Arnold's topological proof of the unsolvability of the quirtic

$$\chi^{2} + \alpha \chi + b = 0$$

$$\pi = \frac{-\alpha \pm \sqrt{\alpha^{2}-4b}}{2}$$

$$\chi^{3} + \alpha \chi + b = 0$$

$$= c - \frac{\alpha}{3c}, c = \sqrt[3]{-\frac{b^{2}}{4} + \frac{b^{2}}{4} + \frac{b^{2}}{4}}$$

Arnold's proof (1963):

all ever permutations (As)

of dance of the works too courplex

is a; could be a

radical function

of a.

got up to here

Graps

A group encodes the idea of an "abstract collection of symmetries" in maths.

Example $\{e, g, h\}$ with: $\frac{|e g h|}{e |e g h|} \{e,g,h\} \cong \{0,1,2\}$ multiplication $= + \pmod{3}$ h h e g

X is a set of things, then G:= Perm(X) - invertible maps from X to X Group Wolfiblication) a group. ÌS Associative? Inverses? $= \begin{pmatrix} \frac{d_{og}}{I} & \frac{c_{ol}}{I} \\ \frac{d_{og}}{d_{og}} & \frac{c_{ol}}{c_{ol}} \end{pmatrix} \begin{pmatrix} \frac{d_{og}}{d_{og}} & \frac{c_{ol}}{I} \\ \frac{d_{og}}{d_{og}} & \frac{c_{ol}}{c_{ol}} \end{pmatrix}$ $\chi = \{1, 2, ..., n\}$, we write S_n for $Perm_n$.

"symmetric group of order n".

Even permutations

A transposition is a permutation which swaps two elements, leaving the rest fixed.

2. Enter the icosethedron

Will Show:

