

Lab Project - Networking for Big Data

Tran Luong Bang - 1956419

Gaurav Mohan Ramse - 1965564

Statistical Analysis

1) Extract 1 million of packets from the available data,

```
file_name = '../input/nbd-project/data.pcap'
new_file_name = './data_1m.pcap'

cmd('editcap -r ' + file_name +" "+ new_file_name+ ' '+ " 0-1000000")
```


1) Extract general info from trace using capinfos

Number of packets in capture file

```
! capinfos -c './data_1m.pcap'
```

• The average data rate, in bit/sec

```
! capinfos -i './data_1m.pcap'
```

The average packet size

```
! capinfos -z './data_1m.pcap'
```

Generate all infos

```
! capinfos -A './data_1m.pcap'
```


- 2) Time Evaluation between Sequential and Parallel reading
- Evaluation by executing on Kaggle Notebook with 4 CPUs and 16GB RAM

Time Evaluation between Sequential and Parallel reading

3) Extract the IP which generates the highest amount of sender traffic, evaluate the bit rate (0.1 sec) for the 6 IP addresses mostly used as endpoint

TOP 6 IP Dst for 150.57.136.251

4) Top 5 Destination IP (received bytes)

Top 5 destinations for received data

Total volume of received data (Kbit)

4) Top 5 Source IP (sent bytes)

Top 5 Sources for sending data

5) Evaluate bitRate considering all the trace with 3 different sampling rate

6) GeoLocal Referenciation of the 5 sessions with the highest amount of traffic generated

7) 10 Protocols mostly used

Protocols frequencies flows based

8) Port Scanner evaluation (10 Ports mostly used)

Top 10 Ports most used

9) InterArrival Time boxplot between TCP and UDP Sessions

Interarrival Time between UDP and TCP < 1s

Protocol

9) InterArrival Time boxplot between TCP and UDP Sessions

Interarrival Time between UDP and TCP < 0.1s

10) (Bonus) Top 15 TTL most used

Top 15 TTL most used

10) (Bonus) TTL

Machine Learning

Problem

Using data given to predict the protocol TCP, UDP and ICMP for each new packet.

Data

832,768 packets of the 1 million of packets from the available capture file.

- Train and Validation data: 75% input data
- Test dataset: 25% input data
- Predictor Variables: {IP Src, IP Dst, Protocol, src-port, dst-port, length, ttl, time}
- Target Variable: {Protocol}

Method

To sovle this classification problem, we've used 2 machine learning algorithms SVM and Random Forest.

Tuning the hyper-parameters by using RandomSearchCV and GridSearchCV

Data Preprocessing

- Missing Values
- Duplicate packets
- One-hot Encode
- Dimentionality Reduction
- Class Imbalance

Confusion Matrix

Support Vector Machine

Random Forest