

Title

IST3032 Specification

240 High Voltage Common STN Driver

文件編號 DOC# IST-RD-0004

版次 Rev **005**

生效日期 Effective Date: 3/19/2008

Controlled by DCC

Copy List

Code Name	100	200	300	400	500	600	700
	HR	S/M	MFG	R&D	СН	QRA	MIS
Dept.	-			✓	✓	✓	

Title

IST3032 Specification

240 High Voltage Common STN Driver

IST-RD-0004	005
文件編號 DOC#	版次 Rev

生效日期 Effective Date: 3/19/2008

文件變更履歷頁

Document Change History

版次	變更項次	變更內容簡述	變更依據文件號碼	生效日期
Rev.	Change Items#	Change Description	ECN#	Eff. Date
001	-	New Release		Jun./19/'01
002		P2: correct block diagram	E10010008	10/23/2001
		P4: correct VEO item		
		P7: V0=2.7 to 5.5V-> 2.6 to 4.5V		
		P9: correct timing chart		
		P10: modify notes1,3		
003		P13: PAD CONFIGURATION	E01020011	1/28/2002
		P14: COG Align Key Coordinate		
		P15-P20:PAD CENTER OORDINATES		
004		P10:Current consumption	E03040003	3/25/2004
		$(1)LCC1:TBD = \frac{10}{40uA}$		
		(2)LCC2:TBD => typ/max = 20/50uA		
		$(3)ILCD:TBD = \frac{1}{2} yp/max = \frac{20}{50}uA$		
		P13: Add pin101 to pin105		
005		P6: Application Example	E03080004	3/19/2008
		x1 to x240→x240 to x1		
接網	賣頁 CONTINUA	ATION 是 YES; 图	S NO	

This document is the exclusive property of *IST* (Integrated Solutions Technology, Inc.) and shall not be reproduced or copied or transformed to any other format without prior permission of *IST* 本資料爲 聯合聚晶 專有之財產,非經許可,不得複製,翻印或轉變成其他形式使用.

High - Voltage 240 - Channel Common Driver for Dot - Matrix STN LCD

Description

The IST3032 is a 240-channel common driver which drives a dot matrix STN liquid – crystal panel. By changing the mode, this can be applied to 240-and 200- and 160- channel output. Through the use of a 40V high-voltage CMOS process technology, a high-voltage drive of +20 V and –20 V, centering on VM is possible. -20 V is generated from max +20 V with built-in switching circuit and external capacity. 3 V is used for logic drive. This device is used together with the segment driver IST3031.

Features

Display duty: Up to 1 / 240

LCD drive voltage: 40 V max

Built-in switching circuit (to generate –20V)

Number of LCD drive circuit: 240

Operating voltage: 2.5 to 5.5 V

Intermediate voltage I/F

Built-in alternating signal generation circuit

Pin programmable

Output mode change: 240-output mode

200-output mode

160-output mode

Built-in display-off function

Flex TCP

Pin Arrangement

Note: The shape above does not indicate the actual outline.

*1 VLCDL and VLCDR, and VEEL and VEER are internally connected.

2

*2 VHL and VHR, VLL and VLR, and VML and VMR are internally connected.

Internal Block Diagram

1. LCD drive circuit

This circuit selects and outputs the three level signals for the LCD drive. By a combination of the data in the shift register and M, either VH, VL, or VM is selected and transmitted to the output circuit.

2 Level shifter

This boosts a 5V signal to a high-voltage signal for LCD drive.

3. Shift register

This is a 240-bit bi-directional shift register circuit. The first line marker signal output from the DIO1 pin and DIO2 pin is sequentially shifted by shift clock CL. The shift direction is determined by the SHL pin.

4. Alternating signal generating circuit

This circuit generates an alternating signal, M signal for LCD display. To suppress cross-talk, the signal is alternated in a unit from several lines to several tens of lines. By connecting MWS0 to MWS4 pins to Vcc or GND, the desired number of signals can be alternated. When alternating signals are externally input, all pins, MWS0 to MWS4 are connected to GND.

HIGH VOLTAGE driver timing

Pin Functions

Classification	Symbol	Connected to	1/0	Functions
Power supply	VLCDL, R VEEL, R VCC GND	Power supply	-	VLCDL, R – VEEL, R : Power supply for LCD drive VLCDL, R : Power supply for switch circuit VCC – GND : Power supply for logic circuit
	VHL, R VLL, R VML, R	Power supply	Input	Power supply for LCD drive level VHL, R: selected level; Set to the same voltage as VLCDL, R. VLL, R: selected level; set to the same voltage as VEEL, R. VML, R: Non-selected level and Power supply for switch circuit
	VEO	VEEL, R	output	When using built-in switching circuit and generate VEE, VEO pin should be connect to VEEL, R pins. VM voltage is point of reference. VLCD – voltage is reversed and output as VEE. If built-in switching circuit is not used, don't connect any lines to this pin.
	C1, C2	Capacitance	-	External capacitance should be connected when using the switch circuit for generate VEE. If built-in switching circuit is not used, don't connect any lines to this pin.
Control signal	CL	MPU	Input	Shift clock input data is shifted at the falling edge of shift clock, CL of the shift register.
oigilai	М	Extension driver or MPU	I/O	Inputs or outputs the alternating current for LCD drive output.
	MWS0 MWS1 MWS2 MWS3 MWS4	-	Input	This pin specifies the cycle of the alternating signal, M signal in the unit of the number of lines. The number of lines, which is an integer from 2 to 31, is specified as follows. Usually, specify the number of lines within a range from 10 to 31. When the IST3032 is driven by an external alternating signal, specify the number of lines as zero. M-pin status O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	MODE0 MODE1		Input	Switch terminals for the number of LCD drive output pins MODE MODE 0 1 Shift direction "H" "H" 240-output (X1,X2,X3X238,X239,X240) "H" "L" 200-output (X21,X22,X23X218,X219,X220) "L" "H" 160-output (X41,X42,X43X198,X199,X200) "L" "L" Prohibited
	DIO1 DIO2	Extension driver or MPU	I/O	Serial data input/output pin; input/output pins for sift register SHL DIO1 DIO2 "H" level serial output pin serial input pin "L" level serial input pin serial output pin
	CCL	MPU	Input	Built-in switching circuit clock input. When using built-in switching circuit and generating VEE, this pin connect CL pin. If built-in switching circuit is not used, CCL must be fixed to GND
	AMP	VCC Or GND	Input	Built-in switching circuit on-off control When using built-in switching circuit, this pin must be fixed to VCC. If built-in switching circuit is not used, this pin must be fixed to GND

Pin Functions (cont)

Classification	Symbol	Connected to	1/0	Functions				
Control signal	/RESET	MPU or VCC	Input	Setting this pin to GND initializes the alternating signal (M signa) circuit. A VCC level RESET is nomally used.				
	/DISP	MPU	Input	Setting this pin to GND sets LCD drive output X1 to X240 to the VM level.				
	/M/S	-	Input	Controls the display-off function. And display-off signal output from /DOC pin /M/S /DISP pin state and functions "H"level When /DISP is low level. X1-240 set VM level "L"level Until 16 times serial data is input into DIO, X1-X240 set VM level.				
	/DOC	-	Output	/M/S /DOC "H"level When /DISP is low level, output low level When /DISP is high level, output high level Unitl 16 times serial data is input, output low level				
				"L"level DIO1,2 DIO1,2 DIO1,2 DIO1,2 DIO1,2 DIO1,2 DIO1,2 DIOC DIO should be connected to SEG LSI Dispoff control pin.				
LCD drive	SHL	-	Input	This pin switches shift resister directions. SHL MODE0 MODE1 Shift direction Right shift "H" "H" DIO2→SR1→→SR240→DIO1 "H" "H" DIO2→SR21→→SR220→DIO1 "L" "H" DIO2→SR41→→SR220→DIO1 Left shift "H" "H" DIO1→SR240→→SR1→DIO2 "L" "H" DIO1→SR220→→SR21→DIO2 "L" "H" DIO1→SR200→→SR41→DIO2 SR1, SR2SR240 correspond to X1, X2X240. Note: The 40 or 80 pins invalidated at the 200-output or 160-output mode output the non-selected level synchronized with M signal; These pins should be used open.				
output	X1 to X240	LCD	Output	LCD drive output By a combination of the display data and the M signal, when /DISP is set to Vcc, either VH, VL, or VM is selected and transmitted to the output circuit. M D Output level				

Note: Configuring the LCD panel using the IST3032 when using the select SEGMENT driver. The select SEGMENT driver.

THE COICE CECIMENT GIVEN	
SEGMENT	Select
IST3031(320OUT)	0

Application Example

Figure 1 shows an application example of 320 x 3(color) x 240 dot Quarter VGA Size STN color panel. This panel consist on IST3032 x 1 piece and IST3031 x 3 pieces.

IST3032 generate M signal and DOC signal. M signal pin is connected M signal pin of IST3031 and DOC signal pin is connected DISP signal pin of IST3031

IST3032 is able to generates minus voltage by external capacitor, CO.

VEO pin is connected VEE pin VL pin.

Figure 1 Application Example

Note

- 1. When designing the board, connect a capacitor near the IC to stabilize power supply. Use two capacitors of about 0.1 µF for each IC, between Vcc and GND, V0 and GND, VLCD and GND, and VEE and GND.
- 2. In addition, for the power supply circuit, connect a capacitor of several μF or several tens of μF between the drive power supply and level power supply in the period between when the liquid-crystal drive power supply is turned on and when it is turned off.
- 3. when using external capacitor, CO to generate VEE, connect a capacitor of several μF or several tens of μF between the VEE and GND.

6

Power Supply Circuit Example

Figure 2 Shows power supply circuits example By using 3 level power supply output DC-DC converter, LCD power supply circuit is established without minus voltage power supply. +20.0V (DC-DC **CONVERTER** +3.0 to 5.0V Ċ **VCC** SEG COM Driver Driver +2.6 to 4.5V (LSI IST3032 VM **GND GND VEO** VL **VEE** CA **External Capacitor** C1 C2 (between 2.2 to 4.7µF) C0 **External Capacitor** (between 2.2 to 4.7μ F) **Figure 2 Power Supply Circuits Example**

7

Absolute Maximum Ratings

Items		Symbol	Ratings	Unit	Note
	Logic circuit	VCC	-0.3 to +7.0	V	*1, *8
Power supply voltage	LCD drive circuit	VLCD	-0.3 to +25.0	V	*1, *3, *8
	LCD drive circuit	VEE	-20.0 to +0.3	V	*1, *4, *8
Input voltage (1)		VT1	-0.3 to VCC +0.3	V	*1, *2
Input voltage (2)		VH	-0.3 to VLCD	V	*1, *5, *8
Input voltage (3)		VL	-0.3 to +VEE	V	*1, *6, *8
Input voltage (4)		VM	-0.3 to +5.0	V	*1, *7, *8
Operating temperature		Topr	-30 to +75	°C	
Storage temperature		Tstg	-55 to +110	°C	

Note: If the LSI is used beyond the above maximum ratings, it may be permanently damaged.

It should always be used within its specified operating range for normal operation to prevent malfunction or degraded reliability.

- *1 The reference point is GND (0V).
- *2 Applies to DIO1, /DISP, SHL, M, NWS0, NWS1, NWS2, NWS3, NWS4, /RESET, MODE0, MODE1, CL, /M/S, AMP, CCL, DIO2*3 Applies to VLCDL, R pin.
- *4 Applies to VHL, R pin.
- *5 Applies to VEEL, R pin.
- *6 Applies to VLL, R pin.
- *7 Applicable to VML, R pins.

(Caution)

Operating the LSI in excess of the absolute maximum rating will result in permanent damage. Use the LSI observing electrical characteristic conditions in normal operation. Exceeding the conditions will cause malfunctions or will affect LSI reliability.

*8 Follow the sequence of activation and inactivation for the following power supplies and signals.

And this sequence should be applied when using built-in switching circuit.

If the sequence is not followed, it may cause LSI malfunction, permanent damage, or adverse effects.

Document No.:IST-RD-0004 Version: 005

8.1 Power on

(0 ms: Minimum specification)

- (1) Turn on the power supply in the order of GND-VCC, GND-VLCD(VH), and VM. VM-VEE is generated automatically. In this case, input GND to the /DISP pin.
- (2) The LCD level forcibly outputs the VM level by the DISPOFF function.
- (3) The DISPOFF function has a priority even if input signal distortion occurs immediately after VCC input.
- (4) Then input the predetermined signals to initialize the driver registers. In this case, assure a period for more than one frame.
- (5) Preparation for normal display is thus completed. Cancel the DISPOFF function by setting the /DISP pin to VCC. At this point, the levels of VEE (VL), VLCD (VH) and VM must have reached the predetermined respective voltage.
- 8.2 Shut down

As a rule, shut down should be in the opposite order that is used for power on.

- (1) Set the /DISP pin to GND.
- (2) At first shut off the LCD power supply GND-VLCD (VH). At the same time VM-VEE (VL) automatically get to VM level. Next shut off the VM.
- (3) Set VCC and the input signal to GND.

At this point, VEE (VL), VLCD (VH) and VM pin input must completely drop to 0 V.

Since the DISPOFF function is inactivated when the VCC level drops to GND, the LCD output may output a level other than VM. Therefore, an incorrect display may appear at shut down or power on.

9

Electrical Characteristics

DC Characteristics 1 (VCC= 2.5 to 5.5V, GND = 0V, VLCD - VEE = 15 to 40V, Ta = -30 to +75°C)

Item	Symbol	Applicable Pins	min.	typ.	max	Unit	Conditions	Notes
Input high level voltage	ViH	DIO1,/DISP,SHL,M,/M/ S,MWS 0 to 4,RESET,	0.7xVCC	ı	VCC	٧		
Input low level voltage	ViL	CL,MODE0,MODE1, /DOC,AMP,CCL,DIO2	0	ı	0.3xVCC	V		
Output high level voltage	VOH	M,/DOC,DIO1,DIO2	VCC -0.4	-	-	٧	IOH=-0.4mA	
Output low level voltage	VOL	M,/DOC,DIO1,DIO2	-	-	0.4	>	IOL=0.4mA	
On resistance between Vi-Xj	RON	X1 to Y240, V pin	1	0.7	2.0	ΚΩ	ION=150μA	*1
Input leak current (1)	LiL1	DIO1,/DISP,SHL,M,/M/ S,MWS 0 to 4,/RESET, CL,MODE0,MODE1, /DOC,AMP,CCL,DIO2	-5	-	5	μA	VIN=V _{CC} to GND	
Input leak current (2)	LiL2	VH,VL,VM,C1,C2	-25	-	25	μA)	
Current consumption (1)	LCC1	VCC	-	10	40		V_{CC} =3.3V, V_{LCD} - V_{EE} =40V fCL=19.2kHz,fM=1.5kHz	
Current consumption (2)	LCC2	VCC		20	50	μΑ	V_{CC} =5.0V, V_{LCD} - V_{EE} =40V fCL=19.2kHz,fM=1.5kHz	
Current consumption (2)	ILCD	CLCD	-	25	50		V_{CC} =3.3V, V_{LCD} - V_{EE} =40V fCL=19.2kHz,fM=1.5kHz	*2

- *1 Indicates the resistance between one of the pins X1-X240 and one of the voltage supply pins VH, VL, or VM, When load current is applied to the X pin; defined under the following conditions: VLCD=VH=22.75V, VEE=VL=-17.25V, VM=2.75V, and GND=0V. VH, VL, and VM voltage must be within VLCD-VM ≥ VH-VM =21.5 to 7.5V VEE-VM ≤ VL-VM=-21.5 to -7.5V, 6.0 ≥ VM ≥ -0.3V, and VH > VM > VL.
- *2 Input and output currents are excluded. When a CMOS input is left floating, excess current flows from the power supply through the input circuit. To avoid this, ViH and ViL must be held at VCC and GND, respectively.
- *3 The voltage relationship of each signal is as follows:

Document No.:IST-RD-0004 Version: 005

Normal	display period Off-c	display Period Normal displa	ay period Off-display	
--------	----------------------	---------------------------------	-----------------------	--

AC characteristics (Common driver timing 1):(VCC = 2.5 to 5.5V, GND =V0, VLCD-VEE = 15 to 40V, Ta = -30 to +75°C)

Item Symbol		Pin Name	Min	Max	Unit	Note
Clock cycle time	tCYC	CL	400	-	ns	
CL high-level width	tCWH	CL	25	-	ns	
CL low-level width	tCWL	CL	370	-	ns	
CL rising time	tr	CL	-	30	ns	
CL falling time	tf	CL	-	30	ns	
Data set-up time	tDS	DIO1, DIO2, CL	100	-	ns	
Data hold time	tDH	DIO1, DIO2, CL	10	_	ns	
Data output delay time	tDD	DIO1, DIO2, CL	=	150	ns	*1
M output delay time	tMD	M, CL	-	150	ns	*1
M setup time	tMS	M, CL	20	-	ns	
M hold time	tMH	M, CL	20	→ ₩	ns	
DOC delay time 1	tDOC1	/DISP, /DOC	-	300	ns	*2
DOC delay time 2	tDOC2	DIO1,DIO2,/DOC	-	300	ns	*2

AC characteristics (Common driver timing 2):(VCC = 2.5 to 4.5V, GND =V0, VLCD-VEE = 40V, Ta = -30 to +75°C)

ltem	Symbol	Pin Name	Min	Max	Unit	Note
Output delay time 1	tpd1	X(n), M	-	1.2	μs	*2

AC characteristics (Common driver timing 3):(VCC = 4.5 to 5.5V, GND =V0, VLCD-VEE = 40V, Ta = -30 to +75°C)

Item	Symbol 🖕	Pin Name	Min	Max	Unit	Note
Output delay time 1	tpd1	X(n), M	-	0.7	μs	*2

Notes: *1. Defined by connecting the load circuit shown in figure 4

*2. Defined by connecting the load circuit shown in figure 4

Figure 4 Load circuit

Document No.:IST-RD-0004 Version: 005

11 Mar.2008

PAD CONFIGURATION:

Figure 1: IST3032 Chip Configuration

Table 1. IST3032 Pad Dimensions

Item	Pad No.	Si	ze	Unit
Item	Tuu Tvo.	X	Y	Omt
Chip size	364	13690	940	
Pad pitch	114~356	55 (min)	
	1~29,107~113, 357~363	80	40	
Bumped pad size	30~39,41~46,48, 49,52,53,56,57, 60,61,64,65,70, 71,73,74,76~79, 81,82,84,85, 89~92,94,95,97, 98,101~105	40	80	um
	114~356 (*1)	40	80	
	40,47,50,51,54, 55,58,59,62,63, 66,67~69,72,75, 80,83,86~88,93, 96,99,100	64	80	
	106,364	80	64	
Bumped pad height	All pads	1	5	

COG Align Key Coordinate:

Right-Down

14

PAD CENTER COORDINATES:

Table 2: Pad Center Coordinates

Unit: um

PAD	PAD COORDINATES		PAD	PAD	COORDINATES		
NO	NAME	X	Y	NO	NAME	X	Y
1	DUMMY	-6607.8	-420	31	VEO	-3447.6	-400
2	DUMMY	-6502.8	-420	32	C1	-3260.4	-400
3	DUMMY	-6397.8	-420	33	C1	-3200.4	-400
4	DUMMY	-6292.8	-420	34	C2	-3003.5	-400
5	DUMMY	-6187.8	-420	35	C2	-2943.5	-400
6	DUMMY	-6082.8	-420	36	DUMMY	-2723.5	-400
7	DUMMY	-5977.8	-420	37	DUMMY	-2663.5	-400
8	DUMMY	-5872.8	-420	38	DUMMY	-2515.5	-400
9	DUMMY	-5767.8	-420	39	DUMMY	-2455.5	-400
10	DUMMY	-5662.8	-420	40	GNDC	-2340	-400
11	DUMMY	-5557.8	-420	41	DIO2	-2127.5	-400
12	DUMMY	-5452.8	-420	42	DIO2	-2067.5	-400
13	DUMMY	-5347.8	-420	43	M	-1887.9	-400
14	DUMMY	-5242.8	-420	44	M	-1827.9	-400
15	DUMMY	-5137.8	-420	45	RESETB	-1631.7	-400
16	DUMMY	-5032.8	-420	46	RESETB	-1571.7	-400
17	DUMMY	-4927.8	-420	47	GNDC	-1432.4	-400
18	DUMMY	-4822.8	-420	48	MWS4	-1219.9	-400
19	DUMMY	-4717.8	-420	49	MWS4	-1159.9	-400
20	DUMMY	-4612.8	-420	50	GNDC	-1020.6	-400
21	DUMMY	-4507.8	-420	51	VDDC	-851.7	-400
22	DUMMY	-4402.8	-420	52	MWS3	-634	-400
23	DUMMY	-4297.8	-420	53	MWS3	-574	-400
24	DUMMY	-4192.8	-420	54	GNDC	-434.7	-400
25	DUMMY	-4087.8	-420	55	VDDC	-265.8	-400
26	DUMMY	-3982.8	-420	56	MWS2	-48.1	-400
27	DUMMY	-3877.8	-420	57	MWS2	11.9	-400
28	DUMMY	-3772.8	-420	58	GNDC	151.2	-400
29	DUMMY	-3667.8	-420	59	VDDC	320.1	-400
30	VEO	-3507.6	-400	60	MWS1	537.8	-400

15

Table 2 : Pad Center Coordinates (Continued)

						Unit: um			
PAD	PAD	COORDI	NATES	PAD	PAD	COORDINATES			
NO	NAME	X	Y	NO	NAME	X	Y		
61	MWS1	597.8	-400	96	VDDC	5637	-400		
62	GNDC	737.1	-400	97	DIO1	5789.6	-400		
63	VDDC	906	-400	98	DIO1	5849.6	-400		
64	MWS0	1128.5	-400	99	VDDC	5993.9	-400		
65	MWS0	1188.5	-400	100	GNDC	6161.6	-400		
66	GNDC	1327.8	-400	101	DUMMY	6315	-400		
67	VDD	1496.7	-400	102	DUMMY	6375	-400		
68	VDD	1670.8	-400	103	DUMMY	6435	-400		
69	VDD	1844.9	-400	104	DUMMY	6495	-400		
70	MODE1	2062.6	-400	105	DUMMY	6555	-400		
71	MODE1	2122.6	-400	106	DUMMY	6774.3	-408		
72	GNDC	2261.9	-400	107	VEER	6774.3	-250.4		
73	MODE0	2474.4	-400	108	VLR	6774.3	-190.4		
74	MODE0	2534.4	-400	109	VMR	6774.3	-60.6		
75	VDDC	2678.7	-400	110	VMR	6774.3	-0.6		
76	DOCB	2896.4	-400	111	VHR	6774.3	201.7		
77	DOCB	2956.4	-400	112	VLCDR	6774.3	261.7		
78	DISPOFFB	3144.3	-400	113	DUMMY	6774.3	321.7		
79	DISPOFFB	3204.3	-400	114	DUMMY	6637.8	410		
80	GNDC	3343.6	-400	115	X240	6582.8	410		
81	AMP	3556.1	-400	116	X239	6527.8	410		
82	AMP	3616.1	-400	117	X238	6472.8	410		
83	VDDC	3760.4	-400	118	X237	6417.8	410		
84	SHL	3978.1	-400	119	X236	6362.8	410		
85	SHL	4038.1	-400	120	X235	6307.8	410		
86	GND	4177.4	-400	121	X234	6252.8	410		
87	GND	4336.4	-400	122	X233	6197.8	410		
88	GND	4495.5	-400	123	X232	6142.8	410		
89	CL	4708	-400	124	X231	6087.8	410		
90	CL	4768	-400	125	X230	6032.8	410		
91	CCL	4955.9	-400	126	X229	5977.8	410		
92	CCL	5015.9	-400	127	X228	5922.8	410		
93	GNDC	5220.1	-400	128	X227	5867.8	410		
94	/M/S	5367.6	-400	129	X226	5812.8	410		
95	/M/S	5427.6	-400	130	X225	5757.8	410		

Table 2 : Pad Center Coordinates (Continued)

						Unit : um			
PAD	PAD	COORDI	INATES	PAD	PAD	COORDINATES			
NO	NAME	X	Y	NO	NAME	X	Y		
131	X224	5702.8	410	166	X189	3777.8	410		
132	X223	5647.8	410	167	X188	3722.8	410		
133	X222	5592.8	410	168	X187	3667.8	410		
134	X221	5537.8	410	169	X186	3612.8	410		
135	X220	5482.8	410	170	X185	3557.8	410		
136	X219	5427.8	410	171	X184	3502.8	410		
137	X218	5372.8	410	172	X183	3447.8	410		
138	X217	5317.8	410	173	X182	3392.8	410		
139	X216	5262.8	410	174	X181	3337.8	410		
140	X215	5207.8	410	175	X180	3282.8	410		
141	X214	5152.8	410	176	X179	3227.8	410		
142	X213	5097.8	410	177	X178	3172.8	410		
143	X212	5042.8	410	178	X177	3117.8	410		
144	X211	4987.8	410	179	X176	3062.8	410		
145	X210	4932.8	410	180	X175	3007.8	410		
146	X209	4877.8	410	181	X174	2952.8	410		
147	X208	4822.8	410	182	X173	2897.8	410		
148	X207	4767.8	410	183	X172	2842.8	410		
149	X206	4712.8	410	184	X171	2787.8	410		
150	X205	4657.8	410	185	X170	2732.8	410		
151	X204	4602.8	410	186	X169	2677.8	410		
152	X203	4547.8	410	187	X168	2622.8	410		
153	X202	4492.8	410	188	X167	2567.8	410		
154	X201	4437.8	410	189	X166	2512.8	410		
155	X200	4382.8	410	190	X165	2457.8	410		
156	X199	4327.8	410	191	X164	2402.8	410		
157	X198	4272.8	410	192	X163	2347.8	410		
158	X197	4217.8	410	193	X162	2292.8	410		
159	X196	4162.8	410	194	X161	2237.8	410		
160	X195	4107.8	410	195	X160	2182.8	410		
161	X194	4052.8	410	196	X159	2127.8	410		
162	X193	3997.8	410	197	X158	2072.8	410		
163	X192	3942.8	410	198	X157	2017.8	410		
164	X191	3887.8	410	199	X156	1962.8	410		
165	X190	3832.8	410	200	X155	1907.8	410		

Table 2 : Pad Center Coordinates (Continued)

						Unit: um			
PAD	PAD	COORDINATES		PAD	PAD	COORDINATES			
NO	NAME	X	Y	NO	NAME	X	Y		
201	X154	1852.8	410	236	X119	-72.2	410		
202	X153	1797.8	410	237	X118	-127.2	410		
203	X152	1742.8	410	238	X117	-182.2	410		
204	X151	1687.8	410	239	X116	-237.2	410		
205	X150	1632.8	410	240	X115	-292.2	410		
206	X149	1577.8	410	241	X114	-347.2	410		
207	X148	1522.8	410	242	X113	-402.2	410		
208	X147	1467.8	410	243	X112	-457.2	410		
209	X146	1412.8	410	244	X111	-512.2	410		
210	X145	1357.8	410	245	X110	-567.2	410		
211	X144	1302.8	410	246	X109	-622.2	410		
212	X143	1247.8	410	247	X108	-677.2	410		
213	X142	1192.8	410	248	X107	-732.2	410		
214	X141	1137.8	410	249	X106	-787.2	410		
215	X140	1082.8	410	250	X105	-842.2	410		
216	X139	1027.8	410	251	X104	-897.2	410		
217	X138	972.8	410	252	X103	-952.2	410		
218	X137	917.8	410	253	X102	-1007.2	410		
219	X136	862.8	410	254	X101	-1062.2	410		
220	X135	807.8	410	255	X100	-1117.2	410		
221	X134	752.8	410	256	X99	-1172.2	410		
222	X133	697.8	410	257	X98	-1227.2	410		
223	X132	642.8	410	258	X97	-1282.2	410		
224	X131	587.8	410	259	X96	-1337.2	410		
225	X130	532.8	410	260	X95	-1392.2	410		
226	X129	477.8	410	261	X94	-1447.2	410		
227	X128	422.8	410	262	X93	-1502.2	410		
228	X127	367.8	410	263	X92	-1557.2	410		
229	X126	312.8	410	264	X91	-1612.2	410		
230	X125	257.8	410	265	X90	-1667.2	410		
231	X124	202.8	410	266	X89	-1722.2	410		
232	X123	147.8	410	267	X88	-1777.2	410		
233	X122	92.8	410	268	X87	-1832.2	410		
234	X121	37.8	410	269	X86	-1887.2	410		
235	X120	-17.2	410	270	X85	-1942.2	410		

Document No.:IST-RD-0004 Version: 005

Table 2 : Pad Center Coordinates (Continued)

						Unit : um				
PAD	PAD	COORDINATES		PAD	PAD	COORDINATES				
NO	NAME	X	Y	NO	NAME	X	Y			
271	X84	-1997.2	410	306	X49	-3922.2	410			
272	X83	-2052.2	410	307	X48	-3977.2	410			
273	X82	-2107.2	410	308	X47	-4032.2	410			
274	X81	-2162.2	410	309	X46	-4087.2	410			
275	X80	-2217.2	410	310	X45	-4142.2	410			
276	X79	-2272.2	410	311	X44	-4197.2	410			
277	X78	-2327.2	410	312	X43	-4252.2	410			
278	X77	-2382.2	410	313	X42	-4307.2	410			
279	X76	-2437.2	410	314	X41	-4362.2	410			
280	X75	-2492.2	410	315	X40	-4417.2	410			
281	X74	-2547.2	410	316	X39	-4472.2	410			
282	X73	-2602.2	410	317	X38	-4527.2	410			
283	X72	-2657.2	410	318	X37	-4582.2	410			
284	X71	-2712.2	410	319	X36	-4637.2	410			
285	X70	-2767.2	410	320	X35	-4692.2	410			
286	X69	-2822.2	410	321	X34	-4747.2	410			
287	X68	-2877.2	410	322	X33	-4802.2	410			
288	X67	-2932.2	410	323	X32	-4857.2	410			
289	X66	-2987.2	410	324	X31	-4912.2	410			
290	X65	-3042.2	410	325	X30	-4967.2	410			
291	X64	-3097.2	410	326	X29	-5022.2	410			
292	X63	-3152.2	410	327	X28	-5077.2	410			
293	X62	-3207.2	410	328	X27	-5132.2	410			
294	X61	-3262.2	410	329	X26	-5187.2	410			
295	X60	-3317.2	410	330	X25	-5242.2	410			
296	X59	-3372.2	410	331	X24	-5297.2	410			
297	X58	-3427.2	410	332	X23	-5352.2	410			
298	X57	-3482.2	410	333	X22	-5407.2	410			
299	X56	-3537.2	410	334	X21	-5462.2	410			
300	X55	-3592.2	410	335	X20	-5517.2	410			
301	X54	-3647.2	410	336	X19	-5572.2	410			
302	X53	-3702.2	410	337	X18	-5627.2	410			
303	X52	-3757.2	410	338	X17	-5682.2	410			
304	X51	-3812.2	410	339	X16	-5737.2	410			
305	X50	-3867.2	410	340	X15	-5792.2	410			

Table 2 : Pad Center Coordinates (Continued)

PAD	PAD	COORDI	COORDINATES		PAD	COORDINATES	
NO	NAME	X	Y	NO	NAME	X	Y
341	X14	-5847.2	410	353	X2	-6507.2	410
342	X13	-5902.2	410	354	X1	-6562.2	410
343	X12	-5957.2	410	355	DUMMY	-6617.2	410
344	X11	-6012.2	410	356	DUMMY	-6672.2	410
345	X10	-6067.2	410	357	DUMMY	-6774.3	321.7
346	X9	-6122.2	410	358	VLCDL	-6774.3	261.7
347	X8	-6177.2	410	359	VHL	-6774.3	201.7
348	X7	-6232.2	410	360	VML •	-6774.3	-0.6
349	X6	-6287.2	410	361	VML	-6774.3	-60.6
350	X5	-6342.2	410	362	VLL	-6774.3	-190.4
351	X4	-6397.2	410	363	VEEL	-6774.3	-250.4
352	X3	-6452.2	410	364	DUMMY	-6774.25	-407.8