Iterated Projection

They say repetion is the mother of learning

A Simple Constraint

Let's consider a relatively simple constraint for binary classification

$$\sum_{i=1}^{m} \text{round}(\hat{y}_i) \le (1+\varepsilon) \frac{m}{2}$$

- \hat{y}_i is the estimated probability of class i
- round(\hat{y}_i) is the corresponding rounded class
- The summation denotes the number of examples with class 1
- ...Which we require to be approximaly equal to 50%

The restricton is synthetic and we'll use it just as an example

- However, the example is stil practically relevant
- ...Since many fairness constraints in classification have the same structure!

...And Yet an Annoying One

We cannnot easily use Lagrangians

...At least not in a differentiable ML setting

- lacktriangle The original constraint is non-differentiable when $\hat{y}_i=0$
- ...And has 0-gradient everywhere else

This is all caused by the rounding operator

We can obtain a differentiable approximation by removing rounding

$$\sum_{i=1}^{m} \hat{y}_i = \frac{m}{2}$$

- ullet But now we can satisfy the constraint by having $y_i=0.5$ for all examples
- So, the constraint might conflict with the main loss function

...And Yet an Annoying One

Projection has a better time dealing with non-differentiable constraints

...But we cannnot easily use inference-time projection!

- This is a distribution constraint
- ...And cannot be enforced easily by working on individual examples

Data projection might also be in trouble

...Because it may fail to account for the input-output correlation

$$\sum_{i=1}^{m} \text{round}(\hat{y}_i) \le (1+\varepsilon) \frac{m}{2}$$

- There are many rounded vectors that satisfy the constraint
- ...And data projection might pick one that is uncorrelated with the input

What can we do about this?

First: at least give the know methods a chance! If that fails, however...

One way around these issues is provided by the Moving Targets method

...Which is designed for constrained supervised learning, i.e.:

$$\operatorname{argmin}_{\theta} \left\{ L(\hat{y}, y) \mid y \in C \right\} \text{ with: } \hat{y} = f(x, \theta)$$

- lacktriangle Where $\hat{m{y}}$ is the prediction vector
- ...And $(x, y) = \{x_i, y_i\}_{i=1}^m$ is the training data

The method alternates between learner and master steps

- At every step k, we keep a prediction $\hat{y}^{(k)}$ and a feasible adjusted target $z^{(k)}$
- In master steps, we move $z^{(k)}$ closer to te ground truth y
- ullet In learner steps, we train an ML model to make $y^{(k)}$ close to z

The master step consists in solving:

$$z^{(k+1)} = \operatorname{argmin}_{z} \left\{ L(z, y) + \frac{1}{\rho} L(\hat{y}^{(k)}, z) \mid z \in C \right\}$$

We search for a z vector such that:

- ullet z is close to y, as measured by the loss function L
- ullet z is feasible w.r.t. the constraints $oldsymbol{C}$

Additionally, we keep z close to the current prediction $\hat{y}^{(k)}$

- We use the loss function to measure the proximity
- lacktriangleright ...And we can control how close we want to stay by changing $oldsymbol{
 ho}$

The problem can be viewed as an approximate proximal operator

$$\mathbf{prox}_{\rho(I_C(z)+L(z,y))}(\hat{y}^{(k)})$$

- $I_C(z)$ is the constraint indicator function for C
- ...And the operator is computed w.r.t. the current prediction \hat{y}

Applying the proximal operator would lead to:

$$z^{(k+1)} = \operatorname{argmin}_{z} \left\{ L(z, y) + \frac{1}{\rho} \|z - \hat{y}^{(k)}\|_{2}^{2} \mid z \in C \right\}$$

The problem can be viewed as an approximate proximal operator

$$\mathbf{prox}_{\rho(I_C(z)+L(z,y))}(\hat{y}^{(k)})$$

- $I_C(z)$ is the constraint indicator function for C
- ...And the operator is computed w.r.t. the current prediction \hat{y}

Applying the proximal operator would lead to:

$$z^{(k+1)} = \operatorname{argmin}_{z} \left\{ L(z, y) + \frac{1}{\rho} \|z - \hat{y}^{(k)}\|_{2}^{2} \mid z \in C \right\}$$

This is similar to what we did in data projection

- In the master step, the L2 norm is replaced by the loss function
- ...Exactly like in the data projection approach

The problem can be viewed as an approximate proximal operator

$$\mathbf{prox}_{\rho(I_C(z)+L(z,y))}(\hat{y}^{(k)})$$

- $I_C(z)$ is the constraint indicator function for C
- ...And the operator is computed w.r.t. the current prediction \hat{y}

Applying the proximal operator would lead to:

$$z^{(k+1)} = \operatorname{argmin}_{z} \left\{ L(z, y) + \frac{1}{\rho} \|z - \hat{y}^{(k)}\|_{2}^{2} \mid z \in C \right\}$$

...With one key difference

- lacktriangle We consider proximity w.r.t. the prediction $\hat{y}^{(k)}$
- ullet ...And we account for the loss w.r.t. the ground truth y

In the learner step we make the prediction closer to $\boldsymbol{z}^{(k+1)}$

Given a target vector \boldsymbol{z}^k , this consists in solving:

$$\hat{y}^{(k+1)} = \underset{\theta}{\operatorname{argmin}} L(\hat{y}, z^{(k+1)}) \quad \text{with: } \hat{y} = f(x; \theta)$$

...Which is just a traditional supervised learning problem

In the learner step we make the prediction closer to $\boldsymbol{z}^{(k+1)}$

Given a target vector \boldsymbol{z}^{k} , this consists in solving:

$$\hat{y}^{(k+1)} = \underset{\theta}{\operatorname{argmin}} L(\hat{y}, z^{(k+1)}) \quad \text{with: } \hat{y} = f(x; \theta)$$

...Which is just a traditional supervised learning problem

The step can also be viewed as a form of projection:

$$\hat{y}^{(k+1)} = \operatorname{argmin}_{\hat{y}} \left\{ L(\hat{y}, z^{(k+1)}) \mid \hat{y} \in B \right\} \text{ with: } B = \{ \hat{y} \mid \exists \theta, \hat{y} = f(x; \theta) \}$$

Where $m{B}$ (model bias) is the set of output that can be reached by the model

- This perspective is useful to understand the algorithm behavior
- ...But of course it does not alter the way we train

Overall, the method is as follows:

- $y^{(0)} = \operatorname{argmin}_{\hat{y}} \{ L(\hat{y}, y) \mid \hat{y} \in B \}$
- For k = 0..n 1:
 - $z^{(k+1)} = \operatorname{argmin}_z \left\{ L(z, y) + \frac{1}{\rho} L(\hat{y}^{(k)}, z) \mid z \in C \right\}$
 - $\hat{y}^{(k+1)} = \operatorname{argmin}_{\hat{y}} \left\{ L(\hat{y}, z^{(k+1)}) \mid \hat{y} \in B \right\}$

Some highlights

- You can use any technique for either step (it's a full decomposition)
- Non differentiable constraints can be handled via CP, SMT, MP, meta-heuristics
- Batching is not needed in the master step (when constraints are handled)
- ullet lpha is divided by k at each iteration to ensure convergence

Overall, the method is as follows:

- $y^{(0)} = \operatorname{argmin}_{\hat{y}} \left\{ L(\hat{y}, y) \mid \hat{y} \in B \right\}$
- For k = 0..n 1:
 - $z^{(k+1)} = \operatorname{argmin}_z \left\{ L(z, y) + \frac{1}{\rho} L(\hat{y}^{(k)}, z) \mid z \in C \right\}$
 - $\hat{y}^{(k+1)} = \operatorname{argmin}_{\hat{y}} \left\{ L(\hat{y}, z^{(k+1)}) \mid \hat{y} \in B \right\}$

Speaking of convergence

- If L, B, C are convex and target are continuous...
 - ...Then the method can be proved to converge to a global optimum
- When these conditions are not met
 - ...The method is still applicable as a heuristic

Let's see a running example

A Toy Learning Problem

Say we want to fit a model in the form:

$$\tilde{f}(x,\beta) = x^{\beta}$$

...Based on just two observations

For evaluation purpose, we assume we know the true curve, i.e.:

$$f(x) = x^{0.579}$$

And hence we can obtain the true y values:

```
In [2]: xm = np.array([1.5, 3])
ym = np.array([1.2, 2.2])

f_true = lambda x: x**0.579
yt = f_true(xm)
```

A Toy Learning Problem

We can now plot both the true curve and the measured x, y points:

- We are underestimating the first point and overestimating the second
- ...Which may easily trick our simple model

Learner Step

We can now perform the first learner step

For this example, we can use any curve fitting method

Taking Advantage of Constraints

Before that, let's view measurements and predictions in output space

...Where they both look like points

Visualizing Model Bias

By changing the β in our model we can change the prediction vector

We can draw a range of potential predictions in output space (part of $m{B}$)

Taking Advantage of Constraints

Say we know that our two measurements must obey

$$y_1 \le \frac{3}{2}y_0$$

We can draw the feasible set C in output space, too!

Master Step

We can now perform the first master step

■ The result is similar to a projection, but it is a bit closer to the true target

Second Learner Step

We can now perform and visualize a second learner step

lacktriangle This one is an actual projection on the model bias $m{B}$

The Full Method

We can visualize a few iterations to see how MT works

lacksquare Basically, MT zig-zags between the $m{B}$ and the $m{C}$ set

The Final Outcome

We can now inspect which kind of model we can obtain after some iterations

This is very close to the true function!