CS 113 DISCRETE STRUCTURES

Chapter 1: Logic and Proof

PROOF

- We are about to enter the formal world of proof
- We take these formal ideas for granted when proving things
 - They are useful in all areas of mathematics
 - They are useful in several areas of computer science
- For starters, there are
 - Axioms-Things we assume to be true
 - Definitions-Things we define based on other things we know
 - Undefined terms-These are things that we take for granted
- You can't define everything—you need some starting points

TYPES OF PROVEN STATEMENTS

- So, everything else has to be proven
- There are names for proven statements
 - A general proven statement is called a <u>theorem</u>
 - A <u>lemma</u> is a minor statement, often one whose only use is to prove a theorem
 - A corollary is a statement that is either
 - A simple consequence of a theorem, or
 - Follows almost directly from a theorem
- Notice that all these are proven statements

GENERAL METHODS OF PROOF

- There are several ways to prove something true
- The first is <u>direct proof</u>
 - This is the type of proof you find most often
 - You just start at the beginning and progress to the end
- Often, direct proof is too hard
 - Then we resort to other methods

ANOTHER METHOD OF PROOF

- The second method of proof is <u>indirect proof</u>
- This is when we assume the result is false
- We then derive a contradiction
- This method is also called proof by contradiction

STILL ANOTHER METHOD OF PROOF

- The third method of proof is called proof by contrapositive
- You prove the contrapositive
- Recall that a statement and its contrapositive have the same truth value

PROVING A STATEMENT TRUE-MODUS PONENS

- To prove something, we use the rules of inference:
- Here are the rules
 - 1. Modus ponens
 - Suppose $p \rightarrow q$. Also suppose p is true
 - Then q must be true
- This rule probably seems obvious

PROVING A STATEMENT TRUE-MODUS TOLENS

- 1. Rule 2: Modus tolens
 - Suppose $p \rightarrow q$. Also suppose -q is true
 - Then p must be false

PROVING A STATEMENT TRUE-MORE METHODS

- Addition
 - If p is true, then $p \lor q$ is true too
- Simplification
 - If $p \wedge q$ is true , then p is true too
- Conjunction
 - If p and q are each true, then $p \wedge q$ is true too
- Hypothetical syllogism
 - If $p \rightarrow q$ and $q \rightarrow r$ are each true, then $p \rightarrow r$ is true too
- Disjunctive syllogism
 - If $p \lor q$ and \overline{p} are each true, then q must be true too

PROVING A STATEMENT TRUE-RESOLUTION

- If $p \lor q$ and $\overline{p} \lor \overline{q}$ are each true, then is true too
- Resolution only allows the use of ^Y in the reasoning
- The letters (or their negations) are called clauses
- Resolution is popular in programs that prove theorems
- The reason is that it is correct
 - This means that it will only arrive at a contradiction if the clauses are inconsistent
- It is also refutation complete
 - This means if the clauses are inconsistent it will arrive at a contradiction

PRACTICE PROBLEMS

• p. 35, #11-14, 16-20, 21-24, 28-37

INSTANTIATION

- You can also make a statement specific
- Suppose the statement "All dogs like bones" is true
- And, suppose Fido is a dog
- You can then say
- "Fido likes bones"
- The reverse is also true

MATHEMATICAL INDUCTION

- Induction is like a row of dominos
- You knock over the first one
- The first one (all by itself) knocks over the second one
- The second one (all by itself) knocks over the third one
- This continues until they all fall over
- This is the idea behind mathematical induction

USING MATHEMATICAL INDUCTION

- To use it, you show
 - P(1) (This is like knocking over the first domino.)
 - This is called the base step.
- You then show
 - P(n) implies P(n+1) This is like each domino knocking over the next.)
 - This is called the inductive step.
 - Notice that, to use this step, you assume that P(n) is true.
- You then can conclude that P(x) is true for all integers

AN EXAMPLE OF INDUCTION

- Let's try to prove that the sum of the first n odd numbers is n^2 using induction.
- That statement is P(n). Here is the proof.
- First, check the base step, which is P(1).
 - So, here, n=1.
- This means you have to show that the sum of the first 1 odd numbers is 1^2 .
 - Well, the fist 1 odd number is 1. Adding it up (What?) give the sum to be 1.
 - Also, 1^2 is also 1.
 - So, this is true
- We have completed the base step.

THE INDUCTIVE STEP

- We now have to show that P(n) implies P(n+1)
- We get to assume that P(n) is true.
 - This means that we can assume that the sum of the first n odd integers is n²
 - Let's try to find a formula for that
 - $1 + 3 + 5 + ... + 2n 1 = n^2$
 - We get to assume this. (This is really P(n).)
- We have to show that P(n+1) is true.
 - That means substituting n+1 for n into the formula above.
 - So, we have to show that $1 + 3 + 5 + ... + 2(n+1)-1 = (n+1)^2$
 - The proof is on the next slide

PROVING THAT THE FORMULA HOLDS

•
$$1 + 3 + 5 + ... + 2(n+1)-1$$

• $= 1 + 3 + 5 + ... + 2n-1 + 2(n+1)-1$ Inserting the previous number
• $= 1 + 3 + 5 + ... + 2n-1 + 2n + 2 - 1$ Distributing
• $= n^2 + 2n + 1$ Using the inductive hypothesis
• $= (n+1)^2$

We have shown what we need to show. The proof is complete.

• Can we prove that $2^0 + 2^1 + 2^2 + ... + 2^n = 2^{n+1}-1$ using induction?

TWO FORMS OF MATHEMATICAL INDUCTION

- There are actually two forms of induction
- The weak form uses P(n) to prove P(n+1)
 - The previous problem used the weak form
- The strong form usesP(1), P(2), ..., P(n) to prove P(n+1)
- Let's do Problem 26 on p. 47

The Base Step

- We have to show P(24), that is, we have to show how to get 24 using 5s an7s
- We can do that using 2 of each
- Then we do the inductive step
- We assume we can

Questions?

• Are there any questions?