauf	11
Initialisierung	11
Bereit (Ready)	11
Fehler	11
GNSS unterstützte Flug Modi	12
Mission Modus	12
Position Modus	12
Stabilisierte Flug Modi (Stabilized)	13
Altitude Modus (Atti)	
Stabilize Modus	13
Rattitude Modus	14
Manual, Acro or Rate mode	14
Fail-Safe Modus.	14
Status LED Anzeigen am Kopter (Heck LED)	15
Grundlegende Regeln unabhängig von derFarbkodierung	
RGB Status LED Details	
Parametereinstellungen	16
Change parameters	16
Save parameter sets	18
Parameter von Datei laden	18
Firmware Update Prozedur für Ubuntu LINUX	19
Vorbereitung	19
Autopilot flashen	20
Firmware Update Prozedur für Windows	21
Vorbereitung	21
Autopilot flashen	22
Anhang	24
Empfohlene Parameter	24
Einige hilfreiche Kommandos an der MAVLink Konsole	25
Hilfe	25
Dateisystem	26
Geräte	27

System	28
Parameter Nachweisblatt	
Kurzinfohlatt	

Kurzbeschreibung

"**Thunderbird**" ist eine speziell angepasste Firmware für den Yuneec Typhoon H (auch als H480 bekannt) auf der Basis vom **PX4 Autopilot**. Es ist auch ein Synonym für einen Typhoon H, der mit dieser Firmware fliegt.

Mit der Thunderbird Firmware kann man eine Menge der Funktionen vom PX4 Autopilot mit einem normalen Yuneec Typhoon H (H480) in Verbindung mit der ST16 nutzen. An der ST16 wird nichts geändert. Deshalb wird sie in diesem Handbuch auch nicht beschrieben.

Zum Konfigurieren, Kalibrieren und zum Erstellen von Missions brauchen wird das Tool "OGroundControl" (QGC).

QGroundControl erlaubt das Einstellungen für alle parameter. Es gibt dir eine Menge Freiheit, aber auch eine menge Möglichkeiten, Fehler zu machen. Du solltest nur das tun, was du auch verstehst.

Tidee und Entwicklung dieser Firmware: **Toni Rosendahl**.

Die erste Veröffentlichung (mit einer lustig gemeinten Überschrift) war hier: https://yuneecpilots.com/threads/typhoon-h-480-px4-v1-10-stability-issues.18205

Das Projekt in GitHub: https://github.com/tonirosendahl/Thunderbird

Dokumentation PX4 Autopilot: https://docs.px4.io/

Die Firmware ist Open Source. Jeder kann mitmachen und wir suchen noch Helfer!

Wichtiger Hinweis:

Du bist verantwortlich für alles, was du tust. Bitte tue nur das, was du verstehst und verantworten kannst.

Lies bitte folgende Beschreibungen:

- PX4 Autopilot: https://docs.px4.io/master/en/index.html
 - QGroundControl: https://docs.ggroundcontrol.com/en/

Fliege den Thunderbird nur in freiem, offenem Gelände, abseits von Leuten, Straßen und Grundstücken.

Sei immer vorsichtig und verantwortungsvoll.

§ Bitte beachte die in deinem Land gültigen Regeln und Gesetze.

Erste Schritte

Mit dem Thunderbird hast du jetzt einen vollkommen neuen Kopter mit unterschiedlichem Verhalten verglichen mit den Typhoon H.

Lerne deinen neuen Kopter zu fliegen, übe auch ohne GNSS-Unterstützung zu fliegen. Beginne erste Schritte in freiem Gelände, ohne Bäume und andere Hindernisse in der Nähe.

Du brauchst erstmal nichts an der ST16 zu ändern. Der Thunderbird fliegt mit den Standart-Einstellungen. Start und Landung gehen am besten im "Hase"-Modus.

Wichtig ist, erstmal zu lesen, wie PX4 Autopilot zu fliegen ist. https://docs.px4.io/master/en/flying/

Ein- bzw. Ausschalten

Zum Einschalten musst du den Power-Knopf etwa 8sec drücken bis die Status LED und die LEDs in den Motorarmen angehen.

Es kommt kein Einschalt-Tonfolge als Quittung.

Zum Ausschalten musst du die Batterie ziehen. Der Startknopf ist (noch?) nicht zum Ausschalten zu gebrauchen.

Motoren starten/stoppen

Starten und Stoppen der Motoren geht nuer, wenn der **Geschwindigkeitsschieberegler nach oben gedreht wurde (auf Hase)**.

Es funktioniert **nicht** mit dem roten Knopf an der ST16, sondern mit einem CSC (Combination stick command) Kommando wie beim PX4 Autopilot üblich: Linken Steuerknüppel nach unten, rechts halten bis die Motoren starten.

Hinweis:

Obwohl es sehr unwahrscheinlich ist, dass das beschriebene CSC Kommando den Kopter in der Luft ausschaltet, ist es nicht angebracht den Steuerknüppel im Flug dauerhaft unten rechts zu halten, um z.B. spiralförmig abzusteigen.

Fliegen

In default settings, the top position of the flight mode switch is Stabilize/Manual (same as Typhoon H with switched-off GPS), middle position is Position mode (Typhoon with the GPS aka Angle mode) and bottom one is RTH.

Mission, Acro or Rattitude modes are not there by default. Be careful with Acro or Rattitude mode!

Flight modes can be assigned to switches by using channel settings and also by switch assignment in QGroundControl or in combination of both.

Compared to stock Typhoon H you have to pay attention to following:

- In Position mode, the Thunderbird flies smoother. This is fine but you need more room because the "break path" is a bit longer than expected.
- In Stability mode, you have to maintain the altitude by yourself. Throttle stick means thrust in this case. If you pull the stick fully down, the Thunderbird comes down and I mean really down like a free falling stone.
- In all non-GNSS-assisted flight modes forget the ST16 screen. Keep both eyes on the drone.
- The Thunderbird is no race drone! Keep in mind that its weight is ~2kg and it is fast. There is no such thing like FPV available due to latency of the video downlink.

Wichtig:

The ST16 is not monitoring the voltage. It waits on the Voltage Warning Flags that never come from Thunderbird. **All pilots should be aware about that and monitor the voltage by themselves.** Don't drain the battery down to the minimum capacity. It is better to be conservative and bring it home with enough fuel in the tank.

At BAT_EMERGEN_THR (Default 7%) it will raise fail-save and land wherever it is without prior warning.

Sensor Einstellungen und Kalibrierungen

Sensorkalibrierungen können nur mit QGroundControl (QGC) durchgeführt werden. Verbinde den Kopter mit QGC mit einem ausreichend langem, flexiblen Micro USB Kabel.

Achtung: Nach HW-Änderungen, Firmwareupdates oder Parameter-Datei Hochladen immer die Kompassausrichtung prüfen und gegebenenfalls neu einstellen.

Einstellen der Kompassausrichtung

Für den Typhoon H gibt es zwei verschiedene Kompasschips, die sich auf dem GPS-Modul befinden. Ältere GPS-Module haben den HMC5883 verbaut, neuere den IST8310 als Magnetometer. Um herauszufinden, welchen wir haben, müssen wir den Kopter and QGC anschließen und die MAVlink Konsole aufrufen:

Eingabe: cd /dev

zeigt Gerätetreiber und Hardware.

Hier sehen wir entweder "hmc5883_ext" oder "ist8310_ext" als Kompasschip.

Hinweis: Wenn nicht alle Sensoren aufgelistet sind, USB-Kabel trnnen und wieder anstecken und die Liste zu erneuern.

Wichtig: Wenn hier "hmc5883_ext" steht, dann muss External Compass Orientation auf "ROTATION_YAW_270" eingestellt werden.

Für den "ist8310_ext" muss "ROTATION_YAW_180" eingestellt sein.

Niemals die Autopilot Ausrichtung ändern. Diese muss immer auf "ROTATION_NONE" stehen!

Einstellung: Settings > Sensors > Set Orientation

In "External Compass Orientation" richtest du die Kompassausrichtung abhängig von der verbauten Hardware ein. Speichern und Kopter rebooten, damit die Ausrichtung wirksam wird. Danach unbedingt **Kompasskalibrierung** durchführen.

Mehr siehe hier: https://docs.qgroundcontrol.com/en/SetupView/SetupView.html

Kalibrierungen

Um das Gimbal zu schonen, sollte man zum Kalibrieren die Kamera abziehen. Zum Kalibrieren brauchen wir QGroundControl. Der Kopter muss mit einem ausreichend langen, flexiblen USB-Kabel mit dem Gerät verbunden werden, auf dem QGroundControl läuft.

Menü Settings > Sensors – folge den Anweisungen auf dem Bildschirm für Compass, Gyroscope, Accelerometer und Level Horizon. **Nie die ESC's kalibrieren.** Das geht sowieso nicht und wird auch nicht benötigt.

Um stabile Positionen für Seiten-, Front- und Hecklagen halten zu können, sollte man passende Holzklötze vorbereiten, auf die man den Kopter wackelfrei stellen kann.

Mehr Infos hier: https://docs.ggroundcontrol.com/en/SetupView/sensors_px4.html

ST16 mit dem Empfänger SR24 im Kopter binden

Wir legen uns zuerst auf der ST16 für den Thunderbird ein neues Modell an. Dieses Binden wir dann mit Kopter und Kamera. Bindeprozess für die Kamera CGO3+ funktioniert wie gehabt.

Um den Empfänger im Kopter zu binden, muss der Kopter in den Bindemodus versetzt werden. Dazu muss man den Kopter per USB-Kabel mit dem PC verbinden und QGroundControl starten. Dort in die PX4 Konsole aufrufen:

Icon Log-Auswertung > Mavlink Konsole.

Man kann sich hier schon allerlei ansehen, zum Beispiel, welche Geräte im Kopter vorhanden sind.

cd /dev ls

Aber das nur nebenbei. Eigentlich wollten wir den Kopter in den Bindemodus bringen. Dazu an der Konsole folgendes eingeben:

typhoon bind start

Dann auf der ST16 ins Bindemenü gehen, wie gewohnt auf "Refresh" tippen und den angezeigten Empfänger wie üblich binden. Fertig.

Flug Modi

Hochlauf

Dies sind keine eigentliche Flugmodi. Der Kopter ist hier noch am Boden. Um alle Sensoren bereit zu haben, sollte man ausreichend Zeit zum Initialisieren geben. Im Flight-Controller läuft ein interner Pre-Flight Check ab, wo auch Kalibrierungen überprüft werden. Dieser Check kann bei fehlender oder falscher Kalibrierung der Sensoren fehlschlagen und der Kopter lässt sich grundsätzlich nicht starten. Um festzustellen, was nicht funktioniert, muss der Kopter mit QGroundControl verbunden werden.

Ob sich die Motoren bereits starten lassen, wenn noch kein GPS-Lock gefunden wurde, bestimmt ein Parameter: COM_ARM_WO_GPS.

Initialisierung

GNSS und Navigationssystem sind noch nicht bereit und es gibt noch keinen Homepunkt. Man kann aber den Start erzwingen und ohne GNSS fliegen, aber es gibt kein RTH bei diesem Flug. The GNSS-unterstützten Flugmodi werden freigeben, wenn das GPS und der Estimator (Vorausberechnung) bereit sind. Das passiert auch im Flug, aber wegen fehlendem Homepunkt ist weiterhin RTH nicht verfügbar. Ein Homepunkt wird erst gesetzt, wenn gelandet und dann wieder gestartet wurde. Man kann aber Indoor fliegen.

Übergang **Acquiring** nach **Ready** passiert nur, wenn der Kopter voll Mission-fähig ist. Der PX4 Autopilot braucht einige Zeit, alles bereit zu machen, auch wenn schon ein GPS-Lock vorhanden ist.

Status LED: **GRÜN blinkend**. GPS Statusanzeige "Acquiring", ST16 Statusanzeige "Start".

Bereit (Ready)

Der Kopter ist vollständig navigationsfähig und hat einen Homepunkt gesetzt. Grün wird nicht während des Fluges angezeigt.

Status LED: **GRÜN dauerhaft**. ST16 GPS Status wechselt von "Acquiring" zu "Ready", ST16 Statusanzeige zeigt ebenfalls "Ready". Kopter ist startbereit.

Fehler

Fehlfunktion, Pre-Flight-Check nicht erfolgreich.

Status LED: **ROT dauerhaft**

GNSS unterstützte Flug Modi

Alle Sensoren und GNSS müssen fertig initialisiert, einsatzbereit und perfekt kalibriert sein. Diese Modi sind einfach zu fliegen und lassen Zeit für Steuerung und Überwachung der Kamera.

Mission Modus

Der Thunderbird fliegt vollautomatisch eine vorher programmierte Mission. Das ist der einfachste Flugmodus vom selbstständigen Start bis zur automatischen Landung.

Dieser Flugmodus ist in den Parameter-Standardeinstellungen nicht zugeordnet. Für größere Missionen ist ein Flight Controller mit SD-Karten Slot mit SD-Karte erforderlich.

Anmerkung: Es gibt beim Typhoon H ältere Ausführungen, bei denen der Kartenslot noch bestückt ist. Hier kann man problemlos eine SD-Karte einsetzen, die auch sofort erkannt wird.

Status LED: **PURPUR blinkend**, ST16 Statusanzeige: "Waypoint".

Position Modus

Der Thunderbird fliegt wie ein üblicher Typhoon H im Angle Mode. Zentrierte Steuerknüppel halten den Kopter ausbalanciert sowie in x, y und z-Richtung stabil. Das Flugverhalten des Thunderbird ist allerdings weicher eingestellt als beim normalen Typhoon H und erfordert mehr Raum für einen längeren "Bremsweg".

Status LED: PURPUR dauerhaft, ST16 Statusanzeige: "Angle".

Stabilisierte Flug Modi (Stabilized)

Diese Flugmodi verzichten auf GNSS und Kompass bei der Flugsteuerung. Indoor Flüge sind damit möglich und magnetische Interferenzen sind kein Problem. Diese Flugmodi erfordern aber volle Aufmerksamkeit und Sichtkontakt zum Kopter, sind aber immer noch vergleichsweise einfach zu steuern. Der Kopter wird automatisch ausbalanciert, wenn die Knüppel losgelassen werden, hält aber nicht die Position.

Altitude Modus (Atti)

Stabilisierter Flugmodus ohne GNSS-Unterstützung. Throttle auf Mittelstellung hält die Höhe konstant. Throttle steuert die Geschwindigkeit des Steigens oder Sinkens. Der Schub wird automatisch angepasst.

Der Thunderbird fliegt sich wie der Typhoon H im Angle Mode ohne GNSS-Unterstützung. Wenn Position Modus eingestellt und GNSS beim Start noch nicht bereit war, dann wird dieser Flugmodus als Rückfallmöglichkeit ausgewählt.

Status LED: **BLAU blinkend.** ST16 Statusanzeige: "Angle".

Stabilize Modus

Stabilisierter Flugmodus ohne GNSS-Unterstützung. Keine automatisierte Schubsteuerung. Das bedeutet, das Halten der Höhe muss manuell durch entsprechende Kombination Stellung der Steuerknüppel in X, Y und Z-Achse eingestellt werden. Mehr Vorwärtsbewegung erfordert zum Beispiel mehr Schub. Throttle steuert die Geschwindigkeit in allen drei Achsen. Der Flugmodus ist vergleichbar mit "Stability" Mode beim Blade Chroma oder Blade 350QX. Dieser Flugmodus ist in den Parameter-Standardeinstellungen nicht zugeordnet.

Status LED: **BLAU dauerhaft**, ST16 Statusanzeige: "THR".

Manuelle Flug Modi (Manual)

Diese Flugmodi sind in den Parameter-Standardeinstellungen nicht zugeordnet. Sie sind sehr schwer zu fliegen. Sie erfordern volle Aufmerksamkeit, Erfahrung und natürlich ständig Sichtkontakt zum Kopter. Kameras mit Gimbal zur Stabilisierung sollten vorher entfernt werden.

Rattitude Modus

"Assisted Acrobatics", eine Kombination aus Stabilized Modus und Acro Modus. Loslassen der Steuerknüppel *sollte* die Fluglage des Kopter stabilisieren, wenn genug Höhe und Schubkraft dafür vorhanden sind. Bis zu einen (einstellbaren) Schwellwert der Stellung der Steuerknüppel wird sich der Kopter wie bei Stabilized oben beschrieben verhalten. Wird der Steuerknüppel weiter gezogen, dann wird Acro-Modus eingestellt und es sind Flugtricks wie Rollen oder Loopings möglich. Status LED: WHITE purpur blinkend, ST16 Statusanzeige: "Rate".

Manual, Acro or Rate mode

Die Steuerknüppel kontrollieren die Winkelbeschleunigung. Es erfolgt keine automatische Ausrichtung des Kopter und kein Stoppen mehr. Der Schub wird direkt umgesetzt. Es gibt absolut keine Unterstützung vom Flight Controller (Autopiloten) mehr, die Sensoren sind abgeschaltet. Es werden nur noch die Gyro-Daten verarbeitet.

Der Flugmodus erlaubt alle Arten von Flugmanövern.

Der Flugmodus ist vergleichbar mit "Agility" Mode beim Blade Chroma oder Blade 350QX.

Status LED: WEISS dauerhaft, ST16 Statusanzeige: "Rate".

Fail-Safe Modus

Fail-Save kann entweder manuell eingeleitet werden (Return To Home – RTH) oder automatisch durch den Autopilot. Automatische Fail-Save Modi werden durch Parameter eingestellt.

Fail-Safe aktiviert, RTH eingeleitet oder Kopter versucht automatisches Landen an Ort und Stelle bei GNSS-Fehler.

Status LED: ROT blinkend.

Status LED Anzeigen am Kopter (Heck LED)

Grundlegende Regeln unabhängig von derFarbkodierung

- 1. Wenn die Status LED dauerhaft leuchtet, hat der Pilot die volle Kontrolle.
- 2. Wenn die Status LED blinkt, greift der Autopilot aktiv in die Flugsteuerung ein (Position halten, Höhe halten und so weiter).
- 3. Rot bedeutet RTH, Probleme oder Fehler.

RGB Status LED Details

Grün: Hochlauf

GRÜN blinkend: GPS Statusanzeige "Acquiring", ST16 Statusanzeige "Start". GNSS und sind noch nicht bereit, kein Homepunkt gesetzt.

GRÜN dauerhaft: ST16 GPS Status wechselt von "Acquiring" zu "Ready", ST16 Statusanzeige zeigt ebenfalls "Ready". Kopter ist startbereit.

Purpur: GNSS unterstützte Flüge

PURPUR blinkend: Mission mode. ST16 Statusanzeige: "Waypoint".

PURPUR dauerhaft: Position mode. ST16 Statusanzeige: "Angle".

Blau: Stabilized flight

BLAU blinking: Altitude mode. ST16 Statusanzeige: "Angle".

BLAU solid: Stabilize mode. ST16 Statusanzeige: "THR".

Weiß: Manual flight modes

WEISS purpur blinking: Rattitude Modus oder "Assisted Acrobatics". ST16 Statusanzeige: "Rate".

WEISS **solid**: Manual-, Acro- bzw. Rate Modus. ST16 Statusanzeige: "Rate" (ungetestet).

Rot: Fail-Safe, RTH, Fehlfunktion

ROT blinkend: The drone has degraded performance, but is airborne, still operational and attempts an automatic recovery. The LED blinks red when the fail-safes are activated (RTH) or the drone attempts auto-land with a failed GPS. It may change between red and previous color code for some time. However, it is recommended to bring it home at this point.

ROT dauerhaft: Fehlfunktion, Motorstart nicht erlaubt. ST16 Statusanzeige: "EMER".

Parametereinstellungen

Parameter settings needs to be done with QGroundControl. Changed parameters are **not** stored in the model on ST16.

It is recommended to store last working parameter set into a file before you change something. Make a note what parameter you have changes and why (see Parameter change sheet at the end of this document). The stored parameter file is a backup and can be used to restore the whole parameter set in case of problems.

Change parameters

Power up the drone and connect it via USB to QGroundControl.

Go to Settings (icon with gearwheels) > Parameters. Parameter sets are grouped by its functionality. To find a parameter you can use the search function.

Click on the parameter you want to change. The Parameter editor appears on the right.

Change parameter (select from list or enter value) and Save. Some parameters require reboot of the drone.

Save parameter sets

Go to Settings (icon with gearwheels) > Parameters > Tools > Save to file... Enter useful path and filename to remember what parameter set it was and save it.

Parameter von Datei laden

The parameter file from the last working configuration can be used to restore parameter settings in case of problems with the new one.

Go to Settings (icon with gearwheels) > Parameters > Tools > Load from file... Select parameter file with last working settings and upload it to the drone. Reboot the drone.

Check Compass orientation depending on compass chip and do proper calibration.

Firmware Update Prozedur für Ubuntu LINUX

Vorbereitung

Folgende Dateien in ein eigenes Verzeichnis kopieren:

```
flash_typhoon_bootloader
px_uploader.py
yuneec_typhoon_h.fw (Beispielhafter Dateiname für die Firmware)
```

Mit folgenden Befehlen kann man feststellen, welcher Port benutzt wird. USB-Kabel ab- und wieder anstecken.

```
dmesg | grep usb
dmesg | grep tty
```

Mit dem ersten Befehl sieht man, welche USB-Geräte als letztes erkannt wurden. Mit dem zweiten Befehl sieht man die Reaktion des entsprechenden tty-Ports mit gleichem Zeitstempel.

```
he@SSD256 ~
                                                                                         ×
PS/2 Optical Mouse] on usb-0000:00:la.0-1.4.4/input0
     5.877427] usbcore: registered new interface driver btusb
    5.988457] input: HP Webcam [2 MP Macro]: HP Webc as /devices/pci0000:00/0000:00:la.0/usbl
1/1-1.5/1-1.5:1.0/input/input20
    5.988562] usbcore: registered new interface driver uvcvideo
     6.045226] audit: type=1400 audit(1577738889.496:9): apparmor="STATUS" operation="profile
d" profile="unconfined" name="/usr/sbin/ipp<mark>usb</mark>xd" pid=755 comm="apparmor parser"
  162.227296] usb 2-1.4: new full-speed USB device number 3 using ehci-pci
  162.338320] usb 2-1.4: New USB device found, idVendor=0001, idProduct=0480
  162.338325] usb 2-1.4: New USB device strings: Mfr=1, Product=2, SerialNumber=3
  162.338328] usb 2-1.4: Product: TyphoonH_Bootloader
  162.338331] usb 2-1.4: Manufacturer: PX4 AP
  162.338334] usb 2-1.4: SerialNumber: 0
  162.367625] usbcore: registered new interface driver cdc acm
  171.061725] usb 2-1.4: USB disconnect, device number 3
  171.283316] usb 2-1.4: new full-speed USB device number 4 using ehci-pci
  171.397945] usb 2-1.4: New USB device found, idVendor=26ac, idProduct=0001
  171.397950] usb 2-1.4: New USB device strings: Mfr=1, Product=2, SerialNumber=3
  171.397953] usb 2-1.4: Product: PX4 Typhoon H
  171.397956] usb 2-1.4: Manufacturer: Yuneec
  171.397959] usb 2-1.4: SerialNumber: 0
he@SSD256 ~ $ dmesg | grep tty
[ 0.000000] console [tty0] enabled
    1.531997] 00:04: ttyS0 at I/O 0x3f8 (irq = 4, base baud = 115200) is a 16550A
    1.554576] 0000:00:16.3: ttyS4 at I/O 0x6050 (irq = 17, base baud = 115200) is a 16550A
  162.366799] cdc acm 2-1.4:1.0: ttyACMO: USB ACM device
                                                               umber 4 flight mode assigned
  171.398678] cdc acm 2-1.4:1.0: ttyACMO: USB ACM device
ne@SSD256 ~ $
```

Der gesuchte Port ist hier "ttyACM0".

Was man auch sieht, dass nach dem Einschalten der Bootloader startet und danach die Autopilot Software. Wenn der Autopilot bereits gestartet ist, kann man nicht mehr Flashen. Deshalb ist es wichtig, das Script zum Flashen schon zu starten, wenn das MCU-Board noch stromlos ist. Es wird erst nach dem Anstecken des USB-Kabels mit Strom versorgt und dann erwischen wir den Bootloader.

Autopilot flashen

Nun müssen wir mit einem Texteditor die Datei "flash_typhoon_bootloader" editieren, um den Port und den Dateinamen der Firmware einzustellen. Die Textdatei sollte dann etwa so aussehen:

```
python px_uploader.py --port /dev/ttyACMO --force yuneec_typhoon_h.fw
```

Ein Terminal öffnen. In das Verzeichnis wechseln, wo man die drei Dateien hineinkopiert hat und die Scripte ausführbar machen.

```
chmod +x ./flash_typhoon_bootloader
chmod +x ./px_uploader.py
```

Sicherstellen, dass USB Verbindung zum Kopter **getrennt** ist und **keine** Batterie im Kopter ist (MCU-Board stromlos). Die Stromversorgung des MCU-Boards kommt dann über USB.

Update Prozess starten:

```
./flash typhoon bootloader
```

Sofort danach die USB Verbindung zum Kopter herstellen. Warten, bis es losgeht und den Update Prozess beobachten.

```
he@SSD256 ~/tmp/Thunderbird_19122019_FT
                                                                         \times
he@SSD256 ~ $ cd tmp
he@SSD256 ~/tmp $ 1s
info.txt Thunderbird 19122019 FT
he@SSD256 ~/tmp $ cd Thunderbird 19122019 FT/
he@SSD256 ~/tmp/Thunderbird_19122019_FT $ ls
flash_typhoon_bootloader _yuneec_typhoon_h.bin
px_uploader.py yuneec_typhoon_h.fw
he@SSD256 ~/tmp/Thunderbird_19122019_FT $ ./flash_typhoon_bootloader
Loaded firmware for board id: 42,1 size: 985500 bytes (98.55%), waiting for the
bootloader...
Attempting reboot on /dev/ttyACMO with baudrate=57600...
If the board does not respond, unplug and re-plug the USB connector.
Attempting reboot on /dev/ttyACMO with baudrate=57600...
If the board does not respond, unplug and re-plug the USB connector.
Found board id: 42,0 bootloader version: 5 on /dev/ttyACM0
sn: 0027001f3335511135363336
chip: 10076413
family: STM32F40x
revision: 1
flash: 1015808 bytes
Windowed mode: False
Erase : [========] 100.0%
Program: [========] 100.0%
Verify : [========] 100.0%
Rebooting. Elapsed Time 17.667
he@SSD256 ~/tmp/Thunderbird 19122019 FT $
```

Kopter nach erfolgreichen Flash-Vorgang neu starten.

Danach unbedingt alles prüfen und **kalibrieren** wie für einen neuen Kopter üblich.

Firmware Update Prozedur für Windows

Vorbereitung

Folgende Dateien in ein eigenes Verzeichnis kopieren:

```
flash_typhoon_bootloader
px_uploader.py
yuneec_typhoon_h.fw (Beispielhafter Dateiname für die Firmware)
```

Installiere Python für Windows, wenn es noch nicht vorhanden ist. Dazu öffnen wir die Windows Terminal App. Gib dort **python** ein, um zu prüfen, ob Python bereits installiert ist.

Wenn nicht, öffnet sich der Windows Store und bietet Python Installation an. Folge den Anweisungen um Python zu installieren.

Wenn Python richtig installiert ist, dann startet es im Terminal mit seiner eigenen Kommandozeile, beginnend mit: >>>.

```
C:\WINDOWS\system32\cmd.exe — — X

C:\Users\he>python

Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 01:54:44) [MSC v.1916 64 bit (AMD6 4)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> exit()

C:\Users\he>d:
```

Diese Umgebung kann man mit exit() verlassen.

Wir brauchen noch das Modul 'serial' für Python:: https://pypi.org/project/pyserial/#files

Doppelklick auf "pyserial-3.5-py2.py3-none-any.whl", um das Modul zu installieren.

Nun ist Python installiert und wir können Scripts wie "px uploader.py" ausführen.

Um herauszufinden, welcher serielle Port benutzt wird, öffnen wir den Gerätemanager: Gib: devmqmt.msc ein.

Der Gerätemanager erscheit. Verbinde den Kopter per USB-Kabel USB mit dem PC. Bei "Anschlüsse (COM & LPT)" erscheint eine neue Zeile "Legacy FMU" mit einer COM Port Nummer.

Hier im Beispiel "COM10".

Diesen COM Port müssen wir mit einem Texteditor in "flash_typhoon_bootloader" eintragen und als "flash_typhoon_bootloader.bat" speichern. Außerdem muss eventuell der Name der Firmware-Datei korrigiert werden. Die Textdatei sollte dann etwa so aussehen:

```
python px uploader.py --port COM10 --force "yuneec_typhoon_h.fw"
```

Autopilot flashen

Hinweis: Nach dem Einschalten startet der Bootloader und danach die Autopilot (Flight Controller) Software. Wenn der Autopilot bereits gestartet ist, kann man nicht mehr Flashen. Deshalb ist es wichtig, das Script zum Flashen schon zu starten, wenn das MCU-Board noch stromlos ist. Es wird erst nach dem Anstecken des USB-Kabels mit Strom versorgt und dann erwischen wir den Bootloader.

▲ Sicherstellen, dass die USB Verbindung unterbrochen ist (MCU-Board ausgeschaltet).

Starte Firmware Update Script im Windows Terminal: flash typhoon bootloader.bat

Jetzt USB-Kabel stecken. Warten bis Flashen startet und die Flashprozedur im Terminal beobachten.

```
C:\WINDOWS\system32\cmd.exe
                                                                                        ×
C:\Users\he>python
.
Python 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 01:54:44) [MSC v.1916 64 bit (AMD64)] on wi
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()
C:\Users\he>D:
D:\>cd temp\tmp
D:\temp\tmp>dir
Datenträger in Laufwerk D: ist Daten
Volumeseriennummer: ECFC-D1D0
Verzeichnis von D:\temp\tmp
01.01.2020 22:29
                    <DIR>
01.01.2020 22:29
                    <DIR>
31.12.2019 14:14
                                135 flash typhoon bootloader.bat
15.12.2019 19:47
                           37.478 px_uploader.py
01.01.2020 22:25
                           193.717 pyserial-3.4-py2.py3-none-any.whl
30.12.2019 16:33
                           796.268 yuneec_typhoon_h.fw
              4 Datei(en),
                              1.027.598 Bytes
              2 Verzeichnis(se), 608.017.375.232 Bytes frei
D:\temp\tmp>flash_typhoon_bootloader.bat
D:\temp\tmp>python px_uploader.py --port COM10 --force yuneec_typhoon_h.fw
Loaded firmware for board id: 42,1 size: 985500 bytes (98.55%), waiting for the bootloader...
```

Kopter nach erfolgreichen Flash-Vorgang neu starten.

Danach unbedingt alles prüfen und **kalibrieren** wie für einen neuen Kopter üblich.

Anhang

Empfohlene Parameter

Parameterbeschreibungen: https://docs.px4.io/v1.9.0/en/advanced config/parameter reference.html

Parameter	von	nach	Beschreibung
MPC_Z_VEL_MAX_DN	1.000	3.000	Max. Sinkgeschwindigkeit [m/s] wie beim H480
MPC_Z_VEL_MAX_UP	3.0	5.0	Max. Steiggeschwindigkeit [m/s] wie beim H480
MC_RATT_TH	0.80	0.60	Schwellwert für Stability in Rattitude mode [%] für mehr Acro-Anteil für schönere Rollen oder Loopings
COM_ARM_WO_GPS	Disabled (0)	Enabled (1)	Motorstart ohne GPS-Lock möglich. Für Flüge mit GNSS-Unterstützung warte auf dauerhaft grün leuchtende Status-LED.

▲Achtung: Alle Tuning-Maßnahmen und Parameter Einstellungen können das Flugverhalten beeinflussen und ein Sicherheitsrisiko bedeuten. Bitte tue es auf eigene Verantwortung und nur wenn du weißt, was du tust.

Einige hilfreiche Kommandos an der MAVLink Konsole

Die MAVLink Konsole öffnet eine PX4 NSH Kommandozeilenumgebung. Der Kopter muss mit QgroundControl verbunden und hochgefahren sein.

Mehr über die NSH shell hier: https://dev.px4.io/v1.9.0/en/debug/system console.html

Hilfe

? Zeigt eine Liste von Kommandos und Build-in Apps:

Die Shell Kommandos sind hilfreich bei Fehlersuche und um sich Kenntnisse über das System zu beschaffen. Mehr Informationen siehe PX4 Autopilot Dokumentation und QGroundControl Manual.

Folgende Kommandos können ohne Bedenken ausgeführt werden. Sie dienen nur zum Auslesen und verändern nichts.

Wie das Kommando **typhoon_bind** siehe Kapitel "ST16 mit dem Empfänger SR24 im Kopter binden".

Dateisystem

Auflisten von Dateien und Verzeichnissen
 fs/microsd
 Wechsle zur Dateiliste auf der SD-Karte
 Zeige Dateien und Verzeichnisse auf der SD Karte
 Gehe zurück zum Wurzelverzeichnis

Mit den oben beispielhaft gezeigten Kommandos kann man prüfen, ob man eine SD-Karte auf dem Flight Controller hat und wenn ja, was da darauf ist.

Zum Downloaden von Flight Logs (ULOG files: *.ulg) sollte man QGroundControl **Analyze** > **Log Download** nutzen. Klick auf **Refresh** um die Liste der ULOG Dateien zu erneuern.

Geräte

Auflisten von Dateien und Verzeichnissen
 dev Wechsle zum Geräteverzeichnis 'dev'
 Auflisten der Geräte und Anschlüsse

```
MAVLink Console
                                                                       X
Mavlink Console provides a connection to the vehicle's system shell.
nsh>
ls
dev/
etc/
 fs/
obj/
proc/
nsh>
cd dev
nsh>
ls
/dev:
accel0
adc0
baro0
 console_buf
 gyro0
 hmc5883_ext
mag0
 mmcsd0
mpu6000
ms5611_int
 null
 pipe0
 pipel
 pwm_output0
px4fmu
 tap_esc
 ttyACM0
 ttyS0
 ttyS1
 ttyS2
 ttyS3
nsh>
                                                                       Show Latest
Enter Commands here...
```

System

df Speichergröße

df -h Speichergrößen im besser lesbaren Format

free Zeigt freien und benutzten Speicher

date Zeigt Systemzeit

Parameter Nachweisblatt

Es ist empfehlenswert, die Änderungen von Parametern und die Historie aufzuzeichnen. Dies hilft später bei fehlersuche, wenn etwas nicht wie erwartet funktioniert.

Hiweis: Channel Settings der ST16 sind im Model in der ST16 gespeichert. Parametereinstellungen in QGroundControl sind dagegen nicht im Model auf der ST16 gespeichert. Parameter können aber in eine Datei gesichert und wieder hochgeladen werden. Bei Parameteränderungen ist eine vorherige Sicherung sehr zu empfehlen.

Datum	Parameter	alt	neu	Beschreibung/Grund

Kurzinfoblatt

Vorschlag eines Kurzinfoblattes zum Ausdrucken und Mitführen.

Flight Mode Einstellungen (trage hier deine Einstellungen ein)

FlightMode	Switch	Position
Position (Angle mode)	Flight mode Schalter S4	Mitte
Altitude (GNSS Unterstützung aus)	Flight mode Schalter S4	oben
Stabilized (Manual)	Aux Schalter B2	oben
Rattitude	Aux Schalter B2	unten
Acro		
Mission		
RTH	Flight mode Schalter S4	unten

Ein- und Ausschalten

Power on: Power Knopf füt ~ 8s drücken bis LEDs angehen

Power off: Batterie entfernen

Motor Start / Stop

Throttle Stick (in Mode 2 linker Steuerknüppel) unten rechts halten

Flying

- ✔ Prüfe Standort (Regeln und Gesetze)
- ✔ Freier Raum zum Empfang der GBSS Signale vorhanden? Keine potenziellen Reflektorflächen, um Multi-Path-Empfang zu vermeiden.
- ✔ Flugbatterie voll, ST16 Batterie voll?
- ✔ Prüfe ständig Batteriespannungsanzeige während des Fluges.