C11 - Arithmétique

I. Divisibilité

1. Relation de divisibilité

Association

a et b $\in \mathbb{Z}$ sont dit associés ssi a|b et b|a

Ils sont associés ssi :

$$|a| = |b| \Leftrightarrow a = \pm b \Leftrightarrow \exists \epsilon \in \{\pm 1\}$$

Démonstration

Supposons $a=\epsilon b$ avec $\epsilon\in\{\pm 1\}$ alors b|a et $b=\epsilon a$ Donc a|b a et b sont associés

Supposons que a et b soient associés :

- Si a=0 alors comme $a|b,\,b=0$ donc $a=\pm\,b$ donc |a|=|b|
- Si b = 0 se même |a| = |b|
- Si $a \neq 0$ et $b \neq 0$

Alors comme a|b, il existe |a||k| = |b|

Comme $b \neq 0$, $k \neq 0$ donc $|k| \geq 1$ et comme |a| et |b| sont positifs $|a| \leq |b|$

Par symétrie des roles, $|b| \leq |a|$

Donc |a| = |b|

Démonstration de la conséquence

R et T par "restriction"

Antisymétrique:

Soient $a,b \in \mathbb{N}$ tq a|b et b|a

Alors par la proposition : |a|=|b| or $a,b\in\mathbb{N}$, Donc a=b De plus $2\nmid 3$ et $3\nmid 2$ Donc l'ordre n'est pas total.

II. Diviseurs et multiples communs

2. Cas des entiers relatifs

Proposition 18

Démonstration

Soient $a,b\in\mathbb{Z}$ et $k\in\mathbb{Z}^*$ On a $a\wedge b\mid a$ donc $k(a\wedge b)\mid ka$ De même $k(a\wedge b)\mid (ka)\wedge (kb)$ De plus il existe $u,v\in\mathbb{Z}$ tq $a\wedge b=au+bv$ On a alors $k(a\wedge b)=(ka)u+(kb)v$ or

$$egin{cases} (ka) \wedge (kb) \mid (ka) \ (ka) \wedge (kb) \mid (kb) \end{cases}$$

donc

$$egin{aligned} (ka) \wedge (kb) \mid (ka)u + (kb)v \ & (ka) \wedge (kb) \mid k(a \wedge b) \end{aligned}$$

Ainsi $k(a \wedge b)$ et $(ka) \wedge (kb)$ sont associés et comme ce sont des entiers naturels, ils sont égaux.

3. Nombre premiers entre eux

Théorème

Soit $a,b\in\mathbb{Z}$ alors

$$a \wedge b = 1 \Leftrightarrow (\exists u, v \in \mathbb{Z}, au + bv = 1)$$

Démonstration:

⇒ : Relation de Bézout

 \Leftarrow : Supposons qu'il existe $u,v\in\mathbb{Z}$ tel que :

$$au + bv = 1$$

Tout diviseur commun d de a et b divise la CLE au+bv=1 or $1\in\mathbb{N}$ et $1\mid a$ et $1\mid b$ donc par la caractérisation des PGCD, $1=a\wedge b$

Théorème de Gauss

Soient $a,b,c\in\mathbb{Z}$

$$\left.egin{array}{c} a\mid bc\ a\wedge b=1 \end{array}
ight\}\Rightarrow a\mid c$$

Supposons que $a \mid bc$ et $a \land b = 1$

Par la relation de Bézout, il existe $u,v\in\mathbb{Z}$ tel que :

$$au + bv = 1$$

On a alors

$$a(uc) + (bc)v = c$$

or $a \mid a(uc)$ et $a \mid (bc)v$

Donc a divise la CLE

$$a(uc) + (bc)v = c$$

Théorème : Divisibilité par produit

Soient $a,b,c\in\mathbb{Z}$

$$\left.egin{array}{c} a\mid b\ b\mid c\ a\wedge b=1 \end{array}
ight\}\Rightarrow ab\mid c$$

Démonstration:

Supposons $a \mid b$, $b \mid c$ et $a \land b = 1$

Comme $a \mid c$ il existe $k \in \mathbb{Z}$ tq ak = c

Or $b \mid c$ i.e. $b \mid ak$

et
$$b \wedge a = 1$$

Donc par le théorème de Gauss

Théorème

Soient $a,b,c\in\mathbb{Z}$

$$\left. egin{aligned} a \wedge b \ b \wedge c \end{aligned}
ight\} \Rightarrow (ab) \wedge c = 1$$

Théorème

$$orall r \in \mathbb{Q}, \exists ! (p,q) \in \mathbb{Z} imes \mathbb{N}^*, egin{cases} p \wedge q = 1 \ rac{p}{q} = r \end{cases}$$

Démonstration

Unicité

Soient $(p,q),(p',q')\in \mathbb{Z} imes \mathbb{N}^*$, tel que $p\wedge q$ = $p'\wedge q'=1$ et $\frac{p}{q}=\frac{p'}{q'}$

On a alors pq'=p'q donc pp'q' ou $p\wedge q=1$ (Gauss) De même $p'\mid p$ donc $q'=\pm q$ or $q,q'\in \mathbb{N}^*$,

Donc q' = q et p' = p

Définition

L'écriture $r=rac{p}{q}$ s'appelle l'écriture irréductible du rationnel r

4. PGCD de plus de 2 entiers

Définition

Soient $a,b,c\in\mathbb{Z}$,

Le PGCD de 3 entiers est :

$$a \wedge b \wedge c$$

Propriété

La loi \wedge est associative te commutative et admet 0 comme élément neutre $(\operatorname{sur} \mathbb{N})$.

Proposition 21

Démonstration

L'assertion de recurrence est la proposition

Initialisation

 A_2 est la relation de Bézout déja vue et prouvée

Hérédité

Soit $n \geq 2$ tq A_n

Soient $a_1, \ldots, a_{n+1} \in \mathbb{Z}$

Par H.R. il existe $u_1, \ldots u_n \in \mathbb{Z}$ tq

$$igwedge_{i=1}^n a_i = \sum_{i=1}^n u_i a_i$$

Puis par A_2 :

$$igwedge_{i=1}^n a_i \, \wedge a_{n+1} = (igwedge_{i=1}^n a_i) u + a_{n+1} v$$

Cela se réécrit :

$$igwedge_{i=1}^{n+1} a_i = \left(\sum_{i=1}^n a_i(u_i u)
ight) + a_{n+1} v = \sum_{i=1}^{n+1} a_{i ilde{u_i}}$$

En posant:

$$egin{cases} orall i \in \llbracket 1, n
rbracket, ilde{u_i} = u_i u \in \mathbb{Z} \ u_{n+1} = v \in \mathbb{Z} \end{cases}$$

Ainsi A_{n+1} est vérifiée Cela achève l'hérédité

Définition

Soient $a_1,\ldots,a_n\in\mathbb{Z}$

On dit qu'ils sont

- 1. Premiers entre eux deux a deux ssi $orall i,j\in \llbracket 1,n
 rbracket, i\neq j\Rightarrow a_i\wedge a_j=1$
- 2. Premiers entre eux dans leur ensemble

ssi

$$igwedge_{i=1}^n a_i = 1$$

Démonstration

Si a=0 ou b=0 le seul multiple positif de a et b est 0 et $min_{|_{\mathbb{N}}}(\{0\})=0$

Si $a \neq 0$ et $b \neq 0$

On note $d=a \wedge b \neq 0$ (car $a \neq 0$)

On pose $m = \frac{ab}{d}$

Comme $d \mid b$, alors $\frac{b}{d} \in \mathbb{N}$ et $m = a\left(\frac{b}{d}\right)$

est un multiple de a

De même m est un multiple de b, donc m est un multiple commun à a et b

Soit n un multiple commun de a et b Posons $a' = \frac{a}{d}$ et $b' = \frac{b}{d}$

On a
$$a' \wedge b' = 1$$

(On a vu que si $k \mid a$ et $k \mid b$, $\left(\frac{a}{k} \right) \wedge \left(\frac{b}{k} \right) = \frac{a \wedge b}{k}$)

On a $a \mid n$ donc $a' \mid \frac{n}{d}$

Puis de même $b' \mid \frac{n}{d}$

or $a' \wedge b' = 1$ donc $a'b' \mid \frac{n}{d}$

i.e. $\frac{a}{d} \times \frac{b}{d} \mid \frac{n}{d}$

en multipliant par d, $m=\frac{ab}{d}\mid n$

Donc m divise tout multiple commun de a et b

Théorème de Bézout

$$orall a_1, \dots, a_n \in \mathbb{Z}, igwedge_{i=1}^n a_i = 1 \Leftrightarrow \left(\exists u_1, \dots, u_n, \sum_{i=1}^n u_i a_i = 1
ight)$$

5. PPCM

Définition dans \mathbb{Z} du PPCM

Pour $a,b\in\mathbb{Z}$, on pose

$$a \lor b = |a| \lor |b|$$

Propriété

Pour $a \neq 0$ et $b \neq 0$, $a \vee b$ est aussi le plus petit des multiples communs positifs de a et b au sens de l'ordre usuel \leq

Propriété: Caractérisation du PPCM

Soient $a,b\in\mathbb{Z}$ et $m\in\mathbb{N}$ Alors

$$m = a ee b \Leftrightarrow egin{cases} a \mid m ext{ et } b \mid m \ orall n \in \mathbb{Z}, (a \mid n ext{ et } b \mid n \Rightarrow m \mid n) \end{cases}$$

Propriété

$$orall a,b\in \mathbb{Z}, (a\wedge b)(aee b)=|ab|$$

Méthode de calcul $a \lor b$

$$42 \land 54 = 6$$

Donc

$$42 \vee 54 = \frac{42 \times 54}{6} = 42 \times 9 = 378$$

Propriété

$$orall a,b,n\in \mathbb{Z}, (na)ee (nb)=|n|(aee b)$$

III. Nombres premiers

1. Définition et premières propriétés

Définition

Un nombre premier est un entier naturel $p \neq 1$ et dont les seuls diviseurs positifs sont 1 et p

Remarque: 1 n'est pas premier

Notation (du prof)

On notera \mathcal{P} l'ensemble des nombres premiers

Exemple

$$2,3,5,7,11\in\mathcal{P}$$

Définition

 $n \neq 1$ et non premier est dit composé.

Il existe alors $ab \in \mathbb{N} \backslash \{1, n\}$ tel que

$$n=ab.$$
 Si $n
eq 0$, on a $a,b\in \llbracket 2,n-1
rbracket$ et $a\leq \sqrt{n}$ ou $b\leq \sqrt{n}$

Cela justifie la méthode su crible d'Ératosthène pour trouver tous les nombres premiers inférieur ou égaux a une borne fixée.

Propriété

Soit
$$p \in \mathcal{P}$$
 et $n \in \mathbb{Z}$
Alors

$$n \wedge p
eq 1 \Leftrightarrow p \mid n$$

i.e. on a une alternative

- Soit $p \mid n$ et $p \wedge n = p$
- Soit p et n sont premiers entre eux

Lemme d'Euclide

Soit $p \in \mathcal{P}$ et $e, b \in \mathbb{Z}$ Alors

$$p \mid ab \Rightarrow (p \mid a \text{ ou } p \mid b)$$

Démonstration

Supposons $p \mid ab$

On a deux cas:

- Si $p \mid a$ c'est fini
- Si $p \nmid a$ alors $p \wedge a = 1$ Donc par le théorème de Gauss Comme $p \wedge a = 1$ et $p \mid ab$, alors $p \mid b$

Théorème

 \mathcal{P} est fini

2. Décomposition en facteurs premiers

Théorème

$$orall n \in \mathbb{N}^*, \exists k \in \mathbb{N}, \exists p_1, \ldots, p_k \in \mathcal{P}, \exists lpha_1, \ldots, lpha_k \in \mathbb{N}^*, n = p_1^{lpha_1} imes \cdots imes p_k^{lpha_k} = \prod_{i=1}^k p_i^{lpha_i}$$

De plus cette écriture est unique à l'ordre des facteurs près

Démonstration

Existence par récurrence forte sur N

Pour
$$n \in \mathbb{N}^*$$
 on pose

$$A_n:\exists k\in\mathbb{N},\exists p_1,\ldots,p_k\in\mathcal{P},\existslpha_1,\ldots,lpha_k\in\mathbb{N}^*,n=\prod_{i=1}^kp_i^{lpha_i}$$

Initialisation

$$1 = \prod_{i=1}^0 p_i^{lpha_i}$$
 Donc A_1 est vérifiée

Hérédité

Soit $n \in \mathbb{N}^*$ tel que A_1, A_2, \ldots, A_n

Soient vérifiées

On a deux cas:

• Si $n+1 \in \mathcal{P}$: en prenant k=1 $p_1=n+1$ et $lpha_1=1$ on a

$$n+1=\prod_{i=1}^1 p_i^{lpha_i}$$

• Si $n+1 \in \mathcal{P}$

Comme $n+1\geq 2$, alors il est composé i.e. s'écrit n+1=ab avec $a,b\in \llbracket 2,n
rbracket$

Ainsi par H.R. A_a et A_b sont vérifiées

Donc a s'écrit comme produits de puissances de premiers et b aussi. En regroupant les deux produits et éventuellement les puissances de même premiers, puis en les ordonants on a

$$(n+1) = \prod_{i=1}^k p_i^{lpha_i}$$

Donc A_{n+1} est vraie

Théorème

Soit $u\in\mathbb{C}^{\mathbb{N}}$, $l\in\mathbb{C}$

$$u_n
ightarrow l \Leftrightarrow egin{cases} Re(u_n)
ightarrow Re(l) \ Im(u_n)
ightarrow Im(l) \end{cases}$$

Démonstration:

 \Rightarrow : Supposons que $u_n o l$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - l| \leq \epsilon$$

Soir $\epsilon>0$ et N_ϵ associé

Pour $n \geq N_{\epsilon}$,

$$\left\{egin{aligned} |Re(u_n)-Re(l)| &= |Re(u_n-l)| \leq |u_n-l| \leq \epsilon \ |Im(u_n)-Im(l)| &= |Im(u_n-l)| \leq |u_n-l| \leq \epsilon \end{aligned}
ight.$$

Ainsi

$$egin{cases} Re(u_n)
ightarrow Re(l) \ Im(u_n)
ightarrow Im(l) \end{cases}$$

$$\Leftarrow$$
 : Supposons que $egin{cases} Re(u_n)
ightarrow Re(l) \ Im(u_n)
ightarrow Im(l) \end{cases}$

Soit $\epsilon > 0$

Comme $Re(u_n) o Re(l)$ il existe $N \in \mathbb{N}$ tel que

$$orall n \geq N, |Re(u_n) - Re(l)| \leq rac{\epsilon}{\sqrt{2}}$$

Comme $Im(u_n) o Im(l)$ il existe $N' \in \mathbb{N}$ tel que

$$orall n \geq N', |Im(u_n) - Im(l)| \leq rac{\epsilon}{\sqrt{2}}$$

Soit N'' = max(N, N')

Pour $n \geq N''$,

$$ert u_n-lert^2=(Re(u_n-l))^2+(Im(u_n-l))^2=(Re(u_n)-Re(l))^2+(Im(u_n)-Im)^2$$
 $ert u_n-lert^2\leqrac{\epsilon^2}{2}+rac{\epsilon^2}{2}=\epsilon^2\leq\epsilon$

Par positivité de ϵ

Ainsi

$$orall \epsilon > 0, \exists N \in \mathbb{N}, |u_n - l| \leq \epsilon$$

Idée de la preuve de l'unicité :

Si $n=p_1^{lpha_1}\dots p_k^{lpha_k}=q_1^{eta_1}\dots q_l^{eta_l}$

avec les hypothèses

Comme $p_1|n,p_1|q_1^{eta_1}\dots q_l^{eta_l}$

Comme p_1 est premier par le Lemme d'Euclide il divise l'un d'entre eux : a^{eta_j}

et encore par le lemme d'Euclide comme $p_1 \mid q_1 imes \cdots imes q_j$ et $p_1 \in \mathcal{P}$ alors $p_1 \mid q_j$

Comme q_j est premier $p_j=q_j$

Si j
eq 1 on aurait : $p_1 > q_1$

Or par le même raisonnement q_1 est l'un des p_i donc $p_1 \leq p_i = q_1$ Contradiction

Ainsi j=1 i.e. $p_1=q_1$

quitte a échanger les notations, on peut supposer que $\alpha_1 \leq \beta_1$ En divisant par p^{α_1} on obtiens :

$$p_2^{lpha_2}\dots p_k^{lpha_k}=p_1^{eta_1-lpha_1}q_2^{eta_2}\dots q_l^{eta_l}$$

Si on avait $\beta_1-\alpha_1>0$, le même raisonnement précédent prouvait que $p_2=p_1$ ce qui n'est pas le cas.

Ainsi on a prouvé que si

$$p_1^{lpha_1}\dots p_k^{lpha_k}=q_1^{eta_1}\dots q_l^{eta_l}$$

avec

$$p_1,\dots,p_k,q_1,q_l\in\mathcal{P}$$

alors

$$p_1 = q_1 ext{ et } lpha_1 = eta_1$$

En divisant par $p_1^{lpha_1}$ on obtient

$$p_2^{lpha_2}\dots p_k^{lpha_k}=q_2^{eta_2}\dots q_l^{lpha_l}$$

et $p_2=q_2$, $lpha_2=eta_2$ etc.

Par récurrence immédiate, les deux décompositions sont les mêmes

Définition

Soit $p \in \mathcal{P}$,

Pour $n \in \mathbb{N}^*$, on appelle valuation p-adique de n le nombre :

$$v_p(n) = max\{k \in \mathbb{N} \mid (p^k \mid n)\}$$

Lorsque $p\mid n$, c'est aussi la puissance de p dans la décomposition en facteurs premiers de n

Lorsque $p \nmid n$, $v_p(n) = 0$

Définition

Pour $n \in \mathbb{N}^*$, l'ecriture :

$$n = \prod_{p \in \mathcal{P}} p^{v_p(n)}$$

S'appelle la factorisation-première de n

Théorème

Avec la convention qu'on ne prend pas en compte les factorisations $p^\circ=1$ par $p\nmid n$

$$egin{aligned} orall p \in \mathcal{P}, v_p(ab) &= v_p(a) + v_p(b) \ & a \mid b \Leftrightarrow orall p \in \mathcal{P}, v_p(a) \leq v_p(b) \ & a \wedge b = \prod_{p \in \mathcal{P}} p^{min(v_p(a), v_p(b))} ext{ et } a ee b = \prod_{p \in \mathcal{P}} p^{max(v_p(a), v_p(b))} \end{aligned}$$

i.e.

$$orall p \in \mathcal{P}, egin{cases} v_p(a \wedge b) = min(v_p(a), v_p(b)) \ v_p(a ee b) = max(v_p(a), v_p(b)) \end{cases}$$

Cas pratique : On utilise ce produit de manière abstraite : en pratique on écrit que les premiers qui servent.

IV Congruences

Définition

Pour $n \in \mathbb{N}$,

On dit que $a,b\in\mathbb{Z}$ sont congrus modulo n ssi $n\mid a-b$

On note $a \equiv b[n]$

et lorsque on a besoin $\equiv_n a_k$ relation sur $\mathbb Z$ appelé congruence modulo n

Propriété

 \equiv_n est une relation d'équivalence

Démonstration:

- R : Pour $a \in \mathbb{Z} \ n \mid 0 = a a$ Donc $a \equiv a[n]$
- S : Pour $a,b\in\mathbb{Z}$ tel que $a\equiv b[n]$ On a $n\mid b-a$ dans $n\mid a-b$ Donc $b\equiv a[n]$
- T : Pour $a,b,c\in\mathbb{Z}$, tel que $a\equiv b[n]$ $b\equiv c[n]$ c-a=(c-b)+(b-a) est divisible par n puisque $n\mid b-a$ $n\mid c-b$ Donc $a\equiv c[n]$

Pour la suite on suppose $n \geq 2$

Notation

On note, lorsqu'il n'y a pas ambiguïté, \overline{a} la classe d'équivalence par \equiv_n qu'on appelle classe de congruences modulo n de a :

$$\overline{a} = \{b \in \mathbb{Z} \mid a \equiv b[n]\} \subset \mathbb{Z}$$

i.e.

$$\overline{a} \in \mathcal{P}(\mathbb{Z})$$

• Exemple :

Les classes de congruences modulo 3 sont :

$$\overline{0}=3\mathbb{Z},\overline{1}=3\mathbb{Z}+1,\overline{2}=3\mathbb{Z}+2$$

Reformulation

Soient $a,b\in\mathbb{Z}$,

$$a \equiv b[n] \Leftrightarrow n \mid b-a \Leftrightarrow a \in \overline{b} \Leftrightarrow b \in \overline{a} \Leftrightarrow \overline{a} = \overline{b}$$

Propriété

Les classes de congruences modulo n sont au nombre de n. Ce sont $\overline{0},\overline{1},\ldots,\overline{n-1}$

• Démonstration :

Soit $n \in \mathbb{Z}$,

On effectue la division euclidienne de a par n $(n \neq 0)$

$$a = nq + r$$
 avec $0 \le r \le n - 1$

Comme $n\mid nq=a-r,\, a\equiv r[n]$ i.e.

$$\overline{a} = \overline{r}$$

Ainsi toute division est de la forme \overline{k} avec $k \in \llbracket 0, n-1
rbracket$

De plus c'est classes dont deux à deux d...:

Soient $k,k' \in \llbracket 0,n-1
rbracket$ tels que $\overline{k}=\overline{k'}$

On a alors $n \mid k' - k$ et |k' - k| < n donc k = k'

Notation

L'ensemble quotient de \mathbb{Z} par \equiv_n qui est l'ensemble des classes de congruences modulo n est noté :

$$\mathbb{Z}/n\mathbb{Z}=\{\overline{k};k\in\llbracket 0,n-1
rbracket\}$$

 $('\mathbb{Z} \operatorname{sur} n\mathbb{Z}')$

• Exemple:

$$\mathbb{Z}/3\mathbb{Z}=\{\overline{9},\overline{-2},\overline{11}\}$$

Rappel

Sur les relations d'équivalences les classes forment une partition de l'ensemble sur lequel est définie la relation binaire, ici :

$$\mathbb{Z} = igsqcup_{k=0}^{n-1} \overline{k} = igsqcup_{c \in \mathbb{Z}/n\mathbb{Z}} c$$

Avec les classes non vides

Propriété

Compatibilité de \equiv_n avec les opérations de \mathbb{Z}

$$orall a,b,a',b'\in\mathbb{Z}, (a\equiv a'[n] ext{ et }b\equiv b'[n])\Rightarrow a+b\equiv a'+b'[n] ext{ et }ab\equiv a'b'[n]$$

Démonstration Produit :

Soient $a,a',b,b'\in\mathbb{Z}$ tq

$$a \equiv a'[n]$$
 et $b \equiv b'[n]$

Alors

$$a'b' - ab = (a' - a)b' + a(b' - b)$$

Comme $n \mid a' - b$ et $n \mid b' - b$ par hypothèse, n divise alors cette combinaison linéaire i.e.

$$ab \equiv a'b'[n]$$

Propriété

Soit $m \neq 0$ Alors

$$orall a,b\in \mathbb{Z}, a\equiv b[n]\Leftrightarrow ma\equiv mb[n]$$

Avant première

A l'aide des compatibilités précédentes on peut définir

L'addition

Pour $c,d\in\mathbb{Z}/n\mathbb{Z}$

On définit $c \dotplus d$

Comme a+b ou $\overline{a}=c$ et $\overline{b}=d$

Ce qui fonctionne bien parce qu'avec d'autres représentants a',b' tel que $\overline{a'}=c$ et $\overline{b'}=d$

On a

$$a\equiv a'[n]$$
 et $b\equiv b'[n]$
Donc $a+b\equiv a'+b'[n]$ i.e.

$$\overline{a+b} = \overline{a'+b'}$$

La multiplication

On définit $c \times d$ qui ne dépends pas des représentants a de c et b de d choisis.

• Exemple :

$$\overline{1}+\overline{2}=\overline{1+2}=\overline{3}$$

(La meme pour la multiplication)

Propriété

$$(\mathbb{Z}/n\mathbb{Z},\dot{+},\dot{\times})$$
 est un anneau

En pratique, on note $\dot{+}$ et $\dot{\times}$ --> + et \times (abus pratique)

• Exercice:

$$\mathbb{Z}/n\mathbb{Z} \operatorname{corp} \Leftrightarrow n \in \mathcal{P}$$

• Exemple : Tableau des opérations sur $\mathbb{Z}/n\mathbb{Z}$

+	$\bar{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\bar{3}$	$\overline{0}$	$\overline{1}$
$\overline{3}$	$\overline{3}$	$\overline{0}$	$\overline{1}$	$\overline{2}$

×	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

 $\mathbb{Z}/4\mathbb{Z}$,n'est pas un corp puisque $\overline{2}\neq\overline{0}$ et $\overline{2}$ n'est pas inversible (Par contre $\overline{3}$ l'est)

Propriété

Soit $a \in \mathbb{Z}$ Alors

$$(\exists u \in \mathbb{Z}, au \equiv 1[n]) \Leftrightarrow a \wedge n = 1$$

Démonstration :

Par le théorème de Bézout

$$egin{aligned} a \wedge n &= 1 \Leftrightarrow \exists u,v \in \mathbb{Z}, au+vn = 1 \Leftrightarrow \exists u \in \mathbb{Z} (\exists v \in \mathbb{Z}, au = 1-nv) \ \Leftrightarrow \exists u \in \mathbb{Z} (\exists k \in \mathbb{Z}, au = 1+kn) \Leftrightarrow \exists u \in \mathbb{Z}, au \equiv 1[n] \end{aligned}$$

Traduction dans $\mathbb{Z}/n\mathbb{Z}$

$$\overline{a}$$
 est inversible $\Leftrightarrow a \land n = 1$

(au sens de \dot{x})

(Puisque
$$au\equiv_1[n]\Leftrightarrow \overline{au}=\overline{1}\Leftrightarrow \overline{a}.\overline{u}=\overline{1}$$
)

Par abus, on dira que a est inversible modulo n u est un inverse de a modulo n

Application:

Résolution de $(E):8x\equiv 7[15]$ d'inconnue $x\in\mathbb{Z}$

Par la propriété,

Comme $8 \wedge 15 = 1$ alors il existe $u \in \mathbb{Z}$ tq $8u \equiv 1 \lceil 15 \rceil$

On a alors pour $x \in \mathbb{Z}$

$$8x \equiv 7[15] \Rightarrow x \equiv 7u[15]$$

et aussi

$$x\equiv 7u[15]\Rightarrow 8x\equiv 7[15]$$

Ainsi

$$(E) \Leftrightarrow x \equiv 7u[15] \Leftrightarrow x \in 7u + 15\mathbb{Z}$$

Maintenant trouver *u*

On se sert pour cela de la preuve constructive de la proposition:

Pour résoudre (E) on trouve une relation de Bézout pour 8 et 15. Ici il y en a une "apparente" : $8 \times 2 + 15 \times (-1) = 1$

Ainsi 2 est inverse de 8 modulo 15 et pour $x \in \mathbb{Z}$,

 $(E) \Leftrightarrow x \equiv 14[15] \Leftrightarrow x \equiv -1[15]$ donc l'ensemble des solutions est:

$$-1+15\mathbb{Z}$$

Petit théorème de Fermat :

Soit $p \in \mathcal{P}$ et $a \in \mathbb{Z}$ tel que $p \nmid a$ Alors :

$$a^{p-1}\equiv 1[p]$$

On démontre d'abord le lemme 1.

Soit $p \in \mathcal{P}$ et $a \in \mathbb{Z}$ tel que $p \nmid a$.

On note r le reste de la division euclidienne de a par p

On a $r \in \mathbb{N}$ et $a \equiv r[p]$ donc $a^p \equiv r^p[p]$

Par le lemme 1 :

$$r^p \equiv r[p]$$

Donc:

$$a^p \equiv a[p]$$

Comme $p \nmid a$ et $p \in \mathcal{P}$, $a \land p = 1$

Donc il existe $u \in \mathbb{Z}$ tel que $au \equiv \mathbb{1}[p]$

On a alors $a^{p-1}\equiv a^{p-1}au\equiv a^pu\equiv au\equiv 1[p]$

Lemme 1

Soit $p \in \mathcal{P}$

Alors:

$$\forall a \in \mathbb{N}, a^p \equiv a[p]$$

Démonstration :

Par récurrence sur a

Pour $a\in\mathbb{N}$ on pose :

$$\mathcal{A}_a:'a^p\equiv a[p]'$$

- Initialisation ez
- HéréditéSoit $a \in \mathbb{N}$ tq \mathcal{A}_n Alors

$$(a+1)^p = \sum_{k=0}^p inom{p}{k} a^k = 1 + \sum_{k=1}^{p-1} inom{p}{k} a^k \ + a^p$$

On admet le lemme 2 et on a alors

$$\sum_{k=1}^{p-1} inom{p}{k} a^k \equiv \sum_{k=1}^{p-1} 0.a^k \equiv 0[p]$$

Donc

$$(a+1)^p \equiv 1 + a^p[p] \equiv 1 + a[p]$$

Ainsi \mathcal{A}_{a+1}

Conclusion
 Cela achève l'hérédité, la récurrence et la preuve du Lemme 1

Lemme 2

$$orall p \in \mathcal{P}, orall k \in \llbracket 1, p-1
rbracket, p \mid egin{pmatrix} p \ k \end{pmatrix}$$

Démonstration :

Soit $p \in \mathcal{P}$ et $k \in \llbracket 1, p-1
rbracket$

On a

$$egin{pmatrix} p \ k \end{pmatrix} = rac{p(p-1)\dots(p-k+1)}{k(k-1)\dots 1}$$

$$p \mid p(p-1)\dots(p-k) = k! inom{p}{k}$$

Or k! est un produit d'entiers $(1,2,\ldots,k)$ premiers avec p car p ne les divisent pas (car r < p) et p et $p \in \mathcal{P}$, donc $p \land (k!) = 1$ Par le lemme de Gauss, $p \mid \binom{p}{k}$ (Ou le lemme d'Euclide)

Méthode de résolution des équations de la forme

$$ax + by = c$$

Inconnues : $(x,y)\in\mathbb{Z}^2$ (a,b,c sont des constantes dans \mathbb{Z})

Existence des solutions

Notons $d = a \wedge b$)

• Si $d \mid c$ alors il existe des solutions par la relation de Bézout :

On trouve d'abord : $u,v\in\mathbb{Z}$

tel que au + bv = d

Puis en multipliant par le facteur adéquat e,

$$a(ue) + b(ve) = de = c$$

• Si $d \nmid c$

il n'y a pas de solutions

On le démontre par l'absurde.

Si x, y étaient solutions de (E)

On aurait $d \mid a$ et $d \mid b$

Donc $d \mid ax + by = c$

Contradiction

Déterminer l'ensemble des solutions

On se place dans le cas ou les solutions existent

i.e.
$$d \mid c ext{ eou } d = a \wedge b$$

Etape 1: Simplification

On pose : $a' = \frac{a}{d}$ et $b' = \frac{b}{d}$, $c' = \frac{c}{d}$

et alors pour $(x,y) \in \mathbb{Z}$

$$(E) \Leftrightarrow (E'): a'x - b'y = c'$$

et on a $a' \wedge b' = 1$

Quitte a faire cette eatpe avant de mettre des notations en on suppose dès le départ que $a \wedge b = 1$

Etape 2 : Soleutions particulières

On est dans le cadre d'une équation

$$(E): ax + by = c \text{ avec } a, b, c \in \mathbb{Z}$$

On peut alors déterminer $u,v\in\mathbb{Z}$ tel que au+bv=1 (relation de Bézout)

En posant

$$x_0 = cu$$
 et $y_0 = cv$

On obtiens une solution particulière (x_0, y_0) de (E)

Etape 3: Résolution (Rédaction subtile)

Pour $(x,y) \in \mathbb{Z}$

$$(E) \Leftrightarrow ax+by=ax_0+by_0 \Leftrightarrow a(x-x_0)=b(y_0-y): (\star)$$

On résout (*) par Analyse-Synthèse

Analyse:

Supposons que (x,y) vérifie (\star)

Alors $a \mid a(x-x_0) = b(y_0 - y)$

et comme $a \wedge b = 1$ par le théorème de Gauss,

 $a\mid y_0-y$ i.e. il existe $k\in\mathbb{Z}$

tel que : $y=y_0-ak$

En reportant dans (\star) , on a $a(x-x_0)=bak$ (Stabilité)

et comme $a \neq 0$, $x = x_0 + bk$

Synthèse:

Pour $k \in \mathbb{Z}$,

$$a((x_0+bk)-x_0)=abk=b(y_0-(y_0-ak))$$

Conclusion:

L'ensemble des solutions de (E) est celui de (\star) qui est :

$${\mathcal S}_E = (x_0,y_0) + {\mathbb Z}(b,-a)$$

Autrement dit:

$$\mathcal{S}_E = \{(x_0,y_0) + k(b,-a); k \in \mathbb{Z}\} = \{(x_0 + kb, y_0 - ka); k \in \mathbb{Z}\}$$

Important:

En pratique il faut tout refaire dans le cas particulier ou vous êtres placés