Лабораторная работа 2.1.4

Сафиуллин Роберт 30 апреля 2018 г.

1 Цель работы:

1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2)определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла.

2 В работе используются:

калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

Описание работы

В предлагаемой работе измерение теплоемкости твердых тел производится по обычной схеме. Исследуемое тело помещается в кало- риметр. Измеряется ΔQ — количество тепла, подведенного к телу, и ΔT изменение температуры тела, произошедшее в результате подвода тепла. Теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} = \frac{P\Delta t - \lambda (T - T_k)\Delta t}{\Delta T} = \frac{P - \lambda (T - T_k)}{\Delta T/\Delta t}$$

 $\frac{\Delta T}{\Delta t} = f(T)$ -строим график и проводим касательную при $T = T_k$

Тогда
$$C=\frac{P}{(\Delta T/\Delta t)_k}$$
 Дополнительно $R_t=R_o(1+\alpha\Delta T); \ \frac{dR}{dt}=R_o\alpha\frac{dT}{dt}$
$$C=\frac{PR_k\alpha}{(dR/dt)_k(1+\alpha\Delta T_k)}$$

3 Экспериментальная установка:

Рис. 1. Схема устройства калориметра

4 Ход работы

1) Подготовим мост постоянного тока и определим R при комнатной температуре:

 $R=18.04\Omega$

 $T_k = 28^{\circ} \mathrm{C}$

 $\alpha = 4.28*10^{-3}K^{-1}$

 $R_0 = 18.5\Omega$

P = 10.8

- 2) Включим источник тока и снимем зависимость сопротивления термометра от времени для пустого калориметра, а также с латунью и алюминием внутри. Для этого проверим балансировку моста и установим на нем сопротивление, немного большее (\sim 0.5%) чем это необходимо для балансировки.
 - 3) Показания запишем в таблицы:

Пустой калориметр]		Алюминий		
					R, Ω	t, c
	R, Ω	t, c	Латунь		18.53	0
	18.37	0	R, Ω	[t, c]	18.62	114
	18.46	69	18.65	0	18.71	210
	18.68	245	18.74	53		
	18.77	330	18.83	187	18.80	354
	18.86	452	18.92	350	18.89	471
					18.98	636
	18.95	551	19.01	497	19.07	807
	19.04	674	19.11	673	19.17	955
	19.14	810	19.21	864	19.27	$\frac{355}{1159}$
	19.24	943	19.31	1108		
	19.34	1092			19.36	1316
	10.01	1002	J		19.46	1566

3) Построим графики по данным таблицам:

- 4) Используя полученные зависимости, построим графики зависимости $\frac{\triangle R}{\triangle t}$ от R
- 5) Для этого разделим кривые на отрезки и найдем для каждого из них коэффицент наклона.

Получили:

6) Посчитаем для каждого из получнных графиков теплоемкость по формуле:

$$C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)}$$

$$C_0=455 \frac{Joule}{K}$$

$$C_1=666 \frac{Joule}{K}$$

$$C_2=931 \frac{Joule}{K}$$

 $C_0{=}455~rac{Joule}{K}$ $C_1{=}666~rac{Joule}{K}$ $C_2{=}931~rac{Joule}{K}$ Зная, что массы тел из латуни и алюминия равны соответственно 878±0.1 g и 294.7±0.1 g получаем их удельную теплоемкость:

$$C_L = 240 \pm 0.3 \; \frac{Joule}{K*kg}$$
 $C_L({
m Tabl}) = 377 \; \frac{Joule}{K*kg}$ $C_{Al} = 1615 \pm 0.3 \; \frac{Joule}{K*kg}$ $C_{Al}({
m Tabl}) = 897 \; \frac{Joule}{K*kg}$ Также используя, что молярные массы латуни и алюминия равны 64

и 27 $\frac{g}{mole}$ найдем их молярную темплоемкость:

$$\begin{array}{ll} C_P(\mathrm{L}) = 15.36 \pm 0.02 \; \frac{Joule}{K*mole} & C_L(\mathrm{Tabl}) = 24.128 \; \frac{Joule}{K*mole} \\ C_P(\mathrm{Al}) = 43.605 \pm 0.001 \; \frac{Joule}{K*mole} & C_{Al}(\mathrm{Tabl}) = 24.35 \; \frac{Joule}{K*mole} \end{array}$$