An Introduction to Wireless Networks and Wi-Fi (IEEE 802.11)

Bhaskaran Raman

Department of CSE, IIT Bombay

Wireless and Mobile Networks

- # wireless subscribers > # wireline subscribers
- India (TRAI report, Oct 2013):
 - 875 million wireless, only 29 million wireline!
- Wireless Internet on mobile and portable devices: laptops, tablets, smart-phones
 - Anytime, anywhere
- Several unique challenges

Elements of a Wireless Network

Elements of a Wireless Network

- Relay responsible for sending packets between wired network and wireless host(s) in its "area"
- E.g., cell towers, Wi-Fi access points

Elements of a Wireless Network

 Relays from one wireless node to another

Wireless Network Challenges

- 1. Bandwidth: scarce, variable, disconnection
 - No "wire" to contain signal
 - Weaker signal, prone to interference, multipath
- 2. Portability, mobility
 - Point of attachment to network varies
- 3. Limited capabilities
 - Power, screen size, CPU, storage
- 4. Security risks are higher
 - Broadcast medium, two-way authentication, device can get lost

Reference: "Adaptation and Mobility in Wireless Information Systems", Randy H. Katz, IEEE Personal Communications, 1st Quarter 1994, Vol. 1, Issue 1, pp 6-17.

Wi-Fi (IEEE 802.11)

- Extremely successful technology
 - Part of layman's vocabulary
 - 3+ billion USD market, growing
- Part of IEEE 802.x series

802.11: What does it Specify?

- PHY sub-layer
 - 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac
 - Modulation and coding schemes
- MAC sub-layer
 - Independent of the PHY
 - DCF (Distributed Coordination Function) based on CSMA/CA
 - PCF (Point Coordination Function)
- Link sub-layer
 - Framing, addressing, fragmentation, aggregation
- Network management
 - Network formation and maintenance

802.11 PHY Layer: Channels

- Designed to operate in ISM bands
- License free in most of the world, with transmit power restrictions
- Has been one of the keys to WiFi's success
- Also cause of performance problems!

Modulation and Coding

- What is channel coding?
 - Data bits → Bits with redundancy
 - Essential in wireless channels since BER is high
 - Human analogy
 - "u cn rd ths tho ltrs r mssng"
- What is modulation?
 - Bits to be sent → Physical energy (e.g. RF signal)
 - Human analogy
 - Natural language → sound from the mouth
- Reverse at receiver: demodulation, decoding

802.11b PHY: Modulation Schemes

	Modulation	Data rate
\rightarrow	BPSK	1Mbps
\longrightarrow	<u>Q</u> PSK	2Mbps
\longrightarrow	CCK	5.5Mbps
\rightarrow	ССК	11Mbps

- 802.11b: spread spectrum
 - DSSS most common
 - Uses 11-bit coding sequence called Barker code

802.11a/g PHY: Modulation & Coding

Modulation	Coding rate	Data rate (Mbps)
BPSK	1/2	6
BPSK	3/4	9
QPSK	1/2	12
QPSK	3/4	18
16-QAM	1/2	24
16-QAM	3/4	36
64-QAM	2/3	48
64-QAM	3/4	54

- 802.11a/g: uses OFDM style modulation
- Varying bits/symbol & coding redundancy → different data rates

802.11n Modulation & Coding

Modulation	Coding rate	Data rate (Mbps)
BPSK	1/2	6.5
QPSK	1/2	13
QPSK	3/4	19.5
16-QAM	1/2	26
16-QAM	3/4	39
64-QAM	2/3	52
64-QAM	3/4	58.5
64-QAM	5/6	65

- Also OFDM based
- 802.11n has two main new PHY features:
 - Channel bonding, MIMO

Channel Bonding and MIMO

- Channel bonding
 - Use two adjacent 20 MHz channels
 - Doubles the data rate (approximately)
- MIMO: Multi-input, Multi-output
 - Take advantage of multiple independent paths between tx and rx antennas
 - Upto 3 tx antennas, 3 rx antennas: 3x3
 - Can triple the capacity: 3 spatial streams
- Overall: up to 450 Mbps
- Beware: a lot of hidden overheads $\rightarrow \rightarrow$

802.11 Basic Service Set (BSS)

802.11 Extended Service Set (ESS)

Types of MAC

- What dimension is used for multiplexing?
 - Time (TDMA), frequency (FDMA), code (CDMA)
- How is control achieved?
 - Centralized versus distributed
- 802.11 specifies
 - DCF: Distributed Coordination Function (distributed)
- → PCF: Point Coordination Function (centralized)

- CSMA/CD: Carrier-Sense Multiple Access with Collision Detection
 - Listen before transmit (CS)
 - Tx when (as soon as) medium is free (1-persistent)
 - Collision Detection (CD)
 - Backoff (exponential) on collision

802.11 CSMA/CA

- Collision detection (near) impossible in wireless
 - Tx power is relatively very high near the transmitter
- Conceptual name is CSMA/CA: Carrier-Sense Multiple Access with Collision Avoidance
 - 802.11 calls it DCF (Distributed Coordination Function)
- Collision Avoidance:
 - Backoff before tx (even when no collision)
 - Contention Window (CW) in terms of number of slots

The Backoff Procedure

Use immediate ACK; no ACK → assume collision

CSMA/CA + ACK

- ACK missing → deduce collision, retransmit
 - Have to contend anew
- SIFS should be < DIFS
 - Else, ACK timeout may occur unnecessarily

What Determines Slot Time?

- 1. A finishes tx at time t
- B senses channel as free at t, C senses channel as free at t+d
- 3. C starts sending at t+d+DIFS, this reaches B at t+d+DIFS+d
- 4. B should not have started tx by then \rightarrow slot-time should be > 2d
- Slot-time has other dependences as well
- Slot-time: 802.11b is 20 micro-sec, for 802.11g/a/n is 9 micro-sec

The Hidden Node Problem

Medium is free DOES NOT IMPLY ok to transmit

The Exposed Node Problem

Medium is busy DOES NOT IMPLY not-ok to transmit

Hidden Node Solution: RTS/CTS

- 1. S1 says "can I send for X duration?" (RTS)
- 2. R says "yes, send for Y duration" (CTS)
- 3. S2 knows to be silent for Y duration

RTS/CTS Questions

- 1. Access mechanism before sending RTS?
- 2. Gap between RTS & CTS?
- 3. Gap between CTS & ACK?
- 4. Can there be collision of two RTS frames?
- 5. What if range is non-circular? Will it work?
- 6. Does RTS/CTS address the exposed node problem?

802.11 Management:

Beacons and Probes

Beacon has: AP capabilities, beacon

period, SSID, Traffic Indication Map (TIM)

- A client may be in the coverage area of many APs
- APs send periodic beacons
- Client may passively
 scan these
 Probe request

Or, probe-response for active scanning

802.11 Management: Authentication and Association

- A client has to
 - Authenticate itself to an AP
 - Then Associate itself
- A client may authenticate itself to many APs to speed-up roaming

802.11n Frame Format

6

Addr3

Frame seq # (for reliable ARQ)

QoS

ctl

6

Addr4

For error detection

0 - 7951

Address 3: depends on

ToDS/FromDS fields in

Seq

ctl

Frame control; BSSID in

most cases (MAC address of AP)

receiver's address (RA)

Address 2: always the transmitter's address

HT MAC payload CRC

Address 4: needed, used

only in mesh mode

802.11n Frame Control

Address Field Usage Examples

Throughput Estimation in 802.11

- PHY preamble + header: 24 bytes
- RTS: 20 bytes, CTS: 14 bytes
- MAC header: 28 or 34 bytes 🤈 🔾 🕹
 - IP header: 20 bytes
 - TCP header: 20 bytes
 - UDP header: 8 bytes
 - Bottomline: too much per-packet overhead!
 - 802.11n introduces frame aggregation

>

Summary

- Wireless flexible, but poses challenges
- Wi-Fi: PHY, MAC, Link, Management