Full Name: Chris Tu Answer Key

NetID:

Midterm Make-up Exam CS 314, Fall 2024 Section 01-04

(20 pts) RE to NFA, and NFA to DFA Give credit for matching the a, the OR, or the b* $a \mid b^*c$

(a) Use Thompson's construction to construct an NFA for the regular expression above.

(b) Convert the NFA to a DFA using subset construction.

દ	- (losure (50) =	£50,51,53,58,56,57	3
	9	(02)	
	V SA		

istruction.		ı	
	8	Ь	C
D1 \{ 50,51,53, \\ 58,56,57\}	{52,55}	03 {59,58,56 57}	£54,55}
D3	\times	559,58,56 D3 573	584 ,543 D4

(c) Minimize the DFA. If the DFA is already minimal, justify it.

a pultition lead

"The DFA is already minimized o

$\mathbf{2}$ (20 pts) Context Free Grammars

(a) Write a grammar for $a^x b^y$ where y = x + 2 and $x \ge 0$ (i.e., exactly 2 more b's than a's).

$$\langle S \rangle = \langle A \rangle b$$

$$\langle A \rangle = \alpha \langle A \rangle b \rangle \epsilon$$

(b) Consider the following grammar (where $\langle S \rangle = \text{start symbol}$):

$$\langle S \rangle \rightarrow (\langle A \rangle) \mid \epsilon$$

$$\langle A \rangle \rightarrow \langle A \rangle; \langle S \rangle \mid c$$

Present a derivation for the string (c;(c;)) and give the parse tree.

$$\begin{array}{cccc}
\langle S \rangle \\
\overrightarrow{R} & (C; (\langle A \rangle)) \\
\overrightarrow{R} & (\langle A \rangle; \langle S \rangle) \\
\overrightarrow{R} & (\langle A \rangle; \langle S \rangle) \\
\overrightarrow{R} & (C; (C; \langle S \rangle)) \\
\overrightarrow{R} & (C; (C; \langle S \rangle)) \\
\overrightarrow{R} & (C; (C; \langle S \rangle))
\end{array}$$
3 (20 pts) Simulating DFA

Consider the DFA below, determine whether the given strings can be accepted or rejected. q0 is the start state, and q1 is the accepting state.

- (a) 10 (Accept or Reject)
- (b) 111 (Accept or Reject?)

Describe in English what the strings accepted by this DFA have in common.

- · Binary numbers starting at I
 · All binary multiples of 3 plus I and incrementing by

4 (40 pts) Unambiguous Grammar

Consider the following grammar that attempts to describe a regular expression:

- 1. $\langle e \rangle$::= $\langle x \rangle | \epsilon$
- 2. < e > ::= < e > < e >
- 3. < e > ::= < e > *
- 4. $\langle e \rangle$::= $\langle e \rangle$ "| " $\langle e \rangle$
- 5. < e > ::= (< e >)
- 6. $\langle x \rangle$::= a | b | c ... y | z
- (a) Show that the above grammar is ambiguous.

(b) Recall that Kleen Closure (*) has highest precedence, followed by concatenation, and then alternation ("|"). Let's assume concatenation, alternation and Kleen closure are all left associative. Rewrite the grammar such that it is unambiguous and the precedence/associativity rules are enforced. Note that double quotes are added for the actual alternation operator to distinguish from the | sign that separates production rules.

There precedence operations are nested deeper in grammar

brecengence: () > Kleenc > concat > Mujon

lowest precedence:

(5) ::=
$$\langle A \rangle$$

(c) | $\langle C \rangle$

Con cat $\langle C \rangle$::= $\langle C \rangle \langle K \rangle$ | $\langle K \rangle$

Kleene $\langle K \rangle$::= $\langle K \rangle$ | $\langle K \rangle$

highest precedence:

 $\langle S \rangle$::= $\langle K \rangle$ | $\langle K \rangle$
 $\langle K \rangle$::= $\langle K \rangle$ | $\langle K \rangle$
 $\langle K \rangle$::= $\langle K \rangle$ | $\langle K \rangle$