Rice's Theorem

Chanathip Namprempre

 $\begin{array}{c} {\sf Department\ of\ Computer\ Science}\\ {\sf Reed\ College} \end{array}$

Proof

Properties

Consider the class of all r.e. languages.

Take a subset C of this class.

We can look at C as specifying a property P of a language.

A language L has the property P iff $L \in C$.

Example

- **2** $C_2 = \{L \mid L \text{ is r.e. } \}$

Consider a language $L = \{0, 1, 00, 11, 01\}$. Does L have each of the properties above?

Intuition behind Rice's Theorem

Consider a set C of r.e. languages. Recall that $L(M) = \{w \mid M \text{ accepts } w\}.$

Consider the language $L_{\mathcal{C}} = \{ \langle M \rangle \mid L(M) \in \mathcal{C} \}.$

If C is such that L_C is nothing (try $C = \emptyset$) or is everything (try C = the set of all r.e. languages), then L_C is clearly decidable.

These C's represent trivial properties.

Rice's Theorem says that, for all nontrivial properties C, the language L_C is undecidable!

Nontriviality of a property

Definition (Triviality of a property)

A property \mathcal{C} is trivial iff $\mathcal{C} = \emptyset$ or $\mathcal{C} = \text{set of all r.e. languages.}$

Lemma (Testing for nontriviality of a property)

A property C is nontrivial iff there is a language in C and a language not in C.

Rice's Theorem

Theorem (Rice's Theorem)

If C is a set of r.e. languages that is nontrivial, then $L_C = \{ \langle M \rangle \mid L(M) \in C \}$ is undecidable.

Example

- **2** $C_2 = \{L \mid L \text{ is r.e. } \}$

What is L_C for each example above? Which property is nontrivial?

Example: Proving E_{TM} undecidable using Rice's Theorem

Theorem

 $\mathsf{E}_\mathsf{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \mathsf{L}(M) = \emptyset \}$ is undecidable.

Proof.

Let $C = \{L \mid L = \emptyset\}.$

So $E_{\mathsf{TM}} = L_{\mathcal{C}} = \{ \langle M \rangle \mid L(M) \in \mathcal{C} \}.$

Since the language $\emptyset \in \mathcal{C}$ but the language $\{0\} \not\in \mathcal{C}$, we have that \mathcal{C} is nontrivial.

So E_{TM} is undecidable.

More examples

Try using Rice's Theorem to prove that these languages are undecidable.

- AcceptsAll_{TM}
- AcceptsSome_{TM}
- Regular_{TM}
- **6** $\{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is context-free } \}$
- **6** $\{\langle M \rangle \mid M \text{ is a TM and } M \text{ accepts all even length inputs } \}$
- \bigcirc { $\langle M \rangle \mid M$ is a TM and M accepts at least 100 distinct strings }

Rice's Theorem is not always applicable

You cannot use Rice's Theorem to prove these languages undecidable.

If you try, you will fail to come up with either a language property or a nontrivial language property or a property C such that L_C is the language in question.

- $\{\langle M \rangle \mid M \text{ is a TM and } M \text{ has at least 5 states } \}$ [The property being considered is not a language property. In fact, this language is decidable!]
- $\{\langle M \rangle \mid L(M) \text{ is accepted by a TM with an even number of states } \}$ [The property being considered is trivial. In fact, this language is decidable!]
- **3** $\{\langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } \varepsilon \text{ in a perfect square number of steps } \}$

[The property being considered is not a language property. Nonetheless, this language is undecidable. Try a reduction from $BlankTape_{TM}$.]

Proof of Rice's Theorem

Theorem

If C is a set of r.e. languages that is nontrivial, then $L_C = \{ \langle M \rangle \mid L(M) \in C \}$ is undecidable.

Proof.

Suppose $\mathcal C$ is a set of r.e. languages and is nontrivial.

Case 1: Suppose $\emptyset \notin \mathcal{C}$.

We prove that BlankTape_{TM} $\leq_m L_C$.

Case 2: Suppose $\emptyset \in \mathcal{C}$.

We prove that BlankTape_{TM} $\leq_m \overline{L_C}$.