Semiconductor Diodes Topic 1 (Chapter 1)

Diodes

The diode is a 2-terminal device.

A diode ideally conducts in only one direction.

Diode Characteristics

Conduction Region

- The voltage across the diode is 0 V
- The diode acts like a short

Non-Conduction Region

- All of the voltage is across the diode
- The current is 0 A
- The diode acts like open

Semiconductor Materials

Materials commonly used in the development of semiconductor devices:

Silicon (Si)

Germanium (Ge)

Gallium Arsenide (GaAs)

What are Semiconductors?

- Semiconductors are a group of materials having electrical conductivities intermediate between metals and insulators.
- Their conductivities can be varied by changes in:
 - temperature,
 - optical excitation, and
 - impurity content.

The Periodic Table

hydrogen 1	_		250	15 5 76	150	-5	N.E.C	5.	959	157.	800	1.75	#17X	755	8559	770	25.5	helium 2
Ĥ																		He
1.0079 lithium	beryllium	i										Ĩ	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												ΑĬ	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		60		· •	Cr	Mn		()	Ni	Cu	/n	(-2	(-0	Λc	60	Rr	Kr
1.	Ga		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58,933 rhodium	58,693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
39.098 rubidium 37	40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63.546 silver 47	65,39 cadmium 48	69.723 indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	79.904	83.80 xenon 54
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58,933 rhodium	58,693 palladium	63.546 silver 47	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
39.098 rubidium 37 Rb 85.468	40.078 strontium 38 Sr 87.62		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224	50.942 niobium 41 Nb 92.906	51.996 molybdenum 42 Mo 95.94	54.938 technetium 43 Tc [98]	55.845 ruthenium 44 Ru 101.07	58.933 rhodium 45 Rh 102.91	58.693 palladium 46 Pd 106.42	63.546 silver 47 Ag 107.87	65.39 cadmium 48 Cd 112.41	69.723 indium 49 In 114.82	72.61 tin 50 Sn 118.71	74.922 antimony 51 Sb 121.76	78.96 tellurium 52 Te 127.60	79.904 iodine 53	83.80 xenon 54 Xe 131.29
39.098 rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium	57-70	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 iodine 53 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55	40.078 strontium 38 Sr 87.62 barium 56	57-70	44.956 yttrium 39 Y 88.906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75	55,845 ruthenium 44 Ru 101.07 osmium 76	58,933 rhodium 45 Rh 102,91 iridium 77	58.693 palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82	72.61 tin 50 Sn 118.71 lead 82	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 l 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium	57-70 X	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 iodine 53 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33	1500	44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84	54.938 technetium 43 TC [98] rhenium 75 Re 186.21	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08	63,546 silver 47 Ag 107,87 gold 79 Au 196,97	65,39 cadmium 48 Cd 112,41 mercury 80 Hg 200,59	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 l 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	54.938 technetium 43 TC [98] rhenium 75 Re 186.21 bohrium	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununlum	eadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	89-102	44.956 yttrium 39 X 88.906 lutetium 71 Lu 174.97 lawrencium 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium 106	technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium 107	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium 108	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium 109	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium 106	54.938 technetium 43 TC [98] rhenium 75 Re 186.21 bohrium	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununlum	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	89-102	44.956 yttrium 39 X 88.906 lutetium 71 Lu 174.97 lawrencium 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium 107	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium 108	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnerium 109	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
-1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ſ	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
L	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Semiconductor Materials

Table 1-1 Common semiconductor materials: (a) the portion of the periodic table where semiconductors occur; (b) elemental and compound semiconductors.

(a)	II	III	IV	٧	VI
		В	С	Ν	
		Al	Si	Р	S
	Zn	Ga	Ge	As	Se
	Cd	In		Sb	Te
(b)	Elemental	IV compounds	Binary III–V compounds	Binary II–VI compounds	
	Si	SiC	AlP	ZnS	
	Ge	SiGe	AlAs	ZnSe	
			AlSb	ZnTe	
			GaN	CdS	
			GaP	CdSe	
			GaAs	CdTe	
			GaSb		
			InP		
			InAs		
			InSb		

History of Popular Semiconductors

- Ge (Germanium) was widely used in the early days.
- Si (Silicon) is now used for the majority of integrated circuits (ICs).
- The compound semiconductors are widely used in highspeed devices and opto-electronic devices
 - For example, III-V semiconductors such as GaN, GaP, and GaAs are common in light- emitting diodes (LEDs)
- Three-element or ternary semiconductors (such as GaAsP) and four-element or quaternary semiconductors (such as InGaAsP) are also used.
 - For example, they can be used to make LEDs of different colors.

Atomic Structures of Semiconductors

Covalent bonding of the silicon atom

Silicon atoms in a crystal share electrons.

Valence saturation: n = 8

Because the valence electrons are bound, a silicon crystal at room temperature is almost a perfect insulator.

Intrinsic Semiconductors

- A pure semiconductor
- A silicon crystal is intrinsic if every atom in the crystal is a silicon atom

Electron Hole Pair Generation and Recombination

- Valence electrons can absorb sufficient energy (from light or heat) to break the covalent bonds and assume the "free" state.
 - These free electrons are called intrinsic carriers
- Higher temperatures creates more intrinsic carriers hence higher conductivity

ENERGY LEVELS

 The farther an electron is from the nucleus, the higher is the energy state

(a) Discrete energy levels in isolated atomic structures

(b) conduction and valence bands of an insulator, a semiconductor, and a conductor.

Usage of Semiconductor Bandgap

- The bandgap determines the wavelengths of light that can be absorbed or emitted by the semiconductor.
 - For example, the band gap of GaAs is about 1.43 electron volts (eV), which corresponds to light wavelengths in the near infrared.
 - In contrast, GaP has a band gap of about 2.3 eV, corresponding to wavelengths in the green portion of the spectrum.
- LEDs and lasers can be constructed with wavelengths over a broad range of the spectrum.

Extrinsic Semiconductors

- The electrical properties of a semiconductor can be altered significantly by adding impurity atoms
 - This process is called doping
 - A doped semiconductor is called extrinsic
- There are just two types of extrinsic semiconductor materials:

n-type

p-type

n-type materials contain an excess of conduction band electrons.

p-type materials contain an excess of valence band holes.

Atomic Structures of Impurities

- p-type material is created by adding impurity elements such as B, Ga, and In
- n-type material is created by adding impurity elements such as Sb, As, and Ph

n -Type Material

Effect of donor impurities on the energy band structure.

Antimony impurity in n-type material.

- Impurities with five valence electrons are called **donor** atoms, because the inserted impurity atom has donated a relatively "free" electron to the structure
- Still electrically neutral

p-Type Material

Boron impurity in p-type material.

- There is now an insufficient number of electrons to complete the covalent bonds of the newly formed lattice.
 - The resulting vacancy is called a hole
- The diffused impurities with three valence electrons are called acceptor atoms, because the resulting vacancy will readily accept a free electron
- The resulting p-type material is electrically neutral

Silicon crystals are doped to provide permanent carriers.

Pentavalent dopant

Trivalent dopant

Majority and Minority Carriers

Flow of Electrons and Holes

Electron versus Hole Flow

Electrical Classification of Materials

Semiconductors in Summary

- The most popular material is silicon.
- Pure crystals are <u>intrinsic</u> semiconductors.
- Doped crystals are <u>extrinsic</u> semiconductors.
- Crystals are doped to be n type or p type.
- A doped semiconductor will have mostly majority carriers and a few thermally generated *minority* carriers.
 - Electrons are majority carriers in n type
 - Holes are majority carriers in p type

p-n Junctions

One end of a silicon or germanium crystal can be doped as a *p*-type material and the other end as an *n*-type material.

The result is a *p-n* junction

p-n Junctions

At the *p-n* junction, the excess conduction-band electrons on the *n*-type side are attracted to the valence-band holes on the *p*-type side.

The electrons in the *n*-type material migrate across the junction to the *p*-type material (electron flow).

Electron migration results in a negative charge on the *p*-type side of the junction and a positive charge on the *n*-type side of the junction.

The result is the formation of a depletion region around the junction.

A diode has three operating conditions:

No bias

Reverse bias

Forward bias

No Bias

No external voltage is applied: $V_D = 0 \text{ V}$

There is no diode current: $I_D = 0 \text{ A}$

Only a modest depletion region exists

Reverse Bias

External voltage is applied across the *p-n* junction in the opposite polarity of the *p-* and *n-*type materials.

The reverse voltage causes the depletion region to widen.

Forward Bias

External voltage is applied across the *p-n* junction in the same polarity as the *p-* and *n-* type materials.

Forward Bias

The forward voltage causes the depletion region to narrow.

The electrons and holes are pushed toward the *p-n* junction.

The electrons and holes have sufficient energy to cross the *p-n* junction.

Diode Current Equation

It can be demonstrated through the use of solid-state physics that the general characteristics of a semiconductor diode can be defined by the following equation, referred to as Shockley's equation, for the forward- and reverse-bias regions:

$$I_D = I_s(e^{V_D/nV_T} - 1)$$
 (A) (1.2)

where I_s is the reverse saturation current

 V_D is the applied forward-bias voltage across the diode

n is an ideality factor, which is a function of the operating conditions and physical construction; it has a range between 1 and 2 depending on a wide variety of factors (n = 1 will be assumed throughout this text unless otherwise noted).

The voltage V_T in Eq. (1.1) is called the *thermal voltage* and is determined by

$$V_T = \frac{kT_K}{q} \qquad (V) \tag{1.3}$$

where k is Boltzmann's constant = 1.38×10^{-23} J/K T_K is the absolute temperature in kelvins = 273 + the temperature in °C q is the magnitude of electronic charge = 1.6×10^{-19} C **EXAMPLE 1.1** At a temperature of 27°C (common temperature for components in an enclosed operating system), determine the thermal voltage V_T .

Solution: Substituting into Eq. (1.3), we obtain

$$T = 273 + {}^{\circ}\text{C} = 273 + 27 = 300 \text{ K}$$

$$V_T = \frac{kT_K}{q} = \frac{(1.38 \times 10^{-23} \text{ J/K})(30 \text{ K})}{1.6 \times 10^{-19} \text{ C}}$$

$$= 25.875 \text{ mV} \cong 26 \text{ mV}$$

The thermal voltage will become an important parameter in the analysis to follow in this chapter and a number of those to follow.

Actual Diode Characteristics

Note the regions for no bias, reverse bias, and forward bias conditions.

Carefully note the scale for each of these conditions.

Diode Current Approximations

$$I_D = I_s(e^{V_D/nV_T} - 1) \tag{A}$$

$I_D =$	$I_g e^{V_D/nV_T}$	_	I_s
---------	--------------------	---	-------

V_D	$e^{rac{V_D}{V_T}}$	Value
-25 mV	e^{-1}	0.37
-50~mV	e^{-2}	0.14
-75 mV	e^{-3}	0.05
-100 $mV = -0.1V$	e^{-4}	0.02

$$I_D \cong I_s e^{V_D/nV_T}$$
 (V_D positive)

$$I_D \cong -I_s$$
 (V_D negative)

Actual Reverse Saturation Current

- The actual reverse saturation current of a commercially available diode will normally be measurably larger than I_s due to a wide range of factors that include
 - surface leakage currents
 - higher doping levels that result in increased levels of reverse current
 - temperature sensitivity

Majority and Minority Carriers

Two currents through a diode:

Majority Carriers

The majority carriers in _____ materials are holes.

Minority Carriers

The minority carriers in n-type materials are holes.

The minority carriers in p-type materials are electrons.

Breakdown Region

The breakdown region is in the diode's reverse-bias region.

- At some point the reverse bias voltage is so large (at breakdown voltage V_{BV}) the diode breaks down and the reverse current increases dramatically.
- This can be destructive if the power dissipated exceeds the "safe" level
- The maximum reverse voltage that won't take a diode into the zener region is called the peak inverse voltage or peak reverse voltage.

- Two mechanisms:
 - Zener breakdown: Due to high electric field at the depletion region (up to about 5V)
 - Avalanche breakdown: Due to high kinetic energy of electrons (5V and above)

Zener Voltage

- The breakdown voltage (V_{BV}) can be reduced by increasing the doping levels in the p and n -type materials.
- As V_{BV} decreases to low levels, such as ~5V, Zener breakdown becomes the dominant factor compared to avalanche breakdown.
 - The strong electric field in the region of the junction can disrupt the bonding forces within the atom and "generate" carriers.
- This sharp change in the characteristic at any breakdown voltage is called the Zener region
 - Diodes employing this unique portion of the characteristic of a p-n junction are called Zener diodes
 - The actual breakdown mechanism can be either zener or avalanche
- The voltage that causes a diode to enter the zener region of operation is called the zener voltage (V_z).

Forward Bias Voltage

The point at which the diode changes from no-bias condition to forward-bias condition occurs when the electrons and holes are given sufficient energy to cross the p-n junction. This energy comes from the external voltage applied across the diode.

The forward bias voltage required for a:

gallium arsenide diode ≅ 1.2 V

silicon diode ≅ 0.7 V

germanium diode ≅ 0.3 V

Comparison of Ge, Si, and GaAs diodes

Temperature Effects

- As temperature increases it adds energy to the diode.
 - It reduces the required forward bias voltage
 - It increases the amount of reverse current and reverse breakdown voltage.
- The reverse current of a silicon diode doubles for every 10°C rise in temp.
- Germanium diodes are more sensitive to temperature variations than silicon or gallium arsenide diodes.

Other Types of Diodes

There are several types of diodes besides the standard *p-n* junction diode. Three of the more common are:

Zener diodes

Light-emitting diodes

Diode arrays

Zener Diode

A **Zener diode** is one that is designed to safely operate in its zener region; i.e., biased at the Zener voltage (V_7) .

Common zener diode voltage ratings are between 1.8 V and 200 V

Zener Diode Characteristics

- Typical specifications for a 10-V, 500-mW, 20% Zener diode
- Expected to vary as 10 V + 20%, or from 8 V to 12 V.
- Both 10% and 50% diodes are also readily available.

Zener Voltage Nominal V_Z (V)	${\rm Test}\atop {\rm Current}\atop I_{ZT}\atop ({\rm mA})$	$\begin{array}{c} \text{Maximum} \\ \text{Dynamic} \\ \text{Impedance} \\ Z_{ZT} \text{ at } I_{ZT} \\ (\Omega) \end{array}$	K Impe	imum nee edance at I _{ZK} (mA)	$\begin{array}{c} \text{Maximum} \\ \text{Reverse} \\ \text{Current} \\ I_R \text{ at } V_R \\ (\mu \text{A}) \end{array}$	$\begin{array}{c} {\rm Test} \\ {\rm Voltage} \\ V_R \\ ({\rm V}) \end{array}$	Maximum Regulator Current I _{ZM} (mA)	Typical Temperature Coefficient (%/°C)
10	12.5	8.5	700	0.25	10	7.2	32	+0.072

Light-Emitting Diode (LED)

An LED emits light when it is forward biased, which can be in the infrared or visible spectrum.

The forward bias voltage is usually in the range of 1.5 V to 2.5 V.

Light-Emitting Diodes

Color	Construction	Typical Forward Voltage (V)
Amber	AlInGaP	2.1
Blue	GaN	5.0
Green	GaP	2.2
Orange	GaAsP	2.0
Red	GaAsP	1.8
White	GaN	4.1
Yellow	AlInGaP	2.1

Causes of Light in LEDs

- In a forward-biased LED, free electrons cross the junction and fall into holes
 - As these electrons fall from a higher to a lower energy level, they radiate energy
 - In an LED, the energy is radiated as light
 - The color of the light depends on the bandgap of the diode material

Color Spectrum of Light-Emitting Diodes (LED)

Light-Emitting Diodes					
Color	Construction	Typical Forward Voltage (V)			
Amber	AlInGaP	2.1			
Blue	GaN	5.0			
Green	GaP	2.2			
Orange	GaAsP	2.0			
Red	GaAsP	1.8			
White	GaN	4.1			
Yellow	AlInGaP	2.1			

- LEDs that produce visible radiation are useful with instruments, calculators, and so on
- LEDs have replaced incandescent lamps in many applications because of their low voltage, long life, and fast on-off switching
- The infrared LED finds applications in burglar alarm systems, remote controls, CD players, and other devices requiring invisible radiation

Seven-Segment Display

Continuity Tester

Resistance Levels

Semiconductors react differently to DC and AC currents.

There are three types of resistance:

DC (static) resistance

AC (dynamic) resistance

Average AC resistance

DC (Static) Resistance

For a specific applied DC voltage (V_D) the diode has a specific current (I_D) and a specific resistance (R_D).

$$R_D = \frac{V_D}{I_D}$$

EXAMPLE 1.3 Determine the dc resistance levels for the diode of Fig. 1.24 at

- a. $I_D = 2 \text{ mA (low level)}$
- b. $I_D = 20 \text{ mA (high level)}$
- c. $V_D = -10 \text{ V}$ (reverse-biased)

FIG. 1.24 Example 1.3.

Solution:

a. At
$$I_D = 2$$
 mA, $V_D = 0.5$ V (from the curve) and

$$R_D = \frac{V_D}{I_D} = \frac{0.5 \text{ V}}{2 \text{ mA}} = 250 \Omega$$

b. At
$$I_D = 20$$
 mA, $V_D = 0.8$ V (from the curve) and

$$R_D = \frac{V_D}{I_D} = \frac{0.8 \text{ V}}{20 \text{ mA}} = 40 \Omega$$

c. At
$$V_D = -10$$
 V, $I_D = -I_s = -1$ μA (from the curve) and

$$R_D = \frac{V_D}{I_D} = \frac{10 \text{ V}}{1 \,\mu\text{A}} = 10 \,\text{M}\,\Omega$$

AC (Dynamic) Resistance

$$r_d = \frac{\Delta V_d}{\Delta I_d}$$

In the forward bias region:

$$r_d = \frac{26 \,\text{mV}}{I_D}$$

The resistance r_d depends on the amount of current (I_D) in the diode.

Analytical Derivation of r_d

$$\frac{d}{dV_D}(I_D) = \frac{d}{dV_D} \left[I_s(e^{V_D/nV_T} - 1) \right]$$

$$\frac{dI_D}{dV_D} \cong \frac{I_D}{nV_T}$$

Flipping the result to define a resistance ratio (R = V/I) gives

$$\frac{dV_D}{dI_D} = r_d = \frac{nV_T}{I_D}$$

Substituting n = 1 and $V_T \approx 26$ mV from Example 1.1 results in

$$r_d = \frac{26 \text{ mV}}{I_D}$$

the dynamic resistance can be found simply by substituting the quiescent value of the diode current into the equation.

Total AC (Dynamic) Resistance

The total ac resistance r'_d includes r_B , which is the resistance of the semiconductor material itself (called body resistance) and the resistance introduced by the connection between the semiconductor material and the external metallic conductor (called contact resistance).

$$r'_d = r_d + r_B = \frac{V_T}{I_D} + r_B = \frac{26 \,\text{mV}}{I_D} + r_B$$

 r_B ranges from a typical 0.1 Ω for high power devices to 2 Ω for low power, general purpose diodes. In some cases r_B can be ignored.

In the reverse bias region:

$$r_d' = \infty$$

The resistance is effectively infinite. The diode acts like an open.

Average AC Resistance

$$r_{av} = \frac{\Delta V_d}{\Delta I_d} \mid pt. to pt.$$

AC resistance can be calculated using the current and voltage values for two points on the diode characteristic curve.

Summary Table Resistance Levels

Туре	Equation	Special Characteristics	Graphical Determination
DC or static	$R_D = \frac{V_D}{I_D}$	Defined as a point on the characteristics	$Q_{\mathrm{pt.}}$
AC or dynamic	$r_d = \frac{\Delta V_d}{\Delta I_d} = \frac{26 \text{ mV}}{I_D}$	Defined by a tangent line at the Q -point	I_D $Q_{ m pt}$ ΔI_d
Average ac	$r_{ m av} = \left. rac{\Delta V_d}{\Delta I_d} ight _{ m pt. \ to pt.}$	Defined by a straight line between limits of operation	ΔI_d

Diode Equivalent Circuit

Summary Table

Diode Capacitance

When *reverse biased*, the depletion layer is very large. The diode's strong positive and negative polarities create capacitance (C_T). The amount of capacitance depends on the reverse voltage applied.

When *forward*biased, storage
capacitance or
diffusion
capacitance (C_D)
exists as the diode
voltage increases.

Reverse Recovery Time (t_{rr})

Reverse recovery time is the time required for a diode to stop conducting when switched from forward bias to

reverse bias.

Diode Specification Sheets

Diode data sheets contain standard information, making crossmatching of diodes for replacement or design easier.

- 1. Forward Voltage (V_F) at a specified current and temperature
- 2. Maximum forward current (I_F) at a specified temperature
- 3. Reverse saturation current (I_R) at a specified voltage and temperature
- 4. Reverse voltage rating, PIV or PRV or V_(BR), at a specified temperature
- 5. Maximum power dissipation at a specified temperature
- 6. Capacitance levels
- 7. Reverse recovery time, t_{rr}
- 8. Operating temperature range