

Técnicas e Análise de Algoritmos Notação Assintótica - Parte 02

Professor: Jeremias Moreira Gomes

E-mail: jeremias.gomes@idp.edu.br

Introdução

Recapitulação

- Complexidade Computacional
- Visualização Numérica da Complexidade
- Notação Assintótica Big-O
- Propriedades da Notação Big-O

Propriedades da Notação Big-O

• P1 - Transitividade

$$\circ$$
 Se $f(n)=O(g(n))$ e $g(n)=O(h(n))$, então $f(n)=O(h(n))$

• P2 - Soma de funções de mesma complexidade

$$\circ$$
 Se $f(n)=O(h(n))$ e $g(n)=O(h(n))$, então $f(n)+g(n)=O(h(n))$

• P3 - Absorção da constante em monômios

 \circ A função an^k é $O(n^k)$

Propriedades da Notação Big-O

• P4 - Cota superior para polinômios

$$\circ$$
 A função n^k é $O(n^{k+j}), orall j>0$

• P5 - Absorção de constantes

$$\circ$$
 Se $f(n)=cg(n)$, então $f(n)=O(g(n))$

Notação Big-O e Polinômios

Se f(n) é um polinômio de grau k então f(n) é $O(n^k)$

Demonstração: Considere os monômios $f_i(n) = a_i x^i, i = 0, 1, \ldots, k$

Temos que

$$f(n) = f_k(n) + f_{k-1}(n) + \cdots + f_0(n)$$

A propriedade 3 nos diz que $f_k(n)$ é $O(n^k)$

A propriedade 4 nos diz que $f_{k-j}(n)$ é $O(n^{(k-j)+j}) = O(n^k)$

Por fim, pela propriedade 2, concluímos que

$$f(n)=\sum\limits_{j=0}^{k}f_{k-j}(n)=O(n^k)$$

Notação Assintótica Big-Ω

Definição

Dadas duas funções de valores positivos f e g, f(n) é $\Omega(g(n))$ se existem c e N positivos tais que f(n) \geq cg(n), \forall n \geq N

- Big-Ω lê-se Big-Ómega
- Em termos matemáticos, cg(n) é uma cota inferior de f(n)
- Informalmente, f tende a crescer, no mínimo, tão rápida quanto g, a partir de algum determinado ponto

$$\Omega(g(n)) = \{ f(n) | 0 \le c \cdot g(n) \le f(n), c \in \mathbb{R}^+, \forall n \ge n_0 \in \mathbb{R}^+ \}$$

Observações sobre a Notação Big-Ω

- Enquanto Big-O se refere a cotas superiores, Big-Ω se refere a uma cota inferior para f(n)
- ullet Tanto Big-O quanto Big- Ω possuem infinitas possibilidades para a constante c e N
- Equivalência:
 - $\circ f(n)$ é $\Omega(g(n))$ se, e somente se, g(n) é O(f(n))

Notação Big- Ω - Exemplos

Exemplos de utilização

$$ullet$$
 $2n^2\in\Omega(n^2)$

- $ullet n^2 \in \Omega(n)$
- $ullet \ log \ n \in \Omega(log \ log \ n)$

Notação Big- Ω - Exemplos

Exemplos de utilização

$$ullet$$
 $2n^2\in\Omega(n^2)$

$$ullet n^2 \in \Omega(n)$$

$$ullet \ log \ n \in \Omega(log \ log \ n)$$

$$ullet n^2
ot\in\Omega(n^3)$$

$$ullet$$
 $2n^2
otin \Omega(2^n)$

•
$$log \ n \notin \Omega(n)$$

Notação Assintótica Big- O

Definição

Dadas duas funções de valores positivos f e g, f(n) é $\Theta(g(n))$ se existem c $_1$, c $_2$ e N positivos tais que c $_1g(n) \le f(n) \le c$ $_2g(n)$, $\forall n \ge N$

- Big-Θ lê-se Big-Théta
- A notação Θ é uma cota justa de f(n)
- Informalmente, f tende a crescer tanto quanto quanto g, em termos assintóticos

$$\Theta(g(n)) = \{f(n)|0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n), c_1, c_2 \in \mathbb{R}^+, \forall n \ge n_0 \in \mathbb{R}^+\}$$

Observações sobre a Notação Big- O

- Enquanto Big-O se refere a cotas superiores e Big-Ω se refere a uma cota inferior para f(n), Big-O se refere a uma cota justa para f(n)
- Equivalência:

$$f(n)$$
 é $\Theta(g(n))$ se, e somente se, $f(n)$ é $O(g(n))$ e $f(n)$ é $\Omega(g(n))$

Exemplo de Big- Θ

- ullet Já sabemos que $f(n)=2n^2+3n+1$ é O(n^2)
- Será que ela é Θ(n²)
 - Falta demonstrar, que ela também é Ω(n²)

$$2n^2+3n+1 \geq c_2 n^2 \ 2+rac{3}{n}+rac{1}{n^2} \geq c_2$$

A inequação é verdadeira para N = 1, c₂ = 2 satisfazem a definição

Notação Big- Ω - Exemplos

Exemplos de utilização

$$ullet n^2 \in \Theta(n^2)$$

- ullet $10^{42}n^2\in\Theta(n)$
- $ullet \ rac{1}{2}log \ n \in \Theta(log \ log \ n)$

Notação Big- Ω - Exemplos

Exemplos de utilização

$$ullet n^2 \in \Theta(n^2)$$

$$ullet$$
 $10^{42}n^2\in\Theta(n)$

$$ullet \ rac{1}{2}log \ n \in \Theta(log \ log \ n)$$

$$\bullet n^2 \notin \Theta(n^3)$$

•
$$200n^2 \notin \Theta(n)$$

•
$$\frac{1}{2}log \ n
ot\in \Theta(\sqrt{n})$$

Problemas Possíveis

- O fato de um algoritmo ter ordem de complexidade menor do que outro não implica que ele seja o mais eficaz em todos os casos
- ullet Por exemplo, considere as funções $f(n)=10^8 n$ e $g(n)=10 n^2$
- Temos que f(n) é O(n) e g(n) é O(n)
- ullet Para $n < 10^7$, o tempo de execução de f(n) é maior do que g(n)
- Apenas para valores iguais ou superiores é que a função f(n) se torna mais eficiente que g(n)

N = 10

Classe	Notação	Número de operações	Tempo de execução ¹
constante	O(1)	1	$1\mu s$
logarítmica	$O(\log n)$	2, 3	$2\mu s$
linear	O(n)	10	$10\mu s$
$O(n \log n)$	$O(n \log n)$	23	$23\mu s$
quadrática	$O(n^2)$	100	$100\mu s$
cúbica	$O(n^3)$	1000	1ms
exponencial	$O(2^n)$	1024	1ms

 $^{^1}$ Uma instrução por μs

N = 100

Classe	Notação	Número de operações	Tempo de execução ¹
constante	O(1)	1	$1\mu s$
logarítmica	$O(\log n)$	4,6	$5\mu s$
linear	O(n)	100	$100\mu s$
$O(n \log n)$	$O(n \log n)$	460	$460\mu s$
quadrática	$O(n^2)$	10000	10ms
cúbica	$O(n^3)$	10^{6}	1s
exponencial	$O(2^n)$	10^{30}	$10^{7}a$

 $^{^1}$ Uma instrução por μs

N = 1000

Classe	Notação	Número de operações	Tempo de execução ¹
constante	O(1)	1	$1\mu s$
logarítmica	$O(\log n)$	6,9	$7\mu s$
linear	O(n)	1000	1ms
$O(n \log n)$	$O(n \log n)$	6907	7ms
quadrática	$O(n^2)$	10^{6}	1s
cúbica	$O(n^3)$		$16,7\mathrm{m}$
exponencial	$O(2^n)$	10^{301}	

 $^{^1}$ Uma instrução por μs

Conclusão