עבודה מסכמת במתמטיקה בדידה 2

שחר פרץ

2024 בספטמבר 28

Combinatorics

(א) **שאלה:** כמה סידורים של חבילה מלאה של 52 קלפים יש שבהן ארבעת האסים, אינם מופיעים ברצף אחד אחרי השני? **תשובה:** ראשית כל, נתבונן ב־52 הסידורים האפשריים של החפיסה כולה. עתה נתבונן בקבוצת המשלים – כמות האפשרויות לחפיסות בהן ישנם 4 אסים רצופים. נתייחס לרצף כמו קלף גדול יחודי בפני עצמו, ולכן, מכיוון שארבעת האסים יחשבו כאחד, יהיו לחפיסות בקבוצת לסדר חלק זה. לסדר הפנימי של האסים עצמם יהיה 4 אפשרויות. סה"כ מכלל הכפל $48 \cdot 8 \cdot 8$ אפשרויות בקבוצת המשלים. סה"כ:

$$\mathscr{A}nswer = 52 - 49!4!$$

(ב) **שאלה:** כמה סידורים של חבילה מלאה של 52 קלפים יש בהן כל 4 קלפים מאותו הסוג (13 סוגים שונים) אינם מופיעים ברצף אחד אחרי השני?

תשובה: נגדיר $0 \le i \le \frac{52}{4} = 13$ (לא ייתכנו רצפים בסדר גודל ווים. מובן כי i בסדר האפשרויות לסידור בו i רצפים של 4 תווים. מובן כי מובן i כמות האפשרויות לסידור בו i רצפים של 5 תווים. מובן כי מובן כי מובן כי מובן ייתר מהחפיסה כולה).

כדי למצוא את a_i , נבחר את הרצף הראשון מבין 13 האפשרויות. ואת השני מבין 12 האפשרויות שנותרו, ונמשיך הלאה. באופן דומה לסעיף הקודם, לכל אחד מהסדרות האלו נתייחס קקלף "גדול" יחודי אחד, לכל אחת מ־i הסדרות סדר פנימי של a_i , וסה"כ סדר כולל של ! a_i לסעיף הקודם, לכל אחד מהסדרות האלו נתייחס קקלף "גדול" יחודי אחד, לכל אחד מהסדרוית a_i וסה"כ:

$$a_i = i(52 - 3i)! 4!$$

בכלליות:

ומעקרון ההכלה וההדחה, אם A_i קבוצת כל הרצפים באורך 4 מסוג נתון, ומשום שאין הגבלה על הכלליות בבחירת קלף מסויים, ומעקרון ההכלה וההדחה, אם I=[n] כך ש־I=[n] קבוע בגודל I=[n] זהה בערכו לכל I=[n] כך ש־I=[n] קבוע בגודל I=[n] נקבל:

$$\mathcal{A}nswer = 52! - \sum_{\emptyset \neq I \in [n]} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right| \\
= 52! - \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} a_k \\
= 52! - \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} k \left(52 - 3k \right)! 4!$$

 $x \in \mathbb{N}$ לכל $\langle x+1,y+r \rangle$ ננוע אך ורק לנקודה $\langle x,y \rangle$ לכל אמ"מ בכל צעד מ־ $\langle x,y \rangle$ לכל אם יהי

 $\langle n,k \rangle$ ל־ $\langle 0,0 \rangle$ ל מסלולים חוקיים קיימים מ־ $\langle 0,0 \rangle$ ל ל־

תשובה: יהי מסלול $\forall i \in [n]. \exists x,y \in \mathbb{N}. a_i = \langle x,y \rangle$ כאשר ליך מ(0,0) מ'(0,0) מ'(0,0) מייני מסלול מייני מסלול מייני מסלול מייני מסלול מייני מסלול מייני מיינ

$$\forall i \in [n-1].\pi_1(a_i) - \pi_1(a_{i+1}) = 1 \land \exists r \in \mathbb{N}.\pi_2(a_{i+1}) - \pi_2(a_i) = r$$

ולכן נוכל להגדיר מיפוי:

$$\forall i \in [n-1]. a_k \mapsto \pi_2(a_{i+1}) - \pi_2(a_i) =: r_i \in \mathbb{N}$$

ולכן: $a_n = \langle n, k \rangle$, מהגדרת המסלול, מהנת חח"ע ועל לקבוצת המסלול, תמונת המיפוי תמונת המיפוי ועל לקבוצת המסלולים החוקיים.

$$\sum_{i=1}^{n-1} r_i = \sum_{i=1}^{n-1} \pi_2(a_i) - \pi_2(a_{i+1})$$

$$= \pi_2(a_1) - \underline{\pi_2(a_2) + \underline{\pi_2(a_2)} - \underline{\pi_2(a_3)} + \underline{\pi_2(a_3)} - \dots + \underline{\pi_2(a_i)} - \underline{\pi_2(a_i)} + \dots + \underline{\pi_2(a_n)}$$

$$= \pi_2(a_1) + \underline{\pi_2(a_n)} = 0 + k = k$$

 $\pi_2(a_n)=-$ בכך, התייחסנו לכל ההגבלות – חוקיות המסלול באורך n (מובעת בהיותה חח"ע ועל לקבוצה המאפשרת זאת), והיותו נגמר ב־ $\sum r_i=k$ (הכרחי ומספיק להיות סכום i). נקבע את גודל הסדרות התמונה המקיימות זאת. ידוע שכמות האפשרויות לסכום מספרים יהיה i0, ולכן סה"כ זהו פתרון הבעיה. נסכם:

$$\mathscr{A}nswer = S(k, n-1)$$

 $\langle n,k \rangle$ בהם אינו מסתיים בנקודה ($\langle n,k \rangle \to \langle n,k \rangle$, כך שאף צעד בהם אינו מסתיים בנקודה (ב)

תשובה: באופן דומה לסעיף הקודם, כמות הצעדים מ־ $\langle 0,0 \rangle$ ל־ $\langle 2n,2k \rangle$ תהיה $\langle 1,2k \rangle$. נחפש את קבוצת המשלים. בהינתן מסלול שעובר בין הראשית ל־ $\langle 2n,2k \rangle$ הוא יכלל בקבוצת המשלים אמ"מ הוא עבור ב־ $\langle n,k \rangle$, כלומר הוא למעשה מסלול $\langle x,y \rangle \mapsto \langle 2n,2k \rangle$ המסלול האחרון שקול לבעיה הראשונה בעבור טרנספורמציה איזומטרית של $\langle x,y \rangle \mapsto \langle 2n,2k \rangle$ ואז עוד מסלול הכפל, גודל קבוצת המשלים $\langle x,y \rangle \mapsto \langle x,y \rangle$ שלמעשה תבהיר כי פתרון שתי הבעיות הוא $\langle x,y \rangle \mapsto \langle x,y \rangle$, וכאשר נחבר אותם יחדיו, מכלל הכפל, גודל קבוצת המשלים הוא סה"כ $\langle x,y \rangle \mapsto \langle x,y \rangle$. אזי:

 $y_1+2\leq y_2$ מקיים $\langle x_1,y_1
angle o \langle x_2,y_2
angle$ בך שכל צעד $\langle x_1,y_1
angle o \langle x_2,y_2
angle$ כך שכל צעד $\langle x_1,y_1
angle o \langle x_2,y_2
angle$ מקיים מ־ $\langle x_1,y_1
angle o \langle x_2,y_2
angle$ מקיים מיימים מ־ $\langle x_1,y_1
angle o \langle x_2,y_2
angle$ מקיים מיימים מיימ

$$y_1 + 2 \le y_2 \iff \pi_2(a_i) - \pi_2(a_{i+1}) \le -2 \iff \underbrace{\pi_2(a_{i+1}) - \pi_2(a_i)}_{=r_i} \ge 2$$

ואכן ננסה למצוא את כמות הסדרות $\{r_i\}_{i=1}^{n-1}$ כך ש־ $\{r_i\}_{i=1}^n$, כך ש־ $\{r_i\}_{i=1}^n$, לפי השקילות שהוכחה בסעיף (א). לבעיה זו קיימת בעיה שקולה ידועה, היא חלוקת $\{r_i\}_{i=1}^n$ תאים, כשבכל תא לפחות 2 כדורים. אזי, ניאלץ להתחיל מלשים שני כדורים בכל תא, וסה"כ. כבובי $\{r_i\}_{i=1}^n$ כדורים. את $\{r_i\}_{i=1}^n$ הכדורים נותרים נחלק בין התאים. סה"כ. קיבלנו:

$$Answer = S(k - 2n - 2, n - 1)$$

$$(3)$$

$$(4)$$

$$(5)$$

Graph Theory

 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 $(7) \ldots \ldots \ldots \ldots$
 (8)
 (9)
 (10)