(Evaluation & Measurement of Hypothesis Testing) 1) Ho: P=0.7 H1: P = 0.7 Level of significance = d=01 test stat.: binomial ral. X with P=0.7, N=15 X= 0 & NPO = 15 x 0.4 = 10.5 $P = 2P(Y \in Q \text{ when } p = 0.7)$ $= 2 \leq b(x; 15, 0.7)$ = 2 × 0.1311 (Beam binomial peob. fable) : P> 0.1 i.e. P70 .. do not egect Ho. Conclude that There is insufficient season to doubt the builders claim. 2) Ho: P=06 gren, n=100, p=06 4: P70.C a = 0.05 2 = 21-nPG 1 n ro 20 $= 90 - 100 \times 0.6 = 2.04$ J100x0,6x0,4 P = P(Z72.04) = 0.0207 (Beom table) as PZA, seject Ho & conclude that new day

Tutorial-5

3) Let
$$P_1$$
 be peoportion of Mumbai vokes

 P_2 be peoportion of succounding area goridents.

 P_3 be peoportion of succounding area goridents.

 P_4 = 0.0 = 0.0, P_2 = 2h 0 = 0.112, P_p = 120+1240 = 0.514

 P_4 = 0.05

Hyprothesis: Ho: $P_1 \leq P_2$
 P_4 = 0.6 - 0.42

 P_4 = 0.6 - 0.42

 P_4 = 0.6 - 0.42

 P_4 = 0.514 (1.0.514) ($\frac{1}{200}$ + $\frac{1}{200}$)

 P_4 = 2.869 = P_4 = 0.0044

now, as P_4 x, reject the and conclude that the proportion of Numbai voters favouring the peoposal is higher than proportion of succounding area voters.

the ceitical region is in right fail. m)a) Ho: P=0.2 H1: P70.2

the ceitical exgion is in both tails. b) Ho: M= 3

the certical region is in left Last. H: NFS C) Ho: P \$ 0.15

H : PC 0.15 The certical region is in reglet fail.

d) No: H= 500 H1: 47500

the actival egion is in both faith. e) No: M=15

M1: M715

5) Let M, = population mean "sobustness" - laptops
H, = "" " " - company B Ho: M,=M2 & = 0.05 M,: M, #M2 & = 0.05 $X_i = 1 = 1 = 10$ $X_i = 1 = 10$ $X_i = 1 = 10$ $X_i = 1 = 10$ $\bar{X}_{2} = \frac{1}{n_{2}} \sum_{k=1}^{\infty} X_{1} = \frac{1}{1} \frac{10}{1} = \frac{1}{1$:- \$ = 10.26 $8^{2} = \frac{1}{n_{1}-1}(\frac{8}{2}n_{1}^{2}, -n_{1}n_{2}^{2}) = \frac{10.865}{9} = 1.207$ $8_{1}^{2} = 1$ $\left(\frac{2}{2}x_{4}^{2} - n_{2}x_{2}^{2}\right) = 2.924 = 0.325$ as sample variances are very different, we cannot assume population variances equal, so use the 'unpooled t-test', $V = \frac{\left(\frac{31}{N_1} + \frac{82}{N_2}\right)^2}{\frac{1}{N_1 + \left(\frac{51^2}{N_1}\right)^2 + \frac{1}{N_2 + \left(\frac{92^2}{N_2}\right)^2}}{\frac{1}{9}\left(\frac{(.207)^4}{10}\right)^4 + \frac{1}{9}\left(\frac{0.325}{10}\right)^2}$: V = 10.30 210 21,-12-(11-12) the test statistic used to test hypo. is T= V 312+ 122 which under the null hypothesis, follows appearinately todistribution with v=10 degrees of bleedom. Under null hypo, (M-M2) = 0 is value of T = 9.95-10.26 Since the test is two-sided, 10 10 10 the value of test is the doubled area under density curve of for the absolute value of feet |t| = |-5.9| = 5.9 i.e. p-value = 2P(T7, 1t|) = 2P(T7, 5.9) to.oous(10) = 4.887 e.since ffl = 5.9 i.s. even $geeater than P(T7, 5.9) \ge 0.0005 \text{ 80,}$ $P-value \ge 0.001$ are $P \ge \alpha$, egget null hypo,, conclude that the mean 'sobustness' of laptop is not same for both companies.