

SWINBURNE UNIVERSITY OF TECHNOLOGY A temporal framework for timely completion of cloud workflows

Yun Yang – 杨耘 (yyang@swin.edu.au)

http://www.ict.swin.edu.au/personal/yyang

Swinburne University of Technology Melbourne, Australia

SUCCESS – A Brief Introduction

Swinburne University Centre for Computing and Engineering Software Systems

- Swinburne is one of top 500 universities in the world
 - 2nd smallest one (less faculties than MIT CS Lab)
- SUCCESS has the strongest SE group in Australia
 - five full professors
- 2011 figures on two top SE journals:
 - ☐ TSE IEEE Trans. on Software Engineering 4 (2+2) (world total: 48)
 - ☐ ToSEM ACM Trans. on Software Engineering and Methodology 2 (1+1) (world total: 18)

Melbourne - Capital City of Victoria

a very dynamic city

- population just over 4 million
- Australia's cultural capital
- famous for parks and gardens
- "The Most Liveable City in the World"
- Welcome for (joint) PhD program etc.

Outline

- Related Publications (and Acknowledgement)
- Background
- Motivating Example and Problem Analysis
- A Probabilistic Temporal Framework
- **■** Evaluation
- Conclusion

Related Publications for This Talk

Acknowledgement: Assoc. Prof. Jinjun Chen; Dr Xiao Liu (two former PhD graduates)

- X. Liu, Y. Yang, Y. Jiang and J. Chen, *Preventing Temporal Violations in Scientific Workflows: Where and How.* **IEEE Transactions on Software Engineering**, 37(6):805-825, Nov./Dec. 2011
- J. Chen and Y. Yang, *Temporal Dependency based Checkpoint Selection for Dynamic Verification of Temporal Constraints in Scientific Workflow Systems.* ACM Transactions on Software Engineering and Methodology, 20(3):Article 9, Aug. 2011.
- J. Chen and Y. Yang, Adaptive Selection of Necessary and Sufficient Checkpoints for Dynamic Verification of Temporal Constraints in Grid Workflow Systems. ACM Transactions on Autonomous and Adaptive Systems, 2(2):Article 6, June 2007

Background: Workflow QoS

- QoS dimensions
 - □ time, cost, fidelity, reliability, security ...

QoS of Cloud Services

- Workflow QoS
 - ☐ the overall QoS for a collection of cloud services
 - □ but not simply add up!

Temporal QoS

- System performance
 - □ Response time
 - ☐ Throughput
- Temporal constraints
 - ☐ Global constraints: deadlines
 - ☐ Local constraints: milestones, individual activity durations
- Satisfactory temporal QoS
 - ☐ High performance: fast response, high throughput
 - □ On-time completion: low temporal violation rate

Motivating Example

- Astrophysics: pulsar searching
- Pulsars: the collapsed cores of stars that were once more massive than 6-10 times the mass of the Sun
- http://astronomy.swin.edu.au/cosmos/P/Pulsar
- Parkes Radio Telescope (http://www.parkes.atnf.csiro.au/)
- Swinburne Astrophysics group (http://astronomy.swinburne.edu.au/) has been conducting pulsar searching surveys (http://astronomy.swin.edu.au/pulsar/) based on the observation data from Parkes Radio Telescope.
- Typical scientific workflow which involves a large number of data and computation intensive activities. For a single searching process, the average data volume (not including the raw stream data from the telescope) is over 4 terabytes and the average execution time is about 23 hours on Swinburne high performance supercomputing facility

(http://astronomy.swinburne.edu.au/supercomputing/).

Pulsar Searching

Problem Analysis

- Setting temporal constraints
 - □ Coarse-grained and fine-grained temporal constraints
 - ☐ Prerequisite: effective forecasting of activity durations
- Monitoring temporal consistency state
 - ☐ Monitor workflow execution state
 - □ Detect potential temporal violations
- Temporal violation handling
 - ☐ Where to conduct violation handling
 - □ What strategies to be used

Ultimate Goal

- Achieving on-time completion
- Measurements:
 - □ Temporal correctness
 - □ Cost effectiveness

Temporal Framework

Temporal Framework

- Component 1: Temporal Constraint Setting (JSS, CCPE)
 - ☐ Forecasting workflow activity durations
 - ☐ Setting coarse-grained temporal constraints
 - ☐ Setting fine-grained temporal constraints
- Component 2: Temporal Consistency Monitoring (TSE, ToSEM)
 - ☐ Temporal checkpoint selection
 - □ Temporal verification
- Component 3: Temporal Violation Handling (TSE, JSS)
 - ☐ Temporal violation handling point selection
 - □ Temporal violation handling

Temporal Checkpoint Selection

- Requirements / Objectives

- Checkpoint: the point (e.g. activity point, time point) for conducting temporal verification
- The measurements for temporal checkpoint selection
 - □ Necessity: only those activity points where real temporal inconsistency states take place are selected
 - ☐ Sufficiency: there are no any omitted activity points
- Efficiency
- Effectiveness

Temporal Checkpoint Selection

- Existing Work

- Representative Checkpoint Selection Strategy (CSS)
 - □ Every activity as a checkpoint
 - ☐ The start activity, and add a new checkpoint after each decision activity is executed
 - ☐ User defined static activity points
 - ☐ The activity duration exceeds its maximum duration
 - ☐ The activity duration exceeds its mean duration
- Problems: necessary? Sufficient?

Temporal Checkpoint Selection

Our Strategy

Necessary and Sufficient Checkpoint Selection Strategy

- Probability Time Redundancy
- Minimum Probability Time Redundancy
- DOMTR: Dynamically Obtaining Minimum Time Redundancy
- Theorem of Checkpoint Selection
- Proof of Necessity and Sufficiency

Temporal Verification

- Multi-states temporal violations
- Statistical recoverable and non-recoverable temporal violations

Simulation Environment

■ SwinCloud

CSS Types

- CSS_1 : every activity as a checkpoint.
- CSS_2 : start time and end time of each activity.
- CSS_3 : start activity, after each decision activity.
- CSS_4 : user-defined static checkpoints.
- CSS_5 : a_i as a checkpoint if $R(a_i) > D(a_i)$.
- CSS_6 : a_i as a checkpoint if $R(a_i) > M(a_i)$.
- CSS_7 : a_i as a checkpoint if $R(a_i) > M(a_i) + a$ minimum proportional time redundancy at a_i .
- CSS_8 : a_i as a checkpoint if $R(a_i) > M(a_i) + a$ minimum time redundancy at a_i .

Conclusion

- On-time completion of scientific workflows
- Lifecycle support of temporal QoS
- A probabilistic temporal framework
 - ☐ Setting temporal constraints
 - ☐ Monitoring temporal consistency
 - ☐ Handling temporal violation
- Necessary and sufficient checkpoint selection

Future Work

- Instance intensive business workflows
- Fast response time vs. high system throughput
- Resource management in cloud computing environment
 - ☐ Service level agreement (SLA) management
 - □ Cloud resource reservation
 - □ Dynamic Scheduling

End - Q&A

■ Thanks for your attention!

