## Digital Logic Design

# HALF ADDER

#### **OBJECTIVE:**

• To observe the working of half adder

#### **THEORY:**

**Half adder:** A half adder is a logical circuit that performs an addition operation on two binary digits. The half adder produces a sum and a carry value which are both binary digits. The drawback of this circuit is that in case of a multi bit addition, it cannot cater to carry.

## **EQUATION FOR HALF ADDER:**

$$S = A \oplus B$$

$$C = A \cdot B$$

### **EQUIPMENT / REQUIREMENT:**

- IC 7486
- 7408 IC.
- 7432 IC.
- Breadboard
- LED
- 0-5 VOLT DC Power Supply.

#### **PROCEDURE:**

Construct the combinational circuit as diagram given *figure 6.1* after constructing both of these circuits, observe the output and complete the truth table.



Figure 7.1 half adder circuit

## Digital Logic Design

## **OBSERVATION TABLE:**

| А | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Table 7.1

## **CONCLUSION:**

| A half adder is a type of adder, an electronic circuit that     |
|-----------------------------------------------------------------|
| performs the addition of numbers. The half adder is able to     |
| add two single binary digits and provide the output plus a      |
| carry value. It has two inputs, called A and B, and two outputs |
| S (sum) and C (carry)                                           |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |

# Digital Logic Design