Lab 2: LED 7 ĐOẠN.

I. Mục tiêu:

Thiết kế hệ thống với Nios II Processor thực hiện công việc sau: Mỗi lần nhấn KEY[3] thì đếm lên một giá trị. Đếm từ 00 tới 23, hiển thị giá trị đếm trên 2 Led 7 đoạn HEX[0] và HEX[1].

II. Tạo New Project Quartus II:

- 1. Tạo 1 file mới New folder với tên lab2.
- 2. Double click vào shortcut Quartus II trên Destop để mở giao diện làm việc.
- **3.** Trên Quartus II menu bar chọn File -> New Project Wizard. Thiết lập các tùy chọn như bên dưới.

4. Click Next.

5. Trong khung thứ nhất chọn đường dẫn vào thư mục vừa tạo mang tên lab2.
Tên project phải trùng với tên thư mục là lab2.

Click Next

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5]	X
What is the working directory for this project?		
C:\Users\admin\Desktop\lab2		
What is the name of this project?		
lab2		
What is the name of the top-level design entity for this proje exactly match the entity name in the design file.	ect? This name is case sensitive and must	
lab2		
Use Existing Project Settings		
Ose Existing Floject Settings		
		_
< Back	Next > Finish Cancel	

6. Click Next

7. Chọn Cyclone II.

Available devices: Chon EP2C35F672C6.

Click Next

8. Click Next.

9. Click Finish.

10. Click New

11. Chọn Verilog HDL File -> click OK

III.Tao SOPC:

1. Click SOPC Builder để tạo file SOPC.

2. System name: nios_system -> Click OK.

Target HDL: **Verilog** Sau đó chọn : **OK**

3. Trong Library: Click Processors -> chọn Nios II Processor để tạo CPU

4. Chọn Nios II/s

5. Trong Library: chọn University Program -> Memory -> SRAM/SSRAM Controller Click Finish

6. Trong Library: click Interface Protocols -> Serial -> chọn JTAG UART, sau đó chọn Finish.

7. Chọn University Program -> Generic IO -> Parallel Port, chọn 1 cống cho input và 2 cổng cho output, sau đó Finish.

8. Quay lại CPU vừa được tạo trong SOPC

Trong Reser Vector và Exception Vector : chọn sram_0 -> click Finish

9. Click chuột vào Auto-Assign Base Addresses trong tab System

10. Chọn Generate. Nếu system generation was successful, save lại và tắt SOPC builder

IV. Verilog code:

```
module lab2 (
    // Inputs
    CLOCK_50,
    CLOCK_27,
    EXT_CLOCK,
    KEY,
    SW,
    // Communication
    UART_RXD,
    // Audio
    AUD_ADCDAT,
// Bidirectionals
    GPIO_0,
    GPIO_1,
    // Memory (SRAM)
    SRAM_DQ,
    // Memory (SDRAM)
    DRAM_DQ,
    // PS2 Port
    PS2_CLK,
    PS2_DAT,
    // Audio
    AUD_BCLK,
    AUD_ADCLRCK,
    AUD_DACLRCK,
    // Char LCD 16x2
    LCD_DATA,
    // AV Config
    I2C_SDAT,
// Outputs
    TD_RESET,
    //
         Simple
    LEDG,
```

```
LEDR,
HEXO,
HEX1,
HEX2,
HEX3,
HEX4,
HEX5,
HEX6,
HEX7,
      Memory (SRAM)
//
SRAM_ADDR,
SRAM_CE_N,
SRAM_WE_N,
SRAM_OE_N,
SRAM_UB_N,
SRAM_LB_N,
// Communication
UART_TXD,
// Memory (SDRAM)
DRAM_ADDR,
DRAM_BA_1,
DRAM_BA_0,
DRAM_CAS_N,
DRAM_RAS_N,
DRAM_CLK,
DRAM_CKE,
DRAM_CS_N,
DRAM_WE_N,
DRAM_UDQM,
DRAM_LDQM,
// Audio
AUD_XCK,
AUD_DACDAT,
// VGA
VGA_CLK,
VGA_HS,
VGA_VS,
VGA_BLANK,
VGA_SYNC,
VGA_R,
```

```
VGA_G,
     VGA_B,
     // Char LCD 16x2
      LCD_ON,
      LCD_BLON,
      LCD_EN,
      LCD_RS,
      LCD_RW,
     // AV Config
      I2C_SCLK,
);
Parameter Declarations
// Inputs
                       CLOCK_50;
input
                       CLOCK_27;
input
                       EXT_CLOCK;
input
input
          [3:0]
                 KEY;
input
          [17:0] SW;
// Communication
input
                       UART_RXD;
// Audio
                       AUD_ADCDAT;
input
// Bidirectionals
           [35:0] GPIO_0;
inout
inout
          [35:0] GPIO_1;
//
      Memory (SRAM)
           [15:0] SRAM_DQ;
inout
// Memory (SDRAM)
inout
           [15:0] DRAM_DQ;
// PS2 Port
inout
                       PS2_CLK;
```

```
inout
                            PS2_DAT;
// Audio
inout
                            AUD_BCLK;
inout
                            AUD_ADCLRCK;
inout
                            AUD_DACLRCK;
// AV Config
inout
                            I2C_SDAT;
// Char LCD 16x2
inout
             [7:0] LCD_DATA;
// Outputs
output
                            TD_RESET;
//
       Simple
output
              [8:0]
                     LEDG;
output
              [17:0] LEDR;
              [6:0]
output
                     HEXO;
output
              [6:0]
                     HEX1;
              [6:0]
output
                     HEX2;
output
              [6:0]
                     HEX3;
output
              [6:0]
                     HEX4;
              [6:0]
output
                     HEX5;
output
              [6:0]
                     HEX6;
output
              [6:0]
                     HEX7;
//
       Memory (SRAM)
              [17:0] SRAM_ADDR;
output
output
                            SRAM_CE_N;
output
                            SRAM_WE_N;
output
                            SRAM_OE_N;
                            SRAM_UB_N;
output
output
                            SRAM_LB_N;
// Communication
output
                            UART_TXD;
// Memory (SDRAM)
output
              [11:0] DRAM_ADDR;
output
                            DRAM_BA_1;
output
                            DRAM BA 0;
                            DRAM_CAS_N;
output
                            DRAM_RAS_N;
output
```

```
output
                        DRAM_CLK;
output
                        DRAM_CKE;
output
                        DRAM CS N;
output
                        DRAM_WE_N;
                        DRAM UDQM;
output
output
                        DRAM_LDQM;
// Audio
output
                        AUD_XCK;
output
                        AUD_DACDAT;
// VGA
                        VGA CLK;
output
output
                        VGA HS;
output
                        VGA_VS;
                        VGA_BLANK;
output
                        VGA_SYNC;
output
output
           [9:0] VGA_R;
            [9:0] VGA_G;
output
output
           [9:0] VGA_B;
// Char LCD 16x2
output
                        LCD ON;
                        LCD_BLON;
output
output
                        LCD_EN;
output
                        LCD_RS;
                        LCD_RW;
output
// AV Config
                        I2C_SCLK;
output
/********************************
        Internal Wires and Registers Declarations
// Internal Wires
// Used to connect the Nios 2 system clock to the non-shifted output of the PLL
wire
                        system clk;
// Internal Registers
// State Machine Registers
           Finite State Machine(s)
```

```
Sequential Logic
             Combinational Logic
// Output Assignments
assign TD_RESET
                         = 1'b1;
assign GPIO_0[0]
                   = 1'bZ;
assign GPIO 0[2]
                   = 1'bZ;
assign GPIO_0[16]
                   = 1'bZ;
                   = 1'bZ;
assign GPIO 0[18]
assign GPIO_1[0]
                   = 1'bZ;
assign GPIO_1[2]
                   = 1'bZ;
assign GPIO_1[16]
                   = 1'bZ;
assign GPIO_1[18]
                   = 1'bZ;
nios_system Nios_II(
         // 1) global signals:
         .clk_0(CLOCK_50),
         .reset_n(KEY[0]),
         // the_DEM
         .in_port_to_the_DEM(KEY[3]),
         // the_HEX_0
         .out_port_from_the_HEX_0(HEX0[6:0]),
         // the_HEX_1
         .out_port_from_the_HEX_1(HEX1[6:0]),
         // the_SRAM
         .SRAM ADDR from the SRAM(SRAM ADDR[17:0]),
         .SRAM_CE_N_from_the_SRAM(SRAM_CE_N),
         .SRAM DQ to and from the SRAM(SRAM DQ),
         .SRAM_LB_N_from_the_SRAM(SRAM_LB_N),
         .SRAM_OE_N_from_the_SRAM(SRAM_OE_N),
         .SRAM_UB_N_from_the_SRAM(SRAM_UB_N),
         .SRAM_WE_N_from_the_SRAM(SRAM_WE_N)
endmodule
```

- 1. Save lại vào thư mục project của mình
- 2. Vào Assignments → Import Assignments → Chọn file DE2_pin_assignments.csv → Open

3. Start COMPILE

V. C code trên NIOS II 9.1 IDE

1. Chọn File -> chọn Switch workspace, tạo 1 thư mục software mới trong thư mục project, sau đó tắt tab Welcome.

2. Chọn File \rightarrow New \rightarrow Nios II C/C++ Application

Đặt tên cho project.Chọn Blank Project.

Chọn đường dẫn để đến file **nios_system.ptf** (vừa tạo được ở các bước trên) ở mục **SOPC Builder System PTF File**.

Sau đó chọn Finish.

- 4. Click chuột phải vào lab2_syslib[nios_system] -> Build Project
- 5. Click chuột phải vào lab2 → New → Source File. Đặt tên source file giống với tên project mình đặt

6. Lập trình code C:

```
#include "stdio.h"

int *dem=0x00101000;
int *HEX0= 0x00101010;
int *HEX1= 0x00101020;

int main (void)
{
    unsigned char seven_seg_decode_table[] = { 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,0x7C, 0x07, 0x7F, 0x67};
```

```
return 0;
```

7. Save lại và Click chuột phải vào lab2 -> Build Project

VI. Run Hardware on DE2 board:

1. USB Blaster:

- In window Quartus II, click **Programmer** in taskbar

2. Run:

r