05 TROTTER

Just as we can measure one-site operators, can measure two-site operators

Recall:

Just as we can measure one-site operators, can measure two-site operators

Recall:

Since two "center" sites have orthogonal environment, ok to apply operators:

Since two "center" sites have orthogonal environment, ok to apply operators:

Since two "center" sites have orthogonal environment, ok to apply operators:

Would NOT be ok on another bond without regauging

Truncating SVD not globally optimal except at orthogonality center

Would NOT be ok on another bond without regauging

Truncating SVD not globally optimal except at orthogonality center

Q:What can we do with this capability?

Q:What can we do with this capability?

A: For short-ranged Hamiltonians, can time evolve

Trick is to use Trotter decomposition

Useful for Hamiltonians of the form

$$H = H_1 + H_2 + H_3 + \dots$$

For example

$$H = \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$

$$= (\mathbf{S}_1 \cdot \mathbf{S}_2) + (\mathbf{S}_2 \cdot \mathbf{S}_3) + (\mathbf{S}_3 \cdot \mathbf{S}_4)$$

For a small time step $\, au \,$

$$e^{-\tau H} \simeq e^{-\tau H_1/2} e^{-\tau H_2/2} e^{-\tau H_3/2} \cdots$$

 $\cdots e^{-\tau H_3/2} e^{-\tau H_2/2} e^{-\tau H_1/2} + \mathcal{O}(\tau^3)$

Diagramatically,

Diagramatically,

Diagramatically,

Interesting applications:

$$|\psi'\rangle = e^{-\tau H}|\psi\rangle$$

Interesting applications:

$$|\psi'\rangle = e^{-\tau H}|\psi\rangle$$

If τ real (imaginary time evolution), enough steps will give ground state

If τ imaginary, evolve in real time, study dynamics [1]

Evolving through imaginary time $\,\beta/2=1/(2T)\,$ simulates finite temperature [2]

[1] White, Feiguin PRL 93, 076401 (2004)

[2] White PRL **102**, 190601 (2009)

- We'll implement time evolution for the Heisenberg chain
- library folder>/tutorial/05_gates
- I. Read through gates.cc; compile; and run
- 2. Apply the gate G to the MPS bond tensor AA. The gate G can be multiplied times AA as if it's an ITensor.
- 3. Reset the prime level back to zero using AA's .noprime() class method.
- 3. Try increasing the total time "ttotal" to imaginary time evolve toward the ground state.

(Exact energy for 20 sites: $E_0 = -8.6824733317$)