CMPS 102 — Quarter Spring 2017 – Homework 3

VLADOI MARIAN

May 19, 2017

I have read and agree to the collaboration policy. Vladoi Marian
I want to choose homework heavy option.
Name of students I worked with: Victor Shahbazian and Mitchell Etzel

Solution to Problem 3: Dynamic Programming

A) The algorithm from part A, does not correctly solve this example:

The algorithm will chose the path $\{v_1, v_2, v_5\}$ when the correct algorithm would be $\{v_1, v_3, v_4, v_5\}$.

B)This is my dynamic programming algorithm for finding the longest path in an ordered graph:

The Optimal Substructure:

Lets assume we have an ordered path. v1 should be the first node on the path for all v_i , i > 1. Then we have to notice that there might not be a path from v_1 to all nodes v_i . Another observation is that: the longest path, in an ordered path, through v_1 is one edge longer that the longest path through any node to which v_1 is connected.

Notation : OPT(i) = value of optimal solution to the problem consisting of v_i nodes i = 1, 2, ..., n.

 $\mathbf{OPT(i)} = \mathbf{0}$ if $\mathbf{i} = \mathbf{n}$ (we start with the last node in order to use memoisation) $\mathbf{OPT(i)} = -\infty$ (in case when v_i has no children nodes) $\mathbf{OPT(i)} = max_{c \in childredn\ i}\ OPT(1 + OPT(c))$ (otherwise);

The dynamic algorithm for this problem:

1. Create an OPT table of size n (n = number of nodes).

- 2. Create a T stack (that will store the path nodes, which nodes won the OPT max expression)
- 3. Push v_n to T
- 4. Set OPT[n] = 0;
- 3. For i = n 1 to 1
- 4. Check the children nodes of i
- 5. Set OPT[i]= $max_{c \in childredn \ i} \ OPT(1 + OPT(c))$
- 6. Push the node v_i that wom the max expression to T

The algorithm would fill the OPT table in decreasing order OPT[n], OPT[n-1] ... OPT [1]. We want to make sure that each application of the reccurence will only use precomputed values. When the for loop terminates OPT[1] holds the longest path from v_1 to v_n .

The stackT contains the path fron v_1 to v_n .

To reconstruct the path we just pop elements from the stack T . This would have O(n) running time .

Proof: The value OPT[i] is the longest path that we can achieve for the subset of nodes v_1 to v_i . At each step of the for loop iteration we add the node v_k to the longest path from v_1 to v_{k-1} . Assume that at step k, the algorithm choose a solution that is not optimal. Then it would have choosen to add the node v_k to a path that is not the longest path from v_1 to v_{k-1} . We know that this can not happen because we checked which choice result in a longest path from v_1 to v_{k-1} . in our max OPT expression. Then it is garanteed that the solution choosen by the algorithm is optimal at each node v_i for 0 > i > n.

Running Time of this algorithm: n = number of nodes m = number of edges Running time is O(n + m)

Space : O(n).