

Report No. FAA-EE-80-13

Pes.

ON THE APPLICABILITY OF TWO- AND ONE-DIMENSIONAL PARAMETERIZATIONS OF ATMOSPHERIC TRACER TRANSPORTS TO PROGNOSTIC PHOTOCHEMICAL MODELS OF THE STRATOSPHERE

(Institute for Defense Analyses Paper P-1473)

Henry Hidaigo

April 1980

PALL REPORT

Personal Inc

HAM AL TRUE POLICY ON PRODUCT

ALL DEFENTACES OF TRANSPORTATION

web 12

a v**01**

6.		(e c	hnical Keport Do	ocumentation rage
I. Report Nogan	2. Government Accession	on No. 3. Re	cipient's Catalog No	·.
FAA EE 80-13	1 7 1 26 0	0.15		
, in the second of	AD-A092	842	port Dars	
4. Title and Subtitle		1 1	r ia 1980	
On the Applicability of Two		stoliat tara-	rforming Organizatio	n Code
meterizations of Atmospher		1.02.00		
Prognostic Photochemical M	oders of the Stra	tosphere 🚜 📜	rforming Organisatio	n-Report No.
A-Author's)			DA -Paper P-1	
Henry/Hidalgo		4/1	DR LIGHT 1-1	
9. Performing Organization Name and Addr	ess	· 10, w	ork Unit No. (TRAIS)
Institute for Defense Ana	alyses 🗸			
400 Army-Navy Drive			ontract of Grant No. VI-FA-77WA396	5 /
Arlington, Va. 22202			ype of Report and P.	
100		——————————————————————————————————————		
12. Sponsoring Agency Name and Address	. •	/ F1	nal Keport	<i>t</i> :
Department of Transportat				
Federal Aviation Administration Office of Environment and		14. S	ponsoring Agency Co	ode
Washington, D.C. 20591	r πιατ.κλ			
15. Supplementary Notes	·			
16. Abstract				
This paper deals meterizations of stra tracers to predictive photochemical models the forecasting of an The scope of this pap and assessment of the German (1965) 2-D par (2) the implied assum parameterizations use (3) use of GCM/tracer for the assessment of 1-D parameterizations outlook for the devel stratospheric transpo	tospheric transor prognostic of the stratos thropogenic efer therefore in prognostic utameterization ption in repred or for use if the prognostic of stratosphetopment of prognostic opment of prognostic of stratosphetopment of stratosphetopm	sports of cheme two- and one-sphere and trop fects on atmos ncludes; (1) a cility of the p of stratosphere sentative substant 2-D photoched a chemically of beric transports	ically ine dimensiona osphere fo pheric ozo critical rarent Reed ic transpoidiary 2-D mical mode inert tra oth 2-D and (4)	rt l r ne. eview and rts; ls; cer d the
17. Key Words Atmospheric ozon Effects on Atmospheric Ozon spheric Transports of Trace on Atmospheric Ozone, Photo of the Stratosphere and Trace Motions in the Stratosphere	ne, Strato- ers, SST Effects ochemical Models oposphere, Wave	18. Distribution Statement Document is ava through the Nat tion Service, S 22161	ional Techni Springfield,	cal Informa- Virginia
19. Security Classif. (of this report)	20. Security Classi	f, (of this page)	21. No. of Pages	22. Price
UNCLASSIFIED	UNCLASSI	IFIED	86	

Form DOT F 1700.7 (8-72)

(A)

ACKNOWLEDGMENTS

The author is indebted to Dr. Jerry D. Mahlman of the Geophysical Fluid Dynamics Laboratory (NOAA) for providing access to his numerical data and for many valuable discussions. He also acknowledges important communications with Dr. Edward F. Danielsen.

The author is grateful to Professors J.R. Holton, J. London, T. Matsuno, and Dr. C. Prabhakara for valuable review comments which helped to improve this paper.

The contents of this paper are, of course, the sole responsibility of the author and they should not be interpreted as being necessarily or fully endorsed by any of the above prominent meteorologists.

ABSTRACT

This paper deals with the applicability of empirical parameterizations of stratospheric transports of chemically inert tracers to predictive or prognostic two- and one-dimensional photochemical models of the stratosphere and troposphere for the forecasting of anthropogenic effects on atmospheric ozone. The scope of this paper therefore includes (1) a critical review and assessment of the prognostic utility of the parent Reed and German (1965) 2-D parameterization of stratospheric transports, (2) the implied assumption in representative subsidiary 2-D parameterizations used or for use in 2-D photochemical models, (3) use of GCM/tracer model data for a chemically inert tracer for the assessment of the prognostic utility of both 2-D and 1-D parameterizations of stratospheric transports, and (4) the outlook for the development of prognostic parameterizations of stratospheric transports.

PRECEDING PACE BLANK-NOT FILMED

CONTENTS

Abst	nowledgments tract mary	iii v S-1
I.	INTRODUCTION	1
II.	REVIEW OF REED AND GERMAN FORMULATION	5
	 A. Decoupling of Chemistry From the Temperature and Wind Fields B. Adaptation of Mixing Length Hypothesis to the Stratosphere 	5 7
III.	PARAMETERIZATION OF EDDY TRANSPORTS FOR 2-D PHOTOCHEMICAL MODELS	11
IV.	APPARENT UNDETERMINABILITY OF BASIC $\bar{\alpha}^{*2}$ STATISTICS	3 19
٧.	REED AND GERMAN CONSTRAINTS CARRIED OVER TO TWO- DIMENSIONAL PHOTOCHEMICAL MODELS	27
VI.	PAST INTERPRETATIONS OF REED-GERMAN RESULTS	29
VII.	OUTLOOK FOR PROGRESS IN PROGNOSTIC 2-D FORMULA- LATIONS OF TRACER TRANSPORTS	37
VIII.	TESTS OF 1-D PARAMETERIZATIONS	39
Ref	erences	44
	FIGURES	
1.	Schematic representation of the slope (α) of the mixing length path necessary for countergradient eddy fluxes in the Prandtl mixing length hypothesis, as given by Reed and German (1965).	9

TABLES

1.	Sample Eddy Parameters for Crutzen Model During Summer and Winter in Northern Hemisphere	13
2.	Sample Eddy Parameters for Widhopf Models During Summer (August) in Northern Hemisphere and Winter in Southern Hemisphere	14
3.	Sample Eddy Parameters Derived From Poleward Transport of Ozone	15
4.	Values of $\bar{\alpha}^{*2}/\bar{\alpha}^2$ For Three 2-D Parameterizations of Eddy Transports	17
5.	Sample $[\alpha]$, $[\alpha^{*2}]$ at 24° N Latitude	21
6.	Sample $[\alpha]$, $[\alpha^{*2}]$ at 48° N Latitude	22
7.	Sample $[\alpha]$, $[\alpha^{*2}]$ at 72° N Latitude	23
8.	Slope of Mixing Length Path as Given by Primitive Equations, α (10 ⁻⁴)	32
9.	Vertical Eddy Coefficients as Given by Primitive Equations, $K_{\rm ZZ}$ (10 $^4{\rm cm}^2/{\rm sec}$)	33
LO.	Horizontal Eddy Coefficient, as Given by Primitive K_{yy} (10 ¹⁰ cm ² /sec)	34
11.	1-D Transport Coefficients $K_z(z)$, $10^4 \text{cm}^2/\text{sec}$ as a Function of Source Location and Time (Years) in the Lower Stratosphere and Troposphere	42

SUMMARY

This paper deals with the applicability of empirical parameterizations of stratospheric transports of chemically inert tracers to predictive or prognostic two- and one-dimensional photochemical models of the stratosphere and troposphere for the forecasting of anthropogenic effects on atmospheric ozone. Because the prognostic value of available two-dimensional (2-D) parameterizations of stratospheric tracer transports depend on the viability of the parent Reed and German (1965) formulation, emphasis is placed here on basic limitations of such formulation. The prognostic viability of 1-D parameterizations of stratospheric tracer transports is evaluated from comprehensive 3-D GCM*/tracer model data for a chemically inert tracer as a function of tracer configuration in both the space and time domains as well as of tracer-source location.

General and specific results for both the parent and subsidiary 2-D parameterizations of stratospheric tracer transports are as follows:

• The 2-D Reed and German parameterization of tracer transports in the critical region of the lower stratosphere is based on the crucial assumption that the macroscale vertical and meridional eddy transports, driven by well-structured stratospheric wave motions, may be described by the same turbulent mixing mechanisms as in the troposphere. As a consequence of this assumption, there is a need for drastic physical reinterpretation of the parent Reed and German formulation of stratospheric eddy transports, a formulation that is based on an adaptation

General circulation model.

- of the Prandtl mixing-length hypothesis for microscale turbulence. Hence, the applicability of the subsidiary 2-D parameterizations in available photochemical models for the *forecasting* of anthropogenic ozone effects is open to question.
- Viable prognostic parameterizations of stratospheric eddy transports for 2-D photochemical models require, in addition to the foregoing reinterpretation of the physical nature of the eddy fluxes, drastic modifications of the parent Reed and German formulation in regard to (1) the calculation of the statistics of the zonal average of both the slopes of the mixing-length paths or surfaces $(\bar{\alpha})$ and their deviation from such average $(\bar{\alpha}^{*2})$, and (2) the basic characteristics of the eddy transport coefficients (K's) which (a) may not have the $K_{yz} = K_{zy}$ symmetry as derived from implicit assumptions in the parent formulation (Eqs. 7 to 10 vs Eqs. 15 to 19) and (b) are not independent of the zonal (\bar{u}) and meridional (\bar{w}, \bar{v}) circulations as assumed in such parent formulation.
- A strict interpretation of the Reed and German 2-D formulation of eddy transports leads to: (1) apparent undeterminability from vertical and meridional GCM wind data (Tables 5 through 7) of the basic $\bar{\alpha}^{*2}/\bar{\alpha}^2$ statistics of the slope (a) of mixing-length paths and (2) overspecification of two eddy transport equations (Eqs. 4, 5) for one unknown eddy transport coefficient (K_{yy}) as a consequence of the required equality of the K_{yz} and K_{zy} eddy transport coefficients (Eq. 9). This latter result is opposite to current practice of using an undetermined system of two eddy flux equations (4, 5) for determining three unknown eddy coefficients (K_{yy} , K_{yz} , and K_{zz} ; with $K_{zy} = K_{yz}$).

- Since the 2-D parameterizations of tracer transports used or for use in current representative photochemical models (Tables 1 to 3) assume equality of the $K_{_{\mathbf{V}\mathcal{I}}}$ and K coefficients in the stratosphere and ignore the dependence of such coefficients on the zonal and meridional circulations, they cannot therefore rely on the viability of the Reed and German formulation to justify their prognostic utilization. Moreover, it is found that they are based on implied assumptions of the basic $\bar{\alpha}^{*2}/\bar{\alpha}^2$ statistics that are (1) not always positive, even though they involve a ratio of quadratic terms (Table 4); (2) drastically different among themselves (Table 4) instead of remaining fixed by the (same) wind variability of the stratosphere (Eq. 6); and (3) inconsistent with the parent Reed and German formulation due to the apparent undeterminability (Eq. 14) of such statistics.
- Use of 3-D GCM/tracer model data for the evaluation of 2-D parameterizations of eddy transports, when they are based on the assumption that $\bar{\alpha}^{*2}/\bar{\alpha}^2 = 0$ everywhere in the lower stratosphere at middle and high latitudes (Table 1), indicate the following: (a) the eddy coefficients would have to become negative in some regions of the stratosphere (Tables 9 and 10), and (b) when aircraft emissions are introduced continuously in the lower stratosphere, the $\bar{\alpha}$ (or K_{yz}/K_{yy}) parameter would also have to change instead of remaining fixed by the wind variability (Table 8).
- The significant differences in the magnitude of the eddy transport coefficients, as given by available representative 2-D parameterizations of eddy transports in the lower stratosphere (e.g. Tables 2 vs 3), appear to stem from two factors: (1) use of different types of observed tracer data for the determination of such coefficients and (2) the fact that, as indicated by

GCM/tracer model data, the eddy transports of anthropogenic tracers depend on the time (age in years) and/or space (source location) configurations of the tracers in the stratosphere.

• Available preliminary results from a Lagrangian instead of Eulerian description of air parcel motions caused by a planetary wave in the stratosphere indicate the possibility for a prognostic 2-D formulation of eddy transports which would (1) have no need for the Reed and German constraint on an equality of the Kyz and Kzy eddy transport coefficients, and (2) relate the eddy transport coefficients to the period of oscillation of air parcels due to planetary waves, which, in turn, relates to the zonal circulation.

In regard to the *prognostic* applicability of empirical 1-D parameterizations of stratospheric transports in 1-D photochemical models, comprehensive 3-D GCM/tracer model data (Table 11) indicate the following:

• The magnitude of the 1-D transport coefficients in the critical region of the lower stratosphere can (1) become negative for SST emissions, a result that implies distortions of the K(z) profile and (2) depend on the tracer configuration in the stratosphere as given by the source location, source characteristics, and tracer age or years. Therefore, the empirical parameterizations of stratospheric transports used in 1-D photochemical models appear to lack physical basis for their prognostic utilization, since they are assumed to be always positive and independent of tracer configuration in the stratosphere.

Although the magnitudes of 1-D coefficients derived from 3-D GCM/tracer model data may be dependent on the vertical resolution of the model in the critical tropopause and lower

stratosphere regions, the trends established by extensive calculations of such a model during the last several years may not be ignored in the absence of worldwide observations of suitable tracers for an ensemble of many years. In fact, a promising avenue to derive more exact 1-D transport coefficients is to improve the vertical resolution of the GCM/tracer model instead of ever attempting to collect empirical data for a suitable tracer in the lower stratosphere over a worldwide space domain and for an ensemble of many years.

I. INTRODUCTION

A need to forecast long-term effects of high-altitude aircraft engine emissions (NO $_{\rm x}$ and $\rm H_2O)$ on atmospheric ozone as a function of altitude, latitude, and season has led to an interest in the development of predictive or prognostic twodimensional (2-D) photochemical models of the stratosphere and troposphere (e.g. Hidalgo and Crutzen, 1977; and Widhopf, Glatt, and Kramer, 1977). A basic component of such models is the description of large-scale vertical and latitudinal or meridional transports of tracer mixing ratio for the determination of the 2-D distributions of relevant natural and anthropogenic chemical species. The development of prognostic 2-D photochemical models of the stratosphere and troposphere has then consisted in the generation of numerical solutions of time-dependent partial differential equations for the conservation of each of the involved chemical species with specified (Hidalgo, 1978): (1) vertical and meridional mean winds as well as eddy transport coefficients as a function of altitude, latitude, and month (season); (2) photolysis rates and short-wave solar radiation for the relevant photochemistry; (3) reaction rates for the involved chemical kinetics; (4) rate constants for the heterogeneous chemistry involving sinks of water-soluble chemical species in the lower troposphere; and (5) anthropogenic sources of chemical tracers as a function of atmospheric location and time (years). The computing scheme is completed by using for each of the chemical species initial conditions throughout the model atmossphere as well as appropriate boundary conditions at the earth's surface and stratopause.

Two main applications of 2-D photochemical models during the last several years have been (1) diagnostic calculations of the prevailing mixing ratio of relevant chemical species as a function of altitude, latitude, and season in the stratosphere and troposphere; and (2) prognostic forecasts of long-term, global-scale ozone effects from specified future aircraft emissions as a function of altitude and latitude. Since effective regulations designed to prevent predicted long-term adverse ozone effects on a global scale would require international participation, the scrutiny and documentation of each of the above foundations of 2-D photochemical models must be such as to promote international credibility of their predictions concerning any anthropogenic threat to atmospheric ozone.

The objective of this paper is to examine the description of the large-scale vertical and meridional transports of chemical species as used or intended for use in current representative 2-D photochemical models of the stratosphere and troposphere. Furthermore, since such descriptions of tracer transports are based on extensions or interpretations of the parent Reed and German (1965) formulation for chemically inert tracers in the stratosphere, emphasis must be placed here on this parent formulation. Considerations of interest are then on the following:

- Need to distinguish between the *diagnostic* use of empirical parameterizations of stratospheric transports and the *prognostic* use of such empiricism for the forecasting of future anthropogenic effects on ozone.
- Need to compare on a common basis different, representative 2-D parameterizations of tracer transports used or for use in 2-D photochemical models.
- Need to bring out any basic limitation in the pioneering Reed and German formulation, which was devised

over a decade ago for diagnostic calculations of chemically inert tracers in the stratosphere and in the absence of current 3-D general circulation model (GCM) data for unmeasurably small large-scale vertical transports in the stratosphere. An indirect tribute to the difficulty of such a pioneering effort is the fact that there is not yet an adequate solution to the 2-D formulation of tracer transports in the stratosphere.

• Need to clarify past interpretations concerning basic concepts of the parent Reed and German formulation of tracer transports in the stratosphere.

Hence, the main scope of this paper includes the following: (1) review of the Reed and German parameterization of the transports of chemically inert tracers in the stratosphere; (2) implied assumptions in the parameterizations of tracer transports in current representative 2-D photochemical models; (3) apparent undeterminability of fundamental statistics in the Reed and German parameterization; (4) constraints in basic Reed and German results that are carried over to the 2-D parameterizations in photochemical models; (5) past interpretations of basic Reed and German results; and (6) outlook for future progress in the development of prognostic 2-D formulations of tracer transports. Finally, because of the widespread use of 1-D parameterizations of atmospheric transports in the more versatile 1-D photochemical models, this paper includes considerations of the limitations of 1-D empiricism for the prognostic representation of atmospheric transports.

PRECEDING PAGE BLANK-NOT FILMED

II. REVIEW OF REED AND GERMAN FORMULATION

The basic aim of 2-D parameterizations of stratospheric transports in photochemical models is to describe the zonalmonthly (seasonal) statistical averages of vertical and meridional transports of chemical species in stratospheres that are characterized by either the absence or presence of aircraft engine emissions of NO_x (NO, NO₂) and H₂O. Because of the interest in monthly (seasonal) anthropogenic ozone effects, the primary concern is with the statistics of tracer transports by largescale wave motions. Two basic assumptions used in representative 2-D photochemical models of the stratosphere and troposphere are (1) decoupling of the chemistry from the temperature and wind fields, and (2) use of the Reed and German adaptation of the Prandtl (1925) mixing-length hypothesis to the macroscale eddy transports in the stratosphere. Each of these assumptions is described below.

A. DECOUPLING OF CHEMISTRY FROM THE TEMPERATURE AND WIND FIELDS

The first basic assumption in representative 2-D photochemical models of the stratosphere and troposphere is that the conservation equations for chemical species are decoupled from the primitive equations of the general circulation (e.g. Lorenz, 1967). Since the latter equations can be used to obtain estimators of the monthly (seasonal) statistics of the temperature and wind fields in the stratosphere, an implicit assumption in the 2-D photochemical models is that the anthropogenic redistributions of radiatively and chemically active tracers (e.g. ozone) will not produce first-order effects on the monthly statistics of the temperature and winds in the stratosphere. A

consequence of such decoupling is that such 2-D photochemical models cannot then take into account feedback effects of the calculated ozone redistributions on the original statistics of the background temperature and wind fields. Obviously, the validity of the decoupling of the chemistry from the temperature and wind fields would become open to question as the magnitude of the calculated changes in ozone by all anthropogenic effects become increasingly large.

The interactions of the photochemistry and chemical kinetics with the temperature and wind fields are given by a set of continuity equations for the chemical species in an oxygen-hydrogen-nitrogen-chlorine atmosphere, i.e., by

$$\frac{dR_{i}}{dt} = P_{i} - L_{i} \tag{1}$$

where $R_{\bf i}$ is the mixing ratio for any ith of N given chemical species, t the time and $P_{\bf i}$ as well as $L_{\bf i}$ the corresponding production (including anthropogenic sources) and loss (or sink) chemical mechanisms.* The left side of Eq. (1) contains the influence of motions as identifiable by expanding the total derivative $dR_{\bf i}/dt$.

The 2-D continuity equations for the conservation of chemical species are obtained by (1) taking the zonal-monthly statistical average of Eq. (1) for an ensemble of many years and (2) splitting the transports of mixing ratio into those by the mean winds and those by wave or eddy motions. For the case of chemically inert tracers, as in the Reed and German formulation, $P_1 = L_1 = 0$, $R_1 = R$ and Eq. (1) simplifies to dR/dt = 0. In spherical

The terms P_1 and L_1 in Eq. (1) have absorbed the air number density n as obtained from use of the continuity equation for both the ith chemical species (n_1) and air (n), together with $R_1 = n_1/n$.

coordinates, the zonal-monthly statistical average of $d\bar{R}/dt$ becomes as in the Reed and German Eq. (2), i.e.,

$$\frac{\partial \bar{R}}{\partial t} = -\bar{V} \cdot \nabla \bar{R} - \frac{1}{\rho} \frac{\partial}{\partial z} \rho \ \overline{W^*R^*} - \frac{1}{\rho a \cos \theta} \frac{\partial}{\partial \theta} \rho \cos \theta \ \overline{V^*R^*} \ , \quad (2)$$

where \overline{V} is the 2-D wind vector, ∇ the corresponding gradient vector for the mixing ratio, ρ the air density, w and v the upward and poleward winds, a is the mean radius of the earth, z the altitude, and θ the latitude. The Reed and German notation ($\overline{}$) denotes the estimators for the zonal-monthly ensemble average of (), whereas ()* is the deviation of () from such average; i.e. ()* \equiv () - ($\overline{}$). The right-hand side of Eq. (2) exhibits the roles of the transports of mixing ratio by (1) the meridional circulation ($\overline{V} \cdot \nabla \overline{R}$) or average vertical and meridional winds, (2) the vertical eddy motions (2nd term) and (3) the meridional eddy motions (remaining term).

B. ADAPTATION OF MIXING LENGTH HYPOTHESIS TO THE STRATOSPHERE

The numerical solution of the continuity equation (2) for a chemically inert tracer requires elimination of the eddy transport terms through their correlations with the vertical and meridional components of the gradient vector ∇R . For this purpose, the 2-D Reed and German representation of eddy transports adapts the Prandtl mixing-length hypothesis for turbulent transports of momentum in microscale flow to the macroscale transport by wave motions of chemically inert tracers in the stratosphere. As a consequence of this assumption, the Reed and German formulation carries over to the stratosphere the implicit assumptions that (a) the eddy tracer transports in Eq. (2) are independent of both the zonal and meridional circulations, when in fact they are intimately related (e.g. Hunt and Manabe, 1968; Holton, 1975); and (b) the eddy transports can then be correlated with gradients of mixing ratio, as in the Prandtl

mixing length hypothesis. Thus, if χ denotes a dependent variable such as potential temperature or ozone, a direct application of the Prandtl mixing length hypothesis would give $v^*\chi^*$ = - $K_y \partial \bar{\chi}/\partial y$; where y = a0 is taken as positive ($\Delta y > 0$) in the poleward direction. However, a basic difficulty then was that for a poleward eddy flux (i.e. $\overline{v^*\chi^*} > 0$), with $K_v > 0$, then $\partial \bar{\chi}/\partial y$ < 0; i.e., the poleward eddy flux had to take place always in a downgradient direction from high to low values of $\bar{\chi}$ in opposition to observed countergradient eddy fluxes of, for example, ozone $(v^*0_3^*)$ or heat (v^*T^*) . Hence, in order to adapt the Prandtl mixing length hypothesis to countergradient eddy fluxes from low to high values of $\bar{\chi}$, it was postulated that the slope (α) of mixing length paths or surfaces would have to be larger than the slope (β) of the tracer isopleths $\bar{\chi}$ or isentropes when $\bar{\chi}$ represents the potential temperature. This concept is illustrated in Fig. 1, as given by Reed and German. results of this 2-D formulation of the eddy transports are then as follows:

$$\chi^* = -\vec{\ell} \cdot \nabla \chi = -\left(\ell_y \frac{\partial \overline{\chi}}{\partial y} + \ell_z \frac{\partial \overline{\chi}}{\partial z}\right) \tag{3}$$

where $\vec{\ell}$ is the mixing length vector (ℓ ~ 100 km) with horizontal and vertical components ℓ_y and ℓ_z . When χ represents mixing ratio in Eq. (3), the desired correlations of the horizontal and vertical eddy fluxes in Eq. (2) with the components of $\nabla \bar{R}$ are given by

$$\overline{\mathbf{v}^*\overline{\mathbf{R}^*}} = -\left(\mathbf{K}_{\mathbf{y}\mathbf{y}} \frac{\partial \overline{\mathbf{R}}}{\partial \mathbf{y}} + \mathbf{K}_{\mathbf{y}\mathbf{z}} \frac{\partial \overline{\mathbf{R}}}{\partial \mathbf{z}}\right) , \qquad (4)$$

$$\overline{w^*R^*} = - \left(K_{zy} \frac{\partial \overline{R}}{\partial y} + K_{zz} \frac{\partial \overline{R}}{\partial z} \right) , \qquad (5)$$

where $K_{yy} \equiv \overline{v^* \ell_y}$, $K_{yz} \equiv \overline{v^* \ell_z}$; $K_{zy} \equiv \overline{w^* \ell_y}$ and $K_{zz} \equiv \overline{w^* \ell_z}$. Using the fact that $\overline{\alpha} \approx 10^{-4}$ and that the wind \overline{V} is along the mixing length direction:

FIGURE 1. Schematic representation of the slope (α) of the mixing length path necessary for countergradient eddy fluxes in the Prandtl mixing length hypothesis, as given by Reed and German (1965). The eddy flux is countergradient here because both $\partial \chi/\partial y$ and $v^*\chi^*$ are positive. The former condition takes place because $\Delta\chi>0$ when $\Delta y>0$, and the latter because the eddy flux is poleward; a condition that can be visualized by letting χ represent the potential temperature. The dashed arrows then indicate the mixing at the origin of northward moving air parcels that are warmer than ambient with southward moving air parcels that are colder than ambient. Note that the countergradient eddy flux of heat $\overline{v^*T^*}$ is poleward whenever $\alpha>\beta$. Similar arguments apply when χ represents ozone to yield a countergradient flux characterized by $\partial \overline{0}_3/\partial y>0$ and $\overline{v^*0}_3^*>0$.

$$v^* = V \cos \alpha \approx V$$

$$w^* = V \sin \alpha \approx V\alpha$$

$$\ell_y = \ell \cos \alpha \approx \ell$$

$$\ell_z = \ell \sin \alpha \approx \ell\alpha$$
(6)

With Eqs. (6), the eddy coefficients K_{yy} , K_{yz} , K_{zy} , and K_{zz} can be expressed as follows:

$$K_{VV} = \overline{V^* \ell_{V}} = \overline{V \ell \cos^2 \alpha} \simeq \overline{V \ell} \simeq K$$
 (7)

$$K_{VZ} = \overline{v^* \ell_Z} = \overline{V \ell \text{ sinacosa}} \simeq \overline{V \ell \alpha} \simeq \overline{\alpha} K$$
 (8)

$$K_{zy} = \overline{w^* \ell_y} = \overline{V\ell \ \text{sinacosa}} \simeq \overline{V\ell\alpha} \simeq K_{yz}$$
 (9)

$$K_{ZZ} = \overline{w^* \ell_Z} = \overline{V \ell \sin^2 \alpha} \simeq \overline{V \ell \alpha^2} \simeq (\overline{\alpha}^2 + \overline{\alpha}^{*2}) K$$
 (10)

where it is assumed that a and a* are independent of V and ℓ , i.e., that they do not depend on the wind speed or the length of the mixing path. Substitution of Eqs. (7) through (10) into (4) and (5), using $\bar{\beta} \simeq \tan \bar{\beta} = - (\partial \bar{R}/\partial y)/(\partial \bar{R}/\partial z)$, alternative expressions for the eddy fluxes are given by

$$\overline{\mathbf{v}^* \mathbf{R}^*} = - \mathbf{K}_{\mathbf{y}\mathbf{y}} \left(1 - \frac{\overline{\mathbf{a}}}{\overline{\mathbf{g}}}\right) \frac{\partial \overline{\mathbf{R}}}{\partial \mathbf{y}} , \qquad (11)$$

$$\overline{W^*R^*} = -K_{ZZ} \left(1 - \frac{\overline{\alpha} \overline{\beta}}{\overline{\alpha}^2 + \overline{\alpha}^{*2}}\right) \frac{\partial \overline{R}}{\partial z}$$
 (12)

Equation (11) indicates that (a) when $\bar{\alpha}/\bar{\beta}=0$, the horizontal eddy flux becomes downgradient as in the Prandtl formulation for the microscale eddy transport of momentum; (b) when $\bar{\alpha}/\bar{\beta}=1$, the horizontal eddy flux vanishes; and (c) when $\bar{\alpha}/\bar{\beta}>1$, the horizontal flux becomes countergradient. Similar consideration can be made to the vertical eddy flux as given by Eq. (12).

III. PARAMETERIZATION OF EDDY TRANSPORTS FOR 2-D PHOTOCHEMICAL MODELS

The continuity equations in representative 2-D photochemical models are as Eq. (2), except that R must be replaced by R_4 and the right-hand side must incorporate the $\overline{P}_{\mathbf{i}}$ and $\overline{L}_{\mathbf{i}}$ terms. The use of Eqs. (4) and (5) for each ith chemical tracer allows elimination of the eddy terms in these equations, which become differential equations for the mixing ratio of each tracer with specified average meridional winds and eddy transport coefficients. A fundamental approach in 2-D photochemical models then consists in (1) assuming that the eddy transport coefficients are independent of the chemical tracer, i.e., that they depend only on altitude, latitude, and month for a specified meridional circulation and (2) establishing the magnitude of the eddy transport coefficients from observations of distributions of natural (i.e. ozone, water vapor) and/or anthropogenic (i.e. radioactive debris from past nuclear explosions) tracers in the lower stratosphere. The parameterizations of eddy transports have then been reduced to the use of two eddy tracer flux equations (4, 5) for three unknown eddy transport coefficients $(K_{yy}, K_{yz}, K_{zz}, i.e. with K_{zy} = K_{yz})$ at given stratospheric meridional locations and month (season). This procedure has therefore required the use of additional constraints so as to resolve the undetermined foregoing system.

Three representative 2-D parameterizations of eddy transports utilizing nearly the same meridional circulation (i.e. Louis, 1974) are: (1) that in the Crutzen photochemical model (Hidalgo and Crutzen, 1977), (2) that in the Widhopf, Glatt, and Kramer (1977) model and (3) that given by Danielsen and

Louis (1975). The Crutzen parameterization of eddy transports utilized Eqs. (7) through (10), together with continuity equations for ozone and water in the presssure instead of the altitude coordinate as it is done in the other two parameterizations. The Widhopf et al. parameterization utilized Eqs. (4), (5), and (9), together with the continuity Eq. (2) for chemically inert tracers and (a) extrapolations to the stratosphere (by Luther, 1973) of the Oört and Rasmusson (1971) data for eddy transports of heat in the upper troposphere at latitudes θ < 50° N and (b) use of rather crude observations of the meridional distributions of mixing ratio for anthropogenic chemically inert radioactive tracers. The Danielsen and Louis parameterizations utilized Eqs. (4), (5), and (9), together with Eq. (2) for ozone in the lower stratosphere on the assumption that ozone could be considered there to be a chemically inert tracer; however, instead of using the continuity equation for water vapor in the stratosphere, as in the Crutzen parameterization, the Danielsen and Louis approach had to use constraints that would insure tropospheric ozone fluxes that were compatible with the ozone destruction at the ground.

Tables 1 through 3 (Hidalgo, 1978) illustrate the magnitude of the eddy transport coefficients K_{vv} , $\bar{\alpha}$ (or K_{vz}/K_{vv}), and K_{zz} from the foregoing parameterizations at critical altitudes for the exchange of anthropogenic tracers between the lower stratosphere and upper troposphere. Because of the significant differences in the magnitudes of these eddy coefficients, it is of interest to (1) contrast the direct use of Eq. (10) with $\bar{\alpha}^{*2} = 0$ in the Crutzen parameterization (Crutzen, 1980) as it is not done in the other two, and (2) emphasize the general dependence of eddy tracer transports on both the space and time (years) distributions of anthropogenic (i.e. radioactive) tracers in the stratosphere (Mahlman and Moxim, 1978; Hidalgo, 1978), i.e., the use of the eddy flux equations (4) and (5) with Eq. (9) tends to make the magnitude of the eddy coefficients dependent on the space and time (age) distributions of particular tracers in the lower stratosphere (Danielsen and Louis, 1975).

SAMPLE EDDY PARAMETERS FOR CRUTZEN MODEL DURING SUMMER AND WINTER IN NORTHERN HEMISPHERE* (Source: Hidalgo and Crutzen, 1977) TABLE 1.

		:	Eddy	Transport C	Eddy Transport Coefficient $\kappa_{yy},(10^{10}$		cm ² /sec)				4
Altitude		Summe	Summer, Latitude (deg.)	e (deg.)			¥	Winter, Latitude (deg.)	(deg.)		
(km)	80°N	N ₀ 09	400N	20 ⁰ N	% N:	80°N	600 x	40°L	300	ō	
19.8	7:	1.12	0.80	0.43	0.30	4.40	4 40	2 00 %	2 2	¥ 0	-
16.0	1.44 1.44	1.12	0 8 8	0.47	0.36	4.40	4.40	3.80	1.16	0.31	
14.5	1.44	1.12	8.6	9.24	0.45	4.40	4.40	3.80	1.29	0.45	
12.7	1.4	1.28	1.13	0.59	O. 6	4.40	4.43	4.52	1.46	0.48	
10.8	1.66	1.61	1.28	0.68	0.48	5.46	5.87 6.82	5.65 6.08	1.72 1.88	0.48 8.48	
			•,,	Slope of Mea	Slope of Mean Diffusion Axis,	10	(10-4)				
19.8 5.6	-7.42	-12.14	-13.96	-5.00	-0.30		. 9 24	-12 15	•	į	
18.0	 8.7-	-12.74	-14.71	-1.28	-0.25	-5.85	-10.24	-12 96	67.4	-0.2/	
10.5 14.5	5 5 5 7	-13.22	-12.40	-0.40	-0.19	-6.66	-11.14	- 9.74	0.43	-0.24	
12.7		-10./5	4.52	-0.18	-0.17	-7.24	-11.21	- 0.21	-0.67	0.00	
10.8	-1.84	1.17	1.09	-0.82	-0.15	-6.85 5.85	- 8.29	2.57	0.04	-0.04	
					20.0	7.50	62.0	7.51	-0.67	-0.04	
			Eddy Tr	ansport Coe	Eddy Transport Coefficient, K,(104 cm ² /sec	,(10 ⁴ cm ²	/sec)				
19.8	1.71	2.16	1.77	0.36	0.12	2.30	4.34	4.79	92	•	
16.3	1.57	2.50	1.85	0.29	0.12	2.56	4.97	5.17	0.39	0.12	
14.5	1.44	1.38	 	4.23 5.26	15.70	2.90	5.61	1.57	4.31	16.13	
12.7	0.93	0.83	0.61	6.41	12.52	3.11	5.08	1.62	5.37	14.44	
10.8	0.45	1.45	1.98	8.88	22.00	1.26	2.92	3.80	6.49	12.73	
										00.22	

Eddy parameters are given as a function of season (instead of month) in the Crutzen model. This parameter-ization is based on use of $lpha^$ = 0 (Crutzen, 1980).

TABLE 2. SAMPLE EDDY PARAMETERS FOR WIDHOPF MODELS DURING SUMMER (AUGUST) IN NORTHERN HEMISPHERE* (Source: Widhopf, 1978)

			Eddy	Transport C	Eddy Transport Coefficient K $_{ m yy}$ (10 10	yy (10 ¹⁰ c	cm ² /sec)	!		
\$. * . * C &	Summe	r (August),	Summer (August), Latitude (deg.	deg.)		Win	iter (Febi	Winter (February), Latitude (deg.	atitude (deg.)
(km)	80°N	N ₀ 09	40 ₀ N	200N	0	80 ₀ N	N _Q 09	400N	20°N	
20	0.29	0.28	0.19	0.12	0.17	3.76	2.97	0.83	0.27	0.17
2 <u>4</u>	O. 3	0.0 2.38	0.39	0.21	0.21	3.37 2.99	2.87	1.1/	1.18	0.21
. Z	0.63	1.03	1.27	0.42	0.34	2.77	3.22	2.91	2.13	0.34
15	0.85	1.54	1.90	0.55	0.43	2.54	3.57	5.62	3.09	0.43
				Slope of	Slope of Mixing Axis,	ā (10 ⁻⁴)				
70	-4.66	-14.57	- 9.63	-2.86	- 2.53	1.62	6.23	14.70	0.73	- 2.53
81	-5.97	-16.18	-15.95	-4.90	- 4.33	1.81	6.38	12.39	4.37	- 4.33
9:	-6.60	-16.17	-15.87	-5.70	. 0 . 0 . 0	2.04		10.31	4.40	. 6.08
4:	-6.92	-12.82	- 6.94	-5.36	50.5	69.7	7.52	5.53	3.10	3,00
17 10	-7.14 0.62	-11.95 0.16	- 3.99 0.58	-5.0/ 2.50	-11./4 - 1.89	-0.33	8.40 0.16	3.88 -0.18	-0.37	- 1.89
			Eddy T	ransport Co	Eddy Transport Coefficient K ₂₂	(10 ⁴ cm ² /sec	/sec)			
20	0.42	0.45	0.22	90.0	0.07	1.01	1.01	1.59	0.07	0.07
18	0.43	0.43	0.84	0.14	0.15	0.80	0.80	1.69	0.26	0.15
91 :	0.45	0.45	1.45	0.22	0.24	0.66	0.66	1.76	0.45 5.7	0.24
14	9.82	0.82 0.83	1.33	 	0.69	1.05	.05	3.50	0.55 ct.0	2.00
22	0.00	25.	7.70	0.51	1.19	0.40		2.5	1.78	1.14
21	00.00	1.01	1.00	0.03	6/-1	66.0	7.00	3.06	4.67	7.4

*The actual notation for the eddy coefficients in the Widhopf model is K $_{\phi\phi}$, K $_{z\phi}$ and K $_{zz}$ (Widhopf, Glatt and Kramer, 1977). The angle $\bar{\alpha}$ is given here by the ratio $K_{Z\varphi}/K_{\varphi\varphi}$. The eddy coefficients in this model are given as a function of month for both northern and southern latitudes. Above data is applicable for the month of August; i.e., summer in the Northern Hemisphere and winter in the Southern Hemisphere. See text for the shift from southern (August) to northern (February) latitudes for winter.

SAMPLE EDDY PARAMETERS DERIVED FROM POLEWARD TRANSPORT OF OZONE* (Source: Danielsen and Louis, 1977) TABLE 3.

Eddy Transport Coefficient $_{\rm yy}$, ($10^{10}~{\rm cm}^2/{ m sec}$)	Summer/Latitude (deg.)	1 60°N 40°N 20°N 0° 80°N 60°N 40°N 20°N 0°	0.17 0.10 0.12 0.15 0.40 0.44 0.20 0.15 0.43 0.11 0.17 0.25 0.33 0.54 0.24 0.15 0.25 0.11 0.28 0.61 0.24 0.40 0.33 0.21 0.21 0.13 0.38 1.04 0.32 0.49 0.34 0.23	Slope of Mean Diffusion Axis, $\vec{\alpha}$ (10 ⁻⁴)	6.29 2.84 -2.08 0.33 0.65 - 2.45 - 1.45 1.47 0.33 7.14 -12.18 -1.18 0.48 -3.00 -10.33 -20.92 -0.60 0.48 9.60 11.73 -2.43 0.16 -7.96 -18.55 -29.61 -1.24 0.16 2.48 1.08 -4.00 -0.16 0.44 - 4.55 - 6.21 4.22 -0.16	Eddy Transport Coefficient, K_{zz} , (10 4 cm 2 /sec)	0.21 0.09 0.12 0.26 0.22 0.20 0.10 0.11 0.26 0.42 0.23 0.13 0.46 0.39 0.84 1.15 0.10 0.46 0.48 0.19 0.15 0.66 0.63 1.27 3.01 0.11 0.66 0.35 0.19 0.55 2.69 0.87 1.14 0.39 0.35 2.69
	Summer/L	N ₀ 09	0.17 0.43 0.25 0.21				0.21 0.42 0.48 0.35
		80 ₀ N	0.13 0.19 0.20		5.15 5.26 -0.38 -1.25		0.13 0.14 0.09 0.23
	Altitude	(km)	25 20 15 10		25 20 15 10		25 20 15 10

* Data is applicable to December-February; i.e., for summer in the Southern Hemisphere and winter in the Northern Hemisphere. See text for the switch in summer latitudes from south (December-February) to north (June-August).

It should be noted that the foregoing use of the time dependent continuity equation(s) for either chemical or inert tracers does not provide an independent additional constraint so as to fix a solution for the three unknown eddy coefficients from the two eddy tracer flux equations (4 and 5). As indicated by Eqs. (11) and (12), fundamental parameters in the Reed and German formulation are the statistics for the slope of mixing length paths or surfaces $(\bar{\alpha})$ and its eddy component or deviation from this average $(\bar{\alpha}^{*2})$. Therefore, the determination of the three eddy coefficients at given stratospheric meridional locations and month requires an additional constraint on these basic statistics by each parameterization. These constraints can be brought out by dividing Eq. (10) by the square of Eq. (8); after use of Eq. (7), the following result is obtained:

$$\frac{\bar{\alpha}^{*2}}{\bar{\alpha}^2} = \frac{K_{yy}}{K_{yz}^2} \frac{K_{zz}}{z} - 1 \tag{13}$$

Equation (13) provides a common basis to compare the implied assumptions for the fundamental $\bar{\alpha}^{*2}$ statistics in the foregoing 2-D parameterizations of eddy transports. It is important to note that $\bar{\alpha}^{*2}/\bar{\alpha}^2$ is controlled only by the variability of the stratospheric winds (Eqs. 6), and that its magnitude must be always positive because it involves the ratio of two quadratic terms. Table 4 shows $\bar{\alpha}^{*2}/\bar{\alpha}^2$ values corresponding to the three parameterizations in Tables 1 to 3. The results in Table 4 indicate that these representative 2-D parameterizations fail to provide (a) positive values of $\bar{\alpha}^{*\,2}/\bar{\alpha}^{\,2}$ at every latitude and altitude and (b) nearly identical values for this ratio at a given location and season, as it should due to the dependence of $\bar{\alpha}^{*2}/\bar{\alpha}^2$ on the wind variability of the same stratosphere. Hence, these results indicate that the foregoing representative 2-D parameterizations of eddy transports are inconsistent both with the parent Reed and German formulation and among themselves.

VALUES OF \$\alpha*2/\alpha^2 FOR THREE 2-D PARAMETERIZATIONS OF EDDY TRANSPORTS. TABLE 4.

					CRUIZEN (lable	able 1)				
ALTITUDE	Ē		SUMMER,	LATITUDE	(deg)			WINTER,	 LATITUDE (deg) 	eg)
(km)	NOO8	N°09	40°N	20° N	ಹಿ	80° N	N -09	40° N	20° N	00
19.8	1.2	0.3	0.1	2.4	443.4	0.1	0.2	-0.1		530.0
18.0	0.8	0.5	0.1		532.3		•	-0.2		
16.3	9.0	0.1	0.3	┵.		٠	0	9.0-	1986.6	110630.0
14.5	0.4	0.1	3.4					811.7		
12.7	0.4	2.6	58.8	1488.5	115924.9	0.3		1.1	827.	1657551.1
10.8	7:0	64.8	<u>.</u>	_:		٠.	302.4	7.1	1065.4	2864582.3
				į	WIDHOPF (T	Table 2)				
ALTITUDE	ı,		SUMMER, LA	SUMMER, LATITUDE (deg)				WINTER, LF	WINTER, LATITUDE (deg)	
(K	80°N	No09	40°N	20°N	00	N°08	N-09	40°N	20°N	00
20	5.7	-0.3	0.3	5.1	1 .	! .	-0.1	-0.1	47.7	5.4
18	5.6	9.0-	-0.1	•	2.8		-0.3	-0.1	0	2.8
16	1.5	-0.7	•	•	•	4.3	-0.4	0	1.0	1.6
14	٠	-0.5		•	1.2		-0.4	0.7	1.7	1.2
12	•	-0.3	3.0	5.6	0.9	0	-0.4			6.0
2	138.0	2680.1		34.6	• 1	190.3	789.7	1657.5	346.4	152.1
				DAN	DANIELSEN/LOUIS	S (Table	3)			
ALTITUDE	<u> </u>		SUMMER, L	SUMMER, LATITUDE (deg)				WINTER, L	WINTER, LATITUDE (deg)	
	80°N	N°09	40°N	20°N	00	N°08	N°09	40°N	20°N	0,
25	2.8	2.1	10.2	22.1	1590.7	129.2	9.9	22.8	32.9	1590.7
15	388.5	1.1	0	8.1	4225.4	3.1	-0:1	• • •		4225.4
10	72.6	26.1	124.3	8.1	10102.7	1403.3	10.2	2.0	7.6	10102.7

Since the Crutzen model used $\tilde{\alpha}^{*2}=0$ (Crutzen, 1980), then Eq. (13) yields $K_{yy}K_{ZZ}/K_{yZ}^{*2}=1$. The data in Table 1 shows that neither of these two conditions holds at low latitudes (Hidalgo, 1978). The above differences between the Crutzen and Widhopf values at low latitudes may help explain the difference in interhemispheric aircraft effects on ozone from these models.

A consequence of the former result is that such parameterizations may not then use the Reed and German (1965) formulation to imply physical justification of their prognostic utility for viable forecasting of anthropogenic ozone effects.

IV. APPARENT UNDETERMINABILITY OF BASIC $\bar{\alpha}^{\star\,2}$ STATISTICS

The foregoing 2-D parameterizations of eddy transports had to contend with the solution of an undetermined system of two equations (4 and 5) and three unknowns (K_{yy} , K_{yz} , K_{zz}). The solution of such a system required then additional constraints involving implied assumptions for $\bar{\alpha}^{*2}/\bar{\alpha}^2$ as given by Eq. (13). However, a straightforward alternative procedure would consist in a direct determination of the $\bar{\alpha}$ and $\bar{\alpha}^{*2}$ statistics, which would be derivable from the Reed and German Eqs. (6), i.e.

$$\tan \alpha = \frac{w^*}{v^*} = \frac{w - \overline{w}}{v - \overline{v}} , \qquad (14)$$

where α (θ , λ , z, t) is the slope of mixing length paths or surfaces as a function of latitude (θ), longitude (λ), altitude (z), and time (t, in hours). Equation (14) indicates the following: (1) α is a function of the variability of the vertical and meridional winds in the stratosphere, (2) α would be determined from corresponding wind data (w, v) in the stratosphere, and (3) α^* would be derivable from α in the same manner as the eddy winds. Because of the unmeasurability of the very small vertical winds, they must always be calculated, taking into account radiation effects in the stratosphere. It must thus be emphasized that any indirect method to determine the vertical transports from observations of the horizontal winds and temperature fields would require the use of assumptions, including those for radiation effects in the stratosphere. Since 3-D GCM wind data already include diabatic effects in the solution of the primitive equations, it would be possible to use such wind data together with Eq. (14) so as to derive estimators

of the $\bar{\alpha}$ and $\bar{\alpha}^{*2}$ statistics as a function of latitude, altitude, and month. Wind data from the Geophysical Fluid Dynamics Laboratory (GFDL)/GCM at six-hour intervals for each month was available for this purpose. The basic characteristics of this GCM have been described by Holloway and Manabe (1971), Manabe and Holloway (1975), and Manabe and Mahlman (1976). This GCM is characterized by (a) consideration of seasonal effects; (b) a high horizontal resolution of about 265 km, which is important for tracer transports by wave numbers $\eta > 10$ (Mahlman, 1975); and (c) a vertical resolution of about 3 km from the lower stratosphere to the middle troposphere.

However, basic difficulties in the application of Eq. (14) were found to be: (1) the fact that whenever v* decreases faster than w^* , the absolute magnitude $|\alpha|$ of the angle of the mixing length path becomes relatively large and (2) the statistics of $\bar{\alpha}$ and $\bar{\alpha}^{*2}$ would become then dominated by few large values of $|\alpha|$. These results are illustrated in Tables 5 through 7 for low (24° N), middle (48° N), and high (72° N) latitudes, respectively. The data in each of these tables are based on sample GFDL/GCM wind data for a 6-hour period (See Appendix). These tables show the dominance of a few large angles on the zonal averages of $[\alpha]$ and $[\alpha^{*2}]$ as a function of pressure level in the critical region for the exchange of tracers between the lower stratosphere and upper troposphere. Each table shows (1) the largest absolute magnitude of α (or $|\alpha_{\mbox{\scriptsize max}}|)$ that takes place along discrete longitudinal points for a given latitude and pressure level; (2) the number of longitudinal points at each latitude and pressure level, depending on the magnitude of $|\alpha|$, i.e., (a) for all magnitudes including those for $|\alpha_{\text{max}}|,$ and (b) excluding angles that are larger than either, say, 5 or 1 deg; and (3) the corresponding $[\alpha]$ and $[\alpha^{*2}]/[\alpha]^2$ values when including $|\alpha_{max}|$ or excluding ($|\alpha| \le 5$, 1 deg) large magnitudes of $|\alpha|$. Thus, Table 5 shows that at 24° N latitude in the tropopause

TABLE 5. SAMPLE [α], [$\alpha*^2$] AT 24°N LATITUDE

 $|\alpha_{max}|$ AND NUMBER OF LONGITUDINAL POINTS AS FUNCTION OF $|\alpha|$

		PRESSU	RE LEVEL, mba	ar(km)
	38(22.4)	65(19)	110(15.6)	190(12.1)
∝max , deg	3.1	14.9	71.4	10.3
$\alpha \leq \alpha_{max} $, pts	138	138	138	138
$\alpha \mid \leq 5 \text{ deg, pts}$	138	133	135	137
$ \alpha \le 1$ deg, pts	131	126	131	123
$\alpha \mid \leq \mid \alpha_{max} \mid$		VERAGE [a	99.8	1.2
α ≤ 5 deg	-3.7		7.2	-11.9
α ≤ 1 deg	3.0	-0.5	7.9	-9.2
		[a*²]/[a]	2	
$ \alpha \leq \alpha_{\max} $	544.4	5254.0	149.7	26861.1
α ≤ 5 deg	544.4	282.5	148.5	126.5
α ≤ 1 deg	250.4	11642.5	35.5	31.4

TABLE 6. SAMPLE $[\alpha]$, $[\alpha*^2]$ AT 48°N LATITUDE

$|\alpha_{ extsf{max}}|$ AND NUMBER OF LONGITUDINAL POINTS AS FUNCTION OF $|\alpha|$

		PRESS	URE LEVEL, m	bar(km)
	38(22.4)	65(19)	110(15.6)	190(12.1)
α _{max} , deg	6.9	14.9	6.2	4.8
$\alpha \leq \alpha_{\text{max}} $, pts	99	99	99	99
$ \alpha \leq 5 \text{ deg, pts}$	98	96	98	99
$ \alpha \leq 1$ deg, pts	89	94	96	93

ZONAL AVERAGE $[\alpha](10^{-4})$

$ \alpha \leq \alpha_{\max} $	-31.1	55.7	-7.8	-2.7	
α ≤ 5 deg	-19.2	-7.7	2.8	-2.7	
$ \alpha \leq 1 \text{ deg}$	-0.7	-8.8	2.9	-4.7	
					_

$[\alpha^{*2}]/[\alpha]^2$

					
$ \alpha \leq \alpha_{\max} $	26.2	46.6	232.8	1687.8	
a ≤ 5 deg	31.4	63.0	314.7	1687.8	
$ \alpha \le 1 \text{ deg}$	2477.3	26.6	185.4	34.8	

TABLE 7. SAMPLE $[\alpha]$, $[\alpha^{*2}]$ AT 72°N LATITUDE

amax	AND	NUMBER	0F	LONGITUDINAL	POINTS	AS	FUNCTION	0F	$ \alpha $	
------	-----	--------	----	--------------	--------	----	----------	----	------------	--

	PRESSURE LEVEL, mbar(km)					
	38(22.4)	65(19)	110(15.6)	190(12.1)		
$ \alpha_{max} $, deg	1.2	18.1	0.7	1.4		
$ \alpha \leq \alpha_{max} $, pts	45	45	45	45		
$ \alpha \le 5 \text{ deg, pts}$	45	44	45	45		
$ \alpha \le 1$ deg, pts	43	43	45	44		

ZONAL AVERAGE $[\alpha](10^{-4})$

$ \alpha \leq \alpha_{max} $	-13.0	-75.8	-3.4	2.2
$ \alpha \leq 5 \deg$	-13.0	-7.8	-3.4	2.2
$ \alpha \le 1 \text{ deg}$	-13.9	-12.6	-3.4	-3.4

$[\alpha *^2]/[\alpha]^2$

$ \alpha \leq \alpha_{max} $	19.0	37.9	52.4	360.1
$ \alpha \leq 5 \deg$	19.0	23.7	52.4	360.1
$ \alpha \leq 1 \text{ deg}$	8.0	2.7	52.4	32.8

region (110 mbar or 15.6 km), the largest absolute magnitude of α is as high as 71.4 deg for 138 discrete longitudinal points at this latitude; however, the bulk of the data (135 points or 98 percent) had α values smaller than 5 deg. The corresponding results for $[\alpha]$ show that its magnitude drops from 99.8 x 10^{-4} to 7.2 x 10^{-4} when excluding only 2 percent of the data with angles $|\alpha|$ larger than 5 deg.* Similar results are obtained above or below the tropopause. At 65 mbar (19 km), the $[\alpha^{*2}]/[\alpha]^2$ values drop from 5254.0 to 282.5 when excluding 4 percent of the data with $|\alpha| > 5$ deg; whereas at 190 mbar (12.1 km), $[\alpha^{*2}]/[\alpha]^2$ drops from 26861.1 to 126.5 when excluding only 1 percent of the data with $|\alpha| > 5$ deg.

The data in Tables 6 and 7 show that the number of discrete longitudinal points in the numerical grid of the GCM for a given latitude decreases as the latitude increases. Table 6 indicates that (1) $|\alpha_{\rm max}|$ at 48° N and 65 mbar (19 km) is 14.9 deg and (2) the magnitude of $[\alpha]$ drops from 55.7 x 10^{-4} to -7.7 x 10^{-4} when excluding only 3 percent of the data with $\alpha \geq 5$ deg. Table 7 shows similar corresponding results at 72° N and the same pressure level of 65 mbar (19 km). Thus, the results in Tables 5 through 7 indicate that the estimators for the $\bar{\alpha}$ and $\bar{\alpha}^{*2}$ statistics would be dominated by a small percent of data characterized by large absolute magnitudes of α . Hence, the use of the full ensemble of 120 sets of 6-hr-period GCM wind data for each stratospheric meridional location and month could not be justified.

The foregoing results in Tables 5 through 7 are obtained from a *strict* use of the Reed and German Eqs. (6) for the α statistics and use of sample GCM wind data for a 6-hour period, which might be somewhat noisy due to the rather low vertical resolution.

Note, from Eq. (14), that $|\alpha|$ depends on \overline{w} and \overline{v} ; which in turn depends on the number of discrete points dropped from the data. A computer code to process the data is also given in the Appendix.

of the GCM model. Therefore, a determination of the three fundamental parameters (K_{yy} , $\bar{\alpha}$, $\bar{\alpha}^{*2}$) in the basic Reed and German formulation (Eqs. 7 through 10) would require both reinterpretation of basic relevant concepts for the calculation of such statistics and reformulation of the current methodology that uses the flux equations (Eqs. 4 and 5) for determining the magnitude of the eddy transports coefficients illustrated in Tables 1 to 3.

PRECEDING PAGE BLANK-NOT FILMED

V. REED AND GERMAN CONSTRAINTS CARRIED OVER TO TWO-DIMENSIONAL PHOTOCHEMICAL MODELS

A need for reformulation of the current methodology for establishing both the magnitude and even nature of 2-D eddy transport coefficients is emphasized by the following:

- (1) Even if the $\bar{\alpha}$ and $\bar{\alpha}^{*2}$ statistics were determinable from wind data through Eq. (6), the system of Eqs. (7) through (10) would then specify K_{yz} and K_{zz} in terms of K_{yy} ; which could be determined from Eq. (4). The result would be an overspecified system of two equations (4 and 5) for one unknown (K_{yy}) instead of the undetermined system of two equations (4 and 5) and three unknowns (K_{yy}, K_{yz}, K_{zz}) , as dealt with in the current methodology for the 2-D parameterizations of tracer transports in Tables 1 through 3.
- (2) As shown by Andrews and McIntyre (1976), Eq. (3) is valid for waves with small amplitudes. However, as pointed out by Holton (1980), ℓ_y and ℓ_z are to be interpreted as fluid particle displacements caused by the waves. Hence, if v* and w* denote the wave velocity components

$$v^* = \frac{d\ell_y}{dt}$$
, $w^* = \frac{d\ell_z}{dt}$. (15)

Then, in place of Eqs. (7) through (10) the following result is obtained

$$K_{yy} = \overline{v^* \ell_y} = \overline{\ell_y} \frac{d\ell_y}{dt} = \frac{1}{2} \frac{d\ell_y^2}{dt}$$
 (16)

$$K_{yz} = \overline{v^* \ell_z} = \ell_z \frac{d\ell_y}{dt}$$
 (17)

$$K_{zy} = \overline{w^* \ell_y} = \overline{\ell_y} \frac{d\ell_z}{dt} = \frac{d}{dt} (\overline{\ell_y \ell_z}) - K_{yz}$$
 (18)

$$K_{zz} = \overline{w^* \ell_z} = \ell_z \frac{d\ell_z}{dt} = \frac{1}{2} \frac{\overline{d\ell_z^2}}{dt}$$
(19)

Equation (18) shows that, in general, $K_{zy} \neq K_{yz}$; a result that is different from the Reed and German Eq. (9), which is derived from the critical assumption that α^* is independent of v and ℓ .

The foregoing results indicate that the reformulation of the methodology to derive 2-D eddy coefficients may further involve the determination of the four parameters given by Eqs. (16) through (19), instead of the three in the Reed and German Eqs. (7) through (10). These results indicate again that the current 2-D diagnostic parameterizations of stratospheric tracer transports (as illustrated in Tables 1 through 3), based on Eqs. (?) through (10) or Eq. (9) with (4), (5), and (2) for either inert or chemically active tracers, may not rely on the parent Reed and German (1965) formulation to justify their prognostic use in the forecasting of adverse anthropogenic effects on atmospheric ozone.

VI. PAST INTERPRETATIONS OF REED-GERMAN RESULTS

Previous attempts (Mahlman, 1975; Hidalgo, 1978) to assess the prognostic validity of diffusivity concepts used in 2-D parameterizations of tracer transports in the stratosphere have been based on GFDL GCM/tracer model data for a tracer characterized as being chemically inert in the stratosphere but with heterogeneous sinks in the troposphere. The GCM/tracer model combines the GCM numerical solutions from the primitive equations with those from the 3-D continuity Eq. (1) for a chemically inert tracer, i.e., the auxiliary tracer model solves for the time evolutions of tracers from dR/dt = 0 while using as inputs the wind field of the parent GCM. Because of constraints on computer resources, the same annual cycle from the GCM is reused in subsequent cycles of the tracer model. While this procedure does not allow use of the annual variability of the wind fields, the annual variability of the tracer is soley due to the tracer itself. The GCM/tracer model data used to assess the prognostic validity of diffusivity concepts in 2-D parameterizations have then come from the following three numerical experiments:

(1) A "vertical stratification" experiment, which utilized a tracer-source in the upper stratosphere. This was the earliest ozone-precursor numerical experiment that was designed to provide a crude simulation of the equilibrium photochemical stratification of ozone. It specified a constant mixing ratio in the upper stratosphere of a chemically inert tracer, which was assumed to have heterogeneous sinks in the lower troposphere for its removal by rainout processes (Mahlman, 1973a, 1975).

- (2) A "mid-latitude point source" experiment, which utilized an instantaneous release of a chemically inert tracer at a point located at a middle northern latitude in the lower stratosphere. This experiment simulated the distributions of radioactive nuclear debris in the stratosphere from a nuclear explosion. It specified an initial distribution of mixing ratio at and near the point-source of a tracer, which was again characterized as being chemically inert in the stratosphere but with heterogeneous sinks in the troposphere. (Mahlman, 1973a, 1975; Mahlman and Moxim, 1978).
- (3) An SST (supersonic transport)-like experiment, which utilized constant-line sources of a chemically inert tracer located at specified zonal segments at a northern middle latitude in the lower stratosphere (Mahlman, 1973b, 1978; Hidalgo, 1978). This experiment simulated the time (years) evolutions of the monthly distribution of, say, NO $_{\rm y}$ (NO + NO $_{\rm 2}$ + 2N $_{\rm 2}$ O $_{\rm 5}$ + NO $_{\rm 3}$ + HNO $_{\rm 3}$) as the result of emissions of SST engine effluents in the lower stratosphere. Again, the characteristics of the inert tracers are as in the foregoing two experiments.

The approach used in these assessments of the prognostic validity of 2-D parameterizations of eddy transports consisted in the use of the Reed and German Eqs. (4), (5), and (9), together with 3-D GCM/tracer model data from the above numerical experiments. The 3-D tracer data was averaged using the ($\bar{}$) operator to obtain estimators for the 2-D tracer statistics of the meridional and vertical eddy transports and corresponding gradients of mixing ratio. However, this use of the Reed and German equations with averaged 3-D GCM/tracer model data could not overcome the difficulty of defining properly the magnitude of the $\bar{\alpha}$ and $\bar{\alpha}^{*2}$ statistics; i.e., the problems faced previously

when attempting to solve the undetermined system of the two eddy flux equations for the three unknown eddy coefficients.

Since Eq. (14) yields $\alpha = w^*/v^*$ for small angles of α , an approximation used to estimate $\overline{\alpha}$ was to multiply the numerator and denominator of α by R* and assume that $\overline{\alpha} = \overline{w^*R^*/v^*R^*}$. Use of Eqs. (4), (5), and (9) yielded then (Marlman, 1975):

$$K_{yy} = -\frac{\overline{v^*R^*}^2}{\overline{v^*R^*} \frac{\partial \overline{R}}{\partial y} + \overline{w^*R^*} \frac{\partial \overline{R}}{\partial z}},$$
 (20)

and

$$K_{ZZ} = -\frac{\overline{w^*R^*}^2}{\overline{v^*R^*} \frac{\partial \overline{R}}{\partial y} + \overline{w^*R^*} \frac{\partial \overline{R}}{\partial z}}.$$
 (21)

The use of Eqs. (20), (21) and averaged 3-D GCM/tracer data for the eddy transports and gradients of mixing ratio in these equations would then yield the magnitude of the eddy transport coefficients. Such results, based on the "vertical stratification" and "mid-latitude point source" experiments, indicated that there were regions in the stratosphere where the eddy transport coefficients became even negative (Mahlman, 1975); results that were also confirmed for both the mid-latitude or instantaneous-point source as well as the constant-line or SST sources as indicated in Tables 8 through 10 (Hidalgo, 1978). However, these latter results also indicated that the corresponding magnitudes of $\bar{\alpha}$ became different for the point source and constant-line source experiments (Table 8) at the same stratospheric location and month (season) instead of remaining fixed by the variability of the stratospheric winds as by Eq. (14). Furthermore, since division of Eq. (21) by (20) yields

TABLE 8. SLOPE OF MIXING LENGTH PATH AS GIVEN BY PRIMITIVE EQUATIONS, α (10-4).* Source: Mahlman, Private Communication, 1978

Leve)	Hotoh					27.75		
mbar	E5	72 ⁰ N	48°N	24°N	0	24°S	4805	2000
;		Instantaneous Injection,	Injectio		Winter (December), Fourth Year	Fourth Ye	1	5 7)
<u>چ</u> پ	22.4	3.8	- 31.6	10.3	8.9	- 42.0	20.5	-132.0
G [19.U	- 6.4	- 31.2	7.2	- 1.4	- 39.4	23.5	-256.0
190	13.0	- 41.1	- 42.0	23.3	254.0	- 21.6	32.5	+231.0
315	1.21	- 20.1	- 26.5	84.2	18.0	+116.0	9.79	-525.0
	n. 0	-235.0	- 41.1	287.0	44.1	-281.0	-202.0	+844.0
;		SST Inje	ctions, Wi	nter (Dece	SST Injections, Winter (December), Fifth Year	th Year		
88	22.4	8.1	46.8	- 3,5	0.2	-102 0	.	
65	19.0	46.4	13.2	- 1.7	1.9	136.0	יי יי	. 36.
130	15.6	13.2	19.5	-	0.00	0.00	7.	- 89.1
190	12.1	2 10 2	, ,		6.9	- 30.0	8.3	+188.0
315	σ		6.67	4.	76.1	27.7	70.7	-547.0
?	<u>, </u>		20.9	79.5	73.9	99.5	53.5	+640.0
		SST Inj	ections,	Summer (Ju	SST Injections, Summer (June), Fifth Year	Year		
æ ;	22.4	- 8.0 -	0.9	- 95.7	9.6	- 20.3	- a	5
2 2	19.0	+ 13.2 +	0.4	+ 3.5	3.2	+ 40.6	10.6	+ .c
2 9	15.6	-	-2630.0	+ 15.1	23.1	- 98.4	2.0	, 00°.
190	12.1	- 89.6 -	7.9	- 43.2	84.6	32.3	1880.0	
2	ж Э.	+ 3.4	48.1	+166.0	314 0			0.16

*For instantaneous injection at 38 mbar and 720N, for example, [lpha] = -3.8 x 10^{-4} .

TABLE 9. VERTICAL EDDY COEFFICIENTS AS GIVEN BY PRIMITIVE EQUATIONS, κ_{zz} (104 cm²/sec)* (Source: Mahlman, Private Communication, 1978)

,	Standard				Latitude	ממב		
mbar	Height, km	72°N	48°N	24°N	0	24°S	48 ⁰ S	72 ⁰ N
		Instantaneous	Injections,	Winter (Winter (December), Fourth Year	Fourth Ye	F.	
88	22.4	6.4(-1)	-1.6(1)	1.5(0)	9.6(-5)	4.0(-1)	1.2(0)	-3.0(0)
65	19.0	1.9(-1)	-5.7(1)	4.6(-1)	8.8(-3)	9.2(-5)	4.7(-1)	-2.5(0)
110	15.6	7.5(-1)	+3.4(2)	1.3(0)	-4.9(-2)	9.0(-1)	(1-)9.9	-6.0(0)
190	12.1	8.0(-1)	+6.3(0)	4.4(0)	-1.2(-1)	2.1(0)	8.0(-1)	-7.8(0)
315	8.9	1.3(0)	+3.7(0)	2.6(1)	-1.9(0)	(0)0.9	2.9(0)	-2.4(1)
		SST Inj	SST Injections, Winter (December), Fifth Year	ter (Dece	mber), Fif	th Year		
38	22.4	3.4(-1)	-1.6(0)	1.8(-1)	1.0(-4)	1.1(0)	1.3(-1)	-2.0(0)
65	19.0	9.3(-1)	-3.3(1)	6.8(-2)	1.7(-2)	1.5(-1)	9.3(-3)	-1.7(0)
110	15.6	1.3(-1)	-1.3(1)	8.2(-3)	2.7(0)	9.0(-1)	1.5(-1)	-4.4(0)
190	12.1	3.6(-1)	+1.5(0)	4.7(-1)	3.4(0)	1.4(0)	3.9(-1)	-6.7(0)
315	8.9	1.5(0)	+6.6(0)	5.7(0)	7.3(0)	3.4(0)	2.2(0)	-2.2(1)
		SST	SST Injections, Summer (June), Fifth Year	ummer (Ju	ne), Fifth	Year		
38	22.4	1.4(-1)	2.4(-1)	3.1(0)	1.1(-1)	8.0(-1)	-1.0(0)	-1.2(0)
9	19.0	3.9(1)	2.9(-3)	1.8(-1)	3.1(-2)	4.9(-1)	5.5(-1)	-2.1(-1)
110	15.6	-1.9(0)	8.8(-1)	9.6(-1)	2.6(0)	1.1(0)	1.5(0)	-3.1(-1)
190	12.1	+3.3(-1)	6.4(-1)	2.1(0)	4.7(0)	1.4(0)	4.5(-1)	-2.4(0)
315	8.9	-1.5(-3)	1.2(0)	(0)6 6	3.2(1)	2 0(0)	-7.1(-1)	-1 1(1)

^{*}For instantaneous injection at 38 mbar and $72^0{\rm N}$, for example, ${\rm K_{ZZ}}=6.4(10^{-1})\cdot 10^4=6.4\times 10^3$ cm²/sec. Note that (0) denotes 10^0 .

TABLE 10. HORIZONTAL EDDY COEFFICIENT, AS GIVEN BY PRIMITIVE K_{yy} (10¹⁰ cm²/sec)* (Source: Mahlman, Private Communication, 1978)

[eve]	Standard	}			.at	Latitude		
mbar	kg kg	72 ⁰ N	48 ⁰ N	24 ⁰ N	0	2405	4805	30cT
38 65 110 190 315	22.4 19.0 15.6 12.1 8.9	Instantaneous Injections, Winter 4.5(0) -1.6(0) 1.4(0) 4.6(-1) -5.8(0) 9.0(-1) 4.4(-2) +1.9(1) 2.4(-1) 2.0(-1) +8.9(-1) 6.2(-2) 2.3(-3) +2.2(-1) 3.1(-2)	5 Injection -1.6(0) -5.8(0) +1.9(1) +8.9(-1) +2.2(-1)	1.4(0) 9.0(-1) 2.4(-1) 6.2(-2) 3.1(-2)	(December), 1.2(-1) 4.4(-1) -7.6(-5) -3.7(-2) -9.8(-2)	Fourth Year 2.3(-2) 5.9(-3) 1.9(-1) 1.6(-2) 7.6(-3)	5 8 8	-1.7(-2) -3.8(-3) -1.1(-2) -2.8(-3) -3.4(-3)
38 65 110 190 315	22.4 19.0 15.6 12.1 8.9	5.2(-1) 4.3(-2) 7.3(-2) 3.5(-1) 5.3(-2)	ections, W -7.2(-2) -1.9(1) -3.5(0) +2.3(-1) +1.5(0)	1.5(0) 2.5(0) 8.4(-1) 1.3(-1) 9.0(-2)	SST Injections, Winter (December), Fifth Year (-1) -7.2(-2) 1.5(0) 2.2(-1) 1.0(-2) -1.9(1) 2.5(0) 4.5(-1) 8.1(-2) -3.5(0) 8.4(-1) 7.5(-1) 1.0(-1) +2.3(-1) 1.3(-1) 5.9(-2) 1.9(-1) (-2) +1.5(0) 9.0(-2) 1.3(-1) 3.5(-2)	1.0(-2) 8.1(-4) 1.0(-1) 1.9(-1) 3.5(-2)	3.7(-1) 6.3(-1) 2.2(-1) 7.8(-3) 7.6(-2)	-6.5(-2) -2.1(-2) -1.2(-2) -2.3(-3)
38 65 110 190 315	22.4 19.0 15.6 12.1 8.9	2.2(-1) 2.2(1) 2.2(1) -3.8(0) +4.1(-3) -1.2(-2)	SST Injections, 1) 6.7(-1) 1) 1.5(0) 1) 1.3(-5) 3) 1.0(0) 2) 5.0(-2)	Summer (Jur 3.4(-2) 1.5(0) 4.2(-1) 1.2(-1) 3.6(-2)	Summer (June), Fifth Year 3.4(-2) 1.2(-1) 1.9 1.5(0) 3.1(-1) 3.0(4.2(-1) 4.9(-1) 1.1(1.2(-1) 6.6(-2) 1.4(3.6(-2) 3.3(-2) 7.5(5 7 7 7 7	-1.6(0) 4.9(-1) 1.9(0) 1.3(-5) -2.6(0)	-1.4(-2) -5.8(-3) -3.2(-2) -2.9(-2)

* For instantaneous injection at 38 mbar and 72°N, for example, K = $4.5(10^{\circ})$, 10^{10} = 4.5×10^{10} cm²/sec. Note that (0) denotes 10° .

 $K_{zz}/K_{yy}=\bar{\alpha}^2$, the use of Eqs. (7) and (8) gives then $K_{yy}K_{zz}/K_{yz}^2=1$. Hence, Eq. (13) indicates that the assumption $\bar{\alpha}=\overline{w^*R^*/v^*R^*}$ leads to $\bar{\alpha}^{*2}=0$. Since the use of Eqs. (20) and (21) contradicts both the sole dependency of $\bar{\alpha}$ on the wind variability as well as the apparent undeterminability of $\bar{\alpha}^{*2}$ from wind data, previous conclusions of negative eddy transport coefficients based on these equations are not warranted from a strict use of the Reed and German formulation.

It should however be noted that the foregoing implied assumption of $\bar{\alpha}^{*2}$ = 0 in Eqs. (20) and (21), as well as the results of Tables 8 through 10 is as in the Crutzen model at middle and high latitudes (Table 1). On this basis, it appears that the use of $\overline{\alpha}^{*2}$ = 0 in diagnostic parameterizations (for a stratosphere without SST pollutants) would likewise yield $\bar{\alpha}$ values that are inconsistent with those required by the Reed and German equations for a stratosphere with SST pollutants (Table 8); i.e., such diagnostic parameterizations with fixed $\bar{\alpha}$ values at a given stratospheric location and month (season) may have a questionable prognostic value. Furthermore, the validity of even the diagnostic value of ?-D parameterizations based on $\bar{\alpha}^{*2}$ = 0 are open to question, since the foregoing use of GCM/ tracer model data together with the Reed and German equations requires that the eddy coefficients may become negative (Tables 9, 10). Moreover, it is of interest to indicate that GCM/tracer model data suggest that the magnitude of the tracer eddy transports may depend on the prevailing time and/or space tracer configuration in the stratosphere (Mahlman and Moxim, 1978; Hidalgo, 1978); a result that would affect the accuracy of diagnostic 2-D parameterizations (Tables 2, 3) that are not based on $\bar{\alpha}^{*2} = 0$.

VII. OUTLOOK FOR PROGRESS IN PROGNOSTIC 2-D FORMULATIONS OF TRACER TRANSPORTS

Recent developments stemming from a Lagrangian instead of a Eulerian description of wave motions and associated mean flows (Andrews and McIntyre, 1978 a and b; Dunkerton, 1978) indicate that (a) the net countergradient "diffusion" is really an advection by the Stoke's drift due to the waves (Wallace, 1978); (b) the entire bulk motion of the center of mass of air parcels and tracers would be described advectively, not by $\mathbf{K}_{\mathbf{y}\mathbf{z}}$ slantwise diffusion; however there is still need for diffusion to explain the lateral and vertical spread of a tracer about its center of mass (Holton, 1980); and (c) the Reed and German form of Eqs. (4) and (5) might be retainable for small-amplitude waves. However, a rather drastic reinterpretation of the physical meaning of Eqs. (4) and (5) becomes necessary (Plumb, 1979; Matsuno, 1980); namely, major parts of the meridional eddy fluxes of ozone, potential temperature, and other vertically stratified quantities would be the result of a systematic correlation between the vertical displacement and the meridional velocity of air parcels arising from a particular structure of planetary waves, and hence the fluxes are nearly transverse-gradient rather than obliquely down-gradient (Clark and Rogers, 1978). Such eddy transports are shown to be nearly advective instead of diffusive in nature and may be expressed by eddy transport coefficients with $K_{yz} \neq K_{zy}$.

The foregoing possibility is suggested from exploratory investigations that considered the stratospheric motions induced by an upward, steady-state propagation of a planetary wave from the troposphere into a stratosphere characterized by

a uniform zonal (i.e. \bar{u} or eastward) circulation in a latitude domain (Matsuno, 1980). The approach consisted in obtaining (1) solutions of the potential vorticity equation for the wave structure and the induced motions in the stratosphere, (2) Lagrangian trajectories of the air parcel motions and (3) eddy transports of χ (e.g. ozone) carried by the air parcels in a form which is proportional to local gradients of χ as in Eqs. (4) and (5). The important relevant results from this mechanistic approach are then as follows: (1) the Lagrangian trajectories of air parcels consists of cyclic motions along ellipses as well as the linear motions (as shown in Fig. 1) in the meridional domain of the stratosphere, (2) the orientation of the major axis of the meridional ellipses is indeed as that of $\bar{\alpha}$ in Fig. 1 and with the same order of magnitude (~10⁻⁴) as in the Reed and German concept, (3) if the meridional ellipses were superimposed on Fig. 1, the direction of motion of air parcels would be clockwise at any latitude, (4) the eddy transport coefficients may be expressed in terms of gradients as in Eqs. (4) and (5) but with unequal K_{yz} and K_{zy} coefficients and (5) the eddy transport coefficients are a function of the period of the cyclic motions along the ellipses and the time constant of chemical adjustment. Hence, these encouraging exploratory results suggest that a prognostic 2-D formulation of eddy transports of chemically inert or active tracers in the stratosphere might be feasible.

VIII. TESTS OF 1-D PARAMETERIZATIONS

The 1-D photochemical models of the stratosphere and troposphere have played a dominant role during recent years in crude assessments of ozone effects from emissions of (1) aircraft engine effluents at high altitudes [Grobecker et al., 1974; National Academy of Sciences (NAS), 1975; Oliver et al., 1977; Broderick, 1977] and (2) chlorofluoromethanes (CFMs) at the earth's surface (NAS, 1976; NASA, 1977; Crutzen et al., 1977). Basic factors for the popularity of 1-D photochemical models have been the uncertain knowledge of the relevant chemistry together with their capability for a wide coverage of chemical cycles and species as a result of their rather modest requirements for computer and manpower resources.

The 1-D continuity equations for the conservation of chemical species are obtained by taking the global-annual statistical average of Eqs. (1) for an ensemble of many years. If {()} denotes the global-annual ensemble average of (), then {()} represents a generalization of the 2-D ensemble average () by extending it with respect to latitude and even time from a monthly to an annual basis. Although it would be possible to likewise define ()** = () - $\{(\)\}$ so as to separate at each altitude the 1-D average of the vertical eddy transports of mixing ratio {w##R##} from those of the corresponding vertical winds or 1-D circulation {w}{R}, it is customary to extend the concept of 2-D eddy transports to the 1-D case by assuming that the 1-D transport coefficient K_z (or K_n) includes now the transports by the 1-D vertical circulation. Since $\{\vec{\nabla}_{n} \cdot \mathbf{R}_{1} \vec{\mathbf{U}}\} = 0$, where $\vec{\mathbf{U}}$ denotes the local horizontal wind vector, the basic continuity equations for 1-D photochemical models in pressure coordinates is given by

$$\frac{\partial}{\partial t} \{R_1\} + \frac{\partial}{\partial p} \{\omega R_1\} = \{P_1\} - \{L_1\}$$
, (22)

where p denotes pressure and $\omega = dp/dt$. Again, with

$$\{\omega R_{\underline{1}}\} = -K_{\underline{p}} \frac{\partial}{\partial \underline{p}} \{R_{\underline{1}}\}, \qquad (23)$$

where K_p is given in (mbar)²/sec, Eq. (22) becomes a set of differential equations for the mixing ratio R_i. The above equations can be written in the traditional altitude instead of pressure coordinate through use of the hydrostatic equation. The 1-D result equivalent to that of Eq. (2) for a chemically inert tracer in the stratosphere takes then the following form:

$$\frac{\partial}{\partial t} \{R\} = -\frac{1}{\tilde{\rho}} \frac{\partial}{\partial z} \tilde{\rho} \{wR\} , \qquad (24)$$

where \tilde{p} is proportional to {p/T}. Equation (23) becomes

$$\{wR\} = -K_{Z} \frac{\partial}{\partial Z} \{R\} \qquad . \tag{25}$$

Since 1-D photochemical models assume that the 1-D transport of chemical species is given by Eq. (25) for a chemically inert tracer, it is seen that the usual definition of the 1-D transport coefficient $K_{\mathbf{Z}}(\mathbf{z})$ is given as a ratio of the global-annual ensemble average of the flux of mixing ratio by both the vertical components of the circulation and eddy motions to the vertical gradient of the corresponding average of mixing ratio. The lack of worldwide observations for an ensemble of many annual cycles of a suitable tracer in the critical regions of the lower stratosphere and upper troposphere has made it very difficult to arrive at a generally acceptable $K_{\mathbf{Z}}(\mathbf{z})$ profile for the forecasting of long-range adverse anthropogenic 1-D ozone effects.

The continuity equations of 1-D photochemical models have the form of Eqs. (24) and (25), except that R_4 replaces R and the right-hand side of Eq. (24) must incorporate the production and loss terms $\{P_i\}$ and $\{L_i\}$. A proper physical interpretation of 1-D ozone effects is then very difficult, because such results are based on global-annual ensemble averages of not only the atmospheric transports but also of the photochemistry and shortwave solar radiation (or solar zenith angle), chemical kinetics, heterogeneous chemistry and emissions of aircraft engine effluents. However, the common practice of using 1-D photochemical models to forecast anthropogenic ozone effects motivates interest in exploring the characteristics of 1-D transport coefficients in the critical region of the lower stratosphere and upper troposphere for such effects. This can again be done by using 3-D GCM/tracer model data, i.e., by obtaining estimators from the 1-D global-annual average of 3-D GCM/tracer data for the vertical fluxes and vertical gradients of mixing ratio as required by, say, Eq. (23) with $R_1 = R$ for a chemically inert tracer.

Recent results from numerical experiments at the Geophysical Fluid Dynamics Laboratory allow a rather comprehensive display of the characteristics of 1-D transport coefficients as a function of (1) tracer configuration in the stratosphere with regard to both the space and time (years) domains and (2) tracer-source location in the stratosphere as well as at the earth's surface. In addition to the three numerical experiments described previously, there are two more recent experiments. One is called "simple ozone", which is a refinement of the "vertical stratification" experiment for a tracer-source in the upper stratosphere. In this subsequent experiment, use was made of "simple" chemistry at the top of the model together with an instantaneous relaxation to a specified observed average ozone value at 10 mbar, but with otherwise the same inert and heterogeneous tracer characteristics as in the "vertical stratification" experiment (Mahlman, Levy, and Moxim, 1979). The other recent numerical experiment used a

small uniform source of $\rm N_2O$ (15 M ton/year) at the earth's surface (Levy, Mahlman, and Moxim, 1979) and is of direct interest to the CFM problem; because as CFMs, $\rm N_2O$ propagates upwards from the earth's surface to the stratosphere after a long residence time (several decades) in the troposphere.

Some characteristics of monthly-annual estimators for 1-D transport coefficients based on early "stratification" and "mid-latitude point source" results have been given by Mahlman (1975). These results indicated that the $\rm K_{\rm Z}(z)$ profiles were not unique, i.e., the 1-D transport coefficient was found to be strongly dependent upon the tracer configuration in the stratosphere. Furthermore, these results indicated that the $\rm K_{\rm Z}(z)$ profile may not necessarily be independent of time (years) as assumed in 1-D photochemical models during the transition years between the equilibrium states of an initial appolluted to polluted stratosphere.

Table 11 shows the 1-D transport coefficients derived from the GFDL 3-D GCM/tracer model experiments as a function of

TABLE 11. 1-D TRANSPORT COEFFICIENTS K_Z(z), 10⁴cm²/sec AS A FUNCTION OF SOURCE LOCATION AND TIME (YEARS) IN THE LOWER STRATOSPHERE AND TROPOSPHERE (Mahlman, 1980)

LEVEL AL	TITUDE*	POINT-S	OURCE	LINE-S	OURCE	STRATIFI	CATION	"SIMPLE 03"	N ₂ 0
(mbar)	(km)	Year 1	Year 4	Year 7	Year 9	Year 1	Year 4	Year 4	**
27.6	24.2	8.44	1.49	2.43	-2.16	0.52	0.74	0.60	1.21
52.3	20.2	0.10	0.77	1.99	-2.36	0.42	0.61	0.66	0.62
80.7	17.6	0.65	1.26	1.26	1.41	0.92	1.10	1.14	1.01
149.9	13.7	1.92	1.25	1.86	1.92	1.52	1.11	1.16	0.84
240.6	10.5	7.02	3.67	12.94	13.00	5.19	3.91	3.94	10.77
412.0	6.8	9.53	6.24	11.54	11.61	12.53	6.00	6.13	9.57
606.7	4.0	10.04	11.29	44.03	42.34	18.31	12.32	12.80	-?

Standard altitude.

 $^{^{**}}$ Equilibrium conditions (reached after \sim 2000 years).

tracer-source location and tracer configuration, i.e., tracer-source characteristics and/or time (years). The results in table 11 indicate the following:

- For the point and line sources in the lower stratosphere of interest for aircraft ozone effects, the 1-D transport coefficients for the lower stratosphere can be a function of both source characteristics and year. For example, at 20.2 km, the two instantaneous-point source columns show that the value of the 1-D transport coefficient for the first year can increase by a factor of about eight in the subsequent year; whereas the corresponding constant-line source columns indicate that the 1-D transport coefficient for the ninth year can become negative, a fact that implies distortions of the K(z) profile (Mahlman, 1980).
- The altitude for the minimum value of the 1-D transport coefficient, which is of critical importance for predictions of anthropogenic ozone effects, can be a function of source location. For example, the $\rm N_2O$ column indicates that the altitude for minimum $\rm K_Z$ for $\rm N_2O$ is at about 13.7 km; which is lower than that (20.2 km) for the instantaneous-point source at mid-latitudes in the lower stratosphere.

Although the results in Table 11 are subject to constraints that may be introduced by the rather low vertical resolution (3 km) of the GCM/tracer model in the critical tropopause and lower stratosphere regions, the *trends* established by such extensive calculations may not be ignored in the absence of global observations involving suitable tracers for an ensemble of many years. Hence, 1-D transport coefficients that are assumed to be independent of tracer configuration (i.e., tracer-source location and characteristics as well as years) as usually done in 1-D photochemical models, cannot avoid serious distortions in their prognostic descriptions of transports.

REFERENCES

Andrews, D.G. and M.E. McIntyre, "An Exact Theory of Non-Linear Waves on a Lagrangian-Mean Flow," *J. Fluid Mech.*, Vol. 89, pp. 609-646, 1978a.

Andrews, D.G. and M.E. McIntyre, "On Wave Action and Its Relatives," J. Fluid Mech., Vol. 89, pp. 647-664, 1978b.

Andrews, D.G. and M.E. McIntyre, "Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration," *J. Atmos. Sci.*, Vol. 33, No. 11, pp. 2031-3048, November 1976.

Broderick, A., "Stratospheric Effects from Aviation," Presented at AIAA/SAE 13th Propulsion Conference, Orlando, Florida, July 11-13, 1977, U.S. Department of Transportation, Federal Aviation Administration, AIAA Preprint No. 77-799, 1977.

Clark, J.H.E. and T.G. Rogers, "The Transport of Trace Gases by Planetary Waves," J. Atmos. Sci., Vol. 35, pp. 2232-2235, 1978.

Crutzen, P.J. (1980): Private communication.

Crutzen, P.J., I.S. Isaksen, and J.R. McAfee, "The Impact of the Chlorocarbon Industry on the Ozone Layer," J. Geophys. Res., Vol. 83, January 20, 1978.

Danielsen, E.F. and J.F. Louis, "Transport in the Stratosphere," The Upper Atmosphere and Magnetosphere (Studies in Geophysics), Geophysics Study Committee, National Research Council, National Academy of Sciences, Washington, D.C., 1975.

Dunkerton, T., "On the Mean Meridional Mass Motions of the Stratosphere and Mesosphere," J. Atmos. Sci., Vol. 35, pp. 2325-2333, 1978.

Grobecker, A.J., S.C. Coroniti and R.H. Cannon, Jr., Report of Findings--The Effect of Stratospheric Pollution by Aircraft, DOT-TST-75-50, prepared by the Department of Transportation, CIAP, December 1974.

Hidalgo, H., Status of Representative Two-Dimensional Models of the Stratosphere and Troposphere as of Mid-1978, Report No. FAA-AEE-78-23, U.S. Department of Transportation, Federal Aviation Administration, Office of Environment and Energy, Washington, D.C., October 1978.

Hidalgo, H. and P.J. Crutzen, "The Tropospheric and Stratospheric Composition Perturbed by NO_X Emissions of High Altitude Aircraft," *J. Geophys. Res.*, Vol. 82, No. 37, pp. 5833-5866, December 20, 1977.

Holloway, J.L., Jr. and S. Manabe, "Simulation of Climate by a Global General Circulation Model: 1. Hydrolic Cycle and Heat Balance," *Mon. Wea. Rev.*, Vol. 99, pp. 335-370, 1971.

Holton, J.R., "The Dynamic Meteorology of the Stratosphere and Mesosphere," *Meteorol. Mono.*, Vol. 15, No. 37, August 1975.

Holton, J.R. (1980): Private communication.

Levy II, H., J.D. Mahlman, and W.J. Moxim, "A Preliminary Report on the Numerical Simulation of the Three-Dimensional Structure and Variability of Atmospheric N₂O," *Geophys. Res. Lett.*, Vol. 6, No. 3, pp. 155-158, 1979.

Lorenz, E.N., The Nature and Theory of the General Circulation of the Atmosphere, World Meteorological Organization, WMO No. 218, TP 115, 1967.

Louis, J.F., A Two-Dimensional Transport Model of the Atmosphere, Ph.D. Dissertation, University of Colorado, Boulder, Colorado, 1974.

Luther, F.M., Monthly Values of Eddy Diffusion Coefficients in the Lower Stratosphere, UCRL Report 74616. Also AIAA Paper No. 73-498, AIAA/AMS International Conference on the Environmental Impact of Aerospace Operations in the High Atmosphere, Denver, Colorado, June 1973.

Mahlman, J.D., "A Three-Dimensional Test of One-Dimensional Eddy Diffusion Theory, *Geophys. Res. Lett.*, to be submitted 1980.

Mahlman, J.D. (1978, 1979): Private communications.

Mahlman, J.D., "Some Fundamental Limitations of Simplified Transport Models as Implied by Results from a Three-Dimensional General Circulation/Tracer Model, Proceedings of the Fourth Conference on the Climatic Impact Assessment Program, February 4-7, 1975, edited by T.M. Hard and A.J. Broderick, U.S. Department of Transportation, DOT-TSC-OST-75-38, pp. 132-146, 1975.

Mahlman, J.D., H. Levy II, and W.J. Moxim, "Three-Dimensional Tracer Structure and Behavior as Simulated in Two Ozone Precursor Experiments," *Geophys. Res. Lett.*, pp. 155-158, 1979.

Mahlman, J.D. and W.J. Moxim, "Tracer Simulation Using a Global General Circulation Model: Results from a Mid-Latitude Instantaneous Source Experiment," J. Atmos. Sci., Vol. 35, No. 8, pp. 1340-1374, 1978.

Mahlman, J.D., "Preliminary Results from a Three-Dimensional General Circulation/Tracer Model," *Proceedings of the Second Conference on the Climatic Impact Assessment Program*, November 14-17, 1972, edited by A.J. Broderick, U.S. Department of Transportation, DOT-TSC-OST-73-4, pp. 321-337, April 1973a.

Mahlman, J.D., "A Three-Dimensional Stratospheric Point-Source Experiment and Its Implications for Dispersion of Effluents from a Fleet of Supersonic Aircraft," Presented at the AIAA/AMS International Conference on the Environmental Impact of the Aerospace Operations in the High Atmosphere, AIAA Paper 73-528, Denver, Colorado, June 1973b.

Manabe, S. and J.D. Mahlman, "Simulation of Seasonal and Interhemispheric Variations in the Stratospheric Circulation," J. Atmos. Sci., Vol. 33, 1976.

Manabe, S. and J.L. Holloway, Jr., "The Seasonal Variation of the Hydrological Cycle as Simualted by a Global Model of the Atmosphere," J. Geophys. Res., Vol. 80, pp. 1617-1649, 1975.

Matsuno, T., "Lagrangian Motion of Air Parcels in the Stratosphere in the Presence of Planetary Waves," Geophysical Institute, University of Tokyo, March 1979, submitted to PAGEOPH, 1980.

NASA Reference Publication 1010, "Chlorofluoromethanes and the Stratosphere," edited by R.D. Hudson, August 1977.

National Academy of Sciences, *Halocarbons: Effects on Strato-spheric Ozone*, Panel on Atmospheric Chemistry, National Research Council, 1976.

National Academy of Sciences, Environmental Effects on Chloro-fluoromethane Release, Committee on Impact of Stratospheric Change, National Research Council, 1976.

National Academy of Sciences, Environmental Impact of Stratospheric Flight, Biological and Climatic Effects of Aircraft Emissions in the Stratosphere, Climatic Impact Committee, 1975. Oliver, R.C., E. Bauer, H. Hidalgo, K.A. Gardner and W. Wasyl-kiwskyj, Aircraft Emissions: Potential Effects on Ozone and Climate, Prepared for High Altitude Pollution Program, FAA-EQ-77-3, U.S. Department of Transportation, Federal Aviation Administration, March 1977.

Oört, A.H. and E.M. Rasmusson, Atmospheric Circulation Statistics, NOAA Professional Paper 5, Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, 1971.

Plumb, R.A., "Eddy Fluxes of Conservative Quantities by Small-Amplitude Waves," J. Atmos. Sci., Vol. 36, pp. 1699-1721, 1979.

Prandtl, L., "Über die ausgeleildete Turbulenz," Zamm, Vol. 5, No. 136, 1925 and Proceedings of II International Congress of Applied Mechanics, Zürich, 1926.

Reed, R.J. and K.E. German, "A Contribution to the Problem of Stratospheric Diffusion by Large Scale Mixing," Mon. Wea. Rev., Vol. 93, May 1965.

Wallace, J.M., "Trajectory Slopes, Countergradient Heat Fluxes and Mixing by Lower Stratospheric Waves," J. Atmos. Sci., Vol. 35, pp. 554-558, 1978.

Widhopf, G.E. (1978): Private communication.

Widhopf, G.E., L. Glatt, and R.F. Kramer, "Potential Ozone Column Increase Resulting from Subsonic and Supersonic Aircraft NO_X Emissions," AIAA Journal, Vol. 15, No. 9, pp. 1322-1330, September 1977.

APPENDIX

This Appendix provides the sample GFDL/GCM data for a 6-hour period as a function of latitude, pressure level, and longitude. The data shows the vertical (w), northward (v), and eastward (u) winds in cm/sec at 28°N, 48°N, and 72°N latitude. Note that the number of longitudinal points decrease from 138 at the lowest latitude to 99 and 45 at the middle and high latitudes, respectively. This Appendix also gives a computer program for the calculation of the $[\alpha]$ and $[\alpha^{*2}]$ statistics based on both the Reed and German definition (Eq. 14) and by replacing arbitrarily the northward wind by the eastward wind. The former slope is denoted by α_1 , and the latter by α_2 . The purpose of computing α_2 was to investigate if the $[\alpha_1]$ and $\left[\alpha_{1}^{*2}\right]$ undeterminability of the statistics would be modified from possible consideration of the zonal circulation. results were negative, i.e., the undeterminability of $\left[\alpha_{2}\right]$ and $[\alpha_2^*]$ was as that of the Reed and German $[\alpha_1]$ and $[\alpha_1^{*2}]$.

TABLE A-1. W-VERTICAL WIND, LATITUDE 24 DEGREES NORTH

PRESSURE LEVEL

38×8	-65MB	110MB	190M8
	*3 96Å	.700	1.270
-1,172 -1,077	185	459	1.149
.218	286	340	814
.089		-,519	1.470
.823	814	-1.2.0	-2,198
.606	891	-1.0+1	-2,436
,515	4,144	- 495	-5,157
1,303	-1-501	-,4 75	-1,131
.999	-c.179	701	1.663
.968	-4-144	-1.576	.602
.475	-641	-1.835	.,965
1,257	1.925	-1,600	-3.593
.973	1_570	- 256	128
578	1 910	-,047	282
-1,634	799	1,321	.697
-1,030	-1.23	9,618	1.380
.290	-1.843	-1,246	188
2.005	-1.098	-1,711	.674
2,679	.550	-2,288	146
1.470	90¢	.006 1.974	-2.617 -1.325
.277 1,297	-1.58/	006	3.635
777	-1.674	021	5.422
128	- 115	.741	3.304
.054	2.459	-1.0U7	-1.397
-1.072	4.337	.408	-2.327
-1.858	1,159	3.814	2.796
274	-1.863	1 859	4.367
896	1.426	,176	3.267
.415	582	1.915	2.997
.723	.914	-,103	-,728
-,368	4.698	-2,146	-3.094
-2.395	.349	4.200	-1.397
916	-2.270	3,246	3,741
4029	-2.764	-1,942	.803
.619	-4.034	-3,101	-3.314
680	-1,112	-1,751	-1,610
-1.577	635	2 608 2 753	3,105
665	-1 405 -1 996		-1,581 ,692
-,6ñ9 - 643	11.136	1 989	5.780
-,643	-1.470	1,292	2.972
.558 •.129	-2.190	1.260	4.857
.819	iso.	-2.637	7.059
214	-,463	1,533	4.676
-2.063	-a.403	4.000	2.510

TABLE A-1. CONTINUED

3848	ASMA		
-•551	65M8 - 916	110MB	190MB
•657	1:447	. ,2/3	676
240	-1.05	•,93 3	-5.222
.623	-2.83Ù	2,659 2,404	-1.624
•047	-1.00?	2,127	-,428
550	.392	2,138	-,241
1.340	.14/	.894	-2.846
.844	1.151	2,058	-2.114
•738	-,865	1,405	.242 4.270
.579	-4.044	2,355	6,069
•472	≈6.12 4	643	2.798
,567 1,015	.034	.030	-5,305
1.866	-1.64U	4,122	-2,499
.795	331	3,828	-1,521
1.413	1.652 4.554	1,626	-,849
-666	- 022	1,938	-1.548
.218	.22}	2,056	-1,136
159	1.706	1,642	-5.558
-1.571	2.701	1.706	-1,846
-2,628	.67₫	8-1.5 8-E.	-1.098
-2,489	-c.713	-,241	3,444
-1.753	-4.412	-2,228	6,545
9ñ6	-4.773	-2.156	2.387 -1.328
.524 1.295	-2,938	-2.411	-5.179
.597	-3.060 -2.845	-3.847	-3.213
4 ñ3	1,735	-2,542	-,444
375	13.947	-2,899	-4.266
717	783	-4.628	-6.360
678	-1.552	-2.8e3 -1.210	-3.737
.398	.060	257	-2,634
.025	385	-3,485	-1.783
-1.743	·• - 661	รียว	-3.310 -,116
-483	974	603	-4,364
-1.911 -1.886	4≥,910 403	.044	992
045	533 55	2.3v1	.120
435	.005 .264	002	-4.733
716	*2.579	967	332
-1.587	.87	840	009
-1.267	.821	239	901
.229	-1,630	146	-1.993
154	329	-1.304 520	2,125
-617	-1.221	 004	1.331
.200	-,932	-,538	~1.844
-,679	4,342	,108	-1.314 -1.268
		•	-I + Cog

THE TAX PARTS IS BEST COUNTY

TABLE A-1. CONTINUED

3848	PPMB	110MW	190MB
• Ć 0 0	•.240	01S	474
-1-427	-1+185	. i95	546
284	-1.59}	1.029	026
893	.● • 88 •	1.302	~2.959
•250	≱• 06 9	.2/4	3.505
1-348	1.851	.230	866
•495	•692	503	-5.607
360	1.245	-1.643	.115
048	2.314	.108	-2,242
467	.180	1.201	. 386
.679	-1.044	.902	1.394
240	-1.399	.742	1.855
,548	• .535	. 259	2,456
383 489	.865 .640	.116	2.853
1.168	- 675	-,2/4	3,385
•592	604	-,443	1.101
.849	2.325	• • • • • • •	2,756
.032	-2.710	718	-2.177
265	- 62	1,015	-2,804
1.633	-1.199	1.796	-1.801
315	1.275	-1.∳öZ	2,594
-1,518	J.076	719 .9v6	2.901
941		,270	-1,892
661	.3.05 <u>6</u> 3.05 <u>6</u>	.518	-6.743
1,793	-4.8i?	1,195	-3,982
2.224	-2.277	-2,793	6,337
JAI	3.080	-4,612	1.069
412	-1.82	- \$45 - \$45	-3,460
,577	768	,208	291
123	-2.53L	-;?48	833
1.299	-1.964	-2,491	2,626 1,843
-1.027	-,715	,134	.614
029	914	-,303	-,250
-374	-1.161	-,916	267
488	.073	.827	165
-525		254	••643
+187	1.530	187	-1.255
#316	.539	314	194
•Ø å Z	.969	-,655	-2.110
•024	~.322	.316	5.137
463	ڊَ هِ1	1.062	-,776
•4B0	£2643	eët.	-1.537
112	-1.914	·-1.273	2.294
442	-2.896	1.024	1:367
	. –		* : • • •

The Control of the State of the

TABLE A-2. V-NORTHWARD WIND, LATITUDE 24 DEGREES NORTH

PRESSURE LEVEL

3448	OSMB	110MB	190MB
-329.046	264,474	327,525	1117,362
-401.086	-2:031	811,843	78z.038
-494.069	-71.61	379.879	838.737
-322,767	-4 ,822	245,617	658,946
#68,487	-521.413	-252,442	274.266
-45.870	-383,344	-531,673	334.365
215,221	-311,136	-\$68,055	-143,699
313,971	-501,501	-974,612	-62,151
509.334	-72,071	-091,783	-220.715
035,894	-515.344	-674,612 -691,703 -339,756 -133,749	-480.911
725.267	-44/,180	-133,144	-261.330
507,846	-366,391	-132,707	-383.004
654,161	-192,572	-18.049	-150.720
700.206	-206,810	-302,234	-200.472
949,595	-202,280	-164,709	8.319
71,673	64,450	110,267	150.060 -186.367
92,209	573,974	12,522	250.750
846.057	744.472 814.51 <u>¥</u>	\$82.799 \$01.616	442.094
666.144 336.899	776 485	80.049	300.685
155.987	464 885	614,020	177.635
297,336	161,936	213 75A	152,409
770,466	493,643	213,758 59,439	-94,864
411,997	893,913	409.600	-149.976
305,974	672,726	409.660 779.654	40.992
355,164	424,879	929,310	-206.111
-120.116	311,521	419,002	-190.843
52.016	310.302	508, 0 <u>.9</u>	-319.611
122.213	184,353	809,916	67.804
526.200	138.102	265.097	-48,934
431-178	259.824	115.721	201.416
-205-456	-966.161	760.854	430.246
-260-353	-61.911	599,607	1089.567
-556.355	-6y.543	511.109	1240 • 001
197.981	-1190,34g	316.214	1223.987
-173.217	-990.409	937.012	1042.029
-432,573	~165W,425	101.300	1360.172
-703,993	-244,083	56,118 -421,000	889.275
-46.771	127.600 150.21 6	-219,135	651.750
-49,996	424.91	324.119	1153.464
-170-371 -103-365	734.460	-1035.930	460.057
139.913	-130.50	203.173	95.677
44.641	•2.10?	+230.392	-569 - 307
496.254	37,576	350.070	189.704
136.288	073.04 <u>9</u>	320.407	-112-373
1301840		*****	

TABLE A-2. CONTINUED

3 0 HA	DME	11gms	10040
215,378	1160 380		190MB
481,010	262.105	482,883	-174,195
529,049	750.032	438 443	288.006
198,675	927.805	1628 848	742,403
649,337	1111.726	1536,862	1312,361
486,683	991.822	874 571	769,146
964,373	1139,634	1302.330	553,552
727,986	110.003	1013,171	2005,783
1172,241	1255.426	1653.610	1647.380
1101.034	1301.061	1515,958	2081.016
1439,823	1230,011	1403.804	1343.161
1460.263	423,107	1609,210	1592.804
1524,400		1621,606	1939.033
1260.246	573,718	2292,775	1643.738
1123,299	274,949	2298,125	1170.612
875,098	093.134 731.271	1490,539	718,467
963,691		1407,043	832,804
704.661	227,562	å\$2°201	517.101
437.620	187.730	-13,505	159.510
104.070	254,428	432,500	-326,162
-150.680	\$10.00Å	255.45	-482.301
	7.643	-319,207	-473.678
-100,451	-365,539	-774.380	-35A,476
-224,616	-751,324	-1436,833	-531,739
-227,347	-854 165	-1763,7-1	-1490.726
64,448	-944,121	-1733.951	-2278,510
-26,337	-982.497	-2108,452	-2727,109
80,169	-734.602		-3061,310
-174,963	-256,675	-1679 149 -1708 373 -2117 418 -2207 658	-3383,873
-156,981	37,561	-2117 4is	-3572,242
-436,256	-631,696	8e6, 7055-	-2871.008
-302.004	-272,757	-2079,202	-2424.986
-353.831	-570,419	-1724.002	-1881.806
-335.678	-779 <u>:</u> 482	-918.147	-1250.013
-611,891	-1123,935	-1005.731	-998.654
-798.134	-759,436	-992.848	
-864 .586	-1424.421	-786.198	-1071.767
-867,549	-624.07Y	-568 304	241.812
-819,921	-754,824	-522.024	-375,492
-071-67D	-415.805	-973,507	-969,454 -859,955
-1227.743	-386.840	-666.409	-860.368
-1041.920	-424.707	-574,000	-1095.280
-1270.310	-455,830	-375,424	
-983.689	-517.505	155,035	-708,898
-1001.347	-599,164	270.607	-160,159
-664,778	-650,292	318,855	707.680
-650.829	-450.620	133,441	574,092
-442,580	-227.354	408 7/7	500,389
		408,713	543,517

3(0 ⊃ 5 · · ·

TABLE A-2. CONTINUED

3848	65MB	11004	
-530.392	-376.301	110Mb	190MB
-597.4]]	-421.611	315.558	813.332
-632-890	345.975	51.329	987.462
-1554+198	-110.677	-97.250	-198,605
-1390.850	4.234	427.956	1183.926
-1075-595	499.424	225.059	-663.930
-883.251	9/.293	443.719	856 • 644
477.795	823.029	742.365 268.393	1299.240
190.664	-635.069	438,433	-539 • 116
47.797	10.191	-77.7v4	139.220
42.057	-180.794	5.791	-735-253
242-369	10.92 5	-594.967	*415.112
52-161	819.074	-246.503	-855.865 -1051.417
171•787 150•934	396,494	-250.469	-935.446
207.562	470.617	-63.522	-699.494
156.367	32/.134	248.109	144.312
301-527	379.182	<u>8</u> 24,243	372.226
182-410	~169.914 -0- 483	939.4 13	574.958
56.689	-90,68ĝ	61.550	929-166
-38-574	~145.852 ~83.864	185.229	744.842
79-983	~450.95Î	298.544	-170.882
480 - 672	-58u · 137	108.544	-336 - 110
250-014	-474.076	*24.836	-519.938
241-592	-257.034	-537.223 -570.513	141.828
-74-335	521.168	-1065,978	-109.868
-467-517	274.594	-629.104	-748.526
-26-964	-734.509	-503.904	-522.459
624.8A3	-340·11?	-686.798	-627.687
-252-210	-311.007	-348, 396	-815.709
36-678	-311.024	-440.726	-348.915
-336.446	-200.950	-173.510	-603-188
-214-475	-24u.107	-580.531	-382.241
-481.920	-86-110	-429.453	-49 ₀ .995 -529.746
-363.938 -639.884	-82.399	-441.214	-470.834
-460.471	·•222.406	-164.671	-266.553
-589.835	-4,234 27, 247	-172,133	-83.427
-235.836	271,267 -178,981	\$53,846	219.674
-304.838		341,119	148.217
-114.657	244.752 290.018	562,739	380.023
4317.729	779.274	473,490	552.487
*353.338	545 • 067	365.645	608.997
-311.884	285.786	881,441	790.029
-624.444	764.488	761.0u3	538.195
	. = 4 = 7 = 4	569.089	1063.007

TABLE A-3. U-EASTWARD WIND, LATITUDE 24 DEGREES NORTH

PRESSURE LEVEL

3848	65MB	110MH	19048
384.598	1534,420	2417,166	3152.145
1084-992	1830.299	2827,986	3332.916
903-213	1184.909	2653.702	3242.558
1135+485	1435.065	200.003	3616.870
1087-533	1304.434	2740.865	3558 • 456
1169-189	1330.840	2947,891	3955.007
1307-868	1172.967	3035.335	3892.459
1378-567	939.596	3430.700	4385.387
1511-145	1420.577 1 809. 272	2946.295 2968.383	4287.051 4646.441
1250+673 1255+164	1805.205	3013.449	4185.016
779.873	1865.749	3340.532	4700.359
613-637	1859,599	3525.912	4437.738
224-330	1554.819	3458.319	4640.809
632-046	173#4997	3420.010	4182.043
369.610	794.529	3003.502	4237.703
283.078	864.108	3165,354	4359.398
191.686	1000-615	2851.450	3691.066
-428-619	800.407	3148.760	3866.260
-359-884	911.327	3133.702	3471.464
-589-856	591.570 61 9. 397	3112.258 3403.320	3735.254
-755.243 -1708.440	807.196	2913.055	4019.003 3962.871
-1020-615	480.407	2464.234	3954.128
-1620-974	620.294	2657.494	4133.254
-1714-341	603.573	3167.503	4047.441
-1588-347	134.864	3517.686	4310.312
-1635-657	153.278	3189.936	4287.965
-1451-186	20> • 51	3414.677	4495.344
-726-880	158 401.414	3313.930 3020.665	4431.121 4633.375
-1144.247 -1025.466	414,381	3473,5/4	4514.324
-562.525	724.105	3591,531	4009.144
-382-614	674.400	3644.701	5182.820
-191-651	621.876	2727.414	4345.355
-655.149	1064,183	3504,617	5011.031
-166-975	1780.395	3278.491	4531-199
-184-033	1614.700	3010.302	4498.016
-947.390	710,680	2078,739	4410.420
-656.430	639+193 434,28 <u>9</u>	2736.694 1649.389	4908.941 4152.477
140,862	271.651	2131.650	4504.246
-672.448	634.487	1548.604	4509.133
-721-636	492.036	2498.319	4218.465
-1058.054	747.309	2475.721	3684 - 131
-1077-342	63%.623	2475.200	4277.488

TABLE A-3. CONTINUED

38/8	OSM E		
-1086.887	- -	110MB	19048
-1311.998	604,201	2373,951	3966,291
-1395.987	264,450 274,643	2446,459	3376,459
-1457.267	50.284	2635,112	3005.099
-1581,714	404.914	2074.744	2625,135
-1620.328	0.827	1604,935	2051,600
-1414,626	187.892	1159,909	1275,570
-1949.380	-484.326	1314,617 1392,211	1296,887
-1943-627	-559.116	1592,348	1581.658
-2225-964	-679.505	1239.547	1511.706
-1927-631	-519.329	509.808	1419-325
-1886.593	-624,115	016.707	1335.580 878.980
-1680-571	-824,281	976.118	531.250
-2075.076	-1061.789	35,597	840.453
-1981-975	₹1340,45¢	-428.644	927.761
-2597.520	-1531.280	-9.5vo	738.347
-2752.719	-1513.957	-96.747	982.937
-3037.968 -3120.718	-1537.59U	-287.496	902.434
-3324.514	+1787.325 -104:: 334	-588,994	814.195
-3324.570	-1862.33 <u>0</u> -2330.493	-423,179	458.614
-3036.251	-2339,428	-418.279	869.638
-2988.394	-2640.379	-706.543 -819.667	667.006
-2423.587	-2472.034	-1123,209	268.392
-2439.974	-2402.503	-1319,101	-101.696
-2418.363	-188v.63î	-976.559	53.442
-5690.559	-1102.809	-535,955	252.716 530.541
-2557.384	-717.554	-762.918	578.468
-2624.131	-1017.556	-137.004	217.571
-2692-858	-1400-91?	107.719	579.036
-2727.531	-1340.019	132,810	651.457
-2857 - 497	-1453-164	75,806	1222.507
-3210.073	-930.55v	397.726	1531.797
-2989.591	-1114-093	₫00.9⊅S	1734.585
-3193,958 -3252,159	-1032.164	497,940	1053.473
-2786.658	-876.193 -887.785	1004,992	1716.240
-3026-691	-634.916	40.144	1361.948
-2886.697	-714,462		1420.519
-2729.185	-464.868	1159.208	1848.618
~2647.191	-194.352	911.907 1105 331	1809.693
-2420.390	-563,560	1105.221 1028.036	1789.088
-2466.554	-262,583	1471,232	1715.785
-5586-454	-104.526	1022.401	1959,838
-2091-675	30.82]	1564.748	1101.738 1880.509
-1886.958 -1885.851	474.386	1251,997	1787.146
-1585.87]	436.125	1408.243	1849.678

TABLE A-3. CONTINUED

PHESSURE LEVEL

3848	65MB	110MB	10049
-1465.428	234.847	1268,442	190MB
-1043.990	524,230	1395.057	684.915
-764-520	807.479	1576.761	1503•412 1256•561
-549-097	778.439	1277.236	2252 • 164
-471.841	1210.765	1470.130	1823-163
-219.681	964.086	2053,316	2309.148
648.339	1700-619	2106.4u4	2352 . 089
-333.843	810.614	1887.181	3057.763
191.410	864,815	2148,209	2322.461
446.167	344,396	2190.000	2685.757
	765.708	2170.538	2546.930
402.032 897.796	711.948	5310.046	3115.415
424 • 484	1120.41	2035.633	3330.645
989-110	116y-806	2215.586	3579.276
210-850	777.097	2147.096	3365.855
645.298	874.008	2332.413	3306-016
760.640	1062.691 836.591	1873.954	3354.058
667.372	640.342	2396,409	2676.079
814.930	774.847	2382.856	2482.479
534.639	914.730	1910.936	2945.897
250.050	1475.687	1757,469	2731.576
854.821	693.075	1677.591 2118.921	5551-163
1091.715	454.946	2245,687	1696.089
1209.950	215.697	2546.469	2172.740
1147.067	510.984	2273.055	2352.817
904.790	1671.354	1985.570	2599.513
493-636	1269,912	2305.820	1948-804
1042.228	780,458	2222.197	2072.056 1741.511
860-067	1031.98	2113.377	1639.479
981.614	500.904	1740.845	1706.168
965.762	862.233	1626,909	1657.039
796.769	669.57	1945, 233	1605.022
1294.281 775.794	507.774	1472,805	1726.999
1050.087	460.144	1396,578	1665.252
697.743	432.689	1488.756	1746.046
806-015	171.773	1321.637	1817.289
323-865	564.317	1532.0/6	1994.728
570-683	45y.26ú	1524.265	1869.146
81.962	29 4-61 5 643 .8 75	5011.610	2056.712
215-974	934.627	2318.023	2245.712
207.752	1212.566	2074.418	2449.041
112-512	1134.411	2635.473	2929.778
494.161	1570.221	2733.474	2849.670
	20 - 400-0	3173,548	2701.495

MITTER THE

3416	•\$mu	. · 4 6	190MB
1.436	<50.	.551	.73(
445	.98	.300	306
1.695	1 - 39 -	, 450	139
1.338	-1.450	. • 0 1 0	41
1-206	• • • • •	~.001	-1+047
1.213	c • • • •	1.214	478
1.899	2.518	1.000	.590
2.567	1.773	1.0	1.648
3-170	-42073	-1.024	1 - 260
•549	-1-48v	.748	•548
• ġ55 • ġ78	•412	.446	•572
-1.023	308 2.045	.403	•617
•372	2.621	• • × •	-1.348
2.763	-2.513	020	-1.472
285	840	-2.231	.129
-1-936	1.073	~,0 11	107
-539	152		-1.852
.494	-1.225	-1,652	.128
•895	-1.246	-1.516 712	1 • 192
1.417	-1.408	~,678	-1.465
•210	1.200	.136	-1.078
859	2.445	1.6/9	-1.055
1-698	.074	.6 6 8	737
1.698	-1.475	.572	•541 •086
1 • 845	••123	.879	.040
4.416	0.217	2.113	071
3.961	3.908	1.046	.705
2.734	4.129	3.031	•756
4.114	0.266	4.204	2.618
5-860	4.905	1.749	3.186
4.001	.466	0<0	2.320
2.070	•319	1.413	•747
1.596 1.128	•470	1.601	1.353
1.348	2.70	1.795	1.081
2-390	1.439 939	1.197	1.466
553	475	.278	1.731
368	1.947	1,632	.762
2.718	5.05 ś	.630	-,246
1.972	2.05Ô	022	,446
261	-1.911	.073 .877	1.460
262	501	• •	1.680
-960	-1.44(1.745	.673
1.437	•.412	,645 ,982	•521
-•ā48	1.504	1.416	•016
•\$79	1.973	, 8 Ý 4	•912
-619	1.074	-1.413	1:703
1-667	315	-1.991	1.986
	· v = •	- • • • • • •	5 • 10 6

TABLE A-4. CONTINUED

38 PA	45MB		
-719	.91/	110MU	190MB
-2+577	2.797	1.018	838
-2.551	- 469	5.356	-2.899
1-035	-1.501	3.635	-1.727
•473	2.544	-1.501	720
-2.126	•620	242	.049
-1.817	485	.847	749
630	·•.99ú	•724	-1.667
631	984	553	985
991	-1.817	-1.110 -1.147	374
•191	•52 4	679	-•06 <u>9</u>
-1.638	-2.519	-2. 3un	*1.617
-1-310	43.223	-4.162	910
935	.248	-2.191	32Z4
-3-531	43.571	4.756	-5.444
-3.7Rp	~5 ,56₽	•1•857	*2.480
-2.799	697	-2.558	-1.554
-1-897	-1.68 \$	#3. 113	*3.245
-2-389	~1.85	-1.485	-3.640
-4.774	·=3.409	•,342	-2.546
-3.030	259	·2.734	1.085
-1.596	~3.5 2₹	-2.032	•583 •342
#4.474	-4.415	-,955	1.774
-3.024 -1.833	.••\$1 	.500	560
-+422	•01)	+1.040	-1.539
-1.247	-1.617	+2.2vi	930
-2-619	~2.8 65	106	-1.606
-2.447	022	1.5/6	-1.315
-2-410	-102E -585	1.419	1 • 155
-1-556	-1.702	493	1 • 164
-3-159	-3.37ž	-1.9al	988
-3-342	• 171	-3.020	-2.259
-5-050	73.160	-2.098	-4.056
-3.060	79.678	•1•155	-1.986
660	73.044	-2.203	305
114	• 00\$	-3.609	-1.218
-1-295	746	-2.464 951	-1.827
-1-497	948		-1.791
-1-311	•454	•516 •7/3	547
1 • 0 25	∠•02Â	.847	105
1.685	2.582	1,502	564
5.533	2.916	2.200	137
2.100	3.35 ?	2.673	.423
1.447	2.683	2.427	1.125
1-381	3.565	2.655	1.374
2-640	4.089	1.502	.827
2.666	J.135	1.400	•782
1.757 1.237	.721	.765	•206
4-631	4 • 05 6	1.708	.859
		- •	- :

TABLE A-5. V-NORTHWARD WIND, LATITUDE 48 DEGREES NORTH

PRESSURE LEVEL

3848	65MB	110MB	190MB
-604.411	-831.265	-712,526	-385.742
-486.752	-874.426	-193.777	-81.441
-613.683	*592.48 ?	-403.736	-261.201
-343-640	-413.764	-145.310	321 • 135
-704.730	-475.894	~230.6v6	295.078
-491-703	-619.66 <u>6</u>	~523.582 ~924.314	-418·697
-141-254	-648.543	-904.210	-1481-890
-557.167 -36.683	40.477 30 4. 097	-771.458 -901.899	-1620.387 -844.254
301.835	-130.513	-436,444	-361.989
205-650	-183.429	143.989	-45·113
867-365	-178.153	394,509	213.397
724.355	-294.794	772.404	469.396
501.240	744.254	677.145	513.153
445.073	1464.761	397.120	1176.887
1375.282	595.825	687.935	848 • 087
1448-500	390.44	1161.358	444.848
1084 - 148	514.144	774.142	923.960
961-462	1031.45	634.704	821.307
478.212	593 • 6#4	519.524	1113-553
451+066	414.513	460.374	1105+219
80 - 126	-133-149	452.216	696.087
+265.445	-174.805 -67.598	357.2/3 315.1/3	691•907 753•271
366.325 36.363	-25.723	59.921	179.460
-102-392	-485.804	-635,986	-557.694
-104-136	-1054.954	-1117,995	-1516:417
-125.860	-1033.493	-1146,943	-1785.645
-59.508	-1328.565	-1943,244	-2660.673
-111-079	-1170.734	-1942.7-0	-3078-460
-255-376	-474.387	-1967.009	-2876.848
353.263	-351.729	-1571.502	-1719-837
671-149	-530.78 7	-1064-823	-984.758
850-483	37.955	-699,806	-979 · 056
1053-069	-124.76	-305.487 130,3/3	-8]].890 -424.25]
1391-323	684.57 6 1284.97Î	249.910	-94.076
1179.349	1354.37	746.443	268.912
1673,922	1677.170	1205.149	598.889
1887•4 <u>3</u> 3 1860•992	2284.720	1702.496	619.348
2089.671	2594.13	1608.974	704.371
2197.867	1910.204	1248.902	1220.798
2383+460	1835.873	1556,966	1697-694
2093 · GRS	1347.053	1492.023	1500.282
2228.444	1023.354	1050.144	1500 - 337
1716-355	552 - 318	1342.116	1101.839
1434.292	694.409	845,474	641.108
952-845	1143+325	502.110	-88.841
649.276	1398-469	390.550	-704.980

TABLE A-5. CONTINUED

3 8 ×8	6548	110Mb	
306.429	1410.689		190MB
697.756	680.096	-107.157	-706.750
670.744	532.921	-75.65 1	-18 ₀ .947
452-674	472.782	~ 216.759	386.716
308.294	274.764	-228.627	399.611
112-644	-45.462	160.278	459.549
-137-614	366.731	160.632	-36.467
-846.277	-8v.783	32.724	-274.996
-763.742	-261.082	-131.100 -261.676	•71•712
-1344-035	457/.196	-356.218	-244,134
-1572-543	-954.980	-427,145	-130.052
-1518.249	-1200.133	-327,210	-183.271
-1847-635	-1125.577	-214,536	219.192
-2150.495	-1735.146	-270.804	201+106
*2517.429	-1693.208	-011.209	365,473
2590-061	-1662.152	-494.617	517.909
-2791-149	-2073.471	-552.849	887.009
-2904 - 138	-1670.363	-573.942	841.069
-2992.934	-1695.555	-525.454	374+017
-2772.ZA1	-1540.139	-855.731	844+552
-2586.693	-1170.900	-021.046	-550+772
-2349-150	-1094.287		-755.066
-1987.846	-1276.55Ú	-875,519	-839.697
-1928-401	-1336:335	07.4u1	-875.285
-1921-218	-520.471	•55.0û7	-346.730
-1304-946	-14.663	-311.697	235.374
-729.391	-104.229	-410-125	443.498
-315.004	267.291	-619.158	327.041
-130-678	224.685	-503.456	-292:209
571+842	681.687	-147.519	-805.198
775.181	1022.512	863.492	68.313
1430-146	1154.304	1283,740 2087,263	1235.006
1583.210	1244.643	2328,672	2481.412
1551 • 650	1598.029		2994.144
1478.863	1587.386	2103.535	2842 • 665
1388.911	1503.69ú	1682,559	2017.066
1201-544	1244.817	1621.011	1514.583
1296 - 712	611-140	1546.115 1 <u>1</u> 37.572	1634.402
1027.958	213.998	725.761	1403.414
496.394	~152.521	186,306	829.177
-137-563	-432 <i>,</i> 276	-411.401	131.206
-469.981	-641.674	-1041.028	-844.442
-669.639	-1020.229	-1601.526	-1701.844
-685.788	-1023·13 -	-1009,000	-2493.425
-718-139	•953.935	-1750.004	-2668.814
-884.595	-1039.166	-1764.206	-2347.247
-876.221	*733.624	-1358,903	-2232.905
-1081-757	-574,593	-1467,429	-1800.050
-611.0A9	-874,585	-1060.127	-1283.947
-502-657	-790.253	-1031.812	-621.012
	4 · 4 · <u>4</u>	.4414418	-886-615

TABLE A-6. U-EASTWARD WIND, LATITUDE 48 DEGREES NORTH

PRESSURE LEVEL

3848	45MB	110MB	190MB
4191-051	3695.060	2202.276	1103.367
4590-578	3613.063	2469.048	1203.164
4610-937	3497.068	2907.702	1644.852
4676.773	3624.03/	2098.017	1703.184
4567.973	3731.026	2840.213	2138.949
4102-500	3720.035	3046.7/9	2808-137
4464+246	3501.019	3177.4/9	3064.640
4539.383	336y - 325	3057.720	2411.147
3854.515	3960.159	2910.828	2042.460
4444-664 4318-840	4162.36! 3984.288	2506.842 2716.216	2260.941 2267.466
4479.746	3963.67	2882.859	2562.419
5343.664	3594.025	3065.176	2819.876
5192.647	3144.067	3698.800	3065.957
4666.723	4063.049	3565,508	3195.451
4541-629	4796-605	3342.383	3863.169
5328.898	3937.092	3647,417	3514.248
5664.203	4034=045	4127.496	3617,920
5796.195	3970.984	3629,611	3214.307
5792-355	4540.059 4244.075	3781.696 3371.201	3273.964
5438-625 5589-297	4384.410	3373.810	3210.469 2942.233
5300-789	3817.772	3188.098	2336.049
5210-258	3968.682	3146.646	2164.075
5066-730	3998.136	2837.265	1784.018
5430-945	439y.937	2713.700	1675.802
5178-340	4250.145	2702.632	1883.186
5194-062	405/.356	2933.946	1807.865
4970-293	4004.511	5606.878	2080.304
5206.766	3595.062	3057.942	2224.030
4597-623	3337.829	2992.140	1847.512
3969.970	3788.520	2625.573	1379.970
4489.582	3683•422 3609•384	2455,649	1465.031
4570·273 4743·399	3841.531	2328.032 2614.6 41	1647.684 1873.795
4862.469	3600.131	2792.758	1839.949
4762.070	4152.250	3078.266	2287.558
4648.430	4614.043	3532.145	2780.634
5017-059	4601.629	3868,136	3341,533
5084-031	4940.609	4525,901	3877.423
4453.500	5384.973	5162,375	3941.760
4487.566	5801.105	5339,702	4514.332
4423.422	5825.340	5365,422	4981.078
4221.031	5894.590	5785.942	5800.480
4089-597	5780.512 5270.809	5980.535	6129.719
3900•795 4003•517	4710·329	6451.544 6379.215	6747 • 355 6874 • 363
4094•7A1	4831.703	6483.973	7095.297
4031 < 332	4804.219	6244.016	6199.004
-4437E	4444.80%	A	01.4.004

TABLE A-6. CONTINUED

2846		_	
3848	65MB	110MB	190MB
3903.647	5529 008 5274:957	6108,6u2	5379.070
3583 167	5270.95/	5071,145	4875 629
4026.595	4664,937	5451,215	4866.668
4069.925	4614.082	4/71.562	4743,992
4046,124	488u.117	4/31,289	4581.887
3877.883	4420,738	4477.059	4183,168
4471,516	4244 25 <u>4</u>	4533.090	3970.462
4187.023	4336,910	4088 859	3553 830
4175,512	4384,691	4086 204	3403 270
4203,836	4281,105	3808,446	3184 870
3941.530	4390.672	3837,251	3067.562
3594.721	4172,734	3875.948	3005 989
4059.769	4344,008	3985.217	2638 619
4035,893	4553,272	3960 211 4297 707	2420 193
4316,137	4378 559	4297 707	3030.082
4602,340	4734 34 9	4076 901	3014 433
5090,941	4695,387	4337,652	3014,633
5613.215	4868,437	4606,066	3758.838
5674,488	5012.781	4801,109	4215,195
5901.953	4966.129	4824,832	5041,281
6138,465	5006.133	4020,734	5691.352
6269,547	5324.344	4939,645	5492,746
6273,996	5280.406	4752.005	5789.031
6493,336	4714,258	5009.391	5188.766
6201.086	4244.27	5049,941	4698,672
5593.129	4568.576	4703 64-	4170,324
5527,453	4670 995	4701.695	3570.250
5532.184	4521,254	4403 254 3694 554	3587,857
5457.203	4661.590	3572.029	3661.751
5160,367	4328 359	3238 372	3646,537
5275,238	4505.26€	3600 752	2996,985
5115,332	4650,281	3800.752	3219,444
5523,785	4354.569	303,652	3484,450
5472,312	4314.505	4137,844	3744,403
5501.422	4274.785	4198,309	3444,407
5755.848	4487,031	3560,069	2927,966
5269,016	4614.305	3292.734	2615.622
5148,973	4581 561	3110 617	2199,271
5283 162	4581,551 4198,781	3255 199	2374.930
5519,734	3931,562	227 417	5005-036
5471.361	3808.622	3370,012	3408,979
5154,539	3839,253	3255,199 3259,517 3370,812 3458,712 3425,795	3589,806
4896 164	3744,275	U-C-4-173	3564,823
4884,520	3735.020	3270,137	3283,421
4630.812	3524.250	3151.876	2784,330
4729.730	3721,554	3027.184	2353,686
4341,164	3289,562	3082.365	2465,166
4172.578	3857.905	2869,730	2287,109
3928.042	3739.401	3088,435	2201.856
4430.875	3638.02	2375,103	1798,338
4 a fa t 3	2038 466	5463,726	1649,466

TABLE A-7. W-VERTICAL WIND, LATITUDE 72 DEGREES NORTH

PRESSURE LEVEL

38 m	65M8	110MB	190MB
453	460	.519	364
-360	1.251	.101	671
~-151	•822	.201	.773
1.285	.443	.016	.055
.838	•777	. 8 1 8	.435
1-031	•70\$.253	.091
•941	1•31€	.843	.359
•550	• 12 <u>ē</u>	.010	.006
-510	•155	616.	.140
•839	1.020	, 1/28	513
1-325	1.10	.755	.148
1.073	1.074	.742	.358
1•150 •411	1.277	. .	.823
•186	.951 .274	• 440	.862
•168	.152	•543	,414
•365	.036	,215	.292
•323	.109	.018 .410	.107
.683	.236		.505
•777	.579	.232 .439	.327
1-414	.600	417	.196
+391	•752	4.015	.013
-179	117	•216	360 .17 6
261	.555	,302	,319
241	•169	*.155	.001
*97 }	593	•.713	.063
1-578	. 43Ē	, 344	•.27Î
~•334	·=•631	. 067	167
1-159	1.202	.507	555
• 4 <u>ô</u> 0	1.565	.929	400
•490	·ii?	.335	302
• 0.79	019	~. 075	327
142	085	1#3	-,499
169	•172	. 23 4	202
-•877 -•682	· *.5 64		.171
799	61? 226	,049	-,213
735	-,56	125	043
579	-,013	529 131	392
•363	·•.414		.754
369	.072	-,439 -1.006	109
868.5-	-2.399	-,619	
-1-434	027	6.4	174
-1-539	-1.701	••771	-1.893
-+545	-1.850	-,950	944
		- 4 2 - 4	

TABLE A-8. V-NORTHWARD WIND, LATITUDE 72 DEGREES NORTH

PRESSURE LEVEL

			_
38MR	65MB	110MB	190 MB
120.784	184 635 -18 036	151,807	40,631
142,262	_1# 03 <u>0</u>	_300 901 _261 054	.344,986
-206.976	-435 , 93 <u>8</u>	-261.054	-195.428
-592,139	_78b_96º	_670_967	_693,366
.434.655	-424 622	-632,107	_923,878
-635,294	-650.091	_861.189	. 799.626
-169.937	-55a.05l	-725,9/3	-572,424
-44.779	24,421	-725,9/3 98,104	-110.185
108.012	284,901	111,00	-198,100
48,831	-174,670	-473.997	-579.524
-104,118	-336,84]	-623.275	-741.045
.43,896	-326.91×	- 738,860	-778.71 3
-33,282	-544,404	-1004,389	-1027.062
-130,880	-436,984	-518,601	-687.767
-204.307	-270,193	-68 ,097	-86,589
244,138	086	-68,697 97,225	275.770
379,420	64,174	27,535 -92,800	244,558
373,583	-11,674	-92,800	13,850
311,194	-226.892	-135,017	-143.821
321,879	-142,557	159,911	48.652
-83,599	-140.40	60,878	290,794
-331,752	-81,894	-144,376	-77.500
-356,090	-75,930	-105,445	.462,333
-445,598	-201.424	-356 749 -76 732	. 465.752
-631,854	-274 759	-76,732 -83,461 -693,804 -550,909	225,244
-567,776	-422,525	-83,401	281.922
-909,667	-835,261	-273,004	.519.455
-1140,563	-845 26	900,707	.650,605
-1291,974	.913,354	-908 255	-917.322 -908.828
-1027.348	-1144.961	-989,008	-736.024
-968.870	-970.789 -383.654	-769,505 -334,215	-487.160
-602.460	-100.931	-164,559	-351 .266
-280.745 -20.481	180,469		90.886
-20,481	763 369	1000 947	1089,244
732.763	1050 553	937 540	752,622
1193.257	116/ 287	840 191	851.674
1517.582	1720.269	291,789 1000,997 937,540 869,191 1461,143	1449,159
1402.709	1340,70	1262,611	818,953
579.511	576.923	943,000	1410.266
604,509	731,342	1039,992	1095,116
1087.894	871.072	\$60,1v3	574.391
720,860	807.823	900,945	1314,267
602,345	820.055	449	1147,267
485,551	469 265	929 675	1107.010
V V	- - ·	• •	• • •

TABLE A-9. U-EASTWARD WIND, LATITUDE 72 DEGREES NORTH

PRESSURE LEVEL

3 8 PA	68MB	110MB	190MB
1605.425	761.073	-58,928	-152.975
1347-832	741.148	104.196	131.987
1147-000	616.665	64.700	-440.378
1079-320	313.077	-452,921	-896.422
1230.762	324.96	-434,537	-716.778
1099-283	126.370	-462.383	-814.908
1142-675	193.634	-393.755	-872.742
1130+692	320-618	-122,402	-416+574
1421.728	761.824	388,278	100+184
1574-822	970.456	713.196	414.205
1724 - 456	1179.930	1030.285	814 - 607
1633+135	1302.544	1137,922 911,099	821 • 439 393 • 758
1514.207	1330.805	775.201	181 • 884
1492.449	1394.014	429,964	-84.752
1305-206	1174.555 729.031	66.519	-421.633
1350-552	874.819	350,398	2.256
1509-615 1956-993	890.160	246,606	51:702
	1043.232	226,199	-34.825
2146.386 2775.758	1040.079	225.412	-56.270
3097.965	954.66	424.056	204 • 684
3048-129	1220.831	315,744	-42.711
3118.872	1327.332	663.302	814.739
3391.682	1699.296	597,677	210-350
3102.813	1497.202	593.468	79.692
3455.877	1590.055	430,381	-316 • 039
3446.335	1617.975	539,301	5.633
3193-051	1587.011	561,000	-42.511
2789.481	1727.510	909,234	360.391
2064 • 1 05	1489.986	956,719	461.486
1515.898	1240.948	953,325	635.386
1137.942	667.261	455.241	374.086
840-417	610.877	476,234	565 • 017
592.234	410.107 410.653	322.940 259.747	516·374 272·014
730 • 222	604.550	472,046	479.163
754.466	694.505	281.600	48.526
1242.230	1154.915	671,673	638.561
1486.276	916.259	623,930	469.355
1261-499	1049.021	644.022	423.412
1696.564 1479.862	909.683	383,200	-112.971
1506-591	811.700	460.677	-46.320
1449.292	683.054	-56.1×1	-757.967
1212-861	494.274	48,304	-227 - 042
1203.072	651.513	110.771	-158-751

TABLE A-10. COMPUTER PROGRAM FOR CALCULATION OF $\alpha\textsc{-}\mathsf{STATISTICS}$ FROM 3-D GCM WIND DATA.

```
PRINI 2000
PRINT 500
PRINT 200. (SUMW48(J), J=1,4). (AVGW46(K), K=1,4)
PRINT 2050
PRINT 600
PRINT 200, (SUMWP48(J), J=1,4), (AVGWP48(J), J=1,4)
PRINT 3300
PRINT 600
PRINT 200, ((ALP148(I)), J=1,4), (ALP248(1,K),K=1,4), I=1,99)
PRINT 3ª00
PRINT 600
PRINT 200, (CNTA148(J), J=1,4), (CNTA248(K), K=1,4)
PRINI 3700
PRINT 600
PRINT 200, (CUMA148(J), J=1,4), (SUMA248(K), K=1,4)
PRINT 3900
PRINT 600
PRINT 700.(AVGA148(J).J=1.4).(AVGA248(K).K=1.4)
PRINT 4100
PRINT 600
PRINT 200, (CDEVA12(J), J=1.4) . (SDEVA22(K) . K=1.4)
PRINT 4700
PRINT 600
PRINT 200. ((DEVA148(I.J).J=1.4), (DEVA248(I.K).K=1.4), [=1.99)
PRINT AEOD
PRINT 600
PRINT 200, (AVGA12(J) JU=1,4), (AVGA22(K), N=1,4)
PRINT 4700
PRINT 600
PRINT 200. (RG]48(L) +J=1+4) + (RG248(K) +K=1+4)
PRINT 2300
PRINT 600
PRINT 200. ((U72(I,J),J=1,4),(DEVU72(I,K),K=1,4),1=1,45)
PRINT 2400
PRINT 600
PRINT 200, ((V72(1,J),J=1,4),(DEVV72(1,K),K=1,4),1=1,45)
PRINT 2500
PRINT 600
PRINI 200, ((W72(I,J),J=1,4),(DEVW72(I,K),K=1,4),1=1,45)
PRINT 2900
PRINT 600
PRINT 200, (SUMU72(J), J=1,4), (AVGU72(K), K=1,4)
```

21.4

```
PRINT 3000
     PRINT 500
     PRINT 200, (SUMV72(J), J=1,4)+(AVGV/2(K)+K=1,4)
     PRINI 3100
     PRINT AND
     PRINT 200+ (SUMW72(J)+J=1+4)+(AVGW72(K)+K=1+4)
     PRINT 315A
     PRINT 600
     PRINT 200, (CUMWP72(J), J=1,4), (AVGWP/2(,1), J=1,4)
     PRINT 3400
     PRINT AND
     PRINI 200, ((ALP172(144), J=1,4), (ALP2/2(1,K),K=1,4), I=1,45)
     PRINT 3600
     PRINT 600
     PRINT 200, (CNTA 172 (J), J=1,4), (CNTA272 (K), K=1,4)
     PRINI 3800
     PRINT 600
     PRINT 200, (cuma172(J), J=1,4), (SUMA272(K), K=1,4)
     PRINT 4000
     PRINT 600
     PRINT 200. (AVGALT2(J), J=1,4), (AVGA272(K).K=1.4)
     PRINT 4200
      PRINT 600
      PRINT 200. (CDEVA13(J), J=1,4), (SDEVAZ3(K), K=1,4)
      PRINI 4400
      PRINT 600
      PRINT 200. ((DEVA172(I.J))J=1.4). (DEVA272(I.K).K=1.4). [=1.45)
      PRINT AFOR
      PRINT SOO
      PRINI 200 . (AVGA13(J) +U=1+4) . (AVGA23(K) .N=1+4)
      PRINT 4800
      PRINT 600
      PRINT 200. (FG172(L), J=1,4), (HG272(K), K=1,4)
300
      FORMAT (PF15.6)
      FORMAT (1H1 , 29X , #U24# , 56X , #U24STAR#)
     FCRMAT (1H1, 29X, 4V244, 56X, 4V24STAR4)
400
      FORMAT (1H1 .29x . + W24+ , 56x , + W24STAR+)
500
      FORMAT (2 (9X, #3HMB#+) 1X, #65MB#+10X++110MB#+10X++19UMB#) +/)
 600
      FORMAT (1H0.27X. +SLMU24+,55X. +AVGU24+)
 700
     FORMAT (1H .//,2/X. #SUNV24#,55X, #AVGV24#)
 800
      FORMAT (1H .//.27X.45UNW244,55X.44VGW244)
900
      FORMAT (1H ,//,20X, #SUMWP24#,55X, #AVGWP24#)
 950
1200 FORMAT (1H1,27y,+ALP124+,55x,+ALP224+)
                                                               POINTS TAKEN
                             PUINTS TAKEN (A124) ++ 37X++
 1300 FORMAT (140.23X.#
     XA274)*1
```

59.4K-1

```
1400 FORMAT (1H0.30X.+SLM OF A124+,43X+*SUM OF A224*)
1500 FORMAT (THE .ZBY . *AVERAGE UF A124 + 41 A . *AVERAGE OF A224 *)
1000 FORMAT (1H) .77x . #A1245TAR# .54X . #A2245[AK#)
1100 FORMAT (THE . 73x . 45LM OF A1245TAR SQUAMED + 374 . 45LM OF A2245IAR SQUA
    XRFD#)
1800 FCRMAT(1H0+21X+*AVERAGE UF SUM CF A12451AR*+36X+*AVERAGE OF SUM OF
    x A2245TAR#)
190n FOPPAT (1H0.27x.+RC1244,55x.+RG2244)
2000 FORMAT (1H1 . 79X . + U48+ . 56X . + U485TAR+)
210n FORMAT (1H1.29). +V48+,56X. +V485TAR+)
2200 FORMAT (1H1,29x,+W484,56X,+W485TAH+)
2600 FORMAT (1H0.37X.#SLMU48#,55X,#AVGU48#)
2700 FORMAT(1H ,//,27X,45UNV484,55X,4AVGV484)
280n FORMAT (1H .//,2/X, #SUNW48#,55X, #AVGW48#)
2850 FORMAT (1H ,//,26X, #SUNWP48+,55X, #AVGWP46#)
3300 FORMAT (1H1,27X, #ALP148#,55X, #ALP246#)
                                                              POINTS TAKEN (
                           FOINTS TAKEN (A148) 4+37X+4
3500 FORMAT (1H0+23X+#
    XA248) #)
3700 FORMAT (1H0.3Cx. #SLM OF A148 #. 43x #SUM OF A248 #)
3400 FORMAT(1H0.20X.*AVERAGE OF A148*,41A,*AVERAGE OF A248*)
4300 FORMAT (1H] .27X . #A148STAR # .54X . #A2485 [AH#)
4100 FORMAT (1HO, 23x, +SLM OF A148STAR SQUARED +, 37x, +CUM OF A248SIAR SQUA
    XRED#)
4500 FORMAT (1H0.71X. +AVERAGE OF SUM OF A14851AR++36X. +AVERAGE OF SUM OF
    X AZ4BSTARW)
4700 FORMAT (1HC+57x+#RC148#+55x+#RG248#)
2500 FORMAT (1H1 .29X .+U72+ .56X .+U725TAH+)
2400 FORMAT (1H) . 29x . + V72+ , 56x . + V725TAR*)
250n FORMAT(1H),59×.*W72*.56×,*W725TAK*)
2900 FORMAT (1Hp. 27x. #SLMU72#,55x, #AVGU72#)
3000 FORMAT(1H .//.>/X.#SUNV:2#,55X.#AVGV:2#)
310n FORMAT (1H ,//,2/X+#SUNW72#,55X,#AVG#12#)
3150 FORMAT (1H ,//, > 0X+ +SUMMP72++ 55X+ +AVGMP72+)
3400 FORMAT (1H1 .27x . +ALP172+ .55x . +ALP272+)
                                                              POINTS TAKEN (
                            FOINTS TAKEN (A172) + 37X++
360n FORMAT (1Hr. 23X. 4
     XA272)*)
3800 FORMAT (1H0.70X.45LM OF AL724.43X.45UM OF A2724)
4000 FORMAT (1H0.38x. +AVERAGE OF A172+,41X, *AVERAGE OF 4272+)
440n FORMAT(1H1,27X, #A172STAR*,54X, #A2725[AR*)
4200 FORMAT (1HO. 23X. 45LM OF A172STAR SQUARED+,37X. 49UM OF A272SIAR SQUA
     XHED#1
4600 FORMAT (1HO.2] X. +AVERAGE OF SUM OF ALTZSIAR +36X, +AVERAGE OF SUM OF
     x 42725TAR#1
4800 FORMAT (1H0+27X+#86172*+55X,*HG272*)
      STOP
```

```
MFA NOS/BF 1.3
11-16-16-ULIST2B FROM
                              IDA 488 05/23/79
11.16.16.14 VOOD2304 WCRDS - FILE INPUT , DL 04
11-16.16.ULIST. 060.000.0PERATUR.J.0856
11.16.17. ILLEGAL USER NAME.
11.16.17. COPY-BF (TRPUI) CUTPLT)
11-16-19-0P 00007304 WCRDS - FILE OUTPUT , DC 40
                3584 WORDS (
                                    3584 MAX USEU)
11.16.19.MS
                     .113 SEC.
                                        .112 ADJ.
11.16.19.CPA
                    .739 SEC.
                                        .239 AD.I.
11.16.19.10
                   2.430 KWS.
                                        .148 ADJ.
11-16.19.CM
                                    .499
DATE 11/29/79
11.16.19.55
                   1.926 SEC.
11-16-19-PP
              FND CF JUB, **
11,16,19 EJ
***
                      HLISTZB //// END OF LIST ////
****
                      ULIST28 //// END OF LIST ////
```

.

The second second

```
PROGRAM FALL (INPUT.OUTPUT)
      DIMENSION (174(138,4), (48(99,4), 012(45,4), V24(178,4), V48(99,4),
                  V72 (45.4) , W24 (138.4) , W48 (Y9.4) , W72 (45.4) , SUMU24 (4) +
                  SL NU40 (4) + SLMU /2 (4) , SUMV24 (4) , SUMV48 (4) , SUMV72 (4) ,
                  91 MW24 (4) + SLMW48 (4) + SUMW72 (4) + AVGU24 (4) + AVGU48 (4) +
                  AVGU72 (4) +AVGV24 (4) +AVGV48 (4) +AVGV72 (4) +AVGW24 (4) +
     X
                  AVGW40(4) .AVGW72(4) .DEVU24(130,4) .DEVU40(99,4) .
                  DFVU72(45.4). UEVV24(138.4). DFVV48(99.4). DEVV72(45.4).
                  DF VW24 (138.4) .DE VW48 (99.4) .DE VW72 (45.4) .ALP124 (138.4).
                  AI P140(59,4), ALP172(45,4), ALP224(138,4), ALP248(95,4),
                  ALP272 (45+4) +SUMA124 (4) +SUMA148 (4) +SUMA172 (4) +SUMA224 (4)
                  . CUMA248 (4) , SUMA272 (4) , AVGA124 (4) , AVGA148 (4) , AVGA17214) .
     X
                  AUGA224(4) .AVGA248(4) .AVGA272(4) .UEVA124(138.4) .
     X
                  DEVA148(99,4), UEVA172(45,4), DEVA224(130,4),
                  DEVA248(99,4), UEVA272(45,4), SUEVA11(4), SDEVA12(4),
                  SDEVAL3(4), SDEVA21(4), SUL VA22(4), SDEVA23(4), RG124(4),
                  RC14H(4), HG172(4), RG224(4), RG24B(4), PGC/2(4), CNTA124(4),
     X
                  CNTA148(4), CNTA172(4), CNTA224(4), UNTA248(4), UNTA2/2(1);
     X
                  AVGA | 1 (4) + AVGA 12 (4) , AVGA 13 (4) , AVGA 21 (4) + AVGA 22 (4) ,
     X
     X
                  AVGA23(4)
      DIMENSION SAVFUP4 (184,4) + SAVEVS4 (184,4) + SVEVS4 (184,4) + SUMMPS4 (4) +
                  9( HW24 (138,4), AVGWP24 (4) . UEVWP24 (138,4).
     X
     X
                  <4VEU48(99,4),SAVEV48(99,4),SAVEW48(99,4),SUMWP46(4),</p>
                  SI PW48(99,4),AVGWP4R(4),DEVWP48(99,4),SAVEU72(45,4),
     X
                  SAVEV/2(45,4),SAVE#72(42.4),SUMWP72(4),SUBW72(45,4),
     X
                  AVGWD72 (4) .CEVWP72 (45,4)
      CUTOFF IS THE VALUE (IN HADIANS) FOR WHICH ALPHAI
C
           AND ALPHAS CANNOT BE EQUAL TO UN GPEATEH THAN
C
      DATA CUTOFF/ 34/
      00 1 Jal,4
 1
          READ 100. (U24(I.J), I=1.138)
      DO 2 J=1,4
 2
          READ 100. (U48(I.J), I=1,99)
       DO 3 J=1,4
 3
          RCAD 100. (U72(I.J), I=1,45)
       DO 4 J=1.4
          READ 100. (V24(I.J), I=1.138)
       DO 5 Ja1+4
 5
          READ 100. (V48(I,J), I=1,99)
       DO 6 J=1.4
 6
          READ 100. (V72(I.J). I=1.45)
       DO 7 J=194
          READ 100. (WP4(I.J). I=1.138)
 7
```

```
DO 8 J=1,4
 8
          FEAD 100. (W48(I.J). 1=1.99)
      DO 9 J=1 ,4
 9
         FEAD 100. (W72(I.J), I=1,45)
      FORMAT (AFIG. 3)
 100
CCC
     XMIT IPANSFERS THE INITIAL NUMBER OF POINTS TO FACH ELEMENT OF THE
           CAT ARRAYS ASSOCIATED WITH ALPHAL AND ALPHAZ FOR THE
Ċ
           IHRFE DIFFFHENT THETAS
C
      CALL XMTT (_4 , 178 . . CNTA124)
      CALL xMTT (-4, 13H., CNTA224)
      CALL XMTT (-4,99., CNTA148)
      CALL XMTT (-4,99., CNTA248)
      CALL XMTT (-4,45., CNTA172)
       CALL XMTT (-4,45., CNTA272)
 15
      FLAGI=1.
       FLAGZan.
       CALL XMIT (-4.0.5UMU24)
       CALL XMTT (-4.0.SUNV24)
       CALL XMTT (-4, C. SUMW24)
CALL XMTT (-4, C. SUMWP24)
       DO 10 J=1+4
C
C
        LOOPS TO THROUGH 120 COMPUTE THE SUMS. AVENAGES. AND STARS
           NFFRED TO CUMPUTE THE RELD-GERMANS FOR THETA=24 DEGREES
C
          DU 10 I=1.138
              SUMU24(J) = SUMU24(J) + U24(I+J) = SAVEU24(I+J)
              SI MV24 (J) = SLMV24 (J) + V24 (I+J) - SAVF V24 (I+J)
              S::MW24 (J) =SLMW24 (J) +W24 (I,J) -SAVE w24 (1,J)
              SI-MWP24 (J) = SUMWF24 (J) +W24 (L.J) -SUBW24 (I.J)
 10
       CONTINUE
       DC 20 J=1+4
          AVGU24(J) =5UMU24(J) / CNTA224(J)
          AVGV24(J) = CIIMV24(J) / CNTA124(J)
          AVGW24(J) = SIJMW24(J) / CNTA124(J)
          AVGWP24 (L) = SUMMPE4 (J) / CNTA224 (J)
 20
       CONTINUE
       DO 30 J=1.4
          DU 30 I=1.138
              TF(CAVFH7+(I,J) .EG. 0) DEVUZ4(I,J)=UZ4(I,J)-AVGUZ4(J)
              TF(SAVEV2+(I.J) .EQ. 0) DEVV2+(I.J)=V24(1.J)-AVGV24(J)
              IF (SAVFW24(I,J) -EU. 0) DEVW24(I,J)=W24(I,J)-AVGW24(J)
              [F(SURW24(I.J) -EG. n) DEVWP24(I.J)=W24(T.J)-AVGWP24(J)
 30
       CONTINUE
```

The state of the s

```
DC 40 J=1.4
C
     LOOPS AN AND 50 COMPUTE ALPHA1 AND ALPHAZ. DROPPING THOSE
C
            POINTS GPEATER THAN CUTOFF
          DO 40 I=1,138
       IF(ALP174(I,J) .EG. 3.15) GO TO 40
             ALP] 24 (I.J) = ATAN (DEVW24 (I.J) /UEVV24 (I.J))
             JF (ABS (ALP124 (I.J)) .LE. CULUFF) GO TU 46
                 SAVEW24 (I.J) = #24 (T.J)
                 SAVEV24 (I+J) = V24 (I+J)
                 ALp124(I,J)=3.15
                 CNTA124 (L) = CNTA124 (J) -1.
                 FLAG1=1.
 40
      CONTINUE
      DO 50 Jel,4
          DU 50 1=1.138
       IF (ALP224(1.J) .EG. 3.15) GO TO 50
             AI P224 (I.J) =ATAN (DEVWP24 (I.J) /UEVU24 (I.J))
             TF (ARR (ALP224 (I,J)) .LE. CUTOFF) GO TO 50
                 4118W24 (I.J) = N24 (I.J)
                 SAVEU24 (I.J):=U24 (I.J)
                 ALF224(I.J)=3.15
                 CNTA?24 (L) = N [A224 (J) -1.
                 FLAG2=1.
 50
           CONTINUE
C
     IF ANY PRINTS HAVE BEEN DROPPED. RECUMPULE
      IF (FLAG) .EG. ) .CR. FLAG2 .EQ. 1) GO TO 15
      DO 60 J=1.4
DO 60 I=1.138
       IF(ALP174(I.J) .EG. 3.15) GO TO 65
                 SUNA124 (L) =9LMA124 (J) +ALP124 (J.J)
 65
       IF (ALP224(I.J) .EG. 3.15) GO TO 60
                 SUNA224 (L) = SLMA224 (J) + ALP224 (I, J)
      CONTINUE
 60
      DO 70 J=1.4
          AVG4127 (L) = SUMA 124 (J) / CNTA 124 (J)
          (L) 45cATM3/(L) 455AMU2# (L) 45cAAVA
 70
       CONTINUE
       DO 80 J=1,4
          DU An T=1+138
             IF (ALP124 (I.J) .EG. 3.15) GO IU H5
                 DEVA124(I,J):=ALP124(I,J)-AVGA124(J)
 85
              IF (ALF224(I+J) .EG. 3.15) GU (U Ba
                 DEVA224 (I+J) = ALP224 (I+J) - AVGA224 (J)
 80
       CONTINUE
```

```
00 90 J=1.4
          DU 90 [=1.178
             SPEVA11 (J) = SDEVA11 (J) + DEVA124 (I+J) **?
             crevap1(J) = SDEVA21(J) + DEVA224(I, J) + +2
      CONTINUE
  90
      DC 110 J=1.4
          AVGA11(J) = 50EVA11(J) / CNTA124(J)
          4VG42](J)=CDEVA21(J)/CNTA224(J)
      CONTINUE
 110
      00 1<0 g=1.4
          RG174(J) = AVGA11(J) / AVGA124(J) **2
          RG224 (J) = AVGA21 (J) / AVGA224 (J) ##2
      CONTINUE
 120
 125
      FLAG1=n.
      FL467= n.
      CALL XMIT (-4.0.SUNU48)
       CALL XMTT (-4.0. SUNV48)
      CALL XMTT (-4, C, SUN W48)
      CALL XMIT (-4.0.SUMAP48)
C
C
       LOOPS 130 THROUGH 240 COMPUTE THE SUMS. AVEHAGES, AND STARS
           WEED TO CUMPUTE THE REED-GLAMANS FOR THETA=48 DEGREES
      DO 130 U=1.4
          DO 130 Is1,99
             SI MIJ4P(J) =SLMU48(J) +(I48(I+J) =5AVEU48(I+J)
             SI MV4F (J) =SEMV48 (J) +V48 (I.J) =SAVFV48 (1.J)
             S( MW4P (J) = SLMW48 (J) + W4B (I, J) = SAVEW48 (1, J)
             SI MWP48(J) =SUMWP48(J) +W48(I,J) =SUDW48(I,J)
 130
      CONTINUE
      Do 140 J=1.4
          AVG1)48(J) = S(IMU48(J) / CNTA248(J)
          (U) 84 [ATMOX (U) 84 VMUP = (L) 84 VEVA
          AVGW48(J) = SHMW48(J) / CNTA 148(J)
          AVGWP4R(L) =SUMWP48(J)/CNTA748(J)
 140
     CONTINUE
      DO 150 J=1.4
          NO 160 Tal +99
             TF(SAVEU48(I,J) .EQ. 0) DEVU48(I,J)=1)48(T.J)-AVGU48(J)
             TF(SAVEVAH(I.J) .EU. 0) DEVVAB(I.J)=V48(T.J)=AVGV48(J)
             TF (SAVEW48(I.J) .EW. 0) DEVW48(I.J) = W48(T.J) - AVGW48(J)
             TF(SUEWAR(I,J) .EG. O) DEVWP48(I,J)=W48(T.J)=AVGWP48(J)
 150
      CONTINUE
       DC 160 J=1.4
C
      LOOPS 160 AND 170 COMPUTE ALPHAI AND ALPHAZ: CROPPING THOSE
C
           POINTS GREATER THAN CUTOFF
C
```

```
DU 160 Tal.99
      IF (ALPT48(I.J) .EG. 3.15) GO TO 160
             AI P148 (1. J) = ATAN (DEVW48 (I, J) / UEVV48 (I, J))
             IF (ARS (ALMI48 (I.J)) . LE. CUTOFF) GU TO 164
                SAVEW48 (I,J) = #48 (I,J)
                SAVEVAR(I.J)=V48(I.J)
                21.E=(U.I)8419JA
                CNTA148(L) = CN | A148(J) = 1.
                FLAGIEL.
 160
      CONTINUE
      DO 170 J=1,4
          DU 170 [=],99
      IF (ALP248(T.J) .EG. 3.15) GO TC 170
             41 P24 P (I.J) = ATAN (CEVWP48 (I.J) / DEVU48 (1.J))
             IF (ARC (ALM248 (I.J.)).LE. CUTOFF) GU TO 17m
                SURW48(I,J)=W48(I,J)
                5AVEU48(1,J)=U48(1,J)
                ALF248(I.J)=3.15
                CNTA240 (L) = CNTA24R (J) -1.
                FLAG2=1.
 170
      CONTINUE
C
C
     IF ANY PRINTS HAVE BEEN DROPPED. RECUMPULE
      IF (FLAG) .FC. 1 .CR. FLAG2 .EQ. 1) 60 TU 125
      DO 180 J=1,4
         DO 180 T=1.99
      IF(ALP148(1.J) .EG. 3.15) GO TO 185
             SI MA14P (.) = SUMA148 (J) +ALP148 (1+J)
 185
      IF (ALP248(T.J) .EG. 3.15) GO TO 180
             SUMA248 (J) =SUMA248 (J) +ALP248 (1,J)
 180
      CONTINUE
      DO 190 J=1.4
          AVGA148 (U) = SUMA 148 (U) / CNTA 148 (U)
          AVG474R (L) =SUMAZ48 (J) /CNTAZ48 (J)
 190
      CONTINUE
      DO 210 J=1.4
          PU 210 T=1,99
             TF(ALP148(I.J) .EG. 3.15) GO 10 215
                DEVA148(I.J) = ALP148(I.J) - AVGA148(J)
 215
             IF(ALP248(I,J) .EG. 3.15) GO 10 210
                DEVA248 (I+J) = ALP248 (I+J) = AVGA248 (J)
 210
      CONTINUE
      DO 240 :J#1.4
          PP 12 050 UT
             SPEVA12 (J) #50EVA12 (J) +DEVA148 (1, J) ##2
             220 CONTINUE
```

```
DC 230 J=1,4
          AVGA12(J)=SDEVA12(J)/CNTA148(J)
          AVGA22(J) =50EVA22(L)/CNTA248(J)
 230
      CONTINUE
      DO 240 J=1.4
          RG14P(J) = AVGA12(J) / AVGA148(J) **2
          RG248 (J) = AVGA22 (J) / AVGA248 (J) ##2
 240
      CONTINUE
 255
      FLAG1=1.
      FLAGZ=n.
      CALL XMIT (-4.0.SUMU72)
      CALL XMTT (-4.0.SUMV72)
      CALL XMTT (-4.0.SUNW72)
      CALL XMIT (-4.0.SUNWP72)
C
CC
      LOOPS 250 THROUGH 360 COMPUTE THE SUMS, AVEHAGES, AND STARS
           NFERED TO CUMPUTE THE REED-GERMANS FOR THETA=12 DEGREES
C
      DO 250 J≈1,4
          DU 250 7=1,45
             SUMU77 (J) = SUMU72 (J) + U72 (I, J) - SAVEU72 (I) ()
             S(MV7= (J) = SLMV72 (J) + V72 (I, J) - SAVE V72 (I+J)
             SI: MW72(J) = SLMW72(J) + W72(I, J) = 5AVFW72(1,J)
             (L.I) STWOUZ-(L.I) STW+ (L) STAWNUZ= (L) STAWN 12
 250
      CONTINUE
       DO 260 J=1.4
          DO 240 T=1+45
             AVGU72(J)=SLMV72(J)/CNTA272(J)
AVGV72(J)=SLMV72(J)/CNTA172(J)
             AVGW72(J)=SLMW72(J)/CNTA174(J)
             AVGMP72(J)=SUMWP72(J)/CNTA2(2(J)
 260
      CONTINUE
       DC 270 J=1.4
          DO 270 7=1,45
             IF (SAVEU72(I.J) .EW. 0) DEVU72(I.J)=U72(1.J)=AVGU72(J)
             IF(SAVEV72(I,J) .EQ. 0) DEVV72(I,J)=V72(T,J)-AVGV72(J)
             IF (SAVEW72(I+J) .EQ. 0) DEVW72(I+J)=W72(T+J)-AVGW72(J)
             TF(SUPW72(I,J) .EG. 0) DEVWP72(ILJ)=W72(T,J)-AVGWP72(J)
 270
       CONTINUE
CCC
       LOOPS 200 AND 240 COMPUTE ALPHAI AND ALPHAZ. ERCPPING THOSE
         POINTS GREATER THAN CUTOFF
C
```

```
TABLE 10. CONTINUED
      DO 280 J=1,4
          00 280 Tal,45
      IF (ALP172(1.J) .EG. 3.15) GO TO 280
             AI PI73 (I.J) = ATAN (CEVW72 (I.J) /UEVV/2 (I.J)
             IF (ARS (ALP172 (I,J)) .LE. CUIOFF) GU TO ZEO
                SAVEW72(I.J)=W/2(I.J)
                SAVE V72 (I.J) = V72 (I.J)
                ALF172(I+J)≈3.15
                CNTA17> (L) = CN [A172(J) -1.
                FLOGI=1.
 580
      CONTINUE
      DO 240 J=1.4
          00 290 7=1,45
      IF (ALP?72(1.J) .EG. 3.15) GO TC 290
             AL P272 (I.J) = ATAN (DEVWP72 (I.J) / DEVU72 (I.J))
             IF (ARE (ALP272(I,J)). LE. CUTOFF) GU TO 250
                SURW72(I.J)=472(I.J)
                SAVEU72 (1,J) =U72(1,J)
                ALF272(I,J)=3.15
                CMTA272 (L) = CNTA272 (J) -1.
                FL 462=1 .
 290
      CONTINUE
C
C
     IF ANY PRINTS HAVE BEEN DROPPED, RECUMPULE
       IF (FLAG1 .FR. 1 .CR. FLAG2 .EO. 1) GU TU 255
      00 310 J=1,4
          DU 310 I=1.45
       IF (ALP 172 (1.J) .EG. 3.15) GO TO 315
             51'MA172(J) =5UMA172(J) +ALP172(1+J)
 315
      IF (ALP272(1.J) .EG. 3.15) GO TO 310
             (L+1)215q1A+(L)275AMU2=(L)57CAM 12
 310
      CONTINUE
      DO 340 J=1.4
          AVGAT72 (L) = SUMA 172 (J) / CNTA 172 (J)
          AVGA272(J) = SUMA272(J)/CNTA272(J)
 320
      CONTINUE
      DO 330 U=1.4
          DU 330 T=1,45
             TF(ALF172(I.J) .EG.3.15) GU 1U 335
                DEVA172 (1.J) = ALP172 (1.J) - AVGA: /2(J)
 335
             TF (ALF272(I,J) .EG. 3.15) GU 1U 330
                DEVA272 (I.J) =ALP272 (I.J) -AVGA2/2(J)
 330
           CONTINUE
      DO 340 J=1.4
          DU 760 Tal 145
             STEVA13 (J) =50EVA13 (J) +UEVA172 (1+J) ##2
             SHE(0,1) 5158430+ (U) E284303= (U) E484372
 340
      CONTINUE
```

```
DO 3>0 J=1.4
        AVGA13(J)=50EVA13(J)/CNTA172(J)
        (U) STSATADY ( J) ESBEVARB ( L) / CNTARTR ( U)
350
     CONTINUE
     DO 360 J=1.4
        RG175(J) = AVGA13(J) / AVGA172(J) ##2
        RUP77 (J) = AVGA23 (J) / AVGA272 (J) *#2
     CONTINUE
360
     PRINT 370
     PRINT 600
     PRINT 200, ((1)24(I,J),J=1,4),(DEVU24(I,K),K=1,4),i=1,138)
     PRINT 400
     PRINT 600
     PRINT 200. ((V24(I,J),J=1,4),(DEVV24(I,K),K=1,4),1=1,138)
     PRINT 500
     PRINT 600
     PRIN(200, (WP4(I,J),J=1,4), (DEVW24(I,K),K=1,4),I=1,138)
             700
     PRINT
     PRINT SOO
     PRINT 200, (SUMU24(J), J=1,4), (AVGU24(K), K=1,4)
     PRINT POR
     PRINT 600
     PRINT 200, (SUMV24(J), J=1.4), (AVGV24(K), K=1.4)
     PRINT
            900
     PRINT 600
     PRINT 200. (SUMW24(J), J=1,4), (AVGW24(K), K=1,4)
     PRINT 9EO
     PRINT AND
     PRINT 200, (CUMWP24(J), J=1,4), (AVGWP24(J), J=1,4)
     PRINT 1200
     PRINT 600
     PRINT 200+ ((ALP124 (I+J)+J=1+4)+ (ALP224 (1+K)+K=1+4)+I=1+138)
     PRINI 1700
     PRINI 600
     PRINI 200 + (CNTA124 (J) + J=1+4) + (CNTA224 (K) + K=1+4)
     PRIN1 1400
     PRINI 600
     PRINT 200, (CUMA124(J), J=1,4), (SUMA224(K), K=1,4)
      PRINT 1=00
      PRINT 600
     PRINI 200. (AVGA124 (J), J=1,4), (AVGA224 (K), K=1,4)
      PRINT 1700
      PRINI 600
      PRINT 200, (CDEVA11(J), J=1.4) . (SDEVA21(K), K=1.4)
      PRINT 1600
      PRINT 600
      PRINT 200. ((DFVA124(I.J).J=1.4), (DEVA224(I.K).K=1.4), I=1.138
```

```
PRINT 1900
PRINT 500
PRINT 200. (AVGALL(J) +L=1+4) + (AVGAZ) (K) +N=1+4)
PRINT 1900
PRINT 600
PRINT 200, (RG124(L), J=1.4), (RG224(K), Km1.4)
PRINT 2000
PRINT 600
PRINT 200, ((U48(I,J),J=1,4),(DEVU48(I,K),K=1,4),1=1,99)
PRINT 2100
PRINT 600
PRINT 200, ((V48(1.J),J=1.4),(DEVV48(1.K),K=1.4),1=1.99)
PRINT 2200
PRINT 600
PRINT 200. ((W48(I.J).J=1.4).(DEVW48(I.K).K=1.4).1=1.99)
PRINT 2400
PRINT 600
PRINT 200. (SUMU48(J).J=1.4). (AVGU48(K).K=1.4)
PRINT 2700
PRINT AND
PRINT 200. (SHMV48(J).J=1.4). (AVGV48(K).K=1.4)
```

*U.S. GOVERNMENT PRINTING OFFICE : 1980 0-721-894/288

END

DATE FILMED

DTIC