

System Analysis and Modelling

Practical Assignment 1
Final Report

Student: Julija Belova

St. code: 78727

Lecturer: Mihails Savrasovs

TABLE OF CONTENTS

I Introduction	3
1.Tasks	3
2. Individual Variant	3
II RANDOM NUMBER GENERATOR	4
1. RNG for exponential distribution:	4
2. RNG for normal distribution:	5
III CONCEPTUAL MODEL	8
1. Description Of The System And Conceptual Model	8
2. Model Development Using The Programming Language	8
IV MODEL 1 DEVELOPMENT	10
1. Description	10
2. Simulation results	10
3. MoE statistics	12
V MODEL 2 DEVELOPMENT	13
1. Code of the model	13
2. Code of the model	13
3. MoE statistics	14
VI MODEL 3 DEVELOPMENT: ANYLOGIC	16
1. Description	16
2. Simulation results	21
3. MoE statistics	22
VII SIMULATION RESULTS COMPARISON	24
VIII CONCLUSIONS	25
IX ANNEX	26

I INTRODUCTION

1.Tasks

This practical assignment involves the development and analysis of simulation models for a system described in the provided context. The tasks include designing the system, putting simulation models into practice using a variety of ways, verifying random number generators, producing output data based on certain datasets, and contrasting the outcomes of various simulation techniques.

Making a conceptual model of the system using the given description is the first task. After that, a simulation model must be developed in any programming language using a discrete event simulation technique. To guarantee accuracy and dependability, the random number generators employed in the simulation model must then be put to the test and verified. I used Python.

After the model has been validated, the first simulation model (Model1) based on a given dataset will be used to create output data, especially Measures of Effectiveness (MoE). Two further simulation models must also be created: Model2, which uses the GPSS simulation language, and Model3, which uses the AnyLogic simulation system. Both models use the same dataset as their basis for output data collection.

Following the collection of data from each of the three models, the outcomes must be contrasted and examined. The purpose of this comparison analysis is to provide light on how the system behaves and performs while using various simulation techniques. The analysis's conclusions should then be reviewed, emphasising their significance and ability to guide system optimisation and decision-making.

2. Individual Variant

Unfortunately, some parameters from the option gave an error in the form of a negative timer, so it was decided to slightly change two values, normal(2,2) to normal(2,0.2) and normal(2,1.5) to normal(2,0.5). This error also occurred with my classmate, who had the same values, but a different option

The individual variant for this practical assignment is number 6. This variant has the following dataset:

Table 1. Individual variant

Dataset	<i>I1</i>	<i>I2</i>	P 1	P2	$\boldsymbol{\varrho}$	MoE1	MoE2
7	Erlang	Normal	Normal	Normal(1.5,	LIFO	Downtime	Average
	(2,3)	(2,0.2)	(2,1.5)	0.5)		factor	of jobs in
							queue

II RANDOM NUMBER GENERATOR

In order to develop our model we need to implement a random number generators with Erlang and Normal Distribution

1. RNG for exponential distribution:

1.1 Implementation

The Erlang distribution was implemented using a custom random number generator based on the Linear Conruential Generator method.

1.2 Comparison of Empirical and Theoretical Parameters

Table 1. Empirical and Theoretical Parameters of Erlang Distribution

Parameter	Empirical	Theoretical
MEAN	1.902348	2
STD	3.205693	3

The empirical and theoretical parameters of the Erlang distribution were compared. While the shape parameter (mean) is slightly lower in the empirical distribution compared to the theoretical one, the scale parameter (std) is slightly higher.

Figure 1. Erlang Distribution Comparison

1.3 Kolmogorov-Smirnov Test

Null Hypothesis: The sample follows the Erlang distribution with specified parameters. *Alternative*: Sample distribution is significantly different from the expected Erlang distribution.

Significance Level: 5% or 0.05

Result: D = 0.020, p-value = 0.794

Conclusion: Fail to reject the null hypothesis

Kolmogorov-Smirnov test: statistic = 0.02036032406472965, p-value = 0.7935191226207714 Fail to reject the null hypothesis

1.4 Chi-Square Test

Null Hypothesis: There is no significant difference between the observed frequencies and the expected frequencies, and the sample follows the Erlang distribution with specified parameters.

Alternative: There is a significant difference between the observed frequencies and the expected frequencies.

Significance Level: 5% or 0.05

Result: X-squared = 1.561, df = 20, p-value = 1.000

Conclusion: Fail to reject the null hypothesis

Chi-square test: statistic = 1.560982999216557, p-value = 0.999999999999604 Fail to reject the null hypothesis

1.5 Conclusions

Based on the Kolmogorov-Smirnov and Chi-Square tests, along with the visual inspection of the histogram, we conclude that the implemented Erlang distribution generator is capable of generating a random sequence of values that closely follow the Erlang distribution with the specified parameters.

2. RNG for normal distribution:

2.1 Implementation

The normal distribution was implemented using a custom random number generator based on the Linear Conruential Generator method.

1.2 Comparison of Empirical and Theoretical Parameters

Parameter	Empirical	Theoretical	
MEAN	1.997963	2	
STD	0.186853	0.2	

Table 3. Empirical and Theoretical Parameters of Normal Distribution

The empirical and theoretical parameters of the Normal distribution were compared. While the mean parameter is very close between empirical and theoretical distributions, the standard deviation is slightly lower in the empirical distribution compared to the theoretical one.

Figure 2. Normal Distribution Comparison

1.3 Kolmogorov-Smirnov Test

Null Hypothesis: The sample follows the Normal distribution with specified parameters. Alternative: Sample distribution is significantly different from the expected Normal distribution.

Significance Level: 5% or 0.05 Result: D = 0.028, p-value = 0.413

Conclusion: Fail to reject the null hypothesis

Kolmogorov-Smirnov test: statistic = 0.027848061922657208, p-value = 0.4125482772058511 Fail to reject the null hypothesis

1.4 Chi-Square Test

Null Hypothesis: There is no significant difference between the observed frequencies and the expected frequencies, and the sample follows the Normal distribution with specified parameters.

Alternative: There is a significant difference between the observed frequencies and the expected frequencies.

Significance Level: 5% or 0.05

Result: X-squared = 21.542, df = 20, p-value = 0.839

Conclusion: Fail to reject the null hypothesis

Chi-square test: statistic = 21.542035441594102, p-value = 0.8386490326468667 Fail to reject the null hypothesis

1.5 Conclusions

Based on the Kolmogorov-Smirnov and Chi-Square tests, along with the visual inspection of the histogram, we conclude that the implemented Normal distribution generator is capable of generating a random sequence of values that closely follow the Normal distribution with the specified parameters.

III CONCEPTUAL MODEL

1. Description Of The System And Conceptual Model

Discrete event simulation was used to analyse a server system that could do two different kinds of tasks. Type I1 tasks arrive to the server at an exponential rate defined by an Erlang distribution with shape and scale parameters of 2 and 3, respectively; type I2 jobs come at an exponential rate defined by a normal distribution with mean 2 and standard deviation 0.2. Tasks with different processing durations are handled by the server's processor: P1 and P2 tasks have processing times that are distributed normally, with mean and standard deviation values of (2, 1.5) and (1.5, 0.5), respectively. Last-in, first-out (LIFO) is how the queue is structured. Two metrics—the average number of tasks in the queue (MOE2) and the downtime factor (MOE1)—are used to assess how successful the system is.

Figure 3. Conceptual diagram of the system

2. Model Development Using The Programming Language

2.1 Flowchart algorithm of the model

Figure 4. Flowchart model1

Figure 5. LIFO priciple

IV MODEL 1 DEVELOPMENT

Model is written in Python 3.12.2. The source code for the program is available in the Model1.py file located in the Model1 folder.

1. Description

Throughout the 500 time units (minutes) while the simulation runs, a variety of events are captured and saved in a data structure known as simulation_data. This data is converted into a structured format for analysis at the end of the simulation.

The random number generator seed, simulation period, and accuracy settings are all established at the beginning of the experiment. The simulation results are guaranteed to be consistent and repeatable by these settings.

The normal() and erlang() methods, respectively, are used to generate random integers from the normal and exponential distributions. These routines are designed to mimic the server's processing timings as well as the arrival times of the J1 and J2 jobs.

The simulation follows a last-in, first-out (LIFO) discipline and uses a queue data structure to handle outstanding jobs. Accordingly, the most recent job submitted to the queue is serviced first, and tasks are handled in the order they are added to it.

The core simulation process is powered by the simulation loop, which is contained within a while loop. Until the specified simulation end time is achieved, it repeats the occurrences.

New jobs are produced based on the arrival distributions of each iteration of the loop. The next event time is set by taking the minimum of the J1 and J2 task arrival timings and the server task completion time that is currently running.

The simulation modifies pertinent variables and queues based on the kind of event (J1 arrival, J2 arrival, or completion of server task).

The simulation monitors a number of variables, such as the system time, the length of the task queue, and the availability or busyness of the server. Throughout the simulation, these parameters are crucial in capturing the dynamics of the system.

Measures of effectiveness (MOE1 and MOE2) are calculated at the conclusion of the simulation using the data that has been gathered. Metrics like average queue length and server downtime offer insights into system performance.

All things considered, the simulation model offers an extensive framework for researching and examining how the task processing system behaves in different scenarios.

2. Simulation results

```
Simulation process table template
Num Time Event J1 J2 St S
   0.49830417846969316 J1 0.0 1.7765836924837444 Busy 0
  1.4328857071095185 E1 0.8353801095421887 1.3947067019996129 Free 0
  2.618533037282332 E2 0.7085541425572162 2.599393345383053 Free 0
  3.9837119298338073 E2 1.87313357569071 3.1786123376207907 Free 0
  4.708693672368348 E2 3.4360617467384804 5.256327753017666 Free 0
  6.1228363541671165 E2 4.361401633867832 5.437316818174656 Free 0
  8.031605414030087 E2 5.6990158123056815 6.299124991746158 Free 0
  8.9819809598007 E2 7.825773183046666 9.123540100939916 Free 0
   10.260497423502366 E2 9.168608520398836 9.7384660383374 Free 0
10 11.566024413758559 E2 9.050415361474554 11.341306375192248 Free 0
345 488.66423957679547 E2 488.42235256927944 489.1359248057712 Free 0
346 489.6990229665152 E2 488.4438212997798 489.82124370377346 Free 0
347 491.1412933842264 E2 488.3980726236189 489.9454994525625 Free 0
348 492.06933221280985 E2 491.42047390719404 492.1488019964479 Free 0
349 493.42120396810253 E2 491.1948603474791 492.77988951130857 Free 0
350 495.28732881284265 E1 493.0950624437138 493.4921430648131 Free 0
351 496.09700528047426 E2 495.1084662176717 496.3483677335092 Free 0
352 498.1371360677768 E1 494.29875119472104 496.09997423247637 Free 0
353 499.477454284039 E2 497.38943836202947 498.5638994865045 Free 0
354 500.9164153716674 E2 inf inf Free 0
MOE1 Downtime factor: 0.706
MOE2 Average of jobs in queue: 0.0
```

Figure 6. Console output example

Comments about the table:

Num - Each line of input number

- Time current time of the simulation
- Event indicates the name of an event: Start simulation start; E1 arrival of Job 1; E2
- arrival of Job 2;
- J1 the arrival time of the next job of type 1
- J 2 the arrival time of the next job of type 2

Stop time - the time, then processing of the job will be completed. Initially set to <501

- St status of the server (free or busy)
- S the queue length

- MoE1 Downtime factor
- MoE2 Average of all jobs in queue

3. MoE statistics

Table 2. Model 1 MoE statistics

Random seed	Moe 1 - Downtime factor	MoE 2 – Average of all jobs in queue
1	0.69	0
2	0.678	0
3	0.706	0
4	0.68	0
5	0.694	0
6	0.678	0
7	0.686	0
8	0.69	0
9	0.684	0
10	0.698	0
Statistics	Average: 0.689	Average: 0
	Mode: 0.69	Mode: 0
	Median: 0.688	Median: 0
	Standard deviation: 0.001	Standard deviation: 0
	95% interval: 0.678 to 0.704	95% interval: 0 to 0

V MODEL 2 DEVELOPMENT

Model is written in GPSS World Student Version. The source code for the program is available in the Model 2.gps file located in the Model 2 folder.

1. Code of the model

The GPSS code that is given models the flow of jobs through a processing server by simulating a queuing system. This system has two different job categories, j1 and j2, each with its own arrival patterns and features.

J1 tasks are first generated by the simulation using a gamma distribution with parameters (1, 0, 1/3, 2). The inter-arrival periods of j1 jobs are controlled by this distribution, which also controls how often they enter the system. In contrast, j2 tasks are produced with their inter-arrival intervals determined by a normal distribution with parameters (1, 2, 0.2).

Jobs join a queue called "line" as soon as they are added to the system and wait for the server to process them. Last-in-first-out (lifo) queuing discipline is used to make sure that the job that came most recently is given priority for processing when the server becomes available.

The server takes the next job out of the queue and starts processing it as soon as it is free. The server allots the allotted processing time to the task, modelling the amount of time needed to finish it. When the work is finished, the server lets it back into the system so it may finish the simulation.

A timer that generates pseudo-transactions every 500 time units drives the simulation forward within a predetermined time limit. By using a temporal control mechanism, the simulation will end when it has simulated a long enough period of system activity.

In conclusion, the GPSS code encompasses a whole simulation of a queuing system, including job creation, processing, and system dynamics. This full simulation offers important insights into the functionality and behaviour of the modelled system.

```
; --- Job Generation ---
; Generate entities representing type J1.
GENERATE
                (Gamma(1,0,1/3,2))
                                           ; Determine next arrival time for J1.
                ptime, (Normal(1,2,0.15)); Define processing time for J1.
ASSIGN
TRANSFER
                ,WAIT
                                  ; Proceed to the WAIT block.
; Generate entities representing type J2.
GENERATE
                (Normal(1,2,0.2)); Determine next arrival time for J2.
ASSIGN
                ptime, (Normal(1,1.5,0.5)); Define processing time for J2.
; --- Job Processing ---
WAIT LINK LINE, LIFO, PROC
                                         ; Join the queue while the server is busy.
PROC SEIZE SRV
                        ; Acquire the server for processing.
ADVANCE
                P$ptime; Simulate the job processing time.
RELEASE
                SRV
                         ; Release the server upon job completion.
UNLINK
                                ; Move to processing the next queued job.
                LINE,PROC,1
TERMINATE 0 ; Conclude this job entity.
; --- Simulation Termination ---
; Terminate the simulation after 500 time units (minutes).
GENERATE
                500
TERMINATE
                1
```

2. Code of the model

Wednesday,	April	24.	2024	14:	26:44

	START TIME			EN	ND TIM	E BL	OCKS F	TACILIT	IES	STOR	RAGES	
0.000				500.00	00	13	1		(0		
	112											
	NA	ME				VAL	100100					
	LINE				1	.0001.						
	PROC						000					
	PTIME					.0000	55000000					
	SRV				1	.0002.						
	WAIT					٥.	000					
LABEL		LOC	BLOCE	K TYP	PE	ENTR	Y COUNT	CURRE	NT C	OUNT	RETRY	
		1	GENER	RATE			770		0		0	
		2	ASSI	3N			770		0		0	
		3	TRANS	SFER			770		0		0	
		4	GENER	RATE			251		0		0	
		5	ASSI	GN			251		0		0	
WAIT		6	LINK			1	021		761		0	
PROC		7	SEIZE	Ξ			260		0		0	
		8	ADVAL	NCE			260		1		0	
		9	RELEA	ASE			259		0		0	
		10	UNLI	VK.			259		0		0	
		11	TERM	INATE	Ξ		259		0		0	
		12	GENER	RATE			1		0		0	
		13	TERM	INATE	2		1		0		0	
FACILITY		ENTRIES	A 100 100 100 100 100 100 100 100 100 10			STATE OF THE PARTY	Maria Maria	- 10 6 10 10 10 10 10			The state of the s	100000000000000000000000000000000000000
SRV		260	0.9	996		1.915	1	1017	0	(0 0	0
USER CHA	IN	SIZE	RETRY	AVE	E.CONT	EN	TRIES	MAX	AV	E.TIN	Æ.	
LINE		761	0		76.896		1020	761		84.75		
21112		,,,,				3	1020	, 02	-			
FEC XN	PRI	BDT		ASSE	EM CU	JRRENT	NEXT	PARAM	ETER	7	/ALUE	
1017	0	500.	173	1017	7	8	9					
								PTIME			2.064	
1024	0	501.		1024		0	1					
1022	0	501.		1022		0	4					
1025	0	1000.	000	1025	5	0	12					
	_											

Figure 7. Output of simulation in GPSS

3. MoE statistics

Table 3. Model 2 MoE statistics

Random seed	Moe 1 - Downtime factor	MoE 2 – Average of all
		jobs in queue
1	0.996	0
2	0.998	0

3	0.997	0
4	0.999	0
5	0.996	0
6	0.998	0
7	0.998	0
8	1	0
9	0.997	0
10	0.998	0
Statistics	Average: 0.9977	Average: 0
	Mode: 0.998	Mode: 0
	Median: 0.998	Median: 0
	Standard deviation: 0.001	Standard deviation: 0
	95% interval: 0.997 to 1	95% interval: 0 to 0

VI MODEL 3 DEVELOPMENT: ANYLOGIC

Model is written in AnyLogic 8.8.6 Personal Learning Edition. The source code for the program is available in the Model3.alp file located in the Model 3 folder or ANNEX bellow.

1. Description

There are four categories of elements (agents) in the model:

- Source: the job's type-specific entry point. [J1 and J2]
- Queue: a buffer used to hold jobs until the server is ready to handle them. [queue]
- Delay: a processing tool that "delays" the movement of a work from the queue to the exit. [Server]
- Sink: the place where all jobs end. [sink]

Figure 8. System architecture in AnyLogic

AnyLogic elements are configurated:

Figure 9. Project field

Figure 10.J1 configuration in AnyLogic GUI

Figure 11.J2 configuration in AnyLogic GUI

Figure 12. Queue configuration in AnyLogic GUI

Figure 13. Server configuration in AnyLogic GUI

Figure 14. Custom parameter in "Job" agent configuration in AnyLogic GUI

Figure 15. MOE1 bar configuration in AnyLogic GUI

Figure 16. MOE2 bar configuration in AnyLogic GUI

2. Simulation results

Random seed:78727

Figure 17. Model 3 simulation results

3. MoE statistics

Table 4. Model 3 MoE statistics

Random seed	Moe 1 - Downtime factor	MoE 2 – Average of all jobs in queue
1	0.99	15.9
2	1	17.02
3	0.99	15.86
4	0.98	18.44
5	0.99	15
6	0.97	18.45
7	0.99	9.94
8	1	23.07
9	0.99	15.94
10	0.99	14.32
Statistics	Average: 0.99	Average: 16.39
	Mode: 0.99	Mode: 15
	Median: 0.99	Median: 15.92
	Standard deviation: 0.01	Standard deviation: 3.19
	95% interval: 0.97 to 1	95% interval: 10.93 to 22.03

VII SIMULATION RESULTS COMPARISON

Table 5. Results Comparison

Random seed	<i>MoE1(1)</i>	<i>MoE2(2)</i>	Moe1(2)	MoE2(2)	<i>MoE1(3)</i>	<i>MoE2(3)</i>
1	0.69	0	0.996	0	0.99	15.9
2	0.678	0	0.998	0	1	17.02
3	0.706	0	0.997	0	0.99	15.86
4	0.68	0	0.999	0	0.98	18.44
5	0.694	0	0.996	0	0.99	15
6	0.678	0	0.998	0	0.97	18.45
7	0.686	0	0.998	0	0.99	9.94
8	0.69	0	1	0	1	23.07
9	0.684	0	0.997	0	0.99	15.94
10	0.698	0	0.998	0	0.99	14.32
Statistics	Average:	Average: 0	Average:	Average: 0	Average:	Average:
	0.689	Mode: 0	0.9977	Mode: 0	0.99	16.39
	Mode: 0.69	Median: 0	Mode:	Median: 0	Mode:	Mode: 15
	Median:	Standard	0.998	Standard	0.99	Median:
	0.688	deviation:	Median:	deviation:	Median:	15.92
	Standard	0	0.998	0	0.99	Standard
	deviation:	95%	Standard	95%	Standard	deviation:
	0.001	interval: 0	deviation:	interval: 0	deviation:	3.19
	95%	to 0	0.001	to 0	0.01	95%
	interval:		95%		95%	interval:
	0.678 to		interval:		interval:	10.93 to
	0.704		0.997 to 1		0.97 to 1	22.03

Several reasons can be attributed to the observed variances in simulation outcomes across different environments:

Modelling Approach: Because various simulation environments use different modelling approaches and algorithms, the outcomes might vary.

Implementation Details: Variations in the way that event processing, random number generation, and other simulation components are handled might affect the results.

System Configuration: A simulation's outcome may be affected by the way its parameters—such as service times, arrival rates, and queue management techniques—are set up.

It's also important to keep in mind that variations in the simulation's starting circumstances, such the existence of negative timers, could have had an impact on the variations in outcomes between the Python-based simulation and other simulations.

VIII CONCLUSIONS

The considerable influence of simulation platforms on modelling outputs is demonstrated by the comparison of simulation results across Python, GPSS, and Anylogic environments. When evaluating simulation findings, care must be taken to account for variations in implementation details, modelling approaches, and system complexity. To guarantee the accuracy and applicability of simulation results in real-world settings, researchers and practitioners should give careful validation, sensitivity analysis, and consideration of context-specific elements top priority going ahead.

In my work, you can see that I had difficulty with model 1, since the results of AnyLogic and GPSS were different initially. It also bothered me and took a lot of time to work with a negative timer, after which it turned out that I needed to change the std to something else and the error disappeared

IX ANNEX

1.model1

```
mport numpy as np
    def rand(self):
def erlang(rng, k, lambd):
lambda2 = 2
mu1 = 2
mu2 = 1.5
service time1 = 0
queue = deque() # Task queue (stack)
current_time = 0 # Current time
rng = CustomRandomGenerator(seed=78727) # Random number generator
downtime_times = [] # Server downtime times
queue_lengths = [] # Queue lengths at different time points
j2 if j2 != float('inf') else "-", "Server status:", "Busy" if
server_status == 1 else "Free",
print simulation status("Start", current time, "-", "-", server status,
queue)
```

```
simulation_data = [] # For saving simulation data
while current_time < simulation_time:</pre>
         queue.appendleft("J1") # Add to the front of the queue
               job type = queue.pop() # Remove the last element from the
```

```
queue.appendleft(event_type) # Add to the front of the queue
            queue lengths.append(len(queue))  # Update queue length
        downtime times.append(current time)
    queue lengths.append(len(queue))
        [current time, event type, j1, j2, "Busy" if server status == 1
downtime factor = len(downtime times) / simulation time
    writer.writerows(simulation data)
    rand.py
import numpy as np
```

```
ongruential-generator-how-to-choose-seeds-and-statistical-tests ###
   def rand(self):
def custom erlang(k, theta, rng):
sample size = 1000
sample = [custom erlang(k, theta, rng) for    in range(sample size)]
plt.figure(figsize=(8, 6))
plt.hist(sample, bins=30, density=True, color='skyblue', edgecolor='black',
plt.hist(stats.gamma.rvs(a=k, scale=theta, size=sample size), bins=30,
plt.title('Erlang Distribution Comparison')
mean empirical = np.mean(sample)
mean theoretical = k * theta
shape_theoretical, _, scale_theoretical = stats.gamma.fit(sample, floc=0)
print(df)
```

```
# Print test results
alpha = 0.05
if ks_p < alpha:
    print('Kolmogorov-Smirnov test: statistic = {}, p-value =
{}'.format(ks_stat, ks_p))
    print('Reject the null hypothesis')
else:
    print('Kolmogorov-Smirnov test: statistic = {}, p-value =
{}'.format(ks_stat, ks_p))
    print('Fail to reject the null hypothesis')

observed_freq, _ = np.histogram(sample, bins=30, density=True)
chi2_stat_1, chi2_p_1 = stats.chisquare(observed_freq)
alpha = 0.05
if chi2_p_1 < alpha:
    print('Chi-square test: statistic = {}, p-value =
{}'.format(chi2_stat_1, chi2_p_1))
    print('Reject the null hypothesis')
else:
    print('Chi-square test: statistic = {}, p-value =
{}'.format(chi2_stat_1, chi2_p_1))
    print('Fail to reject the null hypothesis')</pre>
```

rand nornal.py

```
import numpy as np
import matplotlib.pyplot as plt
sample size = 1000
mean = 2
std dev = 0.2
sample = [custom normal(mean, std dev, rng) for in range(sample size)]
plt.hist(sample, bins=30, density=True, color='skyblue', edgecolor='black', alpha=0.7, label='Empirical Distribution')
plt.hist(np.random.normal(mean, std dev,
```

```
plt.title('Normal Distribution Comparison')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.show()
mean empirical = np.mean(sample)
std dev empirical = np.std(sample)
mean theoretical = mean
std dev theoretical = std dev
df = pd.DataFrame(data, index=['EMPIRICAL', 'THEORETICAL'])
```

rand normal1.py

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd

# RNG for exponential distribution
class CustomRandomGenerator:
    def __init__(self, seed=None):
        self.seed = seed
        self.a = 1664525
```

```
rng = CustomRandomGenerator(seed=42)
sample size = 1000
mean = 2
std dev = 1.5
sample = [custom normal(mean, std dev, rng) for in range(sample size)]
plt.figure(figsize=(8, 6))
plt.hist(sample, bins=30, density=True, color='skyblue', edgecolor='black',
plt.hist(np.random.normal(mean, std dev, size=sample size), bins=30,
plt.title('Normal Distribution Comparison')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.show()
mean empirical = np.mean(sample)
std dev empirical = np.std(sample)
mean theoretical = mean
```

```
print('Fail to reject the null hypothesis')

# Chi-square test
observed_freq, _ = np.histogram(sample, bins=30, density=True)
chi2_stat_1, chi2_p_1 = stats.chisquare(observed_freq)
alpha = 0.05
if chi2_p_1 < alpha:
    print('Chi-square test: statistic = {}, p-value =
{}'.format(chi2_stat_1, chi2_p_1))
    print('Reject the null hypothesis')
else:
    print('Chi-square test: statistic = {}, p-value =
{}'.format(chi2_stat_1, chi2_p_1))
    print('Fail to reject the null hypothesis')</pre>
```

rand normal2.py

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
rng = CustomRandomGenerator(seed=42)
sample size = 1000
mean = 1.5
sample = [custom normal(mean, std_dev, rng) for _ in range(sample_size)]
plt.hist(sample, bins=30, density=True, color='skyblue', edgecolor='black',
alpha=0.7, label='Empirical Distribution')
plt.hist(np.random.normal(mean, std_dev, size=sample_size), bins=30,
density=True, color='red', edgecolor='black', alpha=0.5, label='Theoretical
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.show()
```

```
Calculate mean and standard deviation for empirical distribution
mean empirical = np.mean(sample)
std dev empirical = np.std(sample)
mean theoretical = mean
std dev theoretical = std dev
df = pd.DataFrame(data, index=['EMPIRICAL', 'THEORETICAL'])
```