Word-embeddings

Corpus de textos

Word-embeddings

```
melon banana
                       tangegia pe plum
                                mango
Strawberry
             sheep<sub>uck</sub> watermelonach
                                               violet
                                           green red
                              pear
elephanmel
                                                yellowue
                                        black
            anticipation
                                                    purple
                                              brown
      surprise
                                                  pink
   trust sadness joy
                         mouth nose breast
                                        grey
eye
            disgust
     anger
                            foot
                                   toe
                      lea
                                 head
                         arm
                              hand
```

Latent Semantic Análisis

Ejemplo

Human-computer interaction

Graphs theory

- c1:Human machine interface for ABC computer applications.
- c2:A survey of user opinion of computer **system** response time.
- c3: The EPS user interface management system.
- c4: System and human system engineering testing of EPS.
- c5: Relation of user perceived response time to error measurement.
- m1: The generation of random, binary, ordered trees.
- m2: The intersection **graph** of paths in **trees**.
- m3: Graph minors IV: Widths of trees and well-quasi-ordering.
- m4: Graph minors: A survey.

Term-Documents Matrix

		c1	c2	c3	c4	c5	_m1	m2	m3	m4
	human	1	0	0	1	0	0	0	0	0
	interface	1	0	1	0	0	0	0	0	0
	computer	1	1	0	0	0	0	0	0	0
	user	0	1	1	0	1	0	0	0	0
X =	system	0	1	1	2	0	0	0	0	0
	response	0	1	0	0	1	0	0	0	0
	time	0	1	0	0	1	0	0	0	0
	EPS	0	0	1	1	0	0	0	0	0
	survey	0	1	0	0	0	0	0	0	1
	trees	0	0	0	0	0	1	1	1	0
	graph	0	0	0	0	0	0	1	1	1
	minors	0	0	0	0	0	0	0	1	1

SVD

SVD

SVD

	c1	c2	с3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Más sobre SVD

Más sobre SVD

Antes de usar el SVD se puede aplicar una transformación

T	F	-	D	F

Log-Entropy

$$\operatorname{tf-idf}(t,d)=\operatorname{tf}(t,d).\operatorname{idf}(t)$$

LogEnt $(t,d) = \log(\operatorname{tf}(t,d) + 1)$. W_a

$$\operatorname{II}(\iota, a) = \operatorname{II}(\iota, a). \operatorname{Id}(\iota)$$

$$W_g = 1 + rac{\sum_d P(t,d) \log(P(t,d))}{\log(|D|+1)}$$
 con $P(t,d) = rac{\operatorname{tf}(t,d)}{\sum_d \operatorname{tf}(t,d)}$

$$\operatorname{idf}(t) = \log rac{1 + |D|}{1 + |\{d: t \in d\}|} + 1$$

Un LSA alternativo:

Term-context matrix

	choripan	vino	chimichurri	uva	pera	 kiwi
choripan	1	54	23	5	2	 1
vino	54	5	17	21	3	 4
chimichurri	23	17	0	1	1	 0
uva	5	21	1	3	20	 19
pera	2	3	1	20	12	 11
kiwi	1	4	0	19	11	 21

LSA tips:

- Un número estándar de dimensiones es k=300 (ambiente científico)
- El k óptimo depende del número de tópicos distintos existente en los textos y de la tarea a realizar.
- Muchas veces sirve tirar la primer dimensión o hasta las primeras 50
- La similaridad coseno entre palabras no es absoluta. Cuanto mayor sea k, las palabras van a estar más distantes entre sí (menor similaridad)

Word2Vec (Skip-gram)

Choripan. The Argentine choripán consists of a sausage made out of beef and pork, hot off the grill, split down the middle, and served on a roll. The chorizo may be used whole or cut in half lengthwise, in which case it is called a mariposa (butterfly). It is customary to add sauces on the bread, most likely chimichurri.

Soft-max function

Objective function

$$egin{array}{ll} O &=& \sum\limits_{-c \leq j \leq c, j
eq 0} \log p(w_{t+j}|w_t)) \ &=& \log p(argentine|choripan) + \log p(consist|choripan) \end{array}$$

WIKIPEDIA
The Free Encyclopedia

$$p(w_k|w_j) = \frac{exp(c_k \cdot v_j)}{\sum_{i \in |V|} exp(c_i \cdot v_j)}$$
 choripan

argentine

target embeddings

...

kiwi

choripan argentina
$$p(w_k|w_j) = \frac{exp(c_k \cdot v_j)}{\sum_{i \in |V|} exp(c_i \cdot v_j)}$$

Es imposible de calcular!

Sampleo k palabras (w_i)

de la distribución p(w)

Negative sampling

 $\log p(w_k|w_j) pprox \log \sigma(c_k.\,v_j) + \sum\limits_{i=1}^k \mathbb{E}_{w_i \sim p(w)}[\log \sigma(-w_i.\,v_j)]$

con $\sigma(x) = \frac{1}{e^{-x} + 1} = \frac{e^x}{1 + e^x}$

Con 5 Negative samples (k=3)

Ej: {el, gorro, cafetera}

 $x \gg 1 \Longrightarrow \sigma(x) \approx 1$

$$x \ll -1 \Longrightarrow \sigma(x) \approx 0$$

$$\log p(w_k|w_j) \approx \log \sigma(c_k, v_j) + \log \sigma(-w_1, v_j) + \log \sigma(-w_2, v_j) + \log \sigma(-w_3, v_j)$$

Función objetivo a maximizar

$$O = \sum_{k=1}^{|V|} \sum_{j=1}^{|V|} \#(w_k, w_j) \Big[\log(ar{c}_k. \, ar{v}_j) + \sum_{i=1}^k \mathbb{E}_{w_i \sim p(w)} [\log \sigma(-ar{w}_i. \, ar{v}_j)] \Big]$$
 con $\sigma(x) = rac{1}{e^{-x} + 1} = rac{e^x}{1 + e^x}$

La solución óptima cumple:

$$ar{c}_k.\,ar{v}_j = PMI(w_k,w_j) - \log(k)$$

El Skip-gram factoriza el PMI en 2 matrices

$$C. V = X^{PMI} - \log(k)$$

Word2vec

Skip-gram

Output layer probabilities of context words **Projection layer** Input layer embedding for wt 1-hot input vector w_{t-1} $x_1 \\ x_2$ $C_{d\times |V|}$ W \mathbf{w}_{t} $|V| \times d$ $C_{d\times |V|}$ \mathbf{w}_{t+1} 1xd 1x|V|

CBOW

Mikolov et al. (2013) Distributed Representations of Words and Phrases and their Compositionality Jurafsky & Martin (2015) Speech and Language Processing. 2nd edition

Word analogy task

King – Queen ≈ Woman – Man King ≈ Woman – Man + Queen

Linguistic Regularities in Continuous Space Word Representations Mikolov et al. (2013)

Más modelos:

Global Vectors for Word Representation (GLOVE)

Loss function

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

bias

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

LSA

Edad: 29 años

The Force: 14700 citas

VS

Word2vec

Edad: 6 años

The Force: 15700 citas

Evaluación de word-embeddings: TOEFL test

Encontrar el sinónimo entre 4 opciones

	Palabra	Opcion 1	Opcion 2	Opcion 3	Opcion 4
Pregunta 1	hue	color	scent	contrast	glare
Pregunta 2	hind	rear	curved	muscular	hairy
				•••	
Pregunta 80	make	earn	print	trade	borrow

Busco el más cercano.

Métrica: porcentaje de acierto

Evaluación de word-embeddings: TOEFL test

Landauer and dumais (1997) A Solution to Plato's Problem: The Latent Semantic Analysis Theory of acquisition, Induction, and Representation of Knowledge

Evaluación de word-embeddings: similaridad

WordSimilarity-353 Test

Word 1	Word 2	Human
tiger	tiger	10
fuck	sex	9.44
Maradona	football	8.62
book	paper	7.46
professor	cucumber	0.31
king	cabbage	0.23

embedding1
1
0.52
0.42
0.45
0.002
0.001

embedding2	<u> </u>
1	
0.40	
0.35	
0.25	
0.015	
0.003	

Quiero ver que embedding captura mejor las similaridades puntuadas por humanos

> Correlación

Spearman correlation

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}.$$

$$d_i = \operatorname{rg}(X_i) - \operatorname{rg}(Y_i)$$
ranking

WordSimilarity-353 Test Collection

Human	embedding1	embedding2
10	1	1
9.44	0.52	0.40
8.62	0.42	0.35
7.46	0.45	0.25
•••		
0.31	0.002	0.015
0.23	0.001	0.003

Comparo correlaciones

	embedding1	embedding2
Spearman Correlation	0.82	0.74

Categorization Test

53 categorías de 10 palabras cada una (patel 1997)

Performance: Silhouette Coefficient

- Probablemente no exista una técnica de word-embeddings que sea universalmente mejor en todas las tareas
- ➤ Para una tarea particular (x ej. sentiment analysis), lo óptimo es seleccionar el embedding que mejor realice esa tarea

LSA

Edad: 28 años

The Force: 13000 citas

VS

Word2vec

Edad: 5 años

The Force: 8000 citas

Pre-trained word-embeddings

- ➤ Word2vec en google news, 100B words words, (https://code.google.com/archive/p/word2vec/)
- Glove (https://nlp.stanford.edu/projects/glove/):
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors,
 1.42 GB download): glove.twitter.27B.zip
- Fastext (https://fasttext.cc):
 - crawl-300d-2M.vec.zip: 2 million word vectors trained on Common Crawl (600B tokens).
 - en wikipedia en distintos idiomas (incluido español)
 https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Ejemplo de uso 1

Embeddings como features

Competencia: CLPsych 2017 shared task

Competencia: CLPsych 2017 shared task

@Author - 06 Sep 2015, 15:56

Re: psychosis

I've had a difficult day. I got very close to self harming, but my best mates keep me safe. Now I'm at home seeing GoT.

- Crisis: El autor está en riesgo.
 Los moderadores deben atender este mensaje urgentemente
- Rojo: los moderadores deben atender este mensaje cuanto antes
- Amarillo: Los moderadores deben atender este mensaje en algún momento
- Verde: No requiere atención de un moderador

Dataset

	crisis	red	amber	green	total
train	40	137	296	715	1188
test	42	48	94	216	400
extra	-	-	-	-	156375

Embeddings as features

	crisis	red	amber	green	total
train	40	137	296	715	1188
test	42	48	94	216	400
extra	-	-	-	-	156375

I've had a difficult day. I got very close to self harming, but my best mates keep me safe. Now I'm at home seeing GoT.

embedding

l've \rightarrow (0.4,0.9,...0.3) had \rightarrow (0.5,0.8,...0.5) ... \rightarrow (...) GoT \rightarrow (0.1,0.9,...0.1)

mean (0.1,0.3,...0.4)

Embeddings as features

Mean embedding incoming posts

Mean embedding outcoming posts

Embeddings as features

I've had a difficult day. I got very close to self harming, but my best mates keep me safe. Now I'm at home seeing GoT.

embedding

--

Deep Neural Network

Ejemplo de uso 2

Embeddings como método para investigar un corpus

Estudio de asociaciones de palabras Inspeccionando el dataset

Los sueños como ventana a la mente

Más de 20.000 reportes de sueños

La interpretación de los sueños, Freud 1899

Teoría de la simulación de amenazas

De que corremos en los sueños?

De que corremos en los sueños?

Palabras más cercanas a "run"

Rank	LSA Dreams	Word2vec Dreams	LSA TASA	Word2vec TASA	LSA UkWaC	Word2vec UkWaC
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th	running escape catch chase chasing follow ran sight coming runs dangerous guards robbers hide toward	chase running scream chasing escape runs chases grab screaming nazi hide chased yells safety wolf	drive ride running stay go haul walk jump throw staying get carry move stop cut	running runs ran go operate organise compete start break install operated gone move set managed	running dash jumping jump yell workouts kick jogging workout stretch tiring fun fast repetitions throw	running runs marathon bash start rlogin runners starts jump loaded weekend vms startx marathons mkdir

Ejemplo de uso 3

Embeddings como métrica de similaridad semántica externa

Competencia: CLPsych 2017 shared task

Word-embeddings como métrica de similaridad semántica

depression

I've had a rough day. I got very close to self harming. Took myself to hospital to talk to mental health team to calm down. Now I'm at my best mates to keep safe tonight.

- Cercanía promedio = 0.05
- Fracción de palabras cercanas= 4/35

Usamos muchas palabras depression - fear - anxiety mental_health - hopelessness suicide - antidepressant

Palabras cercanas a depression:

Bipolar_disorder, depression_anxiety, mental_illness, psychosis, alcoholism, depressive, suicidal_thoughts, schizophrenia, anxiety_disorders, psychological_distress, manic_depression, anxiety_disorder, mental_disorders, Depression, major_depressive_disorder, postpartum_depression, obsessive_compulsive_disorder, mood_disorders, insomnia, depressive_symptoms, psychiatric_disorders, bulimia, loneliness, PTSD, migraines, antidepressants, dementia

La historia de la introspección

Hipótesis: cambios en la introspección a través del tiempo

La historia de la introspección

Introspección

0.12

Hipnotismo de un flagelo duice, tan dulce. cuero, piel y metal carmín y charol. Cuando el cuerpo no espera lo que l'aman amor. Cada lágrima de hambre el mas puro nectar nada mas duice que el deseo en cadenas. Mas se pide y se vive canción animal

Libro 1

Introspección

0.09
Ella tambien se canso de este sol

viene a mojarse los pies a la luna
Ella también se canso de este sol
viene a mojarse los pies a la luna
Cuando se cansa de tanto querer
ella es tan clara que ya no es
ninguna

Libro 2

Introspección

0.17

Me veras volar por la diudad de la furia, donde nacie sabe de mi y yo soy parte de todos. Nada cambiara con un aviso de curvas, en sus caras veo el temor ya no hay fabulas en la ciudad de la furia

Libro N

Primeras 20 palabras:

Soul_searching, introspective, navel_gazing, contemplation, catharsis, contemplative, self_pity, rumination, self_indulgence, reflection, discernment, enlightenment, recrimination, repentance, self_congratulation, meditation, cynicism, reminiscence, humility, self_loathing

La historia de la introspección

Observatorio de Hollywood

¿Qué ves cuando me ves?

SubRip File

The process is repeated for every word in every subtitle under analysis.

Asociación con technology

¿Quien es Smith y quién es García?

Asociación con robbers

Palabras más cercanas a "baby" según Word2vec

Newborn, babies, infant, newborn baby, toddler, child, triplets, Baby, newborns, unborn baby, twins, tot, quadruplets, newborn babies, infants, mother, grandchild, daughter, kitten, pregnant, mommy, Babies, birth, firstborn, Newborn, fetus, puppy, puppies, mom, toddlers, mama, pups, womb, girl, unborn child, birthing, crib, pup, kittens, pregnancy, daddy, Caesarean section, stillborn, boy, premature babies, Jayden, expectant mothers, mothers. twin_daughters, pacifier, diaper_bag, mommies, expectant_parents, stroller, piglet, preschooler, diaper, son, caesarean section, Ava, baby sitter, expectant mother, daughter Ava, breastfeeding, babysitter, momma, stork, cuddles, Infant, children, cesarean section, diapers, bassinet, Mommy, grandmother, tots, octuplets, childbirth, preemies, cub, piglets, granddaughter, mothering, nappy, Suri Cruise, surrogate mother, breast feeding, Mom, born prematurely, maternity ward, Caesarean, cuddle, pram, chick, mum, Toddler, tummy, sextuplets, midwife, giraffe

¡Siempre chequear el significado de las palabras que uso!

FIN