МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. М.В. ЛОМОНОСОВА

Механико-математический факультет

Курсовая работа

Студент 3 курса: Нагорных Я.В. Научный руководитель: Богачев К.Ю.

Содержание

Введение		3
1	Проблемы и способы их решения	3
2	Описание алгоритма	3
	2.1 Используемые структуры и классы	3
	2.2 Распределение задач	4
	2.3 Описание Grisu2	4
	2.4 Описание SSE2	6
3	Результаты работы и ускорение	6
4	Заключение	6
П	риложение	7

Введение

Печать большив массивов чисел всегда занимает много времени. Кроме того, у печати данных мало ресурсов для ускорения.

Печать чисел с плавающей запятой также является проблемой, так как само значение числа и его экспоненту нельзя обрабатывать независимо.

Стандартный подход недостаточно точен и в некоторых случаях дает неверные результаты. Кроме того использование функций стандартных библиотек (printf, sprintf) достаточно затратно по времени.

Цели работы:

- 1. Ускорить печать больших массивов;
- 2. Использовать быстрые алгоритмы печати целых чисел и чисел с плавающей точкой.

1 Проблемы и способы их решения

Как уже было сказано, у печати массивов мало ресурсов для ускорения. Также проблемой является и то, что печать данных файл должна быть строго последовательной, поэтому нельзя "простым" образом использовать распараллеливание.

Однако, известно что большую часть времени занимает преобразование типа **int** или **double** в буффер типа **const char** * непосредственно для печати. Именно это можно и распараллелить, используя многопоточное программирование. Непосредственно печать в сам файл упирается в возможности диска. Ее ускорить нельзя.

Кроме того, можно заменить стандартный алгоритм преобразования числа в строку, на более быстрые. Мы будем использовать алгоритм **Grisu2**, о котором будет рассказано позже.

2 Описание алгоритма

2.1 Используемые структуры и классы

Структура writer_chunk. В ней находится элемент класса writer_file, строковый буффер (готовый для печати) и его порядковый номер (chunk_id). Кроме того, хранится флаг, является ли этот writer_chunk последним.

Knacc writer_file. Он организовывает правильную печать в файл.

Структура printer_chunk. Этот тип состоит из лямбда-функии, которая должна обработать определенный фрагмент массива чисел, и элемента типа writer_chunk, который должна вернуть функция.

Класс mutex_wait_queue. Это реализация блокирующей очереди, или мьютексной очереди. Под ней понимается очередь со следующим свойством: когда поток пытается прочитать что-то из пустой очереди, то он блокируется, до тех пор, пока какой-нибудь другой поток не положит в нее элемент. У этой очереди есть следующие методы:

- dequeue достает верхний элемент из очереди, если очередь непустая. Иначе, поток, вызвавший этот метод блокируется. Также можно передать время блокировки, по истечении которого, поток разблокируется и вернется ни с чем;
- dequeue_all аналогично dequeue, но достает все элементы, находящиеся в очереди, и складывает в указатель вектор из них;
- enqueue складывает элемент в конец очереди.

Knacc parallel_writer. Он хранит в себе поток m_writer, вектор потоков m_printer. Поток m_writer будет заниматься печатью в файл. Потоки m_printers занимаются тем, что конвертируют элементы типа printer_chunk (числа) в элементы типа writer_chunk (строки). Помимо потоков и их количества этот класс хранит две блокирующие очереди m_print_queue и m_write_queue, состоящие из printer_chunk и writer_chunk соответственно. Зачем нужны такие очереди будет сказано позже.

2.2 Распределение задач

Управляющий (главный) поток будет складывать элементы типа printer_chunk в очередь m_print_queue. Потоки m_printers будут доставать из этой очереди printer_chunk-и на обработку. Они должны конвертировать числа в буфферы, готовые для печати. Эти готовые буфферы writer_chunk они складывают в другую очередь m_write_queue. parallel_writer Поток m_writer должен забирать готовые буфферы из этой очереди и печатать их в правильном порядке в файл.

Схематично работа потоков показана на Рисунке 1.

2.3 Описание Grisu2

В статье [1] описан алгоритм Grisu и его улучшения, также доказана их точно. Опишем кратко эти алгоритмы.

Идея алгоритма. Предполагается, не умаляя общности, что у числа с плавающей точкой v отрицательный показатель. Тогда это число можно выразить как $v=\frac{f_v}{2^{-e_v}}$, где f_v — мантисса, а e_v — экспонента. Десятичные цифры v могут быть вычислены путем нахождения десятичного показателя t, для которого $1\leqslant \frac{f_v\times 10^t}{2^{-e_v}}<10$.

Первая цифра является целой частью этой дроби. Последующие цифры вычисляются путем повторного использования оставшейся дроби: нужно умножить числитель на 10 и взять целую часть от вновь полученной дроби.

Рисунок 1: Работа потоков.

Идея Grisu состоит в том, чтобы кешировать приблизительные значения $\frac{10^t}{2^{e_t}}$. Дорогих операций с большими числами не будет: они заменяются операциями с целыми числами фиксированного размера.

Кэш для всевозможных значений t и e_t может быть дорогостоящим. Из-за этого требования к кеш-памяти в Grisu упрощены. Кэш хранит только нормированные приближения с плавающей точкой всех соответствующих степеней десяти: $\tilde{c}_k := \left[10^k\right]_q^*$, где q – точность кэшированных чисел. Кэшированные числа сокращают большую часть экспоненты v, так что остается только небольшой показатель.

Процесс генерации цифр использует степени десяти с экспонентой $e_{\tilde{c}_t}$, близкой к e_v . Разница между двумя показателями будет небольшой.

Фактически, Grisu выбирает степени десяти так, что разница лежит в определенном диапазоне. Разные диапазоны дают разные подпрограммы для генерации цифр. Также стоит учесть, что наименьшая разница не всегда является наиболее эффективным выбором.

Определим diy_fp для x как беззнаковое целое число f_x , состоящее из q битов, и знакового целого числа e_x неограниченного диапазона. Значение x можно вычислить как $x=f_x\times 2^{e_x}$.

В следующем алгоритме мы параметризуем оставшийся показатель по переменным α и γ . Положим $\gamma \geqslant \alpha + 3$, а затем представим интересные варианты для этих параметров. Для начального обсуждения предположим, что $\alpha := 0$ и $\gamma := 3$.

Реализация. Алгоритм Grisu:

- Bxod: положительное число с плавающей точкой v точности p.
- ullet Условие: точность diy_fp удовлетворяет $q\geqslant p+2$, а кеш степеней десяти

состоит из предварительно вычисленных нормированных округленных $\mathtt{diy_fp}$ значений $\tilde{c_k} := \left[10^k\right]_q^\star$

• *Вывод:* строковое представление в основании 10 для V такое, что $[V]_p^{\square} = v$. То есть V должен быть округлен до v при чтении вновь.

Шаги алгоритма:

- 1. Преобразование: определим нормированный $diy_f p w$ такой, что w = v.
- 2. Кэширование степеней: находим нормированное $\tilde{c}_{-k}=f_c\times 2^{e_c}$ такое, что $\alpha\leqslant e_c+e_w+q\leqslant \gamma.$
- 3. Произведение: пусть $\tilde{D} = f_D \times 2^{e_D} := w \otimes \tilde{c}_{-k}$.
- 4. Bыход: определим искомое $V:=\tilde{D}\times 10^k$. Вычислим десятичное представление $\tilde{D},$ за которым следует строка "e" и десятичное представление k.

Поскольку значение diy_fp больше, чем значение входного числа, преобразование шага 1 дает точный результат. По определению diy_fp-ы имеют бесконечный диапазон экспоненциальности и показатель степени w, следовательно, достаточно велик для нормирования. Заметим, что показатель e_w удовлетворяет $e_w \leqslant e_v - (q - p)$.

Легко показать, что $\forall i, 0 < \tilde{e}_{c_i} - \tilde{e}_{c_{i-1}} \leqslant 4$, и поскольку кеш неограничен, требуемый \tilde{c}_{-k} должен находиться в кеше. Это является причиной первоначального требования $\gamma \geqslant \alpha + 3$.

Разумеется, бесконечный кеш не нужен. k зависит только от типа номера с плавающей точкой ввода (его диапазон экспоненты), точности $\operatorname{diy_fp}$ и пары α и γ .

Результатом Grisu является строка, содержащая десятичное представление \tilde{D} , за которым следуют символ "е" и k знаков. Таким образом, он представляет собой число $V:=\tilde{D}\times 10^k$. Утверждается, что V дает v при округлении до числа с плавающей точкой с точностью p.

2.4 Описание SSE2

3 Результаты работы и ускорение

4 Заключение

Приложение

Список литературы

- [1] FLORIAN LOITSCH. Printing Floating-Point Numbers Quickly and Accurately with Integers, 2004.
- [2] WOJCIECH MULA. SSE: conversion integers to decimal representation, 2011.
- [3] https://github.com/miloyip/itoa-benchmark/blob/master/readme.md
- [4] Богачев К. Ю.. Основы параллельного программирования. М.: Бином. Лаборатория знаний, 2010.