Propositional Logic

Patrick Chen

Jan 6, 2025

A proposition is a declarative sentence with either a true or false value. Usually, propositions are denoted by lowercase letters: p, q, r

Operators

- Negation \neg (NOT): $\neg p$ is the opposite of p.
- conjunction \wedge (AND): $p \wedge q$ is true when both p and q are true.
- disjunction \vee (OR): $p \vee q$ is true when either p or q is true.
- Exclusive disjunction \oplus (XOR): $p \oplus q$ is true when exactly one of p and q is true but not both.
- Implication \rightarrow : conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise.
 - if p, then q
 - -q if p
 - -p is sufficient for q
 - -q unless $\neg p$
- Biconditional \leftrightarrow (EQ): biconditional statement $p \leftrightarrow q$ is the formalism for $(p \to q) \land (q \to p)$.
 - -p if and only if q

Manipulations of operators

Two statements are equivalent if both have the same truth value. Equivalence of statements is shown with the " \equiv " symbol.

Implication

If $p \to q$ then:

- converse: $q \rightarrow q$
- contrapositive $\neg q \rightarrow \neg p$
- inverse: $\neg p \rightarrow \neg q$

$$p \to q \equiv \neg q \to \neg p$$

Laws

- Identity: $p \wedge T \equiv p$ and $p \vee F \equiv p$
- Domination: $p \wedge F \equiv F$ and $p \vee T \equiv T$
- Idempotent: $p \land p \equiv p$ and $p \lor p \equiv p$
- Double Negation $\neg(\neg p) \equiv p$
- Commutative: $p \wedge q \equiv q \wedge p$ and $p \vee q \equiv q \vee p$
- Negation: $p \vee \neg p \equiv T$ and $p \wedge \neg p \equiv F$
- Associative: $(p \lor q) \lor r \equiv p \lor (q \lor r)$ and $(p \land q) \land r \equiv p \land (q \land r)$
- Distribution: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ and $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- De Morgan's: $\neg(p \lor q) \equiv \neg p \land \neg q \text{ and } \neg(pandq) \equiv \neg p \lor \neg q$
- Absorption: $p \lor (p \land q) \equiv p$ and $p \land (p \lor q) \equiv p$
- Implication: $p \to q \equiv \neg p \lor q$

Tautology

A tautology is a statement that is always true. If the statement $p \leftrightarrow q$ is a tautology, then $p \equiv q$

Example 1

Show that $p \to q = \neg q \to \neg p$

$$\begin{array}{ll} p \rightarrow q = \neg p \vee q & \text{Implication} \\ = q \vee \neg p & \text{Commutative} \\ = \neg (\neg q) \vee (\neg p) & \text{Double Negative} \\ = \neg q \rightarrow \neg p & \text{implies} \end{array}$$

Example 2

Show that $(p \to r) \land (q \to r) = (p \lor q) \to r$

$$\begin{array}{ll} (p \to r) \wedge (q \to r) = (\neg p \vee r) \wedge (\neg q \vee r) & \text{Implication} \\ &= (\neg p \wedge \neg q) \vee r & \text{Distribution} \\ &= \neg (p \vee q) \vee r & \text{De Morgan's} \\ &= (p \vee q) \to r & \text{Implication} \end{array}$$

Propositional Functions

In zero order logic, there are no quantifiers (for all, there exists, etc.). In order to extent Propositional logic, propositional functions are needed.

Quantifiers

- Universal quantification of P(x) is the proposition "P(x) for all values of x in the domain". This is denoted by $\forall x P(x)$. If the proposition holds for all values in the domain, then $\forall x P(x)$ evaluates to true, but if even one value in the domain does not satisfy the proposition, then $\forall x P(x)$ evaluates to false.
- Existential quantifiers of P(x) is the proposition "There exists an x in the domain such that P(x)". This is denoted by $\exists x P(x)$. If the proposition P(x) is true for even a single value x in the domain, then $\exists x P(x)$ is true. If there are no values x in the domain that satisfies the proposition, then $\exists x P(x)$ is false.

Manipulations of quantifiers

A negation can be brought inside a quantifier by inverting the quantifier.

$$\neg \forall x P(x) = \exists x \neg P(x)$$
$$\neg \exists x P(x) = \forall x \neg P(x)$$

A negation can also be brought inside a propositional function.

$$\neg \forall x(x^2 > x) = \exists x \neg (x^2 > x) = \exists x(x^2 \le x)$$

Example 3

Show that
$$\neg \forall x (P(x) \to Q(x)) = \exists x (P(x) \land \neg Q(x))$$
 Implication
$$= \exists x \neg (\neg P(x) \lor Q(x)) \qquad \qquad \text{Quantifier}$$
$$= \exists x (P(x) \land \neg Q(x)) \qquad \qquad \text{De Morgan's}$$

Nested Quantifiers

When quantifiers are nested, they are read left to right. Quantifiers of the same type commute, but quantifiers of different types do not commute. For example, let P(x) = student x falls asleep during lecture y. $\exists x \forall y P(x)$ means that there is a student that falls asleep during all lectures. $\forall y \exists x P(x)$ means that in every lecture, there is a student that falls asleep.

$$\forall x \forall y P(x, y) = \forall y \forall x P(x, y)$$
$$\exists x \exists y P(x, y) = \exists y \exists x P(x, y)$$
$$\forall x \exists y P(x, y) \neq \exists y \forall x P(x, y)$$

Although the quantifiers do not commute, then can imply other propositions with nested quantifiers are true.

$$\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$$

Example 4

Is $\forall x \exists y (x^2 - y^2 = 1)$ true for the domain $x, y \in \mathbb{R}$

If
$$x = \frac{1}{2}$$

Then $y^2 = -\frac{3}{4}$

Since no real number squared to a negative, this proposition is false.