

Fundamentos de Matemática

Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Conectivos, negação, contrapositiva e quantificadores

[01] Se x é um número real, então o módulo de x, denotado por |x|, é definido por

$$|x| = \begin{cases} +x, & \text{se } x \ge 0, \\ -x, & \text{se } x < 0. \end{cases}$$

É possível demonstrar que as seguintes quatro propriedades são verdadeiras: (1) |p| = |a| se, e somente se, p = -a ou p = +a; (2) |p| = a se, e somente se, a > 0 e (p = -a ou p = +a); (3) |p| < a se, e somente se, -a (isto é, <math>-a < p e p < +a); (4) |p| > a se, e somente se, p < -a ou p > +a. Estas propriedades são úteis para se resolver equações e inequações envolvendo módulos. Por exemplo, a inequação |x-1| < 3 pode ser resolvida usando-se a propriedade (3):

$$|x-1| < 3 \Leftrightarrow -3 < x-1 < +3 \Leftrightarrow -3+1 < x < +3+1 \Leftrightarrow -2 < x < +4.$$

Resolva as equações e inequações indicadas a seguir. Cuidado com o uso correto dos conectivos!

(a)
$$|x-1|=4$$
.

(b)
$$|x| = 2$$
.

(c)
$$|x-1|=3-\pi$$
.

(d)
$$|3x| = 1 - |x|$$
.

(e)
$$|3x| = |x| - 1$$

(e)
$$|3x| = |x| - 1$$
. (f) $|x - 1| = |x - 4|$.

(g)
$$|x^2| = x + 2$$
.

(h)
$$|x| = x$$
.

(i)
$$|x| = -x$$
.

(i)
$$|x-1| < 4$$
.

$$(1) |x-1| > 3-\pi.$$

(m)
$$|3x| \le 1 - |x|$$
.

$$(n) |3x| \le |x| - 1.$$

(o)
$$|x-1| < |x-4|$$
.

(p)
$$|x^2| > x + 2$$
.

(q)
$$|x| < x$$
.

$$(r) |x| > -x.$$

- [02] (a) Um dado equilibrado é lançado. Qual é a probabilidade do número sorteado seja par e menor do que quatro?
 - (b) Um dado equilibrado é lançado. Qual é a probabilidade do número sorteado seja par ou menor do que quatro?
- [03] As sentenças abaixo são verdadeiras. Escreva uma demonstração para cada uma delas usando a contrapositiva.
 - (a) Sejam m e n números inteiros positivos. Se m+n é um número ímpar, então m é ímpar ou n é ímpar.
 - (b) Seja n um número inteiro. Se n^2 não é divisível por 7, então n não é divisível por 7.
 - (c) Sejam m e n números inteiros. Se mn é par, então m é par ou n é par.
 - (d) Sejam m e n números inteiros positivos. Se mn = 100, então $m \le 10$ ou $n \le 10$.

- (e) Se a é um número inteiro ímpar, então a equação quadrática $x^2 x a = 0$ não possui raízes que são números inteiros.
- (f) Seja x um número real. Se 0 < x < 1, então $x > x^2$.
- (g) Seja n um número inteiro positivo. Se $2^n 1$ é primo, então n é primo.
- [04] Diz-se que uma função $f: D \to C$ é injetiva se ela satisfaz a seguinte condição: para todo $x_1, x_2 \in D$, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
 - (a) Dê um exemplo de uma função $f\colon D\to C$ injetiva. Justifique o porquê de sua função ser injetiva.
 - (b) Quando uma função $f: D \to C$ não é injetiva?
 - (c) Dê um exemplo de uma função $f \colon D \to C$ não injetiva. Justifique o porquê de sua função não ser injetiva.
 - (d) Considere uma função $f: D \to C$ que satisfaz a seguinte condição: para todo $x_1, x_2 \in D$, se $f(x_1) = f(x_2)$, então $x_1 = x_2$. A função f é injetiva? Justifique sua resposta!
- [05] Diz-se que uma função $f: D \to C$ é sobrejetiva se ela satisfaz a seguinte condição: para todo $b \in C$, existe $a \in D$ tal que f(a) = b.
 - (a) Dê um exemplo de uma função $f\colon D\to C$ sobrejetiva. Justifique o porquê de sua função ser sobrejetiva.
 - (b) Quando uma função $f: D \to C$ não é sobrejetiva?
 - (c) Dê um exemplo de uma função $f \colon D \to C$ não sobrejetiva. Justifique o porquê de sua função não ser sobrejetiva.
- [06] Diz-se que uma função $f: D \to C$ é crescente se ela satisfaz a seguinte condição: para todo $x_1, x_2 \in D$, se $x_1 < x_2$, então $f(x_1) < f(x_2)$.
 - (a) Dê um exemplo de uma função $f\colon D\to C$ crescente. Justifique o porquê de sua função ser crescente.
 - (b) Quando uma função $f: D \to C$ não é crescente?
 - (c) Dê um exemplo de uma função $f\colon D\to C$ não crescente. Justifique o porquê de sua função não ser crescente.
 - (d) A função $f: \mathbb{R} \{0\} \to \mathbb{R} \{0\}$ definida por f(x) = 1/x é crescente? Justifique sua resposta!
 - (e) Seja $f:[a,b] \to \mathbb{R}$ uma função real definida no intervalo [a,b]. Mostre que se f é crescente em [a,b], então f é injetiva.
 - (f) Verdadeira ou falsa? Se $f: D \to \mathbb{R}$ e $g: D \to \mathbb{R}$ são duas funções crescentes, então $f+g: D \to \mathbb{R}$ também é uma função crescente. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
 - (g) Verdadeira ou falsa? Se $f: D \to \mathbb{R}$ e $g: D \to \mathbb{R}$ são duas funções crescentes, então $f \cdot g: D \to \mathbb{R}$ também é uma função crescente. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
 - (h) Verdadeira ou falsa? Se $f: D \to \mathbb{R}$ e $g: D \to \mathbb{R}$ são duas funções crescentes, então $f-g: D \to \mathbb{R}$ também é uma função crescente. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
 - (i) Verdadeira ou falsa? Se $f: D \to \mathbb{R}$ é uma função crescente e $f(x) \neq 0$ para todo $x \in D$, então g(x) = 1/f(x) é uma função decrescente em D. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.

- (j) Verdadeira ou falsa? Se f é uma função crescente em um intervalo I = [a, b] e crescente em um intervalo J = [c, d], então f é crescente no conjunto $I \cup J = [a, b] \cup [c, d]$. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
- [07] (a) Diz-se que um ponto $p \in D$ é ponto de mínimo global de uma função $f: D \to C$ se p satisfaz a seguinte condição: para todo $x \in D$, $f(x) \ge f(p)$. Quando um ponto $p \in D$ não é ponto de mínimo global de uma função $f: D \to C$?
 - (b) Diz-se que um ponto $p \in D$ é ponto de mínimo local de uma função $f: D \to C$ se p satisfaz a seguinte condição: existe um intervalo aberto I tal que $p \in I$ e para todo $x \in D \cap I$, $f(x) \ge f(p)$. Quando um ponto $p \in D$ não é ponto de mínimo local de uma função $f: D \to C$?
- [08] Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função. Dizemos que f é contínua em um ponto $p \in \mathbb{R}$ se p satisfaz a seguinte condição: para todo $\epsilon > 0$, existe $\delta > 0$ tal que $|x p| < \delta \Rightarrow |f(x) f(p)| < \epsilon$. Quando uma função não é contínua em um ponto $p \in \mathbb{R}$?

Respostas dos Exercícios

Atenção: as respostas apresentadas aqui não possuem justificativas. Você deve escrevê-las!

- [01] (a) $S = \{-3,5\}$. (b) $S = \{-2,2\}$. (c) $S = \varnothing$. (d) $S = \{-1/4,1/4\}$. (e) $S = \varnothing$. (f) $S = \{5/2\}$. (g) $S = \{-1,2\}$. (h) $S = [0,+\infty)$. (i) $S = (-\infty,0]$. (j) S = (-3,5). (k) $S = (-\infty,-2] \cup [2,+\infty)$. (l) $S = \mathbb{R}$. (m) S = [-1/4,1/4]. (n) $S = \varnothing$. (o) $S = (-\infty,5/2)$. (p) $S = (-\infty,-1) \cup (2,+\infty)$. (q) $S = \varnothing$. (r) $S = (0,+\infty)$.
- [03] Para o Item (g), use o produto notável: se $s \in \mathbb{N}$, então $x^s 1 = (x 1)(x^{s-1} + x^{s-2} + \dots + x + 1)$.
- [06] (f) Verdadeira. (g) Falsa. (h) Falsa. (i) Falsa. Como contraexemplo, considere f(x) = x definida em $D = \mathbb{R} \{0\}$. (j) Falsa.

Texto composto em I⁴TEX2e, HJB, 10/01/2013.