COLX-531: Neural Machine Translation

Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca

Deep Learning & NLP Lab

The University of British Columbia

Table of Contents

1 MT Evaluation

BLEU Paper

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July 2002, pp. 311-318.

BLEU: a Method for Automatic Evaluation of Machine Translation

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu

IBM T. J. Watson Research Center Yorktown Heights, NY 10598, USA {papineni,roukos,toddward,weijing}@us.ibm.com

Abstract

Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent,

the evaluation bottleneck. Developers would benefit from an inexpensive automatic evaluation that is quick, language-independent, and correlates highly with human evaluation. We propose such an evaluation method in this paper.

1.2 Viewpoint

How does one measure translation performance? The closer a machine translation is to a professional

MT Eval Rationale (Papineni et al., 2002)

Why MT Eval Needed?

- Evaluating translation is hard. Why?
- Human evaluation is costly
- An automatic method promises to accelerate MT progress
- Measure MT based on numerical closeness to a human reference
- The metric can be used to optimize MT systems
- BLEU Main Idea: Use a weighted avg of variable-length phrase matches against reference translations
- i.e., compare n-grams of the candidate with the n-grams of the reference translation, and count the number of matches
- Matches are *position-independent*.
- The more the matches, the better the candidate translation is.

Uni-gram Precision

Precision

 Precision counts up the number of candidate translation words (unigrams) which occur in any reference translation and then divides by the total number of words in the candidate translation.

1: Precision

Candidate: the the the the the.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

Modified Uni-gram Precision

Modified Precision

- A ref word should be considered exhausted after a matching candidate word is identified
- Modified unigram precision:
 - Count the maximum number of times a word occurs in any single reference translation.
 - 2 Clip the total count of each candidate word by its maximum **reference** count. $count_{clip} = min(count, max ref count)$
 - 3 Add clipped counts up, and divide by the total (unclipped) number of candidate words

2: Modified Precision

```
count<sub>clip</sub>
total words in candidate trans
```

Modified Uni-gram Precision Contd.

3: Modified Precision

Candidate: the the the the the.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

Modified Bi-gram Precision

Exercise

Calculate modified bi-gram precision for Candidate 1.

Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party.

Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.

Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.

Reference 3: It is the practical guide for the army always to heed the directions of the party.

Candidate Bi-grams Count_{Clip}

Candidate I: It is a guide to action which ensures that the military always obeys the commands of the party.

Figure: There are 17 bi-grams in Candidate 1. (Count_{clip})

Calculating Modified Bi-gram Precision

Figure: Modified precision= 10/17. Count_{clip}=10. Total bi-gram count in Candidate 1 = 17. No need to consider bi-grams in Ref 2 and Ref 3 that already occur in Ref 1.

Modified N-Gram Precision on Blocks of Text

Blocks of Text

- 1 Compute the n-gram matches sentence by sentence.
- 2 Add the clipped n-gram counts for all the candidate sentences
- 3 Divide by the number of candidate n-grams in the test corpus

4: P_n

$$P_n = \frac{\sum_{C \in Candidates} \sum_{n-gram \in C} count_{clip}(n - gram)}{\sum_{C' \in Candidates} \sum_{n-gram' \in C'} count(n - gram')}$$

BLEU on Human vs. Machine Translation

Figure 1: Distinguishing Human from Machine

Combining the modified n-gram Precisions

How should we combine the modified precisions for various n-gram sizes?

- Modified n-gram precision decays roughly exponentially with n: the modified un-igram precision is much larger than the modified bi-gram precision which in turn is much bigger than the modified tri-gram precision.
- A weighted average of the logarithm of modified precisions take this exponential decay into account.
- BLEU uses the average logarithm with uniform weights, which is equivalent to using the geometric mean of the modified n-gram precisions.

Sentence Length

Ensuring Suitable Length

- N-gram precision penalizes spurious words in candidate that do not appear in any ref
- Modified precision is penalized if a word occurs more frequently in a candidate than its max ref count
- However, modified n-gram precision alone fails to enforce the proper translation length
- See paper for illustrating examples

Sentence Brevity

Brevity

- Goal: Make the brevity penalty 1.0 when the candidate's length is the same as any reference translation's length
- Example: If there are 3 refs with lengths 12, 15, and 17 words and the candidate is 12 words, we want the brevity penalty to be 1 and call the closest ref sent length the "best match length."
- If we compute brevity penalty sentence by sentence and averaged the penalties, then length deviations on short sentences would be punished harshly.
- Instead, compute the brevity penalty over the entire corpus to allow some freedom at the sentence level.
- First, compute the test corpus' effective reference length, r, by summing "best match length." for each candidate sent in corpus.
- Then, choose penalty to be a decaying exponential in r/c, where c is total length of the candidate corpus.

BLEU Details

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}.$$

Then,

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
.

The ranking behavior is more immediately apparent in the log domain,

log BLEU =
$$\min(1 - \frac{r}{c}, 0) + \sum_{n=1}^{N} w_n \log p_n$$
.

In our baseline, we use N = 4 and uniform weights $w_n = 1/N$.

