Random Variables 1 STAT-S520

Arturo Valdivia

01-24-23

These slides complement ISI Section 3.5

Random variable

- A random variable (RV) is a function that assigns a real number to each outcome of an experiment.
 - ▶ We use uppercase letters, sometimes with sub-indices, to denote random variables; e.g., X, Y, X₁, Z₃ etc.
 - ▶ If X is a random variable we can write $X: S \to \mathbb{R}$

Example 1

- Experiment: Toss a fair coin twice and observe the top faces
- ▶ The sample space can be given by $S = \{HH, HT, TH, TT\}$
- ► Let *X* be a random variable that assigns to each outcome its total number of heads. We then have:
 - X(HH)=2
 - ► X(HT) = 1,
 - \triangleright X(TH) = 1, and
 - X(TT) = 0

The range of a random variable

- ► The range of a random variable is the set of all the numbers assigned to each possible outcome
 - If X is a random variable with corresponding sample space S, we write X(S) to denote the range of X
 - In our previous example $S = \{HH, HT, TH, TT\}$ and $X(S) = \{0, 1, 2\}$

Events and random variables

- ▶ We can define events based on random variables
- ▶ Let S be the sample space and X a random variable
- ▶ For any real number $y \in \mathbb{R}$ we can define

$$\{s \in S : X(s) \le y\}$$

- ► The expression above is an event (set of outcomes) which depends on *y*
 - A random variable requires that for any number y the event defined above has a well defined probability
 - This is always true if the sample space if finite

Exercise 1

Using the example above, recall that if we toss a fair coin twice, $S = \{HH, HT, TH, TT\}$, and X assigns the number of heads to each outcome. Let's find the probability for event

$$\{s \in S : X(s) \le y\}$$

for different values of y

- ▶ If y = 10 then $P({s \in S : X(s) \le 10}) =$
- ▶ If y = -3 then $P({s \in S : X(s) \le -3}) =$
- ▶ If $y = \pi \cdot (1/2)^2$ then $P(\{s \in S : X(s) \le \pi \cdot (1/2)^2\}) =$

Cumulative distribution function (CDF)

The exercise above illustrates a very useful function. Let X be a random variable. The cumulative distribution function (CDF) of X,

$$F: \mathbb{R} \rightarrow [0,1]$$

is defined as

$$F(y) = P(\{s \in S : X(s) \le y\})$$

for any $y \in \mathbb{R}$

Example 1 continued

We toss a fair coin twice, $S = \{HH, HT, TH, TT\}$, and X assigns the number of heads to each outcome. Then

- F(10) =
- F(-3) =
- $F(\pi \cdot (1/2)^2) =$

Example 1 continued: The graph of F for the coin example

Exercise 1

Experiment: Draw 2 tickets with replacement from the urn

$$[1, 1, 1, 1, 1, 3, 3, 3, 7, 7] \\$$

and let Y be the random variable that assigns the sum of both tickets

- a. What is the sample space, S?
- b. What is the range of Y, Y(S)?
- c. If F_Y is the CDF of Y, what is $F(3\pi)$?