Práctica 6

Hoja de actividades

Actividad 1. Dados los vectores $\vec{u} = (3, 5, -1, 0)$ y $\vec{v} = (1/2, 1/4, 1/3, -3)$, calcula

- (a) $\vec{u} \cdot \vec{v}$, $\|\vec{u}\|$ y $\|\vec{v}\|$
- (b) la distancia entre \vec{u} y \vec{v}
- (c) un vector unitario con la misma dirección que \vec{u}

Actividad 2. Sean los vectores $\vec{b}=(1,2,3)$ y $\vec{c}=(1,0,2)$.

- (a) Determina el valor de m para que el vector $\vec{y}=(m,-1,2)$ sea ortogonal a \vec{b} y a $\vec{c}.$
- (b) Calcula H^{\perp} siendo $H=<\vec{b},\vec{c}>$.
- (c) Comprueba que el vector \vec{y} obtenido en el apartado (a) pertenece a H^{\perp} .

Actividad 3. Sea $\vec{r}=(1,-2,4,-1)$ y sea $W=<\vec{r}>$

- (a) Calcula la proyección ortogonal del vector $\vec{x} = (3, 0, -3, 5)$ sobre W.
- (b) Calcula una base de W^{\perp} .
- (c) Comprueba que el vector obtenido en (a) es ortogonal a los vectores de la base de W^{\perp} .

Actividad 4. Sea $W = <\vec{u}_1, \vec{u}_2 > \textit{siendo} \ \vec{u}_1 = (-1, 2, 4) \ \textit{y} \ \vec{u}_2 = (4, -5, 1)$

- (a) Escribe la proyección ortogonal del vector $\vec{x}=(2,2,3)$ sobre W, $Proj_W(\vec{x})$, como combinación lineal de los vectores \vec{u}_1 y \vec{u}_2 .
- (b) Calcula $Proj_W(\vec{x})$ mediante la matriz proyección P_W . Comprueba que se obtiene el mismo resultado que en (a).
- (c) Calcula $Proj_W(\vec{z})$ y $Proj_W(\vec{t})$, siendo $\vec{z}=(-6,9,7)$ y $\vec{t}=(-22/3,-17/3,1)$. ¿Qué conclusión puedes sacar de los resultados obtenidos?

Actividad 5. Sea W un subespacio vectorial de \mathbb{R}^n . Demuestra que cualquier matriz proyección P_W es simétrica e idempotente $(P_W^2 = P_W)$.