$correlaid_text_analysis$

 $\label{eq:linear_equation} Xiang~XU,~Jing(Mira)~Tang,~Ningze(Summer)~ZU,~Jianhao(Miller)~Yan$ November~3,~2018

Scraping webpages

tidy text

look at single word frequency and visualize

first at doc1

plotting and comparing the three articles


```
##
    Pearson's product-moment correlation
##
##
## data: proportion and doc1
## t = -0.90635, df = 800, p-value = 0.365
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
    -0.10103135 0.03728257
## sample estimates:
##
           cor
  -0.03202772
##
##
##
    Pearson's product-moment correlation
##
## data: proportion and doc1
## t = -1.3419, df = 800, p-value = 0.18
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   -0.11623528 0.02191054
## sample estimates:
##
           cor
## -0.04738898
```

As we saw in the plots, the word frequencies have little frequencies in three articles.

Sentiment analysis

bing sentiment analysis

Comparing the three sentiment dictionaries

Most common sentiment words

```
## # A tibble: 79 x 3
##
      word
                     sentiment
                                    n
      <chr>
                     <chr>
##
                                <int>
##
    1 significant
                     positive
                                   15
                                    7
##
    2 correct
                     positive
##
    3 misconceptions negative
                                    7
                     negative
                                    6
##
    4 fall
##
    5 error
                     negative
                                    4
    6 false
                                    4
                     negative
    7 happy
                                    4
##
                     positive
    8 plot
                     negative
                                    4
##
   9 confusing
                     negative
                                    3
##
                                    3
## 10 deviation
                     negative
## # ... with 69 more rows
```


negative

misconception illiterate difficulty unfamiliarhype hard lose disrupt critical crazy deviation plot evil confusion misunderstand arbitrary error confusing rejecterrors false broken falls wrong odd misconceptions

odd misconception disrupt critical crazy deviation plot evil confusion impossible falls wrong odd misconceptions

sneaky fallen

meaningful ready correct recommend excited intelligence insightful prefer happy easy brilliant conveniently intuitive positive imaginative capable dedicated intriguing clearer complement congratulate efficient incredibly realistic trust promise leading successfully supported

positive

Chapter 3 tf-idf

(Intercept) log10(rank) ## -1.0057750 -0.8284333

tf-idf function

```
## # A tibble: 960 x 6
##
      article word
                                   tf
                                        idf tf_idf
##
      <chr>
              <chr>
                         <int> <dbl> <dbl> <dbl>
   1 doc2
                           53 0.0742 1.10 0.0815
##
              block
##
    2 doc2
              proof
                            31 0.0434 1.10 0.0477
##
    3 doc1
                            38 0.0432 1.10 0.0475
              true
##
   4 doc2
              blockchain
                            26 0.0364 1.10 0.0400
##
   5 doc1
             hypothesis
                            30 0.0341 1.10 0.0375
##
   6 doc1
              difference
                            28 0.0319 1.10 0.0350
                            22 0.0308 1.10 0.0339
##
   7 doc2
              hash
                            26 0.0296 1.10 0.0325
##
   8 doc1
              model
   9 doc2
              previous
                            21 0.0294 1.10 0.0323
## 10 doc3
              wave
                            14 0.0264 1.10 0.0290
## # ... with 950 more rows
```


Chapter 4 n-grams and correlations

We use unnest_tokens function to tokenize the articles into consecutive sequences of words, called n-grams. Here we focus on bigrams, aka two consecutive words.

As one might expect, a lot of the most common bigrams are pairs of common (uninteresting) words, such as of the and to be: what we call "stop-words". This is a useful time to use tidyr's separate() and unite(), which splits a column into multiple based on a delimiter and reunite them. In this process we can remove cases where either is a stop-word.

Also, we clean the bigrams by str_extract() and filter() function to remove cases where either is NA, space or non-letter word.

Then we look at tf_idf of bigrams and visualize them.

## # A tibble: 10 x 6							
##		article	bigram	n	tf	idf	tf_idf
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	doc1	null hypothesis	21	0.0843	1.10	0.0927
##	2	doc1	null model	15	0.0602	1.10	0.0662
##	3	doc2	previous block	13	0.0478	1.10	0.0525
##	4	doc1	alternative model	7	0.0281	1.10	0.0309
##	5	doc2	previous hash	7	0.0257	1.10	0.0283
##	6	doc1	omniscient jones	6	0.0241	1.10	0.0265
##	7	doc1	sample size	6	0.0241	1.10	0.0265
##	8	doc1	significant result	6	0.0241	1.10	0.0265

Figure: The 12 bigrams with the highest tf-idf

There are advantages and disadvantages to examining the tf-idf of bigrams rather than individual words. Pairs of consecutive words might capture structure that isn't present when one is just counting single words, and may provide context that makes tokens more understandable. However, the per-bigram counts are also sparser: a typical two-word pair is rarer than either of its component words. Thus, bigrams can be more useful when we have a larger text dataset.

• Using bigrams to provide context in sentiment analysis

```
## # A tibble: 0 x 4 ## # ... with 4 variables: word1 <chr>, word2 <chr>, score <int>, nn <int>
```

For these are three academic articles and there are not many bigrams with negative terms. So we can skip this part.

• Visualizing a network of bigrams with ggraph

```
## # A tibble: 6 x 3
##
     word1
                  word2
                                 n
     <chr>
##
                  <chr>
                              <int>
## 1 null
                  hypothesis
                                 21
## 2 null
                                 15
                  model
## 3 previous
                  block
                                 13
                                 7
## 4 alternative model
                                  7
## 5 previous
                  hash
## 6 omniscient
                                  6
                  jones
## IGRAPH 137685d DN-- 82 62 --
## + attr: name (v/c), n (e/n)
  + edges from 137685d (vertex names):
    [1] null
                    ->hypothesis
                                                  ->model
##
    [3] previous
                    ->block
                                      alternative->model
##
    [5] previous
                    ->hash
                                      omniscient ->jones
##
    [7] sample
                    ->size
                                      significant->result
    [9] wikitab
                    ->eng
##
                                      alternative->hypothesis
## [11] blog
                    ->post
                                      genesis
                                                  ->block
```

```
## [13] specific
                   ->situation
                                     bday
## [15] common
                   ->misconceptions considered ->surprising
## + ... omitted several edges
                                 print
        common
                                                  considered
                                         besseres
                                  paste
                                                             sampling rate
                                       nutzererlebnis
         sample
                 deviation
                                                    mehr
                                                                           future
                                              informationen
                                       jones
                                                                             studies
ooklegutzen
                                                              daniekens
                        wave
                                      omniscient
                         mapply
                                                                        positive false
                                                         start
          unsere
bartner
ated
                                                     building
map
                 facebook
                                                                        patsch
                                                                                   happy
                                                           packages
rivacy
                                                                            toll birthday
                                              specific specific
                                                               install
      datatreme
                       copyright
                             correlaid
npressum
                                                                        wikitab
                                      zu
      policy
                                                       list
                                                                        freq
 cookie
           contentoggie menu
                                                    index genesis
                                                                         bday
           main
                                                        bloc
                                                    previous has unction
                       post blogalternative
                                   hypothesis
  • Counting and correlating pairs of words
##
     article
                   word
## 1
        doc1
                   skip
## 2
        doc1
                   main
## 3
        doc1
                content
```

```
## 4
        doc1
                  toggle
## 5
        doc1 navigation
## 6
        doc1
## # A tibble: 294,912 x 3
##
      item1
                  item2
                             n
##
      <chr>
                  <chr> <dbl>
##
    1 main
                  skip
                             3
                             3
##
    2 content
                  skip
##
    3 toggle
                  skip
                             3
    4 navigation skip
                             3
                             3
##
    5 menu
                  skip
    6 zur
                  skip
##
    7 zu
                             3
                  skip
##
    8 correlaid
                  skip
                             3
                             3
##
    9 blog
                  skip
## 10 values
                  skip
```

... with 294,902 more rows

• Pairwise correlation

Find the phi coefficient between words based on how often they appear in the same article.

```
## # A tibble: 132 x 3
##
      item1
                             correlation
                 item2
##
      <chr>
                  <chr>
                                    <dbl>
                                    1.000
##
    1 true
                 hypothesis
##
    2 difference hypothesis
                                    1.000
                                    1.000
##
    3 model
                 hypothesis
    4 hypothesis true
                                    1.000
##
##
    5 difference true
                                    1.000
##
    6 model
                  true
                                    1.000
    7 hypothesis difference
                                    1.000
##
    8 true
                                    1.000
                  difference
##
    9 model
                 difference
                                    1.000
## 10 hypothesis model
                                    1.000
## # ... with 122 more rows
                                   "model"
                                                  "hypothesis" "block"
    [1] "true"
                      "difference"
                                                 "blockchain" "null"
##
   [6] "previous"
                      "hash"
                                    "proof"
  [11] "data"
                      "values"
    [1] "hypothesis" "true"
                                    "difference" "model"
                                                               "blockchain"
##
    [6] "block"
                      "previous"
                                    "hash"
                                                 "proof"
                                                               "null"
## [11] "values"
                      "data"
```

Let's pick particular interesting words and find the other words most associated with them.

Visualize the correlations and clusters of words.

