ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ А.Ф. МОЖАЙСКОГО

Кафедра информационно-вычислительных систем и сетей

УТВЕРЖДАЮ

ВрИО Начальника 24 кафедры полковник
А. Васильев
«____» ____ 2023 года

Автор: преподаватель 24 кафедры, кандидат технических наук, доцент В. Тимофеев

Тема1. Основные понятия, показатели и методы обеспечения надёжности AC

Практическое занятие

Определение характеристик надежности по статистическим данным об отказах аппаратуры

по дисциплине

Надежность автоматизированных систем

	Обсужде	но и одобрено	на засе	едании 24 кафедры
((»	202	_ года	протокол №

Санкт - Петербург 202_

Цель занятия: привитие обучаемым навыков по обобщению результатов, полученных при проведении испытаний объектов без замены вышедших из строя и при замене отказавших объектов исправными.

СОДЕРЖАНИЕ ЗАНЯТИЯ И ВРЕМЯ

Введение	5 мин.
1. Разбор типовых примеров	40 мин.
2. Выполнение индивидуального задания	135 мин.
3. Подготовка отчета	45 мин.
4. Защита отчета о выполненной работе	40 мин.
Заключение	5 мин.

1. Определения показателей надежности при испытаниях без замены отказавших элементов

1.1. Типовой пример

С целью определения показателей надежности берутся N=1000 однотипных элементов, которые испытываются в течение времени $t_{\rm H}=1500$. Все время испытаний $t_{\rm H}$ разбивается на l равных интервалов длительностью $\Delta t=t_{\rm H}/l$ и подсчитывается число отказавших элементов n_i (i=1,2,3,...,l) в пределах каждого интервала времени (табл. 1).

Таблица 1

Номера интервалов	1	2	3	4	5	6	7	8	9	10	11	12
Число отказов в 10-ти опытах на интервале	4	21	43	92	190	211	188	96	63	57	23	12

Зная n_i , можно определить частоту и интенсивность отказов на моменты времени $t_i = (i-\frac{1}{2})\Delta t$, соответствующие серединам каждого интервала, по следующим формулам:

$$f^*(t_i) = \frac{n_i}{N\Delta t}, \tag{1}$$

$$\lambda^*(t_i) = \frac{n_i}{N_{\rm cp}\Delta t},\tag{2}$$

где $N_{\rm cp}=\frac{N_{i-1}+N_i}{2}$ — среднее число исправно работавших образцов на i-м интервале времени, причем N_{i-1} — исправных образцов в начале i-го

интервала, а N_i – число исправных образцов в конце i-го интервала.

Вероятность безотказной работы определяется на моменты времени $t_i^* = i\Delta t$, соответствующие концу каждого интервала, по формуле

$$p^*(t_i^*) = \frac{N - \sum_{j=1}^i n_i}{N}, \quad i = 1, 2, \dots, l.$$
 (3)

По каждой из приведенных формул рассчитывается l точек, по которым, пользуясь одним из методов аппроксимации, подбирается соответствующая кривая.

Для определения среднего времени исправной работы справедлива формула

$$T^* = \frac{\sum_{i=1}^{l} n_i t_i + (N - r) t_{\text{H}}}{N} \,, \tag{4}$$

где r – число изделий, отказавших за время испытаний; t_i – середина i-го интервала.

С целью сокращения времени на выполнение расчетов по формулам (1) – (4) используется приложение Excel «Автоматизация расчетов для ПЗ 1 и 2».

АЙЛ ГЛ	АВНАЯ ВСТАВКА РАЗМЕ	ТКА СТРАНИЦЬ	I ФОРМ	улы да	АННЫЕ РІ	ЕЦЕНЗИРО	ВАНИЕ ВИД	ACROBA	₩ ти	, 0	17 38	<i>₹</i>		Gr
* *	Calibri - 11 - A	A = =	≫ -	₽ 06	щий	-				Вставит		A	44	
гавить 🚜	жкч- 🖺 - 🕭 -	A - = = =	_ ■ €= ÷≡	□ - □	- % ooo	0 00	Условное	Форматиров		≅ × Удалит		Сортировк		
· ·		_				ф(орматирование *		ут ячеект	Форма		и фильтр	выделить ч	
ер обмена 1	<u>Ш</u> рифт	г₃ Выр	авнивание	F _S	Число	E .	(Тили		Ячейкі	И	Редактиро	зание	
9	▼ : × ✓ f _x													
	Α	В	С	D	F	F	G	н	1	1 1	K	1	М	N
	A рная работа №1. Определ									,	K	L	IVI	IN
	рная расста NEE. Определ 1. Определение показател		•											
Вариант		30												
Исходны	е данные:													
Время и	спытаний tu=	1500												
Количес	тво интервалов I=	12												
Количес	тво элементов N=	1000												
Длина и	нтервала dt=	125												
Номер и	нтервала і	1	2	3		5		7	8	9	10	11	12	
Количес	тво отказавших элементов	ni 4	21	43	92	190	211	188	96	63	57	23	12	
	тво работающих в конце і-г	ον 996	975	932	840	650	439	251	155	92	35	12	0	
		i	ti		a(ti)		L(ti)		Ncpi					
		1			3,2E-05		3,2064E-05		998 985,5					
		3			0,00017 0,00034		0,00017047 0,00036078		985,5					
		4	-		0,00034		0,00083078		886					
_		5	,-		0,00074		0,0008307		745					
		6			0,00132		0,00204027		544,5					
		7			0.0015		0.00435942		345					
		8			0,00077		0,00378325		203					
		9	1062,5		0,0005		0,00408097		123,5					
		10	1187,5		0,00046		0,0071811		63,5					
		11	1312,5		0,00018		0,00782979		23,5					
		12	1437,5		9,6E-05		0,016		6					
	без замены с заменой	(+)					-	4						Þ

Рис. 1. Лист Excel (а, б) для расчета показателей надежности при испытании без замены отказавших элементов

Используя инструменты Excel построить графики для $f^*(t) \leftrightarrow a(t_i), \ \lambda^*(t) \leftrightarrow L(t_i), \$ и $p^*(t) \leftrightarrow p(t_i^*).$

Рис. 2. Построение графиков показателей надежности $f^*(t) \leftrightarrow a(t_i), \ \lambda^*(t) \leftrightarrow L(t_i), \$ и $p^*(t) \leftrightarrow p(t_i^*)$ с использованием инструментов Excel

Рис. 3. Графики интенсивности (а) $\lambda^*(t) \leftrightarrow L(t_i)$, плотности (б) $f^*(t) \leftrightarrow a(t_i)$ и вероятности безотказной работы (в) $p^*(t) \leftrightarrow p(t_i^*)$

Анализируя характер получившихся графиков функций $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$, можно подобрать вид закона распределения времени безотказной работы

(табл. 2 и табл. 3), а затем, взяв за основу график одной из функций, определить параметры закона распределения. При определении параметров закона распределения можно использовать аналитическое выражение для времени При однопараметрическом среднего до отказа. законе распределения требуется одного знание значения показателя, при двухпараметрическом – двух значений.

Таблица 2. Экспоненциальный закон

7		,	•
Плотность распределения времени безотказной работы $f(t)$	Интенсивность отказов $\pmb{\lambda}(t)$	Вероятность безотказной работы $p(t)$	Среднее время до отказа $m{T}_{cp}$
$f(t) = \lambda e^{-\lambda t}$	$\lambda(t) = \lambda$	$p(t) = e^{-\lambda t}$	$T_{cp}=rac{ extbf{1}}{\lambda}$
$0 \longrightarrow t$	0	$0 \xrightarrow{t}$	

Таблица 3. Закон Вейбулла

Плотность распределения времени безотказной работы $f(t)$	Интенсивность отказов $\lambda(t)$	Вероятность безотказной работы $p(t)$	Среднее время до отказа \pmb{T}_{cp}
$f(t) = \frac{k}{T} t^{k-1} e^{-\frac{t^k}{T}}$ $k = 0.5$ $k = 2.5$ $k = 2.0$ $k = 1.5$	$\lambda(t) = \frac{k}{T} t^{k-1}$ $k = 2,5$ $k = 1$ $k = 1$	$p(t) = e^{-\frac{t^k}{T}}$ $k = 2.5$ $k = 2$ $k = 1.5$ $k = 1$	$T_{cp} = T^{\frac{1}{k}} \Gamma(1 + \frac{1}{k})$
0 = 1	k = 0.5	0 = 0.5	

Затем рассчитать по формулам из табл. 2 или табл. 3 для выбранного закона двенадцать (для каждого интервала) значений f(t), $\lambda(t)$ и p(t) и построить их кривые на графиках для $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$ соответственно. Оценить степень расхождения статистических и аналитических графиков.

Для расчета 12-ти точек кривых $f(t_i)$ и $\lambda(t_i)$ значения t_i брать из листа Excel, для которых рассчитывались значения $f^*(t_i)$ и $\lambda^*(t_i)$:

i	t_i
1	62,5
2	187,5
3	312,5
4	437,5
5	562,5
6	687,5
7	812,5
8	937,5
9	1062,5
10	1187,5
11	1312,5
12	1437,5

Для расчета 12-ти точек кривых $p(t_i^*)$ значения t_i^* брать из листа Excel, для которых рассчитывались значения $p^*(t_i^*)$:

i	t_i^*
1	125
2	250
3	375
4	500
5	625
6	750
7	875
8	1000
9	1125
10	1250
11	1375
12	1500

В нашем случае вид графиков на рис. З может соответствовать закону Вейбулла при $k \geq 2$. Выбираем k = 2,5. Затем надо определить второй параметр закона Вейбулла T. Параметр T будем определять из выражения для среднего времени до отказа для закона Вейбулла

$$T_{cp} = T^{\frac{1}{k}} \Gamma(1 + \frac{1}{k}), \tag{5}$$

где $\Gamma(...)$ – гамма-функция, k и T – параметры закона Вейбулла. Из (5) получим выражение для параметра T

$$T = \left[\frac{T \text{cp}}{\Gamma(1 + \frac{1}{k})}\right]^{2.5} = \left[\frac{734,625}{\Gamma(1 + \frac{1}{2.5})}\right]^{2.5} = \left[\frac{734,625}{0,8873}\right]^{2.5} = 19723685.$$

Таблица 4. Значения $\Gamma(p)$ при $p\in[1,2]$

p	Г(р)	p	Г(р)	p	Г(р)	p	Г(р)
1,00	1,0000	1,25	0,9064	1,50	0,8862	1,75	0,9191
1,01	0,9943	1,26	9044	1,51	8866	1,76	9214
1,02	9888	1,27	9025	1,52	8870	1,77	9238
1,03	9835	1,28	9007	1,53	8876	1,78	9262
1,04	9784	1,29	8990	1,54	8882	1,79	9288
1,05	9735	1,30	8975	1,55	8889	1,80	9314
1,06	9687	1,31	8960	1,56	8896	1,81	9341
1,07	9642	1,32	8946	1,57	8905	1,82	9368
1,08	9597	1,33	8934	1,58	8914	1,83	9397
1,09	9555	1,34	8922	1.59	8924	1,84	9426
1,10	9514	1,35	8912	1,60	8935	1,85	9456
1,11	9474	1,36	8902	1,61	8947	1,86	9187
1,12	9436	1,37	8893	1,62	8959	1,87	9518
1,13	9399	1,38	8885	1,63	8972	1,88	9551
1,14	9364	1,39	8879	1,64	8986	1,89	9584
1,15	9330	1,40	8873	1,65	9001	1,90	9618
1,16	9298	1,41	8868	1,66	9017	1,91	9652
1,17	9267	1,42	8864	1,67	9033	1,92	9688
1,18	9237	1,43	8860	1,68	9050	1,93	9724
1,19	9209	1,44	8858	1,69	9068	1,94	9761
1,20	9182	1,45	8857	1,70	9086	1,95	9799
1,21	9156	1,46	8856	1,71	9106	1,96	9837
1,22	9131	1,47	8856	1,72	9126	1,97	9877
1,23	9108	1,48	8857	1,73	9147	1,98	9917
1,24	9030	1,49	8859	1,74	9168	1,99 2,00	9959 1,0000

Оценим насколько выбранные параметры закона Вейбулла соответствуют значениям показателей надежности, полученным из статистики. Оценивать будем на примере плотности по формуле (6).

$$f(t_i) = \frac{k}{T} t_i^{k-1} e^{-\frac{t_i^k}{T}};$$

$$\lambda(t_i) = \frac{k}{T} t_i^{k-1};$$
(6)

$$\lambda(t_i) = \frac{k}{\tau} t_i^{k-1}; \tag{7}$$

$$p(t_i^*) = e^{-\frac{t_i^{*k}}{T}}. (8)$$

Для начала рассчитаем значение плотности для времени $t_6 = 687$, которое соответствует ее экстремальному значению. Значение $f(t_6)$, вычисленное по формуле (6), для k = 2,5 и $T = 19\,723\,685$ равно 0,00125. Это меньше значения плотности для этого времени, полученного из статистики, которое равно 0,00169 (рис. 1.а). Чтобы поднять экстремальное значение плотности, как видно из таблицы 3, необходимо увеличить значение параметра k. Выберем значение k = 3,5 и рассчитаем новое значение параметра T по формуле (5).

$$T = \left[\frac{735}{0,899}\right]^{3,5} = 15\ 625\ 962\ 068.$$

Для новых значений k и T по формуле (6) рассчитаем $f(t_6)$, которое будет равно 0,00163. Данное значение плотности достаточно близко к значению плотности, полученное из статистики, поэтому эти значения k = 3,5 и $T = 15\,625\,962\,068$ будем использовать для расчетов по формулам (6), (7) и (8). Например, дальнейшие расчеты по формуле (6) для времен $t_2 = 187$, $t_4 = 437$, $t_8 = 937$ и $t_{10} = 1187$ дали значения $f(t_2) = 0,0001$; $f(t_4) = 0,0008$; $f(t_8) = 0,0012$ и $f(t_{10}) = 0,00027$. Как видно они близки к значениям, полученным из статистики (рис. 1.а) и повторяют форму кривой на рисунке 3.б.

1.2. Порядок выполнения индивидуального задания

В соответствии с номером варианта индивидуальных заданий, представленных в таблице 6, курсант в отчете подготавливает и заполняет таблицу 5.

Таблица 5

Номера	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2
интервалов												
Число отказов в												
10-ти опытах на												
интервале												

Таблица 6.

Номер варианта	Время испытаний			Чис	сло элс			сазави пытах		интер	вал		
		1	2	3	4	5	6	7	8	9	10	11	12
1	11000	340	234	134	102	76	43	30	18	11	6	3	3
2	12000	3	18	45	89	193	211	190	97	65	54	23	12
3	11500	562	214	98	44	23	18	11	9	5	4	2	1
4	15000	4	21	43	92	190	211	188	96	63	57	23	12
5	13000	345	229	143	112	56	41	28	17	10	8	5	2
6	15500	4	17	44	90	192	212	188	99	67	52	20	12
7	14000	562	214	98	44	23	16	9	7	4	3	2	1
8	14500	4	21	43	92	190	211	190	96	71	53	17	12
9	12500	343	233	131	98	76	43	26	18	11	9	4	3
10	13500	3	18	45	89	193	211	192	99	75	44	19	10
11	11000	570	210	88	41	21	16	9	7	5	4	3	2
12	12000	5	20	44	93	191	214	189	89	61	57	22	11
13	11000	340	234	134	102	76	43	30	18	11	6	3	3
14	12000	3	18	45	89	193	211	190	97	65	54	23	12
15	11500	562	214	98	44	23	18	11	9	5	4	2	1
16	15000	4	21	43	92	190	211	188	96	63	57	23	12
17	13000	345	229	143	112	56	41	28	17	10	8	5	2
18	15500	4	17	44	90	192	212	188	99	67	52	20	12
19	14000	562	214	98	44	23	16	9	7	4	3	2	1
20	14500	4	21	43	92	190	211	190	96	71	53	17	12
21	12500	343	233	131	98	76	43	26	18	11	9	4	3
22	13500	3	18	45	89	193	211	192	99	75	44	19	10
23	11000	570	210	88	41	21	16	9	7	5	4	3	2
24	12000	5	20	44	93	191	214	189	89	61	57	22	11
25	11000	570	210	88	41	21	16	9	7	5	4	3	2
26	12000	5	20	44	93	191	214	189	89	61	57	22	11
27	11000	340	234	134	102	76	43	30	18	11	6	3	3
28	12000	3	18	45	89	193	211	190	97	65	54	23	12
29	11500	562	214	98	44	23	18	11	9	5	4	2	1
30	15000	4	21	43	92	190	211	188	96	63	57	23	12

1. По данным таблицы 6, используя Приложение Excel, рассчитать и построить графики функций $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$. При расчете полагать l=12 и N=1000. Величина Δt рассчитывается, исходя из указанного в индивидуальном задании времени моделирования.

- 2. По форме кривых функций $f^{*}(t)$, $\lambda^{*}(t)$ и $p^{*}(t)$ подобрать закон распределения и определить его параметры, используя выражения для $T_{\rm cp}$ и полученное значение T^* ($T_{cp} = T^*$). Рассчитать по формулам для выбранного закона двенадцать (для каждого интервала) значений f(t), $\lambda(t)$ и p(t) и построить их кривые на графиках для $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$ соответственно.
 - 3. Оценить расхождение кривых.

2. Определение показателей надежности при испытаниях с заменой отказавших элементов

2.1. Типовой пример

Так как каждый отказавший элемент заменяется исправным, то при таком способе испытаний число испытываемых элементов все время остается постоянным. Пусть испытывается N=1000 элементов в течение времени $t_{\rm H}$ = 15000. Все время испытаний разбивается на l равных интервалов длительностью $\Delta t = t_{\rm H}/l$, и подсчитывается число отказавших образцов m_i (i = 1, 2, ..., l) в пределах каждого из интервалов времени.

Номера 1 2 3 4 5 6 7 8 1 1 1 2 интервалов Число отказов в 10-ти опытах на 24 101 130 145 151 139 155 151 154 152 155 154 интервале

Таблица 7

Зная m_i , можно определить среднюю частоту отказов на моменты времени $t_i = (i - 1/2)\Delta t$, соответствующие серединам каждого интервала по формуле

$$\omega^*(t_i) = \frac{m_i}{N\Delta t}, i = 1, 2, ..., l.$$
 (9)

По статистическим данным из таблицы 7 рассчитывается l=12 точек функции $\omega^*(t)$, по которым строится соответствующая кривая. Полученная зависимость $\omega^*(t)$ является исходной для определения $f^*(t)$, $p^*(t)$, $\lambda^*(t)$ и T^* .

Исходным для построения графика $f^*(t)$ является интегральное уравнение, связывающее функции f(t) и $\omega(t)$:

$$\omega(t) = f(t) + \int_0^t f(t-\tau)\omega(\tau)d\tau.$$

В целях удобства дальнейших преобразований перепишем данное уравнение в виде

$$f(t) = \omega(t) - \int_0^t f(t-\tau)\omega(\tau)d\tau .$$

Применим для вычисления интеграла формулу трапеций, тогда для моментов времени $t_i^{\star} = i \Delta t$ получим следующие выражения:

1.
$$i = 0$$
, $f(0) = \omega(0)$;

2.
$$i = 1, f(\Delta t) = \omega(\Delta t) - \frac{\Delta t}{2} [f(\Delta t)\omega(0) + f(0)\omega(\Delta t)];$$

3.
$$i \ge 2$$
, $f(i\Delta t) = \omega(\Delta t) - \frac{\Delta t}{2} \{ f(i\Delta t)\omega(0) + 2f[(i-1)\Delta t]\omega(\Delta t) + 2f[(i-2)\Delta t]\omega(2\Delta t) + \dots + 2f(\Delta t)\omega[(i-1)\Delta t] + f(0)\omega(i\Delta t) \}.$

Разрешая получившиеся выражения относительно $f(i\Delta t)$, получаем:

1.
$$i = 0$$
, $f(0) = \omega(0)$;

2.
$$i = 1$$
, $f(\Delta t) = A\omega(\Delta t)$;

3.
$$i \ge 2$$
, $f(i\Delta t) = A\omega(i\Delta t) - AB\sum_{j=1}^{i-1} f[(i-j)\Delta t]\omega(j\Delta t)$, (10)

где
$$A = \frac{2-f(0)\Delta t}{2+f(0)\Delta t}; B = \frac{2\Delta t}{2+f(0)\Delta t}.$$

По полученным формулам рассчитывается l=12 точек, через которые проводится кривая $f^*(t)$.

Зная плотность распределения безотказной работы f(t), можно определить вероятность безотказной работы p(t). Действительно,

$$p(t) = 1 - \int_0^t f(\tau) d\tau,$$

откуда, применяя для вычисления интеграла формулу трапеций, получим:

1.
$$i = 0, p(0) = 1;$$

2. $i = 1, p(\Delta t) = 1 - \frac{\Delta t}{2} [f(\Delta t) + f(0)];$
3. $i \ge 2, p(i\Delta t) = 1 - \frac{\Delta t}{2} [f(0) + 2\sum_{j=1}^{i-1} f(j\Delta t) + f(i\Delta t)].$ (11)

По формулам (11) рассчитывается l точек, через которые проводится кривая $p^*(t)$. После определения $f^*(t)$ и $p^*(t)$ находится интенсивность отказов $\lambda^*(t)$ по формуле

$$\lambda^*(i\Delta t) = \frac{f^*(i\Delta t)}{p^*(i\Delta t)}, (i = 1, 2, ..., l). \tag{12}$$

В основе определения среднего времени исправной работы T^* лежит свойство средней части отказов:

$$\lim_{t\to\infty}\omega(t)=\frac{1}{T},$$

откуда

$$T^* = \frac{1}{\omega_{\rm np}},\tag{13}$$

где $\omega_{\rm np}$ – предельное значение $\omega(t)$.

Получив графики функций $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$, можно, как и ранее, определить закон распределения времени исправной работы и рассчитать его параметры.

С целью сокращения времени на выполнение расчетов по формулам (9) – (13) используется приложение Excel «Автоматизация расчетов для ПЗ 1 и 2».

Рис. 4. Лист Excel для расчета показателей надежности при испытании с заменой отказавших элементов

Используя инструменты Excel, построить график $\omega^*(t_i) = W(t_i)$ и аппроксимировать ее плавной кривой.

Рис. 5. График $\omega^*(t_i) = W(t_i)$

Определив по графику аппроксимированной прямой значения $W(t_i)$, занести их в таблицу $W(t_i^*)$ в листе Excel (на рис.6 выделена желтым цветом).

	Α	В	С	D	E	F	G	Н	1	J
12	Количество отказавших элементов mi	24	101	130	145	151	139	155	151	154
13										
14		i	ti		w(ti)		w(t*i)	<- опреде	еляется по	графику приб
15		0	0		-		0			
16		1	625		0,0000192		0,00002			
17		2	1875		0,0000808		0,000065			
18		3	3125		0,000104		0,0001			
19		4	4375		0,000116		0,00011			
20		5	5625		0,0001208		0,00012			
21		6	6875		0,0001112		0,00012			
22		7	8125		0,000124		0,00012			
23		8	9375		0,0001208		0,00012			
24		9	10625		0,0001232		0,00012		A=	1
25		10	11875		0,0001216		0,00012		B=	1250
26		11	13125		0,000124		0,00012		A*B=	1250
27		12	14375		0,0001232		0,00012			
28										
29		i	t*i		a(t*i)		сумма а[(і-ј)	dt]*w(jdt)		
30		0	0		0		-			
31		1	1250		0,00002		-			

Рис. 6. Заполненная таблица $\mathrm{W}(t_i^*)$

По заполнении таблицы $W(t_i^*)$ приложение Excel автоматически рассчитает значения функций $f^*(t_i^*) - a(t_i^*)$, $\lambda^*(t_i^*) - L(t_i^*)$, и $p^*(t_i^*) - p(t_i^*)$. Для автоматического расчета $T^* = t_{cp}$ необходимо из графика $W(t_i)$ на рис. 5 определить предельное значение ω_{np}^* . На рис. 5 $\omega_{np}^* = 0,00012$. Это значение необходимо занести в соответствующую ячейку Excel.

Используя инструменты Excel, построить графики рассчитанных функций.

Рис. 7. Графики плотности (а) $f^*(t_i^*) - a(t_i^*)$, вероятности безотказной работы (б) $p^*(t_i^*) - p(t_i^*)$ и интенсивности (в) $\lambda^*(t_i^*) - L(t_i^*)$

Также, как и в п. 1, анализируя характер получившихся графиков функций $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$, подобрать вид закона распределения времени безотказной работы (табл. 2 и табл. 3), а затем, взяв за основу график одной из функций,

определить параметры закона распределения.

Рассчитать по формулам для выбранного закона двенадцать (для каждого интервала) значений f(t), $\lambda(t)$ и p(t) и построить их кривые на графиках для $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$ соответственно. Оценить степень расхождения статистических и аналитических графиков.

2.2. Порядок выполнения индивидуального задания

В соответствии с номером варианта индивидуальных заданий, представленных в таблице 9, курсант в отчете подготавливает и заполняет таблицу 8.

Таблица 8

Номера	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2
интервалов												
Число отказов в												
10-ти опытах на												
интервале												

Таблица 9.

Номер варианта	Время испытаний	Число элементов, отказавших за интервал (в 10 опытах)											
		1	2	3	4	5	6	7	8	9	10	11	12
1	11000	185	184	181	180	188	188	181	181	180	187	183	183
2	12000	27	101	57	111	71	130	94	151	139	158	149	155
3	11500	128	97	104	81	90	65	78	52	63	48	57	49
4	15000	21	101	37	121	61	139	94	151	135	158	149	155
5	13000	67	73	66	71	73	66	66	69	70	69	65	72
6	15500	130	101	104	82	93	67	81	51	67	50	56	51
7	14000	155	148	148	151	155	153	151	149	148	155	150	152
8	14500	133	102	109	86	95	70	83	57	68	53	67	54
9	12500	24	101	98	121	101	139	130	151	135	158	149	155
10	13500	124	125	123	125	128	128	124	123	125	127	124	123
11	15000	24	101	130	145	151	139	155	151	154	152	155	154
12	14000	128	63	78	57	61	49	54	48	49	48	49	48
13	12500	138	107	114	91	100	75	88	62	73	58	67	59
14	13000	148	153	152	149	151	152	151	150	150	154	149	151
15	11000	31	108	137	152	158	146	162	158	161	159	162	161
16	11500	123	92	97	76	85	60	73	47	58	43	52	44
17	14500	173	175	172	172	174	171	173	174	173	172	174	172
18	13500	121	122	120	119	121	120	118	120	122	120	118	118
19	11500	30	104	61	114	74	133	97	154	142	161	152	158

20	14500	130	99	106	83	92	67	80	54	65	50	64	51
21	11000	185	184	181	180	188	188	181	181	180	187	183	183
22	12000	27	101	57	111	71	130	94	151	139	158	149	155
23	11500	128	97	104	81	90	65	78	52	63	48	57	49
24	12500	24	101	98	121	101	139	130	151	135	158	149	155
25	13500	124	125	123	125	128	128	124	123	125	127	124	123
26	15000	24	101	130	145	151	139	155	151	154	152	155	154
27	14000	155	148	148	151	155	153	151	149	148	155	150	152
28	14500	133	102	109	86	95	70	83	57	68	53	67	54
29	12500	24	101	98	121	101	139	130	151	135	158	149	155
30	15000	24	101	130	145	151	139	155	151	154	152	155	154

- 1. По данным таблицы 8, используя Приложение Excel, рассчитать и построить графики функций $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$. При расчете полагать l=12 и N=1000. Величина Δt рассчитывается, исходя из указанного в индивидуальном задании времени моделирования.
- 2. По форме кривых функций $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$ подобрать закон распределения и определить его параметры, используя выражения для $T_{\rm cp}$ и полученное значение T^* ($T_{\rm cp} = T^*$). Рассчитать по формулам для выбранного закона двенадцать (для каждого интервала) значений f(t), $\lambda(t)$ и p(t) и построить их кривые на графиках для $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$ соответственно.
 - 3. Оценить расхождение кривых.

3. Отчетность о выполнении индивидуального задания

По выполнению задания каждый курсант должен представить отчет. Отчет должен содержать:

- название практического занятия;
- цель занятия;
- таблицы со статистическими данными о результатах испытаний на надежность без восстановления и с восстановлением отказавших элементов;
- расчетные формулы для определения показателей надежности по статистическим данным и аналитические выражения, соответствующие выбранным законам распределения времени безотказной работы для обоих видов испытаний (без восстановления и с восстановлением отказавших элементов);
- графики показателей надежности $f^*(t)$, $\lambda^*(t)$ и $p^*(t)$, полученных по статистическим данным, и по аналитическим выражениям f(t), $\lambda(t)$, p(t), соответствующим выбранным законам распределения времени безотказной

работы, при этом одноименные показатели показываются на одном и том же графике.

Отчетный материал представляется преподавателю, и результаты защищаются с выставлением оценки.

4. Критерии для оценивания выполнения индивидуального задания

«Отлично», если обучающийся правильно выполнил индивидуальное задание и правильно ответил на заданные преподавателем контрольные вопросы.

«Хорошо», если обучающийся правильно выполнил индивидуальное задание и правильно ответил не на все заданные преподавателем контрольные вопросы.

«Удовлетворительно», если обучающийся неправильно выполнил индивидуальное задание, но правильно ответил на большинство заданных преподавателем контрольных вопросов.

«Неудовлетворительно», если обучающийся неправильно выполнил индивидуальное задание и не ответил на заданные преподавателем контрольные вопросы.

5. Контрольные вопросы

- 1. Что понимается под надежностью аппаратуры?
- 2. Перечислите основные показатели надежности невосстанавливаемой аппаратуры.
- 3. Перечислите основные показатели надежности восстанавливаемой аппаратуры.
- 4. Дайте определение следующим показателям надежности восстанавливаемой и невосстанавливаемой аппаратуры:
 - вероятности безотказной работы p(t);
 - среднему времени безотказной работы T;
 - плотности распределения времени до отказа f(t);
 - интенсивности отказов $\lambda(t)$;
 - наработке на отказ T;
 - средней частоте отказов ω(t).
- 5. Какие законы распределения наиболее часто используются в теории надежности?
- 6. В чем отличие методик проведения испытаний на надежность без восстановления и с восстановлением отказавших элементов?

- 7. Приведите расчетные формулы для определения значений по статистическим данным для следующих показателей надежности невосстанавливаемых элементов:
 - плотность распределения времени до отказа (частоту отказов) $f^*(t)$;
 - интенсивность отказов $\lambda^*(t)$;
 - вероятность безотказной работы p*(t);
 - среднее время безотказной работы T^* .
- 9. Постройте графики функций плотности распределения времени до отказа f(t), интенсивности отказов $\lambda(t)$, вероятности безотказной работы p(t) для закона распределения, указанного преподавателем.
- 10. Как определить по графикам одной из функций f(t), $\lambda(t)$ и p(t) значения двух других функций?
 - 11. Как определить по графику функции p(t) значение T.
- 12. Как определить по графику функции $\omega(t)$ значение средней наработки на отказ T.

			В. Тимофеев
			(воинское звание, подпись, инициал имени, фамилия автора)
((>>	202 г.	