21. Предельный переход под знаком интеграла по параметру при условии Лебега, предельный переход под знаком интеграла по параметру в случае равномерной сходимости.

Предельный переход при условии Лебега

Пусть (X,A,μ) — пространство с мерой, \tilde{Y} — метрическое пространство, $Y\subset \tilde{Y}, f:X\times Y\to \mathbb{R}$, при всех $y\in Y$ $f(\cdot,y)\in L(X,\mu)$ (где у фиксирован) . Если при почти всех $x\in X$ $f(x,y)\underset{y\to y_0}{\longrightarrow} g(x)$, и существует $\Phi\in L(X,\mu)$ и окрестность V_{y_0} , такие что $|f(x,y)|\leq \Phi(x)$ для почти всех x и $y\in V_{y_0}\cap Y$,

то
$$g\in L(X,\mu)$$
 и $\lim_{y o y_0}\int_X f(x,y)d\mu(x)=\int_X g(x)d\mu(x)=\int_X \lim_{y o y_0} f(x,y)d\mu(x).$

Смысл

Эта теорема обобщает теорему Лебега о мажорированной сходимости для интегралов, зависящих от параметра. Условие гарантирует, что функции $f(\cdot,y)$ "не слишком быстро растут" при $y \to y_0$, что позволяет менять порядок предела и интеграла. Пример применения — исследование непрерывности интегралов от параметрических семейств.

Предельный переход при равномерной сходимости

Пусть (X,A,μ) — пространство с мерой, $ilde{Y}$ — метрическое пространство, $Y\subset ilde{Y}$, $\mu X<+\infty$, $f:X\times Y\to\mathbb{R}$, $f(\cdot,y)\in L(X,\mu)$, и $f(\cdot,y)\underset{y\to y_0}{\Longrightarrow}g$ (равномерно на X), y_0 -

предельная точка:

Тогда
$$g\in L(X,\mu)$$
 и $\lim_{y o y_0}\int_X f(x,y)d\mu(x)=\int_X g(x)d\mu(x)=\int_X \lim_{y o y_0} f(x,y)d\mu(x).$

Смысл

Если семейство функций $f(\cdot,y)$ сходится к g равномерно (т.е. "одинаково быстро" для всех x), то интеграл от предела равен пределу интегралов. Это частный случаи теоремы 1, где мажорантой служит 1+|g| (так как $\mu X<+\infty$). Используется, например, при доказательстве непрерывности интегралов Фурье.

Равномерная сходимость

Семейство $\{f(\cdot,y)\}_{y\in Y}$ равномерно сходится к g на X, если $\sup_{x\in X}|f(x,y)-g(x)|\underset{y\to y_0}{\longrightarrow}0.$ Обозначение: $f(\cdot,y)\rightrightarrows g.$

Смысл

Равномерная сходимость — более строгое условие, чем поточечная, но зато она гарантирует сохранение свойств (непрерывности, интегрируемости) при предельном переходе. Например, если f(x,y) — непрерывные функции и f
ightharpoonup g, то g тоже непрерывна. В контексте интегралов это позволяет избежать "патологий", когда предельная функция неинтегрируема.

22. Локальная непрерывность интеграла по параметру, глобальная непрерывность интеграла по параметру.

Локальная непрерывность интеграла по параметру в точке

Пусть (X,A,μ) — пространство с мерой, Y — метрическое пространство, $f:X\times Y\to\mathbb{R}$, при всех $y\in Y$ $f(\cdot,y)\in L(X,\mu)$, $y_0\in Y$, при почти всех $x\in X$ функция $f(x,\cdot)$ непрерывна в точке y_0 , и f удовлетворяет локальному условию Лебега в точке y_0 (т.е. существует окрестность V_{y_0} и функция $\Phi\in L(X,\mu)$ такие, что для почти всех $x\in X$ и всех $y\in V_{y_0}\cap Y$ выполняется $|f(x,y)|\leq \Phi(x)$). Тогда интеграл I(y) непрерывен в точке y_0 . $(I(y)=\int_X f(x,y)\,d\mu(x))$

Смысл:

Эта теорема гарантирует, что если подынтегральная функция f(x,y) непрерывна по параметру y в точке y_0 для почти всех x и ограничена "контролирующей" функцией $\Phi(x)$, то интеграл I(y) тоже будет непрерывным в y_0 . Это важно, например, при исследовании зависимостей интегралов от параметров, таких как время или координаты, в физике или теории вероятностей.

Глобальная непрерывность интеграла по параметру на множестве

Пусть X — компакт в \mathbb{R}^n , μ — мера Лебега, Y — метрическое пространство, $f\in C(X imes Y)$. Тогда интеграл I(y) принадлежит C(Y) (т.е. непрерывен на Y). $(I(y)=\int_X f(x,y)\,d\mu(x))$

Смысл:

Если f непрерывна на произведении компакта X и метрического пространства Y, то интеграл I(y) будет непрерывным на всём Y. Это следует из компактности X и непрерывности f, что позволяет избежать проблем с расходимостями. Например, это применяется в задачах, где параметр y меняется в широких пределах, а X — ограниченная область.

Различие

Оба результата (локальный и глобальный) опираются на идею контроля роста f(x,y): в первом случае — через локальную мажоранту, во втором — через глобальную ограниченность, обеспечиваемую компактностью X.

Локальное условие Лебега и его роль

$$\exists \Phi \in L(X,\mu), \exists V_{y_0}:$$
 при почти всех $x \in X \ orall y \in \dot{V}_{y_0} \cap Y \ |f(x,y)| \leq \Phi(x).$

Смысл:

Это условие требует, чтобы значения f(x,y) в окрестности точки y_0 не превосходили некоторую интегрируемую функцию $\Phi(x)$. Оно нужно для применения теоремы Лебега о мажорируемой сходимости, которая позволяет "переставлять" пределы и интегралы. Без такого условия интеграл I(y) может терять непрерывность, даже если f(x,y) непрерывна по y.

23: Правило Лейбница дифференцирования интеграла по параметру в случае абсолютной суммируемости

(!сверить!)

Условия применимости правила Лейбница

Пусть функция $f(x,\alpha)$ определена на $[a,b] imes [lpha_1,lpha_2]$, интегрируема по x на [a,b] для любого $lpha\in [lpha_1,lpha_2]$, и её частная производная $rac{\partial f}{\partial lpha}$ существует и абсолютно суммируема (т.е. $\int_a^b \left|rac{\partial f}{\partial lpha}\right| dx < \infty$).

Тогда, то для $lpha \in [lpha_1, lpha_2]$ справедливо:

$$rac{d}{dlpha}\left(\int_a^b f(x,lpha)\,dx
ight)=\int_a^b rac{\partial f(x,lpha)}{\partiallpha}\,dx.$$

Смысл:

Правило позволяет менять порядок дифференцирования и интегрирования. Это полезно, когда интеграл зависит от параметра α , и нужно найти его производную. Например, в физике или теории вероятностей такие ситуации встречаются часто.

Важность абсолютной суммируемости и условий

Абсолютная суммируемость $\frac{\partial f}{\partial \alpha}$ (т.е. $\int_a^b \left| \frac{\partial f}{\partial \alpha} \right| dx < \infty$) обеспечивает равномерную сходимость интеграла, что позволяет применять теоремы о перестановке пределов. Без этого условия производная под интегралом может "вести себя плохо" — например, интеграл может расходиться или производная может не существовать. Абсолютная суммируемость — это способ "контролировать" поведение функции, чтобы все операции были законны.

Условия гарантируют, что интеграл можно "дифференцировать под знаком интеграла". Абсолютная суммируемость производной нужна, чтобы обеспечить равномерную сходимость и избежать проблем при перестановке операций дифференцирования и интегрирования.

24 Правило Лейбница дифференцирования интеграла по параметру в отсутствии абсолютной суммируемости. Интегрирование интеграла по параметру

(!сверить!)

1) Случай постоянного множества интегрирования

Пусть (X,\mathbb{A},μ) — пространство с мерой, $Y=\langle c,d\rangle\subset\mathbb{R}, f:X\times Y\to\mathbb{R}$, при всех $y\in Y$ функция $f(\cdot,y)\in L(X,\mu)$, при почти всех $x\in X$ функция $f(x,\cdot)$ дифференцируема на Y, $y_0\in Y$, и производная f'_y удовлетворяет локальному условию Лебега в точке y_0 . Тогда интеграл $I(y)=\int_X f(x,y)d\mu(x)$ дифференцируем в точке y_0 и выполняется равенство:

$$I'(y_0)=\int_X f_y'(x,y_0)d\mu(x).$$

Смысл:

Это правило позволяет "выносить" производную по параметру y из-под знака интеграла по x, когда пределы интегрирования фиксированы. Для этого нужно, чтобы подынтегральная функция была "достаточно хорошей": интегрируемой по x при каждом y, дифференцируемой по y почти всюду по x, а её производная по y должна удовлетворять условию, гарантирующему возможность предельного перехода (локальное условие Лебега). Это фундаментальный результат для анализа интегралов, зависящих от параметра.

2) Случай переменного множества интегрирования

Пусть функции f(x,y) и её частная производная $\frac{\partial f}{\partial y}$ интегрируемы на прямоугольнике $[\alpha,\beta] imes[c,d]$, где отрезок $[\alpha,\beta]$ содержит все значения функций a(y), b(y), а функции a(y), b(y) дифференцируемы на [c,d]. Тогда интеграл $I(y)=\int_{a(y)}^{b(y)}f(x,y)dx$ дифференцируем по y на [c,d] и справедлива формула:

$$rac{d}{dy}I(y) = f(b(y),y)\cdot b'(y) - f(a(y),y)\cdot a'(y) + \int_{a(y)}^{b(y)} rac{\partial f}{\partial y}(x,y) dx.$$

Смысл:

Эта формула учитывает **два эффекта** при дифференцировании интеграла с переменными пределами a(y) и b(y): 1) Изменение *площади* под кривой из-за изменения подынтегральной функции по параметру y (последний интеграл с производной). 2) Изменение *самой области* интегрирования из-за движения границ a(y) и b(y) (первые два слагаемых). Они показывают, как "добавляется" площадь при движении правой границы b(y) и "вычитается" площадь при движении левой границы a(y).

3) Отсутствие абсолютной суммируемости

Интегрирование интеграла по параметру не требует абсолютной суммируемости подынтегральной функции или её производной в случае постоянных пределов интегрирования. Достаточно выполнения локального условия Лебега на производную f_y' в точке дифференцирования y_0 .

Смысл:

Локальное условие Лебега (существование интегрируемой мажоранты для f_y' в некоторой окрестности точки y_0) является ключевым ослаблением по сравнению с требованием абсолютной суммируемости на всем Y. Это означает, что для вычисления производной $I'(y_0)$ достаточно контролировать поведение производной f_y' лишь вблизи этой конкретной точки y_0 , а не на всём интервале. Это делает теорему применимой в более широком классе задач.

25. Свойства Г-функции Эйлера: определение, формула приведения, значения в натуральных и полуцелых точках, выражение для k-й производной, геометрические свойства.

Определение и базовые значения

Г-функция Эйлера задаётся интегралом:

$$\Gamma(p)=\int_0^{+\infty}x^{p-1}e^{-x}\,dx,\quad p>0.$$

Смысл:

Г-функция обобщает факториал на нецелые числа. Интегральное определение позволяет работать с дробными значениями, а базовые значения показывают связь с известными константами. Например, $\Gamma(1)=0!=1$, а $\Gamma(1/2)$ возникает в теории вероятностей и статистике.

Формула приведения и значения в специальных точках

Формула приведения:

$$\Gamma(p+1) = p\Gamma(p).$$

Значения в целых и полуцелых точках:

$$\Gamma(n+1)=n!,\quad \Gamma\left(n+rac{1}{2}
ight)=rac{(2n-1)!!}{2^n}\sqrt{\pi},\quad n\in\mathbb{Z}_+.$$

Смысл:

Формула приведения позволяет вычислять Г-функцию рекуррентно, сводя задачу к меньшим значениям аргумента. Значения в целых точках совпадают с факториалом, а в полуцелых — выражаются через двойные факториалы и π , что полезно в квантовой механике и интегральных преобразованиях.

Производные Г-функции:

$$\Gamma^{(n)}(p) = \int_0^{+\infty} x^{p-1} e^{-x} \ln^n x \, dx.$$

Смысл:

Производные Г-функции выражаются через интегралы с логарифмическими множителями, что важно в анализе.

Геометрические свойства:

- 1. $\Gamma(p)$ строго выпукла вниз на $(0,+\infty)$.
- 2. Имеет единственный минимум на (1,2).
- 3. $\Gamma(p)\sim rac{1}{p}$ при p o 0 и $\Gamma(p) o +\infty$ при $p o +\infty$.

Смысл:

Выпуклость и наличие минимума объясняют её "U-образный" график, а асимптотики помогают оценивать поведение на границах области определения (например, в теории вероятностей).

26. Связь между Г- и В-функцией

Определение В-функции (бета-функции Эйлера)

В-функция определяется как интеграл:

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} \, dx, \quad p,q>0.$$

Смысл:

В-функция описывает интеграл от произведения степенных функций на отрезке [0, 1]. Она часто используется в теории вероятностей (например, для бета-распределения) и в анализе для вычисления сложных интегралов. Параметры p и q контролируют форму подынтегрального выражения.

Связь между Г- и В-функциями

Для любых p,q>0 выполняется соотношение:

$$B(p,q) = rac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Смысл:

Эта формула связывает В-функцию с гамма-функцией (Γ), которая обобщает факториал. Доказательство основано на замене переменных и манипуляциях с интегралами, включая теорему Тонёлли о порядке интегрирования. Связь упрощает вычисление В-функций через известные значения Γ -функции.

27. Формула Эйлера-Гаусса.

Формулировка формулы Эйлера-Гаусса

$$\Gamma(p) = \lim_{n o \infty} rac{n^p \cdot n!}{p(p+1)(p+2) \cdot \ldots \cdot (p+n)}, \quad p \in \mathbb{R} \setminus \mathbb{Z}_-.$$

- $\Gamma(p)$ гамма-функция, билет 25
- n! факториал числа n.
- n^p степенная функция.
- Знаменатель p(p+1)...(p+n) произведение линейных множителей.

Формула выражает гамма-функцию через предел последовательности, связывая факториал и степенную функцию. Она позволяет вычислять значения $\Gamma(p)$ для нецелых p, исключая отрицательные целые числа, где знаменатель обращается в ноль.

Условия применимости

Область определения:

Формула справедлива для всех $p \in \mathbb{R}$, кроме отрицательных целых чисел ($p \notin \mathbb{Z}_-$), так как при таких p знаменатель обращается в ноль для некоторого n.

Связь с факториалом:

При целых положительных $p=m\in\mathbb{N}$ формула сводится к $\Gamma(m)=(m-1)!$, согласуясь с классическим определением.

Смысл:

Формула Эйлера-Гаусса является альтернативным определением гамма-функции, подчеркивающим её связь с дискретными (факториал) и непрерывными (предел) математическими объектами.

28. Теорема о разложении функции в обобщенный степенной ряд. Ряды Лорана

Определение ряда Лорана

Ряд вида $\sum_{k=-\infty}^\infty c_k(z-z_0)^k$, где $c_k,z,z_0\in\mathbb{C}$, называется рядом Лорана. Числа c_k называются его коэффициентами, а z_0 — центром ряда.

Смысл:

Это обобщение степенного ряда, позволяющее работать с функциями, имеющими особенности (например, полюсы). В отличие от ряда Тейлора, он содержит члены с отрицательными степенями $(z-z_0)$, что необходимо для анализа поведения функции в кольце вокруг точки z_0 .

Структура ряда Лорана

Главная часть ряда Лорана определяется как $\sum_{k=-\infty}^{-1} c_k (z-z_0)^k$. Правильная (регулярная) часть определяется как $\sum_{k=0}^{\infty} c_k (z-z_0)^k$. Ряд сходится тогда и только тогда, когда сходятся обе части.

Смысл:

Главная часть описывает "неправильное" поведение функции (особенности) вблизи центра z_0 , а правильная часть аналогична ряду Тейлора и описывает "хорошее" поведение. Сходимость всего ряда требует сходимости обеих частей в заданном кольце.

Теорема Лорана о разложении

Пусть $z_0\in\mathbb{C},\,0\leq r< R\leq +\infty,\,f\in\mathcal{A}(K_{r,R}(z_0)).$ Тогда f раскладывается в кольце $K_{r,R}(z_0)$ в ряд Лорана: $f(z)=\sum_{k=-\infty}^\infty c_k(z-z_0)^k$ для $r<|z-z_0|< R.$

Смысл:

Любую функцию, аналитическую в кольце между двумя окружностями, можно представить в виде суммы ряда Лорана. Это мощный инструмент для изучения функций с изолированными особенностями, так как разложение работает даже там, где ряд Тейлора неприменим.

4. Единственность коэффициентов Лорана

Пусть $0 \le r < R \le +\infty$ и $f(z) = \sum_{k=-\infty}^\infty c_k (z-z_0)^k$ при $r < |z-z_0| < R$. Тогда коэффициенты c_k определяются единственным образом по формуле:

$$c_k = rac{1}{2\pi i} \int_{\gamma_
ho} rac{f(\zeta)}{(\zeta-z_0)^{k+1}} d\zeta,$$

где $ho \in (r,R)$, $\gamma_{
ho} = \gamma_{
ho,z_0}$ (окружность $|\zeta - z_0| =
ho$).

Смысл:

Коэффициенты ряда Лорана вычисляются через интеграл, аналогичный формуле для коэффициентов Тейлора, но применимый для всех $k \in \mathbb{Z}$. Это гарантирует, что разложение функции в заданном кольце единственно, и позволяет явно находить коэффициенты.

29. Неравенства Коши для коэффициентов рядов Тейлора и Лорана

Неравенство Коши для коэффициентов степенного ряда (Тейлора)

Пусть $z_0 \in \mathbb{C}$, $R \in (0,+\infty]$, и функция f аналитична в круге $|z-z_0| < R$:

$$f(z)=\sum_{k=0}^{\infty}c_k(z-z_0)^k.$$

Тогда для любого $ho \in (0,R)$ и всех $k \in \mathbb{Z}_+$ (т.е. $k=0,1,2,\ldots$) выполняется:

$$|c_k| \leq rac{M_f(
ho)}{
ho^k},$$
 где $M_f(
ho) = \max_{|\zeta-z_0|=
ho} |f(\zeta)|.$

Смысл:

Это неравенство оценивает рост коэффициентов Тейлора функции f через максимум её модуля на окружности радиуса ρ . Чем быстрее убывают коэффициенты c_k , тем "лучше" поведение функции (например, она может быть целой). Оно следует из интегральной формулы для коэффициентов и оценки интеграла.

Неравенство Коши для коэффициентов ряда Лорана

Пусть $z_0 \in \mathbb{C}$, $0 \leq r < R \leq +\infty$, и функция f аналитична в кольце $r < |z-z_0| < R$:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k.$$

Тогда для любого $ho \in (r,R)$ и всех $k \in \mathbb{Z}$ (т.е. $k = \dots, -2, -1, 0, 1, 2, \dots$) выполняется:

$$|c_k| \leq rac{M_f(
ho)}{
ho^k},$$
 где $M_f(
ho) = \max_{|\zeta-z_0|=
ho} |f(\zeta)|.$

Смысл:

Это обобщение неравенства Коши на ряды Лорана. Оно ограничивает как положительные (регулярная часть), так и отрицательные (главная часть) коэффициенты через максимум

модуля функции на окружности радиуса ρ внутри кольца аналитичности. Помогает изучать особенности функции в z_0 (например, тип полюса).

Обозначения

- z_0 : центр разложения
- R: радиус сходимости (Тейлор) / внешний радиус кольца (Лоран)
- r: внутренний радиус кольца (Лоран)
- ho: радиус выбранной окружности (r <
 ho < R)
- ζ : точка на окружности $|\zeta-z_0|=
 ho$
- c_k : коэффициенты ряда
- $M_f(\rho)$: $\max |f|$ на окружности радиуса ρ
- k: индекс коэффициента (≥ 0 для Тейлора, $\in \mathbb{Z}$ для Лорана)

30. Изолированные особые точки аналитических функций, их типы. Характеризация устранимой особой точки посредством лорановского разложения

Определение изолированной особой точки

Пусть $z_0\in\mathbb{C}$, функция f голоморфна по крайней мере в проколотой окрестности $\dot{V}(z_0)$. Тогда z_0 называется изолированной особой точкой однозначного характера функции f.

Смысл:

Это точка, где функция "ломается", но аналитична вокруг неё. Например, $z_0=0$ для $f(z)=\frac{\sin z}{z}$.

Классификация изолированных особых точек

Выделяют три типа z_0 :

- 1. Устранимая особая точка, если \exists конечный предел $\lim_{z \to z_0} f(z)$.
- 2. Полюс, если $\lim_{z o z_0} f(z) = \infty$.
- 3. Существенно особая точка, если \nexists ни конечного, ни бесконечного предела $\lim_{z \to z_0} f(z)$.

Устранимая — "дырка", которую можно "залатать" (например, доопределить f). Полюс — функция "взрывается" к бесконечности. Существенная — хаотичное поведение (например, $e^{1/z}$ при $z \to 0$).

Характеризация устранимой особенности

Пусть $z_0 \in \mathbb{C}$, f голоморфна в $\dot{V}(z_0)$. Эквивалентны:

- 1. z_0 устранимая особая точка f.
- 2. f ограничена в некоторой проколотой окрестности $\dot{V}(z_0)$.
- 3. f аналитически продолжима в z_0 (т.е. $\exists g$ голоморфная в $V(z_0)$ с $g \equiv f$ в $\dot{V}(z_0)$).
- 4. В главной части ряда Лорана f в z_0 все коэффициенты при $(z-z_0)^k$ (k<0) равны нулю.

Смысл:

Устранимая особенность "мягкая": функция не уходит в бесконечность, её ряд Лорана не содержит отрицательных степеней, и её можно "продолжить" до аналитической в z_0 . Доказательство использует оценку Коши для коэффициентов Лорана.

Доп:

Функция $f:D\to\mathbb{C}$ называется голоморфной в области $D\subseteq\mathbb{C}$, если она комплекснодифференцируема в каждой точке D.

31. Специфика лорановских разложений в окрестности полюса и существенно особой точки

Характеристика полюсов (Теорема 3)

Пусть $z_0\in\mathbb{C}$, f аналитична в проколотой окрестности V_{z_0} ($f\in A(V_{z_0})$). Тогда эквивалентны:

- 1. z_0 полюс функции f.
- 2. Существуют номер $m\in\mathbb{N}$ и функция $arphi\in A(V_{z_0})$, $arphi(z_0)\neq 0$, такие что $f(z)=rac{arphi(z)}{(z-z_0)^m}$ для всех $z\in V_{z_0}$.
- 3. В главной части ряда Лорана функции f с центром в z_0 лишь конечное число коэффициентов отлично от нуля.

Полюс характеризуется "конечным ростом" функции при приближении к z_0 , что выражается либо через представление в виде дроби с аналитическим числителем и конечным порядком полюса в знаменателе, либо через конечность ненулевых членов в отрицательной части ряда Лорана.

Характеристика существенно особых точек (Следствие 1)

Пусть $z_0 \in \mathbb{C}$, f аналитична в проколотой окрестности V_{z_0} ($f \in A(V_{z_0})$). Тогда эквивалентны:

- 1. z_0 существенно особая точка функции f.
- 2. В главной части ряда Лорана функции f с центром в z_0 бесконечно много коэффициентов отлично от нуля.

Смысл:

Существенно особая точка отличается "бесконечной сложностью" поведения функции вокруг z_0 . Это проявляется в том, что главная часть ряда Лорана (отражающая сингулярность) требует бесконечного числа слагаемых для своего описания, в отличие от полюса.

32. Теорема Сохоцкого

Формулировка теоремы

Пусть $f\in A(\dot{V}_\delta(z_0))$; z_0 — существенно особая точка f. Тогда для любого $A\in\mathbb{C}$ существует последовательность $\{z_n\}$, такая что $z_n\in V_\delta(z_0)$, $z_n\to z_0$, $f(z_n)\to A$.

Смысл:

Эта теорема описывает "дикое" поведение аналитической функции в окрестности существенно особой точки. Она утверждает, что в любой сколь угодно малой окрестности такой точки функция принимает значения, сколь угодно близкие к *любому* наперед заданному комплексному числу A, причем бесконечно много раз.

Обозначения

1. $A(\dot{V}_{\delta}(z_0))$ — класс функций, аналитических в проколотой окрестности $\dot{V}_{\delta}(z_0)=\{z:0<|z-z_0|<\delta\}$ точки $z_0.$

- 2. $z_n \in V_\delta(z_0)$ последовательность точек, лежащих в окрестности $|z-z_0| < \delta.$
- 3. $z_n \to z_0$, $f(z_n) \to A$ последовательность сходится к особой точке z_0 , а значения функции в этих точках сходятся к A.

33. Два определения вычета. Теорема Коши о вычетах. Теорема о полной сумме вычетов.

Определения вычета в конечной точке и на бесконечности

1. Пусть $z_0 \in \mathbb{C}$, $f \in \mathcal{A}(\dot{V}_{z_0})$. Коэффициент c_{-1} в разложении f в ряд Лорана

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$$

называется вычетом функции f в точке z_0 и обозначается $\operatorname{res}_{z_0} f$.

2. Пусть $f \in \mathcal{A}(\dot{V}_{\infty})$. Вычетом функции f в точке ∞ называется коэффициент c_1 в разложении f в ряд Лорана, взятый с противоположным знаком:

$$\operatorname{res}_{\infty} f = -c_1.$$

Смысл:

Вычет в конечной точке z_0 — это коэффициент при $(z-z_0)^{-1}$ в ряде Лорана, связанный с интегралом по малой окружности вокруг z_0 . Вычет на бесконечности определен через c_1 со знаком минус, чтобы интеграл по большой окружности (охватывающей все конечные особые точки) выражался как $-2\pi i \cdot \mathrm{res}_{\infty} f$, что согласуется с ориентацией контура.

Теорема Коши о вычетах

Пусть D — область в \mathbb{C} , $E\subset D$, $f\in\mathcal{A}(D\setminus E)$, E — множество изолированных особых точек f, G — ограниченная область с ориентированной границей, $\overline{G}\subset D$, $\partial G\cap E=\emptyset$. Тогда

$$\int_{\partial G} f(z) dz = 2\pi i \sum_{z_k \in G \cap E} \operatorname{res}_{z_k} f.$$

Интеграл от аналитической функции по замкнутому контуру ∂G равен сумме вычетов внутри этого контура, умноженной на $2\pi i$. Это позволяет вычислять сложные интегралы, сводя их к алгебраической сумме коэффициентов Лорана в особых точках, лежащих в области G.

Теорема о полной сумме вычетов

Пусть $E\subset \mathbb{C}$, $f\in \mathcal{A}(\mathbb{C}\setminus E)$, $E\cup \{\infty\}$ — множество изолированных особых точек f. Тогда

$$\sum_{z_k \in E \cup \{\infty\}} \operatorname{res}_{z_k} f = 0.$$

Смысл:

Сумма вычетов функции по всем изолированным особым точкам (включая бесконечность) равна нулю. Это следствие теоремы Коши и определения вычета на бесконечности: интеграл по большой окружности γ_R выражается двумя способами (через сумму конечных вычетов и через $\operatorname{res}_\infty f$), что приводит к их взаимному уничтожению. Теорема упрощает вычисления, позволяя находить один вычет, зная остальные.

34. Приемы отыскания вычетов

Вычет в устранимой особой точке

Если z_0 — устранимая особая точка функции f, то вычет в этой точке равен нулю:

$$\operatorname{res}_{z_0} f = 0.$$

Смысл:

В устранимой особенности функцию можно "исправить" до голоморфной, доопределив её в точке z_0 . Ряд Лорана не содержит отрицательных степеней, поэтому коэффициент c_{-1} (вычет) автоматически равен нулю.

Вычет в простом полюсе

Пусть z_0 — простой полюс функции f. Тогда вычет вычисляется по формулам:

1.
$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z)$$
.

2. Если $f(z)=rac{P(z)}{Q(z)}$, где P,Q голоморфны в окрестности $z_0,P(z_0)
eq 0$, $Q(z_0)=0$, $Q'(z_0)
eq 0$, то:

$$\operatorname{res}_{z_0} f = rac{P(z_0)}{Q'(z_0)}.$$

Смысл:

Для простого полюса вычет — это коэффициент c_{-1} в ряде Лорана. Его можно найти, "умножив" функцию на $(z-z_0)$ и устремив z к z_0 , что "снимает" особенность. Формула с P/Q удобна для дробно-рациональных функций.

Вычет в полюсе кратности m

Пусть z_0 — полюс функции f кратности m. Тогда вычет равен:

$$ext{res}_{z_0} \, f = rac{1}{(m-1)!} \lim_{z o z_0} rac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z)
ight] \, .$$

или эквивалентно:

$$\operatorname{res}_{z_0} f = rac{1}{(m-1)!} \left. rac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z)
ight]
ight|_{z=z_0}.$$

Смысл:

Умножение на $(z-z_0)^m$ "убирает" полюс, делая функцию голоморфной. Дифференцирование (m-1) раз "выделяет" коэффициент c_{-1} из разложения Лорана, который и является вычетом.

Определение полюса кратности n

Точка z_0 называется полюсом кратности n ($n\in\mathbb{N}$), если:

- 1. f(z) представима в виде $f(z)=rac{\phi(z)}{(z-z_0)^n}$, где $\phi(z)$ голоморфна в окрестности z_0 и $\phi(z_0)
 eq 0$.
- 2. В разложении Лорана f(z) в окрестности z_0 главная часть конечна и имеет вид $\sum_{k=-n}^\infty c_k (z-z_0)^k$ с $c_{-n} \neq 0$.

Смысл:

Полюс кратности n- это особая точка, где функция "взрывается" как $\frac{1}{(z-z_0)^n}$, умноженное на неисчезающую голоморфную функцию. Чем выше n, тем "сильнее" особенность.

35. Вычисление тригонометрических интегралов с помощью вычетов

Основная идея метода

Интегралы вида $\int_0^{2\pi} R(\sin\varphi,\cos\varphi) d\varphi$, где R(u,v) — рациональная функция двух переменных, вычисляются путём замены $z=e^{i\varphi}$ и применения теоремы о вычетах к полученному контурному интегралу по единичной окружности.

Смысл:

Метод позволяет свести реальный тригонометрический интеграл к комплексному контурному интегралу от рациональной функции. Это возможно благодаря тому, что при движении φ от 0 до 2π , комплексная переменная $z=e^{i\varphi}$ пробегает единичную окружность |z|=1, а тригонометрические функции выражаются рационально через z и 1/z.

Замена переменных

Положим $z=e^{iarphi}$. Тогда:

$$darphi=rac{dz}{iz},\quad arphi:0 o 2\pi\iff z:|z|=1$$
 (против ч.с.) $\sinarphi=rac{z-z^{-1}}{2i},\quad \cosarphi=rac{z+z^{-1}}{2}$

После подстановки интеграл преобразуется к виду:

$$\oint_{|z|=1} R\left(rac{z-z^{-1}}{2i},rac{z+z^{-1}}{2}
ight)rac{dz}{iz} = \oint_{|z|=1} f(z)rac{dz}{iz}$$

где f(z) — рациональная функция от z, полученная после подстановки и упрощения.

Смысл:

Замена $z=e^{i\varphi}$ переводит отрезок $[0,2\pi]$ в замкнутый контур (единичную окружность). Дифференциал $d\varphi$ и тригонометрические функции $\sin\varphi$, $\cos\varphi$ выражаются через z и dz,

превращая исходный интеграл в комплексный интеграл по замкнутому контуру от рациональной функции.

Применение теоремы о вычетах

Искомый интеграл равен $2\pi i$ умноженной на сумму вычетов подынтегральной функции $\frac{f(z)}{iz}$ внутри единичного круга |z|<1:

$$\int_0^{2\pi} R(\sinarphi,\cosarphi) darphi = 2\pi i \sum_{\substack{z_k \ |z_k| < 1}} \mathrm{Res}\left(rac{f(z)}{iz},z_k
ight)$$

где z_k — особые точки (полюса) функции $\frac{f(z)}{iz}$, лежащие внутри |z|<1.

Смысл:

После замены интеграл стал равен контурному интегралу от функции $\frac{f(z)}{iz}$ по единичной окружности. По основной теореме о вычетах, такой интеграл равен $2\pi i$ умноженной на сумму вычетов подынтегральной функции во всех её особых точках, лежащих внутри контура (т.е. внутри единичного круга).

36. Вычисление несобственных интегралов от рациональных функций с помощью вычетов

Условия и формула для интеграла рациональной функции по вещественной оси

Пусть $F(x)=rac{P(x)}{Q(x)}$ — рациональная дробь, где $\deg Q-\deg P\geq 2$, и Q(x) не имеет нулей на вещественной оси $\mathbb R$. Тогда несобственный интеграл вычисляется по формуле:

$$\int_{-\infty}^{+\infty} F(x) dx = 2\pi i \sum_{\substack{\operatorname{Im} z_k > 0 \ Q(z_k) = 0}} \operatorname{res}_{z_k} F(z).$$

Интеграл по всей вещественной оси заменяется суммой вычетов функции F(z) в верхней полуплоскости ($\operatorname{Im} z_k > 0$), умноженной на $2\pi i$. Это следует из применения теоремы о вычетах к замкнутому контуру, состоящему из отрезка [-R,R] и полуокружности в верхней полуплоскости, при $R \to \infty$. Условие $\deg Q - \deg P \ge 2$ гарантирует стремление к нулю интеграла по полуокружности.

37. Лемма Жордана. Вычисление преобразований Фурье с помощью вычетов

Формулировка леммы Жордана

Пусть $\Delta\in(0,+\infty)$, функция f непрерывна в области $\{z: {\rm Im}\,z\geq 0,\,|z|\geq \Delta\}$, удовлетворяет условию $f(z)\to 0$ при $z\to\infty$ в этой области, и $C_R(t)=Re^{it},\,t\in[0,\pi]$ – полуокружность в верхней полуплоскости. Тогда для любого $\lambda>0$ выполняется предельное соотношение:

$$\int_{C_R} f(z) e^{i\lambda z} dz \overset{}{\underset{R o +\infty}{\longrightarrow}} 0.$$

Смысл:

Лемма гарантирует, что интеграл от функции специального вида (f(z)) умноженной на $e^{i\lambda z}$) по полуокружности бесконечно большого радиуса в верхней полуплоскости стремится к нулю. Это критически важно для анализа контурных интегралов, так как позволяет "отбрасывать" вклад дуги на бесконечности при вычислениях с помощью вычетов.

Применение к вычислению преобразований Фурье

Для вычисления интегралов вида $\hat{f}(\lambda) = \int_{-\infty}^{+\infty} f(x) e^{i\lambda x} dx$ ($\lambda>0$) методом вычетов: 1) Рассмотреть комплексный интеграл $\oint_{\Gamma} f(z) e^{i\lambda z} dz$ по замкнутому контуру Γ , состоящему из отрезка [-R,R] и полуокружности C_R в верхней полуплоскости; 2) Применить основную теорему о вычетах: $\oint_{\Gamma} = 2\pi i \sum \mathrm{res}$; 3) Перейти к пределу $R \to \infty$. В силу леммы Жордана интеграл по C_R стремится к нулю, поэтому:

$$\hat{f}(\lambda)=\int_{-\infty}^{+\infty}f(x)e^{i\lambda x}dx=\lim_{R o\infty}\oint_{\Gamma}f(z)e^{i\lambda z}dz=2\pi i\sum$$
 выч $_{z_{k}\in\mathbb{C}^{+}}f(z)e^{i\lambda z},$

где сумма берется по всем вычетам функции $g(z)=f(z)e^{i\lambda z}$ в особых точках z_k , лежащих в верхней полуплоскости (${
m Im}\, z_k>0$).

Смысл:

Лемма Жордана позволяет замыкать контур интегрирования в верхней полуплоскости для интегралов Фурье при $\lambda>0$, так как вклад дуги исчезает. Это сводит задачу вычисления несобственного интеграла по вещественной оси к нахождению суммы вычетов подынтегральной функции $f(z)e^{i\lambda z}$ только в верхней полуплоскости, что часто значительно проще. Например, для рациональных f(z), убывающих на бесконечности.

38. Вычисление несобственных интегралов от аналитических функций с мнимым периодом

Условия и формула для интеграла без экспоненты

Пусть функция f(z) голоморфна в верхней полуплоскости $I^+=\{z\mid {\rm Im}\,z\geq 0\}$ и на вещественной оси, за исключением конечного числа n полюсов, не лежащих на вещественной оси, и $\lim_{z\to\infty}zf(z)=0$. Тогда:

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \sum_{k=1}^n \mathrm{Res}_{z=z_k} \, f(z)$$

Смысл:

Если функция "хорошо себя ведет" в верхней полуплоскости (аналитична кроме изолированных полюсов над осью) и убывает достаточно быстро на бесконечности, то ее интеграл вдоль всей вещественной оси равен сумме вычетов во всех этих верхних полюсах, умноженной на $2\pi i$. Интеграл понимается в смысле главного значения по Коши.

Условия и формула для интеграла с экспонентой $e^{i lpha x}$

Пусть функция f(z) голоморфна в верхней полуплоскости $I^+=\{z\mid {\rm Im}\,z\geq 0\}$ и на вещественной оси, за исключением конечного числа n полюсов, не лежащих на вещественной оси, $\lim_{z\to\infty}zf(z)=0$ и $\alpha>0$. Тогда:

$$\int_{-\infty}^{+\infty} f(x) e^{i lpha x} dx = 2 \pi i \sum_{k=1}^n \mathrm{Res}_{z=z_k} \left[f(z) e^{i lpha z}
ight]$$

Смысл:

Для интеграла, дополнительно умноженного на осциллирующую экспоненту $e^{i\alpha x}$ (где $\alpha>0$ гарантирует затухание в верхней полуплоскости), результат также выражается через сумму вычетов, но уже функции $f(z)e^{i\alpha z}$ в полюсах верхней полуплоскости, умноженную на $2\pi i$. Интеграл также понимается в смысле главного значения.

39. Гладкие многообразия с краем (определение и примеры); отображение перехода, гладкость отображения перехода.

Определение гладкого многообразия с краем

Множество $M\subset\mathbb{R}^n$ называется главным k-мерным многообразием класса $C^{(r)}$ (или r-гладким), если для любой точки $x\in M$ существует окрестность V_x^M и регулярный гомеоморфизм $\varphi:\Pi_k\to V_x^M$ класса $C^{(r)}$, где Π_k — стандартный k-мерный куб $(-1,1)^k$ или полукуб $(-1,0]\times (-1,1)^{k-1}$.

Точка x называется краевой, если φ задан на полукубе, а множество таких точек образует край $\partial M.$

Смысл.

Гладкое многообразие — это множество, которое локально выглядит как кусок \mathbb{R}^k или его "половина" (полукуб). Край ∂M состоит из точек, где локальные параметризации "обрываются", как край листа бумаги. Например, отрезок [0,1] — многообразие с краем $\{0,1\}$.

Примеры гладких многообразий

- 1. Открытое множество $G \subset \mathbb{R}^n$ многообразие без края ($\partial G = \varnothing$), так как любая точка имеет кубическую окрестность (например, тождественная параметризация).
- 2. Кривые (k=1) и гиперповерхности (k=n-1) частные случаи многообразий.

Смысл.

Простейшие примеры — это открытые шары или интервалы (без края) и отрезки/полосы (с краем). Многообразия обобщают понятие кривых и поверхностей на многомерные случаи, позволяя изучать их гладкую структуру.

Отображение перехода и его гладкость

Определение.

Пусть $M\in \mathbb{M}_{kn}^{(r)}$, U,V — стандартные окрестности с параметризациями $\varphi:\Pi\to U$ и $\psi:\Pi'\to V$. Если $W=U\cap V\neq\varnothing$, то отображение $L=\psi^{-1}\circ\varphi:W_1\to W_2$ (где $W_i=\varphi^{-1}(W)$) называется переходом между параметризациями и является биекцией.

Теорема (Регулярность и гладость перехода).

Отображение L принадлежит классу $C^{(r)}$ и является регулярным (его матрица Якоби невырождена).

Смысл.

При смене локальных координат (например, с декартовых на полярные) переход между ними должен быть гладким и обратимым. Это гарантирует, что вычисления (например, интегралы) не зависят от выбора карт в атласе многообразия. Теорема показывает, что гладкость многообразия сохраняется при пересчёте координат.

40. Мера малого измеримого подмножества многообразия; независимость меры малого измеримогомножества от выбора параметризации; измеримое подмножество многообразия.

Мера малого измеримого подмножества

Пусть $M \in \mathbb{M}_{kn}^{(1)}$, $E \subset M$ — малое измеримое множество, содержащееся в стандартной окрестности U с параметризацией $\varphi: \mathbb{R}^k \to U$. Мера $\mu_M E$ определяется как:

$$\mu_M E = \int_{arphi^{-1}(E)} \sqrt{D_arphi} d\mu_k,$$

где
$$D_{arphi}=\det\left(\left(rac{\partialarphi}{\partial u_i}\cdotrac{\partialarphi}{\partial u_j}
ight)_{i,j=1}^k
ight)$$
, а μ_k — мера Лебега в \mathbb{R}^k .

Смысл:

Эта формула обобщает понятие площади/объёма для подмножества многообразия. Интеграл от $\sqrt{D_{\varphi}}$ (аналога якобиана) по прообразу E в \mathbb{R}^k корректно определяет меру благодаря свойствам параметризации.

Независимость меры от параметризации

Пусть $E\subset M$ — малое измеримое множество, содержащееся в двух стандартных окрестностях U и V с параметризациями φ и ψ . Тогда меры, вычисленные через φ и ψ , совпадают:

$$\int_{arphi^{-1}(E)} \sqrt{D_{arphi}} d\mu_k = \int_{\psi^{-1}(E)} \sqrt{D_{\psi}} d\mu_k.$$

Смысл:

При замене параметризации $\varphi=\psi\circ L$ (где $L=\psi^{-1}\circ \varphi$ — диффеоморфизм) замена переменных в интеграле и связь $\sqrt{D_{\varphi}}=\sqrt{D_{\psi}\circ L}\cdot |\det L'|$ гарантируют инвариантность меры. Это делает определение корректным.

Измеримое подмножество многообразия

Пусть
$$M\in \mathbb{M}_{kn}^{(1)}$$
 , $E\subset M$.

- 1. E называется малым измеримым, если \exists стандартная окрестность $U\supset E$ с параметризацией φ , такая что $\varphi^{-1}(E)$ измеримо в \mathbb{R}^k .
- 2. E называется *измеримым*, если оно представимо в виде $E = \bigcup_{\nu} E_{\nu}$, где $\{E_{\nu}\}$ не более чем счётное семейство дизъюнктных малых измеримых множеств.

Любое "достаточно маленькое" множество на многообразии измеримо, если его прообраз в \mathbb{R}^k измерим. Для произвольных множеств измеримость определяется через разбиение на счётное число "малых" частей, что согласуется со стандартным покрытием многообразия картами.