

# General Biology

#### **SBI0202**

**Unit 01:** Structure and Function of Living Organisms

**Topic 01:** Major biological molecules

# Key features that distinguish living organisms from non living matter

- 1. Order and Organization
- 2. Metabolism
- 3. Growth and Development
- 4. Irritability and Coordination
- 5. Adaptation
- 6. Reproduction
- 7. Heredity and Evolution











- The cell is the basic structural and functional unit of life.
- Organisms may be unicellular or multicellular.
- There are **two** distinct types of cells:
- 1. Prokaryotic cells
- 2. Eukaryotic cells





- Cells comprise of organelles which are a composed of several important biological molecules.
- An organelle is a specific structure present in the cell responsible of performing certain functions and together enable to cell to function as a unit.

# Main types of biological molecules

- 1. Carbohydrates
- 2. Proteins
- 3. Lipids
- 4. Nucleic acids
- 5. Water

## Carbohydrates

Types of carbohydrates



Monosaccharides are combined via glycosidic bonds to form

disaccharides and complex sugars

# Functions of carbohydrates

#### 1. Monosaccharides

- Energy storage(glucose)
- Building blocks for complex molecules.
- Components of nucleotides (ribose, deoxyribose)

#### 2.Disaccharides

- Storage of energy
- Translocation in phloem (sucrose)
- Storage sugar in milk (Lactose)

### 3. Polysaccharides

- Energy storage (starch, glycogen)
- Structural support (cellulose, hemicellulose, pectin in plant cell wall, chitin in fungal cell wall and exoskeletons of arthropods)



Fungal Cell Wal





# 2.Lipids

- Types of lipids:
- 1. Fats and oils (triglycerides)
- 2. Phospholipids
- 3. Waxes
- 4. Steroids

# • 1.Triglycerides

- Esters of glycerol and 3 fatty acids.
- Main constituent of body fat in humans.
- Functions: Energy storage, provide insulation diversity to cells, aid in the absorption of fat-soluble vitamins.



+ 3 H<sub>2</sub>O

+ 3 H<sub>2</sub>O



Saturated vs. unsaturated fatty acids

### 2.Phospholipids

- Lipids with attached phosphate groups (hydrophilic component)
- Amphipathic
- Function: Essential component of the cell membrane (phospholipid bilayer)

#### 3.Wax

- Esters of long chain alcohols and fatty acids
- Function: waxy cuticles of plant leaves aid in reducing water loss, cerumen (earwax) protects the ear canal.

#### 4.Steroids

- Have a structure of 4 fused rings.
- Eg: Cholesterol
- Functions: Hormone precursor, component of animal cell membranes



Figure 6.12 Structure of phospholipid



#### 3. Proteins

• Polymers of amino acids linked by peptide bonds.

• There are 20 different types of amino acids in

the human body.







Primary protein structure sequence of a chain of animo acids

Secondary protein structure hydrogen bonding of the peptide backbone causes the amino acids to fold into a repeating pattern

Tertiary protein structure three-dimensional folding pattern of a protein due to side chain interactions

Quaternary protein structure protein consisting of more than one amino acid chain

# Functions of proteins



#### 4. Nucleic acids

Deoxyribonucleic acid and ribonucleic acid





#### Nucleotide





Structural arrangement of DNA inside the cell



Structure and function of RNA inside the cell

#### **Functions of DNA**

- Heredity
- Crossing over results in recombination
- Mutations give rise to variation thereby contributing to the evolutionary process.

#### **Functions of RNA**

- Main function is protein synthesis
- mRNA (messenger RNA): Act as a template containing transcripted genetic information required for translation of a particular protein.
- tRNA: Delivers the amino acids complementary to the mRNA codons.
- rRNA: Formation of the ribosomes

# Biological Role of Water

- molecular structure- Asymmetrical (angular) polar molecule
- Form strong intermolecular H bonds

# Properties and functions

- 1. High cohesion- Enable water uptake by plant roots, Maintain body temperature.
- 2.Universal solvent-Enable transport of oxygen, nutrients etc
- 3. Support cellular structure and shape
- 4. Facilitate protein folding
- 5. Reactant eg: Photosythesis
- 6.Buffer-pH regulation in the body



# Thank You