EXERCICE 23

Deux méthodes pour déterminer la limite d'une suite

La suite (u_n) est définie sur $\mathbb N$ par : $u_0=0$ et $u_{n+1}=\frac{2u_n+1}{u_n+2}$

Partie A: première méthode

- 1) Montrer que : $\forall n \in \mathbb{N}, \ u_{n+1} = 2 \frac{3}{u_n + 2}.$
- 2) a) Démontrer par récurrence que : $\forall n \in \mathbb{N}, \ 0 \leqslant u_n < 1$
 - b) Vérifier que $u_{n+1}-u_n=\frac{1-u_n^2}{u_n+2}$ puis montrer que (u_n) est croissante.
- 3) En déduire que la suite (u_n) est convergente vers une limite ℓ
- 4) On admet que ℓ vérifie $f(\ell)=\ell$ avec f définie sur [0;1] par $f(x)=\frac{2x+1}{x+2}$
 - a) Déterminer la valeur de ℓ
 - b) Écrire un algorithme déterminant la valeur N tel que : $\forall n > N, \ |u_n \ell| < 10^{-3}$. Donner la valeur de N à l'aide de la calculatrice.

Partie B : deuxième méthode

- 1) La suite (v_n) est définie pour tout entier n par : $v_n = \frac{u_n 1}{u_n + 1}$
- Démontrer que (v_n) est géométrique. Préciser la raison et le premier terme.
- 2) Exprimer v_n , puis u_n en fonction de n.
- En déduire que la suite (u_n) est convergente et donner sa limite.

Exercice 24 -

On considère la suite (u_n) définie sur \mathbb{N} par : $u_0 = 1$ et $u_{n+1} = \sqrt{2u_n}$.

- 1) On considère l'algorithme en pseudo-code suivant :
 - a) Donner une valeur approchée à 10^{-4} près du résultat qu'affiche cet algorithme lorsque l'on choisit n=3.
 - b) Que permet de calculer cet algorithme?

Lire n $u \leftarrow 1$ pour i variant de 1 à n faire $\begin{array}{c|c} u \leftarrow \sqrt{2u} \\ \text{fin} \\ \text{Afficher } u \end{array}$

c) Remplir le tableau ci-dessous. On donnera les valeurs approchées à 10^{-4}

n	1	5	10	15	20
Valeur affichée					

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- 2) a) Démontrer que, pour tout entier naturel n, $0 < u_n \le 2$.
 - b) Déterminer le sens de variation de la suite (u_n).
 - c) Démontrer que (u_n) est convergente. On ne demande pas sa limite.

EXERCICE 25

Vrai-Faux

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = (-1)^n$.

- 1) Proposition 1: « La suite (un) est bornée. »
- 2) Proposition 2: « La suite (un) converge. »
- 3) Proposition 3: « La suite de terme général $\frac{u_n}{n}$ converge. »
- 4) Proposition 4:
 - « Toute suite (v_n) à termes strictement positifs et décroissante converge vers 0. »

EXERCICE 26 -

Soit la suite (u_n) définie sur \mathbb{N}^* par :

$$u_n = \frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \frac{1}{n+\sqrt{3}} + \dots + \frac{1}{n+\sqrt{n}}$$

1) Calculer les termes u1, u2, u3.

Pour les termes u_2 et u_3 , on donnera une valeur approchée à 10^{-3} près.

- 2) Montrer que : $\forall n \in \mathbb{N}^*, \ \frac{n}{n+\sqrt{n}} \leqslant u_n \leqslant \frac{n}{n+1}$
- 3) En déduire que la suite converge et calculer sa limite.

EXERCICE 27

Soit la suite (u_n) définie sur $\mathbb N$ par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1 \end{cases}$

- 1) a) Calculer u_1 , u_2 , u_3 et u_4 (arrondir à 10^{-2} près).
- b) Formuler une conjecture sur le sens de variation de cette suite.
- 2) a) Démontrer que pour tout entier naturel $n: u_n \leq n+3$
 - b) Démontrer que pour tout entier naturel n: $u_{n+1} u_n = \frac{1}{3}(n+3-u_n)$
 - c) En déduire une validation de la conjecture précédente.
- 3) On désigne par (v_n) la suite définie sur \mathbb{N} par : $v_n = u_n n$.
 - a) Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$
 - b) En déduire que pour tout entier naturel n, $u_n = 2\left(\frac{2}{3}\right)^n + n$
 - c) Déterminer la limite de la suite (u_n) .
- 4) Pour tout n non nul, on pose: $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$ et $T_n = \frac{S_n}{n^2}$.
 - a) Exprimer S_n en fonction de n.
 - b) Déterminer la limite de la suite (T_n) .