Model-predictive policy learning with uncertainty regularisation for driving in dense traffic

Mikael Henaff*, Alfredo Canziani*, Yann LeCun

NYU Courant

Model based vs. model free

real world

Model based agent state \hat{c}_t cost

world model

 \overline{a}_t

real world

Model based

world model

agent state \overline{a}_t \hat{c}_t cost

real world Model predictive control s_t state action a_t Task cost a_t $s_{t=0}$ **MSE** \hat{c}_t cost \hat{s}_t world model world model

Cost (I)

Cost (II)

it's differentiable!

20 km/h 50 km/h

Outline

1. The world model

2. The agent

3. The evaluation

1. The world model

Predicting what's next, given history and action

World model

targets

Deterministic predictor-decoder

top view

Latent dropout

Latent dropout

2. The agent

Learning to act

real world

Planning with task cost

Agent model

Training the agent (I) $c_{\rm task} = c_{\rm proximity}$ Loss $\lambda_\ell c_{ m lane}$ Sample Sample Sample $\langle z_{t+1} \rangle$ $|z_{t+2}|$ z_t Loss Loss Loss World World World \hat{s}_{t+2} \hat{s}_{t+1} $s_{1:t}$ model model model \hat{a}_t π π π

Falling from the manifold

Falling from the manifold Imitating the experts

Forward model uncertainty (I)

 $u_{
m uncertainty}$

Forward model uncertainty (II)

Training the agent (III)

Loss

 $c_{\text{task}} + \lambda u_{\text{uncertainty}}$

Falling from the manifold Imitating the experts Minimising the uncertainty

3. The evaluation

Computing a performance metric

Model-predictive policy learning with uncertainty regularisation for driving in dense traffic

Model-predictive Policy learning with Uncertainty Regularisation

- Uncertainty regularisation
- Latent dropout for improving action sensitivity
- Large-scale data set of driving behaviour from traffic camera
- Additionally, we can "copy the past" with MPExpertR

Info

- Title: Prediction and Policy-learning Under Uncertainty (PPUU)
- Speaker: Alfredo Canziani 🔰 @alfcnz
- Collaborators:

 - Yann LeCun 🔰 @ylecun
- Slides: bit.ly/PPUU-slides
- Article: bit.ly/PPUU-article
- Code: available in PyTorch on bit.ly/PPUU-code
- Website: bit.ly/PPUU-web
- Poster: bit.ly/PPUU-poster