

Bank Loan Status prediction using ML Techniques

Team members:

Jayalakshmi Gunji Priyanka Akula Somna Sattoor Naveen Yadav Gongati

Project objective & motivation

- Optimize loan approval workflows to expedite processing times and enhance transparency throughout financial transactions.
- Proactively detect high-risk loans using predictive analytics to improve decision-making accuracy and reduce the incidence of loan defaults.
- Integrate real-time data processing to keep loan assessments up-to-date and reflective of current financial contexts, improving financial service responsiveness.
- Strengthen bank decision-making through advanced predictive modeling to minimize financial risks.

DATASET

Loan Status Classification

Data Source: https://www.kaggle.com/datasets/zaurbegiev/my-dataset/data

Data Shape: 100514 x 19

Target: Loan Status

Sample Dataset:

	Loan ID	Customer ID	Loan Status	Current Loan Amount	Term	Credit Score	Annual Income	Years in current job	Home Ownership	Purpose	Monthly Debt	Years of Credit History	Months since last delinquent	Number of Open Accounts	No of Pro
o	14dd8831- 6af5-400b- 83ec- 68e61888a048	981165ec- 3274-42f5- a3b4- d104041a9ca9	Fully Paid	445412.0	Short Term	709.0	1167493.0	8 years	Home Mortgage	Home Improvements	5214.74	17.2	NaN	6.0	
1	4771cc26- 131a-45db- b5aa- 537ea4ba5342	2de017a3- 2e01-49cb- a581- 08169e83be29	Fully Paid	262328.0	Short Term	NaN	NaN	10+ years	Home Mortgage	Debt Consolidation	33295.98	21.1	8.0	35.0	
2	4eed4e6a- aa2f-4c91- 8651- ce984ee8fb26	5efb2b2b- bf11-4dfd- a572- 3761a2694725	Fully Paid	99999999.0	Short Term	741.0	2231892.0	8 years	Own Home	Debt Consolidation	29200.53	14.9	29.0	18.0	
3	77598f7b- 32e7-4e3b- a6e5- 06ba0d98fe8a	e777faab- 98ae-45af- 9a86- 7ce5b33b1011	Fully Paid	347666.0	Long Term	721.0	806949.0	3 years	Own Home	Debt Consolidation	8741.90	12.0	NaN	9.0	
4	d4062e70- befa-4995- 8643- a0de73938182	81536ad9- 5ccf-4eb8- befb- 47a4d608658e	Fully Paid	176220.0	Short Term	NaN	NaN	5 years	Rent	Debt Consolidation	20639.70	6.1	NaN	15.0	

LITERATURE REVIEW

PAPER TITLE	AUTHOR	SUMMARY	YEAR
Prediction of Loan Status in Commercial Bank using Machine Learning Classifier	G. <u>Arutjothi</u> , Dr. C. <u>Senthamarai</u>	This paper proposes a machine learning model using K-Nearest Neighbor (K-NN) classifier combined with Min-Max normalization to predict loan status in commercial banks, aiming to improve accuracy in classifying credit defaulters.	2017
Machine Learning Models for Predicting Bank Loan Eligibility	Ugochukwu .E. Orji, Chikodili .H. Ugwuishiwu, Joseph. C. N. Nguemaleu, Peace. N. Ugwuanyi	This paper explores using six ML algorithms (Random Forest, Gradient Boost, Decision Tree, SVM, KNN, and Logistic Regression) for predicting loan eligibility, highlighting that Random Forest had the highest performance accuracy.	2022
Logistic Regression Model for Loan Prediction: A Machine Learning Approach	Richa Manglani, Anuja Bokhare	This study uses logistic regression to predict loan approval. The method simplifies the loan approval process, making it quicker and more efficient by automating the evaluation of applicant features.	
A Combination Method of Resampling and Random Forest for Imbalanced Data Classification	Liu Zheng, Qiu Han, Zhu Junhu	This paper proposes a combination of resampling and Random Forest techniques to handle imbalanced datasets in applications like credit card fraud detection, enhancing the classification performance of minority classes.	2022
Loan Eligibility Prediction using Machine Learning based on Personal Information	M. <u>Meenaakumari</u> , Dr. <u>Seema</u> Sharma, P. Jayasuriya, <u>Geetha Manoharan</u> , Dr. Nasa <u>Dhanraj</u> , Mohit Tiwari	This paper develops a machine learning model to predict health loan eligibility using Random Forest, Naive Bayes, and Linear Regression algorithms, finding Random Forest to perform the best in terms of accuracy and error.	2022

EDA

Data Type Distribution

<class 'pandas.core.frame.dataframe'=""></class>						
RangeIndex: 100514 entries, 0 to 100513						
Data	a columns (total 19 columns):					
#	Column	Non-Null Count	Dtype			
0	Loan ID	100000 non-null	object			
1 2	Customer ID	100000 non-null	object			
2	Loan Status	100000 non-null	object			
3	Current Loan Amount	100000 non-null	float64			
4	Term	100000 non-null	object			
5	Credit Score	80846 non-null	float64			
6	Annual Income	80846 non-null	float64			
7	Years in current job	95778 non-null	object			
8	Home Ownership	100000 non-null	object			
9	Purpose	100000 non-null	object			
10	Monthly Debt	100000 non-null	float64			
11	Years of Credit History	100000 non-null	float64			
12	Months since last delinquent	46859 non-null	float64			
13	Number of Open Accounts	100000 non-null	float64			
14	Number of Credit Problems	100000 non-null	float64			
15	Current Credit Balance	100000 non-null	float64			
16	Maximum Open Credit	99998 non-null	float64			
17	Bankruptcies	99796 non-null	float64			
18	Tax Liens	99990 non-null	float64			
dtypes: float64(12), object(7)						
memo	memory usage: 14.6+ MB					

EDA

Distribution of Loan Status

EDA

Boxplot of Credit Score

Correlation Matrix between features

DATA PREPROCESSING

Data Cleaning:

Removed rows with missing features Removed features with more than 80% missing values.

Outliers:

Removed the outliers based on the credit score range (300,850) using IQR.

Correlation Analysis:

Checked for correlation between Features and dropped columns Tax Liens and Monthly debt.

Steps	Datasize
Raw Dataset	(100514 x 19)
3 Columns dropped	(100514 x 16)
Duplicates found and dropped.	(89789 x 16)
Outliers found and dropped	(76295 x 16)
missing values found and dropped.	(67493 x 16)
Shape after Data Cleaning	(67490 x 16)

DATA PREPROCESSING

One hot encoding:

Except target variable converted categorical variables into a numerical format

```
Categorical columns before excluding target: Index(['Loan Status', 'Term', 'Years in current job', 'Home Ownership',
       'Purpose'],
      dtype='object')
Categorical columns after excluding target: Index(['Term', 'Years in current job', 'Home Ownership', 'Purpose'], dtype='object')
Applied One-Hot Encoding. Columns now: Index(['Loan Status', 'Current Loan Amount', 'Credit Score', 'Annual Income',
       'Monthly Debt', 'Years of Credit History', 'Number of Open Accounts',
       'Number of Credit Problems', 'Current Credit Balance',
       'Maximum Open Credit', 'Bankruptcies', 'Tax Liens', 'Term_Long Term',
       'Term_Short Term', 'Years in current job_1 year',
       'Years in current job_10+ years', 'Years in current job_2 years',
       'Years in current job_3 years', 'Years in current job_4 years',
       'Years in current job_5 years', 'Years in current job_6 years'
       'Years in current job_7 years', 'Years in current job_8 years',
       'Years in current job_9 years', 'Years in current job_< 1 year',
       'Home Ownership_HaveMortgage', 'Home Ownership_Home Mortgage',
       'Home Ownership_Own Home', 'Home Ownership_Rent',
       'Purpose_Business Loan', 'Purpose_Buy House', 'Purpose_Buy a Car',
       'Purpose_Debt Consolidation', 'Purpose_Educational Expenses',
       'Purpose_Home Improvements', 'Purpose_Medical Bills', 'Purpose_Other',
       'Purpose_Take a Trip', 'Purpose_major_purchase', 'Purpose_moving',
       'Purpose_other', 'Purpose_renewable_energy', 'Purpose_small_business',
       'Purpose_vacation', 'Purpose_wedding'],
      dtype='object')
Data after encoding:
                            Loan Status Current Loan Amount Credit Score Annual Income ... Purpose_renewable_energy Purpose_small_business Purpose_vacation Purpos
e_wedding
        Fully Paid
                               445412.0
                                                709.0
                                                           1167493.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
        Fully Paid
                             99999999.0
                                                741.0
                                                           2231892.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                               347666.0
                                                721.0
                                                            806949.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Charged Off
                               206602.0
                                               7290.0
                                                            896857.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                               217646.0
                                                730.0
                                                           1184194.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                             99999999.0
                                                742.0
                                                           1190046.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                               210584.0
                                                719.0
                                                            783389.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                             99999999.0
                                                732.0
                                                           1289416.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                               103136.0
                                                742.0
                                                           1150545.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
       Fully Paid
                               530332.0
                                                746.0
                                                           1717524.0 ...
                                                                                              False
                                                                                                                      False
                                                                                                                                        False
                                                                                                                                                         False
[67490 rows x 45 columns]
```

DATA PREPROCESSING

SMOTE analysis on Target variable

SMOTE analysis: Generated synthetic samples for the Target Variable

Data split into training and testing sets. Training shape: (48485, 44), Testing shape: (12122, 44)

```
Class distribution before SMOTE:
Loan Status
     39767
      8718
Name: count, dtype: int64
Applied SMOTE. Balanced training data shape: (79534, 44)
Class distribution after SMOTE:
Loan Status
     39767
     39767
Name: count, dtype: int64
Data before scaling:
  Current Loan Amount Credit Score Annual Income Monthly Debt ... Purpose_renewable_energy Purpose_small_business Purpose_vacation Purpose_wedding
              269126.0
                               736.0
                                           871587.0
                                                         10822.21
                                                                                            False
                                                                                                                    False
                                                                                                                                      False
                                                                                                                                                       False
              331562.0
                               743.0
                                          1336251.0
                                                         11469.35
                                                                                            False
                                                                                                                    False
                                                                                                                                      False
                                                                                                                                                       False
                                           652897.0
                                                         15343.07
                                                                                                                    False
                                                                                                                                      False
                                                                                                                                                       False
            99999999.0
                               737.0
                                                                                            False
              177870.0
                                           825664.0
                                                          8187.86
                                                                                                                    False
                                                                                                                                      False
                                                                                                                                                       False
                               731.0
                                                                                            False
              142230.0
                               726.0
                                           671726.0
                                                          5412.91 ...
                                                                                            False
                                                                                                                    False
                                                                                                                                      False
                                                                                                                                                       False
```


DATA PREPROCESSING

Feature Scaling:

StandardScaler standardizes features by removing the mean and scaling to unit variance.

Feature Scaling

```
Data before scaling:
   Current Loan Amount
                                   Bankruptcies Tax Liens
               43142.0
                                             0.0
                                                        0.0
0
              545600.0
                                             0.0
                                                        0.0
                                                        0.0
              394548.0
                                             0.0
              232430.0
                                             0.0
                                                        0.0
            99999999.0
                                             0.0
                                                        0.0
[5 rows x 15 columns]
Data after scaling:
[[-0.35663791 0.76897403 -0.4262926
                                       -0.51593105 -0.87399208 -0.95526629
  -0.34366072 0.0304761
                           0.14030968
                                       0.3590117 -0.36112044 -0.16493497
  -0.01252135 -0.34297799 -0.124086511
 [-0.34038665 0.76897403 -0.42012448
                                       0.12363472 -0.87399208
                                                                1.23141493
                           0.12483832 -1.29562791 -0.36112044
  -0.34366072 1.2059969
                                                                0.01082073
   0.03052127 -0.34297799 -0.124086511
 [-0.3452722
               0.76897403 -0.43451676
                                       0.78294629 -0.87399208 -0.95526629
  -0.34366072 0.98361147
                           0.3414374
                                        0.15218174 -0.36112044
                                                                0.16957611
   0.0123013 -0.34297799 -0.12408651]
 [-0.35051567 0.76897403 -0.42423656
                                       0.95325386 -0.20503355 -0.95526629
  -0.34366072
              1.50204579
                           0.23313786 -0.88196801 -0.36112044 -0.01306191
  -0.05562492 -0.34297799 -0.124086511
 [ 2.87631749
               0.76897403 -0.4314327
                                       -0.06519509 -0.87399208 -0.95526629
               0.91963297
                                       -0.46830811 -0.36112044
  -0.34366072
                           1.0840628
                                                                2.07145621
   0.09104914 -0.34297799 -0.12408651]]
```

++EXPERIMENTS AND RESULTS

Model Type	Model	Baselines	Hyperparameter Tuning	Best Parameters
Plain ML Models	Random Forest	Accuracy: 081923, Precision: 0.7839, Recall: 0.8652, F1 Score: 0.8201	Accuracy: 0.8618, Precision: 0.8324, Recall: 0.9073, F1 Score: 0.8683	max_features:'sqrt', n_estimators: 200
	XGBoost	Accuracy: 0.8207, Precision: 0.7990, Recall: 0.8953, F1 Score: 0.8448	Accuracy: 0.8638, Precision: 0.8091, Recall: 0.9536, F1 Score: 0.8754	learning_rate: 0.1, max_depth: 7, n_estimators: 200
	KNN	Accuracy: 0.7462, Precision: 0.7019, Recall: 0.7612, F1 Score: 0.7435	Accuracy: 0.7616, Precision: 0.7461, Recall: 0.7961, F1 Score: 0.7703	n_neighbors : 15
	Logistic Regression	Accuracy: 0.7293, Precision: 0.6984, Recall: 0.7961, F1 Score: 0.7398	Accuracy: 0.7439, Precision: 0.7131, Recall: 0.8196, F1 Score: 0.7627	C:1

+ + +

EXPERIMENTS AND RESULTS

Model Type	Model	Baselines	Best Parameters
Ensemble Technique	Random Forest, XGBoost, KNN and Logistic Regression	Accuracy: 0.8053, Precision: 0.9130, Recall: 0.6702, F1 Score: 0.7730	Best of all parameters

Application

Created Web application for Prediction

+ + +

CONCLUSION

- Random Forest and XGBoost models outperformed logistic regression and KNN.
- Hyperparameter tuning and ensemble methods enhanced model performance further.

+ + +

FUTURE SCOPE

 Implementing mechanisms to continuously update and retrain models with new data to adapt to changing patterns and improve prediction accuracy.

 Exploring additional features or creating new features based on domain knowledge to improve model performance.

 Utilizing clustering techniques to segment customers based on their financial behavior and preferences, enabling personalized lending solutions.

CONTRIBUTIONS

PROBLEM STATEMENT	Jayalakshmi , Priyanka, Somna, Naveen
LITERATURE SURVEY	Jayalakshmi, Somna
DATA COLLECTION	Priyanka, Naveen
DATA PRE-PROCESSING	Priyanka, Naveen , Jayalakshmi , Somna
FEATURE ENGINEERING	Priyanka, Naveen
MODELING	Priyanka, Naveen , Jayalakshmi , Somna
EXPERIMENT MODELING	Jayalakshmi, Somna
REPORT and PRESENTATION SLIDES	Jayalakshmi , Priyanka, Somna, Naveen

REFERENCES

- R. Manglani and A. Bokhare, "Logistic Regression Model for Loan Prediction: A Machine Learning Approach,"
 2021 Emerging Trends in Industry 4.0 (ETI 4.0), Raigarh, India, 2021, pp. 1-6, doi:
 10.1109/ETI4.051663.2021.9619201.
- U. E. Orji, C. H. Ugwuishiwu, J. C. N. Nguemaleu and P. N. Ugwuanyi, "Machine Learning Models for Predicting Bank Loan Eligibility," 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Lagos, Nigeria, 2022, pp. 1-5, doi: 10.1109/NIGERCON54645.2022.9803172.
- L. Zheng, Q. Han and Z. Junhu, "A Combination Method of Resampling and Random Forest for Imbalanced Data Classification," 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), Suzhou, China, 2022, pp. 1-5, doi: 10.1109/CTISC54888.2022.9849803.
- A. Mueankoo, M. Eso and S. Musikasuwan, "Performance of a Loan Repayment Status Model Using Machine Learning," 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Prachuap Khiri Khan, Thailand, 2022, pp. 1-4, doi: 10.1109/ECTI-CON54298.2022.9795570.
- M. Meenaakumari, P. Jayasuriya, N. Dhanraj, S. Sharma, G. Manoharan and M. Tiwari, "Loan Eligibility Prediction using Machine Learning based on Personal Information," 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, 2022, pp. 1383-1387, doi: 10.1109/IC3I56241.2022.10073318.
- G. Arutjothi and C. Senthamarai, "Prediction of loan status in commercial bank using machine learning classifier,"
 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 2017, pp. 416-419,
 doi: 10.1109/ISS1.2017.8389442.

THANK YOU