DEEP LEARNING FOR FAST IDENTIFICATION OF BACTERIAL STRAINS IN RESOURCE CONSTRAINED DEVICES

APRENDIZAJE PROFUNDO PARA LA IDENTIFICACIÓN RÁPIDA DE CEPAS BACTERIANAS EN DISPOSITIVOS CON RECURSOS LIMITADOS

AUTORES

- Gallardo-García, Rafael (LKE-BUAP)
- Jarquín-Rodríguez, Sofía (FCQ-BUAP)
- Beltrán-Martínez, Beatriz (LKE-BUAP)
- Martínez, Rodolfo (LKE-BUAP)

RESUMEN

- Se proponen dos arquitecturas de aprendizaje profundo para clasificación automática de especies bacterianas.
- Las arquitecturas propuestas son ligeras, viables para su implementación en dispositivos con recursos limitados, pero no sacrifican confiabilidad o exactitud.
- Con el trabajo realizado, se obtienen modelos capaces de clasificar colonias bacterianas pertenecientes a una de 32 clases, alcanzando hasta un 95.53% de exactitud de clasificación.
- El código y los modelos pre-entrenados son de acceso público y están disponibles en GitHub.

MOTIVACIÓN

- Para 1995, las enfermedades infecciosas mataban, aproximadamente, 17 millones de personas al año [WHO, 1996].
- Para 2019, al menos 700 mil personas morían a causa de bacterias resistentes a los antibióticos. Más de 10 millones para 2050 [WHO, 2019].
- Con el tiempo, las bacterias se vuelven más contagiosas, peligrosas y resistentes [WHO, 2019].
- Es necesario identificar especies de bacterias de forma automática, reduciendo la exposición de los humanos ante los patógenos. Esto sin sacrificar la confiabilidad de los diagnósticos.

JUSTIFICACIÓN

- Los trabajos previos de clasificación automática de cepas bacterianas solo eran capaces de trabajar con una cantidad reducida de clases [Holmberg et al., Liu et al., Forero et al.] (5, 11, 1).
 - Otros trabajos, aunque con exactitud alta, eran muy costosos para ver implementaciones que no necesitaran procesamiento en la nube [Ahmed et al., Zielinsky et al.]

MÉTODOS TRADICIONALES

• La mayoría de los métodos tradicionales de identificación son costosos y requieren tiempo de preparación.

Detection method	System examples	Advantages	Disadvantages
Phenotypic methods			
Culture on microbiological media and identification by biochemical tests	API (bioMérieux) I Enterotube (BBL) RapID systems and MicroID (Remel) Biochemical ID systems (Microgen)	Sensitive. Inexpensive.	Lengthy and time-consuming process [25]. Might require 24–48 h [25]. Some species cannot be distinguished by morphology and cultural characteristics [22].
MALDI-TOF MS	Vitek MS Biflex III Autoflex III Microflex LT Biotyper	Fast. Accurate. Less expensive than molecular detection methods. Trained laboratory personnel not required.	High initial cost of the MALDI-TOF equipment [25]. Detection is not direct from clinical samples.
Molecular methods			
Real-time PCR	MagNA Pure LC (Roche Applied Science) BioRobot EZ1 (Qiagen)	Specific, sensitive, rapid, and accurate.	A highly precise thermal cycler is needed.
Multiplex-PCR	BI Prism 6100 (Applied Biosystems) NucliSens Extractor (bioMérieux)	Closed-tube system reduces the risk of contamination. Can detect many pathogens simultaneously	Trained laboratory personnel required for performing the test.
DNA sequencing	Databases available for 16S rRNA: GenBank MicroSeq RDP-II RIDOM	Can identify fastidious and uncultivable microorganisms. 16S rRNA sequencing is the gold standard.	Trained laboratory personnel and powerful interpretation softwares are required. Expensive. Not suitable for routine clinical use. Contamination of a sample by post-amplification products [22].

CONJUNTO DE DATOS

- 33 especies de bacterias (32 si se elimina Candida albicans)
- Cada especie cuenta con 20 imágenes RGB de 2048x 1532 pixeles.
- Total, de 669 instancias.

CONJUNTO DE DATOS

- Se utilizaron algunas estrategias de aumento de datos.
- Características del conjunto aumentado:
 - 32 especies de bacterias.
 - Cada especie cuenta con [600-1000] imágenes RGB de 224x224 pixeles.
 - Total, de 26,524 instancias.

Genera	Specie	_	Augmented
	Specie	Samples	Samples
Acinetobacter	baumanii	20	712
Actinomyces	israelli	23	860
Bacteroides	fragilis	23	960
Bifidobacterium	spp.	23	896
Clostridium	perfringens	23	868
Enterococcus	faecalis	20	784
	faecium	20	680
Escherichia	coli	20	880
Fusobacterium	spp.	23	924
Lactobacillus	casei	20	856
	crispatus	20	724
	delbrueckii	20	592
	gasseri	20	820
	jehnsenii	20	788
	johnsonii	20	880
	paracasei	20	840
	plantarum	20	784
	reuteri	20	820
	rhamnosus	20	820
	salivarius	20	840
Listeria	monocytogenes	22	936
Micrococcus		21	600
	gonorrhoeae	23	892
Porfyromonas		23	984
Propionibacterium	acnes	23	932
Proteus		20	880
Pseudomonas		20	832
Staphylococcus	aureus	20	780
	epidermidis	20	776
	saprophiticus	20	816
Streptococcus		20	848
Veionella		22	920
	1.1		

ARQUITECTURA

- La arquitectura está basada en la corriente de las "Mobile Networks", como MobileNetVI [Howard et al., 2017] y MobileNetV2 [Sandler et al., 2018].
- Éstas, utilizan una forma de convolución (separable en profundidad) que reduce drásticamente la huella del modelo en la memoria.
- Se utiliza un nuevo tipo de capa, en donde los bloques residuales "tradicionales" (Resnets) se sustituyen con un residual invertido con cuello de botella.
- El nuevo tipo de capa reduce la cantidad de memoria necesaria, pues nunca materializan por completo los tensores inmediatos.

TRANSFER LEARNING

- Se utilizaron los pesos pre-entrenados (con ImageNet) de MobileNetV2, disponibles en el model zoo de PyTorch.
- Se normalizaron las entradas, para que coincidieran con la media y la desviación estándar de ImageNet:
 - Media: 0.485, 0.456, 0.406 (RGB)
 - STD: 0.229, 0.224, 0.255 (RGB)
- Cada tensor de entrada tiene 4 dimensiones: [minibatch, n_channels, height, width]
 - i.e 32x3x224x224

FINE-TUNING

Block type	Inputs	Outputs	Probability
Dropout	-	-	0.2
Linear	1280	1280	-
ReLU	-	-	-
Dropout	-	-	0.2
Linear	1280	32	-

FINE-TUNING

Block type	Inputs	Outputs	Probability
Dropout	-	-	0.2
Linear	1280	1280	-
ReLU	-	-	-
Dropout	-	-	0.2
Linear	1280	32	-

HÍPER-PARÁMETROS

- Para ambas arquitecturas:
 - Batch size de entrenamiento = 32
 - Batch size de validación y prueba = 16
 - Función de coste: CrossEntropyLoss
 - Optimizador: RMSprop, Ir = 0.001 y decaimiento = 0.00004
- La cantidad de épocas varía según la arquitectura.

RESULTADOS Y CONCLUSIONES

La tabla muestra los resultados de forma clara y organizada, se realizaron varios experimentos (variando hiper-parámetros, datos y épocas) hasta encontrar los mejores modelos.

Dense layers	Dataset	Training	Test
in classifier	version	epochs	accuracy
1	Original	10	0.8874
		30	0.8785
		50	0.9553
	Augmented	10	0.9375
		15	0.9382
		30	0.9229
2	Original	10	0.8642
		30	0.9232
		50	0.8839
	Augmented	10	0.9422
	_	15	0.9364
		30	0.9410

• train, test original: [535, 66]

• train, test aumentado: [21219, 2650]

TRABAJO FUTURO

- Los resultados obtenidos por este trabajo son prometedores.
- El trabajo futuro incluye:
 - Entrenamiento, evaluación y comparación de varias arquitecturas "móviles" en esta tarea y con el mismo conjunto de datos.
 - Analizar los resultados con métricas que brinden más información, sobre todo cuando se manejen bacterias peligrosas: precisión, recuerdo, matrices de confusión, etc.
 - Despliegue de este tipo de sistemas en sistemas empotrados (e.g microscopios inteligentes).

¡Gracias!

