#### Exercício 1

(CLRS 16.2-5) Descreva um algoritmo eficiente que dado um conjunto  $\{x_1,\ldots,x_n\}$  de pontos ordenados na reta real, determina uma coleção mínima de intervalos fechados unitários (tamanho 1) que contém todos os pontos (por mínima, quero dizer menor número de intervalos).



**Observação.** Se os pontos não estiverem ordenados, é necessário um passo adicional de ordenação com custo  $O(n \lg n)$ .

#### Escolha gulosa:

• Seja  $I = [x_1, x_1 + 1]$ .

- Seja  $I = [x_1, x_1 + 1]$ .
- Mostraremos que existe uma solução ótima que contém 1.

- Seja  $I = [x_1, x_1 + 1]$ .
- Mostraremos que existe uma solução ótima que contém 1.
- ullet Seja  ${\mathcal I}$  uma solução ótima.



#### Escolha gulosa:

- Seja  $I = [x_1, x_1 + 1]$ .
- Mostraremos que existe uma solução ótima que contém 1.
- ullet Seja  ${\mathcal I}$  uma solução ótima.

Se  $I \in \mathcal{I}$ , então nada há a provar.



#### Escolha gulosa:

- Seja  $I = [x_1, x_1 + 1]$ .
- Mostraremos que existe uma solução ótima que contém 1.
- ullet Seja  ${\mathcal I}$  uma solução ótima.

Se  $I \in \mathcal{I}$ , então nada há a provar.

Senão, seja I' o intervalo em  $\mathcal{I}$  que contém  $x_1$ . Como  $x_1$  é o menor ponto, a coleção  $\mathcal{I}' = \mathcal{I} - \{I'\} \cup I$  também cobre todos os pontos. Portanto,  $\mathcal{I}'$  é uma solução ótima que contém I.



Subestrutura ótima:

#### Subestrutura ótima:

• Seja  $\mathcal{I}$  uma solução ótima que contém  $I = [x_1, x_1 + 1]$ .



#### Subestrutura ótima:

- Seja  $\mathcal{I}$  uma solução ótima que contém  $I = [x_1, x_1 + 1]$ .
- Claramente  $\mathcal{I}' = \mathcal{I} \{I\}$  é uma solução ótima do subproblema X' formado pelos pontos  $x_i$  em  $(x_1 + 1, x_n]$ .

#### Subestrutura ótima:

- Seja  $\mathcal{I}$  uma solução ótima que contém  $I = [x_1, x_1 + 1]$ .
- Claramente  $\mathcal{I}' = \mathcal{I} \{I\}$  é uma solução ótima do subproblema X' formado pelos pontos  $x_i$  em  $(x_1 + 1, x_n]$ .
- Caso contrário, existiria uma solução  $\mathcal{I}''$  desta instância com menos intervalos.

#### Subestrutura ótima:

- Seja  $\mathcal{I}$  uma solução ótima que contém  $I = [x_1, x_1 + 1]$ .
- Claramente  $\mathcal{I}' = \mathcal{I} \{I\}$  é uma solução ótima do subproblema X' formado pelos pontos  $x_i$  em  $(x_1 + 1, x_n]$ .
- Caso contrário, existiria uma solução  $\mathcal{I}''$  desta instância com menos intervalos.

Mas então  $\mathcal{I}'' \cup \{I\}$  seria uma solução da instância original com menos intervalos que  $\mathcal{I}$ , uma contradição.



## Exercício 1 – Algoritmo recursivo

INTERVALOS(X, i, n)

Entrada: pontos  $x_i, \ldots, x_n$  (ordenados).

Saída: coleção mínima de intervalos unitários que cobre os pontos.

- 1. se i > n então devolva  $\emptyset$
- 2.  $j \leftarrow i + 1$
- 3. enquanto  $j \le n$  e  $x_j \le x_i + 1$  faça
- 4.  $j \leftarrow j + 1$
- 5. **devolva**  $\{[x_i, x_i + 1]\} \cup Intervalos(X, j, n)$

Chamada inicial: Intervalos(X, 1, n)

Complexidade: O(n)

### Exercício 1 – Algoritmo iterativo

#### Intervalos(X, n)

Entrada: pontos  $X = \{x_1, \dots, x_n\}$  (ordenados).

Saída: coleção mínima de intervalos unitários que cobre os pontos.

1. 
$$\mathcal{I} \leftarrow \{[x_1, x_1 + 1]\}, i \leftarrow 1, j \leftarrow 2$$

- 2. enquanto  $j \leq n$  faça
- 3. **se**  $x_i > x_i + 1$
- 4. então
- 5.  $\mathcal{I} \leftarrow \mathcal{I} \cup \{[x_i, x_i + 1]\}$
- 6.  $i \leftarrow j$
- 7.  $j \leftarrow j + 1$
- 8. devolva  $\mathcal{I}$

Complexidade: O(n)

#### Exercício 2

(CLRS 16.2-7) Suponha que A e B sejam vetores de números reais positivos de tamanho n. Queremos rerranjar a ordem dos elementos de A e B de modo a maximizar o payoff (lucro)

$$\prod_{i=1}^n A[i]^{B[i]}.$$

Descreva um algoritmo eficiente para resolver este problema.

#### Exercício 2

(CLRS 16.2-7) Suponha que A e B sejam vetores de números reais positivos de tamanho n. Queremos rerranjar a ordem dos elementos de A e B de modo a maximizar o **payoff (lucro)** 

$$\prod_{i=1}^n A[i]^{B[i]}.$$

Descreva um algoritmo eficiente para resolver este problema.

**Observação.** Outra maneira de pensar é que queremos emparelhar cada elemento de A com exatamente um elemento de B de modo a maximizar o valor do payoff.

#### Escolha gulosa:

• Sejam a o maior elemento de A e b o maior elemento de B.

- Sejam a o maior elemento de A e b o maior elemento de B.
- Mostraremos que existe uma solução ótima na qual a é emparelhado com b.

- Sejam a o maior elemento de A e b o maior elemento de B.
- Mostraremos que existe uma solução ótima na qual a é emparelhado com b.
- Considere uma permutação ótima A', B' de A, B que maximiza o payoff.

#### Escolha gulosa:

- Sejam a o maior elemento de A e b o maior elemento de B.
- Mostraremos que existe uma solução ótima na qual a é emparelhado com b.
- Considere uma permutação ótima A', B' de A, B que maximiza o payoff.

Se a e b estão emparelhados nesta solução, então nada há a fazer.

#### Escolha gulosa:

- Sejam a o maior elemento de A e b o maior elemento de B.
- Mostraremos que existe uma solução ótima na qual a é emparelhado com b.
- Considere uma permutação ótima A', B' de A, B que maximiza o payoff.

Se a e b estão emparelhados nesta solução, então nada há a fazer.

Suponha então que a esteja emparelhado com y e que x esteja emparelhado com b.

|    | 1 | 2 | 3 | <br><i>n</i> − 1 | n |
|----|---|---|---|------------------|---|
| A' | a | Χ |   |                  |   |
| B' | У | Ь |   |                  |   |

#### Escolha gulosa:

 Considere uma nova permutação A", B" em que trocamos as posições de y e b e mantemos a ordem dos demais elementos.



|     | 1 | 2 | 3 | • • • | <i>n</i> − 1 | n |
|-----|---|---|---|-------|--------------|---|
| 4′′ | a | X |   |       |              |   |
| 3"  | b | y |   |       |              |   |

- Considere uma nova permutação A", B" em que trocamos as posições de y e b e mantemos a ordem dos demais elementos.
- Sejam P' o payoff ótimo e P'' o payoff de A'', B''. Então

$$P'' = P' \cdot \frac{1}{a^y} \cdot \frac{1}{x^b} \cdot a^b \cdot x^y.$$

|    | 1 | 2 | 3 | • • • | n-1 | n |
|----|---|---|---|-------|-----|---|
| A' | a | X |   |       |     |   |
| B' | y | b |   |       |     |   |

|     | 1 | 2 | 3 | <br><i>n</i> − 1 | n |
|-----|---|---|---|------------------|---|
| 4′′ | a | X |   |                  |   |
| 3"  | b | У |   |                  |   |

#### Escolha gulosa:

- Considere uma nova permutação A", B" em que trocamos as posições de y e b e mantemos a ordem dos demais elementos.
- Sejam P' o payoff ótimo e P'' o payoff de A'', B''. Então

$$P'' = P' \cdot \frac{1}{a^y} \cdot \frac{1}{x^b} \cdot a^b \cdot x^y.$$

Como

$$\frac{a^b}{a^y} \cdot \frac{x^y}{x^b} = a^{b-y} \cdot x^{y-b} = \left(\frac{a}{x}\right)^{b-y} \ge 1,$$

A'', B'' é uma solução ótima na qual a e b são emparelhados.

|    | 1 | 2 | 3 | • • • | <i>n</i> − 1 | n |
|----|---|---|---|-------|--------------|---|
| A' |   | X |   |       |              |   |
| B' | y | b |   |       |              |   |

|             | 1 | 2 | 3 | • • • | <i>n</i> − 1 | n |
|-------------|---|---|---|-------|--------------|---|
| <i>A</i> ′′ | a | X |   |       |              |   |
| В"          | b | у |   |       |              |   |

Subestrtutura ótima:

#### Subestrtutura ótima:

• Seja A', B' uma solução ótima. Sem perda de generalidade, suponha que A'[1] = a e B'[1] = b.

#### Subestrtutura ótima:

- Seja A', B' uma solução ótima. Sem perda de generalidade, suponha que A'[1] = a e B'[1] = b.
- Então  $A'[2 \dots n], B'[2 \dots n]$  é uma solução ótima de  $A[2 \dots n], B[2 \dots, n]$ .

#### Subestrtutura ótima:

- Seja A', B' uma solução ótima. Sem perda de generalidade, suponha que A'[1] = a e B'[1] = b.
- Então A'[2 ... n], B'[2 ... n] é uma solução ótima de A[2 ... n], B[2 ..., n].
- Caso contrário, existiria uma solução A''[2..n], B''[2..n] com payoff maior que A[2..n], B[2..n].

|             | 2 | 3 | • • • | n-1 | n |
|-------------|---|---|-------|-----|---|
| <i>A</i> ′′ |   |   |       |     |   |
| В"          |   |   |       |     |   |

#### Subestrtutura ótima:

- Seja A', B' uma solução ótima. Sem perda de generalidade, suponha que A'[1] = a e B'[1] = b.
- Então A'[2 ... n], B'[2 ... n] é uma solução ótima de A[2 ... n], B[2 ..., n].
- Caso contrário, existiria uma solução A''[2..n], B''[2..n] com payoff maior que A[2..n], B[2..n].

Mas então setando A''[1] = a e B''[1] = b obtemos uma solução de A, B com payoff maior que A', B', uma contradição.

|    | 1 | 2 | 3 | • • • | <i>n</i> − 1 | n |
|----|---|---|---|-------|--------------|---|
| A' | a |   |   |       |              |   |
| B' | b |   |   |       |              |   |

|     | 2 | 3 | • • • | n-1 | n |
|-----|---|---|-------|-----|---|
| A'' |   |   |       |     |   |
| B'' |   |   |       |     |   |

### Exercício 2 – Algoritmo iterativo

Payoff(A, B, n)

Entrada: vetores de inteiros positivos de tamanho n.

Saída: permutações de A e B que maximizam o payoff.

- 1. Ordene A
- 2. Ordene B
- 3. devolva A, B

Complexidade:  $O(n \lg n)$ 

## Exercício 2 – Algoritmo iterativo

Payoff(A, B, n)

Entrada: vetores de inteiros positivos de tamanho n.

Saída: permutações de A e B que maximizam o payoff.

- 1. Ordene *A*
- 2. Ordene *B*
- 3. devolva A, B

Complexidade:  $O(n \lg n)$ 

**Observação.** A versão recursiva teria que usar duas filas de prioridade com chaves em A e B para encontrar os máximos em cada chamada recursiva. A complexidade seria a mesma, se usarmos um maxheap (do Heapsort).