Data Mining **Assignment Solution** 2

Vivek Patani

February 22, 2016

1. Question 1 Solution

Download data set Iris and answer the following questions:

1.1 Section 1

Calculate the average value and standard deviation for each of the four features.

Average for Petal Width: 1.2 Variance for Petal Width: 0.58 Standard Deviation for Petal Width: 0.762

Average for Petal Length: 3.76 Variance for Petal Length: 3.09 Standard Deviation for Petal Length: 1.758

Average for Sepal Length: 5.84 Variance for Sepal Length: 0.68

Applying nodal method at the v_L node of circuit on Figure 1

$$I_0 = \frac{v_L}{R} + i_L \tag{1.1}$$

$$i_L(t) + \frac{R}{L}i_L(t) = \frac{R}{L}I_0$$
 , $t > 0$ (1.2)

Figure 1: Electric Circuit

Section 2 1.2

Assuming circuit's steady state, yields constant¹ current, therefore

$$ZSR: \quad i_L = I_0 \tag{1.3}$$

Proof. Solving ZIR of the equation (1.2):

$$i_{L,ZIR}(t) = A \exp(\frac{-t}{\tau})$$

$$\lim_{t \to \infty} i_L(t) = \lim_{t \to \infty} \left(i_{L,ZIR} + i_{L,ZSR} \right) = i_{L,ZSR} = I_0$$
(1.4)

1.3 **Section 3**

Summarizing equation (1.3) with (1.4) and activating given initial condition $i_L(t =$ 0) = 2 A results in final solution $i_L(t)$, where $\tau = \frac{L}{R}$:

$$i_L(t) = I_0 + (2 - I_0) exp\left(\frac{-t}{\tau}\right) , t > 0$$

Figure 2: Inductor Current with $I_0 = 1A$

Question 2 Solution 2.

Section 1 2.1

Consider the circuit on Figure 3b. Now² applying current divider technique one could easily calculate the following currents:

$$i_1 = \frac{40}{500 + 2k||6k} \cdot \frac{2k}{500 + 2k||6k}$$

$$i_2 = \frac{40}{500 + 2k||6k} \cdot \frac{6k}{500 + 2k||6k}$$

$$i_1(0^-) = 20 \,\mathrm{mA}$$
 $i_2(0^-) = 60 \,\mathrm{mA}$

¹Resistor Shortened by Inductor

 $^{^2}$ Inductor is Short

Figure 3: Question 2 Circuit

2.2 Section 2

Assuming continuity in the inductor current $i_1(0^-) = i_1(0^+) = 20 \,\text{mA}$ on Figure 3c, where $i_1 = -i_2$, thus, setting $i_1(0^+) = -i_2(0^+) = 20 \,\text{mA}$ we get the currents

$$i_1(0^+) = 20 \,\mathrm{mA}$$
 $i_2(0^+) = -20 \,\mathrm{mA}$

2.3 Section 3

It's obvious, that circuits $\frac{3b}{a}$ and $\frac{3c}{a}$ are equivalent to the one on Figure $\frac{1}{a}$ (Page $\frac{1}{a}$) with $\tau = 50$ ms and $I_0 = V_0/R_{eq} = 20$ mA:

$$i_L(t) + \frac{R}{L}i_L(t) = \frac{R}{L}I_0$$
 , $t > 0$ (2.5)

2.4 Section 4

Adopting ZIR³ solution (1.4)

$$i_1(t) = i_1(0^+) \exp\left(\frac{-t}{\tau}\right) \quad , t > 0$$

$$i_2(t) = -i_1(t)$$

3. Question 3 Solution

3.1 Section 1

The voltage drop on the capacitor⁴ on Figure 4b as follows

$$v_C(0^-) = 15 \text{ mA} \cdot 2.4 \text{ k}\Omega = 36 \text{ V}$$
 (3.6)

3.2 Section 2

Replacing capacitor with a test voltage, as shown on Figure 4c, allows input resistance calculation $R_{in} = \frac{v_t}{i_t}$

$$\begin{aligned} v_t - v_\phi &= 25k\alpha \cdot v_\phi \\ v_t &= (1 + 25k\alpha) \cdot v_\phi = 15k(1 + 25k\alpha) \cdot i_t \\ R_{in}(C) &= 15k(1 + 25k\alpha) \end{aligned} \tag{3.7}$$

3.3 Section 3

Given circuit's time constant $\tau = R \cdot C = 25$ ms requires resistor R = 100 k Ω . Setting into (3.7) leads to the value of α -parameter

$$\alpha \approx 2.26 \cdot 10^{-4}$$

³Since, there is no source in the circuit

⁴Open-Circuited Capacitor

Figure 4: Question 3 Circuit

3.4 Section 4

As before⁵ using ZIR solution (1.4) adapted for voltages, where $\tau = 25$ ms and initial condition of the capacitor⁶ $v_C(0^-) = v_C(0^+) = 36$ V

$$\begin{cases} v_C(t) = v_C(0^+) \exp\left(\frac{-t}{\tau}\right) &, t \ge 0 \\ v_C(t) = v_C(0^-) &, t < 0 \end{cases}$$

 $^{^5\}mathrm{Due}$ to circuits analogy

⁶Continuity in voltage drop