CSCI 301 M8 Homework

Bo Sullivan

May 29, 2020

Collaboration statement: By submitting this assignment, I am attesting that this homework is in full compliance with the course's https://www.instructure.com/courses/1340003/pages/academic-dishonesty-guidelines Homework Collaboration Policy and with all the other relevant academic honesty policies of the course and university. I discussed this homework with no one and wrote this solution without input from anyone else.

- 1. (a) $S \to A$ (using $S \to A$. $\to aA$ (using $A \to aA$) $\to aaA$ (using $A \to aA$) $\to aaB$ (using $aA \to aB$) $\to aabB$ (using $B \to bB$) $\to aabb$ (using $B \to bB$) $\to aabb$ (using $B \to c$)
 - (b) i. aaabbb
 - ii. aaaabbbb
 - iii. aaaaabbbbb
 - iv. $aAb\varepsilon$
 - v. $aab\varepsilon$
 - vi. $abb\varepsilon$
 - (c) $\varepsilon \cup a^*b|ab^*$
 - (d) If you were to remove $B \to b$ as it breaks the rule of right-regular grammars in which $v \to a$, where $v \in V$ and $a \in \sum$.
- 2. $((a \cup b \cup c)(a \cup b \cup c))^*$

- 4. $\varepsilon \cup (a^*|a^*b|a^*ccb|b)$
- 5. We will prove with contradiction

Suppose that $\{a^nb^nc^{2n}: n \geq 0\}$ is regular.

Let The string $s = p \ge 1$ be the pumping length, as given by the pumping lemma. Consider the string $s = a^p b^p c^{2p}$.

It is clear that $s \in A$ and $|s| = 2p \ge p$.

Hence, by the pumping lemma, s ca be written as s = xyz, where $y \neq \varepsilon$, $|xy| \leq p$, and $xy^iz \in A$ for all i > 0.

Observe that, since $|abc| \le p$, the a string will contain 0s. Moreover, since $y \ne \varepsilon$, abc contains at least one 0. No strings $a^0bc = bc$, $ab^2c = abbc$, $abc^3 = abccc$, ..., is contained in our set.

However, by the pumping lemma, all these strings must be in our set.

Hence, we have a contradiction and we conclude that $\{a^nb^nc^{2n}: n \geq 0\}$ is not a regular language.