

H10 SQL -- DDL.

Create Alter Drop

Stappen in de ontwikkeling van een DB:

- Een logisch model wordt omgezet naar een fysiek model dat nadien wordt geïmplementeerd in een DBMS.
- Het fysiek model bestaat uit:
 - de definitie van de tabellen;
 - per tabel:
 - definitie van de primaire sleutel;
 - definitie van de vreemde sleutels;
 - definitie van de overige kolommen: not null-waarden, integriteitregels, (zie ook 2TI);
 - definitie van indexen (zie ook 2TI);
 - toewijzen aan tablespace (zie ook 2TI).

Voorbeeld:

```
Relationeel model:
```

Klant (klantID, naam, voornaam, adres, postcode, woonplaats)

```
Factuur (<u>factuurnummer</u>, factuurDatum, klant)
klant: VS verwijst naar klantID in Klant, verplicht
```

Fysiek model:

```
Klant (
```

klantID PRIMARY KEY, NOT NULL, auto_increment

naam text, NOT NULL, length 20

voornaam text, length 20

adres text, length 30

postcode integer

woonplaats text, length 20

);


```
Fysiek model (vervolg):

Factuur (

factuurnummer PRIMARY KEY, NOT NULL, auto_increment date in format 'yyyymmdd'

klant NOT NULL, foreign key REFERENCES Klant(klantID)

);
```


- Definitie van vreemde sleutels
 - Referentiële integriteitsregel:
 - Van een vreemde sleutel moet worden aangegeven of nullwaarden zijn toegestaan.
 - Als uit het conceptueel model blijkt dat de minimale cardinaliteit (ten opzichte van de 'parent') gelijk is aan 1, zijn null-waarden niet toegestaan. Dan moet er een not-null-declaratie aan de vreemde sleutelkolom worden toegevoegd.
 - Dit wordt verder behandeld in 2TI.

Inleiding DDL.

Data Definition Language

- DDL wordt gebruikt voor
 - het definiëren van databanken
 - het definiëren van tabellen
 - het vastleggen van datatypes
 - het definiëren van constraints data integriteit (2TI)
 - het definiëren van indexen (2TI)

CREATE DATABASE

CREATE DATABASE

data<u>base name</u>

create database - simpelste

vorm

CREATE DATABASE oefenDB

VB: aanmaken van de DB oefenDB

DROP DATABASE

DROP DATABASE

database_name

DROP DATABASE oefenDB

VB: verwijderen van de DB oefenDB

 merk op: de systeemdatabank niet kan verwijderd worden!

Definiëren van tabellen

- tabellen creëren
- tabellen wijzigen
- tabellen verwijderen

CREATE TABLE

```
CREATE TABLE table_name(
{<column_definition> |
      <computed_column_definition> |
      <column_set_definition> }
[<table_constraint>] [ ,...n ])
```

vereenvoudigde syntax van de create table opdracht

```
CREATE TABLE student (
studentno int NOT NULL,
lastname char(30) NOT NULL,
firstname char(30) NOT NULL,
gender char(1) NOT NULL
)
```


ALTER TABLE

```
ALTER TABLE table_name {

MODIFY COLUMN column_name {type_name [({ precision[, scale] | max})]}|

ADD {<column_definition> | <computed_column_definition> | <table_constraint> | <column_set_definition> } [,...n ] |

DROP {[CONSTRAINT] constraint_name | COLUMN column_name } [,...n ]
```

vereenvoudigde syntax van de alter table opdracht

ALTER TABLE

- Voorbeelden
 - Toevoegen van een kolom

ALTER TABLE student
ADD address char(40) NULL

voeg aan de tabel student de kolom address toe (tekst 40 posities variabele lengte)

- Wijzigen van een kolom

ALTER TABLE student
MODIFY COLUMN address char(50) NULL

pas de kolom address aan, vergroot het aantal posities tot 50

Verwijderen van een kolom

ALTER TABLE student DROP COLUMN address

DROP TABLE

DROP TABLE table_name

vereenvoudigde syntax drop table

DROP TABLE student

VB: verwijder de tabel student

Scripts

- verzameling SQL statements
- handig voor
 - batch processing
 - creatie van test- of productieomgeving
- kan op verschillende niveaus
 - databank, tabel, ...
- voorbeelden: zie Chamilo script Planten, script Pubs, ...

SQL Datatypes.

Datatypes

 overzicht van de verschillende categoriën van datatypes

Exact numerics	Unicode character strings
Approximate numerics	Binary strings
Date and time	Other data types
Character strings	

Te gebruiken datatypes bij Project (Sem2)

datatype	bereik	opslag
int(eger)	-2^31 (-2,147,483,648) tot 2^31-1 (2,147,483,647)	4 Bytes
decimal	- 10^38 +1 tot 10^38 - 1 bij maximale precisie	5 tot 7 Bytes (~precisie)
(var)char[(n)]	strings met niet meer dan n karakters	n Bytes
bool(ean)	O of 1	1 Byte (column optimised)
date	January 1, 1753, through December 31, 9999	2 x 4 Bytes

opmerkingen

- bij decimal/numeric specifieer je precision (totaal aantal cijfers) en scale (aantal cijfers rechts van de decimale punt of komma)
 bv: decimal(5, 2) <-> 123.45
- boolean: 1 is TRUE, 0 is FALSE
- char bevatten non-unicode karakters; n kan gaan van 1 tot 8000
- date geeft de datum in de vorm van yyyy-mm-dd

Constraints.

AUTO_INCREMENT waarden

- een AUTO_INCREMENT kolom bevat
 - voor elke rij een unieke waarde
 - door het systeem gegenereerde (sequentiële) waarden
- slechts 1 AUTO_INCREMENT kolom per tabel mogelijk
- maakt gebruik van een integer datatype
- een AUTO_INCREMENT kolom kan geen NULL waarden bevatten
- een AUTO_INCREMENT kolom kan je niet zelf aanpassen
 - via LAST_INSERT_ID() kan je de laatst gecreëerde waarde opvragen

AUTO_INCREMENT waarden

```
CREATE TABLE studentVoorbeeldAutoIncrement(
studentno int NOT NULL AUTO_INCREMENT,
lastname char(30) NOT NULL,
firstname char(30) NOT NULL,
gender boolean NOT NULL
)
```

VB: tabel 'studentVoorbeeldAutoIncrement' met een AUTO_INCREMENT kolom studentno aan toevoegen oefenDB

ALTER TABLE studentVoorbeeldAutoIncrement AUTO_INCREMENT = 100

VB: AUTO_INCREMENT start nu vanaf 100

Definitie van primaire sleutel

- Specificatie van de primaire sleutel
 - 1 primary key constraint per tabel
 - kan gedefinieerd worden op 1 of meerdere kolommen (samengestelde sleutel)
 - waarde (of combinatie van waarden) moet uniek zijn
 - NULL waarden zijn niet toegelaten
 - DBMS creëert een unieke index op de kolommen (default wordt een clustered index gecreëerd tenzij anders wordt opgegeven)

studentno int primary key

VB: definitie van de primaire sleutel als deel van een kolom definitie

constraint studentno_PK primary key(studentno)

VB: definitie van de primaire sleutel als aparte regel (zie ook 2TI)

Definitie van primaire sleutel

```
CREATE TABLE users(
 user_id INT AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(40),
 password VARCHAR(255),
 email VARCHAR(255)
CREATE TABLE userroles(
 user_id INT NOT NULL,
 role_id INT NOT NULL,
 PRIMARY KEY(user_id, role_id)
```


Definitie van vreemde sleutel

- Gebruikt om verbanden tussen relaties uit te drukken
 - 0, 1 of meerdere vreemde sleutels per tabel
 - NULL waarden kunnen al dan niet toegelaten zijn
 - de constraint waarborgt referentiële integriteit:
 - vreemde sleutels moeten verwijzen naar een primaire sleutel (in MySQL een geïndexeerde kolom) uit een tabel
 - de waarde van een NOT NULL vreemde sleutel moet voorkomen in de gerefereerde kolom
 - legt ook de trapsgewijze (cascading) referentiële integriteitsacties vast bij (2TI)
 - ON DELETE
 - ON UPDATE

Definitie van vreemde sleutel

• <u>Voorbeeld</u>:

```
CREATE TABLE userroles(
    user_id INT NOT NULL,
    role_id INT NOT NULL,
    PRIMARY KEY(user_id, role_id),
    FOREIGN KEY(user_id) REFERENCES users(user_id),
    FOREIGN KEY(role_id) REFERENCES roles(role_id)
);
```


Voorbeeld: EERD

Relationeel model

Gangkaart (<u>kaartID</u>, type, schat)

```
Doelkaart (<u>doelID</u>, naam)
Speler/Doelkaart (spelerId, doelId, volgorde)
      VS spelerID -> spelerID in Speler, verplicht
      VS doelid -> doelID in Doelkaart, verplicht
Speler (SpelerID, spelernaam, gebJaar, kleur, huidigVak,
      isAanDeBeurt, spelnaam)
      VS spelnaam -> spelnaam in Spel, optioneel
Spel (spelnaam)
Spel/Gangkaart (spelnaam, kaartld, richting, positie)
      VS spelnaam -> spelnaam in Spel, verplicht
      VS kaartId -> kaartID in Gangkaart, verplicht
```


DDL Databank

Create database mijndatabank; Use mijndatabank;


```
Create table doelkaart
               char(5) not null,
  doelID
                       char(30)
  naam
Create table spelerdoelkaart
  spelerID
            int not null,
  doelID
               char(5) not null,
  volgorde
               int
);
Create table spel
  spelnaam
              char(20) not null
```



```
Create table spelgangkaart
                char(20) not null,
  spelnaam
                char(5) not null,
  kaartID
  richting
                char(20),
  positie
                char(10)
Create table speler
  spelerID
                int not null auto_increment,
  spelernaam
                char(25),
  gebjaar
                char(4),
                char(10) check (kleur in ('rood', 'zwart')),
  kleur
  huidigvak
                char(20),
  isaandebeurt char(1),
  spelnaam
                char (5),
  primary key (spelerID)
);
```


DDL Tabel – toevoegen primary key

```
Alter table doelkaart
        add constraint PK_doelkaart primary key (doelID);
Alter table spel
        add constraint PK_spel primary key (spelnaam);
Alter table gangkaart
        add constraint PK_gangkaart primary key (kaartID);
Alter table spelgangkaart
        add constraint PK_spelgangkaart primary key(spelnaam, kaartID);
Alter table spelerdoelkaart
        add constraint PK_spelerdoelkaart primary key (spelerID, doelID);
```


DDL Tabel – toevoegen foreign key

```
Alter table spelerdoelkaart
        add constraint FK_speler foreign key (spelerID) references
        speler(spelerID);
Alter table spelerdoelkaart
        add constraint FK_doel foreign key (doelID) references
        doelkaart(doelID);
Alter table speler
        add constraint FK_spel foreign key (spelnaam) references
        spel(spelnaam);
Alter table spelgangkaart
        add constraint FK_gang foreign key (kaartID) references
                gangkaart(kaartID);
Alter table spelgangkaart
        add constraint FK_gangspel foreign key (spelnaam)
        references spel(spelnaam);
```


Drop database mijndatabank;

Drop table speler;

DDL extra voorbeelden

Alter table gangkaart add column voordeel char(50);

Alter table gangkaart modify column voordeel char(20);

Alter table gangkaart drop column voordeel;

