LISTA 1 DE EJERCICIOS DE TOPOLOGÍA

- 1. Sean D^n y S^n el disco y la esfera unitaria usuales, y sea \sim la relación de equivalencia definida por $x \sim y$ si y sólo si $x = \lambda y$ para algún $\lambda \neq 0 \in \mathbb{R}$.
 - 1.1. Demuestre que $S^n \approx D^n/\partial D^n$
 - 1.2. Definimos $\mathbb{R}P^n := R^{n+1} \{0\}/\sim$ (este espacio es llamado el espacio proyectivo real de dimensión n). Demuestre que $\mathbb{R}P^n \approx S^n/\sim$.
 - 1.3. Sea \sim_1 la restricción de \sim a ∂D^n . Demuestre que $\mathbb{R}P^n \approx D^n/\sim_1$.
 - 1.4. Sea $T^2 := S^1 \times S^1$. Sea \sim_2 en \mathbb{R}^2 dada por $(x_1, x_2) \sim_2 (y_1, y_2)$ si y sólo si $x_1 y_1$ y $x_2 y_2$ son enteros. Demuestre que $T^2 \approx \mathbb{R}^2 / \sim_2$.
- 2. Sean (X, x_0) , (Y, y_0) espacios en \mathbf{Top}_* . Definimos el wedge de (X, x_0) y (Y, y_0) , denotado por $X \vee Y$, como $X \coprod Y/\{x_0\} \sim \{y_0\}$. Demuestre que $X \vee Y \approx X \times \{y_0\} \cup \{x_0\} \times Y \subseteq X \times Y$.
- 3. Considere las esferas unitarias (S^2, e_1) , (S^1, e_1) en \mathbf{Top}_* , donde e_1 denota el primer elemento de la base canónica de \mathbb{R}^n . Demuestre que $S^2 \vee S^1$ es del tipo de homotopía del espacio obtenido al considerar la unión de S^2 y un segmento que une el polo norte y el polo sur.
- 4. Sea X en **Top**. Sean $f, g: X \longrightarrow S^n$ dos mapeos tales que $f(x) \neq -g(x) \ \forall x \in X$. Demuestre que $f \simeq g$.
- 5. Sea Y en **Top**. Sea $f: S^n \longrightarrow Y$ un mapeo. Entonces f es nulhomotópico si y sólo si existe un mapeo $\bar{f}: D^{n+1} \longrightarrow Y$ que hace el siguiente diagrama conmutativo:

- 6. Sea A un subespacio de X, y sea I = [0, 1]. Considere las siguientes definiciones:
 - 6.1. Decimos que A es un retracto de X si existe $r: X \longrightarrow A$ tal que $r|_A = 1_A$. Llamamos a r una retracción de X a A. Demuestre que el espacio peine visto en clase, C, no es un retracto de $I \times I$.
 - 6.2. Decimos que A es un retracto débil de X si existe $r: X \longrightarrow A$ tal que $r|_A \simeq 1_A$. Llamamos a r una retracción débil de X a A. Demuestre que C es un retracto débil de $I \times I$.

- 6.3. Decimos que A es un retracto por deformación fuerte de X si existe una retración $r: X \longrightarrow A$ tal que $ir \simeq 1_X$ rel A, donde $i: A \longrightarrow X$ es la inclusión. Llamamos a r una retracción por deformación fuerte de X a A. Demuestre que S^n es un retracto por deformación fuerte de $\mathbb{R}^{n+1} \{0\}$.
- 6.4. Decimos que A es un retracto por deformación de X si existe una retracción $r: X \longrightarrow A$ tal que $ir \simeq 1_X$, donde $i: A \longrightarrow X$ es la inclusión. Llamamos a r una retracción por deformación de X a A. Demuestre que un retracto por deformación no necesariamente es un retracto por deformación fuerte.
- 6.5. Decimos que A es un retracto por deformación débil de X si la inclusión $i:A\longrightarrow X$ es una equivalencia homotópica. Demuestre que un retracto por deformación débil no necesariamente es un retracto por deformación.
- 7. Demuestre que S^n es un retracto de D^{n+1} si y sólo si S^n es contraíble.
- 8. Demuestre que un retracto de un espacio contraíble es contraíble.
- 9. Sea $f: X \longrightarrow Y$ un mapeo. Definimos el cilindro de f como

$$\operatorname{Cyl}(f) = \frac{(X \times I) \coprod Y}{\sim},$$

donde \sim es la relación de equivalencia inducida por $(x,1) \sim y$ si y sólo si f(x) = y.

- 9.1. Sea X en **Top**. Definimos el cilindro de X como $\mathrm{Cyl}(X)=\mathrm{Cyl}(1_X)$. Demuestre que $\mathrm{Cyl}(X)\approx X\times I$.
- 9.2. Sea $f: X \longrightarrow Y$ un mapeo. Definimos el cono de f como

$$\operatorname{Cone}(f) = \frac{\operatorname{Cyl}(f)}{X \times \{0\}} = \frac{(X \times I) \coprod Y}{\sim_1},$$

donde \sim_1 es la relación de equivalencia inducida por $(x,1)\sim_1 y$ si y sólo si f(x)=y y colapsar $X\times\{0\}$ a un punto.

- 9.3. Sea X en **Top**. Definimos el cono de X como $\operatorname{Cone}(X) = \operatorname{Cone}(1_X)$. Demuestre que $\operatorname{Cone}(X) \simeq *$.
- 9.4. Determine el cono y el cilindro de S^n .
- 9.5. Sea $f: S^1 \longrightarrow S^1$ dada por $z \longmapsto z^2$. Demuestre que $\mathrm{Cyl}(f)$ es homeomorfo a la banda de Möbius y que $\mathrm{Cone}(f)$ es homeomorfo a $\mathbb{R}\mathrm{P}^2$.