Interspecies comparisons of Mg/Ca ratios in limpet shells

Niklas Hausmann^{a,*}, Donna Surge^b, Francisco Zangrando^c, Angelica Tivoli^c, Ivan Briz-Godino^d

^aLeibniz Zentrum für Archäologie, Ludwig-Lindenschmit-Forum 1, Mainz, Germany, 55116
^bUniversity of North Carolina, 104 South Road, 225 Geology Building, Chapel Hill, NC, US, 27599-3315
^cCONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Avenida Maipú 305, Ushuaia, Argentina, V9410BJA

^d, Spain,

Abstract

This document is a template demonstrating the Aps format.

Keywords: Sclerochronology, Limpets, Elemental Ratio, Mg/Ca

1. Introduction

This study provides a short reassessment of the use of Magnesium to Calcium (Mg/Ca) ratios in Atlantic limpet shells to determine past sea surface temperatures. While recent studies of particularly *Patella* sp. in the Mediterranean and Southwest Europe have provided promising results (Hausmann et al., 2019; García-Escárzaga et al., 2015, 2018).

In previous studies, various limpet specimens (Patella vulgata, Nacella magellanica and Nacella odifosdio) have been studied using Mg/Ca with mixed results. While Patella vulgata along the Spanish shoreline has since then repeatedly produced reliable correlations between sst and Mg/Ca ratios, this is not the case for other species.

In this study, we present elemental maps of various such species together with stable oxygen isotope values for some of the specimens. Some of these...

Email address: niklas@palaeo.eu (Niklas Hausmann)

 $^{^*}$ Corresponding author

2. Methods

3. Results

Figure 1: Correlation graphs for all specimens $\,$

4. Discussion

Figure 2: Correlation graphs for Ferguson et al. specimens

Table 1: Overview of comparative correlations $\{\#$ tab:correlations $\}$

Species	Locality	Specimen	Correlation \mathbb{R}^2	Study
		-		
Patella	Northern	LAN541	0.87	$10.3390/\mathrm{app}11072959$
depressa	Spain	T A 3.TM 4.M	0.00	
		LAN545	0.86	
		LAN554	0.78	
		LAN559	0.82	
Patella	Croatia	ISTPC1	0.9	10.1038/s41598-019-39959-9
caerulea				
		ISTPC2	0.84	
	Crete	AF1911A	0.91^{1}	
		AF3003A	0.92^{2}	
	Israel	AKKPC2	0.96	
		AKKPC3	0.89	
		FRMPC1	0.84	
		FRMPC2	0.96	
	Libya	MO31A	0.83	
		MP64A	0.33	
		MP67A	0.96	
		MP68A	0.81	
	Malta	MA10	0.82	
	Tunisia	TUNPC1	0.81	
		TUNPC2	0.78	
	Turkey	ANTPC1	0.95	
		ANTPC2	0.93	
		KIZPC1	0.94	
		KIZPC2	0.86	
Patella rustica	Gibraltar	JL1	0.02	doi.org/10.1016/j.epsl.2011.05.054
	Gibrara	JL2	0.8 (0.79)	dono18/10.1010/j.cpsi.2011.00.001
Patella	Gibraltar	JM00	0.69 (0.79)	
caerulea	GIDIWIUM	011100	0.00 (0.10)	
caer area		JM30	0.83(0.79)	
Patella	Orkney	ORK-LT5	not reported,	doi.org/10.1016/j.palaeo.2016.10.021
vulgata	Orkney	0107-1110	here 0.88	and this study
vuigata			Here 0.00	and this study

 $^{^1\}mathrm{SST}$ only, no other geochemical data available $^2\mathrm{SST}$ only, no geochemical data available

4.1. Reanalysis of ORK-LT5

References

García-Escárzaga, A., Clarke, L.J., Gutiérrez-Zugasti, I., González-Morales, M.R., Martinez, M., López-Higuera, J.M., Cobo, A., 2018. Mg/Ca profiles within archaeological mollusc (patella vulgata) shells: Laser-Induced breakdown spectroscopy compared to inductively coupled Plasma-Optical emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 148, 8–15. doi:10.1016/j.sab.2018.05.026.

García-Escárzaga, A., Moncayo, S., Gutiérrez-Zugasti, I., González-Morales, M.R., Martín-Chivelet, J., Cáceres, J.O., 2015. Mg/Ca ratios measured by laser induced breakdown spectroscopy (LIBS): a new approach to decipher environmental conditions. J. Anal. At. Spectrom. 30, 1913–1919. doi:10.1039/C5JA00168D.

Hausmann, N., Prendergast, A.L., Lemonis, A., Zech, J., Roberts, P., Siozos, P., Anglos, D., 2019. Extensive elemental mapping unlocks Mg/Ca ratios as climate proxy in seasonal records of mediterranean limpets. Scientific Reports 9, 3698. doi:10.1038/s41598-019-39959-9.