Python: Instrukcja 5

Creative Commons License: Attribution Share Alike

Wprowadzenie

Tworzenie własnych klas

Uruchamianie zewnętrznych procesów

Konsola "ipython"

Tworzenie własnych generatorów

Tworzenie własnych modułów

Instalacja OpenFOAM i ParaView

Do rozwiązania poniższego zadania będzie wymagane zainstalowanie aplikacji Open-FOAM. OpenFOAM jest zbiorem różnych solverów opensource, które pozwalają na rozwiązywanie zagadnień obliczeniowej mechaniki płynów. W przypadku naszego zadania będzie on zastosowany do tworzenia siatki i wykonania obliczeń przepływu 2D, których wynik będzie następnie przez nas wykorzystany do utworzenia optymalizacji. Instalacja OpenFOAM z pakietów jest bardzo prosta. Opis instalacji można znaleźć pod tym linkiem. Poniżej opisujemy dokładnie te same kroki:

- Należy na początek dodać repozytorium OpenFOAM do system, tak aby nasz system wiedział skąd ma pobrać aplikację. W tym celu w konsoli wpisujemy:
 - $\$ \ \, {\tt sudo} \ \, {\tt add-apt-repository} \ \, {\tt http://www.openfoam.org/download/ubuntu}$
- Oprócz dodania repozytorium musimy odświeżyć nasz manager pakietów:
 - \$ sudo apt-get update
- Na koniec możemy już zainstalować samego OpenFOAMa
 - \$ sudo apt-get install openfoam30

 ${\it OpenFOAM domyślnie powinien zostać zainstalowany w lokalizacji "/opt/openfoam 30"}.$

Oprócz samego OpenFOAMa potrzebujemy także narzędzia do wykonywania postprocessingu. Świetnie nadaje się do tego narzędzie ParaView które domyślnie wspiera wczytywanie siatki i danych wygenerowanych przez OpenFOAMa. Aplikację tą można zainstalować na dwa sposoby: Z repozytorium OpenFOAM (posiada dodatkowe wsparcie do danych OpenFOAMa):

\$ sudo apt-get install paraviewopenfoam44

Drugim sposobem jest pobranie ParaView z oficjalnego repozytorium - tutaj wystarczy pobrać archiwum i następnie je rozpakować. Zaletą tego podejścia jest pobranie najnowszej dostępnej wersji tego oprogramowania.

Zadanie

Dokonaj optymalizacji kształtu poniższej geometrii tak aby otrzymany profil kanału zapewniał najmniejszą stratę energii przepływu. Optymalizacji powinny podlegać jednie kolanka kanału, nie włot i wylot.

Stratę przepływu można wyznaczyć jako różnicę ciśnienia całkowitego pomiędzy wlotem i wylotem. Twoim zadaniem jest napisanie skryptu w języku Python który będzie służył do modyfikacji siatki obliczeniowej, wczytywania wyników oraz uruchamiania kolejnych symulacji w pętli optymalizacyjnej.

Kod powinien realizować następujący zadania:

- 1. Utworzyć bazową siatkę obliczeniową.
- 2. Wczytywać i zapisywać współrzędne węzłów siatki obliczeniowej z formatu OpenFOAM
- 3. Wczytywać wyniki z pliku zawierającego obliczone całki z ciśnienia całkowitego na włocie i wylocie domeny.
- 4. Uruchamiać symulację
- 5. Uruchamiać narzędzie $\it{minimize}$ z biblioteki scipy.
optimize w celu

Symulacje powinny zostać prowadzone przy użyciu aplikacji OpenFOAM zwanej "simpleFoam", która implementuje solver przepływów nieściśliwych. Gotowa symulacja zawierająca wszystkie ustawienia znajduje się

Bazowa siatka wraz z ustawieniami

przypadek a)

Figure 1: kanal

Optymalizacji możesz dokonać posługując się jedną z funkcji znajdujących się w pakiecie scipy.optimize. Aby wyznaczyć straty przepływu skorzystaj z "channel optimization"

Figure 2: optymalizacja dwu parametryczna

5

Figure 3: optymalizacja 4-parometrowa

