

<SOF-SID10...SID0-RTR-IDE-r0-DLC3...0-DATABYTE1...DATABYTEn-CRC15...CRC1-CRCDEL-ACK-ACKDEL-EOF7...EOF1-IFS3...IFS1>

bits	Description		
SOF	Start Of Frame (always 0)		
SID10 & SID9	Priority (00: highest 11: lowest priority)		
SID8SID1	Address		
SID0	Always 0		
RTR	Remote Transmit Request		
IDE	Identifier Extension (always 0)		
r0	reserved (always 0)		
DLC3DLC0	Data Length Code (08)		
Databyte1	Command		
Databyte2	Parameter		
Databyte3	Parameter		
Databyte4	Parameter		
Databyte5	Parameter		
Databyte6	Parameter		
Databyte7	Parameter		
Databyte8	Parameter		
CRC15CRC1	Cyclic Redundancy Checksum		
CRCDEL	CRC Delimiter (always 1)		
ACK	Acknowledge slot (transmit 1 readback 0 if received correctly)		
ACKDEL	Acknowledge Delimiter (always 1)		
EOF7EOF1	End Of Frame (always 1111111)		
IFS3IFS1	InterFrame Space (always 111)		

The input module can transmit the following messages:

- Input status
- Module type
- Bus error counter status (Build 0649 or higher)
- Module status
- First, second and third part of the input name
- Memory data
- Memory data block (4 bytes) (Build 0736 or higher)

The input module can receive the following commands:

- Update LEDs
- Clear LEDs
- Set LEDs
- Blink LEDs slowly
- Blink LEDs fast
- Blink LEDs very fast
- Module type request
- Bus error counter status request (Build 0649 or higher)
- Module status request
- Input name request
- Read memory data
- Memory dump request (Build 0736 or higher)
- Write memory data

Transmits the input status:

```
SID10-SID9 = 00 (highest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 4 databytes to send
DATABYTE1 = COMMAND_PUSH_BUTTON_STATUS (H'00')
DATABYTE2 = Input contacts just closed (1 = just closed)
DATABYTE3 = Input contacts just opened (1 = just openend)
DATABYTE4 = Input contacts closed for a long period (1 = longer than 0.85s closed)
```

Transmits the module status:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 5 databytes to send
DATABYTE1 = COMMAND_MODULE_STATUS (H'ED')
DATABYTE2 = Input switches status (1 = closed)
DATABYTE3 = LEDs continuous on status (1 = LED on)
DATABYTE4 = LEDs slow blinking status (1 = LED slow blinking)
DATABYTE5 = LEDs fast blinking status (1 = LED fast blinking)
```

Remarks:

The continuous on bit overrides the blinking modes.

If the slow and fast blinking bits for a LED are both on, the LED blinks very fast.

Transmits the module type:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 7 databytes to send
DATABYTE1 = COMMAND_MODULE_TYPE (H'FF')
DATABYTE2 = 6_CHANNEL_INPUT_MODULE_TYPE (H'05')
DATABYTE3 = LEDs continuous on status (1 = LED on)
DATABYTE4 = LEDs slow blinking status (1 = LED slow blinking)
DATABYTE5 = LEDs fast blinking status (1 = LED fast blinking)
DATABYTE6 = Build year (Build 0649 or higher)
DATABYTE7 = Build week (Build 0649 or higher)
```

Remarks:

The continuous on bit overrides the blinking modes.

If the slow and fast blinking bits for a LED are both on, the LED blinks very fast.

Transmits the first part of the input name:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 8 databytes to send
DATABYTE1 = COMMAND_INPUT_NAME_PART1 (H'F0')
DATABYTE2 = Input bit number ('00000001' = Input 1 / '00100000' = Input 6)
DATABYTE3 = Character 1 of the input name
DATABYTE4 = Character 2 of the input name
DATABYTE5 = Character 3 of the input name
DATABYTE6 = Character 4 of the input name
DATABYTE7 = Character 5 of the input name
DATABYTE8 = Character 6 of the input name
```

Transmits the second part of the input name:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 8 databytes to send
DATABYTE1 = COMMAND_INPUT_NAME_PART2 (H'F1')
DATABYTE2 = Input bit number ('00000001' = Input 1 / '00100000' = Input 6)
DATABYTE3 = Character 7 of the input name
DATABYTE4 = Character 8 of the input name
DATABYTE5 = Character 9 of the input name
DATABYTE6 = Character 10 of the input name
DATABYTE7 = Character 11 of the input name
DATABYTE8 = Character 12 of the input name
```

Transmits the third part of the input name:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 6 databytes to send
DATABYTE1 = COMMAND_INPUT_NAME_PART3 (H'F2')
DATABYTE2 = Input bit number ('00000001' = Input 1 / '00100000' = Input 6)
DATABYTE3 = Character 13 of the input name
DATABYTE4 = Character 14 of the input name
DATABYTE5 = Character 15 of the input name
DATABYTE6 = H'FF'
```

Remarks: Unused characters contain H'FF'.

Transmits the memory data:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 4 databytes to send
DATABYTE1 = COMMAND_MEMORY_DATA (H'FE')
DATABYTE2 = High memory address (must be H'00')
DATABYTE3 = LOW memory address (H'00'...H'7F')
DATABYTE4 = memory data
```

Transmits memory data block (4 bytes) (Build 0736 or higher):

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address of the module
RTR = 0
DLC3...DLC0 = 4 databytes to send
DATABYTE1 = COMMAND_MEMORY_DATA_BLOCK (H'CC')
DATABYTE2 = High start address of memory block (must be H'00')
DATABYTE3 = LOW start address of memory block (H'00'...H'FF')
DATABYTE4 = memory data1
DATABYTE5 = memory data2
DATABYTE6 = memory data3
DATABYTE7 = memory data4
```

Transmit: Bus error counter status (Build 0649 or higher)

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 4 databytes to send
DATABYTE1 = COMMAND_BUSERROR_COUNTER_STATUS (H'DA')
DATABYTE2 = Transmit error counter
DATABYTE3 = Receive error counter
DATABYTE4 = Bus off counter
```

'Update LED status' command received:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 4 databytes received
DATABYTE1 = COMMAND_UPDATE_LED_STATUS (H'F4')
DATABYTE2 = LED continuous on status (1 = LED on)
DATABYTE3 = LED slow blinking status (1 = LED slow blinking)
DATABYTE4 = LED fast blinking status (1 = LED fast blinking)
```

Remarks

The continuous on bit overrides the blinking modes.

If the slow and fast blinking bits for a LED are both on, the LED blinks very fast.

'Clear LED' command received:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 2 databytes received
DATABYTE1 = COMMAND_CLEAR_LED (H'F5')
DATABYTE2 = LEDs to clear (a one clears the corresponding LED)
```

'Set LED' command received:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 2 databytes received
DATABYTE1 = COMMAND_SET_LED (H'F6')
DATABYTE2 = LEDs to set (a one sets the corresponding LED)
```

'Slow blinking LED' command received:

```
SID10-SID9 = 11 (lowest priority)
SID8...SID1 = Address set by hex switches
RTR = 0
DLC3...DLC0 = 2 databytes received
DATABYTE1 = COMMAND_SLOW_BLINKING_LED (H'F7')
DATABYTE2 = LEDs to blink slow (1 = slow blinking)
```

'Fast blinking LED' command received:

```
SID10-SID9 = 11 (lowest priority)

SID8...SID1 = Address set by hex switches

RTR = 0

DLC3...DLC0 = 2 databytes received

DATABYTE1 = COMMAND_FAST_BLINKING_LED (H'F8')

DATABYTE2 = LEDs to blink fast (1 = fast blinking)
```

'Very fast blinking LED' command received:

```
SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address set by hex switches
   RTR = 0
   DLC3...DLC0 = 2 databytes received
   DATABYTE1 = COMMAND VERYFAST BLINKING LED (H'F9')
   DATABYTE2 = LEDs to clear (1 = \text{very fast blinking})
'Module status request' command received:
   SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address set by hex switches
   RTR = 0
   DLC3...DLC0 = 2 databytes received
   DATABYTE1 = COMMAND MODULE STATUS REQUEST (H'FA')
   DATABYTE2 = Input channel bit numbers (B'001111111')
'Module type request' command received:
   SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address set by hex switches
   RTR = 1
   DLC3...DLC0 = 0 databytes received
'Bus error counter status request' command received: (Build 0649 or higher)
   SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address set by hex switches
   RTR = 0
   DLC3...DLC0 = 1 databytes to send
   DATABYTE1 = COMMAND_BUS_ERROR_CONTER_STATUS_REQUEST (H'D9')
'Input name request' command received:
   SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address set by hex switches
   RTR = 0
   DLC3...DLC0 = 2 databytes received
   DATABYTE1 = COMMAND INPUT NAME REQUEST (H'EF')
   DATABYTE2 = Input number (B'00000001' = Input 1 ... B'00100000' = Input 6)
'Read data from memory' command received:
   SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address set by hex switches
   RTR = 0
   DLC3...DLC0 = 3 databytes received
   DATABYTE1 = COMMAND READ DATA FROM MEMORY (H'FD')
   DATABYTE2 = High memory address (must be H'00')
   DATABYTE3 = LOW memory address (H'00'...H'7F')
'Memory dump request' command received (Build 0736 or higher):
   SID10-SID9 = 11 (lowest priority)
   SID8...SID1 = Address of the module
   RTR = 0
   DLC3...DLC0 = 1 databytes received
   DATABYTE1 = COMMAND MEMORY DUMP REQUEST (H'CB')
'Write data to memory' command received:
   SID10-SID9 = 11 (lowest priority)
    SID8...SID1 = Address set by hex switches
   RTR = 0
   DLC3...DLC0 = 4 databytes received
   DATABYTE1 = COMMAND WRITE DATA TO MEMORY (H'FC')
   DATABYTE2 = High memory address (must be H'00')
   DATABYTE3 = LOW memory address (H'00'...H'7F')
   DATABYTE4 = memory data to write
```

Remark: Wait at least 10ms for sending a next command on the velbus.

Memory map:

Address	Contents	Address	Contents
H'0000'H'000E'	Name of input 1	H'000F'	Response time for input 1
H'0010'H'001E'	Name of input 2	H'001F'	Response time for input 2
H'0020'H'002E'	Name of input 3	H'002F'	Response time for input 3
H'0030'H'003E'	Name of input 4	H'003F'	Response time for input 4
H'0040'H'004E'	Name of input 5	H'004F'	Response time for input 5
H'0050'H'005E'	Name of input 6	H'005F'	Response time for input 6

A maximum of 15 characters can be stored for every input name. Unused characters contain H'FF'.

Valid response times are:

• H'05': 65ms

• H'4C': 1s

• H'99': 2s

H'E0': 3s