

# Ch. 7. Entropy and free energy

T is common sense that some natural phenomena happen spontaneously in nature, without any help, in nature whereas others do not. For example, one would expect a ball on a hill to roll down instead of rolling up. How does common sense apply in chemistry? Why some reactions happen spontaneously whereas others do not. For example, methane (CH<sub>4</sub>) spontaneously burns with oxygen (O<sub>2</sub>), producing carbon dioxide, and water. Differently, if we mix water and carbon dioxide, CH<sub>4</sub> is not spontaneously produced. Thermodynamics helps make sense of spontaneity in physics and chemistry. In particular, three thermodynamic properties—enthalpy, entropy, and Gibbs free energy—are commonly used to predict different aspects of spontaneity. At the same time, spontaneity in chemistry is indeed related to equilibrium and these properties can be translated into equilibrium constants.

# 7.1 Spontaneity

Chemical kinetics is a discipline that deals with the pace of chemical reactions by using activation energies, concentrations, and temperatures. It also deals with the different pathways of reaction. However, chemical kinetics does no provide information about the reasons why chemical reactions happen. Thermodynamics informs about the direction in which a chemical reaction occurs spontaneously and the reasons for this reaction to happen, without informing about the speed at which the process occurs. It uses thermodynamic functions—enthalpies, entropies, and Gibbs free energies—to understand the factors that favor the spontaneity of a reaction. Overall, kinetics and thermodynamics are complementary disciplines in chemistry as it is convenient to gain insight into the pace and spontaneity of chemical reactions.

Spontaneity A spontaneous process happens naturally, without any help or external input. For example, ice spontaneously melts at room temperature, without any help. Still, spontaneity happens under a certain set of conditions. For example, ice melts at room temperature but does not melt at -5°C, as the process in these conditions is not spontaneous. Other spontaneous processes are the rusting of iron at room temperature, or the freezing of water below 0°C. Spontaneous processes have a natural tendency to occur. Still, this tendency might not be actualized in practice. At the same time, this natural tendency to occur is not linked in any way to the speed or rate of the process. For example, diamonds have a natural tendency to become graphite. Still, the rate of this change is so slow that in human years it does never occur. Remember that thermodynamics addresses spontaneity whereas kinetics address the rate of occurrence of a process.



## 7.2 Entropy

Entropy, represented with an S, refers to the spreading of energy and composition of a system. Energy and matter have the tendency to spread and this spreading is represented by entropy. Think about a glass full of hot water and how water is going to spontaneously cool down, as the energy spreads between the glass and its environment. Similarly, think about a gas container opened in vacuum, and how gas molecules spontaneously will leave the container and spread out. Overall, entropy has a macroscopic and microscopic description, with these two descriptions converging into a cohesive concept.

The meaning of Entropy, S Entropy is represented with the letter S. Qualitatively, it is a measure of the spreading in space of the energy of a system, or simply the system. For example, in a glass full of hot water, the energy is concentrated in the glass as the water molecules initially have high thermal energy. With time, the system evolves naturally so that heat spreads between the room and the container. The initial state (glass with hot water) has lower entropy than the final state (glass with thermalized water). Another example, think about a concentrated solution separated from a more diluted system by means of a membrane. Initially, the entropy of the system is low, as one side of the container has a high density of molecules whereas the other side has a lower density. As the molecules diffuse and the concentration equalizes. In this case, the entropy of the initial state (a concentrated and a diluted solution) is lower than the entropy of the final system (two solutions of equal concentration). These two examples represent how energy and matter spread as entropy increases in spontaneous processes. On one hand, entropy, just like enthalpy, is a state function in thermodynamics which means that the change of entropy of a system when going from an initial into a final state is independent of the path taken to arrive from the initial into the final state. On the other hand, entropy is an extensive property that depends on the size of the system and for example the entropy change when heating 2 moles of gas is larger than when heating 1 mole of gas.

A macroscopic description of entropy Overall an entropy change is associated with the flow of heat. The change of entropy associated with the heat flow, at constant temperature, can be computed using the expression below, called generalized Clausius relation:

$$\boxed{\Delta S = \frac{q}{T}} \tag{7.1}$$

where:

 $\Delta S$  is the entropy change q is the reversible heat transferred T is the absolute temperature (in K)

This expression refers to *q* that is the heat enhanced reversibly, exchanging heat in very tinny bits so that the temperature does not change significantly. The larger the heat exchanges the larger the entropy change. At the same time, a larger entropy change will be associated with the heat exchange at low temperatures than at high temperatures. The entropy change resulting from a heat flow can be referred to as *thermal entropy*. Formula ?? is one of the ways to mathematically describe the *second law of thermodynamics* that says that a system and its surroundings—an isolated system—evolve spontaneously increasing its overall entropy.

#### Sample Problem 1

We warm up a cup of vegetable oil in the microwave, at low power and for a long time, giving 40 KJ of heat to the oil. Calculate the entropy change experienced by the oil at  $30^{\circ}\text{C}$ .

#### **SOLUTION**

We will calculate the thermal entropy by means of Clausius' relation given that the heat is 40000J and the fixed temperature is 30 + 273 = 303K. Remember as the oil (this is the system under study) receives heat the numerical value of heat of positive and also we need absolute temperature in Clausius' relation. We finally have that:

$$\Delta S = \frac{q}{T} = \frac{40000}{303} = 132J/K$$

As a final comment, mind that the heat exchange has happened reversibly as they point the microwave functions at a low power and for a low time.

### **STUDY CHECK**

We cool dow a cup of vegetable oil with a water bath, so that the oil releases 20 KJ of heat to the bath. Calculate the entropy change experienced by the oil at  $40^{\circ}\text{C}$ .

A microscopic description of entropy A mathematical or molecular level description of entropy was suggested by Ludwig Boltzmann. Entropy depends on the number of energetically equivalent microstates, that is, the number of different ways in which a system existing in a given state can be arranged. The Boltzmann formula for entropy is:

$$S = k_B ln(W)$$
(7.2)

where:

S is the entropy of a system

 $k_B$  is the Boltzmann constant  $(1.381 \times 10^{23} \text{ J/K})$ 

W is the number of microstates

The Boltzmann's constant results from statistical thermodynamics–probabilistic thermodynamics–being related to the ideal gas constant through  $R=N_A\cdot k_B$ , with  $N_A$  Avogadro's number. At the same time, W is the number of microstates of the system that is the number of different ways in which the particles of a system can be differently arranged for a given energy. Hence the molecular-level description of entropy is closely related to probability and we may imagine that the system exists in numerous microstates of short existence. When measuring the system we are indeed measuring a time average of the properties of the different microstates. The larger the number of microstates–the more ways a particular state can be achieved–the most probable the configuration–the greater is the likelihood of finding that state.

Let us analyze an example to describe the meaning of microstate and the use of Boltzmann entropy. Imagine a box with two identical ideal-gas particles and two compartments. In each compartment, the particles can occupy four different locations, with two locations on the top part of the compartment and two locations on the bottom part. Each of the particle arrangements would be a microstate. Let us now analyze the number of equivalent microstates when the box is closed so that the particles cannot jump into the other compartment. Below are all possible microstates for this scenario:





The number of different arrangements represented above is X=6, and the entropy associated with this system would be  $k_B ln(6)$  that is  $2.5 \times 10^{23}$  J/K. Now, if we open the separation between the two compartments so that the molecules can freely move from one compartment to the other, the number of microstates increases considerably. We would have three different scenarios: (1) the scenario in which the particles stay in the left compartment, (2) the scenario in which the particles stay in the right compartment, (3) the scenario in which the particles are spread between both compartments. What situation do you think is more feasible? In particular, we have a set of six configurations in which both particles populate the left compartment and a set of six configurations in which both particles populate the right compartment. The entropy for these two scenarios is  $k_B ln(6)$ . We would also have a set of 16 configurations in which each particle populates a different compartment. The entropy for these two scenarios is  $k_B ln(16)$ . The Boltzmann formula suggests that the most feasible scenario, the scenario with higher entropy, corresponds to the spreading of particles between both compartments. As we will see along the chapter, the situation in which each particle populates a different compartment has larger entropy and hence it would be the most probable scenario.



The calculation of different microstates come from the close study of the situation in hand. In the scenario described above, we had two compartments and four possible locations. Each molecule had a single state or orientation. One can also find the case that the molecules have several states. For example, CO molecules can be found in two different orientations when an external field is applied. In the case of multiple molecular arrangements it is convenient to use the formula below:

$$\overline{W = A^N}$$
(7.3)

where:

A is the number of molecular states

W is the number of microstates

For example for the scenario of two molecules with two different orientations we will have  $2^2$  microstates.

The type of probability related to the number of configurations in space is called *positional probability* and the entropy resulting from positional probability is called



positional entropy. Positional probability can be used to understand phenomena such as the change of state of the dissolution of solids in liquids. When a solid becomes liquid the number of possible microstates increases and hence entropy increases as well. Similarly, when dissolving a solute into a liquid, the number of microstates and entropy increases. However, computing the number of microstates to estimate positional entropy is not practical for large systems with numerous configurations. The number of microstates increases exponentially with the number of particles to the point that, for large systems, is not practical to compute entropy using Equation ??.

#### Sample Problem 2

The image below represents two different ideal gas-molecules in a two-bulb container. The molecules are able to travel from one side to the other.



Answer the following questions: (a) What is the total number of microstates in this system (b) What is the most likely arrangement of the molecules (c) What is the least likely arrangement of the molecules (d) What is the probability of finding the system in the most likely arrangement of the molecules

#### **SOLUTION**

Overall we have three different scenarios. We can find all the molecules in the left container, all the molecules in the right container, or one molecule in the left and the other in the right. As the molecules are different, we only have one microstate in which both are in a single container. Differently, we have two different microstates in which the particles are distributed. Overall we have 4 microstates, the probability of finding the particles on both sides would be  $2/4 \times 100=50\%$ .

#### STUDY CHECK

The image below represents six ideal gas-molecules in a two-bulb container. The molecules are able to travel from one side to the other.



Answer the following questions: (a) What is the total number of microstates in this system (b) What is the most likely arrangement of the molecules (c) What is the least likely arrangement of the molecules (d) What is the probability of finding the system in the most likely arrangement of the molecules

Equivalence between microscopic and macroscopic entropy We have addressed two different definitions of entropy, a macroscopic definition based on heat and a microscopic definition based on configurations. Each description is based in a different formula. The macroscopic description of entropy is based on the Clausius' formula whereas the microscopic description is based on Boltzmann's formula. Here we will explain why both descriptions are indeed equivalent. First, both



types of entropies are state functions, macroscopic entropy depends on the initial and final temperature, volume or pressure and not the path taken to reach the final state. Similarly, the microscopic entropy depends on the initial and final microstates, not the transition between both states. Macroscopic entropy is extensive and depends on the size of the system, and microscopic entropy is extensive as well as the larger the system the more configurations would be. Finally, when the size of a system increases the energy levels that its particle occupies become more packed and the particles are able to distribute among these states. At low temperatures all particles occupy only the lowest level energy level and hence there is only one configuration or micro state for the system, being its entropy zero.

# 7.3 Standard molar entropies

Enthalpies are relative properties and when we compute the formation energy of water we need the formation energy of oxygen and oxygen gas. These two values are zero and are assumed the reference. Entropies are absolute values. The term absolute refers to the absolute scale of temperatures where the lowest value is well defined and equal to zero. Similarly, there is the lowest value for entropy two and we will discuss this value when dealing with the third law of thermodynamics.

Standard molar entropies, S° The standard molar entropy of a substance is the absolute entropy of one more substance at 1 atm. Entropies are absolute properties in contrast to other relative thermodynamic functions like the enthalpy in which a set of molecular states act as a reference. A few standard entropy values are tabulated in Table ?? at one bar and 25 °C, the conventional temperature of reporting thermodynamic data. More values are tabulated in Table ??, at the end of the chapter. The units of molar entropy are J/molK. Molar entropies tend to be small values—as the unit joule is a small unit of energy. Finally, entropies can be positive or negative values.

#### Sample Problem 3

Using the thermodynamic tables at the end of the chapter, locate the values of molar entropies for the following molecules:  $O_{2(g)}$ ,  $NH_{3(g)}$ ,  $K_{(s)}$ ,  $SiBr_{4(l)}$ .

#### **SOLUTION**

The molar entropy of oxygen as is  $205.0 \ J/mol K$ , whereas the molar entropy for gas ammonia is  $192.3 \ J/mol K$ . The molar entropy for solid potassium is  $64.2 \ J/mol K$ , whereas the molar entropy for liquid silicon tetrabromide is  $277.8 \ J/mol K$ .

#### **STUDY CHECK**

Using the thermodynamic tables at the end of the chapter, locate the values of molar entropies for the following molecules: (a)  $Ag_{(s)}$  (b)  $SO_{2(g)}$  (c)  $Zn_{(s)}$  (d)  $Br_{2(l)}$ 

Factors affecting S We can qualitatively rationalize the trends between the standard molar entropy values for different substances and for different conditions (temperature, volume, pressure) by using some simple rules described below:

**l' The state of matter:** The standard entropy of gases is larger than the standard entropy of liquids as gases present large degree of freedom (possible configurations) than liquids.



The standard entropy of liquids is larger than the standard entropy of solids as liquids present large degree of freedom than solids. The molecules of a liquid molecules can jiggle more in comparison with the molecules of a solid. Overall, we can assume that liquids and solid has almost null entropy whereas gases have very large entropy. For example, the entropies of ice, water and steam are respectively 41, 69.95, and 69.95 J/molK.

**P** Molar mass: For monoatomic substances (e.g. Ne, Ar, etc.) the larger the atomic weight the larger entropy. This is because the energy levels of larger molecules are more packed, and hence are easier to access at a given temperature.

 $\mathcal{V}$  Molecular complexity: For substances with comparable molar mass (O<sub>3</sub> and F<sub>2</sub>), the more complex the molecule the larger entropy, as the number of degrees of freedom are directly correlated with the number of microstates.

**P** Temperature: Temperature increases entropy as the system have more accessible microstates. The plot below represents the entropy change with temperature for a substance.



**Figure ??** Entropy as function of temperature indicating the entropy changes for the fusion and vaporization processes.

**P** Number of particles: The larger the number of particles of a system, the larger entropy, as the more particles the more microstates or possible configurations.

**Volume:** The larger the volume of a system, the larger entropy, as the larger volume the more microstates or possible configurations.

#### Sample Problem 4

Compare entropy for the following systems: (a) Liquid ammonia at 25°C and 1 bar and gas ammonia at 25°C and 1 bar (b) Liquid ammonia at 25°C and 1 bar and liquid ammonia at 45°C and 1 bar (c) 3 moles of an ideal gas and 5 moles of the same gas at fixed temperature and pressure

#### **SOLUTION**

Gas ammonia has a larger entropy than liquid ammonia as gases in general tend to have larger entropy. When dealing with temperature, the higher temperature the higher entropy. Hence liquid ammonia at 45°C and 1 bar will have a larger entropy than liquid ammonia at 25°C and 1 bar. Finally, entropy is an extensive property and 5 moles of a gas will have larger entropy than 3 moles of the same gas.



#### **STUDY CHECK**

Compare entropy for the following systems: (a)  $CO_2$  at  $25^{\circ}C$  and 1 bar and  $SO_2$  at  $25^{\circ}C$  and 1 bar (b) 3L of a gas at  $25^{\circ}C$  and 1 bar and 4L of the same gas at  $25^{\circ}C$  and 1 bar (c)  $H_2$  at  $25^{\circ}C$  and 1 bar and He at  $25^{\circ}C$  and 1 bar

| Table ?? Sta       | ındard | entropy S° at | 25 °C | in J/(mol· K)                     |     |                                   |     |
|--------------------|--------|---------------|-------|-----------------------------------|-----|-----------------------------------|-----|
| Substance          | S°     | Substance     | S°    | Substance                         | S°  | Substance                         | S°  |
| Br <sub>2(l)</sub> | 152    | $Br_{2(g)}$   | 245   | CH <sub>3</sub> OH <sub>(l)</sub> | 127 | CH <sub>3</sub> OH <sub>(g)</sub> | 240 |
| $CS_{2(l)}$        | 151    | $CS_{2(g)}$   | 238   | $H_2O_{(l)}$                      | 70  | $H_2O_{(g)}$                      | 189 |
| $H_2O_{2(l)}$      | 233    | $H_2O_2(g)$   | 189   | $Rb_{(s)}$                        | 70  | Rb <sub>(g)</sub>                 | 170 |
| $Cs_{(s)}$         | 83     | $Cs_{(g)}$    | 176   | $He_{(g)}$                        | 126 | $Ne_{(g)}$                        | 146 |
| $Ar_{(g)}$         | 155    | $Kr_{(g)}$    | 164   | $O_{3(g)}$                        | 238 | $F_{2(g)}$                        | 203 |

### 7.4 Calculating entropy changes

We have that when a system receives heat its entropy increases. At the same time, when a system receives heat its temperature increases. Therefore, there should be a relation between the temperature increase and the entropy increase. At the same time if we compress of decompress a gas at constant temperature, its entropy also changes based on the change of volume or the change of pressure. In particular, if we apply some mechanical work to a system so its volume decreases its entropy will increase as the system has received work—mechanical energy. Mind the opposite trend here. Similarly, if a the pressure of a system increases as a result of applying an external force its entropy will also increase.

Entropy change and temperature The following formula can be used to calculate the entropy change of a system when its temperature increases (or decreases). Temperature changes can be measured at constant volume or constant pressure and as such, the formula will have to be adjusted for these two different conditions.

$$\Delta S = C \ln \left( \frac{T_2}{T_1} \right) \tag{7.4}$$

where:

 $\Delta S$  is the entropy change in J/K

C is heat capacity in J/K

 $T_1$  is the absolute initial temperature (in K)

 $T_2$  is the absolute final temperature (in K)

C represents the heat capacity. Mind molar heat capacity  $C_m$  and heat capacity C are related by the number of moles:  $C=n\cdot C_m$ . If the change in temperature is measured at constant pressure, the molar heat capacity is called constant-pressure molar heat capacity  $C_{p,m}$ , whereas if the change in temperature is measured at constant volume, the molar heat capacity is called constant-volume molar heat capacity  $C_{v,m}$ . For ideal gases the  $C_{v,m}$  values are (mind R is the constant of the gases 8.314J/molK):  $\frac{3}{2}R$  (for atoms),  $\frac{5}{2}R$  (for linear molecules), and  $\frac{6}{2}R$  (for nonlinear molecules). For ideal gases the  $C_{p,m}$  values are:  $\frac{5}{2}R$  (for atoms),  $\frac{7}{2}R$  (for linear molecules), and  $\frac{8}{2}R$  (for nonlinear molecules).  $C_{p,m}$  and  $C_{v,m}$  are related by  $C_{p,m} = C_{v,m} + R$ .

Entropy change and volume The following formula can be used to calculate the entropy change of an ideal gas when its volume changes at constant temperature. A volume decrease will cause an entropy decrease:

$$\Delta S = nR \ln \left(\frac{V_2}{V_1}\right) \tag{7.5}$$

where:

 $\Delta S$  is the entropy change in J/K

n is the number of moles

R is the constant of the gases in energy units (8.314J/molK)

 $V_1$  is the initial volume

 $V_2$  is the final volume

Entropy change and pressure The following formula can be used to calculate the entropy change of an ideal gas when its pressure changes at constant temperature. A pressure decrease will cause an entropy increase:

$$\left[\Delta S = nR \ln \left(\frac{P_1}{P_2}\right)\right] \tag{7.6}$$

where:

 $\Delta S$  is the entropy change in J/K

n is the number of moles

R is the constant of the gases in energy units (8.314J/molK)

 $P_1$  is the initial pressure

 $P_2$  is the final pressure

Entropy change, pressure and volume The following formula can be used to calculate the entropy change of an ideal gas when its pressure and volume change at constant temperature.

$$\Delta S = nR \ln \left(\frac{P_1}{P_2}\right) + nR \ln \left(\frac{V_2}{V_1}\right)$$
(7.7)

where:

 $\Delta S$  is the entropy change

n is the number of moles

R is the constant of the gases in energy units (8.314J/molK)

 $P_1$  and  $V_1$  is the initial pressure and volume

 $P_2$  and  $V_2$  is the final pressure and volume

#### Sample Problem 5

A 5L sample of Helium, an ideal gas, at 1atm is heated from 300K to 400K. (a) Calculate the entropy change if the gas is heated at constant volume. (b) Calculate the entropy change if the gas is heated at constant pressure.

#### **SOLUTION**

We have that the formula that related the entropy change with a temperature



change is:

$$\Delta S = C \ln \left( \frac{T_2}{T_1} \right)$$

Still the heat capacity can be computed at constant volume or constant pressure. For an ideal monoatomic gas, the molar heat capacity at constant volume is  $\frac{3}{2}R$ , whereas the molar heat capacity at constant pressure is  $\frac{5}{2}R$ . Therefore, as we need heat capacities and not molar heat capacity, we have that the heat capacity at constant volume is  $n \cdot \frac{3}{2}R$ , whereas the heat capacity at constant pressure is  $n \cdot \frac{5}{2}R$ , with n being the number of moles. At this point we have that the entropy change at constant volume would be  $n \cdot \frac{3}{2}R \ln \left(\frac{T_2}{T_1}\right)$ , whereas the entropy change at constant pressure would be  $n \cdot \frac{5}{2}R \ln \left(\frac{T_2}{T_1}\right)$ . The number of moles of gas is:

$$n = \frac{PV}{RT} = \frac{1\cdot 5}{0.082\cdot 300} = 0.20 \mathrm{moles}$$

the initial temperature is  $T_1=300\mathrm{K}$  and the final temperature is  $T_2=400\mathrm{K}$ . Therefore the entropy change at constant volume would be:

$$\Delta S_V = 0.20 \cdot \frac{3}{2} \cdot 8.314 \ln \left( \frac{400}{300} \right) = 0.71 \text{J/K}$$

and the entropy change at constant pressure would be:

$$\Delta S_p = 0.20 \cdot \frac{5}{2} \cdot 8.314 \ln \left( \frac{400}{300} \right) = 1.19 \text{J/K}$$

We have that for a monoatomic ideal gas, the entropy change at constant pressure is larger than the entropy change at constant volume.

#### **STUDY CHECK**

A  $4.9 \times 10^{-3}$  mol sample of methane is heated from 100K to 300K. Assuming ideal gas behavior: (a) Calculate the entropy change if the gas is heated at constant volume. (b) Calculate the entropy change if the gas is heated at constant pressure.

### 7.5 Calculating entropy changes in chemical reactions

This section covers the calculation and estimation of the entropy change of a reaction. Entropies are well as enthalpies are tabulated and one can compute the entropy change of a reaction by using the tabulated molar entropies. On the other hand it is very convenient to be able to estimate the just the sign of the entropy change of a reaction. Here we will provide a set of general rules to do this.

Standard entropy of reaction,  $\Delta S_R^{\circ}$  We can calculate the standard entropy of a reaction in a similar way as we calculate the standard enthalpy of a reaction:

$$\Delta S_R^{\circ} = \Delta S_{products}^{\circ} - \Delta S_{reactants}^{\circ}$$
 Entropy change (7.8)

where:

 $\Delta S_R^{\circ}$  is the standard entropy change of the reaction

 $\Delta S^{\circ}_{products}$  is the standard entropy of all products  $\Delta S^{\circ}_{reactants}$  is the standard entropy of all reactants

It is important to take into account the stoichiometric coefficients. For example, for the reaction:

$$2\,CH_3OH_{(g)} + 3\,O_{2(g)} \longrightarrow 2\,CO_{2(g)} + 4\,H_2O_{(l)}$$

We have the entropy values of:  $S^{\circ}(\mathrm{CH_3OH_{(g)}})$ =239.7 J/K· mol,  $S^{\circ}(\mathrm{O_{2(g)}})$ =161.1 J/K· mol,  $S^{\circ}(\mathrm{CO_{2(g)}})$ =213.79 J/K· mol, and  $S^{\circ}(\mathrm{H_2O_{(l)}})$ =69.95 J/K· mol. We can calculate  $\Delta S_R^{\circ}$ :

$$\begin{split} \Delta S_{R}^{\circ} &= \Delta S_{products}^{\circ} - \Delta S_{reactants}^{\circ} = \\ \left(2 \cdot S^{\circ}(\text{CO}_{2(g)}) + 4 \cdot S^{\circ}(\text{H}_{2}\text{O}_{(l)})\right) - \left(2 \cdot S^{\circ}(\text{CH}_{3}\text{OH}_{(g)}) + 3 \cdot S^{\circ}(\text{O}_{2(g)})\right) \\ &= \left(2 \cdot 213.79 + 4 \cdot 69.95\right) - \left(2 \cdot 239.7 + 3 \cdot 161.1\right) = -255.32 J/K \end{split}$$

Interpreting  $\Delta S_R^{\circ}$  If the entropy change of a reaction is positive we will say that the reaction produces entropy. Similarly, if the entropy change of a reaction is negative we will say that the reaction consumes entropy. An analog trend can be found for the change of enthalpy–remember the enthalpy of the heat measured at constant pressure conditions—so if the enthalpy change of a reaction is positive we say the reaction is endothermic and consumes heat, whereas a negative enthalpy change for a reaction means the reaction produces heat.

#### Sample Problem 6

Calculate the entropy change of the following reaction and give an interpretation based on the sign of the change:

$$C_{(s)} + H_2O_{(g)} \longrightarrow CO_{(g)} + H_{2(g)}$$

Given:  $S^{\circ}(C_{(s)})=5.69$  J/K· mol,  $S^{\circ}(H_2O_{(g)})=188.7$  J/K· mol,  $S^{\circ}(CO_{(g)})=197.9$  J/K· mol,  $S^{\circ}(H_2(g))=131$  J/K· mol.

#### SOLUTION

Using the formula for  $\Delta S_R^{\circ}$  we have:

$$\Delta S_{R}^{\circ} = \Delta S_{products}^{\circ} - \Delta S_{reactants}^{\circ} = \left(S^{\circ}(CO_{(g)}) + S^{\circ}(H_{2(g)})\right) - \left(S^{\circ}(C_{(s)}) + S^{\circ}(H_{2}O_{(g)})\right) = \left(197.9 + 131\right) - \left(5.69 + 188.7\right) = 134.51J/K$$

This produces entropy.

#### **STUDY CHECK**

Calculate the entropy change of the following reaction and give an interpretation based on the sign of the change:

$$C_2H_{4(g)}+H_{2(g)}\longrightarrow C_2H_{6(g)}$$

Given:  $S^{\circ}(C_2H_{4(g)})=219.5$  J/K· mol,  $S^{\circ}(C_2H_{6(g)})=229.5$ J/K· mol,  $S^{\circ}(H_{2(g)})=131$  J/K· mol.



Stimate the sign for  $\Delta S_R^{\circ}$  Often times were are more interested in predicting the sign of the entropy change of a reaction than to compute the exact value. This is because the sign can be used in order to estimate wether a reaction proceeds spontaneously. Two basic rules are used in order to estimate the entry change sign:

**P** The state of matter: solids and liquids have very low entropy in comparison to gases. For example, in the case below, we have the production of liquid water from ice produces entropy as liquids have more entropy than solids:

$$H_2O_{(s)} \longrightarrow H_2O_{(1)}$$
  $\Delta S_R^{\circ} > 0$ 

On the other hand, the condensation of water vapor to produce a liquid consumes entropy, as liquids have less entropy than gases:

$$H_2O_{(g)} \longrightarrow H_2O_{(l)}$$
  $\Delta S_R^{\circ} < 0$ 

P The number of molecules: the larger the number of molecules of gas the larger entropy. For example, in the reaction below we have that we produce three molecules from two molecules. Hence, the entropy increases.

$$2 \operatorname{SO}_{3(g)} \longrightarrow 2 \operatorname{SO}_{2(g)} + \operatorname{O}_{2(g)}$$
  $\Delta S_R^{\circ} < 0$ 

However, this rules only works if we only take into account the number of gas molecules. For example, in the reaction below we produce two gas molecules from three gas molecules and hence we lose entropy:

$$2 H_2 S_{(g)} + SO_{2(g)} \longrightarrow 3 S_{(s)} + 2 H_2 O_{(g)}$$
  $\Delta S_R^{\circ} < 0$ 

Estimate the sign of the entropy change for the following reactions:

(a) 
$$2 SO_{3(g)} \longrightarrow 2 SO_{2(g)} + O_{2(g)}$$

(b) 
$$H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(l)}$$

(c) 
$$2 \text{ CH}_3 \text{OH}_{(g)} + 3 \text{ O}_{2(g)} \longrightarrow 2 \text{ CO}_{2(g)} + 4 \text{ H}_2 \text{O}_{(g)}$$

#### **SOLUTION**

We will calculate the change on the number of moles of gases in the reaction  $\Delta n$ in order to estimate the sign of the entropy change. This is just the total number of product molecules with respect to the total number of reactant molecules. We have that  $\Delta n$  for the first reaction is 1 and hence  $\Delta S_R^{\circ}>0$ . For the second reaction we have that  $\Delta n$  is -1.5 and hence  $\Delta S_R^{\circ} < 0$ . Remember that liquids and solids are not counted towards  $\Delta n$  as their entropy is very small. Finally for the last reaction, we have that  $\Delta n$  is 1 and hence  $\Delta S_R^{\circ} > 0$ .

#### **STUDY CHECK**

Estimate the sign of the entropy change for the following reactions:

(a) 
$$C_2H_{2(g)} + 4F_{2(g)} \longrightarrow 2CF_{4(g)} + H_{2(g)}$$

(b) 
$$2 \operatorname{Al}_{(s)} + 3 \operatorname{Br}_{2(1)} \longrightarrow 2 \operatorname{AlBr}_{3(s)}$$

The second law of thermodynamics claims that any spontaneous evolution is accompanied by an increase in entropy. However, the entropy of certain common systems spontaneously decreases. For example, ice freezes below 0°C going from less-ordered liquid water to more-ordered ice. At the same time, cold packs spontaneously get colder going from a high-temperature and entropy state into a low-temperature low-entropy state. In order to understand how some systems decrease their entropy spontaneously, we need to further our analysis of the system taking into account not only the system under study but also its surroundings.

System, its surroundings and the universe Thermodynamics studies systems involving heat transfer such as a hot cup of coffee cooling down in a room or a chemical reaction happening at a beaker on a lab bench. The system just means the problems we are dealing with, for example, the cup of coffee or the beaker. However, every system has its surroundings. For example, the cup of coffee is surrounded by air and the beaker is in contact with the lab bench. The surroundings of a system represent everything else but the system and in general tend to be as important as the system, in particular when understanding the changes of entropy during a spontaneous change. Both the system and its surroundings are called the universe, which is an isolated system. If we study how a system loses heat or a reaction consumes entropy it is convenient to think about where the heat goes or where the entropy lost is coming from.

Calculating  $\Delta S_{surr}^{T,P}$  Now, let us focus on the surroundings of the system under study considering only fixed temperature and pressure conditions. If a system loses heat, the heat is received by its surroundings. To calculate the entropy of the surroundings we just need to use the formula working under fixed pressure and temperature conditions (think about a reaction happening on an open beaker in which pressure is always atmospheric and temperature will always be room temperature):

$$\Delta S_{surr}^{T,P} = -\frac{\Delta H}{T}$$
 (7.9)

where:

 $\Delta S_{surr}^{T,P}$  is the entropy change on the surroundings  $\Delta H$  is the enthalpy change on the system T is the absolute temperature

This formula derives from Clausius expression that related the entropy change with heat, given that the surroundings receive or give away the heat exchanged by the system—hence the negative sign—and under fixed-pressure conditions, heat is equivalent to enthalpy. Moreover, as the surroundings are in general larger than the system its temperature will not change and any heat transfer will be reversible. Also, this expression predicts that the same heat exchanged at higher temperatures is less effective in changing the surroundings' entropy. At the same time, an exothermic process will increase the entropy of the surroundings whereas an endothermic process will decrease the entropy of the surroundings.

Calculating  $\Delta S_{univ}$ : the second law of thermodynamics Now that we have included the surroundings in our analysis we can combine both the system and its surroundings in order to track the overall change in entropy in the universe:

$$\Delta S_{univ} = \Delta S + \Delta S_{surr} = \Delta S - \frac{\Delta H}{T}$$
(7.10)

where:



 $\Delta S_{univ}$  is the entropy change on the universe

 $\Delta S$  is the entropy change on the system

 $\Delta H$  is the enthalpy change on the system

T is the absolute temperature

Overall, the *second law of thermodynamics* states that spontaneous process increase the entropy of the universe. If a reaction is exothermic and heat is being released the entropy of the surroundings increase whereas the entropy of the system can increase or decrease. If this change is negative, it has to be smaller than the entropy increase of the surroundings if the process is spontaneous. If a reaction is endothermic and heat is being absorbed the entropy change of the system has to be positive enough to compensate the decrease of entropy of the surroundings if the process is spontaneous.

 $\forall \Delta S_{univ} > 0$ : The forward process or reaction is spontaneous

 ${\it V}~~\Delta S_{univ}=0$ : The process or reaction is in equilibrium

 ${\cal V}~\Delta S_{univ} < 0$ : The forward process or reaction is not spontaneous hence the backwards is spontaneous

#### Sample Problem 8

For the reaction:

$$2 \operatorname{SO}_{3(g)} \longrightarrow 2 \operatorname{SO}_{2(g)} + \operatorname{O}_{2(g)}$$

we have that  $\Delta H_R^{\circ}$  is -93kJ/mol and  $\Delta S_R^{\circ}$  is -199J/mol. Calculate the entropy change on the system, its surroundings and the overall universe at 25 °C.

#### **SOLUTION**

We have that the system is just the reaction we observe, hence  $\Delta S_{sys}^{\circ}$ =-199 J/mol. The entropy change of the surroundings-the environment where the reaction takes place-is:

$$\Delta S_{surr} = -\frac{\Delta H_{sys}}{T} = -\frac{-93}{298} = 0.312kJ/mol = 312J/mol$$

If we combine both contributions we have that the entropy change of the universe is:

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = -199 + 312 = 113 J/mol$$

As this value is positive, the reaction will happen spontaneously at that tempera-

#### **STUDY CHECK**

For the reaction:

$$H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(g)}$$

we have that  $\Delta H_R^{\circ}$  is -250kJ/mol and  $\Delta S_R^{\circ}$  is -45J/K· mol. Calculate the entropy change on the system, its surroundings and the overall universe at 298K.

Entropy and equilibrium A system without tendency to change is a system in static equilibrium. A system in dynamic equilibrium has the same tendency to change through forward or backwards evolution. For example, a reaction reaches chemical equilibrium when the mixtures of reactants and products reached a point in which the

forward reaction and the backwards reaction have the same speed. A system reaches thermal equilibrium when it releases and gains heat with its surroundings at the same speed. A system reaches mechanical equilibrium—a gas in a piston—when it contracts and expands at the same speed. When an isolated system has reached equilibrium the entropy of the universe does not change:

$$\Delta S_{univ} = 0$$
(7.11)

The third law of thermodynamics Entropy is an absolute-not relative-property. The third law of thermodynamics established the lower possible entropy value that a system can reach under certain conditions. We have that from a microscopic or molecular point of view entropy is associated with the number of molecular configurations, W. For a perfect crystal-a crystalline material without any defects-at the lowest possible temperature, that is the absolute zero in the Kelvin scale, 0K, there is no molecular motion and hence the system would have only one possible configuration (W=1) that would lead to a null entropy  $(k_B \ln 1)$ .

$$\Delta S_s(0K) = 0 \quad \text{3rd law of thermodynamics} \tag{7.12}$$

where:

#### $\Delta S_s$ is the entropy of a perfect crystal at 0K

The entropy of a solid depends on the number of the number of molecules and the number of possible configurations of each molecule of the solid. For a solid with for example two molecules and with each molecule having three possible configuration we'll have  $2^3$  possible microstates and the entropy will be  $k_B \ln 2^3$ . Given that  $\ln a^b = b \ln a$  we have  $3 \cdot k_B \ln 2$ . The entropy of a solid depends on the number of the number of molecules and the number of possible configurations of each molecule of the solid. For a solid with for example two molecules and with each molecule having three possible configurations we'll have  $2^3$  possible microstates and the entropy will be  $k_B \ln 2^3$ . Given that  $\ln a^b = b \ln a$  we have  $3 \cdot k_B \ln 2$ . For a larger sample, containing one mole of atoms, the number of microstates is very larger, in particular  $2^{6.02 \times 10^{23}}$ . Hence the value of the entropy is  $6.02 \times 10^{23} \cdot k_B \ln 2 = 5.75 J/K$ . This value is called the residual entropy of a sample, the entropy at 0K that results from positional disorder.

#### Sample Problem 9

Calculate the residual entropy for one mole of methane CH<sub>4</sub> at 0K.

#### **SOLUTION**

Methane has four possible arrangements due to its symmetry as the molecules of methane are tetrahedral. Hence for a mole of molecules we have that the residual entropy would be

$$6.02 \times 10^{23} \cdot k_B \ln 4 = 11.5 J/K$$

given that  $k_B = 1.38 \times 10^{-23} J/K$ .

#### **STUDY CHECK**

Calculate the residual entropy for one mole of water at 0K and compare your value with the experimental result of 3.4J/K. Assume water has two equivalent configurations.



The laws of thermodynamics: a review There are four laws of thermodynamics. The zeroth law deals with heat transfer and says that two systems in thermal equilibrium are also in thermal equilibrium with a third system equilibrated with one of them. On the other hand, the first law of thermodynamics deals with internal energy, claiming that the internal energy of a system is conserved. The second law deals with entropy claiming that the entropy of the universe can only increase. Finally, the last and third law of thermodynamics deals with the scale of entropies defining the minimum entropy value.

# 7.7 Gibbs free-energy

We have addressed two thermodynamic functions at this point: enthalpy and entropy. The first is associated with the energy exchange whereas the second is associated with the spreading of energy. At the same time, the second law of thermodynamics helps predicts the spontaneity of a process. Still, this second law is written in terms of two different entities, the system, and its surroundings. If we combine both the entropy and the enthalpy we obtain a new thermodynamic function associated with spontaneity, the Gibbs free-energy.

Definition of Gibbs free-energy The Gibbs free-energy is just a combination of enthalpy and entropy for a given temperature:

$$G = H - T \cdot S \tag{7.13}$$

Working at constant temperature, we can compute the change in Gibbs free energy as:

$$\Delta G^T = \Delta H - T\Delta S \quad \text{Gibbs free-energy}$$
 (7.14)

where:

 $\Delta G^T$  is the Gibbs free-energy change at constant temperature

 $\Delta H$  is the enthalpy change

 $\Delta S$  is the entropy change

T is the temperature

Gibbs free-energy is a state function that only depends on the final and initial state and not the path followed. At the same time, Gibbs free-energy depends on temperature and pressure—we will discuss more about this at the end of the section. More importantly, the change in Gibbs free-energy is associated with the spontaneity of the process. Gibbs free-energy decreases with temperature and the decrease is sharper for gases in comparison to liquids, and at the same time, the decrease is also sharper for liquids in comparison to solids.

Gibbs free-energy and spontaneity The Gibbs free-energy change of a reaction is associated with the spontaneity of the process or with its state of equilibrium. In particular, reactions that produce Gibbs free-energy are nonspontaneous. Differently, reaction consuming free-energy are indeed spontaneous. Finally, reaction without a change in free-energy are in equilibrium.

 $\mathcal{V}$   $\Delta G < 0$ : The reaction is spontaneous



 $\mathcal{V} \quad \Delta G = 0$ : The reaction is in equilibrium

 $\mathcal{V}$   $\Delta G > 0$ : The reaction is nonspontaneous

This is because the expression of Gibbs free energy is related to the total entropy change of the universe given by the second law of thermodynamics:

$$\Delta G^T = \Delta H - T\Delta S$$
 and  $T\Delta S_{univ}^{T,P} = -(\Delta H - T\Delta S)$  (7.15)

Hence, we have that

$$\Delta G^T = T\Delta S_{univ}^{T,P} \tag{7.16}$$

This last expression means that an increase in total entropy is accompanied by a decrease in Gibbs free energy at constant pressure and temperature. At the same time the expression indicates that the direction of spontaneous change corresponds to a decrease of Gibbs free energy, at constant temperature and pressure.

Estimating spontaneity based on the sign of H and S As Gibbs free-energy depends on the enthalpy and entropy. We can estimate the sign of  $\Delta G$  from the signs of  $\Delta H$  and  $\Delta S$ . Table ?? below show the different sign combinations.

| Table ?? S      | ign combin      | ation of entropy and enthalpy ir      | $oldsymbol{G}$ connection with $G$     |
|-----------------|-----------------|---------------------------------------|----------------------------------------|
| $\Delta H$ Sign | $\Delta S$ Sign | $\Delta G$ Sign                       | Spontaneity                            |
| _               | +               | _                                     | Always spontaneous                     |
| +               | _               | +                                     | Always nonspontaneous                  |
| _               | _               | $-$ for T< $T_c$ and $+$ for T> $T_c$ | Conditionally Spontaneous: below $T_c$ |
| +               | +               | + for T< $T_c$ and – for T> $T_c$     | Conditionally Spontaneous: above $T_c$ |

The reasoning behind the different sign combinations is that as Gibbs free-energy is related to minus the entropy, to achieve a final negative value of G we need negative enthalpy and positive entropy that would lead to a spontaneous process that consumes free-energy. In other words, exothermic processes that produce heat and processes that produce entropy are spontaneous. Differently, endothermic processes that consume heat and processes that consume entropy are nonspontaneous. For entropy and enthalpy changes with the same sign, then the spontaneity will depend on temperature. For example, to carry endothermic processes and processes that produce entropy, we would need high temperatures that help enthalpy. In the case of an exothermic process that consumes entropy, we would need low temperatures that help alleviate the entropy. For both cases, the critical temperature for spontaneity is given by:

$$T_c = \frac{\Delta H}{\Delta S}$$
 (7.17)

where:

 $T_c$  is the critical temperature for spontaneity in Kelvins

Mind that the units of  $\Delta H$  tend to be kJ/mol, whereas the units of  $\Delta S$  tend to be J/mol. Therefore, we need to remove the kilo prefix to calculate  $T_c$ . For example, to combine an enthalpy value of 100KJ/mol with an entropy value of 5J/mol, we would have to convert the enthalpy value into 100000J/mol.



#### Sample Problem 10

For the reaction:

$$C_{(s)} + H_2O_{(g)} \longrightarrow CO_{(g)} + H_{2(g)}$$

we have that  $\Delta H_R^{\circ}$  is 113kJ/mol and  $\Delta S_R^{\circ}$  is 133J/K· mol. Indicate wether the reaction will proceed spontaneously. Will it proceed at 200K? Will it proceed at 900K?

#### **SOLUTION**

When the entropy change and the enthalpy change have the same sign, the reaction will be conditionally spontaneous. In this case, we would need to overcome the positive enthalpy change and we can do this at very high temperatures. In particular, temperatures higher than a critical value give by:

$$T_c = \frac{\Delta H}{\Delta S} = \frac{113 \times 10^3}{133} = 850K$$

The reaction will not proceed at temperatures below 850K as such it will not proceed at 100, but it will work at 900K.

#### **STUDY CHECK**

For the reaction:

$$C_2H_{4(g)} + H_{2(g)} \longrightarrow C_2H_{6(g)}$$

we have that  $\Delta H_R^{\circ}$  is -135kJ/mol and  $\Delta S_R^{\circ}$  is -120J/K· mol. Indicate under which temperature conditions will the reaction proceed spontaneously.

Standard Gibbs free-energy of formation The Gibbs free-energy G of a compound depends on temperature, pressure as well as composition, which means that for every pressure, temperature, and molarity we have a different free-energy value. Similar to the case of enthalpy, a standard state is defined in order to tabulate the freeenergy values  $\Delta G^{\circ}$  (see Table ??). The standard states of an element represent its most stable form at 1atm and 298K. In the case of solutions, the standard state corresponds to a 1 molar concentration and in the case of gases to a 1 atm pressure. Table ?? list the reference state for a few elements. For example, you can find Bromine as a solid, liquid or gas. However, its natural state is liquid. That is the reason why  $\Delta G^{\circ}(Br_{2(g)}) =$ 3KJ/mol, whereas  $\Delta G^{\circ}(Br_{2(1)}) = 0$ KJ/mol. In general, for metals, its natural state is solid. For non-metallic elements, such as hydrogen, oxygen, nitrogen, fluorine, chlorine, its natural state is in the form of a diatomic gas molecule. For example,  $\Delta G^{\circ}(H_{2(g)}) =$ 0KJ/mol,  $\Delta G^{\circ}(N_{2(g)})=0$ KJ/mol or  $\Delta G^{\circ}(O_{2(g)})=0$ KJ/mol. For the case of carbon, its natural state is graphite,  $\Delta G^{\circ}(C_{\text{graphite}(s)}) = 0$ KJ/mol. Molecules such as H<sub>2</sub>O or NO have standard free-energy different than zero. Mind that molecules are made of elements. The establishment of a Gibbs free energy scale based on a set of reference states allows the calculation of standard Gibbs free energies of formation  $\Delta G_f^{\circ}$ : the Gibbs free energy of formation per mole of the formation of a compound from its elements on its most stable states. The values for Gibbs free energy of formation  $\Delta G_f^{\circ}$ are tabulated at 25°C. These values inform about the stability of the compound with respect to its elements. For example,  $\Delta G_f^{\circ}$  for ammonia is -16KJ/mol, which means that ammonia is thermodynamically stable and will not decompose to produce hydrogen and nitrogen spontaneously. Different,  $\Delta G_f^{\circ}$  for NO<sub>2</sub> is 51KJ/mol. This positive value indicates that nitrogen dioxide will spontaneously decompose into nitrogen and

oxygen. Still, even when the decomposition of a chemical is favored by the laws of thermodynamics, its rate might be slow, and only kinetics can inform about the timing of the decomposition. Chemicals are called labile (nonlabile) when they decompose or react quickly (slowly).

| Table ?? Sta         | ndard states for di                    | fferent elements   | s. For all $\Delta G^{\circ} = 0$ KJ/mol |
|----------------------|----------------------------------------|--------------------|------------------------------------------|
| Element              | Standard state                         | Element            | Standard state                           |
| Hydrogen<br>Nitrogen | H <sub>2(g)</sub><br>N <sub>2(g)</sub> | Oxygen<br>Chlorine | $O_{2(g)}$ $Cl_{2(g)}$                   |
| Iron                 | $Fe_{(s)}$                             | Aluminium          | $Al_{(s)}$                               |
| Carbon               | $C_{graphite(s)}$                      | Phosphorus         | $P_{4(s)}$                               |
| Fluorine             | $F_{2(g)}$                             | Bromine            | $Br_{(1)}$                               |
| Mercury              | $Hg_{(l)}$                             | Sulfur             | $S_{8(s)}$                               |
| Iodine               | $I_{2(s)}$                             | Silicon            | $Si_{(s)}$                               |

Standard free-energy of a reaction,  $\Delta G_R^{\circ}$  We can calculate the standard free-energy of a reaction in a similar way as we calculate the standard enthalpy or entropy of a reaction:

$$\Delta G_R^{\circ} = \Delta G_{products}^{\circ} - \Delta G_{reactants}^{\circ}$$
 Free-energy change (7.18)

where:

 $\Delta G_R^\circ$  is the standard Gibbs free-energy change of the reaction  $\Delta G_{products}^\circ$  is the standard Gibbs free-energy of all products  $\Delta G_{reactants}^\circ$  is the standard Gibbs free-energy of all reactants

There are two possible ways to calculate  $\Delta G_R^{\circ}$ . We can compute  $\Delta G_R^{\circ}$  from the enthalpy and entropy change at fixed 298K. Remember the standard thermodynamic parameters are computer at this temperature. Or we can compute  $\Delta G_R^{\circ}$  from the tabulated  $G_R^{\circ}$  values. The next two examples walk you through these two possible scenarios.

#### Sample Problem 11

Use the data below to calculate the Gibbs free-energy of the reaction at 298K:

$$C_{(s)} + H_2O_{(g)} \longrightarrow CO_{(g)} + H_{2(g)}$$

| Compound     | $\Delta \mathrm{H}_f^\circ$ | S°    |
|--------------|-----------------------------|-------|
| $C_{(s)}$    | 0                           | 5.7   |
| $H_2O_{(g)}$ | -241.8                      | 188.7 |
| $CO_{(g)}$   | -110.5                      | 197.6 |
| $H_{2(g)}$   | 0                           | 130.6 |

#### **SOLUTION**

As we have the standard formation enthalpy values and the standard entropy values, we can compute the entropy and enthalpy of reaction. We have that:

$$\begin{split} \Delta H_R^\circ &= \Delta H_{products}^\circ - \Delta H_{reactants}^\circ = \\ &\left(\Delta H_f^\circ(\mathrm{CO}_{(\mathrm{g})}) + \Delta H_f^\circ(\mathrm{H}_{2(\mathrm{g})})\right) - \left(\Delta H_f^\circ(\mathrm{C}_{(\mathrm{s})}) + \Delta H_f^\circ(\mathrm{H}_{2}\mathrm{O}_{(\mathrm{g})})\right) \\ &= \left(-110.5 + 0\right) - \left(0 + -241.8\right) = 131.3KJ \end{split}$$



We also have:

$$\begin{split} \Delta S_R^\circ &= \Delta S_{products}^\circ - \Delta S_{reactants}^\circ = \\ \left(\Delta S^\circ(\mathrm{CO}_{(\mathrm{g})}) + \Delta S^\circ(\mathrm{H}_{2(\mathrm{g})})\right) - \left(\Delta S^\circ(\mathrm{C}_{(\mathrm{s})}) + \Delta S^\circ(\mathrm{H}_{2}\mathrm{O}_{(\mathrm{g})})\right) \\ &= \left(197.6 + 130.6\right) - \left(5.7 + 188.7\right) = 133.8 J/K \end{split}$$

We have that the Gibbs free-energy will be:

$$\Delta G = \Delta H - T\Delta S = 131.3 \times 10^3 - 298 \cdot 133.8 = 91427.6J = 91.4kJ$$

As the free-energy is positive the reaction is not spontaneous. The reason for this non-spontaneity is the endothermicity. As such working at high temperatures we can overcome the enthalpy, in particular working at temperatures higher than 981K.

#### **STUDY CHECK**

Use the data below to calculate the Gibbs free-energy of the reaction at 298K:

$$C_2H_{4(g)} + H_{2(g)} \longrightarrow C_2H_{6(g)}$$

| Compound      | $\Delta \mathrm{H}_f^\circ$ | S°    |
|---------------|-----------------------------|-------|
| $C_2H_{4(g)}$ | -52.5                       | 219.5 |
| $H_{2(g)}$    | 0                           | 130.6 |
| $C_2H_{6(g)}$ | -84.7                       | 229.5 |

In the following example we will show how to compute Gibbs free-energy of a reaction by means of standard Gibbs free-energies of the molecules involved in the reaction.

#### Sample Problem 12

Use the data below to calculate the Gibbs free-energy of the reaction at 298K:

$$6 \text{ CO}_{2(g)} + 6 \text{ H}_2 \text{O}_{(1)} \longrightarrow \text{C}_6 \text{H}_{12} \text{O}_{6(s)} + 6 \text{ O}_{2(s)}$$

| Compound            | $\Delta \mathrm{G}_f^\circ$ |
|---------------------|-----------------------------|
| $CO_{2(g)}$         | -394.4                      |
| $H_2O_{(l)}$        | -237.2                      |
| $C_6H_{12}O_{6(s)}$ | -910.56                     |

#### **SOLUTION**

We can compute the Gibbs free-energy of a reaction by means of the free-energies of the molecules involved in the reaction:

$$\begin{split} \Delta G_R^{\circ} &= \Delta G_{products}^{\circ} - \Delta G_{reactants}^{\circ} = \left[ \Delta G_f^{\circ} (C_6 H_{12} O_{6(s)}) + 6 \Delta G_f^{\circ} (O_{2(g)}) \right] - \left[ 6 \cdot \Delta G_f^{\circ} (CO_{2(g)}) + 6 \cdot \Delta G_f^{\circ} (H_2 O_{(l)}) \right] \\ &= \left[ -910.56 - 6 \cdot 0 \right] - \left[ 6 \cdot -394.4 + 6 \cdot -237.2 \right] = 2879 KJ \end{split}$$

As the free-energy is positive the reaction is not spontaneous.

#### **STUDY CHECK**

Use the data below to calculate the Gibbs free-energy of the reaction at 298K:





| Compound    | $\Delta \mathrm{G}_f^\circ$ |
|-------------|-----------------------------|
| $NO_{2(g)}$ | 51.3                        |
| $NO_{(g)}$  | 86.6                        |

# 7.8 Gibbs free-energy and equilibrium

We can use the principles of thermodynamics to study different phase transitions such as the transition between solid and liquid (melting or fusion) or liquid and gas (vaporization or boiling). These phase transitions are examples of equilibrium. During these transitions the temperature remains constant and all energy supplied is used to convert molecules between the two equilibrated phases and not to warm up the system. For example, the boiling point of water at 1 atm is 100°C and during boiling—also called vaporization—even when we continue the heating the temperature of water remains constant at 100°C until all water molecules become vapor. At the same time during a phase transition the Gibbs free energy of the two phase in equilibrium are the same.

Gibbs free-energy in equilibrium In equilibrium a system does not evolve in any direction, or it evolved back and forth in the same direction. For example in equilibrium a reaction proceed forward and backwards at the same pace. In these conditions, the total entropy of the system and universe do not change  $(\Delta S_{univ}^{T,P}=0)$ . In these conditions the Gibbs free energy do not change either. Overall we have:

$$\Delta G^{T,P} = 0 \tag{7.19}$$

Gibbs free-energy and phase transitions Gibbs free energy are useful to calculate phase transition temperatures, that is the temperature to melt a solid or vaporize a liquid. As a phase transition is an equilibrium process and as in equilibrium we have that  $\Delta G_{T,P}^{\circ} = 0$  we can estimate the fusion and vaporization temperatures using the formulas below involving the entropy and enthalpy values for a phase transition (see Table ?? for those values):

$$\boxed{T_{fus} = \frac{\Delta H_{fus}^{\circ}}{\Delta S_{fus}^{\circ}} \quad \text{and} \quad \boxed{T_{vap} = \frac{\Delta H_{vap}^{\circ}}{\Delta S_{vap}^{\circ}}}$$
(7.20)

where:

 $T_{melt}$  and  $T_{vap}$  are the fusion and vaporization temperature in Kelvins  $\Delta H_{fus}^{\circ}$  and  $\Delta S_{fus}^{\circ}$  is the enthalpy and entropy of fusion  $\Delta H_{vap}^{\circ}$  and  $\Delta S_{vap}^{\circ}$  is the enthalpy and entropy of vaporization

The following example describes how to compute phase transition temperatures using thermodynamic data.



#### Sample Problem 13

Calculate the fusion and vaporization temperatures of benzene given that  $\Delta H_{fus}^{\circ}=10.9$ kJ/mol,  $\Delta H_{vap}^{\circ}=33.9$ kJ/mol,  $\Delta S_{fus}^{\circ}=38.0$ J/mol· K and  $\Delta S_{vap}^{\circ}=87.19$  J/mol· K.

#### **SOLUTION**

In order to calculate the temperature of fusion for benzene we just need to divide the enthalpy and entropy of fusion making sure the units are consistent (converting enthalpy into J/mol)

$$T_{fus} = \frac{\Delta H_{fus}^{\circ}}{\Delta S_{fus}^{\circ}} = \frac{10.9 \times 10^3}{38.0} = 287K$$

Similarly, in order to calculate the temperature of vaporization for benzene we just need to divide the enthalpy and entropy of vaporization making sure the units are consistent (converting enthalpy into J/mol)

$$T_{vap} = \frac{\Delta H_{vap}^{\circ}}{\Delta S_{vap}^{\circ}} = \frac{33.9 \times 10^3}{87.19} = 389K$$

#### **STUDY CHECK**

Estimate the fusion and vaporization temperatures in celcius of water given that  $\Delta H_{fus}^{\circ}$ = 6.007kJ/mol,  $\Delta H_{vap}^{\circ}$ = 40.66kJ/mol,  $\Delta S_{fus}^{\circ}$ = 22.00J/mol· K and  $\Delta S_{vap}^{\circ}$ = 109.00 J/mol· K.

| Table ?? Standa                     | ard entropies and en              | thalpies of phase tra             | nsition at 1atm                     |                                     |                                     |
|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Compound                            | $\Delta H_{fus}^{\circ}$ (kJ/mol) | $\Delta H_{vap}^{\circ}$ (kJ/mol) | Compound                            | $\Delta S_{fus}^{\circ}$ (J/mol· K) | $\Delta S_{vap}^{\circ}$ (J/mol· K) |
| Ar <sub>(g)</sub>                   | 1.188                             | 6.447                             | $Ar_{(g)}$                          | 14.17                               | 74.53                               |
| $Br_{2(g)}$                         | _                                 | 29.8                              | $Br_{2(g)}$                         | 39.76                               | 88.61                               |
| $C_6H_{6(g)}$                       | 10.9                              | 33.9                              | $C_6H_{6(g)}$                       | 38.00                               | 87.19                               |
| CH <sub>3</sub> COOH <sub>(g)</sub> | 23.7                              | 11.72                             | CH <sub>3</sub> COOH <sub>(g)</sub> | 40.40                               | 61.90                               |
| $H_2O_{(g)}$                        | 6.01                              | 40.66                             | $H_2O_{(g)}$                        | 22.00                               | 109.00                              |
| $NH_{3(g)}$                         | 5.65                              | 23.35                             | $NH_{3(g)}$                         | 28.93                               | 97.41                               |

Gibbs free-energy and work The Gibbs free-energy of a reaction gives an estimate of the thermodynamic feasibility of a reaction. In other words, if Gibbs free-energy predicts that a reaction will not likely happen there is no need to invest time in energy trying to make a reaction work. The change in Gibbs free-energy, as its name indicates, also gives insight into the maximum amount of work—in particular nonexpansive work—that can be extracted from a system (chemical reaction, an engine, etc). More precisely,  $\Delta G$  represents the maximum amount of work that can be extracted from a system a fixed pressure and temperature conditions. It represents the amount of useful energy to do work that a system has. When this value is positive, it represents the amount of work that needs to be put into the system in order to make the process work:

$$w \leq \Delta G_R \tag{7.21}$$

Gibbs free energy also tells about how efficient the energy conversion is. Let us analyze the energy contained in the battery of a cell phone. We could use this energy to produce work and power the cell phone. However, every electricity flow implies a loss of heat



due to friction, and hence all energy contained in the battery could only be used if the electricity flow is very very small and under these conditions, the battery will not be able to do real work. Hence, energy can only fully used to do work in a hypothetical scenario in which the process works reversibly. However, all real processes are irreversibly and energy will always be lost. For such reason, it will take more energy to charge a battery than the energy given by the battery, as an irreversible electric flow implies energy loss. In other words, energy irreversibly used degrades on its use.

### 7.9 Gibbs free-energy and pressure conditions

Thermodynamics studies states of equilibrium, whereas chemical kinetics studies the rate at which chemical reactions reach equilibrium. Gibbs free energy  $\Delta G$  is a thermodynamic function used to describe how a system spontaneously approaches equilibrium. During a spontaneous chemical reaction,  $\Delta G$  decreases until reaching a minimum value when the reaction reaches equilibrium. Differently,  $\Delta G^{\circ}$ -defined in standard pressure conditionshas a fixed value that does not change during a reaction. Still, this function depends on temperature and pressure and until now we did not address how the pressure conditions affect the equilibrium.

Impact of pressure on Gibbs free-energy The standard Gibbs free-energy of reaction is calculated at standard pressure conditions (1 atm) and tabulated at 298K. What if we are not in standard conditions? When a reaction involving gas-phase reactants advances towards equilibrium forming products, the pressure in the container increases. As gas molecules are being produced the pressure will depart from 1 atm. We can use the following expression to include the effect of pressure on  $\Delta G_R^{\circ}$ :

$$\Delta G_R = \Delta G_R^{\circ} + RT \ln Q_p$$
 (7.22)

where:

 $\Delta G_R$  is the Gibbs free-energy of a reaction not at standard conditions  $\Delta G_R^\circ$  is the Gibbs free-energy of a reaction at standard conditions (1atm and 298K)

 $Q_p$  is the reaction ratio in terms of pressure

R is the constant of the gases in energy units (8.314J/mol· K)

T is the absolute temperature

Pressure is another variable–similar to temperature–that can be used to favor chemical reactions. For example, the reaction between hydrogen and iodine exhibits a positive standard Gibbs free-energy. Under standard conditions, at 1 atm and 298K, the reaction will not likely happen

$$H_{2(g)} + I_{2(s)} \longrightarrow 2 HI_{(g)}$$
  $\Delta G_R^{\circ} = 2.60 \text{kJ/mol}$ 

Including the effects of pressure on the calculation of Gibbs free energy we have that at very low products pressures and relatively large reactant pressures ( $P_{\rm HI}=1\times10^{-5}$  atm and  $P_{\rm H_2}=1\times10^5$ atm) Gibbs free energy is negative:

$$\begin{split} \Delta G_R &= \Delta G_R^\circ + RT \ln Q_p = \Delta G_R^\circ + RT \ln \left[\frac{P_{\rm HI^2}}{P_{\rm H_2}}\right] \\ &= 2.60 \times 10^3 + 8.314 \cdot 298 \ln \left[\frac{(1 \times 10^{-5})^2}{1 \times 10^5}\right] = -8.3 \times 10^4 \text{J/mol} \end{split}$$



These calculations demonstrate that one can tune the pressure conditions to favor a reaction. In general large reactant pressures and low products pressures can aliviate positive Gibbs free-energy values.

#### Sample Problem 14

Predict whether the reaction will proceed spontaneously at 298K under the following pressure conditions:  $P_{\rm NO_2}=1\times10^5$  atm and  $P_{\rm N_2O_4}=1\times10^{-5}$  atm

$$N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$$
  $\Delta G_R^{\circ} = 5.4$ kJ/mol

#### **SOLUTION**

The working pressure-conditions consist of large product pressures and small reactant pressures, and these conditions do not tend to favor spontaneity. Before proving this, we need to remember to remove the kilo prefix in the stanrd Gibbs free energy value, as R is expressed in J:

$$\Delta G_R = \Delta G_R^{\circ} + RT \ln Q_p = \Delta G_R^{\circ} + RT \ln \left[ \frac{P_{\text{NO}_2^2}}{P_{\text{N}_2\text{O}_4}} \right]$$

$$= 5.4 \times 10^3 + 8.314 \cdot 298 \ln \left[ \frac{(1 \times 10^5)^2}{1 \times 10^{-5}} \right] = 9 \times 10^4 \text{J/mol}$$

As Gibbs free-energy is a positive number, the reaction will not proceed spontaneously.

#### **STUDY CHECK**

Predict whether the reaction will proceed spontaneously at 298K under the following pressure conditions:  $P_{\rm NO_2}=1\times10^{-5}$  atm and  $P_{\rm N_2O_4}=1\times10^{5}$  atm

$$N_2O_{4(g)} \longrightarrow 2 NO_{2(g)}$$
  $\Delta G_R^{\circ} = 5.4 \text{kJ/mol}$ 

Relationship between  $\Delta G_R^{\circ}$  and  $K_p$  On one hand, at fixed pressure and temperature, the Gibbs free-energy does not change:  $\Delta G_R = 0$ . On the other hand, at fixed pressure and temperature, the entropy of the universe does not change:  $\Delta S_{univ} = 0$ .

At the same time, in equilibrium conditions, the value of the equilibrium constant is the same as the value of the reaction ration:  $Q_p = K_p$ . Hence, we can relate the equilibrium constant and the standard Gibbs free-energy:

$$\Delta G_R^{\circ} = -RT \ln K_p \tag{7.23}$$

where:

 $K_p$  the equilibrium constant in terms of pressure

 $\Delta G_R^{\circ}$  is the Gibbs free-energy of a reaction at standard conditions (1atm and 298K)

R is the constant of the gases in energy units (8.314J/mol· K)

T is the absolute temperature

In other words, the value of the equilibrium constant and the standard Gibbs free-energy convey the same information. On one hand, when  $\Delta G_R^\circ < 0$  we have that  $K_p > 1$  and in the reactive mixture we will have more products than reactants: the reaction will happen spontaneously. On the other hand, when  $\Delta G_R^\circ > 0$  we have that  $K_p < 1$  and

in the reactive mixture will have more reactants than products: the reaction will not happen spontaneously.

#### Sample Problem 15

Use the data below to calculate the equilibrium constant of the reaction at 400K:

$$HCN(g) + 2H_2(g) \longrightarrow CH_3NH_2(g)$$

| Compound                           | $G_f^{\circ}(KJ/mol)$ |
|------------------------------------|-----------------------|
| CH <sub>3</sub> NH <sub>2(g)</sub> | 23.99                 |
| $HCN_{(s)}$                        | 124.7                 |

#### **SOLUTION**

We can compute the Gibbs free-energy of a reaction by means of the free-energies of the molecules involved in the reaction:

$$\begin{split} \Delta G_R^\circ &= \Delta G_{products}^\circ - \Delta G_{reactants}^\circ = \\ &\left[\Delta G_f^\circ(\text{CH}_3\text{NH}_{2(g)})\right] - \left[1 \cdot \Delta G_f^\circ(\text{HCN}_{(g)}) + 2 \cdot \Delta G_f^\circ(\text{H}_{2(g)})\right] \\ &= \left[23.99\right] - \left[1 \cdot 124.7 + 2 \cdot 0\right] = -100.71 KJ \end{split}$$

Now we can convert the Gibbs free-energy of the reaction into  $K_c$ . Mind that we need to remove the Kilo prefix in the Gibbs free energy:

$$-100.71 \times 10^3 = -RT \ln K_p = -8.314 \cdot 400 \ln K_p$$

Solving for  $K_p$  we have that:

$$K_p = e^{\frac{100.71 \times 10^3}{8.314 \cdot 400}} = 1.4 \times 10^{13}$$

We have that, as the Gibbs free-energy of reaction is negative, the value of the equilibrium constant is larger than 1. This means that the reaction will proceed spontaneously and that there will have more products than reactants in the reaction mixture.

#### **STUDY CHECK**

Use the data below to calculate the equilibrium constant of the reaction at 400K given that  $G_f^{\circ}(NO_{(g)})=87.60 \text{KJ/mol}$ :

$$2\,NO_{(g)} \longrightarrow N_{2(g)} + O_{2(g)}$$

| Al 0 28.3 5483.9 NA† 149.9 -524.7 481.2 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 752.7<br>-1054.8<br>-602.1<br>-1216.7<br>-1027.2<br>-1322.1<br>-553.5<br>-634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1774.2<br>-1775.6<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1776.8<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                               | -577.4 243.0<br>-824.6 292.5<br>-609.0 167.0<br>NA <sup>†</sup> 0.63<br>-1104.2 297.0<br>-1104.2 297.0<br>-525.1 70.4<br>-572.0 65.7<br>-855.2 99.7<br>-1137.6 112.1<br>-1734.3 192.0<br>-796.7 78.2<br>-136.3 151.9<br>-136.3 152.0<br>NA <sup>†</sup> 5.20×10 <sup>-5</sup><br>NA <sup>†</sup> 136.2<br>-445.6 82.7<br>-1563.0 112.1<br>-354.0 112.1 |                                                                                                                                                                                                                                                                        | 254.4<br>-240.6<br>Br<br>0<br>0<br>30.9<br>-233.9<br>-233.9<br>Cd<br>0<br>0<br>0<br>2623.5<br>-391.5<br>-688.4<br>-346.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316.2<br>-316 | 228.4<br>-229.0<br>0<br>3.1<br>-238.7<br>0<br>NA†<br>-94.8<br>NA†<br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9                                          | 14.8<br>57.4<br>152.2<br>245.4<br>163.4<br>167.7<br>77.4<br>115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>104.2<br>104.2<br>NA <sup>†</sup> | CaCl2 · 6 H2O(s) Ca(ClO4)2(s) Ca(ClO4)2 · 4 H2O(s) CaBr2(s) CaBr2(s) Ca(BrO3)2(s) Ca(BrO3)2(s) Ca(Ca)3 · Ca(Da)2(s) Ca(Ca)3 · Ca(Da)2(s) Ca(Ca)3 · Ca(Da)2(s) Ca(Ca)3 · Ca(Da)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2607.9<br>-736.8<br>-1948.9<br>-682.8<br>-2506.2<br>-718.8<br>-533.5<br>-2929.6<br>-1002.5<br>-1002.5<br>-593.1<br>-986.1<br>-59.1<br>-1207.1<br>-635.1<br>-1206.9<br>-1207.1<br>-635.1<br>-1206.9<br>-1207.1<br>-635.1<br>-1206.9<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-635.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207.1<br>-1207 | -2205.0<br>NA <sup>†</sup> -1476.8 -663.6 -2153.1  NA <sup>†</sup> -528.9  NA <sup>†</sup> -893.3  NA <sup>†</sup> -2267.7 -604.0 -898.6 -64.8 -1127.8 -1127.8 -1713.5 -1713.5 -1713.5 -1713.5 | 284.9<br>233.0<br>433.5<br>130.0<br>410.0<br>227.6<br>142.0<br>230.1<br>451.9<br>39.7<br>88.4<br>69.9<br>92.9<br>88.7<br>193.3<br>375.3<br>269.4<br>319.2<br>193.3<br>106.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 0 28.3<br>5483.9 NA† 149.9<br>-524.7 -481.2 —<br>-1504.1 -1425.1 66.4 170.7<br>-2691.6 NA† NA† 50.9<br>-1287.2 -488.4 163.2<br>-1287.4 -1149.8 85.4 163.2<br>-1287.4 -1149.8 85.4 163.2<br>-1287.4 -1149.8 85.4 163.2<br>-2850.5 -2203.9 467.8 168.7<br>-3440.0 -3100.1 239.3<br>O(s) -5311.7 -4622.6 469.0<br>-2703.3 NA† 168.7<br>145.1 147.7 232.7<br>-440.2 -323.7 184.0<br>-440.2 -323.7 184.0<br>-174.9 -173.6 182.0<br>-174.9 -173.6 182.0<br>-2402.5 NA† 162.3<br>66.4 68.9 222.7<br>-956.3 -909.1 181.2<br>-920.6 -905.7 289.0<br>-240.5 -259.4 216.3<br>-160.0 117.0<br>-242.9 -259.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O(s) -1054.8<br>-602.1<br>-1216.7<br>-1027.2<br>-1322.1<br>-553.5<br>-634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1971.1<br>Be 0<br>0<br>2993.0<br>-196.8<br>+1971.1<br>Be 1<br>-196.8<br>-1971.1<br>-1808.3<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196.8<br>-196. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 240.6 Br 0 30.9 -233.9 Cd 0 0 2623.5 -700.4 -391.5 -688.4 -334.6 -205.7 -316.2 -205.7 -258.2 -206.7 162.2 -456.3 -1065.6 -1161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>3.1<br>-238.7<br>0<br>NA†-647.7<br>-344.0<br>-587.1<br>-28.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-248.9<br>-1217.1                                         | 57.4<br>152.2<br>245.4<br>163.4<br>167.7<br>77.4<br>115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA†-<br>54.8<br>96.0<br>104.2<br>107.9<br>NA†-                                          | Ca(ClO4)2(s) Ca(ClO4)2(s) Ca(Br2(s) Ca(Br2(s) Ca(Br2)3(s) Ca(L(s) Ca(L2)3(s) Ca(L3)2(s) Ca(L3)2(s) Ca(L3)2(s) Ca(L3)2 · H2O(s) Ca(L3)2 · H2O(s) Ca(L3)2 · H2O(s) Ca(L3)2 · H2O(s) Ca(L3)2 · C H2O(s) Ca(C3)2 · C H2O(s) Ca(N03)2 · C H2O(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 433.5<br>433.5<br>130.0<br>410.0<br>227.6<br>142.0<br>230.1<br>451.9<br>39.7<br>83.4<br>69.9<br>92.9<br>193.3<br>269.3<br>193.3<br>269.3<br>193.3<br>269.3<br>193.3<br>269.3<br>193.3<br>269.3<br>193.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269.3<br>269. |
| -524.7 481.2 —— -1504.1 -1425.1 66.4 -704.2 -628.9 110.7 -2691.6 NA† NA† -527.2 488.4 163.2 -313.8 -300.8 159.0 -1287.4 -1149.8 85.4 -2850.5 -2203.9 467.8 -723.8 NA† decomp3440.0 -3100.1 239.3 -3440.0 -3100.1 239.3 -340.0 -340.0 105.4 -382.2 -323.7 -415.1 147.7 232.7 -415.2 807.0 105.4 -382.2 -323.7 184.0 -440.2 -350.2 20.9 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -2402.5 NA† 162.3 -2550.2 NA† 162.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (s) -1216.7<br>-1027.2<br>-1322.1<br>-553.5<br>-634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1971.1<br>Be<br>0<br>2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-180                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 0<br>30.9<br>-233.9<br>Cd<br>0<br>2623.5<br>-700.4<br>-391.5<br>-688.4<br>-391.5<br>-2052.7<br>-2052.7<br>-2052.7<br>-2052.7<br>-2052.7<br>-2052.7<br>-2062.7<br>-1649.0<br>-1611.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>3.1<br>-238.7<br>0<br>NA†-<br>-647.7<br>-344.0<br>-587.1<br>-24.8<br>NA†<br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>-259.0<br>-259.0<br>-748.9                             | 152.2<br>245.4<br>163.4<br>167.7<br>77.4<br>115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                          | CaBr <sub>2</sub> (s) CaBr <sub>2</sub> (s) CaBr <sub>2</sub> (s) Ca(BrO <sub>3</sub> ) <sub>2</sub> (s) Ca(21 <sub>2</sub> (s) Ca(10 <sub>3</sub> ) <sub>2</sub> · H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · G H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>2</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) Ca(10 <sub>3</sub> ) <sub>3</sub> · 3 H <sub>3</sub> O(s) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 410.0<br>410.0<br>142.0<br>142.0<br>230.1<br>451.9<br>39.7<br>88.4<br>69.9<br>92.9<br>88.7<br>193.3<br>269.4<br>193.3<br>269.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1504.1 -1425.1 66.4 -704.2 -628.9 110.7 -2691.6 NA <sup>†</sup> NA <sup>†</sup> -527.2 488.4 163.2 -313.8 -300.8 159.0 -1675.7 -1582.4 50.9 -1287.4 -1149.8 85.4 -2850.5 -2203.9 467.8 -723.8 NA <sup>†</sup> decomp3440.0 -3100.1 239.3 -382.2 -323.7 -915.5 -807.0 105.4 -440.2 -350.2 200.9 -174.9 -173.6 182.0 -2402.5 NA <sup>†</sup> 162.3 66.4 68.9 222.7 -956.3 -909.1 181.2 -956.3 -905.7 289.0 -340.0 -259.4 116.3 -653.0 -259.4 116.3 -653.0 -259.4 116.3 -653.0 -259.4 116.3 -653.0 -782.4 116.3 -782.1 147.0 117.0 -924.9 -782.4 116.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (s) -1027.2<br>-1322.1<br>-553.5<br>-634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1473.2<br>-1971.1<br>Be<br>0<br>2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-1808.3<br>-180                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 30.9<br>-233.9<br>Cd<br>0<br>0<br>2623.5<br>-700.4<br>-391.5<br>-688.4<br>-334.6<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-205.7<br>-205.7<br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-105.6<br>-1061.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.1<br>-238.7<br>0<br>NA†-<br>-647.7<br>-344.0<br>-587.1<br>-94.8<br>NNA†<br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9                                  | 245.4<br>163.4<br>167.7<br>77.4<br>115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>107.9<br>NA <sup>†</sup>                                   | CaBr <sup>2</sup> ·6 H <sub>2</sub> O(s) Ca(BrO <sub>3</sub> ) <sub>2</sub> (s) CaL <sub>2</sub> (s) CaL <sub>2</sub> ·8 H <sub>2</sub> O(s) Ca(IO <sub>3</sub> ) <sub>2</sub> ·9, Ca(IO <sub>3</sub> ) <sub>2</sub> ·6 H <sub>2</sub> O(s) Ca(IO <sub>3</sub> ) <sub>2</sub> ·7 H <sub>2</sub> O(s) Ca(IO <sub>3</sub> ) <sub>2</sub> ·3 H <sub>2</sub> O(s) Ca(IOO <sub>3</sub> ) <sub>2</sub> ·4 H <sub>2</sub> O(s) Ca(So <sub>3</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 410.0<br>227.6<br>142.0<br>230.1<br>451.9<br>39.7<br>83.4<br>66.9<br>66.9<br>88.7<br>193.3<br>269.4<br>319.2<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2691.6 NA† NA† 527.2 -628.9 110.7 -2691.6 NA† NA† 527.2 -488.4 163.2 -133.8 -300.8 159.0 -1675.7 -1582.4 50.9 159.0 -1440.0 -310.1 -239.3 -240.2 -320.2 -1282.2 -323.7 -4622.6 -469.0 -1287.2 -323.7 -412.1 -412.2 -323.7 -412.2 -323.7 -412.2 -323.7 -412.2 -323.7 -412.2 -323.7 -412.2 -323.7 -412.2 -323.7 -412.2 -323.7 -420.2 -173.6 -1282.2 -223.7 -420.2 -173.6 -1282.2 -223.7 -2592.2 -173.6 -1283.2 -223.7 -2592.3 -193.1 -193.2 -259.4 -163.3 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -259.4 -216.3 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -223.7 -22                            | -1322.1<br>-553.5<br>-634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1771.1<br>Be<br>0<br>0<br>-2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | Cd<br>0<br>0<br>2623.5<br>-700.4<br>-391.5<br>-388.4<br>-34.6<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-2052.7<br>-316.2<br>-456.3<br>-1055.6<br>-1061.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>NA <sup>†</sup> -<br>-647.7<br>-344.0<br>-587.1<br>-94.8<br>NA <sup>†</sup><br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5 | 51.8<br>167.7<br>77.4<br>115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>107.9<br>NA <sup>†</sup>                                             | Ca(BrO <sub>3</sub> ) <sub>2(s)</sub> Cal <sub>2(s)</sub> Cal <sub>2</sub> ···8 H <sub>2</sub> O <sub>(s)</sub> Ca(IO <sub>3</sub> ) <sub>2(s)</sub> Ca(IO <sub>3</sub> ) <sub>2</sub> ·· H <sub>2</sub> O <sub>(s)</sub> Ca(IO <sub>3</sub> ) <sub>2</sub> ·· G H <sub>2</sub> O <sub>(s)</sub> Ca(O <sub>1</sub> ) <sub>3</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> ·· 3 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> ·· 3 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> ·· 4 H <sub>2</sub> O <sub>(s)</sub> Ca(S <sub>(s)</sub> CaS <sub>(s)</sub> CaS <sub>(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 227.6<br>142.0<br>230.1<br>451.9<br>39.7<br>83.4<br>69.9<br>92.9<br>88.7<br>1193.3<br>2269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2691.6 NAT NAT 5.2691.6 NAT 5.2691.6 NAT 5.2691.6 NAT 5.27.2 4884 163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.2 1.163.                            | -553.5<br>-634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1971.1<br>Be<br>0<br>0<br>2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | Cd<br>0<br>2623.5<br>-901.5<br>-888.4<br>-334.6<br>-2052.7<br>-316.2<br>-203.3<br>NA†<br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>NA <sup>†</sup> -<br>-647.7<br>-344.0<br>-587.1<br>-94.8<br>NA <sup>†</sup><br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5      | 51.8<br>167.7<br>77.4<br>1115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                            | Cal <sub>2</sub> (s) Ca(103)2(s) Ca(103)2(s) Ca(103)2 · H <sub>2</sub> O(s) Ca(103)2 · 6 H <sub>2</sub> O(s) CaO(3) CaO(3) CaO(3) CaC <sub>2</sub> (s) CaC <sub>2</sub> (s) CaC <sub>3</sub> (s) CaC <sub>3</sub> (s) CaC <sub>3</sub> (s) Ca(NO3)2 · 3 H <sub>2</sub> O(s) Ca(NO3)2 · 4 H <sub>2</sub> O(s) CaS(s) CaS(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 142.0<br>230.1<br>451.9<br>39.7<br>83.4<br>69.9<br>92.9<br>88.7<br>193.3<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -527.2 -488.4 163.2 -1527.2 -488.4 163.2 -1675.7 -1582.4 50.9 -1287.4 -1149.8 85.4 -2850.5 NA <sup>†</sup> decomp3440.0 -3100.1 239.3 -5311.7 -4622.6 469.0 -2703.3 NA <sup>†</sup> 168.7 145.1 147.7 232.7 -915.5 -807.0 105.4 -382.2 -323.7 1440.6 -1268.2 220.9 -174.9 -173.6 182.0 -2402.5 NA <sup>†</sup> 162.3 66.4 68.9 222.7 -956.3 -909.1 181.2 -920.6 -905.7 289.0 -240.5 -926.3 -909.1 181.2 -920.6 -925.4 105.4 107.5 -169.0 117.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -924.9 -782.4 105.5 143.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -925.0 -92 | -634.3<br>-944.7<br>-1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.2<br>-1971.1<br>Be<br>0<br>0<br>0<br>2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 0<br>2623.5<br>-391.5<br>-688.4<br>-334.6<br>-2052.7<br>-316.2<br>-203.3<br>NA <sup>†</sup><br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>NA <sup>†</sup> -<br>-647.7<br>-344.0<br>-94.8<br>NA <sup>†</sup><br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5                | 51.8<br>167.7<br>77.4<br>1115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                            | Ca12 · 8 H <sub>2</sub> O(s) Ca(IO3)2(s) Ca(IO3)2 · H <sub>2</sub> O(s) Ca(IO3)2 · 6 H <sub>2</sub> O(s) CaO(S) CaO(M)2(s) CaC <sub>2</sub> (s) CaC <sub>2</sub> (s) CaC <sub>3</sub> (s) calcite CaCO <sub>3</sub> (s) 2 H <sub>2</sub> O(s) Ca(INO3)2 · 3 H <sub>2</sub> O(s) Ca(INO3)2 · 3 H <sub>2</sub> O(s) Ca(INO3)2 · 3 H <sub>2</sub> O(s) Ca(INO3)2 · 4 H <sub>2</sub> O(s) CaS(s) CaS(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 230.1<br>451.9<br>39.7<br>83.4<br>69.9<br>92.9<br>92.9<br>193.3<br>269.4<br>319.2<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 515.8 - 200.0 123.7 1-182.4 50.9 1-1827.4 - 1149.8 85.4 1-182.8 85.4 1-182.8 85.4 1-149.8 85.4 1-149.8 85.4 1-140.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -744.7.<br>-1916.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1473.2<br>-1473.0<br>-1368.6<br>-1971.1<br>Be<br>0<br>0<br>22993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 2023.3<br>-700.4<br>-391.5<br>-688.4<br>-334.6<br>-2052.7<br>-316.2<br>-203.3<br>NA <sup>†</sup><br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                          | 115.3<br>115.3<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                                             | Ca(1O3)2: H <sub>2</sub> O(s) Ca(1O3)2 · H <sub>2</sub> O(s) Ca(1O3)2 · O H <sub>2</sub> O(s) CaO(s) Ca(O4)2(s) CaC(O3(s), arragonite Ca(O(3)2 · 3 H <sub>2</sub> O(s) Ca(NO3)2 · 3 H <sub>2</sub> O(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 451.9<br>39.7<br>83.4<br>69.9<br>92.9<br>88.7<br>193.3<br>269.4<br>319.2<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1287.4 -1198.3 90.9 -11287.4 -1149.8 87.4 -2850.5 -2203.9 467.8 -2440.0 -3100.1 239.3 -3440.0 -3100.1 239.3 -3440.0 -3100.1 239.3 -240.2 NA† 168.7 -440.2 -350.2 301.0 -1440.6 -1268.2 220.9 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -174.9 -173.6 182.0 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173.6 -173                            | 1216.3<br>-1921.6<br>-992.1<br>-460.0<br>-1473.2<br>-1428.0<br>-1368.6<br>-1971.1<br>Be 0<br>0<br>0<br>22993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | -700.4<br>-700.4<br>-888.4<br>-334.6<br>-2052.7<br>-316.2<br>-203.3<br>NA†-<br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | 17.4<br>167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                                                       | Ca(UO3)2 · Tr2V(s) Ca(IO3)2 · 6 H2O(s) CaO(s) Ca(CA) CaC2(s) CaCO3(s), arragenite CaCO3(s), arragenite Ca(NO3)2 · 2 H2O(s) Ca(NO3)2 · 3 H2O(s) Ca(SO3)3 · 3 H2O(s) Ca(SO3)3 · 3 H2O(s) Ca(SO3)3 · 3 H2O(s) Ca(SO3)3 · 3 H2O(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 451.9<br>39.7<br>83.4<br>69.9<br>92.9<br>88.7<br>193.3<br>269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2850.5 -2203.9 467.8 -723.8 NA <sup>†</sup> decomp3440.0 -3100.1 239.3 -5311.7 -4622.6 469.0 -8878.9 -7437.5 — Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -992.1<br>-460.0<br>-1473.2<br>-1428.0<br>-1368.6<br>-1971.1<br>Be<br>0<br>0<br>22993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | -688.4<br>-334.6<br>-2052.7<br>-316.2<br>-203.3<br>NA <sup>†</sup> -<br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -587.1<br>-94.8<br>NA <sup>†</sup><br>-296.3<br>-201.4<br>-277.1<br>-228.4<br>-473.6<br>-259.0<br>-259.0<br>-748.9<br>-1217.1<br>-156.5                                                  | 167.8<br>290.8<br>137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                                                               | CaO(s) Ca(OH) <sub>2(s)</sub> Ca(OH) <sub>2(s)</sub> CaCO <sub>2(s)</sub> CaCO <sub>3(s),aragonite</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> : 2 H <sub>2</sub> O(s) Ca(NO <sub>3</sub> ) <sub>2</sub> : 3 H <sub>2</sub> O(s) Ca(NO <sub>3</sub> ) <sub>2</sub> : 4 H <sub>2</sub> O(s) Ca(SO <sub>3</sub> ) <sub>3</sub> CaS(s) CaS(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 39.7<br>83.4<br>69.9<br>92.9<br>88.7<br>193.3<br>269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -723.8 NA <sup>†</sup> decomp3440.0 -3100.1 239.3 -8478.9 -7437.5 — - Sb - 2703.3 NA <sup>†</sup> 168.7 145.1 147.7 232.7 -915.5 -807.0 105.4 -382.2 -323.7 184.0 -440.2 -350.2 301.0 -174.9 -173.6 182.0 -2402.5 NA <sup>†</sup> 162.3 6.4 68.9 222.7 -956.3 -909.1 181.2 -956.3 -905.7 289.0 -359.4 216.3 -167.6 143.6 -167.6 143.6 -167.6 143.6 -167.6 143.6 -167.7 169.0 161.1 -653.0 -571.0 117.0 -924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 460.0<br>-1473.2<br>-1428.0<br>-1368.6<br>-1971.1<br>Be 0<br>0 2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | -334.6<br>-2052.7<br>-2052.7<br>-203.3<br>-258.2<br>-560.7<br>-162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -94.8<br>NA†<br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5                                                                          | 290.8<br>137.2<br>161.1<br>NA†–<br>54.8<br>96.0<br>104.2<br>197.9<br>NA†                                                                                                                 | Ca(OH) <sub>2</sub> (s) CaC <sub>2</sub> (s) CaCO <sub>3</sub> (s),calcite CaCO <sub>3</sub> (s),aragonite Ca(NO <sub>3</sub> ) <sub>2</sub> (s) Ca(NO <sub>3</sub> ) <sub>2</sub> · 2 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> · 4 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> · 4 H <sub>2</sub> O <sub>(s)</sub> CaS <sub>(s)</sub> CaS <sub>(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -59.1<br>-59.1<br>-1206.9<br>-1207.1<br>-635.1<br>-1540.8<br>-133.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 83.4<br>69.9<br>92.9<br>88.7<br>193.3<br>269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3440.0 -3100.1 239.3 O(s) -5311.7 -4622.6 469.0 50 -8878.9 -7437.5 — 145.1 145.1 147.7 232.7 -915.5 -807.0 105.4 -382.2 -323.7 184.0 -1440.6 -1268.2 220.9 -174.9 -173.6 182.0 -2402.5 NA† As 0 0 35.1 0 35.1 0 35.1 -956.3 -909.1 181.2 -920.6 -905.7 289.0 -197.5 -169.0 117.0 -140.0 163.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1473.2<br>-1428.0<br>-1368.6<br>-1971.1<br>Be 0<br>0 2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | -2052.7<br>-316.2<br>-203.3<br>NA <sup>†</sup> -<br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA 1<br>-296.3<br>-201.4<br>377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5                                                                                  | 137.2<br>161.1<br>NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                                                                                 | CaC <sub>2</sub> (s), calcite<br>CaCO <sub>3</sub> (s), calcite<br>Ca(O <sub>3</sub> (s), aragonite<br>Ca(NO <sub>3</sub> ) <sub>2</sub> · 2 H <sub>2</sub> O <sub>(s)</sub><br>Ca(NO <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O <sub>(s)</sub><br>Ca(NO <sub>3</sub> ) <sub>2</sub> · 4 H <sub>2</sub> O <sub>(s)</sub><br>CaS <sub>(s)</sub><br>CaSO <sub>3(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -59.1<br>-1206.9<br>-1207.1<br>-635.1<br>-1540.8<br>-1838.0<br>-2132.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                | 69.9<br>92.9<br>88.7<br>193.3<br>269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20(s) 7937.5 —— 80<br>20(s) 878.9 7437.5 —— 80<br>2703.3 NA† 168.7 145.7 145.1 147.7 232.7 140.2 -320.2 301.0 105.4 1240.6 -1268.2 220.9 174.9 -173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 182.0 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.                        | 1368.6<br>-1971.1<br>Be 0<br>0 2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 203.3<br>-203.3<br>NA <sup>†</sup> -<br>-258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270.3<br>270.1<br>270.1<br>270.1<br>270.9<br>270.9<br>2748.9<br>-1217.1<br>156.5                                                                                                         | 161.1<br>NA†-<br>54.8<br>96.0<br>104.2<br>NA†<br>NA†                                                                                                                                     | Ca(Co,Sts), calorie<br>Ca(O(Sts), aragonite<br>Ca(NO3)2 · 2 H <sub>2</sub> O(s)<br>Ca(NO3)2 · 3 H <sub>2</sub> O(s)<br>Ca(NO3)2 · 4 H <sub>2</sub> O(s)<br>Ca(Sts)<br>CaS(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1207.1<br>-635.1<br>-1540.8<br>-1838.0<br>-2132.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | 88.7<br>193.3<br>269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sb  2703.3 NA† 168.7 145.1 147.7 232.7 -915.5 -807.0 105.4 -382.2 -323.7 184.0 -1440.6 -1268.2 220.9 -174.9 -173.6 182.0 -2402.5 NA† Sp50.2 NA† 162.3 66.4 68.9 222.7 -956.3 -909.1 181.2 -920.6 -905.7 289.0 -197.5 -169.0 161.1 -653.0 -571.0 117.0 -924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1971.1<br>Be 0<br>2993.0<br>-1026.8<br>-490.4<br>-1808.3 -<br>-353.5<br>-609.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | NA <sup>†</sup> -258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0<br>-161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 377.1<br>-228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5                                                                                                              | NA <sup>†</sup> -<br>54.8<br>96.0<br>104.2<br>197.9<br>NA <sup>†</sup>                                                                                                                   | Ca(NO3)2(s)<br>Ca(NO3)2:2 H2O(s)<br>Ca(NO3)2:3 H2O(s)<br>Ca(NO3)2:4 H2O(s)<br>CaS(s)<br>CaSO <sub>3(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -635.1<br>-1540.8<br>-1838.0<br>-2132.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 193.3<br>269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2703.3 NA† 168.7 145.1 147.7 232.7 -915.5 -807.0 105.4 -382.2 -323.7 184.0 -440.2 -350.2 301.0 -1440.6 -1268.2 220.9 -174.9 -173.6 182.0 -2402.5 NA† 162.3 66.4 68.9 222.7 -956.3 -909.1 181.2 -920.6 -905.7 289.0 -259.4 216.3 -197.5 -169.0 117.0 -924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Be 0 0 2993.0 -1026.8 -490.4 -1808.3 -353.5 -609.6 -902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CdO(s) Cd(OH)2(s) Cd(CN)2(s) Cd(CNO3)2(s) Cd(NO3)2 · 2 H <sub>2</sub> O(s) Cd(NO3)2 · 4 H <sub>2</sub> O(s) CdS(s)                                                                                                                                                     | -258.2<br>-560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0<br>-161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -228.4<br>-473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1<br>-156.5                                                                                                                       | 54.8<br>96.0<br>104.2<br>197.9<br>NA †                                                                                                                                                   | Ca(NO <sub>3</sub> ) <sub>2</sub> · 2 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O <sub>(s)</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> · 4 H <sub>2</sub> O <sub>(s)</sub> CaS <sub>(s)</sub> CaS <sub>(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1540.8<br>-1838.0<br>-2132.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                | 269.4<br>319.2<br>375.3<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 145.1 147.7 232.7 -915.5 -807.0 105.4 -882.2 -323.7 184.0 -440.2 -350.2 301.0 -1440.6 -1268.2 220.9 -174.9 -175.4 182.0 183.0 0 35.1 5950.2 NA† 162.3 66.4 68.9 222.7 -956.3 -909.1 181.2 -920.6 -905.7 289.0 -235.0 -259.4 216.3 -197.5 -169.0 117.0 149.5 16.9 16.9 17.5 -169.0 117.0 149.5 16.9 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2993.0<br>-1026.8<br>-490.4<br>-1808.3<br>-353.5<br>-609.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cd(OH) <sub>2(s)</sub> Cd(CN) <sub>2(s)</sub> Cd(CN) <sub>3(s)</sub> Cd(NO <sub>3</sub> ) <sub>2(s)</sub> Cd(NO <sub>3</sub> ) <sub>2</sub> ·2 H <sub>2</sub> O <sub>(s)</sub> Cd(NO <sub>3</sub> ) <sub>2</sub> ·4 H <sub>2</sub> O <sub>(s)</sub> CdS <sub>(s)</sub> | -560.7<br>162.2<br>-456.3<br>-1055.6<br>-1649.0<br>-161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -473.6<br>207.9<br>-259.0<br>-748.9<br>-1217.1                                                                                                                                           | 96.0<br>104.2<br>197.9<br>NA†<br>NA†                                                                                                                                                     | Ca(NO3)2 · 3 H2O(s)<br>Ca(NO3)2 · 4 H2O(s)<br>CaS(s)<br>CaSO3(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1838.0<br>-2132.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | 319.2<br>375.3<br>56.5<br>106.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -915.5 -807.0 105.4<br>-382.2 -323.7 184.0<br>-1440.6 -1268.2 220.9<br>-174.9 -173.6 182.0<br>-2402.5 NA† 182.0<br>5950.2 NA† 162.3<br>66.4 68.9 222.7<br>-956.3 -909.1 181.2<br>-920.6 -905.7 289.0<br>-305.0 -259.4 216.3<br>-197.5 -169.0 117.0<br>-924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2993.0<br>-1026.8<br>-490.4<br>-1808.3 -<br>-353.5<br>-609.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cd(CN) <sub>2(s)</sub> Cd(NO <sub>3</sub> ) <sub>2(s)</sub> Cd(NO <sub>3</sub> ) <sub>2</sub> : Cd(NO <sub>3</sub> ) <sub>2</sub> : 2 H <sub>2</sub> O <sub>(s)</sub> Cd(NO <sub>3</sub> ) <sub>2</sub> : 4 H <sub>2</sub> O <sub>(s)</sub> CdS <sub>(s)</sub>         | 162.2<br>-456.3<br>-1055.6<br>-1649.0<br>-161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 207.9<br>-259.0<br>-748.9<br>-1217.1                                                                                                                                                     | 104.2<br>197.9<br>NA†                                                                                                                                                                    | Ca(NO3) <sub>2</sub> · 4 H <sub>2</sub> O(s)<br>CaS(s)<br>CaSO <sub>3(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2132.3<br>-482.4<br>-1156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 375.3<br>56.5<br>106.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 292.2323.7. 104.01440.2350.2. 301.01440.61268.2. 220.9174.9173.6. 182.02402.5. NA†  As 0 0 35.1 5950.2 NA† 162.3 66.4 68.9 222.7 -956.3 -909.1 181.2 -920.6 -905.7 289.0 -305.0 -259.4 216.3 -197.5 -169.0 161.1 -653.0 -571.0 117.0 -924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1026.5<br>-490.4<br>-1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cd(NO3)2(s) Cd(NO3)2·2H <sub>2</sub> O(s) Cd(NO3)2·4H <sub>2</sub> O(s) CdS(s)                                                                                                                                                                                         | -430.3<br>-1055.6<br>-1649.0<br>-161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -233.0<br>-748.9<br>-1217.1<br>-156.5                                                                                                                                                    | NA†                                                                                                                                                                                      | $CaSO_{3(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -402.4 $-1156.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | 36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -1440.6 -1268.2 220.9 -174.9 -173.6 182.0 -2402.5 NA†  As  O  0  35.1  66.4  68.9  222.7  -956.3  -909.1  181.2  -920.6  -925.4  216.0  117.0  -924.9  -782.4  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0  117.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1808.3<br>-353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \operatorname{Cd}(\operatorname{NO}_3)_2 \cdot 4\operatorname{H}_2\operatorname{O}_{(s)} \\ \operatorname{CdS}_{(s)} \end{array}$                                                                                                                    | -1649.0<br>-161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1217.1<br>-156.5                                                                                                                                                                        | NΑ                                                                                                                                                                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 121 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | 106.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| As 0 35.1  As 0 35.1  As 0 35.1  5950.2 NA† 162.3  66.4 68.9 222.7  -956.3 -909.1 181.2  -920.6 -905.7 289.0  -305.0 -259.4 216.3  -197.5 -169.0 161.1  -653.0 -571.0 117.0  -924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -353.5<br>-609.6<br>-902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CdS <sub>(s)</sub>                                                                                                                                                                                                                                                     | -161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -156.5                                                                                                                                                                                   | TALT                                                                                                                                                                                     | $CaSO_{4(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1641-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| As 0 35.1  As 0 35.1  5950.2 NA† 162.3  66.4 68.9 222.7  -956.3 -909.1 181.2  -920.6 -905.7 289.0  -305.0 -259.4 216.3  -197.5 -169.0 161.1  -653.0 -571.0 117.0  -924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -902.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | 7 77.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                                                                                                                                                     | 64.8                                                                                                                                                                                     | $CaSO_4 \cdot 0.5H_2O_{(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1576.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | 130.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 66.4 68.9 222.7<br>-956.3 -909.1 181.2<br>-920.6 -905.7 289.0<br>-305.0 -259.4 216.3<br>-197.5 -169.0 161.1<br>-653.0 -571.0 117.0<br>-924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CdSO_{4} \cdot 2.67 H_{2}O_{(s)}$                                                                                                                                                                                                                                     | -533.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -822.0<br>-1465.3                                                                                                                                                                        | 229.6                                                                                                                                                                                    | Ca <sub>3</sub> (PO <sub>4</sub> ) <sub>2(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2022.0<br>-4120.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1/2/.4                                                                                                                                                                                        | 236.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5950.2 NA† 162.3<br>66.4 68.9 222.7<br>-956.3 -909.1 181.2<br>-920.6 -905.7 289.0<br>-305.0 -259.4 216.3<br>-197.5 -169.0 161.1<br>-653.0 -571.0 117.0<br>-924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -787.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                                          | $CaCrO_4 \cdot 2H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1379.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | 133.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 66.4 68.9 222.7<br>-956.3 -909.1 181.2<br>-920.6 -905.7 289.0<br>-305.0 -259.4 216.3<br>-197.5 -169.0 161.1<br>-653.0 -571.0 117.0<br>-924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Cs_{(s)}$                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                        |                                                                                                                                                                                          | $CaC_2O_{4(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1360.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | ΝĄ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -956.3 -909.1 181.2<br>-920.6 -905.7 289.0<br>-305.0 -259.4 216.3<br>-197.5 -169.0 161.1<br>-653.0 -571.0 117.0<br>-924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1205.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathrm{Cs}^{\mathrm{I+}}_{(\mathrm{g})}$                                                                                                                                                                                                                             | 458.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA↑                                                                                                                                                                                      | 169.7                                                                                                                                                                                    | $CaC_2O_4 \cdot H_2O_{(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 156.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -25.0259.4 216.3 -197.5 -169.0 161.1 -653.0 -571.0 117.0 -924.9 782.4 105.4 -169.0 16.4 16.3 -169.0 16.8 -16.3 -16.8 -16.3 -16.8 -16.3 -16.8 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3 -16.3                                | -2423.7<br>Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2080.7 234.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\operatorname{CsF}_{(s)}$                                                                                                                                                                                                                                             | -553.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -525.5                                                                                                                                                                                   | 92.8                                                                                                                                                                                     | CaSi <sub>2(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA <sup>†</sup> d                                                                                                                                                                              | decomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -197.5 -169.0 161.1<br>-653.0 -571.0 117.0<br>-924.9 -782.4 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 56.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                        | -411.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -307.9                                                                                                                                                                                   | 156.1                                                                                                                                                                                    | CaolO3(s)<br>CaoSiO4(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1034.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                | 127.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -653.0 -571.0 117.0 -924.9 -782.4 105.4 -160.0 -168.6 163.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\operatorname{CsClO}_{4(s)}$                                                                                                                                                                                                                                          | -443.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -314.3                                                                                                                                                                                   | 175.1                                                                                                                                                                                    | C(s), graphite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -924.9 -782.4 103.4<br>-169.0 -168.6 163.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -315.1 177.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\operatorname{CsBr}_{(\mathrm{s})}$                                                                                                                                                                                                                                   | -405.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -391.4                                                                                                                                                                                   | 113.1                                                                                                                                                                                    | C(s), diamond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9                                                                                                                                                                                            | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 366.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        | -540.0<br>NIA†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280.7                                                                                                                                                                                    | 1.621                                                                                                                                                                                    | (g)<br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / 10./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -1314.0 -1153.0 223.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -173.5 233.9<br>-493.7 151.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS <sub>2</sub> O <sub>(s)</sub>                                                                                                                                                                                                                                       | -345.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -308.2                                                                                                                                                                                   | 146.9                                                                                                                                                                                    | C <sub>3(g)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 030.0<br>793.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 773.1                                                                                                                                                                                          | 212.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widehat{\operatorname{CsOH}}_{(\mathrm{s})}$                                                                                                                                                                                                                         | -417.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -359.0                                                                                                                                                                                   | 86.0                                                                                                                                                                                     | CCI <sub>4(I)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -134.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                | 214.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.99 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2583.6 NAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CsHCO_{3(s)}$                                                                                                                                                                                                                                                         | -966.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -831.8                                                                                                                                                                                   | 130.0                                                                                                                                                                                    | $\overset{CO_{(g)}}{\widetilde{\mathfrak{g}_{g}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -110.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -137.2                                                                                                                                                                                         | 197.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1660.5 NA 170.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CsNO_{3(s)}$                                                                                                                                                                                                                                                          | -506.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -406.6                                                                                                                                                                                   | 155.2                                                                                                                                                                                    | $\mathrm{CO}_{2(\mathrm{g})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -393.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -394.4                                                                                                                                                                                         | 213.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -537.0 -560.8 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathrm{Cs}_2\mathrm{SO}_{4(\mathrm{s})}$                                                                                                                                                                                                                             | -1443.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1323.7                                                                                                                                                                                  | 211.9                                                                                                                                                                                    | $CO_{2(aq)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -413.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -386.0                                                                                                                                                                                         | 117.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -178.7 -132.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                                                                                                                                                                                                                      | S c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c                                                                                                                                                                                        | 7 7 7                                                                                                                                                                                    | $CO_3^{2-(aq)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -677.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -527.8                                                                                                                                                                                         | -56.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -1207.1 -1136.9 96.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ca(s)                                                                                                                                                                                                                                                                  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br> <br>                                                                                                                                                                               | 41.4                                                                                                                                                                                     | C <sub>2</sub> N <sub>2(g)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 307.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                | 242.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $BaCl_{2(s)}$ -858.6 -810.4 123.7 BF $_{3(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -137.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1120.3 254.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (a(g)                                                                                                                                                                                                                                                                  | 1925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA-                                                                                                                                                                                      | 154.8                                                                                                                                                                                    | C.52(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67.7                                                                                                                                                                                           | 151.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -762.7 -556.9 231.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -388.7 290.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CaF_{2(s)}$                                                                                                                                                                                                                                                           | -1219.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1167.3                                                                                                                                                                                  | 68.9                                                                                                                                                                                     | (S)7(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | 7: /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| s) $-1069.0$ $-NA^{\dagger}$ $0.125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CaCl_{2(s)}$                                                                                                                                                                                                                                                          | -795.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -748.1                                                                                                                                                                                   | 104.6                                                                                                                                                                                    | Cl <sub>2(g)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                              | 233.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -800.0 -535.1 249.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1193.7 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CaCl_2 \cdot H_2O_{(s)}$                                                                                                                                                                                                                                              | -1109.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1010.9                                                                                                                                                                                  | $NA^{\dagger}$                                                                                                                                                                           | $	ext{CI}_{(g)}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -246.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -240.0                                                                                                                                                                                         | 153.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BaBr <sub>2(s)</sub> -757.3 -736.8 146.0 B <sub>2</sub> O <sub>3(1)</sub><br>BaBr <sub>21.7</sub> HO <sub>63</sub> -13661 -1730.5 226.0 B(OH) <sub>263</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1254.5 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1182.4 77.8<br>-969.0 88.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CaCl_2 \cdot 2H_2O_{(s)}$<br>$CaCl_2 \cdot 4H_2O_{(s)}$                                                                                                                                                                                                               | -1402.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA†<br>-1724.0                                                                                                                                                                           | 0.665                                                                                                                                                                                    | $	ext{CI}_2	ext{O}_{(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.9<br>120.5                                                                                                                                                                                  | 266.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Table ?? (continued)                 | Standard             | thermody                    | namic fun          | Table ?? (continued) Standard thermodynamic functions at 1atm and 298K. | 8K.                  |                    |                    |                                            |                      |                    |                    |                                                                                |                      |                            |                    |
|--------------------------------------|----------------------|-----------------------------|--------------------|-------------------------------------------------------------------------|----------------------|--------------------|--------------------|--------------------------------------------|----------------------|--------------------|--------------------|--------------------------------------------------------------------------------|----------------------|----------------------------|--------------------|
| Substance                            | $\Delta H_f^{\circ}$ | $\Delta G_f^{\circ}$        | $\Delta S^{\circ}$ | Substance                                                               | $\Delta H_f^{\circ}$ | $\Delta G_f^\circ$ | $\nabla S_{\circ}$ | Substance                                  | $\Delta H_f^{\circ}$ | $\Delta G_f^\circ$ | $\Delta S^{\circ}$ | Substance                                                                      | $\Delta H_f^{\circ}$ | $\Delta G_f^\circ$         | $\Delta S^{\circ}$ |
|                                      | (KJ/mol)             | (KJ/mol) (KJ/mol) (J/mol·K) | /mol· K)           |                                                                         | (KJ/mol)             | (KJ/mol) (         | (J/mol· K)         |                                            | (KJ/mol)             | KJ/mol) (KJ/mol) ( | (J/mol· K)         |                                                                                | (KJ/mol)             | KJ/mol) (KJ/mol) (J/mol·K) | I/mol·K)           |
|                                      | ڻ                    |                             |                    | $Cu(IO_3)_{2(ag)}$                                                      | -377.8               | -190.4             | 137.2              | $\mathrm{HBr}_{(e)}$                       | -36.4                | -53.4              | 198.6              | FeBr <sub>2(s)</sub>                                                           | -249.8               | -236.0                     | 140.7              |
| $Cr_{(s)}$                           | 0                    | 0                           | 23.8               | $Cu(1O_3)_2 \cdot H_2O_{(s)}$                                           | -692.0               | -468.6             | 247.2              | $\mathrm{HI}_{(\mathrm{g})}^{(g)}$         | 26.5                 | 1.7                | 206.5              | $\operatorname{Fel}_{2(\mathrm{s})}$                                           | -113.0               | -128.4                     | 77.0               |
| $Cr_{(aq)}^{3+}$                     | -232.0               | -NA <sup>†</sup>            |                    | Cu <sub>2</sub> O <sub>(s)</sub>                                        | -168.6               | -146.0             | 93.1               | $HIO_{3(s)}$                               | -230.1               | -144.3             | 118.0              | FeI <sub>3(g)</sub>                                                            | 71.0                 | $NA^{\dagger}$             |                    |
| $\operatorname{Cr}_{F_{3(s)}}$       | -1159.0              | -1088.0                     | 93.9               | $CuO_{(s)}$                                                             | -157.3               | -129.7             | 42.6               | $H_2O_{(1)}$                               | -285.8               | -237.2             | 6.69               | $FeO_{(s)}$                                                                    | -271.9               | -245.4                     | 58.5               |
| $CrCl_{2(s)}$                        | -326.0               | -282.0                      | 115.0              | $Cu(OH)_{2(s)}$                                                         | -449.8               | -359.4             | 75.0               | $H_2O_{(g)}$                               | -241.8               | -228.6             | 188.7              | $Fe_2O_{3(s)}$                                                                 | -824.2               | -742.2                     | 87.4               |
| $\operatorname{CrCl}_{3(s)}$         | -556.5               | -486.2                      | 115.3              | $Cu(NO_3)_{2(s)}$                                                       | -302.9               | -118.2             | 193.0              | $H_2O_{2(1)}$                              | -187.8               | -120.4             | 109.6              | $Fe_3O_{4(s)}$                                                                 | -1118.4              | -1015.5                    | 146.4              |
| $CrO_2Cl_{2(1)}$                     | -579.5               | -510.9                      | 221.8              | Cu(NO <sub>3</sub> ) <sub>2</sub> ·3H <sub>2</sub> O <sub>(s)</sub>     | -1217.1              | NA↑                | 0.570              | $\mathrm{H_{3}AsO_{3(aq)}}$                | -742.2               | -NA <sup>†</sup>   |                    | $Fe(OH)_{2(s)}$                                                                | -569.0               | -486.6                     | 88.0               |
| $\operatorname{CrI}_{3(\mathrm{s})}$ | -205.0               | -202.5                      | NA⊤                | Cu(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O <sub>(s)</sub>     | -2110.8              | NA†                | 0.824              | H <sub>3</sub> AsO <sub>4(aq)</sub>        | -902.5               | NA†                |                    | $Fe(OH)_{3(s)}$                                                                | -823.0               | -696.6                     | 106.7              |
| $Cr_2O_{3(s)}$                       | -1139.7              | -1058.1                     | 81.2               | Cu <sub>2</sub> S <sub>(s)</sub>                                        | 0.6/-                | -86.2              | 120.9              | HCN <sub>(1)</sub>                         | 108.9                | 124.9              |                    | FeCO <sub>3(s)</sub>                                                           | -740.6               | -666.7                     | 92.9               |
| CrO3(s)                              | 5.88.5               | -501.0                      | NA-                | Cu5(s)                                                                  | -53.1                | -53.6              | 56.5               | HCN <sub>(g)</sub>                         | 135.1                | 124.7              |                    | Fe(CO)5(1)                                                                     | 100.0                | -/05.4                     | 338.1              |
| CI2(3O4)3(s)                         | 0.0200-              | Į VI                        | 0.103              | CuSO <sub>4(s)</sub>                                                    | 7,770 6              | 1001.7             | 200.4              | 112CO3(aq)                                 | 0.220                | 566.0              |                    | rez(s)                                                                         | 176.0                | 166.0                      | 52.0               |
| C12(3O4)3 · 10112O(s)                | 1077.0               | , L                         | 0.10/<br>NIA†      | Cu2O4 : 3112O(s)                                                        | 0.6/77-              | -10001-            | 300°±              | TICO3 (aq)                                 | 174.1                | 0.000-             |                    | Fe32(s)                                                                        | 7.071-               | -100.9                     | 22.3               |
| Cr(CO)6(s)                           | -10/6.9<br>Co        | -975.0                      | NA                 | H <sub>2(2)</sub>                                                       | ч <sub>с</sub>       | C                  | 2027               | HINO3(1)                                   | -1/4.1               | -80.8<br>-33.6     |                    | FeSO <sub>4</sub> (s)<br>FeSO <sub>4</sub> : 7 H <sub>2</sub> O <sub>(2)</sub> | -928.4               | -820.9<br>-2510.3          | 107.5<br>409.2     |
| Co(e)                                | 6                    | 0                           | 30.0               | F-18                                                                    | -270.7               | -266.6             | 145.4              | $H_2S_{(3,7)}^{(g)}$                       | -39.7                | -27.9              |                    | Fe2(3)                                                                         | -2581.5              | NA†                        | 261.7              |
| $C_{(2)}^{2+}$                       | 2841.6               | , AN                        | 178.8              | F2O(2)                                                                  | -21.7                | 4.7                | 247.3              | $H_2S_2(aq)$                               | -23.1                | Ϋ́                 | decomp.            | Fe(NO <sub>3</sub> ) <sub>3(23)</sub>                                          | -674.9               | Ϋ́ΑΥ                       |                    |
| $CoF_{3(\sigma)}$                    | -810.9               | -707.0                      | 94.6               | (8) 2 2                                                                 | Ga                   |                    |                    | $H_2Se_{(\sigma)}$                         | 76.0                 | 62.3               | 219.0              | Pb(s)                                                                          | 0                    | 0                          | 64.8               |
| $CoCl_{2(s)}$                        | -312.5               | -269.9                      | 109.2              | $Ga_{(\sigma)}^{3+}$                                                    | 5816.0               | NAţ                | 161.6              | $H_2SO_{4(1)}$                             | -814.0               | -690.1             | 156.9              | $Pb_{(g)}^{2+}$                                                                | 916.8                | $NA^{\dagger}$             | 175.3              |
| $CoCl_2 \cdot 2H_2O_{(s)}$           | -923.0               | -764.8                      | 188.0              | $GaF_{3(s)}$                                                            | -1163.0              | -1085.3            | 84.0               | $H_2SO_{4(aq)}$                            | -909.3               | -744.5             | 20.1               | $Pb_{(a\alpha)}^{2+}$                                                          | -1.7                 | -24.4                      | 10.5               |
| $CoCl_2 \cdot 6H_2O_{(s)}$           | -2115.4              | -1725.5                     | 343.0              | $GaCl_{3(s)}$                                                           | -524.7               | -454.8             | 142.0              | $H_2Te_{(g)}$                              | 154.0                | 138.0              | 234.0              | $PbF_{2(s)}$                                                                   | -664.0               | -617.1                     | 110.5              |
| $Co(CIO_4)_{2(aq)}$                  | -316.7               | -71.5                       | 251.0              | $GaBr_{3(s)}$                                                           | -386.6               | -359.8             | 180.0              | $\mathrm{H_{3}PO_{4(s)}}$                  | -1279.0              | -1119.2            | 110.5              | $PbCl_{2(s)}$                                                                  | -359.4               | -314.1                     | 136.0              |
| $Co(CIO_4)_2 \cdot 6 H_2O_{(s)}$     | -2038.4              | $NA^{\dagger}$              | 0.707              | $\operatorname{Gal}_{3(s)}$                                             | -238.9               | -217.6             | 49.0               | $H_3BO_{3(s)}$                             | -1094.3              | 0.696-             | 88.8               | $PbCl_{4(l)}$                                                                  | -329.2               | -259.0                     | $NA^{\dagger}$     |
| $CoBr_{2(s)}$                        | -220.0               | -210.0                      | 135.6              | $Ga_2O_{3(s)}$                                                          | -1089.1              | -998.3             | 82.0               | $H_3O_1^{+}(g)$                            | 6.626                | ΝΑ̈́               |                    | $PbBr_{2(s)}$                                                                  | -278.7               | -261.9                     | 161.5              |
| $CoBr_2 \cdot 6H_2O_{(s)}$           | -2020.0              | $NA^{\dagger}$              |                    |                                                                         | පී                   |                    |                    | $\mathrm{OH}^+_{(\mathrm{g})}$             | 1328.4               | NA⊤                |                    | $Pb(BrO_3)_{2(s)}$                                                             | -134.0               | -50.0                      | $NA^{\dagger}$     |
| $\operatorname{Col}_{2(\mathrm{s})}$ | -88.7                | -101.3                      | 158.2              | $Ge_{(g)}^{4+}$                                                         | 10412.3              | $NA^{\dagger}$     |                    | $OH_{(g)}^-$                               | -140.9               | $NA^{\dagger}$     |                    | $PbI_{2(s)}$                                                                   | -175.5               | -173.6                     | 174.5              |
| $Co(IO_3)_{2(aq)}$                   | -500.8               | -310.4                      | 125.5              | $GeF_{4(g)}$                                                            | -NA <sup>†</sup>     | 302.8              | decomb.            | $\mathrm{H}_2\mathrm{S}_{\mathrm{(aq)}}^+$ | 995.0                | $NA^{\dagger}$     |                    | $PbO_{(s)}$                                                                    | -217.3               | -187.9                     | 68.7               |
| $Co(IO_3)_2 \cdot 2H_2O_{(s)}$       | -1081.9              | -795.8                      | 267.8              | $GeCl_{2(s)}$                                                           | –NA†                 | NA <sup>†</sup> -  |                    |                                            | П                    |                    |                    | $PbO_{2(s)}$                                                                   | -277.4               | -217.4                     | 9.89               |
| CoO(s)                               | -237.9               | -214.2                      | 53.0               | GeCl <sub>4(I)</sub>                                                    | -531.8               | -462.8             | 245.6              | Į <sub>2</sub> (s)                         | 0 (                  | 0,                 | 116.1              | $Pb(OH)_{2(s)}$                                                                | -515.9               | -420.9                     | 88.0               |
| Co <sub>3</sub> O <sub>4</sub> (s)   | -891.0               | -774.0<br>-454.4            | 2.20I              | GeBr4(I)                                                                | -347.7               | -331.4             | 280.7              | 12(g)<br>IT                                | 62.4<br>-95.6        | 19.4<br>-118.5     | 260.6<br>236.1     | Fb3O <sub>4(s)</sub>                                                           | -718.4               | -601.2                     | 211.3              |
| $Co(NO_2)_{2(8)}$                    | -420.5               | -237.0                      | 192.0              | GeO(2)                                                                  | -212.1               | -237.2             | 50.0               | n (g)<br>L+(z)                             | 967.5                | NA <sup>†</sup>    | 1.007              | Ph(NO <sub>3</sub> ) <sub>263</sub>                                            | -451 9               | -251.0                     | 213.0              |
| $Co(NO_3)_2 \cdot 2H_2O_{(c)}$       | -1021.7              | YY                          | i                  | GeO <sub>2(s)</sub>                                                     | -551.0               | -497.1             | 55.3               | 5 (g)<br>ICI(e)                            | -35.1                | ĮΨ                 | decomp.            | $PbS_{(e)}$                                                                    | -100.4               | -98.7                      | 91.2               |
| $Co(NO_3)_2 \cdot 3H_2O_{(8)}$       | -1325.9              | $NA^{\dagger}$              |                    | GeS <sub>(s)</sub>                                                      | -69.0                | -71.5              | 71.0               | ICl <sub>3(s)</sub>                        | -89.5                | -22.3              | 167.4              | $PbSO_{4(s)}$                                                                  | -919.0               | -813.2                     | 148.6              |
| $Co(NO_3)_2 \cdot 4H_2O_{(s)}$       | -1630.5              | $NA^{\dagger}$              |                    | $GeS_{2(s)}$                                                            | -189.5               | —NA <sup>†</sup> - | 0.00329            | $\mathrm{IBr}_{(\mathrm{s})}$              | -10.5                | $NA^{\dagger}$     | 138.1              | $PbCrO_{4(s)}$                                                                 | 9.668-               | -819.6                     | 152.7              |
| $Co(NO_3)_2 \cdot 6H_2O_{(s)}$       | -2211.2              | -1655.6                     | $NA^{\dagger}$     |                                                                         | Au                   |                    |                    | $I_2O_{5(s)}$                              | -158.1               | -38.0              | $NA^{\dagger}$     | Pb(CH <sub>3</sub> COO) <sub>2</sub> · 3 H <sub>2</sub> O <sub>(s)</sub>       |                      | -NA                        | 0.204              |
| $CoS_{(s)}$                          | -80.8                | -82.8                       | 67.4               | $Au_{(s)}$                                                              | 0                    | 0                  | 47.7               | $I_{(g)}^{-1}$                             | -196.6               | -221.9             | 169.1              | Pb(C <sub>2</sub> H <sub>5</sub> ) <sub>4(1)</sub>                             |                      | 336.4                      | 472.5              |
| $CoSO_{4(s)}$                        | -888.3               | -782.4                      | 118.0              | $\mathrm{Au}_{(\mathrm{g})}^{1+}$                                       | 1262.4               | $NA^{\dagger}$     | 174.7              |                                            | Fe                   |                    |                    |                                                                                | ij                   |                            |                    |
| $CoSO_{i}$ . $7 H_{i}O_{i}$          | 9 6266-              | -2473.8                     | 406 1              | Δ11 <u>H</u> /.,                                                        | 294.9                | 265.7              | 211 O              | Fezz                                       | O                    | O                  | 27.0               | T 12.5                                                                         | O                    | U                          | 28.4               |

| Table ?? (continued)                                                   | Standard           | thermody                         | namic fun            | Table ?? (continued) Standard thermodynamic functions at 1 atm and 298K.             | χ.                 |                              |                |                                         |                    |                              |                |                                                                       |                    |                              |                    |
|------------------------------------------------------------------------|--------------------|----------------------------------|----------------------|--------------------------------------------------------------------------------------|--------------------|------------------------------|----------------|-----------------------------------------|--------------------|------------------------------|----------------|-----------------------------------------------------------------------|--------------------|------------------------------|--------------------|
| Substance                                                              | $\Delta H_f^\circ$ | $\Delta G_f^\circ$               | $\Delta S^{\circ}$   | Substance                                                                            | $\Delta H_f^\circ$ | $\Delta G_f^\circ$           | abla S abla    | Substance                               | $\Delta H_f^\circ$ | $\Delta G_f^\circ$           | abla S abla    | Substance                                                             | $\Delta H_f^\circ$ | $\Delta G_f^\circ$           | $\Delta S^{\circ}$ |
|                                                                        | (KJ/mol)           | (KJ/mol) (KJ/mol) (J/mol·K)      | J/mol·K)             |                                                                                      | (KJ/mol)           | (KJ/mol) (KJ/mol) (J/mol· K) | J/mol· K)      |                                         | (KJ/mol) (         | (KJ/mol) (KJ/mol) (J/mol· K) | /mol· K)       |                                                                       | (KJ/mol)           | (KJ/mol) (KJ/mol) (J/mol· K) | /mol· K)           |
| $LiBr \cdot 2H_2O_{(s)}$                                               | -962.7             | -840.6                           | 162.3                | ${ m MgSiO}_{3({ m s})}$                                                             |                    | -11462.1                     | 67.7           | $\mathrm{NH_4OH}_{(1)}$                 | -361.2             | -254.1                       | 165.6          | $\mathrm{KHSO}_{4(\mathrm{s})}$                                       | -1160.6            | -1031.4                      | 138.1              |
| $\text{LiBrO}_{3(s)}$                                                  | -347.0             | $NA^{\dagger}$                   | 0                    | $Mg_2SiO_{4(s)}$                                                                     | -2174.0            | -2055.2                      |                | NH4NO3(s)                               | -365.6             | -184.0                       | 151.1          | $\widetilde{\mathrm{KH_2PO_4(s)}}$                                    | -1568.3            | -1415.9                      | 134.9              |
| $rac{	ext{Lil}(	ext{s})}{	ext{Lil}\cdot	ext{H}_2	ext{O}_{(	ext{s})}}$ | -2/0.4<br>-590.3   | -270.3<br>-531.4                 | 86.8<br>123.0        | $Mn_{(s)}$                                                                           | MN<br>0            | 0                            | 32.0           | $(NH_4)_2SO_4(s)$ $NH_4VO_{3(s)}$       | -1180.9<br>-1053.1 | -901.9<br>-888.3             | 220.1<br>140.6 | KMnO4(s)<br>K2CrO4(s)                                                 | -837.2<br>-1403.7  | -/3/.6<br>-1295.8            | 1/1./<br>200.1     |
| $LiI \cdot 2H_2O_{(s)}$                                                | -890.4             | -780.3                           | 184.0                | $Mn_{(g)}^{2+}$                                                                      | 2519.0             | $NA^{\dagger}$               |                | (e) c                                   | 0                  |                              |                | $K_2Cr_2O_{7(s)}$                                                     | -2061.4            | -1882.0                      | 291.2              |
| $LiI \cdot 3H_2O_{(s)}$                                                | -1192.1            | $\mathbf{N}\mathbf{A}^{\dagger}$ | 0.804                | $\operatorname{Mn}_{(\operatorname{aq})}^{2+}$                                       | -233.0             | -228.0                       | -74.6          | O <sub>2(g)</sub>                       | 0                  | 0                            |                | $KAI(SO_4)_{2(s)}$                                                    | -2470.2            | -2240.1                      | 204.6              |
| $LilO_{3(s)}$                                                          | -503.4             | $NA^{\dagger}$                   | 0.442                | $MnCl_{2(s)}$                                                                        | -481.3             | -440.5                       | 118.2          | $O_{3(g)}$ ozone                        | 142.7              | 163.2                        | 238.8          | KAI(SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O <sub>(s)</sub> | -6061.8            | -5141.7                      | 687.4              |
| $\text{Li}_2 O_{(\mathrm{s})}$                                         | -597.9             | -561.2                           | 37.6                 | $MnCl_2 \cdot H_2O_{(s)}$                                                            | -789.9             | -696.2                       | 174.1          | $OH_{(aq)}^{-1}$                        | -230.0             | -157.2                       | -10.8          |                                                                       | -5777.3            | $\mathrm{NA}^\dagger$        | 0.0441             |
| LiOH <sub>(s)</sub>                                                    | -484.4             | -439.0                           | 45.8                 | $MnCl_2 \cdot 2H_2O_{(s)}$                                                           | -1092.0            | -942.2                       | 218.8          |                                         | Ъ                  | ,                            |                |                                                                       | -249.8             | -129.7                       | 426.1              |
| $	ext{LiOH} \cdot 	ext{H}_2	ext{O}_{(\mathrm{s})}$                     | -788.0             | -681.0<br>-1132 1                | 71.2<br>90.4         | $\mathrm{MnCl}_2\cdot 4\mathrm{H}_2\mathrm{O}_{\mathrm{(s)}}$ $\mathrm{MnRr}_{2(s)}$ | -1687.4<br>-384 9  | -1423.8<br>-365.7            | 303.3<br>138.0 | $P(s)$ , white $P_{A(s)}$               | 0<br>314 5         | 0<br>278.3                   | 41.1           | $K_4$ Fe(CN) $_{6(s)}$ K $_4$ Fe(CN) $_{6(s)}$                        | -594.1<br>-1466.5  | -453.1                       | 418.8<br>593.7     |
| Li2CO3(s)<br>LiHCO3(s)                                                 | -969.6             | -880.9                           | 123.4                | $MnBr_2 \cdot H_2O_{(6)}$                                                            | -705.0             | NA†                          | 100.0          | $_{14(g)}^{14(g)}$                      | 5.4                | 13.4                         |                |                                                                       | Rb                 | 0./011-                      |                    |
| $\text{Li}_3 N_{(s)}$                                                  | -199.0             | -155.4                           | 37.7                 | s)                                                                                   | -1590.3            | -1292.4                      | 291.6          | $_{\mathrm{PH_4I_{(s)}}}^{\mathrm{FF}}$ | 6.69-              | 0.8                          | 123.0          | $Rb_{(g)}^+$                                                          | 490.1              | NA†                          | 164.2              |
| $\mathrm{LiNO}_{3(\mathrm{s})}$                                        | -483.1             | -381.2                           | 0.06                 | $Mnl_{2(aq)}$                                                                        | -331.0             | -250.6                       | 152.7          | ${ m PF}_{3({ m g})}$                   | -918.8             | -897.5                       | 273.1          | $ m RbH_{(s)}$                                                        | -52.1              | -32.2                        | $NA^{\dagger}$     |
| LiNO <sub>3</sub> ·3H <sub>2</sub> O <sub>(s)</sub>                    | -1374.4            | -1103.7                          | 223.4                | $Mnl_2 \cdot 2H_2O_{(s)}$                                                            | -842.7             | $NA^{\dagger}$               | $NA^{\dagger}$ | $\mathrm{PF}_{5(\mathrm{g})}$           | -1595.8            | $NA^{\dagger}$               | 281.0          | RbF <sub>(s)</sub>                                                    | -557.7             | -523.4                       | 82.1               |
| $\mathrm{Li}_2\mathrm{SO}_{4(\mathrm{s})}$                             | -1436.5            | -1321.8                          | 115.1                | $\mathrm{Mnl}_2\cdot 4\mathrm{H}_2\mathrm{O}_{\mathrm{(s)}}$                         | -1438.9            | $NA^{\dagger}$               | $NA^{\dagger}$ | PCl <sub>3(1)</sub>                     | -319.7             | -272.4                       | 217.1          | $RbCl_{(s)}$                                                          | -435.3             | -407.8                       | 95.9               |
| $\mathrm{Li}_2\mathrm{SO}_4\cdot\mathrm{H}_2\mathrm{O}_{(\mathrm{s})}$ | -1735.5            | _                                | 163.6                | $MnO_{(s)}$                                                                          | -385.2             | -362.9                       | 59.7           | $PCI_{5(s)}$                            | -443.5             | NA                           | 166.5          | RbClO <sub>3(s)</sub>                                                 | -402.9             | -300.4                       | 151.9              |
| $\text{Li}_{3}\text{PO}_{4(s)}$                                        | -2095.8            | - AZ                             | 0.000257             |                                                                                      | -542.7             | 1283.2                       | 191.0          | POCl <sub>3(1)</sub>                    | -597.1             | -520.9                       | 222.5          | RbClO <sub>4(s)</sub><br>PbB <sub>x(s)</sub>                          | -437.2             | -307.7                       | 164.0              |
| LIMIT4(s)                                                              | C.011-             |                                  | /0./                 | Mm3O4(s)                                                                             | 0./061-            | -1205.2                      | 133.0          | PDF3(l)                                 | -104.3             | -1/3./<br>NIA †              | 240.2          | NDDr(s)                                                               | 267.0              | 0.100-                       | 110.0              |
| Moz                                                                    | g <sub>M</sub> o   | C                                | 32 5                 | $MnO_{2(s)}$                                                                         | -520.0             | -001.2                       | 53.1           | $_{ m FDI5(s)}^{ m FDR}$                | -209.9<br>-458.6   | -1430 5                      | uecomp.<br>NA† | NDDIO3(s)<br>RhI                                                      | -333.8             | -270.1                       | 118.4              |
| $M_{\sigma^{2+}}^{(4)}$                                                | -466.9             | -454.8                           | -138.1               | Mn(OH) <sub>2(s)</sub>                                                               | -695.4             | -615.0                       | 99.7           | $P_4O_{\epsilon(c)}$                    | -1640.1            |                              | decomp         | $\mathrm{RhIO}_{2G_2}$                                                | Z Z                | -426.3                       | Z A                |
| MoFee                                                                  | -1123.4            | -1070 3                          | 57.7                 | MnCO                                                                                 | -894 1             | -816.7                       | χ<br>ί κ       | $P_4O_{16\%}$                           | -2984 0            | ~                            | 7280           | RbOH.                                                                 | 418.2              | NAT                          | 24.1               |
| $M_{\sigma}C_{2(s)}$                                                   | -6413              | -591.8                           | 5.76<br>9.68         |                                                                                      | -576.3             | -503.3                       | 168.6          | $P_3S_{E(c)}$                           | 251.0              |                              | insoluble      | $\text{RbOH} \cdot \text{H}_2 \mathcal{O}_{\mathbb{C}_2}$             | -748.9             | ΥN                           | 7.1                |
| $M_2^{C(1,c)}$                                                         | 9.996-             | -861.8                           | 137.2                | H,O(e)                                                                               | -2371.9            | -1809.6                      | NA†            | (S)C-7                                  | Z.1.52             |                              | TISOI MENT     | RbOH · 2 H <sub>2</sub> O <sub>(s)</sub>                              | -1053.2            | ZY<br>V                      |                    |
| $M_{\rm gCl_2}^{\rm gc} \cdot 2H_{\rm 2O(s)}^{\rm gc}$                 | -1279.7            | -1118.1                          | 179.9                |                                                                                      | -214.2             | -218.4                       | 78.2           | $K_{(s)}$                               | 0                  | 0                            | 64.2           | $Rb_2CO_{3(s)}$                                                       | -1136.0            | -1051.0                      | 181.4              |
| $ m MgCl_2 \cdot 4H_2O_{(s)}$                                          | -1898.9            | -1623.5                          | 264.0                | (s)                                                                                  | -1065.2            | -957.4                       | 112.1          | $ m K_{(g)}^{+}$                        | 514.3              | 481.2                        | 154.4          | RbHCO <sub>3(s)</sub>                                                 | -936.2             | -893.6                       | 121.3              |
| $MgCl_2 \cdot 6H_2O_{(s)}$                                             | -2499.0            | -2115.0                          | 366.1                |                                                                                      | -1376.5            | -1214.6                      | NA⊤            | $KF_{(s)}$                              | -567.3             | -537.8                       | 9.99           | RbNO <sub>3(s)</sub>                                                  | -495.1             | -395.8                       | 147.3              |
| $Mg(CIO_4)_{2(s)}$                                                     | -568.9             | -432.2                           | 213.0                |                                                                                      | -2258.1            | -1908.3                      | ΝΑ             | KF · 2 H <sub>2</sub> O <sub>(s)</sub>  | -1163.6            | -1021.6                      | 155.2          | $\stackrel{\mathrm{Rb}_2S_{(\mathrm{s})}}{=}$                         | -360.7             | -339.0                       | 134.0              |
| $Mg(CIO_4)_2 \cdot 2 H_2O_{(s)}$                                       | -1218.7            | A<br>Z<br>Z                      |                      | $MnSO_4 \cdot 5H_2O_{(s)}$                                                           | -2553.1            | -2140.0                      | NA             | KCl <sub>(s)</sub>                      | -436.7             | -409.2                       | 82.6           | $Rb_2SO_{4(s)}$                                                       | -1435.6            | -1317.0                      | 197.4              |
| $Mg(CIO_4)_2 \cdot 4 H_2O(s)$<br>$Mg(CIO_4)_2 \cdot 6 H_2O(s)$         | -1837.2<br>-2445.5 | -1863<br>-1863                   | 520.9                | $H_{\sigma_{\alpha}}$                                                                | S<br>L<br>C        | C                            | 76.1           | KCIO <sub>3(s)</sub>                    | -597.7<br>-437.8   | -296.3                       | 143.1<br>151.0 | KBH5O4(s)                                                             | -1158.9<br>Sc      | -1050.1                      | NA                 |
| MgBr <sub>2(s)</sub>                                                   | -524.3             | -503.8                           |                      | $H_{\mathcal{C}_{(g)}}$                                                              | 61.32              | -178.6                       | 146.0          | KBr <sub>(s)</sub>                      | -393.8             | -380.7                       | 95.9           | Sc/2+                                                                 | 4627.0             | NA                           | 156.3              |
| $MgBr_2 \cdot 6H_2O_{(s)}$                                             | -2410.0            | -2056.0                          |                      | $H_{\mathbf{S}(g)}^{2+}$                                                             | 2890.4             | $NA^{\dagger}$               | 174.9          | $\overline{\mathrm{KBrO}_{3(s)}}$       | -360.2             | -271.2                       | 149.2          | $\operatorname{ScF}_{3(s)}$                                           | -1629.2            | -1555.6                      | 92.0               |
| $ m MgI_{2(s)}$                                                        | -364.0             | -358.2                           |                      | $\mathrm{Hg2}^{2,\mathrm{(aq)}}_{2}$                                                 | 172.3              | 153.6                        | 84.5           | $\mathrm{KBrO}_{4(\mathrm{s})}$         | -287.9             | -174.5                       | 170.1          | $ScCl_{3(s)}$                                                         | -925.1             | -858.0                       | 127.2              |
| ${ m MgO}_{(s)}$                                                       | -601.7             | -569.4                           |                      | $H_{\rm g2F_2(s)}^{\rm F2F_2(s)}$                                                    | -485.0             | -435.6                       | 160.7          | Z<br>Z<br>Z                             | -327.9             | -324.9                       | 106.3          | $Sc_2O_{3(s)}$                                                        | -1908.8            | -1819.4                      | 77.0               |
| Mg(Ort)2(s)                                                            | -924.3             | -033.0                           | 65.7                 | ⊓g2⊂l2(s),calomel<br>HαCl2(s)                                                        | -203.2             | -210.8                       | 146.0          | NO3(s)<br>KIO4(s)                       | -501.4<br>-467.2   | -416.4<br>-361.4             | 176.0          | Sign                                                                  | ಸ c                | C                            | 19.0               |
| MonNac                                                                 | -460 7             | -406.0                           |                      | HorBry                                                                               | -206.9             | -181 1                       | 218.0          | K2O(2)                                  | -361 4             | NA†                          | N P            | SiH <sub>1(2)</sub>                                                   | 34.3               | 56.9                         | 204 5              |
| $ m Mg(NO_3)_{2(s)}$                                                   |                    | -589.5                           | 164.0                | $^{1.52}_{152(s)}$<br>$^{1.52}_{15(s)}$                                              | -170.7             | -153.1                       | 172.0          | $KO_{2(s)}$                             | -284.9             | -239.5                       |                | $SiF_{4(g)}$                                                          | -1614.9            | -1572.7                      | 282.4              |
| Mg(NO <sub>3</sub> ) <sub>2</sub> ·2H <sub>2</sub> O <sub>(s)</sub>    | -1409.2            | $NA^{\dagger}$                   | soluble              | $H_{\rm S2I_2(s)}$                                                                   | -121.3             | -111.0                       | 233.5          | $KOH_{(s)}$                             | -424.8             | -379.1                       |                | $SiCl_{4(1)}$                                                         | -687.0             | -619.9                       | 239.7              |
| $Mg(NO_3)_2 \cdot 6H_2O_{(s)}$                                         |                    | -2080.7                          | 452.0                | HgI <sub>2(s)</sub>                                                                  | red                | -105.4                       | -101.7         | KOH 2 H <sub>2</sub> O <sub>(s)</sub>   | -1051.0            | -887.4                       |                | SiCl <sub>4(g)</sub>                                                  | -657.0             | -617.0                       | 330.6              |
| Mg5(s)<br>Mg5(04(s)                                                    | -346.0<br>-1284.9  | -341.8                           | 50.3<br>91.6         | HgO(s),red<br>Hg(OH)                                                                 | -90.8<br>-355.2    | -58.6<br>-274.9              | 142.3          | K2CO3(s)<br>KHCO3(s)                    | -11511.0<br>-963.2 | -1063.6<br>-863.6            | 155.5<br>115.5 | SiBr <sub>4(1)</sub>                                                  | -457.3<br>-415.4   | -443.9<br>-431.8             | 277.8<br>377.8     |
| $MgSO_4 \cdot 2H_2O_{(s)}$                                             |                    | -1376.5                          | NA↑                  | $Hg_2(NO_3)_2 \cdot 2H_2O_{(s)}$                                                     | -868.2             | -563.2                       | NA⊤            | $KNO_{2(s)}$                            | -369.8             | -306.6                       |                | SiO <sub>(g)</sub>                                                    | -96.6              | -126.3                       | 211.5              |
| $MgSO_4 \cdot 4H_2O_{(s)}$                                             | -2496.6            | -2138.9                          | $NA^{\dagger}$       | HgS <sub>(s),black</sub>                                                             | -53.6              | -47.7                        | 88.3           | $KNO_{3(s)}$                            | -494.6             | -349.9                       |                | SiO <sub>2(s), quartz</sub>                                           | -910.9             | -856.7                       | 41.8               |
| $M_{\rm SO_4}^{\rm SO_4 \cdot 6H_2O_{(\rm s)}}$                        | -3086.9            | -2632.2                          | 348.1                | HgS <sub>(s),red</sub>                                                               | -58.2              | -50.6                        | 82.4           | KCN <sub>(s)</sub>                      | -113.0             | -101.9                       | 128.5          | $SiO_{2(s)}$                                                          | -909.5             | -855.9                       | 42.7               |
| Mg5O4 · / H2O(s)                                                       | 70000-             |                                  | 37.2.U<br>7.4.2.10-5 | 1182504(s)                                                                           | 707                | 670.9                        | 1450           |                                         | 200.7              | -1/0.5                       |                | SIO <sub>2(s)</sub>                                                   | 1.60%-             | 503.3                        | 45.5<br>16 F       |
| Mg3(PO4)2 · 2 H2O(s)<br>Mg2Si(s)                                       | -4022.9<br>-77.8   | NA'<br>-75.0                     | 75.0 × 75.0 × 75.0   | пgэО4(s)                                                                             | c:///.             | 0.086-                       | 142.0          | K25(s)<br>K25O <sub>4(s)</sub>          | -380./<br>-1437.8  | -364.0<br>-1321.4            | 104.6<br>175.6 | $SIC_{(s)}$                                                           | -62.8<br>-207.1    | -60.2<br>-175.3              | 16.3<br>66.9       |
| (v) =0                                                                 |                    |                                  |                      |                                                                                      |                    |                              |                | (A) + I                                 |                    |                              |                | (c)-                                                                  |                    |                              |                    |

| 7) |
|----|
|    |
|    |

|                                        | A TTO                           | V V                                                                                                     | 000              | TA TTA A COLO A | ATTO                                                          | V 🗸                   | 000                 |                                                   | A TTO                           | A 070                                                                                               | 000              |                                    | A LTO                          | 0 V                                                                                                     | •                 |
|----------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|---------------------|---------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|------------------|------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|
|                                        | $\Delta H_{	ilde{f}}$           | $\Delta H_{	ilde{f}} = \Delta G_{	ilde{f}} = \Delta S_{	ilde{c}}$<br>KI/mol) (KI/mol) (I/mol $\cdot$ K) | Δ5°<br>[/mol· K) | Substance (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta H_{	ilde{f}} = \Delta G_{	ilde{f}}$ (KI/mol) (KI/mol) | $\Delta G_{	ilde{f}}$ | Δ.S.²<br>(I/mol· K) | Substance                                         | $\Delta H_{\tilde{f}}$ (KI/mol) | $\Delta H_f^{ m j} = \Delta G_f^{ m j} = \Delta S_{ m c}^{ m v}$ KI/mol) (KI/mol) (I/mol $\cdot$ K) | ASČ<br>T/mol K   | Substance                          | $\Delta H_{	ilde{f}}$ (KI/mol) | $\Delta H_{	ilde{f}} = \Delta G_{	ilde{f}} = \Delta S_{	ilde{c}}$<br>KI/mol) (KI/mol) (I/mol $\cdot$ K) | Δ5°<br>[/mol· K)  |
|                                        | L                               | +                                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                       | i<br>L              | 44                                                |                                 | +                                                                                                   |                  | 1                                  |                                | +                                                                                                       |                   |
| I                                      | 10428.5                         | NA                                                                                                      | 8.677            | Na <sub>2</sub> S <sub>2</sub> O <sub>3(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1123.0                                                       | -1028.0               | 155.0               | $\operatorname{sn}_{(\mathrm{g})}^{(\mathrm{g})}$ | 9323.2                          | NA                                                                                                  | 168.4            | (g)<br>(g)                         | 9943.3                         | NA.                                                                                                     | 169.3             |
|                                        | Ag                              |                                                                                                         |                  | $Na_2S_2O_3 \cdot 5H_2O_{(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2607.9                                                       | -2230.1               | 372.4               | $\mathrm{SnH}_{4(g)}$                             | 162.8                           | 188.2                                                                                               | 227.6            | $\mathrm{VF}_{4(\mathrm{s})}$      | -1403.3                        | $NA^{\dagger}$                                                                                          |                   |
|                                        | 0                               | 0                                                                                                       | 42.6             | $Na_3PO_{4(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1917.4                                                       | -1788.9               | 173.8               | $SnCl_{2(s)}$                                     | -325.1                          | $NA^{\dagger}$                                                                                      | 1.42             | $VF_{5(l)}$                        | -1480.3                        | -1373.2                                                                                                 | 175.7             |
|                                        | 1019.2                          | $NA^{\dagger}$                                                                                          | 167.2            | $Na_2SiO_{3(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1554.9                                                       | -1461.0               | 113.8               | $SnCl_2 \cdot 2H_2O_{(s)}$                        | -921.3                          | -787.8                                                                                              | $NA^{\dagger}$   | $VF_{5(g)}$                        | -1433.8                        | -1369.8                                                                                                 | 320.8             |
|                                        | 105.2                           | 77.1                                                                                                    | 72.7             | $Na_2B_4O_{7(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3291.1                                                       | -3096.2               | 189.2               | SnCl <sub>4(1)</sub>                              | -511.3                          | -440.2                                                                                              | 258.6            | $VCl_{2(s)}$                       | -452.0                         | -406.0                                                                                                  | 97.1              |
| AgF(s)                                 | -204.6                          | -186.6                                                                                                  | 80.1             | Na2B4O7 · 10 H2O(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6288.6                                                       | -5516.6               | 585.5               | $\widetilde{\operatorname{SnBr}}_{2(s)}$          | -243.5                          | -250.6                                                                                              | 146.0            | VCl <sub>3(s)</sub>                | -580.7                         | -511.3                                                                                                  | 131.0             |
| •                                      | 8.008                           | -671.1                                                                                                  | 174.9            | NaNH <sub>2(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -123.8                                                        | -64.0                 | 6.97                | $\operatorname{SnBr}_{4(\mathrm{s})}$             | -377.4                          | -350.2                                                                                              | 264.4            | VCI <sub>4(I)</sub>                | -569.4                         | -503.7                                                                                                  | 255.2             |
| Ì                                      | -1388.3                         | -1147.3                                                                                                 | 268.0            | ć                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sr                                                            | -                     |                     | $\mathrm{SnBr_4\cdot 8H_2O_{(s)}}$                | -276.8                          | $NA^{\dagger}$                                                                                      |                  | $VBr_{2(s)}$                       | -365.3                         | ΝAŢ                                                                                                     | 126.0             |
|                                        | 127.1                           | -109.8                                                                                                  | 96.2             | $\mathrm{Sr}_{(\mathrm{g})}^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1790.6                                                        | $NA^{\dagger}$        | 164.6               | $\mathrm{SnI}_{2(\mathrm{s})}$                    | -143.5                          | -145.2                                                                                              | 168.6            | $VBr_{3(s)}$                       | -433.5                         | $NA^{\dagger}$                                                                                          | 142.0             |
|                                        | -25.5                           | 61.7                                                                                                    | 149.4            | $\mathrm{Sr}ar{\mathrm{F}}_{2(\mathrm{s})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1216.3                                                       | -1164.8               | 82.1                | $SnO_{(s)}$                                       | -285.8                          | -256.9                                                                                              | 56.5             | $\mathrm{VBr}_{4(\mathrm{g})}$     | -336.8                         | $NA^{\dagger}$                                                                                          | 335.0             |
|                                        | -31.1                           | 77.0                                                                                                    | ŅĀ               | $\Pr_{\widetilde{\Omega}^{(s)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -828.9                                                        | -781.2                | 114.9               | $\tilde{\mathrm{SnO}}_{\mathrm{2(s)}}$            | -580.7                          | -519.7                                                                                              | $\frac{52.3}{2}$ | $\overline{\mathrm{VI_{2(s)}}}$    | -251.5                         | $NA^{\dagger}$                                                                                          | 143.1             |
| AgBr(s)                                | .100.4                          | -96.9                                                                                                   | 107.1            | $\frac{\operatorname{SrCl}_2 \cdot \operatorname{H}_2\operatorname{O}_{(\mathrm{s})}}{\operatorname{SrCl}_2 \cdot \operatorname{H}_2\operatorname{O}_{(\mathrm{s})}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1136.8                                                       | -1036.4               | 172.0               | SnS <sub>(s)</sub>                                | -100.0                          | -98.3                                                                                               | 77.0             |                                    | -431.8                         | -404.2                                                                                                  | 38.9              |
|                                        | 7.7<br>2.7<br>2.7<br>4.7<br>7.7 | 24.4<br>-66.2                                                                                           | 115.5            | SrCl <sub>2</sub> ·2H <sub>2</sub> O(s)<br>SrCl <sub>2</sub> ·6H <sub>2</sub> O(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1438.0                                                       | -1282.0<br>-2241.2    | 390.8               | Sh(5O4)2(s)                                       | -1629.2<br>Ti                   | -1443.0                                                                                             | 7.661            | V <sub>2</sub> O <sub>3(s)</sub>   | -1228.0                        | -1139.3<br>-1419.6                                                                                      | 78.5<br>131.0     |
| 75€-(S)<br>AgnO(S)                     | -31.0                           | -11.2                                                                                                   | 121.3            | $Sr(ClO_4)_{2(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0202                                                        | NA†                   | 2471                | T;2+                                              | 2450 6                          | NA                                                                                                  |                  | (s)c~7.                            | χρ                             | 0./111                                                                                                  | 0:101             |
| 3                                      | 505 8                           | -436.8                                                                                                  | 167.4            | $Sr(Sr_{24})_{2(5)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -717.6                                                        | -697                  | 135.1               | (%)<br>(%)<br>(%)                                 | 0.0012                          | TAN                                                                                                 |                  | ХоБо                               | -133.0                         | 8 69-                                                                                                   | 133.0             |
|                                        | -124.4                          | -33.5                                                                                                   | 140.9            | $\frac{\operatorname{SrL}_{2(s)}}{\operatorname{SrL}_{(s)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -558.1                                                        | -562.3                | 159.0               | Ti H2.                                            | -119.7                          | -80.3                                                                                               | 29.1             | $XeF_{A(s)}$                       | -261.5                         | -121.3                                                                                                  | 146.4             |
|                                        | 146.0                           | 156.9                                                                                                   | 107.2            | $\mathrm{SrI}_2\cdot\mathrm{H}_2\mathrm{O}_{(\mathrm{s})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -886.0                                                        | NA                    |                     | $\text{TiCl}_{2(s)}$                              | -513.8                          | -464.4                                                                                              | 87.4             | $XeF_{6(s)}$                       | -380.7                         | $NA^{\dagger}$                                                                                          |                   |
|                                        | -29.4                           | -39.5                                                                                                   | 150.6            | $\mathrm{SrI}_2\cdot 2\mathrm{H}_2\mathrm{O}_{(\mathrm{s})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1182.4                                                       | $NA^{\dagger}$        |                     | $\mathrm{TiCl}_{3(\mathrm{s})}$                   | -720.9                          | -653.5                                                                                              | 139.7            | $XeO_{3(s)}$                       | 401.7                          | $\mathrm{NA}^{\dagger}$                                                                                 |                   |
| Ag2SO <sub>4(s)</sub>                  | -715.9                          | -618.5                                                                                                  | 200.4            | $Srl_2 \cdot 6H_2O_{(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2388.6                                                       | NA                    |                     | TiCl <sub>4(s)</sub>                              | -804.2                          | -737.2                                                                                              | 252.3            |                                    | Zu                             |                                                                                                         |                   |
|                                        | .712.1                          | -621.7                                                                                                  | 216.7            | $\overset{\mathbf{Sr}(\mathrm{IO}_3)_{2(\mathrm{s})}}{\widehat{\mathfrak{e}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1019.2                                                       | -855.2                | 234.0               | ${ m TiBr}_{ m 2(s)}$                             | -402.0                          | -375.0                                                                                              | 130.1            | $Z_{n(s)}$                         | 0                              | 0 ;                                                                                                     | 41.6              |
|                                        | Na                              |                                                                                                         |                  | $\mathrm{SrO}_{\mathrm{(s)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -592.0                                                        | -561.9                | 54.4                | ${ m Ti}{ m Br}_{3({ m s})}$                      | -548.5                          | -523.8                                                                                              | 176.6            | $Zn_{(g)}^{2+}$                    | 2782.7                         | $NA^{T}$                                                                                                | 160.9             |
|                                        | 0                               | 0                                                                                                       | 51.0             | $\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{s})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -959.0                                                        | -869.4                | 88.0                | ${ m TiBr}_{4({ m s})}$                           | -616.7                          | -589.5                                                                                              | 243.5            | $\mathrm{Zn}^{2+}_{\mathrm{(aq)}}$ | -153.9                         | -147.1                                                                                                  | -112.1            |
|                                        | 0.609                           | $NA^{\dagger}$                                                                                          | 147.9            | $\mathrm{Sr}(\mathrm{OH})_2\cdot 8\mathrm{H}_2\mathrm{O}_{(\mathrm{S})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3352.2                                                       | $NA^{\dagger}$        | 0.00655             | $\mathrm{TiI}_{\mathrm{2(s)}}$                    | -263.0                          | -270.1                                                                                              | 147.7            | $\mathrm{ZnF}_{2(\mathrm{s})}$     | -764.4                         | -449.5                                                                                                  | 73.7              |
| 1                                      | -240.1                          | -261.9                                                                                                  | 59.0             | $\mathrm{SrCO}_{3(\mathrm{s})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1220.1                                                       | -1104.4               | 97.1                | ${ m TiI}_{4({ m s})}$                            | -375.7                          | -371.5                                                                                              | 249.4            | $ZnCl_{2(s)}$                      | -415.1                         | -369.4                                                                                                  | 111.5             |
|                                        | -56.1                           | -33.5                                                                                                   | 40.0             | $Sr(HCO_3)_{2(aq)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1927.9                                                       | -1731.3               | 150.6               | $\widetilde{\mathrm{TiO}}_{Z(\mathrm{s})}$        | -939.7                          | -884.5                                                                                              | 49.9             | $ZnBr_{2(s)}$                      | -328.7                         | -312.1                                                                                                  | 138.5             |
| NaF(s)                                 | 573.6                           | -543.5                                                                                                  | 51.5             | Sr(NO <sub>3</sub> ) <sub>2(s)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -978.2                                                        | -780.1                | 194.6               | Ti <sub>2</sub> O <sub>3(s)</sub>                 | -1520.9<br>W                    | -1434.3                                                                                             | 78.9             | Znl <sub>2(s)</sub>                | -208.0                         | -208.9                                                                                                  | 161.1<br>13.6     |
| 3                                      | -365.8                          | -364.2<br>-262.2                                                                                        | 123.4            | 51(1403)2 · ±1.120(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -453.1                                                        | -17.50.7              | 589.0<br>789        | $M^+$                                             | 1625 9                          | Ϋ́Α                                                                                                 |                  | ZnCO <sub>2(2)</sub>               | -812.8                         | -7316                                                                                                   | 5.7<br>5.4<br>7.0 |
|                                        | 2000                            | 1 1 2 1                                                                                                 | 1,00             | C.CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1452 1                                                        | 1241.0                | 1170                | (g)<br>IA/E                                       | 17477                           | 1757                                                                                                | 1<br>1           | Zn(NIO-)-                          | 7007                           | - VIV                                                                                                   | i                 |
|                                        | 361.1                           | -349.0                                                                                                  | 247.3<br>86.8    | 313O4(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1405.1<br>S                                                  | -1341.0               | 0.711               | WCl2(2)                                           | -1747.7                         | -1031.4                                                                                             | 130.2            | Zn(NO3)2(s)<br>Zn(NO3)2 · 6 H2O(2) | -23066                         | -1773.1                                                                                                 | 456 9             |
| NaBr · H <sub>2</sub> O <sub>(s)</sub> | -951.9                          | -828.4                                                                                                  | 179.1            | S(s), rhombic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 0                                                           | 0                     | 31.8                | WCl <sub>4(s)</sub>                               | -467.0                          | -303.1                                                                                              | 344.5            | $ZnS_{(s),wurtzite}$               | -192.6                         | -187.0                                                                                                  | 57.7              |
| ·                                      | -344.1                          | -242.8                                                                                                  | 128.9            | $S_{(aq)}^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.1                                                          | 82.8                  | -14.6               | $WCl_{6(s)}$                                      | -682.5                          | -548.9                                                                                              | 254.0            | ZnS(s),blende                      | -206.0                         | -201.3                                                                                                  | 65.3              |
|                                        | -287.8                          | -286.1                                                                                                  | 98.5             | $	ext{SF4}_{(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -774.9                                                        | -731.4                | 291.9               | $\mathrm{WBr}_{6(\mathrm{s})}$                    | -348.5                          | -328.0                                                                                              | 472.0            | $ZnSO_{4(s)}$                      | -982.8                         | -874.5                                                                                                  | 119.7             |
|                                        | -481.8                          | $NA^{\dagger}$                                                                                          | 135.1            | $\mathrm{SF}_{6(\mathrm{g})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1209.0                                                       | -1105.4               | 291.7               | $WO_{3(s),wolfamite}$                             | -842.9                          | -764.1                                                                                              | 75.9             | $ZnSO_4 \cdot 7 H_2O_{(s)}$        | -3077.8                        | -2563.1                                                                                                 | 388.7             |
| $NaIO_3 \cdot H_2O_{(s)}$ -            | -779.5                          | -634.1                                                                                                  | 162.3            | $\mathrm{SCl}_{2(\mathrm{g})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -19.7                                                         | $NA^{\dagger}$        | 282.2               | $WS_{2(s)}$                                       | -209.0                          | $NA^{\!\scriptscriptstyle \downarrow}$                                                              | 84.0             |                                    |                                |                                                                                                         |                   |