Aufgabe	A1	A2	A3	A4	Σ
Punkte					

Aufgabe 1. (a) Seien $A_i, i \in I$ σ -Algebren über Ω . Beh.: $\bigcap_{i \in I} A_i \sigma$ -Algebra über Ω .

Beweis. (i) $\Omega \in \bigcap_{i \in I} A_i$, denn $\forall i \in I : \Omega \in A_i$, da A_i σ -Algebra.

- (ii) Sei $A \in \bigcap_{i \in I} A_i$. Dann ist für $i \in I$: $A \in A_i$. Da A_i σ -Algebra, ist $A^c \in A_i$. Damit folgt $A^c \in \bigcap_{i \in I} A_i$.
- (iii) Sei $A_j \in \bigcap_{i \in I} \mathcal{A}_i \ \forall j \in \mathbb{N}$. Da für alle $i \in I$, $\mathcal{A}_i \ \sigma$ -Algebra, ist $\bigcap_{j \in \mathbb{N}} A_j \in \mathcal{A}_i$. Also auch $\bigcap_{i \in I} \mathcal{A}_j \in \bigcap_{i \in I} \mathcal{A}_i$.
- (b) Beh.: Die Aussage ist falsch.

Beweis. Es sei $\Omega := \{0, 1, 2\}, \ \mathcal{A}_1 := \sigma(\{0\}) = \{\Omega, \emptyset, \{0\}, \{1, 2\}\} \text{ und } \mathcal{A}_2 := \sigma(\{2\}) = \{\Omega, \emptyset, \{2\}, \{0, 1\}\}.$ Dann sind \mathcal{A}_1 und \mathcal{A}_2 nach VL σ-Algebren über Ω , aber $\mathcal{A}_1 \cup \mathcal{A}_2 = \{\Omega, \emptyset, \{0\}, \{2\}, \{1, 2\}, \{0, 1\}\} \text{ nicht, da } \{0\} \cup \{2\} = \{0, 2\} \notin \mathcal{A}_1 \cup \mathcal{A}_2.$

(c) Sei \mathcal{A} σ -Algebra über Ω und $f \colon \mathcal{X} \to \Omega$ Abbildung. Beh.: $f^{-1}(\mathcal{A}) \coloneqq \{f^{-1}(A) \colon A \in \mathcal{A}\}$ ist σ -Algebra.

Beweis. (i) $\mathcal{X} \in f^{-1}(\mathcal{A})$, denn $f^{-1}(\Omega) = \mathcal{X}$.

(ii) Sei $B \in f^{-1}(\mathcal{A})$. Dann ex. ein $A \in \mathcal{A}$, s.d. $f^{-1}(A) = B$. Da \mathcal{A} σ -Algebra ist $A^c \in \mathcal{A}$. Damit folgt

 $B^c = f^{-1}(A)^c = f^{-1}(A^c) \in f^{-1}(A).$

(iii) Seien $B_i \in f^{-1}(\mathcal{A}) \ \forall i \in \mathbb{N}$. Dann ex. $\forall i \in \mathbb{N} \ \text{ein} \ A_i \in \mathcal{A}$, s.d. $f^{-1}(A_i) = B_i$. Da $\mathcal{A} \ \sigma$ -Algebra ist $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$. Damit folgt

$$\bigcup_{i\in\mathbb{N}} B_i = \bigcup_{i\in\mathbb{N}} f^{-1}(A_i) = f^{-1}\left(\bigcup_{i\in\mathbb{N}} A_i\right) \in f^{-1}(\mathcal{A}).$$

(d) Sei $T \subseteq \Omega$ mit $T \neq \emptyset$ und sei \mathcal{A} σ -Algebra über Ω . Beh.: $A|_T := \{A \cap T : A \in \mathcal{A}\}$ σ -Algebra.

Beweis. Betrachte die kanonische Inklusion $\iota \colon T \hookrightarrow \Omega$. Dann gilt

$$\iota^{-1}(\mathcal{A}) = \{\iota^{-1}(A) \colon A \in \mathcal{A}\}\$$

$$= \{\{x \in T \colon \iota(x) \in A\} \colon A \in \mathcal{A}\}\$$

$$= \{\{x \in T \colon x \in A\} \colon A \in \mathcal{A}\}\$$

$$= \{A \cap T \colon A \in \mathcal{A}\}.$$

Damit folgt die Behauptung mit (c).

Aufgabe 2. Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum und $A, B, A_n \in \mathcal{A}$ für $n \in \mathbb{N}$.

(a) Beh.: $A \subseteq B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$.

Beweis. Sei $A \subseteq B$. Dann ist

$$\mathbb{P}(B) = \mathbb{P}(A \cup B \setminus A) \quad \overset{\sigma\text{-Additivit"at}}{=} \quad \mathbb{P}(A) + \underbrace{\mathbb{P}(B \setminus A)}_{\geq 0} \geq \mathbb{P}(A).$$

(b) Beh.: $|\mathbb{P}(A) - \mathbb{P}(B)| \leq \mathbb{P}(A \triangle B)$.

Beweis. Es ist zunächst

$$\mathbb{P}(A \triangle B) = \mathbb{P}(A \setminus B \cup B \setminus A)$$

$$\stackrel{\sigma\text{-Additivit} \ddot{a}\dot{t}}{=} \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A)$$

$$= \mathbb{P}(A) - \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Sei o.E. $\mathbb{P}(A) \geq \mathbb{P}(B)$ (sonst analog durch Hinzufügen von $\mathbb{P}(A) - \mathbb{P}(A)$). Dann folgt

$$\begin{split} \mathbb{P}(A \triangle B) & = & \mathbb{P}(A) - \mathbb{P}(B) + \mathbb{P}(B) - \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \\ & = & |\mathbb{P}(A) - \mathbb{P}(B)| + \underbrace{2\mathbb{P}(B \setminus A)}_{\geq 0} \\ & \geq & |\mathbb{P}(A) - \mathbb{P}(B)|. \end{split}$$

(c) Beh.: $\mathbb{P}(\bigcup_{k\in\mathbb{N}} A_k) \leq \sum_{k=1}^{\infty} \mathbb{P}(A_k)$.

Beweis. Betrachte $B_n := A_n \setminus \left(\bigcup_{k=1}^{n-1} A_k\right)$. Dann ist $\forall n \in \mathbb{N} : B_n \subseteq A_n$ also mit (a) $\mathbb{P}(B_n) \leq \mathbb{P}(A_n)$. Damit folgt

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}B_n\right) \ \stackrel{\sigma\text{Additivität}}{=} \ \sum_{n=1}^\infty\mathbb{P}(B_n)\leq \sum_{n=1}^\infty\mathbb{P}(A_n).$$

(d) Beh.: $A_n \subseteq A_{n+1} \forall n \in \mathbb{N} \implies \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$.

Beweis. Sei $A_n \subseteq A_{n+1} \ \forall n \in \mathbb{N}$. Betrachte $B_n := A_n \setminus \left(\bigcup_{k=1}^{n-1} A_k\right)$. Da A_n monoton wachsend, ist für $n \ge 2$: $B_n = A_n \setminus A_{n-1}$. Damit folgt

$$\begin{split} \mathbb{P}(\bigcup_{n\in\mathbb{N}}A_n) &= & \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}B_n\right) \\ &\stackrel{\sigma\text{Additivität}}{=} & \sum_{n=1}^{\infty}\mathbb{P}(B_n) \\ &= & \mathbb{P}(B_1) + \sum_{n=2}^{\infty}\left(\mathbb{P}(A_n) - \mathbb{P}(A_n\cap A_{n-1})\right) \\ &\stackrel{A_n\subseteq A_{n+1}}{=} & \mathbb{P}(B_1) + \sum_{n=2}^{\infty}\left(\mathbb{P}(A_n) - \mathbb{P}(A_{n-1})\right) \\ &\stackrel{\text{Teleskopsumme}}{=} & \mathbb{P}(B_1) - \mathbb{P}(A_1) + \lim_{n\to\infty}\mathbb{P}(A_n) \\ &\stackrel{B_1=A_1}{=} & \lim_{n\to\infty}\mathbb{P}(A_n). \end{split}$$

Aufgabe 3. Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

(a) Der Induktionsanfang ist offensichtlich wahr, $\mathbb{P}(A_1) = (-1)^0 \cdot \mathbb{P}(A_1)$. Gelte die Behauptung also

für ein $n \in \mathbb{N}$. Dann folgern wir

$$\begin{split} \mathbb{P}\left(\bigcup_{j=1}^{n+1} A_j \right) &= \mathbb{P}\left(\bigcup_{j=1}^n A_j \right) + \mathbb{P}(A_{n+1}) - \mathbb{P}\left(\bigcup_{j=1}^n A_j \cap A_{n+1} \right) \\ &= \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) + \mathbb{P}(A_{n+1}) \\ &- \mathbb{P}\left(\bigcup_{j=1}^n (A_j \cap A_{n+1}) \right) \\ &= \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) + \mathbb{P}(A_{n+1}) \\ &- \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) + \mathbb{P}(A_{n+1}) \right) \\ &= \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) + \mathbb{P}(A_{n+1}) \\ &- \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) + \mathbb{P}(A_{n+1}) \\ &= \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &= \sum_{j=1}^n \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right) \\ &+ \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n+1\}} \mathbb{P}(A_{k_1} \cap \dots$$

Für j = n+1 gilt $\{k_1, \ldots, k_j\} = \{1, \ldots, n+1\}$. Daher können wir die beiden Summen im letzten Schritt einfach zusammenfassen und erhalten

$$\mathbb{P}\left(\bigcup_{j=1}^{n+1} A_j\right) = \sum_{j=1}^{n+1} \left((-1)^{j-1} \cdot \sum_{\{k_1, \dots, k_n\} \subset \{1, \dots, n\}} \mathbb{P}(A_{k_1} \cap \dots \cap A_{k_j}) \right),$$

was zu zeigen war.

(b) Beh.: Die Wahrscheinlichkeit für $n \to \infty$ ist $1 - \frac{1}{e}$.

Beweis. Setze $\Omega := \{(g_1, \ldots, g_n) \mid g_1, \ldots, g_n \in \{1, \ldots, n\}, g_i \neq g_j \text{ für } i \neq j\}$. Dabei bezeichnet ein Ergebnis $(g_1, \ldots, g_n) \in \Omega$: "Roter Marsmensch i tanzt mit grünem Marsmensch g_i für $i \in \{1, \ldots, n\}$ ". Die ursprüngliche Paarung sei dabei $(1, 2, \ldots, n) \in \Omega$. Es folgt direkt $\#\Omega = n!$. Definiere weiter

$$\mathbb{P} \colon 2^{\Omega} \to [0,1]$$
$$A \mapsto \frac{\#A}{n!}.$$

Wegen $\mathbb{P}(\Omega) = \frac{n!}{n!} = 1$ und $\mathbb{P}(\emptyset) = 0$ ist $(\Omega, 2^{\Omega}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Damit ist für $i \in \{1, \dots, n\}$:

 $A_i = R$ oter Marmensch i tanzt mit der ursprünglichen Begleitung zusammen" $= \{(g_1, \ldots, g_n) \in \Omega \mid g_i = i\}.$

Sei $A_n =$ "Mindestens ein ursprüngliches von insgesamt n Paaren tanzt gemeinsam ". Damit folgt

$$\mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \\
\stackrel{\text{(a)}}{=} \sum_{j=1}^n \left((-1)^{j-1} \sum_{\{k_1, \dots, k_j\} \subseteq \{1, \dots, n\}} \mathbb{P}(A_k \cap \dots \cap A_{k_j}) \right) \\
= \sum_{j=1}^n (-1)^{j-1} \binom{n}{j} \frac{(n-j)!}{n!} \\
= \sum_{j=1}^n (-1)^{j-1} \frac{n!}{(n-j)!j!} \frac{(n-j)!}{n!} \\
= \sum_{j=1}^n \frac{(-1)^{j-1}}{j!}$$

Für $n \to \infty$ folgt

$$\mathbb{P}(A_{\infty}) = \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j!}$$

$$= -\left(\sum_{j=1}^{\infty} \frac{(-1)^j}{j!}\right)$$

$$= -\left(\sum_{j=0}^{\infty} \frac{(-1)^j}{j!} - 1\right)$$

$$= -\left(\frac{1}{e} - 1\right)$$

$$= 1 - \frac{1}{e}.$$

 $\textbf{Aufgabe 4. Sei } (\mathbb{R}, \mathscr{B}, \mathbb{P}) \text{ Wahrscheinlichkeitsraum und } \mathbb{F} \colon \mathbb{R} \to [0,1], \, \mathbb{F}(x) \coloneqq \mathbb{P}((-\infty,x]) \text{ für } x \in \mathbb{R}.$

(a) Beh.: F monoton wachsend.

Beweis. Seien $x_1, x_2 \in \mathbb{R}$ mit $x_1 \leq x_2$. Dann ist $(-\infty, x_1] \subseteq (-\infty, x_2]$. Mit 2(a) folgt damit $\mathbb{F}(x_1) = \mathbb{P}((-\infty, x_1]) \leq \mathbb{P}((-\infty, x_2]) = \mathbb{F}(x_2)$.

(b) Beh.: $\lim_{x\to\infty} \mathbb{F}(x) = \mathbb{R}$.

Beweis. Sei $(x_n)_{n\in\mathbb{N}}$ Folge mit $x_n\xrightarrow{n\to\infty}\infty$. Dann ist $A_n:=\bigcup_{j=1}^n(-\infty,x_n]$ monoton wachsende Folge mit $A_n\uparrow\mathbb{R}$. Damit folgt da \mathbb{P} Wahrscheinlichkeitsmaß

$$\lim_{n\to\infty} \mathbb{F}(x_n) = \lim_{n\to\infty} \mathbb{P}(A_n) \stackrel{\text{2(d)}}{=} \mathbb{P}(\mathbb{R}) = 1.$$

Beh.: $\lim_{x\to-\infty} \mathbb{F}(x) = 0$.

Beweis. Analog, betrachte nun $A_n := \bigcap_{j=1}^n (-\infty, x_n] \downarrow \emptyset$.

(c) Beh.: F rechtsseitig stetig.

Beweis. Sei $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} mit $x_n\downarrow x$. Dann betrachte $A_n:=(-\infty,x_n]$. Es gilt sofort $A_n\downarrow\bigcap_{k\in\mathbb{N}}(-\infty,x_k]=(-\infty,x]$. Damit folgt

$$\lim_{n\to\infty}\mathbb{F}(x_n)=\lim_{n\to\infty}\mathbb{P}(A_n)\overset{2(\mathrm{d})}{=}\mathbb{P}((-\infty,x])=\mathbb{F}(x).$$

(d) Beh.: $\mathbb F$ hat höchstens abzählbar viele Sprungstellen.

Beweis. Sei $a \in \mathbb{R}$ beliebig. Dann betrachte

$$\lim_{x \searrow a} \mathbb{F}(x) - \lim_{x \nearrow a} \mathbb{F}(x) \stackrel{\text{(c) und Hinweis}}{=} \mathbb{P}((-\infty, a]) - \mathbb{P}((-\infty, a))$$

$$= \mathbb{P}((-\infty, a]) - \mathbb{P}((-\infty, a] \cap (-\infty, a))$$

$$= \mathbb{P}((-\infty, a] \setminus (-\infty, a))$$

$$= \mathbb{P}(\{a\}).$$

Die Sprungstellen von F sind also gerade die Atome von \mathbb{P} . Da \mathbb{P} nach VL nur höchstens abzählbar viele Atome auf \mathbb{R} hat, folgt die Behauptung.