Due: April 8th

1. For both of the following, decide if the series converges or diverges, proving your answer.

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$$
, b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/2}}$.

- 2. Find two series, one divergent and one convergent, so that the root test does not show whether or not the series converges or diverges, i.e., $\sum_{n=1}^{\infty} a_n$ so that $\limsup |a_n|^{1/n} = 1$.
- 3. Suppose that (a_n) is a sequence of nonnegative numbers. Prove that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.
- 4. From class, we know that $\sum_{n=1}^{\infty} (-1)^n/n = \ln 2$. The goal of this exercise is to show that the series $1 \frac{1}{2} \frac{1}{4} + \frac{1}{3} \frac{1}{6} \frac{1}{8} + \cdots$

converges to $(\ln 2)/2$. This series can be written in the form $\sum_{n=1}^{\infty} a_n$ with $a_{3n-2} = 1/(2n-1)$, $a_{3n-1} = -1/(4n-2)$, and $a_{3n} = -1/4n$. Let $s_n = \sum_{k=1}^{n} a_k$.

- (a) Show that $a_{3n-2} + a_{3n-1} + a_{3n} = 1/(4n(2n-1))$. Find an expression for s_{3n} .
- (b) Using $\frac{1}{4k(2k-1)} = \frac{1}{2} \left(\frac{1}{2k-1} \frac{1}{2k} \right)$, show that $\lim_{n \to \infty} s_{3n} = (\ln 2)/2$.
- (c) Show that $|s_{3n} s_{3n\pm 1}| \le 1/(2n)$. Deduce that $\lim_{n\to\infty} s_{3n\pm 1} = \lim_{n\to\infty} s_{3n}$.
- (d) Show that $\sum a_n$ converges to $(\ln 2)/2$, i.e., $\lim_{n\to\infty} s_n = (\ln 2)/2$.