Clustering Models

K-means method

Setting up for clustering analysis

```
In [1]:
            import numpy as np
          2
            import pandas as pd
          3
            import matplotlib.pyplot as plt
          5
          6
           import sklearn
          7 from sklearn.preprocessing import scale
          8 import sklearn.metrics as sm
          9 from sklearn.metrics import confusion matrix, classification report
In [2]:
          1 from sklearn.cluster import KMeans
          2 from mpl toolkits.mplot3d import Axes3D
          3 from sklearn import datasets
In [3]:
          1 %matplotlib inline
          2 plt.figure(figsize=(7,4))
Out[3]: <Figure size 504x288 with 0 Axes>
        <Figure size 504x288 with 0 Axes>
        In this lab we will work with iris dataset.
In [4]:
          1 iris = datasets.load iris()
In [6]:
          1
          2 X = scale(iris.data)
          3 y = pd.DataFrame(iris.target)
          4 variable_names = iris.feature_names
          5 X[0:10]
Out[6]: array([[-0.90068117, 1.01900435, -1.34022653, -1.3154443],
               [-1.14301691, -0.13197948, -1.34022653, -1.3154443],
               [-1.38535265, 0.32841405, -1.39706395, -1.3154443],
               [-1.50652052, 0.09821729, -1.2833891 , -1.3154443 ],
               [-1.02184904, 1.24920112, -1.34022653, -1.3154443],
               [-0.53717756, 1.93979142, -1.16971425, -1.05217993],
               [-1.50652052, 0.78880759, -1.34022653, -1.18381211],
               [-1.02184904, 0.78880759, -1.2833891, -1.3154443],
               [-1.74885626, -0.36217625, -1.34022653, -1.3154443],
               [-1.14301691, 0.09821729, -1.2833891 , -1.44707648]])
```

```
In [7]:
           1 | y
Out[7]:
               0
               0
               2
          145
          146
               2
          147
               2
          148
          149
               2
         150 rows × 1 columns
In [8]:
              variable_names
Out[8]: ['sepal length (cm)',
           'sepal width (cm)',
           'petal length (cm)',
           'petal width (cm)']
```

This is what our X data looks like. Now we are going to cluster this data.

Building and running your model

In this section we will set the number of clusters and random number generator. Also, we need to fit our model to the data.

Plotting your model outputs

Here we will plot the model output.

Now it is time to set the colour theme for our clusters. We set three colours.

```
color_theme = np.array(['darkgray', 'lightsalmon', 'powderblue'])
In [21]:
           2
           3
              plt.subplot(1,2,1)
           4
           5
              plt.scatter(x=iris_df.Petal_Length, y=iris_df.Petal_Width, c=color_theme[iri
              plt.title('Ground Truth Classification')
           7
           8
              plt.subplot(1,2,2)
           9
              plt.scatter(x=iris df.Petal Length, y=iris df.Petal Width, c=color theme[clu
          10
              plt.title('K-Means Classification')
```

Out[21]: Text(0.5, 1.0, 'K-Means Classification')

Out[23]: Text(0.5, 1.0, 'K-Means Classification')

Question 1: What is the difference between Code cells In [7] and In [8]? Why have we done relabeling?

Question 2: What is the difference between Ground Truth Classification and K-Means Classification in the above figures?

Evaluate your clustering results

In [60]:	<pre>1 print(classification_report(y, relabel))</pre>					
		precision	recall	f1-score	support	
	(1.00	1.00	1.00	50	
	1	0.74	0.78	0.76	50	
	2	0.77	0.72	0.74	50	
	accuracy	/		0.83	150	
	macro av	g 0.83	0.83	0.83	150	
	weighted av	0.83	0.83	0.83	150	

Question 3: What do y and relabel represent in the print(classification_report(y, relabel)) command?

Question 4: What is precision and recall?