13 合同式・中国剰余定理・フェルマーの小定理

整数 a, b に対し, a, b の最大公約数を GCD(a, b) と書くことにする.

問題 13.1 a, b, m, n を整数, m, n > 1 とする.

- (1) $a \equiv b \pmod{mn}$ ならば $a \equiv b \pmod{m}$ かつ $a \equiv b \pmod{n}$ であることを示せ.
- (2) もし GCD(m, n) = 1 ならば上記の逆も成立することを示せ.
- (3) GCD(m,n)=1 でないときは (1) の逆は一般に成立しない. $a\equiv b\pmod m$ かっ $a\equiv b\pmod n$ であっても $a\equiv b\pmod m$ ではないような例を挙げよ.

問題 ${\bf 13.2}\ b,c,m$ を整数, m>1 とする. 合同式 $cx\equiv b\pmod m$ を満たすような $x\in\mathbb{Z}$ が存在するための必要十分条件は $\mathrm{GCD}(c,m)\mid b$ であることを示せ.

問題 13.3 次を満たす整数 x をひとつ求めよ.

$$(1) \begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$$

(2)
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 7 \pmod{11} \end{cases}$$

問題 13.4 次を求めよ.

- $(1) 100^{30}$ を 7 で割った余り.
- (2) $1^{30} + 2^{30} + 3^{30} + \cdots + 10^{30}$ を 31 で割った余り.

 $^{{}^1\}pi-\Delta ^\bullet-\mathcal{Y} \text{ http://www.math.tsukuba.ac.jp/$\tilde{}^amano/lec2012-2/e-algebra-ex/index.html}$