【第1页 共3页】

(by zzw4257)

浙江大学

《数据安全与密码学基础》课程期中考试卷

课程代码: 21192050 授课课时: 48 考试用时: 90 分钟

课程名称:数据安全与密码学基础 适用对象:一群可怜人

试卷命题人: 张聪 试卷审核人: Unknown

一、选择题(各5分)

- 1. Kerckhoffs 准则强调,一个密码系统的安全性主要取决于以下哪个因素?
 - A. 算法的复杂性
 - B. 算法的保密性
 - C. 密钥的保密性
 - D. 加密设备的安全性
- 2. 香农安全和完美安全的关系?
 - A. 香农安全强于完美安全
 - B. 香农安全弱于完美安全
 - C. 二者等价
 - D. 不可比较
- 3. (多选) 可忽略函数的定义为: 对于任意多项式 p(n) 以及所有足够大的 n 值,满足 $f(n) \leq \frac{1}{p(n)}$ 。下列函数是可忽略函数的有?
 - A. 2^{-n}
 - B. $2^{-\sqrt{n}}$
 - C. $n^{-\log n}$
 - D. n^{-5}
- 4. (多选) $\varepsilon = (E, D)$ 是定义在 $\mathcal{K} = \mathcal{M} = \mathcal{C} = \{0, 1\}^2$ 上的 One-timePad 加密方案。现 对加密算法 E 进行如下 4 种修改,选出修改后仍然安全的加密方案。
 - A. $E_1(k,m) = 0 \parallel E(k,m)$
 - B. $E_2(k, m) = E(k, m) \parallel \text{parity}(m)$
 - C. $E_3(k,m) = \text{reverse}(E(k,m))$
 - D. $E_4(k, m) = E(k, \text{reverse}(m))$

二、填空题(各5分)

- 5. 在密码学中,凯撒密码是一种最简单且最广为人知的加密技术。已知加密算法 $Enc_k(m_1 \cdots m_l) = c_1 \cdots c_l$, $c_i = (m_i + 3) \mod 26$, 对于消息 m = "lovezju", 计算 $c = Enc_k(m) = \underline{\hspace{1cm}}$
- 6. $Func_n$ 表示将 n 位字符串映射到 n 位字符串的所有函数的集合,计算该集合大小 $|Func_n| = _$
- 7. 根据移位密码的定义,我们有 $\mathcal{K} = \{0, \cdots, 25\}$,对于每个 $k \in \mathcal{K}$, $Pr[K = k] = \frac{1}{26}$ 。 假设 \mathcal{M} 的分布如下: Pr[M = a] = 0.7,Pr[M = z] = 0.3,则 Pr[C = b] =______
- 8. 加密方案 (KG, Enc, Dec) 是完美安全的,其明文空间 M 和密钥空间 $\mathcal K$ 必须满足什么大小关系: $|\mathcal K|$ _____| $\mathcal M$ |

三、计算题 (10 分)

依照某标准,一安全的登录系统其登录口令应具有 16 bit 熵。请判断下述口令生成策略是否满足该标准

策略: 生成 8 字节的字符串口令 str,每个字符由不同信源产生。其中第 1 个字符从集合 $\{x,y\}$ 中均匀选取,第 2-4 个字符从集合 $\{a,b,c,d,e\}$ 中均匀独立选取,第 5 8 个字符从集合 $\{@,\#,\&,\%\}$ 中均匀独立选取。

提示: 若字符 U 有 n 种取值: $U_1 \cdots U_n$, 对应概率为: $p_1 \cdots p_n$, 则 U 的熵 $H(U) = -\sum_{i=1}^n p_i \log_2 p_i$ 。

四、主观题(20分)

- 1. 形式化描述密码学中 EAV Security (indistinguishable encryptions in the presence of an eavesdropper) 的定义。(10 分)
- 2. 定义一个消息长度为 ℓ 的加密方案 (KG, Enc, Dec) 如下,其中明文空间 $M = \{0,1\}^{\ell}$,密文空间 $\mathcal{C} = \{0,1\}^{\ell}$,密钥空间 $\mathcal{K} = \{0,1\}^{n}$, $G : \{0,1\}^{n} \to \{0,1\}^{p}$ 为一函数,
 - 密钥生成算法 $KG(1^n) \to k$
 - 加密算法 $Enc(k, m) = G(k) \oplus m$
 - 解密算法 $Dec(k,c) = G(k) \oplus c$

请用归约的方法证明以下定理: 若 G 是一个带扩展因子 α 的伪随机数生成器,则加密方案 (KG, Enc, Dec) 是 EAV Security。只需画出归约的图即可: $(10 \, \%)$

五、主观题 (15 分)

请证明以下加密方案 (KG, Enc, Dec) 是完美安全的,已知 p 是 n bit 长的素数,明文空间 $M=\{0,1\}^n$,密文空间 $C=\{0,1\}^n$,密钥空间 $K=\{1,\cdots,p-1\}$

• 密钥生成算法 $KG(1^n) \to k$

- 加密算法 $Enc(k, m) = k \cdot m \mod p$
- 解密算法 $Dec(k,c) = k^{-1} \cdot c \mod p$, 其中 $k \cdot k^{-1} = 1 \mod p$

提示:加密方案 (KG, Enc, Dec) 是完美安全当且仅当:

$$Pr[k \leftarrow KG(1^n); Enc_k(m_1) = c] = Pr[k \leftarrow KG(1^n); Enc_k(m_2) = c]$$

六、主观题 (15 分)

F 是一个定义在 $(\mathcal{K},\mathcal{X},\mathcal{Y})$ 上安全的伪随机函数, $\mathcal{K}=\mathcal{X}=\mathcal{Y}=\{0,1\}^n$,对伪随机函数 F 进行如下修改,得到的还是安全的伪随机函数吗?简单描述理由即可

- $F_1(k,x) = F(k,x)||0$
- $F_2(k,x) = F(k,x)||x|$
- $F_3(k,x) = F(k,x) \oplus x$