Acadgild Machine Learning Assignment 5

Import Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import tree, datasets
from sklearn.metrics import mean_squared_error, r2_score, roc_auc_score
from sklearn.ensemble import BaggingRegressor, RandomForestRegressor
```

Load boston dataset

```
In [2]:
```

```
boston = datasets.load_boston()
features = pd.DataFrame(boston.data, columns=boston.feature_names)
targets = boston.target
```

```
In [3]:
```

```
boston.keys()
```

```
Out[3]:
```

```
dict_keys(['data', 'target', 'feature_names', 'DESCR'])
```

```
In [4]:
```

```
boston.feature_names
```

```
Out[4]:
```

In [5]:

```
print(boston.DESCR)
Boston House Prices dataset
______
Notes
Data Set Characteristics:
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive
    :Median Value (attribute 14) is usually the target
    :Attribute Information (in order):
                   per capita crime rate by town
        - CRIM
        - ZN
                   proportion of residential land zoned for lots over 25,000
sq.ft.
                   proportion of non-retail business acres per town
        - INDUS
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)
        - NOX
                   nitric oxides concentration (parts per 10 million)
        - RM
                   average number of rooms per dwelling
                   proportion of owner-occupied units built prior to 1940
        - AGE
                   weighted distances to five Boston employment centres
        - DIS
        - RAD
                   index of accessibility to radial highways
        - TAX
                   full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
                   1000(Bk - 0.63)^2 where Bk is the proportion of blacks by
        - B
town
                   % lower status of the population
        - LSTAT
        - MEDV
                  Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing (http://archive.ics.uci.edu/m
1/datasets/Housing)
This dataset was taken from the StatLib library which is maintained at Carne
gie Mellon University.
```

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics

...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers th at address regression problems.

^{**}References**

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) (htt p://archive.ics.uci.edu/ml/datasets/Housing))

DataFrame using boston dataset features and target values

```
In [6]:
```

```
df_x = pd.DataFrame(boston.data, columns=boston.feature_names)
df_y = boston.target
```

Statistical analysis of features in DataFrame df_x

```
In [7]:
```

```
df_x.describe()
```

Out[7]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	50
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	:
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	1:
4								•

Data Preprocessing

Function to handle missing data

```
In [8]:
```

```
def data_preprocessing(df):
    df.convert_objects(convert_numeric=True)
    df.fillna(0, inplace=True)
    return df
```

Function to handle categorical data

In [9]:

Perform data preprocessing on boston dataset

```
In [10]:
```

```
df_x = data_preprocessing(df_x)
df_x = handle_non_numeric_data(df_x)
df_x.head()
```

C:\Users\santhu\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: FutureW arning: convert_objects is deprecated. To re-infer data dtypes for object c olumns, use DataFrame.infer_objects()
For all other conversions use the data-type specific converters pd.to_dateti me, pd.to_timedelta and pd.to_numeric.

Out[10]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

Spliting boston dataset into test and traning dataset

```
In [11]:
```

```
x_train,x_test,y_train,y_test = train_test_split(df_x,df_y,test_size=0.2,random_state=5)
```

Apply RandomForest Model on boston dataset

```
In [12]:
```

```
rfc1 = RandomForestRegressor(random_state=10)
rfc1.fit(x_train, y_train)
```

Out[12]:

In [13]:

```
#Applying model by changing the max_features parameter
rfc2 = RandomForestRegressor(max_features=8, random_state=10)
rfc2.fit(x_train, y_train)

rfc3 = RandomForestRegressor(max_features=6, random_state=10)
rfc3.fit(x_train, y_train)
```

Out[13]:

Feature engineering

Analyze features importance

```
In [14]:
```

```
rfc1.feature_importances_
```

Out[14]:

```
array([0.04903067, 0.00108498, 0.00374297, 0.00511706, 0.00817035, 0.34495785, 0.01275462, 0.08436785, 0.00822323, 0.01818498, 0.0092608, 0.00921063, 0.44589401])
```

In [15]:

```
%matplotlib inline
feature_importances = pd.Series(rfc1.feature_importances_,index=df_x.columns)
feature_importances.plot(kind='barh',figsize=(7,6))
```

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0xaf22198>

In [16]:

```
#Graph between features and target price
for var in boston.feature_names:
    sns.regplot(features[var], targets, color='g')
    plt.ylabel('Price')
    plt.show()
```


Model Evaluation

Model efficiency by considering all the parameters of boston dataset for analysis

```
In [17]:
```

```
pred1 = rfc1.predict(x_test)
# The mean squared error
print("Mean squared error: %f" % mean_squared_error(y_test, pred1))
# Explained variance score: 1 is perfect prediction
print('Variance score: %f' % r2_score(y_test, pred1))
```

Mean squared error: 14.061522 Variance score: 0.820401

Model efficiency by considering n most important features (n=8) of boston dataset for analysis

In [18]:

```
pred2 = rfc2.predict(x_test)
# The mean squared error
print("Mean squared error: %f" % mean_squared_error(y_test, pred2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %f' % r2_score(y_test, pred2))
```

Mean squared error: 12.088211 Variance score: 0.845605

Model efficiency by considering n most important features (n=6) of boston dataset for analysis

In [19]:

```
pred3 = rfc3.predict(x_test)
# The mean squared error
print("Mean squared error: %f" % mean_squared_error(y_test, pred3))
# Explained variance score: 1 is perfect prediction
print('Variance score: %f' % r2_score(y_test, pred3))
```

Mean squared error: 9.728154 Variance score: 0.875748

Data Normalization and model evaluation

In [20]:

```
from sklearn.preprocessing import StandardScaler
scalerx = StandardScaler().fit(x_train)
scalery = StandardScaler().fit(y_train.reshape(-1, 1))
x train1 = scalerx.transform(x train)
y_train1 = scalery.transform(y_train.reshape(-1, 1))
x_test1 = scalerx.transform(x_test)
y_test1 = scalery.transform(y_test.reshape(-1, 1))
#print (np.max(x train1), np.min(x train1), np.mean(x train1), np.max(y train1), np.min(y t
# Best Model accuracy was provided when we were using 6 features,
# So Normalized data is given as input into RandomForestRegressor with max_features=6
rfc4 = RandomForestRegressor(max_features=6, random_state=10)
rfc4.fit(x_train1, y_train1)
pred4 = rfc4.predict(x test1)
# The mean squared error
print("Mean squared error after normalizing data with 6 features: %f" % mean_squared_error(
# Explained variance score: 1 is perfect prediction
print('Variance score after normalizing data with 6 features: %f' % r2_score(y_test1, pred4
Mean squared error after normalizing data with 6 features: 0.112758
Variance score after normalizing data with 6 features: 0.876285
C:\Users\santhu\Anaconda3\lib\site-packages\ipykernel launcher.py:15: DataCo
```

C:\Users\santhu\Anaconda3\lib\site-packages\ipykernel_launcher.py:15: DataCo
nversionWarning: A column-vector y was passed when a 1d array was expected.
Please change the shape of y to (n_samples,), for example using ravel().
from ipykernel import kernelapp as app

Visulization between predicted and actual price

In [21]:

```
#Between y_test (actual price) and predicted price (pred4)
plt.xlabel("Actual Price ( $1000 )")
plt.ylabel("Predicted Price ( $1000 )")
plt.title("Actual vs Predicted Price")
plt.scatter(y_test, pred4, color='black')
plt.show()
```

