Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sean A, B, C y D cuatro conjuntos cualesquiera tales que $C \subset A$ y $D \subset B$. Sea una aplicación arbitraria $f: A \to B$ y sea f^{-1} la relación inversa de f. Se consideran las dos inclusiones:

i)
$$C \subset f^{-1}(f(C))$$

ii) $D \subset f(f^{-1}(D))$

- a) Las dos inclusiones son siempre verdaderas.
- b) Las dos inclusiones son siempre falsas.
- c) Ninguna de las otras dos opciones.

Ejercicio 2

En el conjunto $\mathbb{N} \times \mathbb{N}$, se considera la siguiente relación:

$$(n,m)\, \Re\,(p,q)$$
 si y sólo si $\quad (n\leqslant p) \ \wedge \ (n^2+m^2\leqslant p^2+q^2)$

- a) \mathcal{R} no es una relación de orden en $\mathbb{N} \times \mathbb{N}$.
- b) \mathcal{R} es una relación de orden parcial en $\mathbb{N} \times \mathbb{N}$.
- c) \mathcal{R} es una relación de orden total en $\mathbb{N} \times \mathbb{N}$.

Ejercicio 3

Sean $(A, +, \cdot)$ un anillo conmutativo unitario, I un ideal de A y (a) el ideal principal generado por un elemento $a \in A$. Consideramos los enunciados siguientes:

- 1) I = A si y sólo si I contiene al elemento unidad.
- 2) A = (a) si y sólo si a no es divisor de cero.
- 3) A = (a) si y sólo si a es inversible.

Se tiene:

- a) El enunciado de 1) es falso.
- b) El enunciado de 2) es falso.
- c) El enunciado de 3) es falso.

Ejercicio 4

Sean un conjunto arbitrario A y $f: A \to A$ cualquier aplicación inyectiva. Consideramos los enunciados siguientes:

- 1) f es biyectiva.
- 2) Si A es un conjunto finito entonces f es bivectiva.
- 3) Si A es un conjunto numerable entonces f es biyectiva.

Se tiene:

- a) Los tres enunciados son verdaderos.
- b) Sólo los enunciados de 2) y 3) son verdaderos.
- c) Ninguna de las otras dos opciones.

Ejercicio 5

¿Cuántas aplicaciones estrictamente crecientes hay del conjunto $A = \{1, 2, 3\}$ al conjunto $B = \{1, 2, 3, 4, 5, 6, 7\}$?

Nota: Una aplicación $f:A \to B$ es estrictamente creciente si para todo $x,y \in A$ tales que x < y se cumple f(x) < f(y).

- a) Coincide con el número de aplicaciones inyectivas de A a B.
- b) $\binom{7}{3}$.
- c) Ninguna de las otras dos opciones.

Ejercicio 1

La opción correcta es la c). En efecto, veamos que la inclusión de i) es siempre verdadera mientras que la inclusión de ii) puede ser falsa.

i) Para todo x, si $x \in C$ entonces $f(x) \in f(C)$. (*)

Ahora bien si $a \in A$ y $H \subset B$, $a \in f^{-1}(H)$ si y sólo si $f(a) \in H$, luego aplicando esto a a = x y a H = f(C) resulta que $x \in f^{-1}(f(C))$ si y sólo si $f(x) \in f(C)$. Combinando este resultado con (*), se obtiene que para todo x, si $x \in C$ entonces $x \in f^{-1}(f(C))$, es decir $C \subset f^{-1}(f(C))$.

ii) Tomamos $A = B = \{1, 2, 3, 4, 5\}$ y $f: A \to B$ la aplicación tal que f(1) = 3, f(2) = f(3) = f(4) = f(5) = 1 y sea el conjunto $D = \{1, 2\}$. En este caso $f^{-1}(D) = \{2, 3, 4, 5\}$ y $f(f^{-1}(D)) = \{1\}$ y por tanto no se verifica que $D \subset f(f^{-1}(D))$.

Ejercicio 2

La opción correcta es la b).

Veamos que \mathcal{R} es una relación de orden parcial en $\mathbb{N} \times \mathbb{N}$. En efecto:

Reflexiva: $(n, m) \Re (n, m)$ pues $(n \le m) \wedge (n^2 + m^2 \le n^2 + m^2)$.

Antisimétrica: Para todo $(n, m), (p, q) \in \mathbb{N} \times \mathbb{N}$,

si $(n,m) \Re(p,q)$ y $(p,q) \Re(n,m)$ entonces $(n \leq p) \land (n^2 + m^2 \leq p^2 + q^2) \land (p \leq n) \land (p^2 + q^2 \leq n^2 + m^2)$. En consecuencia, $n = p \land m^2 = q^2$, y por tanto (n,m) = (p,q).

Transitiva: Para todo $(n, m), (p, q), (r, s) \in \mathbb{N} \times \mathbb{N}$

 $\mathrm{si}\ (n,m)\ \Re\ (p,q)\ \mathrm{y}\ (p,q)\ \Re\ (r,s)\ \mathrm{entonces}\ (n\leqslant p)\ \wedge\ (n^2+m^2\leqslant p^2+q^2)\ \wedge\ (p\leqslant r)\ \wedge\ (p^2+q^2\leqslant r^2+s^2).$

En consecuencia, $(n \le r) \land (n^2 + m^2 \le r^2 + s^2)$. Por tanto, $(n, m) \Re(r, s)$.

El orden es parcial. En efecto, tomamos los pares (1,4) y (2,2). Se cumple que $1 \le 2$ pero sin embargo no es cierto que $1^2 + 4^2 = 17$ sea menor o igual a $2^2 + 2^2 = 8$. Por tanto los pares (1,4) y (2,2) no son comparables.

Ejercicio 3

La opción correcta es la b).

El enunciado de 1) es verdadero. En efecto, si I=A entonces $1\in I$. Recíprocamente si $1\in I$, como I es ideal de A, entonces para todo $c\in A$ se cumple que $1\cdot c=c\in I$. Por tanto, $A\subset I$ y como de partida $I\subset A$, resulta que A=I.

El enunciado de 2) es falso. Por ejemplo, para $A = \mathbb{Z}$ con la suma y producto habitual, tenemos que 2 no es divisor de cero y sin embargo $(2) = 2\mathbb{Z} \neq \mathbb{Z}$.

El enunciado de 3) es verdadero. En efecto, si A=(a) entonces $1\in(a)$, es decir, existe $c\in A$ tal que 1=ac. Por tanto a es inversible. Recíprocamente si a es inversible, entonces existe $c\in A$ tal que 1=ac, y en consecuencia $1\in(a)$. Del enunciado de 1) se deduce que (a)=A.

Ejercicio 4

La opción correcta es la c).

Por el teorema 5.14, sabemos que si A es un conjunto finito toda aplicación $f: A \to A$ inyectiva es también sobreyectiva. Por tanto el enunciado de 2) es verdadero. Los enunciados de 1) y 3) no son verdaderos. Basta considerar la aplicación $f: \mathbb{N} \to \mathbb{N}$ tal que $f(n) = n^2$ que es inyectiva y no es biyectiva.

Ejercicio 5

La opción correcta es la b).

Veamos que existe una biyección H entre el conjunto \mathcal{F} de aplicaciones estrictamente crecientes de A a B y el conjunto \mathcal{B}_3 de subconjuntos de B de tres elementos. Si $f \in \mathcal{F}$ se define $H(f) = \{f(1), f(2), f(3)\} \in \mathcal{B}_3$.

La aplicación H es sobreyectiva: Dado un subconjunto C de B, de tres elementos, se considera la aplicación tal que f de A a B tal que $f(1) = \min(C)$, $f(3) = \max(C)$ y f(2) es el elemento restante de C. Por construcción, $f \in \mathcal{F}$ y H(f) = C.

La aplicación H es inyectiva: Sean $f, g \in \mathcal{F}$ tales que H(f) = H(g). En consecuencia $\{f(1), f(2), f(3)\} = \{g(1), g(2), g(3)\}$. Teniendo en cuenta que f y g son estrictamente crecientes se tiene además que f(1) < f(2) < f(3) y g(1) < g(2) < g(3). Por tanto f(1) = g(1), f(2) = g(2) y f(3) = g(3).

Por tanto, \mathcal{F} y \mathcal{B}_3 tienen el mismo cardinal: $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$.

La opción a) no es correcta. Se puede ver directamente observando que el número de aplicaciones inyectivas de A a B es $7 \cdot 6 \cdot 5 \neq \binom{7}{3}$ o directamente. Por un lado, toda aplicación estrictamente creciente es inyectiva pues

si $x \neq y$ entonces x < y o y < x. Por tanto, f(x) < f(y) o f(y) < f(x) y en consecuencia $f(x) \neq f(y)$. Por otro lado, no toda aplicación inyectiva es estrictamente creciente. Por ejemplo, la aplicación f tal que f(1) = 3 f(2) = 2 y f(3) = 7. Así pues, $\mathcal{F} \subset \mathcal{I}$ y $\mathcal{F} \neq \mathcal{I}$. Como \mathcal{I} es además un conjunto finito, no son iguales los cardinales de \mathcal{F} y \mathcal{I} .