Числовые последовательности и их пределы

Ученики 10-4 класса Оконешников Д.Д. и Паньков М.А. по лекции к.ф.-м.н. Протопоповой Т.В.

от 28 апреля 2021 г.

1 Лекция №25

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n$$

$$x_n \xrightarrow[n \to \infty]{} ?$$

1.1 Число е

1)
$$\{x_n\}$$
 — ограничена

$$(x_n)$$
 — монотонна

Из 1) и 2)
$$\Rightarrow$$
 сходятся

I монотонна и возрастает

$$(a+b)^n = \sum_{k=0}^n C_n^k \ a^{n-k}b^k = 1*a^n + \sum_{k=1}^n C_n^k \ a^{n-k}b^k = a^n + \sum_{k=1}^n \frac{n!}{k!(n-k)!}a^{n-k}b^k = a^n + \sum_{k=1}^n \frac{n!}{k!(n-k)!}a^{n-k}b^k = a^n + \sum_{k=1}^n \frac{n(n-1)(n-2)...(n-(k-1))}{k!}a^{n-k}b^k$$

$$x_n = 1 + \sum_{k=0}^n \frac{n(n-1)(n-2)...(n-(k-1))}{k!} \frac{1}{n^k} = 1 + \frac{1}{1!} \frac{n}{n} + \frac{1}{2!} \frac{n(n-1)}{n^2} + \frac{1}{3!} \frac{n(n-1)(n-2)}{n^3} + \dots + \frac{1}{k!} \frac{n(n-1)...(n-(k-1))}{n^3} + \dots + \frac{1}{k!} \frac{n(n-1)...(n-(k-1))}{n^k} + \dots + \frac{1}{n!} \frac{n(n-1)...(n-(n-1))}{n^k} = 1 + 1 + \frac{1}{2!} \frac{1}{n^2} + \frac{1}{3!} \frac{n(n-1)(n-2)}{n^2} + \dots + \frac{1}{k!} \frac{n-1)(n-2)...(n-(k-1))}{n^k} + \dots + \frac{1}{k!} \frac{n-1}{n^k} + \frac{1}{3!} \frac{n-1}{n^2} + \dots + \frac{1}{k!} \frac{n-1}{n^2} + \dots + \frac{1}{n!} \frac{n$$

$$\begin{split} &\frac{1}{n} > \frac{1}{n+1} \\ &-\frac{1}{n} < -\frac{1}{n+1} \\ &0 < (1-\frac{1}{n}) < (1-\frac{1}{n+1}) \ n > 1 \\ &\text{аналог:} \\ &0 < 1-\frac{2}{n} < 1-\frac{2}{n+1} \Rightarrow (1-\frac{1}{n})(1-\frac{2}{n}) < (1-\frac{1}{n+1})(1-\frac{2}{n+1}) \\ &\forall n \ x_n < x_{n+1} \Rightarrow \text{возрастает} \end{split}$$

II ограничена

$$\begin{aligned} 2 &< x_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \ldots + \frac{1}{k!} + \ldots + \frac{1}{n!} \\ &< \\ \frac{1}{1*2} &= \frac{1}{2} \\ \frac{1}{2*3} &< \frac{1}{2*2} &= \frac{1}{2^2} \\ \frac{1}{3*4} &< \frac{1}{2*2*2} &= \frac{1}{2^3} \\ &< 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} \ldots \frac{1}{2^{k+1}} + \ldots + \frac{1}{2^{n-1}} &= 2 + \frac{\frac{1}{2} - \frac{1}{2^n}}{1 - \frac{1}{2}} &= 2 + \frac{\frac{1}{2}(1 - \frac{1}{2^{n-1}})}{\frac{1}{2}} &= 3 - \frac{1}{2^{n-1}} < 3 \\ x_n \nearrow \\ \frac{2 &< x_n < 3}{\downarrow} \end{aligned}$$

по теореме Вейерштрасса:

$$\exists \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

 $e \approx 2.718281828459045...$

$$\lim_{n \to \infty} (1 - \frac{1}{n})^n = \lim_{n \to \infty} (\frac{n-1}{n})^n = \lim_{n \to \infty} (\frac{1}{\frac{n-1+1}{n-1}})^n = \lim_{n \to \infty} (\frac{1}{(1 + \frac{1}{n-1})^{n-1}(1 + \frac{1}{n-1}) \to 1})^n = e^{-1}$$

1.2 Принцип вложенных промежутков

Теорема. Пусть задана система замкнутых промежутков:

$$\sigma_n = [a_n; b_n] \ \forall n \in \mathbb{N} : \sigma_1 \supset \sigma_2 \supset \dots \supset \sigma_n \supset \sigma_{n+1} \quad \forall \ n \in \mathbb{N}$$

$$\alpha_n = b_n - a_n \xrightarrow[n \to \infty]{} 0$$

Тогда $\exists ! \ c : \ c \subset \sigma_n \ \forall n \in \mathbb{N}.$

 \uparrow

- 1. $a_1 \leq a_2 \leq a_3 \leq ... \leq a_n \leq ... \leq b_n \leq b_{n-1} \leq ... \leq b_1$ $\{a_n\} \not\searrow$ и ограничена сверху любым $b_n \forall n \Rightarrow b_n$ сх-ся по т. Вейерштрасса $\exists \lim_{n \to \infty} a_n = c_1 \quad c_1 \leq b_n \ \forall n$ $\{b_n\} \not\nearrow$ и ограничена любым $a_n \ \forall n$ снизу
- 2. $c_1 = \lim_{n \to \infty} a_n = \lim_{n \to \infty} (a_n b_n + n_n) = 0 + c_2 = c_2$ $c_1 = c_2 = c$
- 3. уже в п.1 показали, что $a_n \leq c \leq b_n \ \forall \ n,$ т.е. $c \in [a_n;b_n] \ \forall \ n$
- 4. Покажем, такое c $\exists !$ от противного: пусть есть еще \tilde{c} общая точка всех промежутков $\tilde{c}\neq c$, например, $\tilde{c}< c$

Тогда:
$$\lim_{n\to\infty} a_n = c \implies \forall \varepsilon > 0 \; \exists N \; : \; \forall n > N, c-\varepsilon < a_n < c+\varepsilon$$

$$a_n > c - \varepsilon = \{\varepsilon = \frac{c - \widetilde{c}}{2}\} = c - \frac{c - \widetilde{c}}{2} = \frac{c + \widetilde{c}}{2} > \frac{2c}{2} = \widetilde{c}$$

$$\exists N : \forall n > N \ a_{n1} > \tilde{c}$$
 т.е. для $n > N \ \tilde{c} \not\in [a_n;b_n]$ — противоречие \downarrow

Замечание.

1)
$$[a_n; b_n]!$$
 $1 - \frac{1}{n}; 1 \to (1, 1) = \emptyset$ 2) Верна для \mathbb{R} , неверна для \mathbb{Q}

1.3 Подпоследовательности

Определение. Числовая последовательность $\{b_k\} = \{a_{nk}\}$, где $n_1 < n_2 < n_3 < ... < n_k < ... n_1, n_2, n_3 \in \mathbb{N}$ последовательность натуральных чисел называется подпоследовательностью последовательности $\{a_n\}$.

Пример. $a_n = \frac{1}{n}$ 1; $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{4}$; $\frac{1}{5}$; ...; $\frac{1}{100}$; ...

$$b_k = \frac{1}{2k} \quad \frac{1}{2}; \frac{1}{4}; \frac{1}{6}; \dots \frac{1}{100}; \dots$$

$$b'_k = \frac{1}{2k+1} \quad \frac{1}{3}; \frac{1}{5}; \frac{1}{7}; \dots$$

$$b_k'' = \frac{1}{k+3} \quad \frac{1}{4}; \frac{1}{5}; \dots$$

$$b_k^{\prime\prime\prime} = \frac{1}{3k} \quad \dots$$

$$a_n = (-1)^n$$

$$b'_k = 1$$

$$b_k'' = -1$$

Определение. Если \exists lim подпоследовательности $b_k = a_{nk} \lim_{k \to \infty} b_k = b$, то b — частичный предел последовательности $\{a_n\}$.

Пример. $a_n = (-1)^n$

Частичные пределы: $b'_k = 1, \ b''_k = -1$

 $a_n = \sin \frac{\pi n}{2}$

Теорема. Если $\{a_n\}$ — сходится к а, то и все частичные пределы $\{a_n\}$ тоже равны а.

$$\uparrow \lim_{n\to\infty} a_n = a$$

начиная с n > N $a - \varepsilon < a_n < a + \varepsilon \ \forall \varepsilon$, но тогда $\forall n_k > N$ $a - \varepsilon < a_{nk} < a + \varepsilon \Rightarrow$ т.е. $\lim_{k \to \infty} a_{nk} = a \downarrow \infty$

Следствие.

$$x_n = (-1)^n$$

Если
$$\exists \ x_{nk}$$
 и x'_{nk} : $\lim_{k \to \infty} x_{nk} \neq \lim_{k \to \infty} x'_{nk} \Rightarrow \not\exists \ \lim x_n$

Пример.

$$a_n = \sin \frac{\pi n}{2}$$

$$a_{nk} = a_{2k} = \sin \pi k = 0$$

$$\sin\frac{\pi n}{2} = 1 \Rightarrow \frac{\pi/n}{2} = \frac{\pi}{2} + 4 /\pi k$$

$$a_n = \sin \frac{\pi n}{2}$$

$$a_{nk} = a_{2k} = \sin \pi k = 0$$

$$\sin \frac{\pi n}{2} = 1 \Rightarrow \frac{\pi n}{2} = \frac{\pi}{2} + 4 /\pi k$$

$$a_{4k+1} = \sin \frac{\pi(4k+1)}{2} = \sin 2\pi k + \frac{\pi}{2} = 1$$