```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv("C:/Users/USER/Desktop/Datasets/University_Clustering.csv")

```
In [3]: del df["Univ"]
    del df["State"]
    df.head(7)
```

```
Out[3]:
              SAT Top10 Accept SFRatio Expenses GradRate
          0 1310
                      89
                              22
                                       13
                                              22,704
                                                           94
             1415
                     100
                              25
                                              63,575
                                        6
                                                           81
          2 1260
                                        9
                                              25,026
                      62
                              59
                                                           72
            1310
                      76
                              24
                                       12
                                              31,510
                                                           88
             1280
                      83
                              33
                                       13
                                              21,864
                                                           90
            1340
                      89
                              23
                                       10
                                                           95
                                              32,162
```

```
In [4]: df['Expenses']=df['Expenses'].str.replace(',','').astype(int)
```

31,585

In [5]: df.describe()

1315

Out[5]:

	SAT	Top10	Accept	SFRatio	Expenses	GradRate
count	25.000000	25.000000	25.000000	25.00000	25.000000	25.000000
mean	1266.440000	76.480000	39.200000	12.72000	27388.000000	86.720000
std	108.359771	19.433905	19.727308	4.06735	14424.883165	9.057778
min	1005.000000	28.000000	14.000000	6.00000	8704.000000	67.000000
25%	1240.000000	74.000000	24.000000	11.00000	15140.000000	81.000000
50%	1285.000000	81.000000	36.000000	12.00000	27553.000000	90.000000
75%	1340.000000	90.000000	50.000000	14.00000	34870.000000	94.000000
max	1415.000000	100.000000	90.000000	25.00000	63575.000000	97.000000

```
In [6]: from sklearn.preprocessing import scale
    df_n = scale(df)
    df_n.shape
```

Out[6]: (25, 6)

```
In [7]: from sklearn.decomposition import PCA
        pca = PCA(n components=4)
        pca values = pca.fit transform(df n)
        pca values
Out[7]: array([[-1.00987445, -1.06430962, 0.08106631,
                                                       0.05695064],
               [-2.82223781, 2.25904458,
                                           0.83682883,
                                                       0.14384464],
               [ 1.11246577, 1.63120889, -0.26678684,
                                                       1.07507502],
               [-0.74174122, -0.04218747, 0.06050086, -0.15720812],
               [-0.31191206, -0.63524357, 0.01024052,
                                                       0.17136367],
               [-1.69669089, -0.34436328, -0.25340751,
                                                       0.01256433],
               [-1.24682093, -0.49098366, -0.03209382, -0.20564378],
               [-0.33874978, -0.78516859, -0.49358483, 0.03985631],
               [-2.37415013, -0.38653888, 0.11609839, -0.45336562],
               [-1.40327739, 2.11951503, -0.44282714, -0.63254327],
               [-1.72610332, 0.08823712, 0.17040366, 0.26090191],
               [-0.45085748, -0.01113295, -0.17574605,
                                                       0.23616563],
               [0.04023814, -1.00920438, -0.49651717, 0.22929876],
               [3.23373034, -0.37458049, -0.49537282, -0.52123771],
               [-2.23626502, -0.37179329, -0.39899365, 0.40696648],
               [5.17299212, 0.77991535, -0.38591233, -0.23221171],
               [-1.69964377, -0.30559745, 0.31850785, -0.29746268],
               [ 4.578146 , -0.34759136, 1.49964176, -0.45425171],
               [0.82260312, -0.69890615, 1.42781145, 0.7607788],
               [-0.09776213, 0.65044645, 0.10050844, -0.50009719],
               [ 1.9631826 , -0.22476756, -0.25588143, -0.0484741 ],
               [-0.54228894, -0.07958884, -0.30539348, 0.13169876],
               [0.53222092, -1.0171672, -0.42371636, 0.16953571],
               [ 3.54869664,
                             0.77846167, -0.44936332,
                                                       0.32367862],
               [-2.30590032, -0.11770432, 0.25398866, -0.51618337]])
In [8]: names = df.columns
        names
Out[8]: Index(['SAT', 'Top10', 'Accept', 'SFRatio', 'Expenses', 'GradRate'], dtype='obj
        ect')
```

```
In [9]: pdf = pd.DataFrame(pca_values)
pdf
```

```
Out[9]:
                       0
                                            2
                                                       3
               -1.009874
                          -1.064310
                                      0.081066
                                                0.056951
                -2.822238
                           2.259045
                                      0.836829
                                                0.143845
             2
                 1.112466
                           1.631209
                                     -0.266787
                                                1.075075
                                               -0.157208
               -0.741741
                          -0.042187
                                      0.060501
                -0.311912
                          -0.635244
                                      0.010241
                                                0.171364
                -1.696691
                          -0.344363
                                     -0.253408
                                                0.012564
                -1.246821
                          -0.490984
                                     -0.032094
                                               -0.205644
             7
                -0.338750
                          -0.785169
                                    -0.493585
                                                0.039856
                -2.374150
                          -0.386539
                                      0.116098
                                               -0.453366
                -1.403277
                           2.119515
                                     -0.442827
                                               -0.632543
                -1.726103
                           0.088237
                                     0.170404
                                                0.260902
                -0.450857
                           -0.011133
                                    -0.175746
                                                0.236166
            12
                 0.040238
                          -1.009204
                                     -0.496517
                                                0.229299
            13
                 3.233730
                          -0.374580
                                     -0.495373 -0.521238
                -2.236265
                          -0.371793
                                     -0.398994
                                                0.406966
            15
                 5.172992
                           0.779915
                                    -0.385912 -0.232212
            16
                -1.699644
                          -0.305597
                                      0.318508
                                               -0.297463
            17
                 4.578146
                          -0.347591
                                      1.499642 -0.454252
                 0.822603
                          -0.698906
            18
                                      1.427811
                                                0.760779
            19
                -0.097762
                           0.650446
                                      0.100508
                                               -0.500097
            20
                 1.963183
                          -0.224768
                                     -0.255881
                                               -0.048474
                -0.542289
                          -0.079589
                                     -0.305393
                                                0.131699
            21
            22
                0.532221
                          -1.017167 -0.423716
                                                0.169536
            23
                 3.548697
                           0.778462 -0.449363
                                                0.323679
                -2.305900
                          -0.117704
                                     0.253989
                                               -0.516183
           var = pca.explained variance ratio
In [10]:
Out[10]: array([0.76868084, 0.13113602, 0.04776031, 0.02729668])
In [11]: v_1 = np.cumsum(np.round(var, decimals = 2)*100)
Out[11]: array([77., 90., 95., 98.])
```

In [17]: df['clusters']=pd.Series(y_kmeans)
df

Out[17]:

	SAT	Top10	Accept	SFRatio	Expenses	GradRate	clusters
0	1310	89	22	13	22704	94	2
1	1415	100	25	6	63575	81	0
2	1260	62	59	9	25026	72	2
3	1310	76	24	12	31510	88	2
4	1280	83	33	13	21864	90	2
5	1340	89	23	10	32162	95	0
6	1315	90	30	12	31585	95	0
7	1255	74	24	12	20126	92	2
8	1400	91	14	11	39525	97	0
9	1305	75	44	7	58691	87	0
10	1380	94	30	10	34870	91	0
11	1260	85	39	11	28052	89	2
12	1255	81	42	13	15122	94	2
13	1081	38	54	18	10185	80	1
14	1375	91	14	8	30220	95	0
15	1005	28	90	19	9066	69	1
16	1360	90	20	12	36450	93	0
17	1075	49	67	25	8704	67	1
18	1240	95	40	17	15140	78	2
19	1290	75	50	13	38380	87	2
20	1180	65	68	16	15470	85	1
21	1285	80	36	11	27553	90	2
22	1225	77	44	14	13349	92	2
23	1085	40	69	15	11857	71	1
24	1375	95	19	11	43514	96	0

```
In [18]: import scipy.cluster.hierarchy as sch
    dendrogram = sch.dendrogram(sch.linkage(pdf, method = 'ward'))
    plt.title('Dendrogram')
    plt.xlabel('Customers')
    plt.ylabel('Euclidean distances')
    plt.show()
```



```
In [19]: from scipy.cluster.hierarchy import cophenet
import scipy.cluster.hierarchy as sch
from scipy.spatial.distance import pdist
```

```
In [21]: from sklearn.cluster import AgglomerativeClustering
    cluster = AgglomerativeClustering(n_clusters=3,affinity='euclidean', linkage='con
    test = cluster.fit_predict(pdf)
    test
```

```
Out[21]: array([0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 0, 1, 0, 1, 2, 2, 1, 2, 2, 1, 0], dtype=int64)
```

In [23]: df['clusters']=pd.Series(test)
df

Out[23]:

	SAT	Top10	Accept	SFRatio	Expenses	GradRate	clusters
0	1310	89	22	13	22704	94	0
1	1415	100	25	6	63575	81	0
2	1260	62	59	9	25026	72	2
3	1310	76	24	12	31510	88	2
4	1280	83	33	13	21864	90	2
5	1340	89	23	10	32162	95	0
6	1315	90	30	12	31585	95	0
7	1255	74	24	12	20126	92	2
8	1400	91	14	11	39525	97	0
9	1305	75	44	7	58691	87	0
10	1380	94	30	10	34870	91	0
11	1260	85	39	11	28052	89	2
12	1255	81	42	13	15122	94	2
13	1081	38	54	18	10185	80	1
14	1375	91	14	8	30220	95	0
15	1005	28	90	19	9066	69	1
16	1360	90	20	12	36450	93	0
17	1075	49	67	25	8704	67	1
18	1240	95	40	17	15140	78	2
19	1290	75	50	13	38380	87	2
20	1180	65	68	16	15470	85	1
21	1285	80	36	11	27553	90	2
22	1225	77	44	14	13349	92	2
23	1085	40	69	15	11857	71	1
24	1375	95	19	11	43514	96	0

In []: