

AD-A094 900

SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AN--ETC F/6 11/8
LUBRICANTS FOR COMBATING EFFECTS OF HIGH-SULFUR FUEL. (U)
JUL 80 E A FRAME

DAAK70-80-C-0001

NL

UNCLASSIFIED

AFLRL-127

Line 2
40-
449001

LEVEL

12
3.5.

LUBRICANTS FOR COMBATING EFFECTS OF HIGH-SULFUR FUELS

AD A 094 900

INTERIM REPORT
AFLRL No. 127

by

Edwin A. Frame

U.S. Army Fuels and Lubricants Research Laboratory
Southwest Research Institute
San Antonio, Texas

Under contract to
U.S. Army Mobility Equipment Research
and Development Command
Fort Belvoir, Virginia

Contract No. DAAK70-80-C-0001

Approved for public release; distribution unlimited

July 1980

812 11 044

DDC FILE COPY

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DDC Availability Notice

Qualified requestors may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFLRL M 127	2. GOVT ACCESSION NO. <i>✓ ADA094 900</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) LUBRICANTS FOR COMBATING EFFECTS OF HIGH-SULFUR FUEL.	5. TYPE OF REPORT & PERIOD COVERED Interim	
7. AUTHOR(s) V.A. Frame	6. PERFORMING ORG. REPORT NUMBER AFLRL M 127	
9. PERFORMING ORGANIZATION NAME AND ADDRESSES U.S. Army Fuels & Lubricants Research Lab P.O. Drawer 28510 San Antonio, Texas 78284	8. CONTRACT OR GRANT NUMBER(S) DAAK70-80-C-0001 DAAK70-78-C-0001	
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Mobility Equipment Research & Development Command, Energy & Resources Lab Fort Belvoir, VA 22060	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS IL762733AH20EH(EL);WU-B03,B60	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	12. REPORT DATE Jul 1980	
	13. NUMBER OF PAGES 152	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) Unclassified	
Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Diesel Engine Diesel Fuel Lubricants Engine Wear	Engine Deposits Fuel Sulfur Tactical Equipment Engine Oils	Preservative Engine Oil Arctic Engine Oil
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
Six lubricants were evaluated for their effectiveness in controlling the deleterious effects of using high-sulfur diesel fuel. Two lubricants were identified which have potential to substantially reduce deleterious effects when operating on high-sulfur fuel. A supplemental oil additive used in preservative engine oils was evaluated in three different lubricants with high-sulfur fuel.		

DD FORM 1473 1 JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

387339

FOREWORD

The work reported herein was conducted at the U.S. Army Fuels and Lubricants Research Laboratory (USAFLRL), located at Southwest Research Institute, San Antonio, Texas under Contracts DAAK70-78-C-0001 and DAAK70-80-C-0001. The contract monitor was Mr. F.W. Schaekel of USAMERADCOM, and Mr. T. C. Bowen of the same office was project technical monitor.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
BY	
Distribution/	
Availability Codes	
Local and/or	
Direct Special	

A

TABLE OF CONTENTS

	<u>Page</u>
I. INTRODUCTION.....	5
II. EVALUATION DETAILS.....	7
A. Test Engine.....	7
B. Test Technique.....	8
C. Approach.....	9
D. Test Details.....	9
III. SUMMARIZED RESULTS.....	10
IV. DISCUSSION OF RESULTS.....	16
Test Number 15.....	18
Test Number 17.....	18
Test Number 19.....	18
Test Number 20.....	19
Test Number 21.....	19
Test Number 23.....	20
V. CONCLUSIONS/RECOMMENDATIONS.....	20
VI. ACKNOWLEDGMENTS.....	22
VII. REFERENCES.....	22
APPENDICES	
A. Wheeled-Vehicle Test Procedure.....	25
B. Test Number 15.....	31
C. Test Number 16.....	53
D. Test Number 19.....	73
E. Test Number 20.....	93
F. Test Number 21.....	113
G. Test Number 23.....	133

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Army Tactical Vehicles Powered by Two-Cycle Diesel Engines.....	6
2	3-53 Engine Characteristics.....	7
3	Wheeled Vehicle Test Cycle/Day for 15 Days.....	8
4	Summary of 3-53 Engine Tests.....	11
5	Test Fuel Properties.....	12
6	Test Lubricant Properties.....	13
7	Average Test Operating Conditions.....	14
8	Test Results.....	15
9	Ring Sticking Summary.....	16
10	Summary of Used Oil Analyses.....	17
11	Summary of Lubricant Performance Compared to High- and Low-Sulfur Fuel Baselines.....	20

I. INTRODUCTION

A single family of high-output, two-stroke cycle diesel engines is used in a significant portion of the U.S. Army Combat/Tactical Fleet. Table 1 provides a listing of vehicles utilizing this engine family. The engine manufacturer recommends using diesel fuels with less than 0.5 wt% sulfur because "too high a sulfur content results in excessive cylinder wear due to acid build-up in the lubricating oil" (Ref 1). Previous investigations conducted by the United States Army Fuels and Lubricants Research Laboratory (USAFLRL) used an aluminum block engine model 6V53T and revealed engine/fuel/lubricant incompatibilities when using fuels containing greater than 0.5 wt% sulfur and MIL-L-2104C (Ref 2) specification lubricants. The observed incompatibilities included catastrophic piston/ring/exhaust valve failure and relatively high deposit and wear rates (Ref 3). Additional documentation of the detrimental effects of high sulfur diesel fuel can be found in References 4 through 11.

Diesel fuel specification VV-F-800B (Ref 12) allows the use of diesel fuel containing up to 0.7 wt% sulfur outside the continental United States (OCO-NUS). Based on the fuel sulfur limit allowed in OCONUS and the previous USAFLRL test results with two-cycle diesel engine and high-sulfur fuel, a program was initiated to identify methods of counteracting the detrimental effects of high-sulfur fuel. The program objective was to identify fuel and/or lubricant modifications which would allow continuous operation on diesel fuel containing greater than 0.7 wt% sulfur without significantly reducing engine performance or service life. Identification of such fuel/lubricant modifications would expand the supply of diesel fuel available to the U.S. Army and potentially extend the service life of two-cycle diesel equipment. A previous report (AFLRL No. 105) covered the establishment of low- and high-sulfur fuel baselines using a constant lubricant in the iron block engine model 3-53 (Ref 13). The evaluation of various lubricants for their effectiveness in combating high-sulfur fuel effects was reported in AFLRL No. 109 (Ref 14). Lubricant effectiveness was defined in terms of how well the lubricant performed as compared to the low- and high-sulfur fuel baselines. Two of six lubricants tested (Ref 14) gave significant improvement in the condition of some engine areas; however, none of the engine oils tested would allow the continuous use of high-sulfur fuel with no penalty in engine condition when compared to the use of low-sulfur fuel. The current report covers the evaluation of six additional lubricants for their effectiveness in combating high-sulfur fuel effects.

II. EVALUATION DETAILS

A. Test Engine

An iron-block, two-cycle diesel engine Model 3-53 was utilized as the test engine. This engine is the powerplant used in the M561 1-1/4T tactical truck (Gamma Goat). Additionally, this engine was used to minimize test fuel and engine rebuild costs per test while still utilizing a "real-world" engine. Table 2 gives the characteristics of the 3-53 engine. The engine was fully instrumented and coupled to a laboratory test stand dynamometer as shown in Figure 1.

TABLE 1. ARMY TACTICAL VEHICLES POWERED BY TWO-CYCLE DIESEL ENGINES

<u>Designation</u>	<u>Description</u>	<u>Engine Model</u>
M106A1	Mortar, Self-propelled. 107mm	6V53
M107	Gun, Self-propelled. 175mm	8V71T
M108	Howitzer. Self-propelled. 105mm	8V71T
M109	Howitzer. Medium. 155mm	8V71T
M110	Howitzer. Self-propelled.	8V71T
M113A1	Carrier. Personnel	6V53
M125A1	Mortar. Self-propelled. Full-tracked	6V53
M132A1	Flame Thrower. Self-propelled.	6V53
M548	Carrier. Cargo. Tracked. 3442 kg(6-ton)	6V53
M551	Armored Reconnaissance/Airborne Assault Vehicle (Sheridan)	6V53T
M561	Gamma Goat	3-53
M557A1	Carrier. Command Post. Light Tracked	6V53
M578	Recovery Vehicle	8V71T
M746	Heavy Equipment Transporter (Het 70)	12V71T
XM667	Carrier. GM. Equipment. SP	a
XM727	Carrier. GM. Equipment. SP	a
XM730	Carrier. GM. Equipment. SP	a
XM741	Chassis, Gun, AA Artillery, 20mm, SP	a
XM806E1	Recovery Vehicle. FT Armored	a
--	Truck, Dump, 18 140 kg (20-ton), Diesel Electric Driven	6V71

a = Vehicles are powered by either 6V53, 6V53T, or 8V71T (TB-750-652).

TABLE 2. 3-53 ENGINE CHARACTERISTICS

Engine Type	Normally Aspirated, Two-cycle compression ignition, direct injection, uniflow scavenging
Weight (dry), kg (lb)	431 (950)
No. of cylinders, arrangement	3 in-line
Displacement, liter (cu in.)	2.6 (159)
Bore and stroke, cm(in.)	9.84 x 11.43 (3-7/8 x 4-1/2)
Cylinder block material	cast iron (cast iron liners)
Rated power, kW(Hp)	72.3 (97) at 2800 rpm
Maximum torque, Nm(lb-ft)	278 (205) at 1800 rpm
Compression ratio	21 to 1
Fuel system	Unit injector (N 50 needle valve), primary and secondary engine filters
Governor	Variable speed with throttle controls
Oil filter	Full-flow single filter
Oil cooling	Integral heat exchanger using 100% jacket-coolant flow capacity - 13.2 liters (14 qt)
Piston description	
Material/design	Cast iron/trunk type
Ring configuration	1 - Fire ring (rectangular) 3 - Compression rings (rectangular) 2 - Oil rings
Piston cooling	From jet in top of connecting rod

FIGURE 1. 3-53 TEST CELL INSTALLATION
Diesel Engine Model 3-53 Test Facility

B. Test Technique

All tests were conducted using the U.S. Army 210-hour wheeled-vehicle test cycle (Ref 15) which has been correlated to 32,200 km (20,000 miles) of proving ground operation. This test cycle includes alternating periods of full-power and cold idling with an overnight shutdown as shown in Table 3. A complete description of the detailed procedure is presented in Appendix A.

TABLE 3. WHEELED VEHICLE TEST CYCLE/DAY FOR 15 DAYS

<u>Period</u>	<u>Time, hr</u>	<u>Load, %</u>	<u>RPM</u>	<u>Coolant Temp, °C(°F)</u>
1	2	100	2800	96(205)
2	1	0	650	38(100)
3	2	100	2800	96(205)
4	1	0	650	38(100)
5	2	100	2800	96(205)
6	1	0	650	38(100)
7	2	100	2800	96(205)
8	1	0	650	38(100)
9	2	100	2800	96(205)
10	<u>10</u>		-----Shutdown-----	
	<u>24</u>			

Complete test is 15 days at 14 hr/day for 210 hours.

C. Approach

As reported in the literature (Ref 4-11), increasing diesel fuel sulfur content causes increased engine wear and deposition. These effects were quantified in the 3-53 engine by establishing a low-sulfur fuel baseline and a high-sulfur fuel baseline while using a constant lubricant (Ref-13). The low-sulfur fuel baseline serves as an example of the desired performance level. The overall program objective is to identify fuel and/or lubricant modifications which, when used with high-sulfur fuel, will result in engine condition similar to the low-sulfur baseline. The low-sulfur baseline was established using lubricant REO 203 and reference diesel fuel (0.4 wt% S) which is defined by Federal Test Method Standard 791B, Method 341.4. This combination had previously produced excellent results in the 6V53T engine (Ref 3). The high-sulfur fuel (HSF) baseline was established using diesel fuel containing 1.0 wt% sulfur and lubricant REO 203 (Ref 13).

D. Test Details

All tests were conducted in 3-53 engine number 3DI31703. Between tests, new cylinder kits (piston, rings and cylinder liner) and clean exhaust valves were installed. Before test, the engine was measured for 1) liner bore (top/middle/bottom) at thrust/antithrust and front/back positions, 2) piston diameter, and 3) piston ring gap. After experiencing a blower drive gear failure in Test Number 3, the blower drive gears were replaced after each test. Pre- and post-test full load performance tests were determined using the test fuel.

The engine was operated in accordance with the procedure detailed in Appendix A and summarized in Table 3. The following hourly readings and calculations were made to monitor test operation:

Engine Speed	Temperatures	Pressures
Engine Load	Jacket Coolant-In	Oil Gallery
Torque	Jacket Coolant-Out	Blower Discharge
Observed Power	Oil Sump	Intake Vacuum
Fuel Rate	Inlet Air (Blower)	Exhaust, Common
BMEP	Exhaust Manifold	Crankcase
BSFC	Fuel at Filter	
	Fuel at Return	

Minimum and maximum values and averages of these readings and calculations are presented in the Appendix for each test.

After each test, the engine was disassembled, and the following determinations were made:

- A. Engine condition ratings in accordance with standard CRC methods (Ref 16, 17) for:
 1. Ring face burning
 2. Ring sticking
 3. Liner scuffing and glazing
 4. Intake port deposits
 5. Ring deposits
 6. Piston deposits
 7. Exhaust valve condition

B. Engine wear measurements for:

1. Cylinder liner I.D. (top/middle/bottom)
2. Ring gap
3. Piston diameter

Oil consumption was calculated and photographs were taken of all three ring sets, and the best and worst cylinder liner and corresponding piston. Used oils were analyzed to determine chemical and physical property changes. The above items are all included in the Appendix for each test.

III. SUMMARIZED RESULTS

This section will present summarized information about the lubricants evaluated, the test fuel used and overall test results. The following section will discuss each test in detail. Table 4 contains a summary of the 3-53 engine tests relevant to this report. Test Number 1 is the low-sulfur fuel (LSF) baseline, which is representative of the desired engine condition at end of test. The average of Test Numbers 4, 12, and 18 is the high-sulfur fuel (HSF) baseline. Test Numbers 15, 17, 19, 20, 21, and 23 were evaluations of various lubricants for their effectiveness in combating high-sulfur fuel effects. This effectiveness will be determined by comparing the after test engine conditions of a subject lubricant to the LSF and HSF baseline engine conditions.

During the time frame of these tests, several batches of high-sulfur diesel fuel (1.0 wt% sulfur) were obtained from the same supplier. The fuel contained all straight run material. According to the manufacturer, 85 percent of the fuel sulfur content of each batch of HSF was naturally-occurring sulfur compounds. The remaining fuel sulfur was ditertiary butyl disulfide. All natural occurring sulfur in the test fuel was from the same refinery stream. Table 5 contains the analyses for the reference DF-2 (Test Number 1) and the various batches of the high-sulfur fuels used in this program.

The properties of the lubricants evaluated during this program are presented in Table 6. The low- and high-sulfur fuel baselines utilized a standard CRC reference engine oil (REO 203) which met the requirements and was qualified under specification MIL-L-2104C. The lubricant from Test Number 15 was a qualified Preservative Engine Oil, which met specification MIL-L-21260B (Ref 18). Test Number 17 was run using a qualified arctic engine oil, specification MIL-L-46167 (Ref 19). Tests 19, 20, and 21 evaluated experimental oils formulated to include the supplemental additive package used in MIL-L-21260B oils. Test Number 23 evaluated a synthetic based lubricant reported by the manufacturer to be of MIL-L-2104C quality level.

Table 7 contains key average operating conditions for these tests. Parameters included are: power, fuel usage, operating temperatures and oil consumption. Table 8 contains a listing of test results including wear measurements for fire ring gap and liner bore change, piston and liner deposition ratings and other pertinent ratings. Table 9 shows a tabulation of the ring sticking

TABLE 4. SUMMARY OF 3-53 ENGINE TESTS

Test Nos.	Fuel Sulfur, wt% 0.4	Lubricant		Comments <u>Low-Sulfur Fuel baseline</u>
		Code REO 203	Performance Level MIL-L-2104C	
4,12, 18	1.0	REO 203	MIL-L-2104C	High-Sulfur Fuel baseline
15	1.0	AL-7326	MIL-L-21260B	Qualified Preservative Engine Oil
17	1.0	AL-6739	MIL-L-46167	Qualified Arctic Engine Oil
19	1.0	AL-7830	MIL-L-21260B	REO 203 + Supplemental Preservative Oil Additive
20	1.0	AL-7899	High-Output diesel	AL-6739 (Arctic Engine Oil) + Supplemental Preservative Oil Additive
21	1.0	AL-8099	MIL-L-21260B	AL-6856 (Army MIL-L-2104C Reference Oil) + Supple- mental Preservative Oil Additive
23	1.0	AL-8423	API SE/CD	Ester-based synthetic SAE 10W/40

TABLE 5. TEST FUEL PROPERTIES

Property	ASTM Code	Method	Test Number						
			1 Ref DF-2	2 D 287	3 AL-6765	4 AL-7178	5 AL-7289	6 AL-7475	7 AL-7766
API ^a			33.2	34.6	34.5	34.7	33.6	34.4	34.2
Sulfur, wt%	D 2622	0.42	1.03	1.05	1.02	1.00	1.03	1.02	0.96
Sulfur, wt%	D 1266	0.42	0.97	1.01	1.02	1.04	1.05	1.03	1.03
Viscosity, cSt at 40°C			3.20 ^a	3.15 ^a	2.68	2.86	2.89	2.81	2.87
Flash Point, °C	D 93	85	ND	73	79	83	82	ND	112
Water & Sediment	D 1796	0.0	0.0	ND	0.0	ND	ND	0.0	ND
Carbon Residue, wt%	D 524	0.10	0.19	0.18	0.19	0.14	ND	0.16	ND
Copper Corrosion	D 130	1A	1B	1A	1A	1A	1A	1A	1A
Cetane Index	D 976	46	50	47	48	47	48	48	50
H, Htg Value. MJ/kg	D 240	45.47	44.82	45.00	45.00	ND	ND	45.00	ND
Btu/lb ^b		19,500	19,300	19,400	19,400			19,400	
Distillation, °C	D 86								
IBP		210	197	197	204	211	200	208	218
10%		242	236	225	229	239	238	238	248
50%		271	274	262	263	271	269	269	283
90%		317	315	310	310	311	306	308	323
EP		365	349	352	363	341	344	349	348

^a ND = Not determined.^a = KV is at 38°C

TABLE 6. TEST LUBRICANT PROPERTIES

Code	Property	Method	Test Number					
			1,4,12,18 REO 203	15 AL-7326	17 AL-6739	19 AL-7830	20 AL-7899	21 AL-8099
K Vis, cSt at 40°C	D 445	104.6	106.01	26.76	110.60	27.67	110.31	77.59
K Vis, cSt at 100°C	D 445	11.8	11.81	5.97	12.31	6.08	11.64	12.97
Viscosity Index	D 2270	101	99	179	102	177	92	169
TAN	D 664	3.6	2.0	0.3	1.7	0.4	2.1	5.2
TBN	D 2896	5.4	10.7	8.6	4.8	6.1	13.0	11.2
API Gravity, °	D 287	27.5	27.8	21.1	27.0	21.1	25.3	24.3
Pour Point, °C	D 97	-21	15	-64	ND	ND	ND	-36
Flash Point, °C	D 92	241	246	249	241	ND	ND	198
Carbon Residue	D 524	1.19	1.28	1.48	1.22	1.10	1.68	1.67
Sulfated Ash, wt%	D 874	0.93	1.41	1.55	1.05	1.55	1.78	1.27
Elemental, wt%	Method							
Ba	AA	NIL	NIL	0.95	NIL	0.93	NIL	NIL
Ca	AA (XRF)	0.24	0.36	NIL	0.23	NIL	0.48	0.09
Mg	AA	NIL	NIL	NIL	NIL	NIL	0.15	
Zn	AA	0.09	0.14	NIL	0.14	0.04	0.13	0.12
P	XRF	0.09	0.08	0.01	0.09	0.01	0.08	0.14

ND = Not determined.

XRF = X-ray fluorescence.

NIL = None detected at lower detection limit of method (< ppm for these elements).

TABLE 7. AVERAGE TEST OPERATING CONDITIONS

Parameter	Test Number							
	1(LSF)	4,12,18(HSF)	15	17	19	20	21	23
Power (observed), kW	71	72	69	76	75	77	76	75
Torque, Nm	24.1	24.8	23.7	25.9	25.4	26.4	25.9	25.5
BMEP, kPa	586	598	572	621	614	641	627	614
Fuel Rate, kg/hr	19.6	19.2	18.1	19.6	19.5	19.3	19.5	19.7
BSFC, kg/kW-hr	0.276	0.264	0.261	0.258	0.262	0.249	0.257	0.262
Oil Temperature, °C	110	122	119	116	122	114	126	122
Exhaust Temperature, °C	507	523	506	547	547	522	552	518
Total Oil Consumption, kg	15.9	20.4	34.5	19.0	17.7	15.0	24.3	24.1

TABLE 8. TEST RESULTS
Wear, Deposits, and Other Ratings

	Test Number					
	LSF	HSF	High-Sulfur Fuel Test			
	1	4,12,18	15	17	19	20
<u>Wear</u>						
Average Fire Ring Gap Change, μm	51	237	203	127	381	330
Average Cylinder Liner Bore Change, Front-Back and Thrust-Antithrust, μm	8	16	18	3	15	18
Thrust-Antithrust only, μm	8	23	25	8	28	25
Average Liner Scuffing, %	4	41	10	11	37	53
Average Liner Glazing, %	5	9	12	12	15	0
<u>Deposition</u>						
Piston WTD* Rating						
Cylinder 1	226	393	362	346	340	341
Cylinder 2	318	374	437	395	315	369
Cylinder 3	356	345	528	329	360	342
Average	300	371	442	357	338	351
Average Port Restriction, %	7	1	1	3	3	8
Average Liner Lacquer, %	40	91	88	88	85	100
<u>Other</u>						
Average Ring Face Burning, % (Fire Ring + 1-3 Compression Rings)	1	32	5	15	14	65
Used Oil Iron Content, ppm at 210 hr by XRF	110	117	62	64	107	156
						72
						101

*WTD = Weighted Total Deposit

TABLE 9. RING STICKING SUMMARY

<u>Test No.</u>	<u>Ring Sticking (Cylinder-Ring-Condition)</u>
1(LSF)	#2 - F/R - Sluggish #3 - F/R - 15% Cold Stuck
4(HSF)	#3 - F/R - Sluggish
12(HSF)	#2 - F/R - 60% Cold Stuck
18(HSF)	#1 - CR#2 - 5% Cold Stuck
15	#2 - F/R - Sluggish #3 - F/R - 100% Cold Stuck
17	None
19	None
20	None
21	#1 - F/R - 50% Cold Stuck #2 - F/R - 100% Cold Stuck #3 - F/R - 100% Cold Stuck
23	None

performance for each test. Finally, Table 10 contains the used oil analyses which include the values of selected properties determined at the end of the test (210 hours) and the change in property value from new where available. Having presented the overall summary of test operation and results, each individual test will be discussed in the following section.

IV. DISCUSSION OF RESULTS

In this section, each test will be discussed based on the data presented in Tables 6 through 10. Each test lubricant will be compared to the low- and high-sulfur fuel baselines to provide an overall assessment of lubricant performance in combating high-sulfur fuel effects.

Before discussing the individual tests, the key performance areas of the low- and high-sulfur fuel baselines will be reviewed. The results of the LSF baseline (Table 8) are representative of the desired engine condition at the end of the test. Measured wear (fire ring gap and cylinder liner bore) were low as were liner scuffing and ring face burning. Piston deposit levels were moderate, and no serious ring sticking problems were observed. Compared to the LSF baseline, the HSF baseline had much more severe ring face burning (32 percent vs 1 percent) and cylinder liner scuffing (41 percent vs 4 percent). Measured wear was two to four times more severe for the HSF baseline. Piston cleanliness had deteriorated slightly and ring sticking tendency had increased slightly, but still did not approach problem levels. As shown in Table 10, the used oil from the LSF test was still in satisfactory condition while the

TABLE 10. SUMMARY OF USED OIL ANALYSES

Property	Method	LSF	HSF	Test	Test	Test	Test	
		Baseline	Baseline	15	17	19	20	
K. Viscosity at 40°C, cSt at 210 hr Δ from new	D 445	102.8 -1.8	123.2 +18.6	122.2 +16.2	31.72 +4.96	133.4 +22.8	31.66 +3.99	180.85 +70.54
K. Viscosity at 100°C, cSt at 210 hr Δ from new	D 445	12.1 +0.3	13.4 +1.6	13.0 +1.2	6.94 +0.97	12.77 +0.46	6.77 +0.69	16.52 +4.88
TAN at 210 hr Δ from new	D 664	3.5 -0.1	3.6 0.0	5.4 +3.4	0.5 +0.2	3.5 +1.8	0.9 +0.5	3.6 +1.5
TBN at 210 hr Δ from new	D 2896 (D 664) -1.0	4.4 -1.8	3.6 -0.5	10.2 -4.3	4.3 -0.4	4.4 -0.4	5.9 -0.2	11.9(5.2) -1.1(-6.4)
Flash Point, °C at 210 hr Δ from new	D 97	238 -3	252 +11	254 +8	246 -3	258 +17	252 ND	240 ND
Carbon Residue, wt% at 210 hr Δ from new	D 524	1.77 +0.58	2.07 +0.88	1.92 +0.64	2.50 +1.02	1.73 +0.51	2.34 +1.24	3.43 +1.75
Sulfated Ash, wt% at 210 hr Δ from new	D 874	1.09 +0.16	1.19 +0.26	1.71 +0.30	1.94 +0.39	1.23 +0.18	1.75 +0.20	2.97 +0.28
Insolubles, wt% (with coagulant) Pentane at 210 hr Benzene (Toluene) at 210 hr	D 893							
Elemental, ppm at 210 hr	AA(XRF)							
Fe	(110)	82(117)	39(62)	83(64)	81(107)	209(156)	56(72)	88(101)
Cr	ND	5	2	5	14	11	2	3
Cu	(<50)	9	4	6	9	6	7	10
Pb	2	43	5	4	13	10	8	14

HSF lubricant had been degraded only slightly more (mainly an increase in flash point and a slight increase in viscosity). The HSF baseline lubricant had increased to an SAE 40 viscosity grade after test, but this was not severe as the new oil itself was on the borderline of being SAE 40. In evaluating the performance of the various test lubricants in combating HSF, our primary objective was to obtain engine condition approaching or equal to the LSF baseline condition when the engine was operated using HSF.

Test Number 15

The lubricant (AL-7326) evaluated in Test Number 15 met the requirements and was qualified under specification MIL-L-21260B (Ref 18). This oil contained a calcium-based detergent-dispersant additive system, with a sulfated ash of 1.41 wt% and a total base number (D 2896) of 10.7. This oil also contained a supplemental zinc additive which is used to impart preservative oil properties to MIL-L-2104C quality oils.

This test resulted in overall improvement in engine condition as compared to the HSF baseline (Table 8). Ring face burning and cylinder liner scuffing approached levels observed in the LSF baseline test. Fire ring gap increase, cylinder liner wear and ring sticking (Table 9) were comparable to the HSF baseline. Piston cleanliness (weighted total deposit ratings) was degraded slightly from the level observed in the HSF baseline tests. As shown in Table 10, the used oil from Test Number 15 was only slightly degraded and had not accumulated excessive wear metal contents. Overall, the use of this preservative type engine oil helped to counteract the deleterious effects of using HSF.

Test Number 17

The lubricant (AL-6739) evaluated in Test Number 17 met the requirements and was qualified under specification MIL-L-46167 (Ref 19). AL-6739 was a synthetic based (diester) lubricant which contained a barium detergent-dispersant additive system. This lubricant was unusual because it had no zinc-containing additives present. Antiwear properties were provided by an organo-phosphorus additive. AL-6739 had a total base number (D 2896) of 8.6 and a sulfated ash of 1.55 wt%.

The use of AL-6739 with high-sulfur fuel resulted in cylinder liner wear and average cylinder liner scuffing which approached levels observed in the LSF baseline. Ring face burning, fire ring gap increase, and piston cleanliness were all improved relative to the average HSF baseline. No ring sticking was observed at end of test. Used oil properties showed that no significant oil degradation had occurred and wear metal accumulations were low. Overall, the use of AL-6739 helped to counteract the deleterious effects of using HSF.

Test Number 19

Because a qualified MIL-L-21260B preservative engine oil helped counteract fuel sulfur effects (Test No. 15), this test was run to determine if the supplemental preservative oil additive package, when blended in a representative MIL-L-2104C lubricant was effective in combating high-sulfur fuel effects. The lubricant evaluated in Test Number 19 was AL-7830, which was composed of REO 203 (baseline lubricant), treated with the recommended amount of the supplemental additive package used in formulating preservative oil

MIL-L-21260B. As shown in Table 6, AL-7830 had slightly higher zinc and sulfated ash contents. The organo zinc compound in the supplemental additive package was not zinc dithiophosphate, as AL-7830 did not have any increase in phosphorus compared to REO 203.

In Test Number 19, slight improvements in ring face burning and piston cleanliness were observed as compared to the HSF baseline. No ring sticking was observed and cylinder liner wear and scuffing remained at the HSF baseline level. Average fire ring gap wear had increased to 1.6 times the level of the HSF baseline. The used oil at end of test was in about the same condition as the HSF baselined used oil. Overall, the oil qualified under MIL-L-21260B (Test Number 15) gave much better performance than AL-7830 in the key areas of ring wear, ring face burning, and cylinder liner scuffing. The addition of the supplemental preservative oil additive package to a representative MIL-L-2104C oil (REO 203) did not result in the desired level of engine condition when using high-sulfur fuel.

Test Number 20

Since the MIL-L-46167, synthetic, diester-based oil (Test No. 17) and the MIL-L-21260B preservative engine oil (Test No. 15) both gave substantial improvement in counteracting high-sulfur fuel effects, it was decided to combine the preservative oil characteristics with the synthetic diester oil. This was accomplished by treating AL-6739 with the recommended amount of supplemental additive package used in formulating preservative oil MIL-L-21260B. The resulting lubricant was designated AL-7899.

Test Number 20, using AL-7899 (treated AL-6739) and HSF, resulted in the deterioration in the condition of several engine areas as compared to Test Number 17, (AL-6739). In fact, fire ring gap increase, ring face burning, and cylinder liner scuffing were all worse than the HSF baseline. The iron content of the used oil at end of test was 209 ppm (by AA) which is about double the level observed in the HSF baseline tests. Piston cleanliness and ring sticking were improved as compared to the HSF baseline. Overall, the supplemental additive package of MIL-L-21260B preservative oil was judged to be antagonistic to AL-6739.

Test Number 21

A final test was made using the MIL-L-21260B supplemental additive package. For Test Number 21, the lubricant (AL-8099) was the U.S. Army reference engine oil (MIL-L-2104C) plus the recommended amount of the preservative oil supplemental additive package. The Army reference oil had been previously tested (Test Number 6) and reported in AFLRL Report No. 109 (Ref 14). Reviewing briefly, Test Number 6 resulted in increased measured wear and piston deposits as compared to the HSF baseline, with the only area of improvement being a slight reduction in cylinder liner scuffing.

AL-8099 (Test Number 21) will be compared against Test Number 6 to determine if the supplemental additive package helped this particular lubricant combat high-sulfur fuel effects and will be compared with the HSF and LSF baselines to determine its overall performance. Compared to the untreated Army reference oil (Test Number 6), AL-8099 had improved performance in controlling fire ring wear and cylinder liner wear, while ring sticking tendencies had in-

creased. Overall, the addition of the preservative oil additive package to the Army reference oil resulted in better performance than the reference oil alone. Compared to the HSF baseline, AL-8099 had substantial improvement in fire ring and cylinder liner wear, but had worse ring face burning, piston deposits, and ring sticking tendencies. While the use of the preservative oil additive package with the Army reference oil did not achieve the desired performance level obtained with the LSF, it was better in two key wear areas than untreated Army reference oil.

Test Number 23

The lubricant (AL-8423) evaluated in Test Number 23 was described by its manufacturer as an "ester based synthetic engine oil" which had met all the requirements for API service classifications SE and CD. AL-8423 contained a magnesium/calcium based detergent-dispersant additive system, with a sulfated ash of 1.27 wt% and a total base number (D 2896) of 11.2.

Compared to the HSF baseline, Test Number 23 had reduced fire ring wear and cylinder liner scuffing. Piston deposits approached the levels observed in the LSF baseline, and no ring sticking tendencies were observed. Cylinder liner wear was about the same as the HSF baseline, but ring face burning area was about 1.6 times more severe with AL-8423. As shown by Table 10, the used oil at end of test had only slight degradation. Overall, AL-8423 showed promise in controlling the high-sulfur fuel effects, except for ring face burning.

V. CONCLUSIONS/RECOMMENDATIONS

A qualitative summary assessment of the performance of the lubricants evaluated in this program is presented in Table 11.

TABLE 11. SUMMARY OF LUBRICANT PERFORMANCE COMPARED TO HIGH-
AND LOW-SULFUR FUEL BASELINES

Performance Area Lube	15 <u>AL-7326</u>	17 <u>AL-6739</u>	19 <u>AL-7830</u>	20 <u>AL-7899</u>	21 <u>AL-8099</u>	23 <u>AL-8423</u>
Fire Ring Wear	•	+	--	--	++	+
Ring Face Distress	++	+	+	--	--	--
Cylinder Liner Wear	•	++	•	•	++	•
Cylinder Liner Scuffing	++	++	•	--	+	+
Piston Cleanliness	--	+	+	+	--	++
Ring Sticking	•	++	++	++	--	++

++ = Improvement approaching LSF baseline.

+ = Improvement relative to HSF baseline.

• = Approximately the same as HSF baseline.

-- = Worse than HSF baseline.

The following conclusions are made based on the work reported herein:

- Two lubricants were identified which have potential for helping to minimize the deleterious effects of HSF. AL-7326 (MIL-L-21260B) showed improvement which approached the desired level in the key areas of ring face burning and cylinder liner scuffing area. AL-6739 (MIL-L-46167) had improvement in all areas listed in Table 11 with cylinder liner wear and liner scuffing showing the greatest improvements. Either of these two lubricants should offer benefits in controlling HSF effects.
- The addition of the supplemental preservative oil additive package to a variety of lubricants produced mixed results. The additive package was antagonistic with AL-6739, while with REO 203 it resulted in reduced ring face distress and increased fire ring wear. The preservative oil package helped the Army reference oil to control high-sulfur fuel effects, but this combination did not achieve the desired performance level. Based on the results, the preservative oil supplemental additive package should not be indiscriminately added to lubricants to serve as a high-sulfur fuel "fix".
- No consistent relationship was found between new lubricant properties and engine condition after tests using HSF.
- Lubricant AL-8423 gave substantial improvements in some of the key areas; however, the increased ring face burning observed with this oil prevents recommendation of it for use with a high-sulfur fuel.

The following recommendations for future effort are offered:

- The 3-53 engine was used in this test program for two reasons. First, it is a "real-world" U.S. Army engine which is also representative of the two-cycle diesel engine family found in the U.S. Army tactical vehicles (Table 1). Second, it was used to minimize test fuel and engine rebuild costs during the screening of lubricants for their effectiveness in combating the effects of HSF. Having identified two promising lubricants in this program, it is now recommended that these lubricants be further evaluated under the more severe conditions found in a higher output, turbocharged U.S. Army two-cycle diesel engine such as the 6V-53T or 8V-71T.
- Fuel additives for combating HSF effects need to be identified and evaluated.
- Research aimed at understanding the basic high-sulfur fuel combustion and engine degradation mechanisms is needed. With this basic HSF information, lubricant additives could be synthesized to specifically counteract the sulfur related engine degradation mechanisms.
- Future Army diesel engine oil specifications should include both two- and four-cycle diesel engine test requirements using HSF.

VI. ACKNOWLEDGMENTS

The author wishes to acknowledge the assistance provided by Mr. T.C. Bowen, the project technical monitor at MERADCOM, and Mr. S.J. Lestz, Director of the MERADCOM program at AFLRL. Special recognition is made of Mr. Roy Nava and Mr. R. Pena who handled the engine build-up, wear measurements, test operation and data compilation. Recognition is made of the following AFLRL personnel who contributed their skills to this project:

Ms. E.J. Robinett	Technical Editor
Mr. E.R. Lyons	Engine Deposit Ratings
Mr. D.W. Babcock	Photography
Mr. Jesse Cantu	Drafting
Ms. R.S. Hickey	Typing

VII. REFERENCES

1. "Fuels and Lubricating Oils for Detroit Diesel Allison Division," GMC, Form 7SE270, September 1978.
2. U.S. Military Specification MIL-L-2104C, "Lubricating Oil, Internal Combustion Engine, Tactical Service," November 1970.
3. S.J. Lestz, M.E. LePera, and T.C. Bowen, "Fuel and Lubricant Effects on Army Two-Cycle Diesel Engine Performance," SAE No. 760717, presented at Automobile Engineering Meeting, Dearborn, MI, October 1976; also available as AFLRL Interim Report No. 80, AD A031885, September 1976.
4. H.M. Gadebusch, "The Influence of Fuel Composition on Deposit Formation in High Speed Diesel Engines," Detroit Diesel Allison Division, GMC, SAE National Tractor and Diesel Engine Meeting, Milwaukee, WI, September 7, 1948.
5. G.H. Cloud and A.J. Blackwood, "The Influence of Diesel Fuel Properties on Engine Deposits and Wear," Esso Research, SAE National F&L Meeting, Cleveland, OH, June 2-3, 1943.
6. C.C. Moore and W.L. Kent, "The Effect of the Nitrogen and Sulfur Content of Fuels on the Rate of Wear in Diesel Engines," Union Oil Company of California, SAE Annual Meeting, Detroit, MI, January 6-10, 1947.
7. R.J. Furstoss, "Field Experience with High-Sulfur Diesel Fuels," Caterpillar Tractor Company, SAE Quarterly Transactions, Vol. 3, No. 4, October 1949.
8. L.A. Blanc, "Effect of Diesel Fuel on Deposits and Wear," Caterpillar Tractor Company, SAE Quarterly Transactions, Vol. 2, No. 2, April 1948.
9. C.F. Perry and Wm. Anderson, "Recent Experiences with Sulfur in Distillate Type Fuels Burned in U.S. Navy Diesel Engines," Paper No. 74-DGP-4, U.S. Navy, ASME Diesel and Gas Engine Power Conference and Exhibit, Houston, TX, April 28 - May 2, 1974.

10. R. Overton, D.E. Steere, and L.R. Carey, "Field Performance of Diesel Engine Oils," SAE Paper No. 760270, February 1976.
11. Alphonse Schilling, "Automobile Engine Lubrication," (Chapter 7), Scientific Publications (G.B.O LTD), 1974.
12. Federal Specification VV-F-800B, "Fuel Oil, Diesel," March 12, 1975.
13. E.A. Frame, "High-Sulfur Fuel Effects in a Two-Cycle High-Speed Army Diesel Engine," Interim Report AFLRL No. 105, AD A069534, May 1978.
14. E.A. Frame, "Combating High-Sulfur Fuel Effects in a Two-Cycle, High-Speed U.S. Army Diesel Engine," AFLRL Interim Report No. 109, AD A078798, August 1979.
15. "Development of Military Fuel/Lubricant/Engine Compatibility Test," Coordinating Research Council, Inc., New York, NY, January 1967.
16. CRC Diesel Engine Rating Manual No. 5, Coordinating Research Council, Inc., New York, NY, November 1959.
17. Proposed CRC Rating System for Diesel Engine Deposits, First Draft, Coordinating Research Council, Inc., New York, NY, February 22, 1973.
18. U.S. Military Specification MIL-L-21260B, "Lubricating Oil, Internal Combustion Engine, Preservative and Break-In," 25 July 1972, and Amendment 1, 2 June 1978.
19. U.S. Military Specification MIL-L-46167, "Lubricating Oil, Internal Combustion Engine, Arctic," 15 February 1974.

APPENDIX A

WHEELED-VEHICLE TEST PROCEDURE

WHEELED-VEHICLE TEST PROCEDURE
DD 3-53 ENGINE

Test No.: _____ Engine Serial No.: _____ Test Cell No.: _____

Test Lubricant: _____ Test Fuel: _____

Instructions

1. Pre-Test Preparations.

- 1.1 Filter Elements. Install new element in oil filter and change oil in air filter bath (using test oil).
- 1.2 Sump Oil Charge. Charge engine sump to full mark on dipstick with test oil (AL- -L). Close filler cap and motor engine for one minute at low speed (about 500 RPM) to fill oil cooler, filter, and internal oil passages. Recheck level and add to full mark again (should be about 25 lbs).
- 1.3 Priming Fuel System. After changing over to Ref DF-2 fuel and flushing fuel lines, remove the Allen plug from top of primary fuel filter and fill the filter with fuel, then re-install plug.
- 1.4 Break-In Procedure. Set jacket coolant-out temp. controller at 205°F. Start engine and idle at 650 RPM for five minutes, then warm up at about 1000 to 1200 RPM for ten minutes. If no engine malfunctions or leakages occur, conduct the following break-in and record complete log sheet readings at end of each setting. Calculate: BHP, Torque, BSFC, BMEP.

Time Minutes	Speed RPM	Load lb-Ft.	Jacket-Out Temperature °F
30	1800	25	205
30	2200	55	205
30	2500	80	205
30	2800	80	205

1.5 Full Load Performance Test. Following the break-in run, conduct a full load performance test run at the following conditions. Allow conditions to stabilize at each speed, then record complete log sheet readings at end of each setting. Calculate BHP, Torque, BSFC, BMEP.

<u>Speed, RPM</u>	<u>Jacket-Out, °F</u>
1600	205
1800	205
2000	205
2200	205
2400	205
2600	205
2800	205

1.6 Valve Clearance Check. Upon completing the full load performance test, stop engine and immediately check the hot clearance of the exhaust valves. Adjust clearances to .023-.025 in, also check injector height per gauge.

1.7 Oil and Fuel Change-Over. Upon completing valve clearance check, drain oil sump and filter. Discard drain and oil filter element. Weigh and record (on oil consumption log) a new oil filter element. Install new oil filter and then charge system with full charge of test oil (AL- -L) as in item 1.2. Record weight of total charge. Change over to test fuel (AL- -F) and flush fuel lines. Replace both fuel filter elements and prime as in item 1.3. Weigh oil blowby can and record (oil consumption log).

1.8 Full Load Performance Test. Following fuel change-over, run full load performance test as in item 1.5.

Check and Adjust Oil Level Before Starting Test.

2. Test.

2.1 Warm-Up. At the start of each day--idle for five minutes, then start test cycle at 2800 RPM.

2.2 Test Conditions. After warm-up, the following test cycle conditions are followed:

Test Cycle for 15 Days

<u>Period</u>	<u>Time, Hrs</u>	<u>Load, %</u>	<u>RPM</u>	<u>Coolant Temp., °F</u>
1	2	100	2800+20	205+2
2	1	0	650+25	100+2
3	2	100	2800	200
4	1	0	650	100
5	2	100	2800	205
6	1	0	650	100
7	2	100	2800	205
8	1	0	650	100
9	2	100	2800	205
10	10		-----Shut Down-----	

Operate at test conditions 14 hours/day for a total of 210 hours. Complete log sheet readings at end of each period. Calculate: BHP, Torque, BSFC, BMEP.

- 2.3 Daily Cool-Down. After the last test hour each day, reduce the speed to idle (600-650 RPM) for five minutes, (without resetting coolant controller) then stop engine.
- 2.4 Used Oil Samples. Flush oil filter tap, and withdraw a used oil sample during daily 5-minute cool-down (item 2.3) according to the Oil Consumption Log schedule and record sample weight.
 Identify each sample as to test hours, test No. and oil code (AL- -L). Take: 2 oz. sample each day except at 70 and 140 hours take 12 oz. sample. At end of test take 16 oz. sample. Take daily oil samples to Chem Lab for elemental analyses by XRF.
- 2.5 Oil Additions. New test oil additions, if required, are to be made at the end of each day after shutdown. Allow five minutes for oil to drain back to sump. Add weighed new oil to restore sump level to full by dipstick. Record weight of add-on oil consumption log.
- 2.6 Final Oil Drain. Upon completion of post test power curves and while engine is warm, drain the sump, saving one gallon of used oil in clean can. Tag can, showing test No., oil code, date, and test hour. Also remove oil filter element, weigh and record.

2.7 Notes and Limits.

- (1) Coolant is 50% glycol/50% water.
- (2) Coolant Out temperature must be reduced to 100°F within 15 minutes after idle starts.
- (3) Limits/Tolerances: Coolant Out Temperature: $\pm 2^{\circ}\text{F}$ of designated temperature.

Oil Sump Temperature: 265°F max.

Fuel @ Filter Temperature: $90 \pm 5^{\circ}\text{F}$ (105°F max.=shutdown).

- (4) No Oil Change during test.

3. After Test.

- 3.1 Full Load Performance Test. At end of test, run full load performance test as in item 1.5.
- 3.2 Valve Clearance Check. Upon completing end of test power curve, item 3.1, check hot valve clearances and record.
- 3.3 Wear and Deposits. Upon disassembly of engine, check wear measurements and deposit ratings (on sheets provided).
- 3.4 Record amount of fuel used for test.
- 3.5 Calculations (for AFLRL Cell No. 2):

$$\text{BHP (obs.)} = \text{Load} \times \text{RPM}/3000$$

$$\text{Torque (lb-ft)} = \text{Load} \times 1.75$$

$$\text{BSFC (lb/Bhp-hr)} = \text{lbs Fuel per hr/BHP (obs.)}$$

$$\text{BMEP (psi)} = \text{Torque} \times 0.474$$

4. Cell Notebook.

- 4.1 Keep cell notebook updated (like a diary) at all times. Record what is being done (changes or repairs) to the cell engine, instruments, etc. Record anything unusual and all modifications.

APPENDIX B

3-53 TEST # 15

FUEL: 1% S DF-2 (AL-7289-F)

LUBE: MIL-L-21260B T-1 (AL-7326-L)

START: 10 April 1978

END: 1 May 1978

ENGINE OPERATING DATA (AVG)
TEST #15

	Power			Idle (Avg)
	Min	Max	Avg	650
Engine Speed, rpm	2798	2806	2802	
Load, lb	97	103	100	
Torque, lb-ft	170	180	175	
BHp obs	91	96	93	
Fuel Rate, lb/hr	37.7	41.4	39.9	
BMEP, psi	81	85	83	
BSFC 1b/BHp-hr	0.412	0.441	0.428	
<u>Temperatures, °F</u>				
Jacket Coolant-In	197	198	198	95
Jacket Coolant-Out	203	205	205	100
Oil Sump	244	249	247	
Inlet Air (Blower)	68	92	80	
Exhaust Manifold	910	980	942	
Fuel @ Filter	80	95	91	
Fuel Out	135	146	141	
<u>Pressures</u>				
Oil Gallery, psig	44	45	44	
Blower Discharge, psig	4.4	4.6	4.5	
Intake Vacuum, in. H ₂ O	6.3	6.7	6.5	
Exhaust, Common, in. Hg	2.2	2.5	2.4	
<u>Oil Consumption, lb</u>			76	

LUBRICANT ANALYSES (AL-7326-L)
TEST #15

<u>Property</u>	<u>ASTM Method</u>	New Oil	70 Hrs	140 Hrs	210 Hrs
K. Vis, cS, 40°C	D 445	106.0	117.6	120.9	122.2
K. Vis, cS, 100°C	D 445	11.8	12.6	13.0	13.0
VI	D 2270	99	98	100	100
TAN	D 664	2.0	3.3	3.6	5.4
TBN	D 2896	10.7	10.0	10.2	10.2
Insolubles, wt%	D 893				
Pentane A		A	ND	ND	0.12
Benzene A		A	ND	ND	0.05
Pentane B		A	ND	ND	0.55
Benzene B		A	ND	ND	0.41
API Gravity, °	D 287	27.8	ND	ND	27.2
Pour Point, °C	D 97	15	ND	ND	ND
Flash Point, °C	D 92	246	ND	ND	254
Carbon Residue, wt%	D 524	1.28	1.67	1.82	1.92
Sulfated Ash, wt%	D 874	1.41	1.65	1.68	1.71
<u>Elemental</u>	<u>Method</u>				
Ba, ppm	AA	<25	ND	ND	ND
Mg, ppm	AA	9	ND	ND	ND
Ca, wt%	AA	0.35	0.41	0.40	0.44
Zn, wt%	AA	0.14	0.13	0.14	0.15
Na, ppm	AA	12	ND	ND	ND
Cu, ppm	AA	A	3	4	4
Cr, ppm	AA	A	2	2	2
Pb, ppm	AA	A	6	4	5
Fe, ppm	AA	A	27	35	39

A = Expected to be zero for new oil.

ND = Not Determined.

AA = Atomic Absorption.

XRF = X-Ray Fluorescence.

DAILY WEAR METALS BY XRF
TEST #15

<u>Test Hours</u>	<u>Iron ppm</u>	<u>Other Wear Elements</u>
14	22	None detected
28	37	None detected
42	39	None detected
56	53	None detected
70	51	None detected
84	51	None detected
98	48	None detected
112	53	None detected
126	72	None detected
140	65	None detected
154	62	None detected
168	67	None detected
182	65	None detected
196	62	None detected
210	62	None detected

**POWER CURVE W/ TEST FUEL
TEST No.15**

**■ BEFORE
○ AFTER**

**NO DIFFERENCE BETWEEN
BEFORE AND AFTER CURVES.
CURVE SHOWN IS BEST ESTI-
MATED FIT FOR ALL DATA.**

RING FACE CONDITION: % BURNING
TEST #15

	Cylinder Number		
	1	2	3
First Ring	5	1	5
Second Ring	3	1	10
Third Ring	3	1	6
Fourth Ring	1	5	15
Average of all	5%		

N = Normal

RING STICKING
TEST #15

Ring No.	Piston Number		
	1	2	3
1	F	Sluggish	100% cold stuck
2	F	F	F
3	F	F	F
4	F	F	F

F = Free

CYLINDER LINERS
TEST #15

Cylinder Number	Percent Port Restriction	Cylinder Liner Scuffing % of Compression Ring Travel Area				% Glazed	% Lacquer
		% Scuffed Thrust	% Anti-Thrust	% Area Scuffed			
1	1	5	10	7		15	.85
2	1	2	20	11		10	90
3	<u><1</u>	<u>20</u>	<u>5</u>	<u>12</u>		<u>10</u>	<u>90</u>
Average	1	9	12	10		12	88

PISTON O.D. (IN)
TEST #15

Cylinder	1	2	3
Before	3.8705	3.8710	3.8718
After	<u>3.8702</u>	<u>3.8710</u>	<u>3.8710</u>
Change	0.0003	0.0000	0.0008

PISTON SURFACE CONDITION
TEST #15

	Piston Number		
	<u>1</u>	<u>2</u>	<u>3</u>
Top Land	N	N	N
Skirt	Light scratches - all	-	-
Piston Pin	N	N	N

N = Normal

PISTON GROOVE INSIDE DIAMETER -
% RING SUPPORTING CARBON
TEST #15

<u>Piston Ring</u>	<u>Quadrant</u>	Piston Number		
		<u>1</u>	<u>2</u>	<u>3</u>
1	1	35	30	100
	2	0	25	100
	3	0	0	100
	4	0	0	100
2	1	0	0	55
	2	100	0	90
	3	70	85	70
	4	10	25	95

Quadrants:

- 1 = Thrust
- 2 = Rear
- 3 = Anti-thrust
- 4 = Front

EXHAUST VALVE DEPOSITS
TEST #15

<u>Area</u>	<u>Cylinder No.</u>		
	<u>1</u>	<u>2</u>	<u>3</u>
Head	A11 - Soot & light carbon, 5% AHC		
Face	ALL - Light to heavy carbon		
Tulip	A11 - Light to heavy carbon		
Stem	A11 - 5-10% #9 lacquer		

EXHAUST VALVE SURFACE CONDITIONS
TEST #15

	<u>Cylinder No.</u>		
	<u>1</u>	<u>2</u>	<u>3</u>
Freeness in Guide	F	F	F
Head	N	N	N
Face	light to heavy carbon causing minor leaking		
Seat	light carbon buildup		
Stem	N	N	N
Tip	N	N	N

F = free
N = Normal

RING DEPOSITS
TEST #15

Cylinder Number Piston	1		2		3	
	CARB	LACQ	CARB	LACQ	CARB	LACQ
Top	1	80-1/2 AHC	20-9	15-1/2 AHC	5-4, 80-9	NR
	2	0	100-8	0	10-7, 90-8	0
	3	0	5-5, 95-8	0	50-3, 50-2	25-8, 75-7
	4	0	25-3, 75-4	0	80-3, 20-2	100-4
ID	1	100-1/2 AHC	0	100-1/2 AHC	0	NR
	2	90-A, 10-1/2 AHC	0	85-A, 15-1/2 AHC	0	100-1/2 AHC 0
	3	100-1/2 AHC	0	100-1/2 AHC	0	100-1/2 AHC 0
	4	10-1/2 AHC	90-9	0	100-9	100-1/2 AHC 0
Bottom	1	0	5-7, 95-3	0	5-8, 20-3, 75-2	NR
	2	0	5-7, 95-3	0	30-6, 70-7	0
	3	0	10-7, 90-3	0	25-4, 75-2	0
	4	0	20-3, 80-2	0	85-3, 15-2	25-5, 70-4,

NR = Ring not removed from piston

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE _____
 RATER — Lyons DATE 5-3-78
 TEST HOURS _____
 LABORATORY TEST NUMBER 15
 STAND NO. 2 ENGINE NO. 3D-131703
 TEST LABORATORY AL-7326-L FUEL AL-7289-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	
HC	1.00	15	15.00	85	85.00	35	35.00			10 10.00 70 70.00 50 50.00
MHC	0.75									
MC	0.50					50	25.00	35	17.50	25 12.50 10 5.00
LC	0.25	85	21.25	15	3.75	15	3.75			65 16.25 20 5.00 50 12.50 55 13.75
VLC	0.15									
CARBON RATING		36.25	88.75	63.75	17.50	38.75	80.00	62.50	18.75	
BL	0.100					65	6.50			100 10.00
DBL	0.075									
AL	0.050									
LAL	0.025									
VIAL	0.010									
RL	0.001									
LAQUER RATING						6.50				
CLEAN	0									
ZONAL RATING										
LOCATION FACTOR										
WEIGHTED RATING	36.25	88.75	63.75	24.00	38.75	80.00	62.50	20.50	10.00	
*WEIGHTED TOTAL DEPOSITS										

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE _____
 TEST HOURS _____
 TEST LABORATORY _____
 LUBRICANT AL-7236-L

RATER Lyons DATE 5-3-78
 LABORATORY TEST NUMBER 15
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL AL-7289-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4
HC	1.00	15	15.00	7.0	70.00					25	25.00	60	60.00
MHC	0.75					40	30.00						
MC	0.50	15	7.50							20	10.00	10	5.00
LC	0.25	70	17.50	30	7.50	30	7.50			55	13.75		
VLC	0.15					30	4.50	20	3.00		15	2.25	
CARBON RATING	40.00	77.50	42.00		3.00					48.75	67.25	51.25	6.25
BL	0.100					80	8.00			15	1.50		
DBL	0.075											60	6.00
AL	0.050												100
LAL	0.025												10.00
LAQUEUR RATING	0.010												
RL	0.001												
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	40.00	77.50	42.00		11.00	48.75	68.75	51.25	13.375				10.00

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE _____
 RATER Lyons DATE 5-3-78
 LABORATORY TEST NUMBER 15
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL AL-7289-F

PISTON NO. 3

NO. 1 GROOVE, VOLUME-%
 PISTON WTD* RATING 528

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4
HC	1.00	100	100	90	90.00	40	40.00	75	75.00	60	60.00	75	75.00
MHC	0.75												
MC	0.50												
LC	0.25												
VLC	0.15												
CARBON RATING	100.00	95.00	55.00	17.50	81.25	75.00	81.25	5.00	81.25	5.00	81.25	5.00	81.25
BL	0.100												
DBrl	0.075												
AL	0.050												
LAL	0.025												
VIAL	0.010												
RL	0.001												
LAQUER RATING													
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	100.00	95.00	55.00	17.50	81.25	75.00	81.25	13.00	81.25	13.00	81.25	13.00	81.25

*WEIGHTED TOTAL DEPOSITS

CYLINDER LINER I.D. (IN)
TEST #15

Cylinder No.	Front/Back			Thrust/Antithrust		
	Parallel to Crank			Perpendicular to Crank		
	Top	Middle	Bottom	Top	Middle	Bottom
1. After Before Δ	3.8758	3.8758	3.8763	3.8767	3.8764	3.8764
	3.8754	3.8754	3.8752	3.8754	3.8753	3.8751
	0.0004	0.0004	0.0011	0.0013	0.0011	0.0013
2. After Before Δ	3.8758	3.8759	3.8760	3.8768	3.8765	3.8762
	3.8755	3.8756	3.8757	3.8757	3.8757	3.8757
	0.0003	0.0003	0.0003	0.0011	0.0008	0.0005
3. After Before Δ	3.8755	3.8753	3.8754	3.8768	3.8767	3.8759
	3.8753	3.8755	3.8760	3.8756	3.8755	3.8758
	0.0002	-0.0002	-0.0006	0.0012	0.0012	0.0001

Average (A11) 0.0007

Average T/AT 0.0010

PISTON RING GAP (IN)
TEST #15

Piston No.	Ring No.							
	1	2	3	4	5	6	7	8
1. After Before Δ	0.046	0.028	0.031	0.030	0.023	0.023	0.023	0.023
	0.035	0.027	0.030	0.029	0.018	0.018	0.018	0.018
	0.011	0.001	0.001	0.001	0.005	0.005	0.005	0.005
2. After Before Δ	0.037	0.021	0.023	0.022	0.025	0.025	0.024	0.025
	0.032	0.022	0.023	0.023	0.020	0.021	0.019	0.020
	0.005	-0.001	0	0.001	0.005	0.004	0.005	0.005
3. After Before Δ	stuck	0.036	0.027	0.028	0.023	0.025	0.023	0.023
	0.032	0.035	0.027	0.027	0.018	0.018	0.019	0.019
	0.001	0	0.001	0.001	0.005	0.007	0.004	0.004

Avg F/R (#1) Wear 0.008

PISTON AND CYLINDER LINER CONDITION
Test No. 15

No. 2 - Thrust Side
(Best)

PISTON AND CYLINDER LINER CONDITION
Test No. 15

No. 3 - Thrust Side
(Worst)

EXHAUST VALVE DEPOSITS
Test No. 15

RING FACE CONDITION
Test No. 15

Piston - 1

Piston - 2

Piston - 3

APPENDIX C

3-53 TEST # 17

FUEL: 1% S DF-2

LUBE: AL-6739

START: 12 June 1978

END: 30 June 1978

ENGINE OPERATING DATA (AVG)
TEST #17

	Power			Idle (Avg)
	Min	Max	Avg	
Engine Speed, rpm	2800	2806	2801	650
Load, lb	108	111	109	
Torque, lb-ft	189	194	191	
BHP obs	101	104	102	
Fuel Rate, lb/hr	40.8	45.1	43.2	
BMEP, psi	90	92	90	
BSFC 1b/BHP-hr	0.401	0.447	0.424	
<u>Temperatures, °F</u>				
Jacket Coolant-In	195	200	197	
Jacket Coolant-Out	205	205	205	
Oil Sump	238	242	240	100
Inlet Air (Blower)	86	101	94	
Exhaust Manifold	1000	1040	1017	
Fuel @ Return	88	92	90	
Fuel @ Filter	147	154	151	
<u>Pressures</u>				
Oil Gallery, psig	34	36	35	
Blower Discharge, psig	4.3	4.5	4.4	
Intake Vacuum, in. H ₂ O	6.5	6.7	6.6	
Exhaust, Common, in. Hg	2.1	2.5	2.4	
<hr/>				
Avg Oil Consumption, 1b/hr (kg/hr)			0.20	(0.09)
Total Oil Consumption 1b(kg)			41.9	(19.0)

LUBRICANT ANALYSES
TEST #17

<u>Property</u>	<u>Method</u>	New Oil	70 Hr	140 Hr	210 Hr
K. Vis, cS, 40°C	D 445	26.76	30.28	31.37	31.72
K. Vis, cS, 100°C	D 445	5.97	6.66	6.83	6.94
VI	D 2270	179	186	186	189
TAN	D 664	0.3	0.4	0.4	0.5
TBN	D 2896	8.6	4.3	4.8	4.3
Insolubles, wt%	D 893				
Pentane A		A	ND	ND	0.49
Benzene A		A	ND	ND	0.45
Pentane B		A	ND	ND	0.73
Benzene B		A	ND	ND	0.62
API Gravity, °	D 287	21.1	ND	ND	20.0
Flash Point, °C	D 92	249	249	249	246
Carbon Residue, wt%	D 524	1.48	2.03	2.31	2.50
Sulfated Ash, wt%	D 874	1.55	1.78	1.80	1.94
Elemental	<u>Method</u>				
Ba, ppm	AA	0.95	ND	ND	ND
Mg, ppm	AA	<1	ND	ND	ND
Ca, wt%	AA	9	ND	ND	ND
Zn, wt%	AA	4	ND	ND	ND
P, wt%	Mod. boronite	0.01	ND	ND	ND
S, wt%	XRF	0.02	ND	ND	ND
Fe, ppm	AA/XRF	A	40/30	68/57	83/64
Cu, ppm	AA	A	3	4	6
Cr, ppm	AA	A	2	3	5
Pb, ppm	AA	A	6	1	4

A = Expected to be zero for a new oil.

ND = Not Determined.

AA = Atomic Absorption.

XRF = X-Ray Fluorescence.

DAILY ANALYSIS OF USED OIL BY XRF

<u>Test Hr</u>	<u>Fe, ppm</u>	<u>Other Elements</u>
14	15	None
28	25	None
42	26	None
56	31	None
70	30	None
84	35	None
98	41	Cu-20 ppm
112	45	Cu- <10 ppm
126	47	None
140	57	None
154	53	None
168	58	None
182	52	None
196	60	None
210	64	None

POWER CURVE W/TEST FUEL
TEST No. 17

NET OIL ADDITIONS
TEST No. 17

RING FACE CONDITION: % BURNING
TEST #17

	Cylinder Number		
	1	2	3
First Ring	5	5	5
Second Ring	1	< 1	50
Third Ring	2	2	35
Fourth Ring	< 1	N	70
Average of all	15%		

N = Normal

RING STICKING
TEST #17

Ring No.	Piston Number		
	1	2	3
1			
2			ALL FREE
3			
4			

CYLINDER LINERS
TEST #17

Cylinder Number	Percent Port Restriction	Cylinder Liner Scuffing % of Compression Ring Travel Area				% Glazed	% Lacquer
		% Scuffed Thrust	Anti-Thrust	% Total Area Scuffed			
1	5	35	5	20	15	85	
2	3	5	5	5	5	95	
3	<u>2</u>	<u>5</u>	<u>10</u>	<u>8</u>	<u>15</u>	<u>85</u>	
Average	3	15	7	11	12	88	

PISTON O.D. (IN)
TEST #17

Cylinder	1	2	3
Before	3.8700	3.8705	3.8705
After	<u>3.8700</u>	<u>3.8705</u>	<u>3.8705</u>
Change	0.0000	0.0000	0.0000

PISTON SURFACE CONDITION
TEST #17

	Piston Number		
	1	2	3
Top Land	N	N	N
Skirt	ALL LIGHT SCRATCHES		
Piston Pin	N	N	N

N = Normal

PISTON GROOVE INSIDE DIAMETER -
% RING SUPPORTING CARBON
TEST #17

Piston Ring	Quadrant	Piston Number		
		1	2	3
1	1	0	0	10
	2	0	0	0
	3	0	0	0
	4	0	0	5
2	1	0	0	0
	2	0	0	0
	3	5	0	90
	4	0	0	5

Quadrants:

- 1 = Thrust
- 2 = Rear
- 3 = Anti-thrust
- 4 = Front

EXHAUST VALVE DEPOSITS
TEST #17

<u>Area</u>	Cylinder No.		
	1	2	3
Head	50-AHC to Soot	- - - - -	
Face	8 - Lacquer	- - - - -	
Tulip	9 - Lacquer	- - - - -	
Stem	9 - Lacquer to clean	- - - - -	

EXHAUST VALVE SURFACE CONDITIONS
TEST #17

	Cylinder No.		
	1	2	3
Freeness in Guide	- - - - -	All Free	- - - - -
Head	- - - - -	All Normal	- - - - -
Face	- - - - -	All Normal	- - - - -
Seat	- - - - -	All Normal	- - - - -
Stem	- - - - -	All Normal	- - - - -
Tip	- - - - -	All Normal	- - - - -

RING DEPOSITS
TEST #17

	Cylinder Number Piston	1		2		3	
		CARB	LACQ	CARB	LACQ	CARB	LACQ
Top	1	35-½AHC	65-9	100-½AHC	0	90-½AHC	10-9
	2	0	85-9	0	95-8	0	100-6
			15-4		5-2		
	3	0	100-3	0	60-6	0	100-3
ID	1	30-AHC	0	100-AHC	0	30-AHC	0
		70-½AHC				70-½AHC	
	2	15-AHC	0	100-½AHC	0	85-AHC	15-9
		85-½AHC					
65	3	100-½AHC	0	100-½AHC	0	100-½AHC	0
	4	0	100-9	100-½AHC	0	0	100-9
	Bottom	1	0	15-5	0	5-7	30-5
				85-3	95-3	0	70-3
	2	0	15-6	0	80-6	0	40-6
			85-3		20-2		60-2
	3	0	100-2	0	100-2	0	90-3
	4	0	100-2	0	50-3	0	100-3
					50-2		

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210 RATER E R Lyons DATE 7-6-78
 TEST HOURS 210 LABORATORY TEST NUMBER 703-17
 TEST LABORATORY AFLRL STAND NO. 2 ENGINE NO. 3D-131703
 LUBRICANT AL-6739 FUEL 1% S DF-2 AL-7475-F
 NO. 1 GROOVE, VOLUME-% PISTON WTD. RATING 346

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4
HC	1.00									10	10.00		
MHC	0.75	80	60.00	100	75.00	50	37.50			20	15.00	70	52.50
MC	0.50									20	10.00		
LC	0.25	20	5.00			50	12.50	60	15.00	80	20.00	20	5.00
VLC	0.15												
CARBON RATING		65.00	75.00	50.00	25.00	35.00	67.00			100	10.00	50	5.00
BL	0.100												
DBrL	0.075												
AL	0.050									20	1.00		
LAL	0.025												
VIAL	0.010												
RL	0.001												
LAQUER RATING						1.00							
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	65.00	75.00	50.00	26.00	35.00	67.50	10.00	7.50	10.00				

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 210
 TEST LABORATORY AFLRL
 LUBRICANT AL-6739
 RATER E. R. Lyons
 LABORATORY TEST NUMBER 703-17
 STAND NO. 2
 ENGINE NO. 3D-131703
 FUEL 1 1/2 S
 DE-2
 AL-7475-F

DATE 7-6-78

PISTON NO. 2

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4
HC	1.00									5	5.00		
MHC	0.75	25	18.75	100	75.00					100	75.00		
MC	0.50					60	30.00	95	47.50				
LC	0.25	75	18.75			40	10.00			45	11.25	25	6.25
VLC	0.15												
CARBON RATING	37.50		75.00	75.00	40.00		52.50	75.00		11.25	6.25		
BL	0.100									55	5.50	65	6.50
DBrl	0.075									100	10.00		
AL	0.050									10	.50		
LAL	0.025												
VIAL	0.010												
RL	0.001												
LACQUER RATING										5.50	7.00		
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	37.50		75.00	75.00	40.00		52.50	75.00		16.75	13.25	10.00	
*WEIGHTED TOTAL DEPOSITS													

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 210
 TEST LABORATORY AFLRL
 LUBRICANT AL-6739

RATER J. R. Lyons DATE 7-6-78
 LABORATORY TEST NUMBER 703-17
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL 1% S DF-2 AL-7475-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT	AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT	AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT	AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT AREA-% DEMERIT
MC	1.00		50	50.00	10	10.00				50	50.00	10	10.00
MHC	0.75	2.5	18.75										
MC	0.50		50	25.00	30	15.00		100	50.00	40	20.00	70	35.00
LC	0.25					10	2.50					10	2.50
VLC	0.15												
CARBON RATING		18.75	75.00	27.50				50.00	70.00	47.50			
BL	0.100	75	7.50		50	5.00	2.00			10	1.00	i0	1.00
DBrl	0.075												
AL	0.050												
LAL	0.025												
VIAL	0.010												
RL	0.001												
LACQUER RATING		7.50			5.00	6.00			1.00	1.00	9.50	10.00	
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	26.25		75.00	32.50	6.00			50.00	71.00	48.50	9.50	10.00	

*WEIGHTED TOTAL DEPOSITS

CYLINDER LINER I.D. (IN)
TEST #17

Cylinder No.	Front/Back			Thrust/Antithrust		
	Parallel to Crank			Perpendicular to Crank		
	Top	Middle	Bottom	Top	Middle	Bottom
1. After Before Δ	3.8762	3.8763	3.8767	3.8773	3.8769	3.8766
	3.8760	3.8763	3.8765	3.8763	3.8763	3.8764
	0.0002	0.0000	0.0002	0.0010	0.0006	0.0002
2. After Before Δ	3.8767	3.8764	3.8767	3.8767	3.8767	3.8767
	3.8764	3.8764	3.8767	3.8761	3.8762	3.8765
	0.0000	0.0000	0.0000	0.0006	0.0005	0.0002
3. After Before Δ	3.8765	3.8765	3.8767	3.8771	3.8775	3.8773
	3.8764	3.8765	3.8767	3.8765	3.8767	3.8767
	0.0001	0.0000	0.0000	0.0006	0.0008	0.0006

Average (A11) 0.0001
Average T/AT 0.0003

PISTON RING GAP (IN)
TEST #17

Piston No.	Ring No.							
	1	2	3	4	5	6	7	8
1. After Before Δ	0.035	0.029	0.031	0.027	0.021	0.021	0.020	0.021
	0.029	0.029	0.031	0.027	0.019	0.018	0.018	0.018
	0.006	0.000	0.000	0.000	0.002	0.003	0.002	0.003
2. After Before Δ	0.037	0.033	0.030	0.037	0.021	0.020	0.020	0.019
	0.032	0.033	0.030	0.036	0.018	0.019	0.018	0.018
	0.005	0.000	0.000	0.001	0.003	0.001	0.002	0.001
3. After Before Δ	0.032	0.031	0.029	0.025	0.021	0.022	0.021	0.022
	0.028	0.031	0.029	0.025	0.019	0.020	0.019	0.019
	0.004	0.000	0.000	0.000	0.002	0.002	0.002	0.003

Avg F/R (#1) Wear 0.005

PISTON AND CYLINDER LINER CONDITION
Test No. 17

No. 2 - Thrust Side
(Best)

PISTON AND CYLINDER LINER CONDITION
Test No. 17

No. 1 - Thrust Side
(Worst)

RING FACE CONDITION
Test No. 17

Piston - 1

Piston - 2

Piston - 3

APPENDIX D

3-53 TEST # 19

FUEL: High-Sulfur Fuel (1% S), AL-7766

LUBE: AL-7830

START: 30 November 1978

END: 20 December 1978

ENGINE OPERATING DATA (AVG)
TEST #19

	Power			Idle (Avg) 650
	Min	Max	Avg	
Engine Speed, rpm	2795	2810	2802	
Load, lb	105	109	107	
Torque, lb-ft	184	191	187	
BHP obs	98	102	100	
Fuel Rate, lb/hr	41.7	44.0	42.9	
BMEP, psi	87	90	89	
BSFC 1b/BHP-hr	0.417	0.442	0.430	
<u>Temperatures, °F</u>				
Jacket Coolant-In	194	200	197	96
Jacket Coolant-Out	201	206	205	100
Oil Sump	249	256	252	
Inlet Air (Blower)	74	102	87	
Exhaust Manifold	990	1060	1017	
Fuel @ Return	138	150	144	
Fuel @ Filter	80	94	90	
<u>Pressures</u>				
Oil Gallery, psig	42	44	43	
Blower Discharge, psig	4.0	4.4	4.2	
Intake Vacuum, in. H ₂ O	6.6	6.9	6.7	
Crankcase, in. H ₂ O	0.48	0.58	0.53	
Exhaust, Common, in. Hg	2.0	2.3	2.2	
Transfer Pump, psig	67	70	70	
<u>Oil Consumption, 1b</u>				38.9

LUBRICANT ANALYSES (AL-7830)
TEST #19

<u>Property</u>	<u>Method</u>	New Oil	70 Hr	140 Hr	210 Hr
K. Vis, cS, 40°C	D445	110.6	121.8	128.9	133.4
K. Vis, cS, 100°C	D445	12.31	12.01	12.53	12.77
VI	D2270	102	86	86	86
TAN	D664	1.7	3.8	3.7	3.5
TBN	D2896	4.8	4.6	4.6	4.4
Insolubles, wt%	D893				
Pentane A		0.02	---	---	0.04
Benzene A		0.02	---	---	0.72
Pentane B		0.03	---	---	0.43
Benzene B		0.02	---	---	0.53
API Gravity, °	D287	27.0	---	---	---
Flash Point, °C	D92	241	---	---	258
Carbon Residue, wt%	D524	1.22	1.62	1.79	1.73
Sulfated Ash, wt%	D874	1.05	---	---	1.23
Elemental	<u>Method</u>				
Ba, ppm	AA	< 5	---	---	---
Mg, ppm	AA	24	---	---	---
Ca, wt%	AA	0.23	0.26	---	0.29
Zn, wt%	AA	0.14	0.16	---	0.18
Cu, ppm	AA	ND	6	8	9
Cr, ppm	AA	ND	4	10	14
Pb, ppm	AA	ND	11	12	13
P, %w	Oronite	0.09	---	---	---
Fe, ppm	AA/XRF	ND	52/65	73/100	81/107

ND = Not Determined

AA = Atomic Absorption

XRF = X-Ray Fluorescence

DAILY WEAR METALS BY XRF
TEST #19

<u>Test Hours</u>	Iron <u>ppm</u>	Other Wear <u>Elements</u>
14	26	None detected
28	45	None detected
42	53	None detected
56	62	None detected
70	65	None detected
84	74	None detected
98	81	None detected
112	89	None detected
126	92	None detected
140	100	None detected
154	99	None detected
168	91	None detected
182	98	None detected
196	110	None detected
210	107	None detected

POWER CURVE W/ TEST FUEL
TEST No. 19

**POWER CURVE W/ TEST FUEL
TEST No. 19**

NET OIL ADDITIONS
TEST No. 19

RING FACE CONDITION: % BURNING
TEST #19

	Cylinder Number		
	1	2	3
First Ring	5	2	2
Second Ring	2	25	20
Third Ring	1	25	25
Fourth Ring	5	30	20
Average of all	13.5%		

N = Normal

RING STICKING
TEST #19

Ring No.	Piston Number		
	1	2	3
1	F	F	F
2	F	F	F
3	F	F	F
4	F	F	F

F = Free

CYLINDER LINERS
TEST #19

Cylinder Number	Percent Port Restriction	Cylinder Liner Scuffing % of Compression Ring Travel Area				
		% Scuffed Thrust	Anti-Thrust	% Total Area Scuffed	% Glazed	% Lacquer
1	5	15	25	20	15	85
2	2	70	80	75	15	85
3	<u>2</u>	<u>10</u>	<u>25</u>	<u>17</u>	<u>15</u>	<u>85</u>
Average	3	32	43	37	15	85

PISTON O.D. (IN)
TEST #19

Cylinder	1	2	3
Before	3.8700	3.8705	3.8700
After	<u>3.8700</u>	<u>3.8700</u>	<u>3.8700</u>
Change	0.0000	0.0005	0.0000

PISTON SURFACE CONDITION
TEST #19

	Piston Number		
	1	2	3
Top Land	---	ALL NORMAL	---
Skirt	-----	ALL LIGHT SCRATCHES	-----
Piston Pin	-----	ALL NORMAL	-----

PISTON GROOVE INSIDE DIAMETER -
% RING SUPPORTING CARBON
TEST #19

<u>Piston Ring</u>	<u>Quadrant</u>	Piston Number		
		1	2	3
1	1	0	5	0
	2	0	25	0
	3	0	25	30
	4	0	0	5
2	1	0	0	95
	2	0	0	100
	3	90	0	0
	4	90	0	0

Quadrants:

- 1 = Thrust
- 2 = Rear
- 3 = Anti-thrust
- 4 = Front

EXHAUST VALVE DEPOSITS
TEST #19

Area	Cylinder No.		
	1	2	3
Head	ALL 100% AHC	- - - - -	- - - - -
Face	ALL 100 - 8 to 9	- - - - -	- - - - -
Tulip	ALL SOOT	- - - - -	- - - - -
Stem	ALL 100-9 TO CLEAN	- - - - -	- - - - -

EXHAUST VALVE SURFACE CONDITIONS
TEST #19

Freeness in Guide	Cylinder No.		
	1 F	2 F	3 F
Head	N	N	N
Face	N	N	N
Seat	N	N	N
Stem	N	N	N
Tip	N	N	N

F = Free

N = Normal

RING DEPOSITS
TEST #19

Cylinder Number	1		2		3	
	CARB	LACQ	CARB	LACQ	CARB	LACQ
Top	100- 1/2 AHC	0	40-AHC	60-9	60-AHC	0
2	0	100-5	0	60-7	0	80-8
3	0	15-5	0	40-8	0	20-4
		85-4		100-5	0	10-7
4	0	100-3	0	100-3	0	50-6
					5-9	
					95-3	
ID	1	50-AHC	0	100- 1/2 AHC	0	100-AHC
		50- 1/2 AHC				0
2	100-AHC	0	100-AHC	0	100-AHC	0
3	100- 1/2 AHC	0	100- 1/2 AHC	0	100- 1/2 AHC	0
4	100- 1/2 AHC	0	100- 1/2 AHC	0	0	100-9
Bottom	1	0	100-5	0	5-8,90-6	0
					5-7	75-7
2	0	100-3	0	5-5	0	25-3
				95-4	0	5-8
3	0	100-4	0	5-9	0	95-7
				95-4	0	100-4
4	0	100-2	0	100-3	0	100-3

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

RATER E R Lyons DATE 12-27-78

TEST HOURS 210 LABORATORY TEST NUMBER 703-19

TEST LABORATORY AFRL STAND NO. 2 ENGINE NO. 3D-131703

LUBRICANT AL-7830 FUEL AL -7766

PISTON NO. 1

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN	
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	AREA %	DEMERIT AREA %
HC	1.00		50	50.00						85	85.00
NHC	0.75										
MC	0.50	90	45.00	30	15.00		80	40.00			
LC	0.25	10	2.50	20	5.00	100	12.50	50	12.50		
VLC	0.15						20	3.00	15	2.25	
CARBON RATING		47.50	70.00	25.00	12.50	43.00	87.25	21.25	18.75		
BL	0.100										100 10.00
DBrL	0.075					50	3.75				
AL	0.050									5 .250	
LAL	0.025									15 .375	.20 .500
VIAL	0.010										
RL	0.001										
LACQUER RATING						3.75					
CLEAN	0										
ZONAL RATING	47.50	70.00	25.00	16.25	43.00	87.25	21.625	19.500	10.00		
LOCATION FACTOR											
WEIGHTED RATING											

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 210
 TEST LABORATORY AFTRL
 LUBRICANT AL-7830

RATER E. R. Lyons DATE 12-27-78
 LABORATORY TEST NUMBER 703-19
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL AL-7766

PISTON NO. 2
 PISTON WT'D* RATING 315

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER CROWN
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	
HC	1.00	20	20.00	45	45.00					
MHC	0.75									
MC	0.50	50	25.00	30	15.00					
LC	0.25	30	7.50	25	6.25	40	10.00			
VLC	0.15									
CARBON RATING		52.50	66.25		10.00			32.50	87.50	43.75
BL	0.100					60	6.00	10	1.00	
DBrl	0.075									.500
AL	0.050									
LAL	0.025					90	2.25			
VLAL	0.010									
RL	0.001									
LACQUER RATING						6.00	3.25			
CLEAN	0									
ZONAL RATING		52.50	66.25		16.00	3.25		32.50	88.00	43.75
LOCATION FACTOR										
WEIGHTED RATING										

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE _____
 TEST HOURS _____ 210
 TEST LABORATORY AETRL
 LUBRICANT AL-7830

RATER E. R. Lyons DATE 12-27-78
 LABORATORY TEST NUMBER 703-19
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL AL-7766

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	DEMURIT AREA %	DEMURIT AREA %	DEMURIT AREA %	DEMURIT AREA %
HC	1.00	10	10.00	50	50.00					5	5.00	80	80.00
MHC	0.75												
MC	0.50	90	45.00	25	12.50					75	37.50		60 30.00
LC	0.25									30	7.50	20	5.00 40 10.00 90 22.50
VLC	0.15									25	3.75		
CARBON RATING		55.00	68.75	21.25	3.75	50.00	85.00	40.00	22.50				
BL	0.100			15	1.50								100 10.00
DBRL	0.075												
AL	0.050												
LAL	0.025					75	1.875					10 .250	
VIAL	0.010												
RL	0.001												
LAQUER RATING						1.50	1.875						.250 10.00
CLEAN	0												
ZONAL RATING		55.00	68.75	22.75	5.265	50.00	85.00	40.00	22.750	10.00			
LOCATION FACTOR													
WEIGHTED RATING													

*WEIGHTED TOTAL DEPOSITS

CYLINDER LINER I.D. (IN)
TEST #19

Cylinder No.	Front/Back			Thrust/Antithrust		
	Parallel to Crank			Perpendicular to Crank		
	Top	Middle	Bottom	Top	Middle	Bottom
1. After	3.8759	3.8756	3.8755	3.8778	3.8770	3.8765
Before	3.8761	3.8758	3.8755	3.8762	3.8760	3.8760
Change	-0.0002	-0.0002	0.0000	0.0016	0.0010	0.0005
2. After	3.8760	3.8760	3.8759	3.8780	3.8771	3.8762
Before	3.8760	3.8760	3.8759	3.8762	3.8759	3.8755
Change	0.0000	0.0000	0.0000	0.0018	0.0012	0.0007
3. After	3.8756	3.8757	3.8757	3.8772	3.8770	3.8765
Before	3.8758	3.8758	3.8757	3.8758	3.8758	3.8758
Change	-0.0002	-0.0001	0.0000	0.0014	0.0012	0.0007

Average (All) 0.0006

Average T/AT 0.0011

PISTON RING GAP (IN)
TEST #19

Piston No.	Ring No.							
	1	2	3	4	5	6	7	8
1. After	0.044	0.026	0.036	0.029	0.018	0.018	0.017	0.018
Before	0.035	0.026	0.036	0.028	0.015	0.015	0.014	0.016
Change	0.009	0.000	0.000	0.001	0.003	0.003	0.003	0.002
2. After	0.050	0.028	0.041	0.040	0.017	0.020	0.018	0.018
Before	0.032	0.028	0.040	0.040	0.014	0.016	0.015	0.015
Change	0.018	0.000	0.001	0.000	0.003	0.004	0.003	0.003
3. After	0.050	0.031	0.036	0.036	0.016	0.016	0.015	0.015
Before	0.032	0.031	0.036	0.036	0.014	0.014	0.014	0.014
Change	0.018	0.000	0.000	0.000	0.002	0.002	0.001	0.001

Avg F/R (#1) Wear 0.015

PISTON AND CYLINDER LINER CONDITION
Test No. 19

No. 3 - Thrust Side
(Best)

PISTON AND CYLINDER LINER CONDITION
Test No. 19

No. 2 - Antithrust Side
(Worst)

RING FACE CONDITION
Test No. 19

Piston - 1

Piston - 2

Piston - 3

APPENDIX E

3-53 TEST # 20

FUEL: AL-7965-F (1%S)

LUBE: AL-7899-L

START: 22 January 1979

END: 9 February 1979

ENGINE OPERATING DATA (AVG)
TEST #20

	<u>Power</u>	<u>Idle</u>	<u>(Avg)</u>
	<u>Min</u>	<u>Max</u>	<u>Avg</u>
Engine Speed, rpm	2795	2806	2801
Load, lb	109	116	112
Torque, lb-ft	191	203	195
BHp obs	102	108	104
Fuel Rate, lb/hr	41.7	43.9	42.6
BMEP, psi	90	96	93
BSFC lb/BHp-hr	0.398	0.424	0.409
<u>Temperatures, °F</u>			
Jacket Coolant-In	197	199	198
Jacket Coolant-Out	204	205	205
Oil Sump	234	242	238
Inlet Air (Blower)	50	92	76
Exhaust Manifold	940	1000	971
Fuel @ Return	132	146	141
Fuel @ Filter	80	99	90
<u>Pressures</u>			
Oil Gallery, psig	34	36	35
Blower Discharge, psig	4.1	5.0	4.7
Intake Vacuum, in. H ₂ O	6.6	7.2	7.0
Crankcase, in. H ₂ O	0.51	0.64	0.55
Exhaust, Common, in. Hg	2.1	2.8	2.6
Transfer Pump, psig	69	71	70
<u>Total Oil Consumption</u>	33.1 lb		

PRECEDING PAGE BLANK-NOT FILMED

LUBRICANT ANALYSES (AL-7899)
TEST #20

<u>Property</u>	<u>Method</u>	New Oil	70 Hr	140 Hr	210 Hr
K. Vis, cS, 40°C	D 445	27.67	30.14	30.69	31.66
K. Vis, cS, 100°C	D 445	6.08	6.51	6.62	6.77
VI	D 2270	177	178	180	180
TAN	D 664	0.4	0.6	0.7	0.9
THN	D 2896	6.1	6.8	6.1	5.9
Insolubles, wt%	D 893				
Pentane A		A	ND	ND	0.07
Benzene A		A	ND	ND	0.07
Pentane B		A	ND	ND	0.71
Benzene B		A	ND	ND	0.53
API Gravity, °	D 287	21.1	ND	ND	26.0
Flash Point, °C	D 92	ND	ND	ND	252
Carbon Residue, wt%	D 524	1.10	1.68	2.11	2.34
Sulfated Ash, wt%	D 874	1.55	1.62	1.69	1.75
Elemental	<u>Method</u>				
Ba, ppm	AA	0.93	0.89	ND	0.95
Mg, ppm	AA	<1	1	ND	2
Ca, wt%	AA	<0.01	<0.01	ND	<0.01
Zn, wt%	AA	0.04	0.05	ND	0.05
Cu, ppm	AA	A	3	5	6
Cr, ppm	AA	A	3	7	11
Pb, ppm	AA	A	4	7	10
P, wt%	Oronite	0.01	0.01	0.02	0.02
Fe, ppm	AA/XRF	A	61/53	140/121	209/156

A = Expected to be zero for a new oil.

ND = Not Determined.

AA = Atomic Absorption.

XRF = X-Ray Fluorescence.

DAILY WEAR METALS BY XRF
TEST #20

<u>Test Hours</u>	<u>Iron ppm</u>	<u>Other Wear Elements</u>
14	20	None detected
28	26	None detected
42	28	None detected
56	40	None detected
70	53	None detected
84	60	None detected
98	72	None detected
112	93	None detected
126	114	None detected
140	121	None detected
154	114	None detected
168	135	None detected
182	142	None detected
196	151	None detected
210	156	None detected

**POWER CURVE W/ TEST FUEL
TEST No. 20**

NET OIL ADDITION
TEST No. 20

RING FACE CONDITION: % BURNING
TEST #20

	Cylinder Number		
	1	2	3
First Ring	25	100	20
Second Ring	75	100	45
Third Ring	70	100	45
Fourth Ring	55	100	50
Average of all	65		

N = Normal

RING STICKING
TEST #20

<u>Ring No.</u>	Piston Number		
	1	2	3
1	F	F	F
2	F	F	F
3	F	F	F
4	F	F	F

F = Free

AD-A094 900

SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AND ETC F/B 11/8
LUBRICANTS FOR COMBATING EFFECTS OF HIGH-SULFUR FUEL.(U)
JUL 80 E A FRAME DAAK70-80-C-0001
AFRL-127 NL

UNCLASSIFIED

2 2
AD-
202301

DAAK70-80-C-0001

500
NL

END
DATE
FILED
3-81
DTIC

CYLINDER LINERS
TEST #20

Cylinder Number	Percent Port Restriction	Cylinder Liner Scuffing % of Compression Ring Travel Area				
		% Scuffed Thrust	% Anti-Thrust	% Total Area Scuffed	% Glazed	% Lacquer
1	10	75	45	60	0	100
2	10	25	75	50	0	100
3	<u>5</u>	<u>20</u>	<u>80</u>	<u>50</u>	<u>1</u>	<u>99</u>
Average	8	40	67	53	0	100

PISTON O.D. (IN)
TEST #20

Cylinder	1	2	3
Before	3.8700	3.8700	3.8700
After	<u>3.8700</u>	<u>3.8700</u>	<u>3.8700</u>
Change	0.0000	0.0000	0.0000

PISTON SURFACE CONDITION
TEST #20

	Piston Number		
	1	2	3
Top Land	N	N	N
Skirt	Lt. Scuffing	Lt. Scratches to Scuff	Lt. Scratches & Scuffing
Piston Pin	N	N	N

N = Normal

PISTON GROOVE INSIDE DIAMETER -
% RING SUPPORTING CARBON
TEST #20

<u>Piston Ring</u>	<u>Quadrant</u>	Piston Number		
		1	2	3
1	1	0	0	0
	2	0	0	0
	3	0	0	15
	4	0	0	0
2	1	0	0	0
	2	0	0	0
	3	0	0	0
	4	0	0	0

Quadrants:

- 1 = Thrust
- 2 = Rear
- 3 = Anti-thrust
- 4 = Front

EXHAUST VALVE DEPOSITS
TEST #20

Area	Cylinder No.		
	1	2	3
Head	Some light soot and 9-Lacq	- - - - -	- - - - -
Face	100-9 Lacquer to clean	- - - - -	- - - - -
Tulip	Light Carbon and 9-Lacquer	- - - - -	- - - - -
Stem	100-9 Lacquer to clean	- - - - -	- - - - -

EXHAUST VALVE SURFACE CONDITIONS
TEST #20

Freeness in Guide	Cylinder No.		
	1	2	3
Head	F	F	F
Face		- - - Normal to light pitting - - -	
Seat	N	N	N
Stem		- - - Normal to light wear - - -	
Tip	N	N	N

N = Normal

RING DEPOSITS
TEST #20

Cylinder Number		1		2		3	
	Ring	CARB	LACQ	CARB	LACQ	CARB	LACQ
Top	1	0	75-8, 10-6	0	10-6	10- $\frac{1}{2}$ AHC	90-9
			15-5				
2	0	95-9	0	5-6	0	100-9	
		5-6		95-9			
3	0	100-8	0	15-4	0	100-7	
4	0	50-6	0	85-8	0	25-7	
		50-5		10-6		75-5	
ID	1	100- $\frac{1}{2}$ AHC	0	100- $\frac{1}{2}$ AHC	0	100- $\frac{1}{2}$ AHC	0
	2	100- $\frac{1}{2}$ AHC	0	100- $\frac{1}{2}$ AHC	0	100- $\frac{1}{2}$ AHC	0
	3	100- $\frac{1}{2}$ AHC	0	100- $\frac{1}{2}$ AHC	0	100-9	
	4	100- $\frac{1}{2}$ AHC	0	0	100-9	0	100-9
Bottom	1	0	10-8	0	5-7, 60-3	0	5-8 15-6
	2	0	90-5	0	35-6	0	75-7 5-5
		90-6			15-7		100-4
		10-5			85-6		
3	0	90-4	0	100-4	0	25-4 75-3	
		10-5			100-3	0	100-3
	4	0	100-3	0			

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 210
 TEST LABORATORY AFLRL
 LUBRICANT AL-7899-L

RATER E R Lyons DATE 2-14-79
 LABORATORY TEST NUMBER 703-20
 STAND NO. 2 ENGINE NO. 703
 FUEL AL-7965-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN					
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4		
HC	1.00									20	15.00				
MHC	0.75		100	75.00											
MC	0.50	100	50.00			100	50.00	30	15.00		60	30.00	15	7.50	
LC	0.25									55	13.75	100	25.00	20	5.00
VLC	0.15													21.25	
CARBON RATING		50.00	75.00	50.00	28.75		25.00		50.00		25.00		25.00	28.75	
BL	0.100														
DBrl	0.075														
AL	0.050									15	.75				
LAL	0.025														
VIAL	0.010														
RL	0.001														
LACQUER RATING										.75					
CLEAN	0														
ZONAL RATING															
LOCATION FACTOR															
WEIGHTED RATING	50.00	75.00	50.00	29.50	25.00	50.00	25.00	50.00	25.00	25.00	28.75	25.00	28.75	7.50	

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE _____
TEST HOURS _____ 210
TEST LABORATORY ALFRU
LUBRICANT AL-7899-L

RATER E. R. Lyons DATE 2-14-79
LABORATORY TEST NUMBER 703-20
STAND NO. 2 ENGINE NO. 703
FUEL AL-7965-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	AREA %	DEMERIT AREA %	DEMERIT AREA %	DEMERIT AREA %
HC	1.00		10	10.00						20	20.00	35	35.00
MHC	0.75	10	7.50							15	11.25		
MC	0.50	90	45.00	90	45.00	75	37.50	15	7.50	20	10.00	65	32.50
LC	0.25					25	5.25	65	16.25	85	21.25	50	12.50
VLC	0.15									10	1.50		25
CARBON RATING	52.50	55.00	42.75	23.75	32.50	44.00	67.50	42.75					
BL	0.100												
DBL	0.075												
AL	0.050												
LAL	0.025												
VIAL	0.010												
RL	0.001												
LAQUER RATING									1.00				
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	52.50	55.00	52.75	24.75	32.50	44.00	67.50	42.75	7.50				

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 210
 TEST LABORATORY AFLRL
 LUBRICANT AL-7899-L

RATER E & Lyons DATE 2-14-79
 LABORATORY TEST NUMBER 703-20
 STAND NO. 2 ENGINE NO. 703
 FUEL AL-7965-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER- CROWN					
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	AREA %	DEMERIT AREA %	DEMERIT AREA %	DEMERIT AREA %		
HC	1.00		10	10.00	15	15.00				35	35.00	35.00	15	15.00	
MHC	0.75	40	30.00	15	11.25										
MC	0.50	60	30.00	75	37.50	10	5.00	30	15.00	10	5.00				
CARBON	0.25				75	18.75	25	6.25	70	17.25		30	7.50	60	15.00
VLC	0.15					65	9.75			55	8.25		25	3.75	
CARBON RATING		60.00	58.75	38.75	16.00		32.50	48.25		42.50		33.75			
BL	0.100									35	3.50				
DBL	0.075												100	7.50	
AL	0.050														
LAL	0.025														
VIAL	0.010														
RL	0.001														
LACQUER RATING									.50			3.50		7.50	
CLEAN	0														
ZONAL RATING															
LOCATION FACTOR															
WEIGHTED RATING	60.00	58.75	38.75	16.50		32.50	48.25	46.00		33.75	7.50				

*WEIGHTED TOTAL DEPOSITS

CYLINDER LINER I.D. (IN)
TEST #20

Cylinder No.	Front/Back			Thrust/Antithrust		
	Parallel to Crank			Perpendicular to Crank		
	Top	Middle	Bottom	Top	Middle	Bottom
1. After	3.8760	3.8756	3.8754	3.8782	3.8765	3.8759
Before	3.8759	3.8756	3.8754	3.8760	3.8757	3.8754
Change	0.0001	0.0000	0.0000	0.0022	0.0008	0.0005
2. After	3.8775	3.8763	3.8760	3.8776	3.8765	3.8760
Before	3.8760	3.8759	3.8758	3.8760	3.8757	3.8755
Change	0.0015	0.0004	0.0002	0.0016	0.0008	0.0005
3. After	3.8762	3.8756	3.8755	3.8769	3.8760	3.8760
Before	3.8755	3.8754	3.8754	3.8755	3.8753	3.8753
Change	0.0007	0.0002	0.0001	0.0014	0.0007	0.0007
Average (A11)	0.0007					
Average T/AT	0.0010					

PISTON RING GAP (IN)
TEST #20

Piston No.	Ring No.							
	1	2	3	4	5	6	7	8
1. After	0.051	0.028	0.027	0.033	0.019	0.019	0.018	0.018
Before	0.035	0.028	0.027	0.033	0.016	0.016	0.016	0.014
Change	0.016	0.000	0.000	0.000	0.003	0.003	0.002	0.004
2. After	0.046	0.028	0.032	0.031	0.018	0.018	0.018	0.017
Before	0.033	0.028	0.032	0.031	0.014	0.015	0.014	0.014
Change	0.013	0.000	0.000	0.000	0.004	0.003	0.004	0.003
3. After	0.047	0.035	0.036	0.038	0.016	0.016	0.017	0.017
Before	0.037	0.035	0.036	0.038	0.013	0.013	0.014	0.014
Change	0.010	0.000	0.000	0.000	0.003	0.003	0.003	0.003
Avg F/R (#1) Wear	0.013							

PISTON AND CYLINDER LINER CONDITION
Test No. 20

No. 3 Thrust side
(Best)

PISTON AND CYLINDER LINER CONDITION
Test No. 20

No. 3 Anti-thrust side
(Worst)

RING FACE CONDITION
Test No. 20

Piston - 1

Piston - 2

Piston - 3

APPENDIX F

3-53 TEST # 21

FUEL: AL-7965-F(A) (1%S)

LUBE: AL-8099-L

START: 7 March 1979

END: 27 March 1979

ENGINE OPERATING DATA (AVG)
TEST #21

	Power		Idle
	Min	Max	Avg
Engine Speed, rpm	2800	2815	2803
Load, lb	107	111	109
Torque, lb-ft	187	194	191
BHP obs	100	104	102
Fuel Rate, lb/hr	41.9	44.6	43.0
BMEP, psi	89	92	91
BSFC 1b/BHP-hr	0.409	0.433	0.422
<u>Temperatures, °F</u>			
Jacket Coolant-In	190	198	198
Jacket Coolant-Out	203	205	205
Oil Sump	255	260	258
Inlet Air (Blower)	86	103	95
Exhaust Manifold	1000	1050	1025
Fuel @ Return	139	148	144
Fuel @ Filter	86	92	89
<u>Pressures</u>			
Oil Gallery, psig	41	45	44
Blower Discharge, psig	4.4	4.5	4.5
Intake Vacuum, in. H ₂ O	6.5	6.7	6.6
Crankcase, in. H ₂ O	0.26	0.31	0.29
Exhaust, Common, in. Hg	2.2	2.5	2.4
Transfer Pump, psig	70	74	71
<u>Oil Consumption</u>			
total lb	53.5		

PRECEDING PAGE BLANK-NOT FILLED

LUBRICANT ANALYSES (AL-8099)
TEST #21

<u>Property</u>	<u>Method</u>	New Oil	70 Hr	140 Hr	210 Hr
K. Vis, cS, 40°C	D 445	110.31	152.74	173.59	180.85
K. Vis, cS, 100°C	D 445	11.64	14.68	15.77	16.52
VI	D 2270	92	95	93	95
TAN	D 664	2.1	3.0	3.4	3.6
TBN	D 2896/	13.0/	12.9/	11.9/	11.9/
	D 664	11.6	5.9	5.3	5.2
Insolubles, wt%	D 893				
Pentane A		A	ND	ND	0.13
Benzene A		A	ND	ND	0.09
Pentane B		A	ND	ND	0.86
Benzene B		A	ND	ND	0.28
API Gravity, °	D 287	25.3	ND	ND	ND
Flash Point, °C	D 92	ND	ND	ND	240
Carbon Residue, wt%	D 524	1.68	2.77	3.17	3.43
Sulfated Ash, wt%	D 874	1.78	ND	ND	2.06
<u>Elemental</u>	<u>Method</u>				
Ca, wt%	AA	0.48	ND	ND	ND
Zn, wt%	AA	0.13	0.12	0.13	0.13
Cu, ppm	AA	A	4	6	7
Cr, ppm	AA	A	1	2	2
Pb, ppm	AA	A	7	8	8
Fe, ppm	AA/XRF	A	42/33	58/46	72/56

A = Expected to be zero for a new oil.

ND = Not Determined.

AA = Atomic Absorption.

XRF = X-Ray Fluorescence.

DAILY WEAR METALS BY XRF
TEST #21

Test <u>Hours</u>	Iron <u>ppm</u>	Other Wear <u>Elements</u>
14	16	None detected
28	28	None detected
42	33	None detected
56	40	None detected
70	42	None detected
84	56	None detected
98	51	None detected
112	57	None detected
126	58	None detected
140	58	None detected
154	58	None detected
168	56	None detected
182	63	None detected
196	65	None detected
210	72	None detected

RING FACE CONDITION: % BURNING
TEST #21

	Cylinder Number		
	1	2	3
First Ring	50	25	5
Second Ring	50	90	N
Third Ring	80	85	N
Fourth Ring	85	70	N
Average of all	45		

N = Normal

RING STICKING
TEST #21

Ring No.	Piston Number		
	1	2	3
1	50% Cold Stuck	100% Cold Stuck	100% Cold Stuck
2	F	F	F
3	F	F	F
4	F	F	F

F = Free

CYLINDER LINERS
TEST #21

Cylinder Number	Percent Port Restriction	Cylinder Liner Scuffing % of Compression Ring Travel Area					
		% Scuffed Thrust	Anti-Thrust	% Total Area Scuffed	% Glazed	% Lacquer	
1	2	75	25	50	25	75	
2	2	20	50	35	15	85	
3	<u>3</u>	<u>5</u>	<u>5</u>	<u>5</u>	<u>5</u>	<u>95</u>	
Average	3	33	27	30	15	85	

PISTON O.D. (IN)
TEST #21

Cylinder	1	2	3
Before	3.8705	3.8710	3.8705
After	<u>3.8705</u>	<u>3.8710</u>	<u>3.8705</u>
Change	0.0000	0.0000	0.0000

PISTON SURFACE CONDITION
TEST #21

	Piston Number		
	1	2	3
Top Land	Normal	Normal	Normal
Skirt	Lt. Scratches	Lt Scratches	Med Scuff- Thrust side
Piston Pin	Normal	Normal	Normal

PISTON GROOVE INSIDE DIAMETER -
% RING SUPPORTING CARBON
TEST #21

<u>Piston Ring</u>	<u>Quadrant</u>	Piston Number		
		1	2	3
1	1	95	15	100
	2	0	0	5
	3	0	0	5
	4	0	0	15
2	1	0	80	50
	2	0	0	0
	3	95	80	100
	4	40	70	100

Quadrants:

- 1 = Thrust
- 2 = Rear
- 3 = Anti-thrust
- 4 = Front

EXHAUST VALVE DEPOSITS
TEST #21

Area	Cylinder No.		
	1	2	3
Head	All - AHC to soot	- - - - -	- - - - -
Face	All - 100% - 9 Lacquer to clean	- - - - -	- - - - -
Tulip	All - AHC to soot	- - - - -	- - - - -
Stem	All - 9 Lacquer to clean	- - - - -	- - - - -

EXHAUST VALVE SURFACE CONDITIONS
TEST #21

Freeness in Guide	Cylinder No.		
	1	2	3
Head	F	F	F
Face	N	N	N
Seat	N	N	N
Stem	N	N	N
Tip	N	N	Lt Wear

F = Free

N = Normal

RING DEPOSITS
TEST #21

Cylinder Number Ring	ID	1		2		3	
		CARB 100-AHC	LACQ 0	CARB 100-AHC	LACQ 0	CARB 20-AHC	LACQ 0
Top	2	0	30-8	0	20-8	0	15-9
	3	0	70-7	0	80-6	0	25-8
	4	0	100-5	0	100-5	0	100-6
				100-4	0	100-3	0
					100-AHC	0	100-AHC
					100-AHC	0	100-AHC
					100-½ AHC	0	100-AHC
					100-9	0	100-9
						0	0
Bottom	1	0	10-8	30-6	0	100-3	0
	2	0	60-4	0	5-8	0	5-8
	3	0	10-6	0	95-3	0	70-3
	4	0	90-3	0	25-7	0	25-5
			10-7	0	75-5	0	50-6
				90-4	0	100-3	0
				25-4	0	100-3	0
				75-3			

125

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE _____
 TEST HOURS ____ 210 ____
 TEST LABORATORY AFLRL
 LUBRICANT AL-8099-L

RATER E. R. Lyons DATE 4-2-79
 LABORATORY TEST NUMBER 21
 STAND NO. 2 ENGINE NO. 353-703
 FUEL AL-7965-E

PISTON NO. 1

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	DEMURIT AREA %	DEMURIT AREA %	DEMURIT AREA %	DEMURIT AREA %
CARBON	AREA % DEMURIT AREA %	DEMURIT AREA %											
HC	1.00	30	30.00	75	75.00	15	15.00	10	10.00	100	100.00	90	90.00
MHC	0.75											75	56.25
MC	0.50	70	35.00	25	12.50	10	5.00						
LC	0.25									10	2.50	25	6.25
VLC	0.15											50	12.50
CARBON RATING	65.00	87.50	20.00	10.00	100.00	92.50				92.50	62.50	12.50	
BL	0.100			75	7.50							10	1.00
DBRL	0.075											100	10.00
AL	0.050												
LAL	0.025												
VIAL	0.010												
RL	0.001												
LACQUER RATING				7.50	4.50							3.00	10.00
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	65.00	87.50	27.50	14.50	100.00	92.50	62.50	15.50	10.00				

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 21
 TEST LABORATORY AFLRL
 LUBRICANT AL-8099-L

RATER E.R. Lyons DATE 4-2-79
 LABORATORY TEST NUMBER 21
 STAND NO. 2 ENGINE NO. 353-703
 FUEL AL-7965-F

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	DEMERRIT AREA %	DEMERRIT AREA %	DEMERRIT AREA %	DEMERRIT AREA %
HC	1.00	50	50.00	100	100.00	15	15.00	80	80.00	75	75.00		
MHC	0.75											100	75.00
MC	0.50					5	2.50	5	2.50				
LC	0.25	50	12.50			80	20.00	20	5.00	25	6.25		90
VLC	0.15						5	.75					22.50
CARBON RATING		62.50	100.00	37.50	3.25	85.00	81.25	75.00	22.50				
BL	0.100											100	10.00
DB/L	0.075												
AL	0.050					90	4.50			10	.50		
LAL	0.025												
VLAL	0.010												
RL	0.001												
LACQUER RATING					4.50								
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	62.50	100.00	37.50	7.75	85.00	81.25	75.00	23.00	10.00				

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 21
 TEST LABORATORY AFLRL
 LUBRICANT AL-8099-L

RATER E. R. Lyons DATE 4-2-79
 LABORATORY TEST NUMBER 21
 STAND NO. 2 ENGINE NO. 703-3
 FUEL AL-7965-F

PISTON NO. 3

NO. 1 GROOVE, VOLUME %	
PISTON WTD* RATING	500

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4
HC	1.00	100	100.00	100	100.00	10	10.00	80	80.00	80	80.00	10	10.00
MHC	0.75												
MC	0.50					70	35.00					90	45.00
LC	0.25					20	5.00	20	5.00			10	2.50
VLC	0.15					25	3.75						
CARBON RATING	100.00	100.00	50.00	50.00	3.75	85.00	85.00	85.00	55.00	55.00	55.00	5.50	2.50
BL	0.100											20	2.00
DBrl	0.075											100	10.00
AL	0.050						75	3.75				70	3.50
LAL	0.025												
VIAL	0.010												
RL	0.001												
LACQUER RATING										3.75			
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	100.00	100.00	50.00	50.00	7.50	85.00	85.00	85.00	55.00	55.00	55.00	8.00	10.00

*WEIGHTED TOTAL DEPOSITS

CYLINDER LINER I.D. (IN)
TEST #21

Cylinder No.	Front/Back			Thrust/Antithrust		
	Parallel to Crank			Perpendicular to Crank		
	Top	Middle	Bottom	Top	Middle	Bottom
1. After	3.8764	3.8762	3.8766	3.8762	3.8768	3.8763
	3.8765	3.8764	3.8765	3.8756	3.8960	3.8762
	(0.0001)	(0.0002)	0.0001	0.0006	0.0008	0.0002
2. After	3.8762	3.8762	3.8766	3.8763	3.8768	3.8762
	3.8760	3.8762	3.8765	3.8760	3.8760	3.8761
	0.0002	0.0000	0.0001	0.0003	0.0008	0.0001
3. After	3.8755	3.8756	3.8760	3.8766	3.8762	3.8764
	3.8757	3.8758	3.8758	3.8759	3.8758	3.8760
	(0.0002)	(0.0002)	0.0002	0.0007	0.0004	0.0004
Average (A11)	0.0004					
Average T/AT	0.0005					

PISTON RING GAP (IN)
TEST #21

Piston No.	Ring No.							
	1	2	3	4	5	6	7	8
1. After	0.035	0.035	0.036	0.030	0.024	0.022	0.022	0.022
	0.031	0.034	0.036	0.030	0.020	0.020	0.019	0.019
	0.004	0.001	0.000	0.000	0.004	0.002	0.003	0.003
2. After	0.035	0.035	0.034	0.035	0.022	0.024	0.022	0.022
	0.032	0.035	0.033	0.033	0.018	0.018	0.018	0.019
	0.003	0.000	0.001	0.002	0.004	0.006	0.004	0.003
3. After	0.033	0.035	0.035	0.030	0.025	0.025	0.024	0.024
	0.031	0.035	0.035	0.030	0.019	0.019	0.019	0.019
	0.002	0.000	0.000	0.000	0.006	0.006	0.005	0.005

Avg F/R (#1) Wear 0.003

PISTON AND CYLINDER LINER CONDITION
Test No. 21

No. 3 - Thrust Side
(Best)

PISTON AND CYLINDER LINER CONDITION
Test No. 21

No. 1 - Thrust Side
(Worst)

RING FACE CONDITION
Test No. 21

Piston - 1

Piston - 2

Piston - 3

APPENDIX G

3-53 TEST # 23

FUEL: AL-8026-F(HSF)

LUBE: AL-8423-L

START: 26 November 1979

END: 14 December 1979

ENGINE OPERATING DATA (AVG)
TEST #23

	Power			Idle (Avg)
	Min	Max	Avg	
Engine Speed, rpm	2796	2815	2804	
Load, lb	102	111	107	
Torque, lb-ft	177	195	188	
BHp obs	95.3	103.9	100.5	
Fuel Rate, lb/hr	41.5	44.5	43.4	
BMEP, psi	84	92	89	
BSFC 1b/BHp-hr	0.418	0.446	0.431	
<u>Temperatures, °F</u>				
Jacket Coolant-In	191	200	198	94
Jacket Coolant-Out	198	206	204	102
Oil Sump	246	256	251	
Inlet Air (Blower)	54	84	70	
Exhaust Manifold	910	1020	965	
Fuel @ Return	120	144	139	
Fuel @ Filter	82	96	90	
<u>Pressures</u>				
Oil Gallery, psig	44.0	45.0	44.3	
Blower Discharge, psig	4.5	5.0	4.8	
Intake Vacuum, in. H ₂ O	6.3	6.8	6.6	
Crankcase, in. H ₂ O	0.21	0.32	0.26	
Exhaust, Common, in. Hg	2.2	2.7	2.5	
Transfer Pump, psig	71	91	73	
<u>Oil Consumption, lb</u>			53	

PRECEDING PAGE BLANK-NOT FILLED

LUBRICANT ANALYSES (AL-8423-L)
TEST #23

<u>Property</u>	<u>Method</u>	New Oil	70 Hrs	140 Hrs	210 Hrs
K. Vis, cS, 40°C	D 445	77.59	81.02	84.49	85.88
K. Vis, cS, 100°C	D 445	12.97	12.64	13.12	13.42
VI	D 2270	169	155	156	158
TAN	D 664	5.2	4.6	5.3	5.7
TBN	D 2896	11.2	ND	ND	ND
TBN	D 664	8.9	5.5	5.4	5.1
Insolubles, wt%	D 893				
Pentane A		0.02	ND	ND	0.03
Benzene A		0.02	ND	ND	0.03
Pentane B		0.04	ND	ND	0.98
Benzene B		0.07	ND	ND	0.83
API Gravity, °	D 287	24.3	ND	ND	22.4
Flash Point, °C	D 92	198	ND	ND	232
Carbon Residue, wt%	D 524	1.67	2.37	2.71	2.97
Sulfated Ash, wt%	D 874	1.27	1.43	1.61	1.61
<u>Elemental</u>	<u>Method</u>				
Mg, ppm	AA	0.15	ND	ND	ND
Ca, wt%	AA	0.09	ND	ND	ND
Zn, wt%	AA	0.12	ND	ND	ND
Cu, ppm	AA	A	6	9	10
Cr, ppm	AA	A	2	3	3
Pb, ppm	AA	A	11	13	14
Fe, ppm	XRF/AA	A	60/43	89/70	101/88
S, wt%	XRF	0.50	0.58	0.57	0.59
IR Spectrum No.		1787	ND	ND	1788

A = Expected to be zero for new oil.

ND = Not Determined.

AA = Atomic Absorption.

XRF = X-Ray Fluorescence.

DAILY IRON WEAR METAL BY XRF
TEST #23

Test <u>Hours</u>	Iron <u>ppm</u>
14	24
28	45
42	55
56	55
70	60
84	70
98	67
112	84
126	91
140	89
154	85
168	90
182	102
196	105
210	101

RING FACE CONDITION: % BURNING
TEST #23

	Cylinder Number		
	1	2	3
First Ring	65*	15	10
Second Ring	80	45	45
Third Ring	60*	50	75
Fourth Ring	50*	50	80
Average of all	52		

N = Normal.

* = Small pieces of metal missing.

RING STICKING
TEST #23

Ring No.	Piston Number		
	1	2	3
1	F	F	F
2	F	F	F
3	F	F	F
4	F	F	F

F = Free

CYLINDER LINERS
TEST #23

Cylinder Number	Percent Port Restriction	Cylinder Liner Scuffing % of Compression Ring Travel Area					
		% Scuffed		% Total		% Glazed	% Lacquer
		Thrust	Anti-Thrust	Area	Scuffed		
1	5	30	75	53		5	20
2	2	15	25	20		10	20
3	<u>2</u>	<u>5</u>	<u>55</u>	<u>30</u>		<u>10</u>	<u>30</u>
Average	3	18	52	34		8	23

PISTON O.D. (IN)
TEST #23

Cylinder	1	2	3
Before	3.8708	3.8713	3.8716
After	<u>3.8719</u>	<u>3.8710</u>	<u>3.8710</u>
Change	+0.0009	-0.0003	-0.0006

PISTON SURFACE CONDITION
TEST #23

	Piston Number		
	1	2	3
Top Land	Normal	Normal	Normal
Skirt	Lt scuff & scratches	5% plate melt Lt scuff & scratches	Lt Scuff & scratches
Piston Pin	Normal	Normal	Normal

PISTON GROOVE INSIDE DIAMETER -
% RING SUPPORTING CARBON
TEST #23

<u>Piston Ring</u>	<u>Quadrant</u>	Piston Number		
		1	2	3
1	1	0	0	0
	2	0	0	0
	3	0	0	0
	4	0	0	0
2	1	20	100	25
	2	0	90	25
	3	0	0	90
	4	100	5	0

Quadrants:

- 1 = Thrust
- 2 = Rear
- 3 = Anti-thrust
- 4 = Front

EXHAUST VALVE DEPOSITS
TEST #23

	Cylinder No.		
Area	1	2	3
Head		-A11 75% - AHC, 25% soot-	
Face		- - A11 #9 Lacquer to very light carbon	- - -
Tulip		- - - A11 #9 Lacquer to light carbon	- - -
Stem		- - - - - A11 #9 Lacquer to clean	- - -

EXHAUST VALVE SURFACE CONDITIONS
TEST #23

Freeness in Guide	Cylinder No.		
	1 F	2 F	3 F
Head	N	N	N
Face	N	N	N
Seat	N	N	N
Stem	N	N	N
Tip	N	N	N

F = Free

N = Normal

RING DEPOSITS
TEST #23

Cylinder Number Ring	1		2		3	
	CARB	LACQ	CARB	LACQ	CARB	CARB
Top	0	100-9	10-½ AHC	10-7 80-9	100-½ AHC	100-½ AHC
2	0	25-9 5-6	0	15-6 85-9	15-½ AHC	15-9 20-5
3	0	70-8	0	100-8	0	50-6
4	0	100-6	0	100-3	0	100-5
		100-4				100-3
ID	1	100-½ AHC	0	100-AHC	0	100-AHC
	2	10 BHC 90 AHC	0	15-BHC	0	15-BHC
	3	100-½ AHC	0	85-AHC	0	85-AHC
	4	50-½ AHC	50-6	100-½ AHC	0	100-½ AHC
					100-9	0
Bottom	1	0	5-8 5-6	0	20-7	0
	2	0	5-9 5-6	0	30-5	0
	3	0	5-4	0	75-3	0
	4	0	50-2	0	100-2	0

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS
 TEST LABORATORY AFLRL
 LUBRICANT AL-8423-L

RATER LYONS DATE 12-27-79
 LABORATORY TEST NUMBER 3-53 #23
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL AL-8926-F
1% S, DF-2

PISTON NO. 1
 NO. 1 GROOVE, VOLUME %
 PISTON WTD* RATING 340

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER- CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	DEMERIT AREA %	DEMERIT AREA %	DEMERIT AREA %	DEMERIT AREA %
HC	1.00									25	25.00	5	5.00
MHC	0.75		100	75.00	20	15.00							
MC	0.50	85	42.50		80	40.00				75	37.50	90	45.00
LC	0.25	15	3.75							100	25.00		15
VLC	0.15					100	15.00						3.75
CARBON RATING		46.25	75.00	45.00	15.00	25.00	62.50	50.00					
BL	0.100									5	.50	10	1.00
DBrL	0.075											75	5.625
AL	0.050												
LAL	0.025												
VIAL	0.010												
RL	0.001												
LACQUER RATING													
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	46.25	75.00		45.00		15.00	25.00	62.50	50.50	10.375	10.00		

*WEIGHTED TOTAL DEPOSITS

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS
 TEST LABORATORY AFLRL
 LUBRICANT AL-8423-L

RATER LYONS DATE 12-27-79
 LABORATORY TEST NUMBER 3-53 #23
 STAND NO. 2 ENGINE NO. 3D-131703
 FUEL AL-8926-F
1½ S, DF-2

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	DEMURIT AREA %	DEMURIT AREA %	DEMURIT AREA %	DEMURIT AREA %
HC	1.00	60	60.00			15	15.00	75	75.00	10	10.00		
MHC	0.75												
MC	0.50	50	25.00	40	20.00								
CARBON	LC	0.25	50	12.50		25	6.25	85	21.25	25	6.25	80	20.00
	VLC	0.15				75	11.25						5
CARBON RATING		37.50	80.00		17.50			36.25	81.25		30.00		1.25
BL	0.100					100	10.00				10	1.00	15
DBL	0.075											1.50	100
AL	0.050												10.00
LAL	0.025												
VLAL	0.010												
RL	0.001												
LACQUER RATING						10.00							
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING		37.50	80.00		17.50		10.00	36.25	81.25		31.00		6.75
WEIGHTED TOTAL DEPOSITS													10.00

CRC DIESEL RATING SYSTEM

STANDARD COMPUTATION SHEET FOR PISTON RATING

TEST PROCEDURE 210
 TEST HOURS 210
 TEST LABORATORY AFLRL
 LUBRICANT AL-8423-L

RATER LYONS DATE 12-27-79

LABORATORY TEST NUMBER 3-53 #23

STAND NO. 2 ENGINE NO. 3D-131703

FUEL AL-8926-F

1½ S, DF-2

DEPOSIT TYPE	DEPOSIT FACTOR	GROOVES				LANDS				UNDER-CROWN			
		NO. 1	NO. 2	NO. 3	NO. 4	NO. 1	NO. 2	NO. 3	NO. 4	DEMERRIT AREA %	DEMERRIT AREA %	DEMERRIT AREA %	DEMERRIT AREA %
HC	1.00	50	50.00	15	15.00	10	10.00	90	90.00	10	10.00		
MHC	0.75												
MC	0.50												
LC	0.25	100	25.00	50	12.50	85	21.25	10	2.50	90	22.50	10	2.50
VLC	0.15												
CARBON RATING	25.00	62.50	36.25	2.50	32.50	92.50	32.50	4.00	4.00				
BL	0.100					45	4.50			5	.50	100	10.00
DBL	0.075												
AL	0.050												
LAL	0.025					45	1.125						
VIAL	0.010									75	.75		
RL	0.001												
LACQUER RATING					5.625					1.25	10.00		
CLEAN	0												
ZONAL RATING													
LOCATION FACTOR													
WEIGHTED RATING	25.00	62.50	36.25	8.125	32.50	92.50	32.50	5.25	5.25	10.00			

*WEIGHTED TOTAL DEPOSITS

CYLINDER LINER I.D. (IN)
TEST #23

Cylinder No.	Front/Back			Thrust/Antithrust		
	Parallel to Crank			Perpendicular to Crank		
	Top	Middle	Bottom	Top	Middle	Bottom
1. After	3.8761	3.8760	3.8752	3.8797	3.8762	3.8756
Before	3.8759	3.8761	3.8756	3.8761	3.8760	3.8757
Change	0.0002	-0.0001	-0.0004	0.0036	0.0002	-0.0001
2. After	3.8766	3.8764	3.8764	3.8780	3.8767	3.8764
Before	3.8764	3.8765	3.8763	3.8767	3.8767	3.8765
Change	0.0002	-0.0001	0.0001	0.0013	0.0000	-0.0001
3. After	3.8767	3.8765	3.8757	3.8785	3.8770	3.8765
Before	3.8764	3.8768	3.8762	3.8765	3.8769	3.8765
Change	0.0003	-0.0003	-0.0005	0.0020	0.0001	0.0000

Average (A11) 0.0008 In.

Average T/AT 0.0008 In.

PISTON RING GAP (IN)
TEST #23

Piston No.	Ring No.							
	1	2	3	4	5	6	7	8
1. After	0.044	0.026	0.028	0.029	0.023	0.023	0.022	0.024
Before	0.038	0.026	0.028	0.028	0.020	0.021	0.020	0.020
Change	0.006	0.000	0.000	0.001	0.003	0.002	0.002	0.004
2. After	0.042	0.029	0.028	0.030	0.025	0.023	0.023	0.022
Before	0.038	0.029	0.029	0.030	0.021	0.020	0.020	0.020
Change	0.004	0.000	-0.001	0.000	0.004	0.003	0.003	0.002
3. After	0.037	0.028	0.028	0.026	0.025	0.022	0.025	0.022
Before	0.032	0.027	0.027	0.026	0.022	0.020	0.020	0.020
Change	0.005	0.001	0.001	0.000	0.003	0.002	0.005	0.002

Avg F/R (#1) Wear 0.005 In.

PISTON AND CYLINDER LINER CONDITION
Test #23

No. 1 - Thrust Side
(Average)

PISTON AND CYLINDER LINER CONDITION
Test #23

No. 1 - Anti-Thrust Side
(Worst)

RING FACE CONDITION
Test #23

Piston - 1

Piston - 2

Piston - 3

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

DEFENSE DOCUMENTATION CTR
CAMERON STATION 12
ALEXANDRIA VA 22314

DEPT OF DEFENSE
ATTN: DASA(MRA&L)-ES(MR DYCKMAN) 1
WASHINGTON DC 20301

COMMANDER

DEFENSE LOGISTICS AGY
ATTN DLA-SME (MRS P MCLAIN) 1
CAMERON STATION
ALEXANDRIA VA 22314

COMMANDFP

DEFNSE FUEL SUPPLY CTR
ATTN: DFSC-T 1
CAMERON STA
ALEXANDRIA VA 22314

COMMANDER

DEFENSE GENERAL SUPPLY CTR
ATTN: DGSC-SSA 1
RICHMOND VA 23297

DEPARTMENT OF THE ARMY

HQ, DEPT OF ARMY
ATTN: DALO-TSE 1
DAMA-CSS-P (DR BRYANT) 1
DAMA-ARZ (DR CHURCH) 1
DAMA-SMZ 1
WASHINGTON DC 20310

CDR

U.S. ARMY MOBILITY EQUIPMENT
R&D COMMAND
Attn: DRDME-GL 10
FORT BELVOIR VA 22060

CDR

US ARMY MATERIAL DEVEL&READINESS
COMMAND

ATTN: DRCLDC (MR BENDER) 1
DRCMM-SP (LTC O'CONNOR) 1
DRCQA-E (MR SMART) 1
DRCDE-DG (MR MCGOWAN) 1
DRCIS-S (MR SPRAGUE) 1
DRCIS-C (LTC CROW) 1

5001 EISENHOWER AVE
ALEXANDRIA VA 22333

CDR

US ARMY TANK-AUTOMOTIVE CMD
ATTN DRSDA-NW (TWVMO) 1
DRSTA-RG (MR HAMPARIAN) 1
DRSTA-NS (DR PETRICK) 1
DRSTA-J 1
DRSTA-G (COL MILLS) 1
DRSTA-M 1
DRSTA-GBP (MR MCCARTNEY) 1
WARREN MI 48090

DIRECTOR

US ARMY MATERIAL SYSTEMS
ANALYSIS AGENCY
ATTN DRXSY-CM 1
DRXSY-S 1
DRXSY-L 1
ABERDEEN PROVING GROUND MD 21005

CDR

US ARMY APPLIED TECH LAB
ATTN DAVDL-ATL-ATP (MR MORROW) 1
DAVDL-ATL 1
FORT EUSTIS VA 23604

HQ, 172D INFANTRY BRIGADE (ALASKA)
ATTN AFZT-DI-L 1
AFZT-DI-M 1
DIRECTORATE OF INDUSTRIAL
OPERATIONS
FT RICHARDSON AK 99505

CDR

US ARMY GENERAL MATERIAL &
PETROLEUM ACTIVITY
ATTN STSGP-FT (MS GEORGE) 1
STSGP-PE 1
STSGP (COL HILL) 1
NEW CUMBERLAND ARMY DEPOT
NEW CUMBERLAND PA 17070

CDR

US ARMY ARRCOM, LOG ENGR DIR
ATTN DRSAT-LEM (MR MENKE) 1
ROCK ISLAND ARSENAL IL 61299

CDR

US ARMY COLD REGION TEST CENTER
ATTN STECR-TA (MR HASLEM) 1
APO SEATTLE 98733

CDR US ARMY RES & STDZN GROUP (EUROPE) ATTN DRXSN-E-RA BOX 65 FPO NEW YORK 09510	1	OFC OF PROJ MGR, IMPROVED TOW VEHICLE US ARMY TANK-AUTOMOTIVE R&D CMD ATTN DRCPM-ITV-T WARREN MI 48090	1
HQ, US ARMY AVIATION R&D CMD ATTN DRDAV-D (MR CRAWFORD) DRDAV-N (MR BORGMAN) DRDAV-E (MR LONG)	1 1 1	CDR US ARMY EUROPE & SEVENTH ARMY ATTN AEAGC-FMD APO NY 09403	1
P O BOX 209 ST LOUIS MO 63166		PROJ MGR, PATRIOT PROJ OFC ATTN DRCPM-MD-T-G US ARMY DARCOM REDSTONE ARSENAL AL 35809	1
CDR US ARMY FORCES COMMAND ATTN AFLG-REG (MR HAMMERSTROM) AFLG-POP (MR COOK) FORT MCPHERSON GA 30330	1 1	CDR THEATER ARMY MATERIAL MGMT CENTER (200TH) DIRECTORATE FOR PETROL MGMT ATTN AEAGD-MM-PT-Q (MR PINZOLA)	1
CDR US ARMY ABERDEEN PROVING GROUND ATTN STEAP-MT STEAP-MT-U (MR DEAVER)	1 1	ZWEIBRUCKEN APO NY 09052	
ABERDEEN PROVING GROUND MD 21005		CDR US ARMY RESEARCH OFC ATTN DRXRO-EG DRXRO-CB (DR GHIRARDELLI)	1
CDR US ARMY YUMA PROVING GROUND ATTN STEYP-MT (MR DOEBBLER) YUMA AR 85364	1	P O BOX 12211 RSCH TRIANGLE PARK NC 27709	
MICHIGAN ARMY MISSILE PLANT OFC OF PROJ MGR, XM-1 TANK SYS ATTN DRCPM-GCM-S	1	DIR US ARMY R&T LAB ADVANCED SYSTEMS RSCH OFC ATTN MR D WILSTED	1
WARREN MI 48090		AMES RSCH CTR MOFFITT FIELD CA 94035	
MICHIGAN ARMY MISSILE PLANT PROG MGR, FIGHTING VEHICLE SYS ATTN DRCPM-FVS-SE	1	CDR TOBYHANNA ARMY DEPOT ATTN SDSTO-TP-S	1
WARREN MI 48090		TOBYHANNA PA 18466	
PROJ MGR, M60 TANK DEVELOPMENT ATTN DRCPM-M60-E	1	DIR US ARMY MATERIALS & MECHANICS RSCH CTR	1
WARREN MI 48090		ATTN DRXMR-EM WATERTOWN MA 02172	
PROG MGR, M113/M113A1 FAMILY OF VEHICLES ATTN DRCPM-M113	1	CDR US ARMY DEPOT SYSTEMS CMD	1
WARREN MI 48090		ATTN DRSDS CHAMBERSBURG PA 17201	
PROJ MGR, MOBILE ELECTRIC POWER ATTN DRCPM-MEP-TM	1		
7500 BACKLICK ROAD SPRINGFIELD VA 22150			

CDR US ARMY WATERVLIET ARSENAL ATTN SARWY-RDD WATERVLIET NY 12189	1	HQ US ARMY TRAINING & DOCTRINE CMD ATTN ATCD-SL (MR RAFFERTY) 1 FORT MONROE VA 23651
CDR US ARMY LEA ATTN DALO-LEP NEW CUMBERLAND ARMY DEPOT NEW CUMBERLAND PA 17070	1	DIRECTOR US ARMY RSCH & TECH LAB (AVRADCOM) PROPELLION LABORATORY ATTN DAVIDL-PL-D (MR ACURIO) 1 21000 BROOKPARK ROAD CLEVELAND OH 44135
CDR US ARMY GENERAL MATERIAL & PETROLEUM ACTIVITY ATTN STSGP-PW (MR PRICE) SHARPE ARMY DEPOT LATHROP CA 95330	1	CDR US ARMY NATICK RES & DEV CMD ATTN DRDNA-YEP (DR KAPLAN) 1 NATICK MA 01760
CDR US ARMY FOREIGN SCIENCE & TECH CENTER ATTN DRXST-MT1 FEDERAL BLDG CHARLOTTESVILLE VA 22901	1	CDR US ARMY TRANSPORTATION SCHOOL ATTN ATSP-CD-MS 1 FORT EUSTIS VA 23604
CDR DARCOM MATERIAL READINESS SUPPORT ACTIVITY (MRSA) ATTN DRXMD-MS LEXINGTON KY 40511	1	CDR US ARMY QUARTERMASTER SCHOOL ATTN ATSM-CD-M 1 ATSM-CTD-MS 1 ATSM-TNG-PT (COL VOLPE) 1 FORT LEE VA 23801
HQ, US ARMY T&E COMMAND ATTN DRSTE-TO-O ABERDEEN PROVING GROUND, MD 21005	1	HQ, US ARMY ARMOR SCHOOL ATTN ATSB-TD 1 FORT KNOX KY 40121
HQ, US ARMY ARMAMENT R&D CMD ATTN DRDAR-SCM-OO (MR MUFFLEY) DRDAR-TST-S DOVER NJ 07801	1	CDR US ARMY LOGISTICS CTR ATTN ATCL-MS (MR A MARSHALL) 1 FORT LEE VA 23801
HQ, US ARMY TROOP SUPPORT & AVIATION MATERIAL READINESS COMMAND ATTN DRSTS-MFG (2) DRCPO-PDE (LTC FOSTER) 4300 GOODFELLOW BLVD ST LOUIS MO 63120	1	CDR US ARMY FIELD ARTILLERY SCHOOL ATTN ATSF-CD 1 FORT SILL OK 73503
DEPARTMENT OF THE ARMY CONSTRUCTION ENG RSCH LAB ATTN CERL-EM P O BOX 4005 CHAMPAIGN IL 61820	1	CDR US ARMY ORDNANCE CTR & SCHOOL ATTN ATSL-CTD-MS 1 ABERDEEN PROVING GROUND MD 21005
		CDR US ARMY ENGINEER SCHOOL ATTN ATSE-CDM 1 FORT BELVOIR VA 22060

CDR US ARMY INFANTRY SCHOOL ATTN ATSH-CD-MS-M FORT BENNING GA 31905	1	CDR NAVAL RESEARCH LABORATORY ATTN CODE 6170 (MR H RAVNER) 1 CODE 6180 1 CODE 6110 (DR HARVEY) 1 WASHINGTON DC 20375
CDR US ARMY AVIATION CTR & FT RUCKER ATTN ATZQ-D FORT RUCKER AL 36362	1	CDR NAVAL FACILITIES ENGR CTR ATTN CODE 1202B (MR R BURRIS) 1 CODE 120B (MR BUSCHELMAN) 1 200 STOVALL ST ALEXANDRIA VA 22322
DEPARTMENT OF THE NAVY		
CDR NAVAL AIR PROPULSION CENTER ATTN PE-71 PE-72 (MR D'ORAZIO) P O BOX 7176 TRENTON NJ 06828	1 1	CHIEF OF NAVAL RESEARCH ATTN CODE 473 (DR R MILLER) 1 ARLINGTON VA 22217
CDR NAVAL SHIP ENGINEERING CTR CODE 6101F (MR R LAYNE) WASHINGTON DC 20362	1	CDR NAVAL AIR ENGR CENTER ATTN CODE 92727 LAKEHURST NJ 08733
CDR DAVID TAYLOR NAVAL SHIP R&D CTR CODE 2830 (MR G BOSMAJIAN) CODE 2831 ANNAPOLIS MD 21402	1 1	CDR NAVY FACILITIES ENGRG CMD CIVIL ENGR SUPPORT OFC CODE 15312A (ATTN EOC COOK) 1 NAVAL CONSTRUCTION BATTALION CTR PORT HUENEME CA 93043
JOINT OIL ANALYSIS PROGRAM - TECHNICAL SUPPORT CTR BLDG 780 NAVAL AIR STATION PENSACOLA FL 32508	1	CDR, NAVAL MATERIAL COMMAND ATTN MAT-08T3 (DR A ROBERTS) 1 CP6, RM 606 WASHINGTON DC 20360
DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN LPP (MAJ SANBERG) LMM (MAJ GRIGGS) WASHINGTON DC 20380	1 1	CDR NAVY PETROLEUM OFC ATTN CODE 40 CAMERON STATION ALEXANDRIA VA 22314
CDR NAVAL AIR SYSTEMS CMD ATTN CODE 52032E (MR WEINBURG) CODE 53645 WASHINGTON DC 20361	1 1	CDR MARINE CORPS LOGISTICS SUPPORT BASE ATLANTIC ATTN CODE P841 ALBANY GA 31704
CDR NAVAL AIR DEVELOPMENT CTR ATTN CODE 60612 (MR L STALLINGS) WARMINSTER PA 18974	1	DEPARTMENT OF THE AIR FORCE HQ, USAF ATTN RDPT WASHINGTON DC 20330

HQ AIR FORCE SYSTEMS CMD
 ATTN AFSC/DLF (LTC RADLOF) 1
 ANDREWS AFB MD 20334

 CDR
 US AIR FORCE WRIGHT AERONAUTICAL
 LAB
 ATTN AFWAL/POSF (MR CHURCHILL) 1
 AFWAL/POS (MR JONES) 1
 WRIGHT-PATTERSON AFB OH 45433

 CDR
 USAF SAN ANTONIO AIR LOGISTICS
 CTR
 ATTN SAAI.C/SFQ (MR MAKRIS) 1
 SAALC/MMPRR (MR ELLIOT) 1
 KELLY AIR FORCE BASE, TX 78241

 CDR
 US AIR FORCE WRIGHT AERONAUTICAL
 LAB
 ATTN AFWAL/MLSE (MR MORRIS) 1
 AFWAL/MLBT 1
 WRIGHT-PATTERSON AFB OH 45433

 CDR
 USAF WARNER ROBINS AIR LOGISTIC
 CTR
 ATTN WR-ALC/MMIRAB-1 (MR GRAHAM) 1
 ROBINS AFB GA 31098

OTHER GOVERNMENT AGENCIES

US DEPARTMENT OF TRANSPORTATION	
ATTN AIRCRAFT DESIGN CRITERIA	
BRANCH	2
FEDERAL AVIATION ADMIN	
2100 2ND ST SW	
WASHINGTON DC 20590	
US DEPARTMENT OF ENERGY	
DIV OF TRANS ENERGY CONSERV	2
ALTERNATIVE FUELS UTILIZATION	
BRANCH	
20 MASSACHUSETTS AVENUE	
WASHINGTON DC 20545	
DIRECTOR	
NATL MAINTENANCE TECH SUPPORT	
CTR	2
US POSTAL SERVICE	
NORMAN OK 73069	
US DEPARTMENT OF ENERGY	
BARTLESVILLE ENERGY RSCH CTR	
DIV OF PROCESSING & THERMO RES	1
DIV OF UTILIZATION RES	
BOX 1398	
BARTLESVILLE OK 74003	
SCI & TECH INFO FACILITY	
ATTN NASA REP (SAK/DL)	1
P O BOX 8757	
BALTIMORE/WASH INT AIRPORT MD 21240	

**DATE
ILMED
-8**