Study Notes for Comp 4350: Software Engineering II - Lecture 7

AlOps (Artificial Intelligence for IT Operations)

• **Definition**: AlOps combines big data, machine learning, and visualization to enhance IT operations like deployment and monitoring. It addresses DevOps challenges with Al.

Monitoring in DevOps

- Critical for quality assurance in IT services.
- Involves logs, metrics, and traces.
- Increasing data volume and complexity require efficient monitoring tools.

Artificial Intelligence (AI)

- **Definition**: Simulation of human intelligence processes by machines, including learning, reasoning, and self-correction.
- Two approaches: Knowledge-based (e.g., autopilot systems) and machine learning-based (e.g., AlphaGo).

Machine Learning Techniques

- Common techniques include:
 - Semi-supervised learning
 - Classification (categorical)
 - Regression (numeric)
 - Frequent pattern mining

Frequent Pattern Mining

• Finding sets of items that frequently occur together.

Clustering

• Grouping a set of objects into classes of similar objects.

Anomaly Detection

Identifying data points, events, or observations that deviate from a dataset's normal behavior.

Autonomous Configuration of Software Systems

- Manually configuring large-scale systems is costly and error-prone.
- · Autonomous configuration aims for self-monitoring, self-configuring, and self-optimizing systems.

Performance and Workload

• Performance is influenced by a system's configuration and the characteristics of its workload.

Autonomous Configuration and Its Challenges

- Ensuring minimal footprint, fast response, and understanding the relationship between configuration parameters and performance.
- Avoid exhaustive testing due to feasibility.

Mining Monitoring Data

 Utilizing logging data right involves parsing, abstracting, and analyzing for diagnostics, anomaly detection, and incident prediction.

Methodology for Performance Debugging

• Process includes extracting of interest, mining frequent patterns, and clustering for analysis.

AlOps Research Sub-Areas

 Automated logging, log abstraction, anomaly detection, performance analysis, incident prediction, logging practices, fault diagnostics, system comprehension, autonomous configuration, AlOps infrastructure, generating monitoring code right, using monitoring data right.

Log Parsing

- First step in log analysis tasks.
- It is the process of converting unstructured log data into a structured data format.

Case Studies

• Examples include detecting performance bugs in Windows Explorer UI and predicting node failures in cloud platforms.

Predictive Analytics in AlOps

 Predicting failures in cloud systems using monitoring data to recognize differing patterns between failed and normal nodes.

Scenario Exercise

 For predicting runtime failures in the next two hours, use Anomaly detection or Incident prediction solutions.

References

• Includes studies and reports from EMSE, ICSE, JSME, ICSM, TOSEM, and other reputable sources on various topics related to AlOps.

Observer Effect

• Observation of a system can itself perturb the system, known as the observer effect.

Class Notes

Slide 1

Title: Comp 4350 Software Engineering II Lecture 7

Dr. Shaowei Wang

Slide 2

Title: Agenda

- What is AlOps
- Motivating example
- Sub-areas of AlOps research

Slide 3

Title: AlOps (Artificial Intelligence for IT Operations)

- AlOps enhances IT operations (deployment and monitor) through greater insights by combining big data, machine learning, and visualization.
- Addresses DevOps challenges with Al
- From: 2018 Gartner

Slide 4

Title: Monitoring is critical for ensuring the quality of the delivered services

- deploy
- operate
- test
- build
- codeplan
- release
- Dev
- Ops
- monitor

Slide 5

Title: Monitoring is critical for ensuring the quality of the delivered services

- deploy
- operate

- test
- build
- code
- plan
- release
- Dev
- Ops
- monitor
- Logs
- Metrics
- Traces

Slide 6

Title: Increasing volume and complexity of monitoring data

- Production Environments
- Billions of logs, metrics, and alerts per day
- Human Brain
- Hundreds/thousands of events
- Analysis of big and complex monitoring data poses challenges to software monitoring.

Slide 7

Title: What is AI?

- Simulation of human intelligence processes by machines, especially computer systems.
- Includes learning, reasoning, and self-correction.

Slide 8

Title: Common machine learning techniques

- Semi-supervised
- A small amount of labeled data with a large amount of unlabeled data.

Slide 9

Title: Classification (categorical)

Slide 10

Title: Regression (numeric)

Slide 11

Title: Frequent pattern (itemset) mining

Goal: finding sets of items frequently occurring together

Slide 12

Title: Definition: Frequent Itemsets Body:

- Itemset: a set of items
- E.g., acm={a, c, m}
- (absolute) Support of itemsets
- Sup(acm)=3
- Given min_sup = 3, acm is a frequent pattern
- · Frequent pattern mining: find all frequent patterns in a database
- Transaction database

Slide 13

Title: Clustering: the process of grouping a set of objects into classes of similar objects

Slide 14

Title: Anomaly detection

• Identifies data points, events, or observations that deviate from a dataset's normal behavior.

Slide 15

Title: Beyond Ops: Making monitoring code right

- · Monitoring code made right
- · Monitoring data used right
- · Monitoring code
- Monitoring data

Slide 16

Title: Motivating Example Body: Autonomous configuration of large-scale software systems

Slide 17

Title: Manually configuring large-scale software systems is costly & error-prone

- · Software system
- Workload
- Performance
- Configuration
- Unsatisfied perf.?
- · Workloads are constantly evolving, requiring constant human intervention for optimal performance

Slide 18

Title: Parameters of Database system Body:

- Cache.size
- · Fetch.blocksize
- Table.pageReserve

• ...

Slide 19

Title: Characteristics of Workload Body:

- Number of user requests
- Query type (insert, fetch)
- · Size of each fetch
- Frequency of queries on each table
- ..

Slide 20

Title: Optimization goal Body:

- Minimize the latency of queries on average
- Use minimal memory

Slide 21

Title: Using an AlOps solution to autonomously tune system configurations

- Software system
- Self-monitoring
- Self-configuring
- Self-optimizing
- Optimized parameter values
- Logs
- Performance measures
- Metrics
- [Li et al. 2018]

Slide 22

Title: Challenges in autonomous configuration of large-scale software systems

- Complex system behavior
- Minimal footprint
- Fast response to environment
- [Li et al. 2018]

Slide 23-24

Title: Challenges in autonomous configuration of large-scale software systems

- Complex system behavior
- · Minimal footprint
- Fast response to environment
- [Li et al. 2018]

Slide 25

Title: Understanding the relationship between config. parameters and performance metrics

- Asking domain experts
- Perf. related parameters
- · Perf. data
- Impact of parameters?
- · Running tests
- [Li et al. 2018]

Slide 26

Title: Blue force approach Body:

- Exhaustively run different combinations of parameter values.
- Too many combinations become infeasible.
- Multivariate Adaptive Regression Splines (MARS)
- [Li et al. 2018]

Slide 27

Title: Understanding the relationship between config. parameters and performance metrics

- Perf. related parameters
- · Perf. data
- Perf. critical parameters
- Running tests
- Only a few candidate parameters significantly impact system performance.
- Multivariate Adaptive Regression Splines (MARS)
- [Li et al. 2018]

Slide 28-29

Title: Challenges in autonomous configuration of large-scale software systems

- Complex system behavior
- Minimal footprint
- Fast response to environment
- [Li et al. 2018]

Slide 30

Title: How to capture KPI for different settings of parameters Body:

- Simulating the behavior of different parameter settings and recording them.
- · Slow but accurate
- Historical data: pairs <parameters, KPIs>
- · Fast but less accurate

Title: Machine learning-based Body:

- Use accumulating data to train ML models for auto-tuning parameters.
- Pairs <characteristics of current workload, settings of parameter>

Slide 32-33

Title: Challenges in autonomous configuration of large-scale software systems

- Complex system behavior
- Minimal footprint
- Fast response to environment
- [Li et al. 2018]

Slide 34

Title: Separating the autonomous configuration capabilities from the original system

- Software system
- Self-monitoring
- Self-configuring
- Self-optimizing
- · Optimized parameter values
- · Remote control
- Logs
- · Performance measures
- Metrics
- [Li et al. 2018]

Slide 35-36

Title: Autonomous configuration significantly improves system performance

- Low workload, KPI is optimal
- High workload, KPI drops
- Autonomous configuration
- [Li et al. 2018]

Slide 37-40

Title: Sub-areas of AlOps research

- Automated logging
- Log abstraction
- Anomaly detection
- Performance analysis
- Incident prediction
- Logging practices
- Fault diagnostics
- System comprehension

- Autonomous configuration
- AlOps infrastructures
- · Generating Monitoring code right
- · Using Monitoring data right

Slide 41

Title: Log parsing is the first step for many log analysis tasks

- Fault diagnostics
- Anomaly detection
- System comprehension
- Parsing splits unstructured log data into structured format.

Slide 42-43

Title: Log parsing is the first step for many log analysis tasks

- Fault diagnostics
- Anomaly detection
- System comprehension

Slide 44

Title: Why we need this? Reduce the size

• [Jiang et al. 08]

Slide 45

Title: How many types of "errors" are there? – prioritize work based on frequency Body:

- Enterprise application generates 1.6 million log lines in 8 hours; 23,000 lines contain "fail" or "failure"
- Total 319 execution events; 16 contain "fail" or "failure"
- [Jiang et al. 08]

Slide 46

Title: Sub-topics of AlOps research

- Automated logging
- Log abstraction
- Anomaly detection
- · Performance analysis
- Incident prediction
- Logging practices
- Fault diagnostics
- System comprehension
- Autonomous configuration
- · AlOps infrastructures
- Generating Monitoring code right

• Using Monitoring data right

Slide 47

Title: Fault diagnostics

• Identify the root leading to the fault and its location

Slide 48-49

Title: Performance Debugging in the Large via Mining Millions of Stack Traces - Microsoft

- Performance bugs slow down the system
- Windows collects millions of execution traces
- Call stack analysis for system slowdown
- [ResearchGate Link]

Slide 50-51

Title: Using clustering to reduce the size

- Group related execution trace patterns for large-scale performance debugging
- · Select representative patterns from each cluster

Slide 52-53

Title: Methodology

- · Extract area of interest
- Extract frequent sequential patterns
- Cluster patterns based on similarity measure
- · Hierarchical clustering
- [Alignment of patterns]

Slide 54

Define cost of alignment (edit cost) and get optimal alignment.

Slide 55

Title: Experiment

- Finding hidden performance bugs on Windows Explorer UI
- Input: 921 trace streams, 140 million call stacks
- Output: 1,215 pattern clusters
- Detection of 12 highly impactful performance bugs
- [Li et al. 2018]

Slide 56-60

Title: Sub-topics of AlOps research

- · Automated logging
- · Log abstraction
- Anomaly detection
- Performance analysis
- Incident prediction
- Logging practices
- Fault diagnostics
- System comprehension
- Autonomous configuration
- AlOps infrastructures
- · Generating Monitoring code right
- Using Monitoring data right
- · Case study on Dell DVD Store
- 99.99% reduction in viewed log lines with a precision of 56-100%

Slide 61-64

Title: Predicting Node Failures in an Ultra-large-scale Cloud Computing Platform

- Early monitoring data shows differences between failed nodes and normal nodes.
- [Li et al. 19]
- AUC: 0.92

Slide 65-66

Title: Exercise: select the AlOps solutions for given scenarios

- Given existing monitoring data, determine runtime failure in the next two hours.
- A. Fault diagnostics
- B. Anomaly detection
- C. Incident prediction

Slide 67-69

Title: References

Various papers on AlOps topics

Slide 70-73

Title: Comparing system performance with a baseline derived from previous runs

- Distribution, Evolution, Step-wise Performance Diagnosis
- [Jiang et al. 09]

Slide 74

Title: When you observe a system, you are perturbing it. No free lunch

Observer effect applies to monitoring software systems