

MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training

NeurIPS 2024 Presentation

Bo Chen*, Zhilei Bei*, Xingyi Cheng, Pan Li, Jie Tang, Le Song Tsinghua University, BioMap Research, MBZUAI

Multiple sequence alignment (MSA) facilitates protein structure prediction (PSP)

- Current PSP models rely on MSA for high accuracy
 - AlphaFold
 - RoseTTAFold
- "Orphan": 1/5 of all metagenomic proteins & 11% of eukaryotic lack sequence homologs, compromising PSP accuracy

Generate virtual MSA to solve the problem

Low quality retrieved MSA Low structural prediction accuracy

Enhanced by MSAGPTgenerated virtual MSA High quality augmented MSA High structural prediction accuracy

A simple yet effective decoding framework

- Previous Works: alternating axis-attention
 - low efficiency
 - limited information diffusion

- Ours: 2D evolutionary positional encoding
 - encapsulates the explicit axis-attention patterns with high efficacy
 - unrestricted information diffusion

Learning from AlphaFold2 feedback

MSAGPT surpasses existing baselines in generating constructive MSA

Alignment reduces hallucination (pLDDT)

Model	CAMEO (avg. Depth = 8.5)				$\begin{array}{ c c } \hline \textbf{CASP} \\ (\text{avg. Depth} = 4.6) \\ \hline \end{array}$				PDB (avg. Depth = 2.6)			
	Zero-Shot		Few-Shot		Zero-Shot		Few-Shot		Zero-Shot		Few-Shot	
	pLDD7	ΓТМ	pLDD7	г ТМ	pLDD7	т ТМ	pLDD7	ΓТМ	pLDD7	ΓТМ	pLDD7	Γ TM
AF2 MSA	63.8	55.4	77.4	71.4	44.0	32.6	54.2	44.1	55.2	45.6	61.0	52.3
MSA-Aug.	67.7	59.2	77.4	72.1	56.8	36.6	63.4	46.3	61.9	49.8	66.0	55.3
EvoGen	66.1	60.3	78.6	75.3	48.2	38.4	55.1	48.5	57.6	49.5	62.8	55.4
MSAGPT	70.8	61.4	80.8	75.2	59.0	39.8	65.4	51.0	68.6	53.4	71.3	59.6
+ RFT	68.0	60.5	79.8	76.4	56.8	40.2	64.0	53.6	66.8	53.4	70.3	60.1
+ DPO	68.9	62.7	80.2	76.7	54.2	43.7	62.7	57.0	64.5	53.6	68.0	59.7
+ DI'U	(+3.1)	(+2.4)	(+2.2)	(+1.4)	(+2.2)	(+5.3)	(+2.0)	(+8.5)	(+6.7)	(+3.8)	(+5.3)	(+4.7)

Rethinking the MSA Selection Strategy

MSA Selection Criteria

- 1D Sequence Diversity Measure
- 3D Structure Validity Measure

	CAMEO	CASP	PDB	
Model	TM	TM	TM	
MSAGPT-DPO + pLDDT Selection	76.7 77.5	57.0 57.6	59.7 60.5	

Sequence Diversity + Structure Validity → Informative MSA

Transfer Learning on Other Tasks

 Finetune MSA Transformer & task-specific head w/ or w/o MSA generated by DPO model:

	Protein	Protein
	Structur	e Function
	CtP Ss	P LocP MIB
Model	ACC AC	C ACC ACC
w/o Virtual MSA	11.6 66.	.5 58.3 57.5 .0 56.4 60.3
w/ Virtual MSA	13.1 69.	.0 56.4 60.3

Incorporating MSA from MSAGPT > Using single sequence only

Ablation studies

- Full 2D evolutionary positional encoding outperforms all other methods
- Column-wise patterns play a more important role in structural predictions than row-wise patterns

Visualizations show that informative MSA helps align global structure

Comparison with natural MSA

Comparison with other generated virtual MSA

Employing a 2D evolutionary positional encoding scheme and learning from AlphaFold2 Feedback,

MSAGPT generates constructive virtual MSA to enable accurate protein structure predictions in situations where natural co-evolutionary information is scarce