东南大学考试卷(A)

课程名称 工程矩阵理论 考试学期 08-09-2 适用范围 工科硕士研究生 考试形式 卷 考试时间长度 150 分钟 闭 题号 三 兀 Ŧī. 六 七 得分

- 一. (15%)填空题

 - 2. 若线性空间 V 的线性变换 f 在基 α , β 下的矩阵是 $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$, 则 f 在基 $\alpha + \beta, \alpha \beta$ 下的矩阵是
 - 3. 如果 $n \times n$ 矩阵 A满足 $A^2 = A$,并且 A 的秩为 r,则行列式 |A+2I| =_____;
 - 4. 若矩阵 $A = \begin{pmatrix} 1 & 7 \\ 9 & 2 \end{pmatrix}$,则矩阵函数 e^A 的行列式 $\left| e^A \right| =$ ______;
 - 5. 若 α 是n 维单位列向量, $A = I + k\alpha\alpha^H$ 是正定的,则参数k 满足条件_____。

二. (12%) 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & a & 4 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 5 & 2 & 0 \\ 6 & c & b \end{pmatrix}$$
。 讨论 A 的可能的 Jordan 标准形。

问: 当参数a,b,c满足什么条件时,矩阵A与B是相似的。

- 三. (20%) 记 $M = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$, $C^{2\times 2}$ 上的变换f定义为: 对 $X \in C^{2\times 2}$, f(X) = XM
 - 1. 证明: $f \in C^{2\times 2}$ 上的线性变换;
 - 2. 求f在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵A;

共 2 页

- 3. $\bar{x} f$ 的特征值及相应的特征子空间的基;
- 4. 问:是否存在 $C^{2\times 2}$ 的基,使得f在这组基下的矩阵是对角阵?如存在,试给出这样的一组基及相应的对角阵,如不存在,请说明理由。

四. (10%)设
$$A = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
。试将 Ae^{At} 表示成关于 A 的次数不超过 2 的多项式。

五. (8%) 求
$$A = \begin{pmatrix} 0 & 0 & 10 \\ 1 & 3 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$
的广义逆矩阵 A^+ 。

- 六. (15%) 假设V 是有限维欧氏空间, $\omega \in V$ 是单位向量,V 上的线性变换 f 定义 如下: 对任意 $\eta \in V$, $f(\eta) = \eta 2 < \eta, \omega > \omega$ 。
 - 1. 证明: $f \in V$ 上的正交变换。
 - 2. 在 $R[x]_3$ 中定义内积: 对 $\varphi(x)$, $\psi(x) \in R[x]_3$, $\langle \varphi(x), \psi(x) \rangle = \int_0^1 \varphi(x) \psi(x) dx$ 。 于是, $R[x]_3$ 成为欧氏空间。分别求 $R[x]_3$ 中向量 $\alpha = 1$ 及 $\beta = x$ 的长度,并求正实数 k 及单位向量 $\omega \in R[x]_3$,使得如上的正交变换 f 将 α 变成 $k\beta$ 。

七. 证明题(20%)

- 1. 假设 A 是 $s \times n$ 矩阵,U,V 分别是 $s \times s$ 、 $n \times n$ 酉矩阵。证明: $\|A\|_2 = \|UAV\|_2$ 。
- 2. 假设 $A \neq n \times n$ 正规矩阵。若A的特征值的模都等于1,证明: A 是酉矩阵。
- 3. 假设 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ 是 Hermite 矩阵,其中, A_{ij} 是 A 的子矩阵,并且 A_{11} , A_{22} 都

是方阵。若A是正定的。证明关于行列式的不等式: $|A| \leq |A_{11}| |A_{22}|$ 。