Метод опорных векторов

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Линейно разделимый случай
- 2 Линейно неразделимый случай

Метод опорных векторов

Рассмотрим бинарную классификацию $y \in \{+1, -1\}$ линейно разделимой выборки.

Идея метода опорных векторов (support vector machines, SVM)

Выберем гиперплоскость, разделяющую классы с максимальным зазором.

Гиперплоскости $x_i^T w + w_0 = 0$, $x_i^T w + w_0 = b$, $x_i^T w + w_0 = -b$ поэтому величина зазора $\frac{2b}{\|w\|}$.

Метод опорных векторов

Объекты (x_i,y_i) отделены от разделяющей гиперплоскости $\geq \frac{b}{\|w\|}$, если

$$\begin{cases} x_i^T w + w_0 \ge b, & y_i = +1 \\ x_i^T w + w_0 \le -b & y_i = -1 \end{cases} \quad i = 1, 2, ...N.$$

Это можно записать в виде

$$y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N.$$

Максимизация зазора между классами:

$$2b/\|w\| \to \max_{w,w_0,b}$$

Оптимизационная задача

Оптимизационная задача:

$$\begin{cases} \frac{2b}{\|w\|} \to \max_{w,w_0,b} \\ y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N. \end{cases}$$

Если (w,w_0,b) -решение, то $(\alpha w,\alpha w_0,\alpha b)$ - тоже решение $\forall \alpha>0$. Положим b=1 $(\alpha=\frac{1}{b})$.

$$\begin{cases} \frac{2}{\|w\|} \to \max_{w,w_0} \\ y_i(x_i^T w + w_0) \ge 1 \quad i = 1, 2, ...N. \end{cases}$$

Используя свойство arg max $\frac{2}{\|w\|}=$ arg min $\frac{\|w\|}{2}=$ arg min $\frac{\|w\|^2}{2}:$

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w, w_0} \\ y_i(x_i^T w + w_0) = M(x_i, y_i) \ge 1, & i = 1, 2, ... N. \end{cases}$$

Типы объектов

Неинформативные объекты: $y_i(x_i^T w + w_0) > 1$

• не влияют на решение

Опорные вектора: $y_i(x_i^T w + w_0) = 1$

- ullet лежат на расстоянии $1/\left\|w
 ight\|$ к разделяющей гиперплоскости
- влияют на решение

Содержание

- 1 Линейно разделимый случай
- 2 Линейно неразделимый случай

Линейно неразделимый случай

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w,w_0} \\ y_i(x_i^T w + w_0) = M(x_i, y_i) \ge 1, & i = 1, 2, ...N. \end{cases}$$

Ограничения становятся несовместными=>пустое множество решений.

Линейно неразделимый случай

Разрешим частичные нарушения ограничений на величины нарушений ξ_i (slack variables):

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w, w_0, \xi} \\ y_i (w^T x_i + w_0) = M(x_i, y_i) \ge 1 - \xi_i, \ i = 1, 2, ... N \\ \xi_i \ge 0, \ i = 1, 2, ... N \end{cases}$$

- Штраф за нарушение С контролирует точность модели (в противовес простоте).
- Подбирается по сетке на валидации.
- Другие штрафы возможны, например $C \sum_{i} \xi_{i}^{2}$.

Типы объектов

- Неинформативные объекты:
 - $y_i(w^Tx_i + w_0) > 1$
- Опорные вектора SV:
 - $y_i(w^Tx_i + w_0) \leq 1$
 - пограничные \widetilde{SV} :
 - $y_i(w^Tx_i + w_0) = 1$
 - объекты-нарушители:
 - $y_i(w^Tx_i + w_0) > 0$: нарушитель корректно классифицирован
 - $y_i(w^Tx_i + w_0) < 0$: нарушитель некорректно классифицирован

Безусловная оптимизация

Оптимизационная задача:

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w, w_0, \xi} \\ y_i (w^T x_i + w_0) = M_i (w, w_0) \ge 1 - \xi_i, \\ \xi_i \ge 0, \ i = 1, 2, ... N \end{cases}$$

может быть переписана как

$$\frac{1}{2C} \|w\|_2^2 + \sum_{i=1}^N [1 - M_i(w, w_0)]_+ \to \min_{w, w_0}$$

Таким образом, метод - линейный классификатор с функцией потерь $\mathcal{L}(M) = [1-M]_+$ и L_2 регуляризацией (обобщается на другие).

Разреженность решения

- Решение зависит только от опорных векторов.
- Это видно из условия $\mathcal{L}(M) = 0$ для $M \ge 1$.
 - хорошо классифицированные объекты с $M \! \geq \! 1$ не влияют на решение
- Разреженность решения метод менее устойчив к выбросам
 - выбросы всегда опорные объекты

Заключение

- Метод опорных векторов линейный классификатор с L_2 регуляризацией и функцией потерь hinge.
- Геометрически метод максимизирует зазор между классами.
- Решение зависит только от опорных векторов с $M \le 1$.