Experimental Methods: Lecture 4

Heterogeneous Treatment Effects

Raymond Duch

May 17, 2022

University of Oxford

Road Map to Lecture 4: Heterogeneity

- Non-interference re-visited
- Attrition
- RAND case study
- Combating Attrition
- MIPO

Constant Treatment Effects

- Recall the fundamental assumption about treatment effects
- What does "constant treatment effects" really mean?
- More importantly, is the average treatment effect the same for every single observation in the sample?
- Furthermore, we are often interested in the "generalizability" of experimental findings and their policy relevance
- Treatment effect heterogeneity is one way to address these issues

Ferraz and Finan 2008

Theory

We move away from constant treatment effects and therefore define

$$\tau_i \equiv Y_i(1) - Y_i(0) \tag{1}$$

The fundamental interest under treatment effect heterogeneity is in

$$Var(\tau_i) = Var(Y_i(1) - Y_i(0))$$

$$= Var(Y_i(1)) + Var(Y_i(0)) + 2Cov(Y_i(1), Y_i(0))$$
(2)

Informally, we define treatment effect heterogeneity as variance of the treatment effect τ_i across subjects.

What is the problem with Eq. 2?

Theory

- This is an old and now for us very familiar problem:
- Any experiment does not allow us to estimate every component of $Var(\tau_i)$
- We have information about the marginal distributions of Y_i(1) and Y_i(0), but not about the joint distribution of these potential outcomes
- So what should we do?

Bounding $Var(\tau_i)$

- Recall that by randomization, $E[Y_i(0)|D_i = 1] = E[Y_i(0)|D_i = 0]$
- We can pair each observed Y_i(1) with one of the observed Y_i(0)
- But which one? Many combinations possible
- We place bounds suggesting how large or small $Var(\tau_i)$ may be
- Pair values of $Y_i(0)$ and $Y_i(1)$ such that implied $Cov(Y_i(0), Y_i(1))$ is as large (upper bound) or as small (lower bound) as possible
- Sort values in ascending-ascending / ascending-descending order

Testing for heterogeneity

Suppose $H_0: Var(\tau_i) = 0$ What if we compared $Var(Y_i(1))$ and $Var(Y_i(0))$?

Note that

$$Var(Y_i(1)) = Var(Y_i(0) + \tau_i)$$

$$= Var(Y_i(0)) + Var(\tau_i) + 2Cov(Y_i(0), \tau_i)$$
(3)

Then, the Null of constant τ_i implies that

$$Var(\tau_i) = -2Cov(Y_i(0), \tau_i) = 0$$
 (4)

These two terms therefore cancel in Eq. 3 and we have shown that testing $H_0: Var(\tau_i) = 0$ is the same as testing $Var(Y_i(1)) = Var(Y_i(0))$

Observed Outcome Local Budget

We can test this with randomization inference

	Budget share if village head is male	Budget share if village head is female
Village 1	?	15
Village 2	15	?
Village 3	20	?
Village 4	20	?
Village 5	10	?
Village 6	15	?
Village 7	?	30
Mean	16	22.5
Variance	17.5	112.5

Variance in control:

$$\frac{1}{7-2-1}2(15-16)^2 + 2(20-16)^2 + (10-16)^2 = 17.5$$

Variance in treatment:
$$\frac{1}{2-1}(15-22.5)^2 + (30-22.5)^2 = 112.5$$

Interaction

- These approaches test whether τ_i varies
- But we want to know more: conditions under which τ_i varies
- We are interested in a different estimand: Conditional Average Treatment Effect (CATE) = ATE for a defined subset of subjects $\tau_i(x) = E[Y_i(1) Y_i(0)|X_i = x]$ (individual), and, if distribution of X_i is known, $E[\tau_i(X_i)]$ is identified (average)
- Change in treatment effect that occurs from one subgroups to the next is the difference between 2 CATEs
- These subgroups can either be defined by covariate values (treatment-by-covariate interactions) or by design (treatment-by-treatment interactions)

Treatment-by-covariate interactions

- What is the H_0 here?
- We can test the difference in CATEs with randomization inference or in a regression framework

$$Y_i = a + bI_i + cP_i + dI_iP_i + u_i$$
 (5)

When $P_i = 0$, the CATE is b:

$$Y_i = a + bI_i + u_i \tag{6}$$

When $P_i = 1$, the CATE is b + d:

$$Y_i = a + bI_i + c + dI_i + u_i = (a + c) + (b + d)I_i + u_i$$
 (7)

where d yields the change in CATEs that occurs when P_i changes

Treatment-by-covariate interactions

- An alternative is to conduct an F test using randomization inference
- Compares sum of squared residuals from from the two nested models (alternative model is Eq. 5 and null model is $Y_i = a + bI_i + u_i$)
- If there are interaction affects, Eq. 5 should reduce SSR
- Simulate random assignments and calculate fraction of F-statistics at least as large as the observed F-statistic
- H_0 is that 2 CATEs are the same

Caveats

- Multiple comparisons problem:
 - With 20 covariates, the probability of finding at least 1 that significantly interacts with the treatment at $\alpha = 0.05$ is $1 (1 0.05)^{20} = 0.642$
 - Bonferroni correction (divide target p-value by number of hypothesis tests h)
 - Pre-register your design! (lab)
- Subgroup analysis is non-experimental: groups that are not formed by random assignment, but pre-assignment
- Teacher incentives and teacher education

Treatment-by-treatment interactions

- Manipulate treatment and contextual factor / personal characteristic (e.g. COVID and community infection levels)
- Define a factorial experiment as an experiment involving factors 1 and 2, with factor 1 conditions being A and B, and factor 2 conditions being C and D and E
- Then, allocate subjects at random to every possible combination of experimental conditions
- {*AC*, *AD*, *AE*, *BC*, *BD*, *BE*}

Gottlieb et al. 2018: EGAP Metaketa II: Taxation

Jessica Gottlieb, Adrienne LeBas, Nonso Obikili: "Formalization, Tax Appeals, and Social Intermediaries in Lagos, Nigeria"

- T1. Control condition, not encouraged
- T2. Encouraged, but not receiving a follow-up visit
- T3. Encouraged, and receiving one of the following four follow-up visit combinations:
 - T3a. Public goods message from state representative
 - T3b. Enforcement message from state representative
 - T3c. Public goods message from marketplace representative
 - T3d. Enforcement message from marketplace representative

Figure 2: Research Design and Assignment Probabilities

			[Message Type		
				Public Goods	Enforcement	
Control	Formalization Intervention only		State Rep.	T3a:	T3b:	
Control		Type		5/36	5/36	
T1:	T2:	Jelivery	et	T3c:	T3d:	
1/6	5/18	De	Market Associatio	5/36	5/36	

Multiple treatment arms

From Rosen 2010

	Col	lin	Jose		
	Good grammar	Bad grammar	Good grammar	bad grammar	
% Received reply	52	29	37	34	
(N)	(100)	(100)	(100)	(100)	

This design requires us to be especially careful with defining the causal estimand – what quantity are we interested in in this application?

Multiple treatment arms

Quiz: Why would these two models estimate the same quantities from the Rosen 2010 experiment?

 $\{NG, HG, NB, HB\}$ are indicator variables for each of the 4 treatment groups

 $J_i = 1$ if Jose Ramirez; $G_i = 1$ if good grammar

$$Y_i = b_1 CG + b_2 JG + b_3 CB + b_4 JB + u_i$$

 $Y_i = a + bJ_i + cG_i + d(J_iG_i) + u_i$

What quantity in the table do each of the coefficients represent?