Architektury systemów komputerowych

Lista 1

26 II 2015

 $x_1 = 9$ (minimum na bdb)

- 1. Sprawdź, że zbiór $B = \{0,1\}$ z określonymi na wykładzie działaniami + i · i ⁻ spełnia własności 1-10 z *Notatek.* Wolno korzystać jedynie z tabeli prawdy działań +, · i ⁻.
- 2. Korzystając z własności 1-10 z Notatek udowodnij następujące wzory:
 - a) $0 \cdot x = 0$, 1 + x = 1
 - b) x + x = x, $x \cdot x = x$
 - c) x(x+y) = x, x + xy = x
- 3. Korzystając z własności 1-13 z Notatek udowodnij następujące równoważności:
 - b) $xy + x\overline{y} = x$
 - c) $(x+y) \cdot (x+\overline{y}) = x$
- 4. Korzystając z własności 1-13 z *Notatek* uprość wyrażenia:
 - a) $xz + xy\overline{z}$
 - b) $\overline{x+y} \cdot \overline{\overline{x}+\overline{y}}$
 - c) $x + \overline{x}y + \overline{x}\overline{y}$
 - d) $(x\overline{y} + \overline{w}z)(w\overline{x} + y\overline{z})$
- 5. Napisz wyrażenie odpowiadające negacji F, a następnie uprość je stosując prawa de Morgana:

$$F(w, x, y, z) = xy\overline{z}(\overline{y}z + x) + (\overline{w}yz + \overline{x})$$

- 6. Utwórz tablice prawdy dla następujących wyrażeń:
 - a) $xyz + x\overline{y} \overline{z} + \overline{x} \overline{y} \overline{z}$
 - b) $(x+y)(x+z)(\overline{x}+z)$
- 7. Zdefiniujmy nowe działanie \oplus na zbiorze $\{0,1\}$: $x \oplus y = 1$ wtedy, gdy dokładnie jeden z argumentów x, y jest równy 1. Zauważ, że jest ono odpowiednikiem bramki XOR. Udowodnij lub obal następującą równoważność wyrażeń:

$$x \oplus (y \cdot z) = (x \oplus y) \cdot (x \oplus z).$$

8. Oto tablica prawdy pewnej funkcji boolowskiej:

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Zapisz odpowiadające jej wyrażenie w postaci dysjunkcyjnej postaci.

- 9. Zapisz wyrażenie z poprzedniego zadania w postaci koniunkcyjnej postaci. Udowodnij, że każda funkcja boolowska może być opisana przy użyciu wyrażenia w koniunkcyjnej postaci normalnej.
- 10.* Udowodnij, że wyrażenie \overline{x} $\overline{y} + xy + \overline{x}z$ nie da się zapisać w dysjunkcyjnej postaci normalnej przy użyciu mniej niż trzech składników.
- 11. Pokaż w jaki sposób bramkę XOR można zastąpić układem zbudowanym tylko tylko z bramek NAND.

Emanuel Kieroński