Polyhedral geometry 4

Computational Visual Design (CVD-Lab), DIA, "Roma Tre" University, Rome, Italy

Computational Graphics 2012

Convex coordinates and volume

The convex coordinates (α, β, γ) of a point $\mathbf{s} \in \operatorname{conv}(\mathbf{p}, \mathbf{q}, \mathbf{r}) \subset \mathbb{E}^d$ can be defined as the ratios between the areas of suitable triangles. In particular:

$$\alpha = \frac{\mathrm{area}(\mathbf{s}, \mathbf{q}, \mathbf{r})}{\mathrm{area}(\mathbf{p}, \mathbf{q}, \mathbf{r})}, \quad \beta = \frac{\mathrm{area}(\mathbf{p}, \mathbf{s}, \mathbf{r})}{\mathrm{area}(\mathbf{p}, \mathbf{q}, \mathbf{r})}, \quad \gamma = \frac{\mathrm{area}(\mathbf{p}, \mathbf{q}, \mathbf{s})}{\mathrm{area}(\mathbf{p}, \mathbf{q}, \mathbf{r})}.$$

This property immediately generalizes to any convex set in any *d*-dimensional space, by using ratios of volumes of *d*-simplices.

examples of both affine or convex independence

- 1. two distinct points are independent in any \mathbb{E}^d , $d \geq 1$;
- 2. three non-colinear points are independent in any \mathbb{E}^d , $d \geq 2$;
- 3. four non-coplanar points are independent in any \mathbb{E}^d , $d \geq 3$;
- 4. d+1 points not belonging to the same affine subspace of codimension 1 (i.e.~dimension d-1) are independent in any \mathbb{E}^D , D>d;
- 5. m points are convexely independent if none of them is in the convex hull of the other m-1 points.

Convex polygon

The vertices of a convex polygon in \mathbb{E}^2 are convexly independent, as none of them can be generated as a convex combination of the others; idem for a convex polyhedron in \mathbb{E}^d

each vertex of a convex polygon is external to the convex hull of the others; convex coordinates of an internal point are not unique when the point is contained in more than one simplex

▶ points in conv $\{\mathbf{p}_0, \dots, \mathbf{p}_n\}$, with $\mathbf{p}_0, \dots, \mathbf{p}_n \in \mathbb{E}^d$, have non unique convex coordinates when d < n

Parametric form of affine sets

The affine subspace generated by d+1 affinely independent points $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_d \in \mathbb{E}^n$, also called a d-flat, can be written in parametric form as an affine function of d independent real parameters:

$$S(\alpha_1,\ldots,\alpha_d) = \{ \mathbf{p} \in \mathbb{E}^n | \mathbf{p} = \mathbf{p}_0 + \alpha_1(\mathbf{p}_1 - \mathbf{p}_0) + \cdots + \alpha_d(\mathbf{p}_d - \mathbf{p}_0) \}$$

Parametric segment

Consider the segment in \mathbb{E}^d joining \mathbf{p}_0 and \mathbf{p}_1 :

$$L(\alpha) = \{ \mathbf{p} \in \mathbb{E}^d | \mathbf{p} = \mathbf{p}_0 + \alpha(\mathbf{p}_1 - \mathbf{p}_0) \}.$$

 $L(\alpha)$ is a point-valued function of one real parameter $\alpha \in [0,1] \subset \mathbb{R}$.

Parametric plane

A plane (or "2-flat") in \mathbb{E}^n generated by points $\mathbf{q}, \mathbf{r}, \mathbf{s}$ is defined as:

$$P(\alpha, \beta) = \{ \mathbf{p} \in \mathbb{E}^n | \mathbf{p} = (1 - \beta)((1 - \alpha)\mathbf{q} + \alpha\mathbf{r}) + \beta\mathbf{s} \}$$

 $P(\alpha, \beta)$ is a point-valued function of two real parameters $\alpha, \beta \in \mathbb{R}$.

Graph of a function


```
GRAPH = (f) -> ([a,b]) ->
    domain = T([0])([a]) INTERVALS(b-a)(30)
    MAP([ID, f]) domain

object = GRAPH(Math.sin)([-Math.PI, Math.PI])
model = viewer.draw object
```

Unit circle in 2D


```
domain = INTERVALS(2*Math.PI)(30)
object = (MAP [Math.cos, Math.sin]) domain
```

model = viewer.draw object

Circle with radius r and center c_x , c_v


```
circle = (r) -> (c) -> (n) ->
    domain = INTERVALS(2*Math.PI)(n)
    x = (u) -> r * Math.cos u
    y = (u) -> r * Math.sin u
    object = T([0,1])(c) MAP([x, y])(domain)
```

Helix curve (r = 1, h = 1, 6 turns)

model = viewer.draw helix()


```
helix = (r=1, h=1, turns=6, n=180) ->
  domain = INTERVALS( turns*2*Math.PI )(n)
  x = (u) -> r * Math.cos u
  y = (u) -> r * Math.sin u
  z = (u) -> u * h/(turns*2*Math.PI)
  object = MAP([x, y, z])(domain)
```

4□ > 4□ > 4□ > 4□ > 4□ > 4□

2D disk


```
DISK = (radius=1,n=32,m=1) ->
  domain = SIMPLEXGRID [REPEAT(n)(2*Math.PI/n), REPEAT(m)
  fx = ([u,v]) -> v*Math.sin(u)
  fy = ([u,v]) -> v*Math.cos(u)
  MAP( [fx, fy] )(domain)
```

model = viewer.draw SKELETON(1) DISK(1,32,3)

2D disk

model = viewer.draw DISK(1,32,3)

model = viewer.draw R([0,2])(Math.PI) EMBED(1) DISK(1,32)

2D helicoid

model = viewer.draw helicoid(radius=1, h=3, turns=6, n=180, m=3)

3D solid helicoid


```
solidHelicoid = (width=0.1, radius=1, h=1, turns=6, n=180, m=1, p=1) ->
    domain = SIMPLEXGRID [REPEAT(n)(turns*2*Math.PI/n), REPEAT(m)(radiu
    fx = ([u,v,w]) -> v * Math.sin(-u)
    fy = ([u,v,w]) -> v * Math.cos(-u)
    fz = ([u,v,w]) -> width*w + (u * h/(turns*2*Math.PI))
    object = MAP([fx, fy, fz])(domain)
```

model = viewer.draw solidHelicoid(width=0.05, radius=1, h=3)

- **↓**ロト **↓**┛ト **↓** 目 ト ◆ き → りへで

Section 1

Linear transformations

Linear transformations and tensors

The concept of tensor is very important for the PLaSM language

In such a language a geometric transformation (e.g. \sim a rotation, a translation, a scaling) of an Euclidean space is just represented as a tensor.

Tensors are applied to geometric objects and assemblies as functions

Linear transformation

A linear transformation $T: \mathcal{V}_1 \to \mathcal{V}_2$ is a function between vector spaces that preserves the linear combinations:

$$T(\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n) = \alpha_1 T \mathbf{v}_1 + \dots + \alpha_n T \mathbf{v}_n.$$

Tensors

The term tensor is used as a synonym of invertible linear transformation ${\bf T}$ from a vector space ${\cal V}$ to itself.

In other words, a tensor is a linear function T which maps the vector \mathbf{u} to the vector $T\mathbf{u}$.

Tensors

The set of all tensors on V is a vector space, denoted as $\lim V$, if addition of tensors and product of a tensor by a scalar are defined by:

$$(S + T)v = Sv + Tv,$$

 $(\alpha S)v = \alpha(Sv).$

The null tensor $\mathbf{0}$ and the identity tensor \mathbf{I} map each vector $\mathbf{v} \in \mathcal{V}$ to the null vector and to itself, respectively:

$$\begin{array}{rcl} \mathbf{0}\mathbf{v} & = & \mathbf{0}, \\ \mathbf{I}\mathbf{v} & = & \mathbf{v}. \end{array}$$

Tensor operations – Product

The {product} of tensors $S, T \in \text{lin } V$ is defined as composition of functions:

$$ST = S \circ T$$
.

Hence (ST)v = S(Tv) for each $v \in \mathcal{V}$.

Tensor operations – Product

The {product} of tensors $S, T \in \text{lin } V$ is defined as composition of functions:

$$ST = S \circ T$$
.

Hence (ST)v = S(Tv) for each $v \in V$.

For the products of a tensor **S** with itself we have

$$S^2 := SS$$
, $S^3 := S^2S$, etc.

Tensor operations – tensor product of vectors

The tensor product of two vectors $\mathbf{a}, \mathbf{b} \in \mathcal{V}$ is the tensor $\mathbf{a} \otimes \mathbf{b} \in \lim \mathcal{V}$ that maps a vector \mathbf{v} to the vector $(\mathbf{b} \cdot \mathbf{v})\mathbf{a}$. More formally:

$$\otimes: \mathcal{V}^2 \to \lim \mathcal{V}: (\mathbf{a}, \mathbf{b}) \mapsto \mathbf{a} \otimes \mathbf{b}$$

such that, for each $\mathbf{v} \in \mathcal{V}$

$$(\mathbf{a} \otimes \mathbf{b})\mathbf{v} = (\mathbf{b} \cdot \mathbf{v})\mathbf{a}.$$

Properties of tensor product of vectors

A few important properties of tensor product follow:

- 1. $(\mathbf{a} \otimes \mathbf{b})^T = (\mathbf{b} \otimes \mathbf{a});$
- 2. $(\mathbf{a} \otimes \mathbf{b})(\mathbf{c} \otimes \mathbf{d}) = (\mathbf{b} \cdot \mathbf{c})\mathbf{a} \otimes \mathbf{d};$

3.
$$(\mathbf{e}_i \otimes \mathbf{e}_i)(\mathbf{e}_j \otimes \mathbf{e}_j) = \begin{array}{l} \mathbf{0}, & i \neq j, \\ \mathbf{e}_i \otimes \mathbf{e}_i & i = j; \end{array}$$

4.
$$\sum_{i} \mathbf{e}_{i} \otimes \mathbf{e}_{i} = \mathbf{I}$$
.

Example Directional decomposition of vectors

Let $\mathbf{e}, \mathbf{v} \in \mathcal{V}$, with \mathbf{e} a unit vector. The tensor $\mathbf{e} \otimes \mathbf{e}$ applied to the vector \mathbf{v} gives the projection of \mathbf{v} onto the \mathbf{e} direction:

$$(\mathbf{e}\otimes\mathbf{e})\mathbf{v}=(\mathbf{e}\cdot\mathbf{v})\mathbf{e}$$

Example Directional decomposition of vectors

Let $\mathbf{e}, \mathbf{v} \in \mathcal{V}$, with \mathbf{e} a unit vector. The tensor $\mathbf{e} \otimes \mathbf{e}$ applied to the vector \mathbf{v} gives the projection of \mathbf{v} onto the \mathbf{e} direction:

$$(\mathbf{e} \otimes \mathbf{e})\mathbf{v} = (\mathbf{e} \cdot \mathbf{v})\mathbf{e}$$

Conversely, the tensor $\mathbf{I} - \mathbf{e} \otimes \mathbf{e}$, when applied to \mathbf{v} , gives

$$(I - e \otimes e)v = v - (e \cdot v)e,$$

which is the projection of ${\bf v}$ onto the linear subspace orthogonal to ${\bf e}$.

Example Directional decomposition of vectors

Directional and orthogonal projections of a vector

Section 2

Affine transformations

Affine transformations

affine transformation $T: \mathbb{E}_1 \to \mathbb{E}_2$ is a function between affine spaces that preserves the affine action:

$$T(x + \alpha(y - x)) = Tx + \alpha(Ty - Tx)$$

An affine transformation extends naturally to the underlying vector space, by defining

$$Tv = Ty - Tx$$
, where $v = y - x$.