CSE 6367: Computer Vision Gesture Recognition

Slide Courtesy: Dr. Vassilis Athitsos, University of Texas at Arlington

What is a gesture?

- What is a gesture?
 - Body motion used for communication.

- What is a gesture?
 - Body motion used for communication.
- There are different types of gestures.

- What is a gesture?
 - Body motion used for communication.
- There are different types of gestures.
 - Hand gestures (e.g., waving goodbye).
 - Head gestures (e.g., nodding).
 - Body gestures (e.g., kicking).

- What is a gesture?
 - Body motion used for communication.
- There are different types of gestures.
 - Hand gestures (e.g., waving goodbye).
 - Head gestures (e.g., nodding).
 - Body gestures (e.g., kicking).
- Example applications:

- What is a gesture?
 - Body motion used for communication.
- There are different types of gestures.
 - Hand gestures (e.g., waving goodbye).
 - Head gestures (e.g., nodding).
 - Body gestures (e.g., kicking).
- Example applications:
 - Human-computer interaction.
 - Controlling robots, appliances, via gestures.
 - Sign language recognition.

Dynamic Gestures

 What gesture did the user perform?

Class "8"

Gesture Types:10 Digits

Gesture Recognition Example

- Recognize 10 simple gestures performed by the user.
- Each gesture corresponds to a number, from 0, to 9.
- Only the *trajectory* of the hand matters, not the handshape.
 - This is just a choice we make for this example application. Many systems need to use handshape as well.

We need modules for:

- We need modules for:
 - Computing how the person moved.
 - Person detection/tracking.
 - Hand detection/tracking.
 - Articulated tracking (tracking each body part).
 - Handshape recognition.
 - Recognizing what the motion means.

- We need modules for:
 - Computing how the person moved.
 - Person detection/tracking.
 - Hand detection/tracking.
 - Articulated tracking (tracking each body part).
 - Handshape recognition.
 - Recognizing what the motion means.
- Motion estimation and recognition are quite different tasks.

- We need modules for:
 - Computing how the person moved.
 - Person detection/tracking.
 - Hand detection/tracking.
 - Articulated tracking (tracking each body part).
 - Handshape recognition.
 - Recognizing what the motion means.
- Motion estimation and recognition are quite different tasks.
 - When we see someone signing in ASL, we know how they move, but not what the motion means.

Nearest-Neighbor Recognition

- A simple approach.
- Representing a gesture:
 - Sum of all the motion occurring in the video sequence.

- Assumptions/Limitations:
 - No clutter.
 - We know the times when the gesture starts and ends.

If Hand Location Is Known:

Example database gesture

- Assumption: hand location is known in all frames of the database gestures.
 - Database is built offline.
 - In worst case, manual annotation.
 - Online user experience is not affected.

Comparing Trajectories

 We can make a trajectory based on the location of the hand at each frame.

Comparing Trajectories

How do we compare trajectories?

- Comparing i-th frame to i-th frame is problematic.
 - What do we do with frame 9?

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Can be many-to-many.
 - M₁ is matched to Q₂ and Q₃.

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Can be many-to-many.
 - M_4 is matched to Q_5 and Q_6 .

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Can be many-to-many.
 - M₅ and M₆ are matched to Q₇.

- Alignment:
 - -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Cost of alignment:

- Alignment:
 - -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Cost of alignment:
 - $-\cos t(s_1, t_1) + \cos t(s_2, t_2) + ... + \cos t(s_m, t_n)$

Alignment:

- -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
- $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

Cost of alignment:

- $-\cos t(s_1, t_1) + \cos t(s_2, t_2) + ... + \cos t(s_m, t_n)$
- Example: $cost(s_i, t_i)$ = Euclidean distance between locations.
- Cost(3, 4) = Euclidean distance between M_3 and Q_4 .

- Alignment:
 - -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Dynamic time warping rules: boundaries
 - $s_1 = 1, t_1 = 1.$
 - $s_p = m = length of first sequence$
 - $-t_p = n = length of second sequence.$

first elements match last elements match

- Illegal alignment (violating monotonicity):
 - (..., (3, 5), (4, 3), ...).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Dynamic time warping rules: monotonicity.
 - $0 \le (s_{t+1} s_t)$
 - $0 \le (t_{t+1} t_t)$

The alignment cannot go backwards.

- Illegal alignment (violating continuity).
 - (..., (3, 5), (6, 7), ...).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Dynamic time warping rules: continuity
 - $(s_{t+1} s_t) \le 1$
 - $-(t_{t+1} t_t) \le 1$

The alignment cannot skip elements.

- Alignment:
 - -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Dynamic time warping rules: monotonicity, continuity
 - $0 \le (s_{t+1} s_{t|}) \le 1$
 - $0 \le (t_{t+1} t_{t|}) \le 1$

The alignment cannot go backwards. The alignment cannot skip elements.

Dynamic Time Warping

- Dynamic Time Warping (DTW) is a distance measure between sequences of points.
- The DTW distance is the cost of the optimal alignment between two trajectories.
 - The alignment must obey the DTW rules defined in the previous slides.

DTW Assumptions

- The gesturing hand must be detected correctly.
- For each gesture class, we have training examples.
- Given a new gesture to classify, we find the most similar gesture among our training examples.
 - What type of classifier is this?

DTW Assumptions

- The gesturing hand must be detected correctly.
- For each gesture class, we have training examples.
- Given a new gesture to classify, we find the most similar gesture among our training examples.
 - Nearest neighbor classification, using DTW as the distance measure.

- Training example $M = (M_1, M_2, ..., M_8)$.
- Test example $Q = (Q_1, Q_2, ..., Q_9)$.
- Each M_i and Q_j can be, for example, a 2D pixel location.

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(1, 1):

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(1, 1):
 - Optimal alignment: ((1, 1)).

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(1, j):

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(1, j):
 - Optimal alignment: ((1, 1), (1, 2), ..., (1, j)).

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(i, 1):
 - Optimal alignment: ((1, 1), (2, 1), ..., (i, 1)).

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(i, j):

- Training example $M = (M_1, M_2, ..., M_{10})$.
- Test example $Q = (Q_1, Q_2, ..., Q_{15})$.
- We want optimal alignment between M and Q.
- Dynamic programming strategy:
 - Break problem up into smaller, interrelated problems (i,j).
 - Problem(i,j): find optimal alignment between (M₁, ..., M_i) and (Q₁, ..., Q_i).
- Solve problem(i, j):
 - Find best solution from (i, j-1), (i-1, j), (i-1, j-1).
 - Add to that solution the pair (i, j).

Input:

- Training example $M = (M_1, M_2, ..., M_m)$.
- Test example $Q = (Q_1, Q_2, ..., Q_n)$.

Initialization:

- scores = zeros(m, n).
- scores(1, 1) = $cost(M_1, Q_1)$.
- For i = 2 to m: $scores(i, 1) = scores(i-1, 1) + cost(M_i, Q_1)$.
- For j = 2 to n: $scores(1, j) = scores(1, j-1) + cost(M_1, Q_j)$.

Main loop:

- For i = 2 to m, for j = 2 to n:
 - scores(i, j) = cost(M_i, Q_j) + min{scores(i-1, j), scores(i, j-1), scores(i-1, j-1)}.
- Return scores(m, n).

For each cell (i, j):

- Compute optimal alignment of M(1:i) to Q(1:j).
- Answer depends only on (i-1, j), (i, j-1), (i-1, j-1).
- Time:

For each cell (i, j):

- Compute optimal alignment of M(1:i) to Q(1:j).
- Answer depends only on (i-1, j), (i, j-1), (i-1, j-1).
- Time: Quadratic to length of gestures.

 So far, can our approach handle cases where we do not know the start and end frame?

- So far, can our approach handle cases where we do not know the start and end frame?
 - No.
- Why is it important to handle this case?

- So far, can our approach handle cases where we do not know the start and end frame?
 - No.
- Why is it important to handle this case?
 - Otherwise, how would the system know that the user is performing a gesture?
 - Users may do other things with their hands (move them aimlessly, perform a task, wave at some other person...).
 - The system needs to know when a command has been performed.

- So far, can our approach handle cases where we do not know the start and end frame?
 - No.
- Recognizing gestures when the start and end frame is not known is called gesture spotting.

- So far, can our approach handle cases where we do not know the start and end frame?
 - No.
- How do we handle unknown start and end frames?

- So far, can our approach handle cases where we do not know the start and end frame?
 - No.
- How do we handle unknown end frames?

- So far, can our approach handle cases where we do not know the start and end frame?
 - No.
- How do we handle unknown end frames?
 - Assume, temporarily, that we know the start frame.

For each cell (i, j):

- Compute optimal alignment of M(1:i) to Q(1:j).
- Answer depends only on (i-1, j), (i, j-1), (i-1, j-1).
- The last column evaluates all possible end frames.65

- How do we handle unknown end frames?
 - Assume, temporarily, that we know the start frame.
 - Instead of looking at scores(m, n), we look at scores(m, j) for all j in {1, ..., n}.
 - m is length of training sequence.
 - n is length of query sequence.
 - scores(m, j) tells us the optimal cost of matching the entire training sequence to the first j frames of Q.
 - Finding the smallest scores(m, j) tells us where the gesture ends.

How do we handle unknown start frames?

- How do we handle unknown start frames?
 - Make every training sequence start with a sink symbol.
 - Replace $M = (M_1, M_2, ..., M_m)$ with $M = (M_0, M_1, ..., M_m)$.
 - $-M_0 = sink$.
 - Cost(0, j) = 0 for all j.
- The sink symbol can match the frames of the test sequence that precede the gesture.

DTW
Q
Frame 1
Frame 50
Frame 80
Frame 80

Performance Evaluation

 How do we measure accuracy when start and end frames are known?

Performance Evaluation

- How do we measure accuracy when start and end frames are known?
 - Classification accuracy.
 - Similar to face recognition.

Performance Evaluation

- How do we measure accuracy when start and end frames are unknown?
 - What is considered a correct answer?
 - What is considered an incorrect answer?

Performance Evaluation

- How do we measure accuracy when start and end frames are unknown?
 - What is considered a correct answer?
 - What is considered an incorrect answer?
- Typically, requiring the start and end frames to have a specific value is too stringent.
 - Even humans themselves cannot agree when exactly a gesture starts and ends.
 - Usually, we allow some kind of slack.

Performance Evaluation

- How do we measure accuracy when start and end frames are unknown?
- Consider this rule:
 - When the system decides that a gesture occurred in frames (A1, ..., B1), we consider the result correct when:
 - There was some true gesture at frames (A2, ..., B2).
 - At least half of the frames in (A2, ..., B2) are covered by (A1, ..., B1).
 - The class of the gesture at (A2, ..., B2) matches the class that the system reports for (A1, ..., B1).
 - Any problems with this approach?

Performance Evaluation

- How do we measure accuracy when start and end frames are unknown?
- Consider this rule:
 - When the system decides that a gesture occurred in frames (A1, ..., B1), we consider the result correct when:
 - There was some true gesture at frames (A2, ..., B2).
 - At least half of the frames in (A2, ..., B2) are covered by (A1, ..., B1).
 - The class of the gesture at (A2, ..., B2) matches the class that the system reports for (A1, ..., B1).
 - What if A1 and B1 are really far from each other?

A Symmetric Rule

- How do we measure accuracy when start and end frames are unknown?
- When the system decides that a gesture occurred in frames (A1, ..., B1), we consider the result correct when:
 - There was some true gesture at frames (A2, ..., B2).
 - At least half+1 of the frames in (A2, ..., B2) are covered by (A1, ..., B1). (why half+1?)
 - At least half+1 of the frames in (A1, ..., B1) are covered by (A2, ..., B2). (again, why half+1?)
 - The class of the gesture at (A2, ..., B2) matches the class that the system reports for (A1, ..., B1).

Variations

- When the system decides that a gesture occurred in frames (A1, ..., B1), we consider the result correct when:
 - There was some true gesture at frames (A2, ..., B2).
 - At least half+1 of the frames in (A2, ..., B2) are covered by (A1, ..., B1).
 - At least half+1 of the frames in (A1, ..., B1) are covered by (A2, ..., B2).
 - The class of the gesture at (A2, ..., B2) matches the class that the system reports for (A1, ..., B1).
- Instead of half+1, we can use a more or less restrictive threshold.

Frame-Based Accuracy

- In reality, each frame can either belong to a gesture, or to the no-gesture class.
- The system assigns each frame to a gesture, or to the no-gesture class.
- For what percentage of frames is the system correct?

- Consider recognizing the 10 digit classes, in the spotting setup (unknown start/end frames).
- What can go wrong with DSTW?

- Consider recognizing the 10 digit classes, in the spotting setup (unknown start/end frames).
- When a 7 occurs, a 1 is also a good match.

- Consider recognizing the 10 digit classes, in the spotting setup (unknown start/end frames).
- When a 9 occurs, a 1 is also a good match.

- Consider recognizing the 10 digit classes, in the spotting setup (unknown start/end frames).
- When an 8 occurs, a 5 is also a good match.

 Additional rules/models are needed to address the subgesture problem.

System Components

- Hand detection/tracking.
- Trajectory matching.

Hand Detection

 What sources of information can be useful in order to find where hands are in an image?

Hand Detection

- What sources of information can be useful in order to find where hands are in an image?
 - Skin color.
 - Motion.
 - Hands move fast when a person is gesturing.
 - Frame differencing gives high values for hand regions.
- Implementation: look at code in

detect_hands.m

Hand Detection

```
function [scores, result, centers] = ...
    detect hands (previous, current, next, ...
                 hand size, suppression factor, number)
negative histogram = read double image('negatives.bin');
positive histogram = read double image('positives.bin');
skin scores = detect skin(current, positive histogram, negative histogram);
previous gray = double gray(previous);
current gray = double gray(current);
next gray = double gray(next);
frame diff = min(abs(current gray-previous gray), abs(current gray-next gray));
skin motion scores = skin scores .* frame diff;
scores = imfilter(skin motion scores, ones(hand size), 'same', 'symmetric');
[result, centers] = top detection results(current, scores, hand size, ...
                                          suppression factor, number);
```

Problem: Hand Detection May Fail

[scores, result] = frame_hands(filename, current_frame, [41 31], 1, 1);
imshow(result / 255);

Problem: Hand Detection May Fail

[scores, result] = frame_hands(filename, current_frame, [41 31], 1, 4);
imshow(result / 255);

Problem: Hand Detection May Fail

[scores, result] = frame_hands(filename, current_frame, [41 31], 1, 5);
imshow(result / 255);

- We can use color gloves.
- Would that be reasonable?

[scores, result] = green_hands(filename, current_frame, [41 31]);
imshow(result / 255);

- We can use color gloves.
- Would that be reasonable?
 - Yes, when the user is willing to do it.
 - Example: collecting sign language data.


```
[scores, result] = green_hands(filename, current_frame, [41 31]);
imshow(result / 255);
```

- We can use color gloves.
- Would that be reasonable?
 - No, when the user is not willing to do it.
 - Do you want to wear a green glove in your living room?


```
[scores, result] = green_hands(filename, current_frame, [41 31]);
imshow(result / 255);
```

- We can use color gloves.
- Would that be reasonable?
 - No, when we do not control the data.
 - Example: Gesture recognition in movies.


```
[scores, result] = green_hands(filename, current_frame, [41 31]);
imshow(result / 255);
```

Remedy 2: Relax the Assumption of Correct Detection

input frame

hand candidates

- Hand detection can return multiple candidates.
 - Design a recognition module for this type of input.
 - Solution: Dynamic Space-Time Warping (DSTW)

Bottom-Up Recognition Approach

input sequence trajectory Detector Tracker Classifier class "0"

Bottom-up Shortcoming

input frame

hand likelihood

- Hand detection is often hard!
- Color, motion, background subtraction are often not enough.

For each cell (i, j):

- Compute optimal alignment of M(1:i) to Q(1:j).
- Answer depends only on (i-1, j), (i, j-1), (i-1, j-1).
- Time complexity proportional to size of table.

- Alignment: ((f₁, g₁, k₁), ..., (f_m, g_m, k_m)):
 - f_i: model frame. g_i: test frame. k_i: hand candidate.
 - Matching cost: sum of costs of each (f_i, g_i, k_i),

- Alignment: $((f_1, g_1, k_1), ..., (f_m, g_m, k_m))$:
 - f_i: model frame. g_i: test frame. k_i: hand candidate.
 - Matching cost: sum of costs of each (f_i, g_i, k_i),
 - How do we find the optimal alignment?

■ What problem corresponds to cell (i, j, k)?

- What problem corresponds to cell (i, j, k)?
 - Compute optimal alignment of M(1:i) to Q(1:j), using the k-th candidate for frame Q(j).
 - Answer depends on:

- What problem corresponds to cell (i, j, k)?
 - Compute optimal alignment of M(1:i) to Q(1:j), using the k-th candidate for frame Q(j).
 - Answer depends on (i-1, j,k), (i, j-1,k), (i-1, j-1,k).₁₀₃

- Result: optimal alignment.
 - $((f_1, g_1, k_1), (f_2, g_2, k_2), ..., (f_m, g_m, k_m)).$
 - f_i and g_i play the same role as in DTW.
- k_i: hand locations optimizing the DSTW score.

- **Result:** $((f_1, g_1, k_1), (f_2, g_2, k_2), ..., (f_m, g_m, k_m)).$
- k_i: hand locations optimizing the DSTW score.
- Would these locations be more accurate than those computed with skin and motion?

- Would these locations be more accurate than those computed with skin and motion?
- Probably, because they use more information (optimizing matching score with a model).

Application: Gesture Recognition with Short Sleeves!

DSTW vs. DTW

- Higher level module (recognition) tolerant to lower-level (detection) ambiguities.
 - Recognition disambiguates detection.
- This is important for designing plug-andplay modules.

Using Transition Costs

- DTW alignment:
 - ((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
 - $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Cost of alignment (considered so far):
 - $-\cos t(s_1, t_1) + \cos t(s_2, t_2) + ... + \cos t(s_p, t_p)$
- Incorporating transition costs:
 - $cost(s_1, t_1) + cost(s_2, t_2) + ... + cost(s_p, t_p) +$ $tcost(s_1, t_1, s_2, t_2) + tcost(s_2, t_2, s_3, t_3) + ... + tcost(s_p, t_p, s_p, t_p).$
- When would transition costs be useful?

Using Transition Costs

- DTW alignment:
 - -((1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7), (7, 8), (8, 9)).
 - $-((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Cost of alignment (considered so far):
 - $-\cos t(s_1, t_1) + \cos t(s_2, t_2) + ... + \cos t(s_p, t_p)$
- Incorporating transition costs:
 - $cost(s_1, t_1) + cost(s_2, t_2) + ... + cost(s_p, t_p) +$ $tcost(s_1, t_1, s_2, t_2) + tcost(s_2, t_2, s_3, t_3) + ... + tcost(s_p, t_p, s_p, t_p).$
- When would transition costs be useful?
 - In DSTW: to enforce that the hand in one frame should not be too far and should not look too different from the hand in the previous frame.

Integrating Transition Costs

- Basic DTW algorithm:
- Input:
 - Training example $M = (M_1, M_2, ..., M_m)$.
 - Test example $Q = (Q_1, Q_2, ..., Q_n)$.
- Initialization:
 - scores = zeros(m, n).
 - scores(1, 1) = $cost(M_1, Q_1)$.
 - For i = 2 to m: $scores(i,1) = scores(i-1, 1) + tcost(M_{i-1}, Q_1, M_i, Q_1) + cost(M_i, Q_1)$.
 - For j = 2 to n: $scores(1, j) = scores(1, j-1) + tcost(M₁, Q_{j-1}, M₁, Q_j) + <math>cost(M_1, Q_j)$.
- Main loop: For i = 2 to m, for j = 2 to n:
 - $\ scores(i, j) = cost(M_i, Q_j) + min\{scores(i-1, j) + tcost(M_{i-1}, Q_j, M_i, Q_j), \\ scores(i, j-1) + tcost(M_i, Q_{j-1}, M_i, Q_j), \\ scores(i-1, j-1) + tcost(M_{i-1}, Q_{i-1}, M_i, Q_i)\}.$
- Return scores(m, n).
- Similar adjustments must be made for unknown start/end frames, and for DSTW.