

Ayudantía 13 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

23 de junio de 2022

Problema 1. Considere $T \in \mathcal{L}(\mathbf{V})$ aplicación lineal y $W \subseteq \mathbf{V}$ subespacio invariante bajo T. Sea $T_{\mathbf{W}} : \mathbf{W} \to \mathbf{V}$ $\mathbf{W}, \mathbf{w} \mapsto T(\mathbf{w})$ la restricción de T a \mathbf{W} .

- 1. Suponga que T es diagonalizable y denote por $\lambda_1,\ldots,\lambda_m$ sus valores propios distintos. Pruebe que cada $\mathbf{w} \in \mathbf{W}$ admite una única escritura $\mathbf{w} = \mathbf{w}_1 + \ldots + \mathbf{w}_m$, donde $\mathbf{w}_j \in \mathbf{V}_{\lambda_j}$ para cada $1 \leq j \leq m$. Si m = 1, concluya que $T_{\mathbf{W}}$ es diagonalizable.
- 2. Considere ahora $m \geq 2$. Demuestre que para cada $\mathbf{w} \in \mathbf{W}$ se tiene que $(T \lambda_m \operatorname{id}_{\mathbf{V}})(\mathbf{w}) \in \mathbf{W}$, y que $(T \lambda_m \operatorname{id}_{\mathbf{V}})(\mathbf{w}) = \sum_{j=1}^m (\lambda_j \lambda_m) \mathbf{w}_j$ con $\mathbf{w}_j \in \mathbf{V}_{\lambda_j}$.
- 3. Demuestre por inducción en el número de valores propios m que $T_{\mathbf{W}}$ es diagonalizable. **Sugerencia:** Pruebe que si $\mathbf{w} \in \mathbf{W}$ y $\mathbf{w} = \mathbf{w}_1 + \ldots + \mathbf{w}_m$ entonces $\mathbf{w}_i \in \mathbf{W}$ para todo $i \in \{1, \ldots, m\}$
- 4. Si $T: \mathbf{V} \to \mathbf{V}$ es diagonalizable y \mathbf{W} es invariante por T, demuestre que existe $\mathbf{W}' \subseteq \mathbf{V}$ subespacio tal que $\mathbf{V} = \mathbf{W} \oplus \mathbf{W}' \text{ y } T(\mathbf{W}') \subseteq \mathbf{W}'.$

Problema 2. Sea $T: \mathbf{V} \to \mathbf{V}$ una aplicación lineal, V de dimensión finita.

- 1. Pruebe que si $u, v \in \mathbf{V}$ son vectores propios de T tales que u+v es también vector propio, entonces u, v están asociados al mismo valor propio.
- 2. Demuestre que si todo vector no nulo es vector propio de T, entonces $T = \lambda i d_V$ para algún $\lambda \neq 0$.
- 3. Suponga que T es tal que todo subespacio W tal que dim W = n 1 es invariante. Pruebe que $T = \lambda i d_V$ para algún $\lambda \neq 0$.
- 4. Suponiendo ahora que dim $\mathbf{V} \geq 3$ y que T es tal que todo subespacio \mathbf{W} de dim $\mathbf{W} = 2$ es invariante, obtenga la misma conclusión de los puntos anteriores.