TEMA 3: Sistemas de comunicación

TEMA 3: Sistemas de comunicación

Contenido:

- 1. Digitalización de señales
- 2. Sistemas de comunicación digital

Digitalización de señales

Digitalización de señales

Contenido:

- 1. Representación digital de señales analógicas
- 2. Concepto de muestreo
- 3. Teorema de muestreo
- 4. Ejemplo de muestreo de la señal coseno
- 5. Cuantificación
- 6. Codificación

1

Representación digital de señales analógicas

Entorno analógico-digital

Modelo de digitalización de señales

 La información de una fuente analógica se puede representar digitalmente (i.e., por medio de bits) aplicando las operaciones de muestreo, cuantificación y codificación.

2

Concepto de muestreo

Concepto de muestreo

 Muestreo (sampling): operación que consiste en tomar muestras de una señal analógica.

Representación de muestreo en tiempo

Figure 8.3 Pulse amplitude modulation with an impulse train.

Señal discreta en tiempo

• El resultado del muestreo es una señal discreta en el tiempo que se representa por una función real de una variable independiente discreta que sólo toma valores enteros, x(n).

Muestreo regular o periódico

* Cuando las muestras se toman equiespaciadas un intervalo de tiempo T_s segundos, el muestreo se dice que es regular o periódico.

Periodo y Frecuencia de muestreo

- Periodo de muestreo, en segundos (T_s): separación temporal entre dos muestras.
- Frecuencia de muestreo, en Hertzs (f_s=1/T_s): número de muestras por unidad de tiempo.
- * Frecuencia de muestreo, en radianes por segundo $(\omega_s=2\pi/T_s)$.

Periodo muestreo (T _s)	Frecuencia muestreo (f _s)	Frecuencia muestreo (ω _s)
1 s	1 Hz	2π rad/s
0,1 s	10 Hz	2π 10 rad/s
0,01 s	100 Hz	2π 100 rad/s
$1 \text{ ms} = 10^{-3} \text{ s}$	$1 \text{ kHz} = 10^3 \text{ Hz}$	2π 10 3 rad/s
1 μs = 10 ⁻⁶ s	1 MHz = 10 ⁶ Hz	2π 10° rad/s