Please write down your solutions on a separate sheet of paper and submit it to your TA or instructor.

Submit your solutions to Problems (1) \sim (2) on 30th November, 2018.

Submit your solutions to Problems (3) \sim (6) on 12th December, 2018.

1. Evaluate the integral.

(a)
$$(4 \text{ pts}) \int (\cos x + \sin x)^2 \cos 2x \ dx$$

(b) (5 pts)
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$
, $|x| < 3$

(c) (5 pts)
$$\int \frac{dx}{\sqrt{x^2+a^2}}$$

(d) (5 pts)
$$\int \frac{x^2+8x-3}{x^3+3x^2} dx$$

(e) (6 pts)
$$\int_0^a \frac{dx}{(x^2+a^2)^{3/2}}, a > 0$$

(f) (6 pts)
$$\int_0^x \sqrt{a^2 - t^2} dt$$
, $0 \le x \le a$

(g) (7 pts)
$$\int e^{\sqrt[3]{x}} dx$$

2. (7 pts) If
$$0 < a < b$$
, find

$$\lim_{t \to 0} \left\{ \int_0^1 [bx + a(1-x)]^t dx \right\}^{1/t}$$

3. Evaluate the integral or show that it is divergent.

(a)
$$(4 \text{ pts}) \int_{-3}^{3} \frac{x}{1+|x|} dx$$

(b) (5 pts)
$$\int_{1}^{\infty} \frac{\tan^{-1} x}{x^2} dx$$

(c) (7 pts)
$$\int_{-1}^{1} \frac{dx}{x^2 - 2x}$$

(d) (7 pts)
$$\int_{-1}^{\infty} \left(\frac{x^4}{1+x^6}\right)^2 dx$$
 (Hint: $\left(\frac{x^4}{1+x^6}\right)^2$ can be written as $x^3 \cdot f(x)$)

4. We can extend our definition of average value of a continuous function to an infinite interval by defining the average value of f on the interval $[a, \infty)$ to be

$$\lim_{t\to\infty}\frac{1}{t-a}\int_a^t f(x)dx$$

Calculus A-05 Exercise set 4

- (a) (6 pts) Find the average value of $f(x) = \tan^{-1} x$ on the interval $[0, \infty)$.
- (b) (5 pts) If $f(x) \ge 0$ and $\int_a^\infty f(x) dx$ is divergent, show that the average value of f on the interval $[a, \infty)$ is $\lim_{x \to \infty} f(x)$, if this limit exists.
- (c) (5 pts) If $\int_a^\infty f(x)dx$ is convergent, what is the average value of f on the interval $[a,\infty)$?
- (d) (3 pts) Find the average value of $f(x) = \sin x$ on the interval $[0, \infty)$.
- 5. Find the exact length of the curve.

(a) (5 pts)
$$y = 1 + 6x^{3/2}$$
, $0 \le x \le 1$.

- (b) (5 pts) $y = \ln(\sec x), 0 \le x \le \pi/4.$
- (c) (7 pts) $y = \sqrt{x x^2} + \sin^{-1}(\sqrt{x})$ on the whole domain.
- (d) (7 pts) $y = \int_1^x \sqrt{t^3 1} dt$, $1 \le x \le 4$.
- 6. Find the exact area of the surface of revolution.
 - (a) (5 pts) The curve $y = x^3$, $0 \le x \le 2$, rotated about the x-axis.
 - (b) (9 pts) The curve $y = e^{-x}$, $x \ge 0$, rotated about the x-axis.
 - (c) (5 pts) The curve $x = \sqrt{a^2 y^2}$, $0 \le y \le a/2$, rotated about the y-axis.
 - (d) (9 pts) The curve $x^2 + y^2 = r^2$, rotated about the line y = r.