Kapitel 17

Randomisierte Tests und das Lemma von Neyman-Pearson

Wir betrachten folgendes Testproblem: Sei $X \sim B(5,\theta)$ mit $\theta \in \Theta = \{\frac{1}{2}, \frac{3}{4}\}$

$$H_0: \theta = \frac{1}{2} \text{ vs. } H_1: \theta = \frac{3}{4}$$

Wir wollen einen Test der Form

$$\varphi(x) = \begin{cases} 0, & x \le c \\ 1, & x > c \end{cases}$$

der das Niveau $\alpha = 0,05$ einhält.

$$\beta(\frac{1}{2}) = P_{\frac{1}{2}}(X > c) \stackrel{!}{\leq} 5$$

$$P_{\frac{1}{2}}(X=5) = \left(\frac{1}{2}\right)^5 = \frac{1}{32} < 0.05$$

$$P_{\frac{1}{2}}(X \in \{4,5\}) = \left(\frac{1}{2}\right)^5 + {5 \choose 4} \cdot \left(\frac{1}{2}\right)^5 = \frac{6}{32} > 0.05$$

Das heißt der Test

$$\varphi(x) = \begin{cases} 0, & \text{falls } x \le 4\\ 1, & \text{falls } x = 5 \end{cases}$$

hält das Niveau σ ein. Leider wird das Signifikanzvieau nicht voll ausgeschöpft. \Rightarrow mache bei x=4 ein zusätzliches Experiment.

Definition 17.1

Eine Funktion $\varphi : \chi^n \to [0,1]$, die angibt mit welcher Wahrscheinlichkeit $\varphi(x)$ die Hypothese H_0 abgelehnt wird, heißt **randomisierter Test**. Die Gütefunktion wird jetzt definiert durch

$$\beta(\theta) := E_{\theta} \varphi(X) .$$

Bemerkung 17.1

Die bisher betrachteten nicht randomisierten Tests sind ein Spezialfall:

$$\varphi(x) = \begin{cases} 0, & x \notin R \\ 1, & x \in R \end{cases}$$

Die Definition der Gütefunktion stimmt mit der bisherigen überein:

$$\beta(\theta) = E_{\theta} \, \varphi(X) = P_{\theta}(X \in R)$$

Im Beispiel: Wir lehnen H_0 jetzt auch im Falle x=4 mit einer Wahrscheinlichekit p ab:

$$\varphi(x) = \begin{cases} 1, & x = 5 \\ \gamma, & x = 4 \\ 0, & x \in \{0, 1, 2, 3\} \end{cases}$$

 γ ist so zu bestimmen, dass der Test Niveau $\alpha = 0,05$ hat.

$$0,05 \stackrel{!}{=} \beta \left(\frac{1}{2}\right) = E_{\frac{1}{2}} \varphi(x) = 1 \cdot \frac{1}{32} + \gamma \binom{5}{4} \frac{1}{32} \Rightarrow \gamma = \frac{3}{25}$$

Im Folgenden betrachten wir den Spezialfall $\Theta = \{\theta_0, \theta_1\}$

$$H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta = \theta_1$$

Definition 17.2

Ein randomisierter Test $\varphi^* : \chi^n \to [0,1]$ heißt **Neyman-Pearson-Test**, wenn eine Konstante $c^* \in [0,\infty)$ und eine Funktioon $\gamma : \chi^n \to [0,1]$ gibt mit

$$\varphi^*(x) = \begin{cases} 1 & \text{falls } L_x(\theta_1) > c^* L_x(\theta_0) \\ \gamma(x) & \text{falls } L_x(\theta_1) = c^* L_x(\theta_0) \\ 0 & \text{falls } L_x(\theta_1) < c^* L_x(\theta_0) \end{cases}$$

Satz 17.1 (Lemma von Neyman-Pearson)

- a) Ist φ^* ein Neyman-Pearson-Test mit $\alpha = \beta_{\varphi^*}(\theta_0)$. Dann ist φ^* trennscharf unter allen Tests zum gleichen Niveau α , dass heißt er hat den kleinsten Fehler zweiter Art.
- b) Für jedes $\alpha \in (0,1)$ existiert ein Neyman-Pearson-Test φ^* zum Niveau α . Dabei kann $\gamma(x) \equiv \gamma$ gewählt werden.

Beweis

a) Sei φ ein weiterer Test zum Niveau α . Zu zeigen: $1-\beta_{\varphi^*}(\theta_1) \leq 1-\beta_{\varphi}(\theta_1)$ Sei

$$A:=\{x\in\chi^n|\varphi^*(x)>\varphi(x)\}\text{ und }B:=\{x\in\chi^n|\varphi^*(x)<\varphi(x)\}$$

Es gilt:

$$x \in A \Rightarrow \varphi^*(x) > 0$$
 $\Rightarrow L_x(\theta_1) \ge c^* L_x(\theta_0)$
 $x \in B \Rightarrow \varphi^*(x) < 1$ $\Rightarrow L_x(\theta_1) \le c^* L_x(\theta_0)$

Also (wir betrachten nur den diskreten Fall):

$$\beta_{\varphi^*}(\theta_1) - \beta_{\varphi}(\theta_1) = \sum_{x \in \chi^n} (\varphi^*(x) - \varphi(x)) L_x(\theta_1)$$

$$= \sum_{x \in A} (\varphi^*(x) - \varphi(x)) L_x(\theta_1) + \sum_{x \in B} (\varphi^*(x) - \varphi(x)) L_x(\theta_1)$$

$$\geq \sum_{x \in A} (\varphi^*(x) - \varphi(x)) c^* L_x(\theta_0) + \sum_{x \in B} (\varphi^*(x) - \varphi(x)) c^* L_x(\theta_0)$$

$$= c^* \sum_{x \in \chi^n} (\varphi^*(x) - \varphi(x)) = c^* \left(\underbrace{\beta_{\varphi^*}(\theta_0)}_{=\alpha} - \underbrace{\beta_{\varphi}(\theta_0)}_{\leq \alpha} \right) \geq 0$$

b) Für $c \ge 0$ sei

$$\alpha(c) := P_{\theta_0} \left(\frac{L_X(\theta_1)}{L_X(\theta_0)} > c \right) \text{ sowie } \alpha(c^-) := P_{\theta_0} \left(\frac{L_X(\theta_1)}{L_X(\theta_0)} \ge c \right)$$

Sei $c^* := \inf\{c | \alpha(c) \le \alpha\}$. Dann gilt: $\alpha(c^*) \ge \alpha \ge \alpha(c^*)$.

Sei außerdem

$$\gamma^* = \begin{cases} 0, & \text{falls } \alpha(c^* -) = \alpha(c^*) \\ \frac{\alpha - \alpha(c^*)}{\alpha(c^* -) \alpha(c^*)}, & \text{falls } \alpha(c^* -) > \alpha(c^*) \end{cases}$$

Dann gilt:

$$\beta_{\varphi^*}(\theta_0) = E_{\theta_0} \varphi^*(X)$$

$$= P_{\theta_0} \left(\frac{L_X(\theta_1)}{L_X(\theta_0)} > c^* \right) + \gamma^* P_{\theta_0} \left(\frac{L_X(\theta_1)}{L_X(\theta_0)} = c^* \right) + 0$$

$$= \alpha(c^*) + \gamma^* (\alpha(c^{*-}) - \alpha(c^*))$$

$$= \alpha$$

Beispiel 17.1

Es sei $P_{\theta} \sim \text{Exp}(\theta)$ und $\Theta = \{\theta_0, \theta_1\}$ mit $\theta 0 < \theta_1$. Es ist

$$L_x(\theta) = \theta^n e^{-\theta \sum_{i=1}^n X_i} = \theta^n e^{-\theta n \overline{X}}$$

Betrachte

$$c^* < q(x) = \frac{L_X(\theta_1)}{L_x(\theta_0)} = \left(\frac{\theta_1}{\theta_0}\right)^n e^{n\overline{x}(\theta_0 - \theta_1)} =: q^*(\overline{x})$$

 $q^*(\overline{x})$ ist fallen in \overline{x} . Also ist der zughörige Neyman-Pearson-Test äquivalent zu:

$$\varphi(x) = \begin{cases} 1, & \text{falls } \overline{X} < c^* & (\Leftrightarrow q(x) > \tilde{c}) \\ \gamma^*, & \text{falls } \overline{X} = c^* & (\Leftrightarrow q(x) = \tilde{c}) \\ 0, & \text{falls } \overline{X} > c^* & (\Leftrightarrow q(x) < \tilde{c}) \end{cases}$$

$$\alpha(c) = P_{\theta_0}(\overline{X} < c) = P_{\theta_0}(\sum_{i=1}^n X_i < nc)$$

 $\alpha(c) = P_{\theta_0}(\overline{X} < c) = P_{\theta_0}(\sum_{i=1}^n X_i < nc)$ Es ist $\sum_{i=1}^n X_i \sim \Gamma(n, \theta_0)$ für $\theta \in \Theta$. Offenbar ist $\alpha(c) = P_{\theta_0}(\overline{x} < c)$ stetig in c und damit $\gamma^* = 0$. c ist so zu wählen, dass

$$P_{\theta_0} \left(\sum_{i=1}^n X_i < nc^* \right) \stackrel{!}{=} \alpha$$

Wir betrachten jetzt wieder den Fall:

$$H_0: \theta < \theta_0 \text{ vs. } H_1: \theta > \theta_0$$

Im allgemeinen können wir hier nicht wie vorher einen trennscharfen Test konstruieren. Es gibt aber Spezielfälle wo das klappt.

Definition 17.3

 $\{f(x,\theta), \theta \in \Theta\}\ bzw.\ \{p(x,\theta), \theta \in \Theta\}\ hei\beta t\ Familie\ von\ (Z\ddot{a}hl-)Dichten\ mit$ **monotonen Dichtequotienten**, falls es eine messbare Funktion $T: \chi^n \to \mathbb{R}$ gibt, so dass

$$q(x) = \frac{L_x(\theta_1)}{L_x(\theta_0)} = q^*(T(X_1, \dots, X_n))$$

und q^* eine monotone Funktion in $T(x_1, \ldots, x_n) = T(x)$ ist $\forall \theta_0 < \theta_1$

Beispiel 17.2 (vgl. Beispiel 15.3)

Die Familie der Exponentialverteilungen erfüllt die Bedingung mit $T(x) = \overline{x}$.

Satz 17.2

a) Sei $x \in \chi^n$ eine Zufallsstichprobe zu einer Verteilung mit monoton nicht fallendem Dichtequotienten in T(x) Jeder Test der Form:

$$\varphi(x) = \begin{cases} 1, & T(x) > t_0 \\ \gamma, & T(x) = t_0 \\ 0, & T(x) < t_0 \end{cases}$$

ist gleichmäßig bester Test für das Testproblem

$$H_0: \theta \leq \theta_0 \ vs. \ H_1: \theta > \theta_0$$

zum Niveau

$$\alpha = E_{\theta_0}(\varphi(X)) = \sup_{\theta < \theta_0} E_{\theta}(\varphi(X))$$

b) Für jedes $\alpha \in (0,1)$ und $\theta_0 \in \Theta$ existiert ein Test wie in a) beschrieben.