مقدار
$$y(\circ/1)$$
 با استفاده از روش رانگ– کوتای مرتبه چهارم $\begin{cases} y'=x+y \\ y(\circ)=1 \end{cases}$ مقدار (۰/۱) با استفاده از روش رانگ– کوتای مرتبه چهارم

و ۱/۰ $h=\circ$ کدام است؟

- (الف) ۱/۱۱۵
- (ب) ۱/۱۳۵
- (ج) ۵۰۲۱/۱
- 1/11088 (2)

۲. مقدار
$$y(\circ, t)$$
 و $y(\circ, t)$ از معادلهی $y'=x+y$ با شرایط اولیهی $y(\circ, t)=y(\circ, t)$ با استفاده از روش تیلور مرتبه دوم کدام است؟

$$y(\circ/\mathsf{N}) = \circ/\circ \mathsf{N}, y(\circ/\mathsf{N}) = \circ/\circ \mathsf{N}$$
 (الف)

$$y(\circ/) = \circ/\circ \circ \Delta, y(\circ/) = \circ/\circ \iota$$
 (ب)

$$y(\circ \wedge) = \circ / \circ \circ \Delta, y(\circ \wedge) = \circ / \circ \land \Delta$$
 (7)

$$y(\circ/1) = \circ/\circ \circ \Delta, y(\circ/1) = 1/\circ \circ \Delta$$
 (3)

۳. خطای فرمول
$$f'(x) pprox rac{f(x+h) - f(x-h)}{ orall h}$$
 کدام است؟

- $\mathcal{O}(1)$ (الف)
- $\mathcal{O}(h)$ (ب)
- $\mathcal{O}(h^{\mathsf{Y}})$ (τ)
- $\mathcal{O}(h^{\mathsf{r}})$ (s)

$$x_1$$
 جنانچه مقدار تابع f در نقاط x_1 و x_1 به ترتیب برابر با f_0 و f باشد. مقدار $f(rac{x_0+x_1}{2})$ با استفاده از درونیابی f و کدام است f .

- $\frac{1}{7}(f_{\circ}+f_{1})$ (الف)
- $\frac{x_{\circ}f_{1}+x_{1}f_{\circ}}{x_{\circ}+x_{1}}$ (ب)
- $\frac{x \cdot f \cdot + x \cdot f \cdot}{x \cdot + x \cdot}$ ($\underbrace{\tau}$)
- (د) تعدا نقاط برای محاسبه کافی نیست.

جدول مقادیر زیر مفروض است:

برای ۱/۰ و $x \leq x \leq 0$ و $x \leq f''(x)$. در این صورت کدام یک از عبارتهای زیر در مورد انتگرال f''(x) و $x \leq 0$ صحیح است؟

$$\circ$$
/۴۹ $\circ < I < \circ$ /۴۹۲ (الف)

$$\circ$$
/۲۸۸ $< I < \circ$ /۲۹ \circ (ب)

$$^{\circ}$$
۱۲۹۲ $^{\circ}$ $^{\circ}$ ۲۹۲ $^{\circ}$

$$\circ$$
/466 $I < \circ$ /471 (2)

و. با داشتن نقاط $(x_\circ,f_\circ),\cdots,(x_0,f_\circ)$ و با فرض $x_i+1=x_i+1$ اگر درونیابی مقدار تابع در $x=x_\circ+\alpha h$ از چند جملهای درونیاب استفاده کنیم و فرض کنیم ماکزیمم $x_i+1=x_i+1$ برابر با $x_i+1=x_i+1$ برابر با $x_i+1=x_i+1$ برابر با $x_i+1=x_i+1$ برابر با کدام گزینه است

$$\left| \frac{h^{2}}{\Delta!} \alpha(\alpha - 1) \cdots (\alpha - \Delta) \right| M$$
 (الف)

$$\left| \frac{h^{\delta}}{\delta!} \alpha (\alpha - 1) \cdots (\alpha - \delta) \right| M^{\delta}$$
 (φ)

$$\left|\frac{h^{\varsigma}}{\varsigma!}\alpha(\alpha-1)\cdots(\alpha-\Delta)\right|M$$
 (5)

 $\frac{1}{6}hM$ (c)

۷. محاسبه انتاگرال $I=\int_{\gamma\gamma}^{\gamma\gamma}e^xdx$ با استفاده از قاعده ذوزنقه خواسته شده است. در صورتیکه بخواهید قدر مطلق ماکزیمم خطای حاصل از محاسبه این انتگرال کمتر از $^{\circ}$ باشد. ماکزیمم مقدار گام h برابراست با

$$e^{-\gamma}$$
 × ۱۰ (الف)

$$e^{-1/4} \times 1 \circ^{-1} (\downarrow)$$

$$e^{-\gamma\gamma}$$
 × ۱۰^{-۲} (ج)

$$e^{-1/7} \times 1 \circ^{-7}$$
 (s)

۸. اگر درونیابی دادههای زیر از چند جملهای لاگرانژ، $L_k(x)$ نژ، $L_k(x)$ استفاده کنیم. در این صورت $L_k(x)$ کدام است؟

- (الف) ۵
- (ب) ۵٫۳
- (ج) ۶۳
- (د) صفر

۹. با توجه به مقادیر داده شده، مقدار تقریبی تابع در $x=\mathbf{r}$ ، کدام است؟

$$\frac{x_i \mid \circ \quad \forall \quad \forall \quad \forall}{f(x_i) \mid \forall \quad \land \quad \forall \quad }$$

- $\frac{x^{\mathsf{r}}-\mathsf{r}x^{\mathsf{r}}-x+\mathsf{r}}{\mathsf{r}}$ (الف)
- $\frac{x^{\mathsf{r}}-\mathsf{r}x^{\mathsf{r}}+\mathsf{r}x}{\mathsf{r}}$ (ب)
 - $\frac{x^{\mathsf{r}}-x}{9}$ (ج)
 - $\frac{x^{r}-1}{7}$ (2)

برای تابع $x_\circ=\Lambda$ ۱، مقدار خطا در محاسبه $\sqrt{9}$ با استفاده از درونیابی لاگرانژ با در نظر گرفتن نقاط ۱۲۱ $x_\circ=\Lambda$ ۱، مقدار خطا در محاسبه $x_\circ=\Lambda$ ۱، برای تابع حداکثر کدام است؟

$$1/\Delta\Delta \times 1 \circ^{-7}$$
 (الف)

آزمون پایان ترم (بخش تستی) تاریخ آزمون: ۱ تیر ۱۴۰۲ مدت آزمون: ۴۰ دقیقه صفحهٔ ۳ از ۱

- (ب) ۳°-۰۱ × ۱۸۷۵
- γ ۸۵ \times ۱۰ $^{-\pi}$ (ج)
- $4/7 \times 1^{\circ}_{-4}$ (7)

لطفاً، پاسخ سوالات را در جدول ذیل درج کنید.

سوال ۱۰	سوال٩	سوال۸	سوال٧	سوال8	سوال۵	سوال4	سوال۳	سوال۲	سوال۱

موفق باشید سربازی آزاد و حسین قربان