

Self-Adaptive Discovery Mechanisms for Improved Performance in Fault-Tolerant Networks

Kevin Mills, Chris Dabrowski, and Jesse Elder

January 18, 2002

Survivable Software for Harsh Environments

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments a arters Services, Directorate for Informy other provision of law, no person a	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 18 JAN 2002		2. REPORT TYPE		3. DATES COVERED 00-00-2002 to 00-00-2002		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Self-Adaptive Disc Fault-Tolerant Net	overy Mechanisms f	5b. GRANT NUMBER				
raunt-Tolerant Net	WUIKS		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUMB	ER	
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AD of Standards and Te	odress(es) chnology,Gaithersb	urg,MD,20899	8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO presented at DARI		etwork (FTN) PI M	eeting, 19 Jan 20	02		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	31	RESI UNSIBLE FERSUN	

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Outline

- One-Page Review of Project Objective and Plan
- Brief Refresher on Service Discovery Protocols
- Outline of Technical Approach to Understand Fault-Tolerant Behavior of Service Discovery Protocols
- Initial Results Comparing Behavior of Jini and Universal Plugand-Play when Propagating Information during Interface Failures
- Plan for Next Six Months
- Conclusions

More Details Available on Supplementary Slides

Project Objective

Research, design, evaluate, and implement self-adaptive mechanisms and algorithms to improve the performance of service discovery protocols for use in fault-tolerant networks.

Project Plan – Three Phases

- <u>Phase I</u> characterize performance of selected service discovery protocols (Universal Plug-and-Play – UPnP – and Jini) as specified and implemented
 - develop simulation models for each protocol
 - establish performance benchmarks based on default or recommended parameter values and on required or most likely implementation of behaviors
- <u>Phase II</u> design, simulate, and evaluate self-adaptive algorithms to improve performance of discovery protocols regarding selected mechanisms
 - devise algorithms to adjust control parameters and behavior in each protocol
 - simulate performance of each algorithm against benchmark performance
 - select most promising algorithms for further development
- Phase III implement and validate the most promising algorithms in publicly available reference software

Dynamic Discovery Protocols in Essence

Dynamic discovery protocols enable *network elements* (including software clients and services, as well as devices):

- (1) to discover each other without prior arrangement,
- (2) to express opportunities for collaboration,
- (3) to *compose* themselves into larger collections that cooperate to meet an application need, and
- (4) to detect and adapt to changes in network topology.

Selected First-Generation Dynamic Discovery Protocols

3-Party Design

2-Party Design

Plug and Play

Adaptive 2/3-Party Design

Vertically Integrated 3-Party Design

Network-Dependent 3-Party Design

Network-Dependent 2-Party Design

Two Party vs. Three Party Architectures

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Technical Approach to Phase I – Use Rapide to Model and Understand Fault Behavior of Jini and UPnP

Two-Party (UPnP) Topology for Experiment

Three-Party (Jini) Topologies for Experiment

Faults Interfere with Discovery and Information Propagation

- Interface Failure Tx, Rx, or Both
 - Due to nearby enemy jamming or other interference
 - Due to multi-path fading during mobility
- Path Loss Pt-Pt or Area-Area and Full-duplex or Half-duplex
 - Due to persistent congestion
 - Due to physical link cuts
 - Due to enemy jamming at routers
- Message Loss under both UDP and TCP (>delay)
 - Due to sporadic or distant enemy jamming or other interference
 - Due to transient congestion
 - Due to multi-path fading during mobility
- Node Failure Partial or Complete with variable persistence of information
 - Due to enemy bombardment or cyber attacks
 - Due to mobility associated with military operations

Discovery Systems Divide Recovery Responsibilities: Lower Layers, Discovery Protocol, and Application

- Selective Reliable Delivery by Lower Layers
 - TCP attempts retransmissions (basis for Jini-RMI and UPnP-HTTP)
 - UDP messages in UPnP sent as multiple copies
- Periodic Announcements by Discovery Protocol
 - Allows caching nodes to discard information when TTL expires
 - Jini includes aggressive search at node start up, while UPnP permits nodes to undertake aggressive search at any time
- Periodic Refreshing of Resources Required by Discovery Protocol
 - Allows resource owner to free resource when refresh period expires
- Remote Exceptions Issued by Protocol Over TCP Links
 - Allows application to take recovery action: Ignore? Retry? Discard knowledge of service or resource?

Understanding Information Propagation in Discovery Architectures during Interface Failure

How do various service discovery architectures, topologies, and fault-recovery mechanisms perform under deadline during interface failure?

Outline of Experiment

- Deploy models of two-party (UPnP) and three-party (Jini) architectures with one SM and five SUs (for Jini include two topologies – one and two SCMs).
- Ensure initial discovery and information propagation completed.
- Introduce a change in the service description at the SM, and establish a deadline for propagating the new information to all SUs.
- Measure the number of messages exchanged and the latency required to propagate the information to all SUs, or until the deadline arrives, under two different propagation mechanisms: polling and eventing.
- Repeat this experiment while varying the percentage of interface failure time for each node up to 75% (in increments of 5%).

Information-Propagation Mechanisms for Experiment

Interface-Failure Model for Experiment

1 111

Choose a time to introduce the change [uniform(Q, D/2)]

Random Processes

- 2. For each node, choose a time to introduce an interface failure [uniform(Q, D-((D-Q)*F))]
- 3. When each interface failure occurs, choose the scope of the failure, where each of [Rx, Tx, Both] has an equal probability

Q = end of quiescent period (100 s in our experiment)

D = propagation deadline (5400 s in our experiment)

F = Interface Failure Rate (variable from 0% - 75% in 5% increments in our experiment)

Our Model Responses to Remote Exceptions ("Approximately")

- Ignore REX Received
 - When replying to a remote-method invocation
 - When attempting to cancel a lease
 - When attempting to renew a lease (But then attempt to obtain a new lease)
- Retry Operation for Some Period of Time Then Quit If Not Successful (If Quitting, Eliminate Local Knowledge of Discovered Entity)
 - When attempting to register for notification events
 - When a UPnP SU requests service descriptions
- Retry Operation Persistently as Long as Application Executes
 - When a Jini SM attempts to register a service description with a SCM

Metrics Devised for Information-Propagation Experiments

Update Responsiveness (R)

Assuming that information is created at a particular time and must be propagated by a deadline, then the difference between the deadline and the creation time represents available time in which to propagate the information. Update Responsiveness, *R*, measures the *proportion of the available time remaining after the information is propagated*. [1 = all time remains and 0 = no time remains]

Update Effectiveness (U)

Update Effectiveness, *U*, measures the *probability that information will propagate* successfully to a SU before some deadline, D. [1 = information will be propagated and 0 = information will not be propagated]

Update Efficiency (E)

Given a specific topology of SUs and SMs in a discovery system, examination of the available architectures (two-party and three-party) and mechanisms (polling and eventing) will reveal a minimum number of messages that need to be sent to propagate information from all SMs to all SUs in the topology. Update Efficiency, *E*, can be measured as the *ratio of the minimum number of messages needed to the actual number of messages observed*. [1 = only minimum number of messages needed]

Responsiveness: UPnP (2-Party) vs. Jini (3-Party)

Effectiveness: UPnP (2-Party) vs. Jini (3-Party)

Efficiency: UPnP (2-Party) vs. Jini (3-Party)

Plan for the Next Six Months

- Submit two papers on recent results: MILCOM 2002 and 3rd International Workshop on Software Performance
- Complete characterization of UPnP and Jini behavior (ending Phase I)
 - Information propagation during message loss
 - State recovery during node failure
 - Performance under increasing network size
- Develop and document ideas for initial set of self-adaptive discovery mechanisms (beginning Phase II)
- Complete scalable (up to 500 nodes) discrete-event simulation model of UPnP based on source code from Intel's Linux SDK for UPnP (preparing our Phase II models for easy conversion to implementation during Phase III)
- Extend our existing generic structural model of service discovery systems to cover behavior, message vocabulary, and consistency conditions (we see this as a community service)

Conclusions

- Emerging industry discovery protocols provide robustness properties through a division of responsibilities among: lower layer protocols, discovery protocols, and applications
- Characterizing the behavior and robustness of commercial service discovery protocols is a necessary pre-condition to developing and evaluating adaptation mechanisms intended to improve the performance of such protocols
- We described an approach to understand the behavior of service discovery protocols in the face of various faults: interface failure, message loss, and path and node failure (To learn more about the approach, see: "Analyzing Properties and Behavior of Service Discovery Protocols Using an Architecture-based Approach", C. Dabrowski and K. Mills, Proceedings of Working Conference on Complex and Dynamic Systems Architectures, sponsored by DARPA DASADA program)
- We applied the approach to characterize the performance of two different mechanisms (polling and eventing) for information propagation in various service discovery architectures (2-party and 3-party) and topologies (one and two SCMs) during interface failure
- We are currently conducting characterizations of performance in the face of message loss and node failures

Slides Containing Additional Details

Equating a Generic Structural Model of Service Discovery Architectures to Selected Commercial Discovery Systems

Generic Model	Jini	UPnP	SLP
Service User	Client	Control Point	User Agent
Service Manager	Service or Device Proxy	Root Device	Service Agent
Service Provider	Service	Device or Service	Service
Service Description	Service Item	Device/Service Description	Service Registration
Identity	Service ID	Universal Unique ID	Service URL
Туре	Service Type	Device/Service Type	Service Type
Attributes	Attribute Set	Device/Service Schema	Service Attributes
User Interface	Service Applet	Presentation URL	Template URL
Program Interface	Service Proxy	Control/Event URL	Template URL
Service Cache Manger	Lookup Service	not applicable	Directory Service Agent (optional)

The Six Combinations of Architecture, Topology, and Consistency-Maintenance Mechanism Used in Experiments

Architectural Variant	Protocol Basis	Consistency-Maintenance Mechanism
Two-Party	UPnP	Polling
Two-Party	UPnP	Notification (with notification registration on SM)
Three-Party (Single SCM)	Jini	Polling (with service registration on SCM)
Three-Party (Single SCM)	Jini	Notification (with service registration and notification registration on SCM)
Three-Party (Dual SCM)	Jini	Polling (with service registration on SCM)
Three-Party (Dual SCM)	Jini	Notification (with service registration and notification registration on SCM)

Specific Division of Failure-Recovery Responsibilities Used in Experiments

Responsible Party	Recovery Mechanism	Two-Party Architecture (UPnP)	Three-Party Architecture (Jini)		
Lower-Layer	UDP	No recovery	No recovery		
Protocols	TCP	Issue REX in 30-75 s	Issue REX in 30-75 s		
	Lazy Discovery	SM: announces every 1800 s	SCM: announces every 120 s		
Discovery Protocols	Aggressive Discovery	SU: issues <i>Msearch</i> every 120 s (after purging SD)	SU and SM: issue seven probes (at 5 s intervals) only during startup		
Application Software	Ignore REX	SU: HTTP Get Poll SM: Notification	SU: FindService Poll SCM: Notification		
	Retry in 120 s after REX	SU: HTTP Get after discovery (retry up to three times) Subscribe requests	SM: depositing or refreshing SD copy on SCM SU: registering and refreshing notification requests with SCM		
	Discard Knowledge	SU: purge SD after failure to receive SM announcement within 1800 s	SU and SM: purge SCM after 540 s of continuous REX		

Significant Parameters and Values Used in Experiments

	Parameter	Value	
	Polling interval	180 s	
Behavior in both two- and three-	Registration TTL	1800 s	
party architectures	Time to retry after REX (if applicable)	120 s	
UPnP-specific	Announce interval	1800 s	
behavior for two-	Msearch query interval	120 s	
party architecture	SU purges SD	At TTL expiration	
Jini-specific	Probe interval	5 s (7 times)	
behavior for three-	Announce interval	120 s	
party architecture	SM or SU purges SCM	After 540 s with only REX	
	Failure incidence	Once per run for each node	
Interface failure parameters	Failure scope	Transmitter, receiver, or both with equal likelihood	
parameter	Failure duration	5% increments of 5400 s from 0 to 75%	
	UDP transmission delay	10 us constant	
Transmission and	TCP transmission delay	10-100 us uniform	
processing delays	Per-item processing delay	100 us for cache items 10 us for other items	

Console Output from a Sample Experiment Run

```
Rate - 5
Run number - 21
     OUT Interface
                          down 365, up 635
SM 1
SCM 1 OUT Interface
                          down 2417, up 2687
SCM 2 IN & OUT Interface
                          down 519, up 789
      IN Interface
                          down 2238, up 2508
SU 1
     IN Interface
                          down 3256, up 3526
SU 2
SU 3 IN Interface
                          down 207, up 477
SU 4 OUT Interface
                          down 2876, up 3146
SU 5 IN Interface
                          down 4478, up 4748
```

Performance:

```
SM 1 346.00000 346.00000 6 17

SCM 1 346.00000 346.00016 61 102

SCM 2 346.00000 346.00015 61 105

SU 1 346.00000 346.00109 0 11

SU 2 346.00000 346.00109 0 11

SU 3 346.00000 5400.00000 4 11

SU 4 346.00000 346.00109 0 11

SU 5 346.00000 346.00114 0 11
```


Update Responsiveness (R)

Let *D* be a deadline by which we wish to propagate information to each service user (SU) node (*n*) in a service discovery topology.

Let t_C be the creation time of the information that we wish to propagate, where $t_C < D$.

Let $t_{U(n)}$ be the time that the information is propagated to SU n, where n = 1 to N, and N is the total number of SUs in a service discovery topology.

Define information-propagation latency (*L*) for an SU *n* as:

$$L_n = (t_{U(n)} - t_C)/(\max(D, t_{U(n)}) - t_C).$$

Define update responsiveness (*R*) for an SU *n* as:

$$R_n = 1 - L_n$$
.

Update Effectiveness (U)

Let the definitions related to Update Responsiveness, *R*, hold.

Let *X* represent the number of runs during which a particular service discovery topology is observed under identical conditions.

Recalling that *N* is the total number of SUs in a service discovery topology, define the number of SUs observed under identical conditions as:

$$O = X \cdot N$$
.

Define the probability of failure to propagate information to an SU as:

$$P(F) = (\text{count}(R_{i,j} == 0))/O$$
, where $i = 1..N$ and $j = 1..X$.

Define the Update Effectiveness for a given set of conditions as:

$$U=1-P(F).$$

Update Efficiency (E)

Let the preceding definitions associated with Update Responsiveness and Update Effectiveness hold.

Let *M* be the minimum number of messages needed to propagate information from all SMs to all SUs.

Let S be the observed number of messages sent while attempting (failures may occur) to propagate information from all SMs to all SUs in a given run of the topology.

Define average Update Efficiency as:

$$E_{avg} = (\text{sum}(M/S_k))/X$$
, where $k = 1..X$.

Summary Statistics for Performance of Each Combination on Each Metric

	Mean (across all interface-failure rates)				
	Median Responsiveness	Effectiveness	Average Efficiency		
Two-Party Notification	0.663	0.921	0.212		
Two-Party Polling	0.615	0.973	0.251		
Three-Party Notification (Single SCM)	0.601	0.894	0.389		
Three-Party Polling (Single SCM)	0.530	0.911	0.201		
Three-Party Notification (Dual SCM)	0.655	0.942	0.221		
Three-Party Polling (Dual SCM)	0.587	0.927	0.110		

95% C.I. for Each Metric-Combination at Selected Failure Rates

	Responsiveness		Effectiveness		Efficiency				
	5%	40%	75%	5%	40%.	75%	5%	40%	75%
Two-Party Notification	1.000	0.561	0.111	0.970	0.954	0.709	0.354	0.065	0.031
	1.000	0.783	0.162	0.977	0.966	0.787	0.467	0.220	0.354
Two-Party Polling	0.975	0.501	0.076	1.000	0.993	0.760	0.501	0.031	0.042
	0.980	0.849	0.138	1.000	0.993	0.826	0.666	0.230	0.059
Three-Party Notification (Single SCM)	1.000	0.605	0.042	0.993	0.939	0.521	0.827	0.099	0.033
	1.000	1.000	0.095	0.993	0.955	0.652	1.000	0.504	0.320
Three-Party Polling (Single SCM)	0.974	0.244	0.043	1.000	0.946	0.660	0.387	0.043	0.040
	0.980	0.412	0.083	1.000	0.960	0.753	0.512	0.173	0.164
Three-Party Notification (Dual SCM)	1.000	0.562	0.099	0.970	0.977	0.730	0.335	0.035	0.009
	1.000	1.000	0.143	0.977	0.983	0.803	0.599	0.290	0.096
Three-Party Polling	0.974	0.391	0.056	1.000	0.939	0.660	0.218	0.033	0.019
(Dual SCM)	0.986	0.543	0.096	1.000	0.955	0.753	0.273	0.103	0.059