This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Describe the end behavior of the polynomial below.

$$f(x) = 9(x+6)^5(x-6)^{10}(x+3)^3(x-3)^5$$

The solution is the graph below, which is option D.

E. None of the above.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

2. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

7, 6, and
$$\frac{-7}{4}$$

The solution is $4x^3 - 45x^2 + 77x + 294$, which is option C.

- A. $a \in [-1, 5], b \in [-51, -40], c \in [74, 78], \text{ and } d \in [-295, -287]$
 - $4x^3 45x^2 + 77x 294$, which corresponds to multiplying everything correctly except the constant term.
- B. $a \in [-1, 5], b \in [43, 49], c \in [74, 78], \text{ and } d \in [-295, -287]$

$$4x^3 + 45x^2 + 77x - 294$$
, which corresponds to multiplying out $(x+7)(x+6)(4x-7)$.

- C. $a \in [-1, 5], b \in [-51, -40], c \in [74, 78], \text{ and } d \in [287, 297]$
 - * $4x^3 45x^2 + 77x + 294$, which is the correct option.
- D. $a \in [-1, 5], b \in [58, 62], c \in [256, 261], \text{ and } d \in [287, 297]$
 - $4x^3 + 59x^2 + 259x + 294$, which corresponds to multiplying out (x+1)(x+1)(4x-4).
- E. $a \in [-1, 5], b \in [11, 13], c \in [-164, -157], \text{ and } d \in [-295, -287]$
 - $4x^3 + 11x^2 161x 294$, which corresponds to multiplying out (x+1)(x-1)(4x-4).

General Comment: To construct the lowest-degree polynomial, you want to multiply out (x-7)(x-6)(4x+7)

3. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-4 + 2i$$
 and -3

The solution is $x^3 + 11x^2 + 44x + 60$, which is option B.

- A. $b \in [-1, 7], c \in [-1, 4], \text{ and } d \in [-13, -3]$
 - $x^3 + x^2 + x 6$, which corresponds to multiplying out (x 2)(x + 3).
- B. $b \in [10, 18], c \in [41, 45], \text{ and } d \in [55, 73]$
 - * $x^3 + 11x^2 + 44x + 60$, which is the correct option.
- C. $b \in [-11, -4], c \in [41, 45], \text{ and } d \in [-60, -58]$
 - $x^3 11x^2 + 44x 60$, which corresponds to multiplying out (x (-4 + 2i))(x (-4 2i))(x 3).
- D. $b \in [-1, 7], c \in [7, 13]$, and $d \in [8, 17]$
 - $x^3 + x^2 + 7x + 12$, which corresponds to multiplying out (x + 4)(x + 3).
- E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (-4 + 2i))(x - (-4 - 2i))(x - (-3)).

4. Describe the end behavior of the polynomial below.

$$f(x) = -8(x-4)^5(x+4)^8(x+3)^4(x-3)^6$$

The solution is the graph below, which is option A.

E. None of the above.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

5. Which of the following equations *could* be of the graph presented below?

The solution is $-8(x-2)^{10}(x-3)^4(x+2)^9$, which is option C.

A.
$$13(x-2)^{10}(x-3)^4(x+2)^4$$

The factor (x + 2) should have an odd power and the leading coefficient should be the opposite sign.

B.
$$2(x-2)^8(x-3)^{10}(x+2)^7$$

This corresponds to the leading coefficient being the opposite value than it should be.

C.
$$-8(x-2)^{10}(x-3)^4(x+2)^9$$

* This is the correct option.

D.
$$-3(x-2)^4(x-3)^5(x+2)^9$$

The factor (x-3) should have an even power.

E.
$$-16(x-2)^6(x-3)^7(x+2)^{10}$$

The factor (x-3) should have an even power and the factor (x+2) should have an odd power.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

6. Which of the following equations *could* be of the graph presented below?

The solution is $13x^8(x-2)^5(x+1)^7$, which is option E.

A.
$$13x^{10}(x-2)^4(x+1)^{11}$$

The factor (x-2) should have an odd power.

B.
$$-8x^6(x-2)^5(x+1)^4$$

The factor (x + 1) should have an odd power and the leading coefficient should be the opposite sign.

C.
$$-16x^8(x-2)^5(x+1)^5$$

This corresponds to the leading coefficient being the opposite value than it should be.

D.
$$3x^{11}(x-2)^6(x+1)^9$$

The factor 0 should have an even power and the factor 2 should have an odd power.

E.
$$13x^8(x-2)^5(x+1)^7$$

* This is the correct option.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

7. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-4}{5}, \frac{-2}{3}, \text{ and } 3$$

The solution is $15x^3 - 23x^2 - 58x - 24$, which is option A.

A.
$$a \in [10, 22], b \in [-24, -20], c \in [-64, -57], \text{ and } d \in [-24, -18]$$

*
$$15x^3 - 23x^2 - 58x - 24$$
, which is the correct option.

B.
$$a \in [10, 22], b \in [-51, -42], c \in [-8, 5], \text{ and } d \in [22, 29]$$

$$15x^3 - 47x^2 - 2x + 24$$
, which corresponds to multiplying out $(5x + 5)(3x - 3)(x - 1)$.

C.
$$a \in [10, 22], b \in [-70, -60], c \in [74, 80], \text{ and } d \in [-24, -18]$$

$$15x^3 - 67x^2 + 74x - 24$$
, which corresponds to multiplying out $(5x + 5)(3x + 3)(x - 1)$.

D. $a \in [10, 22], b \in [-24, -20], c \in [-64, -57], \text{ and } d \in [22, 29]$

 $15x^3 - 23x^2 - 58x + 24$, which corresponds to multiplying everything correctly except the constant

E. $a \in [10, 22], b \in [18, 27], c \in [-64, -57], \text{ and } d \in [22, 29]$ $15x^3 + 23x^2 - 58x + 24$, which corresponds to multiplying out (5x - 4)(3x - 2)(x + 3).

General Comment: To construct the lowest-degree polynomial, you want to multiply out (5x +4)(3x+2)(x-3)

8. Describe the zero behavior of the zero x = 9 of the polynomial below.

$$f(x) = 7(x-9)^{6}(x+9)^{7}(x-6)^{7}(x+6)^{11}$$

The solution is the graph below, which is option C.

В.

6286 - 1986Fall 2020

E. None of the above.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

9. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-4 - 3i$$
 and -2

The solution is $x^3 + 10x^2 + 41x + 50$, which is option C.

A. $b \in [0,7], c \in [3.09, 5.81], \text{ and } d \in [5.4, 7.3]$

 $x^3 + x^2 + 5x + 6$, which corresponds to multiplying out (x + 3)(x + 2).

B. $b \in [-10, -3], c \in [40.53, 42.29], \text{ and } d \in [-52, -49.7]$

 $x^3 - 10x^2 + 41x - 50$, which corresponds to multiplying out (x - (-4 - 3i))(x - (-4 + 3i))(x - 2).

C. $b \in [9, 16], c \in [40.53, 42.29]$, and $d \in [49, 50.4]$

* $x^3 + 10x^2 + 41x + 50$, which is the correct option.

D. $b \in [0,7], c \in [5.46, 7.06], \text{ and } d \in [7,11.7]$

 $x^3 + x^2 + 6x + 8$, which corresponds to multiplying out (x + 4)(x + 2).

E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (-4 - 3i))(x - (-4 + 3i))(x - (-2)).

10. Describe the zero behavior of the zero x = 5 of the polynomial below.

$$f(x) = 2(x+5)^3(x-5)^8(x+7)^9(x-7)^{10}$$

The solution is the graph below, which is option C.

E. None of the above.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.