Agentes Inteligentes

Prof. Marcelo de Souza

85ECS – Engenharia de Software Orientada a Agentes Universidade do Estado de Santa Catarina

Agentes

Revisitando o conceito de agente

Um agente é um sistema de computador que está **situado** em algum ambiente, e que é capaz de agir de forma **autônoma** nesse ambiente para atender aos seus objetivos de projeto.

Agentes

Um agente é um sistema de computador que está **situado** em algum ambiente, e que é capaz de agir de forma **autônoma** nesse ambiente para atender aos seus objetivos de projeto.

Agentes

Revisitando o conceito de agente

Um agente é um sistema de computador que está **situado** em algum ambiente, e que é capaz de agir de forma **autônoma** nesse ambiente para atender aos seus objetivos de projeto.

Um exemplo para discussão

f Agente buscador de vulnerabilidades e ameaças em uma rede interna — agente ${\cal A}$

Um exemplo para discussão

Agente buscador de vulnerabilidades e ameaças em uma rede interna – agente ${\cal A}$

- ► Ambiente: computadores conectados à rede (sistema de arquivos);
- ▶ Objetivo: analisar os arquivos da rede e identificar potenciais perigos (e.g. *malwares*);

Um exemplo para discussão

Agente buscador de vulnerabilidades e ameaças em uma rede interna - agente ${\cal A}$

- ► Ambiente: computadores conectados à rede (sistema de arquivos);
- ▶ Objetivo: analisar os arquivos da rede e identificar potenciais perigos (e.g. malwares);
- Percepção: estrutura de diretórios, arquivos, propriedade e conteúdo dos arquivos, etc.;
- Ação: análise detalhada de suspeitas, reportar achados, colocar em quarentena, etc.

Com exemplos baseados no agente ${\cal A}$

Acessível \times inacessível (ou completo \times incompleto)

- ▶ É acessível se o agente tem a visão completa do ambiente.
- Acessível: A é limitado a um conjunto de diretórios predeterminado;
- Inacessível: A percorre a rede e observa somente os arquivos do computador atual.

Com exemplos baseados no agente ${\cal A}$

Acessível \times inacessível (ou completo \times incompleto)

- ▶ É acessível se o agente tem a visão completa do ambiente.
- Acessível: A é limitado a um conjunto de diretórios predeterminado;
- Inacessível: A percorre a rede e observa somente os arquivos do computador atual.

Determinístico × não determinístico

- ▶ É determinístico quando qualquer ação do agente tem garantidamente um único efeito.
- ightharpoonup Determinístico: \mathcal{A} é o único processo operando nos arquivos e tem máximos privilégios;
- ▶ Não determinístico: A concorre com outros processos (agentes) e/ou está limitado.

Com exemplos baseados no agente $\ensuremath{\mathcal{A}}$

Estático × dinâmico

- ▶ É estático quando a ação do agente é a única fonte de mudança no ambiente.
- Estático: os arquivos são (garantidamente) manipulados somente por Α;
- Dinâmico: outros processos manipulam os arquivos de forma concorrente.

Com exemplos baseados no agente ${\cal A}$

Estático × dinâmico

- ▶ É estático quando a ação do agente é a única fonte de mudança no ambiente.
- Estático: os arquivos são (garantidamente) manipulados somente por Α;
- Dinâmico: outros processos manipulam os arquivos de forma concorrente.

Discreto × contínuo

- ▶ É discreto quando há um número fixo e finito de percepções e ações.
- ▶ Discreto: A está limitado ao ambiente virtual que, por definição, é discreto;
- ▶ Não determinístico: A também analisa aspectos físicos (e.g. temperatura).

Agentes simples (e desinteressantes)

Termostato (ar condicionado)

- Percepção: temperatura T;
- Ação: ligar, desligar.
 - Se T está acima do desejado: liga (ou mantém);
 - Senão, desliga (ou mantém).

Agentes simples (e desinteressantes)

Termostato (ar condicionado)

- Percepção: temperatura T;
- Ação: ligar, desligar.
 - Se T está acima do desejado: liga (ou mantém);
 - Senão, desliga (ou mantém).

Monitor de e-mail

- Percepção: caixa de entrada;
- Ação: notificar.
 - Se há novo e-mail, notifica;
 - Senção, não faz nada.

Agentes simples (e desinteressantes)

Termostato (ar condicionado)

- Percepção: temperatura T;
- Ação: ligar, desligar.
 - Se T está acima do desejado: liga (ou mantém);
 - Senão, desliga (ou mantém).

Monitor de e-mail

- Percepção: caixa de entrada;
- Ação: notificar.
 - Se há novo e-mail, notifica;
 - Senção, não faz nada.

Satisfazem a definição de agentes (situados e autônomos), mas não são inteligentes.

► Tarefa e funcionamento interno muito simples!

Ambiente percepção Agente

Agentes inteligentes

Algumas características

Autônomos

- Reativos;
- Pró-ativos:
- Híbridos.

Adaptativos

▶ Melhoram seu desempenho com o tempo e a experiência → aprendizagem!

Sociais

- Coordenação;
- Cooperação ou competição;
- Negociação

Estrutura/arquitetura de agentes

Agentes (puramente) reativos

Respondem a mudanças no ambiente via uma base de regras.

- ► Exemplo: aspirador de pó detecta sujeira no chão, aspira e se move no ambiente;
- ▶ Base de regras: $\{sujo \rightarrow aspira; limpo \rightarrow desloca\}$.

Estrutura/arquitetura de agentes

Agentes reativos com estado (interno)

Armazenam um modelo do estado do ambiente e/ou informações internas.

- Exemplo: aspirador de pó com mapa do ambiente e memória;
- Regras que definem o deslocamento com base em locais já visitados (i.e. regiões limpas).

Estrutura/arquitetura de agentes

Agentes pró-ativos

Implementam algoritmos (mais sofisticados) para a deliberação (tomada de decisão).

- Geralmente, tentam maximizar uma função de utilidade;
- Exemplo: aspirador de pó com mapa do ambiente, memória e planejador de ações;
- Planeja sua rota maximizando a área limpa e minimizando o tempo (ou energia) gasto.

85ECS — Engenharia de Software Orientada a Agentes Prof. Marcelo de Souza