Выпускная квалификационная работа по курсу «Data Science»

ПРОГНОЗИРОВАНИЕ КОНЕЧНЫХ СВОЙСТВ НОВЫХ МАТЕРИАЛОВ

(КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ)

Орлянский А.Л.

ЦЕЛИ РАБОТЫ:

Задача, исследуемая в данной работе, направлена на поиск способов прогнозирования свойств композиционного материала путем оценки свойств входящих в него компонентов, а также их структуры, соотношения и применяемых при их совмещении технологических процессов.

ИСХОДНЫЕ ДАННЫЕ

В качестве исходных данных для решения задачи представлено два массива данных, содержащие информацию о следующих характеристиках материалов, применяемых при изготовлении композитного материала, а также их структуры и взаимного соотношения:

- соотношение матрица-наполнитель

- модуль упругости при растяжении

- ПЛОТНОСТЬ

- прочность при растяжении

- модуль упругости

- потребление смолы

- количество отвердителя

- угол нашивки

- содержание эпоксидных групп

- шаг нашивки

- температура вспышки

- плотность нашивки

- поверхностная плотность

На основании имеющихся исходных данных необходимо научиться прогнозировать следующие конечные свойства композиционного материала в зависимости от имеющихся характеристик:

- модуль упругости при растяжении
- модуль прочности при растяжении
- соотношение матрица-наполнитель

Первый датасет имеет 1023 записи, второй – 1040, данные не имеют пропусков. По условиям задачи датасеты объединяются в один датасет по индексу с типом объединения INNER.

В связи с незначительностью потери данных при их объединении датасеты объединены в один с количеством записей 1023.

РАЗВЕДОЧНЫЙ АНАЛИЗ ДАННЫХ

В процессе разведочного анализа данных было выявлено, что данные в объединенном датасете не имеют пропусков, но имеют большой разброс значений характеристик.

Также получены средние и медианные значения для характеристик материалов, имеющихся с датасете.

O	#Для каждой колонки получаем среднее : ds_X.mean(axis=0)	значение#	[16] #Для каждой колонки получаем медианно ds_X.median(axis=0)	е значение#
₽	Соотношение матрица-наполнитель Плотность, кг/м3 модуль упругости, ГПа Количество отвердителя, м.% Содержание эпоксидных групп,%_2 Температура вспышки, С_2 Поверхностная плотность, г/м2 Модуль упругости при растяжении, ГПа Прочность при растяжении, МПа Потребление смолы, г/м2 Угол нашивки Плотность нашивки dtype: float64	2.930366 1975.734888 739.923233 110.570769 22.244390 285.882151 482.731833 73.328571 2466.922843 218.423144 44.252199 6.899222 57.153929	Соотношение матрица-наполнитель Плотность, кг/м3 модуль упругости, ГПа Количество отвердителя, м.% Содержание эпоксидных групп,%_2 Температура вспышки, С_2 Поверхностная плотность, г/м2 Модуль упругости при растяжении, ГПа Прочность при растяжении, МПа Потребление смолы, г/м2 Угол нашивки Плотность нашивки dtype: float64	2.906878 1977.621657 739.664328 110.564840 22.230744 285.896812 451.864365 73.268805 2459.524526 219.198882 0.000000 6.916144 57.341920

РАСПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК В ДАТАСЕТЕ

НАХОЖДЕНИЕ ВЫБРОСОВ В ДАТАСЕТЕ

ПОПАРНЫЕ ГРАФИКИ РАССЕЯНИЯ ДЛЯ ЗНАЧЕНИЯ ХАРАКТЕРИСТИК В ДАТАСЕТЕ

ТЕПЛОВАЯ КАРТА ДЛЯ ИССЛЕДОВАНИЯ ЗАВИСИМОСТИ МЕЖДУ ЗНАЧЕНИЯМИ ХАРАКТЕРИСТИК

Соотношение матрица-наполнитель -	1	0.0038	0.032	-0.0064	0.02	-0.0048	-0.0063	-0.0084	0.024	0.073	-0.031	0.036	-0.0047	
Плотность, кг/м3 -	0.0038		-0.0096	-0.036	-0.0083	-0.021	0.045	-0.018	-0.07	-0.016	-0.068	-0.061		
модуль упругости, ГПа -	0.032	-0.0096		0.024	-0.0068	0.031	-0.0053	0.023	0.042	0.0018	-0.025	-0.0099		
Количество отвердителя, м.% -	-0.0064	-0.036	0.024		-0.00068			-0.066	-0.075	0.0074		0.015	0.017	
Содержание эпоксидных групп,%_2 -	0.02	-0.0083	-0.0068	-0.00068		-0.0098	-0.013	0.057	-0.024	0.015	0.0081	0.003	-0.039	
Температура вспышки, С_2 -	-0.0048	-0.021	0.031		-0.0098		0.02	0.028	-0.032		0.021	0.026	0.011	
Поверхностная плотность, г/м2 -	-0.0063	0.045	-0.0053		-0.013	0.02		0.037	-0.0032	0.016	0.052		-0.05	
Модуль упругости при растяжении, ГПа -	-0.0084	-0.018	0.023	-0.066	0.057	0.028	0.037	1	-0.009	0.051	0.023	-0.029	0.0065	
Прочность при растяжении, МПа -	0.024	-0.07	0.042	-0.075	-0.024	-0.032	-0.0032	-0.009		0.029	0.023	-0.06	0.02	
Патребление смолы, г/м2 -	0.073	-0.016	0.0018	0.0074	0.015		0.016	0.051	0.029		-0.015	0.013	0.012	
Угол нашивки, град -	-0.031	-0.068	-0.025		0.0081	0.021	0.052	0.023	0.023	-0.015		0.024	0.11	
Шаг нашивки -		-0.061	-0.0099	0.015	0.003	0.026	0.038	-0.029	-0.06	0.013	0.024		0.0035	
Плотность нашивки -	-0.0047	0.08		0.017	-0.039	0.011	-0.05	0.0065	0.02	0.012		0.0035		
	Соотнашение матрица-наполнитель -	Плотность, кг/м3 -	модуль упругости, ГПа -	Количество отвердителя, м.% –	Содержание эпоксидных групп,%_2 -	Температура вспышкм, С_2 =	Ловерхностная плотность, г/м2 -	Модуль упругости при растяжении, ГПа –	Прочность при растяжении, МПа –	Потребление смоль, С/м2	Угуд нашизки, град	Пр. дливки	Плотность нашивки	

ПРЕДОБРАБОТКА ДАННЫХ

РАЗРАБОТКА И ОБУЧЕНИЕ МОДЕЛЕЙ

Для получения прогнозов требуемых характеристик были использованы линейная регрессия, метод к-ближайших соседей и случайный лес.

Оценка модели линейной регрессии для прогноза модуля упругости

Оценка модели к-ближайших соседей для прогноза модуля упругости

Оценка модели случайный лес для прогноза модуля упругости

Оценка модели линейной регрессии для прогноза прочности при растяжении

