Find $\frac{dy}{dx}$ by implicit differentiation.

3.
$$x^2 + y^2 = 1000$$

3.
$$x^2 + y^2 = 1000$$
 5. $x^2y + 3xy^3 - x = 3$

7.
$$\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} = 1$$

$$9. \sin(x^2y^2) = x$$

9.
$$\sin(x^2y^2) = x$$
 11. $\tan^3(xy^2 + y) = x$

Find $\frac{d^2y}{dx^2}$ by implicit differentiation.

13.
$$2x^2 - 3y^2 = 4$$
 15. $x^3y^3 - 4 = 0$

15.
$$x^3y^3 - 4 = 0$$

17.
$$y + \sin y = x$$

19. Find the slope of the tangent line to the curve $x^2 + y^2 = 1$ at $x = \frac{1}{2}$.

Use implicit differentiation to find the specified derivative.

29.
$$a^4 - t^4 = 6a^2t$$
; $\frac{da}{dt}$

31.
$$a^2\omega^2 + b^2\lambda^2 = 1$$
; $\frac{d\omega}{d\lambda}$ (a and b are constants)

33. In the accompanying figure, it appears that the ellipse $x^2 + xy + y^2 = 3$ has horizontal tangent lines at the points of intersection of the ellipse and the line y = -2x. Use implicit differentiation to explain why this is the case.

