- 1. Let X and Y be topological spaces. We consider in C(X,Y) (with the compact-open topology) the subspace C of constant functions.
- a) Prove that if X is locally compact and Hausdorff, then C is a retract of C(X,Y).
- b) Under the same hypotheses as the previous item, prove that if X is contractible, then C is a strong deformation retract of C(X,Y).
- **2.** Let $p: E \to B$ be a covering map, where B is path-connected and E is simply connected. Let $b_0 \in B$, $e_0 \in p^{-1}(b_0)$, and $f: B \to B$ be a continuous function with $f(b_0) = b_0$. Recall the pullback

$$E' = E \times_B B = \{(e, b) \in E \times B : p(e) = f(b)\},\$$

given by the diagram:

$$E' \xrightarrow{\overline{f}} E$$

$$\downarrow^{p'} \qquad \downarrow^{p}$$

$$B \xrightarrow{f} B.$$

Prove that $p': E' \to B$ is a covering map, and $p'_*(\pi_1(E', (e_0, b_0)))$ is the kernel of $f_*: \pi_1(B, b_0) \to \pi_1(B, b_0)$.