UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Final exam for AST4220 — Cosmology I

Day of exam: Friday December 9th 2011

Time for exam: 14.00 - 18.00

This problem set consists of 5 pages.

Attachments: None

Allowed aids: All non-communicative aids.

Make sure that the problem set is complete before you start answering the questions.

In this exam we are assuming the units where c=1.

Problem 1

The Big Bang model is extremely successful in accounting for many of the basic features of our Universe. However, there are some properties within this model one cannot answer.

- a) Describe two main puzzles of the Big Bang model?
- b) Describe how Inflation could be a solution to these puzzles.
- c) Besides solving the above problems, Inflation also gives us an extra positive feature. Describe it.
- d) Explain the need of reheating at the end of inflation.

Problem 2

Describe in detail what is meant by the

- a) Deuterium bottleneck.
- b) Freeze-out of a particle species.

Problem 3

Suppose the Universe was radiation dominated for times t before decoupling time a_d , with $p = \rho/3$.

a) Show that

$$\rho(a) = \rho_d(\frac{a_d}{a})^4$$

where $a_d = a(t_d)$.

- b) Solve the Friedman equations for k = 0 to obtain a(t).
- c) Show that

$$\rho(t) = \frac{3}{32\pi G}t^{-2}$$

.

- d) Suppose $\rho = N\alpha T^4$, where N is the effective number of radiative species and α is the Stefan-Boltzmann constant. Determine at what cosmic time the Universe reaches a temperature T, i.e. find t(T).
- e) Suppose that nucleosynthesis ends when $T \approx 10^9 \text{K}$. Does the corresponding cosmic time $t(10^9)$ increase with N or decreases with N?
- f) Briefly describe how $t(10^9)$ affects the ratio of neutron density to proton density ρ_n/ρ_p .
- g) How does this ratio affect the present Helium abundance?

Problem 4

Supposed the Universe is static (da/dt = 0) and filled with a gas of mass density ρ , pressure p, velocity \mathbf{v} , and gravitational acceleration \mathbf{F} . The gas obeys to mass equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = 0 \tag{1}$$

and the momentum equation

$$\rho(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \rho \mathbf{F}$$
 (2)

a) Let

$$\rho = \bar{\rho} + \delta \rho, \qquad p = \bar{p} + \delta p, \qquad \mathbf{v} = \delta \mathbf{v}$$

$$\mathbf{F} = \delta \mathbf{F}, \qquad \nabla \cdot \delta \mathbf{F} = -4\pi G \delta \rho$$

The overbared quantities are those that follow the equations of the static universe (1,2), and the deltas are linear perturbations in these quantities. Also let $c_s^2 \equiv dp/d\rho$. Derive the first order linear approximation equation

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_s^2 \nabla^2 \delta \rho - 4\pi G \bar{\rho} \delta \rho = 0$$

.

b) Show that this equation has solutions of the form

$$\delta \rho = A(\mathbf{k})e^{i(\mathbf{k}\cdot\mathbf{x} - w(k)t)}$$

.

- c) Determine w(k), in terms of $k_J^2 \equiv 4\pi G \bar{\rho}/c_s^2$.
- d) What is the physical meaning of c_s and of k_J ?

- e) Let the wavelength of a density perturbation be $\lambda = 2\pi/k$. For what range of λ will a perturbation grow? What happens to the perturbation if λ is not in this range?
- f) Suppose a standing wave perturbation at some wavelength λ_1 starts at t=0 with maximum amplitude, and reaches its next maximum amplitude at decoupling time $t=t_d$. Find an expression for λ_1 in terms of t_d , k_J and c_s .