School of Cities Workshop

https://github.com/upadhyan/SoC-AI-Workshop

About Me

Nakul Upadhya

Nakul.Upadhya@mail.utoronto.ca

The Optimization and Machine Learning (OptiMaL) Lab

https://optimal.mie.utoronto.ca/

Research Areas

Deep Learning

XAI

Applications

Manufacturing

Healthcare

Agenda

AI/ML/LLM Primer

NLP Lab

Break

Explainability in AI

Explainability Lab

Geospatial Analysis Lab

AI, ML and LLM Primer

Slides by Alex Olson and Nakul Upadhya Presented by Nakul Upadhya

Artificial Intelligence

- Getting computers to behave intelligently:
 - Perform non-trivial tasks as well as humans do
 - Perform tasks that even humans struggle with
- Many sub-goals:
 - Perception
 - Reasoning
 - Control
 - Planning

My poker face: AI wins multiplayer game for first time

Pluribus wins 12-day session of Texas hold'em against some of the world's best human players

Speech Recognition: Perception + Reasoning

Game Playing: Reasoning + Planning

Autonomous Driving: Perception + ReasoningControl + Planning

Knowledge-Based Al

Write programs that simulate how people solve the problem

Fundamental limitations:

- Will never get better than a person
- Requires deep domain knowledge
- We don't know how we do some things (e.g., riding a bicycle)

Data-Based AI = Machine Learning

Write programs that learn the task from examples

- No need to know how we do it as humans
- Performance should improve with more examples
- X May need many examples!
- X May not understand how the program works!

Machine Learning

- Study of algorithms that
 - Improve their performance P
 - At some <u>task</u> T
 - With experience E
- Well defined learning task: <P,T,E>

The Machine Learning Process

- Study of algorithms that
 - Improve their performance P
 - At some <u>task</u> T
 - With <u>experience</u> E
- Well defined learning task:
 <P,T,E>

- Experience
 - Examples of the form (input, correct output)
- Task
 - Mapping from input to output
- Performance
 - "Loss function" that measures error w.r.t. desired outcome

Choices in ML Problem Formulation

- Experience
 - Examples of the form (input, correct output)
- Task
 - Mapping from input to output
 - Performed by a "model"
- Performance
 - "Loss function" that measures error w.r.t. desired outcome

Loan Applications

- What historical examples do I have? What is a correct output?
- Predict probability of default?
 Loan decision? Credit score?
- Do I care more about minimizing False Positives? False negatives?

What is a "model"?

- A useful approximation of the world.
- Maps between inputs x and outputs $f(x \mid a,b,c,...)$.
- Examples:
 - Input: Age, Income, Debt.
 - Output: Credit Score
- Typically, there are many reasonable models for the same data
- **Training** a model = finding appropriate values for (a,b,c,...)
 - An optimization problem
 - "appropriate" = minimizes the Loss (cost) function

Example: Linear Regression

Learn the weights that minimize the error.

Classification Loss (Error) Function

How unhappy are you with the answer that the model gave?

•
$$L_{0-1}(y, f(x)) = 1$$
 if: $y \neq f(x)$
0 otherwise

• 0-1 loss function: intuitive but hard to optimize = train

- In practice, we use:
 - approximations of the 0-1 loss getting warmer or getting colder
 - Loss functions based on probability

Why should this work at all?

The main theoretical basis of ML:

With a sufficient amount of "similar" data

十

an expressive model class:

Minimizing the loss function on the training data yields a highly accurate model on unseen test data, with high probability

- 1. Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)
- 2. Model: a function $f_{(a,b,c,...)}$
 - Maps from X to Y
 - (a,b,c,...) are the parameters
- 3. Loss function: L(y, f(x))
 - Penalizes the model's mistakes

Language Modeling

- Language Modeling is a classification task!
- Goal: Predict the next word.
 - More specifically, predict the probability that the next word is y.
- Data:
 - Attributes: An incomplete Sentence or prompt.
 - Label: the next word/token.
 - Instances: Lots and lots of examples.

Large Language Models

- Latest models are capable of learning from much more data due to:
 - Hardware Improvements.
 - Availability of data.
 - Willingness to spend \$\$.

- We'll begin with a *user prompt*: the message that the user sends to the system.
- User: What's the capital of France?

- We'll begin with a *user prompt*: the message that the user sends to the system.
- Our system doesn't just receive this prompt. It also receives a system prompt, which primes the model to behave how we'd like.

- System: You are a helpful assistant that provides clear, concise, and accurate answers. When answering, you always give context and explain your reasoning where appropriate.
- User: What's the capital of France?

- We'll begin with a *user prompt*: the message that the user sends to the system.
- Our system doesn't just receive this prompt. It also receives a system prompt, which primes the model to behave how we'd like.
- Tools like ChatGPT may also supply "memories" about the user, or user-defined instructions.

- System: You are a helpful assistant that provides clear, concise, and accurate answers. When answering, you always give context and explain your reasoning where appropriate.
- Memories:
 - 2024-04-08 User asked for recommendations on modern philosophy. Recommended "The History of Philosophy" by A.C. Grayling
 - 2024-03-15 User reported trouble installing Python libraries on a Mac. Explained how to use Pip and Homebrew to install Python packages.
- User Profile:
 - Name: Alex
 - Profession: Senior Research Associate
 - Interaction Style: professional and concise
- User: What's the capital of France?

All of this is the "X"

 System: You are a helpful assistant that provides clear, concise, and accurate answers. When answering, you always give context and explain your reasoning where appropriate.

Memories:

- 2024-04-08 User asked for recommendations on modern philosophy. Recommended "The History of Philosophy" by A.C. Grayling
- 2024-03-15 User reported trouble installing Python libraries on a Mac. Explained how to use Pip and Homebrew to install Python packages.
- User Profile:
 - Name: Alex
 - Profession: Senior Research Associate
 - Interaction Style: professional and concise
- User: What's the capital of France?

• Output: Paris

And this is the "y"

• System: You are a helpful assistant that provides clear, concise, and accurate answers. When answering, you always give context and explain your reasoning where appropriate.

Memories:

- 2024-04-08 User asked for recommendations on modern philosophy. Recommended "The History of Philosophy" by A.C. Grayling
- 2024-03-15 User reported trouble installing Python libraries on a Mac. Explained how to use Pip and Homebrew to install Python packages.
- User Profile:
 - Name: Alex
 - Profession: Senior Research Associate
 - Interaction Style: professional and concise
- User: What's the capital of France?

• Output: Paris

How do we make this prediction?

Word Embeddings:

- Problem: Computers operate using numbers: how does a model understand text?
- Solution: Encode tokens as vectors of numbers that the model can work with.

Embeddings:

- Problem: Computers operate using numbers: how does a model understand text?
- Solution: Encode tokens as vectors of numbers that the model can work with.
- We call these vectors
 Embeddings.
 - Word2Vec: 300 features
 - GPT-3: 12,888 features

How does an LM "understand" word meaning?

Problem:

- What numbers do we fill the embedding with?
- How do we make these embeddings contain information?

Solution:

- We learn the numbers for each vector.
- Key concept of word embeddings: similar words should have similar vectors.
- How do we accomplish this?

Results

https://projector.tensorflow.org/

Results

@

Tokenization

- LLMs have a fixed vocabulary of words they recognize
- Many words are compound and can be constructed from smaller parts
- Some words may not be in the vocabulary, but we still want to deal with them
- Tokenization involves breaking up words into parts if necessary

Tokens Characters

7 29

What's the capital of France?

Tokens Characters

5 28

Antidisestablishmentarianism

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France is

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France is Paris

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France is Paris.

How do LLMs know what to generate?

- LLMs are trained on vast quantities of reference examples, called training data.
- These examples come from a wide variety of sources and allow the model to learn the fundamentals of language.
- During training, the model is provided with a nearly complete sentence and is asked to "fill in the blank".

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT-3 model is taught from these Q&A pairs

Human annotators write <u>more</u> answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

No more humans involved!

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning