

$$5'(+) = 6t + 0.5$$

The function that we want to find s(t) is called an antiderivative of s'(t)=v(t)

Definition: Suppose f(x) is a given function. If F(x) is a function having f(x) as its derivative, that is

$$F(x) = f(x)$$

then we call F(x) an antiderivative. of f(x).

Ex: Find an antiderivative of $f(x) = x^a$

The Educated guess: $F_{x}(x) = x^{3}$ $F_{y}(x) = 3x^{3}$ (Not quite an antidevivative of x^{3}) $F_{y}(x) = \frac{1}{3}x^{3}$

Check whether
$$F_a$$
 is an untiderivative off:

$$F_a'(x) = \frac{1}{3} \frac{1}{4} x^3$$

$$= \frac{1}{3} \cdot 3 x^2$$

$$= x^3$$
So $F_a(x) = \frac{1}{3} x^3$ is an antiderivative of $f(x) = x^2$.

$$F_3(x) = \frac{1}{3} x^3 + 1$$

$$F_3(x) = x^2$$

$$F_3(x) = x^2$$

$$f_3(x) = \frac{1}{3}x^3 + 1$$
 is also an antiderivative of x^2 .

Find an antiderivative of
$$f(x) = e^{-2x}$$
.
 $F(x) = e^{-2x}$.
 $F(x) = e^{-2x}$.
 $F(x) = (-2)e^{-2x}$

$$F_{\lambda}(x) = \frac{1}{(-\lambda)} \cdot e^{-\lambda x}$$

$$F_{\lambda}(x) = \frac{1}{(-\lambda)} (-\lambda) e^{-\lambda x}$$

$$F_{\lambda}(x) = \frac{1}{(-\lambda)} (-\lambda) e^{-\lambda x}$$

$$= e^{-\lambda x}$$

Fa(x) is an antiderivative of e-ax

$$F_3(x) = (-3)e^{-2x} + 5$$

$$F_3(x) = e^{-2x}$$

F₃(x) is also an antidevivative of e^{-2x}.

Theorems: (1) If F(x) is an antidevinate of f(x) then F(x) + C is also an antidevivative of f(x).

Def: If F(x) an antiderivative integral have the form F(x) +C and the standard way to express this fact is integrand

 $\int f(x) dx = F(x) + C$

integral

indefinite integral antidevivative

constant integration

Since 3x3 is an antiderivative of x2 Find X dx (r \neq -1) Let's check that rt X is an antidevivative of x