

Introduction

Quantum Espresso Tutorial 2019

Quick start guide

If you want to simulate...

- Material properties: band structure, DOS, absorption spectrum...
 - E.g. NaCl
- Structure of molecules, solid...
 - E.g. Benzene molecule, solid Si

If you want to simulate...

- Material properties: band structure, DOS, absorption spectrum...
 - E.g. NaCl
- Structure of molecules, solid...
 - E.g. Benzene molecule, solid Si

"Quantum mechanics"
"Quantum chemistry"

If you want to simulate...

• Material properties: band structure, DOS, absorption spectrum...

• E.g. NaCl

• Structure of molecules, solid...

• E.g. Benzene molecule, solid Si

-> modern **DFT** softwares

Quantum Espresso

- Local basis set:
 - Gaussian
 - Orca
- Plain wave basis set:
 - VASP
 - WIEN2k
 - Quantum Espresso

How to choose?

- Local basis set:
 - Gaussian
 - Orca
 - •
- Plain wave basis set:
 - VASP
 - WIEN2k
 - Quantum Espresso
 - •

-> suitable for calculating molecules

-> suitable for calculating periodic system, for example solids

How to choose?

- Local basis set:
 - Gaussian
 - Orca
 - •
- Plain wave basis set:
 - VASP
 - WIEN2k
 - Quantum Espresso
 - •

-> suitable for calculating molecules

-> suitable for calculating periodic system, for example solids

-> what if molecule/addatom on the surface? Both...

How to choose?

Local basis set:

Gaussian: commercial

Orca: free

•

Plain wave basis set:

VASP: commercial, most widely used

-> suitable for calculating periodic

system, for example solids

WIEN2k: commercial. Less expensive than VASP

Quantum Espresso: free! Open source, also widely used

•

-> suitable for calculating molecules

Do commercial ones performite better?

· No!

Science Home News Journals Topics Careers

SHARE

RESEARCH ARTICLE

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere^{1,*}, Gustav Bihlmayer², Torbjörn Björkman^{3,4}, Peter Blaha⁵, Stefan Blügel², Volker Blum⁶, Damien Caliste^{7,...}
+ See all authors and affiliations

Science 25 Mar 2016: Vol. 351, Issue 6280, aad3000

Lejaeghere, Kurt, et al. "Reproducibility in density functional theory calculations of solids." *Science* 351.6280 (2016): aad3000.

		^	, i i i '						
		average <	RIX	exciting	FHI-aims/tier	FLEUR	FPLO/T+F+s	RSPt	WIEN2k/acc
50) -	GBRV12/ABINIT	0.9	0.9	0.8	0.8	0.9	1.3	1.1	0.8
PAW	GPAW09/ABINIT	1.4	1.3	1.3	1.3	1.3	1.7	1.5	1.3
	GPAN09/GPAN	1.6	1.5	1.5	1.5	1.5	1.8	1.7	1.5
	JTH02/ABINIT	0.6	0.6	0.6	0.6	0.6	0.9	0.7	0.5
	PSlib100/QE	0.9	0.9	0.8	0.8	0.8	13	1.1	0.8
	VASPGW2015/VASP	0.6	0.4	0.4	0.4	0.6	1.0	0.8	0.3
USPP	GBRV14/CASTEP	11	1.1	1.1	1.0	1.0	1.4	1.3	1.0
	GBRV14/QE	11	1.0	1.0	0.9	1.0	14	1.3	1.0
	OTFG9/CASTEP	0.7	0.4	0.5	0.5	0.7	1.0	1.0	0.5
\supset	SSSP/QE	0.5	0.4	0.3	0.3	0.5	0.9	0.8	0.3
	Vdb2/DACAPO	6.3	6.3	6.3	6.3	6.3	6.4	6.5	6.2
10	FH198pp/ABINIT	13.3	13.5	13.4	13.4	13.2	13.0	13.2	13.4
NCPP	HGH/ABINIT	2.2	22	2.2	2.2	2.0	23	2.2	2.1
	HGH-NLCC/BigDFT	11	1.1	1.1	1.1	1.0	1.2	1.1	1.0
	MBK2013/OpenMX	2.0	2.1	2.1	2.1	1.9	1.8	1.8	2.0
Ž ON	CVPSP(PD0.1)/ABINIT	0.7	0.7	0.7	0.7	0.6	1.0	0.8	0.6
ONCVPSP (SG15) 1/QE ONCVPSP (SG15) 2/CASTEP		1.4	14	1.3	1.3	1.3	1.6	1.5	1.3
		14	1.4	1.4	1.4	1.3	1.6	1.5	1.4

QuantumNerd

Do commercial ones performite better?

· No!

Science Home News Journals Topics Careers

SHARE

RESEARCH ARTICLE

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere^{1,*}, Gustav Bihlmayer², Torbjörn Björkman^{3,4}, Peter Blaha⁵, Stefan Blügel², Volker Blum⁶, Damien Caliste^{7,...}
+ See all authors and affiliations

Science 25 Mar 2016: Vol. 351, Issue 6280, aad3000

Lejaeghere, Kurt, et al. "Reproducibility in density functional theory calculations of solids." *Science* 351.6280 (2016): aad3000.

		\							
		average <	Elk	exciting	FHI-aims/tier2	FLEUR	FPLO/T+F+s	RSPt	WIEN2k/acc
	GBRV12/ABINIT	0.9	0.9	0.8	0.8	0.9	1.3	1.1	0.8
PAW	GPAW09/ABINIT	1.4	1.3	1.3	1.3	1.3	1.7	1.5	1.3
	GPAM09/GPAM	1.6	1.5	1.5	1.5	1.5	18	1.7	1.5
	JTH02/ABINIT	0.6	0.6	0.6	0.6	0.6	0.9	0.7	0.5
	PSlib100/QE	0.9	0.9	0.8	0.8	0.8	13	1.1	0.8
	VASPGW2015/VASP	0.6	0.4	0.4	0.4	0.6	10	0.8	0.3
USPP	GBRV14/CASTEP	11	1.1	1.1	1.0	1.0	1.4	1.3	1.0
	GBRV14/QE	11	1.0	1.0	0.9	1.0	1.4	1.3	1.0
	OTFG9/CASTEP	0.7	0.4	0.5	0.5	0.7	1.0	1.0	0.5
	SSSP/QE	0.5	0.4	0.3	0.3	0.5	0.9	0.8	0.3
	Vdb2/DACAPO	6.3	6.3	6.3	6.3	6.3	6.4	6.5	6.2
۵	FHI98pp/ABINIT	13.3	13.5	13.4	13.4	13.2	13.0	13.2	13.4
	HGH/ABINIT	2.2	22	2.2	2.2	2.0	23	2.2	2.1
	HGH-NLCC/BigDFT	11	1.1	1.1	1.1	1.0	1.2	1.1	1.0
NCPP ®	MBK2013/OpenMX	2.0	2.1	2.1	2.1	1.9	1.8	1.8	2.0
Ž os	CVPSP(PD0.1)/ABINIT	0.7	0.7	0.7	0.7	0.6	1.0	0.8	0.6
	ONCVPSP (SG15) 1/QE	14	14	1.3	1.3	1.3	1.6	1.5	1.3
ON	CVPSP (SG15) 2/CASTEP	14	1.4	1.4	1.4	1.3	1.6	1.5	1.4

QuantumNerd

Do commercial ones performed better?

QuantumNerd

- VASP:
 - expensive license
 - offers well-maintained pseudopotential library
- Quantum Espresso:
 - free, open source
 - updated and maintained well
 - many open-source pseudopotential library available, covering nearly all elements. But you may not find one if you have specific requirement

- "Quantum chemistry"
- DFT softwares
- Local basis set v.s. plain wave basis set
- VASP v.s. Quantum Espresso

Later

- Quick start guide:
 - System requirements
 - Download
 - Installation: most difficult part of using Quantum Espresso
 - Basic examples
- More projects