- **Phase-1.** Data Scraping
- I have collected the data from Wuzuf website, and used (BeautifulSoup, requests, pandas) libraries in this phase.
- I have chosen some jobs titles (Data analyst, software engineer, web developer, flutter-developer, Accountant, Customer Service, Civil Engineer). We can add more titles if we want.
- While collecting the data I was careful to collect jobs for entry level people who have 0-1 years' experience.
- The data contains ['job_title','company_name','job_location','job_requirement','job_description'].
- Finally, I saved the data in csv file, and database by using SQLite library in python

• Phase-2. Data Analysis

1. Numbers of jobs opportunity for each title:

CUSTOMER SERVICE	120
ACCOUNTANT	81
WEB DEVELOPER	57
CIVIL ENGINEER	56
SOFTWARE ENGINEER	25
FLUTTER DEVELOPER	2

2. The preferred skills mentioned in job descriptions:

(['xml', 'teamwork', 'statisticals', 'SQL', 'software', 'react', 'python', 'OOP', 'NoSQL', 'Node', '.Net', 'MVC Model', 'microsoft office', 'ML', 'listening', 'javascript', 'java', 'HTML', 'Git', 'financial', 'English', 'Databas', 'css', 'communication', 'C+++', 'C#', 'Bachelor of CS', 'analysis', 'accountant'])

3. Geographic distribution of job opportunities.

Descending sort for job opportunity in each city:

["cairo", "giza", "alexandria", "sharqia", "dakahlia", "damietta", "gharbia", "minya", "suef", "assiut", "beheira", "said", "sinai"]

- Phase-3. Data visualization.
 - 1. Most in demand job titles

Accountant

2. Frequently mentioned skills in job description and requirements

3. Job distribution.

- Phase-4. CV matching algorithm.
 - 1. First approach: keywords matching.
- I have merged job description column with job requirement column.
- Then prepare the data by cleaning it, removing stop word, numbers, and punctuation, tokenize it, and remove duplicate words.
- Before preprocessing stage, I have separated the job listing based on job title.
- Now we have terms for each job title.
- Next step is taking the user CV and preprocess it.
- Simply I've implemented a function that takes the words of each class (job title), and the terms in the user's CV, compare the terms in cv and each class, then it takes the average.

2. Second approach: TF-IDF matching algorithm

(term frequency-inverse document frequency):

Statistical method to find importance of a term within a document.

Calculates a numerical score for each term using combination of term frequency (TF) and inverse document frequency (IDF).

- Term Frequency (TF): measures how often a specific word appears in a document.
 For example, in the below document word "cat" appeared three times.
 TF = number of times the term appears in the document / total number of unique words in the document
- IDF: is to find or understand importance of a term within a collection of documents.

 This technique helps to identify how rare a term or word is across all the documents.

 IDF = log (total number of documents/number of documents contains the terms)
- Once we have TF and IDF scores separately, we can calculate TF-IDF for a specific term or word by multiplying the TF value with its IDF value. TF-IDF = TF * IDF.

Result:

```
similarity_scores = cosine_similarity(new_tfidf_vector, tfidf_matrix)
copy_Score2 = similarity_scores[0].copy()
sorted = np.sort(-copy_Score2)
maxTen = sorted[0] * -1
index = np.where(similarity_scores[0]==maxTen)
job = data.iloc[index[0][0]]["job_title"]
print("the most appropriate job is:",job)
the most appropriate job is: Software Engineer
```