

Deep
Learning for
Autonomous
Vehicles

Introduction

- Selected paper/literature: Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion
- Objective and contribution: Evaluate the performance of the trajectory prediction model used in the paper on a different dataset.

Methodology

- Implement the code of the Motion Indeterminacy Diffusion model
- Original code designed for ETH UCY dataset
- Chose NUSCENES as the new dataset
- Download metadata for nearly 700 scenes from the <u>website</u>
- Implement the code from the paper on 10% of the 700 scenes from the metadata

EPFL

Challenge

Challenge → Lack of Reference Results

Unable to compare our results with a known reference to assess the performance of the original code on nuScenes

Trajectron++ is a different trajectory prediction model known to perform well on NUSCENES

Experimental Setup

- 1. Train and evaluate the original code (Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion) on 10% of NUSCENES data
- 2. Train and evaluate Trajectron++ on 10% of NUSCENES data
- Collect results from both models for comparison (only pedestrian's trajectory prediction)

Implementation/Contribution

- 1. **ONUSCENES** being very different from ETH, we added a preprocessing adapted for the dataset and our code.
- 2. Fine Tuning hyperparameters of the model for the **NUSCENES** dataset : very challenging
- 3. Implement a equivalent evaluation method to make fair comparison between MID and **Trajectron+*

Results/Comparison

Prediction Horizon	Metrics	Motion Indeterminacy Diffusion	* Trajectron+
2	FDE	0.351	0.197
	ADE	0.370	0.146
4	FDE	0.737	0.442
	ADE	0.631	0.262
6	FDE	1.272	0.727
	ADE	0.899	0.392
8	FDE	1.809	1.042
	ADE	1.194	0.535

Results analysis

Consistent outperformance of Trajectron++ over MID may be due to multiple factors.

- Possible shortcomings in our implementation and preprocessing of MID.
- Unique characteristics of NuScenes dataset could have impacted the effectiveness of our MID model.
- Fine-tuning of MID model may not have been optimal.
- Recognized robustness and adaptability of Trajectron++ contributes to its strong performance.

Results highlight the robustness and adaptability of Trajectron++ and the potential for MID model refinement.