Lec 28: Problem Solving Session

Rootfinding

FZERO to Solve Complex Problem

• FNC 4.1.5 (Kepler's Law)

4.1.5. \equiv The most easily observed properties of the orbit of a celestial body around the sun are the period τ and the elliptical eccentricity ϵ . (A circle has $\epsilon=0$.) From these it is possible to find at any time t the angle $\theta(t)$ made between the body's position and the major axis of the ellipse. This is done through

$$\tan\frac{\theta}{2} = \sqrt{\frac{1+\epsilon}{1-\epsilon}} \tan\frac{\psi}{2},\tag{4.1.2}$$

where the eccentric anomaly ϕ satisfies Kepler's equation:

$$\psi - \epsilon \sin \psi - \frac{2\pi t}{\tau} = 0.$$

Equation (4.1.3) must be solved numerically to find $\psi(t)$, and then (4.1.2) can be solved analytically to find $\theta(t)$.

The asteroid Eros has $\tau=1.7610$ years and $\epsilon=0.2230$. Using fzero for (4.1.3), make a plot of $\theta(t)$ for 100 values of t between 0 and τ (one full period).

$$\theta = 2 \arctan \left[\frac{1+\epsilon}{1-\epsilon} \tan \frac{\psi(t)}{2} \right]$$

Y: P57

): theta

@(psi) --- 0)

Lambert W-Function

Review

• FNC 4.1.6 -> Prob 2 of HW7.

Same idea and technique

More With Lambert W-Function

$$y = W(x)$$
 iff $x = ye^y$

Question. Show that solutions of the equation $2^x = 5x$

by hand
$$r = -\frac{W\left(-\log(2)/5\right)}{\log 2}.$$

(Here, as usual in this class, $\log(\cdot) = \ln(\cdot)$ is the natural logarithmic function.) Then numerically verify the result using fzero¹

$$2^{7} = 57$$

$$\frac{1}{5} = x e^{7} \log 2$$

$$\frac{1}{5} = x e^{7} \log 2$$

$$\frac{\log x}{5} = \log 5 + \log 7$$

$$\frac{\log x}{5} = 2 \log 2 e^{-7} \log 2$$

$$-1 \log x = 1 \log 2 e^{-7} \log 2$$

$$-1 \log x = 1 \log 2 e^{-7} \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

$$1 = -1 \log 2 = 1 \log 2$$

5/9

FPI: When Convergence Is Faster Than Expected

• FNC 4.2.6 Find χ satisfying $\chi = g(\chi)$.

Solution ofrategy (Iferation)

(An: initial aness $\lambda = g(\lambda)$ They note

If |g'(r)| < 1, the

If |g'(r)| < 1, the convergence is timear.

To |g'(r)| < 1, the convergence is timear.

 \Rightarrow do, λ_1 , λ_2 , --
If $\lim_{k\to\infty} d_k = r$, then g(r) = r, i.e. r is a fixed point of g.

(a)
$$g(x) = 2x - 3x^2$$
.

Soln:
$$g(\frac{1}{3}) = 2 \cdot \frac{1}{3} - 3(\frac{1}{3})^2 = (2 - \frac{3}{3}) \cdot \frac{1}{3} = \frac{1}{3}$$

(b)
$$g'(1/3) = ?$$

$$g'(x) = 2 - 6x \Rightarrow g'(x) = 2 - 6 \cdot \frac{1}{3} = 10$$

$$g'(x) = 2 - 6x \implies g'(x) = 2 - 6 \cdot \frac{1}{3} = 0$$

$$g'(x) = 2 - 6x \Rightarrow g'(x) = 2 - 6 \cdot \frac{1}{3} = \boxed{0}$$

Since $|g'(x)| = 0$, the convergence of FPI near $\frac{1}{3}$ is Supertinear!