CLAIMS

2

What is claimed is:

1	1. An energy transfer element, comprising:		
2	a magnetic element including an external surface; and		
3	at least a first winding and a second winding wound around the external		
4	surface of the magnetic element without a bobbin such that energy to be received		
5	from a power converter circuit input is to be transferred from the first winding to		
6	the second winding through a magnetic coupling provided by the magnetic		
7	element to a power converter circuit output.		
1	2. The energy transfer element of claim 1 wherein the external surface		
2	of the magnetic element includes a substantially curved surface.		
1	3. The energy transfer element of claim 2 wherein a portion of the		
2	magnetic element including the external surface is substantially cylindrical.		
1	4. The energy transfer element of claim 1 wherein the external surface		
2	of the magnetic element includes substantially planar surfaces.		
1	5. The energy transfer element of claim 4 wherein a portion of the		

magnetic element including the external surface is substantially polygonal.

1	6.	The energy transfer element of claim 1 wherein the first and second			
2	windings are	wound directly around the external surface of the magnetic element			
3	without having to thread the first and second windings through an opening defined				
4	by the magne	tic element.			
1	7.	The energy transfer element of claim 1 wherein the first winding			
2	comprises magnet wire.				
1	8.	The energy transfer element of claim 7 wherein the second winding			
2	comprises trip	ple insulated wire.			
1	9.	The energy transfer element of claim 7 wherein the second winding			
2	comprises magnet wire.				
1	10.	The energy transfer element of claim 9 further comprising an			
2	insulating ma	terial between the first and second windings.			
1	11.	The energy transfer element of claim 10 wherein the insulating			
2	material comp	orises a coating applied by dipping.			

1	12.	The energy transfer element of claim10 wherein the insulating	
2	material comp	prises a coating applied by spraying.	
1	13.	The energy transfer element of claim 10 wherein the insulating	
2	material comp	prises a sleeve.	
1	14.	The energy transfer element of claim 13 wherein the sleeve	
2	comprises heat shrink tubing.		
1	15.	The energy transfer element of claim 1 further comprising two	
2	electrically co	onductive pins mounted to the magnetic element through an	
3	electrically insulating material.		
1	16.	The energy transfer element of claim 15 wherein each end of the	
2	first winding	is coupled to a respective one of the two electrically conductive pins	
3	mounted to th	e magnetic element through the electrically insulating material.	
1	17.	The energy transfer element of claim 16 wherein both ends of the	
2	second windir	ng are not coupled to electrically conductive pins mounted to the	
3	magnetic elen	nent through the electrically insulating material.	

1	18. The energy transfer element of claim 1 further comprising a third		
2	winding wound around the external surface of the magnetic element without a		
3	bobbin such that energy to be received from a power converter circuit input is to		
4	be transferred from the first winding to the third winding.		
1	19. The energy transfer element of claim 1 further comprising at least a		
2	partial exterior coating of a material having a magnetic permeability substantially		
3	greater than free space.		
1	20. A method, comprising:		
2	receiving energy from a power converter circuit input with a first winding		
3	wound around an external surface of a magnetic element without a bobbin;		
4	transferring the energy from the first winding to a second winding wound		
5	around the external surface of the magnetic element without the bobbin through a		
6	magnetic coupling provided by the magnetic element between the first and second		
7	windings; and		
8	coupling the energy from the second winding to a power converter circuit		
9	output.		
1	21. The method of claim 20 further comprising regulating the energy		

transferred from the power converter circuit input to the power converter circuit

2

3 output by switching a connection between the power converter circuit input and 4 the first winding in response to the power converter circuit output. 22. The method of claim 21 wherein switching the connection between 1 2 the power converter circuit input and the first winding comprising switching the 3 connection at a fixed frequency. 1 23. The method of claim 21 wherein switching the connection between 2 the power converter circuit input and the first winding comprising switching the 3 connection at a variable frequency. 24. 1 The method of claim 21 wherein switching the connection between 2 the power converter circuit input and the first winding comprising switching the 3 connection with cycle skipping control. 1 25. The method of claim 21 wherein switching the connection between 2 the power converter circuit input and the first winding comprising switching the 3 connection with pulse width modulation. 1 26. The method of claim 20 further comprising:

-25-

rectifying an alternating current (AC) source to provide direct current (DC)

2

3

source energy; and

4 coupling the DC source energy to be received by the power converter 5 circuit input. 1 27. The method of claim 20 further comprising transferring the energy 2 from the first winding to a third winding wound around the external surface of the 3 magnetic element without the bobbin through the magnetic coupling provided by 4 a magnetic element between the first and third windings. 1 28. The method of claim 20 further comprising insulating the second 2 winding from the first winding. 29. 1 The method of claim 28 further comprising triple insulating the 2 second winding to insulate the first winding from the second winding. 1 30. The method of claim 28 further comprising coating the first 2 winding and the magnetic element with an insulating material to insulate the first 3 winding from the second winding. 1 31. The method of claim 28 further comprising spraying the first 2 winding and the magnetic element with an insulating material to insulate the first 3 winding from the second winding.

- 1 32. The method of claim 28 further comprising enclosing the first
- 2 winding and the magnetic element in an insulative sleeve to insulate the first
- 3 winding from the second winding.
- 1 33. The method of claim 32 further comprising heating heat shrink
- 2 tubing enclosing the first winding and the magnetic element to insulate the first
- 3 winding from the second winding.
- 1 34. The method of claim 20 further comprising coupling each end of
- 2 the first winding to a respective one of the two electrically conductive pins
- 3 mounted to the magnetic element through electrically insulating material without
- 4 coupling both ends of the second winding to electrically conductive pins mounted
- 5 to the magnetic element through electrically insulating material.
- 1 35. The method of claim 20 further comprising coating at least a
- 2 portion of an energy transfer element formed with the first and second windings
- 3 would around the magnetic element with a material having a magnetic
- 4 permeability substantially greater than free space.