Tutorial 02 - The class NP (Group 4)

Exercise 1. Boolean circuits

Let $f_n: \{0,1\}^n \to \{0,1\}$ be the function defined as

$$f_n(x_1,\ldots,x_n) := \begin{cases} 1 & \text{if } x_1+\cdots+x_n \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

- **1.** Draw a boolean circuit that computes f_0 , f_1 , f_2 . What can you say about f_2 ?
- **2.** Show that f_n can be computed by a circuit of size and depth O(n).

Exercise 2. Union and Intersection

Let A and B be two languages. Then show that:

- If *A* and *B* are in NP, then so are $A \cup B$ and $A \cap B$
- What can you say about the NP-completeness of $A \cup B$ and $A \cap B$ when A and B are both NP-complete?

Exercise 3. NP-Completeness

Show that the following languages are NP-complete.

1. NDTM-T: given $\langle \alpha, x, 1^t \rangle$, does the nondeterministic Turing machine M_α accept on input x in time $\leq t$?

Hint: You can admit that there exists a universal nondeterministic Turing Machine.

- **2.** 3-SAT: Does a 3CNF formula ϕ have a satisfying assignment? *You can admit that* CNF-SAT *is* NP-*complete.*
- **3.** 1-IN-3SAT: Given a collection of clauses C_1 , ..., C_m , m > 1; such that each C_i is a disjunction of exactly three literals, is there a truth assignment to the variables occurring so that exactly one literal is true in each C_i ?

Hint: You can admit that 3-SAT is NP-complete.

Exercise 4. Tally Language (Berman's Theorem, 1974)

A language is said to be *tally* (or unary), if it is included in a unary alphabet $\{a\}^*$ for a fixed symbol a.

Definition (SUBSET-SUM). Given n numbers $v_1, \ldots, v_n \in \mathbb{Z}$, and a *target* number $T \in \mathbb{Z}$, we need to decide whether there exists a nonempty subset $S \subseteq [1, n]$ such that $\sum_{i \in S} v_i = T$. The problem size is $|T|_2 + \sum_{i=1}^n |v_i|_2$.

- **1.** Prove that Subset-Sum is NP-complete.
- **2.** Let UNARY-SUBSET-SUM be the tally variant of SUBSET-SUM where all numbers are represented by their unary representation. Show that UNARY-SUBSET-SUM is in P.
- 3. Show that if there exists an NP-hard tally language, then P = NP.