We claim:

A compound of the formula (I),

10 B_k 15 where

20 M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements,

are identical or different and are each a radical Si(R12)3, \mathbb{R}^1 where R^{12} are identical or different and are each a hydrogen atom or a C_1-C_{40} -group, or R^1 is a C_1-C_{30} -group, or two or more 25 radicals R1 may be commected to one another in such a way that the radicals Ryand the atoms of the cyclopentadienyl ring which connect them form a C_4-C_{24} -ring system which may in turn be substituted,

30 are identical or different and are each a radical Si(R12)3, \mathbb{R}^2 where R12 are identical on different and are each a hydrogen atom or a C_1-C_{40} -group, or \Re^2 is a C_1-C_{30} -group, or two or more radicals R² may be connected to one another in such a way that the radicals R2 and the atoms of the cyclopentadienyl 35 ring which connect them form a C_4-C_{24} -ring system which may in turn be substituted,

are identical or different and are each a C1-C40-group, \mathbb{R}^3

is a halogen atom, X

40

45

is an element of main group VI of the Periodic Table of the Y Elements or a fragment CH, CR_{2}^{3} , NR_{3}^{3} , PR_{3}^{3} or $P(=0)R_{3}^{3}$,

is from 1 to 5 when k = 0, and n is from 0 to 4 when k = 1, n

n' is from 1 to 5 when k = 0, and n' is from 0 to 4 when k = 1,

is from 1 to 3, preferably 1,

- 5 k is zero or 1, with k = 0 giving an unbridged metallocene and k = 1 giving a bridged metallocene, and
 - B is a bridging structural element between the two cyclopentadienyl rings.

10

35

40

- 2. A compound as claimed in claim 1, wherein
- M is Ti, Zr or Hf,
- are identical or different and are each a radical $Si(R^{12})_3$, where R^{12} are identical or different and are each a hydrogen atom, $C_1-C_{20}-alkyl$, $C_1-C_{10}-fluoroalkyl$, $C_1-C_{10}-alkoxy$, $C_6-C_{20}-aryl$, $C_6-C_{10}-fluoroaryl$, $C_6-C_{10}-aryloxy$, $C_2-C_{10}-alkenyl$, $C_7-C_{40}-arylalkyl$, $C_7-C_{40}-alkyl$ or $C_8-C_{40}-arylalkenyl$,

or R¹ is C₁-C₂₅-alkyl, C₇-C₂₅-alkenyl, C₃-C₁₅-alkylalkenyl, C₆-C₂₄-aryl, C₅-C₂₄-heteroaryl, C₇-C₃₀-arylalkyl, C₇-C₃₀-alkylaryl, fluorinated C₁-C₂₅-alkyl, fluorinated C₆-C₂₄-aryl, fluorinated C₇-C₃₀-arylalkyl, fluorinated

 C_7-C_{30} -alkylaryl or C_1-C_1 -alkoxy, or two or more radicals R^1 may be connected to one another in such a way that the radicals R^1 and the atoms of the cyclopentadienyl ring which connect them form a C_4-C_{24} -ring system which may in turn be substituted,

are identical or different and are each a radical $Si(R^{12})_3$, where R^{12} are identical or different and are each a hydrogen atom, C_1 - C_{20} -alkyl, C_1 - C_{10} -fluoroalkyl, C_1 - C_{10} -alkoxy, C_6 - C_{14} -aryl, C_6 - C_{10} -fluoroaryl, C_6 - C_{10} -aryloxy, C_2 - C_{10} -alkenyl,

 C_7 - C_{40} -arylalkyl, C_7 - C_{40} -alkylaryl or C_8 - C_{40} -arylalkenyl, or R^2 is C_1 - C_{25} -alkyl, C_2 - C_{25} -alkenyl, C_3 - C_{15} -alkylalkenyl,

 C_6-C_{24} -aryl, C_5-C_{24} -heteroaryl, C_7-C_{30} -arylalkyl, C_7-C_{30} -alkylaryl, fluorinated C_1-C_{25} -alkyl, fluorinated C_6-C_{24} -aryl, fluorinated C_7-C_{30} -arylalkyl, fluorinated C_7-C_{30} -alkylaryl or C_1-C_{12} -alkoxy, or two or more radicals R^2 may be connected to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect then form a C_4-C_{24} -ring system which may in turn be

45 substituted,

R³ are identical or different and are each C1-C25-alkyl, C_2-C_{25} -alkenyl, C_3-C_{15} -alkylalkenyl, C_6-C_{24} -aryl, C_5-C_{24} -heteroaryl, C_7-C_{30} -arylalkyl, C_7-C_{30} -alkylaryl, fluorinated C1-C25-alkyl, fluorinated C6-C24-aryl, fluorinated 5 C₇-C₃₀-arylalkyl or fluorinated C₇-C₃₀-alkylaryl,

is chlorine, X

is oxygen, sulfur or NR3, Υ .

10

is f_{XOM} 1 to 5 when k = 0, and n is from 0 to 4 when k = 1, n

is from 1 to 5 when k = 0, and n' is from 0 to 4 when k = 1

15 m is 1 and

> is 1. k

A compound as claimed in claim 1, wherein the formula (I) 3. represents a bridged metallocene compound in which k is 1. 20

A compound as claimed in claim 3, wherein the formula (I) corresponds

25 to the formula (II

40

35

30

where

is Ti, Zr or Hf, M

are identical or different and are each a C1-C30-group, 45 R3

	R^4 , R^6	are identical or different and are each a hydrogen atom
\		or a C ₁ -C ₂₀ -group,

- R^5 , R^7 are identical or different and are each a hydrogen atom or a C_1 - C_{20} -group,
- R^8 , R^9 are identical or different and are each a hydrogen atom, a halogen atom or a C_1 - C_{20} -group, and two radicals R^8 or R^9 may form a monocyclic or polycyclic ring system which may in turn be substituted,
 - x is a halogen atom,
- y is an element of main group VI of the Periodic Table of the Elements or a fragment CH, CR³₂, NR³, PR³ or P(=O)R³,
 - 1, 1' are identical or different and are each an integer from zero to 4,
- 20 B is a bridging structural element between the two indenyl radicals.
 - 5. A compound as claimed in claim 5 [sic], wherein, in the formula (II),

M is zirconium,

- are identical or different and are each C₃-C₁₀-alkyl, C₆-C₂₄-aryl, C₅-C₂₄-heteroaryl, C₇-C₃₀-arylalkyl, C₇-C₃₀-alkylaryl, fluorinated C₆-C₂₄-aryl, fluorinated C₇-C₃₀-arylalkyl or fluorinated C₇-C₃₀-alkylaryl,
- R4, R6 are identical or different and are each a hydrogen atom, C₁-C₁₈-alkyl, C₂-C₁₀-alkenyl, C₃-C₁₅-alkylalkenyl,

 C₆-C₁₈-aryl, C₅-C₁₈-heteroaryl, C₇-C₂₀-arylalkyl,

 C₇-C₂₀-alkylaryl, fluorinated C₁-C₁₂-alkyl, fluorinated C₆-C₁₈-aryl, fluorinated C₇-C₂₀-arylalkyl or fluorinated C₇-C₂₀-alkylaryl,
- 40 R⁵, R⁷ are identical or different and are each a hydrogen atom, C₁-C₁₈-alkyl, C₂-C₁₀-alkenyl, C₃-C₁₅-alkylalkenyl, C₆-C₁₈-aryl, C₅-C₁₈-heteroaryl, C₇-C₂₀-arylalkyl, C₇-C₂₀-alkylaryl, fluorinated C₁-C₁₂-alkyl, fluorinated C₆-C₁₈-aryl, fluorinated C₇-C₂₀-arylalkyl or fluorinated C₇-C₂₀-alkylaryl,

10 X is chlorine,

y is oxygen, sulfur or NR3,

1, 1' are identical or different and are each 1 or 2,

B is a bridging structural element between the two indenyl radicals.

- 6. A catalyst comprising at least one compound as claimed in claim 1 and a support and, if desired, a cocatalyst.
 - 7. A process for preparing a polyolefin in the presence of a catalyst as claimed in claim 6.
- 25 8. The use of a catalyst as claimed in claim 6 for olefin polymerization.

30 Add H

35

15

40