

Génération de maillages quadrangulaires pour un code hydrodynamique Lagrangien

energie atomique • energies alternatives

Encadrants: M. Franck LEDOUX (CEA/DIF) & M. Djalil KATEB (UTC)

L'entreprise : le CEA, centre île de France

Commissariat à l'énergie atomique et aux énergies renouvelables

Le CEA:

- Environ 15 700 employés
- 10 centres de recherche

Le centre île de France :

- Rattaché au pôle défense
- Complexe de calcul scientifique
- Impliqué dans le programme *simulation* de la direction des applications militaires

Contexte du stage

Durant une simulation lagrangienne, les sommets sont déplacés. Si les déplacements sont trop importants alors des mailles peuvent devenir invalides.

Une solution est d'identifier une zone Ω autour des mailles invalides et de la remailler avant de poursuivre la solution. Pour générer le maillage quadrangulaire le plus adapté à partir des nœuds ordonnés délimitant le bord de Ω , on tient compte de :

- -La géométrie du domaine à mailler (bord de Ω);
- -Un champ de directions (vitesse nodale dans Ω).

Travaux utilisés

Étude des algorithmes par avancée de fronts :

M. B. STEPHENSON and T. D. BLACKER.

Paving: A new approach to automated quadrila-teral mesh generation. International journal for numerical methods in engineering, 32:811–847,1991.

S. J. OWEN, M. L. STATEN, S. A. CANANN and S. SAIGAL.

Q-morph: An indirect approach to advancing front quad meshing.

International journal for numerical methods in engineering, 44:137–1340, 1999

Déroulement de la solution proposée

Ajout de rangées successives tant que le fronts a plus de 6 nœuds ou bien qu'une fusion intervienne.

Lorsque le front contient 6 nœuds ou moins alors un motif de résolution est appliqué.

Une fois le domaine maillé, un lisseur géométrique est appliqué pour améliorer les aspects de taille des quadrangles.

Calcul des coordonnées de nouveaux sommets

- Quadrangle répondant aux contraintes géométriques
 - Quadrangle répondant aux contraintes liées au champ de directions
- Quadrangle effectivement créé

Champ de directions

 $P_i = \alpha G_i + (1-\alpha) D_i$ $i \in [1,2]$ $\alpha \text{ facteur de pondération}$

Triangle <=> Pas d'intersection

déduit si il y a intersection.

Quadrangle <=> Intersection

Résultats et perspectives

Résultats: - Un code robuste et évolutif

- 4000 lignes de code en C++

Utilisation du maillage triangulaire

Suivant la nature de la face contenant le point à créer, on

- Maillage de formes complexes
- Paramétrable par l'utilisateur

Perspectives:

- Lisseurs et motif de résolutions sont uniquement géométriques
- Une meilleur gestion des fusions
- Prendre en compte la gestion de la taille des quadrangles