PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-008271

(43) Date of publication of application: 11.01.1990

(51)Int.Cl.

C09D151/06 C08F261/04 C08L 51/06

(21)Application number: 63-158770

(71)Applicant: HOECHST GOSEI KK

(22)Date of filing:

27.06.1988

(72)Inventor: YAMAMOTO MASAKATSU

(54) PRODUCTION OF COMPOSITION EXCELLENT IN SOLVENT RESISTANCE FOR PROCESSING PAPER

(57)Abstract:

PURPOSE: To improve coating operability and drying properties and simultaneously solvent resistance as a paper coating composition by copolymerizing polyvinyl alcohol with a monomer having unsaturated and silane groups and acrylic or methacrylic monomer in a specific proportion.

CONSTITUTION: (B) A monomer (e.g., vinyltrimethoxysilane) having an unsaturated and silane groups in an amount of 1–20 pts.wt. and (C) 19–280 pts.wt. (meth) acrylic monomer are copolymerized in (A) an aqueous solution of 100 pts.wt. (in the composition) polyvinyl alcohol or a derivative thereof to provide a composition consisting of an aqueous resin solution in which the monomers are partially graft copolymerized with the polyvinyl alcohol or derivative thereof. The above-mentioned composition is used as a binder, etc., in heat-sensitive recording paper to afford films excellent in water, heat resistance, etc.

®日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A) 平2-8271

⑤Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)1月11日

09 D 151/06 08 F 261/04 08 L 51/06

JDJ MQK LLG

6904—4 J 6609-4 J 6904-4 J

> 審査請求 未請求 請求項の数 3 (全9頁)

69発明の名称

耐溶剤性の優れた紙加工用組成物の製造方法

20特 題 昭63-158770

@出 願 昭63(1988) 6月27日

@発 明 者 @出 顖

Ш 本 正 勝 東京都港区赤坂 4 丁目10番33号 ヘキスト合成株式会社内

東京都港区赤坂 4丁目10番33号

ヘキスト合成株式会社 個代 理 弁理士 朝日奈 宗太

人

外1名

明 細

1 発明の名称

耐溶剤性の優れた紙加工用組成物の製造方法

2 特許請求の範囲

- ポリピニルアルコールまたはその誘導体 100重量部と、不飽和基とシラン基とを有す る単量体 1 ~ 2 0 重量部、 (メタ) アクリル系 単量体19~ 280重量部の単量体組成物とから なり、ポリピニルアルコールまたはその誘導 体の水溶液中で単量体組成物の共重合を行な うことを特徴とする、ポリピニルアルコール またはその誘導体に単量体組成物の一部がグ ラフト共重合した水性樹脂液からなる耐溶剤 性に優れた紙加工用組成物の製造方法。
- 2 ポリビニルアルコールまたはその誘導体 100重量部と、不飽和基と親水性基とを有す る反応性乳化剤 0.1~20重量部、不飽和基と シラン基とを有する単量体 1~20重量部、

(メタ) アクリル系単量体19~ 280重量部の 単量体組成物とからなり、ポリピニルアルコ 一ルまたはその誘導体の水溶液中で単量体組 成物の共重合を行なうことを特徴とする、ポ リピニルアルコールまたはその誘連体に単母 体の一部をグラフト共重合した水性樹脂液か らなる耐溶剤性に優れた紙加工用組成物の製 造方法。

請求項1または2記載の水性樹脂液 100重 章部 (固形分換算) とコロイダルシリカ5~ 100重量部 (固形分換算) とからなる耐溶剤 性に優れた紙加工用組成物。

3 発明の詳細な説明

[発明の目的]

本発明は、耐溶剤性の優れた紙加工用組成物 の製造方法に関し、さらに詳しくは、ポリビニ ルアルコールまたはその誘導体 100重量部と、 不飽和基とシラン基とを有する単量体 1 ~ 20重 **量部、(メタ)アクリル系単量体19~ 280重量** 部の単量体組成物とからなり、ポリピニルアルコールまたはその誘導体の水溶液中で単量体組成物の共重合を行なうことを特徴とする、ポリピニルアルコールまたはその誘導体に単量体組成物の一部がグラフト重合した水性樹脂液からなる耐溶剤性に優れた紙加工用組成物の製造方法に関する。

[従来の技術]

そのひとつとして部分ケン化ポリピニルアルコール水溶液に、硼砂、グリオキザール、グルタルアルデヒドなどの耐水化剤の併用が行なわれている。しかし、耐水化剤を併用すると耐溶剤性は向上するが、放置しておくだけでゲル化や分離を起こして使用できなくなるため、使用可能な時間が短いという欠点を有している。

完全ケン化あるいは部分ケン化のポリピニルアルコールに反応性化合物を反応した各種変性ポリピニルアルコールも知られているが、作業性が充分でなかったり耐溶剤性が低下してしまったりして、紙加工用組成物として作業性がよく、耐溶剤性に優れた有用な変性ポリピニルアルコール水溶液は得られていない。

完全ケン化ポリビニルアルコール水溶液に各種合成樹脂エマルジョンをプレンドすることにより作業性を向上することも行なわれているが、プレンドすることにより耐溶剤性の低下が著しかった。

[発明が解決しようとする課題]

濃度で高粘度となり、塗工作業性が悪く、乾燥速度が遅いという欠点を有していた。特に温度による影響を受けやすく、冬場など低温下では完全ケン化ポリビニルアルコール水溶液がゲル化を起こし使用できないという問題も有していた。

近年、情報産業用紙や特殊加工紙の需要が増大して耐溶剤性が求められる用途も拡大し、特に塗工作業性のよい耐溶剤性の優れた紙加工用組成物が強く要求されるようになった。

完全ケン化ポリピニルアルコール水溶液の耐溶剤性を低下することなく、塗工作業性を向上することとされ、完全ケン化ポリピニルアルコール水溶液が多く使用されている。しかしながら、部分ケン化物は完全ケン化物より耐溶剤性および耐水性を向上するための試みがなされている。

従って、本発明が解決すべき課題は、塗工作業性、乾燥性を向上した紙加工用組成物であって、しかも耐水性、耐溶剤性、耐熱性の優れた皮膜が得られる組成物を開発することにある。 [課題を解決するための手段]

本発明者は、かかる問題を解決するために、 特にポリピニルアルコールの耐溶剤性および合 成樹脂エマルジョンの塗工作業性に著目して、 ポリピニルアルコールの存在下における各種単 量体の重合、併用する乳化剤の種類について種 々の検討を行なった。

各種単量体の中より、耐溶剤性の向上に効果を示す不飽和基とシラン基とを有する単量に研究を重ねた結果、ポリピニルアルコールの存在下で、不飽和基とシラン基量体と、(メタ)アクリル系単量体の使用割合が特定の範囲のときに限ってきわめてすぐれた

紙加工用組成物が得られることを見い出し、本発明を完成した。

すなわち、本発明は、ポリピニルアルコールまたはその誘導体 100重量部と、不飽和甚とシラン基とを有する単量体 1 ~ 20重量部の単量体組成物とからなり、ポリピニルアルコールまたはその誘導体ので単量体組成物の共加とからなるを特徴とする、ポリピニルアルカコールまたはその誘導体に単量体組成物の一部がグラフト共重合した水性樹脂液からなる耐管性に

また、併用する乳化剤についても研究を行ない、非イオン性界面活性剤、陰イオン性界面活性剤などが、いずれも耐溶剤性を低下したにもかかわらず、重合性不飽和基を有する乳化剤のみが耐溶剤性を低下することなく、紙加工用組成物としての安定性を向上し、墜工作案性を向上することを見い出した。

リピニルアルコールのオレフィン共重合変性物、カルボン酸ピニル共重合変性物、アクリレート共重合変性物、アクリルアミド共重合変性物、アクリルアミド共重合変性物、アクリルアルガールがある。

本発明において使用する不飽和基とシラン基とを有する単量体としては、ピニルトリアルコキシシラン、アリルトリアルコキシシラン、ピニルシラン、ピニルジアルコキシシラン、ピニルシラン、ロゲン誘導体;(メタ)アリルアミド -メチルトリアルコキシシラン、(メ

さらに上記の水性樹脂液にコロイダルシリカを加えると、耐熱性が向上するだけでなく、塗工作業性や皮膜の耐溶剤性がさらに向上することを見い出した。

本発明の方法によれば、部分ケン化ポリピニルアルコールまたはその誘導体の水溶液の皮膜の耐水性や耐溶剤性が向上するばかりでなく、完全ケン化ポリピニルアルコールまたはその誘導体の水溶液の皮膜の耐溶剤性を低下することなく塗工作業性を向上することが可能となった。 [構成の説明]

本発明において使用するポリピニルアルコールまたはその誘導体のうち、ポリピニルアルコールとしては、部分ケン化ポリピニルアルコールや完全ケン化ポリピニルアルコールなど、ポリピニルアルコール系塗工液に使用されるポリピニルアルコールである。

特に、重合度 50~ 8000、ケン化度 60モル % 以上のポリビニルアルコールが適当である。

ポリピニルアルコールの誘導体としては、ポ

タ) アクリルアミド -エチルトリアルコキシシラン、 (メタ) アクリルアミド -プロピルトリアルコキシシランなどの (メタ) アクリルアミド -アルキルシランなどがあげられる。

特に好ましくは、ピニルトリメトキシシラン、 ピニルトリエトキシシラン、ピニルトリエトキ シメトキシシラン、ピニルトリアセトキシシラ ンのごときピニルトリアルコキシシランである。

本発明において使用する (メタ) アクリル系 単量体としては、 (メタ) アクリル酸メチル、 (メタ) アクリル酸エチル、 (メタ) アクリル 酸ブチル、 (メタ) アクリル酸 2-エチルヘキシ ルのごとき (メタ) アクリル酸アルキルエステ ルまたは (メタ) アクリロニトリルの 1 種また は 2 種以上である。

必要に応じて、(メタ)アクリル系単盤体に 酢酸ピニル、パーサチック酸ピニルなどのピニ ルエステル、スチレン、メチルスチレン、アク リルアミド、塩化ピニル、エチレンなどの共重 合性を有する単盤体も併用することができる。 グリシジル(メタ)アクリレート、N-メチロールアクリルアミドなどの反応性単量体や、ジビニルベンゼン、フタル酸ジアリル、テトラアリルオキシエタンなどの架橋性単量体なども必要により併用することができる。

本発明の方法における重合は、ポリピニルア ルコールまたはその誘導体の水溶液中で、不飽 和基とシラン基とを有する単量体と(メタ)ア

量体と、19~ 280重量部の(メタ)アクリル系 単量体とからなる単量体組成物を重合開始剤の 存在下に添加して重合する。重合開始剤として は過酸化水素、過硫酸カリウム、過硫酸アンモ ニウム、2・2 - アゾピス(2-アミジノブロパン) 塩酸塩、有機過酸化物およびレドックス重合開 始剤などが用いられる。

このとき、単量体組成物を一時に全量添加して重合してもよく、あるいは経時的に滴下して 重合してもよい。また、単量体組成物の一部分 を一時に添加して重合したのち、残部を滴下し て重合してもよい。

不飽和基を有する反応性乳化剤を併用する場合は、ポリピニルアルコールまたはその誘導体の水溶液に加えてもよく、単量体組成物に加えてもよい。また、分割して両方に加えておくこともできる。

[作用および発明の効果]

前述したように、ポリピニルアルコールまたはその誘導体の水溶液中で、不飽和基とシラン

クリル系単量体との単量体組成物を共重合する もので、ボリビニルアルコールまたはその誘導体 100重量部に対して不飽和基とシラン基とを 有する単量体を1~20重量部、(メタ)アクリ ル系単量体を19~ 280重量部の使用割合で行な うことが必須の要件である。

不飽和基とシラン基とを有する単量体が1部未満の場合は、耐水性、耐溶剤性の向上が認められず、20部をこえる場合は安定な水性樹脂液が得られない。また、(メタ)アクリル系単量体が19部未満の場合は、塗工作業性、乾燥性の向上が認められず、280部をこえる場合は、安定な水性樹脂液が得られない。

その重合方法としては、先ずポリビニルアルコールまたはその誘導体 100重量部を適量の水に溶解してポリビニルアルコールまたはその誘導体の水溶液を調製する。その濃度は重合度やケン化度によって左右されるが、通常約2~30%である。この水溶液を適温に加熱し、次に1~20重量部の不飽和基とシラン基とを有する単

基とを有する単量体と(メタ)アクリル系単量体との単量体組成物を特定の割合で重合することによって、始めて発明の課題をことごとく解決した紙加工用組成物がえられる。

本発明の紙加工用組成物である水性樹脂液としての重要な特長は、ポリピニルアルがグラフには電量体組成物の一部がグラフカは、カリカーのでは、さらはならに共重合体があることがあることがある。紙加工用組成物として特に要求がある。くり、カーのは、特長のいずれからなり、対象には認められなかった。

つまり、不飽和基とシラン基とを有する単量体を除き、 (メタ) アクリル系単量体のみ本発明と同様にして水性樹脂液を得ても、得られる皮膜の耐溶剤性の向上は全く認められない。また、不飽和基とシラン基とを有する単量体と

(メタ) アクリル系単量体を使用しても、これらをあらかじめ界面活性剤などを使用し乳化共 重合して得られた共重合体水性分散液としてからポリピニルアルコールまたはその誘導体の水 溶液に混合するのでは、やはり本発明のごとき 優れた皮膜の耐溶剤性を得ることはできなかった。

本発明における共重合体をメチルエチルケトンを用いて溶解テストし、ゲル含有率からグラフト効率を測定すると70重量%以上を示した。

特に、ポリピニルアルコールまたはその誘導体の水溶液中で共重合した共重合体中に含まれるシラン基の効果として、本発明の水性樹脂被とコロイダルシリカとからなる紙加工用組成物の物性があげられる。コロイダルシリカを使用する目的は、皮膜の耐熱性を向上することが断めてなく、皮膜の耐溶剤性や耐水性などの他の物性に対する効果についても差のあることが明らかになった。

本発明の紙加工用組成物は、ロール塗布、スプレー塗布などの各種塗布方法や、含浸など従来より用いられる加工方法によって紙に加工することができる。

本発明の紙加工用組成物は、必要に応じて従来より使用されている紙加工用の添加剤を加えて使用することもできる。紙加工用の添加剤としては特に限定されないが、例えば顔料や染料

つまり、シラン基を含まない共重合体水性分散液にコロイダルシリカを加えても、皮膜の耐熱性の向上は少なく、耐溶剤性や耐水性などのののので対し、本発明における水性樹脂液にのロイダルシリカを加えると、皮膜の耐熱性の向上が著しく、さらに耐溶剤性や耐水性などの他の皮膜物性も向上するという顕著な効果が認められた。

なお、コロイダルシリカの使用量が水性樹脂液 100重量部 (固形分換算) に対して 100重量部 (固形分換算) をこえる場合は、樹脂量が少なくなるため、紙加工用組成物として使用できなくなる。

本発明の紙加工用組成物は、前述の通り、耐溶剤性や耐水性が強く要求される感熱記録紙のバインダーやトップコート剤、剥離紙などのバリヤーコート剤などに特に有用である。また要求物性の厳しい各種情報産業用紙の塗工液に有用である。これらの用途のほか、従来からポリ

などの着色剤、充填剤、顔料分散剤、消泡剤、防腐剤、pH調整剤、粘性調整剤などが使用できる。

[実施例]

次に実施例と比較例をあげて本発明を説明する。

実施例1

推拌機、温度計、週流冷却器、単量体の任込み口を備えたセパラブルのポリピニルルアール40重量がたのを300、ケン化度 88モル%のが入してエルルでは、 80でに 2・10年間 では、 80でに 2・10年間 では、 80でに 2・10年間 では、 80でに 2・10年間 では、 80でに 2・10年間 では 2・10年間 で 3・10年間 で

共重合を終了し、室温に冷却して水性樹脂液からなる紙加工用組成物をえた。

共重合性は良好であり、えられた水性樹脂液の固形分濃度は17重量%で、粘度は 440センチボイズであり、グラフト効率(注1)は80%であった。

(注1) グラフト効率: 重合溶液をシリコン ゴム板上に塗布してフィルムを形成し、そのフィルムをメチルエチルケトンに浸漬して、 室温で24時間抽出し、 次式により求めた。

グラフト効率 = DW - PW × 100

FV=抽出前のフィルムの重量 DV=抽出後のフィルムの重量 PW-FW× ポリビニルアルコールの使用量 ポリビニルアルコールの使用量 + 単量体の使用量

実施例 2 ~ 5

実施例1において使用したポリピニルアルコール、不飽和基とシラン基とを有する単量体および (メタ) アクリル系単量体の種類および使用量を第1表の通りに代えた以外は、実施例1と同様にして水性樹脂液からなる紙加工用組成物をえた。

共重合性およびえられた水性樹脂液の固形分 濃度、粘度およびグラフト効率は第 1 表の通り であった。

[以下余白]

摡

実施例 6

実施例 1 でえた水性樹脂液 588重量部 (固形分使用量 100重量部) に 20重量%のコロイダルシリカ 300重量部 (固形分使用量 80重量部) を加え、均一に提拌混合して紙加工用組成物をえた。

実施例7~10

実施例 6 において使用した水性樹脂液を実施例 2 ~ 5 でえた水性樹脂液に代え、水性樹脂液およびコロイダルシリカの使用量を第 2 表の通り代えた以外は、実施例 6 と同様にして紙加工用組成物をえた。

[以下余白]

	無	2 茶	•			
		₽K	選	塞		
	و	7	∞	6	0.1	
水性樹脂液 (実施例)	I	2	63	4	ıco	
の使用型	588	588	588	999	999	
(固形分使用量)	(100)	(100)	(100)	(100)	(100)	
コロイダルシリカ	ć	6	ć	6		
の使用型)))	002	002	007	200	
(固形分使用量)	(09)	(40)	(40)	(40)	(40)	
纸加工用組成物						
固形分濃度(重量%)	18	1.8	18	16	16	
粘度(センチボイズ)	170	400	220	580	009	

実施例11~13

実施例1において使用したポリビニルアルコール、不飽和基とシラン基とを有する単型体および(メタ)アクリル系単型体の種類および使用量を第3表の通りに代えた以外は、実施例1と同様にして水性樹脂液からなる紙加工用組成物をえた。

共重合性およびえられた水性樹脂液の固形分 濃度、粘度およびグラフト効率は第3表の通り であった。

[以下余白]

第 3 表

	. 9	芝施 #	利		
	11	12	13		
重合度 300、ケン化度88モル%のPVA 重合度1700、ケン化度98モル%のPVA		40	40		
重合度 500、ケン化度88モル%の カルボキシ変性PVA	20				
水	600	500	500		
メチルメタクリレート ブチルアクリレート	30	30 30	30 30		
アクリロニトリル	30	30	30		
ピニルトリエトキシシラン ピニルトリメトキシエトキシシラン ァ -メタクリルオキシプロピルトリ メトキシシラン	5.0	2.5	2.5		
反応性乳化剤 CII-COOR II CH-COOCH2CH2CH2 SO3 Na			2.0		
共 重 合 性 [*]	0	0	0		
水性樹脂液 濃 度(重量%) 粘 度(センチポイズ) グラフト効率	15 1000 85	17 440 80	17 470 85		

^{*} 〇は共軍合性がよいことであり、安定で均一な水性樹脂液が えられたことを示す。なお、共重合性が悪いものは樹脂分が 凝集して均一な水性樹脂液がえられない。

比較例1 (ポリピニルアルコール水溶液単独)

実施例 1 で使用した重合度 300、ケン化度 88 モル%のポリピニルアルコール 15重量部を水 85 重量部に加熱し溶解した水溶液をそのまま紙加工用組成物とした。

比較例2(ポリビニルアルコール水溶液単独)

実施例 3 で使用した重合度 1700、ケン化度 98 モル%のポリピニルアルコール 5 重量部を水 95 重量部に加熱し溶解した水溶液をそのまま紙加工用組成物とした。

比較例3 (シラン基を含まない場合)

実施例1において使用したビニルトリエトキシシランを使用せず、メチルメタクリレートを62.5重量部とした以外は、実施例1と同様にして水性樹脂液からなる紙加工用組成物をえた。比較例4(グラフト共重合しない場合)

実施例 1 において使用したピニルトリエトキシシラン 2.5重量部とメチルメタクリレート 80 重量部からなる単量体組成物を、ドデシルベンゼンスルホン酸ソーダ(陰イオン性界面活性剤) を含む水溶液 62.5重量部中で、過硫酸アンモニウムを重合開始剤として乳化共重合して、固形分濃度約 50重量 % の共重合体水性分散液をえた。

えられた共重合体水性分散液を水で希釈し、 実施例1で使用したポリビニルアルコール水溶液に、固形分比が実施例1と同様になるように 混合し、紙加工用組成物をえた。

比較例 5~7

比較例1、3、4でえた紙加工用組成物 100 重量部(固形分換算)に20重量%のコロイダルシリカを固形分換算で40重量部を加え、均一に 攪拌混合して比較例5、6、7の紙加工用組成物をえた。

比較例 8 (不飽和基とシラン基とを有する単量 体の使用量が多い場合)

実施例1において使用したビニルトリエトキシシランの使用量を20重量部とした以外は実施例1と同様にして共重合を行なったが、樹脂分が凝集して、水性樹脂液をえることができなかった。

試験例

実施例 1 ~ 1 8 および比較例 1 ~ 7 でえられた 紙加工用組成物について、下記の試験方法によ り塗工作業性、耐水性、耐溶剤性、耐熱性をそ れぞれ試験した。試験結果は第 4 表の通りであった。

(試験方法)

塗工作業性: 紙加工用組成物を固形分が10 g/mになるように、上質紙(坪量70g/m)へワイヤーロッドで塗工し、 100℃30秒間乾燥し、乾燥性及び塗工面の均一性により塗工作業性を観察した。

乾 燥 性

〇:乾燥が速く、表面タックがない。

Δ:乾燥がやや遅く、やや表面タックが感 じられる。

×:乾燥が遅く、表面タックがある。

塗工面の均一性

〇:堕工面が均一である。

ポリピニルアルコール 100重量部に対して、 ビニルエトキシシランの使用量は50重量部であった。

また、上記の方法において最終の固形分が15 重量%になるようにポリピニルアルコール水溶 液 540重量部に水 180重量部を加え希釈して、 上記と同様に共重合を行なったが、やはり樹脂 分が凝集して、水性樹脂液を得ることができな かった。

比較例 9 ((メタ)アクリル系単量体の使用量 が多い場合)

実施例 1 において使用したポリピニルアルコールの使用量を 20重量部とし、メチルメタクリレートの使用量を 80重量部とした以外は実施例 1 と同様にして共重合を行なったが、樹脂分が 疑集して、水性樹脂液をえることができなかった。

ポリピニルアルコール 100重量部に対して、 メチルメタクリレートの使用量は 400重量部で あった。

△: 塗工面にわずかにワイヤーのスジが認められやや不均一である。

×:塗工面が不均一である

塗工作業性を試験した塗工紙を試料とし、室温に24時間放置後に、次の皮膜物性の試験をした。

耐水性試験: 試料の塗工紙を40℃の温水に 1 時間浸漬してから、塗工面の 表面を観察した。

◎:塗工面の表面に異状が認められない。

〇: 塗工面の表面にわずかにベタツキが認 められる。

Δ: 塗工面の表面に多少ベタッキがある。

×:塗工面の表面が溶解しており、ベタッ キが大きい。

耐溶剤性試験: 試料の塗工紙の塗工面に、 青色染料を溶解したトルエン、 アセトン、エタノールの各溶 剤を塗布して、その表面の変 化および、裏面への裏抜けを 観察した。

〇:裏抜けがなく、塗工面の異状も認められない。

Δ: 裏抜けはないが、塗工面の表面に多少ベタツキが認められる。

×: 裏抜けした。

耐熱性試験: 試料の塗工紙の塗工面同士を 重ね合せて、ヒートシール機を 用い、圧力 1 kg/cd 、 5 秒間圧 者し、塗工面同士が接着してし まう最低の温度を測定する。数

値の高い方が耐熱性がよい。

[以下余白]

第 4 表

					実		施		例						£	t	較		[9 1]	
	1		2		3		4		5		1 1	1 2	1 3	1		2	3		4	
		6		7		8		9		10					5			6		7
紙加工用組成物																				
濃度(重量%)	17	18	17	18	17	18	15	16	15	16	15	17	17	15	16	5	17	18	17	18
粘度(センチポイズ)	440	170	700	400	460	220	1500	580	1650	600	1000	440	470	3000	1000	1000	450	210	1000	520
堂工作業性										•										
(乾燥性)	0	0	0	0	0	0	0	0	0	0	0	0	0	Δ	0	×	0	0	0	0
(塗工面の均一性)	0	0	Δ	0	0	0	Δ	0		0	- Δ		0	×	Δ	Δ	0	0	Δ	Δ
皮膜物性																				
耐水性	0	0	0	0	0	0	0	0	0	0	0	0	0	×	×	Δ	Δ	Δ.	×	×
耐溶剤性					1												,			
トルエン	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	Δ	Δ
アセトン	0	0	0	0	0	0	0	0	0	0	0		0	×	×	×	Д	Δ	×	×
エタノール	0	0	0	0	0	0	0	0	0	0	0	0	0	Δ	Δ	Δ	Δ	Δ	Δ	۵
耐熱性	150	210	140	180	120	150	190	240	170	200	160	150	130	>250	>250	>250	110	140	120	150