

#### North China University of Technology Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data



# Rethinking Attention Mechanism for Spatio-Temporal Modeling: A Decoupling Perspective in Traffic Flow Prediction

Qi Yu, Weilong Ding\*, Hao Zhang, Yang Yang, Tianpu Zhang



# Introduction



#### **Attention in Spatio-Temporal Modeling**

- Spatial Attention: Graph Attention Network (GAT)
- ◆ **Temporal Attention**: Multi-Head Attention
- Advanced Attention Techniques: Calculations in Fourier or wavelet space

#### **Traffic flow prediction**

- Neighbor nodes with different patterns
- Variations across different days
- Long-term periodic nature



## Contributions



#### DEC-Former: A traffic flow prediction model from a DECoupling perspective

#### Decoupled Perspective

- Decouple the time series data into trend and seasonal parts
- Decouple the geographical adjacency of road network
- Decouple the classical encoder-decoder architecture

#### Efficient Attention Utilization

Attention only for the seasonal part and a dynamic spatial attention module

#### Superior Predictive and Computational Performance

Evaluate on four real-world datasets

# **Preliminary**



#### **Definition and Problem Statement**

- Traffic Topology Graph
  - $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A}), \quad \mathcal{A} \in \mathbb{R}^{N \times N}$
- **♦** Traffic Flow Tensor
  - $X = \{X_1, \dots, X_t, \dots, X_T\} \in \mathbb{R}^{N \times C \times T}$
- Traffic Flow Prediction Problem
  - $[\mathbf{X}_{t+1}, \cdots, \mathbf{X}_{t+P}] = \mathcal{F}_{\theta}([\mathbf{X}_{t-T+1}, \cdots, \mathbf{X}_t; \mathcal{G}])$



#### **DEC-Former**





#### **Trend Decomposition Module**

Focus on the trend and seasonal parts



• 
$$X_{input} \in \mathbb{R}^{N \times C \times T}$$
  $\longrightarrow X_{tre} = AvgPool(padding(X_{input}), m),$   
 $X_{sea} = X_{input} - X_{tre}.$ 



#### **Long-term Temporal Correlation Extractor**

MLP for Trend Context

• 
$$\hat{X}_{tre} = ReLU(W_I^{(l)} X_{tre}^{(l-1)} + b_I^{(l)}).$$

Fourier Attention for Seasonal Context





$$\begin{cases} Q_f = FFT(Q_f) = FFT(X_{sea}W_{F,q}), \\ \mathcal{K}_f = FFT(K_f) = FFT(X_{sea}W_{F,k}), \\ \mathcal{V}_f = FFT(V_f) = FFT(X_{sea}W_{F,v}), \end{cases}$$

• 
$$\hat{X}_{sea} = iFFT(softmax(Q_f \mathcal{K}_f^T) \mathcal{V}_f).$$



#### **Long-range Spatial Correlation Extractor**

Traffic Pattern Extraction



K clusters as K traffic patterns

$$C = \{C_1, \cdots, C_K\}$$

•  $S_{m,n}^{(\tau)}$  as the pattern frequency

$$S_{m,n}^{(\tau)} = \sum (C_m^{\tau_d} == C_n^{\tau_d}) \rightarrow \varphi \implies (A_p^{(\tau)})_{mn} = 1.$$



#### **Long-range Spatial Correlation Extractor**

#### Multivariate Spatial Attention



spatial correlation weight matrix

$$A_S^h = softmax(\frac{Q_m^h(\mathcal{K}_m^h)^T}{\sqrt{d_m}}) \in \mathbb{R}^{N \times N},$$

incorporate the pattern correlation

$$\mathcal{L}_h = (A_S^h \odot A_P) \mathcal{V}_m^h.$$

outputs from multiple attention heads

$$\hat{\mathcal{L}} = \oplus (\mathcal{L}_1, \cdots, \mathcal{L}_h) W_M.$$

# **Evaluation**



#### **Dataset**

- **♦** PeMS03, PeMS04, PeMS07, PeMS08
  - Data aggregated at 5-minute intervals, i.e., 12 sample points per hour.

| Datasets | #Node | #Time step | Time Range            |
|----------|-------|------------|-----------------------|
| PeMS03   | 358   | 26202      | 09/01/2018-11/30/2018 |
| PeMS04   | 307   | 16992      | 01/01/2018-02/28/2018 |
| PeMS07   | 883   | 28224      | 05/01/2017-08/31/2017 |
| PeMS08   | 170   | 17856      | 07/01/2016-08/31/2016 |

# **Evaluation**



#### **Setting**

- **◆ Training : Validation : Test** = 6 : 2 : 2
- ♦ Goal: Predicting the next hour's data using the past day's data.
- Evaluation Metrics

• MAE 
$$=\frac{1}{N}\sum_{i=1}^{n}|y_i-\hat{y}_i|,$$

• RMSE = 
$$\sqrt{\frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
,

• MAPE 
$$=\frac{1}{N} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i} \times 100\%$$

### **Evaluation**



#### **Baseline**

- **♦** Time series models
  - VAR, SVR, FC-LSTM.
- GNN-based models
  - DCRNN, STGCN, Graph Wave Net, STSGCN.
- Attention-based models
  - ASTGCN, GMAN, DSTAGNN, STGSA,
  - ISTNet captures local correlations through CNN to supplement into transformer model,
  - PDFormer designs a self-attention mechanism through a graph mask and a delay-aware module.



#### **Performance Comparison**

| Model      | PeMS03 |       |         | PeMS04 |       |         | PeMS07 |       |         | PeMS08 |       |         |
|------------|--------|-------|---------|--------|-------|---------|--------|-------|---------|--------|-------|---------|
|            | MAE    | RMSE  | MAPE(%) |
| VAR        | 19.72  | 32.38 | 20.50   | 24.44  | 37.76 | 17.27   | 27.96  | 41.31 | 12.11   | 19.83  | 29.24 | 13.08   |
| SVR        | 19.77  | 32.78 | 23.04   | 26.18  | 38.91 | 22.84   | 28.45  | 42.67 | 14.00   | 20.92  | 31.23 | 14.24   |
| FC-LSTM    | 19.56  | 33.38 | 19.56   | 23.60  | 37.11 | 16.17   | 34.05  | 55.70 | 15.31   | 21.18  | 31.88 | 13.72   |
| DCRNN      | 17.62  | 29.86 | 16.83   | 24.42  | 37.48 | 16.86   | 24.45  | 37.61 | 10.67   | 18.49  | 27.30 | 11.69   |
| STGCN      | 19.76  | 33.87 | 17.33   | 23.90  | 36.43 | 13.67   | 26.22  | 39.18 | 10.74   | 18.79  | 28.20 | 10.55   |
| GWNet      | 15.67  | 26.42 | 15.72   | 19.91  | 31.06 | 13.62   | 20.83  | 33.62 | 9.10    | 15.57  | 24.32 | 10.32   |
| STSGCN     | 17.51  | 29.05 | 16.92   | 21.52  | 34.14 | 14.50   | 23.99  | 39.32 | 10.10   | 17.88  | 27.36 | 11.71   |
| ASTGCN     | 18.67  | 30.71 | 19.85   | 22.90  | 33.59 | 16.75   | 28.13  | 43.67 | 13.31   | 18.72  | 28.99 | 12.53   |
| GMAN       | 15.52  | 26.53 | 15.19   | 19.25  | 30.85 | 13.00   | 20.68  | 33.56 | 9.31    | 14.87  | 24.06 | 9.77    |
| DSTAGNN    | 15.57  | 27.21 | 14.68   | 19.30  | 31.46 | 12.70   | 21.42  | 34.51 | 9.01    | 15.67  | 24.77 | 9.94    |
| STGSA      | 15.36  | 27.89 | 14.45   | 19.32  | 31.30 | 12.90   | 20.80  | 34.30 | 8.86    | 15.26  | 24.28 | 9.81    |
| ISTNet     | 15.12  | 25.14 | 15.43   | 18.54  | 30.46 | 12.52   | 19.79  | 33.06 | 8.77    | 14.13  | 23.39 | 9.43    |
| PDFormer   | 14.73  | 24.54 | 15.42   | 18.51  | 30.24 | 12.38   | 20.65  | 34.36 | 8.68    | 14.34  | 23.68 | 9.88    |
| DEC-Former | 14.33  | 23.55 | 14.27   | 18.23  | 29.24 | 12.04   | 19.48  | 33.04 | 8.54    | 13.23  | 23.06 | 9.12    |





■ MAE ↓3.04%

- RMSE ↓2.20%
- MAPE ↓2.23%



#### **Ablation Experiments**





#### **Computational Performance**

| Model           | Training Time (s/epoch) | Inference Ton Testset |                     |
|-----------------|-------------------------|-----------------------|---------------------|
| STSGCN          | 848.08                  | 53                    | 32.80               |
| DSTAGNN         | 1064.61                 |                       | 88.22               |
| ISTNet          | 443.28                  | <b>↓ 16%</b>          | 54.78 ↓ <b>30</b> % |
| <b>PDFormer</b> | 430.24                  | ↓ 14% 5               | 66.00 <b>↓ 18%</b>  |
| DEC-Former      | 371.74                  | 4                     | 15.56               |

| Model      | PeMS03 |       |         | PeMS04 |       |         | PeMS07 |       |         | PeMS08 |       |         |
|------------|--------|-------|---------|--------|-------|---------|--------|-------|---------|--------|-------|---------|
|            | MAE    | RMSE  | MAPE(%) |
| ISTNet     | 15.12  | 25.14 | 15.43   | 18.54  | 30.46 | 12.52   | 19.79  | 33.06 | 8.77    | 14.13  | 23.39 | 9.43    |
| PDFormer   | 14.73  | 24.54 | 15.42   | 18.51  | 30.24 | 12.38   | 20.65  | 34.36 | 8.68    | 14.34  | 23.68 | 9.88    |
| DEC-Former | 14.33  | 23.55 | 14.27   | 18.23  | 29.24 | 12.04   | 19.48  | 33.04 | 8.54    | 13.23  | 23.06 | 9.12    |



North China University of Technology Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data



# Thanks!





#### **Parameter Analysis**









• The Impact of the Cluster Size k.





# Rethinking Attention Mechanism for Spatio-Temporal Modeling: A Decoupling Perspective in Traffic Flow Prediction

Qi Yu, Weilong Ding\*, Hao Zhang, Yang Yang, Tianpu Zhang

