$11n_{50} (K11n_{50})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 37910139708041u^{19} - 201150163381549u^{18} + \dots + 6011452100077376b - 7292662285169845, \\ -4.50097 \times 10^{15}u^{19} - 1.28986 \times 10^{16}u^{18} + \dots + 3.00573 \times 10^{15}a - 7.74836 \times 10^{15}, \ u^{20} + 3u^{19} + \dots + 6u - I_2^u = \langle -au + b - u - 1, \ a^2 - 2au - u, \ u^2 + u + 1 \rangle$$

$$I_3^u = \langle au + b + a - u - 1, \ a^2 - 2a + 2, \ u^2 + u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

Т

 $\begin{matrix} I_1^u = \langle 3.79 \times 10^{13} u^{19} - 2.01 \times 10^{14} u^{18} + \dots + 6.01 \times 10^{15} b - 7.29 \times 10^{15}, & -4.50 \times 10^{15} u^{19} - 1.29 \times 10^{16} u^{18} + \dots + 3.01 \times 10^{15} a - 7.75 \times 10^{15}, & u^{20} + 3u^{19} + \dots + 6u + 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.49747u^{19} + 4.29134u^{18} + \dots + 24.6486u + 2.57787 \\ -0.00630632u^{19} + 0.0334612u^{18} + \dots + 3.09219u + 1.21313 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.01016u^{19} - 2.81974u^{18} + \dots - 13.1176u + 2.12976 \\ -0.147188u^{19} - 0.390662u^{18} + \dots - 5.99436u - 1.23581 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.20441u^{19} + 3.56367u^{18} + \dots + 29.2504u + 7.54341 \\ -0.127524u^{19} - 0.273202u^{18} + \dots - 3.26181u + 0.411467 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.15735u^{19} - 3.21040u^{18} + \dots - 19.1120u + 0.893945 \\ -0.147188u^{19} - 0.390662u^{18} + \dots - 5.99436u - 1.23581 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.07688u^{19} - 3.29047u^{18} + \dots - 19.1120u + 0.893945 \\ 0.115875u^{19} + 0.263182u^{18} + \dots + 4.66274u - 0.262787 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.15735u^{19} - 3.21040u^{18} + \dots - 19.1120u + 0.893945 \\ -0.201060u^{19} - 0.575464u^{18} + \dots - 6.40693u - 1.49747 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.15735u^{19} - 3.21040u^{18} + \dots - 19.1120u + 0.893945 \\ -0.201060u^{19} - 0.575464u^{18} + \dots - 6.40693u - 1.49747 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{20} - 3u^{19} + \dots - 6u + 1$
c_2	$u^{20} + 33u^{19} + \dots - 6u + 1$
<i>c</i> ₃	$u^{20} + u^{19} + \dots + 1264u + 517$
<i>C</i> ₄	$u^{20} + u^{19} + \dots + 1876u + 647$
c_{6}, c_{9}	$u^{20} + u^{19} + \dots + 12u + 4$
c_{7}, c_{11}	$u^{20} + u^{19} + \dots + 6u + 1$
<i>c</i> ₈	$u^{20} + u^{19} + \dots + 4u + 1$
c_{10}	$u^{20} + 15u^{19} + \dots + 22u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{20} + 33y^{19} + \dots - 6y + 1$
c_2	$y^{20} - 87y^{19} + \dots + 770y + 1$
<i>c</i> ₃	$y^{20} + 27y^{19} + \dots + 842544y + 267289$
<i>C</i> ₄	$y^{20} + 55y^{19} + \dots - 892556y + 418609$
c_{6}, c_{9}	$y^{20} + 33y^{19} + \dots - 120y + 16$
c_7, c_{11}	$y^{20} - 15y^{19} + \dots - 22y + 1$
<i>c</i> ₈	$y^{20} - 3y^{19} + \dots - 6y + 1$
c_{10}	$y^{20} - 15y^{19} + \dots + 50y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.562478 + 0.702926I		
a = -0.164935 + 1.014010I	0.10443 - 4.15417I	5.96079 + 7.41844I
b = -0.932716 - 0.491902I		
u = -0.562478 - 0.702926I		
a = -0.164935 - 1.014010I	0.10443 + 4.15417I	5.96079 - 7.41844I
b = -0.932716 + 0.491902I		
u = -0.345261 + 0.774594I		
a = -0.178688 + 1.067020I	-1.78458 - 2.08707I	-0.67504 + 3.91538I
b = 0.262517 + 0.119217I		
u = -0.345261 - 0.774594I		
a = -0.178688 - 1.067020I	-1.78458 + 2.08707I	-0.67504 - 3.91538I
b = 0.262517 - 0.119217I		
u = -0.546407 + 0.261165I		
a = -0.016518 - 0.458675I	1.204440 - 0.232928I	9.01931 + 0.79005I
b = -0.503419 + 0.405661I		
u = -0.546407 - 0.261165I		
a = -0.016518 + 0.458675I	1.204440 + 0.232928I	9.01931 - 0.79005I
b = -0.503419 - 0.405661I		
u = 0.55309 + 1.41617I		
a = 0.152667 - 0.289034I	-7.00299 - 3.90150I	-2.54860 + 3.27736I
b = -1.369770 - 0.179262I		
u = 0.55309 - 1.41617I		
a = 0.152667 + 0.289034I	-7.00299 + 3.90150I	-2.54860 - 3.27736I
b = -1.369770 + 0.179262I		
u = 0.368558 + 0.047969I		
a = -1.78216 + 1.81771I	-1.82190 + 1.34830I	-1.59816 - 0.61194I
b = 1.053190 - 0.370537I		
u = 0.368558 - 0.047969I		
a = -1.78216 - 1.81771I	-1.82190 - 1.34830I	-1.59816 + 0.61194I
b = 1.053190 + 0.370537I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.140514 + 0.165365I		
a = -1.96129 + 4.14993I	-1.42072 - 2.15124I	1.64791 + 3.40317I
b = 0.715874 + 0.509667I		
u = -0.140514 - 0.165365I		
a = -1.96129 - 4.14993I	-1.42072 + 2.15124I	1.64791 - 3.40317I
b = 0.715874 - 0.509667I		
u = -0.93727 + 1.53815I		
a = -0.097983 - 0.641269I	-5.23226 - 2.45917I	-1.69714 + 1.89268I
b = 1.281060 + 0.067311I		
u = -0.93727 - 1.53815I		
a = -0.097983 + 0.641269I	-5.23226 + 2.45917I	-1.69714 - 1.89268I
b = 1.281060 - 0.067311I		
u = -0.00083 + 2.05851I		
a = -0.027063 + 1.246070I	-13.59470 - 3.72129I	0.72655 + 1.99965I
b = 0.076044 - 1.204780I		
u = -0.00083 - 2.05851I		
a = -0.027063 - 1.246070I	-13.59470 + 3.72129I	0.72655 - 1.99965I
b = 0.076044 + 1.204780I		
u = 0.48389 + 2.08874I		
a = 0.342044 - 1.052760I	-18.5347 + 2.5424I	-1.82827 + 0.I
b = -1.48289 + 0.54439I		
u = 0.48389 - 2.08874I		
a = 0.342044 + 1.052760I	-18.5347 - 2.5424I	-1.82827 + 0.I
b = -1.48289 - 0.54439I		
u = -0.37279 + 2.18713I		
a = -0.266075 - 1.115660I	-17.7144 - 10.2068I	0. + 4.81283I
b = 1.40011 + 0.62778I		
u = -0.37279 - 2.18713I		
a = -0.266075 + 1.115660I	-17.7144 + 10.2068I	04.81283I
b = 1.40011 - 0.62778I		

II.
$$I_2^u = \langle -au + b - u - 1, \ a^2 - 2au - u, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a \\ au+u+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} au+a+u+2 \\ -u-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u+1 \\ au+a+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u+1 \\ -u-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -au-a-u-2 \\ -a+3u+2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au+a+1 \\ -au-2u-2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au+a+1 \\ -au-2u-2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u + 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u^2+u+1)^2$
c_3	$u^4 - 2u^3 + 5u^2 - 4u + 1$
c_4	$u^4 + 4u^3 + 5u^2 + 2u + 1$
c_5, c_{10}	$(u^2 - u + 1)^2$
c_6, c_9	$(u^2+1)^2$
c_7, c_8, c_{11}	$u^4 - u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_{10}	$(y^2+y+1)^2$
c_3	$y^4 + 6y^3 + 11y^2 - 6y + 1$
c_4	$y^4 - 6y^3 + 11y^2 + 6y + 1$
c_6, c_9	$(y+1)^4$
c_7, c_8, c_{11}	$(y^2 - y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.133975I	-1.64493 - 4.05977I	0. + 6.92820I
b = 0.866025 + 0.500000I		
u = -0.500000 + 0.866025I		
a = -0.50000 + 1.86603I	-1.64493 - 4.05977I	0. + 6.92820I
b = -0.866025 - 0.500000I		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.133975I	-1.64493 + 4.05977I	0 6.92820I
b = 0.866025 - 0.500000I		
u = -0.500000 - 0.866025I		
a = -0.50000 - 1.86603I	-1.64493 + 4.05977I	0 6.92820I
b = -0.866025 + 0.500000I		

III.
$$I_3^u = \langle au + b + a - u - 1, \ a^2 - 2a + 2, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u\\u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u\\u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a\\-au-a+u+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} au+a-2u-1\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u+1\\-au+u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u+1\\-au+u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} au+a-u-1\\u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} au+a-u-1\\-au+2u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} au+a-u-1\\-au+2u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} au+a-u-1\\-au+2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u^2+u+1)^2$
c_3, c_4	$u^4 - 2u^3 + 2u^2 + 2u + 1$
c_5, c_{10}	$(u^2 - u + 1)^2$
c_6, c_9	$(u^2+1)^2$
c_7, c_8, c_{11}	$u^4 - u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_{10}	$(y^2+y+1)^2$
c_3, c_4	$y^4 + 14y^2 + 1$
c_6, c_9	$(y+1)^4$
c_7, c_8, c_{11}	$(y^2 - y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 1.00000 + 1.00000I	-1.64493	0
b = 0.866025 - 0.500000I		
u = -0.500000 + 0.866025I		
a = 1.00000 - 1.00000I	-1.64493	0
b = -0.866025 + 0.500000I		
u = -0.500000 - 0.866025I		
a = 1.00000 + 1.00000I	-1.64493	0
b = -0.866025 - 0.500000I		
u = -0.500000 - 0.866025I		
a = 1.00000 - 1.00000I	-1.64493	0
b = 0.866025 + 0.500000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^4)(u^{20} - 3u^{19} + \dots - 6u + 1)$
c_2	$((u^2 + u + 1)^4)(u^{20} + 33u^{19} + \dots - 6u + 1)$
c_3	$(u^4 - 2u^3 + 2u^2 + 2u + 1)(u^4 - 2u^3 + 5u^2 - 4u + 1)$ $\cdot (u^{20} + u^{19} + \dots + 1264u + 517)$
c_4	$(u^4 - 2u^3 + 2u^2 + 2u + 1)(u^4 + 4u^3 + 5u^2 + 2u + 1)$ $\cdot (u^{20} + u^{19} + \dots + 1876u + 647)$
c_5	$((u^2 - u + 1)^4)(u^{20} - 3u^{19} + \dots - 6u + 1)$
c_6, c_9	$((u^2+1)^4)(u^{20}+u^{19}+\cdots+12u+4)$
c_7, c_{11}	$((u^4 - u^2 + 1)^2)(u^{20} + u^{19} + \dots + 6u + 1)$
c ₈	$((u^4 - u^2 + 1)^2)(u^{20} + u^{19} + \dots + 4u + 1)$
c_{10}	$((u^2 - u + 1)^4)(u^{20} + 15u^{19} + \dots + 22u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$((y^2 + y + 1)^4)(y^{20} + 33y^{19} + \dots - 6y + 1)$
c_2	$((y^2 + y + 1)^4)(y^{20} - 87y^{19} + \dots + 770y + 1)$
c_3	$(y^4 + 14y^2 + 1)(y^4 + 6y^3 + 11y^2 - 6y + 1)$ $\cdot (y^{20} + 27y^{19} + \dots + 842544y + 267289)$
c_4	$(y^4 + 14y^2 + 1)(y^4 - 6y^3 + 11y^2 + 6y + 1)$ $\cdot (y^{20} + 55y^{19} + \dots - 892556y + 418609)$
c_6, c_9	$((y+1)^8)(y^{20}+33y^{19}+\cdots-120y+16)$
c_7, c_{11}	$((y^2 - y + 1)^4)(y^{20} - 15y^{19} + \dots - 22y + 1)$
c ₈	$((y^2 - y + 1)^4)(y^{20} - 3y^{19} + \dots - 6y + 1)$
c_{10}	$((y^2 + y + 1)^4)(y^{20} - 15y^{19} + \dots + 50y + 1)$