Field Old and Young Leaves Lipid Analysis

Kenia E. Segura Aba

4/30/2020

This file was run in R version 3.5.3. The packages used are tidyverse version 1.3.0, readr version 1.3.1, RRPP version 0.4.2.9000, mixOmics version 6.6.2, and labdsv version 2.0-1. This file must be in the same directory as the Box sync folder in order to run. The following analysis of lipid metabolites was conducted using a split-plot analysis of variance (ANOVA) of Young and Old *P. virgatum* leaves using residual randomization permutation procedure (RRPP). Patterns in metabolite classification were visualized using mixOmics for principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Dufrene-Legendre indicator analysis was performed to identify specific metabolites indicative of plant response to water treatment and fungal treatment (labdsv).

1. Load necessary packages

```
library(tidyverse)
library(readr)
library(RRPP)
library(mixOmics)
library(labdsv)
```

Lipids (Neg)

RRPP

2. Define dependent variable matrix and class matrix.

3. Define and run multivariate regression models, then print out the results.

O_LMneg <- lm.rrpp(scaled_Y_old ~ Block * Water * Fungus, data = class,

```
SS.type = "III", print.progress = F)
summary(O_LMneg)
##
## Linear Model fit with lm.rrpp
##
## Number of observations: 43
## Number of dependent variables: 1540
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Full Model Analysis of Variance
##
##
                           Df Residual Df
                                                 SS Residual SS
                                                                       Rsq
                                        35 21192.11
                                                        43487.89 0.3276455 2.436553
## Block * Water * Fungus
##
                                             Pr(>F)
                           Z (from F)
## Block * Water * Fungus
                             4.846219 0.0005714286
##
##
## Redundancy Analysis (PCA on fitted values and residuals)
##
##
                  Trace Proportion Rank
## Fitted
              504.5741
                         0.3276455
                                       7
## Residuals 1035.4259
                         0.6723545
                                      35
## Total
             1540.0000 1.0000000
                                      42
##
## Eigenvalues
##
##
                  PC1
                            PC2
                                     PC3
                                               PC4
                                                         PC5
                                                                  PC6
                                                                            PC7
             217.2294 121.9682
                                 74.1905
                                           33.2772
                                                    22.0303
                                                              20.7254
                                                                       15.1531
## Residuals 245.3912 125.0163
                                 92.2257
                                           65.1381
                                                    52.3223
                                                              36.2104
                                                                       33.0830
             338.7356 283.4179 172.5747
## Total
                                           91.0421
                                                    61.7638
                                                              46.3547
                                                                        38.5056
                  PC8
##
                            PC9
                                     PC10
                                              PC11
                                                        PC12
                                                                 PC13
                                                                           PC14
## Fitted
## Residuals
              28.4884
                        25.5026
                                 22.9833
                                           20.8924
                                                    19.9502
                                                              17.8665
                                                                       16.5646
              34.4012
                                 28.3485
## Total
                        28.9196
                                           27.4033
                                                    22.3948
                                                              21.6792
                                                                       19.5353
##
                 PC15
                           PC16
                                     PC17
                                              PC18
                                                        PC19
                                                                 PC20
                                                                           PC21
## Fitted
## Residuals
             16.0867
                        15.3907
                                 14.8116
                                           13.9240
                                                    13.6737
                                                              13.1603
                                                                       12.2774
                                           16.6384
## Total
              18.6819
                        17.5700
                                 16.9363
                                                     15.3587
                                                              14.4541
                                                                       13.8768
##
                 PC22
                           PC23
                                     PC24
                                              PC25
                                                        PC26
                                                                 PC27
                                                                           PC28
## Fitted
## Residuals
              11.9370
                        11.6861
                                 11.3297
                                           10.6924
                                                     10.6138
                                                              10.1909
                                                                       10.0011
## Total
              13.5260
                        12.8876
                                 12.7079
                                           12.3537
                                                     11.7770
                                                              11.5493
                                                                       11.1944
##
                 PC29
                           PC30
                                     PC31
                                              PC32
                                                        PC33
                                                                 PC34
                                                                           PC35
## Fitted
## Residuals
               9.5219
                         9.1020
                                  8.7849
                                            8.4150
                                                      8.0646
                                                               7.4229
                                                                         6.7041
## Total
                                           10.2297
                                                                         9.2255
              10.9598
                        10.6132
                                 10.5684
                                                      9.6834
                                                               9.3750
##
                 PC36
                           PC37
                                     PC38
                                              PC39
                                                        PC40
                                                                 PC41
                                                                           PC42
## Fitted
## Residuals
```

```
8.3525
## Total
               8.8336
                        8.5891
                                          8.0419
                                                    7.4380
                                                             7.0363
Y_LMneg <- lm.rrpp(scaled_Y_young ~ Block * Water * Fungus, data = class,
    SS.type = "III", print.progress = F)
summary(Y_LMneg)
##
## Linear Model fit with lm.rrpp
##
## Number of observations: 43
## Number of dependent variables: 1603
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Full Model Analysis of Variance
##
##
                          Df Residual Df
                                                SS Residual SS
                                                                     Rsq
                                       35 18630.05
                                                      48695.95 0.276714 1.912895
## Block * Water * Fungus
                          Z (from F)
                                            Pr(>F)
## Block * Water * Fungus
                            3.550143 0.0005714286
##
##
## Redundancy Analysis (PCA on fitted values and residuals)
##
##
                 Trace Proportion Rank
## Fitted
              443.5726
                         0.276714
                                     7
## Residuals 1159.4274
                         0.723286
                                     35
## Total
             1603.0000
                         1.000000
                                     42
##
## Eigenvalues
##
##
                  PC1
                           PC2
                                    PC3
                                              PC4
                                                       PC5
                                                                PC6
                                                                          PC7
             188.2474 129.9745 43.0239
                                          26.7656
                                                   21.9474
                                                            17.0881
                                                                     16.5258
## Residuals 257.0000 179.6952 102.6573 72.5466
                                                   50.3806
                                                            46.8734
                                                                     37.5463
## Total
             419.6895 234.4477 140.1842 116.2279
                                                   67.9671
                                                            55.3037
                                                                      45.4514
##
                  PC8
                           PC9
                                    PC10
                                             PC11
                                                      PC12
                                                                PC13
                                                                         PC14
## Fitted
## Residuals 35.2538 30.2345
                                27.3585
                                          24.9055
                                                   20.4310
                                                            19.8358
                                                                     18.1858
              38.0977 31.5379
                                30.7097
                                          28.8956
                                                   26.7917
## Total
                                                            22.2296
                                                                      22.0810
##
                 PC15
                          PC16
                                   PC17
                                             PC18
                                                      PC19
                                                               PC20
                                                                         PC21
## Fitted
                      16.5015
                                                   14.0276
                                                           13.6146
## Residuals 17.6850
                               15.7274
                                         14.8921
                                                                     12.6536
## Total
              20.7628
                       19.1927
                                18.0042
                                          16.5583
                                                   16.0051
                                                            14.9467
                                                                      14.2789
##
                 PC22
                          PC23
                                   PC24
                                             PC25
                                                      PC26
                                                               PC27
                                                                         PC28
## Fitted
## Residuals
              12.3258
                       11.6761
                                11.4278
                                          10.8107
                                                   10.3672
                                                            10.0471
                                                                       9.6833
## Total
              14.0028
                       13.4649
                                12.8208
                                          12.3105
                                                   12.0785
                                                            11.2245
                                                                     10.8360
##
                 PC29
                          PC30
                                   PC31
                                             PC32
                                                      PC33
                                                               PC34
                                                                         PC35
## Fitted
## Residuals
               9.2572
                        8.7965
                                 8.4393
                                           7.8603
                                                    7.6556
                                                             7.0243
                                                                       6.0502
              10.4619
## Total
                       10.0447
                                  9.9788
                                           9.5432
                                                    9.2232
                                                             8.8299
                                                                       8.6136
##
                 PC36
                          PC37
                                   PC38
                                             PC39
                                                      PC40
                                                               PC41
                                                                         PC42
## Fitted
## Residuals
```

Total 8.3533 7.8636 7.7013 7.4567 6.7107 6.4269 5.6909

4. Examine RRPP plots to check for assumptions.

```
## Old Leaves residuals vs fitted values (homoscedasticity
## check)
Odiagnostics <- plot(O_LMneg, type = "diagnostics")</pre>
```

PCA Residuals

Q-Q plot

Residuals vs. PC 1 fitted

Residuals vs. Fitted


```
# linear regression plot
Oregression <- plot(0_LMneg, type = "regression", predictor = class$Fungus,
    reg.type = "RegScore")</pre>
```


Young Leaves residuals vs fitted values (homoscedasticity
check)
Ydiagnostics <- plot(Y_LMneg, type = "diagnostics")</pre>

PCA Residuals

Q-Q plot

Residuals vs. PC 1 fitted

Residuals vs. Fitted


```
# linear regression plot
Yregression <- plot(Y_LMneg, type = "regression", predictor = class$Fungus,
    reg.type = "RegScore")</pre>
```


5. Perform an RRPP ANOVA and print results.

```
## Old Leaves
OnegANOVA <- anova(0_LMneg, effect.type = "F", error = c("Residuals",</pre>
    "Block: Water", "Block: Water: Fungus", "Residuals", "Block: Water: Fungus",
    "Block: Water: Fungus", "Residuals"))
summary(OnegANOVA, formula = T)
##
## Analysis of Variance, using Residual Randomization
## Permutation procedure: Randomization of null model residuals
## Number of permutations: 1000
## Estimation method: Ordinary Least Squares
## Sums of Squares and Cross-products: Type III
## Effect sizes (Z) based on F distributions
##
##
                            SS
                                                            Z Pr(>F)
                      Df
                                   MS
                                           Rsq
## Block
                          4167 4167.5 0.06443 3.3541
                                                       3.3935
                                                               0.003 **
## Water
                          1731 1731.4 0.02677 1.0292
                                                       0.1128
## Fungus
                       1
                          2084 2083.8 0.03222 1.1017
                                                       0.2321
                                                               0.411
## Block:Water
                          1682 1682.3 0.02601 1.3540
                                                      1.1179
## Block:Fungus
                          1744 1744.4 0.02697 0.9223 -0.1989
                       1
## Water:Fungus
                       1
                          1593 1593.0 0.02463 0.8422 -0.7767
                                                               0.787
## Block:Water:Fungus 1 1891 1891.4 0.02924 1.5223 1.4275 0.094 .
## Residuals
                      35 43488 1242.5 0.67235
                      42 64680
## Total
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Call: lm.rrpp(f1 = scaled_Y_old ~ Block * Water * Fungus, SS.type = "III",
##
       data = class, print.progress = F)
## Young Leaves
YnegANOVA <- anova(Y_LMneg, effect.type = "F", error = c("Residuals",</pre>
```

```
"Block: Water", "Block: Water: Fungus", "Residuals", "Block: Water: Fungus",
    "Block: Water: Fungus", "Residuals"))
summary(YnegANOVA, formula = T)
##
## Analysis of Variance, using Residual Randomization
## Permutation procedure: Randomization of null model residuals
## Number of permutations: 1000
## Estimation method: Ordinary Least Squares
## Sums of Squares and Cross-products: Type III
## Effect sizes (Z) based on F distributions
##
##
                                          Rsq
                          2341 2341.3 0.03478 1.6828 1.43178 0.090 .
## Block
                       1
## Water
                       1
                         1323 1323.0 0.01965 1.2429 1.03745
                      1 3180 3180.2 0.04724 2.5291 2.39575 0.009 **
## Fungus
## Block:Water
                      1 1064 1064.4 0.01581 0.7650 -0.63086 0.707
## Block:Fungus
                      1 2296 2296.2 0.03411 1.8261 1.68927 0.039 *
## Water:Fungus
                      1 1391 1390.7 0.02066 1.1060 0.53462 0.298
## Block:Water:Fungus 1 1257 1257.4 0.01868 0.9038 -0.15430 0.532
## Residuals
                      35 48696 1391.3 0.72329
## Total
                      42 67326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Call: lm.rrpp(f1 = scaled_Y_young ~ Block * Water * Fungus, SS.type = "III",
       data = class, print.progress = F)
  6. Test lm.rrpp model coefficients. "d" is the amount of change in a variable for the coefficient indicated.
## Old Leaves test model coefficients
Onegcoef <- coef(O_LMneg, test = T)</pre>
summary(Onegcoef)
##
## Linear Model fit with lm.rrpp
## Number of observations: 43
## Number of dependent variables: 1540
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Statistics (distances) of coefficients with 95 percent confidence intervals,
## effect sizes, and probabilities of exceeding observed values based on
## 1000 random permutations using RRPP
##
##
                              d.obs UCL (95%)
                                                      Zd Pr(>d)
## (Intercept)
                         56.7851643 69.6812587 0.1807714 0.392
## Block
                         30.7839565 21.3831101 4.9316172 0.001
## WaterLow
                         51.3669825 52.5723881 1.7282646
                                                          0.062
## Fungus
                         1.1988549 1.1647413 2.1595936
                                                          0.041
## Block:WaterLow
                         26.0901902 26.8534116 1.6709483 0.070
## Block:Fungus
                          0.5625282 0.5945359 1.6041274 0.069
## WaterLow:Fungus
                         1.4541906 1.5298657 1.4222559 0.081
```

```
## Block:WaterLow:Fungus 0.7837857 0.7630974 2.0639186 0.041
## Young Leaves test model coefficients
Ynegcoef <- coef(Y_LMneg, test = T)</pre>
summary(Ynegcoef)
##
## Linear Model fit with lm.rrpp
##
## Number of observations: 43
## Number of dependent variables: 1603
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Statistics (distances) of coefficients with 95 percent confidence intervals,
## effect sizes, and probabilities of exceeding observed values based on
## 1000 random permutations using RRPP
##
##
                              d.obs UCL (95%)
                                                       Zd Pr(>d)
## (Intercept)
                        45.4608543 63.5551204 -0.7739922 0.769
## Block
                        23.0735567 22.9398767 1.9420301 0.045
## WaterLow
                        44.9023881 55.3325464 0.4063858 0.298
## Fungus
                         1.4810450 1.2586450 3.1233050 0.007
## Block:WaterLow
                        20.7529414 29.0088260 -0.2455776
                                                         0.542
                         0.6453841 0.6430103 1.9028858 0.050
## Block:Fungus
## WaterLow:Fungus
                         1.3587323 1.6302790 0.5722352
                                                          0.260
## Block:WaterLow:Fungus 0.6390634 0.8158072 0.2197581 0.361
```

Fungus has the largest effect on the model for young leaves. The standard is the mean for High water treatment. Block has the largest effect on the model for old leaves. Fungus coming in second.

7. Compute predicted values from the lm.rrpp model fit using bootstrapped residuals to generate confidence intervals (precision of group mean estimates).

```
O_pred <- predict(O_LMneg)
plot(O_pred, PC = T, ellipse = T)</pre>
```

Among-prediction PC rotation; 95% confidence limits

Y_pred <- predict(Y_LMneg)
plot(Y_pred, PC = T, ellipse = T)</pre>

Among-prediction PC rotation; 95% confidence limits

8. Test pairwise differences between least squares means. Similar to tukeyHSD function in the r stats package. The pairwise function will generate tables with confidence intervals and p-values for the pairwise statistic, Euclidean distance between least-squares means.

```
## Old Leaves pairwise differences of water
Onegpw <- pairwise(O_LMneg, groups = class$Fungus)</pre>
summary(Onegpw, confidence = 0.95, stat.table = T)
##
## Pairwise comparisons
##
## Groups: 0 3 5 15 25 32 37 52 62
##
## RRPP: 1000 permutations
##
## LS means:
## Vectors hidden (use show.vectors = TRUE to view)
##
## Pairwise distances between means, plus statistics
##
                d UCL (95%)
                                     Z Pr > d
## 0:3
        14.717160 19.175899 -0.7762413 0.785
## 0:5
         9.615246 12.969676 -0.7690112
                                        0.778
## 0:15 14.626625 18.955153 -0.7681710
                                       0.772
## 0:25
        8.732025 13.885241 -1.3708798
                                       0.923
## 0:32 10.619979 16.910953 -1.4447182
                                        0.941
## 0:37 12.279350 19.553289 -1.4447182
                                        0.941
## 0:52 18.756031 28.199276 -1.2197415
                                        0.895
## 0:62 20.016731 32.105376 -1.5356023
                                        0.952
## 3:5
         9.923031 15.667194 -2.1245238
                                        0.997
## 3:15
         6.277265 10.323064 -2.2714626
                                        0.999
## 3:25
       16.385586 21.878233 -0.9768931
                                        0.835
## 3:32 17.707795 23.570501 -0.9795564
## 3:37 18.684051 25.314312 -1.0435276
                                        0.850
## 3:52 22.119230 30.449777 -0.9777989
                                        0.836
## 3:62 24.622923 35.451225 -1.2907263
                                        0.909
## 5:15
        7.059009 10.383594 -1.7927897
                                        0.964
## 5:25 10.740394 13.956132 -0.4383566
                                        0.651
## 5:32 12.727351 17.037220 -0.6985599
                                        0.752
## 5:37 13.900573 18.922821 -0.8166415
                                        0.778
## 5:52 18.368463 25.506498 -0.8537202
                                        0.786
## 5:62 20.587684 29.958557 -1.2139742
                                        0.892
## 15:25 13.953746 16.903904 -0.5070791
                                        0.699
## 15:32 15.316247 18.954295 -0.5976844
                                        0.724
## 15:37 16.068288 20.245341 -0.6924616
                                        0.752
## 15:52 18.657421 24.194920 -0.6296939
                                        0.730
## 15:62 21.516178 29.590724 -1.1151591
                                        0.876
0.955
## 25:37 4.057069 6.356649 -1.5701689
                                        0.954
## 25:52 10.413237 15.192332 -1.1492571
                                        0.873
## 25:62 11.980143 19.180399 -1.6104423
                                        0.963
## 32:37 1.659372 2.642336 -1.4447182
                                        0.941
## 32:52 8.596237 12.297476 -1.0761687
                                        0.863
## 32:62 9.593783 15.526970 -1.6185436
                                        0.964
## 37:52 7.130951 10.064726 -1.0968160
                                        0.866
## 37:62 8.012080 13.036794 -1.6451565
                                        0.964
## 52:62 5.474832 9.783352 -2.1549289
                                        1.000
```

```
## Young Leaves pairwise differences of water
Ynegpw <- pairwise(Y_LMneg, groups = class$Fungus)</pre>
summary(Ynegpw, confidence = 0.95, stat.table = T)
##
## Pairwise comparisons
##
## Groups: 0 3 5 15 25 32 37 52 62
##
## RRPP: 1000 permutations
##
## LS means:
## Vectors hidden (use show.vectors = TRUE to view)
##
## Pairwise distances between means, plus statistics
##
                 d UCL (95%)
                                      Z Pr > d
## 0:3
         11.702201 17.141725 -0.8826315
                                        0.799
## 0:5
         7.454235 11.617889 -0.9322133
                                         0.863
## 0:15
       10.235526 16.037077 -1.0097208
                                         0.858
## 0:25
         7.397407 12.736886 -1.6999867
                                         0.988
## 0:32
         9.712869 16.437126 -1.5281607
                                         0.980
## 0:37 11.230505 19.005426 -1.5281607
                                         0.980
## 0:52 17.439416 28.441156 -1.2380260
                                         0.907
## 0:62 19.589381 33.191461 -1.4544989
## 3:5
         10.079907 16.273955 -1.5737513
                                         0.976
## 3:15
         7.020215 11.216442 -1.9476535
                                         0.996
## 3:25
       15.636545 21.940130 -0.8418691
                                         0.788
## 3:32
       17.352414 24.504864 -0.7809651
        18.541867 26.426192 -0.8197234
## 3:37
                                         0.782
        23.109898 33.482923 -0.7948709
## 3:52
                                         0.778
## 3:62 25.793837 38.348509 -0.9546649
                                         0.826
## 5:15
         5.595434 9.965735 -1.4358470
                                         0.947
## 5:25
         9.854916 14.444186 -0.8505427
                                         0.796
## 5:32 12.403808 18.495219 -0.8089885
                                         0.762
## 5:37 13.647560 20.618200 -0.8769540
                                         0.789
## 5:52 19.028556 28.567930 -0.7756193
                                         0.753
## 5:62 21.353970 33.368250 -1.0124863
                                         0.832
## 15:25 11.699219 15.696397 -0.5849620
                                         0.688
## 15:32 13.638580 18.568641 -0.5722845
                                         0.689
## 15:37 14.688404 20.179527 -0.6253840
                                         0.708
## 15:52 18.925545 26.571538 -0.5638692
                                         0.687
## 15:62 21.776994 32.100827 -0.8375942
                                         0.787
## 25:32 3.077239 4.824047 -0.9984142
                                         0.827
## 25:37  4.409372  7.100477  -1.1637782
                                         0.889
## 25:52 10.900584 16.561640 -0.8706467
                                         0.799
## 25:62 12.923649 21.221015 -1.2869293
                                         0.924
## 32:37 1.517636 2.568301 -1.5281607
                                         0.980
## 32:52 8.441198 13.073589 -0.9497449
                                         0.821
## 32:62 10.066807 16.838061 -1.3850964
                                         0.947
## 37:52 7.204876 10.916067 -0.8598757
                                         0.802
## 37:62 8.617361 14.331170 -1.3612570
                                        0.936
## 52:62 6.065070 11.106373 -1.5722627 0.990
```

PCA

8. Identify the major source of variation in data and determine if the variation is sourced from experimental bias or biological conditions.

```
# Old Leaf Lipids (Neg) tune how many components to use
tune.pca(scaled_Y_old)
## Eigenvalues for the first 10 principal components, see object$sdev^2:
##
                   PC2
                             PC3
                                        PC4
                                                  PC5
                                                             PC6
                                                                       PC7
                                                                                 PC8
  338.73562 283.41789 172.57471 91.04209 61.76376
                                                       46.35468 38.50556
##
                                                                            34.40119
         PC9
##
                  PC10
    28.91962
             28.34847
##
##
##
  Proportion of explained variance for the first 10 principal components, see object$explained_varianc
##
                                            PC4
                                                       PC5
                                                                   PC6
                     PC2
                                PC3
## 0.21995819 0.18403759 0.11206150 0.05911824 0.04010634 0.03010044 0.02500361
##
          PC8
                     PC9
                                PC10
## 0.02233843 0.01877898 0.01840810
##
  Cumulative proportion explained variance for the first 10 principal components, see object$cum.var:
##
                             PC3
                                        PC4
                                                  PC5
                                                             PC6
                                                                       PC7
##
                   PC2
                                                                                 PC8
  0.2199582 0.4039958 0.5160573 0.5751755 0.6152819 0.6453823 0.6703859 0.6927243
##
##
         PC9
                  PC10
## 0.7115033 0.7299114
##
##
    Other available components:
##
##
    loading vectors: see object$rotation
     0.20
     0.15
```


Principal Components

```
pca.res <- mixOmics::pca(scaled_Y_old, ncomp = 4, scale = F)</pre>
# plot pca
```

```
plotIndiv(pca.res, group = class$Fungus, ind.names = F, pch = as.factor(class$Water),
    legend = T, legend.title = "Fungus", legend.title.pch = "Water",
    title = "Old Leaf Lipids (Neg) PCA")
```



```
# Look at variable coefficients in each component with the
# loading vectors The absolute value of loading vectors
# represent the importance of each variable to define each PC
plotLoadings(pca.res, ndisplay = 50)
```

```
X1156.49152168331
X1155.48726091246
X969.562156441924
X723.362951241158
X351.245639523269
X541.327848628193
X915.589820542433
X656.416181546508
X722.412157355965
X726.434406230953
X634.42795615117
X915.485341726291
X864.494332273359
X869.484958531951
X563.336276103475
X876.305836907395
X863.489543426107
X566.338514101039
X954.572243640028
X928.561612029632
X877.316898194248
X886.478392765309
X433.108866781948
X271.057077950691
X868.467381373169
                                -0.04
                                                -0.03
                                                                                  -0.01
                                                                                                  0.00
                                                                 -0.02
# Young Leaf Lipids (Neg) tune how many components to use
tune.pca(scaled_Y_young)
## Eigenvalues for the first 10 principal components, see object$sdev^2:
                                PC3
                                            PC4
                                                       PC5
                                                                                         PC8
## 419.68951 234.44766 140.18419 116.22791 67.96706 55.30370 45.45138
                                                                                   38.09774
          PC9
                    PC10
    31.53786 30.70965
## Proportion of explained variance for the first 10 principal components, see object$explained_varianc
                                                PC4
                                                             PC5
                                                                         PC6
                       PC2
                                    PC3
## 0.26181504 0.14625556 0.08745115 0.07250649 0.04239991 0.03450012 0.02835395
           PC8
                       PC9
## 0.02376652 0.01967427 0.01915761
## Cumulative proportion explained variance for the first 10 principal components, see object$cum.var:
##
          PC1
                     PC2
                                PC3
                                            PC4
                                                       PC5
                                                                   PC6
                                                                              PC7
## 0.2618150 0.4080706 0.4955218 0.5680282 0.6104282 0.6449283 0.6732822 0.6970488
          PC9
                    PC10
##
## 0.7167230 0.7358806
##
    Other available components:
##
    loading vectors: see object$rotation
```


Principal Components

```
pca.res <- mixOmics::pca(scaled_Y_young, ncomp = 3, scale = F)

# plot pca
plotIndiv(pca.res, group = class$Fungus, ind.names = F, pch = as.factor(class$Water),
    legend = T, legend.title = "Fungus", legend.title.pch = "Water",
    title = "Young Leaf Lipids (Neg) PCA")</pre>
```



```
# Look at variable coefficients in each component with the
# loading vectors The absolute value of loading vectors
# represent the importance of each variable to define each PC
plotLoadings(pca.res, ndisplay = 50)
```


9. Identify the variables that contribute to the explained variance.


```
value.var
## X927.557700592407 -0.200129024
## X928.561612029632 -0.197546772
## X954.572243640028 -0.181364972
## X885.474440035308 -0.179181509
## X869.484958531951 -0.177636767
## X1019.54465630142 -0.174351431
## X867.464120379159 -0.173962220
## X886.478392765309 -0.169780741
## X929.572348773976 -0.166888358
## X863.489543426107 -0.166493126
## X868.467381373169 -0.165440477
## X887.471975264981 -0.158163861
## X953.566463835506 -0.156163460
## X864.494332273359 -0.151929159
## X859.693413247021 -0.147434503
## X566.338514101039 -0.145410706
## X726.434406230953 -0.139649889
## X930.576971010021 -0.134385202
## X271.057077950691 -0.133499870
## X879.238402087358 -0.128877411
## X969.562156441924 -0.127875447
## X722.412157355965 -0.127653579
## X883.459868340161 -0.126325284
## X950.545190934768 -0.125545884
## X877.230321611576 -0.124019635
## X877.316898194248 -0.119613512
## X878.233844238768 -0.118591646
## X725.185415441698 -0.118457157
## X949.541863503587 -0.118439810
## X351.245639523269 -0.118133898
## X607.383129987111 -0.117305588
## X352.249037310216 -0.115822041
## X541.327848628193 -0.113514255
## X875.302857434364 -0.112398294
## X817.210440333932 -0.107730043
## X339.282660885393 -0.107706405
## X876.305836907395 -0.107230853
## X462.363501434717 -0.104597413
## X878.320894596336 -0.104444881
## X967.552263012126 -0.101782798
## X593.144128465511 -0.101302939
## X301.06795075359 -0.101030712
## X634.42795615117 -0.099879512
## X473.392642385381 -0.099871489
## X323.212503923106 -0.098713804
## X655.412637410957 -0.097764519
## X945.566447765142 -0.094896284
## X556.413994465444 -0.092987695
## X963.574878407408 -0.084933227
## X529.221677043937 -0.082089794
## X481.202981438121 -0.081378884
```

```
## X563.336276103475 -0.074493595
## X602.418692524361 -0.074409967
## X951.55635317092 -0.073939069
## X656.416181546508 -0.072708587
## X540.323489556083 -0.072268161
## X433.108866781948 -0.071262503
## X923.236620700158 -0.070057520
## X916.488001992342 -0.067765357
## X915.485341726291 -0.067193999
## X324.216268087411 -0.060551519
## X637.422951297403 -0.056338992
## X673.33453647589 -0.055056628
## X997.561703434011 -0.052421153
## X879.332308683094 -0.052343999
## X549.191625895581 -0.051897799
## X633.427504459581 -0.050900908
## X857.47794643888 -0.050475336
## X283.259468997921 -0.050069033
## X565.326423777694 -0.049311754
## X952.560280071571 -0.046534625
## X391.201599110739 -0.043685191
## X565.185009512115 -0.042462913
## X799.577065216702 -0.042284605
## X549.189385586878 -0.039567745
## X505.165901140672 -0.039414731
## X564.323251386576 -0.036617339
## X721.40842980238 -0.034558124
## X1065.55096405435 -0.033819246
## X880.337771387686 -0.033450733
## X482.20668851116 -0.032480717
## X419.232757040941 -0.029535342
## X713.529772163544 -0.028002491
## X608.416972280569 -0.026237761
## X607.413210162281 -0.025258474
## X521.158177035099 -0.025041234
## X723.362951241158 -0.024509449
## X619.413360639903 -0.022448051
## X998.566442679756 -0.019612586
## X608.388078352263 -0.013678125
## X617.176018358173 -0.012781306
## X894.543916014498 -0.010310911
## X722.359165610613 -0.010003806
## X566.188629644149 -0.008803619
## X915.589820542433 -0.008773624
## X721.355788617265 -0.007323427
## X881.480204790565 -0.007287137
## X449.103515984558 -0.005442569
## X284.263053495224 -0.004109811
## X861.234165316027 -0.001259647
# plot loadings for comp 1
plotLoadings(spca.res, ndisplay = 50)
```


Loadings on comp 2


```
# plot spca
plotIndiv(spca.res, group = class$Fungus, ind.names = F, pch = as.factor(class$Water),
    legend = T, legend.title = "Fungus", legend.title.pch = "Water",
    title = "Young Leaf Lipids (Neg) sPCA")
```


variables contributing to each component
plotVar(spca.res, cex = 1)

selectVar(spca.res, comp = 1)\$value # view loading value of each metabolite

```
value.var
## X606.809345005257 -0.166332525
## X632.81044229793 -0.164033296
## X700.795577828697 -0.162314655
## X742.777653240905 -0.159823555
## X690.770232506233 -0.159441702
## X804.741837515802 -0.159152506
## X674.793825585816 -0.157780840
## X622.786228087778 -0.155511100
## X768.777069307161 -0.153378628
## X664.77459723807 -0.153359576
## X476.855526760729 -0.146572162
## X718.768622925528 -0.144715040
## X570.841650445819 -0.142629123
## X782.734317130451 -0.142079026
## X656.794297269363 -0.137096812
## X828.723233380723 -0.136495784
## X658.783808307834 -0.134358323
## X724.772105089435 -0.133418607
## X692.765378978623 -0.133304029
## X846.72626883018 -0.128205891
## X716.77372086649 -0.127284024
## X544.840825120388 -0.125507826
## X408.868682242682 -0.124423402
## X648.788385411775 -0.124154660
## X132.866585738847 -0.123533659
## X134.866398083002 -0.122096708
```

```
## X888.702181947636 -0.120228072
## X760.744768555421 -0.119932446
## X624.782082683898 -0.119434431
## X574.822669115628 -0.119342557
## X612.825567836386 -0.119295175
## X784.756927043546 -0.119176063
## X571.840162225393 -0.117561227
## X778.741885458368 -0.116951708
## X502.855225443827 -0.116641505
## X588.812212890288 -0.116620585
## X836.74813997007 -0.114936639
## X872.722866438032 -0.112241264
## X372.898102815666 -0.110050698
## X714.756200033212 -0.109481027
## X440.884071392279 -0.106852732
## X520.826360301333 -0.106806024
## X586.815519121002 -0.106783293
## X908.691569895684 -0.106421325
## X584.80021314657 -0.103905078
## X758.752900853864 -0.103689450
## X630.791702126155 -0.102151310
## X639.818578214385 -0.099602104
## X607.807531898434 -0.097912652
## X776.731668175176 -0.097490903
## X414.885698043832 -0.097005764
## X736.759279117259 -0.095809948
## X734.746504008811 -0.095232260
## X840.71244925072 -0.095067631
## X802.726364171284 -0.090732374
## X538.822954317218 -0.088564543
## X792.742406190328 -0.088486469
## X654.801893963813 -0.085999724
## X820.721435524574 -0.080331711
## X710.762932017726 -0.078194311
## X726.758924925928 -0.076854156
## X1291.47224392054 -0.075280342
## X386.860488067248 -0.074606708
## X650.783771288888 -0.073277302
## X786.745557215078 -0.070611027
## X562.81111951871 -0.069375629
## X330.895084129999 -0.066332121
## X192.927431485322 -0.063199397
## X666.770417878546 -0.062578639
## X633.807819066513 -0.060452417
## X638.825976008555 -0.060061860
## X278.912063927034 -0.059847620
## X396.887816251505 -0.055278165
## X762.758305006171 -0.052866742
## X1333.45977152431 -0.051188223
## X134.045412963815 -0.048529538
## X398.883033717797 -0.046987272
## X652.782727491955 -0.046883818
## X646.775033785773 -0.046681332
## X642.834054766641 -0.044180357
```

```
## X194.921439201887 -0.040248198
## X328.900612338688 -0.032131675
## X394.886566245554 -0.031544178
## X720.766074903034 -0.030350572
## X464.874067864411 -0.027062857
## X503.856090738483 -0.026237924
## X1177.48208484958 -0.025591727
## X871.562283488523 -0.024961052
## X708.75666274246 -0.024936629
## X596.796752072116 -0.024694133
## X322.883782987482 -0.022060861
## X418.284265115797 -0.021872289
## X266.086951437715 -0.021037380
## X574.847818949746 -0.015663369
## X390.869403940983 -0.014829995
## X370.888507215339 -0.013332876
## X1395.43636371835 -0.013203358
## X600.848037489198 -0.011855578
## X1292.4787570749 -0.003139404
## X190.926636178104 -0.001177666
# plot loadings for comp 1
plotLoadings(spca.res, ndisplay = 50)
```


PLS-DA

10. Classify samples into known groups and predict the class of new samples.

plot and select the variables
plotVar(old.splsda)

selectVar(old.splsda, comp = 1)

```
## $name
     [1] "X1035.48962443178" "X1036.49347718159" "X1020.51970765987"
##
     [4] "X1065.52020259569" "X1019.51531418901" "X1104.47602326089"
##
     [7] "X1103.47182089502" "X1219.83038632645" "X1911.08637302008"
##
    [10] "X1040.560726389"
##
                             "X1039.55300143209" "X1025.58264377821"
    [13] "X1150.47629111377" "X982.572475541333" "X877.531023445973"
##
    [16] "X1026.58817280481" "X887.503465927635" "X981.569410508255"
##
    [19] "X1037.49794218473" "X1041.53422167114" "X972.542617577983"
##
    [22] "X936.566856256999" "X973.542313036945" "X971.539630719221"
##
##
    [25] "X837.502547484103" "X935.563612659482" "X1149.47184992267"
    [28] "X888.506393266389" "X878.535303010517" "X999.559483260895"
##
    [31] "X820.521836188494" "X1910.08260033736" "X998.557207917445"
##
    [34] "X863.539490691327" "X569.422927153308" "X819.518063757804"
##
    [37] "X773.511346284299" "X1873.13688484422" "X1872.13395834801"
##
##
    [40] "X516.143097673075" "X429.188190563143" "X847.545758880759"
    [43] "X864.542811842905" "X889.515067367098" "X774.514600943974"
##
    [46] "X448.37683580031" "X873.438691292963" "X1220.83431893991"
##
    [49] "X1275.76543014561" "X974.545267741176" "X401.157603916207"
##
    [52] "X1034.52090718027" "X1549.03462530533" "X277.212850028684"
##
##
    [55] "X175.956417499882" "X288.927271235801" "X1548.03166234851"
##
    [58] "X1172.4614409432" "X522.820469208869" "X848.548965929847"
    [61] "X797.535600228753" "X675.352968613998" "X1550.03973700109"
##
    [64] "X1276.76921107855" "X986.566025947242" "X1874.14077933693"
##
    [67] "X386.188379924065" "X385.184945937595" "X162.979697177857"
##
    [70] "X805.500384721158" "X311.163518476063" "X821.529032305061"
##
    [73] "X441.121024780807" "X568.421007585705" "X515.140118980629"
##
    [76] "X1066.52417490083" "X1261.75232985919" "X836.506888255739"
##
    [79] "X174.952973536997" "X174.952680778755" "X134.957407778865"
##
    [82] "X798.539218284514" "X506.838703033827" "X967.551395631042"
##
    [85] "X967.552162080649" "X904.502555864161" "X1038.50285038777"
##
    [88] "X751.527269681302" "X96.9207139305459" "X786.420127187216"
##
    [91] "X752.530608553351" "X414.219499460298" "X446.370157228315"
##
    [94] "X646.410608141015" "X256.231994916559" "X997.561703434011"
    [97] "X799.547287485227" "X562.806851091974" "X162.979575600669"
##
   [100] "X835.510246875002"
##
##
## $value
##
                         value.var
## X1035.48962443178
                      2.627399e-01
## X1036.49347718159 2.513051e-01
## X1020.51970765987
                      2.143222e-01
## X1065.52020259569
                      2.007954e-01
## X1019.51531418901
                      1.920906e-01
## X1104.47602326089
                     1.906226e-01
## X1103.47182089502 1.890679e-01
## X1219.83038632645
                      1.881703e-01
## X1911.08637302008 1.846493e-01
## X1040.560726389
                      1.825775e-01
## X1039.55300143209 1.638365e-01
## X1025.58264377821
                      1.507778e-01
## X1150.47629111377
                     1.473418e-01
## X982.572475541333 1.381628e-01
```

```
## X877.531023445973 1.358959e-01
## X1026.58817280481 1.353119e-01
## X887.503465927635
                     1.345732e-01
## X981.569410508255
                      1.342745e-01
## X1037.49794218473
                      1.327396e-01
## X1041.53422167114
                      1.194617e-01
## X972.542617577983
                      1.187777e-01
## X936.566856256999
                      1.176803e-01
## X973.542313036945
                      1.174144e-01
## X971.539630719221
                      1.172818e-01
## X837.502547484103
                      1.166456e-01
## X935.563612659482
                      1.162204e-01
## X1149.47184992267
                      1.153189e-01
## X888.506393266389
                      1.146029e-01
## X878.535303010517
                      1.140008e-01
## X999.559483260895
                      1.098241e-01
## X820.521836188494
                      1.088266e-01
## X1910.08260033736
                      1.085166e-01
## X998.557207917445
                      1.050519e-01
## X863.539490691327
                      1.049808e-01
## X569.422927153308 -9.952883e-02
## X819.518063757804
                      9.891003e-02
                      9.423627e-02
## X773.511346284299
                      9.283331e-02
## X1873.13688484422
## X1872.13395834801
                      9.276950e-02
## X516.143097673075
                      9.217410e-02
## X429.188190563143
                      9.113610e-02
## X847.545758880759
                      8.926203e-02
## X864.542811842905
                      8.912992e-02
## X889.515067367098 8.855838e-02
## X774.514600943974 8.492731e-02
## X448.37683580031 -8.234819e-02
## X873.438691292963 8.219250e-02
## X1220.83431893991 8.199857e-02
## X1275.76543014561
                      8.158614e-02
## X974.545267741176 8.052994e-02
## X401.157603916207
                      7.362438e-02
## X1034.52090718027
                      7.132232e-02
## X1549.03462530533
                      6.788135e-02
## X277.212850028684 6.533014e-02
## X175.956417499882 -6.345424e-02
## X288.927271235801 -5.924263e-02
## X1548.03166234851 5.879000e-02
## X1172.4614409432
                      5.830235e-02
## X522.820469208869 -5.508273e-02
                      5.493371e-02
## X848.548965929847
## X797.535600228753
                      4.666910e-02
## X675.352968613998
                     4.662287e-02
## X1550.03973700109
                     4.524372e-02
## X1276.76921107855
                      4.386131e-02
## X986.566025947242
                      4.305194e-02
## X1874.14077933693
                     3.981875e-02
## X386.188379924065 3.819454e-02
## X385.184945937595 3.630213e-02
```

```
## X162.979697177857 3.319037e-02
## X805.500384721158 2.912366e-02
## X311.163518476063 2.870198e-02
## X821.529032305061 2.864186e-02
## X441.121024780807
                     2.846782e-02
## X568.421007585705 -2.785190e-02
## X515.140118980629 2.771866e-02
## X1066.52417490083 2.707963e-02
## X1261.75232985919
                     2.690965e-02
## X836.506888255739 2.628472e-02
## X174.952973536997 -2.594320e-02
## X174.952680778755 -2.571045e-02
## X134.957407778865 -2.538667e-02
## X798.539218284514 2.475376e-02
## X506.838703033827 -2.372125e-02
## X967.551395631042 2.332715e-02
## X967.552162080649 2.115915e-02
## X904.502555864161 2.035914e-02
## X1038.50285038777 1.723431e-02
## X751.527269681302 1.080361e-02
## X96.9207139305459 1.048247e-02
## X786.420127187216 9.797547e-03
## X752.530608553351 8.389689e-03
## X414.219499460298 5.647848e-03
## X446.370157228315 -5.260206e-03
## X646.410608141015 4.322310e-03
## X256.231994916559 4.038711e-03
## X997.561703434011 1.724372e-03
## X799.547287485227 1.699523e-03
## X562.806851091974 -1.521586e-03
## X162.979575600669 1.117011e-03
## X835.510246875002 6.719878e-05
##
## $comp
## [1] 1
plotLoadings(old.splsda, contrib = "max", method = "mean", ndisplay = 50)
```

Contribution on comp 1


```
# Young Leaf
young.splsda <- mixOmics::splsda(scaled_Y_young, class$Fungus,
    keepX = c(100, 100))

# plot pls-da
plotIndiv(young.splsda, ind.names = F, legend = T, title = "Young Leaf Lipids (Neg) PLS-DA",
    legend.title = "Fungus", ellipse = T)</pre>
```


plot and select the variables
plotVar(young.splsda)

selectVar(young.splsda, comp = 1)

```
## $name
     [1] "X396.744066149398" "X341.804017936133" "X338.781186589034"
##
     [4] "X221.841155127441" "X238.834697469277" "X219.84461147703"
##
     [7] "X210.840303174241" "X160.84073506859" "X162.837709941101"
##
##
    [10] "X542.835721749077" "X390.805390469488" "X164.835439366587"
    [13] "X201.904319378673" "X296.793516506344" "X127.895179592866"
##
    [16] "X339.197085075794" "X199.851005340762" "X256.839536248203"
##
    [19] "X129.869344980963" "X127.871261970482" "X397.76141829117"
##
    [22] "X202.903970006801" "X174.885616989743" "X557.174805487108"
##
    [25] "X143.864697796506" "X392.800439184252" "X295.817803817012"
##
    [28] "X585.417902788316" "X174.863485441377" "X216.852456858478"
##
    [31] "X141.868500922779" "X442.817238180702" "X208.826794384555"
##
    [34] "X394.17204389995" "X350.758121864578" "X374.742514816533"
##
    [37] "X667.154098445662" "X469.910234081819" "X228.901703337163"
##
##
    [40] "X151.010737602026" "X379.153002727853" "X257.843006120052"
    [43] "X330.8618245959" "X552.865663131564" "X258.834191864741"
##
    [46] "X230.899454041765" "X266.801940778361" "X270.888854297753"
##
    [49] "X430.703335122926" "X783.615927434096" "X255.828026038127"
##
    [52] "X259.934127226593" "X450.759382108877" "X312.857261222087"
##
##
    [55] "X172.865244587839" "X116.927288483392" "X293.821571674538"
##
    [58] "X869.553695783107" "X584.415323461393" "X270.795957188362"
    [61] "X119.90863656431" "X548.787426737795" "X354.848765964605"
##
    [64] "X314.854022722784" "X488.659982912674" "X109.003224395874"
##
    [67] "X268.799154723268" "X232.762175151337" "X316.783455451835"
##
    [70] "X152.882339964866" "X323.884189924197" "X314.784985265431"
##
    [73] "X286.860667596866" "X325.014908362498" "X510.8792724562"
##
    [76] "X474.851017726839" "X170.866558879586" "X240.926846526528"
##
    [79] "X1028.5795946312" "X355.103480109833" "X583.410941115392"
##
    [82] "X442.891741260384" "X540.758138184099" "X372.742954316427"
##
    [85] "X749.614838652779" "X840.786703094097" "X396.835199086007"
##
    [88] "X109.003013726512" "X620.852616467634" "X336.786501994141"
##
    [91] "X554.862981021704" "X940.601750428385" "X102.95537878551"
##
    [94] "X265.856779938473" "X716.836524572973" "X646.853854191413"
    [97] "X588.893578190363" "X1150.48670587775" "X444.888177851031"
##
   [100] "X446.373066658593"
##
##
## $value
##
                        value.var
## X396.744066149398 -0.237346099
## X341.804017936133 -0.226712611
## X338.781186589034 -0.212839599
## X221.841155127441 -0.188603224
## X238.834697469277 -0.187887930
## X219.84461147703 -0.183754137
## X210.840303174241 -0.183293976
## X160.84073506859 -0.175122234
## X162.837709941101 -0.174967631
## X542.835721749077 0.174675387
## X390.805390469488 0.168096512
## X164.835439366587 -0.162856507
## X201.904319378673 -0.162392668
## X296.793516506344 -0.153997773
```

```
## X127.895179592866 -0.152040830
## X339.197085075794 -0.142236059
## X199.851005340762 -0.140928992
## X256.839536248203 -0.139463873
## X129.869344980963 -0.139035299
## X127.871261970482 -0.136633914
## X397.76141829117 -0.135226336
## X202.903970006801 -0.133281705
## X174.885616989743 -0.131405620
## X557.174805487108 -0.127847482
## X143.864697796506 -0.126591305
## X392.800439184252 0.124418002
## X295.817803817012 -0.113167199
## X585.417902788316 0.112654838
## X174.863485441377 -0.111515640
## X216.852456858478 -0.109465643
## X141.868500922779 -0.109408381
## X442.817238180702 -0.108616673
## X208.826794384555 -0.105398768
                     0.101902740
## X394.17204389995
## X350.758121864578 -0.101454603
## X374.742514816533 -0.096021798
## X667.154098445662 -0.095905408
## X469.910234081819 0.093491653
## X228.901703337163 0.092339950
## X151.010737602026 -0.091016171
## X379.153002727853 0.089268814
## X257.843006120052 -0.089182296
                      0.087029685
## X330.8618245959
## X552.865663131564 0.086750537
## X258.834191864741 -0.086420449
## X230.899454041765 0.081098315
## X266.801940778361 -0.078957710
## X270.888854297753 0.077217475
## X430.703335122926 -0.077089520
## X783.615927434096 0.073302432
## X255.828026038127 -0.070733902
## X259.934127226593 0.067820144
## X450.759382108877 0.067621153
## X312.857261222087 -0.067451324
## X172.865244587839 -0.065297269
## X116.927288483392 -0.064666845
## X293.821571674538 -0.061532091
## X869.553695783107 0.060766086
## X584.415323461393 0.056123672
## X270.795957188362 -0.055077183
## X119.90863656431 -0.054443833
## X548.787426737795 0.054088532
## X354.848765964605 0.053425957
## X314.854022722784 -0.045246971
## X488.659982912674 -0.043988685
## X109.003224395874 -0.043356673
## X268.799154723268 -0.041148826
## X232.762175151337 -0.039610014
```

```
## X316.783455451835 -0.036219106
## X152.882339964866 -0.036147621
## X323.884189924197 -0.035881662
## X314.784985265431 -0.032139638
## X286.860667596866 0.032071960
## X325.014908362498 -0.031772580
## X510.8792724562
                     0.031126297
## X474.851017726839 0.030329181
## X170.866558879586 -0.027043350
## X240.926846526528 0.025879617
## X1028.5795946312
                     0.023187879
## X355.103480109833 -0.022220089
## X583.410941115392 0.021770971
## X442.891741260384 0.019491794
## X540.758138184099 0.019226779
## X372.742954316427 -0.016650713
                     0.015099968
## X749.614838652779
## X840.786703094097 0.012489160
## X396.835199086007 0.008285053
## X109.003013726512 -0.007789797
## X620.852616467634 0.007220824
## X336.786501994141 -0.007203476
## X554.862981021704 0.006193023
## X940.601750428385 -0.004406166
## X102.95537878551
                     0.004031028
## X265.856779938473 0.002904594
## X716.836524572973 0.002813464
## X646.853854191413
                     0.002501612
## X588.893578190363 0.002479180
## X1150.48670587775 -0.001761621
## X444.888177851031
                     0.001537349
## X446.373066658593 0.001380297
##
## $comp
## [1] 1
plotLoadings(young.splsda, contrib = "max", method = "mean",
   ndisplay = 50)
```

Contribution on comp 1

Heatmaps of Averaged Data

11. Create averaged metabolite matrices and rerun PLS-DA to create a heatmap.

```
## Young Leaves
av_Y_young <- aggregate(Y_young, by = list(class$Water, class$Fungus),
    FUN = "mean", simplify = T, data = class)
av.young.plsda <- mixOmics::plsda(av_Y_young[, 3:1605], av_Y_young$Group.2) # fungus

# heatmap
youngcim <- cim(av.young.plsda, title = "Young Leaf Lipids (neg) Averaged Over Fungi",
    col.names = F, xlab = "Lipids", save = "png", name.save = "~/Box/Summer 2018 TX Endo Field Samples</pre>
```

Indicator Analysis

12. Identify indicator metabolites characteristic of each treatment using Dufrene-Legendre Indicator Analysis.

```
# Old Leaf
indicator_Fungus0 <- indval(Y_old, clustering = class$Fungus,
    numitr = 999, type = "long")
summary(indicator_Fungus0)</pre>
```

```
##
                     cluster indicator_value probability
                                      0.2404 0.025025025
## X174.9529333123
                           2
## X1083.75595435226
                           2
                                      0.2082 0.046046046
                           2
## X1090.51785340499
                                      0.2024 0.036036036
                           2
                                      0.1877 0.015015015
## X184.948115572568
## X304.909082690653
                           2
                                      0.1629 0.008008008
## X364.877336109855
                           2
                                      0.1604 0.022022022
```

```
## X464.871364308467
                                      0.1512 0.040040040
                           2
                                      0.1482 0.023023023
## X422.838557963528
## X308.901821857682
                                      0.1446 0.013013013
## X666.714021066667
                           2
                                      0.1403 0.036036036
## X242.171820198016
                           3
                                      0.2535 0.015015015
## X304.909012419656
                           3
                                      0.2287 0.032032032
## X86.9752468273024
                                      0.2216 0.039039039
## X1015.45954094342
                           4
                                      0.3282 0.047047047
## X174.952680778755
                           4
                                      0.3147 0.009009009
## X885.473397973027
                                      0.2647 0.027027027
## X570.517930963417
                                      0.2004 0.019019019
## X174.952632563542
                           4
                                      0.1907 0.015015015
## X451.349294974999
                           4
                                      0.1838 0.042042042
## X750.613395621872
                                      0.1830 0.029029029
## X1176.76564162178
                                      0.1748 0.034034034
## X184.88488619978
                           4
                                      0.1589 0.032032032
## X408.865888197143
                           4
                                      0.1501 0.020020020
## X522.820469208869
                                      0.1471 0.049049049
## X280.897170641378
                           4
                                      0.1409 0.042042042
## X305.912216697283
                           4
                                      0.1359 0.010010010
## X304.908795908765
                           5
                                      0.2502 0.047047047
## X492.8262990745
                                      0.1943 0.019019019
                                      0.1989 0.039039039
## X388.856173233822
                           9
## X1034.52090718027
                           9
                                      0.1884 0.023023023
## X304.909379292092
                           9
                                      0.1815 0.040040040
## X1037.49794218473
                                      0.1761 0.007007007
## X326.182367077732
                           9
                                      0.1714 0.022022022
                           9
## X1036.49347718159
                                      0.1707 0.017017017
                           9
## X1035.48962443178
                                      0.1664 0.020020020
## X320.881671510279
                           9
                                      0.1645 0.047047047
## X294.13311296658
                           9
                                      0.1597 0.024024024
## X776.793289888356
                           9
                                      0.1594 0.024024024
## X230.983728874012
                                      0.1521 0.020020020
## X130.990472391388
                                      0.1458 0.039039039
  X96.9207139305459
                                      0.1351 0.045045045
## Sum of probabilities
                                            778.075075075075
##
## Sum of Indicator Values
                                            258.33
##
  Sum of Significant Indicator Values =
                                            7.64
##
  Number of Significant Indicators
##
                                            41
##
## Significant Indicator Distribution
##
    2 3 4 5 6 9
## 10
       3 13 1 1 13
# Young Leaf
indicator_Fungus <- indval(Y_young, clustering = class$Fungus,</pre>
    numitr = 999, type = "long")
summary(indicator_Fungus)
```

cluster indicator_value probability

##

```
## X677.305405776688
                                      0.3839 0.018018018
                           1
## X669.178576861595
                           1
                                      0.1884 0.026026026
## X491.115515226862
                                      0.1832 0.045045045
## X842.533253048706
                           2
                                      0.2550 0.004004004
## X136.981990551781
                           2
                                      0.2454 0.032032032
                           2
## X605.400981849027
                                      0.2030 0.006006006
                           3
## X788.515220764804
                                      0.2182 0.024024024
## X787.512564361594
                           3
                                      0.2048 0.049049049
## X752.534596611218
                           3
                                      0.1974 0.019019019
## X797.539347527131
                           3
                                      0.1896 0.030030030
## X847.550568041372
                                      0.1833 0.002002002
                           3
## X848.553030618913
                                      0.1651 0.013013013
## X160.84073506859
                           4
                                      0.3199 0.049049049
## X219.84461147703
                                      0.2869 0.044044044
## X221.841155127441
                                      0.2840 0.041041041
## X109.003224395874
                                      0.2530 0.037037037
## X338.781186589034
                                      0.2491 0.027027027
## X127.895179592866
                                      0.2475 0.041041041
## X238.834697469277
                                      0.2453 0.030030030
## X149.993005498488
                                      0.2340 0.006006006
## X341.804017936133
                           4
                                      0.2242 0.016016016
## X201.904319378673
                                      0.2067 0.034034034
## X116.927175166113
                                      0.1949 0.008008008
## X396.744066149398
                           4
                                      0.1869 0.037037037
## X374.742514816533
                           4
                                      0.1815 0.028028028
## X339.197085075794
                                      0.1631 0.043043043
## X210.840303174241
                                      0.1622 0.019019019
## X151.010737602026
                           4
                                      0.1580 0.029029029
## X116.927288483392
                                      0.1550 0.041041041
## X106.003654587976
                                      0.1523 0.041041041
## X320.885947142766
                           5
                                      0.1693 0.007007007
## X474.851017726839
                           6
                                      0.1622 0.043043043
                           7
## X749.614838652779
                                      0.1812 0.022022022
                           7
## X298.153849645553
                                      0.1556 0.032032032
## X300.809590372849
                           8
                                      0.1444 0.012012012
## X174.954387565919
                           9
                                      0.1982 0.039039039
## X174.954130968944
                                      0.1760 0.044044044
## X446.373066658593
                                      0.1546 0.038038038
  Sum of probabilities
                                           947.620620620621
##
  Sum of Indicator Values
                                           265.17
  Sum of Significant Indicator Values
                                           7.86
  Number of Significant Indicators
                                           38
  Significant Indicator Distribution
##
    1 2 3 4 5 6 7 8
##
       3 6 18 1 1 2 1 3
```

13. Disect indval object.

```
Orelfrq <- indicator_FungusO$relfrq  # relative frequency of species in classes
Orelabu <- indicator_FungusO$indval  # the indicator value for each species
Omaxcls <- data.frame(indicator_FungusO$maxcls)  # the class each species has max indicator value for
Oindcls <- data.frame(indicator_FungusO$indcls)  # the indicator value for each species to its max class
Opval <- data.frame(indicator_FungusO$pval)  # the probability of obtaining as high an indicator value
Yrelfrq <- indicator_Fungus$relfrq  # relative frequency of species in classes
Yrelabu <- indicator_Fungus$relabu  # relative abundance of species in classes
Yindval <- indicator_Fungus$indval  # the indicator value for each species
Ymaxcls <- data.frame(indicator_Fungus$maxcls)  # the class each species has max indicator value for
Yindcls <- data.frame(indicator_Fungus$indcls)  # the indicator value for each species to its max class
Ypval <- data.frame(indicator_Fungus$pval)  # the probability of obtaining as high an indicator value as

14. Export results to a csv file.

write.csv(cbind(Orelfrq, Orelabu, Oindval, Omaxcls, Oindcls,
```

Opval), "~/Box/Summer 2018 TX Endo Field Samples and Analysis/Statistics/Kenia_Thesis_Analysis/Lipi

Ypval), "~/Box/Summer 2018 TX Endo Field Samples and Analysis/Statistics/Kenia_Thesis_Analysis/Lipi

Lipids (Pos)

RRPP

2. Define dependent variable matrix and class matrix.

write.csv(cbind(Yrelfrq, Yrelabu, Yindval, Ymaxcls, Yindcls,

```
path <- "~/Box/Summer 2018 TX Endo Field Samples and Analysis/Statistics/Kenia_Thesis_Analysis/"

O_L_pos <- read_tsv(paste(path, "XCMS Online Results/O_L_Pos/XCMS.annotated.Report_1394374.tsv",
    sep = ""))

Y_L_pos <- read_tsv(paste(path, "XCMS Online Results/Y_L_Pos/XCMS.annotated.Report_1394370.tsv",
    sep = ""))

# dependent variable: metabolite intensities
Y_old <- O_L_pos[, c(2, 12:54)] %>% data.frame(row.names = 1) %>%
    t %>% data.frame()
scaled_Y_old <- scale(Y_old)

Y_young <- Y_L_pos[, c(2, 12:54)] %>% data.frame(row.names = 1) %>%
    t %>% data.frame()
scaled_Y_young <- scale(Y_young)

# class: sample factors
class <- read.csv(paste(path, "XCMS Online Results/class.csv",
    sep = ""), header = T, row.names = 1)</pre>
```

3. Define and run multivariate regression models, then print out the results.

```
##
## Linear Model fit with lm.rrpp
##
## Number of observations: 43
## Number of dependent variables: 1823
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Full Model Analysis of Variance
##
                           Df Residual Df
                                                 SS Residual SS
                                        35 20563.31
                                                       56002.69 0.2685698 1.835922
## Block * Water * Fungus
                           7
                           Z (from F)
                                            Pr(>F)
                             2.738345 0.006571429
## Block * Water * Fungus
##
##
## Redundancy Analysis (PCA on fitted values and residuals)
##
##
                 Trace Proportion Rank
## Fitted
              489.6027 0.2685698
## Residuals 1333.3973 0.7314302
                                     35
## Total
             1823.0000 1.0000000
                                     42
##
## Eigenvalues
##
##
                  PC1
                            PC2
                                     PC3
                                               PC4
                                                        PC5
                                                                  PC6
                                                                           PC7
             203.7511 142.4724
                                 62.4085
## Fitted
                                          28.1300
                                                    21.0207
                                                             17.0790
                                                                       14.7411
## Residuals 402.1919 150.3132 125.0098
                                          79.2707
                                                    62.6699
                                                             44.2508
                                                                       39.8865
## Total
             513.8609 258.2186 186.1442 115.4959
                                                    89.3826
                                                             51.6885
                                                                       48.5305
##
                  PC8
                            PC9
                                    PC10
                                              PC11
                                                       PC12
                                                                 PC13
                                                                          PC14
## Fitted
## Residuals
              36.5208
                        28.1299
                                 27.5893
                                           25.0897
                                                    23.4977
                                                             20.4194
                                                                       19.0704
              44.9001
                       35.5187
                                 31.1739
                                           28.2841
                                                    27.2468
                                                             25.7007
                                                                       22.5417
## Total
##
                 PC15
                           PC16
                                    PC17
                                              PC18
                                                       PC19
                                                                 PC20
                                                                          PC21
## Fitted
## Residuals 18.2407
                        17.7419
                                 16.7325
                                          15.3389
                                                    14.4980
                                                             13.5948
                                                                       12.9893
## Total
              21.0600
                        19.6929
                                 18.6159
                                           18.1548
                                                    16.8559
                                                             16.0430
                                                                       15.4500
##
                 PC22
                           PC23
                                    PC24
                                              PC25
                                                       PC26
                                                                 PC27
                                                                          PC28
## Fitted
## Residuals 12.7425
                        12.3680
                                 11.8230
                                          11.0709
                                                    10.9782
                                                             10.7037
## Total
              14.4329
                        13.4848
                                 12.8637
                                           12.8111
                                                    12.6443
                                                             12.1077
                                                                       11.5810
                 PC29
                           PC30
                                    PC31
                                              PC32
                                                       PC33
                                                                 PC34
                                                                          PC35
## Fitted
                         9.3422
                                  9.2476
                                            8.8057
                                                                        7.4973
## Residuals
               9.4416
                                                     8.3472
                                                               7.7692
## Total
              11.3027
                        10.6443
                                 10.6252
                                           10.1859
                                                     9.6192
                                                               9.4706
                                                                        9.3261
                 PC36
                           PC37
                                    PC38
                                              PC39
                                                       PC40
                                                                 PC41
                                                                          PC42
## Fitted
## Residuals
## Total
               9.0376
                         8.9028
                                  8.4398
                                            8.1941
                                                     8.0756
                                                               7.4086
                                                                        7.2823
Y_LMpos <- lm.rrpp(scaled_Y_young ~ Block * Water * Fungus, data = class,
    SS.type = "III", print.progress = F)
summary(Y_LMpos)
```

```
##
## Linear Model fit with lm.rrpp
##
## Number of observations: 43
## Number of dependent variables: 1753
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Full Model Analysis of Variance
##
                           Df Residual Df
                                                 SS Residual SS
                                        35 16697.86
## Block * Water * Fungus
                                                       56928.14 0.2267929 1.466573
                           7
                                            Pr(>F)
                           Z (from F)
                             2.534686 0.009571429
## Block * Water * Fungus
##
##
## Redundancy Analysis (PCA on fitted values and residuals)
##
##
                Trace Proportion Rank
## Fitted
              397.568 0.2267929
                                     7
## Residuals 1355.432 0.7732071
                                    35
## Total
             1753.000 1.0000000
                                    42
##
## Eigenvalues
##
##
                  PC1
                            PC2
                                     PC3
                                               PC4
                                                        PC5
                                                                  PC6
                                                                           PC7
             142.6474 84.0019
                                 50.0644
## Fitted
                                           42.8687
                                                    29.4336
                                                              25.2679
                                                                       23.2842
## Residuals 265.5398 157.3606
                                 91.6686
                                           74.9197
                                                              50.7397
                                                    59.4149
                                                                       47.3443
## Total
             355.1520 183.2308 149.0236
                                           94.5782
                                                    80.3546
                                                              59.2781
                                                                       58.3481
##
                  PC8
                            PC9
                                    PC10
                                              PC11
                                                       PC12
                                                                 PC13
                                                                          PC14
## Fitted
## Residuals
              41.1301
                        39.2101
                                 36.4674
                                           32.3485
                                                    28.5313
                                                              28.0699
                                                                       27.5505
              49.3092
                        40.8127
                                 38.5361
                                           36.1489
                                                    35.4990
                                                              30.7850
                                                                       30.2615
## Total
##
                 PC15
                           PC16
                                    PC17
                                              PC18
                                                       PC19
                                                                 PC20
                                                                          PC21
## Fitted
## Residuals
              26.2549
                        24.0054
                                 22.1261
                                           21.8733
                                                    21.7556
                                                             20.9410
## Total
              29.0613
                        26.8140
                                 25.8752
                                           24.6339
                                                    23.2060
                                                              22.2234
                                                                       21.7140
##
                 PC22
                           PC23
                                    PC24
                                              PC25
                                                       PC26
                                                                 PC27
                                                                          PC28
## Fitted
              19.0491
                        18.1612
                                 17.7255
                                           17.1035
                                                    16.7104
                                                              16.6269
## Residuals
                                                                       16.1307
                                           19.4048
## Total
              21.2347
                        21.0382
                                 19.8690
                                                    18.6921
                                                              18.4397
                                                                       17.2023
                 PC29
                           PC30
                                    PC31
                                              PC32
                                                       PC33
                                                                 PC34
                                                                          PC35
## Fitted
              15.6475
                                 14.7780
## Residuals
                        15.3318
                                           13.9033
                                                    12.7712
                                                             12.3730
                                                                       12.0795
## Total
              16.8355
                        16.7241
                                 16.3987
                                           15.7905
                                                    15.6259
                                                              15.3121
                                                                       14.8427
                 PC36
                           PC37
                                    PC38
                                              PC39
                                                       PC40
                                                                 PC41
                                                                          PC42
## Fitted
## Residuals
## Total
              14.6820 14.0847 13.7266 13.0061 12.4638 11.7355
  4. Examine RRPP plots to check for assumptions.
```

^{##} Old Leaves residuals vs fitted values (homoscedasticity
check)

PCA Residuals

Q-Q plot

Residuals vs. PC 1 fitted

Residuals vs. Fitted


```
# linear regression plot
Oregression <- plot(0_LMpos, type = "regression", predictor = class$Fungus,
    reg.type = "RegScore")</pre>
```


Young Leaves residuals vs fitted values (homoscedasticity
check)
Ydiagnostics <- plot(Y_LMpos, type = "diagnostics")</pre>

Q-Q plot

Residuals vs. PC 1 fitted

Residuals vs. Fitted


```
# linear regression plot
Yregression <- plot(Y_LMpos, type = "regression", predictor = class$Fungus,
    reg.type = "RegScore")</pre>
```


5. Perform an RRPP ANOVA and print results.

```
##
## Analysis of Variance, using Residual Randomization
## Permutation procedure: Randomization of null model residuals
## Number of permutations: 1000
## Estimation method: Ordinary Least Squares
## Sums of Squares and Cross-products: Type III
## Effect sizes (Z) based on F distributions
##
##
                      Df
                            SS
                                    MS
                                                             Z Pr(>F)
                                           Rsq
                                                    F
## Block
                         1070 1069.78 0.01397 0.6686 -0.54999
                                                                0.686
## Water
                         1330 1329.63 0.01737 1.3944 1.22656
## Fungus
                         1769 1768.66 0.02310 1.0018 0.10400
                       1
                                                                0.468
## Block:Water
                       1
                           954 953.56 0.01245 0.5959 -1.03959
                                                                0.865
## Block:Fungus
                       1
                         1305 1304.63 0.01704 0.7389 -0.59582
                                                                0.732
## Water:Fungus
                       1 1483 1483.16 0.01937 0.8401 -0.63265
                                                                0.755
## Block:Water:Fungus 1 1766 1765.55 0.02306 1.1034 0.41117
                      35 56003 1600.08 0.73143
## Residuals
## Total
                      42 76566
## Call: lm.rrpp(f1 = scaled_Y_old ~ Block * Water * Fungus, SS.type = "III",
##
       data = class, print.progress = F)
## Young Leaves
YposANOVA <- anova(Y_LMpos, effect.type = "F", error = c("Residuals",
    "Block: Water", "Block: Water: Fungus", "Residuals", "Block: Water: Fungus",
    "Block:Water:Fungus", "Residuals"))
summary(YposANOVA, formula = T)
##
## Analysis of Variance, using Residual Randomization
## Permutation procedure: Randomization of null model residuals
## Number of permutations: 1000
## Estimation method: Ordinary Least Squares
## Sums of Squares and Cross-products: Type III
## Effect sizes (Z) based on F distributions
##
##
                                          Rsq
                                                   F
## Block
                       1 2447 2446.9 0.03323 1.5044 1.26699 0.106
## Water
                       1 1644 1643.8 0.02233 1.1327 0.66770 0.247
## Fungus
                       1 2423 2423.0 0.03291 1.6588 1.67713 0.049 *
                       1 1451 1451.3 0.01971 0.8923 -0.30555 0.585
## Block:Water
## Block:Fungus
                       1
                         2248 2248.4 0.03054 1.5393 1.57121 0.056
                       1 1225 1224.7 0.01663 0.8384 -0.87126 0.819
## Water:Fungus
## Block: Water: Fungus 1 1461 1460.7 0.01984 0.8981 -0.30343 0.583
## Residuals
                      35 56928 1626.5 0.77321
## Total
                      42 73626
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Call: lm.rrpp(f1 = scaled_Y_young ~ Block * Water * Fungus, SS.type = "III",
       data = class, print.progress = F)
  6. Test lm.rrpp model coefficients. "d" is the amount of change in a variable for the coefficient indicated.
## Old Leaves test model coefficients
Oposcoef <- coef(O_LMpos, test = T)</pre>
```

```
summary(Oposcoef)
## Linear Model fit with lm.rrpp
##
## Number of observations: 43
## Number of dependent variables: 1823
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Statistics (distances) of coefficients with 95 percent confidence intervals,
## effect sizes, and probabilities of exceeding observed values based on
## 1000 random permutations using RRPP
##
##
                              d.obs UCL (95%)
                                                        Zd Pr(>d)
## (Intercept)
                        34.1599256 61.7353700 -1.95684852 0.995
## Block
                        15.5968289 25.1633903 -0.28288570
                                                            0.526
## WaterLow
                        45.0149621 63.0597629 0.06334637 0.387
## Fungus
                         1.1044955 1.4306097 0.67709712 0.200
## Block:WaterLow
                        19.6425423 32.8464121 -0.66422990 0.731
## Block:Fungus
                         0.4864742 0.7921168 0.05598939 0.339
## WaterLow:Fungus
                         1.4031743 1.8729912 0.29754205 0.319
## Block:WaterLow:Fungus 0.7572552 0.9353568 0.72744379 0.209
## Young Leaves test model coefficients
Yposcoef <- coef(Y_LMpos, test = T)</pre>
summary(Yposcoef)
##
## Linear Model fit with lm.rrpp
## Number of observations: 43
## Number of dependent variables: 1753
## Data space dimensions: 42
## Sums of Squares and Cross-products: Type III
## Number of permutations: 1000
##
## Statistics (distances) of coefficients with 95 percent confidence intervals,
## effect sizes, and probabilities of exceeding observed values based on
## 1000 random permutations using RRPP
##
                              d.obs UCL (95%)
##
                                                       Zd Pr(>d)
## (Intercept)
                        43.3123692 58.8101870 -1.2509010 0.920
## Block
                         23.5881635 24.6530432 1.7402426 0.066
## WaterLow
                         50.0515288 58.7796167 0.6324293 0.231
## Fungus
                         1.2927626 1.2966211
                                               1.8934681 0.055
## Block:WaterLow
                        24.2326549 30.7399442 0.1501839 0.361
## Block:Fungus
                         0.6386411 0.6831298 1.4965286 0.091
## WaterLow:Fungus
                          1.2750398 1.6974929 -0.3759780 0.591
## Block:WaterLow:Fungus 0.6887842 0.8534886 0.1723266 0.373
```

Block and Fungus have the largest effect on the model for young leaves, but not their interaction. The standard is the mean for High water treatment.

7. Compute predicted values from the lm.rrpp model fit using bootstrapped residuals to generate confidence intervals (precision of group mean estimates).

```
O_pred <- predict(O_LMpos)
plot(O_pred, PC = T, ellipse = T)</pre>
```

Among-prediction PC rotation; 95% confidence limits

Y_pred <- predict(Y_LMpos)
plot(Y_pred, PC = T, ellipse = T)</pre>

Among-prediction PC rotation; 95% confidence limits

8. Test pairwise differences between least squares means. Similar to tukeyHSD function in the r stats package. The pairwise function will generate tables with confidence intervals and p-values for the pairwise statistic, Euclidean distance between least-squares means.

```
## Old Leaves pairwise differences of fungus
Opospw <- pairwise(O_LMpos, groups = class$Fungus)
summary(Opospw, confidence = 0.95, stat.table = T)</pre>
```

```
##
## Pairwise comparisons
##
  Groups: 0 3 5 15 25 32 37 52 62
##
## RRPP: 1000 permutations
##
## LS means:
## Vectors hidden (use show.vectors = TRUE to view)
##
## Pairwise distances between means, plus statistics
##
                 d UCL (95%)
                                       Z Pr > d
          9.326918 15.081624 -1.7796366
## 0:3
                                          0.989
## 0:5
          6.413682 13.087229 -1.7430592
                                          0.999
## 0:15
          8.537287 15.635740 -1.9158439
                                          0.995
## 0:25
          9.682422 16.707489 -1.0422244
                                          0.844
## 0:32
         11.812877 20.548658 -1.1105877
                                          0.859
## 0:37
         13.658639 23.759386 -1.1105877
                                          0.859
         20.109497 33.766702 -0.8944898
                                          0.784
## 0:62
         22.508012 39.682327 -1.1933068
                                          0.887
## 3:5
         10.741033 17.794974 -1.0688047
                                          0.923
## 3:15
          7.242409 12.371632 -1.6283816
                                          0.978
       13.176750 20.073835 -1.2100992 0.905
## 3:25
```

```
## 3:32 14.364873 22.342311 -1.1883380 0.889
## 3:37
        15.818024 24.829495 -1.1375802 0.879
## 3:52 20.555725 33.267912 -0.9170535
                                         0.810
## 3:62 23.677676 38.592452 -1.1333339
                                         0.871
## 5:15
         6.053913 9.914560 -1.1081330
                                         0.948
## 5:25
         9.152150 13.895752 -0.9457415
                                        0.836
## 5:32 11.806098 17.806246 -0.9561187
## 5:37 13.414391 20.444550 -0.9275503
                                        0.830
## 5:52 19.464398 29.805945 -0.6173291
                                         0.688
## 5:62 21.953727 34.831262 -1.0013070
                                         0.836
## 15:25 8.889463 12.971042 -1.2871520
                                         0.935
## 15:32 10.767077 15.602086 -1.2043613
                                         0.910
## 15:37 12.160027 17.891619 -1.1180011
                                        0.888
## 15:52 17.098166 25.522306 -0.7110826
                                        0.729
## 15:62 20.263196 31.687701 -1.0743974
                                         0.867
## 25:32 3.156363 4.859375 -1.2897547
                                         0.910
## 25:37 4.699102 7.718655 -1.2441550
                                         0.900
## 25:52 11.316338 17.691314 -0.7021308
                                         0.733
## 25:62 13.769592 23.775292 -1.2744774
                                        0.916
## 32:37 1.845762 3.210728 -1.1105877
                                         0.859
## 32:52 8.828454 14.175615 -0.6253290
                                        0.696
## 32:62 10.940495 19.384793 -1.2739088
## 37:52 7.221105 11.355320 -0.5599506
                                        0.671
## 37:62 9.189634 16.310820 -1.3015290
                                        0.919
## 52:62 5.837055 11.577959 -1.4883892 0.997
## Young Leaves pairwise differences of fungus
Ypospw <- pairwise(Y_LMpos, groups = class$Fungus)</pre>
summary(Ypospw, confidence = 0.95, stat.table = T)
##
## Pairwise comparisons
## Groups: 0 3 5 15 25 32 37 52 62
## RRPP: 1000 permutations
## LS means:
## Vectors hidden (use show.vectors = TRUE to view)
## Pairwise distances between means, plus statistics
                 d UCL (95%)
                                      Z Pr > d
## 0:3
         9.854093 14.938239 -1.9935269
                                        0 996
## 0:5
         9.353807 13.751899 -0.7375719
                                         0.782
## 0:15 10.700420 16.716054 -1.3899382
                                         0.967
## 0:25
         7.562621 12.597784 -2.2956345
                                         0.999
## 0:32
         9.535169 16.122698 -2.2338570
                                         0.999
## 0:37 11.025039 18.641869 -2.2338570
                                         0.999
## 0:52 16.992197 27.719363 -1.8563276
                                         0.989
## 0:62
       18.946444 31.625557 -2.2575314
                                        0.999
## 3:5
         10.611811 16.363592 -1.9120192
                                        0.996
## 3:15
         8.159435 12.300097 -2.0132860
                                        0.999
## 3:25 12.031577 17.625649 -2.3334008 0.998
## 3:32 13.017518 19.457264 -2.1542961 0.997
## 3:37 14.042320 21.204045 -2.1672421 0.997
```

```
## 3:52 18.632569 28.553958 -1.8591470 0.992
## 3:62 20.424364 31.860514 -2.2289533
                                       0.998
         5.706131 9.973249 -1.7312246
## 5:15
                                        0.999
## 5:25
         9.764308 14.154114 -1.1658427
                                        0.907
## 5:32 11.972073 18.026319 -1.2206755
                                        0.924
        12.980020 19.936449 -1.3438287
## 5:37
                                        0.947
## 5:52 18.049742 27.681061 -1.1761258
## 5:62 19.303690 30.987637 -1.7655760
                                        0.985
## 15:25 9.174418 12.735347 -1.4633525
                                        0.956
## 15:32 10.645667 15.191333 -1.3578022
                                        0.938
## 15:37 11.383035 16.671930 -1.4494688
                                        0.952
## 15:52 15.349692 23.073097 -1.2056519
                                        0.902
## 15:62 17.100786 26.793796 -1.8404240
                                        0.993
## 25:32 2.894715 4.556296 -1.5252702
                                        0.970
## 25:37 4.144646 6.790223 -1.7951375
                                        0.991
## 25:52 10.383804 15.974180 -1.3678656
                                        0.925
## 25:62 12.119246 19.799939 -2.1437260
                                        0.998
## 32:37 1.489870 2.519172 -2.2338570
                                        0.999
## 32:52 8.312294 12.703700 -1.4485389
                                        0.951
## 32:62 9.612051 15.787609 -2.2790041
                                        0.999
## 37:52 7.155507 10.632004 -1.2968823
                                        0.916
## 37:62 8.195418 13.346881 -2.2835633
## 52:62 6.749666 10.702551 -1.7794992 0.999
```

loading vectors: see object\$rotation

PCA

8. Identify the major source of variation in data and determine if the variation is sourced from experimental bias or biological conditions.

```
# Old Leaf Lipids (Pos) tune how many components to use
tune.pca(scaled_Y_old)
## Eigenvalues for the first 10 principal components, see object$sdev^2:
                             PC3
                                        PC4
                                                                                 PC8
         PC1
                   PC2
                                                  PC5
                                                             PC6
                                                                       PC7
                                                                            44.90014
## 513.86089 258.21864 186.14420 115.49587
                                            89.38257
                                                       51.68852
                                                                  48.53052
##
         PC9
                  PC10
    35.51871
             31.17389
##
## Proportion of explained variance for the first 10 principal components, see object$explained_varianc
##
          PC1
                                PC3
                                            PC4
                                                       PC5
                                                                   PC6
                     PC2
                                                                              PC7
  0.28187652 0.14164489 0.10210872 0.06335484 0.04903048 0.02835355 0.02662124
##
          PC8
                     PC9
                               PC10
## 0.02462981 0.01948366 0.01710032
##
## Cumulative proportion explained variance for the first 10 principal components, see object$cum.var:
##
         PC1
                   PC2
                             PC3
                                        PC4
                                                  PC5
                                                             PC6
                                                                       PC7
## 0.2818765 0.4235214 0.5256301 0.5889850 0.6380155 0.6663690 0.6929902 0.7176200
##
         PC9
                  PC10
##
  0.7371037 0.7542040
##
##
    Other available components:
```


pca.res <- mixOmics::pca(scaled_Y_old, ncomp = 3, scale = F)</pre>

```
# plot pca
plotIndiv(pca.res, group = class$Fungus, ind.names = F, pch = as.factor(class$Water),
    legend = T, legend.title = "Fungus", legend.title.pch = "Water",
    title = "Old Leaf Lipids (Pos) PCA")
```



```
# Look at variable coefficients in each component with the
# loading vectors The absolute value of loading vectors
# represent the importance of each variable to define each PC
plotLoadings(pca.res, ndisplay = 50)
```

Loadings on comp 1


```
pca.res <- mixOmics::pca(scaled_Y_young, ncomp = 3, scale = F)

# plot pca
plotIndiv(pca.res, group = class$Fungus, ind.names = F, pch = as.factor(class$Water),
    legend = T, legend.title = "Fungus", legend.title.pch = "Water",
    title = "Young Leaf Lipids (Pos) PCA")</pre>
```


Loadings on comp 1

9. Identify the variables that contribute to the explained variance.

variables contributing to each component
plotVar(spca.res, cex = 1)

selectVar(spca.res, comp = 1)\$value # view loading value of each metabolite

```
value.var
## X831.518709236631 0.172620458
## X732.443171092481 0.168296057
## X731.438136266847 0.167454065
## X814.519484941161 0.166438746
## X830.504557359875 0.164320709
## X815.526421936588 0.163737218
## X813.515578090397 0.163508986
## X808.559334231922 0.161009134
## X546.388334863329 0.160984742
## X545.385999141925 0.153342022
## X816.531573630009 0.151288630
## X743.441886634262 0.150052144
## X755.511357401208 0.149947430
## X778.544782125781 0.148521054
## X1263.81367373035 0.148160308
## X611.469097923805 0.146656030
## X804.535268781479 0.143688197
## X746.420945538405 0.142549845
## X374.206071654201 0.140943889
## X780.55897895783 0.140750076
## X529.390511583298 0.140242603
## X779.549904558657 0.139479912
## X745.418001691058 0.138998524
## X824.555516706525 0.138571412
## X1264.31686752149 0.137319501
## X1263.3118786525 0.133758175
```

```
## X781.562470345012 0.132132235
## X829.502477789232 0.126553139
## X518.326555182277 0.125737893
## X742.476200409555 0.123710029
## X794.568765896594 0.123558466
## X318.301936686386 0.117975433
## X734.456270192253 0.114664379
## X733.452831026669 0.114303773
## X747.432280460354 0.113584596
## X793.569482767912 0.113278695
## X792.566391872827 0.113173936
## X246.244026630445 0.112776140
## X326.379188131675 0.106900159
## X382.705648118746 0.106833961
## X827.492635970453 0.105282182
## X748.43588669705 0.104892985
## X571.456275345093 0.103289959
## X411.197745550511 0.102627905
## X382.205104740423 0.101332014
## X432.750951893732 0.099918659
## X286.311793629783 0.098645924
## X410.188828237828 0.095175090
## X409.185152883057 0.094132284
## X362.328187231192 0.092960946
## X765.445581943467 0.091584912
## X333.244766441338 0.090869187
## X519.329371282499 0.089682623
## X363.331227311425 0.080353159
## X532.410240682773 0.079368347
## X414.739690648256 0.067791427
## X309.253134340825 0.067106545
## X332.332789682947 0.065975546
## X1183.78973796016 0.060171240
## X1182.78522288059 0.056580213
## X1182.28366567391 0.055405026
## X596.478037801955 0.054532813
## X281.222474726652 0.053342219
## X1181.78090187063 0.052643191
## X340.283564752252 0.052030673
## X423.74507270066 0.051520306
## X387.181977224108 0.050024375
## X1183.28910429712 0.048964580
## X375.216239987552 0.048325820
## X850.532999703027 0.044751553
## X614.489382227607 0.044712660
## X432.249992388519 0.044096815
## X851.536200338849 0.042511539
## X334.296207062515 0.041511119
## X617.422434584689 0.040892373
## X600.423865799132 0.040450993
## X531.406294563801 0.039938451
## X388.185474387062 0.038037599
## X375.715726205822 0.037751982
## X795.424433772223 0.033949094
```

```
## X1344.83974186844 0.031175120
## X423.246011998791 0.029381703
## X274.275878507362 0.027867860
## X595.475042420081 0.026042544
## X657.413334779106 0.022971788
## X986.60881151063 0.021944818
## X415.213245299454 0.020714708
## X207.140250943762 0.018507543
## X409.164099604973 0.018150977
## X538.309635918706 0.017914136
## X393.192032923759 0.017455099
## X896.51647657354 0.017379232
## X875.487665919143 0.017004776
## X800.537939870678 0.016738006
## X830.514148662257 0.016441777
## X537.305924903602 0.010246862
## X864.512061516746 0.009965227
## X1589.02230273985 0.008643349
## X410.167418682302 0.006399847
## X550.44710345109 0.002474784
# plot loadings for comp 1
plotLoadings(spca.res, ndisplay = 50)
```

Loadings on comp 1

Loadings on comp 2

variables contributing to each component
plotVar(spca.res, cex = 1)


```
value.var
## X976.041998135736 0.164272822
## X954.617350712229 0.163448534
## X977.046661552301 0.162306422
## X488.273791169864 0.161458674
## X488.775520755918 0.160536781
## X1022.54601248655 0.160489386
## X955.620453566605 0.160190374
## X1021.54240486195 0.157593782
## X976.547601572266 0.155665956
## X957.067931837591 0.154670263
## X958.072466453944 0.153812952
## X959.573536973575 0.152794534
## X960.576533282935 0.152322088
## X975.544001916677 0.150883330
## X1425.86290778796 0.146142511
## X1426.36728999806 0.145229770
## X1424.85976253527 0.144990862
## X1426.86681294552 0.144565735
## X659.365666231495 0.144306082
## X1425.36465620149 0.143198475
## X1044.5302405318 0.140736973
## X984.563513923169 0.140323494
## X500.760771606528 0.140069527
## X1105.49784561199 0.135875269
## X613.484253189627 0.132178575
## X614.487311675301 0.131782873
## X1043.52514843306 0.131659191
## X981.562748023954 0.131115658
## X956.618076432937 0.131013597
## X1002.57244552927 0.127964995
## X530.250480055448 0.125847541
## X517.25166770316 0.125451005
## X1001.56794826718 0.120599063
## X961.581216158607 0.116334098
## X965.055001789849 0.111857681
## X977.551243793464 0.109211089
## X595.472912832874 0.105682274
## X982.567972858134 0.104196176
## X565.40497857005 0.103787999
## X876.041438895017 0.101865450
## X873.582274012005 0.099474539
## X599.410381223173 0.099252065
## X875.540053674342 0.095547062
## X969.053894724155 0.095534693
## X1076.65110191885 0.094061557
## X1065.50960048045 0.092477157
## X1077.65448948329 0.092406666
## X999.521732579416 0.090490988
## X623.408314743953 0.088684055
## X566.409203399864 0.084787818
## X957.609347356654 0.083278521
```

```
## X624.411930213696 0.080258317
## X1027.55778323275 0.080073455
## X489.277936278616 0.078066626
## X978.555223013531 0.076957472
## X1028.56349217506 0.076554593
## X480.790480251846 0.074970226
## X349.161929131895 0.074074623
## X600.414332602851 0.071518021
## X517.752878732788 0.070620078
## X1023.55012772181 0.069077483
## X876.543723964092 0.066186012
## X946.076362435254 0.064245671
## X1078.65902624265 0.064236605
## X584.419196792614 0.063199104
## X551.425843612517 0.063176518
## X945.575354442912 0.062090676
## X552.429062975079 0.058517505
## X583.415855136359 0.058038828
## X871.576507868922 0.057795471
## X874.584651876624 0.057747623
## X962.586217446947 0.055082584
## X895.015665583442 0.046338032
## X894.514915085236 0.043939574
## X496.260198028083 0.043827329
## X657.408346877498 0.043428948
## X502.259240592042 0.041649504
## X583.415516353551 0.038963095
## X1106.50260362597 0.038025338
## X617.420737980743 0.037213469
## X496.762620578608 0.036499356
## X909.532512628987 0.032323205
## X619.43415426729 0.031295823
## X507.750369455364 0.030877346
## X991.511218688387 0.029628460
## X618.424413292171 0.028967963
## X553.43164404136 0.028058213
## X847.519069497488 0.027288267
## X985.567543188756 0.026943520
## X877.04633470551 0.025191092
## X1259.70574776524 0.024073045
## X599.410692576378 0.023695334
## X614.487577459701 0.020638426
## X992.515712573244 0.016347061
## X530.752892698683 0.015324619
## X600.414315574091 0.014573064
## X660.368635116281 0.011751384
## X568.428500821379 0.010047001
## X1039.52144262227 0.008062114
## X1004.54062609616 0.001874783
# plot loadings for comp 1
plotLoadings(spca.res, ndisplay = 50)
```

Loadings on comp 1

Loadings on comp 2

PLS-DA

10. Classify samples into known groups and predict the class of new samples.

plot and select the variables
plotVar(old.splsda)

selectVar(old.splsda, comp = 1)

```
## $name
     [1] "X530.251890235539" "X530.753768195125" "X488.275414364684"
##
     [4] "X538.743327781972" "X488.777015051065" "X884.027506995044"
     [7] "X538.23997319141" "X915.604140852292" "X660.373813622957"
##
##
    [10] "X976.044489697274" "X865.051335834973" "X1022.54885683216"
    [13] "X496.261816231193" "X1021.54523919379" "X659.369747252162"
##
    [16] "X984.540629812326" "X866.05572515234" "X867.059699878059"
##
    [19] "X977.047777844877" "X865.552516836676" "X480.789491043094"
##
##
    [22] "X1077.65731355674" "X984.031307278781" "X991.5133487097"
    [25] "X1076.65407710562" "X864.549452309306" "X992.51785183861"
##
    [28] "X496.763451275431" "X878.558611078674" "X987.53280552011"
##
    [31] "X495.764593225705" "X599.412394128268" "X866.556293513115"
##
    [34] "X349.163202772319" "X493.76201594691" "X830.467014372042"
##
    [37] "X975.547124984202" "X480.288159876163" "X945.576618927559"
##
    [40] "X740.500801011646" "X986.524437394119" "X976.550427272099"
##
    [43] "X485.27226370238" "X336.223807575843" "X932.634751093022"
##
##
    [46] "X914.600991727368" "X877.539499109809" "X999.561014547874"
    [49] "X946.078374829586" "X501.761232616786" "X539.249113810979"
    [52] "X600.4158642877"
                             "X364.254362067022" "X295.196082045934"
##
    [55] "X613.48620846313"
                             "X879.065097543885" "X415.7365415304"
##
    [58] "X317.180659718134" "X1445.34303632503" "X496.775134400763"
##
    [61] "X502.25999467882" "X1041.83003958831" "X872.53310000352"
##
    [64] "X489.27954788019"
                             "X994.523205661239" "X946.582521635004"
##
##
    [67] "X955.623184556673" "X877.04903182984" "X1000.56418074143"
    [70] "X959.575997758434" "X893.618592737698" "X477.283217238129"
##
    [73] "X497.273508649734" "X878.055130721582" "X354.232017565987"
##
    [76] "X957.070210444299" "X335.260157312681" "X954.619922134736"
##
```

```
[79] "X504.271157003764" "X960.578907599357" "X829.462641361221"
    [82] "X342.239823636993" "X1023.55357784034" "X880.070800931978"
##
    [85] "X977.554810339346" "X601.427805825546" "X349.663922662639"
   [88] "X1444.33993604679" "X491.800145976373" "X758.531383058781"
    [91] "X813.495852628813" "X1031.79972614852" "X296.199163537393"
   [94] "X382.263843576394" "X498.313262137699" "X958.074259394391"
##
   [97] "X477.784574638339" "X595.4746818897" "X933.638024103796"
## [100] "X1444.84082391465"
##
## $value
##
                        value.var
## X530.251890235539 0.2787399150
## X530.753768195125 0.2371262941
## X488.275414364684 0.2150767431
## X538.743327781972 0.2039737100
## X488.777015051065 0.1979515943
## X884.027506995044 0.1957315327
## X538.23997319141 0.1850202728
## X915.604140852292 0.1768660602
## X660.373813622957 0.1619652834
## X976.044489697274 0.1592902240
## X865.051335834973 0.1580346338
## X1022.54885683216 0.1565880346
## X496.261816231193 0.1560505238
## X1021.54523919379 0.1528475130
## X659.369747252162 0.1504923648
## X984.540629812326 0.1494937360
## X866.05572515234 0.1492380737
## X867.059699878059 0.1377467341
## X977.047777844877 0.1321578287
## X865.552516836676 0.1303586523
## X480.789491043094 0.1289828655
## X1077.65731355674 0.1242133843
## X984.031307278781 0.1238722544
## X991.5133487097
                   0.1219637941
## X1076.65407710562 0.1219308145
## X864.549452309306 0.1193376111
## X992.51785183861 0.1187054405
## X496.763451275431 0.1154751633
## X878.558611078674 0.1150664680
## X987.53280552011 0.1140340310
## X495.764593225705 0.1138238999
## X599.412394128268 0.1115587261
## X866.556293513115 0.1056436222
## X349.163202772319 0.1051028921
## X493.76201594691 0.1047411455
## X830.467014372042 0.1029089014
## X975.547124984202 0.1015381266
## X480.288159876163 0.1002706043
## X945.576618927559 0.0993092193
## X740.500801011646 0.0954256877
## X986.524437394119 0.0953498581
## X976.550427272099 0.0864485551
## X485.27226370238 0.0836839142
```

```
## X336.223807575843 0.0822740327
## X932.634751093022 0.0800578018
## X914.600991727368 0.0707202362
## X877.539499109809 0.0688353460
## X999.561014547874 0.0675343722
## X946.078374829586 0.0641602966
## X501.761232616786 0.0601006955
## X539.249113810979 0.0589843204
## X600.4158642877
                     0.0588990331
## X364.254362067022 0.0578590721
## X295.196082045934 0.0568541536
## X613.48620846313 0.0566359178
## X879.065097543885 0.0543763280
                   0.0531126915
## X415.7365415304
## X317.180659718134 0.0490692525
## X1445.34303632503 0.0485941801
## X496.775134400763 0.0480602511
## X502.25999467882 0.0476392303
## X1041.83003958831 0.0465025280
## X872.53310000352 0.0443540775
## X489.27954788019 0.0424362509
## X994.523205661239 0.0385777808
## X946.582521635004 0.0375775847
## X955.623184556673 0.0354372477
## X877.04903182984 0.0344928726
## X1000.56418074143 0.0317210173
## X959.575997758434 0.0301766867
## X893.618592737698 0.0288806933
## X477.283217238129 0.0288038601
## X497.273508649734 0.0265632684
## X878.055130721582 0.0261134717
## X354.232017565987 0.0252260680
## X957.070210444299 0.0232778198
## X335.260157312681 0.0230247719
## X954.619922134736 0.0222957611
## X504.271157003764 0.0213450974
## X960.578907599357 0.0210706752
## X829.462641361221 0.0203366521
## X342.239823636993 0.0175492491
## X1023.55357784034 0.0146647413
## X880.070800931978 0.0133300332
## X977.554810339346 0.0122406310
## X601.427805825546 0.0112007391
## X349.663922662639 0.0111267919
## X1444.33993604679 0.0104216536
## X491.800145976373 0.0099582362
## X758.531383058781 0.0097578262
## X813.495852628813 0.0094676399
## X1031.79972614852 0.0074113278
## X296.199163537393 0.0069973762
## X382.263843576394 0.0066865175
## X498.313262137699 0.0057358045
## X958.074259394391 0.0045261897
## X477.784574638339 0.0042601516
```

```
## X595.4746818897   0.0025486460
## X933.638024103796  0.0006263414
## X1444.84082391465  0.0004178260
##
## $comp
## [1] 1
plotLoadings(old.splsda, contrib = "max", method = "mean", ndisplay = 50)
```

Contribution on comp 1

plot and select the variables
plotVar(young.splsda)

selectVar(young.splsda, comp = 1)

```
## $name
     [1] "X323.14304237273" "X320.865331216044" "X295.139586284575"
##
     [4] "X493.134859214546" "X1081.49400144322" "X219.102247109176"
##
     [7] "X311.140703468025" "X569.24210114707" "X125.98538662539"
##
##
    [10] "X341.140983431263" "X689.208845644225" "X690.213072804742"
    [13] "X124.087159541443" "X908.538845406465" "X624.753109038336"
##
    [16] "X459.151455061327" "X901.326376690684" "X185.889646934245"
##
    [19] "X697.341230129379" "X191.140973651863" "X158.964663690357"
##
    [22] "X690.274113121676" "X691.277072720664" "X90.9033982585977"
##
##
    [25] "X573.19576286678" "X540.887752002719" "X327.160055697807"
    [28] "X575.202673302042" "X266.850804733148" "X328.162988647859"
##
    [31] "X621.215799976138" "X199.939057016748" "X346.789544256213"
##
    [34] "X741.496717660915" "X120.968414511616" "X484.784713858346"
##
    [37] "X184.889317750766" "X126.961522293921" "X229.141806150096"
##
##
    [40] "X607.174079370479" "X607.207550803792" "X284.816999052287"
    [43] "X377.085626354264" "X233.076001576199" "X163.040073994767"
##
    [46] "X360.764061390427" "X627.203866379119" "X308.890061856173"
##
    [49] "X237.110685328431" "X536.438084724472" "X358.7657555068"
##
    [52] "X561.192552485699" "X282.094893241756" "X711.191695035036"
##
##
    [55] "X196.993677234327" "X273.081274829421" "X120.088896864637"
    [58] "X177.016364210501" "X549.218901747332" "X562.196381837805"
##
    [61] "X281.088456911411" "X179.065348185315" "X231.141741122512"
##
    [64] "X609.189377269662" "X196.865603414843" "X378.164038356871"
##
    [67] "X190.126486578404" "X559.232898750283" "X638.740382781965"
##
    [70] "X377.160255395164" "X137.060663669955" "X660.80142026303"
##
    [73] "X198.862737375487" "X311.169700767634" "X569.199478252238"
##
    [76] "X119.089062369492" "X354.21920367533" "X265.106604762037"
##
    [79] "X1175.48129784953" "X547.215180396862" "X548.21957840366"
##
    [82] "X617.150214310121" "X334.179688309003" "X359.149843804862"
##
    [85] "X302.804745242621" "X379.112996191006" "X247.167539133505"
##
    [88] "X411.09543608981" "X177.055302334209" "X274.079850557197"
##
    [91] "X256.821609153248" "X634.452246542767" "X596.177215143824"
##
    [94] "X595.17823477301" "X449.108904670796" "X248.169808470866"
    [97] "X331.15494958124" "X278.895045500166" "X258.818833431917"
##
   [100] "X621.286190628049"
##
##
## $value
##
                         value.var
## X323.14304237273 -0.3416167438
## X320.865331216044 -0.2955018499
## X295.139586284575 -0.2276259767
## X493.134859214546 -0.2106263799
## X1081.49400144322 0.1998892746
## X219.102247109176 -0.1834834966
## X311.140703468025 -0.1834650636
## X569.24210114707
                     0.1820321373
## X125.98538662539 -0.1733721746
## X341.140983431263 -0.1697275623
## X689.208845644225 -0.1688705084
## X690.213072804742 -0.1612449742
## X124.087159541443 -0.1564560851
## X908.538845406465 0.1543282802
```

```
## X624.753109038336 0.1482127350
## X459.151455061327 -0.1405048279
## X901.326376690684 -0.1399217497
## X185.889646934245 -0.1370141931
## X697.341230129379 -0.1339946588
## X191.140973651863 -0.1318479906
## X158.964663690357 -0.1290596063
## X690.274113121676 -0.1231780789
## X691.277072720664 -0.1206881434
## X90.9033982585977 -0.1195010844
## X573.19576286678 -0.1172479650
## X540.887752002719 -0.1150723215
## X327.160055697807 -0.1139831185
## X575.202673302042 -0.1123408534
## X266.850804733148 0.1010303807
## X328.162988647859 -0.0979358756
## X621.215799976138 -0.0960407330
## X199.939057016748 -0.0956320989
## X346.789544256213 -0.0853501324
## X741.496717660915 0.0839611945
## X120.968414511616 -0.0833105448
## X484.784713858346 0.0827437432
## X184.889317750766 -0.0798891147
## X126.961522293921 -0.0737213683
## X229.141806150096 -0.0727801918
## X607.174079370479 -0.0699263459
## X607.207550803792 -0.0689839161
## X284.816999052287 -0.0662973673
## X377.085626354264 -0.0654950136
## X233.076001576199 -0.0632242865
## X163.040073994767 -0.0603304097
## X360.764061390427 0.0591449838
## X627.203866379119 -0.0580548334
## X308.890061856173 -0.0550110532
## X237.110685328431 -0.0539797209
## X536.438084724472 0.0519614676
## X358.765755068
                      0.0492060182
## X561.192552485699 -0.0485448680
## X282.094893241756 -0.0479308899
## X711.191695035036 -0.0476566818
## X196.993677234327 0.0470686061
## X273.081274829421 -0.0454925159
## X120.088896864637 -0.0454761313
## X177.016364210501 -0.0452816943
## X549.218901747332 -0.0432890869
## X562.196381837805 -0.0418095894
## X281.088456911411 -0.0415812997
## X179.065348185315 -0.0409394208
## X231.141741122512 -0.0403002997
## X609.189377269662 -0.0399387350
## X196.865603414843 0.0376777031
## X378.164038356871 -0.0369785833
## X190.126486578404 -0.0351672677
## X559.232898750283 0.0341601357
```

```
## X638.740382781965 0.0333015118
## X377.160255395164 -0.0329288226
## X137.060663669955 -0.0310865370
## X660.80142026303 -0.0302963470
## X198.862737375487 0.0288442438
## X311.169700767634 -0.0255553101
## X569.199478252238 -0.0254921289
## X119.089062369492 -0.0211187434
## X354.21920367533 -0.0209744779
## X265.106604762037 -0.0184500339
## X1175.48129784953 0.0182995905
## X547.215180396862 -0.0181184559
## X548.21957840366 -0.0178552376
## X617.150214310121 -0.0173720762
## X334.179688309003 -0.0167524117
## X359.149843804862 -0.0166710091
## X302.804745242621 0.0155077124
## X379.112996191006 -0.0154490252
## X247.167539133505 0.0143220385
## X411.09543608981 -0.0122302715
## X177.055302334209 -0.0114308940
## X274.079850557197 -0.0111453338
## X256.821609153248 0.0111005249
## X634.452246542767 -0.0103238264
## X596.177215143824 -0.0102794991
## X595.17823477301 -0.0100377883
## X449.108904670796 -0.0085082813
## X248.169808470866 0.0059334461
## X331.15494958124 -0.0048366868
## X278.895045500166 -0.0036005552
## X258.818833431917 0.0031083231
## X621.286190628049 -0.0008631579
##
## $comp
## [1] 1
plotLoadings(young.splsda, contrib = "max", method = "mean",
    ndisplay = 50)
```

Contribution on comp 1

Heatmaps of Averaged Data

11. Create averaged metabolite matrices and rerun PLS-DA to create a heatmap.

```
## Young Leaves
av_Y_young <- aggregate(Y_young, by = list(class$Water, class$Fungus),
    FUN = "mean", simplify = T, data = class)
av.young.plsda <- mixOmics::plsda(av_Y_young[, 3:1755], av_Y_young$Group.2) # fungus

# heatmap
youngcim <- cim(av.young.plsda, title = "Young Leaf Lipids (pos) Averaged Over Fungi",
    col.names = F, xlab = "Lipids", save = "png", name.save = "~/Box/Summer 2018 TX Endo Field Samples</pre>
```

Indicator Analysis

12. Identify indicator metabolites characteristic of each treatment using Dufrene-Legendre Indicator Analysis.

```
# Old Leaf
indicator_Fungus0 <- indval(Y_old, clustering = class$Fungus,
    numitr = 999, type = "long")
summary(indicator_Fungus0)</pre>
```

```
cluster indicator_value probability
                           2
                                      0.2677 0.005005005
## X489.35462933628
## X490.791670007051
                           2
                                      0.2028 0.014014014
                           2
## X639.498002902109
                                      0.2001 0.014014014
## X488.471131400521
                           2
                                      0.1749 0.005005005
## X132.003591767874
                           2
                                      0.1719 0.013013013
## X170.995946702707
                           2
                                      0.1408 0.033033033
```

```
## X273.954392017636
                                      0.1380 0.031031031
                           3
                                      0.3478 0.005005005
## X185.164696985093
                                      0.3255 0.038038038
## X376.31895115606
                           3
## X336.326465950957
                           3
                                       0.3181 0.038038038
## X374.304618700015
                           3
                                       0.3012 0.009009009
## X199.180022642972
                           3
                                      0.2997 0.005005005
## X375.306430609726
                           3
                                      0.2948 0.015015015
## X390.279102211741
                           3
                                      0.2932 0.007007007
## X352.322063881895
                           3
                                       0.2915 0.006006006
## X492.385818755942
                           3
                                      0.2687 0.006006006
## X277.105121509266
                           3
                                      0.2577 0.034034034
## X491.382428141364
                           3
                                      0.2505 0.012012012
## X226.181345981972
                           3
                                      0.2502 0.022022022
                           3
                                      0.2023 0.017017017
## X1054.66801962491
## X498.274974137856
                           3
                                      0.1799 0.037037037
## X72.9377822523269
                           3
                                      0.1531 0.043043043
## X132.003713274136
                           4
                                      0.1772 0.041041041
## X95.95331057663
                                      0.1703 0.038038038
## X140.958539036103
                           4
                                      0.1599 0.002002002
## X153.022044029877
                           4
                                      0.1442 0.030030030
## X897.734506917031
                           5
                                      0.1913 0.021021021
## X872.580459583859
                                      0.2758 0.005005005
## X67.9356517887528
                           9
                                      0.1916 0.046046046
                           9
## X884.027506995044
                                      0.1834 0.048048048
## X103.956716839036
                           9
                                      0.1790 0.021021021
## X501.761232616786
                                      0.1656 0.034034034
                           9
                                       0.1602 0.043043043
## X538.743327781972
## X299.863158081086
                           9
                                       0.1505 0.027027027
                           9
## X530.251890235539
                                      0.1393 0.016016016
## X530.753768195125
                                      0.1378 0.032032032
##
  Sum of probabilities
                                            947.657657658
##
  Sum of Indicator Values
##
                                            330.58
##
  Sum of Significant Indicator Values
                                            7.76
  Number of Significant Indicators
                                            36
##
  Significant Indicator Distribution
##
   2 3 4 5 9
   7 15 4
             1
# Young Leaf
indicator_Fungus <- indval(Y_young, clustering = class$Fungus,</pre>
    numitr = 999, type = "long")
summary(indicator_Fungus)
                     cluster indicator_value probability
## X323.14304237273
                           1
                                      0.2709 0.031031031
## X493.134859214546
                           1
                                       0.2104 0.040040040
## X320.865331216044
                           1
                                      0.1896 0.018018018
## X124.087159541443
                           1
                                      0.1808 0.030030030
## X199.939057016748
                                      0.1392 0.024024024
```

```
## X194.893496741003
                                       0.2478 0.027027027
## X151.949518020719
                           2
                                       0.1879 0.029029029
## X371.282051583663
                           2
                                       0.1700 0.031031031
## X92.9315156589681
                           2
                                       0.1299 0.043043043
## X396.756732768428
                           3
                                       0.1880 0.031031031
## X591.499324585076
                           3
                                       0.1705 0.049049049
## X508.781495373944
                                       0.1455 0.043043043
                           3
## X72.9376875527251
                           3
                                       0.1272 0.008008008
## X341.139205210165
                           4
                                       0.2700 0.036036036
## X871.746758208738
                           4
                                       0.2344 0.022022022
## X149.952779561684
                           4
                                       0.2177 0.034034034
## X898.765376112028
                           4
                                       0.1974 0.011011011
## X903.740976753938
                           4
                                       0.1911 0.014014014
## X896.760062617656
                           4
                                       0.1902 0.007007007
## X900.754679535586
                                       0.1847 0.042042042
                           4
## X899.711005308879
                           4
                                       0.1840 0.015015015
## X902.73126912547
                           4
                                       0.1778 0.040040040
## X894.753374920843
                                       0.1761 0.047047047
## X898.699943411767
                           4
                                       0.1750 0.019019019
## X897.725137639639
                           4
                                       0.1740 0.030030030
## X410.386734316169
                           4
                                       0.1703 0.030030030
## X81.9378122802826
                                       0.1699 0.006006006
## X151.94992866784
                                       0.1525 0.003003003
                           4
## X546.83562464687
                           4
                                       0.1424 0.024024024
## X67.9353179992673
                           4
                                      0.1355 0.035035035
## X600.571711560822
                           5
                                       0.2623 0.044044044
## X527.001876114457
                           7
                                       0.1946 0.045045045
                           7
## X332.33148356696
                                       0.1279 0.046046046
## X214.918050471206
                                       0.1435 0.042042042
                           8
## X657.44943074277
                                       0.1549 0.044044044
##
## Sum of probabilities
                                            1042.18718718719
##
## Sum of Indicator Values
                                            289.96
## Sum of Significant Indicator Values =
                                            6.38
## Number of Significant Indicators
                                            35
##
## Significant Indicator Distribution
##
         3 4 5 7 8
       2
      4 4 17 1 2 1
```

13. Disect indval object.

```
Orelfrq <- indicator_FungusO$relfrq  # relative frequency of species in classes
Orelabu <- indicator_FungusO$relabu  # relative abundance of species in classes
Oindval <- indicator_FungusO$indval  # the indicator value for each species
Omaxcls <- data.frame(indicator_FungusO$maxcls)  # the class each species has max indicator value for
Oindcls <- data.frame(indicator_FungusO$indcls)  # the indicator value for each species to its max clas
Opval <- data.frame(indicator_FungusO$pval)  # the probability of obtaining as high an indicator value

Yrelfrq <- indicator_Fungus$relfrq  # relative frequency of species in classes
Yrelabu <- indicator_Fungus$relabu  # relative abundance of species in classes
```

```
Yindval <- indicator_Fungus$indval # the indicator value for each species

Ymaxcls <- data.frame(indicator_Fungus$maxcls) # the class each species has max indicator value for

Yindcls <- data.frame(indicator_Fungus$indcls) # the indicator value for each species to its max class

Ypval <- data.frame(indicator_Fungus$pval) # the probability of obtaining as high an indicator value a
```

14. Export results to a csv file.

References

Collyer, M.L., Adams, D.C. 2018. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods in Ecology and Evolution. 9(7):1772-1779.

Dufrene, M. and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3):345-366.

Rohart, F., Gautier, B., Singh, A., & Lê Cao, K. A. 2017. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS computational biology, 13(11):e1005752.