Report

R04922108 \cdot R04922098 \cdot R04922086 \cdot R04922065

Environment

```
OS = Ubuntu 14.04 CPU = i76700
Lib = Tensorflow 1.0 GPU = 1080
Python = 2.7 CUDA = 8.0
```

上圖為最終測試的環境,開發時有各自的環境,因此不一一列舉。

Model Description and Improvement

接下來會分別介紹我們使用的各種 Improvement 方式,以及其使用的 Model。

(1) Basic

一開始我們以 RNN 作為原始的基礎,利用 Tensorflow 的 Basic LSTM,以及 Multi RNN 架構兩層 RNN 的模型,如上圖,並且使用 Sample Loss 作為 Cost Function。因為此次的目標為有選項的預測克漏字,所以我們會藉由算出的 Output 機率陣列,找出每個選項字的對應機率,並取最大者當作答案。另外我們僅使用 One-Hot Encoding,所以為了加速我們訓練速度,我們會僅取最常出現的字,稀少的字則用 UNK 來代替。

(2) Cut Sentence

先前的方法為單純把整個文章的字當作 Training Data,並依據一開始設定的 Num Steps 作為句子的長度,如上圖左。

因此這邊目標為考慮標點符號,依此來正確取出完整的句子,並加上起始符號以 及補足結束符號來做為開始、結束,如上圖右。另外會限制句子的長度,以增進 訓練上的速度。

使用 Cut Sentence, 只單純影響到一開始 Data Set 的處理, 所以 RNN Model 依然是跟隨 Basic 方式。

(3) Bi-directional RNN

此不同於單向 RNN 僅考慮前面單字的影響,他會額外考慮後面單字造成的影響, 也就是看完前後文在進行預測單字,如上圖。在此直接使用 Tensorflow 的 API 來實現 Bi-directional RNN。以下圖可以發現, Bi-directional RNN 的預測效果。

--- Test --as i descended my old ally the UNK came out of the room and closed the door tightly behind him
--- Predict --i descended my old ally the UNK came out of the room and closed the door tightly behind him UN

(4) Adding Sentence

如同前面 Bi-directional RNN 會考慮整個句子,在此一樣會考慮後續的字,但是在訓練上仍然是使用單向的 RNN。

因為已經知道選項的單字,所以我們可以將每一句 test data 在選項前的句字與五個選項合起來,再與選項後的句字合起來, ex: test data: [a b c ______ d e f], option: 12345, 則針對這組 test data, 我們會產生五筆 data 分別為[a b c 1 d e f], [a b c 2 d e f]...等等,再利用原先 train 好的 model,針對每一筆 data 拿到 lstm 的 output 通過 softmax,得到每一個位置生成下一個字的機率,記做 P,再利用 P(選項)*P(選項後 1 個字)*P(選項後 2 個字)*....=P(選項)*P(選項後整句), ex: test data:[a b c 1 d e f],則這筆 data 的機率為,取 lstm 在 c 位置的 output 得到 P(1),再取得 1 位置的 output,得到 P(d)...,最後將這幾個機率相乘,即為此 test data 的機率。

Experiment and Performance

(1) Experiment Setting

以下圖為固定的參數設定。

Cost Function	=	Sampled Softmax			
Cell	=	BasicLSTMCell	Learning Rate	=	GradientDescent
RNN Layers	=	2	Drop-out Rate	=	0.5
Initial	=	Uniform[-0.05, 0.05]	Hidden Size	=	6
Num Steps	=	35	Batch Size	=	20

接下我們會分別比較,上述的不同 Model、Training Data 的文件數、Epoch 數目、以及取的 Vocabulary 字數所對應的 Kaggle Public 的分數。

因為時間的關係,我們 Training Data 為 100 篇時 Epoch 為 10; Training Data 為 全部文件,則 Epoch 為 2。

(2) Performance

我們可以發現 Add Sentence 的方式可以有效增進準確率,可能這是因為他有考慮到後續句子的關係。但是很好玩的一點在於,Bi-RNN 一樣考慮了全部的句子卻反而降低了準確率,在此我們特別去測試 Bi-RNN 發現如果降低 RNN 的 Layer數目,反而能夠有較好的準確率,從 0.261 上升至 0.269,因此我們推測,Bi-RNN會有過於 Overfitting,造成 Testing 上不准的原因。

而且我們可以發現,相對於 Bi-RNN,Add Sent 跟 Basic 都會隨著 Training Data 數目上升,準確率跟著上升,也更加證明,Bi-RNN 會過於 Over fitting。另外我 們也嘗試過增加 Vocabulary Size,的確能在 Add Sent 時取得更好結果 0.47。

Team Division

R04922108	R04922098	R04922086	R04922065
Add Sentence	Bi-RNN	RNN	RNN
Report	Report		