Ahora, hacer las n permutaciones de antemano es equivalente a multiplicar A por la izquierda por P. Es decir,

PA es una matriz que debe ser reducida por renglones a una matriz triangular superior sin realizar permutaciones adicionales.

EJEMPLO 2.7.3 Una factorización PA = LU

Para reducir A por renglones a la forma triangular superior, primero se intercambian los renglones 1 y 3 y después se continúa como se muestra a continuación.

$$A = \begin{pmatrix} 0 & 2 & 3 \\ 2 & -4 & 7 \\ 1 & -2 & 5 \end{pmatrix}$$

Al realizar esta reducción por renglones se hicieron dos permutaciones. Primero se intercambiaron los renglones 1 y 3 y después los renglones 2 y 3.

$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & -4 & 7 \\ 1 & -2 & 5 \end{pmatrix} \xrightarrow{R_1 \rightleftarrows R_3} \begin{pmatrix} 1 & -2 & 5 \\ 2 & -4 & 7 \\ 0 & 2 & 3 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -2 & 5 \\ 0 & 0 & -3 \\ 0 & 2 & 3 \end{pmatrix} \xrightarrow{R_2 \rightleftarrows R_3} \begin{pmatrix} 1 & -2 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & -3 \end{pmatrix}$$

У

$$P_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{y} \quad P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Esta matriz se puede reducir a una forma triangular superior sin permutaciones. Se tiene

$$P = P_2 P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Así, como en el ejemplo 2.7.1,

$$PA = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 \\ 2 & -4 & 7 \\ 1 & -2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 5 \\ 0 & 2 & 3 \\ 2 & -4 & -7 \end{pmatrix}.$$

Al generalizar el resultado del ejemplo 2.7.3 se obtiene el siguiente teorema.

Teorema 2.7.3 Factorización LUP

Sea A una matriz invertible de $n \times n$. Entonces existe una matriz de permutación P tal que

$$PA = LU$$

donde L es una matriz triangular inferior con unos en la diagonal y U es triangular superior. Para cada P (puede haber más de una), las matrices L y U son únicas.