1 Question de cours

Équation de Poynting: démonstration et interprétation

2 Cycle d'Ericsson

Le cycle d'Ericsson est un cycle thermodynamique à quatre temps qui est composé de deux transformations isothermes et deux transformations isobares. Ce cycle décrit le fonctionnement théorique d'un type de moteurs thermiques appelés moteurs Ericsson qui peuvent fonctionner soit en mode système fermé, soit en mode système ouvert.

Soit un moteur Ericsson qui utilise $n=10 \,\text{mol}$ d'air comme fluide de travail. L'état (1) est caractérisé par la pression $p_1=1 \,\text{bar}$ et la température $T_1=300 \,\text{K}$, et l'état (3) est caractérisé par la pression $p_3=5 \,\text{bar}$ et la température $T_3=700 \,\text{K}$. L'air est considéré comme un gaz parfait diatomique.

- 1. Déterminer les volumes V_1 et V_3 .
- 2. Déterminer les grandeurs thermiques des états (2) et (4).

Supposons que ce moteur fonctionne en mode système fermé.

- 3. Calculer les travaux mis en jeu W_{12} , W_{23} , W_{34} et W_{41} .
- 4. Calculer les quantités de chaleur échangées Q_{12} , Q_{23} , Q_{34} et Q_{41} .
- 5. Calculer le travail utile W_u de ce cycle.
- 6. Déduire de ces résultats l'efficacité thermique η de ce cycle.

3 Énergie interne d'un système thermodynamique

L'énergie interne d'un système thermodynamique s'exprime en fonction de la température T et du volume V par

$$U(T,V) = aTV^b$$

où a et b sont des constantes positives non nulles.

- 1. S'agit-il d'un gaz parfait ? Justifier.
- 2. Déterminer l'expression de la capacité calorifique à volume constant C_V de ce système.
- 3. Déterminer l'expression de la forme différentielle $\mathrm{d}U$ pour ce système.