Cost-Aware Bayesian Optimization with Adaptive Stopping via Gittins Indices

Qian Xie 谢倩 (Cornell ORIE)

INFORMS Annual Meeting 2025 Job Market Showcase

Optimization Under Uncertainty

ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Optimization Under Uncertainty

Black-box optimization:

Input $x \longrightarrow$

non-analytical & no gradient info

 \rightarrow Performance metric f(x)

ML model training:

Training hyperparameters → (e.g., learning rate, # layers)

Accuracy

Optimization Under Uncertainty

Black-box optimization:

Input $x \longrightarrow$

 \rightarrow Performance metric f(x)

ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Adaptive experimentation:

Decision/design variables

(e.g., layout, pricing level)

Revenue

Black-Box Optimization

Input $x \longrightarrow$

expensive-to-evaluate

Performan

Performance metric f(x)

ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Training time

Compute credits

Adaptive experimentation:

Decision/design variables

(e.g., layout, pricing level)

Operational cost User experience

-----> Revenue

Deployment

Black-Box Optimization

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Data-Driven Black-Box Optimization

High-level goal: Choose x_1, \dots, x_T to maximize the expected best observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Data-Driven Black-Box Optimization

adaptively

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Efficient framework: Bayesian optimization

Black-box function

Probabilistic model

0.6

0.4

0.2

(e.g., Gaussian process)

Probabilistic model (e.g., Gaussian process)

Acquisition function

(e.g., UCB, TS)

Probabilistic model

(e.g., Gaussian process)

Black-box function

Acquisition function

optimization)

(e.g., UCB, TS)

Probabilistic model

(e.g., Gaussian process)

scoring (worth

of each point

(e.g., Gaussian process)

of each point

15

Existing Design Principles

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling

16

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- Gittins Index

Our Contribution: Gittins Index Principle

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- Gittins Index
- Why another principle?
- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Our Contribution: Gittins Index Principle

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- Gittins Index
- Why another principle?
- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Under-explored Practical Considerations

Observable multi-stage feedback

Under-explored Practical Considerations

Observable multi-stage feedback

New design principle:
Gittins index

New design principle: Gittins index

Observable multi-stage feedback

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Varying evaluation costs

Features in Pandora's box

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

What is Pandora's Box?

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
Flexible stopping time

$$t = 0$$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 1$$

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{I} c(x_t)$$

$$t = 2$$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 3$$

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

t = T, stop

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

Continuous

Correlated

Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

Continuous

Correlated

Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility cumulative cost $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

Continuous

Correlated

Fixed-iteration

Expected regret

$$\mathbb{E} \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) - \mathbb{E} \max_{t=1,2,\dots,T} f(\mathbf{x}_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility cumulative cost $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

Continuous

Correlated

Fixed-iteration

Expected regret $\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

$$\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,\dots,T} f(x_t) + \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
 cumulative cost

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Optimal policy: Gittins index

Optimal Policy: Gittins Index

Step 1: Assign each box a Gittins index (higher is better)

Optimal Policy: Gittins Index

Step 2: Open the box with highest index if it is closed

Optimal Policy: Gittins Index

Step 2': Select the box with highest index if it is opened and stop

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

43

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

Our Contribution: Gittins Index Principle

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index (PBGI)
 - Why another principle?
 - 1. Naturally handles practical considerations
 - 2. Performs competitively on benchmarks
 - 3. Comes with theoretical guarantees

Gittins Index vs Baselines on AutoML Benchmark

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

47

Our Contribution: Gittins Index Principle

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds
- Thompson sampling
- Gittins Index
- Why another principle?
- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Theoretical Guarantee and Empirical Validation

Theorem (No worse than stopping-immediately)

 $\mathbb{E}[R(\text{ours}; PBGI)] \le R[\text{stopping immediately}]$

Implication:

- Matches the best achievable performance in the worst case (evaluations are all very costly).
- Avoids over-spending a property many cost-unaware stopping rules lack.

Studied problem

Varying evaluation costs

Adaptive stopping time

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

Sharper theoretical guarantees & blackbox optimization w/ multi-stage feedback

"Cost-aware Stopping for Bayesian Optimization." Under review.

Studied problem

Varying evaluation costs

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

LLM-driven black-box optimization

"Cost-aware Stopping for Bayesian Optimization." Under review.

Recap: Bayesian Optimization

Ongoing: LLM-Driven Black-Box Optimization

Acquisition function

(e.g., Softmax sampling)

Probabilistic model

(e.g., autoregressive model)

Ongoing: LLM-Driven RL Training Optimization

Mixed-autonomy traffic control:

(RL training & evaluation)

Acquisition function (e.g., Softmax sampling)

Probabilistic model (large language model)

Studied problem

Varying evaluation costs

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

LLM-driven black-box optimization

"Cost-aware Stopping for Bayesian Optimization." Under review.