

Darshan Institute of Engineering & Technology B.Tech. | Sem-3 | Summer-2023

Course Code: 2101HS302Date: 26-04-2023Course Name: Discrete MathematicsDuration: 150 Minutes

Total Marks : 70

7

7

Instructions:

1. Attempt all the questions.

2. Figures to the right indicates maximum marks.

3. Make suitable assumptions wherever necessary.

Q.1 (A) If $A = \{x; x \in R, x^2 - 3x - 4 = 0\}$, $B = \{x; x \in Z, x^2 = x\}$, then find $A \cup B$, $A \cap B$, A - B and $A \triangle B$.

(B) Find $n(A' \cap B')$. where, A and B are two subsets of universal set U, such that $n(A) = 20, n(B) = 30, n(U) = 80, n(A \cap B) = 10.$

OR

Find g. c. d. (a, b) and l. c. m(a, b). where, a = 7254 and b = 10025.

- (c) (i) Give the power set of the following.
 - (a) $A = \{x; x \text{ is multiple of } 4, x \in \mathbb{N} \text{ and } x \leq 16 \}$
 - (b) $B = \{x; x \text{ is aprime number and } x < 8\}$
 - (ii) If $f(x) = x^2$ and g(x) = 2x + 1 be the real functions, then find (f+g)(x), (f-g)(x), $\left(\frac{f}{g}\right)(x)$.

OR

- (i) If $f = \{(1,2), (2,3), (3,1)\}, g = \{(1,2), (2,1), (3,3)\},$ then find $f \circ g$, $g \circ f$, $(f \circ g)^{-1}$.
- (ii) Write the matrix of R and sketch its graph. Where $X = \{1,2,3,4\}$ and $R = \{(1,1), (1,4), (4,1), (4,4), (2,2), (2,3), (3,2), (3,3)\}$.
- **Q.2** (A) Let $X = \{1,2,3.....,7\}$ & $R = \{(x,y): x y \text{ is even}\}$. Show that R is an 4 equivalence relation.
 - **(B)** Solve the recurrence relation: $a_n 3a_{n-1} = 2$; $n \ge 1$ using method of generating function.

OR

Solve the recurrence relation: $a_n=2a_{n-1}-a_{n-2}$; $a_1=1.5$, $a_2=3$ Using undetermined coefficient method.

- (C) (i) Draw Hasse Diagram of S_{12} .
 - (ii) Let $A = \{a, b, c\}$ then show that the poset $(P(A), \subseteq)$ is a lattice.

OF

- (i) Let $R = \{(a, b), (c, d), (b, b)\}$ and $S = \{(d, b), (b, e), (c, a), (a, c)\}$ be a relation on a set $A = \{a, b, c, d, e\}$. Obtain matrix of $R \circ S$, \widetilde{R} , S^2 .
- (ii) Draw Hasse Diagram of S_{75} .

- Q.3 (A) Define the following terms:
 - (i) Null graph, (ii) Multi graph, (iii) Mixed graph, (iv) Simple graph.
 - **(B)** Obtain the dnf and cnf of $(P \rightarrow Q) \land (P \lor 7Q)$.

3

4

OR

Find truth table of $(P \rightarrow Q) \Rightarrow (7P \lor Q)$.

(C) Using truth table check whether each of the following implication is tautology or contradiction.

7

- (i) $(P \lor R) \rightarrow P$
- (ii) $(P \lor Q) \rightarrow (P \rightarrow Q)$
- (iii) $P \rightarrow (P \land Q)$

OR

- (i) Prove that $(P \rightarrow Q) \Leftrightarrow (7P \lor Q)$.
- (ii) Indicate the variables that are free and bound. Also show that scope of quantifiers for $(x)(P(x) \land (\exists x)Q(x))) \lor ((x)(P(x) \rightarrow Q(x))$.
- Q.4 (A) Determine the number of edges in a graph with 6 vertices, 2 of degree 4 and 4 of degree 2. Draw two such graphs.
 - (B) State and Prove First fundamental theorem.

3

OR

Is ${\rm G_1} \cong {\rm G_2}$? If they are isomorphic, give the isomorphism. If not, explain.

 $\mathsf{Graph}\ \mathsf{G}_1$

- (C) (i) How many vertices are necessary to construct a graph with exactly 6 edges in which each vertex is of degree 2.
 - (ii) Find the strong, weak and unilateral component for the given diagraph

- (i) How many vertices are necessary to construct a graph with 12 edges in which each vertex is degree 4.
- (ii) Find the strong, weak and unilateral component for the given diagraph.

- **Q.5** (A) Prove that $(Z_5, +_5)$ is Group.
 - (B) Let the permutations of the elements of {1,2,3,4,5,6} be given by $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 4 & 3 \end{pmatrix}, \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 5 & 6 & 2 \end{pmatrix}$ Find $f \cdot g$, $g \cdot f$, f^{-1} .

OF

3

Let $f=(1\ 2\ 3)(1\ 4\ 5)\in S_5$ then find f^{99} .

(C) Find the left cosets of $H = \{p_1, p_5, p_6\}$ in the group $G = (S_3, \circ)$.

OF

Find all normal subgroup of the $(Z_{15}, +_{15})$
