Problems with count vectorizers:
O each word is equidistant in its vector representation:
intuitively, we -> dog: [0 0 1] know day should banana: [1 0 0] the note similar than canine: [0 1 0] The angles made by a pair banana. Of vectors are all orthogonal
@ counts skew towards high Canine Johnson
frequency stophords (the, is, on, I, like) 120-90°
Remember the long-tail distribution of words
we saw in Week 1 (Zipf's Law)=
the isjets. mords like frequency (count of times a wordaypoods in sentance) words
Problems with rule-based domain trees:
purple red green - extremely labor intensive.

hypernyms)

- extremely labor intensive.

- slow to adapt to new words

- difficult to maintain

- subjective: two SMEs

(subject matter exacts) can have

two totally valid tres.

So what do we do?
We make a new assumption: the dotalitual
hypothesis: You shall know a word by the
Company it keeps" - JR Firth (British linguist)
Continuous Bag of Words
I used class notes to study for the test.
(ontext window (m=3)
$P(x_{+}=study X_{+-3}=class)x$
P(X4 = study X4-a = notes)X
P(X1=study X++3= test)
probability that study is the target word given that the context word is test.
word is test.

How wald me find this polability? ant art bad However, in partice, we typically about use CBOW, but rather skipgrown, which is the opposite of CROW:

Inputs Target contextwords target word CBOW taget word context works Skipgram for each context word P(X+3=class/X+=study) in the window P(x+1=to) x = study) x P(X++3 = test | X+= study) SIZE 15 3. We do this for each taget will word:

for each context word TEI-MEMEM J (our pramates,

This becomes our objective function that we aptimize (the higher this value the more correct our model is): $J(\theta) = \prod \prod P(X_{++m}|X_{+}, \theta)$ So what exactly 10 0? 175 actually two matrices: target wood rector context word vector a context yester Eeach word has both