1. SOBRE

Engenheiro Mecânico, com especialidade em melhoria contínua; MBA em Gestão da Qualidade e Processos; MBA em Lean Seis Sigma e Excelência Operacional.

Opero na gestão de processos e manutenção de ativos, visando o controle da manutenção corretiva, planejamento de manutenção preventiva, promoção da melhoria contínua, controle e asseguração da qualidade, otimização e mapeamento de processos, redução de leadtime, redução de custos e aumento de produtividade através de aplicação das metodologias TPM, Kaizen, Lean e WCM.

1.1. Certificações Internacionais

 $\textit{SkillFront}-\textit{Lean Professional Certification}^{\texttt{TM}}$

SkillFront – ISO 9001 Quality Management Systems Associate TM

Voitto – Black Belt Lean Seis Sigma

SCRUM.as - International SCRUM Master

SkillFront – ISO/IEC 27001 Information Security AssociateTM

 $\textit{SkillFront-ISO/IEC 20000 IT Service Management Associate} \ ^{\texttt{TM}}$

Rodrigo Mendonça Araujo

Engenheiro Mecânico
Especialista Lean Manufacturing
Lean Professional | Black Belt Lean Six Sigma | SCRUM Master

2. SERVIÇOS

2.1. Kaizen

Criar e executar projetos de melhoria contínua aplicando as principais ferramentas Lean, para reduzir desperdícios, otimizar processos e aumentar a eficiência operacional de qualquer empresa.

- Projetos de análise e solução de problemas operacionais;
- Projetos de nivelamento operacional;
- Projetos de otimização de processos;
- Projetos de padronização e redução de desperdícios;
- Projetos de redução de sobrecarga de equipamentos e operadores;
- Projetos para descobrir e corrigir anormalidades nos processos;
- Projetos para identificar os problemas mais comuns;
- Projetos para localizar a raiz dos problemas;
- Projetos para minimizar ocorrência de defeitos.

2.2. Lean Manufacturing

Identificar e atacar os desperdícios de qualquer empresa a partir da filosofia, princípios e ferramentas do Lean Manufacturing.

- Categorizar e definir ações para eliminar os desperdícios;
- Conhecer os principais desperdícios de uma empresa;
- Evitar desperdícios intelectuais;
- Evitar problemas de defeitos e retrabalho;
- Identificar desperdícios de estocagem;
- Identificar desperdícios de movimentação desnecessária;
- Identificar desperdícios de superprodução;
- Identificar desperdícios de transporte;
- Mapear processos para evitar desperdícios.

2.3. TPM – Total Productive Maintenance

Conjunto de estratégias e procedimentos que garantam o funcionamento das máquinas em um processo produtivo.

- Aumento da eficiência e confiabilidade dos equipamentos;
- Controle e otimização do OEE;
- Eliminar as pausas não planejadas;
- Garantir o funcionamento das máquinas;
- Reduzir os custos operacionais e de manutenção.

2.4. WCM – World Class Manufacturing

Sistema de Gestão Integrado de redução de custos que visa otimizar os processos de produção, segurança, logística, qualidade e manutenção para níveis de classe mundial.

- Aumento da eficiência logística e produtiva;
- Constrói da cultura de melhoria contínua
- Cria de controle e indicadores gerenciais;
- Elimina procedimentos operacionais sem padronização;
- Otimiza o nivelamento de produção;
- Reduz de desperdícios operacionais;
- Reduz de problemas nos equipamentos e paradas não programadas.

3. PORTFÓLIO

3.1. Atuação

- Gestão da Manutenção;
- Gestão de Processos;
- Gestão de Projetos;
- Gestão da Qualidade.

3.2. Cases

3.2.1. Maroni S/A

1 – PROBLEMA

Tempo de espera entre o processo de extrusão e impressão.

2 - ANTECEDENTES

SUPPLIER	INPUTS	PROCESS	OUTPUT	CUSTOMER
BRASKEN	PEAD BF18	EXTRUSÃO	SACO PEADREP / VD / IMP1 / INF 90x96 + 4x0,10	UNIMED
KARINA	PELBD LHB	IMPRESSÃO		
DELINEAR	PIGMENTO VERDE	CORTE SOLDA		
	CLICHÊ	FIO		
	FIO	EMBALAR		
	ENERGIA ELÉTRICA			
	MÃO DE OBRA			1

3 – MAPA DE FLUXO DE VALOR

7 – PLANO DE IMPLEMENTAÇÃO

O quê?	Quem?	Quando?	Resultado
Implantar um sistema de gestão integrada da produção com programações anual, mensal e semanal.	Rodrigo Araujo, Rafael Santos	10 dias	Tornar o processo mais continuo e sequenciado reduzindo perdas
Mapear o fluxo de processo de valor e priorizar o caminho crítico através da ferramenta PERT- CPM.	Rodrigo Araujo, Rafael Santos	7 dias	Tornar o processo mais eficiente focando em ações para melhoria continua
Padronizar o processo de produção da extrusão dos produtos classe A.	Supervisor de Produção Operador da extrusão	3 dias	Diminuir a espera entre os processos
Padronizar o processo de produção da impressão dos produtos classe A.	Supervisor de Produção Operador da impressão	13 dias	Diminuir a espera entre os processos

8 - CUSTO / BENEFÍCIO

Dias de produção Total de bobinas produzidas	
Tempo de espera entre extrusão e impressão	
Redução do tempo de espera entre a extrusão e impressão	
Projeção de produção adicional ao mês	20
Total de bobinas produzidas	4
Preço unitário da bobina	R\$ 1.850,00
Projeção de faturamento adicional	R\$ 37.000,00 a.m
Projeção de faturamento adicional	R\$ 444.000.00 a.a

9 - ACOMPANHAMENTO

- Elaborar lista de checagem para padronizar os processos de fabricação;
- 2. Manter a programação dos processos alvo do estudo;
- 3. Manter POP;.

4 – ANÁLISE DO PROBLEMA

TEMPO DE ESPERA ENTRE O PROCESSO DE EXTRUSÃO E IMPRESSÃO

Devido a falta de programação do produto saco de lixo infectante na impressora

POR FALTA DE PROCEDIMENTOS INTEGRADOS DE PRODUÇÃO (Semanal, mensal, e anual)

5 – CONDIÇÃO ALVO

Reduzir em 10% o tempo de espera entre o processo de extrusão e a impressão.

6 - CONTRAMEDIDA

- Implantar um sistema de gestão integrada da produção com programações anual, mensal e semanal.
- 2. Mapear o fluxo de processo de valor e priorizar o caminho critico através da ferramenta PERT-CPM.
- 3. Padronizar o processo de produção da extrusão dos produtos classe A.
- 4 Padronizar o processo de producão da impressão dos produtos classe A

Rodrigo Mendonça Araujo

Engenheiro Mecânico

Especialista Lean Manufacturing

Lean Professional | Black Belt Lean Six Sigma | SCRUM Master

3.2.2. Deltamaq

1 - PROBLEMA

Falta de plano de manutenção da empilhadeira da marca Hyster, modelo 50 XT.

2 – ELABORAÇÃO DO PLANO DE MANUTENÇÃO

3.2.3. Supergasbras

1 - PROBLEMA

Ausência de plano de manutenção em português da Caldeira Aquatubular MILLS 350A.

2 – ELABORAÇÃO DO PLANO DE MANUTENÇÃO

Rodrigo Mendonça Araujo

Engenheiro Mecânico

Especialista Lean Manufacturing
Lean Professional | Black Belt Lean Six Sigma | SCRUM Master