

- Opgaver
 - Fra formel til blokmodel
 - Fra blokmodel til overføringsfunktion
 - Fra overføringsfunktion til blokmodel

Opgaver I

Hvad er overeføringsfunktionen

$$\frac{y}{u} = ? \qquad \qquad \frac{y}{u} = \frac{G}{(1 + GH)s}$$

Opgaver II

1) For et system med input τ og output x gælder følgende ligninger:

$$x = R \int \omega dt$$
$$\omega = \int \frac{1}{J} (\tau - B\omega) dt$$

Tegn et blokdiagram, hvor summation, multiplikation og integration er adskilt

Opgaver III

1) For et system med input τ og output x gælder følgende ligninger:

$$x = R \int \omega dt \qquad \text{og} \qquad \omega = \int \frac{1}{J} (\tau - B\omega) dt$$

Tegn et blokdiagram for systemet, hvor summation, multiplikation og integration er adskilte blokke.

Løsningsforslag:
$$\dot{\omega}=\frac{1}{J}(\tau-B\omega)$$
 $\dot{x}=R\omega$

2)Reducer blokke til een overføringsfunktion (een brøk), hvor integration er erstattet af 1/s

$$\int_{-1}^{1} \omega s = \frac{1}{J} (\tau - B\omega)$$

$$J\omega s = \tau - B\omega$$

$$3 J\omega s + B\omega = \tau$$

$$\omega = \tau \frac{1}{Js + B}$$

$$5 xs = R\omega$$

$${}^{\mathbf{6}}\,\omega = x\frac{s}{R}$$

$$G = \frac{x}{\tau} = \frac{R}{(Js + B)s}$$

Opgaver IV

Hvad er overeføringsfunktionen (med 1/s for integration)

$$\frac{y}{u} = ? \qquad \frac{y}{u} = \frac{GD + \frac{KD}{s}}{1 + GD + \frac{KD}{s}} \qquad \frac{y}{u} = \frac{GDs + KD}{(1 + GD)s + KD}$$

Opgaver V

Et system har overføringsfunktioen:

$$\frac{y}{u} = A \frac{B}{Cs^2 + Ds + 1}$$

Tegn blokdiagram med integration og konstanter (A,B,C,D) i adskilte blokke

Opgaver VI

Et system har overføringsfunktioen:

$$\frac{y}{u} = A \frac{Bs+1}{Cs+D}$$

Tegn blokdiagram med integration og konstanter (A,B,C,D) i adskilte blokke

$$C\dot{y} + Dy = AB\dot{u} + Au$$

Det opfylder ikke helt der kun må bruges integratorer (1/s), da der er et s (ren differentiering), Differentiering er svær at simulere da jo mere nøjagtigt der regnes, jo større bliver amplituden, så->

Opgaver VI

$$\frac{y}{u} = A \frac{Bs+1}{Cs+D} = A \frac{B+\frac{1}{s}}{C+\frac{D}{s}} \qquad \text{Ud fra: } \frac{y}{u} = \frac{y}{\dot{u}} = \frac{\int y}{\int u}$$

Tegn blokdiagram med integration og konstanter (A,B,C,D)

i adskilte blokke $Cy+D\int y=ABu+A\int u$ Højeste afledte $y=\frac{1}{C}\left(ABu+A\int u-D\int y\right)$

