# Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia
Camilo Garcia-Jimeno

University of Pennsylvania

October 17th, 2016

### What is the causal effect of $T^*$ ?

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y Outcome of interest
- ▶ h Unknown function that does not depend on i
- ► T\* Unobserved, endogenous binary treatment
- ► T Observed, mis-measured binary surrogate for T\*
- ▶ x − Exogenous covariates
- $\triangleright$   $\varepsilon$  Mean-zero error term
- ▶ z − Discrete instrumental variable

#### Target of Inference:

ATE function:  $\tau(\mathbf{x}) = h(1, \mathbf{x}) - h(0, \mathbf{x})$ 

# Example: Job Training Partnership Act (JPTA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T\* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- $\triangleright$  z Offer of job training

# Example: Returns to Schooling

Oreopoulos (2006, AER)

Fuzzy RD: minimum school-leaving age in UK increased from 14 to 15 in 01947 but some already stayed until 15 before the law and others failed to comply after it.

- y − Log wage
- ▶ T\* School attendance at age 15
- ➤ T Self-report of school attendance at age 15
- x Individual characteristics
- ▶ z Indicator: born in or after 1933

#### Related Literature

#### Continuous Treatment

Lewbel (1997, 2012), Schennach (2004, 2007), Chen et al. (2005), Hu & Schennach (2008), Song (2015), Hu et al. (2015)...

### Binary, Exogenous Treatment

Aigner (1973), Bollinger (1996), Kane et al. (1999), Black et al. (2000), Frazis & Loewenstein (2003), Mahajan (2006), Lewbel (2007)

### Binary, Endogenous Treatment

Mahajan (2006), Shiu (2015), Ura (2015)

# Model: $y = c + \beta T^* + \varepsilon$

#### First-stage

$$ho_k^* \equiv \mathbb{P}(T^* = 1|z = z_k) 
eq \mathbb{P}(T^* = 1|z = z_\ell) \equiv 
ho_\ell^*, \ k 
eq \ell$$

#### Measurement Error

- ▶ Non-differential:  $\mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- Does not depend on z:

$$\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$$

$$\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$$

#### Notation

Define error term that absorbs constant:  $u = c + \varepsilon$ 

# Observable Moments: $y = \beta T^* + u$

$$z = 1$$
  $z = 2$  ...  $z = K$ 
 $T = 0$   $y_{01}$   $y_{02}$  ...  $y_{0K}$   $y_{0K}$ 
 $y_{01}$   $y_{02}$  ...  $y_{0K}$   $y_{0K}$ 
 $y_{01}$   $y_{02}$  ...  $y_{0K}$   $y_{0K}$ 
 $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$   $y_{0K}$ 

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
  $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$ 

# Unobservable Moments: $y = \beta T^* + u$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$
  
 $q_k = \mathbb{P}(z = z_k), \quad p_k^* = \mathbb{P}(T^* = 1|z = z_k)$ 

# Mahajan (2006, ECTA)

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

#### Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

### Main Result (Correct) – Exogenous Treatment

Relevant binary instrument z ( $p_1^* \neq p_2^*$ ) identifies  $\alpha_0, \alpha_1$  and

$$\mathbb{E}[y|T^*]$$
 provided that  $\mathbb{E}[\nu|T^*, T, z] = 0$  and  $\alpha_0 + \alpha_1 < 1$ .

### Extension (Incorrect) – Endogenous Treatment

$$\mathbb{E}[\varepsilon|z] = 0, \ \rho_1^* \neq \rho_2^*, \ \mathbb{E}[\varepsilon|T,T^*,z] = \mathbb{E}[\varepsilon|T^*] \implies \beta \ \text{identified}.$$



### What if z takes on more than two values?

$$\mathbb{E}[arepsilon|z] = 0 \implies \mathit{pair} \ \mathsf{of} \ \mathsf{equations} \ \mathsf{for} \ \mathsf{each} \ k = 1, \dots, K$$

$$\begin{split} \hat{y}_{0k} &= \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^* \\ \hat{y}_{1k} &= (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^* \\ \end{split}$$
 where 
$$\hat{y}_{0k} = (1 - p_k)\bar{y}_{0k} \text{ and } \hat{y}_{0k} = p_k\bar{y}_{1k} \end{split}$$

2K Equations in K + 4 Unknowns

# *Theorem*: $\beta$ is undentified regardless of K.

Proof of special case:  $\alpha_0 = 0$ 

1. System of equations:

$$\widetilde{y}_{0k} = c + p_k \left( \frac{\beta \alpha_1}{1 - \alpha_1} \right) - p_k m_{1k}^*$$

$$\widetilde{y}_{1k} = p_k \beta + p_k m_{1k}^*$$

2. 
$$\beta/(1-\alpha_1) \equiv \mathcal{W}$$
 identified,  $\beta \alpha_1/(1-\alpha_1) = \mathcal{W} - \beta \implies$ 

$$(c + p_k \mathcal{W} - \widetilde{y}_{0k})/p_k = \beta + m_{1k}^*$$

$$\widetilde{y}_{1k}/p_k = \beta + m_{1k}^*$$

3. Sum equations from  $1 \implies (c + p_k W - \widetilde{y}_{0k}) = \widetilde{y}_{1k}$ 

# What about $\alpha_0 + \alpha_1 < 1$ ?

$$W = \frac{\beta}{1 - \alpha_0 - \alpha_1}, \quad p_k^* = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}, \quad 1 - p_k^* = \frac{1 - p_k - \alpha_1}{1 - \alpha_0 - \alpha_1}$$

- ►  $Cor(T, T^*) > 0 \iff \alpha_0 + \alpha_1 < 1$
- ▶ If  $\alpha_0 + \alpha_1 < 1$  then:
  - lacktriangleright eta has same sign as  ${\mathcal W}$
  - $\qquad \qquad \alpha_0 < \min_k \{p_k\}$
  - $\qquad \qquad \alpha_1 < \min_k \{1 p_k\}$
  - ▶ Two-sided bounds for treatment effect.

# Conditional Second Moment Independence.

### **New Assumption**

Homoskedastic errors w.r.t. the *instrument*:  $E[\varepsilon^2|z] = E[\varepsilon^2]$ 

#### Reasonable?

Makes sense in an RCT or a true natural experiment.

#### **New Moment Conditions**

Defining 
$$\mu_{k\ell}^* = (p_k - \alpha_0)m_{1k}^* - (p_\ell - \alpha_0)m_{k\ell}^*$$
,

$$\mathbb{E}(y^2|z_k) - \mathbb{E}(y^2|z_\ell) \equiv \Delta \overline{y^2} = \beta \mathcal{W}(p_k - p_\ell) + 2\mathcal{W}\mu_{k\ell}^*$$

$$\mathbb{E}(yT|z_k) - \mathbb{E}(yT|z_\ell) \equiv \Delta \overline{yT} = (1 - \alpha_1)\mathcal{W}(p_k - p_\ell) + \mu_{k\ell}^*$$

# Theorem: $(\alpha_1 - \alpha_0)$ is Identified if $E[\varepsilon^2|z] = E[\varepsilon^2]$

Requires only binary z

Solve for  $\mu_{k\ell}^*$ , substitute  $\beta = \mathcal{W}(1 - \alpha_0 - \alpha_1)$ , rearrange to find

$$lpha_1 - lpha_0 = 1 + \mathcal{R}/\mathcal{W}, \quad ext{where} \quad \mathcal{R} \equiv rac{\Delta \overline{y^2} - 2 \mathcal{W} \Delta \overline{y} \overline{T}}{\mathcal{W}(p_k - p_\ell)}.$$

### What good is $(\alpha_1 - \alpha_0)$ ?

- ▶ Test necessary condition for *no mis-classification*:  $\alpha_0 = \alpha_1$
- ightharpoonup Simple, tighter partial identification bounds for eta
- ▶ If  $\alpha_0$  known, e.g. zero  $\implies \beta$  point identified

# Conditional Third Moment Independence

### **New Assumption**

Third moment independence w.r.t instrument:  $E[\varepsilon^3|z] = E[\varepsilon^3]$ 

#### **New Moment Conditions**

Define 
$$\lambda_{k\ell}^* = (p_k - \alpha_0)v_{1k}^* - (p_\ell - \alpha_0)v_{1\ell}^*$$
  
where  $v_{tk}^* = \mathbb{E}(u^2|T^* = t, z_k)$ . Then

$$\begin{split} \mathbb{E}(y^3|z_k) &- \mathbb{E}(y^3|z_\ell) \equiv \\ \Delta \overline{y^3} &= \beta^2 \mathcal{W}(p_k - p_\ell) + 3\beta \mathcal{W} \mu_{k\ell}^* + 3\mathcal{W} \lambda_{k\ell}^* \\ \mathbb{E}(y^2 T|z_k) &- \mathbb{E}(y^2 T|z_\ell) \equiv \\ \Delta \overline{y^2 T} &= \beta(1 - \alpha_1) \mathcal{W}(p_k - p_\ell) + 2(1 - \alpha_1) \mathcal{W} \mu_{k\ell}^* + \lambda_{k\ell}^* \end{split}$$

## Theorem: $\beta$ , $\alpha_0$ and $\alpha_1$ identified

Adding  $E[\varepsilon^3|z] = E[\varepsilon^3]$ , z need only be binary.

Solve for  $\lambda_{k\ell}^*$ , substitute and rearrange. After further substitutions:

$$2\mathcal{W}^2(1-\alpha_1)^2 + 2\mathcal{R}\mathcal{W}(1-\alpha_1) + (\mathcal{S} - \mathcal{R}^2) = 0$$

where

$$\mathcal{S} \equiv rac{\Delta \overline{y^3} - 3 \mathcal{W} \left[ \Delta \overline{y^2 \, T} + \mathcal{R} \Delta \overline{y \, T} 
ight]}{\mathcal{W}(
ho_k - 
ho_\ell)}$$

- Quadratic in  $(1 \alpha_1)$  and observables only
- ▶ Always two real roots: one is  $(1 \alpha_1)$  and the other is  $\alpha_0$ .
- ▶ To tell which is which, need  $\alpha_0 + \alpha_1 < 1$ .

# Simulation Study: $y = \beta T^* + \varepsilon$

- $(\varepsilon, \eta)$  ~ jointly normal, mean 0, variance 1, correlation 0.3.
- ▶ First stage:  $T^* = \mathbf{1} \{ \gamma_0 + \gamma_1 z + \eta > 0 \}$ 
  - ▶ Half of subjects have z = 1, the rest have z = 0.
  - $\delta = \mathbb{P}(T^* = 0|z = 1) = \mathbb{P}(T^* = 1|z = 0)$
- Generate T as follows:
  - Set  $\alpha_0 = 0$  so  $T^* = 0 \implies T = 0$
  - $T \mid T^* = 1 \sim \text{Bernoulli}(1 \alpha_1)$
  - $\alpha_0, \alpha_1$  unknown to econometrician.

Sampling Distribution of  $\hat{\alpha}_1 - \hat{\alpha}_0$ 

(a) 
$$N = 500, \delta = 0.1$$
 (b)  $N = 1000, \delta = 0.1$  (c)  $N = 5000, \delta = 0.1$  (d)  $N = 5000, \delta = 0.1$  (e)  $N = 5000, \delta = 0.1$  (f)  $N = 5000, \delta = 0.1$  (f)  $N = 5000, \delta = 0.1$  (f)  $N = 5000, \delta = 0.1$  (g)  $N$ 





Sampling Distribution of  $\widehat{eta}=(1-\widehat{lpha}_0-\widehat{lpha}_1)\widehat{eta}_{IV}$ 

(a) 
$$N = 500, \delta = 0.1$$
 (b)  $N = 1000, \delta = 0.1$  (c)  $N = 5000, \delta = 0.1$  (d)  $N = 5000, \delta = 0.1$  (e)  $N = 5000, \delta = 0.1$  (f)  $N = 1000, \delta = 0.1$  (f)  $N = 1000, \delta = 0.1$  (g)  $N$ 

(a) 
$$N = 500$$
,  $\delta = 0.2$  (b)  $N = 1000$ ,  $\delta = 0.2$  (c)  $N = 5000$ ,  $\delta = 0.2$ 

(a)  $N = 500$ ,  $\delta = 0.2$  (b)  $N = 1000$ ,  $\delta = 0.2$  (c)  $N = 5000$ ,  $\delta = 0.2$ 

(a) 
$$N = 500$$
,  $\delta = 0.3$  (b)  $N = 1000$ ,  $\delta = 0.3$  (c)  $N = 5000$ ,  $\delta = 0.3$  (d)  $N = 5000$ ,  $\delta = 0.3$  (e)  $N = 5000$ ,  $\delta = 0.3$  (f)  $N = 5000$ ,  $\delta = 0.3$  (f)  $N = 5000$ ,  $\delta = 0.3$  (g)  $N = 0.3$  (g)

### Conclusion

- ► Endogenous, mis-measured binary treatment.
- Important in applied work but no solution in the literature.
- ▶ Usual (1st moment) IV assumption fails to identify  $\beta$
- ▶ 2nd moment assumption identifies  $\alpha_1 \alpha_0$
- ▶ 3rd moment assumption identifies  $\beta$

# Mahajan's Argument

#### Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[\nu|T^*] = 0$$
 by construction

#### Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

### Ingredients

- 1. If  $p_1^* \neq p_2^*$ ,  $\mathbb{E}[\varepsilon|z] = 0$  then, since  $\beta_{IV} = \beta/(1 \alpha_0 \alpha_1)$ , knowledge of  $\alpha_0, \alpha_1$  is sufficient to recover  $\beta$ . (Correct)
- 2. If  $p_1^* \neq p_2^*$ ,  $\mathbb{E}[\nu|T^*,T,z]=0$ ,  $\alpha_0,\alpha_1$  are identified. (Correct) How to satisfy both 1 and 2 while allowing  $\mathbb{E}[\varepsilon|T^*]\neq 0$ ?
- 3. Assume that  $\mathbb{E}[arepsilon|T^*,T,z]=\mathbb{E}[arepsilon|T^*]$  (i.e.  $m_{01}^*=m_{02}^*$  and  $m_{11}^*=m_{12}^*$ )

# The Flaw in Mahajan's Argument

#### Proposition

If  $\mathbb{E}[\varepsilon|T^*] \neq 0$  then  $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$  combined with  $\mathbb{E}[\varepsilon|z] = 0$  implies  $p_1^* = p_2^*$ , i.e. z is irrelevant for  $T^*$ .

#### Proof

 $\mathbb{E}[\varepsilon|z] = 0$  implies

$$(1 - p_1^*)m_{01}^* + p_1^*m_{11}^* = c$$
  
$$(1 - p_2^*)m_{02}^* + p_2^*m_{12}^* = c$$

while Mahajan's assumption implies  $m_{01}^{st}=m_{02}^{st}$  and  $m_{11}^{st}=m_{12}^{st}.$ 

Therefore either  $m_{01}^* = m_{02}^* = m_{11}^* = m_{12}^* = c$ , which is ruled out by  $E[\varepsilon|T^*] = 0$ , or  $p_1^* = p_2^*$ .

