Пре дисловие	10
Глава 1. Основные понятия, единицы измерения, атом Бора	13
1.1. Введение	13
1.2. Терминология	14
1.3. Характерные энергии, единицы измерения и разновидности части	иц., 19
1.4. Корпускулярно-волновой дуализм и периодичность	
кристаллической решетки	22
1.5 Модель Бора	23
За дачи	25
Литература	26
Глава 2. Атомные столкновения и спектрометрия	
обратного рассеяния	27
2.1. Введение	27
2.2. Кинематика упругих столкновений	28
2.3. Спектрометрия резерфордовского обратного рассеяния	
2.4. Поперечное сечение рассеяния и прицельный параметр	
2.5. Рассеяние в центральном поле	
2.6. Поперечное сечение рассеяния: задача двух тел	38
2.7. Отклонения от законов резерфордовского рассеяния при низких	
и высоких энергиях частиц	40
2.8. Рассеяние ионов низких энергий	
2.9. Спектрометрия атомов отдачи, вылетающих вперед	
2.10. Преобразования при переходе от системы отсчета, связанной	
с центром масс, к лабораторной системе отсчета	47
Задачи	
Литература	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
лава 3. По лучение распределений но глубине с помощью	
обратного рассеяния с использованием измерений	
потерь энергии легких ионон	53
3.1. Висление	53

3.2. Общие закономерности и единицы измерения для потерь эпергии	. 53
3.3. Потери энергии легких ионов высоких энергий в твердых телах	.55
3.4. Потери энергии в химических соединениях и правило Брэгга	.61
3.5. Ширина энергетического спектра в обратном рассеянии	. 62
J.6. Форма спектра обратного рассеяния	. 65
3.7. Получение распределений по глубине с помощью	
резерфордовского рассеяния	. 66
3.8. Разрешение по глубине и флуктуации потерь энергии	. 68
1.9. Анализ распределения водорода и дейтерия по глубине	.73
3.10. Пробеги ионов водорода и гелия	.75
3.11 Распыление и пределы чувствительности	.77
3.12. Перечень формул и соотношений рассеяния	. 79
Задачи	. 79
Литература	. 81
Ілини 4. Профили распыления и масс-спектроскопия	
вторичных ионов	. 83
4.1. Висдение	
4.2. Общие понятия о процессе распыления ионной бомбардировкой	
4.3. Ядерные потери энергии	
4.4. Выход распыления	
4.5. Масс-спектроскопия вторичных ионов (ВИМС-SIMS)	
4.6. Мисс-спектроскопия вторичных нейтральных частиц (BHMC-SNMS	
4.7. Избирительное распыление и анализ распределения по глубине	,
4.8. Уппирение внутренней границы раздела и ионное перемешивание	
4.9. С титистическая модель атома Томаса – Ферми	
Задачи	
Литература	
Глапа 5. Каналирование ионов	113
5.1. Введение	
5.2. Каналирование в монокристаллах	
 5.3. Определение расположения примесей в кристаллической решетке 	
5.4. Распределение потока каналированных частиц	
5.5. Поверхностное взаимодействие в двухатомной модели	
5.6. Поверхностный пик	
5.7. Затенение подложки Ag (111) эпитаксиальным Au	
5.8. Унитаксиальный рост	
5.9. Анализ тонких пленок	
Задачи	
Литература	
2111 - Clarit 2 1/4	/

Глана 6. Электрон-электронные взаимодействия и чувствительность
янализа с помощью электронной спектроскопии к глубине 138
6.1. Введение
6.2. Анализ энергии с помощью методов электронной спектроскопии 138
6.3. Глубина выхода электронов и объем исследуемой области вещества 140
6.4. Псупругие электрон-электронные столкновения
6.5. Поперечное сечение ударной электронной ионизации144
6.6. Плазмоны
6.7. Средняя длина свободного пробега электрона
6.8 . Влияние морфологии тонких пленок на уменьшение выхода электронов
6.9. Пробег электронов в твердых телах
6.10. Спектроскопия энергетических потерь электронов (СЭПЭ-EELS) 157
6.11. Тормозное излучение
Задачи
Литература
Глава 7. Дифракция рентгеновских лучей166
7.1. Введение
7.2. Закон Брэгга в вещественном пространстве
7.3. Измерение коэффициента теплового расширения
7.4. Определение текстуры в тонких поликристаллических пленках 174
7.5. Измерение деформаций в эпитаксиальных слоях
7.6. Кристаллическая структура
7.7. Разрешенные отражения и относительные интенсивности
За дачи
Литература 193
Глава 8. Дифракция электронов194
К.1. Введение
К.2. Обратное пространство
К.3. Урав нения Лауэ
Ж.4. Закон Брэгга
N.5. Построение сферы Эвальда
Н.6. Олектронный микроскоп
М.7. Расшифровка дифрактограмм
За дичи
Литература
Глава 9. Поглощение фотонов в твердых телах и расширенная
ренттеновская спектроскопия поглощения тонкой
структуры (PPCПTC-EXAFS)220
9,1. Введение

9,2. Уравнение Предшитера	.21
9.3. Волновые функции2	23
9.4. Квантовые числа, электронные конфигурации и обозначения2	26
9.5. Вероятность переходов	228
9.6. Фотоэлектрический эффект в приближении прямоугольной ямы 2	229
9.7. Вероятность фотоэлектронного перехода	
для водородоподобного атома2	231
9.8. Поглощение рентгеновского излучения	
9.9. Расширенная рентгеновская спектроскопия поглощения	
тонкой структуры (РРСПТС-EXAFS)2	238
9.10. Нестационарная теория возмущений	
Задачи2	
Литература2	
Глини 10. Рентгеновская фотоэлектронная спектроскопия (РФС-XPS) 2	249
10.1. Введение	
10.2. Экспериментальные методики	250
10.3. Кинетическая энергия фотоэлектронов2	
10.4. Унергетический спектр фотоэлектронов	
10.5. Унергия связи и влияние конечных состояний	
10.6. Сдвиги энергии связи – химические сдвиги	
10.7. Количественный анализ	
Задачи	
Литература2	
Гливи 11. Излучательные переходы и электронный микроанализ	267
11.1. Введение	
11.2. Обозначения в рентгеновской спектроскопии	268
11.3. Дипольные правила отбора	269
11.4. Электронный микроанализ	270
11.5. Скорости переходов для спонтанного излучения	
11.6. Скорость перехода для Ка излучения никеля	
11.7. Электронный микроанализ: количественные данные	
11.8. Рентгеновская эмиссия, возбуждаемая частицами (РЭВЧ-РІХЕ)2	
11.9. Вывод формулы вероятности излучательных переходов	
11.10. Вычисление отношения K_{B}/K_{α}	285
Задачи2	287
Литература2	
Гливи 12. Безызлучательные переходы	
и Оже-электронная спектроскопия	
12.1. Введение	
12.2. Оже-переходы	291

12.3. Выход Оже-электронов и выход флуоресценции	299		
	302 306		
		с помощью Оже-спектроскопии	
		Задачи	
Литература			
Глава 13. Ядерные методики: активационный анализ			
и мгновенный анализ наведенной радиоактивност			
13.1. Введение			
13.2. Значения Q и кинетические энергии	318		
13.3. Радиоактивный распад	322		
13.4. Закон радиоактивного распада	325		
13.5. Получение радионуклидов	326		
13.6. Активационный анализ	327		
13.7. Мгновенный анализ наведенной радиации	329		
Задачи	336		
Лите ратура			
Глава 14. Сканирующая зондовая микроскопия	310		
14.1. Введение			
14.2. Сканирующая туннельная микроскопия			
14.3. Атомно-силовая микроскопия			
и Литература	355		
11 пиножения	356		