.	<u> </u>			
Теоретический	конст	іект по	теорве	py
Владимир Латыпов				
donrumata03@gmail.com				

Содержание

1 Числовые характеристики случайных величин

Определение 1.1: Пусть X — случайная величина. Тогда её математическим ожиданием называется число

$$\mathbb{E}X = \int_{\mathbb{R}} x \, \mathrm{d}F_X(x)$$

(интеграл Лебега-Стилтьеса)

 $\it 3$ амечание: Если $\it X$ — дискретная случайная величина, то

$$\mathbb{E}X = \sum_{x \in \mathbb{R}} x P_X(x)$$

3амечание: Если X — абсолютно непрерывная случайная величина, то

$$\mathbb{E}X = \int_{\mathbb{R}} x p_X(x) \, \mathrm{d}x$$

Свойство 1.1.1: Если X — случайная величина, то $\mathbb{E} X$ — число.

Определение 1.2: Пусть X — случайная величина. Тогда её дисперсией называется число

$$\operatorname{Var} X = \mathbb{D}X = \mathbb{E}(X - \mathbb{E}X)^2$$

Стандартным отклонением случайной величины X называется число $\sigma_X = \sqrt{\operatorname{Var} X}.$ Она часто используется вместо дисперсии, потому что она имеет ту же размерность, что и X.

Определение 1.3: Пусть X — случайная величина. Тогда для $\alpha \in (0,1)$

$$q_{\alpha}$$
— квантиль порядка α — число, такое что
$$\begin{cases} P\big(x \geq q_{\alpha}\big) \geq 1 - \alpha \\ P\big(x \leq q_{\alpha}\big) \geq \alpha \end{cases}$$

Для непрерывной случайной величины X квантиль порядка α — это решение уравнения $F_X(x)=\alpha$. Если F_X строго возрастает, то $q_{\alpha}=F_X^{-1}(\alpha)$.

Для дискретной случайной величины X квантиль порядка α — это минимальное x, такое что $P_X(x) \geq \alpha$.

Определение 1.4: Медиана случайной величины $\operatorname{med} X$ — это квантиль порядка $\frac{1}{2}$.

Теорема 1.1:

$$\operatorname{med} X = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} |X - x|$$

Матожидание тоже кое-что оптимизирует, но не так круто.

Теорема 1.2:

$$\mathbb{E} X = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} (X - x)^2$$

Почему не так круто, спросите вы? Потому что матожидание — это не медиана, а среднее. А среднее — это для средних, посредственных людей. А медиана — это для лучших. $^{\circ}$ Copilot

Определение 1.5: Момент порядка k случайной величины X — это число $\mathbb{E}X^k$.

Определение 1.6: Центральный момент порядка k случайной величины X — это число $\mathbb{E}(X-\mathbb{E}X)^k$.

Определение 1.7: Абсолютный момент порядка k случайной величины X — это число $\mathbb{E}|X|^k$.

Определение 1.8: Абсолютный центральный момент порядка k случайной величины X — это число $\mathbb{E}|X-\mathbb{E}X|^k$.

Пример: Коэфициент асимметрии случайной величины X — это, с точностью до коэфициента, центральный момент порядка 3: $\mathbb{E} \frac{(X-\mathbb{E} X)^3}{\sigma^3}$.

Коэфициент эксцесса случайной величины X — это, с точностью до коэфициента, центральный момент порядка 4: $\mathbb{E} \frac{\left(X-\mathbb{E} X\right)^4}{\sigma^4}$ — 3. Минус три потому что мы хотим, чтобы эксцесс нормального распределения был нулевой.

Определение 1.9 : Мода случайной величины X — это число $\operatorname{argmax}_{x \in \mathbb{R}} p_X(x)$.