Machine Learning B (2025) Home Assignment 4

Bar Segal xsb740

17/05/2025

Contents

1	The Airline question Part 1: Single flight (known no–show rate 0.05)	
2	Equivalence of the Two PAC Variants (a) Standard \implies Pos/Neg	4 4 5
3	Growth Function 3.1 Finite \mathcal{H} : the immediate upper bound	7

1 The Airline question

Part 1: Single flight (known no-show rate 0.05)

Setup. Sell n = 100 tickets for a plane with 99 seats. Each passenger independently shows up with probability p = 0.95 (and no-shows with probability 0.05).

Random variable. Let

X = number of passengers who show up.

Then

$$X \sim \text{Binomial}(n = 100, p = 0.95).$$

Overbooking event. An overbooking occurs when more passengers show up than there are seats:

$$Pr[overbooked] = Pr[X > 99].$$

Because $X \leq 100$, this is the same as

$$Pr[X > 99] = Pr[X = 100].$$

Exact probability. All 100 ticket-holders must appear, so

$$\Pr[X = 100] = (0.95)^{100} = e^{100 \ln(0.95)} \approx 5.92 \times 10^{-3} \approx 0.59\%.$$

Conclusion. The airline will face an overbooked flight with probability

$$(0.95)^{100} \approx 0.006 \text{ (about } 0.6\%),$$

or roughly once in every 170 flights.

Remark: Since the event X > 99 reduces to the single point X = 100, we can compute the probability exactly with one binomial mass. Therefore there is no need to invoke tail inequalities such as Chernoff or Hoeffding bounds here; those tools are useful when the event involves a wider tail region or when an explicit calculation is infeasible.

Part 2: Historical sample of 10000 + one flight of 100

We want a bound on the probability of observing

- (a) a sample of 10 000 passengers with exactly 95 % show-ups, and
- (b) the **next flight of 100** passengers all showing up,

when the true (unknown) show-up probability is some $p \in [0, 1]$.

Two directions to bound this probability are:

(a) Treat the two samples as independent Let

 $E_1 = \{X_1 = 9500\}$ with $X_1 \sim \text{Bin}(10000, p)$, $E_2 = \{X_2 = 100\}$ with $X_2 \sim \text{Bin}(100, p)$. For a fixed p,

$$\Pr(E_1 \wedge E_2 \mid p) = {10\ 000 \choose 9500} p^{9600} (1-p)^{500}.$$

Hoeffding on E_1 . $\Pr(E_1 \mid p) \leq \exp[-2 \cdot 10000 (|p - 0.95|)^2]$. Hence

$$\Pr(E_1 \wedge E_2 \mid p) \le p^{100} \exp[-2 \cdot 10000 (|p - 0.95|)^2].$$

Maximising the RHS over $p \in [0,1]$ gives the worst case $p^* \approx 0.953$ and

$$\Pr(E_1 \wedge E_2) \le 6.8 \times 10^{-3}$$
.

(This matches the " ≈ 0.0068 " hinted at in the exercise.)

(b) "Split-after-sampling" (VC-style) argument

- 1. Draw once a sequence of $10\,100$ independent Bernoulli(p) variables. Condition on the event that exactly $9\,600$ are "show" and 500 are "no-show".
- 2. Randomly allocate 100 of the 10100 passengers to the next flight, the remaining 10000 form the historical sample.

Let $C = \{\text{exactly } 9\,600 \text{ shows out of } 10\,100\}$. For a fixed p,

$$\Pr(C \mid p) = \binom{10100}{9600} p^{9600} (1-p)^{500}.$$

Given the composition (9 600 show, 500 no-show), the probability that all 100 chosen for the flight come from the 9 600 shows is hypergeometric:

$$\Pr(E_2 \mid C) = \frac{\binom{9600}{100}}{\binom{10100}{100}} \approx 6.08 \times 10^{-3}.$$

Hence, for any p,

$$\Pr(E_1 \wedge E_2 \mid p) = \Pr(C \mid p) \frac{\binom{9600}{100}}{\binom{10100}{100}}.$$

The factor $\Pr(C \mid p)$ is maximised at $p^* = 9\,600/10\,100 \approx 0.9505$, giving $\Pr(C \mid p^*) \approx 1.83 \times 10^{-2}$. Therefore

$$\Pr(E_1 \wedge E_2) \le 1.83 \times 10^{-2} \times 6.08 \times 10^{-3} \approx 1.1 \times 10^{-4}.$$

$$\boxed{\Pr(E_1 \wedge E_2) \le 1.1 \times 10^{-4}}.$$

(If the composition probability $\Pr(C)$ is omitted, then we recover the looser bound 6.1×10^{-3} stated earlier.)

2 Equivalence of the Two PAC Variants

(a) Standard \implies Pos/Neg

Assume a concept class C is efficiently PAC learnable by the hypothesis class H. That is, there exists a polynomial-time algorithm

$$\mathcal{A}_{\text{PAC}}(\text{EX}(c;D),\varepsilon,\delta)$$

which, for every distribution D over the instance space and every target concept $c \in \mathcal{C}$, outputs $h \in \mathcal{H} \cup \{h_0, h_1\}$ satisfying

$$\Pr_{x \sim D}[h(x) \neq c(x)] \leq \varepsilon \quad \text{with probability} \quad \geq 1 - \delta.$$

We show that C is also efficiently positive–negative (PN) PAC learnable using the same hypothesis class.

Notation. For any target c, let D_c^+ (resp. D_c^-) be the distribution of instances conditioned on c(x) = 1 (resp. c(x) = 0). The oracles

$$EX_c^+ : x \sim D_c^+, \qquad EX_c^- : x \sim D_c^-$$

supply positive and negative examples without labels (labels are implicit).

Algorithm \mathcal{B} for PN-PAC learning

1. Setting parameters: Let

$$m = m_{\text{PAC}}(\varepsilon/2, \delta),$$

where m_{PAC} is the sample bound required by \mathcal{A}_{PAC} . (Polynomial in $1/\varepsilon$ and $\log(1/\delta)$.)

- 2. Creating a synthetic mixed sample: For each i = 1, ..., m:
 - (a) Flip an unbiased coin.
 - (b) If heads, draw $x_i \sim \mathrm{EX}_c^+$ and set the label $y_i \leftarrow 1$.
 - (c) If tails, draw $x_i \sim \mathrm{EX}_c^-$ and set the label $y_i \leftarrow 0$.

Denote the resulting labelled multiset by $S = \{(x_i, y_i)\}_{i=1}^m$. Note that every (x_i, y_i) is distributed exactly as a draw from the mixture distribution $D_{\text{mix}} := \frac{1}{2}D_c^+ + \frac{1}{2}D_c^-$.

3. Running the standard PAC learner: Invoke

$$h \leftarrow \mathcal{A}_{PAC}(S, \varepsilon/2, \delta)$$

and return h.

Correctness analysis:

By the guarantee of \mathcal{A}_{PAC} , with probability at least $1 - \delta$,

$$\Pr_{x \sim D_{\text{mix}}} [h(x) \neq c(x)] \leq \frac{\varepsilon}{2}.$$

Write

$$p^+ = \Pr_{x \sim D_c^+}[h(x) = 0], \qquad p^- = \Pr_{x \sim D_c^-}[h(x) = 1].$$

Because D_{mix} selects a positive and a negative example each with probability 1/2,

$$\Pr_{D_{\text{mix}}}[h(x) \neq c(x)] = \frac{1}{2}p^+ + \frac{1}{2}p^- \le \frac{\varepsilon}{2}.$$

Multiplying by 2 gives $p^+ + p^- \le \varepsilon$. Since both terms are non-negative, each must be $\le \varepsilon$:

$$\Pr_{x \sim D_c^+}[h(x) = 0] \leq \varepsilon, \quad \Pr_{x \sim D_c^-}[h(x) = 1] \leq \varepsilon.$$

Thus h meets the PN-PAC accuracy requirement. The probability of success is at least $1 - \delta$, the same as for \mathcal{A}_{PAC} .

Efficiency:

The algorithm draws exactly $m = m_{\text{PAC}}(\varepsilon/2, \delta)$ examples and performs only a coin flip and an oracle call per example, plus one invocation of \mathcal{A}_{PAC} . Because m and the running time of \mathcal{A}_{PAC} are polynomial in $1/\varepsilon$ and $\log(1/\delta)$, \mathcal{B} is an efficient PN-PAC learner.

Conclusion. Efficient standard PAC learnability of \mathcal{C} implies efficient positive—negative PAC learnability by the same hypothesis class \mathcal{H} .

(b) $Pos/Neg \implies Standard$

Assume a concept class C is efficiently positive—negative (PN) PAC learnable with respect to the same hypothesis class \mathcal{H} . That is, there exists a polynomial–time algorithm

$$\mathcal{A}_{\mathrm{PN}}(\mathrm{EX}_c^+,\mathrm{EX}_c^-,\varepsilon,\delta)$$

which, given independent samples from the conditional distributions D_c^+ (positives) and D_c^- (negatives), outputs $h \in \mathcal{H} \cup \{h_0, h_1\}$ satisfying

$$\Pr_{x \sim D_c^+} \big[h(x) = 0 \big] \leq \varepsilon \quad \text{and} \quad \Pr_{x \sim D_c^-} \big[h(x) = 1 \big] \leq \varepsilon$$

with probability at least $1 - \delta$. We show that C is also efficiently PAC learnable in the standard model.

Notation. Let D be the (unknown) distribution from which the standard example oracle

$$\mathrm{EX}(c;D)$$
: $(x,c(x)) \sim D$

draws labelled examples. Write $p = \Pr_{x \sim D}[c(x) = 1]$ for the positive class prior. By definition $D = pD_c^+ + (1-p)D_c^-$.

Algorithm A for the standard PAC model

1. Parameter preparation. Let

$$m = m_{\text{PN}}(\varepsilon/2, \delta/3), \qquad N = \left\lceil \frac{8m}{\varepsilon} \ln \frac{6}{\delta} \right\rceil,$$

where $m_{\rm PN}$ is the (polynomial) sample bound required by $\mathcal{A}_{\rm PN}$.

2. Draw N mixed examples. Query EX(c; D) N times. Split the sample into

$$S^+ = \{x_i : c(x_i) = 1\}, \qquad S^- = \{x_i : c(x_i) = 0\}.$$

- 3. Handle extreme imbalance.
 - If $|S^+| < m$, return h_0 (the constant 0 hypothesis).
 - Else if $|S^-| < m$, return h_1 (the constant 1 hypothesis).
- 4. Run the PN learner. Feed the first m positives and the first m negatives to $\mathcal{A}_{PN}(\cdot; \varepsilon/2, \delta/3)$ and return the hypothesis h it produces.

Correctness analysis

Case 1: Both $|S^+|, |S^-| \ge m$. The examples supplied to \mathcal{A}_{PN} are i.i.d. from D_c^+ and D_c^- , so with probability $\ge 1 - \delta/3$,

$$\Pr_{x \sim D_c^+} \bigl[h(x) = 0 \bigr] \leq \tfrac{\varepsilon}{2}, \qquad \Pr_{x \sim D_c^-} \bigl[h(x) = 1 \bigr] \leq \tfrac{\varepsilon}{2}.$$

Consequently,

$$\Pr_{x\sim D}[h(x)\neq c(x)] \ = \ p\Pr_{D_c^+}[h(x)=0] + (1-p)\Pr_{D_c^-}[h(x)=1] \ \leq \ \tfrac{\varepsilon}{2} + \tfrac{\varepsilon}{2} \ = \ \varepsilon.$$

Case 2: $|S^+| < m$ (symmetric for S^-). A multiplicative Chernoff bound applied to the N Bernoulli labels shows that, except with probability $\leq \delta/3$, $|S^+| < m$ implies the true prior $p < \varepsilon/4$. In that event the constant classifier h_0 makes error $\Pr_{x \sim D}[h_0(x) \neq c(x)] = p < \varepsilon$.

Union bound. Failure in Case 1 occurs with probability $\leq \delta/3$, and failure in either constant branch contributes at most $\delta/3$. Therefore the overall failure probability is $\leq \delta$, so \mathcal{A} is a valid PAC learner.

Efficiency

Both N and m are polynomial in $1/\varepsilon$ and $\log(1/\delta)$. Sampling, counting, and running \mathcal{A}_{PN} (thus step 4) are all polynomial-time operations. Hence the entire algorithm \mathcal{A} is efficient.

Conclusion. If \mathcal{C} is efficiently PN-PAC learnable by \mathcal{H} , then \mathcal{C} is efficiently PAC learnable in the standard model by \mathcal{H} as well.

3 Growth Function

Let the growth function of a hypothesis set \mathcal{H} be defined by

$$m_{\mathcal{H}}(n) = \max_{S \subseteq \mathcal{X}, |S|=n} |\{h|_S : h \in \mathcal{H}\}|,$$

i.e. the maximum number of distinct dichotomies that \mathcal{H} can realise on any n points.

Finite \mathcal{H} : the immediate upper bound

3.1 Finite \mathcal{H} : the immediate upper bound

Assume $|\mathcal{H}| = M < \infty$. Fix an arbitrary set $S \subseteq \mathcal{X}$ of n points. Every $h \in \mathcal{H}$ induces exactly one labelling of S, so

$$|\{h|_S: h \in \mathcal{H}\}| \leq M.$$

Conversely, the total number of all possible binary labellings of S equals 2^n , which can never be exceeded. Taking the maximum over all S preserves the inequality on each side; hence

$$\boxed{m_{\mathcal{H}}(n) \leq \min\{M, 2^n\}}.$$

Tightness of the bound. The two terms inside the min can both be achieved: if $M \leq 2^n$ we may choose \mathcal{H} with exactly M mutually different hypotheses that realise M distinct labellings on some n-point sample, whereas if $2^n \leq M$ we can take \mathcal{H} to contain all 2^n binary labellings of a fixed n-point set. Therefore the bound is tight in both parameter regimes

3.2 Exactly two hypotheses imply $m_{\mathcal{H}}(n) = 2$

Now let $\mathcal{H} = \{h_1, h_2\}$ with $h_1 \neq h_2$.

Upper bound Part 1 with M=2 immediately yields $m_{\mathcal{H}}(n) \leq 2$.

Lower bound. Since $h_1 \neq h_2$, there exists $x^* \in \mathcal{X}$ such that $h_1(x^*) \neq h_2(x^*)$. Take any set S of n points that contains x^* . Then $h_1|_S \neq h_2|_S$, so $|\{h_1|_S, h_2|_S\}| = 2$, forcing $m_{\mathcal{H}}(n) \geq 2$.

Combining the bounds we obtain

$$m_{\mathcal{H}}(n) = 2$$
 for every $n \ge 1$ whenever $|\mathcal{H}| = 2$.

(For completeness, on the empty sample we have $m_{\mathcal{H}}(0) = 1$.)

3.3 Sub-multiplicative property: $m_{\mathcal{H}}(2n) \leq m_{\mathcal{H}}(n)^2$

For every hypothesis class \mathcal{H} and every $n \in \mathbb{N}$,

$$m_{\mathcal{H}}(2n) \leq (m_{\mathcal{H}}(n))^2.$$

Fix any sample $T = \{x_1, \dots, x_{2n}\}$ of size 2n. Partition it into two blocks of equal size:

$$S_1 = \{x_1, \dots, x_n\}, \qquad S_2 = \{x_{n+1}, \dots, x_{2n}\}.$$

For a hypothesis $h \in \mathcal{H}$ denote its restrictions by $h|_{S_1} \in \{0,1\}^n$ and $h|_{S_2} \in \{0,1\}^n$. The dichotomy that h realizes on the full sample T is completely described by the ordered pair $(h|_{S_1}, h|_{S_2})$.

Counting ordered pairs. By definition of the growth function,

$$\#\{h|_{S_1} \mid h \in \mathcal{H}\} \leq m_{\mathcal{H}}(n), \qquad \#\{h|_{S_2} \mid h \in \mathcal{H}\} \leq m_{\mathcal{H}}(n).$$

Hence the number of distinct ordered pairs—and therefore the number of distinct dichotomies on T—is at most $m_{\mathcal{H}}(n) \times m_{\mathcal{H}}(n) = m_{\mathcal{H}}(n)^2$.

_

Maximising over all samples. Because the bound holds for every size-2n sample T, it holds for the one that maximises the count, giving $m_{\mathcal{H}}(2n) \leq m_{\mathcal{H}}(n)^2$.

Thank you.