23.2.Интегриране на тригонометрични функции

Галина Люцканова

18 септември 2013 г.

Рационални функции на $\sin x$ **и** $\cos x$ Това са функции, които участват само $\sin(x)$ и $\cos(x)$, като позволението действия са събиране, изваждане, умножение и деление. Нека $R(\sin x, \cos x)$ е рационална функция на $\sin x$ и $\cos x$. Нека сега да се опитаме да интегрираме $R(\sin x, \cos x)$:

$$I = \int R(\sin x, \cos x) dx$$

За да сметнем този интеграл можем да ползваме универсаланата субституция (трябва да е учена в училища) т.е.:

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}$$
$$\cos x = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}$$

Нека да положим $\operatorname{tg} \frac{x}{2} = t$, понеже трябва функцията да е обратима искаме $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Нека сега да изразим x спрямо t:

$$\operatorname{tg} \frac{x}{2} = t$$

$$\frac{x}{2} = \operatorname{arctg} t$$

$$x = 2 \operatorname{arctg} t$$

След полагането за универсалната субституция получаваме:

$$\sin x = \frac{2t}{1+t^2}$$
$$\cos x = \frac{1-t^2}{1+t^2}$$

Сега остава единствено да заместим в интеграла:

$$I = \int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) d(2 \arctan t) =$$

$$= \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} dt$$

И каква беше целта на това полагане, еми получихме интеграл от рационалана функция, които вече знаем как да сметнем (виж интегриране на рационални функции).

Добре някой ще пита какво става, ако имаме примерно $\sin(5x)$. Еми можем да повижим степента и да го докараме до вида, който ни е нужен.

$$\sin(5x) = \sin(2x + 3x) = \sin(2x)\cos(3x) + \cos(2x)\sin(3x)$$

Има изведени формули за удвоен ъгъл:

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

И получаваме:

$$\sin(5x) = \sin(2x + 3x) = \sin(2x)\cos(3x) + \cos(2x)\sin(3x)$$

Разбира се има формули за $\sin(3x)$ и $\cos(3x)$, които може да си изведете или да ги запомните:

$$\sin(3x) = 3\sin x - 4\sin^3 x$$
$$\cos(3x) = -3\cos x + 4\cos^3 x$$

Сега остава единствено да заместим:

$$\sin(5x) = \sin(2x + 3x) = \sin(2x)\cos(3x) + \cos(2x)\sin(3x) =$$

$$= 2\sin x \cos x (-3\cos x + 4\cos^3 x) + (\cos^2 x - \sin^2 x)(3\sin x - 4\sin^3 x)$$

И ще сведем задачата към решаване на интеграл от рационална функция на $\sin x$ и $\cos x$. Аналогично като имаме $\operatorname{tg}(x) = \frac{2\operatorname{tg}\frac{x}{2}}{1-\operatorname{tg}^2\frac{x}{2}}$ и пак да заместим. И така нататък. Това не е много бърз метот, но както се казва е сигурен. Т.е. ако имаме рационалана функция на $\sin kx$, $\cos mx$, $\operatorname{tg} lx$, $\cot px$, където k,m,l,p са цели цонстанти, ще можем да сметнем интеграл от тази функция. Разбира се преди да се хвърлим да смятаме като ненормални е хубаво да си по-мислим дали няма начин да избегнем тази огромна сметка.

Чатни случаи Да разгледаме малко частни случаи. Нека $R(\sin x, \cos x)$ е рационална функция на $\sin x$ и $\cos x$:

- 1. Ако $R(-\sin x,\cos x) = -R(\sin x,\cos x)$ полагаме $t=\cos x$ и внасяме $\sin x$ под диференциала
- 2. Ако $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ полагаме $t = \sin x$ и внасяме $\cos x$ под диференциала
- 3. Ако $R(-\sin x, -\cos x) = R(\sin x, \cos x)$ полагаме $t= \operatorname{tg} x$ и внасяме $\frac{1}{\cos^2 x}$ под диференциала

И на края една лемичка, за интегриране на обратните кръгови функции и натурален логаритъм:

<u>Лема 23.2.1:</u> Нека $A(x) \in \{\ln x, \arccos x, \arcsin x, \arctan x, \arctan x\}$, а R(x) е диференцируема функция. Тогава интегралът:

$$\int R'(x)A(x)dx = \int A(x)dR(x) = R(x)A(x) - \int R(x)dA(x) =$$
$$= R(x)A(x) - \int R(x)A'(x)dx$$

И тук настава въпросът какво хубаво нещо има в това, което получихме. Много просто - ние получихме A'(x), което в нашия случай е:

$$(\ln x)' = \frac{1}{x}$$

$$(\arcsin x)' = -(\arccos x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arctg} x)' = -(\operatorname{arccotg} x)' = \frac{1}{1 + x^2},$$

което както забелязваме ги свежда или до рационални или до ирационални подинтегрални функции. Като вече обяснихме как се смятат рационалните, е за иррационалните ще разберем в следващата подчаст.