Meta Learning for RL

Yunqiu Xu

Contents

- Introduction
- Model Agnostic Meta Learning
- Meta-learning with Imitation Learning
- Meta-learning with Hierarchical RL
- Meta-learning for Non-stationary Environments
- Summary and Future Work

Introduction

Reinforcement Learning

Agent is not presented with target outputs, but is given a reward signal, which it aims to maximize

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- ▶ The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Reinforcement Learning: Goal

$$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

Reinforcement Learning: Recent Study

Atari games:

Q-learning:

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, et al. "Playing Atari with Deep Reinforcement Learning". (2013).

Policy gradients:

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. "Trust Region Policy Optimization". (2015). V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. "Asynchronous methods for deep reinforcement learning". (2016).

Real-world robots:

Guided policy search:

S. Levine*, C. Finn*, T. Darrell, P. Abbeel. "End-to-end training of deep visuomotor policies". (2015).

Q-learning:

S. Gu*, E. Holly*, T. Lillicrap, S. Levine. "Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates". (2016).

Beating Go champions: Supervised learning + policy gradients + value functions + Monte Carlo tree search:

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, et al. "Mastering the game of Go with deep neural networks and tree search". Nature (2016).

Reinforcement Learning: Achievements

- Acquire high degree of proficiency in domains governed by simple, known rules
- Learn simple skills with raw sensory inputs, given enough experience
- Learn from imitating enough human-provided expert behavior

Reinforcement Learning: Challenges

- Humans can learn incredibly quickly, while deep RL methods are usually slow
- Require a large amount of supervision or experience per task
- Can not reuse experience from previous tasks to more quickly solve new tasks
- Not clear what the reward function should be
- Not clear what the role of prediction should be
- Still hard to handle "real world": complex, non-stationary environment

Here we try to use transfer learning to handle some challenges

Transfer Learning in RL

- Standard finetuning with RL is hard
 - Not single input and output → A sequence of trajectory
 - Prone to make catastrofic mistakes from an early deviation
- "Forward" transfer:
 - Train on one task (source domain), transfer to a new task (target domain)
 - From simulation to real world → domain randomization (Tobin et al, 2017)
- Multi-task transfer:
 - Train on many tasks to add diversity, then transfer to a new task
 - Meta learning: transfer learning across tasks, try to reuse past experience

Meta Learning: Learning to Learn

• If you have learned 100 tasks, can you get some insights from them, which can help you to solve a new task?

Pieter Abbeel, NIPS 2017

Meta Learning for Classification

supervised meta-learning:
$$f(\mathcal{D}_{\text{train}}, x) \to y$$

$$f$$
training set

- Meta-based LSTM
- Learn update function for both weight initialization and optimizer
- Introduce additional parameters

Meta Learning for Optimization

- Wichrowska et al, 2017. Learned Optimizers that Scale and Generalize
- Ke et al, 2017. Learning to Optimize Neural Nets
- Wu et al, 2017. Understanding Short-Horizon Bias in Stochastic Meta-Optimization

Meta Learning for RL

- Schmidhuber et al, 1998. Reinforcement learning with self-modifying policies
- Schmidhuber et al, 1999. A general method for incremental self-improvement and multiagent learning
- Singh et al, 2010. Intrinsically motivated reinforcement learning: An evolutionary perspective
- Niekum et al, 2011. Evolution of reward functions for reinforcement learning
- Duan et al, 2016. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning
- Wang et al, 2016. Learning to reinforcement learn
- Finn et al, 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
- Finn et al, 2017. One-Shot Visual Imitation Learning via Meta-Learning
- Frans et al, 2017. Meta-learning shared Hierarchies
- Al-Shedivat et al, 2017. Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments

Model-Agnostic Meta Learning

MAML: Introduction

- MAML: can be treated as an initialization method to get "robust base model" that is easy to fine-tune to new tasks
- Model agnostic: both supervised learning and reinforcement learning
- Do not need additional parameters
- Recall: Ravi & Larochelle 2017, only classification, need to introduce new parameters

MAML: Problem Setup

- Goal: train a "meta learning" model on a set of tasks, then this model can adapt to a new task with only a few data / iterations → learn as much as possible with limited data
- Train a model or policy $f: x \to a$
 - x : observations
 - **a**: outputs
 - This model is like a "base model" which will be able to adapt to a lot of new tasks
- ullet A task $T=\{L(x_1,a_1,\ldots,x_H,a_H),q(x_1),q(x_{t+1}|x_t,a_t),H\}$:
 - $\circ L \to R$: loss function
 - $\circ q(x_1)$: distribution over initial observations
 - $\circ q(x_{t+1}|x_t,a_t)$: transition distribution
 - \circ H : Episode length, for supervised learning, H=1

MAML: Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

```
Require: p(\mathcal{T}): distribution over tasks
```

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

MAML: Algorithm

- Train model f:
 - \circ Sample a new task T_i from p(T) (training taskset)
 - \circ Learn T_i :
 - Train model with K samples drawn from q_i
 - ullet Get feedback L_{T_i} from T_i
 - \circ Test on new samples from T_i and get test error
 - \circ Improve model f : treat the test error on sampled tasks T_i as the training error of meta-learning process
- Test meta-learning:
 - \circ Sample new task from p(T) (testing taskset), try to adapt f to this new task
 - Learn the model with K samples
 - Treat the performance as "meta-performance"

Finn et al, 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

MAML: Algorithm

- Adapt \theta to \theta_1, \theta_2, \theta_3 to fit T_1, T_2, and T_3
- Compute the test error of these training tasks to update \theta → a direction that is easier to fine-tune
- Preference : find model parameters that are sensitive to changes of the task
- T_1, T_2, and T_3 should be "similar tasks"?

MAML: different species

$$L_{T_i}(f_{\psi}) = -E_{x_t,a_t \sim f_{\psi,q_{T_i}}} \left| \sum_{t=1}^{H} R_i(x_t,a_t)
ight| \; (4)$$

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- for all \mathcal{T}_i do
- Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the 8: meta-update
- 9: end for
- Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' 10: and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- for all \mathcal{T}_i do
- Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ}
- Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4 6:
- Compute adapted parameters with gradient descent: $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$ 8: in \mathcal{T}_i
- 9: end for
- Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 11: end while

MAML: Regression Experiment

Finn et al, 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

MAML: Classification Experiment

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	_
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy	
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	${\bf 63.15 \pm 0.91\%}$
MAML (ours)	$48.70 \pm 1.84\%$	${\bf 63.11 \pm 0.92\%}$

Note that current SOTA is TCML (Mishra et al 2017):

	~ U		1	Le .
TCML, Ours	\parallel 98.96% \pm 0.20%	99.75% \pm 0.11%	$97.64\% \pm 0.30\%$	$99.36\% \pm 0.18\%$
TCML, Ours	55.71% ± 0.99%	68.88% ± 0.92%		

MAML: Reinforcement Learning Experiment

- Performance of MuJoCo simulation
- https://sites.google.com/view/maml
- Adapt to new goal velocities and directions substantially faster than conventional pretraining or random initialization
- Achieve good performance in just two or three gradient steps

MAML: Summary

- Contribution
 - Simple and no additional parameters
 - Adapt to new tasks with few-shot
 - Model Agnostic
- Limitation
 - Tough optimization problem
 - Hard to design task distribution
 - Sensitive to task distribution

Meta Learning with Imitation Learning

MIL: Introduction

- An application of MAML
- Combine imitation learning with meta-learning for one-shot learning from visual demonstrations
- Reuse past experience to train the "base model", then adapt it to new task with only a single demonstration

If a robot can pick up an apple, a pear, ..., then it can learn to pick an orange fastly!

Imitation Learning

Challenges:

- Behavioral cloning: requires a large number of demonstrations for each task
- Inverse RL or GANs: hard to evaluatereward in high dimension (images), GAN's problems
- On-policy methods: human's feedback

MIL: Problem Setup

- Goal: learn a policy that can quickly adapt to new tasks from a single demonstration of that task
- ullet Each imitation task $T_i = ig\{ au = \{o_1, a_1, \ldots, o_T, a_T\} \sim \pi_i^*, L(a_{1:T}, \hat{a}_{1:T}), T ig\}$
- ullet o_t is the observation at time t, i.e. an image, while a_t is the action
- ullet For demonstration trajectory au, we use MSE to compute loss:

$$L_{T_i}(f_{\phi}) = \sum_{ au_i \sim T_i} \sum_t ||f_{\phi}(o_t^{(j)}) - a_t^{(j)}||_2^2 \hspace{0.5cm} (2)$$

MIL: Algorithm

Algorithm 1 Meta-Imitation Learning with MAML

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
  2: while not done do
  3:
            Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
            for all \mathcal{T}_i do
  5:
                Sample demonstration \tau = \{\mathbf{o}_1, \mathbf{a}_1, ... \mathbf{o}_T, \mathbf{a}_T\} from \mathcal{T}_i
                Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) using \tau and \mathcal{L}_{\mathcal{T}_i} in Equation (2)
  6:
                Compute adapted parameters with gradient descent: \theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
                Sample demonstration \tau_i' = \{\mathbf{o}_1', \mathbf{a}_1', ... \mathbf{o}_T', \mathbf{a}_T'\} from \mathcal{T}_i for the meta-update
 9:
           end for
            Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) using each \tau'_i and \mathcal{L}_{\mathcal{T}_i} in Equation 2
10:
11: end while
12: return parameters \theta that can be quickly adapted to new tasks through imitation.
```

MIL: Algorithm

Meta-training:

- Assume each training task has at least 2 demonstrations, thus we can sample a set of tasks with two demonstrations per task
- \circ For each task T_i , train $heta_i'$ with its one demonstration $au_i o$ inner loop of metalearning
- \circ Use another demonstration au_i' to "test" $heta_i'$, i.e. check the mse of predicted actions and demonstration actions
- \circ Then we can update $oldsymbol{ heta}$ according to the gradient of meta-objective
- \circ As we get a series of $heta_i's$ and their testing error, we can update heta
- \circ Finally we can get trained parameters $oldsymbol{ heta}$ for meta-learner

Meta-testing:

- \circ Sample a new task $oldsymbol{T}$ and its one demonstration
- o This task can involve new goals or manipulating new, previously unseen objects
- \circ Then we can adapt $\boldsymbol{\theta}$ to this task

MIL: Some other modifications

- Two head structure: more flexibility during adapting
- Learn to imitate without expert actions: just mentioned, maybe future work
- Layer normalization: data within a demonstration trajectory is highly correlated across time, thus BN is not effective
- Bias transformation: increase the representational power of the gradient

MIL: Experiment

- Comparision: MIL, random policy, contextual policy, LSTM, LSTM with attention
- Task: simulated reaching/pushing, real-world placing
- https://sites.google.com/view/one-shot-imitation/

MIL: Experiment

subset of training objects

test objects

subset of training objects

test objects

Task:

Evaluate how well a real robot (PR2) can learn to interact with new unknown objects from a single visual demonstration.

Success: the held object landed in or on the target container after the gripper is opened

method	test performance
LSTM	25%
contextual	25%
MIL	90%
MIL, video only	68.33%

Table 2: One-shot success rate of placing a held item into the correct container, with a real PR2 robot, using 29 held-out test objects. Meta-training used a dataset with ~ 100 objects. MIL, using video only receives the only video part of the demonstration and not the arm trajectory or actions.

MIL: Summary

- Contribution:
 - Reuse prior experience when learning in new settings
 - Effective one-shot imitation learning
- Limitation:
 - Problems of MAMI
 - How to define and collect "similar tasks / demonstrations"?
 - For demonstrations, is L2-distance sufficient for evaluating similarity?
 - For tasks, we need to find a quantify method instead of assigning manually
 - Can we learn from "third-person perspective"? Some related work:
 - Stadie et al, 2017. Third-Person Imitation Learning
 - Liu et al, 2017. Imitation from Observation- Learning to Imitate Behaviors from Raw Video via Context Translation

Meta Learning with Hierarchical RL

MLSH: Introduction

- Recall that MAML try to learn as much as possible with limited data
- Goal of MLSH: try to learn faster
- Hierarchical architecture: master policy and sub-policies
 - Sub-policies (primitives) are shared within a distribution of tasks
 - Task-specific master policy is used to switch sub-policies
- Meta-learn: learn sub-policies as base models
- For a new task, we just need to learn how to choose them correctly (i.e. master policy)

Hierarchical RL

.....

- Why hierarchical?
 - Long-term credit assignment
 - Sparse reward
- An example -- FeUdal Net

MLSH: Problem Setup

- Define a policy $\pi_{\phi, heta}(a|s)$
 - φ:
 - A set of parameters shared between all tasks
 - $\bullet \phi = \{\phi_1, \phi_2, \ldots, \phi_K\}$
 - Each $\phi_k \rightarrow$ the parameters of a sub-policy $\pi_{\phi_k}(a|s)$
 - ο **θ**:
 - The parameters of master policy
 - Task-specific → zero or random initialized at the beginning
 - Choose a sub-task to activate for given timestep
- ullet For a task M sampled from P_M
 - \circ Randomly initialized $oldsymbol{ heta}$ and shared $oldsymbol{\phi}$
 - \circ Goal: learn $oldsymbol{ heta}$, note that this is just the **objective for current task**
- The objective of meta-learning:
 - \circ By learning training tasks, try to **find shared parameter** \emph{psi} which can be generalize to a new MDP
 - \circ Then for a new task, only learn $oldsymbol{ heta}$

Why faster?
For a new task we just need to learn \theta
Treat the problem as 1/N times as long

 $maximize_{\phi}E_{M\sim P_{M},t=0,...,T-1}[R]$ Frans et al, 2017. Meta-learning shared Hierarchies

MLSH: Algorithm

Algorithm 1 Meta Learning Shared Hierarchies

```
Initialize \phi
repeat
  Initialize \theta
  Sample task M \sim P_M
  for w = 0, 1, ...W (warmup period) do
     Collect D timesteps of experience using \pi_{\phi,\theta}
     Update \theta to maximize expected return from 1/N timescale viewpoint
  end for
  for u = 0, 1, ....U (joint update period) do
     Collect D timesteps of experience using \pi_{\phi,\theta}
     Update \theta to maximize expected return from 1/N timescale viewpoint
     Update \phi to maximize expected return from full timescale viewpoint
  end for
until convergence
```

MLSH: Algorithm

- Warm-up period:
 - \circ Goal : try to optimize θ to nearly optimal
 - \circ In this period, we hold ϕ fixed
 - o For each iteration sample D timesteps of experience
 - For each 1/N timescale, consider a sub-policy as an "action"
- Joint update period:
 - Both θ and ϕ are updated
 - \circ For each iteration, collect experience and optimize heta o same as warm-up
 - \circ Update ϕ : reuse these D samples, but viewed via sub-policy
 - \circ Treat the master policy as an extension of the environment o a discrete portion of observation
 - For each N-timestep slice of experience, we only update the parameters of the sub-policy that had been activated by master policy

MLSH: Algorithm

- Left: warm-up, update master policy
 - Here we hold sub-policies fixed, the available action is to choose one of them at each time slice
- Right: train a sub-policy
 - lacksquare During joint-updating we also need to update $oldsymbol{ heta}$ first
 - lacksquare Then we use the same data to update $oldsymbol{\phi}$
 - Note that currently only the blue sub-policy is chosen by master → only update this sub-policy

MLSH: Experiment

- https://sites.google.com/site/mlshsupplementals
- Task 1: 2D moving bandits
- Task 2: simulated walk
- Additional experiment: the number of sub-policies, warm-up duration

MLSH: Summary

- Contribution:
 - Compared with FeUdal Net: handle multi-task
 - Compared with MAML: try to be faster
- Limitation:
 - The description is still in high-level
 - Assumption: \theta can be trained to be optimal during warm-up even at the very beginning
 - How to define sub-policies, manually or automatically?
 - Interesting work, but still need to improve

Non-stationary Environments

Meta-learning for

MAML for Non-stationary: Introduction

- Challenges: real world is non-stationary
 - Dynamics and objectives change over life-long time
 - Multiple learning agents
- This paper:
 - Treat non-stationary task as a sequence of stationary tasks
 - Modify MAML for multi-task, then extend to dynamically changing tasks
 - Specifically, Find the dependence between consecutive tasks

Original MAML

· A task is defined as

$$T = L_T, P_T(x), P_T(x_{t+1}|x_t, a_t), H$$
 (1)

- Inner loop:
 - \circ In original MAML, ϕ is called θ'
 - \circ In original MAML, α is call β in inner loop

$$\phi := \theta - \alpha \nabla_{\theta} \mathcal{L}_{T} \left(\boldsymbol{\tau}_{\theta}^{1:K} \right), \text{ where } \mathcal{L}_{T} \left(\boldsymbol{\tau}_{\theta}^{1:K} \right) := \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}_{T} (\boldsymbol{\tau}_{\theta}^{k}), \text{ and } \boldsymbol{\tau}_{\theta}^{k} \sim P_{T} (\boldsymbol{\tau} \mid \boldsymbol{\theta})$$
 (2)

Meta objective:

$$\min_{\theta} \mathbb{E}_{T \sim \mathcal{D}(T)} \left[\mathcal{R}_{T}(\theta) \right], \text{ where } \mathcal{R}_{T}(\theta) := \mathbb{E}_{\boldsymbol{\tau}_{\theta}^{1:K} \sim P_{T}(\boldsymbol{\tau}|\theta)} \left[\mathbb{E}_{\boldsymbol{\tau}_{\phi} \sim P_{T}(\boldsymbol{\tau}|\phi)} \left[\mathcal{L}_{T}(\boldsymbol{\tau}_{\phi}) \mid \boldsymbol{\tau}_{\theta}^{1:K}, \theta \right] \right]$$
(3)

where τ_{θ} and τ_{ϕ} are trajectories obtained under π_{θ} and π_{ϕ} , respectively.

Al-Shedivat et al, 2017. Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments

Probabilistic View of MAML

- Probabilistic view:
 - \circ Task T , trajectories au and policies $\pi_{ heta}$ are random variables, phi is generated from conditional distribution $P_T(\phi|\theta, au_{1:k})$
 - Inner loop update: equivalent to assuming the delta distribution

$$P_T(\phi| heta, au_{1:k}) := \delta(heta - lpha
abla_ heta rac{1}{K} \sum_{k=1}^K L(au_k))$$

 \circ Optimize meta-objective: PG where the gradient of $R_T(heta)$

$$\nabla_{\theta} \mathcal{R}_{T}(\theta) = \mathbb{E}_{\substack{\boldsymbol{\tau}_{\theta}^{1:K} \sim P_{T}(\boldsymbol{\tau}|\theta) \\ \boldsymbol{\tau}_{\phi} \sim P_{T}(\boldsymbol{\tau}|\phi)}} \left[\mathcal{L}_{T}(\boldsymbol{\tau}_{\phi}) \left[\nabla_{\theta} \log \pi_{\phi}(\boldsymbol{\tau}_{\phi}) + \nabla_{\theta} \sum_{k=1}^{K} \log \pi_{\theta}(\boldsymbol{\tau}_{\theta}^{k}) \right] \right]$$
(4)

Probabilistic View of MAML

Policy

 ϕ_i

Intermediate steps

Loss

stochastic

(c)

Trajectory

gradient

- o (a) MAML in a multi-task RL setting
- (b) Extend to continuous adaptation
 - Policy and trajectories at a previous step are used to construct a new policy for the current step, i.e. $\phi_i, \tau_i \to \phi_{i+1}$
- \circ (c) Computation graph for the meta-update from ϕ_i to ϕ_{i+1}
 - ullet The model is optimized via truncated backpropagation through time starting from $L_{T_{i+1}}$

Al-Shedivat et al, 2017. Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments

Meta-learning for Continuous Adaptation

- ullet D(T) is defined by the environment changes, and the tasks become sequentially dependent
- Goal:
 - Find the dependence between consecutive tasks
 - Meta-learn a rule to minimize total expected loss during interacting
 - An example, if our enemy changes action, we need to do some adjustment as well

$$\mathcal{R}_{T_{i},T_{i+1}}(\theta) := \mathbb{E}_{\boldsymbol{\tau}_{i,\theta}^{1:K} \sim P_{T_{i}}(\boldsymbol{\tau}|\theta)} \left[\mathbb{E}_{\boldsymbol{\tau}_{i+1,\phi} \sim P_{T_{i+1}}(\boldsymbol{\tau}|\phi)} \left[\mathcal{L}_{T_{i+1}}(\boldsymbol{\tau}_{i+1,\phi}) \mid \boldsymbol{\tau}_{i,\theta}^{1:K}, \theta \right] \right]$$
(6)

The principal difference between the loss in (3) and (6) is that trajectories $\tau_{i,\theta}^{1:K}$ come from the current task, T_i , and are used to construct a policy, π_{ϕ} , that is good for the upcoming task, T_{i+1} .

MAML for Non-stationary: Training

Algorithm 1 Meta-learning at training time.

input Distribution over pairs of tasks, $\mathcal{P}(T_i, T_{i+1})$, learning rate, β .

- 1: Randomly initialize θ and α .
- 2: repeat
- 3: Sample a batch of task pairs, $\{(T_i, T_{i+1})\}_{i=1}^n$.
- 4: **for all** task pairs (T_i, T_{i+1}) in the batch **do**
- 5: Sample traj. $\tau_{1:K}$ from T_i using π_{θ} .
- 6: Compute $\phi = \phi(\tau_{1:K}, \theta, \alpha)$ as given in [7].
- 7: Sample traj. τ from T_{i+1} using π_{ϕ} .
- 8: end for
- 9: Construct $\nabla_{\theta} \mathcal{R}_T(\theta, \alpha)$ and $\nabla_{\alpha} \mathcal{R}_T(\theta, \alpha)$ using $\boldsymbol{\tau}_{1:K}$ and $\boldsymbol{\tau}$ as given in $\boldsymbol{8}$.
- 10: Update $\theta \leftarrow \theta + \beta \nabla_{\theta} \mathcal{R}_T(\overline{\theta}, \alpha)$.
- 11: Update $\alpha \leftarrow \alpha + \beta \nabla_{\alpha} \mathcal{R}_T(\theta, \alpha)$.
- 12: until Convergence

output Optimal θ^* and α^* .

$$\phi_{i}^{0} := \theta, \quad \tau_{\theta}^{1:K} \sim P_{T_{i}}(\tau \mid \theta),$$

$$\phi_{i}^{m} := \phi_{i}^{m-1} - \alpha_{m} \nabla_{\phi_{i}^{m-1}} \mathcal{L}_{T_{i}} \left(\tau_{i,\phi_{i}^{m-1}}^{1:K} \right), \quad m = 1, \dots, M-1,$$

$$\phi_{i+1} := \phi_{i}^{M-1} - \alpha_{M} \nabla_{\phi_{i}^{M-1}} \mathcal{L}_{T_{i}} \left(\tau_{i,\phi_{i}^{M-1}}^{1:K} \right)$$
(7)

$$\nabla_{\theta,\alpha} \mathcal{R}_{T_{i},T_{i+1}}(\theta,\alpha) = \mathbb{E}_{\substack{\boldsymbol{\tau}_{i,\theta}^{1:K} \sim P_{T_{i}}(\boldsymbol{\tau}|\theta) \\ \boldsymbol{\tau}_{i+1,\phi} \sim P_{T_{i+1}}(\boldsymbol{\tau}|\phi)}} \left[\mathcal{L}_{T_{i+1}}(\boldsymbol{\tau}_{i+1,\phi}) \left[\nabla_{\theta,\alpha} \log \pi_{\phi}(\boldsymbol{\tau}_{i+1,\phi}) + \nabla_{\theta} \sum_{k=1}^{K} \log \pi_{\theta}(\boldsymbol{\tau}_{i,\theta}^{k}) \right] \right]$$
(8)

MAML for Non-stationary: Testing

- ullet Nonstationary o can not access to same task multiple times
- How to handle : keep acting according to π_ϕ and re-use past experience to for computing updates of ϕ for each new incoming task
- Importance weight correction : past experience obtained by π_ϕ is different from π_θ , we need to make some adjustment

$$\phi_i := \theta - \alpha \frac{1}{K} \sum_{k=1}^K \left(\frac{\pi_{\theta}(\boldsymbol{\tau}^k)}{\pi_{\phi_{i-1}}(\boldsymbol{\tau}^k)} \right) \nabla_{\theta} \mathcal{L}(\boldsymbol{\tau}^k), \quad \boldsymbol{\tau}^{1:K} \sim P_{T_{i-1}}(\boldsymbol{\tau} \mid \phi_{i-1}), \tag{9}$$

Algorithm 2 Adaptation at execution time.

input A stream of tasks, T_1, T_2, T_3, \ldots

- 1: Initialize $\phi = \theta$.
- 2: while there are new incoming tasks do
- 3: Get a new task, T_i , from the stream.
- 4: Solve T_i using π_{ϕ} policy.
- 5: While solving T_i , collect trajectories, $\tau_{1:K}^{(i)}$.
- 6: Update $\phi \leftarrow \phi(\tau_{1:K}^{(i)}, \theta^*, \alpha^*)$ using importance-corrected meta-update as in (9).
- 7: end while

MAML for Non-stationary: Experiment

- New environment : Robosumo
- https://blog.openai.com/meta-learning-for-wrestling/

MAML for Non-stationary: Summary

- Exploration on non-stationary environment
- Assumption: non-stationary task can be seen as a sequences of correlated stationary tasks
- Train agents to exploit the dependencies between consecutive tasks
- Limitations:
 - Real environment is more complex
 - Can not handle sparse reward → meta-updates use policy gradients and heavily rely on the reward signal
 - Meta-update still requires second order derivates

Summary

What is Meta-learning

- Meta-learning = learning to learn
- Transfer learning across tasks, and is related to multi-task learning
- Get knowledge from past experiences, then adapt to new task fastly / with limited training data

Why Meta-learning?

- Deep RL, especially model free, requires huge number of samples
- Meta-learning makes it easier to learn a new task
- Avoid trying actions that are known to be useless
- More similar to "human thinking"

Open Problems of Meta-learning

- Do we need to achieve model-agnostic, or just focus on RL?
 - Can we make MAML easier to optimize?
- Design appropriate task / demonstration set → Also question for imitation learning
 - How to define and collect "similar task"?
 - Can we derive model for new task that is not so similar to old ones (like "zero-shot")
 - \circ The more diversity, the better? \rightarrow Be aware of overfitting!
 - Learn from third-person perspective
- How to combine mata-learning with hierarchical RL?
 - Meta-learn sub-policies? How to handle the very beginning?
 - O How to set sub-policies → Also question for hierarchical RL
- How to handle non-stationary environment? → Big problem for RL
 - More robust assumption?
 - Combined with life-long learning (keep learning even during testing)?

Other Reference

- UCB CS 294 2017 Fall
- Deep Learning for Robotics, NIPS 2017 Keynotes
- More paper notes can be found in my github :

https://github.com/YunqiuXu/Readings

- 0 1703.03400
- 0 1709.04905
- 0 1710.09767
- 0 1710.03641