Exercise 1: Lecture questions:

Understanding EDA Concepts and Processes

- What are the main objectives of Exploratory Data Analysis (EDA)?
- Why is visualization considered an essential part of EDA?
- How do summary statistics help in understanding data distribution?

Outliers, Data Cleaning, and Preprocessing

- What challenges can outliers present, and how should they be handled during EDA?
- What is the role of data cleaning in the EDA process?

Detecting Patterns, Relationships, and Hypothesis Testing

- How does EDA help detect correlations and trends among variables?
- What are some examples of hypotheses that can be formulated through EDA?

Descriptive and Inferential Statistics

- What are the most common descriptive statistics used in EDA, and why are they useful?
- How do inferential statistics help confirm hypotheses generated during EDA?
- Can you explain the difference between summarizing data and testing hypotheses?

Application and Practical Use Cases

- What is the role of hypothesis testing in data science projects?
- Describe how an A/B test can be used to validate a hypothesis in EDA.
- Why is smoothing important, and how does it help highlight trends in noisy data?

Outlier Detection Techniques

- What statistical methods are commonly used to detect outliers? Provide a brief explanation of each.
- How can Z-score and Interquartile Range (IQR) be used to identify outliers? What are the key differences between them?
- What role do visualizations such as box plots, scatter plots, and histograms play in outlier detection? Which type of plot is most effective for detecting outliers in univariate data?

Mitigation Strategies for Outliers

 What is trimming, and when is it appropriate to use this strategy to handle outliers?

- How does applying transformations, such as a log transformation, reduce the influence of outliers in a dataset?
- What is imputation, and how can it be used to handle outliers without removing them from the data?
- In what situations would you prefer to use the median over the mean when imputing outliers? Why?
- What are the potential risks of ignoring outliers during the analysis process?

Exercise 2:

Given the next sample dataset with eight rows, answer the followed questions related to:

- 1. Z-score for outlier detection
- 2. IQR for outlier detection
- 3. Logarithmic transformation for mitigation

		J	Value
	1		12
	2		15
	3		14
Γ.	4		10
	5		200
	6		13
	7		9
	8		11

Part 1: Z-Score for Outlier Detection

- Calculate the mean and standard deviation of the Value column.
- Compute the Z-scores for each row in the dataset.
- Which values, if any, are considered outliers using a Z-score threshold of 3 (i.e., absolute value of Z-score > 3)?

Part 2: IQR for Outlier Detection

- Find the first quartile (Q1) and third quartile (Q3) of the Value column.
- Calculate the IQR (Q3 Q1).
- Determine the lower and upper bounds for outlier detection (using 1.5 * IQR).
- Identify which values are considered outliers based on these IQR bounds.

Part 3: Logarithmic Transformation for Mitigation

- Apply a logarithmic transformation (using base 10) to the Value column.
- What effect does the transformation have on the outlier value (200)?
- Why is a logarithmic transformation helpful in reducing the impact of outliers?

Exercise 2: Given the data below, answer the following questions.

ID	Feature 1	Feature 2
1	12	15
2	14	18
3	13	16
4	200	5
5	10	11
6	12	14
7	9	10
8	13	17
9	300	8
10	11	12

Part 1: KNN for Outlier Detection

- Explain how KNN can be used to detect outliers.
- Calculate the Euclidean distance between point (ID = 1) and all other points in the dataset.
- Find the 2 nearest neighbors for each data point (using Euclidean distance).
- Use a threshold (e.g., mean + 2 * standard deviation of distances) to determine which points are outliers based on their distances to neighbors.
- Identify which points (if any) are potential outliers in the dataset.

Part 2: Mitigating Outliers Using KNN

- If point 9 (300, 8) is identified as an outlier, suggest how it could be mitigated using KNN-based imputation.
- What are the advantages and limitations of using KNN for outlier detection and mitigation?
- Discuss when KNN might be a better choice for outlier detection compared to Z-scores or IQR methods.

Exercise 4:

The dataset below is a table containing a set of data points (two features: Feature 1 and Feature 2). Assume the following DBSCAN parameters:

 \circ eps (ε): 1.0 and min samples: 2

Point	Feature 1	Feature 2
A	1	2
В	1	2.5
С	1.5	2
D	10	10
E	1	1.5
F	2	2
G	1.1	2.1
Н	0	0

Questions:

- 1. Core, Border, and Noise Points:
 - Identify and classify each point as a Core Point, Border Point, or Noise Point based on the provided parameters.
 - Core Point: A point with at least min_samples points (including itself) within the eps neighborhood.
 - Border Point: A point that is not a core point but is within the neighborhood of a core point.
 - Noise Point: A point that is neither a core point nor a border point.

2. Identification of Outliers:

 Based on your classification, list which points are considered outliers. Provide reasoning for each classification.

3. Parameter Impact:

- Discuss how changing the parameters eps and min_samples might affect the classification of the points.
 - What would happen if eps were increased to 2.0?
 - What would happen if min_samples were increased to 3?

4. Scenario Analysis:

- o If you were to run DBSCAN on a dataset with the following characteristics, would you expect it to perform well? Why or why not?
 - A dataset with a large number of outliers and varying densities of clusters.
 - A dataset with spherical clusters and minimal noise.