CS112 Homework 7 Continuous Time Markov Chains

Homeworks are due 03/6/13

- Q1. Consider two machines maintained by a single repairman. Machine i functions for an exponential amount of time with rate μ_i before breaking down, i = 1, 2. The repair times for either machine are exponential with parameter μ . Can we analyze this as a birth-death process? If not, how can we analyze it?
- **Q2.** Consider a birth-death system in which $\lambda_k = \lambda$ and $\mu_k = k\mu$ for $k \ge 0$. For all k find the difference differential equations for $P_k(t) = P[k \text{ in system at time t}]$.
- **Q3.** Consider a system in which the birth rate decreases and the death rate increases as he number in system increases as follows: $\lambda_k = (K k)\lambda$ for $k \leq K$ and 0 otherwise. And $\mu_k = k\mu$ for $k \leq K$ and 0 otherwise. For all k find the difference differential equations for $P_k(t) = P[k \text{ in system at time t}].$
- Q4. A small barbershop has room for atmost two customers (including the one being served). Potential customers arrive at a Poisson rate of three per hour, and the successive service times are independent exponential random variables with mean 0.25 hours. What is:
- a) The average number of customers in the shop?
- b) The proportion of potential customers that get a hair cut?
- c) If the barber could work twice as fast how much more business would be do?
- d) If the barber hired another barber who works just as fast as him then how much more business would the barber do?
- **Q5.** A single repairperson looks after both machine 1 and 2. Each time it is repaired, machine i stays up for an exponential time with rate λ_i , i = 1, 2. When machine i fails, it requires an exponentially distributed amount of work with rate μ_i to complete its repair. The repairperson will always service machine 1 when it is down. For instance, if machine 1 fails while 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on 1. What proportion of time is machine 2 down?