Введение в искусственный интеллект. Машинное обучение Лекция 10. Бустинг

МаТИС

26 апреля 2019г.

План лекции

- AdaBoost
- AnyBoost
- GB / SGB

Типы бустинга

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$.

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

Типы бустинга

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$.

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

AnyBoost

- $oldsymbol{\bullet}$ Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от отступа L(y_ia(x_i))

Типы бустинга

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$.

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

AnyBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от отступа L(y_ia(x_i))

Gradient Boosting

- Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от пары L(y_i, a(x_i))

Обозначения для AdaBoost

- ullet Базовый алгоритм $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} lpha_t b_t(x_i)}$
- ullet Нормировка: $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- Взвешенное число правильных классификаций алгоритма b(x) по нормированному вектору U^m : $P(b; U^m) = \sum_{i=1}^m u_i [b(x) = y_i]$
- Взвешенное число ошибочных классификаций алгоритма b(x) по нормированному вектору U^m : $N(b; U^m) = \sum_{i=1}^m u_i [b(x) = -y_i]$
- P + N = 1.

Классический AdaBoost – теорема

Теорема

Если для любого нормированного вектора U^m существует алгоритм $b \in A$, т.ч. $N(b; U^m) < \frac{1}{2}$, то минимум аппроксимированного Э.Р. $\widetilde{R_T}$ достигается на:

- $b_T = \operatorname{arg\,min}_{b \in A} N(b; \widetilde{W}^m)$
- $\bullet \ \alpha_T = \frac{1}{2} \ln \frac{1 N(b; \widetilde{W}^m)}{N(b; \widetilde{W}^m)}$

Алгоритм AdaBoost

Алгоритм

ullet Инициализация весов: $w_i = rac{1}{m}, i = 1, \dots, m$,

Для $t=1,\ldots,T$

- ullet Обучение базового алгоритма $b_t = rg \min_{b \in \mathcal{A}} \mathcal{N}(b; \widetilde{W}^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; W^m)}{N(b_t; \widetilde{W}^m)}$,
- \bullet Обновление весов $w_i = w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m,$
- ullet Перенормировка весов $w_i = rac{w_i}{\sum_{i=1}^m w_i}, i = 1, \dots, m.$

Замечание относительно шага обновления весов $w_i = w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m.$

ullet в ошибается на объекте $x_i \Rightarrow y_i
eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$

- ullet в ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$

- ullet b_t ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b;U^m)<\frac{1}{2}$ для любого нормированного U^m , то $lpha_t=\frac{1}{2}\ln\frac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>\frac{1}{2}\ln\frac{\frac{1}{2}}{\frac{1}{2}}=\frac{1}{2}\ln 1=0$

- ullet b_t ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b; U^m) < \frac{1}{2}$ для любого нормированного U^m , то $\alpha_t = \frac{1}{2} \ln \frac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)} > \frac{1}{2} \ln \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} \ln 1 = 0$
- ullet Вес объекта x_i увеличивается в e^{lpha_t} раз, когда b_t допускает на нем ошибку,

- ullet в ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b; U^m) < \frac{1}{2}$ для любого нормированного U^m , то $\alpha_t = \frac{1}{2} \ln \frac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)} > \frac{1}{2} \ln \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} \ln 1 = 0$
- ullet Вес объекта x_i увеличивается в e^{lpha_t} раз, когда b_t допускает на нем ошибку,
- ullet Вес объекта x_i уменьшается в e^{lpha_t} раз, когда b_t правильно его классифицирует,

- ullet b_t ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b;U^m)<\frac{1}{2}$ для любого нормированного U^m , то $lpha_t=\frac{1}{2}\ln\frac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>\frac{1}{2}\ln\frac{\frac{1}{2}}{\frac{1}{2}}=\frac{1}{2}\ln 1=0$
- ullet Вес объекта x_i увеличивается в e^{lpha_t} раз, когда b_t допускает на нем ошибку,
- ullet Вес объекта x_i уменьшается в e^{lpha_t} раз, когда b_t правильно его классифицирует,
- Т.о. наибольший вес будет у тех объектов, которые чаще неправильно классифицировались предыдущими алгоритмами (т.е. классификатору прежде всего нужно сосредоточиться именно на них!).

• После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:

- После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами \widetilde{w}_i , скорее всего, являются шумовыми выбросами

- После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами $\widetilde{w_i}$, скорее всего, являются шумовыми выбросами
 - Их нужно исключить из выборки

- После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами $\widetilde{w_i}$, скорее всего, являются шумовыми выбросами
 - Их нужно исключить из выборки
 - После чего начать построение композиции заново

- После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами $\widetilde{w_i}$, скорее всего, являются шумовыми выбросами
 - Их нужно исключить из выборки
 - После чего начать построение композиции заново
- Бустинг можно использовать как универсальный метод фильтрации выбросов перед применением любого другого метода классификации

Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Возможное теоретическое обоснование: взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Возможное теоретическое обоснование: взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов
 - Т.к. стараемся увеличить отступы $y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)$

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Возможное теоретическое обоснование: взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов
 - Т.к. стараемся увеличить отступы $y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)$
 - Тем не менее, бустинг не идеален: иногда получается его переобучить

• Что использовать в качестве базовых классификаторов:

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \lessgtr r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \lessgtr r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
 - SVM используется редко (обучается достаточно долго, прироста большого не дает)

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \leqslant r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
 - SVM используется редко (обучается достаточно долго, прироста большого не дает)
- Если вдруг при обучении получается нулевая ошибка (N=0), то формула для выбора оптимального коэффициента приобретает вид $lpha=rac{1}{2}\lnrac{1-N+rac{1}{m}}{N+rac{1}{m}}=rac{1}{2}\ln(m+1)$

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \leqslant r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
 - SVM используется редко (обучается достаточно долго, прироста большого не дает)
- Если вдруг при обучении получается нулевая ошибка (N=0), то формула для выбора оптимального коэффициента приобретает вид $\alpha=\frac{1}{2}\ln\frac{1-N+\frac{1}{m}}{N+\frac{1}{m}}=\frac{1}{2}\ln(m+1)$
- Нужно периодически производить фильтрацию выбросов в обучающей выборке

Визуализация работы основных методов классификации

Посмотрим результаты работы основных классификаторов на трех разных задачах 1 .

¹https:

^{//}scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Визуализация работы основных методов классификации

Посмотрим результаты работы основных классификаторов на трех разных задачах 1 .

https:
//scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Плюсы и минусы AdaBoost

Плюсы

• Хорошая обобщающая способность (сложно переобучить)

Плюсы и минусы AdaBoost

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации

Плюсы и минусы AdaBoost

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

• Чувствителен к выбросам

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема
- Базовые алгоритмы должны быть достаточно простыми, и их должно быть много (а лучше бы наоборот)

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема
- Базовые алгоритмы должны быть достаточно простыми, и их должно быть много (а лучше бы наоборот)
- Необходимость в достаточно большой обучающей выборке (т.к. нет процедуры бутстрэпа)

Перейдём к более общему случаю:

Перейдём к более общему случаю:

ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq R_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq R_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq R_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}.$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

• Пусть
$$x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq R_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

- Пусть $x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$
- ullet Тогда $\widetilde{R_T}pprox \sum_{i=1}^m L(h_{T-1}(x_i)) + lpha_T \sum_{i=1}^m L'(h_{T-1}(x_i)) y_i b_T(x_i)$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \widetilde{R_T} = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

- Пусть $x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$
- ullet Тогда $\widetilde{R_T}pprox \sum_{i=1}^m L(h_{T-1}(x_i)) + lpha_T \sum_{i=1}^m L'(h_{T-1}(x_i)) y_i b_T(x_i)$
- Обозначив за $w_i = -L'(h_{T-1}(x_i))$, получаем $\widetilde{R_T} \approx \sum_{i=1}^m L(h_{T-1}(x_i)) \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$

$$\widetilde{R_T} \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав α_T , переходим от задачи двумерной оптимизации $\widetilde{R_T} \to \min_{\alpha_T,b_T}$ к одномерной (по алгоритму):

$$\widetilde{R_T} \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав α_T , переходим от задачи двумерной оптимизации $\widetilde{R_T} \to \min_{\alpha_T, b_T}$ к одномерной (по алгоритму):

$$\sum_{i=1}^m w_i y_i b_{\mathcal{T}}(x_i) \to \max_{b_{\mathcal{T}}}$$

$$\widetilde{R_T} \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав α_T , переходим от задачи двумерной оптимизации $R_T \to \min_{\alpha_T,b_T}$ к одномерной (по алгоритму):

$$\sum_{i=1}^m w_i y_i b_{\mathcal{T}}(x_i) \to \max_{b_{\mathcal{T}}}$$

Затем определяем $lpha_{T}$, подставив найденный b_{T} .

Алгоритм

ullet Инициализация отступов: $h^i = 0, i = 1, \dots, m$,

Алгоритм

ullet Инициализация отступов: $h^i = 0, i = 1, \dots, m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

• Вычисление весов $w_i = -L'(h^i)$,

Алгоритм

ullet Инициализация отступов: $h^i = 0, i = 1, \dots, m$,

- Вычисление весов $w_i = -L'(h^i)$,
- Обучение нового базового алгоритма $b_t = \arg\max_b \sum_{i=1}^m w_i y_i b(x_i)$,

Алгоритм

ullet Инициализация отступов: $h^i = 0, i = 1, \dots, m$,

- Вычисление весов $w_i = -L'(h^i)$,
- Обучение нового базового алгоритма $b_t = \arg\max_b \sum_{i=1}^m w_i y_i b(x_i)$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(h^i + \alpha y_i b_t(x_i)),$

Алгоритм

ullet Инициализация отступов: $h^i = 0, i = 1, \dots, m$,

- Вычисление весов $w_i = -L'(h^i)$,
- Обучение нового базового алгоритма $b_t = \arg\max_b \sum_{i=1}^m w_i y_i b(x_i)$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(h^i + \alpha y_i b_t(x_i)),$
- Обновление отступов $h^i = h^i + \alpha_t y_i b_t(x_i)$.

Градиентный бустинг – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества: $\widetilde{R_T} = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$.

Градиентный бустинг – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества: $\widetilde{R_T} = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$. Обозначения:

• Приближение для объекта x_i на шаге t: f_i^t ,

Градиентный бустинг – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества: $\widetilde{R_T} = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$. Обозначения:

- ullet Приближение для объекта x_i на шаге t: f_i^t ,
- Тогда функционал качества примет вид: $\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) o \min_{\alpha_T, b_T}$

$$\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

$$\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

•
$$f_i^T = f_i^{T-1} - \eta g_i$$
, где $g_i = L'(f_i^{T-1}, y_i)$

$$\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\bullet$$
 $f_i^T = f_i^{T-1} - \eta g_i$, где $g_i = L'(f_i^{T-1}, y_i)$

ullet Сравните: итерация бустинга $f_i^T = f_i^{T-1} + lpha_T b_T(x_i)$

$$\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$ullet$$
 $f_i^T = f_i^{T-1} - \eta g_i$, где $g_i = L'(f_i^{T-1}, y_i)$

ullet Сравните: итерация бустинга $f_i^T = f_i^{T-1} + lpha_T b_T(x_i)$

$$\widetilde{R_T} = \sum_{i=1}^m L(f_i^{T-1} + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

- \bullet $f_i^T = f_i^{T-1} \eta g_i$, где $g_i = L'(f_i^{T-1}, y_i)$
- Сравните: итерация бустинга $f_i^T = f_i^{T-1} + \alpha_T b_T(x_i)$

Основная идея градиентного бустинга

Поиск нового базового алгоритма b_T для приближения антиградиента $(-L'(f_i^{T-1},y_i))$, т.е. минимизация квадратичной ошибки: $b_T = \arg\min_b \sum_{i=1}^m \left(b(x_i) - (-L'(f_i^{T-1},y_i))\right)^2$.

Алгоритм

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

Алгоритм

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

• Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i=1}^m (b(x_i) + L'(f_i, y_i))^2$,

Алгоритм

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

Для $t=1,\ldots,T$

- ullet Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i=1}^m \left(b(x_i) + L'(f_i, y_i) \right)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(f_i + \alpha b_t(x_i), y_i)$,

Алгоритм

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

- Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i=1}^m (b(x_i) + L'(f_i, y_i))^2$,
- ullet Вычисление нового веса $lpha_t = rg \min_{lpha} \sum_{i=1}^m L(f_i + lpha b_t(x_i), y_i),$
- ullet Обновление приближений $f_i = f_i + lpha_t b_t(x_i), i = 1, \dots, m.$

Стохастический градиентный бустинг

Используем не всю обучающую выборку, а случайное подмножество объектов.

Стохастический градиентный бустинг

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \ldots, m$,

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oldsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oldsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i \in I} \left(b(x_i) + L'(f_i, y_i) \right)^2$,

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oldsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = rg \min_b \sum_{i \in I} \left(b(x_i) + L'(f_i, y_i)
 ight)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i \in I} L(f_i + \alpha b_t(x_i), y_i)$,

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oldsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i \in I} \left(b(x_i) + L'(f_i, y_i) \right)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i \in I} L(f_i + \alpha b_t(x_i), y_i),$
- Обновление приближений $f_i = f_i + \alpha_t b_t(x_i), i \in I$.

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oldsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i \in I} \left(b(x_i) + L'(f_i, y_i) \right)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i \in I} L(f_i + \alpha b_t(x_i), y_i)$,
- ullet Обновление приближений $f_i = f_i + lpha_t b_t(x_i), i \in I$.

Плюсы SGB

• Уменьшение времени обучения (меньше объектов на каждом шаге),

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB

ullet Инициализация приближений: $f_i = 0, i = 1, \dots, m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = \arg\min_b \sum_{i \in I} \left(b(x_i) + L'(f_i, y_i) \right)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i \in I} L(f_i + \alpha b_t(x_i), y_i)$,
- ullet Обновление приближений $f_i = f_i + lpha_t b_t(x_i), i \in I$.

Плюсы SGB

- Уменьшение времени обучения (меньше объектов на каждом шаге),
- Ускорение сходимости (меньше шагов).

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 2 :

²https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 2 :

²https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 2 :

Эти реализации отличаются:

• Методом ветвления в узлах дерева при его обучении,

²https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 2 :

Эти реализации отличаются:

- Методом ветвления в узлах дерева при его обучении,
- Способом работы с категориальными признаками,

²https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 2 :

Эти реализации отличаются:

- Методом ветвления в узлах дерева при его обучении,
- Способом работы с категориальными признаками,
- Скоростью обучения / тестирования.

²https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db = >

• Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Стековое обобщение можно (и нужно) использовать с алгоритмами разной природы,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Стековое обобщение можно (и нужно) использовать с алгоритмами разной природы,
- Бэггинг лучше всего параллелится,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Стековое обобщение можно (и нужно) использовать с алгоритмами разной природы,
- Бэггинг лучше всего параллелится,
- Бустинг позволяет фильтровать выбросы,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Стековое обобщение можно (и нужно) использовать с алгоритмами разной природы,
- Бэггинг лучше всего параллелится,
- Бустинг позволяет фильтровать выбросы,
- Метод случайных подпространств (бутстрэп на признаках) необходим, когда у нас признаков очень много (или много шумовых).

Источники

Ha основе материалов сайта http://www.machinelearning.ru.