Probe-Free Low-Rank Intervention

Chonghe Jiang
Chinese University of Hong Kong
POMS-HK, 2025

Probe-Free Low-Rank Intervention

LLM Task + OR Technique =

Chonghe Jiang
Chinese University of Hong Kong

joint work with
Bao Nguyen (CUHK)
Anthony Man-Cho So (CUHK)
Viet Anh Nguyen (CUHK)

LLM can give untruthful answers

What is the smallest country in the world that is greater than 10 km²?

Prompt

LLM can give untruthful answers

What happens if we eat melon seeds?

Key question: With minimal invasion, how can we promote truthful generation?

Solution - Controllable Generation

Activation Intervention - Advantages & Challenges

- Advantage:
 - It does not require text samples to change the model
 - Instead, it edits the activation vector in the inference time
- Challenge I: Detect true vs untrue during generation (inference)
 - Human uses words, computer uses number
 - LLMs are complex
- Challenge II: Operational constraints
 - Resources for training (memory)
 - Resources for deployment (memory, time)
 - Explainability

An Overview of Prior Arts

Can we eliminate the detection step?

- Ideas: drop detection, intervene all-the-time
- Goal: high quality + efficient
 - Truthful activations should not be modified too much
 - Untruthful activations should be corrected
 - The intervention method should be computationally efficient

We need to understand how LLMs represent "knowledge" and generate texts

Patching Question and Answer

What happens if we eat melon seeds? Nothing.

We need to understand how LLMs represent "knowledge" and generate texts

Simplified tokenization: word level

We need to understand how LLMs represent "knowledge" and generate texts

Token + positional embeddings

$$x_i \in \mathbb{R}^{4096}$$

$$normalize(input) = \frac{input - mean}{standard deviation}$$

$$normalize(input) = \frac{input - mean}{standard deviation}$$

Focus on one layer

Contains the largest amount of information

eat

seeds

 $\left(10\right)$

Activations of the last token

- ullet Patch text, pass it through the LM to get activations of the last token at layer ℓ
- We always take the last token, so we drop the index $a_{10}^\ell \to a$

Main Idea

- We work on the high-dimensional vector space
- We establish generalizable intervention methods

Desirable Region: Ellipsoid Model

Activations dimension 4096

Desirable region is an ellipsoid:

$$\mathcal{E} = \{ a : (a - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (a - \hat{\mu}) \le \rho \}$$

Projection onto the desirable region

$$\operatorname{Proj}_{\mathcal{E}}(x) = \arg\min_{a \in \mathcal{E}} (a - x)^{\top} \widehat{\Sigma}^{-1} (a - x)$$

- Difficulty: each question has a different good region
- Difficulty: characterize the region with limited information

Desirable Region: Ellipsoid Model

Desirable region is an ellipsoid:

$$\mathcal{E} = \{ a : (a - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (a - \hat{\mu}) \le \rho \}$$

- Difficulty: each question has a different good region
- Difficulty: characterize the region with limited information

$$\hat{\mu}_{q} = \hat{\mu}_{q}^{+} + \lambda \left[\alpha \underbrace{\frac{\hat{\mu}_{q}^{+} - \hat{\mu}_{q}^{-}}{\|\hat{\mu}_{q}^{+} - \hat{\mu}_{q}^{-}\|}}_{+(1-\alpha)} + (1-\alpha) \underbrace{\frac{\hat{\mu}^{+} - \hat{\mu}^{-}}{\|\hat{\mu}^{+} - \hat{\mu}^{-}\|}}_{-\|\hat{\mu}^{+} - \hat{\mu}^{-}\|} \right]$$

Ellipsoid Model Parameter

Activations dimension 4096

Parametrized Mapping: Low-rank

Desirable region is an ellipsoid:

$$\mathcal{E} = \{ a : (a - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (a - \hat{\mu}) \le \rho \}$$

Projection onto the desirable region

$$\operatorname{Proj}_{\mathcal{E}}(x) = \arg\min_{a \in \mathcal{E}} (a - x)^{\top} \widehat{\Sigma}^{-1} (a - x)$$

Learn a parametrized mapping:

$$f: a \mapsto (I + L(a)R^{\top})a + s$$
 Low-rank matrices

Different Mappings

Parametrized Mapping: Low-rank

$$L(a) \in \mathbb{R}^{D \times k}, R \in \mathbb{R}^{D \times k}, s \in \mathbb{R}^{D \times 1}.$$

$$L_i(a) = \tanh(W_i \circ a + b_i), \forall i \in [k]$$

Parametrized Mapping

Desirable region is an ellipsoid:

$$\mathcal{E} = \{ a : (a - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (a - \hat{\mu}) \le \rho \}$$

Projection onto the desirable region

$$\operatorname{Proj}_{\mathcal{E}}(x) = \arg\min_{a \in \mathcal{E}} (a - x)^{\top} \widehat{\Sigma}^{-1} (a - x)$$

Learn a parametrized mapping:

Low-rank, nonlinear, stable training

From Model to Optimization Problem

Activations for different questions

Desirable region is an ellipsoid:

$$\mathcal{E} = \{ a : (a - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (a - \hat{\mu}) \le \rho \}$$

Projection onto the desirable region

$$\operatorname{Proj}_{\mathcal{E}}(x) = \arg\min_{a \in \mathcal{E}} (a - x)^{\top} \widehat{\Sigma}^{-1} (a - x)$$

Learn a parametrized mapping:

$$f: a \mapsto (I + L(a)R^{\top})a + s$$
Low-rank matrices

Learn a parametrized mapping:

$$\min_{f} \sum_{q} \sum_{i \in \mathcal{B}(q) \cup \mathcal{G}(q)} c_q(f(a_i), \operatorname{Proj}_{\mathcal{E}_q}(f(a_i)))$$

Optimization Problem: Discussion

Problem

Optimization problem:

$$\min_{f} \sum_{q} \sum_{i \in \mathcal{B}(q) \cup \mathcal{G}(q)} c_q(f(a_i), \operatorname{Proj}_{\mathcal{E}_q}(f(a_i)))$$

- Why ellipsoid?
- Why such loss function?
- Potential challenges in solving the problem?
- Equivalent formulation:

$$\min_{f} \sum_{q} \sum_{i \in \mathcal{B}(q) \cup \mathcal{G}(q)} \left[\left(\sqrt{c_q(f(a_i), \hat{\mu}_q)} - \sqrt{\rho_q} \right)_+ \right]^2$$

Performance

Methods	True * Info (%) †	True (%) †	MC1↑	MC2↑	CE↓	KL ↓
Unintervened	51.87	59.86	35.38	53.32	2.31	0.00
ITI	57.02	63.04	37.46	55.59	2.32	0.17
FLORAIN (ours)	60.68	67.70	39.65	59.57	2.35	0.18
FSP	55.97	58.63	40.76	57.84	2.31	0.00
FSP + ITI	56.78	59.24	41.50	59.01	2.33	0.13
FSP + FLORAIN (ours)	61.14	62.45	44.52	61.48	2.37	0.16

(c) Llama2-chat-13B

Take away

- Keywords: ellipsoid model + low-rank mapping + optimization problem
- Future directions: region modeling in LM