LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ Basic references:

- Basic references:
- Linear Algebra, A. Ramachandra Rao and P. Bhimasankaram.

- Basic references:
- Linear Algebra, A. Ramachandra Rao and P. Bhimasankaram.
- ► Algebra, Michael Artin.

- Basic references:
- Linear Algebra, A. Ramachandra Rao and P. Bhimasankaram.
- Algebra, Michael Artin.
- Linear Algebra, Henry Helson.

► Here is a well-known game, called fifteen puzzle:

- ► Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/

- ► Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/
- ► Information on the Wikipedia: https://en.wikipedia.org/wiki/15_puzzle

- Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/
- Information on the Wikipedia: https://en.wikipedia.org/wiki/15_puzzle
- Question : Consider the initial configuration as:

- ► Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/
- Information on the Wikipedia: https://en.wikipedia.org/wiki/15_puzzle
- Question : Consider the initial configuration as:

Can we re-arrange it to the natural order by moves permitted by the game?

- ► Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/
- Information on the Wikipedia: https://en.wikipedia.org/wiki/15_puzzle
- Question : Consider the initial configuration as:

- ► Can we re-arrange it to the natural order by moves permitted by the game?
- Some rich man offered a lot of money for people to come up with a solution.

- ► Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/
- Information on the Wikipedia: https://en.wikipedia.org/wiki/15_puzzle
- Question : Consider the initial configuration as:

- Can we re-arrange it to the natural order by moves permitted by the game?
- Some rich man offered a lot of money for people to come up with a solution.
- ▶ But there was no solution!

- ► Here is a well-known game, called fifteen puzzle:
- https://lorecioni.github.io/fifteen-puzzle-game/
- Information on the Wikipedia: https://en.wikipedia.org/wiki/15_puzzle
- Question : Consider the initial configuration as:

- ► Can we re-arrange it to the natural order by moves permitted by the game?
- Some rich man offered a lot of money for people to come up with a solution.
- But there was no solution!
- ► The Rubik's cube is a toy very you see a lot of 'permutations' in action.

▶ Definition 1.1: Let S be a finite set. Then a bijective function $\sigma: S \to S$ is said to be a permutation of S.

- ▶ Definition 1.1: Let S be a finite set. Then a bijective function $\sigma: S \to S$ is said to be a permutation of S.
- ► Example 1.2: Take $S = \{s_1, s_2, ..., s_n\}$.

- ▶ Definition 1.1: Let S be a finite set. Then a bijective function $\sigma: S \to S$ is said to be a permutation of S.
- ► Example 1.2: Take $S = \{s_1, s_2, ..., s_n\}$.
- ▶ Define $\sigma_1: S \to S$ by

$$\sigma_1(s_j) = \begin{cases} s_{j+1} & \text{if } 1 \leq j < n \\ s_1 & \text{if } j = n. \end{cases}$$

- ▶ Definition 1.1: Let S be a finite set. Then a bijective function $\sigma: S \to S$ is said to be a permutation of S.
- ► Example 1.2: Take $S = \{s_1, s_2, ..., s_n\}$.
- ▶ Define $\sigma_1: S \to S$ by

$$\sigma_1(s_j) = \begin{cases} s_{j+1} & \text{if } 1 \leq j < n \\ s_1 & \text{if } j = n. \end{cases}$$

▶ Assume $n \ge 3$. Define $\sigma_2 : S \to S$ by

$$\sigma_2(s_j) = \left\{ egin{array}{ll} s_3 & ext{if} & j=1 \ s_1 & ext{if} & j=3 \ s_j & ext{otherwise}. \end{array}
ight.$$

- ▶ Definition 1.1: Let S be a finite set. Then a bijective function $\sigma: S \to S$ is said to be a permutation of S.
- ► Example 1.2: Take $S = \{s_1, s_2, ..., s_n\}$.
- ▶ Define $\sigma_1 : S \to S$ by

$$\sigma_1(s_j) = \begin{cases} s_{j+1} & \text{if } 1 \leq j < n \\ s_1 & \text{if } j = n. \end{cases}$$

▶ Assume $n \ge 3$. Define $\sigma_2 : S \to S$ by

$$\sigma_2(s_j) = \begin{cases} s_3 & \text{if } j = 1 \\ s_1 & \text{if } j = 3 \\ s_j & \text{otherwise.} \end{cases}$$

▶ Then σ_1, σ_2 are permutations.

Notation

One way to display the permutation is to write it down explicitly:

Notation

- One way to display the permutation is to write it down explicitly:
- ▶ We may show σ_1 above by:

$$\left(\begin{array}{ccccc} s_1 & s_2 & \dots & s_{n-1} & s_n \\ s_2 & s_3 & \dots & s_n & s_1 \end{array}\right)$$

Notation

- One way to display the permutation is to write it down explicitly:
- ▶ We may show σ_1 above by:

$$\left(\begin{array}{ccccc} s_1 & s_2 & \dots & s_{n-1} & s_n \\ s_2 & s_3 & \dots & s_n & s_1 \end{array}\right)$$

ightharpoonup Similarly σ_2 is displayed as:

► Theorem 1.3: Let *S* be a finite set. Let *G* be the collection of all permutations of *S*.

- ► Theorem 1.3: Let S be a finite set. Let G be the collection of all permutations of S.
- ▶ If σ, τ are elements of G, then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:

- ► Theorem 1.3: Let S be a finite set. Let G be the collection of all permutations of S.
- ▶ If σ, τ are elements of G, then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
- (i) Associativity: $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G.

- ► Theorem 1.3: Let S be a finite set. Let G be the collection of all permutations of S.
- ▶ If σ, τ are elements of G, then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
- ▶ (i) Associativity: $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G.
- ▶ (ii) Existence of identity: There exists $\iota \in G$ such that $\iota \circ \sigma = \sigma \circ \iota = \sigma$ for all $\sigma \in G$.

- ► Theorem 1.3: Let S be a finite set. Let G be the collection of all permutations of S.
- ▶ If σ, τ are elements of G, then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
- ▶ (i) Associativity: $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G.
- ▶ (ii) Existence of identity: There exists $\iota \in G$ such that $\iota \circ \sigma = \sigma \circ \iota = \sigma$ for all $\sigma \in G$.
- ▶ (iii) Existence of inverse: For $\sigma \in G$, there exists σ^{-1} in G such that $\sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1} = \iota$.

- ► Theorem 1.3: Let S be a finite set. Let G be the collection of all permutations of S.
- ▶ If σ, τ are elements of G, then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
- (i) Associativity: $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G.
- ▶ (ii) Existence of identity: There exists $\iota \in G$ such that $\iota \circ \sigma = \sigma \circ \iota = \sigma$ for all $\sigma \in G$.
- (iii) Existence of inverse: For $\sigma \in G$, there exists σ^{-1} in G such that $\sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1} = \iota$.
- ▶ Proof. Take ι as the identity map and then properties (i) to (iii) should be clear.

▶ In the following we always take the finite set S under consideration as $\{1, 2, ..., n\}$ for some fixed $n \in \mathbb{N}$.

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, ..., n\}$ for some fixed $n \in \mathbb{N}$.
- **Example 1.4**: Suppose $S = \{1, 2, ... 7\}$. Consider the permutation:

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, ..., n\}$ for some fixed $n \in \mathbb{N}$.
- **Example 1.4**: Suppose $S = \{1, 2, ..., 7\}$. Consider the permutation:

We see 1 --→ 3 --→ 7 --→ 1. This we call as a cycle. It is a cycle of length 3.

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, ..., n\}$ for some fixed $n \in \mathbb{N}$.
- **Example 1.4**: Suppose $S = \{1, 2, ..., 7\}$. Consider the permutation:

- We see 1 --→ 3 --→ 7 --→ 1. This we call as a cycle. It is a cycle of length 3.
- ▶ This permutation also has $2 \longrightarrow 5 \longrightarrow 2$, a cycle of length 2.

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, ..., n\}$ for some fixed $n \in \mathbb{N}$.
- **Example 1.4**: Suppose $S = \{1, 2, ... 7\}$. Consider the permutation:

- We see 1 --→ 3 --→ 7 --→ 1. This we call as a cycle. It is a cycle of length 3.
- This permutation also has 2 --→ 5 --→ 2, a cycle of length 2.
- ▶ It also has $4 \longrightarrow 4$ and $6 \longrightarrow 6$, cycles of length 1.

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, ..., n\}$ for some fixed $n \in \mathbb{N}$.
- **Example 1.4**: Suppose $S = \{1, 2, ..., 7\}$. Consider the permutation:

- We see 1 --→ 3 --→ 7 --→ 1. This we call as a cycle. It is a cycle of length 3.
- This permutation also has 2 --→ 5 --→ 2, a cycle of length 2.
- ▶ It also has $4 \longrightarrow 4$ and $6 \longrightarrow 6$, cycles of length 1.
- For distinct k_1, k_2, \ldots, k_r in $\{1, 2, \ldots, n\}$ (with $r \in \mathbb{N}$) we denote the cycle $k_1 \dashrightarrow k_2 \dashrightarrow k_1 \dashrightarrow k_r \dashrightarrow k_1$ simply as (k_1, k_2, \ldots, k_r) .

Cycle decomposition of permutations

For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r, $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).

Cycle decomposition of permutations

- For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r, $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ Lemma 1.5: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.

Cycle decomposition of permutations

- For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r, $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ Lemma 1.5: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.
- ▶ Proof. Take $k_2 = \sigma(k_1)$. If $k_2 = k_1$, we can take r = 1, and we are done.

Cycle decomposition of permutations

- For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r, $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ Lemma 1.5: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.
- ▶ Proof. Take $k_2 = \sigma(k_1)$. If $k_2 = k_1$, we can take r = 1, and we are done.
- ▶ If $k_2 \neq k_1$, take $k_3 = \sigma(k_2)$. If $k_3 = k_1$, we can take r = 2 and we are done.

Cycle decomposition of permutations

- For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r, $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ Lemma 1.5: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.
- ▶ Proof. Take $k_2 = \sigma(k_1)$. If $k_2 = k_1$, we can take r = 1, and we are done.
- ▶ If $k_2 \neq k_1$, take $k_3 = \sigma(k_2)$. If $k_3 = k_1$, we can take r = 2 and we are done.
- ▶ $k_3 = k_2$ is not possible, as this would mean that $k_2 = \sigma(k_1) = \sigma(k_2)$ and contradicting injectivity of σ .

Continuing this way, by induction if we get distinct k_1, k_2, \ldots, k_s with $k_1 \longrightarrow k_2 \longrightarrow \cdots \longrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take r = s and we are done.

- Continuing this way, by induction if we get distinct k_1, k_2, \ldots, k_s with $k_1 \longrightarrow k_2 \longrightarrow \cdots \longrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take r = s and we are done.
- ► For any $2 \le t \le s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .

- Continuing this way, by induction if we get distinct k_1, k_2, \ldots, k_s with $k_1 \longrightarrow k_2 \longrightarrow \cdots \longrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take r = s and we are done.
- ► For any $2 \le t \le s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .
- ▶ If $k_1, ..., k_{s+1}$ are all distinct, we can continue the induction process.

- Continuing this way, by induction if we get distinct k_1, k_2, \ldots, k_s with $k_1 \longrightarrow k_2 \longrightarrow \cdots \longrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take r = s and we are done.
- ► For any $2 \le t \le s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .
- If k_1, \ldots, k_{s+1} are all distinct, we can continue the induction process.
- ▶ This process has to terminate after some steps as the set S is finite. In fact S has exactly n distinct elements and so we will have $r \le n$.

- Continuing this way, by induction if we get distinct k_1, k_2, \ldots, k_s with $k_1 \longrightarrow k_2 \longrightarrow \cdots \longrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take r = s and we are done.
- ► For any $2 \le t \le s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .
- If k_1, \ldots, k_{s+1} are all distinct, we can continue the induction process.
- ▶ This process has to terminate after some steps as the set S is finite. In fact S has exactly n distinct elements and so we will have $r \le n$.
- ▶ Exercise 1.6: Show that there exists some $t \in \mathbb{N}$ such that $\sigma^t(j) = j$ for all $j \in S$.

▶ We have seen that a permutation may have several cycles.

- We have seen that a permutation may have several cycles.
- We may write down the permutation by listing the cycles it has.

- We have seen that a permutation may have several cycles.
- We may write down the permutation by listing the cycles it has.
- For instance, the permutation of Example 1.4, is written as (1,3,7)(2,5)(4)(6).

- We have seen that a permutation may have several cycles.
- We may write down the permutation by listing the cycles it has.
- For instance, the permutation of Example 1.4, is written as (1,3,7)(2,5)(4)(6).
- We may also write it as (3,7,1)(4)(2,5),(6) or as (7,1,3)(5,2)(6)(4). In other words, in what order we write these cycles does not matter.

- We have seen that a permutation may have several cycles.
- We may write down the permutation by listing the cycles it has.
- For instance, the permutation of Example 1.4, is written as (1,3,7)(2,5)(4)(6).
- We may also write it as (3,7,1)(4)(2,5),(6) or as (7,1,3)(5,2)(6)(4). In other words, in what order we write these cycles does not matter.
- ▶ Some authors do not write down 1-cycles at all. It is understood that elements of *S* which are not written down form 1-cycles.

- We have seen that a permutation may have several cycles.
- We may write down the permutation by listing the cycles it has.
- For instance, the permutation of Example 1.4, is written as (1,3,7)(2,5)(4)(6).
- We may also write it as (3,7,1)(4)(2,5),(6) or as (7,1,3)(5,2)(6)(4). In other words, in what order we write these cycles does not matter.
- ➤ Some authors do not write down 1-cycles at all. It is understood that elements of *S* which are not written down form 1-cycles.
- With this notation this permutation is simply (1, 3, 7), (2, 5) or (3, 7, 1)(5, 2) etc.

▶ Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

- ▶ Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.
- ▶ Then $(k_1, k_2, ..., k_r)$ denotes the permutation:

$$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$$
 otherwise.

- ▶ Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.
- ▶ Then $(k_1, k_2, ..., k_r)$ denotes the permutation:

$$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$$
 otherwise.

- ▶ Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.
- ▶ Then $(k_1, k_2, ..., k_r)$ denotes the permutation:

$$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$$
 otherwise.

- ▶ Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.
- ▶ Then $(k_1, k_2, ..., k_r)$ denotes the permutation:

$$k_1 \longrightarrow k_2 \longrightarrow k_3 \longrightarrow \ldots \longrightarrow k_r \longrightarrow k_1, j \longrightarrow j$$
 otherwise.

▶ More generally if $k_{11}, k_{12}, \ldots, k_{1r_1}, k_{21}, k_{22}, \ldots, k_{2r_2}, k_{31}, k_{32}, \ldots, k_{3r_3}, \ldots, k_{m1}, k_{m2}, \ldots k_{mr_m}$ are distinct elements of S, then

$$(k_{11}, k_{12}, \ldots, k_{1r_1})(k_{21}, k_{22}, \ldots, k_{2r_2}) \cdots (k_{m1}, k_{m2}, \ldots, k_{mr_m})$$

is a 'product' of cycles, with

$$\sigma(k_{11}) = k_{12}, \sigma(k_{12}) = k_{13}, \dots, \sigma(k_{1r_1}) = k_{11},$$

$$\sigma(k_{21}) = k_{22}, \dots, \sigma(k_{2r_2}) = k_{21}, \dots,$$

$$\sigma(k_{m1}) = k_{m2}, \dots, \sigma(k_{mr_m}) = k_{m1}, \sigma(j) = j, \text{ otherwise.}$$

▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.

- ▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.
- ▶ Proof. Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \ldots, k_r) with $k_1 = 1$.

- ▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.
- ▶ Proof. Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle $(k_1, k_2, ..., k_r)$ with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, \dots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \dots, k_r\}^c$, and we can get a cycle (j_1, j_2, \dots) with elements distinct from $\{k_1, k_2, \dots, k_r\}$. Continuing this way, we can exhaust whole of S, as S is a finite set.

- ▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.
- ▶ Proof. Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle $(k_1, k_2, ..., k_r)$ with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, ..., k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, ..., k_r\}^c$, and we can get a cycle $(j_1, j_2, ...)$ with elements distinct from $\{k_1, k_2, ..., k_r\}$. Continuing this way, we can exhaust whole of S, as S is a finite set.
- ightharpoonup Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .

- ▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.
- ▶ Proof. Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle $(k_1, k_2, ..., k_r)$ with $k_1 = 1$.
- If $S = \{k_1, k_2, \ldots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \ldots, k_r\}^c$, and we can get a cycle (j_1, j_2, \ldots) with elements distinct from $\{k_1, k_2, \ldots, k_r\}$. Continuing this way, we can exhaust whole of S, as S is a finite set.
- ightharpoonup Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .
- ▶ For i, j in S, write $i \sim j$ if $j = \sigma^r(i)$ for some $r \in \{0, 1, ...\}$.

- ▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.
- Proof. Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \ldots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, ..., k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, ..., k_r\}^c$, and we can get a cycle $(j_1, j_2, ...)$ with elements distinct from $\{k_1, k_2, ..., k_r\}$. Continuing this way, we can exhaust whole of S, as S is a finite set.
- ightharpoonup Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .
- ▶ For i, j in S, write $i \sim j$ if $j = \sigma^r(i)$ for some $r \in \{0, 1, ...\}$.
- ▶ Then \sim is an equivalence relation. (Exercise).

- ▶ Theorem 1.7: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ Suppose σ is a permutation of S. Then S decomposes uniquely as a product of cycles.
- Proof. Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \ldots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, ..., k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, ..., k_r\}^c$, and we can get a cycle $(j_1, j_2, ...)$ with elements distinct from $\{k_1, k_2, ..., k_r\}$. Continuing this way, we can exhaust whole of S, as S is a finite set.
- ▶ Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .
- ▶ For i, j in S, write $i \sim j$ if $j = \sigma^r(i)$ for some $r \in \{0, 1, ...\}$.
- ▶ Then \sim is an equivalence relation. (Exercise).
- It maybe seen that i, j are in the same cycle if and only if i ~ j. In other words, the equivalence classes form different cycles of the permutation.

▶ Definition 1.8: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then the signature of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

▶ Definition 1.8: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then the signature of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.

▶ Definition 1.8: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then the signature of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.

▶ Definition 1.8: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then the signature of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.
- A cycle $(k_1, k_2, ..., k_r)$ can be identified with the permutation σ defined by

$$\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_r) = k_1$$

and $\sigma(j) = j$ for $j \notin \{k_1, k_2, \dots, k_r\}$.

▶ Definition 1.8: Let $S = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S. Then the signature of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- \triangleright For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1.$
- ▶ Note that the signature of identity permutation is always 1.
- A cycle (k_1, k_2, \ldots, k_r) can be identified with the permutation σ defined by

$$\sigma(k_1)=k_2, \sigma(k_2)=k_3, \ldots, \sigma(k_r)=k_1$$

and $\sigma(i) = i$ for $i \notin \{k_1, k_2, \dots, k_r\}$.

► Therefore the signature of a cycle is defined as $(k_1, k_2, \dots, k_r) = (-1)^{n-(1+(n-r))} = (-1)^{r-1}.$

ightharpoonup Cycles of length two are known as transpositions. We see that transpositions have signature (-1).

- \triangleright Cycles of length two are known as transpositions. We see that transpositions have signature (-1).
- Permutations with signature (+1) are known as even permutations and those with signature (-1) are known as odd permutations.

- ▶ Cycles of length two are known as transpositions. We see that transpositions have signature (-1).
- Permutations with signature (+1) are known as even permutations and those with signature (-1) are known as odd permutations.
- ► END OF LECTURE 1.