

אלגברה ב' (104168) חורף 2022-2023 רשימות תרגולים

אלן סורני

2022 בנובמבר 29הרונה בתאריך ה־29 בנובמבר ב022

תוכן העניינים

1	לק ראשון - מרחבים שמורים	T
2	זריצות מייצגות	ממ
2	1 הגדרות בסיסיות	.1
	1 גרעין ותמונה 1	
12	ומים ישרים ולכסינות	50 2
12	ומים ישרים ודכסינות. 2 סכומים ישרים	.1
14	2 לכסינות	.2
15	2 מרחבים שמורים	
19	רת ז'ורדן	กษ 8
19		.1
20	מציאת בסיס ז'ורדן עבור אופרטורים נילפוטנטיים 3.1.1	
22		.2
23	מצ'יאת בסיס ז'ורדן עבור אופרטור כללי 3.2.1	

חלק I חלק ראשון - מרחבים שמורים

פרק 1

מטריצות מייצגות

1.1 הגדרות בסיסיות

יהי V מרחב בסיס של $B=(v_1,\ldots,v_n)$ יהי $\mathbb F$, יהי מעל שדה דוקטורי מרחב וקטורי יהי V יהי יהי V יהי ווקטור קואורדינטות).

עבורם
$$(\alpha_1,\ldots,\alpha_n)$$
 באשר $[v]_B=egin{pmatrix} lpha_1\\ \vdots\\ lpha_n \end{pmatrix}$ היחידים עבורם מבסיס B היחידים עבורם . $v\in V$

$$v = \sum_{i \in [n]} \alpha_i v_i := \alpha_1 v_1 + \ldots + \alpha_n v_n$$

הערה 1.1.2. ההעתקה

$$\rho_B \colon V \to \mathbb{F}^n$$
$$v \mapsto [v]_B$$

היא איזומורפיזם לינארי.

הגדרה 1.1.3 (מטריצה מייצגת). יהיו V,W מרחבים וקטורים סוף־מימדיים מעל אותו שדה \mathbb{F} עם בסיסים V,W הגדרה 1.1.3 (מטריצה מייצגת). ונסמן

$$B = (v_1, \ldots, v_n)$$

נגדיר $T\in \operatorname{Hom}_{\mathbb{F}}(V,W)$ עבור $m\coloneqq \dim{(W)}$ י וי $n\coloneqq \dim{(V)}$ נגדיר

$$.[T]_{C}^{B} = \begin{pmatrix} | & | & | \\ [T(v_{1})]_{C} & \cdots & [T(v_{n})]_{C} \end{pmatrix} \in \operatorname{Mat}_{m \times n} (\mathbb{F})$$

אז:. \mathbb{F}^n אז: $E=(e_1,\ldots,e_m)$ ויהי ו $A\in \operatorname{Mat}_{m imes n}(\mathbb{F})$. תהי משפט 1.1.4 (כפל מטריצות). תהי

 Ae_i מתקיים כי מתקיים היז של $i \in [m]$ לכל (i)

$$.AB = \begin{pmatrix} | & & | \\ Ab_1 & \cdots & Ab_\ell \\ | & & | \end{pmatrix}$$
אז $B = \begin{pmatrix} | & & | \\ b_1 & \cdots & b_\ell \\ | & & | \end{pmatrix} \in \operatorname{Mat}_{n \times \ell} (\mathbb{F})$ לכל (ii)

תרגיל 1.1. הראו שניתן לשחזר את ההגדרה של כפל מטריצות משתי התכונות במשפט.

הערה 1.1.5. ההעתקה

$$\eta_C^B \colon \operatorname{Hom}_{\mathbb{F}}(V, B) \to \operatorname{Mat}_{m \times n}(\mathbb{F})$$

$$T \mapsto [T]_C^B$$

היא איזומורפיזם לינארי.

טענה W בסיס U בסיס של U בסיס $B=(v_1,\ldots,v_n)$ ויהיי $T\in\operatorname{Hom}_{\mathbb{F}}(V,W)$ תהי 1.1.6. מענה

$$[T(v)]_C = [T]_C^B [v]_B$$

 $.v \in V$ לכל

. ההגדרה. עבור $[T\left(v_i\right)]_C$ מתקיים $[T]_C^B$ מתקיים וואת העמודה ה־i של $[T]_C^B$ וואת העמודה $[T]_C^B$ וואת מתקיים $[T]_C^B$ מתקיים עבור $[T]_C^B$ מתקיים של $[T]_C^B$ מתקיים של $[T]_C^B$ מתקיים של האריות של עבור מלינאריות של מתקיים של האריות של מתקיים עבור מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של האריות של מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של מתק

$$\begin{split} [T\left(v\right)]_{C} &= \left[T\left(\sum_{i\in[n]}\alpha_{i}v_{i}\right)\right]_{C} \\ &= \left[\sum_{i\in[n]}\alpha_{i}T\left(v_{i}\right)\right]_{C} \\ &= \sum_{i\in[n]}\alpha_{i}\left[T\left(v_{i}\right)\right]_{C} \\ &= \sum_{i\in[n]}\alpha_{i}\left[T\right]_{C}^{B}\left[v_{i}\right]_{B} \\ &= [T]_{C}^{B}\left(\sum_{i\in[n]}\alpha_{i}\left[v_{i}\right]_{B}\right) \\ &= [T]_{C}^{B}\left[\sum_{i\in[n]}\alpha_{i}v_{i}\right]_{B} \\ , &= [T]_{C}^{B}\left[v\right]_{B} \end{split}$$

כנדרש.

סימון ונקרא למטריצה $[T]_B:=[T]_B^B$, נסמן המין ואם עורי סוף־מימדי ונקרא למטריצה אם בסיס של בסיס של בסיס של מרחב וקטורי ואם B בסיס של דפי המטריצה המייצגת של T לפי הבסיס בסיס ונקרא המטריצה המייצגת של דער המייצגת ווער המייצגת ווע

 $M_C^B \coloneqq [\operatorname{Id}_V]_C^B$ נסמן נסמים א סוף סוף וקטורי מרחב ע מרחב והי 1.1.8. יהי 1.1.8. סימון

נסמן , $A\in\operatorname{Mat}_{n imes n}\left(\mathbb{F}
ight)$ אם וואסימון .1.1.9 אם

$$T_A \colon \mathbb{F}^n \to \mathbb{F}^n$$

. $v \mapsto Av$

תהי א היותר ממשלה ממשיים הפולינום מרחב ע הרותר א היותר $V=\mathbb{R}_3\left[x\right]$ יהי יהי תרגיל תרגיל מראים מרחב א מרחב היותר א

$$T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$$

 $p(x) \mapsto p(x+1)$

 $[T]_B$ את כיתבו V בסיס של $B=\left(1,x,x^2,x^3
ight)$ ויהי

פתרון. לפי הגדרת המטריצה המייצגת, עמודות $\left[T\left(x^i\right)
ight]_B$ הן המייצגת, עמודות המטריצה המייצגת, לפי הגדרת לפי

$$T(1) = 1$$

$$T(x) = x + 1 = 1 + x$$

$$T(x^{2}) = (x + 1)^{2} = 1 + 2x + x^{2}$$

$$T(x^{3}) = (x + 1)^{3} = 1 + 3x + 3x^{2} + x^{3}$$

ולכן

$$\begin{split} &[T(1)]_B = e_1 \\ &[T(x)]_B = e_1 + e_2 \\ &[T(x^2)]_B = e_1 + 2e_2 + e_3 \\ &[T(x^3)]_B = e_1 + 3e_2 + 3e_3 + e_4 \end{split}$$

ואז

$$.[T]_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

תהי א $V=\operatorname{Mat}_{2 imes 2}\left(\mathbb{C}
ight)$ תהי .1.3 תרגיל

$$T \colon V \to V$$

$$A \mapsto \frac{1}{2} \left(A - A^t \right)$$

ויהי

$$E = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}) := \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

 $[T]_E$ את כיתבו V של של הסטנדרטי הסטנדרטי את

מתקיים . $[T]_E$ ממודות שאלו כיוון כיוון את מחשב את נחשב מחשב. כמו מקודם, מחכחה.

$$T(E_{1,1}) = \frac{1}{2} (E_{1,1} - E_{1,1}) = 0$$

$$T(E_{1,2}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{pmatrix} = \frac{1}{2} E_{1,2} - \frac{1}{2} E_{2,1}$$

$$T(E_{2,1}) = \frac{1}{2} (E_{2,1} - E_{1,2}) = \frac{1}{2} E_{2,1} - \frac{1}{2} E_{1,2}, T(E_{2,2}) = \frac{1}{2} (E_{2,2} - E_{2,2}) = 0$$

לכן

$$\begin{split} \left[T\left(E_{1,1}\right)\right]_{E} &= 0 \\ \left[T\left(E_{1,2}\right)\right]_{E} &= \frac{1}{2}e_{2} - \frac{1}{2}e_{3} \\ \left[T\left(E_{2,1}\right)\right]_{E} &= -\frac{1}{2}e_{2} + \frac{1}{2}e_{3} \\ \left[T\left(E_{2,2}\right)\right]_{E} &= 0 \end{split}$$

ואז

,
$$[T]_E = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

כנדרש.

ראשר $B=(f_1,f_2)$ עם הבסיס $V=\operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}^2,\mathbb{R}\right)$ יהי יהי 1.4 תרגיל

$$f_1\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = x$$
, $f_2\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = y$

ותהי

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \operatorname{Mat}_{2 \times 2} (\mathbb{R})$$

 $\left. [T]_{B}=A\right.$ עבורו
 $T\in\operatorname{End}_{\mathbb{R}}\left(V\right)$ מיצאו

פתרון. מתקיים

$$[T]_{B} = \begin{pmatrix} | & | \\ [T(f_{1})]_{B} & [T(f_{2})]_{B} \\ | & | \end{pmatrix}$$

לכן נדרוש

$$[T(f_1)]_B = \begin{pmatrix} 1\\2 \end{pmatrix}$$
$$.[T(f_2)]_B = \begin{pmatrix} 3\\4 \end{pmatrix}$$

אז

$$T(f_1) = f_1 + 2f_2$$

 $T(f_2) = 3f_1 + 4f_2$

לכן, אם $f \in V$ איבר כללי, נכתוב

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \alpha x + \beta y$$

ונקבל כי

$$(T(f)) \begin{pmatrix} x \\ y \end{pmatrix} = (T(\alpha f_1 + \beta f_2)) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha T(f_1) \begin{pmatrix} x \\ y \end{pmatrix} + \beta T(f_2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha (f_1 + 2f_2) \begin{pmatrix} x \\ y \end{pmatrix} + \beta (3f_1 + 4f_2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha (x + 2y) + \beta (3x + 4y)$$

A=B או Av=Bv מתקיים $v\in\mathbb{F}^n$ מענה כי לכל $A,B\in\operatorname{Mat}_{m imes n}(\mathbb{F})$ או 1.1.10. טענה

.0-הוכחה. מהנתון, מתקיים e_i שהינה הוה לכל A-B לכל העמודה ה־ $v\in\mathbb{F}^n$ לכל לכל האינה A-B שווה ל-0. בפרט העמודה ה-A-B=0 לכן לכן האינה ה-

טענה B,C,D בסיסים עם $\mathbb F$ אותו שדה מעל סוף-מימדיים וקטוריים וקטוריים מרחבים U,V,W יהיי 1.1.11. מענה

$$S \in \operatorname{Hom}_{\mathbb{F}}(U, V)$$

 $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$

Хĭ

,
$$[T \circ S]_D^B = [T]_D^C [S]_C^B$$

הוכחה. לכל $u \in U$ מתקיים

$$\begin{split} \left[T\right]_{D}^{C}\left[S\right]_{C}^{B}\left[u\right]_{B} &= \left[T\right]_{D}^{C}\left[S\left(u\right)\right]_{C} \\ &= \left[T\circ S\left(u\right)\right]_{D} \\ &= \left[T\circ S\right]_{D}^{B}\left[u\right]_{B} \end{split}$$

לכן

,
$$\left[T\right]_{D}^{C}\left[S\right]_{C}^{B}=\left[T\circ S\right]_{D}^{B}$$

כנדרש

שענה $T\in \mathrm{Hom}_{\mathbb{F}}\left(V,W\right)$ ותהי שדה \mathbb{F} ותהי מעל שדה דיחד וקטוריים וקטוריים מרחבים ערכית. 1.1.12. יהיו

$$B = (v_1, \dots, v_n)$$
$$C = (u_1, \dots, u_n)$$

בסיסים של V ויהיו

$$B' = (T(v_1), ..., T(v_n))$$

 $C' = (T(u_1), ..., T(u_n))$

 $M_{C}^{B}=M_{C'}^{B'}$ גם $\mathrm{Im}\left(T
ight)=\left\{ T\left(v
ight)\mid v\in V
ight\}$ אז אז B',C' אז

פתרון. כיום שולח ערכית על התמונה, צמצום הטווח נותן איזומורפיזם $T\colon V \xrightarrow{\sim} \mathrm{Im}\,(T)$ בסיסים. בסיסים. בסיסים. בסיסים.

כעת, לכל $i \in [n]$ נכתוב

$$v_i = \sum_{j \in [n]} \alpha_{i,j} u_i$$

ואז

$$.M_C^B e_i = [v_i]_C = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,n} \end{pmatrix}$$

כמו כן,

$$T(v_i) = T\left(\sum_{i \in [n]} \alpha_{i,j} u_j\right)$$
$$= \sum_{i \in [n]} \alpha_{i,j} T(u_j)$$

ולכן גם

$$.M_{C'}^{B'}e_{i} = [T(v_{i})]_{C'} = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,n} \end{pmatrix}$$

קיבלנו כי כל עמודות המטריצות שוות, ולכן יש שוויון.

תרגיל $A\in \mathrm{Mat}_{n imes n}\left(\mathbb{F}
ight)$ הפיכה. 1.5 תרגיל

- $A=M_E^B$ עבורו \mathbb{F}^n של בסיס מיצאו בסיס של \mathbb{F}^n של הבסיס הסטנדרטי .1
 - $A=M_C^E$ עבורו \mathbb{F}^n של C סיס.
 - $A=M_C^B$ עבורו \mathbb{F}^n של C בסיס מיצאו מיצאו \mathbb{F}^n מיצאו .3
- בסיס של $B=(v_1,\dots,v_n)$ ויהי ויהי איזומורפיזם מעל $T\in \mathrm{End}_{\mathbb F}(V)$, יהי $R\in \mathbb N_+$ מעל ממימד מימד איזומורפיזם ויהי $T\in \mathrm{End}_{\mathbb F}(V)$. מיצאו בסיס של עבורו T

פתרון. אם $B=(v_1,\ldots,v_n)$ מתקיים מההגדרה כי

$$.M_E^B = \begin{pmatrix} | & & | \\ [v_1]_E & \cdots & [v_n]_E \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix}$$

. הסדר, A לפי להיות עמודות (v_1,\ldots,v_n) את לכן ניקח את

מתקיים $v\in\mathbb{F}^n$ מתקיים.

$$M_E^C M_C^E v = M_E^C [v]_C = [v]_E = v$$

נקבל מהסעיף הקודם A^{-1} של i^- ה העמודה הי i^- באשר כר באשר $C=(u_1,\dots,u_n)$ אם ניקח $M_C^E=\left(M_E^C\right)^{-1}$ ולכן הקודם $M_C^E=\left(A^{-1}\right)^{-1}=A$ ולכן $M_E^C=A^{-1}$

 $M_C^E=A\left(M_E^B
ight)^{-1}=AM_E^B$ או במילים או במילים שיתקיים שיתקיים לכן נרצה שיתקיים לכן נרצה או לכן נרצה שיתקיים $M_C^B=M_C^EM_E^B$ או במילים אחרות $M_C^B=M_C^BM_E^B$ כאשר היסעיף הקודם, נרצה (AM_E^B) כאשר העמודה היש שית העמודה ביש לכן נרצה לכן נרצה בישר או העמודה ביש העמודה ביש לכן נרצה בישר או העמודה בישר הע

$$.u_i = M_E^B A^{-1} e_i$$

עבור כל בסיס C' מתקיים $M_C^B[T]_B^B=A$ לכן נרצה $[T]_{C'}^B=M_{C'}^B[T]_B^B$ מתקיים, המטריצה $M_C^B=M_C^E$ לכן $M_C^B=M_C^E$ כעת, אם $M_C^B=M_C^E$ בקבל כי $M_C^B=M_C^E$ כאשר $M_C^B=M_C^E$ הפיכה, ולכן נרצה $M_C^B=M_C^E=A\left[T\right]_B^B$ עבורו $\hat{C}=(u_1,\ldots,u_n)$ לפי הסעיף השני, נרצה $\hat{C}=([v_1]_B,\ldots,[v_n]_B)$ עבורו עבור

$$.u_i=\left(A\left[T\right]_B^{-1}
ight)^{-1}e_i=\left[T\right]_BA^{-1}e_i$$
לכן $.v_i=
ho_B^{-1}\left(\left[T\right]_BA^{-1}e_i
ight)$

תהי , $V=\mathbb{C}_3\left[x
ight]$ יהי .1.6 תרגיל

$$T\colon V\to V$$
 ,
$$p\left(x\right)\mapsto p\left(x+1\right)$$

 $A = [T]_C^E$

פתרון. לפי התרגיל הקודם, $u_i = [T]_E\,A^{-1}e_i$ כאשר כא $\hat{C} = (u_1,\dots,u_4)$ פתרון. לפי התרגיל הקודם, נרצה קודם

$$[T]_E = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

וניתן לראות כי $A^{-1}=A$ כלומר $A^2=I$ נשים לב כי

$$Ae_1 = e_2$$

$$Ae_2 = e_1$$

$$Ae_3 = e_4$$

$$Ae_4 = e_3$$

ואז נקבל

$$u_{1} = [T]_{E} A^{-1}e_{1} = [T]_{E} e_{2} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

$$u_{2} = [T]_{E} A^{-1}e_{2} = [T]_{E} e_{1} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

$$u_{3} = [T]_{E} A^{-1}e_{3} = [T]_{E} e_{4} = \begin{pmatrix} 1\\3\\3\\1 \end{pmatrix}$$

$$u_{4} = [T]_{E} A^{-1}e_{4} = [T]_{E} e_{3} = \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}$$

כלומר

$$\hat{C} = \left(\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix} \right)$$

ולבסוף

$$C = (v_1, v_2, v_3, v_4) := (1 + x, 1, 1 + 3x + 3x^2 + x^3, 1 + 2x + x^2)$$

מתקיים A מתקיים הייצגת היא אכן ליתר ליתר מחון, נבדוק שהמטריצה ליתר

$$T(1) = 1 = v_2$$

 $T(x) = x + 1 = v_1$
 $T(x^2) = (x+1)^2 = 1 + 2x + x^2 = v_4$
 $T(x^3) = (x+1)^3 = 1 + 3x + 3x^2 + x^3 = v_3$

ולכן

$$[T]_{C}^{E} = \begin{pmatrix} | & | & | & | & | \\ [T(1)]_{C} & [T(x)]_{C} & [T(x^{2})]_{C} & [T(x^{3})]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | & | \\ [v_{2}]_{C} & [v_{1}]_{C} & [v_{4}]_{C} & [v_{3}]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [v_{2}]_{C} & [v_{1}]_{C} & [v_{4}]_{C} & [v_{3}]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ e_{2} & e_{1} & e_{4} & e_{3} \\ | & | & | & | & | \end{pmatrix}$$

$$= A$$

כנדרש.

גרעין ותמונה 1.2

הגרעין הגרעין אותו שדה מעל אותו מעל מרחבים וקטורים. יהיו יהיו יהיו יהיו על אותו מעל מרחבים על יהיו יהיו יהיו יהיו יהיו יהיו על מרחבים וקטורים מעל אותו של T הוא

$$.\ker\left(T\right)\coloneqq\left\{ v\in V\mid T\left(v\right)=0\right\}$$

התמונה $T \in \operatorname{Hom}(V,W)$ התמונה של אותו מעל מרחבים וקטורים V,W יהיו יהיו יהיו העתקה לינארית). הרא הגדרה 1.2.2 התמונה של T היא

$$.\operatorname{Im}(T) := \{T(v) \mid v \in V\}$$

הדרגה $T \in \mathrm{Hom}\,(V,W)$ ותהי שדה ותהי מעל אותו מרחבים וקטורים V,W יהיו יהיו לינארי). דרגה של 1.2.3 הדרגה של T היא

$$.\operatorname{rank}(T) := \dim(\operatorname{Im}(T))$$

הערה B,C בסיסים עם סוף־מימדיים V,W אם 1.2.4. הערה

$$\operatorname{.rank}(T) = \operatorname{rank}\left([T]_C^B\right)$$

משפט 1.2.5 (משפט המימדים). יהי V מרחב יהי (משפט המימדים) משפט 1.2.5 משפט

$$. \dim V = \dim \operatorname{Im} (T) + \dim \ker (T)$$

 $[v]_B = egin{pmatrix} 1 \ dots \ 1 \end{pmatrix}$ עבורו V של B בסיס A מיצאו ניהי V מיצאו ויהי סוף־מימדי ויהי V מרחב וקטורי סוף־מימדי ויהי ויהי V

תהי $v_1=v$ כאשר V של $B_0=(v_1,\ldots,v_n)$ לבסיס (v) את נשלים געורון. נשלים את

$$.A := \begin{pmatrix} 1 & & & & \\ 1 & 1 & & & 0 \\ \vdots & & \ddots & & \\ 1 & & & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \in M_n \left(\mathbb{F} \right)$$

נקבל גקבים עבורו עבורו עבורו של $B=(u_1,\ldots,u_n)$ בסים קיים מתרגיל מתרגיל הפיכה, ולכן הפיכה A

$$[v]_{B} = [\operatorname{Id}_{V} v]_{B}$$

$$= [\operatorname{Id}_{V}]_{B}^{B_{0}} [v]_{B_{0}}$$

$$= A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$. = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

מפורשות, ראינו כי ניתן לקחת

$$.u_i = \rho_{B_0}^{-1} ([\mathrm{Id}]_B A^{-1} e_i) = \rho_{B_0}^{-1} (A^{-1} e_i)$$

אם יש $\operatorname{rank} T=1$ כי הראו כי $T=\operatorname{End}_{\mathbb{F}}(V)$ ותהי שדה \mathbb{F} , ותהי מעל שדה מער מרחב וקטורי סוף־מימדי מעל T=T. הראו כי T=T הם ורק אם יש בסיסים T=T הראו כי שכל מקדמי T=T הם ורק אם יש

 $\operatorname{rank} T = \operatorname{rank} \left[T\right]_C^B = 1$ בתרון. אז בסיסים B,C כמתואר. אז היש בסיסים לניח כי $\operatorname{rank} T = \operatorname{rank} \left[T\right]_C^B = 1$ ממשפט המימדים מתקיים $\operatorname{rank} T = 1$. כלומר, $\operatorname{rank} T = 1$ ממשפט המימדים מתקיים לכו

 $.\dim \ker T = \dim V - \dim \operatorname{Im} T = \dim V - 1$

יהי $n\coloneqq \dim V$ ויהי

$$\tilde{B} \coloneqq (u_1, \dots, u_{n-1})$$

 $\ker T$ בסים של

יהי $[w]_C = egin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ כך שמתקיים V כך בסיס של C ויהי והערגיל הקודם. יהי $[w]_C = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

$$\begin{pmatrix} | & & | \\ [v]_{\tilde{B}} & \cdots & [v+u_{n-1}]_{\tilde{B}} \\ | & & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & 1 & 0 \\ 0 & & \cdots & 0 & 1 \end{pmatrix}$$

הפיכה.

נסמן $C=(w_1,\ldots,w_m)$ מתקיים

 $T\left(v\right) = w = w_1 + \ldots + w_m$

ולכל $i \in [n-1]$ מתקיים

 $T(v + u_i) = T(v) + T(u_i)$ = T(v) + 0 = T(v) $= w_1 + \dots + w_m$

.1 הם מסריצה שכל מקדמיה וכן $\left[T\right]_{C}^{B}$

תרגיל 1.9. תהי

$$T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$$

 $p(x) \mapsto p(-1)$

עבורם $\mathbb{R}_3\left[x\right]$ של B,C עבורם מיצאו

פתרון. ניקח בסיס לאשר זהו בסיס כי את ($Ker\left(T\right)$ של $ilde{B}=(b_1,b_2,b_3):=\left(x+1,x^2-1,x^3+1\right)$ בסיס כי את פתרון. ניקח בסיס לי את בסיס לי את בסיס לי את בסיס לי את בלתי-תלוייה לינארית מגודל מקסימלי (הגרעין לכל היותר T מימדי כי T מימדי כי לינארית מגודל מקסימלי (הגרעין לכל היותר בי אותר בי אותר בי אתרי-תלוייה לינארית מגודל מקסימלי (הגרעין לכל היותר בי אתרי-תלוייה לוותר בי אתרי-תלוייה בי אתרי-תלוייה בי אתרי-תלוייה בי אתרי-תלוייה בי אתרי-תלויה בי אתרי-תלי

$$.C_0 = (v_1, v_2, v_3, v_4) := (-1, x, x^2, x^3)$$

המטריצה

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

ביכה ולכן קיים בסיס $[w]_C=egin{pmatrix}1\\1\\1\\1\end{pmatrix}$ כשראינו שאז $M_C^{C_0}=X$ עבורו $C=(u_1,u_2,u_3,u_4)$ כפי שראינו, ניתן לחשב הפיכה ולכן קיים בסיס

מתקיים $.u_{i}=\rho_{C_{0}}^{-1}\left(X^{-1}e_{i}\right)$ את לפיC את

$$X^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

ולכן

$$u_{1} = \rho_{C_{0}}^{-1} \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = -1 - x - x^{2} - x^{3}$$

$$u_{2} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = x$$

$$u_{3} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = x^{2}$$

$$u_{4} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = x^{3}$$

$$.C=\left(-1-x-x^2-x^3,x,x^2,x^3\right)$$
 כלומר, כלומר, $T\left(v\right)=-1=w$ שיתקיים ער $v=x\in V$ ואז ניקח

$$B = (v, v + b_1, v + b_2, v + b_3) = (x, 2x + 1, x^2 + x - 1, x^3 + x + 1)$$

כמו בתרגיל הקודם. אכן, מתקיים

$$T(x) = -1$$

$$T(2x+1) = -2 + 1 = -1$$

$$T(x^{2} + x - 1) = (-1)^{2} - 1 - 1 = 1 - 2 = -1$$

$$T(x^{3} + x + 1) = (-1)^{3} - 1 + 1 = -1$$

$$\left[-1
ight]_C = egin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 לכן

כפי שרצינו.

פרק 2

סכומים ישרים ולכסינות

2.1

הגדרה 2.1.1 (סכום ישר). יהי V מרחב וקטורי סוף-מימדי מעל $\mathbb F$ ויהיו ויהי א מרחב וקטורי יהי V יהי יהי יהי $V_1,\ldots,V_k\leq V$

$$V_1 + \ldots + V_k := \{v_1 + \ldots + v_k \mid \forall i \in [k] : v_i \in V_i\}$$

 $v_i\in V_i$ נגיד שהסכום הזה הוא סכום ישר אם כל $v\in V_1+\ldots+V_k$ ניתן לכתיבה $v\in V_1+\ldots+V_k$ במקרה הוא סכום הזה הסכום במקרה החסכום $\bigoplus_{i\in [k]}V_i=V_1\oplus\ldots\oplus V_k$

לכל $v_i=0$ גורר עבור עבור $v_i\in V_i$ עבור עבור אם ורק אם ורק אם ישר אישר אורר הסכום שקול, הסכום באופן באופן ישר $v_i=0$ ישר אם ורק אורר $v_i=0$ אורר באופן ישר לכל $v_i=0$ ישר אם ורק אורר באופן ישר אורר ישר אורר וורך ישר אורר וורך אורר אורר וורך ישר או

טענה $\sum_{i \in [k]} V_i \coloneqq V_1 + \ldots + V_k$ ישר אם מענה 2.1.3. טענה

$$V_i \cap \left(\sum_{j \neq i} V_j\right) = \{0\}$$

 $i \in [k]$ לכל

את המקרה באינדוקציה, והטענה הכללית נובעת באינדוקציה. k=2

הגדרה 2.1.4 (שרשור קבוצות סדורות). תהיינה

$$A_{1} = (v_{1,1}, \dots, v_{1,\ell_{1}})$$

$$A_{2} = (v_{2,1}, \dots, v_{2,\ell_{2}})$$

$$\vdots$$

$$A_{k} = (v_{k,1}, \dots, v_{k,\ell_{k}})$$

קבוצות סדורות. נגדיר את השרשור שלהן

$$A_1 \cup \ldots \cup A_k := (v_{1,1}, \ldots, v_{1,\ell_1}, v_{2,1}, \ldots, v_{2,\ell_2}, \ldots, v_{k,1}, \ldots, v_{k,\ell_k})$$

הסדר. לפי הסדורה הסדורה איברי איברי שרשור איברי לפי הסדורה איברי אחרשור איברי איברי לפי הסדורה איברי אואר אואר איברי אויי אואר איברי אואר איברי אואר איי

. מענה V יהי של הבאים של יויהיו ענה ויהיו ויהיו ויהיו ויהיו אחרב וקטורי יהי מרחב ענה יהי מענה V_1,\ldots,V_k

- $V = V_1 \oplus \ldots \oplus V_k$.1
- V של בסיסים היא בסיסים איז $B_1 \cup \ldots \cup B_k$ הסדורה הקבוצה איז של פסיסים היא בסיסים.
- V של בסיס של $B_i \cup \ldots \cup B_k$ הסדורה הסדורה על של של מיסים בסיסים. 3

וגם
$$V = \sum_{i \in [k]} V_i$$
 .4

$$.\dim V = \sum_{i \in [k]} \dim (V_i)$$

 $P^2=P$ אם הטלה הטלה נקראת נקראת יהי $P\in \mathrm{End}_{\mathbb{F}}(V)$ נוניכיר על שדה \mathbb{F} , ונוכיר מעל שדה על מרחב וקטורי סוף־מימדי מעל פאר

- $V=\ker\left(P
 ight)\oplus\operatorname{Im}\left(P
 ight)$ כי הראו הטלה. $P\in\operatorname{End}_{\mathbb{F}}\left(V
 ight)$.1
- עבורו V של B כיים בסיס אם ורק אם הטלה $T\in \mathrm{End}_{\mathbb{F}}\left(V
 ight)$.2

$$. [T]_B = \begin{pmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

בתרון. $P\left(v
ight)\in\mathrm{Im}\left(P
ight)$ כאשר $v=\left(v-P\left(v
ight)
ight)+P\left(v
ight)$ מתקיים $v\in V$ כמו כן.

$$P(v - P(v)) = P(v) - P^{2}(v) = P(v) - P(v) = 0$$

 $V = \ker(P) + \operatorname{Im}(P)$ נקבל כי $v - P(v) \in \ker(P)$ ולכן

עבורו $u\in V$ שנורו $v\in {
m Im}\,(P)$ בפרט $v\in {
m ker}\,(P)\cap {
m Im}\,(P)$ אז אם כעת, אם

$$v = P(u) = P^{2}(u) = P(P(u)) = P(v) = 0$$

ישר. ישר ונקבל כי ונקבל $\ker(P) \cap \operatorname{Im}(P) = 0$

עבור בסיסים . $V=\ker\left(T\right)\oplus\operatorname{Im}\left(T\right)$ זה במקרה הטלה. במקרה לניח כי T

$$C = (c_1, \dots, c_m)$$
$$D = (d_{m+1}, \dots, d_{\ell})$$

 $\dim\left(\ker\left(T
ight)
ight)$ לכן לכן התקיים $c_i\in C$ מתקיים בסיס של כי בסיס על בהתאמה, נקבל כי בהתאמה, נקבל כי $C\cup D$ בסיס של עבורו $\ker\left(T
ight)$, דעבורו אפסים. לכל $u_i\in D$ של לכל הן עבורו אפסים אפסים ולכן הן עמודות של $u_i\in D$ העמודות הראשונות של

$$\mathsf{,}d_{i}=T\left(u_{i}\right)=T^{2}\left(u_{i}\right)=T\left(T\left(u_{i}\right)\right)=T\left(d_{i}\right)$$

לכן

$$[T(d_i)]_{C \cup D} = [d_i]_{C \cup D} = e_i$$

. תבררש. עבור היז ונקבל את הנדרש. iים העמודה היiים עבור ולכן העמודה היו

. הטלה. $T^2=T$ ולכן $T^2=T$ ולכן ולכן $T^2=T$ ונקבל כי אז בסיס בנ״ל. אז אז ונקבל כי $B=(v_1,\ldots,v_n)$ הטלה.

עבורו ער איז א הוא תת־מרחב של עבורו משלים שר משלים משלים ויהי עוברו ויהי עוקטורי ויהי עוקטורי ויהי עבורו משלים משלים משלים של עבורו V מרחב וקטורי ויהי עבורו V מרחב וקטורי ויהי עבורו V מרחב וקטורי ויהי עבורו V

V בסיס של C יהי B בסיס עם בחרמרחב עם תת־מרחב עו ויהי ויהי שדה $\mathbb F$ ויהי מעל שדה $U \leq V$ יהי מרחב וקטורי סוף־מימדי מעל

- C-מ וקטורים הוספת על ידי על על לבסיס את השלים את שניתן ההשלים .1
 - .Cים משלים של עם בסיס של של של W של משלים מקיים .2

m עבור אותה אותה ונוכיח אותה לכל נניח שהטענה נכונה עבור ולכן ולכן ולכן ולכן ווכיח אותה עבור עבור ו|B|=n

אם $C \subseteq U$ אם

$$V = \operatorname{Span}_{\mathbb{F}}(C) \subseteq \operatorname{Span}_{\mathbb{F}}(U) = U$$

c כי בלתי־תלויה לינארית, כי $B\cup(c)$ אז היפטועים. לכן, קיים שונים. לכן, קיים לכן, בסתירה לכך בסתירה לכך בסתירה לכן, אז אינו צירוף לינארי של הוקטורים הקודמים. נגדיר בערור אינו צירוף לינארי של הוקטורים הקודמים. נגדיר

$$n - \dim(U') = n - |B| - 1 = m - 1 < m$$

של $(B\cup(c))\cup(c_2,\ldots,c_m)$ לבסיס לבסיס את האינדוקציה ולקבל שניתן השלים את ולכן שניתן האינדוקציה האינדוקציה ולקבל שניתן לבסיס את $C,c_2,\ldots,c_m\in C$ אז $C,c_i\in C$ משלימים את שלימים את $C,c_i\in C$ אז אז אינדוקציה ולקבל של השלימים את שלימים את שלימים את אונדים אינדוקציה ולקבל של האינדוקציה ולקבל של אינדים אינדוקציה ולקבל של האינדוקציה ולקבל שניתן האינדוקציה ולקבל האינדו

 $W=\mathrm{Span}_{\mathbb{F}}(D)$ וגם $D=(c,c_2,\ldots,c_m)$ נסמן $B\cup(c,\ldots,c_m)$ וגם $B\cup(c,\ldots,c_m)$ וגם .2 בסימונים של הסעיף הקודם, $B\cup D$ אז $B\cup D$ אז

$$V = \operatorname{Span}_{\mathbb{F}}(B) \oplus \operatorname{Span}_{\mathbb{F}}(D) = U \oplus W$$

כנדרש.

תרגיל 2.3. יהי $V=\mathbb{R}_3\left[x
ight]$ יהי ינה

$$B = (1 + x, x + x^{2})$$
$$C = (1, x, x^{2}, x^{3})$$

 $.U = \mathrm{Span}\,(B)$ יהי יהי וקטורים של קבוצות סדורות קבוצות

- .Cב מוקטורים שמורכב שמורכב עבור W של שלים שמורכב ב- .1
 - .1 שמצאתם יחיד? הוכיחו או הפריכו. W
- $B'=\left(1+x,x+x^2,1
 ight)$ כדי לקבל U את U כדי הוספת וקטורים מV על ידי הוספת על U על ידי הוספת וקטורים מU את U של U של U בסיס U בסיס U של U של U בסיס U בסיס U בסיס U או U בסיס, ולכן U בער U בער
- במקרה זה היינו . $B''=\left(1+x,x+x^2,x^2,x^3
 ight)$ ואז ואז $B'=\left(1+x,x+x^2,x^2
 ight)$ במקרה במקרה . $B''=\left(1+x,x+x^2,x^3
 ight)$ במקרה מקבלים משלים ישר האינו ($Span\left(x^2,x^3
 ight)$ ששונה מ-W

2.2 לכסינות

 $lpha_1,\dots,lpha_n\in\mathbb{F}$ נקרא לכסין של B פיים בסיס בסין נקרא לכסין נקרא אופרטור וופרטור אופרטור $T\in\mathrm{End}_{\mathbb{F}}(V)$ אופרטור לכסין). אופרטור עבורם עבורם

$$.[T]_B = \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_n \end{pmatrix}$$

. בסיס מלכסון מטריצה מטריצה (Tן נקראת מטריצה בסיס מלכסון נקרא בסיס מלכסון לכיס מלכסון נקרא בסיס מלכסון נקרא בסיס מלכסון נקרא בסיס מלכסון מטריצה אלכסונית

 $T(v)=\lambda v$ נקרא עבורו אם קיים של T אם אם נקרא נקרא נקרא נקרא וקטור $v\in V\setminus\{0\}$. וקטור וקטור $T\in \mathrm{End}_{\mathbb{F}}(V)$ יהי יהי 2.2.2. יהי במקרה זה T עבורו עצמי של T.

 $\operatorname{Span}_{\mathbb{F}}(v)=\{\lambda v\mid \lambda\in\mathbb{F}\}$ מתקיים T מתקיים עצמי של T אם ורק אם קיים אם עבורו T אם ורק אם קיים T אם ורק אם עבור באופן שקול עצמי של T אם ורק אם $\operatorname{Span}_{\mathbb{F}}(v)$ הינו $\operatorname{Span}_{\mathbb{F}}(v)$ הינו T-שמור.

T אופרטור עצמיים של שמורכב בסיס של אם ורק אם הינו לכסין הינו $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ אופרטור 2.2.4. אופרטור

הוא הערך עם הערך על המרחב העצמי של T ויהי λ ערך עוהר $T \in \operatorname{End}_{\mathbb{F}}(V)$ הגדרה 2.2.5 (מרחב עצמי). היי

$$V_{\lambda} := \{v \in V \mid T(v) = \lambda v\} = \ker(\lambda \operatorname{Id}_V - T)$$

הגדרה 2.2.6 (פולינום אופייני של T הוא הגדרה $T \in \operatorname{End}_{\mathbb{F}}(V)$ ההי יהי יהי של T הוא

$$p_T(x) := \det(x \operatorname{Id}_V - T)$$

הערה הדטרמיננטה. בפועל, נסתכל בדרך כלל על פולינום אופייני של מטריצה, כיוון שצריך לבחור בסיס כדי לחשב את הדטרמיננטה. בפועל, נסתכל בדרך כלל על פולינום אופייני של מטריצה, כיוון שצריך לכל בסיס אינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$ לכל בסיס אינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$ לכל בסיס כדי לחשב את הדטרמיננטה. כאינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$

 $p_T\left(\lambda
ight)=\det\left(\lambda\operatorname{Id}_V-T
ight)=$ איבר אם ורק אם אפר אם ורק אם אם ורק אם ורק אם ערך עצמי של אם איבר $\lambda\in\mathbb{F}$ איבר 2.2.8. איבר $\lambda\in\mathbb{F}$ אם איבר $\lambda\in\mathbb{F}$ אם הוא ערך עצמי של $\lambda\in\mathbb{F}$ אם השורשים של $\lambda\in\mathbb{F}$ הם השורשים של כלומר, הערכים העצמיים של T הם השורשים של הערכים העצמיים של דער הם השורשים של הערכים העצמיים של דער הם השורשים של דער הערכים העצמיים של דער הערכים הערכים הערכים העצמיים של דער הערכים הערכים הערכים העצמיים של דער הערכים הערכי

. יש ערך עצמי $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ לכל שורש, לכל $p\in\mathbb{C}\left[x
ight]$ יש ערך עצמי $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ לכל

הגדרה של ערך עצמי $\lambda\in\mathbb{F}$ הוא ערך עצמי של הריבוי האלגברי הריבוי יהי $T\in\mathrm{End}_{\mathbb{F}}(V)$ יהי יהי אלגברי). ריבוי אלגברי מסמו $r_{a}\left(\lambda\right)$ נסמו $r_{a}\left(\lambda\right)$ נסמו $r_{a}\left(\lambda\right)$

 $.r_g\left(\lambda
ight)\coloneqq \dim V_\lambda$ הוא $\lambda\in\mathbb{F}$ עצמי של ערך עצמי הריבוי הריבוי $.T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$ יהי הגאומטרי). יהי יהרה 2.2.11 הערה $.r_a\left(\lambda
ight)\le r_a\left(\lambda
ight)$ יהערה 2.2.12. מתקיים תמיד

הגדרה לכסין, אם T לכסין, ויהי T אופרטור האור (כלומר, T אופרטור אוורי, אם אופרטור אוורי אופרטור אוורי אוורי אופרטור. אוורי אלכטונית. אז $D:=[T]_B$ אופרטורית. אז

$$\begin{split} A &= [T]_E \\ &= [\operatorname{Id} \circ T \circ \operatorname{Id}]_E \\ &= M_E^B \left[T \right]_B M_B^E \\ &= M_E^B D \left(M_E^B \right)^{-1} \end{split}$$

 $P^{-1}AP=D$ ואת מטריצה הפיכה נסמן עבורה פיכה נסמן ואת נסמן ואם נסמן ואם נסמן ואת נסמן ואת נסמן ואת נסמן ואת נסמן ואת מטריצה אלכסונית. אלכסונית. ואימת שמטריצה $P^{-1}AP$ הפיכה אם קיימת ואר אלכסונית. ואימת ואריצה ואת מטריצה ואת מט

מרחבים שמורים 2.3

נרצה להבין אופרטורים לינאריים דרך הבנה של צמצום שלהם לתת־מרחבים קטנים יותר. אם $T\in \mathrm{End}_{\mathbb{F}}(V)$, נוכל תמיד לרצמצם את המקור כדי לקבל העתקה לינארית $T|_W:W\to V$, אבל לא נוכל ללמוד מספיק כאשר הצמצום אינו אופרטור. לכן נרצה לצמצם גם את הטווח, מה שמוביל להגדרה הבאה.

 $T\left(U
ight)\subseteq T$ אינווריאנטי אם הינו T־שמור (או T-שמור). יהי ווריאנטי אם $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ יהי מרחב שמור). U

 $T|_{W}\left(w
ight)=T$ שמוגדר על ידי שמוגדר שמוגדר שמוגדר על הסתכל על הסתכל נוכל להסתכל מרחב $T|_{W}:W o W$ במקרה במקרה על ידי $T|_{W}$

הערה 2.3.3. שימו לב שהסימון הוא אותו סימון כמו הצמצום של המקור, אך במסגרת הקורס צמצום אופרטורים יתייחס לזה שבהגדרה אלא אם כן יצוין מפורשות אחרת.

 $W \leq V$ יהי מעל P איזומורפיזם. כאשר איזומורפיזם. יהי P איזומורפיזם. יהי איזומורפיזם. ערגיל 2.4 יהינו $P^{-1} \circ T \circ P$ הינו אם ורק אם $P^{-1} \circ T \circ P$ הינו איז הינו $P^{-1} \circ T \circ T$

 $w\in W$ יהי $P^{-1}\circ T\circ P\left(v
ight)\in P^{-1}\left(W
ight)$ כי להראות כי $v\in P^{-1}\left(W
ight)$ יהי שמור ויהי $v\in P^{-1}\left(W
ight)$ אז עבורו $v=P^{-1}\left(w
ight)$ אז

$$P^{-1} \circ T \circ P(v) = P^{-1} \circ T \circ P \circ P^{-1}(W)$$
$$= P^{-1} \circ T(w)$$

 $P^{-1}\circ T\circ P\left(v
ight)\in P^{-1}\left(W
ight)$ כאשר T הוא T-שמור. נקבל כי $T\left(w
ight)\in W$ העם $Q=P^{-1}$ הוב $S=P^{-1}\circ T\circ P$ הינו $T^{-1}\circ T\circ P$ -שמור. נגדיר $T^{-1}\circ T\circ P$ הינו $T^{-1}\circ T\circ P$ הינו $T^{-1}\circ T\circ P$ אז $T^{-1}\circ T\circ P$ הינו $T^{-1}\circ T\circ P$ הינו $T^{-1}\circ T\circ P$ אז $T^{-1}\circ T\circ P$ -שמור, כלומר $T^{-1}\circ T\circ P$ -שמור, כלומר $T^{-1}\circ T\circ P$

תרגיל 2.5. יהי $\mathbb C$ כמרחב וקטורי ממשי ויהי

$$T \colon \mathbb{C} \to \mathbb{C}$$
$$. \quad z \mapsto iz$$

 $\mathbb R$ מעל לכסין אינו כי והסיקו של של החת־שמורים ה-Tהכים התת־מתחבים מצאו את מצאו מצאו את

תת־מרחבים T-שמורים. $\mathbb{C},\{0\}$ תת־מרחבים $W<\mathbb{C}$

ולכן יש $\dim_{\mathbb{R}}\left(W
ight)=1$ אז ניח כי $W\leq\mathbb{C}$ מרחב W

$$z_0 \in \mathbb{C}^{\times} := \{ z \in \mathbb{C} \mid z \neq 0 \}$$

עבורו c=i גורר c=i גורר c=i גורר c=i גורר בסת גורר אבל c=i נקבל c=i נקבל c=i נקבל c=i עבור c=i עבור עצמי של c=i וקטורים עצמיים, ולכן עבור c=i אינו ל-c=i וקטורים עצמיים, ולכן עבור c=i אינו לכסינה מעל c=i וקטורים עצמיים, ולכן אינו לכסינה מעל c=i וועבורים עצמיים, ולכן אינו לכסינה מעל c=i וועבורים עצמיים, ולכן אינו לכסינה מעל c=i וועבורים עצמיים, ולכן עבור c=i וועבורים עצמיים, ולכן אינו לכסינה מעל c=i וועבור עצמיים, ולכן עבור עצמיים, ולכן אינו לכסינה מעל c=i וועבורים עצמיים, ולכן עבור עצמיים, ולכן עבור עצמיים, ולכן אינו לכסינה מעל c=i וועבורים עצמיים, ולכן עבור עצמיים, ולכן עבור עצמיים, ולכן אינו לכיינה מעל c=i וועבורים עצמיים, ולכן עבור עצמיים, ולכן אינו לכיינה מעל c=i וועבורים עצמיים, ולכן עבור עצמיים, ולכן אינו לכיינה מעל c=i וועבורים עצמיים, ולכן אינו לכיינה מעל c=i וועבורים עצמיים, ולכן אינו לכיינה מעל c=i וועבורים עצמיים, וועבורים עצמיים,

נסמן A_1, \ldots, A_k טימון ריבועיות מטריצות עבור עבור 2.3.4.

$$A_1 \oplus \ldots \oplus A_k = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_k \end{pmatrix}$$

ותהי $V=\mathbb{C}^n$ יהי יהי2.6 ותהי

$$T \colon V \to V$$

עם

$$[T]_E = \lambda_1 I_{m_1} \oplus \ldots \oplus \lambda_k I_{m_k}$$

V עבור T־שמורים ה־T־שמורים את את מצאו את הוא $n_i=m_1+\ldots+m_{i-1}+1$ נסמן i
eq j לכל ל

$$T(v_1 + \ldots + v_k) = T(v_1) + \ldots + T(v_k)$$

כאשר שאלו כל האפשרויות לתת־מרחבים שמורים. $T(v_i)\in W_i$ כלומר כל הערים, $T(v_i)\in W_i$ נראה אלו כל האפשרויות לתת־מרחבים שמורים. $T(v_i)\in W_i$ הינו לכסין. לכן, אז לכסין. לכן, $T(v_i)\in W_i$ סכום ישר של המרחבים העצמיים של $T|_W$ הוא החיתוך שעבור אופרטור לכסין עצמי ל, המרחב העצמי של המרחבים העצמיים, נקבל כי המרחב שווה לסכום ישר של המרחבים העצמיים, נקבל כי

,
$$W = \bigoplus_{i \in [k]} W_{\lambda_i} = \bigoplus_{i \in [k]} W \cap V_{\lambda_i}$$

כנדרש.

בתור עצמי λ עם ערך עצמי m בתור בלוק ז'ורדן נגדיר גדיר יהי $\lambda \in \mathbb{F}$ יהי ז'ורדן. יהי $\lambda \in \mathbb{F}$

$$J_{m}(\lambda) := \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \operatorname{Mat}_{m}(\mathbb{F})$$

הגדרה 2.3.6 (אופרטור אי־פריד). אופרטור $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ אופרטור אי־פריד). אופרטור אי־פריד). אופרטור $U,W\leq V$ או $U=V,W=\{0\}$ או אי־פריד אי־

 \mathbb{F}^n שמורים של T- מיצאו את המרחבים ה־ $T=T_{J_n(0)}\in \mathrm{End}\left(\mathbb{F}^n
ight)$ יהי .1 .2.7 מרגיל

- - \mathbb{F}^n של הסיקו ה- $S=T_{J_n(\lambda)}\in \mathrm{End}_{\mathbb{F}^n}$ הסיקו. 3
 - . הראו כי S הינו אי־פריד.

פתרון. 1. נשים לב כי

$$\{0\}$$

$$\ker(T) = \operatorname{Span}(e_1)$$

$$\operatorname{Im}(T) = \operatorname{Span}(e_1, \dots, e_{n-1})$$

$$V = \operatorname{Span}(e_1, \dots, e_n)$$

כולם T-שמורים, כיוון שמרחב האפס, הגרעין, התמונה, והמרחב כולו תמיד T-שמורים. גם, מתקיים

$$\forall i > 1 \colon T(e_i) = e_{i-1} \in \operatorname{Span}(e_1, \dots, e_i)$$
$$T(e_1) = 0$$

 יש כזה א כיוון אחת א המקסימלי עבורו א המקסימלי ויהי א האי ויהי ויהי א המקסימלי ויהי א המקסימלי עבורו ויהי א המקסימלי ויהי א המקסימלי ויהי א האות האי א האות כי א האות כי א נקבל $W=\mathrm{Span}\,(e_1,\ldots,e_k)$). נקבל ויש כזה א האות כי ($\{0\}\subseteq W$). נקבל

אחרת, קיים וקטור $e_i\in W$ נקבל כי עם $e_i\in W$ עם אחרת, עם אחרת, עם עם אוגם עובר עם עם אוגם עובר עם אחרת, עם אחרת, אחרת, עם אוגם עם אוגם עם אחרת, עם אונים אונים

$$\alpha_{\ell} e_{\ell} = v - \sum_{i \in [\ell - 1]} \in W$$

 $\operatorname{Span}\left(e_1,\ldots,e_{k+1}
ight)\subseteq W$ ולכן שי $e_1,\ldots,e_{k+1}\in W$ זה במקרה הב $e_{k+1}=e_\ell\in W$ אז מ $e_\ell
eq 0$ אוריה להנוחה

כלומר ליי, מתקיים לו $\ell-i=k+1$ לכל ליי, מתקיים $T^i\left(e_\ell\right)=e_{k+1}$ שיתקיים לכל לכל לכל ליי, מתקיים לכל ליי. גוו $i=\ell-(k+1)$

$$T^{\ell-(k+1)}\left(v\right) = \sum_{i \in [\ell]} \alpha_i T^{\ell-(k+1)}\left(e_i\right)$$
$$= \sum_{i=\ell-k}^{\ell} \alpha_i e_{i-\ell+k+1}$$
$$= \sum_{j=1}^{k+1} \alpha_{j+\ell-k-1} e_j \in W$$

 $\ell=k+1$ ונקבל את הנדרש מהמקרה הקודם

מתקיים $w \in W$ מחקיים תרמרחב M < V מתקיים .2

$$(N + \lambda \operatorname{Id}_V)(w) = N(w) + \lambda w \in W$$

. כיוון ש־ $N+\lambda\operatorname{Id}_V$ הינו לכן $N\left(w\right),\lambda w\in W$ שמור.

- $\operatorname{Span}_{\mathbb{F}}(e_1,\dots,e_i)$ מהסעיף הקודם, שהינם אלו המרחבים המרחבים שמורים שמורים ה־S שמורים נקבל כי המרחבים . $i\in\{0,\dots,n\}$ עבור
- $i,j\in\{0,\dots,n\}$ יש תת־מרחבים הקודם, שניח כי יש עבורם W_1,W_2 עבורם W_1,W_2 אבורם עבורם עבורם עבורם

$$W_1 = \operatorname{Span}(e_1, \dots, e_i)$$

$$.W_2 = \operatorname{Span}(e_1, \dots, e_i)$$

 $W_1=\mathbb{F}^n,W_2=\{0\}$, בהקרה הראשון, j=n או i=n ולכן $e_n\in W_1+W_2$ בהכרח בהכרח, $W_1\oplus W_2=\mathbb{F}^n$ ביוון ש- $W_1=\{0\}$, ובכל מקרה הפירוק הינו טריוויאלי. $W_2=\mathbb{F}^n,W_1=\{0\}$

מכיל $W \leq V$ יהי $T = T_{J_4(0)} \in \operatorname{End}_{\mathbb{C}}(V)$, ויהי $V = \mathbb{C}^4$ יהי 2.3.7. דוגמה

תרמרחב שמור ממימד 1, יש לו תת־מרחב שמור לי אין תרמרחב לי או הוכיחו כי אם ל- הוכיחו הוכיחו $A\in \mathrm{Mat}_n\left(\mathbb{R}\right)$.1 .1 .2.8 .2

עצמי ערך אז אז $\bar{\lambda}$ גם ערך עצמי של ערך אז ערך אז איז הוכיחו ממשיים. מסריצה מטריצה אז אז אז $A\in \mathrm{Mat}_n\left(\mathbb{C}\right)$.2 . T_A

נגדיר $A=(a_{i,j})\in \mathrm{Mat}_{n,m}$ נגדיר מטריצה

$$\bar{A} = (\bar{a}_{i,i})$$

 $B\in$ ו־ב $A\in\mathrm{Mat}_{m,n}\left(\mathbb{C}
ight)$ מטריצה שמקדמיה הם המספרים הצמודים לאלו ב-A. נשים לב כי עבור שתי מטריצה המספרים הצמודים לאלו ב-A, מתקיים , $\mathrm{Mat}_{n,\ell}\left(\mathbb{C}
ight)$

$$(\overline{AB})_{i,j} = \overline{\sum_{k=1}^{n} a_{i,k} b_{k,j}}$$
$$= \sum_{k=1}^{n} \overline{a_{i,k}} \overline{b_{k,j}}$$
$$= (|A| |B|)_{i,j}$$

וקטורים אין ל- T_A לכן מההנחה, אין לvשל עצמי וקטור אבור אין אבורה הוא הוא להתוחה, אין ל- $\operatorname{Span}_{\mathbb{R}}(v)$ הוא ממימד הוא ממימד ממימד לצמיים.

אבל, אפשר לחשוב על $T_{ ilde{A}}\in\mathrm{End}_{\mathbb{C}}\left(\mathbb{C}^{n}
ight)$ א אז ל- \widetilde{A} או שנסמנה $\mathrm{Mat}_{n}\left(\mathbb{C}\right)$ יש וקטור עצמי כאופרטור אפשר לחשוב על מטריצה ב־ $\lambda=\alpha+i\beta$ שנסמנה $T_{ ilde{A}}$ עם ערך עצמי של של $T_{ ilde{A}}$ עם ערך עצמי של מעל $T_{ ilde{A}}$

$$v = \begin{pmatrix} u_1 + iw_1 \\ \vdots \\ u_n + iw_n \end{pmatrix} = u + iw$$

גא . \mathbb{R}^n ים כחיים עליהם נוכל ממשיים. נוכל מקדמים עם וקטורים ע $u,w\in\mathbb{C}^n$ כאשר

$$Au + iAw = A (u + iw)$$

$$= Av$$

$$= \lambda v$$

$$= (\alpha + i\beta) (u + iw)$$

$$= \alpha u + \alpha iw + \beta iu - \beta w$$

$$= (\alpha u - \beta w) + i (\alpha w + \beta u)$$

כאשר מקדמים להשוות אז, נוכל $Au, Aw \in \mathbb{R}^n$ כאשר

$$T_A(u) = Au = \alpha u - \beta w \in \text{Span}(u, w)$$

 $T_A(w) = Aw = \alpha w + \beta u \in \text{Span}(u, w)$

 \mathbb{R}^n שמור של Span (u,w) לכן

עצמי v=u+iwנסמן ב-eta=0 עבור עבמי $\lambda=\alpha+i\beta$. נניח אם כן כי גניח אין מה להוכיח כי $\lambda=\lambda=0$ עבור עבמי $\lambda=0$ עם ערך עצמי λ , כאשר $\lambda=0$ עם מקדמים ממשיים. אז עם ערך עצמי λ , כאשר $\lambda=0$ עם ערך עצמי ערך עצמי אין מה להוכיח עבמי ממשיים.

$$\bar{A}\bar{v} = \overline{Av} = \overline{\lambda v} = \bar{\lambda}\bar{v}$$

. כנדרש, $ar{\lambda}$ וקטור עצמי של A עם ערך עצמי $ar{v}$ ולכן

פרק 3

צורת ז'ורדן

כדי לבצע חישובים על אופרטורים לינאריים, בדרך כלל יש לקחת בסיס ולערוך את החישובים על המטריצות המייצגות. נרצה לקחת בסיס שיתן לנו מטריצה שתאפשר חישובים פשוטים ככל הניתן: מטריצה אלכסונית. אין לכל אופרטור צורה אלכסונית, אבל, מעל שדה סגור אלגברית יש צורה ``כמעט אלכסונית'' שנקראת צורת ז'ורדן.

בתור λ עם ערך עם ער מגודל ז'ורדן בלוק גדיר גגדיר גגדיר יהי 3.0.1. הגדרה הגדרה $\lambda \in \mathbb{F}$

$$J_{m}(\lambda) := \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \operatorname{Mat}_{m}(\mathbb{F})$$

הגדרה 3.0.2 (מטריצה ז'ורדן). מטריצה מטריצה מטריצת מטריצת מטריצת מטריצה מטריצה מטריצה מטריצה מטריצה אלכסונית הגדרה הגדרה הבלוקים בה הם בלוקי ז'ורדן.

. מטריצת ז'ורדן מטריצת T מטריצת מטריצת מטריצת מטריצת ז'ורדן. בסיס $T\in \mathrm{End}_{\mathbb{F}}(V)$ יהי $T\in \mathrm{End}_{\mathbb{F}}(V)$ יהי מטריצת ז'ורדן.

. שורש. $p \in \mathbb{F}[x]$ שאינו אלגברית אם לכל פולינום $p \in \mathbb{F}[x]$ שאינו קבוע שורש. שורש. הגדרה 3.0.4 שהינו קבוע שורש.

משפט 3.0.5 (משפט ז'ורדן). יהי $\mathbb F$ שדה סגור אלגברית, יהי V מרחב וקטורי סוף־מימדי מעל $\mathbb F$ ויהי והי $\mathbb F$ יהי משפט 3.0.5 (משפט ז'ורדן עבור $\mathbb F$ יחידה עד כדי שינוי סדר הבלוקים.

בהוכחת משפט ז'ורדן בהרצאה, הסתכלנו קודם כל על אופרטורים שעבורם הערך העצמי היחיד הוא 0, שהינם אופרטורים גילפוטנטיים. נדון תחילה במשפט ז'ורדן עבור אופרטורים אלו.

3.1 אופרטורים נילפוטנטיים

עבור על אופרטורים לדבר אופן דומה באופן גוכל גם $T_A^n=0$, ולכן גם אופרטורים מתקיים לדבר אופרטורים לליים עם מכונה אופרטורים לאיים אופרטורים לליים עם תכונה אות.

 $T^i=0$ עבורו $i\in\mathbb{N}_+$ אופרטנטי אם נילפוטנטי לו נקרא נילפוטנטי). אופרטור אופרטור נילפוטנטי). אופרטור נילפוטנטיות אופרטור אינדקס אינ

.0 אותנו בדיוק האופרטורים שמעניינים אותנו כאשר אנו רוצים להתייחס רק לערך עצמי

תרגיל אם ורק אז T נילפוטנטי אז T נילפוטנטי אז ויהי \mathbb{F} , ויהי אלגברית \mathbb{F} , ויהי מעל שדה סגור מעל מימדי מעל מדה מורק אז T נילפוטנטי אם ורק אם T.

פתרון. נניח כי T נילפוטנטי מאינדקס k, ויהי λ ערך עצמי של T עם וקטור עצמי אז ניח כי t ניח מאינדקס א, ויהי ויהי λ ערך עצמי של t עם וקטור עצמי t ניח בער בער t אוז t

עבורו על א פיס בסיס ז'ורדן, קיים ממשפט היחיד. הערך העצמי היחיד על הוא פיס על הוא בכיוון השני, נניח כי

$$.[T]_{B} = \begin{pmatrix} J_{m_{1}}(0) & & \\ & \ddots & \\ & & J_{m_{k}}(0) \end{pmatrix}$$

נקבל כי $m=\max_{i\in[k]}m_i$ ניקח אם ניקח , $J_{m_i}\left(0\right)^{m_i}=0$ נקבל כי לכל

$$[T]_{B}^{m} = \begin{pmatrix} J_{m_{1}}(0)^{m} & & & \\ & \ddots & & \\ & & J_{m_{k}}(0)^{m} \end{pmatrix} = 0$$

 $T^m = 0$ ואז

תרגיל $n_i\coloneqq \dim\ker\left(T^i\right)$ ונסמן k מאינדקס מאינדקס נילפוטנטי די לכל $T\in\operatorname{End}_{\mathbb{F}}(V)$ יהי יהי 3.2. הראו כי

$$0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = n$$

 $\ker\left(T
ight)\subseteq\ker\left(T^{2}
ight)\subseteq\ldots\subseteq\ker\left(T^{k}
ight)=V$ ולכן $T^{i+1}\left(v
ight)=0$ מתקיים $v\in\ker\left(T^{i}
ight)$ מתקיים לכל אם (ניקח j הענימלי $ker\left(T^{j}\right)$ ב $\ker\left(T^{i}\right)$ עבורו j>i עבורו j>i אחרת, יש j>i אחרת, ויש $\ker\left(T^{i}\right)=\ker\left(T^{i+1}\right)$ אם ואז j=i+r נכתוב . $v\in\ker\left(T^{j}
ight)\setminus\ker\left(T^{i}
ight)$ ואז

$$T^{i+1}\left(T^{r-1}\left(v\right)\right) = T^{i+r}\left(v\right) = T^{j}\left(v\right) = 0$$
$$T^{i}\left(T^{r-1}\left(v\right)\right) = T^{i+r-1}\left(v\right) = T^{j-1}\left(v\right) \neq 0$$

 $v\notin\ker\left(T^{i}
ight)=\ker\left(T^{j-1}
ight)$ כי $T^{j-1}\left(v
ight)
eq0$ וכאשר $T^{0}=\mathrm{Id}_{V}$

תרגיל מאינדס את ומצאו הפיכות ($\operatorname{Id}_V \pm T$) הראו שהעתקות מאינדס k. הראו את נילפוטנטית מאינדס מהינדס ... הראו

$$\sum_{k \in \mathbb{N}} r^k = \frac{1}{1 - r}$$

עבור גול, אכן, $\operatorname{Id}_V + T + \ldots + T^{k-1}$ תהיה תהים של של שההופכית של $\operatorname{Id}_V - T$ עבור גרצה אם כן גרצה אם אם $\operatorname{Id}_V - T$

$$\begin{split} \left(\operatorname{Id}_V - T\right)\left(\operatorname{Id}_V + T + \ldots + T^{k-1}\right) &= \sum_{i=0}^{k-1} T^i - \sum_{i=1}^k T) \\ &= \operatorname{Id}_V - T^k \\ &= \operatorname{Id}_V - 0 \\ &= \operatorname{Id}_V \end{split}$$

היא $\mathrm{Id}_V + T = \mathrm{Id}_V - (-T)$ של לכן ההופכית מאינדקס k גם T גם בילפוטנטית גם T גם לכן היא גם דעת, אם די

$$.\operatorname{Id}_{V} - T + T^{2} - T^{3} + ... + (-1)^{k-1} T^{k-1}$$

מציאת בסיס ז'ורדן עבור אופרטורים נילפוטנטיים 3.1.1

הגדרה T. נגיד כי T נגיד כי T נגיד כי ויהי $T\in \mathrm{End}_{\mathbb{F}}(V)$ ויהי ווהT נגיד כי T מרחב וקטורי אופרטור T מרחב וויהי איז $T\in \mathrm{End}_{\mathbb{F}}(V)$ הוזה ביחס לבסיס B אם מתקיים $T\left(v_i
ight)=egin{cases} v_{i-1} & i>1 \\ 0 & i=1 \end{cases}$

,
$$T\left(v_{i}\right) = \begin{cases} v_{i-1} & i > 1 \\ 0 & i = 1 \end{cases}$$

 $\left. \left[T\right] _{B}=J_{n}\left(0\right)$ או באופן שקול אם

כדי למצוא בסיס ז'ורדן עבור אופרטור הזזה, נרצה למצוא וקטור עבור $v\in V$ עבורו וקטור אופרטור אופרטור אופרטור למצוא בסיס ז'ורדן. יהיה בסיס ז'ורדן. יהיה בסיס ז'ורדן עבור עבור עבור ווידן יהיה בסיס ז'ורדן.

תרגיל 3.4. תהי

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & -2 & -1 \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{C})$$

T עבור צור בסיס ז'ורדן עבור . $T=T_A\in\operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^3
ight)$ ויהי

פתרון. מתקיים

$$A^{2} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$$
$$A^{3} = 0$$

$$.(T^{2}(e_{1}),T(e_{1}),e_{1})=(e_{1}-e_{3},e_{2}-e_{3},e_{1})$$

 $\ker\left(T^{k-1}\right)$ שמינם כאלה, נשלים כאופרטורי הזוה. באופן כללי, עבור אופרטורים נילפוטנטיים שאינם אופרטורי הזוה. באופן כללי, עבור אופרטורים בסיס של $\ker\left(T^{k-1}\left(v\right),\ldots,T\left(v\right),v\right)$ השרשראות ונסתכל על השרשראות שאורך ששווה למימד של V, נקבל בסיס ז'ורדן

$$.(T^{k-1}(v_1),...,T(v_1),v_1,T^{k-1}(v_2),...,T(v_2),v_2,...,T^{k-1}(v_k),...,T(v_k),v_k)$$

 $v \in \ker\left(T^i\right) \setminus \ker\left(T^{i-1}\right)$ אבל, יתכן שזה לא המצב. במקרה זה, נחפש שרשראות קצרות יותר, שיתחילו בוקטורים באיזשהו במקרה זה, נחפש שרשראות הצרות יותר, שיתחילו מהצורה

$$.\left(T^{i-1}\left(v\right),\ldots,T\left(v\right),v\right)$$

נראה בהמשך נוסחא לחישוב מספר בלוקי ז'ורדן מכל גודל, וכיוון שכל שרשרת כזאת תתאים לבלוק ז'ורדן, נוכל לדעת בדיוק אילו ערכי i לבדוק.

תרגיל בסיס $S=T^3$ יהי ויהי לבסיס הסטנדרטי, אופרטור אופרטור דוזה אופרטור איינע א

פתרון. נשים לב ראשית שמתקיים

$$.S(e_i) = \begin{cases} e_{i-3} & i > 3\\ 0 & i \le 3 \end{cases}$$

 $\ker\left(S^2\right)=$ מתקיים אם כן S^3 (e_7) ב $e_{7-2\cdot3}=e_{1}\neq0$ וגם מקיים אם כן S^3 (e_7) ב $e_{7-2\cdot3}=e_{1}\neq0$ מתקיים אם כן S^2 (e_7) ביקח (S^2 (e_7) S (e_7) שיתאים לשרשרת ז'ורדן (S^2 (e_7) ביקח (S^2) עורך השרשרת הוא S (איל) בישר (S^2) ולכן יש למצוא עוד שרשראות ז'ורדן. S (S^2) אורך השרשרת הוא S (איל) בישר (S^2) ולכן יש למצוא עוד שרשראות ז'ורדן.

 $\ker\left(S^2\right)\setminus\ker\left(S^2\right)$ מתקיים (מרקיים ליידי וקטור יחיד לישני ($\dim\ker\left(S^2\right)-\dim\ker\left(S^2\right)$ שיפתחו שיפתחו שרשראות נוספות. מתקיים ($\exp\left(S^2\right)\setminus\ker\left(S^2\right)$ ושני וקטורים אלו יחד (בחפש עוד שני וקטורים כאן, שיפתחו שרשראות נוספות. מתקיים ($\exp\left(S^2\right)\setminus\ker\left(S^2\right)$ ושני וקטורים אלו יחד ($\exp\left(S^2\right)$, $\exp\left(S^2\right)$, שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ($\exp\left(S^2\right)$, $\exp\left(S^2\right)$, שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ($\exp\left(S^2\right)$, $\exp\left(S^2\right)$, שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ($\exp\left(S^2\right)$, $\exp\left(S^2\right)$, שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ($\exp\left(S^2\right)$, $\exp\left(S^2\right)$,

$$B = (e_1, e_4, e_7, e_2, e_5, e_3, e_6)$$

שעבורו

$$.[T]_{B} = \begin{pmatrix} J_{3}(0) & & \\ & J_{2}(0) & \\ & & J_{2}(0) \end{pmatrix}$$

נשים לב שהבלוק מגודל 3 מופיע ראשון בדיוק כי השרשרת מאורך 3 היא זאת שכתבנו ראשונה. אם היינו משנים את סדר השרשראות, היה משתנה סדר הבלוקים.

 \mathbb{C} מעל , $J_{n}\left(\lambda
ight)^{t}\cong J_{n}\left(\lambda
ight)$ כי הראו כי .1. הראו 3.6

 $A \in \operatorname{Mat}_n\left(\mathbb{C}\right)$ לכל $A \cong A^t$.2

פתרון. גניח תחילה כי $\lambda=0$ נניח תחילה כי $T=T_{J_n(\lambda)^t}$ נניח תחילה כי $T=T_{J_n(\lambda)^t}$ נניח תחילה כי פתרון. מתקיים

$$.T\left(e_{i}\right) = \begin{cases} e_{i+1} & i < n \\ 0 & i = n \end{cases}$$

את הנדרש. $B = (e_n, e_{n-1}, \dots, e_2, e_1)$ אז הבסיס

באופן כללי,

$$T = T_{J_n(0)^t + \lambda I} = T_{J_n(0)^t} + \lambda \operatorname{Id}_{\mathbb{C}^n}$$

ולכן

$$[T]_{B} = \left[T_{J_{n}(0)^{t}}\right]_{B} + \lambda \left[\operatorname{Id}_{\mathbb{C}^{n}}\right]_{B} = J_{n}(0) + \lambda I = J_{n}(\lambda)$$

ילכן הבסיס B עדיין עובד.

 $P^{-1}AP=\operatorname{diag} J_{m_1}\left(\lambda_1
ight),\ldots,J_{m_k}\left(\lambda_k
ight)$ עבורה $P\in\operatorname{Mat}_n\left(\mathbb{C}
ight)$ הפיכה מטריצה מטריצה אלכסונית בלוקים עם בלוקים עם $J_{m_i}\left(\lambda_i
ight)$ אז מטריצה אלכסונית בלוקים עם בלוקים בלוקים עם בלוקים עם בלוקים עם בלוקים עם בלוקים בלוקים בלוקים עם בלוקים עם בלוקים בלוקים עם בלוקים בלוקים בלוקים בלוקים עם בלוקים ב

$$P^{t}A^{t}\left(P^{t}\right)^{-1} = \operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right)^{t}, \dots, J_{m_{k}}\left(\lambda_{k}\right)^{t}\right)$$

 $Q_i^{-1}J_{m_i}\left(\lambda_i
ight)^tQ_i=$ בעת, הפיכות הפיכות מטריצות מטריצות מטריצות ולכן קיימות אלכן ולכן קיימות $Q_i\in\mathrm{Mat}_n\left(\mathbb{C}
ight)$ ולכן אם נסמן $U_m_i\left(\lambda_i
ight)^tQ_i=\mathrm{diag}\left(Q_1,\ldots,Q_n
ight)$ ולכן אם נסמן ו

$$Q^{-1}\left(P^{t}A^{t}\left(P^{t}\right)^{-1}\right)Q = Q^{-1}\operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right)^{t}, \dots, J_{m_{k}}\left(\lambda_{k}\right)^{t}\right)Q$$

$$= \operatorname{diag}\left(Q_{1}^{-1}J_{m_{1}}\left(\lambda_{1}\right)^{t}Q_{1}, \dots, Q_{k}^{t}J_{m_{k}}\left(\lambda_{k}\right)^{t}Q_{k}\right)$$

$$= \operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right), \dots, J_{m_{k}}\left(\lambda_{k}\right)\right)$$

$$= P^{-1}AP$$

כלומר

$$A = (PQ^{-1}P^{t}) A^{t} ((P^{t})^{-1} QP^{-1}) = (PQ^{-1}P^{t}) A^{t} (PQ^{-1}P^{t})^{-1}$$

 $A \cong A^t$ ולכן

3.2 משפט ז'ורדן הכללי

 $\lambda_1,\dots,\lambda_k$ אופרטורים כלליים. אופרטורים נילפוטנטיים, נוכל לדבר אופרטורים בסיס ז'ורדן עבור אופרטורים נילפוטנטיים, נוכל לכתוב $T\in \mathrm{End}_{\mathbb{F}}(V)$ הערכים העצמיים השונים של

$$V = V'_{\lambda_1} \oplus \ldots \oplus V'_{\lambda_k}$$

 $T|_{V'_{\lambda_i}}-\mathrm{Id}_{V'_{\lambda_i}}$ שהינם ללים, שהינם λ_i מרחבים עם ערך עדמי את הבלוקים. כדי למצוא שהינם דישמורים. מוכללים, שהינם למציאת בסיס ז'ורדן למקרה הנילפוטנטי. וניעזר באלגוריתם למציאת בסיס ז'ורדן למקרה הנילפוטנטי.

המרחב $n:=\dim_{\mathbb{F}}(V)$ נסמן $T\in\mathrm{End}_{\mathbb{F}}(V)$ המרחב וקטורי סוף־מימדי מוכלל). יהי $N:=\dim_{\mathbb{F}}(V)$ מרחב איז מוכלל של $\lambda\in\mathbb{F}$ במור $\lambda\in\mathbb{F}$ המוכלל של איז עבור λ

$$.V_{\lambda}' \coloneqq \ker\left(\left(T - \lambda \operatorname{Id}_{V}\right)^{n}\right)$$

 $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ יהי סגור אלגברית, יהי סגור מעל שדה מרחב וקטורי מרחב אורים. יהי V יהי מוכללים). יהי משפט 3.2.2 פירוק למרחבים עצמיים מוכללים). יהי V' משונים של $i,i\in[k]$ הענים אונים של $i,i\in[k]$ הענים של $i,i\in[k]$

$$V = \bigcup V'_{\lambda_i}$$

לפני שנתאר את האלגוריתם הכללי, נזכיר תכונות שראינו בהרצאה.

 $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ יהי אלגברית, ויהי מעל שדה מעל סוף-מימדי סוף-מימדי מרחב V יהי 3.2.3. טענה

- λ עצמי עם ערך עצמי גדלי וסכום וספר , $r_g\left(\lambda
 ight)$ הוא מגודל של בצורת ז'ורדן עבמי א בצורת בצורת גדלי עבמי א גדלי וסכום גדלי וספר גדלי עבמי א גוורת וועד א גוורת גדלי עבמי א גוורת וועד א גוורת וועד א גדלי עבמי א גדלי וועד א גדלי א ג
- V_λ' כאשר $T|_{V_\lambda'}-\mathrm{Id}_{V_\lambda'}$ עם ערך עצמי אינדקס הנילפוטנטיות של שווה לאינדקס בצורת ז'ורדן א בצורת ז'ורדן לאינדקס המרחב העצמי המוכלל של λ עבור λ
 - הוא r הואל שהינם מגודל שהינם עם ערך עצמי אוח מספר .3

$$.\dim \ker \left(\left(T - \lambda \operatorname{Id}_{V} \right)^{r} \right) - \dim \ker \left(\left(T - \lambda \operatorname{Id}_{V} \right)^{r-1} \right)$$

הוא r מספר הבלוקים עם ערך עצמי אוחל מגודל מספר .4

$$.2 \operatorname{dim} \ker ((T - \lambda \operatorname{Id}_V)^r) - \operatorname{dim} \ker ((T - \lambda \operatorname{Id}_V)^{r+1}) - \operatorname{dim} \ker ((T - \lambda \operatorname{Id}_V)^{r-1})$$

מציאת בסיס ז'ורדן עבור אופרטור כללי 3.2.1

תרגיל 1. ידוע כי כל הערכים העצמיים של

$$A := \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 3 & 1 & 0 \\ -1 & 0 & -1 & 0 & 4 & 0 \\ -1 & 0 & -1 & 0 & 2 & 2 \end{pmatrix} \in M_6(\mathbb{C})$$

A צורת ובסיס ז'ורדן עבור מצאו רציונליים.

 $V=\mathbb{C}^6$ נסמן.V

$$p_A(x) = \det(xI - A) = x^6 - 15x^5 + 93x^4 - 305x^3 + 558x^2 - 540x + 216x^4 + 216x^4 + 216x^2 + 216x^$$

ממשפט ניחוש השורש הרציונלי אפשר למצוא את השורשים ולקבל

$$p_A(x) = (x-2)^3 (x-3)^3$$

נסתכל על הערכים העצמיים 2,3 בנפרד.

מתקיים יו $\lambda=3$

$$(A-3I) = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 2 & -1 \end{pmatrix}$$

ומרחב הפתרונות של המערכת ההומוגנית הוא

$$. \ker (T_A - 3 \operatorname{Id}_V) = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

חישוב ישיר נותן כי

$$\ker\left(\left(T_A - 3\operatorname{Id}_V\right)^2\right) = \operatorname{Span}\left\{\begin{pmatrix} 0\\0\\1\\1\\1\\1\end{pmatrix}, e_3\right\}$$

וגם

$$.\ker\left(\left(T_A - 3\operatorname{Id}_V\right)^3\right) = \operatorname{Span}\left\{\begin{pmatrix} 0\\0\\1\\1\\1\\1\\1\end{pmatrix}, e_3, e_4\right\}$$

אז, e_4 פותח שרשרת ז'ורדן

$$.B_3 = \left((A - 3I)^2 e_4, (A - 3I) e_4, e_4 \right) = \begin{pmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_3, e_4$$

מתקיים ג $\lambda=2$

$$\ker (T_A - 2\operatorname{Id}_V) = \operatorname{Span} \left\{ egin{align*} e_6, & 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{array} \right\}$$

ולכן יש ל־2 ריבוי גיאומטרי 2. אז יש שני בלוקי ז'ורדן עבור הערך העצמי 2, ולכן השרשרת המקסימלית מגודל 2. אפשר לראות כי סכום העמודות של

$$A - 2I = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 & 1 & 0 \\ -1 & 0 & -1 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 & 2 & 0 \end{pmatrix}$$

שווה 0, ולכן $e_1\in\ker\left(\left(T_A-\mathrm{Id}_V
ight)^2
ight)$ ונקבל

$$.\ker\left(\left(T_A - \operatorname{Id}_V\right)^2\right) = \operatorname{Span}\left\{ e_6, \begin{pmatrix} 1\\1\\1\\1\\0 \end{pmatrix}, e_1 \right\}$$

אז e_1 מתחיל שרשרת ז'ורדן

$$.((A-2I)e_1,e_1) = \begin{pmatrix} -1\\-1\\-1\\-1\\-1\\-1 \end{pmatrix}, e_1$$

 e_6 , למשל, $((A-2I)\,e_1,e_1)$. היא וקטור עצמי של 2 שאינו תלוי בי $\lambda=2$ עבור 1 עבור $\lambda=2$ היא וקטור עצמי.

נקבל בסיס ז'ורדן

$$B_2 := \begin{pmatrix} \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_1, e_6 \\ \end{pmatrix}$$

 $T|_{V_2'}$ של

סיכום: נסדר את השרשראות השונות בבסיס ונקבל בסיס ז'ורדן

$$B = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_3, e_4, \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_1, e_6$$

לפיו

$$.\left[T_{A}\right]_{B}=\operatorname{diag}\left(J_{3}\left(3\right),J_{2}\left(2\right),J_{1}\left(2\right)\right)$$

נזכיר כי ראינו כיצד לחשב חזקות של בלוק ז'ורדן. המטריצה $J_n\left(0
ight)^r$ היא מטריצה של בלוק ז'ורדן. מעל האלכסון היr מעל האלכסון כמו כי ראינו כיצד לחשב חזקות האפס, אם r כמו כן, כמו כן,

$$J_{n}(\lambda)^{r} = \begin{pmatrix} \lambda^{r} & \begin{pmatrix} r \\ 1 \end{pmatrix} \lambda^{r-1} & \begin{pmatrix} r \\ 2 \end{pmatrix} \lambda^{r-2} & \cdots \\ & \lambda^{r} & \ddots & & \vdots \\ & & \ddots & \ddots & \begin{pmatrix} r \\ 2 \end{pmatrix} \lambda^{r-2} \\ & & \lambda^{r} & \begin{pmatrix} r \\ 1 \end{pmatrix} \lambda^{r-1} \\ & & \lambda^{r} \end{pmatrix}$$

לכן, חישוב חזקות של מטריצות ז'ורדן הינו פשוט למדי. נוכל להיעזר בו כדי לחשב חזקות של מטריצות כלליות.

תרגיל 2. תהי

$$.A := \begin{pmatrix} 2 & 4 & 0 \\ -1 & -2 & 0 \\ 8 & 7 & 9 \end{pmatrix} \in M_3 \left(\mathbb{C} \right)$$

 A^{2022} את חשבו

מטריצת ז'ורדן, ואז $J:=PAP^{-1}$ עבורה $P\in M_3\left(\mathbb{C}\right)$ אז נקבל עבור B עבור בסיס ז'ורדן ומצא נסמן עבור עבור וומצא אז נקבל וומצא פתרון.

$$A^{2022} = \left(P^{-1}JP\right)^{2022} = P^{-1}J^{2022}P$$

 $.J^{2022}$ את לחשב לדע נדע הנ"ל הנ"ל מהחישוב כאשר

ערכים עצמיים: ניתן לראות כי 9 ערך עצמי של A כי $Ae_3=9e_3$ נסמן בי λ_1,λ_2 את הערכים הנוספים ונקבל

$$\lambda_1 + \lambda_2 + 9 = \text{tr}(A) = 9$$

 $9\lambda_1\lambda_2 = \det(A) = 9(-4 + 4) = 0$

$$\lambda_1 = \lambda_2 = 0$$
 לכן

נקבל עבור ארברי ז'ורדן עבור עבמי (e_3) בפרט, בפרט אלגברי עדמי ערך עדמי וכי 1 וכי אלגברי אלגברי פרט, פריבוי אלגברי 1 וכי 1 וכי 0

שרשרת ז'ורדן עבור $\lambda=0$ נשים לב כי $r\left(A
ight)=2$ ניתן לראות כי $\lambda=0$ ניתן עבור ז'ורדן עבור אות כי

$$2e_1 - e_2 - e_3 \in \ker\left(L_A\right)$$

ולכן

$$\ker(T_A) = \text{Span}(2e_1 - e_2 - e_3)$$

מתקיים

$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 81 & 81 & 81 \end{pmatrix}$$

לבסיס ($2e_1-e_2-e_3$) את לכן נוכל להשלים לכן

$$(2e_1 - e_2 - e_3, e_1 - e_3)$$

של $\ker\left(T_A^2\right)$ מתקיים.

$$A(e_1 - e_3) = 2e_1 - e_2 - e_3$$

לכן נקבל שרשרת ז'ורדן

$$.(A(e_1-e_3),e_1-e_3)=(2e_1-e_2-e_3,e_1-e_3)$$

מסקנה: קיבלנו

$$B := (2e_1 - e_2 - e_3, e_1 - e_3, e_3)$$

עבורו

$$[T_A]_B = J := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

ולכן

$$A = [T_A]_E = [\mathrm{Id}_V]_E^B [T_A]_B [\mathrm{Id}_V]_B^E$$

נסמן

$$P := [\mathrm{Id}_V]_E^B = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

שעמודותיה הן וקטורי הבסיס B, ונקבל

$$A = PJP^{-1}$$

אז

$$\begin{split} A^{2022} &= PJ^{2022}P^{-1} \\ &= \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9^{2022} \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \\ . &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 9^{2022} & 9^{2022} & 9^{2022} \end{pmatrix} \end{split}$$