Corrigé exercice 68:

- 1. Si A ou B est vide, leur cardinal vaut 0 et le produit $A \times B$ est égalements vide, de cardinal 0 également. La formule reste valable.
- 2. (a) Les éléments de A_i sont les couples $(a_k; b_i)$ pour k allant de 1 à n. Il y a donc n éléments dans chaque A_i .
 - (b) Les ensembles A_i sont deux à deux disjoints. En effet, le deuxième élément d'un couple diffère d'un ensemble A_i à un autre.
 - (c) L'union des A_i pour i allant de 1 à p est $A \times B$.
 - (d) Cette union est disjointe, on $\operatorname{aCard}(A \times B) = \operatorname{Card}(A_1) + \ldots + \operatorname{Card}(A_p) = n + \ldots + n = np$

Corrigé exercice 69:

Soit n un entier naturel non nul. On note \mathcal{P}_n la proposition $\operatorname{Card}(A^n) = \left[\operatorname{Card}(A)\right]^n$.

- Initialisation : \mathcal{P}_1 est vraie. En effet $A^1 = A$ et $\operatorname{Card}(A) = \left[\operatorname{Card}(A)\right]^1$.
- Hérédité : Supposons qu'il existe un entier naturel non nul k pour lequel \mathcal{P}_k est vraie. On assimile alors A^{k+1} à $A^k \times A$. Cette association se faisant de manière univoque, on a alors $\operatorname{Card}(A^{k+1}) = \operatorname{Card}(A^k \times A)$. Ainsi, $\operatorname{Card}(A^{k+1}) = \operatorname{Card}(A^k \times A) = \operatorname{Card}(A^k) \times \operatorname{Card}(A) = \left[\operatorname{Card}(A)\right]^k \times \operatorname{Card}(A)$ par hypothèse de récurrence.

Finalement, on a $\operatorname{Card}(A^{k+1}) = \left[\operatorname{Card}(A)\right]^{k+1}$. La proposition \mathcal{P}_{k+1} est donc vraie $\operatorname{Card}(A^{k+1}) = \left[\operatorname{Card}(A)\right]^{k+1}$.

— Conclusion: Pour tout entier naturel $n \ge 1$, on a bien $\operatorname{Card}(A^n) = \left[\operatorname{Card}(A)\right]^n$