MIPS Reference Data

1

CORE INSTRUCTI	ON SE	т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT		(1)	(Hex) 0 / 20 _{hex}
Add	add	R	R[rd] = R[rs] + R[rt] $R[rd] = R[rs] + Sign FutImm$		
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex} 0 / 21 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex} 0 / 24 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]	(2)	
And Immediate	andi	Ι	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{\rm hex}$
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \le shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38_{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$
			se overflow exception		,
			$lmm = \{ 16\{lmmediate[15]\}, lmm \}$ $lmm = \{ 16\{lb'0\}, lmmediate \}$	ediate	}
			$Addr = \{ 14\{immediate[15]\}, immediate[15]\} $	ediate,	2'b0 }
			dr = { PC+4[31:28], address, 2'l)

(5) JumpAddi — { PC+4[51:26], addiess, 2 00 }	
(6) Operands considered unsigned numbers (vs. 2's comp.)	
(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic	
RASIC INSTRUCTION FORMATS	

\mathbf{R}	opco	ode	rs	rt		rd	shamt	funct
	31	26 25	21	20	16 15	11	10 6	5
I	opco	ode	rs	rt			immediate	e
	31	26 25	21	20	16 15			
\mathbf{J}	opco	ode				address		
	31	26 25						

		FOR-		/ FUNCT
NAME, MNEMO	NIC	MAT	OPERATION	(Hex)
Branch On FP True	bclt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bclf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	add.d	I'I	{F[ft],F[ft+1]}	
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double			$\{F[ft],F[ft+1]\}\)?1:0$	11/11/
			==, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double		ED	{F[ft],F[ft+1]}	11/10//2
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	Sub.S		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	
Double	sub.d	FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP			F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double	ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	33//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	${Hi,Lo} = R[rs] * R[rt]$	0//-18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >> shamt	0//-3
Store FP Single	swcl	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	sdc1	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	saci	1	M[R[rs]+SignExtImm+4] = F[rt+1]	Ju//

OPCODE

/ FMT /FT

FLOATING-POINT INSTRUCTION FORMATS

ARITHMETIC CORE INSTRUCTION SET

$\mathbf{F}\mathbf{R}$	opo	code	1	fmt	ft		fs		fo	i	funct	
	31	26	25	21	20	16	15	11	10	6	5	0
FI	opo	code		fmt	ft				imm	ediate	,	
	31	26	25	21	20	16	15					0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

OBCOD	EC BACI	CONVE	CION	A C C III	CVMD	01.0		3	
	(1) MIPS	(2) MIDS	SION, A			ASCII		Hexa-	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Billary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
(1)	211	sub.f	00 0001		1	SOH	65	41	A
j	srl	mul.f	00 0010		2	STX	66	42	В
jal	sra	div.f	00 0011		3	ETX	67	43	Č
beq	sllv	sqrt.f	00 0110		4	EOT	68	44	D
bne	011	abs.f	00 0101		5	ENQ	69	45	E
blez	srlv	mov.f	00 0110		6	ACK	70	46	F
bgtz	srav	$\operatorname{neg} f$	00 0111		7	BEL	71	47	Ğ
addi	jr	11099	00 1000		- 8	BS	72	48	H
addiu	jalr		00 1001		9	HT	73	49	Ĩ
slti	movz		00 1010		a	LF	74	4a	J
sltiu	movn		00 1011		b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	c	FF	76	4c	L
ori	break	trunc.w.f	00 1101		d	CR	77	4d	M
xori		ceil.w.f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi	,	01 0000		10	DLE	80	50	P
(2)	mthi		01 0001		11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	Ŕ
	mtlo	movn.f	01 0011		13	DC3	83	53	S
			01 0100		14	DC4	84	54	T
			01 0101		15	NAK	85	55	U
			01 0110		16	SYN	86	56	V
			01 0111		17	ETB	87	57	W
	mult		01 1000		18	CAN	88	58	X
	multu		01 1001		19	EM	89	59	Y
	div		01 1010		1a	SUB	90	5a	Z
	divu		01 1011		1b	ESC	91	5b	[
			01 1100		1c	FS	92	5c	/
			01 1101		1d	GS	93	5d	Ì
			01 1110		1e	RS	94	5e	^
			01 1111		1f	US	95	5f	_
lb	add	cvt.s.f	10 0000		20	Space	96	60	-
lh	addu	$\operatorname{cvt.d} f$	10 0001		21	!	97	61	a
lwl	sub		10 0010		22		98	62	b
lw	subu		10 0011		23	#	99	63	С
lbu	and	cvt.w.f	10 0100		24	\$	100	64	d
lhu	or		10 0101		25	%	101	65	e
lwr	xor		10 0110		26	&	102	66	f
,	nor		10 0111		27		103	67	g
sb sh			10 1000 10 1001		28 29	(104 105	68 69	h i
	- 2.4)			
swl	slt		10 1010 10 1011		2a 2b	+	106 107	6a	j k
SW	sltu		10 1011		26 2c		107	6b 6c	1 I
			10 1100		2d	,	108	6d	m
swr			10 1110		2d 2e		110	6e	n
cache			10 1110		2e 2f	,	111	6f	n o
11	tge	c.f.f	11 0000		30	0	1112	70	p
lwc1	tgeu	c.un.f	11 0001		31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010		32	2	114	72	r
pref	tltu	c.eq.f	11 0011		33	3	115	73	S
PICI	teq	c.olt.f	11 0100		34	4	116	74	t
ldc1	~~4	c.ult.f	11 0101		35	5	117	75	u
ldc2	tne	c.ole.f	11 0110		36	6	118	76	v
-402	3110	c.ule.f	11 0111		37	7	119	77	w
sc		c.sf.f	11 1000		38	8	120	78	X
swc1		c.ngle.f	11 1001		39	9	121	79	y
swc1		c.ngre.j	11 1010		3a	;	122	7a	y Z
5402		c.seq.f	11 1011		3b	;	123	7b	{
		c.lt.f	11 1100		3c		124	7c	1
sdc1		c.nge.f	11 1100		3d	=	125	7d	}
sdc2		c.le.f	11 1110		3e	>	126	7e	~
Juc2		c.ngt,f	11 1111		3f	?	127	7f	DEL
	1 (21 20)	0.11909		. 05	1		12,	7.1	

(1) opcode(31:26) == 0 (2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f$ = s (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f$ = d (double)

IEEE 754 FLOATING-POINT STANDARD

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Exponent Fraction Object 0 0 ± 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∝ NaN MAX **≠**0 S.P. MAX = 255, D.P. MAX = 2047

4

DATA ALIGNMENT

	Double Word								
	Wo	ord		Word					
Halfv	vord	Half	word	Halfword Halfword					
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte		
0	1	2	3	4	5	6	7		

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

В	Inter	rupt	Exc	eption ode		
D	Ma	sk	C	ode		
31	15	8	6		2	_
	Pend	ling		J	Е	I
	Inter	rupt	1	М	L	Е
	15	8		4	1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

CEPTIC	JN CC	DES			
Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
	rabb	(load or instruction fetch)			Exception
5	AdES	Address Error Exception	11	CpU	Coprocessor
	rulb	(store)	11	СРС	Unimplemented
6	IBE	IBE Bus Error on 12	Ov	Arithmetic Overflow	
U	IDL	Instruction Fetch	12	OV	Exception
7	DBE	Bus Error on	13	Tr	Trap
,	DBE	Load or Store	13	11	
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES

	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
	PREFIX	SIMBUL	SIZE	PREFIX	SIMBUL	SIZE	PREFIX	SIMBUL	SIZE	PREFIX	SIMBUL
103	Kilo-	К	210	Kibi-	Ki	1015	Peta-	Р	250	Pebi-	Pi
106	Mega-	М	220	Mebi-	Mi	1018	Exa-	Е	260	Exbi-	Ei
109	Giga-	G	230	Gibi-	Gi	1021	Zetta-	Z	270	Zebi-	Zi
1012	Tera-	т	240	Tebi-	Ti	1024	Yotta-	Y	280	Yobi-	Yi