Hugo Marquerie March 18, 2025

Todo espacio \mathcal{L}^p es de Banach

Teorema 1. Sea (X, Σ, μ) un espacio de medida $y p \in [1, \infty]$

 $\implies L^p := \mathcal{L}^p /_{\sim} \ es \ un \ espacio \ de \ Banach \ con \ la \ norma \ p\text{-}\'esima \ \|\cdot\|_p$

donde $\forall f, g \in \mathcal{L}^p(\mu) : f \sim g \iff f = g \ c.t.p.$

Demostración: Por Lem-esp-lp-normado/Lema 1 sabemos que L^p es un espacio vectorial normado. Por lo tanto, basta probar que la métrica inducida por la norma p-ésima es completa.

Sea $(f_n)_{n\in\mathbb{N}}\subset L^p$ una sucesión de Cauchy, es decir, para todo $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que $\forall n,m\geq N: \|f_n-f_m\|_p<\varepsilon$. Queremos demostrar que existe $f\in L^p$ tal que $f_n\xrightarrow[n\to\infty]{\mathcal{L}^p}f$ en la norma p-ésima.