

Musterlösung Analysis III 2. Übungsblatt

Achtung: Diese Lösung dient als Orientierungshilfe für die Tutorien und erhebt keinen Anspruch auf Vollständigkeit oder Fehlerfreiheit.

Aufgabe 7

Sei (X, \mathcal{A}) ein Messraum. Zeigen Sie, dass durch die folgenden Abbidungen $\mu, \mu_b : \mathcal{A} \to [0, \infty],$

a)
$$\mu: A \mapsto \begin{cases} |A|, & \text{falls } |A| < \infty \\ \infty, & \text{falls } |A| = \infty \end{cases}$$
 wobei $|A| \coloneqq \# \text{ der Elemente in } \mathcal{A}$

b) Sei
$$b \in X$$
 fest, dann gelte $\mu_b : A \mapsto \begin{cases} 1, & \text{falls } b \in \mathcal{A} \\ 0, & \text{falls } b \notin \mathcal{A} \end{cases}$

Maße auf X definiert werden.

LÖSUNG: Wir stellen zunächst fest, dass $\mu(A) \ge 0$ für alle $A \in \mathcal{A}$. Wir zeigen nun die Eigenschaften (M1) und (M2) aus der Vorlesung.

(M1): Es ist $\mu(\emptyset) = |\emptyset| = 0$.

(M2): Sei $(A_n)_{n\in\mathbb{N}}$ eine paarweis disjunkte Folge in \mathcal{A} . Wir machen eine Fallunterscheidung. 1. Fall: Angenommen jedes Folgeglied hat endlichen Betrag, d.h. $|A_n| < \infty \, \forall n \in \mathbb{N}$. Es ist dann $|\bigcup_{n\in\mathbb{N}} A_n| = \sum_{n\in\mathbb{N}} |A_n|$ da alle Folgenglieder paarweise disjunkt. Es gilt also direkt

$$\mu(\cup_{n\in\mathbb{N}}A_n) = |\cup_{n\in\mathbb{N}}A_n| = \sum_{n\in\mathbb{N}}|A_n| = \sum_{n\in\mathbb{N}}\mu(A_n).$$

2. Fall: Es existiert mindestens ein $j \in \mathbb{N}$ sodass $|A_j| = \infty$. Es ist also

$$\mu(\bigcup_{n\in\mathbb{N}} A_n) = \mu(A_j) + \mu(\bigcup_{n\neq j} A_n) = \infty + \mu(\bigcup_{n\neq j} A_n) = \infty.$$

Gleichzeitig gilt

$$\sum_{n \in \mathbb{N}} \mu(A_n) = \mu_{A_j} + \sum_{n \neq j} \mu(A_n) = \infty + \sum_{n \neq j} \mu(A_n) = \infty.$$

Aufgabenteil b): Wir stellen wieder fest, dass $\mu_b \ge 0$ gilt. Wir zeigen nun die Eigenschaften (M1) und (M2) aus der Vorlesung.

(M1): Es ist $\mu_b(\emptyset) = 0$, denn $b \notin \emptyset$.

(M2): Sei nun Sei $(A_n)_{n\in\mathbb{N}}$ eine paarweis disjunkte Folge in \mathcal{A} . Wir machen eine Fallunterscheidung.

1. Fall: $b \in \bigcup_{n \in \mathbb{N}} A_n$. Dann ex. genau ein $j \in \mathbb{N}$ sodass $b \in A_j$ und $b \notin A_k$ für $k \neq j$. Es gilt

$$1 = \mu(\bigcup_{n \in \mathbb{N}} A_n), \ \sum_{n \in \mathbb{N}} \mu(A_n) = \mu_{A_j} + \sum_{n \neq j} \mu(A_n) = 1 + 0 = 1$$

2. Fall: $b \notin \bigcup_{n \in \mathbb{N}} A_n$, daher ist $\mu(\bigcup_{n \in \mathbb{N}} A_n) = 0$. Gleichzietig ist $b \notin A_n, \forall n \in \mathbb{N}$. Es ist daher auch $\sum_{n \in \mathbb{N}} \mu(A_n) = 0$.

Sei X eine beliebige Menge.

- a) Geben Sie alle Maße auf (X, A) mit $A = \{\emptyset, X\}$ an.
- b) Sei $A \subset X$, $A \neq \emptyset$, X. Geben Sie alle Wahrscheinlichkeitsmaße auf $\sigma(\{A\})$ an.
- c) Geben Sie sämtliche Wahrscheinlichkeitsmaße auf $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ an.
- d) Sei $(A_i)_{i\in\mathbb{N}}$ eine abzählbare Zerlegung von X, d.h. die Mengen A_i sind paarweise disjunkt und $\bigcup_{i\in\mathbb{N}} A_i = X$. Geben Sie alle Wahrscheinlichkeitsmaße auf $\sigma(\{A_i : i\in\mathbb{N}\})$ an.

LÖSUNG:

- a) \mathcal{A} ist eine σ -Algebra. Setzt man $\mu(X) = M \in [0, \infty]$ und $\mu(\emptyset) = 0$, so ist μ ein Maß auf \mathcal{A} (σ -Additivität folgt aus der Tatsache, dass jede paarweise disjunkte Folge in \mathcal{A} höchstens einmal X enthalten kann).
- b) Es ist $\mathcal{A} := \sigma(\{A\}) = \{\emptyset, A, A^c, X\}$. Für ein Wahrscheinlichkeitsmaß μ auf \mathcal{A} muss gelten $\mu(\emptyset) = 0$, $\mu(X) = 1$. Setz man $\mu(A) := p \in [0, 1]$, so muss $\mu(A^c) = \mu(X \setminus A) = \mu(X) \mu(A) = 1 p$ sein.
- c) Gemäß Aufgabe 4(a) gibt es zu jedem $p \in [0, \infty]^{\mathbb{N}}$ genau ein Maß μ auf $\mathcal{P}(\mathbb{N})$ mit $\mu(\{i\}) = p_i$. Für $\|p\|_1 = \sum_{i \in \mathbb{N}} p_i = 1$ ist dies wegen

$$\mu(\mathbb{N}) = \mu\left(\bigcup_{n \in \mathbb{N}} \{n\}\right) = \sum_{n \in \mathbb{N}} \mu(\{n\}) = \sum_{n \in \mathbb{N}} p_n = 1$$

ein Wahrscheinlichkeitsmaß.

- d) Es gilt $\sigma(\{A_i:i\in\mathbb{N}\})=\{\bigcup_{i\in J}A_i:J\subset\mathbb{N}\}:=\mathcal{A}.$ Die Inklusion "⊃" ist klar, "⊂" folgt aus der Tatsache, dass \mathcal{A} eine σ -Algebra und $\sigma(\{A_i:i\in\mathbb{N}\})$ nach Definition die kleinste σ -Algebra ist, die $\{A_i:i\in\mathbb{N}\}$ enthält. Dass \mathcal{A} eine σ -Algebra ist überprüft man leicht:
 - (i) $\emptyset = \bigcup_{i \in \emptyset} A_i \in \mathcal{A}$.
 - (ii) Sei $A \in \mathcal{A}$, dann existiert eine Indexmenge $J \subset \mathbb{N}$ sodass $A = \bigcup_{i \in J} A_i$. Man hat

$$A^c = X \setminus \bigcup_{i \in J} A_i = \bigcup_{i \notin J} A_i \in \mathcal{A}.$$

(iii) Sei $(B_n)_{n\in\mathbb{N}}\subset\mathcal{A}$. Dann gibt es Indexmengen $J_n\subset\mathbb{N},\ n\in\mathbb{N},\ sodass\ B_n=\bigcup_{i\in J_n}A_i$. Setze $J=\bigcup_{n\in\mathbb{N}}J_n$. Es gilt

$$\bigcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} \bigcup_{i\in J_n} A_i = \bigcup_{i\in J} A_i \in \mathcal{A}.$$

Zu jedem $p \in [0, \infty]^{\mathbb{N}}$ mit $||p||_1 = 1$ gibt es genau ein Maß μ auf \mathcal{A} mit $\mu(\{A_i\}) = p_i$. Für $J \subset \mathbb{N}$ ist dann $\mu\left(\bigcup_{i \in J} A_i\right) = \sum_{i \in J} p_i$. Der Beweis geht analog zu Aufgabe 4(a).

Aufgabe 9 [K]

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $(A_n)_{n \in \mathbb{N}}$ eine Folge in \mathcal{A} , mit den Eigenschaften

a)
$$\lim_{n\to\infty}\mu(A_n)=0$$

b)
$$\sum_{n=1}^{\infty} \mu\left(A_n^c \cap A_{n+1}\right) < \infty$$

Zeigen Sie, dass $\mu\left(\limsup_{n\to\infty}A_n\right)=0.$

LÖSUNG: Definiere die Mengen $B_n := \bigcup_{k \geqslant n}^{\infty} A_k$, dann ist die Folge $(B_n)_{n \in \mathbb{N}}$ eine monoton fallende Folge. Es gilt

$$B_n = A_n \cup (A_n^c \cap A_{n+1}) \cup (A_{n+1}^c \cap A_{n+2}) \cup \dots$$

Mit der subadditivität folgt dann direkt

$$0 \leqslant \mu(B_n) \leqslant \mu(A_n) + \sum_{k=n}^{\infty} \mu\left(A_k^c \cap A_{k+1}\right) \underset{n \to \infty}{\to} 0$$

nach Vorraussetzung a) und b). Es gilt nun aufgrund der Stetigkeit von oben

$$0 = \lim_{n \to \infty} \mu\left(B_n\right) = \mu\left(\lim_{n \to \infty} B_n\right) = \mu(\cap_{n \in \mathbb{N}} B_n) = \mu(\cap_{n \in \mathbb{N}} \cup_{k \ge n}^{\infty} A_k) = \mu\left(\limsup_{n \to \infty} A_n\right)$$

Aufgabe 10

Erzeuger der Borel- σ -Algebra auf \mathbb{R} .

Zeigen Sie, dass folgende Mengen Erzeuger der Borel- σ -Algebra $\mathcal{B}(\mathbb{R})$ sind:

$$\mathcal{E}_{1} = \{(-\infty, a) : a \in \mathbb{Q}\}$$

$$\mathcal{E}_{3} = \{(-\infty, b] : b \in \mathbb{Q}\}$$

$$\mathcal{E}_{5} = \{(c, \infty) : c \in \mathbb{Q}\}$$

$$\mathcal{E}_{6} = \{(c, \infty) : c \in \mathbb{R}\}$$

$$\mathcal{E}_{7} = \{[d, \infty) : d \in \mathbb{Q}\}$$

$$\mathcal{E}_{8} = \{[d, \infty) : d \in \mathbb{R}\}$$

LÖSUNG: Bezeichne O die offenen Mengen und C die abgeschlossenen Mengen in \mathbb{R} . Es ist $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O}) = \sigma(\mathcal{C})$. Aus der Vorlesung wissen wir, dass

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{J}) = \sigma(\mathcal{J}_{\mathbb{Q}}) = \sigma(\mathcal{J}^o) = \sigma(\mathcal{J}^o_{\mathbb{Q}})$$

wobei $\mathcal{J}_{(\mathbb{Q})}$ die Menge der halboffenen Intervalle (mit rationalen Endpunkten) bzw. $\mathcal{J}_{(\mathbb{Q})}^o$ die Menge der offenen Intervalle (mit rationalen Endpunkten) bezeichnet.

Offenbar gilt $\mathcal{E}_1 \subset \mathcal{E}_2 \subset \mathcal{O}$ sowie $\mathcal{E}_5 \subset \mathcal{E}_6 \subset \mathcal{O}$ und damit

$$\sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2) \subset \sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R})
\sigma(\mathcal{E}_5) \subset \sigma(\mathcal{E}_6) \subset \sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R}).$$
(1)

Ebenso hat man $\mathcal{E}_3 \subset \mathcal{E}_4 \subset \mathcal{C}$ und $\mathcal{E}_7 \subset \mathcal{E}_8 \subset \mathcal{C}$. Dies impliziert

$$\sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_4) \subset \sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R})
\sigma(\mathcal{E}_7) \subset \sigma(\mathcal{E}_8) \subset \sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R}).$$
(2)

Wegen

$$[a,b) = (-\infty,b) \cap (-\infty,a)^c \in \sigma(\mathcal{E}_1), \quad a,b \in \mathbb{Q}$$

gilt $\mathcal{J}_{\mathbb{Q}} \subset \sigma(\mathcal{E}_1)$ und damit $\sigma(\mathcal{J}_{\mathbb{Q}}) \subset \sigma(\mathcal{E}_1)$. Mit (1) folgt dann $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{J}_{\mathbb{Q}}) \subset \sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2) \subset \sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R})$. Weiter ist

$$(-\infty, b] = \bigcap_{n \in \mathbb{N}} \underbrace{\left(-\infty, b + \frac{1}{n}\right)}_{\in \mathcal{E}_1/\mathcal{E}_2} \in \sigma(\mathcal{E}_1)$$

und damit $\mathcal{E}_3 \subset \mathcal{E}_4 \subset \sigma(\mathcal{E}_1) = \mathcal{B}(\mathbb{R})$, also $\sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_4) \subset \sigma(\mathcal{E}_1) = \mathcal{B}(\mathbb{R})$. Umgekehrt gilt

$$(-\infty, a) = \bigcup_{n \in \mathbb{N}} \underbrace{\left(-\infty, a - \frac{1}{n}\right]}_{\in \mathcal{E}_2/\mathcal{E}_4} \in \sigma(\mathcal{E}_3),$$

also $\mathcal{E}_1 \subset \sigma(\mathcal{E}_3)$, woraus sofort $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_3)$ folgt. Damit ist

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_4) \subset \sigma(\mathcal{E}_1) = \mathcal{B}(\mathbb{R})$$

gezeigt.

Verwendet man, dass

$$(-\infty, a) = [a, \infty)^c \in \sigma(\mathcal{E}_7),$$

so erhält man $\mathcal{E}_1 \subset \sigma(\mathcal{E}_7)$ und somit $\sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_7)$. Zusammen mit (2) folgt dann

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_7) \subset \sigma(\mathcal{E}_8) \subset \sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R}).$$

Analog liefert

$$(-\infty, b] = (b, \infty)^c \in \sigma(\mathcal{E}_5),$$

dass $\mathcal{E}_3 \subset \sigma(\mathcal{E}_5)$, also $\sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_5)$. Mit (1) erhält man

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_5) \subset \sigma(\mathcal{E}_6) \subset \sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R}).$$

Zusammenfassend wurde also gezeigt, dass jede der Mengen \mathcal{E}_j , $j=1,\ldots,8$, die Borel'sche σ -Algebra $\mathcal{B}(\mathbb{R})$ erzeugen.