Cryptography & Steganography

Information Security – Lecture 03 Aadil Zia Khan

Alice, Bob, and the Eavesdropper (Eve)

Confidentiality of Stored/Transmitted Data

Good guys: Alice and Bob

Eavesdropper/Adversary: Eve

How can we prevent Eve from reading the exchanges between Alice and Bob???

公

Solution 1: Steganography

- Steganography is the practice of hiding a message within another message
 - Eve would not be aware of the existence of the hidden message

Solution 1: Steganography

- Take any data file
 - E.g., an image which wouldn't alert Eve

公

☆

.

Solution 1: Steganography

- Edit the data file replace some bytes with the message that you want to hide
 - You can write a short program
 - But you "love" programming so let's use a hex editor instead ©

公

☆

ч

公

Solution 1: Steganography

- If there are many characters that you need to insert
 - Spread them all over the file so that the image quality doesn't suffer

Solution 2: Encryption

• Do not hide the message – instead jumble it up so that no one other than Alice and Bob can understand it

InfoSec is Awesome becomes

BjnbCpg bo ijodsxm

Solution 2: Encryption

- Plaintext
 - The message that Alice and Bob don't want Eve to access
- Ciphertext
 - Jumbled up message which only those can un-jumble who possess the key
- Encryption/Decryption Algorithm (a.k.a the Cipher)
 - The steps taken to jumble up the plaintext or un-jumble the ciphertext
- Key
 - The secret value needed for encryption/decryption

Alice, Bob, and Eve

Solution 2: Encryption

- No need to keep the algorithm secret; we need to keep only the key secret
 - It is impractical to decrypt a message on the basis of the ciphertext plus knowledge of the encryption/decryption algorithm
- Why do we keep the algorithm open?
 - Because of the "Open Design" principle if everybody knows the algorithm, they can identify weaknesses and thus help make it more secure

Cryptography

- Cryptography is about constructing and analyzing algorithms and protocols that prevent unauthorized people from reading messages
- Different from Steganography
 - Existence of the message is not hidden the message is made unreadable

Cryptography - Classification

- Type of operation used
 - Substitution (each element in the plaintext is replaced with another element) vs
 Transposition (each element in the plaintext is rearranged)
- Number of keys used
 - Symmetric encryption (one secret key) vs Public-key encryption (one secret key and one know key)
- Processing method
 - Block cipher (plaintext processed in blocks) **vs** Stream cipher (plaintext processed one element at a time)

Using XoR for Encryption

XOR gate produces 0 if its inputs are the same, and a 1 otherwise

Boolean Expression Logic Diagram Symbol

$$X = A \oplus B$$

Truth Table

Α	В	Х	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

USING EXCLUSIVE OR (XOR) IN CRYPTOGRAPHY

334	'n	0	
		ю,	
-	-	-	10
- 1		u	и
	-	-	

0 XOR 0 = 0 Same Bits

1 xor 0 = 1 Different Bits

0 xor 1 = 1 Different Bits

ENCRYPT

00110101 Plaintext

11100011 Secret Key

= 110101110 Ciphertext

DECRYPT

11010110 ciphertext

11100011 Secret Key

- 00110101 Plaintext

- Invented in 1917 by Gilbert Vernam, an engineer at AT&T Corporation in the USA
- Message (plaintext), Key, and Ciphertext have the same length
- Key is also called pad random and known only to Alice and Bob
 - Was used by spies written on a pad and discarded after use
 - Or the spy could use some agreed upon pages of an actual book as the key
- All bits of the plaintext and the key are XoR-ed to get the ciphertext
 - All bits of the ciphertext and the key are XoR-ed to get the plaintext

 $m_i XOR k_i = \overline{c_i}$ $c_i XOR k_i = m_i$

- Do you see any problems?
- 1. It is difficult to use
 - Requires the users to generate large secrets, share them, still keep them secret, and prevent reuse
- 2. It does not provide
 - Authentication of message (who sent it)
 - Protection against modification (did Eve change it)

- Sharing OTP between multiple people
 - OTP allows sharing the secret key among a number of people each person will know only one subkey
 - Plaintext will be encrypted by XoR-ing it with each key one after the other
 - Encrypted text can be decoded by XoR-ing all three subkeys with the ciphertext one by one

Let's Try It Out!!!

https://www.boxentriq.com/code-breaking/one-time-pad

http://rumkin.com/tools/cipher/otp.php

Which one is better?

- The first one because it removes the space characters and converts each character to uppercase
- Because of space it becomes easy to identify/infer words like "the", "is", "an" in the ciphertext this ☆ information together with the ciphertext can be used to determine the key
- (more on this later)

