

GRADES-NDA 2021

Context-Free Path Querying with All-Path Semantics by Matrix Multiplication

Rustam Azimov, Ilya Epelbaum, Semyon Grigorev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

June 20, 2021

Context-Free Path Querying

Navigation through a graph

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Upⁿ Downⁿ?
- Find all paths of form
 Upⁿ Downⁿ which start from the node A

- ullet $\mathbb{G}=(\Sigma,N,P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \xrightarrow{l} u \in E$
 - L ⊆ Σ
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R_A = \{(n, m) \mid \exists n\pi m, \text{ such that } \omega(\pi) \in L(\mathbb{G}, A)\}$

Matrix-Based Algorithm: Relational Query Semantics

Algorithm Context-free path querying algorithm

1: function EVALCFPQ($D = (V, E, L), G = (\Sigma, N, P)$)
2: $n \leftarrow |V|$ 3: $T \leftarrow \{T^{A_i} \mid A_i \in N, T^{A_i} \text{ is a matrix } n \times n, T^{A_i}_{k,l} \leftarrow \text{false}\}$ 4: for all $(i, x, j) \in E$, $A_k \mid A_k \rightarrow x \in P$ do $T^{A_k}_{i,j} \leftarrow \text{true}$ 5: for all $A_k \mid A_k \rightarrow \varepsilon \in P$ do
6: for all $A_k \mid A_k \rightarrow \varepsilon \in P$ do
7: while any matrix in $A_k \mid A_k \rightarrow F_k \rightarrow F_k \mid A_k \rightarrow F_k \rightarrow F$

return T

9:

Context-Free Path Querying: Single-Path Query Semantics

• $R_A = \{(n,m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G},A)\}$ — answers for the relational guery semantics

Context-Free Path Querying: Single-Path Query Semantics

- $R_A = \{(n, m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G}, A)\}$ answers for the relational guery semantics
- For all $A \in N$, for all $(n, m) \in R_A$ also return some such path $n\pi m$
 - usually the shortest path is returned
 - returned path can be used as a proof of existence

Context-Free Path Querying: Single-Path Query Semantics

- $R_A = \{(n, m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G}, A)\}$ answers for the relational guery semantics
- For all $A \in N$, for all $(n, m) \in R_A$ also return some such path $n\pi m$
 - usually the shortest path is returned
 - returned path can be used as a proof of existence
- The main idea for the matrix-based algorithm is to store additional information in adjacency matrices to be able to restore one such path $n\pi m$ for all $(n, m) \in R_A$
 - the intermediate vertex
 - some additional information about path such as length

Context-Free Path Querying: All-Path Query Semantics

• $R_A = \{(n,m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G},A)\}$ — answers for the relational guery semantics

Context-Free Path Querying: All-Path Query Semantics

- $R_A = \{(n, m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G}, A)\}$ answers for the relational query semantics
- For all $A \in N$, for all $(n, m) \in R_A$ also return **all** such paths $n\pi m$
 - ▶ the number of such paths can be infinite if the input graph has cycles
 - usually the result is represented in the form of a finite structure such as annotated grammar or a parse forest

Context-Free Path Querying: All-Path Query Semantics

- $R_A = \{(n,m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G},A)\}$ answers for the relational query semantics
- For all $A \in N$, for all $(n, m) \in R_A$ also return **all** such paths $n\pi m$
 - the number of such paths can be infinite if the input graph has cycles
 - usually the result is represented in the form of a finite structure such as annotated grammar or a parse forest
- Currently, our matrix-based algorithms cannot handle the all-path query semantics
- The only linear algebra-based algorithm that solves this problem is the Kronecker product-based CFPQ algorithm

Kronecker product-based algorithm

- Does not require transformation of the input grammar
- Uses Recursive State Machines for the context-free grammar representation

Figure: The RSM for the grammar $S \rightarrow aSb \mid ab$ of the same-generation query

Kronecker product-based algorithm

- Does not require transformation of the input grammar
- Uses Recursive State Machines for the context-free grammar representation

Figure: The RSM for the grammar $S \rightarrow aSb \mid ab$ of the same-generation query

Kronecker product-based algorithm

• The algorithm computes the Kronecker product of the adjacency matrices of the graph for RSM and the input graph

$$\begin{pmatrix} . & \{a\} & . & . \\ . & . & \{S\} & \{b\} \\ . & . & . & \{b\} \\ . & . & . & . \end{pmatrix} \otimes \begin{pmatrix} . & \{a\} & . & . \\ . & . & \{a\} & . \\ \{a\} & . & . & \{b\} \\ . & . & \{b\} & . \end{pmatrix} =$$

Research Questions

- Can we extend the matrix-based CFPQ algorithm to all-path query semantics?
- What the cost of such extension?
- How does the matrix-based solution for the all-path query semantics compare to the Kronecker product-based?

All-Path Index

- We store the additional information about the paths found as the sets of the intermediate vertices
- We introduce the following matrix multiplication operation
- $T^A \odot T^B = T^C$ where $T^C_{i,j} = \bigcup_{k=1}^n (T^A_{i,k} \otimes T^B_{k,j})$ and $T^A_{i,k} \otimes T^B_{k,j} = \begin{cases} \{k\}, & \text{if } T^A_{i,k} \neq \emptyset \land T^B_{k,j} \neq \emptyset \\ \emptyset, & \text{otherwise} \end{cases}$

Matrix-Based Algorithm: All-Path Query Semantics

Algorithm CFPQ algorithm w.r.t. all-path query semantics

```
1: function AllPathCFPQ(
                D = (V, E, \Sigma),
                G = (N, \Sigma, P, S)
        n \leftarrow |V|
        T \leftarrow \{ T^A \mid A \in \mathbb{N}, T^A \text{ is a matrix } n \times n, T^A_{i,i} \leftarrow \emptyset \}
3:
        for all (i, x, j) \in E, A \mid A \rightarrow x \in P do T_{i, i}^A \leftarrow \{n\}
4:
        for all A \mid A \rightarrow \varepsilon \in P do T_{i,i}^A \leftarrow \{n\}
5:
6:
         while any matrix in T is changing do
              for all A \to BC \in P where T^B or T^C are changed do
7:
                    T^A \leftarrow T^A + (T^B \odot T^C)
8:
         return T
```

9:

Path extraction

- After constructing a set of matrices with sets of intermediate vertices, we can extract all required paths $i\pi j$ for every vertex pair i,j if such paths exist
- It is assumed that the sets of paths are computed lazily, to ensure the termination in case of an infinite number of paths

Implementation

- For evaluation we use the following CPU-based implementations of CFPQ algorithms with sparse matrix representation
 - MtxRel for relational query semantics that uses pygraphblas a Python wrapper around the GraphBLAS API
 - MtxSingle for single-path query semantics that also uses pygraphblas
 - MtxAll the implementation of the proposed matrix-based algorithm for all-path query semantics which utilizes SuiteSparse and our own Python wrapper
 - ➤ Tns our Python implementation of the Kronecker product-based algorithm for all-path query semantics

Evaluation

• OS: Ubuntu 18.04

• CPU: Intel core i7 6700 3,4GHz

• RAM: DDR4 64 Gb

Evaluation: CFPQ¹

Graph	#V	#E	Mt×Rel		MtxSingle		Mt×All		Tns	
			Time	Mem	Time	Mem	Time	Mem	Time	Mem
pathways	6 238	18 598	0.01	140	0.01	671	0.01	49	0.01	122
go-hierarchy	45 007	980 218	0.09	255	0.84	671	0.35	195	0.24	252
enzyme	48 815	109 695	0.01	181	0.01	217	0.02	61	0.02	132
eclass_514en	239 111	523 727	0.06	181	0.16	216	0.22	126	0.27	193
go	272 770	534 311	0.94	246	0.93	217	1.13	990	1.27	243
geospecies	450 609	2 311 461	7.48	7645	15.54	22941	32.06	44235	26.32	19537
taxonomy	5 728 398	14 922 125	0.72	1175	1.15	2250	3.84	1507	3.56	1776

¹Time in seconds and memory is measured in megabytes

Evaluation: Average Path Extraction Time For go

 We propose a matrix-based CFPQ algorithm for all-path query semantics

- We propose a matrix-based CFPQ algorithm for all-path query semantics
- The proposed algorithm constructs index up to 2-3 times slower and consumes more memory than the algorithm for single-path query semantics

- We propose a matrix-based CFPQ algorithm for all-path query semantics
- The proposed algorithm constructs index up to 2-3 times slower and consumes more memory than the algorithm for single-path query semantics
- If it is necessary to frequently recalculate the index for a changing graph or a path query then the best choice is the Kronecker product-based algorithm with faster and less memory consuming index construction

- We propose a matrix-based CFPQ algorithm for all-path query semantics
- The proposed algorithm constructs index up to 2-3 times slower and consumes more memory than the algorithm for single-path query semantics
- If it is necessary to frequently recalculate the index for a changing graph or a path query then the best choice is the Kronecker product-based algorithm with faster and less memory consuming index construction
- If it is necessary to extract paths many times for a once constructed index or index changes can be efficiently computed dynamically then the proposed matrix-based CFPQ algorithm is preferable

Future Research

- We compare the CPU-based implementation. In the future, we want to obtain GPU-based and distributed implementations
- Also, further improvements in index creation and path extraction for both matrix-based and Kronecker product-based algorithms are required
- We plan to provide the multiple-source modifications for all linear algebra-based CFPQ algorithms

Contact Information

- Semyon Grigorev:
 - s.v.grigoriev@spbu.ru
 - Semen.Grigorev@jetbrains.com
- Rustam Azimov:
 - rustam.azimov19021995@gmail.com
 - Rustam.Azimov@jetbrains.com
- Ilya Epelbaum: iliyepelbaun@gmail.com
- Dataset: https://github.com/JetBrains-Research/CFPQ_Data
- Algorithm implementations: https://github.com/JetBrains-Research/CFPQ_PyAlgo

Thanks!