

Machine Learning & Deep Learning – COMP4423 Computer Vision

Xiaoyong Wei (魏驍勇) x1wei@polyu.edu.hk

Department of Computing 電子計算學系

Opening Minds • Shaping the Future 啟迪思維 • 成就未來

Outline

- >Traditional machine learning vs. deep learning
- >Gradient decent
- >Neural networks
- >Deep neural networks
- >Convolutional neural networks (CNN)
- >Layers, pooling, and activation
- >AlexNet, VGG, and ResNet

Traditional classification methods work well for simple tasks. Models are usually built in a controlled environment (e.g., lab setting) to eliminate the variations of illumination, viewpoints, scales, and so on.

Popular traditional datasets

There are 40 distinct people in the dataset

Olivetti Face Dataset, AT&T

Popular traditional datasets

MINIST Handwritten Digits

Popular traditional datasets

Palmprint Acquisition and Datasets

However, in real applications, those are inevitable.

Viewpoints

All pixels change when the camera moves!

Fei-Fei Li, Ranjay Krishna, Danfei Xu, Image Classification: A Core Task in Computer Vision

Illumination

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu, Image Classification: A Core Task in Computer Vision

Occlusions

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Fei-Fei Li, Ranjay Krishna, Danfei Xu, Image Classification: A Core Task in Computer Vision

Background Clutter

This image is Q60 1.0 public domain

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu, Image Classification: A Core Task in Computer Vision

Intra-class Variations

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu, Image Classification: A Core Task in Computer Vision

Hand Gesture Recognition

ImageNet

ImageNet: 12 subtrees with 5247 synsets and 3.2 million images in total

J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248-255, doi: 10.1109/CVPR.2009.5206848.

Deep Learning is a popular solution to address these challenges.

(This is what you're waiting for. LOL!)

Let's start by reviewing the learning of decision boundary through an example – to classify the red and green apples.

Department of Computing 電子計算學系

List of apples

No.	X	y	others	Color (z)
1	9	53	—	Red (1)
2	25	45		Green (-1)
3	225	56.7		Red (1)
4	576	52.9		Green (-1)
5	676	60.2		Red (1)
6	900	55.7		Green (-1)
7				

To find the best line dividing the two groups of apples is to find the best **parameters** of **a** and **b**

The line: y = a*x+b

У

To find the best line dividing the two groups of apples is to find the best **parameters** of **a** and **b**

The line: y =a*x+b

The model:

z=a*x-y+b

Outputs 1 if z>0 Outputs -1 if z<=0

To find the best line dividing the two groups of apples is to find the best **parameters** of **a** and **b**

The line: y =a*x+b

Initialization

Without knowing which line is the best at the beginning, we can pick a random one by setting a and be with random numbers a' and b'.

Initialization

Without knowing which line is the best at the beginning, we can pick a random one by setting a and be with random numbers a' and b'.

The model:

$$z0=a^{*}x-y+b^{*}$$

How can we evaluate how good the model (a' and b') is?

Intuitively, we can compare the prediction z' to the ground truth label z using (z'-z)². By applying to all N samples, we have a loss function

$$L(a',b') = \frac{1}{N} \sum_{i=1}^{N} (z'_i - z_i)^2$$

With the "goodness" evaluated, we can update a' and b' by replacing them with better ones.

The updating process is so called **learning**.

But, how?

The best parameters are the ones that minimize the loss function L. The optimal parameters can thus be found at where the **gradients** of L are zeros

$$\frac{\partial L}{\partial a} = 0, \frac{\partial L}{\partial b} = 0.$$

We can update a' and b' by pushing the gradients towards zeros!

$$a' = a' - \frac{\partial L}{\partial a'}$$

$$b' = b' - \frac{\partial L}{\partial b'}$$

Learning Rate

Gradient Decent

We can update a' and b' by pushing the gradients towards zeros!

We can update a' and b' by pushing the gradients towards zeros!

Department of Computing

Machine learning is a process to find the best set of parameters that fits into a model/hypothesis. The learning is usually conducted by updating the initial parameters with a learning rate towards the optimal of a loss function. Gradient Decent is one of the most popular updating strategies.

Let's implement the learning using neural networks.

Neural Network Version of the Model

Neural Network Version of the Model

Neural Network Version of the Model

How is the learning conducted with more layers and weights?

Gradient Decent on Neural Networks

Gradient Decent on Neural Networks

The Chain Rule for Backpropagation

By stacking more layers you have **Deep Neural Networks**

By employing more loss judges you have **Deep Learning**

Now, we're ready for a few more concepts (tricks)?

Department of Computing 電子計算學系

Layers

Input layer: Receive data from external sources (data files, images, sensors, etc.)

Hidden layers: process data

Output layer provides network-based functions for one or more data points

Convolutional Layers

Instead of using fully connected layers, we can add a few more "partially" connected layers.

Recall the Filters and Convolutions

$$G_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \qquad G_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Prewitt filter for vetical edge detection

Prewitt filter for horizontal edge detection

-1	0	1
-2	0	2
-1	0	1

Sauber Filter

Implement with Neural Networks

Implement with Neural Networks

Implement with Neural Networks

Pooling

Activation

 $\operatorname{sgn}(x) = \begin{cases} 1, & x \geqslant 0; \\ 0, & x < 0. \end{cases}$

 $\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$

ReLU(x)

$$ReLU(x) = \max(0, x)$$

Convolutional Networks

Convolution Neural Network (CNN)

https://discuss.boardinfinity.com/t/what-do-you-mean-by-convolutional-neural-network/8533

AlexNet by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton

VGG16 by Karen Simonyan, Andrew Zisserman @ Oxford

ResNet by K. He and et al.

ResNet @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

ImageNet Classification: "Ultra-deep" 152-layer nets

ImageNet Detection: 16% better than 2nd

ImageNet Localization: 27% better than 2nd

COCO Detection: 11% better than 2nd

COCO Segmentation: 12% better than 2nd

Vanishing Gradients and Residual Learning

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

Vanishing Gradients and Residual Learning

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

Department of Computing 電子計算學系

