A3 Simulative Engineering - Formulary

FINAL FORM

Contents

2 Laplace

1 How to transform signals?

1 Resources for the exam

2 Laplace

3 Electronical formulas

3.1	$Resistor \ \dots \dots \dots \dots \dots \dots$	
3.2	${\it Capacitor/Condenser}\;.\;.\;.\;.\;.\;.\;.$	
3.3	$\operatorname{Inductor} \ldots \ldots \ldots \ldots \ldots \ldots$	

4 Mechanical formulas

Mechanical formulas 2					
4.1	Newton's Second Law	2			
4.2	Gravitational force	2			
4.3	Spring force	2			
4.4	Friction force	2			
4.5	Rotational force	2			
4.6	Torque	2			

4.7 Rotational movement

5 DFT

1	Derivatives	Integrals
1	$y(t) \circ \bullet Y(s)$	$\int y(t)dt \circ - \frac{1}{s}Y(s)$
1 1	$y'(t)$ o $\bullet sY(s)$	$\int \int y(t)dt$ $- \bullet \frac{1}{s^2} Y(s)$
1	$y''(t) \circ - s^2 Y(s)$	$\int \int \int y(t)dt \circ - \frac{1}{s^3} Y(s)$
- 1	and so on	and so on

3 Electronical formulas

Figure 1: RLC circuit

1 Resources for the exam

Allowed:

- ✓ Your hand written Lecture notes
- \checkmark Summary of your handwritten lectures
- ✓ This formulary
- ✓ Mathematical book e.g.Papula
- ✓ DHBW Calculator (or just use MATLAB)

Not allowed:

- × Solutions of the laboratory
- × Learning paper

Good luck!

3.1 Resistor

2

$$u_R(t) = R \cdot i_R(t) \tag{1}$$

U: voltage [Volt V]

R: restistance [Ohm $\Omega = \frac{V}{A}$]

I: current [Ampere A]

3.2 Capacitor/Condenser

$$Q = C \cdot U_C \tag{2}$$

$$Q = \int i_C(t) \tag{3}$$

$$i_C(t) = C \cdot u_C'(t) \tag{4}$$

Q: electric charge [Coulomb C = As]

C: capacity [Farad $F = \frac{C}{V}$]

3.3 Inductor

$$u_L(t) = L \cdot i_L'(t) \tag{5}$$

L: inductance [Henry H = $\frac{Vs}{A}$]

A3 Simulative Engineering -**Formulary**

4 Mechanical formulas

4.1 Newton's Second Law

$$F = m \cdot a = m \cdot x''(t) \tag{6}$$

m: mass [gramm g]

a: acceleration $\left[\frac{m}{s^2}\right]$ x: length [meter m]

Figure 2: Complex conjugated values

4.2 Gravitational force

$$F_G = m \cdot g$$

g: gravitational acc. $\left[\frac{m}{c^2}\right]$ (Germany 9.81 $\frac{m}{c^2}$)

4.3 Spring force

$$F_S = k \cdot x$$

k: spring constant $\left[\frac{kg}{e^2}\right]$

4.4 Friction force

$$F_E = r \cdot v = r \cdot x'(t)$$

r: friction constant

v: velocity $\left[\frac{m}{s}\right]$

$F_F = r \cdot v = r \cdot x'(t)$

4.5 Rotational force

$$F_R = F_G \cdot \sin \rho$$

 ρ : angle of displacement

4.6 Torque

$$M = F \cdot r$$

r: radius

5 DFT

(8)

(10)

(11)

(7)Fourier Transform transforms time continuos values in time domain into values in frequency domain.

$$u(t) \circ \underline{U}(f) = \int_{-\infty}^{+\infty} u(t) \cdot e^{-j2\pi ft} dt$$

Discrete Fourier Transform is the Fourier Transform for time discrete values.

$$u(kT_s) \circ - \underline{\tilde{U}}(\frac{n}{N \cdot T_s}) = \sum_{k=0}^{N-1} u(kT_s) \cdot e^{-j2\pi n \frac{k}{N}}$$

with N: number of sampled values and n = 0, 1, 2, ..., N - 1.

Quantity of must-calculate-values: $\frac{N}{2} + 1$ (Fig. 2)

Solution vector for N = 8:

$$\underline{\tilde{U}}(\frac{n}{N \cdot T_s}) = \begin{bmatrix} \underline{\tilde{U}}(\frac{0}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{2}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{3}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{4}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{5}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{6}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{7}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{8}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{8}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{8}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{9}{N \cdot T_s}) \\ \vdots \end{bmatrix} = \text{complex conjugated of } \underline{\tilde{U}}(\frac{3}{N \cdot T_s}) \\ \text{complex conjugated of } \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \vdots \end{bmatrix}$$

4.7 Rotational movement

$$M = J \cdot \rho''$$

J: moment of inertia ρ'' : angular velocity

(12) Here you have to calculate $\frac{8}{2} + 1 = 5$ values (namely n = 0, 1, 2, 3, 4). from who the other ones (namley n=5,6,7) can be deduced. The N-th value is the same as n=0 because of the periodic repitition.

A3 Simulative Engineering -Formulary

FINAL FORM

Inverse discrete Fourier Transform $\,$ calculates the values in time domain out of the DFT.

$$u(kT_s) = \frac{1}{N} \sum_{n=0}^{N-1} \underline{\tilde{U}}(\frac{n}{N \cdot T_s}) \cdot e^{j2\pi n \frac{k}{N}}$$

with
$$k = 0, 1, 2, ..., N - 1$$
.

Idea: Laura, Carina 3 / 3