ゆっくり熱力学の基礎していってね

仲山昌人

概要

熱力学の基礎を読んだときのメモです

目次

第2章

P.7 Dx+f(a)=f(a+0) '25 3.22 3.2 3 P.8 (1.2) f(x)=f(a)+f(a)(x-a)+o(x-a) '25 3.21 4 4 P.10 問 1.3 (x,y)≠ (0,0) で f は連続 '25 5.13 5 P.10 問 1.3 (0,0) で f は連続 '25 3.26 7 P.10 問 1.3 (x,y)≠ (0,0) で f な存在する '25 5.13 8 P.10 問 1.3 (x,y)≠ (0,0) で f な存在する '25 5.13 8 P.10 問 1.3 (x,y)≠ (0,0) で f な連続 '25 5.13 9 P.10 問 1.3 (x,y)≠ (0,0) で f な連続 '25 5.13 9 P.10 問 1.3 (x,y)≠ (0,0) で f な連続 '25 5.13 9 P.10 問 1.3 (x,y)≠ (0,0) で fy は連続 '25 5.13 9 P.10 問 1.3 (x,y)≠ (0,0) で fy は連続 '25 5.15 12 P.10 問 1.3 (x,y)≠ (0,0) で fy は連続 '25 5.15 12 P.10 問 1.3 (0,0) で fy は連続 '25 3.26 14 P.10 問 1.3 (0,0) で fy は連続 '25 3.26 14 P.10 問 1.3 (0,0) で fy は連続 '25 3.26 14 P.11 数学の定理 1.1 f(x1,∞,xm)-f(a1,∞,xm)-(x1-a1)fx1(a)=o(x-a) '25 4.6 17 P.11 数学の定理 1.1 f(x1,∞,xm)-f(a1,∞,xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17 19 P.11 数学の定理 1.1 f(x1,y=f(a)+∇ f(a)(x-a)+o(x-a) '25 4.6 20 P.12 数学の定理 1.2 n 階までの溥関数は微分の順序によらない'25 4.8 22 P.12 被と x=0 で f(x) は連続 '25 4.23 25 P.12 補足 x=0 で f(x) は連続 '25 4.23 27 P.12 補足 x=0 で f(x) は連続 '25 4.23 27 P.12 補足 x=0 で f(x) は連続 '25 4.25 28 P.12 補足 x=0 で f(x) は連続 '25 5.20 31 P.12 補足 x=0 で f(x) は解析的 '25 6.4 35 P.12 補足 x=0 で f(x) は解析的 '25 6.4 35 P.12 補足 x=0 で f(x) は解析的 '25 6.2 45 P.12 補足 x=0 で f(x) は解析的 '25 6.2 45 P.12 補足 x=0 で f(x) は解析的 '25 6.2 45 P.12 補足 x=0 で f(x) は解析的 '25 6.2 45 P.12 補足 x=0 で f(x) は解析的 '25 6.2 45 P.12 補足 x=0 で f(x) は解析的 '25 6.2 45 P.15 問題 1.5 (x), の偏微分 '25 6.2 45 P.15 問題 1.6 (ii) 偏微分の連鎖律 '25 6.13 50	第1章	2
P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13	P.7 Dx+f(a)=f'(a+0) '25 3.22	 3
P.10 問 1.3 (0,0) で f は連続 '25 3.26 7 P.10 問 1.3 (x,y) ≠ (0,0) で fx は存在する '25 5.13 8 P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13 9 P.10 問 1.3 (0,0) で fx は連続 '25 3.26 10 P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13 12 P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13 12 P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15 13 12 P.10 問 1.3 (0,0) で fy は連続 '25 5.26 14 P.10 問 1.3 (0,0) で fy は連続 '25 3.26 14 P.10 問 1.3 (0,0) で fx は連続 '25 5.26 14 P.11 数学の定理 1.1 f(x1,xm)-f(a1,,xm)-(x1-a1)fx1(a)=o(x-a) '25 4.6 17 P.11 数学の定理 1.1 f(x1,xm)-f(a1,a2xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17 19 P.11 数学の定理 1.1 f(x)=f(a) + ∇ f(a)(x-a)+o(x-a) '25 4.6 20 P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8 21 P.12 数学の定理 1.2 fxy=fyx '25 4.8 22 P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23 25 P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23 27 P.12 補足 x ≠ 0 で f(x) は連続 '25 4.25 28 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 x = 0 で f(x) は連析的 '25 6.4 35 P.12 補足 x = 0 で f(x) は呼析的 '25 6.4 35 P.12 補足 x = 0 で f(x) は呼析的 '25 6.4 35 P.12 補足 x ÷ 0 で f(x) は呼析的 '25 6.4 45 P.12 補足 x *2 o ∞ の価微分 '25 6.2 45 P.12 問題 1.4 x ^2 e o の の価微分 '25 6.2 45 P.12 問題 1.5 Z(x,y) の価微分 '25 6.2 49 P.15 問題 1.5 Z(x,y) の価微分 '25 6.22 49 P.15 問題 1.5 Z(x,y) の価微分 '25 6.22 49 P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13	$P.8 \ (1.2) \ f(x) = f(a) + f'(a)(x-a) + o(x-a) \ '25 \ 3.21 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	 4
P.10 問 1.3 $(x,y) \neq (0,0)$ で f_X は存在する '25 5.13 9 P.10 問 1.3 $(x,y) \neq (0,0)$ で f_X は連続 '25 5.13 9 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 3.26 10 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 3.26 11 9 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 5.15 12 12 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 5.15 13 12 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 5.26 14 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 3.26 14 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 3.26 14 P.10 問 1.3 $(0,0)$ で f_X は連続 '25 4.1 16 P.11 数学の定理 1.1 f_X 1 f_X 2.xm)- f_X 3.xm)- f_X 4.xm)- f_X 4.xm)- f_X 5.xm)- f_X 7 19 P.11 数学の定理 1.1 f_X 5.xm)- f_X 6.xm)- f_X 7 19 P.11 数学の定理 1.1 f_X 7 f_X 8 2.xm)- f_X 8 2.xm)- f_X 9 2.5 4.6 2.0 P.12 数学の定理 1.2 f_X 9 管 f_X 9 2.5 4.8 2.1 P.12 数学の定理 1.2 f_X 9 管 f_X 9 2.5 4.8 2.1 P.12 数学の定理 1.2 f_X 9 で f_X 9 3 2.5 4.23 2.5 P.12 補足 f_X 9 0 f_X 9 3 2.5 4.23 2.5 P.12 補足 f_X 9 0 f_X 9 3 2.5 4.23 2.7 P.12 補足 f_X 9 0 f_X 9 3 2.5 4.23 2.7 P.12 補足 f_X 9 0 f_X 9 2.5 4.23 2.7 P.12 補足 f_X 9 0 f_X 9 2.5 4.23 2.7 P.12 補足 f_X 9 0 f_X 9 3 3 P.12 補足 f_X 9 0 f_X 9 3 3 P.12 補足 f_X 9 0 f_X 9 3 3 P.12 補足 f_X 9 0 f_X 9 3 3 P.12 補足 f_X 9 0 f_X 9 3 3 4 P.12 補足 f_X 9 0 f_X 9	P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13	 5
$P.10$ 問 1.3 $(x,y) \neq (0,0)$ で fx は連続 '25 5.13 9 $P.10$ 問 1.3 $(0,0)$ で fx は連続 '25 3.26 10 $P.10$ 問 1.3 $(x,y) \neq (0,0)$ で fy は存在する '25 5.13 12 $P.10$ 問 1.3 $(x,y) \neq (0,0)$ で fy は連続 '25 5.15 13 $P.10$ 問 1.3 $(0,0)$ で fy は連続 '25 3.26 14 $P.10$ 問 1.3 $(0,0)$ で fy は連続 '25 3.26 14 $P.10$ 問 1.3 $(0,0)$ で fx は不連続 '25 4.1 16 $P.11$ 数学の定理 1.1 $f(x1,,xm)$ - $f(a1,,xm)$ - $f(x1-a1)$ $fx1(a)$ = $o(x-a)$ '25 4.6 17 $P.11$ 数学の定理 1.1 $f(x1,x2,xm)$ - $f(a1,a2,xm)$ - $f(x2-a2)$ $fx2(a)$ = $o(x-a)$ '25 5.17 19 $P.11$ 数学の定理 1.1 $f(x)$ = $f(a)$ + ∇ $f(a)$ (x - a)+ $o(x-a)$ '25 4.6 20 $P.12$ 数学の定理 1.2 fx 階までの導関数は微分の順序によらない'25 4.8 21 $P.12$ 数学の定理 1.2 fxy = f	P.10 問 1.3 (0,0) で f は連続 '25 3.26	 7
P.10 問 1.3 (0,0) で fx は連続 '25 3.26 10 P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13 12 P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15 13 P.10 問 1.3 (0,0) で fy は連続 '25 3.26 14 P.10 問 1.3 (0,0) で fy は連続 '25 3.26 14 P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1 16 P.11 数学の定理 1.1 f(x1,,xm)-f(a1,,xm)-(x1-a1)fx1(a)=o(x-a) '25 4.6 17 P.11 数学の定理 1.1 f(x1,x2xm)-f(a1,a2xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17 19 P.11 数学の定理 1.1 f(x)=f(a) + ∇ f(a) (x-a)+o(x-a) '25 4.6 20 P.12 数学の定理 1.2 n階までの導関数は微分の順序によらない'25 4.8 21 P.12 数学の定理 1.2 fxy=fyx '25 4.8 22 P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23 25 P.12 補足 x = 0 で f(x) は連続 '25 4.23 27 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 x = 0 で f(x) は解析的 '25 6.4 35 P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4 35 P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4 40 P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4 40 P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.2 45 P.12 間題 1.4 x^2 e^y の偏微分 '25 4.16 47 P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22 49 P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13 50	P.10 問 1.3 $(x,y) \neq (0,0)$ で fx は存在する '25 5.13	 8
$P.10$ 問 1.3 $(x,y) \neq (0,0)$ で fy は存在する '25 5.13 12 $P.10$ 問 1.3 $(x,y) \neq (0,0)$ で fy は連続 '25 5.15 13 $P.10$ 問 1.3 $(0,0)$ で fy は連続 '25 3.26 14 $P.10$ 問 1.3 $(0,0)$ で fxy は不連続 '25 4.1 16 $P.11$ 数学の定理 1.1 $f(x1,,xm)$ - $f(a1,,xm)$ - $(x1-a1)$ fx $1(a)$ =o $(x-a)$ '25 4.6 17 $P.11$ 数学の定理 1.1 $f(x1,x2xm)$ - $f(a1,a2xm)$ - $(x2-a2)$ fx $2(a)$ =o $(x-a)$ '25 5.17 19 $P.11$ 数学の定理 1.1 $f(x)$ = $f(x)$ + ∇ $f(x)$ (x -	P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13	 9
$P.10$ 問 1.3 $(x,y) \neq (0,0)$ で fy は連続 '25 5.15 13 $P.10$ 問 1.3 $(0,0)$ で fy は連続 '25 3.26 14 $P.10$ 問 1.3 $(0,0)$ で fxy は不連続 '25 4.1 16 $P.11$ 数学の定理 1.1 $f(x1,,xm)$ - $f(a1,,xm)$ - $(x1-a1)$ fx $1(a)=o(x-a)$ '25 4.6 17 $P.11$ 数学の定理 1.1 $f(x1,x2.xm)$ - $f(a1,a2.xm)$ - $(x2-a2)$ fx $2(a)=o(x-a)$ '25 5.17 19 $P.11$ 数学の定理 1.1 $f(x)=f(a)+\nabla$ $f(a)(x-a)+o(x-a)$ '25 4.6 20 $P.12$ 数学の定理 1.2 $f(x)=f(a)+\nabla$ $f(a)(x-a)+o(x-a)$ '25 4.6 21 $P.12$ 数学の定理 1.2 $f(x)=f(x)$ '25 4.8 22 $P.12$ 翻足 $x\neq 0$ or $f(x)$ は連続 '25 4.23 25 $P.12$ 補足 $x\neq 0$ or $f(x)$ は連続 '25 4.23 27 $P.12$ 補足 $x\neq 0$ or $f(x)$ は連続 '25 4.25 28 $P.12$ 補足 $x\neq 0$ or $f(x)$ は連続 '25 4.25 28 $P.12$ 補足 $f(x)=f(x)$ は $f(x)=f(x)$ ($f(x)=f(x)=f(x)$) 31 $P.12$ 補足 $f(x)=f(x)=f(x)=f(x)=f(x)=f(x)=f(x)=f(x)=$	P.10 問 1.3 (0,0) で fx は連続 '25 3.26	 10
P.10 問 1.3 (0,0) で fy は連続 '25 3.26 . 14 P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1 . 16 P.11 数学の定理 1.1 $f(x1,,xm)$ - $f(a1,,xm)$ - $(x1$ -a1) $f(x1(a)$ =o $(x$ -a) '25 4.6 . 17 P.11 数学の定理 1.1 $f(x1,x2,xm)$ - $f(a1,a2,xm)$ - $(x2$ -a2) $f(x2(a)$ =o $(x$ -a) '25 5.17 . 19 P.11 数学の定理 1.1 $f(x1)$ =f(a)+ ∇ $f(a)(x$ -a)+o $(x$ -a) '25 4.6 . 20 P.12 数学の定理 1.2 $f(x)$ =f(a)+ ∇ $f(a)(x$ -a)+o $(x$ -a) '25 4.6 . 21 P.12 数学の定理 1.2 $f(x)$ =f(x)+ $f(x)$ +f(x)+ $f(x)$ +f(P.10 問 1.3 $(x,y) \neq (0,0)$ で fy は存在する '25 5.13	 12
P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1 16 P.11 数学の定理 1.1 f(x1,,xm)-f(a1,,xm)-(x1-a1)fx1(a)=o(x-a) '25 4.6 17 P.11 数学の定理 1.1 f(x1,,xm)-f(a1,a2xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17 19 P.11 数学の定理 1.1 f(x)=f(a)+∇ f(a)(x-a)+o(x-a) '25 4.6 20 P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8 21 P.12 数学の定理 1.2 fxy=fyx '25 4,8 22 P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23 25 P.12 補足 x = 0 で f(x) は連続 '25 4.23 27 P.12 補足 x = 0 で C ∞ 級 '25 4.25 28 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 x = 0 で C ∞ 級 '25 5.20 31 P.12 補足 収束するテーラー級数の部分和が f(x) の近似にならない例 '25 6.9 34 P.12 補足 収束するテーラー級数の部分和が f(x) の近似にならない例 '25 6.9 34 P.12 補足 べき級数の合成 '25 6.1 40 P.12 補足 べき級数の合成 '25 6.2 45 P.12 問題 1.4 x^2 e^y の偏微分 '25 6.22 49 P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22 49 P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13	P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15	 13
$P.11$ 数学の定理 1.1 $f(x1,,xm)$ - $f(a1,,xm)$ - $(x1-a1)fx1(a)$ = $o(x-a)$ '25 4.6 17 $P.11$ 数学の定理 1.1 $f(a1,x2xm)$ - $f(a1,a2xm)$ - $(x2-a2)fx2(a)$ = $o(x-a)$ '25 5.17 19 $P.11$ 数学の定理 1.1 $f(x)$ = $f(a)$ + ∇ $f(a)(x-a)$ + $o(x-a)$ '25 4.6 20 $P.12$ 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8 21 $P.12$ 数学の定理 1.2 fxy=fyx '25 4.8 22 $P.12$ 補足 $x \neq 0$ ∇ $f(x)$ は連続 '25 4.23 25 $P.12$ 補足 $x \neq 0$ ∇ $f(x)$ は連続 '25 4.23 27 $P.12$ 補足 $x \neq 0$ ∇	P.10 問 1.3 (0,0) で fy は連続 '25 3.26	 14
 P.11 数学の定理 1.1 f(a1,x2xm)-f(a1,a2xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17 P.11 数学の定理 1.1 f(x)=f(a)+∇ f(a)(x-a)+o(x-a) '25 4.6 P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8 P.12 数学の定理 1.2 fxy=fyx '25 4,8 P.12 補足 x≠0で f(x) は連続 '25 4.23 P.12 補足 x=0で f(x) は連続 '25 4.23 P.12 補足 x=0で C∞級 '25 4.25 P.12 補足 x=0で C∞級 '25 5.20 P.12 補足 x=0で C∞級であるが解析的でない '25 5.21 P.12 補足 収束するテーラー級数の部分和が f(x) の近似にならない例 '25 6.9 34 P.12 補足 x≠0で f(x) は解析的 '25 6.4 P.12 補足 x≠0で f(x) は解析的 '25 6.4 P.12 補足 x≠0で f(x) は解析的 '25 6.4 P.12 補足 x≠0で f(x) は解析的 '25 6.4 P.15 問題 1.4 x^2 e^y の偏微分 '25 4.16 P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22 P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13 	P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1	 16
$P.11$ 数学の定理 $1.1 f(x) = f(a) + \nabla f(a)(x-a) + o(x-a)$ '25 4.6 20 $P.12$ 数学の定理 $1.2 n$ 階までの導関数は微分の順序によらない'25 4.8 21 $P.12$ 数学の定理 $1.2 fxy = fyx$ '25 4.8 22 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 '25 4.23 25 $P.12$ 補足 $x = 0$ で $f(x)$ は連続 '25 4.23 27 $P.12$ 補足 $x = 0$ で $f(x)$ は連続 '25 4.23 27 $P.12$ 補足 $x = 0$ で $f(x)$ は連続 '25 4.25 28 $P.12$ 補足 $f(x)$ で $f(x)$ 必要であるが解析的でない '25 $f(x)$ 31 $f(x)$ の近似にならない例 '25 $f(x)$ 33 $f(x)$ 27 $f(x)$ 28 $f(x)$ 39 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 31 $f(x)$ 32 $f(x)$ 33 $f(x)$ 34 $f(x)$ 35 $f(x)$ 36 $f(x)$ 36 $f(x)$ 36 $f(x)$ 37 $f(x)$ 38 $f(x)$ 39 $f(x)$ 39 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 31 $f(x)$ 32 $f(x)$ 33 $f(x)$ 35 $f(x)$ 36 $f(x)$ 36 $f(x)$ 37 $f(x)$ 38 $f(x)$ 39 $f(x)$ 39 $f(x)$ 30 $f(x)$	P.11 数学の定理 1.1 f(x1,,xm)-f(a1,,xm)-(x1-a1)fx1(a)=o(x-a) '25 4.6	 17
$P.12$ 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8 22 $P.12$ 数学の定理 1.2 fxy=fyx '25 4.8 22 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 '25 4.23 25 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 '25 4.23 27 $P.12$ 補足 $x \neq 0$ で $C \approx 20$ $\times 20$	P.11 数学の定理 1.1 f(a1,x2xm)-f(a1,a2xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17	 19
$P.12$ 数学の定理 1.2 fxy=fyx 1 25 4.8 22 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 1 25 4.23 25 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 1 25 4.23 27 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 1 25 4.23 27 $P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 1 25 4.25 28 $P.12$ 補足 $x \neq 0$ で $f(x)$ 級であるが解析的でない 1 25 $f(x)$ 31 $P.12$ 補足 $f(x)$ 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 1 25 $f(x)$ 33 $P.12$ 補足 $f(x)$ 以证解析的 1 25 $f(x)$ 35 $P.12$ 補足 $f(x)$ 以证解析的 1 25 $f(x)$ 36 $f(x)$ 37 $f(x)$ 39 $f(x)$ 39 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 31 $f(x)$ 32 $f(x)$ 35 $f(x)$ 36 $f(x)$ 36 $f(x)$ 37 $f(x)$ 39 $f(x)$ 39 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 30 $f(x)$ 31 $f(x)$ 32 $f(x)$ 35 $f(x)$ 36 $f(x)$ 36 $f(x)$ 37 $f(x)$ 39 $f(x)$ 30 $f(x)$	P.11 数学の定理 1.1 $f(x)=f(a)+\nabla f(a)(x-a)+o(x-a)$ '25 4.6	 20
$P.12$ 補足 $x \neq 0$ で $f(x)$ は連続 '25 4.23 25 $P.12$ 補足 $x = 0$ で $f(x)$ は連続 '25 4.23 27 $P.12$ 補足 $x \neq 0$ で $C \approx 20$ 後 '25 4.25 28 $P.12$ 補足 $x \neq 0$ で $C \approx 20$ を $C \approx 20$ と $C \approx 20$	P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8	 21
P.12 補足 $x=0$ で $f(x)$ は連続 '25 4.23	P.12 数学の定理 1.2 fxy=fyx '25 4,8	 22
$P.12$ 補足 $x \neq 0$ で $C \infty$ 級 '25 4.25 28 $P.12$ 補足 $x = 0$ で $C \infty$ 級 '25 5.20 31 $P.12$ 補足 $x = 0$ で $C \infty$ 級であるが解析的でない '25 5.21 33 $P.12$ 補足 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 '25 6.9 34 $P.12$ 補足 $x \neq 0$ で $f(x)$ は解析的 '25 6.4 35 $P.12$ 補足 べき級数の合成 '25 6.1 40 $P.12$ 補足 べき級数のべき '25 6.2 45 $P.12$ 問題 1.4 x^2 e^x の偏微分 '25 4.16 47 $P.15$ 問題 1.5 $Z(x,y)$ の偏微分 '25 6.22 49 $P.15$ 問題 $1.6(i)$ 偏微分の連鎖律 '25 6.13 50	P.12 補足 x ≠ 0 で $f(x)$ は連続 '25 4.23	 25
$P.12$ 補足 $x=0$ で $C \infty$ 級 '25 5.20 31 $P.12$ 補足 $x=0$ で $C \infty$ 級であるが解析的でない '25 5.21 33 $P.12$ 補足 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 '25 6.9 34 $P.12$ 補足 $x \ne 0$ で $f(x)$ は解析的 '25 6.4 35 $P.12$ 補足 べき級数の合成 '25 6.1 40 $P.12$ 補足 べき級数のべき '25 6.2 45 $P.12$ 問題 1.4 x^2 e^y の偏微分 '25 4.16 47 $P.15$ 問題 1.5 $Z(x,y)$ の偏微分 '25 6.22 49 $P.15$ 問題 1.6 (i) 偏微分の連鎖律 '25 6.13 50	P.12 補足 x = 0 で $f(x)$ は連続 ' 25 4.23	 27
$P.12$ 補足 $x=0$ で $C \infty$ 級であるが解析的でない '25 5.21 33 P.12 補足 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 '25 6.9 34 P.12 補足 $x \neq 0$ で $f(x)$ は解析的 '25 6.4 35 P.12 補足 べき級数の合成 '25 6.1 40 P.12 補足 べき級数のべき '25 6.2 45 P.12 問題 $1.4 \times ^2 e^{\circ} y$ の偏微分 '25 4.16 47 P.15 問題 $1.5 \times Z(x,y)$ の偏微分 '25 6.22 49 P.15 問題 $1.6(i)$ 偏微分の連鎖律 '25 6.13 50	P.12 補足 x ≠ 0 で C ∞ 級 '25 4.25	 28
$P.12$ 補足 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 '25 6.9 34 $P.12$ 補足 $x \neq 0$ で $f(x)$ は解析的 '25 6.4 35 $P.12$ 補足 べき級数の合成 '25 6.1 40 $P.12$ 補足 べき級数のべき '25 6.2 45 $P.12$ 問題 1.4 x^2 e^y の偏微分 '25 4.16 47 $P.15$ 問題 1.5 $Z(x,y)$ の偏微分 '25 6.2 49 $P.15$ 問題 $1.6(i)$ 偏微分の連鎖律 '25 6.13 50	P.12 補足 x=0 で C ∞ 級 '25 5.20	 31
P.12 補足 $x \neq 0$ で $f(x)$ は解析的 '25 6.435P.12 補足 べき級数の合成 '25 6.140P.12 補足 べき級数のべき '25 6.245P.12 問題 $1.4 \times 2 e^y$ の偏微分 '25 4.16 47P.15 問題 $1.5 Z(x,y)$ の偏微分 '25 6.22 49P.15 問題 $1.6(i)$ 偏微分の連鎖律 '25 6.13 50	P.12 補足 x=0 で C ∞ 級であるが解析的でない '25 5.21	 33
P.12 補足 べき級数の合成 '25 6.140P.12 補足 べき級数のべき '25 6.245P.12 問題 1.4 x^2 e^y の偏微分 '25 4.1647P.15 問題 1.5 Z(x,y) の偏微分 '25 6.2249P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.1350	P.12 補足 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 '25 6.9	 34
P.12 補足 べき級数のべき '25 6.245P.12 問題 1.4 x^2 e^y の偏微分 '25 4.1647P.15 問題 1.5 Z(x,y) の偏微分 '25 6.2249P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.1350	P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4	 35
P.12 問題 1.4 x^2 e^y の偏微分 '25 4.16 47 P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22 49 P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13 50	P.12 補足 べき級数の合成 '25 6.1	 40
P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22 49 P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13 50	P.12 補足 べき級数のべき '25 6.2	 45
P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13	P.12 問題 1.4 x^2 e^y の偏微分 '25 4.16	 47
	P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22	 49
P.15 問題 1.6(iii) 偏微分の連鎖律 '25 6.13	P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13	 50
	P.15 問題 1.6(iii) 偏微分の連鎖律 '25 6.13	 51
P.16 問題 1.8 偏微分でつまづいたこと '25 6.25	P.16 問題 1.8 偏微分でつまづいたこと '25 6.25	 52

59

第1章

P.7 Dx+f(a)=f'(a+0) '25 3.22

f(x)が $[a,a,\epsilon']$ で連続, $(a+a+\epsilon')$ で微分可能とする

$$f'(a+0) = \lim_{\epsilon \to +0} f'(a+\epsilon)$$
が存在するならば

$$D_x^+ f(a)$$
が存在し $D_x^+ f(a) = f'(a+0)$ である

(証明)

 $[a, a + \epsilon']$ で連続, $(a, a + \epsilon')$ で微分可能なので

平均値の定理より
$$\frac{f(a+\epsilon')-f(a)}{\epsilon'}=f'(a+\epsilon),\ 0<\epsilon<\epsilon'$$
 なる ϵ が存在する

 ϵ' に対する ϵ を 1 つ選んで $\epsilon(\epsilon')$ とする

$$f'(a+0) = \lim_{\epsilon \to +0} f'(a+\epsilon)$$
 が存在するので

任意の $\delta > 0$ に対してある ϵ_1 が存在して

$$0 < \epsilon < \epsilon_1$$
 ならば $|f'(a+\epsilon) - f'(a+0)| < \delta$ である

$$0<\epsilon'<\epsilon_1$$
 ならば $0<\epsilon(\epsilon')<\epsilon'$ なので $0<\epsilon(\epsilon')<\epsilon_1$

よって
$$|f'(a+\epsilon(\epsilon'))-f'(a+0)|<\delta$$
 である

$$\frac{f(a+\epsilon')-f(a)}{\epsilon'}=f'(a+\epsilon(eps'))$$
 なので

$$0<\epsilon'<\epsilon_1$$
 ならば $\left|rac{f(a+\epsilon')-f(a)}{\epsilon'}-f'(a+0)
ight|<\delta$ である

$$\therefore \lim_{\epsilon' \to +0} \frac{f(a+\epsilon') - f(a)}{\epsilon'} = f'(a+0)$$
 である $(:$ 極限の定義)

$$\lim_{\epsilon' \to +0} rac{f(a+\epsilon')-f(a)}{\epsilon'} = D^+_x(a)$$
 なので

$$D_x^+(a)=f'(a+0)$$
である

P.8 (1.2) f(x)=f(a)+f'(a)(x-a)+o(x-a) '25 3.21

f(x)がx = aで微分可能 $\rightleftarrows x \rightarrow a$ でf(x) = f(a) + f'(a)(x - a) + o(x - a)なるf'(a)が存在する

(証明)

 (\leftarrow)

$$o(x-a)=f(x)-f(a)-f'(a)(x-a)$$
 (: $f=g+o(...)$ $;$ $f=g+o(...)$ $;$ $f=g+o(...)$

$$\therefore \lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0$$
 (∵ 付録A $o(\dots)$ の定義)

$$\therefore \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) = 0$$

よって任意の $\epsilon > 0$ に対して $0 < |x - a| < \delta$ ならば

$$\left|\frac{f(x)-f(a)}{x-a}-f'(a)\right|<\epsilon$$

よって
$$\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
 (: 極限の定義)

よって f(x) は x = a で微分可能 (: 微分の定義)

 (\rightarrow)

x = a で微分可能なので

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \text{ が存在する (∵ 微分の定義)}$$

$$\therefore \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = \lim_{x \to a} f'(a)$$
 (ご 定数の極限)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} - \lim_{x \to a} f'(a) = 0$$
 (: 実数の四則の公理)

$$\therefore o(x-a) = f(x) - f(a) - f'(a)(x-a)$$
 (∵ 付録 $A o(...)$ の定義)

よって
$$f(x) = f(a) + f'(a)(x-a) + o(x-a)$$
 なる $f'(a)$ が存在する

P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f は連続

(証明)

任意の ϵ に対して

$$|(x,y)-(a,b)|<\epsilon$$
 ならば

$$|x-a| < |(x,y)-(a,b)|$$
 (: 三角不等式)
= ϵ

よって
$$\lim_{(x,y)\to(a,b)} x = a$$

よってxは連続

同様に y は連続

よって

xy は連続 (*1)

x² は連続 (*1)

y² は連続(*1)

$$x^2 - y^2$$
 は連続 (*1),(*2)

 $x^2 + y^2$ は連続 (*2)

$$(x,y) \neq (0,0)$$
 ならば $x^2 + y^2 \neq 0$

よって $(x,y) \neq (0,0)$ ならば

$$\frac{1}{x^2+y^2}$$
 は連続 (*3)

よって
$$(x,y)\neq (0,0)$$
 ならば $xy\frac{x^2-y^2}{x^2+y^2}$ は連続 $(*2)$

また
$$(x,y) \neq (0,0)$$
 ならば $f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$

よって $(x,y) \neq (0,0)$ ならば f(x,y) は連続

(*1)fが連続,gが連続ならばfgは連続

(証明)

$$(a,b)$$
で f,g が連続ならば

$$\lim_{(x,y)\rightarrow(a,b)}f(x,y)=f(a,b), \lim_{(x,y)\rightarrow(a,b)}g(x,y)=g(a,b)$$

 $\therefore \lim fg = f(a,b)g(a,b)$ (ご 積の極限)

よってfgは連続

(*2)fが連続,gが連続ならばf+gは連続

(証明)

$$(a,b)$$
で f,g が連続ならば
$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b),\lim_{(x,y)\to(a,b)}g(x,y)=g(a,b)$$
 $\therefore \lim f+g=f(a,b)+g(a,b)$ (ご 和の極限) よって $f+g$ は連続

よって
$$f+g$$
は連続
$$(*3) f$$
が連続かつ $f \neq 0$ ならば $\frac{1}{f}$ は連続
$$(証明)$$

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b), \ f(a,b) \neq 0$$

$$\therefore \lim \frac{1}{f} = \frac{1}{f(a,b)} \ (\because \ \text{商の極限})$$
 よって $\frac{1}{f}$ は連続

P.10 問 1.3 (0,0) で f は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y) = (0,0)$$
 で f は連続

(証明)

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} xy \frac{x^2-y^2}{x^2+y^2}$$

また
$$(x,y) \neq (0,0)$$
で $\frac{x^2 - y^2}{x^2 + y^2}$ は有界 (*1)

よって
$$\left| \frac{x^2 - y^2}{x^2 + y^2} \right| < m$$
なる m が存在する

また
$$\lim_{(x,y)\to(0,0)} xy = 0$$
 (: 積の極限)

よって
$$\lim_{(x,y)\to(0,0)} xy \frac{x^2 - y^2}{x^2 + y^2} = 0 = f(0,0)$$
 (*2)

よって
$$f(x,y)$$
は $(0,0)$ で連続

P.10 問 1.3 (x,y) ≠ (0,0) で fx は存在する '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_x は存在する

(証明)

 $(x,y) \neq (0,0)$ とする

このとぎ
$$f(x,y)=xy\frac{x^2-y^2}{x^2+y^2}$$

x,y は独立とする

$$\begin{split} f_x &= f'_{x \, \text{で微分}} \quad \text{(*1)} \\ &= (xy)' \frac{x^2 - y^2}{x^2 + y^2} + xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)' \quad (\because 積の微分) \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{(x^2 - y^2)'(x^2 + y^2) - (x^2 - y^2)(x^2 + y^2)'}{(x^2 + y^2)^2} \quad (\because x^2 + y^2 \neq 0$$
なので商の微分より)
$$&= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{4xy^2}{(x^2 + y^2)^2} \\ &= \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \end{split}$$

よって $(x,y) \neq (0,0)$ で f_x は存在する (∵ 公理 : f_x は存在 $\rightleftarrows f_x \in R$)

$$(*1)f', f_x$$
の定義より
$$f'(x,y) = \lim_{\substack{\Delta x \to 0}} \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x} = f_x(x,y)$$
 よって f' が存在するならば $f' = f_x$

P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_x は連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_x(x,y) = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \quad (知頁)$$

$$\lim_{(x,y)\to(a,b)}\frac{yx^4+4x^2y^3-y^5}{(x^2+y^2)^2}=\frac{ba^4+4a^2b^3-b^5}{(a^2+b^2)^2} \quad (\because (a^2+b^2)^2\neq 0 \text{ なので和、積、商の極限、また } \lim_{(x,y)\to(a,b)}x=a(*1))$$

よって任意の ϵ に対して $|(x,y)-(a,b)|<\delta$ ならば

$$\left|\frac{yx^4+4x^2y^3-y^5}{(x^2+y^2)^2}-\frac{ba^4+4a^2b^3-b^5}{(a^2+b^2)^2}\right|<\epsilon$$

また $0 < \delta' < |(a,b)|$ とすると

 $|(x,y)-(a,b)| < \delta' \ \text{ζ if } (x,y) \neq (0,0) \ \text{ζ is } \delta' \ \text{ζ if } (x,y) \neq (0,0) \ \text{ζ is } \delta' \ \text{ζ if } \delta' \ \text{ζ is } \delta' \ \text$

$$\therefore f_x(x,y) = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$

よって $|(x,y)-(a,b)| < min(\delta,\delta')$ ならば

$$\left| f_x(x,y) - \frac{ba^4 + 4a^2b^3 - b^5}{(a^2 + b^2)^2} \right| < \epsilon$$

よって
$$\lim_{(x,y) \to (a,b)} f_x(x,y) = \frac{ba^4 + 4a^2b^3 - b^5}{(a^2 + b^2)^2} = f_x(a,b)$$

よって $f_x(x,y)$ は $(a,b) \neq (0,0)$ で連続である

$$\begin{aligned} &(*1) \lim_{(x,y)\to(a,b)} x = a \\ &(証明) \\ & 任意の\epsilonに対して \\ &|(x,y)-(a,b)| < \epsilon ならば \\ &|x-a| < |(x,y)-(a,b)| < \epsilon \; (∵ 三角不等式) \\ & ∴ \lim_{(x,y)\to(a,b)} x = a \end{aligned}$$

P.10 問 1.3 (0,0) で fx は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f_x は連続

(証明)

$$(x,y) \neq (0,0)$$
 で

 f_x は 別頁 より

$$\begin{split} f_x(x,y) &= \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \\ &= y\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \end{split}$$

$$\frac{x^4+4x^2y^2-y^4}{x^4+2x^2y^2+y^4}$$
 は有界 $(*1)$ かつ $\lim_{(x,y)\to(0,0)}y=0$

よって
$$\lim_{(x,y)\to(0,0)} y \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} = 0$$
 (*2)

また f は (0,0) で連続 (別頁)

よって (0,0) で f_x は存在して

$$f_x(0,0) = \lim_{(x,y) o (0,0)} f_x(x,y) = 0$$
 (∵ 本文(1.5), (1.6) より)

よって (0,0) で f_x は連続

(*1)
$$\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$$
は有界
(証明) $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界でないと仮定する
任意の $m > 0$ に対して $\left| \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \right| > m$
 $\therefore \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ または $m < \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ である $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $x^4 + 4x^2y^2 - y^4 < -m(x^4 + 2x^2y^2 + y^4)$ $\therefore (1 + m)x^4 + (4 + 2m)x^2y^2 + (m - 1)y^4 < 0$ $m = 1$ とすると $2x^4 + 6x^2y^2 < 0$ これは矛盾 $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $x^4 + 4x^2y^2 - y^4 > m(x^4 + 2x^2y^2 + y^4)$ $0 > (m - 1)x^4 + (2m - 4)x^2y^2 + (m - 1)y^4$ $m = 2$ とすると $0 > x^4 + y^4$ これは矛盾 $x = 2x^4 + 4x^2y^2 - y^4$ は有界

P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_y は存在する

(証明)

 $(x,y) \neq (0,0)$ とする

このとぎ
$$f(x,y)=xyrac{x^2-y^2}{x^2+y^2}$$

x,y は独立とする

$$\begin{split} f_y &= f'_{y \in \text{微分}} \text{ (*1)} \\ &= (xy)' \frac{x^2 - y^2}{x^2 + y^2} + xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)' \quad (∵ 積の微分) \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{(x^2 - y^2)'(x^2 + y^2) - (x^2 - y^2)(x^2 + y^2)'}{(x^2 + y^2)^2} \quad (∵ x^2 + y^2 \neq 0$$
なので商の微分より) \\ &= \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \end{split}

よって $(x,y) \neq (0,0)$ で f_y は存在する (: 公理: f_y は存在 $\rightleftarrows f_y \in R$)

(*1)
$$f', f_y$$
の定義より
$$f'(x,y) = \lim_{\substack{\Delta y \to 0}} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y} = f_y(x,y)$$
 よって f' が存在するならば $f' = f_y$

P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_y は連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_y(x,y) = \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \quad (別頁)$$

$$\lim_{(x,y)\to(a,b)}\frac{x^5-4y^2x^3-4xy^4}{(x^2+y^2)^2}=\frac{a^5-4b^2a^3-4ab^4}{(a^2+b^2)^2} \quad (\because (a^2+b^2)^2\neq 0 \text{ なので和、積、商の極限、また } \lim_{(x,y)\to(a,b)}y=b)$$

よって任意の ϵ に対して $|(x,y)-(a,b)|<\delta$ ならば

$$\left|\frac{x^5-4y^2x^3-4xy^4}{(x^2+y^2)^2}-\frac{a^5-4b^2a^3-4ab^4}{(a^2+b^2)^2}\right|<\epsilon$$

また $0 < \delta' < |(a,b)|$ とすると

$$|(x,y)-(a,b)| < \delta' \ \text{told} \ (x,y) \neq (0,0) \ \text{cbs}$$

$$\therefore f_y(x,y) = \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2}$$

よって
$$|(x,y)-(a,b)| < min(\delta,\delta')$$
 ならば

$$\left| f_y(x,y) - \frac{a^5 - 4b^2a^3 - 4ab^4}{(a^2 + b^2)^2} \right| < \epsilon$$

よって
$$\lim_{(x,y) \to (a,b)} f_y(x,y) = \frac{a^5 - 4b^2a^3 - 4ab^4}{(a^2 + b^2)^2} = f_y(a,b)$$

よって $f_n(x,y)$ は $(a,b) \neq (0,0)$ で連続である

P.10 問 1.3 (0,0) で fy は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f_y は連続

(証明)

$$(x,y) \neq (0,0)$$
 で

 f_y は 別頁 より

$$\begin{split} f_y(x,y) &= \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \\ &= x\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \end{split}$$

$$\frac{x^4+4x^2y^2-y^4}{x^4+2x^2y^2+y^4}$$
 は有界 $\begin{picture}(*1)$ かつ $\lim_{(x,y)\to(0,0)}x=0$

よって
$$\lim_{(x,y)\to(0,0)} x \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} = 0$$
 (*2)

また f は (0,0) で連続 (別頁)

よって (0,0) で f_y は存在して

$$f_y(0,0) = \lim_{(x,y) o (0,0)} f_y(x,y) = 0$$
 (∵ 本文(1.5), (1.6) より)

よって (0,0) で f_u は連続

(*1)
$$\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$$
は有界
(証明) $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界でないと仮定する
任意の $m > 0$ に対して $\left| \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \right| > m$
 $\therefore \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ または $m < \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ である $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < 0$
 $\therefore (1 + m)x^4 + (-4 + 2m)x^2y^2 + (m - 1)y^4 < 0$
 $m = 1$ とすると $2x^4 < 0$
これは矛盾 $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < m + 1$ とすると $0 > 8x^2y^2 + 2y^4$ これは矛盾 $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界

$$(*2)f(x,y)$$
は有界, $\lim_{(x,y)\to(0,0)}g=0$ ならば $\lim fg=0$

P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f_{xy} は不連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_x = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \quad (知頁)$$

よって

$$\begin{split} f_{xy} &= \frac{(yx^4 + 4x^2y^3 - y^5)'(x^2 + y^2)^2 - (yx^4 + 4x^2y^3 - y^5)((x^2 + y^2)^2)'}{(x^2 + y^2)^4} \\ &= \frac{x^8 + 10x^6y^2 - 10x^2y^6 - y^8}{(x^2 + y^2)^4} \end{split}$$

$$(*1)x,y$$
は独立なので $f_{xy}=f_x'$
 $_{y$ で微分

また $(x^2 + y^2)^2 \neq 0$ なので和、積、商の微分公式より

経路
$$\begin{cases} x=0 \\ y=y \end{cases}$$
 に沿った $(x,y) \to (0,0)$ の極限は $\lim_{y\to 0} f_{xy}(0,y) = \lim_{y\to 0} -1 = -1$

経路
$$\left\{egin{aligned} x=x \\ y=0 \end{aligned} \right.$$
 に沿った $(x,y) o (0,0)$ の極限は $\lim_{x o 0} f_{xy}(x,0) = \lim_{x o 0} 1 = 1$

経路によって極限が異なるので f_{xy} の $(x,y) \rightarrow (0,0)$ の極限は存在しない

よって (0,0) で f_{xy} は連続ではない

P.11 数学の定理 1.1 f(x1,..,xm)-f(a1,..,xm)-(x1-a1)fx1(a)=o(|x-a|) '25 4.6

fはā の近傍で連続的微分可能ならば

$$\vec{x}\rightarrow\vec{a}$$
 で $f(\vec{x})-f(a_1,\ldots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})=o(|\vec{x}-\vec{a}|)$ である

(証明)

 x_1, \dots, x_m は独立で fは \vec{a} の近傍で連続的微分可能なので

 (a_1,\ldots,x_m) が \vec{a} の近傍ならば

f は区間 $[a_1,x_1]$ で連続、区間 (a_1,x_1) で x_1 で微分可能

よって平均値の定理より

$$\frac{f(\vec{x}) - f(a_1, \dots, x_m)}{x_1 - a_1} = f'(a_1 + k(x_1 - a_1), \dots, x_m), \ 0 < k < 1 \text{ なる } k(x_2, \dots, x_m) \text{ が存在する}$$

$$x_1,\dots,x_m$$
 は独立なので $f_{x_1}=f'_{x_1$ で微分

よって
$$\frac{f(\vec{x})-f(a_1,\ldots,x_m)}{x_1-a_1}=f_{x_1}(a_1+k(x_1-a_1),\ldots,x_m)\ldots(1)$$

また f_{x_1} は \vec{a} で連続なので

$$\lim_{\vec{x} \to \vec{a}} f_{x_1}(\vec{x}) = f_{x_1}(\vec{a})$$

よって任意の δ に対して

$$|\vec{x} - \vec{a}| < \epsilon$$
 ならば $|f_{x_*}(\vec{x}) - f_{x_*}(\vec{a})| < \delta$ なる ϵ が存在する

$$\vec{x}' = (a_1 + k(x_1 - a_1), \dots, x_m)$$
 とする

$$\begin{split} |\vec{x}' - \vec{a}| &= \sqrt{(a_1 + k(x_1 - a_1) - a_1)^2 + \dots + (x_m - a_m)^2} \\ &= \sqrt{k^2(x_1 - a_1)^2 + \dots + (x_m - a_m)^2} \\ &< |\vec{x} - \vec{a}| \quad (*1) \end{split}$$

$$(*1)k = k(x_2, ..., x_m)$$
であるが $0 < k < 1$ なので $k^2(x_1 - a_1)^2 < (x_1 - a_1)^2$

よって $|\vec{x}' - \vec{a}| < \epsilon$ なので $|f_{x_1}(\vec{x}') - f_{x_1}(\vec{a})| < \delta$

$$\therefore \lim_{\vec{x} \to \vec{d}} f_{x_1}(\vec{x}') = f_{x_1}(\vec{a})$$

$$\therefore \lim_{\vec{x} \to \vec{a}} f_{x_1}(a_1 + k(x_1 - a_1), \dots, x_m) = f_{x_1}(\vec{a})$$

$$\label{eq:continuous} \therefore \ \lim_{\vec{x} \to \vec{a}} \frac{f_{x_1}(\vec{x}) - f_{x_1}(a_1, \dots, x_m)}{x_1 - a_1} = f_{x_1}(\vec{a}) \quad (\because \ (1))$$

よって任意の δ に対して

$$|\vec{x}-\vec{a}|<\epsilon \text{ is lif}\left|\frac{f(\vec{x})-f(a_1,\ldots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})}{x_1-a_1}\right|<\delta$$

また $|\vec{x} - \vec{a}| \ge |x_1 - a_1|$ (: 三角不等式) なので

$$\left|\frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{|\vec{x} - \vec{a}|}\right| \leq \left|\frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{x_1 - a_1}\right| < \delta$$

よって

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{|\vec{x} - \vec{a}|} \right| = 0$$

よって $\vec{x} \rightarrow \vec{a}$ で

$$f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a}) = o(|\vec{x} - \vec{a}|)$$

(注)
$$\lim_{x_1 \to a_1} \frac{f(\vec{x}) - f(a_1,..,x_m)}{(x_1 - a_1)} = f_{x_1}(a_1,..,x_m)$$
 (*) から始めると $\lim_{x_1 \to a_1} \epsilon \lim_{\vec{x} \to \vec{a}} \epsilon \exp$ できなくて失敗する 平均値の定理を利用するとうまく $\lim_{\vec{x} \to \vec{a}} \epsilon$ 平均値の定理は \vec{a} 近傍での f の連続性と微分可能性を利用できるが (*)から始めると \vec{a} での連続性と微分可能性しか

利用できないからだと思われる

P.11 数学の定理 1.1 f(a1,x2..xm)-f(a1,a2..xm)-(x2-a2)fx2(a)=o(|x-a|) '25 5.17

fはā の近傍で連続的微分可能ならば

$$ec{x}
ightarrow ec{a}$$
 で $f(a_1, x_2, \ldots, x_m) - f(a_1, a_2, \ldots, x_m) - (x_2 - a_2) f_{x_2}(ec{a}) = o(|ec{x} - ec{a}|)$ である

(証明)

 x_1 の場合 (別頁) と同様に

$$\begin{split} \lim_{\vec{x}\to\vec{a}}\left|\frac{f(\vec{x})-f(x_1,a_2,\ldots,x_m)-(x_2-a_2)f_{x_2}(\vec{a})}{|\vec{x}-\vec{a}|}\right|=0 \end{split}$$
 The state of the content of the state of the content of the conten

$$g(x_1,\dots,x_m) = \frac{f(\vec{x}) - f(x_1,a_2,\dots,x_m) - (x_2 - a_2)f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|}$$
 and $\vec{x} = \vec{a}$

$$\lim_{\vec{x}\to\vec{a}}|g(x_1,\dots,x_m)|=0$$
なので

任意の
$$\epsilon > 0$$
 に対して $|\vec{x} - \vec{a}| < \delta$ ならば $|g(x_1, \dots, x_m)| < \epsilon$ である

ここで

$$\begin{split} |(a_1,x_2,\dots,x_m)-\vec{a}| &\leq |\vec{x}-\vec{a}| \quad (\because \, \Xi \mathsf{角不等式}) \\ &<\delta \end{split}$$

なので
$$|g(a_1,x_2,\dots,x_m)|<\epsilon$$
 である

$$\therefore \lim_{\vec{x} \to \vec{a}} |g(a_1, x_2, \dots, x_m)| = 0$$

$$\label{eq:continuous} \therefore \ \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|(a_1, x_2, \dots, x_m) - \vec{a}|} \right| = 0$$

ここで
$$|(a_1, x_2, ..., x_m) - \vec{a}| \le |\vec{x} - \vec{a}|$$
 (: 三角不等式) なので

$$\begin{split} &\left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| \\ & \leq \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|(a_1, x_2, \dots, x_m) - \vec{a}|} \right| \\ & \therefore \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| = 0 \quad (*1) \end{split}$$

 $(*1)|f| \le |g|, \lim g = 0$ ならば $\lim f = 0$

$$\ \, \dot{\cdots} \, \, f(a_1,x_2,\ldots,x_m) - f(a_1,a_2,\ldots,x_m) - (x_2-a_2) f_{x_2}(\vec{a}) = o(|\vec{x}-\vec{a}|)$$

P.11 数学の定理 1.1 f(x)=f(a)+ ∇ f(a)(x-a)+o(|x-a|) '25 4.6

fはā の近傍で連続的微分可能ならば

$$\vec{x} \rightarrow \vec{a}$$
 で $f(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a})(\vec{x} - \vec{a}) + o(|\vec{x} - \vec{a}|)$ である

(証明)

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(x_1, \dots, x_m) - f(a_1, \dots, x_m) - f_{x_1}(\vec{a})(x_1 - a_1)}{|\vec{x} - \vec{a}|} \right| = 0 \quad (\text{ND})$$

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, \dots, x_m) - f(a_1, a_2, \dots, x_m) - f_{x_2}(\vec{a})(x_2 - a_2)}{|\vec{x} - \vec{a}|} \right| = 0 \quad (\text{ND})$$

:

$$\lim_{\vec{x}\to\vec{a}} \left| \frac{f(a_1,\dots,a_{m-1},x_m) - f(a_1,\dots,a_m) - f_{x_m}(\vec{a})(x_m-a_m)}{|\vec{x}-\vec{a}|} \right| = 0 \quad (∵ x_1,x_2 \ \text{の場合と同様})$$

足し合わせて

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(\vec{x}) - f(\vec{a}) - f_{x_1}(\vec{a})(x_1 - a_1) - f_{x_2}(\vec{a})(x_2 - a_2) - \dots - f_{x_m}(\vec{a})(x_m - a_m)}{|\vec{x} - \vec{a}|} \right| = 0 \quad (*1)$$

(*1)
$$\lim |f| = 0$$
, $\lim |g| = 0$ ならば $\lim |f| + |g| = 0$ $|f + g| \le |f| + |g|$ (三角不等式) なので $\lim |f + g| = 0$

ここで

$$\begin{split} \vec{\nabla} f(\vec{a}) &= (f_{x_1}(\vec{a}), \dots, f_{x_m}(\vec{a})) \\ (\vec{x} - \vec{a}) &= (x_1 - a_1, \dots, x_m - a_m) \\ \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) &= f_{x_1}(\vec{a})(x_1 - a_1) + \dots + f_{x_m}(\vec{a})(x_m - a_m) \end{split}$$

なので

$$\lim_{\vec{x} \rightarrow \vec{a}} \left| \frac{f(\vec{x}) - f(\vec{a}) - \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a})}{|\vec{x} - \vec{a}|} \right| = 0$$

$$\therefore \ f(\vec{x}) - f(\vec{a}) - \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) = o(|\vec{x} - \vec{a}|) \quad (\because \ \text{付録} A \mathcal{O} o(\dots) \mathcal{O} 定義)$$

$$\therefore f(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) + o(|\vec{x} - \vec{a}|) \quad (\because f + h = o(\dots) \rightleftarrows f = -h + o(\dots)$$
と定義する)

P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8

ある開領域で $f(x_1,\cdots,x_m)$ が C^∞ 級ならば

その領域で n 階までの偏導関数は微分の順序によらない

(証明)

fの2階以上n階以下の偏導関数を考える

$$f_{x_{p_1}\dots x_{p_i}x_{p_i}\dots x_{p_k}}$$

fは C^{∞} 級なので

 $f_{x_{p_1}...x_{p_i}x_{p_i}}$ は存在し連続である

また $f_{x_{p_1}\dots x_{p_i}x_{p_i}}$ も存在し連続である

よって
$$f_{x_{p_1}\dots x_{p_i}x_{p_i}}=f_{x_{p_1}\dots x_{p_i}x_{p_i}}$$
 (: $f_{xy}=f_{yx}$ 別頁)

よって
$$f_{x_{p_1}...x_{p_s}x_{p_s}...x_{p_b}} = f_{x_{p_1}...x_{p_s}x_{p_s}...x_{p_b}}$$
 (1)

 p_1, \dots, p_k を昇順に並べたリストを q_1, \dots, q_k とする

(1)より x_{q_1} による偏微分を左隣りの変数の偏微分との入れ換えをくりかえして

$$f_{x_{p_1}...x_{p_k}} = f_{x_{q_1}...x_{p_k}}$$
 とする

 x_{q_1} と同様に x_{q_2} について

$$f_{x_{p_1}\dots x_{p_k}} = f_{x_{q_1}x_{q_2}\dots x_{p_k}}$$
 とする

これを繰り返して

$$f_{x_{p_1}\dots x_{p_k}}=f_{x_{q_1}\dots x_{q_k}}$$
 となる

 r_1, \dots, r_2 は p_1, \dots, p_2 を任意に並べ替えたリストとする。上と同様に

よって
$$f_{x_{r_1}\dots x_{r_k}}=f_{x_{p_1}\dots x_{p_k}}$$
 となる

よって n 階までの偏導関数は微分の順序によらない

P.12 数学の定理 1.2 fxy=fyx '25 4,8

(2変数の場合)

ある開領域で f_{xy}, f_{yx} が連続ならば $f_{xy} = f_{yx}$ である

(証明)

領域内の任意の点 (a,b),(x,y) とする

$$\Delta(x,y) = (f(x,y) - f(x,b)) - (f(a,y) - f(a,b))$$
 とする

$$F(x) = f(x,y) - f(x,b)$$
 とすると

$$\Delta(x,y) = F(x) - F(a)$$

領域内で f は連続なので xの区間[a,x] で f(x,y),f(x,b) は連続

よって F(x) は xの区間[a,x] で連続 (*1)

領域内で f は偏微分可能なので xの区間(a,x) で f(x,y),f(x,b) は x で微分可能

よって F(x) は xの区間(a,x) で x で微分可能 (*2)

よって平均値の定理より

$$\begin{split} \Delta(x,y) &= F(x) - F(a) \\ &= F'(a + (x-a)\theta_1)(x-a), \ 0 < \theta_1 < 1 \\ &= (f_x(a + (x-a)\theta_1, y) - f_x(a + (x-a)\theta_1, b))(x-a) \end{aligned} \tag{*3}$$

(*1)f,gが連続ならばf+gも連続

(*2)f,gが微分可能ならばf+gも微分可能

 $(*3) f_{xy}$ が存在するならばx,yは独立x,yが独立ならば $f_x = f'_{x \in \mathfrak{A} \cap \mathfrak{A}}$

領域内で f_x は連続かつ y で偏微分可能 (∵ f_{xy} が存在するので)

よって $f_x(a+(x-a)\theta_1,y)$ は yの区間[b,y] で連続かつ 区間(b,y) で y で微分可能

よって平均値の定理より

$$\begin{split} f_x(a+(x-a)\theta_1,y) - f_x(a+(x-a)\theta_1,b) \\ &= f_{xy}(a+(x-a)\theta_1,b+(y-b)\theta_2)(x-b), \ 0 < \theta_2 < 1 \quad \mbox{(*4)} \end{split}$$

(*4)x,yは独立なので

$$f_{xy} = f'_x$$
 yで微分

よって

$$\Delta(x,y) = f_{xy}(a+(x-a)\theta_1,b+(y-b)\theta_2)(x-a)(x-b)$$

$$x' = a + (x - a)\theta_1$$

$$y' = b + (y-b)\theta_2$$

とすると

$$\frac{\Delta(x,y)}{(x-a)(x-b)} = f_{xy}(x',y')$$

 f_{xy} は連続なので

$$\lim_{(x,y)\to(a,b)}f_{xy}(x,y)=f_{xy}(a,b)$$

よって任意の ϵ に対して

$$|(x,y)-(a,b)|<\delta$$
 ならば $|f_{xy}(x,y)-f_{xy}(a,b)|<\epsilon$

また

$$\begin{split} |(x',y')-(a,b)| &= \sqrt{(a+(x-a)\theta_1-a)^2+(b+(y-b)\theta_2-b)^2} \\ &= \sqrt{(x-a)^2\theta_1^2+(y-b)^2\theta_2^2} \\ &< |(x,y)-(a,b)| \quad (\because \ \ 0<\theta_1<1, \ 0<\theta_2<1) \end{split}$$

よって
$$|(x',y')-(a,b)|<\delta$$
 なので $|f_{xy}(x',y')-f_{xy}(a,b)|<\epsilon$

よって
$$\lim_{(x,y)\to(a,b)} f_{xy}(x',y') = f_{xy}(a,b)$$

よって
$$\lim_{(x,y)\to(a,b)} \frac{\Delta(x,y)}{(x-a)(y-b)} = f_{xy}(a,b) \quad (1)$$

 $\Delta(x,y)$ の右辺の順番をかえて

$$\Delta(x,y) = (f(x,y) - f(a,y)) - (f(x,b) - f(a,b))$$
 とする

$$G(y) = f(x,y) - f(a,y)$$
 とすると

$$\Delta(x,y) = G(y) - G(b)$$

f は領域で連続なので 区間[b,y] で f(x,y),f(a,y) は連続

よって G(y) は 区間[b,y] で連続 (:: f,gが連続ならばf+gは連続)

f は領域で偏微分可能なので 区間(b,y) で f(x,y),f(a,y) は y で微分可能

$$(∵ x, y$$
が独立なので $f_y = f'_y$

よって G(y) は 区間(b,y) で y で微分可能 (: (f+g)' = f' + g')

よって平均値の定理より

$$\begin{split} \Delta(x,y) &= G'(b+(y-b)\theta_3)(y-b), \ 0 < \theta_3 < 1 \\ &= (f_y(x,b+(y-b)\theta_3) - f_y(a,b+(y-b)\theta_3))(y-b) \quad (\because f_y = f'_y) \end{split}$$

領域内で f_y は連続かつx で偏微分可能なので

 $f_y(x,b+(y-b) heta_3)$ は 区間[a,x] で連続かつ 区間(a,x) で x で微分可能 ($\because x,y$ が独立ならば $f_{yx}=f_y'$) $_{x$ で微分

よって平均値の定理より

$$\Delta(x,y) = f_{ux}(a + (x-a)\theta_4, b + (y-b)\theta_3)(y-b)(x-a), \ 0 < \theta_4 < 1$$

$$x' = a + (x - a)\theta_4$$

$$y' = b + (y - b)\theta_3$$

とすると

$$\Delta(x,y) = f_{ux}(x',y')(y-b)(x-a)$$

よって
$$\frac{\Delta(x,y)}{(y-b)(x-a)} = f_{yx}(x',y')$$

 f_{ux} は連続なので

$$\lim_{(x,y)\to(a,b)} f_{yx}(x,y) = f_{yx}(a,b)$$

よって任意の ϵ に対して

$$|(x,y)-(a,b)|<\delta$$
 ならば $|f_{ux}(x,y)-f_{ux}(a,b)|<\epsilon$

また

$$\begin{split} |(x',y')-(a,b)| &= \sqrt{(a+(x-a)\theta_4-a)^2+(b+(y-b)\theta_3-b)^2} \\ &= \sqrt{(x-a)^2\theta_4^2+(y-b)^2\theta_3^2} \\ &< |(x,y)-(a,b)| \quad (\because \ 0<\theta_3<1,0<\theta_4<1) \end{split}$$

よって
$$|(x',y')-(a,b)|<\delta$$
 なので

$$|f_{ux}(x',y') - f_{ux}(a,b)| < \epsilon$$

よって
$$\lim_{(x,y)\to(a,b)} f_{yx}(x',y') = f_{yx}(a,b)$$

よって
$$\lim_{(x,y)\to(a,b)} \frac{\Delta(x,y)}{(y-b)(x-a)} = f_{yx}(a,b)$$
 (2)

$$f_{xy}(a,b) = f_{yx}(a,b)$$

a,b は任意なので

$$f_{xy}(x,y) = f_{yx}(x,y)$$

P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $x \neq 0$ でf(x)は連続

(証明)

xは連続 (*1)

よって
$$x \neq 0$$
 ならば $\frac{1}{x}$ は連続 (*2)

よって
$$x \neq 0$$
 ならば $\frac{1}{x^2}$ は連続 (*3)

よって
$$x \neq 0$$
 ならば $-\frac{1}{x^2}$ は連続 (*3)

よって
$$x \neq 0$$
 ならば $e^{-\frac{1}{x^2}}$ は連続 (*4)

$$0 < |x - a| < |a|$$
 ならば $x \neq 0$

(
$$: x = 0$$
 とすると $|a| < |a|$ となり矛盾)

$$e^{-\frac{1}{x^2}}$$
 は $x \neq 0$ で連続なので

任意の ϵ に対して

$$0<|x-a|<\delta$$
 ならば $\left|e^{-rac{1}{x^2}}-e^{-rac{1}{a^2}}
ight|<\epsilon$

よって
$$0 < |x-a| < min(|a|, \delta)$$
 ならば

$$x \neq 0$$
 なので $f(x) = e^{-\frac{1}{x^2}}$

$$\sharp \, \operatorname{tr} \left| e^{-\frac{1}{x^2}} - e^{-\frac{1}{a^2}} \right| < \epsilon$$

$$\therefore |f(x) - f(a)| < \epsilon$$

よって
$$\lim_{x\to a} f(x) = f(a)$$

よって $x \neq 0$ ならば f(x) は連続

$$(*1)$$
0 $<$ $|x-a|$ $< \epsilon$ ならば $|x-a|$ $< \epsilon$

$$\therefore \lim_{x \to a} x = a$$

$$(*2)\lim_{x \to a} f(x) = F, F \neq 0$$
 ならば $\lim_{x \to a} \frac{1}{f} = \frac{1}{F}$

(証明)

任意の
$$\epsilon$$
 に対し $0 < |x-a| < \delta$ ならば $|f(x) - F| < \epsilon \cdots (1)$

$$\epsilon = \frac{|F|}{2}$$
 とすると

$$0<|x-a|<\delta'$$
 ならば $|f(x)-F|<rac{|F|}{2}$

$$\therefore \ |F|-|f(x)|<\frac{|F|}{2}$$
 (∵ 三角不等式 $|F|-|f(x)|\leq |F-f(x)|)$

$$\therefore |f(x)| > \frac{|F|}{2}$$

$$\therefore \ \frac{1}{|f(x)|} < \frac{2}{|F|} \cdots (2)$$

(∵
$$F \neq 0$$
 なので $|F| > 0$, $0 < a < b$ ならば $\frac{1}{a} > \frac{1}{b}$)
任意の ϵ' に対して $\epsilon = \frac{1}{2}\epsilon'F^2$ とする $0 < |x-a| < \min(\delta,\delta')$ ならば $\left|\frac{1}{f(x)} - \frac{1}{F}\right| = \frac{|f(x) - F|}{|f(x)||F|} < \frac{2\epsilon}{F^2} = \epsilon'$ (∵ (1),(2)) よって $\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{F}$
(*3) $\lim_{x \to a} f(x) = F$, $\lim_{x \to a} g(x) = G$ ならば $\lim_{x \to a} fg = FG$ (証明) 任意の ϵ に対して $0 < |x-a| < \delta$ ならば $|f-F| < \epsilon$, $|g-G| < \epsilon$ … (1) $\epsilon = |F|$ とすると $0 < |x-a| < \delta'$ ならば $|f-F| < |F|$ ∴ $|f| - |F| < |F|$ (∵ 三角不等式 $|a| - |b| \le |a-b|$) ∴ $|f| < 2|F|$ … (2) 任意の ϵ' に対して $\epsilon = \frac{\epsilon'}{|G| + 2|F|}$ とする $0 < |x-a| < \min(\delta,\delta')$ ならば $|fg-FG| = |fg-FG| + |G|-FG|$ $= |f(g-G)| + |G(f-F)|$ (∵ 三角不等式 $|a+b| < |a| + |b|$) $= |f||g-G| + |G||f-F|$ $< 2|F|\epsilon + \epsilon|G|$ (∵ (1)(2)) $= \epsilon(2|F| + |G|) = \epsilon'$ よって $\lim_{x \to a} fg = FG$ (*4) a で $f(x)$ は連続, $f(a)$ で $g(x)$ は連続ならば a で $g(f(x))$ は連続 (証明) $\lim_{x \to f(a)} g(x) = g(f(a))$ なので 任意の ϵ に対して $0 < |x-f(a)| < \delta$ ならば $|g(x)-g(f(a))| < \epsilon$ $\lim_{x \to a} f(x) = f(a)$ なので $0 < |x-a| < \delta'$ ならば $|f(x)-f(a)| < \delta$ よって $0 < |x-a| < \delta'$ ならば $|g(f(x))-g(f(a))| < \epsilon$ よって $\lim_{x \to a} g(f(x)) = g(f(a))$ よって a で $g(f(x))$ は連続

P.12 補足 x=0 で f(x) は連続 '25 4.23

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$x = 0 \circ f(x)$$
 は連続

(証明)

$$\lim_{x \to 0} e^{\frac{1}{x^2}} = \infty \quad (*1)$$

$$\therefore \lim_{x \to 0} e^{-\frac{1}{x^2}} = 0 \quad (*4)$$

$$\therefore \lim_{x \to 0} f(x) = \lim_{x \to 0} e^{-\frac{1}{x^2}} \quad (\because x \neq 0)$$

$$= 0$$

$$= f(0)$$

よってx = 0でf(x)は連続

(*1)
$$e^{\frac{1}{x^2}} = 1 + \left(\frac{1}{x^2}\right) + \frac{\left(\frac{1}{x^2}\right)^2}{2} + \cdots$$
 ($\because e^x$ の定義)
$$> 1 + \frac{1}{x^2}$$
 $\lim_{x \to 0} \left(1 + \frac{1}{x^2}\right) = \infty$ (*2)
$$\therefore \lim_{x \to 0} e^{\frac{1}{x^2}} = \infty$$
 (*3)
$$(*2)任意の\epsilon > 1 に対して0 < |x| < \frac{1}{\sqrt{\epsilon - 1}}$$
 ならば
$$x^2 < \frac{1}{\epsilon - 1}$$
 ($\because 0 < a < b$ ならば $a^2 < b^2$)
$$\frac{1}{x^2} > \epsilon - 1$$
 ($\because 0 < a < b$ ならば $\frac{1}{a} > \frac{1}{b}$)
$$\therefore 1 + \frac{1}{x^2} > \epsilon$$

$$\therefore \lim_{x \to 0} 1 + \frac{1}{x^2} = \infty$$
 (*3) $g(x) > f(x), \lim_{x \to a} f(x) = \infty$ ならば $\lim_{x \to a} g(x) = \infty$ (証明) 任意の ϵ に対して $0 < |x - a| < \delta$ ならば $f(x) > \epsilon$
$$\therefore g(x) > \epsilon$$

$$\therefore \lim_{x \to a} f(x) = \infty$$
 ならば $\lim_{x \to a} \frac{1}{f(x)} = 0$ (証明) 任意の ϵ に対して $0 < |x - a| < \delta$ ならば $f(x) > \epsilon$
$$\therefore \frac{1}{f(x)} < \frac{1}{\epsilon}$$
 ($\because 0 < a < b$ ならば $\frac{1}{a} > \frac{1}{b}$) 任意の ϵ に対して $\epsilon = \frac{1}{\epsilon'}$ とする

P.12 補足 x ≠ 0 で C ∞ 級 '25 4.25

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $x \neq 0$ で C^{∞} 級

(証明)

 $x \neq 0$ とする

$$\begin{split} f^{(1)} &= \left(e^{-\frac{1}{x^2}}\right)' \\ &= \left(-\frac{1}{x^2}\right)' e^{-\frac{1}{x^2}} \quad (*1), (*2) \\ &= -\left(\frac{1}{x^2}\right)' e^{-\frac{1}{x^2}} \quad (∵ 積の微分) \\ &= -(-2)x^{-3}e^{-\frac{1}{x^2}} \quad (*3) \\ &= 2x^{-3}e^{-\frac{1}{x^2}} \quad \cdots (1) \end{split}$$

である。

n > 0 \mathcal{C}

$$f^{(n)} = \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) e^{-\frac{1}{x^2}}$$

と仮定する

$$\left(\sum_{\nu=1}^{m} k_{\nu} x^{-\nu} \right)' = \sum_{\nu=1}^{m} k_{\nu} (x^{-\nu})' \quad (: 和, 積の微分)$$

$$= \sum_{\nu=1}^{m} (-\nu k_{\nu}) x^{-\nu-1} \quad (*3) \cdots (2)$$

$$\begin{split} f^{(n+1)} &= \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right)' e^{-\frac{1}{x^2}} + \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) \left(e^{-\frac{1}{x^2}}\right)' \quad (\because 積の微分) \\ &= \sum_{\nu=1}^m (-\nu k_\nu) x^{-\nu-1} e^{-\frac{1}{x^2}} + \sum_{\nu=1}^m k_\nu x^{-\nu} 2x^{-3} e^{-\frac{1}{x^2}} \quad (\because (1), (2)) \\ &= \left(\sum_{\nu=1}^m -\nu k_\nu x^{-\nu-1} + \sum_{\nu=1}^m 2k_\nu x^{-\nu-3}\right) e^{-\frac{1}{x^2}} \\ &= \left(\sum_{i=2}^{m+1} -(i-1)k_{i-1}x^{-i} + \sum_{i=4}^{m+3} 2k_{i-3}x^{-i}\right) e^{-\frac{1}{x^2}} \\ &= \left((-1)k_1x^{-2} + (-2)k_2x^{-3} + \sum_{i=4}^{m+1} -(i-1)k_{i-1}x^{-i} + \sum_{i=4}^{m+1} 2k_{i-3}x^{-i} + 2k_{m-1}x^{-(m+1)} + 2k_mx^{-(m+3)}\right) e^{-\frac{1}{x^2}} \\ &= \left((-1)k_1x^{-2} + (-2)k_2x^{-3} + \sum_{i=4}^{m+1} (-(i-1)k_{i-1} + 2k_{i-3})x^{-i} + 2k_{m-1}x^{-(m+1)} + 2k_mx^{-(m+3)}\right) e^{-\frac{1}{x^2}} \end{split}$$

ここで

$$p_i = \begin{cases} 0 & (i=1) \\ -(i-1)k_{i-1} & (i=2,3) \\ -(i-1)k_{i-1} + 2k_{i-3} & (i=4,\dots,m+1) \\ 2k_{i-3} & (i=m+2,m+3) \end{cases}$$

$$s = m + 3$$

とする

$$f^{(n+1)} = \left(\sum_{i=1}^s p_i x^{-i}\right) e^{-1/x^2}$$

よって、 $x \neq 0, n > 0$ において

$$f^{(n)} = \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) e^{-\frac{1}{x^2}}$$
 The second of the second content of

すべての n で $f^{(n)}$ は存在するので f は C^{∞} 級である

$$g'(x), f'(g(x))$$
が存在するなら

$$f(g(x))' = g'(x)f'(g(x))$$

$$(*2)(e^x)' = e^x$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (∵ e^x の定義)

$$\begin{split} &\sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)' = (1)' + \sum_{n=1}^{\infty} \left(\frac{x^n}{n!}\right)' \\ &= \sum_{n=1}^{\infty} n \frac{x^{n-1}}{n!} \ (*2.1) \\ &= \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} \end{split}$$

$$=\sum_{n=0}^{\infty}\frac{x^n}{n!}\ (*2.2)$$

$$= e^x (: e^x$$
の定義)

ここで任意のxに対して

 $-A \le x \le A, A > 0$ なる区間を考える

$$\left|\frac{x^{\nu}}{\nu!}\right| \leq \frac{A^{\nu}}{\nu!}, \nu = 0, 1, 2, \dots$$
 である

また
$$\sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!} = e^a \ (\because e^a$$
の定義)

なので
$$\sum_{\nu=0}^{\infty} rac{x^{
u}}{
u!}$$
は区間 $[-A,A]$ で一様収束する

(: 定理:ある区間で $|a_n(x)| \leq C_n$ なる定数 C_n があって

$$\sum^{\infty} C_n が収束するならば \sum^{\infty} a_n は - 様収束する)$$

よって
$$(e^x)' = e^x$$

(: 定理:無限級数が収束し各項の導関数が連続で項別微分が 一様収束するならば無限級数の導関数は項別微分に等しい)

$$(*2.1)(1)' = 0$$

$$n > 0$$
ならば $x^n = nx^{n-1}$ (*3)

$$(kf(x))' = kf'(x)$$
 (: 積の微分)

P.12 補足 x=0 で C ∞ 級 '25 5.20

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

x=0 で C^{∞} 級

(証明)

 $x \neq 0$ \mathcal{C}

 $f^{(n)}$ は 別頁 より

$$\begin{split} f^{(n)} &= \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) e^{-\frac{1}{x^2}} \\ &= \sum_{\nu=1}^m k_\nu x^{-\nu} e^{-\frac{1}{x^2}} \end{split}$$

$$\lim_{x \to 0} x^{-\nu} e^{-\frac{1}{x^2}} = 0 \quad (*1) \ \text{to} \ \mathcal{O} \ \mathcal{O}$$

$$\lim_{x \to 0} f^{(n)}(x) = 0 \quad (∵和、積の極限)$$

x=0 で f は連続 (∵ 別紙)

かつ
$$\lim_{x\to 0} f^{(1)}(x) = 0$$
 なので

$$f^{(1)}(0)=0$$
 (∵ $p.7,(1.5),(1.6)$ a で連続, $\lim_{x \to a} f'(x)$ が存在するなら $\lim_{x \to a} f'(x)=f'(a)$)

$$f^{(n)}(0) = 0$$
 と仮定する

$$\lim_{x \to 0} f^{(n)}(x) = 0 = f^{(n)}(0)$$

よって
$$0$$
で $f^{(n)}(x)$ は連続

かつ
$$\lim_{x\to 0} f^{(n+1)}(x) = 0$$
 なので

$$f^{(n+1)}(0) = 0$$
 (: p.7, (1,5), (1.6))

よって任意の
$$n$$
で $f^{(n)}(0) = 0$

よって
$$x=0$$
 で f は C^{∞} 級

$$(*1)e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!} = 1 + y + \frac{1}{2}y^2 + \dots$$
 なので
$$e^{\frac{1}{x^2}} = 1 + x^{-2} + \frac{1}{2}x^{-4} + \dots$$

$$2n\nu \geq 2(n-1)$$
 とする
$$|x^{\nu}e^{\frac{1}{x^2}}||x^{\nu}|(1+x^{-2}+\dots+\frac{1}{n!}x^{-2n})$$

$$= |x^{\nu}| + |x^{\nu-2}| + \dots + \frac{1}{n!}|v^{\nu-2n}|$$

$$\nu, \nu - 2, \dots, \nu - 2(n-1) \geq 0$$
 むので
$$\lim |x^{\nu}| = 0, \dots, \lim |x^{\nu-2(n-1)}| = 0 \ or \ 1$$

$$\nu - 2n < 0$$
 なので
$$\lim_{x \to 0} |x^{\nu-2n}| = \infty$$

$$\begin{split} & \therefore \lim_{x \to 0} |x^{\nu}| + \dots + \frac{1}{n!} |x^{\nu-2n}| = \infty \ (∵ 和の極限) \\ & \therefore \lim_{x \to 0} \frac{1}{|x^{\nu}| + \dots + \frac{1}{n!} |x^{\nu-2n}|} = 0 \\ & \frac{1}{|x^{\nu}e^{\frac{1}{x^2}}|} < \frac{1}{|x^{\nu}| + \dots + \frac{1}{n!} |x^{\nu-2n}|} なので \\ & \lim_{x \to 0} \frac{1}{|x^{\nu}e^{\frac{1}{x^2}}|} = 0 \\ & \therefore \lim_{x \to 0} \frac{1}{x^{\nu}e^{\frac{1}{x^2}}} = 0 \end{split}$$

P.12 補足 x=0 で C ∞ 級であるが解析的でない '25 5.21

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

x=0 で C^{∞} 級であるが解析的でない

(証明)

x = 0 での f(x) のテーラー級数を T(x) とする

$$T(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$

$$f^{(n)}(0) = 0$$
 (: 別紙) なので $T(0) = 0$

$$a \neq 0$$
 とする $f(a) \neq 0$, $T(a) = 0$ なので

$$T(a) \neq f(a)$$

よって
$$x \neq 0$$
 ならば $f(x) \neq T(x)$

よって
$$x=0$$
 の近傍で f はテーラー級数と一致しない

よって x=0 の近傍で f はべき級数で表すことができない

(∵ 定理:
$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 ならば $\sum_{n=0}^{\infty} c_n x^n$ はテーラー級数である)

よって x=0 の近傍で f は解析的でない

P.12 補足 収束するテーラー級数の部分和が f(x) の近似にならない例 '25 6.9

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

x=0 を中心とした f(x) のテーラー級数 T(x) とする

T(x) の収束半径は ∞ よって任意のx でテーラー級数は収束する。

このとき、 $x \neq 0$ でテーラー級数の部分和の次数をいくら上げても部分和が f(x) の近づくことはない

(証明)

x = 0 での f(x) のテーラー級数を T(x) とする

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

$$f^{(n)}(0)=0$$
 (:別紙)なので $T(x)=0$

すべての x について T(x) は収束するので、収束半径は $R_f = \infty$

 $|1| < R_f$ なので T(1) は収束して T(1) = 0

$$\sharp \, \digamma \, f(1) = e^{-\frac{1}{1^2}} = e^{-1}$$

よって T(1) の部分和の次数を上げたとき部分和が近づくのは 0 である。 e^{-1} には近づかない

収束半径内にあることは、テーラー級数 T(x) が元の関数 f(x) に一致することの十分条件ではない

テーラーの定理の剰余項が 0 に近づくならばテーラー級数と関数は一致する

この場合、剰余項は

$$R_n = \frac{f^{(n)}(c)}{n!} 1^n, \ 0 < c < 1$$

$$f^{(1)}(x) = 2x^{-3}e^{-\frac{1}{x^2}}$$

$$f^{(n)}(x)=\Big(\sum_{\nu=1}^m k_\nu x^{-\nu}\Big)e^{-\frac{1}{x^2}}$$
 (: 別紙)

となる。

 $n \to 0$ で $R_n \to 0$ の筈であるが、証明?

P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $x \neq 0$ で f(x) は解析的

(証明)

x は a を中心とするべき級数で表される (*1)

$$x = \sum_{n=0}^{\infty} a_n (x-a)^n, \quad a_n = \begin{cases} a & (n=0) \\ 1 & (n=1) \\ 0 & (n>1) \end{cases}$$

収束半径は ∞

$$\begin{split} (*1)F(x) &= \sum_{n=0}^{\infty} a_n (x-a)^n, a_n = \begin{cases} a & (n=0) \\ 1 & (n=1) \end{cases} \text{ e.g. } \\ F(x) &= a_0 (x-a)^0 + a_1 (x-a)^1 + a_2 (x-a)^2 + \dots \\ &= a + (x-a) + 0 \\ &= x \end{split}$$

任意のxで収束するので、収束半径は ∞

$$\frac{1}{r}$$
 は $a \neq 0$ を中心とするべき級数で表される (*2)

$$\frac{1}{x} = \sum_{n=0}^{\infty} b_n (x-a)^n, \quad b_n = (-1)^n \frac{1}{a^{n+1}}$$

収束半径は |a|

 $\frac{1}{x^2}$ は $a \neq 0$ を中心とするべき級数で表される (*3)

$$\frac{1}{x^2} = \sum_{n=0}^{\infty} c_n (x-a)^n, \quad c_n = (-1)^n \frac{n+1}{a^{n+2}}$$

級数は絶対収束する。

$$\frac{1}{x} = \sum_{n=0}^{\infty} b_n (x-a)^n, b_n = (-1)^n \frac{1}{a^{n+1}} \text{ \angle} \Rightarrow \delta$$
級数は絶対収束する。 $\text{$\angle$} \Rightarrow \sigma$

$$= \frac{1}{x^2} = \frac{1}{x} \frac{1}{x} = \sum_{n=0}^{\infty} b_n (x-a)^n \sum_{n=0}^{\infty} b_n (x-a)^n$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} b_k (x-a)^k b_{n-k} (x-a)^{n-k} \dots (1) \left(\begin{array}{c} \vdots \text{ & aby up } \Rightarrow \delta \text{ awy } \\ \exists \tau = \tau = \tau \text{ & aby up } \Rightarrow \delta \text{ awy } \\ \exists \tau = \tau = \tau \text{ & aby up } \Rightarrow \delta \text{ & aby up$$

(もしくは、収束するべき級数は絶対収束するのでこの級数は絶対収束する)

 $-\frac{1}{x^2}$ は $a \neq 0$ を中心とするべき級数で表される (*4)

 $|x - a| < |a| \$ \$\text{\$\text{\$a\$} | \ \$\text{\$a\$} | \ \$\text{\$\text{\$b\$}} | \ \$\text{\$\text{\$t\$}}\$

$$-\frac{1}{x^2} = \sum_{n=0}^{\infty} s_n (x-a)^n, \quad s_n = (-1)^{n+1} \frac{n+1}{a^{n+2}}$$

よって(1)よりこの級数は絶対収束する

級数は絶対収束する。

$$\begin{split} & \frac{1}{x^2} = \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{a^{n+2}} (x-a)^n \\ & \text{よって} \\ & - \frac{1}{x^2} = (-1) \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{a^{n+2}} (x-a)^n \\ & = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{n+1}{a^{n+2}} (x-a)^n \ (\because 絶対収束する級数は線型性をもつ) \\ & \text{また} \sum_{n=0}^{\infty} \left| (-1)^{n+1} \frac{n+1}{a^{n+2}} (x-a)^n \right| = \sum_{n=0}^{\infty} \left| (-1)^n \frac{n+1}{a^{n+2}} (x-a)^n \right| \\ & \frac{1}{x^2} \mathcal{O} 級数が絶対収束するので右辺は収束する \\ & \text{よって} - \frac{1}{x^2} \mathcal{O} 級数は絶対収束する \\ & \text{よって} - \frac{1}{x^2} \mathcal{O} 級数は絶対収束する \end{split}$$

 e^x は 0 を中心とするべき級数で表される

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (∵ e^x の定義)

すべてのxについて収束する(*5)よって収束半径は ∞

$$\left| \frac{x^n}{n!} \middle| について \right| \frac{x^{n+1}}{\left| \frac{x^{n+1}}{(n+1)!} \middle|} = \lim_{n \to \infty} \left| \frac{x}{n+1} \middle| = 0 \right|$$
 よってダランベールの判定法より $\sum \left| \frac{x^n}{n!} \middle|$ は収束する

最後に $e^{-\frac{1}{x^2}}$ のべき級数を求める。

$$e^x=\sum_{n=0}^\infty a_n x^n,\ a_n=rac{1}{n!}$$
 とする
$$a
eq 0,\ |x-a|<|a|$$
 とする
$$-rac{1}{x^2}=\sum_{m=0}^\infty s_m (x-a)^n,\ s_m=(-1)^{m+1}rac{m+1}{a^{m+2}}$$
 とする

べき級数の合成 (別紙) より

$$\begin{split} \sum_{m=0}^{\infty} |s_m(x-a)^m| &< \infty \ \text{tid} \\ e^{-\frac{1}{x^2}} &= \sum_{p=0}^{\infty} d_p (x-p)^p \ , \quad d_p = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k_1 + \dots + k_n = p} s_{k_1} \dots s_{k_n} \end{split}$$
 ార్జు చ

$$\begin{split} d_p &= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k_1 + \dots + k_n = p} (-1)^{k_1 + 1} \frac{k_1 + 1}{a^{k_1 + 2}} \dots (-1)^{k_n + 1} \frac{k_n + 1}{a^{k_n + 2}} \\ &= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k_1 + \dots + k_n = p} (-1)^{p + n} \frac{(k_1 + 1) \dots (k_n + 1)}{a^{p + 2n}} \end{split}$$

$$=\sum_{n=0}^{\infty}\frac{1}{n!}\Big(\frac{-1}{a}\Big)^{p}\Big(\frac{-1}{a^{2}}\Big)^{n}\sum_{k_{1}+\dots+k_{n}=p}(k_{1}+1)\dots(k_{n}+1)\;(\because 有限級数の線型性)$$

$$a \neq 0, \; |x-a| < |a|$$
 ならば $-\frac{1}{x^2} = \sum_{m=0}^\infty s_m (x-a)^n$ は絶対収束する

よって
$$\sum_{m=0}^{\infty} |s_m(x-a)^n|$$
 は収束する

よって
$$\sum_{m=0}^{\infty} |s_m(x-a)^n| < \infty$$

よって $a \neq 0$, |x-a| < |a| ならば

$$\begin{split} e^{-\frac{1}{x^2}} &= \sum_{p=0}^{\infty} d_p (x-a)^p \\ d_p &= \sum_{n=0}^{\infty} \frac{1}{n!} \Big(\frac{-1}{a}\Big)^p \Big(\frac{-1}{a^2}\Big)^n \sum_{k_1 + \dots + k_n = p} (k_1 + 1) \dots (k_n + 1) \end{split}$$

 $e^{-\frac{1}{x^2}}$ は $a \neq 0$ を中心とするべき級数であらわされる。よって解析的である。

 $a\neq 0,\;|x-a|<|a|$ において $-\frac{1}{x^2}$ と e^x の級数は絶対収束するので、コーシー積の $e^{-\frac{1}{x^2}}$ の級数も絶対収束する (注) 「収束半径=一番近い特異点までの距離」は実関数では成立しないので簡単に収束半径 |a| とは言えない $x\neq 0$ で $f(x)=e^{-\frac{1}{x^2}}$ なので $x\neq 0$ で f(x) は解析的である。

最初の3項を求めてみる

$$e^{-\frac{1}{x^2}} \approx e^{-\frac{1}{a^2}} + \frac{1}{a^2}e^{-\frac{1}{a^2}} + \frac{1}{a^3}e^{-\frac{1}{a^2}} + \left(\frac{2}{a^6} - \frac{3}{a^4}\right)e^{-\frac{1}{a^2}}$$

P.12 補足 べき級数の合成 '25 6.1

$$|x-a| < R_f ならば f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n とする$$

$$|x-b| < R_g$$
 ならば $g(x) = \sum_{m=0}^{\infty} b_m (x-a)^m$ とする

$$R_f > 0, \, R_g > 0$$
 とする。このとき

$$|x-b| < R_g \text{ his } \sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f, \ c_m = \begin{cases} b_0-a & (m=0) \\ b_m & (m>0) \end{cases}$$
 'క ఈ కో

f(g(x)) は b を中心としてべき級数であらわされる

(証明)

$$|x-b| < R_a$$
 とする

$$g(x) = \sum_{m=0}^{\infty} b_m (x-a)^m$$
 とする

$$g(x)-a=\sum_{m=0}^{\infty}b_m(x-b)^m-a=\sum_{m=0}^{\infty}c_m(x-b)^m$$
 , $c_m=egin{cases}b_0-a&(m=0)\\b_m&(m>0) \end{cases}$ なる c_m が存在する

$$(∵ \sum_{m=0}^{\infty} b_m (x-b)^m$$
 は収束するので線型性をもつ)

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f \ とする$$

$$\left. \therefore \, \left| \, \sum_{m=0}^{\infty} c_m (x-b)^m \right| < R_f \, \left(\because \, |a+b| \leq |a| + |b| \right) \right.$$

$$\therefore |g(x) - a| < R_f$$

$$\begin{split} & \because f(g(x)) = \sum_{n=0}^{\infty} a_n (g(x) - a)^n \ (\because g(x) \text{ld} f \text{O} \text{収束半径内にあるので}) \\ & = \sum_{n=0}^{\infty} a_n \Big(\sum_{m=0}^{\infty} c_m (x - b)^m \Big)^n \\ & = \sum_{n=0}^{\infty} a_n \sum_{p=0}^{\infty} \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} (x - a)^p \ (\because \text{別紙} : \text{べき級数のべき}) \\ & = \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} (x - a)^p \ \left(\begin{array}{c} \because \text{別紙} : \text{べき級数のべき} \text{は絶対収束する} \\ \text{また収束する級数は線型性をもつ} \end{array} \right) \\ & = \sum_{p=0}^{\infty} \sum_{n=0}^{\infty} a_n \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} (x - a)^p \ \left(\begin{array}{c} \because \sum_{n=0}^{\infty} |c_n (x - b)^m| < R_f \text{ならば} \\ \text{この二重級数は絶対収束する} (*1) \\ \text{よって和の順番を変えてもよい} \end{array} \right) \\ & = \sum_{p=0}^{\infty} \left(\sum_{n=0}^{\infty} a_n \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} \right) (x - a)^p \ \left(\begin{array}{c} \because \text{二重級数は絶対収束する} (*1) \\ \text{よって内側の級数も絶対収束する} \\ \text{収束する級数は線型性を持つ} \end{array} \right) \\ & = \sum_{n=0}^{\infty} d_p (x - a)^p \end{split}$$

$$d_p = \sum_{n=0}^{\infty} a_n \sum_{k_1+\dots+k_n=p} c_{k_1}\dots c_{k_n}$$
 とする

ここで 上の f(g(x)) をあらわす二重級数は絶対収束する (*1) よって内側の級数も絶対収束する。

よって
$$\sum_{n=0}^{\infty}\left|a_n\sum_{k_1+\dots+k_n=p}c_{k_1}\dots c_{k_n}(x-a)^p\right|$$
 は収束する

$$\therefore \left(\sum |a_n \sum c_{k_1} \dots c_{k_n}|\right) |x-a|^p$$
 は収束する (∵ 収束する級数の線型性)

$$R_f > 0$$
 なので $|x' - a| < R_f, x' \neq a$ なる x' が存在する

$$\left(\sum |a_n\sum c_{k_1}\dots c_{k_n}|\right)|x'-a|^p=w$$
 とすると

$$\label{eq:constraint} \therefore \ \sum |a_n \sum c_{k_1} \dots c_{k_n}| = \frac{w}{|x'-a|^p} \in \mathbb{R}$$

よって d_p は絶対収束する

よって
$$|x-b| < R_g, \sum_{m=0}^\infty \left| c_m (x-b)^m \right| < R_f$$
 ならば $f(g(x))$ は a を中心とするべき級数であらわされる

なお、
$$\sum_{m=0}^{\infty}\left|c_m(x-b)^m\right|< R_f$$
 は a を中心とする区間である $(*2)$

$$\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}a_n\sum_{k_1+\dots+k_n=p}c_{k_1}\dots c_{k_n}(x-a)^p$$
 は絶対収束する

(証明)

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f \ としているので$$

$$\therefore \left| \sum_{m=0}^{\infty} |c_m (x-b)^m| \right| < R_f$$

$$\left| \cdot \cdot \cdot \right| \sum_{m=0}^{\infty} |c_m(x-b)^m| + a - a \left| < R_f \right|$$

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| + a$$
は f の収束半径内にあるので f のべき級数は絶対収束する

よって
$$\sum_{n=0}^\infty \sum_{p=0}^\infty a_n \sum_{k_1+\dots+k_n=p} c_{k_1}\dots c_{k_n} (x-b)^p$$
 は絶対収束する

(*1.1)

$$\Big(\sum_{m=0}^\infty |c_m(x-b)^m|\Big)^n = \sum_{p=0}^\infty \sum_{k_1+\dots+k_n=p} |c_{k_1}|\dots|c_{k_n}| |x-b|^p$$

(証明)

 $|c_m| = d_m$ とする

 $|x-b| \ge 0$ のとき

|x - b| = x - b

よって

$$\begin{split} \Big(\sum_{m=0}^{\infty}|c_m(x-b)^m|\Big)^n &= \Big(\sum_{m=0}^{\infty}d_m(x-b)^m\Big)^n \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}d_{k_1}\ldots d_{k_n}(x-b)^p \quad (∵ 別紙:べき級数のべき) \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}|c_{k_1}|\ldots|c_{k_n}||x-b|^p \end{split}$$

 $|x-b| < 0 \ \mathcal{O} \ge 3$

$$y = -x, b = -a$$
 とする $|x - b| = -x + b = y - a$

よって

$$\begin{split} \Big(\sum_{m=0}^{\infty}|c_m(x-b)^m|\Big)^n &= \Big(\sum_{m=0}^{\infty}d_m(y-a)^m\Big)^n \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}d_{k_1}\ldots d_{k_n}(y-a)^p \quad (∵ 別紙:べき級数のべき) \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}|c_{k_1}|\ldots|c_{k_n}||x-b|^p \end{split}$$

よって
$$\Big(\sum_{m=0}^\infty |c_m(x-b)^m|\Big)^n = \sum_{p=0}^\infty \sum_{k_1+\dots+k_n=p} |c_{k_1}|\dots|c_{k_n}| |x-b|^p$$

 $\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f$ が存在すると仮定しているので右辺の級数は存在する。すなわち収束する。

(*2)

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f$$
は b を中心とする区間である

(証明)

$$A = \left\{x \; | \; \sum_{r=0}^{\infty} |c_m(x-b)^m| < R_f \right\} \; とする$$

 $\inf A = \sup A$ の場合

$$\sum_{m=0}^{\infty} |c_m(b-b)^m| = 0 < R_f \text{ なので } b \in A \text{ である}.$$

よって
$$b = \inf A = \sup A$$

よって A は a を中心とする半径 0 の閉区間

 $\inf A < \sup A, \sup A = \infty$ の場合

 $\inf A = -\infty \ (*2.1)$

 $[-\infty, \infty] \subset A \ (*2.2)$

 $\therefore A = \mathbb{R}$

よって A は b を中心とする半径 ∞ の開区間

 $\inf A < \sup A, \sup A < \infty$ の場合

 $\inf A > -\infty$ (*2.1)

$$b < \frac{\inf A + \sup A}{2}$$
 と仮定する

b を中心とした $\inf A$ の対称点 $2b - \inf A$ を考える

仮定より $2b - \inf A < \sup A$

 $\sup A$ は上限なので

 $2b - \inf A < x < \sup A, x \in A$ なる x が存在する

b を中心とした x の対称点 2b-x について

 $2b - \inf A < x$ より $2b - x < \inf A$ である

よって $2b-x \notin A$

よって (*2.1) より $x \notin A$

 $x \in A$ なのでこれは矛盾

よって
$$b \not< \frac{\inf A + \sup A}{2}$$

同様に $b \geqslant \frac{\inf A + \sup A}{2}$

$$\therefore b = \frac{\inf A + \sup A}{2}$$

また (*2.2) より $[\inf A,\sup A]\subset A$ または $(\inf A,\sup A)\subset A$

よって A は a を中心とする半径 $\frac{\inf A + \sup A}{2}$ の開区間または閉区間である

よって A は a を中心とする区間である。

(*2.1)

b を中心とした x の対称点を x' とする

$$x'=x-2(x-b)=2b-x$$
 である

$$\begin{split} \sum |c_m(x'-b)^m| &= \sum |c_m(2b-x-b)^m| \\ &= \sum |c_m(-x+b)^m| \\ &= \sum |c_m(x-b)^m| \end{split}$$

 $\therefore x \in A \text{ } \text{constant} x' \in A \text{ } \text{constant}$

よって $x \notin A$ ならば $x' \notin A$ である

(*2.2)

$$|x-b|<|x_1-b|$$

$$\therefore \ \sum |c_m(x-b)^m| < \sum |c_m(x_1-b)^m|$$

よって
$$x_1 \in A$$
 ならば $x \in A$...(1)

a を中心とした x_1 の対称点を x_1^\prime とする

$$x_1' < x < b$$
 とすると

$$2b - x_1^\prime > 2b - x > b$$

$$\therefore x_1 > 2b-x > b \quad (\because x_1' = 2b-x_1)$$

x は 2b-x の b を中心とした対称点なので

(*2.1) より
$$x \in A$$

よって
$$x_1 \in A$$
 ならば $[x_1', x_1] \subset A$

P.12 補足 べき級数のべき '25 6.2

$$|x-a| < R_f$$
 ならば $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ とする

 $|x-a| < R_f$ ならば $(f(x))^m, \ m \ge 1$ は a を中心としたべき級数であらわされる

(証明)

 $|x-a| < R_f$ とする

$$\begin{split} (f(x))^2 &= \sum_{n=0}^\infty a_n (x-a)^n \sum_{n=0}^\infty a_n (x-a)^n \dots (1) \\ &= \sum_{n=0}^\infty \sum_{k=0}^n a_k (x-a)^k a_{n-k} (x-a)^{n-k} \quad \left(\begin{array}{c} \ddots \\ & \sum a_n (x-a)^n \\ & & \text{よって級数の積はコーシー積であらわされる} \end{array} \right) \\ &= \sum_{n=0}^\infty \left(\sum_{k=0}^n a_k a_{n-k} \right) (x-a)^n \quad (\because 有限級数の線型性) \\ &= \sum_{n=0}^\infty \left(\sum_{k_1+k_2=n} a_{k_1} a_{k_2} \right) (x-a)^n \quad (*1) \end{split}$$

 $|x-a| < R_f$ ならば (1) のどちらの級数も絶対収束する。よってコーシー積も絶対収束する。よって $(f(x))^2$ をあらわす級数は絶対収束する

$$c_n^m = \sum_{k_1+\dots+k_m=n} a_{k_1}\dots a_{k_m}, \ m\geq 2$$
 とする

$$(f(x))^2 = \sum_{n=0}^{\infty} c_n^2 (x-a)^n$$
 ొందిన

$$(f(x))^m = \sum_{n=0}^{\infty} c_n^m (x-a)^n$$
 と仮定する

 $|x-a| < R_f$ で絶対収束すると仮定する

よって $m \ge 2$ ならば

$$(f(x))^m = \sum_{n=0}^{\infty} c_n^m (x-a)^n \ , \quad \ c_n^m = \sum_{k_1 + \dots + k_m = n} a_{k_1} \dots a_{k_m} \ \text{TBS}$$

(2) のどちらの級数も絶対収束するので、コーシー積も絶対収束する。

よって $|x-a| < R_f$ ならば絶対収束する

$$m=1$$
 ならば $(f(x))^1=\sum_{n=0}^{\infty}a_n(x-a)^n$

よって $m \ge 1$ で $(f(x))^m$ は a を中心とするべき級数であらわされる

(*1)
$$A = \{(k, n - k) \mid n \ge k \ge 0\}$$
 $B = \{(k_1, k_2) \mid k_1 + k_2 = n, \ k_1, k_2 \ge 0\}$ とする
 $(a, b) \in A$ とする
 $b = n - a$
 $\therefore a + b = n$
また $n \ge a \ge 0$
 $\therefore b \ge 0$
 $\therefore (a, b) \in B$
 $(a, b) \in B$ とする
 $a + b = n$
 $\therefore b = n - a$
 $b \ge 0$ より
 $n - a \ge 0$
 $n \ge a$
 $a \ge 0$ なので
 $n \ge a \ge 0$
 $a \ge 0$

P.12 問題 1.4 x^2 e^y の偏微分 '25 4.16

$$f(x,y) = x^2 e^y, \quad (x,y) \in \mathbb{R}^2$$

fの偏微分と連続性

(i)

$$f_x = 2xe^y$$
 (*1)
 $f_y = x^2e^y$ (*1)
 $f_{xx} = 2e^y$
 $f_{yy} = x^2e^y$
 $f_{xy} = 2xe^y$
 $f_{yx} = 2xe^y$
 $f_{y(0,0)} = 0, f_x(1,1) = 2e$
 $f_y(0,0) = 0, f_y(1,1) = e$

$$\begin{split} f_{xx}(0,0) &= 2, \ f_{xx}(1,1) = 2e \\ f_{yy}(0,0) &= 0, \ f_{yy}(1,1) = e \end{split}$$

$$f_{xy}(0,0)=0,\,f_{xy}(1,1)=2e$$

$$f_{yx}(0,0)=0,\,f_{yx}(1,1)=2e$$

(ii)

$$x^2$$
 は x で連続よって (x,y) で連続 $(*2)$

$$e^y$$
 は x で連続よって (x,y) で連続 $(*2)$

よって
$$f(x,y) = x^2 e^y$$
 は (x,y) で連続 (*3)

同様に

$$f_x = 2xe^y$$
 は連続

$$f_y = x^2 e^y$$
 は連続

$$f_{xx} = 2e^y$$
 は連続

$$f_{yy} = x^2 e^y$$
 は連続

$$f_{xy} = 2xe^y$$
 は連続

$$f_{yx} = 2xe^y$$
 は連続

よって
$$f$$
 は C^2 級

(iii)

$$f_{xy}=2xe^y, f_{yx}=2xe^y$$
 なので $f_{xy}=f_{yx}$

(*1)
$$x$$
と y が独立ならば $f_x = f'_{x \in \mathfrak{A} \mathcal{H}}$
(*2) $f(x)$ が x で連続ならば $f(x)$ は (x,y) で連続である
(証明)
 x で連続なので $f(x) = \lim_{\Delta x \to 0} f(x + \Delta x)$
よって任意の ϵ に対して
 $0 < |\Delta x| < \delta$ ならば
 $|f(x + \Delta x) - f(x)| < \epsilon$
 $|(\Delta x, \Delta y)| < \delta$ ならば

P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22

$$Z = f(x,y) = x^2 e^y$$
 とする

$$Z = g(x,\eta) = x^2 e^{\eta + x}$$
 とする。

$$\left(\frac{\partial Z}{\partial x}\right)_y \neq \left(\frac{\partial Z}{\partial x}\right)_\eta$$

(証明)

$$Z = f(x,y) = x^2 e^y$$
 とする。 x,y は独立変数とする

 $\eta = y - x$ とする。 η は独立変数とする。y は従属変数である

$${f Z} = f(x,y_1) = f(x,\eta+x) = x^2 e^{\eta+x} = g(x,\eta)$$
 とする

$$\begin{split} \left(\frac{\partial Z}{\partial x}\right)_y &= 2xe^y \\ \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_\eta &= 2xe^{\eta+x} + x^2e^{\eta+x} \\ &= (2x+x^2)e^{\eta+x} \\ &= (2x+x^2)e^{\mathbf{y}} \end{split}$$

$$\therefore \left(\frac{\partial Z}{\partial x}\right)_y \neq \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_\eta$$

P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13

 x, y, ξ, η は独立変数とする

$$\boldsymbol{x}(\xi,\eta),\,\boldsymbol{y}(\xi,\eta)$$
 とする

$$\mathbf{Z}(\xi, \eta) = \mathbf{Z}(\mathbf{x}, \mathbf{y})$$
 とする

$$\left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \Big|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \Big|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} \cdots (1.20)$$

$$\left(\frac{\partial \mathbf{Z}}{\partial \eta}\right)_{\xi} = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \Big|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)_{\xi} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \Big|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)_{\xi} \cdots (1.21)$$

(証明)

 x, y, ξ, η は独立変数とする

 $\boldsymbol{x}(\xi,\eta),\,\boldsymbol{y}(\xi,\eta)$ とする

$$\mathbf{Z}(\xi, \eta) = \mathbf{Z}(\mathbf{x}, \mathbf{y}) \$$
 とする

$$\begin{split} & \therefore \left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{Z}}{d\xi} \quad \left(\because \xi, \eta \text{ が独立なので}\left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{Z}}{d\xi} \right) \\ & = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{x}}{d\xi} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{y}}{d\xi} \quad \left(\because \text{ 問題1.7}\right) \\ & = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} \quad \left(\because \xi, \eta \text{ が独立なので}\left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{x}}{d\xi}, \quad \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{y}}{d\xi} \right) \end{split}$$

$$\begin{split} & \div \left(\frac{\partial \mathbf{Z}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{Z}}{d\eta} \quad \left(\div \xi, \eta \text{ か独立なので} \left(\frac{\partial \mathbf{Z}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{Z}}{d\eta} \right) \\ & = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{x}}{d\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{y}}{d\eta} \quad (\div \text{ 問題1.7}) \\ & = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)_{\xi} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)_{\xi} \quad \left(\div \xi, \eta \text{ が独立なので} \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{x}}{d\eta}, \quad \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{y}}{d\eta} \right) \end{split}$$

P.15 問題 1.6(iii) 偏微分の連鎖律 '25 6.13

$$f(x,y) = (x+1)(x-y+1)$$
 とする

$$\eta = x - y$$
 とする

$$g(x,\eta) = (x+1)(\eta+1)$$
 とする

このとき

$$\left(\frac{\partial g}{\partial x}\right)_{\eta} = x - y + 1 \, \cdots (1.18) \, \, \mathrm{C}\,\mathrm{b}\,\mathrm{S}$$

(証明)

 x, y, η は独立変数とする

$$f(x,y) = (x+1)(x-y+1)$$
 とする

$$\mathbf{x}(x,\eta) = x, \ \mathbf{y}(x,\eta) = x - \eta$$
 とする

$$g(x,\eta)=f(\mathbf{x}(x,\eta),\mathbf{y}(x,\eta))=(x+1)(\eta+1)$$
 とする

(1.20) より

$$\begin{split} \left(\frac{\partial g}{\partial x}\right)_{\eta} &= \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial x}\right)_{\eta} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial x}\right)_{\eta} \\ &= (2\mathbf{x} - \mathbf{y} + 2) \cdot 1 + (-\mathbf{x} - 1) \cdot 1 \quad \left(\begin{array}{c} \ddots \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} = 2\mathbf{x} - \mathbf{y} + 1, \ \left(\frac{\partial \mathbf{x}}{\partial x}\right)_{\eta} = 1 \\ \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} = -\mathbf{x} - 1, \ \left(\frac{\partial \mathbf{y}}{\partial x}\right)_{\eta} = 1 \\ &= \mathbf{x} - \mathbf{y} + 1 \end{split}$$

P.16 問題 1.8 偏微分でつまづいたこと '25 6.25

偏微分でつまづいて色々考えたことのメモ

1.

x, y は独立変数であるかつ x, y は従属変数であるというのは矛盾である

(証明)

従属変数ならば独立変数ではないので、独立変数であるかつ独立変数でないとなり排中律に反するので矛盾である

2.

x, y を独立変数かつ従属変数と仮定すると矛盾する例

(例)

x, y は独立変数とする (1)

f(x,y) = x + y とする (2)

f(0,1) = 1

 $x = \xi, y = \xi$ とする。 ξ は独立変数とする (3)

 $\therefore f(x,y) = f(\xi,\xi) = 2\xi$

 $x = y = \xi$ なので x = 0, y = 1 である ξ は存在しない

 $\therefore f(0,1) = 未定義$

 $f(0,1) \neq f(0,1)$

これは等号の反射律に反するので矛盾である

よって仮定(1),(2),(3)は矛盾している

なにが矛盾しているかというと、(3) において x と y を従属変数と仮定しているので 1. より (1),(3) は矛盾しているなお (2) は (1),(3) と矛盾していない

3.

f(x,y) の偏微分 $\left(\frac{\partial f}{\partial x}\right)_y$ が定義できるならば x,y は独立変数である

(説明)

偏微分の定義に明記されていないが偏微分が定義されるのは、x,yが独立変数のときに限ると明記すべきだと思う

なぜなら、もし x,y が独立変数でなければ偏微分の定義に使われる $f(x+\Delta x,y)$ が定義できるとは限らないから

x,y が 従属変数であっても、 $f(x+\Delta x,y)$ が定義できることもあるが、一般的な偏微分の定義にそれを反映するメリットはない

なのでx, yが独立変数のときに限り偏微分が定義されるとする

4.

偏微分の連鎖律は矛盾している

(証明)

関数 f(x,y) を考える

$$x = x(\xi, \eta), y = y(\xi, \eta)$$
 とする (1)

偏微分の連鎖律は

$$\left(rac{\partial f}{\partial \xi}
ight)_{\eta} = \left(rac{\partial f}{\partial x}
ight)_{y} \left(rac{\partial x}{\partial \xi}
ight)_{\eta} + \left(rac{\partial f}{\partial y}
ight)_{x} \left(rac{\partial y}{\partial \xi}
ight)_{\eta}$$
 である

 $\left(\frac{\partial f}{\partial x}\right)_{y}$ が定義されているので 3. より x,y は独立変数である

 $\left(\frac{\partial f}{\partial \xi}\right)_n$ が定義されているので 3. より ξ,η は独立変数である

よって(1) よりx,y は従属変数である

よって x,y は独立変数かつ従属変数となり 1. よりこれは矛盾である。

5.

矛盾しない偏微分の連鎖律

x,yを独立変数かつ従属変数とするのを避けるために、従属変数 x_1,y_1 を追加すればよい

f(x,y) を考える。x,y は独立変数とする

$$x_1 = x_1(\xi, \eta), y_1 = y_1(\xi, \eta)$$
 とする

 ξ, η は独立変数、 x_1, y_1 は従属変数とする

偏微分の連鎖律は

$$\left(\frac{\partial g}{\partial \xi}\right)_{\eta} = \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=x_1\\y=y_1}} \left(\frac{\partial x_1}{\partial \xi}\right)_{\eta} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=x_1\\y=y_1}} \left(\frac{\partial y_1}{\partial \xi}\right)_{\eta}$$

となる

ただし
$$\left(\frac{\partial f}{\partial x}\right)_y \bigg|_{\substack{x=x_1\\y=y_1}}$$
 は 偏微分 $\left(\frac{\partial f}{\partial x}\right)_y$ の x,y に x_1,y_1 を代入したものである。以下同様

6.

とはいえ、実際の教科書ではx,yを独立変数としつつ、途中でx,yを従属変数とすることはよくあるこの場合、独立変数のx,yと従属変数のx,yを脳内で区別しないといけない

(注) 脳内で区別というのは普通の言い方をすると文脈で区別するということである

(例)

関数 f(x, y) を考える。x, y は独立変数とする

 $\mathbf{x} = \mathbf{x}(\xi, \eta), \ \mathbf{y} = \mathbf{y}(\xi, \eta)$ とする。

 ξ, η は独立変数とする。x, y は従属変数である

 $g(\xi, \eta) = f(\mathbf{x}, \mathbf{y}) \$ とする

偏微分の連鎖律は

$$\left(\frac{\partial g}{\partial \xi}\right)_{\eta} = \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=x\\y=y}} \left(\frac{\partial x}{\partial \xi}\right)_{\eta} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=x\\y=y}} \left(\frac{\partial y}{\partial \xi}\right)_{\eta}$$
 である

という感じで脳内で区別する

わたしにはハードルが高いので無理せず x_1,y_1 と書き直して区別すればいいかなと思う

7.

異なる関数を同じ関数とすることは矛盾である

(例)

$$Z = f(x,y) = x + y$$
 とする。 x,y は独立変数とする

$$Z = g(\xi, \eta) = \xi - \eta$$
 とする。 ξ, η は独立変数とする

$$Z = f(1,1) = 2$$

$$Z = g(1,1) = 0$$

$$\therefore Z = 2 = 0$$

よって矛盾

8.

熱力学では

同じ変数を独立変数としかつ従属変数とし、かつ

異なる関数を同じ関数とすることもよくある

矛盾 アンド 矛盾 でわたしら素人は悶絶してしまう

(例)

$$Z = f(x, y) = x^2 e^y$$
 とする。

$$Z = f(x,y) = f(x,\eta + x) = x^2 e^{\eta + x} = g(x,\eta)$$
 とする。

$$Z$$
 は x,y の関数なので $Z=Z(x,y)=f(x,y)$ である

$$Z$$
 は x, η の関数なので $Z = Z(x, \eta) = q(x, \eta)$ である

$$\left(\frac{\partial Z}{\partial x}\right)_y = 2xe^y$$

偏微分が定義できるので、3. より x,y は独立変数である

$$\left(\frac{\partial Z}{\partial x}\right)_n = (2x + x^2)e^{\eta + x}$$

偏微分が定義できるので、3. より x, η は独立変数である

$$Z = Z(1,1) = f(1,1) = e$$

$$Z = Z(1,1) = g(1,1) = e^2$$

$$\therefore Z(1,1) \neq Z(1,1)$$

となり矛盾する

また x, y, η は独立変数で、 $g(x, \eta)$ は y によらないので

$$\left(\frac{\partial Z}{\partial x}\right)_y = \left(\frac{\partial g}{\partial x}\right)_y = (2x + x^2)e^{\eta + x}$$

$$\left(\frac{\partial Z}{\partial x}\right)_y = (2x + x^2)e^y$$

$$\therefore \left(\frac{\partial Z}{\partial x}\right)_y \neq \left(\frac{\partial Z}{\partial x}\right)_y$$

となり矛盾する

9.

上の例で矛盾が生じないように変数、関数を区別する

上の例では2つの異なる関数を同じ関数 Z と仮定しているところが矛盾しているので

関数 Z_1, Z_2 として区別する

また変数 y を独立変数かつ従属変数と仮定しているのが矛盾しているので

y は独立変数とし、 y_1 は 従属変数として区別する

(例)

 $Z_1 = f(x,y) = x^2 e^y$ とする。x,y は独立変数とする

 $\eta = y_1 - x$ とする。 η は独立変数とする、 y_1 は従属変数である

$$Z_2 = f(x, y_1) = f(x, \eta + x) = x^2 e^{\eta + x} = g(x, \eta)$$
 とする。

 Z_1 は x, y の関数なので $Z_1 = Z_1(x, y) = f(x, y)$ である

 Z_2 は x,η の関数なので $Z_2=Z_2(x,\eta)=g(x,\eta)$ である

$$\left(\frac{\partial Z_1}{\partial x}\right)_y = 2xe^y$$

$$\left(\frac{\partial Z_2}{\partial x}\right)_n = (2x + x^2)e^{\eta + x}$$

$$Z_1 = Z_1(1,1) = f(1,1) = e$$

$$Z_2 = Z_2(1,1) = g(1,1) = e^2$$

$$\therefore Z_1(1,1) \neq Z_2(1,1)$$

となり矛盾しない

また、 x,y,η は独立変数で、 $g(x,\eta)$ は y によらないので

$$\left(\frac{\partial Z_2}{\partial x}\right)_y = \left(\frac{\partial g}{\partial x}\right)_y = (2x + x^2)e^{\eta + x}$$

$$\eta = y_1 - x$$
 なので

$$\left(\frac{\partial Z_2}{\partial x}\right)_y = (2x+x^2)e^{y_1}$$

$$\therefore \left(\frac{\partial Z_1}{\partial x}\right)_y \neq \left(\frac{\partial Z_2}{\partial x}\right)_y$$

となり矛盾しない

10.

上の例の変数、関数の区別を脳内で行う

(例)

 $Z = f(x, y) = x^2 e^y$ とする。x, y は独立変数とする

 $\eta = y - x$ とする。 η は独立変数とする、y は従属変数である

$$\mathbf{Z} = f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}, \mathbf{\eta} + \mathbf{x}) = \mathbf{x}^2 e^{\mathbf{\eta} + \mathbf{x}} = g(\mathbf{x}, \mathbf{\eta})$$
 とする。

Z は x, y の関数なので Z = Z(x, y) = f(x, y) である

Z は x, η の関数なので $Z = Z(x, \eta) = g(x, \eta)$ である

$$\left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} = 2\mathbf{x}e^{\mathbf{y}}$$

$$\left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{n}} = (2\mathbf{x} + \mathbf{x}^2)e^{\mathbf{\eta} + \mathbf{x}}$$

$$\mathbf{Z} = \mathbf{Z}(1,1) = f(1,1) = e$$

$$\mathbf{Z} = \mathbf{Z}(1,1) = q(1,1) = e^2$$

$$\ \, \boldsymbol{\overset{\boldsymbol{Z}}{\cdot}} \ \, \boldsymbol{\overset{\boldsymbol{Z}}{\boldsymbol{Z}}}(1,1) \neq \boldsymbol{\overset{\boldsymbol{Z}}{\boldsymbol{Z}}}(1,1)$$

となり矛盾しない

また x, y, η は独立変数で、 $g(x, \eta)$ は y によらないので

$$\left(\frac{\partial \mathbf{Z}}{\partial \boldsymbol{x}}\right)_{\boldsymbol{y}} = \left(\frac{\partial g}{\partial \boldsymbol{x}}\right)_{\boldsymbol{y}} = (2\boldsymbol{x} + \boldsymbol{x}^2)e^{\boldsymbol{\eta} + \boldsymbol{x}}$$

 $\eta = y - x$ なので

$$\left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} = (2\mathbf{x} + \mathbf{x}^2)e^{\mathbf{y}}$$

$$\therefore \left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} \neq \left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}}$$

となり矛盾しない

11.

座標変換においても 1. の矛盾はおこる

(例)

$$f(x,y)=x^2+y^2$$
 とする。 x,y は独立変数とする(1)
$$x=x(r,\theta)=r\cos\theta$$

$$y=y(r,\theta)=r\sin\theta$$
 とする。 r,θ は独立変数とする(2)
$$f(x,y)=f(x(r,\theta),y(r,\theta))=r^2=g(r,\theta)$$
 とする

こんな感じの座標変換はよくあるが、

- (1) において x,y は独立変数と仮定しかつ
- (2) において x,y は従属変数と仮定しているので 1. の矛盾になっている

矛盾しないためには独立変数 x,y と 従属変数 x_1,y_1 を区別する

$$f(x,y)=x^2+y^2$$
 とする。 x,y は独立変数とする
$$x_1=x_1(r,\theta)=r\cos\theta$$

$$y_1=y_1(r,\theta)=r\sin\theta$$
 とする。 r,θ は独立変数とする。
$$f(x_1,y_1)=f(x_1(r,\theta),y_1(r,\theta))=r^2=g(r,\theta)$$

としなければならない。

 x_1, y_1 を追加しない場合は、脳内で独立変数 x, y と 従属変数 x, y を区別する

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^2 + \mathbf{y}^2$$
 とする。 \mathbf{x}, \mathbf{y} は独立変数とする $\mathbf{x} = \mathbf{x}(r, \theta) = r \cos \theta$ $\mathbf{y} = \mathbf{y}(r, \theta) = r \sin \theta$ とする。 r, θ は独立変数とする。 $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}(r, \theta), \mathbf{y}(r, \theta)) = r^2 = g(r, \theta)$ とする

12.

ラグランジアンから運動方程式を導くときは

従属変数をあとから独立変数にするということをおこなう

このときもある変数を独立変数かつ従属変数とする矛盾 1. と

別の関数を同じ関数とする矛盾 7. はおこっている

(例)

$$x=x(t)$$
 $\dot{x}=\dot{x}(t)$ とする。 t は独立変数とする (1) ラグランジアンは $L=\dot{x}^2-x^2$ とする 運動方程式は
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}}\right)_x - \left(\frac{\partial L}{\partial x}\right)_{\dot{x}} = 0$$
 より (2)

という感じでラグランジアンから運動方程式を得るが、

(1) より x, \dot{x} は従属変数である

$$(2)$$
 より $\left(\frac{\partial L}{\partial \dot{x}}\right)_x$ と $\left(\frac{\partial L}{\partial x}\right)_{\dot{x}}$ が定義されているので 3. より $x,~\dot{x}$ は独立変数である

よってx, \dot{x} は従属変数かつ独立変数となり 1. より矛盾である

また L の変数が明記されていないため L は $L(x,\dot{x},t)$ かもしれないし L(x,t) かもしれないし L(t) かもしれない。もし L(t) であるならば

(2) において L を x,\dot{x} の関数 $L(x,\dot{x})$ であると仮定しているので

異なる関数 L(t) と $L(x,\dot{x})$ を同じ関数 L としていることになり 7. より矛盾する

矛盾しないようにするには、従属変数 x,\dot{x} と 独立変数 x_1,x_2 を区別し

さらに 関数 L と 関数 L_1 を区別する

$$x=x(t)$$
 $\dot{x}=\dot{x}(t)$ とする。 t は独立変数とする ラグランジアンは $L=\dot{x}^2-x^2$ とする $L_1(x_1,x_2)=x_2^2-x_1^2$ とする。 x_1,x_2 は独立変数とする 運動方程式は $\frac{d}{dt}\Big(\frac{\partial L_1}{\partial x_2}\Big)_{\substack{x_1=x\\x_2=\dot{x}}}-\Big(\frac{\partial L_1}{\partial x_1}\Big)_{\substack{x_2=x\\x_2=\dot{x}}}\Big|_{\substack{x_1=x\\x_2=\dot{x}}}=0$ より $\ddot{x}-x=0$

こうすると矛盾はおこらない。

従属変数 x,\dot{x} と 独立変数 x,\dot{x} を脳内で区別し

さらに関数 L と 関数 L を脳内で区別するならば

$$egin{align*} & oldsymbol{x} = oldsymbol{x}(t) \\ & \dot{oldsymbol{x}} = \dot{oldsymbol{x}}(t) \ \mbox{とする。} t \ \mbox{は独立変数とする} \\ & oldsymbol{J} & oldsymbol{J} & oldsymbol{z} = \dot{oldsymbol{x}}^2 - oldsymbol{x}^2 \ \mbox{とする。} oldsymbol{x}, \dot{oldsymbol{x}} \ \mbox{は独立変数とする} \\ & oldsymbol{\mathbb{Z}} & oldsymbol{\mathbb{Z}} & oldsymbol{z} \\ & oldsymbol{\mathbb{Z}} & oldsymbol{\Delta} & oldsymbol{L} \\ & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{z} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{x} & oldsymbol{z} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{x} & oldsymbol{z} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{z} & oldsymbol{x} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{z} & oldsymbol{x} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{x} & oldsymbol{z} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{x} & oldsymbol{z} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} \\ & \dot{oldsymbol{x}} & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} & oldsymbol{x} \\ & \dot{oldsymbol{x}} & oldsymbol{x} &$$

となる。

第2章