有限加法族

集合 X の部分集合族 F が**有限加法族**であるとは次を満たすときをいう。

- 1. $\emptyset \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow X \setminus A \in \mathcal{F}$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

有限加法的測度

集合 X 上の有限加法族 \mathcal{F} について、 $m:\mathcal{F}\to [0,\infty]$ が (X,\mathcal{F}) 上の**有限加法的測度**であるとは、次の 2 つの条件を満たすときをいう。

- 1. $m(\emptyset) = 0$
- 2. $A, B \in \mathcal{F}$ が互いに素である時、 $m(A \cup B) = m(A) + m(B)$

外測度

X を集合とする。 $\Gamma: 2^X \to [0,\infty]$ が X 上の**外測度**であるとは、次の 3 つの条件を満たすときをいう。

- 1. $\Gamma(\emptyset) = 0$
- 2. $A, B \subset X$ が $A \subset B$ を満たす時、 $\Gamma(A) \leq \Gamma(B)$
- 3. X の任意の部分集合列 $\{A_n\}_{n=1}^{\infty}$ に対し、 $\Gamma(\bigcup_{n=1}^{\infty}A_n)\leq\sum_{n=1}^{\infty}\Gamma(A_n)$

Γ -可測

X を集合とする。 $\Gamma: 2^X \to [0,\infty]$ を X 上の外測度とする。

集合 $E \subset X$ が Γ -**可測** (または $\overset{\stackrel{\circ}{C}arath\'{e}odory}$ の意味で可測) とは、任意の $A \subset X$ に対し次を満たすときをいう。

$$\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) = \Gamma(A) \tag{1}$$

また、 Γ -可測集合全体を M_{Γ} と表す。

命題 (X 上の外測度)

X を集合、 \mathcal{F} を X 上の有限加法族、 μ を (X,\mathcal{F}) 上の有限加法的測度とする。 $\mu^*: 2^X \to [0,\infty]$ を次で定義する。

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \mu(E_j) \mid A \subset \bigcup_{j=1}^{\infty} E_j$$
であり、 $E_j \in \mathcal{F}$ 、 $j \in \mathbb{N} \right\}$ (2)

このとき、 μ^* は X 上の外側度である。

可測関数

 $(X,\Sigma_X),\,(Y,\Sigma_Y)$ を可測空間、つまり、X,Y は集合で、 Σ_X,Σ_Y は σ -加法族とする。 関数 $f:X\to Y$ について $\forall E\in\Sigma_Y$ に対して $f^{-1}(E)\in\Sigma_X$ が成り立つとき、関数 $f:X\to Y$ が可測であるという。この集合 Y が $\overline{\mathbb{R}}=[-\infty,\infty]$ の時、 Σ_Y はボレル集合族として定義する。

μ -零集合

 (X, \mathcal{M}, μ) を測度空間とする。 $A \subset X$ が μ -零集合であるとは, $A \subset N$ かつ $\mu(N) = 0$ を満たす $N \in \mathcal{M}$ が存在することをいう。

完備

 (X, \mathcal{M}, μ) を測度空間とする。全ての μ -零集合が \mathcal{M} に属する時、 (X, \mathcal{M}, μ) あるいは μ のことを完備という。

. (X,M,μ) を測度空間とする. 全ての μ -零集合が M に属すとき, (X,M,μ) , あるいは μ のことを完備であるという.

 (X, \mathcal{M}, μ) を測度空間とし、その完備化を $(X, \overline{\mathcal{M}}, \overline{\mu})$ で表す。また、 $f: X \to \overline{\mathbb{R}}$ とする。

- 1. $g: X \to \mathbb{R}$ は \mathcal{M} -可測であるとする。 $\{x \in X \mid f(x) \neq g(x)\}$ が μ -零集合であるならば、f は $\overline{\mathcal{M}}$ -可測であることを示せ。
- 2. $\{f_n\}_{n=1}^{\infty}$ は X 上の \mathbb{R} -値関数の列とし、任意の $n \in \mathbb{N}$ に対し、 f_n は \mathcal{M} -可則であるとする。 $\{x \in X \mid \lim_{n \to \infty} f_n(x) = f(x)\}$ が μ -零集合であるならば、f は $\overline{\mathcal{M}}$ -可測になることを示せ。

.....