二. 运动学部分作业:

1. 如图所示的 6R 通用机器人 UR5,它在机器人底座上有两个轴,肘部有两个轴,腕部有三个轴,其 DH 参数如表中所示。请用 Matlab 自己编程,完成 DH 法则下的正运动学求解,即求取其末端到基座的齐次坐标变换矩阵。

DH 参数	d (m)	theta*(零位)	a	Alpha
1	0.0892	0	0	-pi/2
2	0	pi/2	-0.425	0
3	0	0	-0.392	0
4	0. 1093	-pi/2	0	pi/2
5	0.09475	0	0	-pi/2
6	0.0825	0	0	0

2. Puma560 机器人的 DH 参数定义如下:

DH 参数	d (m)	theta*	a (m)	Alpha
1	0	$ heta_1$	0	pi/2
2	0	$ heta_2$	0.4318	0
3	0.1500	$ heta_3$	0.0203	-pi/2
4	0. 4318	$ heta_4$	0	pi/2
5	0	$ heta_5$	0	-pi/2
6	0	$ heta_6$	0	0

如果仅考虑其前三个关节,即腰、肩及肘,而不考虑腕部的三个关节并把腕部 三个关节的正交点作为此三个关节机器人的末端,请:

1). 写出在这种构型下的 DH 参数表。

- 2). 推导该构型下的运动学。
- 3). 设已知机器人末端相对于{0}坐标系的变换矩阵为97/, 其中:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} n_x & o_x & a_x & p_x \ n_y & o_y & a_y & p_y \ n_z & o_z & a_z & p_z \ 0 & 0 & 0 & 1 \ \end{bmatrix} \end{aligned}$$

请分析该机器人逆运动学有多少解,分别是多少?

3. 平面两自由度机器人如下图所示,请用 Matlab 求取该机器人在如下几个关节坐标下的雅可比矩阵,并检验雅可比矩阵是否奇异。其中: $l_1 = l_2 = 0.5m$, $\theta_1 \in [0,\pi]$, $\theta_2 \in [0,\pi]$ 。

1)
$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
; 2) $\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \pi/2 \end{bmatrix}$; 3) $\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \pi/2 \\ 0 \end{bmatrix}$; 4) $\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \pi/4 \\ 0.8\pi \end{bmatrix}$

4. 请判断:相对于 $\{0\}$ 坐标系的变换矩阵 0_1T 与相对于 $\{0\}$ 坐标系的位姿 0_1H 这两种说法表示的物理含义是否相同?请给出理由。