Single Layer Perceptron (The Perceptron)

Perceptron

- A single artificial neuron that computes its weighted input and uses a **threshold** activation function.
- It effectively separates the input space into **two** categories by the hyperplane:

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$$

Application

- The perceptron is used for classification: classify correctly a set of examples into one of the two classes C₁, C₂:
- If the output of the perceptron is +1 then the input is assigned to class C₁
- If the output is -1 then the input is assigned to C₂

Classification with Perceptron

The equation below describes a hyperplane in the input space. This hyperplane is used to separate the two classes C1 and C2

Limitations of Perceptron

- The perceptron can only model linearly separable functions.
- The perceptron can be used to model the following Boolean functions:
- AND
- OR
- COMPLEMENT

But it cannot model the XOR. Why?

The XOR problem

The **XOR** is not linear separable

It is impossible to separate the classes C₁ and C₂ with only one line

Perceptron Implementation in Python

• The **Perceptron** class from **sklearn.linear_model** provides an implementation of the perceptron algorithm for binary classification tasks in Python.

It is imported as follows

from sklearn.linear_model import Perceptron

Refer to the notebook 4_(b)_practicals_Perceptron.ipynb