TRABAJO PRÁCTICO PROGRAMACIÓN ESTRUCTURADA

EMILIANO JARA

43592980

Este documento contiene la resolución completa de los 13 ejercicios propuestos en el Trabajo Práctico de Programación Estructurada. Cada ejercicio está desarrollado en lenguaje Java, con comentarios explicativos y buenas prácticas aplicadas. Al final del documento se incluye un espacio para agregar los enlaces a los repositorios públicos de GitHub.

Ejercicio 1: Verificación de Año Bisiesto

```
import java.util.Scanner;

public class VerificarBisiesto {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Ingrese un año: ");
        int año = scanner.nextInt();

        // Un año es bisiesto si es divisible por 4 y no por 100, o si es divisible por 400
        if ((año % 4 == 0 && año % 100 != 0) || (año % 400 == 0)) {
            System.out.println("El año " + año + " es bisiesto.");
        } else {
                System.out.println("El año " + año + " no es bisiesto.");
        }
        scanner.close();
    }
}
```

Ejercicio 2: Determinar el Mayor de Tres Números

```
public class MayorDeTresNumeros {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Ingrese el primer número: ");
    int num1 = scanner.nextInt();
    System.out.print("Ingrese el segundo número: ");
    int num2 = scanner.nextInt();
    System.out.print("Ingrese el tercer número: ");
    int num3 = scanner.nextInt();
    int mayor;
    if (num1 >= num2 && num1 >= num3) {
      mayor = num1;
    } else if (num2 >= num1 && num2 >= num3) {
      mayor = num2;
    } else {
      mayor = num3;
    }
    System.out.println("El mayor es: " + mayor);
    scanner.close();
 }
}
                          Ejercicio 3: Clasificación de Edad
import java.util.Scanner;
```

```
public class ClasificacionEdad {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Ingrese su edad: ");
    int edad = scanner.nextInt();
    if (edad < 12) {
      System.out.println("Eres un Niño.");
    } else if (edad >= 12 && edad <= 17) {
      System.out.println("Eres un Adolescente.");
    } else if (edad >= 18 && edad <= 59) {
      System.out.println("Eres un Adulto.");
```

```
} else if (edad >= 60) {
    System.out.println("Eres un Adulto mayor.");
} else {
    System.out.println("Edad inválida.");
}
scanner.close();
}
```

Ejercicio 4: Calculadora de Descuento según Categoría

```
public class CalculadoraDescuento {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Ingrese el precio del producto: ");
    double precio = scanner.nextDouble();
    System.out.print("Ingrese la categoría del producto (A, B o C): ");
    char categoria = scanner.next().toUpperCase().charAt(0);
    double descuento = obtenerDescuentoPorCategoria(categoria);
    double montoDescuento = precio * descuento;
    double precioFinal = precio - montoDescuento;
    System.out.println("Descuento aplicado: " + (descuento * 100) + "%");
    System.out.println("Precio final: " + precioFinal);
    scanner.close();
  }
  public static double obtenerDescuentoPorCategoria(char categoria) {
    switch (categoria) {
      case 'A': return 0.10;
      case 'B': return 0.15;
      case 'C': return 0.20;
      default:
        System.out.println("Categoría inválida. No se aplica descuento.");
         return 0.0;
    }
  }
}
```

Ejercicio 5: Suma de Números Pares usando while

import java.util.Scanner; public class SumaNumerosPares { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int numero; int sumaPares = 0; System.out.print("Ingrese un número (0 para terminar): "); numero = scanner.nextInt(); while (numero != 0) { if (numero % 2 == 0) { sumaPares += numero; System.out.print("Ingrese un número (0 para terminar): "); numero = scanner.nextInt(); } System.out.println("La suma de los números pares es: " + sumaPares); scanner.close(); }

Ejercicio 6: Contador de Positivos, Negativos y Ceros usando for

import java.util.Scanner;

}

```
public class ContadorNumeros {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    int positivos = 0, negativos = 0, ceros = 0;

  for (int i = 1; i <= 10; i++) {
      System.out.print("Ingrese el número " + i + ": ");
      int numero = scanner.nextInt();

    if (numero > 0) positivos++;
    else if (numero < 0) negativos++;
    else ceros++;
}</pre>
```

```
System.out.println("Positivos: " + positivos);
System.out.println("Negativos: " + negativos);
System.out.println("Ceros: " + ceros);
scanner.close();
}
```

Ejercicio 7: Validación de Nota entre 0 y 10 usando do-while

```
public class ValidacionNota {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int nota;

        do {
            System.out.print("Ingrese una nota (0-10): ");
            nota = scanner.nextInt();
        if (nota < 0 || nota > 10) {
                System.out.println("Error: Nota inválida.");
            }
        } while (nota < 0 || nota > 10);

        System.out.println("Nota guardada correctamente.");
        scanner.close();
    }
}
```

Ejercicio 8: Cálculo del Precio Final con impuesto y descuento

import java.util.Scanner;

```
public class PrecioFinal {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Ingrese el precio base: ");
    double precioBase = scanner.nextDouble();
    System.out.print("Ingrese el impuesto (%): ");
    double impuesto = scanner.nextDouble();
    System.out.print("Ingrese el descuento (%): ");
    double descuento = scanner.nextDouble();

double precioFinal = calcularPrecioFinal(precioBase, impuesto, descuento);
```

```
System.out.println("Precio final: " + precioFinal);
scanner.close();
}

public static double calcularPrecioFinal(double base, double imp, double desc) {
   double impuesto = base * (imp / 100);
   double descuento = base * (desc / 100);
   return base + impuesto - descuento;
}
```

Ejercicio 9: Composición de funciones para costo de envío y total de compra

```
import java.util.Scanner;
public class TotalCompraConEnvio {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Precio del producto: ");
    double precio = scanner.nextDouble();
    System.out.print("Peso del paquete (kg): ");
    double peso = scanner.nextDouble();
    scanner.nextLine();
    System.out.print("Zona de envío (Nacional/Internacional): ");
    String zona = scanner.nextLine();
    double envio = calcularCostoEnvio(peso, zona);
    double total = calcularTotalCompra(precio, envio);
    System.out.println("Costo de envío: " + envio);
    System.out.println("Total a pagar: " + total);
    scanner.close();
 }
  public static double calcularCostoEnvio(double peso, String zona) {
    if (zona.equalsIgnoreCase("Nacional")) return peso * 5;
    else if (zona.equalsIgnoreCase("Internacional")) return peso * 10;
    else return 0;
 }
  public static double calcularTotalCompra(double precio, double envio) {
    return precio + envio;
```

```
}
```

Ejercicio 10: Actualización de stock

```
import java.util.Scanner;
public class ActualizarStock {
  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Stock actual: ");
    int stock = scanner.nextInt();
    System.out.print("Cantidad vendida: ");
    int vendida = scanner.nextInt();
    System.out.print("Cantidad recibida: ");
    int recibida = scanner.nextInt();
    int nuevoStock = actualizarStock(stock, vendida, recibida);
    System.out.println("Nuevo stock: " + nuevoStock);
    scanner.close();
  }
  public static int actualizarStock(int actual, int vendida, int recibida) {
    return actual - vendida + recibida;
}
```

Ejercicio 11: Descuento especial con variable global

```
public class DescuentoEspecial {
  static final double DESCUENTO = 0.10;

public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("Precio del producto: ");
    double precio = scanner.nextDouble();
    calcularDescuento(precio);
    scanner.close();
}

public static void calcularDescuento(double precio) {
    double descuentoAplicado = precio * DESCUENTO;
```

```
double precioFinal = precio - descuentoAplicado;
System.out.println("Descuento aplicado: " + descuentoAplicado);
System.out.println("Precio final: " + precioFinal);
}
```

Ejercicio 12: Modificación de array de precios

```
public class ModificarArrayPrecios {
   public static void main(String[] args) {
      double[] precios = {199.99, 299.5, 149.75, 399.0, 89.99};

      System.out.println("Precios originales:");
      for (double precio : precios) {
            System.out.println("Precio: $" + precio);
      }

      precios[2] = 129.99;

      System.out.println("Precios modificados:");
      for (double precio : precios) {
            System.out.println("Precio: $" + precio);
      }
    }
}
```

Ejercicio 13: Impresión recursiva de arrays

```
public class RecursividadArrayPrecios {
   public static void main(String[] args) {
      double[] precios = {199.99, 299.5, 149.75, 399.0, 89.99};

      System.out.println("Precios originales:");
      imprimirArrayRecursivo(precios, 0);

      precios[2] = 129.99;

      System.out.println("Precios modificados:");
      imprimirArrayRecursivo(precios, 0);
    }

    public static void imprimirArrayRecursivo(double[] array, int indice) {
      if (indice < array.length) {
            System.out.println("Precio: $" + array[indice]);
      }
    }
}</pre>
```

```
imprimirArrayRecursivo(array, indice + 1);
}
}
```

ENLACES A REPOSITORIOS PÚBLICOS DE GITHUB

https://github.com/Emilianojara69/UTN_TRABAJOS_PROGRAMACION2-