

RepMode

Donghao Zhou, Chunbin Gu, Junde Xu, Furui Liu, Qiong Wang, Guangyong Chen, Pheng-Ann Heng

Introduction

The model tackles the problem of fluorescence staining, which is a process in which subcellular structures are tainted in order to enhance their visibility.

Fluorescence staining

The model receives as input a 3D transmitted-light image and aims to get the fluorescence stained image.

The basics - tasks

Task Awareness

We want to highlight different areas of the sample

Each subcellular structure is considered a task

The transmitted-light image scan of the sample contains many different structures

The model needs to use different scales

MoDE block

The network employs a block called Mixture of Diverse Experts (MoDE).

IDEA BEHIND: each expert is an **independent learner**, whose output is later combined with the other experts' output in order to obtain a prediction. Different combinations of experts **can solve different tasks**.

MAIN ADVANTAGE: ability to compress information from different tasks into a single block.

TLDR: The experts are just different convolutions.

Only one learnable parameter Full nine learnable parameters A-Conv 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 Serial Merging

	Normal Conv			
,	1.21	0.22	0.93	
	0.28	0.86	1.05	
	0.10	0.57	0.42	

(a) Shape Diversity

(b) Kernel Diversity

A-Conv: 1 parameter

Normal Conv: K x K parameters

Each MoDE block combines the output of the five experts.

Two merging operations are needed:

To generate the A-Conv kernel by applying the 2 operations in series

To merge the 5 experts in just one single convolution

For task incremental learning the model can be retrained with an added expert

Benefits

- Efficient
- Continual Learning (prevents Catastrophic Forgetting)
- End-to-End
- Every sample contributes to the training (= for all the tasks)

Architecture

(b) RepMode

Architecture

Tensor shapes along the network:

```
I. [1,64,64,64]
II. [16,32,32,32]
III.[32,16,16,16]
  IV.[64,8,8,8]
 V. [128,4,4,4]
 VI.[256,4,4,4]
 VII.[128,8,8,8]
VIII.[64,16,16,16]
IX.[32,32,32,32]
X. [16,64,64,64]
 XI.[1,64,64,64]
```


Extension

Can this model be used for anything else? How can it be improved?

Well...

...we need something that

Has few labeled examples

Has various tasks

Is computationally expensive

3D data

Vesuvius Challenge

Has few labeled examples

Has various tasks

Is computationally expensive

3D data

The task

Unwrapping

Ink Detection

Modifications

Updating the model from [7]:

- FReLU [2] and Mish [6]
- AdamW with LR scheduler [3]
 - DiceLoss, softBCE [9]
 - 2D image extraction

Data Augmentation (Analysis)

Data Analysis

The data seems to have the same distribution despite the presence or absence of ink.

Network Analysis

Other model using 2D decoder [11] instead of a 3D one

Results Analysis

Inception architecture

Used for ACTION RECOGNITION like we saw in class but without the action prediction part.

Comparison:

Higher expressing capabilities
Way more expensive

Model Uncertainty

Sometimes the model doesn't know it doesn't know...

Improvement idea:

Monte Carlo Dropout

- → more accurate measure of uncertainty in the model's predictions
- → a way to make a deep NN more "bayesian"
- → achieved by sampling models and average them
- 1. Train the network.
- 2. Extract the gating parameters, as well as the different expert kernels.
- 3. Add dropout on the input before each MoDE block (with dropout active also during evaluation). Also add random noise to the gating.
- 4. For inference, compute the predictions many times.
- 5. Average the results for each model.

Model Uncertainty

Single Prediction

Average from 60 models

Average from 360 models

Results

MODEL	LOSS 1 average(BCE,DL)	DESCRIPTION
RepMode with 2D module	0,4513	Using all RAW training data, NO DO, NO augmentations
RepMode 2	0,377	Data normalized, custom dataset, augmentations
RepMode Buckets	0,2639	Data normalized, custom dataset, NO augmentations
RepMode Buckets v2	0,2539	Data normalized, custom dataset, NO augmentations, DO
2D decoder 16xRepMode	0.52	No normalization, custom dataset, augmentations, NO DO

- > No official metrics, no benchmarks available. Evaluation is mostly done by human experts on some unlabeled sections.
- ➤ It is a challenge, so almost every team is secretly evaluating the models without sharing the results.
- ➤ Similarity metrics[13] don't reflect the actual performance of the network

That's it!

Thank you for the attention

For more in depth information regarding the project refer to [12].

References

- [1] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset https://arxiv.org/pdf/1705.07750v1.pdf
- [2] FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks https://arxiv.org/pdf/1706.08098.pdf
- [3] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour https://arxiv.org/abs/1706.02677
- [4] Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/pdf/1506.02142.pdf?
- [5] Dropout: A Simple Way to Prevent Neural Networks from Overfitting https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
- [6] Mish: A Self Regularized Non-Monotonic Activation Function https://arxiv.org/pdf/1908.08681.pdf
- [7 CODE] https://github.com/Correr-Zhou/RepMode
- [8] RepMode https://arxiv.org/pdf/2212.10066.pdf
- [9] Segmentation Models Pytorch Losses https://smp.readthedocs.io/en/latest/losses.html
- [10] Vesuvius Challenge https://scrollprize.org/
- [11] Lossy image compression with compressive autoencoders https://arxiv.org/pdf/1703.00395.pdf
- [12] Our In-Depth version https://it.overleaf.com/read/sfshcpkrktnm#c38bff
- [13] Image Quality Assessment: From Error Visibility to Structural Similarity wang03-reprint.pdf (nyu.edu)

Papers

- Loss Functions for Image Restoration with Neural Networks https://arxiv.org/pdf/1511.08861.pdf
- Gradual warmup
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks https://arxiv.org/pdf/1809.00219.pdf
- FRELU
- Bayesian NN dropout
- Inception https://arxiv.org/pdf/1705.07750v1.pdf
- Masked Autoencoders Are Scalable Vision Learners https://arxiv.org/pdf/2111.06377.pdf

Resource Page

Use these design resources in your Canva Presentation.

Use these design resources in your Canva Presentation.

Titles: Playfair Display Black

Headers: Lato

Body Copy: Lato

You can find these fonts online too. Happy designing!

*** Don't forget to delete this page before presenting.

