0	0	0	0	0	0
0	1	0	0	1	0
0	0	0	0	0	0
1	0	0	0	0	1
0	1	1	1	1	0
0	0	0	0	0	0

Can we use traditional feed forward nets?

How many weights and biases do we have (if we have one hidden layer with 36 neurons)?

- Hidden layer:
- Output layer:
- Total:
- What if the image was of a different size?
- Let's take a 224*224*3 image
- Input values: 224*224*3 = 150_528
- Hidden layer:
- Output layer:
- Total:
- This will lead to two problems:

-

Convolutional Neural Networks

- Don't flatten the image
- Apply convolutional kernels/filters to the image

Step size is defined by the "stride"

				· · · · · ·			
	-1	-1	-1	-1	-1	-1	_
				-3	-3	-3	-
+	-1	1	-1	-2	-1	-1	-
	-1	-1	-1	1	-1	-1	

Take the dot product between the kernel and the section

Convolutional Neural Networks

- Don't flatten the image
- Apply convolutional kernels/filters (randomly initialized in the beginning) to the image -> Feature Map
- Add a bias (also randomly initialized in the beginning) to every value of the feature map
- Max Pooling: Slide a window over your image

Convolutional Neural Networks

- Don't flatten the image
- Apply convolutional kernels/filters (randomly initialized in the beginning) to the image -> Feature Map
- Add a bias (also randomly initialized in the beginning) to every value of the feature map
- Max Pooling: Slide a window over your image → End up with a reduced feature map
- Activation Function: In our example we will use ReLu

Convolutional Layers

- They also have weights and biases. The number just does not increase with the image size.
- Also, convolutional layers exploit the fact that pixels are meaningful in their close environment, not by themselves.
- Do Convolutional Layers suffer from problems?
- Yes:
 - Filter reduces the size of the feature space \rightarrow loss of information at the edges
 - Solution: padding

Convolutional Layers - Hyperparameters

- What are <u>hyperparameters</u> of convolutional layers?
 - Padding? yes or no
 - Nr. of kernels
 - Size of kernels, 3x3, 5x5
 - Stride of kernels, (1x1), (2x2)
 - Size of Max-Pooling layer, 2x2, 3x3
 - Stride of Max-Pooling layer, 2x2
 - Activation Function, ReLu
 - Nr. of convolutional layers
 - Sequence of layer parts

Convolutional Layers – Max-Pooling

- There are two main ideas behind Max-Pooling:
- 1) Reduce the number of features
- 2) Small variations (shifts by a few pixels) get cancelled out

Convolutional Layers – Padding

 Padding ensures that you don't lose information at the edge of the image

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0