Instructions:

Print your name and sign the honor code.

Name		
Honor code		

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

Trig. Identities

$$sin(u)cos(v) = \frac{1}{2}[sin(u+v) + sin(u-v)]$$

$$cos(u)cos(v) = \frac{1}{2}[cos(u-v) + cos(u+v)]$$

$$cos^{2}(u) = \frac{1}{2}[1 + cos(2u)]$$

$$sin^{2}(u) = \frac{1}{2}[1 - cos(2u)]$$

$$\int_{b}^{c} cos(ax)dx = \frac{1}{a}sin(ax)|_{b}^{c}$$

$$\int_{b}^{c} sin(ax)dx = -\frac{1}{a}cos(ax)|_{b}^{c}$$

- 1. A communication system transmits one of 8 equally likely signals. The signals (waveforms) are represented by the vectors shown below.
 - (a) Determine how many information bits can be sent using these signals.
 - (b) Determine the energy of each of the signals and the average energy per information bit.
 - (c) Determine the squared Euclidean distance between signals s_0 and all the other signals.
 - (d) Determine the rate of communication in bits/dimension for these signals.

$$s_0 = (-1, -1, -1, -1, -1)$$

$$s_1 = (-1, -1, +3, -3, +3)$$

$$s_2 = (-1, +3, -3, +3, -1)$$

$$s_3 = (-1, +3, +1, +1, +3)$$

$$s_4 = (+3, -3, +3, -1, -1)$$

$$s_5 = (+3, -3, -1, -3, +3)$$

$$s_6 = (+3, +1, +1, +3, -1)$$

$$s_7 = (+3, +1, -3, +1, +3)$$

2. (a) The signal $s_0(t)$ consists of a sequence of pulses each of duration $T_c = T/7$ as shown in the figure below.

$$s_0(t) = p_{T_c}(t) + p_{T_c}(t - T_c) - p_{T_c}(t - 2T_c) + p_{T_c}(t - 3T_c) - p_{T_c}(t - 4T_c) - p_{T_c}(t - 5T_c) - p_{T_c}(t - 6T_c)$$

The filter is given by

$$h(t) = -p_{T_c}(t) - p_{T_c}(t - T_c) - p_{T_c}(t - 2T_c) + p_{T_c}(t - 3T_c) - p_{T_c}(t - 4T_c) + p_{T_c}(t - 5T_c) + p_{T_c}(t - 6T_c)$$

as shown below (which is the time flip of $s_0(t)$, i.e. $h(t) = s_o(T - t)$).

(a) Find (plot) the output of the filter as a function of time. The output should be a function of time beginning at time 0 and ending at time $2T = 14T_c$.

(b) Find the filter output (for the same filter) when the input is x(t) = s(t) + s(t - T). The output is a function beginning at time 0 and ending at time $21T_c = 3T$.

3. A communication system transmits one of three signals:

$$s_0(t) = A\cos(2\pi f_c t)p_T(t)$$
$$s_1(t) = 0$$
$$s_2(t) = -A\cos(2\pi f_c t)p_T(t)$$

over an additive white Gaussian noise channel with power spectral density $N_0/2$. Let r(t) denote the received signal $(r(t) = s_i(t) + n(t))$. The receiver computes the quantity

$$Z = \int_0^T r(t) \sqrt{\frac{2}{T}} \cos(2\pi f_c t) dt.$$

Assume $2\pi f_c T = 2\pi n$ for some large integer n (to ignore double frequency terms). The receiver output Z is compared with a threshold γ and a threshold $-\gamma$. If $Z > \gamma$, the decision is made that $s_0(t)$ was sent. If $Z < -\gamma$, the decision is made that $s_2(t)$ was sent. If $-\gamma < Z < \gamma$ the the decision is made in favor of $s_1(t)$

- (a) Determine the three conditional probabilities of error: $P_{e,0}$ = probability of error given s_0 sent, $P_{e,1}$ =probability of error given s_1 sent, and $P_{e,2}$ = probability of error given s_2 sent.
- (b) Determine the average error probability assuming that all three signals are equally probable of being transmitted.

4. Consider a binary communication system that transmits one of two signal $s_0(t)$ and $s_1(t)$ over an additive white Gaussian noise channel (power spectral density $N_0/2$) where

$$s_0(t) = A_0 p_{T/2}(t), \quad s_1(t) = A_1 p_{T/2}(t - T/2);$$

that is $s_0(t)$ is a pulse of amplitude A_0 from 0 to T/2 and $s_1(t)$ is a pulse of amplitude A_1 from T/2 to T as shown below.

The received signal, r(t), is the transmitted signal with additive white Gaussian noise. The receiver shown below consist of a filter h(t) which is sampled at time T and a threshold device.

(a) If $h_R(t) = -p_{T/2}(t) + p_{T/2}(t - T/2)$ shown below, find the output of the filter $\hat{s}_0(T)$ due to signal $s_0(t)$ at time T and the output of the filter $\hat{s}_1(T)$ due to signal $s_1(t)$ at time T

- (b) Find the threshold γ that will minimize the average of the error probabilities $P_{e,0}$ and $P_{e,1}$ for the given signals and filter. Assume $\pi_0 = \pi_1$.
- (c) Find the error average error probability $\bar{P}_e = \pi_0 P_{e,0} + \pi_1 P_{e,1}$ for the threshold found in the previous part. Assume $\pi_0 = \pi_1$.
- (d) Find the matched filter for the same signals and find the corresponding threshold that minimizes \bar{P}_e . Assume $\pi_0 = \pi_1$.
- (e) Find \bar{P}_e for the matched filter with the optimum threshold. Assume $\pi_0 = \pi_1$.