THE 18.821 MATHEMATICS PROJECT LAB REPORT [PROOFS]

JONATHAN ALLEN

1. Theorems

1.1. Notation.

t: Time

l: Path length

s: Speed

 a_t : Tangential acceleration a_c : Centripetal acceleration

 \vec{x} : Position

 \vec{v} : Velocity

 \vec{a} : Acceleration

2. Coordinates

2.1. Scalar Calculus.

$$(1) s = \frac{dl}{dt}$$

(2)
$$a_t = \frac{ds}{dt}$$

(3)

2.2. Vector Calculus.

(4)
$$\mathbf{x} = r\hat{\mathbf{r}}$$

(5)
$$\vec{\boldsymbol{v}} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\phi}\hat{\boldsymbol{\phi}}$$

(6)
$$\vec{a} = \left(\ddot{r} - r\dot{\phi}^2\right)\hat{r} + \frac{1}{r}\frac{d}{dt}\left(r^2\dot{\phi}\right)\hat{\phi}$$

Date: September 25, 2013.

2.3. Relations.

$$(7) l = \int_{t=0}^{T} ||\vec{\boldsymbol{v}}|| dt$$

$$(8) s = \vec{\boldsymbol{v}}$$

(9)
$$a_t = \|\vec{a}\| \frac{\vec{v}}{\|\vec{v}\|}$$

3. Traveling Between Points

Definition 3.1. A path $\gamma : \mathbb{R} \to \mathbb{R}^2$ is a function which maps some time t to a position $\gamma(t) \in \mathbb{R}^2$. The path is defined from time t = 0 until the end time of the path, denoted as $T_f(\gamma)$.

Definition 3.2. A valid path $\gamma : \mathbb{R} \to \mathbb{R}^2$ for some point mass p and conditions \mathbb{C} is some path which at all times t such that $0 \le t \le T_f(\gamma)$, all conditions in \mathbb{C} are satisfied.

Definition 3.3. A valid targetted path $\gamma : \mathbb{R} \to \mathbb{R}^2$ for some point mass p, conditions \mathbb{C} , starting point $\vec{x_1}$, and ending point $\vec{x_2}$ is a valid path where $\gamma(t) = \vec{x_1}$ and $\gamma(T_f(\gamma)) = \vec{x_2}$. In other words, it is a valid path which starts at $\vec{x_1}$ and ends at $\vec{x_2}$.

Definition 3.4. A fastest path $\hat{\gamma}: \mathbb{R} \to \mathbb{R}^2$ for a particular point mass p, a starting point $\vec{x_1}$, a destination point $\vec{x_2}$, and some set of conditions C is a valid targetted path $\hat{\gamma}$ such that $T_f(\hat{\gamma}) \leq T_f(\gamma)$ for all valid targetted paths γ with the same p, $\vec{x_1}$, $\vec{x_2}$, and C.

Theorem 3.5. Given points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ and a point mass p whose initial position is (x_1, y_1) which moves with acceleration bounded by \bar{a} , the fastest path $\hat{\gamma}(t)$ which p can trace from (x_1, y_1) to (x_2, y_2) follows the straight line where all coordinates (x, y) on the straight line are given by:

(10)
$$y = \frac{y_2 - y_1}{x_2 - x_1} x + y_1$$

Proof. Let's transform the problem. We can reset our coordinate axes so that (x_1, y_1) is set to the origin and (x_2, y_2) is on the x-axis. In this new coordinate system, we have transformed the following:

$$(11) (x_1, y_1) \to (0, 0)$$

$$(12) (x_2, y_2) \to (x_2', 0)$$

For convenience of notation, we will now refer to x_2' as x_2 .

Now let us examine the particle's motion in the x direction. Let $a_t(t)$ be the tangential acceleration at time t in the x direction. Then we

can obtain the speed of the particle s(t) at time t in the x direction like so:

(13)
$$s(t) = \int_0^t a_t(t_1)dt_1$$

To find the distance d(t) travelled up to time t in the x direction, we can use the relation:

$$(14) d(t) = \int_0^t s(t_2)dt_2$$

(15)
$$= \int_0^t \int_0^t a_t(t_1) dt_1 dt_2$$

Recall that the acceleration of the point mass p is bounded by \bar{a} . This means that $a_t(t) \leq \bar{a}$ for all t. Therefore, we see:

$$(16) d(t) \leq \int_0^t \int_0^t \bar{a} dt_1 dt_2$$

$$= \frac{\bar{a}t^2}{2}$$

Thus, in order to travel a distance of $d(T_f) = x_2$, it needs to be the case that $T_f \ge \sqrt{\frac{2x_2}{\bar{a}}}$. Moreover, equality holds if and only if $a_t(t) = \bar{a}$ for all $t \in [0, T_f(\gamma)]$.

If the point mass travels for time $t < \sqrt{\frac{2x_2}{\bar{a}}}$, then it is impossible for the point mass to reach $(x_2,0)$ when starting at (0,0). This is because p cannot reach $(x_2,0)$ in the x direction when $t < \sqrt{\frac{2x_2}{\bar{a}}}$ and any acceleration in the y direction would not enable this either.

This means that the fastest path is completed in time $T_f(\hat{\gamma}) = \sqrt{\frac{2x_2}{\bar{a}}}$. Let us examine the path taken by the point mass p on this fastest path. Recall that $a_t(t) = \bar{a}$ for all t along the fastest path. This means that there was no centripetal acceleration $|a_c| = 0$. In other words, the point mass never turned on its way to reaching the destination point. The only way this could have happened is if it travelled along the x axis in a straight line.

Now, we have seen that the fastest path in the transformed coordinates travels exactly on the x axis so that y=0 anywhere along the fastest path. Notice, however, that the x axis in the transformed coordinates is given exactly by the following line:

(18)
$$y = \frac{y_2 - y_1}{x_2 - x_1} x + y_1$$

Thus, we see that the fastest path in the original coordinates follows the above equation, which is what we wanted to show. \Box

Corollary 3.6. The fastest path between two points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ is unique.

References

[1] http://en.wikipedia.org/wiki/Polar_coordinate_system