Definición de Conjuntos

Nicolás González Martínez

9 de junio de 2015

1. N: los números naturales poseen dos definiciones

Sin cero =
$$\mathbb{N}^*$$
: $\{1, 2, 3, \dots\} \iff]0, \infty[$
Con cero = \mathbb{N} : $\{0, 1, 2, 3, \dots\} \iff [0, \infty[$

2. \mathbb{Z} : los números enteros se definen como:

$$\mathbb{Z} = \mathbb{N} \cup -\mathbb{N}$$
; donde $-\mathbb{N} = \{-n/n \in \mathbb{N}\}$

El conjunto \mathbb{Z} con las propiedades + y \cdot posee la clasificación de grupo, es decir:

- i) es asociativo con la suma: \iff (a+b)+c=a+(b+c)
- i') es asociativo con la suma: $\iff (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- ii) existe un elemento neutro al cual llamaremos e: $\iff a+e=a=e+a$
- ii') existe un elemento neutro al cual llamaremos $e: \iff a \cdot e = a = e \cdot a$
- iii) existe un elemento inverso al cual llamaremos $-a: \iff a + (-a) = e = (-a) + a$

1

observación: \mathbb{Z} posee la cualidad de ser conmutativo con la suma, es decir, $(\forall x, y \in \mathbb{Z})$ (x + y = y + x) observación: \mathbb{Z} posee la cualidad de ser conmutativo con el producto, es decir, $(\forall x, y \in \mathbb{Z})$ $(x \cdot y = y \cdot x)$

3. \mathbb{Q} : son los números racionales y se definen como:

$$\mathbb{Q} = \{ \frac{p}{q} / p, q \in \mathbb{Z} \ y \ q \neq 0 \}$$

observación: se define la relación
$$\frac{p}{q} \sim \frac{m}{n} \Longleftrightarrow p \cdot n = q \cdot m$$

 $\mbox{\o}$ Como se suma en $\mathbb{Q}?$

Dados
$$\frac{p}{q} + \frac{m}{n}$$
 esto se resuelve de la siguiente manera: $\frac{pn + qm}{qn}$

 ξ Como se multiplica en \mathbb{Q} ?

Dados
$$\frac{p}{q} \cdot \frac{m}{n}$$
 esto se resuelve de la siguiente manera: $\frac{p \cdot m}{q \cdot n}$

4. \mathcal{E} Quien es \mathbb{R} ?

para la respuesta anterior definiremos los siguiente axiomas:

Axioma 1: $0, 1 \in \mathbb{R}$ donde $0 \neq 1$

Axioma 2: $(\mathbb{R}, +)$ es grupo abeliano (tarea: averiguar que significa Grupo Abeliano)

Axioma 3: (\mathbb{R},\cdot) es grupo abeliano

Axioma 4: Se define la propiedad distributiva: $(\forall a, b, c \in \mathbb{R})$ $(a \cdot (b + c) = a \cdot b + a \cdot c)$

Propiedades de \mathbb{R}

1:
$$-(a+b) = (-a) + (-b) = -a - b$$

2:
$$-(-a) = a$$

3: $a \cdot b$ lo denotaremos desde ahora como ab

4:
$$(ab)^{-1} = a^{-1}b^{-1}$$

5:
$$a0 = 0$$

6:
$$-(ab) = (-a)b = a(-b)$$

7:
$$(-a)(-b) = ab$$

8:
$$(a^{-1})^{-1} = a$$

9:
$$ab = 0 \iff a = 0 \lor b = 0$$