Secure Off-Path Replication in Content-Centric Networks

Marc Mosko PARC

Christopher A. Wood UC Irvine

NGNI: Future Internet and Next-Generation Networking Architectures ICC 2017, Paris, france May 22, 2017

Agenda

- Background, Problem Statement, Related Approaches
- CCN Overview
- SCR Design
- Analysis
- Conclusion

Background

- CCN and NDN are two prominent Information Centric Networking (ICN) technologies.
 - A consumer asks for data by a name
 - The request is routed by name to the producer
 - The data may be cached anywhere and retrieved by anyone with the name (or possibly even discovered by a name prefix).
 - Access control via encryption

Problem Statement

ICN blind caching is dangerous

- Forwarders do not enforce access control and must allow anyone to access data if given the right name
- Producers have no knowledge about where content is cached
- Producers compete for cache space and may starve others

Off-path caching is not practical without significant protocol or storage requirements at intermediate forwarders

Proposed Approach

- Build a semi-trusted caching system in CCN
 - Producers store content on known caches
 - Consumers request pointers and security material from producer
 - A consumer securely fetches data from one or more caches (in parallel)
 - Protects against off-path adversary guessing names, fetching content

IPBC (HTTP Blind Caching)

- HTTPS-based proposal solving similar problem
 - Servers publish static content in CDN caches
 - Clients request index pages over HTTPS from source
 - Servers specify the decryption key(s), location, and hash digest of desired content
- Work on our approach in CCN was concluded in Jan 2015, over a year before publication of draft-thomson-http-bc-00.

CCN Overview

- All data cryptographically bound to a name
- Producers transfer data to consumers upon explicit request
 - Consumers of data issue interests for data carrying the name
 - An interest may include a cryptographic hash of the expected response, which could be verified anywhere.
 - Producers reply to requests with the named data responses
 - Forwarders relay requests and responses

Forwarder Behavior

From: https://named-data.net/wp-content/uploads/comcom-stateful-forwarding.pdf

Downstream

| forward | Pending Interest | Data |
| cache | Table (PIT) |

CCN Components

- Interest: a request carrying the name of some data
- Content Object: a packet carrying the data (and name) corresponding to an interest
- FLIC: a packet carrying "pointers" (names) to other content objects (a manifest)
- CCNxKE: Name-based TLS 1.3-like key exchange
- IBAC: Interest-based access control

FLIC.

CCNxKE Overview

- Protocol used to set up "sessions" between a consumer and entity servicing a namespace
- Based on TLS and related protocols

IBAC Overview

- Consumers use name encryption to restrict access to content
- Producers can decrypt names to identify the right content response
- No handshake is needed (if keys are established out of band)

Ghali, Cesar, et al. "Interest-based access control for content centric networks." Proc 2nd Inter. Conf. on Information-Centric Networking. ACM, 2015.

Proposed Approach

- Secure Content Replication (SCR)
 - Producers publish encrypted static content in trusted replicas
 - Consumers fetch FLIC roots for static content using IBAC or CCNxKE session
 - Consumers resolve the FLIC tree from the replicas (in parallel)

SCR Process

- 1. Name N, data D_N , set of Links $\{L_i\}$ to replicas R_i
- 2. Encrypt data $D_N \rightarrow (C_N, security material)$
- 3. Build FLIC transport manifest over encrypted data -> T_N
- 4. Create a signed Root Manifest

 $ROM(N) = (N, \{L_i\}, H(T_N), security material)$

SCR Pictorially

SCR Properties

- Root manifest transferred over encrypted channel to protect {L} and H(T_N) and to distribute consumer-specific keys
- Content stored on caches uses hash-based naming (e.g. 256-bit pseudo-random strings) and is group encrypted
 - a consumer/adversary cannot (with vanishing probability) guess the name of content they have not already asked for
- Provenance comes from signed ROM and hash chains, consumer can verify data at every step

Properties

		IBAC	Session-Based
	C-P	Pros: One RTT to obtain replica information, replica information may be cached	Pros: Efficient response processing at Producer, MoveToken support for replica resumption
		Cons: Computational bottleneck for a single Producer	Cons: Session state storage, Multiple RTTs to fetch data
	C - R	Pros: Minimal number of packets to fetch	Pros: Efficient data transfer once session is bootstrapped
		Cons: Larger computational bottleneck	Cons: Sessions are pinned to specific replicas

Mosko & Woods, "Sed

S01, May 22, 2017

Analysis

Analysis

Conclusion

- SCR compares well with IPBC
- SCR offers more flexibility in terms of the desired AC-enforcement mechanism than IPBC
 - Either IBAC or CCNxKE sessions can be used
 - Results may be verified at each step
 - Content striping retrieval from multiple replicas
 - Consumer-based replica selection