Algoritmi e Strutture Dati

Programmazione dinamica – Parte 3

Alberto Montresor

Università di Trento

2021/02/22

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- 1 String matching approssimato
- 2 Prodotto di catena di matrici
- 3 Insieme indipendente di intervalli pesati

String matching approssimato

Definizione

Un'occorrenza k-approssimata di P in T, dove

- $P = p_1 \dots p_m$ è una stringa detta pattern
- $T = t_1 \dots t_n$ è una stringa detta testo, con $m \le n$,

è una copia di P in T in cui sono ammessi k "errori" (o differenze) tra caratteri di P e caratteri di T, del seguente tipo:

- \bullet i corrispondenti caratteri in P,T sono diversi (sostituzione)
- \bullet un carattere in T non è incluso in P (cancellazione)

Problema – Approximated string matching

Trovare un'occorrenza k-approssimata di P in T con k minimo $(0 \le k \le m)$.

Esempio

```
T = 	extsf{questo} \hat{	extsf{unoscempio}} P = 	extsf{unescempio}
```

Domande

- Qual è il minimo valore k per cui si trova un'occorrenza k-approssimata di P in T?
- A partire da dove?
- Con quali errori?

Sottostruttura ottima

Definizione

Sia DP[0...m][0...m] una tabella di programmazione dinamica tale che DP[i][j] sia il minimo valore k per cui esiste un'occorrenza k-approssimata di P(i) in T(j) che termina nella posizione j

Quattro possibilità

$$DP[i-1][j-1]$$
, se $P[i]=T[j]$ avanza su entrambi i caratteri (uguali)
$$DP[i-1][j-1]+1$$
, se $P[i]\neq T[j]$ avanza su entrambi i caratteri (sost.)
$$DP[i-1][j]+1$$
 avanza sul pattern (inserimento)
$$DP[i][j-1]+1$$
 avanza sul testo (cancellazione)

Sottostruttura ottima

$$DP[i][j] = \begin{cases} 0 & i = 0 \\ i & j = 0 \\ \min\{DP[i-1][j-1] + \delta, & \delta = \text{iif}(P[i] = T[j], 0, 1) \\ DP[i-1][j] + 1, & \text{altrimenti} \end{cases}$$

$$P[i-1] \qquad DP[i-1][j-1] \qquad DP[i-1][j]$$

$$P[i] \qquad DP[i][j-1] \qquad DP[i][j]$$

Ricostruzione della soluzione finale

- DP[m][j] = k se e solo se esiste un'occorrenza k-approssimata di P in T(j) che termina nella posizione j.
- \bullet La soluzione del problema è data dal più piccolo valore DP[m][j], per $0 \leq j \leq n$

Algoritmo

```
int stringMatching(ITEM[] P, ITEM[] T, int m, int n)
int[][] DP = new int[0...m][0...n]
for j = 0 to n do DP[0][j] = 0
                                                                   % Caso base: i=0
for i = 1 to m do DP[i][0] = i
                                                                   % Caso base: i=0
for i = 1 to m do
                                                                      % Caso generale
   for j = 1 to n do
       DP[i][j] = \min(DP[i-1][j-1] + iif(P[i] == T[j], 0, 1),
          DP[i-1][j] + 1, \ DP[i][j-1] + 1
int pos = 0
                                                         % Calcola minimo ultima riga
for j = 1 to n do
   if DP[m][j] < DP[m][pos] then
    pos = j
return pos
```

String matching approssimato

Take-home message – prendi e porta a casa

- Non è detto che la "soluzione finale" si trovi nella casella "in basso a destra";
- \bullet È invece possibile che la soluzione debba essere ricercata essa stessa nella tabella DP

Reality check

Approximate String Matching è un esempio di string metric:

[...] is a metric that measures distance ("inverse similarity") between two strings [...]

String metrics are used heavily in information integration and are currently used in areas including fraud detection, fingerprint analysis, plagiarism detection, ontology merging, DNA analysis, RNA analysis, image analysis, evidence-based machine learning, database data deduplication, data mining, incremental search, data integration, and semantic knowledge integration.

https://en.wikipedia.org/wiki/String_metric

Esempi

Edit distance, detta anche distanza di Levenshtein

Prodotto di catena di matrici

Problema

Data una sequenza di n matrici $A_1, A_2, A_3, \ldots, A_n$, compatibili due a due al prodotto, vogliamo calcolare il loro prodotto.

- Il prodotto di matrici non è commutativo
-ma è associativo: $(A_1 \cdot A_2) \cdot A_3 = A_1 \cdot (A_2 \cdot A_3)$

Cosa vogliamo ottimizzare

- Il prodotto di matrici si basa sulla moltiplicazione scalare come operazione elementare
- ullet Vogliamo calcolare il prodotto delle n matrici impiegando il più basso numero possibile di moltiplicazioni scalari

A	100×1
В	1×100
С	100×1

	# Moltiplicazioni	Memoria
$(A \cdot B)$	$100 \times 1 \times 100 = 10000$	10000
$((A \cdot B) \cdot C)$	$100 \times 100 \times 1 = 10000$	100
	20000	10100
$(B \cdot C)$ $(A \cdot (B \cdot C))$	$1 \times 100 \times 1 = 100$	1
$(A\cdot (B\cdot C))$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>100</u>
	200	101

A	50×10
В	10×40
С	40×30
D	30×5

```
(((A \cdot B) \cdot C) \cdot D) : 87500 moltiplicazioni ((A \cdot (B \cdot C)) \cdot D) : 34500 moltiplicazioni ((A \cdot B) \cdot (C \cdot D)) : 36000 moltiplicazioni (A \cdot ((B \cdot C) \cdot D)) : 16000 moltiplicazioni (A \cdot (B \cdot (C \cdot D))) : 10500 moltiplicazioni
```

$$(((A \cdot B) \cdot C) \cdot D) : 87500$$

$$(A \cdot B) \qquad 50 \times 10 \times 40 = 20000$$

$$((A \cdot B) \cdot C) \qquad 50 \times 40 \times 30 = 60000$$

$$((A \cdot B) \cdot C) \cdot D \qquad \underline{50 \times 30 \times 5} = 7500$$

Parentesizzazione

Parentesizzazione

Una parentesizzazione $P_{i,j}$ del prodotto $A_i \cdot A_{i+1} \cdot \cdot \cdot A_j$ consiste:

- nella matrice A_i , se i = j;
- nel prodotto di due parentesizzazioni $(P_{i,k} \cdot P_{k+1,j})$, altrimenti.

Esempio

$$(A_1 \cdot (A_2 \cdot A_3)) \times (A_4 \cdot (A_5 \cdot A_6))$$

In questo caso, k=3 e il prodotto evidenziato è detto "ultimo prodotto"

Parentesizzazione ottima

La parentesizzazione che richiede il minor numero di moltiplicazioni scalari per essere completata, fra tutte le parentesizzazioni possibili.

Motivazione

Vale la pena preprocessare i dati per cercare la parentesizzazione migliore, per risparmiare tempo dopo nel calcolo vero e proprio

Domanda

Quante sono le parentesizzazioni possibili?

n	1	2	3	4	5	6	7	8	9	10
P(n)	1	1	2	5	?	?	?	?	?	?

- P(n): numero di parentesizzazioni per n matrici $A_1 \cdot \ldots \cdot A_n$
- L'ultimo prodotto può occorrere in n-1 posizioni diverse
- Fissato l'indice k dell'ultimo prodotto, abbiamo:
 - P(k) parentesizzazioni per $A_1 \cdot \ldots \cdot A_k$
 - P(n-k) parentesizzazioni per $A_{k+1} \cdot \ldots \cdot A_n$

$$P(n) = \begin{cases} 1 & n = 1\\ \sum_{i=1}^{n-1} P(k)P(n-k) & n > 1 \end{cases}$$

n	1	2	3	4	5	6	7	8	9	10
P(n)	1	1	2	5	14	42	132	429	1430	4862

Numero di Catalan

$$P(n)=C(n)=\frac{1}{n+1}\binom{2n}{n}=\frac{(2n)!}{(n+1)!n!}=\Theta\left(\frac{4^n}{n\sqrt{n}}\right)$$

In matematica

C(n): numero di modi in cui un poligono convesso con n+2 lati può essere suddiviso in triangoli.

Esercizio

Dimostrare che $P(n) = \Omega(2^n)$

Implicazione

Algoritmi di forza bruta non vanno quindi bene

Definizioni matematiche

$A_1 \cdot A_2 \cdot \ldots \cdot A_n$	il prodotto di n matrici da ottimizzare
c_{i-1}	il numero di righe della matrice A_i
c_i	il numero di colonne della matrice A_i
$A[i \dots j]$	il sottoprodotto $A_i \cdot A_{i+1} \cdot \ldots \cdot A_j$
$P[i \dots j]$	una parentesizzazione per $A[i \dots j]$ (non necessariamente ottima)

Struttura di una parentesizzazione ottima

Osservazioni

- ullet Sia $A[i \dots j]$ una sottosequenza del prodotto di matrici
- \bullet Si consideri una parentesizzazione ottima $P[i\dots j]$ di $A[i\dots j]$
- \bullet Esiste un ultimo prodotto: esiste un indice k tale che

$$P[i \dots j] = P[i \dots k] \cdot P[k+1 \dots j]$$

Domanda

Quali sono le caratteristiche dei due sottoprodotti

$$P[i \dots k] \in P[k+1 \dots j]$$
?

Teorema sottostruttura ottima

Teorema

Se $P[i\dots j]=P[i\dots k]\cdot P[k+1\dots j]$ è una parentesizzazione ottima del prodotto $A[i\dots j],$ allora:

- $P[i \dots k]$ è parentesizzazione ottima del prodotto $A[i \dots k]$
- P[k+1...j] è parentesizzazione ottima del prodotto A[k+1...j]

Dimostrazione – per assurdo

- Supponiamo esista un parentesizzazione ottima $P'[i \dots k]$ di $A[i \dots k]$ con costo inferiore a $P[i \dots k]$.
- Allora, $P'[i \dots k] \cdot P[k+1 \dots j]$ sarebbe una parentesizzazione di $A[i \dots j]$ con costo inferiore a $P[i \dots j]$, assurdo.

Valore della soluzione ottima

Sia DP[i][j] il minimo numero di moltiplicazioni scalari necessarie per calcolare il prodotto $A[i \dots j]$

- Caso base: i = j. Allora DP[i][j] = 0
- Passo ricorsivo: i < j. Esiste una parentesizzazione ottima

$$P[i \dots j] = P[i \dots k] \cdot P[k+1 \dots j]$$

Sfruttando la ricorsione:

$$DP[i][j] = DP[i][k] + DP[k+1][j] + c_{i-1} \cdot c_k \cdot c_j$$

- $c_{i-1} \cdot c_k \cdot c_i$ è il costo per moltiplicare
 - la matrice $A_i \cdot \ldots A_k$: c_{i-1} righe, c_k colonne
 - la matrice $A_{k+1} \cdot \dots A_i$: c_k righe, c_i colonne

Valore della soluzione ottima

Valore della soluzione ottima

Ma qual è il valore di k?

- Non lo conosciamo....
- ... ma possiamo provarli tutti!
- ullet k può assumere valori fra $i \in j-1$

Formula finale

$$DP[i][j] = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{DP[i][k] + DP[k+1][j] + c_{i-1} \cdot c_k \cdot c_j \} & i < j \end{cases}$$

i ∖ j	1	2	3	4	5	6
1	Q					
2	-	0				
3	-	-	0			
4	-	-	-	0		
5	-	-	-	-	0	
6	-	-	-	-	-	0

$$DP[1][2] = \min_{1 \le k < 2} \{DP[1][k] + DP[k+1][2] + c_0 c_k c_2\}$$

= $DP[1][1] + DP[2][2] + c_0 c_1 c_2$
= $c_0 c_1 c_2$

i ∖ j	1	2	3	4	5	6
1	0					
2	-	G	1			
3	-	-	0	1		
4	-	-	-	8		
5	-	-	-	-	0	
6	-	-	-	-	-	0

$$DP[2][4] = \min_{2 \le k < 4} \{ DP[2][k] + DP[k+1][4] + c_1 c_k c_4 \}$$

= \text{min}\{ DP[2][2] + DP[3][4] + c_1 c_2 c_4,
\text{DP[2][3] + DP[4][4] + c_1 c_3 c_4 \}

i ∖ j	1	2	3	4	5	6
1	0					
2	-	0-	_	1	<u> </u>	
3	-	-	0	1	1	
4	-	-	-	0		
5	-	-	-	-	b	
6	-	-	-	-	-	0

$$DP[2][5] = \min_{2 \le k < 5} \{DP[2][k] + DP[k+1][5] + c_1c_kc_5\}$$

$$= \min\{DP[2][2] + DP[3][5] + c_1c_2c_5,$$

$$DP[2][3] + DP[4][5] + c_1c_3c_5,$$

$$DP[2][4] + DP[5][5] + c_1c_4c_5\}$$

$$DP[1][5] = \min_{1 \le k < 5} \{DP[1][k] + DP[k+1][5] + c_0c_kc_5\}$$

$$= \min\{DP[1][1] + DP[2][5] + c_0c_1c_5,$$

$$DP[1][2] + DP[3][5] + c_0c_2c_5,$$

$$DP[1][3] + DP[4][5] + c_0c_3c_5,$$

$$DP[1][4] + DP[5][5] + c_0c_4c_5\}$$

i ∖ j	1	2	3	4	5	6
1	0-	_	~	×	4	
2	-	0			7	†
3	-	-	0		1	*
4	-	-	-	0		
5	-	-	-	-	0	1
6	-	-	-	-	-	9

$$DP[1][6] = \min_{1 \le k < 6}$$

$$DP[1][k] + DP[k+1][6] + c_0c_kc_6$$

$$DP[1][1] + DP[2][6] + c_0c_1c_6,$$

$$DP[1][2] + DP[3][6] + c_0c_2c_6,$$

$$DP[1][3] + DP[4][6] + c_0c_3c_6,$$

$$DP[1][4] + DP[5][6] + c_0c_4c_6,$$

$$DP[1][5] + DP[6][6] + c_0c_5c_6$$

Dalla formula al codice

Input

- Un vettore c[0...n] contenente le dimensioni delle matrici
 - c[0] è il numero di righe della prima matrice
 - c[i-1] è il numero di righe della matrice A_i
 - ullet c[i] è il numero di colonne della matrice A_i
- \bullet Due indici $i,\,j$ che rappresentano l'intervallo di matrici da moltiplicare

Output

Il numero di moltiplicazioni scalari per calcolare il prodotto delle matrici comprese fra gli indici i e j

Approccio ricorsivo

```
int recPar(int[] c, int i, int j)
if i == j then
    return 0
else
    min = +\infty
    for int k = i to j - 1 do
        int q = \text{recPar}(c, i, k) + \text{recPar}(c, k + 1, j) + c[i - 1] \cdot c[k] \cdot c[j]
        if q < min then
            min = q
    return min
```

Complessità?

Valutazione

Alcune riflessioni

- La soluzione ricorsiva top-down è $\Omega(2^n)$
- Non è poi migliore dell'approccio basato su forza bruta!
- Il problema è che molti sottoproblemi vengono risolti più volte
- \bullet Il numero di sottoproblemi è $\frac{n(n+1)}{2}$

Versione bottom-up

Tabelle programmazione dinamica

Due matrici DP, last di dimensione $n \times n$ tali che:

- DP[i][j] contiene il numero di moltiplicazioni scalari necessarie per moltiplicare le matrici $A[i \dots j]$
- $\bullet \ last[i][j]$ contiene il valore k dell'ultimo prodotto che minimizza il costo per il sottoproblema

Versione bottom-up

```
computePar(int[] c, int n)
int[][] DP = new int[1 \dots n][1 \dots n]
int[][] last = new int[1...n][1...n]
for i = 1 to n do
                                                                           Fill main diagonal
DP[i][i] = 0
for h=2 to n do
                                                                         % h: diagonal index
   for i = 1 to n - h + 1 do
                                                                                    \% i: row
       int i = i + h - 1
                                                                                \% i: column
      DP[i][j] = +\infty
      for k = i to j - 1 do
                                                                           % k: last product
          int temp = DP[i|[k] + DP[k+1][j] + c[i-1] \cdot c[k] \cdot c[j]
          if temp < DP[i][j] then
           DP[i][j] = temp
            last[i][j] = k
```

DP	1	2	3	4	5	6
1	0	224	176	218	276	350
2		0	64	112	174	250
3			0	24	70	138
4				0	30	90
5					0	90
6						0

$$\begin{split} DP[1][4] &= \min_{1 \leq k < 4} ~ \{ \ DP[1][k] \ + \ DP[k+1][4] \ + \ c_0 \cdot c_k \cdot c_4 \ \} \\ &= \min ~ \{ \ DP[1][1] \ + \ DP[2][4] \ + \ c_0 \cdot c_1 \cdot c_4, \\ &\{ \ DP[1][2] \ + \ DP[3][4] \ + \ c_0 \cdot c_2 \cdot c_4, \\ &\{ \ DP[1][3] \ + \ DP[4][4] \ + \ c_0 \cdot c_3 \cdot c_4 \ \} \\ &= \min ~ \{ \ 0 \ \ \, + \ 112 \ \ \, + \ 7 \cdot 8 \cdot 3, \\ &\{ \ 224 \ \ \, + \ 24 \ \ \, + \ 7 \cdot 4 \cdot 3, \\ &\{ \ 176 \ \ \, + \ 0 \ \ \, + \ 7 \cdot 2 \cdot 3 \ \} \\ &= \min ~ \{ \ 280 \ \ \, , \ 332 \ \ \, , \ \ 218 \ \} \end{split}$$

last	1	2	3	4	5	6
1	0	1	1	3	3	3
2		0	2	3	3	3
3			0	3	3	3
4				0	4	5
5					0	5
6						0

i	c[i]		
0	7		
1	8		
2	4		
3	2		
4	3		
5	5		
6	6		

$$\begin{split} DP[1][4] &= \min_{1 \leq k < 4} \; \left\{ \begin{array}{l} DP[1][k] \; + \; DP[k+1][4] \; + \; c_0 \cdot c_k \cdot c_4 \end{array} \right\} \\ &= \min \quad \left\{ \begin{array}{l} DP[1][1] \; + \; DP[2][4] \; + \; c_0 \cdot c_1 \cdot c_4, \\ \left\{ \begin{array}{l} DP[1][2] \; + \; DP[3][4] \; + \; c_0 \cdot c_2 \cdot c_4, \\ \left\{ \begin{array}{l} DP[1][3] \; + \; DP[4][4] \; + \; c_0 \cdot c_3 \cdot c_4 \end{array} \right\} \\ &= \min \quad \left\{ \begin{array}{l} 0 \; \; + \; 112 \; \; + \; 7 \cdot 8 \cdot 3, \\ \left\{ \begin{array}{l} 224 \; \; + \; 24 \; \; + \; 7 \cdot 4 \cdot 3, \\ \left\{ \begin{array}{l} 176 \; \; + \; 0 \; \; + \; 7 \cdot 2 \cdot 3 \end{array} \right\} \\ &= \min \quad \left\{ \begin{array}{l} 280 \; \; , \; 332 \; \; , \; \ \end{array} \right. \end{split} \right. \end{split}$$

Considerazioni

- \bullet Il costo computazionale è $O(n^3),$ in quanto ogni cella richiede tempo O(n) per essere riempita
- \bullet Il costo della funzione si trova nella posizione DP[1][n]
- È anche necessario mostrare la soluzione trovata
- Per questo motivo abbiamo registrato informazioni sulla soluzione nella matrice last

Ricostruzione della soluzione – Stampa

```
computePar(int[] c, int n)
printPar(last, 1, n)
printPar(int[][] last, int i, int j)
if i == j then
   print "A["; print i; print "]"
else
   print "("; stampaPar(last, i, last[i][j]); print "·"; stampaPar(last, last[i][j] + 1, j);
     print ")"
```

Ricostruzione della soluzione – Calcolo effettivo

```
\begin{split} &\underbrace{\inf[][] \; \mathsf{multiply}(\mathbf{matrix}[] \; A, \, \mathbf{int}[][] \; \mathit{last}, \, \mathbf{int} \; i, \, \mathbf{int} \; j)}_{\mathbf{if} \; i = j \; \mathbf{then}} \\ &| \; \; \mathbf{return} \; A[i] \\ &= \mathbf{lint}[][] \; X = \mathsf{multiply}(A, \mathit{last}, i, \mathit{last}[i][j]) \\ &| \; \; \mathbf{int}[][] \; Y = \mathsf{multiply}(A, \mathit{last}, \mathit{last}[i][j] + 1, j) \\ &| \; \; \; \mathbf{return} \; \; \mathbf{matrix-multiplication}(X, Y) \end{split}
```

Esempio

$$A[1 ... 6] = A[1 ... 3] \cdot A[4 ... 6]$$

$$A[1 ... 3] = A_1 \cdot A[2 ... 3]$$

$$A[4 ... 6] = A[4 ... 5] \cdot A_6$$

$$A[2 ... 3] = A_2 \cdot A_3$$

$$A[4 ... 5] = A_4 \cdot A_5$$

last	1	2	3	4	5	6
1	0	1	1	3	3	3
2		0	2	3	3	3
3			0	3	3	3
4				0	4	5
5					0	5
6						0

Risultato finale

$$A = ((A_1 \cdot (A_2 \cdot A_3)) \cdot ((A_4 \cdot A_5) \cdot A_6))$$

Prodotto di catena di matrici

Take-home message – prendi e porta a casa

A volte, bisogna fare attenzione a come riempire la tabella - non è detto che riempire una riga dopo l'altra sia possibile.

Insieme indipendente di intervalli pesati – Introduzione

Input

Siano dati n intervalli distinti $[a_1, b_1[, \dots, [a_n, b_n[$ della retta reale, aperti a destra, dove all'intervallo i è associato un profitto $w_i, 1 \le i \le n$.

Intervalli disgiunti

Due intervalli $i \in j$ si dicono disgiunti se: $b_j \leq a_i$ oppure $b_i \leq a_j$

Problema

Trovare un insieme indipendente di peso massimo, ovvero un sottoinsieme di intervalli disgiunti tra loro tale che la somma dei loro profitti sia la più grande possibile.

• Esempio: prenotazione di una sala conferenza

Esempio

Esempio

Pre-elaborazione

Per usare la programmazione dinamica, è necessario effettuare una pre-elaborazione: ordinare gli intervalli per estremi finali non decrescenti

$$b_1 \leq b_2 \leq \ldots \leq b_n$$

Profitto massimo (Versione 1)

DP[i] contiene il profitto massimo ottenibile con i primi i intervalli

$$DP[i] = \begin{cases} 0 & i = 0\\ \max(DP[i-1], \max\{DP[j] + w_i : j < i \land b_j \le a_i\}) & i > 0 \end{cases}$$

Costo computazionale?

Pre-elaborazione

Per usare la programmazione dinamica, è necessario effettuare una pre-elaborazione: ordinare gli intervalli per estremi finali non decrescenti

$$b_1 \leq b_2 \leq \ldots \leq b_n$$

Profitto massimo (Versione 1)

DP[i] contiene il profitto massimo ottenibile con i primi i intervalli

$$DP[i] = \begin{cases} 0 & i = 0\\ \max(DP[i-1], \max\{DP[j] + w_i : j < i \land b_j \le a_i\}) & i > 0 \end{cases}$$

Costo computazionale?

 $O(n^2)$

Pre-elaborazione

Una seconda possibile pre-elaborazione consiste nel pre-calcolare il predecessore $pred_i = j$ di i, dove:

- j < i è il massimo indice tale che $b_j \le a_i$
- se non esiste tale indice, $pred_i = 0$.

Profitto massimo (Versione 2)

$$DP[i] = \begin{cases} 0 & i = 0\\ \max(DP[i-1], DP[pred_i] + w_i) & i > 0 \end{cases}$$

Pre-elaborazione - calcolo predecessori

Quanto costa pre-calcolare i predecessori?

return pred

Pre-elaborazione - calcolo predecessori

```
\begin{split} & \mathbf{int}[] \; \mathsf{computePredecessor}(\mathbf{int}[] \; a, \; \mathbf{int}[] \; a, \; \mathbf{int}[
```

return pred

Quanto costa pre-calcolare i predecessori?

 $O(n^2)$

Si può fare meglio di così?

Pre-elaborazione - calcolo predecessori

return pred

Quanto costa pre-calcolare i predecessori?

 $O(n^2)$

Si può fare meglio di così?

Sì! $O(n \log n)$

Alcune note

- Gli intervalli vanno ordinati per tempo non decrescente di fine
- Eventuali intervalli con lo stesso tempo di fine possono essere ordinati in qualunque modo
- \bullet Questo perché ogni valore DP[i] rappresenta il massimo profitto ottenibile con i primi i intervalli
- È quindi possibile escludere l'intervallo *i*-esimo se sceglierne uno precedente j (ma con lo stesso tempo di fine b[i] = b[j]) ha un valore DP[j] più alto

Versione completa

```
SET maxinterval(int[] a, int[] b, int[] w, int n)
{ ordina gli intervalli per estremi di fine crescenti }
int[] pred = computePredecessor(a, b, n)
int[] DP = new int[0...n]
DP[0] = 0
for i = 1 to n do
DP[i] = \max(DP[i-1], w[i] + DP[pred[i]])
i = n
Set S = Set()
while i > 0 do
   if DP[i-1] > w[i] + DP[pred[i]] then
    i = i - 1
   else
    S.\mathsf{insert}(i)i = pred[i]
```

return S

Costo computazionale

${\bf Costo\ computazionale}$

- Ordinamento intervalli: $O(n \log n)$
- Calcolo predecessori: $O(n \log n)$
- Riempimento tabella DP: O(n)
- Ricostruzione soluzione: O(n)
- Algoritmo completo: $O(n \log n)$

Esercizio

Scrivere una funzione di calcolo predecessori in tempo $O(n \log n)$

Insieme indipendente di intervalli pesati – Conclusioni

Take-home message – prendi e porta a casa

Talvolta, può essere necessario pre-processare l'input per poter applicare nella maniera più efficiente possibile la programmazione dinamica

Per concludere

Una lezione ancora più importante

La programmazione dinamica non è la soluzione di tutti i vostri problemi. Esistono altre tecniche che possono fare "meglio di così". Inoltre, è possibile che soluzioni ad-hoc possano essere migliori

Esempi

- Longest increasing subsequence: esiste soluzione $O(n \log n)$
- Longest common subsequence: può essere risolto in tempo $O(mn/\log n)$ (con alfabeto limitato)
- Four Russians algorithm: tecnica generale che può essere applicata a vari problemi su matrice con alfabeto limitato $O(n^2/\log n)$
 - Edit distance
 - Transitive closure, ...

Approccio generale

Riassunto: programmazione dinamica / memoization

Fasi

- Caratterizzare la struttura di una soluzione ottima
- Dimostrare che la soluzione gode di sottostruttura ottima
- Definire ricorsivamente il valore di una soluzione ottima
- Calcolare il valore di una soluzione ottima "bottom-up" (prog. dinamica) / "top-down" (memoization)
- Ricostruzione di una soluzione ottima