

Search: the state graph

Alfons Juan Jorge Civera

Departament de Sistemes Informàtics i Computació

Learning objectives

- ► To describe conventional search over a state graph.
- ► To know some popular problems in conventional search.

Contents

1	Conventional search over a state graph	3
2	Shortest path between two locations	4
3	The vacuum-cleaner	5
4	The 8-puzzle	6
5	The eight queens	7
6	Tower of Hanoi	8

1 Conventional search over a state graph

Formal definition of conventional search problems [1]:

- State space: set of possible "world states".
- ▶ *Initial state* s_0 : state from which search starts.
- ightharpoonup Actions(s): actions applicable to state s.
- ▶ Result(s, a): successor state resulting from applying of a to s.
- ► Goal(s): true if and only if state s is a solution.
- ightharpoonup Cost(c): path cost c (sequence of actions).

State graph: nodes are states and edges are actions.

Conventional search: find an optimal path in the state graph.

2 Shortest path between two locations

Search for a shortest path from Arad to Bucarest [1]:

Actions(Arad) = {Move(Sibiu), Move(Timisoara), Move(Zerind)}.

3 The vacuum-cleaner

Search for a shortest cleaning path (*Left, Right, Suck*) [1]:

States for n locations: $n \times 2^n$ (vacuum-cleaner and dirt location).

The 8-puzzle

Search for a shortest sequence of blank space (0) movements [1, 2]:

Start State

	1	2
3	4	5
6	7	8

Goal State

n-puzzle: (n+1)! states (permutations of " $01 \cdots n$ ")

$$n = 3$$
 01
 23

$$n = 8$$
 $0 | 1 | 2$
 $3 | 4 | 5$
 $6 | 7 | 8$
 $362 | 880$

$$n = 15$$
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

5 The eight queens

Search for an arrangement such that no queen is attacked [1, 3]:

Complete formulation:

States: any arrangement from 0 to 8

queens; $\approx 2 \cdot 10^{14}$ states.

Actions: add a queen to an empty square.

Incremental formulation:

States: arragements of n ($0 \le n \le 8$) non-attacked queens, one per column in the leftmost n columns; 2057 states.

Actions: add a queen to any square in the leftmost empty column such that it is not attacked by any other queen.

6 Tower of Hanoi

Search for a shortest sequence of single-disk movements to move an n-disk stack from rod A to C [4]:

Rule 1: only disks at the top of a stack can be moved.

Rule 2: no disk can be placed on top of a smaller disk.

Graphs of 3^n **nodes:**

Optimal path: 2^n-1 movements!

References

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] J. Slocum and D. Sonneveld. *The 15 Puzzle*. Slocum Puzzle Foundation, 2006.
- [3] A000170: Number of ways of placing n nonattacking queens on an n X n board. https://oeis.org/A000170.
- [4] Tower of Hanoi. https://en.wikipedia.org.

