SURAJ MANIYAR

https://www.linkedin.com/in/suraj-maniyar | https://github.com/suraj-maniyar

EDUCATION

North Carolina State University, Raleigh, North Carolina

Expected May 2019

Master of Science in Electrical Engineering

GPA: 3.66/4.0

Courses :- Data Science | Digital Imaging Systems | Probabilistic Graphical Models for Signal Processing and Computer Vision | Spatial and Temporal Data Mining | Design of a Robotic Computer Vision System for Autonomous Navigation | Computer Vision

Veermata Jijabai Technological Institute (VJTI), Mumbai, India

Jun 2013 - Jul 2017

Bachelor of Technology in Electronics Engineering

GPA: 7.72/10.0

Courses: - Signal Processing | Robotics | Image Processing | Computer Programming | Embedded Systems | Control Systems

TECHNICAL SKILLS

Programming Languages : Python, C++, Java, Linux Shell scripting **Frameworks & Libraries** : PyTorch, Tensorflow, Keras, OpenCV

Softwares & OS : Robot Operating System (ROS), MATLAB, LabVIEW, Linux (Ubuntu), Windows

Hardware : Raspberry Pi, Beaglebone Black, NI-myRio development board, AVR series microcontrollers

PROJECTS

Design of a SLAM System for Autonomous Robot (ROS, C++, Python, OpenCV)

Jan 2018 - May 2018

- Localized aerial robot blimp using VINS-Mono and ORB SLAM2 algorithms separately
- Incorporated Visual and Odometric data to yield 3D point cloud of environment and real time localization of blimp
- Technology used: NVIDIA Jetson TX1, Raspberry Pi, BNO055 IMU, Raspberry PiCam, Point Cloud Library (PCL), ROS

Activity Recognition to Benchmark Hardware Accelerator (Python, Keras) Independent Study

May 2018 - Aug 2018

- Implemented activity recognition using Convolutional and Recurrent Neural Net to benchmark custom made hardware accelerator
- Obtained an accuracy of **70%** for 7 different activities on UCF-101 Dataset

Deep Visual Attention Prediction (Python, Keras, Tensorflow, OpenCV)

Apr 2018

- Replicated the results from paper titled 'Deep Visual Attention Prediction' which predicts human eye fixation on view-free scenes
- Obtained an accuracy of 64% by incorporating multi-level saliency predictions

Foraminifera Image Segmentation using Markov Random Field (MRF) (Python, OpenCV)

Dec 2017

- Used MRF based approach called Graph-Cut to segment chambers of a foraminifera (marine species) from its edge probability map
- Obtained an accuracy of 71.40% using morphological refining and watershed transformation

Single View Metrology (Python)

Oct 2017

- Reconstructed 3D model of an object from its single 2D image using 3 point perspective
- Computed Homography matrices and projection matrix using vanishing points from the image
- Obtained texture maps for 3D model after applying affine transformation on the image using the obtained matrices

Task Learning Robot (LabVIEW)

Aug 2015 - Nov 2015

National Instruments, India

- Implemented a Computer-Vision based approach for 'Robot Learning from Demonstration' using industrial robotic arm Scorbot ER-VII
- Shortlisted in the top 20 teams for the National Level Contest, NIYANTRA, organized by National Instruments, India

Stock Trading using Machine Learning (Python, Keras)

Sept 2016 - May 2017

- Implemented a recommendation system to provide real time trading advice to investor
- Optimized the investor's portfolio and implemented technical analysis using Neural Networks and Reinforcement Learning separately to suggest best actions (buy, sell or hold) to the investor

Respiratory Rate Estimation (Python, Keras)

Nov 2017

- Estimated respiratory rate of a human based on accelerometer data, heart rate and body temperature using Ridge Regression and Neural Networks separately with a Root Mean Squared Error (RMSE) of **4.58**
- Reduced the RMSE to 3.68 by incorporating temporal dynamics using Hidden Markov Model (HMM)

CO-CURRICULAR ACTIVITIES

- Senate member of **Society of Robotics and Automation (S.R.A.), V.J.T.I.** which deals with robotics, machine vision and automation
- Managed and conducted workshops with a team of 10, to teach students about line-following robots, embedded systems, Bluetooth technology and Internet of Things (IoT)