Circles Math

You are given a set A containing n integers from 1 to n; A = {1,2,3,...n}. Let's call P(A) as a set that contains all permutations of A; For eg: if A = {1,2}. P(A) = {{1,2},{2,1}}

Can you find the number of elements $a \in P(A)$ which satisfies following conditions:

- For every $1 \le i \le n$, $a[i] \ne i$ where a[i] is the ith integer in permutation a
- There exists a set of k integers $\{i_1, i_2, i_3, i_k\}$ such that $a[i_j] = i_{j+1} \ \forall \ j < k$ and $a[i_k] = i1$ (cyclic)

Input Format

The first line contains an integer T indicating the number of test-cases. T lines follow. Each line has two integers n and k separated by a single space.

Constraints

```
1 \le T \le 100

1 \le k \le n \le 10^6
```

Output Format

Output the remainder of the answer after divided by 1000000007 ie., (10^9+7)

Sample Input

```
4
3 2
4 2
5 3
6 2
```

Sample Output

```
0
3
20
105
```

Hint

 10^9+7 is a **prime number.**

Explanation

note: Array's are 1 indexed.

Lets take a look at N = 3 and K = 2

We will get 2 sets of A that satisfy the first property $a[i] \neq i$, they are

- [3,1,2]
- [2,3,1]

Now, as K = 2, we can have 6 such elements.

• [1,2], [1,3],[2,3], [2,1], [3,1], [3,2]

Lets consider the first element of $P(A) \rightarrow [3,1,2]$

- [1,2], $a[1] \neq 2$
- [1,3], a[1] = 3 but $a[3] \neq 1$

•
$$[2,3]$$
, $a[2] \neq 3$

•
$$[2,1]$$
, $a[2] = 1$ but $a[1] \neq 2$

•
$$[3,1]$$
, $a[3] = 1$ but $a[1] \neq 3$

•
$$[3,2]$$
, $a[3] \neq 2$

Lets consider the second element of $P(A) \rightarrow [2,3,1]$

•
$$[1,2]$$
, $a[1] = 2$ but $a[2] \neq 1$

•
$$[1,3]$$
, $a[1] \neq 3$

•
$$[2,3]$$
, $a[2] = 3$ but $a[3] \neq 3$

•
$$[2,1]$$
, $a[2] \neq 1$

•
$$[3,1]$$
, $a[3] = but a[1] \neq 3$

•
$$[3,2]$$
, $a[3] \neq 2$

As none of the elements of a satisfy the properties above, hence 0.

In the second case, n=4,k=2. Here follows all the permutations of

 $A=\{1,2,3,4\}$ we could find that satisfy the two condition above.

$$2\ 1\ 4\ 3\ \#\ (a[2] = 1,\ a[1] = 2)\ or\ (a[4] = 3,\ a[3] = 4)\ is\ ok.$$

$$4\ 3\ 2\ 1\ \#\ (a[4]=1,\ a[1]=4)\ or\ (a[3]=2,\ a[2]=3)\ is\ ok.$$

$$3412 \# (a[3] = 1, a[1] = 3)$$
 or $(a[4] = 2, a[2] = 4)$ is ok.

Timelimits Timelimits for this challenge is given here