imitation learning

behavior cloning (lecture2 part2)

定义: 直接使用监督学习的方法,将专家数据看作样本输入

目标

我们在 $p_{\mathrm{data}}(\mathbf{o}_t)$ 下训练,但是我们用 $p_{\pi_{\theta}}(\mathbf{o}_t)$ 测试,但 $p_{\mathrm{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

所以不考虑以下目标函数

$$\max_{ heta} E_{\mathbf{o}_t \sim p_{\mathrm{data}}(\mathbf{o}_t)}[\log \pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)]$$

首先,定义损失函数为

$$c(\mathbf{s}_t, \mathbf{a}_t) = egin{cases} 0 ext{ if } \mathbf{a}_t = \pi^\star(\mathbf{s}_t) \ 1 ext{ otherwise} \end{cases}$$

我们关心的是 π_{θ} 情况,我们需要做的是

$$\text{minimize } E_{\mathbf{s}_t \sim p_{\pi_o}(\mathbf{s}_t)}[c(\mathbf{s}_t, \mathbf{a}_t)]$$

假设: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$, 对于 $\mathbf{s} \in \mathcal{D}_{\text{train}}$

因此有

$$E\left[\sum_t c(\mathbf{s}_t, \mathbf{a}_t)
ight] \leq \underbrace{\epsilon T + (1-\epsilon)(\epsilon(T-1) + (1-\epsilon)(\ldots))}_{T ext{ terms each } O(\epsilon T)} = O(\epsilon T^2)$$

这个式子表明BC的cost会随着决策步数的增加而呈现平方次增加

更加泛化的说,对于 $\mathbf{s} \sim p_{\mathrm{train}}(\mathbf{s})$,我们假设 $E_{p_{\mathrm{train}}(\mathbf{s})}[\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s})] \leq \epsilon$

对于 $p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$, 我们有

$$p_{\theta}(\mathbf{s}_t) = (1 - \epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1 - (1 - \epsilon)^t)) p_{\text{mistake}}(\mathbf{s}_t)$$

式子前一项表明不犯错(即train data)的概率,后一项表明其他分布

然后有

$$|p_{\theta}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| \leq 2(1 - (1 - \epsilon)^t)$$

其中 $(1-\epsilon)^t \ge 1-\epsilon t$, for $\epsilon \in [0,1]$, 所以小于 $2\epsilon t$

对于我们的目标函数来说

$$egin{aligned} \sum_t E_{p_{ heta}(\mathbf{s}_t)}[c_t] &= \sum_t \sum_{\mathbf{s}_t} p_{ heta}(\mathbf{s}_t) c_t(\mathbf{s}_t)^{\leq} \sum_t \sum_{\mathbf{s}_t} p_{ ext{train}}(\mathbf{s}_t) c_t(\mathbf{s}_t) + |p_{ heta}(\mathbf{s}_t) - p_{ ext{train}}(\mathbf{s}_t)| c_{ ext{max}} \ &\leq \sum_t \epsilon + 2\epsilon t \leq \epsilon T + 2\epsilon T^2 \ &O(\epsilon T^2) \end{aligned}$$

problem of Imitation learning

Non-Markovian behavior

人类在标注数据进行决策的时候,考虑到的并不仅仅是当前这一帧的observation,而是根据过去的许多信息来做出判断的,对于同样一帧图像,可能由于前面的信息不同,人类会做出不一样的决策。对于这样的数据,算法在学习的时候是有可能产生混淆的,这也就导致算法对于数据的拟合效果不够好。

所以解决问题的关键就是如何将缺失的信息补充回来。最直观的方法是不仅仅使用当前帧作为输入,而是使用过去若干帧作为输入并从中提取有用的信息,这也正是原始DQN中使用的方法。RNN是一个不得不提到的方法,它将前面帧的信息作为hidden state传输给后面的状态,从而作为缺失信息的补充。

但是**添加的信息越多则更可能导致泛化性能变差**。但是学习中由于信息过多,加上现有的学习方法大部分对于因果关系的提取仍然比较差,所以会将这种共现因子当作是决策的原因,从而产生了所谓的causal confusion

Multimodal behavior

在很多时候对于一个情景的确是存在多个可行解

Mixture of Gaussian

Autoregressive discretization

Extra notes

连续动作vs离散动作空间

特征	连续动作空间(Box)	离散动作空间 (Discrete)
动作类型	实数向量	整数编号
Gym 类型	gym.spaces.Box	gym.spaces.Discrete

特征	连续动作空间(Box)	离散动作空间 (Discrete)
策略分布类型	Normal(mean, std)	Categorical(probs)
适用算法举例	DDPG, PPO (continuous), SAC	DQN, REINFORCE, PPO (discrete)
处理方式(log_prob)	dist.log_prob(actions).sum(-1)	dist.log_prob(action)

homework

analysis

第一问

对于其中任意某个状态来说,有

$$\mathbb{E}_{p_{\pi^*}(s)}\pi_{\theta}\left(a\neq\pi^*(s)\mid s\right) = \frac{1}{T}\sum_{t=1}^{T}\mathbb{E}_{p_{\pi^*}(s_t)}\pi_{\theta}\left(a_t\neq\pi^*\left(s_t\right)\mid s_t\right) \leq \varepsilon$$

这个式子表明在状态 s_t 下policy $\pi_{ heta}$ dispute policy π^* 的概率小于arepsilon

用题目提示的公式有

$$\Pr\left(igcup_{t=1}^T E_t
ight) \leq \sum_{t=1}^T \Pr\left(E_t
ight) \leq T\epsilon$$

其中 E_t 代表the event that π_{θ} dispute with π^* at time t

故得(a conservative bound)

$$\sum_{s_{t}}\left|p_{\pi_{ heta}}\left(s_{t}
ight)-p_{\pi^{st}}\left(s_{t}
ight)
ight|\leq2Tarepsilon$$

第二问

2.a

因为reward only depend on the last state,故有

$$J\left(\pi^*\right) - J\left(\pi_{\theta}\right) \leq R_{\max}T\epsilon = O(T\epsilon)$$

2.b

根据题目所给公式 $J(\pi) = \sum_{t=1}^T \mathbb{E}_{p_{\pi}(s_t)} r\left(s_t
ight)$,

代入可得

$$J\left(\pi^{*}
ight)-J\left(\pi_{ heta}
ight)\leq R_{\max}\sum_{t=1}^{T}t\epsilon=R_{\max}rac{T(T+1)}{2}\epsilon=O\left(T^{2}\epsilon
ight)$$

Editing code

• 在安装环境时,如果直接 pip install -r requirements.txt,会出现报错无法安装box2d-py依赖项,可以先通过 conda install conda-forge::box2d-py 安装box2d-py,再 pip install -r requirements.txt

```
● INTEL oneMKL ERROR: 找不到指定的模块。 mkl_intel_thread.2.dll.
2 Intel oneMKL FATAL ERROR: Cannot load mkl_intel_thread.2.dll.
```

后续报错找不到numpy,查找到应该mkl,mkl-service没有正确安装

```
conda install mkl
pip install mkl-service
```

至此环境搭配完毕

MLP_policy.py

forward

• 给定 observation (状态),**输出一个分布**,表示该状态下采取各个动作的概率。

```
def forward(self, observation: torch.FloatTensor) -> Any:
 2
 3
            Defines the forward pass of the network
 4
            :param observation: observation(s) to query the policy
 5
 6
            :return:
 7
                action: sampled action(s) from the policy
8
            # TODO: implement the forward pass of the network.
9
            # You can return anything you want, but you should be able to differentiate
10
            # through it. For example, you can return a torch.FloatTensor. You can also
11
            # return more flexible objects, such as a
12
            # `torch.distributions.Distribution` object. It's up to you!
13
            observation=observation.to(ptu.device)
14
15
            mean = self.mean_net(observation)#调用mean_net进行前向传播
            logstd = self.logstd.expand_as(mean) # logstd is a single value
16
            std = torch.exp(logstd) # convert logstd to std
17
18
            dist = distributions.Normal(mean, std) # create a normal distribution
19
            action = dist.rsample() # sample an action from the distribution,使用rsample可
    以使得梯度可以通过采样传递
20
            action = torch.tanh(action) # apply tanh to the action限制
21
            return action, dist
```

- observation是一个 **PyTorch 张量**(torch.FloatTensor),形状是(batch_size,ob_dim)
- mean_net是一个神经网络,输出是动作分布的均值
- torch.Tensor.expand as PyTorch 2.7 documentation: 将logstd拓展成mean一样的大小
- <u>Probability distributions torch.distributions PyTorch 2.7 documentation</u>: .Normal创建一个多维独立正态分布

$$\pi(a \mid s) = \mathcal{N}\left(\mu(s), \sigma(s)^2
ight)$$

- 使用 rsample() 而不是 sample() 是为了支持 **重参数化(reparameterization trick)**,即允许梯度从 loss 反传到 mean 和 logstd ,常用于策略梯度或 VAE。
- 将动作经过 tanh 激活函数映射到 (-1, 1) 范围,使得输出动作符合大多数连续控制环境(如 MuJoCo)要求的动作空间限制。

update

- 给定一批 (observation, action) 样本 (专家数据),
- 调用 forward 得到策略在这些状态下的动作分布;
- 计算这些 分布对 expert 动作的 log-probability;
- 最大化该 log-prob(或最小化负对数似然)作为 loss,反向传播并优化网络。

```
1
    def update(self, observations, actions):
 2
 3
            Updates/trains the policy
 4
 5
            :param observations: observation(s) to query the policy
            :param actions: actions we want the policy to imitate
 6
 7
            :return:
 8
                dict: 'Training Loss': supervised learning loss
 9
10
            # TODO: update the policy and return the loss
11
            observations = observations.to(ptu.device)
12
            actions = actions.to(ptu.device)
13
            self.optimizer.zero_grad()
            _, dist = self.forward(observations)
14
15
            # Calculate the loss as the negative log likelihood of the actions under the
    policy
16
            log_probs = dist.log_prob(actions)
            log_probs = log_probs.sum(dim=-1) # sum over action dimensions
17
18
            loss = -log_probs.mean() # mean over batch
19
            # Backpropagate the loss
20
            loss.backward()
21
            self.optimizer.step()
22
            # Return a dictionary with the training loss
23
            # You can add extra logging information here, but keep this line
24
            return {
25
                # You can add extra logging information here, but keep this line
26
                'Training Loss': ptu.to_numpy(loss),
27
            }
```

- [self.optimizer.zero_grad() 梯度清零,为当前batch的梯度计算做准备
- 计算专家动作 actions 在当前策略分布下的对数概率(log likelihood),如果动作是多维的,求和得到整体动作向量的对数概率 .sum(dim=-1)
- loss = -log_probs.mean() 计算负对数似然损失(negative log likelihood,NLL) 损失越小,说明策略分布越能"解释"专家动作,即策略输出的动作更接近专家动作
- loss.backward() 反向计算梯度
- [self.optimizer.step() 优化器根据梯度更新模型参数,提升策略

utils.py

sample_trajectory

• 用当前策略采取动作,并记录每个时间步的observation、action、reward、next_observation、terminal

```
def sample_trajectory(env, policy, max_path_length, render=False):
        """Sample a rollout in the environment from a policy."""
 2
 3
 4
        # initialize env for the beginning of a new rollout
        ob = env.reset() # TODO: initial observation after resetting the env
 6
        print("observation shape: ", ob.shape)
        # init vars
        obs, acs, rewards, next_obs, terminals, image_obs = [], [], [], [], []
 8
 9
        steps = 0
10
        while True:
11
            # render image of the simulated env
12
13
            if render:
14
                if hasattr(env, 'sim'):
15
                     img = env.sim.render(camera_name='track', height=500, width=500)[::-1]
                else:
16
17
                     img = env.render(mode='single_rgb_array')
18
                image_obs.append(cv2.resize(img, dsize=(250, 250),
    interpolation=cv2.INTER_CUBIC))
19
            # TODO use the most recent ob to decide what to do
20
21
            ac, = policy.forward(ptu.from_numpy(ob)) # HINT: this is a numpy array
22
            ac = ac[0]#取出单个动作,去除batch维度
23
24
            # TODO: take that action and get reward and next ob
25
            next_ob, rew, done, _ = env.step(ac) # HINT: this is a numpy array
26
27
            # TODO rollout can end due to done, or due to max_path_length
28
            steps += 1
29
            rollout_done = done or steps>=max_path_length# HINT: this is either 0 or 1
30
31
            # record result of taking that action
32
            obs.append(ob)
33
            acs.append(ac)
34
            rewards.append(rew)
35
            next_obs.append(next_ob)
36
            terminals.append(rollout_done)
37
38
            ob = next_ob # jump to next timestep
39
            # end the rollout if the rollout ended
40
            if rollout_done:
41
42
                break
43
        return {"observation" : np.array(obs, dtype=np.float32),
44
                "image_obs" : np.array(image_obs, dtype=np.uint8),
45
46
                "reward" : np.array(rewards, dtype=np.float32),
```

```
"action": np.array(acs, dtype=np.float32),
"next_observation": np.array(next_obs, dtype=np.float32),
"terminal": np.array(terminals, dtype=np.float32)}
```

- if hasattr(env, 'sim') 检查环境是否有sim属性,有的话通过sim.render渲染,[::-1]将图像上下翻转,因为 MuJoCo 渲染默认是上下颠倒的,cv2.INTER_CUBIC(Bicubic Interpolation)双三次插值
- [env.step(ac] 让环境执行一个动作,并返回它对这个动作的"回应"

sample_trajectories和sample_n_trajectories

```
def sample_trajectories(env, policy, min_timesteps_per_batch, max_path_length,
 1
    render=False):
 2
        """Collect rollouts until we have collected min_timesteps_per_batch steps."""
 3
 4
        timesteps_this_batch = 0
 5
        paths = []
 6
        while timesteps_this_batch < min_timesteps_per_batch:</pre>
 7
 8
            #collect rollout
 9
             path = sample_trajectory(env, policy, max_path_length, render)
10
            paths.append(path)
11
12
            #count steps
13
            timesteps_this_batch += get_pathlength(path)
14
15
        return paths, timesteps_this_batch
```

● **多次调用** sample_trajectory ,直到采集的时间步(step)数 ≥ min_timesteps_per_batch ,max_path_length是单条路径的最大步数,paths 是所有采集到的 trajectories 列表

同理有

```
def sample_n_trajectories(env, policy, ntraj, max_path_length, render=False):
1
2
       """Collect ntraj rollouts."""
3
4
       paths = []
       for i in range(ntraj):
5
6
           # collect rollout
7
           path = sample_trajectory(env, policy, max_path_length, render)
8
           paths.append(path)
9
       return paths
```

convert_listofrollouts

将这些多个轨迹中的对应数据拼接(concatenate)起来,变成一个大数组,方便后续处理

```
def convert_listofrollouts(paths, concat_rew=True):
    """

Take a list of rollout dictionaries
    and return separate arrays,
```

```
5
            where each array is a concatenation of that array from across the rollouts
 6
 7
        observations = np.concatenate([path["observation"] for path in paths])
 8
        actions = np.concatenate([path["action"] for path in paths])
 9
        if concat rew:
10
            rewards = np.concatenate([path["reward"] for path in paths])
11
        else:
            rewards = [path["reward"] for path in paths]
12
13
        next_observations = np.concatenate([path["next_observation"] for path in paths])
        terminals = np.concatenate([path["terminal"] for path in paths])
14
        return observations, actions, rewards, next_observations, terminals
15
```

• concat_rew=True — 返回所有轨迹奖励的拼接数组(扁平的,合并的) concat_rew=False — 返回奖励的列表(每个元素是单个轨迹的奖励序列)

compute metrics

根据**训练轨迹和评估轨迹**(即 paths 和 eval paths)计算训练日志中常见的一些评估指标

```
def compute_metrics(paths, eval_paths):
        """Compute metrics for logging."""
 2
 3
 4
        # returns, for logging
 5
        train_returns = [path["reward"].sum() for path in paths]
        eval_returns = [eval_path["reward"].sum() for eval_path in eval_paths]
 6
 8
        # episode lengths, for logging
 9
        train_ep_lens = [len(path["reward"]) for path in paths]
        eval_ep_lens = [len(eval_path["reward"]) for eval_path in eval_paths]
10
11
12
        # decide what to log
13
        logs = OrderedDict()
14
        logs["Eval_AverageReturn"] = np.mean(eval_returns)
15
        logs["Eval_StdReturn"] = np.std(eval_returns)
        logs["Eval_MaxReturn"] = np.max(eval_returns)
16
        logs["Eval_MinReturn"] = np.min(eval_returns)
17
18
        logs["Eval_AverageEpLen"] = np.mean(eval_ep_lens)
19
20
        logs["Train_AverageReturn"] = np.mean(train_returns)
        logs["Train_StdReturn"] = np.std(train_returns)
21
        logs["Train_MaxReturn"] = np.max(train_returns)
22
23
        logs["Train_MinReturn"] = np.min(train_returns)
        logs["Train_AverageEpLen"] = np.mean(train_ep_lens)
24
25
26
        return logs
```

• 使用 OrderedDict 是为了让输出的指标顺序稳定(可选,不影响结果,但便于日志文件查看)

run_hw1

行为克隆(Behavior Cloning)与 DAgger 的主训练脚本,作用是训练一个模仿学习的策略网络(**核心**) **tensorboard --logdir=你的日志目录路径,查看具体日志**

```
# how many rollouts to save as videos to tensorboard
    MAX_NVIDEO = 2#每次迭代最多保存两个视频
    MAX_VIDEO_LEN = 40 # we overwrite this in the code below
    MJ_ENV_NAMES = ["Ant-v4", "Walker2d-v4", "HalfCheetah-v4", "Hopper-v4"]
 6
 8
    def run_training_loop(params):
 9
10
        Runs training with the specified parameters
11
        (behavior cloning or dagger)
12
13
        Args:
14
            params: experiment parameters
15
16
17
        #############
18
        ## INIT
19
        #############
20
21
        # Get params, create logger, create TF session
22
        logger = Logger(params['logdir'])
23
        # Set random seeds
24
25
        seed = params['seed']
26
        np.random.seed(seed)
27
        torch.manual_seed(seed)
28
        ptu.init_gpu(
29
            use_gpu=not params['no_gpu'],
30
            gpu_id=params['which_gpu']
31
32
33
        # Set logger attributes
        log_video = True
34
        log_metrics = True
35
36
37
        #############
        ## ENV
38
        ############
39
40
        # Make the gym environment
41
        env = gym.make(params['env_name'], render_mode=None)
42
43
        env.reset(seed=seed)
44
        # Maximum length for episodes
45
        params['ep_len'] = params['ep_len'] or env.spec.max_episode_steps
46
47
        MAX_VIDEO_LEN = params['ep_len']
```

```
48
49
        assert isinstance(env.action_space, gym.spaces.Box), "Environment must be
    continuous"#连续动作空间
50
        # Observation and action sizes
51
        ob_dim = env.observation_space.shape[0]
52
        ac_dim = env.action_space.shape[0]
53
        # simulation timestep, will be used for video saving
54
        if 'model' in dir(env):
55
56
            fps = 1/env.model.opt.timestep
        else:
57
58
            fps = env.env.metadata['render_fps']
59
        #############
60
        ## AGENT
61
        #############
62
63
        # TODO: Implement missing functions in this class.
64
65
        actor = MLPPolicySL(
66
            ac dim.
            ob_dim,
67
            params['n_layers'],
68
69
            params['size'],
70
            learning_rate=params['learning_rate'],
71
72
73
        # replay buffer
74
        replay_buffer = ReplayBuffer(params['max_replay_buffer_size'])
75
        ########################
76
77
        ## LOAD EXPERT POLICY
78
        ##########################
79
80
        print('Loading expert policy from...', params['expert_policy_file'])
81
        expert_policy = LoadedGaussianPolicy(params['expert_policy_file'])
82
        expert_policy.to(ptu.device)
        print('Done restoring expert policy...')
83
84
85
        ##########################
86
        ## TRAINING LOOP
        ########################
87
88
89
        # init vars at beginning of training
90
        total_envsteps = 0
        start_time = time.time()
91
92
93
        for itr in range(params['n_iter']):
94
            95
96
            # decide if videos should be rendered/logged at this iteration
97
            log_video = ((itr % params['video_log_freq'] == 0) and
    (params['video_log_freq'] != -1))
98
            # decide if metrics should be logged
```

```
99
             log_metrics = (itr % params['scalar_log_freg'] == 0)
100
101
             print("\nCollecting data to be used for training...")
102
             if itr == 0:
103
                 # BC training from expert data.
104
                 paths = pickle.load(open(params['expert_data'], 'rb'))
                 envsteps_this_batch = 0
105
106
             else:
107
                 # DAGGER training from sampled data relabeled by expert
                 assert params['do_dagger']
108
                 # TODO: collect `params['batch_size']` transitions
109
                 # HINT: use utils.sample_trajectories
110
111
                 # TODO: implement missing parts of utils.sample_trajectory
                 paths, envsteps_this_batch = utils.sample_trajectories(
112
113
                     env, actor, params['batch_size'], params['ep_len'], render=log_video)
114
115
                 # relabel the collected obs with actions from a provided expert policy
116
                 if params['do_dagger']:
117
                     print("\nRelabelling collected observations with labels from an expert
     policy...")
118
119
                     # TODO: relabel collected obsevations (from our policy) with labels
     from expert policy
120
                     # HINT: query the policy (using the get_action function) with paths[i]
     ["observation"]
                     # and replace paths[i]["action"] with these expert labels
121
122
                     for i in range(len(paths)):
123
                          paths[i]["action"] = expert_policy.get_action(
                              paths[i]["observation"])
124
                         #利用专家数据替代
125
126
127
             total_envsteps += envsteps_this_batch
             # add collected data to replay buffer
128
129
             replay_buffer.add_rollouts(paths)
130
             # train agent (using sampled data from replay buffer)
131
             print('\nTraining agent using sampled data from replay buffer...')
132
133
             training_logs = []
134
             for _ in range(params['num_agent_train_steps_per_iter']):
135
               # TODO: sample some data from replay_buffer
136
137
               # HINT1: how much data = params['train_batch_size']
138
               # HINT2: use np.random.permutation to sample random indices
               # HINT3: return corresponding data points from each array (i.e., not
139
     different indices from each array)
140
               # for imitation learning, we only need observations and actions.
141
               ob_batch, ac_batch = replay_buffer.sample(
                   params['train_batch_size'])
142
143
144
               # use the sampled data to train an agent
145
               train_log = actor.update(ob_batch, ac_batch)
               training_logs.append(train_log)
146
147
```

```
148
             # log/save
149
             print('\nBeginning logging procedure...')
150
             if log_video:
151
                  # save eval rollouts as videos in tensorboard event file
152
                 print('\nCollecting video rollouts eval')
153
                 eval_video_paths = utils.sample_n_trajectories(
154
                      env, actor, MAX_NVIDEO, MAX_VIDEO_LEN, True)
155
                 # save videos
156
157
                 if eval_video_paths is not None:
158
                      logger.log_paths_as_videos(
159
                          eval_video_paths, itr,
160
                          fps=fps.
161
                          max_videos_to_save=MAX_NVIDEO,
162
                          video_title='eval_rollouts')
163
164
             if log_metrics:
                 # save eval metrics
165
166
                 print("\nCollecting data for eval...")
167
                 eval_paths, eval_envsteps_this_batch = utils.sample_trajectories(
                      env, actor, params['eval_batch_size'], params['ep_len'])
168
169
170
                 logs = utils.compute_metrics(paths, eval_paths)
171
                 # compute additional metrics
                 logs.update(training_logs[-1]) # Only use the last log for now
172
                 logs["Train_EnvstepsSoFar"] = total_envsteps
173
174
                 logs["TimeSinceStart"] = time.time() - start_time
175
                 if itr == 0:
                      logs["Initial_DataCollection_AverageReturn"] =
176
     logs["Train_AverageReturn"]
177
178
                 # perform the logging
                  for key, value in logs.items():
179
180
                      print('{} : {}'.format(key, value))
181
                      logger.log_scalar(value, key, itr)
                 print('Done logging...\n\n')
182
183
184
                 logger.flush()
185
             if params['save_params']:
186
                 print('\nSaving agent params')
187
188
                 actor.save('{}/policy_itr_{{}}.pt'.format(params['logdir'], itr))
189
190
191
     def main():
192
         import argparse
         parser = argparse.ArgumentParser()
193
         parser.add_argument('--expert_policy_file', '-epf', type=str, required=True) #
194
     relative to where you're running this script from
195
         parser.add_argument('--expert_data', '-ed', type=str, required=True) #relative to
     where you're running this script from
         parser.add_argument('--env_name', '-env', type=str, help=f'choices: {",
196
     ".join(MJ_ENV_NAMES)}', required=True)
```

```
parser.add_argument('--exp_name', '-exp', type=str, default='pick an experiment
197
     name', required=True)
198
         parser.add_argument('--do_dagger', action='store_true')
199
         parser.add_argument('--ep_len', type=int)
200
201
         parser.add_argument('--num_agent_train_steps_per_iter', type=int, default=1000) #
     number of gradient steps for training policy (per iter in n_iter)
         parser.add_argument('--n_iter', '-n', type=int, default=1)
202
203
204
         parser.add_argument('--batch_size', type=int, default=1000) # training data
     collected (in the env) during each iteration
205
         parser.add_argument('--eval_batch_size', type=int,
206
                             default=1000) # eval data collected (in the env) for logging
     metrics
207
         parser.add_argument('--train_batch_size', type=int,
208
                             default=100) # number of sampled data points to be used per
     gradient/train step
209
210
         parser.add_argument('--n_layers', type=int, default=2) # depth, of policy to be
     learned
211
         parser.add_argument('--size', type=int, default=64) # width of each layer, of
     policy to be learned
212
         parser.add_argument('--learning_rate', '-lr', type=float, default=5e-3) # LR for
     supervised learning
213
         parser.add_argument('--video_log_freq', type=int, default=5)
214
215
         parser.add_argument('--scalar_log_freq', type=int, default=1)
216
         parser.add_argument('--no_gpu', '-ngpu', action='store_true')
         parser.add_argument('--which_gpu', type=int, default=0)
217
         parser.add_argument('--max_replay_buffer_size', type=int, default=1000000)
218
219
         parser.add_argument('--save_params', action='store_true')
220
         parser.add_argument('--seed', type=int, default=1)
221
         args = parser.parse_args()
222
223
         # convert args to dictionary
224
         params = vars(args)
225
         #####################################
226
227
         ### CREATE DIRECTORY FOR LOGGING
228
         #####################################
229
230
         if args.do_dagger:
231
             # Use this prefix when submitting. The auto-grader uses this prefix.
232
             logdir_prefix = 'q2_'
             assert args.n_iter>1, ('DAGGER needs more than 1 iteration (n_iter>1) of
233
     training, to iteratively query the expert and train (after 1st warmstarting from
     behavior cloning).')
234
         else:
235
             # Use this prefix when submitting. The auto-grader uses this prefix.
236
             logdir_prefix = 'q1_'
237
             assert args.n_iter==1, ('Vanilla behavior cloning collects expert data just
     once (n_iter=1)')
238
```

```
239
         # directory for logging
240
         data_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
     '../../data')
241
         if not (os.path.exists(data_path)):
             os.makedirs(data_path)
242
243
         logdir = logdir_prefix + args.exp_name + '_' + args.env_name + '_' +
     time.strftime("%d-%m-%Y_%H-%M-%S")
244
         logdir = os.path.join(data_path, logdir)
         params['logdir'] = logdir
245
246
         if not(os.path.exists(logdir)):
247
             os.makedirs(logdir)
248
         ####################
249
250
         ### RUN TRAINING
         ####################
251
252
253
         run_training_loop(params)
254
255
     if __name__ == "__main__":
256
257
         main()
258
```

• logger = Logger(params['logdir']) 通过Logger类设置日志目录

```
1
   class Logger:
2
      def __init__(self, log_dir, n_logged_samples=10, summary_writer=None):
3
          self._log_dir = log_dir
          print('#############")
4
          print('logging outputs to ', log_dir)
6
          print('#############")
7
          self._n_logged_samples = n_logged_samples
8
          self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1)
9
```

这个是 tensorboardX.SummaryWriter 的实例,用于将数据写入 TensorBoard 可读取的 .event 文件中。

参数	含义
log_dir	保存路径
flush_secs=1	每1秒就刷新一次日志(即时可见)
max_queue=1	不使用队列缓存,数据写入尽可能立即进行,防止数据延迟出现

```
seed = params['seed']
np.random.seed(seed)
torch.manual_seed(seed)
```

设置 NumPy 的随机种子,使得:

```
1 | np.random.rand(), np.random.randint(), np.random.permutation()
```

等 NumPy 的随机函数每次运行时的结果**固定**,不会随着时间或运行顺序变化。

设置 PyTorch 的随机种子,使得:

```
pythonCopyEdittorch.rand(), torch.randn(), torch.randint()
torch.nn.init.xavier_uniform_()
```

这些涉及到模型参数初始化或训练过程中的随机操作时,每次运行都保持一致。

• 使用 OpenAI Gym 创建一个环境并设定随机种子

render_mode 是 Gym API 从 v0.26+ 引入的新参数,用于指定渲染方式:

- o 'human': 实时窗口可视化
- 'rgb_array': 以 NumPy 格式返回帧图像(适用于视频记录)
- o None: 不渲染(节省资源)

```
1    env = gym.make(params['env_name'], render_mode=None)
2    env.reset(seed=seed)
```

```
assert isinstance(env.action_space, gym.spaces.Box), "Environment must be continuous"#连续动作空间

# Observation and action sizes
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.shape[0]
```

断言(assert)用于确保当前环境的动作空间是 gym.spaces.Box 类型。

gym.spaces.Box 表示的是 **连续动作空间**,比如动作是实数,如 [1.3, -0.2]。

如果不是(比如是离散动作空间 gym.spaces.Discrete),就会报错。

```
# simulation timestep, will be used for video saving
if 'model' in dir(env):
    fps = 1/env.model.opt.timestep
else:
    fps = env.env.metadata['render_fps']
```

获取环境的视频帧率(fps, frames per second),用于后续在 TensorBoard 中保存视频。

判断 env (环境) 对象是否包含 model 这个属性。

通常 mode l 是 Mujoco 环境特有的属性。

如果环境是基于 MuJoCo(如 HalfCheetah-v4, Ant-v4),那么它们内部有一个低层次的 model ,包含仿真的物理属性。

对于非 Mujoco 环境(如 Atari、CartPole 等),一般在 env.metadata 字典里直接定义了渲染帧率。

render_fps 就是推荐的可视化帧率

replay_buffer = ReplayBuffer(params['max_replay_buffer_size'])

ReplayBuffer 类是一个用来**缓存 agent 与环境交互的样本**的模块,结构一般是一个大表格

```
def add_rollouts(self, paths, concat_rew=True):
 1
 2
 3
            # add new rollouts into our list of rollouts
            for path in paths:
 4
 5
                self.paths.append(path)
 6
            # convert new rollouts into their component arrays, and append them onto
 8
            # our arrays
            observations, actions, rewards, next_observations, terminals = (
 9
                convert_listofrollouts(paths, concat_rew))
10
11
            if self.obs is None:
12
                self.obs = observations[-self.max_size:]
13
                self.acs = actions[-self.max_size:]
14
15
                self.rews = rewards[-self.max_size:]
16
                self.next_obs = next_observations[-self.max_size:]
                self.terminals = terminals[-self.max_size:]
17
18
            else:
19
                self.obs = np.concatenate([self.obs, observations])[-self.max_size:]
20
                self.acs = np.concatenate([self.acs, actions])[-self.max_size:]
                if concat_rew:
21
                    self.rews = np.concatenate(
22
23
                         [self.rews, rewards]
24
                    )[-self.max_size:]
25
                    if isinstance(rewards, list):
26
27
                         self.rews += rewards
28
                     else:
29
                         self.rews.append(rewards)
30
                     self.rews = self.rews[-self.max_size:]
31
                self.next_obs = np.concatenate(
32
                     [self.next_obs, next_observations]
                )[-self.max_size:]
33
                self.terminals = np.concatenate(
34
35
                     [self.terminals, terminals]
                )[-self.max_size:]
36
```

concat_rew=True: 是否将 reward 拼接成一维数组(方便 supervised learning)

行为	说明
self.rews += rewards	批量扩展
self.rews.append(rewards)	单个追加
<pre>self.rews = self.rews[-self.max_size:]</pre>	剪裁到最大容量

调用 convert_listofrollouts() 将多个 path 中的 obs 、act 等字段分别拼接成统一的大数组

```
1 def convert_listofrollouts(paths, concat_rew=True):
```

```
2
            Take a list of rollout dictionaries
 3
 4
            and return separate arrays,
 5
            where each array is a concatenation of that array from across the rollouts
 6
7
        observations = np.concatenate([path["observation"] for path in paths])
        actions = np.concatenate([path["action"] for path in paths])
 8
9
        if concat_rew:
10
            rewards = np.concatenate([path["reward"] for path in paths])
11
            rewards = [path["reward"] for path in paths]
12
13
        next_observations = np.concatenate([path["next_observation"] for path in
    paths])
        terminals = np.concatenate([path["terminal"] for path in paths])
14
        return observations, actions, rewards, next_observations, terminals
15
```

参数 concat_rew	输出结构	使用场景说明
True	np.array (N,)	模型训练(统一结构)
False	List[List]	日志、评估(保持轨迹结构)

• LoadedGaussianPolicy 是一个类,表示 一个从文件加载的高斯策略模型,通常是预训练好的专家模型。

```
# decide if videos should be rendered/logged at this iteration
log_video = ((itr % params['video_log_freq'] == 0) and (params['video_log_freq']
!= -1))
# decide if metrics should be logged
log_metrics = (itr % params['scalar_log_freq'] == 0)
```

设置video_log_freq和scalar_log_freq判断是否记录日志

```
1
        if itr == 0:
 2
            # BC training from expert data.
 3
            paths = pickle.load(open(params['expert_data'], 'rb'))
            envsteps_this_batch = 0
 4
 5
        else:
 6
            # DAGGER training from sampled data relabeled by expert
 7
            assert params['do_dagger']
            # TODO: collect `params['batch_size']` transitions
8
            # HINT: use utils.sample_trajectories
 9
10
            # TODO: implement missing parts of utils.sample_trajectory
            paths, envsteps_this_batch = utils.sample_trajectories(
11
                env, actor, params['batch_size'], params['ep_len'], render=log_video)
12
13
14
            # relabel the collected obs with actions from a provided expert policy
            if params['do_dagger']:
15
                print("\nRelabelling collected observations with labels from an expert
16
    policy...")
17
                # TODO: relabel collected obsevations (from our policy) with labels
18
    from expert policy
```

```
# HINT: query the policy (using the get_action function) with paths[i]
["observation"]

# and replace paths[i]["action"] with these expert labels

for i in range(len(paths)):

paths[i]["action"] = expert_policy.get_action(

paths[i]["observation"])

#利用专家数据替代
```

DAGGER的核心:利用当前策略收集状态,但用专家指导动作,保证训练数据的质量。

调用sample_trajectories去重新采样包括obs和action,然后利用expert_policy.get_action去重新得到专家指导 的action

```
1
        for _ in range(params['num_agent_train_steps_per_iter']):
 2
 3
          # TODO: sample some data from replay_buffer
          # HINT1: how much data = params['train_batch_size']
 4
 5
          # HINT2: use np.random.permutation to sample random indices
          # HINT3: return corresponding data points from each array (i.e., not
 6
    different indices from each array)
          # for imitation learning, we only need observations and actions.
 7
 8
          ob_batch, ac_batch = replay_buffer.sample(
 9
              params['train_batch_size'])
10
11
          # use the sampled data to train an agent
12
          train_log = actor.update(ob_batch, ac_batch)
13
          training_logs.append(train_log)
```

```
def sample(self, batch_size):
    """Sample given batch size of observations and actions. """
    indices = np.random.randint(0, len(self.acs), size=(batch_size,))
    return self.obs[indices], self.acs[indices]
```

从 [0, len(self.acs)) 范围内随机选择 batch_size 个整数索引。

```
1
        if log_video:
 2
            # save eval rollouts as videos in tensorboard event file
            print('\nCollecting video rollouts eval')
 3
 4
            eval_video_paths = utils.sample_n_trajectories(
 5
                 env, actor, MAX_NVIDEO, MAX_VIDEO_LEN, True)
 6
            # save videos
 7
 8
            if eval_video_paths is not None:
 9
                logger.log_paths_as_videos(
10
                     eval_video_paths, itr,
11
                     fps=fps,
                     max_videos_to_save=MAX_NVIDEO,
12
13
                     video_title='eval_rollouts')
14
```

```
def log_paths_as_videos(self, paths, step, max_videos_to_save=2, fps=10,
    video_title='video'):#从路径中记录视频
 2
 3
            # reshape the rollouts
 4
            videos = [np.transpose(p['image_obs'], [0, 3, 1, 2]) for p in paths]
 5
            # max rollout length
 6
 7
            max_videos_to_save = np.min([max_videos_to_save, len(videos)])
 8
            max_length = videos[0].shape[0]
9
            for i in range(max_videos_to_save):
10
                if videos[i].shape[0]>max_length:
                    max_length = videos[i].shape[0]#选取最长的视频
11
12
13
            # pad rollouts to all be same length
            for i in range(max_videos_to_save):
14
15
                if videos[i].shape[0]<max_length:</pre>
                    padding = np.tile([videos[i][-1]], (max_length-
16
    videos[i].shape[0],1,1,1))
17
                    videos[i] = np.concatenate([videos[i], padding], 0)
18
19
            # log videos to tensorboard event file
20
            videos = np.stack(videos[:max_videos_to_save], 0)
            self.log_video(videos, video_title, step, fps=fps)
21
22
```

videos = [np.transpose(p['image_obs'], [0, 3, 1, 2]) for p in paths]:

格式	说明	用于
[T, H, W, C]	原始格式,常见于 OpenCV/Numpy	环境返回的图像序列
[T, C, H, W]	PyTorch/TF 格式,适用于神经网络	TensorBoardX 日志、网络输入

padding = np.tile([videos[i][-1]], (max_length-videos[i].shape[0],1,1,1)):

o videos[i][-1]: 当前视频最后一帧(shape: [с, н, w])。

[videos[i][-1]]:变成 [1, C, H, W],便于 tile 复制。

np.tile(...,(N,1,1,1)): 沿第0维(时间轴)复制最后一帧,使得视频长度从当前长度补齐到 max_length 。

videos[i] = np.concatenate([videos[i], padding], 0) 从第0个维度进行拼接,即通过时间帧数 videos = np.stack(videos[:max_videos_to_save], 0):np.stack(..., 0) 的作用是把这些视频沿着一个新的第0维度堆叠起来,得到一个形状为 [N, T, C, H, W] 的五维数组

```
if log_metrics:
    # save eval metrics
    print("\nCollecting data for eval...")

eval_paths, eval_envsteps_this_batch = utils.sample_trajectories(
    env, actor, params['eval_batch_size'], params['ep_len'])
```

```
logs = utils.compute_metrics(paths, eval_paths)
7
8
            # compute additional metrics
9
            logs.update(training_logs[-1]) # Only use the last log for now
10
            logs["Train_EnvstepsSoFar"] = total_envsteps
            logs["TimeSinceStart"] = time.time() - start_time
11
12
            if itr == 0:
                logs["Initial_DataCollection_AverageReturn"] =
13
    logs["Train_AverageReturn"]
14
15
            # perform the logging
            for key, value in logs.items():
16
                print('{}: {}'.format(key, value))
17
18
                logger.log_scalar(value, key, itr)
            print('Done logging...\n\n')
19
20
21
            logger.flush()
22
        if params['save_params']:
23
24
            print('\nSaving agent params')
25
            actor.save('{}/policy_itr_{{}}.pt'.format(params['logdir'], itr))
26
```

logs.update(training_logs[-1]) # Only use the last log for now 只取最后一次训练日志是为了简洁、准确地反映当前训练状态,方便后续分析和展示

logs["Initial_DataCollection_AverageReturn"] = logs["Train_AverageReturn"] 记录训练开始时 (第0次迭代)从专家数据收集到的初始平均回报

```
def log_scalar(self, scalar, name, step_):
    self._summ_writer.add_scalar('{}'.format(name), scalar, step_
```

利用写好的log scalar把数据写入tensorboard

logger.flush() 确保所有日志数据都写入硬盘

```
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env_name', '-env', type=str, help=f'choices: {",
    ".join(MJ_ENV_NAMES)}', required=True)
args = parser.parse_args()

# convert args to dictionary
params = vars(args)
```

导入 Python 标准库中的 argparse 模块。它用于从命令行解析参数,让你可以很方便地定义程序运行时的参数 选项

help 是帮助信息,告诉用户可选项是 MJ_ENV_NAMES 列表里的字符串,用逗号连接显示

required=True 表示这个参数是必须要传的,否则程序会报错

```
args = parser.parse_args()
```

这行代码会从命令行解析参数,返回一个 Namespace 对象,里面的每个属性对应一个命令行参数及其值

vars() 是 Python 内置函数,用于将对象转换为字典。 它会把 args 中的属性和值,转换成一个标准的 Python 字典

```
data_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
'.../../data')
if not (os.path.exists(data_path)):
    os.makedirs(data_path)
logdir = logdir_prefix + args.exp_name + '_' + args.env_name + '_' +
time.strftime("%d-%m-%Y_%H-%M-%S")
logdir = os.path.join(data_path, logdir)
params['logdir'] = logdir
if not(os.path.exists(logdir)):
    os.makedirs(logdir)
```

可以通过args.name调用,[time.strftime("%d-%m-%Y_%H-%M-%s")]: 获取当前时间,并格式化为字符串,格式为"日-月-年 时-分-秒"

switchdagger

在一个具有时间跨度 T 的离散马尔可夫决策过程(MDP)中,存在一个专家策略 π^* 。在算法的每个迭代步骤n=1,...,N中,都有一个当前策略 π^n ;当基于该策略生成轨迹时,会在某个随机时间步将控制权转交给专家,并由专家完成轨迹的剩余部分,在 π^n 移交给专家,我们称为 π^n

```
\hat{\pi}^n \leftarrow 	ext{fit to expert actions } \pi^*(s) 	ext{ across } s \sim p_{\hat{\pi}^{n-1}} \ \tilde{\pi}^n \leftarrow S^{X_n}(\hat{\pi}^n, \tilde{\pi}^{n-1}) 	ext{ where } X_n + 1 \sim 	ext{Geom}(1-lpha)
```

- 1. 在n-1的分布下拟合专家策略
- 2. n+1步及以后每一步是否移交专家控制符合几何分布Geom(1-lpha),参数是移交概率

第一问

设定:其中t表示一共t时间跨度(从 $\tilde{\pi}^n$ 之后),n表示考虑第n步(初始)是否移交

```
egin{aligned} A(0,n)&=0,\ A(t,0)&=0,\ A(t,n)&=lphaarepsilon t+lpha(1-arepsilon)A(t-1,n)+(1-lpha)A(t,n-1) \end{aligned}
```

第三个式子:第一项不移交时犯错的cost(一步错步步错所以*t),第二项不移交但这一步不犯错故时间跨步缩小,第三项表示第n步已移交,所以回退一个n-1(需要从起始开始考虑)

第二问

归纳法:

- 1. 当n=0时成立
- 2. 假设n=k成立
- 3. $C(\tilde{\pi}^{n+1}) \leq \varepsilon \alpha T + (1-\alpha)C(\tilde{\pi}^n)$ 右式第一项表示不移交专家,后一项表示移交专家回退一步 故得证

第三问

 π^n 与 $\tilde{\pi}^n$ 的成本差异源于 X^* 的取值:

$$T \cdot Pr[X^* \leq T] \leq T \cdot e^{\frac{-n}{(1-\alpha)T}}$$

故有
$$C(\pi^n)$$
 \leq $C(ilde{\pi}^n)+Te^{rac{-n}{(1-lpha)T}}$

第四问

$$C(\pi^n) \leq T n lpha arepsilon + T e^{rac{-n}{(1-lpha)T}}$$

取
$$lpha = rac{1}{\log(1/arepsilon)}$$
, $N = O(T\log(1/arepsilon))$

结合
$$lpha \leq 1/T$$
即可