

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

По лабораторной работе № 3

По курсу: «Планирование эксперимента»

Тема: «ПФЭ и ДФЭ на имитационной модели СМО»

Вариант: 4

Студент: Керимов А. Ш.

Группа: ИУ7-84Б

Преподаватель: Куров А. В.

1 Задание

Реализация ПФЭ и ДФЭ на имитационной модели функционирования СМО.

Составить матрицу планирования для проведения ПФЭ для СМО с двумя генератором заявок (в исходную СМО добавить второй генератор).

Интервалы варьирования факторов выбрать на основе результатов первой л. р., в рамках которой исследовались зависимости выходной величины (среднего времени ожидания (пребывания)) от входных параметров (интенсивность поступления, интенсивность обслуживания). В итоге получить зависимость выходной величины от загрузки.

По результатам ПФЭ вычислить коэффициенты линейной и частично нелинейной регрессионной зависимости.

Составить матрицу планирования ДФЭ. Провести ДФЭ. Рассчитать коэффициенты линейной и частично нелинейной регрессионной зависимости.

Предусмотреть возможность сравнения рассчитанной величины с реальной, полученной по результатам имитационного моделирования.

2 Теоретическая часть

Коэффициент загрузки одноканальной СМО и среднее время ожидания определяются формулами:

$$\rho = \frac{\lambda}{\mu}, \qquad \overline{t_{\text{ож}}} = \frac{\rho}{(1 - \rho)\lambda} \tag{1}$$

где λ — интенсивность входящего потока заявок, μ — интенсивность обслуживания.

Интервалы времени между приходом заявок распределены по равномерному закону $(X \sim R(a,b))$, коэффициенты a и b которого рассчитываются как

$$a = \frac{1}{\lambda} - \sqrt{3}\sigma_{\lambda},$$

$$b = \frac{1}{\lambda} + \sqrt{3}\sigma_{\lambda}.$$
(2)

Времена обслуживания заявок распределены по закону Вейбулла $(X \sim W(k,\lambda))$ с параметром k=2. Коэффициент λ распределения определяется по формуле

$$\lambda = \frac{1}{\mu\Gamma\left(1 + \frac{1}{k}\right)}. (3)$$

Для проведения ПФЭ для n факторов необходимо $N=2^n$ опытов. В нашем случае n=6 факторов:

- а) x_1 интенсивность λ_1 поступления заявок генератора 1,
- б) x_2 интенсивность λ_2 поступления заявок генератора 2,
- в) x_3 интенсивность μ_1 времён обслуживания ОА заявок 1-го типа,
- г) x_4 интенсивность μ_2 времён обслуживания ОА заявок 2-го типа,
- д) x_5 СКО $\sigma(\lambda_1)$ поступления заявок генератора 1,
- e) x_6 СКО $\sigma(\lambda_2)$ поступления заявок генератора 2.

Для проведения ДФЭ для n факторов необходимо $N=2^{n-k}$ опытов, где k — показатель дробности плана.

В нашем случае план ДФЭ является полурепликой: первые пять факторов варьируем как ранее, а генерирующие соотношения для последнего:

$$x_6 = x_1 x_2 x_3 x_4 x_5. (4)$$

Определяющий контраст:

$$x_6^2 = x_1 x_2 x_3 x_4 x_5 x_6 = 1. (5)$$

Система совместных оценок:

$$b_1 = \beta_1 + \beta_{23456},$$
 $b_2 = \beta_2 + \beta_{13456},$ $b_3 = \beta_3 + \beta_{12456},$
 $b_4 = \beta_4 + \beta_{12356},$ $b_5 = \beta_5 + \beta_{12346},$ $b_6 = \beta_6 + \beta_{12345}.$

Линейная и частично-нелинейная регрессии для n факторов:

$$\hat{y} = b_0 + \sum_{i=1}^n b_i x_i; \quad \hat{u} = b_0 + \sum_{1 \le k \le n} \sum_{1 \le i_1 < \dots < i_k \le n} b_{i_1 \dots i_k} \cdot x_{i_1} \cdot \dots \cdot x_{i_k}$$
 (6)

3 Реализация и моделирование

Рисунок 1 — Интерфейс программы

Рисунок 2 — Результат работы программы