Untitled

April 3, 2022

```
[65]: import torch
      import torchvision
      import torchvision.transforms as transforms
      import torchvision.models as models
      import torch.nn as nn
      import torch.nn.functional as F
      import torch.optim as optim
      import time as ti
      from itertools import count
      import natsort
      import datetime
      import numpy as np
      import os
      import math
 [2]: from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler
      import albumentations as A
      from albumentations.pytorch import ToTensorV2
      import cv2
      import glob
      import numpy
      import random
      import pandas as pd
      import tqdm
      torch.manual_seed(10)
 [2]: <torch._C.Generator at 0x7f0cd009b5b0>
 [3]: print(f"Is CUDA supported by this system? {torch.cuda.is_available()}")
      print(f"CUDA version: {torch.version.cuda}")
      # Storing ID of current CUDA device
      cuda_id = torch.cuda.current_device()
      print(f"ID of current CUDA device: {torch.cuda.current_device()}")
      print(f"Name of current CUDA device: {torch.cuda.get_device_name(cuda_id)}")
      device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
      print(device)
```

```
Is CUDA supported by this system? True
    CUDA version: 11.3
    ID of current CUDA device: 0
    Name of current CUDA device: NVIDIA A100-SXM4-40GB
    cuda:0
[4]: class SurgicalDataset(Dataset):
         def __init__(self, image_paths, labels, transform=False):
             super(SurgicalDataset, self).__init__()
             self.image_paths = image_paths
             self.labels = labels
                                     #. astype(dtype='int')
             self.transform = transform
         def len (self):
             return len(self.image_paths)
         def __getitem__(self, idx):
             image_filepath = self.image_paths[idx]
             image = cv2.imread(image_filepath)
             label = self.labels[idx]
             if self.transform is not None:
                 image = self.transform(image=image)["image"]
             return image, label
[5]: def get_transform(model_name):
         if model_name == 'alexnet':
             transform = A.Compose([
                 A.Resize(227, 227),
                 A.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                 ToTensorV2(),
             ])
         elif model_name == 'effinet':
             transform = A.Compose([
                 A.Resize(224, 224),
                 A.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                 ToTensorV2(),
             1)
         else:
             transform = A.Compose([
                 A.Resize(224,224),
                 A.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),
                 ToTensorV2(),
```

```
])
          return transform
 [6]: train_image_paths = []
      for i in range(1,71):
          filename = '/home/zo2151/assignments/Data/Video%i'%(i,)
          train_image_paths.append(glob.glob(filename + '/*'))
      train_image_paths1 = [item for sublist in train_image_paths for item in sublist]
      train_image_paths1 = natsort.natsorted(train_image_paths1)
 [7]: df = pd.read_csv("/home/zo2151/Processed_data.csv")
      df1 = df.loc[:,"Phases"].to_numpy()
      df2 = df1.tolist()
      percentile_list = pd.DataFrame(
          {'Link': train_image_paths1,
           'Label': df2,
          })
 [9]: percentile list1 = percentile list.sample(frac=1, random state=1)
      train_image_paths = percentile_list1.loc[:,"Link"].to_numpy().tolist()
      labels = percentile_list1.loc[:,"Label"].to_numpy().tolist()
      train_image_paths, valid_image_paths = train_image_paths[:int(0.
       →8*len(train_image_paths))], train_image_paths[int(0.
       →8*len(train_image_paths)):]
      train_labels, valid_labels = labels[:int(0.8*len(labels))], labels[int(0.
       →8*len(labels)):]
[10]: summary = \{i:0 \text{ for } i \text{ in } range(14)\}
      num classes = 14
      total samples = 0
      for i in train labels:
          total samples += 1
          summary[i] += 1
      class_weights = [total_samples/summary[i] for i in range(num_classes)]
      weights = [class_weights[train_labels[i]] for i in range(total_samples)]
      sampler = WeightedRandomSampler(torch.DoubleTensor(weights), len(weights))
[11]: class Classifier():
          def __init__(self, name, model, dataloaders, parameter, use_cuda=False):
               . . .
              Oname: Experiment name. Will define stored results etc.
              Omodel: Any models
```

```
@dataloaders: Dictionary with keys train, val and test and ___
\hookrightarrow corresponding dataloaders
       @class\_names: list of classes, where the idx of class name corresponds_{\sqcup}
\hookrightarrow to the label used for it in the data
       Quse_cuda: whether or not to use cuda
       self.name = name
       if use_cuda and not torch.cuda.is_available():
           raise Exception("Asked for CUDA but GPU not found")
       self.use cuda = use cuda
       self.epoch = parameter['epochs']
       self.lr = parameter['lr']
       self.batch_size = parameter['batch_size']
       self.model = model.to('cuda' if use_cuda else 'cpu') # model.to('cpu')
       self.criterion = nn.CrossEntropyLoss()
       self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
       self.train_loader, self.valid_loader = self.

¬get_dataloaders(dataloaders['train_image_paths'],
                                                                     1.1

→dataloaders['train_labels'],
→dataloaders['valid_image_paths'],

→dataloaders['valid_labels'],
→train_transforms=dataloaders['transforms'],
                                                                      batch_size_
⇒= self.batch_size,
⇔shuffle=parameter['shuffle'],
                                                                     sampler =
→dataloaders['sampler'])
       self.class_names = parameter['class_names']
       self.activations_path = os.path.join('activations', self.name)
       self.kernel_path = os.path.join('kernel_viz', self.name)
       save_path = "/home/zo2151/"
       if not os.path.exists(save_path):
           os.makedirs(save_path)
       if not os.path.exists(self.activations_path):
           os.makedirs(self.activations_path)
```

```
if not os.path.exists(self.kernel_path):
           os.makedirs(self.kernel_path)
       self.save_path = save_path
   def train(self, save=True):
       Qepochs: number of epochs to train
       Osave: whether or not to save the checkpoints
       best_val_accuracy = - math.inf
       for epoch in range(self.epoch): # loop over the dataset multiple times
           self.model.train()
           t = time.time()
           running_loss = 0.0
           train_acc = 0
           val_accuracy = 0
           correct = 0
           total = 0
           count = 0
           loop = tqdm.tqdm(self.train_loader, total = len(self.train_loader),_
→leave = True)
           for img, label in loop:
               # get the inputs; data is a list of [inputs, labels]
               inputs, labels = img.to(device), label.to(device) #img.
\rightarrow to(device), label.to(device)
               # zero the parameter gradients
               self.optimizer.zero_grad()
               # forward + backward + optimize
               outputs = self.model(inputs)
               _, predictions = torch.max(outputs, 1)
               loss = self.criterion(outputs, labels)
               loss.backward()
               self.optimizer.step()
               # print statistics
               running_loss += loss.item()
               total += labels.shape[0]
               correct += (predictions == labels).sum().item()
               count += 1
               if count % 2000 == 1999:
                                            # print every 2000 mini-batches
```

```
print(f'[{epoch + 1}, {count + 1:5d}] loss: {running_loss /__
→2000:.3f}')
                   running_loss = 0.0
           train_acc = 100 * correct / total
           print(f'Epoch:', epoch + 1, f'Training Epoch Accuracy:{train acc}')
           # evaluate the validation dataset
           self.model.eval()
           correct_pred = {classname: 0 for classname in self.class_names}
           total_pred = {classname: 0 for classname in self.class_names}
           # again no gradients needed
           correct = 0
           total = 0
           with torch.no_grad():
               for data in self.valid_loader:
                   images, labels = data[0].to(device), data[1].to(device)
\rightarrow#data[0], data[1]
                   outputs = self.model(images)
                   _, predictions = torch.max(outputs, 1)
                   # collect the correct predictions for each class
                   total += labels.shape[0]
                   correct += (predictions == labels).sum().item()
                   for label, prediction in zip(labels, predictions):
                       if label == prediction:
                           correct_pred[classes[label]] += 1
                       total_pred[classes[label]] += 1
           val_accuracy = 100 * correct / total
           print(f'Epoch:', epoch + 1, f'Validation Epoch Accuracy:
→{val_accuracy}')
           # print the summary for each class
           print('Epoch:', epoch + 1, 'Correct predictions', correct_pred)
           print('Epoch:', epoch + 1, 'Total predictions', total_pred)
           print('Epoch:', epoch + 1, 'Correct predictions', correct_pred)
           print('Epoch:', epoch + 1, 'Total predictions', total_pred)
           # inspect the time taken to train one epoch
           d = time.time()-t
           print('Fininsh Trainig Epoch', epoch, '!', 'Time used:', d)
           if save:
               torch.save(self.model.state_dict(), os.path.join(self.
```

```
if val_accuracy > best_val_accuracy:
                   torch.save(self.model.state_dict(), os.path.join(self.

¬save_path, 'best.pt'))
                   best_val_accuracy = val_accuracy
      print('Done training!')
  def evaluate(self):
       # for evaluating the test dataset if there were any.
      try:
           assert os.path.exists(os.path.join(self.save_path, 'best.pt'))
       except:
           print('Please train first')
          return
       self.model.load_state_dict(torch.load(os.path.join(self.save_path,_
self.model.eval()
  def get_dataloaders(self, train_image_paths, train_labels,__
→valid image_paths, valid labels, train_transforms=False, batch_size=32, ___
⇒shuffle=True, sampler = None):
       train dataset = SurgicalDataset(train image paths, train labels,
→train_transforms)
      val_dataset = SurgicalDataset(valid_image_paths,valid_labels,__
→train_transforms)
       train_loader = DataLoader(train_dataset, batch_size, shuffle, sampler)
       valid_loader = DataLoader(val_dataset, batch_size, shuffle = True)
      return train_loader, valid_loader
  def grad_cam_on_input(self, img):
       try:
           assert os.path.exists(os.path.join(self.save_path, 'best.pt'))
           print('It appears you are testing the model without training. u
→Please train first')
           return
       self.model.load_state_dict(torch.load(os.path.join(self.save_path,_
```

```
self.model.eval()
       img = img.to('cuda' if self.use_cuda else 'cpu')
      out = self.model(img)
       _, pred = torch.max(out, 1)
      predicted class = self.class names[int(pred)]
      print(f'Predicted class was {predicted_class}')
      out[:, pred].backward()
       gradients = self.model.get_gradient_activations()
      print('Gradients shape: ', f'{gradients.shape}')
      mean_gradients = torch.mean(gradients, [0, 2, 3]).cpu()
       activations = self.model.get_final_conv_layer(img).detach().cpu()
      print('Activations shape: ', f'{activations.shape}')
      for idx in range(activations.shape[1]):
           activations[:, idx, :, :] *= mean_gradients[idx]
       final_heatmap = np.maximum(torch.mean(activations, dim=1).squeeze(), 0)
       final_heatmap /= torch.max(final_heatmap)
      return final_heatmap
  def trained_kernel_viz(self):
       all_layers = [0, 3]
       all_filters = []
       for layer in all_layers:
           filters = self.model.conv_model[layer].weight
           all_filters.append(filters.detach().cpu().clone()[:8, :8, :, :])
       for filter_idx in range(len(all_filters)):
           filter = all_filters[filter_idx]
           print(filter.shape)
           filter = filter.contiguous().view(-1, 1, filter.shape[2], filter.
\rightarrowshape[3])
           image = show_img(make_grid(filter))
           image = 255 * image
```

```
cv2.imwrite(os.path.join(self.kernel_path,

→f'filter_layer{all_layers[filter_idx]}.jpg'), image)
         def activations_on_input(self, img):
             img = img.to('cuda' if self.use_cuda else 'cpu')
             all_{layers} = [0,3,6,8,10]
             all_viz = []
             # looking at the outputs of the relu
             for each in all_layers:
                 current_model = self.model.conv_model[:each+1]
                 current_out = current_model(img)
                 all_viz.append(current_out.detach().cpu().clone()[:, :64, :, :])
             for viz_idx in range(len(all_viz)):
                 viz = all viz[viz idx]
                 viz = viz.view(-1, 1, viz.shape[2], viz.shape[3])
                 image = show_img(make_grid(viz))
                 image = 255 * image
                 cv2.imwrite(os.path.join(self.activations_path,_
      [13]: import ssl
     ssl._create_default_https_context = ssl._create_unverified_context
     example_model = models.efficientnet_b7(pretrained=True)
     Downloading: "https://download.pytorch.org/models/efficientnet_b7_lukemelas-
     dcc49843.pth" to
     /home/zo2151/.cache/torch/hub/checkpoints/efficientnet_b7_lukemelas-dcc49843.pth
       0%1
                   | 0.00/255M [00:00<?, ?B/s]
[14]: class TransferEffiNet(nn.Module):
         def __init__(self):
             super().__init__()
             self.base_effi_net = models.efficientnet_b7(pretrained=True)
             self.conv_model = self.get_conv_layers()
             self.avg_pool = self.transition_layer()
             self.fc model = self.get fc layers()
             self.activate_training_layers()
```

```
def activate_training_layers(self):
       for name, param in self.conv_model.named_parameters():
           number = int(name.split('.')[1])
           # for all layers except the last conv layer, set param.
\rightarrow requires\_grad = False
           if number == 8:
               param.requires_grad = True
           else:
               param.requires_grad = False
       for name, param in self.fc_model.named_parameters():
           # for all of these layers set param.requires_grad as True
           param.requires_grad = True
  def get_conv_layers(self):
      return self.base_effi_net.features
  def transition_layer(self):
      return self.base_effi_net.avgpool
  def get_fc_layers(self):
      return nn.Sequential(
           nn.Dropout(p=0.5, inplace=False),
           nn.Linear(in_features=2560, out_features=1024, bias=True),
           nn.ReLU(inplace=True),
           nn.Dropout(p=0.5, inplace=False),
           nn.Linear(in_features=1024, out_features=512, bias=True),
           nn.ReLU(inplace=True),
           nn.Linear(in_features=512, out_features=14, bias=True),
       )
  def forward(self, x):
      x = self.conv_model(x) #call the conv layers
      x = self.avg_pool(x) #call the avg pool layer
      x = torch.flatten(x, 1)
       x = self.fc_model(x) #call fully connected layers
       return x
```

```
model = TransferEffiNet()
classifier = Classifier(name, model, dataloaders, parameters, use_cuda=True)
classifier.train()
37%1
                                                                I
1999/5377 [10:36<17:27, 3.22it/s]
[1, 2000] loss: 0.621
74%1
3999/5377 [20:54<07:03, 3.25it/s]
[1, 4000] loss: 0.412
100%|
5377/5377 [27:58<00:00, 3.20it/s]
Epoch: 1 Training Epoch Accuracy:83.91176727019094
Epoch: 1 Validation Epoch Accuracy:85.82488607830373
Epoch: 1 Correct predictions {0: 51, 1: 18, 2: 561, 3: 5191, 4: 195, 5: 283, 6:
9109, 7: 2103, 8: 2534, 9: 5339, 10: 244, 11: 8905, 12: 392, 13: 1990}
Epoch: 1 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Epoch: 1 Correct predictions {0: 51, 1: 18, 2: 561, 3: 5191, 4: 195, 5: 283, 6:
9109, 7: 2103, 8: 2534, 9: 5339, 10: 244, 11: 8905, 12: 392, 13: 1990}
Epoch: 1 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Fininsh Trainig Epoch 0 ! Time used: 2064.4031040668488
37%|
1999/5377 [10:12<17:08, 3.28it/s]
[2,
    2000] loss: 0.312
74%|
3999/5377 [20:23<06:59, 3.28it/s]
[2, 4000] loss: 0.290
100%|
                                           1
5377/5377 [27:23<00:00, 3.27it/s]
Epoch: 2 Training Epoch Accuracy:90.37867999651255
Epoch: 2 Validation Epoch Accuracy:91.16060634241607
Epoch: 2 Correct predictions {0: 51, 1: 17, 2: 563, 3: 5073, 4: 190, 5: 283, 6:
10310, 7: 2116, 8: 2533, 9: 5361, 10: 247, 11: 9797, 12: 401, 13: 2268}
Epoch: 2 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Epoch: 2 Correct predictions {0: 51, 1: 17, 2: 563, 3: 5073, 4: 190, 5: 283, 6:
10310, 7: 2116, 8: 2533, 9: 5361, 10: 247, 11: 9797, 12: 401, 13: 2268}
Epoch: 2 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
```

```
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Fininsh Trainig Epoch 1! Time used: 2006.2973544597626
37%1
                                                                1999/5377 [10:13<23:57, 2.35it/s]
    2000] loss: 0.261
74%|
                                                   Τ
3999/5377 [23:39<09:18, 2.47it/s]
[3, 4000] loss: 0.241
100%
5377/5377 [31:49<00:00, 2.82it/s]
Epoch: 3 Training Epoch Accuracy:91.92420587636956
Epoch: 3 Validation Epoch Accuracy: 92.81828326978517
Epoch: 3 Correct predictions {0: 51, 1: 17, 2: 567, 3: 5233, 4: 191, 5: 282, 6:
10696, 7: 2138, 8: 2505, 9: 5458, 10: 245, 11: 9839, 12: 394, 13: 2307}
Epoch: 3 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Epoch: 3 Correct predictions {0: 51, 1: 17, 2: 567, 3: 5233, 4: 191, 5: 282, 6:
10696, 7: 2138, 8: 2505, 9: 5458, 10: 245, 11: 9839, 12: 394, 13: 2307}
Epoch: 3 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Fininsh Trainig Epoch 2! Time used: 2272.039259672165
37%1
                                                                I
1999/5377 [10:07<17:12, 3.27it/s]
[4, 2000] loss: 0.220
74%|
3999/5377 [20:15<06:56, 3.30it/s]
[4, 4000] loss: 0.213
100%
5377/5377 [27:13<00:00, 3.29it/s]
Epoch: 4 Training Epoch Accuracy:93.23316574152112
Epoch: 4 Validation Epoch Accuracy:92.2347251929694
Epoch: 4 Correct predictions {0: 52, 1: 17, 2: 573, 3: 5085, 4: 199, 5: 286, 6:
10481, 7: 2109, 8: 2657, 9: 5668, 10: 246, 11: 9516, 12: 399, 13: 2384}
Epoch: 4 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Epoch: 4 Correct predictions {0: 52, 1: 17, 2: 573, 3: 5085, 4: 199, 5: 286, 6:
10481, 7: 2109, 8: 2657, 9: 5668, 10: 246, 11: 9516, 12: 399, 13: 2384}
Epoch: 4 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
Fininsh Trainig Epoch 3! Time used: 1996.2453582286835
```

```
1999/5377 [10:06<16:57, 3.32it/s]
     [5, 2000] loss: 0.202
      74%|
                                                         Ι
     3999/5377 [20:13<06:57, 3.30it/s]
     [5, 4000] loss: 0.190
     100%|
                                                Τ
     5377/5377 [27:11<00:00, 3.30it/s]
     Epoch: 5 Training Epoch Accuracy:93.93937632596123
     Epoch: 5 Validation Epoch Accuracy:93.02055240398029
     Epoch: 5 Correct predictions {0: 52, 1: 18, 2: 560, 3: 5325, 4: 187, 5: 281, 6:
     10528, 7: 2090, 8: 2665, 9: 5674, 10: 246, 11: 9608, 12: 401, 13: 2375}
     Epoch: 5 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
     11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
     Epoch: 5 Correct predictions {0: 52, 1: 18, 2: 560, 3: 5325, 4: 187, 5: 281, 6:
     10528, 7: 2090, 8: 2665, 9: 5674, 10: 246, 11: 9608, 12: 401, 13: 2375}
     Epoch: 5 Total predictions {0: 52, 1: 18, 2: 587, 3: 5470, 4: 213, 5: 288, 6:
     11135, 7: 2177, 8: 3001, 9: 5799, 10: 247, 11: 10405, 12: 404, 13: 3216}
     Fininsh Trainig Epoch 4! Time used: 1995.0119655132294
     Done training!
[16]: import numpy as np
      import matplotlib.pyplot as plt
      from sklearn import metrics
      import time
      from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, __
      ⇒classification_report, roc_curve, auc
      from sklearn.metrics import precision_score
      from sklearn.metrics import recall_score
      from sklearn.metrics import f1_score
      import seaborn as sns
[17]: class TransferEffiNet(nn.Module):
          def __init__(self):
              super(). init ()
              self.base_effi_net = models.efficientnet_b7(pretrained=True)
              self.conv_model = self.get_conv_layers()
              self.avg_pool = self.transition_layer()
              self.fc_model = self.get_fc_layers()
              self.activate_training_layers()
          def activate_training_layers(self):
              for name, param in self.conv_model.named_parameters():
                  number = int(name.split('.')[1])
```

37%1

```
# for all layers except the last conv layer, set param.
\rightarrow requires_grad = False
           if number == 8:
               param.requires_grad = True
           else:
               param.requires grad = False
      for name, param in self.fc model.named parameters():
           # for all of these layers set param.requires_grad as True
          param.requires_grad = True
  def get_conv_layers(self):
      return self.base_effi_net.features
  def transition_layer(self):
      return self.base_effi_net.avgpool
  def get_fc_layers(self):
      return nn.Sequential(
           nn.Dropout(p=0.5, inplace=False),
          nn.Linear(in features=2560, out features=1024, bias=True),
          nn.ReLU(inplace=True),
           nn.Dropout(p=0.5, inplace=False),
          nn.Linear(in_features=1024, out_features=512, bias=True),
          nn.ReLU(inplace=True),
          nn.Linear(in_features=512, out_features=14, bias=True),
      )
  def forward(self, x):
      x = self.conv_model(x) #call the conv layers
      x = self.avg_pool(x) #call the avg pool layer
      x = torch.flatten(x, 1)
      x = self.fc_model(x) #call fully connected layers
      return x
```

```
[19]: def get_pred(model, train_transforms, batch_size, use_cuda=True):
    val_dataset = SurgicalDataset(valid_image_paths, valid_labels,
    train_transforms)
    valid_loader = DataLoader(val_dataset, batch_size, shuffle = False)
    model = model.to('cuda' if use_cuda else 'cpu')
    pr = []
    pred = []
    l = []
    # again no gradients needed
```

```
t = time.time()
negative_examples = []
model.eval()
with torch.no_grad():
    for data in valid_loader:
        images, labels = data[0].to(device), data[1].to(device)
        l.append(labels)
        outputs = model(images)
        _, predictions = torch.max(outputs, 1)
        m = F.softmax(outputs, dim=1)
        # collect the correct predictions for each class
        for label, prediction in zip(labels, predictions):
            pred.append(prediction)
        for p in m:
            pr.append(p)
processtime = time.time()-t
print('processtime', processtime)
return 1, pred, pr, processtime
```

processtime 330.7153015136719

```
[22]: def get_to_cpu(1, pred, pr):
         for i in range(len(1)):
             1[i] = 1[i].cpu()
         for i in range(len(1)):
             1[i] = 1[i].data.numpy()
         l = [item for sublist in l for item in sublist]
         for i in range(len(1)):
             pred[i] = pred[i].cpu().data.numpy()
         for i in range(len(1)):
             pr[i] = pr[i].cpu().data.numpy()
         return 1, pred, pr
     def get_class_names(y_true, y_predicted, classes):
         yt = [classes[i] for i in y_true]
         yp = [classes[i] for i in y_predicted]
         return yt, yp
     y_test_true, y_test_predicted, pr = get_to_cpu(y_test_true, y_test_predicted,__
[30]: classes = ['adhesiolysis', 'blurry', 'catheter insertion', 'mesh placement', u
      ⇔scoring',
               'positioning suture', 'preperioneal dissection', 'primary hernia
      →repair', 'reduction of hernia', 'stationary idle', 'transitionary idle']
     y_true, y_predicted = get_class_names(y_test_true, y_test_predicted, classes)
[31]: cm = confusion_matrix(y_true, y_predicted, labels=classes)
     disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes)
     disp.plot(include_values=False, xticks_rotation = 'vertical')
     plt.show()
     target names = classes
     c_report = classification_report(y_true, y_predicted, labels=classes,_
      →target_names=target_names, output_dict=True)
     print(c_report)
     basic_report = classification_report(y_true, y_predicted, labels=classes)
     print(basic report)
     sns.heatmap(pd.DataFrame(c_report).iloc[:-1, :].T, annot=True)
     print(metrics.roc_auc_score(y_test_true, pr, multi_class = 'ovr'))
     print(metrics.roc_auc_score(y_test_true, pr, multi_class = 'ovo'))
```



```
{'adhesiolysis': {'precision': 0.8813559322033898, 'recall': 1.0, 'f1-score':
0.936936936936937, 'support': 52}, 'blurry': {'precision': 0.9473684210526315,
'recall': 1.0, 'f1-score': 0.972972972973, 'support': 18}, 'catheter
insertion': {'precision': 0.9271523178807947, 'recall': 0.9540034071550255,
'f1-score': 0.9403862300587741, 'support': 587}, 'mesh placement': {'precision':
0.9596323661921067, 'recall': 0.973491773308958, 'f1-score': 0.9665123876939831,
'support': 5470}, 'mesh positioning': {'precision': 0.684981684981685, 'recall':
0.8779342723004695, 'f1-score': 0.7695473251028806, 'support': 213}, 'out of
body': {'precision': 0.972318339100346, 'recall': 0.9756944444444444,
'f1-score': 0.9740034662045061, 'support': 288}, 'peritoneal closure':
{'precision': 0.9754470490132493, 'recall': 0.9454872025145936, 'f1-score':
0.9602334914264866, 'support': 11135}, 'peritoneal scoring': {'precision':
0.9491371480472298, 'recall': 0.9600367478180983, 'f1-score':
0.9545558346654487, 'support': 2177}, 'positioning suture': {'precision':
0.7452460850111857, 'recall': 0.8880373208930357, 'f1-score':
0.8103998783639957, 'support': 3001}, 'preperioneal dissection': {'precision':
0.8882279273638072, 'recall': 0.9784445594067943, 'f1-score':
0.9311561499958974, 'support': 5799}, 'primary hernia repair': {'precision':
```

```
0.93181818181818, 'recall': 0.9959514170040485, 'f1-score':
0.9628180039138944, 'support': 247}, 'reduction of hernia': {'precision':
0.9796084828711256, 'recall': 0.9234022104757328, 'f1-score':
0.9506753079701183, 'support': 10405}, 'stationary idle': {'precision':
0.8605150214592274, 'recall': 0.9925742574257426, 'f1-score': 0.92183908045977, 'support': 404}, 'transitionary idle': {'precision': 0.8725202057310801, 'recall': 0.7384950248756219, 'f1-score': 0.7999326372515999, 'support': 3216}, 'accuracy': 0.9302055240398028, 'macro avg': {'precision': 0.8982377973375744, 'recall': 0.943110902687326, 'f1-score': 0.9179978359298048, 'support': 43012}, 'weighted avg': {'precision': 0.9340204941348658, 'recall': 0.9302055240398028, 'f1-score': 0.9305808098827887, 'support': 43012}}
```

	precision	recall	f1-score	support
adhesiolysis	0.88	1.00	0.94	52
blurry	0.95	1.00	0.97	18
catheter insertion	0.93	0.95	0.94	587
mesh placement	0.96	0.97	0.97	5470
mesh positioning	0.68	0.88	0.77	213
out of body	0.97	0.98	0.97	288
peritoneal closure	0.98	0.95	0.96	11135
peritoneal scoring	0.95	0.96	0.95	2177
positioning suture	0.75	0.89	0.81	3001
preperioneal dissection	0.89	0.98	0.93	5799
primary hernia repair	0.93	1.00	0.96	247
reduction of hernia	0.98	0.92	0.95	10405
stationary idle	0.86	0.99	0.92	404
transitionary idle	0.87	0.74	0.80	3216
accuracy			0.93	43012
macro avg	0.90	0.94	0.92	43012
weighted avg	0.93	0.93	0.93	43012

^{0.9960168870834695}

^{0.9970472448957345}


```
[45]: train_image_paths = []
      for i in range(71,100):
          filename = '/home/zo2151/assignments/Data1/Test_data/001-00%i'%(i,)
          train_image_paths.append(glob.glob(filename + '/*'))
      train image_paths1 = [item for sublist in train_image_paths for item in sublist]
      train_image_paths1.extend(train_image_paths4)
 []: train_image_paths = []
      for i in range(100,126):
          filename = '/home/zo2151/assignments/Data1/Test_data/001-0%i'%(i,)
          train_image_paths.append(glob.glob(filename + '/*'))
      train_image_paths2 = [item for sublist in train_image_paths for item in sublist]
      train_image_paths1.extend(train_image_paths4)
 []: train_image_paths = []
      for i in range(1,5):
          filename = '/home/zo2151/assignments/Data1/Test_data/002-000%i'%(i,)
          train_image_paths.append(glob.glob(filename + '/*'))
      train_image_paths3 = [item for sublist in train_image_paths for item in sublist]
      train_image_paths1.extend(train_image_paths4)
[51]: train_image_paths = []
      for i in range (1,2):
          filename = '/home/zo2151/assignments/Data1/Test_data/003-000%i'%(i,)
          train image paths.append(glob.glob(filename + '/*'))
      train_image_paths4 = [item for sublist in train_image_paths for item in sublist]
      train_image_paths1.extend(train_image_paths4)
```

```
[52]: len(train_image_paths1)
[52]: 180191
[53]: train_image_paths1 = natsort.natsorted(train_image_paths1)
[56]: names = []
      for i in range(len(train_image_paths1)):
          a = os.path.basename(train_image_paths1[i])
          a1 = a[:-4]
          names.append(a1)
[58]: train_transforms = A.Compose(
          A.Resize(224,224),
              A.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),
              ToTensorV2(),
          ]
      )
[63]: class SurgicalDataset1(Dataset):
          def __init__(self, image_paths, transform=False):
              super(SurgicalDataset1, self).__init__()
              self.image paths = image paths
              self.transform = transform
          def __len__(self):
              return len(self.image_paths)
          def __getitem__(self, idx):
              image_filepath = self.image_paths[idx]
              image = cv2.imread(image_filepath)
              if self.transform is not None:
                  image = self.transform(image=image)["image"]
              return image
[72]: def get_pred1(model, train_transforms, batch_size, use_cuda=True):
          val_dataset = SurgicalDataset1(train_image_paths1, train_transforms)
          valid loader = DataLoader(val dataset, batch size, shuffle = False)
          model = model.to('cuda' if use_cuda else 'cpu')
          pred = []
          # again no gradients needed
          t = ti.time()
          model.eval()
          with torch.no_grad():
```

```
for data in valid_loader:
                   images= data.to(device)
                   outputs = model(images)
                   _, predictions = torch.max(outputs, 1)
                   # collect the correct predictions for each class
                   for prediction in predictions:
                       pred.append(prediction)
           processtime = ti.time()-t
           print('processtime', processtime)
           return pred, processtime
[73]: save_path = os.path.join(os.getcwd(), 'models', 'TransferEffiNet')
       best_effi = TransferEffiNet()
       best_effi.load_state_dict(torch.load(os.path.join(save_path, 'best.pt')))
       transforms = get_transform('effinet')
       batch_size = 32
       y_test_predicted, time = get_pred1(best_effi, transforms, batch_size)
      processtime 1381.637146949768
[76]: for i in range(len(y_test_predicted)):
           y_test_predicted[i] = y_test_predicted[i].cpu().data.numpy()
[77]: d = {'Id': names, 'Predicted': y_test_predicted}
[78]: df = pd.concat([pd.Series(v, name=k) for k, v in d.items()], axis=1)
[80]: df.to_csv("Predicted.csv", index = False)
[81]: some_csv = pd.read_csv("kaggle_template.csv")
[82]: names1 = some_csv["Id"]
[92]: names1 = some csv["Id"].values.tolist()
[93]: names2 = []
       y_test_predicted1 = []
[94]: for i in range(len(names)):
           if names[i] in names1:
               names2.append(names[i])
               y_test_predicted1.append(y_test_predicted[i])
[130]: len(y_test_predicted1)
[130]: 179928
```

```
[149]: d1 = {'Id': names3, 'Predicted': y_test_predicted2}
[150]: df = pd.concat([pd.Series(v, name=k) for k, v in d1.items()], axis=1)
[151]: df.to csv("Predicted.csv", index = False)
[141]: names3=[]
[142]: # The labels are using O-based index, which is different from the final
        →prediction label example. Only one set of labels
       # were submitted due to time constraint.
       for i in range(len(names2)):
           if names2[i][-2] == "-":
               n = int(names2[i][-1:])
               na = names2[i][0:-1]+"0000\%i"\%(n)
               names3.append(na)
           elif names2[i][-3] == "-":
               n = int(names2[i][-2:])
               na = names2[i][0:-2]+"000\%i"\%(n)
               names3.append(na)
           elif names2[i][-4] == "-":
               n = int(names2[i][-3:])
               na = names2[i][0:-3]+"00\%i"\%(n)
               names3.append(na)
           elif names2[i][-5] == "-":
               n = int(names2[i][-4:])
               na = names2[i][0:-4]+"0%i"%(n)
               names3.append(na)
[148]: y_test_predicted2 = []
       for i in range(len(y_test_predicted1)):
           if y_test_predicted1[i] == 0:
               y_test_predicted2.append("adhesiolysis")
           elif y test predicted1[i] == 1:
               y_test_predicted2.append("blurry")
           elif y_test_predicted1[i] == 2:
               y_test_predicted2.append("catheter insertion")
           elif y_test_predicted1[i] == 3:
               y_test_predicted2.append("mesh placement")
           elif y_test_predicted1[i] == 4:
               y_test_predicted2.append("mesh positioning")
           elif y_test_predicted1[i] == 5:
               y_test_predicted2.append("out of body")
           elif y_test_predicted1[i] == 6:
               y_test_predicted2.append("peritoneal closure")
           elif y_test_predicted1[i] == 7:
               y_test_predicted2.append("peritoneal scoring")
```

```
elif y_test_predicted1[i] == 8:
    y_test_predicted2.append("positioning suture")
elif y_test_predicted1[i] == 9:
    y_test_predicted2.append("preperioneal dissection")
elif y_test_predicted1[i] == 10:
    y_test_predicted2.append("primary hernia repair")
elif y_test_predicted1[i] == 11:
    y_test_predicted2.append("reduction of hernia")
elif y_test_predicted1[i] == 12:
    y_test_predicted2.append("stationary idle")
elif y_test_predicted1[i] == 13:
    y_test_predicted2.append("transitionary idle")
```

[]: