

BIG DATA - CASE STUDY

EMANUELE TANZI - 807406

Table of contents

Introduction: genetic analysis in medical diagnosis

Molecular-level analyseshelp identify early pathological signatures
(e.g. gene expression, mutation, miRNAs)

Biomarkers

Quantifiable indicators of biological processes (e.g. diseases)

Useful in diagnosis, monitoring, treatment evaluation

Ideal biomarkers:

Non-invasive
Sensitive to early changes
Mechanistically linked to pathology

microRNA (miRNA)

Small, non-coding RNAs, regulate gene expression

Stable in blood, CSF, saliva

miRNA expression pattern reflect:

Neuroinflammation
Synaptic dysfunction
Amyloid-beta metabolism

miRNA-based AD Diagnosis: Ongoing Research Recent studies explore:

- · Distinction between MCI, AD, and healthy aging
- miRNA involvement in neuroinlammation, synaptic disfuction and mitochondrial regulation

Bioinformatics and AI methods used to:

- Map miRNA-gene networks linked to disease progression
- Identify multi-omic biomarker panels (miRNAs, lipids, imaging)

Goal: improve early detection, disease staging, and personalized therapeutic decisions

Introduction of the applied methodology

Starting point: solutions based on complex classifiers, black boxes Goal:
enhancing
interpretability, in
terms of miRNA
expressions

First step: miRNA-feature mapping computation

Second step: explaination for diagnosis

Data obtained as results of a previous study!

Dataset Description

subj_embeddings_train.csv

Patient x miRNA embedding

df_concat_final.csv

patient x (miRNA expressions + personal info)

feature_importance_prod_final.cs

miRNA embedding x importance (in classification)

Personal info;

- Age
- Sex
- APOE4
- Diagnosis
 - AD: Alzheimer's Disease
 - MCI: Mild Cognitive Impairment
 - NC: Normal Control

Workflow

- 1. Data Cleaning
 - 2. Compute mapping between miRNA expressions and embeddings
 - 3. Training a Random Forest model
 - 4. SHAP for interpreting classifications
 - 5. Mapping + SHAP: explainability based on miRNA

Data Cleaning

$$P = X \cdot H$$

- H represents the graph embeddings, relationship between embeddings and miRNA expressions
 - $H \in \mathbb{R}^{2558 \times 128}$
- P extracted from subj_embeddings_train.csv
 - $P \in \mathbb{R}^{1256 \times 128}$
- X extracted from df_concat_final.csv
 - $X \in \mathbb{R}^{1256 \times 2558}$

Workflow

1. Data Cleaning

2. Compute mapping between miRNA expressions and embeddings

3. Training a Random Forest model

4. SHAP for interpreting classifications

5. Mapping + SHAP: explainability based on miRNA

Compute mapping: miRNA expressions - embeddings

$$P = X \cdot H$$

- H matrix represents mapping between
 - miRNA expressions represented in X
 - Embeddings represented in H

Model: LassoCV
5-fold cross validation
10,000 max. iter.
StandardScaler on X and
P

$$\min_{\beta} \left\{ \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1} \right\}$$

Idea

Use *Lasso* (*Least Absolute Shrinkage and Selection Operator*) to compute the matrix

Why Lasso?

Feature selection Automatically discards less relevant miRNAs by shrinking their weights to zero Sparse & interpretable • Identifies a minimal set of miRNAs that explain each genetic feature mapping **Dimensionality reduction** Helps focus only on the most informative signals Biological insight • Links miRNAs directly to predictive features, improving explainability • Enables reconstruction of embedding features without access to the original Practical advantage transformation

Analysis of the most influential features

- Feature_importance_prod_final.csv
 - Embeddings value, associated to their importance in diagnosing Alzheimer's Disease
 - Obtained from the previous study

First reduction (on patient - miRNA matrix)

First Lasso training:

- learn to reconstruct the top relevant genetic features in P
 - using the matrix X.

Goal:

- saving the matrix of weights
 - The result of training activity,

Why?

- Pinpointing the most relevant miRNA features
 - Reduce dimension of X, removing not influent miRNAs

Result:

- reduction on X
 - from (1256 x 2558) to (1256 x 300)

Training Lasso on the entire dataset

Goal:

- Lasso to obtain the weight matrix
- Learning how to reconstruct P, starting from the reduced version of X

Result:

• new weight matrix $W \in \mathbb{R}^{128 \times 300}$

Evaluation:

- reconstructing P, $\hat{P} = X \cdot W^T$
- High Quality reconstruction
- $R^2 = 0.99$
- MSE = 0.01

Second reduction (on weight matrix)

Thresholding strategy on weight matrix

 Threshold: for each row, x% of the maximum absolute

Checking the entries for each row

- Select and delete columns with only zero values
- Final result: weight matrix (128 x 93)

Workflow

Random Forest classifier: setup

Purpose:

Establish a baseline for explainability

Included features:

Genetic Embeddings
Patient metadata: age, APOE4
(From dataframe used to extract P)

Traning pipeline

- 1) Removal of entries with missing personal data
- 2) 80/20 train-test split
- 3) Grid Search for hyperparameter tuning
- 4) Optimized for F1-macro (imbalanced classes)
 - AD: 67%
 - NC: 24%
 - MCI: 9%

Best model: results

- Overclassification of AD
- MCI classified as AD still offer useful clinical insight
- Main goal: develop an explainability framework, not maximize accuracy

	Precision	Recall	F1-score	Support
AD	0,787	0,897	0,839	165
MCI	1,000	0,565	0,722	23
NC	0,600	0,764	0,754	58

Workflow

SHAP for interpreting classifications

- SHAP: interpret feature contributions to each prediction
- Developed a function to:
 - Return the predicted class
 - List top influencing features, ranked by abs.
 SHAP values
 - Show both supporting and opposing evidence
 - Include raw feature values for better interpretation

Workflow

Mapping + SHAP: explainability based on miRNA

4

mirna_explain to be applied on the single classifications

Function mirna_explain

Filter non-miRNA features

Mapping top SHAP features to miRNA expressions

Rank miRNAs by aggregated influence

$$agg_weight(m) = \sum_{f \in \mathcal{F}_m} W_{f,m} \cdot SHAP(f)$$

$$agg_raw(m) = \sum_{f \in \mathcal{F}_m} W_{f,m} \cdot RAW(f)$$

miRNA interpretation for correct classifications

- Searching patterns across correct classifications
- Function aggregate_mirna_for_class
 - For each class, using mirna_explain results:
 - mean_weight: tendency to support class
 - Std_weight: consistency of influence
 - Positive_ratio: how often it supports the predicted class
 - $\frac{1}{N}\sum_{i=1}^{N}1(aggr_weight_i(m)>0)$
 - Mean_raw: average expression value in selected case
 - Level_vs_avg: deviation from population average

Result

STwo main goals:

ASSOCIATE PREDICTION
WITH A PLAUSIBLE
EXPLANATION, BASED ON
MIRNA BIOMARKERS

IDENTIFY MIRNA BIOMARKERS THAT MAY BE RELEVANT FOR DIAGNOSIS

How to interpret results: SHAP

	△ feature	# shap_value	# raw_value	A
0	num_age	0.11807506435215145	0.7014892076044722	+
1	num_apoe4	-0.03047287971166497	-0.7684837404432598	-
2	num_49	-0.011635854921354393	0.06833541148984061	-
3	num_109	-0.007178682055379113	-0.045846352374075514	-
4	num_32	0.006494414656083336	0.019938056881912882	+
5	num_24	0.0060228473392271555	-0.09323352282947651	+
6	num_29	0.005978601435954261	0.0668188105949285	+
7	num_30	0.005455914735912586	0.03198035339015115	+
8	num_112	0.0050926949311178756	-0.10139664498823846	+
9	num_74	0.005021357545629144	0.12856700535843185	+

- The observation of the age feature, which is significantly above the population average, as indicated by the row_value, pushes towards the predicted class (in the example, AD) since the positive shap_value.
- The observation of the feature apoe4, which is significantly below the population average, pushes against the predicted class, observing a negative shap_value.

How to interpret results: SHAP + mapping

	∆ miRNA	# aggregated_weight	# agg_raw
0	hsa-miR-2861	0.011440480264205436	-0.11504813784851482
1	hsa-miR-6729-5p	0.008664085279676197	-0.3790482808194421
2	hsa-miR-1908-5p	0.005742331446907871	0.6307945470772633
3	hsa-miR-5787	0.0055785196181378635	0.31320730732942126
4	hsa-miR-150-5p	0.005062763113042427	0.3731062677960225
5	hsa-miR-1281	0.0042825065667354625	-0.008208151767773142
6	hsa-miR-6126	0.004256624269463154	0.20265186447676567
7	hsa-miR-6786-5p	0.004151927212852016	-0.028433771966038867
8	hsa-miR-92a-3p	0.0032325690591932512	-0.02422571122226973
9	hsa-miR-4306	0.003042857443553049	-0.012078345850617544

- hsa-miR-2861 positively influenced the classification, being underexpressed relative to the population average.
- hsa-miR-1908-5p also contributed positively to the classification, but in this case through over-expression.

miRNA behavior: AD class

	△ miRNA	# mean_weight	# std_weight	# positive_ratio	# mean_raw	△ direction	△ level_vs_avg
8	hsa-miR-1908-5p	0.0042395262530651985	0.00862409626705597	0.7094594594594594	0.9970062496696276	pro-class	high
87	hsa-miR-7704	-0.004204262707793654	0.009632497183149897	0.2635135135135135	-1.342058296125548	anti-class	low
69	hsa-miR-6780a-3p	0.0031126545082062933	0.0064212977875222075	0.6891891891891891	1.0975439195919257	pro-class	high
61	hsa-miR-6729-5p	-0.0023608174315384025	0.011207023553603672	0.40540540540540543	-0.5714663604836641	anti-class	low
89	hsa-miR-8072	-0.0018427904331291016	0.003550289512466748	0.3581081081081081	-0.5561753363800935	anti-class	low
26	hsa-miR-3937	-0.0016977874777172684	0.0031805748558630747	0.24324324324324326	-0.5905679670898752	anti-class	low
48	hsa-miR-5196-5p	0.0016888161860586584	0.0043187601861377125	0.6148648648648649	1.009707223726697	pro-class	high
40	hsa-miR-4734	-0.0016145116066542701	0.005768183915825981	0.35135135135135137	-1.2382792355219963	anti-class	low
51	hsa-miR-5787	0.0015044805612350525	0.005955225501346829	0.6216216216216216	0.30345303676793106	pro-class	high
50	hsa-miR-557	-0.0013776356728777092	0.0021118352990586184	0.25	-0.23202197323295792	anti-class	low

miRNA behavior: MCI class

	∆ miRNA	# mean_weight	# std_weight	# positive_ratio	# mean_raw	△ direction	△ level_vs_avg
8	hsa-miR-1908-5p	0.0042395262530651985	0.00862409626705597	0.7094594594594594	0.9970062496696276	pro-class	high
87	hsa-miR-7704	-0.004204262707793654	0.009632497183149897	0.2635135135135135	-1.342058296125548	anti-class	low
69	hsa-miR-6780a-3p	0.0031126545082062933	0.0064212977875222075	0.6891891891891891	1.0975439195919257	pro-class	high
61	hsa-miR-6729-5p	-0.0023608174315384025	0.011207023553603672	0.40540540540540543	-0.5714663604836641	anti-class	low
89	hsa-miR-8072	-0.0018427904331291016	0.003550289512466748	0.3581081081081081	-0.5561753363800935	anti-class	low
26	hsa-miR-3937	-0.0016977874777172684	0.0031805748558630747	0.24324324324324326	-0.5905679670898752	anti-class	low
48	hsa-miR-5196-5p	0.0016888161860586584	0.0043187601861377125	0.6148648648648649	1.009707223726697	pro-class	high
40	hsa-miR-4734	-0.0016145116066542701	0.005768183915825981	0.35135135135135137	-1.2382792355219963	anti-class	low
51	hsa-miR-5787	0.0015044805612350525	0.005955225501346829	0.6216216216216216	0.30345303676793106	pro-class	high
50	hsa-miR-557	-0.0013776356728777092	0.0021118352990586184	0.25	-0.23202197323295792	anti-class	low

miRNA behavior: NC class

	∆ miRNA	# mean_weight	# std_weight	# positive_ratio	# mean_raw	△ direction	△ level_vs_avg
87	hsa-miR-7704	-0.009493698908527621	0.008630809917318813	0.14814814814814814	-1.0860131564950821	anti-class	low
61	hsa-miR-6729-5p	-0.006854652565146517	0.011401637817560284	0.2962962962962963	-0.2580471864952984	anti-class	low
18	hsa-miR-3187-5p	0.005383880564298723	0.0036482417809702112	0.9629629629629629	-0.03738046398186184	pro-class	low
8	hsa-miR-1908-5p	0.005309776549170138	0.00751482894137399	0.8518518518518519	0.5037096746740907	pro-class	high
24	hsa-miR-371a-5p	0.00529521147206174	0.007580141587175979	0.7777777777778	0.41195219005574224	pro-class	high
40	hsa-miR-4734	-0.00430354218637012	0.0065273434706966055	0.25925925925925924	-0.9968942629297947	anti-class	low
51	hsa-miR-5787	0.003693659659411346	0.006396170650358696	0.666666666666666	0.13198493177358908	pro-class	high
1	hsa-miR-1237-5p	0.003651341778599176	0.005525834462808761	0.8518518518518519	-0.29984877784275205	pro-class	low
22	hsa-miR-3663-3p	-0.003441508304852742	0.004330847875828473	0.25925925925925924	-0.2774664146901906	anti-class	low
89	hsa-miR-8072	-0.0030040544218789063	0.004169926870930897	0.25925925925925924	-0.4372135229424948	anti-class	low

Influence of miRNAs in predictions: how to interpret example results

miR-1908-5p and miR-6780a-3p consistently act as pro-AD markers, characterized by a positive mean weight and a high positive ratio (mean_weight > 0.004, positive_ratio > 0.7).

miR-3187-5p emerges as a strong pro-NC marker (positive_ratio = 0.96), with a neutral role in the other two classes.

miR-7704 shows a negative association with both AD and NC, with a consistently negative mean weight (*mean_weight* < -0.01), suggesting a potential anti-class effect.

Conclusions: study summary

5

Development of a pipeline to link model features to miRNA expressions for Alzheimer's classification

Used Lasso regression to build a sparse, interpretable mapping from miRNAs to genetic features

Trained a new Random Forest model to enable explainability analysis

Applied SHAP to trace predictions back to relevant miRNAs

Identified recurring miRNA patterns associated with the three classes

Contribution: a reproducible framework that enhances model transparency and supports biomarker discovery

6

3

4

Future Works

- The applied methodology is model-agnostic, compatible with any black-box classifier
- Possible future works involve the following aspects:

Extend analysis, using new datasets

- Larger
- More diverse

Explore more powerful models

- Also different from Random Forest
- Focused on early-stage detection

Integrate biological prior knowledge

- To provide a better selection on miRNA expressions
- Focus on biologically plausible and statistically relevant expressions

