高等代数 (荣誉) I 作业模板

请输入姓名

Monday 26^{th} May, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明		0
1	Problem Set for 19-May and 22-May		
	1.1	Exercise 2	1
	1.2	Exercise 3	1
	1.3	Exercise 4	1
	1.4	Exercise 5	1
	1.5	Exercise 6	2
	1.6	Exercise 7	2

1 Problem Set for 19-May and 22-May

1.1 Exercise 2

Let J_A and J_B denote the Jordan form of A and B respectively (all matrices are in $\mathbb{F}^{n\times n}$).

- 1. Write down the Jordan form of the linear transformation $X \mapsto AXA^T$;
- 2. Write down the Jordan form of the linear transformation $X \mapsto AXA$;
- 3. Write down the Jordan form of the linear transformation $X \mapsto AX XA$;
- 4. Write down the Jordan form of the linear transformation $X \mapsto AX XA^T$;
- 5. Write down the Jordan form of the linear transformation $X \mapsto AXB$.

解答

1.
$$A \otimes A = (P^{-1}J_AP) \otimes (P^{-1}J_AP) = (P^{-1}\otimes P^{-1})(J_A\otimes J_A)(P\otimes P) = (P\otimes P)^{-1}(J_A\otimes J_A)(P\otimes P)$$

- 2. $J_A \otimes J_A^T$
- 3. $J_A \otimes J_A \otimes I I \otimes A$
- 4. $J_A \otimes J_A \otimes I I \otimes A^T$
- 5. $J_A \otimes J_B^T$

1.2 Exercise 3

Show that dim ker $[X \mapsto (AX - XA^T)] \ge n$, and explain when the equality holds.

解答 考虑 $J_A \otimes I - I \otimes J_A^T$, 每个块 $J_i \otimes I - J_A^T$ 中一定有一个列为 0, 通过初等变换至少有 $n_i - 1$ 个新的列为 0, 如果存在特征值相同为 0 的列更多.

故 dim ker $[X \mapsto (AX - XA^T)] \ge n$ 取等条件为 A 的特征值各不相同或可对角化

1.3 Exercise 4

Show that there exists $\{0,1\}$ -matrices A and B such that $A\otimes B$ and $B\otimes A$ are not similar.

解答 Let
$$T_1: X \mapsto AXB^T$$
, $T_2: Y \mapsto BYA^T$, $\phi: X \mapsto X^T$, then

$$\phi T_1 = T_2 \phi$$

so $A \otimes B \sim B \otimes A$

1.4 Exercise 5

Show by 1:1 correspondence that, there exists a unique isomorphism

$$\Phi_{U,V,W}: U \otimes (V \otimes W) \to (U \otimes V) \otimes W,$$

sending simple tensor $u \otimes (v \otimes w)$ to $(u \otimes v) \otimes w$.

解答 $U \otimes (V \otimes W)$ 的基 $u_i \otimes (v_i \otimes w_k)$, $(U \otimes) V \otimes W$ 的基 $(u_i \otimes v_i) \otimes w_k$

Φ 把基一一映射到对应的另一组基, 显然是线性双射, 且唯一

1.5 Exercise 6

Show that for arbitrary linear surjection p, the linear map $id_U \otimes p$ is also a surjection.

解答 p is surjective , so $\forall y \in U$, $\exists x \in U$ such that y = p(x)

$$\forall (u,y) \in U \otimes U$$
 , $\exists (u,x) \in U \otimes U$ such that $(\mathrm{id}_U \otimes p)(u,x) = u \otimes y$

1.6 Exercise 7

Show that for arbitrary linear injection i, the linear map $\mathrm{id}_U \otimes i$ is also an injection.

解答 i is injective, so if i(x) = 0, then x = 0

suppose that $(id_U \otimes p)(u, x) = 0$, then $id_U(u) = 0$ and p(x) = 0