[Total No. of Printed Pages—3

Seat	A 0
No.	9,00

[5459]-204

S.E. (I.T.) (I Sem.) EXAMINATION, 2018 FUNDAMENTALS OF DATA STRUCTURES (2015 PATTERN)

Time: Two Hours Maximum Marks: 50

- **N.B.** :— (i) Answer four questions in all.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- **1.** (a) Explain dynamic memory allocation functions in C. [4]
 - (b) Explain the following with example:
 - (1) Pointer to array
 - (2) Pointer to pointer
 - (3) Array to pointer.
 - (c) List and explain the fundamental types in C. [2]

Or

2. (a) Explain memory allocation, declaration, access and initialization of structure variable with suitable example. [4]

P.T.O.

	<i>(b)</i>	What is stream? State the type of stream used in C handling.	'ile [4]
	(c)	Explain the ways of parameter passing in C functions.	[4]
3.	(a)	What is Complexity of Algorithm ? Explain the importan	nao
J.	(u)	of algorithm analysis.	[4]
	(<i>b</i>)	Write Pseudo C code of binary search algorithm.	[6]
	(c)	Define the following:	[2]
		(1) Data Object	
	N.	(2) Data Structure. Or	
4.	(<i>a</i>)	Write C program to implement Quick Sort and show all pass	ses
		to sort the following list using quick sort :	[6]
		55 85 0 25 40 35 20	
	<i>(b)</i>	Explain different asymptotic notations.	[6]
			30
5.	(<i>a</i>)	Explain the features of sequential organization in comparis	son
		with linked organization.	[6]
	(<i>b</i>)	Write Pseudo C code for Sparse matrix simple transpose.	[7]
		Or	
6.	(<i>a</i>)	What do you mean by ordered list? Explain Sparse mat	rix
		as an example of ordered list.	[7]
	(<i>b</i>)	Explain representation of polynomial using array and structu	ure
		with an example.	[6]

[5459]-204

Explain the following: 7. (a)

[6]

[6]

- for inserting and \(\text{st.} \)

 Or

 GLL and represent the following polyn

 13 x^4 + 5x^3 12xy + 9xy^3 20x^2y^4

 b) Write C code to evaluate a polynomial term. Write Pseudo C code for inserting and deleting node of a (*b*) [7]

Explain GLL and represent the following polynomials using 8. (a) [7]