Learning Search Space Partition for Blackbox Optimization using Monte Carlo Tree Search

· 作者: Linnan Wang, Rodrigo Fonseca, Yuandong Tian

· 机构: Brown University, Facebook AI research

· 会议: NIPS 2020

· 地址: http://arxiv.org/abs/2007.00708

· 代码: https://github.com/facebookresearch/LaMCTS

论文主要内容

摘要

高维黑盒优化受维度诅咒是个挑战问题,greedy search容易导致局部最优。本文的La-MCTS通过递归地把搜索空间用非线性决策边界划分为low/high function values区域,每个区域都用一个local model去拟合。La-MCTS作为一种*meta-algorithm* 能够使用已有的许多黑盒优化器(如BO、TuRBO)作为local models,在通用黑盒优化、强化学习benchmark上表现突出,尤其是对于高维问题。

贡献

1. 提出了一种可学习、自适应的区域划分方法,避免在高维问题中的过分探索

缺陷

1. 处理noisy functions?

介绍

在黑盒优化问题中,我们有一个无显式表达式的函数 f 。目标是**用最小的代价**找使得函数达到最小的点 x^* :

$$\mathbf{x}^* = rg\min_{\mathbf{x} \in X} f(\mathbf{x})$$

直接去优化这样的黑盒函数最坏情况时间复杂度是指数级(grid search)。一种常用处理办法是通过*learning*:

- 1. 使用**少量**观测样本 $(x_i, f(x_i))$ 拟合一个surrogate regressor(代理模型) $\hat{f} \in \mathcal{H}$
 - a. \hat{f} 能比较好的近似 f
 - b. Model class ${\cal H}$ 比较小(为了能用较少的样本拟合得到 \hat{f})
- 2. 优化 \hat{f} 代替优化 f

具体算法有Bayesian optimizeation等

Algorithm 1 Bayesian optimization

- 1: **for** $n = 1, 2, \dots$ **do**
- 2: select new \mathbf{x}_{n+1} by optimizing acquisition function α

$$\mathbf{x}_{n+1} = \underset{\mathbf{x}}{\operatorname{arg\,max}} \ \alpha(\mathbf{x}; \mathcal{D}_n)$$

- 3: query objective function to obtain y_{n+1}
- 4: augment data $\mathcal{D}_{n+1} = \{\mathcal{D}_n, (\mathbf{x}_{n+1}, y_{n+1})\}$
- 5: update statistical model
- 6: end for

研究内容

Motivation

- · 当 f 高度非线性或高维的时候,需要非常大的 $\mathcal H$ (如GP,DNN)。也就需要非常多的样本去拟合
- ·黑盒优化算法在高维问题中过度exploration(维度诅咒)
- ·一些相关工作使用空间划分(利用**固定的准则**,独立于具体的优化问题)来处理高维问题

本文提出的算法通过learning得到空间划分

方法

定义

- D_t 代表在第 t 次迭代下拥有的观测数据集 $(\mathbf{x}_i, f(\mathbf{x}_i))$
- Ω 代表整个搜索空间

Tree node:

- \cdot 一个tree node表示了一个区域。如node A 表示区域 $\,\Omega_{A}\,$
- · 每个node记录被访问的次数 n_i 。如 n_A ,即 $\#(D_t\cap\Omega_A)$
 - 。 即落在该区域内的观测样本数
- · 每个node拥有一个node value $\ v_{i}$ 。 $\ v_{i}=rac{1}{n_{i}}\sum f\left(\mathbf{x}_{i}
 ight), orall \mathbf{x}_{i}\in D_{t}\cap\Omega_{i}$
 - 。 即在该区域内的观测样本performance均值

Latent actions:

- ·将一个node表示的区域划分成两个区域(high performance、low performance)。
 - 。 即把一个节点A划分成左右子节点B、C。 $\Omega_A=\Omega_B\cup\Omega_C$
 - 。 默认左节点是high performance,右节点是low performance

用latent action可以将这个搜索空间 Ω 递归的划分成小区域 Ω_{leaves} ,并且可以很容易rank这些区域(从最左边的叶子节点到最右边的叶子节点)

Figure 1: the model of latent actions: each tree nodes represents a region in the search space, and *latent action* splits the region into a high-performing and a low-performing region using \mathbf{x} and $f(\mathbf{x})$.

- · Latent action细节:
 - 。 准备训练数据 $\forall \left[\mathbf{x}_i, f\left(\mathbf{x}_i\right)\right], i \in D_t \cap \Omega_i$
 - 。 kmeans 在训练数据上训练(两个cluster),获得每个样本的簇标签 $[\mathit{l}_i,\mathbf{x}_i]$
 - 。用 $[l_i, \mathbf{x}_i]$ 数据训练SVM得到分类器。即 $\forall \mathbf{x}_i \in \Omega$ 都能预测属于high-performance regin(左子节点)还是low-performance regin(右子节点)

算法流程

Figure 2: **the workflow of LA-MCTS**: In an iteration, LA-MCTS starts with building the tree via splitting, then it selects a region based on UCB. Finally, on the selected region, it samples by BO.

一次迭代过程:

- 1. Dynamic tree construction via splitting
 - a. 一旦 # $(D_t \cap \Omega_A)$ 超过阈值 θ (超参),就split这个叶节点,直到不满足split条件
 - b. 树的结构随着迭代动态变化。
- 2. Select via UCB (Upper Confidence Bound)
 - a. 直接简单的在最左边的叶子节点搜索会导致over-exploiting
 - b. 计算每个node的UCB得分,从root开始每次选择最大的UCB得分的子节点,形成一个path
 - c. $ucb_j = rac{v_j}{n_j} + 2C_p * \sqrt{2\log\left(n_p
 ight)/n_j}$,其中的 C_p 是可调超参来控制exploration程度

```
def get_uct(self, Cp = 10 ):
    if self.parent == None:
        return float('inf')

164     if self.n == 0:
        return float('inf')

165     return float('inf')

166     return self.x_bar + 2*Cp*math.sqrt( 2* np.power(self.parent.n, 0.5) / self.n )
```

- 3. Sampling via Bayesian Optimizations
 - a. 上一步中path的叶节点区域为 $\Omega_{selected}$,在这个限定区域内通过贝叶斯优化得到下一个 x_{new}
- 4. 评估黑盒函数在 x_{new} 上的值 $f(x_{new})$ 。 $D_{t+1} = D_t \cup (x_{new}, f(x_{new}))$,进入下一轮迭代

实验结果

Mujoco locomotion tasks

Figure 3: **Benchmark on MuJoCo locomotion tasks**: LA-MCTS consistently outperforms baselines on 6 tasks. With more dimensions, LA-MCTS shows stronger benefits (e.g. Ant and Humanoid). This is also observed in Fig. 4 Due to exploration, LA-MCTS experiences relatively high variance but achieves better solution after 30k samples, while other methods quickly move into local optima due to insufficient exploration.

与其他黑盒优化方法对比

- · 在6个任务上都超过baseline
- · 对于更高维度的任务,LA-MCTS的表现优势更明显
- ·由于exploration,LA-MCTS相对有更高的variance,但是能够获得更好的solution。而其他方法 很快陷入局部最优

Table 2: Compare with gradient-based approaches. Despite being a black-box optimizer, LA-MCTS still achieves good sample efficiency in low-dimensional tasks (*Swimmer*, *Hopper* and *HalfCheetah*), but lag behind in high-dimensional tasks due to excessive burden in exploration, which gradient approaches lack.

Task	Reward Threshold	The av LA-MCTS	erage episodes (#9 ARS V2-t <mark>54</mark>			d TRPO-nn <mark>[54</mark>]
Swimmer-v2	325	132	427	1450	1550	N/A
Hopper-v2	3120	2897	1973	13920	8640	10000
HalfCheetah-v2	3430	3877	1707	11250	6000	4250
Walker2d-v2	4390	$N/A(r_{best} = 3314)$	24000	36840	25680	14250
Ant-v2	3580	$N/A(r_{best} = 2791)$	20800	39240	30000	73500
Humanoid-v2	6000	$N/A(r_{best} = 3384)$		130000	130000	unknown

N/A stands for not reaching reward threshold.

与gradient-based方法对比

· 在低维任务上依然能有好的sample efficiency

 r_{best} stands for the best reward achieved by LA-MCTS under the budget in Fig. 3

Small-scale Benchmarks

Synthetic functions

Lunar Landing & Rover-60d

(a) Lunar landing, #params = 12 (b) Rover trajectory planning, #params = 60

Figure 9: **evaluations on Lunar landing and Trajectory Optimization**: LA-MCTS consistently outperforms baselines.

Figure 4: LA-MCTS as an effective meta-algorithm. LA-MCTS consistently improves the performance of TuRBO and BO, in particular in high-dimensional cases. We only plot part of the curve (collected from runs lasting for 3 day) for BO since it runs very slow in high-dimensional space.

·最为一个meta-algorithm,使用BO作为子算法也是有效的

Figure 5: Validation of LaMCTS: (a) the value of selected node becomes closer to the global optimum as #splits increases. (b) the visualization of $\Omega_{selected}$ in the progress of search. (c) the visualization of $\Omega_{selected}$ that takes the intersection of nodes on the selected path.

- ·随着样本增加,每次迭代选中的叶子节点的performance估计逐渐接近实际值,图(a)
- · 选中区域也逐渐收敛到全局最优点,图(b)
- ·可视化svm决策边界,图(c)

Figure 10: the visualization of LA-MCTS in iterations $1\rightarrow 20$: the purple region is the selected region $\Omega_{selected}$, and the red star represents the global optimum.

消融实验

超参: UCB中的 C_p 、SVM中的kernel type、splitting阈值 heta

Figure 6: Ablation studies on hyper-parameters of LAMCTS.

- · C_p 设f (x)最大值的 1%~10%
- ·kernel类型决定了划分边界的形状。poly和rbf有非线性性质,能够生成任意形状的区域边界
- heta 决定了树生成的速度,更小的阈值会产生更深的树

- 。 对于大的搜索空间,小的阈值能够快速将区域划分成小区域
- 。但阈值过小容易造成performance和边界估计不可靠