# **QUESTÃO 24** entradas saídas DEC

Considere o bloco decodificador ilustrado acima, o qual opera segundo a tabela apresentada. Em cada item a seguir, julgue se a função lógica mostrada corresponde ao circuito lógico a ela associado.



Assinale a opção correta.

- Apenas um item está certo. Apenas os itens I e II estão certos.
- Apenas os itens I e III estão certos.
- Apenas os itens II e III estão certos.
- Todos os itens estão certos.

DYCCHIMINO



No circuito acima, que possui cinco entradas — A, B, C, D e E — e uma saída f (A, B, C, D, E), qual opção apresenta uma expressão lógica equivalente à função f (A, B, C, D, E)?

- $\overline{A.B} + \overline{C.D} + D.E$
- (A + B).(C + D) + D.E
- $\overline{A.B} + \overline{C.D} + D + E$
- A.B+C.D+D+E
- A.B+C.D+D.E**3**

RASCUNHO

#### **QUESTÃO 43**

Considere que seja necessário escrever um código para um microcontrolador capaz de identificar teclas acionadas em um teclado conectado como mostrado abaixo. O microcontrolador atribui valores lógicos às linhas X<sub>3</sub>, X<sub>2</sub>, X<sub>1</sub> e X<sub>0</sub> de uma porta de saída do tipo coletor aberto, e lê os valores lógicos das linhas Y<sub>3</sub>, Y<sub>2</sub>, Y<sub>1</sub> e Y<sub>0</sub> em uma porta de entrada.



Caso apenas a tecla 9 do teclado esteja pressionada e o microcontrolador esteja atribuindo os valores lógicos 1011 às linhas X<sub>3</sub>, X<sub>2</sub>, X<sub>1</sub>e X<sub>0</sub>, respectivamente, qual o padrão binário que deverá ser lido nas linhas Y<sub>3</sub>, Y<sub>2</sub>, Y<sub>1</sub> e Y<sub>0</sub>, respectivamente?

**②** 0111 **③** 1011 **④** 1101 **⑤** 1110 **⑤** 1111

## **QUESTÃO 50**

Considere, a seguir, o circuito combinatório, a tensão analógica  $V_{\scriptscriptstyle A}$  definida pela tabela I, e a tabela lógica definida pela tabela II.



| $v_A$ (em volts)              | S <sub>2</sub> | S <sub>1</sub> | So |  |
|-------------------------------|----------------|----------------|----|--|
| <i>v</i> <sub>A</sub> < 1     | 0              | 0              | 0  |  |
| 1 < <i>v</i> <sub>A</sub> < 2 | 0              | 0              | 1  |  |
| 2 < v <sub>A</sub> < 3        | 0              | 1              | 0  |  |
| 3 < V <sub>A</sub> < 4        | 0              | 1              | 1  |  |
| 4 < v <sub>A</sub> < 5        | 1              | 0              | 0  |  |
| $5 < v_A < 6$                 | 1              | 0              | 1  |  |
| $6 < v_A < 7$                 | 1              | 1              | 0  |  |
| v <sub>A</sub> > 7            | 1              | 1              | 1  |  |
| Tabela                        | a II           |                |    |  |

| Tabela II      |                |                |                |                |                |         |                |    |                |  |
|----------------|----------------|----------------|----------------|----------------|----------------|---------|----------------|----|----------------|--|
| X <sub>a</sub> | X <sub>b</sub> | X <sub>c</sub> | X <sub>d</sub> | X <sub>e</sub> | X <sub>f</sub> | $X_{g}$ | S <sub>2</sub> | S₁ | S <sub>0</sub> |  |
| 0              | 0              | 0              | 0              | 0              | 0              | 0       | 0              | 0  | 0              |  |
| 1              | 0              | 0              | 0              | 0              | 0              | 0       | 0              | 0  | 1              |  |
| 1              | 1              | 0              | 0              | 0              | 0              | 0       | 0              | 1  | 0              |  |
| 1              | 1              | 1              | 0              | 0              | 0              | 0       | 0              | 1  | 1              |  |
| 1              | 1              | 1              | 1              | 0              | 0              | 0       | 1              | 0  | 0              |  |
| 1              | 1              | 1              | 1              | 1              | 0              | 0       | 1              | 0  | 1              |  |
| 1              | 1              | 1              | 1              | 1              | 1              | 0       | 1              | 1  | 0              |  |
| 1              | 1              | 1              | 1              | 1              | 1              | 1       | 1              | 1  | 1              |  |

Analise o circuito, os dados das tabelas I e II e as seguintes asserções.

O circuito apresentado converte a tensão analógica  $v_{\scriptscriptstyle A}$  em uma palavra de três *bits* cujo valor binário é uma representação quantizada da tensão  $v_A$ , conforme apresentado na tabela l

porque o circuito combinatório formado pelas portas lógicas

apresenta o comportamento dado pela tabela lógica II quando o circuito de comparação é excitado com uma tensão  $v_{\scriptscriptstyle A}$  adequada. Assinale a opção correta, com relação às asserções acima.

As duas asserções são proposições verdadeiras, e a segunda é uma justificativa correta da primeira. As duas asserções são proposições verdadeiras, mas a segunda não é uma justificativa correta da primeira.

A primeira asserção é uma proposição verdadeira, e a

segunda, uma proposição falsa. A primeira asserção é uma proposição falsa, e a segunda, uma proposição verdadeira. Tanto a primeira quanto a segunda asserções são

proposições falsas RASCUNHO

### **QUESTÃO 57**

Deseja-se projetar um bloco lógico do tipo look-up table que fará parte de um dispositivo lógico programável. O bloco lógico, ilustrado abaixo, deve produzir em sua saída qualquer uma das diferentes funções lógicas possíveis envolvendo três entradas de dados, dependendo dos valores lógicos aplicados a n sinais binários de controle.

n sinais de controle



Para esse bloco lógico, qual é o menor valor de *n* que pode ser usado para selecionar uma das diferentes funções lógicas possíveis?

- **A** 4
- **9** 16 256 **6**5.536