(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-22821 (P2003-22821A)

(43)公開日 平成15年1月24日(2003.1.24)

(51) Int.Cl. ⁷		識別記号	FI	デーマコート*(参考)	
H01M	8/02		H01M 8/02	K 4G048	
C01G	25/02		C01G 25/02	5 G 3 O 1	
H01B	1/06		H01B 1/06	A 5H026	
	1/08		1/08		
H01M	8/12		H01M 8/12		
			審査請求 未記	請求 請求項の数3 OL (全 10 頁)	
(21)出願番号		特願2001-208336(P2001-208336)	(71)出願人 000	0004628	
			株式	式会社日本触媒	
(22)出願日		平成13年7月9日(2001.7.9)	大阪府大阪市中央区高麗橋4丁目1番1号		
	•		(71) 出願人 000221834		
			東	邦瓦斯株式会社	
			愛知	如県名古屋市熱田区桜田町19番18号	
			(72)発明者 秦	和男	
			兵	電県姫路市網干区興浜字西沖992番地の	
			1	株式会社日本触媒内	
			(74)代理人 100	0067828	
			弁理	建士 小谷 悦司 (外1名)	
				最終頁に続く	

(54) 【発明の名称】 スカンジア安定化ジルコニア電解質

(57)【要約】

【課題】 スカンジア安定化ジルコニア電解質の高温長時間使用時における酸素イオン導電率の経時変化を少なくし、安定して高い導電性を持続すると共に、優れた高温強度と強度持続性を有する燃料電池用のスカンジア安定化ジルコニア電解質を提供すること。

【解決手段】 スカンジア安定化ジルコニアにおいて、4A族、5A族、7A族および4B族元素よりなる群から選択される少なくとも1種の酸化物を、スカンジア安定化ジルコニアに対し0.01~5質量%含有する固体酸化物型燃料電池用スカンジア安定化ジルコニア電解質を開示する。

10

【特許請求の範囲】

スカンジア安定化ジルコニアにおいて、 更に4A族、5A族、7A族および4B族元素の酸化物 よりなる群から選択される少なくとも1種を、スカンジ ア安定化ジルコニアに対し0.01~5質量%含有する ことを特徴とする固体酸化物型燃料電池用スカンジア安 定化ジルコニア電解質。

【請求項2】 前記スカンジア安定化ジルコニアが、3 ~15モル%のスカンジアで安定化されると共に、前記 酸化物として、TiO2、Nb2O5、Ta2O5およびM nO2よりなる群から選択される酸化物の少なくとも1 種を含有するものである請求項1に記載のスカンジア安 定化ジルコニア電解質。

【請求項3】 酸化ケイ素および/またはアルカリ金属 の酸化物の含有量が、それぞれ0.1質量%以下である 請求項1または2に記載のスカンジア安定化ジルコニア 電解質。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はスカンジア安定化ジ ルコニア電解質に関し、特に安定して優れた酸素イオン 導電性を示すと共に、ハンドリングに十分な機械的強度 を有し、燃料電池用の固体電解質膜用として優れた性能 を有するスカンジア安定化ジルコニア電解質に関するも のである。

[0002]

【従来の技術】固体酸化物型燃料電池の電解質として、 立方晶のジルコニア系セラミックスや正方晶のジルコニ ア系セラミックスが広く検討されており、該セラミック スの結晶構造を安定化するための安定化剤としては、イ・30 ットリアが一般的に使用されている。

【0003】しかしジルコニア系セラミックスの酸素イ オン導電性は、添加する金属イオンの半径や固溶量によ って異なり、イットリアを固溶させたジルコニアよりも スカンジアを固溶させたジルコニアの方が高い導電性を 持つ可能性が示されている。また、固体酸化物型燃料電 池発電システムを実用化していくには、他の発電システ ム等に比肩し得る経済性と優れた発電性能に加えて、少 なくとも40,000時間以上といった長時間の高温耐 久性が要求される。

【0004】そこで、燃料電池の固体電解質膜としてイ ットリア安定化ジルコニア(YSZ)よりも低コストで 優れた発電性能を実現すべく、種々研究が進められてお り、イットリア安定化ジルコニアよりも高い酸素イオン 導電性を有するスカンジア安定化ジルコニアセラミック スが注目されている。

【0005】例えば、スカンジア安定化ジルコニア (S c S Z) にアルミナを添加した三元系金属酸化物からな るセラミックス製の酸素イオン導電体が知られている。

率のアルミナを添加し結晶構造を安定化したもので、室 温と高温の作動温度の間で構造変態を起こすことがな く、イットリア安定化ジルコニアよりも高いイオン導電 性を有しており、燃料電池用の固体電解質としても実用 可能な酸素イオン導電体になり得ると考えられる。

【0006】また、スカンジア安定化ジルコニア (Sc SZ)に、原子価が2価または3価で安定な副ドーパン トであるM2O3 (Mは金属元素を示す)を添加した三元 系金属酸化物からなる酸素イオン導電体も知られてい る。

【0007】この副ドーパントは、上記金属MがIn, Ga, Ti, V, Cr, Fe, Co, Mg, Ca, Z n, Sr, Baの中から選ばれる1種であり、これらが 添加されることによって、Scの特性を保持しつつ、な おかつ結晶構造は立方晶で安定化されて高温での結晶変 態が現れず、高イオン導電性で且つ熱サイクルを受けた ときの強度持続性にも優れたものとなる。

【0008】しかし何れにも、発電特性を長期的に持続 させる上で重要な要件の1つである酸素イオン導電性の 経時変化については記載されていない。

【0009】一方、"Solid State Ion ics"の72巻、271-275頁(1994年)、 79巻、137-142頁(1995年)、132巻、 235-239頁 (2000年) には、スカンジア量を 2. 9~12モル%の範囲で変化させたスカンジア安定 化ジルコニア (2. 9~12ScSZ)、20質量%の アルミナを添加した8~11モル%スカンジア安定化ジ ルコニア(8~11ScSZ20A)について、導電性 の経時変化が検討されている。その中で、結晶構造が菱 面体である11~12ScSZや11ScSZ20A は、1000℃で4000~6000時間の長時間曝露 でも殆ど経時変化が見られない。

【0010】しかし立方晶構造である85c52は、1 000℃で1300時間の曝露で導電率が0.32S/ cmから0.14S/cmに低下することが報告されて いる。また、正方晶構造である2.95cSZは100 0℃で1000時間の曝露で導電率が0.09S/cm から0.063S/cmに低下することが報告されてい る。即ちこれらは、1000~1300時間の曝露で導 電率が30~60%大きく低下していることになる。

【0011】上記の様にアルミナは、分散強化剤として 優れた特性を有しているが、反面アルミナは反応性が高 いため、ジルコニア電解質シートの表層部にアルミナが 存在すると、高温に長時間曝されたときに、電極成分中 に含まれる遷移金属や希土類元素との間で固相反応を起 こし、新たにアルミナ系の複合酸化物を生成することが ある。例えばアノードにNi成分が存在する場合は、N i A 12 O4 (スピネル結晶系) が生成し易くなる。ま た、カソードにMn成分が存在する場合は、MnAlO そしてこのセラミックスは、副ドーパントとして特定比 50 3(ペロブスカイト結晶系)が生成し易くなる。これら

がジルコニア電解質シートの表層部に存在すると、異物となってジルコニアとの熱膨張差によりジルコニア電解質シートの割れの起点となり、強度劣化の原因となる。 この様なことから、アルミナは電解質用ジルコニアの分散強化剤として好ましいものとはいい難い。

【0012】また燃料電池発電システムに用いる固体電解質としては、高い酸素イオン導電性と共に、長時間、たとえば40,000時間といったレベルまでその高い酸素イオン導電性を安定に維持することが重要であり、イオン導電率の低下率を小さく抑え、高レベルの電気特性を長時間持続せしめ得る様な改質が望まれる。

【0013】即ち、燃料電池システムに用いられるスカンジア安定化ジルコニア中に配合する酸化物については、その種類などを含めて更に検討の余地があり、また、得られる燃料電池用スカンジア安定化ジルコニアの結晶構造や強度、更には、これを用いた燃料電池用スカンジア安定化ジルコニア電解質の導電性の経時変化などについても、同様に検討の余地が残されている。

[0014]

【発明が解決しようとする課題】本発明は上記の様な事情に着目してなされたもので、その目的は、スカンジア安定化ジルコニア電解質の高温長時間使用時における酸素イオン導電率の経時変化を少なくし、安定して高い導電性を持続し、特に2000時間までの初期導電率の劣化程度を低減すると共に、優れた高温強度と強度持続性を有するスカンジア安定化ジルコニア電解質を提供することにある。

【0015】また、新エネルギー・産業技術総合開発機構(NEDO)における平成13年度からの「固体酸化物形燃料電池の研究開発」の開発目標として、熱自立モジュールの目標性能が、初期特性評価と同じ条件で300時間の発電を行なったときの電圧低下率が「0.25%/1000時間」以下(平成12年度「高温形燃料電池発電技術」研究開発成果報告会講演要旨集(NEDO、燃料・貯蔵技術開発室、平成13年2月27日)と計画されていることからも、固体電解質として酸素イオン導電率の経時劣化が電圧低下率に大きく影響しない様なスカンジア安定化ジルコニア電解質を提供することにある。

[0016]

【課題を解決するための手段】本発明者らは上記の様な 課題の下で、スカンジア安定化ジルコニアに配合する酸 化物の種類と、得られる配合物である燃料電池用のスカ ンジア安定化ジルコニア電解質の結晶構造と導電性の経 時変化に主眼を置いて検討を進めた結果、これら両特性 を満たす燃料電池用スカンジア電解質を得ることに成功

【0017】即ち、上記課題を解決することのできた本 発明に係る燃料電池用のスカンジア安定化ジルコニア電 解質とは、スカンジアで安定化されると共に、4A族、 5 A族、7 A族および4 B族元素の酸化物よりなる群から選択される少なくとも1種を、スカンジア安定化ジルコニアに対して0.01~5質量%含有するところに要旨を有している。

【0018】更に具体的には、上記燃料電池用のスカンジア安定化ジルコニアは、 $3\sim15$ モル%のスカンジアで安定化されると共に、原子価が4価もしくは5価である元素の酸化物である TiO_2 、 Nb_2O_5 、 Ta_2O_5 および MnO_2 よりなる群から選択される少なくとも1種を、スカンジア安定化ジルコニアに対し $0.01\sim5$ 質量%含有するものが好ましい。

【0019】また本発明の上記電解質においては、酸化ケイ素、および/またはNa, K, Rb, Csの如きアルカリ金属の酸化物の含有量を極力少なく抑えることが望ましく、好ましくは何れも0.1質量%以下、より好ましくは0.05質量%以下に抑えることが望ましい。【0020】

【発明の実施の形態】前述した様な課題の下で本発明者 らは、スカンジアで安定化されたジルコニア電解質を対 象とし、該電解質の導電率の経時変化を少なくしてより 耐久性に優れた電解質を得るべく、様々の角度から研究 を進めてきた。

【0021】その結果、導電率の経時変化は結晶構造の変化とグレイン粒子径の安定性に大きく影響され、スカンジア安定化ジルコニアにある特定の酸化物を特定量含有させれば、初期導電性を若干低下させるだけで、その後の導電性の経時変化を小さく抑え得ることを見出し、上記本発明に想到したものである。

【0022】また上記特定の酸化物は、スカンジア安定 化ジルコニアセラミックスに対し分散強化剤としても作 用し、結果として優れた高温強度と強度持続性を与える ことも見出した。

【0023】まず本発明では、スカンジアで安定化されたジルコニアを対象とするもので、一般的なスカンジアの添加量は3モル%以上、15モル%以下である。即ちスカンジアの含有量が3モル%未満では、セラミックスの結晶構造に単斜晶の割合が多くなり、ジルコニアの安定化が不十分となって満足のいく強度が得られ難くなる。一方、スカンジアによる安定化効果は約15モル%で飽和し、高価なスカンジアをそれ以上に含有させることは、経済的不利益を被るだけである。

【0024】高温耐久強度と常温でのハンドリング強度を高める上では、正方晶系を主体とする結晶構造を有するものであることが好ましく、そのための好ましいスカンジアの量は3モル%以上、9モル%以下、更に好ましくは3.5モル%以下、6モル%以下、更に好ましくは5モル%以下である。

【0025】また本発明においては、機械的強度と共に 導電率の経時変化を抑えるため、4A族、5A族、7A 族および4B族元素の酸化物よりなる群から選択される 少なくとも1種を、スカンジア安定化ジルコニアに対し 導電率測定用サンプルとしてダイヤモンドカッターでー 0.01質量%以上、5質量%以下含有させることが必 部切り出されたテストピースを使用し、直流4端子法で要となる。 測定した値をいい、最初から導電率測定用サンプルとし

【0026】ここで、4A族、5A族、7A族および4B族元素とは、例えば、理化学辞典第5版(岩波書店:1998年4月24日発行)に記載されている元素の周期表(短周期型)に示されている族のことであり、具体的には、4A族元素の酸化物としてはTiO2;5A族元素の酸化物としてはV2O5、Nb2O5、Ta2O5;7A族元素の酸化物としてはMnO2;4B族元素の酸化物としてはGeO2が好適である。

【0027】特に、スカンジア安定化ジルコニアの導電率の初期劣化を抑制すると共に、焼結性を高めてその結晶構造を安定化させるには、TiO2、Nb2O5、Ta2O5およびMnO2よりなる群から選択される少なくとも1種を選択することが望ましい。

【0028】上記金属酸化物の効果を有効に発揮させるには、スカンジアで安定化されたジルコニアの総量、具体的には、ジルコニア分とスカンジア分の合計量に対し、0.01質量%以上、5.0質量%以下の範囲で含20有させるのがよく、より好ましくは0.1質量%以上、3.0質量%以下、更に好ましくは0.3質量%以上、2.0質量%以下の範囲である。

【0029】上記金属酸化物の含有量が0.01質量%を下回る場合は、前述した作用効果が有効に発揮されず、逆に5質量%を上回る場合は、初期導電率を低下させる原因になるので好ましくない。

【0030】更に本発明においては、不純物として混入してくる恐れのある酸化ケイ素、および/またはNa, K, Rb, Csの如きアルカリ金属の酸化物の含有量を極力少なく抑えることが望ましく、好ましくは何れも0.1質量%以下、より好ましくは0.05質量%以下に抑えることが好ましい。

【0031】上記酸化ケイ素やアルカリ金属酸化物類は、ジルコニアや前記酸化物に比べると低融点の溶融型酸化物であり、高温に長時間曝されるとスカンジア安定化ジルコニア中の粒界付近に偏析して導電率を低下させる恐れがあるからである。

【0032】従って本発明の燃料電池用スカンジア安定 化ジルコニア電解質中には、酸化ケイ素および/または 40 アルカリ金属酸化物が実質的に含まれていないことが望ましいが、何れもジルコニア原料粉末中に不可避的に混入してくる成分であり、より好ましくは酸化ケイ素の含有量は0.03質量%以下、アルカリ金属酸化物の合計含有量は0.01質量%以下に抑えることが望ましい。

【0033】ここでアルカリ金属酸化物の合計量とは、 Na2O, K2O, Rb2O, Cs2Oとしたときの各酸化 物の合計量を言う。

【0034】本発明でいう導電率とは、固体酸化物型燃料電池用の電解質膜として用いられるセラミックから、

導電率測定用サンプルとしてダイヤモンドカッターで一部切り出されたテストピースを使用し、直流4端子法で測定した値をいい、最初から導電率測定用サンプルとして作製されたテストピースを用いた値ではない。尚、この測定に用いたテストピースの大きさは、長さ50m、幅5mmで厚さ0.01~0.6mmとした。

【0035】次に、本発明の燃料電池用スカンジア安定 化シルコニア電解質においては、その結晶構造が立方晶 を主体とするものである場合、そのグレイン粒子径で平 10、均径が1μm以上、3μm以下、最大径が4μm以上、 8μm以下で、その変動係数が35%以下であること が、導電率の経時変化を抑えると共に高レベルの強度を 確保する上で好ましい。

【0036】また、その結晶構造が正方晶を主体とするものの場合は、そのグレイン粒子径で平均径が 0.1μ m以上、 0.5μ m以下、最大径が 0.5μ m以上、 1.0μ m以下で、その変動係数が30%以下であることが、導電率の経時変化を抑えると共に高温強度耐久性を確保する上で好ましい。

【0037】グレイン粒子径の変動係数が、立方晶の場合で35%を上回り、あるいは正方晶の場合で30%を上回るものでは、導電率の経時変化が大きくなると共に、ワイブル係数が10以下に低下する傾向が生じてくる。なおワイブル係数とは、強度バラツキの度合いを反映する材料定数とみなされ、燃料電池用の固体電解質として使用するには、ワイブル係数で10以上、より好ましくは12以上、更に好ましくは15以上とすることによって、素材としての信頼性が高められ、発電システムの設計も容易となる。一方この値が10以下のものは、強度バラツキが大きくて材料としての信頼性を欠き、実用にそぐわなくなる。

【0038】ここで、上記スカンジア安定化ジルコニアセラミックスのグレイン粒子径は、その表面を走査型電子顕微鏡で写真撮影し(10,000~20,000倍)、写真視野内の全グレイン粒子の大きさをノギスで測定した値を元に、個々のデータを集計して求めた平均径、最大径および変動係数をいう。なお、グレイン粒子径をノギスで測定する際に、写真視野の端縁に位置するグレイン粒子で粒子全体が現れていないものは測定対象から外し、また、縦・横方向の寸法の異なるグレイン粒子については、その長径と短径の平均値をその粒子径とした。

【0039】また本発明で言う強度とは、J1S R1601の規定に準拠し、導電率測定用のテストピースと同様にして作製したテストピースを用いて測定した3点曲げ強度を言い、高温耐久性とは、950℃で1000時間以上保持した後に測定した強度の経時変化の小さいものを言う。

【0040】この様に本発明の燃料電池用スカンジア安定化ジルコニア電解質は、添加物として4A族、5A

族、7A族および4B族元素の酸化物よりなる群から選択される少なくとも1種を、スカンジア安定化ジルコニアに対し0.01~5質量%添加することで、スカンジア安定化ジルコニア電解質の導電率の経時変化が抑えられると共に、常温強度や高温強度およびその耐久性において一層優れたものとなるので、固体酸化物型燃料電池の固体電解質として極めて有用なものとなる。

【0041】中でも、前記酸化物としてTiO2, Nb2O3、Ta2O5およびMnO2から選択される少なくとも1種を使用した本発明のスカンジア安定化ジルコニア電解質は、それらの酸化物が含まれていないものに比べて初期導電率の低下率が非常に小さく、導電率の経時安定性にも優れているので、例えばO.01~0.6 mm程度の薄膜シート状とすることにより、燃料電池の固体電解質膜として極めて優れた性能を発揮する。

【0042】こうした優れた特性を有する本発明に係る 燃料電池用スカンジア安定化ジルコニア電解質の原料と なる粉末は、市販のスカンジア安定化ジルコニア粉末に 前記特定元素の酸化物粉末をそのまま添加混合して原料 粉末としてもよいし、アルコキシドや硝酸塩、炭酸塩な どの水溶液等の形で市販ジルコニア粉末に添加し、必要 によっては更に他の添加物などと共に配合し、加水分解 ・濾過・洗浄・仮焼・混合粉砕などの処理を施して原料 粉末としてもよい。

【0043】この原料粉末の粉体としての好ましい粒度 構成は、平均粒子径が $0.3\sim3\,\mu\,\mathrm{m}$ 、好ましくは $0.5\sim1.5\,\mu\,\mathrm{m}$ で、比表面積は $3\sim30\,\mathrm{m}^2/\mathrm{g}$ 、好ま しくは $5\sim15\,\mathrm{m}^2/\mathrm{g}$ である。

【0044】特に、混合粉砕後さらに噴霧乾燥してから造粒し、 $10\sim100\,\mu$ m程度の顆粒状とした原料粉末は、その後に成形・焼成したセラミックスとしての密度を理論密度の97%以上、好ましくは98%以上に高めるのに好適である。

【0045】噴霧乾燥する場合は、上記粉砕混合したジルコニア粉末をそのままスプレードライ等により噴霧乾燥してもよいが、噴霧乾燥する際にバインダー成分

(A) を添加し、それを噴霧乾燥してバインダーを含む 顆粒状としたものを原料粉末として使用すれば、成形性 や焼結性を更に高めることができるので好ましい。

【0046】ここで用いられるバインダー (A) の種類 に格段の制限はないが、水溶性のものが好ましく、従来 から知られた有機質もしくは無機質のバインダーを適宜 選択して使用できる。上記バインダー (A) のうち、有機質バインダーの具体例としては、例えばエチレン系共 重合体、スチレン系共重合体、アクリレート系及びメタクリレート系共重合体、酢酸ビニル系共重合体、マレイン酸系共重合体、ビニルブチラール系樹脂、ビニルアセタール系樹脂、ビニルホルマール系樹脂、ビニルアルコール系樹脂、ワックス類、エチルセルロース等のセルロース類が例示される。また、無機質バインダーの具体例

・としては、ジルコニアゾル、チタニアゾル等が例示され

る。これらのバインダーは、単独で使用し得る他、必要 により2種以上を混合して使用することも勿論可能であ

【0047】該バインダー(A)の好ましい配合量は、スカンジア安定化ジルコニア粉末と前記添加酸化物との合計100質量部に対し、バインダーの固形分換算で0.5質量部以上、10質量部以下、より好ましくは1質量部以上、5質量部以下である。この様にして調製されたジルコニア粉末を含む顆粒状の原料粉末は、プレス成形用原料として好適に使用される。

【0048】本発明に係る燃料電池用のスカンジア安定 化ジルコニア電解質の製法は特に制限されず、上記の様 にして調製したスカンジア安定化ジルコニア粉末を使用 し、金型やラバーを用いたプレス成形法、押出成形法、 ドクタープレードによるシート成形法、支持基体へのス ラリーコート法や蒸着法等によって成膜し、焼成する方 法が採用される。

【0049】特に10~200μmの薄膜シート状物を 製造するには、ドクターブレード法によるシート成形が 好適であり、前述した特定の酸化物が配合されたスカン ジア安定化ジルコニア原料粉末とバインダー(B) およ び分散媒からなるスラリーをキャリアフィルム上に敷き 延べてシート状に成形し、これを乾燥し分散媒を揮発さ せることによってグリーンシートを得、これを切断、パ ンチング等により適当な寸法に揃えてから焼成すればよ い。

【0050】焼成は、上記の様な方法で成形したグリーンシートあるいはスラリーコート体を棚板や多孔質セッター上に載置し、 $1300\sim1600$ ℃、好ましくは $1350\sim1500$ ℃程度、最も一般的には $1400\sim1450$ ℃で $1\sim5$ 時間程度加熱することによって行なわれる。

【0051】シート状の該ジルコニアセラミックスは、高度の熱的、機械的、電気的、化学的特性を有しており、燃料電池の固体電解質膜用として実用化する場合は、要求強度を満たしつつ通電ロスを可及的に抑えるため、シート厚さを0.01mm以上、より好ましくは0.02mm以上で、0.6mm以下、より好ましくは0.3mm以下、更に好ましくは0.2mm以下とするのが良い。

【0052】大きさは特に制限されないが、実用規模で十分な発電容量の燃料電池システムを得るには、50c m^2 以上、好ましくは $100cm^2$ 以上の寸法とすることが望ましい。

10

方が封じられた円筒状、ハニカム状、コルゲート状やディンプル状の如き 3 次元形状のものでも有効に使用できる。

【0054】上記スラリーに配合されるバインダー

(B) の種類にも格別の制限はなく、従来から知られた 有機質もしくは無機質のバインダーを適宜選択して使用 することができる。有機質バインダーとしては、例えば エチレン系共重合体、スチレン系共重合体、アクリレー ト系及びメタクリレート系共重合体、酢酸ビニル系共重 合体、マレイン酸系共重合体、ビニルブチラール系樹 脂、ビニルアセタール系樹脂、ビニルホルマール系樹 脂、ビニルアルコール系樹脂、ワックス類、エチルセル ロース等のセルロース類等が例示される。

【0055】これらの中でも未焼成ジルコニア系成形体・ を得る際の成形性や強度、焼成時の熱分解性等の点か ら、メチルアクリレート、エチルアクリレート、プロピ ルアクリレート、プチルアクリレート、イソプチルアク リレート、シクロヘキシルアクリレート、2-エチルヘ キシルアクリレート等の炭素数10以下のアルキル基を 有するアルキルアクリレート類;メチルメタクリレー ト、エチルメタクリレート、ブチルメタクリレート、イ ソプチルメタクリレート、オクチルメタクリレート、2 ーエチルヘキシルメタクリレート、デシルメタクリレー ト、ドデシルメタクリレート、ラウリルメタクリレー ト、シクロヘキシルメタクリレート等の炭素数20以下 のアルキル基を有するアルキルメタクリレート類;ヒド ロキシエチルアクリレート、ヒドロキシプロピルアクリ レート、ヒドロキシエチルメタクリレート、ヒドロキシ プロピルメタクリレート等のヒドロキシアルキル基を有 するヒドロキシアルキルアクリレートまたはヒドロキシ アルキルメタクリレート類;ジメチルアミノエチルアク・ リレート、ジメチルアミノエチルメタクリレート等のア ミノアルキルアクリレートまたはアミノアルキルメタク リレート類; (メタ) アクリル酸、マレイン酸、モノイ ソプロピルマレートの如きマレイン酸半エステル等のカ ルボキシル基含有モノマー;などの少なくとも1種を重 合または共重合させることによって得られる、数平均分 子量が20,000~200,000、より好ましくは… 50,000~100,000の(メタ) アクリレート 系共重合体が好ましいものとして推奨される。

【0056】これらの有機質バインダーは、単独で使用 し得る他、必要により2種以上を適宜組み合わせて使用 することができる。特に好ましいのはイソプチルメタク リレートおよび/または2-エチルヘキシルメタクリレ ートを60質量%以上含むモノマーの重合体である。

【0057】また無機質パインダーとしては、ジルコニアゾル、シリカゾル、チタニアゾル等が単独で若しくは2種以上組み合わせて使用できる。

【0058】ジルコニア系原料粉末とバインダーの使用 比率は、前者100質量部に対して後者が固形分換算で 50

5~30質量部、より好ましぐは10~20質量部の範囲が好適であり、パインダーの使用量が不足する場合は、成形体の強度や柔軟性が不十分となり、逆に多過ぎると、スラリーの粘度調節が困難になるばかりでなく、焼成時のバインダー成分の分解放出が多く且つ激しくなって均質な焼結体が得られ難くなる。

【0059】この様にして得られたジルコニア粉末を含むスラリーは、ドクターブレード法によって好適にシート成形することができる。

【0060】また未焼成ジルコニア成形体の製造に使用される溶媒としては、水;メタノール、エタノール、2ープロパノール、1ーブタノール、1ーへキサノール等のアルコール類;アセトン、2ープタノン等のケトン類;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類等が適宜選択して使用される。これらの溶媒も単独で使用し得る他、2種以上を適宜混合して使用することができる。これら溶媒の使用量は、グリーンシート成形時におけるスラリーの粘度を加味して適当に調節すればよいが、好ましくはスラリー粘度が1~10Pa・s、より好ましくは2~5Pa・sの範囲となる様に調整するのがよい。

【0061】上記スラリーの調製に当たっては、ジルコニア系原料粉末の解膠や分散を促進するため、ポリアクリル酸、ポリアクリル酸アンモニウム等の高分子電解質;クエン酸、酒石酸等の有機酸;イソブチレンまたはスチレンと無水マレイン酸との共重合体およびそのアンモニウム塩あるいはアミン塩、ブタジエンと無水マレイン酸との共重合体およびそのアンモニウム塩等の分散剤;未焼成成形体(グリーンシート)に柔軟性を付与するためのフタル酸ジブチル、フタル酸ジオクチル等のフタル酸エステル類、プロピレングリコール等のグリコール類やグリコールエーテル類などの可塑剤;更には界面活性剤や消泡剤などを必要に応じて添加することができる。

【0062】上記原料配合からなるスラリーを前述の様な方法で成形し、乾燥してジルコニア系グリーン体を得た後、これを加熱焼成することによって本発明のスカンジア安定化ジルコニア電解質を得る。

【0063】この焼成工程では、反りやうねり等の変形を生じることなく平坦度の高い薄肉シート状の焼結体を得るための手段として、該グリーンシート以上の面積を有し、JIS K7125 (1987)で規定されている「プラスチックフィルムおよびシートの摩擦係数試験方法」に準拠して測定される静摩擦係数が1、5以下で、通気性が0:0005m/s・kPa以上である多孔質シートの間に、前記グリーンシートを、その周縁がはみ出さない様に挟み込んで焼成し、あるいは上記多孔質シートを前記グリーンシートの周縁がはみ出さない様に転せ

てから焼成を行なうことが望ましい。

. ..

[0064]

【実施例】以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。

【0065】実施例1

4. 5モル%スカンジア部分安定化ジルコニア粉末(第 10 一稀元素化学社製:商品名「4.5ScSZ」)100 質量部に、イソプロピルアルコール60質量部にチタニウムイソプロポキシドを酸化チタン換算で0.3質量部となる様に添加した混合物を加え、ロータリーエバポレーターでイソプロピルアルコールを減圧留去した後、さらに減圧乾燥してから800℃で仮焼し、酸化チタンが0.3質量%分散した4.5モル%スカンジア部分安定化ジルコニア粉末(A)を得た。該粉末中のシリカ含量は0.004質量%、酸化ナトリウム含量は0.001 質量%であった。 20

【0066】この粉末(A)100質量部に対し、水70質量部と、エチルアクリレートを主成分とするアクリレート共重合体からなる水溶性バインダー(分子量:50,000、ガラス転移温度:-14℃)を固形分換算で5質量部加え、ボールミルで20時間分散混合した後、得られたスラリーをスプレードライにより噴霧乾燥し、バインダー添加0.3質量%酸化チタン分散4.5 モル%スカンジア部分安定化ジルコニア粉末(B)を得た。

【0067】該ジルコニア粉末(B)を使用し、ラバープレス法により1000kg/cm²の圧力で板状に成形した後1400℃で3時間焼成し、1辺が約50mm角の正方形で、厚さが0.5mmの酸化チタン0.3質量%を含む燃料電池用の4.5モル%スカンジア部分安定化ジルコニアシート(I)を得た。このシート焼成体の密度をアルキメデス法によって求めたところ、理論密度の98.8%であった。

【0068】また、上記で得たジルコニア粉末(A)100質量部を、メタクリル酸エステル共重合体からなるバインダー(分子量:30,000、ガラス転移温度:-8℃)を固形分換算で14質量部、可塑剤としてジブチルフタレート2質量部、分散媒としてトルエン/イソプロピルアルコール(質量比:3/2)の混合溶剤50質量部と共に、直径5mmのジルコニアボールが装入されたナイロンポットに入れ、臨界速度の70%の約60rpmで40時間混練してスラリーを調製した。

【0069】このスラリーの一部を採取し、トルエン/ イソプロピルアルコール(質量比:3/2)の混合溶剤 で希釈し、島津製作所製のレーザー回折式粒度分布測定 装置「SALD-1000」を用いて、スラリー中の固 50 形成分の粒度分布を測定したところ、平均粒子径(50 体積%径)が0.49 μm、90体積%径が1.18 μ m、限界粒子径(100体積%径)が2.88 μmであった

12

【0070】このスラリーを機縮脱泡してから粘度を3 Pa・s (23℃) に調整し、最後に200メッシュのフィルターに通してから、ドクターブレード法によりポリエチレンテレフタレート (PET) フィルム上に塗工し、厚さ約0.18mmのグリーンシートを得た。このグリーンシートを1辺が約125mmの正方形に切断し、その上下をウネリ最大高さが10μmの99.5%アルミナ多孔質板で挟んで脱脂した後、1400℃で3時間焼成し、1辺が約100mm角の正方形で、厚さが0.15mmの酸化チタン0.3質量%を含む燃料電池用の4.5モル%スカンジア部分安定化ジルコニアシート (II) を得た。

【0071】上記ジルコニアシート(I)と(II)をダイヤモンドカッターで幅5mm、長さ50mmの短冊状に切断して導電率測定用と3点曲げ強度測定用のテストピースとし、このテストピースを、950℃および750℃に保持した電気炉中に500時間、1000時間、2000時間および3000時間曝露した後、導電率と3点曲げ強度を測定した。

【0072】導電率の測定は、上記高温に曝露されたテストピースを1cm間隔で4ヵ所に直径0.2mmの白金線を巻付け、白金ペーストを塗ってから100℃で乾燥・固定して電流・電圧端子とし、白金線がテストピースに密着する様に白金線を巻いたテストピースの両端をアルミナ板で挟み、その上から約500gの荷重をかけた状態で、外側の2端子に0.1mAの一定電流を流し、内側の2端子の電圧をデジタルマルチメーター(アドバンテスト社製:商品名「TR6845型」)を使用し、直流4端子法で測定した。

【0073】導電率の耐久安定性は、初期の導電率と所定時間後の導電率の経時変化を測定し、その比から下記式によって求めた。

導電率の劣化率= [(初期導電率-所定時間保持後の導電率)/(初期導電率)]×100(%)

曲げ強度の測定は、JIS R1601に準拠し、高温 40 曝露されたテストピースを室温で測定し、初期の曲げ強 度と所定時間後の曲げ強度との比から、下記式によって 求めた。

強度の劣化率= [(初期強度-所定時間保持後の強度) /(初期強度)]×100(%)

更に、得られた燃料電池用のジルコニアシート (I) と (II) の組成を I C P 発光分析法によって測定した。結果を表 1 に示す。

【0074】実施例2

4. 0モル%スカンジア部分安定化ジルコニア粉末(第 一稀元素化学社製:商品名「4ScSZ」)100質量

強度の耐久安定性を求め、表1に示す結果を得た。 【0081】実施例4

部に、水60質量部に酸化ニオブ換算で1.0質量部の塩化ニオブを加水分解して得た水酸化ニオブと、上記実施例1で用いたのと同じアクリレート共重合体からなる水溶性バインダー1質量部を加え、ボールミルで20分間分散混合する。次いでスプレードライ法で噴霧乾燥することにより、本発明に係る燃料電池用のバインダー添加1.0%酸化ニオブ分散4.0モル%スカンジア部分安定化ジルコニア粉末(C)を得た。該粉末中のシリカ含量は0.005質量%、酸化ナトリウム含量は0.001質量%であった。

【0075】この粉末(C)を用いて、前記実施例1と同様にしてラバープレス法により成形してから焼成し、1辺が約50mm角の正方形で厚さが0.5mmの酸化ニオブ1.0質量%を含む燃料電池用の4.0モル%スカンジア部分安定化ジルコニアシート(III)を得た。このシート焼成体の密度をアルキメデス法によって求めたところ、理論密度の98.1%であった。

【0076】このシートを、実施例1と同様にしてテストピースを作成し、導電率と3点曲げ強度の耐久安定性を求めた。結果を表1に示す。

【0077】実施例3

スカンジアで安定化されていないジルコニア粉末(住友大阪セメント社製:商品名「OZC-0」)に対して、酸化スカンジウム粉末(和光純薬工業社製:試薬99.9%)を8モル%となる様に添加して混合し、これらの混合粉末100質量部に対して更に酸化タンタル粉末(和光純薬工業社製:試薬99.8%)を1.5質量%添加して得た合計2Kgの粉末を、水3Kgと共に0.5mm径のジルコニアボールの入ったビーズミル(コトプキ技研工業社製:商品名「アペックスミルAM-1」)に入れて、ローター先端周速度が7m/secで1時間湿式粉砕した。

【0078】得られたスラリーをロータリーエバーポレータに入れ、更に等量のオクタノールを入れ減圧しながら加熱して水を流出させ、オクタノール置換スラリーを得た。このスラリーを更に減圧下に加熱してオクタノールを流出させた後、減圧乾燥することにより、本発明にかかる燃料電池用の酸化タンタル1.5質量%分散8.0モル%スカンジア安定化ジルコニア粉末(D)を得た。該粉末中のシリカ含量は0.004質量%、酸化ナトリウム含量は0.001質量%であった。

【0079】この粉末(D)を用いて、1250Kg/cm²の圧力で前記実施例1と同様にラバープレス法によって成形した後、1450℃で焼成し、1辺が約50mm角の正方形で厚さが0.5mmの、酸化タンタル1.5質量%を含む燃料電池用の8.0モル%スカンジア安定化ジルコニアシート(IV)を得た。このシート焼成体の密度は、理論密度の97.2%であった。

【0080】このシート (IV)を用いて、前記実施例1 と同様にしてテストピースを作成し、導電率と3点曲げ 50

4:5モル%スカンジア部分安定化ジルコニア粉末(第一稀元素化学社製:商品名「4.5ScSZ」)100 質量部に、酸化マンガン換算で0.8質量部の硝酸マンガンを溶解した水60質量部と、前記実施例1で用いたのと同じ水溶性パインダー1質量部を加え、ボールミルで20時間分散した後、スプレードライ法によって噴霧乾燥し、パインダー添加0.8質量%酸化マンガン分散4.0モル%スカンジア部分安定化ジルコニア粉末

(E)を得た。該粉末中のシリカ含量は0.004質量%、酸化ナトリウム含量は0.001質量%であった。【0082】この粉末(E)を用いて、前記実施例1と同様にしてラバープレス法により板状に成形してから焼成し、1辺が約50mm角の正方形で、厚さが0.5mmの酸化マンガン0.8質量%を含む燃料電池用の4.5モル%スカンジア部分安定化ジルコニアシート(V)を得た。このシートの密度は、理論密度の98.4%であった。

【0083】このシートを、実施例1と同様にしてテストピースを作成し、導電率と3点曲げ強度の耐久安定性を求めた。結果を表1に示す。

【0084】比較例1

4.5モル%スカンジア部分安定化ジルコニア粉末(第一稀元素化学社製:商品名「4.5ScSZ」)100 質量部に対し、水70質量部と、エチルアクリレートを 主成分とする水溶性アクリレート共重合体からなるバインダーを固形分換算で5質量部加え、ボールミルで20 時間分散混合した後、得られたスラリーをスプレードライ法によって噴霧乾燥することにより、バインダー添加 4.5モル%スカンジア部分安定化ジルコニア粉末 (a)を得た。

【0085】このジルコニア粉末(a)を使用し、ラバープレス法により1000kg/cm²の圧力で板状に成形した後、1400℃で3時間加熱焼成することにより、1辺が約50mm角の正方形で、厚さが0.5mmの燃料電池用の4.5モル%スカンジア部分安定化ジルコニアシート(i)を得た。このシート焼成体の密度は、理論密度の96.8%であった。

【0086】このシートを、実施例1と同様にしてテストピースを作成し、導電率と3点曲げ強度の耐久安定性を求めた。結果を表2に示す。

【0087】比較例2

4.5モル%スカンジア部分安定化ジルコニア粉末(第一稀元素化学社製:商品名「4.5ScSZ」)100質量部に対し、イソプロピルアルコール60質量部と、チタニウムイソプロポキシドを酸化チタン換算で8.0質量%となるように添加した混合物を加え、ロータリーエバーポレータでイソプロパノールを減圧留去した後、更に減圧乾燥してから800℃で仮焼し、酸化チタンが

8. 0質量%分散した燃料電池用の4. 5 モル%スカンジア部分安定化ジルコニア粉末(b)を得た。この粉末中のシリカ含量は0. 004質量%、酸化ナトリウム含量は0. 001質量%であった。

【0088】このジルコニア粉末(b)100質量部に対し、水70質量部と、エチルアクリレートを主成分とする水溶性アクリレート共重合体からなるバインダー

(日本触媒社製:商品名「AT-502」)を固形分換 算で5質量%加え、ボールミルで20時間分散混合した 後、得られたスラリーをスプレードライ法によって噴霧 乾燥することにより、バインダー添加8.0質量%酸化 チタン分散4.5モル%スカンジア部分安定化ジルコニ ア粉末(c)を得た。 【0089】得られたジルコニア粉末(c)を使用し、ラバープレス法により1000kg/cm²の圧力で板状に成形した後、1400℃で3時間加熱焼成することにより、1辺が約50mm角の正方形で、厚さが0.5mmの酸化チタン8.0質量%を含む燃料電池用の4.5モル%スカンジア部分安定化ジルコニアシート(ii)を得た。このシート焼成体の密度は、理論密度の95.0%であった。

16

【0090】このシートを、実施例1と同様にしてテストピースを作成し、導電率と3点曲げ強度の耐久安定性を求めた。結果を表2に示す。

[0091]

【表1】

	実施	iØ1	実施例2	実施例3	実施例4
スカンシ 7合量(モル%)	4.5	. 4.5	4.0	8.0	4.5
添加酸化物	酸化チタン	酸化チダン	酸化ニオブ	酸化タンタル	酸化マンガン
添加量(mass%)	0.3	0.3	1.0	1,5	0.8 5
シート番号	1	ll .	111 .	IV.	· V
組成(mass%)					
酸化チタン	0.302	0.303	0.001	0.001	0
酸化ニオブ	0	0	1.044	0	0
酸化タンタル	0	0	0	1.512	Q.
酸化マンガン	0	0	0	` . 0	0.0785
酸化ケイ素	0.004	0.004	0.005	0.004	0.004
酸化ナトリウム	0.001	0.001	0.001	0.001	0.001
シート密度(対理論密度)	98.8	97.4	98.1	97.2	98.4
イオン導電率					
保持温度(℃)	950	750	950	950	950
初期導電率(S/cm)	0.092	0.065	0.089	0.288	0.090
劣化率(%)				•	•
500時間後	19.0	18.8	21.3	19.7	22.8
-1000時間後	19.9	-20.1	25.4	22.1	23.2
2000時間後	20.4	21.7	27.5	23.4	24.5
3000時間後	21.5	22.3	28.8	24.6	28.6
3点曲げ強度					
保持温度(℃)	950	750	950	950	950
初期曲げ強度(MPa)	1130	940	1030	285	1080
劣化率(%)					
1000時間後	10.3	9.8	11.5	5.7	10.8
2000時間後	12.1	11.4	13.8	6.4	13.1

【0092】 【表2】

	比較例1	比較例2	
スカンシア含量(モルド)	4.5	4.5	
添加酸化物	なし	酸化チダン	
活加量(mass%)	0	8.0	
シート番号	i	. ii	
組成(mass*)			
酸化チダン	0.002	7.890	
酸化ニオブ	0	0	
酸化タンタル	· · · · ·	0	
酸化マンカン	0	0	
酸化ケイ素	0.004	0.004	
酸化ナトリウム	0.001	0.001	
シート密度(対理論密度)	96.8	95.0	
イオン導電率	I	"	
保持温度(℃)	950	950	
初期導電率(S/cm)	0.095	0.077	
劣化率(%)			
500時間後	25.3	30.6	
1000時間後	28.2	32.3	
2000時間後	31.6	34.5	
3000時間後	33.4	36.9	
3点曲げ強度			
保持温度(℃)	950	950	
初期曲げ強度(MPa)	1010	740	
劣化率(%)			
1000時間後	16.4	12.9	
2000時間後	19.7	17.3	

[0093]

【発明の効果】本発明は以上の様に構成されており、ス カンジア安定化ジルコニア電解質に特定の酸化物を少量 含有させることによって、この種のジルコニア系セラミ ックスに欠けていたイオン導電性の長期安定性を改善す ると共に、強度持続性にも優れた燃料電池用のスカンジ ア安定化ジルコニア電解質を提供し得ることになった。 【0094】そして、この燃料電池用スカンジア安定化 ジルコニア電解質は、その優れたイオン導電性とその安 10 定性、および強度持続性を活かし、燃料電池用の酸化物 形固体電解質膜として有効に活用できる。

フロントページの続き

(72) 発明者 相川 規一

兵庫県姫路市網干区與浜字西沖992番地の

1 株式会社日本触媒内

(72)発明者 水谷 安伸

愛知県東海市新宝町507-2 東邦瓦斯株

式会社内

(72)発明者 鵜飼 健司

愛知県東海市新宝町507-2 東邦瓦斯株 式会社内

Fターム(参考) 4G048 AA03 AB02 AB05 AC06 AE05

5G301 CA30 CD01

5H026 AA06 BB08 EE12 EE13 HH05