The group G is isomorphic to the group labelled by [9, 2] in the Small Groups library. Ordinary character table of $G \cong C3 \times C3$:

	1a	3a	3b	3c	3d	3e	3f	3g	3h
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
χ_3	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_4	1	1	1	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_5	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)
χ_6	1	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1
χ_7	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)
χ_8	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1
χ_9	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1	E(3)	1	$E(3)^2$

Trivial source character table of $G \cong C3 \times C3$ at $p = 3$:								
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6		
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5	P_6		
Representatives $n_j \in N_i$	1a	1a	1a	1a	1a	1a		
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	9	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	0	0	0	0		
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	0	3	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	3	0	0	3	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	3	0	0	0	3	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1		

$$\begin{split} P_2 &= Group([(4,5,6)]) \cong \text{C3} \\ P_3 &= Group([(1,2,3)]) \cong \text{C3} \\ P_4 &= Group([(1,2,3)(4,5,6)]) \cong \text{C3} \\ P_5 &= Group([(1,3,2)(4,5,6)]) \cong \text{C3} \\ P_6 &= Group([(4,5,6),(1,2,3)]) \cong \text{C3} \times \text{C3} \end{split}$$

 $P_1 = Group([()]) \cong 1$

$$N_1 = Group([(1,2,3),(4,5,6)]) \cong C3 \times C3$$

 $N_2 = Group([(1,2,3),(4,5,6)]) \cong C3 \times C3$
 $N_3 = Group([(1,2,3),(4,5,6)]) \cong C3 \times C3$
 $N_4 = Group([(1,2,3),(4,5,6)]) \cong C3 \times C3$
 $N_5 = Group([(1,2,3),(4,5,6)]) \cong C3 \times C3$
 $N_6 = Group([(1,2,3),(4,5,6)]) \cong C3 \times C3$