λ_i , $i=1,...,d^2-1$, are the generators of the SU(d) algebra with $Tr\{\lambda_i\lambda_j\}=2\delta_{ij}$, $r_i(\rho)=\frac{1}{2}Tr\{\rho\lambda_i(1)\otimes I\}$, $s_j(\rho)=\frac{1}{2}Tr\{\rho I\otimes \lambda_j(2)\}$, $n_{ij}(\rho)=\frac{1}{4}Tr\{\rho\lambda_i(1)\otimes \lambda_j(2)\}$, P_+ stands for the projection operator to $|\psi_+\rangle$, $N(P_+)$ is similarly defined to $N(\rho)$, N^T stands for the transpose of N, $||N||_{KF}=Tr\sqrt{NN^{\dagger}}$ is the Ky Fan norm of N. This upper bound was used to improve the distillation protocol proposed in [16]. Here we show that the upper bound in (8) is different from that in (15) by an example.

Example 1: We consider the bound entangled state [17]

$$\rho(a) = \frac{1}{8a+1} \begin{pmatrix}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^2}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^2}}{2} & 0 & \frac{1+a}{2}
\end{pmatrix}.$$
(17)

From Fig. 1 we see that for $0 \le a < 0.572$, the upper bound in (8) is larger than that in (15). But for 0.572 < a < 1 the upper bound in (8) is always lower than that in (15), i.e. the upper bound (8) is tighter than (15) in this case.

FIG. 1: Upper bound of $\mathcal{F}(\rho)$ from (8) (solid line) and upper bound from (15) (dashed line).

By using the operator norm, we have further