Работа №19 Активные фильтры

Симанкович Александр Б01-104

9 мая 2023 г.

9.2 Активные звенья с двойным Т-мостом

Изучим полосовой фильтр с $f_0=10k,\,K_0=20.$

Рис. 1: Схема

Проварьируем $R_2 = [20k, 100k|20k].$

Рис. 2: АЧХ

Изучим поведение фильтра при варьировании $R_5 = [1.5k, 5.5k|500]$ Максимум достигается при $R_5 \approx 3k$

Рис. 3: АЧХ

Рассмотрим переходную характеристику:

Рис. 4: Переходная характеристика полосового фильтра

Изучим переходную характеристику при варьировании $R_5 = [5.0k, 2.5k|500]$. Видно, что при $R_5 < 3k$ фильтр устойчив.

Рис. 5: Переходная характеристика

Изучим модель режекторного фильтра $f_0=10k, \gamma=0.1.$

Рис. 6: Схема

Рассмотрим АЧХ и ФЧХ фильтра.

Рис. 7: АЧХ и ФЧХ

Проварьируем $R_1 = [90k, 240k | 30k]$. Полоса при $R_1 = 90k$ указана на рисунке.

Рис. 8: АЧХ

Проварьируем $R_1 = [300k, 1500k | 300k]$. Уровень выброса при $R_1 = 1500k$ указан на рисунке.

Рис. 9: АЧХ

Варьируем $R_5 = [1k, 9k|2k].$

Рис. 10: АЧХ

Рассмотрим переходную характеристику фильтра. Уровни выброса и скачка в нуле указаны на рисунке.

Рис. 11: Переходная характеристика режекторного фильтра

9.4 Звенья Саллена-Ки

Рассмотрим схемы звеньев Саллена-Ки с $f_0=10k,\,Q=1.$ В них используются неинвертирующие усилители $K=1+\frac{R_2}{R_1}.$

При $f = f_0 K = 2$.

Рис. 12: Схемы

Рис. 13: АЧХ и ФЧХ звеньев Саллена-Ки

Проварьируем $R_L, R_H, R_B = [11k, 19k|2k].$

Рис. 14: АЧХ и ФЧХ звеньев Саллена-Ки

Пиковые значения усиления составляют $K_{lp}=29.441,\,K_{hp}=28.320,\,K_{bp}=28.860.$

Рис. 15: АЧХ звеньев Саллена-Ки

Переходная характеристика звеньев:

- Звено низких частот имеет нулевую производную в нуле, а также устанавливается в ненулевом положении.
- Звено высоких частот имеет скачок в нуле и стремится к нулю с течением времени.
- Полосовой фильтр не имеет скачка в нуле и стремится к нулю с течением времени.

Рис. 16: Переходная характеристика звеньев Саллена-Ки

Проварьируем $R_L, R_H, R_B = [11k, 19k|2k].$

Рис. 17: Переходная характеристика при варьировании

Изучим ФВЧ и ФНЧ Баттерворта n=3 на $f_0=10k$. Одиночные вещественные полюсы реализованы интегрирующей и дифференцирующей цепочками. Сопряженные пары – звеньями Саллена-Ки с добротностью Q=1.

Рис. 18: Схемы

Затухание составляет 60 dB/декаду.

Рис. 19: АЧХ фильтров Баттерворта

Преобразуем схемы в фильтры Чебышева с $\varepsilon=1$. Параметры ФНЧ [$\nu_0=0.298, (\nu,Q)=(0.916,3.073)$], ФВЧ [$\nu_0=3.355, (\nu,Q)=(1.092,3.073)$] получим из MatLab.

Рассчитаем $R_i=\frac{10k}{\nu_0}=33.5k,~R_d=\frac{10k}{\nu_0}=2.98k$. Установим оба резистора фильтра Саллена-Ки $R=\frac{10k}{\nu}=10.9k,~R=\frac{10k}{\nu}=9.2k$. Добротность подстроим резисторами R_1,R_2 : $R_2=R_1(2-\frac{1}{Q})=16.7k$.

Затухание составляет 62.5 dB/декаду.

Рис. 20: АЧХ фильтров Чебышева

Построим также фильтр Чебышева второго порядка с $f_0=10k,\, \varepsilon=1,\, Q=\frac{f_0}{\Delta f}=6.$

Рис. 21: Схема

Как видно из АЧХ, ширина полосы $\Delta f = 1.65k$, значения затухания указаны на рисунке.

Рис. 22: Частотные характеристики

9.5 Звенья с двойной обратной связью

Рис. 23: Схема

Сделаем полосовой фильтр с двойной обратной связью с параметрами $f_0=5k,\ K_0=5,\ Q=15.$

Ожидаемая ширина полосы пропускания $\Delta f = \frac{f_0}{Q} = 330$ Гц, высота пика $K_{max} = QK_0 = 75$.

Рис. 24: АЧХ фильтра

Как видно из графика, параметры совпадают с ожидаемыми. Проварьируем $R_2=[100,1.3k|200]$:

Рис. 25: АЧХ от R_2

График зависимости частоты пика от R_2 .

Рис. 26: АЧХ от R_2

Соберем схему на макетной плате.

Рис. 27: АЧХ реального фильтра

Значения незначительно отклонились от ожидаемых.

Соберем полосовой фильтр Чебышева третьего порядка с параметрами $f_0=1k,\ \varepsilon=1,$ $Q=\frac{f_0}{\Delta f}=3.$

Для получения параметров с помощью MatLab получаем полюса: $(\nu_0,Q_0)=(1.0,10.66), (\nu_1,Q_1)=(0.86,20.36), (\nu_2,Q_2)=(1.162,20.36).$ Коэффициенты усиления звеньев $K_0=1.$

Реализуем с помощью ФНЧ полюс (ν_1,Q_1) : $C^*=C\frac{1}{\nu_1}=10n/0.86=11.63n,~aC=3Q_1C^*=710.36n,~bC=\frac{C^*}{3Q_1}=0.19n.$

С помощью ФВЧ реализуем (ν_2, Q_2): $R^* = R/\nu_2 = 10k/1.162 = 8.61k$, $R/\alpha = \frac{R^*}{3Q_2} = 0.141k$, $R/\beta = 3Q_2R^* = 525.9k$.

Реализуем (ν_0, Q_0) с помощью $\Pi\Phi$: $R/\gamma = 2*Q_0*R = 213.2k, R/\beta = \frac{R}{2Q_0-1} = 0.492k.$

Рис. 28: Фильтр Чебышева третьего порядка

Рис. 29: АЧХ фильтра Чебышева третьего порядка