Chapter 46 MIPI D-PHY

46.1 Overview

The MIPI D-PHY integrates a MIPI® V1.0 compatible PHY that supports up to 1GHz high speed data receiver, plus a MIPI® low-power low speed transceiver that supports data transfer in the bi-directional mode. It supports the full specifications described in V1.0 of the D-PHY spec. The D-PHY is built in with a standard digital interface to talk to MIPI Host controller. The architecture supports connection of multiple data lanes in parallel – up to 4 data lanes can be connected to increase the total through-put, customizable to user determinedconfigurations. The MIPI D-PHY supports the electrical portion of MIPI D-PHY V1.0 standard, covering all transmission modes (ULP/LP/HS).

The MIPI D-PHYsupports the following features:

- Mixed-signal D-PHY mixed-signal hard-macro- LS Transmitter and LS/HS Receiver solution
- Designed to MIPI® v1.0 Specifications
- Integrated PHY Protocol Interface (PPI) supports interface to CSI, DSI and UniPro™ MIPI® protocols
- 1.0GHz maximum data transfer rate per lane
- Expandable to support 4 data lanes, providing up to 4Gbps transfer rate
- HS, LP and ULPS modes supported
- 10Mbps per lane in low-power mode
- Unidirectional and bi-directional modes supported
- Automatic termination control for HS and LP modes
- Low-Power dissipation: HS less than 3mA/Lane
- Tx/Rx Buffers with tunable On-Die-Termination and advanced equalization.
- Embedded ESD, boundary scan support logic.

46.2 Block Diagram

The MIPI D-PHY configuration contains one Clock Lane Module and four Data Lane Modules. Each of these PHY Lane Modules communicates via two Lines to a complementary part at the other side of the Lane Interconnect. The following diagram shows the D-PHY architecture.

Fig.46-1MIPI D-PHY simplified Block diagram with master to slave

The following diagram shows a Universal Lane Module Diagram with a global overview of internal functionality of the CIL function. This Universal Module can be used for all Lane types. The requirements for the 'Control and Interface Logic' (CIL) function depend on the Lane type and Lane side.

Fig.46-2MIPI D-PHY V1.0 detailed block diagram

46.3 Function Description

The MIPI D-PHY transceiver is designed to reliably transmit HS and LP/ULP data/clock over the channel and recover the MIPI LP data stream from any MIPI input signal. It consists of 4 data transceiver paths and 1 clock transmitting path. For each data lane a HS transmitter and a LP transceiver is necessary to transmit/recover the data streams, for the clock lane, a HS/LP transmitter is designed to output the high speed clock signal over the channel.

A HS differential signal driven on the Dp and Dn pins is generated by a differential output driver. For reference, Dp is considered as the positive side and Dn as the negative side. High speed current switches are designed to output data streams over the channels.

The Low-Power receiver is an un-terminated, single-ended receiver circuit. LP receiver is used to detect the Low-Power state on each pin. For high robustness, the LP receiver can filter out noise pulses and RF interference. Furthermore, any spikes with a pulse width smaller than 20ns will be rejected.

Contention Detector (LP-CD) is designed in Data Lane to monitor the line voltage on each Low-Power signal. The LP-CD is used to detect an LP low fault when the LP transmitter is driving low and the pin voltage is greater than 450mV.

The Low-Power transmitter is a slew-rate controlled push-pull driver. The minimum pull-down and pull-up impedance of LP driver is 110 ohm. At the same time tunable slew rate control logic is available for eye pattern requirement.

46.4 Register Description

This section describes the control/status registers of the design. While you are reading this chapter please note that the offset address[7:0] is distributed two parts, one from the bit7 to bit5 is the first address, the other from the bit4 to bit0 is the second address. When you configure the registers, you must set both of them. The Clock Lane and Data Lane use the same registers with the same second address, but the first address is different. Itsapb base address is 0xc00.

46.4.1 Register Summary

Name	Offset	Size	Reset	Description
			Value	-
MIPIPHY_REG0 MIPIPHY_REG1	0x0000 0x0004			mipiphy register 0 mipiphy register 1
MIPIPHY REG3	0x0004			,
MIPIPHY REG4				mipiphy register 3
_	0x0010			mipiphy register 4
MIPIPHY_REG20 MIPIPHY_REG40	0x0080 0x0100			mipiphy register 20
MIPIPHY REG45	0x0100			mipiphy register 40
MIPIPHY REG45	0x0114			mipiphy register 45 mipiphy register 46
MIPIPHY REG47	0x0116			1 1 7 3
MIPIPHY_REG48	0x0110			mipiphy register 47 mipiphy register 48
MIPIPHY REG49	0x0120			
MIPIPHY REG4A	0x0124			mipiphy register 49
MIPIPHY REG4B	0x0126			mipiphy register 4a
MIPIPHY REG4C	0x012C			mipiphy register 4b mipiphy register 4c
MIPIPHY REG4D	0x0130			mipiphy register 4d
MIPIPHY REG4E	0x0134			
MIPIPHY REG50	0x0138			mipiphy register 4e
MIPIPHY REG50				mipiphy register 50
-	0x0144			mipiphy register 51
MIPIPHY_REG52	0x0148			mipiphy register 52
MIPIPHY_REG60	0x0180			mipiphy register 60
MIPIPHY_REG65	0x0194			mipiphy register 65
MIPIPHY_REG66	0x0198			mipiphy register 66
MIPIPHY_REG67	0x019c			mipiphy register 67
MIPIPHY_REG68	0x01a0			mipiphy register 68
MIPIPHY_REG69	0x01a4			mipiphy register 69
MIPIPHY_REG6A	0x01a8			mipiphy register 6a
MIPIPHY_REG6B	0x01ac	9		mipiphy register 6b
MIPIPHY_REG6C	0x01b0			mipiphy register 6c
MIPIPHY_REG6D	0x01b4			mipiphy register 6d
MIPIPHY_REG6E	0x01b8		0x00000000	mipiphy register 6e
MIPIPHY_REG70	0x01c0			mipiphy register 70
MIPIPHY_REG71	0x01c4			mipiphy register 71
MIPIPHY_REG72	0x01c8			mipiphy register 72
MIPIPHY_REG80 MIPIPHY_REG85	0x0200			mipiphy register 80
	0x0214 0x0218			mipiphy register 85
MIPIPHY_REG86				mipiphy register 86
MIPIPHY_REG87	0x021c			mipiphy register 87
MIPIPHY_REG88	0x0220			mipiphy register 88
MIPIPHY_REG89	0x0224			mipiphy register 89
MIPIPHY_REG8A	0x0228			mipiphy register 8a
MIPIPHY_REG8B	0x022c			mipiphy register 8b
MIPIPHY_REG8C	0x0230			mipiphy register 8c
MIPIPHY_REG8D	0x0234			mipiphy register 8d
MIPIPHY_REG8E	0x0238			mipiphy register 8e
MIPIPHY_REG90	0x0240			mipiphy register 90
MIPIPHY_REG91	0x0244			mipiphy register 91
MIPIPHY_REG92	0x0248	W	UXUUUU00000	mipiphy register 92

Name	Offset	Size	Reset Value	Description
MIPIPHY_REGA0	0x0280	W		mipiphy register a0
MIPIPHY_REGA5	0x0294	W		mipiphy register a5
MIPIPHY_REGA6	0x0298	W		mipiphy register a6
MIPIPHY_REGA7	0x029c	W	0x00000000	mipiphy register a7
MIPIPHY_REGA8	0x02a0	W	0x00000000	mipiphy register a8
MIPIPHY_REGA9	0x02a4	W		mipiphy register a9
MIPIPHY_REGAA	0x02a8	W	0x00000000	mipiphy register aa
MIPIPHY_REGAB	0x02ac	W	0x00000000	mipiphy register ab
MIPIPHY_REGAC	0x02b0	W	0x00000000	mipiphy register ac
MIPIPHY_REGAD	0x02b4	W	0x00000000	mipiphy register ad
MIPIPHY_REGAE	0x02b8	W	0x00000000	mipiphy register ae
MIPIPHY_REGB0	0x02c0	W	0x00000000	mipiphy register b0
MIPIPHY_REGB1	0x02c4	W	0x00000000	mipiphy register b1
MIPIPHY_REGB2	0x02c8	W	0x00000000	mipiphy register b2
MIPIPHY_REGC0	0x0300	W	0x0000000b	mipiphy register c0
MIPIPHY_REGC5	0x0314	W	0x0000005	mipiphy register c5
MIPIPHY_REGC6	0x0318	W	0x00000000	mipiphy register c6
MIPIPHY_REGC7	0x031c	W	0x00000000	mipiphy register c7
MIPIPHY_REGC8	0x0320	W		mipiphy register c8
MIPIPHY_REGC9	0x0324	W	0x00000000	mipiphy register c9
MIPIPHY_REGCA	0x0328	W	0x00000000	mipiphy register ca
MIPIPHY_REGCB	0x032c	W		mipiphy register cb
MIPIPHY_REGCC	0x0330	W	0x00000000	mipiphy register cc
MIPIPHY_REGCD	0x0334	W	0x00000000	mipiphy register cd
MIPIPHY_REGCE	0x0338	W		mipiphy register ce
MIPIPHY_REGD0	0x0340	W	0x00000000	mipiphy register d0
MIPIPHY_REGD1	0x0344	W	0x0000000	mipiphy register d1
MIPIPHY_REGD2	0x0348	W		mipiphy register d2
MIPIPHY_REGE0	0x0380	W	0x0000000	mipiphy register e0
MIPIPHY_REGEA	0x03A8	W		mipiphy register ea

MIPIPHY_REGEA | 0x03A8 | W | 0x0000000 | mipiphy register ea Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

46.4.2 Detail Register Description

MIPIPHY_REGO

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0x0	lane_en_ck 1: enable 0: disable
5	RW	0x0	lane_en_3 1: enable 0: disable
4	RW	0x0	lane_en_2 1: enable 0: disable

Rockchip ^{瑞芯微电子} RK3128

Bit	Attr	Reset Value	Description
			lane_en_1
3	RW	0x0	1: enable
			0: disable
			lane_en_0
2	RW	0x0	1: enable
			0: disable
1	RW	0x0	reserved1
0	RO	0x1	reserved

Address: Operational Base + offset (0x0004)

mipiphy register 1

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
			reg_da_syncrst
2	RW	0x0	1: reset
			0: normal
			reg_da_ldopd
1	RW	0x1	1: power down
			0: power on
			reg_da_pllpd
0	RW	0x1	1: power down
			0: power on

MIPIPHY_REG3

Address: Operational Base + offset (0x000c)

mipiphy register 3

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
		40	reg_fbdiv
5	RW	0x0	reg_fbdiv[8]
			PLL input reference clock divider
		1	reg_prediv
4:0	RW	0x03	reg_prediv[4:0]
4.0	KVV	UXU3	Integer value programmed into feedback
) *	divider

MIPIPHY_REG4

Address: Operational Base + offset (0x0010)

mipiphy register 4

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x7d	reg_fbdiv reg_fbdiv[7:0] PLL input reference clock divider

MIPIPHY_REG20

Address: Operational Base + offset (0x0080)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0x1	reg_dig_rstn 1: normal 0: reset

Address: Operational Base + offset (0x0100)

mipiphy register 40

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0xb	reg_ths_settle Clock Lane Configure the count time of the THS-SETTLE by protocol. After the count done, D-PHY will begin to receive the high speed data. (Can be configured from 4'h0 to 4'hd) 4'b0000 80-110 MHz 4'b0001 110-150 MHz 4'b0010 150-200 MHz 4'b0011 200-250 MHz 4'b0100 250-300 MHz 4'b0101 300-400 MHz 4'b0110 400-500 MHz 4'b0111 500-600 MHz 4'b1010 600-700 MHz 4'b1001 700-800 MHz 4'b1010 additional adjust 4'b1101 additional adjust 4'b1101 additional adjust 4'b1101 additional adjust

MIPIPHY_REG45

Address: Operational Base + offset (0x0114)

mipiphy register 45

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x05	reg_hs_tlpx Clock Lane The value of counter for HS Tlpx Time (>=Tlpx) = Tpin_txbyteclkhs * value

MIPIPHY_REG46

Address: Operational Base + offset (0x0118)

Rit Attr Reset Value Description	Dit Atti Reset value Description		Bit	Attr	Reset Value	Description
----------------------------------	----------------------------------	--	-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:0	RW	0x00	reg_hs_ths_prepare Clock Lane The value of counter for HS Ths-prepare For clock lane, Ths-prepare(38ns~95ns) For data lane, Ths-prepare(40ns+4UI~85ns+6UI) =Ttxddrclkhs*value

Address: $\overline{\text{Operational Base}}$ + offset (0x011c)

mipiphy register 47

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_the_zero Clock Lane The value of counter for HS Ths-zero For clock lane, Ths-prepare+Ths-zero (>=300ns) For data lane, Ths-prepare+Ths-zero (>= 145 ns + 10*UI) = Tpin_txbyteclkhs*value For clock lane, S_HSTXTHSZERO[5:0] = 6'b100000 For data lane, S_HSTXTHSZERO[5:0] = 6'b001001 Frequency(1/UI) Value(Decimal) 80 -110 MHz

MIPIPHY_REG48

Address: Operational Base + offset (0x0120)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
6:0 R	RW	0×00	reg_hs_ths_trail Clock Lane The value of counter for HS Ths-trail For clock lane, Ths-trail (>=60ns) For data lane,Ths-trail (>=max(8UI, 60ns+4UI) = Tad_txddrclkhs_i* value For clock lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 For data lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 Frequency(1/UI) Value(Decimal) 80 -110 MHz

Address: Operational Base + offset (0x0124)

mipiphy register 49

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0x00	reg_hs_ths_exit Clock Lane The value of counter for HS Ths-exit Ths-exit = Tpin_txbyteclkhs*value

MIPIPHY_REG4A

Address: Operational Base + offset (0x0128)

mipiphy register 4a

*****	p.p., 1-29.5cc. 14				
Bit	Attr	Reset Value	Description		
31:4	RO	0x0	reserved		
3:0	RW	0x0	reg_hs_tclk_post Clock Lane The value of counter for HS Tclk-post Tclk-post =Tpin_txbyteclkhs*value		

MIPIPHY_REG4B

Address: Operational Base + offset (0x012c)

mipiphy register 4b

	. 09.000.		
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	reserved

MIPIPHY_REG4C

Address: Operational Base + offset (0x0130)

mipiphy register 4c

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0	RW	0x0	reg_hs_twakup Clock Lane The value[9:8] of counter for HS Twakup also see REG4D

MIPIPHY_REG4D

Address: Operational Base + offset (0x0134)

mipiphy register 4d

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	reg_hs_twakup Clock Lane The value[7:0] of counter for HS Twakup Twakup for ulpm, Twakup = Tpin_sys_clk*value[9:0]

MIPIPHY_REG4E

Address: Operational Base + offset (0x0138)

mipiphy register 4e

Bit	Attr	Reset Value	Description
31:4	RO _	0x0	reserved
3:0	RW	0×0	reg_hs_tclk_pre Clock Lane The value of counter for HS Tclk-pre Tclk-pre for clock lane Tclk-pre = Tpin_txbyteclkhs*value

MIPIPHY_REG50

Address: Operational Base + offset (0x0140)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
5:0	RW	0x00	reg_hs_tta_go Clock Lane The value of counter for HS Tta-go Tta-go for turnaround Tta-go = Ttxclkesc*value

MIPIPHY_REG51

Address: Operational Base + offset (0x0144)

mipiphy register 51

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_sure Clock Lane The value of counter for HS Tta-sure Tta-sure for turnaround Tta-sure = Ttxclkesc*value

MIPIPHY_REG52

Address: \overline{O} perational Base + offset (0x0148)

mipiphy register 52

	- Egistei	1	
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_wait Clock Lane The value of counter for HS Tta-wait Tta-wait for turnaround Interval from receiving ppi turnaround request to sending esc request. Tta-wait = Ttxclkesc*value

MIPIPHY_REG60

Address: Operational Base + offset (0x0180)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			reg_ths_settle Data0 Lane
			Configure the count time of the THS-SETTLE by protocol.
			After the count done, D-PHY will begin to
			receive the high speed data.
			(Can be configured from 4'h0 to 4'hd)
			4'b0000 80-110 MHz
			4'b0001 110-150 MHz
			4'b0010 150-200 MHz
			4'b0011 200-250 MHz
3:0	RW	0xb	4'b0100 250-300 MHz
			4'b0101 300-400 MHz
			4'b0110 400-500 MHz
			4'b0111 500-600 MHz
			4'b1000 600-700 MHz
			4'b1001 700-800 MHz
			4'b1010 800-1000 MHz
			4'b1011 additional adjust
			4'b1100 additional adjust
			4'b1101 additional adjust
			4'b1110 additional adjust

Address: Operational Base + offset (0x0194)

mipiphy register 65

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			reg_hs_tlpx
			Data0 Lane
5:0	RW	0x05	The value of counter for HS Tlpx
			Time (>=Tlpx)
	A	1	= Tpin_txbyteclkhs * value

MIPIPHY_REG66

Address: Operational Base + offset (0x0198)

mipiphy register 66

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:0	RW	0×00	reg_hs_ths_prepare Data0 Lane The value of counter for HS Ths-prepare For clock lane, Ths-prepare(38ns~95ns) For data lane, Ths-prepare(40ns+4UI~85ns+6UI) =Ttxddrclkhs*value

MIPIPHY_REG67

Address: Operational Base + offset (0x019c) mipiphy register 67

31:6 RO	Bit	Attr	Reset Value	Description
Data0 Lane The value of counter for HS Ths-zero For clock lane, Ths-prepare+Ths-zero (>=300ns) For data lane, Ths-prepare+Ths-zero (>= 145 ns + 10*UI) = Tpin_txbyteclkhs*value For clock lane, S_HSTXTHSZERO[5:0] = 6'b100000 For data lane, S_HSTXTHSZERO[5:0] = 6'b001001 Frequency(1/UI) Value(Decimal) 80 -110 MHz	31:6	RO	0x0	reserved
700-800 MHz 12 800-1000 MHz 15	5:0	RW	0×00	Data0 Lane The value of counter for HS Ths-zero For clock lane, Ths-prepare+Ths-zero (>=300ns) For data lane, Ths-prepare+Ths-zero (>= 145 ns + 10*UI) = Tpin_txbyteclkhs*value For clock lane, S_HSTXTHSZERO[5:0] = 6'b100000 For data lane, S_HSTXTHSZERO[5:0] = 6'b001001 Frequency(1/UI) Value(Decimal) 80 -110 MHz

MIPIPHY_REG68

Address: Operational Base + offset (0x01a0)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
6:0 R	RW	0×00	reg_hs_ths_trail Data0 Lane The value of counter for HS Ths-trail For clock lane, Ths-trail (>=60ns) For data lane,Ths-trail (>=max(8UI, 60ns+4UI) = Tad_txddrclkhs_i* value For clock lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 For data lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 Frequency(1/UI) Value(Decimal) 80 -110 MHz

Address: Operational Base + offset (0x01a4)

mipiphy register 69

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0x00	reg_hs_ths_exit Data0 Lane The value of counter for HS Ths-exit Ths-exit = Tpin_txbyteclkhs*value

MIPIPHY_REG6A

Address: Operational Base + offset (0x01a8)

mipiphy register 6a

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0×0	reg_hs_tclk_post Data0 Lane The value of counter for HS Tclk-post Tclk-post =Tpin_txbyteclkhs*value

MIPIPHY_REG6B

Address: Operational Base + offset (0x01ac)

mipiphy register 6b

	9	~~	
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			reserved
7:0	RW	0x00	Data0 Lane
			reserved

MIPIPHY_REG6C

Address: Operational Base + offset (0x01b0)

mipiphy register 6c

Bit	Attr	Reset Value	Description	
31:2	RO	0x0	reserved	
1:0	RW	0x0	reg_hs_twakup Data0 Lane The value[9:8] of counter for HS Twakup also see REG6D	

MIPIPHY_REG6D

Address: Operational Base + offset (0x01b4)

mipiphy register 6d

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	reg_hs_twakup Data0 Lane The value[7:0] of counter for HS Twakup Twakup for ulpm, Twakup = Tpin_sys_clk*value[9:0]

MIPIPHY_REG6E

Address: Operational Base + offset (0x01b8)

mipiphy register 6e

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0x0	reg_hs_tclk_pre Data0 Lane The value of counter for HS Tclk-pre Tclk-pre for clock lane Tclk-pre = Tpin_txbyteclkhs*value

MIPIPHY_REG70

Address: Operational Base + offset (0x01c0)

	9	• •	
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
5:0	RW	0×00	reg_hs_tta_go Data0 Lane The value of counter for HS Tta-go Tta-go for turnaround Tta-go = Ttxclkesc*value

MIPIPHY_REG71

Address: Operational Base + offset (0x01c4)

mipiphy register 71

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_sure Data0 Lane The value of counter for HS Tta-sure Tta-sure for turnaround Tta-sure = Ttxclkesc*value

MIPIPHY_REG72

Address: Operational Base + offset (0x01c8)

mipiphy register 72

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_wait Data0 Lane The value of counter for HS Tta-wait Tta-wait for turnaround Interval from receiving ppi turnaround request to sending esc request. Tta-wait = Ttxclkesc*value

MIPIPHY_REG80

Address: Operational Base + offset (0x0200)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
Bit 3:0	RW	0xb	reg_ths_settle Data1 Lane Configure the count time of the THS-SETTLE by protocol. After the count done, D-PHY will begin to receive the high speed data. (Can be configured from 4'h0 to 4'hd) 4'b0000 80-110 MHz 4'b0001 110-150 MHz 4'b0010 150-200 MHz 4'b0011 200-250 MHz 4'b0101 300-400 MHz 4'b0101 300-400 MHz 4'b0111 500-600 MHz 4'b1010 600-700 MHz 4'b1001 700-800 MHz 4'b1010 800-1000 MHz 4'b1011 additional adjust 4'b1100 additional adjust
			4'b1011 additional adjust

Address: Operational Base + offset (0x0214)

mipiphy register 85

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			reg_hs_tlpx
			Data1 Lane
5:0	RW	0x05	The value of counter for HS Tlpx
			Time (>=Tlpx)
	A	1	= Tpin_txbyteclkhs * value

MIPIPHY_REG86

Address: Operational Base + offset (0x0218)

mipiphy register 86

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:0	RW	0×00	reg_hs_ths_prepare Data1 Lane The value of counter for HS Ths-prepare For clock lane, Ths-prepare(38ns~95ns) For data lane, Ths-prepare(40ns+4UI~85ns+6UI) =Ttxddrclkhs*value

MIPIPHY_REG87

Address: Operational Base + offset (0x021c)

mipiphy register 87

Bit A	Attr	Reset Value	Description
31:6 RC)	0x0	reserved
5:0 RV	>	0×00	reg_hs_the_zero Data1 Lane The value of counter for HS Ths-zero For clock lane, Ths-prepare+Ths-zero (>=300ns) For data lane, Ths-prepare+Ths-zero (>= 145 ns + 10*UI) = Tpin_txbyteclkhs*value For clock lane, S_HSTXTHSZERO[5:0] = 6'b100000 For data lane, S_HSTXTHSZERO[5:0] = 6'b001001 Frequency(1/UI) Value(Decimal) 80 -110 MHz

MIPIPHY_REG88

Address: Operational Base + offset (0x0220)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
6:0 F	RW	0×00	reg_hs_ths_trail Data1 Lane The value of counter for HS Ths-trail For clock lane, Ths-trail (>=60ns) For data lane,Ths-trail (>=max(8UI, 60ns+4UI) = Tad_txddrclkhs_i* value For clock lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 For data lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 Frequency(1/UI) Value(Decimal) 80 -110 MHz

Address: Operational Base + offset (0x0224)

mipiphy register 89

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0x00	reg_hs_ths_exit Data1 Lane The value of counter for HS Ths-exit Ths-exit = Tpin_txbyteclkhs*value

MIPIPHY_REG8A

Address: Operational Base + offset (0x0228)

mipiphy register 8a

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0x0	reg_hs_tclk_post Data1 Lane The value of counter for HS Tclk-post Tclk-post =Tpin_txbyteclkhs*value

MIPIPHY_REG8B

Address: Operational Base + offset (0x022c)

mipiphy register 8b

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	reserved

MIPIPHY_REG8C

Address: Operational Base + offset (0x0230)

mipiphy register 8c

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0	RW	0x0	reg_hs_twakup Data1 Lane The value[9:8] of counter for HS Twakup also see REG8D

MIPIPHY_REG8D

Address: Operational Base + offset (0x0234)

mipiphy register 8d

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	reg_hs_twakup Data1 Lane The value[7:0] of counter for HS Twakup Twakup for ulpm, Twakup = Tpin_sys_clk*value[9:0]

MIPIPHY_REG8E

Address: Operational Base + offset (0x0238)

mipiphy register 8e

Bit	Attr	Reset Value	Description
31:4	RO _	0x0	reserved
3:0	RW	0x0	reg_hs_tclk_pre Data1 Lane The value of counter for HS Tclk-pre Tclk-pre for clock lane Tclk-pre = Tpin_txbyteclkhs*value

MIPIPHY_REG90

Address: Operational Base + offset (0x0240)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
5:0	RW	0x00	reg_hs_tta_go Data1 Lane The value of counter for HS Tta-go Tta-go for turnaround Tta-go = Ttxclkesc*value

MIPIPHY_REG91

Address: Operational Base + offset (0x0244)

mipiphy register 91

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_sure Data1 Lane The value of counter for HS Tta-sure Tta-sure for turnaround Tta-sure = Ttxclkesc*value

MIPIPHY_REG92

Address: \overline{O} perational Base + offset (0x0248)

mipiphy register 92

		1	
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_wait Data1 Lane The value of counter for HS Tta-wait Tta-wait for turnaround Interval from receiving ppi turnaround request to sending esc request. Tta-wait = Ttxclkesc*value

MIPIPHY_REGA0

Address: Operational Base + offset (0x0280)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

	Attr	Reset Value	Description
3:0 R		0xb	reg_ths_settle Data2 Lane Configure the count time of the THS-SETTLE by protocol. After the count done, D-PHY will begin to receive the high speed data. (Can be configured from 4'h0 to 4'hd) 4'b0000 80-110 MHz 4'b0001 110-150 MHz 4'b0010 150-200 MHz 4'b0011 200-250 MHz 4'b0100 250-300 MHz 4'b0101 300-400 MHz 4'b0110 400-500 MHz 4'b0111 500-600 MHz 4'b1010 600-700 MHz 4'b1010 800-1000 MHz 4'b1011 additional adjust 4'b1100 additional adjust 4'b1110 additional adjust 4'b1110 additional adjust

Address: Operational Base + offset (0x0294)

mipiphy register a5

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			reg_hs_tlpx
			Data2 Lane
5:0	RW	0x05	The value of counter for HS Tlpx
		. ()	Time (>=Tlpx)
	A	1	= Tpin_txbyteclkhs * value

MIPIPHY_REGA6

Address: Operational Base + offset (0x0298)

mipiphy register a6

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:0	RW	0×00	reg_hs_ths_prepare Data2 Lane The value of counter for HS Ths-prepare For clock lane, Ths-prepare(38ns~95ns) For data lane, Ths-prepare(40ns+4UI~85ns+6UI) =Ttxddrclkhs*value

MIPIPHY_REGA7

Address: Operational Base + offset (0x029c)

mipiphy register a7

Bit A	ttr Reset Valu	ne Description
31:6 RO	0x0	reserved
5:0 RW	0x00	reg_hs_the_zero Data2 Lane The value of counter for HS Ths-zero For clock lane, Ths-prepare+Ths-zero (>=300ns) For data lane, Ths-prepare+Ths-zero (>= 145 ns + 10*UI) = Tpin_txbyteclkhs*value For clock lane, S_HSTXTHSZERO[5:0] = 6'b100000 For data lane, S_HSTXTHSZERO[5:0] = 6'b001001 Frequency(1/UI) Value(Decimal) 80 -110 MHz

MIPIPHY_REGA8

Address: Operational Base + offset (0x02a0)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
6:0 F	₹W	0×00	reg_hs_ths_trail Data2 Lane The value of counter for HS Ths-trail For clock lane, Ths-trail (>=60ns) For data lane,Ths-trail (>=max(8UI, 60ns+4UI) = Tad_txddrclkhs_i* value For clock lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 For data lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 Frequency(1/UI) Value(Decimal) 80 -110 MHz

Address: Operational Base + offset (0x02a4)

mipiphy register a9

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0x00	reg_hs_ths_exit Data2 Lane The value of counter for HS Ths-exit Ths-exit = Tpin_txbyteclkhs*value

MIPIPHY_REGAA

Address: Operational Base + offset (0x02a8)

mipiphy register aa

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0×0	reg_hs_tclk_post Data2 Lane The value of counter for HS Tclk-post Tclk-post =Tpin_txbyteclkhs*value

MIPIPHY_REGAB

Address: Operational Base + offset (0x02ac)

mipiphy register ab

····p·p··	. eg.ece.	45	
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	reserved
7.0	IXVV	0.00	Data2 Lane

MIPIPHY_REGAC

Address: Operational Base + offset (0x02b0)

mipiphy register ac

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0	RW	0x0	reg_hs_twakup Data2 Lane The value[9:8] of counter for HS Twakup also see REGAD

MIPIPHY_REGAD

Address: Operational Base + offset (0x02b4)

mipiphy register ad

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	reg_hs_twakup Data2 Lane The value[7:0] of counter for HS Twakup Twakup for ulpm, Twakup = Tpin_sys_clk*value[9:0]

MIPIPHY_REGAE

Address: Operational Base + offset (0x02b8)

mipiphy register ae

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0×0	reg_hs_tclk_pre Data2 Lane The value of counter for HS Tclk-pre Tclk-pre for clock lane Tclk-pre = Tpin_txbyteclkhs*value

MIPIPHY_REGB0

Address: Operational Base + offset (0x02c0)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Rockchip RK3128 Technical Reference Manual Rev 1.0

Bit	Attr	Reset Value	Description
5:0	RW	0×00	reg_hs_tta_go Data2 Lane The value of counter for HS Tta-go Tta-go for turnaround Tta-go = Ttxclkesc*value

MIPIPHY_REGB1

Address: Operational Base + offset (0x02c4)

mipiphy register b1

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_sure Data2 Lane The value of counter for HS Tta-sure Tta-sure for turnaround Tta-sure = Ttxclkesc*value

MIPIPHY_REGB2

Address: Operational Base + offset (0x02c8)

mipiphy register b2

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0×00	reg_hs_tta_wait Data2 Lane The value of counter for HS Tta-wait Tta-wait for turnaround Interval from receiving ppi turnaround request to sending esc request. Tta-wait = Ttxclkesc*value

MIPIPHY_REGCO

Address: Operational Base + offset (0x0300)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			reg_ths_settle
			Data3 Lane
			Configure the count time of the THS-SETTLE
			by protocol.
			After the count done, D-PHY will begin to
			receive the high speed data.
			(Can be configured from 4'h0 to 4'hd)
			4'b0000 80-110 MHz
			4'b0001 110-150 MHz
			4'b0010 150-200 MHz
			4'b0011 200-250 MHz
3:0	RW	0xb	4'b0100 250-300 MHz
			4'b0101 300-400 MHz
			4'b0110 400-500 MHz
			4'b0111 500-600 MHz
			4'b1000 600-700 MHz
			4'b1001 700-800 MHz
			4'b1010 800-1000 MHz
			4'b1011 additional adjust
			4'b1100 additional adjust
			4'b1101 additional adjust
			4'b1110 additional adjust

Address: Operational Base + offset (0x0314)

miniphy register c5

iiiipipiiy	Tripipity register es			
Bit	Attr	Reset Value	Description	
31:6	RO	0x0	reserved	
			reg_hs_tlpx Data3 Lane	
5:0	RW		The value of counter for HS Tlpx Time (>=Tlpx) = Tpin_txbyteclkhs * value	

MIPIPHY_REGC6

Address: Operational Base + offset (0x0318)

mipiphy register c6

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:0	RW	0×00	reg_hs_ths_prepare Data3 Lane The value of counter for HS Ths-prepare For clock lane, Ths-prepare(38ns~95ns) For data lane, Ths-prepare(40ns+4UI~85ns+6UI) =Ttxddrclkhs*value

MIPIPHY_REGC7

Address: Operational Base + offset (0x031c)

mipiphy register c7

Bit Attr	Reset Value	Description
31:6 RO	0x0	reserved
5:0 RW	0x00	reg_hs_the_zero Data3 Lane The value of counter for HS Ths-zero For clock lane, Ths-prepare+Ths-zero (>=300ns) For data lane, Ths-prepare+Ths-zero (>= 145 ns + 10*UI) = Tpin_txbyteclkhs*value For clock lane, S_HSTXTHSZERO[5:0] = 6'b100000 For data lane, S_HSTXTHSZERO[5:0] = 6'b001001 Frequency(1/UI) Value(Decimal) 80 -110 MHz

MIPIPHY_REGC8

Address: Operational Base + offset (0x0320)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
6:0	RW	0×00	reg_hs_ths_trail Data3 Lane The value of counter for HS Ths-trail For clock lane, Ths-trail (>=60ns) For data lane,Ths-trail (>=max(8UI, 60ns+4UI) = Tad_txddrclkhs_i* value For clock lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 For data lane, S_HXTXTHSTRAIL[6:0] = 7'b0100111 Frequency(1/UI) Value(Decimal) 80 -110 MHz

Address: Operational Base + offset (0x0324)

mipiphy register c9

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0×00	reg_hs_ths_exit Data3 Lane The value of counter for HS Ths-exit Ths-exit = Tpin_txbyteclkhs*value

800-1000 MHz

MIPIPHY_REGCA

Address: Operational Base + offset (0x0328)

mipiphy register ca

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0×0	reg_hs_tclk_post Data3 Lane The value of counter for HS Tclk-post Tclk-post =Tpin_txbyteclkhs*value

MIPIPHY_REGCB

Address: Operational Base + offset (0x032c)

mipiphy register cb

	····p·p··/ · - g·· · · ·		
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	I(IX()()	reserved Data3 Lane

MIPIPHY_REGCC

Address: Operational Base + offset (0x0330)

mipiphy register cc

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1:0	RW	0x0	reg_hs_twakup Data3 Lane The value[9:8] of counter for HS Twakup also see REGCD

MIPIPHY_REGCD

Address: Operational Base + offset (0x0334)

mipiphy register cd

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x00	reg_hs_twakup Data3 Lane The value[7:0] of counter for HS Twakup Twakup for ulpm, Twakup = Tpin_sys_clk*value[9:0]

MIPIPHY_REGCE

Address: Operational Base + offset (0x0338)

mipiphy register ce

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:0	RW	0x0	reg_hs_tclk_pre Data3 Lane The value of counter for HS Tclk-pre Tclk-pre for clock lane Tclk-pre = Tpin_txbyteclkhs*value

MIPIPHY_REGD0

Address: Operational Base + offset (0x0340)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Bit	Attr	Reset Value	Description
5:0	RW	0x00	reg_hs_tta_go Data3 Lane The value of counter for HS Tta-go Tta-go for turnaround Tta-go = Ttxclkesc*value

Address: Operational Base + offset (0x0344)

mipiphy register d1

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0×00	reg_hs_tta_sure Data3 Lane The value of counter for HS Tta-sure Tta-sure for turnaround Tta-sure = Ttxclkesc*value

MIPIPHY_REGD2

Address: Operational Base + offset (0x0348)

mipiphy register d2

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	reg_hs_tta_wait Data3 Lane The value of counter for HS Tta-wait Tta-wait for turnaround Interval from receiving ppi turnaround request to sending esc request. Tta-wait = Ttxclkesc*value

MIPIPHY_REGEO

Address: Operational Base + offset (0x0380)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			mipi_mode_en
7	RW	0x1	1: enable mipi mode
			0: disable mipi mode
			ttl_mode_en
6	RW	0x0	1: enable ttl mode
			0: disable ttl mode
			lvds_mode_en
5	RW	0x0	1: enable lvds mode
			0: disable lvds mode

Bit	Attr	Reset Value	Description
4:3	RW	0x00	reserved
2	RW	0×1	reg_rstn reset the LVDS PHY configuration 1: none 0: reset

reserved

MIPIPHY_REGEA

RW

1:0

Address: Operational Base + offset (0x03A8)

0x00

mipiphy register ea

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
2	RW	0x1	lvds_pllpd lvds pll power down 1: power down 0: power up
1	RW	0x0	reserved
0	RW	0x0	lvds_bgpd lvds bandgap power down 1: power down 0: power up

46.5 Interface Timing

This section shows a PPI timing relationship at high-speed transmission. While pin_txrequesths is low, the Lane Module ignores the value of pin_txdatahs. To begin the transmission, the protocol drives pin_txdatahs with the first byte of data and asserts pin_txrequesths. This data byte is accepted by the PHY on the first rising edge of pin_txbyteclkhs with pin_txreadyhs also asserted. At this point, the protocol logic drives the next data byte onto pin_txdatahs. After every rising clock cycle with pin_txreadyhs active, the protocol supplies a new valid data byte or ends the transmission. After the last data byte has been transferred to the Lane Module, pin_txrequesths is driven low to cause the Lane Module to stop the transmission and enter Stop state. The minimum number of bytes transmitted could be as small as one.

Fig.46-3HS-TX PPI Timing

This section shows a PPI timing relationship at low-power data transmission operation. The Protocol directs the Data Lane to enter Low-Power data transmission Escape mode by asserting pin_txrequestesc with pin_txlpdtesc high. The Low-Power transmit data is transferred on the pin_txdataesc lines when pin_txvalidesc and pin_txreadyesc are both active at a rising edge of pin_txclkesc.

Fig.46-4LPDT TX PPI Timing

This section shows a PPI timing relationship at low-power data reception. The signal pin_rxlpdtesc is asserted when the escape entry command is detected and stays high until the Lane returns to stop state, indicating that the transmission has finished.

Fig.46-5LPDT RX PPI Timing

46.6 Application Notes

46.6.1 Low power mode

Low Power Mode is a special feature for D-PHY. You can control this function by using proper registers from the Innosilicon D-PHY with few operations. The following is a step by step instruction for low power mode in and out.

Low Power in Steps:

Step1: Send 0x01 to register 0x00. Disable all lanes on analog part.

Step2: Send 0xe3 to register 0x01. Disable PLL and LDO.

Step3: Wait a period before reference clock have been disabled.

Step4: Disable reference clock.

Low Power out Steps:

Step1: Enable reference clock.

Step2: Wait a period after reference clock have been enabled.

Step3: Send 0xe4 to register 0x01. Enable PLL and LDO.

Step4: Send 0x7d to register 0x00. Enable all lanes on analog part.

Step5: Send 0xe0 to register 0x01. Reset analog.

Step6: Wait a period after analog has been reset.

Step7: Send 0x1e to register 0x20. Reset digital.

Step8: Send 0x1f to register 0x20. Reset digital.

Step9: Wait a period before normal transmission.

46.6.2 Programmable PLL IN DSI TX

Frequency Calculating Formula

The PLL output frequency can be calculated using a simple formula:

PLL_Output_Frequency = FREF/PREDIV*FBDIV

PLL_Output_Frequency: It is equal to DDR- Clock-Frequency * 2

FREF :PLL input reference frequency which equals to the frequence of the pin clkhtref

PREDIV: PLL input reference clock divider which can be configured by the register of reg_prediv

FBDIV :Integer value programmed into feedback divider which can be configured by the register of reg_fbdiv

For example,

FREF = 20MHz, PLL output frequence = 800Hz, so set PREDIV=1, FBDIV=40

Additional Programming Considerations

- 1. The divided reference frequency (FREF/PREDIV) should be less than 40MHz.
- 2. The all possible settings of feedback divider are 12,13,14,16~511.

46.6.3 LVDS mode

Lvds source from LCDC0 or LCDC1.

```
Step1: configure lvds format
8bit mode format-1: GRF_LVDS_CON0[2:1]=0x00;
8bit mode format-2 : GRF_LVDS_CON0[2:1]=0x01;
8bit mode format-3 : GRF LVDS CON0[2:1]=0x10;
6bit mode
                 : GRF_LVDS_CON0[2:1]=0x11;
MSB is on D0 : GRF LVDS CONO[3]=0x0;
MSB is on D7: GRF LVDS CON0[3]=0x1;
Step3: configure MIPI-PHY
Configure PLL:
MIPIPHY REG3=0x1;
MIPIPHY REG4=0x7;
Configure LVDS Interface:
MIPIPHY REGE0=0x25;
MIPIPHY_REGEA=0xf8;
Step4: enable lvds
GRF LVDS CON0[6]=0x1;
```

46.6.4 Other mipi_phy grf

Other mipi_phy control registers description reference to GRF_LVDS_CON0.

46.7 ELECTRICAL SPECIFICATIONS

46.7.1 DC SPECIFICATIONS

Table 46-1 HS Transmitter DC specifications

Parameter	Description	Min	Nom	Max	Unit	Note
Vсмтх	HS TX staticCommon-mode voltage	150	200	250	mV	1
ΔVcmtx(1,0)	VCMTX mismatch when output is Differential-1 or Differential-0			5	mV	2
[VOD]	HS transmit differential voltage	140	200	270	mV	
ΔVOD	VOD mismatch when output is Differential-1 or Differential-0			10	mV	2
Vohhs	HS output high voltage		\$^	360	mV	1
Zos	Single ended output impedance	40	50	62.5	ohm	
ΔZos	Single ended output impedance mismatch			10	%	

- 1. Value when driving into load impedance anywhere in the ZID range.
- 2. It is recommended the implementer minimize ΔVOD and $\Delta VCMTX(1,0)$ in order to minimize radiation and optimize signal integrity.

Table 46-2 HS Transmitter DC specifications

Parameter	Description	Min	Nom	Max	Unit	Note
VIH	Logic 1 input voltage	880			mV	
VIL	Logic 0 input voltage, not in ULPState			550	mV	
VIL-ULPS	Logic 0 input voltage, ULP State			300	mV	
VHYST	Input hysteresis	25			mV	

Table 46-3 LP Transmitter DC Specifications

Parameter	Description	Min	Nom	Max	Unit	Note
Vон	The venin output high level	1.1	1.2	1.3	V	

Vol	The venin output low level	-50	50	mV	
ZOLP	Output impedance of LP transmitter	110		Ω	1

^{1.} Though no maximum value for ZOLP is specified, the LP transmitter output impedance shall ensure the TRLP/TFLP specification is met.

46.7.2 AC specifications

Table 46-4 HS receiver AC specifications

-	Tuble to This received his specifications							
Parameter	Description	Min	Nom	Max	Unit	Note		
ΔV CMRX(HF)	Common-mode			100	mV	2		
	interference beyond 450				A			
	MHz				X			
ΔV CMRX(LF)	Common-mode	-50		50	mV i	1,4		
	interference 50MHz –			A				
	450MHz							
Ссм	Common-mode			60	pF	3		
	termination		• (

- 1. Excluding 'static' ground shift of 50mV
- 2. $\Delta VCMRX(HF)$ is the peak amplitude of a sine wave superimposed on the receiver inputs.
- 3. For higher bit rates a 14pF capacitor will be needed to meet the common-mode return loss specification.
- 4. Voltage difference compared to the DC average common-mode potential.

Table 46-5 LP receiver AC specifications

Parameter	Description	Min	Nom	Max	Unit	Note
e _{SPIKE}	Input pulse rejection			300	V.ps	1, 2,3
TMIN-RX	Minimum pulse width response	20			ns	4
VINT	Peak interference amplitude			200	mV	
fint	Interference frequency	450			MHz	

- 1. Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state
- 2. An impulse less than this will not change the receiver state.
- 3. In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers.
- 4. An input pulse greater than this shall toggle the output.

Table 46-6 LP Transmitter AC specifications

Paramete	Description	Min	No	Ma	Unit	Note
TRLP/TFLP	15%-85% rise time and fall time		- 111	25	ns	1

_	30%-85% rise time and fall time				35	ns	1,5,6
TREOT	fall	time					
TLP-PULSE-T X	Pulse width of exclusive-O R clock the LP	First LP exclusive-O R clock pulse after Stop state or last pulse before Stop state	40			ns	4
		All other pulses	20				4
TLP-PER-TX	exclus	of the LP ive-OR ock	90			ns	2)
δV/δ t sr	Slew rate @ CLOAD = 0pF				500	mV/n s	1,3,7,8
	Slew rate @ CLOAD = 5pF			_	300	mV/n s	1,3,7,8
	Slew rate @	CLOAD = 20pF		~(250	mV/n s	1,3,7,8
	Slew rate @	CLOAD = 70pF	X	>	150	mV/n s	1,3,7,8
	_	CLOAD = 0 to Edge Only)	30			mV/n s	1,2,3
	_	CLOAD = 0 to Edge Only)	30			mV/n s	1,3,9
	_	CLOAD = 0 to Edge Only)	30-0.07 5 * (Vo,INST - 700)			mV/n s	1,10,1
CLOAD	Load cap	oacitance	0		70	pF	1

- 1. CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.
- 2. When the output voltage is between 400 mV and 930 mV.
- 3. Measured as average across any 50 mV segment of the output signal transition.
- 4. This parameter value can be lower than TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in section 8.2.2.
- 5. The rise-time of TREOT starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the differential drive.
- 6. With an additional load capacitance CCM between 0 and 60pF on the termination center tap at RX side of the Lane
- 7. This value represents a corner point in a piecewise linear curve.
- 8. When the output voltage is in the range specified by VPIN(absmax).
- 9. When the output voltage is between 400 mV and 700 mV.
- 10. Where VO, INST is the instantaneous output voltage, VDP or VDN, in millivolts.

11. When the output voltage is between 700 mV and 930 mV.

