

# Learning from Demonstrations: Applications to Minecraft

Student: Prabhasa Kalkur

Advisor: Dr. Dileep Kalathil

## What is imitation learning?



Learning to imitate from expert behavior

Sample-efficient learning: learn behavior from as little expert data as possible





#### What is the presentation about?



- Motivate the need for sample-efficient methods for learning behavior
- Pair vanilla RL algorithms with demonstration data to learn desired behavior
- Discuss potential of sample-efficient learning to solve complex tasks in Minecraft

### Reinforcement Learning



•  $s, s' \in S, a \in A$ . Consider tuple  $[S, A, P(s'|s, a), R(s, a), \gamma, H]$ , define a policy (model)  $\pi : S \to A$ 

episode\_reward

– Reinforcement Learning (RL): find an optimal  $\pi^*$  that maximizes  $\sum_{t=0}^{\infty} \gamma^t R_t$ 





100 episodes of policy: 95/100 successful Reward (mean, std): (-175, 50)



#### Organization of the talk



- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Minecraft
- 4. Conclusions and Future Work

#### **Sections**



- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Minecraft
- 4. Conclusions and Future Work



- 1. Rewards obvious in computer games: maximize score
  - Not so obvious in real-word scenarios: use a proxy instead



**VS** 





2. Can be easier to **demonstrate** desired behavior



Levine et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection."



- 3. Modern Deep-RL requires exponentially increasing number of samples: sample-inefficient
  - Challenging for the AI community to reproduce SOTA results



**OPENAI 1V1 OPENAI FIVE CPUs** 128,000 preemptible CPU cores on GCP 60,000 CPU cores on Azure **GPUs** 256 K80 GPUs 256 P100 GPUs on GCP on Azure ~180 years per day (~900 years per day ~300 years per Experience collected counting each hero separately) day Size of observation ~3.3 kB ~36.8 kB Observations per 10 7.5 second of gameplay Batch size 8,388,608 1,048,576 observations observations Batches per minute ~60 ~20

Go: AlphaGo Zero

Dota 2: OpenAl Five



- 3. Modern Deep-RL requires exponentially increasing number of samples
  - Not practical, especially when env samples are expensive, and compute is limited
  - One approach: use sample-efficient methods like Imitation Learning

Many competitions trying to promote compute and sample-efficient learning:

- NeurlPS 2019: Game of Drones
- NeurIPS 2019 & 2020: MineRL Challenge



4. How humans and animals fundamentally learn behavior





Picture credits: Sapana

#### **Sections**



- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Minecraft
- 4. Conclusions and Future Work

## **RL** algorithms



- $s, s' \in S, a \in A$ . For MDP  $[S, A, P(s'|s, a), R(s, a), \gamma]$ , define a policy  $\pi : S \to A$ 
  - Goal: find an optimal  $oldsymbol{\pi}^{oldsymbol{\star}}$  that maximizes  $\sum_{t=0}^{\infty} oldsymbol{\gamma}^t R_t$
  - Metric: (i) Reward convergence, (ii) Policy evaluation (testing)



## **IL** algorithms



- $s, s' \in S, a \in A$ . For MDP  $[S, A, P(s'|s, a), R(s, a), \gamma]$ , define a policy  $\pi : S \to A$ 
  - Goal: given  $\tau = (s_0, a_0, s_1, a_1, ..., s_t, a_t, ..., s_T)$  generated from a  $\pi^*$ , extract its R(s, a)
  - Metric: Reward evaluation (?)



Flowchart credits: Sapana







#### **Imitation Learning approaches**





Generative Adversarial Imitation Learning (GAIL) is the SOTA IL algorithm

## RL with human priors (RL + IL!)





## Some questions...



- 1. How does imitation accuracy scale with problem dimensionality and demo data?
- 2. How 'smooth' are the learned policies compared to the expert policy?
- 3. Can behaviors with sparse rewards be learned? At what cost?
- 4. Can RL+IL imitate suboptimal experts? At what cost?

Let us learn how to imitate a simple control task: balance an inverted pendulum!

### Problem setup



Train RL -> rollout **expert** -> Train GAIL -> **policy** evaluation (test)

**Goal:** GAIL should be able to 'imitate' expert (optimal/suboptimal?)

Discuss: imitation accuracy, sample efficiency, effect of reward quality on learning

- Expert trajectories / rollout / demonstrations: sample demos [5, 10, 20]
- Policy evaluation / rollout / testing: Check policy performance for 100 episodes
- Task solved each episode: True reward for 100 consecutive episodes during training

#### **Tools**



- RL library: Stable Baselines 2.10
- Framework: TensorFlow 1.14
- Hyperparameters (HPs): RL Baselines Zoo, etc.
- Performance metrics (learned reward vs episodes, test scores): Tensorboard 1.14, W&B 0.10

#### RL/IL Algorithms

- SAC Soft Actor-Critic (optimal experts)
- TRPO Trust Region Policy Optimization (policy optimizer for GAIL)
- BC Behavioral Cloning\* (comparison with GAIL)

\*with policy: "MIpPolicy" [100, 100], optimizer: Adam, batch size: 256, train-val: 70-30

### OpenAl Gym and MuJoCo



- Gym: "Toolkit for developing and comparing reinforcement learning algorithms"
- Platform for teaching agents to perform simulated tasks under a true reward
- E.g. Atari games, Robotic manipulation, control tasks

- MuJoCo: "A physics engine that does very detailed, efficient simulations with contacts"
- E.g. Continuous control tasks like hopping, walking, or running

Why is this important? Standard benchmark tasks for testing RL, IL algorithms







CartPole-v1



LunarLanderCts-v2



Hopper-v2

#### The Pendulum-v0 environment

| Properties                        | Description                                                                  |
|-----------------------------------|------------------------------------------------------------------------------|
| State space (cts, dim = 3)        | Cosine, sine of angle $\theta$ [-1, 1], $\theta_0$ [-8, 8]                   |
| Action space (cts, dim = 1)       | Joint effort [-2, 2]                                                         |
| Reward                            | - $(\theta^2 + 0.1^*\theta_0^2 + 0.001^*action^2)$ , dense                   |
| Termination / Horizon             | 200 steps, finite                                                            |
| Solved / learned task             | defined as <b>-200</b> mean reward over 100 consecutive episodes of training |
| <b>Expert Trajectories for IL</b> | [5, 10, 20] with reward (mean, var): (-147, 84)                              |



#### Pendulum-v0: GAIL and BC





GAIL learns to achieve true cost **AND** imitate expert
GAIL score (mean, var) consistent over # demos – **sample-efficient**BC improves over # demos, but only for optimal experts

## Some questions...



- 1. How does imitation accuracy scale with dimensionality, demo data? GAIL sample-efficient (low-dim)
- 2. How 'smooth' are the learned policies compared to the expert policy? **Demo-dependent**
- 3. Can behaviors with sparse rewards be learned? At what cost?
- 4. Can GAIL imitate suboptimal experts? At what cost? BC cannot. GAIL can, with the right HPs
- 5. Can GAIL generalize?

Answered for a low-dimensional, densely-rewarded, finite-horizon control task. Let's try harder!

#### **Sections**



- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Minecraft
- 4. Conclusions and Future Work

# MineRL: Chopping trees and mining a Diamond in Minecraft

**APPLICATION 2** 

#### MineRL Competition: NeurIPS 2020



- Lack of large-scale imitation learning datasets
- MineRL: a large-scale dataset of seven different tasks on Minecraft (60 mil pairs)

#### Why Minecraft:

- Open-world env, sparse rewards, many innate task hierarchies and sub-goals
- 90 million monthly active users, easy to collect a large-scale dataset
- Env simulator available: Microsoft Malmo

#### **MineRL Competition: Description**



- Competition on sample-efficient reinforcement learning using human priors
- Address two crucial challenges in RL. Solving hierarchical environments with
  - Sparse rewards
  - Long time horizon
- Develop algorithms to mine a Diamond object in Minecraft using limited
  - Train time (4 days)
  - Compute (single GPU)
  - Samples from the environment simulator (8 million)

#### MineRL Competition: Solution approaches



- "...highlight a variety of research challenges, including open-world multi-agent interactions, long-term planning, vision, control, navigation, and explicit and implicit subtask hierarchies"
- Want to avoid massive datasets and hand-engineered features
- Complex, hierarchical, sparsely-rewarded task that demands use of:
  - Efficient exploration techniques
  - Training with human priors (e.g. fD algorithms) ☑
  - Reward shaping using IL techniques

#### **MineRL Competition: Details**



- Two competition tracks:
  - Demonstrations and Environment: MineRL dataset + 8M env interactions ☑
  - Demonstrations Only: MineRL dataset only

- What's new from 2019: Vectorized state, action space that obfuscates the agent's actions
  - Prevent participants from using domain knowledge
  - State: images + 1-D vector containing comprehensive set of features from the game
  - Actions: 1-D vector containing keyboard presses, mouse movements (pitch, yaw), player
     GUI interactions, and agglomerative actions such as item crafting

## Visualizing the MineRL envs & dataset

MineRLTreeChopVectorObf-v0: <a href="https://youtu.be/q9DtmFJMc51">https://youtu.be/q9DtmFJMc51</a>

MineRLObtainDiamondVectorObf-v0: <a href="https://youtu.be/mexGyw1PoT0">https://youtu.be/mexGyw1PoT0</a>

#### MINERL ENVIRONMENTS

**General Information** 

**Environment Handlers** 

**Basic Environments** 

#### **□** Competition Environments

- ⊞ MineRLNavigateExtremeVectorObfv0
- ⊞ MineRLNavigateDenseVectorObfv0
- MineRLNavigateExtremeDenseVectorObfv0
- ⊞ MineRLObtainDiamondVectorObfv0
- ⊞ MineRLObtainDiamondDenseVectorObfv0
- ⊞ MineRLObtainIronPickaxeVectorObfv0
- MineRLObtainIronPickaxeDenseVectorOb v0

#### NOTES

Windows FAQ

MINERL PACKAGE API REFERENCE

minerl.env

#### **Competition Environments**

#### MineRLTreechopVectorObf-v0









In treechop, the agent must collect 64 *minercaft:log*. This replicates a common scenario in Minecraft, as logs are necessary to craft a large amount of items in the game, and are a key resource in Minecraft.

The agent begins in a forest biome (near many trees) with an iron axe for cutting trees. The agent is given +1 reward for obtaining each unit of wood, and the episode terminates once the agent obtains 64 units.

#### Observation Space %

```
Dict({
    "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
    "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})
```

#### **Action Space**

```
Dict({
    "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})
```



```
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"
```

#### **Obtain Diamond: Tasks and Rewards**







#### **Observation Space**

```
Dict({
    "equipped items.mainhand.damage": "Box(low=-1, high=1562, shape=())",
    "equipped items.mainhand.maxDamage": "Box(low=-1, high=1562, shape=())",
    "equipped items.mainhand.type": "Enum(air,iron axe,iron pickaxe,none,other,stone axe,stone pickaxe,√
    "inventory": {
            "coal": "Box(low=0, high=2304, shape=())",
            "cobblestone": "Box(low=0, high=2304, shape=())",
            "crafting table": "Box(low=0, high=2304, shape=())",
            "dirt": "Box(low=0, high=2304, shape=())",
            "furnace": "Box(low=0, high=2304, shape=())",
            "iron axe": "Box(low=0, high=2304, shape=())",
            "iron ingot": "Box(low=0, high=2304, shape=())",
            "iron ore": "Box(low=0, high=2304, shape=())",
            "iron pickaxe": "Box(low=0, high=2304, shape=())",
            "log": "Box(low=0, high=2304, shape=())",
            "planks": "Box(low=0, high=2304, shape=())",
            "stick": "Box(low=0, high=2304, shape=())",
            "stone": "Box(low=0, high=2304, shape=())",
            "stone axe": "Box(low=0, high=2304, shape=())",
            "stone pickaxe": "Box(low=0, high=2304, shape=())",
            "torch": "Box(low=0, high=2304, shape=())",
            "wooden axe": "Box(low=0, high=2304, shape=())",
            "wooden pickaxe": "Box(low=0, high=2304, shape=())"
    },
    "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})
```

#### **Action Space**

```
t({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"craft": "Enum(crafting table, none, planks, stick, torch)",
"equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"nearbyCraft": "Enum(furnace,iron axe,iron pickaxe,none,stone axe,stone pickaxe,wooden axe,wooden pickaxe
"nearbySmelt": "Enum(coal,iron ingot,none)",
"place": "Enum(cobblestone, crafting table, dirt, furnace, none, stone, torch)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
```

#### **Tools**



- RL library: Medipixel 0.10
- Framework: Pytorch 1.3.1
- Hyperparameters (HPs): Medipixel 0.10
- Results (train score vs episodes, test score): W&B 0.10

## DQN (RL) vs DQfD (RL+IL)

MineRLTreeChopVectorObf-v0: <a href="https://youtu.be/YDpVRyZndCg">https://youtu.be/YDpVRyZndCg</a>

MineRLObtainDiamondVectorObf-v0: <a href="https://youtu.be/b-SGp7PKbxM">https://youtu.be/b-SGp7PKbxM</a>





DQN

DQfD

avg test score





#### **Submitted to MineRL Competition: NeurIPS 2020**



85764 prabhasak



0.000

0.000 RL+

Thu, 1 Oct 2020 View

Code

| Δ        | #  | Participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Media | Reward | N/A | tags   | Entries |
|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----|--------|---------|
| •        | 01 | NoActionWasted  Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -     | 9.64   | 0.0 | IL     | 15      |
| •        | 02 | michal_opano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     | 9.29   | 0.0 | IL     | 11      |
| <b>A</b> | 03 | CU-SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     | 6.47   | 0.0 | RL+ IL | 12      |
| <b>A</b> | 04 | HelloWorld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -     | 6.01   | 0.0 | RL+ IL | 7       |
| •        | 05 | NuclearWeapon  Output  Description  Output  Descrip | -     | 4.34   | 0.0 | RL+ IL | 7       |

#### **Sections**



- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Minecraft
- 4. Conclusions and Future Work

#### **Tasks Studied**



| Task                         | *State dim                  | *Action<br>dim | Reward quality        | Termination,<br>Horizon  | Imitation successful? |
|------------------------------|-----------------------------|----------------|-----------------------|--------------------------|-----------------------|
| Pendulum-v0                  | 3C                          | 1C             | Dense                 | Fixed, small             | Yes                   |
| LunarLanderCts-v2            | 4C + 2D                     | 2D             | Semi-sparse           | Not fixed, large         | Yes                   |
| Hopper-v2                    | 11C                         | 3C             | Dense                 | Fixed, large             | Yes (better)          |
|                              |                             |                |                       |                          |                       |
|                              |                             |                |                       |                          |                       |
| AirSim-v0                    | 6C                          | 3C             | Sparse                | Fixed, small             | **Yes                 |
| MineRLTreechopVectorObf-v0   | pov: 64x64x3<br>vector: 64C | 64C<br>(64D)   | (extremely)<br>sparse | Fixed, very large        | No                    |
| MineRLObtainDiamondVectorObf | pov: 64x64x3<br>vector: 64C | 64C<br>(64D)   | (extremely) sparse    | Not fixed, very<br>large | No                    |

<sup>\*</sup>C: continuous. D: discrete

<sup>\*\*</sup>Suboptimal landings, >20 optimal demos

#### RL vs IL



#### Learning with a cost function vs imitating with demo data

| Control Task      | Reward | Task length<br>(max) | Episodes / env interactions (RL) | Episodes / env interactions (IL) | Converged in episodes (RL) | Converged in episodes (IL) |
|-------------------|--------|----------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|
|                   |        |                      |                                  |                                  |                            |                            |
| Pendulum-v0       | Dense  | 200                  | 500 (1e5)                        | 1500 (3e5)                       | 200                        | 800                        |
| CartPole-v1       | Dense  | 500                  | 500 (1e5)                        | 2500 (1e6)                       | 400                        | 1400                       |
| LunarLanderCts-v2 | Sparse | N/A                  | 1300 (5e5)                       | 1650 (1e6)                       | 800                        | 1000                       |
| Hopper-v2         | Dense  | 1000                 | 5300 (2e6)                       | 3400 (2e6)                       | 3500                       | 2500                       |
| AirSim-v0         | Sparse | 400                  | 10k (5e5)                        | 16k (1e6)                        | 3000                       | 7300                       |

#### CONCLUSIONS



- Need sample-efficient learning for complex, long-horizon tasks
- IL (GAIL) is a sample-efficient approach to learn from demonstrations
- IL can be used to imitate (even suboptimal) experts from sparsely-rewarded environments
  - Requires smooth experts and careful HP tuning for perfect imitation
- Application: Discussed potential of IL + RL on a complex, sparse, long-horizon, hierarchical task

#### **Future Extensions: MineRL**



- Use CNNs to learn representations from the image
- Employ hierarchical learning, multi-agent RL to learn implicit/explicit hierarchies in tasks
- Train on datasets of individual tasks in hierarchy, to bring in diversity among demonstrations
- Algorithmic contributions for sparsely-rewarded, hierarchical tasks with long-horizons
- LeNS Lab should participate in MineRL NeurIPS 2021!



**TEXAS A&M UNIVERSITY** 

## Engineering

THANK YOU!



## QUESTIONS?