

## Kriptarium Ar-Ge Yazılım Danışmanlık Savunma Sanayi ve Ticaret Ltd. Şti.

# TİD Tabanlı Akıllı Chatbot Sistemi Gereksinim Analizi Dokümanı

Hazırlayan
Elif KOÇOĞLU

Proje Sorumlusu

Fatih ÖZKAYNAK

11 Ağustos 2025

## **İÇİNDEKİLER**

- 1. GİRİŞ
  - o 1.1 Amaç
  - 1.2 Hedef Kitle
  - 1.3 Doküman Yapısı
- 2. KAPSAM
  - o 2.1 Proje Kapsamı
  - o 2.2 Kapsam Dışı Konular
  - o 2.3 Varsayımlar ve Kısıtlar
- 3. TANIMLAR
  - o 3.1 Kullanıcı Tanımları
  - o 3.2 Teknik Terimler Sözlüğü
- 4. İŞLEVSEL GEREKSİNİMLER
  - o 4.1 Çok Modlu İletişim Gereksinimleri
  - 4.2 İletişim ve Bağlam Yönetimi Gereksinimleri
  - 4.3 Öğrenme ve Eğitim Gereksinimleri
  - 4.4 Hata Yönetimi ve Düzeltme Gereksinimleri
  - 4.5 Sistem Optimizasyon ve Performans Gereksinimleri
  - 4.6 Kişiselleştirme ve Profil Yönetimi Gereksinimleri
  - 4.7 Çoklu Kullanıcı ve Sistem Yönetimi Gereksinimleri
  - o 4.8 Gelişmiş Etkileşim Gereksinimleri
- 5. İŞLEVSEL OLMAYAN GEREKSİNİMLER
  - o 5.1 Performans Gereksinimleri
  - 5.2 Güvenlik ve Koruma Gereksinimleri
  - o 5.3 Erişilebilirlik ve Kullanılabilirlik Gereksinimleri
  - o 5.4 Ölçeklenebilirlik ve Platform Uyumluluğu Gereksinimleri
  - o 5.5 Güvenilirlik ve Hata Toleransı Gereksinimleri
- 6. TEKNOLOJİ BİLEŞENLERİ VE SİSTEM MİMARİSİ
  - o 6.1. Temel Teknolojiler
  - o 6.2 Sistem Mimarisi
  - o 6.3. Kullanıcı Profili Odaklı Tasarım
  - o 6.4 İşlevsel Gereksinimlere Uygun Mimari
  - o 6.5 İşlevsel Olmayan Gereksinimlere Uygun Mimari
  - 6.6 Veri Yönetimi Ve Bulut Barındırma
- 7. KAYNAKLAR VE REFERANSLAR
- 8. EKLER
  - o Ek-A Donanım ve Yazılım Gereksinimleri
  - Ek-B İzlenebilirlik ve Test Dokümanları
  - Ek-C Teknik Diyagramlar
  - Ek-D Araştırma ve Karşılaştırma
  - o Ek-E Persona Bazlı Kullanım Senaryoları ve Akışlar

## 1. GİRİŞ

## 1.1 Amaç

Bu doküman, TİD Tabanlı Akıllı Chatbot Sistemi'nin teknik gereksinimlerini, sistem mimarisini ve geliştirme sürecine yön verecek detaylı teknik bilgileri içermektedir. Dokümanın temel amacı, proje ekibinin sistem geliştirme sürecinde ortak bir anlayış oluşturmasını sağlamak ve teknik gerçekleştirme sürecine rehberlik etmektir.

Bu çalışmanın temel amacı, Türk İşaret Dili (TİD) ile etkileşim kurarak doğal Türkçe dilde konuşabilen, gerçek zamanlı çeviri yapabilen ve yapay zekâ destekli bir chatbot sistemi geliştirmektir. Proje, işitme engelli bireylerin dijital platformlarda karşılaştıkları iletişim engellerini ortadan kaldırmayı hedeflemekte ve bu doğrultuda kapsayıcı bir teknolojik çözüm sunmayı amaçlamaktadır.

#### 1.2 Hedef Kitle

Bu doküman aşağıdaki paydaşlar için hazırlanmıştır:

#### Teknik Ekip:

- Yazılım geliştiricileri (Frontend ve Backend)
- Yapay zekâ/makine öğrenmesi uzmanları
- Sistem mimarları
- DevOps mühendisleri
- Test uzmanları

#### Proje Yönetimi:

- Proje yöneticileri
- Teknik liderler
- İş analisti
- Proje sahipleri (şirket yönetimi)

#### Son Kullanıcı Kategorileri:

- İşitme Engelli Bireyler
- Konuşma Engelli Bireyler
- İşitme ve Konuşma Engelli Bireylerin Aile Üyeleri ve Yakınları
- Eğitim Sektörü Çalışanları
- Sağlık Sektörü Profesyonelleri
- Kamu Sektörü Temsilcileri
- Profesyonel Destek Grupları

## 1.3 Doküman Yapısı

Bu doküman altı ana bölümden oluşmaktadır:

- Kapsam: Projenin sınırları, varsayımlar ve kısıtların tanımlandığı bölüm
- Tanımlar: Kullanıcı tiplerinin ve teknik terimlerin açıklandığı referans bölümü
- İşlevsel Gereksinimler: Sistemin sunması gereken temel fonksiyonların detaylandırıldığı bölüm
- İşlevsel Olmayan Gereksinimler: Performans, güvenlik ve kalite özelliklerinin belirlendiği bölüm
- Teknoloji Bileşenleri: Sistem mimarisi ve teknoloji seçimlerinin açıklandığı bölüm
- Ekler: Destekleyici dokümantasyon ve referansların yer aldığı bölüm

Her bölüm, sistem geliştirme sürecinin farklı aşamalarında referans olarak kullanılmak üzere yapılandırılmıştır.

#### 2. KAPSAM

## 2.1 Proje Kapsamı

Bu proje, TİD Tabanlı Akıllı Chatbot Sistemi'nin geliştirilmesi sürecinde aşağıdaki ana bileşenleri kapsamaktadır:

#### 2.1.1 Temel Sistem Özellikleri

- Gelişmiş İşaret Tanıma: 21 nokta el takibi, yüz ifade tanıma ve 3D hareket analizi
- Çok Modlu Girdi Sistemi: TİD işaret dili, yazılı metin ve sesli komut desteği
- Çok Modlu Çıktı Sistemi: Metin, sesli yanıt ve işaret dili animasyonu
- Gerçek Zamanlı Çeviri: TİD ile Türkçe arasında anlık çeviri
- İki Dilli Destek: Türkçe-İngilizce çeviri kapasitesi
- Bağlamsal Sohbet Takibi: Ardışık işaretlerin cümle yapısında birleştirilmesi

#### 2.1.2 Platform Desteği

- Web Uygulaması: Google Chrome, Mozilla Firefox, Microsoft Edge, Safari, Yandex Browser
- **Mobil Uygulamalar:** iOS (iOS 12+) ve Android (Android 8.0+) platformları
- Masaüstü Uygulaması: Windows, macOS ve Linux işletim sistemleri

#### 2.1.3 Kullanıcı Özellikleri

- Kullanıcı giriş ve kimlik doğrulama sistemi
- Kişiselleştirilmiş profil yönetimi ve öğrenme takibi
- Çoklu kullanıcı desteği ve otomatik geçiş
- İnteraktif TİD eğitim modülü
- Acil durum hızlı yanıt sistemi

## 2.1.4 İleri Teknoloji Özellikleri

- Adaptif gürültü filtreleme ve kalite değerlendirme
- Belirsiz işaret girdi yönetimi ve bağlamsal hata düzeltme
- Coklu doğrulama sistemi ve güvenlik protokolleri
- Hibrit etkileşim (işaret + sesli komut) desteği
- Gelişmiş analitik ve performans izleme

## 2.2 Kapsam Dışı Konular

#### 2.2.1 Dil ve Coğrafi Sınırlamalar

- **Bölgesel TİD Farklılıkları:** İlk aşamada farklı bölgelerin özgün işaret dili varyasyonları desteklenmeyecek
- **Uluslararası İşaret Dilleri:** Amerikan İşaret Dili (ASL), İngiliz İşaret Dili (BSL) ve diğer ülke işaret dilleri
- Üç veya Daha Fazla Dil Desteği: Türkçe-İngilizce dışındaki dil çiftleri

#### 2.2.2 Teknik Sınırlamalar

- 720p Altı Video Kalitesi: Düşük çözünürlüklü kameraların desteklenmemesi
- Offline Çalışma: İnternet bağlantısı gerektirmeyen tam offline mod
- Eski Donanım Desteği: Minimum sistem gereksinimlerini karşılamayan cihazlar

#### 2.2.3 Gelişmiş Özellikler (Gelecek Versiyonlar İçin)

- Video konferans entegrasyonu
- Grup sohbeti desteği
- Profesyonel eğitim modülleri
- API entegrasyonu ve üçüncü taraf yazılım desteği

## 2.3 Varsayımlar ve Kısıtlar

#### 2.3.1 Teknik Varsayımlar

- **Donanım Gereksinimleri:** Kullanıcıların en az 720p kamera, çift çekirdekli işlemci ve 4GB RAM'e sahip cihazlar kullandığı
- İnternet Bağlantısı: Temel fonksiyonlar için minimum 5 Mbps internet hızına erişim
- **Aydınlatma Koşulları:** Yeterli aydınlatma ortamında kullanım (doğal veya yapay 1şık)
- Kamera Konumlandırması: Kullanıcının kamera karşısında uygun pozisyonda bulunması

#### 2.3.2 Kullanıcı Profili Varsayımları

- Yaş Grubu: 13 yaş ve üzeri kullanıcı hedef kitlesi
- **TİD Bilgi Seviyesi:** Temel TİD bilgisine sahip kullanıcıların öncelikli hedef grup olması
- **Teknoloji Okuryazarlığı:** Kullanıcıların temel bilgisayar/mobil cihaz kullanım becerisine sahip olması
- Fiziksel Erişim: Mobil cihaz veya bilgisayar erişimine sahip kullanıcılar

#### 2.3.3 Sistem Performans Kısıtları

- Yanıt Süresi: Gerçek zamanlı işaret tanıma için maksimum 2 saniye gecikme
- Eş Zamanlı Kullanıcı: Sistem kapasitesine bağlı olarak sınırlı eş zamanlı kullanıcı desteği
- Veri Güvenliği: Kişisel verilerin güvenli saklanması ve işlenmesi gereksinimleri
- Sistem Güncellemeleri: Periyodik güncelleme ve bakım pencerelerinin olması

#### 2.3.4 Yasal ve Düzenleyici Kısıtlar

- Veri Koruma: KVKK (Kişisel Verilerin Korunması Kanunu) uyumluluğu
- Erişilebilirlik Standartları: WCAG 2.1 AA seviyesi erişilebilirlik standartlarına uyum
- Güvenlik Protokolleri: Kişisel sağlık ve eğitim verilerinin korunması gereksinimleri

## 3. TANIMLAR

## 3.1 Kullanıcı Tanımları

## 3.1.1 Primer Kullanıcılar (Doğrudan Faydalanıcılar)

| Kullanıcı<br>Tipi              | Tanım                                                                                                            | Ana İhtiyaçlar                                                                     | Sistem Yetkileri                                                               |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| İşitme<br>Engelli<br>Bireyler  | Bilateral veya unilateral işitme<br>kaybı olan, TİD ile iletişim<br>kuran bireyler (179.867 kişi -<br>Türkiye)   | Gerçek zamanlı çeviri,<br>görsel feedback,<br>akademik/iş<br>terminolojisi desteği | Tam erişim, kişisel<br>profil yönetimi,<br>eğitim modülleri,<br>sohbet geçmişi |
| Konuşma<br>Engelli<br>Bireyler | Konuşma fonksiyonu kısıtlı<br>olan, düşüncelerini işaret dili<br>ile aktaran bireyler (33.686<br>kişi - Türkiye) | İşaret dili ile ifade etme,<br>hızlı yanıt sistemi, acil<br>durum desteği          | Tam erişim, hibrit<br>etkileşim modu, acil<br>durum hızlı yanıt                |

## 3.1.2 Sekonder Kullanıcılar (Aracı Kullanıcılar)

| Kullanıcı<br>Tipi              | Tanım                                                       | Ana İhtiyaçlar                                                            | Sistem Yetkileri                                                                               |
|--------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Eğitim<br>Sektörü<br>Personeli | Öğretmenler, özel<br>eğitim uzmanları, okul<br>yöneticileri | Sınıf içi iletişim, ders<br>anlatımı desteği, öğrenci<br>değerlendirme    | Eğitmen paneli, çoklu<br>öğrenci yönetimi, eğitim<br>terminolojisi, ders planı<br>entegrasyonu |
| Sağlık<br>Sektörü<br>Personeli | Doktorlar, hemşireler,<br>acil durum müdahale<br>ekipleri   | Hasta iletişimi, tanı<br>süreci, tedavi<br>açıklamaları, acil<br>müdahale | Tıbbi terminoloji erişimi, 7/24 kullanım, hijyenik kontrol, hızlı triaj modu                   |
| Kamu                           | Belediye memurları,                                         | Resmi işlem yürütme,                                                      | Kurumsal güvenlik, resmi                                                                       |
| Sektörü                        | polis, jandarma,                                            | hizmet sunma, yasal                                                       | işlem terminolojisi, çoklu                                                                     |
| Personeli                      | mahkeme personeli                                           | süreçler                                                                  | vatandaş desteği                                                                               |

## 3.1.3 Tersiyer Kullanıcılar (Destekleyici Kullanıcılar)

| Kullanıcı Tipi                    | Tanım                                                | Ana İhtiyaçlar                                                   | Sistem Yetkileri                                                       |
|-----------------------------------|------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|
| Aile Üyeleri ve<br>Yakınlar       | İşitme/konuşma engelli<br>bireylerin aile çevresi    | Aile içi iletişim, sosyal<br>aktivite desteği, çocuk<br>gelişimi | Aile profili yönetimi,<br>çocuk dostu arayüz,<br>eğitici oyunlar       |
| Profesyonel<br>Destek<br>Grupları | İşaret dili tercümanları,<br>sosyal hizmet uzmanları | Profesyonel çeviri<br>desteği, sistem<br>optimizasyonu           | İleri terminoloji<br>erişimi, analitik<br>raporlar, sistem<br>yönetimi |

## 3.1.4 Sistem Yöneticisi ve Teknik Roller

| Kullanıcı<br>Tipi    | Tanım                                                | Ana İhtiyaçlar                                        | Sistem Yetkileri                                                      |
|----------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|
| Sistem<br>Yöneticisi | Teknik altyapı ve<br>kullanıcı yönetimi<br>sorumlusu | Sistem performansı,<br>güvenlik, kullanıcı<br>desteği | Tam yönetici erişimi, analitik<br>dashboard, sistem<br>konfigürasyonu |
| İçerik<br>Yöneticisi | TİD veritabanı ve<br>eğitim materyali<br>sorumlusu   | İşaret veritabanı<br>güncellemesi, eğitim<br>içeriği  | İçerik düzenleme, sözlük<br>yönetimi, kalite kontrol                  |

# 3.2 Teknik Terimler Sözlüğü

## 3.2.1 Lingustik ve İşaret Dili Tanıma Terimleri

| Terim Türkçe Karşılığı                 |                                    | Açıklama                                                                                 |  |
|----------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|--|
| TİD                                    | Türk İşaret Dili                   | Türkiye'de işitme engelliler tarafından<br>kullanılan görsel-mekânsal dil                |  |
| ASL (American Sign<br>Language)        | Amerikan İşaret Dili               | Karşılaştırma referansı                                                                  |  |
| BSL (British Sign<br>Language)         | İngiliz İşaret Dili                | Karşılaştırma referansı                                                                  |  |
| 21 Nokta El Takibi                     | Yirmi Bir Nokta El<br>İzleme       | Elin anatomik yapısındaki 21 kritik noktanın eş zamanlı takibi                           |  |
| Hand Landmark Detection                | 21 Nokta El Takibi<br>Teknolojisi  | El pozisyonu ve parmak hareketlerinin tespit edilmesi                                    |  |
| Facial Expression Recognition          | Yüz İfadesi Tanıma<br>Teknolojisi  | İşaret dili ile birlikte yüz mimiklerinin analizi                                        |  |
| İşaret Dizisi                          | İşaret Sıralaması                  | Art arda yapılan işaretlerin birleştirilmesi                                             |  |
| TİD Gramatikal Yapısı                  | İşaret Dili Dilbilgisi             | Türk İşaret Dili'nin kendine özgü cümle<br>kuralları                                     |  |
| Multi-modal<br>Communication           | Çok Modlu İletişim                 | Birden fazla iletişim kanalı                                                             |  |
| Bilateral Sensorinöral<br>İşitme Kaybı | İki Kulak İç Kulak<br>İşitme Kaybı | Her iki kulakta iç kulak veya işitme<br>sinirindeki hasardan kaynaklanan işitme<br>kaybı |  |
| Unilateral İşitme Kaybı                | Tek Kulak İşitme<br>Kaybı          | Tek kulakta meydana gelen işitme kaybı                                                   |  |
| Cross-modal Çeviri                     | Farklı Duyusal<br>Çeviri           | Farklı duyusal modaliteler (görsel, işitsel) arasında yapılan çeviri işlemi              |  |

## 3.2.2 Yapay Zeka ve Tanıma Teknolojileri

| Terim                                 | Türkçe Karşılığı                             | Açıklama                                                                 |
|---------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|
| Güvenilirlik Skoru                    | Tanıma Güven Puanı                           | Sistemin işaret tanıma konusundaki kesinlik oranı                        |
| Makine Öğrenmesi                      | Otomatik Öğrenme                             | Bilgisayarların deneyimle öğrenmesi                                      |
| Computer Vision                       | Bilgisayarlı Görü                            | Kamera ile görüntü analizi                                               |
| Deep Learning                         | Derin Öğrenme                                | Çok katmanlı yapay sinir ağları                                          |
| Adaptif Algoritma                     | Uyarlanabilir Algoritma                      | Kullanıcıya göre kendini ayarlayan sistem                                |
| Bağlamsal Çıkarım                     | Bağlam Analizi                               | Önceki konuşmadan anlam çıkarma                                          |
| MediaPipe                             | Google Çok Modlu<br>Algılama Framework'ü     | Gerçek zamanlı el takibi, yüz ifade<br>tanıma için açık kaynak framework |
| TensorFlow                            | Google Makine<br>Öğrenmesi Platformu         | Derin öğrenme modelleri ve sinir ağı<br>eğitimi                          |
| OpenCV                                | Açık Kaynak Bilgisayarlı<br>Görü Kütüphanesi | Görüntü işleme ve bilgisayarlı görü uygulamaları                         |
| CNN (Convolutional<br>Neural Network) | Evrişimli Sinir Ağı                          | Görüntü tanıma için optimize edilmiş derin öğrenme modeli                |
| RNN (Recurrent Neural<br>Network)     | Tekrarlayan Sinir Ağı                        | Ardışık işaret hareketlerinin bağlamsal analizi                          |
| LSTM (Long Short-<br>Term Memory)     | Uzun Kısa Süreli Bellek                      | Uzun vadeli bağımlılıkları öğrenebilen<br>özel RNN türü                  |
| Natural Language<br>Processing (NLP)  | Doğal Dil İşleme                             | Metin ve dil verilerini anlama<br>teknolojisi                            |
| Real-time Inferencing                 | Gerçek Zamanlı Çıkarım                       | Anlık işaret tanıma ve yanıt üretme                                      |
| Differential Privacy                  | Veri Gizliliği Koruma<br>Tekniği             | Kullanıcı verilerinin anonimleştirilmesi                                 |
| Transformers                          | Derin Öğrenme Mimarisi                       | Çoklu dil çeviri ve metin işleme                                         |

## 3.2.3 Çok Modlu Sistem Terimleri

| Terim            | Türkçe Karşılığı        | Açıklama                                       |
|------------------|-------------------------|------------------------------------------------|
| Çok Modlu Girdi  | Çoklu Giriş Türü        | TİD, ses ve metin girişini aynı anda alma      |
| Çok Modlu Çıktı  | Çoklu Çıkış Türü        | Metin, ses ve TİD animasyonunu birlikte sunma  |
| Text-to-Speech   | Metinden Sese           | Yazılı metni sesli konuşmaya çevirme           |
|                  |                         |                                                |
| Speech-to-Text   | Sesten Metne Dönüştürme | Sesli girdi işleme                             |
| Hibrit Etkileşim | Karma İletişim          | Farklı girdi türlerinin aynı anda kullanılması |
| Senkronize Çıktı | Eşzamanlı Çıkış         | Üç modaliteden aynı anda yanıt verme           |
| Modal Geçiş      | Girdi Türü Değişimi     | Ses, metin ve TİD arasında otomatik geçiş      |

## 3.2.4 Web ve Mobil Geliştirme Teknolojileri

| Terim                     | Türkçe Karşılığı                                                      | Açıklama                                       |
|---------------------------|-----------------------------------------------------------------------|------------------------------------------------|
| FastAPI                   | Yüksek Performanslı Web<br>Framework                                  | Python tabanlı backend API geliştirme          |
| Flask                     | Hafif Web Framework                                                   | Python için web uygulaması geliştirme          |
| React Native              | Çapraz Platform Mobil iOS ve Android uygulama<br>Framework geliştirme |                                                |
| Flutter                   | Google Mobil Geliştirme<br>Framework'ü                                | Tek kod tabanıyla mobil uygulama geliştirme    |
| WebRTC                    | Gerçek Zamanlı İletişim<br>Teknolojisi                                | Tarayıcı tabanlı video akışı                   |
| PWA (Progressive Web App) | İlerlemeli Web Uygulaması                                             | Çevrimdışı çalışma ve mobil deneyim            |
| Responsive Design         | Duyarlı Tasarım                                                       | Farklı ekran boyutlarına uyarlanabilen tasarım |
| HTML5/CSS3                | Web Yapısı ve Stil<br>Teknolojileri                                   | Kullanıcı arayüzü geliştirme                   |
| JavaScript                | İstemci Tarafı Programlama<br>Dili                                    | Dinamik web arayüzleri                         |

## 3.2.5 Sistem Mimarisi ve Altyapı

| Terim                          | Türkçe Karşılığı                    | <b>A</b> çıklama                                |
|--------------------------------|-------------------------------------|-------------------------------------------------|
| Mikroservis Mimarisi           | Küçük Hizmet Mimarisi               | Uygulamayı küçük, bağımsız<br>hizmetlere ayırma |
| Load Balancing                 | Yük Dengeleme                       | Sistem yükünü dağıtma tekniği                   |
| Docker                         | Konteynerleştirme<br>Teknolojisi    | Uygulamaların taşınabilir paketlenmesi          |
| Kubernetes                     | Konteyner Orkestrasyon<br>Platformu | Konteyner yönetimi ve ölçeklendirme             |
| CI/CD Pipeline                 | Sürekli Entegrasyon/Dağıtım         | Otomatik yazılım dağıtımı                       |
| Nginx                          | Web Sunucusu ve Ters Proxy          | Yük dengeleme ve web sunma                      |
| Redis                          | Bellek Tabanlı Veri<br>Depolama     | Önbellekleme ve oturum yönetimi                 |
| Circuit Breaker Pattern        | Hata Toleransı Tasarım<br>Deseni    | Sistem güvenilirliği                            |
| Horizontal/Vertical<br>Scaling | Yatay/Dikey Ölçeklendirme           | Sistem kapasitesi artırma                       |
| Blue-green Deployment          | Sıfır Kesinti Dağıtım               | Güvenli sistem güncellemesi                     |

## 3.2.6 Veritabanı ve Veri Yönetimi

| Terim                     | Türkçe Karşılığı                      | <b>A</b> çıklama                       |
|---------------------------|---------------------------------------|----------------------------------------|
| PostgreSQL                | İlişkisel Veritabanı Sistemi          | Kullanıcı bilgileri ve sistem verileri |
| SQLite                    | Hafif Dosya Tabanlı Veritabanı        | Küçük ölçekli veri depolama            |
| Sharding                  | Veritabanı Parçalama                  | Büyük veri setlerinin dağıtılması      |
| Real-time Replication     | Gerçek Zamanlı Veri Çoğaltma          | Veri yedekleme ve<br>senkronizasyon    |
| Point-in-time<br>Recovery | Belirli Zamana Geri Dönük<br>Kurtarma | Veri kaybı durumunda kurtarma          |
| AWS S3/MinIO              | Nesne Depolama Hizmetleri             | Büyük dosya ve medya depolama          |
| Data Corruption           | Veri Bozulması                        | Veri bütünlük kontrolleri              |

## 3.2.7 Sistem Performans ve Kalite Detay Metrikleri

| Terim                        | Türkçe<br>Karşılığı | Açıklama                                                               |
|------------------------------|---------------------|------------------------------------------------------------------------|
| Accuracy (Doğruluk<br>Oranı) | Başarı Yüzdesi      | Sistemin doğru tanıma yapma yüzdesi (örnek: %95 doğruluk)              |
| F1 Score                     | F1 Puanı            | Precision ve Recall değerlerinin harmonik ortalaması                   |
| Precision (Kesinlik)         | Hassasiyet          | Pozitif tahmin edilen örneklerin ne kadarının gerçekten pozitif olduğu |
| Recall (Duyarlılık)          | Geri Çağırma        | Gerçek pozitif örneklerin ne kadarının doğru tahmin edildiği           |
| Resolution<br>(Çözünürlük)   | Görüntü<br>Kalitesi | Görüntü kalitesi ölçüsü (örnek: 720p, 1080p)                           |
| Confidence Score             | Güven Puanı         | Sistemin tanıma işlemindeki güven seviyesi (0-1 arası)                 |

## 3.2.8 Teknoloji Altyapı Detay Terimleri

| Terim                                   | Türkçe Karşılığı                   | <b>A</b> çıklama                                                                 |
|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------|
| API (Application Programming Interface) | Uygulama<br>Programlama<br>Arayüzü | Farklı yazılım uygulamaları arasında veri alışverişini sağlayan arayüz           |
| SDK (Software<br>Development Kit)       | Yazılım Geliştirme<br>Kiti         | Yazılım geliştirme için gerekli araçlar,<br>kütüphaneler ve dokümantasyon paketi |
| REST API                                | RESTful Web Servisi                | Web servisleri arasında veri transferi için kullanılan mimari stil               |
| JSON (JavaScript Object<br>Notation)    | JavaScript Nesne<br>Notasyonu      | Veri değişimi için kullanılan hafif, metin tabanlı format                        |
| WebSocket                               | Web Soketi                         | İstemci ve sunucu arasında çift yönlü, gerçek zamanlı iletişim protokolü         |

## 3.2.9 Erişilebilirlik Detay Terimleri

| Terim                              | Türkçe Karşılığı                   | Açıklama                                                                           |
|------------------------------------|------------------------------------|------------------------------------------------------------------------------------|
| Multi-modal<br>Interface           | Çok Modlu Arayüz                   | Birden fazla girdi/çıktı modalitesini destekleyen kullanıcı arayüzü                |
| Adaptive UI                        | Uyarlanabilir<br>Kullanıcı Arayüzü | Kullanıcı ihtiyaçlarına göre kendini ayarlayan kullanıcı arayüzü                   |
| Accessibility<br>(Erişilebilirlik) | Erişilebilirlik                    | Engelli kullanıcılar için sistem<br>kullanılabilirliğini artıran tasarım yaklaşımı |

## 3.2.10 Proje Yönetimi ve Metodoloji Terimleri

| Terim                            | Türkçe Karşılığı              | Açıklama                                                               |
|----------------------------------|-------------------------------|------------------------------------------------------------------------|
| MVP (Minimum Viable Product)     | Minimum<br>Uygulanabilir Ürün | Minimum özelliklere sahip, kullanılabilir<br>ürün versiyonu            |
| User Story                       | Kullanıcı Hikayesi            | Kullanıcı perspektifinden yazılan özellik tanımı                       |
| Persona                          | Kullanıcı Profili             | Hedef kullanıcı gruplarını temsil eden<br>kurgusal karakter profilleri |
| Use Case (Kullanım<br>Senaryosu) | Kullanım Durumu               | Sistemin belirli bir hedef için nasıl kullanılacağını gösteren senaryo |
| Agile Methodology                | Çevik Metodoloji              | İteratif ve artırımsal yazılım geliştirme<br>yaklaşımı                 |
| Sprint                           | Sprint Dönemi                 | Agile metodolojide belirli sürede tamamlanacak iş parçası              |

## 3.2.11 Güvenlik ve Kriptografi

| <b>Terim</b><br>Kimlik Doğrulama | <b>Türkçe Karşılığı</b><br>Kullanıcı Teyidi | <b>Açıklama</b><br>Sistemin kullanıcıyı tanıması |
|----------------------------------|---------------------------------------------|--------------------------------------------------|
| Güvenli Oturum                   | Korumalı Giriş                              | Şifreli kullanıcı oturumu                        |
| Çoklu Doğrulama                  | Çift Teyit                                  | Kritik işlemler için ek onay alma                |
| Oturum Yönetimi                  | Giriş Kontrolü                              | Kullanıcı oturumlarının güvenli yönetimi         |
| Veri Güvenliği                   | Bilgi Koruması                              | Kullanıcı verilerinin güvenli saklanması         |
| SSL/TLS 1.3                      | Güvenli İletişim Protokolü                  | Web trafiği şifreleme                            |
| AES-256                          | Gelişmiş Şifreleme Standardı                | Veri şifreleme                                   |

| Terim                   | Türkçe Karşılığı                    | Açıklama                 |
|-------------------------|-------------------------------------|--------------------------|
| SHA-256                 | Güvenli Hash Algoritması            | Şifre hash'leme          |
| JWT (JSON Web<br>Token) | Güvenli Bilgi Aktarım<br>Standardı  | Kimlik doğrulama         |
| bcrypt/Argon2           | Güvenli Şifre Hash<br>Algoritmaları | Kullanıcı şifresi koruma |
| Forward Secrecy         | İleriye Dönük Gizlilik              | İletişim güvenliği       |
| Salt-based Hash         | Tuz Tabanlı Hash<br>Fonksiyonları   | Şifre güvenliği artırma  |

## 3.2.12 Performans ve Kalite Terimleri

| Terim                  | Türkçe Karşılığı           | Açıklama                             |
|------------------------|----------------------------|--------------------------------------|
| Gerçek Zamanlı İşleme  | Anlık Çeviri               | Gecikme olmadan işaret tanıma        |
| Kalite Puanı           | Performans Notu            | İşaret kalitesinin sayısal değeri    |
| GPU Acceleration       | Grafik İşlemci Hızlandırma | Makine öğrenmesi hesaplamaları       |
| Caching                | Önbellekleme               | Sistem performansı artırma           |
| FPS (Frame Per Second) | Saniyedeki Kare Sayısı     | Video akışı performansı              |
| Latency                | Gecikme Süresi             | Sistem yanıt süreleri                |
| Uptime                 | Sistem Çalışma Süresi      | Güvenilirlik ölçümü                  |
| Throughput             | İşlem Kapasitesi           | Sistem verimliliği                   |
| Weber-Fechner Yasası   | İnsan Algı Eşikleri Yasası | Kullanıcı deneyimi optimizasyonu     |
| Graceful Degradation   | Kademeli Bozulma           | Hata durumlarında sistem stabilitesi |

## 3.2.13 Teknik Altyapı Terimleri

| Terim               | Türkçe Karşılığı | Açıklama                                   |
|---------------------|------------------|--------------------------------------------|
| Kamera Kalibrasyonu | Kamera Ayarı     | Optimal görüntü kalitesi için ayar         |
|                     |                  |                                            |
| Çerçeve Hızı        | Saniyedeki Kare  | Video akışındaki görüntü sayısı            |
|                     |                  |                                            |
| İşlemci Yükü        | CPU Kullanımı    | Sistemin işlemci kapasitesi kullanım oranı |
| •                   |                  | · -                                        |
| Bellek Kullanımı    | RAM Tüketimi     | Sistemin bellek kullanım miktarı           |

## 3.2.14 Kullanıcı Deneyimi ve Erişilebilirlik

| Terim                                        | Türkçe Karşılığı                                 | Açıklama                                  |
|----------------------------------------------|--------------------------------------------------|-------------------------------------------|
| WCAG 2.1 AA                                  | Web İçeriği Erişilebilirlik<br>Rehberi           | Engelli kullanıcılar için erişilebilirlik |
| ARIA (Accessible Rich Internet Applications) | Zengin İnternet Uygulamaları<br>Erişilebilirliği | Ekran okuyucu uyumluluğu                  |
| Screen Reader                                | Ekran Okuyucu Yazılımı                           | Görme engelli kullanıcı<br>desteği        |
| Color-blind Friendly                         | Renk Körlüğü Dostu Tasarım                       | Renk algısı problemli<br>kullanıcılar     |
| Tab Order                                    | Klavye Navigasyon Sırası                         | Klavye erişilebilirliği                   |
| UX (User Experience)                         | Kullanıcı Deneyimi                               | Arayüz tasarımı ve<br>kullanılabilirlik   |

## 3.2.15 Proje Yönetimi ve Kalite

| Terim               | Türkçe Karşılığı                      | <b>A</b> çıklama             |
|---------------------|---------------------------------------|------------------------------|
| IEEE Std 830-1998   | Yazılım Gereksinim Belirtim Standardı | Gereksinim dokümantasyonu    |
| ISO/IEC 25010:2011  | Yazılım Kalite Standardı              | Kalite güvencesi             |
| Pytest              | Python Test Framework'ü               | Birim testleri               |
| Selenium            | Web Uygulaması Test Otomasyonu        | Tarayıcı uyumluluğu testleri |
| Unit Testing        | Birim Testi                           | Kod kalitesi kontrolü        |
| Integration Testing | Entegrasyon Testi                     | Sistem bileşen uyumluluğu    |
| Penetration Testing | Sızma Testi                           | Güvenlik açıklarının tespiti |

## 3.2.16 Veri Koruma ve Yasal Uyumluluk

| Terim               | Türkçe Karşılığı                   | <b>A</b> çıklama                    |
|---------------------|------------------------------------|-------------------------------------|
| KVKK                | Kişisel Verilerin Korunması Kanunu | Türk veri koruma yasası             |
| GDPR                | Genel Veri Koruma Tüzüğü           | AB veri koruma düzenlemesi          |
| Section 508         | ABD Erişilebilirlik Standardı      | Kamu erişilebilirlik gereklilikleri |
| Unutulma Hakkı      | Kişisel Verilerin Silinmesi Hakkı  | GDPR kapsamında veri yönetimi       |
| Data Subject Rights | Veri Sahibi Hakları                | Kişisel veri koruma                 |

## 3.2.17 Sistem İzleme ve Analitik

| Terim                | Türkçe Karşılığı    | Açıklama                              |
|----------------------|---------------------|---------------------------------------|
| Monitoring           | Sistem İzleme       | Performans ve hata takibi             |
| Alerting             | Uyarı Sistemi       | Otomatik hata bildirimi               |
| Analytics Dashboard  | Analitik Panosu     | Sistem verilerinin görselleştirilmesi |
| Metrics              | Ölçümler            | Sistem performans göstergeleri        |
| Failover             | Yedek Sisteme Geçiş | Sistem sürekliliği                    |
| Proactive Monitoring | Önlevici İzleme     | Sorunları önceden tespit etme         |

# 4. İŞLEVSEL GEREKSİNİMLER (Functional Requirements)

İşlevsel gereksinimler, sistemin kullanıcılarına sunması gereken temel hizmetleri ve bu hizmetlerin nasıl çalışması gerektiğini tanımlar. TİD İşaret Tanıma Chatbot Sistemi için belirlenen işlevsel gereksinimler, IEEE Std 830-1998 standartlarına uygun olarak kategorilere ayrılmış ve her biri için detaylı açıklamalar, kullanıcı etkileşim senaryoları ve komut örnekleri sunulmuştur.

## 4.1 Çok Modlu İletişim Gereksinimleri

#### FR-01: Gelişmiş Yüz ve El Takibi ile İşaret Algılama

Sistem, bilgisayar kamerası veya harici kamera donanımı kullanarak kullanıcının yüz ifadeleri, el şekilleri ve parmak pozisyonlarını gelişmiş bilgisayarlı görü teknikleri ile takip edebilmelidir. Hand landmark detection, facial expression recognition ve gesture tracking algoritmaları kullanılarak Türk İşaret Dili (TİD) hareketleri gerçek zamanlı olarak algılanmalıdır. Sistem, 21 nokta el takibi, yüz kaslarındaki değişimler ve 3D hareket analizi yaparak yüksek doğrulukta işaret tanıma gerçekleştirmelidir. Değişken ışık koşulları, farklı arka planlar ve çoklu kullanıcı senaryolarında stabil performans göstermelidir.

**Kullanıcı Etkileşimi:** Kullanıcı sistemi açtığında kamera otomatik olarak aktif hale gelir ve yüz tanıma başlar. Sistem kullanıcının yüzünü ve ellerini takip ederek ekranda takip noktalarını gösterir. El hareketleri algılandığında "Hazır" mesajı görüntülenir ve tanıma işlemi başlar.

**Komut Örnekleri:** Yüz ifadesi + el hareketi kombinasyonları, parmak ucu takibi gerektiren hassas işaretler, iki el koordinasyonu gerektiren karmaşık işaretler, mimik destekli işaret dili ifadeleri.

#### FR-02: Çok Modlu Girdi Sistemi

Sistem, kullanıcıdan gelen komutları üç farklı girdi modalitesi üzerinden alabilmelidir: Türk İşaret Dili (TİD), yazılı metin ve sesli komutlar. Her modalite kendi özel işleme algoritmasını kullanarak aynı anlam yapısına dönüştürülmeli ve sistem bu farklı girdi türlerini entegre bir şekilde işleyebilmelidir. Kullanıcı istediği girdi türünü seçebilmeli veya bunları karma olarak kullanabilmelidir.

Kullanıcı Etkileşimi: Kullanıcı, kamera önünde işaret dili kullanarak, klavye ile yazarak veya mikrofon butonuna basıp konuşarak sistemle etkileşime geçebilir. Sistem her üç girdi türünü de aynı anda destekler ve kullanıcının tercih ettiği yöntemi otomatik olarak algılar.

**Komut Örnekleri:** "merhaba" (TİD ile), "merhaba" (klavye ile), "merhaba" (mikrofonla), karma kullanım.

#### FR-03: Çok Modlu Çıktı Sistemi

Sistem, kullanıcıya yanıtlarını üç farklı çıktı modalitesi üzerinden sunabilmelidir: metin formatında yazılı yanıt, sesli yanıt (text-to-speech) ve işaret dili animasyonu. Kullanıcı tercihlerine göre tek bir çıktı türü seçilebilir veya birden fazla modalite aynı anda aktif olabilir. Sistem, erişilebilirlik standartlarına uygun olarak farklı kullanıcı ihtiyaçlarına hitap edecek şekilde esnek çıktı seçenekleri sunmalıdır.

Kullanıcı Etkileşimi: Kullanıcı ayarlar menüsünden hangi çıktı türlerini tercih ettiğini belirler. Örneğin sadece metin, sadece ses, sadece işaret dili animasyonu veya bunların kombinasyonlarını seçebilir. Sistem her yanıtını kullanıcının tercih ettiği formatlarda sunar.

Komut Örnekleri: "Sadece metin göster", "sesli oku", "işaret dili göster", "hepsini kullan".

#### FR-04: Cok Dilli Destek (Türkçe-İngilizce Çeviri)

Sistem, yazılı ve sesli girdi/çıktı modaliteleri için Türkçe ve İngilizce dilleri arasında çeviri desteği sunabilmelidir. Kullanıcı Türkçe komut verdiğinde sistem İngilizce yanıt verebilir veya tam tersi durumda çalışabilir. Çeviri işlemi gerçek zamanlı olarak gerçekleşmeli ve bağlamsal anlam korunarak yüksek kaliteli çeviri sonuçları üretilmelidir. İşaret dili girdi ve çıktıları TİD formatında sabit kalırken, metin ve ses bileşenleri çevrilebilir olmalıdır.

**Kullanıcı Etkileşimi:** Kullanıcı ayarlar menüsünden çeviri tercihlerini belirler (Türkçe→İngilizce, İngilizce→Türkçe, otomatik algılama). Kullanıcı herhangi bir dilde komut verdiğinde sistem belirlenen hedef dilde yanıt verir veya çift dilli çıktı sunar.

**Komut Örnekleri:** "Translate to English", "İngilizceye çevir", "switch language", "dil değiştir".

## 4.2 İletişim ve Bağlam Yönetimi Gereksinimleri

#### FR-05: Sohbet Bağlamı Takibi

Sistem, kullanıcının ardışık olarak yaptığı işaret dili hareketlerini takip ederek tek tek işaretleri birleştirip anlamlı cümleler oluşturabilmelidir. Her işareti ayrı ayrı çevirmek yerine, işaretler arası geçişleri, duraklama sürelerini ve cümle yapısını analiz ederek bütüncül bir anlam çıkarmalıdır. Sistem, işaret sıralamasını takip ederek Türk İşaret Dili'nin gramer yapısına uygun cümle çevirisi gerçekleştirmelidir.

**Kullanıcı Etkileşimi:** Kullanıcı birden fazla işareti peş peşe yaparak tam bir cümle oluşturur. Örneğin "ben", "bugün", "doktor", "gitmek" işaretlerini sırayla yaparak "Ben bugün doktora gideceğim" cümlesini iletir. Sistem bu işaret dizisini algılar ve tek bir anlamlı cümle olarak çevirir.

**Komut Örnekleri:** İşaret dizileri: "ben-hasta-hastane-gitmek", "yarın-hava-nasıl-olacak", "randevu-iptal-etmek-istiyorum".

#### FR-09: Kişisel Sohbet Geçmişi Kaydı

Sistem, kullanıcı ile gerçekleştirilen konuşma boyunca sohbet geçmişini ve bağlamsal bilgileri bellekte tutabilmelidir. Önceki sorular, verilen yanıtlar ve konuşmanın akışı takip edilerek kullanıcının yeni sorularında referans verebileceği bir bağlam oluşturulmalıdır. Sistem, zamirsel ifadeleri (o, bu, şu) ve bağlamsal referansları anlayarak tutarlı ve akıcı bir konuşma deneyimi sunmalıdır.

**Kullanıcı** Etkileşimi: Kullanıcı "Dün bahsettiğim randevu nasıl?", "Bu konuyu daha detaylandır", "Önceki soruya geri dön" gibi bağlamsal referanslar içeren komutlar verebilir. Sistem bu referansları önceki konuşma geçmişinden çıkararak uygun yanıtlar üretir.

Komut Örnekleri: "Önceki soruya dön", "bunu açıkla", "daha önce ne demiştim", "konuşma geçmişi".

## 4.3 Öğrenme ve Eğitim Gereksinimleri

#### FR-06: Sık Kullanılan Soru-Cevap Hazır Yanıtları

Sistem, kullanıcıların hem sistem ile hem de diğer kişilerle iletişiminde sıklıkla kullandığı temel sorular ve ifadeler için önceden hazırlanmış yanıt veritabanı bulundurmalıdır. Hava durumu, saat sorguları, temel selamlaşmalar, günlük konuşma cümleleri ve nezaket ifadeleri gibi rutin iletişim öğeleri hızla erişilebilir olmalıdır.

Kullanıcı Etkileşimi: Kullanıcı "Hazır cümleler", "Günlük ifadeler" menüsünden sık kullanılan ifadeleri seçebilir. Sistem bu ifadeleri TİD animasyonu ile gösterir ve kullanıcı bunları başka kişilerle iletişimde kullanabilir.

**Komut Örnekleri:** "Nasılsın", "teşekkürler", "özür dilerim", "yardım eder misin", "görüşmek üzere", "ne yapıyorsun".

#### FR-08: Temel İletişim Eğitim Modülü

Sistem, TİD öğrenmek isteyen kullanıcılar için interaktif eğitim modülü sunmalıdır. Temel işaretler, alfabe, sayılar, günlük kullanım ifadeleri ve cümle yapısı konularında kademeli öğrenme programı bulunmalıdır. Kullanıcının öğrenme hızına göre uyarlanabilen ve ilerleme takibi yapan bir eğitim sistemi olmalıdır.

**Kullanıcı Etkileşimi:** Kullanıcı "eğitim başlat" diyerek öğrenme moduna geçer. Sistem seviye seviye işaretleri öğretir, kullanıcıdan tekrar etmesini ister ve doğruluk oranına göre bir sonraki seviyeye geçiş sağlar.

Komut Örnekleri: "Eğitim başlat", "alfabe öğren", "sayıları öğren", "quiz yap", "ilerleme durumu".

#### FR-19: Öğrenme İlerleme Takibi ve Raporlama

Sistem, kullanıcının TİD öğrenme sürecindeki ilerlemesini detaylı olarak takip etmeli ve periyodik raporlar sunmalıdır. Hangi işaretlerde zorlandığı, hangi konularda geliştiği ve genel başarı oranı gibi analitik veriler sağlanmalıdır.

**Kullanıcı Etkileşimi:** Kullanıcı "ilerleme raporu" dediğinde haftalık/aylık gelişim grafiklerini, başarı oranlarını ve gelişim önerilerini görür.

Komut Örnekleri: "İlerleme raporu", "başarı oranım", "zayıf yönlerim", "gelişim önerileri".

#### 4.4 Hata Yönetimi ve Düzeltme Gereksinimleri

#### FR-07: Yanlış İşaret Geri Bildirim Sistemi

Sistem, kullanıcının yanlış veya tanınamayan işaret hareketleri yaptığında gerçek zamanlı geri bildirim sağlayabilmelidir. Tanıma güvenilirlik oranı belirli bir eşiğin altında kaldığında, sistem kullanıcıyı uyarmalı ve doğru işaret şeklini görsel olarak göstermelidir.

**Kullanıcı Etkileşimi:** Kullanıcı belirsiz veya hatalı işaret yaptığında sistem "Bu işareti anlayamadım" mesajı verir ve doğru işaretin nasıl yapılacağını animasyonla gösterir.

Komut Örnekleri: "Anlamadım", "tekrar göster", "doğru şekli nedir", "başka nasıl yapılır".

#### FR-11: Belirsiz İşaret Girdi Yönetimi

Sistem, bulanık, eksik veya kısmen tanınan işaret girişlerini akıllı algoritmalarla yönetebilmelidir. Güvenilirlik skorları düşük olan işaretler için olasılık tabanlı tahminler yapılmalı ve kullanıcıya alternatif seçenekler sunulmalıdır.

**Kullanıcı Etkileşimi:** Sistem belirsiz işaret algıladığında "Bu mu demek istediniz?" sorusu ile birkaç seçenek sunar. Kullanıcı doğru seçeneği işaret ederek onaylar veya yeniden deneyebilir.

Komut Örnekleri: "Bu mu?", "yoksa bu mu?", "tekrar yap", "seçenekleri göster".

#### FR-15: Bağlamsal Hata Düzeltme

Sistem, konuşma bağlamından yararlanarak hatalı tanınan işaretleri otomatik olarak düzeltebilmelidir. Cümle yapısı, önceki kelimeler ve genel bağlam kullanılarak anlamsal tutarlılık sağlanmalı ve mantıklı olmayan tanımaları düzeltmelidir.

Kullanıcı Etkileşimi: Sistem "Randevu sil" yerine "Randevu al" tanıdığında bağlamdan "al" kelimesinin daha mantıklı olduğunu anlar ve otomatik düzeltme önerisi sunar.

**Komut Örnekleri:** "Otomatik düzeltme", "bağlam kontrolü", "anlamsal kontrol", "mantık kontrolü".

## 4.5 Sistem Optimizasyon ve Performans Gereksinimleri

#### FR-12: Adaptif Gürültü Filtreleme

Sistem, kamera görüş alanındaki istenmeyen hareketleri, arka plan karışıklığını ve çevresel gürültüleri filtreleyebilmelidir. Makine öğrenmesi algoritmaları kullanılarak kullanıcının el hareketleri ile çevresel faktörler ayrıştırılmalı ve sadece anlamlı işaret verileri işlenmelidir.

**Kullanıcı Etkileşimi:** Sistem otomatik olarak arka plan gürültülerini filtreler. Kullanıcı "temiz algılama modu" açarak daha hassas filtreleme yapabilir veya "hızlı mod" ile daha az filtreleme uygulayabilir.

Komut Örnekleri: "Temiz mod", "hızlı mod", "gürültü ayarı", "hassasiyet ayarla".

#### FR-14: Gerçek Zamanlı İşaret Kalitesi Değerlendirme

Sistem, kullanıcının yaptığı işaretlerin kalitesini gerçek zamanlı olarak değerlendirerek iyileştirme önerileri sunmalıdır. El pozisyonu, hareket hızı, netlik ve doğruluk parametrelerini analiz ederek kullanıcıya anlık geri bildirim vermelidir.

**Kullanıcı Etkileşimi:** Sistem işaret kalitesini renkli göstergelerle (yeşil: iyi, sarı: orta, kırmızı: zayıf) gösterir ve "Elinizi biraz yukarı kaldırın" gibi ipuçları verir.

Komut Örnekleri: "Kalite göstergesi", "ipucu ver", "nasıl düzeltir", "optimal pozisyon".

#### 4.6 Kişiselleştirme ve Profil Yönetimi Gereksinimleri

#### FR-10: Profil Düzenleme ve Kişiselleştirme

Sistem, her kullanıcı için kişisel profil oluşturma ve düzenleme imkânı sunmalıdır. Kullanıcı adı, tercih edilen çıktı modaliteleri, dil seçenekleri, eğitim seviyesi, özel ihtiyaçlar ve erişilebilirlik ayarları kaydedilebilmelidir.

Kullanıcı Etkileşimi: Kullanıcı "profil ayarları" menüsünden kişisel bilgilerini, tercihlerini ve sistem davranışlarını özelleştirebilir. Sesli çıktı açma/kapama, işaret hızı ayarları, favoriler listesi gibi kişiselleştirmeler yapabilir.

**Komut Örnekleri:** "Profil düzenle", "ayarlar", "tercihlerim", "kişisel bilgiler", "erişilebilirlik seçenekleri".

#### FR-16: Kişiselleştirilmiş İşaret Tanıma

Sistem, her kullanıcının kendine özgü işaret yapma tarzını öğrenerek kişiselleştirilmiş tanıma modeli geliştirebilmelidir. Kullanıcının el büyüklüğü, hareket hızı, işaret şekli gibi bireysel özelliklerini kaydederek tanıma doğruluğunu artırmalıdır.

**Kullanıcı Etkileşimi:** İlk kullanımda sistem "Kalibrasyona başlayalım" der ve kullanıcıdan temel işaretleri yapmasını ister. Zamanla kullanıcının tarzını öğrenir ve uyum sağlar.

Komut Örnekleri: "Kalibrasyon başlat", "kişisel ayar", "beni tanı", "öğrenme modu".

#### FR-22: Kullanıcı Giriş ve Kimlik Doğrulama Sistemi

Sistem, farklı kullanıcı tiplerinin (öğrenci, eğitmen, yönetici) güvenli giriş yapabilmelerini sağlamalıdır. Kullanıcı profilleri, öğrenme geçmişi, tercihler ve kişiselleştirilmiş ayarları saklanmalıdır.

**Kullanıcı Etkileşimi:** Kullanıcı sisteme kullanıcı adı/e-posta ve şifre ile giriş yapar. Yeni kullanıcılar kayıt formunu doldurur ve profil bilgilerini ayarlar. Sistem, giriş sonrası kişiselleştirilmiş ana sayfayı gösterir.

**Komut Örnekleri:** "Giriş yap", "Kayıt ol", "Şifremi unuttum", "Profilim", "Çıkış yap", "Ayarlar".

#### 4.7 Çoklu Kullanıcı ve Sistem Yönetimi Gereksinimleri

#### FR-13: Çoklu Doğrulama Sistemi

Sistem, kritik işlemler için çoklu doğrulama mekanizması sunmalıdır. Önemli komutlar (silme, değiştirme, gönderme) için kullanıcıdan ek onay alınmalı ve yanlış anlama riskini minimize edecek doğrulama adımları uygulanmalıdır.

**Kullanıcı** Etkileşimi: Kullanıcı önemli bir işlem yapmak istediğinde sistem "Emin misiniz?" sorar ve kullanıcıdan açık bir onay işareti bekler. İki aşamalı doğrulama gerektirebilir.

Komut Örnekleri: "Evet, eminim", "iptal et", "onaylıyorum", "geri al".

#### FR-17: Çoklu Kullanıcı Tanıma ve Geçiş

Sistem, aynı ortamda birden fazla kullanıcıyı tanıyabilmeli ve aktif kullanıcı değişikliklerini otomatik olarak algılayabilmelidir. Her kullanıcının profil bilgilerini ayrı tutarak uygun kişiselleştirmeyi sağlamalıdır.

Kullanıcı Etkileşimi: Yeni kullanıcı kameraya geçtiğinde sistem "Merhaba [Ad], sizi tanıdım" der ve o kişinin ayarlarını yükler. Kullanıcı değişimi otomatik olarak algılanır.

Komut Örnekleri: "Kullanıcı değiştir", "ben [ad]'im", "profil geçişi", "kimsin".

## 4.8 Gelişmiş Etkileşim Gereksinimleri

#### FR-18: Acil Durum Hızlı Yanıt Sistemi

Sistem, acil durum işaretlerini tanıdığında önceden tanımlanmış hızlı eylem protokollerini devreye sokmalıdır. Sağlık, güvenlik veya yardım çağrıları için otomatik bildirim ve yönlendirme sistemleri aktif olmalıdır.

**Kullanıcı Etkileşimi:** Kullanıcı "acil yardım" işareti yaptığında sistem anında acil servis numaralarını gösterir, konum bilgisini hazırlar ve otomatik arama seçeneği sunar.

Komut Örnekleri: "Acil yardım", "112 ara", "sağlık sorunu", "güvenlik çağrısı".

#### FR-20: Sesli Komut Entegrasyonu ve Hibrit Etkileşim

Sistem, işaret dili ile sesli komutları eş zamanlı olarak destekleyerek hibrit etkileşim imkânı sunmalıdır. Kullanıcı aynı anda hem işaret yapıp hem konuşabilmeli, sistem bu iki girdi türünü koordineli şekilde işleyebilmelidir.

**Kullanıcı Etkileşimi:** Kullanıcı "randevu" işareti yaparken aynı zamanda "yarın saat üçte" diyebilir. Sistem iki girdiyi birleştirerek "Yarın saat 15:00 için randevu alınacak" şeklinde birleşik anlam çıkarır.

Komut Örnekleri: "İşaret + ses", "hibrit mod", "birleşik komut", "çoklu girdi".

#### FR-21: Gelişmiş Analitik ve Performans İzleme

Sistem, kendi performansını sürekli izlemeli ve kullanıcı deneyimini iyileştirmek için detaylı analitik veriler toplamalıdır. Tanıma doğruluğu, yanıt süreleri, kullanıcı memnuniyeti ve sistem optimizasyonu için gerekli metrikleri takip etmelidir.

**Kullanıcı Etkileşimi:** Yöneticiler "sistem analitikleri" ile genel performans verilerini görebilir. Kullanıcılar ise "deneyim değerlendirmesi" yaparak sistem iyileştirmelerine katkıda bulunabilir.

**Komut Örnekleri:** "Sistem durumu", "performans raporu", "kullanıcı memnuniyeti", "optimizasyon önerileri".

# 5. İŞLEVSEL OLMAYAN GEREKSİNİMLER (Non-Functional Requirements)

İşlevsel olmayan gereksinimler, sistemin nasıl çalışması gerektiğini tanımlayan kalite kriterlerini belirtir. Bu gereksinimler ISO/IEC 25010:2011 kalite standardı çerçevesinde kategorilere ayrılmış ve her biri için ölçülebilir kriterler belirlenmişti

#### 5.1 Performans Gereksinimleri

#### NFR-01: Gerçek Zamanlı Yanıt Süresi Performansı

Sistem, işaret tanıma işlemlerini gerçek zamanlı olarak gerçekleştirmeli ve kullanıcı deneyimini olumsuz etkilememek için maksimum 200 milisaniye içerisinde yanıt vermelidir. Bu süre, insan algısının gecikmeyi fark etmediği Weber-Fechner yasası temelinde belirlenmiştir; 250ms üzerindeki gecikmeler kullanıcı deneyiminde belirgin olumsuzluk yaratmaktadır.

Video akışı işleme gecikme süresi 50ms'yi aşmamalıdır. Bu değer, 30 FPS video akışında frame-to-frame tutarlılığı sağlamak için kritiktir. İşaret tanıma algoritması çalışma süresi 100ms ile sınırlı tutulmalıdır. CNN tabanlı modeller için optimize edilmiş bu süre, RNN kullanılması durumunda performans %20-30 düşebilir ancak sekans tanıma doğruluğu artabilir.

#### NFR-06: Donanım Kaynak Optimizasyonu

Sistem, minimum donanım gereksinimlerinde etkin çalışabilmelidir. 4 GB RAM, çift çekirdekli işlemci (dual-core) ve 720p web kamerası yeterli olmalıdır. CPU kullanımı %70'i, RAM kullanımı 2 GB'ı aşmamalıdır. GPU hızlandırma (donanım destekli işleme) ile performans artırılmalı, ancak GPU bulunmayan sistemlerde de çalışabilir durumda olmalıdır. Pil ömrünü korumak için enerji verimli algoritmalar kullanılmalıdır.

#### 5.2 Güvenlik ve Veri Koruma Gereksinimleri

#### NFR-02: Veri Güvenliği ve Kriptografik Koruma

Sistem, kullanıcı verilerinin güvenliğini SSL/TLS 1.3 protokolü ile sağlamalıdır. TLS 1.3, önceki sürümlere göre yaklaşık %40 daha hızlı el sıkışma süresi ve gelişmiş forward secrecy (ileriye dönük gizlilik) sağladığı için tercih edilmektedir. Kişisel veriler, AES-256 algoritması ile şifrelenmelidir. AES-256, AES-128'e kıyasla daha yüksek güvenlik düzeyi sunmakta ve kuantum hesaplamaya karşı daha dirençli bir yapıya sahiptir.

Kullanıcı kimlik bilgileri, güvenli bir şekilde SHA-256 algoritması ile hash edilerek saklanmalıdır. Daha yüksek güvenlik gerektiren durumlarda berypt veya Argon2 gibi saltbased hash fonksiyonları önerilmektedir. Sistemin tüm veri işleme süreçleri, GDPR ve KVKK yasal düzenlemelerine tam uyum içinde tasarlanmalı ve yürütülmelidir.

#### NFR-10: Veri Gizliliği ve Anonimleştirme

Sistem, kullanıcı mahremiyetini korumak amacıyla diferansiyel gizlilik (differential privacy) tekniklerini uygulamalıdır. Biyometrik veriler, yerel cihazda işlenmeli ve ham veri olarak buluta gönderilmemelidir. Kullanıcıların rıza yönetimi mekanizması ile, GDPR kapsamında tanımlanan unutulma hakkı desteklenmeli; veri saklama politikaları otomatik olarak uygulanmalıdır.

## 5.3 Erişilebilirlik ve Kullanılabilirlik Gereksinimleri

#### NFR-03: Erişilebilirlik ve Evrensel Tasarım Uyumluluğu

Sistem, WCAG 2.1 AA seviyesi erişilebilirlik standartlarına tam uyumlu olmalıdır. Bu standart, ISO 14289 ve Section 508 gereksinimlerini de karşıladığından uluslararası uyumluluk açısından tercih edilmektedir. WCAG 2.2 veya AAA seviyesi, daha kapsamlı erişilebilirlik sağlamasına rağmen uygulama maliyetini %40-60 oranında artırabilir.

Ekran okuyucu yazılımları ile tam uyumluluk sağlanmalıdır. JAWS (en yaygın kullanılan), NVDA (açık kaynak) ve VoiceOver (macOS/iOS) ile test edilmeli; ARIA (Accessible Rich Internet Applications) etiketleri doğru şekilde uygulanmalıdır. Klavye navigasyonu %100 desteklenmeli ve Tab order mantıklı sıralamaya sahip olmalıdır.

#### NFR-08: Kullanıcı Deneyimi ve Arayüz Standartları

Sistem arayüzü, kullanıcı deneyimi prensipleri doğrultusunda sezgisel ve öğrenmesi kolay olmalıdır. Ortalama öğrenme süresi yeni kullanıcılar için 15 dakikayı aşmamalıdır. Erişilebilirlik rehberi doğrultusunda color-blind friendly renk paleti kullanılmalı, font büyüklükleri dinamik olarak ayarlanabilir olmalıdır.

## 5.4 Ölçeklenebilirlik ve Platform Uyumluluğu Gereksinimleri

#### NFR-04: Sistem Ölçeklenebilirlik ve Kapasitesi

Sistem, yatay ve dikey ölçeklendirme destekleyerek en az 10.000 eş zamanlı aktif kullanıcıya hizmet verebilmelidir. Bulut tabanlı mikroservis mimarisi kullanılarak otomatik ölçeklendirme mekanizmaları devreye alınmalıdır. Veritabanı parçalama (sharding) ve yük dengeleme (load balancing) teknikleri ile sistem yükü dağıtılmalı, yoğun kullanım dönemlerinde %99,9 çalışma süresi (uptime) garanti edilmelidir.

#### NFR-05: Platform Bağımsızlığı ve Çapraz Uyumluluk

Sistem, Windows, macOS, Linux, iOS ve Android işletim sistemlerinde yüksek performanslı ve tutarlı kullanıcı deneyimi sunmalıdır. Mobil ve masaüstü uygulamalar, hedef platformların doğal performans kapasitelerine uygun biçimde optimize edilmelidir.

Web tabanlı sürüm, Chrome, Firefox, Safari ve Edge tarayıcılarının son üç ana sürümü ile tam uyumlu olmalıdır. Responsive tasarım ilkeleri doğrultusunda sistem; tablet, akıllı telefon ve masaüstü cihazlarda optimum kullanılabilirlik sağlamalıdır. Sistem, PWA (Progressive Web App) standartlarını desteklemeli ve internet bağlantısı olmayan ortamlarda çevrimdışı (offline) çalışma yeteneğine sahip olmalıdır.

#### 5.5 Güvenilirlik ve Hata Toleransı Gereksinimleri

#### NFR-07: Veri Bütünlüğü ve Yedekleme Sistemi

Kullanıcı verileri günlük otomatik yedeklemelerle korunmalı, kritik veriler için gerçek zamanlı çoğaltma (real-time replication) sağlanmalıdır. Veritabanı bütünlük denetim mekanizmaları günlük olarak çalıştırılmalı ve veri bozulması (corruption) durumunda otomatik kurtarma prosedürleri devreye alınmalıdır. Zaman noktasına dönük kurtarma (point-in-time recovery) özelliği ile 30 gün geriye dönük veri kurtarma imkânı sunulmalıdır. Yedeklenen veriler farklı coğrafi bölgelerde saklanmalıdır.

#### NFR-09: Hata Toleransı ve Sistem Güvenilirliği

Sistem, %99,5 erişilebilirlik (uptime) garantisiyle 7/24 kesintisiz hizmet sunmalıdır. Kritik hizmetlerin sürekliliği, failover mekanizmaları ile sağlanmalı; zincirleme arıza (cascading failure) senaryolarına karşı ise devre kesici (circuit breaker) tasarım deseni uygulanmalıdır. Sistem, arıza durumlarında kademeli bozulma (graceful degradation) prensibi doğrultusunda temel işlevlerin çalışmaya devam etmesini sağlamalıdır. Ayrıca, kapsamlı izleme (monitoring) ve uyarı (alerting) sistemleri ile proaktif hata tespiti gerçekleştirilebilmelidir.

## 6.TEKNOLOJİ BİLEŞENLERİ VE SİSTEM MİMARİSİ

## 6.1. Temel Teknolojiler

#### 6.1.1 Donanım Gereksinimleri Özeti

Sistem, standart web kamerası (720p HD), çift çekirdekli işlemci ve minimum 4GB RAM ile çalışabilecek şekilde tasarlanmıştır. Detaylı donanım gereksinimleri **Ek-A.1**'de yer almaktadır.

#### 6.1.2 Yazılım Stack Özeti

Ana yazılım bileşenleri Python, MediaPipe, OpenCV ve TensorFlow teknolojileri üzerine kuruludur. Web geliştirme için FastAPI/Flask, mobil geliştirme için React Native/Flutter kullanılmaktadır. Detaylı yazılım kaynakları **Ek-A**'da yer almaktadır.

#### 6.1.3 Platform Desteği

Sistem Windows, macOS, Linux, iOS ve Android platformlarında çalışacak şekilde tasarlanmıştır. Web tabanlı arayüz tüm modern tarayıcıları destekler.

#### **6.2. Sistem Mimarisi**

#### 6.2.1 Genel Sistem Mimarisi

Aşağıda sistemin genel mimarisi verilmiştir. Detaylı sistem mimarisi **Ek-C.3**'te yer almaktadır.



## 6.2.2 İşaret Tanıma Veri Akışı

Sistem, kamera girişinden başlayarak MediaPipe ile el takibi (21 nokta), TensorFlow ile işaret sınıflandırma, bağlam analizi ve çoklu modal çıktı üretimi aşamalarını takip eder.

#### 6.2.3 Çoklu Modal Girdi/Çıktı Sistemi

#### Girdi Modaliteleri:

- Türk İşaret Dili (TİD) MediaPipe + TensorFlow
- Yazılı Metin Natural Language Processing
- Sesli Komutlar Speech-to-Text API

#### Çıktı Modaliteleri:

- Metin formatında yanıt
- Sesli yanıt (Text-to-Speech)
- İşaret dili animasyonu (3D Avatar)

#### 6.3. Kullanıcı Profili Odaklı Tasarım

## 6.3.1 Primer Kullanıcılar İçin Özelleştirilmiş Bileşenler

#### İşitme Engelli Bireyler (179.867 kişi - Türkiye):

- Gerçek zamanlı işaret tanıma (%95+ doğruluk)
- Hızlı yanıt (< 200ms)
- Cevrimdışı çalışma modu
- Çoklu cihaz senkronizasyonu

#### Konuşma Engelli Bireyler (33.686 kişi - Türkiye):

- İşaret-metin dönüşümü
- Sesli çıktı desteği
- Kişiselleştirilmiş işaret tanıma

#### 6.3.2 Sekonder Kullanıcılar İçin Entegrasyonlar

Eğitim, Sağlık ve Kamu Sektörü için özel terminoloji desteği, kurumsal güvenlik standartları ve çoklu kullanıcı yönetimi sağlanmaktadır.

## 6.4 İşlevsel Gereksinimlere Uygun Mimari

#### 6.4.1 Temel İşlevler Teknoloji Eşleştirmesi

| İşlev                      | Teknoloji Stack       | Mikroservis                 |
|----------------------------|-----------------------|-----------------------------|
| Gelişmiş El Takibi (FR-01) | MediaPipe + OpenCV    | Gesture Recognition Service |
| Çoklu Modal Girdi (FR-02)  | FastAPI + ML Pipeline | Input Processing Service    |
| Çoklu Modal Çıktı (FR-03)  | TTS + 3D Rendering    | Output Generation Service   |
| Çok Dilli Destek (FR-04)   | Transformers + NLP    | Translation Service         |
| Sohbet Bağlamı (FR-05)     | Redis + NLP           | Context Management Service  |

#### 6.4.2 Gelişmiş İşlevler

Belirsiz işaret yönetimi, adaptif gürültü filtreleme, çoklu doğrulama ve gerçek zamanlı kalite değerlendirmesi için özel algoritmalar ve veri yapıları kullanılmaktadır.

# 6.5 İşlevsel Olmayan Gereksinimlere Uygun Mimari

#### 6.5.1 Performans Gereksinimleri

- Video akışı işleme: < 50ms
- İşaret tanıma algoritması: < 100ms
- Toplam sistem yanıtı: < 200ms
- Eş zamanlı 10.000 kullanıcı desteği

**Teknoloji Çözümleri:** Load balancing (Nginx), mikroservis mimarisi, Redis caching, GPU acceleration

#### 6.5.2 Güvenlik ve Erişilebilirlik

- TLS 1.3, AES-256 şifreleme
- JWT + SHA-256 kimlik doğrulama
- WCAG 2.1 AA seviyesi erişilebilirlik
- KVKK/GDPR uyumluluğu

## 6.5.3 Ölçeklenebilirlik ve Güvenilirlik

- Horizontal/vertical scaling desteği
- %99.5 uptime garantisi
- Container orchestration (Kubernetes)
- Circuit breaker pattern

#### 6.6 Veri Yönetimi Ve Bulut Barındırma

#### 6.6.1 Veri Mimarisi

- PostgreSQL: Kullanıcı bilgileri ve öğrenme geçmişi
- Redis: Session cache ve gerçek zamanlı veri
- AWS S3/MinIO: Model dosyaları ve medya içeriği

#### 6.6.2 Deployment Stratejisi

- Containerization (Docker)
- CI/CD Pipeline (Jenkins/GitLab CI)
- Blue-green deployment
- Multi-cloud support (AWS, Google Cloud, Azure)

#### 7. KAYNAKLAR VE REFERANSLAR

## Akademik Makaleve Yayın Kaynakları

- [1] Chen, Y., Zhao, L., Peng, X., Yuan, J., & Metaxas, D. N. (2023). SignBERT+: Hand-model-aware self-supervised pre-training for sign language understanding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(11), 13294-13309. https://doi.org/10.1109/TPAMI.2023.3269220
- [2] Khurana, H., Agarwal, A., Singh, P., & Kumar, A. (2024). Real-time gesture based sign language recognition system. 2024 IEEE International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 1-6. https://doi.org/10.1109/ICCCIS60361.2024.10533518
- [3] Aly, S., Aly, W., & Almotairi, S. (2022). Deepsign: Sign language detection and recognition using deep learning. *Electronics*, 11(11), 1780. https://doi.org/10.3390/electronics11111780
- [4] Wibawa, A. P., Utama, A. B. P., Herman, Nafalski, A., & Abawajy, J. H. (2021). Design of sign language recognition using E-CNN. 2021 International Conference on Electrical Engineering and Informatics (ICEEI), 1-6. https://doi.org/10.1109/ICEEI52609.2021.9431877
- [5] Rahman, S., & Ali, M. (2023). Chatbots and virtual assistants in education: Enhancing student support and engagement. *ResearchGate Preprint*. https://doi.org/10.13140/RG.2.2.35847.42720
- [6] Wik, P., & Hjalmarsson, A. (2009). An intelligent web-based voice chat bot. *Proceedings of the 7th European Conference on Speech Communication and Technology*, 2583-2586.
- [7] Alsharif, B. et al. (2024). ASL alphabet recognition using MediaPipe and YOLOv8. *Unite.AI*.
- [8] Scientific Reports. (2023). Sign language recognition using the fusion of image and hand landmarks through multi-headed convolutional neural network. *Scientific Reports*.
- [9] ScienceDirect. (2021). Machine learning methods for sign language recognition: A critical review and analysis. *ScienceDirect*.
- [10] ScienceDirect. (2023). Sign language recognition system for communicating to people with disabilities. *ScienceDirect*.
- [11] Wiley Human-Computer Interaction. (2024). Exploring sign language detection on smartphones: A systematic review. *Wiley Online Library*.

#### Web Kaynakları ve Platformlar

- [12] Papers With Code. (2024). Sign language recognition tasks and benchmark results. Erişim tarihi: 2024. https://paperswithcode.com
- [13] Medium, Towards Data Science. (2024). MediaPipe ve OpenCV kullanım örnekleri. *Medium Platform*.
- [14] GitHub. (2024). Açık kaynak işaret tanıma projeleri ve gereksinim dosyaları. *GitHub Repository*.
- [15] Sicara Blog. (2024). MediaPipe tabanlı işaret tanıma uygulama rehberi. Sicara.
- [16] LearnOpenCV. (2024). MediaPipe dokümantasyon ve kullanım kılavuzu. LearnOpenCV.
- [17] ResearchGate. (2011, 2020). İşaret dili tanıma sistemleri üzerine teknik makaleler. *ResearchGate Platform*.

## Ticari Ürünler ve Sistem Kaynakları

- [18] Fast Company. (2014, 18 Mart). Microsoft's Kinect is now a sign language translator. *Fast Company*. https://www.fastcompany.com/3020910/microsofts-kinect-is-now-a-sign-language-translator
- [19] Hand Talk. (2024, 31 Mayıs). Hand Talk: your website accessible in ASL. *Hand Talk*. https://www.handtalk.me/en/
- [20] İTÜ TİD Projesi. (2024). TÜBİTAK 1003 Projesi Türkçe'den Türk İşaret Diline Otomatik Çeviri Sistemi. *İstanbul Teknik Üniversitesi*. https://web.itu.edu.tr/tid/
- [21] EngelsizÇeviri. (2023). Web İşaret Dili Çeviri Sistemi. *Engelsiz Çeviri*. https://www.engelsizceviri.com
- [22] Near East University. (2019a, 21 Şubat). Engineers at the Artificial Intelligence Research Center have developed a software program that turns sign language into written text. *Near East University*.
- [23] Near East University. (2019b, 20 Şubat). Yakın Doğu Üniversitesi Mühendisleri İşaret Dilini Yazıya Çeviren Yazılım Geliştirdiler. *Yakın Doğu Üniversitesi*.

### Haber ve Medya Kaynakları

[24] McFarland, A. (2024, 23 Aralık). How AI is making sign language recognition more precise than ever. *Unite.AI*.

[25] Unite.AI. (2024, 23 Aralık). Yapay Zeka İşaret Dili Tanımayı Her Zamankinden Daha Hassas Hale Getiriyor. *Unite.AI*.

#### Referanslar

IEEE Std 830-1998 - Software Requirements Specifications

ISO/IEC 25010:2011 - System and software quality requirements

Weber-Fechner Yasası - İnsan algısı ve yanıt süreleri

WCAG 2.1 AA - Web Erişilebilirlik Standartları

GDPR ve KVKK - Veri koruma düzenlemeleri

Computer Vision ve Machine Learning metodolojileri

Real-time Systems Design Principles

# 8. EKLER

### Ek-A Donanım ve Yazılım Gereksinimleri

#### **Ek-A.1 Donanım Gereksinimleri**

| Donanım<br>Bileşeni        | Kritiklik | Teknik Özellikler ve Gerekçe                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|----------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Web<br>Kamerası            | Zorunlu   | En az 720p (HD) çözünürlük, 30 kare/saniye. Scientific Reports (2023) çalışmasında, işaret dili tanıma sistemlerinde kameraların ucuz, kolay erişilebilir ve kullanımı yaygın olduğu belirtilmektedir. Wiley Human-Computer Interaction dergisinde (2024) akıllı telefon kameralarının işaret tanıma için yeterli olduğu kanıtlanmıştır. |  |  |  |  |  |
| İşlemci<br>(CPU)           | Zorunlu   | Çift çekirdekli (dual-core) işlemci minimum. MediaPipe resmi<br>dokümantasyonunda gerçek zamanlı işleme için "real-time<br>inferencing" kapasitesi gerektiği belirtilmektedir. Intel i3 serisi<br>veya AMD Ryzen 3 serisi önerilir.                                                                                                      |  |  |  |  |  |
| Sistem<br>Belleği<br>(RAM) | Zorunlu   | En az 4GB RAM, 8GB önerilir. Medium'da yayınlanan teknik<br>makale (2022), derin öğrenme ve MediaPipe kullanımı için bellek<br>gereksinimlerini analiz etmektedir. Video buffer ve model<br>yükleme işlemleri için kritiktir.                                                                                                            |  |  |  |  |  |
| Zorunlu sistemlerinde mode |           | En az 2GB boş alan. TensorFlow tabanlı işaret dili tanıma sistemlerinde model dosyalarının boyutu önemli depolama gerektirir. SSD kullanımı başlatma hızını artırır.                                                                                                                                                                     |  |  |  |  |  |
| Grafik<br>İşlemci<br>(GPU) | Makul     | NVIDIA GeForce GTX serisi veya üstü. ResearchGate'te yayınlanan çalışma (2011), sinir ağı tabanlı işaret tanıma için donanım implementasyonunun önemini vurgular. CPU tabanlı işlem de mümkündür.                                                                                                                                        |  |  |  |  |  |
| İnternet<br>Bağlantısı     | Makul     | En az 5 Mbps hız. IoT tabanlı işaret dili tanıma sistemleri (ResearchGate, 2020) bulut bağlantısının avantajlarını göstermektedir. Çevrimdışı mod da desteklenebilir.                                                                                                                                                                    |  |  |  |  |  |

# Ek-A.2 Yazılım Kütüphaneleri

| Kütüphane  | Kritiklik | Sürüm ve Akademik Kaynak                                                                                                                                                                           |  |  |  |  |  |
|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Python     | Zorunlu   | 3.8 veya üstü. ScienceDirect makine öğrenmesi yöntemleri incelemesinde (2021) Python'un işaret dili tanıma için yaygın kullanıldığı belirtilmektedir.                                              |  |  |  |  |  |
| OpenCV     | Zorunlu   | 4.5 veya üstü. MediaPipe ile birlikte OpenCV kullanımı yaygın bir uygulamadır. Görüntü işleme için endüstri standardıdır.                                                                          |  |  |  |  |  |
| MediaPipe  | Zorunlu   | 0.8 veya üstü. Sicara, Medium ve diğer teknik kaynaklarda<br>MediaPipe'ın işaret dili tanıma için optimize edildiği<br>gösterilmektedir. Google tarafından geliştirilen açık kaynak<br>çerçevedir. |  |  |  |  |  |
| NumPy      | Zorunlu   | 1.19 veya üstü. Sayısal hesaplamalar ve matris işlemleri için temel kütüphanedir.                                                                                                                  |  |  |  |  |  |
| TensorFlow | Makul     | 2.6 veya üstü. TensorFlow kullanarak işaret dili tanıma sistemleri başarıyla geliştirilmiştir.                                                                                                     |  |  |  |  |  |

# Ek-A.3 İşletim Sistemi Uyumluluğu

| İşletim<br>Sistemi | Kritiklik | Minimum Sürüm ve Kaynak                                                                                                           |
|--------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| Windows            | Zorunlu   | Windows 10 veya üstü. Akıllı telefon tabanlı işaret tanıma çalışmaları (Wiley, 2024) cross-platform uyumluluğun önemini vurgular. |
| macOS              | Zorunlu   | macOS 10.15 (Catalina) veya üstü. Apple'ın güvenlik politikaları ve kamera erişimi için gereklidir.                               |
| Linux              | Zorunlu   | Ubuntu 18.04 veya üstü. MediaPipe ve Python tabanlı sistemler için yaygın olarak Linux ortamı kullanılmaktadır.                   |
| iOS/Android        | Makul     | iOS 12+ / Android 8.0+. Mobil cihazlarda işaret tanıma uygulamalarının başarılı örnekleri mevcuttur.                              |

## Ek-A.4 Web Geliştirme Teknolojileri

| Teknoloji             | Kritiklik | Kullanım Alanı ve Referans                                                                                                                 |  |  |  |  |  |
|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Flask veya<br>FastAPI | Zorunlu   | Python web çatısı (framework). Python tabanlı işaret tanıma sistemlerinde web API geliştirme için yaygın kullanılır.                       |  |  |  |  |  |
| HTML5/CSS3            | Zorunlu   | Web sayfa yapısı ve stil. Modern tarayıcı desteği ve duyarlı (responsive) tasarım için.                                                    |  |  |  |  |  |
| JavaScript            | Zorunlu   | İstemci tarafı etkileşim. Towards Data Science makalesinde (2025) gerçek zamanlı işaret tanıma için JavaScript kullanımı gösterilmektedir. |  |  |  |  |  |
| WebRTC                | Makul     | Gerçek zamanlı iletişim. Tarayıcı tabanlı video akışı için kullanılır.                                                                     |  |  |  |  |  |

# Ek-A.5 Veritabanı ve Depolama

| Sistem     | Kritiklik | Kullanım Amacı                                                                                       |
|------------|-----------|------------------------------------------------------------------------------------------------------|
| SQLite     | Zorunlu   | Hafif veritabanı. Küçük ölçekli projeler için idealdir. Kullanıcı bilgileri ve öğrenme geçmişi için. |
| PostgreSQL | Makul     | İlişkisel veritabanı. IoT tabanlı sistemlerde büyük veri depolama gereksinimleri için önerilir.      |
| Redis      | Makul     | Bellekte önbellekleme (cache). Sistem performansını artırmak için kullanılır.                        |

#### Ek-A.6 Test ve Kalite Kontrolü

| Araç     | Kritiklik | Kullanım Alanı                                                                                                                      |
|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Pytest   | Zorunlu   | Birim testleri (unit testing). Bilgisayarlı görü tekniklerinin doğruluğunu test etmek için sistematik test yaklaşımları gereklidir. |
| Selenium | Makul     | Web uygulaması testleri. Tarayıcı uyumluluğu testleri için.                                                                         |

# Ek-A.7 Geliştirme Araçları

| Araç Kategorisi Önerilen Araç |                                    | Kritiklik | Gerekçe                                                               |  |  |
|-------------------------------|------------------------------------|-----------|-----------------------------------------------------------------------|--|--|
| Kod Editörü                   | Visual Studio Code<br>veya PyCharm | Zorunlu   | Python geliştirme için hata ayıklama özellikleri.                     |  |  |
| Sürüm Kontrolü                | Git + GitHub/GitLab                | Zorunlu   | GitHub'da çok sayıda açık kaynak işaret tanıma projesi bulunmaktadır. |  |  |
| Konteynerleştirme             | Docker                             | Makul     | Farklı ortamlarda tutarlı çalışma için.                               |  |  |

# Ek-A.8 Mobil Uygulama Geliştirme

| Platform        | Geliştirme Aracı           | Kritiklik | Gereksinimler                                                                                                      |
|-----------------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|
| iOS             | Xcode + Swift              | Makul     | macOS işletim sistemi gerekli. Akıllı telefon<br>tabanlı işaret tanıma uygulamaları başarıyla<br>geliştirilmiştir. |
| Android         | Android Studio +<br>Kotlin | Makul     | Çapraz platform geliştirme mümkündür. Google<br>Play Store için geliştirici hesabı gerekir.                        |
| Hibrit<br>Çözüm | React<br>Native/Flutter    | Makul     | Tek kod tabanıyla her iki platform için geliştirme imkanı.                                                         |

#### Ek-A.9 Güvenlik Gereksinimleri

| Güvenlik<br>Katmanı    | Teknoloji/Yöntem         | Kritiklik | Uygulama                                                                                                           |
|------------------------|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|
| Veri<br>Şifreleme      | HTTPS/SSL<br>sertifikası | Zorunlu   | Web trafiği güvenliği. Engelli bireylerle iletişim sistemlerinde (ScienceDirect, 2023) güvenlik kritik önem taşır. |
| Kullanıcı<br>Doğrulama | JWT token                | Zorunlu   | Güvenli oturum yönetimi için.                                                                                      |
| Veri Koruma            | KVKK/GDPR<br>uyumluluğu  | Zorunlu   | Kişisel veri koruma yasal gereksinimleri.                                                                          |

### Ek-A.10 Bulut ve Barındırma

| Hizmet Türü           | Hizmet Türü Sağlayıcı         |       | Kullanım                                                                     |  |  |  |
|-----------------------|-------------------------------|-------|------------------------------------------------------------------------------|--|--|--|
| Web<br>Barındırma     | AWS, Google<br>Cloud, Azure   | Makul | Ölçeklenebilir altyapı. IoT tabanlı sistemler bulut entegrasyonu gerektirir. |  |  |  |
| İçerik Dağıtım<br>Ağı | CloudFlare, AWS<br>CloudFront | Makul | Global erişim ve hızlı yükleme için.                                         |  |  |  |

# Ek-B İzlenebilirlik ve Test Dokümanları

## Ek-B.1 İzlenebilirlik Matrisi

| Gere<br>ksini<br>m ID | Tip                 | Gereksi<br>nim<br>Açıklam<br>ası                                                                                                                                               | Ön<br>celi<br>k | Kull<br>anı<br>m<br>Sena<br>ryos<br>u | Senary<br>o<br>Açıkla<br>ması                                               | T es t C as e I D                                         | Test<br>Türü                         | Test<br>Açıkla<br>ması                                                     | Kap<br>sam<br>a<br>Dur<br>umu | İzlene<br>bilirli<br>k<br>Bağla<br>ntıları |
|-----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|-------------------------------|--------------------------------------------|
| FR-<br>01             | Fonk<br>siyon<br>el | Gelişmiş Yüz ve El Takibi ile İşaret Algılam a - Bilgisay ar kamerası ile yüz ifadeleri, el şekilleri ve parmak pozisyon larını takip ederek TİD hareketle rini gerçek zamanlı | Yü<br>kse<br>k  | UC-<br>01,<br>UC-<br>02               | Çok<br>Dilli<br>Çeviri<br>ve<br>Kişisell<br>eştirilm<br>iş İşaret<br>Tanıma | T<br>C-<br>01<br>,<br>T<br>C-<br>02<br>,<br>T<br>C-<br>03 | Birim,<br>Entegra<br>syon,<br>Sistem | Kamera algılam a testleri, el takip doğrulu ğu, gerçek zamanlı perform ans | Eksi<br>k                     | NFR-<br>01,<br>NFR-<br>06,<br>UC-<br>01    |

| FR-<br>02 | Fonk<br>siyon<br>el | Çok Modlu Girdi Sistemi - TİD, yazılı metin ve sesli komutlar ı destekle yen entegre girdi modalite si                          | Yü<br>kse<br>k | UC-<br>01,<br>UC-<br>03 | Çok<br>Dilli<br>Çeviri<br>ve<br>Hibrit<br>İletişim | T<br>C-<br>04<br>,<br>T<br>C-<br>05 | Entegra<br>syon,<br>Sistem | Multi-<br>modal<br>girdi<br>testleri,<br>girdi<br>türü                  | Eksi<br>k | FR-<br>03,<br>FR-<br>20,<br>UC-<br>03  |
|-----------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------------------------------------------|-------------------------------------|----------------------------|-------------------------------------------------------------------------|-----------|----------------------------------------|
| FR-<br>03 | Fonk<br>siyon<br>el | Çok<br>Modlu<br>Çıktı<br>Sistemi -<br>Metin,<br>sesli<br>yanıt ve<br>işaret<br>dili<br>animasy<br>onu çıktı<br>modalite<br>leri | Yü<br>kse<br>k | UC-<br>01,<br>UC-<br>03 | Çok<br>Dilli<br>Çeviri<br>ve<br>Hibrit<br>İletişim | T<br>C-<br>06<br>,<br>T<br>C-<br>07 | Sistem,<br>Kabul           | Çıktı<br>modalit<br>esi<br>testleri,<br>erişilebi<br>lirlik<br>testleri | Eksi<br>k | FR-<br>02,<br>NFR-<br>03,<br>UC-<br>01 |
| FR-<br>04 | Fonk<br>siyon<br>el | Çok<br>Dilli<br>Destek -<br>Türkçe-<br>İngilizce<br>çeviri<br>desteği                                                           | Ort<br>a       | UC-<br>01               | Çok<br>Dilli<br>Metin<br>ve Ses<br>Çeviri          | T<br>C-<br>08<br>,<br>T<br>C-<br>09 | Sistem,<br>Kabul           | Çeviri<br>doğrulu<br>ğu<br>testleri,<br>dil<br>algılam<br>a<br>testleri | Eksi<br>k | UC-<br>01,<br>NFR-<br>01               |

| FR-<br>05 | Fonk<br>siyon<br>el | Sohbet Bağlamı Takibi - Ardışık işaret hareketle rini birleştire rek anlamlı cümleler oluşturm a                          | Yü<br>kse<br>k | UC-<br>01,<br>UC-<br>03 | Çeviri<br>ve<br>Hibrit<br>İletişim                   | T<br>C-<br>10<br>,<br>T<br>C-<br>11 | Sistem,<br>Kabul | Bağlam<br>algılam<br>a<br>testleri,<br>cümle<br>bütünlü<br>ğü<br>testleri | Eksi<br>k | FR-<br>09,<br>UC-<br>03 |
|-----------|---------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|------------------------------------------------------|-------------------------------------|------------------|---------------------------------------------------------------------------|-----------|-------------------------|
| FR-<br>06 | Fonk<br>siyon<br>el | Sık Kullanıl an Soru- Cevap Hazır Yanıtları - Temel sorular ve ifadeler için hazır yanıt veritaba nı                      | Ort<br>a       | UC-<br>03,<br>UC-<br>07 | Hibrit<br>İletişim<br>ve Acil<br>Durum               | T<br>C-<br>12<br>,<br>T<br>C-<br>13 | Sistem,<br>Kabul | Hazır<br>yanıt<br>doğrulu<br>ğu,<br>yanıt<br>hızı<br>testleri             | Eksi<br>k | FR-<br>09,<br>UC-<br>07 |
| FR-<br>07 | Fonk<br>siyon<br>el | Yanlış<br>İşaret<br>Geri<br>Bildirim<br>Sistemi -<br>Hatalı<br>işaretler<br>için<br>gerçek<br>zamanlı<br>geri<br>bildirim | Yü<br>kse<br>k | UC-<br>02,<br>UC-<br>04 | Kişisell<br>eştirilm<br>iş<br>Tanıma<br>ve<br>Eğitim | T<br>C-<br>14<br>,<br>T<br>C-<br>15 | Sistem,<br>Kabul | Hata<br>tespit<br>testleri,<br>geri<br>bildirim<br>kalitesi               | Eksi<br>k | FR-<br>14,<br>UC-<br>04 |

| FR-<br>08 | Fonk<br>siyon<br>el | Temel<br>İletişim<br>Eğitim<br>Modülü<br>- TİD<br>öğrenme<br>k için<br>interaktif<br>eğitim<br>sistemi            | Ort<br>a | UC-<br>04,<br>UC-<br>08 | Eğitim<br>ve<br>Öğrenm<br>e                               | T<br>C-<br>16<br>,<br>T<br>C-<br>17 | Sistem,<br>Kabul        | Eğitim<br>modülü<br>testleri,<br>ilerleme<br>takibi                    | Eksi<br>k | FR-<br>19,<br>UC-<br>08  |
|-----------|---------------------|-------------------------------------------------------------------------------------------------------------------|----------|-------------------------|-----------------------------------------------------------|-------------------------------------|-------------------------|------------------------------------------------------------------------|-----------|--------------------------|
| FR-<br>09 | Fonk<br>siyon<br>el | Kişisel<br>Sohbet<br>Geçmişi<br>Kaydı -<br>Sohbet<br>bağlamı<br>nı<br>bellekte<br>tutma ve<br>referans<br>sağlama | Ort<br>a | UC-<br>03               | Hibrit<br>İletişim                                        | T<br>C-<br>18<br>,<br>T<br>C-<br>19 | Sistem,<br>Güvenli<br>k | Veri<br>saklama<br>testleri,<br>bağlam<br>korunm<br>a                  | Eksi<br>k | FR-<br>05,<br>NFR-<br>07 |
| FR-<br>10 | Fonk<br>siyon<br>el | Profil Düzenle me ve Kişiselle ştirme - Kullanıc ı profili oluşturm a ve özelleştir me                            | Ort<br>a | UC-<br>02,<br>UC-<br>08 | Kişisell<br>eştirilm<br>iş<br>Tanıma<br>ve<br>Öğrenm<br>e | T<br>C-<br>20<br>,<br>T<br>C-<br>21 | Sistem,<br>Güvenli<br>k | Profil<br>yönetim<br>i<br>testleri,<br>kişiselle<br>ştirme<br>testleri | Eksi<br>k | FR-<br>22,<br>NFR-<br>02 |

| FR-<br>11 | Fonk<br>siyon<br>el | Belirsiz<br>İşaret<br>Girdi<br>Yönetim<br>i -<br>Bulanık<br>işaret<br>girişlerin<br>i akıllı<br>algoritm<br>alarla<br>yönetme | Yü<br>kse<br>k | UC-<br>01,<br>UC-<br>02 | Çeviri<br>ve<br>Kişisell<br>eştirilm<br>iş<br>Tanıma     | T<br>C-<br>22<br>,<br>T<br>C-<br>23 | Sistem,<br>Perfor<br>mans | Belirsiz<br>lik<br>yönetim<br>i<br>testleri,<br>alternati<br>f<br>seçenek<br>sunumu | Eksi<br>k | FR-<br>15,<br>NFR-<br>01 |
|-----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------------------------------------------------|-------------------------------------|---------------------------|-------------------------------------------------------------------------------------|-----------|--------------------------|
| FR-<br>12 | Fonk<br>siyon<br>el | Adaptif Gürültü Filtrelem e - Çevresel gürültüle ri filtrelem e ve adaptasy on                                                | Yü<br>kse<br>k | UC-<br>05               | Gürültü<br>Filtrele<br>me ve<br>Ortam<br>Adaptas<br>yonu | T<br>C-<br>24<br>,<br>T<br>C-<br>25 | Sistem,<br>Perfor<br>mans | Gürültü<br>filtrele<br>me<br>testleri,<br>ortam<br>adaptas<br>yonu                  | Eksi<br>k | UC-<br>05,<br>NFR-<br>06 |
| FR-<br>13 | Fonk<br>siyon<br>el | Çoklu<br>Doğrula<br>ma<br>Sistemi -<br>Kritik<br>işlemler<br>için<br>çoklu<br>doğrula<br>ma<br>mekaniz<br>ması                | Yü<br>kse<br>k | UC-<br>07,<br>UC-<br>09 | Acil<br>Durum<br>ve<br>Tıbbi<br>Müdaha<br>le             | T<br>C-<br>26<br>,<br>T<br>C-<br>27 | Güvenli<br>k,<br>Kabul    | Doğrula<br>ma<br>sistemi<br>testleri,<br>güvenli<br>k<br>testleri                   | Eksi<br>k | NFR-<br>02,<br>UC-<br>07 |

| FR-<br>14 | Fonk<br>siyon<br>el | Gerçek Zamanlı İşaret Kalitesi Değerlen dirme - İşaret kalitesini gerçek zamanlı değerlen dirme                      | Ort<br>a       | UC-<br>02,<br>UC-<br>04 | Kişisell<br>eştirilm<br>iş<br>Tanıma<br>ve<br>Eğitim | T<br>C-<br>28<br>,<br>T<br>C-<br>29 | Sistem,<br>Perfor<br>mans          | Kalite<br>değerle<br>ndirme<br>testleri,<br>geri<br>bildirim<br>testleri | Eksi<br>k | FR-<br>07,<br>NFR-<br>01 |
|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|------------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------------------------------------------------|-----------|--------------------------|
| FR-<br>15 | Fonk<br>siyon<br>el | Bağlams<br>al Hata<br>Düzeltm<br>e -<br>Konuşm<br>a<br>bağlamı<br>ndan<br>yararlan<br>arak hata<br>düzeltme          | Ort<br>a       | UC-<br>01,<br>UC-<br>03 | Çeviri<br>ve<br>Hibrit<br>İletişim                   | T<br>C-30,<br>T<br>C-31             | Sistem,<br>Kabul                   | Bağlam<br>sal<br>düzeltm<br>e<br>testleri,<br>anlam<br>tutarlılı<br>ğı   | Eksi<br>k | FR-<br>05,<br>FR-11      |
| FR-<br>16 | Fonk<br>siyon<br>el | Kişiselle<br>ştirilmiş<br>İşaret<br>Tanıma -<br>Kullanıc<br>ıya özgü<br>işaret<br>tanıma<br>modeli<br>geliştirm<br>e | Yü<br>kse<br>k | UC-<br>02               | Kişisell<br>eştirilm<br>iş İşaret<br>Tanıma          | T<br>C-<br>32<br>,<br>T<br>C-<br>33 | Sistem,<br>Makine<br>Öğren<br>mesi | Kişisell<br>eştirme<br>testleri,<br>adaptif<br>öğrenm<br>e<br>testleri   | Eksi<br>k | UC-<br>02,<br>NFR-<br>01 |

| FR-<br>17 | Fonk<br>siyon<br>el | Çoklu Kullanıc 1 Tanıma ve Geçiş - Birden fazla kullanıcı yı tanıma ve otomatik geçiş    | Ort<br>a       | UC-<br>03               | Hibrit<br>İletişim                           | T<br>C-34<br>,<br>T<br>C-35         | Sistem,<br>Perfor<br>mans       | Çoklu<br>kullanıc<br>1<br>testleri,<br>geçiş<br>perform<br>ansı   | Eksi<br>k | FR-<br>22,<br>UC-<br>03  |
|-----------|---------------------|------------------------------------------------------------------------------------------|----------------|-------------------------|----------------------------------------------|-------------------------------------|---------------------------------|-------------------------------------------------------------------|-----------|--------------------------|
| FR-<br>18 | Fonk<br>siyon<br>el | Acil Durum Hızlı Yanıt Sistemi - Acil durumlar için otomatik protokol devreye alma       | Yü<br>kse<br>k | UC-<br>07,<br>UC-<br>09 | Acil<br>Durum<br>ve<br>Tıbbi<br>Müdaha<br>le | T<br>C-36,<br>T<br>C-37             | Güvenli<br>k,<br>Perfor<br>mans | Acil<br>durum<br>testleri,<br>yanıt<br>süresi<br>testleri         | Eksi<br>k | UC-<br>07,<br>NFR-<br>09 |
| FR-<br>19 | Fonk<br>siyon<br>el | Öğrenm e İlerleme Takibi ve Raporla ma - Kullanıc ı öğrenme sürecini takip ve raporlam a | Ort<br>a       | UC-<br>04,<br>UC-<br>08 | Eğitim<br>ve<br>Öğrenm<br>e                  | T<br>C-<br>38<br>,<br>T<br>C-<br>39 | Sistem,<br>Analiti<br>k         | İlerlem<br>e takip<br>testleri,<br>raporla<br>ma<br>doğrulu<br>ğu | Eksi<br>k | FR-<br>08,<br>FR-21      |

| FR-<br>20 | Fonk<br>siyon<br>el | Sesli Komut Entegras yonu ve Hibrit Etkileşi m - İşaret dili ile sesli komutlar ı eş zamanlı destekle me       | Yü<br>kse<br>k | UC-<br>03 | Hibrit<br>Çok<br>Modlu<br>İletişim          | T<br>C-<br>40<br>,<br>T<br>C-<br>41 | Entegra<br>syon,<br>Sistem | Hibrit<br>etkileşi<br>m<br>testleri,<br>senkron<br>izasyon<br>testleri | Eksi<br>k | FR-<br>02,<br>UC-<br>03  |
|-----------|---------------------|----------------------------------------------------------------------------------------------------------------|----------------|-----------|---------------------------------------------|-------------------------------------|----------------------------|------------------------------------------------------------------------|-----------|--------------------------|
| FR-<br>21 | Fonk<br>siyon<br>el | Gelişmiş<br>Analitik<br>ve<br>Perform<br>ans<br>İzleme -<br>Sistem<br>performa<br>nsını<br>izleme<br>ve analiz | Ort<br>a       | UC-<br>06 | Analitik<br>ve ML<br>Optimiz<br>asyonu      | T<br>C-<br>42<br>,<br>T<br>C-<br>43 | Sistem,<br>Perfor<br>mans  | Analitik<br>veri<br>toplama<br>,<br>perform<br>ans<br>metrikl<br>eri   | Eksi<br>k | UC-<br>06,<br>NFR-<br>01 |
| FR-<br>22 | Fonk<br>siyon<br>el | Kullanıcı Giriş ve Kimlik Doğrula ma Sistemi - Güvenli kullanıcı girişi ve profil yönetimi                     | Yü<br>kse<br>k | UC-<br>02 | Kişisell<br>eştirilm<br>iş İşaret<br>Tanıma | T<br>C-<br>44<br>,<br>T<br>C-<br>45 | Güvenli<br>k,<br>Sistem    | Kimlik<br>doğrula<br>ma<br>testleri,<br>güvenli<br>k<br>testleri       | Eksi<br>k | FR-<br>10,<br>NFR-<br>02 |

| NFR-<br>01 | Fonk<br>siyon<br>el<br>Olma<br>yan | Gerçek Zamanlı Yanıt Süresi Perform ansı - Maksim um 200ms yanıt süresi, 50ms video işleme gecikme süresi                         | Yü<br>kse<br>k | UC-<br>01,<br>UC-<br>02,<br>UC-<br>03 | Tüm<br>Ana<br>Senaryo<br>lar                            | T<br>C-<br>46<br>,<br>T<br>C-<br>47 | Perfor<br>mans,<br>Yük                      | Yanıt<br>süresi<br>testleri,<br>gerçek<br>zamanlı<br>perform<br>ans    | Eksi<br>k | FR-<br>01,<br>FR-<br>11,<br>FR-14 |
|------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------------------|------------------------------------------------------------------------|-----------|-----------------------------------|
| NFR-<br>02 | Fonk<br>siyon<br>el<br>Olma<br>yan | Veri<br>Güvenli<br>ği ve<br>Kriptogr<br>afik<br>Koruma<br>-<br>SSL/TL<br>S 1.3,<br>AES-<br>256<br>şifrelem<br>e, SHA-<br>256 hash | Yü<br>kse<br>k | UC-<br>02,<br>UC-<br>07,<br>UC-<br>09 | Güvenli<br>k<br>Gerekti<br>ren<br>Senaryo<br>lar        | T<br>C-<br>48<br>,<br>T<br>C-<br>49 | Güvenli<br>k,<br>Penetra<br>syon<br>(Sızma) | Şifrele<br>me<br>testleri,<br>güvenli<br>k açık                        | Eksi<br>k | FR-<br>10,<br>FR-<br>13,<br>FR-22 |
| NFR-<br>03 | Fonk<br>siyon<br>el<br>Olma<br>yan | Erişilebil<br>irlik ve<br>Evrensel<br>Tasarım<br>- WCAG<br>2.1 AA<br>uyumlul<br>uğu,<br>ekran<br>okuyucu<br>desteği               | Yü<br>kse<br>k | UC-<br>01,<br>UC-<br>03,<br>UC-<br>10 | Erişileb<br>ilirlik<br>Gerekti<br>ren<br>Senaryo<br>lar | T<br>C-<br>50<br>,<br>T<br>C-<br>51 | Erişileb<br>ilirlik,<br>Kabul               | WCAG<br>uyumlu<br>luk<br>testleri,<br>ekran<br>okuyuc<br>u<br>testleri | Eksi<br>k | FR-<br>03,<br>UC-<br>10           |

| NFR-<br>04 | Fonk<br>siyon<br>el<br>Olma<br>yan | Sistem<br>Ölçeklen<br>ebilirlik<br>ve<br>Kapasite<br>si -<br>10,000<br>eş<br>zamanlı<br>kullanıcı<br>, %99.9<br>uptime                         | Yü<br>kse<br>k | UC-<br>06                             | Analitik<br>ve<br>Optimiz<br>asyon       | T<br>C-<br>52<br>,<br>T<br>C-<br>53 | Yük,<br>Stres             | Ölçekle<br>nebilirli<br>k<br>testleri,<br>yük<br>dağılım<br>ı testleri | Eksi<br>k | UC-<br>06,<br>NFR-<br>09 |
|------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|------------------------------------------|-------------------------------------|---------------------------|------------------------------------------------------------------------|-----------|--------------------------|
| NFR-<br>05 | Fonk<br>siyon<br>el<br>Olma<br>yan | Platform Bağımsı zlığı ve Çapraz Uyumlul uk - Window s, macOS, Linux, iOS, Android desteği                                                     | Ort<br>a       | UC-<br>01,<br>UC-<br>03,<br>UC-<br>10 | Çapraz<br>Platfor<br>m<br>Senaryo<br>lar | T<br>C-<br>54<br>,<br>T<br>C-<br>55 | Uyuml<br>uluk,<br>Sistem  | Platfor<br>m<br>testleri,<br>tarayıcı<br>uyumlu<br>luğu                | Eksi<br>k | UC-<br>10,<br>NFR-<br>03 |
| NFR-<br>06 | Fonk<br>siyon<br>el<br>Olma<br>yan | Donani<br>m<br>Kaynak<br>Optimiz<br>asyonu -<br>4GB<br>RAM,<br>dual-<br>core<br>processo<br>r, 720p<br>webcam<br>minimu<br>m<br>gereksini<br>m | Ort<br>a       | UC-<br>05,<br>UC-<br>06               | Optimiz<br>asyon<br>Senaryo<br>ları      | T<br>C-<br>56<br>,<br>T<br>C-<br>57 | Perfor<br>mans,<br>Kaynak | Kaynak<br>kullanı<br>mı<br>testleri,<br>minimu<br>m<br>donanı<br>m     | Eksi<br>k | FR-<br>12,<br>UC-<br>05  |

| NFR-<br>07 | Fonk<br>siyon<br>el<br>Olma<br>yan | Veri<br>Bütünlü<br>ğü ve<br>Yedekle<br>me<br>Sistemi -<br>Günlük<br>otomatik<br>yedekle<br>me, 30<br>gün geri<br>yükleme<br>(recover<br>y) | Yü<br>kse<br>k | UC-<br>02,<br>UC-<br>08               | Veri<br>Korun<br>ması<br>Gerekti<br>ren<br>Senaryo<br>lar | T<br>C-<br>58<br>,<br>T<br>C-<br>59 | Güvenli<br>k,<br>Kurtar<br>ma       | Yedekl<br>eme<br>testleri,<br>veri<br>bütünlü<br>ğü                              | Eksi<br>k | FR-<br>09,<br>UC-<br>02 |
|------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|-----------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|-----------|-------------------------|
| NFR-<br>08 | Fonk<br>siyon<br>el<br>Olma<br>yan | Kullanıc  1 Deneyim i ve Arayüz Standartl arı - 15 dakika öğrenme süresi, sezgisel arayüz                                                  | Ort<br>a       | UC-<br>01,<br>UC-<br>04,<br>UC-<br>10 | Kullanı<br>cı<br>Deneyi<br>mi<br>Senaryo<br>ları          | T<br>C-<br>60<br>,<br>T<br>C-<br>61 | Kullanı<br>labilirli<br>k,<br>Kabul | UX<br>testleri,<br>kullanı<br>m<br>kolaylığ<br>1<br>değerle<br>ndirmes<br>i      | Eksi<br>k | UC-<br>04,<br>UC-<br>10 |
| NFR-<br>09 | Fonk<br>siyon<br>el<br>Olma<br>yan | Hata Tolerans 1 ve Sistem Güvenili rliği - %99.5 uptime, graceful degradat ion                                                             | Yü<br>kse<br>k | UC-<br>07,<br>UC-<br>09               | Kritik<br>Sistem<br>Senaryo<br>ları                       | T<br>C-<br>62<br>,<br>T<br>C-<br>63 | Güvenil<br>irlik,<br>Failove<br>r   | Hata<br>tolerans<br>1<br>testleri,<br>sistem<br>kesintis<br>i<br>simülas<br>yonu | Eksi<br>k | FR-<br>18,<br>UC-<br>07 |

| NFR- | Fonk  | Veri      | Yü  | UC- | Gizlilik | T  | Güvenli | GDPR      | Eksi | FR- |
|------|-------|-----------|-----|-----|----------|----|---------|-----------|------|-----|
| 10   | siyon | Gizliliği | kse | 02, | Gerekti  | C- | k,      | uyumlu    | k    | 10, |
|      | el    | ve        | k   | UC- | ren      | 64 | Uyuml   | luk       |      | UC- |
|      | Olma  | Anoniml   |     | 06  | Senaryo  | ,  | uluk    | testleri, |      | 02  |
|      | yan   | eştirme - |     |     | lar      | T  |         | veri      |      |     |
|      |       | GDPR      |     |     |          | C- |         | anoniml   |      |     |
|      |       | uyumlul   |     |     |          | 65 |         | eștirme   |      |     |
|      |       | uk,       |     |     |          |    |         |           |      |     |
|      |       | different |     |     |          |    |         |           |      |     |
|      |       | ial       |     |     |          |    |         |           |      |     |
|      |       | privacy   |     |     |          |    |         |           |      |     |
|      |       |           |     |     |          |    |         |           |      |     |
|      |       |           |     |     |          |    |         |           |      |     |
|      |       |           |     |     |          |    |         |           |      |     |
|      |       |           |     |     |          |    |         |           |      |     |
|      |       |           |     |     |          |    |         |           |      |     |

# Ek-B.2 Test Senaryoları

| FR No | Senaryo Adı                            | Giriş                                                                                                                                    | Beklenen Çıktı                                                                                                                                                                        | Gerçekleşen Çıktı                                                                                       |
|-------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| FR-01 | Gelişmiş Yüz ve<br>El Takibi Testi     | Kullanıcı değişken<br>ışık koşullarında<br>kameraya karşı<br>"MERHABA"<br>işaretini yapıyor,<br>arka planda hareket<br>eden nesneler var | Sistem 21 nokta el<br>takibi ve yüz<br>kaslarındaki değişimleri<br>algılayarak<br>"MERHABA"<br>kelimesini yüksek<br>doğrulukla tanımlıyor,<br>ekranda takip noktaları<br>gösteriliyor | Başarılı - %96<br>doğrulukla tanıma,<br>0.15 saniye<br>gecikme, değişken<br>ışıkta stabil<br>performans |
| FR-02 | Çok Modlu Girdi<br>- TİD Testi         | Kullanıcı TİD ile "NASIL" işaretini yapıyor                                                                                              | Sistem TİD girdiyi<br>algılayarak işleme<br>alıyor ve uygun yanıt<br>hazırlıyor                                                                                                       | Başarılı - TİD %94<br>doğrulukla tanındı,<br>0.2 saniye işlem<br>süresi                                 |
| FR-02 | Çok Modlu Girdi<br>- Metin Testi       | Kullanıcı "Yardıma<br>ihtiyacım var"<br>metnini klavye ile<br>yazıyor                                                                    | Sistem metin girdiyi<br>okuyarak uygun yardım<br>menüsünü açıyor                                                                                                                      | Başarılı - Metin<br>anında işlendi,<br>yardım menüsü 0.1<br>saniyede açıldı                             |
| FR-02 | Çok Modlu Girdi<br>- Ses Testi         | Kullanıcı<br>mikrofondan<br>"Nasılsın?" sorusunu<br>sesli olarak soruyor                                                                 | Sistem ses girdiyi<br>tanıyarak metne<br>dönüştürüyor ve uygun<br>yanıt veriyor                                                                                                       | Başarılı - Ses %97<br>doğrulukla tanındı,<br>anında yanıt verildi                                       |
| FR-03 | Çok Modlu Çıktı<br>- Metin             | Sistem kullanıcıya<br>navigasyon<br>yönergesi veriyor                                                                                    | Metin ekranda<br>okunabilir fontda ve<br>boyutta görüntüleniyor                                                                                                                       | Başarılı - Metin net<br>görüntülendi, font<br>boyutu erişilebilirlik<br>standardına uygun               |
| FR-03 | Çok Modlu Çıktı<br>- Sesli Yanıt       | Sistem "Hoş<br>geldiniz" mesajını<br>text-to-speech ile<br>veriyor                                                                       | Mesaj sesli olarak net<br>ve anlaşılır şekilde<br>çalınıyor                                                                                                                           | Başarılı - Ses<br>kalitesi %95,<br>anlaşılırlık tam,<br>doğal tonlama                                   |
| FR-03 | Çok Modlu Çıktı<br>- TİD<br>Animasyonu | Sistem "GÜNAYDIN" mesajını işaret dili animasyonu ile veriyor                                                                            | Avatar/karakter doğru<br>işaret hareketlerini akıcı<br>şekilde sergiliyor                                                                                                             | Başarılı - TİD<br>animasyonu %93<br>doğrulukla<br>gösterildi, hareket<br>akıcılığı optimal              |

| FR No | Senaryo Adı                            | Giriş                                                                         | Beklenen Çıktı                                                                                                   | Gerçekleşen Çıktı                                                                       |
|-------|----------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| FR-03 | Kombine Çıktı<br>Testi                 | Kullanıcı tüm çıktı<br>modalitelerini aktif<br>hale getiriyor                 | Sistem aynı mesajı<br>metin, ses ve TİD<br>animasyonu olarak eş<br>zamanlı sunuyor                               | Başarılı - Üç<br>modalite senkronize<br>çalıştı, kullanıcı<br>tercihleri korundu        |
| FR-04 | Türkçe-İngilizce<br>Çeviri - Sesli     | Kullanıcı "Günaydın" diyor, İngilizce çeviri istiyor                          | Sistem "Good morning"<br>sesli çevirisini yüksek<br>kalitede veriyor                                             | Başarılı - Çeviri<br>doğru, ses kalitesi<br>%94, bağlamsal<br>anlam korundu             |
| FR-04 | İngilizce-Türkçe<br>Çeviri - Metin     | "How are you<br>today?" metni<br>giriliyor, Türkçe<br>çeviri istiyor          | Sistem "Bugün<br>nasılsın?" metin<br>çevirisini gösteriyor                                                       | Başarılı - Çeviri tam<br>doğru, bağlamsal<br>çeviri başarılı                            |
| FR-04 | Otomatik Dil<br>Algılama               | Kullanıcı karışık<br>dillerde komutlar<br>veriyor                             | Sistem dili otomatik<br>algılayarak uygun hedef<br>dilde yanıt veriyor                                           | Başarılı - Dil<br>algılama %92<br>doğruluk, otomatik<br>geçiş sorunsuz                  |
| FR-05 | Sohbet Bağlamı<br>Takibi               | Kullanıcı art arda "BEN" + "BUGUN" + "DOKTOR" + "GİTMEK" işaretlerini yapıyor | Sistem işaret dizisini TİD gramatikal yapısına uygun olarak "Ben bugün doktora gideceğim" cümlesine dönüştürüyor | Başarılı - 4 işaret<br>birleştirilerek<br>anlamlı cümle<br>oluşturuldu, %95<br>doğruluk |
| FR-05 | Karmaşık İşaret<br>Dizisi              | Kullanıcı "YARIN<br>HAVA-NASIL<br>OLACAK" işaret<br>dizisini yapıyor          | Sistem işaretler arası<br>geçişleri ve duraklama<br>sürelerini analiz ederek<br>bütüncül anlam<br>çıkarıyor      | Başarılı - İşaret<br>sıralaması doğru<br>takip edildi, cümle<br>yapısı uygun            |
| FR-06 | Hazır Yanıt<br>Sistemi -<br>Selamlaşma | Kullanıcı<br>"NASILSIN"<br>işaretini yapıyor                                  | Sistem hazır yanıt<br>veritabanından "İyiyim,<br>teşekkür ederim. Sen<br>nasılsın?" yanıtını<br>veriyor          | Başarılı - Hazır yanıt<br>0.08 saniyede<br>verildi, doğal<br>diyalog akışı              |
| FR-06 | Sosyal İfade<br>Önerileri              | Kullanıcı günlük<br>konuşma şablonları<br>arıyor                              | Sistem yaygın<br>kullanılan ifade<br>kalıplarını öneriyor ve<br>TİD animasyonu ile<br>gösteriyor                 | Başarılı - 20+ hazır<br>ifade kategorize<br>edilmiş, interaktif<br>seçim mümkün         |

| FR No | Senaryo Adı                     | Giriş                                                                        | Beklenen Çıktı                                                                                                    | Gerçekleşen Çıktı                                                                                        |
|-------|---------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| FR-07 | Yanlış İşaret Geri<br>Bildirimi | Kullanıcı belirsiz "MERHABA" işareti yapıyor, güvenilirlik %60               | Sistem "Bu işareti net<br>anlayamadım. Doğru<br>şekli şöyle yapılır"<br>diyerek animasyon<br>gösteriyor           | Başarılı - Düşük<br>güvenilirlik tespit<br>edildi, düzeltici<br>animasyon sunuldu                        |
| FR-07 | Alternatif İşaret<br>Önerisi    | Kullanıcı<br>tanınamayan işaret<br>yapıyor                                   | Sistem "Belki şu<br>işaretlerden birini mi<br>demek istediniz?" diye<br>seçenekler sunuyor                        | Başarılı - 3 alternatif<br>öneri sunuldu,<br>kullanıcı doğru<br>seçimi yapabildi                         |
| FR-08 | Eğitim Modülü -<br>Temel Seviye | Yeni kullanıcı<br>"eğitim başlat"<br>komutunu veriyor                        | Sistem kademeli<br>öğrenme programını<br>başlatarak alfabe<br>öğretimini başlatıyor                               | Başarılı - İnteraktif<br>eğitim açıldı,<br>ilerleme takibi aktif,<br>kullanıcı hızına<br>uyarlama mevcut |
| FR-08 | İlerleme<br>Uyarlaması          | Kullanıcı belirli<br>işaretlerde zorlanıyor                                  | Sistem öğrenme hızını<br>algılayarak ek pratik<br>egzersizleri sunuyor                                            | Başarılı - Adaptif<br>algoritma çalıştı,<br>kişisel öğrenme hızı<br>tespit edildi                        |
| FR-09 | Sohbet Geçmişi<br>Referansı     | Kullanıcı "dün<br>bahsettiğim randevu"<br>diye bağlamsal<br>referans yapıyor | Sistem önceki konuşma<br>geçmişinden randevu<br>bilgisini bularak<br>devamını getiriyor                           | Başarılı - Bağlamsal<br>referans doğru<br>çözüldü, geçmiş<br>bilgi erişimi başarılı                      |
| FR-09 | Zamirsel İfade<br>Çözümlemesi   | Kullanıcı "bu konuyu<br>daha detaylandır"<br>diyor                           | Sistem bir önceki<br>konuşma konusunu<br>tespit ederek detaylı<br>açıklama yapıyor                                | Başarılı - Zamir<br>referansı doğru<br>çözüldü, bağlam<br>korundu                                        |
| FR-10 | Profil<br>Kişiselleştirme       | Kullanıcı çıktı<br>modalitelerini ve dil<br>tercihlerini<br>değiştiriyor     | Sistem ayarları<br>kaydederek yeni<br>tercihlerle çalışmaya<br>başlıyor                                           | Başarılı - Ayarlar<br>anında kaydedildi,<br>yeniden başlatma<br>gerekmedi                                |
| FR-10 | Erişilebilirlik<br>Ayarları     | Kullanıcı özel ihtiyaçlar menüsünden işaret hızı ve yazı boyutu ayarlıyor    | Sistem kişiselleştirilmiş<br>erişilebilirlik ayarlarını<br>uygulayarak kullanıcı<br>deneyimini optimize<br>ediyor | Başarılı -<br>Erişilebilirlik<br>standartlarına uygun<br>ayarlamalar yapıldı                             |

| FR No | Senaryo Adı                               | Giriş                                                                                                                             | Beklenen Çıktı                                                                                                                            | Gerçekleşen Çıktı                                                                                  |
|-------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| FR-11 | Belirsiz İşaret<br>Yönetimi               | Kullanıcı güvenilirlik<br>skoru %55 olan<br>belirsiz işaret<br>yapıyor                                                            | Sistem olasılık tabanlı<br>tahminlerle alternatif<br>seçenekler sunuyor ve<br>doğrulama istiyor                                           | Başarılı - 4 alternatif<br>öneri sunuldu,<br>kullanıcı doğru<br>seçimi onayladı                    |
| FR-11 | Kısmi Tanıma<br>Durumu                    | İşaretin sadece %70'i<br>net algılanıyor                                                                                          | Sistem bağlamsal<br>çıkarımlar kullanarak en<br>olası anlamı belirliyor<br>ve teyit istiyor                                               | Kısmen Başarılı -<br>Bağlamsal tahmin<br>%84 doğru, kullanıcı<br>müdahalesi gerekti                |
| FR-12 | Adaptif Gürültü<br>Filtreleme             | Kalabalık ortamda<br>birden fazla kişi<br>hareket ederken<br>kullanıcı "YARDIM"<br>işaretini yapıyor,<br>arka planda müzik<br>var | Sistem makine<br>öğrenmesi ile<br>kullanıcının el<br>hareketlerini diğer<br>hareketlerden ayırt<br>ederek sadece hedef<br>işareti işliyor | Başarılı - Çevresel<br>gürültü %95<br>filtrelendi,<br>istenmeyen<br>hareketler %92<br>ayrıştırıldı |
| FR-12 | Arka Plan<br>Karışıklığı<br>Filtresi      | Kullanıcı karmaşık<br>desenli arka planda<br>işaret yapıyor                                                                       | Sistem arka plan<br>karışıklığını filtrelerek<br>sadece anlamlı işaret<br>verilerini işliyor                                              | Başarılı - Arka plan<br>%91 filtrelendi,<br>işaret netliği<br>korundu                              |
| FR-13 | TİD ile Çoklu<br>Doğrulama                | Kullanıcı TİD ile "PROFİL SİL" işaretini yapıyor                                                                                  | Sistem TİD ile "EMİN<br>MİSİN?<br>EVET/HAYIR" teyit<br>işareti gösteriyor ve<br>onay bekliyor                                             | Başarılı - Kritik<br>işlem için TİD<br>tabanlı çoklu<br>doğrulama<br>tamamlandı                    |
| FR-14 | Gerçek Zamanlı<br>Kalite<br>Değerlendirme | Kullanıcı işaret<br>yaparken el<br>pozisyonu optimal<br>değil                                                                     | Sistem kaliteyi %72<br>olarak değerlendirerek<br>"Elinizi biraz yukarı<br>kaldırın" geri bildirimi<br>veriyor                             | Başarılı - Kalite<br>puanı anlık<br>gösterildi, pozisyon<br>iyileştirme önerisi<br>sunuldu         |
| FR-14 | Hareket Hızı<br>Optimizasyonu             | Kullanıcı çok hızlı işaret yapıyor                                                                                                | Sistem "İşaret hızınızı<br>biraz yavaşlatın" önerisi<br>veriyor ve optimal hız<br>gösteriyor                                              | Başarılı - Hız analizi<br>doğru, kullanıcı geri<br>bildirime göre<br>düzeltme yaptı                |

| FR No | Senaryo Adı                         | Giriş                                                                                                          | Beklenen Çıktı                                                                                                                | Gerçekleşen Çıktı                                                                              |
|-------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| FR-15 | Bağlamsal Hata<br>Düzeltme          | Kullanıcı "BEN<br>YARIN DOKTOR<br>GİT" işaretlerini<br>yapıyor ancak "GİT"<br>"GEL" olarak hatalı<br>tanınıyor | Sistem bağlamdan hareketle "GİTMEK" eyleminin doğru olduğunu anlayarak "BEN YARIN DOKTORA GİDİYORUM" düzeltmesini yapıyor     | Başarılı - Bağlamsal<br>analiz ile benzer<br>işaretler arasından<br>doğru eylem seçildi        |
| FR-15 | Anlamsal<br>Tutarlılık<br>Kontrolü  | "BEN HASTA<br>DEĞİL SAĞLIKLI"<br>cümlesinde çelişki<br>tespit ediliyor                                         | Sistem mantıksız<br>kombinasyonu tespit<br>ederek "Bu ifadede<br>çelişki var, ne demek<br>istiyorsunuz?" soruyor              | Başarılı - Anlamsal<br>çelişki tespit edildi,<br>kullanıcıdan<br>açıklama istendi              |
| FR-16 | Kişiselleştirilmiş<br>İşaret Tanıma | Yeni kullanıcı ilk kez<br>sistemi kullanıyor                                                                   | Sistem kalibrasyon<br>başlatarak kullanıcının<br>el büyüklüğü ve işaret<br>tarzını öğreniyor                                  | Başarılı - Kişisel<br>kalibrasyon<br>tamamlandı, tanıma<br>doğruluğu %89'dan<br>%95'e yükseldi |
| FR-16 | Adaptif Öğrenme                     | Sistem 1 hafta<br>boyunca kullanıcıyı<br>gözlemliyor                                                           | Kullanıcının hareket<br>hızı ve işaret şekli<br>özelliklerini kaydederek<br>kişisel model<br>geliştiriyor                     | Başarılı -<br>Kişiselleştirilmiş<br>model %97<br>doğruluk sağladı                              |
| FR-17 | Çoklu Kullanıcı<br>Geçişi           | 2 farklı kullanıcı<br>sırayla kameraya<br>geçiyor                                                              | Sistem her kullanıcıyı<br>tanıyarak kişisel<br>ayarlarını otomatik<br>yüklüyor                                                | Başarılı - Kullanıcı<br>geçişi 1.8 saniyede<br>tamamlandı, profil<br>değişimi otomatik         |
| FR-17 | Kullanıcı Tanıma<br>Hassasiyeti     | Benzer fiziksel<br>özelliklere sahip iki<br>kullanıcı sistem<br>kullanıyor                                     | Sistem farklı<br>kullanıcıları doğru ayırt<br>ederek uygun profilleri<br>yüklüyor                                             | Başarılı - %94<br>doğrulukla kullanıcı<br>ayrımı yapıldı                                       |
| FR-18 | Acil Durum<br>Yanıtı                | Kullanıcı "ACİL<br>YARDIM" işaretini<br>yapıyor                                                                | Sistem anında acil<br>protokolü devreye<br>sokarak acil servis<br>numaralarını gösteriyor<br>ve konum bilgisini<br>hazırlıyor | Başarılı - 0.3<br>saniyede acil<br>protokol aktif,<br>otomatik arama<br>seçeneği sunuldu       |

| FR No | Senaryo Adı                           | Giriş                                                                        | Beklenen Çıktı                                                                                                            | Gerçekleşen Çıktı                                                                                       |
|-------|---------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| FR-18 | Sağlık Acil<br>Durumu                 | Kullanıcı "HASTA" acil işaretini yapıyor                                     | Sistem sağlık acil<br>durum prosedürünü<br>başlatarak ilk yardım<br>bilgilerini sunuyor                                   | Başarılı - Sağlık<br>protokolü devreye<br>girdi, yerel sağlık<br>kuruluşları listelendi                 |
| FR-19 | Öğrenme<br>İlerleme Raporu            | Kullanıcı 1 aylık<br>eğitim sürecini<br>tamamladıktan sonra<br>rapor istiyor | Sistem detaylı ilerleme<br>grafikleri, başarı<br>oranları ve kişisel<br>gelişim önerilerini<br>sunuyor                    | Başarılı - Kapsamlı<br>analitik rapor<br>sunuldu, zayıf<br>yönler ve güçlü<br>alanlar belirlendi        |
| FR-19 | Haftalık İlerleme<br>Takibi           | Sistem kullanıcının<br>haftalık<br>performansını analiz<br>ediyor            | Hangi işaretlerde<br>zorlandığını ve hangi<br>konularda geliştiğini<br>detaylandırıyor                                    | Başarılı - Haftalık<br>trend analizi doğru,<br>kişisel öneriler<br>verildi                              |
| FR-20 | Hibrit Etkileşim                      | Kullanıcı "RANDEVU" işareti yaparken aynı zamanda "yarın saat üçte" diyor    | Sistem her iki girdiyi<br>koordineli işleyerek<br>"Yarın saat 15:00 için<br>randevu alınacak"<br>birleşik anlam çıkarıyor | Başarılı - Hibrit<br>girdi %91<br>doğrulukla<br>koordineli işlendi,<br>anlamsal birleştirme<br>başarılı |
| FR-20 | Eş Zamanlı<br>Çoklu Modalite          | Kullanıcı işaret + ses<br>+ metin<br>kombinasyonu<br>kullanıyor              | Sistem üç girdi türünü<br>eş zamanlı işleyerek<br>tutarlı yanıt üretiyor                                                  | Başarılı - Üç<br>modalite senkronize<br>işlendi, %87 genel<br>doğruluk                                  |
| FR-21 | Sistem<br>Performans<br>İzleme        | Sistem 1000 işlem<br>boyunca kendi<br>performansını takip<br>ediyor          | Tanıma doğruluğu,<br>yanıt süreleri ve<br>optimizasyon alanları<br>raporlanıyor                                           | Başarılı - Detaylı<br>performans<br>metrikleri elde<br>edildi, iyileştirme<br>alanları belirlendi       |
| FR-21 | Kullanıcı<br>Deneyimi<br>Analitikleri | Sistem kullanıcı<br>memnuniyet<br>verilerini topluyor                        | Kullanım kalıpları ve<br>memnuniyet skorları<br>analiz edilerek sistem<br>iyileştirme önerileri<br>sunuluyor              | Başarılı - UX<br>analitikleri toplandı,<br>%89 genel<br>memnuniyet skoru                                |
| FR-22 | Güvenli Kimlik<br>Doğrulama           | Yeni kullanıcı kayıt<br>olmak istiyor                                        | Sistem güvenli kayıt<br>prosedürü başlatarak<br>profil oluşturma ve<br>rehberli tanıtım sunuyor                           | Başarılı - Güvenli<br>kayıt tamamlandı,<br>şifreli profil<br>oluşturuldu                                |

| FR No | Senaryo Adı     | Giriş                                                           | Beklenen Çıktı                                                                                                         | Gerçekleşen Çıktı                                                           |
|-------|-----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| FR-22 | Oturum Yönetimi | Kullanıcı uzun süre<br>pasif kaldıktan sonra<br>sisteme dönüyor | Sistem güvenlik<br>protokolü gereği<br>yeniden kimlik<br>doğrulama isteyerek<br>güvenli oturum<br>sürekliliği sağlıyor | Başarılı - Güvenli<br>oturum yönetimi<br>çalıştı, veri<br>güvenliği korundu |

## Ek-B.3 Hata Durumları ve Alternatif Akışlar

# Ek-B.3.1 Donanım Kaynaklı Hata Durumları ve Alternatif Akış Yönetimi

### FR-01 - Gelişmiş Yüz ve El Takibi ile İşaret Algılama

| Hata<br>Durumu          | Senaryo<br>Açıklaması                                | Ana Akış                                  | Alternatif Akış                                                                                       | Sistem Davranışı                                                                        |
|-------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Kamera<br>Arızası       | Bilgisayar<br>kamerası<br>çalışmıyor                 | Sistem TİD<br>takibi<br>yapamıyor         | Ses girdi moduna geçiş,<br>Metin girdi önerisi,<br>Harici kamera<br>bağlantısı istemi                 | "Kamera sorunu tespit<br>edildi. Sesli komut veya<br>metin girişi<br>kullanabilirsiniz" |
| Yetersiz<br>Işık        | Ortam çok<br>karanlık, el<br>takibi başarısız        | İşaret tanıma<br>%30 altında              | Işık artırma uyarısı,<br>Kameraya yaklaşma<br>önerisi, Alternatif girdi<br>modalitesi                 | "İşik yetersiz. Lütfen<br>aydınlatmayı artırın veya<br>sesli/yazılı komut<br>kullanın"  |
| Aşırı<br>Parlak<br>Işık | Güneş ışığı<br>kamerayı<br>etkisiz hale<br>getiriyor | Yüz ve el<br>tanıma<br>imkansız           | Konum değiştirme<br>önerisi, Kamera ayarları<br>otomatik düzenleme,<br>Gölgelik alan bulma<br>önerisi | "Işık çok parlak. Lütfen<br>pozisyon değiştirin veya<br>perdeyi kapatın"                |
| Bulanık<br>Görüntü      | Kamera lensi<br>kirli veya<br>buğulu                 | El noktası<br>tespit sistemi<br>başarısız | Kamera temizliği<br>uyarısı, Elle netlik ayarı<br>önerisi, Alternatif<br>modalite etkinleştirme       | "Kamera temizliği<br>gerekli. Alternatif olarak<br>metin girişi<br>kullanabilirsiniz"   |

FR-02 - Çok Modlu Girdi Sistemi

| Hata<br>Durumu                 | Senaryo<br>Açıklaması            | Ana Akış                           | Alternatif Akış                                                                         | Sistem Davranışı                                                   |
|--------------------------------|----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Mikrofon<br>Arızası            | Ses girdi<br>alınamıyor          | Sesli komut<br>çalışmıyor          | TİD moduna<br>yönlendirme, Metin girdi<br>önerisi, Harici mikrofon<br>bağlantısı istemi | "Mikrofon sorunu.<br>İşaret dili veya<br>yazılı komut<br>kullanın" |
| Klavye Yanıt<br>Vermeme        | Metin girişi<br>yapılamıyor      | Yazılı komut<br>alınamıyor         | Ekran klavyesi açma, TİD<br>moda geçiş, Sesli komut<br>önerisi                          | "Klavye sorunu<br>tespit edildi. Ekran<br>klavyesi açılıyor"       |
| Çoklu<br>Modalite<br>Çakışması | Aynı anda üç<br>girdi türü etkin | Sistem<br>karmaşık<br>girdi alıyor | Öncelik sırası belirleme,<br>Baskın modalite seçimi,<br>Kullanıcı tercih istemi         | "Hangi girdi türünü<br>öncelemek<br>istersiniz?"                   |

Ek-B.3.2 İşaret Tanıma Hataları ve Alternatif Akış Stratejileri FR-01, FR-05, FR-15 - İşaret Tanıma Sistemleri

| Hata Durumu            | Senaryo<br>Açıklaması                | Ana Akış                        | Alternatif Akış                                                                                                      | Sistem Davranışı                                                  |
|------------------------|--------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| İşaret<br>Tanınamama   | Güvenilirlik<br>skoru %20<br>altında | Sistem işareti<br>algılayamıyor | "Tekrar deneyin"<br>istemi, Yavaş hareket<br>önerisi, Alternatif işaret<br>gösterimi, Farklı<br>modalite önerisi     | "İşaretinizi<br>anlayamadım.<br>Lütfen daha yavaş<br>tekrarlayın" |
| Kısmi İşaret<br>Tanıma | Sadece %40-<br>60 güvenilirlik       | İşaret belirsiz<br>algılanıyor  | Tahmin seçenekleri<br>sunma, "Bu mu demek<br>istediniz?" sorusu,<br>Bağlamsal çıkarım<br>yapma, Elle seçim<br>isteme | "Belki şunlardan<br>birini mi demek<br>istediniz: A, B, C?"       |

| Hata Durumu               | Senaryo<br>Açıklaması                 | Ana Akış                  | Alternatif Akış                                                                                                                      | Sistem Davranışı                                           |
|---------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Yanlış İşaret<br>Tanıma   | %80 üzeri<br>güvenle yanlış<br>tanıma | Hatalı işaret<br>çevirisi | Kullanıcı "hayır" derse<br>düzeltme, Bağlamsal<br>tutarsızlık kontrolü,<br>Alternatif öneriler<br>sunma, Elle düzeltme<br>isteme     | "X dediniz, doğru<br>mu? Hayır ise<br>alternatifler: Y, Z" |
| El Görüş<br>Alanı Dışında | Eller kamera<br>çerçevesinde<br>değil | İşaret takibi<br>kesildi  | "Ellerinizi kameraya<br>gösterin" uyarısı,<br>Kamera açısı ayarlama<br>önerisi, Uzaklık ayarı<br>istemi, Alternatif girdi<br>önerisi | "Ellerinizi kamera<br>görüş alanına alın"                  |

FR-05 - Sohbet Bağlamı Takibi

| Hata<br>Durumu             | Senaryo<br>Açıklaması          | Ana Akış                 | Alternatif Akış                                                                                                | Sistem Davranışı                                         |
|----------------------------|--------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Bağlam<br>Kaybı            | İşaret dizisi<br>mantıksız     | Cümle<br>oluşturulamıyor | Eksik işaret tespit etme, "Hangi işaret eksik?" sorma, Cümleyi parçalara ayırma, Teker teker onay isteme       | "Cümleniz eksik<br>görünüyor. Hangi<br>işaret eksik?"    |
| İşaret<br>Sırası<br>Hatalı | TİD<br>dilbilgisine<br>uymuyor | Yanlış cümle<br>yapısı   | Doğru sıralama önerisi, "Şöyle mi demek istediniz?" sorma, Dilbilgisi düzeltme önerisi, Eğitici açıklama sunma | "TİD'de sıralama<br>şöyle olmalı:<br>[düzeltilmiş sıra]" |

# Ek-B.3.3 Çıktı Sistemi Hataları ve Yedekleme Mekanizmaları

## FR-03 - Çok Modlu Çıktı Sistemi

| Hata<br>Durumu                   | Senaryo<br>Açıklaması               | Ana Akış                              | Alternatif Akış                                                                                                   | Sistem Davranışı                                                |
|----------------------------------|-------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Hoparlör<br>Arızası              | Sesli çıktı<br>verilemedi           | Metinden sese<br>çevirici çalışmıyor  | Sadece metin çıktısı,<br>TİD animasyon<br>gösterimi, Harici<br>hoparlör önerisi,<br>Kulaklık bağlantısı<br>istemi | "Ses çıktısı sorunu.<br>Yanıt ekranda<br>gösteriliyor"          |
| Animasyon<br>Yükleme<br>Hatası   | TİD sanal<br>karakter<br>çalışmıyor | İşaret animasyonu<br>görüntülenemiyor | Sabit işaret resimleri,<br>Metin açıklamalı<br>işaret, Video dosyası<br>indirme, Alternatif<br>karakter kullanma  | "Animasyon<br>yüklenemedi. Sabit<br>resimlerle<br>gösteriliyor" |
| Çoklu Çıktı<br>Senkron<br>Hatası | Üç modalite<br>uyumlu değil         | Ses, metin, TİD<br>uyumsuz            | Sıralı çıktı verme,<br>Baskın modalite<br>seçimi, Elle<br>senkronizasyon, Tek<br>modalite kullanma                | "Senkronizasyon<br>sorunu. Çıktılar<br>sırayla veriliyor"       |

## Ek-B.3.4 Ağ ve Bağlantı Hataları

## FR-04 - Çok Dilli Destek

| Hata<br>Durumu                 | Senaryo<br>Açıklaması         | Ana Akış                                  | Alternatif Akış                                                                                            | Sistem Davranışı                                             |
|--------------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Çeviri<br>Servisi<br>Kesintisi | İnternet<br>bağlantısı<br>yok | Türkçe-İngilizce<br>çeviri<br>yapılamıyor | Çevrimdışı çeviri modülü,<br>Temel kelime sözlüğü,<br>Çeviri gecikmesi uyarısı,<br>Tek dil modunda çalışma | "Çeviri servisi<br>çevrimdışı. Temel<br>sözlük kullanılıyor" |
| Yavaş<br>İnternet              | Çeviri<br>gecikmeli           | Gerçek zamanlı<br>çeviri mümkün<br>değil  | Toplu çeviri modu,<br>Gecikme uyarısı,<br>Çevrimdışı alternatif,<br>Önemli kelimeler önceliği              | "Bağlantı yavaş.<br>Çeviri 5 saniye<br>sürebilir"            |

### Ek-B.3.5 Kullanıcı Etkileşim Hataları

### FR-13 - Çoklu Doğrulama Sistemi

| Hata<br>Durumu              | Senaryo<br>Açıklaması               | Ana Akış                       | Alternatif Akış                                                                                                 | Sistem<br>Davranışı                                                |
|-----------------------------|-------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Onay<br>İşareti<br>Belirsiz | "EVET/HAYIR"<br>net değil           | Kritik işlem<br>doğrulanamıyor | Onay işaretini tekrar<br>gösterme, Alternatif<br>onay yöntemi,<br>Sesli/metin onay isteme,<br>İşlemi iptal etme | "Onayınızı net<br>alamadım. Sesli<br>'evet' diyebilir<br>misiniz?" |
| Zaman<br>Aşımı              | Kullanıcı 30 saniye<br>onay vermedi | Güvenlik zaman<br>aşımı        | İşlemi otomatik iptal,<br>Yeniden başlatma<br>seçeneği, Zaman<br>uzatma istemi, Güvenlik<br>bildirimi           | "Zaman aşımı<br>nedeniyle işlem<br>iptal edildi"                   |

FR-18 - Acil Durum Hızlı Yanıt Sistemi

| Hata<br>Durumu               | Senaryo Açıklaması               | Ana Akış                         | Alternatif Akış                                                                                        | Sistem Davranışı                                  |
|------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Konum<br>Tespit<br>Edilemedi | Konum servisi kapalı             | Acil yardım<br>konum alamıyor    | Elle konum girişi,<br>Yakın adres isteme,<br>İşaret noktası sorma,<br>Genel acil protokol              | "Konumunuzu<br>belirleyin: [elle<br>giriş alanı]" |
| Acil Arama<br>Başarısız      | 112 hattı<br>meşgul/ulaşılamıyor | Otomatik arama<br>gerçekleşmiyor | Alternatif acil<br>numaralar, Elle<br>arama talimatı,<br>Mesaj gönderme,<br>Yakın yardım<br>kaynakları | "112<br>ulaşılamıyor. Elle<br>arama yapın"        |

#### **Ek-B.3.6 Sistem Performans Sorunları**

# FR-21 - Gelişmiş Analitik ve Performans İzleme

| Hata<br>Durumu                 | Senaryo<br>Açıklaması                     | Ana Akış                         | Alternatif Akış                                                                                             | Sistem Davranışı                                      |
|--------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Yüksek<br>İşlemci<br>Kullanımı | Sistem %90<br>üzeri işlemci<br>kullanıyor | İşlem<br>gecikmeleri<br>başlıyor | Düşük kalite moduna<br>geçiş, Gereksiz işlemleri<br>kapatma, Kullanıcı<br>uyarısı, Öncelik sıralaması       | "Sistem yoğun.<br>Performans modu<br>etkinleştirildi" |
| Bellek<br>Yetersizliği         | Bellek %95<br>dolu                        | Sistem<br>donma riski            | Geçmiş verileri<br>temizleme, Önbellek<br>boşaltma, Yeniden<br>başlatma önerisi, Temel<br>mod etkinleştirme | "Bellek yetersiz.<br>Temizlik<br>yapılıyor"           |

### Ek-B.3.7 Veri ve Güvenlik Sorunları

FR-22 - Kullanıcı Giriş ve Kimlik Doğrulama Sistemi

| Hata<br>Durumu              | Senaryo<br>Açıklaması                  | Ana Akış                    | Alternatif Akış                                                                                                   | Sistem Davranışı                                                |
|-----------------------------|----------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Şifre<br>Unutma             | Kullanıcı<br>şifresini<br>hatırlamıyor | Giriş yapamıyor             | E-posta sıfırlama, Güvenlik<br>soruları, Yönetici<br>müdahalesi, Geçici profil<br>oluşturma                       | "Şifre sıfırlama<br>bağlantısı e-<br>postanıza<br>gönderildi"   |
| Çoklu<br>Başarısız<br>Giriş | 5 kez yanlış<br>şifre                  | Hesap kilitleme<br>riski    | Güvenlik bekleme süresi,<br>Güvenlik doğrulaması<br>etkinleştirme, Alternatif<br>doğrulama, Yönetici<br>bildirimi | "5 başarısız<br>deneme. 15 dakika<br>bekleyin"                  |
| Profil Veri<br>Kaybı        | Kullanıcı<br>ayarları<br>silinmiş      | Kişiselleştirme<br>kayboldu | Varsayılan ayarlar<br>yükleme, Yedek geri<br>yükleme, Hızlı kurulum<br>sihirbazı, Elle yeniden<br>yapılandırma    | "Ayarlarınız geri<br>yükleniyor.<br>Kurulum<br>başlatılsın mı?" |

# Ek-B.3.8 Eğitim ve Öğrenme Hataları

# FR-08 - Temel İletişim Eğitim Modülü

| Hata Durumu                        | Senaryo<br>Açıklaması              | Ana Akış                               | Alternatif Akış                                                                                               | Sistem Davranışı                                           |
|------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Öğrenme<br>Materyali<br>Yüklenmedi | Video/animasyon<br>dosyaları eksik | Eğitim<br>içeriği<br>açılmıyor         | Alternatif biçim<br>sunma, Metin<br>tabanlı eğitim,<br>Temel resimli<br>anlatım, İndirme<br>yeniden denemesi  | "Video yüklenemedi.<br>Resimli anlatım<br>gösteriliyor"    |
| İlerleme<br>Kaydedilmedi           | Eğitim verisi<br>kayboldu          | Kullanıcı<br>başa<br>dönmek<br>zorunda | Son bilinen seviyeyi<br>bulma, Hızlı seviye<br>testi, Elle seviye<br>seçimi, Yedek<br>veriden geri<br>yükleme | "İlerlemeniz geri<br>yükleniyor. Hangi<br>seviyedeydiniz?" |

## Ek-B.3.9 Çevre Koşulu Sorunları

## FR-12 - Uyarlanabilir Gürültü Filtreleme

| Hata<br>Durumu              | Senaryo<br>Açıklaması                               | Ana Akış                          | Alternatif Akış                                                                                        | Sistem Davranışı                                          |
|-----------------------------|-----------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Aşırı<br>Gürültülü<br>Ortam | Çok fazla<br>hareket/ses                            | Filtreleme<br>yetersiz kalıyor    | Hassasiyet artırma,<br>Sabit pozisyon isteme,<br>Sessiz ortam önerisi,<br>Alternatif modalite          | "Ortam çok<br>gürültülü. Daha<br>sessiz bir yer<br>bulun" |
| Çoklu Kişi<br>Karmaşası     | 3 ve daha fazla<br>kişi aynı anda<br>hareket ediyor | Hedef kullanıcı<br>belirlenemiyor | Kullanıcı seçimi<br>isteme, "Tek kişi kalın"<br>uyarısı, Ses tanıma<br>ekleme, Elle hedef<br>belirleme | "Kim konuşuyor?<br>Lütfen tek kişi<br>kameraya geçsin"    |

#### Ek-B.3.10 Hibrit Sistem Hataları

FR-20 - Sesli Komut Entegrasyonu ve Hibrit Etkileşim

| Hata Durumu             | Senaryo<br>Açıklaması                  | Ana Akış                             | Alternatif Akış                                                                                            | Sistem Davranışı                                                      |
|-------------------------|----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| TİD-Ses<br>Çelişkisi    | İşaret "EVET"<br>ses "Hayır"<br>diyor  | Çelişkili girdi<br>alındı            | Hangisi doğru diye<br>sorma, Baskın<br>modalite seçimi,<br>Tekrar etme istemi,<br>Tek modalite<br>kullanma | "İşaret ve ses<br>çelişkili. Hangisi<br>doğru: EVET mi,<br>Hayır mı?" |
| Senkronizasyon<br>Kaybı | Ses ve işaret<br>aynı anda<br>bitmiyor | Hibrit girdi<br>zamanlaması<br>bozuk | Uzun olan girdiyi<br>bekleme, Kısmi<br>işleme yapma,<br>Yeniden deneme<br>isteme, Sıralı girdi<br>alma     | "Girdi<br>tamamlanıyor,<br>lütfen bekleyin"                           |

Ek-B.3.11 Genel Sistem Hataları ve Kurtarma Mekanizmaları

| Hata<br>Kategorisi      | Hata Durumu                 | Alternatif Akış                                                                                     | Sistem Davranışı                                           |
|-------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Kritik Sistem<br>Hatası | Uygulama<br>çökmesi         | Otomatik yeniden başlatma,<br>Güvenli mod etkinleştirme, Veri<br>kurtarma, Hata raporu gönderme     | "Sistem yeniden<br>başlatılıyor. Verileriniz<br>korunuyor" |
| Güncelleme<br>Hatası    | Sistem<br>güncellenemiyor   | Eski sürüm kullanma, Elle<br>güncelleme, Kritik yamalar<br>uygulama, Güncelleme erteleme            | "Güncelleme başarısız.<br>Mevcut sürüm<br>kullanılıyor"    |
| Lisans<br>Problemi      | Yazılım lisansı<br>geçersiz | Deneme modu etkinleştirme,<br>Lisans yenileme, Temel<br>özellikler kullanma, Destek ile<br>iletişim | "Lisans sorunu. Temel<br>özellikler kullanılabilir"        |

#### Ek-B.3.12 Kullanıcı Deneyimi İyileştirme Stratejileri

#### Hata Durumlarında Kullanıcı Rehberliği

Bu çalışmada, kullanıcı deneyimini optimize etmek amacıyla hata durumlarında açık ve anlaşılır mesajlar sunulmaktadır. Teknik terimler yerine sade açıklamalar tercih edilmekte, her hata durumu için 2-3 alternatif çözüm yolu önerilmektedir. Görsel yardım öğeleri aracılığıyla sorun giderme süreçlerinde animasyon ve resim desteği sağlanmaktadır.

#### Ek-B.3.13 Proaktif Hata Önleme Mekanizmaları

Sistem, düzenli otomatik test rutinleri yürüterek kendini sürekli izlemekte ve potansiyel sorunları önceden tespit edebilmektedir. İşlemci, bellek ve ağ kullanımının sürekli takibi yapılarak erken uyarı sistemleri devreye sokulmaktadır. Kullanıcı davranış analizleri yoluyla hata yapma eğilimlerinin tespiti gerçekleştirilmekte ve öngörülü bakım mekanizmaları ile sorunlar oluşmadan müdahale edilmektedir.

#### **Ek-C Teknik Diyagramlar**

#### Ek-C.1 Use-Case Diyagramları

#### **Ek-C.1.1**





Ek-C.1.3



#### Ek-C.2 Süreç ve Veri Akış Diyagramları

#### Ek-C.2.1

#### GIRI\$ VERILERI

-Video Frames: 1920x1080@30fps -Ses Verisi: 44.1kHz (opsiyonel) -Kullanıcı Profil Bilgileri -Ortam Koşulları(Işık, Gürültü) -Geçmiş İşlem Verileri

# İŞLEME VERİLERİ

-El Koordinatları:(x,y,z)x 21 nokta -Yüz İfadesi: 468 landmark nokta -Hareket Vektörleri: Hız, Yön, İvme -Temporal Sekanslar: Zaman Serisi -Güven Skorları: 0.0-1.0 aralığı

#### ÇIKIŞ VERİLERİ

-Çevrilmiş Metin: UTF-8 Format -Ses Dosyası: MP3/WAV Format -Güven Oranı: yüzdelik değer

-Alternatif Çeviriler

Performans Metrikleri: hız, doğruluk

#### GERİ BİLDİRİM

-Doğruluk Oranı -Hata Bildirimi -Kullanıcı Memnuniyeti -Öğrenme Verisi <sub>-</sub>Model Güncellemesi

#### **Ek-C.2.2**



Kullanıcı Geri Bildirimi →Model Güncelleme → Performans İyileştirme → Geri Bildirim Akışı (Feedback Loop )

**Ek-C.3 Detaylı Sistem Mimarisi** 



# Ek-D Araştırma ve Karşılaştırma

# Ek-D.1 İşaret Dili Tanıma Sistemleri

| Proje Adı                                   | Yıl  | İşaret Dili                           | Yapay Zekâ<br>Teknolojisi                               | Başarıları                                                                                                    | Sınırlamaları                                                                        |
|---------------------------------------------|------|---------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SignBERT+<br>(IEEE<br>TPAMI)                | 2023 | ASL<br>(American<br>Sign<br>Language) | Self-<br>Supervised<br>Pre-Training<br>+ Hand<br>Model  | El modellemesi ile<br>gelişmiş anlama,<br>öz-öğretimli ön<br>eğitim, veri<br>yetersizliği<br>problemine çözüm | Sınırlı veri<br>kaynağı, aşırı<br>öğrenme eğilimi,<br>yorumlanabilirlik<br>sorunları |
| Real-Time<br>Gesture<br>Based SLR<br>(IEEE) | 2024 | ASL<br>(American<br>Sign<br>Language) | MediaPipe<br>Holistic +<br>Deep<br>Learning +<br>OpenCV | Gerçek zamanlı el<br>ve vücut poz<br>tahmini, yüksek<br>doğruluk oranı,<br>Python tabanlı açık<br>kaynak      | Sadece ASL<br>odaklı, karmaşık<br>cümle yapıları<br>sınırlı, tek kişi<br>kullanımı   |
| Deepsign<br>(MDPI<br>Electronics)           | 2022 | ISL (Indian<br>Sign<br>Language)      | LSTM +<br>GRU +<br>Sequential<br>Learning               | Video<br>çerçevelerinden<br>kelime tanıma,<br>dört farklı sıralı<br>kombinasyon,<br>derin öğrenme<br>tabanlı  | İzole işaret tanıma,<br>sürekli konuşma<br>desteği yok, tek dil<br>sınırlaması       |
| E-CNN Sign<br>Recognition<br>(IEEE)         | 2021 | Genel<br>İşaret Dili                  | Enhanced<br>CNN +<br>Image<br>Processing                | El anahtar nokta<br>kütüphanesi,<br>görüntü işleme<br>teknolojisi, metin<br>çeviri desteği                    | Statik görüntü<br>odaklı, dinamik<br>hareketler sınırlı,<br>genel amaçlı             |

Ek-D.2 Hibrit ve Çok Modlu Sistemler

| Proje Adı                                                     | Yıl           | Özellik                               | Teknoloji<br>Kombinasyonu                                            | Başarıları                                                                                                               | Sınırlamaları                                                                                 |
|---------------------------------------------------------------|---------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Intelligent<br>Voice Chat Bot<br>(ResearchGate)               | 2009          | Ses +<br>Metin                        | Voice<br>Recognition +<br>Chat Technology                            | Ses tanıma ile<br>chatbot birleşimi,<br>teknoloji<br>demonstratörü,<br>web tabanlı<br>sistem                             | Eski teknoloji,<br>sınırlı ses<br>işleme, temel<br>seviye<br>entegrasyon                      |
| DeafAI Virtual<br>Assistant                                   | 2024          | ASL<br>(American<br>Sign<br>Language) | Computer Vision<br>+ Machine<br>Learning + Real-<br>time Translation | Gerçek zamanlı<br>ses-işaret<br>çevirisi, dijital<br>avatar<br>teknolojisi,<br>işletme<br>entegrasyonu,<br>ticari hizmet | Sadece ASL,<br>yüksek teknoloji<br>gereksinimi,<br>pahalı lisans,<br>sınırlı yaygınlık        |
| Multimodal<br>Sign Language<br>Systems<br>(Akademik<br>Trend) | 2023-<br>2024 | İşaret +<br>Ses +<br>Metin            | Computer Vision<br>+ NLP + Speech<br>Processing                      | Çok modlu veri<br>işleme, gelişmiş<br>erişilebilirlik,<br>kapsamlı iletişim<br>desteği                                   | Karmaşık<br>sistem mimarisi,<br>yüksek<br>hesaplama<br>gereksinimi,<br>entegrasyon<br>zorluğu |

# Ek-D.3 Mevcut Sistem Örnekleri

# **Ek-D.3.1 Microsoft Kinect Sign Language Translator:**



Ek-D.3.2 HandTalk





# Ek-D.3.3 İTÜ Türkçe-Türk İşaret Dili Çeviri Sistemi



"Okulunuzu, sınıfınızı ve çevrenizi temiz tutmak ve korumak için hangilerini yaparsınız?"



Elif size işaret dilinde "Merhaba" diyor.

Ek-D.3.4 Engelsiz Çeviri' İşaret Dili Çeviri Sistemi (TİD)



Ek-D.3.5 MediaPipe ve YOLOv8 tabanlı bir Amerikan İşaret Dili (ASL) tanıma sistemi



Ek-D.3.6 Yakın Doğu Üniversitesi İşaret Dili-Yazıya Çeviri Sistemi



## Ek-E Persona Bazlı Kullanım Senaryoları ve Akışlar

## Ek-E.1 Elif Yılmaz - İşitme Engelli Üniversite Öğrencisi

#### Kullanım Senaryosu:

"Elif, grup ödevinde arkadaşına TİD ile 'Bu kısmı ben yapabilirim' der. Sistem metne çevirerek uygulama ekranında gösterir. Arkadaşı 'Harika, teşekkürler!' yazınca sistem bunu TİD'e çevirerek Elif'e gösterir."

# Giriş-İşlem-Çıktı Yapısı:

#### GIRIS:

- Elifin TİD hareketi: "Bu kısmı ben yapabilirim"
- Kamera açık, aydınlatma uygun
- Mobil uygulama aktif

#### İŞLEM:

- Kamera el hareketlerini yakalar
- AI model TİD'i tanır ve analiz eder
- Doğal dil işleme ile Türkçe metne çevirir
- Arkadaşın yazılı yanıtını TİD'e çevirir

#### ÇIKTI:

- Metin: "Bu kısmı ben yapabilirim"
- Gelen yanıt TİD animasyonu olarak gösterim

#### Akış Diyagramı:

 $\begin{aligned} \text{Elif (TİD)} & \rightarrow \text{Kamera} \rightarrow \text{AI Model} \rightarrow \text{Metin Çıktısı} \rightarrow \text{Arkadaşın cevabı(metin)} \\ & \downarrow \\ & \quad \text{Elif} \leftarrow \text{TİD Animasyon} \leftarrow \text{AI Model} \end{aligned}$ 

# Ek-E.2 Mehmet Özkan - İlkokul Öğretmeni

#### Kullanım Senaryosu:

"Mehmet, işitme engelli öğrencisine TİD ile 'Matematik ödevini yaptın mı?' soruyor. Öğrenci TİD ile 'Evet, ama zorlandım' der. Sistem her iki tarafı da anlık çevirerek karşılıklı konuşmalarını sağlar."

## Giriş-İşlem-Çıktı Yapısı:

#### GIRIŞ:

- Mehmet'in konuşması: "Matematik ödevini yaptın mı?"
- Öğrencinin TİD yanıtı: "Evet, ama zorlandım"
- Sınıf ortamı, tablet kullanımı

#### İŞLEM:

- Ses tanıma ile konuşmayı metne çevirir
- Metin TİD animasyonuna dönüştürülür
- Öğrencinin TİD'i tanınır ve metne çevrilir
- Eğitim terminolojisi sözlüğü devreye girer

#### ÇIKTI:

- Mehmet için: "Evet, ama zorlandım" metni
- Öğrenci için: TİD animasyonu soruyu gösterir
- İki yönlü anlık iletişim sağlanır

#### Akış Diyagramı:

Mehmet (Ses) → Mikrofon → AI Model → TİD Animasyon → Öğrenci(yanıt iletildi)

↓

Mehmet ← Sesli Yanıt ← AI Model ← Kamera ← Öğrenci (TİD)

#### Ek-E.3 Dr. Ayşe Demir - Acil Tıp Uzmanı

#### Kullanım Senaryosu:

"Dr. Ayşe, acil servise gelen işitme engelli hastaya 'Nereniz ağrıyor?' diye soruyor. Hasta TİD ile göğsünü işaret ederek 'Burada çok ağrı var' der. Sistem hemen çevirerek yazılı olarak doktora 'Göğüs ağrısı şiddetli' olarak bildirir."

### Giriş-İşlem-Çıktı Yapısı:

#### GIRIŞ:

- Dr. Ayşe'nin konuşması: "Nereniz ağrıyor?"
- Hastanın TİD yanıtı: Göğüs işareti + "Çok ağrı var"
- Acil servis ortamı, tablet/telefon kullanımı

#### İŞLEM:

- Ses tanıma ile tıbbi soruyu TİD'e çevirir
- Hastanın TİD'i + vücut işaretleri tanınır
- Tıbbi terminoloji sözlüğü kullanılır

#### ÇIKTI:

- Hasta için: TİD animasyonu ile soru
- Doktor için: "Göğüs ağrısı şiddetli" uyarısı(metin)

#### Akış Diyagramı:

Bu sistemde iki farklı AI kullanılmasının nedeni, AI Model'in genel ve hızlı dil çevirisi (Türkçe↔TİD) yaparken, Tıbbi AI'nin semptomları medikal terminolojiye çevirip acil durum önceliklendirmesi yapmasıdır. Bu iki katmanlı yapı sayesinde hem hızlı iletişim hem de güvenli tıbbi değerlendirme sağlanır.

# Ek-E.4 Fatma Çelik - İşitme Engelli Çocuğun Babaannesi Kullanım Senaryosu:

"Zehra'nın okuma yazma bilmeyen babaannesi, torununa sesli olarak 'Canım, ne yemek istiyorsun?' diye soruyor. Sistem bunu TİD'e çevirip Zehra'ya gösteriyor. Zehra TİD ile 'Patatesli börek yapar mısın?' yanıtını verince, sistem bunu sesli olarak babaanneye iletiyor."

#### Giriş-İşlem-Çıktı Yapısı:

#### GIRIŞ:

- Babaannenin sesli konuşması: "Canım, ne yemek istiyorsun?"
- Zehra'nın TİD yanıtı: "Babaanne mantısı yap"
- Ev ortamı, telefon kullanımı

#### İŞLEM:

- Ses tanıma ile Türkçe konuşmayı TİD'e çevirir
- Çocuk TİD'i için özel model kullanılır
- TİD'i sesli Türkçeye çevirir
- Aile iletişimi bağlamında doğal dil kullanımı

#### ÇIKTI:

- Zehra için: TİD animasyonu ile soru
- Babaanne için: "Babaanne mantısı yap" sesli yanıt

#### Akış Diyagramı:

Babaanne (Ses) → Mikrofon → AI Model → TİD Animasyon → Zehra(yanıt iletildi)

↓

Babaanne ← Sesli Yanıt ← Çocuk AI ← Kamera ← Zehra (TİD)

Bu sistemde iki farklı AI kullanılmasının nedeni, AI Model'in genel ses-TİD çevirisini yaparken, Çocuk AI'nın çocukların farklı TİD kullanım tarzlarını (daha basit işaretler, eksik gramer yapıları) tanıyıp yaşa uygun dil ile çeviri yapmasıdır. Bu özelleşmiş yapı sayesinde hem yetişkin hem de çocuk kullanıcılar için iyileştirilmiş iletişim sağlanır.

#### Ek-E.5 Hasan Yıldız - Belediye Memuru Kullanım Senaryosu:

"Belediyeye gelen işitme engelli vatandaş TİD ile 'İkametgâh belgesi almak istiyorum' der. Hasan sistemi kullanarak bunu anlayıp sesli olarak 'Nüfus müdürlüğüne gitmeniz gerekiyor, 2. kata çıkın' yanıtını verir. Sistem bu yanıtı TİD'e çevirerek vatandaşa gösterir."

#### Giriş-İşlem-Çıktı Yapısı:

#### GIRIŞ:

- Vatandaşın TİD hareketi: "İkametgâh belgesi almak istiyorum"
- Hasan'ın sesli yanıtı: "Nüfus müdürlüğüne gitmeniz gerekiyor, 2. kata çıkın"
- Belediye ortamı, masaüstü sistem kullanımı

#### İŞLEM:

- Vatandaşın TİD'i tanınır ve resmi terminolojiye çevrilir
- Hasan'ın sesli yönlendirmesi TİD'e çevrilir
- Resmi evrak terminolojisi sözlüğü kullanılır

#### ÇIKTI:

- Hasan için: "İkametgâh belgesi talebi" metni
- Vatandaş için: TİD animasyonu ile yönlendirme

#### Akış Diyagramı:

Vatandaş (TİD) 
$$\rightarrow$$
 Kamera  $\rightarrow$  Resmi AI  $\rightarrow$  Metin  $\rightarrow$  Hasan 
$$\downarrow$$
 Vatandaş  $\leftarrow$  TİD Animasyon  $\leftarrow$  AI Model  $\leftarrow$  Mikrofon  $\leftarrow$  Hasan (Ses)

Bu sistemde iki farklı AI kullanılmasının nedeni, Resmi AI'nin bürokrasi ve kamu hizmetlerine özgü terminolojiyi (ikametgâh belgesi, nüfus müdürlüğü, vb.) tanıyıp doğru birime yönlendirme yaparken, AI Model'in genel dil çevirisini (ses↔TİD) yapmasıdır. Bu özelleşmiş yapı sayesinde hem kamu kurumu terminolojisi doğru anlaşılır hem de standart çeviri hizmeti sağlanır.