Classical Mechanics: Assignment #1

February 12, 2014

Aditya Vijaykumar

Problem 1

Part (a)

$$V(x) = \alpha x^{2}/2 + \beta x^{4}/4$$
$$F(x) = -\frac{\partial V}{\partial x} = -\alpha x - \beta x^{3}$$

Including the damping term, we write the equation of motion as,

$$m\ddot{x} + \delta \dot{x} = -\alpha x - \beta x^3$$

$$m\ddot{x} + \delta\dot{x} + \alpha x + \beta x^3 = 0$$

The total energy of the system $E = T + V = m\dot{x}^2/2 + \alpha x^2/2 + \beta x^4/4$. Taking the time derivative, one gets

$$\dot{E} = m\ddot{x}\dot{x} + \alpha x\dot{x} + \beta x^3\dot{x}$$

Substituting from the equation of motion for $m\ddot{x}$,

$$\dot{E} = -(\delta \dot{x} + \alpha x + \beta x^3)\dot{x} + \alpha x\dot{x} + \beta x^3\dot{x}$$

$$\dot{E} = -\delta \dot{x}^2$$

Hence energy is dissipated from the system at a rate $\delta \dot{x}^2$.

Problem 2

Give an appropriate positive constant c such that $f(n) \leq c \cdot g(n)$ for all n > 1.

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

Solution

We solve each solution algebraically to determine a possible constant c.

Part One

$$n^{2} + n + 1 =$$
 $\leq n^{2} + n^{2} + n^{2}$
 $= 3n^{2}$
 $\leq c \cdot 2n^{3}$

Thus a valid c could be when c=2.

Part Two

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

Thus a valid c is c = 2.

Part Three

$$n^{2} - n + 1 =$$

$$\leq n^{2}$$

$$\leq c \cdot n^{2}/2$$

Thus a valid c is c = 2.