Quivers, 3d gauge theories and 3-mfds

Summary workshop: knots, homologies and physics

Shi Cheng

May-10-2024 Fudan University

w/ P. Sułkowski 2302.13371, 2310.07624

Quivers

Quivers are symmetric matrices

$$P_{C_{ij}}\left(q;x_{1},\cdots,x_{N}\right):=\sum_{d_{1},\ldots,d_{N}=0}^{\infty}\left(-\sqrt{q}\right)^{\sum\limits_{i,j=1}^{N}C_{ij}d_{i}d_{j}}\frac{x_{1}^{d_{1}}x_{2}^{d_{2}}\cdots x_{N}^{d_{N}}}{\left(q;q\right)_{d_{1}}\left(q;q\right)_{d_{2}}\cdots\left(q;q\right)_{d_{N}}}$$

Knots-quivers correspondence

Knots
$$\longrightarrow C_{ij}/\sim$$

Equivalent quivers

Motivation

• We hope to use physics and geometry to understand this correspondence and quivers.

Tools

- 3d N=2 gauge theories: dualities, gauging
- String theories: M-theory/IIB duality, brane webs
- 3-manifolds: surgery, Kirby moves

• We find:

Knots \leftrightarrow Quivers \leftrightarrow 3d N=2 gauge theories \leftrightarrow 3 mfds

3d plumbing theories

 The vortex part. function can be written as quiver generating functions

$$Z^{\text{1-loop}}Z_{\mathfrak{a}}^{\text{vortex}} = P_{C_{ij}}(x_i)$$

• 3d N=2 theories $U(1) \times \cdots \times U(1) + n \Phi_i$

$$K_{ij}^{
m eff} = C_{ij}$$
 mixed CS levels = quivers

Plumbing graphs

• A new quiver diagram:

Notation:

Examples:

$$C_{ij} = \begin{bmatrix} r & k \\ k & s \end{bmatrix}$$

3d dualities

Gauge the mirror duality -> ST-moves

ST-moves: application

Examples

Decoupling

After decoupling the matter, ST-moves reduce to Kirby moves

• Why is it a Kirby move?

Closed 3-manifolds, T[M_3] theories

• In Gadde, Gukov, Putrov "Fivebranes and 4-mfds" [1306.4320]. Pure plumbing theories are realized by wraping a single M5-brane on closed three-manifolds.

Linking number =
$$CSlevels$$

 $Lij = Kij$

Kirby moves

Kirby move is integrating in/out gauge nodes U(1)_k

• For 3-mfds, the Kirby move-I is an equivalent surgery

Question: how to add matters?

• Does the matter <u>to correspondes</u> to some structure on the 3-mfds?

```
How to geometrically realize it?
```

Rational equivalent surgery

The identical surgery, and rational equivalent surgery

An observation

Is the matter an circle for identical surgery?

- However, the identical circle can be ignored on 3-mfds and is not physical, while the matter field is physical.
- So, we should do something to make it physical.
- Before that, let us revisit the GGP's construction using string theory.

Revisit GGP's construction

• Lens space L(k,1) in M-theory should be elliptically fibered:

$$T^{2} = S_{q}^{1} \times S_{\#}^{1}$$

$$= \emptyset \sqcup \emptyset$$

$$2(k, i)$$
Solid torus

Putting a M5-brane on it duals to a brane web of U(1)_k

OV defect -> matter

Adding D5-branes lead to matters

Adding a 1 M5-brane on OV defect in the cotangle bundle realizes a matter field.

• The neighbourd of the intersection is always an idnetical surgery

circle:

• The matter circle/intersection has to be S_q'

		$S^1 \times \mathbb{R}^2$		N_{345}		$I_6 \times T_{9\sharp}^2$				
11d	branes	0	1	2	3	4	5	6	9	#
M-theory	$N_c \text{ M5}$	0	1	2				6	$9_{\rm A}$	#
IIA	N_c D4	0	1	2				6	$9_{\rm A}$	
IIB	N_c D3	0	1	2				6		
IIA	D0									#
IIA	D6	0	1	2	3	4	5		$9_{\rm A}$	
IIB	$D5 \xrightarrow{S} NS5$	0	1	2	3	4	5			
M-theory	M5"	0	1	2	3	4			9 _A	
IIA	NS5"	0	1	2	3	4			$9_{\rm A}$	
IIB	$NS5'' \xrightarrow{S} D5$	0	1	2	3	4			$9_{ m B}$	
M-theory	M2	0					5		$9_{\rm A}$	
IIB	$D1 \xrightarrow{S} F1$	0					5			

• Example:

 $I_6 \times T_{0\#}^2$

The OV construction

A point to clarify: the OV defect does really interect with the 3-mfds.

$$\mathcal{L}_{K} \in T^{*}M_{3}$$
, $\mathcal{L}_{k} = K \times \mathbb{R}^{2}$

$$11$$

$$M_{3} \times \mathbb{R}^{3}$$

$$fiber$$

* The M2-brane is a cylinder, and only when it is massless, the L_K and M_3 will kiss each other:

$$I_k \cap M_3 = K$$
.

ST-move and 3-mfds

• ST-move is a particular Kirby-I move with a OV defect:

Kirby-II

• Kirby-II is a recombination of circles for Dehn surgeries:

• In the presence of the OV defect (or matter):

$$\frac{L_{0}T}{r} \xrightarrow{k} \xrightarrow{\chi} \frac{\chi}{k+nr} \xrightarrow{n^{2}r+s+2nk} \xrightarrow{\chi} \frac{k-\pi}{r} \xrightarrow{n^{2}r+\dots} \frac{\chi}{r} \xrightarrow{n^{2}r+\dots} \frac{\chi}{r}$$

Seiberg duality

SQED-XYZ duality

· Superpotential

$$\mathcal{W} = 0$$

$$\mathcal{W} = \mathcal{F}_1 \mathcal{F}_2 \mathcal{M}$$

· Flower symmetry U(1), X U(1)2

 Gauging these flavor symmetries leads to unlinking, linking, and two other cases

• Seiberg dualities is local, so it could couple to external nodes

• Unfortunately, we have not found the geometric realization of the Seiberg-duality, or in other words, cubic superpotentials.

Dictionary

Quivers	3d N=2 gauge theories	3-mfds
C_{ij}	Mixed CS levels	Linking numbers
Equivalents quivers	Various dualities	Kirby moves w/ matters
(q,q)_d	matters	OV-defects
d_1,d_2,,	Gauge symmetry	Surgery circles

22

Open questions:

• What is the geometrical realization of Seiberg-dualities?

 How to connect quivers and knots using OV constructions? The answer may prove KQ correspondence in an intuitive way.

Non-abelian theories, and F_K invariants

