2 1	选	圣斯
7. 1	1 1/47	工 ルバ

(D) $L_B < L_A$, $E_{KA} = E_{KB}$. (E) $L_B = L_A$, $E_{KA} < E_{KB}$.

(B) 不变.

(D) 不能确定.

答案: (E)

圆盘的角速度 ω (A) 增大.

(C) 减小.

3.1 选择题	
(1) 有两个力作用在一个有固定转轴的刚体上:	
① 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;	
② 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;	
③ 当这两个力的合力为零时,它们对轴的合力矩也一定是零;	
④ 当这两个力对轴的合力矩为零时,它们的合力也一定是零.	
在上述说法中, ()
(A) 只有①是正确的.	
(B) ① 、②正确,③、④错误.	
(C) ①、②、③都正确,④错误.	
(D) ①、②、③、④都正确.	
答案: (B)	
(2) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 <i>J</i> ,绳下端挂一物体. 物体力为 <i>P</i> ,滑轮的角加速度为α. 若将物体去掉而以与 <i>P</i> 相等的力直接向下拉绳子,滑加速度α将 (A) 不变. (B) 变小. (C) 变大. (D) 如何变化无法判断. 答案: (C)	
(3)关于刚体的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置; (D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。答案: (C)	
(4) 一人造地球卫星到地球中心 O 的最大距离和最小距离分别是 R_A 和 R_B . 设卫星对动量分别是 L_A 、 L_B ,动能分别是 E_{KA} 、 E_{KB} ,则应有 (A) $L_B > L_A$, $E_{KA} > E_{KB}$. (B) $L_B > L_A$, $E_{KA} = E_{KB}$. (C) $L_B = L_A$, $E_{KA} = E_{KB}$.	寸应的角

(5) 一圆盘正绕垂直于盘面的水平光滑固定轴 0 转动,如图射来两个质量相同,速度大小相 同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,

()

题 3.1 (5) 图

答案: (C)

3.2 填空题 (1) 三个质量均为 m 的质点,位于边长为 a 的等边三角形的三个顶点上.此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量 J_0 =,对通过三角形中心且平行于其一边的轴的转动惯量为 J_A =,对通过三角形中心和一个顶点的轴的转动惯量为 J_B
= 答案: ma^2 ; $\frac{1}{2}$ ma^2 ; $\frac{1}{2}$ ma^2
(2) 两个质量分布均匀的圆盘 A 和 B 的密度分别为 ρ_A 和 $\rho_B(\rho_A>\rho_B)$,且两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为 J_A 和 J_B ,则有 J_A J_B 。(填>、<或=)答案: <
(3) 一作定轴转动的物体,对转轴的转动惯量 J =3.0 kg •m²,角速度 ω_0 =6.0 rad/s. 现对物体加一恒定的制动力矩 M = $-$ 12 N • m,当物体的角速度减慢到 ω =2.0 rad/s时,物体已转过了角度 $\Delta\theta$ = 答案:4.0rad
(4) 两个滑冰运动员的质量各为 $70 \mathrm{kg}$,均以 $6.5 \mathrm{m/s}$ 的速率沿相反的方向滑行,滑行路线间的垂直距离为 $10 \mathrm{m}$,当彼此交错时,各抓住一 $10 \mathrm{m}$ 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 $L=___$;它们各自收拢绳索,到绳长为 $5 \mathrm{m}$ 时,各自的速率 $v=___$ 。答案: $2275 \mathrm{kg \cdot m^2 \cdot s^{-1}}$ $13 \mathrm{m \cdot s^{-1}}$
(5) 如题 3.2 (5) 图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴 O 转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中 过程中,木球、子弹、细棒系统的

题 3.2 (5) 图

答案:对 o 轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对 o 轴的合外力矩为零,机械能守恒。

3.3 半径为 30cm 的飞轮,从静止开始以 0.5rad·s⁻² 的角加速度作匀角加速转动,则飞轮边缘上一点在飞轮转过 240°时的切向加速度和法向加速度分别为多少?

解: 由题可知转的角度为
$$\Delta\theta = 2\pi \frac{240}{360} = \frac{4}{3}\pi rad$$

$$\nabla \Delta \theta = \frac{1}{2} \alpha t^2 = \frac{1}{2} \times 0.5 t^2 = \frac{4}{3} \pi$$

由上式得
$$t^2 = \frac{16}{3}\pi$$

则飞轮边缘上一点的切向加速度为 $a_{\tau} = \alpha R = 0.5 \times 0.3 = 0.15 rad \cdot s^{-2}$

法向加速度为
$$a_n = \omega^2 R = \alpha^2 t^2 R = 0.5^2 \times \frac{16}{3} \pi \times 0.3 = 1.256 rad \cdot s^{-2}$$

3.4 如题 3.4 图所示,一光滑的内表面半径为 10cm 的半球形碗,以匀角速度ω绕其对称轴 OC 旋转,若放在碗内表面上的一个小球 P 相对于碗静止,其位置高于碗底 4cm,则碗旋转的角速度为多少?

解:小球受到重力和碗的支持力作用,其合力为向心力,如图(b)所示。设支持力

为 N,则有

$$N\cos\theta = mg$$

$$F_n = N\sin\theta = mgtg\theta = \frac{4}{3}mg$$

$$Z \qquad F_n = m\omega^2 r = \frac{4}{3}mg$$

$$r = 0.08m$$
 所以
$$\omega = \sqrt{\frac{4\times10}{3\times0.08}} = 13rad/s$$

3.5 质量 m=1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量 $J=\frac{1}{2}mr^2$ (r 为盘的半径). 圆盘边缘绕有绳子,绳子下端挂一质量 $m_1=1.0$ kg 的物体,如题 3.5 图所示. 起初在圆盘上加一恒力矩使物体以速率 $v_0=0.6$ m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.

解: 撤去外加力矩后受力分析如图所示.

$$m_1g - T = m_1a$$

$$Tr = J\beta$$

$$a = r\beta$$

$$a = m_1gr / (m_1r + J / r)$$

$$\Leftrightarrow \lambda J = \frac{1}{2}mr^2, \quad a = \frac{m_1g}{m_1 + \frac{1}{2}m} = 6.32 \text{ ms}^{-2}$$

$$\therefore \qquad \nu_0 - at = 0$$

$$\therefore \qquad t = \nu_0 / a = 0.095 \text{ s}$$

3.6 有一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度 ω_0 转动,此时有一质量为 m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为多少?解: 把转台和人作为一系统,人沿半径向外跑去过程中,外力对中心轴的力矩为零,

所以系统对轴的角动量守恒。即有

$$J\omega_0 = (J + mR^2)\omega$$

所以当人到达转台边缘时,转台的角速度为 $\omega = \frac{J}{J + mR^2} \omega_0$

3.7 飞轮的质量 $m=60 {\rm kg}$,半径 $R=0.25 {\rm m}$,绕其水平中心轴 O 转动,转速为900 rev ${\rm min}^{-1}$. 现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力 F ,可使飞轮减速.已知闸杆的尺寸如题3.7图所示,闸瓦与飞轮之间的摩擦系数 $\mu=0.4$,飞轮的转动惯量可按匀质圆盘计算.试求:

- (1)设F=100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?
- (2) 如果在2s内飞轮转速减少一半,需加多大的力F?

解: (1) 先作闸杆和飞轮的受力分析图(如图(b)). 图中 $N \times N'$ 是正压力, $F_r \times F_r'$ 是摩擦

力, F_x 和 F_y 是杆在A点转轴处所受支承力,R是轮的重力,P是轮在O轴处所受支承力.

题 3.7图(b)

杆处于静止状态,所以对A点的合力矩应为零,设闸瓦厚度不计,则有

$$F(l_1 + l_2) - N'l_1 = 0$$
 $N' = \frac{l_1 + l_2}{l_1} F$

对飞轮,按转动定律有 $\alpha = -F_r R/J$,式中负号表示 β 与角速度 ω 方向相反.

$$F_r = \mu N \qquad \qquad N = N'$$

$$F_r = \mu N' = \mu \frac{l_1 + l_2}{l_1} F$$

$$\mathcal{Z} :: \qquad J = \frac{1}{2} mR^2,$$

$$\therefore \qquad \alpha = -\frac{F_r R}{J} = \frac{-2\mu(l_1 + l_2)}{mRl_1} F$$
(1)

以F = 100 N等代入上式,得

$$\alpha = \frac{-2 \times 0.40 \times (0.50 + 0.75)}{60 \times 0.25 \times 0.50} \times 100 = -\frac{40}{3} \text{ rad} \cdot \text{s}^{-2}$$

由此可算出自施加制动闸开始到飞轮停止转动的时间为

$$t = -\frac{\omega_0}{\alpha} = \frac{900 \times 2\pi \times 3}{60 \times 40} = 7.06 \text{ s}$$

这段时间内飞轮的角位移为

$$\phi = \omega_0 t + \frac{1}{2} \alpha t^2 = \frac{900 \times 2\pi}{60} \times \frac{9}{4} \pi - \frac{1}{2} \times \frac{40}{3} \times (\frac{9}{4} \pi)^2$$
= 53.1 × 2\pi rad

可知在这段时间里,飞轮转了53.1转.

(2)
$$\omega_0 = 900 \times \frac{2\pi}{60} \text{ rad} \cdot \text{s}^{-1}$$
,要求飞轮转速在 $t = 2 \text{ s}$ 内减少一半,可知

$$\alpha = \frac{\omega_0}{2} - \omega_0$$

$$t = -\frac{\omega_0}{2t} = -\frac{15\pi}{2} \text{ rad} \cdot \text{s}^{-2}$$

用上面式(1)所示的关系,可求出所需的制动力为

$$F = -\frac{mRl_1\alpha}{2\mu(l_1 + l_2)} = \frac{60 \times 0.25 \times 0.50 \times 15\pi}{2 \times 0.40 \times (0.50 + 0.75) \times 2} = 177N$$

3.8 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO'转动.设大小圆柱体的半径分别为R和r,质量分别为M和m. 绕在两柱体上的细绳分别与物体 m_1 和 m_2 相连,

 m_1 和 m_2 则挂在圆柱体的两侧,如题3.8图所示.设R=0.20m,r=0.10m,m=4 kg,M=1.20m,m=1.20m 和 m=1.20m,m=1.20m,m=1.20m,m=1.20m,m=1.20m,m=1.20m 和 m=1.20m 和 m=1.20m,m=1.20m 和 m=1.20m,m=1.20m 和 m=1.20m 和 m=1.20m,m=1.20m 和 m=1.20m 和 m=1.20

=10 kg, $m_1=m_2=2$ kg, 且开始时 m_1 , m_2 离地均为h=2m. 求:

- (1) 柱体转动时的角加速度;
- (2)两侧细绳的张力.

解:设 a_1 , a_2 和β分别为 m_1 , m_2 和柱体的加速度及角加速度,方向如图(如图 b).

题 3.8(a)图

题 3.8(b)图

(1) m_1 , m_2 和柱体的运动方程如下:

$$T_2 - m_2 g = m_2 a_2 \tag{1}$$

$$m_1g - T_1 = m_1a_1 \tag{2}$$

$$T_1'R - T_2'r = J\alpha$$
 3

式中
$$T_1' = T_1, T_2' = T_2, a_2 = r\alpha, a_1 = R\alpha$$

而

$$J = \frac{1}{2}MR^2 + \frac{1}{2}mr^2$$

由上式求得

$$\alpha = \frac{Rm_1 - rm_2}{J + m_1 R^2 + m_2 r^2} g$$

$$= \frac{0.2 \times 2 - 0.1 \times 2}{\frac{1}{2} \times 10 \times 0.20^2 + \frac{1}{2} \times 4 \times 0.10^2 + 2 \times 0.20^2 + 2 \times 0.10^2}{0.2 \times 4 \times 0.10^2 + 2 \times 0.20^2 + 2 \times 0.10^2} \times 9.8$$

$$= 6.13 \text{ rad} \cdot \text{s}^{-2}$$

(2)由①式

$$T_2 = m_2 r\alpha + m_2 g = 2 \times 0.10 \times 6.13 + 2 \times 9.8 = 20.8 \text{ N}$$

由②式

$$T_1 = m_1 g - m_1 R \alpha = 2 \times 9.8 - 2 \times 0.2. \times 6.13 = 17.1 \text{ N}$$

3.9 计算题3.9图所示系统中物体的加速度. 设滑轮为质量均匀分布的圆柱体, 其质量为M, 半径为r,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设 $m_1 = 50$ kg, m_2 =200 kg, M=15 kg, r=0.1 m

解:分别以 m_1, m_2 滑轮为研究对象,受力图如图(b)所示。对 m_1, m_2 运用牛顿定律,有

$$m_2g - T_2 = m_2a \tag{1}$$

$$T_1 = m_1 a \tag{2}$$

对滑轮运用转动定律,有

$$T_2 r - T_1 r = (\frac{1}{2} M r^2) \beta \qquad \qquad \Im$$

abla, $a = r\beta$

联立以上4个方程,得

$$a = \frac{m_2 g}{m_1 + m_2 + \frac{M}{2}} = \frac{200 \times 9.8}{5 + 200 + \frac{15}{2}} = 7.6$$
 m·s⁻²

3.10 如题3.10图所示,一匀质细杆质量为m,长为l,可绕过一端O的水平轴自由转动,杆于水平位置由静止开始摆下、求:

- (1)初始时刻的角加速度;
- (2) 杆转过 θ 角时的角速度.

解: (1)由转动定律,有

$$mg\frac{1}{2}l = (\frac{1}{3}ml^2)\beta$$
$$\beta = \frac{3g}{2l}$$

(2)由机械能守恒定律,有

:.

$$mg\frac{l}{2}\sin\theta = \frac{1}{2}(\frac{1}{3}ml^2)\omega^2$$

 $\omega = \sqrt{\frac{3g\sin\theta}{I}}$

3.11 如题3.11图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩

擦地转动,它原来静止在平衡位置上. 现有一质量为m 速度为 v_0 的弹性小球飞来,正好在棒的下端与棒垂直地相撞. 设这碰撞为弹性碰撞,试计算碰撞后小球的速度和直棒获得的初角速度。

题 3.11 图

解: 设棒经小球碰撞后得到的初角速度为 ω ,而小球的速度变为v,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:

$$mv_0 l = J\omega + mvl \tag{1}$$

$$\frac{1}{2}mv_0^2 = \frac{1}{2}J\omega^2 + \frac{1}{2}mv^2$$
 ②

上两式中 $J = \frac{1}{3}Ml^2$ 联立①②式,可得

$$v = \frac{3m - M}{3m + M}v_0$$
$$\omega = \frac{6mv_0}{(3m + M)l}$$

- 3.12 一个质量为M、半径为R 并以角速度 ω 转动着的飞轮 (可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3.12图。假定碎片脱离飞轮时的瞬时速度方向正好竖直向上。
- (1) 问它能升高多少?
- (2) 求余下部分的角速度、角动量和转动动能.

题 3.12 图

解: (1)碎片离盘瞬时的线速度即是它上升的初速度

$$v_0 = R\omega$$

设碎片上升高度h时的速度为v,则有

$$v^2 = v_0^2 - 2gh$$

令v=0, 可求出上升最大高度为

$$H = \frac{v_0^2}{2g} = \frac{1}{2g} R^2 \omega^2$$

(2) 圆盘的转动惯量 $J = \frac{1}{2}MR^2$,碎片抛出后圆盘的转动惯量 $J' = \frac{1}{2}MR^2 - mR^2$,碎片脱离前,盘的角动量为 $J\omega$,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即

$$J\omega = J'\omega' + mv_0R$$

式中 ω' 为破盘的角速度. 于是

$$\frac{1}{2}MR^{2}\omega = (\frac{1}{2}MR^{2} - mR^{2})\omega' + mv_{0}R$$

其中

$$v_0 = R\omega$$

得 $\omega' = \omega$ (即角速度不变) 圆盘余下部分的角动量为

$$(\frac{1}{2}MR^2 - mR^2)\omega$$

转动动能为 $E_k = \frac{1}{2}(\frac{1}{2}MR^2 - mR^2)\omega^2$

- 3.13 一质量为m、半径为R的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为 m_0 的子弹以速度 v_0 射入轮缘(如题3.13图所示方向).
- (1) 开始时轮是静止的,在质点打入后的角速度为何值?
- (2) 用m, m_0 和 θ 表示系统(包括轮和质点)最后动能和初始动能之比.

题 3.13 图

解: (1)射入的过程对 O 轴的角动量守恒

$$R\sin\theta m_0 v_0 = (m + m_0)R^2\omega$$

$$\omega = \frac{m_0 v_0 \sin \theta}{(m + m_0)R}$$

(2)
$$\frac{E_k}{E_{k_0}} = \frac{\frac{1}{2}[(m+m_0)R^2][\frac{m_0v_0\sin\theta}{(m+m_0)R}]^2}{\frac{1}{2}m_0v_0^2} = \frac{m_0\sin^2\theta}{m+m_0}$$

3.14 弹簧、定滑轮和物体的连接如题3.14图所示,弹簧的劲度系数为2.0 N• m^{-1} ; 定滑轮的转动惯量是0.5kg• m^{2} , 半径为0.30m ,问当6.0 kg质量的物体落下0.40m 时,它的速率为多大? 假设开始时物体静止而弹簧无伸长.

题 3.14 图

解: 以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有

双
$$mgh = \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2} + \frac{1}{2}kh^{2}$$

$$\omega = v/R$$

$$v = \sqrt{\frac{(2mgh - kh^{2})R^{2}}{mR^{2} + I}}$$

$$= \sqrt{\frac{(2 \times 6.0 \times 9.8 \times 0.4 - 2.0 \times 0.4^{2}) \times 0.3^{2}}{6.0 \times 0.3^{2} + 0.5}}$$

$$= 2.0 \text{m} \cdot \text{s}^{-1}$$