

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2004

Carnet:		
Nombre:		
Sección:		

MA-1116 — SEGUNDO PARCIAL 45 % - B —

(12 ptos.) 1.

Sea $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ una transformación lineal definida por

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} x_4 + x_5 + x_2 \\ x_4 - x_5 + x_2 \\ x_1 - x_3 + x_4 \end{pmatrix}.$$

Hallar

- matriz asociada A_T a la transformación T en la base canónica
- una base del núcleo de T
- una base de la imagen de T
- (12 ptos.)

Sea
$$W = \operatorname{gen} \left\{ \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix}; \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix} \right\}$$
 un subespacio en R^3 .

Hallar

- a) una base ortonormal para W
- b) una base para W^{\perp}

c) sea
$$\overline{v}=\left(\begin{array}{c} 7\\ 7\\ 7\end{array}\right)$$
. Hallar $\mathrm{proy}_W\overline{v}$

(11 ptos.)

Sea $\{\overline{v_1}, \overline{v_2}, \overline{v_3}, \overline{v_4}\}$ una base en R^4 . Demostrar que $\{\overline{v_1}; \overline{v_1} + \overline{v_2}; \overline{v_2} + \overline{v_3}; \overline{v_3} + \overline{v_4}\}$ también es una base en el mismo espacio.

(10 ptos.)

Sea
$$A = \begin{pmatrix} 1 & 4 & -8 \\ 4 & 7 & 4 \\ -8 & 4 & 1 \end{pmatrix}$$

- a) Probar que $\lambda = -9$ es un autovalor para A.
- Hallar un autovector correspondiente a $\lambda = -9$.