

# MOTOR COHETE DE PROPULSANTE SÓLIDO

TRABAJO 1

PROPULSION ESPACIAL Y LANZADORES

Author: Romane Busato

Rafael Luque López Diego Mataix Caballero Ana Isabel Soria Carro

Professor: Luis Sánchez de León Peque

Madrid, 2 de noviembre, 2020



# Índice

| 1. | Con  | versió                 | n de unidades                               | 3  |
|----|------|------------------------|---------------------------------------------|----|
| 2. | Mas  | sa inici               | ial del propulsante                         | 3  |
| 3. | Áre  | a de q                 | uemado inicial                              | 4  |
| 4. | Áre  | a de la                | a garganta                                  | 4  |
| 5. | Gas  | to más                 | sico inicial                                | 4  |
| 6. | Imp  | ulso es                | specífico inicial                           | 4  |
| 7. | Tier | npo de                 | e funcionamiento incluyendo la fase de cola | 5  |
|    | 7.1. | Fase p                 | permanente                                  | 5  |
|    | 7.2. | Fase d                 | le cola                                     | 6  |
|    |      | 7.2.1.                 | Caso isotermo                               | 7  |
|    |      | 7.2.2.                 | Caso adiabático                             | 7  |
|    |      | 7.2.3.                 | Caso real                                   | 8  |
| 8. | Ley  | $_{ m es}$ $_{ m tem}$ | porales                                     | 8  |
|    | 8.1. | Presió                 | on de cámara                                | 8  |
|    |      | 8.1.1.                 | Fase permanente                             | 8  |
|    |      | 8.1.2.                 | Fase de cola                                | 10 |
|    | 8.2. | Gasto                  | másico                                      | 11 |
|    |      | 8.2.1.                 | Fase de cola                                | 11 |
|    | 8.3. | Impuls                 | so específico                               | 11 |
|    | 8.4. | Empuj                  | je                                          | 12 |



Se quiere diseñar un motor cohete de propulsante sólido de combustión lateral con la forma de grano especificada en la figura.

El lado del hexágono exterior es de 30 in, el lado del hexágono interior es de 10 in y la longitud del motor (y la de la pastilla) es de 115 in.

La relación de áreas de la tobera As/Ag = 60.

La presión máxima de funcionamiento no puede superar los 865 psia.

El parámetro de velocidad característica de la pastilla es de 5010 ft/s, la velocidad de recesión es 0,228 in/s (para una presión de cámara de 1000 psia, y una temperatura de grano de 226 K). El exponente es n=0,3; la densidad del propulsante es 0,0651 lb/in3. La relación de calores específicos en la cámara de combustión es  $\gamma=1,14$ . Este motor opera en vacío.



Figura 1: Hexágono. Dimensiones en in



Figura 2: Rectángulo. Dimensiones en in



### 1. Conversión de unidades

| Datos            | Enunciado                | Sistema Internacional             |  |
|------------------|--------------------------|-----------------------------------|--|
| L                | 115 in                   | 2,921 m                           |  |
| $r_i$            | 10 in                    | 0,254  m                          |  |
| $r_e$            | 30 in                    | 0,762 m                           |  |
| $P_{cmax}$       | 865 psia                 | 5963965 Pa                        |  |
| $c^*$            | $5010~\mathrm{ft/s}$     | $1527{,}05~\mathrm{m/s}$          |  |
| $\dot{r}_{dato}$ | 0.228  in/s              | $5,79 \times 10^{-3} \text{ m/s}$ |  |
| $P_{c_{dato}}$   | 1000 psia                | 6894757,3 Pa                      |  |
| $\rho_P$         | $0.0651 \; { m lb}/in^3$ | $1801,96 \mathrm{kg}/m^3$         |  |
| $\epsilon$       | 60                       |                                   |  |
| $\gamma_c$       | 1,14                     |                                   |  |
| n                | 0,3                      |                                   |  |
| $T_p$            | 226 K                    |                                   |  |
| $\gamma_t$       | 1,18                     |                                   |  |

Cuadro 1: Conversión de unidades

# 2. Masa inicial del propulsante

Se comienza calculando el volumen ocupado por el propulsante



Figura 3: Dimensiones

De las Figuras 1 y 3 obtenemos:

$$b = (r_e - r_i) \times \cos(30) = (0,762 - 0,254) \times \cos(30) = 0,44 \text{ m}$$
  
$$\theta_p = 6 \times a \times b \times L = 6 \times 0,254 \times 0,44 \times 2,921 = 1,958 \text{ m}^3$$

Finalmente, obtenemos la masa inicial del propulsante:

$$M=\theta_p\times\rho_p=\mathbf{3529},\mathbf{04}\ \mathbf{kg}$$



## 3. Área de quemado inicial

El área burning inicial se obtiene de la geometría mediante la siguiente ecuación:

$$A_{b_i} = 6 \times (a + 2b) \times L = 19,87 \text{ m}^2$$

## 4. Área de la garganta

El área de la garganta se obtiene de la siguiente ecuación:

$$A_g = \frac{c^* \dot{r}_{max} \rho_p A_b}{P_{c_{max}}} \tag{1}$$

Primero se debe obtener a, para lo que se emplean los datos aportados en el caso de ejemplo:

$$a = \frac{\dot{r}_{\text{dato}}}{P_{c_{dato}}^n} = 5,14 \times 10^{-5}$$

Seguidamente se obtiene  $\dot{r}$ :

$$\dot{r}_{max} = aP_{c_{max}}^n = 5,54 \times 10^{-3}$$

Finalmente sustituyendo en la ecuación (1) se obtiene:

$$A_g = 5.08 \times 10^{-2} \mathrm{m}^2 \tag{2}$$

### 5. Gasto másico inicial

El gasto másico inicial se obtiene de la siguiente ecuación, que lo relaciona con el retroceso de la geometría:

$$\dot{m}_{\rm inicial} = \dot{r}_{max} \rho_p A_b = 198, 4 \text{ kg/s}$$

# 6. Impulso específico inicial

El impulso específico inicial se obtiene de la siguiente ecuación:

$$Isp = c^* \times C_E \tag{3}$$

Para obtener el coeficiente de empuje  $(C_E)$  primero se necesita saber la relación de presiones.

Para la relación de presiones se calcula primero la función  $\Gamma(\gamma)$ , obtenida de:

$$\Gamma(\gamma_t) = \sqrt{\gamma_t} \left(\frac{2}{\gamma_t + 1}\right)^{\frac{\gamma_t + 1}{2(\gamma_t - 1)}} = 0,645$$



A continuación, se obtiene la relación de presiones de la siguiente ecuación:

$$\epsilon = \frac{\Gamma(\gamma_t)}{\left(\frac{P_s}{P_c}\right)^{1/\gamma_t} \sqrt{\frac{2\gamma_t}{\gamma_t - 1} \left[1 - \left(\frac{P_s}{P_c}\right)^{\frac{\gamma_t - 1}{\gamma_t}}\right]}}$$

$$\frac{P_s}{P_c} = 1,36 \times 10^{-3}$$

Dado que el motor opera en vacío, se puede obtener el coeficiente de empuje con la siguiente ecuación:

$$C_{E \text{vac}} = \Gamma(\gamma_t) \sqrt{\frac{2\gamma_t}{\gamma_t - 1} \left[ 1 - \left(\frac{P_s}{P_c}\right)^{\frac{\gamma_t - 1}{\gamma_t}} \right]} + \epsilon \frac{P_s}{P_c}$$

Finalmente, se puede obtener el impulso específico inicial sustituyendo los valores en la ecuación (3):

$$Isp = 2965, 7m/s$$

### 7. Tiempo de funcionamiento incluyendo la fase de cola

#### 7.1. Fase permanente

Primero se obtiene el tiempo de funcionamiento de la fase permanente.

1. Se obtiene  $A_b(y)$ :

$$A_b(y) = L \left[ 6 \left( 2(h - y) + (r_i - 2y) \right) \right]$$

$$= 6L \left[ 2 \left( \frac{\sqrt{3}}{2} (r_e - r_i) - y \right) + (r_i - 2y) \right]$$

$$= 6L \left[ \sqrt{3} (r_e - r_i) - 2y + (r_i - 2y) \right]$$

$$= 6L \left[ \sqrt{3} (r_e - r_i) + r_i - 4y \right]$$

$$= 19,87 - 70,104y$$

2. Se obtiene  $P_c(y)$ :

$$P_c(y) = \left(\rho_p a c^* \frac{A_b(y)}{A_g}\right)^{\frac{1}{1-n}} \tag{4}$$



3. Se obtiene la velocidad de recesión en función de y:

$$\dot{r} = aP_c^n$$

$$\dot{r} = a \left( \rho_p a c^* \frac{19,87 - 70,104y}{A_g} \right)^{\frac{n}{1-n}}$$

4. Se obtiene el tiempo integrando  $\dot{r}$ :

$$\dot{r} = \frac{dy}{dt}$$

$$\frac{dy}{dt} = a \times \left(\frac{\rho_p a c^*}{A_g}\right)^{\frac{n}{1-n}} \times (19, 87 - 70, 104y)^{\frac{n}{1-n}}$$

El valor de y al final de la fase serà el menor valor entre:

$$r_i - 2y = 0$$
  $y_1 = \frac{r_i}{2} = \mathbf{0.127} \ \mathbf{m}$ 

$$h - 2y = 0$$
  
 $y_2 = \frac{\sqrt{3}}{2}(r_e - r_i) = 0.553 \text{ m}$ 

Finalmente integramos y obtenemos t:

$$\int_0^{0,127} \frac{1}{(19,87-70,104y)^{\frac{n}{1-n}}} dy = ta \left(\frac{\rho_p a c^*}{A_g}\right)^{\frac{n}{1-n}}$$

$$t = 25,77 \text{ s}$$

#### 7.2. Fase de cola

En la fase de cola la ecuación se reduce a:

$$\theta_c \frac{d\bar{\rho}_c}{dt} = -\frac{P_c A_g}{c^*} \tag{5}$$

 $\theta_c$  es el volumen de la cámara:

$$\theta_c = \frac{3\sqrt{3}r_e^2L}{2} = 4.406 \ m^3 \tag{6}$$

El tiempo es calculado para dos condiciones diferentes; el caso isotermo y el caso adiabático.



#### 7.2.1. Caso isotermo

En este caso, dado que la temperatura de la cámara  $(T_c)$  es constante y considerando las propiedades de un gas perfecto  $(\rho = \frac{P}{TC})$ , la ecuación (5) se puede expresar como:

$$\frac{\theta_c}{RT_c}\frac{dP_c}{dt} = -\frac{P_cA_g}{c^*}$$

Aplicando que  $RT_c = c^*\Gamma(\gamma_c)$ , agrupando términos e integrando:

$$t_{cola} = \frac{\theta_c}{c^* A_q \Gamma(\gamma_c)^2} \ln\left(\frac{P_{c_0}}{P_c}\right) \tag{7}$$

Considerando que la presión en el instante inicial de la fase de cola es igual a la presión final de la fase permanente, y que al final la presión es un 10% de la presión máxima de la ecuación (4), se obtienen los valores de la tabla 2 y sustituyendo en la ecuación (7) se obtiene el tiempo de la fase de cola para este caso.

$$t_{cola} = 0.203 \text{ s}$$

| $P_{c_0}$ [Pa] | $P_c$ [Pa] | $\Gamma(\gamma_c)$ |
|----------------|------------|--------------------|
| 2551495        | 596396     | 0,637              |

Cuadro 2: Valores

#### 7.2.2. Caso adiabático

Debido a que en este caso la temperatura de la cámara no es constante se deberán aplicar las siguientes hipótesis con tal de resolver la ecuación (5):

1. Gas perfecto

$$T_c = \frac{P_c}{\rho_c} \frac{\rho_{c_0} T_{c_0}}{P_{c_0}} \tag{8}$$

2. Evolución politrópica

$$\rho_c = \left(\frac{P_c}{P_{c_0}}\right)^{\frac{1}{\gamma}} \rho_{c_0} \tag{9}$$

Derivando esta ecuación se obtiene:

$$d\rho_c = \frac{\rho_{c_0}}{\gamma P_{c_0}^{\frac{1}{\gamma}}} P_c^{\frac{1-\gamma}{\gamma}} dP_c \tag{10}$$

Sustituyendo las ecuaciones (8), (9) y (10) en la ecuación (5) se obtiene:

$$P_c^{\frac{-3\gamma+1}{2\gamma}}dP_c = \frac{-\gamma_c A_g \Gamma(\gamma_c) \sqrt{RT_{c_0}}}{\theta_c} P_{c_0}^{\frac{1-\gamma}{2\gamma}} dt$$
(11)



Aplicando que  $RT_{c_0} = c_0^* \Gamma(\gamma_c)$ , agrupando términos e integrando:

$$t_{cola} = -\frac{2\theta_c}{(1 - \gamma_c)A_g\Gamma(\gamma_c)^2 c_0^* P_c^{\frac{1 - \gamma_c}{2\gamma_c}}} \left( P_c^{\frac{1 - \gamma_c}{2\gamma_c}} - P_{c_0}^{\frac{1 - \gamma_c}{2\gamma_c}} \right)$$
(12)

Sustituyendo los valores de la tabla 2 se obtiene el tiempo de la fase de cola para este caso.

$$t_{cola} = 0.187 \text{ s}$$

#### 7.2.3. Caso real

Dado que las descargas isotermas son optimistas y las adiabáticas pesimistas se considera que el tiempo de cola real es una media de los dos casos:

$$t_{cola} = 0.195 \text{ s}$$
 (13)

### 8. Leyes temporales

Para determinar la evolución de los diferentes parámetros en función del tiempo se determina primero la evolución de la geometría con el tiempo, a partir del parámetro y. Esta relación se obtiene a través de la ecuación de la velocidad de combustión:

$$\dot{r} = \frac{dy}{dt} = aP_c^n$$

$$\frac{dy}{dt} = a\left(\rho_p a c^* \frac{19,87 - 70,104y}{A_g}\right)^{\frac{n}{1-n}}$$

$$\int_0^y (19,87 - 70,104y)^{\frac{-n}{1-n}} dy = \int_0^t a\left(\frac{\rho_p a c^*}{A_g}\right)^{\frac{n}{1-n}} dt$$

Aplicamos el siguiente cambio de variable:



$$y_{0} = 19,87 - 70,104y$$

$$= -\frac{1}{70,104} \int_{19,87}^{y_{0}} \left( y_{0}^{-\frac{n}{1-n}} dy_{0} \right)$$

$$= -\frac{1}{70,104} \left[ y_{0}^{\frac{1-2n}{1-n}} \right]_{19,87}^{y_{0}}$$

$$= -70,104a \left( \frac{\rho_{p}ac^{*}}{Ag} \right)^{\frac{n}{1-n}} t$$

$$y_{0}^{\frac{1-2n}{1-n}} = -70,104a \left( \frac{\rho_{p}ac^{*}}{Ag} \right)^{\frac{n}{1-n}} \left( \frac{1-2n}{1-n} \right) t + 19,87^{\frac{1-2n}{1-n}}$$

$$19,87 - 70,104y = \left[ -70,104a \left( \frac{\rho_{p}ac^{*}}{Ag} \right)^{\frac{n}{1-n}} \left( \frac{1-2n}{1-n} \right) t + 19,87^{\frac{1-2n}{1-n}} \right]^{\frac{1-n}{1-2n}}$$

Para simplificar definimos B(t) como:

$$B(t) = \left[ -70, 104a \left( \frac{\rho_p a c^*}{Ag} \right)^{\frac{n}{1-n}} \left( \frac{1-2n}{1-n} \right) t + 19, 87^{\frac{1-2n}{1-n}} \right]^{\frac{1-n}{1-2n}}$$
(14)

Finalmente obtenemos la ecuación y(t):

$$y(t) = 70,104(19,87 - B(t))$$
(15)

#### 8.1. Presión de cámara

Una vez obtenida la función y(t) se puede obtener la ley temporal para la presión de cámara.

#### 8.1.1. Fase permanente

Sustituyendo la ecuación (15) en la ecuación (4):

$$P_c(t) = \left(\rho_P a c^* \frac{B(t)}{A_g}\right)^{\frac{1}{1-n}} \tag{16}$$



#### 8.1.2. Fase de cola

Para el caso isotermo la ley temporal de la presión de cámara se obtiene de aislar  $P_c$  de la ecuación (7):

$$P_{c_{iso}}(t_{cola}) = P_{c_0} \exp\left(-\frac{c^* A_g \Gamma(\gamma_c)^2}{\theta_c} t_{cola}\right)$$
(17)

Para el caso adiabático la ley temporal de la presión de cámara se obtiene de aislar  $P_c$  de la ecuación (12):

$$P_{c_{ad}}(t_{cola}) = P_{c_0} \left( 1 - \frac{(1 - \gamma_c)c_0^* A_g \Gamma(\gamma_c)^2}{2\theta_c} t_{cola} \right)^{\frac{2\gamma_c}{1 - \gamma_c}}$$

$$\tag{18}$$

Finalmente en la tabla 3 se pueden ver los valores de  $P_c$  obtenidos para 15 instantes distintos y estos son representados en el gráfico 4.

| t [s] | $P_c[Pa]$ |
|-------|-----------|
| 0.00  | 5964000   |
| 1.93  | 5648000   |
| 3.86  | 5342000   |
| 5.79  | 5047000   |
| 7.71  | 4761000   |
| 9.64  | 4485000   |
| 11.57 | 4220000   |
| 13.50 | 3963000   |
| 15.43 | 3717000   |
| 17.36 | 3479000   |
| 19.29 | 3252000   |
| 21.21 | 3033000   |
| 23.14 | 2823000   |
| 25.07 | 2623000   |



Cuadro 3: Valores de  $P_c$  en función de t

Figura 4:  $P_c(t)$ 

En la tabla 4 se puede ver una comparación de la presión de cámara para la fase de cola del caso isotermo y del caso adiabático. En el gráfico 5 se puede observar como el caso isotermo es el optimista y el adiabático el pesimista.



| t [s] | $P_{c_{iso}}$ | $P_{c_{ad}}$ [Pa] |
|-------|---------------|-------------------|
| 25.79 | 2139000       | 2184000           |
| 25.82 | 1737000       | 1814000           |
| 25.84 | 1414000       | 1506000           |
| 25.87 | 1154000       | 1251000           |
| 25.90 | 945000        | 1039000           |
| 25.92 | 775000        | 863000            |
| 25.95 | 637000        | 716000            |
| 25.97 | 525000        | 595000            |
| 26.0  | 434000        | 494000            |





Figura 5:  $P_{cola}(t)$ 

#### 8.2. Gasto másico

La ley temporal para el gasto másico se obtiene de la siguiente ecuación:

$$\dot{m}(y) = \dot{r}\rho_P A_b(y)$$

Sustituyendo la ecuación (15) se obtiene:

$$\dot{m}(t) = \dot{r}\rho_P B(t) \tag{19}$$

#### 8.2.1. Fase de cola

En la fase de cola solo se considera el caso isotermo donde el gasto másico viene dado por:

$$\dot{m}_g = \frac{A_g}{c^*} P_{c_{iso}}(t_{cola}) \tag{20}$$

Finalmente en la tabla 5 se pueden ver los valores de  $\dot{m}(t)$  obtenidos para 15 instantes distintos y estos son representados en la figura 6.

### 8.3. Impulso específico

El impulso específico será constante para todo t, dado que viene definido por la ecuación (3) donde el coeficiente de empuje en vacío es constante y solo consideramos la fase de cola en el caso isotermo donde  $c^*$  también es constante.



| t [s] | $\dot{m}(t)[kg/s]$ |
|-------|--------------------|
| 0.00  | 198.42             |
| 1.85  | 188.28             |
| 3.71  | 178.46             |
| 5.57  | 168.96             |
| 7.42  | 159.77             |
| 9.28  | 150.88             |
| 11.14 | 142.30             |
| 13.00 | 134.02             |
| 14.85 | 126.03             |
| 16.71 | 118.34             |
| 18.57 | 110.94             |
| 20.42 | 103.82             |
| 22.28 | 96.98              |
| 24.14 | 90.42              |
| 26.00 | 51.55              |





Figura 6:  $\dot{m}(t)$ 

### 8.4. Empuje

$$E = \dot{m}(t)I_s p$$

Sustituyendo la ecuación 19 obtenemos:

$$E = \dot{r}\rho_P B(t) Isp \tag{21}$$

Finalmente en la tabla 6 se pueden ver los valores de E obtenidos para 15 instantes distintos y estos son representados en la figura 7.



| t [s] | E[N]   |
|-------|--------|
| 0.00  | 588440 |
| 1.85  | 558390 |
| 3.71  | 529280 |
| 5.57  | 501100 |
| 7.42  | 473840 |
| 9.28  | 447490 |
| 11.14 | 422040 |
| 13.00 | 397480 |
| 14.85 | 373800 |
| 16.71 | 350980 |
| 18.57 | 329020 |
| 20.42 | 307910 |
| 22.28 | 287630 |
| 24.14 | 268170 |
| 26.00 | 152890 |



Cuadro 6: Valores de E en función de t

Figura 7: E(t)