Università degli Studi di Roma "Tor Vergata" Laurea in Informatica

Sistemi Operativi e Reti (modulo Reti) a.a. 2023/2024

Introduzione (parte3)

dr. Manuel Fiorelli

manuel.fiorelli@uniroma2.it

https://art.uniroma2.it/fiorelli

Capitolo 1: tabella di marcia

- Cos'è Internet?
- Cos'è un protocollo?
- Ai confini della rete: host, reti di accesso, mezzi trasmissivi
- Il nucleo della rete: commutazione di pacchetto e commutazione di circuito, struttura di Internet
- Prestazioni: perdite, ritardi, throughput
- Sicurezza
- Livelli di protocollo, modelli di servizio
- Un po' di storia

Sicurezza di rete

- Internet non è stata originariamente progettata pensando (molto) alla sicurezza
 - visione originale: "gruppo di utenti mutuamente fidati collegati a una rete trasparente" [Blumenthal 2001]
- Ora dobbiamo pensare a:
 - come i malintenzionati possono attaccare le reti informatiche
 - come possiamo difendere le reti dagli attacchi
 - come progettare architetture immuni agli attacchi

Malintenzionati: intercettazione dei pacchetti

Analisi dei pacchetti (packet sniffing):

- media broadcast (Ethernet condivisa, wireless)
- un'interfaccia di rete promiscua legge/registra tutti i pacchetti (ad esempio, anche le password!) che l'attraversa

Il software Wireshark è un packet-sniffer (gratuito)

senza

Malintenzionati: identità falsa

IP spoofing: iniezione di pacchetti con indirizzo sorgente falso

Usi:

- ostacolare identificazione/blocco di una sorgente di attacco (vedi DoS dopo, sebbene meno rilevante nel caso di DDoS)
- sfruttare relazione di fiducia tra host (es. accesso senza autenticazione da host nella medesima rete locale)
- indirizzare messaggi di risposta verso B, montando un attacco di negazione di servizio contro B (vedi dopo), basato sull'amplificazione del traffico generato da C (vedi DNS Amplification Attack, in cui una richiesta a un DNS produce una riposta più grande indirizzata verso la vittima)

Malintenzionati : negazione del servizio (denial-ofservice, DoS)

Negazione del servizio (Denial of Service (DoS)): gli aggressori rendono una rete, un host o altro elemento infrastrutturale non disponibili per gli utenti legittimi.

3 categorie di attacchi DoS:

- attacchi alla vulnerabilità dei sistemi: invio di (pochi) pacchetti costruiti ad arte per causare il blocco di un servizio o lo spegnimento di un host, sfruttando vulnerabilità delle applicazioni o dei sistemi operativi.
- bandwidth flooding (inondazione di banda): invio massivo di pacchetti all'host obiettivo impedendo al traffico legittimo di raggiungerlo.
- connection flooding (inondazione di connessioni): stabilire un gran numero di connessioni TCP con l'host obiettivo, impedendogli di accettare le connessioni legittime.

Malintenzionati : negazione del servizio (denial-of-service, DoS)

Negazione del servizio (Denial of Service (DoS)): gli aggressori rendono una rete, un host o altro elemento infrastrutturale non disponibili per gli utenti legittimi.

bandwidth flooding:

L'attaccante invia traffico a una velocità prossima a R_s (velocità di accesso del server)

Una singola sorgente di attacco potrebbe avere una velocità di accesso insufficiente (tipicamente $R_c \ll R_s$) e sarebbe comunque facile da identificare e bloccare.

Malintenzionati : negazione del servizio (denial-ofservice, DoS)

Negazione del servizio (Denial of Service (DoS)): gli aggressori rendono una rete, un host o altro elemento infrastrutturale non disponibili per gli utenti legittimi.

Distributed denial-of-service (DDoS)

- 1. selezionare l'obiettivo
- 2. irrompere negli host attraverso la rete (vedi botnet)
- 3. inviare pacchetti verso l'obiettivo da host compromessi

Linee di difesa

- autenticazione: dimostrare che siete chi dite di essere
 - Le reti cellulari forniscono un'identità hardware attraverso la carta SIM; in Internet tradizionale non esiste un'assistenza hardware di questo tipo.
- riservatezza: attraverso la cifratura
- integrità: le firme digitali prevengono/rilevano le manomissioni
- restrizioni di accesso: VPN protette da password
- firewalls: "middlebox" specializzate nelle reti di accesso e di base:
 - off-by-default: filtrare i pacchetti in entrata per limitare i mittenti, i destinatari e le applicazioni
 protezione da IP spoofing (es. implestione)
 - rilevare/reagire agli attacchi DOS

- protezione da IP spoofing (es. impedire l'ingresso in una LAN di pacchetti provenienti d altre reti ma il cui mittente dichiarato appartiene alla LAN)
- impedire connessi a applicazioni
- etc.

... e molto altro si potrebbe dire ancora

Capitolo 1: tabella di marcia

- Cos'è Internet?
- Cos'è un protocollo?
- Ai confini della rete: host, reti di accesso, mezzi trasmissivi
- Il nucleo della rete: commutazione di pacchetto e commutazione di circuito, struttura di Internet
- Prestazioni: perdite, ritardi, throughput
- Sicurezza
- Livelli di protocollo, modelli di servizio
- Un po' di storia

Livelli di protocollo e modelli di riferimento

Le reti sono complesse, con molti "pezzi":

- host
- router
- svariate tipologie di mezzi trasmissivi
- applicazioni
- protocolli
- hardware, software

Domanda: c'è qualche speranza di organizzare l'architettura delle reti?

•e/o la nostra trattazione sulle reti?

Esempio: organizzazione di un viaggio aereo

– trasferimento end-to-end di persona e bagaglio ——

biglietto (acquisto)

bagaglio (imbarco)

gate (entrata)

pista di decollo

instradamento aereo

biglietto (proteste)

bagaglio (ritardo)

gates (uscita)

pista di atterraggio

instradamento aereo

instradamento aereo

Come definireste/discutereste il sistema dei viaggi in aereo?

una serie di passaggi che coinvolgono molti servizi

Esempio: organizzazione di un viaggio aereo

livelli o strati (layer): ogni livello implementa un servizio

- effettuando determinate azioni all'interno del livello
- utilizzando i servizi del livello immediatamente inferiore

Perché la stratificazione?

Approccio alla progettazione/discussione di sistemi complessi

- una struttura esplicita consente l'identificazione dei vari componenti di un sistema complesso e delle loro interrelazioni
 - analisi del *modello di riferimento a strati*
- la modularizzazione facilita la manutenzione e l'aggiornamento di un sistema
 - modifica dell'implementazione del servizio del livello: trasparente al resto del sistema
 - es. le modifiche alla procedura di gate non influiscono sul resto del sistema.

Potenziali svantaggi

- un livello può duplicare funzionalità del livello inferiore (es. correzione degli errori implementata spesso sia a livello di trasporto sia a livello di collegamento)
- necessità di violare la separazione tra livelli, perché un livello ha bisogno di una informazione (es. un valore di natura temporale) disponibile solo all'interno del livello inferiore

Pila di protocolli (protocol stack) di Internet

- applicazione (application layer): supporto alle applicazioni di rete
 - HTTP, IMAP, SMTP, DNS
- trasporto (transport layer): trasferimento di dati tra processi (in esecuzione su host differenti)
 - TCP, UDP
- rete (network layer): trasferimento di pacchetti di rete, detti datagrammi, da un host all'altro
 - IP, protocolli di instradamento
- collegamento (link layer): trasferimento di dati tra elementi di rete vicini
 - Ethernet, 802.11 (WiFi), PPP
- fisico (physical layer): bit "sul filo"

applicazione trasporto rete collegamento fisico

sorgente

L'applicazione scambia messaggi per implementare un servizio applicativo usando *servizi* dello strato di trasporto

Il protocollo al livello di trasporto trasferisce M (es., in modo affidabile) da un *processo* all'altro, usando i servizi del livello di rete

- Il protocollo di livello di trasporto incapsula il messaggio di livello applicativo, M, con un header H_t di livello di trasporto per creare un segmento a livello di trasporto
 - H_t viene usato dal protocollo di livello di trasporto per implementare il proprio servizio

applicazione trasporto rete collegamento fisico

sorgente

- Il protocollo del livello di rete incapsula il segmento del livello di trasporto [H_t | M] con un header a livello di rete H_n per creare un datagramma a livello di rete
 - H_n viene usato dal protocollo a livello di rete per implementare il proprio servizio

Modello di servizio (service model)

- Insieme dei servizi offerti da un livello a quello superiore
- I diversi servizi possono essere implementati da protocolli diversi
- Il livello di collegamento può offrire servizi diversi in base al protocollo impiegato sul link (es. Ethernet, Wi-Fi, PPP).
- Inoltre, un protocollo a livello di collegamento può prevedere diversi protocolli a livello fisico dipendentemente dalla tecnologia di trasmissione e dal mezzo trasmissivo del link. Ethernet, ad esempio, ha molti protocolli dello strato fisico: es. uno per doppino intrecciato, uno per la fibra ottica, uno per il cavo coassiale.

Incapsulamento

Bambole matrioska (bambole impilabili)

Un protocollo di livello n può essere distribuito tra sistemi periferici, commutatori di pacchetto e altri elementi di rete.

M

M

M

rete

collegamento

fisico

H₊

 $H_n H_t$

 $|\mathsf{H_I}| \underline{\mathsf{H_n}} |\mathsf{H_t}|$

Si noti che host, router e switch implementano ciascuno solo i livelli adeguati alle loro funzionalità.

sorgente applicazione trasporto rete collegamento fisico destinazione applicazione trasporto

Incapsulamento: una visione end-to-end

ollegamento

Il livello di rete può ricevere un servizio diverso dai protocolli del livello di collegamento, man mano che un datagramma Introduction: 1-100 attraversa collegamenti di tipo diverso.

n-PDU, implementazione dei livelli

n-PDU (*protocol data unit*): è la singola unità di informazione scambiata tra pari attraverso un protocollo di livello n.

- specifiche informazioni di controllo per il protocollo
- carico utile (payload): in genere una (n+1)-PDU

Modello di rifermento ISO/OSI

Due strati non presenti nella pila di protocolli di Internet!

- presentazione: consente alle applicazioni di interpretare il significato dei dati, ad esempio, crittografia, compressione, convenzioni specifiche della macchina
- sessione: sincronizzazione, checkpointing, ripristino dello scambio di dati
- La pila di Internet "manca" di questi strati!
 - questi servizi, se necessari, devono essere implementati nelle applicazioni
 - necessari?

Il modello di riferimento ISO/OSI a 7 strati

Wireshark

Capitolo 1: tabella di marcia

- Cos'è Internet?
- Cos'è un protocollo?
- Ai confini della rete: host, reti di accesso, mezzi trasmissivi
- Il nucleo della rete: commutazione di pacchetto e commutazione di circuito, struttura di Internet
- Prestazioni: perdite, ritardi, throughput
- Sicurezza
- Livelli di protocollo, modelli di servizio
- Un po' di storia

1961-1972: Sviluppo della commutazione di pacchetto

- 1961: Kleinrock usando la teoria delle code, dimostrò l'efficacia dell'approccio a commutazione di pacchetto per sorgenti di traffico intermittenti
- 1964: Baran investigò l'uso della commutazione di pacchetto nelle reti militari
- 1967: il progetto ARPAnet viene concepito dall'Advanced Research Projects Agency
- 1969: primo nodo operativo ARPAnet

1972:

- dimostrazione pubblica di ARPAnet
- NCP (Network Control Protocol) primo protocollo host a host
- Primo programma di posta elettronica
- ARPAnet ha 15 nodi

1972-1980: Internetworking e reti proprietarie

- 1970: rete satellitare ALOHAnet nelle Hawaii
- 1974: Cerf e Kahn architettura per l'interconnessione delle reti
- 1976: Ethernet allo Xerox PARC
- Fine anni '70: architetture proprietarie: DECnet, SNA, XNA
- 1979: ARPAnet ha 200 nodi

I principi di Cerf e Kahn sull'internetworking:

- minimalismo, autonomia per collegare le varie reti non occorrono cambiamenti interni
- modello di servizio best effort
- router stateless
- controllo decentralizzato

definiscono l'attuale architettura di Internet

1980-1990: nuovi protocolli, proliferazione delle reti

- 1983: rilascio di TCP/IP
- 1982: definizione del protocollo SMTP per la posta elettronica
- 1983: definizione del DNS per la traduzione degli indirizzi IP
- 1985: definizione del protocollo FTP
- 1988: controllo della congestione TCP

- nuove reti nazionali: CSnet, BITnet, NSFnet, Minitel
- 100,000 host collegati alla confederazione delle reti

NSFNET T1 Network 1991

Introduction: 1-107

1990, 2000s: commercializzazione, Web, nuove applicazioni

- primi anni '90: ARPAnet viene dismessa
- 1991: NSF lascia decadere le restrizioni sull'uso commerciale di NSFnet (dismessa nel 1995)
- primi anni '90: Web
 - ipertestualità [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, poi Netscape
 - fine anni '90: commercializzazione del web

Fine anni '90 – inizi 2000:

- arrivano le "killer application": messaggistica istantanea, condivisione di file P2P
- sicurezza di rete in primo piano
- stimati 50 milioni di host, 100 milioni+ di utenti
- velocità nelle dorsali dell'ordine di Gbps

2005-presente: scala, SDN, mobilità, cloud

- diffusione aggressiva dell'accesso domestico a banda larga (10-100 Mbps)
- 2008: software-defined networking (SDN)
- la crescente ubiquità dell'accesso wireless ad alta velocità: 4G/5G, WiFi
- i fornitori di servizi (Google, FB, Microsoft) creano le proprie reti
 - scavalcare l'Internet commerciale per connettersi "vicino" all'utente finale, fornendo un accesso "istantaneo" ai social media, alla ricerca, ai contenuti video, ...
- le imprese gestiscono i loro servizi in "cloud"(es., Amazon Web Services, Microsoft Azure)
- ascesa degli smartphone: più dispositivi mobili che fissi su Internet (2017)
- ~15 miliardi di dispostivi connessi a Internet (2023, statista.com)

Capitolo 1: riassunto

Abbiamo coperto una "tonnellata" di materiale!

- Internet overview
- cos'è un protocollo?
- ai confine della rete, reti di accesso, nucleo
 - commutazione di pacchetto versus commutazione di circuito
 - struttura di Internet
- prestazioni: perdite, ritardi, throughput
- stratificazione, modelli di servizio
- sicurezza
- storia

Ora avete

- contesto, visione d'insieme, vocabolario, "sensazione" di rete
- più profondità, dettaglio e divertimento da seguire!