

数据的机器级表示-2

Data Representation at Machine Level

李杉杉

CONTENT

目录

- 01 浮点数数据类型
- 02 ASCII编码
- 03 C语言中的数据类型

小数——定点小数

- 十进制,小数点,定点表示法(fixed point)
 - $d_k d_{k-1} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{-m}$
 - $3456.78 = 3 \cdot 10^3 + 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0 + 7 \cdot 10^{-1} + 8 \cdot 10^{-2}$

二进制

- $b_k b_{k-1} \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-m}$
- 00101000.101

$$= 0 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 32 + 8 + 0.5 + 0.125 = 40.625$$

$$d = \sum_{i=-m}^{k} 10^{i} \times di$$

$$b = \sum_{i=-m}^{k} 2^{i} \times bi$$

定点小数——精度

- 如果十进制小数不能用有限位的二进制数表示
- 则根据精度取几位
- 示例:
 - (0.414)₁₀ ≈ (0.01101)₂ (取5位)
 - 或写为 0.414D ≈ 0.01101B (取5位)

定点小数——数值范围

- 如果使用到超出位数表示范围的小数,例如阿佛加德罗常数 6.023x10²³?
- 32位补码整数的数值范围:
 - -2147483648 ~ 2147483647,即-2³¹ ~ +2³¹-1
 - 精度31位
- 为了表示6.023x10²³
 - 数值范围——需要79位(二进制补码整数)
 - 精度——只需要4个十进制数(6023)
- 问题:表示精度的位数过多,而表示范围的位数却不足?

小数——浮点小数

- 小数点可以浮动,与科学计数法类似
- 十进制的科学计数法

• 二进制的科学计数法

基底不变,对符号、尾数和阶分别编码即可以表示一个浮点数

小数——浮点小数

- 二进制的科学计数法
- 任何浮点数都能以多种样式来表示

$$0.110 \times 2^5$$
, 110×2^2 , 0.0110×2^6

• 规格化表示

$$\pm 1.bbb...b \times 2^{E}$$

$$V = (-1)^{S} \times M \times 2^{E}$$

- 包括
 - 符号(S)
 - 分/尾数 (精度, M,原码)
 - 基/底数(R=2)
 - 指/阶数 (范围, E, 移码)

拓展:移码

- 将每一个数值加/减一个偏置常数 (excess/bias)
- 通常当编码位数为n时, bias取2ⁿ⁻¹或2ⁿ⁻¹ 1(如IEEE 754)
- 例如n=4时 , bias=8
 - 3的移码=3+8=11 <=> 1011
 - -3的移码=-3+8=5 <=> 0101

真值	二进制	真值	二进制
0	1000	-0	1000
1	1001	-1	0111
2	1010	-2	0110
3	1011	-3	0101
4	1100	-4	0100
5	1101	-5	0011
6	1110	-6	0010
7	1111	-7	0001
		-8	0000

小数——浮点小数

$$V = (-1)^{S} \times M \times 2^{E}$$

- E 使用**移码:**例如计算 $1.01 \times 2^{-1} + 1.11 \times 2^{3}$ 时,需要将<mark>低阶</mark>(2^{-1})**转为高阶**(2^{3}),那么首先需要**比较-1和3的大小;**实现负数阶码效果,而不像补码表示还要考虑符号
- *M*使用**原码**:对称,无符号时原码的乘法运算简单
- 对于一定长度的规格化数,表示范围和精度之间存在权衡(总位数不变)
 - 增加阶数 (E) 位数: 扩大表示范围,降低表示精度
 - 增加尾数(M)位数:减少表示范围,提高表示精度
 - **更大**的底(*B*):如4,8,16,**扩大**表示**范围**,降低表示精度

统一的标准?

IEEE-754浮点数

- IEEE(国际电气和电子工程师协会)浮点数算术运算标准
 - 二进制表示的浮点数格式标准
 - IEEE 754-1985 https://en.wikipedia.org/wiki/IEEE 754-1985
 - 两种主要的浮点数格式:单精度(32位)和双精度(64位)

提出历史

- 20世纪70年代, IEEE成立委员会着手制定浮点数标准
- 20世纪80年代, Intel邀请Kahan教授设计8087处理器的浮点运算单元
- IEEE邀请Kahan基于8087中的浮点标准起草一份通用标准
- 1985年提出浮点数标准IEEE 754

William M. Kahan Professor Emeritus

Research Areas

Computer Architecture & Engineering (ARC)

Scientific Computing (SCI)

Computer architecture; Scientific computing; Numerical analysis

IEEE-754单精度浮点数(float)

$$V = (-1)^{S} \times M \times 2^{E}$$

- 32 位
- 符号(S)
 - 0代表正数,1代表负数
- 指/阶数(e):
 - 无符号整数,[0,255](8位)
- 分/尾数(f):
 - 第0-22位(23位)
 - 精度约7位小数(十进制数), 2²³=8388608

```
(-1)^{s} \times 1. f \times 2^{e-127}, \ 1 \le e \le 254
V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, \ e = 0
(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), \ e = 255, f = 0
NaN(Not \ a \ Number), \ e = 255, f \neq 0
```


IEEE-754单精度浮点数(float)

• 规格化(M第一位为1,阶数不为0)

$$V = (-1)^{S} \times M \times 2^{E}$$

- $0 (00000000) < e \le 254 (11111110)$
- E = e bias
- bias (float) = $2^{8-1}-1 = 127$
- -126≤E≤127

$$(-1)^{s} \times 1. f \times 2^{e-127}, \ 1 \le e \le 254$$

$$V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, \ e = 0 \}$$

$$(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), \ e = 255, f = 0 \}$$

$$NaN(Not \ a \ Number), \ e = 255, f \neq 0 \}$$

$$M = 1. f_{22} f_{21} ... f_1 f_0 = 1 + f$$

精度实际为24位二进制数(隐藏位为1,忽略)

IEEE-754单精度浮点数(float)

• 非规格化(M第一位为0,真值等于或接近0,阶数为0)

S	0000000	f
---	---------	---

$$V = (-1)^{S} \times M \times 2^{E}$$

- 用于表示0
 - s=0 M = 0+f = 0 (隐藏位为0)
 - -> X = +0.0
 - s=1 M = 0+f = 0 (隐藏位为0)
 - -> X = -0.0
- 用于表示接近0的数值
 - *M* = 0 + *f* ≠ 0 (隐藏位为0)
 - E = 1-bias
 - bias (float) = $2^{8-1}-1 = 127$
 - E = -126

$$V = (-1)^{S} \times M \times 2^{E}$$

 $(-1)^s \times 1. f \times 2^{e-127}, 1 \le e \le 254$

$$(-1)^s \times 0. f \times 2^{-126}, e = 0$$

 $V_{\text{float}} = \{ (-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$

NaN(Not a Number), e = 255, $f \neq 0$

IEEE-754单精度浮点数 (float)

• 无穷大(阶数最大, M第一位为1, f为0)

S	11111111	000000000000000000000000000000000000000

- $s=0 f = 0 X = +\infty$
- $s=1 f = 0 X = -\infty$
- *E = e-bias = 255 127 = 128*
- M = 1 + f = 1.0000...
- 非数值(阶数最大,f不为0)

$(-1)^s \times 1. f \times 2^{e-127}, \ 1 \le e \le 254$
$(-1)^s \times 0. f \times 2^{-126}, \ e = 0$
$V_{\text{float}} = \{ (-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$
$NaN(Not\ a\ Number),\ e=255, f\neq 0$

- s 111111111 ≠ 0
- 0.0/0.0; $0.0\times\infty$; ∞/∞ ; $\infty-\infty$
- 仅仅是一种特殊状态标记,NaN

IEEE-754单精度浮点数(float)

• 规格化(非零实数)

s ≠ 0 and ≠ 255 f

• 非规格化(非常小的实数或零)

s 00000000 f

无穷

s 11111111

非数值

s 11111111 ≠ 0

$$(-1)^{s} \times 1. f \times 2^{e-127}, \ 1 \le e \le 254$$

$$V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, \ e = 0 \}$$

$$(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), \ e = 255, f = 0 \}$$

$$NaN(Not \ a \ Number), \ e = 255, f \neq 0$$

示例: -45.8125

 $(-1)^{s} \times 1. f \times 2^{e-127}, \ 1 \le e \le 254$ $V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, \ e = 0$ $(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), \ e = 255, f = 0$ $NaN(Not \ a \ Number), \ e = 255, f \neq 0$

- ・ 绝对值45.8125的二进制数表示
 - 00101101.1101⇒规格化1.011011101×25(V')
- IEEE-754表示:
 - 负数,符号位s=1

- 阶/指数e=132,二进制10000100(无符号整数)
 - : E = e bias(127) = 5 : e = 5 + 127 = 132
- 尾数部分是V'小数点后的23位(不足补0)
 - 01101110100000000000000

31 30

8位 指/阶数e

23 22

$$(-1)^{s} \times 1. f \times 2^{e-127}, 1 \le e \le 254$$
示例:如下浮点数的十进制转换 $V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, e = 0 \}$

$$(-1)^{s} \times 0. f \times 2^{-126}, e = 0 \}$$

$$(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$$

$$NaN(Not a Number), e = 255, f \neq 0 \}$$

23位

分/尾数f

- 最高位s=0,正数
- e(01111010) = 122
 - F = e bias = 122 127 = -5
- 规格化表示为:

8位 指/阶数e

23 22

(-1)^s × 1.
$$f$$
 × 2^{e-127} , $1 \le e \le 254$
示例:如下浮点数的十进制转换 $V_{float} = \{ (-1)^s \times 0. f \times 2^{-126}, e = 0 \}$
 $(-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$
 $(-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f \neq 0 \}$

23位

分/尾数f

0 10000101 11100001111100000000000

- 最高位s=0,正数
- e(10000101) = 133

•
$$E = e - bias = 133 - 127 = 6$$

- frac = 1110000111100000000000
- 规格化表示为:

 - 即120.46875

8位 指/阶数e

23 22

$$(-1)^s \times 1. f \times 2^{e-127}, 1 \le e \le 254$$

 示例:如下浮点数的十进制转换 $V_{float} = \{ (-1)^s \times 0. f \times 2^{-126}, e = 0 \}$
 $(-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$
 $(-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f \neq 0 \}$

23位

分/尾数f

- 1 10000010 001010000000000000000000
- 最高位s=1,负数
- e(10000010) = 130

•
$$E = e - bias = 130 - 127 = 3$$

- frac = 0010100000000000000000
- 规格化表示为:

 - 即-9.25

31 30

8位

指/阶数e

23 22

 $(-1)^s \times 1. f \times 2^{e-127}, 1 \le e \le 254$ 示例:如下浮点数的十进制转换 $V_{float} = \{ (-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$ $(-1)^s \times 0. f \times 2^{-126}, e = 0$ $NaN(Not\ a\ Number),\ e=255,\ f\neq 0$

23位

分/尾数f

0 11111110 11111111111111111111111

- 最高位s=0,正数
- e(111111110) = 254
- E=e-bias=254-127=127

- 规格化表示为:

31 30

8位

指/阶数e

23 22

$$(-1)^s \times 1. f \times 2^{e-127}, 1 \le e \le 254$$

示例:如下浮点数的十进制转换 $V_{float} = \{ (-1)^s \times 0. f \times 2^{-126}, e = 0 \}$
 $(-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f = 0 \}$
 $(-1)^s \times 1. f \times 2^{128} = Infinity(+and -), e = 255, f \neq 0 \}$

23位

分/尾数f

- 最高位s=1,负数
- e(00000000) = 0
- E=1-bias=1-127=-126
- 实际的尾数M = 0.0000000000000000000001
- 规格化表示为:
- $-0.0000000000000000000001 \times 2^{-126} \Rightarrow -2^{-23} \times 2^{-126}$
- 即-2-149

IEEE-754双精度浮点数(double)

$$V = (-1)^{S} \times M \times 2^{E}$$

20位 1位 11位 指/阶数e 分/尾数f (51:32) 63 62 52 51 32

- 64位
- 符号(S)
 - 0代表正数,1代表负数
- 指/阶数(e):
- 分/尾数 (f):
 - 第0-51位(52位)
 - 精度约16位小数(十进制数)

IEEE-754格式化浮点数表示范围

格式	最小正数	最大正数	最小负数	最大负数
单精度	$e = 1$ $f = 0$ 1.0×2^{-126}	e = 254 $f=1-2^{-23}$ $(2-2^{-23}) \times 2^{127}$	$e=254$ $f=1-2^{-23}$ $-(2-2^{-23}) \times 2^{127}$	$e = 1$ $f = 0$ -1.0×2^{-126}
双 精 度	$e=1$ $f=0$ 1. 0×2^{-1022}	e = 2046 $f=1-2^{-52}$ $(2-2^{-52}) \times 2^{1023}$	$e=2046$ $f=1-2^{-52}$ $-(2-2^{-52}) \times 2^{1023}$	$e=1$ $f=0$ -1.0×2^{-1022}

注:均为真值

课堂练习

- 转IEEE-754单精度浮点数(32位二进制表示)
 - 32.9375

•
$$-32\frac{45}{128}$$

- · -2⁻¹⁴⁰
- 65536

$$(-1)^{s} \times 1. f \times 2^{e-127}, \ 1 \le e \le 254$$

$$V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, \ e = 0 \}$$

$$(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), \ e = 255, f = 0 \}$$

$$NaN(Not \ a \ Number), \ e = 255, f \neq 0$$

02 ASCII编码

如何表示从键盘输入计算机或者显示在显示器上的字符?

- ASCII (American Standard Code for Information Interchange)
- 美国信息交换标准码, 美国国家标准局制定
- 8个二进制位表示
- 键盘上的每个键被一个唯一的ASCII码所识别
- 在键盘上敲击某个键时,相应的8位码被存储,并提供给计算机

ASCII

- 8位ASCII码的标准集
 - D列-字符对应的ASCII码的十进制表示
 - H列-十六进制表示
 - · ASCII码字符的二进制?
- · 大写字母A的ASCII码

• 十进制D:65

• 十六进制H: X41

• 二进制B:0100001

· 小写字母a的ASCII码

• 十进制D:97

• 十六进制H: X61

• 二进制B:01100001

字符	AS	CII	□ ⁄⁄	AS	CII	☆ ⁄⁄⁄	AS	CII	二 ///	AS	CII
3 -10	D	Н	字符	D	Н	字符	D	Н	字符	D	Н
NUL	0	00	SP	32	20	@	64	+0		96	60
SOH	1	01	ļ.	33	21	A	65	41	a	97	61
STX	2	02		34	22	В	66	42	b	98	62
ETX	3	03	#	35	23	С	67	43	С	99	63
EOT	4	04	\$	36	24	D	68	44	d	100	64
ENQ	5	05	%	37	25	Е	69	45	е	101	65
ACK	6	06	&	38	26	F	70	46	f	102	66
BEL	7	07	1	39	27	G	71	47	g	103	67
BS	8	08	(40	28	H	72	48	h	104	68
HT	9	09)	41	29	I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	OB	+	43	2B	K	75	4B	k	107	6B
FF	12	0C	1	44	2C	L	76	4C	- 1	108	6C
CR	13	0D	-	45	2D	М	77	4D	m	109	6D
SO	14	0E		46	2E	N	78	4E	n	110	6E
SI	15	OF	/	47	2F	0	79	4F	0	111	6F
DLE	16	10	0	48	30	Р	80	50	р	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	S	115	73
DC4	20	14	4	52	34	Т	84	54	t	116	74
NAK	21	15	5	53	35	U	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	V	118	76
ETB	23	17	7	55	37	W	87	57	w	119	77
CAN	24	18	8	56	38	Х	88	58	Х	120	78
EM	25	19	9	57	39	Υ	89	59	у	121	79
SUB	26	1A	:	58	3A	Z	90	5A	Z	122	7A
ESC	27	1B	;	59	3B	[91	5B	{	123	7B
FS	28	1C	<	60	3C	\	92	5C	i	124	7C
GS	29	1D	=	61	3D	i	93	5D	}	125	7D
RS	30	1E	>	62	3E	٨	94	5E	~	126	7E
US	31	1F	?	63	3F		95	5F	DEL	127	7F
			•			_					

ASCII

- 注意数字符号,大小写字母的位置和顺序
 - 按照顺序分配
 - 大小写英文字母的ASCII的差值均相同
- 这些规律可用于处理一些字符问题
 - 已知A的ASCII码值为65,推断a为97

D(a)-D(A)=32

- 第0~32(20_H)号及第127(7F_H)号(共34个)
 是控制字符或通讯专用字符,其中第32号(20_H)是空格(Space)
- 第33~126号(共94个)是可见字符,包括 了阿拉伯数字,英文字母,英文标点等, 可以通过标准键盘直接输入

字符	AS	CII	字符	AS	CII	字符	AS	CII	字符	AS	CII
	D	Н		D	Н	עורכ	D	Н	הורב	D	Н
NUL	0	00	SP	32	20	@	64	+0		96	00
SOH	1	01	!	33	21	A	65	41	a	97	61
STX	2	02		34	22	В	66	42	b	98	62
ETX	3	03	#	35	23	С	67	43	С	99	63
EOT	4	04	\$	36	24	D	68	44	d	100	64
ENQ	5	05	%	37	25	E	69	45	е	101	65
ACK	6	06	&	38	26	F	70	46	f	102	66
BEL	7	07		39	27	G	71	47	g	103	67
BS	8	80	(40	28	Н	72	48	h	104	68
HT	9	09)	41	29	I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	OB	+	43	2B	K	75	4B	k	107	6B
FF	12	0C	1	44	2C	L	76	4C		108	6C
CR	13	0D	-	45	2D	М	77	4D	m	109	6D
SO	14	0E	•	46	2E	N	78	4E	n	110	6E
SI	15	0F	/	47	2F	0	79	4F	0	111	6F
DLE	16	10	0	48	30	Р	80	50	р	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	S	115	73
DC4	20	14	4	52	34	Т	84	54	t	116	74
NAK	21	15	5	53	35	U	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	V	118	76
ETB	23	17	7	55	37	W	87	57	W	119	77
CAN	24	18	8	56	38	X	88	58	X	120	78
EM	25	19	9	57	39	Υ	89	59	У	121	79
SUB	26	1A	:	58	3A	Z	90	5A	Z	122	7A
ESC	27	1B	;	59	3B]	91	5B	{	123	7B
FS	28	1C	<	60	3C	\	92	5C		124	7C
GS	29	1D	=	61	3D	1	93	5D	}	125	7D
RS	30	1E	>	62	3E	۸	94	5E	~	126	7E
US	31	1F	?	63	3F	_	95	5F	DEL	127	7F

ASCII

- 阿拉伯数字与其ASCII码之间的关系?
- 大写字母与相应的小写字母ASCII码之间的关系?
- 字母表顺序与ASCII码之间的关系?
- 其他字符?
 - http://www.unicode.org/
- ASCII码值的运算并没有新的运算,按照整数进行算术和逻辑运算

min free	AS	CII		AS	CII	- Andr	AS	CII	- Artic	AS	CII
字符	D	Н	字符	D	Н	字符	D	Н	字符	D	Н
NUL	0	00	SP	32	20	@	64	40		96	50
SOH	1	01	!	33	21	A	65	41	a	97	61
STX	2	02		34	22	В	66	42	b	98	62
ETX	3	03	#	35	23	С	67	43	С	99	63
EOT	4	04	\$	36	24	D	68	44	d	100	64
ENQ	5	05	%	37	25	E	69	45	е	101	65
ACK	6	06	&	38	26	F	70	46	f	102	66
BEL	7	07	1	39	27	G	71	47	g	103	67
BS	8	08	(40	28	Н	72	48	h	104	68
HT	9	09)	41	29	I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	OB	+	43	2B	K	75	4B	k	107	6B
FF	12	0C	1	44	2C	L	76	4C		108	6C
CR	13	0D	-	45	2D	М	77	4D	m	109	6D
SO	14	0E	•	46	2E	N	78	4E	n	110	6E
SI	15	0F	/	47	2F	0	79	4F	0	111	6F
DLE	16	10	0	48	30	Р	80	50	р	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	S	115	73
DC4	20	14	4	52	34	T	84	54	t	116	74
NAK	21	15	5	53	35	U	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	V	118	76
ETB	23	17	7	55	37	W	87	57	W	119	77
CAN	24	18	8	56	38	X	88	58	X	120	78
EM	25	19	9	57	39	Υ	89	59	У	121	79
SUB	26	1A	:	58	3A	Z	90	5A	Z	122	7A
ESC	27	1B	i	59	3B]	91	5B	{	123	7B
FS	28	1 C	<	60	3C	\	92	5C		124	7C
GS	29	1D	=	61	3D]	93	5D	}	125	7D
RS	30	1E	>	62	3 E	۸	94	5E	~	126	7E
US	31	1F	?	63	3F	_	95	5F	DEL	127	7F

其他数据类型

・字符串

• 字符序列,以 NUL (0)结束

• 汉字字符

- 一个字就是一个方块图形
- 如GB2312-80字符集
- 超过6万个字(至少16位)

图像

- 像素矩阵
- 黑白: 1位 (1/0 = black/white)
- 彩色: Red, Green, Blue (RGB) (每个8 位)
- (0,0,0) Black, (255,0,0) Red, (255,255,255) White
- 其他属性: 透明度

03 c语言中的数据类型

深入理解C语言中的数据类型

- char , ASCII码
- int , 二进制补码整数类型
- float , 单精度浮点数
- double, 双精度浮点数
- 每种类型采用多少位二进制来表示,与具体计算机的指令集结构和编译器有关

	C语言	字	节
有符号	无符 号	32位字长机器	64位字长机器
字符型 [signed] char	字符型 unsigned char	1	1
短整型 short	短整型 unsigned short	2	2
整型 int	<u>整型</u> unsigned int	4	4
长 <u>整型</u> long	长 <u>整型</u> unsigned long	4	8
整型(32位) int32_t	整型(32位) uint32_t	4	4
整型(64位) int64_t	整型(64位) uint64_t	8	8
单精度浮点型 float		4	4
双精度浮点型 double		8	8

C语言	字节	最小值	最大值
[signed] char	1	-2 ⁷	2 ⁷ -1
unsigned char	1	0	28-1
short	2	-2 ¹⁵	2 ¹⁵ -1
unsigned short	2	0	2 ¹⁶ -1
int	4	-2 ³¹	2 ³¹ -1
unsigned int	4	0	232-1
long	8	-2 63	2 ⁶³ -1
unsigned long	8	0	264-1
int_32	4	-2 ³¹	2 ³¹ -1
uint32_t	4	0	232-1
int64_t	8	-2 ⁶³	2 ⁶³ -1
uint64_t	8	0	264-1
float	4		
double	8		

char (字符型, Character Type)

- 表示字符:如字母(A、b、C)、数字(0、1、2)、标点符号(.、!、?)等
- 字符编码:每个字符在计算机内部都有一个与之关联的唯一数字编码,如ASCII
- 文本处理:处理文本、字符串和字符数组,如连接、截取、搜索、替换等
- 输入和输出:允许程序与用户进行文本交互,如命令行界面或文本文件的读写
- 字符常量和变量:表示字符值,或定义字符型变量,用于存储和处理字符数据

char grade = 'A'; // 声明一个字符型变量并初始化为字符'A' char newline = '\n'; // 可以用转义序列来表示特殊字符, 如换行符

char (字符型, Character Type)

- char 类型采用ASCII码表示
- 整数运算
- 如果key是char类型的变量:
 - (('a' <= key) && (key <= 'z')) || (('A' <= key) && (key <= 'Z'))
 - 表达式 " 'a' <= key" 中的 "<=" 运算符比较的就是变量key和字符 a的ASCII码的大小

int (整型 , Integer)

- 表示整数:包括正整数、负整数和零
- 存储和处理整数值,如计数、索引、循环计数器等
- 大小和范围可以因计算机体系结构和编程语言而异
 - int (整型)
 - 4个字节(32位)内存空间,范围约-2^31-231-1
 - short int (短整型)
 - 2个字节(16位)内存空间,范围约-2^15-2^15-1
 - long int (长整型)
 - 8个字节(64位)内存空间,范围约约-2^63—2^63-1
 -
- 声明整型变量并对其进行赋值,也可以进行整数运算,如加减乘除等。

int age = 25; // 声明一个整型变量并初始化
int sum = 10 + 20; // 整数运算,将10和20相
加并将结果存储在sum变量中

float, double (单精度浮点数和双精度浮点数)

- 不同型之间进行强制类型转换,结果可能会超出预期(溢出/舍入)
 - int类型->float类型:可能被舍入,不会溢出
 - 单精度浮点的尾数字段是23位,可能无法保留精度
 - int类型/float类型->double类型:可保留精度数值
 - double类型具有更大的范围和精度
 - ・ 从double类型->float类型:可能溢出或被舍入
 - float类型所表示的数值范围和精度更小
 - · 当float类型/double类型->int类型:可能被舍入或溢出
 - 向0舍入,例如1.9将会被转换成1,-1.9将被转换成-1
 - 或发生溢出

溢出(Overflow)

溢出发生在转换超出目标类型所能表示的范围。

舍入(Rounding)

舍入发生在转换过程中丢失精度时。

混合类型表达式的运算

- 算术运算表达式
 - "i + 3.1" , 其中 "i" 被声明为int类型 , 3.1是浮点型字面常量
 - 将整数转换为浮点数,然后进行计算(隐式的数据类型转换)
- 整数与字符型运算
 - "x + 'a'" , 其中 "x" 为int类型,字符'a'的ASCII码为97
 - 字符型将被转化为整数类型后再进行计算
 - 如果int类型变量x取值为1,则计算"1+97",表达式的值为98

输入输出的格式说明

- 格式说明 "%d"
- 输出
 - 它使得列在格式用字符串后面的数值被显示为十进制数输出
 - 事实上,是将一个存储的二进制数转化为ASCII码字符输出
 - 例如,语句 "printf ("25 plus 76 in decimal is %d. \n", 25 + 76)"
 - 输出 "25 plus 76 in decimal is 101."
- 输入
 - 它将输入的数据解释为十进制数值
 - 事实上,是将输入字符的ASCII码转化为二进制补码整数存储

输入输出的格式说明

- 格式说明 "%x"(八进制的 "%o" 同理)
- 输出
 - 它使得列在格式用字符串后面的数值被显示为十六进制数
 - 语句 "printf ("25 plus 76 in hexadecimal is %x. \n", 25 + 76)"
 - 输出 "25 plus 76 in hexadecimal is 65."

输入

- 它将输入的数据解释为十六进制数值
- 事实上,将输入字符的ASCII码转化为二进制补码整数存储
- scanf ("%x", &valueX);
- 输入: A, A0, a, ae, 10, 0XA, 0x10
- 存储: 10,160,10,174,16,10,16

输入输出的格式说明

- ▶ 格式说明 "%c"
- ▶ 输出
 - 它使得列在格式用字符串后面的数值被解释为ASCII字符显示
 - 语句 "printf ("25 plus 76 as a character is %c. \n", 25 + 76)"
 - 输出 "25 plus 76 as a character is e."
- ▶ 输入
 - scanf ("%c", &grade);
 - 事实上,这个过程是将输入的字符的ASCII码进行存储

输入输出的格式说明

- ▶ 格式说明 "%c"
- ▶ 输出
 - · 它使得列在格式用字符串后面的数值被解释为ASCII字符显示
 - 语句 "printf ("25 plus 76 as a character is %c. \n", 25 + 76)"
 - 输出 "25 plus 76 as a character is e."
- ▶ 输入
 - scanf ("%c", &grade);
 - 事实上,这个过程是将输入字符的ASCII码进行存储

• 书面作业

- 6.10
- 6.11
- 6.12
- 6.13
- 6.14
- 6.15
- 6.17

谢谢

诚耀百世節 雄创一流