Ergodic Theory

Ergodicity describes the phenomenon that the time average of one relization (sample path) of stationary process converges to the expectation of it at t=0. It transforms a probabilistic problem to a deterministic problem.

The general ergodicity properties of Gaussian processes can be inferred already from its covariance function.

Ergodicity is the equivalence of

$$\mathbb{E}(x) = \int_{\Omega} x(\omega) dP(\omega) \qquad rac{1}{n} \sum_{1}^{n} x(T^{k-1}\omega)$$

Ergodic Theorem in \mathcal{L}^2

Ergodic Example in \mathcal{L}^2

 $\{x(t)\}$ is a stationary stochastic process with covariance function r(t). Then if $\mathbb{E}(x(t))=0$,

$$rac{1}{T}\int_0^T r(t)\mathrm{d}t o 0 \quad ext{implies} \quad rac{1}{T}\int_0^T x(t)\mathrm{d}t \stackrel{q\cdot m}{ o} 0$$

as $T o \infty$.

Continuity at t = 0

If the spectral distribution F is a step function and the spectral representation $x(t)=\int e^{i\omega t}dZ(\omega)$ is available:

$$egin{aligned} \lim_{T o\infty}rac{1}{T}\int_0^T r(t)e^{-i\omega_k t}\mathrm{d}t &= \Delta F_k \ \lim_{T o\infty}rac{1}{T}\int_0^T \left|r(t)
ight|^2\mathrm{d}t &= \sum_k \left(\Delta F_k
ight)^2 \ \lim_{T o\infty}rac{1}{T}\int_0^T x(t)e^{-i\omega_k t}\mathrm{d}t &= \Delta Z_k \end{aligned}$$

- If the spectral distribution is continuous at t=0, then $\frac{1}{T}\int_0^T r(t)\mathrm{d}t \to 0$ and hence implies ergodic;
- If the spectral distribution is discontinuous at t=0, then $\frac{1}{T}\int_0^T r(t)\mathrm{d}t \to \Delta F_k$ and hence implies non-ergodic.

Non-Ergodic Example in \mathcal{L}^2

Suppose $\omega_k>0$, $x(t)=\sum_k A_k\cos(\omega_k t+\phi_k)$. Then, for $x(t)^2$

- ullet $\mathbb{E}(x(0)^2) = \sum \mathbb{E}(A_k^2/2)$
- $ullet rac{1}{T}\int_0^T x(t)^2 dt
 ightarrow \sum_k A_k^2/2
 eq \sum_k \mathbb{E}(A_k^2/2)$

Stationarity and Transformation

In this part, stationarity means strictly stationary.

Measure Preserving Transformation: $P\left(T^{-1}A\right) = P(A)$ for all $A \in \mathscr{F}$, then T is measure preserving transformation and P is invariant.

From measure presering transformation to a stationary sequence

Take a random variable $x(\omega)$ on $(\Omega, \mathcal{F}, \mathbb{P})$ and T is measure presering. Let $x_k(\omega) = x(T^{k-1}\omega)$ and then the sequence is strictly stationary.

From stationary sequance to a measure presering transformation

The *shift transformation* $T: T\omega = (x_2, x_3, \cdots)$ is a measure preserving transformation, if $\{x_k\}$ is a strictly stationary sequence.

The Ergodic Theorem(Transformation View)

In this part, we want to explore the ergodic theorem in the transformation view. For a fixed initial outcome ω , the time average

$$rac{1}{n}\sum_{1}^{n}x\left(T^{k-1}\omega
ight)$$

With the relationship of measure preserving transformation and strictly stationary sequence, what we care about is

$$S_n/n = rac{1}{n} \sum_1^n x_k$$

As the form suggested, this is the law of large numbers in stochastics process.

Invariant Set/r.v & Ergodic Transformation

Consider $(\Omega, \mathcal{F}, \mathbb{P})$ and measure preserving transformation $T: \Omega \to \Omega$

Invariant set $A \in \mathscr{F}$: $T^{-1}A = A$

Family of invariant sets \mathscr{S} : $\mathscr{J} = \{\text{invariant sets } A \in \mathscr{F}\}$

Invariant random variable $x \in (\Omega, \mathscr{F}, \mathbb{P})$: $x(\omega) = x(T\omega) \ a. \ s. \Leftrightarrow x \in \mathscr{S}$

<u>Note</u>: The equivalent definition of invariant random variable links it to invariant sets.

Ergodic: A measure preserving transformation T on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is called $ergodic \Leftrightarrow \forall A \in \mathscr{S} = \mathbb{P}(A) = 0, 1 \Leftrightarrow$ every (bounded) invariant random variable x is a.s. a constant.

<u>Note</u>: For measure preserving transformation, such limit S_n/n always exist. The next question is what the limiting distribution or limiting value it is.

Brikhoof Ergodic Theorem

Let T be a measure preserving transformation on (Ω, \mathscr{F}, P) . Then, for any random variable x with $E(|x|)<\infty$

$$\lim_{n o\infty}rac{1}{n}\sum_{0}^{n-1}x\left(T^{k}\omega
ight)=E(x\mid\mathscr{J}),a.\,s$$

Note: This implies the limiting behavior depends on initial state.

Measure Preserving Ergodic Transformation

If T is additionally ergodic, then

$$\lim_{n o\infty}rac{1}{n}\sum_{0}^{n-1}x\left(T^{k}\omega
ight)=E(x),a.\,s$$

Infinite Expectation

If x is non-negative with $\mathbb{E}(x)=\infty$ then $S_n/n \to \infty$ if T is ergodic.

Ergodic Non-Random Walks

Take a set $A \in F$ and consider its indicator function $\chi_A(\omega)$. If T is ergodic,

$$rac{1}{n}\sum_{0}^{n-1}\chi_{A}\left(T^{k}\omega
ight)\overset{a.s.}{
ightarrow}P(A)$$

The Ergodic Theorem(Process View)

Stationary Sequence

Let $\{x_n\}$ be a strictly stationary sequence

Invariant set
$$A \in \mathscr{F}$$
: $A = \{(x_n, x_{n+1}, \ldots) \in B\}, n \geq 1, b \in \mathscr{B}_{\infty}$

Family of invariant sets \mathscr{S} : $\mathscr{J} = \{\text{invariant sets } A \in \mathscr{F}\}$

Invariant random variable $\phi \in (\mathbb{R}^{\infty}, \mathscr{B}_{\infty})$: $z = \phi(x_n, x_{n+1}, \ldots), n \geq 1$

Ergodic: The sequence is called $ergodic \Leftrightarrow \forall A \in \mathscr{S} = \mathbb{P}(A) = 0, 1$.

Ergodic Theorem

1. If $\{x_n, n \in \mathbb{N}\}$ is a stationary sequence with $E(|x_1|) < \infty$, and \mathscr{J} denotes the σ -field of invariant sets, then

$$rac{1}{n}\sum_{1}^{n}x_{k}\overset{a.s.}{
ightarrow}E\left(x_{1}\mid\mathscr{J}
ight),a.s$$

2. If $\{x_n, n \in \mathbb{N}\}$ is stationary and ergodic, then

$$rac{1}{n}\sum_{1}^{n}x_{k}\overset{a.s.}{
ightarrow}E\left(x_{1}
ight) ,a.\,s$$

Transitivity

If $\{x_n, n \in \mathbb{N}\}$ is stationary and ergodic, and $\phi(x_1, x_2, \ldots)$ is measurable on $(\mathbb{R}^{\infty}, \mathscr{B}_{\infty})$, then the process $y_n = \phi(x_n, x_{n+1}, \ldots)$ is also stationary and ergodic.

Stationary Process

For continuous time processes $\{x(t), t \in \mathbb{R}\}$, the *shift transformation* $U_{ au}$ is

$$\left(U_{ au}x
ight)(t)=x(t+ au)$$

Measure preserving transformation: If x(t) is strictly stationary.

Invariant set B: If $\mathbb{P}(B \neq U_{\tau}B) = 0$

Family of invariant sets \mathscr{S} : $\mathscr{J} = \{\text{invariant sets } A \in \mathscr{F}\}$

Ergodic: The process is called *ergodic* $\Leftrightarrow \forall A \in \mathscr{S} = \mathbb{P}(A) = 0, 1$.

Ergodic Theorem

1. For any stationary process $\{x(t), t\in \mathbb{R}\}$ with $E(|x(t)|)<\infty$ and integrable sample paths, as $T\to\infty$

$$rac{1}{T}\int_0^T x(t)\mathrm{d}t \overset{a.s.}{ o} E(x(0)\mid \mathscr{J})$$

2. If further $\{x(t), t \in \mathbb{R}\}$ is ergodic, then

$$rac{1}{T}\int_0^T x(t)\mathrm{d}t \overset{a.s.}{ o} E(x(0))$$

Ergodic Gaussian Sequences and Processes

Ergodicity for Gaussian stationary processes is characterized by their covariance function r(t) in continuous or discrete time.

Ergodicity for Gaussian stationary processes

Let $\{x(t),t\in\mathbb{R}\}$ be stationary and Gaussian with E(x(t))=0 , V(x(t))=1 and covariance function r(t).

```
1. x(t) is ergodic \Leftrightarrow F(\omega) is continuous everywhere.
2. If r(t) \to 0 as t \to \infty, then x(t) is ergodic.
```

Note: A sufficient condition is $f(\omega)$ exists. That means $F(\omega)=\int_{-\infty}^{\omega}f(x)\mathrm{d}x$ is continuous.

Reference

• Stationary Stochastic Processes: Theory and Applications