Guangyao Yang

☐ +86 18639095151 • ☑ guangyaoyang@foxmail.com

www.younggy.com

Passionate about machine learning and data science, with strong learning enthusiasm and ability, having finished 43 MOOC courses related to machine learning and data science.

Education

Huazhong University of Science and Technology

Wuhan, China Sep 2015-Present

Master of Engineering, Machine Learning

Tianjin,China

Tianjin University

Bachelor of Engineering, Electrical and Electronic Engineering

Sep 2011- Jul 2015

Journal Publications

As the first student author, I have published **two SCI papers**, **one EI paper** (**General Assembly Excellent Paper**) in the field of partial discharge pattern recognition.

- Optimal Feature Selection for Partial Discharge Recognition of Cable Systems Based on the Random Forest Method
- o Rough Set Theory Applied to Pattern Recognition of Partial Discharge in Noise Affected Cable Data
- o SDMF based Interference Rejection and PD Interpretation for Simulated Defects in HV Cable Diagnostics

Internship

Toutiao (Bytedance)

Algorithm engineer on news recommendation

May 2017-Jul 2017

Responsible for news **personalized recommendation**. Used **relevance feedback** to add new tags to news. Generated feedback tags using **SVD**, **LSTM**, **multi-head attention**(based on Google's paper). Model was put into use with **ctr increased by 1.1%**.

Artificial Intelligence Institute at Sinovation Ventures

Algorithm engineer on deep learning

Jul 2017-Present

Developing artificial intelligent Fight the Landlord (a Chinese card game)

Projects

Projects of Udacity Deep Learning Nano Degree

This is an on-line course teaching deep learning techniques. I've finished all projects. Some projects in the course are: Artistic Style Transfer; Generate new scripts using **LSTM**; Implement **Word2Vec**; Train **seq2seq** for English to French translation; Implement a **deep Q-learning network** to play Cart-Pole game; Use a **DCGAN** to generate house number and human faces images.

Projects of Stanford CS231(Convolutional Neural Networks for Visual Recognition) Course
 CS231 is the a course teaching deep learning at Stanford University. I've finished all assignments. Some of the assignments are: Implement CNN, RNN, LSTM forward and backward process; Caption images with CNN and LSTM; Compute image gradients to produce saliency maps, fooling images and deep dream.

o Projects of Udacity Self Driving Car Nano Degree

This is an on-line course teaching self-driving car techniques. I've finished project about finding lane lines on the road using **canny edge detector** and **hough transform**.

Classification Research of Partial Discharge

Solved 5 types of classification problems using **logistic regression**, **neural network**, **SVM**, **and RF**. RF had the highest accuracy of 89.2%.

o Feature Engineering and Recognition of Partial Discharge

Constructed time-domain and frequency-domain characteristics; Implemented feature selection using **RF**, **LASSO**; Implemented feature extraction using **PCA**, **RBF** kernel; Trained model using **RF**, **GBDT** with highest accuracy of GBDT 91.3%.

Documents Clustering and Keyword Association

Clustered documents using **k-means++**, **GMM**, **LDA**. Retrieved Documents using **KD-Tree**, **LSH**. Used the words with the higher scores within the subject in LDA as the association keywords.

o Analysis of Commodity Communication Network Based on Agent-based Model

Constructed small world network to simulate the process of commodity communication using **igraph** and **ABM**. Studied the effects of word of mouth, advertising, promotion strategy on commodity communication. Developed R package.

Machine Learning Knowledge

- Certification Courses: 43 course certifications including: Stanford "Machine Learning", "Mining Massive Dataset"; UW "Machine Learning Specialization"; MIT "The Analytics Edge"; NTU "Machine Learning Foundations", "Machine Learning Techniques".
- Theories: VC dimension; Regression and Classification(SVM, logistic regression, RF, GBDT); Clustering(k-means, GMM, LDA); Deep Learning(CNN, RNN, LSTM, GAN, Deep Q-learning); Feature selection(RF, LASSO); Feature extraction(Kernel, Auto-encoder, NN); Recommendation(Collaborative Filtering, Matrix Decomposition); NLP(w2c, LSA, seq2seq)
- o Tools: Hadoop, Spark, Hive, Tensorflow, scikit-learn, pandas, numpy

More about me

- o Blog: http://blog.younggy.com
- o Github: https://github.com/YoungGer
- Courses Certifications: http://younggy.com/moocs.html