

Research Article

Morpho-molecular analysis of two new species *Deconica* and *Entocybe* in Agaricales from Mount Tianmu, China

Yu-Yu Shen¹, Zi-Wen Zhang¹, Wen-Qian Li¹, Xing-Ning Liu¹, Fei-Ying Tian¹, Chun-Mei Pang², Wen-Hong Dai¹, Yao-Bin Song¹, Ming Dong^{1,3}

- 1 Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- 2 Management Bureau of Mount Tianmu National Nature Reserve, Hangzhou 311311, China
- 3 Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China Corresponding author: Yao-Bin Song (ybsong@hznu.edu.cn)

Abstract

Two new species of Agaricales, *Deconica flavum* and *Entocybe roseoalbus*, are described from Mount Tianmu, Zhejiang Province, Eastern China. Two new species are distinct and monophyletic based on morphology and phylogenetic analyses. *Deconica flavum* differs from other *Deconica* species in that the pileus is brow shallow in the center and stipe with yellowish white fibrils, scatted on litter under coniferous and broadleaved mixed forest at 1162 m. *Entocybe roseoalbus* is distinguished from other species of *Entocybe* by nearly blue pileus and pinkish-white stipe, scatted on humus in similar forest conditions at 1025 m. The differences are discussed between the two new taxa and their similar species morphologically, and related species phylogenetically.

Key words: Entolomataceae, Strophariaceae, taxonomy

This article is part of:

Exploring the Hidden Fungal Diversity:

Biodiversity, Taxonomy, and Phylogeny of

Saprobic Fungi

Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam

Academic editor: Ajay Kumar Gautam Received: 5 July 2024 Accepted: 4 October 2024 Published: 22 October 2024

Citation: Shen Y-Y, Zhang Z-W, Li W-Q, Liu X-N, Tian F-Y, Pang C-M, Dai W-H, Song Y-B, Dong M (2024) Morpho-molecular analysis of two new species *Deconica* and *Entocybe* in Agaricales from Mount Tianmu, China. MycoKeys 109: 319–336. https://doi.org/10.3897/mycokeys.109.131298

Copyright: © Yu-Yu Shen et al.

This is an open access article distributed under terms of the Creative Commons Attribution

License (Attribution 4.0 International – CC BY 4.0).

Introduction

Agaricales is the largest order in the kingdom Fungi with nearly 20,000 species (Roskov et al. 2019). The members of the order play essential roles in the ecosystem as saprotrophs, ectomycorrhizae, lichens, and crops cultivated by termites and ants (Kalichman and Matheny 2020). Due to its great diversity, the order has been intensively studied worldwide (Kalichman and Matheny 2020).

The genus *Deconica* (W.G. Sm.) P. Karst. has been placed in the family Strophariaceae of Agaricales (Matheny et al. 2006; Ramírez-Cruz et al. 2013, 2020a) and was initially described as a subgenus of *Agaricus* (Smith 1870). It was subsequently raised to the genus level by Karsten (1879). But for the last several years species of *Deconica* were placed in the genus *Psilocybe* (Fr.) P. Kumm. because of the similarity in their morphology (Moncalvo et al. 2002; Noordeloos 2009). However, molecular studies have shown that the genus *Deconica* is phylogenetically distant from *Psilocybe* (Ramírez-Cruz et al. 2013). The genus *Deconica* is distinguished based on the absence of hallucinogenic compounds (Ramírez-Cruz et al. 2020b). The members of the genus *Deconica* have mycenoid, collybioid, crepidotoid, or omphaloid basidiomata occurring

in/on the soil, grasses, mosses, rotten wood, trunks, and dung (Noordeloos 2009; Ramírez-Cruz et al. 2020b). Noordeloos (2011) mentioned that the genus *Deconica* has been divided into three sections namely, *Deconica*, *Melanotus*, and *Merdariae* based on characteristics of basidiomata, basidiospores, pileipellis, and cystidia. However, chrysocystidia have not been mentioned in most sections, except *Deconica* section (Singer 1986). Guzmán (2005) estimated around 133 species in the genus *Deconica* exist worldwide. However, He et al. (2019) and Kalichman and Matheny (2020) reported 44 and 45 taxa worldwide, respectively. Furthermore, *Deconica* was one of the largest genera with an unsequenced generic type (Kalichman and Matheny 2020).

Entocybe T. J. Baroni, Hofstetter & Largent is the genus placed in the family Entolomataceae within Agaricales (Baroni et al. 2011). Species of Entocybe were previously placed in section Turfosa, subgenus Entoloma of the genus Entoloma (Noordeloos 1992). The genus Entocybe was erected based on the morphological and molecular phylogeny-based data (Baroni et al. 2011). The basidiomata of Entocybe show slender tricholomatoid or mycenoid to collybioid habit and possess a relatively fragile, appressed fibrillose stipe (Baroni et al. 2011). The basidiospores of Entocybe are 6–10 angled in polar view with undulate-pustulate or rounded pustulate surface ornamentation, or ornamentation being composed of broken interconnected ridges with isolated pustules interspersed, which are similar to Rhodocybe (Baroni et al. 2011). Additionally, clamp connections are found on the hyphae in all tissues (Baroni and Lamoureux 2013). According to Index Fungorum (http://www.indexfungorum.org), Entocybe currently comprises around ten species.

In the past decade, new species, combinations, and records of *Deconica* and *Entocybe* have been reported across the world (Baroni et al. 2011; Baroni and Lamoureux 2013; da Silva et al. 2013, 2014; Park et al. 2017; Ramírez-Cruz et al. 2020a, 2020b). In China, diverse macrofungal resources have been documented (Wu et al. 2019). However, there is limited research on *Deconica* and *Entocybe*. During the present study, specimens were collected from the National Nature Reserve of Mount Tianmu located in Zhejiang Province, China from July to September 2022. Two new species, *Deconica flavum* and *Encocybe roseoalbus* within Agaricales, are described and illustrated based on morphological and phylogenetic evidence.

Materials and methods

Morphological studies

Morphological observations encompassing the macro and microscopic structural characteristics were made from fresh and dried material. The color standards have been noted from the fresh samples as per Kornerup and Wanscher (1978). Microscopic characteristics were observed from dried material revived in 5% KOH, Congo red, and Patent Blue V 0.1%. The measurements were made on twenty counts each of the basidiospores (in side-view without hilum), basidia (without sterigmata), cheilocystidia, and pileipellis at $1000 \times \text{magnification per collection}$ (Morozova et al. 2014). Spore length-width ratios were expressed as Q_{av} . Then, small parts of the lamellae were attached with double-sided adhesive tape on specimen holders,

and coated with gold by an ion sputter coater (SBC-12, KYKY, China) for 40 s. Specimens were used to observe the spores by scanning electron microscopy (Phenom XL, Phenom-World, the Netherlands) in a low vacuum mode (15 kV). Additionally, spores of *Deconica flavum* were measured without hilum on concave and convex sides at × 5200 magnification. Dried specimens were stored in polyethylene zipper bags and deposited in the Herbarium of Hangzhou Normal University (HTC).

DNA extraction, PCR amplification, and determination of DNA sequences

DNA was extracted from dried basidiomata tissue using the Cetyltrimethylam-monium Bromide method (CTAB) (Morozova et al. 2014). The ITS (internal transcribed spacer) including ITS1, 5.8S and ITS2, and ribosomal large subunit (LSU) regions were amplified using the primer pair ITS1–F/ITS4, and LROR/LR5, respectively (Vilgalys and Hester 1990; Gardes and Bruns 1993). Amplified PCR products were verified by 1.2% agarose gel electrophoresis stained with 4S Green Nucleic Acid (Sangon Co., Ltd., Shanghai, China) in 1 × TAE. The PCR products were sequenced by Sangon Biotech (Shanghai, China). Forward and reverse sequence reads were assembled and edited by Bio Edit v.7.0.9 from specimens (Hall 1999). The new sequences generated in this study were deposited in GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and listed in Table 1.

Phylogenetic analyses

The newly generated sequences in the study were evaluated for quality using BioEdit and Blast search results as per Nilsson et al. (2012). Relevant sequence data including outgroups in phylogenetic analyses were downloaded from the GenBank. DNA sequences were aligned and manually modified in MEGA 11 (Kumar et al. 2018). Phylogenetic analyses were performed with Maximum Likelihood (ML) and Bayesian Inference (BI) methods. ML phylogenetic analyses used IQ-Tree with 1,000 bootstrap replications (Minh et al. 2020). BI phylogenetic analyses were determined by Markov Chain Monte Carlo (MCMC) sampling using MrBayes v.3.2.7 (Ronquist et al. 2012). BI was performed with six independent MCMC runs, and trees were sampled every 100 generations. The analyses were stopped after 5,000,000 generations when the average standard deviation of split frequencies was below 0.01.

Phylogenetic trees of *Deconica* were constructed using ITS and LSU sequence data following recent publications (Noordeloos 2009; da Silva et al. 2013; Gurung et al. 2019; Ramírez-Cruz et al. 2020a). The dataset of *Deconica* consists of 59 sequences for the ITS region including outgroup *Kuehneromyces* sp. (Ps1608) (Ramírez-Cruz et al. 2020a). In ML phylogenetic analysis, the best-fitting model was TPM2u+F+R3 determined by ModelFinder (Kalyaanamoorthy et al. 2017). In BI phylogenetic analysis, the model GTR+I+G was the best substitution model which was calculated by MrMTgui (https://mrmtgui.software.informer.com/).

Phylogenetic trees of *Entocybe* were constructed using the two concatenated ITS-LSU sequences dataset. The dataset consists of 62 ITS sequences and 66 LSU sequences including outgroup *Clitocybe sclerotoidea* (iNAT:187491457). In ML phylogenetic analysis, the best-fitting model was TIM2+F+G4 (ITS) and

Table 1. Sources of sequences and their GenBank accession numbers that were used in this study.

Species name	Specimen voucher	Country	ITS	LSU
Clitocybe sclerotoidea	iNAT:187491457	USA	PP573968	_
Deconica bayliasiana	OTA:71563	New Zealand	OQ064952	_
D. bayliasiana	PDD:105444	New Zealand	KM975393	-
D. bayliasiana	OTA:73288	New Zealand	OQ065068	_
D. chionophila	CBS:658.87 (Type)	France	NR_160176	-
D. chionophila	FA 1743	France	OR419908	-
D. citrispora	PDD:87522	New Zealand	KM975431	-
D. citrispora	TENN:055373	Argentina	KY559334	-
D. citrispora	_	_	OL616138	-
D. cokeriana	CCB45 (TENN)	USA	KC669315	-
D. cokeriana	Ps482	USA	MK965913	-
D. cokeriana	PRM922477	USA	MK965914	-
D. coprophila	MHHNU 30335	-	MK214386	_
D. coprophila	257N1	-	OP237142	_
D. coprophila	MHHNU 7935	-	OP862790	_
D. coprophila	MHHNU 7937	-	OP862791	_
D. coprophila	S62	_	OR237579	_
D. flavum	2381	China	OR906279	OR906277
D. flavum	2382	China	OR906280	OR906278
D. hartii	CBS: 273.81 (Type)	Canada	MH861342	_
D. horizontalis	DA-17014	France	MZ234153	_
D. horizontalis	FF15120	France	MZ361342	_
D. horizontalis	FF16067	France	MZ363738	_
D. horizontalis	MEL:2321097	Australia	0L771718	_
D. horizontalis	MEL	Australia	OL771719	_
D. horizontalis	MEL	Australia	OL771720	_
D. horizontalis	S.D. Russell iNaturalist #1827064	USA	ON416969	_
D. magica	HN170821119	France	OM397446	_
D. micropora	FJ596921	-	MW871601	_
D. milvispora	PBM3781 (TENN) (holotype)	Australia	KC669314	_
D. milvispora	TENN F-067013 (holotype)	USA	NR_176108	_
D. montana	Hao & Guo & Han 131610	China	MH425255	_
D. montana		France	MH862108	_
D. montana	MICH:340541	USA	MT913618	_
D. montana D. montana	iNAT 37380190	USA	OM203503	
D. montana D. montana	iNAT 37434339	USA	OM203504	_
D. montana D. montana	DAVFP:29764	Canada	OQ225666	_
D. montana D. montana	DAVFP:29781	Canada	OQ225683	_
D. novae-zelandiae	PDD:87768	New Zealand	KM975401	_
D. overeemii	DED 8328 (SFSU)	Africa	KX017212	_
	SFC20160714-66	Affica	MF437002	_
D. phyllogena	Mushroom Observer # 282800	USA	MK607529	_
D. phyllogena				
D. phyllogena	HFJAU-TD393	China	MN622718	_
D. phyllogena	ZMU197_ITS	China	MW724279	
D. phyllogena	HBAU15299	No allo a cilo coll	MW862324	
D. pratensis	DAD 504 (0501)	Netherlands	MT622238	_
D. protea	BAP 596 (SFSU)	Africa	KX017213	_
D. sp.	TENN051714	USA	HQ728541	_

Species name	Specimen voucher	Country	ITS	LSU
D. sp.	TFB12591 (TENN)	USA	KC669313	_
D. sp.	-	Thailand	KM270756	_
D. sp.	Mushroom Observer # 340420	USA	MK607606	_
D. sp.	TENN-F-009938	USA	MT622256	_
D. sp.	LXYZF1	_	MZ452395	_
D. sp.	OTA:73406	New Zealand	OQ065091	_
D. sp.	OTA:73424	New Zealand	OQ065098	_
D. sp.	FLAS-F-61579	USA	MH211973	_
D. sp.	RA712-7	USA	MK234215	_
D. thailandensis	XAL	Thailand	MT622245	_
D. umbrina	XAL	Malaysia	MT622246	_
Entocybe haastii	MEN 2004055/53	Netherlands	KC710086	_
Entocybe haastii	MEN 2006617	Netherlands	KC710089	_
Entocybe haastii	MEN 2011045	Netherlands	KC710101	_
Entocybe haastii	K(M):103926	UK	MF977946	_
Entocybe haastii	K(M):35980	UK	MF977961	_
Entocybe haastii	K(M):82407	UK	MF977962	_
Entocybe haastii	K(M):173454	UK	MF977974	_
Entocybe haastii	MEL:2379812	UK	MF977980	MF977980
Entocybe haastii	K(M):82407	UK	_	MF977962
Entocybe nitida	F14054 (UBC)	Canada	AF335449	_
Entocybe nitida	UBC herbarium F14288	Canada	AY228340	_
Entocybe nitida	287	Italy	JF907989	_
Entocybe nitida	MEN 8376	Netherlands	KC710076	_
Entocybe nitida	Hausknecht 2006201	Netherlands	KC710100	_
Entocybe nitida	MEN 200324	Netherlands	KC710122	_
Entocybe nitida	iNAT:17857763	USA	OL602070	OL602070
Entocybe nitida	iNAT:34316843	USA	OM522259	OM522259
Entocybe nitida Entocybe nitida	ME Noordeloos 200326	Netherlands	O1V13ZZZZ33	GQ289175
Entocybe nitida	NL-5402	USA	_	MK277955
Entocybe sp.	OMDL K. Canan iNaturalist # 185356854	USA	PP156155	WIK277933
	3461	China	PP974446	PP974447
Entocybe roseoalbus	3462	China	PP974445	PP974447 PP974448
Entocybe roseoalbus				PP9/4446
Entocybe trachyospora	DAVFP:28111	Canada	JF899553	_
Entocybe trachyospora	den Bakker1153	Netherlands	KC710088	_
Entocybe trachyospora	den Bakker 1901	Netherlands	KC710121	-
Entocybe trachyospora	iNAT:17857961	USA	OL602069	OL602069
Entocybe trachyospora	OMDL K. Canan iNaturalist 103586037	USA	OR824557	OR824557
Entocybe trachyospora	TB5856		-	GU384629
Entocybe turbida	PRM 915266	Czech Republic	FJ824815	_
Entocybe turbida	16176	Italy	JF908005	_
Entocybe turbida	MEN200351	Netherlands	KC710060	-
Entocybe turbida	MQ18R373-QFB30889	Canada	MN992146	MN992146
Entocybe turbida	MQ18R118-QFB30634	Canada	MN992147	-
Entocybe turbida	MQ18R137-QFB30653	Canada	MN992148	MN992148
Entocybe turbida	F26446	Canada	MZ314674	_
Entocybe turbida	OMDL K. Canan iNaturalist # 188618716	USA	PP156263	PP156263
Entocybe turbida	TRTC175668	Canada	PP383792	_
Entocybe turbida	GLM 45919	Germany	-	AY207198
Entocybe turbida	ME Noordeloos 200351	Netherlands	-	GQ289201

Species name	Specimen voucher	Country	ITS	LSU
Entocybe turbida	F26446	Canada	-	MZ314674
Entocybe vinaceum	TB8870	_	-	GU384631
Entoloma abortivum	H. den Bakker 92	_	_	GQ289150
Entoloma abortivum	HMJAU 1955	China	_	JQ320131
Entoloma albotomentosum	DA-20014	France	OM368079	OM368079
Entoloma alcedicolor	E. Arnolds 0276	Netherlands	-	GQ289152
Entoloma alpicola	TB6415	_	-	AF261302
Entoloma ameides	RBG Kew K(M)128844	England	EU784199	_
Entoloma assiduum	KaiR1143	Cyprus	-	OL338157
Entoloma baronii	Gates E2292	Netherlands	KC710093	_
Entoloma belouvense var. albertinae	CME5	Panama	MZ611628	MZ611628
Entoloma byssisedum var. microsporum	SAAS1160	China	-	KU534231
Entoloma caccabus	ME Noordeloos 200324	_	_	GQ289155
Entoloma cetratum	KaiR932	Austria	OL338132	OL338132
Entoloma cf. vernum	RH17-107	USA	_	MW084700
Entoloma cf. vernum	RH17-153	USA	_	MW084701
Entoloma coeruleogracilis	Gates E1777	Netherlands	KC710069	_
Entoloma coeruleogracilis	MEN 2004055	Netherlands	KC710107	_
Entoloma contrastans	L 0608161	Australia	_	MK277982
Entoloma costatum	G. Immerzeel 2000-10-10	Netherlands	_	GQ289161
Entoloma depluens	S.D. Russell ONT iNaturalist 129768621	USA	OP549186	OP549186
Entoloma flavifolium	TB6215	-	-	AF261301
Entoloma fuligineoviolaceum	MEN 2009-071	Australia	_	MK277989
Entoloma gracilior	MEN 2011043	Netherlands	KC710079	_
Entoloma gregarium	SAAS1220 (Holotype)	China	-	KU534237
Entoloma gregarium	SAAS1493	China	_	KU534238
Entoloma gregarium	SAAS:1220 (Holotype)	China	_	NG_153851
Entoloma haastii	G. Gates E1777	Netherlands	_	GQ289168
Entoloma heae	SAAS1091 (Holotype)	China	_	KU534232
Entoloma heae	SAAS1091 (Holotype)	China	_	KU534236
Entoloma heae	SAAS1010 SAAS1091	China	_	NG_153850
Entoloma incanosquamulosum	MD2014-13	Italy	OL338320	0L338320
Entoloma nidorosum	TB6263	- Italy	OL336320	AF261296
Entoloma nitidum	TB7526	_	_	GU384626
		Danama	M761167E	
Entoloma nubooccultatum	KaiR687 (Holotype)	Panama	MZ611675	MZ611675
Entoloma ortonii	KaiR1008	Germany	OL338141	01 2201 41
Entoloma ortonii	KaiR1008	Germany	N47611600	OL338141
Entoloma paraconferendum	CME6 (Holotype)	Panama	MZ611629	MZ611629
Entoloma paraconferendum	CME7	Panama	MZ611630	MZ611630
Entoloma platyphylloides	14740	Italy	JF908003	-
Entoloma politum	ME Noordeloos 200325	-	-	GQ289181
Entoloma sericatum	M.T. Tholl #1991	Luxembourggg	MW340721	MW340721
Entoloma sericatum	ME Noordeloos 200328	Netherlands	-	GQ289189
Entoloma silvae-frondosae	L:DB6568 (Holotype)	Hungary	-	MH792065
Entoloma sp.	EH37	Canada	FJ717489	_
Entoloma sp.	T503	Australia	JF960759	_
Entoloma sp.	CT-4335	USA	KY462337	_
Entoloma sp.	S.D. Russell MycoMap 6944	USA	MK564545	MK564545
Entoloma sp.	TENN:077957	USA	PP831632	PP831632
Entoloma sp.	EM677	Japan	_	AB692015

Species name	Specimen voucher	Country	ITS	LSU
Entoloma sp.	80812	China	_	KJ648486
Entoloma sp.	SAAS203	China	<u> </u>	KJ658971
Entoloma sp.	SAAS712	China	-	KJ658973
Entoloma sp.	HGS-2021-8-23-6	_	_	OL336509
Entoloma sphagneti	Bas 6.86	Netherlands	KC710061	_
Entoloma sphagneti	OW-E2-14	Norway	KX945366	<u> </u>
Entoloma undatum	16854	Italy	JF908007	<u> </u>
Entoloma undatum	KUN-HKAS 115925 (WZ224)	China	MZ855875	MZ855875
Entoloma undatum	HAY-F-004639	USA	OR778327	OR778327
Entoloma undatum	HAY-F-002256	USA	PP575920	PP575920
Entoloma undatum	HAY-F-004798	USA	PP626490	PP626490
Entoloma vernum	1193	USA	_	KX670983
Entoloma vezzenaense	A. Hausknecht (ex WU 14588)	Netherlands	_	GQ289204
Kuehneromyces sp.	-	Australia	MK965912	_

Notes: - indicated no data in GenBank, the newly generated sequences are indicated in bold.

TIM2+F+R2 (LSU) determined by ModelFinder (Kalyaanamoorthy et al. 2017). In BI phylogenetic analysis, the best-fit model was GTR+F+G4 and K2P+I+G4 using the BIC criterion for ITS and LSU separately (Kalyaanamoorthy et al. 2017). The trees were visualized with FigTree v.1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). The tree topologies recovered by ML and BI were similar. ML bootstrap support (BS) equal to or greater than 75% and Bayesian posterior probability (PP) equal to or greater than 0.95 were shown on the nodes in Figs 1, 2.

Results

The analyses of *Deconica* generated four supported clades, labeled a-d (Fig. 1). Clade a (BS = 99%, PP = 1.00) grouped D. flavum, D. cokeriana, D. thailandensis, D. oveeemii, D. magica, D. bayliasiana, D. novae-zelandiae, D. milvispora, D. micropora, D. phyllogena, and D. umbrina. The clade contained six taxa with chrysocystidia i.e. D. flavum, D. cokeriana, D. thailandensis, D. oveeemii, D. milvispora, and D. umbrina. Moreover, D. flavum, D. cokeriana, D. thailandensis and D. oveeemii formed a subclade with strong bootstrap supports (BS = 94%, PP = 0.98) in clade a. Deconica flavum differs from D. cokeriana (MK965913), D. cokeriana (MK965914), D. cokeriana (KC669315) and D. sp. (MK607606) by 7 bp, 7 bp, 8 bp and 9 bp respectively. In the clade, all the species have small basidiomata, ellipsoid, rhomboid, hexagonal, or rhomboid-nodulose basidiospores. Two collections formed an independent lineage in the trees with strong bootstrap supports (BS = 100%, PP = 0.99) in clade a (Fig. 1). Clade b (BS = 100%, PP = 1.00) included D. protca, D. horizontalis, D. citrispora, D. hartii, and D. coprophila. Clade c (BS = 95%, PP = 0.97) included D. chionophila, D. montana, and D. coprophila. In clade d (BS = 97%, PP = 1.00), Deconica sp. and D. pratensis got clustered into one branch.

The analyses of *Entocybe* resulted in two well-supported clades, clade a and clade b (Fig. 2). Clade a mainly consists of *Entocybe* species (BS = 99%, PP = 1.00). Clade b is composed of most *Entoloma* species used in this study (BS = 99%, PP = 1.00). The trees showed that the new species identified as *Entocybe* formed a well-supported clade (BS = 100%, PP = 1.00) in clade a (Baroni et al. 2011).

Figure 1. ML tree from ITS rDNA sequences of Deconica. Species described as new in this study are indicated in bold.

Taxonomy

Deconica flavum Y.Y. Shen & Y.B. Song, sp. nov.

Index Fungorum: IF901538

Facesoffungi Number: FoF16635

Figs 3, 4

Etymology. The specific epithet *flavum* (Lat.) refers to the species having stramineous color in the center of the pileus.

Holotype. • CHINA, Zhejiang Province, Hangzhou, National Nature Reserve of Mount Tianmu at 1162 m a.s.l., 30°21'N, 119°26.4'E (DDM), grew on litter

Figure 2. ML tree from combined ITS and LSU sequence data of *Entocybe* and *Entoloma*. Species described as new in this study are indicated in bold.

under coniferous and broad-leaved mixed forest, 2 July 2022, 2381 (holotype), GenBank accessions: OR906279 (ITS), OR906277 (LSU).

Description. *Pileus* convex-campanulate, commonly papillate, light brown (6D8) or sunburn (6D5), center stramineus (5C8), (8-)10-20 mm; margin

striate, invariable color when bruised, surface flocculose or with white fibrillose patches of veil on half of the pileus. *Context* fleshy on disk, pale yellowish (6A3). *Lamellae* adnexed to adnate, with decurrent tooth, distant, pompeian yellow (5C6), brown shellow (5C8), or gold brown (5D7). *Stipe* central, cylindrical, equal

Figure 3. Deconica fllavum (holotype) $\mathbf{a}-\mathbf{c}$ basidiomata $\mathbf{d}-\mathbf{e}$ basidiospores \mathbf{f} basidium \mathbf{g} pleurocystidia type chrysocystidia \mathbf{h} pleurocystidia type leptocystidium \mathbf{i} cheilocystidia. Scale bars: 10 mm ($\mathbf{a}-\mathbf{c}$); 10 μ m (\mathbf{d} , \mathbf{g} , \mathbf{h}); 5 μ m (\mathbf{e} , \mathbf{f} , \mathbf{i}).

Figure 4. Micromorphological features of *Deconica flavum* (holotype) **a** basidiospores **b** basidia **c** pleurocystidia type leptocystidium **d** cheilocystidia **e** pleurocystidia type chrysocystidia. Scale bars: $10 \, \mu m$.

to broader at apex, hollow, cartilaginous, flocculose, $11-14 \times 1.2-2.7$ mm; dark blonde (5D4) to light brown (6D5), with yellowish white fibrils. Smell indistinct.

Basidiospores fusiform, ellipsoid to ovoid, yellowish brown under light microscopy with germ pore, the middle part concave under scanning electron microscopy, $(3.0)\ 3.3-4.7\ (5.1)\ \times\ (2.2)\ 2.6-3.3\ (4.3)\ \mu m,\ Q=0.8-1.8,\ Q_{av}=1.4\ (concave\ side), (3.6)\ 4.2-4.9\ (5.1)\ \times\ (2.9)\ 3.1-3.9\ (4.0)\ \mu m,\ Q=1.0-1.5,\ Q_{av}=1.3\ (convex\ side)\ in frontal view.$ *Basidia* $cylindrical or claviform with median constriction, 4-spored, hyaline, thin-walled, <math>11.7-17.1\ \times\ 3.8-5.7\ \mu m$. *Pleurocystidia type chrysocystidia* clavate to broadly clavate, apex mucronate or rostrate, thin-walled, hyaline, with hyaline content, $15.2-26.8\ \times\ 5.6-13.0\ \mu m$. *Pleurocystidia type leptocystidium* narrowly utriform, hyaline, thin-walled, abundant, $7.7-17.9\ \times\ 3.3-5.7\ \mu m$. *Cheilocystidia* widely utriform, cylindrical, hyaline, $12.3-20.5\ \times\ 3.6-5.2\ \mu m$. *Pileipellis* a gelatinous cutis $2.0-4.5\ \mu m$ diam, hyaline, and thin-walled, with clamp connections. *Stipitipellis* a cutis $4.7-10.6\ \mu m$ diam, hyaline, thin-walled, with clamp connections.

Habitat and distribution. Scattered on litter under coniferous and broad-leaved mixed forests at 1162 m a.s.l., currently only known from Zhejiang Province, China.

Additional material examined (paratype). • CHINA, Zhejiang Province, Hangzhou, National Nature Reserve of Mount Tianmu at 1162 m a.s.l., 30°21'N, 119°26.4'E (DDM), grew on litter under coniferous and broad-leaved mixed forest, 2 July 2022, 2382, GenBank accessions: OR9066280 (ITS), OR906278 (LSU).

Entocybe roseoalbus Y.Y. Shen & Y.B. Song, sp. nov.

Index Fungorum: IF902333

Facesoffungi Number: FoF16636

Figs 5, 6

Etymology. The specific epithet *roseoalbus* (Lat.) refers to the pinkish-white stipe.

Holotype. • CHINA, Zhejiang Province, Hangzhou, National Nature Reserve of Mount Tianmu at 1025 m a.s.l., 30°20.4'N, 119°26.4'E (DDM), grew on humus under coniferous and broad-leaved mixed forest, 2 September 2022, 3461 (holotype), GenBank accessions: PP974446 (ITS) and PP974447 (LSU).

Description. *Pileus* umbonate, undulating, occasional dehiscence in the middle, and slight dehiscence at the edge when mature, not hygrophanous, not translucent-striate, surface finely felted with densely appressed-fibrillose or matted-fibrillose, rivulose, blackish blue (20F7 or 20F8) in the middle, gradually lighter, becoming dark blue (20E6), 47–68 mm diam. *Context* white, 1.8–1.9 mm thick above the stipe. *Lamellae* unequal, adnate, margin slightly serrate, 23–26 × 9.3–11.2 mm (length × breadth), at first pinkish white (7A2) then pastel red (7A4) to pale red (7A3) with basidiospore maturity. *Stipe* central, 69–72 mm long, 7.2–7.7 mm (apex)–7.1–7.5 mm (middle)–8.3–8.8 mm (base) diam, equal but slightly thinner in the upper middle, hollow and splits longitudinally with ease, pinkish white (10A2), white at the base, fragile. Odor not distinctive. Taste not recorded.

Basidiospores distinctly angular (6–8 angled) to some indistinctly and faintly rounded pustulate, ornamentation composed of broken ridges under an SEM,

Figure 5. Basidiomata of *Entocybe roseoalbus* (holotype) **a** habitat of *Entocybe roseoalbus* **b** whole basidiomata **c** lamellae of *Entocybe roseoalbus* **d** stipe of *Entocybe roseoalbus*. Scale bars: 10 mm.

Figure 6. Entocybe roseoalbus (holotype) a marginal cell b basidiospores under the light microscope in oil (1000×) c basidiospores under SEM (5200×) d–e basidia f–i cheilocystidia j pileocystidia k pileipellis I stipitipellis. Scale bars: 10 μm.

(4.0) 4.73–5.6 (6.5) × (4.6) 4.8–5.5 (6.1) μm, Q = 0.7–1.3, Q_{av} = 1.0 in side-view. **Basidia** clavate, 3– or 4– sterigmate, filled with refractive oil bodies, 22.3–32.8 × 7.1–9.9 μm. Hymenial cystidia absent. **Hymenophoral trama** subregular, made up of cylindrical to slightly inflated elements, $36.9–92.5 \times 11.6–22.8$ μm. **Lamella edge** crowded with tufts of cheilocystidia. **Cheilocystidia** clavate, hyaline, abundant, $12.7–25.1 \times 2.3–7.1$ μm. **Hymenial cystidia** absent. **Pileipellis** multi-layered cutis, cylindrical, pigments intracellular, with special long and curved hyphae, $30.2–60.8 \times 8–20.9$ μm. **Pileocystidia** (terminal cells) narrowly cylindric to clav-

ate, pigments intracellular, subtended by inflated cells of the pileal trama, $15.7-30.8 \times 2.8-4.5 \mu m$. **Stipitipellis** multi-layered cutis, similar to pileipellis, cylindrical hyphae, pigments intracellular, with special long and curved hyphae, $7.7-12.4 \mu m$ diam. **Caulocystidia** absent. **Clamp connections** present in all tissues.

Habitat and distribution. Scatted on humus under coniferous and broad-leaved mixed forests at 1025 m a.s.l., currently only known from Zhejiang Province, China.

Additional material examined (*paratype***).** • CHINA, Zhejiang Province, Hangzhou, National Nature Reserve of Mount Tianmu at 1025 m a.s.l., 30°20.4'N, 119°26.4'E (DDM), scatted on humus under coniferous and broad-leaved mixed forest, 2 September 2022, 3462, GenBank accessions: PP974445 (ITS) and PP974448 (LSU).

Discussion

Deconica flavum is characterized by small and convex basidiomata with ellipsoid to ovoid basidiospores, two types of pleurocystidia, chrysocystidia and leptocystidia. It was growing on litter as other *Deconica* species. *Encocybe roseoalbus* is peculiar in having isodiametric basidiospores with 6–8 angles and broken ridges, pileipellis and stipitipellis with intracellular pigment, and abundant clamp connections in all tissues, as shown by the other *Encocybe* species. Furthermore, phylogenetically in ML and BI trees, the specimens formed two distinct lineages within *Deconica* and *Entocybe*, respectively (Figs 1, 2).

Deconica species are distributed worldwide, with notable records in Europe, America, South Asia, and Oceania (GBIF, https://www.gbif.org/search?q=Deconica). Many species of the genus Deconica have been described recently based on the ITS phylogenetic analysis (Ramírez-Cruz et al. 2013, 2020a, 2020b). In the present research work, ITS and LSU sequences of D. flavum were generated. Due to the lack of other gene sequences (LSU), we perform only single gene (ITS) phylogenetic analysis. The phylogenetic analysis of 58 ITS sequences from Deconica including two newly generated sequences formed four clades with strong bootstrap supports (Fig. 1). In clade a (BS = 99%, PP = 1.00), six taxa possess chrysocystidia, four of which are clustered into a subclade with strong bootstrap supports (BS = 94%, PP = 0.98). The four species included D. flavum, D. cokeriana, D. thailandensis and D. oveeemii. Although the phylogenetical distances of D. flavum, and D. cokeriana are close in ITS trees, they have distinct differences in morphological and microscopic characteristics. Deconica flavum is lighter in pileus color than D. cokeriana, and has no discoloration when bruised. Interestingly, the center of the pileus is brow shellow, similar to "egg yolk" in D. flavum. Moreover, D. cokeriana stipe is yellowish white to light brown, with white to brownish fibrils, which become darker when bruised. While D. flavum is dark blonde to light brown, with yellowish-white fibrils. Microscopically, the pleurocystidia type chrysocystidia and leptocystidia of D. cokeriana $(17-40 \times 6.5-11 \mu m; 14-24 \times 3.5-7 \mu m)$ are longer than D. flavum (15.2-26.8) \times 5.6–13.0 µm; 7.7–17.9 \times 3.3–5.7 µm). D. thailandensis and D. oveeemii were originally described as Psilocybe species (Horak and Desjardin 2006; Horak et al. 2009). It is easy to differentiate D. thailandensis and D. flavum by basidiospores. Basidiospores of Deconica thailandensis and D. oveeemii, originally described as Psilocybe species (Horak and Desjardin 2006; Horak et al. 2009), are rhomboid. Basidiospores of *D. flavum* are ellipsoid to ovoid, and the middle part is concave under SEM (Horak et al. 2009).

The nearly blue species in Entolomataceae, Entocybe haastii, E. nitida, Entoloma alcedicolor, E. eugenei, E. hochstetteri, E. mengsongense, E. tadungense and E. virescens have similar color in pileus and stipe (Noordeloos and Hausknecht 2007; Alves and do Nascimento 2012; Bergemann et al. 2013; Ediriweera et al. 2017). Entocybe roseoalbus is unique in having nearly blue pileus and yellowish grey stipe. Entocybe species are distributed worldwide, focused on Eastern Europe, the East and West coasts of North America, and Oceania (GBIF, https:// www.gbif.org/search?q=Entocybe). The ITS-LSU phylogenetic analysis of Entocybe resulted in clade a and clade b with strong bootstrap support (Fig. 2). The new species, Entocybe roseoalbus is close to Entocybe nitida, E. haastii, Entoloma alcedicolor, E. contrastans, E. fuligineoviolaceum and E. coeruleogracile in the phylogenetical trees, which are clustered into one branch (BS = 88%, PP = -). They have distinct differences in morphological and microscopic characteristics. Compared with Entocybe roseoalbus, Entocybe nitida has comparatively smaller pileus (20-40 mm), darker stipe (grayish-blue), bigger spores (7-9 × 6–8 µm), and no cheilocystidia (Noordeloos 2004). On the other hand, Entocybe haastii has a robust and blackish blue stipe and bigger pileocystidia (54.1–81.1 × 2.5-7.8 µm) (Bergemann et al. 2013). Entoloma alcedicolor has steel blue pileus and stipe and garlic odor (Noordeloos 2004). Entoloma contrastans has smaller mycenoid basidiomata, white pileus (8-20 mm) with a slightly darker brown center, violaceus stipe (30–50 × 2 mm), and bigger spores (6.0–8.0 × 5.5-7.5 µm) (Noordeloos 2004). Entoloma fuligineoviolaceum has darker blue pileus and stipe, dark brown-violet to violet lamellae, and bigger spores (5.5- $7.5(-8) \times 5.5-6.5(-7) \mu m$) (Noordeloos 2004). Entoloma coeruleogracile has deeper blue basidiomata, smaller pileus (8-22 mm) and longer stipe (30-60 x 1–3 mm), and bigger spores $(6.0-8.0 \times 5.5-7.5 \,\mu\text{m})$ (Noordeloos 2004).

In conclusion, sufficient evidence from morphological and molecular phylogenetic analyses supports the distinction of *D. flavum* and *Entocybe roseoalbus* from other recorded species of the respective genus.

Acknowledgments

We are grateful to Xing-Qiang Wang and Jia-Jie Shi for collecting samples. We are grateful to Yu Yang for her help in experimentation. We appreciate Fang-Min Fei's help in writing.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 32371580 and 31670429).

Author contributions

Morphological data, photo plates, phylogenetic analyses, and original drafts were completed by Yu-Yu Shen. Yao-Bin Song, Ming Dong, and Zi-Wen Zhang revised the paper. Wen-Qian Li revised the photo plates. Xing-Ning Liu, Fei-Ying Tian, and Wen-Hong Dai participated in molecular experiments. Chun-Mei Pang participated in the sample collection.

Author ORCIDs

Yu-Yu Shen https://orcid.org/0009-0003-4947-4266
Zi-Wen Zhang https://orcid.org/0009-0001-4045-8505
Wen-Qian Li https://orcid.org/0009-0000-1998-030X
Xing-Ning Liu https://orcid.org/0009-0002-0176-7943
Fei-Ying Tian https://orcid.org/0009-0007-3212-5261
Chun-Mei Pang https://orcid.org/0009-0001-5346-8676
Wen-Hong Dai https://orcid.org/0009-0003-1238-3758
Yao-Bin Song https://orcid.org/0000-0001-9342-0423
Ming Dong https://orcid.org/0000-0002-1046-2140

Data availability

Publicly available datasets were analyzed in this study which can be found here: https://www.ncbi.nlm.nih.gov/; https://indexfungorum.org/.

References

- Alves MH, do Nascimento CC (2012) *Entoloma virescens* (Sacc.) E. Horak ex Courtec., 1986 (Agaricales: Entolomataceae): The first record for the Caatinga biome, Ceará, Brazil. Check List 8(3): 577–580. https://doi.org/10.15560/8.3.577
- Baroni TJ, Hofstetter V, Largent DL, Vilgalys R (2011) *Entocybe* is proposed as a new genus in the Entolomataceae (Agaricomycetes, Basidiomycota) based on morphological and molecular evidence. North American Fungi 6(12): 1–19. https://doi.org/10.2509/naf2011.006.012
- Baroni TJ, Lamoureux Y (2013) A new species of *Entocybe* (Entolomataceae, Agaricomycetes) from Québec, Canada. Mycotaxon 123(1): 353–361. https://doi.org/10.5248/123.353
- Bergemann SE, Largent DL, Abell-Davis SE (2013) *Entocybe haastii* from Watagans National Park, New South Wales, Australia. Mycotaxon 126(1): 61–70. https://doi.org/10.5248/126.61
- da Silva PS, Ramirez-Cruz V, Cortes-Perez A, Guzman G, Guzman-Davalos L, da Silveira RMB (2013) *Deconica neorhombispora* (Agaricales, Strophariaceae): New combination and synonym. Sydowia 65(2): 321–328.
- da Silva PS, da Silveira RMB, Cortez VG (2014) Notes on *Deconica* and *Psilocybe* (Agaricales) from the southern border of Atlantic Forest and Pampa biomes of Brazil. Sydowia 66(2): 217–228. https://doi.org/10.12905/0380
- Ediriweera AN, Karunarathna SC, Xu J, Hyde KD, Mortimer PE (2017) *Entoloma meng-songense* sp. nov. (Entolomataceae, Agaricales), a remarkable blue mushroom from Yunnan Province, China. Turkish Journal of Botany 41(5): 505–515. https://doi.org/10.3906/bot-1611-13
- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2): 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

- Gurung SK, Adhikari M, Kim SW, Lee HG, Jun JH, Gwon BH, Lee HB, Lee YS (2019) First report of *Albifimbria verrucaria* and *Deconica coprophila* (Syn: *Psylocybe coprophila*) from field soil in Korea. Korean Journal of Mycology 47(3): 209–218. https://doi.org/10.4489/KJM.20190025
- Guzmán G (2005) Species diversity of the genus *Psilocybe* (Basidiomycotina, Agaricales, Strophariaceae) in the world mycobiota, with special attention to hallucinogenic properties. International Journal of Medicinal Mushrooms 7(1): 305–331. https://doi.org/10.1615/IntJMedMushr.v7.i12.280
- Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41(41): 95–98. https://doi.org/10.1021/bk-1999-0734.ch008
- He MQ, Hyde KD, Begerow D, Kemler M, Yurkov A (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99(1): 105–367. https://doi.org/10.1007/s13225-019-00435-4
- Horak E, Desjardin DE (2006) Agaricales of Indonesia. 6. *Psilocybe* (strophariaceae) from Indonesia (Java, Bali, Lombok). Sydowia 58(1): 15–37.
- Horak E, Guzmán G, Desjardin DE (2009) Four new species of *Psilocybe* from Malaysia and Thailand, with a key to the species of sect. Neocaledonicae and discussion on the distribution of the tropical and temperate species. Sydowia 61(1): 25–37.
- Kalichman JKP, Matheny PB (2020) A compendium of generic names of agarics and Agaricales. Taxon 69(3): 425–447. https://doi.org/10.1002/tax.12240
- Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
- Karsten PA (1879) Rysslands, Finlands och den Sakadinaviska halföns hattsvampar. Förra Denlen: Skifsvampar. Bidrag till Kännedom of Finlands natur och folk, 571 pp.
- Kornerup AWJ, Wanscher JH (1978) Methuen Handbook of Colour. Methuen & Co. Ltd, London, 200–215.
- Kumar SSG, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096
- Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Yang ZL, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNiti M, Daniele GM, Desjardin DE, Kropp BR, Norvell L, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: A multilocus phylogenetic overview. Mycologia 98(6): 982–995. https://doi.org/10.1080/15572536.2006.11832627
- Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5): 1530–1534. https://doi.org/10.1093/molbev/msaa015
- Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Catherine M, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Greg TR, Jacobsson S, Clemencon H, Miller OK (2002) One hundred and seventeen clades of euagarics. Molecular Phylogenetics and Evolution 23(3): 357–400. https://doi.org/10.1016/S1055-7903(02)00027-1
- Morozova OV, Noordeloos ME, Vila J (2014) *Entoloma* subgenus *Leptonia* in boreal-temperate Eurasia: Towards a phylogenetic species concept. Persoonia 32(1): 141–169. https://doi.org/10.3767/003158514X681774
- Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen

- O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson KH, Larsson E, Koljalg U (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4(2): 37–63. https://doi.org/10.3897/mycokeys.4.3606
- Noordeloos ME (1992) Entoloma s.l. Fungi Europaei 5. Candusso Edizioni, Italy.
- Noordeloos ME (2004) *Entoloma* s.l. in Fungi Europaei Vol. 5A. Ed. Candusso: Alassio, Italy.
- Noordeloos ME (2009) The genus *Deconica* (W.G. Sm.) P. Kast. in Europe-new combinations. Österr Z Pilzk 18: 208–210.
- Noordeloos ME (2011) Strophariaceae s.l. Fungi Europeai no. 13. Canduso Edizione, Saronno, 647 pp.
- Noordeloos ME, Hausknecht A (2007) The genus *Entoloma* (Basidiomycetes, Agaricales) of the Mascarenes and Seychelles. Fungal Diversity 27(1): 111–144.
- Park MS, Cho HJ, Kim NK, Park JY, Lee H, Park KH, Kim MJ, Kim JJ, Kim C, Lim YW (2017) Ten new recorded species macrofungi on Ulleung Island, Korea. Mycobiology 45(4): 286–296. https://doi.org/10.5941/MYCO.2017.45.4.286
- Ramírez-Cruz V, Rodríguez A, Matheny PB, Sánchez-García M, Guzmán-Dávalos L (2013) Phylogenetic inference and trait evolution of the psychedelic mushroom genus *Psilocybe* sensu lato (Agaricales). Botany 91(9): 573–591. https://doi.org/10.1139/cjb-2013-0070
- Ramírez-Cruz V, Cortes-Perez A, Borovicka J, Villalobos-Arambula AR, Matheny PB, Guzman-Davalos L (2020a) *Deconica cokeriana* (Agaricales, Strophariaceae), a new combination. Mycoscience 61(2): 95–100. https://doi.org/10.1016/j.myc.2019.07.001
- Ramírez-Cruz V, da Silva PS, Villalobos-Arambula AR, Matheny PB, Noordeloos M, Morgado L, da Silveria RMB, Guzman-Davalos L (2020b) Two new species of *Deconica* (Agaricales, Basidiomycota) from Australia and Mexico. Mycological Progress 19(11): 1317–1328. https://doi.org/10.1007/s11557-020-01629-w
- Ronquist F, Teslenko M, Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard M, Huelsenbeck J (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
- Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, Van Nieukerken E, Zarucchi J, Penev L [Eds] (2019) Species 2000 & IT IS Catalogue of Life, 2019 Annual Checklist.
- Singer R (1986) The Agaricales in modern taxonomy. Koeltz Scientific Books, Koenigstein.
- Smith WG (1870) Clavis agaricinorum: An analytical key to the British Agaricini, with characters of the genera and subgenera. Journal of Botany, London 8: 213–233.
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
- Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019) Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Diversity 98(1): 1–76. https://doi.org/10.1007/s13225-019-00432-7