## Полиморфные типы

Косарев Дмитрий a.k.a. Kakadu

матмех СПбГУ

12 декабря 2019 г.

### В этих слайдах

- 1. Система полиморфных типов Hindley-Milner'a
- 2. Подстановки и унификация
- 3. Наивный алгоритм вывода типов
- 4. Вывод типов. Пример
- 5. Формальные правила типизации
- 6. Occurs check

### У нас было STLC

- Простое
- Не умеет в рекурсивные функции, следовательно, ограниченное

Где типами T могут быть:

- ullet базовые (ground) типы: A,B,C,....,Int,String
- ullet стрелка между двумя STLC-типами:  $t_1 o t_2$ , где  $t_1, t_2 \in T$

Некоторые функции (например, id x = x) типизируются не типом, а схемой типов (например,  $\{t_1 \to t_2\}_{t_1,t_2 \in T}$ ).

## Система полиморфных типов Hindley-Milner'a

#### Типы T включают:

- ullet Множество базовых (ground) типов: A,B,C,...,Int,Bool,...
- Множетсво типовых переменных: a, b, c, ... (иногда используют греческие буквы)
- ullet Стрелки между двумя типами:  $t_1 \to t_2$ , где  $t_1, t_2 \in T$
- В начале типа может стоять квантор ∀ по типовым переменным

Мы будет рассматривать типы, где квантор  $\forall$  может стоять только в начале типа, т.е. не встречаться внутри типа.

### Вывод типов

### Определение (Вывод типов (type inference, type reconstruction))

Процедура построения по данному выражению его типа.

### Определение (Проверка типов (type checking))

Процедура проверки, что данное выражение можно протипизировать данным типом.

Рассматриваем prenex-ную форму типов: кванторы всеобщности находится строго впереди типа.

Для prenex-формы и задача проверки типов, и задача вывода типов разрешима.

## Полиморфные типы vs. STLC

Все полиморфные типы разбиваются на классы эквивалентности относительно операции переименования типовых переменных.

Пример: выражению id x = x можно присвоить и тип a->a, и тип panda -> panda, но два типа эквивалентны ( $\alpha$ -эквивалентны).

T.e. в STLC выражение id типизируется схемой типов, а в полиморфном исчислении – только одним.

## Свободные переменные

#### Левые три как в STLC

$$\begin{aligned} & \mathsf{fv}(x) = x \\ & \mathsf{fv}(\lambda x \mathop{\rightarrow} e) = \mathsf{fv}(e) \setminus \{x\} \\ & \mathsf{fv}(e_1 e_2) = \mathsf{fv}(e_1) \cup \mathsf{fv}(e_2) \end{aligned}$$

#### Справа – полиморфные типы

$$\begin{split} \mathsf{ftv}(\alpha) &= \{\alpha\} \\ \mathsf{ftv}(\tau_1 \to \tau_2) &= \mathsf{ftv}(\tau_1) \cup \mathsf{ftv}(\tau_2) \\ \mathsf{ftv}(\mathsf{Int}) &= \varnothing \\ \mathsf{ftv}(\mathsf{Bool}) &= \varnothing \\ \mathsf{ftv}(\forall x.t) &= \mathsf{ftv}(t) \setminus \{x\} \end{split}$$

Определение (Подстановка полиморфных типов)

Подстановка – конечное отображение из имен типовых переменных в полиморфные типы

Определение (Унификация полиморфных типов)

Унификация двух типов – это поиск такой подстановки, которая после применения к обоим типам даст одинаковые типы.

Пример 1: унификация типов a -> b и Int -> Bool

### Определение (Подстановка полиморфных типов)

Подстановка – конечное отображение из имен типовых переменных в полиморфные типы

### Определение (Унификация полиморфных типов)

Унификация двух типов – это поиск такой подстановки, которая после применения к обоим типам даст одинаковые типы.

Пример 1: унификация типов  $a \to b$  и Int  $\to Bool$  завершается успешно с подстановкой [ $a \mapsto Int, b \mapsto Bool$ ].

#### Определение (Подстановка полиморфных типов)

Подстановка – конечное отображение из имен типовых переменных в полиморфные типы

### Определение (Унификация полиморфных типов)

Унификация двух типов – это поиск такой подстановки, которая после применения к обоим типам даст одинаковые типы.

Пример 1: унификация типов  $a \rightarrow b$  и Int  $\rightarrow Bool$  завершается успешно с подстановкой  $[a \mapsto Int, b \mapsto Bool]$ .

Пример 2: унификация типов a -> a и Int -> Bool

#### Определение (Подстановка полиморфных типов)

Подстановка – конечное отображение из имен типовых переменных в полиморфные типы

### Определение (Унификация полиморфных типов)

Унификация двух типов – это поиск такой подстановки, которая после применения к обоим типам даст одинаковые типы.

Пример 1: унификация типов  $a \rightarrow b$  и Int  $\rightarrow Bool$  завершается успешно с подстановкой [ $a \mapsto Int, b \mapsto Bool$ ].

Пример 2: унификация типов a -> a и **Int** -> **Bool** невозможна, так как не существует подстановки, которая бы их сделала одинаковыми.

# Формальные правила унификации $a \sim b$ : $\theta$

$$\begin{array}{lll} c \sim c: [] & \text{Uni-Const} & \frac{\tau_1 \sim \tau_1': \theta_1 & [\theta_1]\tau_2 \sim [\theta_1]\tau_2': \theta_2}{\tau_1\tau_2 \sim \tau_1'\tau_2': \theta_2 \circ \theta_1} & \text{Uni-Con} \\ & \frac{\alpha \ll \mathsf{ftv}(\tau)}{\alpha \sim \tau: [\alpha/\tau]} & \text{Uni-VarLeft} & \frac{\tau_1 \sim \tau_1': \theta_1 & [\theta_1]\tau_2 \sim [\theta_1]\tau_2': \theta_2}{\tau_1 \rightarrow \tau_2 \sim \tau_1' \rightarrow \tau_2': \theta_2 \circ \theta_1} & \text{Uni-Arrow} \\ & \frac{\alpha \notin \mathsf{ftv}(\tau)}{\tau \sim \alpha: [\alpha/\tau]} & \text{Uni-VarRight} & \\ & \frac{\alpha \notin \mathsf{ftv}(\tau)}{\tau \sim \alpha: [\alpha/\tau]} & \text{Uni-VarRight} & \end{array}$$

### Вывод типов: высокоуровневый наивный алгоритм

Дано: какое-то  $\lambda$ -выражение.

#### Алгоритм

- Вспомнить все уже известные имена значений и их типы
- Для каждого объявления значения let  $x = \dots$  in ... или ... where  $x = \dots$  сгенерировать ограничения.
  - к тому, что мы знаем приписываем известные типы (например, 42 :: Int); иначе приписываем свежую типовую переменную
  - используя "форму" синтаксических выражений создаем ограничения
- Решить полученную систему уравнений, чтобы получить тип значения, которое нам было дано

```
Prelude> g = \x -> 5+x
g :: Int -> Int
```

Назначим предварительные типы

Собираем ограничения

$$R = U \rightarrow S$$

```
Prelude> g = \x -> 5+x
g :: Int -> Int
```

Назначим предварительные типы

### Собираем ограничения

$$R = U -> S$$
$$U = V$$

```
Prelude> g = \x -> 5+x
g :: Int -> Int
```

#### Назначим предварительные типы

```
Prelude> g = \x -> 5+x
g :: Int -> Int
```

#### Назначим предварительные типы

```
Подвыражение Предварительный тип Собираем ограничения X \to Y = Y \to Y
```

x

### Решаем 4 ограничения:

```
R = U -> S
U = V
Int -> (Int -> Int) = Int -> T
T = V -> S
```

#### с помощью унификации

- T = Int -> Int, подставляя это в 4e ограничение получим
- Int  $\rightarrow$  Int =  $V \rightarrow S$ ,  $\tau$ .e. Int = V = S
- Теперь Int = U, т.к. U = V
- Уточняем первое ограничение: R = Int -> Int

Итого, у выражения  $g = \x -> 5+x$  типом будет R = Int -> Int

# Ещё примеры/упражнения

- apply f x = f x
- apply g 3
- apply not False

### Principal типы

А что если алгоритм вывода типов вывел не подходящий нам тип?

Определение (Наиболее общий унификатор (most general unifier, mgu))

Это такая подстановка-унификатор, что любой другой унификатор получается путём композиции mgu c некоторой подстановкой.

Следствие (Principal типы)

Алгоритм вывода типов выводит наиболее общий (principal) тип.

**N.B.** Это свойство легко сломать, например, с помощью GADT

### Формальные правила типизации

#### Левые три как в STLC

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma}$$

T-Var

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \qquad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 \ e_2 : \tau_2} \quad \mathsf{T-App}$$

$$\frac{\Gamma, \ x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash (\lambda x \mathbin{\rightarrow} e): \tau_1 \mathbin{\rightarrow} \tau_2} \qquad \quad \mathsf{T-Lam}$$

#### Правые три – новые

$$\frac{\Gamma \vdash e_1 : \sigma \qquad \Gamma, \, x : \sigma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \tau} \quad \mathsf{T\text{-}Let}$$

$$\frac{\Gamma \vdash e : \sigma \quad \overline{\alpha} \notin \mathtt{ftv}(\Gamma)}{\Gamma \vdash e : \forall \ \overline{\alpha} \ . \ \sigma} \qquad \mathsf{T-Gen}$$

$$\frac{\Gamma \vdash e : \sigma_1 \qquad \sigma_1 \sqsubseteq \sigma_2}{\Gamma \vdash e : \sigma_2}$$

T-Inst

# Новое правило: T-Inst (инстанциация, т.е. уточнение)

$$\frac{\Gamma \vdash e : \sigma_1 \qquad \sigma_1 \sqsubseteq \sigma_2}{\Gamma \vdash e : \sigma_2} \quad \mathsf{T\text{-}Inst}$$

Преобразования типа  $\sigma$  в тип  $\tau$  путём создания свежих имен для каждой типовой переменной, которая не встречается в текущем контексте.

Оператор  $\sqsubseteq$  в правиле (T-Inst) означает, что тип является конкретизацией схемы типов.

$$\begin{array}{c} \forall a.a \rightarrow a \sqsubseteq \mathsf{Int} \rightarrow \mathsf{Int} \\ \forall a.a \rightarrow a \sqsubseteq b \rightarrow b \\ \forall ab.a \rightarrow b \rightarrow a \sqsubseteq \mathsf{Int} \rightarrow \mathsf{Bool} \rightarrow \mathsf{Int} \end{array}$$

# Новое правило: T-Gen (generalization, т.е. обобщение)

$$\frac{\Gamma \vdash e : \sigma \quad \overline{\alpha} \not\in \mathtt{ftv}(\Gamma)}{\Gamma \vdash e : \forall \ \overline{\alpha} \ . \ \sigma} \quad \mathsf{T-Gen}$$

Пример: 
$$id = \ \ x \rightarrow x$$
 в контексте  $\Gamma = \varnothing$ 

$$\frac{\vdash id : (a \to a) \quad a \notin \varnothing}{\vdash id : \forall a . (a \to a)}$$

# Новое правило: T-Let – **let**-полиморфизм (1/2)

$$\frac{\Gamma \vdash e_1 : \sigma \qquad \Gamma, \ x : \sigma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \tau} \quad \mathsf{T-Let}$$

### Пример:

```
let double f z = f (f z) in (double (\ x -> x+1) 1, double (\ x -> not x) false)
```

Выведенный тип для f в функции double мог бы быть  $x \to x$ . В алгоритме выше использование double на первом аргумента породит ограничение x = Int, а второе использование double породит ограничение x = Bool. Эти ограничения несовместны, потому могли бы привести  $\kappa$  невозможности унификации.

Поэтому при реализации клонирует тип let-выражения, чтобы типы не "склеились"

# Новое правило: T-Let – **let**-полиморфизм (2/2)

```
При исполнении кода let double f z = f (f z) in (double (\ x -> x+1) 1, double (\ x -> not x) false) можно исполнять такой код (\double -> ( double (\ x -> x+1) 1 , double (\ x -> not x) false)) (\f z -> f (f z))
```

Но нижний код не типизируется в системе полиморфных типов Хиндли-Милнера, а тот, что выше – типизируется.

### Occurs check

Дополнительная проверка, которая объявляет некоторые подстановки некорректными.

Чтобы было проще применять подстановку  $\sigma$ , мы можем подставить переменные из  $dom(\sigma)$  в правые части подстановки. Это удастся, если в подстановке *нет циклов*.

Пример: let f x = f отклоняется Haskell

<interactive>:1:1: error:

- Occurs check: cannot construct the infinite type: t ~ p0 -> t
- Relevant bindings include f :: t (bound at <interactive>:1:1)

Потому, что мы не может сунифицировать типы b и a->b так, чтобы получился конечный тип

```
>  fix f = (\x ->  f (x x)) (\x ->  f (x x))
<interactive>.3.21. error.
    • Occurs check: cannot construct the infinite type: t0 ~ t0 -> t
      Expected type: t0 -> t
         Actual type: (t0 \rightarrow t) \rightarrow t
    • In the first argument of 'x', namely 'x'
      In the first argument of 'f', namely '(x x)'
      In the expression: f(x x)
    • Relevant bindings include
         x :: (t0 \rightarrow t) \rightarrow t \text{ (bound at <interactive>:3:11)}
         f :: t -> t (bound at <interactive>:3:5)
         fix :: (t \rightarrow t) \rightarrow t (bound at <interactive>:3:1)
```

### В то время как

```
Prelude> fix f = f (fix f)
Prelude> :t fix
fix :: (t -> t) -> t
```

# Но если Haskell что-то не умеет, то это не значит, что никто не умеет

### Ссылки І



Hindley-Milner type inference in Haskell Stephen Diehl blog post



Lecture notes on type inference from Cornell University URL