

PowerPoint® Lecture
Presentations prepared by
Mindy Miller-Kittrell,
North Carolina State
University

CHAPTER 16

Adaptive Immunity

Preparation for an Adaptive Immune Response

- The Roles of the Major Histocompatibility Complex (MHC) and Antigen-Presenting Cells
 - Group of antigens first identified in graft patients
 - Important in determining compatibility of tissues for tissue grafting
 - Major histocompatibility antigens are glycoproteins found in the membranes of most cells of vertebrate animals
 - Antigens on the surface of cells known as major histocompatibility antigens are how the body can distinguish "self" from "non-self."
 - Hold and position antigenic epitopes for presentation to immune cells

- Preparation for an Adaptive Immune Response
 - The Roles of the Major Histocompatibility Complex (MHC) and Antigen-Presenting Cells
 - Antigens bind in the antigen-binding groove of MHC molecules
 - Two classes of MHC proteins:
 - MHC class I
 - Present on all cells except red blood cells
 - MHC class II
 - Present on antigen-presenting cells (APCs)
 - Include macrophages and dendritic cells (aka Professional Antigen Presenting Cells)
 - Nonprofessional antigen-presenting cells: microglia and stellate macrophages

Figure 16.4 The two classes of major histocompatibility complex (MHC) proteins.

Figure 16.5 Dendritic cells.

Preparation for an Adaptive Immune Response

- Antigen Processing
 - Antigens must be processed before MHC proteins can display epitopes
 - Different processes for endogenous and exogenous antigens

Antigen Processing and Presentation: Overview

Antigen Processing and Presentation: Overview

Antigen Processing and Presentation: Steps

PLAY

Antigen Processing and Presentation: Steps

Antigen Processing and Presentation: MHC

Antigen Processing and Presentation: MHC

- Produced in the red bone marrow and mature in the thymus
- Act against endogenous antigens, producing cellmediated immune responses
- Circulate in the lymph and blood
- Migrate to the lymph nodes, spleen, and Peyer's patches
- Have T cell receptors (TCRs) on their cytoplasmic membrane for every possible epitope

- Specificity of the T Cell Receptor (TCR)
 - TCRs do not recognize epitopes directly
 - TCRs only bind epitopes associated with an MHC protein
 - T cells act primarily against cells that harbor intracellular pathogens
 - Some T cells act against body cells that produce abnormal cell-surface proteins

- Types of T Lymphocytes
 - Based on surface glycoproteins and characteristic functions, three types:
 - Cytotoxic T lymphocyte 9 (Tc or CD8 cells)
 - Kill infected cells, as well as abnormal body cells such as cancer cells.
 - Helper T lymphocyte (Th or CD4 cells)
 - Helps regulate B cells and cytotoxic T cells
 - Includes type 1 and type 2 helper T cells
 - Regulatory T lymphocyte (Tr cells or suppressor T cells)
 - Represses adaptive immune responses

Cell-Mediated Immunity: Helper T Cells

Cell-Mediated Immunity: Helper T Cells

- Clonal Deletion of T Cells
 - Vital that immune responses not be directed against autoantigens
 - Body eliminates self-reactive lymphocytes
 - Cells with receptors that respond to autoantigens are selectively eliminated via apoptosis in a process known as clonal deletion (because potential offspring clones—are deleted)

- Clonal Deletion of T Cells
 - Clonal deletion of T cells occurs in the thymus, where thymus cells process and present all the body's autoantigens to young T cells
 - T cells that do not recognize MHC are also deleted
 - Surviving lymphocytes and their descendants respond only to foreign antigens (except for a small number of regulatory T cells).
 - When self-tolerance is impaired, the result is an autoimmune disease

- T Lymphocytes (T Cells)
 - Clonal Deletion of T Cells: Summary
 - Immature T cells undergo one of four fates
 - T cells that do not recognize body's MHC protein undergo apoptosis
 - T cells that recognize autoantigen die by apoptosis
 - Some "self-recognizing" T cells become regulatory T cells
 - T cells that recognize MHC protein and foreign epitopes become repertoire of protective T cells

Figure 16.9 Clonal deletion of T cells.

B Lymphocytes (B Cells) and Antibodies

- Found primarily in the spleen, lymph nodes, and MALT
- Small percentage of B cells circulate in the blood
- Major function is the secretion of antibodies
- The specificity of B cell function comes from the membrane proteins called B cell receptors

B Lymphocytes (B Cells) and Antibodies

- Specificity of the B Cell Receptor (BCR)
 - Each B lymphocyte has multiple copies of the BCR
 - Each B cell generates a single BCR
 - Two variable regions of the BCR form the antigen-binding sites
 - Each BCR recognizes only one epitope
 - The entire repertoire of an individual's BCRs is capable of recognizing millions of different epitopes

Figure 16.10 B cell receptor (BCR).

- B Lymphocytes (B Cells) and Antibodies
 - Specificity and Antibody Structure
 - Antibodies are immunoglobulins similar to BCRs
 - Secreted by activated B cells called plasma cells
 - Have antigen-binding sites and antigen specificity identical to the BCR of the activated B cell

Figure 16.12 Basic antibody structure.

B Lymphocytes (B Cells) and Antibodies

- Antibody Function
 - Antigen-binding sites are complementary to epitopes
 - Antibodies function in several ways:
 - Activation of complement and inflammation
 - Neutralization
 - Opsonization
 - Killing by oxidation
 - Agglutination
 - Antibody-dependent cellular cytotoxicity (ADCC)

Figure 16.13 Five functions of antibodies.

(a) Neutralization

(b) Opsonization

(c) Oxidation

(d) Agglutination

(e) Antibody-dependent cellmediated cytotoxicity (ADCC)

Humoral Immunity: Antibody Function

PLAY

Humoral Immunity: Antibody Function

- B Lymphocytes (B Cells) and Antibodies
 - Classes of Antibodies
 - Threats confronting the immune system are variable
 - Antibody class involved in the immune response varies
 - Type of antigen
 - Portal of entry
 - Antibody function needed
 - Five different classes of antibodies

B Lymphocytes (B Cells) and Antibodies

- Classes of Antibodies
 - IgM first antibody produced
 - IgG most common and longest-lasting antibody
 - IgA associated with body secretions
 - IgE involved in response to parasitic infections and allergies
 - IgD exact function is not known

B Lymphocytes (B Cells) and Antibodies

- Clonal Deletion of B Cells
 - Occurs in the bone marrow in a manner similar to deletion of T cells
 - Self-reactive B cells may become inactive or change their BCR rather than undergo apoptosis

Figure 16.14 Clonal deletion of B cells.

- Immune Response Cytokines
 - Soluble regulatory proteins that act as intercellular signals
 - Cytokines secreted by various leukocytes
 - Cytokine network
 - Complex web of signals among cells of the immune system

Immune Response Cytokines

- Interleukins (ILs)
 - Signal among leukocytes
- Interferons (IFNs)
 - Antiviral proteins that may act as cytokines
- Growth factors
 - Proteins that stimulate stem cells to divide
- Tumor necrosis factor (TNF)
 - Secreted by macrophages and T cells to kill tumor cells and regulate immune responses and inflammation
- Chemokines
 - Chemotactic cytokines that signal leukocytes to move

Cell-Mediated Immune Responses

- Respond to intracellular pathogens and abnormal body cells
- Common intracellular pathogens are viruses
- The response is also effective against cancer cells, intracellular protozoa, and intracellular bacteria

Cell-Mediated Immune Responses

- Activation of Cytotoxic T Cell Clones and Their Functions
 - Adaptive immune responses initiated in lymphoid organs
 - Steps involved in activation of cytotoxic T cells:
 - 1. Antigen presentation
 - 2. Helper T cell differentiation
 - 3. Clonal expansion
 - 4. Self-stimulation

Figure 16.15 Activation of a clone of cytotoxic T (Tc) cells.

Figure 16.16a A cell-mediated immune response.

Cell-Mediated Immunity: Cytotoxic T Cells

PLAY

Cell-Mediated Immunity: Cytotoxic T Cells

Cell-Mediated Immune Responses

- Activation of Cytotoxic T Cell Clones and Their Functions
 - Cytotoxic T cells kill targets through one of two pathways:
 - Perforin-granzyme pathway
 - Involves synthesis of special killing proteins
 - CD95 pathway
 - Mediated through glycoprotein on body's cells

Figure 16.16b-c A cell-mediated immune response.

(b) (c)

Cell-Mediated Immune Responses

Memory T Cells

- Some activated T cells become memory T cells
- Persist for months or years in lymphoid tissues
- Immediately functional upon subsequent contacts with epitope-MHC complex specific to its TCR
- Memory response is more effective than the primary response

Cell-Mediated Immune Responses

T Cell Regulation

- Regulation needed to prevent T cell response to autoantigens
- T cells require additional signals from an antigenpresenting cell
 - Interaction of the T cell and antigen-presenting cell stimulates the T cell to respond to the antigen
- Regulatory T cells also moderate cytotoxic T cell activity

- Antibody immune responses mounted against exogenous pathogens and toxins
- Activates only in response to specific pathogens

- Inducement of T-Dependent Antibody Immunity with Clonal Selection
 - T-dependent antibody immunity
 - Depend on the function of helper T cells
 - Four steps of this immune response:
 - 1. Antigen presentation for Th activation and cloning
 - 2. Differentiation of helper T cells into Th2 cells
 - 3. Activation of B cells
 - 4. Proliferation of B cells

Figure 16.17 A T-dependent antibody immune response.

Humoral Immunity: Clonal Selection and Expansion

Humoral Immunity: Clonal Selection and Expansion

- Inducement of T-Dependent Antibody Immunity with Clonal Selection
 - Plasma cells
 - Majority of cells produced during B cell proliferation
 - Only secrete antibody molecules complementary to the specific antigen
 - Short-lived cells that die within a few days of activation
 - Their antibodies and progeny can persist

- Memory Cells and the Establishment of Immunological Memory
 - Produced by B cell proliferation but do not secrete antibodies
 - Have BCRs complementary to the epitope that triggered their production
 - Long-lived cells that persist in the lymphoid tissue
 - Initiates antibody production if antigen is encountered again
 - Bases of immunization

- Memory Cells and the Establishment of Immunological Memory
 - Primary immune response
 - Small amounts of antibodies produced
 - May take days to produce enough antibodies to eliminate the antigen from the body
 - Secondary immune response
 - Memory cells respond to another exposure to the antigen
 - Much faster than the primary response

Figure 16.18 The production of primary and secondary antibody immune responses.

(b)

Types of Acquired Immunity

- Specific immunity acquired during an individual's life
- Two types:
 - Naturally acquired
 - Response against antigens encountered in daily life
 - Artificially acquired
 - Response to antigens introduced via a vaccine
- Distinguished as either active or passive

Table 16.4 A Comparison of the Types of Acquired Immunity

TABLE **16.4** A Comparison of the Types of Acquired Immunity

	Active	Passive
Naturally Acquired	The body responds to antigens that enter naturally, such as during infections.	Antibodies are transferred from mother to offspring, either across the placenta (IgG) or in breast milk (secretory IgA).
Artificially Acquired	Health care workers introduce antigens in vaccines; the body responds with antibody or cell-mediated immune responses, including the production of memory cells.	Health care workers give patients antisera or antitoxins, which are preformed antibodies obtained from immune individuals or animals.