1 Introdução

Hello (Kendrew et al., 1958)

2 Revisão de literatura

Hello (Kendrew et al., 1958)

2.1 Métodos de atribuição de estruturas secundárias

2.1.1 DSSP

As ligações de hidrogênio são definidas utilizando um modelo eletrostático. Por esse modelo, uma ligação de hidrogênio HB ocorrerá se, e somente se, a energia E for menor que -0.5 kcal/mol. Para o cálculo são utilizadas as cargas parcias $+q_1, -q_1$ nos átomos C e O, e $-q_2, +q_2$ nos átomos N e H, onde $q_1 = 0.42e$ e $q_2 = 0.20e$.

$$E < -0.5kcal/mol \implies HB = Verdade$$
 (2.1)

onde

$$E = q_1 q_2 (1/r(ON) + 1/r(CH) - 1/r(OH) - 1/r(CN)) * f$$
(2.2)

Na equação (2.2), r(AB) é a distância interatômica entre A e B em ângstroms e o fator dimensional f=332.

Os autores afirmam que, por este modelo, uma boa ligação de hidrogênio teria aproximadamente -3 kcal/mol. Assim, a escolha de um limiar em -0.5 kcal/mol torna o modelo mais tolerante à erros nas coordenadas atômicas e à ligações de hidrogênios bifurcadas (Kabsch and Sander, 1983).

2.1.2 Stride

stride

2.1.3 KAKSI

kaksi

2.1.4 PROSS

pross

2.2 Métodos de predição de estruturas secundárias

2.2.1 Primeira geração (1957-1978)

primeira geração - chou e fasman - gor

2.2.2 Segunda geração (1983-1992)

segunda geração - GORIII

2.2.3 Terceira geração

terceira geração - aprendizado de máquina (NN) - PHDsec

2.2.4 Quarta geração

quarta geração - aprendizado de máquina (NN) + dados evolutivos (PSSM) - PSIPred

Bibliography

Kabsch, Wolfgang and Christian Sander (1983). "Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features". In: *Biopolymers* 22.12, pp. 2577–2637.

Kendrew, John C et al. (1958). "A three-dimensional model of the myoglobin molecule obtained by x-ray analysis". In: *Nature* 181.4610, pp. 662–666. DOI: 10.1038/181662a0.