M - 138 - 2012

프레스 금형작업의 안전에 관한 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 함광호

ㅇ 개정자 : 안전연구실

o 제·개정경과

- 2007년 09월 기계안전분야 제정위원회 심의

- 2007년 11월 총괄제정위원회 심의

- 2012년 4월 기계안전분야 기준제정위원회 심의(개정)

ㅇ 관련규격 및 자료

- NSC : Industrial safety data sheets(I-211 Rev.91, 동력프레스 금형의 설치 및 제거)

o 관련 법규·규칙·고시 등

- 산업안전보건기준에 관한 규칙 제2편 제1장 제3절 제103조(프레스 등 의 위험방지))

○ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

프레스 금형작업의 안전에 관한 기술지침

1. 목 적

이 지침은 프레스 금형이 안전하게 설계·제작되어 구조적으로 위험한계내에 작업자의 접근이 차단되고 금형의 파손방지, 이상검출, 운반 및 설치·해체 등 작업과정에서의 안전을 위한 필요한 지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 프레스 금형의 설계 · 제작, 설치 및 취급에 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "다이(Die)"라 함은 가공을 하기위해 한 쌍 또는 여러 쌍의 조합으로 된 완 전공구로 그 공구를 지탱하거나 작동시키는 부분도 포함되며 또한, 편치에 대응하는 부품을 의미하기도 한다.
 - (나) "가이드 포스트(Guide post)"라 함은 금형의 상부 부분과 하부 부분의 정렬 상태를 유지하도록 도우는 가이딩 핀이다.
 - (다) "맞춤 핀(Dowel pin)"이라 함은 평행핀의 일종으로서 담금질된 정밀도가 높은 핀이며 금형 등의 위치결정에 사용된다.
 - (라) "쿠션 핀(Cushion pin)"이라 함은 다이쿠션 장치에서 금형의 패드(Pad)에 압력을 전달하는 핀을 말한다.

M - 138 - 2012

- (마) "파일럿 핀(Pilot pin)"이라 함은 전(前) 공정에서 미리 뚫은 구멍을 기준으로 하여 다음 공정에서 재료의 위치를 정확하게 조정하기 위한 안내 핀을 말한다.
- (바) "핀 게이지(Pin gauge)"라 함은 재료나 반가공품을 소정의 가공위치에 또는 부품을 바른 체결위치에 놓기 위하여(위치결정을 하기 위하여) 마련된 핀이다.
- (사) "다이하이트(Die height)"라 함은 프레스 슬라이드 조절이 최상 위치로 스트로크 하사점 상태에서 볼스터 상면에서 슬라이드 하면까지의 높이를 말한다.
- (아) "이젝터(Ejector)"라 함은 금형으로부터 작업 부품 또는 재료를 제거하는 장치이다.
- (자) "스트리퍼(Stripper)"라 함은 펀치로부터 가공물 또는 스크랩을 제거하기 위한 기구 또는 금형 부분이다.
- (차) "샹크(Shank)"라 함은 편치홀더의 윗부분 또는 상금형의 윗부분 등에 튀어 나온 돌기부로서 프레스의 중심과 금형의 중심을 맞추기 위한 것이다.
- (카) "슈트(Chute)"라 함은 경사시킨 홈통 모양의 안내면을 따라 블랭크(Blank) 나 반제품을 미끄러뜨려 내려 보내고 동력을 이용해서 금형내에 송급하는 기구이다.
- (타) "플래시(Flash)"라 함은 금형의 파팅 라인(Die parting line)이나 이젝터 핀 등의 틈새에서 흘러 나와 응고 또는 경화된 얇은 조각 모양의 재료이다.

(2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 금형에 의한 위험방지

4.1 금형 안전화와 울

- (1) 금형의 사이에 작업자의 신체의 일부가 들어가지 않도록 다음 부분의 간격 이 8 mm 이하 되도록 설치한다. 〈그림 1 참조〉
 - (가) 상사점 위치에 있어서 펀치와 다이, 이동 스트리퍼와 다이, 펀치와 스트리퍼 사이 및 고정 스트리퍼와 다이 등의 간격이 8 mm 이하이면 울은 불필요하 다.
 - (나) 상사점 위치에 있어서 고정 스트리퍼와 다이의 간격이 8 mm 이하이더라도 편치와 고정 스트리퍼 사이가 8 mm 이상이면 울을 설치하여야 한다.

(a) 상사점에 대한 펀치하면과 다이면이 8 mm 이하

(b) 상사점에 대한 스트리퍼 하면과 다이면이 8 mm 이하

(c) 상사점에 대한 펀치 하면과 (d) 상사점에 대한 펀치하면과 스트리퍼가 고정 스트리퍼면이 8 mm 이하 8 mm 이상일 때 울 설치

〈그림 1〉 행정이 짧은 경우의 금형 안전화

(2) 울의 설치

- (가) 금형 사이에 작업자의 신체의 일부가 들어가지 않도록 울을 설치한다.
- (나) 울로 인하여 작업의 방해를 받지 않도록 울의 소재 자체를 투명한 플라스틱 또는 타공망이나 철망 등을 이용한다.
- (다) 적절한 내구성과 견고성이 유지되어야 하므로 통상 사용재료는 금속재인 경우 두께가 1.5 mm 미만인 소재도 사용가능하나 경금속은 2.0 mm 이상으로 해야 한다.
- (라) 울을 쉽게 제거할 수 없도록 고정시킬 때 여러 개의 나사로 체결하는 것이 바람직하며, 조임볼트는 밖에서 안으로, 위에서 아래로, 1개보다는 2개를 이용하여 조여야 하고 볼트의 머리는 공구를 사용할 공간이 충분하도록 금

M - 138 - 2012

형고정판 부위에 너무 가깝지 않도록 한다.

- (마) 울에 설치된 송급 및 배출구 부위의 뚜껑이나, 덮개 등 개폐장치에는 인터록 장치를 설치한다.
- (3) 금형의 사이에 손을 넣을 필요가 없게 한다.
 - (가) 재료 또는 제품을 자동적으로 또는 위험한계를 벗어난 장소에서 송급 한다.
 - ① 1차 가공용 송급장치 : 로울 피더(Roll feeder)
 - ② 2차 가공용 송급장치 : 슈트, 푸셔 피더(Pusher feeder), 다이얼 피더(Dial feeder), 트랜스퍼 피더(Transfer feeder) 등
 - ③ 슬라이딩 다이(Sliding die, 하형 자신을 안내로 송급하는 형식)
 - (나) 제품 및 스크랩이 금형에 부착되는 것을 방지하기 위해 스프링 플런저 (Spring plunger), 볼 플런저, 키커 핀(Kicker pin) 등을 설치한다.
 - (다) 제품 및 스크랩은 자동적으로 또는 위험한계 밖으로 배출하기 위해 공기분 사장치, 키커, 이젝터 등을 설치한다.
 - ① 공기분사장치용 구멍을 울에 만들 경우 분사장치의 직경은 손가락 굵기보다는 작아야 하고 울의 구멍도 손가락이 들어갈 수 없도록 작아야 한다.
 - ② 배출된 부품을 모으는 슈터와 용기를 금형에 부착할 때에는 위험구멍 등이 발생되지 않도록 하고 작업진동 등에 의해 떨어지는 경우가 없도록 견고하게 고정 부착한다.

4.2 금형사이에 손을 넣게 될 경우의 방호조치

(1) 재료의 투입 위치 결정을 확실하게 한다.

M - 138 - 2012

- (가) 재료는 금형 외부에서 투입하게 하고 위치 결정은 확실하게 하는 것이 원칙이다.
- (나) 안내(가이드)는 작업자가 직접하거나, 두드려서 강제로 위치를 결정하거나, 제품을 지지하고 있어야만 하는 방법은 위험하기 때문에 피한다.
- (다) 안내는 제품의 특성을 고려하여 핀 게이지, 솔리드 게이지, 앵글 게이지 등으로 위치를 결정한다. 〈그림 2, 3 참조〉

〈그림 2〉 솔리드 게이지

〈그림 3〉 앵글 게이지

- (라) 1종류의 안내로 만족할 수 없을 때는 먼저 러프 가이드(Rough guide)로 하고 나서, 정밀한 안내를 위해 단계적으로 위치를 결정해 나가도록 한다.
- (마) 핀 게이지, 파일럿 핀은 충분히 고정함과 동시에 이탈 방지를 해두어야 한다.
- (2) 상부 금형과 하부 금형과의 접촉부분 중 손을 가까이 하게할 염려가 있는 장소는 작업자가 확실하게 손을 놓을 경우에 대비해서 그 부분은 홈을 만 들거나 또는 없앤다.(그림 4 참조. 강도상 크게 하지 않으면 안 될 경우는 제외)

(3) 가이드 포스트는 소재투입 시 간섭이 없도록 원칙적으로 충분한 작업공간 을 확보해야 한다.

〈그림 4〉 가동부분에서 끼워지는 부분을 홈으로 만든 경우

5. 금형의 파손방지 및 이상검출

5.1 금형의 파손에 의한 위험방지

- (1) 부품의 조립요령
 - (가) 맞춤 핀을 사용할 때에는 억지끼워맞춤으로 한다. 상형에 사용할 때에는 낙하방지의 대책을 세워둔다.
 - (나) 파일럿 핀, 직경이 작은 펀치, 핀 게이지 등 삽입부품은 빠질 위험이 있으므로 플랜지를 설치하거나 테이퍼로 하는 등 이탈 방지대책을 세워둔다.
 - (다) 쿠션 핀을 사용할 경우에는 상승시 누름판의 이탈방지를 위하여 단붙임 한 나사로 견고히 조여야 한다.
 - (라) 가이드 포스트, 샹크는 확실하게 고정한다.

(2) 헐거움 방지

금형의 조립에 사용하는 볼트 및 너트는 헐거움 방지를 위해 분해, 조립을 고려하면서 스프링 와셔, 로크 너트, 키, 핀, 용접, 접착제 등을 적절히 사용한다.

(3) 편하중 대책

금형의 하중 중심은 편하중 방지를 위해 원칙적으로 프레스의 하중 중심과 일치하도록 한다.

(4) 운동범위 제한

금형내의 가동부분은 모두 운동하는 범위를 제한하여야 한다. 또한 누름, 노크 아웃, 스트리퍼, 패드, 슬라이드 등과 같은 가동부분은 움직였을 때는 원칙적으로 확실하게 원점으로 되돌아가야 한다. 〈그림 5, 6 참조〉

〈그림 5〉하부 금형용 패드의 상승제한

〈그림 6〉 상부 금형에 내장한 pad의 운동제한

(5) 낙하 방지 등

(가) 상부 금형내에서 작동하는 패드가 무거운 경우에는 운동제한과는 별도로 낙하방지를 한다. 〈그림 5 참조〉

〈그림 6〉 낙하방지전용의 Side safety pin 사용

- (나) 금형에 사용하는 스프링은 압축형으로 한다.
- (다) 스프링 등의 파손에 의해 부품이 비산될 우려가 있는 부분에는 덮개를 설치한다.

5.2 금형의 이상검출과 대책

기계장치의 결함과 작업자의 부주의로 인해 겹판타발(Double blank), 반판타발(Half blank), 금형의 윤활유 공급의 중지, 위치가 엇갈린 상태로의 가공 등을 할 때에는 금형이 늘어나거나, 금형이 달라붙거나, 기타 여러 가지 작업에 방해되는 요소가 발생하는데 그 이상(異常)의 원인과 대책을 구체적으로들면 〈표 1〉과 같다.

⟨표 1⟩ 금형이상 검출과 대책

항 목	원 인	대 책
	o 금형의 중심선 불일치o 윤활상태가 나쁨o 금형의 재질이 부적당하거나 열 처리시 담금질 정도가 낮음	o 금형 중심 일치상태 확인 o 녹아붙음이 생기는 부분을 기름과 연마석 또는 사포를 이용하여 보 수한 다음 윤활유를 충분히 바름
스크랩에 의한 구멍 막힘 : 스크랩이 밖으로 떨어지지 않고 하부 금형안에 남음	정밀도가 떨어짐	o 스크랩을 깨끗이 청소하고 시험 타발하면서 원인조사 및 조치 (금형 마모시 교체, 다이에 역테이 퍼 가공 등)
파일럿 핀의 삽입, 이탈, 변형	o 재료의 위치가 어긋난 상태로 가공 o 겹판타발 o 스프링에 이상이 있거나 절단	o 프레스를 정지하고 드라이버 등의 수공구로 가볍게 눌러보고 스프링이 잘못되어 있으면 분해하여 교환
편치의 이탈, 좌굴, 파손, 절단	o 금형의 노후o 펀치 조립부의 풀림o 겹판타발이나 반판타발	o 표준펀치로 교체

항 목	원 인	대 책
게이지의 파손, 헐거움, 이탈	o 게이지 풀림 등으로 맞지 않은 상태에서 가공	o 게이지 수리 o 게이지에 회전 및 풀림 방지 조치
스트리퍼용 스프링의 이상	o 장기간 사용	o 작업을 중지하고 새로운 스프링으 로 교환
나이의 판열, 둘디어 깨지	o 다이의 조임 불량(중심선 불일치) o 열처리가 나쁘거나 강도 부족 o 규정치 이상의 두꺼운 판을 가공	o 작은 균열이라도 지체없이 해체하 여 수리
샹크의 헐거움	_	o 샹크만으로 상형을 슬라이드에 설 치하는 것은 피하고 반드시볼트를 사용하여 조임(소형 금형은 제외)
맞춤핀이나 체결볼 트의 부러짐, 빠짐	o 진동, 반복하중 등으로 흔들리거 나 부러짐	o 작업시작 전·후에 항상 체크하여 이상시 조치

6. 금형의 운반 및 설치·해체에 의한 위험방지

6.1 금형운반의 안전

6.1.1 일반사항

- (1) 상부금형과 하부금형이 닿을 위험이 있을 때는 고정 패드를 이용한 스트랩, 금속재질이나 우레탄 고무의 블록 등을 사용한다.
- (2) 금형을 안전하게 취급하기 위해 아이볼트를 사용할 때는 반드시 쇼울더형 으로서 완전하게 고정되어 있어야 한다. 〈그림 8 참조〉

〈그림 8〉 2가지 상이한 조건에 대해 추천된 쇼울더형 아이볼트

- (3) 관통 아이볼트가 사용될 때는 구멍 틈새가 최소화되도록 한다. 아이볼트 고 정을 위한 탭(Tap)이 있는 구멍들은 볼트 크기가 섞기지 않도록 한다.
- (4) 운반하기위해 꼭 들어 올려야 할 때는 다이를 최소한의 간격을 유지하기 위해 필요한 높이 이상으로 들어 올려서는 안된다. 항상 작업자는 다이가 매달려 있는 위치 아래에 손, 발 또는 기타 신체의 어느 일부분도 놓여서 는 안 된다.

6.1.2 운반구 사용과 개인보호구

- (1) 금형을 운반할 때 사고를 방지하기 위해서는 지게차 및 운반구를 사용하여 안전하게 운반하여 조립하여야 한다.
- (2) 설치·조정자들은 안전화, 안전장갑, 안전모 등을 사용하여야 하며, 소음이 많은 작업장에서는 귀마개 및 귀덮개를 사용하여야 한다.

6.2 금형설치·해체의 안전

6.2.1 설치·조정자의 직무

(1) 프레스 금형 설치·조정자는 다음과 같은 책무가 있다.

M - 138 - 2012

- (가) 금형을 정확하게 설치·조정해야 한다.
- (나) 기계 및 방호장치 등을 시운전하며 작동과 기능을 작업자에게 알려주어야 하다.
- (다) 손을 보호할 수 있는 방호장치 등을 요구하여야 한다.
- (라) 타 작업자들이 방호장치 등에 손을 대지 않도록 한다.
- (2) 금형설치 및 조정자는 금형을 설치하기 전에 다음사항을 검사하여야 한다.
- (가) 안전 확보가 된 금형인가, 위험이 있는 금형인가?
- (나) 금형이 어떤 프레스에 적당한가?
- (다) 프레스 다이하이트는 얼마인가?
- (라) 상부금형을 슬라이드면에 어떻게 고정시킬 것인가?
- (마) 설치 시 어떤 방호장치가 필요한가?
- (바) 어떤 방호장치가 시운전할 때 필요한가?
- (3) 슬라이드가 하강할 때 금형에 파단현상 또는 문드러지는 현상이 일어날 수 있으므로 작업 전에 다음사항을 점검하여야 한다.
- (가) 프레스 슬라이드와 접촉되는 금형부분에 이물이 없는가?
- (나) 펀치면에 이물이 없는가?
- (다) 프레스의 다이하이트는 금형의 다이하이트보다 작지는 않은가?
- (라) 슬라이드와 상부금형 그리고 하부금형과 볼스타면의 고정상태는 양호한 가?

6.2.2 금형 설치ㆍ해체작업의 안전

- (1) 일반적인 안전사항
 - (가) 금형의 설치용구는 프레스의 구조에 적합한 형태로 한다.
 - (나) 금형을 설치하는 프레스의 T홈 안길이는 설치 볼트 직경의 2배 이상으로 한다.
 - (다) 고정볼트는 고정 후 가능하면 나사산이 3~4개 정도 짧게 남겨 슬라이드 면과의 사이에 협착이 발생하지 않도록 해야 한다.
 - (라) 금형 고정용 브래킷(물림판)을 고정시킬 때 고정용 브래킷은 수평이 되게

M - 138 - 2012

하고 고정볼트는 수직이 되게 고정하여야 한다. 〈그림 9 참조〉

(마) 부적합한 프레스에 금형을 설치하는 것을 방지하기 위하여 금형에 부품번호, 상형중량, 총중량, 다이하이트, 제품소재(재질) 등을 기록 하여야 한다

〈그림 9〉하부금형 고정상태

- (2) 금형설치·해체시의 안전규칙
 - (가) 금형 설치시의 안전규칙
 - ① 제작회사의 금형 설치 절차를 따른다.
 - ② 프레스 톤수 및 스트로크 요건, 상금형의 무게, 카운터밸런스 압력, 완충 압력, 그리고 장비요건을 다루기 위한 총 다이 무게 및 크기, 다이설치 등 필요한 정보에 관해 다이정보판 또는 조립 설명서를 점검한다.
 - ③ 프레스 주변의 지역에서 부품 저장통, 스크랩 용기, 공구 등 다이설치에 방해가 될 수 있는 위험 요소들이 치워져 있는지를 확인한다.
 - ④ 작업자가 프레스의 위험지역에 신체의 일부가 놓여야 할 필요가 있을 때는 항상 안전블럭과 소속 회사의 차단/표지(Lockout/Tagout)절차를 따른다.
 - ⑤ 미세한 조정(설정) 작업은 두 손을 사용하거나, 작업자가 작동 지역 및 기 타 위험 요소로부터 보호될 수 있는 위치에서 이루어져야 한다.
 - ⑥ 프레스를 미세하게 조정하는 작업 이전과 작업하는 동안에 아무도 위험 지역 에 들어가 있거나 혹은 들어가지 못하도록 확인한다.
 - (7) 프레스에 공압식 카운터 밸런스가 설치되었다면, 이 장치가 다이 무게에

M - 138 - 2012

적합하게 조정되었는지를 확인한다. 적절히 조정되어 있지 않으면 프레스의 정지 시간에 불리하게 작용할 수 있다.

- ⑧ 프레스에 공압식 다이쿠션이 설치되었다면, 각 조립 설명서에 따라 조정 이 적절히 되었는지를 점검한다.
- ⑨ 다이, 받침대, 또는 기타 프레스의 돌출된 부분으로부터 모든 공구와 장비를 치운다.
- ① 다이가 프레스에 안전하게 조립되도록 모든 볼트와 클램프가 단단히 조여 있는지를 점검한다.
- ① 금형의 조립이 완료된 후 작동 부분에 안전장치를 설치하고 적절히 조절 되고 작동되고 있는지를 점검한다.
- ② 운전자에게 작업상의 안전운전절차와 설치된 장치의 적절한 사용법 및 기능 에 대해 설명한다.

(나) 금형 해체시의 안전규칙

금형 설치시의 안전규칙에 추가해서 금형 해체 시 다음 안전규칙을 준수한 다.

- ① 모든 다이 쿠션 공기가 배출되었으며 내림(Down) 위치에 있는지를 확인 한다.
- ② 금형이 분리된 이후 프레스가 스트로크의 상부로 조금씩 접근함에 따라 상부금 형 끼움쇠가 램(슬라이드)에 매달려 있지 않도록 주의한다.
- ③ 프레스에 QDC(신속 다이 교체)장치가 설치되어 있다면, 금형을 제거하기 전에 전원을 끄고 주 차단 스위치를 잠근다.

7. 금형의 보전관리

7.1 금형의 수리

금형은 플래시, 외상 등에 의한 손상을 입는 수가 많은데 이런 경우 필요한 수선방법은 다음과 같다.

(1) 인서트(Insert) 수리

M - 138 - 2012

수리할 개소를 밀링 기타의 기계가공으로 깎아내고 그 자리에 새로운 인서 트를 만들어 매입 수리하는 방법이며 경우에 따라서는 매입선이 제품면에 나타나는 것이 단점이다.

(2) 절삭연마수리

펀치 또는 다이 날끝이 마모될 경우 피절삭 연마함으로써 수리하는 방법이다.

(3) 확대수리

압출, 돌출핀 구멍이 찌그러진 경우에는 구멍을 넓혀서 큰 핀을 사용한다.

(4) 살붙이기 용접수리

저온용접, 아르곤, 가스, 전기 등의 용접으로 살붙이기를 한 다음 다듬질하는 방법이며 보통 많이 사용된다.

7.2 금형의 보관

(1) 방청

금형을 보관할 때 가장 중요한 것은 수분에 의해 녹을 방지하는 것이므로 전용의 방청유를 사용해야 한다.

(2) 보관

- (가) 금형은 보존기간이 길어지는 경우가 많으므로 방청처리와 함께 보관 장소의 선정을 잘해야 하며, 습기가 있는 장소는 절대로 피해야 한다.
- (나) 바닥에 직접 두지 말고 침목 등을 사용하여 공기의 유통을 잘 되게 하고 수분의 접근을 피해야 한다.
- (다) 정리에는 선반을 사용하여 명찰을 붙여서 수리를 요하는 것과 정비 완료

된 것이 구별되게 하고 금형과 관련된 다음 사항을 기록 보존한다.

· 금형명, 구입연월일, 제작회사명, 번호, 구입번호, 도면번호, 금형의 사진, 금형중량, 수주회사명, 부착기종, 제품중량, 제품사진, 보관장소, 이력(성형연월일, 수량, 수리이력), 수리비용 등