Ruled Surface

In this section, fix an algebraically closed field **k**.

1 Preliminaries

Let S be a variety over \mathbb{k} and \mathcal{E} a vector bundle of rank r+1 on S.

Proposition 1. The S-varieties $\mathbb{P}_X(\mathcal{E}) \cong \mathbb{P}_X(\mathcal{E}')$ if and only if $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{L}$ for some line bundle \mathcal{L} on S.

Theorem 2. Let $\pi: X = \mathbb{P}_S(\mathcal{E}) \to S$ be the projective bundle associated to a vector bundle \mathcal{E} of rank r+1 on S. Then there is an exact sequence of vector bundles on $\mathbb{P}_S(\mathcal{E})$

$$0 \to \Omega_{\mathbb{P}_{S}(\mathcal{E})/S} \to \pi^{*}(\mathcal{E})(-1) \to \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})} \to 0.$$

In particular, $K_X \sim \pi^*(K_S + \det \mathcal{E}) - (r+1)\mathcal{O}_{\mathbb{P}_S(\mathcal{E})}(1)$. Yang: To be continued...

Theorem 3 (Tsen's Theorem, [Stacks, Tag 03RD]). Let C be a smooth curve over an algebraically closed field \mathbb{K} . Then $K = \mathbb{K}(C)$ is a C_1 field, i.e., every degree d hypersurface in \mathbb{P}^n_K has a K-rational point provided $d \leq n$.

Theorem 4 (Grauert's Theorem, [Har77, Corollary 12.9]). Let $f: X \to S$ be a projective morphism of noetherian schemes and \mathcal{F} a coherent sheaf on X which is flat over S. Suppose that S is integral and the function $S \mapsto \dim_{\kappa(S)} H^i(X_S, \mathcal{F}_S)$ is constant on S for some $i \geq 0$. Then $\mathsf{R}^i f_* \mathcal{F}$ is locally free and the base change homomorphism

$$\varphi^i_s: \mathsf{R}^i f_* \mathcal{F} \otimes_{\mathcal{O}_S} \kappa(s) \to H^i(X_s, \mathcal{F}_s)$$

is an isomorphism for all $s \in S$.

Theorem 5 (Miracle Flatness, [Mat89, Theorem 23.1]). Let $f: X \to Y$ be a morphism of noetherian schemes. Assume that Y is regular and X is Cohen-Macaulay. If all fibers of f have the same dimension $d = \dim X - \dim Y$, then f is flat.

Proposition 6 (Geometric form of Nakayama's Lemma). Let X be a variety, $x \in X$ a closed point and \mathcal{F} a coherent sheaf on X. If $a_1, \dots, a_k \in \mathcal{F}(X)$ generate $\mathcal{F}|_{\mathcal{X}} = \mathcal{F} \otimes \kappa(x)$, then there is an open subset $U \subset X$ such that $a_i|_U$ generate $\mathcal{F}(U)$.

Proposition 7. Let S be a noetherian scheme and \mathcal{E} a vector bundle of rank r+1 on S. Let X be

Date: August 26, 2025, Author: Tianle Yang, My Homepage

a S-scheme via a morphism $g:X\to S$. Then there is a bijection

$$\{S\text{-morphisms }X\to\mathbb{P}_S(\mathcal{E})\}\leftrightarrow\left\{\begin{array}{l}\text{surjective homomorphisms }g^*\mathcal{E}\to\mathcal{L}\\\text{where }\mathcal{L}\text{ is a line bundle on }X\end{array}\right\}.$$

Yang: Need to check.

Proof. Take an affine cover $\{U_i\}$ of S such that $\mathcal{E}|_{U_i}$ is trivial. On U_i , the surjection $g^*\mathcal{E}|_{U_i} \twoheadrightarrow \mathcal{L}|_{X_{U_i}}$ gives a morphism $X_{U_i} \to \mathbb{P}_{U_i}(\mathcal{E}|_{U_i}) \cong \mathbb{P}_S(\mathcal{E})_{U_i}$ by Yang: ref.

2 Minimal Section and Classification

Definition 8 (Ruled surface). A ruled surface is a smooth projective surface X together with a surjective morphism $\pi: X \to C$ to a smooth curve C such that all fibers of π are isomorphic to \mathbb{P}^1 .

Let $\pi:X\to C$ be a ruled surface over a smooth curve C of genus g.

Lemma 9. There exists a section of π .

Proof. Yang: To be continued...

Proposition 10. Then there exists a vector bundle \mathcal{E} of rank 2 on \mathcal{C} such that $X \cong \mathbb{P}_{\mathcal{C}}(\mathcal{E})$ over \mathcal{C} .

Proof. Let $\sigma: \mathcal{C} \to X$ be a section of π and D be its image. Let $\mathcal{L} = \mathcal{O}_X(D)$ and $\mathcal{E} = \pi_*\mathcal{L}$. Since D is a section of π , $\mathcal{L}|_{X_t} \cong \mathcal{O}_{\mathbb{P}^1}(1)$ for any $t \in \mathcal{C}$, whence $h^0(X_t, \mathcal{L}|_{X_t}) = 2$ for any $t \in \mathcal{C}$. By Miracle Flatness (Theorem 5), f is flat. By Grauert's Theorem (Theorem 4), \mathcal{E} is a vector bundle of rank 2 on \mathcal{C} and we have a natural isomorphism $\mathcal{E} \otimes \kappa(t) \cong H^0(X_t, \mathcal{L}|_{X_t})$ for any $t \in \mathcal{C}$.

This gives a surjective homomorphism

$$\mathcal{E} \otimes_{\mathcal{O}_C} \kappa(t) \otimes_{\kappa(t)} \mathcal{O}_{X_t} \cong H^0(X_t, \mathcal{L}|_{X_t}) \otimes_{\kappa(t)} \mathcal{O}_{X_t} \twoheadrightarrow \mathcal{L}|_{X_t}.$$

For every $x \in X$, we have

$$\mathcal{E} \otimes_{\mathcal{O}_{C}} \kappa(\pi(x)) \otimes_{\kappa(\pi(x))} \mathcal{O}_{X_{\pi(x)}} \otimes_{\mathcal{O}_{X_{\pi(x)}}} \kappa(x) \twoheadrightarrow \mathcal{L}|_{X_{\pi(x)}} \otimes_{\mathcal{O}_{X_{\pi(x)}}} \kappa(x).$$

Yang: The left side coincides with $\pi^*\mathcal{E} \otimes_{\mathcal{O}_X} \kappa(x)$ naturally. Hence by Nakayama's Lemma, the natural homomorphism $\pi^*\mathcal{E} \to \mathcal{L}$ is surjective.

Denote by $p: \mathbb{P}_{C}(\mathcal{E}) \to C$ the projection. Take an affine open cover $\{U_{i}\}$ of C such that $\mathcal{E}|_{U_{i}}$ is trivial. On U_{i} , the surjection $\pi^{*}\mathcal{E}|_{X_{U_{i}}} \to \mathcal{L}|_{X_{U_{i}}}$ gives a morphism $\varphi_{i}: X_{U_{i}} \to \mathbb{P}_{U_{i}}(\mathcal{E}|_{U_{i}}) \cong \mathbb{P}_{C}(\mathcal{E})_{U_{i}}$ by Yang: ref. Since φ_{i} and φ_{j} agree on $X_{U_{i} \cap U_{j}}$, they glue to give a morphism $\varphi: X \to \mathbb{P}_{C}(\mathcal{E})$ over C. Since $\varphi|_{X_{t}}: X_{t} \to \mathbb{P}_{C}(\mathcal{E})_{t}$ is an isomorphism for any $t \in C$, φ is

Lemma 11. Fix a vector bundle \mathcal{E} of rank 2 on \mathcal{C} such that $X \cong \mathbb{P}_{\mathcal{C}}(\mathcal{E})$. There is a one-to-one correspondence between sections of π and quotient line bundles of \mathcal{E} on \mathcal{C} .

2

Lemma 12. It is possible to write $X \cong \mathbb{P}_{\mathcal{C}}(\mathcal{E})$ such that $H^0(\mathcal{C}, \mathcal{E}) \neq 0$ but $H^0(\mathcal{C}, \mathcal{E} \otimes \mathcal{L}) = 0$ for any line bundle \mathcal{L} on \mathcal{C} with $\deg \mathcal{L} < 0$. Such a vector bundle \mathcal{E} is called a *normalized vector bundle*.

 \square Proof.

Definition 13. A section C_0 of π is called a *minimal section* if Yang: to be continued...

Lemma 14. Let $X = \mathbb{P}_{\mathcal{C}}(\mathcal{E}) \to \mathcal{C}$ be a ruled surface over a smooth curve \mathcal{C} of genus g with invariant e and normalized \mathcal{E} .

- (a) If \mathcal{E} is decomposable, then $e \geq 0$ and $\mathcal{E} \cong \mathcal{O}_{\mathcal{C}} \oplus \mathcal{L}$ where \mathcal{L} is a line bundle on \mathcal{C} with $\deg \mathcal{L} = -e$.
- (b) If \mathcal{E} is indecomposable, then $-2g \leq e \leq 2g-2$.

Theorem 15. Let $\pi: X \to C$ be a ruled surface over $C = \mathbb{P}^1$ with invariant e. Then $X \cong \mathbb{P}_C(\mathcal{O}_C \oplus \mathcal{O}_C(-e))$.

Example 16. Here we give an explicit description of the ruled surface $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}(-e))$ for $e \geq 0$. Yang: To be continued...

Theorem 17. Let $\pi: X = \mathbb{P}_E(\mathcal{E}) \to E$ be a ruled surface over an elliptic curve E with invariant e and normalized \mathcal{E} .

- (a) If \mathcal{E} is indecomposable, then e=0 or -1, and for each e there exists a unique such ruled surface up to isomorphism.
- (b) If \mathcal{E} is decomposable, then $e \geq 0$ and $\mathcal{E} \cong \mathcal{O}_E \oplus \mathcal{L}$ where \mathcal{L} is a line bundle on E with $\deg \mathcal{L} = -e$.

Example 18. Yang: To be continued...

3 The Néron-Severi Group of Ruled Surfaces

Proposition 19. Let $\pi: X \to C$ be a ruled surface over a smooth curve C of genus g. Let C_0 be a minimal section of π and let f be a fiber of π . Then $\operatorname{Pic}(X) \cong \mathbb{Z}C_0 \oplus \pi^* \operatorname{Pic}(C)$. Yang: Check this carefully.

Proof. Yang: To be continued...

Proposition 20. Let $\pi: X \to C$ be a ruled surface over a smooth curve C of genus g. Let C_0 be a minimal section of π and let f be a fiber of π . Then $K_X \sim -2C_0 + (K_C -)f$ where $e = -C_0^2$. Yang:

Check this carefully.

Proof. Yang: To be continued.

Rational case. Let $\pi: X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \to \mathbb{P}^1$ be a ruled surface over \mathbb{P}^1 with $\mathcal{E} \cong \mathcal{O} \oplus \mathcal{O}(-e)$ for some $e \geq 0$.

Theorem 21. Let $\pi: X \to \mathbb{P}^1$ be a ruled surface over \mathbb{P}^1 with invariant e. Let C_0 be a minimal section of π and let F be a fiber of π . Let $D \sim aC_0 + bF$ be a divisor on X with $a, b \in \mathbb{Z}$.

- (a) D is ample \Leftrightarrow D is very ample \Leftrightarrow a > 0 and b > ae;
- (b) D is effective $\iff a, b \ge 0$.

Proof. Yang: To be continued...

Elliptic case. Let $\pi: X = \mathbb{P}_{\mathcal{C}}(\mathcal{E}) \to E$ be a ruled surface over an elliptic curve E with \mathcal{E} a normalized vector bundle of rank 2 and degree -e.

Theorem 22. Let $\pi: X \to E$ be a ruled surface over an elliptic curve E with invariant e. Assume that E is decomposable. Let C_0 be a minimal section of π and let E be a fiber of π . Let $E = aC_0 + bF$ be a divisor on E with E with E with E is decomposable.

- (a) D is ample $\Leftrightarrow D$ is very ample $\Leftrightarrow a > 0$ and b > ae;
- (b) D is effective $\iff a \ge 0$ and $b \ge ae$.

Proof. Yang: To be continued...

Theorem 23. Let $\pi: X \to E$ be a ruled surface over an elliptic curve E with invariant e. Assume that E is indecomposable. Let C_0 be a minimal section of π and let E be a fiber of π . Let $E = aC_0 + bE$ be a divisor on E with E with E invariant E and E is indecomposable.

- (a) D is ample \iff D is very ample \iff a > 0 and $b > \frac{1}{2}ae$;
- (b) D is effective $\iff a \ge 0$ and $b \ge \frac{1}{2}ae$.

Proof. Yang: To be continued...

References

- [Har77] Robin Hartshorne. *Algebraic geometry*. Vol. No. 52. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496. ISBN: 0-387-90244-9 (cit. on p. 1).
- [Mat89] Hideyuki Matsumura. *Commutative ring theory*. 8. Cambridge university press, 1989 (cit. on p. 1).
- [Stacks] The Stacks Project Authors. Stacks Project. URL: https://stacks.math.columbia.edu/(cit. on p. 1).