Flat Modules

Jujian Zhang

 $-\otimes M$ is always right exact

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$0 \longrightarrow A \otimes_{R} M \xrightarrow{f \otimes 1} B \otimes_{R} M \xrightarrow{g \otimes 1} C \otimes_{R} M \longrightarrow 0$$

...but not always left exact

For example $\mathbb{Z}/(2)$ as an \mathbb{Z} -module

$$0 \longrightarrow \mathbb{Z} \stackrel{\times 2}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/(2) \longrightarrow 0$$

gives

When is tensoring exact?

```
protected def ses : Prop :=
-\otimes_{\mathbf{R}} M is exact
                                                                                    (1)
                            (tensor_right (Module.of R M)).is_exact
                            protected def inj : Prop :=
                            \forall {|N N' : Module.{u} R|} (L : N \longrightarrow N'),
                                                                                    (2)
-\otimes M preserves mono
                              function.injective L \rightarrow
                              function.injective
                                 ((tensor_right (Module.of R M)).map L)
                            protected def ideal : Prop :=
I \otimes_R M \to R \otimes_R M is
                            \forall (I : ideal R).
                                                                                    (3)
injective for all ideals I
                              function.injective (tensor_embedding M I)
I \otimes_R M \to R \otimes_R M is
                            protected def fg_ideal : Prop :=
injective for all finitely
                            \forall (I : ideal R), I.fg \rightarrow
                                                                                    (4)
generated ideals I
                              function.injective (tensor_embedding M I)
```

```
Fix an arbitrary ideal 1. The set of all finitely generated subideals of 1 is directed
with respect to \leq, i.e. for any two finitely generated subideals J, J', there is
        another finitely generated subideals larger than both, namely J \sqcup J'.
(2)
                                            instance : is_directed
        @[ext]
                                                 (fg_subideal I) (<) :=
                                            { directed := \lambda J J',
        structure fg_subideal :=
(3)
        (to_ideal : ideal R)
                                               \langle\langle J.to\_ideal \sqcup J'.to\_ideal,
        (fg : to_ideal.fg)
                                                 submodule.fg.sup J.fg
        (le : to_ideal \leq I)
                                                J'.fg,
                                                 sorry), sorry) }
(4)
```

Lemma (ideal as colimit of finitely generated subideals)

$$I \cong \underset{J \leq I}{\mathsf{colim}} J$$

where J runs over all finitely generated subideals.

- (2) Proof
- **₩** (3) By using universal property of colimit over directed system, colim $I \to I$ can
- be realised by lifting the obvious linear map $J \rightarrow I$. For the other direction, if
 - $i \in I$, then the principal subideal $\langle i \rangle$ is finitely generated, so there is a map $\langle i \rangle \rightarrow \operatorname{colim} i J$.
- (4)
- Corollary

 $I \otimes M \cong (\operatorname{colim}_{J \leq I} J) \otimes_R M$

```
def as_direct_limit :=
        module.direct_limit (\lambda (i : fg_subideal I), i.to_ideal) $
          \lambda i j hij, (submodule.of_le hij : i.to_ideal \rightarrow_{l}[R] j.to_ideal)
(1)
        def from as direct limit :
          I.as_direct_limit \rightarrow_{I}[R] I :=
       module.direct_limit.lift R _{-} _{-} (\lambda i, submodule.of_le i.le) $
(2)
          \lambda i j hij r, rfl
        @[simps]
(3)
        def to as direct limit :
          I \rightarrow_I [R] I.as\_direct\_limit :=
        \{ to fun := \lambda r.
(4)
            module.direct_limit.of R (fg_subideal I) (\lambda i, i.to_ideal)
               (\lambda _ h, submodule.of_le h) (principal_fg_subideal r)
               (r, mem_principal_fg_subideal r),
          ..sorry }
```

Lemma

colimits over direct system commutes with tensor.

(1) Proof

Consider $(\operatorname{colim}_{i \in \mathcal{T}} i) \otimes_R M$ and $\operatorname{colim}_{i \in \mathcal{T}} (i \otimes_R M)$. The forward direction is

done by using universal property of tensor product, we construct a bilinear map $(\operatorname{colim}_{i \in \mathcal{I}} i) \to M \to \operatorname{colim}_{i \in \mathcal{I}} (i \otimes_R M)$: for each $i \in \mathcal{I}$ and $x \in i$, there is a

map $M \xrightarrow{-\otimes x} M \otimes i \longrightarrow \operatorname{colim}_{i \in \mathcal{I}} (i \otimes_R M)$. The other direction is by

descending the family of maps $i \otimes_R M \to (\operatorname{colim}_{i \in \mathcal{I}} i) \otimes_R M$ for all $i \in \mathcal{I}$.

Corollary

 $I \otimes M \cong \operatorname{colim}_{J \leq I} (J \otimes_R M)$.


```
(1)
        def
             direct_limit_of_tensor_product_to_tensor_product_with_direct_limit
(2)
          direct_limit (\lambda i, G i \otimes [R] M)
             (\lambda \text{ i j hij, tensor_product.map (f _ hij) (linear_map.id)}) \rightarrow_I
             [R] (direct limit G f) \otimes [R] M :=
(3)
        direct_limit.lift _{-} _{-} _{-} (\lambda \text{ i, tensor_product.map (direct_limit.of})}
             _ _ _ _ _) linear_map.id) $
        \lambda i j hij z, sorry
(4)
```

= 1 -- 2 ---- 3 ---- 4 5 - 6 -

```
def
(1)
             tensor_product_with_direct_limit_to_direct_limit_of_tensor_product
        (direct\_limit G f) \otimes [R] M \rightarrow_{\ell} [R] direct\_limit (\lambda i, G i \otimes [R] M)
(2)
          (\lambda \text{ i j hij, tensor_product.map} (f _ hij) (linear_map.id)) :=
        tensor_product.lift \$ direct_limit.lift _ _ _ (\lambda i.
        { to_fun := \lambda g.
(3)
          { to fun := \lambda m, direct_limit.of R \iota (\lambda i, G i \otimes[R] M)
                  (\lambda i j hij, tensor_product.map (f _ hij) (linear_map.id))
             i \$ g \otimes_t m,
(4)
             ..sorry }) ..sorry }
```

= 1 -- 2 ----- 3 ----- 4 5 - 6 -

(1)It is a calculation away to show that

(2)

 $\operatorname{colim}_{J \leq I} (J \otimes_R M)$

(3)

(4)

where $\bar{\iota}$ is obtained via the family of maps $J \otimes_R M \to R \otimes_R M$. Since each

 $J \otimes_R M \to R \otimes_R M$ is injective, $\bar{\iota}$ is injective as well, hence $I \otimes_R M \to R \otimes_R M$

is injective.

- We define the character module of M to be $M^* := \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. M^* is an (1)
- R-module by $(r \bullet f)(m) := f(r \bullet m)$. Let $L : N \to N'$, then $L^* : N'^* \to N^*$ defined by $L^* := - \circ L$ makes taking character module a contravariant functor.
- Theorem
 - If L is a monomorphism then L^* is an epimorphism.
- (3) Proof.
 - Let $g \in N^* = \text{Hom}_{\mathbb{Z}}(N, \mathbb{Q}/\mathbb{Z})$, since \mathbb{Q}/\mathbb{Z} is an injective group, $g : N \to \mathbb{Q}/\mathbb{Z}$
- factors as $N \xrightarrow{L} N' \xrightarrow{\bar{g}} \mathbb{Q}/\mathbb{Z}$ so that $L^*(\bar{g}) = g$. (4)

= 1 -- 2 ----- 3 ----- 4 5 - 6 -

= 1 -- 2 ----- 3 ----- 4 5 - 6 -

Theorem (injective cogenerator)

For every $M \ni m \neq 0$, there is some $h \in M^*$ such that $h(m) \neq 0$.

Proof.

It is sufficient to construct a map $h': \langle m \rangle \to \mathbb{Q}/\mathbb{Z}$ such that $h'(m) \neq 0$ by injectivity of \mathbb{Q}/\mathbb{Z} . Either the additive order of m is finite or infinite:

- ▶ If m has finite order n, then h' is defined as $k \bullet m \mapsto \frac{k}{n} \mod 1$. This is well-defined because if $k \bullet m = k' \bullet m$ then $k - k' \mid n$ thus $\frac{k}{n} \equiv \frac{k'}{n} \mod 1$.
- ▶ If m has infinite order, then h' is defined as $k \bullet m \mapsto \frac{k}{37}$. In this case, it is well defined because the choice of k is unique.

(4)

```
lemma non_zero \{m : M\} (hm : m \neq 0) : \exists (h : character_module M),
(1)
            h m \neq 0 :=
        begin
          let M': submodule \mathbb{Z} M:= submodule.span \mathbb{Z} {m}.
(2)
          suffices : \exists (h' : M' \rightarrow_I[\mathbb{Z}] rat_circle), h' \langlem,
↓ (3)
             submodule.subset_span (set.mem_singleton _) \neq 0,
          { sorry }.
          by_cases h_order : add_order_of m \neq 0,
          { sorry },
          { sorry },
(4)
        end
```

Theorem (Tensor-Hom adjunction)

- Let R, S be two commutative rings and X and R, S-bimodule, then (1) $-\otimes_R X \dashv \operatorname{Hom}_S(X,-)$, where for R-module Y, $Y \otimes_R X$ has the S-module **(2)** structure given by $s \bullet (v \otimes x) := v \otimes (s \bullet x)$ and for S-module Z. Hom_s(X, Z) has the R-module structure given by $r \bullet I := x \mapsto I(r \bullet x)$.
 - Proof
- Let Y be an R-module and Z an S-module. Any $I: Y \otimes X \to Z$ also gives a (3)map $Y \to \operatorname{Hom}_S(X, Z)$ by $y \mapsto x \mapsto I(y \otimes x)$. Conversely, for any R-linear
 - map $I: Y \to \operatorname{Hom}_S(X, Z)$, $y \otimes x \mapsto I(y)(x)$ defines an S-linear map.
- Corollary (4)

 $\operatorname{Hom}_R(N, M^*) \cong (N \otimes_R M)^*$

= 1 -- 2 ----- 3 ---- 4 5 - 6 -

16/24

```
@[simps]
        def hom_equiv.inv_fun' {Y : Module.{v} R'} {Z : Module.{v} S'} (1 :
             Y \rightarrow_{\iota} \lceil R' \rceil (X' \rightarrow_{\iota} \lceil S' \rceil Z)) :
(1)
          ((tensor_functor R' S' X').obj Y \longrightarrow Z) :=
        { to_fun := (add_con_gen _).lift (free_add_monoid.lift $ show Y ×
            X' \rightarrow Z, from \lambda p, 1 p.1 p.2) $
(2)
             add_con.add_con_gen_le \lambda p p' (h : eqv R' Y X' p p'), _,
           ..sorry }
(3)
        def tensor_product.lift {R : Type u_1} [comm_semiring R]
          {M : Type u_4} {N : Type u_5} {P : Type u_6}
           [add_comm_monoid M] [add_comm_monoid N]
(4)
           [add comm monoid P] [module R M]
           [module R N] [module R P]
           (f : M \rightarrow_{I} [R] N \rightarrow_{I} [R] P) : tensor\_product R M N \rightarrow_{I} [R] P
```

= 1 -- 2 ----- 3 ----- 4 5 - 6 -

- Theorem (Lambek)
 - If M^* is injective, then M is flat.
- Proof.
 - Let A, B be R-modules and L: $A \rightarrow B$ an injective R-linear map. If $A \otimes_R M \ni z \neq 0$ is in the kernel of $L \otimes 1$, then there would be some
- (1) (2) (3) $g \in (A \otimes M)^*$ such that $g(z) \neq 0$. Let $f: A \to M^*$ be defined as
 - $a \mapsto m \mapsto g(a \otimes m)$, since M^* is injective and L is mono, f factors through $f': B \to M^*$, let $g' \in (B \otimes_R M)^*$ be the corresponding map of f' under
 - bijection $\operatorname{Hom}_R(B, M^*) \cong (B \otimes_R M)^*$. By writing z as $\sum_i a_i \otimes m_i$, since
- (4) $(L \otimes 1)(z) = 0$, we derive $g'(\sum_i L(a_i) \otimes m_i) = g'(0) = 0$.

= 1 -- 2 ----- 3 ----- 4 5 - 6 -

Theorem (Lambek)

If M^* is injective, then M is flat.

Proof.

(2)

(1)

(3)

(4)

$$g'\left(\sum_{i}L(a_{i})\otimes m_{i}\right)=\sum_{i}g'(L(a_{i})\otimes m_{i})=\sum_{i}f'(L(a_{i}))(m_{i})$$

$$=\sum_{i}f(a_{i})(m_{i})=\sum_{i}g(a_{i}\otimes m_{i})$$

$$=g\left(\sum_{i}a_{i}\otimes m_{i}\right)=g(z)\neq0.$$

This is contradiction, thus z must be zero which means $\ker(L \otimes 1) = 0$.

- Corollary
 - If $\iota: I \otimes_R M \to R \otimes_R M$ is injective for all ideals I, then M is flat.
- Proof
- By Baer's criterion, it is sufficient to show the restriction map
- (3) $\operatorname{Hom}_R(R, M^*) \to \operatorname{Hom}_R(I, M^*)$ is surjective for all ideals I. Fix an ideal I, let
 - $f: I \to M^*$ corresponding to $f' \in (I \otimes_R M)^*$. Since ι is injective, $\bar{\iota}$ is
- surjective so that there is an $F \in (R \otimes_R M)^*$ such that $\bar{\iota}(F) = f'$. Then F
- induces the required $Hom_R(R, M^*)$. (4)

In terms of Tor functor

```
\forall (n : \mathbb{N}) (hn : 0 < n) (N : Module.{u} R),
\operatorname{Tor}_{i}^{R}(N,M)\cong 0 for all
                                                                                                 (5)
                                  nonempty
R-modules N and 1 < i
                                  (((Tor' (Module.{u} R) n).obj N).obj M \cong 0)
\operatorname{\mathsf{Tor}}^R_1(\mathsf{N},\mathsf{M})\cong 0 for all \forall (N : Module.{u} R), nonempty
                                                                                                 (6)
                                  (((Tor' (Module.{u} R) 1).obj N).obj M \cong 0)
R-modules N
                               \forall (I : ideal R), nonempty
\operatorname{Tor}_1^R(R/I,M)\cong 0 for
                                  (((Tor' (Module.{u} R) 1).obi
                                                                                                 (6)
all ideals I
                                     (Module.of R (R / I))).obj M \cong 0)
\operatorname{Tor}_{1}^{R}(R/I, M) \cong 0 \quad \forall \text{ (I : ideal R), nonempty}
                                  (((Tor' (Module.{u} R) 1).obj
                                                                                                 (8)
for all finitely generated
                                     (Module.of R (R / I))).obj M \cong 0)
ideals I
```

= 1 -- 2 ---- 3 ---- 4 5 - 6 -

20/24


```
flat
(5)
        Theorem
        The category of R-modules has enough free objects.
(6)
        def afree : Module.{u} R := Module.of R $ ⊕ (m : M), R
        def from afree : M.afree \longrightarrow M :=
       direct_sum.to_module _ _ _ $\( \lambda\) m, { to_fun := \lambda\) r, r \cdot m \..sorry}
(7)
(8)
```



```
flat
        def free_res.chain_complex.Xd_aux :
        \mathbb{N} \to
        Σ' (N_prev N_next : Module.{u} R)
(5)
          (h : module.free R N_prev ∧ module.free R N_next),
          N_next \longrightarrow N_prev :=
        @nat.rec
          (\lambda_{-}, \Sigma') (N_prev N_next : Module.{u} R)
(6)
             (h : module.free R N_prev ∧ module.free R N_next),
            N_{next} \longrightarrow N_{prev}
        (M.afree, (kernel M.from_afree).afree,
          (Module.afree_is_free _, Module.afree_is_free _),
          Module.from_afree \rightarrow kernel.\iota \rightarrow $ \lambda n P,
        \langle P.2.1, (kernel P.2.2.2).afree, \langle P.2.2.1.2, Module.afree_is_free__\rangle,
(8)
            Module.from_afree _ >> kernel.t _>
```

(8) implies flatness

Let I be any finitely generated ideal, consider the exact sequence flat $(5) \Longrightarrow (6) \Longrightarrow (7) \Longrightarrow$ $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$. def ses_of_ideal (I : ideal R) : short_exact_sequence (Module.{u}) R.) :={ fst := Module.of R I, snd := Module.of R R. trd := Module.of R (R / I),f := Module.of_hom $\langle coe, \lambda __, rfl, \lambda __, rfl \rangle$, g := submodule.mkq I, mono' := sorry, epi' := sorry, (8)exact' := sorry }

(8) implies flatness

Let I be any finitely generated ideal, consider the exact sequence

flat
$$0 \to I \to R \to R/I \to 0$$
,

(5) it induces

$$\cdots \to \operatorname{Tor}_1^R(R/I, M) \xrightarrow{\delta} I \otimes_R M \to R \otimes_R M \to R/I \otimes_R M.$$

(6) def δ_0 (A: short_exact_sequence C) := δ F 0 A >> (left_derived_zero_iso_self F).hom.app A.1

[7] lemma seven_term_exact_seq (A: short_exact_sequence C): exact_seq D [
 (F.left_derived 1).map A.f, (F.left_derived 1).map A.g, δ_0 F A,
 F.map A.f, F.map A.g, (0: F.obj A.3)]

In particular,

is exact. Since this is true for any finitely generated ideal I, (8) implies (4). So finally, all definitions are equivalent.

