DS124-Introduction to Neural Networks

By: eng. Esraa Madhi

Neural networks can be used for both supervised and unsupervised learning, as well as for regression and classification tasks. Here's a brief overview:

- 1. Supervised Learning
- **Regression**: Predicting a continuous output (e.g., house prices).
- Classification: Categorizing inputs into discrete classes (e.g., spam or not spam).
- 2. Unsupervised Learning
- Example: Auto-encoders in NLP

From Human Brain to Neural Networks:

https://youtu.be/UuCTfDvdeoU

Biological vs Artificial Neural Networks : A Comparison

What is Neural Networks:

Basic Component of Neural Network:

• What exist in the black box?

Is it that Simple?

https://youtu.be/Yyx2k4od3qk

https://youtu.be/UiQyMSKez7k

How Neural Networks work?

https://youtu.be/vbeanwfm0Q4

How to Get Result from Nodes:

- Regression: https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/
- Classification: https://jalammar.github.io/feedforward-neural-networks-visual-interactive/

How it differs from logistic regression?

Neural Network	Logistic Regression
It can be applied to both classification and regression problems.	It is appropriate for issues involving binary categorization.
Designed after the anatomy of the human brain	The results of linear regression are transformed using a logistic function.
It can recognize patterns in data and capture non-linear relationships.	It can only simulate linear decision boundaries.
It takes substantially more memory and processing power.	It uses less processing power and memory.
Implementation and training might be difficult.	Simple to use and train
It can need regularization and be prone to overfitting.	It may not need regularization and is less prone to overfitting.

Logistic Regression

Neural Network

https://youtu.be/Ls1dJqZtl7w

https://youtu.be/RkxThL4V2d4

https://youtu.be/SRAFVJ5UbB0

https://youtu.be/rEDzUT3ymw4

NN Training: Feed-Forward propagate & Backpropagation:

https://youtu.be/sLsCN9ZL9RI

- https://hmkcode.com/ai/backpropagation-step-by-step/
- https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
- https://medium.com/datathings/neural-networks-and-backpropagationexplained-in-a-simple-way-f540a3611f5e
- https://youtu.be/_9qHQA30hys
- https://xnought.github.io/backprop-explainer/
- https://medium.datadriveninvestor.com/artificial-neural-network-nn-explained-in-5-minutes-with-animations-9a80f49ab190
- https://medium.com/datathings/neural-networks-and-backpropagationexplained-in-a-simple-way-f540a3611f5e
- https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
- https://medium.datadriveninvestor.com/artificial-neural-network-nn-explained-in-5-minutes-with-animations-9a80f49ab190
- https://hmkcode.com/ai/backpropagation-step-by-step/
- https://www.youtube.com/watch?v=S5AGN9XfPK4
- https://www.youtube.com/watch?v=gyW5gQnsm3w
- https://www.datacamp.com/tutorial/mastering-backpropagation
- https://xnought.github.io/backprop-explainer/

Tensorflow demo

https://youtu.be/Tsvxx-GGITg

Neural Network Architectures

It depends on input type, output type, problem type

https://www.v7labs.com/blog/neural-network-architectures-guide#:~:text=model%20wa s%20built.-,Standard%20Neural%20Networks,-The%20Perceptron

The Essential Guide to Neural Network Architectures • www.v7labs.com

Most interesting one is Transformers

Resources:

- https://medium.com/@esraa.sabry.mohamed
- https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
- https://medium.com/swlh/a-gentle-introduction-to-backpropagation-andimplementing-neural-network-animation-f6b6da9d46d5
- https://www.youtube.com/watch?v=llg3gGewQ5U
- https://www.analyticsvidhya.com/blog/2021/05/beginners-guide-to-artificialneural-network/
- https://youtu.be/jmmW0F0biz0?feature=shared
- https://youtu.be/bfmFfD2Rlcg?feature=shared
- https://towardsdatascience.com/nothing-but-numpy-understanding-creatingbinary-classification-neural-networks-with-e746423c8d5c
- https://youtu.be/CqOfi41LfDw?feature=shared