

Cosmological Motivation

- We believe that structures in the universe form hierarchically
- Bigger structures are formed out of mergers of smaller structures
- Galaxy interactions are a main driver of the hierarchical formation of the universe!
- What is the main force that drives structure formation?
 - Gravity!

A lot of our knowledge comes from Cosmological simulations. Example:

The Illustris Cosmological Simulation (https://www.youtube.com/watch?v=QSivvdIyeG4)

Cosmic crashes are beautiful

The LMC-SMC system: galaxy interactions next door!

How do we know the LMC and SMC are interacting?

What drives galaxy interactions?

- Gravity causes galaxies to come together!
- But, the galaxies need to slow down to merge together, otherwise they will just fly by each other!
 - The speeds are ~ 100 km/s!
- What causes them to slow down and stick together?
- Dynamical Friction!

Another reason why we need Dark Matter to exist!

Galaxy interactions as an astrophysical laboratory!

Galaxy interactions affect galaxy evolution!

- Affect dynamical processes
 - Spirals arms and bars
 - Tidal streams
 - Affect the shape (Morphology) of the galaxies
- Affect gas physics
 - Bring in gas/trigger star-formation
 - Change gas distribution
- Supermassive Black Holes
 - Can fuel Active Galactic Nuclei
 - Supermassive Black Hole Mergers

Galaxy Interactions affecting dynamical processes

Interactions can trigger spiral arms

M51 - The Whirlpool Galaxy

Stellar streams through tidal interactions

The Mice galaxies - NGC 4676

How do you form an Elliptical galaxy?

Interactions are a dominant pathway to form Elliptical galaxies!

Our home (the Milky Way) is headed on a collision course with our Neighbour - the Andromeda Galaxy.

The resulting product (Milkdromeda) will most likely be an Elliptical galaxy.

Simulation: https://www.youtube.com/watch?v=-WoLSL3EDEs

Galaxy interactions affecting gas physics

The ring of fire

The cartwheel galaxy

The Cosmic Star-formation Rate (CSFR)

Galaxy interactions affecting the Supermassive Black Holes

Triggering the central Supermassive Black Hole

Dual Active Galactic Nuclei (AGNs)

Dual AGNs (Koss et al. 2012)

LISA - the Next Generation Gravitational Wave Observatory

How can we study galaxy interactions?

- Observations provide only one snapshot of the process
- Timescales involved are much much longer than human lifespan
- Simulations both N-body and hydrodynamic!

GALACTIC BRIDGES AND TAILS

ALAR TOOMRE

Department of Mathematics, Massachusetts Institute of Technology

AND

JURI TOOMRE*

Department of Mathematics, New York University, and Goddard Institute for Space Studies, New York

Received 1972 May 19

Remarkable success in reproducing the observations!

Modern times

Source: Wiki

Good reference

