

FRENCH-AZERBAIJANI UNIVERSITY

UE709 Network Algorithms L3/S5 PW4 - Network and Algorithms November 2019

Working with Python and NetworkX (cont.3)

1 Requirements

This practice (continuation of the last practice) uses the source file produced in last Practical Works. Section 2 gather some information needed to this practice.

2 More information on NetworkX

i. Start as usual, importing modules in need and recovering the network graph from file:

where Source and Sink are the titles (names) of columns that will be considered as the endpoints of each edge (row). Other columns are data for each edge (edge_attr=True). Note that we are using the create_using=nx.Graph option to create our graph.

iii. About nodes and edges:

- G.nodes() returns a list with every node of the graph G
- G.nodes[node_identifier] returns a dictionary with all attributes for the node_identifier of G
- G.nodes[node_identifier] [attribute] returns a dictionary with all attributes for that node
- G.edges() returns a list of tuples constituted by the endpoints of all unique edges (undirected) of G
- G.edges[node_id1, node_id2] returns a dictionary with all attributes for the edge (node_id1, node_id2) of G

- G.edges[node_id1, node_id2][attribute] returns the value of the attribute for that edge (node_id1, node_id2)
- list(G.neighbors(node_identifier)) returns a list with all nodes that share an edge with the node_identifier (don't need to convert to list if you need to iterate through it)
- G.degree(node_identifier) gives the degree of a node
- v. To find more information about NetworkX: https://networkx.github.io/documentation/latest/index.html

3 Activities

3.1 Network flow

The sample_network.csv dataset have a sample of nodes with a fictional average rate Kbps for communication between each pair (edge's attribute).

- 1. Plot the network.
- 2. Use the following metrics to help you understand the network in analysis:
 - Degree Connectivity
 - Closeness Centrality
 - Betweenness Centrality
 - Network Density
 - Network Diameter
 - Network Average Path Length
- 3. Implement your version of one of the following algorithms:
 - \bullet The Ford-Fulkerson algorithm $https://en.wikipedia.org/wiki/Ford\%E2\%80\%93Fulkerson_algorithm$
 - \bullet The Edmonds-karp algorithm $https://en.wikipedia.org/wiki/Edmonds\%E2\%80\%93Karp_algorithm$
 - The Dinic's algorithm https://en.wikipedia.org/wiki/Dinic%27s_algorithm
- 4. Find the max flow of information for this network.