1. Homework 3

- 1. Let $A = \{a, b, c\}, B = \{a, b, c, d\}$. Write down all the elements of the set:
 - Cartesian product $A \times A$:

$$A \times A = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, c), (c, c)\}$$

• Cartesian product $A \times B$:

$$A \times B = \{a, b, c\} \times \{a, b, c, d\} = \{(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d)\}$$

• Cartesian product $B \times A$:

$$A \times B = \{a, b, c, d\} \times \{a, b, c\} =$$

$$= \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, a), (d, b), (d, c)\}$$

• Find the set $\{(x,y) \in A \times B : x = y\}$

$$\{(x,y) \in A \times B : x = y\} = \{(a,a), (b,b), (c,c)\}\$$

• Find the set $\{(x,y) \in B \times A : x = y\}$

$$\{(x,y) \in B \times A : x = y\} = \{(a,a), (b,b), (c,c)\}\$$

- 2. Check the properties of the following relations in U:
 - $(x,y) \in R$, if x+y=4; $U=\{0,1,2,3,4\}$. Denote the relation x+y as xRy. Relation R is the following subset $\mathbf R$ of Cartesian product $U\times U$

$$\mathbf{R} = \{(1,3), (2,2), (0,4), (3,1), (2,2), (4,0)\}$$

- Is R Reflexive? To be Reflexive, R must meet the conditions $\forall_{x \in U} xRx$ i.e for every $x \in U: (x,x) \in \mathbf{R}$. Thus, relation R is not reflexive, since at least $\{(0,0),(1,1),(3,3),(4,4)\} \notin \mathbf{R}$.
- Is R anti-reflexive? Anti-reflexive condition is $\forall_{x \in U} (x, x) \notin \mathbf{R}$. Relation R is not anti-reflexive since $2 \in U$, $(2, 2) \in \mathbf{R}$.
- Is R Symmetric? Symmetry condition $\forall_{x \in U, y \in U} xRy \to yRx$. It could be said as "For each $x, y \in U$ if x is in relation R with y then y is in relation R with x. So, to be hold, for every $x, y \in U$ such that xRy the set \mathbf{R} contains (y, x). In other words, $\forall_{x,y \in U} xRy : (y, x) \in \mathbf{R}$. Reviewing set \mathbf{R} we can conclude that relation R is reflexive. Commutativity of summation also proves it.
- Is R anti-symmetrical? To be anti-symmetrical, R has to meet the condition $\forall_{x,y\in U} (xRy \land yRx) \to x = y$. By the commutativity of summation, the R is not anti-reflexive. Example of anti-reflexive relation $xRy = x^y$.
- Is the R transitive? No, since there no one triple of x, y, z, such that $\forall_{x,y,z\in U} (xRy \lor yRz) \to xRz$
- Connexity of relation the R is given by the condition $\forall_{x,y\in U} (xRy \vee yRx)$, and it is true.
- $(x,y) \in R$, if x+y=6; $U=\{1,2,3,4,5\}$. Denote the relation x+y as xRy. Relation R is the following subset $\mathbf R$ of Cartesian product $U\times U$

$$\mathbf{R} = \{(1,5), (2,4), (3,3), (5,1), (4,2), (3,3)\}$$

- Reflexive not
- Anti-reflexive not
- Symmetric yes
- Anti-Symmetric not
- Transitive not
- Connex not

• $(x,y) \in R$, if $x + y \le 4$; $U = \{0,1,2,3\}$. Term x in relation R with y iff $x + y \le 4$ $U \times U = \{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)\}$

Therefore, relation R represents the following set **R** such that $\mathbf{R} \in U \times U$

$$\mathbf{R} = \{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (3,0), (3,1)\}$$

- Relation R is not reflexive since $(3,3) \notin \mathbf{R}$.
- Relation R is not anti-reflexive since $0, 1, 2 \in U$, $\{(0,0), (1,1), (2,2)\} \subset \mathbf{R}$.
- Relation R is symmetric since $\forall_{x,y\in U} xRy : (y,x) \in \mathbf{R}$.
- Relation R is not anti-symmetrical since summation operator is commutative.
- Relation R is transitive since $\forall_{x,y,z\in U} (xRy \wedge yRz) \to xRz$. For example, x=0, y=1, z=2 then $(0,1), (1,2) \to (2,0)$.
- Relation R is connex.
- $(x,y) \in R$ if x-y is even. $U = \{2,4,6\}$. Let write Cartesian product of U

$$U\times U=\{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)\}.$$

Relation R gives the following set $\mathbf{R} \subset U \times U$

$$\mathbf{R} = \{(2,2), (4,2), (4,4), (6,2), (6,4), (6,6)\}$$

- Relation R is reflexive since $\forall_{x \in U} xRx : (x, x) \in \mathbf{R}$.
- Relation R is not anti-reflexive.
- Relation R is not symmetric since $\neg(\exists_{x,y} xRy) : (y,x) \in \mathbf{R}$.
- Relation R is anti-symmetric since $\forall_{x,y\in U} (xRy \wedge yRx) \rightarrow x = y$.
- Relation R is transitive since $\forall_{x,y,z\in U} (xRy \land yRz) \rightarrow zRy = \text{false}.$