Importing Libraries

```
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
import warnings
warnings.filterwarnings('ignore')
```

Data Reading & Manipulating

```
df = pd.read_csv('/content/Task.csv')
df
```

>	Species	PetalWidthCm	PetalLengthCm	SepalWidthCm	SepalLengthCm	Id	
3	Iris-setosa	0.2	1.4	3.5	5.1	1	0
a	Iris-setosa	0.2	1.4	3.0	4.9	2	1
a	Iris-setosa	0.2	1.3	3.2	4.7	3	2
3	Iris-setosa	0.2	1.5	3.1	4.6	4	3
3	Iris-setosa	0.2	1.4	3.6	5.0	5	4
	Iris- virginica	2.3	5.2	3.0	6.7	146	145
	lris- virginica	1.9	5.0	2.5	6.3	147	146
	lris- virginica	2.0	5.2	3.0	6.5	148	147
	Iris- virginica	2.3	5.4	3.4	6.2	149	148

```
df.drop(['Id'], axis=1, inplace=True)
```

df.head()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
0	5.1	3.5	1.4	0.2	Iris-setosa	ılı
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Species	150 non-null	object
	C7 1 C 4 (4)	1 / 4 \	

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

df.describe()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	==
count	150.000000	150.000000	150.000000	150.000000	ılı
mean	5.843333	3.054000	3.758667	1.198667	
std	0.828066	0.433594	1.764420	0.763161	
min	4.300000	2.000000	1.000000	0.100000	
25%	5.100000	2.800000	1.600000	0.300000	
50%	5.800000	3.000000	4.350000	1.300000	
75%	6.400000	3.300000	5.100000	1.800000	
max	7.900000	4.400000	6.900000	2.500000	

df['Species'].value_counts()

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50

Name: Species, dtype: int64

df.isna().sum()

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

df.duplicated().sum()

3

df = df.drop_duplicates()

df.duplicated().sum()

0

Data Visaulization

df.hist();

2 4 0 U 1

sns.pairplot(df, hue='Species')

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
SepalLengthCm	1.000000	-0.109321	0.871305	0.817058	ılı
SepalWidthCm	-0.109321	1.000000	-0.421057	-0.356376	
PetalLengthCm	0.871305	-0.421057	1.000000	0.961883	
PetalWidthCm	0.817058	-0.356376	0.961883	1.000000	

fig, ax = plt.subplots(figsize = (11,5))
sns.heatmap(corr, annot=True, ax=ax)

Machine Learning Algorithmn

```
from sklearn.model_selection import train_test_split

X = df.drop(['Species'], axis=1)
y = df['Species']

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.35, random_state=3)
```

1) K - Means Model

#KNN Model training

```
from sklearn.neighbors import KNeighborsClassifier
model_1 = KNeighborsClassifier()
#model Training
model_1.fit(x_train, y_train)
     ▼ KNeighborsClassifier
     KNeighborsClassifier()
#print matrix to get performance
print('Accuracy: ',model_1.score(x_test, y_test) * 100)
prediction_1 = model_1.predict(x_test)
print(prediction_1)
Actual_1 = y_test
print(Actual_1)
     Accuracy: 98.07692307692307
     ['Iris-setosa' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
      'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor'
      'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa'
      'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica'
      ltuda sibadada I Itada abaaa I Itada bibada I Itada abaaa I
```

```
rris-virginica
                                        rris-virginica
                         iris-setosa
                                                          rris-setosa
      'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica']
     5
                 Iris-setosa
     46
                 Iris-setosa
     47
                 Iris-setosa
     104
             Iris-virginica
            Iris-versicolor
     87
     148
             Iris-virginica
     39
                 Iris-setosa
     69
            Iris-versicolor
     130
             Iris-virginica
     103
             Iris-virginica
             Iris-virginica
     134
     28
                 Iris-setosa
                 Iris-setosa
     4
     143
             Iris-virginica
     22
                 Iris-setosa
     126
             Iris-virginica
     52
            Iris-versicolor
     89
            Iris-versicolor
     53
            Iris-versicolor
     135
             Iris-virginica
     35
                 Iris-setosa
     8
                 Iris-setosa
     91
            Iris-versicolor
     63
            Iris-versicolor
     140
             Iris-virginica
     73
            Iris-versicolor
     16
                 Iris-setosa
     43
                 Iris-setosa
     145
             Iris-virginica
     114
             Iris-virginica
     41
                 Iris-setosa
     110
             Iris-virginica
     74
            Iris-versicolor
     138
             Iris-virginica
     78
            Iris-versicolor
     27
                 Iris-setosa
     108
             Iris-virginica
     70
            Iris-versicolor
     120
             Iris-virginica
     127
             Iris-virginica
     132
             Iris-virginica
     1
                 Iris-setosa
     72
            Iris-versicolor
     6
                 Iris-setosa
# Adetailed classification Report Linear RegressionM
from sklearn.metrics import classification report
print(classification_report(Actual_1, prediction_1))
                       precision
                                    recall f1-score
                                                         support
```

7 of 15

1.00

18

1.00

Iris-setosa

1.00

Iris-versicolor	1.00	0.92	0.96	13
Iris-virginica	0.95	1.00	0.98	21
accuracy			0.98	52
macro avg	0.98	0.97	0.98	52
weighted avg	0.98	0.98	0.98	52

2) Decision Tree Model

#Decision Tree Model

```
from sklearn.tree import DecisionTreeClassifier
model_2 = DecisionTreeClassifier()
#Model Training
model_2.fit(x_train, y_train)
     ▼ DecisionTreeClassifier
     DecisionTreeClassifier()
#print matrix to get performance
print('Accuracy: ',model_2.score(x_test, y_test) * 100)
prediction_2 = model_2.predict(x_test)
print(prediction_2)
Actual_2 = y_test
print(Actual_2)
     Accuracy: 94.23076923076923
     ['Iris-setosa' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
      'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor'
      'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica']
     5
                Iris-setosa
     46
                Iris-setosa
     47
                Iris-setosa
     104
            Iris-virginica
            Iris-versicolor
     87
```

-	
148	Iris-virginica
39	Iris-setosa
69	Iris-versicolor
130	Iris-virginica
103	Iris-virginica
134	Iris-virginica
28	Iris-setosa
4	Iris-setosa
143	Iris-virginica
22	Iris-setosa
126	Iris-virginica
52	Iris-versicolor
89	Iris-versicolor
53	Iris-versicolor
135	Iris-virginica
35	Iris-setosa
8	Iris-setosa
91	Iris-versicolor
63	Iris-versicolor
140	Iris-virginica
73	Iris-versicolor
16	Iris-setosa
43	Iris-setosa
145	Iris-virginica
114	Iris-virginica
41	Iris-setosa
110	Iris-virginica
74	Iris-versicolor
138	Iris-virginica
78	Iris-versicolor
27	Iris-setosa
108	Iris-virginica
70	Iris-versicolor
120	Iris-virginica
127	Iris-virginica Iris-virginica
132	Iris-virginica
1	Iris-setosa
72	Iris-versicolor
6	Iris-setosa

Adetailed classification Report Linear RegressionM from sklearn.metrics import classification_report print(classification_report(Actual_2, prediction_2))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	18
Iris-versicolor	1.00	0.77	0.87	13
Iris-virginica	0.88	1.00	0.93	21
accuracy			0.94	52
macro avg	0.96	0.92	0.93	52
weighted avg	0.95	0.94	0.94	52

3) Support Vector Machine Model

#Support Vector Machine Model

```
from sklearn.svm import SVC
model_3 = SVC()
#Model Training
model_3.fit(x_train, y_train)
      ▼ SVC
     SVC()
#print matrix to get performance
print('Accuracy: ',model_3.score(x_test, y_test) * 100)
prediction_3 = model_3.predict(x_test)
print(prediction 3)
Actual_3 = y_test
print(Actual_3)
     Accuracy: 94.23076923076923
     ['Iris-setosa' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
      'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor'
      'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica']
     5
                Iris-setosa
     46
                Iris-setosa
     47
                Iris-setosa
     104
             Iris-virginica
     87
            Iris-versicolor
     148
             Iris-virginica
     39
                Iris-setosa
     69
            Iris-versicolor
     130
             Iris-virginica
     103
             Iris-virginica
     134
             Iris-virginica
     28
                Iris-setosa
```

4	Iris-setosa
14 3	Iris-virginica
22	Iris-setosa
126	Iris-virginica
52	Iris-versicolor
89	Iris-versicolor
53	Iris-versicolor
135	Iris-virginica
35	Iris-setosa
8	Iris-setosa
91	Iris-versicolor
63	Iris-versicolor
140	Iris-virginica
73	Iris-versicolor
16	Iris-setosa
43	Iris-setosa
145	Iris-virginica
114	Iris-virginica
41	Iris-setosa
110	Iris-virginica
74	Iris-versicolor
138	Iris-virginica
78	Iris-versicolor
27	Iris-setosa
108	Iris-virginica
70	Iris-versicolor
120	Iris-virginica
127	Iris-virginica
132	Iris-virginica
1	Iris-setosa
72	Iris-versicolor
6	Iris-setosa

Adetailed classification Report VSM Model
from sklearn.metrics import classification_report
print(classification_report(Actual_3, prediction_3))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	18
Iris-versicolor	1.00	0.77	0.87	13
Iris-virginica	0.88	1.00	0.93	21
accuracy			0.94	52
macro avg	0.96	0.92	0.93	52
weighted avg	0.95	0.94	0.94	52

4) Random Forest Model

#Random Forest Machine Model

```
trom sklearn.ensemble import RandomForestClassitier
model 4 = RandomForestClassifier()
#Model Training
model_4.fit(x_train, y_train)
     ▼ RandomForestClassifier
     RandomForestClassifier()
#print matrix to get performance
print('Accuracy: ',model_4.score(x_test, y_test) * 100)
prediction_4 = model_4.predict(x_test)
print(prediction_4)
Actual_4 = y_test
print(Actual_4)
     Accuracy: 96.15384615384616
     ['Iris-setosa' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
      'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor'
      'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
      'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa'
      'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa'
      'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
      'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica']
     5
                Iris-setosa
     46
                Iris-setosa
     47
                Iris-setosa
     104
             Iris-virginica
            Iris-versicolor
     87
     148
             Iris-virginica
     39
                Iris-setosa
            Iris-versicolor
     69
            Iris-virginica
     130
     103
             Iris-virginica
     134
             Iris-virginica
     28
                Iris-setosa
     4
                Iris-setosa
     143
             Iris-virginica
     22
                Iris-setosa
     126
             Iris-virginica
     52
            Iris-versicolor
     89
            Iris-versicolor
     53
            Iris-versicolor
             Tois vinainis
```

```
TI.T2-ATI.ATIITC9
TOO
35
           Iris-setosa
8
           Iris-setosa
91
       Iris-versicolor
63
       Iris-versicolor
140
        Iris-virginica
73
       Iris-versicolor
16
           Iris-setosa
43
           Iris-setosa
145
        Iris-virginica
        Iris-virginica
114
41
           Iris-setosa
110
        Iris-virginica
74
       Iris-versicolor
138
        Iris-virginica
78
       Iris-versicolor
           Iris-setosa
27
108
        Iris-virginica
70
       Iris-versicolor
120
        Iris-virginica
        Iris-virginica
127
        Iris-virginica
132
1
           Iris-setosa
72
       Iris-versicolor
           Iris-setosa
6
```

Adetailed classification Report VSM Model
from sklearn.metrics import classification_report
print(classification_report(Actual_4, prediction_4))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	18
Iris-versicolor	1.00	0.85	0.92	13
Iris-virginica	0.91	1.00	0.95	21
accuracy			0.96	52
macro avg	0.97	0.95	0.96	52
weighted avg	0.96	0.96	0.96	52

Results

Result

	Models	Accuracy	
0	KNN	98.076923	ılı
1	DT	94.230769	
2	SVM	94.230769	
3	RF	96.153846	

```
Model = Result['Models']

Accuracy = Result['Accuracy']

fig = pgo.Figure()
fig.add_trace(pgo.Bar(x = Model, y = Accuracy, name = 'Accuracy', width = 0.3))

fig.update_layout(title = 'Accuracy score of performed Models in %.')

fig.show()
```

Accuracy score of performed Models in %.

Model Testing

```
X_new = np.array([[9, 8, 3, 4], [15, 56, 16, 23], [784, 235, 498, 123]])
#Prediction of the Species from the input vector
prediction = model_1.predict(X_new)
print("Prediction of species: {}".format(prediction))

Prediction of species: ['Iris-virginica' 'Iris-virginica' 'Iris-virginica']

X_new = np.array([[0.9, 0.8, 0.3, 0.4], [0.49, 0.56, 0.16, 0.23], [0.357, 0.236, 0.498, 0.
#Prediction of the Species from the input vector
prediction = model_1.predict(X_new)
print("Prediction of species: {}".format(prediction))
Prediction of species: ['Iris-setosa' 'Iris-setosa' 'Iris-setosa']
```