17C

Laboratory & Professional Skills: Data Analysis

Emma Rand Data Analysis in R

Week 6 Two sample tests

Last week

We will cover

- General intro to one- and twosample tests
- one sample-tests
 - The one-sample t-test
 - The paired sample t-test
 - The one sample Wilcoxon

R practice

- No workshop
- Activities to consolidate previous skills: Workflow basics and projects

Summary of this week

- Independent and non-independent samples
- Two-sample-tests
 - The two-sample t-test
 - The two sample Wilcoxon, also known as the Mann-Whitney
- In RStudio
 - t-tests and their non-parametric equivalents
 - Summarising, plotting and reporting

Learning objectives

By actively following the material and carrying out the independent study the successful student will be able to:

- Recognise when two samples are not independent (MLO 2)
- Select, appropriately, t-tests and their non-parametric equivalents (MLO 2)
- Know what functions are used in R to run these tests and how to interpret them(MLO 3 and 4)
- Know how to state the results of these tests scientifically (MLO 3 and 4)
- Create figures for these tests which are suitable for including in a scientific report (MLO 3 and 4)

Introduction to one- and twosample tests

Reminder

Types of *t*-test

1. One-sample

- Compares the mean of sample to a particular value (compares the response to a reference)
 - Includes paired-sample test compares the mean difference to zero (i.e., compares dependent means)

2. Two-sample

Compares two (independent) means to each other

t-tests in general

Assumptions

All *t*-tests assume the "residuals" are normally distributed and have homogeneity of variance

A residual is the difference between the predicted and observed value

Predicted value is the mean / group mean

Paired-sample *t*-tests

 Two samples but values are not independent (could not reorder)

Actually a one-sample test

Paired-sample *t*-tests example

Is there a difference between the maths and stats marks of 10 students?

The one sample is the difference between the pairs of values

n.b. tidy data

Paired-sample *t*-tests

Two samples but values are not independent.

They could be

- Same individual
- Same time or location

Key: do pairs of observations have something in common that make them more similar to each other than to other observations.

Two-sample *t*-tests

- Is there a difference between two independent means
 - Independent values in one group not related to values in the other group
- Example: is there a difference between the masses of different subspecies of chaffinches?

two-sample *t*-test

Is there a difference between the masses of different subspecies of chaffinches?

No link Could reorder

n.b. tidy data

The two-sample *t*-test

A parametric test

two-sample *t*-test example

A number of <u>subspecies of the common</u> <u>chaffinch</u> have been described, based principally on the differences in the pattern and colour of the adult male plumage. Two of these subspecies are:

- "coelebs group" that occurs in Europe and Asia
- "canariensis group" on the Canary Islands

Figure 1. Distribution of the common chaffinch *Fringilla coelebs* in Macaronesia and nearby continental areas. Green lines depict patl of colonisation of chaffinches in Macaronesia suggested by Marshall and Baker (1999).

Standard formula for all t-tests

$$t = \frac{statistic - hypothesised\ value}{s.e.\ of\ statistic}$$

•
$$t_{[d.f]} = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s.e. \ of(\bar{x}_1 - \bar{x}_2)}$$

To aid understanding, not for remembering

• d.f.=
$$n_1 + n_2 - 2$$

*	subspecies ‡	mass ‡
1	coelebs	18.3
2	coelebs	22.1
3	coelebs	22.4
4	coelebs	18.5
5	coelebs	22.2
6	coelebs	19.3
7	coelebs	17.8
8	coelebs	20.2
9	coelebs	22.1
10	coelebs	16.6
11	coelebs	20.7
12	coelebs	18.7
13	coelebs	22.6
14	coelebs	21.5
15	coelebs	21.7
16	coelebs	19.9
17	coelebs	23.1
18	coelebs	17.8
19	coelebs	19.5
20	coelebs	24.6
21	canariensis	22.7
22	canariensis	20.6
23	canariensis	25.4
24	canariensis	20.4
Showing 1	l to 24 of 40 entri	es, 2 total co

Two-sample *t*-test example

```
chaff <- read_table2("data/chaff.txt")</pre>
```

Note: these data are 'tidy'

All the responses in one column with other variables indicating the group

Organise your data this way

Tidy data

- Each variable should be in one column.
- Each different observation of that variable should be in a different row.
- There should be one table for each "kind" of data.
- If you have multiple tables, they should include a column in the table that allows them to be linked.

Independent study: Wickham, H (2013). Tidy Data. Journal of Statistical Software.

https://www.jstatsoft.org/article/view/v059i10

Two-sample *t*-test example

Plot your data: roughly – perhaps one of these...

Two-sample *t*-test example

Summarise the data:

Two-sample *t*-test example

Two-sample *t*-test example

Run the *t*-test

Paired = FALSE is the default.

Two-sample test done by default

```
Two Sample t-test∢
```

The model

```
data: mass by subspecies

t = 2.6471, df = 38, p-value = 0.01175

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.422266 3.167734

sample estimates:

mean in group canariensis mean in group coelebs

22.275

20.480
```

Two-sample *t*-test example

Run the *t*-test The two group means t.test(data = chaff, mass ~ subspecies, var.equal = T)Two Sample t-test data: mass by subspecies t = 2.6471, df = 38, p-value = 0.01175alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.422266 3.167734 sample estimates: mean in group coelebs mean in group canariensis 20.480 22.275

Two-sample *t*-test example

Run the *t*-test

95% CI on the difference between the two means

22.275 - 20.480 = 1.795

```
Two Sample t-test

data: mass by subspecies
t = 2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.422266 3.167734
sample estimates:
mean in group canariensis mean in group coelebs
22.275
20.480
```

Two-sample *t*-test example

Run the *t*-test

The bit that says whether it is significant *p* value

Two-sample *t*-test example

Run the t-test

p < 0.05

Conclusion: there is a significant difference between the subspecies in mass

Two Sample t-test

Two-sample *t*-test example

Run the *t*-test

The values we will quote in results

Two-sample *t*-test example

Check the assumptions

All *t*-tests assume the "residuals" are normally distributed and have homogeneity of variance

First use common sense: mass is a continuous and we would expect it to be normally distributed thus we would expect the residuals to be normally distributed

Two-sample *t*-test example

Second by plotting residuals: calculate the residuals – the difference between predicted and observed (i.e., group mean and value)

```
# add the group means to the data
chaff <- merge(chaff, chaffsum[,1:2], by = "subspecies")

# add the residuals
chaff <- chaff %>%
    mutate(residual = mass - mean)
```

Two-sample *t*-test example

Checking the assumptions: normally and homogenously distributed residuals

mean

Two-sample *t*-test example

Checking the assumptions: <u>normally</u> and homogenously distributed residuals

Looks roughly normal symmetrical

Two-sample *t*-test example

Checking the assumptions: <u>normally</u> and homogenously distributed residuals

```
shapiro.test(chaff$residual)

Shapiro-Wilk normality test

data: chaff$residual
W = 0.98046, p-value = 0.7067
```

Not significantly different from a normal distribution

Two-sample *t*-test example

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

Canariensis chaffinches ($\bar{x} \pm s.e$: 22.48 \pm 0.48) are significantly heavier than coelebs (20.28 \pm 0.48) (t = 2.65; d.f. = 38; p = 0.012). See figure 1.

Two-sample *t*-test: figures

Supports your claim:

- Show the data (all if possible)
- Show the 'model' (the predicted values i.e., means and error bars)
- Say what kind of error bars
- Full but concise figure legends

Two-sample *t*-test: figures

Figure 1. Mean two subspecies of chaffinch. Error bars are means +/- one standard error.

Two-sample *t*-tests - summary

- Parametric
- To test for a difference between two independent means
- t is size of difference relative to the s.e.
- Function in R:

- If p < 0.05 the test is significant
- assumptions: normally and homogenously distributed residuals
- Significance, direction, magnitude
- Figure: data and 'model'

The two sample Wilcoxon also known as the Mann-Whitney

Non-parametric equivalent of the two-sample *t*-test

When the *t*-test assumptions are not met: non- parametric tests

Non-parametric tests make fewer assumptions

Based on the ranks rather than the actual data

Null hypotheses are about the mean rank (not the mean)

t-test equivalents

i,.e., the type of question is the same but the response variable is not normally distributed or it is impossible to tell (small samples)

- one sample *t*-test and paired-sample *t*-test:
 the one-sample Wilcoxon
- Two-sample t-test (next week): two-sample
 Wilcoxon aka Mann-Whitney

two-sample Wilcoxon (Mann-Whitney)

Example: comparing the number of leaves on 8 mutant and wild type plants (small samples, counts)

two-sample Wilcoxon (Mann-Whitney)

Plot your data: roughly – perhaps one of these...

two-sample Wilcoxon (Mann-Whitney)

Summarise the data:

two-sample Wilcoxon (M-W): example

Carrying out the test two-sample Wilcoxon

two-sample Wilcoxon (M-W): example

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

There are significantly more leaves on wild-type (median = 8.5) than mutant (median = 5) plants (Mann-Whitney: W=5, n_1 =8, n_2 =8, p = 0.005051)

two-sample Wilcoxon (M-W): example

Label with units

figure?

Non-parametric tests: use median+IQR

> Measure of dispersion -**IQR**

Figure 2. Median (heavy lines) number of leaves on Wild-type and mutant plants. Boxes indicate the inter-quartile range.

Always refer to figure in the text

Wilcoxon- summary

- Non-parametric
- when assumptions for t-test not met
- To test whether the mean rank in one group differs from another
- Function in R:
 wilcox.test(data = df, response ~ explanatory)
- If p < 0.05 the test is significant
- Few assumptions
- Figure: boxplot