

Lens Design I

Lecture 6: Aberrations I

2024-05-23

Yueqian Zhang

Preliminary Schedule - Lens Design I 2024

04.04.	Basics	Zhang	Introduction, Zemax interface, menues, file handling, preferences, Editors, updates, windows, coordinates, System description, 3D geometry, aperture, field, wavelength
18.04.	Properties of optical systems I	Tang	Diameters, stop and pupil, vignetting, layouts, materials, glass catalogs, raytrace, ray fans and sampling, footprints
25.04.	Properties of optical systems II	Tang	Types of surfaces, cardinal elements, lens properties, Imaging, magnification, paraxial approximation and modelling, telecentricity, infinity object distance and afocal image, local/global coordinates
02.05.	Properties of optical systems III	Tang	Component reversal, system insertion, scaling of systems, aspheres, gratings and diffractive surfaces, gradient media, solves
16.05.	Advanced handling I	Tang	Miscellaneous, fold mirror, universal plot, slider, multiconfiguration, lens catalogs
23.05.	Aberrations I	Zhang	Representation of geometrical aberrations, spot diagram, transverse aberration diagrams, aberration expansions, primary aberrations
30.05.	Aberrations II	Zhang	Wave aberrations, Zernike polynomials, measurement of quality
06.06.	Aberrations III	Tang	Point spread function, optical transfer function
13.06.	Optimization I	Tang	Principles of nonlinear optimization, optimization in optical design, general process, optimization in Zemax
20.06.	Optimization II	Zhang	Initial systems, special issues, sensitivity of variables in optical systems, global optimization methods
27.06.	Correction I	Zhang	Symmetry principle, lens bending, correcting spherical aberration, coma, astigmatism, field curvature, chromatical correction
04.07.	Correction II	Zhang	Field lenses, stop position influence, retrofocus and telephoto setup, aspheres and higher orders, freeform systems, miscellaneous
	18.04. 25.04. 02.05. 16.05. 23.05. 30.05. 06.06. 13.06. 20.06.	18.04. systems I 25.04. Properties of optical systems II 02.05. Properties of optical systems III 16.05. Advanced handling I 23.05. Aberrations I 30.05. Aberrations II 06.06. Aberrations III 13.06. Optimization I 20.06. Optimization II	18.04. Properties of optical systems I Tang 25.04. Properties of optical systems II Tang 02.05. Properties of optical systems III Tang 16.05. Advanced handling I Tang 23.05. Aberrations I Zhang 30.05. Aberrations II Tang 13.06. Optimization I Tang 20.06. Optimization II Zhang 27.06. Correction I Zhang

Contents

- 1. Representation of geometrical aberrations
- 2. Spot diagram
- 3. Transverse aberration diagrams
- 4. Aberration expansions
- 5. Primary aberrations

Optical Image Formation

- Perfect optical image:
 - All rays coming from one object point intersect in one image point
- Real system with aberrations:
 - 1. transverse aberrations in the image plane
 - 2. longitudinal aberrations from the image plane
 - 3. wave aberrations in the exit pupil

Representation of Geometrical Aberrations

Longitudinal aberrations ∆s

Transverse aberrations ∆y

Representation of Geometrical Aberrations

Angle aberrations ∆u

Wave aberrations ∆W

Spot Diagram

All rays start in one point in the object plane

■ The entrance pupil is sampled equidistant

- In the exit pupil, the transferred grid may be distorted
- In the image plane a spreaded spot diagram is generated

Spot Diagram

- Table with various values of:
 - 1. Field size
 - 2. Color
- Small circle:
 Airy diameter for axis
 comparison
- Large circle:Gaussian moment

field zone 486 nm

546 nm

656 nm

Spot Diagrams in Zemax

Several options for representations

Spot Diagrams in Zemax

Spot Diagrams in Zemax

Transverse Aberrations

- Classical aberration curves
- Strong relation to spot diagram
- Usually only linear sampling along the x-, y-axis no information in the quadrant of the aperture

Transverse Aberrations

- Typical low order polynomial contributions for:
 Defocus, coma, spherical, lateral color
- This allows a quick classification of real curves

Polynomial Expansion of the Aberrations

Paraxial optics: small field and aperture angles
 Aberrations occur for larger angle values

 Two-dimensional Taylor expansion shows field and aperture dependence

Expansion for one meridional field point y

■ Pupil: cartesian or polar grid in x_p / y_p

Transverse Aberrations in Zemax

Polynomial Expansion of Aberrations

Taylor expansion of the deviation:

p' Image height index k p' Pupil height index l p' Pupil azimuth angle index m

$$\Delta y(y', r_p, \theta) = \sum_{k,l,m} a_{klm} \cdot y'^k \cdot r_p^l \cdot \cos^m \theta$$

- Symmetry invariance: selection of special combinations of exponent terms
- Number of terms: sum of indices in the exponent isum
- The order of the aperture function depends on the aberration type used: primary aberrations:
 - 3rd order in transverse aberration ∆y
 - 4th order in wave aberration W
 Since the coupling relation

$$\Delta y = -R \cdot \frac{\partial W}{\partial x_n}$$

changes the order by 1

i _{sum}	number of terms	Type of aberration
2	2	image location
4	5	primary aberrations, 3rd/4th order
6	9	secondary aberrations, 5th/6th order
8	14	higher order

Polynomial Expansion of Aberrations

- Representation of 2-dimensional Taylor series vs field y and aperture r
- Selection rules: checkerboard filling of the matrix
- Constant sum of exponents according to the order

		Image location					Primary aberrations / Seidel			
		Field y →								
		ļ	Spherical	Coma	Astigmatism			_	aberration	
			y ^o	y 1	y²	y³	y ⁴	y ⁵		
Aper- ture r	Distortion	r ^o		y cosθ Tilt		y³ cosθ Distortion primary		y ⁵ cosθ Distortion secondary		
		r¹	r ¹ Defocus		y ² r ¹ cos ² θ y ² r ¹ Astig./Curvat.		y ⁴ r ¹ cos ² θ y ⁴ r ¹			
		r²		y r ² cosθ Coma primary		$y^3 r^2 \cos^3 \theta$ $y^3 r^2 \cos \theta$				
		r³	r ³ Spherical primary		$y^2 r^3 cos^2 \theta$ $y^2 r^3$					
		r ⁴		y r ⁴ cosθ Coma secondary						
		r ⁵	r ⁵ Spherical secondary							

Primary Aberrations

 $\Delta y = r^3 \cdot S + y \cdot r^2 \cdot \cos \theta \cdot C$

- Expansion of the transverse aberration ∆y on image height y and pupil height r
- Lowest order 3 of real aberrations: primary or Seidel aberrations
- Spherical aberration: S
 - no dependence on field, valid on axis

- depends in 3rd order on apertur
$$+ y^2 \cdot r \cdot \cos^2 \theta \cdot A + y^2 \cdot r \cdot P$$
 Coma: C
$$+ y^3 \cdot D$$

- Coma: C
 - linear function of field y
 - depends in 2rd order on apertur with azimuthal variation
- Astigmatism: A
 - linear function of apertur with azimuthal variation
 - quadratic function of field size
- Image curvature (Petzval): P
 - linear dependence on apertur
 - quadratic function of field size
- Distortion: D
 - No dependence on apertur
 - depends in 3rd order on the field size

- Transverse deviations
- Sum of surface contributions

$$S' = \sum_{j=1}^{k} S_j$$

$$C' = \sum_{j=1}^{k} C_j$$

$$A' = \sum_{j=1}^{k} A_j$$

$$P' = \sum_{j=1}^{k} P_j$$

$$D' = \sum_{j=1}^{k} D_j$$

$$\Delta x' = \frac{x'_{p} \left(x'_{p}^{2} + y'_{p}^{2}\right) s'^{4}}{2n' R'_{p}^{3}} S' - \frac{\left[2x'_{p} \left(x' x'_{p} + y' y'_{p}\right) + x' \left(x'_{p}^{2} + y'_{p}^{2}\right)\right] s'^{3} s'_{p}}{2n' R'_{p}^{3}} C' + \frac{x' \left(x' x'_{p} + y' y'_{p}\right) s'^{2} s'_{p}^{2}}{n' R'_{p}^{3}} A' + \frac{x'_{p} \left(x'_{p}^{2} + y'_{p}^{2}\right) s'^{2} s'_{p}^{2}}{2n' R'_{p}^{3}} P' - \frac{x' \left(x'^{2} + y'^{2}\right) s' s'_{p}^{3}}{2n' R'_{p}^{3}} D'$$

$$\Delta y' = \frac{y'_{p} \left(x'_{p}^{2} + y'_{p}^{2}\right) s'^{4}}{2n' R'_{p}^{3}} S' - \frac{\left[2y'_{p} \left(x' x'_{p} + y' y'_{p}\right) + y' \left(x'_{p}^{2} + y'_{p}^{2}\right)\right] s'^{3} s'_{p}}{2n' R'_{p}^{3}} C'$$

$$+ \frac{y' \left(x' x'_{p} + y' y'_{p}\right) s'^{2} s'_{p}^{2}}{n' R'_{p}^{3}} A' + \frac{y'_{p} \left(x'_{p}^{2} + y'_{p}^{2}\right) s'^{2} s'_{p}^{2}}{2n' R'_{p}^{3}} P'$$

$$- \frac{y' \left(x'^{2} + y'^{2}\right) s' s'_{p}^{3}}{2n' R'_{p}^{3}} D'$$

Surface Contributions: Example

- Seidel aberrations: representation as sum of surface contributions possible
- Gives information on correction of a system
- Example: photographic lens

Seidel Aberrations in Zemax

Spherical Aberration

- Spherical aberration:
 - On axis, circular symmetry
- Perfect focussing near axis: paraxial focus
- Real marginal rays: shorter intersection length (for single positive lens)
- Optimal image plane: circle of least rms value

Spherical Aberration: Lens Bending

- Spherical aberration and focal spot diameter as a function of the lens bending (for n=1.5)
- Optimal bending for incidence averaged incidence angles
- Minimum larger than zero: usually no complete correction possible

Lens Contributions of Seidel

Spherical aberration

$$S_{lens} = \frac{1}{32n(n-1)f^3} \left[\frac{n^3}{n-1} + \frac{n+2}{n-1} \cdot \left(X - \frac{2(n^2-1)}{n+2} \cdot M \right)^2 - \frac{n^2(n-1)}{n+2} \cdot M^2 \right]$$

- Special impact on correction:
 - 1. Special quadratic dependence on bending X

 Minimum at $2(n^2-1)$

$$X_{sph\,\text{min}} = -\frac{2(n^2 - 1)}{n + 2}M$$

- 2. No correction for small n and M
- 3. Correction for large

n: infrared materials

M: virtual imaging

Limiting value

$$M_{s=0}^2 = \frac{n(n+2)}{(n-1)^2}$$

Delano's Representation of Spherical Aberration

- Paraxial optics: Delano relation
- Real ray comparison:
 Delano surface contribution

$$n' \cdot q' \cdot U' = n \cdot q \cdot U + n \cdot i \cdot (Q' - Q)$$

$$\Delta s'_{SPH} = \Delta s_{SPH} \cdot \frac{n_1 U_1 \sin u_1}{n'_k U'_k \sin u'_k} + \sum_j \frac{(Q - Q') \cdot i \cdot n_j}{n'_j U'_j \sin u'_j}$$

$$\Delta s'_{SPH} = \Delta s_{SPH} \cdot \frac{n_1 U_1 \sin u_1}{n'_k U'_k \sin u'_k} + \sum_{j} \frac{n_j}{n'_j} \cdot h \cdot \sin \frac{i' - i}{2} \cdot \frac{2i \cdot \sin \frac{i' - u}{2}}{U'_j \sin u'_j}$$

Surface contribution grows with

- 1. ratio of refractive indices
- 2. height of the marginal ray
- 3. Influence of ray bending angle

Influence of ray bending angle

Aplanatic Surfaces

- Aplanatic surfaces: zero spherical aberration:
 - 1. Ray through vertex

$$s' = s = 0$$

2. concentric

$$s' = s$$
 und $u = u'$

3. Aplanatic

ns = n's'

 Condition for aplanatic surface:

$$r = \frac{ns}{n+n'} = \frac{n's'}{n+n'} = \frac{ss'}{s+s'}$$

- Virtual image location
- Applications:
 - 1. Microscopic objective lens
 - 2. Interferometer objective lens

Aplanatic Lenses

- Aplanatic lenses
- Combination of one concentric and one aplanatic surface: zero contribution of the whole lens to spherical aberration
- Not useful:
 - 1. aplanatic-aplanatic
 - 2. concentric-concentric bended plane parallel plate, nearly vanishing effect on rays

Blurred Coma Spot

- Coma aberration: for oblique bundels and finite aperture due to asymmetry
- Primary effect: coma grows linear with field size y
- Systems with large field of view: coma hard to correct

Lens Bending and Natural Stop Position

 The lens contribution of coma is given by if the stop is located at the lens

$$C_{lens} = \frac{1}{4ns' f^2} \cdot \left[\frac{n+1}{n-1} X - (2n+1)M \right]$$

- Therefore the coma can be corrected by bending the lens
- The optimal bending is given by and corrects the 3rd order coma completly

$$X = \frac{(2n+1)(n-1)}{n+1} \cdot M$$

 The stop shift equation for coma is given by with the normalized ratio of the chief ray height to the marginal ray height

$$S_{II}^{*} = S_{II} + \delta E \cdot S_{I}$$
$$\delta E = \frac{\overline{h}_{new} - \overline{h}_{old}}{h}$$

- If the spherical aberration S_I is not corrected, there is a natural stop position with vanishing coma
- If the spherical aberration is corrected (for example by an aspheric surface), the coma doesn't change with the stop position

Astigmatism

image points

Reason for astigmatism: chief ray passes a surface under an oblique angle, the refractive power in tangential and sagittal section are different

A tangential and a sagittal focal line is found in different distances

Tangential rays meets closer to the surface

In the midpoint between both focal lines: circle of least confusion

Imaging of a polar grid in different planes

Field Curvature

- Focussing into different planes of a system with field curvature
- Sharp imaged zone changes from centre to margin of the image field

Field Curvature and Image Shells

- Imaging with astigmatism:
 Tangential and sagittal image shell depending on the azimuth
- Difference between the image shells: astigmatism
- Astigmatism corrected:
 It remains a curved image shell,
 Bended field: also called Petzval curvature
- System with astigmatism:
 Petzval sphere is not an optimal surface with good imaging resolution
- Law of Petzval: curvature given by:

$$\frac{1}{r_p} = -n' \cdot \sum_{k} \frac{1}{n_k \cdot f_k}$$

 No effect of bending on curvature, important: distribution of lens powers and indices

image surfaces

Distortion Example: 10%

- Image with sharp but bended edges/lines
- No distortion along central directions

Ref: H. Zügge

Distortion

- Purely geometrical deviations without any blurr
- Distortion corresponds to spherical aberration of the chief ray
- Important is the location of the stop: defines the chief ray path
- Two primary types with different sign:
 - barrel, D < 0 front stop
 - 2. pincushion, D > 0 rear stop
- Definition of local magnification changes

$$D = \frac{y'_{real} - y'_{ideal}}{y'_{ideal}}$$

Further Aberration Representations in Zemax

Astigmatism and distortion

Axial Chromatical Aberration

- Axial chromatical aberration:
 Higher refractive index in the blue results in a shorter intersection length for a single lens
- The colored images are defocussed along the axis
- Definition of the error: change in image location / intersection length

$$\Delta s'_{CHL} = s'_{F'} - s'_{C'}$$

Correction needs several glasses with different dispersion

Axial Chromatical Aberration

- Longitudinal chromatical aberration for a single lens
- Best image plane changes with wavelength

Ref: H. Zügge

Chromatic Variation of Magnification

- Lateral chromatical aberration:
 Higher refractive index in the blue results in a stronger ray bending of the chief ray for a single lens
- The colored images have different size,
 the magnification is wavelength dependent
- Definition of the error: change in image height/magnification
- Correction needs several glasses with different dispersion
- The aberration strongly depends on the stop position

$$\Delta y'_{CHV} = y'_{F'} - y'_{C'}$$

$$\Delta \overline{y'}_{CHV} = \frac{y'_{F'} - y'_{C'}}{y'_{C'}}$$

Chromatic Variation of Magnification

- Impression of CHV in real images
- Typical colored fringes blue/red at edges visible
- Color sequence depends on sign of CHV

Further Aberration Representations in Zemax

Lateral color

Chromatical focal shift

Excercise I: Lens Bending

Most of the aberrations change with the bending of a lens.

- a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5 mm for 587.6 nm for an object space numerical aperture of NA = 0.07. The object distance is 170 mm. The object field has a diameter of 30 mm. The stop is located at the lens.
- b) Generate a universal plot for coma, spherical aberration, astigmatism and Petzval curvature, if the curvature of the first lens surface is varied between -0.03 ... +0.05. Explain the results.
- c) Now modify the setup by placing the system stop 30 mm in front of the lens. What is changing?
- d) It is obvious that the stop position and the bending have influence on the aberrations. Therefore, it makes sense to look at the combined effect. For getting this, generate a 2D universal plot, where the stop position and the bending are changed. Formulate the second thickness as a pickup to keep the object distance constant and change the distance between object and stop from 100 ...170 mm. Plot the 2D-dependence for spherical aberration, coma and astigmatism. Interpret the results. What is the optimal bending for a distance of 100 mm? Is it possible to correct all three aberrations simultaneously?

Coma

- Coma deviation, elimination of the azimuthal dependence: circle equation
- Diameter of the circle and position variiation with r_p²
 Every zone of the circlegenerates a circle in the image plane
- All cricels together form a comet-like shape
- The chief ray intersection point is at the tip of the cone
- The transverse extension of the cone shape has a ratio of 2:3 the meridional extension is enlarged and gives a poorer resolution

