

Feature engineering

Sarah Guido Senior Data Scientist

What is feature engineering?

- Creation of new featured based on existing features
- Insight into relationships between features
- Extract and expand data
- Dataset-dependent

Feature engineering scenarios

Id	Text	
1	"Feature engineering is fun!"	
2	"Feature engineering is a lot of work."	
3	"I don't mind feature engineering."	

user	fav_color
1	blue
2	green
3	orange

Feature engineering scenarios

Id	Date		
4	July 30 2011		
5	January 29 2011		
6	February 05 2011		

user	test1	test2	test3
1	90.5	89.6	91.4
2	65.5	70.6	67.3
3	78.1	80.7	81.8

Let's practice!

Encoding categoricalvariables

Sarah Guido Senior Data Scientist

Categorical variables

```
user subscribed fav_color
0 1 y blue
1 2 n green
2 3 n orange
3 4 y green
```


Encoding binary variables - Pandas

```
In [1]: print(users["subscribed"])
Name: subscribed, dtype: object
In [2]: users["sub_enc"] = users["subscribed"].apply(lambda val:
                                             1 if val == "y" else 0)
In [3]: print(users[["subscribed", "sub enc"]])
  subscribed sub enc
```


Encoding binary variables - scikit-learn

One-hot encoding

fav_color
blue
green
orange
green

fav_color_enc

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

[0, 1, 0]

Values: [blue, green, orange]

• blue: [1, 0, 0]

• green: [0, 1, 0]

• orange: [0, 0, 1]

One-hot encoding

Let's practice!

Engineering numerical features

Sarah Guido Senior Data Scientist

Aggregate statistics

```
In [1]: print(df)
    city day1 day2 day3
     NYC 68.3 67.9 67.8
      SF 75.1 75.5 74.9
      LA 80.3 84.0 81.3
  Boston 63.0
               61.0 61.2
In [2]: columns = ["day1", "day2", "day3"]
In [3]: df["mean"] = df.apply(lambda row: row[columns].mean(), axis=1)
In [4]: print(df)
    city day1 day2 day3
                          mean
     NYC 68.3 67.9 67.8
                          68.00
         75.1 75.5 74.9
      SF
                          75.17
      LA 80.3 84.0 81.3 81.87
  Boston 63.0 61.0 61.2 61.73
```


Dates

```
In [5]: print(df)
              date purchase
       July 30 2011
                     $45.08
                     $19.48
   February 01 2011
    January 29 2011
                     $76.09
     March 31 2012
                     $32.61
  February 05 2011
                     $75.98
In [6]: df["date converted"] = pd.to datetime(df["date"])
In [7]: df["month"] = df["date converted"].apply(lambda row: row.month)
In [8]: print(df)
              date purchase date converted month
       July 30 2011
                     $45.08
                                2011-07-30
   February 01 2011
                     $19.48
                                2011-02-01
    January 29 2011
                     $76.09
                             2011-01-29
     March 31 2012
                     $32.61
                             2012-03-31
  February 05 2011
                     $75.98
                                2011-02-05
```


Let's practice!

Engineering featuresfrom text

Sarah Guido Senior Data Scientist

Extraction

- \d+
- \.
- \d+

Vectorizing text

- tf = term frequency
- idf = inverse document frequency

Vectorizing text

Text classification

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Let's practice!