Lista 13

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X	Х	Х	Х	Х				Х	Х	Х		Х	Х	

Zadanie 1

Załóżmy, że G jest planarny.

Skoro jest planarny to możemy narysować go jako graf płaski (tak, że żadne dwie krawędzie na rysunku się nie przecinają).

Wybierzmy dowolny wierzchołek v, a następnie krawędź łączącą v z v' – e. Teraz chcemy ściągnąć v do v'.

Wiemy, że żadna z krawędzi, która jest incydenta do v nie przecina się z inną. Możemy zatem wybrać krawędź e' "równoległą" do e (taką, że patrząc na rysunek nie istnieje żadna inna krawędź wychodząca z v pomiędzy e i e'.). Bez straty ogólności, przyjmijmy, że znajduje się ona na lewo od krawędzi e na rysunku. Przedłużmy ją do wierzchołka v' tak, aby nie przechodziła przez wierzchołek v.

Za każdym razem wybieramy kolejną krawędź po lewej stronie względem poprzedniej. Każdą z nich przedłużamy tak, aby odchylić się od poprzedniej i zakończyć w wierzchołku v'.

W ten sposób otrzymamy graf płaski $G \cdot e$. Zatem $G \cdot e$ jest planarny.

Graf Petersona

Załóżmy nie wprost, że graf Petersona jest planarny.

Musi zatem spełniać zależność opisaną wzorem Eulera:

$$n - m + f = 2$$

Graf Petersona ma 10 wierzchołków 15 krawędzi. Skoro tak to ze wzoru Eulera wynikałoby, że musi mieć 7 ścian. Najmniejszy cykl w grafie Petersona wynosi 5. Stąd jego ściany musiałyby być co najmniej pięciokątami.

7 pięciokątów ma 35 krawędzi. Każda użyta jest przy ograniczaniu dokładnie dwóch ścianach. Stąd graf Petersona musiałby mieć co najmniej $35/2\approx 17$ krawędzi. Sprzeczność.

Zadanie 2

Lemat:

Jeśli w grafie G zachodzi m(G)>3n(G)-6 to G jest nieplanarny.

Dowód lematu:

 1° G jest spójny.

Załóżmy niewprost, że G jest planarny. Każdy graf planarny spełnia $m(G) \leq 3n(G) - 6$. Sprzeczność.

 2° G nie jest spójny.

Załóżmy nie wprost, że G jest planarny.

Skoro G jest planarny, to każda jego składowa spójna $H_1,H_2,...,H_k$ jest planarna. Każda z nich spełnia $m(H_i) \leq 3n(H_i) - 6.$

Jeśli zsumujemy wszystkie nierówności otrzymamy:

$$m(H_1) + m(H_2) + ... + m(H_k) \le 3(n(H_1) + n(H_2) + ... + n(H_k)) - 6k$$

 $m(G) \le 3n(G) - 6k \le 3n(G) - 6$

Sprzeczność.

Dowód twierdzenia:

Ponieważ G i G tworzą klikę to suma ich krawędzi to

$$m(G)+m(\overset{-}{G})=rac{n(n-1)}{2}$$

Zatem jeden z nich musi mieć co najmniej $\frac{n(n-1)}{4}$ krawędzi.

Wiemy, że $n \geq 11$. Spełniona jest zatem nierówność (równa 0 dla pprox 2.23 i pprox 10.77):

$$n^2-13n+24>0 \ n^2-n>12n-24 \ rac{n(n-1)}{4}>3n-6 \ m>3n-6$$

Zatem co najmniej jeden z tych grafów jest nieplanarny.

Zadanie 3

Lemat:

G – graf prosty planarny o co najmniej trzech wierzchołkach.

Lemat o uściskach dłoni:

$$2m = \sum_v deg(v)$$

Załóżmy nie wprost, że w G istnieją maksymalnie 2 wierzchołki stopnia niewiększego niż 5. Oszacujmy od dołu liczbę krawędzi w tym grafie.

$$\sum_v deg(v) \geq 6 \cdot (n(G)-2) + 0 = 6n(G) - 12 \ 2m(G) \geq 6n(G) - 12 \ m(G) \geq 3n(G) - 6$$

Weźmy graf G i utwórzmy G' odejmując wierzchołki stopnia zerowego.

$$m(G) \ge 3n(G) - 6 = 3(n(G) - 2) = 3n(G') > 3n(G') - 6$$

Sprzeczność, bo skoro G jest planarny to G' też musi być planarny.

Zadanie 4

Niech ${\cal G}$ – graf płaski.

Jeśli G jest płaski to każda jego składowa spójności $H_1, H_2, ..., H_t$ jest płaska. Każda spełnia wzór Eulera

$$n(H_i)-m(H_i)+f(H_i)=2$$

Sumując wszystkie równania otrzymamy:

$$n(H_1) + n(H_2) + ... + n(H_t) - (m(H_1) + m(H_2) + ... + m(H_t)) + f(H_1) + f(H_2) + ... + f(H_t) = 2t$$
 $n(G) - m(G) + f(G) + t - 1 = 2t$ (*)
 $n(G) + f(G) = t + m(G) + 1$
 $n(G) + f(G) = k(G) + m(G) + 1$

(*) Ściana zewnętrzna została zsumowana t razy.

Zadanie 5

Niech G – spójny graf płaski, w którym najmniejszy cykl ma długość r.

Każda ściana grafu G musi być ograniczone co najmniej r krawędziami. Zatem G musi składać się z co najmniej $\frac{f \cdot r}{2}$ krawędzi.

$$m \geq \frac{f \cdot r}{2}$$

Ze wzoru Eulera $n-m+f=2 \implies f=2+m-n$:

$$2m \geq (2+m-n) \cdot r \ 2m \geq 2r+mr-nr$$

$$m(2-r) \ge r(2-n)$$

 $m(n-2) \le r(n-2)$

Równość zachodzi dokładnie wtedy, gdy każdą ścianę odgradza dokładnie r krawędzi.

Zadanie 9

Niech G – eulerowski graf płaski.

Aby pokazać, że ściany G można pokolorować dwoma kolorami na każdej ścianie stwórzmy graf dualny do G – G^* .

Otrzymywanie grafu dualnego G^* :

- 1. Z każdej ściany grafu G wybieramy po jednym punkcie. Tak wybrane punkty tworzą zbiór wierzchołków V^* .
- 2. Jeśli krawędź e po jednej stronie sąsiadowała ze ścianą f_1 , a po drugiej z f_2 to w grafie G^* odpowiadające ścianom f_1, f_2 wierzchołki v_1^*, v_2^* łączymy krawędzią $v_1^*v_2^*$ przecinającą tylko krawędź e. Tak wybrane krawędzie tworzą zbiór E^* .

Teraz możliwość pokolorowania ścian w grafie G będzie równoważna z możliwością pokolorowania wierzchołków w grafie G^* .

Lemat 1

Jeśli G – planarny graf spójny oraz G^* – graf dualny do G to G^{**} dualny do G^* jest izomorficzny z G.

Dowód lematu 1:

Zauważmy, że każdy wierzchołek z G odpowiada dokładnie jednej ścianie w G^* . Natomiast każda ściana w G^* odpowiada dokładnie jednemu wierzchołkowi w G^{**} .

Weźmy dowolne dwa sąsiednie wierzchołki z grafu G i nazwijmy je u,v. Wiemy, że odpowiadają one ścianom f_u^*, f_v^* w grafie G^* . Skoro u,v są połączone krawędzią to ściany f_u^*, f_v^* mają wspólną krawędź.

Jeśli ściany f_u^*, f_v^* mają wspólną krawędź to wierzchołki u^{**}, v^{**} , które odpowiadają tym ścianom będą połączone krawędzią.

Zatem wierzchołki u, v przy przekształceniach z G do G^{**} przechodzą na wierzchołki u^{**}, v^{**} w G^{**} oraz jeśli u, v są sąsiadujące w G to również sąsiadują w G^{**} .

Lemat 2

Graf dualny do planarnego grafu eulerowskiego jest dwudzielny.

Dowód lematu:

Niech G – planarny graf eulerowski, G^* graf dualny do G.

Jeśli G jest spójny:

Załóżmy nie wprost, że G^* nie jest dwudzielny. Zatem posiada co najmniej jeden cykl długości nieparzystej. Jeśli weźmiemy graf dualny do G^* – G^{**} to oznacza, że istnieje tam wierzchołek stopnia nieparzystego. Z **lematu 1** graf G^{**} jest izomorficzny z G. Sprzeczność, gdyż G jest grafem eulerowskim, więc stopień każdego wierzchołka w tym grafie jest parzysty.

Jeśli G nie jest spójny:

Ponieważ G jest eulerowski to istnieją w G istnieje co najmniej jeden wierzchołek stopnia 0. Wierzchołki te leżą zatem w obrębie jakiejś ściany w G.

Postępując zgodnie z zasadami konstrukcji grafu dualnego, otrzymamy graf dualny dla grafu będącego grafem G bez wierzchołków zerowego stopnia. Dlatego, że dla takich wierzchołków nie utworzymy ani wierzchołka, ani krawedzi w G^* .

Zatem wystarczy rozważyć graf G wykluczając wierzchołki 0 stopnia, który jest spójny.

Z **lematu 2** wiemy, że graf G^* jest dwudzielny, więc możemy pokolorować go dwoma kolorami. Zatem można pokolorować ściany grafu G dwoma kolorami.

Zadanie 10

Zauważmy, że do jednej monety może być przystających maksymalnie 6 monet.

Weźmy zatem skrajnie lewą monetę na płaszyźnie. Jeśli istnieje więcej niż jedna taka moneta, weźmy tą, która jest najwyżej.

Taka moneta może mieć maksymalnie 3 sąsiadów.

Odłóżmy tą monetę na stos i rekurencyjnie pokolorujmy resztę grafu (używając 4 kolorów).

Skoro wszyscy sąsiedzi tej monety zostali pokolorowani, oznacza to, że pozostał jeden kolor, którym możemy pokolorować odłożoną monetę.

Dlaczego nie zawsze możemy pokolorować trzema kolorami:

Rozłóżmy monety po okręgu "trójkami", czyli że środek pierwszej monety leży na obwodzie dużego koła, a kolejne dwie monety styczne do monety pierwszej leżą na kole tak, że punkt, w którym są styczne (druga z trzecią) leży na okręgu. Pokolorujmy je zaczynając od pierwszej monety z lewej z czarną kropką.

Wystarczy dobrać promień dużego okręgu tak, aby ostatnia moneta, która jest styczna do początku musiała być pokolorowana na kolor 1.

Zadanie 11

Pokażmy równoważnie $P_{G^{ullet}e}(k) + P_G(k) = P_{G \setminus e}(k)$.

Niech e będzie krawędzią łączącą wierzchołki u i v.

Rozróżniamy dwa typy kolorowania w $G \setminus e$

 1° Jeśli u,v mają taki sam kolor to identyfikując je dostajemy poprawne kolorowanie w grafie Gullet e.

 2° Jeśli u, v są różnego koloru to otrzymamy poprawne kolorowanie w G.

Co należało pokazać.

Zadanie 13

Jeśli $\chi(G)=1$ to w grafie nie może być żadnej krawędzi (inaczej nie moglibyśmy pokolorować jej na jeden kolor).

Wpp.

Weźmy dowolne kolorowanie grafu G $\chi(G)$ kolorami.

Pomiędzy każdymi dwoma zbiorami wierzchołków o tym samym kolorze musi istnieć krawędź (inaczej moglibyśmy pokolorować je na ten sam kolor).

Zatem
$$\binom{\chi(G)}{2} = \frac{\chi(G) \cdot (\chi(G) - 1)}{2}$$

Co należało pokazać.

Zadanie 14

Niech $\chi(G) = k$.

Wtedy V(G) może być podzielony na k zbiorów takich, że żadnych dwóch wierzchołków w danym grafie nie łączy krawędź.

Pośród tych zbiorów musi istnieć zbiór X, który zawiera co najmniej $\frac{n}{k}$ wierzchołków.

Ale X tworzy graf pełny w $\overset{-}{G}$, zatem $\chi(\overset{-}{G}) \geq \frac{n}{k}$

Mamy zatem
$$\chi(G) \cdot \chi(\overset{-}{G}) \geq k \cdot \frac{n}{k} = n$$

tags: mdm