

Simulation of Natural Convection under the Influence of Magnetic Field by Explicit Local Radial Basis Function Collocation Method

K. Mramor ¹ R. Vertnik ² B. Šarler ^{1,3}

¹Center of Excellence for Biosensors, Automation and Process Control, Slovenia

²Technical development, Štore Steel, Slovenia

³University of Nova Gorica, Slovenia

ICCES MM 2012, Budva, Montenegro, September 2-6, 2012

Outline

- ► Introduction
- ► Numerical method
- ► Problem description
- ► Results
- ► Conclusions

Introduction Focus and motivation

Focus and motivation

Natural convection.

Natural convection with applied magnetic field.

Numerical method

- ► Introduction
- ► Numerical method
- ► Problem description
- ► Results
- ► Conclusions

Used for solving PDF's.

- ► Local influence domain
- Radial Basis Function are used as basis
- ► Collocation (interpolation) of scattered data

Uniform node arrangement

Non-uniform node arrangement

Influence domain for non-uniform node arrangement:

- ► spatial position
- ▶ range

Random neighbours

Optimal neighbours

General approximation function:

$$\Phi(\vec{p}) \approx \sum_{i=1}^{N} \alpha_i \psi_i(\vec{p})$$

$$\underline{\Psi}\vec{\alpha} = \vec{\phi}$$

Collocation condition:

$$\Phi(\vec{p}_i) = \phi_i$$

$$\frac{\partial^{i}}{\partial p_{j}^{i}}\Phi(\vec{p}) = \sum_{n=1}^{N} \alpha_{n} \frac{\partial^{i}}{\partial p_{j}^{i}} \psi_{n}(\vec{p})$$

Multiquadric RBFs with normalized subdomain and shape parameter c:

$$\psi_n(\vec{p}) = \sqrt{r_n^2(\vec{p}) + c^2}$$

$$r_n = \sqrt{\left(\frac{p_x - p_{xn}}{p_{x_{max}}}\right)^2 + \left(\frac{p_y - p_{yn}}{p_{y_{max}}}\right)^2 + \left(\frac{p_z - p_{zn}}{p_{z_{max}}}\right)^2}$$

Problem description

- ► Introduction
- ► Numerical method
- ► Problem description
- ► Results
- ► Conclusions

Problem description

Assumptions

- ► Laminar, steady fluid flow
- ► Incompressible fluid flow: $\nabla \vec{v} = 0$.
- ▶ Magnetic Raynold's number: $Re_m = VL\mu_0\sigma \ll 1$
 - induced magnetic field is negligible compared to applied magnetic field.
- ▶ Boussinesq approximation: $\rho = \rho_b (1 \beta_T (T T_C))$.

Governing equations

Momentum eq.:

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v}\right) = -\nabla p + \mu \nabla^2 \vec{v} + \vec{F}_m - \vec{g}\rho\beta_T(T - T_C)$$

Continuity eq.:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \qquad \Rightarrow \qquad \nabla \cdot \vec{v} = 0$$

Energy eq.:

$$\frac{\partial T}{\partial t} + (\vec{v} \cdot \nabla)T = \alpha_T \nabla^2 T$$

Lorentz force term

Equations for Electromagnetic field

Lorentz force:

$$\vec{F}_m = \vec{j} \times \vec{B}$$

Ohm's law:

$$\vec{j} = \sigma(-\nabla\phi + \vec{v} \times \vec{B}) = \vec{j}_i + \vec{j}_d$$

$$\nabla \cdot \vec{j} = 0$$

$$\nabla^2 \phi = \nabla (\vec{v} \times \vec{B})$$

Boundary conditions

Velocities on walls:

$$u = 0, v = 0.$$

Temperatures:

- ▶ at top and bottom wall (adiabatic): $\frac{\partial T}{\partial y} = 0$
- ▶ on the left and right walls have predetermined values: T_H , T_C Electric potential (insulating boundary):

$$\frac{\partial \phi}{\partial n} = (\vec{v} \times \vec{B})_{boundary} \cdot \vec{n} \qquad \Rightarrow \qquad \frac{\partial \phi}{\partial n} = 0$$

Problem description

Domain scheme with boundary conditions

Governing equations

Dimensionless governing equations

Momentum eq.:

$$\left(rac{\partial ec{V}}{\partial au} + (ec{V}\cdot
abla)ec{V}
ight) = -rac{1}{
ho}
abla P + Pr
abla^2 Pr ec{V}\hat{j} - Gr\Theta$$

Continuity eq.:

$$\nabla \cdot \vec{V} = 0$$

Energy eq.:

$$\frac{\partial \Theta}{\partial au} + (\vec{V} \cdot \nabla)\Theta = \nabla^2 \Theta$$

Governing equations

Dimensionless numbers and nondimensionalization

Dimensionless numbers:

$$Ra = \frac{g\beta_{T}(T_{H} - T_{C})L^{3}}{\nu\alpha_{T}}$$

$$Pr = \frac{\nu}{\alpha_{T}}$$

$$Ha = BL\sqrt{\frac{\sigma}{\mu}}$$

$$Gr = \frac{g\beta_{T}(T_{H} - T_{C})L^{3}}{\alpha_{T}^{2}}$$

Non-dimensional variables:

$$X = \frac{x}{L}, \qquad Y = \frac{y}{L}$$

$$U = \frac{uL}{\alpha_T}, \qquad V = \frac{vL}{\alpha_T}$$

$$P = \frac{pL^2}{\alpha_T^2}, \qquad \Theta = \frac{T - T_C}{T_H - T_C}$$

$$\tau = \frac{t\alpha_T}{L^2}$$

Results

- ► Introduction
- ► Numerical method
- ► Problem description
- ► Results
- ► Conclusions

Test cases

Three different test cases were devised in order to test the numerical method:

- ► De Vahl Davis benchmark test (TC1)
- ► Natural convection under the influence of magnetic field (TC2)
- Natural convection under the influence of magnetic field for low Pr numbers (TC3)

Natural convection De Vahl Davis benchmark test (TC1)

- closed, differentially heated square cavity
- ► Pr = 0.71
- $Arr Ra = 10^4 10^6$
- ► *Ha* = 0

Natural convection

Natural convection under the influence of magnetic field (TC2)

- ► closed, differentially heated square cavity
- ► Pr = 0.71
- $Gr = 10^4 10^6$
- ► Ha = 0 100

Natural convection

Natural convection under the influence of magnetic field for low Pr numbers (TC3)

- ► closed, differentially heated square cavity
- ► Pr = 0.14
- $Gr = 10^4 10^6$
- ► Ha = 0 100

Natural convection

Natural convection under the influence of magnetic field for low Pr numbers (TC3)

Material properties of molten steel:

▶
$$\rho = 7200 \text{ kg/m}^3$$

►
$$c_p = 700 \text{ J/(kg K)}$$

$$ightharpoonup$$
 $\alpha_T = 30 \text{ W/(mK)}$

$$\beta_T = 1.0 \cdot 10^{-4} / \text{K}$$

•
$$\mu = 0.006 \text{ kg/(ms)}$$

$$Pr = 0.14$$

Results

► Nusselt number:

$$Nu = \int_0^L \frac{\partial T}{\partial x} \bigg|_{x=0} dy$$

- ▶ u along y = 0.5
- \triangleright v along x = 0.5

Results De Vahl Davis benchmark test (TC1)

Ra	Nu(a)	Nu(b)	Nu(c)
10^{3}	1.108	1.116	1.101
10 ⁴	2.223	2.234	2.075
10^{5}	4.497	4.510	4.624
10^{6}	8.685	8.798	8.97*

(a) present; (b) De Vahl Davis, 1983; (c) Kosec et al., 2007

Results De Vahl Davis benchmark test (TC1)

Ra	Nu(a)	<i>Nu</i> (b)	Nu(c)
10^{3}	1.108	1.116	1.101
10 ⁴	2.223	2.234	2.075
10^{5}	4.497	4.510	4.624
10 ⁶	8.685	8.798	8.97*

(a) present; (b) De Vahl Davis, 1983; (c) Kosec et al., 2007

Results

Natural convection under the influence of magnetic field (TC2)

На	Nu(a)	<i>Nu</i> (b)	Nu(c)			
$Gr = 10^4$						
0	2.03	2.02	2.06			
10	1.71	1.70	1.84			
50	1.01	0.97	1.06			
$Gr = 10^6$						
0	8.15	9.21	7.98			
10	7.99	9.04	7.88			
100	3.33	3.54	4.27			

(a) present; (b) Colaço et all, 2009; (c) FVM

Results

Natural convection under the influence of magnetic field (TC2)

K. Mramor, R. Vertnik, B. Šarler Simulation of Natural Convection

ICCES 2012 MM, September 2.-6., 2012

Natural convection under the influence of magnetic field for low Pr numbers (TC3) Temperatures along the line through the center of the cavity

Natural convection under the influence of magnetic field for low Pr numbers (TC3) Velocities along line through the center of the cavity

Natural convection under the influence of magnetic field for low Pr numbers (TC3) | Southerms |

Natural convection under the influence of magnetic field for low Pr numbers (TC3)

Stream Functions

Conclusions

- ► Introduction
- ► Numerical method
- ► Problem description
- ► Results
- ► Conclusions

Summary and Conclusions Summary

- Method is tested first for a natural convection benchmark test and than for natural convection under the influence of external magnetic field.
- ► A comparison between in-house meshless method, FLUENT comercial code and results from published papers (De Vahl Davis, 1983; Colaço et al., 2009) is made.

Conclusions

Future plans:

- complex geometries
- simplified industrial application
- continuous casting real curved geometry

Affiliation

The Centre of Excellence for Biosensors, Instrumentation and Process Control is an operation financed by the European Union, European Regional Development Fund and Republic of Slovenia, Ministry of Higher Education, Science and Technology.

Nusselt numbers

