Jean-Marie Dufour Janvier 2002

Compilé: 19 janvier 2002

THÉORIE ÉCONOMÉTRIQUE EXERCICES 9

MÉTHODE DU MAXIMUM DE VRAISEMBLANCE

1. Soit la densité

$$\ell(y_1, \ldots, y_n; \theta) = \frac{1}{(2\pi)^{n/2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^n (y_i - \theta)^2\right\}.$$

- (a) Montrez qu'en modifiant cette densité sur un ensemble de mesure de Lebesgue nulle, on peut faire en sorte que l'estimateur du maximum de vraisemblance soit égal à $\sum_{i=1}^n y_i^4$.
- (b) Est-il possible d'empêcher ce genre de manipulation ? Si oui, comment ?
- 2. Montrez que, dans un problème de maximisation de la vraisemblance,
 - (a) l'estimateur du maximum de vraisemblance peut ne pas exister;
 - (b) il peut exister plusieurs estimateurs du maximum de vraisemblance.
- 3. Soit $\ell(y; \theta)$, $\theta \in \Theta$, une fonction de vraisemblance telle que
 - (a) Θ est un ensemble convexe et
 - (b) $\log [\ell(y; \theta)]$ est une fonction strictement concave en θ .

Montrez que l'estimateur du maximum de vraisemblance de θ est unique (s'il existe).

- 4. Comment se comporte l'estimateur du maximum de vraisemblance lorsqu'on reparamétrise le modèle ? Justifiez votre réponse.
- 5. Soit $(\mathcal{Y}, \mathcal{P})$ où $\mathcal{P} = (P_{\theta} = \ell(y; \theta) \cdot \mu, \theta \in \Theta)$, un modèle paramétrique dominé. Soit S(y) une statistique exhaustive pour θ .
 - (a) Si $\lambda = g(\theta)$ est une fonction bijective de θ et si l'estimateur du maximum de vraisemblance $\hat{\theta}(y)$ de θ est unique, comment les estimateurs du maximum de vraisemblance de λ et θ sont-ils reliés? Justifiez votre réponse.

- (b) Que se passe-t-il dans le cas où l'estimateur du maximum de vraisemblance de θ n'est pas unique?
- (c) L'estimateur $\hat{\theta}(y)$ est-il une fonction de S(y)? Justifiez votre réponse.
- 6. Considérez le modèle d'équilibre :

$$q_t = ap_t + b + u_t,$$

$$S_t = \alpha p_t + \beta x_t + \nu_t,$$

$$q_t = S_t,$$

où q_t est la quantité demandée, p_t est le prix, S_t est la quantité offerte, x_t est une variable exogène, et les vecteurs $(u_t, \nu_t)'$, $t = 1, \ldots, n$ sont des vecteurs aléatoires indépendants et de même loi

$$N\left[\left(\begin{array}{c}0\\0\end{array}\right),\left(\begin{array}{cc}\sigma_u^2&\sigma_{u\nu}\\\sigma_{u\nu}&\sigma_\nu^2\end{array}\right)\right]$$
.

- (a) Trouvez la forme réduite de ce modèle.
- (b) Comment les paramètres de la forme réduite sont-ils reliés à ceux de la forme structurelle ? Ce modèle est-il sous-identifié, juste identifié ou suridentifié ?
- (c) Trouvez les estimateurs du maximum de vraisemblance des paramètres de la forme réduite.
- (d) Trouvez les estimateurs du maximum de vraisemblance des paramètres de la forme structurelle.
- 7. Donnez des conditions de régularité sous lesquelles une suite d'estimateurs du maximum de vraisemblance converge presque sûrement vers la vraie valeur du paramètre.
- 8. Soient les hypothèses suivantes :

H1: les variables Y_1, \ldots, Y_n sont indépendantes, de même loi, de densité $f(y; \theta)$, $\theta \in \Theta \subseteq \mathbb{R}^p$;

H2: Θ est d'intérieur non vide et θ_0 appartient à l'intérieur de Θ ;

H3: la vraie valeur inconnue θ_0 est identifiable;

H4: la log-vraisemblance

$$L_n(y; \theta) = \sum_{i=1}^n \log[f(y_i; \theta)]$$
 est continue en θ ;

H5: $E_{\theta_0}[\log f(Y_i; \theta)]$ existe;

- H6: la log-vraisemblance est telle que $\frac{1}{n}L_n\left(y;\theta\right)$ converge presque sûrement vers $E_{\theta_0}\left[\log\left(Y_i;\theta\right)\right]$ uniformément en $\theta\in\Theta$;
- H7 : la log-vraisemblance est deux fois continûment dérivable dans un voisinage ouvert de θ_0 ;
- H8: $I_{1}\left(\theta_{0}\right)=E_{\theta_{0}}\left[-\frac{\partial^{2}\log f(Y;\theta)}{\partial\theta\;\partial\theta'}\right]$ existe et est inversible.
- Si $\hat{\theta}_n$ est une suite convergente de maxima locaux, montrez que la distribution asymptotique de $\sqrt{n}(\hat{\theta}_n \theta_0)$ est $N[0, I_1(\theta_0)^{-1}]$.
- 9. Soit Y_1, \ldots, Y_n un échantillon de variable aléatoires indépendantes de loi $N\left[\mu, \sigma^2\right]$ où $\mu \neq 0$ et $\sigma > 0$. Trouvez la distribution asymptotique de l'estimateur du maximum de vraisemblance de $\gamma = 1/\mu$.
- 10. Soit Y_1, \ldots, Y_n un échantillon de variable aléatoires indépendantes extraites d'une loi exponentielle de densité :

$$f(y; \theta) = e^{-(y-\theta)} 1_{y>\theta}.$$

- (a) Quelle condition de régularité n'est pas vérifiée dans ce problème ?
- (b) Comment se comporte $\sqrt{n}(\hat{\theta}_n \theta_0)$ pour n grand?
- (c) Trouvez une loi de probabilité asymptotique pour $\hat{\theta}_n$.
- 11. Soient $\binom{Y_i}{X_i}$, $i=1,\ldots,n$, des vecteurs indépendants de même densité $f(y_i,x_i;\theta)$. S'il y a coupure entre la densité conditionnelle de Y_i étant donné X_i et la densité marginale de X_i , montrez que l'estimateur du maximum de vraisemblance $\hat{\theta}_n$ (s'il existe) peut être obtenu en calculant séparément un estimateur du maximum de vraisemblance conditionnel et un estimateur du maximum de vraisemblance marginal.