МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Машинное обучение»

Тема: Кластеризация (DBSCAN, OPTICS)

Студент гр. 6307	 Новиков Б.М.
Преподаватель	 Жангиров Т.Р.

Загрузка данных

1. загрузить датасет с сайта, потом загрузить его в датафрейм.

2		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF.
	0	40.900749	0.818182	95.40	0.00
	1	3202.467416	0.909091	0.00	0.00
	2	2495.148862	1.000000	773.17	773.17
	4	817.714335	1.000000	16.00	16.00
	5	1809.828751	1.000000	1333.28	0.00
	8943	5.871712	0.500000	20.90	20.90
	8945	28.493517	1.000000	291.12	0.00
	8947	23.398673	0.833333	144.40	0.00
	8948	13.457564	0.833333	0.00	0.00
	8949	372.708075	0.666667	1093.25	1093.25
		_			

DBSCAN

1. Стандартизировать данные.

```
min_max_scaler = preprocessing.StandardScaler()
scaled_data = min_max_scaler.fit_transform(data)
array([[-0.74462486, -0.37004679, -0.42918384, ..., -0.30550763,
        -0.53772694, 0.35518066],
       [0.76415211, 0.06767893, -0.47320819, \ldots, 0.08768873,
       0.21238001, 0.35518066],
[ 0.42660239, 0.50540465, -0.11641251, ..., -0.09990611,
        -0.53772694, 0.35518066],
       [-0.75297728, -0.29709491, -0.40657175, \ldots, -0.32957217,
         0.30614422, -4.22180042],
       [-0.75772142, -0.29709491, -0.47320819, \ldots, -0.34081076,
         0.30614422, -4.22180042],
       [-0.58627829, -1.09958965, 0.03129519, ..., -0.32709767,
        -0.53772694, -4.22180042]])
```

2. Провести кластеризацию методом DBSCAN. Вывести метки кластеров, количество кластеров, процент некластеризированных наблюдений. Опишите все параметры, которые принимает DBSCAN

```
clustering = DBSCAN().fit(scaled_data)
Метки: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1}
Количество меток: 36
```

Процент некластер. Наблюд.: 0.7512737378415933

параметр eps	описание Максимальное расстояние между двумя сэмплами, означающее что точка в
min_samples	окрестности у другой Количество сэмплов в окрестности, чтобы считать точку основной
metric	Метрика, используемая для вычисления
	расстояния
metric_params	Дополнительный параметр для метрики
algotithm	Алгоритм, используемый в модуле
	NearestNeighbors
leaf_size	Размер листа, параметр, который
	передается в BallTree или cKDTree
p	Степень метрики Минковского
n_jobs	Количество потоков для исполнения

3. График количества кластеров и процента некласт. наблюдений в зависимости от максимальной дистанции.

4. График количества кластеров и процента некласт. наблюдений в зависимости от минимального количества точек, образующих кластер.

5. Значения параметров, при которых количество кластеров 5-7, процент некласт. 12%

clustering = DBSCAN(eps=2, min_samples=3).fit(scaled_data)

Количество: 6

Процент: 6.287633163501621

6. Понизить размерность данных до 2. Визуализировать результаты кластеризации.

OPTICS

1. Описать параметры и атрибуты OPTICS

Параметр Описание

min_samples Количество семплов в окрестности, чтобы

точка считалась основной точкой

max_eps Максимальное расстояние между двумя

семплами, чтобы они считались в окрестности

у друг друга

теtric Метрика для вычисления расстояния р Параметр для метрики Минковского

metric_params Дополнительные параметры для метрик

cluster_method Метод извлечения кластеров

ерs Тоже самое, что и max_eps, но для метода

извлечения кластеров DBSCAN

хі Определяет минимальную крутизну на

графике достижения

predecessor_correction Исправляет кластеры с учетом вычисленного

предшественниками

min_cluster_size Минимальное число сэмплов в кластере algorithm Алгоритм для вычисления ближайших

соседей

leaf_size Размер листа, параметр, который

передается в BallTree или cKDTree

n_jobs Количество потоков исполнения

2. Найти параметры OPTICS, чтобы были близки к тем, что получены с DBSCAN. Описать различие методов.

clustering = OPTICS(max_eps=2, min_samples=3,
cluster_method='dbscan').fit(scaled_data)

Метки: {0, 1, 2, 3, 4, 5, -1} Количество кластеров: 6

Процент некласт.: 6.310792033348773

В отличии от DBSCAN, сохраняет иерархию кластеров для разных радиусов внутри окрестностей. Больше подходит для использования на больших датасетах.

3. Визуализировать полученный результат, а также построить график достижимости

4. Исследовать работу метода с использованием различных метрик

cityblock - манхеттанское расстояние

Метки: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, -1}

Кол-во меток: 55

Процент некласт: 39.49745252431681

Метки: {0} Кол-во меток: 0 Процент некласт: 0.0

Метки: {0, 1, -1} Кол-во меток: 2

Процент некласт: 1.331635016211209

Метки: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, -1}

Кол-во меток: 55

Процент некласт: 39.49745252431681

Метки: {0} Кол-во меток: 0 Процент некласт: 0.0