Une introduction à la géométrie des fibrés principaux

Abdelhak ABOUQATEB Faculté des Sciences et Techniques de Marrakech Université Cadi Ayyad de Marrakech

> Mini-cours dans le cadre de l'école EMA - Rabat - 25 Juin au 07 juillet 2018

Résumé : Ces notes sont rédigées dans le cadre de l'école mathématique africaine "Outils de topologie algèbrique et géométrique" organisée à l'UIR par CIMPA-MIMS. La géométrie des fibrés principaux, objet de ce mini-cours, est d'une grande importance mathématique (en géométrie différentielle & topologie algébrique) et physique (théories de la relativité, de Yang-Mills et de Gauge). Selon la formulation du problème étudié, on peut utiliser des outils de géométrie différentielle propres aux fibrés vectoriels ou propres aux fibrés principaux, il est tout de même intéressant de savoir qu'il y a souvent une correspondance biunivoque entre les deux approches (même si par exemple une loi de dérivation sur un fibré tangent peut ne pas provenir d'une connexion sur le fibré principal d'origine).

Nous nous proposons dans ce mini-cours de développer certains aspects géométriques des fibrés principaux (Fibrés associés, champs de vecteurs, formes différentielles, connections...) avec comme exemple principal de motivation le cas du fibré $G \to G/H$. Le fibré tangent d'une variété différentiable M peut toujours être interprété comme fibré associé au fibré des repères. Pour un espace homogène par exemple G/H on peut aussi considérer le H-fibré principal $G \to G/H$ pour classifier les G-fibrés vectoriels de base G/H (le fibré tangent T(G/H)) et le fibré produit extérieur $\bigwedge T^*(G/H)$ en sont des exemples).

Les points abordés seront : **Généralités sur les groupes de Lie, Actions différentiables de groupes de Lie, Fibrés localements triviaux, Fibré tangent d'un espace homogène, Existence de métriques riemanniennes invariantes, Actions prores et fibrés, Formes différentielles invariantes et cohomologie, Connections invariantes, Fibré universel et espaces classifiants (***par* Mehdi Nabil). Une appendice sera consacré à des rappels sur la notion de champs de vecteurs.

1 GROUPES DE LIE 2

1 Groupes de Lie

Cette section est consacré à des rappels et compléments sur les groupes de Lie. Pour un cours complet, les lecteurs peuvent consulter les ouvrages [7][9][14].

Définition 1.1. *Un groupe de Lie est un groupe G muni d'une structure de variété différentiable telle que les applications :*

- 1. Multiplication: $G \times G \xrightarrow{\mu} G$, $\mu(g_1, g_2) = g_1 g_2$,
- 2. Inversion: $G \xrightarrow{v} G$, $v(g) = g^{-1}$,

soient de classes C^{∞} .

Exemples.

- Les *groupe de matrices* : Ce sont les sous-groupe fermé d'un $GL(n, \mathbb{K})$.
- Le revêtement universel d'un groupe de Lie.
- Le produit direct (ou "semi-direct") de groupes de Lie.
- Les groupes discrets (dénombrables) sont les groupes de Lie de dimension 0.
- Tout sous-groupe connexe par arcs d'un groupe de Lie est un groupe de Lie (Yamabe).
- Le quotient d'un groupe de Lie par un sous-groupe distingué et fermé est un groupe de Lie.
- Le groupe des difféomorphismes d'une variété préservant certaines structures. Par exemple le groupe des isométries d'une variété riemannienne.

Définition 1.2. (Sous-groupe de Lie) Soit G un groupe de Lie. Un sous-groupe de Lie H de G est un sous-groupe munie d'une topologie et d'une structure différentiable qui en font un groupe de Lie et tel que l'injection canonique $\iota: H \hookrightarrow G$ soit une immersion. G.

Proposition 1.1. Soient G un groupe de Lie, et $H \subset G$ un sous-groupe qui est aussi une sous-variété plongée de G. Alors H est un sous-groupe de Lie fermé de G.

Exemple 1.1. Selon usage, le tore \mathbb{T}^2 peut être vu comme étant $S^1 \times S^1$ ou le quotient $\mathbb{R}^2/\mathbb{Z}^2$, il s'identifie aussi à la surface Σ de révolution dans \mathbb{R}^3 engendrée par la rotation autour de l'axe vertical (ox_3) d'un cercle méridien. De manière plus précise, le difféomorphisme entre $\mathbb{R}^2/\mathbb{Z}^2$ et Σ est donné par :

$$\varphi(\overline{t,s}) = (x_1(\overline{t,s}), x_2(\overline{t,s}), x_3(\overline{t,s}))$$

avec

$$\begin{cases} x_1\overline{(t,s)} = (R + r\cos(2\pi s))\cos(2\pi t) \\ x_2\overline{(t,s)} = (R + r\cos(2\pi s))\sin(2\pi t) \\ x_3\overline{(t,s)} = r\sin(2\pi s) \end{cases}$$

C'est l'unique groupe de Lie compact connexe Abelien de dimension 2. Soit α un nombre irrationnel et $D_{\alpha} := \{(e^{it}, e^{i\alpha t}) / t \in \mathbb{R}\}$, c'est un sous-groupe de Lie immergé non fermé de \mathbb{T}^2 .

1 GROUPES DE LIE 3

Exercice 1.1. (Densité du flot à pente irrationnel sur le tore) On considère l'espace métrique $C \times C$ muni de sa topologie usuelle; celle-ci peut être définie par la distance d donnée par :

$$d((z_1, z_2), (z'_1, z'_2)) = \max(|z_1 - z'_1|, |z_2 - z'_2|).$$

On munit $S^1 \times S^1$ de la distance induite. Soit α un nombre irrationnel et D_{α} le sous-groupe des $(e^{it}, e^{i\alpha t})$ pour $t \in \mathbb{R}$. On se propose de montrer que D_{α} est dense dans $S^1 \times S^1$. Soit alors $M = (e^{ix}, e^{iy})$ un point de $S^1 \times S^1$.

1. Montrer que pour tout $\varepsilon > 0$, il existe $m \in \mathbb{Z}$ tel que :

$$d(M, (e^{i(x+2\pi m)}, e^{i\alpha(x+2\pi m)})) < \varepsilon$$

2. Conclure

Solution.

1. On a $M = (e^{ix}, e^{iy})$, donc

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = \mid e^{i\alpha x}(e^{i\alpha 2\pi mx}-e^{it})\mid \text{ avec } t=y-\alpha x$$

D'où:

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = \mid e^{i\alpha 2\pi mx} - e^{it}\mid.$$

Le résultat découle alors du fait que l'ensemble $H:=\{e^{i\alpha 2\pi mx} \mid m\in \mathbb{Z}\}$ est un sous-groupe dense de S^1 . L'idée pour montrer cela consiste à considérer l'application

$$p: \mathbb{R} \to S^1$$
, $t \mapsto e^{i2\pi t}$

1 GROUPES DE LIE 4

En effet, $H = p(\alpha \mathbb{Z}) = p(\alpha \mathbb{Z} + \mathbb{Z})$ et $\alpha \mathbb{Z} + \mathbb{Z}$ est dense dans IR puisque c'est un sous-groupe qui n'est pas de la forme $a\mathbb{Z}$ (pour un réel a). Et puisque p est continue et surjective, on obtient :

$$S^1 = p(\mathbb{R}) = p(\overline{\alpha \mathbb{Z} + \mathbb{Z}}) = \overline{p(\alpha \mathbb{Z} + \mathbb{Z})} = \overline{H}.$$

2. On vient de montrer que pour tout $M \in S^1 \times S^1$ et tout $\varepsilon > 0$, la boule ouverte $B(M, \varepsilon)$ rencontre D_{α} . Ceci montre la densité de D_{α} dans $S^1 \times S^1$.

Exercice 1.2. (Sous-groupes localement compacts) Soit G un groupe de Lie et H un sous-groupe de G. On dira que H est localement compact s'il existe O un ouvert de G et K un compact tel que

$$e \in O \cap H \subset K \subset H$$

Montrer que H est localement compact si et seulement si H est fermé dans G.

Solution. Un groupe de Lie est localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $C \cap C$ est un compact puisque c'est un fermé dans le compact C. Ainsi C est localement compact. Réciproquement, soit C un ouvert de C et C un compact tel que C est un ouvert, on a : C est un ouvert, on a : C est un ouvert, on a : C est un ouvert, on a insi

$$O \cap \overline{H} \subset H. \tag{1.1}$$

soit maintenant $x \in \overline{H}$. Donc $xO \cap H \neq \emptyset$. Soit alors $u \in O$ tel que $xu \in H$. On a donc

$$u \in x^{-1}H \subset \overline{H}H \subset \overline{H}$$

D'où $u \in O \cap \overline{H}$. Et d'après 1.1, on aura $u \in H$, et parsuite $x \in H$ (car $xu \in H$).

Exercice 1.3. (Topologie de groupes de matrices)

- 1. Le groupe $GL^+(n,\mathbb{R})$ des matrices de déterminant > 0 est la composante connexe de $I_n \in GL(n,\mathbb{R})$.
- 2. Le groupe $GL(n,\mathbb{R})$ a deux composantes connexes alors que $GL(n,\mathbb{C})$ est connexe.
- 3. Le groupe spécial linéaire : $SL(n, \mathbb{K}) = \{g \in GL(n, \mathbb{K}) \mid det(g) = 1\}$ est connexe.
- 4. Le groupe orthogonal $O(n) = \{g \in GL(n, \mathbb{R}) \mid g^t \cdot g = I\}$ est compact.
- 5. Le groupe spécial othogonal SO(n) est compact et connexe $SO(n) = SL(n,\mathbb{R}) \cap O(n)$, on l'appelle aussi groupe des rotations de \mathbb{R}^n . C'est la composante connexe de $I_n \in O(n)$. Pour n = 2, $SO(2) \cong S^1 \cong \mathbb{R}/\mathbb{Z}$.

^{1.} résultat classique de topologie générale

- 6. Le groupe unitaire $U(n) = \{g \in GL(n,\mathbb{C}) \mid \overline{g}^t, g = I\}$ est compact connexe.
- 7. Le groupe spécial unitaire $SU(n) = \{g \in U(n) \mid \det(g) = 1\}$ est compact connexe. Pour n = 1, $U(1) = \{z \in \mathbb{C}^* \mid ; |z| = 1\} = S^1$. Pour n = 2, le groupe SU(2) s'identifie à la sphère S^3 , ce qui permet de munir S^3 d'une structure de groupe de Lie.

2 Algèbre de Lie d'un groupe de Lie

Définition 2.1. Soit $X \in \chi(G)$. On dira que X est invariant à gauche si $X \stackrel{l_g}{\sim} X$ pour tout $g \in G$. C'est à dire que pour tout $x \in G$ et pour tout $g \in G$:

$$X_{gx} = T_x l_g(X_x).$$

L'ensemble des champs de vecteurs invariants à gauches sur G est noté $\chi^l(G)$, c'est une sous algèbre de Lie de l'algèbre de Lie des champs de vecteurs $\chi(G)$.

Proposition 2.1. L'application $\phi: \chi^l(G) \longrightarrow T_eG$ donnée par $X \mapsto X_e$ est un isomorphisme d'espaces vectoriels.

Démonstration. Il est clair que ϕ est linéaire. D'autre part, soit X un élément de $\chi^l(G)$ qui vérifie $\phi(X)=0$, on a pour tout $g\in G$, $X_g=T_el_g(X_e)=0$ et donc X=0, ce qui signifie que ϕ est injective. Pour montrer que ϕ est surjective, on se donne $v\in T_eG$ et on définit $v^l\in \chi(G)$ le champ de vecteurs donnée pour tout $g\in G$ par la formule : $(v^l)_g=T_el_g(v)$. Pour tout $x\in G$ et pour tout $g\in G$, on a :

$$(v^l)_{gx} = T_e l_{gx}(v) = T_e (l_g \circ l_x)(v) = T_x l_g \circ T_e l_x(v) = T_x l_g ((v^l)_x).$$

Ce qui montre que $v^l \in \chi^l(G)$. De plus :

$$(v^l)_e = T_e l_e(v) = T_e I d_G(v) = v.$$

C'est à dire que $v = \phi(v^l)$ et donc ϕ est surjective. Ce qui achève la démonstration.

Corollaire 2.1. *Tout groupe de Lie G est parallélisable.*

Démonstration. On se donne une base $\{v_1, \ldots, v_n\}$ de T_eG . La proposition précédente donne qu'il existe des champs de vecteurs v_1^l, \ldots, v_n^l invariants à gauche sur G et vérifiant $(v_i^l)_e = v_i$. Pour tout $x \in G$, $T_e l_x : T_eG \longrightarrow T_xG$ est un isomorphisme d'espaces vectoriels et on a pour tout $i = 1, \ldots, n$, $(v_i^l)_x = T_e l_x(v_i)$. Donc $\{(v_1^l)_x, \ldots, (v_n^l)_x\}$ est une base de T_xG . On conclut alors que le groupe de Lie G est parallélisable. □

La proposition 2.1 permet de munir l'espacxe tangent T_eG d'un crochet de Lie [,] de façon que donne que ϕ devient un isomorphisme d'algèbres de Lie : Pour $v, w \in T_eG$, on pose

$$[v, w] := [v^l, w^l](e) = \phi([\phi^{-1}(v), \phi^{-1}(w)]).$$

Définition 2.2. On appelle algèbre de Lie du groupe de Lie G, l'algèbre de Lie réelle notée $Lie(G) := (T_eG, [\ ,\])$.

Proposition 2.2. (Foncteur de Lie). Soit $\varphi: G \longrightarrow H$ un morphisme de groupes de Lie et notons $\text{Lie}(\varphi) := T_e \varphi$. Alors $\text{Lie}(\varphi) : \text{Lie}(G) \longrightarrow \text{Lie}(H)$ est un morphisme d'algèbres de Lie.

3 L'application exponentielle

3.1 Propriétés élémentaires de la fonction exponentielle

Soit $X \in \chi^l(G)$. Considérons le système différentiel ordinaire sur le groupe de Lie G :

$$\begin{cases} \gamma'(t) = X_{\gamma(t)} \\ \gamma(0) = e_G \end{cases}$$
 (3.1)

D'après le théorème (A.1), il existe un intervalle maximal I contenant 0 et une unique courbe maximale $\gamma: I \longrightarrow G$ de classe \mathscr{C}^{∞} solution du système (3.1).

Proposition 3.1. Soit $\gamma: I \longrightarrow G$ la solution maximale du système (3.1). Alors $I = \mathbb{R}$ et pour tout $t, s \in \mathbb{R}$, on $a \gamma(t + s) = \gamma(t)\gamma(s)$.

Démonstration. Pour montrer que $I = \mathbb{R}$, il suffit de montrer que pour tout $s \in I \setminus \{0\}$, I = I - s. Pour cela, fixons $s \in I$ non nul et considérons le système :

$$\begin{cases} \alpha'(t) = X_{\alpha(t)} \\ \alpha(0) = \gamma(s) \end{cases}$$
 (3.2)

Définissons $\alpha_1(t) = \gamma(t+s)$ pour tout $t \in I - s$ et $\alpha_2(t) = \gamma(s)\gamma(t)$ pour tout $t \in I$, alors pour tout $t \in I - s$

$$\alpha'_1(t) = \gamma'(t+s) = X_{\gamma(t+s)} = X_{\alpha_1(t)}$$
 et $\alpha_1(0) = \gamma(s)$

On déduit alors par maximalité de γ que $\alpha_1: I-s \longrightarrow G$ est une solution maximale de (3.2). D'autre part, on a $\alpha_2(0) = \gamma(s)\gamma(0) = \gamma(s)$ et pour tout $t \in I$. :

$$\alpha'_{2}(t) = \frac{\mathrm{d}}{\mathrm{dt}}(\gamma(s)\gamma(t)) = \frac{\mathrm{d}}{\mathrm{dt}}l_{\gamma(s)}(\gamma(t))$$

$$= (T_{\gamma(t)}l_{\gamma(s)})(\gamma'(t)) = (T_{\gamma(t)}l_{\gamma(s)})(X_{\gamma(t)})$$

$$= X_{\gamma(s)\gamma(t)} = X_{\alpha_{2}(t)}.$$

Par maximalité de γ , on déduit que $\alpha_2: I \longrightarrow G$ est une solution maximale de (3.2). Donc I = I - s et $\alpha_1(t) = \alpha_2(t)$ pour tout $t \in I$. On conclut alors que $I = \mathbb{R}$ et que pour tout $t, s \in \mathbb{R}$, on a $\gamma(t + s) = \gamma(s)\gamma(t)$.

Proposition 3.2. *Tout champ de vecteurs invariant à gauche sur G est complet.*

Démonstration. Soit X un champ de vecteurs invariant à gauche sur G. Soit $x \in G$ et définissons la courbe $\alpha : \mathbb{R} \longrightarrow G$ donnée par $\alpha(t) = x \cdot \gamma(t)$ où $\gamma : \mathbb{R} \longrightarrow G$ est la solution du système (3.1). On a $\alpha(0) = x \cdot \gamma(0) = x$ et pour tout $t \in \mathbb{R}$:

$$\alpha'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(x \cdot \gamma(t)) = \frac{\mathrm{d}}{\mathrm{d}t}l_{x}(\gamma(t)) = T_{\gamma(t)}l_{x}(\gamma'(t)) = T_{\gamma(t)}l_{x}(X_{\gamma(t)}) = X_{x \cdot \gamma(t)} = X_{\alpha(t)}.$$

Donc α : IR \longrightarrow G est la courbe intégrale de X passant par x à l'instant 0. On conclut alors que X est complet.

Corollaire 3.1. *Soit* $X \in \chi^l(G)$ *et* ϕ^X *le flot de* X, *alors pour tout* $t \in \mathbb{R}$ *et* $x \in G$:

$$\phi^X(t,x) = r_{\phi^X(t,e)}(x).$$

Démonstration. Soit $\gamma: \mathbb{R} \longrightarrow G$ la courbe intégrale de X passant par e à l'instant 0 et $\alpha: \mathbb{R} \longrightarrow G$ la courbe intégrale de X passant par x à l'instant 0. La preuve de la proposition précedente montre que $\alpha(t) = x \cdot \gamma(t)$. Comme $\gamma(t) = \phi^X(t, e)$ et $\alpha(t) = \phi^X(t, x)$, on conclut que :

$$\phi^X(t,x) = x \cdot \phi^X(t,e) = r_{\phi^X(t,e)}(x).$$

Ce qui achève la démonstration.

Définition 3.1. Soit $v \in \text{Lie}(G)$. Notons $\gamma_v : \mathbb{R} \longrightarrow G$ la courbe intégrale de v^l qui vérifie $\gamma_v(0) = e$. On pose $\exp(v) = \gamma_v(1)$. Ceci définit une application $\exp: \text{Lie}(G) \longrightarrow G$ qu'on appelle fonction exponentielle du groupe de Lie G.

Exemple 3.1. Soit V un espace vectoriel de dimension finie et posons G = (V, +), alors Lie(G) = V. Il est clair que pour tout $x \in V$, la translation gauche l_x est donnée par $l_x(y) = x + y$. Ceci donne que pour tout $x, y \in V$ et pour tout $u \in V$:

$$T_y(l_x)(u) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} l_x(y+tu) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} x + y + tu = u.$$

En d'autre termes $T_v(l_x) = Id_V$. On déduit alors que pour tout $x \in V$:

$$v^l(x) = T_0(l_x)(v) = v.$$

On conclut alors que les champs de vecteurs invariants à gauche sur V sont les champs de vecteurs constants. Ensuite, nous allons calculer la fonction exponentielle du groupe vectoriel (V,+). Soit $\gamma_v : \mathbb{R} \longrightarrow G$ la solution maximale du système :

$$\begin{cases} \gamma_{\nu}'(t) = \nu \\ \gamma_{\nu}(0) = 0 \end{cases}$$
 (3.3)

Il est clair que pour tout $t \in \mathbb{R}$, $\gamma_v(t) = tv$. Ainsi $\exp_V(v) = \gamma_v(1) = v$. En résumé, nous avons obtenu que $\exp_V = Id_V$.

Exemple 3.2. Si $G = GL(n, \mathbb{R})$, nous allons montrer que les définitions de l'application exponentielle de G, au sens matricielles et au sens des groupes de Lie, coïncident. Pour cela, on se donne deux matrices $A, B \in GL(n, \mathbb{R})$. Alors $l_A(B) = AB$ et par suite, pour tout $H \in M(n, \mathbb{R})$ on a:

$$T_B(l_A)(H) = \frac{\mathrm{d}}{\mathrm{dt}}_{|t=0} l_A(B+tH) = \frac{\mathrm{d}}{\mathrm{dt}}_{|t=0} A(B+tH) = AH.$$

On conclut alors que pour tout matrice $A \in \mathfrak{gl}(n,\mathbb{R})$ on a $A^l(B) = T_{I_n}(l_B)(A) = BA$. Ensuite, définissons la courbe $\gamma_A : \mathbb{R} \longrightarrow GL(n,\mathbb{R})$ donnée par la formule :

$$\gamma_A(t) = e^{tA} := \sum_{k=0}^{\infty} \frac{1}{k!} t^k A^k.$$

8

On vérifie aisément que γ_A est la solution du système différentielle ordinaire :

$$\begin{cases} \gamma'(t) = \gamma(t)A \\ \gamma(0) = I_n \end{cases}$$
 (3.4)

Ceci signifie exactement que γ_A est la courbe intégrale du champs de vecteurs invariants à gauche A^l passant par I_n à l'instant 0. En particulier, $\exp(A) = \gamma_A(1) = e^A$. Ce qui montre que les deux définitions coïncident.

Proposition 3.3. Tout homomorphisme de groupes de Lie $\gamma : \mathbb{R} \longrightarrow G$ est de la forme $\gamma(t) = \exp(tv)$ avec $v = \gamma'(0)$.

Proposition 3.4. La fonction exponentielle \exp_G : Lie $(G) \longrightarrow G$ est de classe \mathscr{C}^{∞} et vérifie $T_0 \exp_G = Id_{\text{Lie}(G)}$. Par conséquent, le théorème d'inversion locale implique que \exp_G est un difféomorphisme d'un voisinage de 0 de Lie(G) sur un voisinage de e_G dans e_G .

Proposition 3.5. Si $v, w \in \text{Lie}(G)$ commutent, c'est à dire que [v, w] = 0, alors :

$$\exp_G(v+w) = \exp_G(v) \exp_G(w)$$
.

Proposition 3.6. La composante connexe de l'élément neutre de G coïncide avec le sous-groupe de G engendré par $\exp(\text{Lie}(G))$.

Proposition 3.7. $Soit \varphi : G_1 \longrightarrow G_2$ un morphisme de groupes de Lie. Alors on a la relation $\exp_{G_2} \circ Lie(\varphi) = \varphi \circ \exp_{G_1}$. En d'autres termes, le diagramme suivant est commutatif :

$$\begin{array}{c|c}
\operatorname{Lie}(G_1) & \xrightarrow{\operatorname{Lie}(\varphi)} \operatorname{Lie}(G_2) \\
\exp_{G_1} \downarrow & & \downarrow \exp_{G_2} \\
G_1 & \xrightarrow{\varphi} & G_2
\end{array}$$

4 Sous-groupes d'un groupe de Lie

4.1 Sous-groupes fermés d'un groupe de Lie

Dans cette section G est un groupe de Lie et $H \subset G$ est un sous-groupe fermé. On définit l'ensemble :

$$\mathcal{H} = \{ v \in Lie(G), \exp_G(\mathbb{R}v) \subset H \}.$$

Théorème 4.1. (Sous-groupe fermé). Soit H un sous-groupe fermé du groupe de Lie G. Alors :

- 1. \mathcal{H} est une sous-algèbre de Lie de Lie (G).
- 2. Tout voisinage de 0 dans \mathcal{H} contient un ouvert V de \mathcal{H} voisinage de 0 tel que $\exp_{G|V}: V \longrightarrow \exp_G(V)$ est un homéomorphisme sur un ouvert de H.

- 3. Le groupe H possède une structure de sous-variété différentiable de G et la multiplication $m_H := m_{G|H \times H}$ induit une structure de groupe de Lie sur H tel que l'inclusion canonique $\iota_H : H \longrightarrow G$ est un morphisme de groupes de Lie. De plus, $\mathrm{Lie}(\iota_H) : \mathrm{Lie}(H) \longrightarrow \mathrm{Lie}(G)$ définit un isomorphisme de $\mathrm{Lie}(H)$ sur \mathcal{H} .
- 4. Soit $\mathcal{M} \subset \text{Lie}(G)$ un supplémentaire de \mathcal{H} . Alors il existe un ouvert $V_{\mathcal{M}}$ de \mathcal{M} voisinage de 0 tel que l'application $\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp_G(V_{\mathcal{M}})H$, $(v,h) \mapsto \exp_G(v)h$ est un difféomorphisme sur un ouvert de G.

Démonstration. (Esquisse) Nous allons donner les grandes étapes de la démonstration (pour plus de détails, on peut consulter le livre de J. Hilgert and K-H. Neeb "Structure and Geometry of Lie Groups").

Soit $\mathcal{M} \subset \text{Lie}(G)$ un supplémentaire de \mathcal{H} et considérons l'application

$$\phi: \mathcal{M} \times \mathcal{H} \longrightarrow G \quad (v, w) \mapsto \exp_G(v) \exp_G(w).$$

— <u>Etape 1</u>: On utilise le théorème d'inversion locale, ensuite un raisonnement par l'absurde nous permet d'établir l'existence de $U_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} , un ouvert $U_{\mathcal{H}}$ de \mathcal{H} voisinage de 0 et un ouvert $W \subset G$ voisinage de e_G tel que l'application $\phi_{|U_{\mathcal{M}} \times U_{\mathcal{H}}}$: $U_{\mathcal{M}} \times U_{\mathcal{H}} \longrightarrow W$ est un difféomorphisme et

$$\exp_G(U_{\mathcal{H}}) = \phi(\{0\} \times U_{\mathcal{H}}) = W \cap H.$$

— Etape 2 : Par continuité de l'application $(u,v)\mapsto \exp_G(u)^{-1}\exp_G(v)$ de $\mathcal{M}\times\mathcal{M}$ vers G, on peut choisir $V_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} tel que

$$V_{\mathcal{M}} \subset U_{\mathcal{M}}$$
 et $\exp_G(V_{\mathcal{M}})^{-1} \exp_G(V_{\mathcal{M}}) \subset W$.

— Etape 3: On montre que l'application

$$\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp_G(V_{\mathcal{M}})H, \quad (v, h) \mapsto \exp_G(v)h.$$

est un difféomorphisme sur un ouvert de G.

4.2 Sous-groupes immergés d'un groupe de Lie

Nous avons vu auparavant à travers l'exemple du tore \mathbb{T}^2 que si G est un groupe de Lie d'algèbre de Lie \mathcal{G} , il est possible d'avoir une sous-algèbre de Lie $\mathcal{H} \subset \mathcal{G}$ qui n'est pas l'algèbre de Lie d'un sous-groupe de Lie plongé. Tout de même, selon le théorème qui suit \mathcal{H} est toujours l'algèbre de Lie d'un sous-groupe de Lie immergé.

Théorème 4.2. (Sous-groupe immergé). Soit G un groupe de Lie d'algèbre de Lie G et $\mathcal{H} \subset G$ une sous-algèbre de Lie. Alors le sous-groupe $H := <\exp \mathcal{H} > de$ G engendré par $\exp(\mathcal{H})$ possède une structure de sous-groupe de Lie immergé connexe : C'est l'unique structure telle que l'inclusion $j_H : H \hookrightarrow G$ est un morphisme de groupes de Lie et $Lie(j_H) : Lie(H) \to \mathcal{H}$ est un isomorphisme d'algèbres de Lie.

Démonstration. (Esquisse) L'idée de démonstration repose sur l'existence d'un voisinage $V \subset \mathcal{G}$ symétrique convexe de 0 sur lequel la série de Hausdorff converge :

$$x * y = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] + \frac{1}{12}[y, [y, x]] + \cdots$$

et satisfait:

$$\exp_G(x * y) = \exp_G(x) \exp_G(y).$$

Avec en plus $\exp_{G|_V}$ est un difféomorphisme de V sur un ouvert de G.

On considère ensuite $W := V \cap \mathcal{H}$ et $U := \exp_G(W) \subset H$. On alors : U engendre le groupe H, $U^{-1} = U$, $\varphi := \exp_{G|_W}$ est une bijection de W sur U, et l'application $*: (x,y) \mapsto x * y$ de $W \times W$ vers \mathcal{H} est bien définie (découle de la nature de la série de Hausdorff) et différentiable. Ceci permet de munir H d'une structure de groupe de Lie immergé.

5 La représentation adjointe et applications

Soit *G* un groupe de Lie.

Définition 5.1. (Représentation d'un groupe) Soit V un espace vectoriel de dimension finie. Une représentation de G dans V est la donnée d'un homomorphisme de groupes de Lie : $\rho: G \to GL(V)$. GL(V) étant le groupe de Lie des automorphismes linéaires de l'espace vectoriel V.

La dérivée ρ' d'une telle représentation est l'application : $\rho' : \mathcal{G} \to End(V)$ définie

$$\rho'(h) := \frac{d}{dt}_{|_{t=0}} \rho(\exp_G th)$$

Cette dérivée ρ' est une représentation d'algèbres de Lie :

$$\rho'([h,k]) = [\rho'(h), \rho'(k)], \quad \forall h, k \in \mathcal{G}$$

Lemme 5.1. *pour tout* $t \in \mathbb{R}$ *et* $h \in \mathcal{G}$ *, on a* :

$$\rho(\exp_C th) = \exp(t\rho'(h))$$

Exercice 5.1. *Soit* ρ : $G \rightarrow GL(V)$ *une représentation. On définit* :

$$-V^{\mathscr{G}} := \{ v \in V / \rho'(h) v = 0, \forall h \in \mathscr{G} \}$$

Montrer que

$$V^G \subset V^{\mathcal{G}}$$

, et que lorsque G est connexe, on a l'égalité : $V^G = G^{\mathcal{G}}$.

5.1 Définition de la représentation adjointe

Soit G un groupe de Lie. Pour tout $g \in G$, l'automorphisme intérieur $\tau_g(a) : G \to G$ est défini par $\tau_g(a) := gag^{-1}$, c'est un automorphisme du groupe de Lie G. La dérivée $(\tau_g)' : \mathcal{G} \to \mathcal{G}$ est un isomorphisme d'algèbres de Lie : $(\tau_g)'(h) := \frac{d}{dt}_{t=0} g(exp\ th)g^{-1}$.

Définition 5.2. La représentation adjointe de G est la représentation de $Ad: G \to GL(\mathcal{G})$ définie $par: Ad(g) = Ad_g := (\tau_g)'$.

La dérivée Ad' de cette représentation sera notée ad:

$$ad: \mathscr{G} \longrightarrow End(\mathscr{G}), \quad ad_X := (Ad)'(X).$$

c'est une représentation d'algèbre de Lie (i.e. $ad_{[X,Y]} = ad_X \circ ad_Y - ad_Y \circ ad_X$). Nous allons montrer que celle-ci n'est autre que la représentation canonique de $\mathcal G$ i.e. celle donnée par : $X \mapsto [X,\cdot]$. Prenons alors $X,Y \in \mathcal G$, on a :

$$\operatorname{ad}_{X}(Y) = \frac{d}{dt} \operatorname{Ad}_{exp(tX)}(Y)$$
(5.1)

soit encore

$$\operatorname{ad}_{X}(Y) = \frac{d}{dt}_{|_{t=0}} (t \mapsto \frac{d}{ds}_{|_{s=0}} exp(tX) exp(sY) exp(-tX))$$

Lemme 5.2. *Soit X, Y deux champs de vecteurs invariants à gauche sur un groupe de Lie G. Alors :*

$$[X,Y]_e = \frac{d}{dt}_{|_{t=0}} (t \mapsto \frac{d}{ds}_{|_{s=0}} exp(tX) exp(sY) exp(-tX))$$

Démonstration. Nous allons partir du fait que le crochet de deux champs de vecteurs sur une variété différentiable s'exprime à l'aide du flot via la formule classique (cf. cours de géométrie différentielle) :

$$[X,Y]_x = \frac{d}{dt}_{|_{t=0}} (t \mapsto T_{\varphi_t^X(x)} \varphi_{-t}^X(Y_{\varphi_t^X(x)}))$$

où φ^X_t désigne le flot du champ X et x un point arbitraire sur la variété. Dans nôtre cas, le flot du champ de vecteurs X (invariant à gauche) est donné par l'application $\varphi^X_t : x \mapsto xexp(tX)$ i.e. $\varphi^X_t = r_{exp(tX)}$ nous obtenons ainsi :

$$[X,Y]_e = \frac{d}{dt}_{|_{t=0}} (T_{exp(tX)} r_{exp(-tX)}) (T_e l_{exp(tX)}) (Y_e)$$

D'où:

$$[X,Y]_e = \frac{d}{dt}_{|_{t=0}} (T_e \tau_{exp(tX)})(Y_e) = \frac{d}{dt}_{|_{t=0}} (\frac{d}{ds}_{|_{s=0}} exp(tX) exp(sY) exp(-tX)).$$

Corollaire 5.1. *Pour tout* $X, Y \in \mathcal{G}$ *on* $a : ad_X Y = [X, Y]$.

Proposition 5.1. *Pout tout t* $\in \mathbb{R}$ *et X* $\in \mathcal{G}$ *on a* :

$$Ad_{exp_G(tX)} = \exp(tad_X) \tag{5.2}$$

En particulier, pour tout $X \in \mathcal{G}$, $Ad_{\exp_G(X)} = \exp(ad_X)$.

Exercice 5.2. Soit G un groupe de Lie connexe d'algèbre de Lie G et H un sous-groupe de Lie connexe d'algèbre de Lie $H \subset G$. Montrer l'équivalence entre les deux assertions :

- H est un sous-groupe distingué dans G.
- $-\mathcal{H}$ est un idéal de \mathcal{G} .

Solution. H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$. D'après le lemme 5.1, on a $\tau_g(\exp(tY)) = \exp(t\mathrm{Ad}_g(Y))$, donc :

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \exp(t \operatorname{Ad}_g(Y)) \in H$$

D'où

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \operatorname{Ad}_g(Y) \in \mathcal{H}$$
 (5.3)

Et parsuite

$$\forall X \in \mathcal{G}, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \operatorname{Ad}_{\exp(tX)}(Y) \in \mathcal{H}$$
 (5.4)

Par dérivation en t = 0 et d'après 5.1, on obtient que $\operatorname{ad}_X(Y) \in \mathcal{H}$ pour tous $X \in \mathcal{G}$ et $Y \in \mathcal{H}$. Ainsi \mathcal{H} est un idéal de \mathcal{G} .

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$. D'un autre côté, d'après 5.2, on a

$$Ad_{\exp_G(tX)}(Y) = \exp(tad_X)(Y) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (ad_X)^n(Y)$$

Ce qui implique 5.4. Et par connexité de G, on obtient 5.3, et parsuite $\tau_g(\exp(Y)) \in H$ pour tous $g \in G$ et $Y \in \mathcal{H}$. Puisque $\exp(\mathcal{H})$ engendre le groupe H (par connexité de H), on obtient $\tau_g(H) \subset H$ pour tous $g \in G$.

Exercice 5.3. Soit G un groupe de Lie d'algèbre de Lie G et H un sous-groupe de Lie connexe d'algèbre de Lie $H \subset G$. Soit M un sous-espace vectoriel de G. Montrer l'équivalence entre les deux assertions :

- Pour tout $a \in H$, $Ad_a(\mathcal{M}) \subset \mathcal{M}$.
- Pour tout $X \in \mathcal{H}$, $\operatorname{ad}_X(\mathcal{M}) \subset \mathcal{M}$.

5.2 Groupes de Lie Abeliens

- Un groupe G est Abelien (ou commutatif) si pour tous $a, b \in G$ on a : ab = ba.
- Une algèbre de Lie \mathscr{G} est Abelienne si son crochet est nul i.e. [X,Y]=0 pour tous $X,Y\in\mathscr{G}$.

Proposition 5.2. Soit G un groupe de Lie connexe, et G son algèbre de Lie. Alors, on a l'équivalence : G est Abelien si et seulement si G est Abelienne

Démonstration. Dire que G est Abelien équivaut à ce que ses automorphismes intérieurs τ_g soient tous triviaux i.e. $\tau_g = id_G$ pour tout $g \in G$; ce qui équivaut (puisque G est connexe) à ce que leurs dérivées τ_g' soient tous triviaux i.e. $id_{\mathscr{G}} = \tau_g'$ (= Ad_g) pour tout $g \in G$. A nouveau, à cause de la connexité de G, ceci est équivaut à ce que $Ad_{expX} = id_{\mathscr{G}}$ pour tout $X \in \mathscr{G}$; soit encore $exp(tad_X) = id_{\mathscr{G}}$; ou encore $ad_X = 0$ pour tout $X \in \mathscr{G}$. D'où l'équivalence. □

Pour tout groupe de Lie *G* on peut associer un groupe de Lie Abelien, c'est son centre :

Définition 5.3. *Le centre d'un groupe de Lie G est le sous-groupe :*

$$Z(G) := \{g \in G / ga = ag, \forall a \in G\},$$

soit encore $Z(G) := \bigcap_{g \in G} Ker(\tau_g)$.

Notons que Z(G) est un sous-groupe de Lie de G puisqu'il est fermé dans G (théorème de Cartan-Von Neumann).

Lemme 5.3. Si G est connexe, alors : $Z(G) = \ker(Ad)$

En effet, $g \in Z(G)$ ssi $\tau_g = id_G$. De plus, l'hypothèse de connexité nous permet l'équivalence entre $\tau_g = id_G$ et $\tau_g' = id_G$. Ainsi : $g \in Z(G)$ ssi $Ad_g = id_G$.

Proposition 5.3. Soit G un groupe de Lie connexe, d'algèbre de Lie G. Alors, l'algèbre de Lie du centre Z(G) est le centre de G: Z(G):= $\{X \in G \mid ad_X = 0\}$

Démonstration. Z(G) étant un sous-groupe fermé de G, donc son algèbre de Lie s'identifie à :

$$Lie(Z(G)) = \{X \in \mathcal{G} \mid exp(tX) \in Z(G) , \forall t \in \mathbb{R}\}$$

Il en découle (cf. lemme) que $X \in Lie(Z(G))$ ssi $Ad_{exp(tX)} = id_{\mathcal{G}}$, soit encore $exp(tad_X) = id_{\mathcal{G}}$ pour tout $t \in \mathbb{R}$; ce qui équivaut à : $ad_X = 0$.

Théorème 5.1. *Soit G un groupe de Lie Abelien et connexe. Alors :*

- 1. L'application $\exp_G: (\mathcal{G}, +) \to (G, \cdot)$ est un homomorphisme de groupes de Lie surjectif.
- 2. Le noyau $\Gamma := Ker(exp)$ est un sous-groupe discret de $(\mathcal{G}, +)$.
- 3. L'application

$$\overline{exp}: (\mathcal{G}/\Gamma, +) \longrightarrow (G, \cdot), \ \overline{exp}(\overline{X}) := exp(X)$$

est un isomorphisme de groupes de Lie.

Lemme 5.4. Soit V un espace vectoriel de dimension finie, et soit Γ un sous-groupe discret de (V, +). Alors, il existe une famille libre $\{v_1, ..., v_p\}$ de V telle que :

$$\Gamma := \{ n_1 v_1 + \dots + n_n v_n / n_i \in \mathbb{Z} \}.$$

Ce qui permet d'obtenir :

Théorème 5.2. Tout groupe de Lie Abelien connexe est isomorphe au produit d'un tore $\mathbb{T}^p := S^1 \times \dots \times S^1$ et d'un $\mathbb{R}^q : G \cong \mathbb{T}^p \times \mathbb{R}^q$. En particulier : tout groupe de Lie compact connexe Ablien est un tore.

6 Espaces homogènes

Nous allons commencer cette section par deux exercices introductifs.

Exercice 6.1. (Topologie quotient) Soit G un groupe et H un sous-groupe. Notons \mathcal{R} la relation d'équivalence définie sur G par :

$$\forall x, y \in G, (x \mathcal{R} y \Leftrightarrow x^{-1} y \in H)$$

La classe \overline{x} *d'un* $x \in G$ *est le sous-ensemble de* G *suivant* :

$$\overline{x} = xH = \{xy/y \in H\}$$

L'ensemble de ces classes d'équivalences est l'ensemble noté G/H. La surjection canonique $\pi: G \to G/H$ est l'application définie par : $\pi(x) = \overline{x}$. On définit une topologie sur G/H en décrétant qu'une partie U est un ouvert de G/H si et seulement si $\pi^{-1}(U)$ est un ouvert de G. C'est la topologie quotient sur G/H.

- 1. Montrer que l'on obtient effectivement une topologie sur G/H.
- 2. Montrer que la surjection canonique π est continue et ouverte.
- 3. Montrer que si G/H est séparé alors H est fermé dans G.
- 4. On suppose que H est fermé dans G. Soient $x, y \in G$ tels que $x^{-1}y \notin H$. On considère l'application

$$f:(a,b)\mapsto ax^{-1}yb$$

de $G \times G$ dans G. Montrer l'existence de V un voisinage ouvert de l'élément neutre e tel que $f(V,V) \cap H = \emptyset$. En déduire que G/H est séparé.

- 5. Montrer que si G/H est connexe et H est connexe alors G est connexe.
- 6. Montrer que \mathbb{R}/\mathbb{Z} est homéomorphe à un cercle.
- 7. Montrer que si l'on remplace \mathbb{Z} par \mathbb{Q} , alors les seules parties fermées de \mathbb{R}/\mathbb{Q} sont la partie vide et la partie pleine. En déduire que la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière et que \mathbb{R}/\mathbb{Q} n'est pas séparé (Ceci montre que le quotient d'un espace métrique n'est pas toujours métrisable).

Solution.

- 1. On vérifie sans problème les trois propriétés d'une topologie.
- 2. La continuité de *q* découle immédiatement de la définition de la topologie quotient. Soit maintenant *O* un ouvert de *G*, on a

$$\pi^{-1}(q(O)) = OH = \bigcup_{b \in H} Ob$$

Ce qui montre que π est ouverte.

- 3. Si G/H est séparé alors le singleton $\{\overline{e}\}$ est un fermé de G/H, ce qui conduit à $H = \pi^{-1}\{\overline{e}\}$ est un fermé de G.
- 4. Soit $x, y \in G$ tels que $xH \neq yH$. On a donc $x^{-1}y \in G \setminus H$ qui est un ouvert de G, donc par continuité de l'application f au point (e, e), on peut choisir V un voisinage ouvert symétrique $(V^{-1} = V)$ de l'élément neutre e tel que $f(V, V) \cap H = \emptyset$. Il en résulte alors que les deux ensembles xVH et yVH sont disjoints, et puisqu'en plus ce sont des ouverts saturés et que la projection π est une application ouverte, on obtient que $\pi(xVH)$ et $\pi(yVH)$ sont des voisinages ouverts disjoints respectivement de q(x) et de q(y).
- 5. Soit $f: G \to \{0,1\}$ une application continue. Pour tout $x \in G$, la restriction de f à xH est alors constante (puisqu'elle est continue sur xH connexe). L'application f va donc induire par passage au quotient une application continue $\overline{f}: G/H \to \{0,1\}$ telle que $f = \overline{f} \circ q$. Par connexité de G/H, \overline{f} est constante et parsuite f est constante. Ce qui montre la connexité de G.
- 6. \mathbb{R}/\mathbb{Z} est séparé puisque \mathbb{Z} est fermé dans \mathbb{R} . Soit $\pi:\mathbb{R}\to\mathbb{R}/\mathbb{Z}$ la surjection canonique : $\pi(x)=x+\mathbb{Z}$. En utilisant la partie entière d'un nombre réel, on obtient que $\pi(\mathbb{R})=q([0,1])$ ce qui implique que \mathbb{R}/\mathbb{Z} est compact. Considérons maintenant l'application $h:\mathbb{R}/\mathbb{Z}\to S^1$ définie par $h(\overline{x})=e^{i2\pi x}$. Il est clair que h est bijective et continue, donc c'est un homéomorphisme puisque \mathbb{R}/\mathbb{Z} est compact.
- 7. Soit F un fermé non vide de \mathbb{R}/\mathbb{Q} . Soit $x \in \pi^{-1}(F)$. Puisque $\pi(x) = q(x+r)$ pour tout $r \in \mathbb{Q}$, on obtient $x + \mathbb{Q} \subset \pi^{-1}(F)$. Maintenant, $\pi^{-1}(F)$ est un fermé de \mathbb{R} (par continuité de π) contenant $x + \mathbb{Q}$ qui est une partie dense de \mathbb{R} , ceci implique que $\pi^{-1}(F) = \mathbb{R}$ et parsuite $F = \mathbb{R}/\mathbb{Q}$. On a donc montré que la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière.

Exercice 6.2. Soit G un groupe topologique localement compact et H un sous-groupe fermé de G. On désigne par $p: G \to G/H$ la surjection canonique. Soit C un compact de G/H (pour la topologie quotient).

- 1. Montrer que l'image réciproque $p^{-1}(C)$ n'est pas toujours un compact de G (On donnera un exemple).
- 2. Montrer l'existence d'un nombre fini $U_1, ..., U_n$ d'ouverts de G dont les adhérences $\overline{U_1} \cup ... \cup \overline{U_n}$ sont compacts et tels que $C \subset p(U_1) \cup \cdots \cup p(U_n)$.
- 3. Montrer que $B = p^{-1}(C) \cap (\overline{U_1} \cup \cdots \cup \overline{U_n})$ est un compact de G et que p(B) = C.

Dans cette section G désigne un groupe de Lie d'algèbre de Lie $\mathcal G$ et H un sous-groupe fermé. L'espace homogène quotient G/H est l'ensemble des parties $\overline a=aH$ $(a\in G)$. La surjection canonique

$$\pi: G \to G/H$$
, $\pi(a) = \overline{a}$

6 ESPACES HOMOGÈNES 16

permet de munir G/H de la topologie quotient : $U \subset G/H$ est un ouvert si et seulement si $\pi^{-1}(U)$ est un ouvert de G. Si O est un ouvert de G, alors

$$\pi^{-1}(\pi(O)) = \bigcup_{b \in H} Ob,$$

c'est donc un ouvert de G. Ce qui montre que π est une application continue et ouverte. Il en résulte que l'espace topologique quotient G/H est à base dénombrable. En plus, puisque H est fermé, G/H est un espace séparé.

Théorème 6.1. Il existe une structure de variété différentiable sur G/H de dimension $\dim G - \dim H$ telle que

- 1. $\pi: G \to G/H$ est une submersion.
- 2. Il existe un recouvrement de G/H par des ouverts U_{α} avec des difféomorphismes

$$\psi_{\alpha}: U_{\alpha} \times H \to \pi^{-1}(U_{\alpha})$$

tels que

$$\pi(\psi_{\alpha}(x,b)) = x \quad \forall x \in U_{\alpha}, \ \forall b \in H$$

et

$$\psi_{\alpha}(x, b_1b_2) = \psi_{\alpha}(x, b_1)b_2 \quad \forall x \in U_{\alpha}, \ \forall b_1, b_2 \in H.$$

Démonstration. Rappelons de la démonstration du théorème du sous-groupe fermé, que si $\mathcal{M} \subset \mathrm{Lie}(G)$ est un sous-espace vectoriel supplémentaire de \mathcal{H} alors il existe $V_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} tel que l'application

$$\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp_G(V_{\mathcal{M}})H, \quad (v, b) \mapsto \exp_G(v)b,$$

est un difféomorphisme sur un ouvert O de G. Considérons alors l'application continue

$$\varphi_e = \pi \circ \exp : V_{\mathcal{M}} \to G/H.$$

Le diagramme suivant :

$$V_{\mathcal{M}} \times H \xrightarrow{\varphi} O$$

$$p_1 \downarrow \qquad \qquad \downarrow \pi$$

$$V_{\mathcal{M}} \xrightarrow{\varphi_e} G/H$$

commute. Nous allons montrer que φ_e est un homéomorphisme de $V_{\mathcal{M}}$ sur $\overline{O}=\pi(O)$ un ouvert de G/H. En effet, le diagramme montre que φ_e est ouverte (puisque π l'est), et que $\varphi_e(V_{\mathcal{M}})=\overline{O}$. Pour l'injectivité, soit $v_1,v_2\in V_{\mathcal{M}}$ tels que $\varphi_e(v_1)=\varphi_e(v_2)$. Il existe alors $b\in H$ tel que $\exp(v_1)=\exp(v_2)b$, ce qui signifie $\varphi(v_1,e)=\varphi(v_2,b)$. L'injectivité de φ donne $v_1=v_2$. Remarquons que

O=OH ce qui implique $\pi^{-1}(\overline{O})=O$. Nous construisons ensuite un atlas différentiable sur G/H indexé par les éléments de G. On définit d'abord une structure différentiable sur \overline{O} via l'homéomorphisme φ_e , qui devient alors un difféomorphisme. La commutativité du diagramme implique que la restriction de π à l'ouvert O est différentiable. Pour tout $a\in G$, on désigne par $\rho(a):G/H\to G/H$ l'homéomorphisme $\rho(a):xH\mapsto axH$, les ouverts $\overline{O}_a:=a.\overline{O}$ constituent un recouvrement de G/H. On définit

$$\varphi_a: V_{\mathcal{M}} \to \overline{O}_a, \quad \varphi_a = \rho(a) \circ \varphi_e$$

Il reste à vérifier maintenant que la famille :

$$\{\overline{O}_a, \varphi_a^{-1}\}$$

est effectivement un atlas différentiable sur G/H. Ce qui revient à montrer que pour un couple $a,b\in G$ tel que $\overline{O}_a\cap \overline{O}_b\neq \emptyset$, alors l'application

$$\varphi_{ba} = \varphi_b^{-1} \circ \varphi_a \colon \varphi_a^{-1}(\overline{O}_a \cap \overline{O}_b) \to \varphi_b^{-1}(\overline{O}_a \cap \overline{O}_b)$$

est différentiable. Ceci découle du fait qu'on

$$\varphi_{ba} = \varphi_e^{-1} \circ \pi \circ l_{h^{-1}a} \circ \exp = p_1 \circ \varphi^{-1} \circ l_{h^{-1}a} \circ \exp.$$

Nous venons donc d'établir la structure différentiable de G/H. De la commutativité du diagramme ci-dessus et de la nature des cartes locaux de G/H, on obtient que $\pi: G \to G/H$ est une submersion. Ce qui achève la démonstration de 1. Pour 2, il suffit de considérer le recouvrement de G/H par les ouverts \overline{O}_a et les difféomorphismes

$$\psi_a: \overline{O}_a \times H \to \pi^{-1}(\overline{O}_a) = a.O, \quad \psi_a = l_a \circ \varphi \circ (\varphi_a^{-1} \times id_H)$$

Explicitement : $\psi_a(x, b) = a\varphi(\varphi_a^{-1}(x), b)$ pour tout $(x, b) \in \overline{O}_a \times H$. On a

$$\pi(\psi_a(x,b)) = \rho(a) \circ \pi \circ \varphi(\varphi_a^{-1}(x),b) = \rho(a) \circ \varphi_e(\varphi_a^{-1}(x)) = x.$$

Remarque 6.1. (Quelques conséquences du théorème)

1. La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications C^{∞} :

$$\sigma_a \colon \overline{\mathcal{O}}_a \to G$$

tels que $\pi \circ \sigma_a = id$

- 2. Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .
- 3. Pour tout $a \in G$, L'application $\rho(a) : \overline{g} \mapsto \overline{ag}$ est un difféomorphisme de G/H, avec en plus $\rho(ab) = \rho(a) \circ \rho(b)$ et l'application

$$G \times G/H \to G/H$$
, $(a, \overline{g}) \mapsto \rho(a)(\overline{g})$

est C^{∞} . C'est l'action homogène canonique de G sur G/H.

П

4. L'application linéaire tangente $T_e\pi: \mathcal{G} \to T_{\overline{e}}(G/H)$ induit un isomorphisme linéaire :

$$\mathscr{G}/\mathscr{H} \xrightarrow{\cong} T_{\overline{e}}(G/H)$$

5. Si J est un sous-groupe distingué et fermé de G, on obtient une structure de groupe de Lie sur G/J d'algèbre de Lie isomorphe à l'algèbre de Lie quotient G/J (puisqu'alors J devient un idéal de G). En particulier, si Γ est un sous-groupe distingué discret de G, on a un isomorphisme

$$\mathscr{G} \xrightarrow{\cong} Lie(G/\Gamma).$$

6. $Si \psi : G_1 \rightarrow G_2$ est un homomorphisme de groupes de Lie surjectif, alors par passage au quotient on obtient un isomorphisme de groupes de Lie :

$$\overline{\psi}: G_1/J \stackrel{\cong}{\longrightarrow} G_2 \quad avec \ J = \ker \psi.$$

Et dans le cas où $T_e\psi$ est bijective, $\ker\psi$ est un sous-groupe distingué discret : l'appliation $\psi:G_1\to G_2$ est alors un revêtement de groupes de Lie.

7 Actions de groupes de Lie

Soit M une variété différentiable, $\mathrm{Diff}(M)$ le groupe des C^{∞} -difféomorphismes.

Définition 7.1. *Une action de* G *sur* M *est un homomorphisme de groupes* $\rho : G \to \text{Diff}(M)$. *Autrement dit, pour tout* $g \in G$, $\rho(g) : M \to M$ *est un difféomorphisme tel que*

$$\rho(g_1g_2) = \rho(g_1) \circ \rho(g_2)$$

L'action ρ de G sur M est C^{∞} si l'application évaluation :

$$G \times M \to M$$
, $(g, m) \to \rho(g)(m)$

est C^{∞} . On note $\rho(g)(m)$ par $g \cdot m$. On dira que g agit ou opère sur M.

Remarque 7.1. *Ce que nous venons de définir est une action à gauche. On peut définir une action à droite comme étant un anti-homomorphisme* $\hat{\rho}: G \to \mathrm{Diff}(M)$, *ce qui se traduit par :*

$$\hat{\rho}(g_1g_2) = \hat{\rho}(g_2) \circ \hat{\rho}(g_1)$$

Par composition avec l'inversion du groupe $g \mapsto g^{-1}$, on peut passer d'une action à droite à une action à gauche et réciproquement.

Exemple 7.1.

- Tout groupe sous-groupe de $GL(\mathbb{R}^n)$ opère sur \mathbb{R}^n par des transformations linéaires.
- Le groupe des rotations SO(n+1) opère sur la sphère S^n .
- La donnée d'un champ de vecteurs sur une variété compacte équivaut à la donnée d'une action (différentiable) de IR sur M.

19

- Tout groupe de Lie G opère sur lui même à gauche, à droite et par conjugaison $(g, x) \mapsto gxg^{-1}$.
- Si H est un sous-groupe fermé de G, alors l'action homogène de G sur G/H est l'action différentiable : $(g, aH) \mapsto gaH$.

Définition 7.2. (Orbites et groupes d'isotropies) Soit $\varphi : G \times M \longrightarrow M$ une action différentiable d'un groupe de Lie G sur une variété différentiable M.

1. Pour tout $m \in M$, l'orbite de l'action en m est le sous-ensemble de M:

$$G \cdot m := \{g \cdot m \mid g \in G\}$$

2. Le groupe d'isotropie en m est :

$$G_m := \{ g \in G / g.x = x \}$$

C'est un sous-groupe de G.

Exemple 7.2. Les rotations autour de l'axe des z engendrent une action du cercle S^1 sur la sphère S^2 . Les orbites sont des points ou des cercles.

Exemple 7.3. Considérons l'action adjointe du groupe unitaire G = U(n) sur l'algèbre de Lie $\mathcal{G} = u(n)$ des matrices anti-hermitiennes. Toute orbite rencontre Σ l'ensemble des matrices diagonales $Diag(\alpha_1, \dots, \alpha_n)$ avec $\alpha_k \in i\mathbb{R}$. Si par exemple m désigne une matrice diagonale où toutes les valeurs propres sont distinctes, alors on peut montrer que le groupe d'isotropie G_m s'identifie à $(S^1)^n$ et donc l'orbite de m s'identifie au quotient $U(n)/(S^1)^n$.

Pour tout $m \in M$, l'application évaluation $g \mapsto g \cdot m$ induit une bijection de G/G_m sur l'orbite $G \cdot m$.

Définition 7.3. (L'espace des orbites) Soit $\rho: G \hookrightarrow \mathrm{Diff}(M)$ une action. Pour $m, m' \in M$, la relation d'appartenance à la même orbite est une relation d'équivalence dont les classes d'équivalences sont les orbites $G \cdot m$. L'espace des orbites M/G est l'ensemble

$$M/G := \{G \cdot m \mid m \in M\}$$

La surjection canonique

$$\pi: M \to M/G$$
, $m \mapsto G \cdot m$

permet de munir M/G de la topologie quotient. L'action sera dite **transitive** s'il n'y a qu'une seule orbite, le quotient M/G est un point.

Exercice 7.1. Le groupe des rotations SO(n+1) opère naturellement sur la sphère $S^n:(A, v) \mapsto Av$. Montrer que cette action est transitive.

Une action ρ : $G \hookrightarrow \text{Diff}(M)$ est dite :

- **libre** si $G_m = e$ pour tout $m \in M$.
- **effective** si l'homomorphisme de l'action $G \to \text{Diff}(M)$ est injectif, ce qui signifie $\bigcap_{m \in M} G_m = e$.

20

Théorème 7.1. Soit G un groupe topologique localement compact et $\rho: G \hookrightarrow \mathrm{Diff}(M)$ une action effective. Alors G est un groupe de Lie et l'action sur M est différentiable.

Exemple 7.4. Soit α un nombre irrationnel et considérons l'action de \mathbb{R} sur le tore $S^1 \times S^1$ donnée par $t \cdot (e^{i\theta_1}, e^{i\theta_1}) = (e^{i(t+\theta_1)}, e^{i(\alpha t+\theta_2)})$. Les orbites sont denses et l'espace des orbites n'est pas séparé.

Exercice 7.2. Soit G un groupe de Lie et H et K deux sous-groupes fermés de G. Déterminer les groupes d'isotropie de l'action homogène naturelle de K sur G/H? Quelle est la condition pour que cette action soit effective?

7.1 Orbites comme sous-variétés

Soit $\rho: G \hookrightarrow \mathrm{Diff}(M)$ une action différentiable et $m \in M$. L'application évaluation

$$\rho_m$$
: $G \rightarrow M$, $\rho_m(g) = g \cdot m$

est différentiable (comme composé des application $g \mapsto (g, m)$ et $(g, m) \mapsto g \cdot m$).

Théorème 7.2.

- 1. Le groupe d'isotropie G_m est un sous-groupe de Lie de G d'algèbre de Lie \mathscr{G}_m = ker $T_e \rho_m$.
- 2. L'orbite G·m est une sous-variété immergé.
- 3. Si l'action est transitive, l'application $gG_m \mapsto g.m$ est un difféomorphisme G-équivariant de l'espace homogène G/G_m sur M.

Démonstration.

1. Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann). Son algèbre de Lie $Lie(G_m)$ s'identifie alors à la sous-algèbre de Lie

$$\mathcal{G}_m := \{u \in \mathcal{G} / \exp_G(tu) \cdot m = m, \text{ pour tout } t \in \mathbb{R}\}$$

Il en résulte que pour tout $u \in \mathcal{G}_m$, $\rho_m(\exp_G(tu)) = m$; en dérivant en t = 0, on obtient $T_e\rho_m(u) = 0$. On a ainsi montré l'inclusion $\mathcal{G}_m \subset \ker T_e\varphi_m$. Réciproquement, soit $u \in \ker T_e\rho_m$. La courbe $\beta : \mathbb{R} \to M$ donnée par $\beta(t) = \exp_G(tu) \cdot m$, satisfait :

$$\beta'(t) = T_m l_{\exp(tu)} \circ T_e \rho_m(u) = T_m l_{\exp(tu)}(0) = 0, \quad \forall t \in \mathbb{R}$$

Il en résulte que $\exp_G(tu) \cdot m = m$ pour tout $t \in \mathbb{R}$. D'où $u \in \mathcal{G}_m$.

2. L'application $\rho_m: G \to M$ se factorise en une application différentiable :

$$\overline{\rho_m}$$
: $G/G_m \longrightarrow M$, telle que $\overline{\rho_m} \circ \pi = \rho_m$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a \cdot m}M, \quad \overline{a} \in G/G_m$$

sont injectives. Puisque l'action homogène de G sur G/G_m est transitive et que l'application $\overline{\rho_m}$ est G-équivariante, il suffit de le montrer pour le cas $\overline{a}=\overline{e}$. Soit alors $v\in T_{\overline{e}}(G/G_m)$ tel que $T_{\overline{e}}\overline{\rho_m}(v)=0$, par surjectivité de $T_e\pi$ on peut choisir $u\in \mathcal{G}$ tel que $T_e\pi(u)=v$. Il en résulte que $T_{\overline{e}}\overline{\rho_m}\circ T_e\pi(u)=0$, donc $T_e\rho_m(u)=0$. Et parsuite $u\in \ker T_e\rho_m=\mathcal{G}_m$ et $v=T_e\pi(u)=0$.

3. L'action étant transitive, l'application différentiable $\overline{\rho_m}: G/G_m \to M$ alors une immersion bijective. C'est alors un difféomorphisme. En effet, d'après le théorème de Sard, il existe un point $\overline{a} \in G/G_m$ tel que

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a \cdot m}M$$

est surjective, donc $\dim M = \dim(G/G_m)$ et parsuite tous les applications $T_{\overline{a}}\overline{\rho_m}$ sont des isomorphismes; le théorème d'inversion locale permet alors de conclure que $\overline{\rho_m}$ est un difféomorphisme.

Remarque 7.2. Soit $\rho: G \hookrightarrow \mathrm{Diff}(M)$ une action différentiable et $m \in M$. Soit $f: N \to G \cdot m$ une application. On peut alors montrer l'équivalence (voir [7] page 117 Theorem I) que f est C^{∞} si et seulement $si \iota \circ f: N \to M$ est C^{∞} (avec $\iota : G \cdot m \hookrightarrow M$ l'injection canonique).

7.2 Actions transitives

Définition 7.4. Soit M une variété différentiable et G un groupe de Lie. On dira que M est une variété G-homogène s'il exite une action différentiable transitive de G sur M.

C'est par exemple le cas des actions homogènes d'un groupe de Lie G sur un espace homogène G/H. Réciproquement, nous avons vu auparavant (3. du théorème7.2) que si M est une G-variété homogène, alors il existe un difféomorphisme G-équivariant d'un espace homogène G/H sur M. Nous allons donner des exemples d'illustration.

Exemple 7.5.

1. L'action naturelle du groupe de Lie SO(n+1) sur la sphère S^n est transitive (grace au procédé d'orthonormalisation de Gram-Schmidt), le groupe d'isotropie en $e_{n+1} := (0, \dots, 0, 1)$ s'identifie à SO(n). Il en résulte un difféomorphisme SO(n+1)-équivariant

$$SO(n+1)/SO(n) \cong S^n$$
.

2. Pour tout $n \in \mathbb{N}$, la sphère de dimension S^{2n+1} s'identifie à l'ensemble des veteurs complexes (z_1, \cdots, z_{n+1}) tels que $|z_1|^2 + \cdots + |z_{n+1}|^2 = 1$ (i.e. la phère unité de l'espace hermitien \mathbb{C}^n). Comme l'exemple précédent, L'action naturelle naturelle du groupe unitaire $\mathrm{U}(n+1)$ sur S^{2n+1} est transitive et le groupe d'isotropie en $e_{n+1} := (0, \cdots, 0, 1)$ s'identifie à $\mathrm{U}(n)$. Il en résulte un difféomorphisme $\mathrm{U}(n+1)$ -équivariant

$$U(n+1)/U(n) \cong S^{2n+1}.$$

3. Désignons par S(n) l'espace des matrices carrées $n \times n$ qui sont symétriques $(B = B^{\top})$ matrice transposée). Le groupe $GL^+(n,\mathbb{R})$ des matrices carrées $n \times n$ de déterminant positif est un groupe de Lie connexe opérant sur S(n) via l'application : $g.B := gBg^{\top}$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action :

$$GL^{+}(n, \mathbb{R}) \times S^{+}(n) \to S^{+}(n), \quad g.B := gBg^{\top}$$

est transitive (pourquoi?) (le groupe d'isotropie en I_n , la matrice identité, n'est autre que le groupe spécial orthogonal SO(n)). On obtient :

$$GL^+(n, \mathbb{R})/SO(n) \cong S^+(n)$$

4. Le groupe SL(2, IR) opère transitivement sur le demi-plan de Poincaré IH:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}$$

et le groupe d'isotropie en i est SO(2) (montrer le), on obtient un difféomorphisme :

$$SL(2, \mathbb{R})/SO(2) \cong \mathbb{H}$$
.

Remarque 7.3. Un autre aspect important concernant les actions transitives, est de pouvoir transmettre une structure différentiable d'espace homogène à tout ensemble munie d'une action transitive d'un groupe de Lie. C'est la proposition suivante.

Définition 7.5. Soit X un ensemble et S(X) l'ensemble des bijections de X. Une action d'un groupe G sur X est un homomorphisme de groupes $\rho: G \to S(X)$. L'action sera dite transitive si pour tous $x_1, x_2 \in X$ il existe $g \in G$ tel que $x_2 = \rho(g)(x_1)$. Le groupe d'isotropie en un point $x \in X$ est le sousgroupe $G_x := \{g \in G/\rho(g)(x) = x\}$.

Proposition 7.1. Soit X un ensemble et soit $\rho: G \to S(X)$ une action transitive d'un groupe de Lie G sur X tel que le groupe d'isotropie en un point x_0 soit un fermé de G. Alors il existe une une unique structure de variété différentiable sur X telle que ρ devient une action différentiable, X est ainsi une variété G-homogène.

Démonstration. Soit H le groupe d'isotropie en x_0 . Puisque H est un sous-groupe fermé de G, le quotient G/H est alors muni de sa structure différentiable d'espace homogène. L'application :

$$\varphi: G/H \to X$$
, $gH \mapsto \rho(g)(x_0)$

est bien définie et c'est une bijection G-équivariante. On peut alorsmunir l'ensemble X d'une topologie et d'une structure de variété différentiable telle que φ devient un difféomorphisme. L'application

$$G \times X \to X$$
, $(g, x) \mapsto \rho(g)(x)$

est alors différentiable puisqu'on peut écrire $\rho(g)(x) = \varphi(g \cdot \varphi^{-1}(x))$. L'unicité de la structure différentiable sur X découle du théorème de caractérisation de la structure homogène sur G/H.

Nous allons maintenant donner des exemples d'illustration.

Exemple 7.6.

1. (Grassmann Manifolds) Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Grassmann G(n,k) est l'ensemble des sous-espaces vectoriels réels de dimensions k de \mathbb{R}^n . Le groupe O(n) opère transitivement sur G(n,k), ce qui permet d'obtenir une bijection O(n)-équivariante :

$$G(n,k) \cong O(n)/O(k) \times O(n-k) \cong SO(n)/S(O(k) \times O(n-k)).$$

On munit alors G(n,k) de la structure de variété différentiable telle que cette bijection devient un difféomorphisme. En particulier l'espace projectif réel $\mathbb{R}P^n \cong SO(n+1)/S(O(n) \times O(1))$. De même, on définit $G_{\mathbb{C}}(n,k)$ en concidérant les sous-espaces vectoriels complexes de \mathbb{C}^n . On obtient :

$$G_{\mathbb{C}}(n,k) \cong \mathrm{U}(n)/\mathrm{U}(k) \times \mathrm{U}(n-k) \cong \mathrm{SU}(n)/\mathrm{S}(\mathrm{U}(k) \times \mathrm{U}(n-k)).$$

et le cas particulier de l'espace projectif complexe $\mathbb{C}P^n \cong \mathrm{SU}(n+1)/\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(1))$.

2. (Stiefel Manifolds) Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Stiefel V(n, k) est l'ensemble des k-repères orthonormés (u_1, \ldots, u_k) de \mathbb{R}^n . Encore ici le groupe O(n) opère transitivement sur V(n, k), ce qui permet d'obtenir une bijection O(n)-équivariante :

$$O(n)/O(n-k) \stackrel{\cong}{\to} V(n,k)$$

On munit alors V(n, k) de la structure de variété différentiable telle que cette bijection devient un difféomorphisme.

3. ((Complex full) Flag Manifolds) Un drapeau de \mathbb{C}^n est une suite finie croissante de sousespaces vectoriels

$$x = \{V_1 \subset V_2 \subset \cdots \subset V_n\}$$

avec dim $V_j = j$ pour tout j = 1,...,n. Soit F_n l'ensemble de tous ces drapeaux. Le groupe $GL(n, \mathbb{C})$ (identifié au transformations complexes de \mathbb{C}^n) opère sur F_n par $g \cdot x = \{g(V_1) \subset V_2 \subset \cdots \subset g(V_n)\}$. Cette action est transitive. En effet, pour toute famille comme ci-dessus on peut trouver une application \mathbb{C} -linéaire $g : \mathbb{C}^n \to \mathbb{C}^n$ telle que

$$g(\text{vect}_{\mathbb{C}}(e_1,\cdots,e_j)=V_j$$

où $e_1, ..., e_n$ est la base canonique de \mathbb{C}^n ; cela signifie que si on désigne par x_0 le drapeau canonique

$$x_0 = \{ \operatorname{vect}_{\Gamma}(e_1) \subset \operatorname{vect}_{\Gamma}(e_1, e_2) \subset \cdots \subset \operatorname{vect}_{\Gamma}(e_1, \cdots, e_n) \},$$

alors $g \cdot x_0 = x$. En plus, on remarque que si l'on revient à la nature de g, alors celle-ci pourrait être choisie telle que la famille $g(e_1), \ldots, g(e_n)$ soit une base orthonormée, il en résulte que l'action induite du groupe unitaire U(n) est aussi une action transitive. Ce qui permet d'établir:

$$F_n \cong \operatorname{GL}(n, \mathbb{C})/\operatorname{B}_n \cong \operatorname{U}(n)/\mathbb{T}^n$$

où B_n le groupe des matrices triangulaires supérieurs à cefficients complexes et \mathbb{T}^n le groupe des matrices $\operatorname{Diag}(z_1, \dots, z_n)$ avec z_j des nombres complexes de modules 1.

4. (Variété des structures complexes de \mathbb{R}^{2n}) L'ensemble des structures complexes de \mathbb{R}^{2n} peut être défini par :

$$M = \{Q \in GL(2n, \mathbb{R}) / Q^2 = -I_{2n}\}.$$

Le groupe $\operatorname{GL}(2n,\mathbb{R})$ opère par conjuguaison sur $M:g\cdot Q=gQg^{-1}$. On peut montrer que tout matrice $Q\in M$ est semblable à la matrice $J_n=\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$. En effet, il suffit d'interpréter Q comme étant un endomorphisme de C^{2n} , qui est alors diagonalisble puisqu'il admet comme polynôme annulateur le polynôme $P(X)=X^2+1$ qui est à racine simples. Et puisque Q est à coefficients réelles, on obtient que "V est un vecteur propre associé à la valeur propre V0 est un vecteur propre associé à la valeur propre V1. Ce qui permet de construire une base

$$(W_1,\ldots,W_n,\overline{W_1},\ldots,\overline{W_n})$$

 $\frac{de}{W_1,...,W_n}$ une base du sous-espace propre associé à la valeur propre i et $\overline{W_1,...,W_n}$ une base du sous-espace propre associé à la valeur propre -i. Ces vecteurs permettent de construire une base de \mathbb{R}^{2n} : $\mathcal{B} := (U_1,...,U_n,V_1,...,V_n)$, où

$$U_j = \frac{W_j + \overline{W_j}}{2}, \quad V_j = \frac{W_j - \overline{W_j}}{2i}.$$

La matrice dans la base $\mathcal B$ de Q en tant qu'endomorphisme du $\mathbb R$ -espace vectoriel $\mathbb R^{2n}$ est de la forme

$$\left(\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array}\right)$$

Nous venons donc de montrer que l'action de $GL(2n,\mathbb{R})$ sur M est transitive. En plus, il est facile de vérifier que le groupe d'isotropie au point $J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, s'identifie au sous-groupe de $GL(2n,\mathbb{R})$ des matrices de la forme

$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$
, $avec A, B \in GL(n, \mathbb{R})$

et qui s'identifie alors à $GL(n, \mathbb{C})$. Ce qui permet d'aboutir à :

$$M \cong GL(2n, \mathbb{R})/GL(n, \mathbb{C}).$$

7.3 Champs fondamentaux

Soit $\rho: G \hookrightarrow \mathrm{Diff}(M)$ une action différentiable. Pour tout vecteur $h \in \mathcal{G}$, l'application de $\mathrm{IR} \times M \to M$ donnée par :

$$(t,m)\mapsto (\exp_G(-th))\cdot m.$$

est une action différentiable de IR sur M. C'est donc le flot d'un champ de vecteur complet sur M, on le note X^h . On l'applele le champ de vecteurs fondamental associé à h. Pour tout $m \in M$, on a :

$$X_m^h = \frac{d}{dt}\Big|_{t=0} (\exp_G(-th)) \cdot m$$

Exercice 7.3. Pour l'action naturelle de SO(3) sur la sphère S^2 , déterminer les champs de vecteurs fondamentaux.

Exemple 7.7. Considérons l'action

$$\rho: GL^+(n, \mathbb{R}) \hookrightarrow Diff(S^+(n)), \quad g.B := gBg^\top$$

L'algèbre de Lie de $GL^+(n,\mathbb{R})$ est l'algèbre de Lie usuelle $M(n,\mathbb{R})$. Pour $H \in M(n,\mathbb{R})$, le champ de vecteurs X^H est la restriction à $S^+(n)$ du champ de vecteurs défini sur S(n) par l'endomorphisme : $X^H(B) := -HB - BH^\top$.

Proposition 7.2. *Soit* ρ : $G \longrightarrow \text{Diff}(M)$ *une action différentiable, m* \in M. *Alors* :

1. L'espace tangent à l'orbite $G \cdot m$ en m est

$$T_m(G \cdot m) = \{X_m^h / h \in \mathcal{G}\}$$

2. L'algèbre de Lie \mathcal{G}_m du groupe d'isotropie est

$$\mathcal{G}_m = \{h \in \mathcal{G} / \ X_m^h = 0\}$$

3. L'application

$$\rho': \mathcal{G} \to \mathcal{V}(M), \quad \rho'(h) = X^h$$

est un homomorphisme d'algèbres de Lie de G vers l'algèbre de Lie des champs de vecteurs sur M.

Démonstration. On utilise à nouveau l'application évaluation $\rho_m: G \to M$ Nous avons vu lors de la démonstration du théorème 7.2 que $T_m(G \cdot m) = \operatorname{Im}(T_e(\rho_m))$ et $\mathcal{G}_m = \ker T_e(\rho_m)$. Les deux assertions 1. et 2. découlent alors du fait que $T_e(\rho_m)(h)$ pour tout $h \in \mathcal{G}$. Pour montrer 3., considérons l'application

$$\varphi^m: G \to M, \quad \varphi^m(a) = a^{-1} \cdot m.$$

On a $\varphi^m(ab) = \varphi^{a^{-1} \cdot m}(b)$, ce qui se traduit par $\varphi^m \circ l_a = \varphi^{a^{-1} \cdot m}$. On considère ensuite Z^h le champ de vecteurs invariant à gauche sur G tel que $Z_e^h = h$ et on montre que Z^h est relié à X^h via l'application φ^m (Les détails sont laissés à titre d'exercice), ce qui permet de conclure.

8 Structure invariante sur des variétés homogènes

Soit G un groupe de Lie. Nous avons vu auparavant qu'ne action différentiable transitive de G est équivalente à l'action homogène de G sur un espace homogène G/H où H est un sous-groupe fermé de G. Nous allons étudier dans cette section le problème d'existence d'une métrique riemannienne sur une G-variété homogène M telle que l'action de G se fait par des isométries. Nous allons voir que cette question se ramène à un problème algèbrique, à savoir la nature d'une représentation du groupe H dans un espace de dimension finie (la représentation d'isotropie).

8.1 La représentation d'isotropie

Soit G un groupe de Lie, H un sous-groupe fermé de G et $\pi:G\to G/H$ la projection canonique. Nous avons vu que l'application linéaire tangente $T_e\pi:\mathcal{G}\to T_{\overline{e}}(G/H)$ induit un isomorphisme linéaire :

$$I: \mathcal{G}/\mathcal{H} \xrightarrow{\cong} T_{\overline{e}}(G/H), \quad X + \mathcal{H} \mapsto T_{\overline{e}}\pi(X) = \frac{d}{dt}|_{t=0} (\exp_G(tX))H$$

Pour tout élément $a \in H$, le difféomorphisme

$$\rho(a): G/ \to G/H, \quad xH \mapsto axH$$

fixe le point $\overline{e} = H$, il en résulte l'existence d'un isomorphisme linéaire

$$T_{\overline{e}}\rho(a): T_{\overline{e}}(G/H) \mapsto T_{\overline{e}}(G/H).$$

Définition 8.1. (*La représentation d'isotropie*) La représentation d'isotropie du G-espace homogène G/H est la représentation du groupe :

$$Ad^{G/H}: H \to GL(T_{\overline{e}}(G/H)), \qquad Ad^{G/H}(a) = T_{\overline{e}}(\rho(a))$$

Lemme 8.1. Pour tout $a \in H$, on a le diagramme commutatif suivant :

$$T_{\overline{e}}(G/H) \xrightarrow{\operatorname{Ad}_{a}^{G/H}} T_{\overline{e}}(G/H)$$

$$\downarrow I \qquad \qquad \downarrow I$$

$$\mathscr{G}/\mathscr{H} \xrightarrow{\operatorname{Ad}_{a}} \mathscr{G}/\mathscr{H}$$

avec

$$\overline{\mathrm{Ad}}_a(X+\mathscr{H}) = \mathrm{Ad}_a(X) + \mathscr{H}.$$

Autrement dit, via l'isomorphisme I, la représentation d'isotropie est équivalente à la représentation :

$$\overline{\mathrm{Ad}}: H \to \mathrm{GL}(\mathcal{G}/\mathcal{H}), \quad a \mapsto \overline{\mathrm{Ad}}_a.$$

Démonstration. Soit $a \in H$ et $X \in \mathcal{G}$. Il s'agit de montrer que $\mathrm{Ad}^{G/H}(a)(T_e\pi(X)) = T_e\pi(\mathrm{Ad}_a(X))$? D'après la définition de $\mathrm{Ad}^{G/H}(a)$ on a :

$$\operatorname{Ad}^{G/H}(a)(T_e\pi(X)) = T_{\overline{e}}\rho(a) \circ T_e\pi(X) = T_e(\rho(a) \circ \pi)(X)$$

Et puisque $\rho(a) \circ \pi = \pi \circ l_a$ avec l_a la translation à gauche du groupe G, on obtient

$$\begin{aligned} \operatorname{Ad}_{a}^{G/H}(T_{e}\pi(X)) &= T_{e}(\pi \circ l_{a})(X) \\ &= T_{a}\pi(T_{e}l_{a}(X)) \\ &= \frac{d}{dt}_{|_{t=0}} a \exp_{G}(tX)H \\ &= \frac{d}{dt}_{|_{t=0}} a \exp_{G}(tX)a^{-1}H \\ &= T_{e}\pi(\operatorname{Ad}_{a}(X)) \end{aligned}$$

Définition 8.2. (Espaces homogènes réductifs) Un G-espace homogène G/H est dit réductif s'il existe un sous-espace vectoriel $\mathcal{M} \subset \mathcal{G}$ supplémentaire de \mathcal{H} et stable par la représentation adjointe de H i.e.

$$\mathscr{G} = \mathscr{H} \oplus \mathscr{M} \quad et \operatorname{Ad}_{a}(\mathscr{M}) \subset \mathscr{M} \quad \forall a \in H.$$

Exercice 8.1. Prenons G = SO(n+1) et H le sous-groupe des matrices $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ identifié à SO(n). L'algèbre de Lie des matrices antisymétriques so(+1) s'identifie à $\mathcal G$ et la sous-algèbre de Lie des matrices $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ avec $(A^t = -A)$ s'identifie à $\mathcal H$. Soit $\mathcal M = \text{vect}\{e_1, \dots, e_n\}$ avec $e_i = E_{in} - E_{ni}$ où E_{ij} désigne la matrice canonique avec comme seul coefficient non nul celui de la ième ligne et la jème colonne qui vaut 1.

Monter que

- 1. $so(n+1) = so(n) \oplus \mathcal{M}$.
- 2. Montrer que pour tous $A \in SO(n)$ et $X := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, on a: $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & X \\ -X^t & 0 \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & AX \\ -(AX)^t & 0 \end{pmatrix}$
- 3. En déduire que l'isomorphisme canonique

$$f: \mathbb{R}^n \xrightarrow{\cong} \mathcal{M}, \quad X := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} 0 & X \\ -X^t & 0 \end{pmatrix}$$

est SO(n)-équivariant i.e. $f(AX) = Ad_A(f(X))$.

Remarque 8.1.

- 1. Si H est connexe, la condition $\operatorname{Ad}_a(\mathcal{M}) \subset \mathcal{M}$ est équivalente à $[X,Y] \in \mathcal{M}$ pour tous $X \in \mathcal{H}$ et $Y \in \mathcal{M}$. (voir exercice 5.2)
- 2. Si H est compact, alors G/H est réductif. En effet, on rappelle (Intégrale de Haar) l'existence d'une unique fonctionnelle μ de l'espace $C^0(H)$ des applications continues sur H vers $\mathbb R$:

$$\mu: C^0(H) \to \mathbb{R}, \quad \mu(\varphi) = \int_H \varphi(a) da$$

satisfaisant aux propriétés

- $-\mu(1) = 1$,
- μ est positive et linéaire.
- μ est invariante:

$$\forall a \in H$$
, $\mu(\varphi \circ l_a) = \mu(\varphi \circ r_a) = \mu(\varphi)$.

Partant d'un produit scalaire quelconque <, > sur l'espace vectoriel \mathcal{G} , on pose :

$$\ll u, v \gg = \int_{H} < \mathrm{Ad}_{a}(u), \mathrm{Ad}_{a}(v) > da, \quad \forall u, v \in \mathcal{G}$$

on obtient ainsi un nouveau produit scalaire sur \mathcal{G} qui est en plus Ad(H)-invariant. Donc pour tout $a \in H$, Ad_a est une isométrie de \mathcal{G} . Le sous-espace $\mathcal{M} := \mathcal{H}^{\perp}$ est alors stable par la représentation adjointe.

Proposition 8.1. Si G/H est réductif, alors la représentation d'isotropie $Ad^{G/H}$ est équivalente à la représentation adjointe induite de H dans \mathcal{M} :

$$H \to GL(\mathcal{M}), \quad a \mapsto Ad_{a|_{\mathcal{M}}}.$$

Exemple 8.1. Posons $S^n = SO(n+1)/SO(n)$. La représentation d'isotropie est équivalente à la représentation canonique $SO(n) \rightarrow GL(\mathbb{R}^n)$ (cf. 8.1).

8.2 Métriques riemanniennes invariantes

Définition 8.3. Soit M une variété différentiable. Une métrique riemanniene g sur M est la donnée en tout point $x \in M$ d'un produit scalaire g_x sur l'espace tangent T_xM tel que pour tout couple de champs de vecteurs $X, Y \in \chi(M)$, l'application

$$g(X,Y): M \to \mathbb{R}$$
, $g(X,Y)(x) := g_x(X_x,Y_x)$

est différentiable. On dit alors que (M, g) est une variété riemannienne.

Exemple 8.2.

- 1. Soit (M,g) une variété riemannienne et $N \hookrightarrow M$ une sous-variété immergée dans M. Il est alors possible de munir N d'une métrique induite $g_N := i^*g$ en posant : $g_N(X_x, Y_x) = g(i_*X_x, i_*Y_x)$, où $i_* : T_xN \hookrightarrow T_xM$ est la différentielle de l'application i en x.
- 2. Sur le \mathbb{R} -espace vectoriel $M_n(\mathbb{C})$ on peut mettre le produit scalaire usuel : $\langle A, B \rangle = Re(\operatorname{tr}(\overline{A}^t B))$. Ce qui permet de définir une métrique riemannienne sur $M_n(\mathbb{C})$ et parsuite sur tout groupe de matrice.

Remarque 8.2.

- 1. Par application du théorème de plongement de Whitney ou en utilisant un argument de partition de l'unité, on montre que sur toute variété différentiable, il existe toujours des métriques riemanniennes.
- 2. On peut se demander s'il est toujours possible de plonger isométriquement une variété riemannienne (M,g) dans (\mathbb{R}^n,g_n) (pour n assez grand)? La réponse est oui : c'est un résultat connu sous le nom du théorème de John Nash (cf. "The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63". Voir aussi "M. Gromov and I. Rokhlin, Embeddings and immersions in Riemannian geometry, Russian Math. Surveys 25 (1970),1-57." Pour une démonstration plus récente, on peut consulter le papier "Matthias Gunther, On the perturbation problem associated to isometric embeddings of Riemannian manifolds, Annals of Global Analysis and geometry 7 (1989), 69-77."

3. On dira que (M,g) est une variété pseudo-riemannienne de type (p,q) si dans la définition initiale on n'exige pas que les g_x soient des produits scalaires mais qu'elles soient toutes des formes bilinéaires symétriques de signature (p,q); on dira que (M,g) est Lorentzienne si p=n-1 et q=1 (n étant la dimension de M). Contrairement au variétés riemanniennes, une métrique pseudo-riemannienne n'existe pas toujours! (Il y a en effet des obstructions topologiques à une telle structure, ceci est lié à la réduction du groupe structural du fibré des repères de M à un produit $O(p) \times O(q)$. C'est ainsi par par exemple que l'existence d'une métrique Lorentzienne sur une variété M implique la nullité de la classe d'Euler; il en découle alors qu'il n'existe pas de métrique de type (1,1) sur la sphère S^2 .)

Définition 8.4. Soit (M,g) une variété riemannienne. On dira qu'un difféomorphisme $\varphi: M \to M$ est une isométrie si pour tout $x \in M$, l'application linéaire tangente $T_x \varphi: T_x M \to T_{\varphi(x)} M$ est une isométrie linéaire i.e.

$$g_{\varphi(x)}(T_x\varphi(X_x), T_x\varphi(Y_x)) = g_x(X_x, Y_x), \quad \forall X_x, Y_x \in T_xM.$$

Exemple 8.3. Soit $\varphi: (M,g) \stackrel{\cong}{\to} (M,g)$ une isométrie, et soit $N \hookrightarrow M$ une sous-variété stable par φ (i.e. $\varphi(N) = N$). Alors la restriction φ_N de φ à N est une isométrie de N munie de sa métrique induite. Par exemple, pour toute matrice orthogonale $A \in O(n+1)$, l'application

$$\varphi_A: S^n \to S^n, \quad \varphi_A(x) = Ax$$

est une isométrie de la sphère S^n .

Remarque 8.3. (Groupe des isométries) Pour toute variété riemannienne (M,g), l'ensemble des isométries $\varphi:(M,g)\to (M,g)$ est un sous-groupe du groupe des difféomorphisme. On le note Isom(M,g) et on l'appelle le groupe des isométries de (M,g). C'est un groupe de Lie opérant différentiablement sur M (c'est un résultat due à Myers-Steenrod vers 1936, voir par exemple le livre de S. Kobayashi "Transformation Groups in Differential Geometry" Springer-Verlag, 1972.) On montre aussi que ce groupe compact dès que M est compacte.

Définition 8.5. Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et g une métrique riemannienne sur M. On dira que cette métrique est G-invariante si pour tout $a \in G$, $\rho(a)$ est une isométrie de M. Autrement dit, $\rho(G) \subset \mathrm{Isom}(M)$.

Remarque 8.4. *Métriques invariantes à gauches* Lorsqu'on considère l'action par translations gauche d'un groupe de Lie G sui lui même, on dira tout simplement que la métrique est invariante à gauche au lieu de dire G-invariante.

Exemple 8.4. La métrique canonique sur $M(n,\mathbb{R})$ étant celle définie à partir du produit scalaire : $\langle A,B \rangle = \operatorname{tr}(A^tB)$. Alors la métrique induite sur le groupe orthogonal O(n) est invariante à gauche. En effet : Pour tout $y \in O(n)$, l'espace tangent $T_yO(n)$ s'identifie à l'espace des matrcices yA avec $A+A^t=0$. Pour tout $x \in O(n)$, l'application linéaire tangente $T_yl_x:T_yO(n)\to T_{xy}O(n)$ est donnée $par:T_yl_x(yA)=xyA$. On obtient alors facilement l'égalité: $g_{xy}(T_yl_x(yA),T_yl_x(yB))=g_y(yA,yB)$.

Proposition 8.2. Sur un groupe de Lie G, il existe toujours des métriques riemanniennes invariantes à gauche.

Démonstration. Soit <> un produit scalaire sur \mathscr{G} . Pour tout $x \in G$, on définit $g_x : T_xG \times T_xG \to \mathbb{R}$ par :

$$g_x(X_x, Y_x) = \langle T_x l_{x^{-1}}(X_x), T_x l_{x^{-1}}(Y_x) \rangle$$

Alors g est une métrique riemannienne invariante à gauche sur G.

8.2.1 Cas des actions homogènes

Dans ce qui suit *G* désigne un groupe de Lie et *H* un sous-groupe fermé.

Proposition 8.3. Il y a une correspondance biunivoque canonique entre l'ensemble des métriques riemanniennes G-invariantes sur G/H et l'ensemble des produits scalaires sur G/H qui sont invariante par la représentation $\overline{\mathrm{Ad}}: H \to \mathrm{GL}(G/H)$.

Démonstration. Si g est une métrique riemannienne G-invariantes sur G/H, alors

$$\forall a, x \in G, \ \forall u, v \in T_{\overline{x}}(G/H), \quad g_{\overline{x}}(u, v) = g_{\overline{ax}}(a \cdot u, a \cdot v) \tag{8.1}$$

en particulier, on a

$$\forall a, \forall u, v \in T_{\overline{e}}(G/H), \quad g_{\overline{e}}(u, v) = g_{\overline{e}}(Ad^{G/H}(a)(u), Ad^{G/H}(a)(v))$$

en identifiant $T_{\overline{e}}(G/H)$ à \mathcal{G}/\mathcal{H} via l'isomorphisme I du lemme 8.1, on obtient un produit scalaire $<,> \sup \mathcal{G}/\mathcal{H}$ satisfaisant :

$$\forall a, \forall X, Y \in \mathcal{G}, \quad \langle X + \mathcal{H}, Y + \mathcal{H} \rangle = \langle \overline{\mathrm{Ad}}_a(X + \mathcal{H}), \overline{\mathrm{Ad}}_a(Y + \mathcal{H}) \rangle.$$

Réciproquement, soit <,> un produit scalaire sur $T_{\overline{e}}(G/H)$ qui est invariant par la représentation $\operatorname{Ad}^{G/H}: H \to \operatorname{GL}(T_{\overline{e}}(G/H))$. On définit alors une métrique riemannienne sur G/H en posant :

$$\forall x \in G, \ \forall u, v \in T_{\overline{x}}(G/H), \quad g_{\overline{x}}(u, v) = \langle x^{-1} \cdot u, x^{-1} \cdot v \rangle, \tag{8.2}$$

cette définition a bien un sens (elle ne dépend pas du choix de x définissant la classe \overline{x}) puisque pour tout $b \in H$ on a :

$$<(ab)^{-1} \cdot u, (ab)^{-1} \cdot v> = < b^{-1} \cdot (a^{-1} \cdot u), b^{-1} \cdot (a^{-1} \cdot v> = < a^{-1} \cdot u, a^{-1} \cdot v>.$$

La métrique g ainsi définie satisfait évidement 8.1. Il reste à montrer la différentiabilité de la métrique. Pour cela il suffit de se placer sur un ouvert $U \subset G/H$ muni d'une section locale du fibré principal $\pi: G \to G/H$ ($\pi \circ \sigma = id_U$); l'expression locale de la métrique devient :

$$\forall q \in U, \forall u, v \in T_q(G/H), \quad g_q(u, v) = \langle \sigma(q)^{-1} \cdot u, \sigma(q)^{-1} \cdot v \rangle.$$

Remarque 8.5. Un groupe de Lie G peut toujours être vu comme une $(G \times G)$ -variété homogène (l'action de $G \times G$ sur G étant définie par $(a,b) \cdot x = axb^{-1}$), donc $G = (G \times G)/G$ et la représentation d'isotropie s'identifie à la représentation adjointe $Ad: G \to GL(G)$. Il en résulte que la donnée d'une métrique riemannienne bi-invariante sur G équivaut à la donnée d'un produit scalaire <, > sur G qui est Ad(G)-invariant.

 \Box

Exemple 8.5. Le groupe de Lie $SL(2, \mathbb{R})$ n'admet pas de métrique bi-invariante. En effet, supposons que <,> est un produit scalaire sur $sl(2, \mathbb{R})$ qui est $Ad(SL(2, \mathbb{R}))$ -invariant et désignons par $\|\cdot\|$ la norme associée. En prenant alors par exemple $A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \in SL(2, \mathbb{R})$ et $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in sl(2, \mathbb{R})$, on doit donc avoir

$$||X|| = ||Ad_A(X)|| = ||AXA^{-1}|| = ||4X|| = 4 ||X||.$$

Ce qui est impossible puisque $X \neq 0$.

Corollaire 8.1. Il existe une métrique riemannienne G-invariante sur G/H si et seulement si $\overline{\mathrm{Ad}}(H)$ est relativelment compact² dans $\mathrm{GL}(\mathcal{G}/\mathcal{H})$.

Démonstration. Nous venons de voir que l'existence d'une telle métrique sur G/H implique l'existence d'un produit scalaire <, > sur \mathcal{G}/\mathcal{H} tel que pour tout $a \in H$, $\overline{\mathrm{Ad}}_a$ appartient au groupe orthogonal $O(\mathcal{G}/\mathcal{H})$. On a donc $\overline{\mathrm{Ad}}(H) \subset O(\mathcal{G}/\mathcal{H})$. Et puisque $O(\mathcal{G}/\mathcal{H})$ est compact, on en déduit que $\overline{\mathrm{Ad}}(H)$ est relativelment compact.

Réciproquement, si $K := \overline{\mathrm{Ad}}(H)$ est compact, on peut donc munir l'espace vectoriel \mathscr{G}/\mathscr{H} d'un produit sclaire <, > invariant par $\overline{\mathrm{Ad}}(H)$ (comme dans 2), et puis on définit une métrique G-invariante g sur G/H par la formule 8.2.

8.2.2 Cas des actions homogènes effectives

Soit G un groupe de Lie et $H \subset G$ un sous-groupe fermé de G tel que l'action homogène $G \to \text{Diff}(G/H)$ est effective. Cela signifie (puisque le groupe d'isotropie en un point bH est le sous-groupe bHb^{-1}) que

$$\bigcap_{b\in G} bHb^{-1} = \{e\}.$$

En d'autres termes, le plus grand sous-groupe de H qui soit distingué dans G est $\{e\}$.

Exercice 8.2. Montrer que l'action homogène de $SL(3, \mathbb{R})$ sur $SL(3, \mathbb{R})$ / $SL(2, \mathbb{R})$ est effective.

Remarque 8.6. Toute action transitive $\rho: G \to \mathrm{Diff}(M)$, se factorise en une action effective transitive. En effet, si on considère $K:=\ker\rho$, c'est sous-groupe distingué fermé de G; ce qui permet de munir le quotient G/K d'une structure de groupe de Lie qui opère sur M via :

$$\overline{\rho}: G/K \hookrightarrow \mathrm{Diff}(M), \quad \overline{\rho}(gK) := \rho(g).$$

Nous avons $\rho = \overline{\rho} \circ \pi$ avec $\pi : G \to G/K$ la projection canonique. En d'autres termes, on le diagramme commutatif :

$$G/K$$

$$\downarrow \overline{\rho}$$

$$G \xrightarrow{\rho} \text{Diff}(M)$$

^{2.} relativement compact signifie son adhérence est compact

Remarque 8.7. Les actions effectives transitives ont fait l'objet diverses études depuis bien longtemps. Dans ce sens, il est important de signaler un théorème d'Armand Borel **??** selon lequel "si G est un groupe de Lie compact connexe qui opère effectivement sur une variété M de dimension ntelle que pour un certain j = 1, ..., n-1 le jème nombree de Betti de M est égale à C_n^j , alors G est isomorphe au tore $T^n = \mathbb{R}^n/\mathbb{Z}^n$ ".

Lemme 8.2. Supposons que l'action homogène $G \to \text{Diff}(G/H)$ est effective, alors la représentation adjointe $Ad: H \to GL(\mathcal{G})$ est injective

Démonstration. Soit a ∈ H tel que $Ad_a = id_{\mathscr{G}}$. Par commutativité du diagramme :

où $c_a(x) = axa^{-1}$, on a alors $c_a(\exp(X)) = \exp(X)$ et puisque $\exp(\mathcal{G})$ engendre le groupe G (car G est connexe), on obtient que $c_a(x) = x$ pour tout $x \in G$, et parsuite $a = xax^{-1}$. Il en résulte que $a \in \bigcap_{x \in G} xHx^{-1}$. Ainsi a = e.

Remarque 8.8. D'après le lemme ci-dessus, on obtient que lorsque l'action homogène $G \to \text{Diff}(G/H)$ est effective, Ad(H) devient un sous-groupe de Lie immergé dans $GL(\mathcal{G})$ isomorphe à H.

Théorème 8.1. Supposons que l'action homogène $G \to \text{Diff}(G/H)$ est effective. On a alors l'équivalence entre les deux assertins suivantes :

- 1. Il existe une métrique riemannienne G-invariante sur G/H.
- 2. Ad(H) est relativement compact dans $GL(\mathcal{G})$.

Démonstration. La compacité de l'adhérence de Ad(H) implique l'existence de <, > un produit scalaire Ad(H)-invariant sur \mathcal{G} . L'orthogonal \mathcal{H}^{\perp} de \mathcal{H} dans \mathcal{G} relativement à <, >, est alors Ad(H)-stable et l'image de $Ad: H \to GL(\mathcal{H}^{\perp})$ est dans le groupe orthogonal $O(\mathcal{H}^{\perp})$. Il en résulte, d'après 8.3 et 8.1, l'existence d'une métrique riemannienne G-invariante sur G/H.

Réciproquement, supposons l'existence d'une métrique riemannienne sur G/H tel que l'action homogène effective de G est par isomètrie. On peut donc identifier G au sous-groupe de Lie immergé :

$$L(G) := \{L_g / g \in G\} \subset \text{Isom}(G/H)$$

où $L_g: xH \mapsto gxH$ et Isom(G/H) le groupe des isométries de G/H. En particulier l'action de Isom(G/H) sur G/H est transitive, il résulte qu'on a un difféomorphisme Isom(G/H)-équivariant

$$G/H \cong (\text{Isom}(G/H))/K$$

avec $K := \{f \in \text{Isom}(G/H) | f(\overline{e}) = \overline{e}\}$ sous-groupe compact (puisque l'action de Isom(G/H) sur G/H est propre). Considérons alors <,> un produit scalaire sur Lie(Isom(G/H)) qui est Ad(K)-invariant, et qui est alors Ad(H)-invariant (puisque $H \subset K$). La restriction de <,> au sous-espace \mathscr{G} est alors Ad(H)-invariant, donc $Ad(H) \subset O(\mathscr{G})$. D'où le résultat puisque $O(\mathscr{G})$ est compact. \square

Corollaire 8.2. Supposons que l'action homogène $G \to \text{Diff}(G/H)$ est effective. S'il existe une métrique riemannienne G-invariante sur G/H, alors le groupe de Lie G admet une métrique riemannienne invariante à gauche et H-invariante à droite; la restriction de cette métrique à H est biinvariante.

Démonstration. D'après le théorème précédent, on peut choisir <, > un produit scalaire sur \mathscr{G} qui est Ad(H)-invariant. On définit ensuite une métrique riemannienne <<, >> sur G en posant :

$$<< X, Y>> = < a^{-1}.X, a^{-1}.Y>, \forall X, Y \in T_aG$$

il est alors facile de vérifier (exercice) que cette métrique est invariante à gauche et H-invariante à droite.

9 Actions propres

Définition 9.1. *Une action de G sur M est* **propre** *si pour tout compact C de M l'ensemble*

$$G_C := \{ g \in G/gC \cap C \neq \emptyset \}$$

est compact.

On rappelle qu'une application $f: M \to N$ est dite propre si l'image réciproque d'un compact est un compact.

Proposition 9.1. Soit G un groupe de Lie, M une variété différentiable et $\rho: G \to \mathrm{Diff}(M)$ une action différentiable de G sur M. Les propriétés suivantes sont équivalentes :

- 1. L'action de G sur M est propre.
- 2. L'application $\psi: G \times M \longrightarrow M \times M$ donnée par $: \psi(g, p) = (g \cdot p, p)$ est propre.
- 3. Si (x_n) est une suite convergente de M et (g_n) est une suite de G telle que $(g_n \cdot x_n)_n$ est convergente. Alors (g_n) possède une sous suite convergente.

Démonstration. .

(1) \Longrightarrow (2) : Supposons que l'action de G sur M est propre. Soient C_1 et C_2 deux compacts de M et posons $C = C_1 \cup C_2$. Pour montrer que $\psi^{-1}(C_1 \times C_2)$ est compact, il suffit de montrer que $\psi^{-1}(C \times C)$ est compact. On a :

$$\psi^{-1}(C \times C) = \{(g, x) \in G \times M \mid p \in C \text{ et } g \cdot x \in S\}$$

$$= \{(g, x) \in G \times M \mid p \in C \cap g^{-1}.C\}$$

$$= \{(g, x) \in G \times C \mid x \in C \cap g^{-1}.C\}$$

$$\subset G_C \times C$$

Par hypothèse G_C est compact et donc $\psi^{-1}(C \times C)$ est compact comme fermé dans un compact. On conclut que ψ est propre.

(2) \Longrightarrow (3) : Supposons que l'application $\psi: G \times M \longrightarrow G \times M$ est propre. On se donne une suite

 $(x_n)_n$ de M qui converge vers un élément x et (g_n) une suite de G telle que la suite $(g_n \cdot x_n)$ converge vers un élément $y \in M$. Posons

$$C_1 = \{p_n, n \in \mathbb{N}\} \cup \{x\} \text{ et } C_1 = \{g_n \cdot x_n, n \in \mathbb{N}\} \cup \{y\}$$

L'ensemble $\psi^{-1}(C_1 \times C_2)$ est un compact de $G \times M$ qui contient la suite (g_n, x_n) . Donc (g_n) admet une sous suite convergente.

(3) \Longrightarrow (1) : Soit C un compact de M et (g_n) une suite de G_C . Pour tout $n \in \mathbb{N}$ on a $(g_n \cdot C) \cap C \neq \emptyset$. Considérons pour tout $n \in \mathbb{N}$ un élément $p_n \in C$ tel que $g_n.x_n \in C$. Quitte à se restreindre à une sous suite on peut supposer sans perte de généralités que les suites (p_n) et $(g_n.x_n)$ sont convergente. L'hypothèse implique que la suite (g_n) possède une sous-suite convergente. On conclut que G_C est un compact de G.

Proposition 9.2. Si l'action de G sur M est propre, les orbites sont fermés dans M et l'espace des orbites M/G est séparé.

Démonstration. Soient $x \in M$ et $(g_n)_n$ une suite de G tel que $(g_n.x)$ est convergente. D'après la proposition précédente (g_n) possède une sous suite qui converge vers un élément $g \in G$. On conclut alors que $(g_n.x)$ converge vers $g.x \in G.x$. L'orbite G.x est alors fermé dans M. Maintenant, nous allons montrer par l'absurde aue M/G est séparé. Supposons alors que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Soit d une distance sur M. Pour tout $n \in \mathbb{N}^*$, les ouverts $G.B(x,\frac{1}{n})$ et $G.B(y,\frac{1}{n})$ se rencontrent; ce qui montre l'existence de trois suites $x_n \in B(x,\frac{1}{n})$, $y_n \in B(y,\frac{1}{n})$ et $g_n \in G$ telles que $y_n = g_n \cdot x_n$. La suite $g_n \cdot x_n = y_n$ converge alors vers y et x_n converge vers x, la suite g_n admet alors une sous-suite $g_{\phi(n)}$ convergente vers $g \in G$. Il en résulte que $y = g \cdot x$ et donc $\overline{x} = \overline{y}$.

Exemple 9.1.

1. Si G est compact, toute action topologique de G sur M est propre. Si M est compact, seuls les groupes compacts opèrent de façon propre sur M.

- 2. Soient G un sous-groupe fermé d'un groupe topologique H; alors la translation à gauche (ou à droite) sur H par les éléments de G définit une action propre de G sur H. Plus généralement si K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- 3. Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact. Alors l'action induite de tout sous-groupe fermé G de H sur M est propre.

Exercice Considérons le sous-groupe Γ de $SL(2,\mathbb{R})$ formé des matrices de la forme $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ avec $n \in \mathbb{Z}$ (c'est un sou-groupe discret) et soit D le sous-groupe fermé des matrices $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ avec a > 0. Pour l'action homogène de Γ sur $SL(2,\mathbb{R})/D$ est libre, les orbites sont fermées et l'action n'est pas propre.

4. Soit G est un groupe de Lie opérant par isométries sur une variété riemannienne M telle que l'action soit effective. S'il existe un point x dans V tel que le groupe d'isotropie G_x soit compact et que l'orbite G_x soit fermé dans V, alors l'action de G sur M est propre G. kulkarni).

Théorème 9.1. *Soit* $G \to \text{Diff}(M)$ *une action différentiable* **propre** *et* **libre**. *On a alors* :

- 1. L'espace des orbites M/G possède une unique structure de variété différentiable de dimension $\dim M \dim G$ tel que la projection canonique $\pi : M \to M/G$ est une submersion.
- 2. Pour tout $p \in M/G$, il existe un ouvert $V \subset M/G$ voisinage de p et un difféomorphisme

$$\phi: G \times V \longrightarrow \pi^{-1}(V)$$

$$(g, x) \longrightarrow \phi(g, x)$$

qui vérifie : $\phi(g_1g_2, x) = g_1 \cdot \phi(g_2, x)$ et $\pi(\phi(g, x)) = x$.

9.1 Actions proprement discontinues

Dans cette section, Γ désignera un groupe discret et dénombrable. En d'autres termes, Γ est un groupe de Lie de dimension 0. Toute action $\Gamma \to \mathrm{Diff}(M)$ d'un tel groupe Γ est différentiable.

Définition 9.2. On dira qu'une action $\Gamma \to \operatorname{Diff}(M)$ est proprement discontinue si pour tout compact C de M l'ensemble

$$\Gamma_C := \{ g \in \Gamma / gC \cap C \neq \emptyset \}$$

est fini.

Ce qui équivaut à dire que c'est une action propre d'un groupe discret dénombrable.

Proposition 9.3. Une action $\Gamma \to \text{Diff}(M)$ est proprememnt discontinue si et seulement si pour tous $x, x' \in M$, il existent des voisinages respectifs U et U' tels que l'ensemble $\{g \in \Gamma : (g.U) \cap U' \neq \emptyset\}$ est fini.

Démonstration. .

- (1) \implies (2) : Soient x et x' deux points de M et U et U' des ouverts relativement compactes de M qui sont des voisinages respectives de x et x'. On suppose que l'ensemble
- $\{g \in \Gamma : (g.U) \cap U' \neq \emptyset\}$ est infini. Il existe alors une suite (g_n) de Γ et une suite (x_n) de U telles que $g_n.x_n \in U'$. Puisque \overline{U} et $\overline{U'}$ sont compactes on peut supposer sans perte de généralité que les suites $(x_n)_n$ et $(g_n.x_n)$ sont convergentes. Ceci implique que la suite (g_n) possède une valeur d'adhérence, ce qui est absurde car Γ est discret.
- (2) \Longrightarrow (1) : Soit (g_n) une suite de Γ et (x_n) une suite convergente dans M vers un point x tel que la suite $(g_n.x_n)$ est convergente vers un point x'. Fixons U et U' deux voisinages relativement compactes de x et x' respectivement. Pour $n \in \mathbb{N}$ assez grand on obtient que $x_n \in U$ et $g_n.x_n \in U'$. Puisque l'ensemble $\{g \in \Gamma : (g.U) \cap U' \neq \emptyset\}$ est fini, cela signifie que $\{g_n, n \in \mathbb{N}\}$ est fini et donc (g_n) possède une sous-suite convergente. La proposition (9.1) donne que l'action de Γ sur M est propre.

1. Considérons l'action de \mathbb{Z}^n sur \mathbb{R}^n donnée par : $\varphi(k,x) = x + k$ où $x = (x_1,...,x_n)$ et $k = (k_1,...,k_n)$. On vérifie aisément que cette action est libre et proprement discontinue. L'espace quotient $\mathbb{R}^n/\mathbb{Z}^n$ possède une unique structure de variété différentiable telle que la projection $\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^n/\mathbb{Z}^n$ est une submersion. Pour cette structure $\mathbb{R}^n/\mathbb{Z}^n$ est difféomorphe au tore \mathbb{T}^n .

- 2. Considérons le sous-groupe $G = \{Id, -Id\}$ de O(n). Alors G agit naturellement sur la sphère \mathbb{S}^n . L'action de G sur \mathbb{S}^n est libre, et puisque G est compact, cette action est propre. L'espace des orbites \mathbb{S}^n/G est difféomorphe à l'espace projectif \mathbb{RP}^n .
- 3. On définit une action de \mathbb{Z} sur \mathbb{R}^2 par : $\varphi(n,(x,y)) = (x+n,(-1)^n y)$. Cette action est libre et proprement discontinue. En effet, il est clair que si n.(x,y) = (x,y), alors n=0, et donc φ est libre. Pour voir qu'elle est propre, il suffit de considérer deux points p et p' dans \mathbb{R}^2 et deux disques D_p et $D_{p'}$ centrés en p et p' pour la norme euclidienne. L'ensemble $\{n \in \mathbb{Z} : n.D_p \cap D_{p'} \neq \emptyset\}$ est fini. On déduit alors que \mathbb{R}^2/\mathbb{Z} est une variété différentiable dite fibré de Möbius au dessus de S^1 .
- 4. (Bouteille de Klein): Considérons le tore $\mathbb{T}^2 = S^1 \times S^1 \subset \mathbb{C}^2$ et la transformation linéaire $A: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ donnée par : $A(z,w) = (\overline{z},-w)$. L'ensemble $G = \{Id,A\}$ est un groupe de Lie discret et l'action naturelle de G sur \mathbb{T}^2 est clairement propre et libre. L'espace des orbites \mathbb{T}^2/G est appellé bouteille de Klein.
- 5. Si Γ est un sous-groupe discret de $G := \mathrm{Aff}(\mathbb{R}^n)$ qui opére proprement et librement sur \mathbb{R}^n ; alors $M := \mathbb{R}^n / \Gamma$ est une variété (c'est un exemple de variétés "affine"). Notons que l'action d'un sous-groupe discret de $\mathrm{Aff}(\mathbb{R}^n)$ sur \mathbb{R}^n peut ne pas être propre; c'est par exemple le cas du sous-groupe cyclique Γ engendré par le difféomorphisme $\phi(x,y) = (\lambda x, \lambda^{-1}y)$. On a les plongements $\Gamma \subset \mathrm{SL}(2,\mathbb{R}) \subset \mathbb{R}^2 \rtimes GL(\mathbb{R}^2)$, en particulier l'action de Γ sur \mathbb{R}^2 preserve la forme volume canonique de \mathbb{R}^2 (et donc la mesure de Lebesgue de \mathbb{R}^2) mais Γ fixe l'origine et parsuite l'isotropie n'est pas compacte, donc l'action n'est pas propre. En fait, puisque l'action de Γ est effective, il n'existe pas de métrique riemannienne sur \mathbb{R}^2 qui soit préservée par ce groupe, car sinon celui-ci va se plonger en tant que sous-groupe discret (donc fermé) dans le groupe $\mathrm{Iso}(\mathbb{R}^2, g)$ des isométries pour cette métrique g; ceci est en contradiction avec la non propreté de l'action.

En fait le raisonnement ci-dessous (et parsuite l'analyse qui en découle) s'applique dès que Γ est un sous-groupe discret infini (ou un sous-groupe fermé non compact) de $SL(n,\mathbb{R})$ opérant sur \mathbb{R}^n .

9.2 Théorème de la tranche (Slice theorem)

9.2.1 Ensemble de points fixes

Soit M une G-variété propre. L'existence d'un point fixe m par l'action impose la compacité du groupe. De plus, les applications linéaires tangentes des difféomorphismes associés à g induisent une représentation $G \to \operatorname{GL}(T_m M)$.

9 ACTIONS PROPRES 37

Théorème 9.2 (Linéarisation locale). Supposons que G est compact et soit $m \in M^G$ un point fixe. Alors, il existe un difféormorphisme G-équivariant d'un voisinage de 0 dans T_mM sur un voisinage ouvert m dans M.

Ceci découle du fait que si l'on muni M d'une métrique riemannienne G-invariante, alors l'application $\exp_m : T_m M \to M$ est G-équivante.

Corollaire 9.1. Soit M une G-variété propre et $H \subset G$ un sous-groupe de G. Alors LES composantes connexes de l'ensemble des points fixes par H

$$M^H = \{ m \in M / H \subset G_m \}$$

sont des sous-variété fermée de M de codimension paire.

L'idée de démonstration de ce corollaire repose sur le fait que $M^H = M^{\overline{H}}$ où \overline{H} est l'adhérence de H dans G (par continuité de l'application $(h,m) \mapsto h \cdot m$) et que l'inclusion $\overline{H} \subset G_m$ implique que \overline{H} est compact.

9.2.2 Local slice theorem

Soit M une G-variété propre, $m \in M$ et $K = G_m$. Pour tout $a \in K$, la différentielle de $a : M \to M$ est un isomorphisme de TmM. Nous obtenons une représentation linéaire $K \to \operatorname{GL}(T_mM)$; c'est la représentation d'isotropie. Le sous-espace $T_m(Gm)$ étant K-stable, on peut alors choisir un produit scalaire K-invariant sur T_mM et considérer la décomposition orthogonale

$$T_m M = T_m(Gm) \oplus (T_m(Gm))^{\perp}$$

On note $V=(T_m(Gm))\perp$ et $K\to O(V)$ la représentation obtenue. Le fibré vectoriel associé à cette représentation et au fibré principal $G\to G/K$ est

$$G \times_K V \to G/K$$

C'est un G-fibré vectoriel : l'action de G sur l'espace total est donnée par g.[a, v] = [ga, v].

Théorème 9.3 (Local slice theorem). Soit M une G-variété propre, $m \in M$ et $K = G_m$. Alors il existe un difféomorphisme G-équivariant de $G \times_K V$ sur un voisinage ouvert G-stable de l'orbite Gm dans M, dont la restriction à la section nulle est l'identification canonique de G/K sur Gm.

Corollaire 9.2. Si l'action de G sur M est propre et libre, alors M/G est une variété et la projection $M \to M/G$ est un G-fibré principal.

Corollaire 9.3. Si l'action de G sur M est propre et localement libre, alors M/G est une pseudo-variété (orbifold).

• Une carte de M/G au point \overline{m} est donnée par un homéomorphisme du quotient V/G_m de l'espace vectoriel V par un sous-groupe fini de O(V) sur un U/G avec U voisinage ouvert G-stable de l'orbite.

9 ACTIONS PROPRES 38

9.2.3 Global slice theorem

Théorème 9.4 (Global slice theorem). Soit M une G-variété propre avec G un groupe de Lie connexe et K un sous-groupe compact maximal. Alors il existe un difféomorphisme G-équivariant de $G \times_K S$ sur M.

• On peut par exemple illustrer le théorème de tranche (global) pour montrer que sur toute G-variété propre il existe une métrique Riemannienne sur M qui soit G-invariante. En effet nous commençons par mettre une métrique Riemannienne K-invariante sur le K-fibré $TM_{|S} \to S$ (ce qui est possible à cause de la compacité du groupe K), puis nous utilisons l'identification naturelle

$$TM \cong G \times_K TM_{|S|}$$

cette identification est dûe au fait que $M \cong G \times_K S$.

9.3 Stratification par le type d'orbite

Soit M une G-variété propre. Pour m et m' dans la même orbite, les groupes d'isotropie sont conjugués ($G_{a \cdot m} = aG_m a^{-1}$). Pour $H \subset G$ un sous-groupe de G, on note (H) la classe de conjugaison de H (le conjugaison définit une relation d'équivalence sur l'ensemble des sous-groupes de G). Une relation d'ordre partielle est définie sur l'ensemble de ces classes d'équivalence en posant :

$$(H) < (H') \Leftrightarrow H$$
 est conjugué à un sous groupe de H'

Pour tout sous-groupe de $H \subset G$, on pose :

$$M_{(H)} = \{m \in M/(G_m) = (H)\}\ \text{et}\ M_H = \{m \in M/G_m = H\}$$

 $M_{(H)}$ est G-stable, c'est le saturé de M_H .

Théorème 9.5 (Stratification par le type d'orbite). Les composantes connexes des $M_{(H)}$ pour H sous-groupe de G constitue une partition

$$M = \bigcup_{i \in I} M_i$$

avec les propriétés:

- 1. Chaque M_i est une sous-variété plongée G-stable de M et la projection $M_i \to M_i/G$ est une submersion.
- 2. La partition est localement finie (un compact de M ne rencontrent qu'un nombre fini de M_i).
- 3. Pour tous $i, j \in I$, $M_i \cap \overline{M_j} \neq \emptyset \Rightarrow M_i \subset \overline{M_j}$.

Théorème 9.6 (Le type d'orbite principale). Supposons que M est connexe. Alors

- 1. Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- 2. $M_{K_{pr}}$ est un ouvert dense dans M.

Corollaire 9.4. Supposons que M est connexe, G est commutatif et que l'action est effective. Alors l'ensemble des points où l'action est libre est un ouvert dense dans M

En effet, puisque G est commutatif, $M_{(K_{pr})} = M_{K_{pr}}$. Donc K_{pr} opère trivialement sur $M_{(K_{pr})}$. Puisque $M_{(K_{pr})}$ est dense, l'action de K_{pr} sur M est aussi triviale. Puisque l'action est effective, $K_{pr} = \{e\}$.

10 Fibrés différentiables

10.1 Espaces fibrés localement triviaux

Soient *F* et *M* deux variétés différentiables.

Définition 10.1. Se donner un fibré différentiable localement trivial de base M, fibre-type F (ou plus brièvement fibre), et d'espace total E, c'est se donner une variété différentiable E et une application différentiable $\pi: E \to M$ telles que tout point de M admette un voisinage ouvert U dans M possédant la propriété suivante :

Il existe un difféomorphisme $\Phi_U : U \times F \to \pi^{-1}(U)$ tel que $\pi|_U \circ \Phi_U = p_1$, où p_1 désigne la première projection.

Cette définition implique en particulier que π soit une submersion de E sur M, et que la restriction Φ_m de Φ à $\{m\} \times F \cong F$ soit un difféomorphisme de F sur l'image réciproque $E_m = \pi^{-1}(m)$ d'un point m de M (on appelle E_m la *fibre* de E en m).

Un difféomorphisme tel que Φ_U s'appelle une *trivialisation locale* de E.

On appelle *section* (sous-entendu : différentiable) du fibré $\pi: E \to M$ toute application différentiable $s: M \to E$ telle que $\pi \circ s$ soit l'identité dans M. Une section locale est définie seulement sur un ouvert $U \subset M$ avec la même condition $\pi(s(x)) = x$ pour tout $x \in U$. Sur un ouvert trivialisant, il y a toujours des sections mais des sections globales $s: M \to E$ n'existent pas toujours.

Exemple 10.1.

- 1. (Fibrés triviaux) On prend pour E le produit $M \times F$ des deux variétés fibre et base, et pour π la première projection p_2 .
- 2. (Fibré tangent) Pour toute variété différentiable M, le fibré tangent $TM \to M$ est un fibré de fibre \mathbb{R}^n $(n = \dim M)$.
- 3. (Fibré en sphères et fibré en boules) Si g est une métrique riemannienne sur M, on peut considérer $SM \to M$ le fibré des vecteurs de norme 1, c'est un fibré de fibre S^{n-1} . Le fibré en boules $BM \to M$ est constitué des vecteurs de norme < 1, c'est un fibré de fibre le disque unité D^n de \mathbb{R}^n .
- 4. Si G est un groupe de Lie et $H \subset G$ un sous-groupe fermé de G, la projection canonique $G \to G/H$ est un fibré de fibre H.

Remarque 10.1. Soit E un ensemble, M et F des variétés différentiables et $p: E \to M$ une surjection. Le lemme technique suivant est très pratique pour munir l'ensemble E d'une structure différentiable

de façon que $p: E \rightarrow M$ devient un fibré localement trivial.

Lemme. Supposons l'existence d'un recouvrement ouvert $\{U_{\alpha} \mid \alpha \in I\}$ de M avec des bijections φ_{α} : $U_{\alpha} \times F \to \pi^{-1}(U_{\alpha})$ tel que $\pi|_{U_{\alpha}} \circ \varphi_{U_{\alpha}} = p_1$. Supposons en plus que pour tout $\alpha, \beta \in I$ tes que $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset$, l'application $\pi|_{U_{\alpha}} \circ \pi|_{U_{\beta}}^{-1} : U_{\alpha\beta} \times F \to U_{\alpha\beta} \times F$ est différentiable. Alors on peut mettre sur E une unique structure de variété différentiable telle que $\{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in I\}$ devient un recouvrement trivialisant du fibré $E \to M$.

Fibrés images réciproques (Pullback of a bundle) Soit $\pi: E \to M$ un fibré de fibre-type F et $f: X \to M$ une application différentiable. On définit alors :

$$f^*E := \{(x, u) \in X \times E / f(x) = \pi(u)\}\$$

C'est un fermé de $X \times E$. Par restriction des deux projections, on obtient des applications $\tilde{p}: f^*E \to X$ et $\tilde{f}: f^*E \to E$ tels que le digramme suivant commute :

$$\begin{array}{ccc}
f^*E \xrightarrow{\tilde{f}} E \\
\tilde{p} \downarrow & \downarrow p \\
X \xrightarrow{f} M
\end{array}$$

Par définition, pour tout $x \in M$ l'image réciproque $\tilde{p}^{-1}\{x\}$ s'identifie avec la fibre $E_{f(x)}$ de E au dessus de $f(x) \in M$. On a une structure naturelle de fibré de même fibre-type F sur $\tilde{p}: f^*E \to X$: Si $\Phi_U: U \times F \to \pi^{-1}(U)$ est une trivialisation locale de $E \to M$, on définit une trivialisation locale au dessus de $\tilde{U}:=f^{-1}(U)$ en posant

$$\tilde{\Phi}_U : \tilde{U} \times F \to \tilde{p}^{-1}(\tilde{U}), \quad (x,\lambda) \mapsto (x,\Phi_U(f(x),\lambda))$$

Définition 10.2 (Images réciproques). Le fibré $\tilde{p}: f^*E \to X$ est appelé image réciproque de E par f, et est parfois noté $f^{-1}(E)$.

Par exemple:

Définition 10.3 (Fibrés induits). Pour toute sous-variété différentiable S de M, l'image réciproque d'un fibré $E \to M$ par l'inclusion $S \subset M$ est un fibré de base S et de même fibre-type que E, qu'on appelle le fibré induit par E sur S, ou restriction de E à S, et qu'on note souvent $E|_S$.

Produit fibré. Soient $\pi_1: E_1 \to M$ et $\pi_2: E_2 \to M$ deux fibrés de même base M, et de fibres-type respectives F_1 et F_2 . Le sous-espace $E_1 \times_M E_2$ de $E_1 \times E_2$ défini comme l'ensemble des couples $(e_1, e_2) \in E_1 \times E_2$ tels que $\pi_1(e_1) = \pi_2(e_2)$ possède une structure naturelle de fibré de base M et de fibre-type $F_1 \times F_2$, la projection d'un point $(e_1, e_2) \in E_1 \times_V E_2$ étant égale à $\pi_1(e_1) (= \pi_2(e_2))$: si $\Phi_1: U \times F_1 \stackrel{\cong}{\longrightarrow} E_1|_U$ et $\Phi_2: U \times F_2 \stackrel{\cong}{\longrightarrow} E_2|_U$ désignent des trivialisations locales de E_1 et E_2 au dessus

d'un même ouvert U de M, on définit une trivialisation locale $\Phi: U \times (F_1 \times F_2) \to (E_1 \times_V E_2)|_U$ en posant

$$\Phi(m,(\lambda_1,\lambda_2)) = (\Phi_1(m,\lambda_1),\Phi_2(m,\lambda_2))$$

pour tous $\lambda_1 \in F_1$, $\lambda_2 \in F_2$ et $m \in U$. La fibre de $E_1 \times_V E_2$ en un point $m \in M$ est égale à $(E_1)_m \times (E_2)_m$.

Définition 10.4 (Produits fibrés). Le fibré $E_1 \times_M E_2 \to M$ ainsi défini est appelé produit fibré de E_1 et E_2 .

10.2 Fibrés vectoriels

Définition 10.5. Un fibré vectoriel $E \to M$ est un fibré différentiable localement trivial $E \to M$ qui vérifient en plus la condition suivante :

La fibre type F et chaque fibre E_m sont munies d'une structure d'espace vectoriel de dimension finie r (sur \mathbb{R} ou sur \mathbb{C}), et il est possible de choisir les trivialisations locales Φ_U de telle façon que chaque difféomorphisme Φ_m soit un isomorphisme d'espaces vectoriels.

L'entier r s'appelle le rang du fibré.

Exemple 10.2. L'ensemble TM des vecteurs tangents à une variété différentiable possède une structure naturelle de fibré vectoriel différentiable sur \mathbb{R} (le fibré tangent), de rang égal à la dimension de la variété : $si\ (x_1, x_2, \cdots, x_n)$ est un système de coordonnées locales sur un voisinage U d'un point m de M, et $si\ x$ désigne en abrégé le point de U admettant ces coordonnées locales, l'application $\Phi_U: \left((y_1 \cdots, y_n), x\right) \mapsto \sum_{i=1}^n y_i \left(\frac{\partial}{\partial x_i}\right)_x$ est une trivialisation locale de TM.

Exemple 10.3. On définit de même le fibré cotangent T^*M des 1-formes sur une variété différentiable. Il possède une structure naturelle de fibré vectoriel différentiable sur \mathbb{R} , de rang égal à la dimension de la variété : si (x_1, x_2, \dots, x_n) est un système de coordonnées locales sur un voisinage U d'un point m de M, et si x désigne en abrégé le point de U admettant ces coordonnées locales, l'application Φ_U : $((y_1 \dots, y_n), x) \mapsto \sum_{i=1}^n y_i(dx_i)_x$ est une trivialisation locale de T^*M .

Sections des fibrés vectoriels.

Si $E \to M$ désigne un fibré vectoriel différentiable réel (resp. complexe), l'ensemble $\Gamma(E)$ des sections différentiables de E est muni d'une structure naturelle de $C^{\infty}(M)$ -module. Celle-ci s'obtient en définissant la section $u \sigma + v \tau$ à partir de la structure d'espace vectoriel dans chaque fibre E_m par la formule : $(u \sigma + v \tau)(m) = u(m) \sigma(m) + v(m) \tau(m)$, pour toutes sections σ et τ de E et pour toutes fonctions u, v différentiables sur M.

Produit scalaire ou métrique riemannienne sur un fibré vectoriel

Définition 10.6. On appelle métrique riemannienne ou produit scalaire sur un fibré vectoriel différentiable réel $E \to M$ la donnée d'un produit scalaire <, $>_m$ dans chaque fibre E_m de E, de façon que : pour tout couple $\sigma, \tau \in \Gamma(E)$ de sections différentiables, la fonction $< \sigma, \tau >$: $\mu \mapsto < \sigma(m), \tau(m) >_m$ soit différentiable.

11 FIBRÉS PRINCIPAUX

42

On notera souvent <, > au lieu de <, > m le produit scalaire dans chaque fibre.

Proposition 10.1. (Existence des produits scalaires) Tout fibré vectoriel $E \to M$ admet un produit scalaire.

Démonstration. Soit $(U_{\alpha}, \varphi_{\alpha})$ une famille de trivialisations locales $\varphi_{\alpha} : U_{\alpha} \times \mathbb{R}^r \xrightarrow{\cong} E|_{U_{\alpha}}$, les ouverts U_{α} étant supposés constituer un recouvrement localement fini de M. Notons <, $>_{\alpha}$ le produit scalaire dans chaque fibre de $E|_{U_{\alpha}}$ obtenu par transport de structure à partir du produit scalaire canonique sur \mathbb{R}^r grâce à la trivialisation φ_{α} . Notons $(\rho_{\alpha})_{\alpha}$ une partition différentiable de l'unité sur M subordonnée au recouvrement précédent : chaque $\rho_{\alpha} : M \to \mathbb{R}$ est une fonction différentiable à support dans U_{α} , et $\sum_{\alpha} \rho_{\alpha} \equiv 1$. On vérifie alors que $\sum_{\alpha} \rho_{\alpha} <$, $>_{\alpha}$ est une métrique riemannienne sur E.

Sommes de Whitney.

Si E_1 et E_2 sont des fibrés vectoriels de rang respectif r_1 et r_2 et de même base M, le produit fibré $E_1 \times_M E_2 \to V$ possède une structure naturelle de fibré vectoriel de rang $r_1 + r_2$, qu'on appelle la somme de Whitney des deux fibrés E_1 et E_2 , et que l'on note $E_1 \oplus E_2$: en tout point $E_1 \oplus E_2$ et $E_2 \oplus E_3$ et que l'on note $E_1 \oplus E_3$ en tout point $E_1 \oplus E_3$ et $E_2 \oplus E_3$ et que l'on note $E_3 \oplus E_3$ en tout point $E_3 \oplus E_3$ et $E_3 \oplus E_3$ et $E_3 \oplus E_3$ et que l'on note $E_3 \oplus E_3$ et que l'o

Exercice 10.1 (Supplémentaire orthogonal d'un sous-fibré vectoriel). Supposons le fibré vectoriel $E \to M$ muni d'un produit scalaire. Soit E' un sous-fibré vectoriel de E. Montrer que la réunion $E'' = \coprod_{m \in M} (E_m)''$ des supplémentaires orthogonaux $(E_m)''$ de chaque fibre E'_m dans E_m possède une structure naturelle de fibré vectoriel, et que $E = E' \oplus E''$.

Théorème 10.1. (*Théorème de Swan*)Pour tout fibré vectoriel $E \to M$, il existe un fibré vectoriel $E' \to M$ tel que $E \oplus E'$ soit trivial.

11 Fibrés principaux

11.1 Définition et exemples

Avant de donner la définition précise d'un fibré principal, nous allons discuter l'exemple de motivation initiale : Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda=(\lambda_1,\cdots,\lambda_n)\in \mathbb{R}^n$ (coordonnées) et d'un repère (base) $z:\mathbb{R}^n\stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme. L'ensemble des repères de F est défini par :

$$R(F) := Isom(\mathbb{R}^n, F).$$

Il peut être muni d'une structure de variété différentiable telle que pour tout repère fixé z_0 , la bijection :

$$GL(n, \mathbb{R}) \to R(F), \quad g \mapsto z_0 \circ g.$$

est un difféomorphisme.

Pour $g \in GL(n, \mathbb{R})$, les couples (z, λ) et $(z \circ g, g^{-1}(\lambda))$ représentent le même vecteur de F de sorte que F peut encore être identifié à l'espace des orbites :

$$(R(F) \times \mathbb{R}^n)/GL(n,\mathbb{R}) \cong F$$
, pour l'action $(z,\lambda) \cdot g = (z \circ g, g^{-1}(\lambda))$.

Exemple 11.1 (Fibrés de repères). Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbb{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré localement trivial de base M et de fibre $GL(n,\mathbb{R})$: $Si \Phi^\alpha : U_\alpha \times \mathbb{R}^n \to E|_{U_\alpha}$ est une trivialisation locale de E, l'application

$$\psi_{\alpha}: U_{\alpha} \times GL(n, \mathbb{R}) \to R(E)|_{U_{\alpha}}, \quad \psi_{\alpha}(g, x) = \Phi_{x}^{\alpha} \circ g$$

est une trivialisation locale de R(E) qui satisfait :

$$\psi_{\alpha}(x, g_1g_2) = \psi_{\alpha}(x, g_1) \cdot g_2$$

L'action à droite de $GL(n,\mathbb{R})$ sur R(E) est différentiable, libre et transitive sur les fibres.

Exemple 11.2 (Espaces homogènes). Soit G un groupe de Lie, H un sous-groupe de Lie fermé et $\pi: G \to G/H$ la surjection canonique. Nous avons vu au théorème 6.1 qu'il existe un recouvrement de G/H par des ouverts U_{α} avec des difféomorphismes

$$\psi_{\alpha}: U_{\alpha} \times H \to \pi^{-1}(U_{\alpha})$$

tels que

$$\pi(\psi_{\alpha}(x,b)) = x \quad \forall x \in U_{\alpha}, \ \forall b \in H$$

et

$$\psi_{\alpha}(x, b_1 b_2) = \psi_{\alpha}(x, b_1) b_2 \quad \forall x \in U_{\alpha}, \ \forall b_1, b_2 \in H.$$

Définition 11.1. Un G-fibré principal est la donnée d'une variété P sur laquelle opère à droite un groupe de Lie G et une application $\pi: P \to M$ tels qu'il existe un recouvrement ouvert (U_α) de M et des difféomorphismes locaux

$$\psi_{\alpha}: U_{\alpha} \times G \to \pi^{-1}(U_{\alpha})$$

satisfaisant

$$\pi(\psi_{\alpha}(x,g)) = x$$
 et $\psi_{\alpha}(x,ag) = \psi_{\alpha}(x,a) \cdot g$

pour tous $a, g \in G$, $x \in U_{\alpha}$.

Remarque 11.1. Il résulte de la définition ci-dessus que :

- 1. Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x,\cdot)$: $g \mapsto \psi_{\alpha}(x,g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2. L'action de G sur P est libre.
- 3. $\pi(z \cdot g) = \pi(z)$ pour tous $z \in P$ et $g \in G$.
- 4. Pour tout $z \in P$, l'orbite $z \cdot G$ est égale à la fibre $\pi^{-1}(\pi(z))$.
- 5. Les fibres sont G-stables par l'action et que l'action induite est transitive et libre.

Remarque 11.2. Une définition équivalente d'un G-fibré principal est la suivante : "C'est la donnée d'un fibré localement trivial $P \to M$ avec une action $G \to \text{Diff}(P)$ qui est libre et transitive sur les fibres" (i.e. les orbites coincident avec les fibres).

(L'idée pour prouver ceci est de partir d'une section locale $\sigma_{\alpha}: U_{\alpha} \to P$ qui existe puisque le fibré est localement trivial et puis de définir des trivialisations "équivariantes" : $\psi_{\alpha}: (x,g) \mapsto \sigma_{\alpha}(x) \cdot g$.)

Exemple 11.3. Si $G \to \text{Diff}(P)$ est une action différentiable libre et propre, alors $P \to P/G$ est un fibré principal.

11 FIBRÉS PRINCIPAUX

44

11.2 Morphismes

Définition 11.2. Un morphisme de G-fibrés principaux ϕ : $(\pi_1, P_1, M_1) \rightarrow (\pi_2, P_2, M_2)$ est une application ϕ : $P_1 \rightarrow P_2$ différentiable G-équivariante.

Une telle application $\phi: P_1 \to P_2$ préserve les orbites (i.e. envoie l'orbite $z \cdot G$ sur l'orbite $\phi(z) \cdot G$). Elle induit alors une application différentiable $\overline{\phi}: M_1 \to M_2$ telle que le diagramme suivant

$$P_{1} \xrightarrow{\phi} P_{2}$$

$$\pi_{1} \downarrow \qquad \qquad \downarrow \pi_{2}$$

$$M_{1} \xrightarrow{\overline{\phi}} M_{2}$$

commute i.e. $\pi_2 \circ \phi = \overline{\phi} \circ \pi_1$.

Proposition 11.1. Soit $\phi: (\pi_1, P_1, M_1) \to (\pi_2, P_2, M_2)$ un morphisme de G-fibrés principaux. On a alors l'équivalence : $\phi: P_1 \to P_2$ est un difféomorphisme si et seulement si l'application induite $\overline{\phi}: M_1 \to M_2$ est un difféomorphisme.

Démonstration. Supposons que $\phi: P_1 \to P_2$ est un difféomorphisme. Le difféomorphisme inverse $\psi := \phi^{-1}$ est alors un morphisme de G-fibrés principaux et induit donc une application différentiable $\overline{\psi}: M_2 \to M_1$ qui satisfait $\pi_1 \circ \psi = \overline{\psi} \circ \pi_2$. On peut alors écrire :

$$\overline{\psi}\circ\overline{\phi}\circ\pi_1=\overline{\psi}\circ\pi_2\circ\phi=\pi_1\circ\psi\circ\phi=\pi_1$$

Ce qui implique $\overline{\psi} \circ \overline{\phi} = id_{M_1}$ (puisque π_1 est surjective). De même on montre que $\overline{\phi} \circ \overline{\psi} = id_{M_2}$. Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme.

Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$. Donc $\pi_2 \circ \phi(z) = \pi_2 \circ \phi(z')$ et parsuite $\overline{\phi}(\pi_1(z)) = \overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z) = \pi_1(z')$. Il existe alors $g \in G$ tel que $z' = z \cdot g$, et donc $\phi(z') = \phi(z \cdot g) = \phi(z) \cdot g$. Or $\phi(z') = \phi(z)$, Ce qui implique $\phi(z) \cdot g = \phi(z)$, d'où g = e (car l'action de G est libre) et z' = z.

Pour la surjectivité de ϕ , soit $z_2 \in P_2$, il existe alors (par surjectivité de $\overline{\phi}$) un point $x_1 \in M_1$ tel que $\overline{\phi}(x_1) = \pi_2(z_2)$. Considérons $z_1 \in P_1$ tel que $\pi_1(z_1) = x_1$. D'où $\overline{\phi}(\pi_1(z_1)) = \pi_2(z_2)$ et parsuite $\pi_2(\phi(z_1)) = \pi_2(z_2)$. L'action de G sur les fibres étant transitive, il existe alors $g \in G$ tel que $z_2 = \phi(z_1) \cdot g$. L'équivariance de ϕ donne alors $z_2 = \phi(z_1 \cdot g)$. Ainsi ϕ est bijective.

Pour montrer que $\phi^{-1}: P_2 \to P_1$ est différentiable, on va utiliser des trivialisations locales. Soit $\pi_2^{-1}(U_2) \cong U_2 \times G$ et $\pi_1^{-1}(U_1) \cong U_1 \times G$ deux trivialisations locaux respectivement de $P_2 \to M$ et $P_1 \to M$ tels que $\overline{\phi}(U_1) = U_2$. L'expression locale de la restriction de $\overline{\phi}$ à l'ouvert $\pi_1^{-1}(U_1)$ est de la forme

$$\phi: U_1 \times G \to U_2 \times G$$
, $(x, g) \mapsto h(x) \cdot g$

où $h:U_1\to G$ est une application différentiable. Donc l'expression locale de ϕ^{-1} est de la forme

$$\phi^{-1}: U_2 \times G \to U_1 \times G, \quad (x, g) \mapsto h(x)^{-1} \cdot g$$

qui est alors différentiable puisque l'application $g \mapsto g^{-1}$ est différentiable (puisque G est un groupe de Lie).

11 FIBRÉS PRINCIPAUX

45

Définition 11.3. *Soit* $P_i \rightarrow M_i$, i = 1, 2 *deux G-fibrés principaux.*

- 1. Un morphisme de G-fibrés principaux $\phi: P_1 \to P_2$ sera dit un **isomorphisme** si ϕ est un difféomorphime. L'application inverse $\phi^{-1}: P_2 \to P_1$ est alors un isomorphisme de G-fibrés principaux. On dit que les deux fibrés sont isomorphes.
- 2. Lorsque $M_1 = M_2 = M$, on dira qu'un morphisme $\phi: P_1 \to P_2$ est une **équivalence** si l'application induite $\overline{\phi}: M \to M$ est l'identité. Il résulte de la proposition ci-dessus que si $\overline{\phi}$ est une équivalence, alors $\overline{\phi}$ est un isomorphisme.
- 3. Un G-fibré principal est dit **trivial** s'il est équivalent au G-fibré trivial $p_1 : M \times G \to M$, où $p_1(x,a) = x$ et $(x,a) \cdot g = (x,ag)$.

11.3 Sections et trivialisations

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$, on définit

$$\varphi: M \times G \to P$$
, $\varphi(x, g) = \sigma(x) \cdot g$,

nous obtenons un difféomorphisme tel que le diagramme suivant

$$M \times G \xrightarrow{\varphi} P$$

$$\downarrow p_1 \downarrow \qquad \qquad \downarrow \pi$$

$$M \xrightarrow{id} M$$

commute. Ainsi le G-fibré principal $P \rightarrow M$ est trivial. Nous venons d'établir en partie :

Proposition 11.2. *Soit* $P \rightarrow M$ *un* G-fibré principal. Les assertions suivantes sont équivalentes :

- 1. $P \rightarrow M$ est trivial.
- 2. $P \rightarrow M$ admet une section globale différentiable.
- 3. Il existe une application différentiable $f: P \to G$ qui soit G-équivariante (c'est-à-dire $f(z \cdot g) = f(z)g$).

Démonstration. Nous avons déjà montré auparavant que $1. \implies 2$. l'autre sens est évident. $2. \implies 3$. : Soit $\sigma: M \to P$ une section. Pour tout $z \in P$, les deux points $\sigma(\pi(z))$ et z sont sur la même fibre, il en résulte que

$$\forall z \in P, \exists ! g \in G, z = \sigma(\pi(z)) \cdot g$$

Ce qui permet de définir une application $f: P \to G$ telle que $z = \sigma(\pi(z)) \cdot f(z)$. L'équivariance de f découle de :

$$\sigma(\pi(z)) \cdot f(z) a = z \cdot g = \sigma(\pi(z \cdot g)) \cdot f(z \cdot g) = \sigma(\pi(z)) \cdot f(z \cdot g).$$

3. \implies 2. : Soit $f:P\to G$ une application différentiable G-équivariante. On définit une section $\sigma:M\to P$ en posant

$$\sigma(x) = z \cdot f(z)^{-1}$$
, oú $z \in \pi^{-1}(x)$

le fait que σ est bien définie découle de l'équivariance de f. Pour montrer que σ est différentiable, il suffit de remarquer qu'on peut exprimer la restriction de σ à un ouvert trivialisant U_{α} en fonction de sections locaux différentiables.

Définition 11.4. *Fibré image réciproque (Pullback of principal bundle)* $Soit \pi : P \to M$ *un* G-fibré principal et $f : X \to M$ une application différentiable. Le fibré image réciproque de P par f est :

$$f^*P := \{(x, z) \in X \times P / f(x) = \pi(z)\}$$

C'est l'espace total d'un G-fibré principal défini par la projection $((x, z)) \mapsto x$ et l'action $(x, z) \cdot g = (x, z \cdot g)$.

Remarque 11.3.

- 1. $Si \pi: P \to M$ est trivial, alors f^*P est trivial.
- 2. Si f est constante, alors f^*P est trivial.
- 3. Le fibré image réciproque f^*P est trivial si et seulement si il existe une application différentiable $\lambda: X \to P$ telle que $f = \pi \circ \lambda$.
- 4. Pour $f = \pi : P \to M$, le fibré image réciproque $\pi^*P = P \times_{\pi} P \to P$ est trivial. Une section évidente de ce fibré est $\sigma : z \mapsto (z, z)$.

12 Fibrés associés à un fibré principal

Considérons $\pi: P \to M$ un G-fibré principal et $\rho: G \to \mathrm{Diff}(F)$ une action différentiable à gauche. On peut alors définir une action à droite de G sur $P \times F$ par $(z,y) \cdot g := (z \cdot g, g^{-1} \cdot y)$. On note alors $P \times_G F$ (ou $P \times_\rho F$) l'espace des orbites et soit [z,y] l'orbite de $(z,y) \in P \times F$. On désignera par $q: P \times F \to P \times_G F$ la projection canonique. Lorsque (z,y) et (z',y') sont sur une même orbite, alors $z' = z \cdot g$ pour un certain g, et donc $\pi(z) = \pi(z')$. On peut ainsi définir une application :

$$p: P \times_G F \to M$$
, $p([z, y]) := \pi(z)$.

On obtient ainsi un diagramme commutatif:

$$P \times F \xrightarrow{q} P \times_G F$$

$$\downarrow p$$

$$\downarrow p$$

$$P \xrightarrow{\pi} M$$

Proposition 12.1. *Pour un G-fibré principal* $\pi: P \to M$ *et une action différentiable* $\rho: G \to \mathrm{Diff}(F)$, *on a* :

- 1. $E := P \times_{\rho} F \xrightarrow{p} M$ est un fibré (différentiable localement trivial) de fibre-type F et l'application $q: P \times F \to P \times_G F$ est un morphisme de fibrés.
- 2. Pour tout $z \in P_m$, l'application $\tilde{z}: y \mapsto [z, y]$ est un difféomorphisme de F sur la fibre E_m .
- 3. Si F un \mathbb{K} -espace vectoriel (de dimension finie) et $\rho: G \to GL(F)$ un homomorphisme de groupes de Lie de G, le fibré $E = P \times_{\rho} F \to M$ possède alors une structure naturelle de fibré vectoriel. En outre, si la représentation ρ préserve un certain "type de structure" sur F, la structure de même type sur E_m obtenue par transport de structure à l'aide d'un tel difféomorphisme \widetilde{z} ne dépend pas du choix de z dans P_m .
- 4. La projection $q: P \times F \to P \times_G F$ est un G-fibré principal et $p_1: P \times F \to P$ est un morphisme de fibrés principaux.

Démonstration. (sketch) Soit (U_{α}) un recouvrement de M par des ouverts trivialisant le fibré principal $P \to M$. Pour tout α , on a une section locale $\sigma_{\alpha} : U_{\alpha} \to P$. Ces sections sont reliés par

$$\sigma_{\beta}(x) = \sigma_{\alpha}(x) \cdot g_{\alpha\beta}(x), \quad x \in U_{\alpha} \cap U_{\beta}$$

où $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$ sont différentiables. Pour tout α , on définit l'application

$$\varphi_{\alpha}: U_{\alpha} \times F \to p^{-1}(U_{\alpha}), \quad (x, y) \mapsto q(\sigma_{\alpha}(x), y)$$

qui a bien un sens puisque $p(q(\sigma_{\alpha}(x), y)) = x \in U_{\alpha}$. En plus, pour tout $x \in F$, l'application $\varphi_{\alpha, x}$: $y \mapsto [\sigma_{\alpha}(x), y]$ est une bijection de F sur $p^{-1}(x)$. Ce qui permet de déduire que φ_{α} est une bijection. Il est en plus facile de vérifier que les chagements

$$\varphi_{\alpha}^{-1} \circ \varphi_{\beta} : U_{\alpha} \cap U_{\beta} \times F \to U_{\alpha} \cap U_{\beta} \times F$$

sont données par : $\varphi_{\alpha}^{-1} \circ \varphi_{\beta}(x,y) = (x,g_{\alpha\beta}(x)\cdot y)$, qui sont donc des difféomorphismes. Ce qui permet de munir $P\times_G F\to M$ d'une structure de fibré différentiable localement trivial. Les autres points sont laissés à titre d'exercice.

Exemple 12.1. Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel et $R(E) \to M$ le fibré des repères, c'est un $GL(n,\mathbb{R})$ -fibré principal. Pour la représentation canonique de $GL(n,\mathbb{R})$ dans \mathbb{R}^n , on peut donc reconstruire un fibré vectoriel associé $R(E) \times_{GL(n,\mathbb{R})} \mathbb{R}^n$. Alors celui-ci est canoniquement isomorphe à E:

$$R(E) \times_{GL(n,\mathbb{R})} \mathbb{R}^n \xrightarrow{\cong} E, \quad [z, v] \mapsto z(v).$$

Nous discutons maintenant les sections d'un fibré associé.

Proposition 12.2. Soit $\pi: P \to M$ un H-fibré principal et $H \times F \to F$ une action différentiable. Alors il existe une bijection naturelle entre l'espace des sections différentiables $\Gamma(P \times_H F)$ du fibré associé $P \times_H F \to M$ et l'espace $C^{\infty}(P,F)^H$ des fonctions H-équivariantes $f: P \to F$ i.e. qui vérifient $f(z.a) = a^{-1}.f(z)$. Explicitement, cette correspondance est donnée par $s(\pi(z)) = [z, f(z)]$.

Démonstration. Partant d'une fonction $f: P \to F$ équivariante, on définit pose $\sigma(x) := [z, f(z)]$ où $z \in P_x$. La définition a bien un sens puisque f est-équivariante. Elle est C^{∞} puisque si U est un ouvert de M trivialisant le fibré principal, l'expression locale de σ est $\sigma(x) := [s(x), f(s(x))]$ avec s une section locale de $P_U \to U$.

Réciproquement, soit σ est une section C^{∞} de $P \times_H F \to M$. Pour tout $z \in P$, il existe un unique élément $f(z) \in F$ tel que $\sigma(\pi(z)) = [z, f(z)]$. On obtient ainsi une application $f: P \to F$. L'équivariante de f découle du fait que [z.a, f(z.a)] = [z, f(z)]. Pour montrer que f est C^{∞} , on peut considérer un recouvrement ouvert (U_{α}) de M par des ouverts trivialisant $P \to M$, et puis de remarquer que l'expression de la restriction de f à l'ouvert $\pi^{-1}(U_{\alpha})$ est (cf démonstration de la proposition 12.1) donnée par $f(z) = p_2(\varphi_{\alpha})^{-1}(\sigma(\pi(z)))$ avec $p_2: U_{\alpha} \times F \to F$ la seconde projection.

Exemple 12.2. (Fibré universel au dessus de G(n,k)) Les variétés de Stiefel V(n,k) et de Grassmann G(n,k) ont été définis dans 7.6. On a une projection canonique

$$\pi_k: V(n,k) \to G(n,k), \quad \pi_k(u_1,\cdots,u_k) = \text{vect}\{u_1,\cdots,u_k\}$$

C'est un O(k)-fibré principal appelé le fibré universel au dessus de G(n,k). Une autre fçon de décrire ce fibré est d'identifier V(n,k) à l'ensemble I(n,k) des isométries euclidiennes $f: \mathbb{R}^k \hookrightarrow \mathbb{R}^n$. Le groupe O(k) opère à droite sur I(n,k) par l'action : $f \cdot A := f \circ a$ (où a est l'isométrie de \mathbb{R}^k ayant A comme matrice relativement à la base canonique $\{e_1, \cdots, e_k\}$). Nous avons un difféomorphisme O(k)-équivariant

$$I(n,k) \stackrel{\cong}{\to} V(n,k), \quad f \mapsto f(e_1,\cdots,e_k).$$

Ce qui permet d'obtenir une définition équivalente du fibré universel :

$$p_k: I(n,k) \to G(n,k), \quad p_k(f) = f(\mathbb{R}^k).$$

Exemple 12.3. (Le fibré de Hopf) Pour k = 1, $V(n,1) = S^{n-1}$, $G(n,1) = \mathbb{R}P^{n-1}$ et $O(1) = \mathbb{Z}_2$. Dans le cas complexe, on obtient un S^1 -fibré principal $S^{2n-1} \to \mathbb{C}P^{n-1}$.

Proposition 12.3. Soit $\pi: P \to M$ un O(k)-fibré principal. Alors, il existe (pour un certain $n \ge k$) un homorphisme de O(k)-fibrés principaux

$$P \xrightarrow{\phi} I(n,k) .$$

$$\pi \downarrow \qquad \qquad \downarrow^{\pi_k}$$

$$M \xrightarrow{\psi} G(n,k)$$

Et donc $P \to M$ est isomorphe au fibré pull-back $\psi^*(I(n,k)) \to M$.

Exemple 12.4. (Fibré vectoriel canonique au dessus de G(n,k)) On définit

$$E(n,k) := \{ (V, v) \in G(n,k) \times \mathbb{R}^n / v \in V \}$$

Alors la projection canonique $p_k : E(n,k) \to G(n,k)$ (p(V,v)=V) est un \mathbb{R}^k -fibré vectoriel canoniquement isomorphe au fibré vectoriel associé au fibré principal $I(n,k) \to G(n,k)$ et à la représentation canonique de O(k) dans \mathbb{R}^k . En effet, il suffit de considérer la bijection :

$$\phi: I(n,k) \times_{O(k)} \mathbb{R}^k \xrightarrow{\cong} E(n,k), \quad [f,v] \mapsto (f(\mathbb{R}^k), f(v))$$

et puis munir E(n, k) de la structure différentiable de façon que ϕ devient un difféomorphisme.

Considérons par exemple $M \subset \mathbb{R}^n$ une sous-variété de dimension k. Alors pour tout $x \in M$, l'espace tangent T_xM est un k-sous espace vectoriel de \mathbb{R}^n , on peut interpréter $x \mapsto T_xM$ comme étant une application différentiable $\psi : M \to G(n,k)$ et nous avons un diagramme commutatif :

$$TM \xrightarrow{\phi} E(n,k) .$$

$$p \downarrow \qquad \qquad \downarrow p_k$$

$$M \xrightarrow{\psi} G(n,k)$$

Et parsuite $p:TM \to M$ est isomorphe au fibré pull-back $\psi^*(E(n,k)) \to M$.

13 Fibré tangent d'un espace homogène

Soit H un sous-groupe de Lie fermé d'un groupe de Lie G, au H-fibré principal $\pi:G\to G/H$ et aux trois représentations :

$$Ad: H \to GL(\mathcal{H}), Ad: H \to GL(\mathcal{G}) \text{ et } \overline{Ad}: H \to GL(\mathcal{G}/\mathcal{H}) \text{ (cf. 8.1)};$$

on peut faire correspondre trois fibrés associés :

$$G \times_H \mathcal{H}$$
, $G \times_H \mathcal{G}$ et $G \times_H (\mathcal{G}/\mathcal{H})$

tous de même base G/H.

Théorème 13.1.

1. Le fibré tangent à G/H est naturellement isomorphe à $G \times_H (\mathcal{G}/\mathcal{H})$:

$$G \times_H (\mathcal{G}/\mathcal{H}) \xrightarrow{\cong} T(G/H), \quad [g, X + \mathcal{H}] \mapsto \frac{d}{dt}_{|t| = 0} g \exp(tX)H$$

- 2. Le fibré $G \times_H \mathcal{G}$ est trivial.
- 3. La somme de Whitney $(G \times_H (\mathcal{G}/\mathcal{H})) \oplus (G \times_H \mathcal{H})$ est trivial.

Démonstration. (sketch)

1. L'action homogène de G sur G/H induit par différentiation une action de G sur T(G/H) de façon que le fibré tangent $p:T(G/H)\to G/H$ devient un G-fibré vectoriel (la projection p est équivariante). Il en résulte que par restriction, nous obtenons une application différentiable :

$$G \times T_{\overline{\rho}}(G/H) \to T(G/H), \quad (g, Z) \mapsto g \cdot Z$$

Celle-ci passe au quotient et induit un difféomorphisme

$$G \times_H T_{\overline{e}}(G/H) \xrightarrow{\cong} T(G/H)$$

En utilisant ensuite l'isomorphisme linéaire $\mathscr{G}/\mathscr{H} \stackrel{\cong}{\to} T_{\overline{e}}(G/H), \quad X+\mathscr{H} \mapsto T_{e}\pi(X)$ du lemme 8.1, on obtient le résultat.

2. L'application $\varphi: G/H \times \mathscr{G} \to G \times_H \mathscr{G}$ définie par

$$\varphi(aH, X) = [a, \operatorname{Ad}_{a^{-1}}(X)]$$

est un isomorphisme du fibré trivial $G/H \times \mathcal{G} \to G/H$ sur $G \times_H \mathcal{G} \to G/H$.

3. On a une suite exacte courte naturelle de fibrés vectoriels

$$0 \to (G \times_H \mathcal{H}) \to (G \times_H \mathcal{G}) \to (G \times_H (\mathcal{G}/\mathcal{H})) \to 0$$

d'où le résultat puisque le fibré du milieu est trivial d'après la question précédente.

Exemple 13.1. (Le fibré tangent de G(n,k)) Puisque la variété G(n,k) s'identifie à $O(n)/O(k) \times O(n-k)$ et qui est un espace homogène réductif; de manière plus précise on peut considérer le sous-espace $\mathcal{M} \subset so(n)$ des matrices antisymétriques de la forme $\begin{pmatrix} 0 & B \\ -B^t & 0 \end{pmatrix}$. Ce sous-espace est stable par la représentation adjointe de $O(k) \times O(n-k)$ puisqu'on a :

$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} 0 & B \\ -B^t & 0 \end{pmatrix} \begin{pmatrix} A^t & 0 \\ 0 & D^t \end{pmatrix} = \begin{pmatrix} 0 & ABD^t \\ -DB^tA^t & 0 \end{pmatrix}$$

Autrement dit, \mathcal{M} s'identifie à l'espace des matrices $B \in M_{k,n-k}(\mathbb{R})$ muni de l'action de $O(k) \times O(n-k)$ donnée par :

$$(A,D) \cdot B := ABD^t$$

Et qu'on obtient ainsi:

$$T(G(n,k)) \cong O(n) \times_{O(k) \times O(n-k)} M_{k,n-k}(\mathbb{R}).$$

13.1 Parallélisabilité

Définition 13.1. Une variété M (de dimension n) est dite parallélisable si son fibré tangent est trivial i.e. il existe un isomorphisme de fibrés vectoriels $\Phi: M \times \mathbb{R}^n \to TM$. Se qui équivaut à l'existence de n-champs de vecteurs tangents X^1, \ldots, X^n tels que pour tout $x \in M$, $T_xM = \text{vect}\{X_x^1, \cdots, X_x^n\}$.

Exemple 13.2.

- 1. Tout groupe de Lie est parallélisable.
- 2. Des sphères S^n seules S^1 , S^3 et S^7 sont parallélisables. En particulier la sphère S^2 ne l'est pas.
- 3. Comme autres exemples d'espaces homogènes non parallélisable, on peut considérer $U(n)/T^n$ avec T^n le sous-groupe des matrices $Diag(z_1, \dots, z_n)$ où les z_j sont des nombres complexes de module 1 (voir [7] p.211).
- 4. Les variétés de Stiefel V(n, k) pour $n \ge k \ge 2$ sont parallélisables (voir [8][13]).

14 Réduction du groupe structural

Soit H un sous-groupe de Lie fermé dans G. Un H-sous-fibré principal $Q \to M$ d'un fibré G-fibré principal $P \to M$ est un H-fibré principal dont l'espace total Q est une sous-variété de P stable par la restriction à H de l'action à droite de G sur P.

Par exemple, si M est une variété riemannienne de dimension n, l'ensemble RO(M) des repères orthonormés du fibré tangent TM forment un O(n)-sous-fibré principal du $GL(n,\mathbb{R})$ -fibré principal R(M) de tous les repères de TM. En tant que fibré vectoriel, TM est aussi bien égal au fibré $RO(M) \times_{O(n)} \mathbb{R}^n$ qu'au fibré $R(M) \times_{GL(n,\mathbb{R})} \mathbb{R}^n$, mais la donnée de RO(M) permet en plus de munir chaque espace tangent T_mM d'un produit scalaire.

Exercice 14.1. Soit H un sous-groupe de Lie fermé dans G, et Q un H-sous-fibré principal de d'un G-fibré principal P. Soit $\rho_H: H \to \operatorname{Diff}(F)$ la restriction à H d'une représentation $\rho: G \to \operatorname{Diff}(F)$ de G dans F. Montrer que les fibrés associés $F \times_{\rho_H} Q$ et $F \times_{\rho} P$ sont isomorphes.

Exercice 14.2 (Extension du groupe structural). Supposons que G soit un sous-groupe de Lie G' un groupe de Lie G' On fait opérer G sur G' par les translations à gauche. Montrer que $P' = G' \times_G P$ possède une structure naturelle de G'-fibré principal, et que P s'identifie à un G-sous-fibré principal de P'

Donnons nous un G-fibré principal $\pi: P \to M$, et un sous-groupe de Lie H fermé dans G.

Exercice 14.3. Montrer que les fibrés $P \times_G (G/H)$ et $P/H \to M$ sont isomorphes, P/H désignant l'espace quotient de P par l'action de H.

Proposition 14.1. Il revient au même de se donner un H-sous-fibré principal de P ou une section S du fibré en espaces homogènes $P \times_G (G/H) \to M$ associé à P par l'action à gauche de G sur G/H.

Démonstration. Soit Q un H-sous fibré principal d'un G-fibré principal $\pi: P \to M$. Pour tout point $m \in M$ choisissons arbitrairement un élément q_m de la fibre Q_m de Q en m. L'élément $[q_m, \overline{e}]$ de $P \times_G (G/H)$ ne dépend pas du choix de q_m car les éléments (q_m, \overline{e}) et (q_m, h, \overline{e}) sont équivalents modulo H. On définit ainsi une section s du fibré $(G/H) \times_G P \to M$ en posant $s(m) = [q_m, \overline{e}]$.

Réciproquement, si s est une telle section, alors on obtient un H-sous fibré principal $Q \to M$ en considérant $Q := \{(z \in P \mid s(\pi(z))) = [z, \overline{e}]\}.$

Remarque 14.1. En fait, plus généralement, on peut toujours restreindre le groupe structural G d'un fibré principal $P \to M$ à un sous groupe compact maximal K. Cela est dû au fait que l'espace homogène quotient G/K est toujours contractile, et que par conséquent le fibré associé de fibre G/K admet toujours des sections.

Réduction généralisée du groupe structural

Soit $\varphi: H \to G$ un homomorphisme de groupes de Lie. Il n'est pas nécéssaire que φ soit injectif pour que certaines des constructions précédentes gardent un sens. Par abus de langage, on appellera encore "réduction" du groupe structural d'un G fibré principal $P \to M$ la donnée d'un H-fibré

principal $Q \to M$ et d'un morphisme de fibrés $\widetilde{\varphi}: Q \to P$ commutant aux translations à droite au sens suivant :

$$\widetilde{\varphi}(zh) = \widetilde{\varphi}(z).\varphi(h)$$
 pour tous $z \in Q, h \in H$.

Exemple 14.1 (Structures spinorielles). *Pour* $n \ge 3$, *le groupe SO(n) a pour groupe fondamental* $\mathbb{Z}/2\mathbb{Z}$, *et pour revêtement universel le* groupe spinoriel Spin(n). *On appelle* structure spinorielle sur une variété riemannienne orientée V de dimension $n \ge 3$ une "réduction" à Spin(n) du groupe structural SO(n) du fibré $RO_+(V)$ des repères orthonormés directs : c'est un Spin(n)-fibré principal Spin(V), qui est un revêtement à deux feuillets de $RO_+(V)$.

15 Systèmes de fonctions de transition

Soit $\pi: E \to M$ un fibré localement trivial différentiable de fibre-type F: il existe alors une famille $(\Phi_{\alpha})_{\alpha}$ de trivialisations locales $\Phi_{\alpha}: F \times U_{\alpha} \stackrel{\cong}{\to} \pi^{-1}(U_{\alpha})$ telle que les ouverts U_{α} forment un recouvrement $\mathscr{U} = (U_{\alpha})$ de la base M.

Au dessus de l'intersection $U_{\alpha} \cap U_{\beta}$, supposée non vide, de deux des ouverts du recouvrement, il existe une (unique) application différentiable

$$g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to Diff(F),$$

telle que

$$\Phi_{\beta}(\lambda, m) = \Phi_{\alpha}(g_{\alpha\beta}(m).\lambda, m)$$
 pour tous $\lambda \in F, m \in U_{\alpha} \cap U_{\beta}$.

(On écrira par abus de notations $\Phi_{\beta} = \Phi_{\alpha} \circ g_{\alpha\beta}$.)

On a évidemment les relations $g_{\beta\alpha}=(g_{\alpha\beta})^{-1}$, et $g_{\alpha\gamma}=g_{\alpha\beta}.g_{\beta\gamma}$ sur l'intersection $U_{\alpha}\cap U_{\beta}\cap U_{\gamma}$.

Une telle famille $(U_{\alpha})_{\alpha}$, $(g_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to \mathrm{Diff}(F))_{\alpha\beta}$ s'appelle un système de fonctions de transition (ou 1-cocycle) adapté au fibré principal E.

Définition 15.1. On appelle plus généralement système de fonctions de transition sur une variété M, à valeurs dans Diff(F) la donnée d'un recouvrement $\mathcal{U} = (U_{\alpha})$ de M par des ouverts, et d'une famille d'applications différentiables

$$(g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to Diff(F))_{\alpha\beta}$$

telles que $g_{\beta\alpha} = (g_{\alpha\beta})^{-1}$, et $g_{\alpha\gamma} = g_{\alpha\beta}.g_{\beta\gamma}$ sur l'intersection $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. (Ces conditions sont dites conditions de cocycle).

La donnée d'un tel système de fonctions de transition à valeurs dans $\mathrm{Diff}(F)$ permet de reconstituer entièrement E. On définit en effet E comme le quotient $\left(\coprod_{\alpha}(F\times U_{\alpha})\right)/\mathscr{R}$ de la somme disjointe $\coprod_{\alpha}(F\times U_{\alpha})$ par la relation d'équivalence $(\lambda,m,\beta)\stackrel{\mathscr{R}}{\sim} (g_{\alpha\beta}(m).\lambda,m,\alpha)$ pour tout $\lambda\in F$ et tout $m\in U_{\alpha}\cap U_{\beta}$.

Exercice 15.1.

- 1. Préciser la structure de variété différentiable sur E.
- 2. Montrer que le système de fonctions de transition à partir duquel on a construit E est adapté à E.
- 3. Montrer réciproquement que, si le système de fonctions de transition à partir duquel on a construit E était adapté à un fibré E_0 , E et E_0 sont isomorphes.

Cas d'un fibré principal

Rappelons que la donnée d'une trivialisation locale $\Phi_\alpha: G \times U_\alpha \to \pi^{-1}(U_\alpha)$ d'un G-fibré principal $\pi: P \to M$ équivaut à la donnée de la section

$$\sigma_{\alpha}: m \mapsto \Phi_{\alpha}(1_G, m)$$

de $\pi^{-1}(U_{\alpha})$, où 1_G désigne l'élément neutre de G. Soit (σ_{α}) une famille de sections différentiables de $\pi^{-1}(U_{\alpha})$, les U_{α} recouvrant M. La famille des fonctions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$ telles que $\sigma_{\beta}(m) = \sigma_{\alpha}(m).g_{\alpha\beta}(m)$ (action à droite de G sur P) forme alors un système de fonctions de transition de P, G opérant sur lui-même par translations à gauche.

Pour faire opérer G à droite sur $(\coprod_{\alpha} (F \times U_{\alpha}))/\mathcal{R}$ quand on veut reconstituer la structure de fibré principal à partir de la donnée du seul système de fonctions de transition, on pose : $[g, m, \alpha]$. $[g, m, \alpha]$ désignant la classe d'équivalence du triplet $(g, m, \alpha) \in \coprod_{\alpha} (G \times U_{\alpha})$ modulo \mathcal{R} (cette définition ne dépendant pas du représentant (g, m, α) de $[g, m, \alpha]$).

16 Champs de vecteurs sur un fibré principal

16.1 Champs verticaux

Soit $P \to M$ un G-fibré principal. Pour tout élément $A \in \mathcal{G}$, on associe le champ de vecteurs complet A^* défini sur P par son flot :

$$\Phi^{A^*}(t,z) = z \cdot exp(tz)$$
 pour tout $z \in P$ et $t \in \mathbb{R}$.

 A^* est appelé champ de vecteurs *fondamental* associé à A.

Soit z un élément de la fibre P_m en un point m de la base : l'application $g\mapsto zg$ étant un difféomorphisme de G sur P_m qui commute aux translations à droite, et les champs de vecteurs invariants à gauche sur G étant engendrés par les translations à droite, la restriction à P_m du champ fondamental A^* est l'image par le difféomorphisme précédent du champ invariant à gauche sur G engendré par A.

Définition 16.1. Le fibré tangent vertical est le sous-fibré vectoriel $V(P) = \ker T\pi$ de TP au dessus de P. Un champ de vecteurs Z sur P sera dit vertical si $\pi_*(Z_Z) = 0$ pour tout $z \in P$, ce qui équivaut à ce que Z soit une section du fibré vertical $V(P) \to P$.

On désigne par $\mathcal{V}(P)$ le $C^{\infty}(P)$ -module des champs de vecteurs verticaux. On a les propriétés suivantes :

- 1. Pour tous $A, B \in \mathcal{G}$ on a: $[A^*, B^*] = [A, B]^*$.
- 2. Un champ de vecteur fondamental n'est pas nécessairement invariant par l'action du groupe G. On peut montrer que pour tout $g \in G$, l'image du champ de vecteur A^* par le difféomorphisme R_g est égale à $(Ad_{g^{-1}}(A))^*$.
- 3. Pour tout $z \in P$, l'application $A \mapsto A_z^*$ est un isomorphisme linéaire de \mathscr{G} sur l'espace tangent à la fibre $P_{\pi(m)} = z \cdot G$

$$V(P)_z = \ker T_z \pi = T_z(z \cdot G)$$

L'application $(z, A) \mapsto A_z^*$ est un isomorphisme du fibré trivial $P \times \mathcal{G} \to P$ sur le fibré vertical $V(P) \to P$.

4. L'espace V(P) est $C^{\infty}(P)$ -module libre de type fini engendré par les champs de vecteurs fondamentaux.

16.2 Champs projetables

Soit $P \rightarrow M$ un G-fibré principal.

Définition 16.2. *Un champ de vecteurs* Y *sur* P *sera dit champ projetable si pour tous* $z \in P$ *et* $g \in G$ *on a* :

$$\pi_*(Y_z) = \pi_*(Y_{z \cdot g})$$

Lorsque Y est un champ projetable, on peut lui associer sa projection sur Y sur la base M, c'est le champ de vecteurs défini par $\pi(Y)_{\pi}(z) = \pi_*(Y_z)$. En tant qu'opérateur sur les fonctions $f \in C^{\infty}(M)$, on a

$$\pi(Y) f \circ \pi = Y(f \circ \pi)$$

On désignera par \mathscr{P} l'espace des champs projetables. Il est muni d'une structure naturelle de $C^{\infty}(M)$ -module donnée par $f \cdot Y := (f \circ \pi)Y$ pour $f \in C^{\infty}(M)$ et $Y \in \mathscr{P}$.

Exercice 16.1. Déterminer les champs projetables dans les cas des fibrés principaux :

- 1. $\pi: \mathbb{C}^* \to [0, +\infty[$ donnée par $\pi(z) = |z|$; l'action du cercle S^1 sur \mathbb{C}^* est donnée par la multiplication naturelle $z \cdot e^{i\theta} = ze^{i\theta}$.
- 2. $\pi: O(n+1) \to S^n$ donnée $par \pi(A) = Ae_{n+1}$ avec e_{n+1} le dernier vecteur de la base canonique $de \mathbb{R}^{n+1}$ identifié à une matrice colonne, le groupe G := O(n) opérant à droite sur P := O(n+1) via la multiplication matricielle en identifiant $g \in O(n)$ à la matrice d'ordre n+1 de la forme

$$\left(\begin{array}{cc}g&0\\0&1\end{array}\right)$$

Lorsque Z est un champ de vecteurs sur P et $g \in G$, on désignera par $Z \cdot g$ l'image du champ Z par le difféomorphisme $R_g : P \to P$ donné par l'action.

Proposition 16.1. *Soit Z un champ de vecteurs sur P. Les assertions suivantes sont équivalentes :*

1. Z est un champ projetable.

- 2. $Z \cdot g Z$ est un champ vertical pour tout $g \in G$.
- 3. $Z(\pi^* f) \in \pi^*(C^{\infty}(M))$ pour tout $f \in C^{\infty}(M)$. (où $\pi^* f = f \circ \pi$)

Corollaire 16.1.

- 1. L'espace \mathcal{P} des champs projetables est est une sous-algèbre de Lie de $\chi(P)$ l'algèbre de Lie des champs de vecteurs sur P.
- 2. L'application linéaire $\pi: \mathscr{P} \to \chi(M)$ est un homomorphisme d'algèbre de Lie.

Proposition 16.2.

- 1. L'application $\pi: \mathcal{P} \to \chi(M)$ est surjective.
- 2. Le noyau $\ker \pi$ est égal à l'espace des champs de vecteurs verticaux. En particulier V(P) est un idéal de \mathcal{P} .

L'idée de la surjectivité de $\pi: \mathscr{P} \to \chi(M)$ repose sur l'existence d'une partition de l'unité $(\rho_i)_{i \in I}$ adaptée à un recouvrement localement fini $(U_i)_{i \in I}$ de base M par des ouverts contractiles (et donc trivialisant le fibré).

17 Formes différentielles sur un fibré principal

17.1 Formes différentielles

Définition 17.1. Soit M une variété différentielle de dimension n. Soit $p \in \{1, ..., n\}$. Une p-forme différentielle ω sur M est la donnée en tout point $x \in M$ d'une p-forme multilinéaire alternée ω_x sur l'espace tangent T_xM , telle pour toute famille $X^1, ..., X^p$ de champs de vecteurs sur M, l'application :

$$\omega(X^1,\dots,X^p): x \mapsto \omega_x(X_x^1,\dots,X_x^p)$$

soit différentiable.

Pour p = 0, une 0-forme différentielle sur M est la donnée d'une fonction $f \in C^{\infty}(M)$.

En d'autres termes, c'est aussi une section C^{∞} du fibré produit extérieur $\bigwedge^p T^*M$.

- On peut procéder par **recollement** pour définir une forme différentielle : partant d'un recouvrement de M par des ouverts (U_{α}) , on se donne une p-forme différentielle ω_{α} sur chaque U_{α} de façon que $\omega_{\alpha} = \omega_{\beta}$ sur chaque intersection $U_{\alpha} \cap U_{\beta}$ non vide : il existe alors une unique p-forme différentielle ω définie globalement sur tout M, dont la restriction à chaque U_{α} coïncide avec U_{α} .
- On désignera par $\Omega^p(M)$ (avec $\Omega^0(M) = C^\infty(M)$) l'ensemble des p-formes différentielles sur M: il est muni d'une structure naturelle de $C^\infty(M)$ -module, et le module gradué :

$$\Omega(M) = \bigoplus_{p=0}^{n} \Omega^{p}(M)$$

est muni d'une structure d'algèbre : pour $\omega \in \Omega^p(M)$ et $\eta \in \Omega^q(V)$, on appelle *produit extérieur* la (p+q)-forme différentielle $\omega \wedge \eta$ définie par :

$$(\omega \wedge \eta)(X_1,\ldots,X_{p+q}) = \sum_{\sigma} (-1)^{\sigma} \omega(X_{i_1},\cdots,X_{i_p}).\eta(X_{j_1},\cdots,X_{j_q})$$

où la sommation porte sur l'ensemble des couples de multi-indices

$$I = (i_1 < ... < i_p), \ J = (j_1 < ... < j_q)$$

tels que $(i_1, ..., i_p, j_1, ..., j_q)$ soit une permutation σ de l'ensemble $\{1, ..., p+q\}$, $(-1)^{\sigma}$ désignant la signature de cette permutation.

• Si (x_1, \dots, x_n) désigne un système de coordonnées locales sur un ouvert U de V, l'expression locale de la restriction ω_U de ω à l'ouvert U est donnée, pour $p \ge 1$, par :

$$\omega_U = \sum_I f_I \ dx_I$$

où la sommation porte sur l'ensemble des multi-indices

$$I = (1 \le i_1 < \dots < i_p \le n),$$

 f_I appartient à $C^{\infty}(M)$, et dx_I désigne la p-forme $dx_{i_1} \wedge \cdots \wedge dx_{i_p}$ sur U.

• Pour toute application différentiable $\psi: M \to N$ d'une variété différentiable M dans une autre N, notons ψ'_m ou $(d\psi)_m$ l'application linéaire tangente $\psi'_m: T_mM \to T_{\psi(m)}N$ en un point m de M. Pour $p \ge 1$, on définit *l'image réciproque* d'une p-forme $\omega \in \Omega^p(N)$ comme étant la p-forme $\psi^*\omega \in \Omega^p(M)$ obtenue en posant :

$$(\psi^*\omega)(X_1,\ldots,X_p)(m) = \omega_m(\psi'_m(X_1),\ldots,\psi'_m(X_p)) \text{ si } p \ge 1,$$

et $\psi^*(f) = f \circ \psi$ pour une fonction $f \in \Omega^0(N)$.

17.2 Complexe de de Rham

Lorsque $f \in \Omega^0(M)$, la différentielle df est la 1-forme différentielle telle que df(X) = X.f pour tout champ de vecteurs $X \in V(M)$.

Pour $p \ge 1$, on appelle *différentielle extérieure* d'une p-forme différentielle ω sur M, la (p+1)-forme différentielle notée $d\omega$ définie par :

$$d\omega(X_0, \dots, X_p) = \sum_{i=0}^p (-1)^i X_i \cdot \omega(X_0, \dots, \widehat{X_i}, \dots, X_p) +$$
$$\sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_0, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_p).$$

Sur un ouvert U admissible pour des coordonnées locales $(x_1, ..., x_p)$, la différentielle extérieure est donnée parla formule

$$d(f dx_I) = \sum_k \frac{\partial f}{\partial x_k} dx_k \wedge dx_I.$$

Nous obtenons ainsi un opérateur IR-linéaire

$$d:\Omega^*(M)\to\Omega^{*+1}(M)$$

qui vérifie:

$$d \circ d = 0$$
.

$$H^{p}(M) = \frac{\ker(d: \Omega^{p}(M) \to \Omega^{p+1}(M))}{\operatorname{im}(d: \Omega^{p-1}(M) \to \Omega^{p}(M))}.$$

Pour tous $\omega \in \Omega^p(M)$ et $\eta \in \Omega^q(M)$, la formule

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^p \omega \wedge d\eta$$

est vérifiée. On dit que d est une dérivation de l'algèbre différentielle graduée $\Omega(M)$. On obtient une structure d'algèbre graduée sur

$$H(M) = \bigoplus_{p=0}^{n} H^{p}(M).$$

Pour toute fonction $\psi: M \to N$, la formule $\psi^*(d\beta) = d(\psi^*\beta)$ est vérifiée. On en déduit que ψ^* induit un homomorphisme d'algèbres graduées

$$H^*(\psi): H(N) \to H(M)$$
.

Cohomologie et actions de groupes : Soit M une variété différentiable sur laquelle opère différentiablement (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(M)$ on pose

$$g.\alpha = R_g^*(\alpha)$$

Nous obtenons ainsi une action de G sur $\Omega(M)$. Cette action passe à la cohomologie et induit une action de G sur l'espace de cohomologie H(M).

Théorème 17.1. Supposons que G est compact. Alors

- 1. L'inclusion $\iota: (\Omega(M))^G \subset \Omega(M)$ induit un morphisme injectif en cohomologie, dont l'image est l'algèbre $H(M)^G$ des éléments de la cohomologie qui sont invariants par G.
- 2. Si un groupe de Lie G, à la fois compact et connexe, opère sur une variété M, i induit un isomorphisme en cohomologie :

$$H(\iota): H((\Omega(M))^G) \xrightarrow{\cong} H(M)$$

Nous allons maitenant discuter quelques exemples d'applications.

Corollaire 17.1 (Cohomologie d'un groupe de Lie compact connexe). *Soit G un groupe de Lie compact connexe.*

- 1. L'inclusion $(\Omega(G))^{l(G)} \subset \Omega(G)$ des formes différentielles invariantes à gauche, induit un isomorphisme en cohomologie.
- 2. Les formes différentielles bi-invariantes sur G sont fermées, et leur inclusion dans $\Omega(G)$ induit un isomorphisme en cohomologie : la cohomologie de de Rham de G s'identifie donc à l'algèbre des formes différentielles bi-invariantes.

Remarque 17.1. : le complexe $(\Omega(G))^{l(G)}$ des formes différentielles invariantes à gauche s'identifie au complexe $(\wedge \mathcal{G}^*, \partial)$ où l'expression de la différentielle $\partial : \wedge^k \mathcal{G}^* \to \wedge^{k+1} \mathcal{G}^*$ est donnée par :

$$\partial \alpha(u_0, \dots, u_k) := \sum_{i < j} (-1)^{i+j} \alpha([u_i, u_j], u_0, \dots, \hat{u_i}, \dots, \hat{u_j}, \dots, u_k)$$
(17.1)

le chapeau désigne suppression.

Cohomologie de l'espace projectif réel : L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2 := \{-1, +1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $v: x \mapsto -x$). La projection canonique $\pi: S^n \to \mathbb{RP}^n$ permet d'identifier les formes sur \mathbb{RP}^n aux formes sur S^n qui sont \mathbb{Z}_2 -invariantes et nous obtenons :

$$\mathbf{H}^{\mathbf{p}}(\mathbb{IRP}^{\mathbf{n}}) \cong (\mathbf{H}^{\mathbf{p}}(\mathbf{S}^{\mathbf{n}}))^{\mathbb{Z}_2}$$

Par conséquent : $\mathbf{H}^{\mathbf{p}}(\mathbb{IRP}^{\mathbf{n}}) = \mathbf{0}$ pour tout $p = 1, \dots, n-1$.

Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Et puisque $v^*(\omega) = (-1)^{n+1}\omega$, nous obtenons : $H^n(\mathbb{IRP}^n) = 0$ si n est paire et $H^n(\mathbb{IRP}^n) = Vect\{\overline{\omega}\}$ si n est impaire (où $\overline{\omega}$ est la n-forme sur \mathbb{IRP}^n telle que $\pi^*(\omega) = \overline{\omega}$).

Notons aussi que si n est impaire, la forme $\overline{\omega}$ est une forme volume sur \mathbb{RP}^n , qui est alors orientable. L'espace projectif n'est pas orientable dans le cas paire.

17.3 Cas d'un fibré principal

Soit $\pi:P\to M$ un H-fibré principal. On dira qu'une forme différentielle $\beta\in\Omega(P)$ est basique s'il est à la fois H-invariante et satisfait $i_{X^h}\beta=0$ pour tout $h\in\mathcal{H}$. Ce qui équivaut, lorsque H est connexe, à

$$L_{X^h}\beta = 0$$
 et $i_{X^h}\beta = 0$.

On désigne par $\Omega_h(P)$ l'espace des formes basiques.

Proposition 17.1. L'homomorphisme $\pi^*: \Omega(M) \to \Omega(P)$ est injectif. L'image de π^* s'identifie à $\Omega_h(P)$.

 $D\'{e}monstration$. L'injectivit\'e de π^* découle du fait que les applications π et π_z' sont surjectives. De plus, les relations

$$\pi \circ R(a) = \pi$$
, $\forall a \in H$ et $\pi'_z(X_z^h) = 0$, $\forall h \in \mathcal{H} \ \forall z \in P$,

implique que $\pi^*(\Omega(M)) \subset \Omega_b(P)$. Partant de β une k-forme basique, il est facile de voir qu'on peux définir $\alpha \in \Omega^k(M)$ par

$$\alpha_x(X_x^1, \dots, X_x^k) = \beta_z(Y_z^1, \dots, Y_z^k)$$

avec $\pi(z) = x$ et $\pi'_z(Y_z^i) = X_x^i$, en plus $\pi^*(\alpha) = \beta$.

Corollaire 17.2. On obtient un isomorphisme en cohomologie $H(\pi): H(M) \stackrel{\cong}{\to} H(\Omega_h(P))$

Cohomologie de l'espace projectif complexe : L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibré de Hopf) : $\pi:S^{2n+1}\to\mathbb{CP}^n$. Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . L'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega^*_b(S^{2n+1})$. Ainsi le calcul de $H^*(\mathbb{CP}^n)$ est ramené au calcul de la cohomologie de $\Omega^*_b(S^{2n+1})$.

Pour cela, on montre (exercice) que nous avons une suite axacte courte :

$$0 \longrightarrow \Omega_b^*(S^{2n+1}) \stackrel{\iota}{\longrightarrow} (\Omega^*(S^{2n+1}))^{S^1} \stackrel{i_A}{\longrightarrow} \Omega_b^{*-1}(S^{2n+1}) \to 0$$

où le complexe du milieu est celui des formes S^1 -invariantes. En écrivant la suite exacte longue de cohomologie associée, nous obtenons que pour tout $j=1,\cdots,n$ on a

$$\mathbf{H}^{2j}(\mathbb{CP}^{\mathbf{n}}) = \mathbb{R} \text{ et } \mathbf{H}^{2j+1}(\mathbb{CP}^{\mathbf{n}}) = \mathbf{0}.$$

Théorème 17.2 (Formes invariantes et cohomologie d'un espace homogène). *Soit G un groupe de Lie et H un sous-groupe fermé.*

1. L'espace $(\Omega^k(G/H))^G$ des formes différentielles G-invariantes est isomorphe à l'espace $(\bigwedge^k (\mathcal{G}/\mathcal{H})^*)^H$. L'action de H sur $\bigwedge^k (\mathcal{G}/\mathcal{H})^*$ étant définie par :

$$(a \cdot \lambda)(u_1 + \mathcal{H}, \cdots, u_k + \mathcal{H}) = \lambda(\operatorname{Ad}_{(a^{-1})}(u_1) + \mathcal{H}, \cdots, \operatorname{Ad}_{(a^{-1})}(u_k) + \mathcal{H})$$

- 2. La différentielle $\partial: \bigwedge^k \mathcal{G}^* \to \bigwedge^{k+1} \mathcal{G}^*$ donnée par 17.1, induit une application linéaire bien définie $\partial_H: (\bigwedge^k (\mathcal{G}/\mathcal{H})^*)^H \to (\bigwedge^{k+1} (\mathcal{G}/\mathcal{H})^*)^H$. Cette application coïncide avec la différentielle usuelle de de-Rham suite à l'identification de $(\Omega(G/H))^G \cong (\bigwedge(\mathcal{G}/\mathcal{H})^*)^H$.
- 3. Lorsque G est compact connexe, la cohomologie de de-Rham de G/H est la cohomologie du complexe $((\bigwedge (\mathcal{G}/\mathcal{H})^*)^H, \partial_H)$.

La démonstration de ce théorème pourrait faire l'objet d'un exercice intéressant.

Exemple 17.1. (Orbites co-adjointes) Soit G un groupe de Lie d'algèbre de Lie \mathcal{G} . Considérons la représentation co-adjointe :

$$Ad^*: G \to GL(\mathcal{G}^*), \quad Ad^*(g)(\lambda) = \lambda \circ Ad(g^{-1}).$$

Pour tout $\lambda \in \mathcal{G}^*$ non nulle, on peut considérer la G-orbite $G(\lambda) \subset \mathcal{G}^*$, celle-ci s'identifie à G/G_λ avec $G_\lambda = \{g \in G/\lambda \circ \operatorname{Ad}(g) = \lambda\}$ le groupe d'isotopie en λ . L'algèbre de Lie de G_λ est $\mathcal{G}_\lambda = \{X \in \mathcal{G}/\lambda \circ \operatorname{ad}_X = 0\}$. Autrement dit, $\mathcal{G}_\lambda = \{X \in \mathcal{G}/\lambda \circ \operatorname{ad}_X = 0\}$. Il s'en suit que $\partial \lambda : \mathcal{G} \times \mathcal{G} \to \mathbb{R}$ passe au quotient et induit une forme bilinéaire antisymétrique non dégénerée $\mathcal{G}/\mathcal{G}_\lambda \times \mathcal{G}/\mathcal{G}_\lambda \to \mathbb{R}$. Ce qui permet d'obtenir une structure symplectique G-invariante $\omega \in \Omega^2(G/G_\lambda)^G$. Celle-ci est connue sous le nom de forme de Kirillov-Kostant-Souriau (KKS-form). En particulier la dimension de G/G_λ est paire pour tout $\lambda \in \mathcal{G}^*$ non nulle.

18 Formes à coefficients dans un fibré vectoriel

On définit le $C^{\infty}(M)$ -module $\Omega^p(M,E)$ des p-formes sur M à coefficients dans un fibré vectoriel E: ce sont les applications $\alpha:(X_1,\cdots,X_p)\mapsto\alpha(X_1,\cdots,X_p)$ qui, à p champs de vecteurs X_1,\cdots,X_p sur M, associent une section différentiable $\alpha(X_1,\cdots,X_p)$ de E, et qui sont $C^{\infty}(M)$ -linéaires en chacun des p arguments X_a , et alternées $(\alpha(X_1,\cdots,X_p)=0$ si deux des arguments X_a prennent des valeurs égales, ou -ce qui revient au même- telles que $\alpha(X_{\sigma(1)},\cdots,X_{\sigma(p)})=(-1)^{\sigma}\alpha(X_1,\cdots,X_p)$ pour toute permutation σ de $\{1,2,\cdots,p\}$, $(-1)^{\sigma}$ désignant la signature de la permutation).

Les formes différentielles usuelles (à valeurs scalaires) sont les formes à coefficients dans le fibré trivial $M \times \mathbb{R} \to M$.

18.0.1 Produit extérieur

On se donne un morphisme $B: E_1 \otimes E_2 \to E_3$ de fibrés vectoriels (ou application "bilinéaire" $B: E_1 \times E_2 \to E_3$). On définit alors le *produit extérieur* $\alpha \overset{B}{\wedge} \beta$ relatif à B (encore noté $\alpha \wedge \beta$ s'il n'y a pas d'ambigüité sur B) d'une forme $\alpha \in \Omega^p(M, E_1)$ par une forme $\beta \in \Omega^q(M, E_2)$ comme étant la forme dans $\Omega^{p+q}(M, E_3)$ définie par la formule

$$(\alpha \wedge \beta)(X_1, \dots, X_{p+q}) = \frac{1}{p!q!} \sum_{\sigma} (-1)^{\sigma} B(\alpha(X_{i_1}, \dots, X_{i_p}), \beta(X_{i_{p+1}}, \dots, X_{i_{p+q}})),$$

la sommation étant faite sur toutes les permutations $\sigma=(i_1,\cdots,i_{p+q})$ de $\{1,\cdots,p+q\}$ telles que $i_1< i_2<\cdots< i_p$ et $i_{p+1}< i_{p+2}<\cdots i_{p+q}$, $(-1)^\sigma$ désignant la signature de la permutation.

Le produit extérieur usuel des formes scalaires est le produit relatif à la multiplication usuelle des scalaires.

18.1 Formes tensorielles à valeurs dans un G-module

Soit $\pi: P \to M$ un G-fibré principal, (F, ρ) un G-module, et $E = P \times_{\rho} F$ le fibré vectoriel associé. Supposons que $u = (u_1, u_2 \cdots, u_r)$ soit un point de F, supposé égal à \mathbb{K}^r pour fixer les idées. Soit z un point de P tel que $\pi(z) = m$, et $\widetilde{z}: u \mapsto [z, u]$ le repère de E_m qu'il définit : dire que le couple (z, u) représente le vecteur [z, u] de E_m signifie que les nombres $(u_1, u_2 \cdots, u_r)$ sont les coordonnées de [z, u] relativement au repère \widetilde{z} de E_m . On définit donc encore un vecteur de E_m par la fonction φ de P_m dans F qui, à tout repère $z \in P_m$, associe les coordonnées du vecteur par

rapport à ce repère : cette fonction φ est "équivariante", ce qui veut dire qu'elle vérifie la formule

$$\varphi(zg) = <\rho(g^{-1}), \varphi(z)>$$

pour tous z,g. De même le $C^{\infty}(M)$ -module des sections différentiables de E est isomorphe au $C^{\infty}(M)$ -module $\Omega^0_G(P,F)$ des fonctions différentiables de P à valeurs dans F qui sont équivariantes : $\varphi(zg) = \langle \rho(g^{-1}), \varphi(z) \rangle$ pour tout z,g. (Le soin de définir la structure de $C^{\infty}(M)$ -module sur $\Omega^0(P,F)$ est laissé au lecteur).

De façon plus générale, soit $\alpha \in \Omega^p_{DR}(M,E)$ une p-forme sur M à coefficients dans le fibré vectoriel $E = P \times_{\rho} F$. Notons $\widetilde{\alpha}$ la p forme sur P à coefficients dans F dont la valeur en un point z de P est donnée par la formule

$$\widetilde{\alpha}(Z_1,\dots,Z_p)=<\widetilde{z}^{-1},\alpha(\pi_*(Z_1),\dots,\pi_*(Z_p))>.$$

On vérifie aisément que la p-forme α possède les deux propriétés suivantes :

- elle vérifie la formule

$$\alpha(Z_1.g, \dots, Z_p.g) = <\rho(g^{-1}), \alpha(Z_1, \dots, Z_p)>,$$

pour tous vecteurs $Z_1, \dots Z_p$ tangents à P en un même point z, et tout $g \in G$, $Z_a.g$ désignant l'image de Z_a par la différentielle de la translation à droite par g dans P, (on dit qu'elle est G-équivariante),

- elle vérifie la formule $w(Z_1, \dots, Z_p) = 0$, dès que l'un au moins des vecteurs Z_a est vertical, (on dit qu'elle est 0-verticale).

Notons donc $\Omega^p_{0\rho}(P,F)$ (ou $\Omega^p_{0G}(P,F)$ s'il n'y a pas d'ambigüité sur ρ) le sous-espace de $\Omega^p_{DR}(P,F)$ constitué des p-formes w sur P à coefficients dans l'espace vectoriel F qui, à p champs de vecteurs Z_1, \cdots, Z_p sur P, associent une fonction différentiable $w(Z_1, \cdots, Z_p): P \to F$, - qui sont G-équivariantes,

$$w(Z_1,g,\dots,Z_p,g) = <\rho(g^{-1}), w(Z_1,\dots,Z_p)>,$$

- et 0-verticales , c'est-à-dire telles que $w(Z_1,\cdots,Z_p)=0$ dès que l'un au moins des champs Z_a est vertical.

On vérifie aisément que $(u \circ \pi).w$ appartient encore à $\Omega^p_{0\rho}(P,F)$, pour $w \in \Omega^p_{0\rho}(P,F)$ et $u \in C^\infty(M)$, de sorte que $\Omega^p_{0G}(P,F)$ possède une structure naturelle de $C^\infty(M)$ -module. Tout morphisme $u: (F,\rho) \to (F',\rho')$ de G-modules induit un morphisme (encore noté u) de $\Omega^p_{0\rho}(P,F)$ dans $\Omega^p_{0\rho'}(P,F')$.

Les éléments de $\Omega^p_{0\rho}(P,F)$ sont appelés *p-formes tensorielles* à valeurs dans le *G*-module (F,ρ) .

Théorème 18.1. [L'isomorphisme K.] L'application $K: \alpha \mapsto \widetilde{\alpha} \ de \ \Omega_{DR}^p(M,E) \ dans \ \Omega_{0\rho}^p(P,F) \ est \ un isomorphisme de <math>C^{\infty}(M)$ -modules.

^{3.} à une section $s: M \longrightarrow E$, on associe la fonction $\widetilde{s}: P \longrightarrow F$ en posant $\widetilde{s}(z) = \widetilde{z}^{-1}(s(\pi(z)))$. Réciproquement à partir d'une fonction $f \in \Omega^0_G(P, F)$, on définit la section s_f comme suit : pour $x \in M$ on choisit $z \in P$ tel que $\pi(z) = x$ puis on pose $s_f(z) = \widetilde{z}(f(z)) = [z, f(z)]$

Démonstration. Il est clair que l'application K est $C^{\infty}(M)$ -linéaire et injective.

Supposons réciproquement que w appartienne à $\Omega^p_{0p}(P,F)$. Pour tous vecteurs tangents X_1,\cdots,X_p à M en un même point m, notons z n'importe quel point de P_m , et Z_i n'importe quel vecteur de T_zP se projetant sur X_i . Du fait que w est G-équivariante, et 0-verticale, le vecteur $<\widetilde{z},w_z(Z_1,\cdots,Z_p)>$, ne dépend que de X_1,\cdots,X_p . Il est clair d'autre part que cette expression est p-multilinéaire alternée en X_1,\cdots,X_p . Il existe donc une unique forme α sur M à coefficients dans E, telle que $w=\widetilde{\alpha}$.

Le résultat suivant est utile pour prouver la G-équivariance d'une forme sur P si le groupe structural est connexe.

Proposition 18.1.

(i) Si la p-forme w est G-équivariante, elle vérifie la formule

$$(L_{A^*} w)(Z_1, \dots, Z_p) = - \langle A, w(Z_1, \dots, Z_p) \rangle$$

pour tous champs de vecteurs Z_i sur P et tout $A \in \mathcal{G}$, \mathcal{G} désignant l'algèbre de Lie de G, L_{A^*} la dérivée de Lie par rapport au champ fondamental A^* engendré par A, et <, > l'évaluation $\mathcal{G} \times F \to F$ associée à la différentielle de ρ : $G \to GL(F)$.

(ii) La réciproque est vraie lorsque le le groupe de Lie G est connexe : il revient alors au même de dire qu'une p-forme w sur le G-fibré principal P et à coefficients dans un G-module (F, ρ) est G-équivariante, ou qu'elle vérifie la formule

$$(L_{A^*} w)(Z_1, \dots, Z_p) = - \langle A, w(Z_1, \dots, Z_p) \rangle$$

pour tous champs de vecteurs Z_i sur P et tout $A \in \mathcal{G}$, \mathcal{G} désignant l'algèbre de Lie de G, L_{A^*} la dérivée de Lie par rapport au champ fondamental A^* engendré par A, et <, > l'évaluation $\mathcal{G} \times F \to F$ associée à la différentielle de $\rho : G \to GL(F)$.

19 Connexion sur un fibré principal

19.1 Espaces horizontaux

Soit $\pi: P \to M$ un G-fibré principal. Notons V(P) le fibré des vecteurs tangents à l'espace total P du fibré, qui sont verticaux.

Définition 19.1. On appelle connexion sur P la donnée d'un sous-fibré différentiable $H \to P$ du fibré tangent TP, qui soit

- (i) supplémentaire de V(P): $TP = V(P) \oplus H$
- (ii) et invariant par la différentielle des actions à droite de G dans $P: H_{zg} = H_z \cdot g$ pour tous $z \in P$ et $g \in G$.

Autrement dit, une connexion est la donnée en tout point $z \in P$ d'un sous-espace $H_z \subset T_z P$ tel que :

- 1. $T_z P = V_z \oplus H_z$ pour tout $z \in P$.
- 2. $H_{z \cdot g} = H_z$ pour tous $z \in P$ et $g \in G$.
- 3. Pour tout champ de vecteurs $Z \in \chi(P)$, sa composante verticale Z^v et sa composante horizontale Z^h ($Z_z = Z_z^v + Z_z^h$ avec $Z_z^v \in V_z$ et $Z_z^h \in H_z$) sont différentiables.

Voici une définition équivalente :

Définition 19.2. Une connexion sur un G-fibré principal $\pi: P \to M$ est un homomorphisme de fibrés vectoriels $v: TP \to TP$ à image dans V(P) satisfaisant:

- 1. $v \circ v = v$
- 2. v est G-équivariant : $v(Z_z \cdot g) = v(Z_z)$ pour tout $g \in G$ et $Z_z \in T_z P$.

C'est ce qu'on appelle un projecteur G-équivariant sur le fibré vertical V(P). La distribution horizontale est $H = \ker v$.

19.2 Relèvement des champs

Soit $\pi: P \to M$ un *G*-fibré principal muni d'une connexion.

Pour tout $z \in P$, la restriction de la différentielle de la projection à H_z réalise un isomorphisme

$$T_*\pi: H_z \to T_{\pi(z)}M$$

Il en résulte que pour tout $X_x \in T_xM$ $(x = \pi(z))$, il existe un unique vecteur tangent $\tilde{X}_z \in H_z$ tel que $\pi_*(\tilde{X}_z) = X_x$.

Désignons par \mathcal{H} le $C^{\infty}(P)$ -module des sections du fibré $H \to P$, c'est le module des champs de vecteurs horizontaux. On a encore une décomposition de modules :

$$\gamma(P) = \mathcal{V}(P) \oplus \mathcal{H}$$

Il est facile de voir que lorsque $Z \in \mathcal{P}$, alors sa composante horizontale sur \mathcal{H} est aussi dans \mathcal{P} , il en résulte :

$$\mathscr{P} = \mathscr{V}(P) \oplus \mathscr{H} \cap \mathscr{P}$$

et que nous obtenons : par restriction du projecteur $\pi: \mathscr{P} \to \chi(M)$, un isomorphisme de $C^{\infty}(M)$ -modules :

$$\mathcal{H} \cap \mathcal{P} \to \chi(M)$$

L'isomorphisme inverse $X \mapsto \widetilde{X}$ est connu sous le nom de $rel\`evement$ horizontal des champs de vecteurs.

Exercice 19.1. Soit $\pi: P \to M$ un G-fibré principal. On désigne par $\chi(P)^G$ l'espace des champs de vecteurs invariants par l'action de G. Montrer que

1. La restriction du projecteur $\pi: \mathcal{P} \to \chi(M)$ à $\chi(P)^G$ est une surjection de $\chi(P)^G$ sur $\chi(M)$.

2. Si on muni le fibré d'une connexion, alors

$$\chi(P)^G = (\mathcal{V}(P))^G \oplus \mathcal{H}^G \text{ et } \mathcal{H} \cap \mathcal{P} = \mathcal{H}^G$$

3. Si on muni le fibré d'une connexion, alors pour tous $X_1, X_2 \in \chi(M)$, on a

$$\widetilde{[X_1,X_2]} = [\widetilde{X_1},\widetilde{X_2}]^h$$

- 4. Si on muni le fibré d'une connexion, alors le $C^{\infty}(P)$ -module \mathcal{H} est engendré par $\mathcal{H} \cap \mathcal{P}$.
- 5. Le $C^{\infty}(P)$ -module de tout les champs de vecteurs $\chi(P)$ est engendré par \mathscr{P} .

19.3 Formes de connexion

Soit $\pi: P \to M$ un G-fibré principal muni d'une connexion. Celle-ci peut aussi être interprétée comme un projecteur G-équivariant de TP sur Le fibré tangent vertical V. Et puisqu'on $V \to P$ est naturellement isomorphe au fibré trivial $P \times \mathcal{G} \to P$, nous obtenons une 1-forme différentielle ω sur P à valeurs dans l'algèbre de Lie \mathcal{G} .

On appellera donc encore *connexion* sur P la donnée d'une 1-forme ω sur P à coefficients dans l'algèbre de Lie $\mathcal G$ telle que

(i) $\omega(A^*) = A$ pour tout $A \in \mathcal{G}$,

(ii) et
$$\omega_{z\cdot g}(Z_z.g) = Ad(g^{-1})\omega_z(Z_z)$$
 pour tout $Z_z \in T_zP$ et tout $g \in G$.

Exemple 19.1 (Forme de Maurer-Cartan sur un groupe de Lie).

Notons ω : $TG \to \mathcal{G}$ la forme sur G dite "de Maurer-Cartan", définie par $\theta(gA) = A$ pour tout $g \in G$ et tout A dans l'algèbre de Lie \mathcal{G} , identifiée ici à l'espace tangent en l'élément neutre du groupe S. Sur le fibré trivial $G \to S$, ω est une forme de connexion.

Soit $\mathscr{B} = \{e_1, \dots, e_r\}$ une base de \mathscr{G} et désignons par $\mathscr{B}^* = \{\varepsilon_1, \dots, \varepsilon_r\}$ sa base duale. L'unique forme invariante à gauche sur G obtenue par translation à gauche de ε^i sera notée ω^i . On obtient alors facilement :

$$\omega = \sum_{1}^{r} \omega^{i} \otimes e_{i}$$

Introduisant les constantes de structure de l'algèbre de Lie relativement à la base ${\mathcal B}$:

$$[e_j, e_k] = \sum_{i=1}^r C_{jk}^i e_i$$

La différentielle de ω^i est alors :

$$d\omega^{i} = -\sum_{j < k} C^{i}_{jk} \omega^{j} \wedge \omega^{k} = -\frac{1}{2} \sum_{j,k} C^{i}_{jk} \omega^{j} \wedge \omega^{k}$$

^{4.} voir Koszul page 49

^{5.} La forme de Maurer-Cartan permet de comparer les deux définitions de l'algèbre de Lie : vecteurs tangents en l'élément neutre, et champs de vecteurs invariants à gauche.

Il en découle

$$d\omega = -\frac{1}{2}(\sum_{i,k}\omega^{j}\wedge\omega^{k}\otimes\left[e_{j},e_{k}\right]) = -\frac{1}{2}\omega\wedge\omega$$

Nous obtenons l'équation dite de Maurer-Cartan :

$$d\omega + \frac{1}{2}\omega \wedge \omega = 0$$

19.4 Forme de courbure

Définition 19.3. Etant donnée une forme de connexion ω sur un G-fibré principal P, on appelle forme de courbure la 2-forme sur P à coefficients dans \mathcal{G}

$$\Omega = d\omega + [\omega, \omega],$$

où $d\omega$ désigne la différentielle extérieure usuelle, et $[\omega, \omega]$ désigne la 2-forme définie par $[\omega, \omega](Z_1, Z_2) = [\omega(Z_1), \omega(Z_2)]$ (crochet dans \mathcal{G}).

Remarque 19.1. Puisque le produit extérieur $\omega \wedge \omega$ relatif au crochet dans l'algèbre de Lie est défini par $(\omega \wedge \omega)(Z_1, Z_2) = [\omega(Z_1), \omega(Z_2)] - [\omega(Z_2), \omega(Z_1)]$, et puisque ce crochet est anti-symétrique, on peut écrire aussi :

$$\Omega = d\omega + \frac{1}{2} \omega \wedge \omega.$$

Pour tout $Z_1, Z_2 \in \chi(P)$, on a:

$$\Omega(Z_1, Z_2) = Z_1 \omega(Z_2) - Z_2 \omega(Z_1) - \omega[Z_1, Z_2] + [\omega(Z_1), \omega(Z_2)]$$

En voici les différentes propriétés de la courbure :

1.

$$\Omega(Z_1, Z_2) = d\omega(Z_1^h, Z_2^h) = -\omega([Z_1^h, Z_2^h])$$

- 2. Ω est nulle si, et seulement si le fibré horizontal $\mathcal{H} = Ker \omega$ est involutif.
- 3. La 2-forme de courbure est une 2-forme tensorielle à valeurs dans le G-module (\mathcal{G}, Ad) : Pour tout champ vertical Z on a $i_Z\Omega=0$ et pour tout $g\in G$ et Z_z^1,Z_z^2 on a

$$\Omega(Z_z^1 \cdot g, Z_z^2 \cdot g) = Ad_{g^{-1}}\Omega(Z_z^1, Z_z^2)$$

4. L'équation de Bianchi:

$$d\Omega = [\Omega, \omega]$$

Si l'on choisit $\{e_1, \dots, e_r\}$ une base de \mathcal{G} , on :

$$d\Omega_i = \sum_{i,k} C^i_{jk} \Omega^j \wedge \omega^k$$

20 Connexions sur les espaces homogènes

20.1 Espaces homogènes réductifs

Soient G un groupe de Lie, K un sous-groupe de Lie fermé, \mathscr{G} et \mathscr{K} leur algèbre de Lie.

Définition 20.1. On dit que G/K est un espace homogène réductif, si l'on s'est donné un supplémentaire \mathcal{M} de \mathcal{K} dans \mathcal{G} invariant par la représentation adjointe de K dans \mathcal{G} , laquelle préserve donc la décomposition $\mathcal{K} \oplus \mathcal{M}$ de \mathcal{G} .

En particulier, le crochet d'un élément de $\mathcal K$ par un élément de $\mathcal M$ est un élément de $\mathcal M$: $[\mathcal K,\mathcal M] \subset \mathcal M$.

Proposition 20.1 (Cas d'un groupe K compact). Si K est compact, il existe toujours une structure d'espace homogène réductif sur G/K.

Définition 20.2 (Espaces symétriques). Soit $s: G \xrightarrow{\cong} G$ une involution d'un groupe de Lie G, c'est-à-dire un automorphisme $s \neq Id_G$ de G vérifiant $s^2 = Id_G$. Notons K le groupe d'isotropie de s (c'est-à-dire le sous-groupe des éléments $h \in G$ tels que s(h) = h). On dit alors que l'espace homogène G/K est un espace symétrique.

Définition 20.3 (Espaces localement symétriques). *On dit qu'un espace homogène réductif G, K* avec la décomposition $\mathcal{K} \oplus \mathcal{M}$ de \mathcal{G} invariante par Ad(K) est localement symétrique $si[\mathcal{M}, \mathcal{M}] \subset \mathcal{K}$.

20.2 Connexions invariantes à gauche

Soient G/K et $\mathscr{G}=\mathscr{K}\oplus\mathscr{M}$ un espace homogène réductif comme ci-dessus. Pour tout $A\in\mathscr{G}$, notons respectivement $A_{\mathscr{K}}$ et $A_{\mathscr{M}}$ les projections de A sur \mathscr{K} et \mathscr{M} , et A^* le champ de vecteurs invariant à gauche sur G engendré par A.

Théorème 20.1.

- (i) La 1-forme ω : $TG \to \mathcal{K}$ définie par $\omega(A^*) = A_{\mathcal{K}}$ est une forme de connexion sur le H-fibré principal $G \to G/K$. Elle est en outre G-invariante à gauche.
- (ii) Réciproquement, à toute connexion ω sur le G-fibré principal $G \to G/K$ qui soit G-invariante à gauche (lorsqu'elle existe) est associée une décomposition $\mathscr{G} = \mathcal{K} \oplus \mathcal{M}$ et que ω est obtenue comme dans (i) .
- (i i i) La courbure de cette connexion est la 2-forme tensorielle Ω définie par

$$\Omega(A^*, B^*) = -[A_M, B_M]_{\mathcal{K}}.$$

Lorsque $\mathcal{B} = \{e_1, \cdots, e_r\}$ une base de \mathcal{G} telle que $\{e_1, \cdots, e_l\}$ est une base de \mathcal{K} et $\{e_{l+1}, \cdots, e_N\}$ est une base de \mathcal{M} et si $\mathcal{B}^* = \{\varepsilon_1, \cdots, \varepsilon_N\}$ est la base duale de \mathcal{B} . Les composantes de la courbure Ω sont données par :

$$\Omega^i = -\sum_{r \le j < k \le N} C^i_{jk} \omega^j \wedge \omega^k$$

20.3 Transport par parallélisme

Soit $\pi: P \to M$ un *G*-fibré principal muni d'une connexion : $TP = \mathcal{H} \oplus V(P)$.

Les vecteurs qui sont dans \mathcal{H} sont dits *horizontaux* pour la connexion. Une courbe différentiable dans P dont tous les vecteurs tangents sont horizontaux est dite horizontale. Soit $\gamma : [a, b] \to V$ une courbe différentiable d'origine $m_1 = \gamma(a)$ et d'extrémité $m_2 = \gamma(b)$.

Lemme 20.1.

- (i) Quel que soit z_1 dans P_{m_1} , il existe un relèvement horizontal⁶ de γ et un seul $\widetilde{\gamma}_{z_1}$: $[a,b] \to P$, d'origine $z_1 = \widetilde{\gamma}_{z_1}(a)$ dans P.
- (ii) La courbe $\tilde{\gamma}_{z_1,g}$ est l'image de $\tilde{\gamma}_{z_1}$ par la translation à droite R_g dans P.

Définition 20.4 (Transport par parallélisme). On appelle transport par parallélisme $de\ m_1\ en\ m_2$ le long d'une courbe différentiable $\gamma:[a,b]\to V$ le difféomorphisme $J_{m_2m_1}^{\gamma}:P_{m_1}\stackrel{\cong}{\to} P_{m_2}$ qui, à tout $z=\widetilde{\gamma}_z(a)$ dans P_{m_1} , associe l'extrémité $\widetilde{\gamma}_z(b)$ du relèvement horizontal $\widetilde{\gamma}_z$ d'origine $z\ de\ \gamma$.

Il est clair que $J_{m_2m_1}^{\gamma}$ commute aux actions à droite de G, ne dépend pas du paramétrage de γ , que $J_{t_3t_2}^{\gamma} \circ J_{t_2t_1}^{\gamma} = J_{t_3t_1}^{\gamma}$, où l'on a écrit en abrégé $J_{t_2t_1}^{\gamma}$ au lieu de $J_{\gamma(t_2)\gamma(t_1)}^{\gamma}$, et $J_{t_1t_2}^{\gamma} = \left(J_{t_2t_1}^{\gamma}\right)^{-1}$.

Plus généralement, si $\gamma: [a,b] \to V$ est une courbe continue différentiable par morceaux, différentiable sur chaque intervalle $[t_i, t_{i+1}]$ de [a, b], avec $a = t_0 < t_1 < t_2 < \cdots < t_k = b$, on pose :

$$J_{b\ a}^{\gamma} = J_{b\ t_{k-1}}^{\gamma} \circ J_{t_{k-1}t_{k-2}}^{\gamma} \circ \cdots \circ J_{t_1\ a}^{\gamma}.$$

Remarque 20.1. La donnée du transport par parallélisme pour tout chemin différentiable γ permet de connaître les courbes qui sont horizontales, donc les vecteurs tangents horizontaux, et par conséquent permet de reconstituer le sous-fibré $\mathcal H$ de TP. C'est en ce sens que les points de vue fini et infinitésimal sont équivalents.

21 Différentielle extérieure covariante

Soit ω une forme de connexion sur le *G*-fibré principal $P \to V$.

Proposition 21.1.

(i) Pour toute p-forme tensorielle $\alpha \in \Omega_{0G}^p(P,F)$ à valeurs dans un G-module (F,ρ) , la (p+1)-forme

$$d_{\omega}\alpha = d\alpha + \omega \wedge \alpha$$

est encore tensorielle, où $\omega \wedge \alpha$ désigne le produit extérieur relatif à la forme bilinéaire d'évaluation $\mathcal{G} \times F \to F$ (la différentielle de la représentation $\rho: G \to GL(F)$ induit une représentation $\mathcal{G} \to End F$).

(ii) D'autre part $(d\alpha + \omega \wedge \alpha)(Z_0, Z_1, \dots, Z_p)$ est encore égale à $d\alpha(hZ_0, hZ_1, \dots, hZ_p)$, où hZ_i désigne la projection horizontale de Z_i . (On notera $d\alpha \circ h$ cette seconde expression de $d\alpha + \omega \wedge \alpha$).

^{6.} c'est-à-dire une courbe différentiable dont la projection par π est γ et dont le vecteur tangent en chaque point est horizontal.

Définition 21.1. L'application $d_{\omega}: \alpha \mapsto d\alpha + \omega \wedge \alpha$ de $\Omega_{0G}^p(P,F)$ dans $\Omega_{0G}^{p+1}(P,F)$ s'appelle la différentiation covariante (*relative* à la connexion ω).

Proposition 21.2 (Identité de Ricci). *Pour toute p-forme tensorielle* α , *la formule suivante est vérifiée* :

$$d_{\omega}(d_{\omega}\alpha) = \Omega \wedge \alpha,$$

où $\Omega \wedge \alpha$ désigne le produit extérieur relatif à la forme bilinéaire d'évaluation $\mathscr{G} \times F \to F$.

Proposition 21.3 (Identité de Bianchi).

La courbure Ω de toute connexion ω vérifie :

$$d_{\omega}\Omega=0.$$

22 Connexions sur les fibrés vectoriels réels

22.1 Dérivation covariante sur les fibrés vectoriels réels

Soit $P \to M$ un G-fibré principal, (F, ρ) un G-module réel, et ω une forme de connexion sur P. Soit s une section du fibré $E = P \times_{\rho} F$, et $\widetilde{s} = K(s)$ la 0-forme tensorielle qui lui correspond par l'isomorphisme K de 18.1. Notons $\nabla s : X \to \nabla_X s$ la 1-forme sur M à coefficients dans E, dont l'image par K est $d_{\omega}\widetilde{s}$: si X_H désigne le champ de vecteurs projetable sur P horizontal et se projetant sur un champ de vecteurs X sur M, la valeur $\nabla_X s$ en un point M de M est donnée par la formule

$$\widetilde{\nabla_X s} = \widetilde{X}.\widetilde{s} + \langle \omega(\widetilde{X}), \widetilde{s} \rangle$$
 pour tout champ projetable \widetilde{X} se projetant sur X , $= X_H.\widetilde{s}$ si X_H désigne le champ projetable horizontal.

Définition 22.1. La 1-forme $\nabla s \in \Omega^1(M, E)$ s'appelle la dérivée covariante de la section s, et sa valeur $\nabla_X s$ en X la dérivée covariante de s dans la direction X.

Théorème 22.1.

La dérivation covariante $s \to \nabla s$ de $\Omega^0(M,E)$ dans $\Omega^1(M,E)$ est une dérivation en s, c'est-à-dire

- qu'elle est additive en $s: \nabla(s_1 + s_2) = \nabla s_1 + \nabla s_2$,
- et qu'elle vérifie la formule de Leibnitz : $\nabla(us) = du.s + u.\nabla s$ pour $u \in C^{\infty}(M)$.
- (ii) Pour toute trivialisation locale $\sigma = (\sigma_1, \cdots, \sigma_r)$ du fibré vectoriel E, adaptée 7 à P, au dessus d'un ouvert U de V, c'est-à-dire pour toute section locale σ de $P|_U$, la dérivation ∇ s'obtient à partir de la forme de connexion ω sur P par la formule

$$\nabla \sigma_{\lambda} = \sum_{\mu} \Gamma_{\lambda}^{\mu} \, \sigma_{\mu},$$

^{7.} Toute trivialisation locale convient si P = R(E). Sinon, il faut que la section $\sigma : U \to R(E)|_U$ se factorise à travers $P|_U$.

où la 1-forme $\Gamma=((\Gamma^{\mu}_{\lambda}))$ à coefficients matriciels est égale à $\sigma^*(\omega)$.

(iii) Réciproquement, étant donné un fibré vectoriel différentiable E de base M, toute application $s \to \nabla s$ de $\Omega^0(M,E)$ dans $\Omega^1(M,E)$ qui est une dérivation en s, est la dérivation covariante correspondant à une unique connexion ω sur le fibré principal $R(E) \to M$ de tous les repères de E.

Remarque 22.1. La formule

$$<\omega(\widetilde{X}), \widetilde{s}>=\widetilde{\nabla_X s}-\widetilde{X}.\widetilde{s}$$

pour tout champ projetable \widetilde{X} se projetant sur X et pour toute section s de E, permet aussi de définir une forme ω à partir de ∇ . On peut démontrer directement que c'est bien une forme de connexion, la même que celle définie ci-dessus, dès lors que l'application $s \to \nabla s$ est une dérivation.

Théorème 22.2 (Lien entre dérivation covariante et transport par parallélisme).

Soit s une section de $E = F \times_{\rho} P$, X un champ de vecteurs sur la base V du fibré, ∇ la dérivation covariante relative à une connexion sur P. Soit m un point de V, $\gamma: t \mapsto \gamma(t)$ la courbe intégrale du champ de vecteurs X passant par un point m_0 pour la valeur t_0 du paramètre. Notons J^{γ} le transport par parallélisme associé sur E, et posons $s(t) = s(\gamma(t))$. La dérivée covariante est alors la dérivée (au sens usuel) de la fonction $t \mapsto J^{\gamma}_{t_0} t(s(t))$ à valeurs dans E_{m_0} :

$$(\nabla_X s)_{m_0} = \left(\frac{d}{dt}\right)_{t_0} J_{t_0}^{\gamma} t(s(t)).$$

A Champs de vecteurs sur une variété différentiables

Soit M une variété différentiable de dimension n. ⁸ Le fibré tangent à M est l'ensemble des vecteurs tangents, c'est la réunion disjointe :

$$TM = \coprod_{x \in M} T_x M$$

Il est muni d'une structure de variété différentiable de dimension 2n. Notons $\pi:TM\to M$ la surjection canonique et si $(U_i,\varphi_i)_{i\in I}$ est un atlas de M, alors la structure différentiable de TM est définie par les applications :

$$\psi_i: TU_i \to \varphi_i(U_i) \times \mathbb{R}^n$$
, $\psi_i(v) = (\varphi_i(\pi(v)), (T\varphi_i)(v))$.

Les difféomorphismes induits :

$$\Psi_i: TU_i \to U_i \times \mathbb{R}^n$$
, $\Psi_i(v) = (x, (T_x \varphi_i)(v))$ avec $x = \pi(v)$,

sont dites les trivialisations induites canoniques du fibré vectoriel de $TM \rightarrow M$.

Exercice A.1. Montrer que les changements de coordonnées pour TM sont des difféomorphismes positifs (Ce qui montre que la variété TM est toujours une variété orientable).

Solution : Les changements de coordonnées pour M sont donnés par des difféomorphismes

$$\varphi_j \circ \varphi_i^{-1} : (x_1, \dots, x_n) \mapsto (f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n))$$

Il en résulte que les changements de coordonnées pour TM sont donnés par :

$$\psi_j \circ \psi_i^{-1} : (x_1, \dots, x_n, y_1, \dots, y_n) \mapsto (f_1(x), \dots, f_n(x), Df_1(x)(y), \dots, Df_1(x)(y))$$

où
$$f(x_1,\dots,x_n)=(f_1(x_1,\dots,x_n),\dots,f_n(x_1,\dots,x_n))$$
 et $Df_i(x)(y)=\sum_{k=1}^n\frac{\partial f_i}{\partial x_k}(x)y_k$.

La matrice Jacobienne de $\psi_j \circ \psi_i^{-1}$ en un point (x,y) est la matrice carré $2n \times 2n$ donné par :

$$J = \begin{bmatrix} (a_{ij}) & 0 \\ (b_{ij}) & (a_{ij}) \end{bmatrix} \quad \text{où} \quad a_{ij} = \frac{\partial f_i}{\partial x_i}(x) \text{ et } b_{ij} = \sum_k \frac{\partial^2 f_i}{\partial x_i \partial x_k}(x) y_k,$$

qui est alors de déterminant positif (c'est le carré de la matrice Jacobienne de $\varphi_j \circ \varphi_i^{-1}$ en x)

^{8.} Sauf mention contraire, le mot *différentiable* signifiera toujours : de classe C^{∞} . Les variétés différentiables seront supposées *paracompactes* (tout recouvrement d'une telle variété par des ouverts peut être raffiné en un recouvrement localement fini, sur lequel existe toujours une partition différentiable de l'unité).

Définition A.1. Soit M une variété différentiable. On appelle champ de vecteurs sur M la donnée d'une application différentiable $X: M \to TM$ telle que $\pi \circ X = Id_M$, c'est à dire que pour tout $x \in M$, on a:

$$X(x) \in T_x M$$
.

L'espace des champs de vecteurs de M est noté $\chi(M)$.

Remarque A.1. .

1. L'espace $\chi(M)$ des champs de vecteurs de M peut être munit d'une structure de $\mathscr{C}^{\infty}(M)$ module de la façon suivante : Pour X et Y deux champs de vecteurs sur M, $f \in \mathscr{C}^{\infty}(M)$ et $x \in M$ on a:

$$(X + Y)(x) := X(x) + Y(x) \in T_x M$$
 et $(f \cdot X)(x) := f(x)X(x) \in T_x M$.

2. Sur un système de coordonnées locales $(U,(x^1,\dots,x^n))$, l'expression de la restriction X_U du champ X à l'ouvert U sécrit

$$X_U = \sum_{i=1}^n P_i \frac{\partial}{\partial x_i}$$
 avec $P_i \in C^{\infty}(U)$.

3. Intuitivement, la donnée d'un champ de vecteurs correspond à la donnée en tout point $x \in M$ d'un vecteur tangent $X_x \in T_x M$ telle que pour tout fonction $f \in \mathscr{C}^{\infty}(M)$, la fonction :

$$Xf: M \to \mathbb{R}$$
, $(Xf)(x) := T_x f(X_x) = \frac{d}{dt}\Big|_{t=0} f(\gamma(t))$

soit différentiable.

4. Un champ de vecteurs X sur M correspond aussi à la donnée d'un opérateur linéaire X: $C^{\infty}(M) \to C^{\infty}(M)$ tel que pour tous $f, g \in C^{\infty}(M)$ on ait :

$$X(fg) = (Xf)g + f(Xg).$$

Un tel opérateur est appelé une dérivation de M.

Ensuite, on se donne deux champs de vecteurs X et Y sur une variété différentiable M, et on définit $[X,Y]: \mathscr{C}^{\infty}(M) \longrightarrow \mathscr{C}^{\infty}(M)$ par la formule :

$$[X, Y] f := X(Y f) - Y(X f).$$

Il est clair que [X, Y] définit un opérateur linéaire. En fait, on a le résultat suivant :

Proposition A.1. Soit M une variété différentiable. Pour tout champs de vecteur X et Y sur la variété M, [X,Y] définit un champs de vecteurs sur M. De plus $(\chi(M),[\,,\,])$ est une algèbre de Lie réelle.

Démonstration. Compte-tenu de la remarque précédente, il suffit de montrer que [X,Y] est une dérivation de M. Soient $f,g \in \mathscr{C}^{\infty}(M)$, on a :

$$[X,Y](fg) = X(Y(fg)) - Y(X(fg)) = X((Yf)g + f(Yg)) - Y((Xf)g + f(Xg))$$

$$= X(Yf)g + f(X(Yg)) - Y(Xf)g - f(Y(Xg))$$

$$= ([X,Y]f)g + f([X,Y]g).$$

Ce qui montre que [X,Y] définit effectivement un champ de vecteurs sur M. On obtient ainsi une application $[\,,\,]:\chi(M)\times\chi(M)\longrightarrow\chi(M)$ qui à tout couple (X,Y) associe [X,Y]. Cette application est clairement bilinéaire alternée d'après la définition et on vérifie aisément qu'elle satisfait l'identité de Jacobi. Ce qui donne que $[\,,\,]$ est un crochet de Lie sur $\chi(M)$.

Remarque A.2. L'expression locale du crochet de Lie sur un système de coordonnée (U, x_1, \dots, x_n) est donné par :

$$\left[\sum_{i=1}^{n} P_{i} \frac{\partial}{\partial x_{i}}, \sum_{i=1}^{n} Q_{i} \frac{\partial}{\partial x_{i}}\right] = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} \left(P_{k} \frac{\partial Q_{i}}{\partial x_{k}} - Q_{k} \frac{\partial P_{i}}{\partial x_{k}}\right)\right) \frac{\partial}{\partial x_{i}}.$$

Définition A.2. Soit $F: M \to N$ une application différentible. Soit X un champ de vecteurs sur M et Y un champ de vecteurs sur N. On dira que les deux champs de vecteurs X et Y sont F-reliés et on note $X \stackrel{F}{\sim} Y$ si pour tout $x \in M$ on a la relation : $Y_{F(x)} = T_x F(X_x)$.

Lemme A.1. Deux champs de vecteurs X et Y sont F-reliés si et seulement si pour toute fonction $f \in \mathscr{C}^{\infty}(N)$: $(Yh) \circ F = X(h \circ F)$.

Démonstration. En effet, l'égalité $(Yh) \circ F = X(h \circ F)$ est équivalente à écrire que pour tout $x \in M$, $(T_{F(x)}h)(Y_{F(x)}) = (T_{F(x)}h)(T_xF(X_x))$. C'est à dire que pour tout $x \in M$, on a : $Y_{F(x)} = T_xF(X_x)$.

Proposition A.2. Soit $F: M \to N$. Soient X_1, X_2 deux champs de vecteurs sur M et Y_1, Y_2 deux champs de vecteurs sur N. On suppose que $X_1 \stackrel{F}{\sim} Y_2$ et $X_2 \stackrel{F}{\sim} Y_2$. Alors:

$$[X_1, X_2] \stackrel{F}{\sim} [Y_1, Y_2].$$

Démonstration. D'après le lemme précédent, il s'agit d'établir que pour toute fonction $h \in C^{\infty}(N)$ nous avons la relation $([Y_1, Y_2]h) \circ F = [X_1, X_2](h \circ F)$. Il suffit alors d'écrire :

$$([Y_1, Y_2]h) \circ F = Y_1(Y_2h) \circ F - Y_2(Y_1h) \circ F = X_1(Y_2h \circ F) - X_2(Y_1h \circ F).$$

Et donc:

$$([Y_1,Y_2]h)\circ F=X_1(X_2(h\circ F))-X_2(X_1(h\circ F))=[X_1,X_2](h\circ F).$$

 \Box

A.1 Flot d'un champ de vecteurs et dérivée de Lie

A tout champ de vecteurs $X \in \chi(M)$ et à tout point $x \in M$ est associé une équation différentielle ordinaire :

$$\begin{cases} \gamma'(t) = X_{\gamma(t)} \\ \gamma(0) = x \end{cases}$$
 (A.1)

Théorème A.1. Soit M une variété différentiable. Soit X un champs de vecteurs sur M et x un point de M. Il existe un unique intervalle I_x de \mathbb{R} contenant 0 et une unique courbe différentiable γ_x : $I_x \longrightarrow M$ qui est la solution maximale de l'équation différentielle (A.1). Une telle courbe est appelée courbe intégrale de X passant par x_0 à l'instant 0.

L'ensemble des courbes maximales d'un champs de vecteurs permettent de définir ce qu'on appelle le flot d'un champs de vecteurs dont la construction est comme suit : On se donne un champs de vecteurs X sur la variété différentiable M, pour tout $x \in M$ on note $\gamma_x : I_x \longrightarrow M$ la courbe intégrale de X passant par x à l'instant 0. On pose alors $\mathcal{D}_X := \bigcup_{x \in M} I_x \times \{x\} \subset \mathbb{R} \times M$ et on définit l'application $\varphi^X : \mathcal{D}_X \longrightarrow M$ par : $\varphi^X(t,x) = \gamma_x(t)$.

Théorème A.2. Soit M une variété différentiable et X un champs de vecteurs sur M. On a les propriétés suivantes :

- 1. L'ensemble \mathcal{D}_X est un ouvert de $\mathbb{R} \times M$.
- 2. L'application $\varphi^X : \mathcal{D}_X \longrightarrow M$ est de classe \mathscr{C}^{∞} .

L'application $\varphi^X: \mathcal{D}_X \longrightarrow M$ est appelée le flot du champs de vecteurs X sur la variété M.

Proposition A.3. Soit M une variété différentiable et X un champs de vecteurs sur M. Soit $x \in M$ et soient $t, s \in \mathbb{R}$ tels que (t, x), $(s, \varphi^X(t, x))$ et (s + t, x) sont dans \mathcal{D}_X . Alors :

$$\varphi^X(s+t,x) = \varphi^X(s,\varphi^X(t,x)).$$

Dans ce qui suit on pose : $\varphi_t^X(x) := \varphi^X(t, x)$.

Proposition A.4. Soit $F: M \to N$ une application différentiable, X un champ de vecteurs sur M et Y un champ de vecteurs sur N qui sont F-reliés. Pour tout $x \in M$, on a:

$$\varphi_t^Y(F(x)) = F(\varphi_t^X(x)).$$

Démonstration. Soit $x \in M$, pour tout $s \in I_x$ on pose $\gamma(s) = F(\varphi_s^X(x))$. Alors $\gamma: I_x \longrightarrow N$ est une courbe différentiable. On a $\gamma(0) = F(x)$ et :

$$\gamma'(s) = \frac{d}{ds} F(\varphi_s^X(x)) = (T_{\varphi_s^X(x)} F) \left(\frac{d}{ds} \varphi_s^X(x) \right) = (T_{\varphi_s^X(x)} F) (X_{\varphi_s^X(x)}) = Y_{F(\varphi_s^X(x))}.$$

Cela signifie que la courbe γ est une solution du système :

$$\begin{cases} \gamma'(s) &= Y_{\gamma(s)} \\ \gamma(0) &= F(x) \end{cases}$$
 (A.2)

et donc $\gamma(s) = \varphi_s^Y(F(x))$. En résumé, nous avons montrer que $\varphi_s^Y(F(x)) = F(\varphi_s^X(x))$ pour tout $x \in M$.

RÉFÉRENCES 74

Définition A.3. *Un champ de vecteurs est dit* **complet** *si son flot est défini sur* $\mathbb{R} \times M$. *Autrement dit toutes ses courbes intégrales sont définies sur* \mathbb{R} .

Sur une variété compacte par exemple, tout champ de vecteurs est complet. On verra aussi que tout champ de vecteurs invariant à gauche sur un groupe de Lie est complet.

Le crochet de deux champs de vecteurs s'exprime à l'aide des flots :

Proposition A.5. *Soit* M *une variété différentiable et* X *et* Y *deux champs de vecteurs sur* M. *Alors pour tout* $x \in M$ *par la formule* :

$$(L_X Y)_x = \lim_{t \to 0} \frac{(T_{\varphi_t^X(x)} \varphi_{-t}^X)(Y_{\varphi_t^X(x)}) - Y_x}{t}.$$

Ce qui permet d'établir que le crochet de deux champs de vecteurs est nul si et seulement si leurs flots commutent.

Références

- [1] A. Abouqateb et D. Lehmann, *Classes caractéristiques et résidus en Géométrie différentielle*. Editions Ellipses 2010.
- [2] A. Cap and J. Slovák. "Parabolic geometries. I, volume 154 of Mathematical Surveys and Monographs." American Mathematical Society, Providence, RI (2009).
- [3] Y. Benoist, *Actions propres sur les epaces homogènes réductifs*. Annals of Mathematics 144, 315-376 (1993).
- [4] A. Borel, *Some remarks about Lie groups transitive on spheres and tori*. Bulletin of the American Mathematical Society, 55(6), 580-587 (1949).
- [5] R. Bott and LW. Tu, *Differential forms in algebraic topology*. Graduate texts in Mathematics, Springer, 1982.
- [6] J. Duistermaat and J. A. Kolk *Lie Groups*. Springer-Verlag (2000).
- [7] W. Greub, S. Halperin and R. Vanstone, *Connections, Curvature, and Cohomology*. Vol. II Academic Press 1972/1973.
- [8] D. Handel, *A note on the parallelizability of real Stiefel manifolds*. Proceedings of the American Mathematical Society, vol. 16, no 5, p. 1012-1014. (1965)
- [9] J. Hilgert and K. H. Neeb, *Structure and geometry of Lie groups*. Springer Science & Business Media, 2011.
- [10] J.L. Koszul, *Lectures On Fibre Bundles and Differential Geometry*. Tata Institute of Fundamental Research, Bombay 1960.
- [11] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I & II. John Wiley 1963.

RÉFÉRENCES 75

[12] T. Kobayashi, *Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds*. Perspectives in Mathematics 17 (1996): 99-165.

- [13] K. Y. Lam, *A formula for the tangent bundle of flag manifolds and related manifolds.* T.A.M.S. Volume 213, 1975.
- [14] M. Lee, Introduction to Smooth Manifolds. Springer, New York, NY, 2003.
- [15] E. Meinrenken, *Group actions on manifolds*. Lecture Notes, University of Toronto, Spring 2003. http://www.math.toronto.edu/mein/teaching/LectureNotes/action.pdf
- [16] E. H. Spanier, Algebraic topology. Vol. 55. No. 1. Springer Science & Business Media, 1989.
- [17] N. E. Steenrod, *The topology of fibre bundles*. Vol. 14. Princeton university press, 1999.
- [18] Loring W. Tu, An introduction to Manifolds. Universitext. Springer, 2008.