Laboratorio CallManager Express

Introducción:

Se van a trabajar con la siguiente topología para cada uno de los 6 grupos.

- 1 Router 4321.
- o 1 Switch 2960.
- o 2 PC con Cisco Ip Communicator.
- 1 teléfono Analógico conectado a un puerto FXS.

Se realizará una configuración de "router on stick" con una topología de 2 vlan para separar voz y datos con los datos correspondientes de la planilla. Se realizarán configuraciones en el router para que actúe como servidor de DHCP y CME para registrar el teléfono, realizar llamadas y funciones adicionales. Se ejecutarán comandos de análisis de datos vinculados al CME

Las PCs cuenta con 2 tarjetas de red, una conectado a la red 172.17.52.0 y otra sin ip que se configurara por DHCP para pertenecer a la solución.

Topología

R1 y SW5 Datos 192.168.10.0 /24 Voice 192.168.15.0 /24

R2 y SW6 Datos 192.168.20.0 /24 Voice 192.168.25.0 /24

R3 y SW7 Datos 192.168.30.0 /24 Voice 192.168.35.0/24

R4 y SW8 Datos 192.168.40.0 /24 Voice 192.168.45.0/24

R5 y SW9 Datos 192.168.50.0 /24 Voice 192.168.55.0/24

R6 y SW10 Datos 192.168.60.0 /24 Voice 192.168.65.0/24

Paso 1 - Configuración VLAN – Switch

Use el cable de consola (console cable) para conectarse al switch y al router. Configure las VLAN e IPS según la tabla provista reemplazando la x e y por los valores correspondientes. Configure los puertos que para que permitan datos y telefonía.

Switch						
hostname	sw5	sw6	sw7	sw8	sw9	sw10
Vlan Datos	10	20	30	40	50	60
Vlan Voz	15	25	35	45	55	65
IP Vlan Datos	192.168.10.2	192.168.20.2	192.168.30.2	192.168.40.2	192.168.50.2	192.168.60.2
IP Vlan Voz	192.168.15.2	192.168.25.2	192.168.35.2	192.168.45.2	192.168.55.2	192.168.65.2

```
SW5(config)# vlan x
SW5(config-vlan)# name data
SW5(config-vlan)# exit

SW5(config)# vlan y
SW5(config-vlan)# name voice
SW5(config-vlan)# exit

SW5(config-vlan)# exit

SW5(config)# interface vlan x
SW5(config-if)# description Data Vlan
SW5(config-if)# ip address 192.168.x.2 255.255.255.0

SW5(config-if)# exit

SW5(config)# interface vlan y
SW5(config-if)# description Voice Vlan
SW5(config-if)# description Voice Vlan
SW5(config-if)# ip address 192.168.y.2 255.255.255.0

SW5(config-if)# exit
```

Se crea el trunk que va al Router

```
SW5# configure terminal
SW5(config)# interface gigabitethernet 0/1
SW5(config-if)# description Trunk-to-Router
SW5(config-if)# switchport mode trunk
SW5(config-if)# spanning-tree portfast trunk
```

Configurar los puertos restantes como access de Datos y telefonía El range configura todo el rango de un GiO/Comienzo-Fin

```
SW5(config)# interface range Gi0/2-8
SW5(config-if-range)# interface range Gi0/2-8
SW5(config-if-range)# switchport mode access
SW5(config-if-range)# switchport access vlan x
SW5(config-if-range)# switchport voice vlan y
```

Paso 2 - Configuración Inter-Vlan Routing

Configurar el hostname y las subinterfaces en el router según la tabla provista reemplazando la x e y por los valores correspondientes.

ROUTER	rtr1	rtr2	rtr3	rtr4	rtr5	rtr6
hostname	CCME1	CCME2	CCME3	CCME4	CCME5	CCME6
Gi 0/0/1.Vlan Data	192.168.10.1/24	192.168.20.1/24	192.168.30.1/24	192.168.40.1/24	192.168.50.1/24	192.168.60.1/24
Gi 0/0/1.Vlan Voice	192.168.15.1/24	192.168.25.1/24	192.168.35.1/24	192.168.45.1/24	192.168.55.1/24	192.168.65.1/24
DHCP Data excluir	.1 a .10					
DHCP Voiceexcluir	.1 a .10					

```
R1# configure terminal
R1(config)# interface gigabitethernet0/0/1
R1(config-if)# no ip address

R1(config-if)# interface gigabitethernet0/0/1.x
R1(config-subif)# description Data VLAN
R1(config-subif)# encapsulation dot1q x
R1(config-subif)# ip address 192.168.x.1 255.255.255.0

R1(config-subif)# interface gigabitethernet0/0/1.y
R1(config-subif)# description Voice VLAN
R1(config-subif)# encapsulation dot1q y
R1(config-subif)# ip address 192.168.y.1 255.255.255.0
```

Asegurarse de que la interfaz Gi0/0/1 no este en modo shutdown. Puede prenderla con el comando

```
R1(config)# interface gigabitethernet0/0/1 R1(config-if)# no shutdown
```

Paso 3 - Configuración DHCP

Use el comando **show cdp neighbors**, **pings** u otro que considere para validar que los equipos puedan verse. Puede ser que el comando cdp no este activo, puede activarlo con **cdp run**.

Crear los pools de datos y telefonía.

```
R1(config)#ip dhcp excluded-address 192.168.x.1 192.168.x.10 R1(config)#ip dhcp excluded-address 192.168.y.1 192.168.y.10

R1(config)#ip dhcp pool DATA_SCOPE
R1(dhcp-config)#network 192.168.x.0 255.255.255.0

R1(dhcp-config)#default-router 192.168.x.1
R1(dhcp-config)#exit

R1(config)#ip dhcp pool VOICE_SCOPE
R1(dhcp-config)#network 192.168.y.0 255.255.255.0

R1(dhcp-config)#default-router 192.168.y.1
R1(dhcp-config)#default-router 192.168.y.1
```

Antes de proseguir asegurarse de la conectividad entre los pc y el router Tomo nota de las IP y mac-address de las PC

IP PC 1: MAC PC 1: IP PC2:

MAC PC2:

Paso 4 - Configuración CLOCK y NTP

CCMEx(config)# clock timezone UYT -3
CCMEx# clock set HH:MM:SS 24 Mar 2022

Para usar el mismo CME como un servidor NTP (usar este caso) CCMEx(config)# ntp master

Para usar otro equipo como NTP server (no es el caso) CCMEx(config)# npt server <ip del servidor >

Ejecute los commandos **show clock** y **show ntp status**

Paso 5 – Configurar las funciones del Sistema CME para SCCP y SIP

Para el modelo SSCP

CCMEx (config)# telephony-service CCMEx (config-telephony-service) #

CCMEx (config-telephony-service) # no auto-reg ephone para que no se registren automáticamente

CCMEx (config-telephony-service) # max-ephones 5

CCMEx (config-telephony-service) # max-dn 10

CCMEx (config-telephony-service) # load 79xx P0xxxxxxxxxx <no poner esta línea todavía>

CCMEx (config-telephony-service) # ip source-address 192.168.x.1 port 2000

CCMEx (config-telephony-service) # system message CCMEx

CCMEx (config-telephony-service) # time-zone 18

CCMEx (config-telephony-service) # date-format dd-mm-yy

CCMEx (config-telephony-service) # transfer-system full-consult

CCMEx (config-telephony-service) #create cnf-files

Para el modelo SIP

CCMEx (config) # voice register global

CCMEx (config-register global) # mode cme

CCMEx (config-register global) # authenticate register

CCMEx (config-register global) # max-pool 5

CCMEx (config-register global) # max-dn 10

CCMEx (config-register global) # load 8845 sip88xx.12-5-1SR3-74 << no poner esta línea todavía>

CCMEx (config-register global) # source-address 192.168.x.1 port 5060

CCMEx (config-register global) # timezone 18

CCMEx (config-register global) # time-format 24

CCMEx (config-register global) # tftp-path flash:

CCMEx (config-register global) # create profile

Paso 6 – Configurar las líneas de teléfono

Se van a configurar

2 teléfonos CIPC, uno con Protocolo SIP y otro con SCCP

Ver la planilla para los numero

Usar una descripción personalizada

	CCME1	CCME2	CCME3	CCME4	CCME5	CCME6
DN dual line CIPC1	1000	2000	3000	4000	5000	6000
DN dual line CIPC2	1001	2001	3001	4001	5001	6001
DN Telefono en FXS	1002	2002	3002	4002	5002	6002
DN dual line SIP PHONE	1003	2003	3003	4003	5003	6003

jjjjjUsar las Mac-Address anotadas anteriormente para configurar los dos CIPC!!!

Protocolo SCCP

```
CCMEx (config) #
ephone-dn 1
number 1000 no-reg both
description Personal
name R1 Tel 1
call-forward busy 4500
call-forward noan 4500 timeout 10

CCMEx (config) #

ephone 1
mac-address AAAA.BBBB.CCCC (Mac Address de Una PC)
type CIPC
button 1:1
```

Al terminar la config de los teléfonos es necesario ejecutar los comandos para crear los perfiles que van a ser descargados por los teléfonos al registrase.

CCMEx (config)# telephony-service #create cnf-files

Protocolo SIP

Para el modelo SIP el type es cipc

```
voice register dn 2
  number 1001
  call-forward b2bua busy 4500
  call-forward b2bua noan 4500 timeout 10
  name Alumno
!

voice register pool 1
  id mac AAAA.BBBB.CCCC (Mac Address de OTRA PC)
  type CIPC
  number 1 dn 2
```

```
SIP - CCMEx (config)# register global (config)# create profile
```

Paso 7 – Configurar el software de CIPC

Previamente antes de ejecutar el software, tener conectadas vinchas o auriculares en las PC ya que si no reconoce un sistema de audio no carga. El programa debe ejecutarse con privilegios de Administrador

Luego de confirmar la configuración de audio y micrófono sale un mensaje de que no puede descargar el firmware ya que no tienen configurado el TFTP correctamente.

Poner como servidor TFTP la ip correspondiente.

TFTP CIPC - PC	192.168.10.1	192.168.20.1	192.168.30.1	192.168.40.1	192.168.50.1	192.168.60.1
TFTP IPPhone	192.168.15.1	192.168.25.1	192.168.35.1	192.168.45.1	192.168.55.1	192.168.65.1

¿Cuál pondría, la subinterfaz de Data o la subinterfaz de Voice?

Paso 8 – Pruebas de Llamadas

Ejecute el comando show telephony-service

Ejecute el comando show ephone registered.

En este momento deberían ver el CIPC con protocolo SCCP con los datos ya cargados.

Pruebe de hacer una llamada entre los 2 teléfonos, antes y después de contestar ejecute el comando

#show voice call status

¿Qué información puede obtener de este comando?

Paso 9 – Simulación de una PSTN – Llamada Entrante

Para simular una llamada entrante, se va a conectar un teléfono analógico a un puerto fxs del router. Si tener nada configurado, al poner el teléfono en off-hook debería dar tono

¿Sucede lo mismo con una placa FXO?

Ejecute el comando

#show voice port summary

Vea como puede identificar en que puerto está conectado el teléfono.

Vamos a configurar un connection plar en el puerto FXS para que suene en uno de los CIPC

CCMEx(config)# voice-port X/X/X connection plar xxxx description Linea Urbana

Pruebe levantando el tubo del teléfono analógico. automáticamente debería aparecer la llamada entrante en el CIPC que configuraron.

Paso 10 – Configurar la etiqueta de una linea

ephone-dn 1 dual-line number xxxx label ETIQUETA

Paso 11 – Configurar una línea de Hunt

La función de **Hunt group** redirecciona una llamada entrante a un grupo de internos. Para llamar al Hunt-group configurado se establece un único número, llamado **Hunt Pilot**

Se cuenta con 3 tipos de Hunt Groups:

- Secuencial:
 - Los ephone-dn se configuran en una lista y suenan desde el primero hasta el último. Si la llamada no es contestada, es redirigida al destino final que tiene configurado (Ejemplo una operadora)
- Peer:
- La lista de ephone-dn en el Hunt-group suena en un modo **round-robin.** El siguiente ephone-dn a sonar es el numero en la lista que está a la derecha del último ephone-dn que sonó desde la última vez que se llamó al Hunt-pilot.
- La llamada transcurre en una manera circular a través de la lista, según el número de saltos que se configuro en el Hunt. Si no se contesta luego de la determinada cantidad de saltos, entonces va a la final-destination.

- Longest-idle:
 - Una nueva llamada entrante es redireccionada a un ephone-dn que estuvo el mayor tiempo en standby. Se determina desde la última vez que estuvo registrado, reregistrado o fue a modo on-hook

Debe crear 3 hunt-Groups usando cada uno una técnica diferente.

Cada uno con un numero piloto diferente.

Para probar puede cambiar el destino del connection plar configurado anteriormente.

Ejemplo

```
ephone-hunt 1 longest-idle
  pilot 1300
  list 1000, 1001
  final 1002
```

Dn Group Hunt	1300	2300	3300	4300	5300	6300
Miembros Hunt	1000, 1001	2000, 2001	3000, 3001	4000, 4001	5000, 5001	6000, 6001
tiempo ring	10 seg					

Paso 12 – Llamadas Salientes – Dial Peer

Para ver si hay algún dial-peer configurado, se puede ejecutar el comando

show dial-peer voice summary

Para simular una llamada saliente, se realizó un loop entre un puerto FXO a FXS, El objetivo es crear lo dial-peer correspondientes a llamadas de 911, celulares y locales siguiendo los patrones vistos en clase.

¿A qué puerto debe apuntar el dial-peer, fxs or fxo?

Ejemplo

```
dial-peer voice 1 pots
  destination-pattern 911
  port X/X/X
  forward-digits all
```

Pruebe realizar la llamada saliente desde un CIPC a uno de los patrones en los dial-peer y al mismo tiempo ejecute el comando **show voice call status** para validar que la llamada este saliendo correctamente.