Advanced Methods for Behavior Planning

C4M5L5 by Marko Illievski

State Machine Behaviour Planning Issues

- Rule-explosion when Dealing with Complex Scenarios
- Dealing with a Noisy Environment
- Hyperparameter Tuning
- Incapable of Dealing with Unencountered Scenarios

Rule-Based Behaviour Planner

- Hierarchy of rules
 - Safety critical
 - Defensive driving
 - Ride comfort
 - Nominal behaviours
- Reduced need for duplication
 - Rules can apply throughout ODD

Operational design domain

- Suffer from same challenges as finite state machines
 - Common to all expert system designs

relies on expert wers to design for all possible scenarios.

Human expert **Fuzzy Logic** Pros: can deal with environmental noise somewhat Cons: rule explosion

hyperparameter

twing Non Fuzzy logic: Following Value **Fuzzy logic: Distance** Following Value 4 Distance

Reinforcement Learning

Reinforcement Learning

Hierarchical Reinforcement Learning

manwers

Model-based Reinforcement Learning

Reinforcement Learning Issues

• Simple Simulation

Environments

may not be transferrable to veal world environments stopped in before but close intersection is a stopped now: 0

Ensuring Safety

no n'gorous safety assessment.

```
Ego Attributes:
in stop region: 0
has entered stop region: 1
has stopped in stop region: 1
before but close to stop region: 0
intersection is clear: 1
in intersection: 0
over speed limit: 1
on route: 1
highest priority: 0
intersection is clear: 1
veh ahead: 0
lane: 1
waited count: -1
v: 11.18
acc: -0.06
psi dot: -0.0
```

Machine Learning

Behavior planning bottleneck: achieving real world level & autonomy.

Inverse Reinforcement Learning

End-to-End Approaches

Summary

- Identify issues with the state machine based behaviour planner
- Identify the open areas of research in behaviour planning
- Next: Building a full local planning solution