CSC7970 - NEXT-GENERATION NETWORKING

CLOUD COMPUTING

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Today: What is cloud computing?

- What is cloud computing?
 - Idea goes back to the 60s
 - More recently popularized by Amazon EC2 in 2006

- Computing resources located somewhere on the Internet
 - Why would that be useful?
 - Users do not have to buy and maintain their own servers
 - Users can scale up or down resources based on need
 - Users pay based on their usage
 - Resources are (almost) always on and available
 - Hide complexity of underlying infrastructure from users

Cloud computing summary

- Cloud computing is a general term used to refer to services and infrastructure offered on the Internet
 - Services are remotely hosted
 - **Pervasive:** services are available (almost) all the time from anywhere
 - Commodified: goal is to offer a "utility" computing model similar to that of traditional utilities, such as gas and electricity – users pay for what they want and use!
- Basic idea
 - Hard to create and maintain your own infrastructure
 - Pay someone to do it for you
- Clouds galore
 - Google, Microsoft, Amazon, Cloudflare.....

Cloud Architecture

More on the cloud architecture

- Shared pool of configurable computing resources
- On-demand network access
- Provisioned by the Service Provider

Cloud design characteristics

Massive scale

• Users all around the world may need to allocate massive amounts of computing resources

Geographic distribution

• Low delay, make sure resources are "close" to users

Resilience

• Resources are still available when servers in a data-center or multiple data-centers fail

Virtualization

 Users do not know where exactly the resources are located or how many other customers use the resources

Service-oriented

Offer seamless integration with a variety of services (e.g., load balancing, rest APIs, etc.)

Cloud Service Models

Software as a Service (SaaS)

Platform as a Service (PaaS) Infrastructure as a Service (IaaS)

Sales Force CRM

Cloud Infrastructure

PaaS

Cloud Infrastructure laaS

PaaS

Software as a Service (SaaS) **Providers Applications**

Platform as a Service (PaaS)

Deploy customer created Applications Why Amazon inbetween PaaS and IaaS?

Cloud Infrastructure laaS

Infrastructure as a Service (laaS)

Rent Processing, storage, N/W capacity & computing resources

Software as a Service (SaaS)

- Users do NOT need to manage any software or hardware
 - Software is managed by provider
 - Software is typically accessed by users through a browser
 - Software runs on cloud servers of the software provider or a third party cloud
- Software updates, outages, scaling are transparent to users
 - Software provider or cloud provider has to figure it out
 - Depends on who manages the cloud infrastructure
- For this "convenience", users pay a fee
 - Different billing models
 - Examples: based on usage, software features needed, number of user accounts, etc.

Platform as a Service (PaaS)

- Platforms offered on top of (potentially) virtualized infrastructure
 - Examples: storage, database
 - Platforms are not fun to manage!

- Users do NOT need to manage the infrastructure or the platform
 - They pick the platform they want and use it on a cloud
 - Platform runs on cloud servers of the platform provider or a third party
- Users do not need to bother about updates, outages, scalability
 - This comes with a fee as before

Infrastructure as a Service (laaS)

- Users do not need to manage the infrastructure
 - They select infrastructure that matches their requirements (e.g., CPU power, memory, hard disk, etc.)
 - They select the OS of their preference
 - Cloud provider makes the required infrastructure available for users
 - Users do not need to maintain/care about this infrastructure

- The notion of infrastructure extends to networking components too!
 - Load-balancing, routers, firewalls, etc.
 - All that comes again for a fee

Virtualization

- What is it?
- Users feel like having complete control/being the only entity using the cloud resources
 - True or not?
- In reality: multiple users might occupy at the same time the same physical resources
 - Why we need to do that?

Virtualization (cont'd)

- Rarely all the provisioned customers will use the resources at the same time
 - Easier scalability, lower cost, more money for cloud provider!

- "Overprovisioning": Cloud resources "overbooking"
 - These rare times that indeed all the provisioned customers will use the resources simultaneously!
 - What can go wrong?
 - Things go really slow --> Frustration :-(
 - Pay more!

Virtual Machines

- How to achieve virtualization:
 - Run multiple virtual "workspaces", one per provisioned user
 - Any problems/challenges having multiple customers use the same physical hardware?

Multi-tenancy

 Tenant (in real life): you rent an apartment, you occupy the apartment for a certain time-period as long as you pay the rent

- Same in cloud computing: users (tenants) "occupy" resources for a certain period of time
 - **Multi-tenancy:** multiple tenants occupy and can potentially use the same physical resources at the same time!
 - Bad or good? Why?

Tenant isolation

- Analogy: multiple tenants in the same apartment
 - Tenants still need some privacy
 - Tenants occupy different bedrooms (isolation)

- In cloud computing tenants may have their personal data or other confidential info on the cloud
 - Cloud providers need to make sure that a tenant (malicious or not) does not have access to the data of other tenants
 - Virtual machines and hypervisors are ways of achieving isolation

Cloud Transparency

- Users should not have to do anything "special" when it comes to using the cloud
 - (Almost) same set of actions like running something locally

- In this sense: cloud should be as transparent to users as possible
 - No (minimal) overhead for customers

- Internally, the cloud can be built in whatever way the provider wants
 - Typically: clusters of servers and off-the-shelf components + open-source and proprietary software

Cloud deployment models

- Private and public clouds
 - Why?
 - Some organizations do not trust storing their data/intellectual property/software on third-party cloud
 - This might not be the case about the data of their own users though!
- Private cloud: Access only to a single organization
 - Typically maintained by the organization itself
- Public cloud: Cloud infrastructure available to the general public
 - Typically owned by an organization that sells cloud services

Data replication

- User data needs to be available in the face of server/network failures
 - Single copy of user data will not work
 - Cloud server fails, user data gets lost

- Solution: replicate user data across multiple cloud servers
 - Unlikely all the involved cloud servers to fail at the same time
 - Servers within the same data center or in different data centers?

Data replication challenges

- Challenge: selecting the servers for replication
 - Where the servers are located?
 - How many times data is replicated?
 - How many copies do you need?
 - What about data consistency?

- Challenge: how to synchronize all these servers when user data is updated
 - All-time classic problem in distributed systems
 - Paxos and other techniques

Cloud security

2 parts

- Network/communications security
- Security within an individual server

Network/communications security

- Securing communication between user and cloud resources
- Securing communication (e.g., for data replication purposes) among servers
- Secure communication channels through TLS/SSL

Cloud server security

- It is so hard to secure a server!
 - Why?
- Vulnerabilities can be anywhere!
 - OS, applications, browsers, programming languages, malicious tenants
 - Impossible to keep up with all the different things running on a server
 - We might never realize that a server is compromised
- Trusted execution: can we provide to cloud users security guarantees in terms of how safe their data/code might be?
 - Since it is hard to keep up with all the things running on a server
 - Even if the server is compromised but the provider does not know!

Trusted execution environments

- How to build trusted execution environments?
 - Techniques in software and/or hardware

Software

- Dual operating system images
- Sand-boxes: protected OS space for the execution of unknown programs

Hardware

- Trusted external hardware modules (e.g., for encryption/decryption, mathematical operations)
- Trusted execution mode protected by CPU directly (e.g., Intel SGX, ARM Trustzone)

The not so "bright" side of cloud

- Use-case:
 - Application provider uses PaaS (third-party platform) running on top of the cloud infrastructure of another third-party

- Data breach happens. Who is responsible for it?
 - What if you have HIPAA data?

The not so "bright" side of cloud

- Data lock-in
 - Easier to get data in, much harder to move out
- Cost
 - Can exponentially increase with data volume
- Interoperability
 - Providers don't play nicely with each other

Economics: Cloud Service Level Agreements

- Users sign with cloud provider a Service Level Agreement (SLA)
 - Typical case when the cloud user is a corporation

- SLA = understanding of:
 - What the user wants (e.g., hardware specification, software accounts)
 - What the provider is responsible for (e.g., maximum allowed annual downtime, what happens in a case of a data breach)
 - Billing model/policies

Summary

• Cloud:

- Convenient
- Hassle-free (well.. for users..)
- Pay-as-you-go models available
- (almost) Always available
- Globally scalable

Problems:

- Security
- Privacy
- Downtime (cloud does fail!)
- Just another dependency we cannot live without (?)
- Who has control over user data/communication?