simpleBev.md 2024-07-10

1. Extrinsics

After Dataloader

- 1. Every Extrinsic cam is relative to the first camera.
- 2. Each Extrinsic timestep is different cause the vehicle may jerk
- 3. Output Shape = B, N_cams, 4, 4

```
inverse(cam_front_ext) x cam_front_ext
inverse(cam_front_ext) x cam_2_ext
inverse(cam_front_ext) x cam_3_ext
```

After Model

- 1. [miscellaneous] _p(Extrinsics)
- 2. Inverse the Extrinsics

2. Intrinsics

After Dataloader Intent: For uniformity for before passing to model.

- 1. cam 3x3 -> 4x4 [Refer below]
- 2. Output Shape = B, N_cams, 4, 4

```
K = [fx 0 cx ]
      [0 fy y ]
      [0 0 1]

New_intrinsics of 4x4 is
[fx 0 cx 0]
[0 fy cy 0]
[0 0 1 0]
[0 0 1 0]
```

In Model

- 1. [miscellaneous] _p(intrinsics)
- 2. Scale with [scale_x, scale_y] = [sx, sy]

sx = H_encoder_feature/Original_image_Height

sy = W_encoder_feature/Original_image_Width

simpleBev.md 2024-07-10

3. Misc Funcs

```
__p = lambda x: utils.basic.pack_seqdim(x, B) # [B,S,C,H,W -> B*S,C,H,W] or [B, S, 4, 4 -> B*S, 4, 4] __u = lambda x: utils.basic.unpack_seqdim(x, B) # [B*S,C,H,W -> B,S,C,H,W] or [B*S, 4, 4 -> B, S, 4, 4]
```

4. Combine Intrinsics and Extrinsics

Send 3 things to unproject_image_to_mem to get feat_mems

```
1. cam features
```

- 2. torch.matmul(intinsics, Inverse(extrinsics))
- 3. Inverse(extrincis)

Miscellaneous X,Y,Z

4. Memory2Ref aka xyz_camA, i assume the reference is a 3D drone view memory $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

```
xyz_camA = vox_util.Mem2Ref
```

Lets trace

a.Freq funcs

```
utils.basic.reduce_masked_mean, [Simpleloss, centerLoss, offsetLoss]
```

b.To scrap

```
simplePool aka misc.py
```

c.To DO later

```
valid_bev_tgt??
Trace that
```

simpleBev.md 2024-07-10

1. train.py Inputs in run_model line 179

Input	Output	Extras
rgb_cams	feat_bev	valid_bev
Intrinsics_cams	seg_bev	
Extrinsics_cams	center_bev	
vox_util_obj	offset_bev	

occupancy_aka_lidar

2. Check loss and see what libraries are needed

Loss Type	Inputs	Functions
ce_loss = SimpleLoss	seg_bev_pred, seg_bev_tgt, valid_bev_tgt	BCEWithLogitsLoss(seg_bev_pred, seg_bev_tgt), reduce_masked_mean(loss, valid_bev_tgt)
center_loss	center_bev_pred, center_bev_tgt	Line 66 balanced_mse_loss
offset_loss	offset_bev_pred, offset_bev_tgt, seg_bev_tgt,valid_bev_tgt	torch.abs(offset_pred,offset_tgt).sum(dim=1) -> maskmean(loss, segtgt*validtgt)
ce_uncertainty_loss	Useless	remove the weights of these 3 from model
center_uncertainty_loss	Useless	
offset_uncertainty_loss	Useless	

ce_loss

ce_loss = SimpleLoss line56
BCEWithLogitsLoss(seg_bev_pred, seg_bev_tgt)
utils.basic.reduce_masked_mean(loss, valid_bev_tgt)