

convolute: dx dx: 1118/11/11/21-11

Canny fer ridges / lhos otal.

2nd derivative in direction orthogonal to ridge = direction

of maximum ? I derivative

min 2re derivative max 2rd derivative

how to calculate?

$$\begin{bmatrix} \frac{\partial^2}{\partial x^2} & \frac{\partial^2}{\partial x^2} \\ \frac{\partial^2}{\partial x^2} & \frac{\partial^2}{\partial x^2} \end{bmatrix} \circ T(x) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Directions of min and max 2nd derivatives?

Diagonalisation: 1H-XII=0 Characteistic system ? une derivatives; eigenvalues principal ? une derivatives; eigenvalues

12,7

principal directors: eigenenteur [ev, ev2]

Simplification for discrete implementation

000

- · calculate 2nd derivatives in 4 raster directions
- « choose direction where 2nd derivative is external (max or min)
- . discrete marks for x,y: [1-2[1]
- discret marks for diagons: 2/17211 (fader due to 12 spacing of pixels)

Summary 2nd derivativo operator

- · Gaussia blurry of image (scale); G(x,8),0I(x)
- · build 2nd derivatives (discrete or via Hessia)
- to ridge pixel output
- please note that you get possible and negative out put for dark and bright lines

to lange 1

· since To is continuous, exact values have to be interpolated:

$$G_{A} = \frac{u_{x}}{u_{y}} G(x+1,y+1) + \frac{u_{y}-u_{x}}{u_{y}} G(x,y+1)$$

$$G_{R} = \frac{u_{x}}{u_{y}} G(x+1,y+1) + \frac{u_{y}-u_{x}}{u_{y}} G(x+1,y+1)$$

Rule: keep center p'ixel if neighbors have smaller values

5 implification:

· take n

100

e find neighbors closest to direction of To - calculate angle L, choose discrete direction

of neighbors · take neighbor pixels and determine peak

Canny: Hystocies thresholding	6
goal: separation between signal and	note:
noise: Gaussian distributed, in general lower than	amplifiede image structure
· edge liver : large values	3///
the very infrequently the solution of the solu	distribute
the 30% output studies	
image output	e.g. threshold
1) Automatic choice of threshold:	ut 80% quali
- create historian of filter	output

(after non-moximu suppression)

- calculate distribution:

 $d(x) = \int h(x) dx$

- choose 80% or other high percentile for thresholding the filler output image

threshold Th "seed" contons

