ADDITIONS AND CORRECTIONS

2003, Volume 107B

T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos*: On the Water—Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes

Page 1349. A conversion error has been detected in the analysis of the line tension (Figure 4); the units of the abscissa axis should be Å⁻¹. The subsequent analysis of the line tension on page 1349 is therefore in error by a factor of 10. Thus, the magnitude of the line tension can be estimated from the slopes of the fits in Figure 1, compare eq 3, which are -0.94 (case 14), -3.33 (case 1), and -3.72 Å (case 10), respectively. For a surface tension of water of $\gamma_{\rm LV}=72$ mN/m, the line tension τ is found to be 0.7×10^{-11} (case 14), 2.4×10^{-11} (case 1), and 2.7×10^{-11} J/m (case 10). This error has no implication for the remaining analysis and conclusions presented in the paper. A corrected version of Figure 4 is given below.

Figure 4. Cosine of the contact angle θ as a function of the droplet base curvature $1/r_B$. The three series are computed using Lennard-Jones parameters of $\epsilon_{CO} = 0.3135$ (circles), 0.4389 (squares), and 0.1881 kJ mol⁻¹ (diamonds) for droplets with an increasing number of water molecules: 1000 (cases 5, 13, and 9), 2000 (cases 1, 14, and 10), 4000 (cases 6, 15, and 11), 8379 (case 7, 16, and 12), and 17576 (case 8).

Acknowledgment. We would like to express our gratitude to M. Schneemilch (Imperial College, London, United Kingdom) who brought our attention to the error made in Figure 4.

10.1021/jp8083106 Published on Web 10/10/2008