

Description

The VST10N088 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =100V, I_D =14A $R_{DS(ON)}$ =8.8m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =9.8m Ω (typical) @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N088-S8	VST10N088	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	14	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	10	А	
Pulsed Drain Current	I _{DM}	56	А	
Maximum Power Dissipation	P _D	3.5	W	
Derating factor		0.028	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	196	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	36	°C/W
--	------------------	----	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.7	2.2	V
Danie Course On Otata Danietana	R _{DS(ON)}	V _{GS} =10V, I _D =14A	-	8.8	11	mΩ
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =14A	-	9.8	13	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =14A	-	45	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ F0\/\\ 0\/	3600	4200	5480	PF
Output Capacitance	Coss	$V_{DS}=50V, V_{GS}=0V,$	-	354	425	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	23	30	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	14	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , I_D =14 A	-	9	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =1.6 Ω	-	39	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ -50\/1 -444	-	58	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =50V,I _D =14A,	-	12	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	7.8	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =14A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	14	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = I _S	-	101	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	193	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

5 (W) u 3 0 0 0 25 50 75 100 125 150 T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance