信号与系统

总复习

1. 两大类

连续信号与系统 离散信号与系统 因果信号/因果系统 线性时不变系统

2. 分析手段 时域分析 变换域分析

分析主线

信号的分类与常用信号

- 信号的分类
 - 连续时间信号,离散时间信号
 - 因果信号
 - 右边序列(因果序列),左边序列,双边序列
- 连续时间信号
 - 单位冲激信号,单位阶跃信号
 - 矩形脉冲
- 离散时间序列
 - 单位函数,单位阶跃函数
 - 矩形序列
 - 单位函数序列,矩形脉冲序列

信号的运算与变换

- 基本运算
- 卷积积分/卷积和
- 傅里叶级数/傅里叶变换
 - 常用函数的傅里叶变换,频谱,频响
 - 线性、缩放、对称性、时移频移、微积分、卷积定理等
- 拉普拉斯变换
 - 常用函数的拉普拉斯变换,收敛域
 - 线性、缩放、时移频移、微积分、卷积定理、初值终值定理等
 - 反变换的求取 利用性质,部分分式分解

Z变换

- 常用函数的z变换,收敛域
- 线性、缩放、时移频移、卷积定理、初值终值定理等
- 反变换的求取 部分分式分解法,注意与收敛区间的关系

DTFT

系统

- 系统的性质
 - 线性,时不变性,因果性,稳定性
- 系统的响应
 - 零输入响应和零状态响应
 - 单位冲激响应/单位函数响应
 - 系统响应的变换域求解
- 系统函数
 - 系统函数H(s)/H(z)
 - 方程、模拟框图、系统函数之间的转换
 - 系统函数零极点分布对系统时域特性、频域特性的影响
- 应用 理想低通滤波器
 - 理想抽样,抽样定理

冲激函数的性质

$$\frac{du(t)}{dt} = \mathcal{S}(t) \qquad \int_{-\infty}^{t} \mathcal{S}(\tau)d\tau = u(t)$$

$$f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$$

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$$

$$\mathcal{S}[-(t-t_0)] = \mathcal{S}(t-t_0)$$

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

$$f(t) * \delta(t - t_0) = f(t - t_0)$$

卷积积分/卷积和

两个连续时间信号 $f_1(t)$ 和 $f_2(t)$ 的卷积积分定义如下:

$$f(t) = f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$

两个序列 $f_1(k)$ 和 $f_2(k)$ 的卷积和定义如下:

$$f(k) = f_1(k) * f_2(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

•

练习: 计算下列卷积

- (1) $\varepsilon(t) * \varepsilon(t)$
- (2) 两个矩形脉冲函数做卷积
- (3) $e^{-3t}\varepsilon(t) * \varepsilon(t)$
- (4) $e^{-3t}\varepsilon(t) * e^{-2t}\varepsilon(t)$

- 答案: (1) $t\varepsilon(t)$
 - (3) $\frac{1}{3}(1-e^{-3t})\varepsilon(t)$
 - $(4) \quad (e^{-2t} e^{-3t})\varepsilon(t)$

- (1) $\varepsilon(k) * \varepsilon(k)$
- (2) $\varepsilon(k-1) * \varepsilon(k-2)$
- (3) $0.3^k \varepsilon(k) * \delta(k)$
- $(4) \quad \left(\frac{1}{2}\right)^k \mathcal{E}(k) * \mathcal{E}(k)$
- (5) $2^k \varepsilon(k) * 2^k \varepsilon(k)$
- (1) $(k+1)\varepsilon(k)$
- $(4) \quad 2 \times (1 (\frac{1}{2})^{k+1}) \varepsilon(k)$
- (5) $(k+1)2^k \varepsilon(k)$

傅里叶级数/傅里叶变换

- > 傅里叶级数定义
- > 基波、谐波
- > 周期信号频谱的特点
- > 常用信号的傅里叶级数
- > 频谱图
- > 傅里叶变换定义
- > 非周期信号的频谱的特点
- > 性质
- > 常用信号的傅里叶变换
- > 频谱图

常用傅里叶变换对

编号	f(t)	$F(\mathrm{j}\omega)$
1	$g_{ au}(t)$	$ au$ Sa $\left(\frac{\omega au}{2}\right)$
2	$ au$ Sa $\left(\frac{ au t}{2}\right)$	$2\pi g_{\tau}(\omega)$
3	$e^{-\alpha t} \varepsilon(t), \alpha > 0$	$\frac{1}{\alpha+j\omega}$
4	$te^{-\alpha t}\varepsilon(t), \alpha > 0$	$\frac{1}{(\alpha+\mathrm{j}\omega)^2}$
5	$e^{-\alpha t }, \alpha > 0$	$\frac{2\alpha}{\alpha^2+\omega^2}$
6	$\delta(t)$	1
7	1	$2\pi\delta(\omega)$
8	$\delta(t-t_0)$	e ^{-jar} o
9	$\cos \omega_0 t$	$\pi\delta(\omega-\omega_{\scriptscriptstyle 0})+\pi\delta(\omega+\omega_{\scriptscriptstyle 0})$
10	$\sin \omega_0 t$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$

续表

编号	f(t)	$F(\mathrm{j}\omega)$
11	$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{\mathrm{j}\omega}$
12	$\operatorname{Sgn}(t)$	$\frac{2}{\mathrm{j}\omega}, F(0)=0$
13	$\frac{1}{\pi t}$	-j Sgn(ω)
14	$\delta_T(t)$	$\Omega\delta_{\Omega}(\omega)$
15	$\sum_{n=\infty}^{\infty} F_n e^{jn\Omega t}$	$2\pi\sum_{n=-\infty}^{\infty}F_{n}\delta(\omega-n\Omega)$
16	$\frac{t^{n-1}}{(n-1)!}e^{-at}\varepsilon(t), a>0$	$\frac{1}{(a+\mathrm{j}\omega)^n}$

性质名称	时 域	频 域
线性	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(j\omega) + a_2F_2(j\omega)$
时移	$f(t-t_0)$	$F(\mathrm{j}\omega)\mathrm{e}^{-\mathrm{j}\omega t_0}$
频移	$f(t)e^{\mathrm{j}\omega_0t}$	$F(j(\omega-\omega_0))$
海鱼	$f(t) \cos \omega_0 t$	$\frac{1}{2} [F(j(\omega - \omega_0)) + F(j(\omega + \omega_0))]$
调制	$f(t) \sin \omega_0 t$	$\frac{1}{2j} [F(j(\omega - \omega_0)) - F(j(\omega + \omega_0))]$
尺度变换	f(at)	$\frac{1}{ a }F\left(j\frac{\omega}{a}\right)$
对称性	F(jt)	$2\pi f(-\omega)$
卷积	$f_1(t) * f_2(t)$	$F_1(j\omega) \cdot F_2(j\omega)$
相乘	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\mathrm{j}\omega)*F_2(\mathrm{j}\omega)$
时域微分	$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$(j\omega)^n F(j\omega)$
时域积分	$\int_{-\infty}^{r} f(x) \mathrm{d}x$	$\pi F(0)\delta(\omega) + \frac{F(j\omega)}{j\omega}$
频域微分	$(-\mathrm{j}t)^n f(t)$	$\frac{\mathrm{d}^n F(\mathrm{j}\omega)}{\mathrm{d}\omega^n}$
频域积分	$\pi f(0)\delta(t) + \frac{f(t)}{-\mathrm{j}t}$	$\int_{-\infty}^{\omega} F(j\eta) d\eta$
帕塞瓦尔等式	$\int_{-\infty}^{\infty} f^2(t) \mathrm{d}t$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\mathrm{j}\omega) ^2\mathrm{d}\omega$

拉普拉斯变换

定义

性质

常用信号的拉普拉斯变换

u(t)	$\frac{1}{s}$	
$e^{-at}u(t)$	$\frac{1}{s+a}$	
tu(t)	$\frac{1}{s^2}$	
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	
$\delta(t)$	1	

z变换 性质

常用信号的Z变换

$$(1) f(k) = \mathcal{S}(k)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \delta(k) z^{-k} = 1$$

(2)
$$f(k) = \varepsilon(k)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \varepsilon(k) z^{-k} = \frac{z}{z-1} \qquad |z| > 1$$

(3)
$$f(k) = -\varepsilon(-k-1)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \left[-\varepsilon(-k-1) \right] z^{-k} = \frac{z}{z-1} \quad |z| < 1$$

(4) $f(k) = a^k \varepsilon(k) (a$ 为实数.虚数.复数).

$$F(z) = \sum_{k=-\infty}^{\infty} a^k \varepsilon(k) z^{-k} = \frac{z}{z - a} \qquad |z| > |a|$$

(5)
$$f(k) = -a^k \varepsilon(-k-1)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \left[-a^k \varepsilon (-k-1) \right] z^{-k} = \frac{z}{z-a} \quad |z| < |a|$$

(6)
$$f(k) = k\varepsilon(k)$$

$$F(z) = \sum_{k=0}^{\infty} k \varepsilon(k) z^{-k} = \frac{z^{-1}}{(1 - z^{-1})^2} = \frac{z}{(z - 1)^2} \quad |z| > 1$$

$$(7) f(k) = a^{k-1} \varepsilon(k-1)$$

$$F(z) = \frac{1}{z - a} \qquad |z| > |a|$$

	序号	性质	信号	2 变换	收敛域
7	0	定义	x(n)	$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$	R
Z	1	线性	$ax_1(n)+bx_2(n)$	$aX_1(z)+bX_2(z)$	至少 $R_1 \cap R_1$
变	2	移序	$x(n-n_0)$	$z^{-n_0}X(z)$	R, 但在原点或无穷远点 可能加上或删除
换	序号	性质	信号	Z 变换	收敛域
的	3	频移	$e^{jam}x(n)$	$X(\mathrm{e}^{\mathrm{j}\omega}z)$	R
基	4	尺度变换	$z_0^n x(n)$	$X(z_0^{-1}z)$	$ z_0 R$
本	5	z域微分	nx(n)	$-z\frac{\mathrm{d}}{\mathrm{d}z}X(z)$	R
4	6	卷积	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	至少 $R_1 \cap R_1$
性	7	时间反转	x(-n)	$X(z^{-1})$	R的倒置
质	8	求和	$\sum_{n=-\infty}^{n} x(n)$	$\frac{1}{1-z^{-1}}X(z)$	$R \cap (z > 1)$
	9	初值定理		$x(0) = \lim_{z \to \infty} X(z)$	
201	10	终值定理	$x(\infty) = \lim_{z \to 1} (z - 1)X(z)$		

系统的因果性与稳定性

因果

响应不先于激励

$$h(t) = 0, \quad t < 0$$

$h(n) = 0, \quad n < 0$

激励最高序号不大于响应 最高序号

稳定

$$\int_{-\infty}^{\infty} |h(t)| < \infty$$

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

$$\int_{0}^{\infty} |h(t)| < \infty$$

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$

系 统

因

果

系统函数H(s)的所有 极点全部位于s平面的 左半开平面

系统函数H(z)的所有 极点全部位于Z平面的 单位圆内

不動入响应 单位冲激/函数响应 零状态响应

系统响应的变换域求解

自然响应/强迫响应暂态响应/稳态响应

系统函数

- 1. H(s)/H(z)与 h(t)/h(k)之间的关系。
- 2. H(s)/H(z)可由微分/差分方程直接得到。
- 3. 系统函数与转移算子之间的关系。
- 4. 频响特性函数 $H(j\omega)/H(e^{j\omega})$ 。
- 5. 系统函数零极点分布对频响曲线的影响。
- 6. 混合系统的单位冲激响应,系统函数。

应用: 理想低通滤波器

理想低通滤波器的频响

$$H(j\omega) = Ke^{-j\omega t_0}, |\omega| < \omega_c$$
 (截止频率)

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega)e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega t_0} e^{j\omega t} d\omega = \frac{\omega_c}{\pi} Sa[\omega_c(t - t_0)]$$

练习: 推导出信号通过系统不失真的条件。

取样定理

信号的时域取样

$$f(t)$$
 $f(t)$
 $f(t)$

$$f_s(t) = f(t)p(t)$$

理想取样: 抽样脉冲p(t)是冲激函数序列,即

$$p(t) = \delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

$$f_s(t) = f(t)p(t) = f(t)\sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

$$= \sum_{n=-\infty}^{\infty} f(t)\delta(t - nT_s) = \sum_{n=-\infty}^{\infty} f(nT_s)\delta(t - nT_s)$$

理想抽样示意图

Shannon 取样定理: 一个在频谱中不包含有大于频率 f_m 的 分量的有限频带的信号,由对该信号以不大于 $\frac{1}{2f}$ 的时间间隔进行取样的取样值唯一地确定。当这样地取样信号通过截止频率 ω_c 满足 $\omega_m \leq \omega_c \leq \omega_s - \omega_m$ 的理想低通滤波器后,可以完全重建原信号。

考试

■ 闭卷考试,不用带草稿纸,需要用到铅笔、直尺、橡皮等

■ 选择题: 30分

计算题: 70分

■ 主要考查基础知识的理解和应用

■ 考试时间: 以学院通知为准

及早准备,横纵对比,全面复习 沉着 诚信