EPFL

MAN

Mise à niveau

Maths 1B Prepa-033(b)

Student: Arnaud FAUCONNET

Professor: Olivier WORINGER

Printemps - 2019

Chapter 1

Suite de nombres réels

1.1 Définitions

26/02/2019

Définition Une suite de nombres réels est une application de \mathbb{N}^* dans \mathbb{R}

$$a: \mathbb{N}^* \longrightarrow \mathbb{R}$$

 $n \longmapsto a(n) = a_n$

 a_n est le terme generale de la suite et n est le rang de a_n .

La suite $a_1, a_2, a_3, ...,$ se note " (a_n) "

Exemples

- 1) La suite (a_n) définie par son terme général $a_n=\frac{1}{3n-7}$ est la suite $-\frac{1}{4},-1,\frac{1}{2},\frac{1}{5},\dots$
- 2) ..., -3, -2, -1, 0, 1, 2, 3, ... n'est pas une suite (pas de premier élément). Mais 0, 1, -1, 2, -2, 3, ... est une suite dont l'ensemble des valeurs est \mathbb{Z} .
- 3) a, a, a, a, ... $a \in \mathbb{R}$, $a_n = a \quad \forall n \in \mathbb{N}^*$ est une suite constante.
- 4) Chercher le terme general des suites définie par les premiers termes:

a)
$$(a_n): \overbrace{1,6,11,16,21,26}^{5},$$

 $a_n = 5n - 4$

b)
$$b_n: \frac{2}{3}, \frac{5}{6}, \frac{10}{9}, \frac{17}{12}, \frac{26}{15}, \frac{37}{18}, \dots$$

Difference des nominateurs: 3, 5, 7, 9, 11, ...Difference des dénominateurs: 3, 3, 3, 3, 3, ...

$$b_n = \frac{n^2 + 1}{3n}$$

5) Suites définie par recurrence

$$\begin{array}{ll} c_{n+1}=2-\frac{1}{c_n}, & c_1=\frac{3}{2}\\ c_1=\frac{3}{2}, & c_2=2-\frac{3}{2}=\frac{4}{3}, & c_3=2-\frac{3}{4}=\frac{5}{4}, & c_4=2-\frac{4}{5}=\frac{6}{5}\\ \text{Conjecture: } c_n=\frac{n+2}{n+1} & \forall n\in\mathbb{N}^* \end{array}$$

Demonstration par récurrence:

- Verification: $c_1 = \frac{3}{2} \quad \frac{n+2}{n+1}|_{n=1} = \frac{3}{2} \quad \checkmark$.
- Demonstration du pas de récurrence:
 - Hypothèse: $c_n = \frac{n+2}{n+1}$ pour un $n \in \mathbb{N}^*$
 - Conclusion: $c_{n+1} = \frac{n+3}{n+2}$
 - Preuve:

$$c_{n+1} = 2 - \frac{1}{c_n} = 2 - \frac{1}{\frac{n+2}{n+1}} = 2 - \frac{n+1}{n+2} = \frac{2(n+1)-(n+1)}{n+2} = \frac{n+3}{n+2}$$

Définitions

1. (a_n) est majoré si

$$\exists M \in \mathbb{R} a_n \leq M, \quad \forall n \in \mathbb{N}^*$$

(M: majorant)

2. (a_n) est minoré si

$$\exists N \in \mathbb{R} \text{ t.q. } a_n \geq N, \quad \forall n \in \mathbb{N}^*$$

(N: minorant)

- 3. (a_n) est bornée si elle amdet un majorant **et** un minorant
- 4. (a_n) est croissante si $a_{n+1} \ge a_n \quad \forall n \in \mathbb{N}^*$ (Strictement croissante si $a_{n+1} \ge a_n \quad \forall n \in \mathbb{N}^*$)
- 5. (a_n) est décroissant si $a_{n+1} \leq a_n \quad \forall n \in \mathbb{N}^*$ (Strictement décroissante si $a_{n+1} \leq a_n \quad \forall n \in \mathbb{N}^*$)
- 6. (a_n) est monotone si elle est croissant **ou** (ou exclusif) décroissant (Strictement monotone si elle est croissant ou strictement décroissant)

Exemples

1. $a_n = \frac{1}{n}$, (a_n) est strictement décroissante et borné:

$$0 < a_n \le 1$$

2.
$$b_n = \frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \underbrace{\frac{1}{n+1}}_{>0}$$

Donc (b_n) est strictement croissante.

1.2 Limite d'une suite

Définition On dit que la suite (a_n) converge vers a $(a \in \mathbb{R})$ si $\forall \epsilon > 0$, il existe un seuil

$$N \in \mathbb{N}^*(N = N(\epsilon))$$
 t.g. $n > N \implies |a_n - a| < \epsilon$

$$|a_n - a| < \epsilon \iff -\epsilon < a_n - a < \epsilon \iff a - \epsilon < a_n < a + \epsilon \iff a_n \in]a - \epsilon, a + \epsilon[$$

Cet intervalle est appelé ϵ -voisinage de a. Si (a_n) admet (a_n) est convergente sinon elle divergente.

Définition plus intuitive de la limite de suite:

 $\lim_{n\to\infty} a_n = a$ si et seulement si ϵ -voisinage de a contient persque tout les termes de la suite (tous les termes sauf nombre fini)

Exemples

- 1. $a_n = a \quad \forall n \in \mathbb{N}^*$ $\lim_{n \to \infty} a_n = a \quad [N \in \mathbb{N}^* \text{ quelconque } \square]$
- 2. Montrons que $\lim_{n\to\infty} \frac{1}{n} = 0$

Soit $\epsilon>0$, montrons que $\exists N\in\mathbb{N}^*(N=N(\epsilon))$ t.q. $n\geq N\implies |\frac{1}{n}-0|<\epsilon$

$$\left|\frac{1}{n} - 0\right| < \epsilon \iff \left|\frac{1}{n}\right| < \epsilon \iff \frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}$$

3. La suite (b_n) définie par

$$b_n = (-1)^n \frac{n}{n+1}, \quad n \in \mathbb{N}^*$$

diverge car une infinitée de termes sont dans le voisinage de (+1) ou de (-1) selon que n est pair ou impair

Theorèmes importants (sans demonstration)

- 1. Une suite qui converge admet une seule limite
- 2. Toute suite convergente est bornée.

La reciproque est fausse.

Contre-exemple: $a_n = (-1)^n$

3. Les règles de calcul:

Soit (a_n) et (b_n) convergentes,

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- (a) $\lim_{n\to\infty} |a_n| = |a|$
- (b) $\lim_{n \to \infty} (a_n + b_n) = a + b$ $\lim_{n \to \infty} (a_n b_n) = a b$
- (c) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- (d) si $b_n \neq 0$, $\forall n \in \mathbb{N}^*$, et si $b \neq 0$, alors: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

01/03/2019

4. Théorème de comparaison: Soient (a_n) et (b_n) convergantes, $a_n \to a, b_n \to b$

Si
$$\exists n_0 \in \mathbb{N}^*$$
 t.q. $a_n \leq b_n, \quad \forall n \geq n_0$ alors $a \leq b$

5. Théorème des deux gendarmes:

Soient 3 suites (g_n) , (d_n) et (a_n) telles que

$$\exists n_0 \in \mathbb{N}^* \text{ avec } g_n \leq a_n \leq d_n, \quad \forall n \geq n_0$$

MATHS 1B

Alors si

$$\lim_{n \to \infty} g_n = \lim_{n \to \infty} d_n = l$$

on a que (a_n) est convergente et

$$\lim_{n\to\infty} a_n = l$$

6. Corollaire des 2 gendarmes soit (a_n) tel que

$$\lim_{n \to \infty} |a_n| = 0 \implies \lim_{n \to \infty} (a_n) = 0$$
$$\underbrace{-|a_n|}_{\to 0} \le a_n \le \underbrace{|a_n|}_{\to 0}$$

7. Toute suite monotone est bornée et convergente.

Plus précisément:

- Toute suite croissante et majoré converge
- Toute suite décroissante et minoré converge

3 exemples importants

1. Soient $q \in \mathbb{R} \setminus \{\pm 1\}$, (a_n) la suite définie par $a_n = q^n$

$$a_n = q^n : \begin{cases} \operatorname{diverge si} |q| > 1 \\ \operatorname{converge vers } 0 \operatorname{si} |q| < 1 \end{cases}$$

Montrons que si |q| < 1, $\lim_{n \to \infty} q^n = 0$

$$|a_n| = |q^n| = |q|^n$$
 or $|q| < 1$

donc

$$\exists p > 0 \text{ t.q. } q = \frac{1}{1-p}$$

Donc

$$|q|^n = \frac{1}{(1+p)^n} \implies \frac{1}{|q|^n} = (1+p)^n$$

$$=1+n\cdot p+\ldots+p^n\geq n\cdot p,\quad \operatorname{donc}|q|^n\leq rac{1}{n\cdot p}$$

$$|a_n| = |q|^n \le \frac{1}{n} \cdot \frac{1}{p}$$

$$\underbrace{0}_{\to 0} \le |a_n| \le \underbrace{\frac{1}{n} \cdot \frac{1}{p}}_{0}$$

D'après les 2 gendarmes: $\lim_{n \to \infty} |a_n| = 0$

D'après son corollaire: $\lim_{n\to\infty} a_n = 0$

2. La série géométrique

Soit $q \in \mathbb{R} \setminus \{\pm 1\}$ et a_n définie par

$$a_n = 1 + q + q^2 + \dots + q^{n-1}$$

Définition par la récurrence

$$a_{n+1} = a_n + q^n, \quad a_1 = 1, \quad n \in \mathbb{N}^*$$

On réécrit le terme a_n

$$a_n = 1 + q + q^2 + \dots + q^{n-2} + q^{n-1}$$

$$q \cdot a_n = q + q^2 + \dots + q^{n-1} + q^n$$

$$a_n - q \cdot a_n = 1 - q^n$$

$$a_n(1 - q) = 1 - q^n \implies a_n = \frac{1 - q^n}{1 - q}$$

 (a_n) converge si et seulement si |q|<1 et dans ce cas $\lim_{n\to\infty}a_n=\frac{1}{1-q}$ Exemples:

(a)

$$a_n = \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^n$$

$$a_n = \frac{1}{2} \cdot \left(1 + \frac{1}{2} + \dots + \left(\frac{1}{2}\right)^{n-1}\right)$$

$$a_n - \frac{1}{2} \cdot \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^n$$

$$\text{et } \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k = \lim_{n \to \infty} a_n = 1$$

(b)

$$b_n = \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \dots + \left(\frac{1}{4}\right)^n$$

$$b_n = \frac{1}{4} \cdot \frac{1 - \left(\frac{1}{4}\right)^n}{1 - \frac{1}{4}} \implies \lim_{n \to \infty} b_n = \frac{1}{3}$$

3. Le nombre e

Soit

$$e_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

$$e_n = \sum_{k=1}^{\infty} \frac{1}{k!}$$

$$\frac{1}{k!} = \frac{1}{1 \cdot 2 \cdot \underbrace{3}_{2} \cdot \dots \cdot \underbrace{k}_{2}} \le \left(\frac{1}{2}\right)^{k-1}$$

Donc

$$e_n \le 1 + \frac{1}{1} + \underbrace{\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}}_{\le 1}$$
 $e_n \le 3$

$$2 \le e_n \le 3, \quad \forall n \ge 2$$

Montrons encore que (e_n) est strictement croissante:

$$e_{n+1} = e_n + \frac{1}{(n+1)!}, \quad \text{ donc } e_{n+1} > e_n$$

 (e_n) croissante et majoré: elle converge.

On note e sa limite.

$$e_n = 2.71828$$

$$e_n = \sum_{k=0}^{\infty} \frac{1}{k!}$$

Autre caractéristique du nombre *e*:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

1.3 Limite infinie

Définition La suite (a_n) tend vers $+\infty$ lorsque $n \to \infty$ si:

$$\forall A > 0, \quad \exists N \in \mathbb{N}^* (N = N(A)) \text{ t.g. } n \geq N \implies f(x) > A$$

On écrit alors

$$\lim_{n \to \infty} a_n = +\infty$$

On dit que (a_2) diverge vers $+\infty$

De même

$$\lim_{n\to\infty} b_n = -\infty \iff \exists N \in \mathbb{N}^* (N = N(B)) \text{ t.q. } n \ge N \implies a_n > B$$

Exemple Montrons que $(a_n) = (n^2)$ diverge vers $+\infty$.

Soit A > 0 donné, montrons qu'il existe $N \in \mathbb{N}^*$ t.q. $a_n > A$ si $n \ge N$.

$$a_n > A \iff n^2 > A \iff n \in]-\infty; \sqrt{A}[\cup]\sqrt{A}; +\infty[$$

Tout $N > \sqrt{A}$ convient car $n \le N$ (avec $N \ge \sqrt{A}$) $\implies n^2 > A$

Théorème importants

- 1. Si $a_n \xrightarrow[n \to \infty]{} +\infty$ et si b_n converge ou $b_n \xrightarrow[n \to \infty]{} +\infty$, alors $(a_n + b_n) \xrightarrow[n \to \infty]{} +\infty$
- 2. Si $a_n \xrightarrow[n \to \infty]{} +\infty$ et $\lambda \in \mathbb{R}$
 - Si $\lambda > 0, (\lambda a_n) \xrightarrow[n \to \infty]{} +\infty$
 - Si $\lambda < 0, (\lambda a_n) \xrightarrow[n \to \infty]{} -\infty$
- 3. Si $a_n \xrightarrow[n \to \infty]{} + \infty$ et $b_n \xrightarrow[n \to \infty]{} b > 0$ ou si $b_n \xrightarrow[n \to \infty]{} + \infty$, alors $(a_n \cdot b_n) \xrightarrow[n \to \infty]{} + \infty$
- 4. Si $a_n \xrightarrow[n \to \infty]{} +\infty$, alors $\frac{1}{a_n} \xrightarrow[n \to \infty]{} 0$
- 5. Théorème du gendarme

Soit
$$(a_n), (b_n)$$
 t.q. $\exists n_0 \in \mathbb{N}^*$ avec $a_n \leq b_n, \quad \forall n \geq n_0$

si
$$\lim_{n \to \infty} b_n = +\infty$$
, alors $\lim_{n \to \infty} a_n = +\infty$

(de manière analogue pour $a_n \to -\infty$)

Exemples Montrons que si q > 1, alors (q^n) diverge vers $+\infty$

$$\begin{split} q>1 &\Longrightarrow \exists \; p>0 \; \text{t.q.} \; q=1+p \\ q^n &= (1+p)^n = 1+n\cdot p+\ldots + p^n > n\cdot p \\ \text{Or} \; \lim_{n\to\infty} np = p \cdot \lim_{n\to\infty} n = p\cdot +\infty = +\infty (p>0) \end{split}$$

Donc (q^n) diverge vers $+\infty$

Cas d'indétermination

• Si $a_n \xrightarrow[n \to \infty]{} +\infty$ et $b_n \xrightarrow[n \to \infty]{} -\infty$

On ne peut rien dire à priori de

$$\lim_{n\to\infty} (a_n + b_n)$$

• Si $a_n \xrightarrow[n \to \infty]{} +\infty$ et $b_n \xrightarrow[n \to \infty]{} 0$ On ne peut rien dire à priori de

$$\lim_{n\to\infty}(a_n\cdot b_n)$$

Chapter 2

Fonctions réelles d'une variable réelle

2.1 Définitions

Définition:

$$f:A\subset\mathbb{R}\to\mathbb{R}$$

est une fonction réelle d'une variable réelle si tout $x \in A$ a au plus une image par f dans \mathbb{R} , notée f(x)

L'ensemble des $x\in A$ ayant une image par f est le domaine de définition de $f: D_f$ On note Im_f l'ensemble des $f(x)\in \mathbb{R}$

$$\operatorname{Im}_f = \left\{ y \in \mathbb{R} | \exists x \in \mathcal{D}_f, y = f(x) \right\}$$

Exemples

1.

$$f(x) = \sqrt{x}, \quad D_f = \mathbb{R}_+, \quad Im_f = \mathbb{R}_+$$

2.

$$g: \mathbb{R} \to \mathbb{R},$$

 $x \mapsto E(x)$

où E(x) est la partie entière de x, c'est le plus grand entier inférieur à x:

Exemples

$$E(3) = 3$$
, $E(2.9) = 2$, $E(-2.5) = -3$

$$D_g = \mathbb{R}, \quad Im_f = \mathbb{Z}$$

3.

$$h: \mathbb{R} \to \mathbb{R},$$

$$x \mapsto \frac{1}{(x-1)^2}$$

$$D_2 = \mathbb{R} \backslash 1, \quad Im_h =]0, +\infty[$$

Le graphe de $f : G_f$

Definitions

- 1. **Parité** (y symétrique par rapport à O)
 - (a) f est paire si

$$f(-x) = f(x), \quad \forall x \in D_f$$

MATHS 1B

Le graphe de f est alors symétrique $/{\cal O}_y$

(b) f est impaire si

$$f(-x) = -f(x), \quad \forall x \in D_f$$

Le graphe de f est alors symétrique /0

Exemples

$$f_1(x)=x^2,\quad f_2(x)=|x|,\quad f_3(x)=\cos(x),\quad ext{sont paires,}$$
 $f_1(x)=x^3,\quad f_2(x)=\sin(x),\quad f_3(x)=\tan(x),\quad ext{sont impaires.}$

MATHS 1B

2. Périodicité

f est périodique en $T\in\mathbb{R}, \text{ si } \forall x\in D_f, \quad f(x+T)=f(x)$ G_f période de f est le plus petit T>0 tel que

$$f(x+T) = f(x), \quad \forall x \in D_f$$

Exemples

$$f(x) = \sin(x) \cdot \cos(x)$$

 \sin et \cos sont 2π -périodique.

Donc f est est 2π -périodique.

Or
$$f(x) = \frac{1}{2} \cdot \sin(2x)$$

Donc **la** période de f est $T=\pi$:

$$\begin{split} f(x+T) &= \frac{1}{2} \cdot \sin \left(2 \cdot (x+T) \right) \\ &= \frac{1}{2} \cdot \sin (2x + \underbrace{2T}_{\text{période de sinus}}) \end{split}$$

$$2T = 2\pi \iff T = \pi$$

3. Monotonie

(a) f est croissante si $\forall x_1, x_2 \in D_f$:

$$x_1 < x_2 \implies f(x_1) \le f(x_2)$$

Strictement croissante si

$$x_1 < x_2 \implies f(x_1) < f(x_2)$$

(b) f est décroissante si $\forall x_1, x_2 \in D_f$:

$$x_1 > x_2 \implies f(x_1) \ge f(x_2)$$

Strictement croissante si

$$x_1 > x_2 \implies f(x_1) > f(x_2)$$

(c) *f* est monotone si elle est croissante ou (exclusif) décroissante.

Exemples $f(x) = x^2$ est strictement décroissante sur \mathbb{R}_- , strictement croissante sur \mathbb{R}_+ et non-monotone sur \mathbb{R} .

Théorème Si *f* strictement monotone, alors l'équation:

$$f(x) = \alpha, \quad x \in \mathbb{R}$$

admet au plus une solution:

Demonstration dans ce cas:

$$f$$
: strictement croissante $\implies f(x) = \alpha$

admet au plus une solution

Demonstration par la contraposée:

Hypothèse: $f(x) = \alpha$ admet plus d'une solution

Conclusion: f non strictement croissant

Preuve: Soient $x_1 \neq x_2 \in D_f$ t.q. $f(x_1) = f(x_2) = \alpha$

Soit x_1 la plus petite, on a:

$$x_1 < x_2$$
 et $f(x_1) = f(x_2)$

f est non strictement croissante.

4. Valeur absolue de f, soit:

$$f: D_f \to \mathbb{R},$$

 $x \mapsto f(x)$

on définit

$$|f|: D_f \to \mathbb{R},$$

 $x \mapsto |f|(x) = |f(x)|$

avec

$$|f(x)| = \left\{ \begin{array}{l} -f(x), \ \mathrm{si} \ f(x) < 0 \\ f(x), \ \mathrm{si} \ f(x) \geq 0 \end{array} \right.$$

On déduit le graphe de |f| de celui de f en symétrisant $/0_x$ tous les points d'ordonnée négative.

Exemple $f(x) = x \cdot (x+3) \cdot (x-5)$

5. Compositions de Fonctions

Soient f,g deux fonctions, si $Im_g\subset D_f$ alors on définit

$$f\circ g$$

par

$$f \circ g(x) = f(g(x)), \quad \forall x \in D_f$$

Exemple

(a) Soit

$$g(x) = \sqrt{x^2 - 1}$$

et

$$f(x) = \sqrt{x^2 + 1}$$

$$f \circ g(x) = f\left(\sqrt{x^2 - 1}\right) = \sqrt{\left(\sqrt{x^2 - 1}\right)^2 + 1}$$

= $\sqrt{x^2} = |x|$

Mais
$$D_{f \circ g} =]-\infty;-1] \cup [1;+\infty[\neq \mathbb{R}$$

(b)
$$g = x + a$$
 et $f : \mathbb{R} \to \mathbb{R}$

$$f \circ g(x) = f(g(x)) = f(x+a)$$

Comment déduire le graphe de f(x + a) de celui de f?

On déduit le graphe de f(x+a) de celui de f(x) par la translation de (-a)-unités parallèlement à 0x.

6. Fonctions bornées

f est bornée sur D_f si

$$\exists M > 0 \text{ t.q. } |f(x)| \leq M, \quad \forall x \in D_f$$

Exemples

$$f(x)=rac{1}{x-1}$$
 n'est pas bornée sur D_f
$$g(x)=rac{1}{x+1} \ {
m et} \ h(x)=\cos x \ {
m sont} \ {
m bornées} \ {
m sur} \ D_f$$

2.2 Surjection, injection, bijection

1. Surjection

 $f: A \to B$ est dite surjective si tout $y \in B$ admet un antécédent par f dans A:

$$\forall y \in B, \exists x \in B \text{ t.q. } y = f(x)$$

En d'autres termes:

f est surjective si et seulement si $Im_f = B$

Exemples

(a) La fonction

$$f: \mathbb{R} \to \mathbb{R},$$

 $x \mapsto E(x)$

n'est pas surjective. $y=\frac{1}{2}$ n'as pas d'antécédent par contre

$$g: \mathbb{R} \to \mathbb{Z},$$

 $x \mapsto E(x)$

est surjective.

(b) La fonction

$$f: \mathbb{R} \to \mathbb{R},$$

$$x \mapsto \frac{x^2}{x+1}$$

On détermine Im_f

$$Im_f = \{ y \in \mathbb{R} | \exists x \in \mathbb{R}, y = f(x) \}$$

Soit
$$y = f(x) = \frac{x^2}{x+1}$$

 $y \in Im_f$ si x existe.

On cherche donc à résoudre l'équation

$$y = \frac{x^2}{x+1}$$

par rapport à x en considérant y comme un paramètre

$$x^2 = y \cdot (x+1)$$
$$x^2 - y \cdot x + y = 0$$

$$\Delta = (-y)^2 - 4 \cdot y = y \cdot (y - 4)$$
$$\Delta \ge 0 \iff y \in]-\infty; 0] \cup [4; +\infty[$$

Donc $Im_f =]-\infty; 0] \cup [4; +\infty[$

2. Injection

Définition: La fonction

 $f: A \rightarrow B$ est dite injective

si

$$\forall x_1, x_2, \quad x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Contre-exemple:

Maths 1B

Énoncé contraposée en f injective si et seulement si

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \implies x_1 = x_2$$

Exemples:

(a)
$$f(x) = x^2$$

 $f(x)=x^2$ est injective sur \mathbb{R}_+ ou sur \mathbb{R}_- mais non injective sur \mathbb{R}

(b) Repère de l'exemple sur la surjection

$$f(x) = \frac{x^2}{x+1}, \quad x \neq -1$$

Soit $a, b \in \mathbb{R}$ t.q. f(a) = f(b)

$$\frac{a^2}{a+1} = \frac{b^2}{b+1} \iff a^2 \cdot (b+1) = b^2 \cdot (a+1)$$

$$\iff a^2b + a^2 - b^2a - b^2 = 0$$

$$\iff ab \cdot (a-b) + (a+b) \cdot (a-b) = 0$$

$$\iff (a-b) \cdot [a \cdot b + (a+b)] = 0$$

 $a \cdot b + a + b = 0$ est un "générateur de contre-exemples".

En effet tout $(a,b) \in \mathbb{R}^2$ vérifiant cette relation est un contre-exemple à l'injectivité de f.

 $a=3, b=-\frac{3}{4}$

Sont tels que $a \neq b$ et f(a) = f(b).

f est non injective.

(c) Bijection et fonction réciproque

Définition: f est bijective si elle est injective **et** surjective

En d'autres termes $f:A\to B$ est bijective si tout $y\in B$ admet un unique antécédent.

Définition: $f:A\to B$ bijective si il existe une unique fonction, notée f^{-1} , appelée fonction réciproque de f

Vérifiant:

$$f^{-1} \circ f = id_A$$
 et $f \circ f^{-1} = id_B$
$$f^{-1} : B \to A$$

$$x \mapsto y = f^{-1}(x)$$

$$x = f(y)$$

avec

Exemple:

$$f: \mathbb{R} \to x \mapsto y = x - x^2$$

Restreindre les ensembles de départ et d'arrivée de sorte que f devienne bijective.

Puis déterminer f^{-1}

Surjection
 On cherche

$$Im_f = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}, y = f(x) \}$$

$$y = x - x^2 \iff x^2 - x + y = 0$$

$$\Delta = (-1)^2 - 4 \cdot y = 1 - 4y$$

$$\Delta \ge 0 \iff y \le \frac{1}{4}$$

$$Im_f =] - \infty; \frac{1}{4}]$$

• Injection Soit $a, b \in \mathbb{R}$, t.q. f(a) = f(b)

$$a - a^2 = b - b^2$$

$$\iff a^2 - b^2 - a + b = 0$$

$$\iff (a - b)(a + b) - (a - b) = 0$$

$$\iff (a - b) \cdot [(a + b) - 1] = 0$$

Comment restreindre l'ensemble de départ et d'arrivée pour rendre f injective, sans modifier Im_f ?

Il faut rendre le générateur de contre-exemple "inopérant".

$$a+b=1 \implies a-\frac{1}{2}=\frac{1}{2}-b$$

$$A=\left]-\infty;\frac{1}{2}\right] \text{ ou } A=\left[\frac{1}{2};+\infty\right[$$

$$f:\left[\frac{1}{2};+\infty\right[\rightarrow\right]-\infty;\frac{1}{4}\right]$$

Alors

Or

donc

est bijective.

Pour déterminer f^{-1} , ou résoudre

$$y = f(x)$$

par rapport à x en prenant y comme paramètre

t a
$$x$$
 ent prenant y confine parameter
$$y = x - x^2 \iff x^2 - x + y = 0$$

$$\Delta = 1 - 4y$$

$$x = \frac{1 \pm \sqrt{1 - 4y}}{2}, \qquad \left(y \in \left] - \infty; \frac{1}{4}\right]\right)$$

$$x \in \left[\frac{1}{2}; + \infty\right[$$

$$x = \frac{1 + \sqrt{1 - 4y}}{2}$$

$$f^{-1}: \left] - \infty; \frac{1}{4}\right] \to \left[\frac{1}{2}; + \infty\right[$$

$$id_A:A o A, \ x\mapsto A \ id_B:B o B, \ x\mapsto x$$

 $x \mapsto \frac{1 + \sqrt{1 - 4y}}{2}$

2.3 Limite d'une fonction

2.3.1 Limite à infini

Définitions:

1.
$$\lim_{x \to +\infty} f(x) = a, (a \in \mathbb{R})$$
 si

$$\forall \epsilon > 0, \exists M \in \mathbb{R}(M = M(\epsilon)) \text{ t.q. } x \geq M(x \in D_{\mathsf{déf}}) \implies |f(x) - a| < \epsilon$$

2.
$$\lim_{x \to \infty} f(x) = a \operatorname{si}$$

$$\forall \epsilon > 0, \exists N \in \mathbb{R}(N = N(\epsilon)) \text{ t.q. } x < N(x \in D_{\mathsf{déf}}) \implies |f(x) - a| < \epsilon$$

Exemple: Montrons que

$$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$

Soit $\epsilon > 0$ donné

Montrons qu'il existe $N \in \mathbb{R}$ tel que

$$\begin{split} x < N &\implies |\frac{1}{x^2} - 0| < \epsilon \\ &\iff |\frac{1}{x^2}| < \epsilon \\ &\iff \frac{1}{x^2} < \epsilon \\ &\iff |x| > \frac{1}{\epsilon} \\ &\iff x \in \left] - \infty; - \frac{1}{\sqrt{\epsilon}} \left[\ \cup \ \right] \frac{1}{\sqrt{\epsilon}}; + \infty \right[\end{split}$$

Donc tout $N \leq -\frac{1}{\sqrt{\epsilon}}$ convient, car

$$x < N(\text{ avec } N \le -\frac{1}{\sqrt{\epsilon}}) \implies |\frac{1}{x^2} - 0| < \epsilon$$

Théorème de caractérisation par les suites: f admet une limite $x \to \infty$ et

$$\lim_{x \to \infty} f(x) = a$$

si et seulement si pour toute la suite x_n qui diverge vers ∞ , on a

$$\lim_{x \to \infty} f(x_n) = a$$

Exemple: Montrons que $\lim_{x\to\infty} \sin(x)$ n'existe pas.

• Soit $x_n = n \cdot \pi$, $n \in \mathbb{N}^*$

$$\lim_{n \to \infty} x_n = +\infty$$

et

$$\lim_{n \to \infty} \sin(x_n) = \lim_{n \to \infty} \sin(n \cdot \pi) = 0$$

• Soit $y_n = \frac{\pi}{2} + n \cdot 2\pi$, $n \in \mathbb{N}^*$

$$\lim_{n \to \infty} y_n = +\infty$$

et

$$\lim_{n \to \infty} \sin(y_n) = \lim_{n \to \infty} \sin(n \cdot \frac{\pi}{2}) = 1$$

Donc $\lim_{x\to +\infty} \sin(x)$ n'existe pas.

Définitions: Limites impropre

1.
$$\lim_{x \to +\infty} f(x) = +\infty$$
 si

$$\forall A > 0, \quad \exists M \in \mathbb{R} \text{ t.q. } x > M \implies f(x) > A$$

2.
$$\lim_{x \to +\infty} f(x) = -\infty$$
 si

$$\forall B < 0, \quad \exists M \in \mathbb{R} \text{ t.q. } x > M \implies f(x) < B$$

3.
$$\lim_{x \to -\infty} f(x) = +\infty$$
 si

$$\forall A > 0, \quad \exists N \in \mathbb{R} \text{ t.g. } x < N \implies f(x) > A$$

4.
$$\lim_{x \to -\infty} f(x) = -\infty$$
 si

$$\forall B < 0, \quad \exists N \in \mathbb{R} \text{ t.q. } x < N \implies f(x) < B$$

Exemple:

$$\lim_{x \to -\infty} x^2 = +\infty$$

Soit A > 0, $\exists ? N \in \mathbb{R} \text{ t.q. } x < N \implies$

$$\implies x^2 > A \iff |x| = \sqrt{A}$$
$$\implies x \in \left] -\infty; -\sqrt{A} \right] \cup \left] \sqrt{A}; +\infty \right[$$

Donc tout x < N convient.

Opération sur les limites

1. Si $\lim_{x \to \infty} f(x) = a$ et $\lim_{x \to \infty} g(x) = b$ alors

$$\lim_{x \to \infty} |f(x)| = |a|, \quad \lim_{x \to \infty} (f(x) \pm g(x)) = a \pm b$$

$$\lim_{x\to\infty}\left(f(x)\cdot g(x)\right)=a\cdot b,\quad \lim_{x\to\infty}\left(\frac{f(x)}{g(x)}\right)=\frac{a}{b},\quad (\text{ si }b\neq 0)$$

2. Si $\lim_{x\to\infty} f(x) = a$ et $\lim_{x\to\infty} g(x) = +\infty$ alors

$$\lim_{x \to \infty} (f(x) + g(x)) = +\infty$$

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = 0$$

3. Si $\lim_{x \to \infty} f(x) = +\infty$ et $\lim_{x \to \infty} g(x) = +\infty$ alors

$$\lim_{x \to \infty} (f(x) + g(x)) = +\infty$$

$$\lim_{x \to \infty} \left(f(x) \cdot g(x) \right) = +\infty$$

Cas d'indétermination Si

$$\lim_{x\to\infty}f(x)=0, \lim_{x\to\infty}g(x)=0 \text{ et } \lim_{x\to\infty}i(x)=+\infty, \lim_{x\to\infty}h(x)=+\infty$$

alors on ne peut rien dire à priori des limites suivante

$$\lim_{x \to \infty} (h(x) - i(x)) = \infty - \infty$$

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = "\frac{0}{0}"$$

$$\lim_{x \to \infty} \left(\frac{h(x)}{i(x)} \right) = \frac{\infty}{\infty}$$

Quelque théorème importants

1. Théorème des 2 gendarmes

Soient d(x), g(x) toutes les fonctions telles que

$$\exists M > 0 \text{ avec } g(x) \le x \le d(x), \quad \forall x > M$$

Alors si

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} d(x) = a$$

on a

$$\lim_{x \to +\infty} f(x) = a$$

Énoncé analogue pour $x \to -\infty$

Corollaire des 2 gendarmes

$$\lim_{x \to +\infty} |f(x)| = 0 \implies \lim_{x \to +\infty} f(x) = 0$$

$$[\underbrace{|f(x)|}_{\to 0} \le f(x) \le \underbrace{|f(x)|}_{\to 0} \quad \Box]$$

2. **Théorème du gendarme**(ou du chien méchant) Soient f(x), g(x) toutes les fonctions telles que

$$\exists M > 0 \text{ avec } f(x) \ge g(x), \quad \forall x > M$$

Alors si

$$\lim_{x \to +\infty} g(x) = +\infty$$

on a

$$\lim_{x \to +\infty} f(x) = +\infty$$

Énoncé analogue pour $x \to -\infty, y \to -\infty$

3. Théorème "0 · borné"

Soient f,g deux fonctions telles que $\lim_{x\to +\infty} f(x)=0$ et $\exists M>0$ avec g(x) est borné sur $[M;+\infty[$

Alors

$$\lim_{x \to +\infty} f(x) \cdot g(x) = 0$$

[Par hypothèse

$$\exists A > 0 \text{ t.q. } |g(x)| \le A, \quad x > M$$

$$0 \le |f(x) \cdot g(x)| = |f(x)| \cdot |g(x)| \le \underbrace{|f(x)|}_{\to 0} \cdot A$$

Donc d'après les deux gendarmes: $|f(x)\cdot g(x)|\xrightarrow[x\to\infty]{}0$ d'après son corolaire: $f(x)\cdot g(x)\xrightarrow[x\to+\infty]{}0$]

Énoncé analogue pour $x \to -\infty$

Exemple: $f(x) = \frac{\sin(x)}{x}, \quad x \to +\infty$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \underbrace{\frac{1}{x}}_{\text{born\'e}} \cdot \underbrace{\sin(x)}_{\text{born\'e}} = 0$$

Or f est paire, donc $\lim_{x \to -\infty} f(x) = 0$

- 4. **Théorème** "∞ · signe constant "
 - Si $\lim_{x\to +\infty} f(x) = +\infty$ et $g(x) \geq m > 0$ sur un voisinage de $+\infty$. Alors

$$\lim_{x \to +\infty} f(x) \cdot g(x) = +\infty$$

• Si $\lim_{x\to +\infty} f(x) = +\infty$ et $g(x) \leq m < 0$ sur un voisinage de $+\infty$. Alors

$$\lim_{x \to +\infty} f(x) \cdot g(x) = -\infty$$

Énoncé analogue pour $x \to -\infty, y \to -\infty$

5. **Théorème** " ∞ + borné" Si $\lim_{x\to +\infty} f(x) = +\infty$ et g(x) est borné sur un voisinage de $+\infty$. Alors

$$\lim_{x \to +\infty} (f(x) + g(x)) = +\infty$$

Énoncé analogue pour $x \to -\infty, y \to -\infty$

Exemples:

1.
$$\lim_{x \to -\infty} (x + \sin(x)) = -\infty$$

2.
$$f(x) = \frac{x \cdot \sin(x)}{(\cos(x) - 2) \cdot (x + \sqrt{x^4 + x^2})}, \quad x \to -\infty$$

$$\frac{x \cdot \sin(x)}{(\cos(x) - 2) \cdot (x + \underbrace{|x|}_{=-x} \cdot \sqrt{x^2 + 1})}, \quad x < 0$$

$$\underbrace{\frac{\sin(x)}{(\cos(x) - 2)} \cdot \underbrace{(-1 \cdot \sqrt{x^2 + 1})}_{=-x}}_{\text{borné}} \xrightarrow{x \to -\infty} 0 \quad \text{("0· borné")}$$

2.3.2 Valeurs limite en x_0

Définition: Soit $x_0 \in \mathbb{R}$. On appelle voisinage pointé de x_0 , tout voisinage de x_0 , privé de x_0

Exemple: L'ensemble

$$\{x \in \mathbb{R} | 0 < |x - x_0| < \delta\}$$

est appelé δ -voisinage pointé de x_0 .

En effet: $0 < |x - x_0| < \delta$

$$\iff x \in]x_0 - \delta; x_0[\cup]x_0; x_0 + \delta[$$

Définition: Soient $x_0 \in \mathbb{R}$ et f une fonction définie sur un voisinage pointé de x_0 .

$$\lim_{\substack{x \to x_0 \\ (x \neq x_0)}} f(x) = a, \text{ si } \forall \epsilon > 0, \exists \delta > 0 \ (\delta = \delta(\epsilon))$$

tels que

$$0 < |x - x_0| < \delta \implies |f(x) - a| < \epsilon$$

 $\lim_{x\to x_0} f(x)=a$ si et seulement si tout ϵ -voisinage de a contient l'image par f d'un ϵ -voisinage pointé de x_0

1. Théorème de caractérisation par les suites

 $\lim_{x \to x_0} f(x) = a$ si et seulement si pour toutes suites $(r_n)_{n \in \mathbb{N}^*}$ qui converge vers x_0 :

$$\lim_{n \to \infty} x_n = x_0, \quad (x_n \neq x_0)$$

On a

$$\lim_{n \to \infty} f(x_n) = a$$

Exemple:

$$f(x) = \begin{cases} x, & \text{si } x \le 1\\ x^2 + 1, & \text{si } x > 1 \end{cases}$$

Montrons que $\lim_{x\to 1} f(x)$ n'existe pas

• Soit $x_n = 1 - \frac{1}{n}$

$$x_n \to 1$$

et

$$f(x_n) = 1 - \frac{1}{n} \xrightarrow[n \to \infty]{} 1$$

• Soit $y_n = 1 + \frac{1}{n}(y_n > 1)$

$$\lim_{n \to \infty} y_n = 1$$

mais

$$f(y_n) = y_n^2 + 1$$

$$= \left(1 + \frac{1}{n}\right)^2 + 1$$

$$= 2 + \frac{2}{n} + \frac{1}{n^2}$$

$$\lim_{n \to \infty} f(y_n) = 2$$

Donc $\lim_{f(x)}$ n'existe pas

Définitions: Limite à gauche et à droite de x_0

$$\bullet \lim_{n \to x_0^-} f(x) = a \operatorname{Si}$$

$$\forall \epsilon > 0, \exists \delta > 0 (\delta = \delta(\epsilon)) \text{ t.g. } x_0 - \delta < x < x_0 \implies |f(x) - a| < \epsilon$$

$$\bullet \lim_{n \to x_0^+} f(x) = a \operatorname{Si}$$

$$\forall \epsilon > 0, \exists \delta > 0 (\delta = \delta(\epsilon)) \text{ t.q. } x_0 < x < x_0 + \delta \implies |f(x) - a| < \epsilon$$

Reprise de l'exemple précédent:

$$\lim_{x \to x_0^-} f(x) = 1, \quad \lim_{x \to x_0^+} f(x) = 2$$

Théorème $\lim_{x\to x_0} f(x)$ existe si et seulement si

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

Définition: Limites infinies en x_0

•
$$\lim_{x \to x_0} f(x) = +\infty$$

$$\forall A > 0, \exists \delta > 0 (\delta = \delta(A)) \text{ t.g. } 0 < |x - x_0| < \delta \implies f(x) > A$$

•
$$\lim_{x \to x_0} f(x) = -\infty$$

$$\forall B < 0, \exists \delta > 0 (\delta = \delta(A)) \text{ t.q. } 0 < |x - x_0| < \delta \implies f(x) < B$$

Exemple: Montrer que

$$\lim_{x \to 0} \frac{1}{x^2} = +\infty$$

Soit A > 0 donné, montrons que

$$\exists \delta > 0 \text{ t.q. } 0 < |x - 0| < \delta \implies \frac{1}{x^2} > A$$

$$\frac{1}{x^2} > A \iff x^2 < \frac{1}{A} \iff |x| < \frac{1}{\sqrt{A}} \iff |x - 0| < \frac{1}{\sqrt{A}}$$

Donc tout $\delta \leq \frac{1}{\sqrt{A}}$ convient, car

$$0 < |x - 0| < \delta$$
, (avec $\delta \le \frac{1}{\sqrt{A}}$) $\implies \frac{1}{x^2} > A$

Définitions: Limites infinies à gauche et à droite en x_0

•
$$\lim_{x \to x_0^+} f(x) = +\infty$$
 si
$$\forall A>0, \exists \delta>0 \quad \text{t.q.} \quad x_0 < x < x_0 + \delta \implies f(x)>A$$

•
$$\lim_{x \to x_0^-} f(x) = +\infty$$
 si

$$\forall A > 0, \exists \delta > 0$$
 t.q. $x_0 - \delta < x < x_0 \implies f(x) > A$

$$\bullet \lim_{x \to x_0^+} f(x) = -\infty \text{ si}$$

$$\forall B < 0, \exists \delta > 0$$
 t.q. $x_0 < x < x_0 + \delta \implies f(x) < B$

•
$$\lim_{x \to x_0^-} f(x) = +\infty$$
 si

$$\forall B < 0, \exists \delta > 0$$
 t.q. $x_0 - \delta < x < x_0 \implies f(x) < B$

Exemple: Montrons que $\lim_{x\to 0^-} \frac{1}{x} = -\infty$

Soit B > 0 donné, montrons que

$$\exists \delta > 0 \text{ t.q. } 0 - \delta < x < 0 \implies \frac{1}{x} < B \implies \frac{1}{x} < B \iff x > \frac{1}{B}, \quad (x, B < 0)$$

Donc tout $\delta > 0$ vérifiant

$$\frac{1}{R} < -\delta < 0$$

convient $(\delta < -\frac{1}{B})$ car

$$0 - \delta < x < 0 \quad (\text{avec } -\delta > \frac{1}{B}) \implies \frac{1}{x} > B$$

Remarque: Tout les théorèmes et règles de calcul concernant les limites lorsque $x \to \pm \infty$ restent valables lorsque $x \to x_0$

Exemple:

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x}}{\sqrt[3]{1 - x^2}} \cdot \cos\left(\frac{1}{1 - x}\right)$$

$$y = \cos\left(\frac{1}{1 - x}\right)$$

$$2$$

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x}}{\sqrt[4]{1 - x^2}} = 0$$

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x}}{\sqrt[4]{1 - x^2}} : \text{FI} \quad "0 "$$

$$\lim_{x \to 1} \frac{x^2 - (2 - x)}{\sqrt[3]{(1 - x^2)} \cdot (x + \sqrt{2 - x})} =$$

$$\lim_{x \to 1} \frac{(x - 1) \cdot (x + 2)}{\sqrt[3]{(1 - x)} \cdot (1 + x)} \cdot (x + \sqrt{2 - x}) =$$

$$\lim_{x \to 1} \frac{\sqrt[3]{(x - 1)^2} \cdot (x + 2)}{\sqrt[3]{-1 - x} \cdot (x + \sqrt{2 - x})} = 0$$

Donc

$$\lim_{x \to 1} \underbrace{\frac{x - \sqrt{2 - x}}{\sqrt[3]{1 - x^2}}}_{\to 0} \cdot \underbrace{\cos\left(\frac{1}{1 - x}\right)}_{\text{borné}} = 0$$

2.3.3 Infiniment petits équivalents (IPE)

Définition: Soient f et g 2 fonctions définies sur un voisinage pointé de x_0 . f et g sont des IPE $(x \to x_0)$ si et seulement si

•
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 (IP)

•
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \quad (E)$$

On écrit alors $f \sim g \quad (x \to x_0)$

Montrons que

$$\sin(x) \sim x \quad x \to 0$$

Soit $0 < x < \frac{\pi}{2}$

$$\dim(\Delta AOB) < \dim(O\hat{A}B) < \dim(\Delta OAC)$$

$$\iff \frac{1}{2} \cdot 1 \cdot \sin(x) < \frac{1}{2} \cdot x \cdot 1^2 < \frac{1}{2} \cdot 1 \cdot \tan(x)$$

$$\iff \sin(x) < x < \tan(x)$$

$$\iff 1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

$$\iff \underbrace{\cos(x)}_{\rightarrow 1} < \frac{\sin(x)}{x} < 1$$

Théorème des 2 gendarmes:

$$\lim_{x \to 0^+} \frac{\sin(x)}{x} = 1$$

Or $\frac{\sin(x)}{x}$ est paire donc

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

De plus

$$\lim_{x \to 0} \sin(x) = \lim_{x \to 0} x = 0$$

donc

$$\sin(x) \sim x \quad (x \to 0)$$

Propriété: Si $f_1 \sim g_1$ et $f_2 \sim g_2$ au voisinage de x_0 , alors

$$f_1 \cdot f_2 \sim g_1 \cdot g_2$$

Attention: En général

$$f_1 \sim g_1$$
 et $f_2 \sim g_2 \implies f_1 + f_2 \sim g_1 + g_2$

Contre-exemple:

$$x \sim (x + x^2)$$
 et $x \sim (-x + x^2)$ $(x \to 0)$

Or

$$\frac{x-x}{(x+x^2)+(-x+x^2)} = \frac{0}{2x^2} !$$

D'où la règles d'utilisation des IPE.

Dans un calcul de limit on peut remplacer une fonction par son IPE, uniquement dans une **expression factorisée** et **jamais** dans une somme.

Exemples:

1. $\lim_{x\to 0} (1-\cos(x)) = 0$ et

$$1 - \cos(x) = 2\sin\left(\frac{x^2}{2}\right) \sim 2 \cdot \left(\frac{x}{2}\right)^2 = \frac{x^2}{2}$$

donc

$$1 - \cos(x) \sim \frac{x^2}{2}, \quad (x \to 0)$$

2.
$$\lim_{x\to 0} \tan(x) = 0$$
 et

 $\lim_{x \to 0} \frac{\tan(x)}{x}$

et

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \underbrace{\frac{\sin(x)}{x}}_{x \to 1} \cdot \underbrace{\frac{1}{\cos(x)}}_{x \to 1} = 1$$

Donc

$$tan(x) \sim x \quad (x \to 0)$$

Exemple servant d'avertissement:

$$\lim_{x \to 0} \frac{2 \cdot \sin(x) - \sin(2x)}{x^3}$$

Lorsque
$$x \to 0$$
 $2 \cdot \sin(x) \sim 2x$
et $\sin(2x) \sim 2x$

Mais

$$\lim_{x \to 0} \frac{2 \cdot \sin(x) - \sin(2x)}{x^3} \neq \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{2x - 2x}{x^3} = \lim_{x \to 0} \frac{0}{x^2} = 0$$

$$\lim_{x \to 0} \frac{2 \cdot \sin(x) - \sin(2x)}{x^3} = \lim_{x \to 0} \frac{2 \cdot \sin(x) \cdot \cos(x)}{x^3} = \lim_{x \to 0} \frac{2 \cdot \sin(x) \cdot (1 - \cos(x))}{x^3} = \lim_{x \to 0} \frac{2 \cdot x \cdot \frac{x^2}{2}}{x^3} = 1$$

2.4 Continuité

Définition: Soit f définie sur un voisinage de x_0 . f est continue en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Cette définition comporte 3 exigences:

- 1. $f(x_0)$ existe $(x_0 \in \mathbb{D}_{déf})$
- 2. $\lim_{x \to x_0} f(x)$ existe (vaut $a \in \mathbb{R}$)
- 3. $a = f(x_0)$

Définition analytique f est continue en x_0 si

$$\forall \epsilon > 0, \exists \delta > 0 \text{ t.q. } (x - x_0) < \delta \implies |f(x) - f(x_0)| < \epsilon$$

Définition: f est continue sur un ensemble I=]a,b [si f est continue en tout $x_0 \in I$ et on écrit $f \in \mathbb{C}^0_I$ (la O^e dérivé de f continue sur l'intervalle I)

Exemples:

1. Montrons que $\sin(x) \in \mathbb{C}^0_{\mathbb{R}}$

Soit $\epsilon > 0$ donné

$$|\sin(x) - \sin(x_0)| = |2 \cdot \cos\left(\frac{x + x_0}{2}\right) \cdot \sin\left(\frac{x - x_0}{2}\right)| \le$$

$$\le |2 \cdot \sin\left(\frac{x - x_0}{2}\right)| \le |2 \cdot \frac{x - x_0}{2}| = |x - x_0|$$

Donc tout $\delta \leq \epsilon$ convient car

$$|x - x_0| < \delta$$
 (avec $\delta \le \epsilon$) \Longrightarrow $|\sin(x) - \sin(x_0)| < \epsilon$

Corollaire $\cos(x) \in \mathbb{C}^0_{\mathbb{R}} \ \text{car} \ \cos(x) = \sin\left(\frac{\pi}{2} - x\right)$

2. Montrer que \sqrt{x} est contenue sur \mathbb{R}_+^*

Montrons que
$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$$

$$|\sqrt{x} - \sqrt{x_0}| = \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| \le \left| \frac{x - x_0}{\sqrt{x_0}} \right| = \frac{|x - x_0|}{\sqrt{x_0}}$$

Or

$$\frac{|x - x_0|}{\sqrt{x_0}} < \epsilon \iff |x - x_0| < \epsilon \sqrt{x_0}$$

Donc tout

$$\delta \leq \epsilon \cdot \sqrt{x_0}$$

convient car

$$|x - x_0| < \delta \quad (\delta \le \epsilon \cdot \sqrt{x_0}) \implies |\sqrt{x} - \sqrt{x_0}| < \epsilon$$

Propriétés: Soit f, g continues en x_0 alors

- |f| est continue en x_0
- $f \pm g$ sont continue en x_0
- $f \cdot g$ est continue en x_0
- si $g(x_0) \neq 0, \frac{f}{g}$ est continue en x_0

Ces propriétés sont la conséquence des propriétés sur la limite en x_0

Théorème: Soit f et g deux fonctions. f définie sur un voisinage pointé de x_0 . Si $\lim_{x\to x_0} = a$ et si g est continue en a, alors

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x)) = g(a)$$

Corollaire: Soient f continue en x_0 et g continue en $f(x_0)$. Alors $g \circ f$ est continue sur en x_0

[

$$\begin{split} \lim_{x\to x_0} g\circ f(x) &= \lim_{x\to x_0} g(f(x)) \\ &= g\left(\lim_{x\to x_0} f(x)\right) \text{ car } g \text{ est continue} \\ &= g(f(x_0)) \text{ car } f \text{ est continue} \\ &= g\circ f(x_0) \end{split}$$

]

Exemples:

- $1. \qquad \bullet \ \ f(x) = \ \mathrm{cste} \qquad \mathrm{est} \qquad \mathbb{C}^0_{\mathbb{R}} \quad [\delta > 0 \ \mathrm{qcq} \ \Box]$
 - f(x) = x est $\mathbb{C}^0_{\mathbb{R}}$ $[\delta \le \epsilon \square]$
 - $\bullet\,$ Donc toutes fonctions polynomiales sont $\mathbb{C}^0_{\mathbb{R}}$
 - ullet Et toutes les fonctions naturelles sont \mathbb{C}^0 sur leur \mathbb{D}_{def}
- 2. Les fonctions $\tan(x)$ et $\cot(x)$ sont \mathbb{C}^0 sur leur $\mathbb{D}_{\mathsf{def}}$
- 3. $f(x)=\sin^2(\sqrt{x^2+1})$ est $\mathbb{C}^0_{\mathbb{R}}$ comme composé de fonctions

Définitions: Continuité gauche, droite

• f est continue à gauche en x_0 si

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

• f est continue à droite en x_0 si

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

Exemples:

1.
$$f(x) = E(x), \quad x_0 \in \mathbb{Z}$$

f continue à droite en x_0 et discontinue à gauche en x_0

2.
$$g(x) = \sqrt{x}$$

g est continue à droite en $x_0=0$

Définitions:

• On dit que f est continue sur [a;b] si elle continue sur]a;b[, continue à droite en x=a et à gauche en x=b

MATHS 1B

• Soit f définie sur voisinage pointé de x_0 avec $x_0 \notin \mathbb{D}_f$. On dit que f est prolongeable par continuité en x_0 si

$$\lim_{x \to x_0} f(x) \text{ existe (vaut } a \in \mathbb{R})$$

On peut alors définie $\tilde{f}(x)$ continue en x_0 en posant

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ a & \text{si } x = x_0 \end{cases}$$

 $\tilde{f}(x)$ est appelé la **prolongée par continuité** de f en x_0 .

Exemple:

$$f(x) = \frac{\sin(x)}{x}, \quad x_0 = 0$$

$$\lim_{x \to 0} f(x) = 1$$

$$\tilde{f}(x) = \left\{ \begin{array}{ll} \frac{\sin(x)}{x} & \text{ si } x \neq 0 \\ 1 & \text{ si } x = 0 \end{array} \right. \text{ est } \mathbb{C}^0_{\mathbb{R}}$$

Théorème de la valeur intermédiare Soit f continue sur [a;b], si

$$f(a) \cdot f(b) < 0$$

alors

$$\exists x_0 \in [a; b] \text{ t.q. } f(x_0) = 0$$

Illustration du cas f(a) < 0, f(b) > 0

Démonstration: algorithm de la bisection.

On coupe l'intervalle [a; b] en $x = \frac{a+b}{2}$

$$f\left(\frac{a+b}{2}\right) = 0, \quad x_0 = \frac{a+b}{2}$$

• $f\left(\frac{a+b}{2}\right) < 0$, alors on pose

$$I_1 = [a_1; b_1]$$
 avec $a_1 = \frac{a+b}{2}$ et $b_1 = b$

• $f\left(\frac{a+b}{2}\right) > 0$, alors on pose

$$I_1 = [a_1; b_1]$$
 avec $b_1 = \frac{a+b}{2}$ et $a_1 = a$

On réitère le découpage sur l'intervalle $I_1=\left[\ a_1;b_1 \ \right]$ et ainsi de suite :

- Soit $n \in \mathbb{N}^*$ t.q. $f\left(\frac{a_n+b_n}{2}\right)$ et alors $\frac{a_n+b_n}{2}$
- Soit on obtient (a_n) et $(b_n), n \in \mathbb{N}^*$, 2 suites telles que

-
$$f(a_n) < 0 < f(b_n)$$

- $b_n - a_n = \frac{b-a}{2^n}$
- $a \le a_1 \le a_2 \le \dots \le a_n \le b_n \le b_{n-1} \le \dots \le b_1 \le b$

 (a_n) est croissante et majorée

 (b_n) est décroissante et minorée

Donc ces suites sont convergentes

Or

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \left(\frac{a - b}{2^n} \right) = 0$$

Donc

$$\lim_{n\to\infty}(a_n)=\lim_{n\to\infty}(b_n) \text{ (car les deux limites existent)}$$

Posons

$$x_0 = \lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (b_n)$$

Or f est continue sur [a; b] alors

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = f(x_0)$$

Mais

$$f(a_n) < 0 < f(b_n)$$

Donc

$$f(a_n) = f(b_n) = 0$$

D'où

$$f(x_0) = 0$$

Corollaire: Soit f continue sur [a; b] Si c est comprise ntre f(a) et f(b), alors

$$\exists x_0 \in [a; b] \text{ t.q. } f(x_0) = c$$

Théorème: Soit f continue sur [a; b]

- Si f est strictement croissante sur [a; b] alors f est bijective de [a; b] sur [f(a); f(b)]
- Si f est strictement décroissante sur [a;b] alors f est bijective de [a;b] sur [f(b);f(a)]

Démonstration: Soit f strictement croissante.

Le théorème de la valeur intermédiaire nous donne l'existence d'un antécédent pour out $y \in [f(a); f(b)]$ et cet antécédent est **unique** car f est strictement monotone.

Chapter 3

Calcul différentiel

3.1 Dérivée d'une fonction

3.1.1 Définitions

Soit f définie sur un voisinage de x_0 , posons y = f(x). Une information **locale** sur le comportement de f sur un voisinage de x_0 est donné par le quotien

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{(x_0 + \Delta x) - x_0}$$

appelé le rapport de Newton de f en x_0 .

- Δx est l'accroissement de la variable indépendante x.
- Δy est l'accroissement correspondant liée à Δx .

$$\frac{\Delta y}{\Delta x} = \tan(x)$$
 est la pente

sécente passant par $(x_0, f(x_0))$ et $(x_0 + \Delta x; f(x_0 + \Delta x))$

En gardant x_0 fixe, on fait tendre $\Delta x \to 0$

Alors

$$x_0 + \Delta x \rightarrow x_0$$

et

$$f(x_0 + \Delta x) \to f(x_0)$$

si f est continue en x_0 , alors

$$\frac{\Delta y}{\Delta x}$$

est une FI de type " $\frac{0}{0}$ "

Trois cas peuvent se présenter

1. $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ n'existe pas

Exemple:

$$f(x) = \begin{cases} x \cdot \sin(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}, \quad x_0 = 0$$

$$2. \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = +\infty$$

Exemple:

$$f(x) = \sqrt[3]{x^3 + x}, \quad x_0 = 0$$

3.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = a$$
, $(a \in \mathbb{R})$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{(2 + \Delta x)^2 - 2^2}{\Delta x} = 4$$

Définition: Soit f définie sur un voisinage de x_0 . On dit que f est dérivable en x_0 . Si

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

existe et on note $f'(x_0)$ cette limite.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

est appelé **nombre dérivé** de f en x_0

La sécant s tends vers la "droite-limite" t.

$$\alpha \xrightarrow[\Delta \to 0]{} \varphi$$

Cette "droite-limite" est appelée la tangente à

$$y = f(x_0)$$
 en x_0

La pente m de la tangente vaut

$$m = \tan(\varphi) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

Donc l'équivalente de t s'écrit

Tangente de y = f(x)

$$t: y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

Théorème: Soit f définie sur un voisinage de x_0 . Alors

f dérivable en $x_0 \implies f$ continue en x_0

Démonstration f est dérivable en x_0 donc

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0)$$

$$\implies \lim_{\Delta x \to 0} \underbrace{\left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0)\right)}_{:=r(\Delta x)} = 0$$

Donc

$$\lim_{\Delta x \to 0} r(\Delta x) = 0$$

et

$$f(x_0 + \Delta x) = f(x_0) + \Delta x \cdot f'(x_0) + \Delta x \cdot r(\Delta x)$$

Et lorsque $\Delta x \rightarrow 0$, on a

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0) + \underbrace{\lim_{\Delta x \to 0} \Delta x \cdot f'(x_0)}_{\to 0} + \underbrace{\lim_{\Delta x \to 0} \Delta x \cdot r(\Delta x)}_{\to 0}$$

f est donc continue en x_0

⚠ La réciproque est fausse ⚠

Contre-exemple

$$f(x) = |x|, \quad x_0 = 0, \qquad \lim_{x \to 0} |x| = 0, \quad |x| \Big|_{x=0} = 0$$

donc |x| est continue en x = 0

Mais

$$\lim_{\Delta x \to 0} \frac{|0 + \Delta x| - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$

n'existe pas donc f(x) = |x| n'est pas dérivable en $x \to 0$.

Définitions:

• On dit que f est dérivable à gauche en x_0 , si

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

existe, on note ce nombre $f'(x_0^-)$ et il représente la pente de la demi-tangente à gauche en x_0 .

• de même f est dérivable à droite en x_0 , si

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

existe, $f'(x_0^+)$ et il représente la pente de la demi-tangente à droite en x_0 .

Exemple:

 $f(0^+) = +1$

Définitions: Si $I \subset \mathbb{D}_f$

• Si f est dérivable en tout $x_0 \in I$, on définit:

$$f': I \to \mathbb{R},$$

$$x_0 \mapsto f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

appelé la fonction dérivée de f sur I.

• Si f est dérivable sur I, et si f' est continue sur I, alors on dit que f est continument dérivable sur I et on note $f \in \mathbb{C}^1$

3.1.2 Règles de dérivation

(C.f. exercice facultatif série 8)

Soient f et g dérivable sur $I \in \mathbb{D}_f \cap \mathbb{D}_g$

1.
$$(f+g)'(x) = f'(x) + g'(x)$$

2.
$$(\lambda \cdot f)'(x) = \lambda \cdot f'(x)$$

3.
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

4. Si
$$g(x) \neq 0$$
, $\forall x \in I$

$$\left[\frac{f}{g}\right]'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

En particulier

$$\left(\frac{1}{f(x)}\right) = -\frac{f'(x)}{(f(x))^2}$$

Théorème: Dérivée de la composée

Soit f dérivable en x_0 et g dérivable en $f(x_0)$. Alors $g \circ f$ est dérivable en x_0 et

Dérivée de la composée

$$(g \circ f)'(x) = g'(f(x_0)) \cdot f'(x_0)$$

Démonstration

• Rappel:

$$r(\Delta x) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0)$$

$$\implies f(x_0 + \Delta x) = f(x_0) + \Delta x \cdot f'(x_0) + \Delta x \cdot r(\Delta x)$$

avec

$$r(\Delta x) \xrightarrow{\Delta x \to 0} 0$$

• Dérivée $g \circ f(x)$

$$g \circ f(x+h) = g(f(x+h))$$

$$= g(f(x) + \underbrace{f(x+h) - f(x)}_{=\Delta})$$

$$= g(f(x)) + g'(f(x)) \cdot \underbrace{(f(x+h) - f(x))}_{=\Delta} + r\underbrace{(f(x+h) - f(x))}_{=\Delta} \cdot \underbrace{(f(x+h) - f(x))}_{=\Delta}$$

Donc

$$\frac{g(f(x+h)) - g(f(x))}{h} = g'(f(x)) \cdot \frac{f(x+h) - f(x)}{h} + r(f(x+h) - f(x)) \cdot \frac{f(x+h) - f(x)}{h}$$

Et

$$\lim_{h \to 0} \frac{g(f(x+h)) - g(f(x))}{h} = g'(f(x)) \cdot f'(x) + r(\underbrace{f(x+h) - f(x)}_{\to 0} \cdot f'(x_0))$$

D'où

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

3.1.3 Dérivées de quelque fonctions

1.
$$f(x) = c$$
,

$$\lim_{h \to 0} \frac{f(x+h) - f(h)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

2.
$$f(x) = x$$
,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = 1$$

3.
$$f(x) = x^n$$
, $n \in \mathbb{N}^*$ $f'(x) = n \cdot x^{n-1}$ à démontrer par récurrence

• Vérification pour n = 1:

$$(x)' = 1$$
 et $n \cdot x^{n-1} \Big|_{n=1} = 1 \cdot x^0 = 1$

MATHS 1B

• Démonstration du pas de récurrence:

Hypothèse: $(x^n)' = n \cdot x^{n-1}$ pour un $x \in \mathbb{N}^*$ donné

Conclusion: $(x^{n+1})' = (n+1) \cdot x^n$

Preuve:

$$(x^{n+1})' = (x \cdot x^n)' = 1 \cdot x^n + x \cdot (x^n)'$$

= $x^n + x \cdot n \cdot x^{n-1} = x^n + n \cdot x^n = (n+1) \cdot x^n$

4.
$$f(x) = x^{-m}, m \in \mathbb{N}^*, x \neq 0$$

$$f'(x) = \left(\frac{1}{x^m}\right)' = -\frac{m \cdot x^{m-1}}{(x^m)^2}$$
$$= -m \cdot x^{m-1-2m} = -m \cdot x^{-m-1}$$

Donc
$$(x^n)' = n \cdot x^{n-1}, \quad \forall \in \mathbb{Z}$$

5.
$$f(x) = x^{\frac{p}{q}}, \quad p \in \mathbb{Z}, \quad q \in \mathbb{N}^*, \quad x > 0$$

$$y = x^{\frac{p}{q}} \iff y^q = x^p$$

En dérivant les deux termes par rapport à x, on a

$$q \cdot y^{q-1} \cdot y' = p \cdot x^{p-1}$$

$$y' = \frac{p}{q} \cdot \frac{x^{p-1} \cdot y}{y^{q-1} \cdot y} = \frac{p}{q} \cdot \frac{x^{p-1} \cdot x^{\frac{p}{q}}}{x^p} = \frac{p}{q} \cdot x^{-1} \cdot x^{\frac{p}{q}} = \frac{p}{q} \cdot x^{\frac{p-1}{q-1}}$$

Donc

$$(x^r)' = r \cdot x^{r-1}, \forall r \in \mathbb{Q}, \quad x > 0$$

En particulier

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}, \quad x > 0$$

Exemples:

1. Soit f une fonction

$$f(x) = \sqrt{1 - x^2}, x \in [-1; 1]$$

L'équation de t tangente à y = f(x) en $x_0 = \frac{\sqrt{3}}{2}$

$$t: y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

- $f(x_0) = \frac{1}{2}$
- $f'(x) = \frac{(-x^2)'}{2 \cdot \sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}}, \quad x \neq \pm 1$

$$f'(x_0) = f'(x)\Big|_{\frac{\sqrt{3}}{2}} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$$

$$t: y - \frac{1}{2} = -\sqrt{3} \cdot \left(x - \frac{\sqrt{3}}{2}\right)$$

2.
$$f(x) = x \cdot \sqrt{x+2}, \quad x \ge -2$$

Tangente au graphe de f issues du point P(1,0)

Donc

$$-x_0 \cdot \sqrt{2 + x_0} = \frac{3x_0 + 4}{2 \cdot \sqrt{2 + x_0}} \cdot (1 - x_0)$$

$$\iff -2x_0(2 + x_0) = 3x_0 + 4 - 3x_0^2 - 4x_0$$

$$\iff x_0^2 - 3x_0 - 4 - 0 \iff (x_0 - 4) \cdot (x_0 + 1) = 0$$

$$x_0 = -1: \qquad t: y + 1 = \frac{1}{2}(x + 1)$$

$$x_0 = 4: \qquad t: 8x - \sqrt{6}y - 8 = 0$$

3.1.4 Dérivée d'ordre supérieure

Soit f dérivable sur I, si f' est dérivable sur I, on peut dériver f' sur I et on note

$$(f')' = f''$$

et ainsi de suite

$$(f'')' = f'''$$

etc.

Définition par récurrence:

$$f^{(n)}(x) = [f^{(n-1)}(x)]', \quad n \in \mathbb{N}^*$$

$$avec f^{(0)}(n) = f(x)$$

Exemples:

1. $f(x) = x^p$, $p \in \mathbb{N}^*$

$$f^{(n)}(x) = \begin{cases} p \cdot (p-1) \cdot \dots \cdot (p-n+1) & \text{si } p \le n \\ 0 & \text{si } p > n \end{cases}$$

2. $f(x) = \cos(x)$

$$f'(x) = -\sin(x), \quad f''(x) = -\cos(x), \quad f^{(3)}(x) = \sin(x), \quad f^{(4)}(x) = \cos(x)$$

Conjecture:

$$f^{(x)} = \cos\left(x + \frac{\pi}{2} \cdot n\right), \quad n \in \mathbb{N}^*$$

Définition par récurrence:

• Vérification:

$$-n = 0: \cos\left(x + n \cdot \frac{\pi}{2}\right)\Big|_{n=0} = f^{(0)}(x)$$

$$-n = 1: \cos\left(x + n \cdot \frac{\pi}{2}\right)\Big|_{n=1} = -\sin(x) = f'(x)$$

- Démonstration du pas de récurrence:
 - Hypothèse:

$$f^{(n)}(x) = \cos\left(x + n \cdot \frac{\pi}{2}\right)$$
 pour un $n \in \mathbb{N}$ donné

– Conclusion:

$$f^{(n+1)}(x) = \cos\left(x + (n+1) \cdot \frac{\pi}{2}\right)$$

_

$$f^{(n+1)}(x) = [f^n(x)]' = \left[\cos\left(c + n \cdot \frac{\pi}{2}\right)\right]' =$$

$$= \cos'\left(x + n \cdot \frac{\pi}{2}\right) \cdot \left(x + n \cdot \frac{\pi}{2}\right)'$$

$$= -\sin\left(x + n \cdot \frac{\pi}{2}\right) \cdot 1 = \cos\left(x + \left(n \cdot \frac{\pi}{2}\right) + \frac{\pi}{2}\right)$$

$$= \cos\left(x + (n+1) \cdot \frac{\pi}{2}\right)$$

Remarque: Si f est n-fois dérivable sur I et si $f^{(n)}(x)$ est continue sur I, alors on note

Maths 1B

$$f \in \mathbb{C}^n_I$$

Exemple:

$$\cos(x) \in \mathbb{C}^{\infty}_{\mathbb{R}}$$

3.2 Différentielles et approximations linéaires

3.2.1 Différentielles

Définitions:

• La différentielle de la variable indépendante x, notée dx est l'accroissement infinitésimale de cette variable

$$dx = \Delta x$$
, (lorsque $\Delta x \to 0$)

• La différentielle de la variable dépendante y (ou de la fonction f), notée

$$dy$$
 ou df

en x_0 est la fonction linéaire de dx définie par

$$dy = f'(x_0) \cdot dx$$

La différentielle dy en x_0 est l'accroissement des y correspondant à dx, mesuré sur la tangente au graphe de f en x_0 .

La définition des différentielles induit la notation de Leibniz

$$dy = f'(x_0) \cdot dx \implies \frac{dy}{dx}\Big|_{x=x_0} = f'(x_0)$$

3.2.2 Approximation linéaire

Rappel Soit f dérivable en x_0 On a

$$f(x_0 + h) = f(x_0) + h \cdot f'(x_0) + h \cdot r(h)$$

avec

$$r(h) = \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)$$

d'où

$$\lim_{h \to 0} r(h) = 0$$

Donc si $h \to 0$,

$$\underbrace{h}_{\to 0} \cdot \underbrace{r(h)}_{\to 0}$$

est négligeable et

$$f(x_0 + h) \simeq f(x_0) + h \cdot f'(x_0)$$

La quantité

$$A = f(x_0) + h \cdot f'(x_0)$$

est appelé l'approxiamation linéaire de f en x_0

A est l'ordonnée correspondant à $x_0 + h$ mesurée sur la tangente en x_0

Exemple: Évaluation de $\sqrt[3]{8.012}$ On détermine l'AL de $\sqrt[3]{8.012}$ en $x_0 = 8$

$$h = 0.012, \quad f(x) = \sqrt[3]{x}$$

$$A = f(x_0) + h \cdot f'(x_0)$$

$$f(x_0) = f(8) = 2$$

$$f'(x_0) = f'(8) = \frac{1}{3 \cdot \sqrt{x^2}} \Big|_{x=8} = \frac{1}{12}$$

$$A = 2 + 0.0012 \cdot \frac{1}{12} = 2.001$$

3.3 Théorème des accroissement finis

3.3.1 Préliminaire (sans démonstration)

Soit f continue sur [a;b] = I

- 1. L'image de I par f est un intervalle fermé
- 2. f atteint sur I = [a; b] son minimum et son maximum (f(I) = [m, M])

3.3.2 Théorème de Rolle

Soit f continue sur [a;b] et dérivable sur]a;b[. Si f(a)=f(b)=0, alors

$$\exists c \in]a; b[$$
 t.q. $f'(c) = 0$

Démonstration:

- Si $f(x) \equiv 0$ sur [a; b], alors le théorème est vérifié
- Si $f(x) \not\equiv 0, f(x)$ prend des valeurs positions ou négatives, on suppose que a et b sont

3.4 Règle de Bernoulli, de l'Hospital

3.4.1 Forme indéterminée de type $\frac{0}{0}$

Soient f et g deux fonctions dérivables sur une voisinage de x_0 telles que $f(x_0) = g(x_0) = 0$ avec $g(x) \neq 0$ et $g'(x) \neq 0$ sur un voisinage pointé de x_0 :

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$

est dont une FI de type " $\frac{0}{0}$ "

Alors si

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

existe ou est infinie, on a

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Démonstration: Soit $D(x) = f(x_0 + h) \cdot g(x_0) - g(x_0 + h) \cdot f(x)$

$$D(x_0) = 0$$
 et $D(x_0 + h) = 0$

or D est continue et dérivable sur un voisinage de x_0 Donc d'après Rolle,

$$\exists \theta \in]0; 1[\text{ t.g. } D'(x_0 + \theta \cdot h)]$$

$$D'(x) = f(x_0 + h) \cdot g'(x) - g(x_0 + h) \cdot f'(x)$$

$$D'(x_0 + h) = 0 \implies f(x_0 + h) \cdot g(x_0 + \theta h) = g(x_0 + h) \cdot f'(x_0 + \theta h)$$

$$\iff \frac{f(x_0 + h)}{g(x_0 + h)} = \frac{f'(x_0 + \theta h)}{g'(x_0 + \theta h)}$$

Et lorsque $h \to 0$, on a

$$\lim_{h \to 0} \frac{f(x_0 + h)}{g(x_0 + h)} = \lim_{h \to 0} \frac{f'(x_0 + \theta h)}{g'(x_0 + \theta h)}$$

$$\iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Remarque: Cette règle reste valable lorsque $x \to \pm \infty$

Soient f et g deux fonctions dérivables sur une voisinage de l'infini, telles que $\lim_{x\to\infty} f(x)=0$ et $\lim_{x\to\infty} g(x)=0$ Alors si $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ existe ou est infinie on a

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

3.4.2 Forme indéterminée de type " $\frac{\infty}{\infty}$ "

Soient f et g deux fonctions dérivable sur un voisinage de x_0 (fini ou infini) et telles que

$$\lim_{x \to x_0} f(x) = \infty \text{ et } \lim_{x \to x_0} g(x) = \infty$$

Alors si $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existe ou est infinie, on a

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Illustration de la démonstration

$$L = \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}$$

est une FI de " $\frac{0}{0}$ "

$$\stackrel{\text{BH}}{=} \lim_{x \to x_0} \frac{-\frac{g'(x)}{g^2(x)}}{-\frac{f'(x)}{f^2(x)}} = \lim_{x \to x_0} \frac{g'(x)}{f'(x)} \cdot \underbrace{\frac{f^2(x)}{g^2(x)}}_{L^2} = L^2 \cdot \lim_{x \to x_0} \frac{g(x)}{f(x)}$$

D'où

$$\lim_{x\to x_0}\frac{g'(x)}{f'(x)}=\frac{1}{L}\ \mathrm{et}\ \lim_{x\to x_0}\frac{f(x)}{g(x)}=L$$

Exemples:

1. $\lim_{x\to 1} \frac{x-1}{\ln(x^2)}$: FI " $\frac{0}{0}$ "

$$\stackrel{\mathrm{BH}}{=} \lim_{x \to 1} \frac{1}{\frac{2}{x}} = \frac{1}{2}$$

2. $\lim_{x\to\infty} \frac{e^x}{x^2}$: FI " $\frac{\infty}{\infty}$ "

$$\stackrel{\text{BH}}{=} \lim_{x \to \infty} \frac{e^x}{2x} \text{ FI } "\frac{\infty}{\infty}"$$

$$\stackrel{\text{BH}}{=} \lim_{x \to \infty} \frac{e^x}{2} = +\infty$$

3. $\lim_{x\to\infty} \frac{\ln(x)}{x}$: FI " $\frac{\infty}{\infty}$ "

$$\stackrel{\text{BH}}{=} \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

4. $\lim_{x\to 0^+} x \cdot \ln(x)$: FI " $0 \cdot \infty$ "

$$\begin{split} &= \lim_{x \to 0^+} = \frac{\ln(x)}{\frac{1}{x}} : \text{ FI "} \frac{\infty}{\infty} \text{"} \\ &\stackrel{\text{BH}}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0 \end{split}$$

5. Rappel:

$$u(x)^{v(x)} \stackrel{\text{def}}{=} e^{v(x)} \cdot \ln(u(x)), \quad \forall u(x) > 0$$

$$\lim_{x\to 0^+}(x^x)=\lim_{x\to 0^+}e^{x\cdot\ln(x)}=e^{\lim_{x\to 0^+}x\cdot\ln(x)}$$

car exp et continuité et

$$\lim_{x\to 0^+} x\cdot \ln(x) = 0 \text{ (cf. 4.) donc } \lim_{x\to 0^+} x^x = e^0 = 1$$

3.5 Variation locale d'une fonction

3.5.1 Croissance, décroissance

Soit f dérivable sur un intervalle ouvert I

1. Si

$$f'(x) > 0, \quad \forall x \in I$$

alors f strictement croissante sur I.

2. Si

$$f'(x) < 0, \quad \forall x \in I$$

alors f est strictement décroissante sur I.

Démonstration: Pour tout $a, b \in I$, a < b le TAF nous donne l'existence de

$$c \in]a; b[, \text{ t.q. } f'(c) = \frac{f(b) - f(a)}{b - a}, \quad f(b) - f(a) = f'(c) \cdot (b - a)$$

Or b - a > 0 donc

1. Si f'(x) > 0, alors

$$f'(c) > 0 \implies f(b) - f(a) > 0, \forall a < b \in I$$

donc f est strictement croissante sur I.

2. Si f'(x) < 0, alors

$$f'(c) < 0 \implies f(b) - f(a) < 0, \forall a < b \in I$$

donc f est strictement décroissante sur I.

⚠ La réciproque est **fausse**

Contre-exemple: $f(x) = x^3$

((fig. 1))

f est strictement croissante

3.5.2 Extrema

Définitions: Soient

$$f: \mathbb{D}_f \to \mathbb{R}$$

et

$$c \in \mathbb{D}_f$$

• f(c) est un maximum local de f si

$$\exists \delta > 0 \text{ t.q. } f(x) \leq f(c), \quad \forall \in]c - \delta; c + \delta[$$

• f(c) est un maximum global de f si

$$f(x) \le f(c), \forall x \in \mathbb{D}_f$$

• f(c) est un minimum local de f si

$$\exists \delta > 0 \text{ t.q. } f(x) \geq f(c), \quad \forall \in]c - \delta; c + \delta[$$

• f(c) est un maximum global de f si

$$f(x) \ge f(c), \forall x \in \mathbb{D}_f$$

 $f(x_1)$ est la réciproque minimum local de f

 $f(x_2), f(x_4)$ sont des maximums locaux

 $f(x_3)$, $\underbrace{f(x_5)}_{\text{n'existe pas}}$ ne sont des extremas locaux de f.

Théorème: Soit $f: \mathbb{D}_f \to \mathbb{R}$ dérivable en x_0 . Alors si $f(x_0)$ est un extrema de f, on a $f'(x_0) = 0$

Démonstration: C.f. démonstration du théorème de Rolle

Remarque: La réciproque est fausse

Contre-exemple: $f(x) = x^3, x_0 = 0$

$$f'(0) = 3 \cdot x^2 \Big|_{x=0} = 0$$

mais

$$f(0) = 0$$

n'est pas un extremum de f.

Théorème: Soit f continue sur I ouvert et dérivable sur I sauf peut-être en $x_0 \in I$ Alors $f'(x_0)$ est une extremum de f si f'(x) change de signe en x_0

Démonstration: Soit f continue sur $]x_0 - \delta; x_0 + \delta[(\delta > 0)]$ et dérivable sur

$$|x_0 - \delta; x_0| \cup |x_0; x_0 + \delta|$$

$$f(x) = f(x_0) + f'(c) \cdot (x - x_0)$$

avec c entre x et x_0 (TAF)

f' change de signe en x_0 donc:

$$\begin{array}{c} \bullet \\ \sin x - x_0 < 0, \text{ on a } f'(c) > 0 \implies f(x) < f(x_0) \\ \sin x - x_0 > 0, \text{ on a } f'(c) < 0 \implies f(x) < f(x_0) \end{array} \right\} f(x_0) \text{ est max}$$

$$\begin{aligned} & \text{si} x - x_0 < 0, \text{ on a } f'(c) > 0 \implies f(x) > f(x_0) \\ & \text{si} x - x_0 > 0, \text{ on a } f'(c) < 0 \implies f(x) > f(x_0) \end{aligned} \right\} f(x_0) \text{ est min}$$
 ((fig. 4))