Криптографические системы Лабораторная работа \mathbb{N}_2

Атака на алгоритм шифрования RSA методом повторного шифрования

ФИО студента: Готовко Алексей Владимирович

Вариант: 3

Учебная группа: Р34101

1 Цель работы

Изучить атаку на алгоритм шифрования RSA посредством повторного шифрования.

2 Вариант задания

По полученным исходным данным, используя метод перешифрования, определить порядок числа e в конечном поле $Z_{\varphi(N)}$ и, используя значение порядка экспоненты, получить исходный текст методом перешифрования.

Вариант	\mathbf{M} одуль, N	Экспонента, е	Блок зашифрованного текста, C
3	385181864647	938573	331245775481
			282425324609
			65377570000
			89972965825
			264803627317
			320989226085
			324723654667
			294634302620
			142237555971
			221994269576
			209958712589
			221718426295
			163788492835

3 Исходный код программы

rsa_attacks.py

```
def to_text(data: int) -> str:
       return data.to_bytes(length=4, byteorder="big").decode("cp1251")
   def recipher(modulo: int, exponent: int, ciphertext: list[int]) -> str:
       result = ""
       exp\_order = 1
       entry = ciphertext[0]
       cur = pow(entry, exponent, modulo)
       prev = cur
10
       while cur != entry:
12
            prev = cur
13
            cur = pow(cur, exponent, modulo)
14
            exp_order += 1
16
       print(f"Order of the exponent: {exp_order}\n")
17
       result += to_text(prev)
19
20
       for element in ciphertext[1:]:
21
            result += to_text(pow(element, pow(exponent, exp_order - 1), modulo))
22
23
       return result
```

4 Результат работы программы

```
Order of the exponent: 78300

2

3 Decrypted text: еще ошибками PCS (Frame Check Sequence, контрольная
```