# Assignment 1

David Fleischer – 260396047

Last Update: 20 January, 2018

# Question 1

From our definitions of  $\tilde{X}$  and  $\tilde{Y}$ 

$$\tilde{X} = X_{-1} - \mathbf{1}_n \bar{x}^T$$

$$\tilde{Y} = Y - \mathbf{1}_n^T \bar{Y},$$

we find

$$\begin{split} \hat{\beta}_{-1} &= \underset{\beta \in \mathbb{R}^{p-1}}{\min} \ \| \tilde{Y} - \tilde{X} \beta \|_2^2 \\ &= \underset{\beta \in \mathbb{R}^{p-1}}{\min} \ \| Y - \mathbf{1}_n \bar{Y} - \left( X_{-1} - \mathbf{1}_n \bar{x}^T \right) \beta_{-1} \|_2^2 \\ &= \underset{\beta \in \mathbb{R}^{p-1}}{\arg\min} \ \| Y - X_{-1} \beta_{-1} - \mathbf{1}_n \left( \bar{Y} - \bar{x}^T \beta_{-1} \right) \|_2^2 \\ &= \underset{\beta \in \mathbb{R}^{p-1}}{\arg\min} \ \| Y - X_{-1} \beta_{-1} - \mathbf{1}_n \beta_1 \|_2^2 \quad \text{(by definition of } \beta_1 \text{ above)} \\ &= \underset{\beta \in \mathbb{R}^{p-1}}{\arg\min} \ \| Y - \left[ \mathbf{1}_n, \ X_{-1} \right] \ [\beta_1, \ \beta_{-1}] \|_2^2 \\ &\equiv \underset{\beta \in \mathbb{R}^{p-1}}{\arg\min} \ \| Y - X \beta \|_2^2. \end{split}$$

Therefore, if  $\hat{\beta} = \left(\hat{\beta}_1, \, \hat{\beta}_{-1}^T\right)^T \in \mathbb{R}^p$  and

$$\hat{\beta}_1 = \bar{Y} - \bar{x}^T \hat{\beta}_{-1},$$

then  $\hat{\beta}$  also solves the uncentered problem

$$\hat{\beta} \equiv \left(\hat{\beta}_1, \, \hat{\beta}_{-1}^T\right)^T = \underset{\beta \in \mathbb{R}^p}{\operatorname{arg min}} \, \|Y - X\beta\|_2^2,$$

as desired.

# Question 2

(a)

Define our objective function  $f: \mathbb{R}^p \to \mathbb{R}$  by

$$\begin{split} f(\beta) &= \|\tilde{Y} - \tilde{X}\beta\|_2^2 + \lambda \|\beta\|_2^2 \\ &= \left(\tilde{Y} - \tilde{X}\beta\right)^T \left(\tilde{Y} - \tilde{X}\beta\right)^T + \lambda \beta^T \beta \\ &= \tilde{Y}^T \tilde{Y} - \tilde{Y}^T \tilde{X}\beta - \beta^T \tilde{X}^T \tilde{Y} + \beta^T \tilde{X}^T \tilde{X}\beta + \lambda \beta^T \beta \\ &= \tilde{Y}^T \tilde{Y} - 2\beta^T \tilde{X}^T \tilde{Y} + \beta^T \tilde{X}^T \tilde{X}\beta + \lambda \beta^T \beta. \end{split}$$

Therefore, by taking the gradient we find

$$\nabla f(\beta) = -2\tilde{X}^T \tilde{Y} + 2\tilde{X}^T \tilde{X}\beta + 2\lambda\beta,$$

as desired.

(b)

The Hessian  $\nabla^2 f(\beta)$  is given by

$$\nabla^2 f(\beta) = 2\tilde{X}^T \tilde{X} + 2\lambda \mathbb{I}_{p-1},$$

where  $\mathbb{I}_{p-1}$  is the  $(p-1)\times (p-1)$  identity matrix. Note that  $2\tilde{X}^T\tilde{X}\in\mathbb{S}^{p-1}_+$  (positive semi-definite) and, for  $\lambda>0$ , we have  $2\lambda\mathbb{I}_{p-1}\in\mathbb{S}^{p-1}_{++}$  (positive definite). Therefore, for all nonzero vectors  $v\in\mathbb{R}^{p-1}$ ,

$$\begin{split} v^T \nabla^2 f(\beta) v &= v^T \left( 2\tilde{X}^T \tilde{X} + 2\lambda \mathbb{I}_{p-1} \right) v \\ &= 2v^T \tilde{X}^T \tilde{X} v + 2\lambda v^T \mathbb{I}_{p-1} v \\ &= 2 \left( \underbrace{\|\tilde{X} v\|_2^2}_{\geq 0} + \underbrace{\lambda \|v\|_2^2}_{> 0 \text{ when } \lambda > 0} \right) \\ &> 0 \end{split}$$

Hence,

$$\nabla^2 f(\beta) = 2\tilde{X}^T \tilde{X} + 2\lambda \mathbb{I}_{p-1} \in \mathbb{S}_{++}^{p-1},$$

and so f must be strictly convex in  $\beta$ .

(c)

Suppose a strictly convex function f is globally minimized at distinct points x and y. By strict convexity

$$\forall t \in (0,1) \quad f(tx + (1-t)y) < tf(x) + (1-t)f(y).$$

Since f is minimized at both x and y we have f(x) = f(y), so

$$f(tx + (1-t)y) < tf(x) + (1-t)f(x) = f(x).$$

However, this implies that the point z = tx + (1-t)y yields a value of f even *smaller* than at x, contradicting our assumption that x is a global minimizer. Therefore, strict convexity implies that the global minimizer must be unique, and so for  $\lambda > 0$ , we are guaranteed that the above solution will be the unique solution to our penalized least squares problem.

(d)

To write our function computing the ridge coefficients we first set  $\nabla f(\beta) = 0$ 

$$\hat{\beta}_{-1}^{(\lambda)} = \left(\tilde{X}^T \tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1} \tilde{X}^T \tilde{Y}.$$

For the purpose of computational efficiency we make use of the singular value decomposition of  $\tilde{X}$ 

$$\tilde{X} = UDV^T$$
,

for  $U \in \mathbb{R}^{n \times n}$  and  $V \in \mathbb{R}^{(p-1) \times (p-1)}$  both orthogonal matrices,  $U^T U = \mathbb{I}_n$ ,  $V^T V = \mathbb{I}_{p-1}$ , and  $D \in \mathbb{R}^{n \times (p-1)}$  a diagonal matrix with entries  $\{d_j\}_{j=1}^{\min(n, p-1)}$  along the main diagonal and zero elsewhere. Hence,

$$\hat{\beta}_{-1}^{(\lambda)} = (\tilde{X}^T \tilde{X} + \lambda \mathbb{I}_{p-1})^{-1} \tilde{X}^T \tilde{Y}$$

$$= ((UDV^T)^T UDV^T + \lambda VV^T)^{-1} (UDV^T)^T \tilde{Y}$$

$$= (VD^T U^T UDV^T + \lambda VV^T)^{-1} VD^T U^T \tilde{Y}$$

$$= (V (D^T D + \lambda \mathbb{I}_{p-1}) V^T)^{-1} VD^T U^T \tilde{Y}$$

$$= V (D^T D + \lambda \mathbb{I}_{p-1})^{-1} V^T VD^T U^T \tilde{Y}$$

$$= V (D^T D + \lambda \mathbb{I}_{p-1})^{-1} D^T U^T \tilde{Y}.$$

Note that  $D^TD + \lambda \mathbb{I}_{p-1}$  is a diagonal  $(p-1) \times (p-1)$  matrix with entries  $d_j^2 + \lambda$ , j = 1, ..., p-1, and so the inverse  $\left(D^TD + \lambda \mathbb{I}_{p-1}\right)^{-1}$  must also be diagonal with entries  $\left(d_j^2 + \lambda\right)^{-1}$ , j = 1, ..., p-1. We exploit this to avoid performing a matrix inversion in our function. For brevity, let

$$D^* = \left(D^T D + \lambda I_{p-1}\right)^{-1} D^T,$$

so that

$$\hat{\beta}^{(\lambda)} = V D^* U^T \tilde{Y}.$$

We present a function written in R performing such calculations below.

```
ridge_coef <- function(X, y, lam) {
   Xm1 <- X[,-1] # remove leading column of 1's marking the intercept

ytilde <- y - mean(y) # center response
   xbar <- colMeans(Xm1) # find predictor means
   Xtilde <- Xm1 - tcrossprod(rep(1, nrow(Xm1)), xbar) # center each col according to its mean
   # compute the SVD on the centered design matrix
   Xtilde_svd <- svd(Xtilde)</pre>
```

```
U <- Xtilde_svd$u
d <- Xtilde_svd$v

# compute the inverse (D^T D + lambda I_{p-1})^{-1} D^T
Dstar <- diag(d/(d^2 + lam))

# compute ridge coefficients
b <- V %*% (Dstar %*% crossprod(U, ytilde)) # slopes
b1 <- mean(y) - crossprod(xbar, b) # intercept
list(b1 = b1, b = b)
}</pre>
```

Note the choice to use V % % (Dstar %\*% crossprod(U, ytilde)) to compute the matrix product  $VD^*U^T\tilde{Y}$  as opposed to (the perhaps more intuitive) V % % Dstar %\*% t(U) %\*% ytilde. Such a choice is empirically justified in an appendix.

(e)

We first take the expectation of  $\hat{\beta}_{-1}^{(\lambda)}$ 

$$\begin{split} \mathbb{E}\left[\hat{\beta}_{-1}^{(\lambda)}\right] &= \mathbb{E}\left[\left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\tilde{Y}\right] \\ &= \left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\mathbb{E}\left[\tilde{Y}\right] \\ &= \left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\tilde{X}\beta_{-1} \end{split}$$

If p >> n then using the SVD on  $\tilde{X}$  may yield some speed improvements, that is, with  $\tilde{X} = UDV^T$  as above, we find

$$\begin{split} \mathbb{E}\left[\hat{\beta}_{-1}^{(\lambda)}\right] &= \left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\tilde{X}\beta_{-1} \\ &= V\left(D^TD + \lambda \mathbb{I}_{p-1}\right)^{-1}D^TDV^T\beta_{-1} \\ &= VD^*V^T\beta_{-1} \end{split}$$

where  $D^*$  is a diagonal min  $(n, p-1) \times \min(n, p-1)$  matrix with diagonal entries  $\left\{\frac{d_j^2}{d_j^2 + \lambda}\right\}_{j=1}^{\min(n, p-1)}$  and zero elsewhere.

We next compute the variance of our centered ridge estimates

$$\begin{aligned} \operatorname{Var}\left(\hat{\beta}_{-1}^{(\lambda)}\right) &= \operatorname{Var}\left(\left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\tilde{Y}\right) \\ &= \left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\operatorname{Var}\left(\tilde{Y}\right)\left(\left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\right)^T \\ &= \left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\operatorname{Var}\left(\tilde{Y}\right)\tilde{X}\left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1} \\ &= \sigma_*^2\left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1}\tilde{X}^T\tilde{X}\left(\tilde{X}^T\tilde{X} + \lambda \mathbb{I}_{p-1}\right)^{-1} \end{aligned}$$

<sup>&</sup>lt;sup>1</sup>Benchmarks are provided in an appendix for the cases of large n, large p, and  $n \approx p$ .

as desired. We once again may be interested in applying the SVD on  $\tilde{X}$  as we had done before. Such a decomposition gives us a more concise solution

$$\operatorname{Var}\left(\hat{\beta}_{-1}^{(\lambda)}\right) = V D^{**} V^T$$

where  $D^{**}$  is a diagonal min  $(n, p-1) \times \min(n, p-1)$  matrix with diagonal entries  $\left\{\frac{d_j^2}{\left(d_j^2 + \lambda\right)^2}\right\}_{j=1}^{\min(n, p-1)}$  and zero elsewhere.

We now wish to perform a simulation study to estimate our theoretical values  $\mathbb{E}\left[\hat{\beta}_{-1}^{(\lambda)}\right]$  and  $\operatorname{Var}\left(\hat{\beta}_{-1}^{(\lambda)}\right)$ . For readability we first define functions computing the theoretical mean and variance according to our above expressions.

```
ridge_coef_params <- function(X, lam, beta, sigma) {</pre>
  n <- nrow(X); p <- ncol(X)</pre>
  betam1 <- beta[-1] # remove intercept term</pre>
  Xm1 \leftarrow X[,-1] # remove leading column of 1's in our design matrix
  xbar <- colMeans(Xm1) # find prector means</pre>
  Xtilde <- sweep(Xm1, 2, xbar) # center each predictor according to its mean
  if (n \ge p) {
    I \leftarrow diag(p - 1)
    inv <- solve(crossprod(Xtilde) + lam * I)</pre>
    b <- solve(crossprod(Xtilde) + lam * I) %*% (crossprod(Xtilde) %*% betam1)
    vcv <- sigma^2 * inv %*% crossprod(Xtilde) %*% inv</pre>
    list(b = b, vcv = vcv)
  } else {
    # compute SVD on the centered design matrix
    Xtilde_svd <- svd(Xtilde)</pre>
    d <- Xtilde_svd$d
    V <- Xtilde_svd$v
    Dstar \leftarrow diag(d^2/(d^2 + lam))
    Dstar2 \leftarrow diag(d^2/(d^2 + lam)^2)
    b <- V ** (Dstar ** crossprod(V, betam1))
    vcv <- V %*% tcrossprod(Dstar2, V)</pre>
    list(b = b, vcv = vcv)
  }
}
```

We may now perform our simulation.

```
# set parameters
nsims <- 1e3
n <- 25
p <- 7
lam <- 4
beta_star <- 1:p</pre>
```

```
sigma_star <- 1
# generate fixed design matrix
X \leftarrow cbind(1, matrix(rnorm(n * (p - 1)), nrow = n))
# compute theoretical mean and variance
par_true <- ridge_coef_params(X, lam, beta_star, sigma_star)</pre>
b_true <- as.vector(par_true$b)</pre>
vcv_true <- par_true$vcv
# simulate ridge coefficients nsims times
# outputs a matrix with rows corresponding to coefficients
# and columns correspond to simulation number
b_hat <- replicate(nsims, {</pre>
 y <- X ** beta_star + rnorm(n, 0, sigma_star)
 as.vector(ridge_coef(X, y, lam)$b)
# estimate variance of b1, ..., b_p estimates
vcv_hat <- var(t(b_hat))</pre>
# print estimated fused ridge coefficients vs. expected values
b <- rbind(rowMeans(b_hat), b_true)</pre>
rownames(b) <- c("b_hat", "b_true")</pre>
round(b, 4)
                    [,2] [,3]
            [,1]
                                  [,4]
                                        [,5]
## b_hat 0.7861 1.6595 3.2916 3.8786 4.2007 6.3650
## b_true 0.7797 1.6636 3.2936 3.8779 4.2025 6.3689
# print absolute error between estimated and true fused ridge variances
round(abs(vcv_true - vcv_hat), 4)
          [,1]
                 [,2]
                         [,3]
                                [,4]
                                        [,5]
## [1,] 0.0010 0.0008 0.0013 0.0012 0.0008 0.0009
## [2,] 0.0008 0.0008 0.0009 0.0017 0.0011 0.0003
## [3,] 0.0013 0.0009 0.0012 0.0006 0.0015 0.0015
## [4,] 0.0012 0.0017 0.0006 0.0014 0.0005 0.0001
## [5,] 0.0008 0.0011 0.0015 0.0005 0.0007 0.0012
## [6,] 0.0009 0.0003 0.0015 0.0001 0.0012 0.0013
```

We see that the empirical sample estimates are very close to their theoretical values, as expected.

## Question 3

Prior to writing our cross-validation function we create some helper functions for the sake of readability

```
ridge_cv_lam <- function(X, y, lam, K) {
    # Helper function for ridge_cv()
    # perform K-fold cross-validation on the ridge regression
    # estimation problem over a single tuning parameter lam
    n <- nrow(X)

if (K > n) {
```

```
stop(paste0("K > ", n, "."))
  } else if (K < 2) {</pre>
    stop("K < 2.")
  # groups to cross-validate over
  folds <- cut(1:n, breaks = K, labels = F)</pre>
  # get indices of training subset
  train_idxs <- lapply(1:K, function(i) !(folds %in% i))</pre>
  cv_err <- sapply(train_idxs, function(tis) {</pre>
    # train our model, extract fitted coefficients
    b train <- unlist(ridge coef(X[tis,], y[tis], lam))</pre>
    # find observations needed for testing fits
    test_idx <- !((1:n) %in% tis)
    # fit data
    yhat <- X[test_idx,] %*% b_train</pre>
    # compute test error
    sum((y[test_idx] - yhat)^2)
  })
  # weighted average (according to group size, some groups may have
  # +/- 1 member depending on whether sizes divided unevenly) of
  # cross validation error for a fixed lambda
  sum((cv_err * table(folds)))/n
}
```

Then, our cross-validation function is as follows:

```
ridge_cv <- function(X, y, lam.vec, K) {
    # perform K-fold cross-validation on the ridge regression
    # estimation problem over tuning parameters given in lam.vec
    n <- nrow(X); p <- ncol(X)

    cv.error <- sapply(lam.vec, function(1) ridge_cv_lam(X, y, 1, K))

# extract best tuning parameter and corresponding coefficient estimates
best.lam <- lam.vec[cv.error == min(cv.error)]
best.fit <- ridge_coef(X, y, best.lam)
b1 <- best.fit$b1
b <- best.fit$b1
list(b1 = b1, b = b, best.lam = best.lam, cv.error = cv.error)
}</pre>
```

# Question 4

For this problem we first set some global libraries/functions

```
library(doParallel)

rmvn <- function(n, p, mu = 0, S = diag(p)) {
    # generates n (potentially correlated) p-dimensional normal deviates</pre>
```

```
# given mean vector mu and variance-covariance matrix S
# NOTE: S must be a positive-semidefinite matrix
Z <- matrix(rnorm(n * p), nrow = n, ncol = p) # generate iid normal deviates
C <- chol(S)
mu + Z %*% C # compute our correlated deviates
}
loss1 <- function(beta, b) sum((b - beta)^2)
loss2 <- function(X, beta, b) sum((X %*% (beta - b))^2)
and global parameters which remain constant across (a)-(d)
set.seed(124)
# global parameters</pre>
```

```
# global parameters
nsims <- 10
n <- 10
Ks <- c(5, 10, n)
lams <- 10^seq(-8, 8, 0.5)
sigma_star <- sqrt(1/2)

# empty data structure to store our results
coef_list <- vector(mode = 'list', length = length(Ks) + 1)
names(coef_list) <- c("OLS", "K5", "K10", "Kn")</pre>
```

(a)

```
# set parameters
p <- 50
theta \leftarrow 0.5
# generate data
beta_star <- rnorm(p, 0, sigma_star)</pre>
SIGMA \leftarrow outer(1:(p-1), 1:(p-1), FUN = function(a, b) theta^abs(a-b))
X \leftarrow cbind(1, rmvn(n, p - 1, 0, SIGMA))
# simulation
pt <- proc.time()</pre>
registerDoParallel(cores = 4)
sim <- foreach(1:nsims, .combine = cbind) %dopar% {</pre>
  y <- X ** beta_star + rnorm(n, 0, sigma_star)
  ols_fit <- ridge_coef(X, y, 0)</pre>
  coef_list[[1]] <- c(ols_fit$b1, ols_fit$b)</pre>
  coef_list[2:(length(Ks) + 1)] <- sapply(Ks, function(k) {</pre>
   rcv <- ridge_cv(X, y, lam.vec = lams, K = k)</pre>
    list(coefs = c(rcv$b1, rcv$b))
  })
  11 <- sapply(coef_list, function(b) loss1(beta_star, b))</pre>
  12 <- sapply(coef_list, function(b) loss2(X, beta_star, b))</pre>
  list(11, 12)
```

```
sim_loss <- lapply(1:nrow(sim), function(i) sapply(sim[i,], function(s) s))</pre>
names(sim_loss) <- c("Loss 1", "Loss 2")</pre>
sim_means <- t(sapply(sim_loss, function(s) rowMeans(s)))</pre>
sim se <- t(
  sapply(sim_loss, function(s) apply(s, 1, function(x) sd(x)/sqrt(length(x)))))
proc.time() - pt
##
      user system elapsed
##
     2.614
            0.183
                      1.224
# report results
round(sim_means, 4)
               OLS
                        K5
                                K10
## Loss 1 12.9794 12.6640 12.6570 12.6570
## Loss 2 4.3819 4.3819 4.3447 4.3447
round(sim_se, 4)
##
              OLS
                      K5
                             K10
## Loss 1 0.3080 0.0927 0.0889 0.0889
## Loss 2 0.4999 0.4999 0.4953 0.4953
(b)
# set parameters
p < -50
theta <- 0.9
# generate data
beta_star <- rnorm(p, 0, sigma_star)</pre>
SIGMA <- outer(1:(p - 1), 1:(p - 1), FUN = function(a, b) theta^abs(a - b))
X \leftarrow cbind(1, rmvn(n, p - 1, 0, SIGMA))
# simulation
pt <- proc.time()
registerDoParallel(cores = 4)
sim <- foreach(1:nsims, .combine = cbind) %dopar% {</pre>
  y <- X %*% beta_star + rnorm(n, 0, sigma_star)
  ols_fit <- ridge_coef(X, y, 0)</pre>
  coef_list[[1]] <- c(ols_fit$b1, ols_fit$b)</pre>
  coef_list[2:(length(Ks) + 1)] <- sapply(Ks, function(k) {</pre>
    rcv <- ridge_cv(X, y, lam.vec = lams, K = k)</pre>
    list(coefs = c(rcv$b1, rcv$b))
  })
  11 <- sapply(coef_list, function(b) loss1(beta_star, b))</pre>
  12 <- sapply(coef_list, function(b) loss2(X, beta_star, b))</pre>
```

list(11, 12)

```
sim_loss <- lapply(1:nrow(sim), function(i) sapply(sim[i,], function(s) s))</pre>
names(sim_loss) <- c("Loss 1", "Loss 2")</pre>
sim_means <- t(sapply(sim_loss, function(s) rowMeans(s)))</pre>
sim se <- t(
  sapply(sim_loss, function(s) apply(s, 1, function(x) sd(x)/sqrt(length(x)))))
proc.time() - pt
##
      user system elapsed
##
     2.590
            0.170
                      1.189
# report results
round(sim_means, 4)
               OLS
                        K5
                                K10
## Loss 1 13.5056 11.7728 11.7725 11.7725
## Loss 2 5.4059 5.4059 5.4061 5.4061
round(sim_se, 4)
##
              OLS
                      K5
                             K10
## Loss 1 0.3470 0.1031 0.1029 0.1029
## Loss 2 0.8136 0.8136 0.8137 0.8137
(c)
# set parameters
p < -200
theta <- 0.5
# generate data
beta_star <- rnorm(p, 0, sigma_star)</pre>
SIGMA <- outer(1:(p - 1), 1:(p - 1), FUN = function(a, b) theta^abs(a - b))
X \leftarrow cbind(1, rmvn(n, p - 1, 0, SIGMA))
# simulation
pt <- proc.time()
registerDoParallel(cores = 4)
sim <- foreach(1:nsims, .combine = cbind) %dopar% {</pre>
  y <- X %*% beta_star + rnorm(n, 0, sigma_star)
  ols_fit <- ridge_coef(X, y, 0)</pre>
  coef_list[[1]] <- c(ols_fit$b1, ols_fit$b)</pre>
  coef_list[2:(length(Ks) + 1)] <- sapply(Ks, function(k) {</pre>
    rcv <- ridge_cv(X, y, lam.vec = lams, K = k)</pre>
    list(coefs = c(rcv$b1, rcv$b))
  })
  11 <- sapply(coef_list, function(b) loss1(beta_star, b))</pre>
  12 <- sapply(coef_list, function(b) loss2(X, beta_star, b))</pre>
  list(11, 12)
```

```
sim_loss <- lapply(1:nrow(sim), function(i) sapply(sim[i,], function(s) s))</pre>
names(sim_loss) <- c("Loss 1", "Loss 2")</pre>
sim_means <- t(sapply(sim_loss, function(s) rowMeans(s)))</pre>
sim se \leftarrow t(
  sapply(sim_loss, function(s) apply(s, 1, function(x) sd(x)/sqrt(length(x)))))
proc.time() - pt
##
      user system elapsed
##
     6.461
            0.391
                      2.114
# report results
round(sim_means, 4)
                OLS
                          K5
                                   K10
## Loss 1 111.8072 111.1031 111.1031 111.1031
## Loss 2
           4.7975
                      4.7975
                                4.7975
round(sim_se, 4)
##
              OLS
                      K5
                             K10
## Loss 1 0.7867 0.7452 0.7452 0.7452
## Loss 2 0.7493 0.7493 0.7493 0.7493
(d)
# set parameters
p < -200
theta <- 0.9
# generate data
beta_star <- rnorm(p, 0, sigma_star)</pre>
SIGMA <- outer(1:(p - 1), 1:(p - 1), FUN = function(a, b) theta^abs(a - b))
X \leftarrow cbind(1, rmvn(n, p - 1, 0, SIGMA))
# simulation
pt <- proc.time()
registerDoParallel(cores = 4)
sim <- foreach(1:nsims, .combine = cbind) %dopar% {</pre>
  y <- X %*% beta_star + rnorm(n, 0, sigma_star)
  ols_fit <- ridge_coef(X, y, 0)</pre>
  coef_list[[1]] <- c(ols_fit$b1, ols_fit$b)</pre>
  coef_list[2:(length(Ks) + 1)] <- sapply(Ks, function(k) {</pre>
    rcv <- ridge_cv(X, y, lam.vec = lams, K = k)</pre>
    list(coefs = c(rcv$b1, rcv$b))
  })
  11 <- sapply(coef_list, function(b) loss1(beta_star, b))</pre>
  12 <- sapply(coef_list, function(b) loss2(X, beta_star, b))</pre>
  list(11, 12)
```

```
sim_loss <- lapply(1:nrow(sim), function(i) sapply(sim[i,], function(s) s))</pre>
names(sim_loss) <- c("Loss 1", "Loss 2")</pre>
sim_means <- t(sapply(sim_loss, function(s) rowMeans(s)))</pre>
sim se <- t(
  sapply(sim_loss, function(s) apply(s, 1, function(x) sd(x)/sqrt(length(x)))))
proc.time() - pt
##
      user
            system elapsed
##
     6.125
             0.392
                      2.093
# report results
round(sim_means, 4)
                         K5
                                K10
## Loss 1 100.0770 99.8978 99.9266 99.9266
            5.6408 5.6418 5.6408 5.6408
round(sim_se, 4)
##
             OLS
                      K5
                            K10
## Loss 1 0.6050 0.6022 0.6067 0.6067
## Loss 2 0.7192 0.6851 0.7192 0.7192
```

## Question 5

(a)

Taking the gradient of our objective function q with respect to coefficient vector  $\beta$  yields

$$\nabla_{\beta} g(\beta, \sigma^2) = \nabla_{\beta} \left( \frac{n}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \|\tilde{Y} - \tilde{X}\beta\|_2^2 + \frac{\lambda}{2} \|\beta\|_2^2 \right)$$
$$= \frac{1}{\sigma^2} \left( -\tilde{X}^T \tilde{Y} + \tilde{X}^T \tilde{X}\beta \right) + \lambda \beta,$$

while the gradient of g with respect to  $\sigma^2$  is given by

$$\nabla_{\sigma^2} g(\beta, \sigma^2) = \nabla_{\beta} \left( \frac{n}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \|\tilde{Y} - \tilde{X}\beta\|_2^2 + \frac{\lambda}{2} \|\beta\|_2^2 \right)$$
$$= \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \|\tilde{Y} - \tilde{X}\beta\|_2^2.$$

as desired.

(b)

We first consider the objective function in terms of  $\beta$ . We find the Hessian with respect to  $\beta$ 

$$\begin{split} \nabla_{\beta}^{2} g\left(\beta, \sigma^{2}\right) &= \nabla_{\beta}^{2} \left(\frac{n}{2} \log \sigma^{2} + \frac{1}{2\sigma^{2}} \|\tilde{Y} - \tilde{X}\beta\|_{2}^{2} + \frac{\lambda}{2} \|\beta\|_{2}^{2}\right) \\ &= \nabla_{\beta} \left(\frac{1}{\sigma^{2}} \tilde{X}^{T} \left(-\tilde{Y} + \tilde{X}\beta\right) + \lambda\beta\right) \\ &= \tilde{X}^{T} \tilde{X} + \lambda \mathbb{I}_{p-1}. \end{split}$$

The symmetric matrix  $\tilde{X}^T\tilde{X}$  is always positive semi-definite, and for  $\lambda \geq 0$ ,  $\lambda \mathbb{I}_{p-1}$  will also be positive semi-definite (and strictly positive definite when  $\lambda > 0$ ). Thus, the Hessian with respect to  $\beta$  must be positive semi-definite

$$\nabla_{\beta}^{2} g\left(\beta, \sigma^{2}\right) = \tilde{X}^{T} \tilde{X} + \lambda \mathbb{I}_{p-1} \in \mathbb{S}_{+}^{p-1},$$

and so our objective function  $g(\beta, \sigma^2)$  is convex in  $\beta$ . Now, considering the Hessian with respect to  $\sigma^2$ ,

$$\begin{split} \nabla_{\sigma^2}^2 g\left(\beta, \sigma^2\right) &= \nabla_{\sigma^2}^2 \left(\frac{n}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \|\tilde{Y} - \tilde{X}\beta\|_2^2 + \frac{\lambda}{2} \|\beta\|_2^2\right) \\ &= \nabla_{\sigma^2} \left(\frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \|\tilde{Y} - \tilde{X}\beta\|_2^2\right) \\ &= -\frac{n}{2\sigma^4} + \frac{1}{\sigma^6} \|\tilde{Y} - \tilde{X}\beta\|_2^2. \end{split}$$

For g to be convex in  $\sigma^2$  we require  $\nabla^2_{\sigma^2}g(\beta,\sigma^2) \geq 0$ . However, such a condition is equivalent to

$$n \ge \frac{2}{\sigma^2} \|\tilde{Y} - \tilde{X}\beta\|_2^2.$$

As a counterexample consider the following data

```
set.seed(124)
n <- 20
p <- 100
beta <- rep(0.1, p)
sigma <- sqrt(2)

Xtilde <- matrix(rnorm(n * p), nrow = n)
eps <- rnorm(n, 0, sigma^2)
ytilde <- Xtilde %*% beta + eps

rhs <- as.numeric(2/sigma^2 * crossprod(ytilde - Xtilde %*% beta))
rhs</pre>
```

```
## [1] 55.03599
```

```
n >= rhs
```

#### ## [1] FALSE

and so it is not the case that  $\nabla^2_{\sigma^2}g\left(\beta,\sigma^2\right)$  is (always) nonnegative, implying that our objective function  $g\left(\beta,\sigma^2\right)$  is not convex in  $\sigma^2$ .

(c)

Let  $\bar{\beta}$  be a solution to our maximum likelihood ridge estimation problem such that, for  $\lambda > 0$ , we have

$$\tilde{Y} - \tilde{X}\bar{\beta} = 0.$$

Since  $\bar{\beta}$  is a solution it must satisfy our first order condition

$$\nabla_{\beta}g(\beta,\sigma^{2}) = \frac{1}{\sigma^{2}} \left( -\tilde{X}^{T}\tilde{Y} + \tilde{X}^{T}\tilde{X}\beta \right) + \lambda\beta = 0 \iff \frac{1}{\sigma^{2}} \left( \tilde{X}^{T} \left( -\tilde{Y} + \tilde{X}\beta \right) \right) + \lambda\beta = 0.$$

Thus, for such a solution  $\bar{\beta}$  and  $\lambda > 0$ ,

$$0 = \frac{1}{\sigma^2} \left( \tilde{X}^T \left( -\tilde{Y} + \tilde{X}\bar{\beta} \right) \right) + \lambda \bar{\beta}$$
$$= \frac{1}{\sigma^2} \left( \tilde{X}^T \left( -\tilde{Y} + \tilde{Y} \right) \right) + \lambda \bar{\beta}$$
$$= \lambda \bar{\beta}$$
$$\iff \bar{\beta} = 0.$$

Similarly, using our second first order condition  $\nabla_{\sigma^2} g(\beta, \sigma^2) = 0$ , at  $\beta = \bar{\beta}$ ,

$$\begin{split} \nabla_{\sigma^2} g(\beta, \sigma^2) &= \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \|\tilde{Y} - \tilde{X}\beta\|_2^2 \\ &= \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \|\tilde{Y} - \tilde{X}\bar{\beta}\|_2^2 \\ &= \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \|\tilde{Y} - \tilde{Y}\|_2^2 \\ &= \frac{n}{2\sigma^2} = 0 \end{split}$$

This conditions implies that either n=0 or  $\sigma^2\to\infty$ . Thus, no such global minimizer could exist.

(d)

Solving our first order conditions

$$\begin{split} \frac{1}{\sigma^2} \left( \tilde{X}^T \left( -\tilde{Y} + \tilde{X} \bar{\beta} \right) \right) + \lambda \bar{\beta} &= 0 \\ \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \|\tilde{Y} - \tilde{X} \beta\|_2^2 &= 0, \end{split}$$

we find the maximum likelihood estimate  $\hat{\beta}^{(\lambda, ML)}$  to be

$$\hat{\beta}^{(\lambda, ML)} = (\tilde{X}^T \tilde{X} + \sigma^2 \lambda \mathbb{I}_{p-1})^{-1} \tilde{X}^T \tilde{Y}.$$

and the maximum likelihood estimate  $\hat{\sigma}^{2(\lambda, ML)}$  to be

$$\hat{\sigma}^{2(\lambda, ML)} = \frac{1}{n} \|\tilde{Y} - \tilde{X}\hat{\beta}^{(\lambda, ML)}\|_2^2$$

To compute such estimates we may use the following algorithm: Consider some fixed data set  $\mathcal{D} = \{X, Y\}$  and a fixed tuning parameter  $\lambda$ .

- (1) Center the data: Center each predictor by its mean  $X \mapsto \tilde{X}$ , center the response vector by its mean  $Y \mapsto \tilde{Y}$ .
- (2) Have some initial proposal for the estimate  $\hat{\sigma}_0^{2(\lambda, ML)} \in \mathbb{R}^+$ .
- (3) Compute an initial proposal for  $\hat{\beta}_0^{(\lambda, ML)}$  based on  $\hat{\sigma}_0^{2(\lambda, ML)}$ .
- (4) Update our variance estimate  $\hat{\sigma}_i^{2(\lambda, ML)}$  using the previous estimate of  $\hat{\beta}_{i-1}^{(\lambda, ML)}$ .
- (5) Update our coefficient estimate  $\hat{\beta}_i^{(\lambda, ML)}$  using the new estimate of  $\hat{\sigma}_i^{2(\lambda, ML)}$ .
- (6) Repeat steps (5)-(6) until some convergence criteria is met, say  $\|\hat{\sigma}_i^{2\,(\lambda,\,ML)} \hat{\sigma}_{i-1}^{2\,(\lambda,\,ML)}\|$ , is small.

(e)

Our function is as follows

```
ridge_coef_mle <- function(X, y, lam, tol = 1e-16) {</pre>
  Xm1 \leftarrow X[,-1] # remove leading column of 1's marking the intercept
  ytilde <- y - mean(y) # center response</pre>
  xbar <- colMeans(Xm1) # find predictor means
  Xtilde <- sweep(Xm1, 2, xbar) # center each predictor according to its mean
  # compute the SVD on the centered design matrix
  Xtilde_svd <- svd(Xtilde)</pre>
  U <- Xtilde_svd$u
  d <- Xtilde_svd$d
  V <- Xtilde_svd$v</pre>
  ## generate some initial guess for sigma and beta
  sig0 \leftarrow rexp(1)
  Dstar \leftarrow diag(d/(d^2 + sig0^2 * lam))
  b0 <- V ** (Dstar ** crossprod(U, ytilde))
  i <- 1
  repeat {
    # update sigma and beta
    sig_new <- sqrt(1/n * crossprod(ytilde - Xtilde %*% b0))</pre>
    Dstar \leftarrow diag(d/(d^2 + sig_new^2 * lam))
    b_new <- V %*% (Dstar %*% crossprod(U, ytilde))</pre>
    if (abs(sig_new^2 - sig0^2) < tol)</pre>
      break
    sig0 <- sig_new
    b0 <- b_new
    i <- i + 1
  }
```

```
list(niter = i, sigma = as.numeric(sig_new), b = b_new)

grad_mle <- function(X, y, lam, b, s) {
    n <- nrow(X)
    Xm1 <- X[,-1] # remove leading column of 1's marking the intercept
    ytilde <- y - mean(y) # center response
    xbar <- colMeans(Xm1) # find predictor means
    Xtilde <- sweep(Xm1, 2, xbar) # center each predictor according to its mean

gb <- 1/s^2 * crossprod(Xtilde, Xtilde %*% b - ytilde) + lam * b
    gs <- n/(2 * s^2) - 1/(2 * s^4) * crossprod(ytilde - Xtilde %*% b)
    c(grad_b = gb, grad_s = gs)
}</pre>
```

#### (f)

```
set.seed(124)
n <- 100
p <- 5
lam <- 1
beta_star <- (-1)^(1:p) * rep(5, p)
sigma_star <- sqrt(1/2)</pre>
X \leftarrow cbind(1, matrix(rnorm(n * (p - 1)), nrow = n))
y <- X ** beta_star + rnorm(n, 0, sigma_star)
rcm <- ridge_coef_mle(X, y, lam)</pre>
rcm
## $niter
## [1] 9
##
## $sigma
## [1] 0.6559084
##
## $b
##
             [,1]
## [1,] 4.976904
## [2,] -5.000078
## [3,] 4.888082
## [4,] -5.017066
grad_mle(X, y, lam, rcm$b, rcm$sigma)
                                       grad_b3
         grad_b1
                        grad_b2
                                                      grad_b4
                                                                      grad_s
## 5.178080e-13 -1.419309e-12 4.849454e-13 -9.281464e-13 1.421085e-14
as desired.
```

### Question 6

(a)

Consider our objective function

$$f(\beta) = \frac{1}{2} \|\tilde{Y} - \tilde{X}\beta\|_2^2 + \frac{\lambda_1}{2} \|\beta\|_2^2 + \frac{\lambda_2}{2} \sum_{j=2}^p (\beta_j - \beta_{j-1})^2$$

To show convexity we wish to show  $\nabla^2 f(\beta) \in \mathbb{S}^{p-1}_+$ . However, it's not immediately obvious how to take such a gradient with our fused sum terms  $(b_j - \beta_{j-1})^2$ . One way to get around this is to define vector  $B \in \mathbb{R}^{p-1}$  given by

$$B = \begin{bmatrix} \beta_2 - \beta_1 \\ \vdots \\ \beta_p - \beta_{p-1} \end{bmatrix}$$

Then

$$\sum_{j=2}^{p} (\beta_j - \beta_{j-1})^2 = B^T B$$

In order to achieve our task of expressing the fused sum in terms of the vector  $\beta$  we must next decompose B into a product of  $\beta$  and some matrix. To this end we define matrix  $A \in \mathbb{R}^{(p-2)\times (p-1)}$  with entries -1 along the main diagonal and 1 along the upper diagonal, i.e.,

$$A = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

Then

$$\sum_{j=2}^{p} (\beta_j - \beta_{j-1})^2 = B^T B$$
$$= \beta^T A^T A \beta$$
$$\equiv ||A\beta||_2^2$$

Therefore, our objective function can be expressed as

$$\begin{split} f(\beta) &= \frac{1}{2} \|\tilde{Y} - \tilde{X}\beta\|_2^2 + \frac{\lambda_1}{2} \|\beta\|_2^2 + \frac{\lambda_2}{2} \|A\beta\|_2^2 \\ &\equiv \frac{1}{2} \tilde{Y}^T \tilde{Y} - \beta^T \tilde{X}^T \tilde{Y} + \frac{1}{2} \beta^T \tilde{X}^T \tilde{X}\beta + \frac{\lambda_1}{2} \beta^T \beta + \frac{\lambda_2}{2} \beta^T A^T A\beta \end{split}$$

Hence

$$\nabla f(\beta) = -\tilde{X}^T \tilde{Y} + \tilde{X}^T \tilde{X}\beta + \lambda_1 \beta + \lambda_2 A^T A \beta$$

admitting the Hessian

$$\nabla^2 f(\beta) = \tilde{X}^T \tilde{X} + \lambda_1 \mathbb{I}_{n-1} + \lambda_2 A^T A$$

Recalling that a matrix multiplied with its transpose must always be positive semi-definite, we find  $\tilde{X}^TX$  and  $A^TA$  must be positive semi-definite. Thus, since  $\lambda_1 > 0$ , we find that our sum  $\tilde{X}^T\tilde{X} + \lambda_1\mathbb{I}_{p-1} + \lambda_2A^TA = \nabla^2 f(\beta)$  is positive semi-definite, and so  $f(\beta)$  must be strictly convex, as desired.

(b)

We first solve for  $\hat{\beta}_{-1}^{(\lambda_1, \lambda_2)}$  in (a) by setting  $\nabla f(\beta) = 0$ 

$$0 = -\tilde{X}^T \tilde{Y} + \tilde{X}^T \tilde{X} \beta + \lambda_1 \beta + \lambda_2 A^T A \beta$$
$$\tilde{X}^T \tilde{Y} = (\tilde{X}^T \tilde{X} + \lambda_1 \mathbb{I}_{p-1} + \lambda_2 A^T A) \beta$$
$$\implies \hat{\beta}_{-1}^{(\lambda_1, \lambda_2)} = M \tilde{X}^T \tilde{Y}$$

where we have set  $M = (\tilde{X}^T \tilde{X} + \lambda_1 \mathbb{I}_{p-1} + \lambda_2 A^T A)^{-1}$  for brevity. Therefore

$$\begin{split} \mathbb{E}\left[\hat{\beta}_{-1}^{(\lambda_1,\,\lambda_2)}\right] &= \mathbb{E}\left[M\tilde{X}^T\tilde{Y}\right] \\ &= M\tilde{X}^T\mathbb{E}\left[\tilde{Y}\right] \\ &= M\tilde{X}^T\beta_{*,\,-1} \end{split}$$

and

$$\operatorname{Var}\left(\hat{\beta}_{-1}^{(\lambda_{1}, \lambda_{2})}\right) = \operatorname{Var}\left(M\tilde{X}^{T}Y\right)$$
$$= M\tilde{X}^{T}\operatorname{Var}\left(\tilde{Y}\right)\tilde{X}M^{T}$$
$$= \sigma_{*}^{2}M\tilde{X}^{T}\tilde{X}M^{T}$$

as desired. We now perform our fused ridge simulation study to test the theoretical values with some empirical estimates. We first define our fused ridge coefficient estimation function (as well as functions permitting us to easily compute the theoretical means and variances of the fused ridge problem)

```
fused_ridge_coef <- function(X, y, lam1, lam2) {
    n <- nrow(X); p <- ncol(X)
    Xm1 <- X[,-1] # remove leading column of 1's marking the intercept

ytilde <- y - mean(y) # center response
    xbar <- colMeans(Xm1) # find predictor means
    Xtilde <- sweep(Xm1, 2, xbar) # center each predictor according to its mean

I <- diag(p - 1)
    UD <- cbind(rep(0, p - 2), diag(p - 2)) # upper diagonal matrix</pre>
```

```
J \leftarrow -1 * cbind(diag(p - 2), rep(0, p - 2)) # diag(p - 2)*(p - 1) matrix
  A <- J + UD
  M <- solve(crossprod(Xtilde) + lam1 * I + lam2 * crossprod(A))
  b <- M %*% crossprod(Xtilde, y)</pre>
  b0 <- mean(y) - crossprod(xbar, b)
  return(list(b0 = b0, b = b))
fused_ridge_coef_params <- function(X, lam1, lam2, beta, sigma) {</pre>
  # omits intercept term b0
  # returns theoretical means and variances for the fused ridge problem
  n <- nrow(X); p <- ncol(X)</pre>
  Xm1 \leftarrow X[,-1] # remove leading column of 1's marking the intercept
  betam1 <- beta[-1] # remove intercept term</pre>
  xbar <- colMeans(Xm1) # find predictor means</pre>
  Xtilde <- sweep(Xm1, 2, xbar) # center each predictor according to its mean
  I \leftarrow diag(p - 1)
  UD <- cbind(rep(0, p - 2), diag(p - 2)) # upper diagonal matrix
  J \leftarrow -1 * cbind(diag(p - 2), rep(0, p - 2)) # diag (p - 2)*(p - 1) matrix
  A <- J + UD
  M <- solve(crossprod(Xtilde) + lam1 * I + lam2 * crossprod(A))</pre>
  b <- M ** crossprod(Xtilde, (Xtilde ** betam1))
  vcv \leftarrow matrix(0, nrow = p - 1, ncol = p - 1)
  if (n > p) { # when n > p this matrix multiplication routine is quicker
   vcv <- sigma^2 * M %*% tcrossprod(crossprod(Xtilde), M)</pre>
  } else { \# when p > n this matrix multiplication routine is quicker
  vcv <- sigma^2 * tcrossprod(M, Xtilde) %*% tcrossprod(Xtilde, M)</pre>
  return (list(b = b, vcv = vcv))
}
```

We now simulate some data to test our estimates:

```
# set parameters
nsims <- 1e4
n <- 1e2
p <- 5
lam1 <- 1
lam2 <- 1
sigma_star <- 1
beta_star <- rnorm(p)

# generate (fixed) design matrix
X <- cbind(rep(1, n), matrix(rnorm(n * (p - 1)), nrow = n, ncol = p - 1))

# compute expected parameter values
par_true <- fused_ridge_coef_params(X, lam1, lam2, beta_star, sigma_star)</pre>
```

```
b_true <- as.vector(par_true$b)</pre>
vcv_true <- par_true$vcv
# simulate our fused ridge coefficients nsims times
# outputs a matrix with rows corresponding to coefficients
# and columns correspond to simulation number
pt <- proc.time()</pre>
b_hat <- replicate(nsims, {</pre>
 y <- X %*% beta_star + rnorm(n, 0, sigma_star) # generate response
 return (as.vector(fused_ridge_coef(X, y, lam1, lam2)$b))
})
proc.time() - pt
##
      user system elapsed
     1.715
            0.021
                     1.766
# estimate variance of b2, ..., b_p estimates
vcv_hat <- var(t(b_hat))</pre>
# print estimated fused ridge coefficients vs. expected values
b <- rbind(rowMeans(b_hat), b_true)</pre>
rownames(b) <- c("b_hat", "b_true")</pre>
round(b, 4)
            [,1]
                    [,2]
                            [,3]
## b_hat 0.0316 -0.7226 0.2226 1.3899
## b_true 0.0313 -0.7240 0.2235 1.3920
# print absolute error between estimated and true fused ridge variances
round(abs(vcv_true - vcv_hat), 4)
         [,1] [,2] [,3] [,4]
## [1,] 2e-04 1e-04 1e-04 1e-04
## [2,] 1e-04 1e-04 1e-04 2e-04
## [3,] 1e-04 1e-04 0e+00 1e-04
## [4,] 1e-04 2e-04 1e-04 3e-04
```

As a case study, we may look at the simulations of  $\hat{\beta}_2^{(\lambda_1,\lambda_2)}$  and compare it with it's theoretical distribution. Note that the estimates  $\hat{\beta}^{(\lambda_1,\lambda_2)} = M\tilde{X}^T\tilde{Y}$  are normally distributed because they are a linear combination of  $\tilde{Y} \sim \mathcal{N}(\tilde{X}\beta,\sigma^2)$  (when our noise terms  $\epsilon \sim \mathcal{N}(0,\sigma^2)$ ). We visualize the histogram of the  $\hat{\beta}_2^{(\lambda_1,\lambda_2)}$  simulations with its empirical and theoretical densities overlaid (dashed, solid), along with its expected value (vertical line) below.





# **Appendix**

# Computing $\mathbb{E}\left[\hat{eta}^{(\lambda)}\right]$

```
Consider the case of n >> p
library(microbenchmark)
set.seed(124)
#==== Large n case =====#
# parameters
n < - 1e2
p <- 1e1
lam <- 1
# generate data
beta <- rnorm(p)</pre>
X <- matrix(rnorm(n * p), nrow = n)</pre>
I <- diag(p)</pre>
# define functions
f1 <- function() solve(crossprod(X) + lam * I) %*% (crossprod(X) %*% beta)
f2 <- function() {
  X_svd <- svd(X)</pre>
  V <- X_svd$v
  d \leftarrow X_svd$d
  Dstar \leftarrow diag(d^2/(d^2 + lam))
  V %*% (Dstar %*% crossprod(V, beta))
# test speed
microbenchmark(f1(), f2(), times = 1e3, unit = "us")
## Unit: microseconds
## expr min
                                mean
                                      median
                       lq
                                                      uq
                                                              max neval
## f1() 40.060 44.345 54.02806 49.3835 53.8310 274.804 1000
## f2() 134.687 141.967 170.27307 146.6890 159.2845 1533.198 1000
and the case for p >> n
#==== Large p case =====#
# parameters
n <- 1e1
p <- 1e2
lam <- 1
# generate data
beta <- rnorm(p)</pre>
X <- matrix(rnorm(n * p), nrow = n)</pre>
I \leftarrow diag(p)
# define functions
f1 <- function() solve(crossprod(X) + lam * I) %*% (crossprod(X) %*% beta)
f2 <- function() {</pre>
 X_svd <- svd(X)</pre>
```

```
V <- X_svd$v
  d \leftarrow X_svd$d
  Dstar \leftarrow diag(d^2/(d^2 + lam))
  V %*% (Dstar %*% crossprod(V, beta))
# test speed
microbenchmark(f1(), f2(), times = 1e3, unit = "us")
## Unit: microseconds
## expr
                                          median
              min
                          lq
                                  mean
                                                        uq
                                                                 max neval
## f1() 2511.883 2686.3460 3197.4235 2921.945 3308.912 42589.069 1000
## f2() 146.688 163.6895 250.0292 206.914 249.692 2247.809 1000
and n \approx p
#==== n ~ p case ====#
# parameters
n <- 1e2
p <- 1e2
lam <- 1
# generate data
beta <- rnorm(p)
X <- matrix(rnorm(n * p), nrow = n)</pre>
I \leftarrow diag(p)
# define functions
f1 <- function() solve(crossprod(X) + lam * I) %*% (crossprod(X) %*% beta)
f2 <- function() {</pre>
 X_svd <- svd(X)</pre>
  V <- X_svd$v
 d <- X_svd$d
 Dstar \leftarrow diag(d^2/(d^2 + lam))
  V %*% (Dstar %*% crossprod(V, beta))
# test speed
microbenchmark(f1(), f2(), times = 1e3, unit = "us")
## Unit: microseconds
## expr
              min
                         lq
                                mean median
                                                             max neval
                                                    uq
## f1() 3297.061 3427.739 3954.391 3729.51 4153.546 43907.34 1000
## f2() 6326.372 6660.120 7402.888 7159.86 7745.499 49442.42 1000
```

#### **Matrix Multiplication Timing**

Consider the following matrix multiplication benchmarks (for the cases of n >> p and p >> n).

```
set.seed(124)
#==== Large n case ====#

# set parameters
n <- 1e3
p <- 1e2</pre>
```

```
lam < -1
# generate data
X <- matrix(rnorm(n * p), nrow = n)</pre>
beta <- rnorm(p)
eps <- rnorm(n)
y <- X %*% beta + eps
ytilde <- y - mean(y)</pre>
xbar <- colMeans(X)</pre>
Xtilde <- sweep(X, 2, xbar)</pre>
# compute decomposition
Xtilde_svd <- svd(Xtilde)</pre>
U <- Xtilde_svd$u
d <- Xtilde_svd$d
V <- Xtilde_svd$v</pre>
Dstar \leftarrow diag(d/(d^2 + lam))
# define multiplication functions
f1 <- function() V ** Dstar ** t(U) ** ytilde
f2 <- function() V ** Dstar ** (t(U) ** ytilde)
f3 <- function() V ** (Dstar ** (t(U) ** ytilde))
f4 <- function() V ** (Dstar ** crossprod(U, ytilde))
f5 <- function() V ** crossprod(Dstar, crossprod(U, ytilde))
# test speed
microbenchmark(f1(), f2(), f3(), f4(), f5(), times = 100, unit = "us")
## Unit: microseconds
## expr
                                  mean
                                           median
                                                                   max neval
              min
                         lq
                                                          uq
## f1() 8629.836 9256.6725 10157.9310 10011.712 10817.2715 13636.540
## f2() 1100.630 1237.1335 1963.5332 1343.561 1591.6120 43407.649
## f3() 368.997 445.4775 1099.3498
                                        513.949
                                                   602.3395 42275.387
                                                                         100
## f4() 130.198 144.2815
                             162.4438
                                        155.124 167.6490
                                                               293.415
                                                                         100
                              151.4841
## f5() 126.495 133.7300
                                        148.363
                                                    159.9950
                                                               235.854
                                                                         100
#==== Large p case ====#
set.seed(124)
# set parameters
n < - 1e2
p < -1e3
lam <- 1
# generate data
X <- matrix(rnorm(n * p), nrow = n)</pre>
beta <- rnorm(p)
eps <- rnorm(n)
y <- X %*% beta + eps
# define multiplication functions
f1 <- function() V %*% Dstar %*% t(U) %*% ytilde
f2 <- function() V ** Dstar ** (t(U) ** ytilde)
```

```
f3 <- function() V %*% (Dstar %*% (t(U) %*% ytilde))
f4 <- function() V %*% (Dstar %*% crossprod(U, ytilde))
f5 <- function() V %*% crossprod(Dstar, crossprod(U, ytilde))</pre>
# test speed
microbenchmark(f1(), f2(), f3(), f4(), f5(), times = 100, unit = "us")
## Unit: microseconds
## expr
             min
                        lq
                                 mean
                                         median
                                                                max neval
                                                       uq
## f1() 8619.022 9406.4510 10165.3816 9861.3190 10802.6295 13602.422
                                                                      100
## f2() 1107.770 1206.6070 1859.2227 1355.2445 1527.9230 40574.220
                                                                      100
                                                 647.5010 2012.359
## f3() 366.078 438.5405
                                                                      100
                            668.3120 507.7725
## f4() 129.836 140.8445
                             161.4676 155.1430
                                                 167.8490
                                                            338.454
                                                                      100
## f5() 126.382 132.0425
                             150.8533 144.4515
                                                 162.2135
                                                            243.847
                                                                      100
```