Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, MAY 2017

Third / Fourth Semester

15MA209 - PROBABILITY AND RANDOM PROCESS

(For the candidates admitted during the academic year 2015 – 2016 onwards)

Note:

Part - A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.

Part - B and Part - C should be answered in answer booklet. (ii)

Time: Three Hours Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1. The distribution function of a random variable X is given by $F(x) = 1 - (1+x)e^{-x}$, $x \ge 0$ then its density function is

(A)
$$(1+x)e^{-x}+e^{-x}, x \ge 0$$

(B)
$$xe^{-x}, x \ge 0$$

(C)
$$xe^x, x \ge 0$$

(D)
$$\frac{1}{1+x}e^{-x}, x \ge 0$$

2. The random variable X has a binomial distribution with parameters n=20, p=0.4 then its mean is

3. If var(X) = 4 then find var(4X + 5) where X is a random variable

4. If F is the distribution function of the random variable X and if a
b then $P(a < X \le b) =$

(A)
$$p(X=a)+F(b)-F(a)$$

(B)
$$F(b)-F(a)-p(x=b)$$

(C)
$$p(a < x < b) + p(x = a)$$

(D)
$$F(b)-F(a)$$

5. If F(x, y) is the cdf of a two dimensional continuous random variable, then f(x, y) is obtained from f by

(A)
$$f(x,y) = \frac{\partial F}{\partial x}$$

(B)
$$f(x, y) = \frac{\partial F}{\partial y}$$

(C)
$$f(x, y) = \frac{\partial^2 F}{\partial x \partial y}$$

(B)
$$f(x, y) = \frac{\partial F}{\partial y}$$

(D) $f(x, y) = \iint F(x, y) dx dy$

6. Two discrete jointly distributed random variable x and y are independent if

$$(A) \quad p_{ij} = p_{oj}$$

$$(B) \quad p_{ij} = p_{i*} \times p_{*j}$$

(C)
$$p_{ij} = p_{lo}$$

(D)
$$p_{ij} = 1$$

7.	If $x = \frac{u}{v}$ and $y = v$ then $J\left(\frac{x, y}{u, v}\right)$ is						
	(A) (C)	$\frac{1}{n}$	(B) (D)	$\frac{1}{2}$			
	(C)	u V	(D)	u u			
8.	then	by Central limit theorem S _n follows.		of n independent random variables with n=75			
	(A) (C)	S_n follows N(150, $\sqrt{150}$) S_n follows N(150, 150)	(B) (D)	S_n follows $N(\sqrt{150}, 150)$ S_n follows $N(\sqrt{2}, \sqrt{2})$			
9.		If $x(t)$ represents the number of occurrence of a certain event is $(0, t)$ then the discrete random process $\{x(t)\}$ is called a					
	(A)	Renewal process	(B) (D)	Poisson process Exponential process			
10.	If P_{ij}	If $P_{ij}^{(n)} > 0$ for same n and for all i and j then every other state can be reached from every					
	othe	r state then the Markov chain is said to	be				
	(A)	Irreducible	` '	Reducible			
	(C)	Transient	(D)	Persistent			
11.	discr	rete and S is continuous is called		er set then a random process in which T is			
	(A)	Continuous random sequence of second order	(B)	Continuous random process			
	(C)	Discrete random sequence	(D)	Continuous random sequence			
12.	If ce		depe	and on t then the random process $\{x(t)\}$ is			
	(A)	Strongly stationary process Wide sense stationary process		Stationary process Markov process			
13.	R(t)	is maximum at					
		$\tau = -1$	(B)	$\tau = 1$			
	, ,	$\tau = 0$		$\tau = 2$			
	(-)		(-)	· -			
14.	A stationary process has auto correlation function given by $R(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$ then its mean						
	value	e is					
	(A)		(B)				
	(C)	4	(D)	2			
15.	R_{XY}	(- au)=					
	(A)	$-R_{XY}(au)$	(B)	$R_{XY}(au)$			
		$R_{YX}(\tau)$		$-R_{XY}(-\tau)$			
	` /		` /	XI (*)			

- 16. If $\{X(t)\}$ and $\{Y(t)\}$ are independent WSS process with zero mean then the autocorrelation function of $\{z(t)\}$ where z(t) = aX(t)y(t) is
 - (A) $aR_{XX}(\tau)R_{YX}(\tau)$

(B) $a^2 R_{XX}(\tau) R_{YY}(\tau)$

- (C) $\sqrt{a}R_{XX}(\tau)R_{YY}(\tau)$
- (D) $\sqrt{a} R_{XX}(\tau)$
- 17. Real $S_{XY}(\omega)$ and $S_{YX}(\omega)$ are _____ functions of ω
 - (A) Linear

(B) Even

(C) Odd

- (D) Complemented
- 18. The mean square value of the process $\{X(t)\}\$ is
 - (A) $R_{XX}(\tau)$

(B) $R_{XX}(-\tau)$

(C) $-R_{XX}(-0)$

- (D) $R_{XX}(0)$
- 19. If the value of the output Y(t) at a time $t-t_1$ depends only on $x(t_1)$ and not an any other value then the system is called
 - (A) Casual system

(B) Time invariant system

(C) Memoryless system

- (D) Time dependent system
- 20. The power spectral density of a random signal with autocorrelation function $e^{-2\lambda|r|}$ is
 - (A) $\lambda/\lambda^2 + \omega^2$

(B) $\omega/\lambda^2 + \omega^2$

(C) $4\lambda/\lambda^2 + \omega^2$

(D) $4\lambda/(4\lambda^2+\omega^2)$

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

21. If X has the probability distribution

X	-1	0	1	2
p(x)	0.3	0.1	0.4	0.2

Find E(X), $E(X^2)$, var(X) and var(2X+1)

- 22. If the continuous random variable X has the pdf $f_X(x) = \frac{2}{9}(x+1)$ in -1 < x < 2 and = 0 elsewhere find the pdf of $y=x^2$.
- 23. The following table against the joint probability distribution of X and Y. Find the marginal probability functions of X and marginal probability function of Y.

Y	1	2	3
1	0.1	0.1	0.2
1	0.2	0.3	0.1

- 24. Show that the random process $X(t) = A\cos(\omega_0 t + \theta)$ is not stationary. If A and ω_0 all constants and θ is uniformly distributed random variable in $(0, \pi)$.
- 25. Find the mean and variance of the stationary process $\{X(t)\}$ whose autocorrelation function is given by $R(\tau) = 16 + \frac{9}{1 + 6\tau^2}$.

- The power spectral density function of zero mean WSS process {X(t)} is given by 26. $S(\omega) = \begin{cases} 1, & |\omega| < \omega_0 \\ 0, & otherwise \end{cases}$. Find $R(\tau)$.
- 27. For a real random process $\{X(t)\}$, show that $S_{XX}(\omega)$ is an even function.

$$PART - C (5 \times 12 = 60 Marks)$$

Answer ALL Questions

28. a.i For a continuous random variable X, the cdf is given by

$$F(x) = \begin{cases} 0 & \text{if } x < 2 \\ k(x-2) & 2 \le x < 6 \\ 1 & \text{if } x \ge 6 \end{cases}$$

Find (i) the pdf of X (ii) the value of k (iii) P(X>4) (iv) P(3<X<5).

ii Find the moment generating function of the random variable X, whose probability function $p(x) = \frac{1}{2^x}$ x = 1,2,3,.... Hence find the mean and variance.

(OR)

- b.i. The life of certain kind of electronic device has a mean of 300hrs and standard deviation of 25hrs. Assuming that the lifetime of the devices follow normal distribution. Find the probability that any one of these devices will have a life time more than 350hrs. What percentage will have life time between 220 and 260 hrs?
- ii. The first four moments of a distribution about x = 4 are 1,4,10,45. Find mean, variance μ_3 and μ_4 .
- 29. a.i If X and Y each follow an exponential distribution with parameters one and are independent, find the pdf of U = X-Y.
 - ii. The life time of a certain kind of electric bulb may be considered as a random variable with mean 1200 hrs and standard deviation 250 hrs. Find the probability using Central limit theorem that the average lifetime of 60 bulbs exceeds 1250 hrs.

(OR)

- b. The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y) = xy^2 + x^2 / 8$ $0 \le x \le 2, 0 \le y \le 1$. Compute $P(X > 1), P(Y \le 1/2), P(X > 1/Y < 1/2)$ $P(Y < 1/2/X > 1), P(X < Y) \text{ and } P(X + Y \le 1).$
- 30. a. Show that the process $X(t) = A\cos \lambda t + B\sin \lambda t$ where A and B are random variables is wide sense stationary if (i) E(A) = E(B) = 0 (ii) $E(A^2) = E(B^2)$ and (iii) E(AB) = 0.

(OR)

b. The transition probability matrix of a Markov chain $\{X_n\}$ n=1,2,3,... having three states

The transition probability matrix of a Markov chain
$$\{X_n\}$$
 $n=1,2,3,...$ having three states 1,2,3 is $P = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$ and the initial distribution is $P^{(0)} = (0.7 \ 0.2 \ 0.1)$.

Find (i)
$$P(X_2 = 3)$$
 (ii) $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2)$.

22MF3/415MA209 Page 4 of 5

31. a. Consider two random processes $X(t) = 3\cos(\omega t + \theta)$ and $y(t) = 2\cos(\omega t + \theta - \pi/2)$ where θ is a random variable uniformly distributed in $(0, 2\pi)$. Prove that $\sqrt{R_{XX}(0) R_{YY}(0)} \ge |R_{XY}(\tau)|$.

(OR)

- b.i. The cross power spectrum of a real random process $\{X(t)\}$ and $\{Y(t)\}$ is given by $S_{XY}(\omega) = \begin{cases} a+jb\omega, & |\omega|<1\\ 0, & elsewhere \end{cases}$. Find the cross correlation function.
 - ii. If y(t) = X(t+a) X(t-a) where X(t) is a WSS process then show that $R_{YY}(\tau) = 2R_{XX}(\tau) R_{XX}(\tau 2a) R_{XX}(\tau + 2a)$
- 32. a. A wide sense stationary process X(t) is the input to a linear system with impulse response $h(t) = 2e^{-7t}$, $t \ge 0$. If the autocorrelation function of X(t) is $R_{XX}(\tau) = e^{-4|\tau|}$. Find the power spectral density of the output process Y(t).

(OR)

- b.i. Find the power spectral density of the random process if its autocorrelation function is given by $R_{XX}(\tau) = e^{-\alpha|\tau|} \cos B\tau$.
 - ii. The short time moving average of a process $\{X(t)\}$ is defined as $Y(t) = \frac{1}{T} \int_{t-T}^{t} X(s) ds$. Prove that X(t) and Y(t) are related by means of convolution type integral. Find unit impulse response of the system also.

* * * * *