Исследование свойств случайных графов на выборках из распределений и проверка гипотез

Цель

Построить случайные графы на основе выборок из различных распределений и исследовать поведение числовых характеристик графа в зависимости от параметров построения. Кроме того, реализовать проверку гипотезы H_0 против H_1 на основе статистик графа.

Используемые распределения

- Экспоненциальное распределение: $\text{Exp}(\lambda)$, где $\lambda = \frac{1}{\sqrt{e^2 e}}$;
- Логнормальное распределение: LogNormal $(0, \sigma = 1)$.

Функции и методы

1. Построение графов

- build_knn_graph(data, k) построение графа ближайших соседей (kNN): каждая вершина соединяется с k ближайшими по расстоянию.
- build_distance_graph(data, d) построение графа расстояния: вершины соединяются ребром, если $|x_i x_j| \le d$.

2. Характеристики графа

- $\delta(G)$ минимальная степень вершины в графе;
- \bullet $\chi(G)$ приближенное хроматическое число (оценка с помощью жадной раскраски).

Эксперименты

Грид-серч по параметрам графа

Были проведены переборы по параметрам:

• $k \in \{3, 4, 5, 6, 7\}$ для kNN-графов;

• $d \in \{1.0, 1.5, 3.0\}$ для dist-графов.

Для каждого значения параметра строились графы на выборках из $\text{Exp}(\lambda_0)$ и LogNormal(0,1), после чего вычислялись $\delta(G)$ и $\chi(G)$.

Результаты

Графовые характеристики существенно различаются для разных распределений, особенно при росте k или d. Логнормальное распределение, как правило, даёт более плотные графы с большими $\chi(G)$ и $\delta(G)$.

Проверка гипотез

Описание

Рассматривается задача проверки гипотезы:

$$H_0: \xi \sim f(x,\theta)$$
 vs $H_1: \xi \sim h(x,\nu)$,

где f и h — плотности экспоненциального и логнормального распределений соответственно.

Методика

- 1. Генерируется N = 1000 выборок из H_0 (Exp), строятся графы и считается T(G);
- 2. Вычисляется критическое значение $T^* = \text{quantile}(T_{H_0}, \alpha)$ при уровне значимости $\alpha = 0.05$;
- 3. Считается доля выборок из H_1 (LogNormal), у которых $T(G) < T^*$ это оценка мощности критерия.

Результаты проверки

При k=5 и n=100 для kNN-графа обе гипотезы не отвергаются.