<u>Notes</u>

Discussion

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u>

(

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

☆ Course / Unit 2: Geometry of Derivatives / Lecture 6: Gradients

End My Exam

Previous

<u>Progress</u>

44:02:49

☐ Bookmark this page

Lecture due Aug 18, 2021 20:30 IST Completed

Review

Review of linear approximation

Start of transcript. Skip to the end.

PROFESSOR: Let's start to talk it through together.

If you want to, you can keep working until I get down to here or so.

So we take the x derivative of this-that.

And if we plug in x equals 1-- if you plug in 1 and 1

▶ 0:00 / 0:00

▶ 2.0x ◀®

×

CC

:C 66

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Consider the following figures.

Left: Level curves of $f(x,y)=y^2-x^3-x$. Center: Level curves of $f(x,y)=y^2-x^3-x$ zoomed in near (1,1). Right: Level curves of the tangent plane z=-4x+2y+1.

On the left, we have the level curves of $f(x,y)=y^2-x^3-x$. In the center, we have those same level curves but zoomed in near (1,1). On the right, we have the level curves of the tangent plane at (1,1) given by z=-4x+2y+1.

You can see that the level curves in the center are similar to the parallel lines on the right. When we zoom in on the function f(x,y), its level curves look more and more like the level curves of the tangent plane.

Find a normal vector

1.0/1 point (graded)

Find a normal vector to level curves of f at (1,1).

(Enter as a vector between square brackets. For example, enter the vector $\langle a,b \rangle$ as [a,b].)

Solution:

One idea is to find the normal vector to the level lines of z=-4x+2y+1. We saw how to do this last lecture. Let's take the level curve at height -1 since this is the value of f(1,1). So the level curve we have is

$$-4x + 2y + 1 = -1$$

and the normal vector is (-4,2). Let's look at a picture of this. I've re-scaled the vector so it fits on the axes shown.

Submit

You have used 1 of 7 attempts

- **1** Answers are displayed within the problem
- 3. The geometry of linear approximation

Hide Discussion

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>