Лекция 8

30 октября 2019

1 Исчисление предикатов

Исчисление высказываний:

есть логическая функция,

переменные в функциях пропорциональные: 0 или 1.

Легко перебирать все возможные значения переменных.

Исчисление предикатов: переменные - предметные.

принимают значения = элементы непустого множества, т.е. можно формулировать утверждения про элементы какого-то множества (числа, студенты, слова, ...).

Итак, чтобы начать формулировать утверждения, заводим множество $M \neq \emptyset$.

Опр. Предикат - это функция
$$P: M^k \to \mathbb{B}$$
 $\mathbb{B} = \{0, 1\}$, где \mathbb{O} - ложь, $\mathbb{1}$ - истина.

Примеры.

 $M = \mathbb{Z}$

 $P_1(x) = x \geqslant 0$ - предикат: число положительное.

 $P_2(x) = x^2 + 1 \geqslant 7$

 $P_3(x) = x$ содержит 1 в десятичной записи.

Например, $P_3(238) = \mathbb{O}, P_3(-571) = \mathbb{1}$

 $P_4(x,y) = x > y$

 $P_5(x,y) = x^2 + y^2 = 25$

Например, $P_5(7,8) = \mathbb{O}$, $P_5(3,4) = \mathbb{1}$, $P_5(0,5) = \mathbb{1}$.

 $P_6 = \mathbb{O}$ - k = 0 (нет переменных).

 $P_7 = 1$

 $P_8(x,y) = x$ посещал лекции чаще y в этом семестре. М - студенты этого потока.

Опр. Функции. $f: M^k \to M, k \geqslant 0, k \in \mathbb{Z}$.

Функции превращают один или несколько элементов множества в элемент множества.

Примеры. $M = \mathbb{Z}$

$$\begin{split} f_1(x,y)&=x+y\\ f_2(x,y)&=x^2+y-1\\ f_3(x,y)&=\begin{cases} y&\text{если }x\text{ - четное;}\\ 42&\text{если }x\text{ - нечетное.} \end{cases}\\ \text{Например, }f_3(2,5)&=5,f_3(7,8)=42.\\ f_4(x)&=x^2\\ f_5(x)&=x\text{ без цифр 1 в 10-й записи. }f_5(412)=42,f_5(57121)=572,f_5(111)=0. \end{split}$$

 $f_6 = 7, k = 0$ - константа. На множестве $M = \{ Hu\phi - Hu\phi, Ha\phi - Ha\phi, Hy\phi - Hy\phi \}.$

 $f_7(x,y) =$ третий студент (кроме x и y).

Обязательно нужно доопределить $f_7(x,y) = x$, если x = y.

Замечания.

```
1) предикаты - заглавные буквы P, Q, R, A, B, ... функции - строчные буквы f, g, h, ... константы - начало алфавита a, b, c, ... 2) некоторые функции и предикаты можно записать привычно в инфиксной форме: x>y вместо P(x,y): >(x,y). x+y вместо +(x,y). x^y вместо g(x,y), где g - возведение в степень.
```

Опр. Формула исчисления предикатов.

Содержит:

предикатные символы функциональные символы предметные переменные кванторы

Подопределение.

Терм:

переменная

функциональный символ (..., ..., ...) - внутри скобок находятся термы.

Пример.] x, y, z - переменные.

```
] f,g,a - функциональные символы. Количество аргументов: для f=1,g=2,a=0. x f(f(x)) f(g(x,g(a,f(y)))) f(x) f(g(x,y))
```

Формула исчисления предикатов -

- а) это предикатный символ(терм, терм, ...) от нескольких термов.
- б) $\forall x$ формула исчисления предикатов со свободной переменной x.
- в) $\exists x$ формула исчисления предикатов со свободной переменной x.

Все переменные внутри термов свободны.

В последних двух пунктах переменная х перестает быть свободной - становится связной.

 $\neg \Phi \Pi \Pi, \Phi \Pi \Pi \Rightarrow \Phi \Pi \Pi$

Замечание. ФИП - это выражение предиката через другие предикаты и функции. При этом смысл функций и предикатов не важен. Но если смысл будет задан, то получится конкретный предикат.

Примеры.

1.Р(х,у), где х и у - термы (переменные), Р - предикатный символ.

Интерпретация: задать М и смысл Р.

- $1)M = \mathbb{Z}$ P(x,y): x > y
- 2)M студентов P(x,y): х чаще ходит

Обе переменные х, у свободны.

Это значит, что им можно назначить какое-то значение, и тогда результат вычисления формулы - истина или ложь.

$$x = 5, y = 7.$$
 $P(x, y) = \mathbb{O}$
 $x = 4, y = 2.$ $P(x, y) = \mathbb{1}$

2. P(x,a), где x - переменная (терм), a - константа (терм), P - предикатный символ.

Интерпретация: Р-?, а-?, М-?

1)
$$M = \mathbb{Z}, a = 7$$

x = 8 : 1

$$x = 6 : \mathbb{O}$$

одна свободная переменная х.

3. $P(x) \vee Q(x)$

Интерпретация. P-?, Q-?, M-?

1)
$$M = \mathbb{Z}$$

P(x) = x - четное

```
Q(x)=x - нечетное Свободные переменные: x. x=1 0 \lor 1=1 x=10 1 \lor 0=1 x - неважно. Результат =1. 4. \forall x \ P(x,y) Интерпретация: M-? P-? Свободны: y (x - связан). 1)M=\mathbb{Z}, P(x,y): x\geqslant y y=0 \ \forall x \ P(x,0) \Leftrightarrow \forall x \ x\geqslant 0. Результат =0. Чтобы вычислить \forall x \ P(x) надо проверить, что P(x) всегда 1 при всех x\in M. 2) M=\mathbb{N} P(x,y): x\geqslant y \forall x \ P(x,y) при y=1\to 1 при y=2\to 0
```

Замечание. Чтобы вычислить значение формулы исчисления предикатов, надо:

-интерпретация, т.е. М-?

Задать смысл предикатов и задать множество функциональных символов.

- задать значения свободных переменных. Без этого мы получим не 0,1, а предикат. т.е. $\forall x \ P(x,y) = Q(y)$ - предикат от у.

5.
$$\exists x (\forall y \ P(x,y))$$

свободные переменные: нет.

Интерпретации:

Интерпретации.

1)
$$M = \mathbb{Z} \ P(x,y) : x \leqslant y$$
 $\forall y \ P(x,y) = Q(x)$ - обозначим.

или $Q(x) = \forall y \ x \leqslant y$.

 $Q(0) = \forall y \ 0 \leqslant y = 0$
 $Q(-1) = \forall y \ -1 \leqslant y = 0$
 $Q(...) = \forall y \ ... \leqslant y = 0$
 $\Rightarrow Q(x) = 0$ независимо от x .

 $\exists x \forall y P(x,y) = \exists x \ 0 = 0$. можно подобрать $x \in M$ внутри 1 . $\forall y P(x,y) = Q(x)$.

2) другая интерпретация

 $M = \mathbb{N}$
 $P(x,y) : x \leqslant y$
 $\forall y P(x,y) = Q(x)$.

 $Q(1) : \forall y \ 1 \leqslant y = 1$
 $Q(2) : \forall y \ 2 \leqslant y = 0$
 $\exists x Q(x) = \exists x = \begin{cases} x = 1 \ 1; \\ else \ 0. \end{cases} = 1$ - при $x = 1$.

Еще примеры.

$$\begin{split} M &= \mathbb{N} \\ P(x,y) : x &= y \\ f(x,y) &= x+y \\ x &> y = \exists k \quad x = y+k = (x,+(y,k)) \\ \dot{x:}y &= \exists k \quad x = y*k \end{split}$$