

CONTENT

- Introduction
- Physical approach
- Radiative transfer models
- PROSPECT
- SAIL
- PROSAIL

INTRODUCTION- SPECTRAL SIGNATURES

- Spectral signatures of vegetation covers are used to study vegetation type, species type, health, growth, different stress, productivity and many other characteristics.
- At leaf level ———— leaf traits
- At canopy level
 — plant traits, undesired effects, (e.g. soil reflectance, sun and view geometry) and combined interaction effects

PHYSICAL APPROACH

- Link between plant traits, external factors and the combined interactions effects
 physical/deductive models
- Estimating vegetation parameters involves using radiative transfer models (RTM).
- RTMs offer an explicit connection between a number of plant traits and the spectral reflectance.
- At canopy level RTMs explain the transfer and interaction of radiation inside the canopy based on physical laws. The spectral variation described as a function of canopy, leaf and soil background characteristics.

RT MODELLING

- Support the interpretation of RS data
 - ✓ Compute the RS signal as the function of important biochemical and biophysical variables
 - ✓ Provide understanding of the signal sensitivity to environmental parameters
- Assist in feasibility studies
 - ✓ Compensate for data gaps
 - ✓ Assist in experimental studies
- Robust parameter retrieval through inversion e.g. LAI

RADIATIVE TRANSFER MODEL (RTM) FOR VEGEGTATION

- Leaf level —— leaf biochemical and structural properties
- Canopy level leaf, canopy, soil, sun and sensor geometry (canopy architecture, leaf scattering, soil scattering)
- 1D radiative transfer models —— vegetation canopy is presumed to be a turbid medium with randomly distributed canopy elements
- 3D RTMs applicable to horizontally heterogeneous or discontinuous canopies

RADIATIVE TRANSFER MODEL

 Depending on ecosystem and parameter of interest, models from different levels are combined (leaf optical model with canopy reflectance model)

 Computationally demanding and need knowledge of a number of leaf and canopy variables.

RT CANOPY MODEL

- Require descriptions of:
 - canopy architecture
 - (Vertical leaf area density (LAI), the leaf normal orientation distribution, leaf dimensions (infinitesimal scatters) affects canopy scattering in <u>retroreflection direction</u>, leaf thickness effects on reflectance /transmittance
 - Leaf scattering properties
 - (Leaf surface, internal structure, leaf biochemistry; leaf size increase leaf area for constant number of leaves result in increasing LAI, leaf thickness: decrease transmittance (increase reflectance)
 - soil scattering: moisture content, type/texture, surface roughness.
 - Observation Geometry

EXAMPLES OF LEAF AND CANOPY MODELS

- Leaf models e.g.
 - PROSPECT (Leaf Optical Properties Spectra), Jacquemoud and Baret (1990)
 - LIBERTY (Leaf Incorporating Biochemistry Exhibiting Reflectance and Transmittance Yields), Dawson et al. (1998)
- Canopy models e.g.
- SAIL (Scattering by Arbitrary Inclined Leaves) Verhoef (1984)
- INFORM
- DART

PROSPECT MODEL

PROSPECT (Jacquemoud & Baret 1990) simulates the reflectance and transmittance of a single leaf based on (the following) input parameters and thier absorption coefficients

- Leaf Chlorophyll a+b concentration
- Leaf water concentration
- Leaf dry matter concentration
- Leaf structure parameter

PROSPECT model

$$[R_{mod}(\lambda), T_{mod}(\lambda)] = PROSPECT(N, k(\lambda), n(\lambda))$$
 (1)

leaf structure parameter N

Absorption coefficient of one elementary layer $k(\lambda)$.

Refractive index $n(\lambda)$.

Hemispherical reflectance $R_{mod}(\lambda)$ and transmittance $T_{mod}(\lambda)$

$$k(\lambda) = \sum_{i} k_{i}(\lambda) \times \frac{c_{i}}{N}$$
 (2)

linearly mixed by the concentration of leaf absorbers $C_{i,0.05}$ and their corresponding specific absorption coefficients $k_i(\lambda)$

$$[R_{mod}(\lambda), T_{mod}(\lambda)] = PROSPECT(N, Chl, LMA, EW)$$
 (3)

SENSITIVITY ANALYSIS OF PROSPECT

PROSPECT model in Forward mode

PROSPECT GUI in Matlab

Modeling results

UNIVERSITY OF TWENTE. 14

SAIL MODEL

- Scattering by arbitrary inclined leaves (Verhoef 1984, 1985)
- Models energy-canopy interaction in 3 streams (downward direct flux, downward and upward diffuse flux)
- 1-D turbid medium model
- Canopy represented by small absorbing and scattering elements
 - distributed randomly
 - with known angular distribution
 - with known optical properties
 - Canopy structural parameters, diffuse skylight, sun and sensor zenith and azimuth angles, soil reflectance
 - Canopy is non lambertain surface, therefore canopy reflectance depend on the angle which is illuminated and viewed.

SAIL MODEL

Parameter	Abbreviation in model	Unit
Leaf area index	LAI	m² m ⁻²
Mean leaf inclination angle	ALA	Deg
Sun zenith angle	ts	Deg
Sensor viewing angle	to	Deg
Azimuth angle	phi	Deg
Fraction of diffuse incoming solar radiation	skyl	No dimension
Hot spot size parameter	hot	m m ⁻¹
Soil brightness parameter	scale	No dimension

PROSAIL

- Combination of :
 - SAILH canopy reflectance model (Verhoef, 1984; Verhoef, 1985; Kuusk, 1991)
 - PROSPECT leaf optical properties model (Jacquemoud and Baret, 1990)
- Relatively simple and need only a limited number of input parameters
- Reasonable computation time

MEASURED & BEST MODELLED SPECTRUM

SENSITIVITY ANALYSIS OF PROSAIL

SUMMARY

- RTMs explain the transfer and interaction of radiation inside leaf/canopy based on physical laws.
- The RTMs are sometimes combined to model a complex situation
- Complex models are more realistic, but they have many input variables and are therefore hard to be utilized
- Simple models may be less realistic but easier to use due to limited number of input parameters
- To use these models to estimate vegetation variables they need to be inverted.

TYPES OF REFLECTIONS

SCATTERING PROPERTIES OF LEAVES

- Specular from surface smooth (waxy) surface: strong peak
- hairs, spines: more diffused
- Variation of refractive index:
 1.5@400 nm; 1.3@2500nm
- Complex structure (thickness)
- more scattering
- lower transmittance
- more diffuse

Diffused from scattering at internal air-cell wall interfaces

Spectral reflectance of healthy, green vegetation

Refractive index/ Index of refraction

- Measure of bending of a ray of light when passing from one medium to another one.
- Refractive index (n) is described as ratio of the sine of the angle of incidence to the sine of the angle of refraction.

$$n = \sin i / \sin r$$

 Is also equal to the velocity of light (c) at a wavelength in empty space (vacuum) divided by its velocity (v) in a substance

$$n = c/v$$

