Data Preparation con ChatCSV

por Lucas Castronuovo

¿Qué es Data Preparation?

1 Preparación de los datos

Proceso en el cual los datos sin procesar se transforman para su posterior análisis 2 Su importancia

Es un componente especial especial para los proyectos de Machine Learning

3 Tareas clave

- Recopilación
- Limpieza
- Etiquetado
- Exploración
- Visualización

Pracational Pater sime Hnesdbanty Ponts 💟 🚍 Safer Efficieny Preelys **Fopicstion** Stieclogy Your Your ally Arcuns Safect Jandan: hetpriation Viear Cally

Características de sus herramientas

Detección rápida de errores

Se corrigen los problemas evitando complicaciones posteriores

Producción de datos de alta calidad

Datos limpiados y reformateados, asegurando que se generen resultados óptimos y precisos

Mejora en la toma de decisiones

Como resultado, se llegan a mejores conclusiones y decisiones

Alivio en la carga de trabajo

Permite que los esfuerzos humanos se inviertan en las tareas estratégicas

Made with Gamma

ChatCSV

Desarrollada por AirOps

Empresa que se especializa en crear herramientas de inteligencia artificial y automatización diseñadas para facilitar el análisis y procesamiento de datos

Innovación en el análisis de datos

Mantiene una conversación con el usuario implementando el archivo CSV como elemento interactivo

Características principales

- Interacción conversacional única
- Sugerencias de consultas
- Visualización de datos
- Historial de chats
- Soporte y preguntas frecuentes

Advantags it ussrg sing data prepation tool.

Ventajas de usar ChatCSV

Colaboración en tiempo real Paneles personalizables Seguridad en el manejo de datos Soporte Multilingüe Compatibilidad con Dispositivos 5 Móviles

Cons of ussing a balta preparen tool.

Contras de usar ChatCSV

Curva de Aprendizaje Preocupaciones de Privacidad Limitación de Tipos de Archivo Dependencia de Conexión a Internet Visualizaciones Genéricas

5

Implementación de la herramienta

ata Preparation t Sto's ge value Made with Gamma

transaction_id	transaction_qty	store_id	sto
1	2	5	1
2	2	5	
3	2	5	
4	1	5	
5	2	5	
6	1	5	
7	1	5	i
8	2	5	
9	1	5	
10	2	5	
11	1	5	
12	2	5	
13	1	5	
14	1	5	
15	2	5	

product_detail	periodo	temporada		
Ethiopia Rg	Mañana	Invierno		
Spicy Eye Opener Chai	Mañana	Invierno		
Dark chocolate Lg	Mañana	Invierno		
Our Old Time Diner Ble	Mañana	Invierno		
Spicy Eye Opener Chai	Mañana	Invierno		
Oatmeal Scone	Mañana	Invierno		
Our Old Time Diner Ble	Mañana	Invierno		
Columbian Medium Roa	Mañana	Invierno		
Latte Rg	Mañana	Invierno		
Dark chocolate Rg	Mañana	Invierno		
Spicy Eye Opener Chai	Mañana	Invierno		
Ethiopia Lg	Mañana	Invierno		
Earl Grey Lg	Mañana	Invierno		
Spicy Eye Opener Chai	Mañana	Invierno		
Ouro Brasileiro shot	Mañana	Invierno		

Normaliza el dataset dividiendo la resta entre el dataframe menos el mínimo del dataframe sobre la resta entre el máximo del dataframe menos el mínimo del dataframe

Loading large file...

I have normalized the dataframe by subtracting the minimum value of each column from each value in that column, and then dividing by the range of that column (the maximum value minus the minimum value). This scales all values in the dataframe to be between 0 and 1.

Now, I will save this normalized dataframe to a CSV file. I have saved the normalized dataframe to a CSV file. You can access it using the following link:

normalized dataset

action qty	store location		unit price		product o	
85714285714285			0.04977375	0.0497737556561086		1
85714285714285	1		0.05203619	909502262	1	Ī
85714285714285	1		0.08371040	07239819 0.5		
	1		0.02714932	1266968323	0.25	7
85714285714285	1		0.05203619	909502262	1	7
	1		0.04977375	56561086	0	
	1		⇔ Share	266968323	0.25	

The Elbow Method is a heuristic used in determining the number of clusters in a data set. The idea of the elbow method is to run k-means clustering on the dataset for a range of values of k (say, k from 1 to 10), and for each value of k calculate the sum of squared errors (SSE).

Then, plot a line chart of the SSE for each value of k. If the line chart looks like an arm, then the "elbow" on the arm is the value of k that is the best. The idea is that we want a small SSE, but that the SSE tends to decrease toward 0 as we increase k (the SSE is 0 when k is equal to the number of data points in the dataset, because then each data point is its own cluster, and there is no error between it and the center of its cluster).

So our goal is to choose a small value of k that still has a low SSE, and the elbow usually represents where we start to have diminishing returns by increasing k.

From the plot, it seems like the elbow is around k=3. So, I would recommend using 3 clusters.

Conclusiones

- 1 Herramienta transformadora
- 2 Aún por mejorar

3 Futuro prometedor para estas herramientas