Лабораторная работа №3.2.2 Резонанс напряжений в последовательном контуре

Джокер Бэтмен, Б02-000, 18.09.2021

Введение

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно-частотных и фазово-частотных характеристик, определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

Теоретическая справка

В теории переменных токов напряжения и токи принято выражать комплексными числами. Модуль комплексного числа равен эффективному значению напряжения (или тока), а фаза — сдвигу фаз, измеренному по отношению к какому-либо одному напряжению или току, принятому в качестве опорного. Параметры основных элементов цепи задаются их импедансами, т.е. тоже некоторыми комплексными числами.

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансами $Z_L = r_L + i\Omega L$, последовательно подключенных к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω .

Обозначим через U_R напряжение на резисторе, через U_L – напряжение на катушке и через U_{R+L} – суммарное напряжение на катушке и на резисторе. Для этих напряжений справедливы комплексные соотношения:

$$\hat{U}_R = \hat{I}R, \ \hat{U}_L = \hat{I}\left(r_L + i\Omega L\right), \ \hat{U}_{R+L} = \hat{I}\left(R + r_L + i\Omega L\right).$$

Напомним, что здесь r_L — активное сопротивление катушки, которое характеризует суммарные потери энергии в катушке, в том числе потери в её ферромагнитном сердечнике.

Переходя к модулям и фазам токов и напряжений, найдём:

$$U_R = IR,$$

$$tg \psi_1 = 0;$$

$$tg \psi_2 = \frac{\Omega L}{r_L};$$

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2},$$

$$tg \psi_3 = \frac{\Omega L}{R+r_L}.$$

В этих формулах U и I обозначают эффективные значения напряжений и токов (показания приборов).

Измеряя с помощью трёх вольтметров значения U_R , U_L и U_{R+L} и зная сопротивление резистора R, нетрудно вычислить силу тока в цепи, активное сопротивление катушки r_L , её индуктивность L, мощность P_L , выделяемую на катушке, и сдвиг фаз между током и напряжением на катушке.

Рассчитаем мощность переменного тока, выделяемую на катушке. Мгновенное значение мощности равно

$$P = U(t)I(t)$$
.

Средняя мощность за период T определяется формулой

$$P = \frac{1}{T} \int_0^T U(t)I(t)dt.$$

Полагая $I(t)=I\sqrt{2}\cos{(\Omega t)},\ U(t)=U\sqrt{2}\cos{(\Omega t+\psi)},$ получим после интегрирования:

$$\bar{P}_L = U_L I \cos \psi = I^2 r_L.$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется, таким образом, действительной частью её импеданса.

Активное сопротивление катушки r_L можно определить, если включить её в последовальный колебательный контур с известными параметрами — сопротивлением R и ёмкостью C. В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя частота совпадают: $\omega = \Omega$), реактивные сопротивления индуктивности и ёмкости равны:

$$\omega_0 L = \frac{1}{\omega_0 C}.$$

Определив каким-либо экспериментальным способом добротность Q этого контура, можно рассчитать полное сопротивление контура R_{Σ} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$

Резонансное сопротивление контура R_{Σ} включает в себя известное сопротивление резистора R и активное сопротивление катушки r_L :

$$R_{\Sigma} = R + r_L.$$

Экспериментальная установка

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R_1\approx 100~\Omega$ и катушки L с выдвижным сердечником подключена к трансформатору, выходное напряжение которого можно изменять от 0 до 127 В. Напряжения на каждом из элементов и суммарное напряжеие цепи измеряются тремя вольтметрами: V_R , V_L и V_{R+L} . Амперметр A измеряет ток в цепи, а ваттметр P — мощность, выделяющуюся на катушке.

Ваттметр электродинамической системы состоит из двух катушек, одна из которых вращается в магнитном поле другой, если через них течёт

Источник питания

Рис. 1 — Схема экспериментальной установки

ток. Токовая катушка ваттметра II^* включается последовательно в исследуемую цепь, а катушка напряжений (потенциальная) VV^* – параллельно элементу, в котором измеряется выделяемая мощность.

Схема установки для изучения резонанса напряжений изображена на рис. 2. Последовательно соединены резистор $R_2 \approx 5~\Omega$, катушка L и магазин ёмкостей C. Амперметр A измеряет ток в цепи, вольтметр V_C – напряжение на ёмкости, вольтметр V_{Σ} – суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y – напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию.

Резонансные напряжения на контуре $U_{\Sigma, \text{ рез.}}$ и на ёмкости $U_{C, \text{ рез.}}$ равны соответственно

$$U_{\Sigma, \text{ pes.}} = I_{\text{pes.}} R_{\Sigma}, \ U_{C, \text{ pes.}} = \frac{I_{\text{pes.}}}{\Omega C}.$$

Отсюда

$$Q = \frac{U_{C, \text{ pes.}}}{U_{\Sigma, \text{ pes.}}}.$$

Это значит, что добротность контура может быть найдена по измеренным значениям напряжений на контуре и на конденсаторе при резонансе. Зная добротность контура и ёмкость C, можно рассчитать R_{Σ} , а затем определить r_L .

Рис. 2 — Схема экспериментальной установки

Ход работы

I. Закон Ома в цепи переменного тока

Подготовим к работе приборы в схеме, собранной по рис. 1. Подключим в цепь катушку индуктивности, после чего установим на источнике напряжение $U\approx 127$ В. Установим сердечник катушки в положение x=5 мм, после чего запишем показания тока I, напряжений U_R , U_L и U_{R+L} и мощности P_L . Далее будем вытаскивать сердечник из катушки с шагом $\Delta x=2$ мм, каждый раз записывая показания всех приборов. Занесём результаты в таблицу 1. Среднее положение сердечника $\bar{x}=20$ мм также включим в серию измерений.

Также включим в таблицу две колонки для дальнейшей обработки результатов, в одну из которых поместим вычисленные по соответствующей формуле значения $r_L = \frac{P_L}{2I^2}$, а другую – значения $L = \frac{1}{2\pi\nu_0}\sqrt{\left(\frac{U_L}{I}\right)^2-r_L^2}$, где $\nu_0=50$ Гц – частота сети.

Погрешности приборов составляют половину цены деления шкалы, поэтому $\Delta U=0.5$ В, а $\Delta I\approx 0.01$ А, $\Delta P\approx 0.1$ Вт, тогда $\sigma_{r_L}=r_L\sqrt{2\left(\frac{\Delta I}{I}\right)^2+\left(\frac{\Delta P_L}{P_L}\right)^2}$ (формулу для σ_L здесь приводить не будем в силу её чрезвычайной громоздкости). Занесём эти погрешности в таблицу. Погрешность определения коложения сердечника также составляет половину цены деления и равна $\Delta x=0.5$ мм.

Использованное в схеме сопротивление $R_1 = 98 \Omega$. Постром на одном листе графики зависимостей L и r_L от положения сердечника, он приведён на

Таблица 1 – Зависимость	тока I , напряжений	U_R, U_L	и U_{R+L}	и мощности
P_L в цепи от положения с	ердечника х			

x,MM	I,A	U_R ,B	U_L ,B	U_{R+L} ,B	$P_L,$ BT	r_L,Ω	L ,м Γ	σ_{r_L} , Ω	σ_L ,M Γ
5	0,53	42	106	124	16,0	28,5	610,3	1,0	13,5
7	0,60	51	101	123	15,3	21,3	518,5	0,7	10,4
9	0,65	56	97	121	14,5	17,2	462,3	0,5	8,8
11	0,70	60	93	120	14,0	14,3	413,0	0,4	7,4
13	0,73	63	90	119	13,5	12,7	384,1	0,4	6,7
15	0,75	66	87	118	13,0	11,6	361,8	0,3	6,2
17	0,78	68	84	117	12,8	10,5	336,2	0,3	5,6
19	0,80	71	82	117	12,5	9,8	320,3	0,3	5,2
20	0,80	72	81	117	12,3	9,6	312,4	0,3	5,1
21	0,83	73	80	117	12,3	9,0	301,5	0,2	4,8
23	0,85	74	78	116	12,3	8,5	287,1	0,2	4,5
25	0,88	76	76	116	12,0	7,8	270,4	0,2	4,1
27	0,88	77	74	116	12,0	7,8	263,1	0,2	4,0
29	0,90	78	72	115	11,8	7,3	250,4	0,2	3,8
31	0,90	79	71	115	11,8	7,3	246,8	0,2	3,8
33	0,93	80	69	115	11,8	6,8	232,1	0,2	3,5
35	0,93	81	68	114	11,5	6,7	228,9	0,2	3,4
37	0,93	82	67	114	11,5	6,7	225,4	0,2	3,4
39	0,95	82	66	114	11,5	6,4	217,4	0,2	3,2

рисунке 3. Сглаживающие пунктирные кривые получены аппроксимацией экспериментальных точек зависимостью $f(x) = ax^b$.

Из графиков найдём значения $L=(295,0\pm 5,0)\,$ мГн и $r_L=(8,6\pm 0,3)\,$ $\Omega,$ соответствующие резонансному положению сердечника x=20 мм.

Построим для резонансного положения сердечника векторную диаграмму с горизонтально расположенным U_R , приведём её на рисунке 4. Отложим на диаграмме активную и реактивную составляющие напряжения на катушке и рассчитаем по ним значения L и r_L . Получим $L=(295,8\pm5,0)\,$ м Γ н и $r_L = (8,5 \pm 0,3) \; \Omega$. Определим по диаграмме также косинус сдвига фаз между током и напряжением на катушке, получим $\cos \theta = 0.177 \pm 0.007$. Сравним это со значением, рассчитанным с помощью мощности, выделяемой на катушке – $\cos\theta=\frac{P_L}{U_L I}=0,180\pm0,008.$ С помощью теоремы косинусов выразим мощность P_L , выделяемую на

катушке, через напряжения U_R, U_L, U_{R+L} и сопротивление R_1 :

$$I = \frac{U_R}{R_1}, P_L = U_{L,\text{akt}}I, U_{L,\text{akt}} = \frac{U_{L+R}^2 - U_L^2 - U_R^2}{2U_R}, \implies P_L = \frac{U_{L+R}^2 - U_L^2 - U_R^2}{2R_1},$$

тогда $P_L = (11, 5 \pm 0, 8)\;\; \mathrm{Br} - \mathrm{видим},$ что в пределах погрешности полученное значение совпадает с показанием ваттметра.

II. Резонанс напряжений

Подготовим к работе приборы в схеме, собранной по рис. 2. Подберём ёмкость такую, чтобы эллипс на экране электронного осциллографа выро-

Рис. 3 — Зависимость индуктивности L и внутреннего сопротивления катушки r_L от положения сердечника x. Сглаживающие кривые проведены по МНК

дился в прямую, т.е. чтобы контур вошёл в резонанс с частотой сети. Резонансные значения в цепи при этом равны: ток $I=(2,45\pm0,03)$ А, напряжение на ёмкости $U_{C,\ \rm pes.}=(256,0\pm1,0)$ В, а на конденсаторе – $U_{\Sigma,\ \rm pes.}=(33,0\pm0,5)$ В. Отсюда добротность контура можем оценить как

$$Q = \frac{U_{C, \text{ pes.}}}{U_{\Sigma, \text{ pes.}}} \approx 7,76 \pm 0,15.$$

Ёмкость, при которой наступал резонанс, равна C=31 мк Φ , координата сердечника при этом $x=(20,0\pm0,5)$ мм, а величина дополнительного сопротивления $R_2=5,6$ мм.

Отключим катушку от цепи и при неизменном положении сердечника найдём её омическое сопротивление её витков с помощью омметра и получим величину $r_L=(4,53\pm0,02)~\Omega,$ а затем найдём с помощью моста переменного тока E7-8 на частотах 50 Гц и 1 кГц значения L и r_L : при 50 Гц имеем $L=(291\pm1)$ мГн и $r_L=(8,38\pm0,04)~\Omega,$ а при 1 кГц – $L=(250\pm1)$ мГн и $r_L=(117\pm1)~\Omega.$

Теперь рассчитаем активное сопротивление катушки r_L через резонансные значения тока и напряжения на контуре по формуле $r_L=\frac{U_{\Sigma,\mathrm{pes}}}{I_{\mathrm{pes}}}-R_2=(8,17\pm0,26)~\Omega.$

Теперь рассчитаем L и r_L через добротность. Используем формулы $r_L=\frac{1}{Q\Omega C}-R_2=(8,23\pm0,15)~\Omega$ и $L=\frac{1}{\Omega^2 C}=291,8$ мГн.

Сведём результаты измерений в таблицу 2, приведённую ниже.

Рис. 4 — Векторная диаграмма для напряжений в схеме

Таблица 2 — Зависимость тока I, напряжений $U_R,\,U_L$ и U_{R+L} и мощности P_L в цепи от положения сердечника x

	Омметр	Мост Е7-8	График	Вект. диаг	$f(I, U_{\Sigma, pes})$	f(Q)
r_L, Ω	4,53	8,38	8,60	8,50	8,17	8,23
L , м Γ н	_	291	295,0	295,8	_	291,8

Вывод

В данной работе был исследован резонанс напряжений в последовательном колебательном контуре с изменяемой ёмкостью и исследован закон Ома в цепи переменного тока. Результатом подтверждения теоретических предсказаний служит хорошее совпадение параметров катушки – её индуктивность L и внутреннее сопротивление r_L — измеренных разными методами. Была также подробно исследована векторная диаграмма контура.

Наиболее точным их них является измерение с помощью моста Е7-8, однако и другие методы можно считать довольно точными, учитывая, что в пределах погрешностей они совпадают с результатами измерений моста (см. таблицу 2). Это говорит о корректности проведения эксперимента и правильности работы приборов.