Discrete Sample Quiz 11 Question 1 (Rosen7e, Ch.10, Q11-Q14).

- (A) K_n (the complete graph on n vertices) has edges and vertices.
- **(B)** $K_{m,n}$ (the complete bipartite graph on sets of sizes m, n) has edges and vertices.
- (C) W_n (wheel graph on n vertices n-gonal pyramid viewed from above) has edges and vertices.
- **(D)** Q_n (*n*-dimensional cube) has edges and vertices.

Question 2 (Rosen7e, Ch.10, Q15-Q17).

- (A) The length of the longest simple circuit in K_5 is
- **(B)** The length of the longest simple circuit in W_{10} is
- (C) The length of the longest simple circuit in $K_{4,10}$ is

Note. A simple circuit in (Rosen2019) is defined as a circular sequence of vertices $v_0, v_1, \ldots, v_n = v_0$, where each two vertices are connected by an edge (and it does not contain any edge more than once).

Question 3 (Rosen7e, Ch.10, Q19-Q24). In each example find the dimensions of a matrix; and number of 0s and 1s in it: Find *X*, *Y*, *Z*, *T*.

- (A) The adjacency matrix for $K_{m,n}$ has size (rows times columns) $X \times Y$; it has Z 0's and T 1's.
- **(B)** The adjacency matrix for K_n has size $X \times Y$; it has Z 0's and T 1's.
- (C) The adjacency matrix for C_n has size $X \times Y$; it has Z 0's and T 1's.
- **(D)** The adjacency matrix for Q_4 has size $X \times Y$; it has Z 0's and T 1's.
- (E) The incidence matrix for W_n has size $X \times Y$; it has Z 0's and T 1's.
- **(F)** The incidence matrix for Q_5 has size $X \times Y$; it has Z 0's and T 1's.

Note. Adjacency matrix is a square matrix of size $|V| \times |V|$, but incidence matrix is a rectangular matrix of size $|V| \times |E|$.

Question 4 (Rosen7e, Ch.10, Q28-Q31).

- (A) List all positive integers n such that K_n has an Euler circuit; what is its length in terms of n?
- **(B)** List all positive integers n such that Q n has an Euler circuit.

Question 5 (Rosen7e, Ch.10, Q43).

If G is a planar connected graph with 12 regions and 20 edges, then G has vertices.

Question 6 (Rosen7e, Ch.10, Q44).

If G is a planar connected graph with 20 vertices, each of degree 3, then G has regions.

Ouestion 7 (Rosen7e, Ch.10, O45).

If a regular graph G has 10 vertices and 45 edges, then each vertex of G has degree

Note. A *regular graph* is a graph where all vertices have the same degree.

Question 8 (Rosen7e, Ch.10, Q59-Q82).

- (A) A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.
- **(B)** A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.
- (C) A simple graph with degrees 1, 2, 2, 3.
- **(D)** A simple graph with degrees 2, 3, 4, 4, 4.
- (E) A simple graph with degrees 1, 1, 2, 4.
- **(F)** A simple digraph with indegrees 0, 1, 2 and outdegrees 0, 1, 2.
- (G) A simple digraph with indegrees 1, 1, 1 and outdegrees 1, 1, 1.
- (H) A simple digraph with indegrees 0, 1, 2, 2 and outdegrees 0, 1, 1, 3.
- (I) A simple digraph with indegrees 0, 1, 2, 4, 5 and outdegrees 0, 3, 3, 3, 3.
- (J) A simple digraph with indegrees 0, 1, 1, 2 and outdegrees 0, 1, 1, 1.
- (**K**) A simple digraph with indegrees: 0, 1, 2, 2, 3, 4 and outdegrees: 1, 1, 2, 2, 3, 4.
- (L) A simple graph with 6 vertices and 16 edges.
- (M) A connected simple planar graph with 5 regions and 8 vertices, each of degree 3.
- (N) A graph with 4 vertices that is not planar.
- (O) A planar graph with 10 vertices.
- **(P)** A planar graph with 8 vertices, 12 edges, and 6 regions.
- (Q) A planar graph with 7 vertices, 9 edges, and 5 regions.

Question 9 (Rosen7e, Ch.10, Q108).

Use Dijkstras Algorithm to find the shortest path length between the vertices a and z in these weighted graphs. (A)

(B)

Question 10 (Rosen7e, Ch.10, Q113).

The picture at the right shows the floor plan of an office. Show that it is impossible to plan a walk that passes through each doorway exactly once, starting and ending at *A*.

Hall's Marriage Theorem (Rosen2019, p.772)

The bipartite graph G = (V, E) with partition of vertices into 2 disjoint sets $V = X \cup Y$ has a maximum matching that saturates X iff for all $A \subseteq X$ we have $|X| \le |N(X)|$.

Note. A *matching* in a graph is a set of of edges such that no two edges share a common endpoint. A *maximum matching* is matching containing the greatest number of edges. And a matching *saturates* a set X, if each vertex $v \in X$ belongs to some matching edge.

Question 11 (Königs Marriage Theorem)

Prove that if all the vertices of a bipartite graph have the same degree, then it has a perfect matching. (Quines2017, p.11); https://cjquines.com/files/halls.pdf

Note. A matching is *perfect*, if it saturates all vertices (every vertex has a pair).

Question 12

We have a regular deck of 52 playing cards, with exactly 4 cards of each of the 13 ranks. The cards have been randomly dealt into 13 piles, each with 4 cards in it. Prove that there is a way to take a card from each pile so that after we take a card from every pile, we have exactly a card of every rank. (Quines2017, p.11).