PhD Interview

Model-based System Engineering, Continuous Deployment and Runtime Validation

Farid Alijani Monday March 27, 2017

Education

Lund University, Sweden

- Nordic Exchange Program, Control and Robotics Engineering 2015 2016
 - ☐ Dissertation: Autonomous Vision-based Docking of a Mobile Robot with Omnidirectional Platform
 - ☐ Supervisors: Prof. Anders Robertsson and Prof. Aki Mikkola

Lappeenranta University of Technology, Finland

- MSc, Mechanical Engineering, 2013 Present
- Expected GPA: 4.17 / 5.00 (Distinction)
 - ☐ Major subject: Mechanical Engineering (Design)
 - ☐ Minor subject: Electrical Engineering (Industrial Embedded Systems)

* Azad University of Tehran Central Branch, Iran

- BSc Mechanical Engineering, 2008 2013
 - ☐ Dissertation: Position and speed control of DC motors; designing a robust PID controller
 - ☐ Supervisor: Prof. Armen Adamian
- GPA: 17.26 / 20 (First Upper Class)

Research Background

- Robotics Lab, Dept. of Automatic Control, Lund University, Sweden
 - MSc Thesis Researcher, January October 2016
- Emmaus Freriksdal, Lund, Sweden
 - Trainee, February June 2015
 - Upgrading textile containers hardware to weigh contents and send data to servers in real-time
- Laboratory of Intelligent Machines, Lappeenranta University of Technology
 - Research Assistant, January September 2014
 - Virtual strain gage and stress feedback in online prediction of fatigue life working machines

Skills

- Teaching:
 - Automatic Control Engineering,
- IT:
 - Microsoft Visual Studio, C/C++, Java, Python,
 - OpenCV, Qt Creator, MATLAB, Simulink, VHDL, Xilinx ISE, Eclipse,
 - Linux, ROS, MSC ADAMS, dSPACE.
 - Familiar with: LabVIEW, SolidWorks, ANSYS, FEMAP/ Nx Nastran, Modelica.
 - GitHub profile: https://github.com/mrgransky

Courses

**	Mech. Engineering	**	Elec. Engineering	**	Computer Science
	Advanced Production Engineering		Digital Control Design		Pattern Recognition
	Control of Mechatronic Machines		Electrical Motion Control		Design of Experiments
	Design Methods & Applications		Systems		Project in Automatic Control
	of Machine Element Design		Advanced Course in Electronics		Service Robotics
	FE – Analysis		Intro to Embedded System		Artificial Intelligent Control
	Machine Dynamics		Embedded System Design		C
	Mechatronics Project Course		Electromagnetic Compatibility in		
	Simulation of Mechatronics		Power Electronics		
	Machines		Real-time Systems		
	Mechatronics, Industrial Product				
	Design				
	Research Method &				
	Methodologies				

MSc thesis

Autonomous Vision-based Docking of a Mobile Robot with Omnidirectional

MSc thesis

- Content
 - Navigation
 - Feedback Control System
 - Sensor Integration
 - Machine Learning
 - Reinforcement Learning
 - Optimal Action Selection Policy
 - Reward Distribution

Navigation

- Generating geometric map of the robotics lab
- Tracking precise location of dynamic obstacle
 - 2D radial laser scanner
- Path Planning (3D visualization software Rviz)
 - Built-in Kalman Filter module
 - Target is identified by an interactive marker (3 DOF)

Feedback Control System

• Sensor Integration

 $P_{mar}^{ref}, \theta_{mar}^{ref} \xrightarrow{p_{Rob}^{CS}, \dot{\theta}_{Rob}^{CS}} P_{Rob}^{CS}, \dot{\theta}_{Rob}^{CS}$ $P_{mar}, \theta_{mar} \qquad P_{mar} P_{$

Laser Scanner Sensor

Vision Sensor

Feedback Control System

27/03/2017

(a)

(b)

(c)

10

Machine Learning

- Reinforcement Learning
 - Model free Q-Learning
 - Optimal Action Selection Policy
 - Set of actions → Velocity
 - Maximize Reward
 - Helpful Behavior → positive
 - Harmful Behavior → negative

Publication

• Lund University Library → (<u>link</u>)

International Journal on Information
Technology (IREIT) → Submitted Dec. 2016

• Lappeenranta Univ of Tech \rightarrow (link)

Thank You

