세균검측기의 빚수감특성연구

로춘환, 리혜련

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《현시대는 과학기술의 시대이며 과학기술의 발전수준은 나라의 종합적국력과 지위를 규정하는 징표로 됩니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》 단행본 38 폐지)

선행연구[1-3]자료에 의하면 한소편처리소자에 기초하여 세균검측기를 구성함으로써 계수속도와 기록수를 눈금새김곡선을 리용하지 않고 볼수 있게 되여있다.

루미놀과 과산화수소를 반응시킬 때 빛화학반응이 일어나는데 여기에 세균을 첨부하면 그것의 촉매작용으로 빛화학반응의 속도가 빨라진다.

론문에서는 이 원리에 기초하여 빛화학반응이 진행될 때 나오는 빛을 검출하여 세균 검측기의 빛수감특성을 고찰하였다.

1. 세균검측기의 암통과 빚전자증배관

빛화학반응발광신호를 검출하기 위하여 빛전자증배관앞에 암통을 만들어 설치하였다.(그림 1)

그림 1에서 보는바와 같이 암통은 시료통을 넣기 위한 암실, 암실문, 덧 문, 시료주입구, 빛전자증배관고정환으 로 되여있다. 세균검측기의 빛전자증배관 은 《ΦЭУ-39A》를 리용하였다.

그림 1. 세균검측기의 암통구조

및전자증배관 《ΦЭУ-39A》의 기술적특성자료에 기초하여 제작한 빛전자증배관분배기 회로를 그림 2에 보여주었다.

그림 2. 빛전자증배관분배기회로 $R_1,\ R_3=0.5R=300 k\Omega\,,\ R_2,\ R_4{\sim}R_{15}=R=620 k\Omega\,,\ C_1{\sim}C_3=0.047 \mu F$

그림 2에서 저항 R 값은 빛전자증배관 $\langle\!\langle \Phi \rangle \rangle\!\rangle$ 가용지도서에 준 한계저항값에

기초하여 620kΩ으로 선정하였다.

2. 세균검측기에 의한 기록수측정

기록수측정의 정확성은 세균검측기에 구형파발진신호를 주면서 확정하였다. 화학반응을 진행할 때 생긴 빛신호는 증폭된 후 비교기를 거쳐 TTL론리신호로 규격화된다. 이로부터 함수발진기 KENWOOD의 TTL출구신호주파수를 변화시키면서 세균검측기의 예비증폭기입구에 주파수신호를 주어 기록수값을 측정하였다.

측정한 세균검측기의 입구주파수값을 표 1에 주었다.

주파수			측정회수	- 평균	절대오차	상대오차			
/Hz	1	2	3	4	5	- 0 12	/Hz	0-11-71	
80	80	80	80	80	80	80	0	0	
240	240	238	240	239	240	239.4	0.6	0.3	
410	411	413	410	410	410	410.8	0.2	0.01	
610	609	608	610	610	610	609.4	0.6	0.01	
860	865	868	860	859	860	862.4	2.4	0.2	
1 000	1 001	1 002	1 000	1 000	1 000	1 000.6	0.6	0.01	
1 400	1 400	1 398	1 400	1 404	1 400	1 400.4	0.4	0.003	
2 100	2 100	2 108	2 111	2 100	2 100	2 103.8	3.8	0.2	
3 400	3 400	3 399	3 401	3 400	3 400	3 400	0	0	
4 600	4 597	4 598	4 599	4 600	4 600	4 598.8	1.2	0.003	
8 000	8 004	7 988	8 000	8 000	7 995	7 996.6	3.4	0.04	
12 000	12 014	12 012	12 000	11 969	11 997	11 998.4	1.6	0.001	
420 000	420 178	418 227	420 204	419 976	420 287	419 774.4	225.6	0.01	
425 000	423 778	411 469	407 468	423 346	422 987	417 809.2	7 190.8	1.7	
430 000	279 673	263 487	278 946	281 096	268 963	274 433	155 567	56	

표 1. 세균검측기의 입구주파수값

표 1로부터 세균검측기의 입구로 들어오는 신호의 주파수가 1~420kHz인 때에는 제작한 장치의 상대오차가 0.3%미만이였지만 425kHz부터는 오차가 점차적으로 증가하기 시작하여 430kHz부터는 계수를 전혀 진행할수 없다는것을 알수 있다.

이로부터 세균검측기의 최대입구주파수는 420kHz라고 볼수 있다. 오차가 생기게 된 주요원인은 발진기의 주파수가 측정진행중에 조금씩 변하기때문이다.

3. 세균검측기의 빚수감특성

다음으로 빛2극소자를 세균검측기의 암실에 넣고 거기에 미소진폭의 발진신호를 주어 약한 세기의 빛을 내도록 하여 빛증배관이 수감하게 하는 방법으로 장치의 빛수감상 태를 확인하였다. 이렇게 측정한 세균검측기의 빛수감특성자료를 표 2에 주었다.

표 2에서 보는바와 같이 세균검측기의 입구로 들어오는 빛신호의 주파수가 2.2kHz인 때 제작한 장치의 상대오차가 0.01% 미만으로서 매우 작으며 다른 주파수에서도 선택적으로 측정한데 의하면 오차가 0.5%를 초과하지 않았다.

표 2. 세균검측기의 빛수감특성										
측정 시간	주파수			측정수/회	-1 -1	절대	상대			
시간 /min	/Hz	1	2	3	4	5	- 평균	오차 /Hz	오차	
		660 023	660 018	660 014	659 984	660 009	660 009.6	9.6	0.002	
5	2 200	659 974	660 000	659 967	660 063	659 956	659 992.0	8	0.001	
		660 054	660 011	659 985	660 047	659 976	660 014.6	14.6	0.002	
		660 027	660 053	659 913	660 019	659 899	659 982.2	17.8	0.003	
		660 048	660 000	660 086	659 987	660 027	660 029.6	29.6	0.010	

맺 는 말

- 1) 암실조건을 충분히 보장할수 있는 세균검측기의 암통을 설계제작하고 빛전자증배 관의 분배기회로를 만들어 개발한 장치가 필요한 정확도로 발진신호나 빛신호를 정확히 측정한다는것을 밝혔다.
 - 2) 세균검측기의 입구신호최대주파수한계가 420kHz라는것을 확정하였다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학) 59 6, 77, 주체102(2013).
- [2] 로춘환, 윤철수 《세균검측기에 대한 연구》 **김일성**종합대학창립70돐기념 전국부문별과학 토론회(력학, 재료, 원자력), 121, 주체105(2016).
- [3] 김일성종합대학학보(자연과학), 63, 3, 73, 주체106(2017).

주체106(2017)년 12월 5일 원고접수

Photo-Sensing Property of Bacterium-Detecting Device

Ro Chun Hwan, Ri Hye Ryon

In this paper we have designed and manufactured a dark box for bacterium-detecting device and a distributor circuit of the photomultiplier tube and have proved that this instrument made it possible to measure the generating signals or light signals with necessary accuracy.

Key words: bacterium-detecting device, dark box