

Primeiro Trabalho Prático - Valor: 10 pontos

Curso: Ciência da Computação – Campus UFV-Florestal CCF 251 – Introdução aos Sistemas Lógicos Digitais

Monitor: Lucas Ferreira S. Duarte Prof. José Augusto Miranda Nacif

O Código Morse é um sistema binário de representação e comunicação composto por todos os números e letras do alfabeto, além de sinais de pontuação. Os caracteres são representados através de uma combinação específica de pontos e traços, conforme exposto na Figura 1. Para formar palavras, basta realizar a combinação correta dos símbolos.



Figura 1. Padrão internacional do Código Morse

Este trabalho prático consiste na implementação de um codificador Morse capaz de converter um número (de 0 a 9) em seu sinal correspondente em código Morse. A linguagem de descrição de hardware **Verilog** deverá ser utilizada para descrever o circuito tanto em ambiente virtual (simulação) quanto em ambiente físico (FPGA).

## 1. Descrição do trabalho

O objetivo primordial é a implementação de dois módulos: *número* e *transmissão*. O primeiro módulo, representado na figura 2, será responsável por receber uma sequência binária (de 0 a 9) e retornar a sequência de *bits* equivalente ao Código Morse, conforme o padrão apresentado na figura 1. A descrição dos sinais é apresentada na Tabela 1.

O segundo módulo será responsável por receber a sequência de *bits* proveniente do primeiro e transmiti-la ao meio de saída desejado (ao *testbench* em simulação e ao FPGA em ambiente real).



Figura 2. Esboço do módulo número, responsável pela codificação da entrada

| Nome   | Tamanho | E/S     | Descrição                                                                                |
|--------|---------|---------|------------------------------------------------------------------------------------------|
| Número | 4 bits  | Entrada | Número a ser convertido para código Morse.                                               |
| Reset  | 1 bit   | Entrada | Inicializa o sistema.                                                                    |
| Ready  | 1 bit   | Entrada | Indica que a entrada do número já foi finalizada.<br>Conversão pode ser inicializada.    |
| Código | 5 bits  | Saída   | Número em código Morse no qual pontos e traços representados por 1 e 0, respectivamente. |

Tabela 1 – Descrição dos sinais

Ao final, seu *design* deverá ser capaz de receber um número em binário e exibir seu valor equivalente em código Morse.

**Atenção:** O módulo *número* **deve** ter sua saída gerada através de lógica combinacional. Para isso, você deve propor e simplificar uma tabela-verdade a fim de obter as saídas, de acordo com os passos descritos abaixo na seção 2.

## 2. Etapas do desenvolvimento

Os passos seguintes devem ser seguidos no processo de desenvolvimento do módulo número:

- a. Levantamento das equações booleanas para cada saída;
- b. Simplificação das equações booleanas utilizando lógica booleana e mapas de Karnaugh;
- c. Apresentação das formas canônicas;
- d. Apresentação do mintermo e do maxtermo das saídas;
- e. Elaboração do circuito simplificado com portas lógicas no software Logisim.

Os passos seguintes devem ser seguidos no processo de desenvolvimento de **todos os módulos:** 

- a. Elaboração e simulação dos módulos em Verilog através da ferramenta lcarus Verilog;
- b. Visualização das formas de onda resultantes através da ferramenta GTKWave.

3. Dicas úteis

a. Utilize sinais de controle: Como os módulos saberão se é ou não a hora de transmitir a

mensagem final? Através de sinais de controle. Crie tantos quanto forem necessários, desde que sejam

coerentes:

b. Trabalhando com um FPGA: Utilize os recursos físicos da placa para receber e transmitir

informações. Os LEDs ou os displays de 7 segmentos podem ser utilizados para transmitir a mensagem

final em código Morse, por exemplo.

c. Reset: Não existe nenhum tipo circuito que não precise, em algum momento, retornar a um

estado inicial. Portanto, não se esqueça de implementar o sinal de controle em questão.

4. Observações

O trabalho pode ser feito em grupos de até 4 alunos. Entretanto, a avaliação é individual e

dependente do resultado da entrevista à ser realizada. Todas as etapas devem ser documentadas no

relatório que deverá ser entregue. O PVANet será o ambiente de submissão do trabalho, e é necessário

que apenas um aluno do grupo o faça. Deverá ser submetido um arquivo compactado (.zip) contendo a

documentação em formato .pdf, os arquivos em Verilog dos módulos implementados e do módulo de

teste (testbench) e o arquivo de simulação de ondas (.vcd).

Atenção: Cópias de trabalhos práticos de outros grupos ou da internet serão

exemplarmente punidos. Em caso de cópias entre grupos, a punição será a mesma tanto para

quem copiar quanto para quem fornecer o trabalho.

5. Data das entregas

Simulação: 15/10/2018

Implementação em FPGA: 31/10/2018

6. **Dúvidas** 

As dúvidas relacionadas deverão ser direcionadas ao monitor da disciplina, Lucas Duarte

(lucas.f.duarte@ufv.br). Os horários das monitorias estão disponíveis no PVANet.