Identifying causal relationships in diabetes related tweets

Adrian Ahne, PhD Student

Datacraft, 25/11/2021

epiconcept

smart health

Context

Research focus - World Diabetes Distress Study (WDDS)

Social media data

Smartphone applications

Connected objects

<u>WDDS objective</u>: Better understand the burden of diabetes and diabetes distress using real-world data

Diabetes Distress

Digital epidemiology

- > 30 M diabetes-related tweets (e.g. insulin, hypoglycemia, blood sugar, #T1D)
 since 2017
- Data driven research (instead of hypothesis driven)
- First publication:
 - Identification of diabetes (distress) patterns, concerns and emotions in tweets
 - Machine pipeline to clean data
 - => FastText embeddings + Kmeans

• What else to do with all those tweets?

Digital Epidemiology

- First idea: Identify risk factors for Hypoglycemia (low blood sugar) based on Tweets
 - cause: risk factors
 - effect: hypoglycemia

But too less tweets referring to Hypoglycemia

Identification of cause and associated effect relationships in general in our diabetes related tweets

Warning!

This has nothing to do with causal inference (in epidemiology)

Transformers / BERT

Key breakthroughs driving the boom in NLP

- Ability to generate meaningful fixed-size vector representations: word embeddings / dense vectors
 - Ex.: word2vec, FastText, Glove

- Ability to generate <u>context-aware</u> word sentence representations using the *transformer* architecture
 - Ex.: BERT based models use the *transformer*

Ex.: "The money on my <u>bank</u> account", "At the river <u>bank"</u>

Transformers calculates two different embeddings for <u>bank</u>

Transfer learning

Neural networks require massive training data

 Labeled data is scarce or expensive in many real-world applications

Transfer learning

- leverages knowledge in similar domains
- reduces training time

 Previously: Recurrent neural networks (e.g. LSTMs) dominated sequence-to-sequence models

Problem:

- Weak in modeling long sequences
- Difficult to parallelize
- Solution: Attention mechanism
 - weights different input words
 - o allows the model to focus on the relevant parts of the input

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

- Great visualisation:
 - https://ialammar.github.io/illustrated-transformer/

Transformers

encoder-decoder mechanism

scaled dot-product attention

Multi Head Attention

Count

C

- multi-head attention
 - "looks at a text sequence from different angles"

- Sequences are processed in parallel
 - words are handled simultaneously rather than word-by-word => parallelisation

- Encoder (left): Receives input and builds features (vector)
- Decoder (right): Uses features to generate target sequence

- Encoder-only models:
 - Good for tasks that require understanding of the input
 - e.g. sentence classification, NER
 - ALBERT, BERT, DistilBERT
- Decoder-only models:
 - Good for generative tasks, such as text generation
 - O GPT, GPT-2
- Encoder-decoder models:
 - Good for generative models that require an input
 - e.g. translation or summarisation
 - BART, T5

BERT

Bidirectional Encoder Representations from Transformers (BERT)

- 2 versions:
 - BERT_base: 12 transformer encoder layers; 110 million parameters; dim 768
 - BERT_large: 24 transformer encoder layers; 340 million parameters; dim 1024

- Typically, transfer learning:
 - use pretrained BERT model
 - fine-tune on task-specific data

- Training objectives:
 - Mask language model
 - Next sentence predictions

Masked language modeling

Next sentence prediction

Those models are everywhere -> Google search, Auto-completition, etc.

- Transformer models have been trained as language models:
 - on a huge amount of raw text
 - self-supervised learning (no human labeling needed)
- Transfer learning paradigm:
 - Pre-training
 - Fine-tuning

Transformer models are huge (!)

CO2 emissions

Conditional random field (CRF)

Standard method for named entity recognition tasks prior to BERT

$$p(y \mid x, \theta) = \frac{1}{Z(x)} exp \left\{ \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\}$$

$$f_2(y_t, y_{t-1}, x_t) = 1$$
 if $x_t = capitalized$; 0 otherwise

Objective

Identification of both explicit and implicit multi-word cause and corresponding effect relations in diabetes related tweets

Causality in text

Causal extraction in text

Two types of causality:

- Explicit causality: explicit causal link
 - e.g.: so, hence, because, caused, resulted in, or conditional (if ..., then...), etc.
 - e.g.: "Diabetes causes hypoglycaemia" => causal link: "causes"
 - Large majority of approaches tackle explicit causality

- Implicit causality: no explicit causal link
 - e.g. "Cannot sleep #insomnia, #overthinking"
 - e.g. "I think the greater danger is from the unelected justices than from the elected Congress and the elected president."

Causal extraction in text

Two types of approaches:

Rule-based approaches	Machine learning approaches
 hand-coded linguistic and syntactic rules (pattern matching) 	- train algorithm based on small training set
- mostly tested on text from a similar domain	 works on texts containing sentences from different domains
- meant to work only for a specific type of text	- generalizes better
- mainly focuses on <i>explicit</i> causality	- tackles both <i>explicit</i> and <i>implicit</i> causality

Examples

• Typical example: Rule-based + focus on *explicit* causality

TABLE I. RULE SET TO EXTRACT CAUSAL RELATIONS FROM TWEETS.

#	Causal relation types	Dependency rules	Examples
1	A (noun) caused B	{}=subj < subj ({ + Clausal verb + }=target >dobj {}=cause)	Stress causes insomnia
2	A (verb-ing) caused B	{}=subj < csubj ({ + Clausal verb + }=target >dobj {}=cause)	Over thinking can increase anxiety and cause insomnia
3	B was caused by A	{}=ncsubjpass <nsubjpass({ + Clausal verb + }=target >/nmod:agent/ {}=cause)</nsubjpass({ 	My insomnia was caused by stress.
4	A is a reason of B	Clausal noun + < nsubj ({}=target > /nmod:of/ {}=cause)	Stress is a reason of my insomnia
5	B was caused by A (verb-ing)	{}=nsubj< nsubjpass ({}=target > /advcl:by/ + Clausal noun)	Insomnia was caused by overthinking
6	A results "in/to/from" B	Clausal verb + <[nc]subj ({}=target> /nmod:(to in from)/ {}=cause)	Stress results to insomnia.

Fig. 1. A general framework to extract causal relations from Twitter messages.

*Doan et al. Extracting health-related causality from twitter messages using natural language processing: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0785-0

Examples

• Typical example: Rule-based + focus on *explicit* causality

Fig. 2: An overview of the proposed method

TABLE I: Representation of Events

Sentences	Events		
Storm hits Gold Coast	hit (storm, coast, gold)		
Mike crashed his car in Gold Coast	crash (mike, car, coast, gold)		
Heavy traffic jam in Gold Coast today	jam (traffic, today, coast, gold)		
A disruption in bus service in Gold Coast due to lack of communication			

*Kayesh et al. On event causality detection in tweets, 2019, https://arxiv.org/pdf/1901.03526.pdf

Fig. 3: An example of event pair extraction from a sentence

Examples: Causal-BERT

Khetan et al. Causal-BERT: Language models for causality detection between events expressed in text

Explicit + implicit causality

https://arxiv.org/pdf/2012.05453v1.pdf

- Machine learning approach:
 - Fine-tuning BERT models
- Data: Semeval + Adverse drug effect

Fig. 2. C-BERT

Fig. 3. Event aware C-BERT

Methods/Results

Workflow

Preprocessing

• **Unique tweets:** Removal of retweets, duplicates (be careful with chatbots)

- **Personal classifier:** Fine-tune *BERTweet* to distinguish
 - personal content: feelings, concerns, opinions, etc.
 - institutional content: advertisment, health studies
 - 4,403 labeled tweets, adjust for concept drift
 - Acc: 91,2% Precision: 86,2% Recall: 90,9% F1: 88,5%

- Joke classifier: Fine-tuned BERTweet
 - 1,648 tweets, adjusted for concept drift
 - Acc: 90,4% Precision: 78,5% Recall: 90,8% F1: 84,2%

BERTweet

850 M english tweets (~80GB)

Examples

- "There is too much sugar today. Viewers are about to get diabetes () ⇔ ⇔ ⇔ "
- Jah know. Moms just say that I am going to get diabetes because I am always on the phone

Preprocessing

Emotional tweets

- Psychologue Parrott: joy, love, surprise, anger, fear, sadness
- Diabetes distress-related keywords from diabetes distress questionnaires (PAID, DDS)

Interest in diabetes distress & emotions

Filter tweets containing an *emotional* element

563,013 personal, non-joke tweets with emotional element

Option 1:

- + : easier for model, as events are well separated
- : difficult to define events; to categorise words into both events

Text	Event A (Disease)	Event B (Risk factor / consequence)	Y (0=no; 1=A->B; 2=B->A)
I missed my workout again, I will certainly get diabetes	diabetes	missed my workout	2
Having anxiety before I even start this glucose test because of how sick it made me last time	glucose test	anxiety;sick	1
My family has always had a history of diabetes	diabetes	-	0

Option 2:

- + : easier to label
- : more difficult to learn, as events can be both *cause* and *effect*

Text	Cause	Effect	Causality (0=no; 1=yes)
I missed my workout again, I will certainly get diabetes	missed my workout	diabetes	1
diabetes makes me feel sick	diabetes	sick	1

Labeling cause-effect relationships is difficult => Annotation guidelines

- Labeling cause-effect relationships is difficult => Annotation guidelines
 - Non-diabetes or non-diabetes distress related relationships are <u>ignored</u>
 - "This **virus** can **kill** me as a diabetes patient"

- Labeling cause-effect relationships is difficult => Annotation guidelines
 - Non-diabetes or non-diabetes distress related relationships are <u>ignored</u>
 - "This virus can kill me as a diabetes patient"
 - Implicit relations are included
 - "I was sent to fix a guy with low blood sugar #diabetes"

- Labeling cause-effect relationships is difficult => Annotation guidelines
 - Non-diabetes or non-diabetes distress related relationships are <u>ignored</u>
 - "This **virus** can **kill** me as a diabetes patient"
 - Implicit relations are <u>included</u>
 - "I was sent to fix a guy with **low blood sugar #diabetes**"
 - Unclear cause-effect relationships are <u>ignored</u>
 - "My dad has a diabetes, cancer, heart problems, and a weak immune system"

- Labeling *cause-effect* relationships is difficult => Annotation guidelines
 - Non-diabetes or non-diabetes distress related relationships are <u>ignored</u>
 - "This **virus** can **kill** me as a diabetes patient"
 - Implicit relations are <u>included</u>
 - "I was sent to fix a guy with **low blood sugar #diabetes**"
 - Unclear cause-effect relationships are <u>ignored</u>
 - "My dad has a diabetes, cancer, heart problems, and a weak immune system"
 - Chaining cause-effect relationships: A->B->C => label closest relationship to diabetes
 - "Not sure if I've been up since 3:30 for Titanic or because my **anxiety** over my **glucose test** is keeping me up"

- Labeling cause-effect relationships is difficult => Annotation guidelines
 - Non-diabetes or non-diabetes distress related relationships are <u>ignored</u>
 - "This virus can kill me as a diabetes patient"
 - Implicit relations are <u>included</u>
 - "I was sent to fix a guy with low blood sugar #diabetes"
 - Unclear cause-effect relationships are <u>ignored</u>
 - "My dad has a diabetes, cancer, heart problems, and a weak immune system"
 - Chaining cause-effect relationships: A->B->C => label closest relationship to diabetes
 - "Not sure if I've been up since 3:30 for Titanic or because my **anxiety** over my **glucose test** is keeping me up"
 - Label tweet as negation if it alters the meaning of the tweet
 - "I cannot afford my insulin and will die" -> no negation
 - "She 'gave' herself diabetes by not doing what her doctor told her: Lose weight" -> negation

Annotation of cause-effect dataset

Chose 5000 random tweets to label

Interrater reliability:

• First 500 tweets were labeled by two researchers

Disagreements were discussed and one researchers continued to label 4,500 tweets

Causal models

Two steps to identify *cause-effect pairs*

- Causal sentence model: Train model to detect if a sentence contains causal information (causal sentences)
 - a) Binary sentence classification
- 2) **Cause-effect model:** Train model to extract <u>multi-word</u> cause and associated *effect* in causal sentences
 - a) Entity recognition task

Hypotheses:

- cause-effect occur only in the same sentence
- sentence with < 6 words were removed due to a lack of context

Causal sentence classifier

- 5000 labeled tweets
 - 7,218 non-causal sentences

Task specific

layers

Shared

layers

1,017 causal sentences

 Class weights added to cross entropy loss function

• Train: 90%

20% validation

Test: 10%

Causal sentence classifier

Trained model => was ok

- Trained cause-effect model => very bad (only ~1000 training examples)
- Tried/discussed:
 - Different class weights
 - Different loss functions (cross entropy, DICE)
 - simplified from 5 to 3 class tags
 - checked if there are larger pre-trained models (dimension)
 - o add more information to the model training, e.g. POS tags

What would you do in such a situation?

Causal sentence classifier

- Trained model => was ok
- Trained cause-effect model => very bad (only ~1000 training examples)
- Tried/discussed:
 - Different model weights
 - Different loss functions (cross entropy, DICE)
 - simplified from 5 to 3 class tags
 - checked if there are larger pre-trained models (dimension)
 - o add more information to the model training, e.g. POS tags

<u>Problem:</u> too less training data

Data augmentation through active learning

First predictions of cause

 effect model very bad

 (1,017 causal sentences)

Need more data

 Active learning to efficiently increase training data

(4 iterations)

2,118 causal sentences

Cause-effect model - Tagging scheme

Typically for entity recognition task (e.g. NER): BIO (Beginning, Inside, Outside) tagging

- 5 classes:
 - "B-C" (begin cause), "I-C" (inside cause)
 - "B-E" (begin effect), "I-E" (inside effect)
 - o "O" (outside)

Ex.: Prediabetes forces me to change my lifestyle
 B-C
 O
 O
 B-E
 I-E

Cause-effect model - Tagging scheme

Typically for entity recognition task (e.g. NER): BIO (Beginning, Inside, Outside) tagging

5 classes:

- "B-C" (legin cause), "I-C" (inside cause)
 "B-E" (legin effect), "I-E" (inside effect)
- "O" (outside)

3 Classes simplifies model training

Cause-effect model

Clustering of *causes* **and** *effects*

How to best regroup/cluster and so present/visualise the identified causes and effects?

Clustering of causes and effects

How to best regroup/cluster and so present/visualise the identified causes and effects?

- Semi-supervised approach:
 - Cluster manually 1000 random causes and effects
 - Compare each *cause/effect* with each cluster using cosine similarity:
 - if sim() > 0.55 => associate cause/effect to this cluster
 - if sim () <= 0.55 => create new cluster
 - led to 1,751 clusters of *causes/effects*

 To remove noisy (mispredictions) causes/effect clusters, only keep clusters with at least 10 cause/effect occurrences in sentences

Cluster name	Synonyms
diabetes	diabetic, #diabetes
T1D	type 1 diabetes
rationing insulin	shortage insulin
insulin price	cost of insulin
retinopathy	lost vision
neuropathy	feet amputation
covid	corona, covid-19
insurance	pharma, Medicare
medication	meds, drug, pill
OGTT	glucose test, 3h drink
stress	mood disorder,
fatigue	exhausted, tired, no power
hypoglycemia	hypo, go low, low blood sugar
overweight	obese, weight gain
physical activity	exercising, sport, walking
insomnia	can't sleep
family	brother, mum, aunt

epiconcept

Clustering of causes and effects

How to best regroup/cluster and so present/visualise the identified *causes* and *effects?*

- Semi-supervised approach:
 - Cluster manually 1000 random causes and effects
 - Compare each *cause/effect* with each cluster using cosine similarity:
 - if sim() > 0.55 => associate cause/effect to this cluster
 - if sim () <= 0.55 => create new cluster
 - led to 1,751 clusters of causes/effects

To remove noisy (mispredictions) causes/effect clusters, only keep clusters with at least 10 cause/effect occurrences in sentences

Cluster name	Synonyms	
diabetes	diabetic, #diabetes	
T1D	type 1 diabetes	
rationing insulin	shortage insulin	
insulin price	cost of insulin	
retinopathy	lost vision	
neuropathy	feet amputation	
covid	corona, covid-19	
insurance	pharma, Medicare	
medication	meds, drug, pill	
OGTT	glucose test, 3h drink	
stress	mood disorder,	
fatigue	exhausted, tired, no power	
hypoglycemia	hypo, go low, low blood sugar	
overweight	obese, weight gain	
physical activity	exercising, sport, walking	
insomnia	can't sleep	
family	brother, mum, aunt	

epiconcept

Results

Causal sentence performance

Oscillating performances in active learning

Round	N° sent. train	N° sent. test	Accuracy	Precision	Recall	F1-Score
0	6,024	837	64.5	58.0	67.4	53.8
1	7,536	1,047	67.7	61.2	71.6	58.4
2	8,804	1,223	67.7	60.3	66.3	56.3
3	10,284	1,429	65.4	60.0	68.8	54.8
4	11,861	1,648	71.0	61.0	67.8	58.3

Table 5.2: Performance measures (macro) for each round of more training data

Cause-effect classification performance

Models		Prec	Rec	F1
BERT_FFL	I-C	0.48	0.46	0.47
	I-E	0.20	0.48	0.29
	О	0.91	0.77	0.83
	macro	0.53	0.57	0.53
	I-C	0.59	0.20	0.29
	I-E	0.0	0.0	0.0
BERT_CRF	0	0.83	0.99	0.90
	macro	0.47	0.39	0.40
	I-C	0.63	0.61	0.62
	I-E	0.49	0.49	0.49
WE_BERT_CRF	О	0.93	0.93	0.93
	macro	0.68	0.68	0.68
FastText_CRF	I-C	0.59	0.57	0.58
	I-E	0.45	0.38	0.41
	О	0.92	0.94	0.93
	macro	0.65	0.63	0.64

Table 5.3: Performance measures for each of the four architectures

Cause-effect description

Parent cluster	cluster	N
Diabetes	diabetes	66,775
Death	death	16,989
Insulin	insulin	14,148
Diabetes	type 1 diabetes	11,693
Emotions	fear	10,160
Glycemic variability	hypoglycemia.	9,547
Symptoms	sick	6,549
Nutrition	overweight	5,186
Diabetes	type 2 diabetes	4,909
Complications & comorbidities	neuropathy	4,481
Healthcare system	medication	4,389
Diabetes Technology	insulin pump	4,307
Nutrition	nutrition	4,230
Emotions	anger	4,149
Health	OGTT*	4,053
Blood pressure	hypertension	3,782
Healthcare system	finance	3,767
Nutrition	reduce weight	3,589
Insulin	unable to afford insulin	3,381
Nutrition	diet	3,325
Emotions	sadness	3,153
Glycemic variability	hyperglycemia	3,144
Diabetes	suffer	3,132
Diabetes Distress	depression	2,810
Healthcare system	hospital	2,721
Diabetes Distress	stress	2,681
Nutrition	sugar	2,369

cause	effect	N	
unable to afford insulin	death	1,246	
insulin	death	1,156	
type 1 diabetes	fear	1,054	7
type 1 diabetes	death	999	١,
rationing insulin	death	805	۱,
type 1 diabetes	insulin	751	,
OGTT*	sick	584	
type 1 diabetes	hypoglycaemia	578 Z	4
insulin	hypo	545	١.
insulin	fear	534	
type 1 diabetes	insulin pump	436	1
finance	death	423	
type 1 diabetes	sick	400	
insulin	sick	385	
insulin	finance	367	
type 1 diabetes	anger	356	
insulin	medication	305	
insulin	anger	296	
OGTT*	fear	293	
type 2 diabetes	death	293	
type 2 diabetes	fear	290	
hypertension	death	286	
overweight	death	280	
type 1 diabetes	finance	277	
hypoglycaemia	insulin	272	
hypoglycaemia	sick	263	ĺ
affordable insulin	death	262	ĺ

Interactive cause effect network

D3 json

Discussion

Strenghts & Limitations

Strength

 detected a large number of cause-effect associations compared to other works

 tackled both (multi-word) explicit and implicit causality

Avoided manually crafting causality rules

Limitations

no real-world causal inference

- Classification performance
 - lack of recall counterbalanced by sheer amount of data in the first place
 - lack of precision counterbalanced by clustering approach

Data quality

Big thanks to the co-authors

Identifying causal associations in tweets using deep learning: Use case on diabetes-related tweets from 2017-2021

Adrian Ahne, Vivek Khetan, Xavier Tannier, Md Imbessat Hassan Rizvi, Thomas Czernichow, Francisco Orchard, Charline Bour, Andrew Fano, Guy Fagherazzi

Preprint: https://arxiv.org/abs/2111.01225#

Currently under peer-review

Let's play!!

Notebooks

- Basics_Transformers.ipynb
- 2) Personal tweets.ipynb
- 3) causal_sentence_classifier.ipynb
- 4) BERT_cause_effect.ipynb

(just looking)

- 5) FastText_cause_effect.ipynb
- 6) BERT_CRF.ipynb

(just looking)

7) Cluster cause-effects.ipynb