Chapter 6 LAYER 2 CONCEPT

LAN STANDARDS

Limitations of Layer 1

- Cannot organize streams of bits.
- Cannot name or identify computers.
- Cannot communicate with the upper-level layers.
- Cannot decide which computer will transmit binary data.

Layer 2

- Layer 2 uses framing to organize or group the bits.
- Layer 2 uses an addressing process to identify computers.
- Layer 2 uses Logical Link Control (LLC) to communicate with the upper-level layers.
- Layer 2 uses Media Access Control (MAC) to decide which computer will transmit.

OSI and various LAN standard

OSI Layers LAN Specification

- The Institute of Electrical and Electronic Engineers.
- LAN standards:

- 802.1d: Spanning tree.

- 802.2: LLC.

– 802.3: MAC ~ Ethernet.

− 802.5: MAC ~ Token ring.

- 802.11: Wireless LAN.

IEEE LAN Standard

LLC Sublayer Data Link Layer MAC Sublayer **Physical** Layer

- Logical Link
 Control (LLC):
 Transitions up to
 the network layer.
- Media Access
 Control (MAC):
 Transitions down
 to media.

Two Sub-layers WHY?

- LLC serves to communicate upward to Network layer, independent of the specific LAN technology used and Upper layer.
- MAC serves to access and communicate downward to the technology-specific Physical layer.

PDU: Protocol data unit

DSAP: Destination service access point

SSAP: Source service access point

- Naming.
- Framing.
- Media access control rules.

▶ 4 Concepts of Layer 2

- 1. Layer 2 uses framing to organize or group the data.
- 2. Layer 2 uses a flat addressing convention.
- 3. Layer 2 communicates with the upperlevel layers through LLC.
- 4. Layer 2 uses MAC to choose which computer will transmit binary data, from a group in which all computers are trying to transmit at the same time.

MAC ADDRESSING

MAC Address

- Every computer has a unique way of identifying itself: MAC address or physical address.
- The physical address is located on the Network Interface Card (NIC).
- MAC addresses have no structure, and are considered flat address spaces.

MAC address format

MAC address format

- The first six hexadecimal digits, which are administered by the IEEE, identify the manufacturer or vendor.
- The remaining six hexadecimal digits comprise the interface serial number.

MAC address

- MAC addresses are sometimes referred to as burned-in addresses (BIAs) because they are burned into read-only memory (ROM) and are copied into random-access memory (RAM) when the NIC initializes.
- 0000.0c12.3456 or 00-00-0c-12-34-56.

▶ Using MAC addresses

Encapsulation

Limitation of MAC

- Flat, does not work well in internetwork.
- Hardware dependent.

FRAMING

Encoding

 Encoding is the process of converting information into a form that can travel on a physical link.

Why framing is necessary?

- Which computers are communicating with one another.
- When communication between individual computers begins and when it terminates.
- A record of errors that occurred during the communication.
- Whose turn it is to "talk" in a computer "conversation".

Frame format diagram

Frame format diagram

A, B, C, D, E, F multiple, often many, bytes

- The frame format diagram shows different groupings of bits (fields) that perform other functions.
- Read them from left to right.

Generic frame format

Field Names							
Α	В	С	D	Е	F		
Start Frame Field	Address Field	Type/ Length Field	Data Field	FCS Field	Stop Frame Field		

 There are many different types of frames described by various standards.

Start frame field

Field Names						
Α	В	С	D	Е	F	
Start Frame Field	Address Field	Type/ Length Field	Data Field	FCS Field	Stop Frame Field	

The Start Frame field tells other devices on the network that a frame is coming down the wire.

Address field

The Address field stores the source and destination MAC addresses.

Type/Length field

Field Names						
Α	В	С	D	Е	F	
Start Frame Field	Address Field	Type/ Length Field	Data Field	FCS Field	Stop Frame Field	

The Type/Length field is an optional field used by some protocols to either state what type of data is coming or possibly the length of the frame.

Data field

Field Names						
Α	В	С	D	Е	F	
Start Frame Field	Address Field	Type/ Length Field	Data Field	FCS Field	Stop Frame Field	

The Data field is the actual information being sent by the upper layer protocols. Therefore, it will be all upper layer data.

Frame Check Sequence field

Field Names						
Α	В	С	D	E	F	
Start Frame Field	Address Field	Type/ Length Field	Data Field	FCS Field	Stop Frame Field	

The Frame Check Sequence (FCS) field, contains a number that is calculated by the source computer and is based on the data in the frame, is used for error notification.

Stop frame field

Field Names						
Α	В	С	D	E	F	
Start Frame Field	Address Field	Type/ Length Field	Data Field	FCS Field	Stop Frame Field	

The Stop Frame field, also called the Frame Trailer, is an optional field that is used when the length of the frame was not specified in the Type/Length field.

MEDIA ACCESS CONTROL

Definition MAC

OSI Layers LLC Sublayer Data Link Layer MAC Sublayer Ethernet **Physical** Layer

LAN Specification

Definition MAC

- Specified by the technology being used.
- Determine who can transmit and when.
- Two types:
 - Deterministic: "Let's take turns".
 - Token-Ring, FDDI.
 - Non-deterministic: "First come, first serve".
 - Ethernet : CSMA/CD.

Deterministic MAC protocol

Non-deterministic MAC protocol

 Carrier Sense Multiple Access with Collision Detection (CSMA/CD).

CSMA/CD

- 1. Host wants to transmit
- 2. Is carrier sensed?
- 3. Assemble frame
- 4. Start transmitting
- 5. Is a collision detected?
- 6. Keep transmitting
- 7. Is the transmission done?
- 8. Transmission completed
- 9. Broadcast jam signal
- 10. attempts = attempts + 1
- 11. attempts > too many?
- Too many collisions; abort transmission
- 13. Algorithm calculates backoff
- 14. Wait for t seconds

LAN Technologies

 Ethernet: logical broadcast topology

 Token Ring: logical token ring topology

FDDI: logical token ring topology