Math 412. Comparison of Rings.

The ring $\mathbb{F}[x]$ of polynomials over an arbitrary *field* shares many properties and features with the ring \mathbb{Z} of integers. Most of these special features **do not hold** (or do not even make sense!) in arbitrary rings, including polynomial rings over non-fields like $\mathbb{Z}[x]$ or $\mathbb{Z}_6[x]$, quotient rings like \mathbb{Z}_n or $\mathbb{F}[x]/(f)$ or matrix rings like $M_3(\mathbb{R})$ or $M_2(\mathbb{Z})$.

IMPORTANT: The symbol \mathbb{F} below stands for an arbitrary **field**. Think of \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p (where p is prime), or something more exotic like $\mathbb{Q}(i)$ or $\mathbb{R}(x)$ or even the field of four elements $\mathbb{F}_4 := \mathbb{Z}_2[x]/(x^2+x+1)$.

CAUTION: The definitions and theorems in the table above are paraphrased for your intuition in comparing them, and are not intended to be used as precise statements for quizzes and exams.

TABLE 1. Analogous Concepts across Different Rings.

Arbitrary Ring R	The Ring $\mathbb Z$	The Ring $\mathbb{F}[x]$
For $r, s \in R$, we say r divides s	Example in \mathbb{Z} : 6 divides -12	Example in $\mathbb{Q}[x]$: $x + 1$ divides
if $\exists t \in R$ such that $s = r \cdot t$.	$since -12 = 6 \times (-2)$	(x^2-1) since $x-1 = (x+1)(x-1)$
A zero-divisor in R is an element r	FACT: The only zero divisor in \mathbb{Z} is	FACT: The only zero divisor in $\mathbb{F}[x]$
for which there exists $s \neq 0$ in R	0.	is 0.
such that $rs = 0$ or $sr = 0$.		
$u \in R$ is a unit if and only if there	Units in $\mathbb{Z} = \{\pm 1\}$	Units in $\mathbb{F}[x] = \{\lambda \mid \lambda \in \mathbb{F} \setminus \{0\}\},\$
exists $v \in R$ such that $uv = vu = 1$.		i.e. non-zero constant polynomials.
R^{\times} denotes the set of all units in R .		
DEF: An element $r \in R$ is irre-	An integer n is irreducible (A.K.A.	A polynomial $f(x)$ is irreducible if
ducible if its only divisors are of the	prime) if and only if its only divi-	and only if its only divisors are of the
form u, ur where u is a unit in R	sors are ± 1 and $\pm n$.	form λ and $\lambda f(x)$ where $\lambda \in \mathbb{F} \setminus \{0\}$
No Division algorithm	Given $n, d \in \mathbb{Z}$ with $d > 0$, there	Given $f, g \in \mathbb{F}[x]$ with $g \neq 0$, there
(no obvious way to decide when one ele-	exist unique integers q, r such that	exist unique polynomials q, r such
ment in R is "smaller than" another)	$n = qd + r$ and $0 \le r < d$.	that $f = qg + r$ and $(r = 0 \text{ or})$
		$\deg r < \deg g.$
No definition of gcd	DEF: $gcd(m, n)$ is the largest com-	DEF: $gcd(f, g)$ is the largest degree
(no natural way to decide when one element	mon divisor of n and m	monic common divisor of f and g
in R is "larger than" another)		
No analog of Euclidean algorithm or	THM: $gcd(n, m)$ is smallest positive	THM: $gcd(f, g)$ is smallest degree
its corollaries	\mathbb{Z} -linear combination of m and n	monic $\mathbb{F}[x]$ -linear comb of f and g
No Unique Factorization Thm	THM 1 : Every integer n can be fac-	THM: Every polynomial f can be
(proof uses Division algorithm)	tored as $p_1 p_2 \dots p_t$ where the p_i are	factored as $g_1g_2 \dots g_t$ where the g_i
	prime. The p_i are unique up to re-	are irreducible. The g_i are unique up
	ordering and unit multiple.	to re-ordering and unit multiple.
An ideal of R is a non-empty subset	An ideal of \mathbb{Z} is a non-empty subset	An ideal of $\mathbb{F}[x]$ is a non-empty sub-
of R closed under addition and un-	of \mathbb{Z} closed under addition and under	set of $\mathbb{F}[x]$ closed under addition and
der multiplication by element of R .	multiplication by all $a \in \mathbb{Z}$.	under multiplication by all $g \in \mathbb{F}[x]$.
A set of Generators for an ideal I	THM: In \mathbb{Z} , all ideals are generated	THM: In $\mathbb{F}[x]$, all ideals are gener-
is any set $S \subset I$ with the property	by one element. So an ideal of \mathbb{Z} is	ated by one element. So an ideal of
that every element in I is an R-linear	a set of all multiples of fixed integer	$\mathbb{F}[x]$ is a set of all multiples of a fixed
combination of the elements of S .	n.	polynomial $f(x)$.
Ideals may need more than one gen-	THM: Every ideal of \mathbb{Z} is principal	THM: Every ideal of $\mathbb{F}[x]$ is princi-
erator; in some cases, even infinitely		pal
Two elements may C. P. ero gongmy	Integers a h C 7 ere congruent	Polynomials a h C E[n] are con
Two elements $x, y \in R$ are congruent modulo an ideal I if $x - y \in I$	Integers $a, b \in \mathbb{Z}$ are congruent modulo the ideal $n\mathbb{Z}$ if $a - b$ is	Polynomials $g, h \in \mathbb{F}[x]$ are congruent modulo the ideal generated
Chi modulo an ideal T if $x - y \in T$	a multiple of n , or equivalently, if	by f if $g - g$ is a multiple of f , or
	$n \mid (a-b)$	equivalently, if $f (g-h)$
R/I is a ring whose elements are	\mathbb{Z}_n is a ring whose elements are con-	$\mathbb{F}[x]/(f)$ is a ring whose elements
congruence classes mod I	gruence classes modulo (n) .	are congruence classes modulo (f) .
congruence classes mou i	graciice classes modulo (11).	are congruence classes modulo (j).