Hazel Phi: 11-type-constructors

July 27, 2021

SYNTAX

DECLARATIVES

 $\Delta; \Phi \vdash \tau ::> \kappa$ τ has principal (well formed) kind κ

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{bse} ::> \mathsf{S}_{\mathsf{Type}}(\mathsf{bse})} (1) \qquad \frac{\Delta; \Phi_1, t :: \kappa, \Phi_2 \vdash \mathsf{OK}}{\Delta; \Phi \vdash t ::> \mathsf{S}_{\kappa}(t)} (2) \qquad \frac{\Delta; \Phi \vdash \tau_1 :: \mathsf{Type}}{\Delta; \Phi \vdash \tau_1 :: \mathsf{Type}} \qquad \Delta; \Phi \vdash \tau_2 :: \mathsf{Type}}{\Delta; \Phi \vdash \tau_2 :: \mathsf{Type}} (3)$$

$$\frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash (\emptyset^u ::> \mathsf{S}_{\kappa}((\emptyset^u))} (4) \qquad \frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash (\emptyset^u ::> \mathsf{S}_{\kappa}((\emptyset^u))} (5)$$

$$\frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash (\emptyset^u ::> \mathsf{S}_{\kappa}((\emptyset^u))} (6) \qquad \frac{\Delta; \Phi \vdash \tau :: \kappa_1 \vdash \tau ::> \kappa_2}{\Delta; \Phi \vdash \lambda t :: \kappa_1 \cdot \tau ::> \mathsf{S}_{\Pi_{t :: \kappa_1}, \kappa_2}(\lambda t :: \kappa_1 \cdot \tau)} (7)$$

$$\frac{\Delta; \Phi \vdash \tau_1 ::> \kappa \qquad \Delta; \Phi \vdash \kappa \prod_{\Pi} \Pi_{t :: \kappa_1} \cdot \kappa_2 \qquad \Delta; \Phi \vdash \tau_2 :: \kappa_1}{\Delta; \Phi \vdash \tau_1 \tau_2 ::> [\tau_2/t] \kappa_2} (8)$$

 Δ ; $\Phi \vdash \tau :: \kappa \mid \tau$ is well formed at kind κ

$$\frac{\Delta; \Phi \vdash \tau ::> \kappa}{\Delta; \Phi \vdash \tau ::\kappa} (9) \qquad \frac{\Delta; \Phi \vdash \tau ::> S_{\kappa}(\tau)}{\Delta; \Phi \vdash \tau ::\kappa} (10)$$

$$\frac{\Delta; \Phi \vdash \tau ::> \kappa_{1} \qquad \Delta; \Phi \vdash \kappa_{1} \lesssim \kappa}{\Delta; \Phi \vdash \tau ::\kappa} (11)$$

$$\frac{\Delta; \Phi \vdash \tau ::\kappa}{\Delta; \Phi \vdash \tau ::\kappa} \qquad \Delta; \Phi \vdash \Pi_{t ::\kappa_{3} . \kappa_{4}} \lesssim \Pi_{t ::\kappa_{1} . \kappa_{2}}$$

$$\frac{\Delta; \Phi \vdash \tau ::S_{\kappa}(\tau)}{\Delta; \Phi \vdash \tau ::S_{\kappa}(\tau_{1})} \qquad \Delta; \Phi \vdash \Pi_{t ::\kappa_{3} . \kappa_{4}} \lesssim \Pi_{t ::\kappa_{1} . \kappa_{2}}$$

$$\frac{\Delta; \Phi \vdash \tau ::S_{\kappa}(\tau_{1})}{\Delta; \Phi \vdash \tau ::\kappa} \qquad (14)$$

 Δ ; $\Phi \vdash \kappa \prod_{\Pi} \Pi_{t::\kappa_1}.\kappa_2 \mid \kappa$ has matched Π -kind $\Pi_{t::\kappa_1}.\kappa_2$

$$\frac{\Delta; \Phi \vdash \kappa \equiv S_{\text{KHole}}(\tau)}{\Delta; \Phi \vdash \text{KHole} \stackrel{\blacktriangleright}{\Pi} \Pi_{t::\text{KHole}}.\text{KHole}}$$
(15)
$$\frac{\Delta; \Phi \vdash \kappa \equiv S_{\text{KHole}}(\tau)}{\Delta; \Phi \vdash \kappa \stackrel{\blacktriangleright}{\Pi} \Pi_{t::S_{\text{KHole}}(\tau)}.S_{\text{KHole}}(\tau \ t)}$$
(16)
$$\frac{\Delta; \Phi \vdash \kappa \equiv \Pi_{t::\kappa_1}.\kappa_2}{\Delta; \Phi \vdash \kappa \stackrel{\blacktriangleright}{\Pi} \Pi_{t::\kappa_1}.\kappa_2}$$
(17)

 $\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2$ κ_1 is equivalent to κ_2

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \kappa \equiv \kappa} \text{ (18)} \qquad \frac{\Delta; \Phi \vdash \kappa_2 \equiv \kappa_1}{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2} \text{ (19)} \qquad \frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_3 \qquad \Delta; \Phi \vdash \kappa_3 \equiv \kappa_2}{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2} \text{ (20)}$$

$$\frac{\Delta; \Phi \vdash \tau :: S_{\kappa}(\tau_1)}{\Delta; \Phi \vdash S_{S_{\kappa}(\tau_1)}(\tau) \equiv S_{\kappa}(\tau_1)} \text{ (21)} \qquad \frac{\Delta; \Phi \vdash \tau :: \Pi_{t :: \kappa_1} . \kappa_2}{\Delta; \Phi \vdash S_{\Pi_{t :: \kappa_1} . \kappa_2}(\tau) \equiv \Pi_{t_1 :: \kappa_1} . S_{[t_1/t]\kappa_2}(\tau \ t_1)} \text{ (22)}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 \qquad \Delta; \Phi, t :: \kappa_1 \vdash \kappa_3 \equiv \kappa_4}{\Delta; \Phi \vdash \Pi_{t :: \kappa_1} . \kappa_2 \equiv \Pi_{t :: \kappa_2} . \kappa_4} \text{ (23)}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 \qquad \Delta; \Phi, t :: \kappa_1 \vdash \kappa_3 \equiv \kappa_4}{\Delta; \Phi \vdash \Pi_{t :: \kappa_1} . \kappa_2} \equiv \Pi_{t :: \kappa_2} . \kappa_4} \text{ (24)}$$

 $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$ κ_1 is a consistent subkind of κ_2

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \text{KHole}} \lesssim \kappa \tag{25} \qquad \frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \text{KHole}} \tag{26} \qquad \frac{\Delta; \Phi \vdash S_{\text{KHole}}(\tau) \text{ OK}}{\Delta; \Phi \vdash S_{\text{KHole}}(\tau) \lesssim \kappa} \tag{27}$$

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \text{KHole}} \times \frac{\Delta; \Phi \vdash S_{\text{KHole}}(\tau) \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \text{Skhole}} \times \frac{\Delta; \Phi \vdash S_{\text{KHole}}(\tau) \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \text{Skhole}} \times \frac{\Delta; \Phi \vdash \kappa_{4} \equiv \kappa_{2}}{\Delta; \Phi \vdash \kappa_{1} \lesssim \kappa_{2}} \tag{30}$$

$$\frac{\Delta; \Phi \vdash S_{\kappa}(\tau) \text{ OK}}{\Delta; \Phi \vdash S_{\kappa}(\tau) \lesssim \kappa} \tag{31}$$

$$\frac{\Delta; \Phi \vdash \kappa_{3} \lesssim \kappa_{1}}{\Delta; \Phi \vdash \Pi_{t::\kappa_{1}} \cdot \kappa_{2} \lesssim \Pi_{t::\kappa_{3}} \cdot \kappa_{2}} \times \frac{\Delta; \Phi \vdash \kappa_{1} \lesssim \kappa_{2}}{\Delta; \Phi \vdash \Pi_{t::\kappa_{1}} \cdot \kappa_{2} \lesssim \Pi_{t::\kappa_{3}} \cdot \kappa_{4}} \tag{32}$$

$$\frac{\Delta; \Phi \vdash \kappa_{1} \lesssim \kappa_{2}}{\Delta; \Phi \vdash S_{\kappa}(\tau) \lesssim \kappa} \times \frac{\Delta; \Phi \vdash \tau_{1} \stackrel{\kappa_{1}}{\equiv} \tau_{2}}{\Xi} \times \frac$$

 $\Delta; \Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2 \mid \tau_1 \text{ is provably equivalent to } \tau_2 \text{ at kind } \kappa$

$$\frac{\Delta; \Phi \vdash \tau_{I} ::> \kappa_{I} \qquad \Delta; \Phi \vdash \kappa_{I} \equiv S_{\kappa}(\tau_{2})}{\Delta; \Phi \vdash \tau_{I} \stackrel{\kappa}{\equiv} \tau_{2}} (34)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} :::\Pi_{t::\kappa_{I} \cdot \kappa_{3}} \qquad \Delta; \Phi \vdash \tau_{2} ::\Pi_{t::\kappa_{I} \cdot \kappa_{4}} \qquad \Delta; \Phi, t ::\kappa_{I} \vdash \tau_{I} \quad t \stackrel{\kappa_{2}}{\equiv} \tau_{2} \quad t}{t} (35)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} \stackrel{\Pi_{t::\kappa_{I} \cdot \kappa_{2}}}{\equiv} \tau_{3} \qquad \Delta; \Phi \vdash \tau_{2} \stackrel{\kappa}{\equiv} \tau_{4}}{\tau_{2}} (36)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} \stackrel{\Pi_{t::\kappa_{I} \cdot \kappa_{2}}}{\equiv} \tau_{3} \qquad \Delta; \Phi \vdash \tau_{2} \stackrel{\kappa}{\equiv} \tau_{4}}{\tau_{3} \qquad t_{4}} (36)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} \stackrel{\kappa}{\equiv} \tau_{2}}{\Delta; \Phi \vdash \tau_{I} \stackrel{\kappa}{\equiv} \tau_{2}} (38)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} \stackrel{\kappa}{\equiv} \tau_{3}}{\Delta; \Phi \vdash \tau_{I} \stackrel{\kappa}{\equiv} \tau_{2}} (40)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} \stackrel{\pi}{\equiv} \tau_{3}}{\Delta; \Phi \vdash \tau_{I} \stackrel{\pi}{\equiv} \tau_{2}} (41)$$

$$\frac{\Delta; \Phi \vdash \tau_{I} \stackrel{\pi}{\equiv} \tau_{3}}{\Delta; \Phi \vdash \tau_{I} \stackrel{\pi}{\equiv} \tau_{2}} \qquad \Delta; \Phi \vdash \kappa_{I} \equiv \kappa_{2} \qquad \Delta; \Phi, t ::\kappa_{I} \vdash \tau_{I} \stackrel{\kappa}{\equiv} \tau_{2}}{\Delta; \Phi \vdash \kappa_{I} \equiv \kappa_{2} \qquad \Delta; \Phi \vdash \kappa_{I} \equiv \kappa_{2}} \qquad \Delta; \Phi \vdash \kappa_{I} \equiv \kappa_{2} \qquad \Delta; \Phi \vdash \kappa_{I} \equiv \kappa_{I} \qquad$$

 $\Delta; \Phi \vdash \kappa \text{ OK}$ κ is well formed

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{Type} \; \mathsf{OK}} \; (44) \qquad \frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{KHole} \; \mathsf{OK}} \; (45) \qquad \frac{\Delta; \Phi \vdash \tau :: \kappa}{\Delta; \Phi \vdash \mathsf{S}_{\kappa}(\tau) \; \mathsf{OK}} \; (46)$$

$$\frac{\Delta; \Phi \vdash \kappa_{I} \; \mathsf{OK} \quad \Delta; \Phi, t :: \kappa_{I} \vdash \kappa_{2} \; \mathsf{OK}}{\Delta; \Phi \vdash \Pi_{t :: \kappa_{I}}, \kappa_{2} \; \mathsf{OK}} \; (47)$$

 $\Delta; \Phi \vdash \mathsf{OK} \mid \mathsf{Context} \mathsf{ is well formed}$

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi, t :: \kappa \vdash \text{OK}} \text{ (49)} \qquad \frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; u :: \kappa; \Phi \vdash \text{OK}} \text{ (50)}$$

Variables implicitly assumed to be fresh as necessary

METATHEORY

Lemma 1 (Weakening). If Δ ; $\Phi \vdash \tau :: \kappa$, then Δ ; Φ , $t :: \kappa_1 \vdash \tau :: \kappa$ when Δ ; Φ , $t :: \kappa_1 \vdash OK$

Proof. By rule induction/length of proof.

L1. (9)

Proof. By rule induction/length of proof.

L2. (9)

```
Lemma 2 (OK-PK). If \Delta; \Phi \vdash \tau ::> \kappa, then \Delta; \Phi \vdash OK and \Delta; \Phi \vdash \kappa OK
```

Lemma 3 (OK-WFaK). If Δ ; $\Phi \vdash \tau :: \kappa$, then Δ ; $\Phi \vdash OK$ and Δ ; $\Phi \vdash \kappa$ OK

Lemma 4 (OK-MatchPi). If Δ ; $\Phi \vdash \kappa \sqcap_{\Pi} \Pi_{t::\kappa_1}.\kappa_2$, then Δ ; $\Phi \vdash OK$ and Δ ; $\Phi \vdash \kappa$ OK and Δ ; $\Phi \vdash \Pi_{t::\kappa_1}.\kappa_2$ OK

Lemma 5 (OK-KEquiv). If Δ ; $\Phi \vdash \kappa_1 \equiv \kappa_2$, then Δ ; $\Phi \vdash OK$ and Δ ; $\Phi \vdash \kappa_1$ OK and Δ ; $\Phi \vdash \kappa_2$ OK

Lemma 6 (OK-CSK). If Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$, then Δ ; $\Phi \vdash OK$ and Δ ; $\Phi \vdash \kappa_1$ OK and Δ ; $\Phi \vdash \kappa_2$ OK

Lemma 7 (OK-TEquivAK). If Δ ; $\Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2$, then Δ ; $\Phi \vdash OK$ and Δ ; $\Phi \vdash \tau_1 :: \kappa$ and Δ ; $\Phi \vdash \tau_2 :: \kappa$ and Δ ; $\Phi \vdash \kappa$ OK

Lemma 8 (OK-KWF). *If* Δ ; $\Phi \vdash \kappa$ *OK, then* Δ ; $\Phi \vdash OK$

Lemma 9 (OK-Substitution).

If Δ ; $\Phi \vdash \tau_L :: \kappa_{L1}$ and Δ ; Φ , $t_L :: \kappa_{L1} \vdash \kappa_{L2}$ OK, then Δ ; $\Phi \vdash$ OK and Δ ; $\Phi \vdash [\tau_L/t_L]\kappa_{L2}$ OK (induction on Δ ; Φ , $t_L :: \kappa_{L1} \vdash \kappa_{L2}$ OK)

Lemma 10 (K-Substitution).

If Δ ; $\Phi \vdash \tau_{L1} :: \kappa_{L1}$ and Δ ; Φ , $t_L :: \kappa_{L1} \vdash \tau_{L2} :: \kappa_{L2}$, then Δ ; $\Phi \vdash [\tau_{L1}/t_L]\tau_{L2} :: [\tau_{L1}/t_L]\kappa_{L2}$ (induction on Δ ; Φ , $t_L :: \kappa_{L1} \vdash \tau_{L2} :: \kappa_{L2}$)

Proof. By simultaneous rule induction/length of proof.

The interesting cases per lemma:

1110 111001 0501115 C	Jubes ber reitir	iia.	
OK-PK.	(1)	$\Delta ; \Phi dash exttt{bse} :: exttt{S}_{ exttt{Type}}(exttt{bse})$	by (9)
		$\Delta ; \Phi dash$ bse:: Type	by (10)
	*	$\Delta ; \Phi \vdash \mathtt{S}_{Type}(\mathtt{bse}) \; OK$	by (43)
	*	$\Delta ; \Phi dash OK$	by premiss
	(8)		bad
OK-WFaK.	(12)	$\Delta ; \Phi dash au_{2} :: \kappa$	by (10)
	*	$\Delta ; \Phi dash \mathtt{S}_{m{\kappa}}(au_2)$ OK	by (43)
OK-KEquiv.	(22)	$\Delta; \Phi \vdash \tau \ t ::> \kappa$	
OK-Substitution	n. (41)	$\Delta; \Phi, t_L :: \kappa_{L1} \vdash OK$	premiss (41)
		$\Delta; \Phi \vdash \kappa_{L1} OK$	by subderivation premiss (46)
	*	$\Delta ; \Phi dash OK$	by OK-KWF
	*	$\Delta ; \Phi dash [au_L/t_L]$ Type OK	by (41) and degenerate subst
(43)		$\Delta; \Phi, t_L :: \kappa_{L1} \vdash \tau :: \kappa$	premiss (43)
		$\Delta; \Phi, t_L :: \kappa_{L1} \vdash OK$	by OK-WFaK
		$\Delta; \Phi \vdash \kappa_{L1} OK$	by subderivation premiss (46)
	*	$\Delta ; \Phi dash OK$	by OK-KWF
		$\Delta; \Phi \vdash [\tau_{L1}/t_L]\tau :: [\tau_{L1}/t_L]\kappa$	by K-Substitution on premiss
	*	$\Delta ; \Phi dash [au_L/t_L] extsf{S}_{\kappa}(au)$ OK	by (43)

Lemma 11 (PK-Unicity). If Δ ; $\Phi \vdash \tau_L ::> \kappa_{L1}$ and Δ ; $\Phi \vdash \tau_L ::> \kappa_{L2}$ then κ_{L1} is κ_{L2}

Lemma 12. If Δ ; $\Phi \vdash \tau ::> \kappa_1$ and Δ ; $\Phi \vdash \tau :: \kappa_2$, then Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$

Lemma 13. If Δ ; $\Phi \vdash \kappa_1 \lesssim S_{\kappa_2}(\tau)$, then Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$