Organização de Computadores I

Ponto Flutuante

Sumário

- Padrão IEEE 754
- Versão 3 bits expoente 4 mantissa, positivos
- Conversão
- Arredondamento
- Adição e Multiplicação

IEEE 754

- Padrão para representação
- 32 bits
 - 1 bit Sinal
 - 8 expoente
 - 23 mantissa \rightarrow 2²³ = 2¹⁰ 2¹⁰ 2³ \sim 8*10⁶
 - Número de casas decimais = 6 a 7 dígitos = precisão
 - https://www.h-schmidt.net/FloatConverter/ IEEE754.html
 - Novas tendências https://float.exposed/b0x431c

IEEE 754

- Padrão para representação
- 64 bits
 - 1 bit Sinal
 - 11 expoente
 - 52 mantissa \rightarrow 2⁵² \sim 4*10 ¹⁵
 - 15 a 16 dígitos em decimal de precisão

Códigos reservados

- Representação de zero
- + infinito e infinito
- NaN = Not a Number
- Números não normalizados

```
Valor Sinal Expoente Mantissa
Zero 0 0s 0s
+ Infinito 0 1s 0s
- Infinito 1 1s 0s
NaNO 1s Diferente de 0s
```

No padrão IEEE 754, os NaN (Not a Number), possuem sinal 0, expoente 1 e mantissa com qualquer valor - exceto tudo 0s, pois isso caracteriza infinito- e representam exceções como divisão por zero, raiz de negativos etc.

https://pt.wikipedia.org/wiki/IEEE_754

Normalização

- $4,345 * 10^4$
- 43,45 * 10³
- 434,5 * 10²
- 4345,0 * 10¹
- 43450,0 * 10⁰
- Todos representam o mesmo número
- Como padronizar ?

Em binário

- 1,1011 * 2⁴
- 11,011 * 2³
- 110,11 * 2²
- 1101,1 *2¹
- 11011,0 * 2°
- Como representar: expoente e mantissa
- Como normalizar ?

IEEE 754 simplificado

- Somente positivos
- Sem códigos especiais: infinito, zero, NaN
- 3 bits de expoente
- 4 bits de mantissa
- Facilitar a compreensão....estender para 32 e 64 bits...
- Normalização, arredondamento, adição e multiplicação

E Mant

$$X = 2^{e-3} * (1 + Mant)$$

E Mant

$$X = 2^{e-3} * (1 + Mant)$$

Representa um número entre 1 e 2 Na mantissa

E Mant

$$X = 2^{e-3} * (1 + Mant)$$

Mant = potências negativas de 2 ou frações

E Mant

2⁻¹ 2⁻² 2⁻³ 2⁻⁴

 $X = 2^{e-3} * (1 + Mant)$

$$X = 2^{e-3} * (1 + Mant)$$

$$X = 2^{e-3} * (1 + Mant)$$

```
E Mant
100 0 0 0
2<sup>-1</sup> 2<sup>-2</sup> 2<sup>-3</sup> 2<sup>-4</sup>
```

$$X = 2^{e-3} * (1 + Mant)$$

= $2^{4-3} * (1 + 0) =$
= $2^{1} * 1 = 2$

```
E Mant
100 1 0 0 0
2-1 2-2 2-3 2-4
```

$$X = 2^{e-3} * (1 + Mant)$$

= $2^{4-3} * (1 + 1/2) =$
=

```
Mant
   100
                     1 0 0 0
                     2<sup>-1</sup> 2<sup>-2</sup> 2<sup>-3</sup> 2<sup>-4</sup>
X = 2^{e-3} * (1 + Mant)
   = 2^{4-3} * (1 + 1/2) =
```

```
Mant
  100
              1 0 0 0
              2-1 2-2 2-3 2-4
X = 2^{e-3} * (1 + Mant)
  = 2^{4-3} * (1 + 1/2) =
```

```
E Mant
100 1 0 0 0
2<sup>-1</sup> 2<sup>-2</sup> 2<sup>-3</sup> 2<sup>-4</sup>
```

$$X = 2^{e-3} * (1 + Mant)$$

= $2^{4-3} * (1 + 1/2) =$
= $2^{1} * (3/2) = 3$

Mudando o expoente

E Mant
011 1 0 0 0
$$2^{-1}2^{-2}2^{-3}2^{-4}$$

$$X = 2^{e-3}*(1 + Mant)$$

$$= 2^{3-3}*(1 + 1/2) =$$

$$= 2^{0}*(3/2) = 1,5$$
Subtrair 1 no
Expoente
Divide por 2

Conversão real → binário float

- Mantissa tem que ficar em 1 e 2
- Armazena 1 + M, então 0 <= M < 1
- Três casos
 - Menor que 1
 - Entre 1 e 2
 - Maior que 2

Entre 1 e 2

- O expoente será 0 ou 2º
- No formato $2^{e-3} = 2^{3-3}$, ou seja, e= 011
- Mantissa = 1 + M
- M é formato por soma de fração 1/2, ¼, 1/8, 1/16
- Em real frações = 0.5 0.25 0.125 0.0625
- Pesar como uma balança

- Entre 1 e 2, então expoente = 0 ou 2^{3-3}
- $1+M = 1.6 \rightarrow M = 0.6$

- Entre 1 e 2, então expoente = 0 ou 2^{3-3}
- $1+M = 1.6 \rightarrow M = 0.6$
- Pesos
 - 0,5 ok
 - $0.25 \rightarrow 0.5 + 0.25 = 0.75 > 0.6$

- Entre 1 e 2, então expoente = 0 ou 2^{3-3}
- $1+M = 1.6 \rightarrow M = 0.6$
- Pesos
 - 0,5 ok
 - $0.25 \rightarrow 0.5 + 0.25 = 0.75 > 0.6$
 - $0.125 \rightarrow 0.5 + 0.125 = 0.625 > 0.6$
 - $0.0625 \rightarrow 0.5 + 0.0625 = 0.5625 < 0.6$

- Entre 1 e 2, então expoente = 0 ou 2^{3-3}
- $1+M = 1.6 \rightarrow M = 0.6$
- Pesos
 - 0,5 ok
 - $0.25 \rightarrow 0.5 + 0.25 = 0.75 > 0.6$
 - $0.125 \rightarrow 0.5 + 0.125 = 0.625 > 0.6 \leftarrow Mais Próximo$
 - $0.0625 \rightarrow 0.5 + 0.0625 = 0.5625 < 0.6$
- Em binário M = 1010

011 1010 em 7 bits =
$$2^{3-3} * (1 + \frac{1}{2} + \frac{1}{8})$$

X > 2

- Primeiro, dividir até ficar entre 1 e 2
- O número de divisões será o expoente positivo
- Armazenar no formato 2^{e-3}
- Calcular a mantissa, lembrar que 1+M

- 2,75 > 2
- 2,75 / 2 = 1,375
- $2^{1} * 1,375 = 2,75$

- 2,75 > 2
- 2,75 / 2 = 1,375
- $2^{1} * 1,375 = 2,75$
- Expoente $2^{4-3} = 2^1$
- $1+M = 1,375 \rightarrow M = 0,375$

- 2,75 > 2
- 2,75 / 2 = 1,375
- $2^{1} * 1,375 = 2,75$
- Expoente $2^{4-3} = 2^1$
- $1+M = 1,375 \rightarrow M = 0,375$
- Pesos
 - 0,5 muito
 - M = 0.25 + 0.125 = 0.375 exato!

- 2,75 > 2
- 2,75 / 2 = 1,375
- $2^{1} * 1,375 = 2,75$
- Expoente $2^{4-3} = 2^1$
- $1+M = 1,375 \rightarrow M = 0,375$
- Pesos
 - 0,5 muito
 - M = 0.25 + 0.125 = 0.375 exato!

•
$$X = 100$$
 0110 = $2^{4-3} * (1 + \frac{1}{4} + \frac{1}{8})$
= 2^{1} * $11/8 = 11/4 = 2,75$

Menor que 1

- Multiplicar por 2 até ficar entre 1 e 2
- O número de multiplicações é o expoente negativo
- Gerar a mantissa 1+M

Exemplo X = 0.3

- 0.3 * 2 = 0.6
- 0.6 * 2 = 1.2
- Então $2^{-2} * 1,2 = 0,3$ ou $2^{1-3} * (1 + 0,2)$

Exemplo X = 0.3

- 0.3 * 2 = 0.6
- 0.6 * 2 = 1.2
- Então $2^{-2} * 1,2 = 0,3$ ou $2^{1-3} * (1 + 0,2)$
- 0,2
 - 0,5 muito
 - 0,25
 - Ou $0,125 + 0,0625 = 0,1875 \leftarrow \text{mais próximo}$

Exemplo X = 0.3

- 0.3 * 2 = 0.6
- 0.6 * 2 = 1.2
- Então $2^{-2} * 1,2 = 0,3$ ou $2^{1-3} * (1 + 0,2)$
- 0,2
 - 0,5 muito
 - 0,25
 - Ou $0.125 + 0.0625 = 0.1875 \leftarrow \text{mais próximo}$

•
$$X = 001$$
 $0011 = 2^{1-3} * (1+1/8 + 1/16) =$
= $2^{-2} * 19/16 = 19/64 = 0,296875$

Soma

- Somar em ponto flutuante
- Em decimal
 - 10² * 1,23
 - 10⁻² * 1,45
 - _____

?

Ajustar expoentes

- Somar em ponto flutuante
- Em decimal

```
• 10<sup>2</sup> * 1,23
```

```
• 10<sup>2</sup> * 0,000145
```

1,230145

Arredondar para 2 digitos

- Somar em ponto flutuante
- Em decimal

```
• 10<sup>2</sup> * 1,23
```

```
• 10<sup>2</sup> * 0,000145
```

```
-----
```

1,23