PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERU ESTUDIOS GENERALES DE CIENCIAS

Fundamentos de Cálculo Tercera Práctica Calificada-Solución (2017-2)

- 1. Analice la verdad o falsedad de las siguientes proposiciones, justificando adecuadamente sus respuestas.
 - a) Si f es una función creciente en \mathbb{R} y g es inyectiva en \mathbb{R} , entonces f+g es creciente en \mathbb{R} . (1 punto)
 - b) La función inversa de f, definida por $f(x) = x^2 3$, con 1 < x < 3, está dada por $f^{-1}(x) = \sqrt{x+3}$ para $x \ge -3$. (1 punto)

Solución:

- a) Falso, basta considerar f(x) = x y g(x) = -x.
- b) Falso, $Dom(f^{-1}) =]-2,6[$
- 2. Dada la función f, definida por

$$f(x) = \begin{cases} 4 - (x+3)^2, -5 \le x \le -1\\ |x-2| - 3, & -1 < x \le 4 \end{cases}$$

a) Bosqueje la gráfica de la función g definida por g(x) = -f(x+1) + 1.

(3 puntos)

b) Halle el dominio y el rango de *g*.

(1 punto)

Solución:

a) Usando transformaciones de funciones.

También pueden definir

$$g(x) = -f(x+1) + 1 = \begin{cases} (x+4)^2 - 3, -6 \le x \le -2 \\ 4 - |x-1|, -2 < x < 3 \end{cases}$$

y luego graficar.

b)
$$Dom(g) = [-6,3] y Ran(g) = [-3,4]$$

3. Dada la función f, definida por

Halle el menor valor que puede tomar
$$b$$
, para que la función sea inyectiva.

(3 puntos)

Grafique f y su inversa f^{-1} en un mismo plano cartesiano. b)

(2 puntos)

Solución:

El máximo valor para la primera rama es 5. Ahora, determinemos el mínimo a) valor de la segunda rama

$$x^2 - 6x + 10 = 5 \leftrightarrow x = 1 \lor x = 5$$

• Si
$$x > 1$$
, es decir $b + 2 = 1 \leftrightarrow b = -1$. Se tendría
$$f(x) = \begin{cases} 2x + 7, & x \le -1 \\ x^2 - 6x + 10, & x > 1 \end{cases}$$

que no es inyectiva.

b)

- 4. Sea f una función definida por una expresión polinómica de grado 5 con dominio el intervalo $[-5, +\infty[$, cuya gráfica pasa por el punto (1, -3) y tiene ceros en x = 0, x = 4(multiplicidad 2) y x = -4 (multiplicidad 2).
 - a) Determine la regla de correspondencia de la función f. (2 puntos)
 - b) Bosqueje la gráfica de *f*, indicando las coordenadas de los puntos de intersección con los ejes coordenados. (2 puntos)
 - c) Indique los intervalos donde $f(x) \ge 0$. (1 punto)

Solución:

a)
$$f(x) = ax(x-4)^2(x+4)^2$$

Como
$$(1, -3) \in G(f) \leftrightarrow a = -\frac{3}{225}$$
. Luego,

$$f(x) = -\frac{3}{225}x(x-4)^2(x+4)^2, x \ge -5$$

b) Puntos de intersección con los ejes coordenados: (-4; 0), (0; 0), (4; 0)

- c) $f(x) \ge 0 \leftrightarrow -5 \le x \le 0 \cup \{4\}$
- 5. De una lámina circular de cartón de 13 cm de radio, se corta un sector circular con un arco de longitud *x* con el cual se construye un cono circular recto.
 - a) Determine el volumen V del cono formado en función de x e indique su dominio. (2 puntos)
 - b) Halle los valores de x tales que $V(x) \le \frac{5x^2}{12\pi}$. (2 puntos)

Solución:

a)

De la figura
$$r=\frac{x}{2\pi}$$
, $h=\sqrt{169-\frac{x^2}{4\pi^2}}$. Luego,
$$V(x)=\frac{x^2}{12\pi}\sqrt{169-\frac{x^2}{4\pi^2}}, \qquad 0< x<26\pi$$

b)
$$\frac{x^2}{12\pi} \sqrt{169 - \frac{x^2}{4\pi^2}} \le \frac{5x^2}{12\pi} \leftrightarrow \frac{x^2}{12\pi} \left(\sqrt{169 - \frac{x^2}{4\pi^2}} - 5 \right) \le 0$$

$$\sqrt{169 - \frac{x^2}{4\pi^2}} \le 5 \leftrightarrow \frac{x^2}{4\pi^2} - 144 \ge 0 \leftrightarrow (x + 24\pi)(x - 24\pi) \ge 0$$
de donde $x \in]-\infty, -24\pi] \cup [24\pi, +\infty[$. Por lo tanto,
$$x \in (]-\infty, -24\pi] \cup [24\pi, +\infty[) \cap]0, 26\pi[= [24\pi, 26\pi[$$

Coordinadora de práctica: Iris Flores San Miguel, 30 de octubre de 2017