Técnicas Digitales III

Trabajo práctico: Etapas típicas en procesamiento digital de señales

1. Generación de una señal con cierta frecuencia de muestreo

Escriba un programa en Python que grafique una función senoidal con las siguientes especificaciones:

Frecuencia: 100 Hz.

Frecuencia de muestreo: 1000 Hz.

Tiempo inicio: 0 s. Tiempo final: 0.5 s.

2. Agregar ruido a una señal

Escriba un programa en Python que permita agregar ruido blanco gaussiano a la señal del Ejercicio 1 cierta cantidad .

- 1. El prototipo de la función debe ser signal_n = my_awgn(signal, snr). Los datos de entrada son el vector signal y el escalar snr.
- 2. Obtenga el valor de la varianza del ruido a partir de la ecuación:

1.
$$SNR = 10log \frac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

- 3. Utilice la función numpy.random.normal() para generar una señal con ruido blanco gaussiano.
- 4. La varianza de signal se puede calcular con la función np.var (signal)
- 5. Compare las salidas de las funciones my_awgn y la function awgn de la biblioteca commpy:

from commpy.channels import awgn

6. Calcule el error cuadrático medio (RMSE, root mean squared error) entre la señal original (signal) y las señales con ruido (signal_n). Utilice mean squared error de scikit-learn

from sklearn.metrics import mean squared error

3. Cuantización de una Onda Senoidal

- Genera una onda senoidal continua con una frecuencia de 5 Hz y una tasa de muestreo de 100 muestras/segundo. La duración de la señal debe ser de 1 segundo.
- 2. Cuantifica la señal en 4, 8 y 16 niveles discretos. Utilice np.digitize().
- 3. Grafica la onda senoidal original y las versiones cuantificadas en el mismo gráfico.
- 4. Observa la diferencia en la calidad de las señales cuantificadas a medida que aumenta el número de niveles.

4. Cuantización de una Onda Senoidal usando Notación Q

- Genera una onda senoidal continua con una frecuencia de 5 Hz y una tasa de muestreo de 100 muestras/segundo. La duración de la señal debe ser de 1 segundo.
- Cuantifica la señal usando las notaciones Q3.4 y Q0.7.
- 3. Grafica la onda senoidal original y las versiones cuantificadas en el mismo gráfico.
- Observa la diferencia en la calidad de las señales cuantificadas para las dos notaciones Q.

5. Efecto de Aliasing

Objetivo: Entender las implicaciones del teorema de muestreo de Nyquist-Shannon y observar el efecto de aliasing debido al submuestreo.

Instrucciones:

- 1. Genera una onda senoidal continua con una frecuencia de f1=45 Hz.
- 2. Muestrea la onda senoidal en dos diferentes tasas de muestreo: fs1=50 Hz y fs2=100.
- 3. Grafica la onda senoidal continua y sus versiones muestreadas en el mismo gráfico.
- 4. Luego, genera una onda senoidal continua con una frecuencia de f2=55 Hz y muestrea esta a fs1=50 Hz. Grafica esta onda senoidal y su versión muestreada en un gráfico separado.
- 5. Compara las versiones muestreadas de las dos ondas senoidales a fs1=50 Hz. ¿Qué observas?

1.

6. Error de cuantización, aspectos teóricos

8. Suponga que tenemos un ADC de 12 bits que opera sobre un rango de ±5 V. Asuma que el ADC es ideal y que su función de transferencia está dada por la siguiente figura,

- 1. ¿Cuál es el nivel de cuantización q del ADC, dado en voltios?
- 2. Si se aplica una señal compleja de 4 V pico a pico, ¿qué nivel de SNR_{ADC} se puede esperar? Desarrolle la respuesta.