Thenn

Bay of Ice

DNLINE-TSP

(metric)

INPUT:

- metric space: M Superposition (with metric d)
- places to visit: S

NP-hard!

Superpolynomial Alg.

ALG

Approximation Alg.
e.g. Christofides

OUTPUT:

Shortest tour \mathcal{T}^* through \mathcal{S}

NP-hard!

(metric)

INPUT:

- metric space: M Superpolynomial Alg. (with metric d)
- places to visit: S

ALG

 Approximation Alg. e.g. Christofides

OUTPUT:

Shortest tour \mathcal{T}^* through \mathcal{S}

(metric)

Christofides Algorithm:

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

$$\leq \frac{1}{2} \cdot \mathcal{T}^*$$

$$\leq \frac{3}{2} \cdot \mathcal{T}^*$$

1,5-approximative solution

(metric)

Christofides Algorithm:

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

$$\leq \frac{1}{2} \cdot \mathcal{T}^*$$

$$\leq \frac{3}{2} \cdot \mathcal{T}^*$$

1,5-approximative solution

INPUT:

- metric space
- starting-point: o
- request-sequence σ :

DEF: ALG is ρ -competitive

$$\Leftrightarrow \left| \mathcal{T}^{\text{ALG}} \right| \leq \rho \cdot \left| \mathcal{T}^{\text{OPT}} \right|$$

for all request- sequences

Goals

- I. Find online-algorithms (superpolynomial)
- II. Find lower bounds
- III. Find *polynomial* online-algorithms
- IV. Bonus: The real line

An algorithm for N-OLSTP

Invariant: always on shortest path between points in *S*

- (1) New request (t, z) at time t and ALG between x and y
- (2) Add z to U
- (3) Follow shortest path through $\mathcal U$ beginning with x or y

S := places requested until t $S \supseteq U :=$ places yet to visit at t

Greedily Travelling between Requests (GTR)

Competitiveness of GTR

Invariant: always on shortest path between points in *S*

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$|\mathcal{T}^{\text{GTR}}| \leq \hat{t} + \min\{d(o,x) + d(x,p), d(p,y) + d(y,a)\} + |\mathcal{T}^*|$$

$$\leq \hat{t} + \frac{1}{2} \cdot |\mathcal{T}^*| + |\mathcal{T}^*|$$
 path found by opt. offline-ALG
$$\leq |\mathcal{T}^{\text{OPT}}| + \frac{3}{2} \cdot |\mathcal{T}^{\text{OPT}}| = \frac{5}{2} \cdot |\mathcal{T}^{\text{OPT}}|$$

Competitiveness of GTR

Invariant: always on shortest path between points in *S*

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

THEOREM: GTR is 2,5-competitive for N-OLTSP

REMARK: tightness

REMARK: $\leq |\mathcal{T}_{G}^{PRT}|$ is also $\frac{1}{2}$,5-complete the for H- $\frac{1}{2}$ SP $|\mathcal{T}^{OPT}|$

Lower Bound for N-OLTSP

time, request

Online-ALG

Offline-ALG

0

l. 1

 $2 + \varepsilon$

-1 0 1

 $\Rightarrow |\mathcal{T}^{OFF}| = 1$

THEOREM:

Any ρ -competitive ALG for N-OLTSP has $\rho \geq 2$.

Lower Bound for H-OLTSP

time, request

Online-ALG

Offline-ALG

0

1, 1

$$2 + \varepsilon$$

$$3 + \varepsilon$$

$$\Rightarrow \left| \mathcal{T}^{\text{OFF}} \right| = 2$$

THEOREM:

Any ρ -competitive ALG for H-OLTSP has $\rho \geq 1.5$.

Lower Bound for H-OLTSP

- requests at time 0
- wait until time t = 2
- wait until d(p, a) = t 2
- new requests on ${\mathcal P}$
- OPT finishes at t = 4ALG finishes at $t \ge 8 - \frac{4}{n}$

THEOREM: Any ρ -competitive ALG for H-OLTSP has $\rho \geq 2$.

A better algorithm for H-OLTSP

U :=places yet to visit

- (1) At *o*: start optimal tour through *U*
- (2) For new request (t, x):
 - a) If d(x, o) > d(p, o): go back to o
 - b) Else: ignore x until back at o

Plan At Home (PAH)

GOAL: PAH is 2-competitive for H-OLTSP

Competitiveness of PAH

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &= \underbrace{\hat{t} + d(\hat{x}, o)}_{} + \left| \mathcal{T}_{U} \right| \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \left| \mathcal{T}^{\text{OPT}} \right| = 2 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

PAH is 2-competitive for H-OLTSP

Competitiveness of PAH

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

I := ignored requests

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

time: t_{ν}

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_y + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_I^* \right| \\ &\leq t_y + \left| \mathcal{R} \right| + \left| \mathcal{P}_I \right| = t_y + \left| \mathcal{P}_I \right| + \left| \mathcal{R} \right| \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \left| \mathcal{T}^{\text{OPT}} \right| = 2 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

PAH is 2-competitive for H-OLTSP

Competitiveness of PAH

U :=places yet to visit

- (1) At *o*: start optimal tour through *U*
- (2) For new request (t, x):
 - a) If d(x, o) > d(p, o): go back to o
 - b) Else: ignore x until back at o

GOAL:

PAH is 2-competitive for H-OLTSP r H-OLTSP

Polynomial Algorithm for H-OLTSP

Invariant: always on shortest path between points in *S*

- (1) At o: Find tour though $U \cup \{o\}$ with Christofides-Heuristic
- (2) For new request (t, z) at time t and ALG between x and y:
 - a) Add z to U
 - b) go back to o via x or y (take shortest path)

THEOREM: CHR is a polynomial (and correct).

Competitiveness of CHR

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\begin{aligned} \left| \mathcal{T}^{\text{CHR}} \right| &= \hat{t} + \min \{ d(o, x) + d(x, p), d(p, y) + d(y, o) \} + \text{CHR}(U) \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| + \frac{3}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| = 3 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

REMARK: There is a 3-competitive algorithm for N-OLTSP.

Credits & References

- Paper: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.5620
- Map: http://awoiaf.westeros.org/index.php/File:WorldofIceandFire.png
- Font: http://www.fonts4free.net/game-of-thrones-font.html