Distribuições de Probabilidade – Informações Básicas

Distribuição	Função	Valor Esperado	Variância
Binomial	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, k = 0, 1, \dots, n$	E(X) = np	$V(X) = np \ (1-p)$
Poisson	$P(X = k) = \frac{e^{-\alpha}\alpha^k}{k!}, k = 0, 1,, n,$	$E(X) = \alpha$	$V(X) = \alpha$
Geométrica	$P(X = k) = q^{k-1}p, k = 1, 2, \dots$	$E(X) = \frac{1}{p}$	$V(X) = \frac{q}{p^2}$
Pascal	$P(X = k) = {k-1 \choose r-1} p^r q^{k-r}, k = r, r+1, \dots$	$E(X) = \frac{r}{p}$	$V(X) = \frac{rq}{p^2}$
Hipergeométrica	$P(X=k) = \frac{\binom{r}{k} \binom{N-r}{n-k}}{\binom{N}{n}}, k = 0, 1, 2, \dots$	$E(X) = np$ $\left(p = \frac{r}{N}\right)$	$V(X) = npq\left(\frac{N-n}{N-1}\right)$ $(q = 1-p)$
Uniforme	$f(x) = \begin{cases} \frac{1}{b-a} & \text{se } a \le x \le b, \\ 0 & \text{para quaisquer outros valores,} \end{cases}$	$E(X) = \frac{a+b}{2}$	$V(X) = \frac{(b-a)^2}{12}$
Normal	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{1}{2} \left[\frac{x-\mu}{\sigma}\right]^2\right), -\infty < x < \infty$	$E(X) = \mu$	$V(X) = \sigma^2$
Exponencial	$f(x) = \begin{cases} \alpha e^{-\alpha x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$	$E(X) = \frac{1}{\alpha}$	$V(X) = \frac{1}{\alpha^2}$
Gama	$f(x) = \begin{cases} \frac{\alpha}{\Gamma(r)} (\alpha x)^{r-1} e^{-\alpha x}, & x > 0, \\ 0, & x \le 0. \end{cases}$	$E(X) = \frac{r}{\alpha}$	$V(X) = \frac{r}{\alpha^2}$
Qui-Quadrado	$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}, x > 0.$	E(X) = n	V(X) = 2n