Введение в численные методы. Дифференцирование и задача Коши

Баев А.Ж.

Казахстанский филиал МГУ

25 февраля 2019

План на семестр

- СЛАУ (точные методы)
- СЛАУ (итерационные методы)
- 🧿 решение нелинейных уравнений
- интерполяция
- аппроксимация
- интегрирование
- дифференцирование

Дифференцирования

Дана дифференцируемая на отрезке (a;b) функция f(x). Необходимо вычислить значение производной:

$$f'(x)$$
.

в точках равномерно сетки $x_i = a + ih$, где $h = \frac{b-a}{n}$. Основная идея: формула Тейлора.

Первая производная

Первая производная (вперёд)

Определим значение производную в точке x_i через значения f_i и f_{i+1} .

$$f_{x,i} = \frac{f_{i+1} - f_i}{h}$$

Оценим погрешность с помощью формулы Тейлора

$$f(x) = f(x_i) + (x - x_i)f'(x_i) + \frac{(x - x_i)^2}{2}f''(\xi)$$

Подставим вместо $x = x_{i+1}$

$$f_{i+1} = f_i + hf'_i + \frac{h^2}{2}f''(\xi)$$

Погрешность:

$$f_{x,i} = \frac{f_{i+1} - f_i}{h} = \frac{f_i + hf_i' + \frac{h^2}{2}f''(\xi) - f_i}{h} = f'(x_i) + O(h)$$

Первая производная (вперёд)

Первая производная (назад)

Определим значение производную в точке x_i через значения f_{i-1} и f_i .

$$f_{x,i} = \frac{f_{i+1} - f_i}{h}$$

Из формулы Тейлора в точке x_i :

$$f_{i-1} = f_i - hf_i' + \frac{h^2}{2}f''(\xi)$$

Погрешность:

$$f_{\overline{x},i} = \frac{f_i - f_{i-1}}{h} = \frac{f_i - f_i + hf_i' - \frac{h^2}{2}f''(\xi)}{h} = f'(x_i) + O(h)$$

Первая производная (назад)

Первая производная (центральная)

Определим значение производную в точке x_i через значения f_{i-1} и f_{i+1} .

$$f_{x,i} = \frac{f_{i+1} - f_{i-1}}{2h}$$

Из формулы Тейлора в точке x_i :

$$f_{i+1} = f_i + hf'_i + \frac{h^2}{2}f''(\xi_1)$$

$$f_{i-1} = f_i - hf'_i + \frac{h^2}{2}f''(\xi_2)$$

Погрешность:

$$\begin{split} \frac{f_{i+1} - f_{i-1}}{2h} &= \frac{f_i + hf_i' + \frac{1}{2}h^2f_i'' + \frac{1}{6}h^3f''(\xi_1) - f_i + hf_i' - \frac{1}{2}h^2f_i'' + \frac{1}{6}h^3f''(\xi_2)}{2h} = \\ &= \frac{2hf_i' + \frac{1}{6}h^3(f''(\xi_1) + f''(\xi_2))}{2h} = f'(x_i) + \frac{h^2}{6}f''(\xi) \\ f_{\hat{x},i} &= \frac{f_{i+1} - f_{i-1}}{2h} = f'(x_i) + O(h^2) \end{split}$$

Первая производная (центральная)

Первая производная (несимметричная второго порядка)

Определим значение производную в точке x_i через значения f_i , f_{i+1} и f_{i+2} . Из формулы Тейлора в точке x_i получим

$$f_{i+2} = f_i + (2h)f_i' + \frac{1}{2}(2h)^2f_i'' + \frac{1}{6}(2h)^3f''(\xi_1)$$

Пояснение:

$$\frac{-3f_{i} + 4f_{i+1} - f_{i+2}}{2h} =$$

$$= \frac{-3f_{i} + 4(f_{i} + hf'_{i} + \frac{h^{2}}{2}f''_{i} + \frac{h^{3}}{6}f'''(\xi_{2})) - (f_{i} + (2h)f'_{i} + \frac{(2h)^{2}}{2}f''_{i} + \frac{(2h)^{3}}{6}f''(\xi_{1}))}{2h} =$$

$$= \frac{2hf'_{i} + \frac{2}{3}h^{3}f'''(\xi_{2}) - \frac{4}{3}h^{3}f'''(\xi_{1})}{2h} =$$

$$= f'_{i} + \frac{1}{3}h^{2}(f'''(\xi_{2}) - f'''(\xi_{1})) - \frac{2}{3}h^{2}f'''(\xi_{1})$$

 $f_{\tilde{x},i} = \frac{-3t_i + 4t_{i+1} - t_{i+2}}{2h} = f'(x_i) + O(h^2)$

4 D > 4 A > 4 B > 4 B > B 9 Q

Первая производная (несимметричная второго порядка)

Вторая производная

Диффере

Вторая производная

Оператор дифференцирования вперед и назад

$$f_{x,i} = \frac{f_{i+1} - f_i}{h}$$

$$f_{\overline{x},i} = \frac{f_i - f_{i-1}}{h}$$

Вторая производная

$$f_{x\overline{x},i} = (f_{x,i})_{\overline{x}} = \left(\frac{f_{i+1} - f_i}{h}\right)_{\overline{x}} = \frac{\frac{f_{i+1} - f_i}{h} - \frac{f_i - f_{i-1}}{h}}{h} = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2}$$

Из ряда Тейлора

$$f_{x\overline{x},i} = \frac{-f_{i+2} + 4f_{i+1} - 3f_i}{2h} = f''(x_i) + O(h^2)$$

Вторая производная

Некорректность дифференцирования

$$\frac{f_{i+1}-f_i}{h}=f_{x,i}$$

Допустим данные f_i и f_{i+1} уже содержат погрешность по сравнению с $f(x_{i+1})$ и $f(x_i)$ (ошибка представления вещественных чисел).

$$\frac{f_{i+1} - f_i}{h} = \frac{f(x_{i+1}) + \delta_{i+1} - f(x_i) - \delta_i}{h} = \frac{f(x_{i+1}) - f(x_i)}{h} + \frac{\delta_{i+1} - \delta_i}{h}$$

Считаем, что $\delta_i < \delta, \delta_{i+1} < \delta$.

$$|f'(x_i) - f_{x,i}| < M_2 \frac{h}{2} + \frac{2\delta}{h}$$

Минимум достигается при $h=2\sqrt{rac{\delta}{M_2}}$

Задача Коши для дифференциального уравнения

Дано f(t,u) и a. Определить u(t) при t < T .

$$\begin{cases} u'(t) = f(t, u(t)) \\ u(0) = a \end{cases}$$

Задача Коши для дифференциального уравнения

$$\begin{cases} u'(t) = t^2 + 1 \\ u(0) = 2 \end{cases}$$

Решение $u(t) = \frac{t^3}{3} + t + 2$

Задача Коши для дифференциального уравнения

Введём равномерную сетку с шагом τ : $t_i=i\cdot \tau$. Значения в узлах сетки f_i и y_i . Проинтегрируем уравнение по t на интервалах $t\in [t_i,t_{i+i}]$

$$u(t_{i+1}) - u(t_i) = \int_{t_i}^{t_{i+1}} f(t, u(t)) dt$$

В зависимости от аппроксимации интеграла получим различные методы.

Явный метод Эйлера

Левые прямоугольники

$$\begin{cases} y_{i+1} - y_i = \tau \cdot f(t_i, y_i) \\ y_0 = a \end{cases}$$

Неявные методы,

Правые прямоугольники

$$\begin{cases} y_{i+1} - y_i = \tau \cdot f(t_{i+1}, y_{i+1}) \\ y_0 = a \end{cases}$$

Метод трапеций

$$\begin{cases} y_{i+1} - y_i = \frac{\tau}{2} \cdot (f(t_{i+1}, y_{i+1}) + f(t_i, y_i)) \\ y_0 = a \end{cases}$$

$$y_{n+1} - y_n = \tau \sum_{i=1}^m b_i k_i$$

где $\sum_{i=1}^m b_i = 1$ (веса), k_i — некоторое значение функции f на интервале $[t_n; t_{n+1}].$

$$k_i = f(t_n + c_i \tau, y_n + \tau \sum_{j=1}^m a_{ij} k_j)$$

где
$$\sum_{j=1}^m a_{i,j} = c_i$$
 (веса)

Таблица Бутчера

c_1	a _{1,1}	$a_{1,1}$	 $a_{1,1}$
c_2	a _{2,1}	$a_{2,2}$	 $a_{2,n}$
c_n	$a_{n,1}$	$a_{n,2}$	 $a_{n,n}$
1	b_1	b_2	 b_n

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
0.5 & 0.5 & 0 \\
\hline
1 & 0 & 1
\end{array}$$

Вспомогательные значения

$$\begin{cases} k_1 = f(t_n, y_n) \\ k_2 = f(t_n + \frac{\tau}{2}, y_n + \frac{\tau}{2}k_1) \end{cases}$$

Метод

$$y_{n+1} - y_n = \tau k_2$$

Порядок аппроксимации Первый:

$$\sum_{i=1}^m b_i = 1$$

Второй:

$$2\sum_{i=1}^m b_i c_i = 1$$

Третий:

$$3\sum_{i=1}^{m}b_{i}c_{i}^{2}=1$$

$$6\sum_{i=1}^{m}b_{i}\sum_{j=1}^{m}a_{i,j}c_{j}=1$$