Projektplanung

- Strukturplanung
- Ablaufplanung
- Ressourcenplanung
- Terminplanung
- Kostenplanung
- Netzplantechnik
- Planungsprobleme

Aufgaben der Netzplantechnik

- Die Netzplantechnik ist ein rechnergestütztes oder manuelles Verfahren zur Analyse, Planung, Kontrolle und Steuerung von Projekten
- Netzplan = bewerteter, gerichteter Graph ohne Schleifen, der aus Konten und Pfeilen besteht.
- Dafür ist es unbedingt notwendig den Netzplan immer zu aktualisieren, um eine sinnvolle Unterstützung zu ermöglichen
- Terminabweichungen sind allerdings nicht so deutlich visualisiert wie in einem Balkenplan, da hier der Fokus auf den Abhängigkeiten zwischen den Vorgängern und den kritischen Pfaden liegt

Netzplantechnik Grundbegriffe

Vorgänge:

► Ein Vorgang ist ein Ablaufelement, das ein bestimmtes Geschehen beschreibt (entspricht den Arbeitspaketen). Vorgänge werden durch eine bestimmte Dauer gekennzeichnet, die benötigt wird, um den Vorgang auszuführen.

Ereignisse:

- Ein Ereignis ist ein Ablaufelement, das das Eintreten eines bestimmten Zustandes beschreibt. Ein Ereignis verfügt über keine Dauer. Jeder Vorgang beginnt und endet mit einem Ereignis.
- Anordnungsbeziehungen:
 - Unter Anordnungsbeziehungen versteht man eine quantifizierbare Abhängigkeit zwischen Ereignissen und Vorgängen.
- Puffer:
 - ► Puffer sind Zeitintervalle, in denen Vorgänge unter bestimmten Voraussetzungen verschoben werden können.

Anordnungsbeziehungen

$A \rightarrow B \rightarrow C$	Jedes Arbeitspaket (B) hat einen Vorgänger (A) und einen Nachfolger (C)
A → B	Ein Arbeitspaket (B) kann erst beginnen, wenn ein anderes Arbeitspaket (A) abgeschlossen ist
B	Ein Arbeitspaket (B) kann nur gleichzeitig mit einem anderen Arbeitspaket (C) beginnen,
C	da für beide Arbeitspakete (B+C) ein gemeinsamer Vorgänger abgeschlossen sein muss
B	Ein Arbeitspaket (A) kann nur beginnen mit dem Abschluss von anderen Arbeitspaketen (B+C),
C	da dieses Arbeitspaket (A) Eingaben aus zwei oder mehreren Arbeitspaketen (B + C) benötigt
A → B X → Y	Arbeitspakete (A + B) können unabhängig und parallel zu anderen Arbeitspaketen (X + Y) laufen.

Methoden der Netzplantechnik

- CPM (Critical Path Method)
 - ▶ Diese Technik ist <u>vorgangsorientiert</u> und benutzt einen Vorgangspfeil-Netzplan. Hier wird das Ende eines Vorgangs A mittels eines diesen Vorgangs darstellenden Pfeils mit dem Beginn des nachfolgenden Vorgangs B verknüpft.
- MPM (Metra Potential Method)
 - Dieses Verfahren ist <u>vorgangsorientiert</u> (wie CPM) und wendet einen Vorgangs-Knoten-Netzplan an. Die Tätigkeiten werden als rechteckige Vorgangsknoten abgebildet, ihre Abhängigkeiten voneinander durch Verbindungspfeile dargestellt.
- PERT (Program Evaluation and Review Technique)
 - Es handelt sich hierbei um ein <u>ereignisorientiertes</u> Verfahren, das einen Ereignis-Knoten-Netzplan verwendet, der dem Vorgangspfeil-Netzplan ähnelt. Die Ereignisse werden durch Knoten, die Tätigkeiten durch Pfeile abgebildet.

Arten der Netzplantechnik

Kritischer Pfad

- ► Werden **keine Fixtermine** gesetzt, so gibt es bei jedem Netzplan einen geschlossenen Weg von Vorgängen, die alle kritisch sind.
- Die gesamten und damit auch die freien Pufferzeiten sind auf diesem kritischen Pfad genannten Weg gleich Null.
- Werden Fixtermine gesetzt, so können insgesamt drei Fälle auftreten:
 - ► Nicht kritischer Pfad -> Positiver Puffer
 - Kritischer Pfad -> Puffer gleich Null
 - ▶ Überkritischer Pfad -> Negativer Puffer
- Es können auch **mehrere kritische Pfade** auftreten, auch Teilketten von kritischen Vorgängen sind möglich; man spricht dann von **kritischen Unternetzen**.

Dummy Vorgänge

► Ein **Dummy Vorgang** hat keine Dauer und verbraucht keine Ressourcen. Er indiziert lediglich einen bestimmten Vorgänger und eine technologische Beziehung.

Bsp. Netzplantechnik CPM - Vorgangspfeilnetzplan (VPN)

Vorgangspfeiltechnik - CPM

Bei der Vorgangspfeiltechnik wird ein Vorgang mit ..

- einen Vorgangspfeil (Vorgangsbezeichnung und Dauer des Vorgangs)
- einem Vorereignis (frühester Zeitpunkt / FZ, spätester Zeitpunkt / SZ)
- einem Nachereignis (frühester Zeitpunkt / FZ, spätester Zeitpunkt / SZ)

dargestellt.

Für eine <u>Vorwärtsterminierung</u> wird mit den frühesten Zeitpunkten und den Vorgangsdauern gerechnet. Die Berechnung erfolgt jeweils fortlaufend mit den höchsten aller ermittelten Werte

$$FZ(b) = FZ(a) + Dauer(a,b)$$

Für eine <u>Rückwärtsterminierung</u> wird mit den spätesten Zeitpunkten und den Vorgangsdauern gerechnet. Die Berechnung erfolgt jeweils fortlaufend mit den niedrigsten aller ermittelten Werte.

$$SZ(a) = SZ(b) - Dauer(a,b)$$

Bsp. Netzplantechnik MPM – Vorgangsknoten-Netzplan (VKN)

V-Nummer	Vorgang	Dauer	Vorgänger	Nachfolger
01	Grobkonzept entwickeln	4	-	2 und 3
02	Detailkonzept Software entwickeln	5	1	4
03	Hardware bestellen	7	1	5
04	Software umsetzen	10	2	6
05	Funktion der Hardware überprüfen	1	3	7
06	Software testen	2	4	7
07	A-Muster bauen	1	5 und 6	-

Vorgangsknotentechnik - MPM

Bei der Vorgangsknotentechnik werden die Vorgänge entsprechend der Bezeichnung in einem Knoten dargestellt.

Für ein Vorgangsknotennetzplan werden erfasst:

- Vorgangsnummer
- Vorgangsbezeichnung
- Frühester Anfangs-Zeitpunkt (FAZ)
- Spätester Anfangs-Zeitpunkt (SAZ)
- Frühester End-Zeitpunkt (FEZ)
- Spätester End-Zeitpunkt (SEZ)
- Dauer des Vorgangs (D)

Bsp. Netzplantechnik PERT – Ereignisknoten-Netzplan (EKN)

Nr.	Vorgang	Vorgönger	Dauer (Monate)					
INI.	Vorgang	Vorgänger	T ₀	T _M	T _P	T _E		
1	Kostenkalkulation	-	1	2	3	2		
2	Systemspezifikation	-	6	7	8	7		
3	Systementwurf	2	6	8	16	9		
4	Konzeptdesign Antrieb	1,3	8	9	16	10		
5	Entwicklung Antrieb	4	6	7	20	9		
6	Entwicklung Steuerung	4	5	8	23	10		
7	Erstellung Prototyp	5,6	5	6	7	6		

Pufferzeiten

Gesamte Pufferzeit: Differenz zwischen spätest möglichem und frühest möglichem Anfangszeitpunkt. (SAZj – FAZj)

Freier Puffer: Zeitspanne, um die ein Vorgang von der frühesten Lage nach hinten verschoben werden kann, ohne das die früheste Lage des Nachfolgers verschoben werden muss. (=-----)

Probabilistische Vorgangsdauern: "Drei-Punkt" Schätzmethode

o = optimistische Zeit (Aktivität wird in 99% der Fälle a oder länger dauern) p = pessimistische Zeit (Aktivität wird in 99% der Fälle b oder kürzer dauern)

m = "most likely" Zeit (Modalwert)

Annahme: Standardabweichung einer Beta-Verteilung = 1/6 der Spannbreite; (o-p)/6

Erwartungswert TE = (o+4m+p)/6

Risikoabschätzung der Planung

- ightharpoonup Angabe der Varianz(δ)² der Vorgangsdauer zur Bewertung der Unsicherheit bei der Angabe der Vorgangsdauer
- Varianz= Mittelwert der quadrierten Abweichungen aller Messwerte vom Mittelwert
- Standardabweichung= Wurzel aus der Varianz
- Näherungsgleichung:
- $\delta^2(D) = ((PD OD)/6)^2$
- Die Varianz der frühesten/spätesten Zeitpunkte (FZ/SZ) ergibt sich aus der Summe der Varianzen, aus denen FZ und SZ berechnet wurden

Beispiel - Strukturplan mit Zeitschätzung

Laufende Nummer	Vorgangsbezeich nung	Vorgänger	TE	0	m	р	Varianz
1	А	-		1	5	10	
2	В	А		2	6	15	
3	С	А		1	4	9	
4	D	А		1	3	8	
5	E	В		2	4	11	
6	F	С		1	2	6	
7	G	D		3	4	7	
8	Н	F, G		3	5	17	
9	I	E, H		3	8	15	

Beispiel - Strukturplan mit Zeitschätzung

Laufende Nummer	Vorgangsbezeich nung	Vorgänger	TE	0	m	р	Varianz
1	А	-	5,17	1	5	10	
2	В	А	6,83	2	6	15	
3	С	А	4,33	1	4	9	
4	D	А	3,50	1	3	8	
5	E	В	4,83	2	4	11	
6	F	С	2,50	1	2	6	
7	G	D	4,33	3	4	7	
8	Н	F, G	6,67	3	5	17	
9	I	E, H	8,33	3	8	15	

Beispiel - PERT

Zeitangaben gerundet

Beispiel - Strukturplan mit Zeitschätzung

Laufende Nummer	Vorgangsbezeich nung	Vorgänger	TE	0	m	р	Varianz (Schätzung)
1	Α	-	5,17	1	5	10	2,25
2	В	А	6,83	2	6	15	4,69
3	С	А	4,33	1	4	9	1,77
4	D	А	3,50	1	3	8	1,36
5	Е	В	4,83	2	4	11	2,25
6	F	С	2,50	1	2	6	0,69
7	G	D	4,33	3	4	7	0,44
8	Н	F, G	6,67	3	5	17	5,44
9	1	E, H	8,33	3	8	15	4,00

Mit welcher Wahrscheinlichkeit wird das Projekt im Zeitplan abgeschlossen?

Annahme: Aktivitäten sind statistisch voneinander unabhängig, dann gilt: Varianz einer Menge der Aktivitäten = Summe der Einzelvarianzen

Hier: kritischer Pfad:

Erwartete Zeit (TE) des kritischen Pfades: Tage

Varianz des Kritischen Pfades: Tage

Annahme: Projektabschluss in 30 Tagen (=D) versprochen

Wahrscheinlichkeit den versprochenen Abschluss zu schaffen:

 $Z = (D-TE_{kritischer Pfad})/ Standardabweichung_{kritischer Pfades}$

Z =

Nach Z-Normalverteilungs-Tabelle: p =

Mit welcher Wahrscheinlichkeit wird das Projekt im Zeitplan abgeschlossen?

Annahme: Aktivitäten sind statistisch voneinander unabhängig, dann gilt: Varianz einer Menge der Aktivitäten = Summe der Einzelvarianzen

Hier: kritischer Pfad: A, C, D, F, G, H, I

Erwartete Zeit (TE) des kritischen Pfades: 28 Tage

Varianz des Kritischen Pfades: 13,5 Tage

Annahme: Projektabschluss in 30 Tagen (=D) versprochen

Wahrscheinlichkeit den versprochenen Abschluss zu schaffen:

 $Z = (D-TE_{kritischer\ Pfad})/ Standardabweichung_{kritischer\ Pfades}$

Z = (30-28)/3,67 = 0,54

Nach Z-Normalverteilungs-Tabelle: p = .71

Beispiel Umwandlung des PERT in ein MPM – Vorgangsknoten-Netzplan (VKN)

Vorteile Netzplantechnik

- ➤ Sie liefert einen ausgezeichneten Überblick über die Gesamtheit der Teilvorgänge und zeigt deren gegenseitigen Abhängigkeiten.
- Sie hält dazu an, das gesamte Projekt genau zu durchdenken und frühzeitig Entscheidungen zu treffen.
- Sie ermöglicht eine relativ exakte Vorhersage wichtiger Zwischentermine und des Endtermins.
- Sie weist aus, wo Zeitreserven (Puffer) vorhanden sind, wo sie fehlen und wo Beschleunigungsmaßnahmen unumgänglich sind.
- Kritische Vorgänge und Engpässe sind leicht erkennbar.
- Sie führt in Verbindung mit der elektronischen Datenverarbeitung zu einer Entlastung von Routinearbeiten, was sich vor allem bei häufigen Planänderungen auswirkt.

Probleme der Netzplantechnik

- Der Netzplan ist zu detailliert, was in einem hohen Kontrollaufwand resultiert (zu viele Aktivitäten).
- Der Netzplan wird zu abstrakt aufgebaut und deshalb von den Anwendern (Technikern, Kaufleute, usw.) nicht verstanden.
- Netzplanaktivitäten, die einem sehr starken Veränderungsprozess unterliegen, sind nicht kontrollfähig.
- Die übergroße Netzplandetaillierung ist vor allem ein Problem, das Netzplan-Neulingen sehr leicht passiert. Eine zu große Anzahl von Aktivitäten führen dazu, dass der Planer den Dingen zu sehr hinterherläuft.

Projektplanung

- Strukturplanung
- Ablaufplanung
- Ressourcenplanung
- Terminplanung
- Kostenplanung
- Netzplantechnik
- Planungsprobleme

Planungsprobleme

- Unvorhergesehene Engpässe und Planungsfehler durch Informationsdefizite und unklare Anforderungen
- Verwendung unrealistischer Schätzungen für Aufwand und Dauer
- ► Unklare Prioritäten und Bewertungen erschweren die Verteilung kritischer Ressourcen über mehrere Projekte / operative Aufgaben hinweg
- ► Einfluss subjektiver Wahrnehmungs- und Bewertungs-Bias auf die Erwartungen der Planer
- Einfluss individueller Zielsetzungen und opportunistischen Verhaltens
- ► Hohe Ungleichgewichten der Arbeitsbelastung der Mitarbeiter führen so hohen Rüstkosten und Ineffizienzen.
- Ungenutzte Ressourcen
- Kontinuierliche Anpassungen des Projektstrukturplans notwendig

Beschleunigung von Projekten

Beschleunigung von Projekten (2)

Mythen und Realität der Projektbeschleunigung

Compressi Technique	on	My	/th	Rea	ality
Use of overting	ne		Work will progress at the same rate on overtime.		The rate of progress is less on overtime; more mistakes may occur; and prolonged overtime may lead to burnout.
Adding resource			The performance rate will increase due to the added resources		It takes time to find the resources; it takes time to get them up to speed; the resources used for the training must come from the existing resources.
Reducion scope a function	and		Customers request more work than needed.		The custorner needs all of the tasks agreed to in the statement of work.
Outsou	ırcing		Numerous qualified suppliers exist.		The quality of the suppliers' work is low; the supplier may go out of business or may have limited concern for your scheduled dates.
Doing s work in paralle	1		An activity can start before the previous activity has finished.		The risks increase and rework becomes expensive because it increase complexity.

Weitere Quellen

► Kerzner: Project management : a systems approach to planning, scheduling, and controlling; 11. Auflage John Wiley & Sons, 2013