川口康平・澤田真行『因果推論の計量経済学』

(日本評論社, 2024 年刊)

正誤情報一覧

2024.11.4 ver.2.0

本書にて、下記の通り補足説明と訂正がございます。ここにお詫びして訂正いたします。また、ご指摘をいただいた皆さまには深く御礼申し上げます。

第 1 版版第 2 刷 (2024 年 11 月 25 日発行) 時点の訂正 (第 1 刷には、第 2 刷り時の訂正も必要です)

ページ等	誤	正
70ページ、	大きく異なるだろう (MacKinnon, 2016) ¹⁾ 。	大きく異なるだろう (MacKinnon, 2016;
上から 9~10		MacKinnon et al., 2023)11,
行目		
70 ページ、	1) よりシンプルな、均一分散の分散推定量との比	1) よりシンプルな、均一分散における比較が
脚注 1)	較が Moulton (1986) によって行われており、ク	Moulton (1986) によって行われており、誤差項と
	ラスター頑健分散と均一分散を比較した比は	(他の変数を統制した後の) 共変量がそれぞれクラ
	「Moulton ファクター (Moulton factor)」と呼ば	スター内で同じ相関を持っているときの、OLS 推
	れている。	定量の真の (クラスター相関している) 分散とク
		ラスター分散のない分散を比較した比は「Moulton
		ファクター(Moulton factor)」と呼ばれてい
		る (MacKinnon et al., 2023)。
220ページ、	1) このうち後者の制約を、潜在結果の定義に織り	1) 前者の制約を織り込んだ潜在結果モデルに対
注1)の1文	込む代わりに明示的な制約とする場合がある。	し、後者を潜在結果モデルに織り込まない明示的
目		な制約とする場合がある(Wooldridge, 2021 な
		ど)。

第1版版第1刷(2024年9月20日発行)時点の訂正

ページ等	誤	正
16ページ、	$Y_i = \sum_{z \in Z} 1\{Z_i = z\} Y_i^*(Z_i)$	$Y_i = \sum_{z \in \mathcal{Z}} 1\{Z_i = z\} Y_i^*(z)$
(1.1)式および	$\sum_{z\in Z} I(z) = \sum_{z\in Z} I(z)$	$\sum_{z\in\mathcal{Z}} \mathbb{I}(z) = \mathbb{I}(z)$
19ページ、		
下から8行目		
の式		
19ページ、	SUTVA (stable unit treatment value)	SUTVA (stable unit treatment value assumption)
上から 5 行目		
および 303 ペ		
ージ (索引)		
72 ページ、	このとき、中間点の定理より	このとき、 <mark>平均値</mark> の定理より
下から5行目		
91 ページ、	【下から9行目】この場合、統制群には…	【下から9行目】この場合、 <mark>処置群</mark> には…
下から9行	【下から8行目】すると、統制群の患者から…	【下から8行目】すると、 <mark>処置群</mark> の患者から…
目、8行目、4	【下から4行目】観測できるなら、統制群の中で…	【下から4行目】観測できるなら、 <mark>処置群</mark> の中で…
行目		
105ページ、	$\frac{1}{2} \sum_{i} (Y_{i}^{*}(1,0) - Y_{i}^{*}(0,0))$	$\frac{1}{n_{at}} \sum_{G_i = at} \left(Y_i^*(1, 1) - Y_i^*(0, 1) \right)$
下から2行目	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,0) - Y_i^*(0,0))$	$n_{at} \sum_{G_i=at}^{C_i} (i_i (I_i I_i) - I_i (I_i I_i))$
106ページ、	$\frac{1}{n_{nt}} \sum_{C_i = nt} \left(Y_i^*(1,1) - Y_i^*(0,1) \right)$	$\frac{1}{n_{nt}} \sum_{G_i = nt} \left(Y_i^*(1,0) - Y_i^*(0,0) \right)$
上から2行目	$n_{nt} \sum_{G_i=nt} (1000)$	$n_{nt} \sum_{G_i=nt} (1000)$
109 ページ、	$\mathbb{E}[D_i v_i \mid Z_i = 1] = \frac{\text{(中略)}}{\text{(中略)}} \mathbb{P}[D_i^*(Z_i) = 1]$	$\mathbb{E}[D_i v_i \mid Z_i = 1] = \frac{\text{(中略)}}{\text{(中略)}} \mathbb{P}[D_i^*(1) = 1]$
上から5行目		
109 ページ、	$\pi_1 = $	$\pi_1 = \boxed{ (中略)} = \mathbb{E}[D_i^* \mid Z_i = 1]$
下から6行目		
122 ページ、	統制群を途中で	標本を途中で
上から2行目		
134 ページ、	処置受取は第4章で	処置割当は第4章で
下から2行目		
152 ページ、	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i + \cdots$	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i^2 + \cdots$
上から3行目	$T_i = \rho_{(0,+)} + \rho_{(1,+)} S_i + \rho_{(2,+)} S_i + \cdots$	$I_i - \rho_{(0,+)} + \rho_{(1,+)} S_i + \rho_{(2,+)} S_i + \cdots$
159 ページ、		【青字の「正の」をトル】
上から2段落	次に、図 6.4 (b) はサポートの端点の近傍における	次に、図 6.4 (b) はサポートの端点の近傍における
目	推定を図示している。このとき、カーネル推定(グ	推定を図示している。このとき、カーネル推定(グ
	レーの点線)は真の関数に対して、正のバイアスが	レーの点線)は真の関数に対して、バイアスが生じ
	生じる片側s≥0の観測のみを用いることになって	る片側s≥0の観測のみを用いることになってい
	いる。図 6.4(a) の場合と異なり、 正の バイアスを	る。図 6.4 (a) の場合と異なり、バイアスを打ち消
	打ち消す相手である $s < 0$ 側の観測が存在しない。	す相手である $s < 0$ 側の観測が存在しない。その結

	その結果、 <mark>正の</mark> バイアスが打ち消されずに残って	果、バイアスが打ち消されずに残ってしまう。この
	しまう。 この図 6.4 (b) のように打ち消す相手とな	図 6.4 (b) のように打ち消す相手となる観測がな
	る観測がない場合には、関数の傾きを捉えられて	い場合には、関数の傾きを捉えられていないこと
	いないことに起因するバイアスが生じており、こ	に起因するバイアスが生じており、このバイアス
	のバイアスはhに応じて線形増加する。	はhに応じて線形増加する。
179 ページ、	【上から 12 行目】	【上から 12 行目】
上から 12 行目	$= \lim_{\epsilon \uparrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = co\} \mid S = \epsilon]$	$= \lim_{\epsilon \uparrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = at\} \mid S = \epsilon]$
189 ページ、	$CI^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$	$I^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} + cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$
下から 14 行目	$= \begin{bmatrix} \iota & \iota & \iota_{1-\alpha} \\ & & \ddots \\ & & & \end{bmatrix}, \iota & \iota_{1-\alpha} \\ & & \sqrt{N_h} \end{bmatrix}$	
269 ページ、	統制群は当然、2000~2010年に	処置群は当然、2000~2010 年に
下から1行目		
270 ページ、	合併を経験した通勤圏も統制群に含め、	合併を経験した通勤圏も <mark>処置</mark> 群に含め、
上から4行目		