Manuel Gijón Agudo

Octubre 2018 -

${\bf \acute{I}ndice}$

1.	Tem	na 0: Introducción a la inferencia estadística	3
	1.1.	bla	3
	1.2.	bla	3
	1.3.	Extension of sources	4
2.	Tem	na 1: Muestreo	5
	2.1.	Definiciones	5
	2.2.	Métodos de muestreo	5
		2.2.1. Muestreo aleatorio simple	5
	2.3.	Distribuciones de muestreo	5
3.	Tem	na 2: Estimación de parámetros	6
	3.1.	Definiciones	6
	3.2.	Propiedades de los estimadores	7
	3.3.	Métodos para la obtención de estimadores	7
	3.4.	Métodos de remuestreo	7
	3.5.	Básicos de probabilidad	7
	3.6.	Distribuciones de probabilidad básicas	8
		3.6.1. Distribuciones discretas	8
		3.6.2. Distribuciones continuas	8
	3.7.	Ejercicios detallados	8
	3.8.	De probabilidad e introductorios	8
	3.9.	Tema 1	8
		3.9.1. Métodos de muestreo	8
		3.9.2. Distribucinoes de muestreo	8
	3.10.	. Tema 2	8
		3.10.1. Definiciones	8
		3.10.2. Propiedades de los estimadores	8
		3.10.3. Métodos para la obtención de estimadores	8
		3 10 4 Métodos de remuestreo	g

Inferencia Estadística			
3.11. Tema 3	9		

1. Tema 0: Introducción a la inferencia estadística

1.1. bla

Definiciones 1 y 2: a **source** is a finite set S together with a set of random variables $(X_1, X_2, ...)$ whose range is S.

If $P(X_n = S_i)$ only depends on i and not on n then we say the source is **stationary** and if the X_n are independent then it's **memoryless**.

Insert example here

Definition 2: Let \mathcal{T} be a finite set called **alphabet**. A map $\mathfrak{C}: \mathbb{S} \longrightarrow \bigcup_{n>1} T^n$ is called a **code**.

If |T| = r then \mathfrak{C} is a r-ary code.

A code extends from \mathbb{S} to $T \cup T^2 \cup ...$ to $\mathbb{S} \cup \mathbb{S}^2 \cup ...$ to $T \cup T^2 \cup ...$ in obvious way.

insert example here

Definition 3: The average word-length of a code \mathfrak{C} is $L(\mathfrak{C}) := \sum_{i=1}^{n} p_i l_i$ where l_i is the length of the image of the symbol of \mathbb{S} , which is emitted with probability p_i .

For now, we write \mathfrak{C} to be the image of \mathfrak{C} .

1.2. bla

Definition 4: If for any sequencies $u_1...u_n = v_1...v_m$ in \mathfrak{C} implies m = n and $u_i = v_i$ for i = 1, ..., n then we say that \mathfrak{C} is **uniquely decodeable**.

insert example here

insert example here

insert example here

Let $\mathfrak{C}_0 = \mathfrak{C}$:

- $\mathfrak{C}_n := \{ \omega \in T \cup T^2 \cup ... | u\omega = v \text{ for some } u \in \mathfrak{C}_{n-1}, v \in \mathfrak{C} \text{ or } u\omega = v \text{ for some } u \in \mathfrak{C}, v \in \mathfrak{C}_{n-1} \}$
- $\mathfrak{C}_{\infty} := \bigcup_{k > 1} \mathfrak{C}_k$

Since everythig is finite either $\mathfrak{C}_m = \emptyset$ for some m and then $\mathfrak{C}_n = \emptyset$ for $n \geq m$ or it will be periodic and start repeating.

Theorem 1: \mathfrak{C} is uniquely decodeable $\iff \mathfrak{C} \cap \mathfrak{C}_{\infty} = \emptyset$.

proof: Insert proof here

insert example here

insert example here

insert example here

Definition 5: A code is a **prefix-code** if no codeword is prefix of another (ie. $\mathfrak{C}_1 = \emptyset$).

A prefix code is uniquely decodeable.

Theorem 2: (Kraft's inequality) \exists r-ary prefix code with word lengths $l_1, l_2, ..., l_q \iff$

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

proof: Insert proof here

insert example here

Theorem 3: (McMillan's inequality) \exists r-ary uniquely decodeable code with word lengths $l_1, l_2, ..., l_q \iff$

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

proof: Insert proof here

1.3. Extension of sources

2. Tema 1: Muestreo

- 2.1. Definiciones
- 2.2. Métodos de muestreo
- 2.2.1. Muestreo aleatorio simple
- 2.3. Distribuciones de muestreo

3. Tema 2: Estimación de parámetros

3.1. Definiciones

Definiciones:

■ Sean $X_1, ..., X_n$ una secuencia de variables aleatorias independientes idénticamente distribuidas tales que $X \sim f(x; \theta)$ $\theta \in \Theta$.

- Definimos la **estimación puntual** el parámetro θ como el proceso de seleccionar un estadístico T que mejor estima el valor del parámetro para esa población.
- Llamaremos a este estadístico $T = T(X_1, ..., X_n)$ que utilizamos para estimar θ un **estimador**.

Observaciones:

- Los estimadores son variables aleatorias.
- Usaremos sus propiedades estadísticas para estudiar su calidad y comparar entre ellos varios estimadores.
- Siempre tendremos un error en la estimación, nuestro objetivo será minimizarlo.

Definición: Decimos que un estimador $T_n = T(X_1, ..., X_n)$ para el parámetro θ es **consistente** cuando $\forall \epsilon > 0$:

$$\lim_{n \to \infty} P(|T_n - \theta| \ge \epsilon) = 0$$

Teorema: si T_n es una secuencia de estimadores tales que $E(T_n) \longleftrightarrow \theta$ y $V(T_n) \longleftrightarrow 0$ cuando $n \to \infty$ entonces T_n es consistente para el parámetro θ .

Definiciones:

lacktriangle Definimos la **desviación** de un estimador T como:

$$bias(T) = E(T) - \theta$$

• Sea T un estimador para θ . Decimos que el estimador es **no desviado** si $\forall \theta \in \Theta$:

$$E(T) = \theta$$

En caso contrario decimos que es **desviado**. Es obvio que en este caso $bias(T) \neq 0$.a

Para introducir el siguiente concepto usaremos un ejemplo concreto. Sean $X_1,...,X_n$ una muestra aleatoria de una variable tal que $E(X) = \mu$ y $V(X) = \sigma^2$. Probar que:

$$E(\overline{X_n}) = \mu$$

¹Estadístico: es una función medible que tiene como espacio de salida $(X_1, ..., X_n)$ una muestra estadística de valores.

$$E(S^2) = \frac{n-1}{n}\sigma^2$$

ENCONTRAR ESTA MIERDA Y CONTINUAR A PARTIR DE AQUÍ, MUHAHHHAHHHAHHHA

- 3.2. Propiedades de los estimadores
- 3.3. Métodos para la obtención de estimadores
- 3.4. Métodos de remuestreo

Apéndice

3.5. Básicos de probabilidad

Caso discreto Probability density function:

Caso continuo

- 3.6. Distribuciones de probabilidad básicas
- 3.6.1. Distribuciones discretas
- 3.6.2. Distribuciones continuas
- 3.7. Ejercicios detallados
- 3.8. De probabilidad e introductorios
- 3.9. Tema 1
- 3.9.1. Métodos de muestreo
- 3.9.2. Distribucinoes de muestreo
- 3.10. Tema 2
- 3.10.1. Definiciones
- 3.10.2. Propiedades de los estimadores
- 3.10.3. Métodos para la obtención de estimadores

Encontrar un estadístico suficiente por el método de la máxima verosimilitud para θ para la distribución con la siguiente función de densidad bajo las condiciones $\theta > 0$ y 0 < x < 1:

$$f_{\theta}(x) = \theta x^{\theta - 1}$$

Primero calculamos la función de densidad conjunta (función de verosimilitud) que, asumiendo independencia, es el producto de las funciones de densidad para cada x_i .

$$l(\theta; x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

$$= \prod_{i=1}^n \theta x_i^{\theta - 1}$$

$$= \theta^n \prod_{i=1}^n x_i^{\theta - 1}$$
(1)

Calculamos la el logaritmo de la función de verosimilitud para hacernos más sencillo

calcular el estimador de máxima verosimilitud (MLE) $\hat{\theta}$:

$$L(\theta; x_1, ..., x_n) = \ln(l)(\theta; x_1, ..., x_n)$$

$$= \ln\left(\theta^n \prod_{i=1}^n x_i^{\theta-1}\right)$$

$$= n \ln(\theta) + (\theta - 1) \sum_{i=1}^n \ln(x_i)$$
(2)

Hallamos el mínimo de la función para encontrar el MLE y comprobamos que es mínimo (pasos obviados aquí).

$$L_{\theta}(\theta; x_1, ..., x_n) = \frac{d}{d\theta} L(\theta; x_1, ..., x_n) = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i$$

$$L_{\theta}(\theta; x_1, ..., x_n) = \frac{d}{d\theta} L(\theta; x_1, ..., x_n) = 0$$

$$\Rightarrow \hat{\theta} = \frac{-n}{\sum_{i=1}^n \ln x_i}$$
(3)

Por el Teorema de Fisher–Neyman sabemos que nuestro estimador será suficiente sí y solo sí:

$$f_{\theta}(x) = h(x)g_{\theta}(T(x))$$

Donde T es el estimador. Observemos que aquí tenemos

3.10.4. Métodos de remuestreo

3.11. Tema 3