

FCC TEST REPORT FCC ID: Z52NAS-AB01Z

Product : Siren

Model Name : NAS-AB01Z

Brand : NEO Coolcam

Report No. : PT800487160513E-FC01

Prepared for

SHENZHEN NEO ELECTRONICS CO.,LTD

East6/F Building 2,Laobing industry,Baoan District,

Shenzhen, China

Prepared by

DongGuan Precise Testing Service Co.,Ltd.

Building D, Baoding Technology Park, Guangming Road 2, Guangming Community

Dongcheng District, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name : SHENZHEN NEO ELECTRONICS CO.,LTD

Address : East6/F Building 2,Laobing industry,BaoanDistrict,Shenzhen,China

Manufacture's name : SHENZHEN NEO ELECTRONICS CO.,LTD

Address : East6/F Building 2,Laobing industry,BaoanDistrict,Shenzhen,China

Product name : Siren

Model name : NAS-AB01Z

Standards : FCC CFR47 Part 15 Section 15.249

Test procedure : ANSI C63.10:2013

Test Date : May. 13, 2016- Jun. 10, 2016

Date of Issue : Jun. 15, 2016

Test Result : Pass

This device described above has been tested by PTS, and the test results show that theequipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTS, this document may be altered or revised by PTS, personal only, and shall be noted in the revision of the document.

Testing Engineer

August Qiu

TechnicalManager

Hack Ye

AuthorizedSignatory

Chris Du

August Qiu Hack Ye Calin

Contents

			Page
2	TES	T SUMMARY	4
3	GEN	IERAL INFORMATION	5
	3.1	GENERALDESCRIPTION OF E.U.T	5
	3.2	TEST MODE	5
4	EQU	JIPMENT DURING TEST	6
	4.1	EQUIPMENTS LIST	6
	4.2	MEASUREMENT UNCERTAINTY	6
5	CON	IDUCTED EMISSION	7
6	DUT	Y CYCLE	8
7	RAD	DIATED SPURIOUS EMISSIONS	9
	7.1	EUT OPERATION	9
	7.2	TEST SETUP	10
	7.3	SPECTRUM ANALYZER SETUP	11
	7.4	TEST PROCEDURE	12
	7.5	SUMMARY OF TEST RESULTS	13
8	OUT	SIDE OF BAND EMISSION	15
	8.1	Test Procedure	15
9	20D	B BANDWIDTH MEASUREMENT	16
	9.1	Test Procedure	16
	9.2	TEST RESULT	16
10	ANT	ENNA REQUIREMENT	17
11	TES	T SETUP	18
12	EUT	PHOTOS	19

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	N/A
Radiated Emission	15.249(a) 15.209 15.205(a)	PASS
Duty Cycle	15.35(c)	PASS
Outside of Band Emission	15.249 15.205 15.209	PASS
20dB Bandwidth	15:215(c)	PASS
Antenna Requirement	15.203	PASS

Remark:

N/A: Not Applicable

TESTING Report No.: PT800487160513E-FC01

3 General Information

3.1 GeneralDescription of E.U.T.

Product Name : Siren

Model Name : NAS-AB01Z

Model Description : N/A

Operation Frequency: 908.42MHz

Antenna installation: : PCB Printed Antenna

Antenna Gain: : 0dBi

Type of Modulation : FSK

The lowest oscillator : 32MHz

Power supply : DC 6V power by batteries

3.2 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectivelyby performing full tests, the worst data were recorded and reported.

Modulation	Test mode	Low channel	Middle channel	High channel
FSK	continuously Transmitting	908.42MHz	1	1

3.3 Test Site

Dongguan Precise Testing Service Co., Ltd.

Building D, Baoding Technology Park, Guangming Road 2, Dongcheng District, Dongguan,

Guangdong, China, Dongguan, 523129

China

FCC Registration Number: 371540 IC Registration Number: 12191A-1

4 Equipment During Test

4.1 Equipments List

RadiatedEmissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	Rohde&Schw arz	ESCI	101417	July 15, 2015	July 14, 2016	1 year
2	EMC Analyzer (9k~26.5GH z)	Agilent	E4407B	MY45109572	Aug.04, 2015	Aug.03, 2016	1 year
3	Trilog Broadband Antenna	SCHWARZB ECK	VULB9160	9160-3355	July 15, 2015	July 14, 2016	1 year
4	Amplifier	EM	EM-30180	060538	July 15, 2015	July 14, 2016	1 year
5	Horn Antenna	SCHWARZB ECK	BBHA9120 D	9120D-1246	July 15, 2015	July 14, 2016	1 year
6	Coaxial Cable(below 1GHz)	LARGE	CALB1	-	July 15, 2015	July 14, 2016	1 year
7	Coaxial Cable(above 1GHz)	LARGE	CALB2	-	July 15, 2015	July 14, 2016	1 year

4.2 Measurement Uncertainty

n= measurement encontainty					
Parameter	Uncertainty				
RF output power, conducted	±1.0dB				
Power Spectral Density, conducted	±2.2dB				
Radio Frequency	± 1 x 10 ⁻⁶				
Bandwidth	± 1.5 x 10 ⁻⁶				
Time	±2%				
Duty Cycle	±2%				
Temperature	±1°C				
Humidity	±5%				
DC and low frequency voltages	±3%				
Conducted Emissions(150kHz~30MHz)	±3.64dB				
Radiated Emission(30MHz~1GHz)	±5.03dB				
Radiated Emission(1GHz~25GHz)	±4.74dB				

5 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207

Test Method: : ANSI C63.10:2013

Frequency Range: : 150kHz to 30MHz

Class/Severity: : Class B

Limit: : $66-56 \text{ dB}_{\mu}\text{V}$ between 0.15MHz & 0.5MHz

: $56 dB\mu V$ between 0.5MHz & 5MHz

: $60 \text{ dB}_{\mu}\text{V}$ between 5MHz & 30MHz

Detector: : Peak for pre-scan(9kHz Resolution Bandwidth)

Test Result: : The device is powered by battery, this test is not applicable

6 Duty Cycle

The duty cycle was determined by the following equation:

To calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle(%)=Total On interval in a complete pulse train/ Length of a complete pulse train * % Duty Cycle Correction Factor (dB)=20 * Log₁₀(Duty Cycle(%))

Total transmission time(ms)	100.00
Length of a complete transmission period(ms)	33.00
Duty Cycle(%)	33.00
Duty Cycle Correction Factor(dB)	-9.63

Refer to the duty cycle plot (as below), This device meets the FCC requirement.

Length of a complete pulse train:

Remark:FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

7 Radiated Spurious Emissions

Test Requirement: : FCC CFR47 Part 15 Section 15.249& 15.207 &15.205

Test Method: : ANSI C63.10:2013

Test Result: : PASS
Measurement Distance: : 3m

Limit: : See the follow table

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation

Operating Environment :

Temperature: : $23.5 \, ^{\circ}\text{C}$ Humidity: : $51.1 \, ^{\circ}\text{RH}$ Atmospheric Pressure: : 101.2kPa

EUT Operation : Refer to section 3.3

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber testsite. The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz

IF Bandwidth 10kHz
Resolution Bandwidth 10kHz
Video Bandwidth 10kHz

30MHz ~ 1GHz

Detector : PK

Resolution Bandwidth : 100kHz

Video Bandwidth : 300kHz

Detector : QP

Resolution Bandwidth : 120kHz

Video Bandwidth : 300kHz

Above 1GHz

Detector : PK
Resolution Bandwidth : 1MHz
Video Bandwidth : 3MHz

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 8. The test above 1GHz must be use the fully anechoic room, and the test below 1GHz use the half anechoic room.

7.5 Summary of Test Results

Test Frequency: Below 30MHz

The lowest oscillator is 32MHz, the test is not applicable

Test Frequency: 30MHz ~ 18GHz

Frequenc	Readin				I COTTECTE I		Turri			Correcte		C Part /209/205
у	g	Detector	table Angle	Heigh t	Pola r	d Factor	d Amplitud e	Limit	Margin			
(MHz)	(dBµV)	(PK/QP/Av e)	Degre e	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV /m)	(dB)			
307.54	47.14	QP	35	2.2	Н	-16.45	30.69	46	-15.31			
307.54	41.63	QP	340	1.4	V	-16.45	25.18	46	-20.82			
908.42	88.61	QP	294	2.0	Н	-5.21	83.40	94	-10.60			
908.42	84.64	QP	178	1.9	V	-5.21	79.43	94	-14.57			
1816.84	67.00	PK	248	1.7	Н	-12.11	54.89	74	-19.11			
1816.84	57.81	PK	193	1.6	V	-12.11	45.70	74	-28.30			
2725.26	58.51	PK	265	1.0	Н	-11.88	46.63	74	-27.37			
2725.26	56.17	PK	231	1.1	V	-11.88	44.29	74	-29.71			
3633.68	57.45	PK	33	1.1	Н	-8.17	49.28	74	-24.72			
3633.68	56.75	PK	19	1.3	V	-8.17	48.58	74	-25.42			

Remark: Corrected Factor=ANT Factor + Cable Loss - Amp Gain

Frequency	PK	Turn table	RX Ar	ntenna	Duty	AV	FCC Part 15.249/209/205	
Frequency	FK	Angle	Height	Polar	cycle Factor	A V	Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
1816.84	54.89	294	1.7	Н	-9.63	45.26	54	-8.74
1816.84	45.70	178	1.6	V	-9.63	36.07	54	-17.93
2725.26	46.63	248	1.0	Н	-9.63	37.00	54	-17.00
2725.26	44.29	193	1.1	V	-9.63	34.66	54	-19.34
3633.68	49.28	265	1.1	Н	-9.63	39.65	54	-14.35
3633.68	48.58	231	1.3	V	-9.63	38.95	54	-15.05
3633.68	48.58	231	1.3	V	-9.63	38.95	54	-15.05

Remark: AV=PK+ Duty cycle Factor

SE TESTING Report No.: PT800487160513E-FC01

8 Outside of Band Emission

TestRequirement : 15.249(d):Emissions radiated outside of the specified frequency bands,

except for harmonics, shall beattenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209,

whichever is the lesser attenuation.

Test Method : ANSI C63.10:2013

Test Limit : 50 dB below the level of the fundamental or to the general radiated

emission limits

Test Mode : Refer to section 3.3

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to thespectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Frequenc	Readin		Turri		RX Antenna		Correcte		C Part /209/205	
у	g	Detector	table Angle	Heigh t	Pola r	Correcte d Factor	d Factor 0	Amplitud	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Av e)	Degre e	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV /m)	(dB)	
899.31	39.92	QP	72	1.9	Н	-5.69	34.23	46	-11.77	
929.57	34.43	QP	58	2.1	V	-5.07	29.36	46	-16.64	

9 20dB Bandwidth Measurement

TestRequirement : FCC CFR47 Part 15 Section 15.249

Test Method : ANSI C63.10:2013

Test Mode : Refer to section 3.3

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: For BLE, RBW = 3 kHz, VBW = 10kHz,

9.2 Test Result

Test Frequency	Bandwidth
908.42MHz	70.68kHz

Testplots

10 Antenna Requirement

According to the FCC part15.203, a transmitter can only be sold or operated with antennas with which it was approved. This product has an internal permanent antenna which meet the requirement of this section.

11 Test Setup

Radiated Spurious Emissions From 30MHz-1000MHz

12 EUT Photos

*****THE END REPORT*****