Continuum Mechanics

School of Engineering Brown University

Home

2.2 Index Notation for Vector and Tensor Operations

Operations on Cartesian components of vectors and tensors may be expressed very efficiently and clearly using *index* notation.

2.1. Vector and tensor components.

Let \mathbf{x} be a (three dimensional) vector and let \mathbf{S} be a second order tensor. Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a Cartesian basis. Denote the components of \mathbf{x} in this basis by (x_1, x_2, x_3) , and denote the components of \mathbf{S} by

$$egin{bmatrix} S_{11} & S_{12} & S_{13} \ S_{21} & S_{22} & S_{23} \ S_{31} & S_{32} & S_{33} \end{bmatrix}$$

Using index notation, we would express \boldsymbol{x} and \boldsymbol{S} as

$$\mathbf{x} \equiv x_i \qquad \mathbf{S} \equiv S_{ij}$$

2.2. Conventions and special symbols for index notation

- Range Convention: Lower case Latin subscripts (i, j, k...) have the range (1, 2, 3). The symbol x_i denotes three components of a vector x_1, x_2 and x_3 . The symbol S_{ij} denotes nine components of a second order tensor, $S_{11}, S_{12}, S_{13}, S_{21} \ldots S_{33}$
- Summation convention (Einstein convention): If an index is repeated in a product of vectors or tensors, summation is implied over the repeated index. Thus

$$egin{array}{lll} \lambda = a_i b_i & \equiv & \lambda = \sum_{i=1}^3 a_i b_i & \equiv & \lambda = a_1 b_1 + a_2 b_2 + a_3 b_3 \ c_i = S_{ik} x_k & \equiv & c_i = \sum_{k=1}^3 S_{ik} x_k \equiv & \begin{cases} c_1 = S_{11} x_1 + S_{12} x_2 + S_{13} x_3 \ c_2 = S_{21} x_1 + S_{22} x_2 + S_{23} x_3 \ c_3 = S_{31} x_1 + S_{32} x_2 + S_{33} x_3 \end{cases} \ \lambda = S_{ij} S_{ij} & \equiv & \lambda = \sum_{i=1}^3 \sum_{j=1}^3 S_{ij} S_{ij} & \equiv & \lambda = S_{11} S_{11} + S_{12} S_{12} + \ldots + S_{31} S_{31} + S_{32} S_{32} + S_{33} S_{33} \ C_{ij} = A_{ik} B_{kj} & \equiv & C_{ij} = \sum_{k=1}^3 A_{ik} B_{kj} & \equiv & [C] = [A] [B] \ C_{ij} = A_{ki} B_{kj} & \equiv & C_{ij} = \sum_{k=1}^3 A_{ki} B_{kj} & \equiv & [C] = [A]^T [B] \end{cases}$$

In the last two equations, [A], [B] and [C] denote the (3×3) component matrices of **A**, **B** and **C**.

1 of 5

The Kronecker Delta: The symbol δ_{ij} is known as the Kronecker delta, and has the properties

$$\delta_{ij} = egin{cases} 1 & i = j \ 0 & i
eq j \end{cases}$$

thus

$$\delta_{11} = \delta_{22} = \delta_{33} = 1$$
 $\delta_{12} = \delta_{21} = \delta_{13} = \delta_{31} = \delta_{32} = \delta_{32} = 0$

 $\delta_{11}=\delta_{22}=\delta_{33}=1$ $\delta_{12}=\delta_{21}=\delta_{13}=\delta_{31}=\delta_{32}=\delta_{32}=0$ You can also think of δ_{ij} as the components of the identity tensor, or a (3×3) identity matrix. Observe the following useful results

$$egin{aligned} \delta_{ij} &= \delta_{ji} \ \delta_{kk} &= 3 \ a_i &= \delta_{ik} a_k \ A_{ij} &= \delta_{ik} A_{kj} \end{aligned}$$

The Permutation Symbol: The symbol \in_{ijk} has properties

$$\in_{ijk} = egin{cases} 1 & i,j,k=1,2,3; & 2,3,1 & ext{or} & 3,1,2 \ -1 & i,j,k=3,2,1; & 2,1,3 & ext{or} & 1,3,2 \ 0 & ext{otherwise} \end{cases}$$

thus

$$\begin{aligned} &\in_{123} = \in_{231} = \in_{312} = 1 \\ &\in_{321} = \in_{213} = \in_{132} = -1 \\ &\in_{111} = \in_{112} = \in_{113} = \in_{121} = \in_{122} = \in_{131} = \in_{133} = 0 \\ &\in_{211} = \in_{212} = \in_{221} = \in_{222} = \in_{223} = \in_{232} = \in_{233} = 0 \\ &\in_{311} = \in_{313} = \in_{322} = \in_{323} = \in_{332} = \in_{333} = 0 \end{aligned}$$

Note that

$$\begin{aligned}
&\in_{ijk} = \in_{kij} = \in_{jki} = - \in_{jik} = - \in_{kji} = - \in_{kji} \\
&\in_{kki} = 0 \\
&\in_{ijk} \in_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{mk} \\
&\in_{ijk} \in_{lmn} = \delta_{il} \left(\delta_{im} \delta_{kn} - \delta_{in} \delta_{km} \right) - \delta_{im} \left(\delta_{il} \delta_{kn} - \delta_{in} \delta_{kl} \right) + \delta_{in} \left(\delta_{il} \delta_{km} - \delta_{im} \delta_{kl} \right)
\end{aligned}$$

2.3. Rules of index notation

1. The same index (subscript) may not appear more than twice in a product of two (or more) vectors or tensors. Thus

 $A_{ik}x_k$, $A_{ik}B_{kj}$, $A_{ij}B_{ik}C_{nk}$

are valid, but

are valid, but

 $A_{kk}x_k, \quad A_{ik}B_{kk}, \quad A_{ij}B_{ik}C_{ik}$

are meaningless

2. Free indices on each term of an equation must agree. Thus

$$egin{aligned} x_i &= A_{ij} \ x_j &= A_{ik} u_k \ x_i &= A_{ik} u_k + c_j \end{aligned}$$

are meaningless.

3. Free and dummy indices may be changed without altering the meaning of an expression, provided that rules 1 and 2 are not violated. Thus

$$x_i = A_{ik}x_k \Leftrightarrow x_j = A_{jk}x_k \Leftrightarrow x_j = A_{ji}x_i$$

2.4. Vector operations expressed using index notation

- lacktriangle Addition. $\mathbf{c} = \mathbf{a} + \mathbf{b}$ \equiv $c_i = a_i + b_i$
- Dot Product $\lambda = \mathbf{a} \cdot \mathbf{b} \equiv \lambda = a_i b_i$
- lacktriangle Vector Product $\mathbf{c} = \mathbf{a} imes \mathbf{b} \qquad \equiv \qquad c_i = \in_{ijk} a_i b_k$
- ullet Dyadic Product $\mathbf{S} = \mathbf{a} \otimes \mathbf{b}$ \equiv $S_{ij} = a_i b_j$
- ullet Change of Basis. Let a be a vector. Let $\{{f e}_1,{f e}_2,{f e}_3\}$ be a Cartesian basis, and denote the components of a in this basis by a_i . Let $\{\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3\}$ be a second basis, and denote the components of a in this basis by α_i . Then, define

$$Q_{ij} = \mathbf{m}_i \cdot \mathbf{e}_j = \cos heta(\mathbf{m}_i, \mathbf{e}_j)$$

where $\theta(\mathbf{m}_i, \mathbf{e}_j)$ denotes the angle between the unit vectors \mathbf{m}_i and \mathbf{e}_j . Then

$$\alpha_i = Q_{ij}a_j$$

2.5. Tensor operations expressed using index notation.

- Addition. $\mathbf{C} = \mathbf{A} + \mathbf{B} \equiv C_{ij} = A_{ij} + B_{ij}$
- ullet Transpose $\mathbf{A} = \mathbf{B}^T$ \equiv $A_{ij} = B_{ji}$
- ullet Scalar Products $egin{array}{ll} \lambda = {f A}: {f B} & \equiv & \lambda = A_{ij}B_{ij} \ \lambda = {f A} \cdot \cdot {f B} & \equiv \lambda = A_{ji}B_{ij} \end{array}$
- $egin{array}{lll} lackbox{
 m Product of a tensor and a vector} & egin{array}{lll} lackbox{
 m c} = {f A}{f b} & \equiv & c_i = A_{ij}b_j \ lackbox{
 m c} = {f A}^T{f b} & \equiv & c_i = A_{ji}b_j \end{array}$
- $\mathbf{C} = \mathbf{AB} \qquad \equiv \qquad C_{ij} = A_{ik}B_{kj}$ ullet Product of two tensors $\mathbf{C} = \mathbf{A}^T \mathbf{B} \quad \equiv \quad C_{ij} = A_{ki} B_{kj}$
- $\lambda=\det {f A} \quad \equiv \quad \lambda= \; rac{1}{6} \in_{ijk} \in_{lmn} \stackrel{\sim}{A_{li}} \stackrel{\sim}{A_{mj}} A_{nk} \; = \in_{ijk} \; A_{i1} A_{j2} A_{k3}$
- $\Leftrightarrow \ \ \in_{lmn} \lambda \ = \ \ \in_{ijk} A_{li}A_{mj}A_{nk} = \in_{ijk} A_{il}A_{jm}A_{kn}$ ullet Inverse $S_{ji}^{-1}=rac{1}{2\det(\mathbf{S})}\in_{ipq}\in_{jkl}S_{pk}S_{ql}$
- Change of Basis. Let A be a second order tensor. Let $\{e_1, e_2, e_3\}$ be a Cartesian basis, and denote the components of A in this basis by A_{ij} . Let $\{\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3\}$ be a second basis, and denote the components of **A** in this basis by Λ_{ij} . Then, define

$$Q_{ij} = \mathbf{m}_i \cdot \mathbf{e}_j = \cos heta(\mathbf{m}_i, \mathbf{e}_j)$$

where $\theta(\mathbf{m}_i, \mathbf{e}_i)$ denotes the angle between the unit vectors \mathbf{m}_i and \mathbf{e}_i . Then

$$\Lambda_{ij} = Q_{ik} A_{km} Q_{jm}$$

2.6. Calculus using index notation

The derivative $\partial x_i/\partial x_j$ can be deduced by noting that $\partial x_i/\partial x_j=1$ i=j and $\partial x_i/\partial x_j=0$ $i\neq j$. Therefore

$$rac{\partial x_i}{\partial x_j} = \delta_{ij}$$

The same argument can be used for higher order tensors

$$rac{\partial A_{ij}}{\partial A_{kl}} = \delta_{ik}\delta_{jl}$$

2.7. Examples of algebraic manipulations using index notation

1. Let a, b, c, d be vectors. Prove that

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c}) (\mathbf{b} \cdot \mathbf{d}) - (\mathbf{b} \cdot \mathbf{c}) (\mathbf{a} \cdot \mathbf{d})$$

Express the left hand side of the equation using index notation (check the rules for cross products and dot products of vectors to see how this is done)

$$(\mathbf{a} imes\mathbf{b})\cdot(\mathbf{c} imes\mathbf{d})\quad \equiv\quad \in_{ijk} a_jb_k\in_{imn} c_md_n$$

Recall the identity

$$\in_{ijk}\in_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{mk}$$

so

$$\in_{ijk} a_j b_k \in_{imn} c_m d_n = (\delta_{jm} \delta_{kn} - \delta_{jn} \delta_{mk}) a_j b_k c_m d_n$$

Multiply out, and note that

$$\delta_{jm}a_j=a_m \qquad \delta_{kn}b_k=b_n$$

(multiplying by a Kronecker delta has the effect of switching indices...) so

$$(\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{mk})\,a_jb_kc_md_n=a_mb_nc_md_n-a_nb_mc_md_n$$

Finally, note that

$$a_m c_m \equiv {f a} \cdot {f c}$$

and similarly for other products with the same index, so that
$$a_m b_n c_m d_n - a_n b_m c_m d_n = a_m c_m b_n d_n - b_m c_m a_n d_n \equiv (\mathbf{a} \cdot \mathbf{c}) (\mathbf{b} \cdot \mathbf{d}) - (\mathbf{b} \cdot \mathbf{c}) (\mathbf{a} \cdot \mathbf{d})$$

2. The stress—strain relation for linear elasticity may be expressed as

$$\sigma_{ij} = rac{E}{1+
u} \Big(arepsilon_{ij} + rac{
u}{1-2
u} arepsilon_{kk} \delta_{ij} \Big)$$

where σ_{ij} and ε_{ij} are the components of the stress and strain tensor, and E and ν denote Young's modulus and Poisson's ratio. Find an expression for strain in terms of stress.

Set i=j to see that

$$\sigma_{ii} = rac{E}{1+
u} \Big(arepsilon_{ii} + rac{
u}{1-2
u} arepsilon_{kk} \delta_{ii}\Big)$$

Recall that $\delta_{ii}=3$, and notice that we can replace the remaining ii by kk

$$egin{aligned} \sigma_{kk} &= rac{E}{1+
u} \Big(arepsilon_{kk} + rac{
u}{1-2
u} 3arepsilon_{kk} \Big) = rac{E}{1-2
u} arepsilon_{kk} \ &\Leftrightarrow \ arepsilon_{kk} &= rac{1-2
u}{E} \sigma_{kk} \end{aligned}$$

Now, substitute for $arepsilon_{kk}$ in the given stress—strain relation

$$egin{aligned} \sigma_{ij} &= rac{E}{1+
u} igl(arepsilon_{ij} + rac{
u}{E} \sigma_{kk} \delta_{ij}igr) \ &\Leftrightarrow arepsilon_{ij} &= rac{1+
u}{E} igl(\sigma_{ij} - rac{
u}{1+
u} \sigma_{kk} \delta_{ij}igr) \end{aligned}$$

3. Solve the equation

$$\mu\left\{\delta_{kj}a_ia_i+rac{1}{1-2
u}a_ka_j
ight\}U_k=P_j$$

for U_k in terms of P_i and a_i

Multiply both sides by a_j to see that

$$egin{aligned} \mu \left\{ a_j \delta_{kj} a_i a_i + rac{1}{1-2
u} a_k a_j a_j
ight\} U_k &= P_j a_j \ \Leftrightarrow & \mu \left\{ a_k a_i a_i + rac{1}{1-2
u} a_k a_j a_j
ight\} U_k &= P_j a_j \ \Leftrightarrow & \mu U_k a_k rac{2(1-
u)}{1-2
u} a_i a_i &= P_j a_j \ \Leftrightarrow U_k a_k &= rac{(1-2
u)P_j a_j}{2\mu(1-
u)a_i a_i} \end{aligned}$$

Substitute back into the equation given for $U_k a_k$ to see that

$$\mu U_j a_i a_i + rac{P_k a_k}{2(1-
u)a_i a_i} a_j = P_j \quad \Rightarrow U_j = rac{1}{\mu a_i a_i} \Big(P_j - rac{P_k a_k}{2(1-
u)a_n a_n} a_j\Big)$$

4. Let
$$r=\sqrt{x_kx_k}$$
 . Calculate $rac{\partial r}{\partial x_i}$

We can just apply the usual chain and product rules of differentiation

$$rac{\partial r}{\partial x_i} = rac{1}{2} rac{1}{\sqrt{x_k x_k}} igg(x_k rac{\partial x_k}{\partial x_i} + rac{\partial x_k}{\partial x_i} x_k igg) = rac{1}{\sqrt{x_k x_k}} x_k \delta_{ik} = rac{x_i}{\sqrt{x_k x_k}} = rac{x_i}{r}$$

5. Let $\lambda = A_{ij}A_{ij}$. Calculate $\partial \lambda/\partial A_{kl}$

Using the product rule

$$rac{\partial \lambda}{\partial A_{kl}} = A_{ij} \delta_{ik} \delta_{jl} + \delta_{ik} \delta_{jl} A_{ij} = 2 A_{kl}$$

5 of 5