```
import pandas as pd
import numpy as np
```

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.linear_model import LogisticRegression

dataset = pd.read_excel('/content/a_Dataset_CreditScoring.xlsx')

shows count of rows and columns
dataset.shape

(3000, 30)

#shows first few rows of the code
dataset.head()

\rightarrow		TARGET	ID	DerogCnt	CollectCnt	BanruptcyInd	InqCnt06	InqTimeLast	InqFinanc	
	0	1	582	3	3	0	4	0.0		
	1	1	662	15	9	0	3	1.0		
	2	1	805	0	0	0	1	5.0		
	3	1	1175	8	5	0	6	1.0		
	4	1	1373	3	1	0	9	0.0		
	5 rows × 30 columns									

#dropping customer ID column from the dataset
dataset=dataset.drop('ID',axis=1)
dataset.shape

(3000, 29)

explore missing values
dataset.isna().sum()

TARGET	0
DerogCnt	0
CollectCnt	0
BanruptcyInd	0
InqCnt06	0
InqTimeLast	188
InqFinanceCnt24	0
TLTimeFirst	0
TLTimeLast	0
TLCnt03	0
TLCnt12	0

```
TLCnt24
                      0
                      3
TLCnt
TLSum
                     40
TLMaxSum
                     40
                     4
TLSatCnt
TLDel60Cnt
                     0
TLBadCnt24
                      0
                     99
TL75UtilCnt
TL50UtilCnt
                     99
TLBalHCPct
                     41
TLSatPct
                      4
TLDel3060Cnt24
                      0
TLDe190Cnt24
                      0
TLDel60CntAll
                      0
TLOpenPct
                      3
                      0
TLBadDerogCnt
TLDe160Cnt24
                      0
TLOpen24Pct
                      3
dtype: int64
```

filling missing values with mean
dataset=dataset.fillna(dataset.mean())

explore missing values post missing value fix
dataset.isna().sum()

TARGET 0 DerogCnt 0 CollectCnt 0 BanruptcyInd 0 InqCnt06 0 InqTimeLast 0 IngFinanceCnt24 0 TLTimeFirst 0 0 TLTimeLast TLCnt03 0 TLCnt12 0 TLCnt24 0 TLCnt 0 **TLSum** 0 TLMaxSum 0 TLSatCnt 0 TLDel60Cnt 0 TLBadCnt24 0 TL75UtilCnt 0 TL50UtilCnt 0 TLBalHCPct 0 TLSatPct 0 TLDel3060Cnt24 0 TLDe190Cnt24 0 TLDel60CntAll 0 TLOpenPct 0 TLBadDerogCnt 0 0 TLDel60Cnt24 TLOpen24Pct 0 dtype: int64

```
y = dataset.iloc[:, 0].values
X = dataset.iloc[:, 1:29].values
# splitting dataset into training and test (in ratio 80:20)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.2,
                                                     random_state=0,
                                                     stratify=y)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
classifier = LogisticRegression()
classifier.fit(X_train,y_train)
y_pred = classifier.predict(X_test)
print(confusion_matrix(y_test,y_pred))
     [[487 13]
      [ 87 13]]
print(accuracy_score(y_test,y_pred))
     0.8333333333333334
prediction = classifier.predict_proba(X_test)
prediction
     array([[0.61644691, 0.38355309],
            [0.9885656, 0.0114344],
            [0.87069686, 0.12930314],
            [0.94450568, 0.05549432],
            [0.46756903, 0.53243097],
            [0.94014209, 0.05985791]])
#writing model output file
df_prediction_prob = pd.DataFrame(prediction,columns=['prob_0','prob_1'])
df prediction target =pd.DataFrame(classifier.predict(X test),columns=['prediction TARGET
df_test_dataset = pd.DataFrame(y_test,columns= ['Actual outcume'])
dfx=pd.concat([df_test_dataset, df_prediction_prob, df_prediction_target], axis=1)
dfx.to_csv("/content/a_Dataset_CreditScoring.xlsx",sep =',',encoding='UTF-8')
dfx.head()
```

	Actual outcume	prob_0	prob_1	prediction_TARGET
0	1	0.616447	0.383553	0
1	0	0.988566	0.011434	0
2	1	0.870697	0.129303	0
3	0	0.953963	0.046037	0
4	1	0.726633	0.273367	0