Sampling Based Inference

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn basic sampling methods
 - Understand the concept of Markov chain Monte Carlo
 - Able to apply MCMC to the parameter inference of Bayesian networks
 - Know the mechanism of rejection sampling
 - Know the mechanism of importance sampling
- Learn sampling based inference
 - Understand the concept of Metropolis-Hastings algorithm
 - Know the mechanism of Gibbs sampling
- Know a case study of sampling based inference
 - Understand the latent Dirichlet allocation model
 - Know the collapsed Gibbs sampling
 - Know how to derive Gibbs sampling formula for LDA

BASIC SAMPLING METHODS

Forward Sampling

- Generate a sample from the Bayesian network
 - Follow topological order
 - Buglary → false
 - Earthquake → false
 - Alarm|B=F,E=F→true
 - JC|A=T→true
 - $MC|A=T\rightarrow false$
 - Create such sample many, many, many times
- Then, count the samples match the case
 - P(E=T|MC=T)=?
 - Count the cases of E=T and MC=T
 - Count the cases of MC=T
- Any problem?

В	E	P(A B,E)
T	T	0.95
T	F	0.94
F	T	0.29
F	F	0.001

A	P(J A)
Т	0.90
F	0.05
A	P(M A)
T	0.70

F

0.01

$$P(x) = \sum_{k=1}^{K} P(z_k) P(x|z)$$
$$= \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

Forward Sampling in GMM

- Forward sampling of GMM
 - Sample z from π
 - z is the indicator of the mixture distribution
 - With selected z, sample x from $N(\mu_z, \Sigma_z)$
- After many, many sampling, you can draw the histogram of the mixture distribution
- You have an empirical PDF, so you can ask a query like $P(0 \le x \le 5 | \pi, \mu, \Sigma)$

