MATURA EXAM IN PHYSICS

ORAL EXAM

ORGANISATION

- You can choose your three most and three least favourite topics.
- The basics of mechanics (topics 1 to 3) and the basics of waves (14) are compulsory.
- Topics marked with an asterisk (*) are voluntary. They can be chosen as a most favourite topic.
- From each of the sections advanced mechanics (4 to 6), theory of heat (7 and 8), electricity and magnetism (9 to 12), oscillations and waves (13 to 16) and modern physics (17 to 19) only one topic may be taken as most favourite and one topic as least favourite topic. Section 14 (waves) is a compulsory supplement for both sections 15 (sound waves) and 16 (electromagnetic waves).
- All students of an examination group show up in front of the exam room 15 minutes before the exam starts.
- Every student is tested during 15 minutes on two different topics, one of which is one of the favourite topics.
- No aids such as a calculator or a formula book are allowed.

Information for the Preparation

Apart from physical contents the following skills are tested:

- ▶ Basic mathematical skills:
 - Algebraic transformations
 - Circumference and area of a circle, surface and volume of a sphere
 - Trigonometric functions (definition and numerical values for special angles), radian
 - Vectors: sum and difference (construction, calculation with components), scalar (dot) and vector (cross) product (geometrical meaning)
 - Approximations, limits
- ▶ Basic functions (algebraically and in graphical representation):
 - Proportionality and linearity, linear functions with two parameters
 - Simple power laws, especially squares (parabola) and inverse proportionality (hyperbola)
 - Trigonometric functions (amplitude, period, phase)
 - Exponential function (half life period)
 - Physical examples for functional relations
- Graphical representations (also see above):
 - Read/plot values from/in diagrams.
 - Determine slope and axis intercept of straight line fit.
 - Determine average of a function graphically (e.g. power vs. time diagram)
 - Add/subtract/multiply/square graphs
- ▶ Express physical phenomena in English
 - Describe formal relations between two quantities in words
 - Describe the behaviour of curves
 - Careful use of physical terms
- Careful, concise sketches which help to find a solution
- Ratios (How does x change when y changes by a factor k or by p %?)
- ► Consistent use of symbols, different symbols for different quantities (e.g. with indices)
- Powers of ten
- Units and unit prefixes, transformation between different units, reasonable precision
- ▶ Know orders of magnitude, e.g. speed of light, size of an atom, radius of the Earth, density of air, ...
- Error estimates and error calculation

SUBJECTS OVERVIEW

REMARKS

- Physics does not only consist of formulae, but of the underlying concepts. There is no point in learning every formula in this brochure by heart without understanding what it means.
- The formulae in this brochure provide the basic tools to solve physical problems. The list is not exhaustive. You should always be able to derive other formulae from the basic ones.
- At the beginning of every section, some important terms are listed of which you are supposed to know the meaning and the definition. There are also some skills which are not related to calculations.
- You should know the constants at the beginning of every section with a reasonable precision.
- The symbols are generally the same as in "Formeln und Tafeln" and "Cutnell & Johnson" respectively.
- Always be aware of the scope of a law and of its possible applications.

1. KINEMAT	ICS	
Basic Terms:	Uniform motion:	Time, position and displacement, velocity and speed
	Constant acceleration:	Average and instantaneous speed, acceleration, free fall
	Superposition:	Principle of linear superposition, projectile motion
	Circular motion:	Period and frequency, angular velocity, centripetal acceleration
Skills:	Draw, interpret and transform displa	cement/speed/acceleration vs time diagrams
Constants:	Acceleration due to gravity on earth	and moon
Definitions:	Speed	$v = \frac{\Delta s}{\Delta t}$
	Acceleration	$a = \frac{\Delta v}{\Delta t}$
	Frequency	$f = \frac{n}{\Delta t}$
	Period	$T = \frac{1}{f}$
	Angular Frequency	$\omega = \frac{2\pi}{T} = 2\pi f$ Angle in radian
FORMULAE:	Angular speed	$v = \omega r$
	Centripetal acceleration	$a_R = \omega^2 r = \frac{v^2}{r}$

2	DVNAMIC	20

Basic Terms:	Inertia and mass:	Mass, density, inertial reference frame
	(Conservation of) momentum:	Momentum, closed system, conservation of momentum
	Newton's laws of motion:	Newton's laws of motion, force
	Dynamics of circular motion:	Centripetal force
Skills:	Draw forces acting on an object, find of	components (graphically and numerically)
	Set up and solve equations of motion	
Constants:	Densities of air and water	
DEFINITIONS:	Density	$ \rho = \frac{m}{V} $
	Momentum	$\vec{p} = m\vec{v}$
FORMULAE:	Newton's second law	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$
	Force of gravitation	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$
	Elastic force	$F_F = D \Delta l$
	Friction	$F_{R,G} = \mu_G F_N$ Kinetic friction
		$F_{R,H} \le \mu_H F_N$ Static friction (inequality)
	Air resistance	$F_L = \frac{1}{2} c_w \rho A v^2$

3. ENERGY

Topics:	(Conservation of) Energy:	0,	Potential energy, kinetic energy, elastic energy, gravitational energy; conservation of energy	
	Collisions:	Elastic and inelas	tic collision	
	Work and power:	Work, power, effic	ciency	
Skills:	Set up energy sums (also with non-me	chanical energy for	rms)	
	Solve collision problems with conserva	ation of energy and	momentum	
DEFINITIONS:	Potential energy	$E_{\text{pot}} = mgh$	Arbitrary reference level	
	Kinetic energy	$E_{\rm kin} = \frac{1}{2}mv^2$		
	Elastic energy	$E_{\rm S} = \frac{1}{2} D \Delta l^2$		
	Work	$W = F_s s$	Alternative unit kWh	
	Power	$P = \frac{W}{\Delta t} = F_s \nu$	F_s is the component of the force parallel to the direction of motion	
	Efficiency	$\eta = \frac{E_{\text{out}}}{E_{\text{in}}} = \frac{P_{\text{out}}}{P_{\text{in}}}$		

4. GRAVITA	rion*		
Basic terms:	Kepler's laws:	Planetary motion, swept area	
	Gravitation:	Gravitational force, gravitational energy, escape velocity, Schwarzschild radius	
Skills:	Draw the orbit of a planet around th	e sun	
	Calculate the mass of a planet/star fr	om a satellite's period of revolution	
	Calculate the escape speed from a star's mass and radius		
Constants:	Gravitational constant		
	Mass and radius of earth, moon and sun; distance earth - sun and earth - moon		
FORMULAE:	Kepler 1	The orbit of a planet about the Sun is an ellipse with the	
		Sun's centre of mass at one focus	
	Kepler 2	A line joining a planet and the Sun sweeps out equal	
		areas in equal intervals of time	
	Kepler 3	$(T_1:T_2)^2=(a_1:a_2)^3$	
	Gravitational force	$F_G = G \frac{m_1 m_2}{r^2}$	
	Work in the gravitational field	$W_{A\to B} = G m_1 m_2 \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$	

5. Rigid Bo	DIES*	
Basic Terms:	Law of the lever:	Torque, equilibrium (conditions)
	Centre of gravity and equilibrium:	Centre of gravity/mass; stable, unstable and indifferent equilibrium
Skills:	Establish the equilibrium conditions for a rigid body	
	Determine the centre of mass from par	rtial centres of mass
DEFINITIONS:	Torque	$\vec{M} = \vec{r} \times \vec{F}$
FORMULAE:	Rotational equilibrium	$\sum_{i} \vec{M}_{i} = 0$

6. Hydrostatics

Basic Terms:	Pascal's principle:	Pressure, hydraulic systems	
	Hydrostatic pressure in liquids:	Hydrostatic paradox, communicating vessels	
	Air pressure:	Air pressure, qualitative change in atmosphere	
	Buoyancy:	Archimedes' principle, swimming objects	
SKILLS:	Explain how a mercury barometer works		
	Determine the immersion depth of a s	wimming object	
Definitions:	Pressure	$p = \frac{F_{\perp}}{A}$	
FORMULAE:	Hydrostatic pressure	$\Delta p = \rho g h$	
	Buoyant force (Archimedes)	The buoyant force on a submerged object equals the weight of the liquid displaced by the object	

7. Gases			
Basic terms:	Gas laws:	Ideal gas, process vs. state; isothermal, isobaric, isochoric and adiabatic processes; amount of substance, molar mass	
	Kinetic gas theory:	Particle model, distribution of molecular speed	
Skills:	Draw, interpret and transform	n diagrams for processes on an ideal gas	
Constants:	Molar masses of important elements (hydrogen, helium, oxygen, nitrogen, carbon)		
	Avogadro's number		
	Universal gas constant		
Definitions:	Molar mass	$M = \frac{m}{n}$	
	Avogadro's law	$N = n N_A$	
FORMULAE:	Ideal gas law	pV = nRT	

DEFINITIONS:	Molar mass	$M = \frac{m}{n}$		
	Avogadro's law	$N = n N_A$		
FORMULAE:	Ideal gas law	pV = nRT		
8. Tempera	TURE AND HEAT			
Basic Terms:	Temperature:	thermal equilibrium; Celsius and Kelvin scale		
	Internal energy:	Work and heat for processes with gases		
	Heat engines:	Stirling process; heat engine, heat pump, refrigerator; efficiency of an ideal heat engine		
	Specific heat:	Specific heat; temperature of mixtures		
	Heat transfer:	Convection, heat conduction, radiation		
	Phase transitions:	Phase transitions; latent heat; vapour pressure diagrams, triple point, critical point		
SKILLS:	Draw and interpret heat flow diagrams for heat engines Describe the heat flows in mixing processes (with phase transitions)			
	Sketch the intensity vs wavelength diagram for heat radiation at different temperatures			
Constants:	Typical efficiency of a thermal power station Specific heat of water			
	Solar constant			
	Latent heat of fusion and latent heat of	of evaporation for water		
Definitions:	Heat value	$H = \frac{Q^{\prime}}{m}$		
	Specific heat	$c = \frac{Q}{m \Delta T}$		
	Intensity of radiation	$J = \frac{P}{A}$		
	Latent heat	$L_{f,\nu} = \frac{Q_{f,\nu}}{m}$		
FORMULAE:	First law of thermodynamics	$\Delta U = Q^{\prime\prime} + W^{\prime\prime}$		
	Efficiency of an ideal heat engine	$ \eta_C = 1 - \frac{T_k}{T_h} $ Analogous expressions for heat pump and refrigerator		
	Heat conduction	$\frac{Q}{\Delta t} = -\lambda A \frac{\Delta T}{d}$		
		and $\frac{Q}{\Delta t} = -U A \Delta T$		
	Kirchhoff's law	$J = \varepsilon J_S$		
	Stefan-Boltzmann's law	$J_S = \sigma T^4$		
	Wien's law	$\lambda_{\max} T = b$		

9. ELECTROSTATICS

BASIC TERMS:	Basic Phenomena:	Elementary charge, conductors and insulators, charging by induction
	Coulomb's law:	Electrostatic force between point charges
	Electric field:	Field lines, dipole, homogeneous field, Faraday cage; magnitude of electric field
	Electric potential energy, potential and voltage (potential difference):	Work in the electric field, acceleration of charged particles
	Capacitors	Parallel plate capacitor, electric fields in matter, energy in the electric field
Skills:	Draw field lines for a system of charges,	calculate magnitude for a system of point charges
	Calculate speed of charged particles fro	m acceleration voltage (unit eV)
Constants:	Elementary charge	
	Coulomb's constant	
Definitions:	Magnitude of the electric field	$\vec{E} = \frac{\vec{F}}{q}$
	Potential difference (voltage)	$\vec{E} = \frac{\vec{F}}{q}$ $\Delta V = \frac{W}{q}$
	Capacity	$C = \frac{Q}{\Delta V}$
FORMULAE:	Force between two point charges	$F_C = \frac{1}{4\pi\varepsilon_0 \kappa} \frac{Q_1 Q_2}{r^2}$
	Potential of a point charge	$V(r) = \frac{1}{4\pi\varepsilon_0 \kappa} \frac{q}{r}$
	Voltage in a homogeneous field	$\Delta V = E d$
	Capacity of a parallel plate capacitor	$C = \varepsilon_0 \kappa \frac{A}{d}$
	Energy in a capacitor's electric field	$W_{\rm el} = \frac{1}{2} Q \Delta V = \frac{1}{2} C \Delta V^2 = \frac{1}{2} \frac{Q^2}{C}$ $W_{\rm el} = \frac{1}{2} \varepsilon_0 \kappa E^2$
	Energy density in the electric field	$w_{\rm el} = \frac{1}{2} \varepsilon_{\rm o} \kappa E^2$

Basic Terms:	Electric current and power:	Simple circuits, power	of the electric current
	Resistance:	Characteristic of differ temperature coefficient	ent loads; resistors; resistivity t
	Resistor networks:	Series and parallel circ battery; measuring vol	uits; internal resistance of a tage and current
	Charging and discharging capacitors:	Time constant, half life	?
	Conductance:	metals, electrolytes, ser	niconductors
Skills:	Draw and interpret schematic circuit d	iagrams (with meters)	
Constants:	resistivity of copper		
DEFINITIONS:	Current	$I = \frac{\Delta Q}{\Delta t}$	
	Resistance	$I = \frac{\Delta Q}{\Delta t}$ $R = \frac{\Delta V}{I}$ $P = \Delta V I$	
FORMULAE:	Power of electric current	$P = \Delta V I$	
	Ohm's law	$\Delta V \propto I$	only for (ohmic) resistors
	Resistance of wires	$R = \rho \frac{l}{A}$	
	Temperature dependence	$\Delta \rho = \rho_{T_o} \alpha_{T_o} \Delta T$	Formeln und Tafeln: T _o = 20 °C
		or $\Delta R = R_{T_0} \alpha_{T_0} \Delta T$	
	Series wiring of resistors	$R_T = R_1 + R_2 + \dots$	
	Parallel wiring of resistors	$R_T = \left(\frac{1}{R_1} + \frac{1}{R_2} + \ldots\right)$	-1
	Discharging a capacitor	$\Delta V(t) = \Delta V_{\rm o} e^{-t/\tau}$	
	Time constant	$\tau = RC$	
	Half life	$T_{1/2} = \tau \ln 2$	

11. MAGNETISM

Basic terms:	Ferromagnetism:	Permanent magnet; earth's magnetic field	
	Magnetic field:	Magnetic field lines; force on a current-carrying wire, right-hand-rule	
	Magnetic force (Lorentz force):	Motion of charged particles in a magnetic field	
	Electromagnetism:	Magnetic field around a straight wire, at the centre of a current loop, in a coil/solenoid, in a Helmholtz coil	
	Induction:	Magnetic flux; Faraday's law; Lenz's law, eddy currents	
	Self inductance:	Self inductance; energy in the magnetic field, making/ breaking current	
Skills:	Draw magnetic field lines		
	Derive and integrate a graph (induced	emf and magnetic flux)	
Constants:	Earth's magnetic field in Zurich (horiz	ontal component and inclination)	
	Permeability of free space		
Definitions:	Magnetic flux	$\Phi = BA_{\perp}$	
Formulae:	Force on a current	$\vec{F} = I \vec{l} \times \vec{B}$ Direction: right-hand-rule	
	Magnetic force (Lorentz force)	$\vec{F}_L = q \vec{v} \times \vec{B}$ Negative particles: left hand	
	Magnetic field of a straight wire	$B = \frac{\mu_o}{2\pi} \frac{I}{r}$	
	Magnetic field of a solenoid	$B = \mu_{\rm o} \frac{NI}{l}$	
	Induced emf in a wire	$\Delta V = \nu B l$	
	Faraday's Law	$\Delta V(t) = -N \dot{\Phi}(t)$	
	Self-induced emf	$\Delta V(t) = -L\dot{I}(t)$	
	Inductance of a solenoid	$L = \frac{\mu_0 \mu_r N^2 A}{l}$	
	Breaking current	$I(t) = I_{\rm o} e^{-t/\tau}$	
	Time constant	$ au = rac{L}{R}$	
	Energy in a solenoid's magnetic field	$W_{\rm mag} = \frac{1}{2}L I^2$ see electric field energy	
	Energy density of the magnetic field	$w_{\text{mag}} = \frac{1}{2\mu_0 \mu_x} B^2$ see electric field energy	

12. AC CIRCUITS

AC Circuits:	Impedance and phase shift; rms values, effective power
Transformer:	Primary and secondary circuit
Electric grid	High voltage
Determine amplitude, frequency, pha-	se shift of ac signal from diagram (or oscilloscope)
Use phasor diagrams to investigate ph	nase relations
Describe how electric energy gets from	n the power station to the socket
Frequency and rms value of the house	ehold voltage in Europe
Harmonic ac voltage	$v(t) = v_0 \cos(\omega t)$
Impedance	$Z = \frac{v_0}{i_0}$
Rms values	$V_{\rm rms} = \frac{v_{\rm o}}{\sqrt{2}}, I_{\rm rms} = \frac{i_{\rm o}}{\sqrt{2}}$
Phase and time shift	$\frac{\Delta \varphi}{2\pi} = \frac{\Delta t}{T}$
Effective power	$P = \Delta V I \cos(\Delta \varphi)$
Resistor	$X_R = R, \Delta \varphi = 0$
Capacitor	$X_C = \frac{1}{\omega C}, \Delta \varphi = -\frac{\pi}{2}$ $X_L = \omega L, \Delta \varphi = +\frac{\pi}{2}$
Inductors	$X_L = \omega L, \Delta \varphi = +\frac{\pi}{2}$
Transformer (ideal, unloaded)	$\frac{\Delta V_1}{\Delta V_2} = \frac{n_1}{n_2}$ $\frac{I_1}{I_1} = \frac{n_2}{I_2}$
Transformer (ideal, short circuit)	$\frac{I_1}{I_2} = \frac{n_2}{n_1}$
	Transformer: Electric grid Determine amplitude, frequency, pharuse phasor diagrams to investigate phasoribe how electric energy gets from Frequency and rms value of the house Harmonic ac voltage Impedance Rms values Phase and time shift Effective power Resistor Capacitor Inductors Transformer (ideal, unloaded)

13. (OSCILLATIONS
-------	---------------------

Basic terms:	Simple harmonic motion:	Kinematics, dynamics and energy of the simple harmon motion	
	Damping and resonance:	Energy loss due to damping, envelope; driven oscillation and resonance	
	Superposition:	Superposition of oscillations with the same frequency (phasor diagram); beats	
	Coupled oscillations:	Coupling; natural oscillations	
SKILLS:	Use the characteristic equation to dete	rmine an oscillation's period	
	Draw, interpret and transform diagram	ns for displacement, speed, acceleration and energy	
DEFINITIONS:	Characteristic equation	$\ddot{y}(t) = -\omega^2 y(t)$	
FORMULAE:	Simple harmonic motion	$y(t) = A\cos(\omega t)$	
	Maximum speed	$v_{\text{max}} = \omega A$	
	Maximum acceleration	$a_{\text{max}} = \omega^2 A$	
	Oscillation period	$T = \frac{2\pi}{\omega}$	
	Total energy	$E \propto A^2$	
	Period of a mass on a spring	$T = 2\pi \sqrt{\frac{m}{k}}$ Small angle	
	Period of a mathematical pendulum	$T \approx 2\pi \sqrt{\frac{l}{g}}$ Small angle approximation	
	Period of an LC-circuit	$T = 2\pi \sqrt{LC}$	
	Damped oscillation	$y(t) = A(t)\cos(\omega t)$	
	Half life for exponential envelope	$T_{1/2} = \tau \ln 2$	
	Time constant for LCR oscillator	$\tau = 2 \frac{L}{R}$ $f_B = f_1 - f_2 $	
	Beat frequency	$f_B = f_1 - f_2 $	

14. WAVES

BASIC TERMS:	Waves:	Perturbation, wave carrier, coupling; longitudinal and transverse waves	
	Linear waves:	Representation for fixed time/fixed position; reflexion, superposition	
	Harmonic waves:	Wavelength	
Skills:	Transform from fixed time to fixed position and vice versa		
Definitions:	Characteristic equation	y(x,t) = f(x - vt) linear wave	
	Harmonic wave	$y(x,t) = A\cos(\omega t - kx)$	
FORMULAE: Wave number $k = \frac{2\pi}{\lambda}$		$k = \frac{2\pi}{\lambda}$	
	Propagation speed	$v = \lambda f$	

15. Sound Waves

Basic terms:	Sound waves:	Speed of sound in different n	nedia ————————————————————————————————————
	Sound pitch and intervals:	Frequency ratio, scales	
	Sound level:	Sound intensity and level, de	ecibel, phone scale
	Musical instruments:	Standing waves; string and waspectrum	vind instruments; frequency
	Doppler effect:	Moving source and/or observerselexion on moving object	ver, frequency shift for
SKILLS:	Sketch standing waves on strings and "Add" intervals	in pipes	
	"Add" sound intensity levels		
	Interpret polar diagrams for directivity	ty of loudspeakers	
Constants:	Speed of sound in air		
	Basic intervals (octave, fifth, fourth, major and minor third, equally tempered half-tone)		
	Hearing threshold level and frequence	y range of the human ear	
Definitions:	Sound intensity	$I = \frac{P}{A}$	
	Sound intensity level (in decibel)	$I = \frac{P}{A}$ $\beta = 10 \log \frac{I}{I_0}$	Rules of thumb
FORMULAE:	Speed of sound in a gas	$v_S = \sqrt{\frac{\kappa RT}{M}}$	
	Speed of sound in a liquid	$v_S = \sqrt{\frac{\kappa RT}{M}}$ $v_S = \sqrt{\frac{1}{\chi \rho}}$	
	Transverse waves on a string	$v_S = \sqrt{\frac{\sigma}{\rho}} = \sqrt{\frac{F}{m^*}}$	
	Overtones of a vibrating string	$f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$	Nodes at both ends
	Overtones of an open tube	$f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$	Antinodes of air motion at both ends
	gedackt pipe (closed at one end)	$f_n = (2n+1)f_0 = (2n+1)\frac{v}{4}$	<u>s</u> <u>1</u>
	Doppler effect	$f_O = f_S \frac{\nu_S \pm \nu_O}{\nu_S \mp \nu_S}$	

16. ELECTROMAGNETIC WAVES

BASIC TERMS:	Production and propagation:	Spectrum of electromagnetic wave; standing waves; dipole antenna; speed of light in vacuum and in media; Intensity	
	Polarisation:	Polarised and unpolarised light; polarisation filters	
	Wave optics:	Huygens' principle; interference, diffraction	
	Ray optics:	Reflexion and refraction; lenses	
SKILLS:	Give an overview of the electromagnetic spectrum		
	Draw the path of a light ray through a glass object		
Constants:	Speed of light in vacuum (air)		
	Critical angle for total internal reflexion		
DEFINITIONS:	Refractive index	$n = \frac{c_{\text{vacuum}}}{}$	
_	-	$c_{ m medium}$	
FORMULAE:	Speed of light in vacuum	$c_{\text{vacuum}} = \frac{1}{\varepsilon_0 \mu_0}$	
	Speed of light in a medium	$c_{\text{medium}} = \frac{c_{\text{vacuum}}}{n} = \frac{c_{\text{vacuum}}}{\sqrt{\kappa \mu_r}}$	
	Electric and magnetic field vectors	$ec{E} = ec{B} imes ec{c}$	
	Intensity	$I = \frac{\kappa \varepsilon_r}{2} c E^2 = \frac{1}{2\mu_0 \mu_r} c B^2$	
	Poynting vector	$\vec{S} = \frac{1}{2\mu_0\mu_r}\vec{E} \times \vec{B}$	
	Law of reflexion	$\vartheta_r = \vartheta_i$	
	Law of refraction	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	
	Total internal reflexion (critical angle)	$\sin \theta_c = \frac{n_2}{n_1} \qquad only for n_1 > n_2$	
	Thin lens equation	$\frac{1}{d_f} = \frac{1}{d_o} + \frac{1}{d_i}$ $\frac{D_i}{D_o} = -\frac{d_i}{d_o}$	
	Lateral magnification	$\frac{D_i}{D_o} = -\frac{d_i}{d_o}$	
	Condition for constructive interference	$\Delta r = m\lambda, m = 0, \pm 1, \pm 2, \dots$	
	Diffraction on a double slit/grating (maxima)	$\sin \vartheta_m = m \frac{\lambda}{d}$	
	Diffraction on a single slit (minima)	$\sin \vartheta_k = k \frac{\lambda}{s}$	

17. SPECIAL	RELATIVITY		
Basic terms:	Postulates:	Relativity postulate and speed of light postulate	
	Relativistic kinematics:	Simultaneity; time dilation, le	ength contraction
	Relativistic dynamics:	Relativistic energy and mome energy and mass	ntum; equivalence of
Skills:	Calculate a relativistic particle's speed	from the acceleration voltage	
	Calculate the energy set free in a nucle	ar process	
Definitions:	Speed (dimensionless)	$\beta = \frac{v}{c}$	
	Lorentz factor	$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$	non-relativistic: $\gamma - 1 \ll 1$
Formulae:	Time dilation	$t = \gamma \tau$	
	Length contraction	$I = \frac{\lambda}{\gamma}$	Only parallel to motion
	Energy-momentum relation	$E^2 = (mc^2)^2 + (pc)^2$	
	Equivalence of energy and mass	$E_{\rm o} = mc^2$	Rest energy
	relativistic energy	$E = E_{\rm o} + E_{\rm kin} + \ldots = \gamma E_{\rm o}$	
	Mass defect	$\Delta m = m_X - Zm_p - (N - Z)m_n$	
	Doppler effect for light (longitudinal)	$f_O = f_S \sqrt{\frac{c \pm v}{c \mp v}}$	

18. Quantu	M PHYSICS	
BASIC TERMS:	Photoelectric effect:	Work function, photon
	Wave-particle duality:	de Broglie relation
	Atomic physics:	Energy levels; resonance absorption
Constants:	Planck's constant	
FORMULAE:	Energy of a photon	$E = hf = \hbar \omega$
	Photoelectric equation	$W_{\max} = hf - W_a$
	Threshold frequency	$f_{\min} = \frac{W_a}{h}$
	de Broglie wavelength	$\lambda_B = \frac{h}{p}$

Basic terms:	Radioactive decay:	α , β and γ decay, daughter nuclei; decay law, half life period
Skills:	Find daughter nucleus for α and β decay	
	Determine half life period from decay	diagram
FORMULAE:	Decay law	$N(t) = N_{\rm o} e^{-\lambda t} = N_{\rm o} 2^{-t/T_{1/2}}$
	Half life period	$T_{1/2} = \frac{\ln 2}{\lambda}$