Research Computing Center High-Performance Computing and Research Technology Services

Robin Weiss robinweiss@uchicago.edu

Computing – The 3rd Pillar of Science

Drug Design Molecular Dynamics

Seismic Imaging Reverse Time Migration

Automotive Design
Computational Fluid Dynamics

Medical Imaging Computed Tomography

Astrophysics n-body

Options Pricing Monte Carlo

Product DevelopmentFinite Difference Time Domain

Weather Forecasting Atmospheric Physics

RCC's Mission

The RCC mission is to advance research and scholarship by providing access to centrally managed high-end computing, storage and visualization resources. These resources include not just hardware and **software**, but also expert technical user support, education and training.

Research Computing Center Services

"Provide access to hardware (computing, storage, and visualization resources), software and advanced technical support"

Hardware

High End Computing
Tightly Coupled & High Throughput

Research storage
Data Management

Special hardware: GPU, Shared memory, fast Network

Software

Commercial software Licensing

Public/Community codes

Homegrown codes

Technical Support

Scientific Computing Visualization

Education and Training Grants

Application Software Development

Software

18 Commercial and 186 Publicly available software are installed and maintained at RCC (341 different modules)

System Tools and Math Libraries

- Compilers: Intel, Portland, GCC
- Debugger
- Python, Perl, Ruby interpreters
- SWIFT
- MPI, MKL, FFTW, GSL, CUDA, etc.

- MATLAB, STATA, AMIRA, Alinea DDT, etc.

Domain Specific Applications

- chemistry
- Biology
- physics
- etc.

- Use of module system
 - Example: module load intel

Workshops and Advanced Training for Chicago Researchers

- RCC tutorials and Workshops
- Software vendors workshops
- Scheduled Workshops
 - Intro to Python
 - Intro to Linux
 - Intro to data visualization
 - Intro to OpenMP
 - Parallel programming with MPI
 - Programming with R
 - Introduction to Stata
 - Comsol Workshop
 - Python for HPC
 - GPU computing with Nvidia
 - Tips and Tricks for Midway

What is a Supercomputer?

- A very fast computer...... i.e.: A Super-Computer!
- It's all about math (A + B = ?)
- The "slowest" supercomputer does 153.4 Tflop/s
- The "fastest" does 33,862.7 Tflop/s
- (iPhone 5 does ~600 Mflop/s)

Serial Pizza Delivery

Process:

Delivery truck delivers one pizza and then moves to next house

Original Idea by Jedox www.jedox.com

Parallel Pizza Delivery

Original Idea by Jedox www.jedox106m

So what's the secret?

- Take advantage of parallel processing
- Supercomputers are (usually) made up of many smaller computers
 - 10's of thousands or even millions
- Why go parallel? Because Intel has been lying to you ...
 - ... Computers have not gotten any faster in about 11 years

Pizza Delivery Problem

 The worlds faster supercomputer has 3,120,000 CPU cores

 If you have 3,120,000 drivers, you can deliver 3,120,000 pizzas at the same time

Midway Supercomputer is...

- In 2012 we were #447 in the world (80.6 Tflop/s)
- Scientific Linux 6.6
- Intel x86_64 based cluster
- ~895 Compute nodes (13,320 CPU cores)
 - Each with 16 CPUs and 32 GB memory
- 40 gbps infiniband network
 - 3-5 GB/s throughput
- ~1.5 PB storage
 - 900TB of tape backup

RCC capabilities continue to grow at Midway RCC manages 895 nodes (13,320 cores) and 1.4 PB of storage

Compute

Shared: 345 nodes

- **329** tightly coupled infiniband nodes (5376 cores)
- 3 loosely coupled GigE nodes (48 cores)
- 10 NVidia GPU nodes (176 cores)
- 3 large shared memory nodes (up to 1TB) (64 cores)

Cluster Partnership Program: 270 nodes

- 160 tightly coupled infiniband nodes (2836 cores)
- **109** loosely coupled nodes (1812 cores)
- 1 large shared memory node (24 cores)

Cluster Partnership Program Special: 280 nodes

- 118 tightly coupled nodes (1040 cores)
- **162** loosely coupled nodes (1944 cores)

Storage

- High-performance storage (96 TB usable)
- Capacity storage: 1.4 PB usable
- Cluster Partnership Program Storage: **750 TB usable**
- Backed up and snapshotted

Tape Backup

900 TB of tapes

Getting an Account

- ECON 41904 has a class account
 - All students in this class are eligible for an account during Spring 2015 quarter

- All PI-Eligible Uchicago faculty can obtain a PI account
 - Non pi-eligible Uchicago users can get an account via an RCC PI Account

Getting Help

Email: help@rcc.uchicago.edu

Docs: https://docs.rcc.uchicago.edu