where 1 is the multiplicative identity of K. Recall that we define $n \cdot a$ by

$$n \cdot a = \underbrace{a + \dots + a}_{n}$$

if $n \ge 0$ (with $0 \cdot a = 0$) and

$$n \cdot a = -(-n) \cdot a$$

if n < 0. We say that the field K is of *characteristic zero* if the homomorphism χ is injective. Then, for any $a \in K$ with $a \neq 0$, we have $n \cdot a \neq 0$ for all $n \neq 0$

The fields \mathbb{Q} , \mathbb{R} , and \mathbb{C} are of characteristic zero. In fact, it is easy to see that every field of characteristic zero contains a subfield isomorphic to \mathbb{Q} . Thus, finite fields can't be of characteristic zero.

Remark: If a field is not of characteristic zero, it is not hard to show that its characteristic, that is, the smallest $n \geq 2$ such that $n \cdot 1 = 0$, is a prime number p. The characteristic p of K is the generator of the principal ideal $p\mathbb{Z}$, the kernel of the homomorphism $\chi \colon \mathbb{Z} \to K$. Thus, every finite field is of characteristic some prime p. Infinite fields of nonzero characteristic also exist.

Definition 30.13. Let A be a ring. The derivative f', or Df, or D^1f , of a polynomial $f \in A[X]$ is defined inductively as follows:

$$f' = 0$$
, if $f = 0$, the null polynomial,
 $f' = 0$, if $f = a$, $a \neq 0$, $a \in A$,
 $f' = na_n X^{n-1} + (n-1)a_{n-1} X^{n-2} + \dots + 2a_2 X + a_1$,
if $f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$, with $n = \deg(f) \geq 1$.

If A = K is a field of characteristic zero, if $\deg(f) \geq 1$, the leading coefficient na_n of f' is nonzero, and thus, f' is not the null polynomial. Thus, if A = K is a field of characteristic zero, when $n = \deg(f) \geq 1$, we have $\deg(f') = n - 1$.

For rings or for fields of characteristic $p \geq 2$, we could have f' = 0, for a polynomial f of degree ≥ 1 .

The following standard properties of derivatives are recalled without proof (prove them as an exercise).

Given any two polynomials, $f, g \in A[X]$, we have

$$(f+g)' = f' + g',$$

$$(fg)' = f'g + fg'.$$

For example, if $f = (X - \alpha)^k g$ and $k \ge 1$, we have

$$f' = k(X - \alpha)^{k-1}g + (X - \alpha)^k g'.$$

We can now give a criterion for the existence of simple roots. The first proposition holds for any ring.