GSC Big data boot camp 김현수 조현민 이화정 송재원 이동민

2nd semi project

Vehicle Loan repayment prediction

CONTENTS

01. Project Intro

- 구성원 및 역할
- 프로젝트 소개
- 데이터 구성

02. EDA & Processing

- 시각화
- 전처리

03. Modeling

- 적용 기법 소개
- 모델링 및 성능평가

04. Result & Evaluation

- 모델링 결과
- 향후 과제

Team members

조현민

이화정

송재원

PPT

ML Modeling

이동민

- EDA
- DL Modeling
- ML/DL Modeling PPT

- EDA
- ML Modeling

프로젝트 소개

Vehicle Loan repayment prediction

Problem: 비은행 금융회사(NBFC) 는 투자, 리스크 풀링, 계약 저축, 시장 중개 등 은행과 유사한 금융 서비스를 제공하는 데, 한 NBFC는 현재 **차량 대출 부문의 채무 불이행 증가로 인해 수익성 문제**에 직면

Goal: 고객의 대출 상환 능력에 기여하는 요소들을 살펴봄으로써 고객이 차량 대출 상환을 불이행할 가능성이 있는 지 여부를 예측

데이터 구성 - X data

Гуре	Column	Description
Identifier	ID	고객 ID
	Child_Count	고객 자녀 수
	Own_House_Age	고객 소유 주택의 나이(년)
	Credit_Amount	대출 금액(\$)
	Loan_Annuity	대출 연금(\$)
	Population_Region_Relative	고객이 거주하고 있는 지역의 성 대적 인구수
	Age_Days	신청서 제출 시점의 고객 나이
	Employed_Days	대출 신청일 전 고객이 고용되어 일한 일수
	Registration_Days	대출 신청일 전 고객이 등록을 변 경한 일수
Numerical	ID_Days	대출 신청일 전 고객이 대출을 신 청한 신분증 변경 일수
	Client_Family_Members	고객 가족 구성원 수
	Score_Source_1	다른 출처에서 얻은 정규화된 점 수
	Score_Source_2	다른 출처에서 얻은 정규화된 점 수
	Score_Source_3	다른 출처에서 얻은 정규화된 점 수
	Phone_Change	대출 신청 며칠 전에 고객이 휴대 폰을 변경했는 지
	Credit_Bureau	작년 총 문의 건수
	Client_Income	고객 소득(\$)
	Social_Circle_Default	지난 60일 동안 대출 상환을 불이 행한 고객의 친구/가족 수
	Application_Process_Hour	고객이 대출을 신청한 날의 시간

Туре	Column	Description
	Car_Owned	다른 차량에 대한 대출을 신청하 기 전에 고객이 소유한 모든 차량
	Bike_Owned	고객이 소유한 모든 자전거
	Active_Loan	대출 신청 당시 진행 중인 다른 대출이 있는지 여부
Catagorical	House_Own	고객이 소유한 주택 수
(0 or 1 & Yes or No)	Homephone_Tag	고객이 제공한 집전화 번호
	Workphone_Working	직장 전화 번호로 연락 가능했는 지
	Client_Permanent_Match_Tag	고객 연락처 주소가 영구 주소와 일치 여부
	Client_Contact_Work_Tag	고객 직장 주소가 연락처 주소와 일치 여부
	Client_Education	고객이 달성한 최고 수준의 교육 수준
	Client_Marital_Status	고객의 결혼 상태
	Client_Gender	고객 성별
	Cleint_City_Rating	고객 도시 등급
	Loan_Contract_Type	대출 유형
Catagorical	Client_Housing_Type	고객 집 상태
(the rest)	Client_Occupation	고객 직업 유형
	Type_Organization	고객이 근무하는 조직 유형
	Application_Process_Day	고객이 대출을 신청한 요일
	Accompany_Client	고객이 대출을 신청할 때 고객과 동행한 사람
	Client_Income_Type	고객 소득 유형
etc	Mobile_Tag	고객이 제공한 휴대폰 번호(1의 값만 가짐)
		Data Source: Kaggle

데이터 구성 - Y data

Туре	Column	Description
Categorical		대출 상환 불이행 여부 (이행: 0, 불이행: 1)

식별자(ID)를 제외한 38개의 컬럼을 활용하여 대출 상환 불이행 여부 예측

EDA

" 채무 불이행한 고객의 비율은 몇 % 일까? "

약 12만 건의 데이터 중 채무를 상환한 고객이 91.9%, 채무 상환을 불이행한 고객이 8.1%로

예측 라벨 값의 분포가 불균등하게 나타남을 확인 할 수 있다.

그렇다면 상환 여부에 따라 고객 간에 어떠한 차이가 존재할까 ?

EDA - Numerical columns

Violin Plot 결과 채무 상환 이행 여부에 따라 **분포 차이가 크게 나타나지 않음을** 확인

Default

EDA - Numerical columns

Violin Plot 결과, 분포가 극단적으로 나타나는 column만 추출해서 세부적으로 시각화 했을 때 채무 상환 불이행 여부에 따라 분포 차이가 나지 않으며 상대적으로 소득이 낮고 일한 일수 또한 작은 방향으로 빈도수가 높게 나타남

Employed_Days

Employed Days histplot

2. Employed Days

EDA - Categorical columns

Categorical columns는 Histogram Plot 결과 Numerical columns와 마찬가지로 채무 상환 이행 여부에 따라 분포 차이가 뚜렷하 게 나타나지 않음

> Y data의 라벨 값 불균형으로 인해 **빈도 수 차이는 존재하나 전체적인 분포는 비슷함**을 파악 가능

EDA - Missing Values

Missing Values가 10% 이상인 Columns: Credit_Bureau(15.2%) < Score_Source_3(22.1%) < Client_Occupation(34.0%) < Social_Cirecle_Default(50.8%) < Score_Source_1(56.5%)

EDA - Outliers

1. Type Organization

XNA: 21085

Police, Trade, Hotel 등 조직 유형이 들어가 있어야 하므로 이상치 2. Client Gender

XNA: 3

성별이므로 여성 혹은 남성만 들어갈 수 있으므로 이상치 3. Accompany Client

##:3

Alone, Partner, Kids등 대출 당시 고객과 동행한 이들의 유형이 들어가 있어야 하므로 이상치

Categorical columns들을 Value_Counts()를 통해 고유값 별 개수를 센 결과 위와 같은 이상치 파악

Processing

Drop Columns

- ID: 식별자
- Own_House_Age, Score_Source_1 & Score_Source_3, Social_Circle_Default: 결측치 비중이 높으므로 제거
- Type_Organization: Client_Occupation과 중복되는 부분이라 판단하여 제거
- Mobile_Tag: 데이터가 전부 1인 관계로 제거
- Application_Process_Hour & Accompany_Client & Client_Income_Type: EDA결과를 통해 필요없는 컬럼이 라 판단하여 제거

Missing values & Outliers

- 이상치 값을 na_values = ['\$', '#VALUE!', '##', 'XNA', '@', '#', 'x', '&']로 묶어서 결측치로 처리 후 아래와 같이 처리
- Client_Occupation : 결측치가 다수였으나, 고객 직업 유형에 따라 소득 및 상환 이행 여부에 영향을 미칠 것이라 판단하여 Nojob으로 대체
- Categorical Columns: 0 < 결측치 < 10000 대상으로 각 컬럼 별 고유값 중 랜덤하게 대체
- 나머지 Categorical Columns: One-hot encoding 적용
- Numerical Columns: 평균값으로 대체

Oversampling(SMOTE)

- Y data의 라벨 값 분포가 불균등하게 나타나는 관계로 Oversampling을 통해서 데이터 불균형 해소

Model Types

* Random Forest 외 ML Model에 Grid search 기법 적용하여 HPO 도출 후 모델링

Model(ML) 1. Stacking

	precision	recall	f1-score	support
0	0,92	0,98	0,95	33619
1	0,23	0,08	0,12	2938
ассигасу	0.50	0.50	0,90	36557
macro avg	0,58	0,53	0,54	36557
weighted avg	0,87	0,90	0,88	36557

Accuracy on Training set: 0,883 Accuracy on Test set: 0,904

Model(ML) 2. SVM

	precision	recall	f1-score	support
0	0,93	0,58	0,71	33619
1	0,10	0,52	0,16	2938
ассигасу			0,57	36557
macro avg	0,51	0,55	0,44	36557
weighted avg	0,87	0,57	0,67	36557

Accuracy on Training set: 0,608 Accuracy on Test set: 0,574

Model(ML) 3. XG-Boost

	precision	recall	f1-score	support
0	0,92	0,99	0,95	33619
1	0,26	0.04	0,07	2938
ассигасу			0,91	36557
macro avg	0,59	0,52	0,51	36557
weighted avg	0,87	0,91	0,88	36557

Accuracy on Training set: 0,950 Accuracy on Test set: 0,913

Model(ML) 4. Random Forest

	precision	recall	f1-score	support
0	0.94	0.74	0.00	33619
U	0,34	0,74	0,83	33013
1	0,13	0,46	0,21	2938
ассигасу			0,72	36557
macro avg	0,54	0,60	0,52	36557
weighted avg	0,87	0,72	0,78	36557

Accuracy on Training set: 0,775 Accuracy on Test set: 0,717

Model(ML) 5. Gradient Boosting

	precision	recall	f1-score	support
0	0,94	0,79	0,85	33619
1	0,14	0,39	0,20	2938
ассигасу			0,75	36557
macro avg	0,54	0,59	0,53	36557
weighted avg	0,87	0,75	0,80	36557

Accuracy on Training set: 0,789 Accuracy on Test set: 0,753

Model(ML) 6. Logistic Regression

	precision	recall	f1-score	support
0	0,95	0,65	0,77	33619
1	0,13	0,60	0,21	2938
ассигасу			0,65	36557
macro avg	0,54	0,62	0,49	36557
weighted avg	0,88	0,65	0,73	36557

Accuracy on Training set: 0,660 Accuracy on Test set: 0,647

Model(DL) 7. ANN

Model: "predict"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 140)	11760
dense_1 (Dense)	(None, 140)	19740
dense_2 (Dense)	(None, 40)	5640
dropout (Dropout)	(None, 40)	0
dense_3 (Dense)	(None, 1)	41

Total params: 37,181 Trainable params: 37,181 Non-trainable params: 0

ELU $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Loss Score (0.2792655825614929)로 가장 낮은 29 번째 가중치를 사용

Model(DL) 7. ANN

	precision	recall	f1-score	support
0	0.93	0.90	0.92	33619
1	0.15	0.20	0.17	2938
accuracy			0.85	36557
macro avg	0.54	0.55	0.54	36557
weighted avg	0.87	0.85	0.86	36557

Accuracy on Training set :0.923 Accuracy on Test set :0.846

Result

Accuracy & Recall

- Recall(재현율) 지표는 모델이 양성인 것 중 양성으로 잘 맞춘 것에 대한 비율이므로 해당 지표가 가장 중요
 (Recall: Test data기준 Class 1 중에 Class 1으로 잘 맞춘 비율 높을 수록 좋은 모델)
- Accuracy의 경우 Random Forest가 0.927로 가장 높게 측정되었으나 **Recall값은 Logistic Regression이 0.6으로** 가장 높게 측정됨
- 그러나 Logistic Regression 모델의 경우 accuracy가 0.64로 신뢰성이 높은 모델이라고 판단하기 어려움

Evaluation

- EDA를 통해 살펴 봤듯이 대출 상환 이행 여부에 따라 각 속성의 특징이 뚜렷한 것이 아니라 전체적인 양상이 비슷하게 나타나 분류를 잘 해내지 못 하는 것으로 해석 가능
- 따라서 정확한 예측 모델을 만들기 위해서는 현재 변수 외 다른 변수들이 추가되어야 할 것으로 보이며, 그 외 다양한 방식으로 변수 선택·파생 변수 생성 및 데이터 전처리를 통해 성능을 향상 시켜야 할 것으로 보임

Future Challenges

변수 간 상관계수 시각화

Bayesian Search 기법 적용을 통해 HPO 구하기

Random Forest에도 Grid Search 적용 후 비교

컬럼들 drop하지 않고 모델링 하는 등 다양한 시도

Tree 모델의 Feature importance 확인

Under Sampling 후 결과 비교

THANK YOU