2015-2016 学年第一学期《控制工程基础》课内考试卷 (A 卷)

授课班号 610108302/3/4 年级专业 2013 机自 学号 姓名 姓名

题号	_	1 1	=	四	五	总分	审核
题分	21	15	25	25	14		
得分							

— ,	填空	(共21	分,	每空格	1	分)
------------	----	------	----	-----	---	----

题分 得分 21

1、自动控制系统有两种基本控制方式, 当控制装置与受控对

象之间只有顺向作用而无反向联系时,称为_____;当控制装置与

受控对象之间不但有顺向作用而且还有反向联系时,称为____。

2、对于一个自动控制系统的性能要求可以概括为三个方面:____、

和准确性。

3、构成反馈控制系统的主要元部件有_____、___、___、___、___、___、____、___和校正元件等。

4、已知系统的传递函数是 $\frac{C(s)}{R(s)} = \frac{s+4}{s^2+15s+56}$, 则其零点是________,极点

是 , 。

- 5、线性系统稳定的充分必要条件是闭环传递函数的极点均严格位于 s 半平面。

$$t_s = \frac{3.5}{\varsigma \omega_n}$$

- 7、在二阶系统中引入 PD 控制会使系统的阻尼系数 (增加或减小)。
- 8、已知开环对数频率特性曲线如图一所示,则系统的开环增益 K 为_____,穿越频率 ω_{g} 为____,截止频率 ω_{c} 为____,系统的传递函数为____。

图一

二、图二是 R-L-C 网络的结构原理图, 试求:

题分	得分
15	

- 1)以 $U_i(s)$ 为输入,负载 C 的端电压 $U_o(s)$ 为输出的传递函数;(9 分)
- 2) 如果输入电压为 $u_i(t) = V_i \sin \omega t$ 时,求该网络的幅频特性 $A(\omega)$ 和相频特性 $\varphi(\omega)$ 。(6 分)

三、求图三所示系统的传递函数C(s)/R(s)。

题分	得分
25	

四、已知单位负反馈系统传递函数为 $G(s) = \frac{K}{s(0.5s+1)(s+1)}$

题分	得分
25	

- 1、试绘制根轨迹; (9分)
- 2、利用根轨迹,确定系统闭环稳定的K值范围;(8分)
- 3、确定系统临界阻尼比($\xi=1$)对应的增益K;(3分)
- 4、求 $\xi=1$ 时闭环系统单位阶跃响应的稳态误差。(5分)

五、图四是某一控制系统的开环 Bode 曲线,已知其开环传递函数在 s 右半平面中正的极点个数 P=0,当前开环增益 K=100,试

题分	得分
14	

- 1)分析对应控制系统的闭环稳定性;(11分)
- 2) 求闭环系统稳定的开环增益 K 的取值范围。(3分)

