2011 级本科班概率统计期末试卷参考答案

一、解:

1. 两个串联元件能正常工作的概率为: r^2 , 两个并联元件能正常工作的概率为: $1-(1-r)^2$

(1) 第一个系统为先串联后并联,故可靠性为
$$1-(1-r^2)^2 = R^2 -r$$

(2) 第二个系统为先并联,次串联,再并联,故系统可靠性为

$$1-(1-r)(1-(r(1-(1-r)^2))) = r^4-3r^3+2r^2+r$$

2. (1) 由归一性,有: a = 0.1

(2)

X	1	2	3	
P	0.3	0.45	0.25	

Y	0	1	2
P	0.55	0.25	0.2

因为 $P_{11} \neq P_{1.} \cdot P_{.1}$, 故不独立.

(3)

2X+3Y	2	4	5	6	7	10	12
P	0.1	0.3	0.2	0.15	0.05	0.1	0.1

3.
$$f_X(x) = \begin{cases} \frac{1}{4}, -2 \le x \le 2\\ 0, \quad \text{其他} \end{cases}$$
, $F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\}$

当
$$y \le 0$$
 时, $F_v(y) = 0$, 所以 $f_v(y) = 0$

当
$$y > 0$$
 时, $F_Y(y) = P\left\{-\sqrt{y} \le X \le \sqrt{y}\right\} = F_X(\sqrt{y}) - F_X(-\sqrt{y})$

$$f_Y(y) = F_Y'(y) = \frac{1}{2\sqrt{y}} [f_X(\sqrt{y}) + f_X(-\sqrt{y})]$$

当
$$0 < y \le 4$$
 时, $f_Y(y) = \frac{1}{2\sqrt{y}} \left[\frac{1}{4} + \frac{1}{4} \right] = \frac{1}{4\sqrt{y}}$

当
$$y > 4$$
 时, $f_Y(y) = 0$

综上,
$$f_Y(y) = \begin{cases} \frac{1}{4\sqrt{y}}, 0 < y \le 4\\ 0, 其它 \end{cases}$$

二、解

(1)
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xf(x,y) dxdy = \int_{0}^{+\infty} \int_{0}^{+\infty} xe^{-x-y} dxdy = 1,$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} yf(x,y) dxdy = \int_{0}^{+\infty} \int_{0}^{+\infty} ye^{-x-y} dxdy = 1,$$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^{+\infty} e^{-x-y} dy = e^{-x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{0}^{+\infty} e^{-x-y} dx = e^{-y}, & y > 0\\ 0, & y \le 0 \end{cases}$$

因为 $f(x,y) = f_X(x) \cdot f_Y(y)$, 所以独立.

(3)
$$F_z(z) = P\{Z \le z\} = P\{X + 2Y \le z\}$$

当
$$z \le 0$$
时, $F_z(z) = 0$,所以 $f_z(z) = 0$

$$\stackrel{\underline{\mathsf{M}}}{=} z > 0 \; \mathbb{H}, \quad F_{z}\left(z\right) = \int_{0}^{z} dx \int_{0}^{\frac{z-x}{2}} e^{-x-y} \mathrm{d}y = 1 - e^{-z} - 2e^{-\frac{z}{2}}, \quad f_{z}\left(z\right) = F_{z}'\left(z\right) = e^{-\frac{z}{2}} - e^{-z}$$

综上,
$$f_Z(z) = \begin{cases} e^{-\frac{z}{2}} - e^{-z}, & z > 0\\ 0, & z \le 0 \end{cases}$$

三、解

1. 似然函数为
$$L(p) = \prod_{i=1}^{n} p^{x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$
,

对数似然函数
$$\ln L(p) = \sum_{i=1}^{n} x_i \ln p + (n - \sum_{i=1}^{n} x_i) \ln(1-p)$$

$$\Leftrightarrow \frac{d}{dp} \ln L(p) = \left(\sum_{i=1}^{n} x_i \right) / p - \left(n - \sum_{i=1}^{n} x_i \right) / (1-p) = 0,$$

解得 p 的最大似然估计值 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$. p 的最大似然估计量 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$.

2. $H_0: \mu = 70; H_1 \neq 70$

取检验统计量
$$t = \frac{\overline{X} - 70}{\sqrt[s]{n}}$$
, 拒绝域 $|t| = \frac{\left|\overline{X} - 70\right|}{\sqrt[s]{n}} > t_{\frac{\alpha}{2}}(n-1) = t_{0.025}(35) = 2.0301$

由样本观测值算得
$$|t| = \frac{\left| \frac{1}{x} - 70 \right|}{\sqrt[s]{n}} = 1.4 < 2.0301$$

故接受原假设 H_0 ,即可以认为这次考试考生平均成绩为70分.

四、1~5. CCBDA; 6. 0.6; 7. 16; 8. 4; 9. t(n-1); 10. $\Phi(0)$ 或 0.5