Unidad 3 – Cálculo diferencial en campos escalares

Campos escalares. 85

Definición: Llamamos campo escalar a una función cuyo dominio está contenido en \mathbb{R}^n , para algún $n \in \mathbb{N}$ y cuyo condominio es \mathbb{R} . Es decir

$$f : D \subset \mathbb{R}^n \to \mathbb{R}$$
$$(x_1, x_2, \dots, x_n) \to f(x_1, x_2, \dots, x_n)$$

Si no se especifica el dominio, se sobreentiende que es el mayor donde la ley de f está definida. **Definición:** Conjunto imagen o recorrido de f

Im
$$f = \{y \in \mathbb{R} : \exists (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \text{ tal que } f(x_1, x_2, \dots, x_n) \neq \emptyset \}$$

Ejemplos:

- 1) $f: \mathbb{R}^3 \to \mathbb{R}$ tal que $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ función módulo. Dom $f \mathbb{R}^3$, Im $f = \mathbb{R}^+_0$.
- 2) $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$. Dom $f = \{(x,y) \in \mathbb{R}^2 : x+y+1 \ge 0, \ x \ne 1\}$

- 3) Las funciones reales son casos particulares de campos escalares cuando n=1. Observación:
- 1) Notación

$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$

 $\overline{x} \to f(\overline{x}) = y \in \mathbb{R}$

con $\overline{x} = (x_1, x_2, \dots, x_n)$, x_i variables independientes e y variable dependiente.

2) En esta materia nos limitaremos al estudio de campos escalares definidos en \mathbb{R}^2 o \mathbb{R}^3 .

Definición: Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$, llamaremos gráfica de f al conjunto

$$G_{f} = \{(x_{1}, \dots, x_{n}, f(x_{1}, \dots, x_{n})) : (x_{1}, \dots, x_{n}) \in \text{Dom} f\}$$

$$= \{(\mathbf{x}_{1}, \mathbf{f}(\mathbf{x}_{1})) : \mathbf{x} \in \text{Dom} f \subset \mathbf{R}^{n}\}$$

Observación: 1) $G_f \subset \mathbb{R}^{n+1}$

- 2) Sólo podremos esbozar la gráfica de campos definidos en \mathbb{R} (funciones reales) o \mathbb{R}^2 (campos escalares en \mathbb{R}^2).
- 3) Sea $f:D\subset\mathbb{R}^2\to\mathbb{R}$ un campo escalar, suele llamarse superficie en \mathbb{R}^3 a la gráfica de f, en este caso

 $S = G_f = \{(x, y, z) : (x, y) \in \text{Dom } f \text{ y } z = f(x, y)\}$ 42

Ejemplos:

1) f(x,y) = 6 - 2x - 3y, Dom $f = \mathbb{R}^2$ su gráfica es la superficie de ecuación z = f(x,y) o sea z=6-2x-3y o bien 2x+3y+z=6 que es la ecuación de un plano.

2) $f(x,y) = \sqrt{9-x^2-y^2}$, Dom $f = \{(x,y): x^2+y^2 \leq 9\}$, la gráfica es la superficie de ecuación z = f(x, y) o sea

$$z = \sqrt{9 - x^2 - y^2} \iff x^2 + y^2 + z^2 = 9, \text{ con } z \ge 0$$

que es una semiesfera de radio 3 centrada en el origen.

3) Sea $z = f(x,y) = 4 - x^2 - y^2$, dom $(f) = \mathbb{R}^2$. Cada plano $z = \text{cte} \leq 4$ corta a G_f en una circunferencia.

4) Sea $z = f(x, y) = x^2 + 1$, dom $(f) = \mathbb{R}^2$. Cada plano y = cte corta a G_f en una parábola $z = x^2 + 1$.

Conjuntos de nivel.

Definición: Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ y $k \in \mathbb{R}$, llamamos conjunto de nivel k de f a y notamos C_k al conjunto

$$C_k = \{(x_1, \dots, x_n) \in \mathbb{R}^n : f(x_1, \dots, x_n) = k\}$$

Observación:

- 1) $C_k \neq \emptyset \Leftrightarrow k \in \text{Im } f$.
- 2) Cuando n=2, C_k son curvas de nivel de ecuación f(x,y)=k. Son las proyecciones al plano xyde las curvas intersección de la superficie z = f(x, y) con el plano z = k.
- 3) Cuando n = 3, C_k son superficies de nivel de ecuación f(x, y, z) = k.

Ejemplos:

- 1) f(x,y) = 6 2x 3y, C_k) $6 2x 3y = k \in \text{Im } f = \mathbb{R} \text{ o } 2x + 3y = 6 k \text{ son rectas para } \forall k \in \mathbb{R}$. 2) $f(x,y) = \sqrt{9 x^2 y^2}$, C_k) $\sqrt{9 x^2 y^2} = k \in \text{Im } f \subset \mathbb{R}_0^+ \Leftrightarrow x^2 + y^2 = 9 k^2 \text{ son circunferencias de radio } \sqrt{9 k^2} \text{ si } 0 \le k < 3$, un punto k = 3 y \emptyset si k > 3. \bullet
- 3) $f: \mathbb{R}^2 \to \mathbb{R}, z = f(x,y) = 4 (x^2 + y^2)$. $C_k = \{(x,y): x^2 + y^2 = 4 k\} \neq \emptyset$ si y sólo si $k \in (-\infty,4]$ siendo, C_k circunferencias centradas en el origen de radio $\sqrt{4-k}$ si k < 4 o un punto (el origen) si k=4.

4) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + 1$. $C_k = \{(x,y): x^2 + 1 = k\} \neq \emptyset$ si y sólo si $k \geq 1$, donde, C_k son dos rectas paralelas $x = \pm \sqrt{k-1}$ si y sólo si k > 1 y C_1 es el eje y.

5) $f:\mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z)=x^2+y^2+z^2$, las superficies de nivel k de f serán $C_k=\{(x,y,z):$ $x^2 + y^2 + z^2 = k$ $\neq \emptyset$ si y sólo si $k \geq 0$, siendo, C_k esferas centradas en el origen de radio \sqrt{k} si k > 0 o un punto (¿cuál?) si k = 0. i lim f(x) = L?

Límites y continuidad.

Para poder definir el concepto de límite de campos escalares tenemos que definir formalmente qué significa que $f(\overline{x}) \to L$ cuando $\overline{x} \to \overline{a}$.

Definiciones preliminares:

 \Diamond Suma en \mathbb{R}^n : Hay una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R}^n llamada suma (+) definida por

$$u+v=(u_1+v_1,\ldots,u_n+v_n)$$

 \Diamond Producto por escalares en \mathbb{R}^n : Hay una función de $\mathbb{R} \times \mathbb{R}^n$ en \mathbb{R}^n llamada producto por escalares definida por

$$\alpha u = (\alpha u_1, \ldots, \alpha u_n)$$

 \Diamond Producto escalar en \mathbb{R}^n : Hay una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} llamada producto escalar (\cdot) definida por

$$u \cdot v = \sum_{k=1}^{n} u_k v_k$$

 \Diamond Base en \mathbb{R}^n : Hay una base en \mathbb{R}^n , $\{e_1,\ldots,e_n\}$ con $e_1=(1,0,\ldots,0),\ldots,\ e_n=(0,\ldots,0,1)$ tal que si $x \in \mathbb{R}^n$ existen únicos escalares $x_i \in \mathbb{R}$ para i = 1, ..., n tales que $x = x_1e_1 + ... + x_ne_n$.

 \Diamond Norma en \mathbb{R}^n : Hay una función de \mathbb{R}^n en \mathbb{R}^+_0 llamada norma en \mathbb{R}^n que indicaremos $\|\cdot\|$, definida

$$||x|| = \sqrt{x_1^2 + \ldots + x_n^2}$$

 \Diamond Topología de \mathbb{R}^n

En los espacios normados es entonces posible definir una distancia o métrica euclideana entre puntos del espacio d(x,y) = ||x-y||.

 \Diamond Distancia en \mathbb{R}^n : Hay una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R}^+_0 llamada distancia (o métrica) en \mathbb{R}^n que indicaremos d, definida por

$$d\left(x,y\right) = \left\|x - y\right\|$$

Propiedad: Dados $x, y, z \in \mathbb{R}^n$ esta función distancia verifica:

$$\vec{i}$$
 $d(x,y) = d(y,x)$

ii)
$$d(x,y) \leq d(x,z) + d(z,y)$$
 designaldad triangular

iii)
$$d(x,y) \ge 0$$
 y $d(x,y) = 0$ si y sólo si $x = y$

Def: Defininces D(a,r) = { XERT: d(X,a) < r} = {XERT: ||X-a||cr} Def: Si ACRT, un pto a esinterior de A su = 100 heB(a,r) CA.

Proposición: Un conjunto A de \mathbb{R}^n es abierto si todos sus puntos son interiores, es decir, si $A = \mathring{A} = \{\text{puntos interiores de } A\}.$

Observación: El vacío es abierto por definición, \mathbb{R}^n es abierto, si $\{A_i\}_{i\in I}$ es una familia cualquiera de abiertos entonces $\bigcup_{i\in I} A_i$ es abierta y si $\{A_i\}_{i=1}^n$ es una familia finita de abiertos entonces $\bigcap_{i=1}^n A_i$ es abierta.

- \Diamond Entorno de un punto: Llamaremos entorno de un punto a a todo conjunto que contenga B(a,r). Es decir E es entorno de a v si existe r > 0 tal que $a \in B(a,r) \subset E$.
- \Diamond Conjunto cerrado: Un conjunto $B \subset \mathbb{R}^n$ es cerrado si $\mathcal{C}B = \tilde{B}$ es abierto.

Teorema: a) \mathbb{R}^n y \emptyset son cerrados. b) Intersección arbitraria de cerrados es cerrada. c) Unión finita de cerrados es cerrada.

 \Diamond Punto clausura: Si $A \subset \mathbb{R}^n$, el punto $x \in \mathbb{R}^n$ es un punto clausura de A si y sólo si todo entorno de x tiene intersección no vacía con A. Llamaremos clausura de A y notaremos $\overline{A} = \{\text{puntos clausura de } A\}$, se verifica $A \subset \overline{A}$.

Proposición: Un conjunto A es cerrado si y sólo si $A = \overline{A}$.

Ejemplos: a) La bola B(a,r) es abierta. En efecto, sea $x \in B(a,r) \Rightarrow ||x-a|| < r \Rightarrow ||x-a|| = r - \delta \text{ con } \delta > 0$. Usando la desigualdad triangular es fácil ver que $B(x, \frac{\delta}{2}) \subset B(a,r)$.

- b) En particular, si n = 1, $B(a, r) = \{x \in \mathbb{R} : |x a| < r\} = (a r, a + r)$ o sea que el intervalo abierto es un conjunto abierto.
- c) En \mathbb{R}^3 el conjunto $P = \{(x, y, z) : a < x < b, \ c < y < d, \ e < z < f\}$ es un abierto, llamado caja o prisma rectangular.
- d) En \mathbb{R}^3 el conjunto $\mathcal{C}P$ es cerrado.

$$\mathcal{C}P = \{(x,y,z) : (x \leq a \lor x \geq b) \land (y \leq c \lor y \geq d) \land (z \leq e \lor z \geq f)\}$$

- e) El conjunto $E = \{x : \|x a\| \ge r\}$ es cerrado pues $E = \mathcal{C}B\left(a, r\right)$.
- f) El conjunto $D = \{x : \|x a\| > r\}$ es abierto y $\overline{B(a,r)} = \{x : \|x a\| \le r\}$ es cerrado. Por ejemplo en \mathbb{R} : si a < b, los conjuntos $(-\infty,a)$, (b,∞) , (a,b), $(-\infty,a) \cup (b,\infty)$ son abiertos. Por lo tanto el intervalo cerrado [a,b] es cerrado.
- g) En \mathbb{R} , el intervalo [a, b) no es abierto ni cerrado. En efecto, no es abierto pues a no es interior a [a, b) y no es cerrado pues b no es interior a $\mathcal{C}[a, b)$.
- h) El conjunto $\{a\}$ es cerrado $\forall a \in \mathbb{R}^n$. Por ejemplo, en \mathbb{R} , $\mathcal{C}\{a\} = (-\infty, a) \cup (a, \infty)$ es abierto. En \mathbb{R}^n ,

$$C\{a\} = \{x : ||x - a|| > 0\}$$

Observación: La intersección (cualquiera) de abiertos no necesariamente es abierta, por ejemplo: en \mathbb{R} , $\forall n \in \mathbb{N}$ los intervalos $(-\frac{1}{n}, \frac{1}{n})$ son abiertos. $\bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$ es cerrado.

 \Diamond Punto frontera y frontera de un conjunto: Un punto z es punto frontera de A si cualquier N(z) contiene puntos de A y de CA. Definimos la frontera de A y notamos $\partial A = \{\text{puntos frontera de } A\}$.

$$z\in\partial A\,$$
 si y sólo si para todo $N\left(z\right),\quad N\left(z\right)\cap A\neq\emptyset\,$ y $\left.N\left(z\right)\cap CA\neq\emptyset.$

Teorema: Un conjunto es cerrado si y sólo si contiene a su frontera. (A cerrado si y sólo si $\partial A \subset A$)

 \Diamond Punto exterior y exterior de un conjunto: Si $A \subset \mathbb{R}^n$, el punto $a \in \mathbb{R}^n$ es llamado un punto exterior de A si existe $B(a) \subset \mathcal{C}A$. Llamaremos exterior de A y notaremos con ext $A = \{\text{puntos}\}$ exteriores de A}, se verifica ext $A \subset \mathcal{C}A$.

Observación: Para todo $A \subset \mathbb{R}^n$, se verifica: i) $\operatorname{ext} A = \mathcal{C}A$ ii) $\mathbb{R}^n = A \cup \partial A \cup \operatorname{ext} A$ y todos estos conjuntos son disjuntos 2 a 2.

Ejemplos: a) La frontera de B(a,r) es $\partial B(a,r) = \{x : ||x-a|| = r\}$ y es también la frontera de su complemento.

b) En \mathbb{R} , la $\partial(a,b) = \partial[a,b] = \partial(a,b] = \partial[a,b] = \{a,b\}$.

c) En \mathbb{R}^2 , sea $B = B(0, r) = \{(x, y) \in \mathbb{R}^2 : ||(x, y) - (0, 0)|| < r\} = \{(x, y) \in \mathbb{R}^2 : ||(x, y)|| < r\} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r^2\}$. Indicar \mathring{B} , CB, ∂B , \overline{B} , $\operatorname{ext} B = \mathring{C}B$.

Límite de un campo escalar en un punto

Definición: Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$, $D=\mathrm{Dom}\,f$, sea $a\in\overline{D}=\overset{\circ}{D}\cup\partial D$, (o sea que todo entorno de atiene intersección no vacía con A) entonces diremos que $L \in \mathbb{R}$ es el límite de f cuando x tiende a a si y sólo si dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $x \in D$ y $0 < ||x - a|| < \delta$ entonces $|f(x) - L| < \varepsilon$. Es decir, dada una bola de centro L y radio ε existe una bola de centro a y radio δ tal que si $x \in B(a, \delta)$ entonces $\bar{f}(x) \in B(L, \varepsilon)$.

Notación:

$$\lim_{x \to a} f(x) = L \quad \text{o} \quad f(x) \to L$$

Observaciones: Para los casos n=2 (que serán para los que veremos ejemplos) la definición es: Sea $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ decimos que $f\to L$ cuando $(x,y)\to(a,b)$ y notamos

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

sii dado $\varepsilon > 0$ existe $\delta > 0$ tal que si $(x,y) \in D$ y $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \Longrightarrow |f(x,y) - L| < \varepsilon$

Observación: Recordemos que para funciones reales, que $x \to a$ era equivalente a acercarse a a por el segmento \vec{ax} o \vec{xa} según x esté a la derecha o izquierda de a. Además si el lím f(x) existe entonces existen los límites laterales y son iguales, y si los límites laterales son distintos no existe el límite. En cambio, en \mathbb{R}^n , en particular en \mathbb{R}^2 , que $x \to a$ significa que podemos acercarnos a a por cualquier camino. Esto nos dará una condición necesaria de existencia del límite:

Sean C_1 y C_2 dos curvas que contienen al punto $(a,b) \in R^2$, sean $L_1 = \lim_{(x,y)\to(a,b)} f(x,y)$ cuando (x,y)se acerca a (a,b) por la curva C_1 y $L_2 = \lim_{(x,y)\to(a,b)} f(x,y)$ cuando (x,y) se acerca a (a,b) por la curva

b) Si $L_1 \neq L_2 \Longrightarrow$ no existe $\lim_{(x,y)\to(a,b)} f(x,y)$ b) Si $L_1 = L_2 \not\Rightarrow \exists \lim_{(x,y)\to(a,b)} f(x,y)$

Ejemplos: 1)
$$f(x,y) = \frac{5xy}{x^2 + y^2}$$

$$\text{jexiste } \lim_{(x,y)\to(0,0)} \frac{5xy}{x^2+y^2}?$$

Nos acercamos al origen por la recta x=0, $\lim_{\substack{(x,y)\to(0,0)\\x=0}} f(0,y) = \lim_{\substack{(x,y)\to(0,0)\\x=0}} \frac{0}{y^2} = 0$

Por lo tanto

$$\nexists \lim_{(x,y)\to(0,0)} \frac{5xy}{x^2+y^2}$$

2)
$$g(x,y) = \frac{5x^2y}{x^2 + y^2}$$

$$\lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2+y^2}$$
?

Introducimos el concepto de Límites radiales. Nos acercamos al origen por todas las rectas que pasan por el origen

$$\begin{cases} y = mx \\ x = 0 \end{cases}$$

Evaluamos
$$\lim_{\substack{(x,y)\to(0,0)\\y=mx}} f(x,mx) = \lim_{\substack{x\to0\\y=mx}} \frac{5x^2mx}{x^2+m^2x^2} = \lim_{\substack{x\to0\\y=mx}} \frac{5mx}{1+m^2} = 0$$

Y ahora
$$\lim_{\substack{(x,y)\to(0,0)\\x=0}} f(0,y) = \lim_{\substack{y\to0\\x=0}} 0 = 0$$

¿Será entonces $\lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2+y^2} = 0$? No lo podemos asegurar, lo probamos por definición, pues de existir tiene que valer 0 (unicidad del límite que probaremos luego),

$$\left\| \frac{5x^2y}{x^2 + y^2} \right\| = \left| \frac{5x^2y}{x^2 + y^2} \right| = \left| \frac{x^2}{x^2 + y^2} \right| |5y| \le 5 |y| = 5\sqrt{y^2} \le 5\sqrt{x^2 + y^2} < \underset{\text{si } \sqrt{x^2 + y^2} < \delta = \frac{\varepsilon}{5}}{\varepsilon}$$

por lo tanto

$$\lim_{(x,y)\to(0.0)} \frac{5x^2y}{x^2+y^2} = 0$$

3)
$$h(x,y) = \frac{xy^2}{x^2 + y^4}$$

$$\text{ ¿existe } \lim_{(x,y)\to(0,0)} h(x,y)?$$

Usando límites radiales nos acercamos por y = mx

$$\lim_{(x,y)\to(0,0)} h(x,y) = \lim_{\substack{x\to 0\\y=mx}} h(x,mx) = \lim_{\substack{x\to 0\\y=mx}} \frac{xm^2x^2}{x^2+m^4x^4} = \lim_{\substack{x\to 0\\y=mx}} \frac{xm^2}{1+m^4x^2} = 0 \ \forall m.$$

Pero ¿será entonces $\lim_{(x,y)\to(0,0)}\frac{5x^2y}{x^2+y^2}=0$?. Buscamos otra curva para acercarnos al origen, por ejemplo por la parábola $x=y^2$, entonces

$$\lim_{\substack{y \to 0 \\ x = u^2}} h(y^2, y) = \lim_{\substack{y \to 0 \\ x = u^2}} \frac{y^4}{y^4 + y^4} = \frac{1}{2}$$

por lo tanto

$$\nexists \lim_{(x,y)\to(0,0)} h(x,y)$$

Introducimos la transformación a coordenadas polares y calculamos $\lim_{(x,y)\to(0,0)}g\left(x,y\right)$ haciendo $\lim_{\rho \to 0} g\left(\rho \cos \theta, \rho \sin \theta\right)$

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \qquad \lim_{\rho \to 0} \frac{\rho^3 (\cos^3 \theta + \sin^3 \theta)}{\rho^2} = \lim_{\rho \to 0} \rho \underbrace{(\cos^3 \theta + \sin^3 \theta)}_{\text{accetado}} = 0$$

Por lo tanto, como el límite es independiente de θ (no depende por qué curva me acerco al origen), existe el límite y vale

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2} = 0$$
5) $f(x,y) = \frac{x+y}{\sqrt{x^2 + y^2}}$
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{\sqrt{x^2 + y^2}}$$
?

Usando coordenadas polares

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \qquad \lim_{\rho \to 0} \frac{\rho \cos \theta + \rho \sin \theta}{\rho} = \cos \theta + \sin \theta = \begin{cases} 1 & \text{si } \theta = 0 \\ \sqrt{2} & \text{si } \theta = \frac{\pi}{4} \end{cases}$$

El límite $\lim_{\rho \to 0} f(\rho \cos \theta, \rho \sin \theta)$ depende de θ , es decir depende por qué curva me acerco al origen, por lo tanto no existe el límite.

Teoremas sobre límites.

Los teoremas vistos para funciones de una variable pueden en general aplicarse a campos escalares, con demostraciones análogas, enunciamos algunos de ellos para los casos particulares n=2:

Teorema: Si existe $\lim_{(x,y)\to(a,b)} f(x,y) = L$ es único.

Teorema: Son equivalentes:

$$\lim_{(x,y)\rightarrow(a,b)}f\left(x,y\right)=L, \lim_{(x,y)\rightarrow(a,b)}\left(f\left(x,y\right)-L\right)=0\\ y\lim_{\|(x,y)-(a,b)\|\rightarrow0}|f\left(x,y\right)-L|=0$$

Definición: f es acotada en un entorno N(a,b) si existe M>0 tal que $|f(x,y)|\leq M$ para todo $(x,y) \in N(a,b).$

Teorema: Si existe $\lim_{(x,y)\to(a,b)} f(x,y) = L$ entonces f es acotada en algún entorno de (a,b).

Teorema (Álgebra de los límites): Sean f, g campos escalares de \mathbb{R}^2 en \mathbb{R} con igual dominio $D \subseteq \mathbb{R}^2$, sean $b = \lim_{\substack{(x,y) \to (a,b)}} f(x,y)$ y $c = \lim_{\substack{(x,y) \to (a,b)}} g(x,y)$. Entonces:

a) $\lim_{\substack{(x,y) \to (a,b)}} f(x,y) + g(x,y) = b + c$ b) $\forall \lambda \in \mathbb{R}$, $\lim_{\substack{(x,y) \to (a,b)}} \lambda f(x,y) = \lambda b$ c) $\lim_{\substack{(x,y) \to (a,b) \\ (x,y) \to (a,b)}} f(x,y) g(x,y) = bc$ d) $\lim_{\substack{(x,y) \to (a,b) \\ (x,y) \to (a,b)}} |f(x,y)| = |b|$

a)
$$\lim_{(x,y)\to(a,b)} f(x,y) + g(x,y) = b + c$$

b)
$$\forall \lambda \in \mathbb{R}, \lim_{x \to \infty} \lambda f(x, y) = \lambda b$$

c)
$$\lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = bc$$

d)
$$\lim_{(x,y)\to(a,b)} |f(x,y)| = |b|$$

e) Si
$$c \neq 0$$
, $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{b}{c}$

Demostración: a, b, c y e) idénticas a las hechas para funciones reales.

d) dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $x \in D$ y $0 < ||x - a|| < \delta$ entonces

$$||f(x,y)| - |b|| \le |f(x,y) - b| < \varepsilon.$$

Teorema (Carácter local del límite): Sean $f,g:D\subseteq\mathbb{R}^2\to\mathbb{R}$ tales que existe r>0 tal que f(x,y)=g(x,y) $\forall (x,y)\in B\left((a,b),r\right)-\{(a,b)\}\subseteq D$. Entonces si $\lim_{(x,y)\to(a,b)}f(x,y)=L$ $\Rightarrow \lim_{(x,y)\to(a,b)}g\left(x,y\right)=L$.

Teorema (Intercalación para campos escalares): Sean $f, g, h : D \subseteq \mathbb{R}^2 \to \mathbb{R}$ tales que existe r > 0 donde $g(x,y) \le f(x,y) \le h(x,y) \ \forall (x,y) \in B((a,b),r) - \{(a,b)\} \subseteq D$. Entonces si $\lim_{(x,y)\to(a,b)} g(x,y) = \lim_{(x,y)\to(a,b)} h(x,y) = L \Rightarrow \lim_{(x,y)\to(a,b)} f(x,y) = L$.

Las demostraciones de estos teoremas se omiten pues son idénticas a las hechas en cursos anteriores de análisis matemático.

NdS

Continuidad de campos escalares.

Definición: Decimos que el campo $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ es continuo en $(a,b)\in D=\mathrm{Dom}\, f$ si $\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b).$ Si f es continuo en (a,b) para todo $(a,b)\in D$ decimos que f es continuo.

Teorema (Continuidad de la composición): Sean $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ y $g:B\subseteq\mathbb{R}\to\mathbb{R}$ (con $f(D)\subseteq B$). Si f es continua en (a,b) y g es continua en f(a,b) entonces $h=g\circ f$ definida por h(x,y)=g(f(x,y))es continua en (a,b).

Demostración: Sean $\varepsilon > 0$, como g es continua en f(a,b), existe r > 0 tal que si

$$|f(x,y) - f(a,b)| < r \Rightarrow |g(f(x,y)) - g(f(a,b))| < \varepsilon$$

Pero como f es continua en (a, b), para este r existe $\delta = \delta(r) > 0$ tal que si

$$\|(x,y) - (a,b)\| < \delta \Rightarrow |f(x,y) - f(a,b)| < r \Rightarrow |g(f(x,y)) - g(f(a,b))| < \varepsilon$$

Por lo tanto $\lim_{(x,y)\to(a,b)}g\left(f\left(x,y\right)\right)=g\left(f\left(a,b\right)\right)$ entonces $h=g\circ f$ es continua en (a,b).

Ejemplos de campos escalares continuos:

- 1) f(x,y) = k = cte es continua, en efecto $|f(x,y) f(a,b)| = |\mathbf{K} \mathbf{K}| = 0 < \varepsilon \ \forall \varepsilon > 0 \ y \ \forall (x,y)$.
- 2) f(x,y) = x es continua, en efecto $|f(x,y) f(a,b)| = |x-a| < \varepsilon$ si $\delta = \varepsilon$. Idem, f(x,y) = y es continua.
- 3) $f(x,y) = \alpha x^r y^s$ con $\alpha \in \mathbb{R}$, $r,s \in \mathbb{N}_0$, entonces f es continua.
- 4) $p(x,y) = \sum_{i=1}^{n} \alpha_i x^{r_i} y^{s_i}$, los polinomios son continuos.
- 5) $f(x,y) = \frac{p(x,y)}{q(x,y)}$ las funciones racionales son continuas donde $q(x,y) \neq 0$.
- 6) $f(x,y) = \sqrt{x^2 + y^2}$ es continua, pues es composición de $g: R_0^+ \to R$, $g(t) = \sqrt{t}$ y $h: R^2 \to R_0^+$, $h(x,y) = x^2 + y^2$ que son continuas.
- 7) La norma es un campo escalar continuo.
- 8) $f(x,y) = \ln(1+x^2+y^2)$ es composición de funciones continuas.
- 9) Las composiciones con exponenciales, trigonométricas, racionales, polinomios, logaritmos, etc son continuos.