Vertiefung Analysis (Analysis 3)

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 25, 2023)

I. 17/10/23

Maß-und Integrationstheory

A. Bücher

- 1. Escher Analysis III
- 2. Forstes Analysis 3
- 3. Elstratt Maß- und Integrationstheorie

Kann man $A \subseteq \mathbb{R}^3$ Volumen zuweisen?

a. Inhaltsproblem Man sollte eine Abbildung finden

$$m: \mathcal{P} \to [0, +\infty].$$

Eigenschaften von m:

1.

$$m(A \cup B) = m(A) + m(B)$$
 für $A \cap B = \emptyset$.

2.

$$m(A) = m(\beta(A)),$$

wobei $\beta: \mathbb{R}^n \to \mathbb{R}^n$ eine Bewegung ist.

3.

$$m([0,1]^n) = 1,$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

- 4. Es hat für $n \geq 3$ keine lösung.
- 5. Nicht trivial wegen des Banach-Tarski-Paradox

Von (2) und (3) errichen wir die Folge

Theorem 1.

$$m\left(\bigcup_{j=1}^{\infty}\right) = \sum_{j=1}^{\infty} m(A_j),$$

für paarweise disjunkt, also

$$A_i \cap A_j = \varnothing, i \neq j.$$

Proof. Es gibt keine Lösung für alle n.

Definition 2. Eine Teilmenge $\mathcal{A} \subseteq \mathcal{P}(X)\mathcal{A} \subseteq \mathcal{P}(X)$ heißt $\sigma-$ Algebra, falls es die folgende Eigenschaften hat:

- 1. $x \in \mathcal{A}$
- 2. $A \in \mathcal{A} \implies A^c \in \mathcal{A}$
- 3. $(A_j), A_j \in A \implies \bigcup_j A_j \in \mathcal{A}$

Theorem 3. Sei A ein σ -Algebra über X. Dann

- 1. $\emptyset \in X$
- 2. $A_1, A_2 \in A \implies A_1 \cap A_2 \in X \text{ und } A_1$ $A_2 \in X$

3.
$$(A_j)A_j \in X \implies \bigcap_{j=1}^{\infty} A_j \in X$$

Proof. Beachten:

$$A^{c} = \varnothing \in \mathcal{A}.$$

$$A_{1} \cap A_{2} = (A_{1}^{c} \cup A_{2}^{c})^{c}.$$

$$A_{1}A_{2} = A_{1} \cap A_{2}^{c}.$$

$$\bigcap_{i=1}^{\infty} A_{j} = \left(\bigcup_{i=1}^{\infty} A_{j}^{c}\right)^{c}.$$

Example 4. Sei $X = \{1, 2, 3\}$. Dann ist

$$\mathcal{A} = \{\emptyset, X, \{1, 2\}, \{3\}\}$$

 $ein \ \sigma-\ Algebra.$

Theorem 5. Sei A und B σ -Algebra über X und Y. Dann sind

$$f^{-1}(\mathcal{B}) = \left\{ f^{-1}(B), B \in \mathcal{B} \right\}$$
$$f_*(\mathcal{A}) = \left\{ B \subseteq Y : f^{-1}(B) \in \mathcal{A} \right\}$$

 $auch \ \sigma$ -Algebren

Proof. Wir beweisen es nur für f_* .

- 1. $Y \in f_*(\mathcal{A})$, weil $f^{-1}(Y) = X \in \mathcal{A}$
- 2. Sei $B \in f_x(\mathcal{A})$. Dann gilt

$$f^{-1}(B^c) = (f^{-1}(B))^c \in \mathcal{A}.$$

3. Sei $(B_j), B_j \in f_*(\mathcal{A} \forall j)$. Dann ist

$$f^{-1}\left(\bigcup_{j=1}^{\infty} B_j\right) = \bigcup_{j=1}^{\infty} f^{-1}(B_j) \in \mathcal{A}.$$

Lemma 6. Sei I nichtleer, und A_i σ -Algebran für jeder $i \in I$. Dann ist

$$\bigcap_{i\in I} \mathcal{A}_i$$

 $ein \ \sigma$ -Algebra

Definition 7. Sei $X \subseteq \mathcal{P}(X)$. Dann wird es definiert

$$A_{\sigma}(S) = \bigcap \{ \mathcal{A} : \mathcal{A} \text{ ist ein } \sigma\text{-Algebra mit } S \subseteq \mathcal{A} \}.$$

Corollary 8. Ist A σ -Algebra mit $S \subseteq A$, dann

$$\mathcal{A}_{\sigma}(S) \subseteq \mathcal{A}$$
.

Theorem 9. Die Abbildung $S \to A_{\sigma}(S)$ hat folgende Eigenschaften:

1.
$$S \subseteq \mathcal{A}_{\sigma}(S)$$

2.
$$S \subseteq T \subseteq \mathcal{P}(X) \implies \mathcal{A}_{\sigma}(S) \subseteq \mathcal{A}_{\sigma}(T)$$

3.
$$A_{\sigma}(A_{\sigma}(S)) = A_{\sigma}(S)$$

Example 10. *Sei* $S = \{\{x\}, x \in X\}$ *. Dann ist*

$$\mathcal{A}_{\sigma}(S) = \{A \subset X, A \text{ oder } A^c \text{ abz\"{a}hlbar (countable)}\}.$$

Proof. 1. $x \in A$ weil $A^c = \emptyset$ ist abzählbar

- 2. Es ist klar, dass $A \in \mathcal{A} \implies A^c \in \mathcal{C}$.
- 3. Sei $(A_j), A_j \in \mathcal{A}$. Dann, entweder
 - (a) alle A_j abzählbar sind und daher

$$\bigcup_{j=1}^{\infty} A_j.$$

abzählbar ist, oder mindestens eine A_i^c abzählbar ist, wobei

$$\left(\bigcup_{j=1}^{\infty} A_j\right)^c = \bigcap_{j=1}^{\infty} A_j^c$$

abzählbar ist.

4. Zu zeigen:

$$\mathcal{A} \subseteq \mathcal{A}_{\sigma}(S)$$
.

Sei $A \in \mathcal{A}$. Angenommen A ist abzählbar. Dann

$$A = \bigcup_{j=1} \infty \{a_j\} \in A_{\sigma}(S).$$

Definition 11. Sei (X, d) metrischer Raum. Dann ist τ die Menge alle offene Menge. Wir definiert

$$\mathcal{B}(X) := A_{\sigma}(\tau)$$

und nennt das als das Borel- σ -Algebra.

b. Frage Warum muss das ein metrischer Raum sein?

Theorem 12. Sei (X, d) ein metrischer Raum. Sei C die Menge der abgeschlossenen Mengen und K die menge der kompakten Mengen. Dann ist

$$\mathcal{B}(X) = \mathcal{A}_{\sigma}(\mathcal{C})$$

Es existiert auch K_j kompakt, wofür gilt

$$\mathcal{B}(X) = \mathcal{A}_{\sigma}(\mathcal{K})$$

wobei
$$X = \bigcup_{j=1}^{\infty} K_j$$

Proof. 1. \mathcal{A} offen \iff A^c abgeschlossen

2. Kompakte Menge sind abgeschlossen $\implies A_{\sigma}(\mathcal{K}) \subseteq A_{\sigma}(\mathcal{C})$.

Sei \mathcal{C} abgeschlossen. Dann gilt

$$C = C \cap X = C \cap \left(\bigcup_{j=1}^{\infty} K_j\right) = \bigcup_{j=1}^{\infty} \left(\underbrace{C \cap K_j}_{\text{kompakt}}\right) \in A_{\sigma}(K).$$

Definition 13. Sei $a, b \in \mathbb{R}^n$. Dann definieren wir

$$a \leq biffa_i \leq b_i \forall i \in \{1, 2, \dots, n\}$$
.

II. 18/10/23

Theorem 14. Jede offene Menge des \mathbb{R}^n ist eine disjunkte abzählbare Vereinigung von halboffenen Würfeln mit rationalen Eckpunkten.

Proof. Für $k \in \mathbb{N}$ definiere

$$M_k := \left\{ \left(\prod_{i=1}^n \left[\frac{x_i}{2^k}, \frac{x_i+1}{2^k} \right) \right), x \in \mathbb{Z}^n \right\}.$$

Remark 15. (Produkt σ -Algebra) Sei (X_1, A_1) und (X_2, A_2) σ -Algebra. Wir bildet man ein σ -Algebra auf $X_1 \times X_2$?

 $Leider\ ist$

$$\{A_1 \times A_2, A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}.$$

 $kein\ \sigma\text{-}Algebra.$

Leider ist die Vereinigung kein Produkt-Menge

III. 24/10/23

Definition 16. Sei \mathcal{A} eine σ-Algebra über X, und $\mu : \mathcal{A} \to [0, \infty]$ Mengefunktion. Wenn μ σ-Additiv ist, heißt μ Maß.

Ist $\mu(X) = 1$, dann heißt μ Wahrscheinlichkeitsmaß.

Example 17. Sei

$$\varphi(A) = \begin{cases} 1 & A \neq \varphi \\ 0 & A = \varphi \end{cases}.$$

Dann ist φ endlich und σ -subadditiv. Aber weil es nicht σ -Additiv ist, ist es keinen Ma β .

Definition 18. Sei (X, \mathcal{A}) eine σ -Algebra über X und $a \in X$. Dann ist

$$\varphi(A) = \begin{cases} 1 & a \in A \\ 0 & a \notin A \end{cases}.$$

ein Maß (Dirac-Maß)

Example 19. Sei $\varphi(A) = anzahl der Elemente von A. Dann ist <math>\varphi$ ein Ma β .

Theorem 20. 1.
$$\mu(A \cap B) + \mu(A \cup B) = \mu(A) + \mu(B)$$

- 2. Falls $A \subseteq B$, dann ist $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 3. Falls $A \subseteq B$, dann $\mu(A) \le \mu(B)$
- 4. Falls $A_1 \subseteq A_2 \subseteq A_3 \dots$, $dann \lim_{k \to \infty} \mu(A_k) = \mu\left(\bigcup_{j=1}^{\infty} A_j\right)$.
- 5. Falls $A_1 \supseteq A_2 \supseteq A_3 \dots$ und $\mu(A_1) < \infty$, dann ist $\lim_{k \to \infty} \mu(A_k) = \mu\left(\bigcap_{j=1}^{\infty} A_j\right)$

Proof. 1.

$$A \cup B = A \cup (B \setminus A)$$

$$B = (B \setminus A) \cup (A \cap B)$$

$$\mu(B \setminus A) = \mu(A \cup B) - \mu(A) = \mu(B) - \mu(A \cap B)$$

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

- 2. $B = A \cup (B \setminus A)$, und daher $\mu(B) = \mu(A) + \mu(B \setminus A)$.
- 3. $\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$.

Definition 21. Eine Menge $M \in \mathcal{A}$ heißt Nullmenge, Falls $\mu(M) = 0$. Der Maßraum heißt vollständig, wenn gilt: $M \subseteq N, N$ Nullmenge impliziert $M \in \mathcal{A}$ (alle Teilmenge von Nullmengen sind messbar)

Corollary 22. Abzählbare Vereinigung von Nullmengen ist Nullmenge.

Definition 23. Eine Abbildung $\mu^* : [0, +\infty]$ heißt äußeres Maß, falls gilt:

- 1. $\mu^*(\emptyset) = 0$
- 2. $\mu*$ ist monoton, d.h $A\subseteq B\implies \mu^*(A)\leq \mu^*(B)$
- 3. μ^* ist σ -subadditiv