CSC373H1 Summer 2014 Assignment 4

Names: John Armstrong, Henry Ku

 $SNs\CDF$ username: 993114492\g2jarmst, 998551348\g2kuhenr

Question #	Score
1	
2	
3	
4	
Total	

Acknowledgements:

"We declare that we have not used any outside help in completing this assignment."

Name: John Armstrong, Henry Ku

Date: August 8, 2014

Q1. The Mute Prison

Claim: The mute prison problem is NP-complete.

Proof:

- 1. Show the mute prison problem is NP.
- 2. Show the mute prison problem is NP-hard.
- 1. Suppose we are given a certificate S and have access to value k and matrix T. We can verify that the certificate is satisfiable in the following way. Suppose each element in S represents an inmate. Verification would involve iterating on each inmate in the following way:

```
for inmate in S do
\begin{vmatrix}
j = 1; \\
\text{while } j \leq m \text{ do} \\
\begin{vmatrix}
\text{if } T[inmate, j] \text{ then} \\
\end{vmatrix} \text{ for } (otherinmate \neq inmate) \text{ in } S \text{ do} \\
\begin{vmatrix}
\text{if } T[otherinmate, j] \text{ then} \\
\end{vmatrix} \text{ S is not a subset of inmates who do don't speak the same language;} \\
\end{vmatrix} \text{ return } 0; \\
\end{vmatrix} \text{ end} \\
\end{vmatrix} \text{ end} \\
\end{vmatrix} \text{ end} \\
\end{aligned} \text{ end} \\
\end{aligned} \text{ end} \\
\end{aligned} \text{ return } 1;
```

Clearly, the verification that S is a subset where no two inmates speak the same language can run in polynomial time $O(mn^2)$. Once this verification is complete all that is left to do is to verify that $|S| \ge k$, which is O(1). Therefore the mute prison problem is NP.

<u>2.</u> To show that the mute prison problem is NP-hard we must perform a reduction using an NP-complete problem. We will use a reduction on NP-complete 3-SAT in CNF, in order to show 3-SAT \leq_p Mute Prison Problem.

Properties of Reduction

Suppose that ϕ is an instance of 3-SAT and C_1 , C_2 , ..., C_m are the clauses of ϕ . By construction of 3-SAT in CNF we have $C_i = (z_{i1} \lor z_{i2} \lor z_{i3})$. In the reduction each C_i 's boolean value will represent a boolean value for each language, L_i , spoken by some inmate(s), precisely, $L_i = C_i = (z_{i1} \lor z_{i2} \lor z_{i3})$. Each boolean value for L_i has a specific mean:

$$L_i = \begin{cases} 1 & \text{if L}_i \text{ is spoken by at most 1 inmate} \\ 0 & \text{if L}_i \text{ is spoken by at least 1 inmate} \end{cases}$$

Producing $L_1, L_2, ..., L_m$ will take polynomial time since we iterate through each C_i and perform a boolean or operation on each z_i in C_i which takes O(m).

Finally, the mute prison problem requires a matrix T to produce the subset of inmates S. Let T be an m x m

matrix, so that no inmates are left without a language. The rows in T will represent inmates and the columns will represent languages such that column i represents L_i . The algorithm that performs the reduction will iterate through each L_i . If $L_i = 1$ then set T[i, i] = 1, else if $L_i = 0$ then set T[1, i] = T[2, i] = ... = T[m, i] = 1. Assigning all inmates to speak L_i , when $L_i = 0$, will guarantee that $|S| = \emptyset$. Alternatively, \forall i, if $L_i = 1$ then |S| = m. So that if ϕ in 3-SAT is satisfiable, then T will satisfy the mute prison problem if we set k = m. Again this process is polynomial as it iterates through m L_i 's and assigns at most m inmates the language L_i , so it will run $O(m^2)$.

ϕ of 3-SAT is satisfiable \to L and k of mute prison problem is satisfiable

Suppose ϕ of 3-SAT is satisfiable, then each clause C_1 , C_2 , ..., C_m is satisfied. A set of L_1 , ..., L_m is produced such that \forall L_i , $L_i = 1$. Then we form matrix T of size m x m, such that T resembles the identity matrix as each T[i,i] = 1. Also, k = m, so that when S is assembled all m inmates speak a different language, then $|S| \ge k$ is satisfied.

L and k of mute prison problem is satisfiable $\rightarrow \phi$ of 3-SAT is satisfiable

Suppose that T and k of the mute prison problem are satisfiable. Also, suppose |S| = m = k. Suppose T is an m x m matrix that resembles an identity matrix. We will attribute the m columns in T to variables $L_1, ..., L_m$, such that, $1 \le i \le m$, and set $L_i = 1$ if the column has at most one entry equal to 1, and set $L_i = 0$ otherwise. Since T and k satisfy the problem then all $L_i = 1$. We then form m clauses of a 3-SAT CNF, call them C_i , ..., C_m . Each C_i relates to L_i , so that the boolean value of $C_i = (z_{i1} \lor z_{i2} \lor z_{i3}) = 1$. Thus set any one of the z_{i1}, z_{i2} , or z_{i3} to 1 (or true) to set C_i to 1. If a column in T has more than one entry with 1 then clearly the mute prison problem would not be satisfied and some $C_i = 0$ (or false) and ϕ would not be satisfied. It follows that all C_i equal 1 since all L_i equal 1, thus $\phi = (C_1 \land C_2 \land ... \land C_m)$ is satisfiable.

So, ϕ of 3-SAT is satisfiable \Leftrightarrow L and k of mute prison problem is satisfiable . Also, because the reduction was shown to be polynomial it is proven that the mute prison problem is NP-hard.

By the proofs 1. and 2. it follows that the mute prison problem is NP-complete.

Q2. The Nonsense Prerequisites

Claim: The nonsense prerequisites problem is NP-complete.

Proof:

- 1. Show the nonsense prerequisites problem is NP.
- 2. Show the nonsense prerequisites problem is NP-hard.
- $\underline{1}$. Suppose we know G(V, E) and k and we are given E' as a certificate. We verify the certificate with the following algorithm:

If there is a cycle in G'(V, E'') then setting each edge in G' to a weight -1 will produce a negative edge cycle which, after relaxations, we can identify easily. Given that G(V, E'') may or may not be connected, to locate a cycle in the graph we must perform the relaxation with Bellman-Ford |V| times. Bellman-Ford runs at O(VE), it is executed |V| times in the verifier, thus we have $O(V^2E)$ for our algorithm. Since |V| = n, and $|E| = O(n^2)$, the verifier runs $O(n^4)$. So the verifier is polynomial and then the nonsense prerequisites problem is NP.

 $\underline{2}$. To show the nonsense prerequisites problem is NP-hard, as directed by the problem set, we will perform a reduction using NP-complete problem VECTOR COVER. So, we will show VECTOR COVER \leq_p The Nonsense Prerequisites Problem.

Properties of Reduction

Take the G(V, E) and k given to the VECTOR COVER problem. k represents $|S| \le k$, such that $S \subseteq V$ such that if $(u, v) \in E$, then $u \in S$ or $v \in S$. However, in the nonsense prerequisites, the k corresponds to edges that when removed from the graph will make it acyclic. It follows that the reduction must somehow convert the vertices in G to represent edges. This is done by splitting each vertex in two, so given $V = \{v_1, v_2, ..., v_n\}$, produce $V' = \{v_{pre-1}, v_{post-1}, v_{pre-2}, v_{post-2}, ..., v_{pre-n}, v_{post-n}\}$, and \forall i, $1 \le i \le n$, (v_{pre-i}, v_{post-i}) is a directed edge such that $(v_{pre-i}, v_{post-i}) \in E'$. Also, we must create a circumstance in the new graph where each undirected edge $(v_i, v_j) \in E$, becomes directed edges $(v_{post-i}, v_{pre-j}) \in E'$ and $(v_{post-j}, v_{pre-i}) \in E'$. This construction guarantees in G'(V', E') that when we enter any v_{pre-i} we can walk a path $v_{pre-i} \to v_{post-i} \to v_{pre-j} \to v_{post-j} \to v_{pre-j}$, and indeed this is a cycle. Thus, we have a cycles, such that if $(v_i, v_j) \in E$, then the cycle is limited to the new vertices $\{v_{pre-i}, v_{post-i}, v_{pre-j}, v_{post-j}\}$. So the reduction is complete and can easily be performed in polynomial time. $O(n\alpha(m+n))$ to produce new directed edges from m existing edges, split-

ting vertices in V and creating new edges, and adding them to the new graph G' using make-set, union, and link.

G(V, E), k of VECTOR COVER is satisfiable \rightarrow

G*(V*, E*), k of the nonsense prerequisite is satisfiable

Suppose using undirected G(V, E) and k, VECTOR COVER is satisfied. Suppose also that we have access to $S = \{s_1, ..., s_q\}$, which is the vertex cover of G and $|S| \leq k$. We perform the reduction and have $G^*(V^*, E^*)$. It follows in G^* any cycles is limited to $\{v_{pre-i}, v_{post-i}, v_{pre-j}, v_{post-j}\}$. To break a cycle in G^* we could remove any edge from the cycle, but to do this efficiently we need to remove edges that break many cycles at once. This is precisely $E' = \{(s_{pre-1}, s_{post-1}), ..., (s_{pre-q}, s_{post-q})\}$, because in G^* the edges in E' that correspond to vertices in S, are precisely the set of edges that appear in all cycles. Thus $|E'| = |S| \leq k$, and so $G^*(V^*, E^*)$ and k of the nonsense prerequisite is satisfiable.

$G(V,\,E),\,k$ of the nonsense prerequisite is satisfiable \rightarrow

G*(V*, E*), k of VECTOR COVER is satisfiable

Suppose G(V, E), k when used in the nonsense prerequisite problem is satisfiable. Now, to establish a contradiction, suppose the original graph, $G^*(V^*, E^*)$ and k in VERTEX COVER were not satisfiable. This would mean that the set of vertex cover $S \subseteq V$, |S| > k. But since G(V, E) and k were satisfiable then $|E'| \le k$. But by the construction of the reduction this in impossible. Since every $(v_{pre-i}, v_{post-i}) \in E'$ corresponds to a vertex $v_i \in S$, this will mean that there is some $v_i \in S$ that is not represented in E', since |E'| < |S|. This means that there is some cycle left over in G when E - E' is performed. So then a contradiction is reached based on our original assumption, and so $G^*(V^*, E^*)$, k of VECTOR COVER must be satisfiable.

By proving both directions, it follows that G(V, E), k of VECTOR COVER is satisfiable \leftrightarrow $G^*(V^*, E^*)$, k of the nonsense prerequisite is satisfiable.

Additionally, since the reduction can be performed in polynomial time, then the nonsense prerequisite problem is NP-hard. \blacksquare

Q3. T-rex Christmas

 $\underline{1}$. $\{0, 1\}$ -integer programming formulation:

Minimize:

Ρ

Subject To:

a) $x_q^1 \in \{0, 1\} \qquad \forall \ q \ s.t. \ q \ represents \ a \ path \ of \ transferring \ a \ present, \ i \to j, \ such \ that \ L[i, j] = 1$ $x_q^0 \in \{0, 1\}$ b) $x_q^1 + x_q^0 \geqslant 1$

c)
$$\sum_{\forall q} \mathbf{x}_q^{f(q,\ m)} \leqslant \mathbf{P} \qquad \forall \ \mathbf{m} \in \{0,\,1,\,...,\,\mathbf{n}\text{-}1\}$$

Explanation of Constraints:

- a) x_q^1 and x_q^0 represent the direction (x_q^1 clockwise and x_q^0 counter-clockwise) a gift q will be passed from i to j, such that i, j \in {0, 1, ..., n-1}. If $x_q^1 = 1$ then the gift will be sent clockwise, if $x_q^1 = 0$ it will not be sent clockwise (same for x_q^0 but counter-clockwise).
- b) This constraint limits \mathbf{x}_q^1 and \mathbf{x}_q^0 so both cannot be 0, and it is tightly bound when only one of the variables equals 1.
- c) Assume some linear function f, and also assume m represents a pass (m, m+1[n]). f(q, m) = 1 if on the clockwise direction of passing a gift from i to j a pass in (m, m+1[n]) occurs. Conversely, f(q, m) = 0 if on the counter-clockwise direction of passing a gift from i to j a pass in (m, m+1[n]) occurs. We can assume linearity of f because the computation of the intersection of gift direction and passes will have been computed previously and values will be contained in some 2-D matrix which f has access to at will. Finally, each summation for each m will represent, when the IP completes, each P_m . Clearly if the pass (m, m+1[n]) is used during the passing of gift q, then $x_q^{f(q, m)} = 1$, the it is added to P_m . Additionally, the constraint is limited to P, as a tight bound, P is some value that will equal the maximum of all P_m 's.

2. LP relaxation:

Minimize:

Ρ

Subject To:

a) $0\leqslant x_q^1\leqslant 1 \qquad \forall \ q \ s.t. \ q \ represents \ a \ path \ of \ transferring \ a \ present, \ i\to j, \ such \ that \ L[i,j]=1$ $0\leqslant x_q^0\leqslant 1$ b)

$$\mathbf{x}_q^1 + \mathbf{x}_q^0 \geqslant 1$$

c)
$$\sum_{\forall q} \mathbf{x}_q^{f(q,\ m)} \leqslant \mathbf{P} \qquad \forall \ \mathbf{m} \in \{0,\,1,\,...,\,\mathbf{n}\text{-}1\}$$

Rounding Scheme:

Let all x_1^{1*} , x_1^{0*} , x_2^{1*} , x_2^{0*} , ..., x_s^{1*} , x_s^{0*} (s being the number of gifts to be exchanged) and P be the solution returned by the relaxed LP. Allow us to round all x_q^{1*} 's and x_q^{0*} 's to produce y_1^1 , y_1^0 , y_2^1 , y_2^0 , ..., y_s^1 , y_s^0 , and P'. So, let this represent the solution to the integer programming such that:

$$y_q^1 \text{ or } y_q^0 = \begin{cases} 1 & \text{if corresponding } \mathbf{x}_q^{1*} \text{ or } \mathbf{x}_q^{0*} \geqslant \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

$$P' = \max_{0 \le r \le n-1} (P'_r = \sum_{\forall q} y_q^{f(q, r)})$$

Proof that Rounding Scheme works:

All constraints in the interger program will be satisfied. For example a) is satisfied because y_q^1 or $y_q^0 \in \{0, 1\}$. Constraint b) is satisfied even in the unfortunate case where x_q^{1*} and x_q^{0*} equals 1/2 or greater, then y_q^1 and y_q^0 will equal 1. Additionally both y_q^1 and y_q^0 cannot both equal 0 by the constraint b). Finally, in constraint c), P is a bound specified by the algorithm, and indeed with the specified values for y_q^1 and y_q^0 the constraint will be satisfied by replacing P with P'. Therefore we conclude that the result of our rounding scheme will be feasible in the integer program.

Proof of 2-approximation:

In both the relaxed linear program and rounding scheme function f will return the same results, such that the result of the relaxed linear program, since P is minimized, P will equal some P_m , for passes at (m, m+1[n]). Indeed suppose $P = P_m = \sum_{\forall q} x_q^{f(q, m)*}$. It follows, from our rounding scheme, that the rounding solution must be $P' = P'_r = \sum_{\forall q} y_q^{f(q, r)}$ representing the number of passes at some (r, r+1[n]). Then the proof is such that:

$$\begin{array}{l} \mathbf{x}_{q}^{1*} \geqslant \frac{1}{2} \to \mathbf{y}_{q}^{1} = 1 \\ \mathbf{x}_{q}^{0*} \geqslant \frac{1}{2} \to \mathbf{y}_{q}^{0} = 1 \\ \text{then,} \\ 2\mathbf{x}_{q}^{1*} \geqslant 1 \to 2\mathbf{x}_{q}^{1*} \geqslant \mathbf{y}_{q}^{1} \\ 2\mathbf{x}_{q}^{0*} \geqslant 1 \to 2\mathbf{x}_{q}^{0*} \geqslant \mathbf{y}_{q}^{0} \\ \text{finally,} \\ \mathbf{P'}_{r} = \sum_{\forall q} \mathbf{y}_{q}^{f(q,\ r)} \leqslant 2^{*}\mathbf{P}_{r} = 2^{*}\sum_{\forall q} \mathbf{x}_{q}^{f(q,\ r)} \\ \mathbf{P'}_{r} = \sum_{\forall q} \mathbf{y}_{q}^{f(q,\ r)} \leqslant 2^{*}\mathbf{P}_{m} = 2^{*}\sum_{\forall q} \mathbf{x}_{q}^{f(q,\ m)} \qquad \# \ \text{Since} \ \mathbf{P}_{r} \leqslant \mathbf{P}_{m} \\ \mathbf{P'}_{r} = \sum_{\forall q} \mathbf{y}_{q}^{f(q,\ r)} \leqslant 2^{*}\mathbf{P} \leqslant 2^{*}\mathbf{LPOPT} \leqslant 2^{*}\mathbf{IPOPT} \qquad \# \ \text{Since} \ \text{we} \ \text{established that} \ \mathbf{P} = \mathbf{P}_{m} \end{array}$$

Therefore, the rounding scheme attains a 2-approximation.

Q4. Vertex Cover

 $\underline{1}$. $\{0, 1\}$ -integer programming formulation:

Minimize:

$$\sum_{u \in V} C_v(u) \mathbf{x}_u + \sum_{(u,v) \in E} C_e(u,v) \mathbf{x}_{(u,v)}$$

Subject To:

a)
$$\begin{aligned} \mathbf{x}_u &\in \{0,\,1\} & \forall \; \mathbf{u} \in \mathbf{V} \\ \mathbf{x}_{(u,v)} &\in \{0,\,1\} & \forall \; (\mathbf{u},\,\mathbf{v}) \in \mathbf{E} \end{aligned}$$

b)
$$x_u + x_v + x_{(u,v)} \geqslant 1 \qquad \forall (u, v) \in E$$

Explanation of Constraints:

a)

 $x_u \in \{0, 1\}$ represents whether or not vertex u is in our vertex cover S.

If $x_u = 0$ then it is not in our vertex cover, and if $x_u = 1$, then it is in our vertex cover.

The second constraint $x_{(u,v)} \in \{0, 1\}$ represents whether or not the edge (u, v) is covered by the vertices in our vertex cover S. If $x_{(u,v)} = 0$ then either vertex u or v are in the cover S, if $x_{(u,v)} = 1$ then neither u nor v are in S.

b)

 $x_u + x_v + x_{(u,v)} \ge 1$ shows that if either u, or v (or both) are in the cover, then we have at least one, x_u or x_v , equal to one. If u and v are not in the cover then x_u and x_v equals zero. So, in this case, $x_{(u,v)}$ must equal 1, and this indicates that the vertices in the edge (u, v) are not in the cover.

2. LP relaxation:

Minimize:

$$\sum_{u \in V} C_v(u) \mathbf{x}_u + \sum_{(u,v) \in E} C_e(u,v) \mathbf{x}_{(u,v)}$$

Subject To:

a)
$$0\leqslant \mathbf{x}_u\leqslant 1 \qquad \forall\ \mathbf{u}\in \mathbf{V}$$

$$0\leqslant \mathbf{x}_{(u,v)}\leqslant 1 \qquad \forall\ (\mathbf{u},\,\mathbf{v})\in \mathbf{E}$$

b)
$$\mathbf{x}_{u} + \mathbf{x}_{v} + \mathbf{x}_{(u,v)} \geqslant 1 \qquad \forall (\mathbf{u}, \mathbf{v}) \in \mathbf{E}$$

Rounding Scheme:

 $\forall u \in V$, and $\forall (u, v) \in E$ let all $x_u *$ and $x_{(u,v)} *$ be the solution to the relaxed LP. Allow us to round all $x_u *$'s and $x_{(u,v)} *$'s to the interger programming solution, such that all y_u 's and $y_{(u,v)}$'s will be a feasible IP solution:

$$y_u = \begin{cases} 1 & \text{if corresponding } \mathbf{x}_u^* \geqslant \frac{1}{3} \\ 0 & \text{otherwise} \end{cases}$$
$$y_{(u,v)} = \begin{cases} 1 & \text{if corresponding } \mathbf{x}_{(u,v)}^* \geqslant \frac{1}{3} \\ 0 & \text{otherwise} \end{cases}$$

Proof that Rounding Scheme works:

All constraints in the interger program will be satisfied.

Constraint a is satisfied since $y_u \in \{0, 1\}$. Second half of constraint a is satisfied as well since $y_{u,v} \in \{0, 1\}$

Constraint b is satisfied: if x_u^* is $\geq 1/3$, then y_u will be 1 and this already satisfies constraint b.

If x_u^* is < 1/3, then $x_{(u,v)}^*$ will be $\ge 1/3$ and $y_{(u,v)} = 1$ and thus constraint b still holds.

Therefore we conclude that the result of our rounding scheme will be feasible in the integer program.

Proof of 3-approximation:

HENRY TO DO (add intro text if needed)

$$x_u^* \geqslant \frac{1}{3} \to y_u = 1$$

$$x_{(u,v)}^* \geqslant \frac{1}{3} \to y_{(u,v)} = 1$$
then,
$$3x_u^* \geqslant 1 \to 3x_u^* \geqslant y_u$$

$$3x_{(u,v)}^* \geqslant 1 \to 3x_{(u,v)}^* \geqslant y_{(u,v)}$$

$$\begin{array}{l} \sum_{u \in V} \ C_v(u) y_u \ + \ \sum_{(u,v) \in E} \ C_e(u,v) y_{(u,v)} \leqslant \sum_{u \in V} \ C_v(u) (3 x_u^*) \ + \ \sum_{(u,v) \in E} \ C_e(u,v) (3 x_{(u,v)}^*) \\ \sum_{u \in V} \ C_v(u) y_u \ + \ \sum_{(u,v) \in E} \ C_e(u,v) y_{(u,v)} \leqslant 3 (\sum_{u \in V} \ C_v(u) x_u^*) \ + \ 3 (\sum_{(u,v) \in E} \ C_e(u,v) x_{(u,v)}^*) \\ \sum_{u \in V} \ C_v(u) y_u \ + \ \sum_{(u,v) \in E} \ C_e(u,v) y_{(u,v)} \leqslant 3 (\sum_{u \in V} \ C_v(u) x_u^* \ + \ \sum_{(u,v) \in E} \ C_e(u,v) x_{(u,v)}^*) \\ \sum_{u \in V} \ C_v(u) y_u \ + \ \sum_{(u,v) \in E} \ C_e(u,v) y_{(u,v)} \leqslant 3 \text{LPOPT} \leqslant 3 \text{IPOPT} \end{array}$$

Therefore, the rounding scheme attains a 3-approximation. \blacksquare