Driehoeke:

1. Bewys dat \triangle AOB \equiv \triangle DOC deur die volgende te voltooi:

In △e AOB en DOC:

1.
$$AO = \dots$$
 (.....)
2. $BO = \dots$ (.....)
3. $A\hat{O}B = \dots$

3.
$$A\hat{O}B = \dots$$
 (.....)
 $\therefore \triangle AOB \equiv \triangle \dots$ (.....)

$$\begin{array}{ccc}
\hat{A} &= & \dots \\
\hat{B} &= & \dots \\
AB &= & \dots
\end{array}$$

2. In die figuur is $\hat{E}_1 = \hat{E}_2$ en $\hat{H} = \hat{F}$

Bewys: \triangle FEG \equiv \triangle HEG

3. Bewys: (a) \triangle AOB \equiv \triangle COD

(b) AB = DC

4. Bewys: AD = DB deur kongruensie te gebruik. $(\hat{C}_1 = \hat{C}_2)$

- 5. (a) Watter soort driehoek is \triangle ABC?
 - (b) Bewys dat: \triangle ABE \equiv \triangle CBD

(c) Bewys dat: $B\hat{E}D = B\hat{D}E$

6. In die figuur is \triangle DBE 'n gelyksydige driehoek.

$$\hat{1} = \hat{2}$$

Bewys: (a)
$$\triangle$$
 ABE \equiv \triangle CDB

$$(b)$$
 AD = EC

7. Bewys: (a) \triangle ABD \equiv \triangle BAC $(b) \triangle AOD \equiv \triangle BOC$

8. In die figuur is:

$$AB = AC$$
 en $DC = AE$.

Bewys: (a)
$$\triangle$$
 ACD \equiv \triangle BAE
(b) $B\hat{A}D = B\hat{E}C$

$$(b) \hat{BAD} = B\hat{E}C$$

9. As AB = DC en $A\hat{B}C = D\hat{C}B$,

bewys nou dat: AC = DB.

10. As AB = XW, $V\hat{X}W = 90^{\circ} = A\hat{B}V$,

bewys: \triangle ABV \equiv \triangle WXV

11. Gebruik die figuur en bewys: AB = AD

12. In die figuur is:

$$AO = OC$$
 en $OD = OB$
Bewys: $AB = DC$

13. Bewys die stelling: Die basishoeke van 'n gelykbenige driehoek is gelyk.

- 14. O en P is die middelpunte van die 2 sirkels wat sny in Q en R:
 - (a) Bewys dat $Q\hat{P}O = R\hat{P}O$.
 - (b) Bewys dat OP halveer vir QR in T.

Memo:

1. In \triangle^e AOB en DOC:

1.
$$AO = OD$$

(gegee)

2.
$$BO = OC$$

(gegee)

3.
$$A\hat{O}B = C\hat{O}D$$

(regoorstaande /e)

$$\triangle AOB \equiv \triangle DOC$$

 (S, \angle, S)

$$\hat{A} = \hat{D}$$

 $\hat{B} = \hat{C}$

$$AB = CD$$

2. In \triangle^e FEG en HEG:

1.
$$\hat{E}_1 = \hat{E}_2$$

2. $\hat{F} = \hat{H}$

(gegee)

2.
$$\hat{F} = \hat{H}$$

(gegee)

$$\therefore \triangle FEG \equiv \triangle HEG \quad (\angle, \angle, S)$$

3. (a) In △e AOB en COD

1.
$$BO = OD$$

(gegee)

2.
$$\hat{A} = \hat{C}$$

3. $\hat{B} = \hat{D}$

(verwis. \angle^e , AB || CD)

3.
$$\hat{B} = \hat{D}$$

(verwis. Le, AB | CD)

$$\therefore \triangle AOB \equiv \triangle COD \quad (\angle, \angle, S)$$

(b) Uit kongruensie: AB = CD

4. In △e ACD en BCD:

1.
$$\hat{C}_1 = \hat{C}_2$$

(gegee)

3.
$$\hat{D}_1 = \hat{D}_2$$
 (= 90°; ADB is gestrekte \angle)

$$\therefore \triangle ACD \equiv \triangle BCD (\angle, \angle, S)$$

$$\therefore$$
 AD = BD

- **5.** (a) \triangle ABC: gelykbenige \triangle : $\hat{A} = \hat{C}$
 - (b) In △e ABE en CBD:

(BA = BC)

2.
$$CD = AE$$

(gegee)

- 3. BC = BA
- (gegee)
- $\therefore \triangle ABE \equiv \triangle CBD$ (S, \angle, S)
- (c) Uit kongruensie: BE = BD
 - $\therefore B\hat{D}E = B\hat{E}D$

(basishoeke van gelykbenige △ BED)

- **6.** (a) In \triangle^{e} ABE en CDB:
 - 1. BE = DB
 - 2. $B\hat{D}C = A\hat{B}E$
 - $(=60^{\circ}; \text{ gelyksydige }\triangle)$ $(60^{\circ} + \hat{1} = 60^{\circ} + \hat{2})$
 - 3. $A\hat{E}B = D\hat{B}C$
 - $\therefore \triangle ABE \equiv \triangle CDB$ (\angle, \angle, S)
 - (b) Uit kongruensie:

$$AB = DC$$

$$\therefore AB - DB = DC - DE$$

AD = EC

(gelyksydige △)

(△ DBE; gelyksydig)

- 7. (a) In \triangle^{e} ABD en BAC:
 - 1. AB is gemeen
 - 2. $\hat{A}_1 = \hat{B}_1$
- (gegee)
- 3. $\hat{C} = \hat{D}$
- (gegee)
- $\therefore \triangle ABD \equiv \triangle BAC$
- (\angle, \angle, S)
- (b) Uit kongruensie: AD = BC
 - In \triangle^e AOD en BOC:
 - 1. AD = BC
- (Uit kongruensie in (a)) (gegee)
- $2. \quad \hat{D} = \hat{C}$
- 3. $\hat{O}_1 = \hat{O}_2$
- (Regoorst. \angle^{e})
- $\therefore \triangle AOD \equiv \triangle BOC$
- (\angle, \angle, S)

(gegee)

- **8.** (a) In \triangle ^e ABE en ACD:
 - 1. AB = AC
 - 2. $\hat{A}_1 = \hat{C}_1$
- (verwis. Le AB || CD)
- 3. AE = CD
 - (gegee) (S, \angle, S)
- $\therefore \triangle ABE \equiv \triangle CAD$
- $(b) \quad \hat{A}_2 = \hat{B}_2$
- $\therefore B\hat{A}D = \hat{A}_1 + \hat{A}_2$
 - $BEC = A_1 + B_2$
- (Buite \angle van \triangle \triangle \triangle \triangle \triangle

(uit kongruensie in (a))

9. In △e ABC en DCB:

 $\therefore B\hat{A}D = B\hat{E}C$

- 1. AB = CD
- (gegee)
- 2. $A\hat{B}C = D\hat{C}B$
- (gegee)
- 3. BC is gemeen
- $\therefore \triangle ABC \equiv \triangle DCB$ (S, \angle, S)
- \therefore AC = DB (uit kongruensie)

- 10. In △e ABV en WXV:
 - 1. AB = XW
- (gegee)
- 2. \hat{V} is gemeen
- 3. $\hat{X}_1 = \hat{B}_1$
- $(= 90^{\circ} \text{ gegee})$
- $\therefore \triangle ABV \equiv \triangle WXV$
- (\angle, \angle, S)

- 11. $\hat{C}_1 = 63^{\circ}$ (gestrekte ∠)
 - $\hat{D} = 153 63^{\circ}$
 - (Buite \angle van \triangle ACD)
 - $= 90^{\circ}$
 - In \triangle^e ABC en ADC:
 - 1. AC is gemeen
 - $2. \quad \hat{B} = \hat{D}$ $(= 90^{\circ}, \text{ gegee en bewys})$
 - 3. BC = CD
 - (gegee) $\therefore \triangle ABC \equiv \triangle ADC (90^{\circ}, sks, sy)$
 - $\therefore AB = AD$ (uit kongruensie)

- 12. In \triangle^e AOB en COD:
 - 1. AO = OC
- (gegee)
- $2. \quad OB = OD$
- (gegee)
- 3. $A\hat{O}B = C\hat{O}D$
- (elkeen: $90^{\circ} + x$)
- $\therefore \triangle AOB \equiv \triangle COD (S, \angle, S)$
 - AB = CD
- (uit kongruensie)

- 13. In \triangle^e PQS en PRS:
 - 1. PQ = PR
 - (gegee) 2. PS is gemeen
 - 3. $\hat{S}_1 = \hat{S}_2$
- $(= 90^{\circ}, QSR \text{ reguit lyn})$
- $\therefore \triangle PQS \equiv \triangle PRS \quad (90^{\circ}; Sks; sy)$
 - $\hat{Q} = \hat{R}$
- (uit kongruensie)

- 14. (a) In \triangle^e POQ en POR:
 - 1. PQ = PR
- (radii klein ①) (radii groot ⊙)
- Q = PR
- 3. *OP* is gemeen $\therefore \triangle POQ \equiv \triangle POR \quad (S, S, S)$
 - $\therefore Q\hat{P}O = R\hat{P}O$
- (uit kongruensie)
- (b) In \triangle^{e} PQT en PRT:
 - 1. PQ = PR
- (radii klein
- 2. PT is gemeen
- 3. $Q\hat{P}T = R\hat{P}T$
- (bewys in (a))
- $\therefore \triangle PQT \equiv \triangle PRT$
 - (S, \angle, S)
 - \therefore QT = TR
- .. OP halveer QR in T

