MLM	[AB112	A
2009.	január	9.

Név:	•••	• • •	• • •	••	••	••	••	•	• •	••
Szak:.	•••	• • •	•••	•••		•••	•	•		•
Neptu	n k	χóα	l :	• • •	• • •	• •				

Feladatok

1.
$$\underline{a}_1 := (1, 0, -3);$$
 $\underline{a}_2 := (2, 1, 5);$ $\underline{a}_3 := (4, 1, -1);$ $\underline{a}_4 := (4, 2, 10);$ $\underline{a}_5 := (3, 1, 2);$ $H := \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$

Bázistranszformációt alkalmazva válaszoljon az alábbi kérdésekre! (Indoklás!)

- a) Határozza meg a *H* vektorhalmaz rangját!
- b) Van-e a *H* vektorhalmaznak két vektorból álló lineárisan független részhalmaza, illetve két vektorból álló lineárisan összefüggő részhalmaza?
- c) Van-e a H vektorhalmaznak olyan részhalmaza, amely bázis az \Re^3 vektortérben? (6 pont)

2.
$$A = \begin{bmatrix} 2 & 0 & -3 \\ 4 & 1 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}, \quad C = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 1 & 2 \\ -1 & 3 \end{bmatrix}$$

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki! $C \cdot A \cdot B$, $C^{T} \cdot A \cdot B$, $B \cdot B^{T}$, $B^{T} \cdot B$, $(2A + D^{T}) \cdot B$.

(6 pont)

3. Egy jegyiroda 4 héten keresztül 3 színházi előadásra kínált jegyeket. Az alábbi táblázat az egyes heteken az egyes előadásokra eladott jegyek számát tartalmazza:

	 előadás 	2. előadás	előadás
1. hét	24	32	18
2. hét	30	15	20
3. hét	35	40	34
4. hét	28	36	40

Az előadások jegyárait tartalmazza az alábbi vektor: $\underline{p}=(2000,\,3000,\,3500)^{\mathrm{T}}.$

Legyen *A* a táblázat adataiból nyert mátrix. a, Számítsa ki és értelmezze az alábbi kifejezéseket!

$$1^{\mathrm{T}} \cdot A$$
, $A \cdot \underline{e}_1$, $\underline{e}_2^{\mathrm{T}} \cdot A \cdot \underline{p}$.

- b, Írja fel azokat a kifejezéseket, amelyek megadják, hogy
 - mennyi a második héten eladott összes jegyek száma;
 - mennyi az egyes heteken az árbevétel;
 - hány jegyet adtak el a négy hét alatt összesen?

(7 pont)

4. Tekintsük az alábbi mátrixot!

$$A = \begin{bmatrix} 4 & 2 \\ 5 & 3 \end{bmatrix}$$

Adja meg az A mátrix adjungált mátrixát és inverz mátrixát!

(2 pont)

5. Legyen
$$A = \begin{bmatrix} 1 & c & 0 \\ 2 & 3 & -1 \\ 4 & 1 & 1 \end{bmatrix}$$
.

Milyen $c \in R$ paraméterérték esetén lesz az A mátrix invertálható? (Indoklás!)

(3 pont)

6. Tekintsük a következő lineáris egyenletrendszert!

$$x_1 + 2x_2 + 2x_3 = 4$$

 $x_1 + x_2 - x_3 = 1$
 $3x_1 + 5x_2 + 3x_3 = 9$
 $x_2 + 3x_3 = 3$

Oldja meg az egyenletrendszert bázistranszformáció alkalmazásával!

(6pont)

Elméleti kérdések

1. Mit jelentenek az alábbi fogalmak: lineáris függetlenség, lineáris összefüggőség, bázis, vektorhalmaz rangja.

Milyen állításokat ismer vektorhalmazok lineáris függetlenségére vonatkozóan? (7 pont)

- **2.** Mit értünk négyzetes mátrix adott eleméhez tartozó részmátrixán? Hogyan értelmezzük négyzetes mátrix determinánsát? Milyen tulajdonságai vannak a determinánsnak? (7 pont)
- **3.** Írja fel a lineáris egyenletrendszerek általános, részletes alakját! Mit értünk homogén ill. inhomogén egyenletrendszeren? Mi a megoldhatóság szükséges és elégséges feltétele? Mikor van egy lineáris egyenletrendszernek egyetlen megoldásvektora? (6 pont)