Teorema da Aproximação de Weierstrass

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

14 de julho de 2010

Teorema 1. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Para todo $\epsilon > 0$, existe um polinômio p(t) tal que $|f(t) - p(t)| < \epsilon$, para todo $t \in [a,b]$.

Demonstração. Seja t=(1-x)a+xb. Então $x=\frac{1}{b-a}(t-a)$ e $t\in [a,b]$ se, e somente se, $x\in [0,1]$. Seja $\tilde{f}:[0,1]\to \mathbb{R}$ definida por $\tilde{f}(x)=f((1-x)a+xb)$. Seja

$$\tilde{p}(x) = \sum_{k=0}^{n} \tilde{f}(\frac{k}{n}) \binom{n}{k} x^{k} (1-x)^{n-k} \quad \text{e} \quad p(t) = \tilde{p}\left(\frac{1}{b-a}(t-a)\right).$$

Este polinômio é chamado de **polinômio de Bernstein**.

Vamos usar o fato de que

$$\sum_{k \in A} \binom{n}{k} x^k (1 - x)^{n-k} \le \sum_{k=0}^n \binom{n}{k} x^k (1 - x)^{n-k} = 1,\tag{1}$$

para qualquer $A \subseteq \{0, 1, 2 \dots, n\}$.

Como f é contínua existe $\delta > 0$ tal que

$$|x - y| < \delta \quad \Rightarrow \quad |\tilde{f}(x) - \tilde{f}(y)| < \frac{\epsilon}{2}.$$
 (2)

Sejam $b_1=x-\delta$ e $b_2=x+\delta$. Seja $M=\max_{x\in[0,1]}|\tilde{f}(x)|=\max_{t\in[a,b]}|f(t)|$. Seja n tal que $4Me^{-2\delta^2n}<\frac{\epsilon}{2}$. Vamos usar o seguinte fato que será demonstrado a seguir:

$$b_2 \le \frac{k}{n} \le 1 \text{ ou } 0 \le \frac{k}{n} \le b_1 \quad \Rightarrow \quad x^{\frac{k}{n}} (1-x)^{1-\frac{k}{n}} \le e^{-2(x-b)^2} b^{\frac{k}{n}} (1-b)^{1-\frac{k}{n}}.$$
 (3)

Então por (1), (2) e (3) temos que

$$\begin{split} |\tilde{f}(x) - \tilde{p}(x)| &= \left| \sum_{k=0}^{n} \tilde{f}(x) \binom{n}{k} x^{k} (1-x)^{n-k} - \sum_{k=0}^{n} \tilde{f}(\frac{k}{n}) \binom{n}{k} x^{k} (1-x)^{n-k} \right| \leq \\ &\leq \sum_{k=0}^{n} |\tilde{f}(\frac{k}{n}) - \tilde{f}(x)| \binom{n}{k} x^{k} (1-x)^{n-k} \leq \\ &\leq \frac{\epsilon}{2} + \sum_{|\frac{k}{n} - x| \geq \delta} |\tilde{f}(\frac{k}{n}) - \tilde{f}(x)| \binom{n}{k} x^{k} (1-x)^{n-k} \leq \\ &\leq \frac{\epsilon}{2} + 2M \sum_{\frac{k}{n} \geq b_{2}} \binom{n}{k} x^{k} (1-x)^{n-k} + 2M \sum_{\frac{k}{n} \leq b_{1}} \binom{n}{k} x^{k} (1-x)^{n-k} \leq \\ &\leq \frac{\epsilon}{2} + 2M e^{-2\delta^{2}n} \sum_{\frac{k}{n} \geq b_{2}} \binom{n}{k} b_{2}^{k} (1-b_{2})^{n-k} + 2M e^{-2\delta^{2}n} \sum_{\frac{k}{n} \leq b_{1}} \binom{n}{k} b_{1}^{k} (1-b_{1})^{n-k} \\ &\leq \frac{\epsilon}{2} + 4M e^{-2\delta^{2}n} \leq \epsilon. \end{split}$$

Lema 2. Se
$$0 \le x < b \le \frac{k}{n} \le 1$$
 ou $0 \le \frac{k}{n} \le b < x \le 1$, então
$$x^{\frac{k}{n}} (1-x)^{1-\frac{k}{n}} \le e^{-2(x-b)^2} b^{\frac{k}{n}} (1-b)^{1-\frac{k}{n}}$$

Demonstração. Precisamos mostrar que

$$\frac{x^{\frac{k}{n}}(1-x)^{1-\frac{k}{n}}}{h^{\frac{k}{n}}(1-h)^{1-\frac{k}{n}}} \le e^{-2(x-b)^2},$$

ou aplicando-se o logaritmo nesta desigualdade, que

$$H(x) = \ln \frac{x^{\frac{k}{n}}(1-x)^{1-\frac{k}{n}}}{b^{\frac{k}{n}}(1-b)^{1-\frac{k}{n}}} + 2(x-b)^2 \le 0.$$

Temos que H(b) = 0.

(a) Se $0 < x < b \le \frac{k}{n} \le 1$, vamos mostrar que $H'(x) \ge 0$. Como, para 0 < x < 1, $x(1-x) \le \frac{1}{4}$, então

$$H'(x) = \frac{\frac{k}{n} - x}{x(1 - x)} + 4(x - b) \ge 4(\frac{k}{n} - x) + 4(x - b) = 4(\frac{k}{n} - b) \ge 0.$$

(b) Se $0 \le \frac{k}{n} \le b < x < 1$, vamos mostrar que $H'(x) \le 0$. Como, para 0 < x < 1, $4 \le \frac{1}{x(1-x)}$, então

$$H'(x) = \frac{\frac{k}{n} - x}{x(1 - x)} + 4(x - b) \le \frac{\frac{k}{n} - x}{x(1 - x)} + \frac{x - b}{x(1 - x)} = \frac{\frac{k}{n} - b}{x(1 - x)} \le 0.$$

Referências

- [1] Djairo Guedes de Figueiredo. *Análise de Fourier e Equações Diferenciais Parciais*. IMPA, Rio de Janeiro, 1977.
- [2] Donald Kreider, Donald R. Ostberg, Robert C. Kuller, and Fred W. Perkins. *Intro-dução à Análise Linear*. Ao Livro Técnico S.A., Rio de Janeiro, 1972.
- [3] Elon L. Lima. *Curso de Análise*. Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, 1976.
- [4] Literka. Weierstrass Approximation Theorem. Bernstein's Polynomials. Website. http://www.literka.addr.com/mathcountry/approximation.htm.