Genomic Regulation

Ivó Hernández, Helena Liz, Diego Fuentes, Fernando Freire March 4, 2019

Contents

1	Gen	omic R	Regulation	2
	1.1	Get ch	nr16 CTCF segments	2
			Test files	
			Methods	
		1.1.3	Tests	8
		1.1.4	Goal	9
	1.2	Segme	ent annotation	9
			Tracks to annotate	
		1.2.2	Annotate gene overlap	10
			Annotate exon overlap	
	1.3		SE I overlap	
			Tests	
		1.3.2	Overlap	12

1 Genomic Regulation

1.1 Get chr16 CTCF segments

Get the *chr16* segments which share the same state between both monocyte replicates.

1.1.1 Test files

Maria and 4			
-	segments.bed		70
chr16	60400	61400	E9
chr16	72600	72800	E9
chr16	115200	116000	E9
chr16	146400	147400	E9
chr16	156600	157600	E9
chr16	167800	168200	E9
chr16	232200	232400	E9
chr16	412000	412600	E9
chr16	441800	442200	E9
chr16	486400	486800	E9
chr16	537600	538000	E9
chr16	597000	597600	E9
chr16	629000	629400	E9
chr16	661000	661600	E9
chr16	710800	711200	E9
chr16	711600	711800	E9
chr16	736200	736400	E9
chr16	761200	763200	E9
chr16	835400	836200	E9
chr16	1019400	1019600	E9
20 m	nonocyte1_segm	ents.bed	
Monocyte 2	segments.bed		
chr16	60400	61400	E9
chr16	72400	72800	E9
chr16	115000	116400	E9

```
chr16
             146600
                            147400
                                           E9
             155400
                            158200
                                           E9
chr16
                                           E9
chr16
             167800
                            168800
                                           E9
chr16
             231800
                            232200
chr16
             309000
                            309200
                                           E9
                                           E9
chr16
             353600
                            354200
chr16
             402200
                            403200
                                           E9
                                           E9
chr16
             412000
                            412800
chr16
             441800
                            442200
                                           E9
chr16
             508200
                            508400
                                           E9
chr16
                                           E9
             537400
                            538200
             596600
                                           E9
chr16
                            597400
chr16
             627800
                            630600
                                           E9
                                           E9
chr16
             660800
                            661800
                            711800
                                           E9
chr16
             710800
chr16
             717400
                            718200
                                           E9
chr16
             735800
                            736800
                                           E9
      20 monocyte2_segments.bed
```

	Script 1.1	.2 (text)		
	1 %%writef:	ile files/test_1	tracks/bed1.be	d
	2 chr16	60400	61400	E9
	3 chr16	72600	72800	E9
	4 chr16	115200	116000	E9
	5 chr16	146400	147400	E9
	6 chr16	156600	157600	E9
	7 chr16	167800	168200	E9
ı	s chr16	232200	232400	E9
	9 chr16	412000	412600	E9
1	o chr16	441800	442200	E9
1	chr16	486400	486800	E9
1	chr16	537600	538000	E9
1	3 chr16	597000	597600	E9
1	4 chr16	629000	629400	E9
1	5 chr16	661000	661600	E9
1	6 chr16	710800	711200	E9
1	7 chr16	711600	711800	E9
1	s chr16	736200	736400	E9
1	g chr16	761200	763200	E9
2	chr16	835400	836200	E9
2	chr16	1019400	1019600	E9
L				

Output

Writing files/test_tracks/bed1.bed

	Ę	Script 1.1.	3 (text)		
	1 %	%%writefi	le files/test_	tracks/bed2.be	ed
		chr16	60400	61400	E9
ı	3 C	chr16	72400	72800	E9
ı		chr16	115000	116400	E9
		chr16	146600	147400	E9
ı	6 0	chr16	146610	147400	E8
ı	7 C	chr16	155400	158200	E9
ı		chr16	167800	168800	E9
ı	9 (chr16	231800	232200	E9
1	0 0	chr16	309000	309200	E9
1	1 (chr16	353600	354200	E9
1	2 0	chr16	402200	403200	E9
1	3 (chr16	412000	412800	E9
1	4 (chr16	441800	442200	E9
1	5 C	chr16	508200	508400	E9
1		chr16	537400	538200	E9
1	7 C	chr16	596600	597400	E9
1	8 0	chr16	596700	597400	E8
1	9 0	chr16	596700	597400	E8
2	0 0	chr16	627800	630600	E9
2	1 (chr16	660800	661800	E9
2	2 0	chr16	710800	711800	E9
2	3 (chr16	717400	718200	E9
2	4 (chr16	735800	736800	E9
		•			

Output

Writing files/test_tracks/bed2.bed

	Script 1.1.4	(text)						
1	%%writefile	e files/te	st_tracks/dnase1	.peaks.bed				
2	chr1	770942	771278	chr1.9	584		0.039	1.79
	\hookrightarrow	-1	151					,
3	chr1	771678	771933	chr1.10	568	•	0.0343	1.5
		-1	121					_
4	chr1	773279	773398	chr1.11	555		0.0303	1.3
	→ 8	-1	49					
5	chr1	777497	777598	chr1.12	553	•	0.0299	1.3
	→ 6	-1	46					
6	chr1	794051	794336	chr1.13	569	•	0.0344	1.5
	→ 7	-1	152					
7		800514	800667	chr1.14	549	•	0.0287	
	→ 1.3	-1	34					
8	chr1	805004	805656	chr1.15	1000	•	0.3561	16]
	\hookrightarrow	-1	286					
9	chr16	63392	63462	chr16.1	551	•	0.0292	1.33
	\hookrightarrow	-1	26					

10	chr16	65192	65500	chr16.2	650		0.0582	2.69
11	⇔ chr16	-1 65680	140 65848	chr16.3	578		0.0371	
	→ 1.7	-1	81					
12	chr16	66552 -1	66704 71	chr16.4	565	•	0.0334	1.52
13	<pre> chr16 </pre>	69567	69918	chr16.5	593		0.0416	1.91
	\hookrightarrow	-1	156					,
14		72620	73427	chr16.6	1000	•	0.2652	12.
15		-1 74047	256 74486	chr16.7	687		0.069	
13		-1	213	CIII 10.7	001	•	0.003	
16	chr16	77159	77214	chr16.8	550		0.0289	1.31
		-1 70550	20	-h1C 0	750		0.0000	4 45
17	chr16 ↔	78558 -1	80270 1188	chr16.9	756	•	0.0889	4.15 _]
18	ohr16	80539	84109	chr16.10	797		0.101	4.72
	\hookrightarrow	-1	2835					J
19	chr16	84632	86116	chr16.11	1000	•	0.2262	10
20	∴ .7 chr16	-1 86223	648 86873	chr16.12	717		0.0777	2.6
20	← 2	-1	274	CHI 10.12	717	•	0.0111	3.6
21	chr16	87530	87809	chr16.13	614		0.0475	2.1
	→ 9	-1	147					,
22	chr16	88254	89597	chr16.14	703	•	0.0736	3.4
22		-1 91933	691 92367	chr16.15	558		0.0312	1.4
23	⇔ 2	-1	78	CIII 10.10	000	•	0.0012	1.4
24	chr16	102933	104351	chr16.16	1000		0.521	1
		-1	852					-
25	chr16	107650	109038	chr16.17	708	•	0.0751	3
26		-1 109773	327 109913	chr16.18	555		0.0305	1
	∴ 39	-1	61			·		_]
27	chr16	110337	110607	chr16.19	581		0.0381	1]
		-1	117	-1-40.00	045		0.4054	C
28	chr16 → .36	110941 -1	114948 421	chr16.20	915	•	0.1354	6
29	ightharpoonup chr16	115448	116225	chr16.21	1000		0.3633	I
		-1	419					J
30	chr16	116533	116836	chr16.22	568	•	0.0343	1
	→ .56	-1	131					

Output

Writing files/test_tracks/dnase1.peaks.bed

1.1.2 Methods

Script 1.1.5 (python) 1 import re as re 2 def head(path, filename, lines=20): 3 4 n n n5 i = 06 file = open(path + "/" + filename, "r") for line in file: 8 print(line.strip()) 9 i += 1 10 if i > lines: 11 break 12 file.close() 13 14 def get_parts(bed_line, sep='\t'): 15 11 11 11 16 17 bed_line_parts = bed_line.rstrip('\n').split(sep) 18 19 return bed_line_parts[0], int(bed_line_parts[1]), int(bed_line_parts[2]), → bed_line_parts[3] 20 def concat_parts(chrom, start, end, feature, sep='\t'): 21 22 23 bed_line = chrom + '\t' + str(start) + '\t' + str(end) + '\t' + feature + '\n' 24 return bed_line 25 26 def bed_coverage(path, filename, sep='\t'): 27 28 29 Returns the acumulated length of all the segments of the bed file filename 11 11 11 30 i = 031 file = open(path + "/" + filename, "r") 32 33 coverage = 0 34 for line in file: 35 _ , f1_segment_start, f1_segment_end, _ = get_parts(line) coverage += f1_segment_end + f1_segment_start 36 file.close() 37 return coverage 38 39 def bed_segment_count_by_re_feature(path, filename, re_feature, sep='\t'): 40 41 Returns the segment count by feature name of the bed file filename. 42 The feature is informed as a regexp 43 11 11 11 44 45 i = 0file = open(path + "/" + filename, "r") 46 47 segment_count = 0 for line in file: 48

```
_ , _, _, segment_feature = get_parts(line)
49
           if re.search(re_feature, segment_feature):
50
               segment_count += 1
51
       file.close()
52
       return segment_count
53
54
  def intersect_bed(input_dir, input_file1, input_file2, output_dir, output_file, chrom="chr16")
55
   ш,
                      f1_feature_filter="E9", f2_feature_filter="E9", output_feature="E9",
56

    sep='\t',

                      drop_feature_threshold=20, output_mode="intersect"):
57
       11 11 11
58
       If output node is intersect, returns the intersected bed segments
59
       If output mode is annotate, returns all the segments of input_file1
60
       annotated if it's the case with the feature defined in input_file2.
61
62
       f1_segments = open(input_dir + "/" + input_file1, "r")
63
       f2_segments = open(input_dir + "/" + input_file2, "r")
       output_segments = open(output_dir + "/" + output_file, "w")
65
       f1_segment = f1_segments.readline()
66
67
       f2_segment = f2_segments.readline()
       while(f1_segment != "" and f2_segment != ""):
           f1_chrom, f1_segment_start, f1_segment_end, f1_feature = get_parts(f1_segment)
69
           f2_chrom, f2_segment_start, f2_segment_end, f2_feature = get_parts(f2_segment)
70
71
           # Filter f1 and read f1
           if f1_chrom != chrom or (f1_feature_filter != "" and f1_feature != f1_feature_filter |
72
   ):
               f1_segment = f1_segments.readline()
73
           # Filter f2 and read f2
74
           elif f2_chrom != chrom or (f2_feature_filter != "" and f2_feature !=
75

    f2_feature_filter):

               f2_segment = f2_segments.readline()
76
           # f2 segment downstream f1 segment
77
           elif f2_segment_start > f1_segment_end:
78
               if output_mode == "annotate" and drop_feature_threshold < f1_segment_end -
79

    f1_segment_start:

                   output_segment = concat_parts(chrom, f1_segment_start, f1_segment_end,
80

    f1_feature)

                   output_segments.write(output_segment)
81
               f1_segment = f1_segments.readline()
           # f1 segment downstream f2 segment
83
           elif f1_segment_start > f2_segment_end:
84
               f2_segment = f2_segments.readline()
85
           else: # Overlap
86
               # Save intersect
87
               if output_mode == "intersect":
88
                   output_start = max(f1_segment_start, f2_segment_start)
89
                   output_end = min(f2_segment_end, f1_segment_end)
90
                   if drop_feature_threshold < output_end - output_start:</pre>
91
                        output_segment = concat_parts(chrom, output_start, output_end,
92
                        → output_feature)
                        output_segments.write(output_segment)
93
```

```
# Advance f1
94
                    if f2_segment_end >= f1_segment_end:
95
                         f1_segment = f1_segments.readline()
96
                     # Advance f2
97
                    elif f1_segment_end > f2_segment_end:
98
                         f2_segment = f2_segments.readline()
99
                # Annotate mode: save f1, advance f1, advance f2
100
                else:
                    feature = f1_feature + "+" + output_feature
102
                    if drop_feature_threshold < f1_segment_end - f1_segment_start:</pre>
103
                         output_segment = concat_parts(chrom, f1_segment_start, f1_segment_end,
104
                         → feature)
                         output_segments.write(output_segment)
105
                    f1_segment = f1_segments.readline()
106
                    f2_segment = f2_segments.readline()
107
        while(output_mode == "annotate" and f1_segment != ""):
108
            output_segments.write(f1_segment)
109
            f1_segment = f1_segments.readline()
110
111
112
        f1_segments.close()
        f2_segments.close()
113
        output_segments.close()
114
```

1.1.3 **Tests**

```
Script 1.1.6 (python)
1 TEST_PATH = "files/test_tracks"
2 F1_FILE_TEST = "test1.bed"
3 F2_FILE_TEST = "test2.bed"
4 FILE_OUTPUT_TEST = "test_result.bed"
5 CHROM = "chr16"
6 SEP = ' t'
7 DROP = 0
9 failed = 0
passed = 0
11 launched = 0
12
def create_testfile(segments, test_path, test_file):
14
       11 11 11
15
       output_segments = open(test_path + "/" + test_file, "w")
16
       for segment in segments:
17
           output_segment = concat_parts(segment[0], segment[1], segment[2], segment[3])
18
19
           output_segments.write(output_segment)
       output_segments.close()
20
21
22 def read_testfile(test_path, test_file):
       n n n
23
       11 11 11
24
```

```
file_segments = open(test_path + "/" + test_file, "r")
25
       segments = []
26
       segment = file_segments.readline()
27
       while(segment != ""):
28
           chrom, segment_start, segment_end, feature = get_parts(segment)
29
           segments.append([chrom, str(segment_start), str(segment_end), feature])
30
           segment = file_segments.readline()
31
       file_segments.close()
32
33
       return segments
34
   def do_test(test_number, segments_1, segments_2, test_expected_result,
35
               verbose=True, mode="intersect", output_feature="output_feature",
36
               test_path=TEST_PATH, f1_file_test=F1_FILE_TEST, f2_file_test=F2_FILE_TEST,
37
38
               file_output_test=FILE_OUTPUT_TEST,
               chrom=CHROM, f1_feature_filter="", f2_feature_filter="",
39
               drop_feature_threshold=DROP):
40
       global failed, passed, launched
41
       try:
42
43
           launched += 1
           create_testfile(segments_1, test_path, f1_file_test)
44
           create_testfile(segments_2, test_path, f2_file_test)
45
           intersect_bed(test_path, f1_file_test, f2_file_test, test_path,
46
                            file_output_test, chrom=chrom,
47
                            f1_feature_filter=f1_feature_filter,
48

    f2_feature_filter=f2_feature_filter,
                            output_feature=output_feature,
49
                            sep=SEP, drop_feature_threshold=drop_feature_threshold,
50
                            → output_mode=mode)
           if verbose: head(test_path, file_output_test, 20)
51
           output_segments = read_testfile(test_path, file_output_test)
52
           if verbose: print("Threshold", drop_feature_threshold)
53
           if verbose: print("Result", output_segments)
54
           if verbose: print("Expected result", test_expected_result)
55
           assert output_segments == test_expected_result, "Unexpected segments"
56
           passed += 1
57
       except AssertionError:
58
           print ("Failed test %s: Result:\n %s\nExpected result:\n %s\n"
59
                  % (test_number, output_segments, test_expected_result))
60
61
           failed += 1
           exit(1)
62
63
   # Test 1
65 segments_1 = [["chr16","0","100", "A"],
                 ["chr16","200","210", "A"]]
66
67 segments_2 = [["chr16","10","50", "B"]]
68 test_expected_result = [["chr16","10","50", "output_feature"]]
69 do_test(1, segments_1, segments_2, test_expected_result, False)
70
71 # Test 2
72 test_expected_result = [["chr16","0","100", "A+output_feature"],
                            ["chr16","200","210", "A"]]
  do_test(2, segments_1, segments_2, test_expected_result, False, "annotate")
```

```
75
   # Test 3
76
   segments_1 = [["chr16","0","100", "A"],
77
                  ["chr16","200","210", "A"]]
78
   segments_2 = [["chr16","10","20", "B"],
79
                  ["chr16","30","50", "B"]]
80
   test_expected_result = [["chr16","0","100", "A+output_feature"],
81
                             ["chr16","200","210", "A"]]
82
   do_test(3, segments_1, segments_2, test_expected_result, False, "annotate")
83
84
85
   # Test 4
   segments_1 = [["chr16","0","100", "A"],
86
                  ["chr16","200","210", "A"]]
87
   segments_2 = [["chr16","10","20", "B"],
88
                  ["chr16","30","50", "B"]]
89
   test_expected_result = [["chr16","10","20", "output_feature"],
90
                             ["chr16", "30", "50", "output_feature"]]
91
   do_test(4, segments_1, segments_2, test_expected_result, False, "intersect")
92
93
94
   segments_1 = [["chr16","0","100", "A"],
95
                  ["chr16","200","210", "A"]]
96
   segments_2 = []
98 test_expected_result = []
   do_test(5, segments_1, segments_2, test_expected_result, False, "intersect")
99
100
101
segments_1 = [["chr16","0","100", "A"],
                  ["chr16","200","210", "A"]]
103
104 segments_2 = []
test_expected_result = segments_1
106 do_test(6, segments_1, segments_2, test_expected_result, False, "annotate")
107
108 # Test 7
_{109} segments_1 = []
110 segments_2 = []
111 test_expected_result = segments_1
112 do_test(7, segments_1, segments_2, test_expected_result, False, "annotate")
113
114 # Test 8
115 segments_1 = []
116 segments_2 = []
117 test_expected_result = segments_1
ns do_test(8, segments_1, segments_2, test_expected_result, False, "intersect")
119
120
   # Test 9
   segments_1 = [["chr8","0","100", "A"],
121
                  ["chr8","100","150", "A"],
122
                  ["chr16","200","210", "A"],
123
                  ["chr16","300","1000", "A"]]
124
   segments_2 = [["chr16","50","500", "B"],
125
                  ["chr16","600","800", "B"]]
126
```

```
test_expected_result = [["chr16","200","210", "A+output_feature"],
127
                            ["chr16","300","1000", "A+output_feature"]]
128
  do_test(9, segments_1, segments_2, test_expected_result, False, "annotate")
129
130
   # Test 10
131
   segments_1 = [["chr8","0","100", "A"],
132
                  ["chr8","100","150", "A"],
133
                  ["chr16","200","210", "A"],
134
                  ["chr16","300","1000", "A"]]
135
   segments_2 = [["chr16","50","500", "B"],
136
137
                  ["chr16","600","800", "B"]]
   test_expected_result = [["chr16","200","210", "output_feature"],
138
                            ["chr16","300","500", "output_feature"],
139
                             ["chr16","600","800", "output_feature"]]
140
  do_test(10, segments_1, segments_2, test_expected_result, False, "intersect")
142
143 # Test 11
test_expected_result = [["chr16","300","500", "output_feature"],
                            ["chr16","600","800", "output_feature"]]
145
146 do_test(11, segments_1, segments_2, test_expected_result, True, "intersect",
    \rightarrow drop_feature_threshold=30)
147
148 print(" ")
if launched == passed: print("Passed All %s Test" %(passed))
150 else: print("ERROR: There are failed tests")
```

1.1.4 CTCF segments

```
head(PATH, STATE + ".bed", 10)
print("Output file:", STATE + ".bed")
```

Output			
chr16	60400	61400	E9
chr16	72600	72800	E9
chr16	115200	116000	E9
chr16	146600	147400	E9
chr16	156600	157600	E9
chr16	167800	168200	E9
chr16	412000	412600	E9
chr16	441800	442200	E9
chr16	537600	538000	E9
chr16	597000	597400	E9
chr16	629000	629400	E9
Output fil	e: E9.bed		

1.2 Segment annotation

Annotate the segments. At a minimum, the percentage of segments that overlap with protein-coding genes in said chromosome should be given.

1.2.1 Tracks to annotate

The tracks are obtained from https://genome.ucsc.edu/cgi-bin/hgTables

```
Script 1.2.1 (python)

1 from IPython.display import Image
2 Image("table_browser.png")
```

```
Display output
```

1.2.2 Annotate gene overlap

```
Script 1.2.2 (python)
1 OUTPUT_FEATURE = "gene"
2 INPUT_FILE = STATE + ".bed"
3 OUTPUT_FILE = STATE + "_" + OUTPUT_FEATURE + ".bed"
4 ANNOTATION_TRACK = "hg19_genes.bed"
5 intersect_bed(PATH, INPUT_FILE, ANNOTATION_TRACK,
                    PATH, OUTPUT_FILE, chrom = CHROM,
                    f1_feature_filter = "", f2_feature_filter="",
7
                    output_feature = OUTPUT_FEATURE, sep=SEP,
                    drop_feature_threshold = 10, output_mode="annotate")
head(PATH, OUTPUT_FILE, 10)
11
overlap_segment_count = bed_segment_count_by_re_feature(PATH, OUTPUT_FILE, OUTPUT_FEATURE)
13 print("")
print("Count of state segments overlapped:", overlap_segment_count)
total_segment_count = bed_segment_count_by_re_feature(PATH, OUTPUT_FILE, "")
print("Count of all state segments", total_segment_count)
print("Percent overlapped state segments over total segments:",
        overlap_segment_count * 100 / total_segment_count)
print("Output file:", OUTPUT_FILE)
```

Output			
chr16	60400	61400	E9
chr16	72600	72800	E9
chr16	115200	116000	E9+gene
chr16	146600	147400	E9+gene
chr16	156600	157600	E9+gene
chr16	167800	168200	E9+gene
chr16	412000	412600	E9
chr16	441800	442200	E9+gene
chr16	537600	538000	E9+gene
chr16	597000	597400	E9+gene
chr16	629000	629400	E9

1.2.3 Annotate exon overlap

```
Script 1.2.3 (python)
1 OUTPUT_FEATURE = "exons"
2 INPUT_FILE = STATE + "_gene.bed"
3 OUTPUT_FILE = STATE + "_" + OUTPUT_FEATURE + "_gene.bed"
4 ANNOTATION_TRACK = "hg19_coding_exons.bed"
5 intersect_bed(PATH, INPUT_FILE, ANNOTATION_TRACK,
                    PATH, OUTPUT_FILE, chrom = CHROM,
                    f1_feature_filter = "", f2_feature_filter="",
7
                    output_feature = OUTPUT_FEATURE, sep=SEP,
                    drop_feature_threshold = 10, output_mode="annotate")
head(PATH, OUTPUT_FILE, 10)
11
overlap_segment_count = bed_segment_count_by_re_feature(PATH, OUTPUT_FILE, OUTPUT_FEATURE)
13 print("")
print("Count of state segments overlapped:", overlap_segment_count)
total_segment_count = bed_segment_count_by_re_feature(PATH, OUTPUT_FILE, "")
print("Count of all state segments", total_segment_count)
print("Percent overlapped state segments over total segments:",
        overlap_segment_count * 100 / total_segment_count)
print("Output file:", OUTPUT_FILE)
```

chr16	60400	61400	E9
chr16	72600	72800	E9
chr16	115200	116000	E9+gene
chr16	146600	147400	E9+gene
chr16	156600	157600	E9+gene
chr16	167800	168200	E9+gene
chr16	412000	412600	E9
chr16	441800	442200	E9+gene
chr16	537600	538000	E9+gene
chr16	597000	597400	E9+gene+exons
chr16	629000	629400	E9
	state segments	s overlapped: nents 468	37

1.2.4 Annotate upstream 200 overlap

```
Script 1.2.4 (python)
1 OUTPUT_FEATURE = "up200"
2 INPUT_FILE = STATE + "_gene.bed"
3 OUTPUT_FILE = STATE + "_" + OUTPUT_FEATURE + "_exons_gene.bed"
 ANNOTATION_TRACK = "hg19_up200.bed"
 intersect_bed(PATH, INPUT_FILE, ANNOTATION_TRACK,
                    PATH, OUTPUT_FILE, chrom = CHROM,
                    f1_feature_filter = "", f2_feature_filter="",
7
                    output_feature = OUTPUT_FEATURE, sep=SEP,
                    drop_feature_threshold = 10, output_mode="annotate")
 head(PATH, OUTPUT_FILE, 10)
11
overlap_segment_count = bed_segment_count_by_re_feature(PATH, OUTPUT_FILE, OUTPUT_FEATURE)
13 print("")
print("Count of state segments overlapped:", overlap_segment_count)
total_segment_count = bed_segment_count_by_re_feature(PATH, OUTPUT_FILE, "")
print("Count of all state segments", total_segment_count)
print("Percent overlapped state segments over total segments:",
        overlap_segment_count * 100 / total_segment_count)
print("Output file:", OUTPUT_FILE)
```

Output			
chr16	60400	61400	E9+up200
chr16	72600	72800	E9+up200
chr16	115200	116000	E9+gene
chr16	146600	147400	E9+gene
chr16	156600	157600	E9+gene
chr16	167800	168200	E9+gene
chr16	412000	412600	E9
chr16	441800	442200	E9+gene
chr16	537600	538000	E9+gene
chr16	597000	597400	E9+gene
chr16	629000	629400	E9

1.3 DNASE I overlap

Download of DNase I in monocytes **ENCODE** the peaks of for chr16 and calculate percentage of overlap between DNaseI-peaks and your work the seg-Use ments. the file wgEncodeOpenChromDnaseMonocd14Pk.narrowPeak.gz in: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeOpenChromDnase

1.3.1 Tests

```
Script 1.3.1 (python)

intersect_bed(TEST_PATH, STATE + "_segments_test.bed", "dnase1.peaks.bed", TEST_PATH,

STATE + "_dnase1_overlap_test.bed",

chrom = CHROM, f1_feature_filter = STATE, f2_feature_filter = "",

output_feature = STATE + "_dnase1_overlap", sep=SEP,

drop_feature_threshold=20)

head(TEST_PATH, STATE +"_dnase1_overlap_test.bed", 10)
```

1.3.2 Overlap

Overlap by coverage Overlap calculated as percent ratio between sum of base pair overlapped and sum of total base pair covered by all the E9 segments. This method doesn't have much sense because it depends of the arbitrary sensitivity of the dna base segments (200 bps in the case of chromatin states).

```
Script 1.3.2 (python)
intersect_bed(PATH, STATE + ".bed", "wgEncodeOpenChromDnaseMonocd14Pk.narrowPeak.bed",
                     PATH, STATE + "_dnase1.bed", chrom = CHROM,
2
                    f1_feature_filter = "", f2_feature_filter = "",
3
                     output_feature = STATE + "_dnase1_overlap", sep = SEP,
4
                     drop_feature_threshold = 10)
6 head(PATH, STATE + "_dnase1.bed", 10)
  coverage_peaks = bed_coverage(PATH, "wgEncodeOpenChromDnaseMonocd14Pk.narrowPeak.bed",
   \rightarrow sep='\t')
s coverage_state = bed_coverage(PATH, STATE + "_segments.bed", sep='\t')
9 print("")
print("Coverage DNASE peaks:", coverage_peaks, "bps")
print("Coverage E9:", coverage_state, "bps")
print("Percent overlap over total coverage peaks:", coverage_state * 100 / coverage_peaks)
print("Output file:", STATE + "_dnase1.bed")
```

r16	72620	72800	E9_dnase1_overlap
chr16	115448	116000	E9_dnase1_overlap
chr16	146819	147400	E9_dnase1_overlap
chr16	157056	157367	E9_dnase1_overlap
chr16	167800	168118	E9_dnase1_overlap
chr16	412000	412600	E9_dnase1_overlap
chr16	441800	442200	E9_dnase1_overlap
chr16	537761	538000	E9_dnase1_overlap
chr16	597000	597400	E9_dnase1_overlap
chr16	629000	629400	E9_dnase1_overlap
chr16	661000	661548	E9_dnase1_overlap

```
Output file: E9_dnase1.bed
```

Overlap by segment count Overlap calculated as percent ratio between segment count of overlapped E9-DNASE segments and total count of E9 segments.

```
Script 1.3.3 (python)
1 OUTPUT_FEATURE = "dnase1"
  intersect_bed(PATH, STATE + ".bed", "wgEncodeOpenChromDnaseMonocd14Pk.narrowPeak.bed",
                    PATH, STATE + "_dnase1.bed", chrom = CHROM,
4
                    f1_feature_filter = STATE, f2_feature_filter="",
5
                    output_feature = OUTPUT_FEATURE, sep=SEP,
6
                    drop_feature_threshold = 10, output_mode="annotate")
  head(PATH, STATE + "_dnase1.bed", 10)
overlap_segment_count = bed_segment_count_by_re_feature(PATH, STATE + "_dnase1.bed",
                                                           OUTPUT_FEATURE)
11
12 print("")
print("Count of state segments overlapped:", overlap_segment_count)
14 total_segment_count = bed_segment_count_by_re_feature(PATH, STATE + "_dnase1.bed", "")
print("Count of all state segments", total_segment_count)
print("Percent overlapped state segments over total segments:",
        overlap_segment_count * 100 / total_segment_count)
print("Output file:", STATE + "_dnase1.bed")
19 Image("genome_browser.png")
```

Output			
chr16	60400	61400	E9
chr16	72600	72800	E9+dnase1
chr16	115200	116000	E9+dnase1
chr16	146600	147400	E9+dnase1
chr16	156600	157600	E9+dnase1
chr16	167800	168200	E9+dnase1
chr16	412000	412600	E9+dnase1
chr16	441800	442200	E9+dnase1
chr16	537600	538000	E9+dnase1
chr16	597000	597400	E9+dnase1
chr16	629000	629400	E9+dnase1
Count of Percent o	state segments all state segn overlapped stat le: E9_dnase1.	nents 468 ce segments ov	342 Ver total segments: 73.07692307692308

```
Display output

\texttt{\color{outcolor}Out[{\color{outcolor}421}]:}

\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{genomic_regulation_files/genomic_
\rightarrow regulation_29_1.png}
\end{center}
\{ \hspace*{\fill} \\}
```

Automated verifications

```
Script 1.3.4 (python)

segment_count_annotate = bed_segment_count_by_re_feature(PATH, STATE + "_dnase1.bed", "")
segment_count = bed_segment_count_by_re_feature(PATH, STATE + ".bed", "")
assert segment_count_annotate == segment_count,\
"Count of annotated segments not equal to count of original segments"
```

Visual inspection

```
1 %%bash
2 export TRACKS=files/tracks/
3 echo "Counts"
wc -l ${TRACKS}E9_dnase1.bed
5 wc -1 ${TRACKS}E9.bed
6 tail ${TRACKS}E9_dnase1.bed
7 echo
8 tail ${TRACKS}E9.bed
9 echo
10 head ${TRACKS}E9_dnase1.bed
11 echo
12 head ${TRACKS}E9.bed
13 echo
echo "Counts of annotations:"
15 cat ${TRACKS}E9_dnase1.bed | grep "dnase1" | wc -l
16 cat ${TRACKS}E9.bed | grep "" | wc -l
```

Output Counts 468 files/tracks/E9_dnase1.bed 468 files/tracks/E9.bed E9+dnase1 chr16 89233600 89234800 89527000 E9 chr16 89527400 chr16 89623800 89624200 E9+dnase1 chr16 89707800 89708000 E9+dnase1 E9+dnase1 chr16 89772400 89772600

chr16	89927000	89927800	E9+dnase1
chr16	89976600	89977000	E9+dnase1
chr16	90092400	90092800	E9+dnase1
chr16	90182400	90183000	E9
chr16	90281600	90282000	E9
chr16	89233600	89234800	E9
chr16	89527000	89527400	E9
chr16	89623800	89624200	E9
chr16	89707800	89708000	E9
chr16	89772400	89772600	E9
chr16	89927000	89927800	E9
chr16	89976600	89977000	E9
chr16	90092400	90092800	E9
chr16	90182400	90183000	E9
chr16	90281600	90282000	E9
chr16	60400	61400	E9
chr16	72600	72800	E9+dnase1
chr16	115200	116000	E9+dnase1
chr16	146600	147400	E9+dnase1
chr16	156600	157600	E9+dnase1
chr16	167800	168200	E9+dnase1
chr16	412000	412600	E9+dnase1
chr16	441800	442200	E9+dnase1
chr16	537600	538000	E9+dnase1
chr16	597000	597400	E9+dnase1
chr16	60400	61400	E9
chr16	72600	72800	E9
chr16	115200	116000	E9
chr16	146600	147400	E9
chr16	156600	157600	E9
chr16	167800	168200	E9
chr16	412000	412600	E9
chr16	441800	442200	E9
chr16	537600	538000	E9
chr16	597000	597400	E9

Counts of annotations: