This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(11) EP 0 722 919 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 24.07.1996 Bulletin 1996/30

(21) Application number: 96100600.4

(22) Date of filing: 17.01.1996

(51) Int. CI.⁶: **C04B 35/653**, C04B 35/117, C04B 35/119

(84) Designated Contracting States: DE FR GB

(30) Priority: 19.01.1995 JP 23286/95

19.01.1995 JP 23286/95 19.01.1995 JP 23287/95 19.01.1995 JP 23288/95 22.06.1995 JP 177985/95

(71) Applicant: UBE INDUSTRIES, LTD. Ube-shi, Yamaguchi-ken 755 (JP)

(72) Inventors:

Waku, Yoshiharu
 Ube-shi, Yamaguchi (JP)

 Nakagawa, Narihito Ube-shi, Yamaguchi (JP)

Ohtsubo, Hideki
 Ube-shi, Yamaguchi (JP)

Wakamoto, Takumi
 Ube-shi, Yamaguchi (JP)

 Shimizu, Kazutoshi Yamaguchi-shi, Yamaguchi (JP)

 Kohtoku, Yasuhiko Ube-shi, Yamaguchi (JP)

(74) Representative: Hoeger, Stellrecht & Partner Uhlandstrasse 14 c 70182 Stuttgart (DE)

(54) Ceramic composite

(57) A novel ceramic composite of a solidified body consisting of at least two crystal phases of oxides selected from metal oxides and complex metal oxides,

except for the Al₂O₃/Y₃Al₅O₁₂ combination.

Fig. 1

EP 0 722 919 A

Description

BACKGROUND OF THE INVENTION

1. Field of the invention

The present invention relates to a ceramic composite which has a high mechanical strength, and an excellent creep resistance in a wide temperature range from room temperature to a high temperature and is suitable for use as a structural material at a high temperature.

2. Description of the Related Art

SiC and Si₃N₄ have been investigated to develop ceramic materials to be used at high temperatures but they are not sufficient in high temperature properties. As an alternative material thereof, SiC/SiC composite materials produced by chemical vapor impregnation, provided by Societe Europeene de Propulsion, have attracted attention, at the present are considered to be the best high temperature structural materials that have have been investigated and developed. The temperature range at which they can be used is reported to be 1400°C or lower.

Manufacture of deramics is primarily done by a powder sintering method in which improvement in powder characteristics, such as finer particle size and higher purity, have made it possible to obtain ZrO₂ ceramics having the high strength, at room temperature, of 30 GPa. It is also possible to produce a composite material in which additional ceramic particles are dispersed at the level of nano meters in a sintered ceramic material, by which an improvement in the strength, toughness and thermal properties of the ceramic material was provided.

It was generally considered that oxide ceramics cannot be used for high temperature structural materials which receive high loads, since oxide ceramics are easily deformed at high temperatures. The oxide ceramics are better in to be used in a wide range of uses if the mechanical strength at high temperature can be enhanced. In this respect, Gd₂O₃, Nd₂O₃ and Er₂O₃, Pd₂O₃, and MgO and rare earth element oxides such as Y₂O₃, La₂O₃, Yb₂O₃, Sm₂O₃, Ceramics.

Japanese Unexamined Patent Publication (Kokai) No. 5-85821 discloses a sintered body comprising a rare earth element oxide (an oxide of a rare earth element or an oxide of two or more rare earth elements) and Al_2O_3 and a proctering the same. A rare earth element oxide and Al_2O_3 are mixed and formed into a shape, followed by singrain size of the sintered body to 30 μ m or less, by which extraordinal grain growth and the appearance of pores are ity can be provided.

Mr. T. Parthasarathy et al. in Journal of the American Ceramics Society Vol. 76, No. 1, pp29 - 32 (1993) disclosed a composite of alumina and yttrium aluminum garnet (sometime hereinafter referred to as "YAG") of eutectic Al_2O_3 -

Mr. Parthasarathy et al. also disclose a method of producing the composite by unidirectionally melting and solidifying a mixed powder of Al_2O_3 and Y_2O_3 in a crucible.

It is comprehensible from the description on page 29, right column, lines 9 and 10 and Figs. 1 and 2 of the literature that the composite is polycrystalline and includes grain boundaries. This is clearly supported from the description "The failure was usually along the colony boundaries with crack running along the Al₂O₃-YAG interface boundaries". These colony boundaries are shown as portions where the microstructure is larger than in the other portions in Fig. 2 of the

This composite material has stresses equivalent to those of sapphire at 1530°C and 1650°C when the strain rate

Moreover, the present inventors confirmed by experiment that the composite disclosed by Mr. Parthasarathy et al. include pores or voids in the microstructure and the mechanical strength of the composite falls rapidly at high temperature.

It is clear, as evidenced by the above that the mechanical properties of ceramic composite materials at high temperatures largely depend on the structure of grain boundaries of constituent materials, the interface between the matrix and the reinforcing phase, and crystallographic properties of reinforcing phase and matrix and precise control of these

The present inventors, considering the above problems of the conventional art, have vigorously investigated to obtain ceramic composite materials having excellent mechanical strength and creep resistance from room temperature to a high temperature, particularly having remarkably improved properties at high temperatures.

As results, the inventors found novel ceramic composite materials consisting of α -Al₂O₃ and YAG, constituting single crystal/single crystal phases, single crystal/polycrystal phases, and polycrystal/polycrystal phases (see Japanese Unexamined Patent Publication (Kokai) Nos. 07-149,597 and 07-187893 and Japanese Patent Application No. 06-240790).

SUMMARY OF THE INVENTION

The object of the present invention is to provide, following the above ceramic composite materials consisting of α -Al₂O₃ and YAG phases, novel ceramic composites of solidified bodies consisting of at least two crystal phases of oxides selected from metal oxides and complex metal oxides, i.e., metal oxide/metal oxide, metal oxide/complex metal oxide, or complex metal oxide, which have excellent mechanical properties and creep resistances at from room temperature to a high temperature and particularly, remarkably enhanced properties at high temperatures.

Thus, in accordance with the present invention, there is provided a ceramic composite of a solidified body consisting of at least two crystal phases of oxides selected from the group consisting of metal oxides and complex metal oxides, except that said at least two oxides are not the combination of aluminum oxide (Al_2O_3) and a complex oxide (Al_2O_3) and a trium oxide (Al_2O_3) and yttrium oxide (Al_2O_3).

Exemplified metal oxides include Al₂O₃, MgO, SiO₂, TiO₂, ZrO₂, CaO, BaO, BeO, FeO, Fe₂O₃, MnO, CoO, Nb₂O₃, Ta₂O₃, Cr₂O₃, SrO, ZnO, NiO, Li₂O₃, Ga₂O₃, HfO₂, ThO₂, UO₂ and SnO₂.

Exemplified rare earth element oxides include La_2O_3 , Y_2O_3 , CeO_2 , Pr_6O_{11} , Nd_2O_3 , Sm_2O_3 , Eu_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yo_2O_3 and Er_2O_3 .

A complex metal oxide, also called as compound oxide or sometimes double oxide, means an oxide of two or more metal elements.

Exemplified complex metal oxides include $3Al_2O_3 \cdot 2SiO_2$, $MgO \cdot Al_2O_3$, $Al_2O_3 \cdot TiO_2$, $BaO \cdot Al_2O_3$, $BaO \cdot 6Al_2O_3$, $BeO \cdot Al_2O_3$, $CaO \cdot TiO_2$, $CaO \cdot Nb_2O_3$, $CaO \cdot ZrO_2$, $CaO \cdot ZrO_2$, $CaO \cdot TiO_2$, $CaO \cdot TiO_2$, $CaO \cdot TiO_2$, $CaO \cdot ZrO_3$, $CaO \cdot Z$

Exemplified complex metal oxides of Al_2O_3 and rare earth element or metal include $11Al_2O_3 \cdot La_2O_3$. $11Al_2O_3 \cdot Nd_2O_3$, $11Al_2O_3 \cdot Pr_2O_3$, $EuAl_{11}O_{18}$, $2Gd_2O_3 \cdot Al_2O_3$, $Sm_2O_3 \cdot 11Al_2O_3$, $Yb_3Al_5O_{12}$, $CeAlO_3$, $CeAl_{11}O_{18}$, $Er_3Al_5O_{12}$ and $Er_{14}Al_2O_9$.

The oxide of each crystal phase may be any of a single oxide such as Al_2O_3 , a complex oxide such as $MgO \cdot Al_2O_3$, or a solid solution oxide. The solid solution oxide means an oxide consisting of a primary oxide to which an additional oxide is solid solved.

The term "solidified body" means that the body is obtained by molting the powders or materials of at least two oxides followed by cooling the molten material to allow solidification "solidified" is sometimes also called "melted" or "fused" as, for example, in "melted alumina" or "fused alumina". The solidified body is clearly distinguished from a sintered body.

The ceramic composite of the present invention can have a uniform structure which does not include colonies and voids by controlling the conditions of manufacture. The ceramic composite of the present invention does not include any of the grain boundary phases which are generally present in sintered ceramic bodies and are constituted by a material having a composition different from each of the compositions of the crystal grains, for example, a sintering agent or a reaction product or mixture thereof.

It is also possible to produce a ceramic composite constituted by a combination of the crystal phases of single crystal/single crystal, single crystal/polycrystal/polycrystal of a combination of metal oxide-metal oxide, metal oxide-complex metal oxide, or complex metal oxide-complex metal oxide, by controlling the conditions of manufacture.

The single crystal means that only a diffraction peak derived from a specific crystal plane is observed in an X-ray diffraction of a ceramic composite. This means that the ceramic composite includes only one single crystal or a plurality of single crystals which are aligned in the same crystallographic orientation, most typically a three dimensionally continuous single crystal.

Further, each phase of the single crystal and polycrystal phases can have a three dimensionally continuous structure and these three dimensionally continuous phases are typically intertmingled with each other.

Alternatively, in the ceramic composite of the invention, the only polycrystal phase may be a three dimentionally continuous phase in which a plurality of single crystals may be dispersed in the form of fibers or particles.

It is also possible to add an additional oxide to the constituent oxides to be dissolved or precipitated in at least one of the constituent oxides of the ceramic composite or to present at boundaries of the phases, by which the mechanical or thermal properties of the ceramic composite is varied.

The sizes of phases may be controlled by selecting the solidification conditions but is typically 1 to 50 μ m. Here, the size of a phase means a dimension of the phase which is observed in a section of a ceramic composite. Most typically, the sectional view takes a sea-island structure (e.g. Fig. 1).

For example, in the case of a combination of Al_2O_3 and SiO_2 of the Examples, i.e. a ceramic composite consisting of an Al_2O_3 phase and a $3Al_2O_3 \cdot 2SiO_2$ phase, a complex oxide made of Al_2O_3 and SiO_2 can be obtained, since they form an eutectic crystal consisting of 68 mol% of Al_2O_3 and 32 mol% of SiO_2 . In the ceramic composite of the present invention, the proportion between Al_2O_3 and the complex oxide $3Al_2O_3 \cdot 2SiO_2$ can be varied in a range of about 20 to 800 by volume of 801 and about 80 to 20% by volume of 802 by varying the ratio between the starting 803 and 804 powders.

Also, in a combination of Al_2O_3 and Gd_2O_3 of Examples, which form an eutectic crystal $GdAlO_3$ consisting of 78 mol% of Al_2O_3 and 22 mol% of Gd_2O_3 , a ceramic composite consisting of an Al_2O_3 phase and a $GdAlO_3$ phase having a perovskite structure of a complex oxide made of Al_2O_3 and Gd_2O_3 can be obtained. This ceramic composite may have a composition in a range of about 20 to 80% by volume of α - Al_2O_3 and about 80 to 20% by volume of $GdAl_2O_3$.

The oxides having a perovskite structure which can be present in accordance with the present invention include LaAlO₃, CeAlO₃, PrAlO₃, NdAlO₃, SmAlO₃, EuAlO₃ and DyAlO₃.

A ceramic composite comprising at least one oxide having a perovskite structure can have a finer structure and, as a result, an enhanced mechanical strength.

In a case of a combination of Al_2O_3 and Er_2O_3 , which form an eutectic crystal of 81.1 mol% of Al_2O_3 and 18.9 mol% of Er_2O_3 , a ceramic composite consisting of an Al_2O_3 phase and an $Er_3Al_5O_{12}$ phase having a garnet structure of a complex oxide made of Al_2O_3 and Er_2O_3 can be obtained. The ceramic composite may comprises about 20 to 80% by volume of α - Al_2O_3 and about 80 to 20% by volume of $Er_3Al_5O_{12}$.

The oxides having a garnet structure which can be present in accordance with the present invention include $Yb_3Al_5O_{12}$, etc.

A ceramic composite comprising at least one oxide having a garnet structure can have an improved creep resistance.

The ceramic composite of the present invention can be produced, for example, by the following process.

5

A mixed powder of at least two oxide ceramic powders in a ratio for a desired ceramic composite is prepared by weighing and mixing. The mixing method is not particularly limited and may be either of a dry mixing method or a wet mixing method. In a wet mixing method, an alcohol such as methanol or ethanol is generally used as the medium.

The mixed powder is then heated to a temperature at which both starting powders are molten, for example, at 1950 der.

The mixed powder is then heated to a temperature at which both starting powders are molten, for example, at 1950 der.

Subsequently, the melt is charged in a crucible and then unidirectionally solidified to prepare a ceramic composite of the present invention. Alternatively, the melt is once solidified and crushed and the crushed material is then charged in a crucible and melted and unidirectionally solidified. Further, the above melt is cast in a crucible heated to a predetermined temperature which is then cooled while controlling the cooling rate to obtain a solidified body.

The atmospheric pressure during the melting and solidification is generally 300 Torr or less, preferably 10⁻³ Torr or less. The speed of moving the crucible for unidirectional solidification, i.e., the rate of growth of the ceramic composite material is generally 500 mm/hour or less, preferably 1 to 100 mm/hour. The control of the conditions other than the atmospheric pressure and crucible moving speed can be done in the same manner as in conventional methods.

If the atmospheric pressure or the crucible moving speed during the melting and solidification is outside the above ranges, pores or voids tend to appear, and it is difficult to obtain a ceramic composite excellent in mechanical strength creep.

The apparatus for unidirectional solidification may be a conventional one in which a crucible is vertically movably mounted in a vertically arranged cylindrical container, an induction heating coil is disposed around the approximate center position of the cylindrical container, and a vacuum pump is provided to evacuate the container space.

The ceramic composites of the present invention are remarkably improved in their heat resistance, durability, above 1500°C in air, and therefore they are highly useful as members such as turbine blades of jet engines, electric line addition, they are highly useful in the area bighly useful in the present in addition, they are highly useful in the area bighly useful in the area bighly useful in the area.

In addition, they are highly useful in the wide variety of fields where oxide-based ceramics such as Al₂O₃ are used in practice, for example, in a heat exchanger for a high temperature furnace, as materials for a nuclear furnace, as abrasion resistance materials, and as corrosion resistance materials.

Moreover, if the ceramic composites are made into the form of fibers or powders, they can be suitably used as reinforcing members dispersed in ceramic composite materials or nickel-based super alloys or cobalt-based super alloys which are used in the turbine blades of power generation turbines or in jet engines. Further, the obtained powders may be melted and solidified on the surface of a metal member or others by a method such as plasma spraying, which is expected to improve the oxidation resistance and the abrasion resistance.

Formation of the ceramic composite in the form of fibers may be conducted, for example, by changing a solidified body obtained by unidirectional solidification into a wire having a diameter of about 1 mm, dipping an end of the thus grow a crystal in the form of a fiber.

Alternatively, the Edge-defined Film-fed Growth method in which a guide is placed in a melt pool to cause capillary action and the guide is drawn, and the Laser Heated Float Zone (LHF) method in which a rod previously prepared by sintering is irradiated with a beam such as a laser beam to zone melting and unidirectional solidification, may be adopted.

Formation of the ceramic composite in the form of powder may be conducted by a method in which a melted material is dropped through fine pores formed at the bottom of a crucible into a furnace having a graduation of temperature so as to solidify the same.

The surface coating may be conducted by immersing a member to be coated into a melt pool, unidirectionally solidifying the melt while immersing the member therein, and removing the crucible which held the melt by post-machining or processing.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 is a scanning electron microphotograph showing a ceramic composite obtained in Example 1;
- Fig. 2 is a scanning electron microphotograph showing a ceramic composite obtained in Example 2;
- Figs. 3 and 4 are scanning electron microphotographs showing a ceramic composite obtained in Example 3;
- Fig. 5 is a scanning electron microphotograph showing a ceramic composite obtained in Comparative Example 1;
- Fig. 6 is a scanning electron microphotograph showing a ceramic composite obtained in Example 4;
- Fig. 7 is a scanning electron microphotograph showing a ceramic composite obtained in Example 5;
- Fig. 8 is a scanning electron microphotograph showing a ceramic composite obtained in Comparative Example 2; Figs. 9 to 16 are scanning electron microphotographs showing ceramic composites obtained in Examples 6 to 13, respectively;
 - Fig. 17 is a scanning electron microphotograph showing a ceramic composite obtained in Comparative Example 3;
 - Fig. 18 is a scanning electron microphotograph showing a ceramic composite obtained in Example 14;
- Fig. 19 is a scanning electron microphotograph showing a ceramic composite obtained in Comparative Example 4;
- Fig. 20 is a scanning electron microphotograph showing a ceramic composite obtained in Example 15;
- Fig. 21 is a scanning electron microphotograph showing a ceramic composite obtained in Comparative Example 5; and
- Fig. 22 is a scanning electron microphotograph showing a ceramic composite obtained in Example 16.

EXAMPLES

15

20

25

30

35

Example 1

 α -Al₂O₃ powder and Gd₂O₃ powder in a molar ratio of 78.0% by mole of the former to 22.0% by mole of the latter were milled in a wet ball mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Gd₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr and the crucible was heated by an induction coil to 1850 to 2000°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible, at a speed of 5 mm/hour and under the above atmospheric pressure, to obtain a unidirectionally solidified body.

Fig. 1 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a $GdAlO_3$ phase and the black portions are an α - Al_2O_3 phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and a diffraction peak from a specific plane of GdAlO₃ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ single crystal phase and a GdAlO₃ single crystal phase.

The mechanical strength of the ceramic composite is shown in Table 1, where the three point bending strength was measured in air. The ceramic composite was kept at 1750°C for 50 hours and the increase in weight was 0.003 g/cm³.

55

45

Table 1

	Example 1	Example 2
Three point bending strength (MPa)	600	1000

Example 2

 α -Al₂O₃ powder and Gd₂O₃ powder in a molar ratio of 78.0% by mole of the former to 22.0% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Gd₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr and the crucible was heated by an induction coil to 1850 to 2000°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible, at a speed of 20 mm/hour and under the above atmospheric pressure, to obtain a unidirectionally solidified

Fig. 2 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a GdAlO₃ phase and the black portions are an

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and diffraction peaks from a plurality of planes of $GdAlO_3$ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ single crystal phase and a GdAlO₃ polycrystal phase.

The mechanical strengths of the ceramic composite are shown in Tables 1 and 3, where the three point bending strength was measured at 1600°C in air with a strain speed of 10⁻⁴ sec. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.003 g/cm³.

Example 3

The procedures of Example 2 were repeated, except that the moving speed of the crucible was 50 mm/hour, to obtain a solidified body.

Figs. 3 and 4 show scanning electron micrographs of the solidified body in section cut perpendicular to and in parallel to the direction of the solidification. It is seen that this solidified body has a unique structure consisting of a structure which is finer than that of Example 2 and a structure wherein a $GdAlO_3$ phase in the form of fibers is uniformly dispersed in an Al₂O₃ phase.

The mechanical strength of this ceramic composite is shown in Table 2, wherein the three point bending strength was measured at 1600°C in air.

Table 2

	_	
	Example 3	Comparative Example 1
Three point bending strength (MPa)	800	100

Comparative Example 1

 α -Al₂O₃ powder and Gd₂O₃ powder in the same molar ratio as in Example 1 were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Gd₂O₃ was charged in a graphite die and sintered, while being pressed at 500 kg/mm² in an atmospheric pressure of 10⁻² Torr, at a temperature of 1680°C for 2 hours to obtain a sintered body.

From the X-ray body diffraction of the thus obtained sintered body, diffraction peaks from a plurality of planes of α -Al₂O₃ and a plurality of planes of GdAlO₃ were observed.

Fig. 5 shows scanning electron micrograph of the thus obtained sintered body in a section cut perpendicular to the direction of the pressing during sintering. In the photograph, the white portions are $GAIO_3$ grains and the black portions are α -Al₂O₃ grains.

It was demonstrated that the sintered body was a ceramic composite comprising α -Al₂O₃ grains and GdAlO₃ grains.

The mechanical strengths of the ceramic composites are shown in Tables 2 and 3, where the three point bending strengths and the compressive creep strength were measured at 1600°C in air.

Table 3

	Example 2	Comparative Example 1
Compression creep strength (MPa)	400	100

Example 4

10

15

25

30

45

 α -Al₂O₃ powder and Er₂O₃ powder in a molar ratio of 81.1% by mole of the former to 18.9% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Er₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr, and the crucible was heated by an induction coil to 1900 to 2000°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 5 mm/hour, under the above atmospheric pressure, to obtain a unidirectionally solidified body.

Fig. 6 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a $\rm Er_3Al_5O_{12}$ phase and the black portions are an $\rm \alpha\text{-}Al_2O_3$ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and a diffraction peak from a specific plane of Er₃Al₅O₁₂ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ single crystal phase and a Er₃Al₅O₁₂ single crystal phase.

The mechanical strengths of the ceramic composite is shown in Tables 4 and 6, where the three point bending strength was measured at 1800°C in air and the compressive creep strength was measured at 1600°C in air with a strain speed of 10⁻⁴/sec. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.002 g/cm³.

Table 4

	Example 4	Comparative Example 2
Three point bending strength (MPa)	450	40

Example 5

 α -Al₂O₃ powder and Er₂O₃ powder in a molar ratio of 81.1% by mole of the former to 18.9% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Er₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr and the crucible was heated by an induction coil to 1900 to 2000°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 50 mm/hour, under the above atmospheric pressure, to obtain a unidirectionally solidified body

Fig. 7 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a $Er_3Al_5O_{12}$ phase and the black portions are an α -Al₂O₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and diffraction peaks from a plurality of planes of Er₃Al₅O₁₂ were observed, demonstrating that the solidified body was a ceramic composite consisting of two phases of an α -Al₂O₃ single crystal phase and a Er₃Al₅O₁₂ polycrystal phase.

The mechanical strengths of the ceramic composite is shown in Tables 5 and 6, where the three point bending strength was measured at 1800°C in air and the compressive creep strength was measured at 1600°C in air with a strain speed of 10⁻⁴/sec. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.002 g/cm³.

Comparative Example 2

 α -Al₂O₃ powder and Er₂O₃ powder in the same molar ratio as in Example 4 were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Er₂O₃ was charged in a graphite die and sintered, while being pressed at 500 kg/mm² at 1780°C, and an atmospheric pressure of 10⁻² Torr for 2 hours to obtain a sintered body. In X-ray diffraction of the thus obtained sintered body, diffraction peaks from a plurality of planes of α -Al₂O₃ and diffraction peaks from a plurality of planes of Er₃Al₅O₁₂ were observed.

Fig. 8 shows scanning electron micrograph of the sintered body in a section cut perpendicular to the direction of the pressing during the sintering. In the photograph, the white portions are $Er_3Al_5O_{12}$ grains and the black portions are α -Al₂O₃ grains.

It was demonstrated that the sintered body was a ceramic composite comprising α -Al₂O₃ grains and Er₃Al₅O₁₂ grains.

The mechanical strengths of the ceramic composits are shown in Tables 5 and 6, where the three point bending strength was measured at 1800°C in air. The compressive creeping strength was measured at 1600°C in air with a strain speed of 10⁻⁴/sec.

Table 5

	Example 5
Three point bending strength (MPa)	600

Table 6

	Example 5	Comparative Example 2
Compression creep strength (MPa)	480	40

Example 6

 α -Al₂O₃ powder and Sm₂O₃ powder in a molar ratio of 69.0% by mole of the former to 31.0% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Sm₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr, and the crucible was heated by an induction coil to 1850 to 1950°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 50 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 9 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a SmAlO₃ phase and the black portions are an α -Al₂O₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality of planes of α -Al₂O₃ and diffraction peaks from a plurality of

planes of SmAlO₃ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ polycrystal phase and a SmAlO₃ polycrystal phase in which the SmAlO₃ phase in the form of fibers is uniformly dispersed in the α -Al₂O₃ phase.

The mechanical strengths of the ceramic composite is shown in Tables 7 and 8, where the three point bending strength was measured at 1700°C in air and the compressive creep strength was measured at 1600°C with a strain speed of 10⁻⁴/sec. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.002 g/cm³.

Table 7

	Example 6
Three point bending strength (MPa)	950

Table 8

	Example 6
Compression creep strength (MPa)	600

Example 7

10

15

20

25

45

50

55

 α -Al₂O₃ powder and Yb₂O₃ powder in a molar ratio of 83.7% by mole of the former to 16.3% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove ethanol.

The obtained mixed powder of α -Al₂O₃ and Yb₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr, and the crucible was heated by an induction coil to 1850 to 1950°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 5 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 10 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a $3Yb_2O_3 \cdot 5Al_2O_3$ phase and the black portions are an $\alpha \cdot Al_2O_3$ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, pores or voids do not exist, and a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and a diffraction peak from a specific plane of $3\text{Yb}_2\text{O}_3 \cdot 5\text{Al}_2\text{O}_3$ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ single crystal phase and a $3\text{Yb}_2\text{O}_3 \cdot 5\text{Al}_2\text{O}_3$ single crystal phase.

The mechanical strength of the ceramic composite is shown in Table 9, where the three point bending strength was measured at 1600°C in air. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.002 o/cm³.

Table 9

	Example 7
Three point bending strength (MPa)	· 550

Example 8

An α -Al₂O₃ powder and an La₂O₃ powder in a molar ratio of 77.5% by mole of the former to 22.5% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove ethanol.

The obtained mixed powder of α -Al₂O₃ and La₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr and the crucible was heated by an induction coil to 1800 to

1900°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 50 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 11 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are an LaAlO₃ phase and the black portions are an α -Al₂O₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality of planes of α -Al₂O₃ and diffraction peaks from a plurality of planes of LaAlO₃ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ polycrystal phase and an LaAlO₃ polycrystal phase, in which the LaAlO₃ phase in the form of fibers is uniformly dispersed in the α -Al₂O₃ phase.

The mechanical strength of the ceramic composite is shown in Table 10, where the three point bending strength was measured at 1600°C in air. The ceramic composite was kept at 1600°C for 50 hours and the increase in weight was 0.002 g/cm³.

Table 10

	·
	Example 8
Three point bending strength (MPa)	750

5 Example 9

An α -Al₂O₃ powder and an Nd₂O₃ powder in a molar ratio of 80.3% by mole of the former to 19.7% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Nd₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr and the crucible was heated, by an induction coil, to 1850 to 1950°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering body.

Fig. 12 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are an NdAI₁₁O₁₈ phase and the black portions are an AlNdO₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, a diffraction peak from a specific plane of NdAl₁₁O₁₈ and diffraction peaks from a plurality of planes of AlNdO₃ were observed, demonstrating that the solidified body was a ceramic composite consisting of an NdAl₁₁O₁₈ single crystal phase and an AlNdO₃ polycrystal phase.

The mechanical strength of the ceramic composite is shown in Table 11, where the three point bending strength was measured at 1700°C in air.

Example 10

An α -Al₂O₃ powder and an Nd₂O₃ powder in a molar ratio of 80.3% by mole of the former to 19.7% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Nd₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr, and the crucible was heated by an induction coil to 1850 to 1950°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering body.

Fig. 13 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are an $NdAl_{11}O_{18}$ phase and the black portions are an $AlNdO_3$ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality of planes of $NdAl_{11}O_{18}$ and diffraction peaks from a plurality of planes of $AlNdO_3$ were observed, demonstrating that the solidified body was a ceramic composite consisting of an $NdAl_{11}O_{18}$ polycrystal phase and an $AlNdO_3$ polycrystal phase, wherein the $NdAl_{11}O_{18}$ phase in the form of fibers is uniformly dispersed in the $AlNdO_3$ phase.

The mechanical strength of the ceramic composite is shown in Table 11, where the three point bending strength was measured at 1700°C in air.

Table 11

1.	Example 9	Example 10
Three point bending strength (MPa)	800	1000

Example 11

10

15

30

An α -Al₂O₃ powder and an Eu₂O₃ powder in a molar ratio of 71.7% by mole of the former to 28.3% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Eu₂O₃ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr, and the crucible was heated by an induction coil to 1750 to 1850°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 20 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 14 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are an $AlEuO_3$ phase and the black portions are an $EuAl_{11}O_{18}$ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of $AlEuO_3$ and diffraction peaks from a plurality of planes of $EuAl_{11}O_{18}$ were observed, demonstrating that the solidified body was a ceramic composite consisting of an $AlEuO_3$ single crystal phase and an $EuAl_{11}O_{18}$ polycrystal phase.

The mechanical strength of the ceramic composite is shown in Table 12, where the three point bending strength was measured at 1600°C in air.

Example 12

An α -Al₂O₃ powder and a Pr₆O₁₁ powder in a molar ratio of 78.8% by mole of the former to 21.2% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and Pr₆O₁₁ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10⁻⁵ Torr, and the crucible was heated by an induction coil to 1900 to 1950°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 20 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 15 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a PrAlO₃ phase and the black portions are a PrAl₁₁O₁₈ phase, both phases being a complex metal oxide.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of PrAl₁₁O₁₈ and diffraction peaks from a plurality of planes of PrAlO₃ were observed, demonstrating that the solidified body was a ceramic composite consisting of a PrAl₁₁O₁₈ single crystal phase and a PrAlO₃ polycrystal phase.

The mechanical strength of the ceramic composite is shown in Table 12, where the three point bending strength was measured at 1600°C in air.

Table 12

	Example 1	Example 12
Three point bending strength (MPa)	650	700

Example 13

 α -Al₂O₃ powder and SiO₂ powder in a molar ratio of 68.0% by mole of the former to 32.0% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and SiO₂ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10^{-2} Torr, and the crucible was heated by an induction coil to 1950 to 2100°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 5 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 16 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to portions are an α -Al₂O₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and a diffraction peak from a specific plane of 3Al₂O₃ • 2SiO₂ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ single crystal phase and a 3Al₂O₃ • 2SiO₂ single crystal phase.

The mechanical strength of the ceramic composite is shown in Table 13, where the three point bending strength was measured at 1850°C in argon. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.003 g/cm³.

In the same manner as above, starting powders of other metal oxides were prepared and unidirectionally solidified. The constituent phases and the results of X-ray diffraction peaks of the solidifid bodies are shown in Table 13. The ceramic composite of these solidified bodies were found to be ceramic composites which do not include any colony and grain boundary phase and have a uniform structure.

5 Comparative Example 3

The procedures of Example 13 were repeated except that the pressure in the chamber was changed to normal pressure (atmospheric pressure).

Fig. 17 shows scanning electron micrograph of the thus obtained solidified body consisting of α -Al₂O₃ and 3Al₂O₃ •2SiO₂ in a section cut perpendicular to the direction of the solidification. It was demonstrated that the ceramic composite of the solidified body included colonies and grain boundary phases as well as pores.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality planes of α -Al₂O₃ and diffraction peaks from a plurality of planes of 3Al₂O₃ • 2SiO₂ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ polycrystal phase and 3Al₂O₃ • 2SiO₂ polycrystal phase.

In the same manner as above, starting powders of other metal oxides were prepared and unidirectionally solidified. The constituent phases and the results of the X ray diffractions of the obtained solidified bodies are shown in Table 14. It was found that these ceramic composites include colonies and grain boudnary phases as well as pores.

Table 13

Starting powders and their proportions (mole%)		Phases constituting ceramic composite	Results of X ray diffraction
×Α	уВ		
68% Al ₂ O ₃	32% SiO ₂	α-Al ₂ O ₃	single crystal
		3Al ₂ O ₃ • 2SiO ₂	single crystal
60% Y ₂ O ₃	40% Al ₂ O ₃	2Y ₂ O ₃ • Al ₂ O ₃	single crystal
		3Y ₂ O ₃ • 5Al ₂ O ₃	single crystal
78% NiO	22% Y ₂ O ₃	NiO	single crystal
	k .	Y ₂ O ₃	single crystal
80% TiO ₂	20% Al ₂ O ₃	α-Al ₂ O ₃	single crystal
	•	TiO ₂	single crystal

Table 14

Starting powders and their proportions (mole%)		Phases constituting ceramic composite	Results of X ray diffraction
xA	уВ		
68% Al ₂ O ₃	32% SiO ₂	α-Al ₂ O ₃	polycrystal
		3Al ₂ O ₃ • 2SiO ₂	polycrystal
60% Y ₂ O ₃	40% Al ₂ O ₃	2Y ₂ O ₃ • Al ₂ O ₃	polycrystal
		3Y ₂ O ₃ • 5Al ₂ O ₃	polycrystal
78% NiO	22% Y ₂ O ₃	NiO	polycrystal
		Y ₂ O ₃	polycrystal
80% TiO ₂	20% Al ₂ O ₃	α-Al ₂ O ₃	polycrystal
		TiO ₂	polycrystal

Example 14

10

20

25

30

35

40

45

An α -Al₂O₃ powder and an SiO₂ powder in a molar ratio of 68.0% by mole of the former to 32.0% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and SiO₂ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10^{-2} Torr and the crucible was heated by an induction coil to 1950 to 2100°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 60 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 18 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a $3Al_2O_3 \cdot 2Al_2O_3$ (mullite) phase and the dark portions are an α -Al₂O₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and diffraction peaks from a plularity of

planes of $3Al_2O_3 \cdot 2SiO_2$ were observed, demonstrating that the solidified body was a ceramic composite consisting of two phases of an α - Al_2O_3 single crystal phase and a $3Al_2O_3 \cdot 2SiO_2$ single crystal phase.

The mechanical strength of the ceramic composite is shown in Table 13, where the three point bending strength was measured at 1700°C in argon. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.003 g/cm³.

In the same manner as above, starting powders of other metal oxides were prepared and unidirectionally solidified. The constituent phases and the results of X ray diffraction of the obtained solidified bodies are shown in Table 15. It was found that these were ceramic composites had a uniform structure without any colonies and grain boundary phases.

Comparative Example 4

The procedures of Example 14 were repeated except that the pressure in the chamber was changed to normal pressure (atmospheric pressure).

Fig. 19 shows scanning electron micrograph of the thus obtained solidified body consisting of α -Al₂O₃ and 3Al₂O₃ •2SiO₂ in a section cut perpendicular to the direction of the solidification. It was demonstrated that the ceramic composite of the solidified body included colonies and grain boundary phases as well as pores.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality of planes of α -Al₂O₃ and diffraction peaks from a plurality of planes of $3Al_2O_3 \cdot 2SiO_2$ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ polycrystal phase and a $3Al_2O_3 \cdot 2SiO_2$ polycrystal phase.

In the same manner as above, starting powders of other metal oxides were prepared and unidirectionally solidified. The constituent phases and the results of X ray diffraction of the obtained solidified bodies are shown in Table 16. It was found that these bodies were ceramic composites which included colonies and grain boundaries as well as pores.

Table 15

		ne 15	
Starting powders and their proportions (mole%)		Phases constituting ceramic composite	Results of X ray diffraction
хA	уВ		
68% Al ₂ O ₃	32% SiO ₂	α-Al ₂ O ₃	single crystal
		3Al ₂ O ₃ • 2SiO ₂	polycrystal
60% Y ₂ O ₃	40% Al ₂ O ₃	2Y ₂ O ₃ • Al ₂ O ₃	single crystal
		3Y ₂ O ₃ • 5Al ₂ O ₃	polycrystal
78% NiO	22% Y ₂ O ₃	NiO	single crystal
		Y ₂ O ₃	polycrystal
80% TiO ₂	20% Al ₂ O ₃	α-Al ₂ O ₃	single crystal
		TiO ₂	polycrystal

Table 16

Starting powders and their proportions (mole%)		Phases constituting ceramic composite	Results of X ray diffraction
xΑ	уВ		
68% Al ₂ O ₃	32% SiO ₂	α-Al ₂ O ₃	polycrystal
		3Al ₂ O ₃ • 2SiO ₂	polycrystal
60% Y ₂ O ₃	40% Al ₂ O ₃	2Y ₂ O ₃ • Al ₂ O ₃	polycrystal
		3Y ₂ O ₃ • 5Al ₂ O ₃	polycrystal
78% NiO	22% Y ₂ O ₃	NiO	polycrystal
	8 .	Y ₂ O ₃	polycrystal
80% TiO ₂	20% Al ₂ O ₃	α-Al ₂ O ₃	polycrystal
		TiO ₂	polycrystal

20

25

10

15

Example 15

 α -Al₂O₃ powder and SiO₂ powder in a molar ratio of 68.0% by mole of the former to 32.0% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al₂O₃ and SiO₂ was charged in a molibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10^{-2} Torr, and the crucible was heated by an induction coil to 1950 to 2100°C to melt the mixed powder in the crucible. Subsequently, unidirectional solidification was conducted by lowering the crucible at a speed of 220 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 20 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to the direction of the solidification. In the photograph, the white portions are a $3Al_2O_3 \cdot 2SiO_2$ (mullite) phase and the dark portions are an α - Al_2O_3 phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colony or grain boundary phase, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality of planes of α -Al₂O₃ and diffraction peaks from a plurality of planes of 3Al₂O₃ • 2SiO₂ were observed, demonstrating that the solidified body was a ceramic composite consisting of two phases of an α -Al₂O₃ polycrystal phase and a 3Al₂O₃ • 2SiO₂ polycrystal phase.

The mechanical strength of the ceramic composite is shown in Table 17, where the three point bending strength was measured at 1850°C in argon. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.003 g/cm³.

45

Table 17

	Example 13	Example 14	Example 15
Three point bending strength (MPa)	400	450	550

50

55

In the same manner as above, starting powders of other metal oxides were prepared and unidirectionally solidified. The constituent phases and the results of X ray diffraction of the solidified bodies are shown in Table 18. It was found that the solidified bodies were ceramic composites having a uniform structure without any colonies or grain boundary phases.

Comparative Example 5

The procedures of Example 15 were repeated except that the pressure in the chamber was changed to normal pressure (atmospheric pressure).

Fig. 21 shows scanning electron micrograph of the thus obtained solidified body consisting of α -Al₂O₃ and 3Al₂O₃ •2SiO₂ in a section cut perpendicular to the direction of the solidification. It was demonstrated that the ceramic composite of the solidified body included colonies and grain boundary phases as well as pores.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, diffraction peaks from a plurality of planes of α -Al₂O₃ and diffraction peaks from a plurality of planes of $3Al_2O_3 \cdot 2SiO_2$ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ polycrystal phase and a $3Al_2O_3 \cdot 2SiO_2$ polycrystal phase.

In the same manner as above, starting powders of other metal oxides were prepared and unidirectionally solidified. It was found that the solidified bodies included colonies and grain boundary phases as well as pores.

Table 18

Starting powders and their proportions (mole%)		Phases constituting ceramic composite	Results of X ray diffraction
xA	уВ	os anno domposite	
68% Al ₂ O ₃	32% SiO ₂	α-Al ₂ O ₃	polycrystal
2004 34 0		3Al ₂ O ₃ • 2SiO ₂	polycrystal
60% Y ₂ O ₃	40% Al ₂ O ₃	2Y ₂ O ₃ • Al ₂ O ₃	polycrystal
700/ 1/10	·	3Y ₂ O ₃ • 5Al ₂ O ₃	polycrystal
78% NiO	22% Y ₂ O ₃	NiO	polycrystal
2004 750		Y ₂ O ₃	polycrystal
80% TiO ₂	20% Al ₂ O ₃	α-Al ₂ O ₃	polycrystal
	,	TiO ₂	polycrystal

Example 16

 α -Al₂O₃ powder and ZrO₂ powder in a molar ratio of 50.4% by mole of the former to 49.6% by mole of the latter were milled in a wet mill using ethanol. The obtained slurry was dried in a rotary evaporator to remove the ethanol.

The obtained mixed powder of α -Al $_2$ O $_3$ and ZrO $_2$ was charged in a nolibdenum crucible in a chamber, in which the atmospheric pressure was maintained at 10 $^{-5}$ Torr and the crucible was heated by an induction coil to 1950 to 2100 $^{\circ}$ C cible at a speed of 5 mm/hour under the above atmospheric pressure to obtain a unidirectionally solidified body.

Fig. 22 shows scanning electron micrograph of the thus obtained solidified body in a section cut perpendicular to α -Al₂O₃ phase.

It was demonstrated that the ceramic composite of the solidified body does not include any colonies or grain boundary phases, that pores or voids do not exist, and that a uniform structure is obtained.

Further, in X-ray diffraction patterns of the ceramic composite obtained from the plane perpendicular to the direction of the solidification, only a diffraction peak from a specific plane of α -Al₂O₃ and a diffraction peak from a specific plane of ZrO₂ were observed, demonstrating that the solidified body was a ceramic composite consisting of an α -Al₂O₃ single crystal phase and a ZrO₂ single crystal phase.

The mechanical strength of the ceramic composite is shown in Table 19, where the three point bending strength was measured at 1600°C in argon. The ceramic composite was kept at 1700°C for 50 hours and the increase in weight was 0.003 g/cm³. Further, the fracture toughness of the ceramic composite was measured, at room temperature and by the IF method, to be a high value of 10 MPa√m

Table 19

	Example 16
Three point bending strength (MPa)	700

10 Claims

5

15

30

40

- A ceramic composite of a solidified body consisting of at least two crystal phases of oxides selected from the group
 consisting of metal oxides and complex metal oxides, except that said at least two oxides are not a combination of
 aluminum oxide (Al₂O₃) and a complex oxide (ittrium aluminum garnet) of aluminum oxide (Al₂O₃) and yttrium
 oxide (Y₂O₃).
- 2. A ceramic composite according to claim 1, wherein said solidified body does not have colonies and pores.
- 3. A ceramic composite according to claim 2, wherein said solidified body does not include boundary phases comprised of a composition other than said oxides of said at least two crystal phases.
 - 4. A ceramic composite according to claim 1, wherein each of said at least two crystal phases of oxides is present as a single crystal in the sense that it is a crystal but does not constitute a polycrystal.
- 25 5. A ceramic composite according to claim 1, wherein at least one of said at least two crystal phases of oxides is present as a single crystal in the sense that it is a crystal but does not constitute a polycrystal.
 - 6. A ceramic composite according to claim 1, wherein each of said at least two crystal phases of oxides is present as a polycrystal.
 - 7. A ceramic composite according to claim 1, wherein at least one of said at least two crystal phases of oxides constitutes a three dimensionally continuous phase.
- 8. A ceramic composite according to claim 1, wherein each of said at least two crystal phases of oxides constitutes a three dimentionally continuous phase.
 - 9. A ceramic composite according to claim 1, wherein the metal constituting each of said oxides of said at least two crystal phases is a metal selected from the group consisting of Al, Mg, Si, Ti, Zr, Ca, Ba, Be, Fe, Mn, Co, Nb, Ta, Cr, Sr, Zn, Ni, Li, Ga, Hf, Th, U, Sn and rare each elements.
 - 10. A ceramic composite according to claim 1, wherein said oxides of said at least two crystal phases are selected from the group consisting of aluminum oxide and composite oxides made of aluminum oxide, rare each element oxides, and a rare earth element oxide.
- 45 11. A ceramic composite according to claim 10, wherein at least one of said oxides of said at least two crystal phases is an oxide having perovskite structure.
 - 12. A ceramic composite according to claim 10, wherein at least one of said oxide of said at least two crystal phases is an oxide having garnet structure.
 - 13. A ceramic composite according to claim 1, wherein said solidified body consists of aluminum oxide and a complex oxide (3Al₂O₃ 2SiO₂) of aluminum oxide (Al₂O₃) and silicon oxide (SiO₂).
- 14. A ceramic composite according to claim 1, wherein said solidified body consists of aluminum oxide (Al₂O₅) and zirconium oxide (SrO₂).

Fig.1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig.6

25_{um}

Fig. 7

Fig.8

Fig. 9

Fig. 10

Fig.11

Fig.12

Fig.13

Fig. 14

Fig. 15

10_{um}

Fig. 17

100 jum

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

EUROPEAN SEARCH REPORT

Application Number EP 96 10 0600

Category	Citation of document with i of relevant pa	ndication, where appropriate, issages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
X,D	J. AMER. CERAM. SOO vol. 76, no. 1, 199 pages 29-32, XP0020 T.A. PARTHASARATHY * the whole documen	3, 02491 ET AL.:	1,2,4-12	C04B35/653 C04B35/117 C04B35/119
X	US-A-3 653 432 (F. VIECHNICKI) * the whole documen	•	1-4,7-14	· · ·
x	EP-A-0 374 263 (NIP * page 3, line 9 - 1,2; figures 1A-1C;	PON STEEL CORPORATION) page 4, line 24; claims example 1 *	1,5-9	
X ·	US-A-4 829 028 (THE LTD.) * column 2, line 59 examples 1-3 *	JAPAN CARLIT CO., - line 62; claim 1;	1,6-10, 14	
X,P, D	EP-A-0 654 456 (UBE * the whole documen	•	1-14	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
X,P,	EP-A-0 647 601 (UBE * the whole documen	•	1-14	C04B
	1 .			
	The present search report has b	een drawn up for all claims		
-	Place of search	Date of completion of the search	1	Examiner
X : par Y : par doc A : tecl	THE HAGUE CATEGORY OF CITED DOCUME Iticularly relevant if taken alone Iticularly relevant if combined with and ument of the same category nological background -written disclosure	E : earlier patent do after the filing d other D : document cited fi L : document cited fi	le underlying the cument, but publi ate n the application or other reasons	shed on, or

·	•				
			,		
	·				•
				· · · · ·	
	• .				
		>	• .		
		•	÷ ' 1		
				•	
: •			•		
•		•	•		
	·				
* *				*	
		•			
			·		
			•		
	e e				
	*		·	*	
				·	
			•		
		* ·			

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig.6

25jum

Fig. 7

Fig.8

Fig. 9

Fig. 10

Fig.11

Fig. 12

25 µn

Fig.13

Fig. 14

Fig. 15

10µm

Fig. 17

Fig.18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

	···	
·		
	*	
	(iii)	
	*	
	े दं	
	•	
	·	
		•••