Module 3 Agenda: Hypothesis Testing (long)

- 1. What is Hypothesis testing?
 - Overview of the four steps
 - P-values, type I, type II error, Power, Sensitivity, Specificity etc.
 - Binomial distribution
 - What is it
 - How to simulate from scratch, or use built-in functions (dbinom() etc.)
 - Examples:
 - Binomial test (Bumpus)
 - Contingency test (Bumpus)
 - Fisher exact test

2. AUROC

Your pipeline for hypothesis testing in statistics

Formulate your null hypothesis
How unusual is your data? Step Identify appropriate test statistic Step 2 Assumptions of your test **Quantify** the results of your test Step 3 P value or comparison to critical values Conclude: reject or fail to reject based on alpha value if appropriate, confidence interval of the parameter

P-Value:

Probability of obtaining data that are equal to or even more extreme than the value assuming the null hypothesis is true

Type I (α) error:

Rejecting a true null hypothesis

P(reject
$$H_0|H_0$$
 = true) = α

Type II (f) error:

Not rejecting a false null hypothesis

P(Fail to reject $H_0|H_0$ is not true) =

http://www.intuitor.com/statistics/T1T2Errors.html

	No Disease (H₀ true)	Disease (Ho is not true; H _A true)
	No Error	Type II
Fail To Reject H₀	Specificity = P[FTR Ho is true]	P[FTR Ho is not true]
	True Negative	(False Negative)
Reject H₀		No Error
	Type I	Power/Sensitivity
	P[reject Ho]	P[Reject Ho is not
	(False Positive)	true]
		(True Positive)

Sensitivity = IP TP+FN

Types of Errors (Type I, Type II):

Type I = alpha = False Positive = P[rejecting null hypothesis|Ho is actually correct]

Type II - Beta = False Negative = P[NOT rejecting null hypothesis|Ho is not correct]

Power = 1-Type II = True Positive = P[Reject null hypothesis|Ho is not correct]

Sensitivity = True Positive Rate = Power*

wikipedia page that explains Sensitivity, Specificity in more detail

* Power is a type of sensitivity, but not all sensitivity is statistical power.

P-value

The p-value tells you how surprising your data would be if nothing real were going on (i.e., if the null hypothesis were true).

- Small p-value (usually < 0.05): your data are *unlikely* if there's no real effect --> maybe something real is happening.
- Big p-value: your data are consistent with chance.

Type I Error (False Positive)

You think you found something real, but you didn't.

- P[rejecting null hypothesis|Ho is actually correct]
- Example: saying a drug works when it actually doesn't.
- Controlled by the **significance level (\alpha)**, often set at 0.05.

Type II Error (False Negative)

You missed something that is real.

- P[NOT rejecting null hypothesis|Ho is not correct]
- Example: saying a drug doesn't work when it actually does

Power

The chance you'll correctly detect a real effect (avoid a Type II error).

- 1-Type II = P[Reject null hypothesis|Ho is not correct]
- •Higher power = better chance of spotting true effects.
- Usually aim for 80% or higher

Sensitivity

If something is real, how often do you correctly catch it?

- Example: a COVID test correctly flags people who have the virus.
- "How good the test is at finding the true positives."

Specificity

If something isn't real, how often do you correctly say "no"?

- Example: a COVID test correctly says negative for people who don't have the virus.
- "How good the test is at avoiding false alarms."

Related ideas:

Accuracy =
$$\frac{TP + TN}{(TP + TN + FP + FN)}$$

ROC curves of two diagnostic tasks (test A versus test B)(Image source)

https://medium.com/@shaileydash/understanding-the-roc-and-auc-intuitively-31ca96445c02

How to test:

- Visual Assessment (Boxplot, histograms, qqplot, qqnorm)
- Shapiro Wilk test

Homoscedasticity (variances are equal)

How to test

- Visual Assessment
- If normal; n=2 → var.test
- If normal; n>2 → Bartlett test
- If not norm → Levene's test
- If n=2 and variances are significantly different:

Welch's Approximate t test

Non-parametric analogs of the parametric tests above. Instead of testing population **means**, they test population **medians**, and they use **ranks**.

We will look at the following t-tests:

- 1. Comparing one mean:
 - a. One-sample t-test
- 2. Comparing two means:
 - a. Paired t-test
 - b. Two-sample t-test

one sample

paired

Each of the above tests have **slightly different assumptions** which allow our conclusions to be supported. We will investigate what happens when these assumptions are violated and how robust our various t-tests are to violations.

Agenda:

- 1. ANOVA: Nuts & Bolts
- 2. Worked Example
 - 1. One way ANOVA
 - 2. Post-hoc tests: Tukey-Kramer
 - 3. Kruskal-Wallis (nonparametric)
- 3. Linear Correlation
 - 1. Spearman's rank

Figure 20.1: Whitock and Schluter, Fig 15.1.2 – Illustrating the partitioning of sum of squares into MS_{group} and MS_{error} components.

