Separating a treatment effect's precision from its magnitude provides a different, more clinically relevant, way to stop trials at interim.

Considering 'Non-Promising' Treatment Effects at Interim Analyses: Futility of the Treatment, Rather than Futility of the Trial.

Authors: Matthew J Parkes¹²³, Mark Lunt¹, Philip Pallmann⁴, David T Felson³⁵

Affiliations:

- 1. Oxford Clinical Trials Research Unit (OCTRU), Nuffield Department of Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
- 2. Centre for Biostatistics, Division of Population Health, Health Services Research & Primary Care, University of Manchester, UK.
- 3. NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- 4. Centre for Trials Research, Cardiff University, Cardiff, UK.
- 5. Section of Rheumatology, Boston University School of Medicine, Boston, MA, USA.

Introduction

Futility analyses are used to a allow a trial showing small treatment effects to stop early.

Current methods of assessing futility focus on whether the trial's final analysis will likely demonstrate a statistically significant effect. We posit that this is an assessment of whether the trial, rather than the treatment, is futile.

Current methods may also allow trials which have excluded clinically meaningful effects at interim to continue, due to the use of test statistics in their derivation.

We propose an alternative stopping rule that stops trials when the interim estimate excludes treatment effects deemed potentially clinically useful, considering the treatment under assessment therefore 'non-promising'.

We contend that this approach has more desirable operating characteristics:

- It selects for treatments which may show clinically meaningful treatment effects directly.
- This results in either trials that stop at interim with useful interval estimates, or they continue to final analysis.

Methods

- Simulation study.
- 8 different scenarios: fictional parallel groups clinical, trial active treatment vs placebo
 - 4 null at final analysis
 - 4 with clinically meaningful treatment effects at final analysis
- One interim analysis at 1/3 recruitment
- Compare 7 interim futility analysis methods:
 - 1. Group sequential, O'Brien-Fleming stopping behaviour
 - 2. Group sequential Pocock stopping behaviour
 - Conditional power approach
 - 4. Frequentist 'non-promising stopping', O'Brien-Fleming-based simultaneous confidence intervals
 - Frequentist 'non-promising stopping', Pocock-based simultaneous confidence intervals
 - 6. Bayesian approach using Region of Practical Equivalence (ROPE)
 - 7. Bayesian implementation of the 'non-promising region' approach
- Ran 250 iterations of each approach/scenario
- Compared the number of trial iterations stopped at interim, and mean interval estimate at interim analysis.

Results Table 1: Summary of Treatment Estimates from Stopped Interim Trial Iterations Number of **Mean Point** Mean Upper Mean Width of Mean Lower **Mean Test Approach Estimate Bound of** Bound of Stopped at Between-**Statistic** Size Interim (out of **Estimate** Interval **Estimate** Groups 250) **Difference** GSD, O'Brien-Fleming 17.15 -0.14 -0.59 -9.17 7.99 2 behaviour 139 0.61 -6.39 11.99 18.38 2.8 13.12 21.96 0.39 89 2.14 -8.84 3.26 14.21 -7.69 21.9 146 0.6 1.29 6.71 10.84 0.48 -4.13 114 6.07 10.97 0.21 0.59 20 -4.9 22.3 13.95 118 2.8 -8.36 0.5 17.47 4.32 0.98 -4.41 13.06 GSD, Pocock behaviour B 82 35 0.97 5.05 -5.38 15.48 20.86 5.22 20.81 84 -5.19 15.63 10.31 58 0.96 -2.67 7.64 2.49 6.96 1.81 -3.34 10.3 0.7 4.93 15.52 63 0.92 -5.65 21.17 13.3 18.46 97 4.06 -5.17 Conditional power 0.43 0.44 4.54 -6.62 15.7 22.31 44 16.09 22.07 -5.98 5.06 0.42 10.93 2.19 -3.28 7.65 71 0.45 0.52 -4.13 6.97 11.09 1.42 16.28 22.55 70 0.42 5.01 -6.26 33.41 Non-promising stopping, B 2.02 8.76 25.47 -7.94 O'Brien-Fleming 13.27 34.47 42.4 2.42 -7.93 simultaneous Cls 39 2.86 13.17 20.62 1.07 -7.45 12.21 20.36 G 3 0.76 2.04 -8.14 38.48 45.89 2.62 15.53 -7.41 Non-promising stopping, B 20.48 0.94 -6.08 14.4 4.16 18.4 Pocock-based 6.24 -5.92 24.32 simultaneous Cls 1.25 -5.55 18.63 24.18 6.54 106 0.05 0.14 -5.97 6.24 12.21 4.65 11.99 -0.53 -1.35 -7.34 18.47 24.74 Bayesian ROPE 15.44 -7.58 7.87 0.98 -0.45 0.96 -7.88 8.73 16.6 0.53 4.89 0.99 -6.15 11.04 -0.6 0.98 3.22 10.98 -7.76 Bayesian Non-promising A 0.96 9.15 17.01 -0.24 -7.86 13.23 18.66 104 0.82 3.88 -5.43 22.61 -6.02 16.59 0.66 -4.79 17.31 0.99 -5.69 5.33 11.02 -0.15 3.72 10.87 0.99 -7.15 17.14 -5.62 0.68 5.73 22.76 GSD = Group Sequential Design; CI = Confidence Interval; ROPE = Region of Practical Equivalence Grey-highlighted rows indicate trials ideally should stop at interim.

Additional Details Test statistics Group sequential designs: $Z = \frac{\Delta}{SE_{\Delta}}$ Conditional Power: $1-\Phi[(Z_{lpha/2}-E[B_{(1)}|B_{(au)}])/\sqrt{1}- au])$ 'Non-promising approach' Comparison of stopping rules [Promising Effect] z = 2.5[Non-Promising Effec z = 2.17z = -0.15 z = -0.15[Non-Promising Effect] Group sequential stopping boundary (not plotted): Z = 0.2Non-promising stopping boundary (MID): $\Delta = 0.4$ Simulation study scenarios z = -11.04z = -5.52z = -2.76z = -3.31 z = -0.6= -0.37 $\phi z = -0.74$ [Effects Favouring Placebo] MD: Meaningful Difference Stopping Boundaries Used Boundary is

Please scan the QR code for a .pdf version of this poster, plus the original abstract submission, or visit https://