Бібліотека моделей апаратів технологічних процесів

Ім'я:	TechApp
Засновано:	жовтень 2005р
Версія:	0.9.0
Cmamyc:	Відкритий (GPL)
Автор:	Роман Савоченко, Максим Лисенко, Ксенія Яшина
Onuc:	Надає бібліотеку моделей технологічних апаратів.
Адреса:	БД у файлі: SQLite.LibDB.techApp (oscadalibs.db.gz)

Показник

<u>Бібліотека моделей апаратів технологічних процесів</u>	1
Про бібліотеку	
<u> 1 Концепція</u>	2
<u> 2 Склад бібліотеки</u>	4
Затримка (lag) <1.2>	4
<u>Шум (2 гарм. + випадк.) (noise) <3.5></u>	4
<u> Шаровий кран (ballCrane) <1.4></u>	
<u>Сепаратор (separator) <14></u>	5
Клапан (klap) <19.5>	6
Затримка (чиста) (lagClean) <2.9>	7
Котел: барабан (boilerBarrel) <30.5>	
Котел: топка (boilerBurner) <50.5>	8
Мережа (навантаження) (net) <13>	10
<u>Джерело (тиск) (src_press) <12></u>	_
Повітряний холодильник (cooler) <16.5>	10
Компресор газовий (compressor) <12>	
<u>Джерело (витрати) (src_flow) <2.2></u>	
<u>Труба-база (ріреВаse) <11.5></u>	
Труба 1->1 (pipe1_1) <36.5>	13
Труба 2->1 (pipe2_1) <26>	
<u>Труба 3->1 (ріре3_1) <36></u>	
Труба 1->2 (pipe1_2) <25.5>	15
Труба 1->3 (pipe1_3) <36.5>	16
Труба 1->4 (pipe1_4) <47.5>	
Виконавчий мех. клапану (klapMech) <3>	17
<u>Діафрагма (diafragma) <14></u>	
Теплообмінник (heatExch) <28.4>	

Про бібліотеку

Бібліотека створюється для надання моделей апаратів технологічних процесів. Бібліотека не ϵ статичною, а будується на основі модуля JavaLikeCalc, який дозволяє створювати обчислення на мові яка нагадує Java.

Для адресації до функцій цієї бібліотеки можна використати статичну адресу виклику "DAQ.JavaLikeCalc.lib techApp.{Func}()" динамічну

"SYS.DAQ.JavaLikeCalc["lib_techApp"]["{Func}"].call()",

"SYS.DAQ.JavaLikeCalc["lib techApp"].{Func}()". Де *{Func}* — ідентифікатор функції у бібліотеці.

Під'єднати бібліотеку до проекту станції OpenSCADA можна шляхом завантаження вкладеного файлу БД, розташування його у директорії БД проекту станції та створення об'єкту БД для модуля БД "SQLite", вказавши файл БД у конфігурації.

Для кожної функції відбувалося оцінювання часу виконання. Вимірювання відбувалося на системі з наступними параметрами: Athlon 64 3000+ (2000МГц) та ALTLinux 5.1-32біт шляхом виміру загального часу виконання функції при виклику її 1000 разів. Вибірка відбувалася по найменшому значенню з п'яти обчислень. Час розташовується у кутових дужках та вимірюється мікросекундами.

1 Концепція

У основі моделі кожного апарату лежить обчислення витрат на вході та тиску на виході виходячи із тиску на вході та витрат на виході. В цілому, моделі апаратів технологічних процесів описуються різничними рівняннями для дискретних машин.

На основі функцій цієї бібліотеки можна легко та швидко будувати моделі технологічних процесів у модулі BlockCalc шляхом поєднання блоків згідно з технологічною схемою. Приклад поєднання частини апаратів технологічної схеми наведено на рис. 1.

Рис. 1. Приклад блочної схеми технологічного процесу.

У основі моделі будь якого апарату ТП лежать дві основні формули, а саме формула витрат та тиску середовища. Канонічна формула витрат середовища для перетину труби або прохідного перетину звуження має вигляд (1).

$$F = S * \sqrt{Qr * \Delta P} \quad (1)$$

Де:

F — масові витрати (т/год).

S — поперечний перетин (м2).

Qr — реальна щільність середовища (кг/м3).

 ΔP — різниця тиску (ат).

Реальна шільність обчислюється за формулою (2).

$$Or = O0 + O0 * Kpr * (Pi - 1)$$
 (2)

Де:

Q0 — щільність середовища при нормальних умовах (кг/м3).

Крг — коефіцієнт стиснення середовища (0,001 — рідина; 0,95 — газ).

Рі — вхідний тиск (ат).

Будь яка труба становить потоку динамічний опір, який пов'язаний з тертям о стіни труби та який залежить від швидкості потоку. Динамічний опір труби відображається формулою (3). Загальні витрати середовища з урахуванням динамічного опору обчислюються за формулою (4).

$$\Delta Pr = Kr * \frac{l}{D} \frac{Qr * v^{2}}{2} = Ktr * \frac{l * Qr}{2 * D} * \left(\frac{F}{Qr * S}\right)^{2} = \frac{Ktr * l * F^{2} * \sqrt{\pi}}{4 * S * Qr}$$
(3)

Де:

 ΔP — різниця тиску (ат), опір потоку середовища стінками трубопроводу.

Kr — коефіцієнт тертя стінок трубопроводу.

D — діаметр трубопроводу (м).

1 — довжина трубопроводу (м).

v — швидкість потоку у трубопроводі (м3/ч).

$$F = \frac{4 * S * Qr}{Ktr * lo * 1.7724 + 4 * Qr} * \sqrt{Qr * \Delta P}$$
 (4)

Формула (1) описує ламінарний потік середовища у до критичних швидкостях. У випадку перевищення критичної швидкості обчислення витрат відбувається за формулою (5). Універсальна формула обчислення витрат на всіх швидкостях буде мати вигляд (6).

$$F = S * \sqrt{Qr * (Pi - 0.528 * Pi)}$$
 (5)

Де:

Рі — тиск з початку труби.

$$F = \frac{4 * S * Qr}{Ktr * lo * 1.7724 + 4 * Qr} * \sqrt{Qr * (Pi - max(Po, Pi * 0,528))}$$
 (6)

Де:

Ро — тиск у кінці труби.

У динамічних системах зміна витрат на кінці труби не відбувається миттево, а запізнюється на час переміщення ділянки середовища від початку трубопроводу до кінця. Цей час залежить від довжини труби та швидкості руху середовища у трубі. Затримку зміни витрат на кінці труби можна описати формулою (7). Результуюча формула розрахунку витрат у трубі, з урахуванням особливостей вказаних вище, записується у вигляді (8).

$$Fo = F * (1 - e^{\frac{-t * v}{l}})$$
 (7)

Де:

Fo — витрати на кінці труби.

v — швидкість потоку середовища = F/(Qr*S).

$$F = \frac{4 * S * Qr}{Ktr * lo * 1.7724 + 4 * Qr} * \sqrt{Qr * (Pi - max(Po, Pi * 0,528))} * (1 - e^{\frac{-t * F}{l * Qr * S}})$$
(8)

Тиск середовища у об'ємі за звичай обчислюється ідентично для всіх випадків, за формулою (9).

$$P = \int \Delta F \, dt = \int \frac{\Delta F}{(Q0 * Kpr * S * l)} \, dt \qquad (9)$$

2 Склад бібліотеки

У своєму складі бібліотека містить біля двох десятків моделей часто потрібних апаратів технологічних процесів та допоміжних елементів. Назви функцій та їх параметрів наявні на трьох мовах: Англійська, Російська та Українська.

Затримка (lag) <1.2>

Опис: Модель затримки. Може використовуватися для імітації запізнювання значень давачів.

Параметри:

ID	Параметр		Параметр Тип Режим П		Прихований	По замовченню
out	Вихід		Реальний	Повернення	false	0
in	Вхід		Реальний	Вхід	false	0
t_lg	Час за	пізнення (с)	Реальний	Вхід	false	10
f_frq	Часто	га обчислення (Гц)	Реальний	Вхід	true	100

Програма:

out-=(out-in)/(t_lg*f_frq);

Шум (2 гарм. + випадк.) (noise) <3.5>

Опис: Модель шуму. Містить три складові:

- перша гармоніка;
- друга гармоніка;
- шум на основі генератору випадкових чисел.

Папаметри:

ID	Параметр	Тип	Режим	Прихований	По замовченню
out	Вихід	Реальний	Повернення	false	0
off	Загальний зсув	Реальний	Вхід	false	1
a_g1	Амплітуда гармоніки 1	Реальний	Вхід	false	10
per_g1	Період гармоніки 1 (сек)	Реальний	Вхід	false	10
a_g2	Амплітуда гармоніки 2	Реальний	Вхід	false	5
per_g2	Період гармоніки 2 (сек)	Реальний	Вхід	false	0.1
a_rnd	Амплітуда випадкових значень	Реальний	Вхід	false	1
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100
tmp_g1	Лічильник гармоніки 1	Реальний	Вхід	true	0
tmp_g2	Лічильник гармоніки 2	Реальний	Вхід	true	0

```
tmp g1=(tmp g1>6.28)?0:tmp g1+6.28/(per g1*f frq);
tmp g2=(tmp g2>6.28)?0:tmp g2+6.28/(per g2*f frq);
out=off+a g1*sin(tmp g1)+a g2*sin(tmp g2)+a rnd*(rand(2)-1);
```

Шаровий кран (ballCrane) <1.4>

Опис: Модель шарового крану. Включає час ходу та час відриву.

Параметри:

ID	Параметр	Тип	Режим	Прихований	По замовченню
pos	Положення (%)	Реальний	Вихід	false	0
com	Команда	Логічний	Вхід	false	0
st_open	Стан "Відкрито"	Логічний	Вихід	false	0
st_close	Стан "Закрито"	Логічний	Вихід	false	1
t_full	Час ходу (с)	Реальний	Вхід	false	5
t_up	Час зриву (с)	Реальний	Вхід	false	0.5
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100
tmp_up	Лічильник зриву	Реальний	Вхід	true	0
lst_com	Остання команда	Логічний	Вхід	true	0

```
Програма:
```

```
if( !(st_close && !com) && !(st_open && com) )
  tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./f_frq:t_up;
 pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*f_frq);
 pos=(pos>100)?100:(pos<0)?0:pos;
 st open=(pos>=100)?true:false;
 st close=(pos<=0)?true:false;</pre>
  lst com=com;
```

Сепаратор (separator) <14>

Опис: Модель сепаратору з двома фазами рідинною та газовою.

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідн. витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідн. тиск (ата)	Реальний	Вхід	false	1
Si	Вхідн. перетин (м2)	Реальний	Вхід	false	0.2
Fo	Вихідн. витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідн. тиск (ата)	Реальний	Вихід	false	1
So	Вихідн. перетин (м2)	Реальний	Вхід	false	0.2
lo	Вихідн. довжина (м)	Реальний	Вхід	false	10
Го_ж	Вихідн. витрати рідини (т/год)	Реальний	Вхід	false	0
Ро_ж	Вихідн. тиск рідини (ата)	Реальний	Вихід	false	1
Lж	Рівень рідини (%)	Реальний	Вихід	false	0
РгосЖ	% рідини.	Реальний	Вхід	false	0.01
Vap	Об'єм апарату (м3)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Qж	Щильність рідини (кг/м3)	Реальний	Вхід	false	1000
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200

```
Програма:
```

```
Fx=max(0,Fi*ProcX);
```

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi, Pi, 293, Si, Fo+Fx, Po, 293, So, lo, Q0, 0.95, 0.
  01, f frq);
Lx = max(0, min(100, Lx+0.27*(Fx-Fo x)/(Vap*Qx*f frq)));
Po x = Po + Lx*Vap/Qx;
```

Клапан (klap) <19.5>

Опис: Модель клапану яка враховує:

- два клапана в одному;
- зверхкритичне витікання;
- зміна температури при дроселюванні;
- робота тільки у одному напрямку, зворотний клапан;
- керування швидкістю зміни положення;
- нелінійність прохідного перетину від положення.

Параметри:

ID	Параметр	Тип	Режим	Прихований	По замовчению
Fi	Вхідн. витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідн. тиск (ата)	Реальний	Вхід	false	1
Ti	Вхідн. температура (К)	Реальний	Вхід	false	273
Fo	Вихідн. витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідн. тиск (ата)	Реальний	Вихід	false	1
То	Вихідн. температура (К)	Реальний	Вихід	false	273
So	Вихідн. перетин труби (м2)	Реальний	Вхід	false	.2
lo	Вихідн. довжина труби (м)	Реальний	Вхід	false	10
S_kl1	Перетин клапану 1 (м2)	Реальний	Вхід	false	.1
1_kl1	Полож. клапану 1 (%)	Реальний	Вхід	false	0
t_kl1	Час відкриття клапану 1 (с)	Реальний	Вхід	false	10
S_kl2	Перетин клапану 2 (м2)	Реальний	Вхід	false	.05
1_kl2	Полож. клапану 2 (%)	Реальний	Вхід	false	0
t_kl2	Час відкриття клапану 2 (с)	Реальний	Вхід	false	5
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kln	Коефіц. нелінійності	Реальний	Вхід	false	1
Kpr	Коефіц. стискання середовища	Реальний	Вхід	false	0.95
Ct	Теплоемність середовища	Реальний	Вхід	false	20
Riz	Тепл. опір ізоляції	Реальний	Вхід	false	20
noBack	Зворотній клапан	Логічний	Вхід	false	0
Fwind	Швидкість повітря	Реальний	Вхід	false	1
Twind	Темпер. повітря	Реальний	Вхід	false	273
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200
tmp_11	Затримка положення 1	Реальний	Вихід	true	0
tmp_12	Затримка положення 2	Реальний	Вихід	true	0

```
Qr=Q0+Q0*Kpr*(Pi-1);
tmp_l1 += (abs(l_kl1-tmp_l1) > 5) ? 100*sign(l_kl1-tmp_l1)/(t_kl1*f_frq) :
  (l kl1-tmp_l1)/(t_kl1*f_frq);
tmp_12 += (abs(l_kl2-tmp_12) > 5) ? 100*sign(l_kl2-tmp_12)/(t_kl2*f_frq) :
  (l_kl2-tmp_l2)/(t_kl2*f_frq);
Sr=(S_kl1*pow(tmp_l1,Kln)+S_kl2*pow(tmp_l2,Kln))/pow(100,Kln);
```

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi, Pi, Ti, Sr, EVAL REAL, Po, 293, So, lo, Q0, Kpr,
                    0.01, f frq);
 if ( noBack ) Fi = max(0,Fi);
 Po = \max(0, \min(100, Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
To = max(0, min(2e3, To + (abs(Fi) * (Ti*pow(Po/Pi, 0.02) - To) + (Fwind+1) * (Twind-Power + To) + (Fwind+1) * (Fwind+
                    To)/Riz)/(Ct*So*lo*Qr*f frq)));
```

Затримка (чиста) (lagClean) <2.9>

Опис: Модель чистої (транспортної) затримки. Реалізується шляхом включення декількох ланцюгів простої затримки. Призначено для імітації затримок у довгих трубопроводах.

Параметри:

ID	Параметр	Тип	Режим	Прихований	По замовченню
out	Вихід	Реальний	Повернення	false	0
in	Вхід	Реальний	Вхід	false	0
t_lg	Час затримки (с)	Реальний	Вхід	false	10
f_frq	Частота обрахунку (Гц)	Реальний	Вхід	true	100
cl1	Звено 1	Реальний	Вхід	true	0
cl2	Звено 2	Реальний	Вхід	true	0
cl3	Звено 3	Реальний	Вхід	true	0

```
Програма:
```

```
cl1-=(cl1-in)/(t lg*f frq/4);
c12 = (c12 - c11) / (t lq*f frq/4);
c13 = (c13 - c12) / (t lq*f frq/4);
out-=(out-cl3)/(t lg*f frq/4);
```

Котел: барабан (boilerBarrel) <30.5>

Опис: Модель барабану котлоагрегату.

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi1	Вхідн. витрати води (т/год)	Реальний	Вихід	false	22
Pi1	Вхідн. тиск води (ата)	Реальний	Вхід	false	43
Ti1	Вхідн. температура води (К)	Реальний	Вхід	false	523
Si1	Вхідн. перетин труби води (м2)	Реальний	Вхід	false	0.6
Fi2	Вхідн. витрати димових газів (т/год)	Реальний	Вихід	false	
Pi2	Вхідн. тиск димових газів (ата)	Реальний	Вхід	false	1.3
Ti2	Вхідн. температура димових газів (К)	Реальний	Вхід	false	1700
Si2	Вхідн. перетин труби димових газів (м2)	Реальний	Вхід	false	10
Vi1	Об'єм барабану (м3)	Реальний	Вхід	false	3
Lo	Рівень у барабані (%)	Реальний	Вихід	false	10
S	Поверхня нагріву (м2)	Реальний	Вхід	false	15
k	Коефіцієнт тепловіддачі	Реальний	Вхід	false	0.8
Fo	Вихідн. витрати пару (т/год)	Реальний	Вхід	false	20
Po1	Вихідн. тиск пару (ата)	Реальний	Вихід	false	41.68
To1	Вихідн. температура пару (К)	Реальний	Вихід	false	10
So1	Вихідн. перетин труби пару (м2)	Реальний	Вхід	false	0.5

ID	Параметр	Тип	Режим	Прихований	По замовченню
lo1	Вихідн. довжина труби пару (м)	Реальний	Вхід	false	5
Fo2	Вихідн. витрати димових газів (т/год)	Реальний	Вхід	false	180
Po2	Вихідн. тиск димових газів (ата)	Реальний	Вихід	false	1
To2	Вихідн. температура димових газів (К)	Реальний	Вхід	false	0
Fpara	Витрати пару у барабані (т/год)	Реальний	Вихід	false	0
Tv	Температура води у барабані (К)	Реальний	Вихід	false	0
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	false	200

```
// Water
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL REAL,Po1,293,So1,lo1,1
  e3,0.001,0.01,f frq);
Fi1 = max(0, Fi1);
// Steam
Lo = \max(0, \min(100, \text{Lo}+(\text{Fil-Fpara})*100/(\text{Vil}*1000*f frq)));
To1 = (100*pow(Po1, 0.241) + 5) + 273;
if ( Tv<To1 )
{
  Tv+=(k*S*(Ti2-Tv)-Fi1*0.00418*(Tv-Ti1))/f frq;
  Fpara=0;
if( Tv >= To1)
  Tv=To1;
  Lambda=2750.0-0.00418*(Tv-273);
  Fpara=(5*S*Fi2*(Ti2-Tv)-Fi1*0.00418*(Tv-Ti1))/(Po1*Lambda);
To2=Ti2-Tv/k;
Po1 = max(0, min(100, Po1+0.27*(Fpara-Fo)/(1.2*0.98*((1-
  Lo/100) *Vi1+So1*lo1) *f_frq)));
// Smoke gas
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi2, Pi2, 293, Si2, Fo2, Po2, 293, Si2, 30, 1.2, 0.98
  ,0.01,f frq);
```

Котел: топка (boilerBurner) <50.5>

Опис: Модель топки котлоагрегату, який працює на трьох видах палива: доменному, коксовому та природному газах.

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi1	Вхідн. витрати димових газів (т/год)	Реальний	Вихід	false	
Pi1	Вхідн. тиск димових газів (ата)	Реальний	Вхід	false	
Ti1	Вхідн. температура димових газів (К)	Реальний	Вхід	false	40
Si1	Вхідн. перетин труби димових газів (м2)	Реальний	Вхід	false	
Fi2	Вхідн. витрати природного газу (т/год)	Реальний	Вихід	false	
Pi2	Вхідн. тиск природного газу (ата)	Реальний	Вхід	false	
Ti2	Вхідн. температура природного газу (К)	Реальний	Вхід	false	20
Si2	Вхідн. перетин труби природного газу (м2)	Реальний	Вхід	false	
Fi3	Вхідн. витрати коксового газу (т/год)	Реальний	Вихід	false	

ID	Параметр	Тип	Режим	Прихований	По замовченню
Pi3	Вхідн. тиск коксового газу (ата)	Реальний	Вхід	false	
Ti3	Вхідн. температура коксового газу (К)	Реальний	Вхід	false	0
Si3	Вхідн. перетин труби коксового газу (м2)	Реальний	Вхід	false	
Fi4	Вхідн. витрати повітря (т/год)	Реальний	Вихід	false	
Pi4	Вхідн. тиск повітря (ата)	Реальний	Вхід	false	
Ti4	Вхідн. температура повітря (К)	Реальний	Вхід	false	20
Si4	Вхідн. перетин труби повітря (м2)	Реальний	Вхід	false	
Fo	Вихідн. витрати димових газів (т/год)	Реальний	Вхід	false	
Po	Вихідн. тиск димових газів (ата)	Реальний	Вихід	false	
То	Вихідн. температура димових газів (К)	Реальний	Вихід	false	
So	Вихідн. перетин труби димових газів (м2)	Реальний	Вхід	false	90
lo	Вихідн. довжина труби димових газів (м2)	Реальний	Вхід	false	
V	Об'єм топки (м3)	Реальний	Вхід	false	830
CO	Процент вмісту СО у димових газах (%)	Реальний	Вихід	false	
O2	Процент вмісту Q2 у димових газах (%)	Реальний	Вихід	false	
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	false	200

```
using DAQ.JavaLikeCalc.lib techApp;
pipeBase(Fi1, Pi1, Ti1, Si1, EVAL REAL, Po, 293, So, lo, 1.2, 0.95, 0.01, f frq);
Fi1 = \max(0, Fi1);
pipeBase(Fi2, Pi2, Ti2, Si2, EVAL REAL, Po, 293, So, lo, 0.7, 0.95, 0.01, f frq);
Fi2 = max(0, Fi2);
pipeBase (Fi3, Pi3, Ti3, Si3, EVAL REAL, Po, 293, So, lo, 1.33, 0.95, 0.01, f frq);
Fi3 = max(0, Fi3);
pipeBase(Fi4, Pi4, Ti4, Si4, EVAL REAL, Po, 293, So, lo, 1.293, 0.95, 0.01, f frq);
Fi4 = max(0, Fi4);
Neobhod_vzd = Fi1+10*Fi2+4*Fi3;
F DG = \overline{F}i1+Fi2+Fi3+Fi4;
O2 = max(0, min(100, (Fi4-Neobhod vzd)*100/F DG));
CO = min(100, (02<1) ? (1.2*abs(02)) : 0);
koef = min(1,Fi4/Neobhod_vzd);
Q = \text{koef*}(8050*\text{Fi}2+3900*\overline{\text{Fi}}3+930*\text{Fi}1);
delta_t = Q/(F_DG*1.047);
To = \max(0, \min(2000, (\text{delta\_t} + (\text{Ti4} - 273) + (\text{Ti3} - 273) * (\text{Fi3}/\text{Fi1}) + (\text{Ti2} - 273) * (\text{Fi2}/\text{Fi1}) + (\text{Ti2} - 273) * (\text{Fi2}/\text{Fi2}) + (\text{Fi2}/\text{Fi2}/\text{Fi2}) + (\text{Fi2}/\text{Fi2}/\text{Fi2}) + (\text{Fi2}/\text{Fi2}/\text{Fi2}) + (\text{Fi2}/\text{Fi2}/\text{Fi2}) + (\text{Fi2}/\text{Fi2}/\text{
           (Ti1-273)*(Fi1/Fi4))+273));
Po = \max(0, \min(10, Po+0.27*(F DG-Fo)/(1.2*0.95*(So*lo+V)*f frq)));
```

Мережа (навантаження) (net) <13>

Опис: Навантаження з фіксованим тиском мережі. Містить параметр для підключення шуму.

Параметри:

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідн. витрати (т/год)	Реальний	Вихід	false	10
Pi	Вхідн. тиск (ата)	Реальний	Вхід	false	1
Po	Завдання вихідного тиску (ата)	Реальний	Вхід	false	1
So	Вихідн. перетин труби (м2)	Реальний	Вхід	false	0.1
Kpr	Коефіцієнт стискання (01)	Реальний	Вхід	false	0.95
Noise	Шум вхідн. витрат	Реальний	Вхід	false	1
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200

Програма:

DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi, Pi, 293, So, EVAL REAL, Po, 293, So, 10, Q0, Kpr, 0.01,f frq);

Джерело (тиск) (src press) <12>

Опис: Джерело з фіксованим тиском. Містить параметр для підключення шуму.

Папаметри:

ID	Параметр	Тип	Режим	Прихований	По замовченню
Pi	Завдання вхідного тиску (ата)	Реальний	Вхід	false	10
Fo	Вихідн. витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідн. тиск (ата)	Реальний	Вихід	false	1
So	Вихідн. перетин труби (м2)	Реальний	Вхід	false	0.1
lo	Вихідн. довжина труби (м)	Реальний	Вхід	false	100
Noise	Шум вхідн. витрат	Реальний	Вхід	false	1
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200
Fit	Вхід. витрати утримані	Реальний	Вихід	true	0

Програма:

DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fit,Pi*Noise,293,So,Fo,Po,293,So,lo,Q0,Kpr, 0.01,f_frq);

Повітряний холодильник (cooler) <16.5>

Опис: Модель повітряного охолоджувача газового потоку.

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідн. витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідн. тиск (ата)	Реальний	Вхід	false	1
Ti	Вхідн. температура (К)	Реальний	Вхід	false	273
Si	Перетин трубок (м2)	Реальний	Вхід	false	0.05
li	Загальна довжина трубок (м)	Реальний	Вхід	false	10

ID	Параметр	Тип	Режим	Прихований	По замовчению
Fo	Вихідн. витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідн. тиск (ата)	Реальний	Вихід	false	1
To	Вихідн. температура (К)	Реальний	Вихід	false	273
So	Вихідн. перетин труби (м2)	Реальний	Вхід	false	.2
lo	Вихідн. довжина труби (м)	Реальний	Вхід	false	10
Tair	Темп. охолодж. повітря (К)	Реальний	Вхід	false	283
Wc	Продуктивність холод.	Реальний	Вхід	false	200
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Ct	Теплоємність середовища	Реальний	Вхід	false	100
Rt	Тепл. опір	Реальний	Вхід	false	1
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi,Pi,293,Si,Fo,Po,293,So,lo,Q0,0.95,0.01,f
frq);
Qr = Q0+Q0*0.95*(Pi-1);
To+=(Fi*(Ti-To)+Wc*(Tair-To)/Rt)/(Ct*(Si*li+So*lo)*Qr*f_frq);
```

Компресор газовий (compressor) <12>

Опис: Модель газового компресора. Враховує ефект помпажу. Помпаж розраховується за газово-динамічною кривою, виходячи з якої розраховується коефіцієнт запасу по помпажу.

	иметри:	-			
ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідн. витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідн. тиск (ата)	Реальний	Вхід	false	1
Ti	Вхідн. температура (К)	Реальний	Вхід	false	273
Fo	Вихідн. витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідн. тиск (ата)	Реальний	Вихід	false	1
To	Вихідн. температура (К)	Реальний	Вихід	false	273
So	Вихідн. перетин труби (м2)	Реальний	Вхід	false	0.2
lo	Вихідн. довжина труби (м)	Реальний	Вхід	false	2
Kzp	Коеф. запасу по помпажу	Реальний	Вихід	false	0.1
N	Об. компр. (тис. об./хвил)	Реальний	Вхід	false	0
V	Об'єм компресору (м3)	Реальний	Вхід	false	7
Kpmp	Коеф. помп. (точка помп.)	Реальний	Вхід	false	0.066
Kslp	Коеф. нахилу помп. кривої	Реальний	Вхід	false	0.08
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
Ct	Теплоємність середовища	Реальний	Вхід	false	100
Riz	Тепл. опір ізоляції	Реальний	Вхід	false	100
Fwind	Швидкість повітря	Реальний	Вхід	false	1
Twind	Темпер. повітря	Реальний	Вхід	false	273
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200
Fit	Вхід. витрати утримані	Реальний	Вихід	true	0

```
Pmax = max(Pi, Po);
Pmin = min(Pi, Po);
Qr = Q0+Q0*Kpr*(Pi-1);
Qrf = Q0+Q0*Kpr*(Pmax-1);
Ftmp=(N>0.1)?(1-10*(Po-Pi)/(Qr*(pow(N,3)+0.1)*Kpmp)):1;
Kzp=1-Ftmp; //Коэффиц. запаса
Fi=V*N*Qr*sign(Ftmp)*pow(abs(Ftmp),Kslp)+
     0.3*(4*So*Qrf/(0.01*lo*1.7724+4*Qrf))*sign(Pi-Po)*pow(Qrf*(Pmax-
  \max(Pmax*0.528, Pmin)), 0.5);
Fit -= (Fit-Fi)/max(1,(lo*f frq)/max(le-4,abs(Fi/(Qrf*So))));
Po = \max(0, \min(100, Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
To += (abs(Fi) * (Ti*pow(Po/Pi, 0.3) - To) + (Fwind+1) * (Twind-To) / Riz) /
  (Ct*(V+So*lo)*Qr*f frq);
```

Джерело (витрати) (src flow) <2.2>

Опис: Джерело з фіксованими витратами. Містить параметр для підключення шуму.

Папаметпи:

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Завдання вхідних витрат (т/год)	Реальний	Вхід	false	10
Fo	Вихідні витрати (т/год)	Реальний	Вхід	false	10
Po	Вихідний тиск (ата)	Реальний	Вихід	false	1
So	Вихідний перетин труби (м2)	Реальний	Вхід	false	0.1
lo	Вихідна довжина труби (м)	Реальний	Вхід	false	100
Noise	Шум вхідних витрат	Реальний	Вхід	false	1
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100

```
Програма:
```

```
Po = \max(0, \min(100, Po + 0.27*(Noise*Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
```

Труба-база (pipeBase) <11.5>

Опис: Реалізація базових основ моделі труби:

- Витрати у трубі з урахуванням швидкості руху, різниці тиску, опору за рахунок тертя та критичної течі.
- Розрахунок тиску.
- Урахування щільності середовища та ступеня його стиснення як для газів, так і для рідин.

Папаметпи:

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідні витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідний тиск (ата)	Реальний	Вхід	false	1
Ti	Вхідна температура (К)	Реальний	Вхід	false	293
Si	Вхідний перетин (м2)	Реальний	Вхід	false	.2
Fo	Вихідні витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідний тиск (ата)	Реальний	Вихід	false	1
То	Вихідна температура (К)	Реальний	Вихід	false	293
So	Вихідний перетин труби (м2)	Реальний	Вхід	false	.2
lo	Вихідна довжина труби (м)	Реальний	Вхід	false	10

ID	Параметр	Тип	Режим	Прихований	По замовченню
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.98
Ktr	Коефіцієнт тертя	Реальний	Вхід	false	0.01
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	false	100

```
Pmax = max(Pi, Po);
Pmin = min(Pi,Po);
Qr = Q0+Q0*Kpr*(Pmax-1);
Fit = 630*(4*Si*So*Qr/(Ktr*lo*1.7724*Si+4*So*Qr))*sign(Pi-Po)*pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Po)*Pow(Pmax-Pow(Pmax-Po)*Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(Pmax-Pow(P
                 max(Pmax*0.528, Pmin)), 0.5);
Fi \rightarrow (Fi-Fit)/max(1,(lo*f frq)/max(1,abs(Fit/(Qr*So))));
if( !Fo.isEVal() ) Po = max(0,min(100,Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
```

Tpy6a 1->1 (pipe1_1) <36.5>

Опис: Модель вузла труб за схемою: 1 -> 1.

Папаметти

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідні витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідний тиск (ата)	Реальний	Вхід	false	1
Fo	Вихідні витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідний тиск (ата)	Реальний	Вихід	false	1
So	Вихідний перетин труби (м2)	Реальний	Вхід	false	.2
lo	Вихідна довжина труби (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	200
Pti	Pti	Реальний	Вихід	true	1
Fto	Fto	Реальний	Вихід	true	0
Pt1	Pt1	Реальний	Вихід	true	1
Ft1	Ft1	Реальний	Вихід	true	0

Програма:

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi,Pi,293,So,Ft1,Pti,293,So,0.33*lo,Q0,Kpr,
  0.01, f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Ft1,Pti,293,So,Fto,Pt1,293,So,0.33*lo,Q0,Kp
  r,0.01,f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fto,Pt1,293,So,Fo,Po,293,So,0.33*1o,Q0,Kpr,
  0.01,f_frq);
```

Труба 2->1 (pipe2 1) <26>

Опис: Модель вузла труб за схемою: 2 -> 1.

Imp	Параметри.						
ID	Параметр	Тип	Режим	Прихований	По замовченню		
Fi1	Вхідні витрати 1 (т/год)	Реальний	Вихід	false	0		
Pi1	Вхідний тиск 1 (ата)	Реальний	Вхід	false	1		
Ti1	Вхідна температура 1 (К)	Реальний	Вхід	false	273		
Si1	Вхідний перетин 1 (м2)	Реальний	Вхід	false	0.2		

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi2	Вхідні витрати 2 (т/год)	Реальний	Вихід	false	0
Pi2	Вхідний тиск 2 (ата)	Реальний	Вхід	false	1
Ti2	Вхідна температура 2 (К)	Реальний	Вхід	false	273
Si2	Вхідний перетин 2 (м2)	Реальний	Вхід	false	0.2
Fo	Вихідні витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідний тиск (ата)	Реальний	Вихід	false	1
То	Вихідна температура (К)	Реальний	Вихід	false	273
So	Вихідний перетин труби (м2)	Реальний	Вхід	false	.2
lo	Вихідна довжина труби (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
Ct	Теплоємність середовища	Реальний	Вхід	false	20
Riz	Тепл. опір ізоляції	Реальний	Вхід	false	20
Fwind	Швидкість повітря	Реальний	Вхід	false	1
Twind	Темпер. повітря	Реальний	Вхід	false	273
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100

```
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL_REAL,Po,293,So,lo,Q0,K
  pr,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2,Pi2,293,Si2,EVAL_REAL,Po,293,So,lo,Q0,K
  pr,0.01,f_frq);
Po = \max(0, \min(100, Po+0.27*(Fi1+Fi2-Fo)/(Q0*Kpr*So*lo*f_frq)));
To = max(0, To + (Fi1 * (Ti1 - To) + Fi2 * (Ti2 - To) + (Fwind + 1) * (Twind - To) / Riz) /
  (Ct*So*lo*Q0*f frq));
```

Труба 3->1 (ріре3_1) <36>

Опис: Модель вузла труб за схемою: 3 -> 1.

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi1	Вхідні витрати 1 (т/год)	Реальний	Вихід	false	0
Pi1	Вхідний тиск 1 (ата)	Реальний	Вхід	false	1
Ti1	Вхідна температура 1 (К)	Реальний	Вхід	false	273
Si1	Вхідний перетин 1 (м2)	Реальний	Вхід	false	0.2
Fi2	Вхідні витрати 2 (т/год)	Реальний	Вихід	false	0
Pi2	Вхідний тиск 2 (ата)	Реальний	Вхід	false	1
Ti2	Вхідна температура 2 (К)	Реальний	Вхід	false	273
Si2	Вхідний перетин 2 (м2)	Реальний	Вхід	false	0.2
Fi3	Вхідні витрати 3 (т/год)	Реальний	Вихід	false	0
Pi3	Вхідний тиск 3 (ата)	Реальний	Вхід	false	1
Ti3	Вхідна температура 3 (К)	Реальний	Вхід	false	273
Si3	Вхідний перетин 3 (м2)	Реальний	Вхід	false	0.2
Fo	Вихідні витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідний тиск (ата)	Реальний	Вихід	false	1
То	Вихідна температура (К)	Реальний	Вихід	false	273
So	Вихідний перетин труби (м2)	Реальний	Вхід	false	.2

ID	Параметр	Тип	Режим	Прихований	По замовченню
lo	Вихідна довжина труби (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
Ct	Теплоємність середовища	Реальний	Вхід	false	20
Riz	Тепл. опір ізоляції	Реальний	Вхід	false	20
Fwind	Швидкість повітря	Реальний	Вхід	false	1
Twind	Темпер. повітря	Реальний	Вхід	false	273
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100

```
DAQ. JavaLikeCalc.lib techApp.pipeBase(Fi1, Pi1, 293, Si1, EVAL REAL, Po, 293, So, lo, Q0, K
  pr,0.01,f_frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi2, Pi2, 293, Si2, EVAL REAL, Po, 293, So, lo, Q0, K
  pr,0.01,f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi3, Pi3, 293, Si3, EVAL REAL, Po, 293, So, lo, Q0, K
  pr,0.01,f frq);
Po = \max(0, \min(100, Po+0.27*(Fi1+Fi2+Fi3-Fo)/(Q0*Kpr*So*lo*f frq)));
To = max(0, To + (Fi1*(Ti1-To) + Fi2*(Ti2-To) + Fi3*(Ti3-To) + (Fwind+1)*(Twind-To)/Riz)/
  (Ct*So*lo*Q0*f frq));
```

Труба 1->2 (ріре1_2) <25.5>

Onuc: Модель вузла труб за схемою: 1 -> 2.

Папаметти

ID III	метри: Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідні витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідний тиск (ата)	Реальний	Вхід	false	1
Fo1	Вихідні витрати 1 (т/год)	Реальний	Вхід	false	0
Po1	Вихідний тиск 1 (ата)	Реальний	Вихід	false	1
So1	Вихідний перетин труби 1 (м2)	Реальний	Вхід	false	.2
lo1	Вихідна довжина труби 1 (м)	Реальний	Вхід	false	10
Fo2	Вихідні витрати 2 (т/год)	Реальний	Вхід	false	0
Po2	Вихідний тиск 2 (ата)	Реальний	Вихід	false	1
So2	Вихідний перетин труби 2 (м2)	Реальний	Вхід	false	.2
lo2	Вихідна довжина труби 2 (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100
F1tmp	Вхід. витрати утримані 1	Реальний	Вихід	true	0
F2tmp	Вхід. витрати утримані 2	Реальний	Вихід	true	0
Pot1	Вих. тиск утриманий 1	Реальний	Вихід	true	1
Pot2	Вих. тиск утриманий 2	Реальний	Вихід	true	1

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kp
  r,0.01,f frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kp
  r,0.01,f_frq);
Fi=F1tmp+F2tmp;
```

Труба 1->3 (ріре1_3) <36.5>

Опис: Модель вузла труб за схемою: 1 -> 3.

Параметри:

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідні витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідний тиск (ата)	Реальний	Вхід	false	1
Fo1	Вихідні витрати 1 (т/год)	Реальний	Вхід	false	0
Po1	Вихідний тиск 1 (ата)	Реальний	Вихід	false	1
So1	Вихідний перетин труби 1 (м2)	Реальний	Вхід	false	.2
lo1	Вихідна довжина труби 1 (м)	Реальний	Вхід	false	10
Fo2	Вихідні витрати 2 (т/год)	Реальний	Вхід	false	0
Po2	Вихідний тиск 2 (ата)	Реальний	Вихід	false	1
So2	Вихідний перетин труби 2 (м2)	Реальний	Вхід	false	.2
lo2	Вихідна довжина труби 2 (м)	Реальний	Вхід	false	10
Fo3	Вихідні витрати 3 (т/год)	Реальний	Вхід	false	0
Po3	Вихідний тиск 3 (ата)	Реальний	Вихід	false	1
So3	Вихідний перетин труби 3 (м2)	Реальний	Вхід	false	.2
lo3	Вихідна довжина труби 3 (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100
F1tmp	Вхід. витрати утримані 1	Реальний	Вихід	true	0
F2tmp	Вхід. витрати утримані 2	Реальний	Вихід	true	0
F3tmp	Вхід. витрати утримані 3	Реальний	Вихід	true	0
Pot1	Вих. тиск утриманий 1	Реальний	Вихід	true	1
Pot2	Вих. тиск утриманий 2	Реальний	Вихід	true	1
Pot3	Вих. тиск утриманий 3	Реальний	Вихід	true	1

Програма:

DAQ.JavaLikeCalc.lib_techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kp r,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kp r,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F3tmp,Pi,293,So3,Fo3,Po3,293,So3,lo3,Q0,Kp r,0.01,f_frq);
Fi=F1tmp+F2tmp+F3tmp;

Труба 1->4 (pipe1_4) <47.5>

Опис: Модель вузла труб за схемою: 1 -> 3.

Папаметпи:

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідні витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідний тиск (ата)	Реальний	Вхід	false	1
Fo1	Вихідні витрати 1 (т/год)	Реальний	Вхід	false	0
Po1	Вихідний тиск 1 (ата)	Реальний	Вихід	false	1
So1	Вихідний перетин труби 1 (м2)	Реальний	Вхід	false	.2

ID	Параметр	Тип	Режим	Прихований	По замовчению
lo1	Вихідна довжина труби 1 (м)	Реальний	Вхід	false	10
Fo2	Вихідні витрати 2 (т/год)	Реальний	Вхід	false	0
Po2	Вихідний тиск 2 (ата)	Реальний	Вихід	false	1
So2	Вихідний перетин труби 2 (м2)	Реальний	Вхід	false	.2
lo2	Вихідна довжина труби 2 (м)	Реальний	Вхід	false	10
Fo3	Вихідні витрати 3 (т/год)	Реальний	Вхід	false	0
Po3	Вихідний тиск 3 (ата)	Реальний	Вихід	false	1
So3	Вихідний перетин труби 3 (м2)	Реальний	Вхід	false	.2
lo3	Вихідна довжина труби 3 (м)	Реальний	Вхід	false	10
Fo4	Вихідні витрати 4 (т/год)	Реальний	Вхід	false	0
Po4	Вихідний тиск 4 (ата)	Реальний	Вихід	false	1
So4	Вихідний перетин труби 4 (м2)	Реальний	Вхід	false	.2
lo4	Вихідна довжина труби 4 (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100
F1tmp	Вхід. витрати утримані 1	Реальний	Вихід	true	0
F2tmp	Вхід. витрати утримані 2	Реальний	Вихід	true	0
F3tmp	Вхід. витрати утримані 3	Реальний	Вихід	true	0
F4tmp	Вхід. витрати утримані 4	Реальний	Вихід	true	0
Pot1	Вих. тиск утриманий 1	Реальний	Вихід	true	1
Pot2	Вих. тиск утриманий 2	Реальний	Вихід	true	1
Pot3	Вих. тиск утриманий 3	Реальний	Вихід	true	1
Pot4	Вих. тиск утриманий 4	Реальний	Вихід	true	1

DAQ.JavaLikeCalc.lib_techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kp r,0.01,f_frq); DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kp r,0.01,f_frq); DAQ.JavaLikeCalc.lib techApp.pipeBase(F3tmp,Pi,293,So3,Fo3,Po3,293,So3,lo3,Q0,Kp r,0.01,f frq); DAQ.JavaLikeCalc.lib techApp.pipeBase(F4tmp,Pi,293,So4,Fo4,Po4,293,So4,lo4,Q0,Kp r,0.01,f_frq); Fi=F1tmp+F2tmp+F3tmp+F4tmp;

Виконавчий мех. клапану (klapMech) <3>

Опис: Модель виконавчого механізму клапана. Включає час ходу та час відриву.

ID	Параметр	Тип	Режим	Прихований	По замовченню
pos	Положення (%)	Реальний	Вихід	false	0
pos_sensor	Положення за давачем (%)	Реальний	Вихід	false	0
com	Команда	Реальний	Вхід	false	0
st_open	Стан "Відкрито"	Логічний	Вихід	false	0
st_close	Стан "Закрито"	Логічний	Вихід	false	1
t_full	Час ходу (с)	Реальний	Вхід	false	3

ID	Параметр	Тип	Режим	Прихований	По замовченню
t_up	Час зриву (с)	Реальний	Вхід	false	1
t_sensor	Час затримки сенсора (с)	Реальний	Вхід	false	1
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100
tmp_up	Лічильник зриву	Реальний	Вихід	false	0
lst_com	Остання команда	Реальний	Вихід	false	0

```
Програма:
  if( (pos \ge 99 \&\& com \ge 99) \mid | (pos <= 1 \&\& com <=1))
    tmp up = t up;
    if(pos>=99) { pos=100; st_open=true; }
    else { pos = 0; st_close=true; }
  else if( tmp_up > 0 ) tmp_up-=1./f_frq;
  else
    st_open=st_close=false;
    lst_com+=(com-lst_com)/(0.5*t_full*f_frq);
    pos+=(lst_com-pos)/(0.5*t_full*f_frq);
```

pos sensor+=(pos-pos sensor)/(t sensor*f frq);

Діафрагма (diafragma) <14>

Опис: Модель діафрагми.

ID	Параметр	Тип	Режим	Прихований	По замовченню
Fi	Вхідні витрати (т/год)	Реальний	Вихід	false	0
Pi	Вхідний тиск (ата)	Реальний	Вхід	false	1
Fo	Вихідні витрати (т/год)	Реальний	Вхід	false	0
Po	Вихідний тиск (ата)	Реальний	Вихід	false	1
dP	Перепад тиску (кПа)	Реальний	Вихід	false	0
Sdf	Перетин діафрагми (м2)	Реальний	Вхід	false	0.1
So	Вихідний перетин труби (м2)	Реальний	Вхід	false	0.2
lo	Вихідна довжина труби (м)	Реальний	Вхід	false	10
Q0	Норм. щільність середовища (кг/м3)	Реальний	Вхід	false	1
Kpr	Коефіцієнт стиснення (01)	Реальний	Вхід	false	0.95
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	true	100

```
Програма:
```

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi,Pi,293,Sdf,Fo,Po,293,So,lo,Q0,Kpr,0.01,
  f frq);
dP = (dP-100*(Pi-Po))/f frq;
```

Теплообмінник (heatExch) <28.4>

Опис: Модель теплообміннику, яка розраховує теплообмін двох потоків.

Параметри:

ID	Параметри.	Тип	Режим	Прихований	По замовченню
Fi1	Вхідні витрати 1 (т/год)	Реальний	Вхід	false	20
Pi1	Вхідний тиск 1 (ата)	Реальний	Вхід	false	1
Ti1	Вхідна температура 1 (К)	Реальний	Вхід	false	20
Si1	Вхідний перетин 1 (м2)	Реальний	Вхід	false	1
li1	Вхідна довжина 1 (м2)	Реальний	Вхід	false	10
Q0i1	Вхідна норм. щільність 1 (кг/м3)	Реальний	Вхід	false	1
Kpr1	Вхідний коефіцієнт стиснення 1 (01)	Реальний	Вхід	false	0.9
Ci1	Вхідна теплоємність 1	Реальний	Вхід	false	1
Fi2	Вхідні витрати 2 (т/год)	Реальний	Вхід	false	20
Pi2	Вхідний тиск 2 (ата)	Реальний	Вхід	false	1
Ti2	Вхідна температура 2 (К)	Реальний	Вхід	false	40
Si2	Вхідний перетин 2 (м2)	Реальний	Вхід	false	1
li2	Вхідна довжина 2 (м2)	Реальний	Вхід	false	10
Q0i2	Вхідна норм. щільність 2 (кг/м3)	Реальний	Вхід	false	1
Kpr2	Вхідний коефіцієнт стиснення 2 (01)	Реальний	Вхід	false	0.9
Ci2	Вхідна теплоємність 2	Реальний	Вхід	false	1
ki	Коефіцієнт тепловіддачі	Реальний	Вхід	false	0.9
Fo1	Вихідні витрати 1 (т/год)	Реальний	Вхід	false	0
Po1	Вихідний тиск 1 (ата)	Реальний	Вихід	false	1
To1	Вихідна температура 1 (К)	Реальний	Вихід	false	273
So1	Вихідний перетин труби 1 (м2)	Реальний	Вихід	false	1
lo1	Вихідна довжина труби 1 (м)	Реальний	Вихід	false	10
Fo2	Вихідні витрати 2 (т/год)	Реальний	Вхід	false	0
Po2	Вихідний тиск 2 (ата)	Реальний	Вихід	false	1
To2	Вихідна температура 2 (К)	Реальний	Вихід	false	273
So2	Вихідний перетин труби 2 (м2)	Реальний	Вихід	false	1
lo2	Вихідна довжина труби 2 (м)	Реальний	Вихід	false	10
f_frq	Частота обчислення функції (Гц)	Реальний	Вхід	false	200

```
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,Ti1,Si1,Fo1,Po1,293,So1,lo1,Q0i1,Kp
  r1,0.01,f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi2, Pi2, Ti2, Si2, Fo2, Po2, 293, So2, lo2, Q0i2, Kp
  r2,0.01,f frq);
To1=max(0,min(1e4,(Fi1*Ti1*Ci1+ki*Fi2*Ti2*Ci2)/(Fi1*Ci1+ki*Fi2*Ci2)));
To2=max(0,min(1e4,(ki*Fi1*Ti1*Ci1+Fi2*Ti2*Ci2)/(ki*Fi1*Ci1+Fi2*Ci2)));
```