Mortality among people who inject drugs: a systematic review and meta-analysis

Bradley M Mathers, a Louisa Degenhardt, b Chiara Bucello, b James Lemon, b Lucas Wiessing c & Mathew Hickman d

Objective To systematically review cohort studies of mortality among people who inject drugs, examine mortality rates and causes of death in this group, and identify participant- and study-level variables associated with a higher risk of death.

Methods Tailored search strings were used to search EMBASE, Medline and PsycINFO. The grey literature was identified through online grey literature databases. Experts were consulted to obtain additional studies and data. Random effects meta-analyses were performed to estimate pooled crude mortality rates (CMRs) and standardized mortality ratios (SMRs).

Findings Sixty-seven cohorts of people who inject drugs were identified, 14 of them from low- and middle-income countries. The pooled CMR was 2.35 deaths per 100 person-years (95% confidence interval, Cl: 2.12-2.58). SMRs were reported for 32 cohorts; the pooled SMR was 14.68 (95% CI: 13.01–16.35). Comparison of CMRs and the calculation of CMR ratios revealed mortality to be higher in low- and middle-income country cohorts, males and people who injected drugs that were positive for human immunodeficiency virus (HIV). It was also higher during off-treatment periods. Drug overdose and acquired immunodeficiency syndrome (AIDS) were the primary causes of death across cohorts. Conclusion Compared with the general population, people who inject drugs have an elevated risk of death, although mortality rates vary across different settings. Any comprehensive approach to improving health outcomes in this group must include efforts to reduce HIV infection as well as other causes of death, particularly drug overdose.

Abstracts in عربی, 中文, Français, Русский and Español at the end of each article.

Introduction

People who use drugs, especially by injection, are at higher risk of dying from both acute and chronic diseases, many of which are related to their drug use, than people who do not use these drugs. Fatal overdose and infection with human immunodeficiency virus (HIV) and other blood-borne viruses transmitted through shared needles and syringes are the most common causes of death in this group. Understanding causes of death is important when setting priorities for programmes designed to reduce deaths from the use of drugs. Longitudinal studies of people who inject drugs are critical for assessing the magnitude, nature and correlates of the risk of death in

A systematic review conducted in 2004 identified 30 prospective studies published between 1967 and 2004 that dealt with "problematic drug users" or people who inject drugs.² These reviews have consistently shown that the practice of injecting drugs is associated with an elevated risk of death, particularly from the complications of HIV infection, drug overdose and suicide. Since these reviews were conducted, the number of studies examining mortality among cohorts of people who inject drugs has risen substantially. This has made it possible to perform fine-grained analyses that were not feasible in earlier reviews. Furthermore, those earlier reviews did not examine the potential impact of study-level variables, variation across countries, or of participant-level variables that could affect both mortality rates and differences in causes of death, yet study-level evidence suggests that males who inject drugs may be at higher risk of dying than females and that different types of drugs are associated with different risks of death.3-5 Findings from other reviews have also suggested that rates of death among people who are dependent on opioids are different from the rates of death observed in people who are dependent on stimulants such as cocaine and amphetamine type stimulants.3-5

In recent years the number of studies reporting on mortality among people who inject drugs has increased. Hence, the objective of this review was to determine the following:

- overall crude mortality rates (CMRs) and excess deaths across cohorts of people who inject drugs, by sex;
- causes of death across studies, particularly from drug overdose and acquired immunodeficiency syndrome (AIDS); differences in mortality rates and causes of death among HIV-positive (HIV+) and HIV-negative (HIV-) people who inject drugs;
- differences in mortality rates across cohorts by geographical location and country income level;
- mortality rates by type of drug injected (e.g. opioids versus stimulants);
- mortality rates during in-treatment and off-treatment periods.

Methods

Identifying studies

A recent series of reviews identified cohort studies among opioid, amphetamine and cocaine users to examine mortality.³⁻⁵ In these reviews tailored search strings were used to search three electronic databases for studies published between 1980 and

Correspondence to Bradley M Mathers (e-mail: bmathers@kirby.unsw.edu.au).

(Submitted: 31 May 2012 – Revised version received: 26 November 2012 – Accepted: 28 November 2012)

^a The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia.

^b National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia.

^c Scientific Division, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, Portugal.

^d School of Social and Community Medicine, University of Bristol, Bristol, England.

2012: Medline, EMBASE and PsycINFO. The search strings contained keywords and database-specific terms (MeSH headings, EMTREE terms and explode terms; Box 1). All results were limited to human subjects. We identified grey literature sources reporting on mortality by searching online grey literature databases, library databases and the web sites listed in a published technical report. To make sure that no relevant papers had been missed, we sent the draft lists of the papers identified through these searches to experts for their review.

For the current study we examined all papers found in the reviews of drug-related mortality but selected only cohorts composed of people who injected opioids and other drugs. We used the strategy outlined in the preceding paragraph to further search for these

cohorts. We included in the analysis only studies of drug users that included mortality data disaggregated by participants' injecting drug use; studies were included only if more than 70% of the cohort was composed of people who injected drugs.

The searches yielded a total of 5981 studies of mortality related to the use of opioids, amphetamines and cocaine. We identified another 79 articles by searching the reference lists of reviews on mortality related to drug use. Experts provided additional studies for 16 cohorts. From these 5981 articles we excluded a total of 5762: 4999 did not focus on drug dependence or mortality, 118 did not include raw data, 292 were case series, and 600 had insufficient mortality data on people who inject drugs. In total, we selected 67 cohort studies for inclusion

in the analyses (Fig. 1). These studies were further assessed using STROBE reporting guidelines.7

Data extraction

Once we had identified all studies, one of the authors (JL) extracted the data into an Excel database (Microsoft, Redmond, United States of America) and two others rechecked them (BM, CB). This yielded the basic data set for the statistical analyses. We extracted information on the location of each study, the period of recruitment and duration of follow-up, the number of people in the cohort, the percentage of people in the cohort who injected drugs, the number of person-years (PY) of follow-up and the number of deaths.

We extracted CMRs and standardized mortality ratios (SMRs). We ex-

Box 1. Strategy for search of the peer-reviewed literature

Database specific search terms were developed and combined using Boolean operators as follows:

(< opioids > OR < cocaine > OR < amphetamine type stimulants >) AND < drug use > AND < mortality > AND < longitudinal studies >

All results were limited to human subjects and publication years between 1980 and 2012. The full search strings used for each database were as follows:

Medline: ((heroin or opiate\$ OR opium OR opioid\$ OR Exp Opium/ OR exp Narcotics/ OR exp Heroin Dependence/ OR exp Heroin/ OR exp Morphine/OR exp Opioid-Related Disorders/OR exp Opiate Alkaloids/OR exp Methadone/OR exp Analgesics, Opioid/) OR (Cocaine exp Cocaine-Related Disorders/ or exp Cocaine/ or exp Crack Cocaine/) OR (ATS OR amphetamine type stimulant\$ OR amphetamine\$ OR methamphetamine OR deoxyephedrine OR desoxyephedrine OR Desoxyn OR madrine OR metamfetamine OR methamphetamine hydrochloride OR methylamphetamine $\mathsf{OR}\,\mathsf{n}$ -methylamphetamine $\mathsf{OR}\,\mathsf{d}$ -amphetamine $\mathsf{OR}\,\mathsf{d}$ extroamphetamine sulfate $\mathsf{OR}\,\mathsf{d}$ examphetamine $\mathsf{OR}\,\mathsf{d}$ extro-amphetamine sulfate $OR\ dextroamphetamine\ sulfate\ OR\ d-amphetamine\ sulfate\ OR\ stimulant\ S\ exp\ amphetamines\ /\ or\ exp\ amphetamine\ /\ or\ exp\ dextroamphetamine\ /\ or\ exp\ dextroamphetamine\$ or exp p-chloroamphetamine/ or exp 2,5-dimethoxy-4-methylamphetamine/ or exp p-hydroxyamphetamine/ or exp iofetamine/ or exp methamphetamine/ or exp benzphetamine/ or exp phentermine/ or exp chlorphentermine/ or exp mephentermine/ or exp amphetamine-related disorders/)) AND (drug abuse\$ OR drug use\$ OR drug misuse\$ OR drug dependenc\$ OR substance abuse\$ OR substance use\$ OR substance misuse\$ OR substance dependenc\$ OR addict\$ OR Exp Substance-related disorders/) AND (Mortal\$ OR fatal\$ OR death\$ OR exp "death and dying"/ OR exp mortality/ OR exp hospitalization) AND ("cohort" OR "longitudinal" OR "incidence" OR "prospective" OR "follow-up" OR exp cohort studies/ OR exp longitudinal studies/ OR exp follow-up studies/ OR exp prospective studies/)

EMBASE: ((heroin OR opioid\$ OR opiate\$ OR opium OR exp Diamorphine/ OR exp Opiate/ OR exp Methadone treatment/ OR exp Methadone/) OR (Cocaine exp Cocaine-Related Disorders/ or exp Cocaine/ or exp Crack Cocaine/) OR (ATS OR amphetamine type stimulant\$ OR amphetamine\$ OR methamphetamine OR deoxyephedrine OR desoxyephedrine OR Desoxyn OR madrine OR methamphetamine OR methamphetamine hydrochloride OR methylamphetamine OR n-methylamphetamine OR d-amphetamine OR dextroamphetamine sulfate OR dexamphetamine OR dexedrine OR dextro-amphetamine sulfate OR dextroamphetamine sulfate OR d-amphetamine sulfate OR stimulant\$ exp amphetamines/ or exp amphetamine/ or exp dextroamphetamine/ or exp p-chloroamphetamine/ or exp 2,5-dimethoxy-4-methylamphetamine/ or exp p-hydroxyamphetamine/ or exp iofetamine/ or exp methamphetamine/ or exp benzphetamine/ or exp phentermine/ or exp chlorphentermine/ or exp mephentermine/ or exp exp amphetamine-related disorders/)) AND (Drug abuse OR drug use\$ OR drug misuse OR drug dependenc\$ OR substance abuse OR substance use\$ OR substance misuse OR substance dependenc\$ OR addict\$ OR exp substance abuse/ OR exp drug abuse/ OR exp analgesic agent abuse/ OR exp drug abuse pattern/ OR exp drug misuse/ OR exp drug traffic/ OR exp multiple drug abuse/ OR exp addiction/ OR exp drug dependence/ OR exp cocaine dependence/ OR narcotic dependence/ OR exp heroin dependence/ OR exp morphine addiction/ OR exp opiate addiction/) AND (Mortal\$ OR fatal\$ OR death\$ OR exp death/ OR exp "cause of death"/ OR exp accidental death/ OR exp sudden death/ OR exp fatality/ OR exp mortality/ OR exp hospitalization/) AND ("cohort" OR "longitudinal" OR "incidence" OR "prospective" OR "follow-up" OR exp cohort analysis/ OR exp longitudinal study/ OR exp prospective study/ OR exp follow up/)

PsychINFO: (("heroin"OR"opium"OR"opiate\$"OR"methadone"OR exp Opiates/ OR exp METHADONE/ OR exp HEROIN ADDICTION/ OR exp HEROIN) OR (Cocaine exp Cocaine-Related Disorders/ or exp Cocaine/ or exp Crack Cocaine/) OR (ATS OR amphetamine type stimulant\$ OR amphetamine\$ OR methamphetamine OR deoxyephedrine OR desoxyephedrine OR Desoxyn OR madrine OR metamfetamine OR methamphetamine hydrochloride OR methylamphetamine OR n-methylamphetamine OR d-amphetamine OR dextroamphetamine sulfate OR dexamphetamine OR dexedrine OR dextro-amphetamine sulfate OR dextroamphetamine sulfate OR d-amphetamine sulfate OR stimulant\$ exp amphetamines/ or exp amphetamine/ or exp dextroamphetamine/ or exp p-chloroamphetamine/ or exp 2,5-dimethoxy-4-methylamphetamine/ or exp p-hydroxyamphetamine/ or exp iofetamine/ or exp methamphetamine/ or exp benzphetamine/ or exp phentermine/ or exp chlorphentermine/ or exp mephentermine/ or exp amphetamine-related disorders/)) AND (Drug abuse OR drug use\$ OR drug misuse OR drug dependenc\$ OR substance abuse OR substance use\$ OR substance misuse OR substance dependenc\$ OR addict\$ OR Exp drug abuse/ OR exp drug addiction/ OR exp addiction/ OR exp drug usage) AND (Mortal\$ OR fatal\$ OR death\$ OR exp "death and dying" / OR exp mortality / OR exp hospitalization) AND ("cohort" OR "longitudinal" OR "incidence" OR "prospective" OR "follow-up" OR Exp age differences/ OR exp cohort analysis/ OR exp human sex differences)

Note: \$ indicates wildcard.

Flowchart showing study selection process for systematic review of studies on mortality in people who inject drugs

pressed CMRs as the number of deaths per 100 PY of follow-up. We reported SMRs as calculated in the source papers. In several cases standard errors, confidence intervals (CIs) and CMRs were not reported, so we estimated them using standard calculations. We also put into the database CMRs and SMRs that were reported according to sex, HIV status, treatment status and type of drug injected, as well as data on deaths from drug overdose or AIDs-related causes.

We included in the analyses studies that specified treatment status if they classified the data by mutually exclusive treatment groups or periods. We only included studies in which the exact dates of entry into and exit from the study had been recorded and used to calculate the

number of PYs, the number of deaths and mortality rates.

Statistical analysis

We performed meta-analyses to estimate pooled all-cause CMRs and all-cause SMRs, and pooled estimates of deaths from specific causes, as in previous reviews.8 To perform the meta-analyses we used the "metan" command in STATA version 10.1 (StataCorp LP, College Station, USA). The "metan" command uses inverse-variance weighting to calculate random effects pooled summary estimates and their confidence limits, true effect differences between studies and study heterogeneity. 9,10 Random effects models allow for heterogeneity between and within studies. We expected high

levels of heterogeneity between studies because of the marked differences between the samples of people injecting drugs; accordingly, we applied a random effects model to all analyses. The appropriateness of this a priori decision was confirmed by the resultant χ^2 and the *I*-squared statistic. To further investigate this heterogeneity, when the data permitted we divided the cohorts into subgroups and used CMR ratios to compare differences in mortality.¹¹ We made comparisons between subgroups as follows: sex (male versus female); primary drug injected at baseline (opioids versus stimulants); HIV status (HIV+ versus HIV-); and treatment for drug dependence (in-treatment period versus off-treatment period).

We examined the following as potential sources of heterogeneity in CMRs or SMRs using random effects univariate meta-regressions in STATA: geographic region, country income group (based on World Bank categories), percentage of sample that injected drugs, were male or were HIV+ at baseline; presence of opioid users in the cohort; and the year in which the follow-up period ended. 12,13

Results

We included 67 cohorts in the analysis; 14 were from low- and middle-income countries (Table 1). Studies from Europe, North America and Australasia were the most common; nine studies were from Asia and one was from South America. The pooled CMR across the 65 cohorts for which a CMR was provided was 2.35 deaths per 100 PY (Fig. 2). Cohorts from Asia had the highest pooled CMRs (5.25), followed by the cohorts from North America (2.64) and western Europe (2.31); cohorts from Australasia had the lowest pooled CMR (0.71).

SMRs were reported for 31 cohorts; their pooled SMR was 14.68 (Fig. 3). Since the heterogeneities (I^2) of the pooled CMR and SMR were both very high (98.6% and 98.3%, respectively), we stratified estimates by subgroups.

Sex differences in mortality

Thirty-seven studies presented CMRs by sex. 14,17-19,21-24,26,28,30-32,34,36-38,43, 45-50,52,54,57,58,62,66-72,74 The pooled CMR ratio for males versus females was 1.32 (Fig. 4), which suggests that crude mortality was higher among males. Nineteen studies reported SMRs by sex;14,17,21,24, ^{26,28,30,32,34,38,43,46,52,54,58,66,67,70,74} the pooled

 $\ensuremath{\mathsf{Table}}\ 1.$ Studies included in this systematic review of studies on mortality among people who inject drugs

Among Linguist Fine Li	Study	Country	Country	Sampling	u	People who	Males	Drug(s)	Recruitment	End of	PYs of	CMR	D%56	SMR	D%56
(1,0000)*** High DTS 4644 100 731 0,5 1975-1989 39667 201 108-216 301 100 100 2002-2004 2007 9016 6.22 4.68-4.99 100 100 0 2002-2004 2007 9016 6.22 4.68-4.99 1 1 2 4.68-4.99 1 2 2 4.68-4.99 1 2 2 4.68-4.99 1 3 2 2 4.68-4.99 1 3 2 2 4.68-4.99 1 3 2 2 4.68-4.99 1 3 3 2 4.68-4.99 1 3 3 4 3 2 3 3 3 4 3 2 3 4 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			income	frame		inject drugs (%)	(%)	nsed	period	follow-up period	dn-wolloj				
(LORDA) ⁴ Banglatesh Low DTS 552 100 10 0 2002-2004 5016 6.32 468-796 - (LORDA) ⁴ Banglatesh Low DTS 1142 99 588 0 1998-1999 2004 534 51 202-203 1 Rat (LORDA) ⁴ Asarta High DTS 114 99 588 0 1998-1999 1004 51 202-203 13 10<	Antolini et al. (2006) ¹⁴	Italy	High	DTS	4644	100	79.1	0, 5	1975–1999	1999	39 667	2.01	1.80–2.16	13.01	12.11–13.91
(2001) ³ Banglatesh Law DTS 675 100 100 0 2005-2007 1917 352 264-459 - Color	Azim et al. (2008) ¹⁵	Bangladesh	Low	DTS	552	100	100	0	2002-2004	2007	901.6	6.32	4.68-7.96	I	I
Test (2000) High DTS 11422 84 82.2 0 1860-1995 1997 2075 215 255-2.25 173 Test (2000) Austral High DTS 114 99 58.8 0 1986-1995 204 52.7 24.2 29.3 Fest (2000) High DTS 114 99 58.8 0 1986-1995 204 52.2 24.2 20.9 18.2 Fest (2000) High High DTS 47.80 100 78.0 1992-2003 2003 169.4 127.2 20.4 167.2 27.7 14.40 9.9 100 78.0 100 100 100 78.0 100 177.31 10.2 20.2 17.22.3 17.3 17.3 Feet (2000) United High DTS 270 69 0 1990-200 2003 16.2 27.7 14.4 17.4 17.4 17.4 17.4 17.2 17.2 17.2	Azim et al. (2009) ¹⁶	Bangladesh	Low	DTS	675	100	100	0	2005-2007	2007	1191.7	3.52	2.46-4.59	ı	ı
Austral High DTS 114 99 588 0 1984-1999 2004 5348 5.42 3.45-7.40 29.13 2.14 2	Bargagli et al. (2001) ¹⁷	Italy	High	DTS	11432	84	82.2	0	1980-1995	1997	80 787	2.15	2.05-2.25	17.3	16.5-18.2
etal (1999)** Italy High DTS 138 100 76.8 0 1985 1994 1772 204 12.62-283 - etal (1009)*** Razzl Midde NYS 478 100 78.7 5 2000-2003 2001 612 27.7 1454-409 - retal (2000)*** Italy High DTS 3789 90-95 681 0 1990-2003 2003 10934 195 226 208-243 0 retal (2000)*** United High DTS 3789 90-95 681 0 1990-2003 2003 1093	Bauer et al. (2008) ¹⁸	Austria	High	DTS	114	₈ 66	58.8	0	1998-1999	2004	534.8	5.42	3.45-7.40	29.13	19.27-44.04
tell (2000) ³ Reazil Midde NSP 478 100 787 5 2000–2001 2001 612 277 145–449 - tell (2000) ³ lajh High DTS 4260 100 787–1995 1995–1093 1995 1995 1995–1093 1995 1995 1995–1093 1995 1995 1995–1093 1995 1996<	Brancato et al. (1995) ¹⁹	Italy	High	DTS	138	100	76.8	0	1985	1994	1272	2.04	1.26-2.83	ı	I
retal(2000) ³⁴ ltaby High DTS 4260 100 780 – 1975–1995 1995 28424 226 2.08–2.43 30.7 rati(2000) ³⁵ Norway High DTS 3789 90–956 881 0 1995–2003 2003 10934 1.95 1.72.23 – rati(2010) ³⁸ Norway High DTS 660 100 67.4 – 1860–2005 2005 177315 1.00 865–115 – rati(2010) ³⁸ Norway High DTS 10454 72 80 0 1996–2005 2005 177315 1.00 865–115 – rati(2000) ³⁸ Norway High DTS 1244 2.70° 2.0° 1998–2006 2006 2006 425-98 0.89 86–92 6.4 rati(2000) ³⁸ Sann High DTS 1244 2.70° 2.0° 1988–2006 2006 2006 425-98 0.89 86–92 6.4 rati(2000) ³⁸ Sann High DTS 1244 2.70° 2.0° 1998–2007 2001 13538 2.0° 122–3.42 31 sat(2001) ³⁸ Norway High DTS 1249 2.70° 2.0° 2.0° 1998–2007 2001 1354 2.70° 2.20–3.42 31 sat(2001) ³⁸ Sann Middle DTS 3644 2.98 80.0 0.200–2006 2010 2019 1364 2.70° 2.20–3.42 31 sat(2001) ³⁸ Norway High DTS 1249 2.70° 2.0° 2.00–2006 2010 2019 1354 2.70° 2.20–3.42 31 sat(2001) ³⁸ Norway High DTS 1249 2.70° 2.0° 2.00–2006 2010 2019 2019 2019 2019 2019 2019 2019	Cardoso et al. (2006) ²⁰	Brazil	Middle	NSP	478	100	78.7	S	2000-2001	2001	612	2.77	1.45-4.09	ı	I
tetal.(2008) ²⁴ United High DTS 3389 90-95 681 0 1997-2003 2003 10934 1.5 17-2.3 - 1.2 14.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	Ciccolallo et al. (2000) ²¹	Italy	High	DTS	4260	100	78.0	ı	1975–1995	1995	28 424	2.26	2.08-2.43	30.7	17.3-44.0
tal.(2004) ³⁸ United High HC 5577 ≥70° 69 0 1990–2005 2005 177315 1.00 086–1.15 - text (2004) ³⁸ United High DTS 660 100 674 - 1980–2001 2001 6244 245 2.06–284 1745 - et at (2004) ³⁸ Italy High DTS 10454 72 80 0 1998–2001 2001 135382 0.74 0.59–2001 173382 0.74 0.59–2001 173382 0.74 0.59–2001 1998–2001 2001 1745 0.74 0.75 1998–2001 2001 1745 0.74 0.59 0.985–2006 2006 0.75 1998–2001 2007 1745 0.74 0.75 1998–2001 2007 1745 0.74 0.75 1998–2001 2007 1745 0.77 0.74 0.75 1998–2001 2007 1759 0.77 0.77 0.77 0.77 0.77 0.77 0	Clausen et al. (2008) ²²	Norway	High	DTS	3789	90-95	68.1	0	1997-2003	2003	10934	1.95	1.7-2.23	ı	I
Herall (2004) ³⁴ United High DTS 660 100 67.4 - 1980-2001 2001 6244 245 266-2.84 1745 1746	Cornish et al. (2010) ²³	United Kingdom	High	HC	5577	> 70 ^b	69	0	1990–2005	2005	17731.5	1.00	0.86–1.15	I	I
al. (2007)** taby High DTS 10454 72 80 0 1998-2001 2001 135382 0.74 0.59-0.88 - rdt et al. Australia High DTS 1244 270* 65.0 0 1998-2006 2005 394 1.72 0.4-229 6.4 stal (2003)** Australia High DTS 1244 270* 65.0 0 1998-1991 1991 313.64 2.77 2.22-3.42 31 stal (2003)** Spain High DTS 1244 270* 65.0 0 1999-1997 1997 33.64 277 2.22-3.42 31 ta (2013)** Spain High DTS 1487 85 0 2000-2006 2007 1596 107 14.42 0 (2011)** Bulgaria Middle DTS 3644 >98 80.0 0 2000-2006 2007 1596 109 109 109 109 109	Copeland et al. (2004) ²⁴	United Kingdom	High	DTS	099	100	67.4	I	1980–2001	2001	6244	2.45	2.06–2.84	17.45	14.59–20.3
rdt et al. Australia High DTS 42676 ≥ 70° - 0 1985–2006 2006 425.98 0.89 0.86–0.92 64 et al. (2004) ³⁷ Australia High DTS 1244 ≥ 70° 640 0,5 1985–1991 1991 31364 2.77 2.22–34.2 31 s.t. et al. (1993) ³⁸ Noway High TRC 1099 100 640 0,5 1985–1991 1991 31364 2.77 2.22–34.2 31 s.t. et al. (2001) ³⁸ Spain High DTS 1487 85 - 0 1990–1997 2008 6011 1.18 0.91–1.46. 5 - 0 1990–1997 2008 6011 1.18 0.91–1.46. 5 - 0 1990–1997 2008 6011 1.18 0.91–1.46. 5 - 0 1990–1997 2008 6011 1.18 0.91–1.46. 5 - 0 1990–1997 2008 6011 1.18 0.91–1.46. 5 - 0 1990–1997 2008 6011 1.18 0.91–1.46. 5 - 0 1990–1997 2009 2009 21.294 1.60 1.43–1.77 9.0 2001) ³⁸ Noweden High DTS 678 722 856 0, 1998–2001 2001 15369 - 0 1 1.43–1.77 9.0 1.43–1.77 9.0 1.43–1.77 9.0 1.43–1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43	Davoli et al. (2007) ²⁵	Italy	High	DTS	10454	72	80	0	1998-2001	2001	13538.2	0.74	0.59-0.88	ı	ı
etal. (2004) ³ Australia High DTS 1244 ≥ 70° 65.0 O 1998 2002 394 1.27 0.4-2.9 - 1.21 (1993) ³⁸ Norway High T&C 1009 100 64.0 O,S 1985-1991 1991 3136.4 2.77 2.22-3.42 31 51.4 (2013) ³⁸ Norway High T&C 1009 100 64.0 O,S 1995-1991 1991 3136.4 2.77 2.22-3.42 31 51.4 (2013) ³⁸ Spain High DTS 1887 85 - 0 1900-1997 1997 2008 6011 1.18 0.91-1.46 - 0.0 (2011) ³⁹ Croatia Middle DTS 3659 > 73 780 O 2000-2006 2007 15968 1.10 0.93-1.25 10.3 (2011) ³⁹ Normania Middle DTS 3644 > 98 80.0 O 2000-2006 2007 15968 1.10 0.93-1.25 10.3 (2011) ³⁹ Normania Middle DTS 678 > 72	Degenhardt et al. (2009) ²⁶	Australia	High	DTS	42 676	> 70 ⁶	I	0	1985–2006	2006	425 998	0.89	0.86-0.92	6.4	6.2–6.6
11 (1993) ³⁸ Norway High T&C 1009 100 64.0 O,S 1985–1991 13164 2.77 2.22–3.42 31 et al. (2003) ³⁸ Spain High DTS 1487 85 – 0 1990–1997 1997 4352 3.68 3.11–4.25 – (2011) ³⁸ Spain High DTS 1487 85 – 0 1999 2008 6011 1.18 0.91–1.46 – (2011) ³⁸ Bulgaria Middle DTS 3659 >73 78.0 0 2000–2009 2007 15968 1.09 0.93–1.25 103 (2011) ³⁸ Bulgaria Middle DTS 3644 >98 80.0 0 2000–2009 2007 1159 1144 1141 118 118 118 118 118 118 118 111 118 118 118 118 118 118 118 118 118 118 118	DiGiusto et al. (2004)27	Australia	High	DTS	1244	> 70 ^b	65.0	0	1998	2002	394	1.27	0.4-2.29	ı	I
tral. (2003) ²⁵ Spain High DTS 1487 85 - 0 1990-1997 1997 4352 3.68 3.11-4.25 - C 1990-1097 1997 2008 6011 1.18 091-1.46 - C 10011) ²⁵ Bulgaria Middle DTS 3659 > 73 78.0 0 2000-2006 2007 15968 1.09 0.93-1.25 10.3 (2011) ²⁵ Coatia Middle DTS 3654 > 98 80.0 0 2000-2009 2009 21294 1.60 1.43-1.77 9.0 (2011) ²⁵ Sweden High DTS 678 > 72 85.0 0 1991-2007 2007 15968 1.09 0.93-1.25 10.3 (2011) ²⁵ Sweden High DTS 1037 72 85.0 0 1991-2007 2007 15369 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.0	Eskild et al. (1993) ²⁸	Norway	High	T&C	1009	100	64.0	0, 5	1985-1991	1991	3136.4	2.77	2.22-3.42	31	24.6-37.4
(2011) ³⁰ Bulgaria Middle DTS 580 81.6 0 1999 2008 6011 1.18 0.91-146 - (2011) ³⁰ Coatia Middle DTS 3654 >73 780 0 2000-2006 2007 15968 1.09 093-1.25 10.3 (2011) ³⁰ Latvia Middle DTS 3644 >98 80.0 0 2000-2009 2019 1294 1.60 143-1.77 9.0 (2011) ³⁰ Sweden High DTS 277 - 0 1981-1988 2007 1030 3.33 2.98-3.68 27.6 5.2 (2011) ³⁰ Sweden High DTS 10376 72 - 0 1991-2007 2007 4167 0.91 27.6 5.2 1991-2007 2007 4167 0.91 27.6 7.1 4167 0.91 0.92-1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <td>Esteban et al. (2003)²⁹</td> <td>Spain</td> <td>High</td> <td>DTS</td> <td>1487</td> <td>85</td> <td>ı</td> <td>0</td> <td>1990-1997</td> <td>1997</td> <td>4352</td> <td>3.68</td> <td>3.11-4.25</td> <td>ı</td> <td>I</td>	Esteban et al. (2003) ²⁹	Spain	High	DTS	1487	85	ı	0	1990-1997	1997	4352	3.68	3.11-4.25	ı	I
(2011) ³⁰ Croatia Middle DTS 3654 >73 780 0 2000–2006 2007 15968 1.09 0.93–1.25 103 (2011) ³⁰ Latvia Middle DTS 3644 >98 800 0 2000–2009 2012 1.69 1.43–1.77 90 (2011) ³⁰ Sweden High DTS 2707 >94 308 0 2001–2006 2018 0.57 0.47–0.68 6.5 (2011) ³⁰ Sweden High DTS 678 >72 - 0 1981–1988 2007 1030 3.33 2.98–3.68 5.76 (2011) ³⁰ Sweden High DTS 1037 72 85.6 0 1994–1998 5 years 742.5 7.14 5.22–9.06 7.77 od et al. USA High DTS 175 100 9.94 0 1994–1998 5 years 742.5 7.14 5.22–9.06 7.77 At al. (1997) ³⁴	EMCDDA (2011) ³⁰	Bulgaria	Middle	DTS	652	> 80	81.6	0	1999	2008	6011	1.18	0.91-1.46	ı	ı
(2011) ³⁰ Latvia Middle DTS 3644 >98 80.0 0 2000–2009 21294 160 143–1.77 90 (2011) ³⁰ Romania Middle DTS 2707 >94 30.8 0 2001–2006 2010 20188 0.57 0.47–0.68 6.5 (2011) ³⁰ Sweden High DTS 678 >72 - 0 1981–1988 2007 10307 3.33 2.98–3.68 27.6 5.7 (2011) ³⁰ Sweden High DTS 10376 72 - 0 1998–2007 2007 4167 0.91 0.52–1.20 7.7	EMCDDA (2011) ³⁰	Croatia	Middle	DTS	3059	>73	78.0	0	2000-2006	2007	15 968	1.09	0.93-1.25	10.3	8.9–12
(2011)³0 Romania Middle DTS 2707 >94 30.8 0 2001–2006 2010 2018 0.57 0.47–0.68 6.5 (2011)³0 Sweden High DTS 678 >72 - 0 1981–1988 2007 10307 3.33 2.98–3.68 27.6 (2011)³0 USA High DTS 10376 72 - 0 1998–2001 2007 4167 0.91 0.62–1.20 7.77 cd et al. USA High DTS 175 100 9.94 0 1998–2001 2007 4167 0.91 0.62–1.20 cd et al. USA High DTS 175 100 9.94 0 1998–2001 2007 174.55 7.14 5.22–9.06 - cd et al. United High DTS 459 100 99.4 0 1982–1998 5.947 2.08 1.52–9.06 - f et al. (1995)³³ Sweden	EMCDDA (2011) ³⁰	Latvia	Middle	DTS	3644	> 98	80.0	0	2000-2009	2009	21 294	1.60	1.43-1.77	0.6	8.0-10.0
(2011)³³ Sweden High DTS 678 >72 - 0 1981-1988 2007 10307 3.33 2.98-3.68 27.6 7.77 (1207)³¹ USA High DTS 10376 72 85.6 0 1998-2001 2007 4167 0.91 0.62-1.20 .(2007)³² Italy High DTS 10376 72 85.6 0 1998-2001 2007 15.369 - 7.77 od et al. USA High DTS 175 100 99.4 0 1982-1998 5 years 742.5 7.14 5.22-9.06 - ital.(1997)³⁴ United High DTS, other 472 100 99.4 0 1982-1993 1994 254 2.08 1.52-2.64 22 ital.(1997)³⁴ Sweden High DTS other 472 100 - 0,5 1986-1998 1992 10772 1.99 1.72-2.25 - ital.(1999)³³ <td>EMCDDA (2011)³⁰</td> <td>Romania</td> <td>Middle</td> <td>DTS</td> <td>2707</td> <td>> 94</td> <td>30.8</td> <td>0</td> <td>2001-2006</td> <td>2010</td> <td>20 188</td> <td>0.57</td> <td>0.47-0.68</td> <td>6.5</td> <td>5.4-7.7</td>	EMCDDA (2011) ³⁰	Romania	Middle	DTS	2707	> 94	30.8	0	2001-2006	2010	20 188	0.57	0.47-0.68	6.5	5.4-7.7
12) ³¹ USA High OR 644 100 68.3 O,S 1997–2007 2007 4167 0.91 0.62–1.20 (2007) ³² Italy High DTS 10376 72 85.6 O 1998–2001 2001 15369 – – 7.77 od et al. (1997) ³⁴ United High DTS, other 472 100 – O,S 194–1998 1992 10772 1092 1.72–2.26 7 tetal.(1997) ³⁵ Sweden High DTS, other High DTS 101 100 55.4 O 1986–1988 1993 515.3 7.76 5.54–10.58 –	EMCDDA (2011) ³⁰	Sweden	High	DTS	8/9	>72	ı	0	1981-1988	2007	10307	3.33	2.98-3.68	27.6	24.9–30.7
(2007)³² Italy High DTS 10376 72 85.6 0 1998–2001 2001 15369 - - 777 od et al. USA High DTS 175 100 0,5 1994–1998 5 years 742.5 7.14 5.22–9.06 - 777 Ital. (1997)³⁴ United High DTS, other 472 100 - 0,5 1986–1990 1990 1793 3.85 2.94–4.76 - let al. (1997)³⁵ Sweden High DTS, other 472 100 - 0,5 1981–1988 1992 10772 1.99 1.72–2.25 - Itatal. (1997)³⁵ Sweden High DTS 101 100 5.54 0,5 1986–1988 1992 10772 1.99 1.72–2.25 -	Evans (2012) ³¹	USA	High	OR	644	100	68.3	0, 5	1997-2007	2007	4167	0.91	0.62-1.20		
odetal. USA High DTS 175 100 99.4 O 1982–1993 5 years 742.5 7.14 5.22–9.06 – Ringdom High DTS, other 472 100 5.54 O 1986–1998 1992 10772 1.99 1.72–2.25 – High DTS 101 100 5.54 O 1986–1988 1993 5.15.3 7.76 5.54–10.58 –	Ferri et al. (2007) ³²	Italy	High	DTS	10376	72	85.6	0	1998-2001	2001	15369	I	I	7.77	6.7-8.95
United Kingdom High DTS, other High DTS and High DTS and High DTS and High DTS are	Fingerhood et al. (2006) ³³	USA	High	DTS	175	100		0,5	1994–1998	5 years ^c	742.5	7.14	5.22–9.06	ı	I
Sweden High DTS, other 472 100 − 0,5 1986–1990 1990 1793 3.85 Sweden High DTS 1640 ≥70° 69.2 0,5 1981–1988 1992 10772 1.99 Sweden High DTS 101 100 55.4 0 1986–1988 1993 515.3 7.76	Frischer et al. (1997) ³⁴	United Kingdom	High	DTS	459	100	99.4	0	1982–1993	1994	2547	2.08	1.52–2.64	22	16.5–28.8
Sweden High DTS 1640 > 70° 69.2 0, S 1981–1988 1992 10772 1.99 Sweden High DTS 101 100 55.4 0 1986–1988 1993 515.3 7.76	Fugelstad et al. (1995) ³⁵	Sweden	High	DTS, other	472	100	ı	0, S	1986-1990	1990	1793	3.85	2.94-4.76	ı	I
Sweden High DTS 101 100 55.4 O 1986–1988 1993 515.3 7.76	Fugelstad et al. (1997) ³⁶	Sweden	High	DTS	1640	> 70a	69.2	0,5	1981-1988	1992	10772	1.99	1.72-2.25	ı	I
	Fugelstad et al. (1998) ³⁷	Sweden	High	DTS	101	100	55.4	0	1986-1988	1993	515.3	7.76	5.54-10.58	ı	ı

(continued)														
Study	Country	Country	Sampling frame	u	People who inject drugs (%)	Males (%)	Drug(s) used	Recruitment period	End of follow-up period	PYs of follow-up	CMR	D%56	SMR	95% CI
Galli & Musicco (1994) ³⁸	Italy	High	DTS	2432	100	78.3	0	1980–1998	1991	16415	2.52	2.28–2.77	20.5	20.02-24.34
Goedert et al. (1995) ³⁹	ltaly	High	DTS	4962	p66	ı	0	1980–1990	1990	21 130	1.57	1.41–1.75	I	ı
Goedert et al. (2001) ⁴⁰	USA	High	DTS	6570	100	0.99	I	1987–1991	1998	28 900.2	4.67	4.42-4.92	ı	ı
Golz et al. (2001) ⁴¹	Germany	High	DTS	178	100	58.0	ı	1996-2000	2000	805	4.22	2.80-5.64	ı	ı
Haarr & Nessa (2007)⁴2	Norway	High	DTS	146	100	70.0	0	1997-2006	2006	574	1.92	0.95-3.44	ı	ı
Hickman et al. (2003)⁴³	United Kingdom	High	DTS	881	76	74.5	0	1997–1999	2001	2075	1.59	1.13–2.23	I	I
Jafari et al. (2010) ⁴⁴	Islamic Republic of Iran	Middle	DTS	99	100	ı	0	I	ı	196	4.08	1.25–6.91	ı	I
Jarrin et al. (2007) ⁴⁵	Spain	High	PR	6575	100	77.2	ı	1987–1996	2004	73 901	2.02	1.92-2.12	ı	ı
Lejckova et al. (2007) ⁴⁶	Czech Republic	High	DTS	12 207	80	67.5	o, s	1997–2002	2002	38131.2	0.84	0.75-0.93	8.15	7.28–9.09
Liu et al. (2011) ⁴⁷	China	Middle	DTS	860	95.2	96.1	0	2005-2011	2011	2192.9	6.85	5.79-7.98		
Lumbreras et al. (2006) ⁴⁸	Spain	High	DTS, other	3247	100	77.4	I	1990–1996	2002	26826	2.18	2.00–2.36	ı	I
Manfredi et al. (2006) ⁴⁹	Italy	High	DTS	1214	100	75.5	0	1977–1996	2002	13 280.3	2.04	1.8-2.3	ı	I
McAnulty et al. (1995) ⁵⁰	NSA	High	OR, HC	1769	100	73.3	ı	1989–1991	1992	3149	1.05	0.69-1.41	8.3	5.71-11.66
Mezzelani et al. (1998) ⁵¹	Italy	High	DTS	6248	100	ı	ı	1991	1991	6158.5	2.91	2.48-3.33	14.28	12.28–16.56
Miller et al. (2007) ⁵²	Canada	High	SIF	572	100	53.1	0, 5	1966-2004	2004	1608	1.37	0.80-1.94	16.4	9.1–27.1
Moroni et al. (1991) ⁵³	Italy	High	DTS	2279	100	I	0	1981–1988	1989	13 069	2.43	2.16-2.69	ı	I
Moskalewicz et al. (1996) ⁵⁴	Poland	Middle	DTS	929	100	74.2	0	1983–1992	1992	3594	2.28	1.81–2.83	12.06	9.6–15.0
Muga et al. (2007) ⁵⁵	Spain	High	DTS	1181	100	79.5	0	1987–2004	2004	10116	3.74	3.38-4.14	ı	I
Nyhlén (2011) ⁵⁶	Sweden	High	DTS	561	79	89	0, S	1970-1978	2006	15 203.1	1.30	1.12-1.48	5.94	5.5-6.8
O'Driscoll et al. (2001) ⁵⁷	NSA	High	DTS, other	2849	100	63.9	0, S	1994-1997	1997	4591	1.59	1.22-1.96	ı	I
Oppenheimer et al. (1994) ⁵⁸	United Kingdom	High	DTS	128	100	72.7	0	1969	1991	2349.7	1.83	1.28–2.38	11.9	8.64–16.09
Quan et al. (2007) ⁵⁹	Thailand	Middle	DTS	346	100	93.1	0, S	1999	2002	571.4	3.85	2.42-5.83	13.9	8.71-21.04
Quan et al. (2010) ⁶⁰	Viet Nam	Middle	DTS	894	100	100	0	2005	2007	710.1	6.30	4.60-8.50	13.4	11.4–15.3
Rahimi-Movaghar et al. (2009) ⁶¹	Islamic Republic of Iran	Middle	DTS	79	100	I	0	2007	2007	20.7	4.83	0-14.30	I	I
Reece (2010) ⁶²	Australia	High	DTS	2773	100	72.8	0	2000-2007	2007	9362.4	0.50	0.36-0.65	ı	ı

$\overline{}$	
\mathcal{Z}	
в	
7	
tinu	
.1.	
η	
~	
8	
٠.	
•	

Study	Country	Country	Sampling frame	u	People who inject drugs (%)	Males (%)	Drug(s) used	Recruitment period	End of follow-up period	PYs of follow-up	CMR	D%56	SMR	95% CI
Sánchez-Carbonell et al. (2000) ⁶³	Spain	High	DTS	135	88	71.0	0	1985	1995	1205.9	3.4	2.36–4.44	28.58	14.65–42.65
Seaman et al. (1998) ⁶⁴	United Kingdom	High	DTS	316	100	100	0	1983–1994	1994	1416.9	2.33	1.6–3.27	I	I
Solomon et al. (2009) ⁶⁵	India	Middle	DTS, other	1158	100	100	0	2005-2006	2008	1998	4.25	3.35-5.16	11.1	8.85-13.7
Sørensen et al. (2005) ⁶⁶	Denmark	High	DTS	101	100	67.3	0	1980-1984	1999	1232.3	3.49	2.44-4.53	15.75	11.4–21.2
Stenbacka et al. (2007) ⁶⁷	Sweden	High	Multiple	817	83	79.2	0, S	1967	2003	22 468.2	2.12	1.93-2.31	4.38	3.99-4.78
Stoov et al. (2008) ⁶⁸	Australia	High	OR, SB	220	100	56.4	0, S	1990-1995	2006	3151	0.83	0.56-1.21	ı	ı
Tait et al. (2008) ⁶⁹	Australia	High	DTS	894	> 70 ^b	9.65	0	2001-2001	2005	4166.9	0.54	0.28-0.72	I	1
van Haastrecht et al. (1996)™	Netherlands	High	DTS, other	509	100	61.9	0, S	1985–1992	1993	2229	3.23	2.56-4.07	24.8	19.41–31.23
Vlahov et al. (2005) ⁷¹	NSA	High	OR, SB	3593	100	77.3	0, 5	1988	2005	25736	4.50	4.24-4.76	ı	1
Vlahov et al. (2008) ⁷²	NSA	High	OR, SB	2089	100	62.3	0, 5	1997-1999	2002	8629.3	0.71	0.54-0.88	ı	1
Zabranksy et al. (2011) ⁷³	Czech Republic	High	OR	151	100	43	0, S	1996–1998	2008	1659.7	0.48	0.15-0.81	14.4	9.31–19.49
Zaccarelli et al. (1994) ⁷⁴	Italy	High	DTS	2029	100	75.5	I	1985–1991	1991	7872.2	2.30	1.96-2.63	31.92	27.44-36.93
Zhang et al. (2005) ⁷⁵	China	Middle	DTS	376	100	82.8	0	2002	2003	382.4	7.73	4.87-10.6	47.62	31.63–68.71

G, confidence interval, CMR, crude mortality rate; DTS, drug treatment service; HC, health clinic; NSP, needle and syringe programme; O, opioids; OR, outreach; PR, HIV prevention service; PY, person-years; S, stimulants; SB, snowballing; SIF, supervised injecting facility; SMR, standardized mortality ratio; T&C, HIV testing and counselling; USA, United States of America.

The proportion of subjects who injected drugs was not reported but was assumed to be at least 70% because of the predominance of injecting as a route of administration among opioid-dependent people in this country.

Not explicitly stated, but implied in the paper.

^c Subjects were followed for 5 years after the date of enrolment.

^d Data on history of drug use was available for 62% of the subjects, and of these, 99% had a history of injecting drugs. Note: Some CMRs and PYs of follow-up were calculated (formulae available from the corresponding author).

Fig. 2. Crude mortality rates for people who inject drugs, by region

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; CMR, crude mortality rate.

Cohort SMR (95% CI) Weight Western Europe 13.01 (11.38, 13.09) Antolini 2006 (Italy) 4.08 Bargagli 2001 (Italy) 17.30 (16.50, 18.20) 4.08 Bauer 2008 (Austria) 29.13 (19.27, 44.04) 1.26 Ciccolallo 2000 (Italy) 30.70 (17.30, 44.00) 1.13 Copeland 2004 (UK) 17.45 (14.59, 20.30) 3.68 EMCDDA 2011 (Sweden) 27.60 (24.90, 30.70) 3.67 Eskild 1993 (Norway) 31.00 (24.60, 37.40) 2.57 Ferri 2007 (Italy) 4.05 7.77 (6.70, 8.95) Frischer 1997 (UK) 22.00 (16.50, 28.80) 2.65 Galli 1994 (Italy) 20.50 (20.02, 24.33) 3.86 Leickova 2007 (Czech Republic) 8.15 (7.28, 9.09) 4.08 Mezzelani 1998 (Italy) 14.28 (12.28, 16.56) 3.86 Nyhlen 2011 (Sweden) 5.94 (5.50, 6.80) 4.10 Oppenheimer 1994 (UK) 11.90 (8.64, 16.09) 3.42 Sanchez-Carbonell 2000 (Spain) 28.58 (14.65, 42.65) 1.06 Sorensen 2005 (Denmark) 15.75 (11.40, 21.20) 3.04 4.38 (3.99, 4.78) 4.12 Stenbacka 2007 (Sweden) VanHaastrecht 1996 (Netherlands) 24.80 (19.41, 31.23) 2.72 Zabransky 2011 (Czech Republic) 14.40 (9.31, 19.49) 2.98 Zaccarelli 1994 (Italy) 31.92 (27.44, 36.93) 3.09 17.52 (14.62, 20.43) Subtotal (I-squared = 98.8%, p = 0.000) 63.51 Asia Quan 2007 (Thailand) 13.90 (8.71, 21.04) 2.64 Quan 2010 (Viet Nam) 13.40 (11.40, 15.30) 3.91 Solomon 2009 (India) 11.10 (8.85, 13.70) 3.80 Zhang 2005 (China) 47.62 (31.63, 68.71) 0.68 Subtotal (I-squared = 81.2%, p = 0.001) 14.47 (9.95, 19.00) 11.02 Australasia Degenhardt 2009 (Australia) 6.40 (6.20, 6.60) 4.12 Subtotal (I-squared = .%, p = .) 6.40 (6.20, 6.60) 4.12 Eastern Europe EMCDDA 2011 (Romania) 6.50 (5.40, 7.70) 4.05 EMCDDA 2011 (Croatia) 10.30 (8.90, 12.00) 3.98 EMCDDA 2011 (Latvia) 9.00 (8.00, 10.00) 4.07 Moskalewicz 1996 (Poland) 12.06 (9.60, 15.00) 3.72 Subtotal (I-squared = 87.7%, p = 0.000) 9.25 (7.22, 11.28) 15.82 North America McAnulty 1995 (USA) 8.30 (5.71, 11.66) 3.65 Miller 2007 (Canada) 1.88 16.40 (9.10, 27.10)

Fig. 3. Standardized mortality ratios for people who inject drugs, by region

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; SMR, standardized mortality ratio.

-68.7

CMR ratio suggests that females had significantly greater excess mortality than males in similar age groups in the general population (Fig. 5). Only two of the nineteen studies presented SMRs for males that were greater than those for females.30,74

Subtotal (I-squared = 64.4%, p = 0.094)

Overall (I-squared = 98.3%, p = 0.000)

NOTE: Weights are from random effects analysis

Causes of death

Several studies reported specific causes of death. The pooled CMR for death from drug overdose was 0.62 per 100 PY across 43 studies (Fig. 6). Eleven studies reported CMRs for death from drug overdose by sex: overall the CMR was

1.38 times higher (Fig. 7) among males than among females. 14,17,19,21,24,32,38,49,52,57,58

In 20 studies CMRs were provided separately for people who inject drugs according to their HIV status. 15,16,18,28,34,36-40,45,48,49,55,57,60,65,70,72,74 Allcause mortality was three times higher among HIV+ than among HIV- subjects (CMR ratio: 3.15) (Fig. 8). Much of this elevated mortality appeared to result from AIDS deaths among HIV+ users of injecting drugs. The pooled estimate of AIDS-related mortality for the 16 studies for which data were available was 2.55 per 100 PY

(Fig. 9). 28,33-36,38-41,48,49,60,65,70,72,74 When we examined mortality from causes other than AIDS, we found it to be 1.63 times higher among HIV+ than among HIV- people who inject drugs (Fig. 10). 28,34,36,38-40,48,49,60,65,70,72,74

11.19 (3.58, 18.80)

14.68 (13.01, 16.35)

68.7

5.53

100.00

Mortality from drug overdose was presented by HIV status in 9 studies.^{28,34,36,38,39,49,65,70,74} Pooled estimates showed mortality to be twice as high among HIV+ than among HIV- people who inject drugs (CMR ratio: 1.99) (Fig. 11). Further analyses across 13 studies conducted on HIV+ people who inject drugs showed no significant

Cohort RR (95% CI) Weight Antolini 2006 (Italy) 1.30 (1.09, 1.55) 4.98 Bargagli 2001 (Italy) 0.97 (0.86, 1.09) 5.63 Bauer 2008 (Austria) 2.62 (1.18, 5.81) 1.01 Brancato 1995 (Italy) 1.14 (0.44, 3.01) 0.72 Ciccolallo 2000 (Italy) 1.32 (1.09, 1.61) 4.76 Clausen 2008 (Norway) 1.14 (0.85, 1.53) 3.68 Copeland 2004 (UK) 1.23 (0.87, 1.74) 3.13 Cornish 2010 (UK) 1.67 (1.16, 2.40) 2.99 Degenhardt 2009 (Australia) 1.58 (1.47, 1.70) 6.03 EMCDDA 2011 (Croatia) 2.57 (1.56, 4.24) 2.05 Eskild 1993 (Norway) 1.08 (0.70, 1.67) 2.44 Evans 2012 (USA) 1.60 (0.76, 3.37) 1.12 Ferri 2007 (Italy) 1.51 (1.06, 2.16) 3.06 Frischer 1997 (UK) 0.99 (0.57, 1.72) 1.77 Fugelstad 1997 (Sweden) 1.35 (0.99, 1.84) 3.52 1.74 (0.93, 3.26) Fugelstad 1998 (Sweden) 1.48 Galli 1994 (Italy) 1.14 (0.89, 1.45) 4.19 Hickman 2003 (UK) 2.01 (0.78, 5.18) 0.75 Jarrin 2007 (Spain) 1.36 (1.19, 1.55) 5.50 1.88 (1.44, 2.45) Lejckova 2007 (Czech Republic) 3.95 Liu 2011 (China) 0.80 (0.39, 1.66) 1.17 Lumbreras 2006 (Spain) 1.50 (1.21, 1.86) 4.56 Manfredi 2006 (Italy) 1.14 (0.86, 1.51) 3.77 McAnulty 1995 (USA) 1.59 (0.66, 3.84) 0.85 Miller 2007 (Canada) 0.64 (0.27, 1.53) 0.88 Moskalewicz 1996 (Poland) 1.80 (1.00, 3.23) 1.63 O'Driscoll 2001 (USA) 1.10 (0.68, 1.78) 2.15 Oppenheimer 1994 (UK) 0.86 (0.45, 1.64) 1.41 Reece 2010 (Australia) 3.31 (1.31, 8.36) 0.77 Sorensen 2005 (Denmark) 0.68 (0.37, 1.24) 1.58 Stenbacka 2007 (Sweden) 1.24 (0.98, 1.56) 4.35 Stoove 2008 (Australia) 3.49 (1.32, 9.22) 0.71 Tait 2008 (Australia) 1.09 (0.43, 2.76) 0.77 VanHaastrecht 1996 (Netherlands) 1.42 (0.87, 2.32) 2.11 Vlahov 2005 (USA) 1.20 (1.04, 1.38) 5.39 Vlahov 2008 (USA) 1.21 (0.73, 1.99) 2.04 Zaccarelli 1994 (Italy) 1.22 (0.86, 1.74) 3.09 Overall (I-squared = 63.9%, p = 0.000) 1.32 (1.21, 1.44) 100.00

Fig. 4. Ratios of crude mortality rates in males versus females who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; RR, relative risk.

difference in deaths from drug overdose and from AIDS in this group (CMR ratio: 1.35; P = 0.554) (Fig. 12). 28,33-36,38,

NOTE: Weights are from random effects analysis

Only four studies presented data by sex and HIV status. 37,47,49,74 They showed no significant difference in CMRs between HIV+ males and HIV+ females who inject drugs (CMR ratio: 1.13; Fig. 13), but HIV- males had a pooled CMR 1.81 times greater than that of HIV- females who inject drugs (Fig. 14).

Mortality by primary drug injected at baseline

Five studies estimated mortality by primary drug injected (opioids versus stimulants) (Table 2). Pooled estimates of all-cause mortality by primary type of drug injected showed no overall difference across studies (CMR ratio: 1.25; 95% CI: 0.60-2.61; P = 0.553). 36,46,57,70,71 The same was true of studies of mortality resulting from drug overdose (CMR ratio: 1.85; 95% CI: 0.75-4.56; P=0.18). In three of the four studies mortality associated with drug overdose was higher among people injecting opioids than among those injecting stimulants.36,46,71 In the fourth study, people who injected primarily stimulants had higher rates of drug overdose; however, the deaths from overdose in this group were later shown to have been caused by opioid use.57

.5

2

3 4

Mortality according to treatment

Six studies provided information on mortality during in-treatment and off-treatment periods at follow-up: the meta-analysis suggested that mortality was 2.52 times higher during off-treatment periods than during in-treatment periods (Fig. 15). 22,23,25,26,35,37

Heterogeneity in mortality

We performed univariate analyses to determine if the heterogeneity in overall CMRs and SMRs could be explained by participant characteristics and methodological variables. The results showed that high-income countries had lower

Cohort RR (95% CI) Weight Antolini 2006 (Italy) 0.60 (0.50, 0.71) 6.94 Bargagli 2001 (Italy) 0.41 (0.36, 0.46) 7.24 Ciccolallo 2000 (Italy) 0.50 (0.41, 0.61) 6.83 Copeland 2004 (UK) 0.67 (0.47, 0.95) 5.74 Degenhardt 2009 (Australia) 0.68 (0.63, 0.73) 7.40 EMCDDA 2011 (Croatia) 1.05 (0.64, 1.73) 4.60 Eskild 1993 (Norway) 0.43 (0.28, 0.67) 5.06 Ferri 2007 (Italy) 0.29 (0.21, 0.42) 5.68 Frischer 1997 (UK) 0.43 (0.25, 0.74) 4.21 Galli 1994 (Italy) 0.36 (0.28, 0.46) 6.50 Hickman 2003 (UK) 0.95 (0.37, 2.45) 2.30 Lejckova 2007 (Czech Republic) 0.99 (0.76, 1.29) 6.35 Miller 2007 (Canada) 0.24 (0.10, 0.57) 2.60 Moskalewicz 1996 (Poland) 0.55 (0.31, 0.99) 4.00 Oppenheimer 1994 (UK) 0.81 (0.42, 1.53) 3.66 0.37 (0.20, 0.67) Sorensen 2005 (Denmark) 3.93 Stenbacka 2007 (Sweden) 0.60 (0.47, 0.75) 6.60 VanHaastrecht 1996 (Netherlands) 0.79 (0.49, 1.29) 4.68 Zaccarelli 1994 (Italy) 1.44 (1.01, 2.05) 5.70 Overall (I-squared = 87.3%, p = 0.000) 0.58 (0.49, 0.69) 100.00 NOTE: Weights are from random effects analysis 1.5

Fig. 5. Ratios of standardized mortality ratios for males versus females who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; RR, relative risk.

CMRs than low- and middle-income countries (Fig. 16). Cohorts with greater proportions of males and HIV+ participants at baseline also had higher CMRs. Cohorts whose follow-up periods ended in more recent years had lower SMRs (Table 3). Study data were not sufficient to allow for multivariate analyses.

Discussion

Although previous reviews have examined mortality among people who inject drugs, to our knowledge this is the most comprehensive systematic review of the topic and the first to employ novel approaches to search for the available evidence. These approaches ranged from standard searches of the peer-reviewed literature to comprehensive searches of the non-peer reviewed literature and multiple expert consultations, as well as examination of both participant- and study-level factors potentially associated with the risk of death.

The pooled CMR of 2.35 deaths per 100 PY provides evidence of the high mortality associated with injecting drug use. The pooled SMR of 14.68 also shows that mortality is much higher in those who inject drugs than in the general population. Differences by sex were evident: across all studies that reported mortality by sex, males had higher CMRs, yet females who inject drugs had a much higher elevation in mortality relative to their age-matched peers in the general population than did males who inject drugs.

Most of the cohorts identified were from 14 high-income countries; together these 14 counties represent 78% of the total estimated population of people who inject drugs in such countries.76 Studies from only 11 low or middle income countries were identified; these countries account for only 40% of the estimated number of people injecting drugs in low- or middle-income countries.76

Although pooled CMRs were higher among people injecting drugs in low- and middle-income countries rather than high-income countries, we

observed no significant difference in pooled SMRs. This suggests that the higher CMRs may reflect higher overall mortality in the general population in low- and middle-income countries than in high-income countries. The lowest and highest mortality rates were documented in cohorts in Australasia and Asia, respectively. Differences across high-income countries probably reflect differences in HIV infection prevalence, coverage of HIV prevention and coverage of opioid agonist maintenance

Drug overdose and AIDS-related mortality were by far the most common causes of death. The pooled CMR for death from drug overdose was 0.62 per 100 PY, higher among males than females who inject drugs, and higher among HIV+ people who inject drugs than among those who were HIV-. In three of the four studies comparing drug overdose among people injecting opioids compared to those injecting stimulants, CMRs were higher among the former group, as expected. 36,46,71 In

Fig. 6. Crude mortality rates for death from drug overdose in people who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; CMR, crude mortality rate.

a fourth study, however, drug overdose was higher among people who injected stimulants,⁵⁷ although further investigation revealed that the deaths from overdose in this group were more often linked to the injection of opioids than to the injection of stimulants. This finding highlights the fact that people who inject drugs often use more than one drug type, even if they have a particular drug of choice.

The prevalence of HIV infection varied widely. As expected, overall mortality was much higher among HIV+ than among HIV- people who inject drugs (pooled CMR ratio: 3.15), but mortality from causes other than AIDS was also higher among those who were HIV+. Overdose-related mortality was also higher among HIV+ people who inject drugs in many cohorts. These differences in mortality may reflect differences in risky behaviour, physical health and social disadvantage.

The observational evidence examined in this review is consistent with the evidence from randomized controlled trials that opioid agonist maintenance treatment is associated with a reduced risk of death.⁷⁸ Among cohorts for which in-treatment and off-treatment periods were carefully tracked, mortality rates

were around 2.5 times higher in offtreatment periods than in in-treatment periods. Variation in exposure to treatment could also explain differences between cohorts in mortality from drug overdose, although this variation was not explicitly measured across cohorts.

The prevention of HIV transmission among people who inject drugs is clearly a public health priority. 79,80 There is growing evidence that opioid agonist maintenance treatment, antiretroviral treatment and needle and syringe programmes reduce HIV transmission.81-83 These interventions have been implemented in many countries, but often on a limited scale only.⁷⁷ Clearly, however, AIDS is only one of several common causes of death in this group: a comprehensive approach to improving health outcomes among people who inject drugs must also include efforts to reduce other causes of death frequently found among them, particularly drug overdose.84

Limitations of the evidence

Evidence on mortality rates among users of injecting drugs is still predominantly from high-income countries, particularly in western Europe. Interestingly, however, this review has shown that despite marked differences in CMRs across countries, the extent to which this mortality exceeds that of the general population may show less pronounced differences. It would be inappropriate to assume that mortality is equally high among all people who inject drugs. New research in this area is needed, especially

Ratios of crude mortality rates for death from drug overdose in males versus females who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval, RR, relative risk.

Fig. 8. Ratios of crude mortality rates in HIV-positive versus HIV-negative people who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; HIV, human immunodeficiency virus; RR, relative risk.

Fig. 9. Crude mortality rates for AIDS-related deaths in people injecting drugs who were HIV-positive at baseline

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). AIDS, acquired immunodeficiency syndrome; CI, confidence interval; CMR, crude mortality rate; HIV, human immunodeficiency virus.

Fig. 10. Ratios of crude mortality rates for non-AIDS-related deaths in HIV-positive versus HIV-negative people who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). AIDS, acquired immunodeficiency syndrome; CI, confidence interval; HIV, human immunodeficiency virus; RR, relative risk.

Fig. 11. Ratios of crude mortality rates for death from drug overdose in HIV-positive versus HIV-negative people who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; HIV, human immunodeficiency virus; RR, relative risk.

Fig. 12. Ratios of crude mortality rates for AIDS-related death versus death from drug overdose in HIV-positive people who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). AIDS, acquired immunodeficiency syndrome; CI, confidence interval; HIV, human immunodeficiency virus; RR, relative risk.

Fig. 13. Ratios of crude mortality rates in HIV-positive males versus HIV-positive females who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; HIV, human immunodeficiency virus; RR, relative risk.

Fig. 14. Ratios of crude mortality rates in HIV-negative males versus HIV-negative females who inject drugs

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; HIV, human immunodeficiency virus; RR, relative risk.

in countries where drug injecting is taking place but little research has been conducted about it.

In this review we found no significant differences in the risk of death by type of primary drug injected. This contrasts with the findings of other reviews of people dependent on different drug types, which, despite their own limitations, have suggested differences in mortality among opioid-, amphetamineand cocaine-dependent persons.3-5 An

explanation for this discrepancy might lie in the extent of drug injection among the groups examined, whether people used multiple drugs (polydrug use being the norm), or the possibility, seldom examined, that some people in the cohorts switched from one primary drug to another during the follow-up period. All of these factors would have reduced our capacity to detect any differences in mortality among people injecting different types of drugs.

The ability to detect differences in mortality in cohort studies according to HIV status is subject to limitations. HIV status was typically measured at baseline only, and some subjects who contracted HIV infection during follow-up would remain assigned to the HIV- group for the entire follow-up period. Nonetheless, this would only serve to underestimate the relative differences in mortality between HIV+ and HIV- people who inject drugs. The markedly higher all-

Table 2. Comparison of risk of dying from all causes and from drug overdose among people injecting opioids and those injecting stimulants

Stimulant use defi-	nition	Hospital records — if had no heroin dependence diagnosis and at least once had a diagnosis of ATS dependence	ICD-10 code F15 – stimulant dependence	Primary drug – cocaine or speed	Main drug injected – cocaine or ATS	Any cocaine or crack	
defini-	tion	Hospital records – at Heast once had a – diagnosis of heroin d dependence – opioid d user	ICD-10 code F11 IC opioid dependence F	Primary drug – P. heroin co	Main drug injected – M heroin –		1
Overdose CMR ratio	95% CI	3.46–5.53	2.35–4.61	0.20–1.24	I	1.12–1.86 Heroin	0.75–4.56
Overdos	Ratiob	4.39	3.29	0.50	I	1.44	1.85 ^d
All-cause CMR ratio	D%56	3.12-6.33	1.24–2.44	0.29-0.95	0.33-1.64	0.69–1.14	0.60–2.61
All-caus	Ratiob	4.44	1.74	0.52	0.73	0.88	1.25°
	OD CMR ^a	0.38	0.08	1.29	I	0.54	ı
ıts	Deaths from 0D (No.)	15	∞	_	ı	20	I
Users of stimulants	AII- cause CMRª	66.0	0.49	2.57	4.60	4.70	I
Userso	All- cause deaths (No.)	39	48	4	15	175	I
	РУ	3938	9748.4	544.6	326	3727	I
	OD CMR ^a	1.67	0.27	0.64	1	0.78	I
s	Deaths from 0D (No.)	72	36	19	I	16	ı
Users of opioids	AII- cause CMRª	4.40	0.86	1.34	3.36	4.15	I
User	All- cause deaths (No.)	133	411	40	0	85	I
	ΡΥ	3022.7	13 323.9	2984.9	268	2047	1
Study		Fugelstad et al. (1997)³6	Lejckova et al. (2007) ⁴⁶	O'Driscoll et al. (2001) ⁵⁷	van Haastrecht et al. (1996) ⁷⁰	Vlahov et al. (2005) ⁷¹	Pooled estimate

Cl, confidence interval, CMR, crude mortality rate, ICD-10, International Classification of Diseases; OD, overdose; PY, person—years; S, stimulant.

^a Deaths per 100 PY of follow-up.

^b Represents the CMR ratio for people injecting opioids (numerator) versus people injecting stimulants (denominator). ^c Meta-analysis of all-cause CMR ratio: lest of estimate = 1,P= 0.553; heterogeneity (χ^2) = 67.99; P < 0.0005; P= 94.1%.

 $^{^{}d}$ Meta-analysis of overdose CMR ratio. Test of estimate = 1:P = 0.18, heterogeneity (χ^{2} = 20.10; P < 0.0005; p = 85.1%. Note: Values reported in papers appear in plain text; *italicized* values were derived from other available data.

Cohort RR (95% CI) Weight Clausen 2008 (Norway) 1.96 (1.50, 2.56) 18.67 Cornish 2010 (UK) 1.90 (1.40, 2.59) 18.32 Davoli 2007 (Italy) 10.86 (7.25, 16.26) 17.30 Degenhardt 2009 (Australia) 1.92 (1.79, 2.05) 19.85 Fugelstad 1995 (Sweden) 1.19 (0.58, 2.45) 13.37 Fugelstad 1998 (Sweden) 2.55 (1.15, 5.66) 12.49 Overall (I-squared = 93.0%, p = 0.000) 2.52 (1.59, 4.00) 100.00 NOTE: Weights are from random effects analysis

Fig. 15. Ratios of crude mortality rates in people who inject drugs during in-treatment period versus off-treatment period

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; RR, relative risk.

Table 3. Univariate associations between study-level variables and all-cause crude mortality rates (CMRs) and standardized mortality ratios (SMRs)

Characteristic		CMR			SMR	
	n	t	P	n	t	P
Geographic region	53	-1.05	0.298	23	0.74	0.466
Country income	67	3.03	0.004	33	0.65	0.519
Percentage of cohort who inject drugs	60	1.49	0.141	26	2.04	0.052
Percentage of males	57	3.40	0.001	31	0.29	0.771
Percentage of cohort HIV+ at baseline	30	2.42	0.022	9	1.00	0.349
Presence of people using opioids (alone or with other drugs) in cohort	67	-0.07	0.945	33	-1.28	0.209
Year in which follow-up ceased	59	0.26	0.795	32	-2.80	0.009

cause mortality that we observed among HIV+ people who inject drugs is therefore probably a conservative estimate of the elevation in mortality in that group. Misattribution of cause of death as either AIDS- or non-AIDS-related could have occurred as well.

Treatment for HIV infection has improved greatly and has become more widely available. In some cohorts, mortality was examined for the periods before and after highly active antiretroviral therapy (HAART) was introduced. The findings suggest that mortality among HIV+ people who inject drugs decreased after the widespread introduction of HAART.55 Unfortunately, we were unable to examine the impact of treatment for HIV infection across studies because mortality was rarely reported separately for the periods before and after the introduction of HAART.77 However, the observed association between cohorts with more recent follow-up periods and lower SMRs might have to do with the greater availability in recent years of effective interventions for the prevention and treatment of HIV infection.

Reporting quality was poor. Few studies met criteria in consensus statements for the reporting of observational studies.7 Mortality estimates were reported in various forms, including odds ratios, relative risks, hazard ratios and CMRs. Most studies did not report SMRs and many failed to report standard parameters such as PY, or were seldom easy to calculate, particularly for disaggregated mortality estimates. As a result, only a subset of studies could be included in many of the analyses.

15 10

Causes of death were not uniformly or consistently coded. Deaths from drug overdose might have been missed in countries with limited capacity to conduct toxicological tests or where recording a death as being from a drug overdose is surrounded by stigma. As a result, we may have underestimated CMRs and SMRs for death from drug overdose. Misattribution of deaths by HIV status may have occurred, since most cohorts were assessed for HIV status at the beginning of the study only and people infected during follow-up could have been missed. Again, this may have resulted in conservative estimates of mortality among HIV+ people who inject drugs and in lower effect sizes. In future research, assessing individuals' HIV status at several time points during the follow-up period would allow a more accurate measurement of mortality in relation to HIV status.

Fig. 16. Crude mortality rates for people who inject drugs, by country income group

Image produced using Stata (StataCorp. LP, College Station, TX, United States of America). CI, confidence interval; CMR, crude mortality rate.

Limitations of the review and meta-analysis

Our review has limitations. The lag time between the date when the studies were conducted and when they were published in peer-reviewed journals was generally long. In light of this we used several methods to search for published and unpublished studies. We reviewed primarily English-language papers, although we also reviewed the abstracts of non-English-language peer-reviewed articles when they were available in English. When studies seemed relevant, we had them translated; we engaged experts from a range of different countries and language groups to review these reference lists. Meta-analytical methods were originally developed to aggregate the findings of randomized controlled trials,85 which have the advantage of allowing for control or adjustment of pre-conditions and sample-related factors that could influence the outcomes of interest. Controlling for such factors is not possible in observational studies, like the ones included in our review.

Conclusion

People who inject drugs have a much higher risk of death than those who do not. Major causes of death in this group are often poorly specified, but death from drug overdose is common, as is AIDS-related mortality in settings with a high prevalence of HIV infection. HIV+ people who inject drugs have higher mortality not just from HIV-related causes but also from drug overdose. Mortality varies by participant- and study-level characteristics, which suggests that multiple factors contribute to the higher risk of death observed in people who inject drugs. Many of these factors are probably modifiable, since certain predominant causes of death account for most of the mortality observed in this group.

Competing interests: None declared.

. معدل الوفيات بين الأشخاص الذين يتعاطون المخدرات عن طريق الحقن: استعراض منهجي وتحليل وصفي الغرض استعراض الدراسات الأترابية المعنية بمعدل الوفيات بين لاثنتين وثلاثين مجموعة؛ وكانت نسبة الوفيات الموحدة 14.68

(فاصل الثقة 95 ٪: 13.01 إلى 16.35). وأظهرت مقارنة معدلات الوفيات الأولية وحساب نسب معدلات الوفيات الأولية ارتفاع معدل الوفيات في البلدان المنخفضة والمتوسطة الدخل بين المجموعات والذكور والأشخاص الإيجابيين لفيروس العوز الناعي البشري (HIV) الذين تعاطوا المخدرات عن طريق الحقن. وكان المعدل مرتفعاً كذلك خلال فترات وقف العلاج. وكان فرط جرعة المخدرات ومتلازمة العوز المناعى المكتسب (الأيدز) السبين الرئيسيين للوفاة بين المجموعات.

الاستنتاج مقارنة بعامة السكان، يتعرض الأشخاص الذين يتعاطون المخدرات عن طريق الحقن لخطر وفاة مرتفع، على الرغم من تفاوت معدلات الوفيات بين البيئات المختلفة. ويجب أنَّ يتضمن أي نهج شامل لتحسين حصائل الصحة في هذه الفئة جهو دأ لخفض عدوى الإصابة بفيروس العوز المناعى البشري بالإضافة إلى غيرها من أسباب الوفاة، والسيما فرط جرعة المخدرات.

الأشخاص الذين يتعاطون المخدرات عن طريق الحقن على نحو منهجي، ودراسة معدلات الوفيات وأسباب الوفاة في هذه الفئة، وتحديد متغيرات مستوى المشاركين والدراسة المرتبطة بارتفاع

الطريقة تم استخدام عبارات بحث مخصصة للبحث في قواعد بيانات EMBASE وMedline وPsycINFO. وتم تحديد الكتابات غير الرسمية من خلال قواعد بيانات الكتابات غير الرسمية على شبكة الإنترنت. وتم استشارة الخبراء للحصول على دراسات وبيانات إضافية. وتم إجراء التحليلات الوصفية للتأثيرات العشوائية لتقييم معدلات الوفيات الأولية المجمعة (CMRs) ونسب الوفيات الموحدة (SMRs).

النتائج تم تحديد سبع وستين مجموعة من الأشخاص الذين يتعاطون المخدرات عن طريق الحقن، أربع عشرة منها من البلدان المنخفضة والمتوسطة الدخل. وكان معدل الوفيات الأولى المجمع 2.35 وفاة لكل 100 شخص-سنة (فاصل الثقة 95 ٪، فاصل الثقة: 2.12 إلى 2.58). وتم الإبلاغ عن نسب الوفيات الموحدة

摘要

药物注射人群的死亡率:系统回顾和荟萃分析

目的 系统回顾药物注射人群死亡率的队列研究, 检查该群 体的死亡率和死亡原因, 并确定与较高死亡风险相关的参 与水平和研究水平变量。

方法 使用定制的搜索字符串搜索EMBASE、Medline和 PsycINFO。通过网上灰色文献数据库识别灰色文献。咨询 专家以获取更多的研究和数据。执行随机效果荟萃分析来 估计汇集的粗死亡率(CMR)和标准化死亡率(SMR)。 结果 确定67 个药物注射人群队列, 其中14 个来自中低 收入国家。汇集的CMR为每100 人年2.35 例死亡(95% 置信区间, CI: 2.12-2.58)。 报告32 个队列的SMR; 汇

集的SMR为14.68(95% CI: 13.01-16.35)。CMR的比 较和CMR比率的计算表明, 中低收入国家的队列、男性 以及艾滋病毒 (HIV) 呈阳性的药物注射人群中的死亡率 较高。治疗结束期间死亡率也较高。药物过量和艾滋病 (AIDS) 是各个队列的主要死亡原因。

结论 尽管不同环境中的死亡率各异,与普通人群相比,药 物注射人群的死亡风险更高。任何改善该群体的健康疗效 的综合方案都必须包括减少艾滋病毒感染以及其他死亡致 因(尤其是药物过量)的努力。

Résumé

Mortalité chez les personnes qui s'injectent des drogues : revue systématique et méta-analyse

Objectif Examiner systématiquement les études de cohortes de la mortalité chez les toxicomanes par injection, étudier les taux de mortalité et les causes de décès dans ce groupe, et identifier les variables, au niveau des participants et des études, associées à un risque accru de décès. Méthodes Des critères de recherche spécifiquement adaptés ont été utilisés pour les recherches réalisées sur EMBASE, Medline et PsycINFO. La littérature grise a été identifiée par le biais de bases de données de littérature grise disponibles en ligne. Des experts ont été consultés pour obtenir des données et des études supplémentaires. Des méta-analyses des effets aléatoires ont été réalisées afin d'estimer les taux bruts de mortalité (TBM) groupés et les taux de mortalité standardisés (TMS). **Résultats** Soixante-sept cohortes de personnes qui s'injectent des drogues ont été identifiées, dont 14 appartenant à des pays à revenu faible et intermédiaire. Le TBM groupé était de 2,35 décès pour

Les TMS étaient indiqués pour 32 cohortes, avec un TMS groupé de 14,68 (IC de 95%: 13,01 - 16,35). La comparaison des TBM et le calcul des taux de TMS ont révélé une mortalité plus élevée parmi les cohortes des pays à revenu faible et intermédiaire, les sujets masculins et les toxicomanes par injection séropositifs. Elle était également plus élevée pendant les périodes d'interruption thérapeutique. L'overdose et le syndrome d'immunodéficience acquise (SIDA) étaient les causes principales des décès parmi ces cohortes.

Conclusion Si l'on compare avec la population globale, les personnes qui s'injectent des drogues ont un risque élevé de décès, bien que les taux de mortalité varient selon les contextes. Toute approche exhaustive visant à améliorer les résultats de ce groupe en matière de santé doit comprendre des efforts en vue de diminuer l'infection par le VIH, ainsi que d'autres causes de décès, notamment l'overdose.

Резюме

Смертность среди лиц, вводящих наркотики внутривенно: систематический обзор и мета-анализ

Цель Провести систематический обзор когортных исследований смертности среди лиц, вводящих наркотики внутривенно, изучить уровни смертности и причины смерти в данной группе и определить переменные на уровне участников и исследований, связанные с высоким риском смерти.

100 personnes-années (intervalle de confiance de 95%, IC: 2,12 – 2,58).

Методы Поиск исследований осуществлялся по базам данных EMBASE, Medline и PsycINFO по специализированным критериям поиска. Поиск литературы для служебного пользования осуществлялся по онлайновым базам данных литературы для служебного пользования. С целью получения дополнительных данных и исследований проводились консультации с экспертами. Для определения суммарных общих показателей смертности (ОПС) и стандартизированных коэффициентов смертности (СКС) выполнялся мета-анализ случайных эффектов.

Результаты Были выявлены шестьдесят семь когорт лиц, вводящих наркотики внутривенно, 14 из которых относятся к странам с низким и средним уровнями доходов. Суммарный ОПС составлял 2,35 смертей на 100 человеко-лет (95% доверительный

интервал, ДИ: 2,12-2,58). СКС фиксировался для 32 когорт; суммарный СКС составлял 14,68 (95% ДИ: 13,01-16,35). Сравнение ОПС и расчет коэффициентов ОПС выявил высокий уровень смертности в когортах, относящихся к странам с низким и средним уровнями доходов, среди мужчин и лиц, вводивших наркотики внутривенно, которые имели положительные результаты на вирус иммунодефицита человека (ВИЧ). Высокий уровень также отмечен вне периодов лечения. Передозировка наркотиков и синдром приобретенного иммунодефицита (СПИД) являлись основными причинами смерти в когортах.

Вывод По сравнению с населением в целом, лица, вводящие наркотики внутривенно, подвержены повышенному риску смерти несмотря на то, что уровни смертности варьируются в зависимости от условий. Любой комплексный подход к улучшению результатов мероприятий по охране здоровья в данной группе должен включать в себя меры по сокращению уровня ВИЧ-инфекции, а также других причин смерти, в особенности, передозировки наркотиков.

Resumen

La mortalidad entre consumidores de drogas inyectables: una revisión sistemática y meta-análisis

Objetivo Revisar de forma sistemática los estudios de cohortes sobre la mortalidad entre los consumidores de drogas inyectables, examinar las tasas de mortalidad y las causas de muerte en este grupo e identificar las variables relacionadas con el estudio y los participantes asociadas a un mayor riesgo de muerte.

Métodos Se emplearon cadenas de búsqueda adaptadas para registrar EMBASE, Medline y PsycINFO. La literatura gris se identificó por medio de bases de datos de literatura gris en línea. Se consultaron expertos a fin de obtener datos y estudios adicionales y se llevaron a cabo metaanálisis de efectos aleatorios para calcular las tasas brutas combinadas de mortalidad y las tasas de mortalidad estandarizadas.

Resultados Se identificaron diecisiete cohortes de consumidores de drogas inyectables, 14 de las cuales en países con ingresos bajos y medios. La tasa bruta combinada de mortalidad fue de 2,35 fallecimientos por cada 100 años-persona (intervalo de confianza del 95%, IC: 2,12-2,58). Se declararon las tasas de mortalidad estandarizadas para 32 cohortes; la tasa bruta combinada de mortalidad fue de 14,68 (IC 95%: 13,01-16,35). La comparación de las tasas brutas combinadas de mortalidad y el cálculo de las proporciones de la mortalidad bruta combinada revelaron que la mortalidad fue superior en las cohortes de países con ingresos bajos y medios, en varones y entre consumidores de drogas inyectables que dieron positivo para el virus de la inmunodeficiencia humana (VIH), así como durante los periodos sin tratamiento. Las sobredosis y el síndrome de la inmunodeficiencia adquirida (SIDA) fueron las causas principales de muerte en las cohortes. **Conclusión** En comparación con la población general, los consumidores de drogas inyectables presentan un riesgo elevado de muerte, si bien las tasas de mortalidad varían en los distintos lugares. Cualquier enfoque completo para mejorar los resultados sanitarios en este grupo deberá esforzarse por reducir la infección por VIH, así como las otras causas de muerte, en especial, la sobredosis.

References

- 1. Darke S, Degenhardt L, Mattick RP, editors. Mortality amongst illicit drug users. Cambridge: Cambridge University Press; 2006.
- Degenhardt L, Hall W, Warner-Smith M. Using cohort studies to estimate mortality among injecting drug users that is not attributable to AIDS. Sex Transm Infect 2006;82:iii56-63. doi:10.1136/sti.2005.019273 PMID:16735295
- Degenhardt L, Singleton J, Calabria B, McLaren J, Kerr T, Mehta S et al. Mortality among cocaine users: a systematic review of cohort studies. Drug Alcohol Depend 2011;113:88-95. doi:10.1016/j.drugalcdep.2010.07.026 PMID:20828942
- Singleton J, Degenhardt L, Hall W, Zabransky T. Mortality among amphetamine users: a systematic review of cohort studies. Drug Alcohol Depend 2009;105:1-8. doi:10.1016/j.drugalcdep.2009.05.028 PMID:19631479
- Degenhardt L, McLaren J, Ali H, Briegleb C; Global Burden of Disease Mental Disorders and Illicit Drug Use Expert Group. Methods used in a systematic review of mortality among dependent users of heroin and other opioids. Sydney: National Drug and Alcohol Research Centre, University of New South Wales; 2008 (Illicit drugs discussion paper No. 9).
- Calabria B, Phillips B, Singleton J, Mathers BM, Congreve E, Degenhardt L, et al. Searching the grey literature to access information on drug and alcohol research: A resource to identify drug related databases and websites. Sydney: National Drug and Alcohol Research Centre, University of New South Wales; 2008.
- Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ et al. STROBE Initiative. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology 2007;18:805-35. doi:10.1097/EDE.0b013e3181577511 PMID:18049195
- Wilcox HC, Conner KR, Caine ED. Association of alcohol and drug use disorders and completed suicide: an empirical review of cohort studies. Drug Alcohol Depend 2004;76(Suppl):S11-9. doi:10.1016/j.drugalcdep.2004.08.003 PMID:15555812
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88. doi:10.1016/0197-2456(86)90046-2 PMID:3802833
- Sharp S, Sterne J. Meta-analysis. Stata Tech Bull 1997;38:9-14.
- 11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60. doi:10.1136/bmj.327.7414.557 PMID:12958120
- Sharp S, Sterne J. Meta-analysis regression. Stata Tech Bull 1998;42:16–24.
- 13. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 1999;18:2693-708. doi:10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V PMID:10521860
- 14. Antolini G, Pirani M, Morandi G, Sorio C. Differenze di genere e mortalità in una coorte di eroinomani nelle province emiliane di Modena e Ferrara [Gender difference and mortality in a cohort of heroin users in the Provinces of Modena and Ferrara, 1975-1999]. Epidemiol Prev 2006;30:91-9. PMID:16909957
- Azim T, Chowdhury El, Reza M, Faruque MO, Ahmed G, Khan R et al. Prevalence of infections, HIV risk behaviors and factors associated with HIV infection among male injecting drug users attending a needle/syringe exchange program in Dhaka, Bangladesh. Subst Use Misuse 2008;43:2124-44. doi:10.1080/10826080802344583 PMID:19085439
- Azim T, Khan SI, Nahar Q, Reza M, Alam N, Saifi R, et al. 20 years of HIV in Bangladesh: experiences and way forward. Washington: World Bank; 2009.
- 17. Bargagli AM, Sperati A, Davoli M, Forastiere F, Perucci CA. Mortality among problem drug users in Rome: an 18-year follow-up study, 1980–97. Addiction 2001;96:1455-63. doi:10.1046/j.1360-0443.2001.961014559.x PMID:11571064
- 18. Bauer SM, Loipl R, Jagsch R, Gruber D, Risser D, Thau K et al. Mortality in opioid-maintained patients after release from an addiction clinic. Eur Addict Res 2008;14:82-91. doi:10.1159/000113722 PMID:18334818
- Brancato V, Delvecchio G, Simone P. Sopravvivenza e mortalità in una coorte di tossicodipendenti da eroina nel periodo 1985–1994 [Survival and mortality in a cohort of heroin addicts in 1985-1994]. Minerva Med 1995;86:97-9.
- 20. Cardoso MN, Caiaffa WT, Mingoti SA. Projeto AjUDE-Brasil II. AIDS incidence and mortality in injecting drug users: the AjUDE-Brasil II Project. Cad Saude Publica 2006;22:827-37. doi:10.1590/S0102-311X2006000400021 PMID:16612436
- 21. Ciccolallo L, Morandi G, Pavarin R, Sorio C, Buiatti E. La mortalità dei tossicodipendenti nella Regione Emilia Romagna e i suoi determinanti. Risultati di uno studio longitudinale [Mortality risk in intravenous drug users in Emilia Romagna region and its socio-demographic determinants. Results of a longitudinal study]. Epidemiol Prev 2000;24:75-80. PMID:10863848
- 22. Clausen T, Anchersen K, Waal H. Mortality prior to, during and after opioid maintenance treatment (OMT): a national prospective cross-registry study. Drug Alcohol Depend 2008;94:151-7. doi:10.1016/j.drugalcdep.2007.11.003 PMID:18155364

- 23. Cornish R, Macleod J, Strang J, Vickerman P, Hickman M. Risk of death during and after opiate substitution treatment in primary care; prospective observational study in UK General Practice Research Database. BMJ 2010;341:c5475. doi:10.1136/bmj.c5475 PMID:20978062
- 24. Copeland L, Budd J, Robertson JR, Elton RA. Changing patterns in causes of death in a cohort of injecting drug users, 1980–2001. Arch Intern Med 2004;164:1214–20. doi:10.1001/archinte.164.11.1214 PMID:15197047
- 25. Davoli M, Bargagli AM, Perucci CA, Schifano P, Belleudi V, Hickman M et al. VEdeTTE Study Group. Risk of fatal overdose during and after specialist drug treatment: the VEdeTTE study, a national multi-site prospective cohort study. Addiction 2007;102:1954-9. doi:10.1111/j.1360-0443.2007.02025.x
- 26. Degenhardt L, Randall D, Hall W, Law M, Butler T, Burns L. Mortality among clients of a state-wide opioid pharmacotherapy program over 20 years: risk factors and lives saved. Drug Alcohol Depend 2009;105:9-15. doi:10.1016/j. drugalcdep.2009.05.021 PMID:19608355
- 27. DiGiusto E, Shakeshaft A, Ritter A, O'Brien S, Mattick RP; NEPOD Research Group. Serious adverse events in the Australian National Evaluation of Pharmacotherapies for Opioid Dependence (NEPOD). Addiction 2004;99:450-60. doi:10.1111/j.1360-0443.2004.00654.x PMID:15049745
- Eskild A, Magnus P, Samuelsen SO, Sohlberg C, Kittelsen P. Differences in mortality rates and causes of death between HIV positive and HIV negative intravenous drug users. Int J Epidemiol 1993;22:315–20. doi:10.1093/ ije/22.2.315 PMID:8505190
- Esteban J, Gimeno C, Barril J, Aragonés A, Climent JM, de la Cruz Pellín M. Survival study of opioid addicts in relation to its adherence to methadone maintenance treatment. Drug Alcohol Depend 2003;70:193–200. doi:10.1016/ S0376-8716(03)00002-4 PMID:12732413
- European Monitoring Centre on Drugs and Drug Addiction. Mortality related to drug use in Europe: public health implications. Lisbon: EMCDDA; 2011.
- 31. Evans JL, Tsui Jl, Hahn JA, Davidson PJ, Lum PJ, Page K. Mortality among young injection drug users in San Francisco: a 10-year follow-up of the UFO study. Am J Epidemiol 2012;175:302-8. doi:10.1093/aje/kwr318 PMID:22227793
- 32. Ferri M, Bargagli AM, Faggiano F, Belleudi V, Salamina G, Vigna-Taglianti F et al. Gruppo di studio VEdeTTE. Mortalità in una coorte di tossicodipendenti da eroina arruolati presso i Ser.T in Italia, 1998–2001 [Mortality of drug users attending public treatment centers in Italy 1998-2001: a cohort study]. Epidemiol Prev 2007;31:276-82. PMID:18274231
- Fingerhood M, Rastegar DA, Jasinski D. Five year outcomes of a cohort of HIV-infected injection drug users in a primary care practice. J Addict Dis 2006;25:33-8. doi:10.1300/J069v25n02_05 PMID:16785217
- Frischer M, Goldberg D, Rahman M, Berney L. Mortality and survival among a cohort of drug injectors in Glasgow, 1982-1994. Addiction 1997;92:419-27. doi:10.1111/j.1360-0443.1997.tb03373.x PMID:9177063
- 35. Fugelstad A, Rajs J, Böttiger M, Gerhardsson de Verdier M. Mortality among HIV-infected intravenous drug addicts in Stockholm in relation to methadone treatment. Addiction 1995;90:711-6. doi:10.1111/j.1360-0443.1995.tb02209.x
- Fugelstad A, Annell A, Rajs J, Agren G. Mortality and causes and manner of death among drug addicts in Stockholm during the period 1981–1992. Acta Psychiatr Scand 1997;96:169-75. doi:10.1111/j.1600-0447.1997.tb10147.x
- 37. Fugelstad A, Agren G, Romelsjö A. Changes in mortality, arrests, and hospitalizations in nonvoluntarily treated heroin addicts in relation to methadone treatment. Subst Use Misuse 1998;33:2803-17. doi:10.3109/10826089809059352 PMID:9869445
- 38. Galli M, Musicco M; COMCAT Study Group. Mortality of intravenous drug users living in Milan, Italy: role of HIV-1 infection. AIDS 1994;8:1457-63. doi:10.1097/00002030-199410000-00013 PMID:7818817
- 39. Goedert JJ, Pizza G, Gritti FM, Costigliola P, Boschini A, Bini A et al. Mortality among drug users in the AIDS era. Int J Epidemiol 1995;24:1204-10. doi:10.1093/ije/24.6.1204 PMID:8824864
- 40. Goedert JJ, Fung MW, Felton S, Battjes RJ, Engels EA. Cause-specific mortality associated with HIV and HTLV-II infections among injecting drug users in the USA. AIDS 2001;15:1295-302. doi:10.1097/00002030-200107060-00012
- 41. Golz J, Moll A, Nzimegne S, Klausen G, Schleehauf D. Comparison of antiretroviral therapy in IVDU and MSM – a retrospective study 1996-2000. Suchtmedizin in Forschung und Praxis. 2001;3:25-33.
- 42. Haarr D, Nessa J. Opioidbehandling av rusmiddelavhengige i en allmennpraksis [Treatment of opiate-dependent patients in a general practice]. Tidsskr Nor Laegeforen 2007;127:1770-2. PMID:17599124

- 43. Hickman M, Carnwath Z, Madden P, Farrell M, Rooney C, Ashcroft R et al. Drug-related mortality and fatal overdose risk: pilot cohort study of heroin users recruited from specialist drug treatment sites in London. J Urban Health 2003;80:274-87. doi:10.1093/jurban/jtg030 PMID:12791803
- 44. Jafari S, Rahimi-Movahgar A, Craib K, Baharlou S, Mathias R. A follow-up study of drug users in Southern Iran. Addict Res Theory 2010;18:59-70. doi:10.3109/16066350902825930
- 45. Jarrin I, Lumbreras B, Ferreros I, Pérez-Hoyos S, Hurtado I, Hernández-Aguado I. Effect of education on overall and cause-specific mortality in injecting drug users, according to HIV and introduction of HAART. Int J Epidemiol 2007;36:187-94. doi:10.1093/ije/dyl231 PMID:17085455
- 46. Lejckova P, Mravcik V. Mortality of hospitalized drug users in the Czech Republic. J Drug Issues 2007;37:103–18. doi:10.1177/002204260703700105
- 47. Liu EW, Wang SJ, Liu Y, Liu W, Chen ZS, Li XY et al. Mortality of HIV infected clients treated with methadone maintenance treatment in Yili Kazakh autonomous prefecture. Zhonghua Yu Fang Yi Xue Za Zhi 2011;45:979-84. InChinese PMID:22336271
- 48. Lumbreras B, Jarrín I, del Amo J, Pérez-Hoyos S, Muga R, García-de la Hera M et al. Impact of hepatitis C infection on long-term mortality of injecting drug users from 1990 to 2002: differences before and after HAART. AIDS 2006;20:111-6. doi:10.1097/01.aids.0000196164.71388.3b PMID:16327326
- 49. Manfredi R, Sabbatani S, Agostini D. Trend of mortality observed in a cohort of drug addicts of the metropolitan area of Bologna, North-Eastern Italy, during a 25-year-period. Coll Antropol 2006;30:479-88. PMID:17058511
- 50. McAnulty JM, Tesselaar H, Fleming DW. Mortality among injection drug users identified as "out of treatment". Am J Public Health 1995;85:119-20. doi:10.2105/AJPH.85.1.119 PMID:7832249
- 51. Mezzelani P, Quaglio GL, Venturini L, Lugoboni F, Friedman SR, Des Jarlais DC. A multicentre study on the causes of death among Italian injecting drug users. AIDS has overtaken overdose as the principal cause of death. AIDS Care 1998;10:61-7. doi:10.1080/713612356 PMID:9536202
- 52. Miller CL, Kerr T, Strathdee SA, Li K, Wood E. Factors associated with premature mortality among young injection drug users in Vancouver. Harm Reduct J 2007;4:1. doi:10.1186/1477-7517-4-1 PMID:17201933
- Moroni M, Galli M. Causes of death in a cohort of intravenous-drug-users (IVDUs) recruited in Milan. AIDS Res Hum Retroviruses 1991;7:241-2.
- 54. Moskalewicz J, Sierosławski J. Umieralność osób uzaleznionych od narkotyków przyjmowanych w iniekcjach [Mortality of narcotic addicts using injections]. Przegl Epidemiol 1996;50:323–32. InPolish PMID:8927745
- 55. Muga R, Langohr K, Tor J, Sanvisens A, Serra I, Rey-Joly C et al. Survival of HIVinfected injection drug users (IDUs) in the highly active antiretroviral therapy era, relative to sex- and age-specific survival of HIV-uninfected IDUs. Clin Infect Dis 2007;45:370-6. doi:10.1086/519385 PMID:17599317
- 56. Nyhlén A, Fridell M, Bäckström M, Hesse M, Krantz P. Substance abuse and psychiatric co-morbidity as predictors of premature mortality in Swedish drug abusers: a prospective longitudinal study 1970–2006. BMC Psychiatry 2011;11:122-31. doi:10.1186/1471-244X-11-122 PMID:21801441
- 57. O'Driscoll PT, McGough J, Hagan H, Thiede H, Critchlow C, Alexander ER. Predictors of accidental fatal drug overdose among a cohort of injection drug users. Am J Public Health 2001;91:984-7. doi:10.2105/AJPH.91.6.984 PMID:11392946
- 58. Oppenheimer E, Tobutt C, Taylor C, Andrew T. Death and survival in a cohort of heroin addicts from London clinics: a 22-year follow-up study. Addiction 1994;89:1299-308. doi:10.1111/j.1360-0443.1994.tb03309.x PMID:7804091
- 59. Quan VM, Vongchak T, Jittiwutikarn J, Kawichai S, Srirak N, Wiboonnatakul K et al. Predictors of mortality among injecting and non-injecting HIV-negative drug users in northern Thailand. Addiction 2007;102:441-6. doi:10.1111/j.1360-0443.2006.01709.x PMID:17298652
- 60. Quan VM, Minh NL, Ha TV, Ngoc NP, Vu PT, Celentano DD et al. Mortality and HIV transmission among male Vietnamese injection drug users. Addiction 2011;106:583-9. doi:10.1111/j.1360-0443.2010.03175.x PMID:21054619
- 61. Rahimi-Movahgar A, Khastoo G, Razzaghi EM, Saberi-Zafarghandi MB, Noroozi AR. Jar-Siah R. Compulsory methadone maintenance treatment of severe cases of drug addiction in a residential setting in Tehran, Iran: outcome evaluation in two and six-month follow-up. Payesh 2011;10:503-12.
- 62. Reece AS. Favorable mortality profile of naltrexone implants for opiate addiction. J Addict Dis 2010;29:30-50. doi:10.1080/10550880903435988 PMID:20390697
- 63. Sánchez-Carbonell X, Seus L. Ten-year survival analysis of a cohort of heroin addicts in Catalonia: the EMETYST project. Addiction 2000;95:941–8. doi:10.1046/j.1360-0443.2000.95694110.x PMID:10946442
- 64. Seaman SR, Brettle RP, Gore SM. Mortality from overdose among injecting drug users recently released from prison: database linkage study. BMJ 1998;316:426-8. doi:10.1136/bmj.316.7129.426 PMID:9492665

- 65. Solomon SS, Celentano DD, Srikrishnan AK, Vasudevan CK, Anand S, Kumar MS et al. Mortality among injection drug users in Chennai, India (2005–2008). AIDS 2009;23:997-1004. doi:10.1097/QAD.0b013e32832a594e PMID:19367155
- Sørensen HJ, Jepsen PW, Haastrup S, Juel K. Drug-use pattern, comorbid psychosis and mortality in people with a history of opioid addiction. Acta Psychiatr Scand 2005;111:244-9. doi:10.1111/j.1600-0447.2004.00445.x PMID:15701109
- 67. Stenbacka M, Leifman A, Romelsjo A. Mortality among opiate abusers in Stockholm: a longitudinal study. Heroin Addict Rel Clin Prob 2007;9:41–9.
- Stoové MA, Dietze PM, Aitken CK, Jolley D. Mortality among injecting drug users in Melbourne: a 16-year follow-up of the Victorian Injecting Cohort Study (VICS). Drug Alcohol Depend 2008;96:281-5. doi:10.1016/j. drugalcdep.2008.03.006 PMID:18434044
- 69. Tait RJN, Ngo HTT, Hulse GK. Mortality in heroin users 3 years after naltrexone implant or methadone maintenance treatment. J Subst Abuse Treat 2008;35:116-24. doi:10.1016/j.jsat.2007.08.014 PMID:17931824
- 70. van Haastrecht HJA, van Ameijden EJC, van den Hoek JAR, Mientjes GHC, Bax JS, Coutinho RA. Predictors of mortality in the Amsterdam cohort of human immunodeficiency virus (HIV)-positive and HIV-negative drug users. Am J Epidemiol 1996;143:380-91. doi:10.1093/oxfordjournals.aje.a008752
- 71. Vlahov D, Galai N, Safaeian M, Galea S, Kirk GD, Lucas GM et al. Effectiveness of highly active antiretroviral therapy among injection drug users with late-stage human immunodeficiency virus infection. Am J Epidemiol 2005;161:999–1012. doi:10.1093/aje/kwi133 PMID:15901620
- Vlahov D, Wang C, Ompad D, Fuller CM, Caceres W, Ouellet L et al.; Collaborative Injection Drug User Study. Mortality risk among recent-onset injection drug users in five US cities. Subst Use Misuse 2008;43:413-28. doi:10.1080/10826080701203013 PMID:18365941
- Zábranský T, Csémy L, Grohmannová K, Janíková B, Brenza J. Mortality of cohort of very young injecting drug users in Prague, 1996–2010. Cent Eur J Public Health 2011;19:152-7. PMID:22026292
- 74. Zaccarelli M, Gattari P, Rezza G, Conti S, Spizzichino L, Vlahov D et al. Impact of HIV infection on non-AIDS mortality among Italian injecting drug users. AIDS 1994;8:345-50. doi:10.1097/00002030-199403000-00008 PMID:8031512
- 75. Zhang L, Ruan YH, Jiang ZQ, Yang ZN, Liu SZ, Zhou F et al. [A 1-year prospective cohort study on mortality of injecting drug users]. Zhonghua Liu Xing Bing Xue Za Zhi 2005;26:190-3. PMID:15941506
- Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA. Reference Group to the UN on HIV and Injecting Drug Use. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet 2008;372:1733-45. doi:10.1016/S0140-6736(08)61311-2 PMID:18817968
- 77. Mathers BM, Degenhardt L, Ali H, Wiessing L, Hickman M, Mattick R et al. Reference Group to the UN on HIV and Injecting Drug Use. HIV prevention, treatment and care for people who inject drugs: A systematic review of global, regional and country level coverage. Lancet 2010;375:1014-28. doi:10.1016/ S0140-6736(10)60232-2 PMID:20189638
- Mattick RP, Breen C, Kimber J, Davoli M. Methadone maintenance versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst Rev 2009;3:CD002209. PMID:19588333
- 79. Declaration of Commitment on HIV/AIDS United Nations special session on HIV/ AIDS. In: Twenty-sixth special session of the General Assembly of the United Nations. 25-27 June 2001. New York, United States of America; 2001.
- Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA et al. Reference Group to the UN on HIV and Injecting Drug Use. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet 2008;372:1733-45. doi:10.1016/S0140-6736(08)61311-2 PMID:18817968
- 81. Palmateer N, Kimber J, Hickman M, Hutchinson S, Rhodes T, Goldberg D. Evidence for the effectiveness of sterile injecting equipment provision in preventing hepatitis C and HIV transmission among injecting drug users: a review of reviews. Addiction 2010;105:844-59. doi:10.1111/j.1360-0443.2009.02888.x PMID:20219055
- Tilson H, Aramrattana A, Bozzette S. Preventing HIV infection among injecting drug users in high-risk countries: an assessment of the evidence. Washington: Institute of Medicine; 2007.
- Degenhardt L, Mathers B, Vickerman P, Rhodes T, Latkin C, Hickman M. Prevention of HIV infection for people who inject drugs: Why individual, structural, and combination approaches are required. Lancet 2010;376:285-301. doi:10.1016/S0140-6736(10)60742-8 PMID:20650522
- Baca CT, Grant KJ. Take-home naloxone to reduce heroin death. Addiction 2005;100:1823-31. doi:10.1111/j.1360-0443.2005.01259.x PMID:16367983
- 85. Kulinskaya E, Morgenthaler S, Staudte R. Meta analysis: a guide to calibrating and combining statistical evidence. Wiley-Interscience; 2008.