TD CS 305 Problèmes inverses

TD 6 – Régularisation de Tikhonov

11 décembre 2003

Ex. 1 : Régularisation de Tikhonov en dimension finie

1.1 - Déterminer la décomposition en valeurs singulières de la matrice

$$A = \begin{pmatrix} \varepsilon & 0 \\ 0 & -1 \\ 0 & 1 \end{pmatrix}$$

où ε désigne un réel strictement compris entre 0 et $\sqrt{2}$.

1.2 - Soit $\alpha > 0$. Déduire l'expression des $X \in \mathbf{R}^3$ minimisant $||A^*X - E||^2 + \alpha ||X||^2$ sur \mathbf{R}^3 avec $E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

1.3 - Que peut-on dire sur la stabilité de ce calcul lorsque $\varepsilon \to 0$?

1.4 - On pose $E^{\delta} = \begin{pmatrix} 1+\delta \\ 1 \end{pmatrix}$. Calculer $X^{\delta} \in \mathbf{R}^3$ minimisant $||A^*X - E^{\delta}||^2 + \alpha(\delta)||X||^2$ sur \mathbf{R}^3 où $\alpha(\delta)$ est déterminé par le critère de sélection de Morozov.

1.5 - Vérifier que $X^{\delta} \to X$ lorsque $\delta \to 0$, où X est solution de $A^*X = E$.

Ex. 2 : Régularisation de Tikhonov et équation intégrale

On considère l'opérateur intégral A de $L^2(0,1)$ dans lui même défini par

$$(1) (Ax)(t) = \int_0^t x(s) \ ds$$

TD CS 305 Problèmes inverses

2.1 - Donner l'expression de $(A^*y)(t)$.

Soit $y \in L^2(0,1)$ et x_{α} solution de

$$\min \left(\|Ax - y\|_{L^2}^2 + \alpha \|x\|_{L^2}^2 \right)$$

où $\alpha > 0$ est un réel donné.

 ${\bf 2.2}$ - Montrer que si $y\in H^1(0,1)$ vérifiant y(0)=0 alors x_α est solution de

(2)
$$\begin{cases} -\alpha x_{\alpha}''(t) + x_{\alpha}(t) = y'(t) ; \ 0 < t < 1 \\ x(1) = 0 \text{ et } x'(0) = 0. \end{cases}$$

2.3 - Montrer (en utilisant les résultats du cours) que $||x_{\alpha} - y'||_{L^2} \to 0$ lorsque $\alpha \to 0$.