

Master Technologies de l'internet Master Big Data 2020-2021

Cloud Computing (Élasticité)

Meriem HALILALI d'après des supports conçus par K.Khebbeb meriem-sabrine.halilali@univ-pau.fr

Cloud Computing (Selon le NIST)

Définition

 "Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is composed of five essential characteristics, three service models, and four deployment models" * NIST, 2011

Cloud Computing (Selon le NIST)

Définition

• "Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is composed of five essential characteristics, three service models, and four deployment models" * NIST, 2011

Cloud Computing (Selon le NIST)

Définition de l'élasticité (1/3)

L'élasticité selon le NIST*

- Les ressources peuvent être **facilement** provisionnées et libérées, parfois de manière automatique, afin de s'adapter à la demande (aussi bien à la hausse qu'à la baisse).
- Les ressources paraissent infinies et peuvent **théoriquement** être provisionnées en toute quantité et à tout moment.

Définition de l'élasticité (2/3)

Définition dans le monde académique

« L'élasticité est le degré auquel un système est capable de s'adapter aux changements de la charge de travail en ajoutant et en retirant des ressources, de manière autonomique, de sorte qu'à tout moment, les ressources disponibles correspondent à la demande actuelle aussi étroitement que possible. »*
 Nikolas Herbst et al. 2013

Définition de l'élasticité (3/3)

Quadruplet de l'élasticité

Selon la Classification de Galante et De Bona*

Objectifs de l'élasticité (1/2)

Assurer une qualité de service optimale, tout en minimisant les coûts au mieux

- Cela revient à éviter les cas de sur-dimensionnement et de sous-dimensionnement
- Sur-dimensionnement: quantité de ressources > besoins du système
 - O Coûts d'infrastructure importants
- **Sous-dimensionnement:** quantité de ressources < besoins du système
 - Performances médiocres

Objectifs de l'élasticité (2/2)

Gestion des ressources

Cloud vs. Cluster

Méthodes d'élasticité (1/4)

Mécanismes permettant à un système de s'adapter à sa charge de travail

- Dimensionnement Horizontal
 - O Ajout (scale-out) et retrait (scale-in) de ressources (VM, service, conteneur)
 - O Réplication / Consolidation
 - O Étroitement lié au concept de Load-Balancing
- Dimensionnement Vertical
 - O Ajout (scale-up) et retrait (scale-down) de ressources (CPU, RAM, Stockage)
 - O Redimensionnement

Méthodes d'élasticité (2/4)

Gestion des ressources

au niveau Infrastructure (IaaS)

Méthodes d'élasticité (3/4)

Mécanismes permettant à un système de s'adapter à sa charge de travail

Migration

- O Déplacer les entités (VM, Conteneur, Service) d'un hôte à un autre
- Optimiser l'utilisation des ressources

Dimensionnement Hybride

- O Horizontal + Vertical + Migration
- O Compromis entre Coûts, performance, disponibilité et fiabilité

Méthodes d'élasticité (4/4)

Exemple Comparaison entre dimensionnement Horizontal, Vertical et Hybride*

Scaling strategy	Server scaling costs	Monitoring costs	Application's availability and reliability
Horizontal scaling	24 hrs/w × \$0.085/hr × 6 servers × 52 weeks = \$636.48/yr	Defining and configuring 7 metrics for 6 servers Costs: $\$3.5$ per server/mo \times 6 servers \times 12 months = $\$252$	Highly available—no single point of failure Highly likely reliable—quick recovery time
Vertical scaling	24 hrs/w \times \$0.68 \times 1 server \times 52 weeks = \$848.64	Defining and configuring 7 metrics for 1 server Costs: $$3.5$ per server/mo \times 1 server \times 12 months = $$42$	Low availability—single point of failure Highly likely unreliable—long recovery time
Hybrid scaling	$(24 \text{ hrs/w} \times \$0.085/\text{hr} \times 3$ $\text{servers} \times 52 \text{ weeks}) +$ $(24 \text{ hrs/w} \times \$0.34 \times 1 \text{ server}$ $\times 52 \text{ weeks}) = \742.48	Defining and configuring 7 metrics for 4 servers Costs: $$3.5$ per server/mo \times 4 servers \times 12 months = $$168$	Improved availability—no single point of failure Improved reliability—medium recovery time

Stratégies d'élasticité

Logique gouvernant le contrôle de l'élasticité d'un système Cloud

- Stratégies Réactives
 - O Règles à base de seuil (IF condition THEN action), Théorie du contrôle
 - O Temps de réponse, quantité de ressources, demande actuelle
- Stratégies Proactives (prédictives)
 - O Théorie des files d'attente, Apprentissage par renforcement, Analyse des séries chronologiques
 - O Demande envisagée, expériences passées, calcul de probabilités

Contrôleur d'élasticité (1/2)

Entité autonomique régissant le comportement élastique d'un système Cloud

Contrôleur d'élasticité (2/2)

Le contrôleur d'élasticité d'élasticité est un gestionnaire autonomique

Boucle de contrôle
 Autonomique MAPE-K*

^{*} https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

Références

- https://cs.uwaterloo.ca/~a78khan/courses-offered/cs446/2010 05/lecture
 -slides/16 CloudComputing.pdf
- https://www.sanog.org/resources/sanog26/SANOG26 Tutorial%20-%20Int roduction Cloud Computing Sreenath.pdf
- http://web.mit.edu/smadnick/www/Courses/2013BigData/04a%20Cloud% 20computing%20-%20Wikipedia.pdf
- http://csc-srv1.lasalle.edu/mccoey/csit375/elasticity.pdf