

OpEx Shared Practice & Applied Practice

ชื่อโครงการ : Gas turbine's Efficiency Improvement Project for Sales Gas Compressor Unit GSP1

<u>บริษัท</u> : ปตท. จำกัด (มหาชน) โรงแยกก๊าซ ธรรมชาติ จ.ระยอง

<u>คณะทำงาน</u>

- 1.นายกลศ บุณยะวรรธนะ
- 2.นายสรรวริศ อุ่ยวัฒนา
- 3.นายสุธี อมรกุลพิทยา
- **4.** นายวีรศักดิ์ ทองจันทึก

1. Key Word (Taxonomy)

	
Project Type	Please select the 6 Key word
Business Line	from the attached file below.
Operational Function	
Operational Unit	Key word.xls
Equipment Type	
Product Group	

2. Project

2. <u>Project</u>				
N o.	Title	Details		
1	Project Name*	(English*) Gas turbine's Efficiency Improvement Project for Sales Gas Compressor Unit GSP1 (Thai) ขยายผลการเพิ่มประสิทธิภาพเครื่องยนต์กังหันก๊าซของ Sales Gas Compressor Unit โรงแยกก๊าซหน่วยที่ 1		
2	Objective *	เพื่อเพิ่มประสิทธิภาพของเครื่องยนต์กังหันก๊าซ, ลดสาเหตุที่ทำให้ค่า NOX สูง และยืดอายุการใช้งานของ Air Inlet Filter ของ Sales Gas Compressor Unit GSP1		
	Project Type (please select)	 ✔ Cperation [โครงการที่เกี่ยวข้องกับ core operation ของบริษัท ซึ่งส่งผลโดยตรงต่อประสิทธิภาพหรือ ประสิทธิผลของการผลิต] ✔ Cperationsuppot [โครงงานที่สนับสนุนและส่งผลโดยตรงต่อการดำเนินงานของสายปฏิบัติการ/ธุรกิจหลัก อาทิ โครงการที่เป็นกิจกรรมในสายโซ่อุปทาน (supply chain) ซึ่งได้แก่ Procurement, Inventory, Logistic, Sale & Marketing] 		
3	Executive Summary *	เป็นงานปรับปรุงขยายผลครั้งที่ 19 จากความสำเร็จในการเพิ่ม ประสิทธิภาพของเครื่องยนต์กังหันก๊าซ, ลดสาเหตุที่ทำให้ค่า NOX สูง และยืดอายุการใช้งานของ Air Inlet Filter ที่โรงแยกก๊าซหน่วยที่ 5 โดย ปรับปรุงระบบกรองอากาศก่อนเข้าเครื่องยนต์		
3.	Detail	As-is		
	•			

4	Best Practice Process / Procedur es*	 ขั้นตอนการดำเนินงาน 1. พบปัญหาประสิทธิภาพเครื่องยนต์กังหันกาซลดลง 2. เก็บข้อมูลเพื่อนำมาหาสาเหตุของปัญหา โดยการวัดขนาดฝุ่น 3. วิเคราะห์ข้อมูลเพื่อทราบปัญหาและหาทางดำเนินการแก้ไข 4. ศึกษาความเป็นได้ของโครงการทั้งระยะเวลาในการเตรียมงาน, จุดคุ้มทุน และเลือก Filter ที่สามารถกรองฝุ่นได้ 5. ออกแบบทางวิศวกรรม คำนวนพื้นที่ของ Filter ให้เพียงพอต่อ มาตรฐานองเครื่องยนต์ 6. ดำเนินการแก้ไข ออกแบบ Filter Housing ใหม่ 7. Commissioning and Testing 8. ติดตามผลการแก้ไขอย่างต่อเนื่อง 9. วัดผลการดำเนินงาน โดยวัดประสิทธิ์ภาพของเครื่องยนต์ และ เปิดดูใบ Blade เมื่อเครื่องยนต์อี่นต่อไปตามแผนงาน 10. ขยายผลจากไปยังเครื่องยนต์อี่นต่อไปตามแผนงาน 		
5. 1	Operation Duration	start date : 16 เมษายน 2558 end date : 25 พฤษภาคม 2558		
5. 2	Lifetime of Project*	ใช้งานมาเป็นระยะเวลา 2 ปี 6 เดือน (ออกแบบ 3 ปี) และยังสามารถใช้ งานได้อย่างต่อเนื่องในปัจจุบัน โดยคาดว่าจะใช้งานได้ไม่ต่ำกว่า 5 ปี		
6	Applicati on*	นำกระบวนการในการเก็บข้อมูล, การวิเคราะห์ผล, การคำนวณและ ออกแบบ รวมถึงการบริหารโครงการ และงบประมาณ ไปใช้ได้กับอุปกรณ์ ที่ใช้เครื่องยนต์กังหันก๊าซได้ทั้งหมดในบริษัทภายในเครือ ปตท. ซึ่งมี จำนวนมาก		
7	Project Cost & Investme nt (Mil.Baht)*	21,514,155 บาท		

8	Project Cost & Investme nt per year (Mil.Baht/ Yr)*	4,302,831 บาท		
9	Benefit*	- ที่เป็นตัวเงิน -ประหยัดค่าเชื้อเพลิง 36,904,785 บาท/ปี -ลดค่าแรงในการเปลี่ยน Filter Element 4,800 บาท/ปี -ลดค่าแรงในทำ Fire Wash 24,500 บาท/ปี -ประหยัดค่า Filter Element 256,880 บาท/ปี - ที่ไม่เป็นตัวเงิน -ลดสาเหตุในการเกิดค่า NOX สูง -ลดความเสี่ยงที่จะเกิด FOD เข้าเครื่องในการเปลี่ยน Filter Element -เพิ่ม Reliability เครื่องอุปกรณ์		
1	Benefit Value (Mil.Baht / Yr)*	32,888,134 บาท		
1	Benefit Value Calculati on	oFuel saving ส่วนต่างของเชื้อเพลิงที่เครื่องยนต์ใช้ลดลง SFCM oConvert SCFM to MMSCFD		

		oมูลค่าลงทุน (อายุโครงการเกิน 5 ปี) : 21,514,155/5 4,302,831	
		THB/YR – (6) o_Benefit Value : (6) – (7) 32,888,134	
		THB/YR – (7)	
1	Apply	Gas Turbines Efficiency and Emission Improvement due to	
2	From	High Dust in Air Inlet	
1 3	Company	PTT (GSP)	
		รายชื่อสมาชิกที่ร่วมในการจัดทำโครงการนี้	
1	Team	1.นายกลศ บุณยะวรรธนะ	
4	member*	2. นายสรรวริศ อุ่ยวัฒนา	
•	member	3. นายสุธี อมรกุลพิทยา	
		4. นายวีรศักดิ์ ทองจันทึก	
1	Contact	Name : นายสุธี อมรกุลพิทยา	
5	Person*	Phone: 0945459635	
	Email: sutee.a@pttplc.com		
1 6	Year Contest	2017 (System Default)	
0	Contest		
1 7	Project Type*	ตามรายละเอียดที่เลือกในหัวข้อ Key word	
1 8	Business Line*	ตามรายละเอียดที่เลือกในหัวข้อ Key word	
1 9	OEMS Element	เลือก OEMS ที่เกี่ยวข้องกับ Practice นี้	
2	Operatio nal Function*	ตามรายละเอียดที่เลือกในหัวข้อ Key word	
2	Operatio nal Unit*	ตามรายละเอียดที่เลือกในหัวข้อ Key word	
2 2	Equipme nt Type*	ตามรายละเอียดที่เลือกในหัวข้อ Key word	

2	Product Group	ตามรายละเอียดที่เลือกในหัวข้อ Key word
2	Communi ty of Practice	เลือก CoP ที่เกี่ยวข้องกับ Practice ฉบับนี้ (ถ้ามี)
2 5	People Tag Account	1. klot.b@pttplc.com 2. sunvaris.u@pttplc.com 3. sutee.a@pttplc.com 4. werasak.t@pttplc.com
2	People Tag Name	กรณีไม่ทราบอีเมล์ หรือ พนักงานลาออกไปแล้วให้ใส่ชื่อที่ ช่องนี้แทน

1. Support Information

<u>ทฤษฎี ความรู้ หลักการและเหตุผลในการทำโครงการ</u> ที่มา

เครื่องยนต์กังหันก๊าซที่ได้ใช้งานอยู่ที่โรงแยกก๊าซธรรมชาติ ระยองได้พบปัญหา ประสิทธิภาพลดลง เนื่องจากฝุ่นในอากาศขนาด 0.3 – 0.5 micron, ไอน้ำมันจากเครื่องยนต์, ไอเกลือจากทะเล โดย ระบบกรองอากาศทั่วที่ใช้งานอยู่ตามมาตรฐานผู้ผลิตสามาถกรองฝุ่น ขนาด 0.4 micron ได้แค่ 95.4% และมี Initial Diff. Pressure 0.6 ที่สูง ทำให้ประสิทธิ์ภาพเครืองยนต์ลดลง และสิ้นเปลืองเชื้อเพลิง

อีกทั้งต้องเปลี่ยน Air Inlet Filter ทุกๆ 24 เดือน ระหว่าง เปลี่ยน Filter Online มีความเสี่ยง กับเครื่องยนต์ที่จะมีสิ่ง แปลกปลอมหลุดเข้าเครื่องยนต์ (Foreign Object) ขณะเปลี่ยน Filter Online และความเสี่ยงกับผู้ผฏิบัติงาน

นอกจากนั้นยังได้ตรวจพบค่า NOX เกินค่าควบคุม เนื่องจาก เครื่องยนต์สกปรก ทำให้ต้อง On-line wash มากขึ้นซึ่งส่งผลต่อ กระบวนการผลิต และความเสี่ยงในการ Trip ของเครื่องจักร รวมถึง ต้องหยุดเครื่องยนต์เพื่อ Offline Wash ตามระยะเวลาทำให้สูญเสีย

<u>การดำเนินการปรับปรุง</u>

- 1. ทางโรงแยกก๊าซธรรมชาติระยองได้มีการปรับปรุง
 วิธีการกรองอากาศมาหลากหลายรูปแบบเพื่อที่จะเพิ่มประสิทธิ์ภาพ
 และแก้ปัญหา Emission ของรวมทั้งยืดอายุการใช้งานของ Filter
 Element โดย
 - a. ได้มีการใช้ Filter Element แบบ Cartridge แต่ยัง เกิดปัญหา Filter Passingเนื่องจากระบบ Support Filter ไม่ดี ทำให้ติดตั้งยาก ต้องควบคุมการติดตั้งอย่าง ใกล้ชิด
 - b. เปลี่ยนเป็นระบบ Pulse Jet แต่พบว่า เมื่อใช้มาระยะหนึ่ง ประกอบกับบางช่วงสภาพอากาศประเทศไทยมีความชื้น สูง อยู่ริมทะเล ทำให้ฝุ่นเกาะตัวเป็นก้อน ไม่สามารถ Pulse Jet ออกมาได้
- 2. จึงได้มีการพยายามหาวิธีที่จะทำให้เครื่องยนต์สะอาดมาก ที่สุดเท่าที่ทำได้ โดยพยายามปรับปรุงวิธีการ Water Wash Compressor ขณะเดินเครื่อง จากการออกแบบดั้งเดิมซึ่งใช้ความ ดันในการฉีดน้ำที่ต่ำ, ไม่สามารถควบคุมขนาดละอองของน้ำที่ เหมาะสม ทำให้การ Wash Compressor ไม่สะอาดเท่าที่ควร เพราะว่าความดันที่ต่ำก็จะทำให้น้ำที่ฉีดออกไปไม่สามารถเข้าไปใน Blade Compressor ที่อยู่ด้านในได้ ขนาดละอองของน้ำที่ใหญ่ เกินไปก็จะไปทำให้ Blade Compressor ชำรุด จึงได้ทำการ ปรับปรุงการ Water Wash Compressor เป็นแบบ High Efficiency กล่าวคือมีการปรับปรุงทั้งขนาดละอองน้ำให้มีขนาดเล็ก มาก (Atomization) โดยใช้หัว Nozzle พิเศษ ทำให้สามารถวิ่ง ด้วยความเร็วสูง โดยการเพิ่มความดัน ซึ่งทำให้ทำความสะอาด เครื่องยนต์ได้ดีขึ้น และไม่ทำลาย Blade Compressor และก็มีการ ปรับปรุงให้มีประสิทธิ์ภาพสูงขึ้นอีก โดยเพิ่มอุณหภูมิน้ำเป็น 60 Deg.C โดยการใช้ Heater

3. ผลจากการปรับปรุงการ Water Wash Compressor เป็นแบบ High Efficiency ก็พบว่าเครื่องยนต์มีประสิทธิภาพดีขึ้น ระดับหนึ่งแต่ก็ยังไม่สามารถล้างความสกปรกที่ Blade Compressor ได้หมด ทำให้ประสิทธิ์ภาพตกลง และเกิดปัญหา Emission อยู่ จึงได้พยายามหาวิธีการอื่นๆ ต่อ จึงได้เกิดแนวคิด ขึ้นมาว่าจะเป็นไปได้ไหมที่จะไม่ให้มีฝุ่นเข้ามาเลยที่ Compressor Blade จะได้ไม่ต้อง Water Wash Compressor อีกหั้ง ประสิทธิภาพเครื่องยนต์ก็จะไม่ลดลง ค่า NOX ก็จะไม่เกินค่าควบคุม ทางโรงแยกก๊าซธรรมชาติระยองจึงได้ทำการ Sampling ขนาดฝุ่นที่ เข้าไปในเครื่องยนต์ พบว่าฝุ่นส่วนใหญ่มีขนาดตั้งแต่ 0.3 micron ์ขึ้นไป ซึ่งเป็นฝุ่นที่มีขนาดเล็กมาก จึงพยายามหา Filter ที่สามารถ กรองฝุ่นระดับนี้ได้ จึงคิดวิธีที่จะสนับสนุนแนวคิดนี้ โดยได้ ทำการศึกษาวิธีการกรองแบบต่างๆ ของ Air Inlet Filter ก็ได้ค้นพบ ว่า Filter Element แบบ Cartridge ร่วมกับระบบ Pulse Jet นั้น ไม่เหมาะสมกับสภาพอากาศในเขตร้อนชื้น เนื่องจากจะเป็นวิธีการ ดักจับฝุ่นแบบ Surface Loading ซึ่งอากาศจะมีความชื้นสูง ทำให้ ฝุ่นที่มาเกาะที่ Filter Element จะไม่สามารถเป่าออกโดย Pulse Jet ได้หมด อีกทั้ง Filter Element มีความละเอียดในการกรองฝุ่นที่ ต่ำ (Filter Class) ตามมาตรฐานในการกรองอากาศ

4. จึงได้ทำการศึกษาเพื่อพยายามปรับปรุง โดยพบว่าควรจะใช้ Filter Element ที่เป็นแบบ Panel และมีวิธีการกรองแบบ Dept Loading ซึ่งจะทำให้ Filter Element มีอายุที่ยาวนาน และไม่ต้อง ใช้ระบบ Pulse Jet นอกจากนั้นยังได้ทำการศึกษาว่าแล้วความ ละเอียดระดับไหนที่เราต้องการ โดยได้มีการเก็บตัวอย่างของฝุ่นใน อากาศซึ่งพบว่าเป็นฝุ่นที่มีขนาดเล็กกว่า 0.3 ไมครอนถึง 95% จึง ได้เอาข้อมูลนี้มาเป็นตัวเลือกความละเอียดของ Filter Element ซึ่ง

พบว่าถ้าจะกรองฝุ่นความละเอียดระดับนี้ได้ จะต้องเป็น Filter Element ชนิด HEPA Filter หรือ ULPA Filter ซึ่ง ULPA Filter จะมีความละเอียดที่สูงมาก แต่จะมีค่า Pressure Drop ที่สูงด้วย เช่นเดียวกัน ซึ่งถ้า Filter Element มีค่า Pressure Drop ที่สูง จะ ส่งผลให้เครื่องยนต์บริโภคเชื้อเพลิงเพิ่มขึ้นด้วย และจากการศึกษา เพิ่มเติมก็พบว่า ULPA Filter นั้นจริงแล้วจะเหมาะสมสำหรับการ กรองที่ต้องการควบคุมเชื้อโรค หรือเหมาะสำหรับอุตสาหกรรมยา มากกว่าจึงได้ดำเนินการเลือกใช้ Filter Element ชนิด HEPA Filter ในการปรับปรุง

5. แต่การเลือกใช้ HEPA Filter ก็ยังมีข้อจำกัดที่ค่า Pressure Drop ที่สูงเหมือนกันแต่ก็ยังน้อยกว่า ULPA Filter ทำ ให้ต้องมีการขยายขนาด Air Inlet Filter Housing เพื่อที่จะได้ลด ปริมาณ Air Flow ต่อ Filter Element ให้ต่ำลง และเพิ่มจำนวน Filter Element ให้มากขึ้น จึงได้ดำเนินการออกแบบทางด้าน วิศวกรรมเพื่อขยาย Air Inlet Filter Housing ให้เหมาะสม หลังจากที่ได้ดำเนินการออกแบบทั้งหมดแล้วเสร็จ ก็ดำเนินการเลือก ผู้เสนอราคาที่จะสามารถเข้ามาทำงานได้ จากนั้นก็ได้ดำเนินการ ปรับปรุง และติดตามผลต่อไป

❖ Result! (Housing)

การคำนวณ Benefit Calculation

0	Fuel saving		
	ส่วนต่างของเชื้อเพลิงที่เครื่องยนต์ใช้ลดลง	270	
	SFCM		
0	Convert SCFM to MMSCFD	0.3888	MMSCFD
0	Convert MMSCFD to MMBTU	401	
	MMBTU/DAY		
О	Average Fuel price of 2015	252	
	THB/MMBTU		
0	Fuel Saving (382 MMBTU x 252 THB x 365 DAY	YS)	36,904,785
	THB/YR – (1)		
0	Labour Cost Saving (Change Filter Element) Pe	er Year	4,800
	THB/YR – (2)		
0	Labour Cost Saving (Fire Wash) Per Year		24,500
	THB/YR – (3)		
0	Filter Element Saving Per Year		256,880
	THB/YR – (4)		
0	Total Cost Saving $(1) + (2) + (3) + (4)$		37,190,965
	THB/YR - (5)		
0	มูลค่าลงทุน (อายุโครงการเกิน 5 ปี) : 21,514,155/5	4,302	.,831
	THB/YR - (6)		
\circ	Benefit Value: (6) - (7)		

THB/YR - (7)