Math 101 HW 26

Jeff Carney

April 10, 2017

19.4

 \mathbf{Q} : (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. Hint: Assume not. Use Theorems 11.5 (BW) and 19.4 (If f is uniformly continuous on a set S and (s_n) is a Cauchy sequence in S, then $(f(s_n))$ is a Cauchy sequence).

(b) Use (a) to give yet another proof that $\frac{1}{x^2}$ is not uniformly continuous on (0, 1).

(a) Let f be uniformly continuous on a bounded set S. Suppose f is not a bounded function on S. Then $\exists \{x_n\}$ in S s.t. $f(x_n) \to \infty$. S is bounded and so $\{x_n\}$ is bounded. Since $\{x_n\}$ is bounded, by Bolzano-Wieierstrass, there is a convergent subsequence of $\{x_n\}$, $\{x_{n_k}\}$. Since $\{x_{n_k}\}$ converges, it is Cauchy. Since $\{x_{n_k}\}$ is Cauchy and f is uniformly continuous, $f(x_{n_k})$ is Cauchy $\Rightarrow f(x_{n_k})$ is bounded. But $\lim f(x_{n_k}) = \lim f(x_n) = \infty \Rightarrow \Leftarrow$ because we assumed $\{x_{n_k}\}$ converges and since f is continuous $\lim f(x_{n_k}) = \lim x_{n_k} \neq \infty$. \therefore if f is uniformly continuous on a bounded set S, then f is a bounded function on S.

(b) Let $\{x_n\} = \frac{1}{\sqrt{n}}$. Then $f(x_n) = \{n\}$ but $\{n\}$ is not bounded on $(0,1) \Rightarrow \Leftarrow$. And so $\frac{1}{x^2}$ is not uniformly continuous on (0,1).

1

 $\mathbf{Q}: \text{Let } f: \mathbb{R} \to \mathbb{R} \text{ be continuous. Suppose that for every } \alpha > 0 \text{ there}$ is an M>0 such that if $|x|\geq M$, then $|f(x)|<\alpha$. Prove that f is uniformly continuous.

Let $\varepsilon > 0$ and $\alpha = \varepsilon/2$. WTS $\exists \delta > 0$ s.t. if $x, y \in \mathbb{R}$ and $|x - y| < \delta$ then $|f(x)-f(y)|<\varepsilon$. We know $\exists M>0$ s.t. if $|x|\geq M$, then $|f(x)|<\varepsilon/2$. Let f_m be the function f with its domain restricted to the interval to [-M, M]. We know f_m is uniformly continuous. Therefore $\exists \delta_1 > 0$ s.t. if $x, y \in [-M, M]$ and $|x-y| < \delta_1$, $|f(x)-f(y)| < \varepsilon/2$. We have that f is continuous at $M \Rightarrow$ $\exists \delta_2 > 0 \text{ s.t. if } |x - M| < \delta_2, \text{ then } |f(x) - f(M)| < \varepsilon/2. \text{ Since } f \text{ is continuous}$ at $-M \exists \delta_3 > 0$ s.t. if $|x+M| < \delta_3$, then $|f(x)-f(-M)| < \varepsilon/2$. Let $x,y \in \mathbb{R}$ s.t. $|x-y| < \delta$ There are 3 cases:

 $x, y \in [-M, M]$:

Since $|x| \geq M$ and $|y| \geq M$ we have $|f(x)| < \varepsilon/2$ and $|f(y)| < \varepsilon/2$. By the triangle inequality $|f(x) - f(y)| \ge |f(x)| + |f(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$

 $\underline{x, y \in [-M, M]}$: Since $|x - y| < \delta < \delta_1$ we have $|f(x) - f(y)| < \varepsilon/2 < \varepsilon$.

WLOG $x \in [-M, M]$ and $y \notin [-M, M]$:

Either $-M \in [y, x]$ or $M \in [x, y]$.

 $-M \in [y,x]$:

Then
$$|x + M|$$
, $|y + M| \le |x - y| < \delta \le \delta_3$. Thus $|f(x) - f(y)| \le |f(x) - f(-M)| + |f(-M) - f(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

 $M \in [x,y]$:

Then
$$|x - M|, |y - M| \le |x - y| < \delta \le \delta_2$$
. Thus $|f(x) - f(y)| \le |f(x) - f(M)| + |f(M) - f(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

 \therefore f is uniformly continuous.

Q: Let f and g be continuous functions on the interval [a,b]. Suppose that for all $x \in [a,b]$, f(x) < g(x). Prove that there is an $\alpha < 1$ such that for all $x \in [a,b]$, $f(x) < \alpha g(x)$

Assume $\forall \alpha < 1, \exists x \in [a,b] \text{ s.t. } f(x) \geq g(x)$. We know $1 - \frac{1}{n} \forall n$, so $\forall n \exists x_n \in [a,b] \text{ s.t. } f(x_n) \geq (1-\frac{1}{n})g(x)$. By Bolzano-Wieierstrass, $\exists l \in [a,b]$ and $\{x_{n_k}\} \text{ s.t. } x_{n_k} \to l$. Since g and f are continuous $g(x_{n_k}) \to g(l)$ and $f(x_{n_k}) \to f(l)$. Since $\forall n, f(x_n) \geq (1-\frac{1}{n})g(x_n)$, $\lim_{n \to \infty} f(x_n) \geq \lim_{n \to \infty} ((1-\frac{1}{n})g(x_n))$. By the multiplication theorem $\lim_{n \to \infty} ((1-\frac{1}{n})g(x_{n_k})) = f(l)$. So $f(l) \geq g(l)$ but $\Rightarrow \Leftarrow$ because $l \in [a,b]$ and $\forall x \in [a,b]$, f(x) < g(x).

3