Lecture 1

Brennan Becerra

2024-01-08

2 A Sneak Preview

Definition

$$\lim_{n o a}f(x)=L$$

If x is close enough to a, f(x) will be as close to L as you like. If $a,b\in\mathbb{R}$, the distance between a,b is expressed as |a-b|. If ϵ means how close we want f(x) to be to L, what we are looking for is $|f(x)-L|<\epsilon$. For any $\epsilon>0$, there exists a $\delta>0$, such that for any x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

$$\lim_{x o 2} rac{x^2 - 4}{x - 2} = \lim_{x o 2} rac{(x - 2)(x + 2)}{x - 2} = \lim_{x o 2} x + 2 = 4$$

Prove $\lim_{x\to 3} 7-2x=1$. First, say what this means. For any $\epsilon>0,\ \exists \delta>0,$ such that if for any x, if $0<|x-3|<\delta$, then $|\underbrace{(7-2x)}_{F(x)}-\underbrace{1}_{L}|<\epsilon$. Let ϵ be an arbitrarily chosen positive real number. Let $\delta=$?

Scratch Work:

We need

$$\begin{aligned} |(7-2x)-1| & < \epsilon \\ |6-2x| & < \epsilon \\ 2|3-x| & < \epsilon \\ 2|x-3| & < \epsilon \\ |x-3| & < \frac{3}{2} \end{aligned}$$

So we say $\delta=\frac{3}{2}.$ Let x be arbitrary. Assume $0<|x-3|<\delta=\frac{3}{2}.$ Our goal is to show: $|(7-2x)-1|<\epsilon.$

$$|(7-2x)-1|=|6-2x|=2|3-x|=2|x-3|< 2\cdot rac{3}{d}=3.$$

We know $\lim_{x\to 5} x^2 = 25$. What does this mean? For each $\epsilon > 0$, there is $\delta > 0$, such that if $0 < |x - \underbrace{5}_a| < \delta$, then $|\underbrace{x^2}_{f(x)} - \underbrace{25}_L| < \epsilon$. Choose $\epsilon > 0$ arbitrarily.

Scratchwork:

Aim: $|x^2 - 25| < \epsilon$.

$$egin{array}{ll} |x^2-25| & <\epsilon \ |x-5||+5| & <\epsilon \ \hline \left[x-5<rac{\epsilon}{|x+5|}
ight] & ext{NOT!} \end{array}$$

Notice that if any δ works, then any smaller δ works. It's harmless and useful just to require 0 < |x - 5| < 1.

$$egin{aligned} |x-5| &< 1 \ -1 &< x-5 &< 1 \ 4 &< x &< 6 \ 9 &< |x+5| = x+5 &< 11 \end{aligned}$$

so

$$\frac{\epsilon}{11} < \frac{\epsilon}{|x+5|}$$

We let $|x-5|<rac{\epsilon}{11}.$ Let $\delta=\min\left(1,rac{\epsilon}{11}
ight).$