

(12) United States Patent

Chen et al.

US 12,383,262 B2 (10) **Patent No.:**

(45) Date of Patent: Aug. 12, 2025

(54) POWERED STAPLING DEVICE WITH MANUAL RETRACTION

(71) Applicant: Covidien LP, Mansfield, MA (US)

(72) Inventors: **Xingrui Chen**, Glastonbury, CT (US); David Chowaniec, Rocky Hill, CT

(US)

Assignee: Covidien LP, Mansfield, MA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 24 days.

(21) Appl. No.: 18/376,049

(22)Filed: Oct. 3, 2023

(65)**Prior Publication Data**

> US 2024/0023958 A1 Jan. 25, 2024

Related U.S. Application Data

- Continuation of application No. 17/329,711, filed on May 25, 2021, now Pat. No. 11,771,423.
- (51) Int. Cl. A61B 17/068 (2006.01)(2006.01)A61B 17/00
- (52) U.S. Cl. CPC A61B 17/0686 (2013.01); A61B 17/00234 (2013.01); A61B 2017/00296 (2013.01); A61B 2017/00367 (2013.01)
- (58) Field of Classification Search

CPC A61B 17/068-07292; A61B 2017/00234; A61B 2017/00296; A61B 2017/00367; A61B 2017/00393

USPC 227/175.1–182.1; 74/29, 89.17, 405, 625 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

3,499,591 A	3/1970	Green
3,777,538 A	12/1973	Weatherly et al.
3,882,854 A	5/1975	Hulka et al.
4,027,510 A	6/1977	Hiltebrandt
4,086,926 A	5/1978	Green et al.
4,241,861 A	12/1980	Fleischer
4,244,372 A	1/1981	Kapitanov et al.
4,429,695 A	2/1984	Green
4,505,414 A	3/1985	Filipi
4,520,817 A	6/1985	Green
4,589,413 A	5/1986	Malyshev et al.
4,596,351 A	6/1986	Fedotov et al.
4,602,634 A	7/1986	Barkley
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

AU CA 198654765 9/1986 11/2012 2773414 A1 (Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion dated Sep. 6, 2022, issued in corresponding international application No. PCT/IB2022/ 054696, 12 pages.

(Continued)

Primary Examiner — Thanh K Truong Assistant Examiner — Linda J Hodge

ABSTRACT

A powered handle assembly includes a motor assembly, a rack, a spur gear, and a manual retract mechanism. The spur gear is movable from a position engaged with the motor assembly and the rack to a positioned disengaged from the motor assembly and engaged with the rack to facilitate manual retraction of the rack.

14 Claims, 22 Drawing Sheets

(56)			Referen	ces Cited		5,397,324 5,403,312		3/1995 4/1995	Carroll et al. Yates et al.
		U.S.	PATENT	DOCUMENTS		5,405,072		4/1995	Zlock et al.
		0.0.	121112111	Decements		5,407,293	A		Crainich
	4,605,001			Rothfuss et al.		5,413,268		5/1995	Green et al.
	4,608,981			Rothfuss et al.		5,415,334 5,415,335		5/1995 5/1995	Williamson et al. Knodell, Jr.
	4,610,383 4,633,861			Rothfuss et al. Chow et al.		5,417,361			Williamson, IV
	4,633,801			Chow et al.		5,423,471		6/1995	Mastri et al.
	4,671,445		6/1987	Barker et al.		5,425,745		6/1995	Green et al.
	4,676,122	A *	6/1987	Szabo		5,431,322 5,431,323		7/1995 7/1995	Green et al. Smith et al.
	4 700 702		10/1007	Resnick et al.	222/326	5,433,721			Hooven et al.
	4,700,703 4,703,887			Clanton et al.		5,441,193			Gravener
	4,728,020			Green et al.		5,445,304			Plyley et al.
	4,752,024			Green et al.		5,447,265 5,452,837		9/1995 9/1995	Vidal et al. Williamson, IV et al.
	4,784,137			Kulik et al. Redmond et al.		5,456,401			Green et al.
	4,863,088 4,869,415		9/1989			5,464,300	A		Crainich
	4,892,244			Fox et al.		5,465,895			
	4,955,959			Tompkins et al.		5,467,911 5,470,007		11/1995 11/1995	Tsuruta et al. Plyley et al.
	4,978,049 4,991,764		12/1990	Green Mericle		5,470,010			Rothfuss et al.
	4,991,704 5,014,899			Presty et al.		5,472,132	A	12/1995	Savage et al.
	5,031,814			Tompkins et al.		5,474,566		12/1995	Alesi et al.
	5,040,715			Green et al.		5,476,206 5,478,003			Green et al. Green et al.
	5,065,929 5,071,430			Schulze et al. de Salis et al.		5,480,089		1/1996	Blewett
	5,074,454		12/1991			5,482,197	A	1/1996	Green et al.
	5,083,695			Foslien et al.		5,484,095		1/1996	Green et al.
	5,084,057			Green et al.		5,484,451 5,485,947		1/1996 1/1996	Akopov et al. Olson et al.
	5,106,008			Tompkins et al. Moeinzadeh et al.		5,485,952			Fontayne
	5,111,987 5,129,570			Schulze et al.		5,486,185			Freitas et al.
	5,141,144			Foslien et al.		5,487,499			Sorrentino et al.
	5,156,315			Green et al.		5,487,500 5,489,058			Knodel et al. Plyley et al.
	5,156,614			Green et al.		5,490,856			Person et al.
	5,163,943 5,170,925			Mohiuddin et al. Madden et al.		5,497,933			DeFonzo et al.
	5,171,247			Hughett et al.		5,501,689			Green et al.
	5,173,133			Morin et al.		5,505,363 5,507,426			Green et al. Young et al.
	5,180,092 5,188,274			Crainich Moeinzadeh et al.		5,518,163			Hooven
	5,220,928			Oddsen et al.		5,518,164	A	5/1996	Hooven
	5,221,036		6/1993			5,529,235			Boiarski et al.
	5,242,457			Akopov et al.		5,531,744 5,535,934			Nardella et al. Boiarski et al.
	5,246,156 5,253,793			Rothfuss et al. Green et al.		5,535,935	Ā		Vidal et al.
	5,263,629			Trumbull et al.		5,535,937	Α	7/1996	Boiarski et al.
	RE34,519			Fox et al.		5,540,375			Bolanos et al.
	5,275,323		1/1994			5,542,594 5,549,628			McKean et al. Cooper et al.
	5,282,807 5,289,963		2/1994 3/1994	Knoepfler McGarry et al.		5,551,622	A	9/1996	Yoon
	5,307,976			Olson et al.		5,553,765			Knodel et al.
	5,308,576		5/1994	Green et al.		5,554,164 5,554,169			Wilson et al. Green et al.
	5,312,023 5,318,221			Green et al. Green et al.		5,560,530		10/1996	Bolanos et al.
	5,326,013			Green et al.		5,560,532	A		DeFonzo et al.
	5,328,077		7/1994			5,562,239			Boiarski et al.
	5,330,486		7/1994			5,562,241 5,562,682		10/1996	Knodel et al. Oberlin et al.
	5,332,142 5,336,232			Robinson et al. Green et al.		5,562,701			Huitema et al.
	5,344,061			Crainich		5,564,615		10/1996	Bishop et al.
	5,352,238	Α	10/1994	Green et al.		5,571,116 5,573,169		11/1996 11/1996	Bolanos et al. Green et al.
	5,356,064			Green et al.		5,573,543		11/1996	Akopov et al.
	5,358,506 5,364,001		10/1994	Green et al.		5,575,799		11/1996	Bolanos et al.
	5,364,002			Green et al.		5,575,803		11/1996	Cooper et al.
	5,364,003	A	11/1994	Williamson, IV		5,577,654 5,584,425		11/1996 12/1996	Bishop Savage et al.
	5,366,133		11/1994			5,586,711		12/1996	Plyley et al.
	5,376,095 5,379,933		12/1994 1/1995	Green et al.		5,588,580		12/1996	Paul et al.
	5,381,943			Allen et al.		5,588,581	A	12/1996	Conlon et al.
	5,382,255	A		Castro et al.		5,597,107			Knodel et al.
	5,383,880			Hooven		5,601,224		2/1997	Bishop et al.
	5,389,098 5,395,033			Tsuruta et al. Byrne et al.		5,607,095 5,615,820		3/1997 4/1997	Smith et al. Viola
	5,395,034			Allen et al.		5,618,291		4/1997	Thompson et al.
	5,397,046	A		Savage et al.		5,624,452		4/1997	

S. S. S. S. S. S. S. S.	(56)		Referen	ces Cited	5,820,009			Melling et al.
5,626,587 A 5/1997 Bishop et al. 5,833,696 A 11/1998 Youn 5,632,446 A 5/1997 Geiste et al. 5,834,647 A 11/1998 Schnipke 5,630,539 A 5/1997 Howatt 5,631,538 A 2/1999 Smith et al. 5,831,536 A 2/1999 Fower 1,932,536 A 2/1997 Hoston et al. 5,831,536 A 2/1999 Fower 1,932,536 A 2/1999 Fowe		II C	DATENT	DOCHMENTS				
5,62,6,87 A 51997 Bishop et al. 5,833,647 A 111998 Schnipke 5,63,0,530 A 51997 Plyley et al. 5,826,242 A 11999 Green et al. 5,630,640 A 51997 Wildman, IV et al. 5,833,337 A 21999 Millman et al. 5,630,643 A 51997 Schwier et al. 5,833,337 A 21999 Sillman et al. 5,632,643 A 51997 Ghennet et al. 5,833,350 A 41999 Powell 5,645,299 A 71997 Green et al. 5,893,506 A 41999 Powell 5,645,299 A 71997 Green et al. 5,911,335 A 41999 Powell 5,645,293 A 1997 Green et al. 5,911,335 A 41999 Belant et al. 5,642,293 A 1997 Groen et al. 5,911,335 A 1999 Belant et al. 5,652,215 A 1997 Son et		0.3.	PATENT	DOCUMENTS				
5,628,446 A 51997 Geisle et al. 53,836,147 A 11998 Schinjber 5,630,530 A 51997 Blewert 5,863,530 A 51997 Blewert 5,865,530 A 51997 Schinze et al. 5,873,733 A 21999 Smith et al. 5,873,734 A 41999 Powell Creen et al. 5,804,579 A 41999 Powell Smith et al. 5,804,579 A 41999 Powell Smith et al. 5,804,579 A 41999 Bowlen et al. 5,804,804 A 81997 Foon 5,804,804 A 81999 Foon 5,804,804		5.626.587 A	5/1997	Bishop et al.			11/1998	Yoon
5,630,540 A 5,1997 Newert 5,865,361 A 2,1999 Williamson, IV et al. 5,871,135 A 2,1999 Williamson, IV et al. 5,871,135 A 2,1999 Williamson, IV et al. 5,873,873 A 2,1999 Smith et al. 5,873,873 A 2,1999 Smith et al. 5,873,873 A 2,1999 Smith et al. 5,873,873 A 4,1999 Develt 5,645,209 A 7,1997 Green et al. 5,893,306 A 4,1999 Develt 5,645,209 A 7,1997 Green et al. 5,901,895 A 5,1999 Boltanos et al. 5,901,895 A 6,1999 Boltanos et al. 5,901,895 A 7,1999 Green et al. 5,901,895 A 7,909 Green et a								
5.633.541 A 5.1997 Williamson IV et al. 5.633.673 A 5.1997 Genue et al. 5.633.673 A 6.1997 Green et al. 5.633.673 A 6.1997 Green et al. 5.635.673 A 7.1997 Green et al. 5.635.773 A 7.1997 Green et al. 5.647.526 A 7.1997 Green et al. 5.647.526 A 7.1997 Green et al. 5.545.373 A 8.1997 Vong et al. 5.553.373 A 8.1997 Young et al. 5.653.573 A 8.1997 Wong et al. 5.653.573 A 8.1997 Wong et al. 5.655.573 A 8.1997 Wong et al. 5.655.675.67 A 7.1997 Green et al. 5.655.675.67 A 7.1997 Green et al. 5.655.675.71 A 8.1997 Wong et al. 5.655.675.721 A 8.1997 Wong et al. 5.655.675.721 A 8.1997 Wong et al. 5.655.675.721 A 8.1997 Wong et al. 5.665.675.721 A 8.1997 Wong et al. 5.666.675.721 A 9.1997 Wong et al. 5.666.675.73 A 9.1997 Wong et al. 5.666.675.73 A 9.1997 Wong et al. 5.666.675.74 A 10.1999 McKean et al. 5.666.675.74 A 10.1999 Pount et al. 5.666.675.74 A 10.1997 Wong et al. 5.666.675.74 A 10.1998 Wong et al. 5.666.675.74 A 10.1998 Wong et al. 5.666.675.74 A 10.199 Wong et al. 5.666.675.74 A 10								
Section								
Sociation Soci					, ,			
5,636,780 A					5,878,938	A		
5,647,526								
Septiment Sept								
5,653,373 A 8,1997 Young et al. 5,911,352 A 6,1999 Bolanos et al. 5,653,721 A 8,1997 Young et al. 5,918,791 A 7,1999 Graves, F. et al. 5,655,808 A 8,1997 Young et al. 5,918,791 A 7,1999 Graves, F. et al. 5,655,808 A 8,1997 Young et al. 5,918,747 A 7,1999 Graves, F. et al. 5,655,808 A 8,1997 Young et al. 5,918,47 A 8,1999 Graves, F. et al. 5,662,258 A 9,1997 Young et al. 5,914,442 A 8,1999 Graves, F. et al. 5,662,258 A 9,1997 Young et al. 5,802,259 A 9,1997 Young et al. 5,802,259 A 9,1997 Young et al. 5,802,259 A 9,1997 Young et al. 5,802,260 A 9,1997 Young et al. 5,808,431 A 11,1999 Tolanon et al. 6,808,431 A 11,1999 Tolanon et al. 6,808								
5,653,374 A								
\$.653,721 A 8/1997 Knodel et al. \$.918,791 A 7/1999 Sorrentino et al. \$.655,808 A 8/1997 Yoon \$.919,198 A 7/1999 Grove al. \$.655,800 A 8/1997 Yoon \$.919,198 A 7/1999 Grove al. \$.655,800 A 8/1997 Bito et al. \$.931,847 A 8/1999 Goist et al. \$.938,150 A 10/1999 A Goist et al. \$.938,150 A 10/1999 A Goist et al. \$.938,150 A 10/1999 A Goist et al. \$.938,150 A 10/1999 Sorrentino et al. \$.938,150 A 10/1999 Schulze et al. \$.938,150 A 10/19							6/1999	Bolanos et al.
S.657.921								
September Sept								
Se62.258 A 9/1997 Nondel et al. 5,941,442 A 8/1999 Geiste et al. 5,662.250 A 9/1997 Yoon 5,954,279 A 10/1999 McKean et al. 5,662.260 A 9/1997 Bishop et al. 5,988,479 A 11/1999 Palmer 5,662.666 A 9/1997 Onuki et al. 5,988,479 A 11/1999 Palmer 5,665.085 A 9/1997 Nardella 6,004,335 A 12/1999 Palmer 5,665.085 A 9/1997 Schulze et al. 6,043,560 A 42/1000 McKean et al. 5,667.517 A 9/1997 Schulze et al. 6,045,560 A 42/1000 McKean et al. 5,673,840 A 10/1997 Schulze et al. 6,035,849 A 32/1000 McKean et al. 5,673,841 A 10/1997 Schulze et al. 6,093,097 A 22/1000 McKean et al. 5,673,842 A 10/1997 Schulze et al. 6,093,006 A 22/1000 McKean et al. 5,676,674 A 10/1997 Bolanos et al. 6,093,007 A 22/1000 Milliman et al. 5,676,674 A 10/1997 Schulze et al. 6,193,000 A 82/1000 Milliman et al. 5,680,981 A 10/1997 Schulze et al. 6,113,789 A 10/2000 Schulze et al. 5,680,982 A 10/1997 Solvare et al. 6,113,789 A 10/2000 Piraka 5,680,0675 A 11/1997 Savyer et al. 6,197,017 B 3/2001 Brock et al. 5,690,675 A 11/1997 Savyer et al. 6,220,148 B 3/2000 Gabous 5,690,675 A 11/1997 Savyer et al. 6,220,148 B 3/2000 Brock et al. 5,702,409 A 12/1997 Knodel et al. 6,224,153 B 6/2000 Milliman et al. 5,702,409 A 12/1997 Knodel et al. 6,224,183 B 1/2000 Piraka 5,702,409 A 12/1997 Knodel et al. 6,224,183 B 1/2000 Piraka 5,702,409 A 12/1997 Savyer et al. 6,224,183 B 1/2000 Piraka 5,702,409 A 12/1997 Savyer et al. 6,224,183 B 1/2000 Milliman et al. 5,702,409 A 12/1997 Savyer et al. 6,224,183 B 1/2000 Milliman et al. 5,702,409 A 12/1997 Savyer et al. 6,224,183 B 1/2000 Milliman et al. 5,702,503 A 1/1998 Sorrentino et al. 6,244,085 B 1/2000 Milliman et al. 5,702,409 A 1/1998 Sorrentino et al. 6,244,085 B 1/2000 Milliman et al. 5,714,355 A 2/1988								
5,662,259 A 9,1997 Yoon 5,954,774 A 1,1999 Viola et al. 5,662,262 A 9,1997 Yoon 5,964,774 A 1,10999 McRean et al. 5,662,666 A 9,1997 Onuki et al. 5,988,479 A 1,11999 Palmer 5,665,085 A 9,1997 Nardella 6,043,335 A 12,1999 Palmer 5,667,517 A 9,1997 Hoven 6,010,054 A 1,2000 Jinson et al. 5,667,517 A 9,1997 Schulze et al. 6,032,849 A 3,2000 Mastri et al. 5,673,841 A 10,1997 Schulze et al. 6,045,560 A 4,2000 McKean et al. 5,673,842 A 10,1997 Bittner et al. 6,072,606 A 6,2000 Milliman et al. 5,680,981 A 10,1997 Millill et al. 6,109,500 A 8,2000 Milliman et al. 5,680,982 A 10,1997 Pyley et al. 6,131,790 A 1,2000 Chillipan et al. 5,690,269 A 1,11997 Solulze et al. 6,155,473 A 1,2000 Tyrrika 5,690,675 A 1,11997 Solulze et al. 6,155,473 A 1,2000 Tyrrika 5,690,568 A 1,21997 Schulze et al. 6,252,473 A 1,2200 Tyrrika 5,690,563 A 1,21997 Schulze et al. 6,252,4								
5,662,260 A 9,1997 Yoon 5,964,774 A 10,1999 McKean et al. 5,662,666 A 9,1997 Bishop et al. 5,988,479 A 11,1999 Palmer 5,665,085 A 9,1997 Nardella 6,004,335 A 12,1999 Vaickeunas et al. 5,665,085 A 9,1997 Nardella 6,004,335 A 12,1999 Vaickeunas et al. 5,665,084 A 9,1997 Schulze et al. 6,045,560 A 4,2000 McKean et al. 5,663,844 A 10,1997 Schulze et al. 6,045,560 A 4,2000 McKean et al. 5,673,844 A 10,1997 Schulze et al. 6,095,606 A 6,090,551 A 2,2000 McKean et al. 5,673,841 A 10,1997 Bolanos et al. 6,095,500 A 2,2000 McKean et al. 5,673,842 A 10,1997 Schulze et al. 6,095,500 A 2,2000 McKean et al. 5,680,981 A 10,1997 Schulze et al. 6,196,500 A 2,2000 Milliman et al. 5,680,982 A 10,1997 Schulze et al. 6,131,789 A 10,2000 Schulze et al. 5,690,675 A 11,1997 Sohuze et al. 6,131,789 A 10,2000 Milliman et al. 5,690,675 A 11,1997 Sohuze et al. 6,154,473 A 12,2000 Complex et al. 5,690,5742 A 12,1997 Schulze et al. 6,197,017 B 3,2001 Brock et al. 5,690,508 A 12,1997 Schulze et al. 6,241,139 B 3,2001 Brock et al. 5,690,508 A 12,1997 Schulze et al. 6,241,139 B 3,2001 Brock et al. 5,702,490 A 12,1997 Rayburn et al. 6,240,805 B 7,2001 McGuckin, Jr. 5,702,334 A 1,1998 Green et al. 6,240,805 B 7,2001 McGuckin, Jr. 5,714,350 A 2,1998 Yalae 4,1998 Bryan 6,315,183 B 1,2001 Wihiman 5,714,350 A 2,1998 Palmer 6,325,810 B 2,2001 Wihiman 5,714,350 A 2,1998 Palmer 6,325,810 B 2,2001 Wihiman 5,714,350 A 2,1998 Palmer 6,354,344 B 1,2001 Wihiman 5,725,535 A 3,1998 Widal et al. 6,439,748 B 1,2000 Wihiman 5,732,830 A 4,1998 Widal et al. 6,600,738 B 2,2000 Wihiman 5,732,830 A 4,1998 Widal et al. 6,600,739 B 2,2000 Williman et al. 5,732,350								
September Sept			9/1997	Yoon				
Self-18								
Sefent S		/ /						
5,669,544 A 9/1997 Schulze et al. 6,032,849 A 3/2000 Mastri et al. 5,673,841 A 10/1997 Schulze et al. 6,045,560 A 4,2000 Oi et al. 5,673,841 A 10/1997 Bittner et al. 6,063,997 A 5,2000 Oi et al. 5,673,842 A 10/1997 Millifli et al. 6,099,551 A 8,2000 Giabbay 5,680,981 A 10/1997 Schulze et al. 6,109,500 A 8,2000 Giabbay 5,680,983 A 10/1997 Schulze et al. 6,131,789 A 10/2000 Schulze et al. 5,690,675 A 11/1997 Schulze et al. 6,131,789 A 10/2000 Schulze et al. 5,690,675 A 11/1997 Bolanos et al. 6,131,799 A 10/2000 Irizak 5,690,675 A 11/1997 Schulze et al. 6,197,017 Bl 3 32001 Brock et al. 5,692,668 A 12/1997 Schulze et al. 6,197,017 Bl 3 32001 Gieste et al. 5,692,668 A 12/1997 Schulze et al. 6,220,132 Bl 62,000 Milliman et al. 5,702,490 A 2/1998 Bl Gene et al. 6,226,488 Bl 7,2001 Milliman et al. 5,704,534 A 1/1998 Screen et al. 6,245,532 Bl 62,000 Milliman et al. 5,705,397 A 1/1998 Screen et al. 6,279								
S.673,840 A 10/1997 Schulze et al.					6,032,849	A		
5,673,842 A								
S.676.674 A 101997 Bolanos et al. 6.109.551 A 8.2000 Alli et al.								
S.680,981 A 10/1997 Millilli et al. 6,131,789 A 10/2000 Schulze et al. 6,155,473 A 12/2000 Tompkins et al. 6,502,680 A 17/1997 Sawyer et al. 6,157,473 A 12/2000 Tompkins et al. 6,502,686 A 17/1997 Sawyer et al. 6,202,914 Bl 3/2001 Brock et al. 6,502,686 A 17/1997 Knodel et al. 6,220,141 Bl 3/2001 Brock et al. 6,507,542 A 17/1997 Knodel et al. 6,224,1439 Bl 6/2001 Milliman et al. 5,704,534 A 17/1998 Huitema et al. 6,264,087 Bl 7/2001 MicGuckin, Jr. 5,706,597 A 17/1998 Green et al. 6,264,087 Bl 7/2001 MicGuckin, Jr. 5,706,597 A 17/1998 Bryan 6,315,184 Bl 17/2001 Micguckin, Jr. 5,711,472 A 17/1998 Bryan 6,315,184 Bl 17/2001 Milliman et al. 6,315,184 Bl 17/2001 Milliman 5,711,538 A 2/1998 Palmer 6,325,810 Bl 12/2001 Milliman 5,718,389 A 2/1998 Palmer 6,325,810 Bl 12/2001 Milliman 6,3725,536 A 3/1998 Oberlin et al. 6,398,797 B2 6/2002 Milliman 6,3725,536 A 3/1998 Simon et al. 6,348,079 B2 6/2002 Milliman 6,3735,848 A 4/1998 Simon et al. 6,436,079 Bl 8/2002 Nardella 5,732,846 A 4/1998 Jakes et al. 6,436,079 Bl 8/2002 Nardella 5,732,846 A 4/1998 Jakes et al. 6,438,466 Bl 8/2002 Perry et al. 6,503,257 Bz 1/2003 Milliman 5,732,846 A 4/1998 Jakes et al. 6,438,466 Bl 8/2002 Perry et al. 6,503,257 Bz 1/2003 Milliman 5,732,846 A 4/1998 Jakes et al. 6,438,466 Bl 8/2002 Perry et al. 6,503,257 Bz 1/2003 Milliman 5,772,673 A 6/1998 Milliman 6,644,532 Bz 1/2003 Milliman 5,772,673 A 6/1998 Milliman 6,644,532 Bz 1/2003 Milliman 6,772,673 A 6/1998 Milliman 6,666,073 Bz 1/2003 Milliman 6,772,073 A 6/1998 Milliman 6,666,073 Bz 1/2003 Milliman 6,772,073 A 6/1998 Milliman 6,666,		/ /			, ,			
5,680,982 A 10/1997 Schulze et al. 6,131,799 A 10/2000 Piraka 5,680,933 A 10/1997 Bollanos et al. 6,131,790 A 10/2000 Piraka 5,690,675 A 11/1997 Bollanos et al. 6,155,473 A 12/2000 Tompkins et al. 5,692,668 A 12/1997 Schulze et al. 6,202,914 Bl 3/2001 Geiste et al. 5,692,668 A 12/1997 Robulze et al. 6,202,914 Bl 3/2001 Geiste et al. 5,692,668 A 12/1997 Robulze et al. 6,205,932 Bl 6/2001 Green et al. 5,704,534 A 1/1998 Huitema et al. 6,264,086 Bl 7/2001 Whitman 5,704,534 A 1/1998 Green et al. 6,279,809 Bl 8/2001 Wicolo 5,709,334 A 1/1998 Sorrentino et al. 6,315,183 Bl 11/2001 Whitman 5,715,598 A 2/1998 Palmer 6,325,810 Bl 12/2001 Milliman et al. 5,716,366 A 2/1998 Yates 6,391,038 Bg 5/200,20 Milliman et al. 5,725,553 A 3/1998 Simon et al. 6,391,038 Bg 5/200,20 Bombard et al. 5,725,554 A 3/1998 Vidal et al. 6,434,973 Bl 9/2002 Whitman 5,732,806 A 3/1998 Foshee et a								
5,680,983 A 10/1997 Plyley et al. 5,690,269 A 11/1997 Bolanos et al. 5,690,675 A 11/1997 Bolanos et al. 5,690,675 A 11/1997 Sawyer et al. 5,692,668 A 12/1997 Kochulze et al. 5,692,668 A 12/1997 Kochulze et al. 5,697,542 A 12/1997 Kochulze et al. 5,702,409 A 12/1997 Kochulze et al. 5,702,409 A 12/1997 Kochulze et al. 5,702,409 A 12/1997 Rayburn et al. 5,702,409 A 12/1998 Huitema et al. 5,704,534 A 1/1998 Huitema et al. 5,706,997 A 1/1998 Green et al. 5,706,997 A 1/1998 Orientino et al. 5,709,334 A 1/1998 Bryan 5,713,505 A 2/1998 Bryan 6,315,184 Bl 11/2001 Whitman 5,715,988 A 2/1998 Palmer 6,325,810 Bl 12/2001 Hamilton et al. 5,718,366 A 2/1998 Palmer 6,325,810 Bl 12/2001 Hamilton et al. 5,718,359 A 2/1998 Palmer et al. 5,725,536 A 3/1998 Oberlin et al. 6,398,797 B2 6/2002 Vargas et al. 5,725,536 A 3/1998 Vidal et al. 6,436,097 Bl 8/2002 Vargas et al. 5,725,536 A 3/1998 Vidal et al. 6,436,097 Bl 8/2002 Vargas et al. 5,735,848 A 4/1998 Yares et al. 6,436,097 Bl 8/2002 Vargas et al. 5,735,848 A 4/1998 Vargas et al. 6,436,097 Bl 8/2002 Vargas et al. 5,735,848 A 4/1998 Vargas et al. 6,436,097 Bl 8/2002 Vargas et al. 5,735,848 A 4/1998 Vargas et al. 6,436,097 Bl 8/2002 Vargas et al. 5,743,456 A 4/1998 Vargas et al. 6,548,444 Bl 8/2002 Vargas et al. 5,743,456 A 4/1998 Vargas et al. 6,548,444 Bl 8/2002 Vargas et al. 5,743,456 A 4/1998 Vargas et al. 6,548,444 Bl 8/2002 Vargas et al. 5,749,303 A 5/1998 Vidal et al. 6,548,444 Bl 8/2002 Vargas et al. 5,749,303 A 5/1998 Vargas et al. 6,548,444 Bl 8/2002 Vargas et al. 5,752,644 A 5/1998 Vargas et al. 6,548,447 Bl 8/2002 Vargas et al. 5,752,643 A 6/1998 Vargas et al. 6,548,443 Bl 8/2002 Vargas et al. 6,548,443								
5,690,675 A 11/1997 Sawyer et al. 5,692,668 A 12/1997 Schulze et al. 5,697,542 A 12/1997 Kodel et al. 5,697,542 A 12/1997 Kodel et al. 5,697,542 A 12/1997 Kodel et al. 5,702,409 A 12/1998 Huitema et al. 5,704,334 A 1/1998 Huitema et al. 5,706,997 A 1/1998 Byan Gren et al. 5,709,334 A 1/1998 Byan Gren et al. 5,709,334 A 1/1998 Byan Gren et al. 5,709,334 A 1/1998 Byan Gren et al. 5,711,472 A 1/1998 Byan Gren et al. 5,711,472 A 1/1998 Byan Gren et al. 5,711,508 A 2/1998 Palmer Gren et al. 5,715,598 A 2/1998 Palmer Gren et al. 5,716,366 A 2/1998 Palmer Gren et al. 5,716,366 A 2/1998 Palmer Gren et al. 5,718,359 A 2/1998 Palmer Gren et al. 5,718,359 A 2/1998 Palmer Gren et al. 5,718,350 A 3/1998 Oberlin et al. 5,725,536 A 3/1998 Oberlin et al. 5,725,536 A 3/1998 Vidal et al. 5,728,110 A 3/1998 Vidal et al. 5,728,386 A 4/1998 Jones et al. 5,738,386 A 4/1998 Jones et al. 5,738,386 A 4/1998 Bolanos et al. 5,734,456 A 4/1998 Bolanos et al. 5,749,393 A 5/1998 Bolanos et al. 5,749,393 A 5/1998 Knodel et al. 5,752,644 A 5/1998 Bolanos et al. 5,769,303 A 6/1998 Knodel et al. 5,769,303 A 6/1998 Knodel et al. 5,769,303 A 6/1998 Knodel et al. 5,752,354 A 3/1998 Bolanos et al. 5,752,354 A 3/1998 Bolanos et al. 5,769,303 A 6/1998 Knodel et al. 5,769,303 A 6/1998 Knodel et al. 5,779,131 A 7/1998 Knodel et al. 5,779,131 A 7/1998 Knodel et al. 5,779,132 A 7/1998 Knodel et al. 5,782,334 A 7/1998 Knodel et al. 5,782,335 A 7/1998 Knodel et al. 5,797,537 A 8/1998 Smith et al. 5,797,538 A 9/1998 Knodel et al. 5,797,538 A 8/1998 Smith et al. 5,797,537 A 8/1998 Knodel et al. 5,797,538								
5.692,668 A 12/1997 Schulze et al. 5.697,542 A 12/1997 Knodel et al. 5.697,542 A 12/1997 Ryburn et al. 5.702,09 A 12/1997 Ryburn et al. 5.704,534 A 1/1998 Huitema et al. 5.704,534 A 1/1998 Green et al. 5.706,97 A 1/1998 Green et al. 5.706,397 A 1/1998 Green et al. 5.709,334 A 1/1998 Sorrentino et al. 5.709,334 A 1/1998 Bryan 5.713,750 A 2/1998 Huitema 5.713,750 A 2/1998 Huitema 5.713,750 A 2/1998 Huitema 5.715,988 A 2/1998 Palmer 6.315,184 Bl 11/2001 Hamilton et al. 5.716,366 A 2/1998 Yates 6.330,965 Bl 12/2001 Hilliman et al. 5.725,536 A 3/1998 Oberlin et al. 5.725,536 A 3/1998 Oberlin et al. 5.725,536 A 3/1998 Widal et al. 5.725,536 A 3/1998 Simon et al. 5.725,536 A 3/1998 Vidal et al. 5.735,808 A 4/1998 Yates et al. 5.735,806 A 3/1998 Vidal et al. 5.735,848 A 4/1998 Jones et al. 5.743,456 A 4/1998 Vidal et al. 5.749,893 A 5/1998 Vidal et al. 5.749,893 A 5/1998 Vidal et al. 5.749,893 A 5/1998 Vidal et al. 5.752,644 A 5/1998 Water et al. 5.762,256 A 6/1998 Katri et al. 5.762,257 A 6/1998 Katri et al. 5.762,256 A 6/1998 Kingwell 5.769,892 A 6/1998 Kingwell 5.779,130 A 7/1998 Kingwell 5.779,130 A 7/1998 Kodel et al. 5.779,130 A 7/1998 Kodel et al. 5.779,130 A 7/1998 Kingwell 5.779,130 A 7/1998 Kodel et al. 5.782,397 A 7/1998 Kodel et al. 5.782,397 A 7/1998 Kodel et al. 5.797,538 A 8/1998 Water et al. 5.782,397 A 7/1998 Kodel et al. 5.783,398 A 7/1998 Kodel et al. 5.797,538 A 8/1998 Water et al. 5.797,538 A 8/1998 Kodel et al. 5.797,538 A 8/1998 Water et al. 5.797,538 A 8/1998 Water et al. 5.797,538 A 8/1998 Water et al. 5.799,536 A 8/1998 Kodel et al. 5.790,536 A 8/1998 Ko								
5.697,542 A 12/1997 Knodel et al. 5,702,409 A 12/1997 Rayburn et al. 5,702,409 A 12/1998 Hurem et al. 5,704,534 A 1/1998 Green et al. 5,706,907 A 1/1998 Green et al. 5,706,907 A 1/1998 Bryan 5,709,334 A 1/1998 Bryan 6,315,183 Bl 11/2001 Whitman 5,713,505 A 2/1998 Palmer 6,315,184 Bl 11/2001 Piraka 5,713,505 A 2/1998 Palmer 6,315,184 Bl 11/2001 Hamilton et al. 5,716,366 A 2/1998 Palmer 5,716,366 A 2/1998 Palmer 6,330,965 Bl 12/2001 Hillitman et al. 5,718,359 A 2/1998 Palmer et al. 5,718,359 A 2/1998 Palmer et al. 5,718,359 A 2/1998 Palmer et al. 5,725,554 A 3/1998 Oberlin et al. 5,725,554 A 3/1998 Oberlin et al. 5,725,554 A 3/1998 Vidal et al. 5,732,806 A 3/1998 Foshee et al. 5,732,806 A 3/1998 Jones et al. 5,734,856 A 4/1998 Jones et al. 5,734,856 A 4/1998 Jones et al. 5,734,856 A 4/1998 Jones et al. 5,735,544 A 4/1998 Jones et al. 5,735,544 A 6/1998 Chrisman et al. 5,744,873 Bl 12/2002 Whitman 5,755,624 A 5/1998 Widal et al. 5,756,255 A 6/1998 Chrisman et al. 5,756,255 A 6/1998 Chrisman et al. 5,756,255 A 6/1998 Knodel et al. 5,760,303 A 6/1998 Kingwell 5,760,303 A 6/1998 Kingwell 5,779,130 A 7/1998 Knodel et al. 5,779,131 A 7/1998 Knodel et al. 5,779,132 A 7/1998 Knodel et al. 5,779,133 A 7/1998 Knodel et al. 5,779,134 A 7/1998 Knodel et al. 5,779,735 A 8/1998 Widal et al. 5,779,135 A 8/1998 Spain et al. 5,779,130 A 7/1998 Knodel et al. 5,779,130 A 7/1998 Knodel et al. 5,779,130 A 7/1998 Knodel et al. 5,779,733 A 8/1998 Widal et al. 5,779,733 A 8/1998 Knodel et al. 5,782,397 A 7/1998 Knodel et al. 5,782,397 A 7/1998 Knodel et al. 5,797,538 A 8/1998 Heaton et al. 5,797,538 A 8/1998 Widal et al. 5,79								
5,702,409 A 12/1997 Rayburn et al. 6,264,086 Bl 7/2001 Green et al. 5,704,534 A 1/1998 Huitema et al. 6,264,086 Bl 7/2001 Whitman 5,709,334 A 1/1998 Sorrentino et al. 6,264,087 Bl 7/2001 Whitman 5,709,334 A 1/1998 Sorrentino et al. 6,279,809 Bl 8/2001 Whitman 5,711,305 A 2/1998 Huitema 6,315,183 Bl 11/2001 Whitman 5,715,988 A 2/1998 Palmer 6,325,810 Bl 12/2001 Hamilton et al. 5,716,366 A 2/1998 Palmer 6,330,965 Bl 12/2001 Hamilton et al. 5,716,366 A 2/1998 Palmer et al. 6,398,797 Bl 6/2002 Sombard et al. 6,436,097 Bl 8/2002 Nardella 5,728,110 A 3/1998 Vidal et al. 6,436,404 Bl 8/2002 Perry et al. 6,439,446 Bl 8/2002 Perry et al. 6,438,466 A 4/1998 Vidal et al. 6,438,466 Bl 1/2002 Whitman 5,735,848 A 4/1998 Vidal et al. 6,438,466 Bl 1/2002 Whitman 5,752,654 A 5/1998 Vidal et al. 6,505,768 Bl 1/2003 Whitman 5,762,255 A 6/1998 Mastri et al. 6,505,768 Bl 1/2003 Milman 5,762,255 A 6/1998 Mastri et al. 6,565,554 Bl 5/2003 Milman 5,760,2255 A 6/1998 Kingwell 6,587,750 Bl 7/2003 Grant et al. 6,505,768 Bl 1/2003 Grant et al. 6,505,758 Bl 1/2003 Green et al. 6,606,000 Bl 1/2004 Green et al. 6,707,000 Green et al.								
5,704,534 A 1/1998 Green et al. 6,264,086 B1 7/2001 Whitman 5,706,997 A 1/1998 Sorrentino et al. 6,279,809 B1 8/2001 Nicolo 5,711,472 A 1/1998 Bryan 6,315,183 B1 11/2001 Whitman 5,713,505 A 2/1998 Huitema 6,315,183 B1 11/2001 Whitman 5,715,988 A 2/1998 Palmer 6,325,810 B1 12/2001 Hillinan et al. 5,716,366 A 2/1998 Palmer 6,330,965 B1 12/2001 Millinan et al. 5,718,359 A 2/1998 Palmer et al. 6,391,038 B2 5/2002 Vargas et al. 5,725,536 A 3/1998 Oberlin et al. 6,398,797 B2 6/2002 Nardella 5,725,554 A 3/1998 Simon et al. 6,436,097 B1 8/2002 Whitman 5,732,806 A 3/1998 Foshce et al. 6,439,446 B1 8/2002 Perry et al. 5,732,806 A 3/1998 Foshce et al. 6,438,973 B1 9/2002 Whitman 5,735,848 A 4/1998 Yates et al. 6,438,193 B1 1/2001 Whitman 5,735,848 A 4/1998 Jones et al. 6,438,193 B1 1/2002 Wargas et al. 5,743,456 A 4/1998 Jones et al. 6,438,193 B1 1/2002 Wargas et al. 5,743,456 A 4/1998 Nones et al. 6,503,257 B2 1/2003 Grant et al. 5,752,644 A 5/1998 Bolanos et al. 6,503,257 B2 1/2003 Whitman 5,762,255 A 6/1998 Chrisman et al. 6,503,257 B2 1/2003 Whitman 5,762,255 A 6/1998 Knodel et al. 6,554,844 B2 4/2003 Danitz et al. 5,769,303 A 6/1998 Knodel et al. 6,554,844 B2 4/2003 Grebi et al. 5,772,673 A 6/1998 Ciravener 6,592,597 B2 7/2003 Grebi et al. 5,779,131 A 7/1998 Knodel et al. 6,692,525 B1 7/2003 Grebi et al. 5,782,339 A 7/1998 Knodel et al. 6,648,532 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,648,532 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,648,532 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,648,532 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,669,073 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,669,073 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,669,073 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,669,073 B2 1/2003 Green et al. 5,782,339 A 7/1998 Knodel et al. 6,669,073 B2 1/2004 Geiste et al. 5,797,538 A 8/1998 Fosher et al. 6,783,538 B2 6/2004 Hillman et al. 5,816,641 A 9/1998 Knodel et al. 6,783,538 B2 6/2004 Hillman et								
5,709,334 A 1/1998 Sorrentino et al. 6,279,809 Bl 8/2001 Nicolo 5,711,472 A 1/1998 Bryan 6,315,183 Bl 11/2001 Piraka 5,713,505 A 2/1998 Palmer 6,325,810 Bl 11/2001 Whitman 5,716,366 A 2/1998 Palmer 6,332,806 Bl 12/2001 Milliman et al. 5,718,359 A 2/1998 Palmer et al. 6,391,038 B2 5/2002 Vargas et al. 5,725,536 A 3/1998 Simon et al. 6,398,797 B2 6/2002 Dombard et al. 5,725,536 A 3/1998 Vidal et al. 6,436,097 Bl 8/2002 Perry et al. 5,725,534 A 3/1998 Foshee et al. 6,431,937 Bl 9/2002 Whitman 5,732,806 A 3/1998 Foshee et al. 6,433,946 Bl 11/2002 Perry et al. 5,735,848 A 4/1998 Yates et al. 6,438,196 Bl 12/2002 Perry et al. 5,743,456 A 4/1998 Yates et al. 6,438,196 Bl 12/2002 Perry et al. 5,742,254 A 5/1998 Bolanos et al. 6,503,758 B2 12/2003 Grant et al. 5,762,255 A 6/1998 Marri et al. 6,554,274 B2 4/2003 Danitz et al. 5,769,303 A 6/1998 Kingwell 6,								
Synta 11/472 A 1/1998 Bryan Ga 15,184 Bi 11/2001 Whitman Synta Synta Ga Synta Synta Ga Synta Synta Synta Synta Ga Synta								
5,713,505 A 2/1998 Huitema 6,315,184 BI 1/2001 Whitman 5,715,988 A 2/1998 Palmer 6,325,810 BI 1/2001 Hamilton et al. 5,716,366 A 2/1998 Palmer et al. 6,330,965 BI 1/2001 Williman et al. 5,718,359 A 2/1998 Palmer et al. 6,391,038 B2 5/2002 Vargas et al. 5,725,536 A 3/1998 Oberlin et al. 6,398,797 B2 6/2002 Bombard et al. 5,725,536 A 3/1998 Vidal et al. 6,439,446 B1 8/2002 Perry et al. 5,732,806 A 3/1998 Foshee et al. 6,443,973 B1 9/2002 Whitman 5,732,806 A 4/1998 Jace et al. 6,488,196 B1 1/2002 Vargas et al. 5,743,456 A 4/1998 Jace et al. 6,503,257 B2 1/2003 Grant et al. 5,762,255 A 6/199								
5,716,988 A 2/1998 Palmer 6,325,810 B1 12/2001 Milliman et al. 5,716,366 A 2/1998 Yates 6,330,065 B1 12/2001 Milliman et al. 5,718,359 A 2/1998 Palmer et al. 6,391,038 B2 5/2002 Vargas et al. 5,725,536 A 3/1998 Oberlin et al. 6,398,797 B2 6/2002 Bombard et al. 5,725,554 A 3/1998 Simon et al. 6,436,097 B1 8/2002 Perry et al. 5,732,806 A 3/1998 Foshee et al. 6,439,446 B1 8/2002 Whitman 5,732,806 A 3/1998 Foshee et al. 6,478,804 B2 11/2002 Vargas et al. 5,732,848 A 4/1998 Jones et al. 6,488,196 B1 12/2002 Vargas et al. 5,743,456 A 4/1998 Jones et al. 6,503,257 B2 1/2003 Unitman 5,752,644 A 5/1998 Bolanos et al. 6,503,257 B2 1/2003 Whitman 5,762,255 A 6/1998 Chrisman et al. 6,544,274 B2 4/2003 Danitz et al. 5,762,256 A 6/1998 Mastri et al. 6,554,5484 B2 4/2003 Lee et al. 5,779,303 A 6/1998 Knodel et al. 6,587,750 B2 7/2003 Gerbi et al. 5,772,673 A 6/1998 Knodel et al								
5,716,366 A 2/1998 Yates 6,330,965 Bl 12/2001 Milliman et al. 5,718,359 A 2/1998 Palmer et al. 6,391,038 B2 5/2002 Vargas et al. 5,725,536 A 3/1998 Oberlin et al. 6,398,797 B2 6/2002 Bombard et al. 5,725,554 A 3/1998 Vidal et al. 6,436,097 B1 8/2002 Perry et al. 5,728,110 A 3/1998 Foshee et al. 6,439,446 B1 8/2002 Perry et al. 5,735,848 A 4/1998 Foshee et al. 6,478,804 B2 11/2002 Vargas et al. 5,743,456 A 4/1998 Jones et al. 6,503,257 B2 11/2002 Vargas et al. 5,749,893 A 5/1998 Vidal et al. 6,503,257 B2 1/2003 Grant et al. 5,752,644 A 5/1998 Chrisman et al. 6,505,768 B2 1/2003 Whitman 5,762,255 A 6/1998 Knodel et al. 6,554,427 B2 4/2003 Danitz et al. 5,769,892 A 6/1998 Knodel et al. 6,587,59 B2 7/2003 Grebi et al. 5,772,673 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Grebi et al. 5,779,130 A 7/1998 Nodel et al. 6,594,552 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knode								
5,725,536 A 3/1998 Oberlin et al. 5,725,536 A 3/1998 Simon et al. 5,725,554 A 3/1998 Vidal et al. 5,728,110 A 3/1998 Foshee et al. 5,732,806 A 3/1998 Foshee et al. 5,734,456 A 4/1998 Janes et al. 5,743,456 A 4/1998 Jones et al. 5,743,456 A 4/1998 Bolanos et al. 5,743,456 A 5/1998 Bolanos et al. 5,752,644 A 5/1998 Bolanos et al. 5,752,644 A 5/1998 Bolanos et al. 5,762,255 A 6/1998 Kondel et al. 5,762,256 A 6/1998 Knodel et al. 5,769,303 A 6/1998 Knodel et al. 5,769,303 A 6/1998 Knodel et al. 5,772,099 A 6/1998 Kingwell 5,772,673 A 6/1998 Alesi et al. 6,594,552 B1 7/2003 Grant et al. 5,779,130 A 7/1998 Alesi et al. 6,594,552 B1 7/2003 Grant et al. 5,779,131 A 7/1998 Knodel et al. 6,644,532 B2 1/2003 Nowlin et al. 5,782,396 A 7/1998 Mastri et al. 6,644,532 B2 1/2003 Green et al. 5,782,397 A 7/1998 Kondel et al. 5,782,397 A 7/1998 Kondel et al. 5,797,537 A 8/1998 Smith et al. 5,797,538 A 8/1998 Smith et al. 5,797,538 A 8/1998 Roberlin et al. 5,810,815 A 9/1998 Roberlin et al. 5,810,815 A 9/1998 Roberlin et al. 5,810,855 A 9/1998 Roberlin et al. 5,810,871 A 10/1998 Plyley et al.					, ,			
5,725,554 A 3/1998 Simon et al. 6,436,097 B1 8/2002 Nardella 5,728,110 A 3/1998 Vidal et al. 6,439,446 B1 8/2002 Perry et al. 5,732,806 A 3/1998 Foshee et al. 6,443,973 B1 9/2002 Whitman 5,735,848 A 4/1998 Yates et al. 6,478,804 B2 11/2002 Uvargas et al. 5,743,456 A 4/1998 Jones et al. 6,503,257 B2 1/2003 Grant et al. 5,752,644 A 5/1998 Vidal et al. 6,503,257 B2 1/2003 Whitman 5,762,255 A 6/1998 Bolanos et al. 6,504,768 B2 1/2003 Whitman 5,762,256 A 6/1998 Knodel et al. 6,554,844 B2 4/2003 Danitz et al. 5,769,892 A 6/1998 Knodel et al. 6,554,554 B1 5/2003 Niemeyer 5,772,099 A 6/1998 Cravener 6,594,552 B1 7/2003 Gerbi et al. 5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,602,252 B2 8/2003 Mollenauer 5,782,397 A 7/1998 Knodel et al. 6,644,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Knodel et al. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
5,728,110 A 3/1998 Vidal et al. 6,439,446 B1 8/2002 Perry et al. 5,732,806 A 3/1998 Foshee et al. 6,443,973 B1 9/2002 Whitman 5,735,848 A 4/1998 Yates et al. 6,478,804 B2 11/2002 Vargas et al. 5,743,456 A 4/1998 Jones et al. 6,588,196 B1 12/2002 Fenton, Jr. 5,749,893 A 5/1998 Vidal et al. 6,503,257 B2 1/2003 Grant et al. 5,752,644 A 5/1998 Bolanos et al. 6,504,274 B2 4/2003 Danitz et al. 5,762,255 A 6/1998 Chrisman et al. 6,544,274 B2 4/2003 Danitz et al. 5,762,256 A 6/1998 Mastri et al. 6,554,844 B2 4/2003 Lee et al. 5,769,303 A 6/1998 Kingwell 6,587,750 B2 7/2003 Gerbi et al. 5,772,673 A 6/1998 Gravener 6,594,552 B1 7/2003 Gerbi et al. 5,772,673 A 6/1998 Cuny et al. 6,692,597 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,782,396 A 7/1998 Knodel et al. 6,644,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Mastri et al. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5,732,806 A 3/1998 Foshee et al. 6,443,973 B1 9/2002 Whitman 9/2002 Whitman 5,735,848 A 4/1998 Yates et al. 6,478,804 B2 11/2002 Vargas et al. 11/2002 Vargas et al. 5,743,456 A 4/1998 Jones et al. 6,488,196 B1 12/2002 Fenton, Jr. 6,503,257 B2 1/2003 Whitman Grant et al. 5,743,4983 A 5/1998 Vidal et al. 6,503,257 B2 1/2003 Whitman Whitman Mostrie et al. 6,505,768 B2 1/2003 Whitman Whitman 5,752,644 A 5/1998 Bolanos et al. 6,505,768 B2 1/2003 Whitman Mostrie et al. 6,544,274 B2 4/2003 Lee et al. Mostrie et al. 5,762,255 A 6/1998 Mastri et al. 6,565,554 B1 5/2003 Niemeyer Group et al. 6,587,750 B2 7/2003 Gerbi et al. 5,769,892 A 6/1998 Kingwell 6,587,750 B2 7/2003 Grant et al. Mollenauer 5,772,673 A 6/1998 Cuny et al. 6,592,597 B2 7/2003 Nowlin et al. 5,779,131 A 7/1998 Knodel et al. 6,692,592 B2 9/2003 Mollenauer 5,782,396 A 7/1998 Knodel et al. 6,694,522 B2 9/2003 Wells et al. 5,782,334 A 7/1998 Knodel et al. 6,669,073 B2 12/2003 Wells et al. 5,782,334 A 7/1998 Vidal et al.								
5,743,456 A 4/1998 Jones et al. 5,749,893 A 5/1998 Vidal et al. 5,749,893 A 5/1998 Bolanos et al. 5,752,644 A 5/1998 Bolanos et al. 5,762,255 A 6/1998 Chrisman et al. 5,762,255 A 6/1998 Knodel et al. 5,762,256 A 6/1998 Knodel et al. 5,769,303 A 6/1998 Knodel et al. 5,772,099 A 6/1998 Gravener 5,772,099 A 6/1998 Cuny et al. 5,772,673 A 6/1998 Rodel et al. 5,779,130 A 7/1998 Rodel et al. 5,779,131 A 7/1998 Rodel et al. 5,782,396 A 7/1998 Knodel et al. 5,782,396 A 7/1998 Koukline 5,782,397 A 7/1998 Koukline 5,782,396 A 7/1998 Koukline 5,782,397 A 7/1998 Voidal et al. 5,782,397 A 7/1998 Koukline 5,782,397 A 7/1998 Voidal et al. 5,782,397 A 7/1998 Koukline 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,397 A 7/1998 Voidal et al. 5,782,397 A 7/1998 Voidal et al. 5,797,536 A 8/1998 Voidal et al. 5,797,537 A 8/1998 Voidal et al. 5,797,538 A 8/1998 Woith et al. 5,797,538 A 8/1998 Koukline 6,792,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,783,524 B2 8/2004 Hahnen et al. 5,814,055 A 9/1998 Knodel et al. 6,817,509 B2 11/2004 Geiste et al. 5,814,055 A 9/1998 Knodel et al. 5,814,055 A 9/1998 Knodel et al. 5,814,057 A 9/1998 Knodel et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al.							9/2002	Whitman
5,749,893 A 5/1998 Vidal et al. 6,503,257 B2 1/2003 Grant et al. 5,752,644 A 5/1998 Bolanos et al. 6,505,768 B2 1/2003 Whitman 5,762,255 A 6/1998 Chrisman et al. 6,544,274 B2 4/2003 Danitz et al. 5,762,256 A 6/1998 Mastri et al. 6,554,844 B2 4/2003 Lee et al. 5,769,303 A 6/1998 Knodel et al. 6,565,554 B1 5/2003 Niemeyer 5,769,892 A 6/1998 Kingwell 6,587,750 B2 7/2003 Gerbi et al. 5,772,099 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Grant et al. 5,772,673 A 6/1998 Cuny et al. 6,592,597 B2 7/2003 Grant et al. 5,779,131 A 7/1998 Knodel et al. 6,602,252 B2 8/2003 Mollenauer 5,782,396 A 7/1998<								
5,752,644 A 5/1998 Bolanos et al. 6,505,768 B2 1/2003 Whitman 5,752,644 A 5/1998 Chrisman et al. 6,544,274 B2 4/2003 Danitz et al. 5,762,255 A 6/1998 Mastri et al. 6,554,844 B2 4/2003 Lee et al. 5,769,303 A 6/1998 Knodel et al. 6,565,554 B1 5/2003 Niemeyer 5,769,892 A 6/1998 Gravener 6,592,597 B2 7/2003 Gerbi et al. 5,772,099 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Mollenauer 5,779,130 A 7/1998 Alesi et al. 6,619,529 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. D480,808 S 10/2003 Wells et al. 5,782,396 A 7/1998 Knodel et al. 6,6644,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,669,073 B2 12/2003 Milliman et al. 5,797,536 A 8/1998 Smith et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,537 A 8/1998 Smith et al.								
5,762,255 A 6/1998 Chrisman et al. 6,544,274 B2 4/2003 Lee et al. 5,762,256 A 6/1998 Mastri et al. 6,554,844 B2 4/2003 Lee et al. 5,769,303 A 6/1998 Knodel et al. 6,555,554 B1 5/2003 Niemeyer 5,769,892 A 6/1998 Kingwell 6,587,750 B2 7/2003 Gerbi et al. 5,772,099 A 6/1998 Gravener 6,592,597 B2 7/2003 Grant et al. 5,772,673 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Nowlin et al. 5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,782,396 A 7/1998 Knodel et al. 6,656,193 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 11/2003 Green et al. 5,782,834 A 7/1998 Koukline 6,656,193 B2 12/2003 Green et al. 5,785,232 A 7/1998 Vidal et al. 6,669,073 B2 12/2003 Milliman et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Knodel et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Rayburn et al. 6,785,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,786,382 B1 9/2004 Hoffman 5,814,055 A 9/1998 Rodel et al. 6								
5,762,256 A 6/1998 Knodel et al. 6,554,844 B2 4/2003 Lee et al. 5,769,303 A 6/1998 Knodel et al. 6,565,554 B1 5/2003 Niemeyer 5,769,892 A 6/1998 Kingwell 6,587,750 B2 7/2003 Gerbi et al. 5,772,099 A 6/1998 Gravener 6,592,597 B2 7/2003 Grant et al. 5,772,673 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Nowlin et al. 5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. 6,644,532 B2 11/2003 Green et al. 5,782,396 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,834 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Rayburn et al. 6,785,338 B2 6/2004 Hahnen et al. 5,814,055 A					6,544,274	B2	4/2003	Danitz et al.
5,769,892 A 6/1998 Kingwell 6,587,750 B2 7/2003 Gerbi et al. 5,772,099 A 6/1998 Gravener 6,592,597 B2 7/2003 Grant et al. 5,772,673 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Nowlin et al. 5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. D480,808 S 10/2003 Wells et al. 5,782,396 A 7/1998 Mastri et al. 6,656,193 B2 12/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Green et al. 5,782,834 A 7/1998 Vidal et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Heaton et al. 6,716,232 B1 4/2004 Vidal et al. 5,810,811 A 9/1998 Yates et al. 6,786,382 B1 9/2004 Hahnen et al. 5,814,055 A 9/1998 Knodel et al.								
5,772,099 A 6/1998 Gravener 6,592,597 B2 7/2003 Grant et al. 5,772,093 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Nowlin et al. 5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. D480,808 S 10/2003 Wells et al. 5,782,396 A 7/1998 Mastri et al. 6,664,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,397 A 7/1998 Vidal et al. 6,669,073 B2 12/2003 Grant et al. 5,782,397 A 7/1998 Vidal et al. 6,669,073 B2 12/2003 Grant et al. 5,782,397 A 7/1998 Vidal et al. 6,669,073 B2 12/2003 Grant et al. 5,782,397 A 7/1998 Vidal et al. 6,681,978 B2 1/2000 Grant et al. 5,782,393 A 8/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,538 A 8/1998 Heaton et al.								
5,772,673 A 6/1998 Cuny et al. 6,594,552 B1 7/2003 Nowlin et al. 5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 0,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. D480,808 10/2003 Wells et al. 5,782,396 A 7/1998 Mastri et al. 6,644,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,834 A 7/1998 Lucey et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Smith et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998								
5,779,130 A 7/1998 Alesi et al. 6,602,252 B2 8/2003 Mollenauer 5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. D480,808 S 10/2003 Wells et al. 5,782,396 A 7/1998 Knotel et al. 6,654,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,834 A 7/1998 Lucey et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Rayburn et al. 6,785,338 B2 6/2004 Hahnen et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,880,174 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al								
5,779,131 A 7/1998 Knodel et al. 6,619,529 B2 9/2003 Green et al. 5,779,132 A 7/1998 Knodel et al. D480,808 S 10/2003 Wells et al. 5,782,396 A 7/1998 Kandel et al. 6,644,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,834 A 7/1998 Lucey et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Rayburn et al. 6,785,338 B2 6/2004 Hahnen et al. 5,814,055 A 9/1998 Rodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.					6,602,252	B2		
5,782,396 A 7/1998 Mastri et al. 6,644,532 B2 11/2003 Green et al. 5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,834 A 7/1998 Lucey et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,785,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,782,397 A 7/1998 Koukline 6,656,193 B2 12/2003 Grant et al. 5,782,834 A 7/1998 Lucey et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,755,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.					D480,808	S		
5,782,834 A 7/1998 Lucey et al. 6,669,073 B2 12/2003 Milliman et al. 5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,785,538 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,785,232 A 7/1998 Vidal et al. 6,681,978 B2 1/2004 Geiste et al. 5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,755,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.					6,669,073	$\overline{\mathrm{B2}}$		
5,797,536 A 8/1998 Smith et al. 6,698,643 B2 3/2004 Whitman 5,797,537 A 8/1998 Oberlin et al. 6,716,232 B1 4/2004 Vidal et al. 5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,755,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.					6,681,978	B2	1/2004	Geiste et al.
5,797,538 A 8/1998 Heaton et al. 6,722,552 B2 4/2004 Fenton, Jr. 5,810,811 A 9/1998 Yates et al. 6,755,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.		5,797,536 A	8/1998	Smith et al.				
5,810,811 A 9/1998 Yates et al. 6,755,338 B2 6/2004 Hahnen et al. 5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,810,855 A 9/1998 Rayburn et al. 6,783,524 B2 8/2004 Anderson et al. 5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,814,055 A 9/1998 Knodel et al. 6,786,382 B1 9/2004 Hoffman 5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,814,057 A 9/1998 Oi et al. 6,817,509 B2 11/2004 Geiste et al. 5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,816,471 A 10/1998 Plyley et al. 6,830,174 B2 12/2004 Hillstead et al.								
5,817,109 A 10/1998 McGarry et al. 6,835,199 B2 12/2004 McGuckin, Jr. et al.			10/1998	Plyley et al.				
		5,817,109 A	10/1998	McGarry et al.	6,835,199	B2	12/2004	McGuckin, Jr. et al.

(56)		Referen	ces Cited	7,398,907	В2	7/2008	Racenet et al.
` /	11	C DATENT	DOCUMENTS	7,399,310 7,401,720			Edoga et al. Durrani
	U.	S. PATENT	DOCUMENTS	7,401,720			Holsten et al.
	6,843,403 B	2 1/2005	Whitman	7,404,508		7/2008	Smith et al.
	RE38,708 E		Bolanos et al.	7,404,509			Ortiz et al.
	6,877,647 B		Green et al.	7,407,074			Ortiz et al.
	6,889,116 B			7,407,075 7,407,077		8/2008	Holsten et al. Ortiz et al.
	6,905,057 B: 6,945,444 B:		Swayze et al. Gresham et al.	7,407,078		8/2008	Shelton, IV et al.
	6,953,138 B		Dworak et al.	7,416,101		8/2008	Shelton, IV et al.
	6,953,139 B		Milliman et al.	7,419,080		9/2008	Smith et al.
	6,959,852 B			7,419,081 7,419,495		9/2008 9/2008	Ehrenfels et al. Menn et al.
	6,962,594 B		Thevenet	7,419,493			Shelton, IV et al.
	6,964,363 B: 6,978,921 B:		Wales et al. Shelton, IV et al.	7,424,965			Racenet et al.
	6,981,628 B			7,431,189		10/2008	Shelton, IV et al.
	6,986,451 B		Mastri et al.	7,431,730		10/2008	
	6,988,649 B		Shelton, IV et al.	7,434,715 7,434,717		10/2008 10/2008	Shelton, IV et al. Shelton, IV et al.
	6,991,627 B: 6,994,714 B:		Madhani et al. Vargas et al.	7,438,208		10/2008	
	7,000,818 B		Shelton, IV et al.	7,438,209	B1		Hess et al.
	7,000,819 B		Swayze et al.	7,441,684		10/2008	Shelton, IV et al.
	7,032,799 B		Viola et al.	7,441,685 7,448,525		10/2008 11/2008	Boudreaux Shelton, IV et al.
	7,044,352 B: 7,044,353 B:		Shelton, IV et al. Mastri et al.	7,451,904		11/2008	Shelton, IV
	7,044,333 B		Ehrenfels et al.	7,455,208			Wales et al.
	7,055,731 B		Shelton, IV et al.	7,455,676		11/2008	Holsten et al.
	7,059,508 B		Shelton, IV et al.	7,458,494		12/2008	Matsutani et al.
	7,070,083 B		Jankowski	7,461,767 7,462,185		12/2008 12/2008	Viola et al. Knodel
	7,083,075 B: 7,097,089 B:		Swayze et al. Marczyk	7,464,846		12/2008	Shelton, IV et al.
	7,111.769 B		Wales et al.	7,464,847		12/2008	Viola et al.
	7,114,642 B	2 10/2006	Whitman	7,464,848			Green et al.
	7,121,446 B:		Arad et al.	7,464,849 7,467,740		12/2008 12/2008	Shelton, IV et al. Shelton, IV et al.
	7,128,253 B: 7,128,254 B:		Mastri et al. Shelton, IV et al.	7,472,814		1/2009	Mastri et al.
	7,128,234 B		Ehrenfels et al.	7,472,815			Shelton, IV et al.
	7,140,528 B		Shelton, IV	7,472,816		1/2009	Holsten et al.
	7,143,923 B			7,473,258 7,481,347		1/2009 1/2009	Clauson et al. Roy
	7,143,924 B: 7,143,925 B:		Scirica et al. Shelton, IV et al.	7,481,348		1/2009	Marczyk
	7,143,925 B			7,481,349		1/2009	Holsten et al.
	7,147,138 B		Shelton, IV	7,481,824		1/2009	Boudreaux et al.
	7,159,750 B		Racenet et al.	7,487,899 7,490,749		2/2009 2/2009	Shelton, IV et al. Schall et al.
	7,168,604 B		Milliman et al.	7,490,749		2/2009	Racenet et al.
	7,172,104 B: 7,188,758 B:		Scirica et al. Viola et al.	7,500,979		3/2009	Hueil et al.
	7,207,471 B		Heinrich et al.	7,503,474		3/2009	Hillstead et al.
	7,213,736 B		Wales et al.	7,506,790		3/2009	Shelton, IV
	7,225,963 B		Scirica	7,506,791 7,510,107		3/2009 3/2009	Omaits et al. Timm et al.
	7,225,964 B: 7,238,195 B:		Mastri et al. Viola	7,513,408			Shelton, IV et al.
	7,246,734 B		Shelton, IV	7,517,356			Heinrich
	7,258,262 B	2 8/2007	Mastri et al.	7,537,602			Whitman
	7,267,682 B		Bender et al.	7,543,729 7,543,730		6/2009 6/2009	Marczyk
	7,278,562 B: 7,278,563 B		Mastri et al.	7,543,731			Green et al.
	7,287,682 B		Ezzat et al.	7,552,854	B2	6/2009	
	7,293,685 B		Ehrenfels et al.	7,556,185		7/2009	
	7,296,722 B			7,556,186 7,559,450		7/2009 7/2009	Milliman Wales et al.
	7,296,724 B: 7,296,772 B:	2 11/2007	Green et al.	7,559,450		7/2009	Wales et al.
	7,300,444 B		Nielsen et al.	7,559,453	B2	7/2009	Heinrich et al.
	7,303,107 B		Milliman et al.	7,559,937		7/2009	de la Torre et al.
	7,303,108 B		Shelton, IV	7,565,993 7,568,603		7/2009 8/2009	Milliman et al. Shelton, IV et al.
	7,308,998 B		Mastri et al.	7,568,604		8/2009	Ehrenfels et al.
	7,326,232 B: 7,328,828 B:		Viola et al. Ortiz et al.	7,571,845		8/2009	
	7,328,829 B		Arad et al.	7,575,144	B2		Ortiz et al.
	7,334,717 B	2 2/2008	Rethy et al.	7,584,880		9/2009	Racenet et al.
	7,354,447 B		Shelton, IV et al.	7,588,174		9/2009	Holsten et al.
	7,357,287 B: 7,364,061 B:		Shelton, IV et al. Swayze et al.	7,588,175 7,588,176		9/2009 9/2009	Timm et al. Timm et al.
	7,364,061 B		Shelton, IV et al.	7,588,170		9/2009	Racenet
	7,377,928 B		Zubik et al.	7,597,229		10/2009	Boudreaux et al.
	7,380,695 B		Doll et al.	7,597,230	B2	10/2009	Racenet et al.
	7,380,696 B		Shelton, IV et al.	7,600,663		10/2009	Green
	7,396,356 B	2 7/2008	Mollenauer	7,604,150	B2	10/2009	Boudreaux

(56)		Referen	ces Cited	7,815,091 B2	10/2010	Marczyk
	U.S.	PATENT	DOCUMENTS	7,815,092 B2 7,819,296 B2		Whitman et al. Hueil et al.
	0.0.			7,819,297 B2		Doll et al.
	7,604,151 B2		Hess et al.	7,819,298 B2 7,819,299 B2	10/2010	Hall et al. Shelton, IV et al.
	7,607,557 B2 7,611,038 B2		Shelton, IV et al. Racenet et al.	7,819,896 B2	10/2010	Racenet
	7,617,961 B2	11/2009		7,823,760 B2 7,823,761 B2	11/2010 11/2010	Zemlok et al. Boyden et al.
	7,624,902 B2 7,624,903 B2		Marczyk et al. Green et al.	7,824,426 B2		Racenet et al.
	7,631,793 B2		Rethy et al.	7,828,186 B2	11/2010	
	7,631,794 B2		Rethy et al.	7,828,187 B2 7,828,188 B2		Green et al. Jankowski
	7,635,073 B2 7,635,074 B2		Heinrich Olson et al.	7,828,189 B2	11/2010	Holsten et al.
	7,635,373 B2	12/2009	Ortiz	7,832,408 B2 7,832,611 B2		Shelton, IV et al. Boyden et al.
	7,637,409 B2 7,637,410 B2	12/2009	Marczyk Marczyk	7,832,611 B2 7,832,612 B2		Baxter, III et al.
	7,641,091 B2		Olson et al.	7,834,630 B2		Damadian et al.
	7,641,095 B2	1/2010		7,837,079 B2 7,837,081 B2		Holsten et al. Holsten et al.
	7,644,848 B2 7,648,055 B2		Swayze et al. Marczyk	7,841,503 B2	11/2010	Sonnenschein et al.
	7,651,017 B2	1/2010	Ortiz et al.	7,845,533 B2 7,845,534 B2		Marczyk et al. Viola et al.
	7,654,431 B2 7,658,311 B2		Hueil et al. Boudreaux	7,845,535 B2	12/2010	
	7,658,311 B2	2/2010	Vidal et al.	7,845,537 B2	12/2010	
	7,665,646 B2		Prommersberger	7,845,538 B2 7,850,703 B2	12/2010	Whitman Bombard et al.
	7,665,647 B2 7,669,746 B2		Shelton, IV et al. Shelton, IV	7,857,183 B2	12/2010	
	7,670,334 B2	3/2010	Hueil et al.	7,857,184 B2 7,857,185 B2	12/2010	Viola Swayze et al.
	7,673,780 B2 7,673,781 B2		Shelton, IV et al. Swayze et al.	7,857,185 B2 7,857,186 B2		Baxter, III et al.
	7,673,782 B2	3/2010	Hess et al.	7,861,906 B2		Doll et al.
	7,673,783 B2		Morgan et al.	7,861,907 B2 7,866,524 B2	1/2011 1/2011	Green et al. Krehel
	7,678,121 B1 7,681,772 B2		Knodel Green et al.	7,866,525 B2	1/2011	
	7,682,367 B2	3/2010	Shah et al.	7,866,526 B2 7,866,527 B2		Green et al. Hall et al.
	7,682,368 B1 7,690,547 B2		Bombard et al. Racenet et al.	7,866,528 B2		Olson et al.
	7,694,865 B2	4/2010		7,870,989 B2	1/2011	Viola et al.
	7,699,205 B2	4/2010		7,886,952 B2 7,891,532 B2	2/2011	Scirica et al. Mastri et al.
	7,703,653 B2 7,721,931 B2		Shah et al. Shelton, IV et al.	7,891,533 B2		Green et al.
	7,721,933 B2	5/2010	Ehrenfels et al.	7,891,534 B2 7,896,214 B2	2/2011	Wenchell et al. Farascioni
	7,721,935 B2 7,726,537 B2		Racenet et al. Olson et al.	7,900,805 B2	3/2011	Shelton, IV et al.
	7,726,538 B2	6/2010	Holsten et al.	7,901,416 B2		Nolan et al.
	7,726,539 B2		Holsten et al. Timm et al.	7,905,380 B2 7,905,381 B2	3/2011 3/2011	Shelton, IV et al. Baxter, III et al.
	7,731,072 B2 7,735,703 B2		Morgan et al.	7,909,039 B2	3/2011	Hur
	7,740,159 B2	6/2010	Shelton, IV et al.	7,909,220 B2 7,909,221 B2	3/2011 3/2011	Viola Viola et al.
	7,740,160 B2 7,743,960 B2	6/2010 6/2010	Viola Whitman et al.	7,909,221 B2 7,909,224 B2		Prommersberger
	7,744,628 B2	6/2010	Viola	7,913,891 B2		Doll et al.
	7,753,245 B2 7,753,248 B2	7/2010 7/2010	Boudreaux et al.	7,913,893 B2 7,914,543 B2		Mastri et al. Roth et al.
	7,757,924 B2		Gerbi et al.	7,918,230 B2	4/2011	Whitman et al.
	7,757,925 B2		Viola et al.	7,922,061 B2 7,922,063 B2	4/2011 4/2011	Shelton, IV et al. Zemlok et al.
	7,762,445 B2 7,766,209 B2		Heinrich et al. Baxter, III et al.	7,922,064 B2	4/2011	Boyden et al.
	7,766,210 B2	8/2010	Shelton, IV et al.	7,926,691 B2 7,926,692 B2	4/2011 4/2011	Viola et al. Racenet et al.
	7,766,924 B1 7,766,928 B2		Bombard et al. Ezzat et al.	7,934,628 B2	5/2011	Wenchell et al.
	7,770,774 B2	8/2010	Mastri et al.	7,934,630 B2	5/2011	Shelton, IV et al.
	7,770,775 B2		Shelton, IV et al. Mooradian et al.	7,934,631 B2 7,942,300 B2	5/2011 5/2011	Balbierz et al. Rethy et al.
	7,776,060 B2 7,780,055 B2		Scirica et al.	7,942,303 B2	5/2011	Shah
	7,784,662 B2		Wales et al.	7,950,560 B2 7,950,561 B2		Zemlok et al. Aranyi
	7,789,283 B2 7,789,889 B2	9/2010 9/2010	Shah Zubik et al.	7,950,561 B2 7,950,562 B2		Beardsley et al.
	7,793,812 B2	9/2010	Moore et al.	7,954,682 B2		Giordano et al.
	7,793,814 B2 7,794,475 B2		Racenet et al. Hess et al.	7,954,683 B1 7,954,684 B2		Knodel et al. Boudreaux
	7,798,385 B2		Boyden et al.	7,954,685 B2	6/2011	Viola
	7,798,386 B2	9/2010	Schall et al.	7,954,686 B2	6/2011	Baxter, III et al.
	7,799,039 B2 7,810,690 B2		Shelton, IV et al. Bilotti et al.	7,954,687 B2 7,959,051 B2	6/2011 6/2011	Zemlok et al. Smith et al.
	7,810,690 B2 7,810,692 B2		Hall et al.	7,963,431 B2	6/2011	
	7,810,693 B2	10/2010	Broehl et al.	7,963,432 B2	6/2011	Knodel et al.
	7,815,090 B2	10/2010	Marczyk	7,963,433 B2	6/2011	Whitman et al.

(56)		Referen	ces Cited	8,152,041 B2		Kostrzewski
	U.S.	PATENT	DOCUMENTS	8,157,148 B2 8,157,150 B2	4/2012 4/2012	Viola et al.
				8,157,151 B2		Ingmanson et al.
	7,967,178 B2		Scirica et al.	8,157,152 B2 8,162,197 B2		Holsten et al. Mastri et al.
	7,967,179 B2 7,967,180 B2	6/2011 6/2011	Olson et al.	8,167,185 B2		Shelton, IV et al.
	7,967,180 B2 7,975,894 B2		Boyden et al.	8,167,186 B2		Racenet et al.
	7,980,443 B2		Scheib et al.	8,172,121 B2	5/2012	
	7,988,026 B2		Knodel et al.	8,172,124 B2	5/2012	
	7,988,027 B2		Olson et al.	8,181,837 B2 8,186,555 B2	5/2012	Shelton, IV et al.
	7,988,028 B2 7,992,758 B2		Farascioni et al. Whitman et al.	8,186,557 B2		Cohen et al.
	7,997,468 B2		Farascioni	8,186,558 B2		Sapienza
	7,997,469 B2		Olson et al.	8,186,559 B1		Whitman
	8,002,795 B2	8/2011		8,186,560 B2 8,193,044 B2		Hess et al. Kenneth
	8,006,885 B2 8,006,887 B2		Marczyk Marczyk	8,196,795 B2		Moore et al.
	8,007,505 B2		Weller et al.	8,196,796 B2		Shelton, IV et al.
	8,007,513 B2		Nalagatla et al.	8,201,721 B2		Zemlok et al. Shah et al.
	8,011,550 B2		Aranyi et al.	8,205,619 B2 8,205,780 B2		Sorrentino et al.
	8,011,551 B2 8,011,552 B2	9/2011	Marczyk et al.	8,205,781 B2		Baxter, III et al.
	8,011,553 B2		Mastri et al.	8,210,412 B2		Marczyk
	8,011,555 B2		Tarinelli et al.	8,210,416 B2		Milliman et al.
	8,012,170 B2		Whitman et al.	8,215,532 B2 8,216,236 B2		Marczyk Heinrich et al.
	8,015,976 B2 8,016,177 B2	9/2011	Bettuchi et al.	8,220,688 B2		Laurent et al.
	8,016,177 B2		Olson et al.	8,220,690 B2		Hess et al.
	8,020,742 B2		Marczyk	8,225,979 B2		Farascioni et al.
	8,020,743 B2		Shelton, IV	8,231,040 B2 8,231,041 B2	7/2012	Zemlok et al. Marczyk et al.
	8,028,882 B2 8,028,883 B2	10/2011 10/2011		8,235,272 B2		Nicholas et al.
	8,028,884 B2		Sniffin et al.	8,235,273 B2		Olson et al.
	8,033,438 B2	10/2011		8,235,274 B2		Cappola
	8,033,440 B2		Wenchell et al.	8,236,010 B2 8,240,536 B2		Ortiz et al. Marczyk
	8,033,441 B2 8,033,442 B2		Marczyk Racenet et al.	8,240,537 B2		Marczyk
	8,034,077 B2		Smith et al.	8,241,322 B2		Whitman et al.
	8,038,044 B2	10/2011		8,245,897 B2		Tzakis et al.
	8,038,045 B2		Bettuchi et al.	8,245,898 B2 8,245,899 B2		Smith et al. Swensgard et al.
	8,052,024 B2 8,056,787 B2		Viola et al. Boudreaux et al.	8,245,931 B2		Shigeta
	8,056,788 B2		Mastri et al.	8,252,009 B2		Weller et al.
	8,056,791 B2		Whitman	8,256,653 B2 8,256,654 B2		Farascioni Bettuchi et al.
	8,061,577 B2 8,066,166 B2		Racenet et al. Demmy et al.	8,256,655 B2		Sniffin et al.
	8,070,033 B2		Milliman et al.	8,256,656 B2	9/2012	Milliman et al.
	8,070,034 B1	12/2011	Knodel	8,267,300 B2		Boudreaux
	8,070,035 B2		Holsten et al.	8,272,551 B2 8,272,553 B2		Knodel et al. Mastri et al.
	8,074,858 B2 8,074,859 B2		Marczyk Kostrzewski	8,272,554 B2		Whitman et al.
	8,074,862 B2	12/2011		8,276,594 B2	10/2012	
	8,083,118 B2	12/2011	Milliman et al.	8,276,801 B2		Zemlok et al.
	8,083,119 B2 8,083,120 B2		Prommersberger Shelton, IV et al.	8,281,973 B2 8,286,847 B2	10/2012	Wenchell et al.
	8,087,563 B2		Milliman et al.	8,286,848 B2		Wenchell et al.
	8,091,753 B2	1/2012	Viola	8,286,850 B2	10/2012	
	8,091,754 B2		Ehrenfels et al.	8,292,146 B2	10/2012 10/2012	Holsten et al.
	8,091,756 B2 8,092,493 B2	1/2012	Viola Marczyk	8,292,147 B2 8,292,148 B2	10/2012	
	8,096,459 B2		Ortiz et al.	8,292,149 B2	10/2012	
	8,096,460 B2		Blier et al.	8,292,150 B2	10/2012	
	8,100,309 B2		Marczyk	8,292,151 B2 8,292,152 B2	10/2012	Milliman et al.
	8,100,310 B2 8,102,008 B2	1/2012	Zemlok Wells	8,292,152 B2 8,292,153 B2		Jankowski
	8,113,406 B2		Holsten et al.	8,292,154 B2		Marczyk
	8,113,407 B2	2/2012	Holsten et al.	8,292,155 B2		Shelton, IV et al.
	8,113,408 B2		Wenchell et al.	8,292,156 B2 8,292,158 B2		Kostrzewski Sapienza
	8,113,409 B2 8,113,410 B2		Cohen et al. Hall et al.	8,308,040 B2		Huang et al.
	8,123,101 B2		Racenet et al.	8,308,041 B2	11/2012	Kostrzewski
	8,127,975 B2	3/2012	Olson et al.	8,308,042 B2	11/2012	Aranyi
	8,127,976 B2		Scirica et al.	8,308,043 B2		Bindra et al.
	8,132,703 B2 8,132,705 B2		Milliman et al. Viola et al.	8,308,044 B2 8,308,046 B2	11/2012	Viola Prommersberger
	8,132,706 B2		Marczyk et al.	8,308,757 B2		Hillstead et al.
	8,136,713 B2	3/2012	Hathaway et al.	8,317,070 B2	11/2012	Hueil et al.
	8,141,762 B2	3/2012	Bedi et al.	8,317,071 B1	11/2012	Knodel

(56)		Referen	ces Cited	8,453,652		6/2013	Stopek
	77.0	D. (TEE) TEE	DOOLD COVER	8,453,905			Holcomb et al.
	U.S.	PATENT	DOCUMENTS	8,453,906 8,453,907			Huang et al. Laurent et al.
	0.222.455 D2	12/2012	C1 -14 TV7 -4 -1	8,453,907			Bedi et al.
	8,322,455 B2 8,322,589 B2		Shelton, IV et al. Boudreaux	8,453,909			Olson et al.
	8,328,061 B2		Kasvikis	8,453,910			Bettuchi et al.
	8,328,065 B2	12/2012		8,453,912			Mastri et al.
	8,333,313 B2	12/2012	Boudreaux et al.	8,453,913			Milliman
	8,336,751 B2	12/2012		8,453,914			Laurent et al.
	8,336,753 B2		Olson et al.	8,454,628 8,459,520			Smith et al. Giordano et al.
	8,336,754 B2		Cappola et al. Milliman et al.	8,459,521			Zemlok et al.
	8,342,377 B2 8,342,378 B2		Marczyk et al.	8,459,522			Marczyk
	8,342,379 B2		Whitman et al.	8,459,523	B2	6/2013	Whitman
	8,342,380 B2	1/2013	Viola	8,459,524			Pribanic et al.
	8,348,123 B2		Scirica et al.	8,459,525			Yates et al.
	8,348,124 B2	1/2013		8,464,922 8,464,923			Marczyk Shelton, IV
	8,348,125 B2		Viola et al.	8,469,252			Holcomb et al.
	8,348,126 B2 8,348,127 B2		Olson et al. Marczyk	8,469,254			Czernik et al.
	8,348,129 B2		Bedi et al.	8,474,677	B2	7/2013	Woodard, Jr. et al.
	8,348,130 B2		Shah et al.	8,479,967			Marczyk
	8,348,131 B2		Omaits et al.	8,479,968			Hodgkinson et al.
	8,353,437 B2		Boudreaux	8,479,969 8,485,412			Shelton, IV Shelton, IV et al.
	8,353,440 B2		Whitman et al.	8,490,852		7/2013	
	8,356,740 B1 8,357,174 B2		Knodel Roth et al.	8,496,152		7/2013	
	8,360,294 B2	1/2013		8,496,154			Marczyk et al.
	8,360,297 B2		Shelton, IV et al.	8,496,156		7/2013	Sniffin et al.
	8,360,298 B2		Farascioni et al.	8,496,683			Prommersberger et al.
	8,360,299 B2		Zemlok et al.	8,499,993 8,505,799		8/2013	Shelton, IV et al. Viola et al.
	8,365,971 B1		Knodel	8,505,802			Viola et al.
	8,365,972 B2 8,365,973 B1		Aranyi et al. White et al.	8,511,575		8/2013	
	8,365,976 B2		Hess et al.	8,512,359			Whitman et al.
	8,371,491 B2		Huitema et al.	8,512,402			Marczyk et al.
	8,371,492 B2		Aranyi et al.	8,517,240			Mata et al.
	8,371,493 B2		Aranyi et al.	8,517,241			Nicholas et al. Giordano et al.
	8,381,828 B2		Whitman et al.	8,517,243 8,517,244			Shelton, IV et al.
	8,381,961 B2 8,387,848 B2		Holsten et al. Johnson et al.	8,523,041			Ishitsuki et al.
	8,387,849 B2		Buesseler et al.	8,523,042			Masiakos et al.
	8,387,850 B2		Hathaway et al.	8,523,043			Ullrich et al.
	8,388,652 B2	3/2013	Viola	8,534,528		9/2013	Shelton, IV
	8,393,513 B2		Jankowski	8,540,128 8,540,129			Shelton, IV et al. Baxter, III et al.
	8,393,514 B2		Shelton, IV et al.	8,540,129			Moore et al.
	8,393,516 B2 8,397,971 B2		Kostrzewski Yates et al.	8,540,131			Swayze
	8,397,971 B2 8,397,972 B2		Kostrzewski	8,540,733			Whitman et al.
	8,403,195 B2		Beardsley et al.	8,544,711			Ma et al.
	8,403,196 B2		Beardsley et al.	8,550,325			Cohen et al.
	8,403,197 B2		Vidal et al.	8,556,151 8,561,870		10/2013	Baxter, III et al.
	8,403,198 B2 8,403,956 B1		Sorrentino et al. Thompson et al.	8,561,873	B2	10/2013	Ingmanson et al.
	8,408,439 B2		Huang et al.	8,561,874		10/2013	
	8,408,440 B2		Olson et al.	8,567,656			
	8,408,442 B2		Racenet et al.	8,573,461			Shelton, IV et al.
	8,413,868 B2		Cappola	8,573,463 8,573,465		11/2013	Scirica et al. Shelton, IV
	8,413,869 B2		Heinrich	8,579,176			Smith et al.
	8,413,871 B2 8,418,904 B2		Racenet et al. Wenchell et al.	8,579,177		11/2013	
	8,418,905 B2		Milliman	8,584,919			Hueil et al.
	8,418,906 B2		Farascioni et al.	8,584,920			Hodgkinson
	8,418,907 B2		Johnson et al.	8,590,762			Hess et al.
	8,418,908 B1		Beardsley	8,596,515 8,597,311			Okoniewski Criscuolo et al.
	8,419,768 B2		Marczyk	8,602,288		12/2013	
	8,424,735 B2 8,424,736 B2		Viola et al. Scirica et al.	8,608,045		12/2013	
	8,424,737 B2	4/2013		8,608,046	B2		Laurent et al.
	8,424,739 B2		Racenet et al.	8,608,047			Holsten et al.
	8,424,740 B2	4/2013	Shelton, IV et al.	8,613,383			Beckman et al.
	8,439,244 B2		Holcomb et al.	8,613,384			Pastorelli et al.
	8,439,245 B2		Knodel et al.	8,616,427		12/2013	
	8,439,246 B1 8,444,036 B2		Knodel Shelton, IV	8,616,430 8,627,994			Stopek et al. Zemlok et al.
	8,444,030 B2 8,444,037 B2		Nicholas et al.	8,628,544			Farascioni
	8,444,038 B2		Farascioni et al.	8,631,988		1/2014	
	8,448,832 B2		Viola et al.	8,631,989			Aranyi et al.

(56)		Referen	ces Cited	8,851,355			Aranyi et al.
	***	N D 4000 TO	DOGEN CENTER	8,857,693			Schuckmann et al.
	U.S	S. PATENT	DOCUMENTS	8,864,007 8,864,009			Widenhouse et al. Shelton, IV et al.
9.621.0	01 D2	1/2014	Crampan et el	8,864,010			Williams
8,631,9 8,632,5			Cropper et al. Kerr et al.	8,870,050			Hodgkinson
8,632,5			Shelton, IV et al.	8,875,971			Hall et al.
8,636,1	87 B2	1/2014	Hueil et al.	8,875,972			Weisenburgh, II et al.
8,636,1			Zemlok et al.	8,893,949 8,893,950			Shelton, IV et al. Marczyk
8,636,1			Farascioni et al.	8,899,461			Farascioni
8,636,7 8,636,7			Whitman et al. Milliman et al.	8,899,462			Kostrzewski et al.
8,640,9			Ohdaira	8,899,463			Schall et al.
8,657,1			Yates et al.	8,899,464			Hueil et al.
8,657,1			Scirica et al.	8,900,616 8,920,435			Belcheva et al. Smith et al.
8,657,1 8,662,3			Hueil et al.	8,925,782			Shelton, IV
8,668,1				8,926,598			Mollere et al.
8,672,2			Aranyi et al.	8,931,681			Kostrzewski
8,672,2			Hess et al.	8,931,682			Timm et al. Kumar et al.
8,672,2			Crainich	8,931,693 8,955,732			Zemlok et al.
8,678,2 8,678,9			Viola Wazer et al.	8,958,429			Shukla et al.
8,679,1			Knodel et al.	8,960,517		2/2015	
8,684,2			Scirica et al.	8,967,443			McCuen
8,684,2	49 B2		Racenet et al.	8,967,446 8,973,803			Beardsley et al. Hall et al.
8,684,2 8,690,0	253 B2	4/2014	Giordano et al. Beardsley et al.	8,978,954			Shelton, IV et al.
8,695,8			Smith et al.	8,978,956			Schall et al.
8,695,8			Leimbach et al.	8,991,677			Moore et al.
8,701,9			Shelton, IV et al.	8,991,678			Wellman et al.
8,701,9				8,998,058 8,998,060			Moore et al. Bruewer et al.
8,701,9 8,708,2			Ivanko Shelton, IV et al.	9,005,230			Yates et al.
8,714,4			Demmy	9,010,606	B2	4/2015	Aranyi et al.
8,715,2			Weizman	9,010,607			Kostrzewski
8,720,7			Hess et al.	9,010,610 9,016,539			Hodgkinson Kostrzewski et al.
8,721,6 8,727,1	030 B2	5/2014	Ortiz et al. Hess et al.	9,016,541			Viola et al.
8,727,2				9,016,542			Shelton, IV et al.
8,733,6	12 B2	5/2014		9,016,544	B2		Hodgkinson et al.
8,740,0	34 B2	6/2014	Morgan et al.	9,016,545			Aranyi et al. Demmy et al.
8,740,0			Farascioni	9,016,546 9,022,271		5/2015	
8,746,5 8,746,5			Shelton, IV et al. Giordano et al.	9,027,817			Milliman et al.
8,746,5			Shelton, IV et al.	9,033,203			Woodard, Jr. et al.
8,752,7	'48 B2	6/2014	Whitman et al.	9,039,557	B2 *	5/2015	Naughton B05C 17/0103
8,752,7			Moore et al.	9,044,228	R2	6/2015	221/229 Woodard, Jr. et al.
8,757,4 8,758,3			Woodard, Jr. et al. Swayze et al.	9,044,229			Scheib et al.
8,763,8			Morgan et al.	9,050,084			Schmid et al.
8,763,8			Kostrzewski	9,055,941			Schmid et al.
8,763,8			Schall et al.	9,060,770			Shelton, IV et al.
8,763,8 8,770,4			Shelton, IV et al.	9,072,535 9,084,601			Shelton, IV et al. Moore et al.
8,777,0			Scirica Scirica	9,089,326	B2		Krumanaker et al.
8,783,5			Shelton, IV et al.	9,095,339	B2		Moore et al.
8,783,5			Riestenberg et al.	9,101,359			Smith et al.
8,789,7			Hodgkinson et al.	9,107,663 9,107,664			Swensgard Marczyk
8,789,7 8,789,7			Knodel et al. Swensgard	9,107,667	B2		Hodgkinson
8,800,8				9,113,862	B2	8/2015	Morgan et al.
8,800,8			Jankowski	9,113,864			Morgan et al.
8,800,8			Ellerhorst et al.	9,113,870 9,113,872		8/2015 8/2015	
8,808,3 8,814,0	011 B2 024 B2	8/2014	Heinrich et al. Woodard, Jr. et al.	9,113,872			Zemlok et al.
8.814.0			Miller et al.	9,125,649			Bruewer et al.
8,820,6	603 B2	9/2014	Shelton, IV et al.	9,138,225			Huang et al.
8,820,6			Shelton, IV	9,155,537			Katre et al.
8,820,6 8,820,6			Hodgkinson Marczyk	9,179,912 9,192,378			Yates et al. Aranyi et al.
8,820,0			Shelton, IV et al.	9,192,379			Aranyi et al.
8,827,1		9/2014	Viola et al.	9,192,384	B2	11/2015	Bettuchi
8,833,6			Munro, III et al.	9,198,644			Balek et al.
8,833,6			Swensgard	9,198,660			Hodgkinson
8,840,6 8,840,6			Morgan et al. Shelton, IV et al.	9,198,661 9,198,662			Swensgard Barton et al.
8,844,7			Knodel	9,198,002			Cappola et al.
8,851,3			Swensgard et al.	9,204,880			Baxter, III et al.

(56)	Referen	ices Cited	9,610,080 B2		Whitfield et al.
	N DATEDATE	DOCKE CENTER	9,913,646 B2		Shelton, IV
U.S	S. PALENT	DOCUMENTS	9,936,954 B2 9,987,099 B2	4/2018 6/2018	Shelton, IV et al. Chen et al.
9,216,019 B2	12/2015	Schmid et al.	10,004,497 B2		Overmyer et al.
9,216,020 B2		Zhang et al.	10,004,505 B2	6/2018	Moore et al.
9,220,500 B2	12/2015		10,045,782 B2		Murthy Aravalli
9,220,501 B2		Baxter, III et al.	10,064,622 B2 10,076,325 B2	9/2018	Murthy Aravalli Huang et al.
9,220,502 B2		Zemlok et al.	10,070,323 B2 10,135,242 B2		Baber et al.
9,232,941 B2 9,232,944 B2		Mandakolathur Vasudevan et al. Cappola et al.	10,143,474 B2		Bucciaglia et al.
9,237,891 B2	1/2016	Shelton, IV	10,172,615 B2		Marczyk et al.
9,237,892 B2	1/2016	Hodgkinson	10,206,677 B2		Harris et al.
9,254,180 B2		Huitema et al.	10,265,066 B2 10,265,074 B2	4/2019	Measamer et al. Shelton, IV et al.
9,265,585 B2 9,271,728 B2		Wingardner et al. Gupta et al.	10,271,841 B2		Overmyer et al.
9,272,406 B2		Aronhalt et al.	10,327,776 B2	6/2019	Harris et al.
9,277,919 B2	3/2016	Timmer et al.	10,349,941 B2		Marczyk et al.
9,282,962 B2		Schmid et al.	10,390,828 B2 10,405,857 B2		Vendely et al. Shelton
9,283,054 B2 9,289,209 B2		Morgan et al. Gurumurthy et al.	10,463,368 B2		Kostrzewski
9,289,210 B2		Baxter, III et al.	10,478,182 B2	11/2019	Taylor
9,289,225 B2		Shelton, IV et al.	10,478,183 B2		Hess et al.
9,295,464 B2		Shelton, IV et al.	10,485,541 B2 * 10,548,599 B2	11/2019 2/2020	Shelton, IV A61B 17/068 Marczyk et al.
9,295,465 B2		Farascioni	10,548,599 B2 11,771,423 B2		Chen et al.
9,301,752 B2 9,301,753 B2		Mandakolathur Vasudevan et al. Aldridge et al.	2004/0108357 A1		Milliman et al.
9,301,757 B2		Williams	2004/0199180 A1		Knodel et al.
9,307,965 B2	4/2016	Ming et al.	2004/0199181 A1		Knodel et al.
9,307,986 B2		Hall et al.	2004/0243151 A1 2004/0267310 A1		Demmy et al. Racenet et al.
9,307,989 B2		Shelton, IV et al.	2004/0207310 A1 2005/0006429 A1		Wales et al.
9,314,246 B2 9,320,518 B2		Shelton, IV et al. Henderson et al.	2005/0216055 A1		Scirica et al.
9,320,521 B2		Shelton, IV et al.	2006/0049229 A1		Milliman et al.
9,320,523 B2		Shelton, IV et al.	2006/0180634 A1		Shelton et al.
9,326,767 B2		Koch, Jr. et al.	2006/0289602 A1 2007/0073341 A1	3/2006	Wales et al. Smith et al.
9,332,987 B2 9,345,477 B2		Leimbach et al. Anim et al.	2007/0073341 A1 2007/0084897 A1	4/2007	Shelton et al.
9,345,478 B2		Knodel	2007/0102472 A1	5/2007	Shelton
9,345,481 B2		Hall et al.	2007/0106317 A1	5/2007	Shelton et al.
9,345,780 B2		Manoharan et al.	2007/0119901 A1	5/2007 6/2007	Ehrenfels et al. Viola et al.
9,351,727 B2 9,351,732 B2	5/2016	Leimbach et al.	2007/0145096 A1 2007/0170225 A1	7/2007	Shelton et al.
9,358,003 B2		Hodgkinson Hall et al.	2007/0175950 A1	8/2007	Shelton et al.
9,364,217 B2		Kostrzewski et al.	2007/0175951 A1	8/2007	Shelton et al.
9,364,218 B2		Scirica	2007/0175955 A1	8/2007	Shelton et al.
9,364,219 B2		Olson et al.	2007/0179528 A1 2007/0194079 A1	8/2007 8/2007	Soltz et al. Hueil et al.
9,364,220 B2 9,364,227 B2		Williams Kostrzewski	2007/0194082 A1	8/2007	Morgan et al.
9,364,231 B2		Wenchell	2008/0029570 A1	2/2008	Shelton et al.
9,364,233 B2	6/2016	Alexander, III et al.	2008/0029573 A1	2/2008	Shelton et al.
9,370,358 B2		Shelton, IV et al.	2008/0029574 A1 2008/0029575 A1	2/2008	Shelton et al. Shelton et al.
9,370,362 B2 9,386,983 B2		Petty et al. Swensgard et al.	2008/0078802 A1		Hess et al.
9,386,984 B2		Aronhalt et al.	2008/0110961 A1		Voegele et al.
9,386,988 B2		Baxter, III et al.	2008/0169328 A1		Shelton
9,393,018 B2		Wang et al.	2008/0169332 A1 2008/0169333 A1	7/2008	Shelton et al. Shelton et al.
9,398,911 B2 9,402,604 B2	7/2016	Auld Williams et al.	2008/0109333 AT 2008/0287987 AT		Boyden et al.
9,402,004 B2 9,421,014 B2		Ingmanson et al.	2008/0296346 A1		Shelton, IV et al.
9,433,419 B2		Gonzalez et al.	2008/0308602 A1		Timm et al.
9,433,420 B2		Hodgkinson	2008/0308603 A1 2009/0001121 A1	1/2008	Shelton et al. Hess et al.
9,445,810 B2		Cappola	2009/0001121 A1 2009/0001130 A1		Hess et al.
9,445,813 B2 9,451,959 B2		Shelton, IV et al. Patankar et al.	2009/0090763 A1		Zemlok et al.
9,468,438 B2		Baber et al.	2009/0090766 A1	4/2009	Knodel
9,468,439 B2	10/2016	Cappola et al.	2009/0242610 A1	10/2009	Shelton, IV et al.
9,480,476 B2		Aldridge et al.	2009/0255974 A1 2009/0308907 A1	10/2009	Viola Nalagatla et al.
9,480,492 B2 9,492,171 B2		Aranyi et al. Patenaude	2010/0012703 A1		Calabrese et al.
9,492,171 B2 9,498,212 B2		Racenet et al.	2010/0051669 A1		Milliman
9,498,219 B2		Moore et al.	2010/0069942 A1	3/2010	Shelton, IV
9,510,827 B2	12/2016	Kostrzewski	2010/0089970 A1	4/2010	
9,517,065 B2		Simms et al.	2010/0127041 A1		Morgan et al.
9,517,066 B2 9,539,007 B2		Racenet et al.	2010/0133317 A1 2010/0147921 A1	6/2010 6/2010	Shelton, IV et al.
9,539,007 B2 9,549,735 B2		Dhakad et al. Shelton, IV et al.	2010/014/921 A1 2010/0147922 A1	6/2010	
9,561,031 B2		Heinrich et al.	2010/0147922 A1 2010/0155453 A1		Bombard et al.
9,597,077 B2		Hodgkinson	2010/0193566 A1		Scheib et al.

(56)	References Cite	ed	2013/0193188			Shelton, IV et al. Schmid et al.
U.S.	PATENT DOCUI	MENTS	2013/0256380 2013/0277410			Fernandez et al.
0.0.	THE TEST		2013/0334280			Krehel et al.
2010/0224668 A1	9/2010 Fontayn		2014/0014704 2014/0014707			Onukuri et al. Onukuri et al.
2010/0249802 A1 2010/0252611 A1	9/2010 May et a 10/2010 Ezzat et		2014/0014707			Hodgkinson et al.
2011/0006101 A1	1/2010 Ezzat et		2014/0048580	A1	2/2014	Merchant et al.
2011/0024477 A1	2/2011 Hall		2014/0061280			Ingmanson et al.
2011/0024478 A1	2/2011 Shelton,		2014/0076955 2014/0151431		3/2014 6/2014	Hodgkinson et al.
2011/0036891 A1 2011/0087276 A1	2/2011 Zemlok 4/2011 Bedi et		2014/0166720		6/2014	Chowaniec et al.
2011/0101069 A1	5/2011 Bombar	d et al.	2014/0166721			Stevenson et al.
2011/0114702 A1	5/2011 Farascio		2014/0166724 2014/0166725			Schellin et al. Schellin et al.
2011/0121049 A1 2011/0147433 A1	5/2011 Malinou 6/2011 Shelton.		2014/0166726			Schellin et al.
2011/0155787 A1	6/2011 Baxter,		2014/0175146			Knodel
2011/0163146 A1	7/2011 Ortiz et	al.	2014/0175150 2014/0203062		7/2014	Shelton, IV et al.
2011/0163149 A1 2011/0192881 A1	7/2011 Viola 8/2011 Balbierz	et al	2014/0239036			Zerkle et al.
2011/0192882 A1	8/2011 Hess et		2014/0239037			Boudreaux et al.
2011/0192883 A1	8/2011 Whitman		2014/0239038 2014/0239040			Leimbach et al. Fanelli et al.
2011/0204119 A1 2011/0278343 A1	8/2011 McCuen 11/2011 Knodel		2014/0239041			Zerkle et al.
2011/0290856 A1	12/2011 Shelton,		2014/0239043			Simms et al.
2012/0053406 A1	3/2012 Conlon		2014/0239044 2014/0239047			Hoffman Hodgkinson et al.
2012/0061446 A1 2012/0074200 A1	3/2012 Knodel 3/2012 Schmid		2014/0246471			Jaworek
2012/0080478 A1	4/2012 Morgan		2014/0246472			Kimsey et al.
2012/0080495 A1	4/2012 Holcom		2014/0246475 2014/0246478			Hall et al. Baber et al.
2012/0080498 A1 2012/0091183 A1	4/2012 Shelton, 4/2012 Manoux		2014/0240478			Mozdzierz
2012/0031183 A1 2012/0138659 A1	6/2012 Marczyl		2014/0252064			Mozdzierz et al.
2012/0175399 A1	7/2012 Shelton	et al.	2014/0252065 2014/0263539			Hessler et al. Leimbach et al.
2012/0181322 A1 2012/0187179 A1	7/2012 Whitman 7/2012 Gleiman		2014/0263539			Covach et al.
2012/0187179 A1 2012/0193394 A1	8/2012 Holcom		2014/0263541	A1	9/2014	Leimbach et al.
2012/0193399 A1	8/2012 Holcom		2014/0263542			Leimbach et al. Ranucci et al.
2012/0199632 A1 2012/0211542 A1	8/2012 Spivey 6 8/2012 Racenet		2014/0263544 2014/0263546		9/2014	
2012/0211342 A1 2012/0223121 A1	9/2012 Viola et		2014/0263550	A1	9/2014	Aranyi et al.
2012/0234895 A1	9/2012 O'Conn		2014/0263552 2014/0263553			Hall et al. Leimbach et al.
2012/0234897 A1 2012/0241492 A1	9/2012 Shelton, 9/2012 Shelton,		2014/0263554			Leimbach et al.
2012/0241492 A1 2012/0241493 A1	9/2012 Baxter, 1		2014/0263555			Hufnagel et al.
2012/0241504 A1	9/2012 Soltz et		2014/0263557 2014/0263558			Schaller Hausen et al.
2012/0248169 A1 2012/0286021 A1	10/2012 Widenho		2014/0263562			Patel et al.
2012/0286021 A1	11/2012 Rosarze		2014/0263564			Leimbach et al.
2012/0298722 A1	11/2012 Hess et	al.	2014/0263565 2014/0263566			Lytle, IV et al. Williams et al.
2013/0008937 A1 2013/0012983 A1	1/2013 Viola 1/2013 Kleymai	n	2014/0263570		9/2014	Hopkins et al.
2013/0015231 A1	1/2013 Kostrzev	wski	2014/0284371		9/2014	Morgan et al.
2013/0020375 A1	1/2013 Shelton,	IV et al.	2014/0291379 2014/0291380			Schellin et al. Weaner et al.
2013/0020376 A1 2013/0026208 A1	1/2013 Shelton, 1/2013 Shelton,		2014/0291383			Spivey et al.
2013/0026210 A1	1/2013 Shelton,		2014/0303668			Nicholas et al.
2013/0032626 A1	2/2013 Smith et		2014/0309665 2014/0332578			Parihar et al. Fernandez et al.
2013/0037595 A1 2013/0041406 A1	2/2013 Gupta et 2/2013 Bear et		2014/0339286			Motooka et al.
2013/0068815 A1	3/2013 Bruewei		2014/0353358			Shelton, IV et al.
2013/0068816 A1		olathur Vasudevan et al.	2014/0367445 2014/0367446			Ingmanson et al. Ingmanson et al.
2013/0068818 A1 2013/0075447 A1	3/2013 Kasvikis 3/2013 Weisenb		2015/0048143			Scheib et al.
2013/0092717 A1	4/2013 Marczyl		2015/0053740		2/2015	Shelton, IV
2013/0098964 A1	4/2013 Smith et 4/2013 Racenet		2015/0053742 2015/0053744		2/2015	Shelton, IV et al. Swayze et al.
2013/0098970 A1 2013/0105545 A1	5/2013 Racenet 5/2013 Burbank		2015/0060517			Williams
2013/0105548 A1	5/2013 Hodgkir	ison et al.	2015/0076205			Zergiebel
2013/0105552 A1	5/2013 Weir et		2015/0076211 2015/0080912		3/2015 3/2015	Irka et al. Sapre
2013/0105553 A1 2013/0112730 A1	5/2013 Racenet 5/2013 Whitma		2015/0133996		5/2015	Shelton, IV et al.
2013/0119109 A1	5/2013 Farascio		2015/0134076		5/2015	Shelton, IV et al.
2013/0146641 A1	6/2013 Shelton,		2015/0150556			McCuen
2013/0146642 A1 2013/0153636 A1	6/2013 Shelton, 6/2013 Shelton,		2015/0157321 2015/0173744			Zergiebel et al. Shelton, IV et al.
2013/0153636 A1 2013/0153641 A1		IV et al.	2015/0173745			Baxter, III et al.
2013/0161374 A1	6/2013 Swayze	et al.	2015/0173746	A1	6/2015	Baxter, III et al.
2013/0175316 A1	7/2013 Thomps	on et al.	2015/0173747	A1	6/2015	Baxter, III et al.

(56)	References Cited		2016 Becerra et al.
U.S.	PATENT DOCUMENTS	2017/0020525 A1 1/	2017 Motai et al. 2017 Shah
2015/0173748 A1	6/2015 Marczyk et al.	2017/0245854 A1 8/	2017 Broderick A61B 18/1445 2017 Zemlok et al.
2015/0173749 A1 2015/0173750 A1	6/2015 Shelton, IV et al. 6/2015 Shelton, IV et al.	2019/0183594 A1 6/	2019 Shelton, IV et al.
2015/0173755 A1	6/2015 Baxter, III et al.	FORFIGN F	ATENT DOCUMENTS
2015/0173756 A1	6/2015 Baxter, III et al.	TORLIGIVI	THEN BOCOMENTS
2015/0173760 A1 2015/0173761 A1	6/2015 Shelton, IV et al. 6/2015 Shelton, IV et al.	CA 2884962	
2015/0209040 A1	7/2015 Whitman et al.	DE 2744824 DE 2903159	
2015/0250474 A1	9/2015 Abbott et al.	DE 2903159 DE 3114135	
2015/0272557 A1	10/2015 Overmyer et al. 10/2015 Huitema et al.	DE 4213426	A1 10/1992
2015/0297222 A1 2015/0297225 A1	10/2015 Huitema et al.	DE 4300307 EP 0041022	
2015/0316431 A1	11/2015 Collins et al.	EP 0041022 EP 0136950	
2015/0351765 A1 2015/0359534 A1	12/2015 Valentine et al. 12/2015 Gibbons, Jr.	EP 0140552	A2 5/1985
2015/0366560 A1	12/2015 Chen et al.	EP 0156774 EP 0213817	
2015/0374371 A1	12/2015 Richard et al.	EP 0215817 EP 0216532	
2015/0374372 A1	12/2015 Zergiebel et al. 12/2015 Shelton, IV	EP 0220029	A1 4/1987
2015/0374376 A1 2016/0030040 A1	2/2016 Calderoni et al.	EP 0273468 EP 0324166	
2016/0051259 A1	2/2016 Hopkins et al.	EP 0324166 EP 0324635	
2016/0058443 A1	3/2016 Yates et al.	EP 0324637	A1 7/1989
2016/0066907 A1 2016/0067074 A1	3/2016 Cheney et al. 3/2016 Thompson et al.	EP 0324638	
2016/0089137 A1	3/2016 Hess et al.	EP 0365153 EP 0369324	
2016/0095585 A1	4/2016 Zergiebel et al. 4/2016 Linder et al.	EP 0373762	A1 6/1990
2016/0100835 A1 2016/0106406 A1	4/2016 Cabrera et al.	EP 0380025	
2016/0113648 A1	4/2016 Zergiebel et al.	EP 0399701 EP 0449394	
2016/0113649 A1	4/2016 Zergiebel et al.	EP 0484677	A1 5/1992
2016/0120542 A1 2016/0166249 A1	5/2016 Westling et al. 6/2016 Knodel	EP 0489436	
2016/0166253 A1	6/2016 Knodel	EP 0503662 EP 0514139	
2016/0199064 A1	7/2016 Shelton, IV et al.	EP 0536903	A2 4/1993
2016/0199084 A1 2016/0206336 A1	7/2016 Takei 7/2016 Frushour	EP 0537572 EP 0539762	
2016/0235494 A1	8/2016 Shelton, IV et al.	EP 0539762 EP 0545029	
2016/0242773 A1	8/2016 Sadowski et al. 8/2016 Ebner	EP 0552050	A2 7/1993
2016/0242774 A1 2016/0242779 A1	8/2016 Edner 8/2016 Aranyi et al.	EP 0552423 EP 0579038	
2016/0249915 A1	9/2016 Beckman et al.	EP 05/9038	
2016/0249916 A1 2016/0249918 A1	9/2016 Shelton, IV et al. 9/2016 Shelton, IV et al.	EP 0591946	A1 4/1994
2016/0249918 A1 2016/0249927 A1	9/2016 Beckman et al.	EP 0592243 EP 0593920	
2016/0249929 A1	9/2016 Cappola et al.	EP 0598202	
2016/0249945 A1 2016/0256071 A1	9/2016 Shelton, IV et al. 9/2016 Shelton, IV et al.	EP 0598579	
2016/0256152 A1	9/2016 Kostrzewski	EP 0600182 EP 0621006	
2016/0256154 A1	9/2016 Shelton, IV et al.	EP 0621009	
2016/0256160 A1 2016/0256161 A1	9/2016 Shelton, IV et al. 9/2016 Overmyer et al.	EP 0656188	A2 6/1995
2016/0256162 A1	9/2016 Shelton, IV et al.	EP 0666057 EP 0705571	
2016/0256163 A1	9/2016 Shelton, IV et al. 9/2016 Shelton, IV et al.	EP 0760230	A1 3/1997
2016/0256184 A1 2016/0256185 A1	9/2016 Shelton, IV et al.	EP 1952769 EP 2090253	
2016/0256187 A1	9/2016 Shelton, IV et al.	EP 2090253 EP 2090254	
2016/0262750 A1 2016/0270783 A1	9/2016 Hausen et al. 9/2016 Mgit et al.	EP 2583630	A2 4/2013
2016/0270788 A1	9/2016 Mgit et al. 9/2016 Czernik	EP 2586382 EP 2606834	
2016/0278764 A1	9/2016 Shelton, IV et al.	EP 2907456	
2016/0278765 A1 2016/0278771 A1	9/2016 Shelton, IV et al. 9/2016 Shelton, IV et al.	FR 391239	A 10/1908
2016/0278771 A1 2016/0278774 A1	9/2016 Shelton, IV et al.	FR 2542188 FR 2660851	
2016/0278775 A1	9/2016 Shelton, IV et al.	FR 2681775	
2016/0278777 A1 2016/0278848 A1	9/2016 Shelton, IV et al. 9/2016 Boudreaux et al.	GB 1352554	A 5/1974
2016/02/78548 A1 2016/0287250 A1	10/2016 Shelton, IV et al.	GB 1452185 GB 1555455	
2016/0287251 A1	10/2016 Shelton, IV et al.	GB 1333433 GB 2048685	
2016/0296216 A1 2016/0302791 A1	10/2016 Nicholas et al. 10/2016 Schmitt	GB 2070499	A 9/1981
2016/0310134 A1	10/2016 Schillit 10/2016 Contini et al.	GB 2141066 GB 2165559	
2016/0324514 A1	11/2016 Srinivas et al.	JP 51149985	
2016/0324518 A1	11/2016 Nicholas et al.	JP 2001087272	4/2001
2016/0338703 A1 2016/0354176 A1	11/2016 Scirica et al. 12/2016 Schmitt	SU 659146 SU 728848	
2010/03371/0 A1	12, 2010 Seminti	728040	7/1700

(56) References Cited

FOREIGN PATENT DOCUMENTS

SU	980703 A1	12/1982
SU	990220 A1	1/1983
WO	2008302247	7/1983
WO	8910094 A1	11/1989
WO	9210976 A1	7/1992
WO	9308754 A1	5/1993
WO	9314706 A1	8/1993
WO	2004032760 A2	4/2004
WO	2009071070 A2	6/2009
WO	2015191887 A1	12/2015

OTHER PUBLICATIONS

 $International\ Search\ Report\ and\ Written\ Opinion\ dated\ Sep.\ 6,2022, issued\ in\ corresponding\ international\ application\ No.\ PCT/IB2022/$ 054686, 13 pages.

^{*} cited by examiner

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 15

US 12,383,262 B2

FIG. 23

POWERED STAPLING DEVICE WITH MANUAL RETRACTION

CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 17/329,711, filed May 25, 2021, now U.S. Pat. No. 11,771,423, the disclosure of which is incorporated by reference herein in its entirety.

FIELD

This disclosure is directed to surgical devices and, more particularly, to powered surgical stapling devices.

BACKGROUND

Various types of surgical devices used to endoscopically treat tissue are known in the art, and are commonly used, for 20 example, for closure of tissue or organs in transection, resection, and anastomoses procedures, for occlusion of organs in thoracic and abdominal procedures, and for electrosurgically fusing or sealing tissue.

One example of such a surgical device is a surgical 25 stapling device. Typically, surgical stapling devices include a tool assembly having an anvil assembly and a cartridge assembly, and a drive assembly. Typically, the drive assembly includes a flexible drive beam and a clamp member that is supported on a distal end of the drive beam. The drive 30 assembly is movable to advance the clamp member through the tool assembly to approximate the cartridge and anvil assemblies and to advance an actuation sled through the cartridge assembly to eject staples from the cartridge assembly.

Surgical stapling devices can be manually actuated devices in which a clinician squeezes a trigger to actuate the stapling device, or powered stapling devices in which a clinician activates a motor within the stapling device to devices require less force to operate, difficulties may arise when the device loses power or components of the device break. In such instances, the device can remain clamped about tissue preventing removal of the device from a patient.

A continuing need exists in the art for a powered stapling 45 device that includes a drive assembly that can be manually retracted when power is lost or when the device is not operational.

SUMMARY

A surgical device includes a powered handle assembly having a motor assembly, a rack, a spur gear, and a manual retract mechanism. The spur gear is movable from a position engaged with the motor assembly and the rack to a posi- 55 about the second portion of the rotating shaft atop the first tioned disengaged from the motor assembly and engaged with the rack to facilitate manual retraction of the rack.

One aspect of the disclosure is directed to a powered handle assembly for a surgical device that includes a housing, a gear casing, a motor assembly, a rack, a rotating shaft, 60 and a spur gear. The housing defines a cavity. The gear casing is supported within the cavity of the housing and defines a longitudinal channel, a first cavity, and a second cavity that communicate with each other. The motor assembly includes an output shaft and a drive gear that is secured 65 to the output shaft. The motor assembly is secured to the gear casing, and the drive gear is positioned within the

second cavity of the gear casing. The rack is received within the longitudinal channel of the gear casing and is movable between retracted and advanced positions. The rotating shaft extends through the first cavity of the gear casing. The spur gear is coupled to the rotating shaft and is received within the first cavity of the gear casing. The spur gear is movable within the first cavity from a first position in which the spur gear is engaged with the drive gear and the rack to a second position in which the spur gear is disengaged from the drive gear and engaged with the rack.

Other aspects of the disclosure are directed to a powered handle assembly for a surgical device that includes a housing, a motor assembly, a rack, a rotating shaft, and a spur gear. The housing defines a cavity. The motor assembly is supported within housing and includes an output shaft and a drive gear that is secured to the output shaft. The rack is supported within the housing and is movable longitudinally between retracted and advanced positions. The rotating shaft is supported within the housing. The spur gear is coupled to the rotating shaft and received within the housing such that the spur gear is movable from a first position in which the spur gear is engaged with the drive gear and the rack to a second position in which the spur gear is disengaged from the drive gear and engaged with the rack.

In aspects of the disclosure, the crank lever is coupled to the rotating shaft and is movable to move the spur gear from the first position to the second position.

In some aspects of the disclosure, a biasing member is engaged with the spur gear and urges the spur gear towards the first position.

In certain aspects of the disclosure, the rotating shaft includes a first portion and a second portion, wherein the first portion is rotatably fixed to the spur gear and the second portion receives the crank lever.

In aspects of the disclosure, the housing defines an opening and includes a removable cover that is positioned over the opening such that the crank lever is accessible through the opening.

In some aspects of the disclosure, the crank lever is actuate the stapling device. Although powered stapling 40 movable along the second portion of the rotating shaft from a first position in which the rotating shaft can rotate independently of the crank lever to a second position in which the crank lever is rotatably fixed to the rotating shaft.

> In certain aspects of the disclosure, the crank lever includes a hub that defines a through bore having a rectangular portion and the second portion of the rotating shaft includes a rectangular portion that is received within the rectangular portion of the through bore when the crank lever is in its second position.

> In aspects of the disclosure, the handle assembly includes first and second C-clips, and the second portion of the rotating shaft defines spaced annular grooves that receive the first and second C-clips, respectively.

> In some aspects of the disclosure, the spur gear is received C-clip within the first cavity of the gear casing and the second C-clip is positioned externally of the first cavity of the gear casing to secure the rotating shaft to the gear casing.

Another aspect of the disclosure is directed to surgical stapling device that includes a powered handle assembly, an adapter assembly, and a tool assembly. The powered handle assembly includes a housing, a gear casing, a motor assembly, a rack, a rotating shaft, and a spur gear. The housing defines a cavity. The gear casing is supported within the cavity of the housing and defines a longitudinal channel, a first cavity, and a second cavity that communicate with each other. The motor assembly includes an output shaft and a

drive gear secured to the output shaft. The motor assembly is secured to the gear casing, and the drive gear is positioned within the second cavity of the gear casing. The rack is received within the longitudinal channel of the gear casing and is movable between retracted and advanced positions. 5 The rotating shaft extends through the first cavity of the gear casing. The spur gear is coupled to the rotating shaft and is received within the first cavity of the gear casing. The spur gear is movable within the first cavity from a first position in which the spur gear is engaged with the drive gear and the 10 rack to a second position in which the spur gear is disengaged from the drive gear and engaged with the rack. The adapter assembly has a proximal portion coupled to the handle assembly and a distal portion. The adapter assembly includes a firing rod that is coupled to the rack and is 15 movable between retracted and advanced positions in response to movement of the rack between its retracted and advanced positions. The tool assembly is supported on the distal portion of the adapter assembly.

In aspects of the disclosure, the tool assembly includes an 20 anvil and a cartridge assembly that are movable between open and clamped positions.

In some aspects of the disclosure, the stapling device includes a drive assembly that is coupled to the firing rod and includes a working end having an I-beam configuration. 25

In certain aspects of the disclosure, the working end of the drive assembly is movable in relation to the anvil and the cartridge assembly in response to movement of the firing rod between its retracted and advanced positions.

Other aspects of the disclosure are directed to a powered 30 handle assembly for a surgical device that includes a housing, a gear casing, a motor assembly, a drive screw, a drive nut, a connecting rod, and a spur gear. The housing defines a cavity. The gear casing is supported within the cavity of the housing and defines a channel. The motor assembly includes 35 an output shaft and a drive gear secured to the output shaft. The motor assembly is secured to the gear casing, and the drive gear is positioned within the cavity of the gear casing. The drive screw is supported within the housing and is rotatable in response to activation of the motor assembly. 40 The drive nut is supported on and movable along the drive screw between retracted and advanced positions. The connecting rod is coupled to the drive nut. The spur gear is movable within the channel of the gear casing from a first position in which the spur gear is engaged with the output 45 shaft and the drive screw to a second position in which the spur gear is disengaged from the output shaft and engaged with the drive screw.

Other aspects of the disclosure are directed to a powered handle assembly for a surgical device that includes a hous- 50 ing, a motor assembly, a drive screw, a drive nut, a connecting rod, a spur gear, a locking clip, and a pawl assembly. The housing defines a cavity. The motor assembly includes an output shaft and a drive gear secured to the output shaft. The motor assembly is positioned within the housing and the 55 drive gear is positioned within the cavity of the gear casing. The drive screw is supported within the housing and is rotatable in response to activation of the motor assembly. The drive nut is supported on and movable along the drive screw between retracted and advanced positions. The con- 60 necting rod is coupled to the drive nut. The spur gear is movable within the channel of the gear casing from a first position in which the spur gear is engaged with the output shaft and the drive screw to a second position in which the spur gear is disengaged from the output shaft and engaged 65 with the drive screw. The locking clip is movable from a first position retaining the spur gear in its first position to a

4

second position allowing movement of the spur gear from its first position to its second position. The pawl assembly includes an annular body portion and a ratcheting pawl coupled to the body portion.

In aspects of the disclosure, the handle assembly includes a biasing member that is positioned to urge the spur gear to the second position.

In some aspects of the disclosure, the handle assembly includes a locking clip that is movable from a first position retaining the spur gear in its first position to a second position allowing movement of the spur gear from its first position to its second position.

In certain aspects of the disclosure, the handle assembly includes a pawl assembly that includes a body portion and a ratcheting pawl coupled to the body portion.

In aspects of the disclosure, the gear casing defines a window and the body portion of the pawl assembly is positioned about the gear casing adjacent the window such that the pawl assembly is movable from a first position in which the ratcheting pawl is spaced from the spur gear to a second position in which the ratcheting pawl is engaged with the spur gear.

In some aspects of the disclosure, the connecting rod includes a proximal portion coupled to the drive nut and a distal portion coupled to a coupling member.

In certain aspects of the disclosure, the coupling member is adapted to engage a firing rod of the surgical device.

In aspects of the disclosure, the pawl assembly is coupled to the locking clip such that movement of the pawl assembly from its first position to its second position moves the locking clip from its first position to its second position.

In some aspects of the disclosure, the gear casing defines spaced openings, and the locking clip includes legs that are received within the openings.

Still other aspects of the disclosure are directed to a stapling device including a powered handle assembly, an adapter assembly, and a tool assembly. The powered handle assembly includes a housing, a gear casing, a motor assembly, a drive screw, a drive nut, a connecting rod, and a spur gear, the housing defines a cavity. The gear casing is supported within the cavity of the housing and defines a channel. The motor assembly includes an output shaft and a drive gear secured to the output shaft. The motor assembly is secured to the gear casing, and the drive gear is positioned within the cavity of the gear casing. The drive screw is supported within the housing and is rotatable in response to activation of the motor assembly. The drive nut is supported on and movable along the drive screw between retracted and advanced positions. The connecting rod is coupled to the drive nut. The spur gear is movable within the channel of the gear casing from a first position in which the spur gear is engaged with the output shaft and the drive screw to a second position in which the spur gear is disengaged from the output shaft and engaged with the drive screw. The adapter assembly has a proximal portion coupled to the handle assembly and a distal portion. The adapter assembly includes a firing rod that is coupled to the drive nut and is movable between retracted and advanced positions in response to movement of the drive nut between its retracted and advanced positions. The tool assembly is supported on the distal portion of the adapter assembly.

Other features of the disclosure will be appreciated from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the disclosed staple cartridge are described herein below with reference to the drawings, wherein:

FIG. 1 is a side perspective view of a first version of a stapling device according to aspects of the disclosure with the stapling device in a non-articulated, unclamped position;

FIG. 2 is a side cutaway view of a handle assembly of the stapling device shown in FIG. 1 with a cover of the handle 5 assembly removed;

FIG. 3 is a side perspective view of the handle assembly of the stapling device shown in FIG. 1 with a housing half-section removed;

FIG. 4 is an exploded side perspective view of internal components of the handle assembly shown in FIG. 3;

FIG. 5 is a side perspective view of a rotating shaft of the handle assembly shown in FIG. 3;

assembly shown in FIG. 3;

FIG. 7 is a cross-sectional view taken along section line 7-7 of FIG. 2;

FIG. 8 is a cross-sectional view taken through a portion of the handle assembly shown in FIG. 3 with the stapling 20 drive assembly. device in an unclamped position;

FIG. 9 is a cross-sectional view taken along section line 9-9 of FIG. 8;

FIG. 10 is a side perspective view of a reload assembly of position;

FIG. 11 is a cross-sectional view taken along section line 11-11 of FIG. 10;

FIG. 12 is a cross-sectional view through a portion of the handle assembly shown in FIG. 3 with the stapling device in the clamped and fired position;

FIG. 13 is a side perspective view of a portion of the handle assembly shown in FIG. 3 as the stapling device is manually retracted from the clamped and fired position;

FIG. 14 is a cross-sectional view taken along section line 14-14 of FIG. 13:

FIG. 15 is a cross-sectional view taken along section line 15-15 of FIG. 14:

FIG. 16 is a side perspective view of the handle assembly 40 of the stapling device shown in FIG. 1 with the cover of the handle assembly removed as the stapling device is manually retracted;

FIG. 17 is a cutaway, cross-sectional view taken through the handle assembly shown in FIG. 16 as the stapling device 45 is manually retracted;

FIG. 18 is an alternate version of the handle assembly of the stapling device shown in FIG. 1 with a housing of the handle assembly shown in phantom;

FIG. 19 is an assembled view of the internal components 50 of the handle assembly shown in FIG. 18;

FIG. 20 is an exploded side perspective view of internal components of the handle assembly shown in FIG. 19;

FIG. 21 is a side perspective view of a pawl assembly and locking clip of the handle assembly shown in FIG. 19;

FIG. 22 is a side perspective view from the proximal end of an interface between a motor assembly and a drive assembly of the handle assembly shown in FIG. 19 showing a manual retract mechanism with the locking clip in the locked position;

FIG. 23 is a side perspective view from the distal end of the interface between the motor assembly and the drive assembly of the handle assembly shown in FIG. 20 with a gear casing removed showing the manual retract mechanism with the locking clip in the locked position;

FIG. 24 is a cross-sectional view taken along section line 24-24 of FIG. 19;

6

FIG. 25 is a side cross-sectional view of the drive assembly of the handle assembly of the stapling device shown in FIG. 24 in the fired position;

FIG. 26 is a side perspective view from the proximal end of the interface between the motor assembly and the drive assembly of the handle assembly shown in FIG. 19 showing the manual retract mechanism with the locking clip in the unlocked position;

FIG. 26A is a side cross-sectional view taken along section line 26A-26A of FIG. 26 illustrating the manual retract mechanism in the unlocked position;

FIG. 27 is a cross-sectional view taken along section line 27-27 of FIG. 26 illustrating the manual retract mechanism FIG. 6 is a perspective view of a crank lever of the handle 15 locking clip from the locked position to the unlocked as the manual retract mechanism is operated to move the position; and

> FIG. 28 is a cross-sectional view taken along section line 27-27 of FIG. 26 illustrating the manual retract mechanism as the manual retract mechanism is operated to retract the

DETAILED DESCRIPTION

The disclosed surgical device will now be described in the stapling device shown in FIG. 1 in the clamped and fired 25 detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. However, it is to be understood that the aspects of the disclosure are merely exemplary of the disclosure and may be embodied in various forms. Wellknown functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure. In addition, directional terms such as front, rear, upper, lower, top, bottom, and similar terms are used to assist in understanding the description and are not intended to limit the disclosure.

> In this description, the term "proximal" is used generally to refer to that portion of the device that is closer to a clinician, while the term "distal" is used generally to refer to that portion of the device that is farther from the clinician. In addition, the term "endoscopic" is used generally to refer to endoscopic, laparoscopic, arthroscopic, and/or any other procedure conducted through a small diameter incision or cannula. Further, the term "clinician" is used generally to refer to medical personnel including doctors, nurses, surgeons, and support personnel.

This disclosure is directed to a surgical device that includes a powered handle assembly having a motor assembly, a rack, a spur gear, and a manual retract mechanism. The spur gear is movable from a position engaged with the motor 55 assembly and the rack to a positioned disengaged from the motor assembly and engaged with the rack to facilitate manual retraction of the rack.

FIGS. 1 and 2 illustrate a surgical device shown generally as stapling device 10 which includes a handle assembly 12, an elongate body or adapter assembly 14, and a tool assembly 16. The handle assembly 12 includes a housing 18 that forms a stationary handle portion 18a, and articulation lever 19, and actuation buttons 20. The adapter assembly 14 defines a longitudinal axis "X" and includes a proximal portion 24 that is coupled to the handle assembly 12, and a distal portion 26 that supports the tool assembly 16. The tool assembly 16 is secured to the distal portion 26 of the adapter

assembly 14 by a pivot member 28 that defines an axis "Y" that is transverse to the longitudinal axis "X". The articulation lever 19 is operatively coupled to the tool assembly 16 via an articulation linkage (not shown) such that manipulation of the articulation lever 19 causes articulation of the tool assembly 16 about the axis "Y" between an articulated position in which the tool assembly 16 is aligned with the longitudinal axis "Y" and non-articulated positions in which a longitudinal axis of the tool assembly and the longitudinal axis "X" define acute angles in response to manipulation of 10 the articulation lever 19. The adapter assembly 14 is supported within a rotation knob 30 that is rotatably coupled to a distal portion of the handle assembly 12. The rotation knob 30 is manually rotatable about the longitudinal axis "X" to rotate the adapter assembly 14 and the tool assembly 16 15 about the longitudinal axis "X". The actuation buttons 20 control operation of the different functions of the stapling device 10 including clamping and firing of the stapling

In aspects of the disclosure, the tool assembly 16 forms 20 part of a reload assembly 32 that includes a proximal body portion 34 and the tool assembly 16. The proximal body portion 34 of the reload assembly 32 forms an extension of the adapter assembly 14 and includes a proximal end that is adapted to be releasably coupled to a distal end of the 25 adapter assembly 14 and a distal end that supports the tool assembly 16 for articulation. In aspects of the disclosure, the tool assembly 16 can be fixedly coupled to a distal portion of the adapter assembly 14.

In aspects of the disclosure, the housing 18 of the handle 30 assembly 12 is formed from half-sections that are coupled together such as by welding of with screws to define a cavity 38 that receives internal components of the handle assembly 12 which are described in further detail below. The housing 18 defines an upper opening 40 that provides access to the 35 internal components of the handle assembly 12. The upper opening 40 is enclosed by a cover 42 that is removably supported within the upper opening 40.

FIGS. 3 and 4 illustrate the internal components of the handle assembly 12 which include a gear casing 44, a motor 40 assembly 46, a rack 48, a firing rod 50, a manual retract mechanism 52 and intermediate spur gear 54, and a drive gear 56. The gear casing 44 is secured within the cavity 38 of the housing 18 using screws or the like and defines a first cavity 60 and a second cavity 62 that intersect with each 45 other and a longitudinally extending channel 64. The first cavity 60 of the gear casing 44 receives the drive gear 56 and the second cavity 62 of the gear casing 44 receives the intermediate spur gear 54. The drive gear 56 and the intermediate spur gear each include gear teeth that mesh 50 such that rotation of the drive gear 56 within the first cavity 60 causes corresponding rotation of the intermediate spur gear 54 within the second cavity 62. The rack 48 is received within the channel 64 of the gear casing 44 and includes gear teeth that mesh with the gear teeth of the intermediate spur 55 gear 54. When the drive gear 56 is rotated to rotate the intermediate spur gear 54, engagement between the intermediate spur gear 56 and the rack 48 causes the rack 48 to move longitudinally through the channel 64 in the gear casing 44.

The motor assembly 46 includes an output shaft 70 (FIG. 4) that is secured to the drive gear 56 and can be activated via the actuation buttons 20 (FIG. 1) to rotate the drive gear 56. In aspects of the disclosure, the motor assembly 46 is positioned within a portion of the cavity 38 of the housing 65 18 defined by the stationary handle portion 18a. The motor assembly 46 includes a mounting bracket 72 that is secured

8

to the gear casing **44** with screws **74** such that the drive gear **56** is received within the second cavity **62** of the gear casing **44**

FIGS. 4-6 illustrate the manual retract mechanism 52 which includes a rotating shaft 78, a crank lever 80, and a grip member 82. The crank lever 80 includes a central hub portion 84 that defines a through bore 86 that receives the rotating shaft 78. The through bore 86 includes a cylindrical portion 86a and a rectangular portion 86b. The crank lever 80 also includes a lever portion 88 that defines a slot 90 and forms a clevis 92. The grip member 82 is supported within the clevis 92 by a pivot member 94 and is pivotable between a first position located within the slot 90 and a second position extending orthogonally from the lever portion 88.

The rotating shaft 78 includes a head portion 96 and a shaft portion 98 that extends downwardly from the head portion 96 as viewed in FIG. 4 through the through bore 86 in the crank lever 80. The shaft portion 98 includes a first rectangular portion 100, a cylindrical portion 102, and a second rectangular portion 104. The second rectangular portion 104 includes spaced annular grooves 106 and 108 that receive C-clips 110 and 112, respectively. The intermediate spur gear 54 is received about the second rectangular portion 104 of the rotating shaft 78 atop the C-clip 112 within the first cavity 60 of the gear casing 44. The C-clip 112 is positioned externally of the first cavity 60 and secures the rotating shaft 78 to the gear casing 44. Although the rotating shaft 78 is shown to have first and second rectangular portions, it is envisioned that other shaft configurations are envisioned.

The gear casing 44 defines first and second openings 114 and 116 that communicate with upper and lower ends of the first cavity 60 of the gear casing 44. The cylindrical portion 102 of the rotating shaft 78 is received within the first opening 114 of the gear casing 44 and the second rectangular portion 104 of the rotating shaft 78 extends through the second opening 116 of the gear casing 44. The C-clip 110 is secured to the lower end of the second rectangular portion 104 of the rotating shaft 78 adjacent a lower surface of the gear casing 44 and the C-clip 112 is secured to the second rectangular portion 104 of the rotating shaft 78 within the first cavity 60 of the gear casing 44. The C-clips 110 and 112 secure the intermediate spur gear 54 to the rotating shaft 78 and secure the rotating shaft 78 to the gear casing 44. The second rectangular portion 104 of the rotating shaft 78 is received within a rectangular bore in the intermediate spur gear 54 to rotatably fix the intermediate spur gear 54 to the rotating shaft 78.

The intermediate spur gear 54 is received within the first cavity 60 of the gear casing 44 and is movable within the first cavity between a first or lower position and a second or upper position. In the lower position (FIG. 8), the teeth of the intermediate spur gear 54 simultaneously engage the teeth of the rack 48 and the teeth of the drive gear 56. In the upper position, the teeth of the intermediate spur gear 54 engage only the teeth of the rack 48.

The manual retract mechanism 52 includes a biasing member 120 that is positioned between an upper surface of the intermediate spur gear 54 and the inner surface of the gear casing 44. The biasing member 120 urges the intermediate spur gear 54 towards its lower position in which the intermediate spur gear 54 is engaged with both the drive gear 56 and the rack 48. In some aspects of the disclosure, a washer 122 is positioned between an upper surface of the biasing member 120 and the inner surface of the gear casing 44. In some aspects of the disclosure, the biasing member

120 includes a coil spring. It is envisioned that other types of biasing members could be incorporated into the stapling device 10 (FIG. 1).

The rack 44 includes a distal portion that is coupled to the firing rod 50, In aspects of the disclosure, the proximal 5 portion of the firing rod 50 is formed with a head 124 that has a diameter that is larger than a body of the firing rod 50 and the distal portion of the rack 48 defines a slot 128. The head 124 of the firing rod 50 is received within the slot 128 of the rack 48 to couple the firing rod 50 to the rack 48 such 10 that longitudinal movement of the rack 48 causes longitudinal movement of the firing rod 50. The coupling of the head 124 and the slot 128 allows the firing rod 50 to rotate in relation to the rack 48.

In some aspects of the disclosure, the manual retract 15 mechanism 52 includes a base member 130 that defines a circular bore 132. The base member 130 is secured to an upper surface of the gear casing 44 and the hub portion 84 of the crank lever 80 is aligned within the circular bore 132. The crank lever 80 is movable from a lowered position to a 20 raised position. In the lowered position, the hub portion 84 of the crank lever 80 is received within the circular bore 132 and in the raised position, the hub portion 84 of the crank lever 80 is positioned above the circular bore 132 of the base member 130.

The head **96** of the rotating shaft **78** of the manual retract mechanism 52 is received within the bore 86 of the crank lever 80. When the crank lever 80 is in its lowered position, the cylindrical portion 102 of the rotating shaft 78 is received within the rectangular portion **86**b (FIG. **6**) of the 30 through bore 86 of the crank lever 80. In this position, the rotating shaft 78 can rotate within the through bore 86 of the crank lever 80 without causing rotation of the crank lever 80. When the crank lever 80 is moved to its raised position, the first rectangular portion 100 of the rotating shaft 78 is 35 received within the rectangular portion 86b of the through bore 86 of the crank lever 80, In this position, rotation of the crank lever 80 causes corresponding rotation of the rotating shaft 78, and thus, rotation of the intermediate spur gear 54. The head 96 of the rotating shaft 78 has a diameter that is 40 larger than the width of the rectangular portion 86b of the through bore 86 of the crank lever 80. Thus, movement of the crank lever 80 to its raised position causes the rotating shaft 78 to its upper position in which the teeth of the intermediate spur gear 54 are only engaged with the teeth of 45 the rack 48.

The handle assembly 12 (FIG. 1) also includes one or more batteries 140 which are received within the cavity 38 of the housing 18 of the handle assembly 12. The batteries 140 provide power to the motor assembly 46 via the actuation switches and control circuitry (not shown), e.g., a printed circuit board and one or more controllers, within the handle assembly 12 to control firing of the stapling device 10.

FIGS. 7-9 illustrate the handle assembly 12 of the stapling 55 device 10 (FIG. 1) with the stapling device in an unclamped position prior to firing of the stapling device. In this position, the rack 48 is in a retracted position within the channel 64 of the gear casing 44 and the intermediate spur gear 54 is in its lowered position and is engaged with the rack 48 and the 60 drive gear 56.

FIGS. 10 and 11 illustrate the reload assembly 32 when the stapling device 10 is in a fired position. As described above, the reload assembly 32 includes the tool assembly 16 and the proximal body portion 34. In aspects of the disclosure, the tool assembly 16 includes an anvil assembly 150 and a cartridge assembly 152. The cartridge assembly 152

10

includes a staple cartridge 154 that supports a plurality of staples and pushers (not shown), and an actuation sled 156. The proximal body portion 32 includes a drive assembly 158 that includes a flexible beam 160 and a working end 162. The working end 162 of the drive assembly 158 has an I-beam configuration and is secured to a distal end portion of the flexible beam 160. The flexible beam 160 has a proximal end portion that is releasably coupled to a distal portion of the firing rod 50. When the firing rod 50 is moved from a retracted position to an advanced position, the drive assembly 158 moves from a retracted position to an advanced position to move the working end 162 of the drive assembly 158 through the tool assembly 16 to advance the actuation sled 156 through the tool assembly 16. As the actuation sled 156 moves through the tool assembly 16, the actuation sled 156 engages the pushers (not shown) to eject staples (not shown) from the staple cartridge 154 into the anvil assembly 150. In the fired position, the working end 162 of the drive assembly 158 and the actuation sled 156 are in their advanced positions within the tool assembly and the tool assembly is in the clamped position clamped about tissue (not shown). For a more detailed description of the operation of the drive assembly 158 and its interaction with the tool assembly, see U.S. Pat. No. 8,132,706.

FIG. 12 illustrates the handle assembly 12 of the stapling device 10 (FIG. 1) as the stapling device 10 is fired. When the stapling device 10 is fired, the intermediate spur gear 54 (FIG. 8) is engaged with the rack 48 and with the drive gear 56. When the motor assembly 46 is activated, the drive gear 56 rotates the intermediate spur gear 54 to advance the rack 48 in the direction indicated by arrows "A". The rack 48 is coupled to the firing rod 50 such that advancement of the firing rod 50 advancement of the rack 48 causes advancement of the firing rod 50 in the direction of arrows "A" to advance the drive assembly 158 (FIG. 11) within the tool assembly 16.

FIGS. 13-15 illustrate the manual retract mechanism 52 as it is readied for use. When the stapling device 10 loses power or gets damaged such that the motor assembly 46 cannot retract the drive assembly 158 to release tissue clamped between the anvil and cartridge assemblies 150 and 152 (FIG. 11), the manual retract mechanism 52 can be operated to retract the drive assembly 158 (FIG. 11). In order to access the manual retract mechanism 52, the cover 42 (FIG. 2) must be removed to uncover the upper opening 40 in the housing 18 of the handle assembly 12. Once the cover is removed, the crank lever 80 is pulled upwardly in the direction of arrow "C" in FIG. 13 to move the crank lever 80 from its lowered position to its raised position. As the crank lever 80 is moved towards its raised position, the first rectangular portion 100 of the rotating shaft 78 is received in the rectangular portion 86b of the through bore 86 in the crank lever 80. Once the first rectangular portion 100 of the rotating shaft 78 is received in the rectangular portion 86b of the through bore 86 in the crank lever 80, continued movement of the crank lever 80 in the direction of arrow "C" will lift the rotating shaft 78 and the intermediate spur gear 54 in the direction of arrows "D" in FIG. 14 to their upper positions compressing the biasing member 120. In the upper position, the intermediate spur gear 54 is disengaged from the drive gear 56 and is engaged only with the rack 48. Once the crank lever 80 is in its raised position, the grip member 82 can be pivoted about the pivot member 94 to an operational position.

FIGS. 16 and 17 illustrate the manual retract mechanism 52 as it is operated to retract the firing rod 50. Once the crank lever 80 is moved to its raised position, the crank lever 80

can be rotated in the direction indicated by arrow "E" in FIG. in FIG. 16 to rotate the rotating shaft 78 and the intermediate spur gear 54 in the direction indicted by arrow "F" in FIG. 17 to retract the rack 48. More specifically, when the crank lever 80 is rotated, receipt of the first rectangular portion $100\,$ of the rotating shaft 78 in the rectangular portion 86b of the through bore 86 of the crank lever 80 rotatably fixes the crank lever 80 to the rotating shaft 78. Thus, when the crank lever 80 rotates, the rotating shaft also rotates. The intermediate spur gear 54 is rotatably fixed to the rotating shaft 10 78 via receipt of the second rectangular portion 104 of the rotating shaft 78 in the rectangular bore 54a of the intermediate spur gear 54 such that rotation of the rotating shaft 78 causes rotation of the intermediate spur gear 54. In its upper position, the intermediate spur gear 54 is only engaged with 15 the rack 48, and as such, rotation of the intermediate spur gear 54 causes retract of the rack 48.

FIGS. 19-28 illustrate an alternate version of the handle assembly 12 (FIG. 18) of the stapling device 10 shown generally as handle assembly 312. The handle assembly 312 20 includes a housing 314 that is substantially similar to housing 18 (FIG. 1) of stapling device 10 and will not be described in further detail herein. The housing 314 defines a cavity 316 that receives the internal components of the handle assembly 312.

FIGS. 18-20 illustrate the internal components of the handle assembly 312 which includes a motor assembly 318, a drive assembly 320, and a manual retract mechanism 322. The motor assembly 318 is supported within the cavity 316 (FIG. 18) of the housing 314 and includes an output shaft 324 that has a flat surface 324a. In some aspects of the disclosure, the output shaft 324 has a D-shaped configuration although other configurations are envisioned.

The drive assembly 320 is coupled to the output shaft 324 of the motor assembly 318 and includes a one-way spur gear 35 328, a drive screw 330, a drive nut 332, connecting rods 334, a coupling member 336, a guide tube 338, and a gear casing 340. The gear casing 340 includes a mounting flange 342 and a cylindrical body 344. The mounting flange 342 of the gear casing 340 defines bores 346 that receive screws 348. 40 The screws 348 are received in threaded bores 350 formed in a distal face of the motor assembly 318 to secure the gear casing 340 to the motor assembly 318. The cylindrical body 344 of the gear casing 340 defines a cavity 352 and a window 354 that communicates with the cavity 352. The 45 cylindrical body 344 of the gear casing 340 defines two openings 356 (only one is shown) and two cutouts 358. One of the openings 356 and one of the cutouts 358 is positioned on each side of the window 354 in vertical alignment. The cavity 352 of the cylindrical body 344 of the gear casing 340 50 receives the one-way spur gear 328. The distal portion of the cylindrical body 344 of the gear casing 340 supports a bearing 359.

The one-way spur gear 328 defines a central through bore 360 that receives a bearing 362. In aspects of the disclosure, 55 the central through bore 360 and the bearing 362 have corresponding non-circular configurations, e.g., D-shaped configurations, such that the bearing 362 is slidably received within the central through bore 360 of the one-way spur gear 328. The corresponding configurations of the one-way spur 60 gear 328 and the bearing 362 rotatably fix the components to each other. The bearing 362 also defines a central through bore 364 that has a non-circular configuration.

The drive screw 330 includes a threaded outer surface 366, a proximal extension 368, and a distal extension 370. 65 The proximal extension 368 of the drive screw 330 extends through the bearing 359 within the gear casing 340 and is

12

received and secured within the central through bore 364 of the bearing 364. The distal extension 370 of the drive screw 330 is received within a bearing 372 that is supported within the housing 314 (FIG. 18) to rotatably support the drive screw 330 within the housing 314.

When the motor assembly 318 is activated to rotate the output shaft 324, rotation of the output shaft 324, when engaged with the one-way spur gear 328, causes corresponding rotation of the one-way spur gear 328. As described above, the one-way spur gear 328 is rotatably fixed to the bearing 362 which is secured to and rotatably fixed to the drive screw 330. As such, rotation of the one-way spur gear 328 causes corresponding rotation of the drive screw 330.

The drive nut 332 includes a threaded bore 374 that receives and is threadably engaged with the threaded outer surface 366 of the drive screw 330. The drive nut 332 is coupled to a proximal portion of the connecting rods 334. In aspects of the disclosure, the drive nut 332 includes protrusions 378 that are received within openings 380 formed in the proximal portions of the connecting rods 334 to connect the drive nut 332 to the connecting rods 334. The connecting rods 334 extend distally from the drive nut 332 and include distal portions that are connected to the coupling member 336. In aspects of the disclosure, the coupling member 336 includes protrusions 384 that are received within openings 386 formed in the distal portions of the connecting rods 334 to connect the coupling member 336 to the connecting rods 334. The drive nut 332 and the connecting rods 334 are received within the guide tube 338.

When the drive screw 330 is rotated, engagement between the outer threaded surface 366 of the drive screw 330 and the inner threaded bore 374 of the drive nut 332 causes the drive nut 332 to translate longitudinally along the drive screw 330 within the guide tube 338. The drive nut 332 is connected to the connecting rods 334 such that longitudinal translation of the drive nut 332 along the drive screw 330 causes the connecting rods 334 to move longitudinally within the guide tube to advance to coupling member 336.

The coupling member 336 is coupled to a firing rod 382 such that longitudinal movement of the coupling member 336 causes longitudinal movement of the firing rod 382. In aspects of the disclosure, the firing rod 382 includes a head portion 384 and an elongate body 386. The head portion 384 has a diameter that is greater than a diameter of the elongate body 386. The coupling member 336 defines a slot 390 that has a width that is greater than the diameter of the elongate body 386 but less than the diameter of the head portion 384. The elongate body 386 of the firing rod 382 is received through the slot 390 in the coupling member 336 to axially fix the firing rod 382 to the coupling member 336 while allowing relative rotation of the firing rod 382 and the coupling member 336.

The one-way spur gear 328 is movably positioned within the cavity 352 of the cylindrical body 344 of the gear casing 340 between a retracted position (FIG. 24) and an advanced position (FIG. 26A). In the advanced position, the one-way spur gear is engaged with the proximal extension 368 of the drive screw 330 and the output shaft 324 of the motor assembly 318 such that rotation of the output shaft 324 of the motor assembly 324 causes rotation of the drive screw 330. In the advanced position, the one-way spur gear 328 is disengaged from the output shaft 324 of the motor assembly 318 but still engaged with the drive screw 330. A biasing member 396, e.g., a coil spring, is positioned between the distal surface of the motor assembly 318 and a proximal surface of the one-way spur gear 328 to urge the one-way spur gear 328 towards the advanced position. In aspects of

the disclosure, the proximal surface of the one-way spur gear 328 defines a recess 328a (FIG. 26A) that receives the biasing member 396.

FIGS. 20 and 21 illustrate the manual retract mechanism 322 includes a pawl assembly 410 and a locking clip 412. 5 The pawl assembly 410 includes a handle 414 and a body portion 416. In aspects of the disclosure, the body portion has an oval or annular configuration and supports a ratcheting pawl 418 that is pivotably secured to an upper portion of the body portion 416 by a pivot member 420. The 10 ratcheting pawl 418 extends downwardly into a circular opening defined by the body portion 416. The body portion 416 is received about the gear casing 340 with the ratcheting pawl 418 positioned over the window 354 in the gear casing 340 above the one-way spur gear 328. A lower portion of the 15 body portion 416 defines a circular slot 422.

The locking clip 412 has a rectangular shape and includes a base portion 426 and spaced legs 428 that extend upwardly from the base portion 426. Each of the legs 428 of the locking clip 412 includes a stepped inner surface 430 that 20 includes a first surface 430a and a second surface 430b. The first surfaces 430a of the legs 428 define a first width X1 and the second surfaces 430b define a second width X2 that is greater than the first width X2. Each of the legs 428 is received through one of the openings 356 and cutouts 358 of 25 the gear casing 340 such that the stepped inner surfaces 430 of the legs 428 of the locking clip 412 are positioned within the cavity 352 of the gear casing 340. The locking clip 322 is movable from a first position (FIG. 23) in which the first surfaces 430a of the legs 428 of the locking clip 322 are 30 aligned with the one-way spur gear 328 and a second position in which the second surfaces 430b of the legs 428 of the locking clip 322 are spaced from the one-way spur gear 328. The width X1 between the first surfaces 430a of the legs 428 of the locking clip 322 is such to prevent 35 movement of the one-way spur gear 322 to its advanced position, whereas the width X2 between the second surfaces 430b of the legs 428 of the locking clip 322 allows movement of the one-way spur gear 322 to the advanced position.

The base portion 426 of the locking clip 322 includes a 40 protrusion 434 that is received within the circular slot 422 in the body portion 416 of the pawl assembly 410. Receipt of the protrusion 434 couples the pawl assembly 410 to the locking clip 322 to retain the pawl assembly 410 in a stable position about the gear casing 340. In aspects of the disclosure, the protrusion 434 has an enlarged head and the circular slot includes overhanging ledges that retain the enlarged head of the protrusion 434 within the circular slot 422. The protrusion 434 is configured to slide within the circular slot 422 as described in further detail below.

FIGS. 22-24 illustrate the handle assembly 12 (FIG. 18) in a pre-fired position with the pawl assembly 322 positioned about the gear casing 340 and the ratcheting pawl 418 positioned above the window 354 in the gear casing 340. When the handle assembly 12 is assembled, the one-way 55 spur gear 328 is pressed proximally towards the motor assembly 318 to compress the biasing member 396 and position the one-way spur gear 328 in its retracted position. After the one-way spur gear 328 is in its retracted position, the legs 428 of the locking clip 412 are inserted from a side 60 of the gear casing 340 opposite to the ratcheting pawl 418 into the openings 356 and cutouts 358 formed in the gear casing 340 to its first position. In the first position of the locking clip 412, the first surfaces 430a of the legs 428 of the locking clip 412 engage a distal face of the one-way spur 65 gear 328 to retain the one-way spur gear 328 in its retracted position against the urging of the biasing member 396. In its

14

retracted position, the one-way spur gear 328 is engaged with both the output shaft 324 of the motor assembly 318 and the one-way spur gear 328. When the locking clip 412 is in its first position, the protrusion 434 on the locking clip 412 is pressed into the circular slot 422 on the body portion 416 of the pawl assembly 322 to couple the pawl assembly 322 to the locking clip 412 (FIG. 24).

In the pre-fired position of the handle assembly 12 (FIG. 18), the drive nut 322 is positioned near the proximal end of the drive screw 330 and the coupling member 336 is positioned adjacent the distal end of the guide tube 338 such that the connecting rods 334 are in retracted positions and the firing rod 382 is in its retracted position.

FIG. 25 illustrates the handle assembly 12 (FIG. 1) in a fired position. When the stapling device 10 (FIG. 1) is fired by pressing the actuation buttons 20 (FIG. 1), the motor assembly 318 is activated to rotate the output shaft 324. Rotation of the output shaft 324 causes corresponding rotation of the one-way spur gear 328 and the drive screw 330 to advance the drive nut 322 along the drive screw 330 in the direction of arrow "J". As the drive screw 330 advances the drive nut 322, the drive nut 322 advances the connecting rods 334 to advance the firing rod 382 in the direction of arrow "K" and actuate the tool assembly 16 (FIG. 1) as described above regarding stapling device 10 (FIG. 1).

When the tool assembly 16 is in the clamped and fired position (FIG. 11) and the powered stapling device 10 (FIG. 1) becomes inoperable and cannot be unclamped using the motor assembly 318, the manual retract mechanism 322 allows the tool assembly to be manually unclamped. FIGS. 26-28 illustrate operation of the manual retract mechanism 322. In order to operate the manual retract mechanism 322, the pawl assembly 322 is pressed downwardly in the direction of arrows "L" in FIGS. 26-27. When the pawl assembly 322 is pressed downwardly, the locking clip 412, which is coupled to the pawl assembly 322 by the protrusion 434, is moved from its first position to its second position. In its second position, the locking clip 412 disengages from the one-way spur gear 328 such that the biasing member 396 moves the one-way spur gear 328 from its retracted position to its advanced position. In its advanced position, the one-way spur gear 328 is disengaged from the output shaft 324 of the motor assembly 318. When the pawl assembly 322 is pressed downwardly, the ratcheting pawl 418 moves through the window 354 of the gear housing 340 into engagement with the one-way spur gear 328.

After the one-way spur gear 328 is in its advanced position, the handle 414 of the pawl assembly 322 can be rotated in the direction of arrow "M" in FIG. 28 to rotate the one-way spur gear 328 and the drive screw 330 to retract the firing rod 382. As the pawl assembly 322 is rotated, the protrusion 434 moves within the circular slot 422 of the pawl assembly 322.

Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

What is claimed is:

- 1. A powered handle assembly for a surgical device comprising:
 - a housing defining a cavity;
 - a motor assembly including an output shaft and a drive ⁵ gear secured to the output shaft, the motor assembly supported within the housing;
 - a rack received within the housing and movable between a retracted position and an advanced position;
 - a rotating shaft supported within the housing, the rotating 10 shaft including a first portion and a second portion;
 - a spur gear coupled to the rotating shaft such that rotation of the rotating shaft causes rotation of the spur gear, wherein the first portion of the rotating shaft is rotatably fixed to the spur gear, wherein the rotating shaft is movable from a first shaft position to a second shaft position to move the spur gear from a first gear position in which the spur gear is engaged with the drive gear and the rack to a second gear position in which the spur gear is disengaged from the drive gear and engaged 20 with the rack; and
 - a crank lever coupled to the rotating shaft, wherein the second portion of the rotating shaft is engaged with the crank lever, and wherein the crank lever is movable to move the spur gear from the first gear position to the ²⁵ second gear position.
- 2. The powered handle assembly of claim 1, further including a biasing member engaged with the spur gear, the biasing member positioned to urge the spur gear towards the first gear position.
- 3. The powered handle assembly of claim 1, wherein the housing defines an opening and includes a removable cover positioned over the opening, the crank lever accessible through the opening.
- **4.** The powered handle assembly of claim **3**, wherein the crank lever is movable along the second portion of the rotating shaft from a first lever position in which the rotating shaft can rotate independently of the crank lever to a second lever position in which the crank lever is rotatably fixed to the rotating shaft.
- **5**. The powered handle assembly of claim **4**, wherein the crank lever includes a hub that defines a through bore having a rectangular portion, and the second portion of the rotating shaft includes a rectangular portion that is received within the rectangular portion of the through bore when the crank ⁴⁵ lever is in the second lever position.
- **6**. The powered handle assembly of claim **1**, further including first and second C-clips, the second portion of the rotating shaft defining spaced annular grooves that receive the first and second C-clips.
- 7. A powered handle assembly for a surgical device comprising:
 - a housing defining a cavity;
 - a motor assembly including an output shaft and a drive gear secured to the output shaft, the motor assembly ⁵⁵ supported within the housing;
 - a rack received within the housing and movable between retracted and advanced positions;
 - a rotating shaft supported within the housing and accessible through the housing, the rotating shaft including 60 a first portion and a second portion;
 - a spur gear coupled to the rotating shaft such that rotation of the rotating shaft causes rotation of the spur gear,

16

- wherein the first portion of the rotating shaft is rotatably fixed to the spur gear, wherein the spur gear is received within the housing, the spur gear movable from a first gear position in which the spur gear is engaged with the drive gear and the rack to a second gear position in which the spur gear is disengaged from the drive gear and engaged with the rack; and
- a crank lever coupled to the rotating shaft, wherein the second portion of the rotating shaft is engaged with the crank lever, and wherein the crank lever is movable to move the spur gear from the first gear position to the second gear position.
- **8**. The powered handle assembly of claim **7**, further including a biasing member engaged with the spur gear, the biasing member positioned to urge the spur gear towards the first gear position.
- **9**. The powered handle assembly of claim **7**, wherein the housing defines an opening and includes a removable cover positioned over the opening, the crank lever accessible through the opening.
- 10. The powered handle assembly of claim 9, wherein the crank lever is movable along the second portion of the rotating shaft from a first lever position in which the rotating shaft can rotate independently of the crank lever to a second lever position in which the crank lever is rotatably fixed to the rotating shaft.
- 11. The powered handle assembly of claim 10, wherein the crank lever includes a hub that defines a through bore having a rectangular portion, and the second portion of the rotating shaft includes a rectangular portion that is received within the rectangular portion of the through bore when the crank lever is in the second lever position.
- 12. The powered handle assembly of claim 7, further including first and second C-clips, the second portion of the rotating shaft defining spaced annular grooves that receive the first and second C-clips.
- 13. A powered handle assembly for a surgical device comprising:
 - a motor assembly including an output shaft and a drive gear secured to the output shaft;
 - a rack movable in relation to the motor assembly between retracted and advanced positions;
 - a rotating shaft including a first portion and a second portion;
 - a spur gear coupled to the rotating shaft, wherein the first portion of the rotating shaft is rotatably fixed to the spur gear, wherein the rotating shaft is movable from a first shaft position to a second shaft position to move the spur gear from a first gear position in which the spur gear is engaged with the drive gear and the rack to a second gear position in which the spur gear is disengaged from the drive gear and engaged with the rack; and
 - a crank lever coupled to the rotating shaft, wherein the second portion of the rotating shaft is engaged with the crank lever, and wherein the crank lever is movable to move the spur gear from the first gear position to the second gear position.
- 14. The powered handle assembly of claim 13, further including a biasing member engaged with the spur gear, the biasing member positioned to urge the spur gear towards the first gear position.

* * * * *