Lectures 08-09: Paper overviews

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

Lecture 08 recap

TL;DR:

- 1 Instrumental variables are very powerful
- 2 ...but they require extremely strong assumptions!
- 3 Hashtag no free lunch

An example: Impacts of parental incarceration on kids

Policy issue:

- · Millions of Americans are in jail annually
- This likely impacts not only them, but also their families
- What is the impact of family member incarceration?

Approach:

- (We're not actually evaluating a program here)
- We need a shock to incarceration
- → We don't have randomization, so we use IV
 - Instrument of choice: random assignment to strict/harsh judges
- → Do we believe this? Hold that thought...

Treatment effects of parental incarceration on kids

How does parental incarceration affect kids (simplified)?

First stage:

Parental incarceration_i =
$$\alpha + \gamma$$
Judge leniency_{ij} + $\beta X_{ij} + \eta_{ij}$

where

Parental incarceration_i is equal to 1 if i's parent is jailed and 0 otherwise Judge leniency_{ii} is the strictness of judge j

 X_{it} are controls

 η_{it} is an error term

First stage (graphically)

Treatment effects of parental incarceration on kids

How does parental incarceration affect kids (simplified)?

First stage:

Parental incarceration_i =
$$\alpha + \gamma$$
Judge leniency_{ij} + $\beta X_{ij} + \eta_{ij}$

where

Parental incarceration_i is equal to 1 if i's parent is jailed and 0 otherwise Judge leniency_{ij} is the strictness of judge j

 X_{jt} are controls

 η_{it} is an error term

Second stage:

$$Y_i = \alpha + \delta \text{parental incarceration}_i + \tau X_{ij} + \eta_i$$

where

 Y_i are outcomes for child i parental incarceration, is the fitted values from the first stage

Second stage (OLS)

Table A4: Effect of parental incarceration on child criminal activity, OLS comparison

	Extensive margin (=1)			Intensive margin (IHS)				
	Charged (1)	Convicted (2)	Incarcerated (3)	Charged (4)	Convicted (5)	Incarcerated (6)		
Panel A:	Criminal o	activity befo	ore age 25 (O	LS with 1	no controls)			
Parent incarcerated (=1)	0.024*** (0.005)	0.024*** (0.005)	0.015*** (0.004)	0.054*** (0.011)	0.042*** (0.009)	0.030*** (0.007)		
Index p-value			0.000			0.000		
Dependent mean Observations	0.325	0.247	0.124	0.568	0.375	0.205		
Observations 83,532 83,532 83,532 83,532 83,532 83,532 83,532 Panel B: Criminal activity before age 25 (OLS with controls)								
Parent incarcerated (=1)	-0.004 (0.005)	-0.001 (0.005)	-0.001 (0.003)	-0.009 (0.010)	-0.004 (0.008)	0.000 (0.006)		
Index p -value Dependent mean Observations	0.325 83,532	0.247 83,532	0.645 0.124 $83,532$	0.568 83,532	0.375 83,532	0.645 0.205 83,532		

Second stage (IV)

Parent incarcerated (-1)Index p-value Dependent mean Observations Parent incarcerated (=1) -Index p-value Dependent mean Observations Parent incarcerated (-1)

Estimating the reduced form

How does judge leniency affect child outcomes (simplified)?

Reduced form:

$$Y_i = \alpha + \theta$$
Judge leniency_{ij} + $\pi X_{ij} + \eta_i$

Reduced form

The exclusion restriction is the key to any IV

You should always ask: What is the exclusion restriction in this analysis saying?

The exclusion restriction is the key to any IV

You should always ask: What is the exclusion restriction in this analysis saying?

Do we believe this? Why or why not?

Second stage (IV)

Parent incarcerated (-1)Index p-value Dependent mean Observations Parent incarcerated (=1) -Index p-value Dependent mean Observations Parent incarcerated (-1)

Lecture 09 recap

TL;DR:

- 1 Instrumental variables are very powerful
- 2 With the right assumptions...
- 3 ...we can handle OVB and ME (and simultaneity)

An example: Returns to schooling

Policy issue:

- How much is a year of school worth?
- This is really important for deciding how much school to invest in
- What role does measurement error play in our estimates?

Approach:

- (We're not actually evaluating a program here)
- We want to estimate the effect of schooling on wages
- Measurement of years of schooling is poor
- Instrument of choice: sibling $j \neq i$ -reported schooling

Estimating the effects of schooling on wages

The authors will run a (simplified) version of:

$$Wages_i = \tau Schooling_i + \varepsilon_i$$

Where:

Wages; is a measure of wages

Schooling; is years of schooling for child i

 ε_i is an error term

Papers: Lectures 08-09

Estimating the effects of schooling on wages

The authors will run a (simplified) version of:

$$Wages_i = \tau Schooling_i + \varepsilon_i$$

Where.

Wages; is a measure of wages

Schooling; is years of schooling for child i

 ε_i is an error term

A big concern

- Schooling; is measured with error
- We are likely to understate the true effect
- **Solution:** $Z_i = Schooling as reported by twin_i!$

Papers: Lectures 08-09

First stage estimates (sort of)

A. Identical Twins										
Variable	Y_1	Y_2	S_1^1	S_1^2	S_2^2	S_2^1	$E_{ m F}^1$	$E_{ m F}^2$	$E_{\mathbf{M}}^{1}$	$E_{\mathbf{M}}^2$
Y_1	1.000									
Y_2	0.563	1.000								
S_1^1	0.382	0.168	1.000							
S_1^2	0.375	0.140	0.920	1.000						
S_2^2	0.267	0.272	0.658	0.697	1.000					
S_2^1	0.248	0.247	0.700	0.643	0.877	1.000				
Father's education (E_F^1)	0.155	0.088	0.345	0.266	0.361	0.416	1.000			
Father's education (E_F^2)	0.159	0.091	0.357	0.278	0.320	0.389	0.857	1.000		
Mother's education $(E_{\mathbf{M}}^1)$	0.102	0.088	0.348	0.343	0.392	0.410	0.614	0.644	1.000	
Mother's education $(E_{\mathbf{M}}^2)$	0.126	0.087	0.316	0.321	0.322	0.337	0.503	0.579	0.837	1.000

Placebo test estimates

Coefficients (std. errors) in regression of outcome on child's birthyear rainfall.

	<u>Women</u>	<u>Men</u>
Mother's characteristics		
Completed grades of schooling	0.204	0.132
	(1.136)	(0.947)
	[2,447]	[2,258]
Currently alive (indicator)	0.084	0.029
, ,	(0.083)	(0.108)
	[4,542]	[4,039]
Father's characteristics		
Completed grades of schooling	0.273	0.166
	(1.172)	(1.309)
	[2,810]	[2,621]
Currently alive (indicator)	0.010	-0.093
, , ,	(0.080)	(0.169)
	[4,541]	[4,040]

2SLS estimates

Variable	OLS (i)	GLS (ii)	GLS (iii)	IV ^a (iv)	First difference (v)	First difference by IV (vi)
Own education	0.084 (0.014)	0.087 (0.015)	0.088 (0.015)	0.116 (0.030)	0.092 (0.024)	0.167 (0.043)
Sibling's education	_	_	-0.007 (0.015)	-0.037 (0.029)		_
Age	0.088 (0.019)	0.090 (0.023)	0.090 (0.023)	0.088 (0.019)		_
Age squared (÷100)	-0.087 (0.023)	-0.089 (0.028)	-0.090 (0.029)	-0.087 (0.024)	_	_
Male	0.204 (0.063)	0.204 (0.077)	0.206 (0.077)	0.206 (0.064)	_	
White	-0.410 (0.127)	-0.417 (0.143)	-0.424 (0.144)	-0.428 (0.128)	_	. —
Sample size: R^2 :	298 0.260	298 0.219	298 0.219	298	149 0.092	149

PPHA 34600 Program Evaluation Papers: Lectures 08-09 17 / 19

2SLS estimates

Table 2—Effect of Birth Year Rainfall on Adult Outcomes: Women and Men Born 1953–1974
(Instrumental variables estimates. Coefficients (standard errors) in regression of outcome on rainfall in individual's birth year and birth district. Instrumental variables for birth year/birth district rainfall are rainfall measured at second-through fifth-closest rainfall stations to respondent's birth district.)

	Women	Men
Self-reported health status very good (indicator)	0.101	-0.029
	(0.058)*	(0.072)
	[4,613]	[4,270]
Self-reported health status poor/very poor (indicator)	-0.192	-0.100
	(0.082)**	(0.098)
	[4,613]	[4,270]
Ln (lung capacity)	-0.044	-0.073
	(0.049)	(0.062)
	[4,454]	[3,907]
Height (centimeters)	2.832	0.998
	(0.821)***	(1.795)
	[4,495]	[3,924]
Days absent due to illness (last four weeks)	-1.175	0.515
	(0.831)	(0.779)
	[4,611]	[4,267]
Completed grades of schooling	1.086	-0.474
	(0.453)**	(1.490)
	[4,598]	[4,259]
Ln (expenditures per capita in household)	0.095	-0.274
	(0.204)	(0.301)
	[4,615]	[4,277]
Asset index	0.876	-0.279
	(0.324)**	(0.507)
	[4,613]	[4,276]
Ln (annual earnings)	0.065	-0.202
	(0.988)	(0.350)
	[2,332]	[3,963]

2SLS estimates

Table 3—Everect of Rainfall in Years Before and arter Birth: Womin Born 1953–1974 (Instrumental variables estimates, Rainfall in individual's birth year and birth district instrumented with rainfall measured at second-through fifth-closest rainfall stations to respondent's birth district.)

Dependent variable	Self-reported health status very good (indicator)	Self-reported health status poor/very poor (indicator)	Height (centimeters)	Completed grades of schooling	Asset index
Coefficient on rainfall in:					
Year −3	0.025 (0.084)	-0.114 (0.120)	1.505 (1.572)	-0.065 (0.992)	0.003 (0.424)
Year −2	-0.037 (0.103)	-0.013 (0.075)	0.854 (1.813)	-0.852 (1.670)	-0.426 (0.721)
Year -1	-0.080 (0.123)	-0.045 (0.088)	3.338 (2.155)	0.104 (1.332)	-0.380 (0.530)
Year 0	0.090 (0.067)	-0.179 (0.093)*	3.833 (1.420)**	1.598 (0.675)**	0.750 (0.399)*
Year 1	-0.008 (0.053)	-0.096 (0.067)	0.676 (1.592)	1.083	(0.203
Year 2	-0.041 (0.043)	-0.015 (0.068)	1.666 (0.984)	0.117 (0.840)	-0.229 (0.452)
Year 3	-0.020 (0.116)	-0.104 (0.067)	1.996 (1.774)	-0.135 (0.802)	0.088 (0.232)
Observations	4,613	4,613	4,495	4,598	4,613