Chapter 3. Connectedness and Compactness

- 23. Connected space.
- 3 basic theorems about continuous functions $f: [a,b] \rightarrow R$ in Calculus:
- o Intermediate Value Theorem

 $\forall r \in [f(a),f(b)], \exists c \in [a,b] s \cdot t f(c) = r$

flav

-> Connected of off

I-V-T 연속하지 않는 경우가 생긴다.

Connected 는 중요한 조건.

- * use [a, b]: connected.
- · Maximum Value Theorem

f has a maximum on [a,b]

max f

E

- * use [a,b]: Closed + bdd
- Unifor Continuity Theorem. f: Continuity f: Continuity

 $\forall \varepsilon > 0$, $\exists s > 0$ s.t. $|x_1 - x_2| < s' \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$.

* use [a,b]: Closed + bdd

• f: Confi = f: unify confi domain [a,b] - closed + bdd

'closed + bdd' ~ 'compact' (← in IRs and ← in Topology)

Hausdorff

& 23. Connected Spaces.

X = [0,1]U(2.3) not connected in Rs

Deb) (1) X 'connected' is there does not exist a 'separation' ob X, which is a pair U, V of nonempty open subsets s.t. UVV = X and UNV = Ø disjoint. (or, equivalently if 0, X are the only open and closed subsets.) $(U. X-U=V \rightarrow Seperation)$ (2) X ' path-connected' îl every paîr ob points of X can be joined by a 'path' in X where a path from x to y is a continuous map. $f: [0, 1] \rightarrow X$ s.t. f(0) = X and f(1) = YThm. X is path - connected 🗦 X is connected. 1) non-empty 2 open \mathcal{G} UUV = X(PB) (귀류) Assume that X is not connected \oplus $U \cap V = \emptyset$ Let U.V form a separation ob X, and choose $\chi \in U$ and $y \in V$. Since X is path-connected. $\exists a \text{ path } f: [0,1] \rightarrow X \text{ s.t. } f(0) = \mathcal{X}. f(1) = \mathcal{Y}$ Since [0,1] is connected, f([0,1]) is connected by Thm 23.5. Now $f([0,1]) \cap U$ and $f([0,1]) \cap V$ are disjoint open subsets and there union is f([0,1]). $\rightarrow @@@ 27 @.$ Since f([0,1]) is connected, one of them must be empty. But $\kappa \in f([0,1]) \cap U$ and $\gamma \in f([0,1]) \cap V$, a contradiction. The converse does not hold. (0,1) u/ \ (1, sin 1) $X = \left\{ (x, \sin \frac{1}{x}) \mid 0 < x \le | \right\} \cup (0 \times [-1.1])$ (EX 1) Connected because V is not open. topologists sine curve.

U open not closed
V closed not open

not path-connected because no path from (0.1) to (1.5111).

(Ex) * 1

SEC	23.
(Ex)	* 1
1. Let of <i>X</i>	\mathcal{T} and \mathcal{T}' be two topologies on X . If $\mathcal{T}' \supset \mathcal{T}$, what does connectedness in one topology (mply) about connectedness in the other?
(pb)	Any seperation $X = UUV$ ob (X, \mathcal{L}) is also a separation ob (X, \mathcal{L}) .
	This means that (X. S) is disconnected = (X. S') is disconnected
	when $f' \supset f$. or. equivalently. (X, f') is connected $\Rightarrow (X, f)$ is connected