Realizacja projektu:

"Sumator dwóch liczb zmiennoprzecinkowych o pojedynczej precyzji, w standardzie IEEE 754."

> Jan Bedliński nr albumu 300480 Michał Mianowski nr albumu 276171

1.Standard IEEE 754.

Standard IEEE 754 definiuje dwa rodzaje liczb zmiennoprzecinkowych: 32-bitowe w pojedynczej precyzji oraz

64-bitowe w podwójnej precyzji . Zajmować będziemy się tylko tą pierwszą wersją. Kod binarny liczby zmiennoprzecinkowej podzielony jest na trzy pola zawierające komponenty zapisu zmiennoprzecinkowego:

- a. $Znak 1 bit b_{31}$
- b. Cecha/eksponent 8 bitów b₃₀...b₂₃
- c. Mantysa 23 bity $b_{22} \dots b_0$

W sumie: 1+8+23 = 32 bity - $b_{31}...b_0$

a. Bit znaku

Najstarszy bit w zapisie liczby zwany jest bitem znaku. Stan 0 oznacza liczbę dodatnią, stan 1 liczbę ujemną. Aby zatem zmienić znak liczby zmiennoprzecinkowej na przeciwny, wystarczy dokonać negacji tego bitu.

b. Bity kodu cechy

Liczby zmiennoprzecinkowe IEEE 754 zapisują cechę w kodzie z nadmiarem.

W pojedynczej precyzji cecha posiada 8 bitów, a nadmiar wynosi 127. Zatem w polu cechy można zapisać wartości od -127 (wszystkie bity b₃₀...b₂₃ wyzerowane) do 128 (wszystkie bity b₃₀...b₂₃ ustawione na 1).

c. Bity ułamkowe mantysy

W pojedynczej precyzji mantysa posiada 23 bity. W podwójnej 52 bity. Wzrost liczby bitów mantys liczb zmiennoprzecinkowych wpływa na ich precyzję, czyli *dokładność odwzorowywania liczb rzeczywistych*.

Mantysy są zapisywane w stałoprzecinkowym kodzie U1. Ponieważ mantysa jest prawie zawsze znormalizowana (z wyjątkiem wartości zdenormalizowanej, która jest przypadkiem szczególnym liczby zmiennoprzecinkowej IEEE 754), to jej wartość liczbowa zawiera się pomiędzy 1 a 2. Wynika stąd, iż pierwszy bit **całkowity** mantysy zawsze wynosi 1. – ten wniosek wykorzystamy podczas opisu algorytmu dodawania.

2.Dodawanie liczb zmiennoprzecinkowych w standardzie IEEE 754.

Algorytm dodawania dwóch liczb zmiennoprzecinkowych, polega na kilku operacjach wykonanych w odpowiedniej kolejności:

- 1. Wyznaczenie z obu liczb: znaku, cechy i mantysy.
- 2. Normalizacja mantysy, w praktyce wiąże się to z dołączeniem **<u>przed</u>** najstarszy bit mantysy, **bit '1'**. Znormalizowana mantysa ma teraz 24 bity długości.
- 3. Wyrównanie cech liczb zmiennoprzecinkowych. Innymi słowy, jeżeli istnieje niezerowa różnica między eksponentami, należy wykonać przesunięcie mantysy w prawo x razy, gdzie x jest różnicą (liczbą naturalną w systemie dziesiętnym) między eksponentami.
- 4. Wykonujemy dodawanie, dwóch znormalizowanych mantys o równych (już) eksponentach.
- 5. W przypadku dodawania, może zdarzyć się, że wynik będzie o 1 bit dłuższy (25 bitowy), wtedy należy **zwiększyć o 1**, **wartość dziesiętną wyrównanej cechy**. Dodatkowo jeżeli długość się zwiększyła, (przypadek wyżej 25 bitowa mantysa) najmłodszy bit mantysy jest tracony ze względu na fakt, że znormalizowana mantysa może mieć tylko 24 bity długości.
- Znak wynikowej liczby(1 bit) jest gotowy od samego początku, gdyż jest to sumator, który wykonuje dodawanie dwóch liczba o tych samych znakach.
- Wynikowa cecha(8 bit-ów) jest już również gotowa.
- Mantysa po zsumowaniu posiada natomiast 24 bity długości, co jest nie dopuszczalne. Wynik sumatora miałby wtedy **33 bity!!!** co dla sumowania w kodzie np. U1 jest dopuszczalne, ale w standardzie IEEE 754 już nie.

Wynik dodawania znormalizowanych mantys jest również mantysą znormalizowaną co znaczy, że ma sztucznie wstawioną jedynkę przed najstarszy

bit. Dla przypomnienia jest to bit , oddzielający część ułamkową (czyli mantysę) od całości. Zatem:

- 6. Pozbycie się najstarszego bita(bita normalizującego), z wektora bitów mantysy po operacji **mantysa(23 bity)** jest **gotowa**.
- 7. Połączenie wszystkich 3 elementów wynik dodawania jest zawsze 32 bitowy.

3. Przykłady dodawania dwóch liczb w

standardzie IEEE 754 - analitycznie.

Prześledźmy algorytm postępowania na przykładach.

Suma liczb X i Y przedstawionych w systemie IEEE 754:

Przykład pierwszy:

 $X = 0100\ 0010\ 0000\ 1111\ 0000\ 0000\ 0000\ 0000$

 $Y = 0100\ 0001\ 1010\ 0100\ 0000\ 0000\ 0000\ 0000$

Najpierw konwertujemy te liczby na postać decymalną, jednak z zachowaniem pewnych norm.

 $X = 0 \mid 100\ 0010\ 0 \mid 000\ 1111\ 0000\ 0000\ 0000\ 0000$

 $\frac{S}{S} = 0$ -> liczba X jest liczbą dodatnią

exp: 100 0010 0₍₂₎ = 132₍₁₀₎ e_x = 132–127 = 5

Z powyższymi danymi przechodzimy do konwersji mantysy do wartości X. Musimy jednak najpierw wykonać proces zwany - **normalizacją mantysy.** Mantysa jest prawie zawsze znormalizowana, to znaczy, że jej wartość liczbowa mieści się w przedziale (1,2). Wynika stąd, że pierwszy bit całkowity mantysy wynosi '1'.

X = m = 1,000 1111 0000 0000 0000 0000 *25

 $Y = 0 \mid 100\ 0001\ 1 \mid 010\ 0100\ 0000\ 0000\ 0000\ 0000$

 $S = 0 \rightarrow \text{liczba dodatnia}$

exp: $100\ 0001\ 1_{(2)} = 131_{(10)}$ $e_y = 131 - 127 = 4$

Jeżeli występuje niezerowa różnica pomiędzy wartościami eksponentów należy wyrównać także eksponent do wartości tego wyższego. Przesuwamy mantysę w prawo o różnicę wartości eksponentów. W tym procesie najmłodsze bity są tracone.

$$\begin{aligned} e_x &> e_y \\ e_x - e_y &= 5 - 4 = 1 \end{aligned}$$

 $Y = 0, 1 \ 010 \ 0100 \ 0000 \ 0000 \ 0000 \ 0000 \ * 2⁵$

W następnym kroku sumujemy znormalizowane mantysy:

Wyznaczamy na nowo eksponent. W tym przykładzie pozostaje on taki jak w X – większy eksponent, czyli 100 0010 0 (2)

Wynikowa mantysa to 23-bitowa liczba po przecinku. Jest to wynik sumowania pomijając najstarszy bit – 1, którą sami dopisaliśmy przed dodawaniem ze względu na potrzebę normalizacji mantysy.

Wynik:

 $W = {0 \over 100} {0 \over 100} {0 \over 110} {0001} {0000} {0000} {0000} {0000}$

Przykład drugi:

A = 0110 1011 1111 0011 1010 0000 1100 0011

 $B = 0110\ 1011\ 1000\ 1110\ 0101\ 1111\ 0001\ 1100$

 $A = 0110\ 1011\ 1111\ 0011\ 1010\ 0000\ 1100\ 0011$

S = 0 -> liczba dodatnia

exp: 110 1011 1 $_{(2)}$ = 215 $_{(10)}$

W opisywanym algorytmie można pominąć odejmowanie w tym miejscu liczby(**nadmiaru**) 127, a na koniec dodawanie jej.

m = 1, 111 0011 1010 0000 1100 0011

 $B = 0110\ 1011\ 1000\ 1110\ 0101\ 1111\ 0001\ 1100$

S = 0 -> liczba dodatnia

exp: 110 1011 1 $_{(2)} = 215_{(10)}$

m = 1,000 1110 0101 1111 0001 1100

 $e_a - e_b = 0$ -> nie ma potrzeby wyrównywania cech liczb zmiennoprzecinkowych

Właściwe dodawanie:

11 11111

 $A \qquad \qquad 1,11100111010000011000011 \ *2^{215}$

B + $1,000111001011111100011100 *2^{215}$

Otrzymany wynik ma dwa bity przed przecinkiem (suma 25bitowa), a powinien być tylko jeden, należy więc zwiększyć wartość dziesiętną eksponentu o 1. W wyniku tego z mantysy zostaje utracony najmłodszy bit (znormalizowana mantysa - 24bitowa).

Wynik:

 $W_2 = 0110 1100 0100 0000 1111 1111 1110 1111$

Przykład Trzeci:

 $C = 0110\ 1011\ 1111\ 0011\ 1010\ 0000\ 1100\ 0011$

 $D = 0110\ 1000\ 1000\ 1110\ 0101\ 1111\ 0001\ 1100$

 $C = 0110\ 1011\ 1111\ 0011\ 1010\ 0000\ 1100\ 0011$

S = 0 -> liczba dodatnia

exp: 110 1011 1 $_{(2)}$ = 215 $_{(10)}$

m = 1,11100111010000011000011

 $D = 0110\ 1000\ 1000\ 1110\ 0101\ 1111\ 0001\ 1100$

S = 0 -> liczba dodatnia

exp: 110 1000 1 $_{(2)}$ = 209 $_{(10)}$

m = 1,000111001011111100011100

 $e_c - e_d = 215 - 209 = 6 \neq 0$ -> wymagana jest normalizacja cechy w liczbie D, bo $e_c > e_d$

 $m_D = 0.00000100011110010111111000111100$

Znormalizowana mantysa musi mieć długość 24 bitów.

Najmłodsze bity są tracone.

Właściwe dodawanie:

1,111010111011010001111111 * 2^{215}

Nie ma potrzeby wyrównywać eksponentu.

Wynik:

 $W_3 =$ 0110 1011 1111 0101 1101 1010 0011 1111

Powyższymi przykładami posłużymy się jako danymi testowymi w symulacjach.

4. Schemat blokowy projektu sumatora.

Schemat posiada podpisy konkretnych operacji, które są wykonywane w poszczególnych komponentach. **Porównamy go do schematu wygenerowanego przez Quartusa.**

Będziemy posiadać zatem 4 pliki *.vhd. 3 ostatnie pliki .vhd to widoczne na schemacie komponenty, natomiast tym pierwszym jest główna jednostka sterująca sygnałami wejściowymi, przejściowymi i wyjściowymi.

Opis wejść/wyjść

Nazwa Sygnału	Typ portu	Szerokość Szyny [bit]	Opis
liczba1	in	32	Pierwsza liczba będąca jednym ze składników sumy
liczba2	in	32	Druga liczba będąca drugim składnikiem sumy
mantys1	in/out	24	Znormalizowana mantysa pierwszej liczby
mantys2	in/out	24	Znormalizowana mantysa drugiej liczby
bit_znaku_wyniku	in/out	1	Najstarszy bit znaku wyniku sumowania
max_exp	in/out	8	Większy eksponent z obu liczb
mantysa_wyniku	in/out	23	Wynik sumowania mantys (zdenormalizowany)
exp_wyniku	in/out	8	Końcowa cecha/eksponent wyniku sumowania
wynik	out	32	Wynik sumowania dwóch liczb zmiennoprzecinkowych

5. Wykonanie projektu w Quartus Prime Lite.

Przedstawimy wszystkie komponenty napisane w języku opisu sprzętu – VHDL. Kod posiada komentarze, opisujące zasadę działania algorytmu.

1. Plik – **main_project.vhd** – deklaracja komponentów, sygnałów (w tym przejściowych) i ich mapowanie zgodnie ze schematem blokowym.

```
library ieee;
use ieee.std_logic_1164.all;
 123456789
       ⊟entity main_project is
       ⊟port (
              liczba1,liczba2 : in std_logic_vector(31 downto 0);
wynik : out std_logic_vector(31 downto 0)
         );
10
11
12
        end entity;
13
14
       □architecture main of main_project is
         -- deklaracja component'ow
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
               component rozklad
       -- Rozklad liczb na: znak, ceche/eksponent, mantyse
              -- mantyse normalizujemy - wstawiamy bit 1-ynki przed najstarsza pozycje
-- nalezy znormalizowac mniejszy eksponent i ostatecznie poprawic mantyse liczby o mniejszym eksponencie
-- uwzgledniamy roznice wartości eksponentow w mantysach i przesuwamy w prawo mantyse o mniejszym eksponencie
-- // shift_right(unsigned(...), ...);
                     @ wyznaczenie wynikowego znaku liczby (najstarszy bit) @
                    rozk_liczba1,rozk_liczba2 : in std_logic_vector(31 downto 0);
                   bit_znaku_wyniku : out std_logic;
mantys1, mantys2 : out std_logic_vector(23 downto 0);
max_exp : out std_logic_vector(7 downto 0)
               end component;
34
35
```

```
component sumator_mantys
     38
 39
              -- sumujemy znormalizowane mantysy
 40
              -- pozbywamy sie juz najstarszego bitu z mantysy (ktorego dodalismy sztucznie)
 41
42
43
              mant_sum1, mant_sum2 : in std_logic_vector(23 downto 0);
maks_eksp : in std_logic_vector(7 downto 0);
exp_wyniku : out std_logic_vector(7 downto 0);
 44
 45
              mantysa_wyniku : out std_logic_vector(22 downto 0)
 46
 47
 48
           end component;
 49
 50
 51
52
           component tworzenie_liczby
      port(
 53
              wynikowa_mantysa : in std_logic_vector(22 downto 0);
              wynikowy_exponent : in std_logic_vector(7 downto 0);
 54
 55
56
57
              wynikowy_znak : in std_logic;
              wynikowa_liczba : out std_logic_vector(31 downto 0)
 58
 59
           end component;
 60
           signal tmp_mantys1,tmp_mantys2 : std_logic_vector(23 downto 0);
 61
 62
           signal tmp_max_exponent, tmp_wynikowy_exp : std_logic_vector(7
                                                                                     downto 0);
           signal tmp_wynikowa_mantysa : std_logic_vector(22 downto 0);
signal tmp_wynikowy_znak: std_logic;
 63
 64
 65
 66
       begin
 67
 68
 69
70
        -- mapowanie portow componentow
 71
           rozklad_instancja : rozklad
 72
73
74
           port map(
     rozk_liczba1 => liczba1,
              rozk_liczba2 => liczba2,
 75
              mantys1 => tmp_mantys1,
              mantys2 => tmp_mantys2,
max_exp => tmp_max_exponent
 76
77
 78
              bit_znaku_wyniku => tmp_wynikowy_znak
 79
           );
 80
 81
 82
           suma_instancja : sumator_mantys
 83
           port map(
 84
              mant_sum1 => tmp_mantys1,
 85
              mant_sum2 => tmp_mantys2,
 86
              maks_eksp => tmp_max_exponent,
 87
 88
              exp_wyniku => tmp_wynikowy_exp,
 89
              mantysa_wyniku => tmp_wynikowa_mantysa
 90
           );
 91
 92
 93
           tworzenie_instancja : tworzenie_liczby
 94
 95
              wynikowa_mantysa => tmp_wynikowa_mantysa,
 96
              wynikowy_exponent => tmp_wynikowy_exp,
              wynikowy_znak => tmp_wynikowy_znak,
 97
 98
              wynikowa_liczba => wynik
 99
100
101
       end main;
```

2. Plik – rozkład.vhd – opis funkcjonalny bloku.

```
library ieee;
use ieee.std_logic_1164.all;
        use ieee.numeric_std.all;
 5
     ⊟entity rozklad is
     □port (
                rozk_liczba1,rozk_liczba2 : in std_logic_vector(31 downto 0);
bit_znaku_wyniku : out std_logic;
mantys1, mantys2 : out std_logic_vector(23 downto 0);
max_exp : out std_logic_vector(7 downto 0)
 8
10
11
12
       );
13
14
       end entity;
15
     □architecture main of rozklad is
16
18
     ⊟begin
19
20
21
22
23
24
25
     Ė
           process(rozk_liczba1,rozk_liczba2)
               variable m1,m2 : std_logic_vector(23 downto 0);
              variable e1,e2 : std_logic_vector(7 downto 0);
variable s1,s2 : std_logic;
26
27
28
29
              variable tmp_e1,tmp_e2: integer;
              variable roznica_exp : integer;
              -- pierwsza liczba
s1 := rozk_liczba1(31);
e1 := rozk_liczba1(30 downto 23);
30
31
32
33
34
35
36
37
              m1 := '1' & rozk_liczba1(22 downto 0);
                                                                     -- normalizujemy mantyse wstawiajac bita 1 przed najstarszy bit
              tmp_e1 := to_integer(unsigned(e1));
               -- druga liczba
              s2 := rozk_liczba2(31);
e2 := rozk_liczba2(30 downto 23);
38
39
              m2 := '1' & rozk_liczba2(22 downto 0);
40
                                                                     -- normalizujemy mantyse wstawiajac bita 1 przed najstarszy bit
              tmp_e2 := to_integer(unsigned(e2));
41
43
44
45
46
47
             if(s1='0' and s2='0') then
bit_znaku_wyniku <= '0';</pre>
                                                               -- wyznaczenie bitu znaku
                                                                -- gdyby odejmowanie zostało zrobione tutaj nalezy zmodyfikowac if'a
     48
49
50
51
52
53
54
55
56
57
             bit_znaku_wyniku <= '1';
             end if;
             if (tmp_e1 < tmp_e2) then
                 roznica_exp := (tmp_e2-tmp_e1);
                                                                -- musimy przesunac w prawo mantyse liczby o eksponencie: e1 -> mantyse m1
                 m1 := std_logic_vector(shift_right(unsigned(m1), roznica_exp));
                 \max_{exp} <= e2;
                                                                -- przypisujemy juz maksymalna wartosc eksponentu
58
59
60
             else
    roznica_exp := (tmp_e1-tmp_e2);
                                                               -- musimy przesunac w prawo mantyse liczby o eksponencie: e2 -> mantyse m2
61
                 m2 := std_logic_vector(shift_right(unsigned(m2), roznica_exp));
62
                                                                --przypisujemy juz maksymalna wartosc eksponentu
                 max_exp <= e1;</pre>
63
64
             end if;
65
66
67
             mantys1 <= m1;
             mantys2 <= m2;
68
69
70
          end process;
71
      end main:
72
```

3. Plik – **sumator_mantys.vhd** – opis funkcjonalny bloku.

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
      ⊟entity sumator_mantys is
      □port(
 89
                                       mant_sum1, mant_sum2 : in std_logic_vector(23 downto 0);
maks_eksp : in std_logic_vector(7 downto 0);
exp_wyniku : out std_logic_vector(7 downto 0);
mantysa_wyniku : out std_logic_vector(22 downto 0)
10
11
12
13
       end entity;
16
17
      □architecture main of sumator_mantys is
18
19
20
21
22
23
24
25
26
27
28
29
     ⊟begin
                                                             -- jako argument do processu [sensitive list] nie moze byc podany argument
                 process(mant_sum1,mant_sum2)
                                                              -- ktory bedzie sie w procesie zmienial wynikiem bedzie infinity loop
                 variable wynik_moved, single_new_bit : std_logic;
variable tempA,tempB,tmp_suma: std_logic_vector(23
variable w_Sum : std_logic_vector(24 downto 0);
                                                                                               downto 0):
                 variable exp_int : integer;
variable tmp_exp : std_logic_vector(7 downto 0);
                   tmp_exp := maks_eksp;
 34
 35
36
37
38
                   wynik_moved := '0';
                                                             -- przesuniecie
                   tempA := mant_sum1;
                   tempB := mant_sum2;
 39
               for i in 0 to 23 loop
                   single_new_bit := tempA(i) xor tempB(i) xor wynik_moved;
                                                                                                -- przypisujemy bitowi wartosc xor z 3 bitow czyli defacto dodawania
 42
 43
44
45
46
47
                                                                                                 -- przypisuje wynikowemu wektorowi i-tego bita
                   w_Sum(i) := single_new_bit;
                                                                                            -- ogarniecie kiedy wynik_moved = 1 a kiedy wynik_moved = 0(przesuniecie)
                   wynik_moved := ( tempA(i) and tempB(i) ) or ( tempA(i) and wynik_moved ) or ( wynik_moved and tempB(i));
               w_Sum(24) := wynik_moved;
 49
                                                                                                 -- dopisujemy na najstarszy bit wartosc przesuniecia
 50
 51
52
53
54
55
56
57
58
59
               if wynik_moved = '0' then
                                                                               -- jezeli ostatnie przesuniecie (wynik_moved) jest bitem '0' to jest on niepotrzebny
                   tmp_suma := w_Sum(23 downto 0);
                                                                               -- jezeli nie ma przesuniecia to exponent nowej liczby
                                                                               -- jest wiekszym eksponentem z dwoch poprzednich liczb( rzad sie zgadza)
                   exp_wyniku <= tmp_exp;</pre>
                                                                               -- jezeli ostatnie przesuniecie (wynik_moved) jest bitem '1' to
                                                                               -- nasza mantysa ma 25 bitow a nie 24 musimy zatem usunac najmlodszego bita
 62
63
64
               tmp_suma := w_Sum(24 downto 1);
                                                                               -- jezeli ostatnie przesuniecie jest bitem '1'
-- to znaczy ze musimy przesunac przecinek o jedno miejsce w lewo ,
-- zatem nasz eksponent wzrosnie o 1
 65
               exp_int := 1 + to_integer(unsigned(tmp_exp));
exp_wyniku <= std_logic_vector(to_unsigned(exp_int,8));</pre>
 66
 68
 69
70
71
                                                                               -- mantysa wynikowa ma miec 23 bity , sa to bity za najstarszym bitem ( po przecinku)
                mantysa_wyniku <= tmp_suma(22 downto 0);</pre>
        end main;
```

 Przed przystąpieniem do przedstawienia ostatniego komponentu, warto opisać dodawanie mantys. Jest to zwykłe dodawanie dwóch liczb w systemie dwójkowym. Wykorzystujemy zatem tutaj sumator dwóch liczb 24 bitowych.

• W naszym projekcie, do sumowania mantys została zaimplementowana najprostsze wersja sumatora czyli: "*ripple carry adder*"

Dodawanie dwóch wielobitowych liczb dwójkowych może być realizowane szeregowo lub równolegle. W realizacji szeregowej kolejne pary bitów dodajnej i dodajnika są sumowane wraz z odpowiednim przeniesieniem w szeregu cykli, dopóki dodawanie całego słowa nie zostanie zakończone.

• Przedstawimy sposób działania pojedynczego bloku i jego funkcje logiczne

a, b – bity które sumujemy

y – wynik sumowania

c – bit "przeniesienia", które należy wziąć pod uwagę jeżeli jest bitem '1'

c_o – bit "przeniesienia", który **może** powstać w wyniku operacji sumowania

Tabela prawdy				
a _i	b _i	c _i	y _i	c _{i+1}
0	0	0	0	0
1	0	0	- 1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	-1	1	1

Jak wyznaczana jest aktualna wartość y_i oraz następna wartość przesunięcia c_{i+1} :

Z tabeli prawdy, łatwo zauważyć że dla nieparzystej ilości bitów **jedynek** (pierwsze 3 kolumny - [a_i b_i c_i]) , wartość y_i jest równa '1', a dla parzystej ilości **jedynek** jest równa '0'. Operator pozwalający na uzyskanie takich wyników to operator XOR.

Wzór na wyznaczenie przesunięcia jest trochę bardziej skomplikowany i nie ma jednej wersji jak można by go zapisać. W naszym algorytmie jest zapisany w formie:

$$c_{i+1} = (a \text{ and } b) \text{ or } (a \text{ and } c_i) \text{ or } (b \text{ and } c_i)$$

 $c_{i+1} = (a * b) + (a * c_i) + (b * c_i)$

Dany opis funkcjonalny bloku jest przedstawiony dla odpowiednich dwóch bitów, czyli w jednej iteracji.

Nasze mantysy mają 24bity długości zatem daną operację powtarzamy w pętli, aż każda para bitów zostanie zsumowana. (24 iteracje)

4. Plik – tworzenie liczby.vhd – opis funkcjonalny bloku

```
library ieee;
use ieee.std_logic_1164.all;
1
2
3
4
5
6
7
8
9
     ⊟entity tworzenie_liczby is
     ⊟port (
               wynikowa_mantysa : in std_logic_vector(22 downto 0);
               wynikowa_mantysa : in std_logic_vector(22 downto 0);
wynikowy_exponent : in std_logic_vector(7 downto 0);
wynikowy_znak : in std_logic;
wynikowa_liczba : out std_logic_vector(31 downto 0)
11
       );
12
13
       end entity;
14
     □architecture main of tworzenie_liczby is
15
16
           begin
     17
18
     \Box
               process(wynikowa_mantysa,wynikowy_exponent,wynikowy_znak)
19
20
21
22
23
24
25
26
27
28
                   variable liczba_koncowa : std_logic_vector(31 downto 0);
               begin
                                        -- polaczenie 3 wynikowych elementow: znaku,cechy, mantysy
                   liczba_koncowa := wynikowy_znak & wynikowy_exponent & wynikowa_mantysa;
                   wynikowa_liczba <= liczba_koncowa;</pre>
                                                                        -- wynikowa liczba jest 32-bitowa
               end process;
29
30
       end main;
```

6. Schemat blokowy wygenerowany w

Quartusie:

• Schemat wygenerowany przez Quartusa pokrywa się z naszą wersją (stworzoną w formie rysunku) przed implementacją.(Punkt 4.)

 Przedstawimy wielkość pojedynczych komponentów pod względem wykorzystanych operatorów logicznych i innych operacji(pętli, ilości wykorzystanych zmiennych) w postaci użytych, prostych i złożonych, bramek logicznych.

I. Rozkład liczb.

 Jak można zauważyć, ilość bramek logicznych nie jest ogromna, operacje wykonywane na potrzeby algorytmu w tym komponencie to: instrukcja warunkowa 'if', funkcja przesunięcia 'shift', operator '-' dla zmiennych typu integer.

II. Sumowanie mantys

Schemat na poziomie bramek logicznych tutaj już jest ogromny. Nie posiada on zbyt skomplikowanych operatorów logicznych jak poprzedni schemat, jednakże ich ilość jest duża. Wniosek z tego jest oczywisty, korzystanie z operacji typu '<u>if</u>' czy pętla '<u>for</u>' (zwłaszcza pętli!) powinno być ostatecznością, jeżeli zależy nam na szybkości działania programu.

III. Połączenie 3 elementów – wynik.

• W tym bloku operacją, było przypisanie wyjściowemu sygnałowi, odpowiedniego połączenia 3 elementów: **znaku_cechy_mantysy.** W związku z tym ten blok jest pusty.

7. Symulacje w Quartus Prime Lite.

• Symulacje wykonywane są przy pomocy pliku *.vwf – wavefrom'a. Generuje on za każdym razem testbench'a, dla naszego przykładu obliczeniowego.

1. Przykładowe liczby X,Y:

Wynik Sumowania przeprowadzonego analitycznie:

	Name	Value at 0 ps
<u> </u>	▷ liczba1	B 0100001000001111000000000000000000
	▷ liczba2	B 0100000110100100000000000000000000000
*		B 0100001001100001000000000000000000000

	480 _. 0 ns	500 _i 0 ns	520 _, 0 ns	540 _i 0 ns
-	0100001000	0011110000000	000000000	
	0100000110	1001000000000	000000000	
+	0100001001	1000010000000	000000000	
	!	!		!

2. Przykładowe liczby A,B:

- A = 0110 1011 1111 0011 1010 0000 1100 0011
- B = 0110 1011 1000 1110 0101 1111 0001 1100

Wynik Sumowania przeprowadzonego analitycznie:

• W₂ = 0110 1100 0100 0000 1111 1111 1110 1111

	Name	Value at 0 ps		
*	▷ liczba1	B 01101011111100111010000011000011		
<u></u>	▷ liczba2	B 01101011100011100101111100011100		
**	wynik	B 01101100010000001111111111111111111		

480 _: 0 ns	500 _; 0 ns	520 _i 0 ns
0110101111	1100111010000	0011000011
0110101110	0011100101111	1100011100
0110110001	0000001111111	1111101111
1 1		

3. Przykładowe liczby C,D:

- $C = 0110\ 1011\ 1111\ 0011\ 1010\ 0000\ 1100\ 0011$
- D = 0110 1000 1000 1110 0101 1111 0001 1100

Wynik Sumowania przeprowadzonego analitycznie:

• W₃ = 0110 1011 1111 0101 1101 1010 0011 1111

	Nome	Value at	480 _: 0 ns	500 _i 0 ns	520 _i 0 ns
	Name 0 ps				
	▷ liczba1	B 01101011111100111010000011000011	011010111	1110011101000	0011000011
	▷ liczba2	B 01101000100011100101111100011100	011010001	0001110010111	1100011100
**		B 01101011111101011101101000111111	011010111	1110101110110	1000111111

Wnioski:

- Wyniki z 3 przypadków policzonych analitycznie w porównaniu do wyznaczonych z symulacji wyszły takie jak się spodziewaliśmy identyczne.
- Najbardziej zależało nam na sprawdzeniu poprawności działania projektu oraz pokazaniu wygenerowanych struktur każdego z komponentów, na poziomie bramek logicznych i zaobserwowaniu podstawowych różnie, wynikających z ich implementacji operacji które musiały wykonać.
- Zaprojektowany sumator działa prawidłowo
- Gdyby interesował nas czas kompilacji, można by zastanowić się nad zmniejszeniem ilości komponentów na schemacie blokowym i sprawdzić jakie wyniki czasowe otrzymalibyśmy.

Bibliografia:

- "Projektowanie układów cyfrowych z wykorzystaniem języka VHDL"
 Mark Zwoliński
- https://www.doulos.com/knowhow/
- http://rawski.zcb.tele.pw.edu.pl/category/ucyf-plansze/
- https://eduinf.waw.pl/inf/alg/006_bin/0022.php