ASIMPTOTSKO PONAŠANJE

Strukture podataka i algoritmi 1

Oznake

- Asimptotska gornja granica O (veliko O)
- Asimptotska donja granica Ω
- □ Još neke oznake Θ i o
- Asimptotska analiza nekih algoritama

Veliko O - definicija

- Asimptotska gornja granica O
- □ Posmatrajmo funkciju f(n) koja je ne-negativna za sve prirodne brojeve n >= 0.
- □ Kažemo da je f(n)=O(g(n)) ako postoji prirodan broj n_o i konstanta c>0 tako da za sve brojeve $n>=n_o$, važi f(n)<=cg(n).

Primer

- □ Posmatrajmo funkciju f(n)=8n+128.
- $\Box f(n) = O(n^2)$?

$$f(n) \le cn^2, c = 1$$

$$\Rightarrow 8n + 128 \le n^2$$

$$\Rightarrow 0 \le n^2 - 8n - 128$$

$$\Rightarrow 0 \le (n - 16)(n + 8)$$

$$\forall n \ge 0, (n + 8) > 0$$

$$(n_0 - 16) \ge 0 \Rightarrow n_0 = 16$$

Veliko O zablude

- □ Zabluda 1: $f_1(n) = O(g(n)) \land f_2(n) = O(g(n)) \Rightarrow f_1(n) = f_2(n)$
 - Primer:

$$f_1(n) = n \land f_2(n) = n^2, f_1(n) = O(n^2) \land f_2(n) = O(n^2), f_1(n) \neq f_2(n)$$

- □ Zabluda 2: $f(n) = O(g(n)) \Rightarrow g(n) = O^{-1}(f(n))$
 - Nije jednakost u matematičkom smislu

Osobine velikog O

Aditivnost

$$f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

Aditivnost opet

$$(f(n) = f_1(n) + f_2(n))$$

$$\wedge (\forall n \ge 0 \Rightarrow f_1(n), f_2(n) > 0)$$

$$\wedge (\lim_{n \to \infty} \frac{f_2(n)}{f_1(n)} = L, L \ge 0) \Rightarrow$$

$$\Rightarrow f(n) = O(f_1(n))$$

Proizvod

$$f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow f_1(n) \lor f_2(n) = O((g_1(n) \lor g_2(n)))$$

Proizvod opet

$$(f_1(n) = O(g_1(n)))$$

$$\wedge (\forall n \ge 0 \Rightarrow g_2(n) > 0) \Rightarrow$$

$$\Rightarrow f_1(n) \times g_2(n) = O(g_1(n) \times g_2(n))$$

Tranzitivnost

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

Polinomi i algoritmi

- **Za svaki polinom** $f(n) = \sum_{i=0}^{m} a_i n^i = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n^1 + a_0$
- \Box važi $f(n) = O(n^m)$
- □ Za logaritme važi $\forall k \in N, k \ge 1 \Rightarrow \log^k n = O(n)$

Tesno ograničenje

- Veliko O daje informaciju samo o gornjem ograničenju, bez predstave o tome koliko je funkcija bliska asimptotskom ponašanju.
- Tesno ograničenje: razmotrimo funkcije f(n)=O(g(n)). Ako za svaku funkciju h(n) takvu da je f(n)=O(h(n)) i važi da je g(n)=O(h(n)) onda kažemo da je funkcija g(n) tesno asimptotsko ograničenje za funkciju f(n).

Još veliko O zablude

□ Zabluda 3:

$$f(n), g_1(n), g_2(n) \ge 0, f(n) = g_1(n) \times g_2(n)$$

$$\forall n \ge 0, f(n) \le cg_1(n)$$
if $c = g_2(n) \Rightarrow f(n) = O(g_1(n))$

- $lue{c}$ mora biti konstanta, ne funkcija od n

□ Zabluda 4:
$$f_1(n), f_2(n), g_1(n), g_2(n) \ge 0,$$
 $f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n))$ $\forall n \ge 0, g_1(n) < g_2(n) \Rightarrow$ $\exists n_0, f_1(n_0) < f_2(n_0)$

□ Zabluda 5:

$$f(n), g(n) \ge 0,$$

 $f(n) = O(g(n)) \text{ xor } g(n) = O(f(n))$

Konvencije za pisanje

- Ukloniti sve osim značajnog terma
 - □ Primer $O(n^2 + n \log n + n) \rightarrow O(n^2)$
- Ukloniti konstante
 - Primer

$$O(3n^2) \rightarrow O(n^2)$$

$$O(1024) \rightarrow O(1)$$

Primer(1)

- Razmotrimo problem u kojem se procesira n podataka.
- Razmatramo nekoliko algoritama koji rešavaju ovaj isti problem. Pretpostavimo da su njihove vremenske složenosti date sledećim funkcijama:

$0.3 \log_2 n$	sekundi
0.1 <i>n</i>	sekundi
$0.03 n \log_2 n$	sekundi
$0.01 n^2$	sekundi
$0.001 n^3$	sekundi
$0.0001 2^n$	sekundi
	0.1 <i>n</i> 0.03 <i>n</i> log ₂ <i>n</i> 0.01 <i>n</i> ² 0.001 <i>n</i> ³

□ I grafički ...

Primer (2)

□ Uporedimo koliko podataka (n) svaki algoritam može da procesira u 1,2,...,10 sekundi:

Ω definicija

- Asimptotsko donje ograničenje Ω
- Razmotrimo funkciju f(n) koja je ne-negativna za sve prirodne brojeve n $\geq = 0$.
- □ Kažemo da je f(n)= $\Omega(g(n))$ ako postoji prirodan broj n_o i konstanta c>0 tako da za sve prirodne brojeve $n>=n_0$ važi f(n)>=cg(n).

Primer

- □ Razmotrimo funkciju $f(n)=5n^2-64n+256$.
- $\Box f(n) = \Omega(n^2)$?

$$f(n) \ge cn^2, c = 1$$

$$\Rightarrow 5n^2 - 64n + 256 \ge n^2$$

$$\Rightarrow 4n^2 - 64n + 256 \ge 0$$

$$\Rightarrow 4(n-8)^2 \ge 0$$

$$\forall n \ge 0, (n-8) > 0 \Rightarrow n_0 = 0$$

Polinomi i Ω

Razmotrimo polinom

$$f(n) = \sum_{i=0}^{m} a_i n^i = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n^1 + a_0$$

□ Onda je $f(n) = \Omega(n^m)$

Još oznaka — Θ i o (malo o)

- - Razmotrimo funkciju f(n) koja je ne-negativna za sve prirodne brojeve n $\geq = 0$.
 - Kažemo da je f(n)= $\Theta(g(n))$ ako i samo ako f(n)= $\Theta(g(n))$ and f(n)= $\Omega(g(n))$
- Malo o
 - Razmotrimo funkciju f(n) koja je ne-negativna za sve prirodne brojeve n $\geq = 0$.
 - Kažemo da je f(n)= o(g(n)) ako i samo ako f(n)= O(g(n)) and f(n)≠ $\Omega(g(n))$

Asimptotska analiza

Primer: Hornerovo pravilo

```
public class Example

public static int horner (int[] a, int n, int x)

public static int horner (int[] a, int n, int x)

int result = a [n];

for (int i = n - 1; i >= 0; --i)

result = result * x + a [i];

return result;

}

}
```

statement	detailed model	$_{ m model}$	big oh
5	$3\tau_{\mathrm{fetch}} + \tau_{[.]} + \tau_{\mathrm{store}}$	5	O(1)
6a	$2\tau_{\mathrm{fetch}} + \tau_{-} + \tau_{\mathrm{store}}$	4	O(1)
6b	$(2\tau_{\rm fetch} + \tau_{<}) \times (n+1)$	3n + 3	O(n)
6c	$(2\tau_{\mathrm{fetch}} + \tau_{-} + \tau_{\mathrm{store}}) \times n$	4n	O(n)
7	$(5\tau_{\text{fetch}} + \tau_{\text{[.]}} + \tau_{+} + \tau_{\times} + \tau_{\text{store}}) \times n$	9n	O(n)
8	$ au_{ m fetch} + au_{ m return}$	2	O(1)
TOTAL	$(9\tau_{\text{fetch}} + 2\tau_{\text{store}} + \tau_{<} + \tau_{[\cdot]}$	16n + 14	O(n)
	$+\tau_{+}+\tau_{\times}+\tau_{-})\times n$		
	$+ (8\tau_{\text{fetch}} + 2\tau_{\text{store}} + \tau_{[\cdot]} + \tau_{-} + \tau_{<} + \tau_{\text{return}})$		

Neka zapažanja

- Bez obzira kakve su konstante, asimptotska analiza uvek daje isti rezultat!
- Asimptotsko ograničenje nam daje fundamentalne informacije o vremenu izvršavanja programa.
- O ne zavisi od karakteristika računara i kompajlera na kojima se izvršava program!
- Ali ne znamo ništa o stvarnom vremenu izvršavanja programa!

Pravila za analizu velikog O (1)

- Sekvence
- □ Najgore vreme izračunavanja za sekvecu:

```
S_1; S_2; \vdots Sm; \square \ \mathbf{je} \ O(\max(T_1(n),T_2(n),...,T_m(n))
```

 \square gde je vreme izračunavanja naredbe S_i dato sa $O(T_i(n))$

Pravila za analizu velikog O (2)

- Iteracije
- Najgore vreme izračunavanja za for petlju:

```
for (S_1; S_2; S_3)
S_4;
```

- \Box ie $O(\max(T_1(n), T_2(n) \times I(n) + 1, T_3(n) \times I(n), T_4(n) \times I(n))$
- \square gde je vreme izračunavanja naredbe S_i dato sa $O(T_i(n))$ a I(n) je broj iteracija za najgori slučaj

Pravila za analizu velikog O (3)

- Uslovne naredbe
- □ Najgore vreme izračunavanja za if-then-

```
else:
if (S<sub>1</sub>)
S<sub>2</sub>;
else
S<sub>3</sub>;
```

- \Box **ie** $O(\max(T_1(n), T_2(n), T_3(n))$
- \qed gde je vreme izračunavanja naredbe S_i dato sa $O(T_i(n))$

Primer: suma prvih j elemenata niza

```
public class Example
       public static void prefixSums (int[] a, int n)
                                                              \sum_{i=0}^{n} a_i, 0 \le j \le n
           for (int j = n - 1; j \ge 0; --j)
               int sum = 0;
               for (int i = 0; i \le j; ++i)
                   sum += a[i];
               a[j] = sum;
           }
       }
                                                      statement
                                                                     time
13
                                                           5a
                                                                     O(1)
                                                           5b
                                                                     O(1) \times O(n) iterations
                                                                     O(1) \times O(n) iterations
                                                           5c
                                                                     O(1) \times O(n) iterations
                                                                     O(1) \times O(n) iterations
                                                           8a
                                                                     O(1) \times O(n^2) iterations
                                                           8b
                                                                     O(1) \times O(n^2) iterations
                                                           8c
                                                                     O(1) \times O(n^2) iterations
                                                                     O(1) \times O(n) iterations
                                                           10
                                                                     O(n^2)
                                                       TOTAL
```

Realna vremena

n - 0

 \square Vremena izvršavanja na procesoru od 1GHz, c=1,

$n_0 = 0$	I	I	I	I
	n=1	n=8	n=1K	n=1M
Ω(1)	1ns	1ns	1ns	1ns
$\Omega(\log n)$	1ns	3ns	10ns	20ns
$\Omega(n)$	1ns	8ns	0.102µs	1.05ms
$\Omega(n\log n)$	1ns	24ns	1.02µs	21ms
$\Omega(n^2)$	1ns	64ns	10.2µs	0.305 hours
$\Omega(n^3)$	1ns	0.512µs	1.07s	36.5 years
$\Omega(2^n)$	1ns	0.256µs	10 ²⁹² years	10 ¹⁰⁰⁰⁰ years

Finalne napomene

- Kako verifikovati analizu algoritma?
 - Napisati program i meriti vremena za različito n
- Uporediti analizu sa realnim vremenima
- Šta ako se rezultati ne slažu sa analizom?
 - Test odnosa: recimo da smo izmerili T(n) a predvideli T(n)=O(f(n))
 - lacktriangle Računamo T(n)/f(n) za različite n
 - Ako odnos divergira, onda je f(n) premalo
 - \blacksquare Ako odnos konvergira ka 0, onda je f(n) preveliko
 - Ako odnos konvergira ka ne-nula konstanti, onda je f(n) OK

Finalne napomene 2

- □ Šta ako je predviđanje preveliko?
 - Možda nismo koristili dovoljno blisko ograničenje, probamo da pronađemo odgovarajuće
 - Možda imamo korektnu analizu najgoreg vremena izvršavanja, ali se to nikad ne dešava u eksperimentu
 - Možda imamo grešku u analizi, ponoviti analizu
 - ■? www.google.com? ©