160327 P.11

N93-28172

MIT Space Engineering Research Center

INHIBITING MULTIPLE MODE VIBRATION IN

CONTROLLED FLEXIBLE SYSTEMS

James M. Hyde Kenneth W. Chang Prof. Warren P. Seering Massachusetts Institute of Technology

July 1, 1991

Space Engineering Research Center

OUTLINE

Input Pre-Shaping Background

Developing Multiple-Mode Shapers

The MACE Test Article

Tests and Results

LINEAR SYSTEM IMPULSE RESPONSE

$$y_i(t) = A_i e^{-\zeta} \omega (t - t_i) \sin((t - t_i) \omega \sqrt{1 - \zeta^2}$$

Magnitude of Impulse *i* Time of Impulse *i* Response to Impulse i yi Ai

System Natural Frequency $3 \sim$

System Damping Ratio

Space Engineering Research Center

RESPONSE TO "N" IMPULSES

i Impulse CounterNumber of Impulses

AMPLITUDE OF THE MULTIPLE-IMPULSE RESPONSE ENVELOPE

$$Amp = \left[\left(\sum_{i=1}^{N} A_i e^{-\zeta} \omega^{(t_N - t_i)} \sin(t_i \omega \sqrt{1 - \zeta^2}) \right)^2 + \right]$$

$$\left(\sum_{i=1}^{N} A_i e^{-\zeta} \omega^{(t_N - t_i)} \cos(t_i \omega \sqrt{1 - \zeta^2})\right)^2\right]^{I/2}$$

Expression for envelope amplitude at tw, the time of the final impulse.

ELIMINATING RESIDUAL VIBRATION

$$\sum_{i=1}^{N} A_i e^{-\zeta} \omega t_i \sin(t_i \omega \sqrt{1-\zeta^2}) = 0$$

$$\sum_{i=1}^{N} A_i t_i e^{-\zeta} \omega t_i \sin(t_i \omega \sqrt{1-\zeta^2}) = 0$$

$$\sum_{i=1}^{N} A_i e^{-\zeta} \omega t_i \cos(t_i \omega \sqrt{1-\zeta^2}) = 0$$

$$\sum_{i=1}^{N} A_i t_i e^{-\zeta} \omega t_i \cos(t_i \omega \sqrt{1-\zeta^2}) = 0$$

RESPONSE TO INPUTS

EXTENDING TO MULTIPLE MODE PROBLEMS

CONVOLUTION

$$\omega_1 = 0.20 \text{ Hz}$$
 $\omega_2 = 0.26 \text{ Hz}$

$$\omega_1 = 0.25 \text{ mz}$$
 $\omega_2 = 0.25 \text{ Hz}$ $\omega_3 = 0.45 \text{ Hz}$ $\omega_4 = 0.59 \text{ Hz}$

DIRECT SOLUTION CONSTRAINT EQUATIONS

$$\sum_{1}^{N} A_{i} e^{-\zeta_{j}} \omega_{j} t_{i} \sin\left(t_{i} \omega_{j} \sqrt{1-\zeta_{j}^{2}}\right) = 0$$

$$\sum_{i=1}^{N} A_i e^{-\zeta_j \omega_j t_i} \cos(t_i \omega_j \sqrt{1-\zeta_j^2}) = 0$$

$$\sum_{i}^{N} A_{i} t_{i} e^{-\zeta_{j}} \omega_{j} t_{i} \sin(t_{i} \omega_{j} \sqrt{1 - \zeta_{j}^{2}}) = 0$$

$$\sum_{i=1}^{N} A_i t_i e^{-\zeta_j \omega_j t_i} \cos(t_i \omega_j \sqrt{1-\zeta_j^2}) = 0$$

These four equations are repeated for each mode "j"

COST FUNCTION

$$Cost = \sum_{j=1}^{M} \left[\left(\sum_{i=1}^{N} A_i t_i^2 e^{-\zeta_j \omega_j t_i} \sin(t_i \omega_j \sqrt{1-\zeta_j^2}) \right)^2 \right]$$

$$\left(\sum_{i=1}^{N} A_i t_i^2 e^{-\zeta_j \omega_j t_i} \cos\left(t_i \omega_j \sqrt{1-\zeta_j^2}\right)\right)^2\right]$$

M Number of modesj Modal index

LINEAR APPROXIMATION SEQUENCE

INTERPRETED LINEAR SEQUENCE

EXACT DIRECT SOLUTION SEQUENCE

