МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладнаяматематика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа
по курсу
«Фундаментальная информатика»
І семестр
Задание 3
«Вещественный тип. Приближенные вычисления. Табулирование
функций»

Группа	М8О-109Б-22
Студент	Концебалов О.С.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора.

Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью ε * 10^k , где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k - экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 7:

Ряд Тэйлора:

$$3x + 8x^2 + ... + n \cdot (n+2)x^n$$

Функция:

$$\frac{x(3-x)}{(1-x)^3}$$

Значения а и b: 0.0 и 0.5

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum\nolimits_{n = 0}^k {\frac{{{f^{(n)}}(a)}}{{n!}}(x - a)^n} = f(a) + f^{(1)}(a)(x - a) + \frac{{f^{(2)}}(a)}{{2!}}(x - a)^2 + \ldots + \frac{{f^{(k)}}(a)}{{k!}}(x - a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float $-1.19 * 10^{-7}$, double $-2.20 * 10^{-16}$, long double $-1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать, просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
n	uint64_t	То самое число N, на которое нужно разбить отрезок
LDBL_EPSILON	Long double	То самое машинное эпсилон 1.0842e-19
step	Long double	Разница между текущим и предыдущем значениями переменной
X	Long double	Переменная, для которой производятся вычисления
taylor_series(uint64_t n, long double x)	Long double	Значение ряда Тейлора для функции
function(long double x)	Long double	Значение функции
i	int	Счетчик числа итераций

Исходный код программы:

```
include <stdio.h>
printf("
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – числоразбиений отрезка на равные части.

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное с помощью формулы Тейлора, A_2 — значение, вычисленное с помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены с точностью K знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

5

Вывод:

Тест №2

Ввод:

10

Вывод:

N = 10	
Machine epsilon is equal to: 1.0842e-19	
Table of values of Taylor series and standard function	
x sum of Taylor series f(x) function value number of iter	ations
0.050 0.1500000000000002220 0.1720367400495699082 1	
0.100 0.3800000000000005995 0.3978052126200274349 2	1
0.150 0.6806249999999994532 0.6961123549765927132 3	1
0.200 1.0784000000000019176 1.09374999999999999999999 4	1
[0.250]1.612304687500000000000]1.6296296296296296296] 5	1
0.300 2.339441999999984108 2.3615160349854227408 6	1
0.350 3.34587206953124925712 3.3773327264451524813 7	1
0.400 4.76505600000000135302 4.8148148148148160 8	1
0.450 6.81029832970898553468 6.8970698722764838488 9	1
0.500 9.83398437500000000000 10.00000000000000000043 10	1

Тест №3

Ввод:

20

Вывод:

N = 20		
Machine epsilon is equal to: 1.0842e-19		
Table of values of Taylor series and standard function		
x sum of Taylor series f(x) function value number of	iterations	L
0.025 0.0750000000000001110 0.0802441039127429660	1	L
0.050 0.170000000000000000000000000000000000	2	L
0.075 0.27632812499999997568 0.2771800288235642509	3	L
0.100 0.3974000000000006396 0.3978052126200274349	4	L
0.125 0.53622436523437500000 0.5364431486880466472	5	L
0.150 0.69597956249999994461 0.6961123549765927132	6	L
0.175 0.88033994927368148728 0.8804296407602192728	7	L
[0.200]1.09368320000000020123]1.09375000000000000003]	8	L
0.225 1.34129027619480527332 1.3413447014198919139	9	L
0.250 1.62958145141601562500 1.6296296296296296298	10	
0.275 1.96641422528752498299 1.9664602894747632133	11	
0.300 2.36146870729799983855 2.3615160349854227414	12	
0.325 2.82675283720282599447 2.8268048569831834586	13	
0.350 3.37727179731518763607 3.3773327264451524813	14	
0.375 4.03192421390727417929 4.0320000000000000015	15	
0.400 4.81471501250068620445 4.8148148148148148169	16	
0.425 5.75641584130319311843 5.7565546149420563846	17	
0.450 6.89686661364119746147 6.8970698722764838488	18	
0.475 8.28820883007442506599 8.2885217579095130163	19	
0.500 9.99949455261230468750 10.000000000000000043	20	- 1

Тест №4

Ввод:

25

Вывод:

N = 25		
Machine epsilon is equal to: 1.0842e-19		
Table of values of Taylor series and standard function		
x sum of Taylor series f(x) function value number of	iterations	l
0.020 0.05999999999999778 0.0633239551547399468	1	ļ.,
0.040 0.132799999999999617 0.1338252314814814815	2	L
0.060 0.2120399999999999237 0.2123806863604403649	3	l
0.080 0.2998630399999999476 0.2999917810470946001	4	l
0.100 0.3977500000000006417 0.3978052126200274349	5	L
0.120 0.50711087923199998212 0.5071374906085649887	6	L
0.140 0.62949005223552007427 0.6295043203743066647	7	L
0.160 0.76664743644364800304 0.7666558686966850230	8	L
0.180 0.92061381062651443654 0.9206192597321571071	9	L
0.200 1.09374617600000020130 1.0937499999999999998	10	1
0.220 1.28879158716134931714 1.2887944840607562498	11	1
0.240 1.50896396482088515005 1.5089663216212275837	12	1
0.260 1.75803794779347667394 1.7580399976309399243	13	1
0.280 2.04046449389614810736 2.0404663923182441698	14	1
0.300 2.36151416941834483860 2.3615160349854227399	15	1
0.320 2.72745582596937585751 2.7274577651129656014	16	1
0.340 3.14578077181561390104 3.1457828978490135522	17	1
0.360 3.62548582882930470628 3.6254882812500000002	18	1
0.380 4.17743316884567668498 4.1774361384310697860	19	1
0.400 4.81481104796942476409 4.8148148148148148160	20	1
0.420 5.55372824431977189221 5.5537332403952601608	21	1
0.440 6.41398725220004257540 6.4139941690962099154	22	1
0.460 7.42009874275599637600 7.4201087232637301249	23	1
0.480 8.60262497567397104586 8.6026399635867091542	24	1
0.500 9.99997660517692565918 10.0000000000000000043	25	1

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный_ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора