Chemistry Lecture #78: Molarity - Preparations from Stock Solutions

A stock solution is a concentrated solution used to make other solutions of lower concentration. For example, suppose I have an 8 M CuSO_4 stock solution and I want 600 mL of 4 M CuSO_4 . If I take 300 mL of the 8 M solution and add water until the volume is 600 mL, I'll have diluted the concentration to 4 M.

By adding water until the volume has doubled, I reduce the concentration by half.

We can use a formula to help us calculate the amount of stock solution we need to prepare a more dilute solution.

$$M_1V_1 = M_2V_2$$

 M_1 = molarity of the stock solution V_1 = volume of the stock solution

 M_2 = molarity of the dilute solution V_2 = volume of the dilute solution

The units of volume can be anything: mL, L, gallons, quarts, etc. As long as V_1 and V_2 both use the same type of volume unit, you can use any volume unit you want.

How much 2.00 M MgSO₄ is needed to prepare 1.00×10^2 mL of 0.400 M MgSO₄?

$$M_1 = 2.00 \text{ M}$$
 $M_2 = 0.400 \text{ M}$ $V_1 = ?$ $V_2 = 100 \text{ mL}$

$$M_1V_1 = M_2V_2$$

(2.00 M) $V_1 = (0.400 \text{ M}) (100 \text{ mL})$
2.00 $V_1 = (0.400) (100)$

$$V_1 = (0.400)(100) = 20.0 \text{ mL}$$

 2.00

To prepare 100 mL of 0.400 M solution, take 20.0 mL of 2.00 M stock solution and add water until the volume is 100 mL.

If 15.0 mL of 10.0 M HCl solution is diluted to 3.00 x 10^2 mL, what is the molarity of the diluted solution?

$$M_1 = 10.0 M$$
 $M_2 = ?$

$$V_1 = 15.0 \text{ mL}$$
 $V_2 = 300 \text{ mL}$

$$M_1V_1 = M_2V_2$$

(10.0 M) (15.0 mL) = M_2 (300 mL)
(10.0) (15.0) = M_2 (300)

$$M_2 = (10.0)(15.0)$$

$$300$$

$$M_2 = 0.500 \text{ M HCI}$$