Санкт-Петербургский политехнический университет Высшая школа теоретической механики, ФизМех

Направление подготовки

«01.03.03 Механика и математическое моделирование»

Отчет по индивидуальной работе №03
тема "Метод конечных разностей. Уравнение Лапласа"
дисциплина "Вычислительная механика"

Выполнил студент гр. 90301

М. А.Бенюх

Преподаватель:

Е.Ю. Витохин

Санкт-Петербург

2021

Оглавление.

Формулировка задания:	1.
 Метод решения	
Явная схема интегрирования	
неявная схема интегрирования	
Численный анализ решения задач	6
Заключение	7
Код	8.

1. Формулировка задания:

Методом конечных разностей, используя итерационную схему интегрирования, решить уравнение Лапласа.

2. Постановка задачи:

Объект моделирования: Среда с однородными граничными условиями.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

при заданных начальных условиях $u(x,0)=f(x),\ u(x,0)=\Phi(x),\$ где $x\in[0,1].$ Решение выполнить при h=0.2 для $t\in[0,1].$

$$u(x,0) = 20x^2, u(x,1) = \cos\left(\frac{\pi x}{2}\right),$$

 $u(0,y) = \cos\left(\frac{\pi x}{2}\right), u(1,y) = 20y$

Метод решения:

Разложим U(x,t) в окрестности точки x_0 в ряд:

$$U(x_0 + h) = U(x_0) + U'(x_0) \frac{h}{1!} + U''(x_0) \frac{h^2}{2!} + o(h^2)$$

$$U(x_0 - h) = U(x_0) - U'(x_0) \frac{h}{1!} + U''(x_0) \frac{h^2}{2!} + o(h^2)$$

$$U(x_0 + h) + U(x_0 - h) = 2U(x_0) + U''(x_0)h^2 + o(h^2)$$

$$U''(x_0) = \frac{U(x_0 + h) - 2U(x_0) + U(x_0 - h)}{h^2} + o(h^2)$$

Разложим U(x,t) в окрестности точки t_0 в ряд

$$U(y_0 + \Delta y) = U(y_0) + U'(y_0) \frac{\Delta t}{1!} + U''(y_0) \frac{\Delta y^2}{2!} + o(\Delta y^2)$$

$$U(y_0 - \Delta y) = U(y_0) - U'(y_0) \frac{\Delta y}{1!} + U''(y_0) \frac{\Delta y^2}{2!} + o(\Delta y^2)$$

$$U(y_0 + h) + U(y_0 - h) = 2U(y_0) + U''(y_0)h^2 + o(h^2)$$

$$U''(y_0) = \frac{U(y_0 + h) - 2U(y_0) + U(y_0 - h)}{h^2} + o(h^2)$$

Введем сетки для времени $y = k \cdot \Delta y$ и для пространства $x = j \cdot h$. Тогда:

$$U_{xx}''(x,y) = \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2}$$

$$U_{yy}''(x,y) = \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h^2}$$

Конечно-разностное уравнение примет вид:

$$U_{i,j} = \frac{1}{4} \left(U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} \right)$$

Итерационный метод:

$$\widetilde{U_{i,j}} = \frac{1}{4} (U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1})$$

$$U_{i,j}^{k+1} = U_{i,j} + w * (\widetilde{U_{i,j}} - U_{i,j})$$

Остановка

$$\left|\left|U_{i,j}^{k+1}-U_{i,j}^{k}\right|\right|=\max_{i,j}|U_{i,j}^{k+1}-U_{i,j}^{k}|\leq\varepsilon$$

3. Решение

Оптимальная константа метода: w= 1.8 1.9

W	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
k	10	11	12	12	12	12	12	12	11	11	11	11	11	10	10	10	10	9	9

Далее будем рассматривать разрезы и поверхность для w=1.9

Поверхность решения U (x, y) при $\omega=1.9$

Таблица значений матрицы решений

U =

	у					
	0	0.8	3.2	7.2	12.8	20
	4	5.69663	8.1342	11.8401	17.805	28.5317
х	8	9.87965	11.7877	14.2356	18.048	24.2705
	12	14.0219	14.9265	15.2692	15.8909	17.6336
	16	19.2959	18.6298	16.0363	12.6155	9.27051
	30	28.5317	24.2705	17.6336	9.27051	1.83697e-15

4. Проверка решения

Уменьшим шаг разбиения с 0,2 до 0,01, тогда оптимальная w=0,1

,	N	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
Ī	(43	79	110	137	161	182	201	218	233	246	259	270	280	290	300	310	320	331	345

5. Заключение

Было получено решение уравнения Лапласа при помощи итерационного метода. Исходя из поставленных условий и h=0.2 оптимальной константой метода будет w=1,9. Проверка сходимости метода при измельчении шага прошла успешно.

6. Код

```
x,h,y,eps=1,0.2,1,0.01
func psi 0 = lambda y: 20*y
func_psi_l = lambda y: [30*math.cos((math.pi*i)/2) for i in y]
func_fi_0 = lambda x: 20*(x**2)
func\_fi\_I = lambda x: [30*math.cos((math.pi*i)/2) for i in x] Test=Struna(x, t, h, dt, func\_x\_0, d\_func\_x\_0, func2\_x\_0, func2\_t\_0, func2\_t\_0,
func_1_t)
 Test=Laplas(x, y, h, func\_fi\_0, func\_fi\_l\ , func\_psi\_0\ ,\ func\_psi\_l\ , eps)\ res2=Test.implicit\_schema()
 _return=Test.iterative_procedures(m)
     res1=_return[0]
 class Laplas():
      def __init__(self,x, y, h, func_fi_0, func_fi_l ,func_psi_0 , func_psi_l,eps):
             self.x= x
             self.x 0=0
             self.y=y
             self.y 0=0
             self.h=h
             self.func_fi_0=func_fi_0
             self.func fi I=func fi I
             self.func_psi_0=func_psi_0
             self.func_psi_l=func_psi_l
             self.X=np.arange(self.x_0,self.x+self.h, self.h)
             self.Y=np.arange(self.y_0,self.y+self.h, self.h)
             self.len_X=len(self.X)
             self.len_Y=len(self.Y)
             print("init")
       def StartFillMatrix(self):
             T=np.zeros((self.len X, self.len Y))
             T[:,0]=self.func_psi_0(self.Y)
             T[:,-1]=self.func_psi_l(self.Y)
             T[-1,:]=self.func_fi_l(self.X)
             T[0,:]=self.func fi O(self.X)
             return T
      def iterative_procedures(self,w):
             T=self.StartFillMatrix()
             T new=np.zeros((self.len X, self.len Y))
             T2=self.StartFillMatrix()
             k=0
             while (True):
                   k=k+1
                   delta=[]
                   for i in range(1, self.len X-1):
                          for j in range(1,self.len_Y-1):
                                T[i,j]=(1/4)*(T[i-1,j]+T[i+1,j]+T[i,j-1]+T[i,j+1])
                   for i in range(1, self.len X-1):
                          for j in range(1,self.len_Y-1):
                                T2[i,j]=(1/4)*(T[i-1,j]+T[i+1,j]+T[i,j-1]+T[i,j+1])
                   for i in range(0,self.len_X):
                          for j in range(0,self.len_Y):
```

 $T_new[i,j]=T[i,j]+w*(T2[i,j]-T[i,j])$

```
for i in range(0,self.len_X):
    for j in range(0,self.len_Y):
        delta.append(abs(T_new[i,j]-T[i,j]))

if(max(delta)<self.eps):
    print("break")
    break
else:
    for i in range(0,self.len_X):
        for j in range(0,self.len_Y):
             T[i,j]=T_new[i,j]</pre>
return [T_new, k]
```