

2 ANNEX II: Guia de muntatge

Primerament, cal esmentar que en aquesta guia de muntatge el codi de Programació així com el llistat amb enllaços per a tots els components estaran al GitHub: xvilanova, on hi haurà un repositori anomenat "TFG Qualitat de laire".

Per a poder muntar l'estació de control de contaminació caldrà tenir els següents materials i eines.

Component

Component	Unitats
PCB Perforada 9x15 cm	1
Cables d'Arduino	1
ESP-32	1
MICS-6814	1
ADS1115	1
AHT10	1
PLA	1
Bateria externa	1
Cable micro-USB	1

Taula 1. Components

Eines

Eines	Unitats
Soldador	1
Impressora 3D	1
Alicates	1

Taula 2. Eines

Quant al muntatge, els únics pins que es necessitaran seran 5 V, GND, SCL, SDA, RX i TX. Per a poder veure la localització dels pins caldrà mirar el datasheet on es troba la següent disposició:

Figura 1. ESP-32 Pins (Font: AZ-Delivery (23))

El sensor de temperatura i el convertidor Analògic a Digital hauran d'estar connectats al bus I2C que són els pins GPIO22-SCL i al pin GPIO21-SDA tal com està serigrafiat a les plaques. El sensor MICS-6814 haurà d'estar connectat al convertidor ADS1115, per la qual cosa es connectarà el pin serigrafiat com a NO2 del sensor MICS-6814 al pin A0 del ADS1115.

Per a poder muntar el prototip caldrà seguir l'esquema següent on es troben totes les connexions necessàries per al prototip:

Figura 2. Esquema de connexions (Font: KiCad)

Pel que fa al muntatge de la PCB perforada és de bona pràctica plantejar com col·locar tots els components sobreposant-los sense soldar.

Figura 3. Placa de circuits perforada (Font: Xavier Vilanova)

Un cop s'ha fet el plantejament de com posar els components es soldarà el microcontrolador ESP-32. El microcontrolador serà soldat a la part superior esquerra deixant 3 fileres lliures per a passar posteriorment el cable de 5 V que alimentarà els components.

Figura 4. Placa amb l'ESP-32 (Font: Xavier Vilanova)

Un cop soldat el microcontrolador es plantejaran la col·locació dels cables respecte a la Figura 5 on s'han sobreposat abans els components. El color dels cables serà assignat referent a la Taula 3 que es mostrarà a continuació.

Color del cable	Funció
Vermell	5 V
Blau	GND
Blanc	SCL (I2C)
Taronja	TX
Gris	RX
Verd	SDA (I2C)
Verd fluix	Analògic

Taula 3. Cables i funció

Figura 5. Placa amb l'ESP-32 i cables (Font: Xavier Vilanova)

El primer sensor que es soldarà és l'AHT 10. Es passarà tal com es veu a la fotografia. D'aquesta manera, s'aprofita l'ordre dels cables presentats abans d'una manera òptima sense que es creuin.

Figura 6. Placa amb ATH 10 (Font: Xavier Vilanova)

A continuació, es procedirà a soldar el convertidor analògic a digital ADS1115 vigilant l'orientació. Així tots els cables es connectaran al seu pin corresponent.

Figura 7. Placa amb ADS1115 (Font: Xavier Vilanova)

Un cop soldat l'ADS1115 es procedirà a soldar el MICS-6814. En aquest cas solament té connectat 3 cables que seran: 5V, GND i el pin NO2 que anirà connectat al PIN A0 del convertidor.

Figura 8. Placa amb el MICS-6814 (Font: Xavier Vilanova)

Per a poder connectar el sensor de partícules PMS5003 primer s'hauran de tallar un dels seus dos connectors. Un cop tallat es procedirà a separar uns 4 cm de cable, que serà suficient per a fer les connexions com s'indicarà a continuació a la taula 9. A la Figura 39 està indicada la numeració de cada cable.

Numeració cable	Funció	Cable de connexió
1 – Vermell	Ninguna	-
2 – Negre	Ninguna	-
3 – Vermell	Reset	-
4 – Negre	Rx	TX – Taronja
5 – Vermell	Тх	RX – Gris
6 – Negre	Set	-
7 – Vermell	GND	GND – Blau inferior
8 – Negre	VCC	5 V - Inferior

Taula 4. Connexió PMS5003

Cal vigilar molt la connexió RX i TX, ja que van creuades.

Figura 9. PMS5003 (Font: Xavier Vilanova)

Un cop fetes les soldadures als cables del PMS50030 el resultat final serà aquest.

Figura 10. Placa Muntada (Font: Xavier Vilanova)

Per a carregar el programa s'haurà d'anar a GitHub i buscar xvilanova on hi haurà un repositori anomenat "TFG_Qualitat_de_laire ". També es podrà entrar mitjançant l'enllaç https://github.com/xvilanova/TFG_Qualitat_de_laire on s'haurà de descarregar l'arxiu anomenat "Codi.ino". Un cop descarregat caldrà obrir-ho amb l'Arduino IDE i modificar els camps de la xarxa wifi i del canal de ThingSpeak.

Figura 11. Codi a modificar (Font: Arduino IDE)

Un cop carregat s'haurà de posar la placa boca a baix a la carcassa impresa en 3D. Es podran trobar els arxius al GitHub i caldrà fixar-se que el sensor PMS5003 estigui ben alineat.

Figura 12. Placa i carcassa (Font: Xavier Vilanova)

Un cop fet això, caldrà posar una bateria externa sobre la placa PCB i connectar-la a l'ESP-32. Es cobrirà l'estació de mesura per protegir-la. I un cop ja acabada l'estació, aquesta enviarà dades al canal de ThingSpeak creat.

Figura 13. Prototip muntat (Font: Xavier Vilanova)