

| 1<br>(20pt) | 2<br>(20 pt) | 3<br>(20 pt) | 4<br>(20 pt) | 5<br>(20 pt) | Total (100 pt) |
|-------------|--------------|--------------|--------------|--------------|----------------|
|             |              |              |              |              |                |

1. Show the systematic sequence of transformations when we solve a problem using a computer

| Sequence | Explanation | An example |
|----------|-------------|------------|
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |

2. Write the Two's complement representation of the decimal numbers given in the table

| <b>Decimal Number</b> | Two's complement (1 sign bit + 7bits) |
|-----------------------|---------------------------------------|
| +21                   |                                       |
| -21                   |                                       |
| +57                   |                                       |
| -15                   |                                       |

3. By using the formula below, write the floating point number corresponding to

| Binary representation                   | Floating Point Value |
|-----------------------------------------|----------------------|
| 100001010110000000000000000000000000000 |                      |



4. For the transistor-level circuit in the figure below, fill in the truth table. What is Z in terms of A and B?

| A | В | С | D | Z |
|---|---|---|---|---|
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |



5. Given the logic circuit below, fill in the truth table for the output value Z.

| Α | В | C | Z |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 | _ |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |





| 1<br>(20pt) | 2<br>(20 pt) | 3<br>(20 pt) | 4<br>(20 pt) | 5<br>(20 pt) | Total (100 pt) |
|-------------|--------------|--------------|--------------|--------------|----------------|
|             |              |              |              |              |                |

1. Show the systematic sequence of transformations when we solve a problem using a computer

| Sequence | Explanation | An example |
|----------|-------------|------------|
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |

2. Write the Two's complement representation of the decimal numbers given in the table

| Decimal Number | Two's complement (1 sign bit + 7bits) |
|----------------|---------------------------------------|
| +21            |                                       |
| -21            |                                       |
| +57            |                                       |
| -15            |                                       |

3. By using the formula below, write the floating point number corresponding to

| Binary representation                   | Floating Point Value |
|-----------------------------------------|----------------------|
| 100001010110000000000000000000000000000 |                      |



4. For the transistor-level circuit in the figure below, fill in the truth table. What is Z in terms of A and B?

| A | В | С | D | Z |
|---|---|---|---|---|
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |



5. Given the logic circuit below, fill in the truth table for the output value Z.

| Α | В | C | Z |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 | _ |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |





| 1      | 2       | 3       | 4       | 5       | Total    |
|--------|---------|---------|---------|---------|----------|
| (20pt) | (20 pt) | (20 pt) | (20 pt) | (20 pt) | (100 pt) |
|        |         |         |         |         |          |

1. Show the systematic sequence of transformations when we solve a problem using a computer

| Sequence | Explanation | An example |
|----------|-------------|------------|
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |
|          |             |            |

2. Write the Two's complement representation of the decimal numbers given in the table

| Decimal Number | Two's complement (1 sign bit + 7bits) |
|----------------|---------------------------------------|
| +21            |                                       |
| -21            |                                       |
| +57            |                                       |
| -15            |                                       |

3. By using the formula below, write the floating point number corresponding to

| Binary representation                   | Floating Point Value |
|-----------------------------------------|----------------------|
| 100001010110000000000000000000000000000 |                      |



4. For the transistor-level circuit in the figure below, fill in the truth table. What is Z in terms of A and B?

| A | В | С | D | Z |
|---|---|---|---|---|
|   |   |   |   |   |
| • |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |



5. Given the logic circuit below, fill in the truth table for the output value Z.

| Α | В | C | Z |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

