On the visualization of hierarchical, tabular and spatial data in R

Martijn Tennekes

Visualization of data: why?

- Exploration: what's in the data?
- Analysis: what does the data tell you?
- Communication: how to let the data speak?
- Publication: how to make the data attractive and insightful for a broad audience?

Standard visualization methods

Scatter plot, line chart, bar chart, histogram, boxplot, etc.

Especially useful for small datasets, i.e.

- up to 1000 units,
- at most 3 variables (most plots are uni- or bivariate),
- preferably without missing values.

R:

- base graphics: useful for quick plots
- ggplot2: elegant plotting system

Data in Official Statistics

In the **real world** of Official Statistics:

- large data, millions of units, dozens of variables;
- missing values are very common;
- data often have a hierarchical structure (e.g., classification of goods or jobs);
- data often have a spatial component.

Missing values

VIM package (M. Templ et al.): standard plot types extended with missing values, e.g.

Hierarchical data

Applications within Official Statistics:

- Economic activity
- Goods
- Jobs
- Regions

Overview of tree visualizations

Shneiderman (1992)

Shneiderman (1992)

Total (9)

Class	Value
А	3
B.1	2
B.2	2
B.3.a	1
B.3.b	1

Shneiderman (1992)

A (3) B (6)

Class	Value
Α	3
B.1	2
B.2	2
B.3.a	1
B.3.b	1

Shneiderman (1992)

	B.1 (2)			
A (3)	B.2 (2)	B.3 (2)		

Class	Value
А	3
B.1	2
B.2	2
B.3.a	1
B.3.b	1

Shneiderman (1992)

	B.1 (2)		
A (3)	B.2 (2)	B.3.a (1)	
		B.3.b (1)	

Class	Value
А	3
B.1	2
B.2	2
B.3.a	1
B.3.b	1

R-package treemap

Structural Business Statistics: aggregated by economic activity

Tree Colors

(Tennekes and De Jonge, 2014)

How to assign a color palette to a tree structure?

Approach:

- Hue resembles branches
- Chroma and Luminance discriminate hierarchical levels

14

Tree Colors

(Tennekes and De Jonge, 2014)

How to assign a color palette to a tree structure?

Approach:

- **Hue** resembles branches
- **Chroma and Luminance** discriminate hierarchical levels

15

Tree Colors

(Tennekes and De Jonge, 2014)

(a) Sunburst diagram

(b) Treemap

Large tabular data

Number of variables: around 5 – 20 Number of units: 10,000 - billions

	var1	var2	var3	var4	var5	var6	var7	var8
unit1								
unit2								
unit3								
unit10000								

Applications in Official Statistics:

- Large survey data
- Admin data
- Big data

Large tabular data

Tableplot: visual summary of a large data table

- Sort the data according to the values of a key variable (say var1).
- 2. Group the data into, say, 100 equally sized bins.
- 3. Per bin, do
 - for each numeric variable: calculate mean and sd,
 - for each categorical variable: calculate frequencies.
- 4. Plot it! (see next slides...)

Tableplot

R-package tabplot

Tableplot R-package tabplot Sex Household status Education Activity_status Age11 Marital status Size_prive_household 10% 40% 50% 60% 70% 90% No formal education Not applicable Never married Institutional Primary educ Employed Living alone Partnership without children Male Low. Sec. educ row bins: Married Pension Upper Sec. educ Married without children 100 Students Partnership with children Post Sec. non-tertiary educ Widowed Others Married with children Bachelor / Master Homemakers Single-parent Reference person in other hh Not applicable (persons Divorced objects: Unemployed Female 16408487 Civil partnership missing missing

Tableplot of the Dutch Virtual Census (test file, 2009)

Tableplot

R-package tabplot

Tableplot of the Insurance Policy Record Administration (test file, October 2010)

Spatial data

Spatial data in Official Statistics:

- Regional statistics (e.g. NUTS areas, municipalities)
- Exploration of spatial distributions
- Specific GIS publications, e.g. land use.

R-package tmap

Thematic maps in R

Thematic map

Geographic map

Theme

3

Thematic map

tm_fill()

tm_fill("blue")

tm_fill("population")


```
tm_shape(NLD_muni,
projection="rd") +
```


tm_borders(alpha=.5) +


```
tm_shape(NLD_muni,
projection="rd") +
```

```
tm_borders(alpha=.5) +
```

```
tm_shape(NLD_prov) +

tm_borders(1wd=2) +
```



```
tm_shape(NLD_prov) +

tm_borders(1wd=2) +
```

```
tm_text("name", size=.8, shadow=TRUE,
  bg.color="white", bg.alpha=.25)
```


Choropleth + bubble map


```
tm_shape(World) +
  tm_fill("income_grp", palette="-Blues",
    title="Income class") +
  tm_borders() + tm_text("iso_a3", size="AREA") +
  tm_shape(metro) +
  tm_bubbles("X2010", col = "growth",
    border.col = "black", border.alpha = .5, style="fixed",
    breaks=c(-Inf, 0, 2, 4, 6, Inf), palette="-RdYlBu",
    title.size="Metro population (2010)",
    title.col="Annual growth rate (%)") +
  tm_format_world(bg.color = "gray80")
```


Interactive map

tmap_mode("view")
map1 # to which the previous plot has been assigned

US choropleth

Crimes in Greater London

Crimes in Greater London

Crimes in the City of London

Crimes in the City of London

Interactive dot map

Native Dutch

Prototype: http://research.cbs.nl/ColorDotMap

41

References

treemap

- CRAN version 2.4-1
- https://github.com/mtennekes/treemap
- Tennekes, M. Jonge, E. de (2014) Tree Colors: Color Schemes for Tree-Structured Data. IEEE Transactions on Visualization and Computer Graphics 20 (12), 2072 – 2081.
- Tennekes, M., Jonge, E. de (2011) Top-down data analysis with treemaps. Proceedings of the International Conference on Information Visualization Theory and Applications, IVAPP 2011, Algarve, Portugal.

tabplot

- CRAN version 1.3
- https://github.com/mtennekes/treemap
- Tennekes, M., Jonge, E. de (2013) On the exploration of high cardinality categorical data. Paper presented at the
 2013 New Techniques and Technologies for Statistics (NTTS) conference, Brussels, Belgium.
- Tennekes, M., Jonge, E. de, Daas, P.J.H. (2013) Visualizing and Inspecting Large Datasets with Tableplots, Journal of Data Science 11 (1), 43-58.
- Tennekes, M., Jonge, E. de, Daas, P.J.H. (2011) Visual profiling of large statistical datasets. Paper presented at the
 2011 New Techniques and Technologies for Statistics conference, Brussels, Belgium.

tmap

- CRAN version 1.4
- https://github.com/mtennekes/tmap (with many links on the home page)
- Paper in review process ...

