Taller de Programación

Numpy & Pandas

Daniela Opitz dopitz@udd.cl

Basada en presentaciones oficiales de libro Introduction to Programming in Python (Sedgewick, Wayne, Dondero).

Disponible en https://introcs.cs.princeton.edu/python

Outline

Introducción a Numpy

Actividades

Numpy

NumPy

- NumPy es el paquete fundamental para la computación científica en Python.
- Es una biblioteca de Python que proporciona un objeto de matriz multidimensional, varios objetos derivados (como matrices y matrices enmascaradas).
- Contiene una variedad de rutinas para operaciones rápidas en matrices, que incluyen manipulación matemática, lógica, cambio de dimensiones, clasificación, selección, transformadas discretas de Fourier, álgebra lineal básica, operaciones estadísticas básicas, simulación aleatoria y mucho más.

Quantum Computing	Statistical Computing	Signal Processing	Image Processing	3-D Visualization	Symbolic Computing	Astronomy Processes	Cognitive Psychology
		ullungge.			$A^{2} = b^{3}$ $b=20$ $c=32$ $A = ?$		
QuTiP	Pandas	SciPy	Scikit-image	Mayavi	SymPy	AstroPy	PsychoPy
PyQuil	statsmodels	PyWavelets	OpenCV	Napari		SunPy	
Qiskit	Seaborn					SpacePy	
Bioinformatics	Bayesian Inference	Mathematical Analysis	Simulatio Modelin		ti-variate nalysis	Geographic Processing	Interactive Computing
2000		+ - × =					-jen
BioPython	PyStan	SciPy	PyDSToo	ol Py	yChem	Shapely	Jupyter
Scikit-Bio	PyMC3	SymPy				GeoPandas	IPython
PyEnsembl		cvxpy				Folium	Binder
		FEniCS					

Arrays

Un arreglo o array es la estructura de datos central de la biblioteca NumPy. Consiste de una cuadrícula de valores y contiene información sobre los datos sin procesar, cómo ubicar un elemento y cómo interpretar un elemento.

Una dimension

Todos los elementos de un arreglo (array) deben ser homogéneos (del mismo tipo)!

• Dos dimensiones (3 filas x 4 columnas)

Operaciones Básicas con Numpy

Zeros y Unos

```
>>> np.zeros(2)
array([0., 0.])

>>> np.ones(2)
array([1., 1.])
```

Rango de Elementos

```
>>> np.arange(4)
array([0, 1, 2, 3])

>>> np.arange(2, 9, 2)
array([2, 4, 6, 8])

>>> np.linspace(0, 10, num=5)
array([ 0. , 2.5, 5. , 7.5, 10. ])
```

Ordenar

```
>>> arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])
>>> np.sort(arr)
array([1, 2, 3, 4, 5, 6, 7, 8])
```

Concatenar

```
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([5, 6, 7, 8])
```

```
>>> np.concatenate((a, b))
array([1, 2, 3, 4, 5, 6, 7, 8])
```

Matplotlib

Leer instrucciones de instalación aqui:

https://matplotlib.org/users/installing.html#installing-an-official-release

Instalar con conda:

conda install -c conda-forge matplotlib

Guia de uso: https://matplotlib.org/tutorials/introductory/usage.html#sphx-glr-tutorials-introductory-usage-py

Numpy & Matplotlib

Actividad

El archivo IndiceDeMovilidad-IM.csv contiene la evolución del índice de movilidad para cada comuna, donde la movilidad es una medida de los viajes que ocurren al interior y al exterior de dicha unidad administrativa. Este indice se obtiene considerando el movimiento de los teléfonos móviles conectados a la red de Telefónica en el territorio nacional, de manera agrupada y anónima.

Grafique el indice de movilidad versus el tiempo para estudiar su evolución para la comuna de Las Condes. Compare el gráfico con la evolución de otra comuna, por ejemplo, la comuna de La Granja

Nota: para más detalles revisar https://github.com/ MinCiencia/Datos-COVID19/tree/master/output/ producto33.

Fuente: Eduardo Graells https://twitter.com/carnby/status/1264228522165403654

Pandas

INSTALAR

conda install pandas