Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Курский государственный университет» Кафедра программного обеспечения и администрирования информационных систем

Направление подготовки: 02.03.03 Математическое обеспечение и администрирование информационных систем Профиль: Проектирование информационных систем и баз данных Форма обучения очная

Отчет

по лабораторной работе №1

«СИНТЕЗ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ»

дисциплина «Прикладная теория цифровых автоматов»

вариант 1.9

Выполнил:

студент группы 213.1

Козявин М.С.

Проверил:

к.т.н., профессор кафедры ПОиАИС

Бабкин Е.А.

Цель работы: Целью лабораторной работы является изучение методов синтеза комбинационных схем и анализа результатов синтеза.

Задания:

- 1. Выполнить синтез комбинационной схемы в заданном базисе.
- 2. Построить комбинационную схему в заданном базисе.
- 3. Выполнить ввод комбинационной схемы.
- 4. Определить последовательность входных наборов и эталонную реакцию на выходе комбинационной схемы.
- 5. Выполнить моделирование схемы
- 6. Выполнить анализ правильности функционирования схемы.

Вариант:

Номер	Порядковый	Базис	Номер
группы	номер в	элементов	таблицы
	группе	КСХ	истинности
1	9	И-НЕ	5

Таблица истинности:

X1	X2	X3	X4	Y5
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

1. Синтез комбинационной схемы

Построим по таблице истинности диаграмму Вейча (рис. 1)

X3X4 X1X2	00	01	11	10
00				
01	1		1	
11	1			
10	1	1		

Рисунок 1 – Диаграмма Вейча с выбранным покрытием логической функции

Синтез логической функции по конституэнтам 1:

$$\begin{cases}
0100 \\
1100
\end{cases} = -100 = X2 * \overline{X3} * \overline{X4}$$

$$\begin{cases}
1000 \\
1001
\end{cases} = 100 - = X1 * \overline{X2} * \overline{X3}$$

$$0111 = \overline{X1} * X2 * X3 * X4$$

$$Y = X2 * \overline{X3} * \overline{X4} + X1 * \overline{X2} * \overline{X3} + \overline{X1} * X2 * X3 * X4$$

Преобразование логической функции в базис И-НЕ, используя правило двойной инверсии:

$$Y = X2 * \overline{X3} * \overline{X4} + X1 * \overline{X2} * \overline{X3} + \overline{X1} * X2 * X3 * X4$$

$$= \overline{X2 * \overline{X3} * \overline{X4} + X1 * \overline{X2} * \overline{X3} + \overline{X1} * X2 * X3 * X4}$$

$$= \overline{X2 * \overline{X3} * \overline{X4} * \overline{X1} * \overline{X2} * \overline{X3} * \overline{X1} * X2 * X3 * X4}$$

По полученной логической функции построим логическую схему

Рисунок 2 - Логическая схема в базисе И-НЕ

2. Последовательность тестовых воздействий для комбинационной схемы

340	<u>льные</u>	_	$\overline{}$	I-	T _c	1-	1-	$\overline{}$								
1	2	3	4	5	6	/	8									
0	0	0	0	0	0	0	0									
Вход	іные з	начен	ия													
3xo,	(ные з	начені	ия 0	0	0	0	0	0	1	1	1	1	1	1	1	1
3xo <i>t</i> 1 2	_			0	0	0 1	0	0	1 0	1 0	1 0	1 0	1 1	1 1	1 1	1 1
1	0	0	0		-		-	+			-		-	-	-	-

Рисунок 3 – Задание на моделирование комбинационной схемы

3. Анализ правильности функционирования схемы в статическом режиме Y: 0000100111001000

Рисунок 4 – Результаты моделирования комбинационной схемы в режиме 2Т

Заключение

Сравнение эталонной последовательности и результата моделирования показывает, что схема в статическом режиме функционирует правильно и, следовательно, ошибки синтеза и построения и ввода схемы отсутствуют.