Regimentation

LOGIC I Benjamin Brast-McKie September 16, 2024

From Last Time...

Definitions: Here is slightly different take on the same definitions:

Well-Formed Sentences: The set WFSS of \mathcal{L}^{PL} is the smallest set to satisfy:

- φ is a wfs of \mathcal{L}^{PL} if φ is a sentence letter of \mathcal{L}^{PL} ;
- $\neg \varphi$ is a wfs of \mathcal{L}^{PL} if φ is a wfs of \mathcal{L}^{PL} ;
- $(\varphi \wedge \psi)$ is a wff of \mathcal{L}^{PL} if φ and ψ are wfss of \mathcal{L}^{PL} ;
- $(\varphi \lor \psi)$ is a wff of \mathcal{L}^{PL} if φ and ψ are wfss of \mathcal{L}^{PL} ;
- $(\varphi \to \psi)$ is a wff of \mathcal{L}^{PL} if φ and ψ are wfss of \mathcal{L}^{PL} ;
- $(\varphi \leftrightarrow \psi)$ is a wff of \mathcal{L}^{PL} if φ and ψ are wfss of \mathcal{L}^{PL} .

Semantics: For an interpretation \mathcal{I} , a VALUATION function $\mathcal{V}_{\mathcal{I}}$ is the smallest function to assign truth-values to every sentence of SL that satisfies the semantic clauses:

- $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{I}(\varphi)$ if φ is a sentence letter of \mathcal{L}^{PL} .
- $\mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \text{ (i.e., } \mathcal{V}_{\mathcal{I}}(\varphi) \neq 1).$
- $\bullet \quad \mathcal{V}_{\mathcal{I}}(\phi \wedge \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\phi) = 1 \text{ and } \mathcal{V}_{\mathcal{I}}(\psi) = 1.$
- $\bullet \quad \mathcal{V}_{\mathcal{I}}(\varphi \vee \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 1 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$
- $\bullet \quad \mathcal{V}_{\mathcal{I}}(\phi \to \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\phi) = 0 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$
- $\bullet \quad \mathcal{V}_{\mathcal{I}}(\phi \leftrightarrow \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\phi) = \mathcal{V}_{\mathcal{I}}(\psi).$

Observe: Observe the symmetry between the above.

Recall: The hierarchy of sentences from before...

Complexity

Complexity: $Comp(\varphi)$ is the smallest function to satisfy all of the following conditions for all wfss φ and ψ of \mathcal{L}^{PL} :

- $Comp(\varphi) = 0$ if φ is a sentence letter;
- $Comp(\neg \varphi) = Comp(\varphi) + 1;$
- $Comp(\varphi \wedge \psi) = Comp(\varphi) + Comp(\psi) + 1;$
- •

Question: Do we need to include corner quotes?

Validity

 \mathcal{L}^{PL} Validity: An argument in \mathcal{L}^{PL} is valid iff its conclusion is a logical

consequence of its premises.

English Validity: An argument in English is valid iff it has a (faithful) regi-

mentation (in some language) that is valid.

• Note the imprecision here; there is no avoiding this.

Soundness: An argument is sound iff it is valid and has true premises

(on an interpretation we care about, probably the intended

interpretation).

Examples

Rain

1. If it is raining on a week day, Sam took his car.

- 2. Kate borrowed Sam's car only if Sam did not take it.
- 3. Kate borrowed Sam's car just in case she visited her parents.
- 4. It is raining and Kate visited her parents.
- 5. Either it is not a week day or it is not raining.

Task 2: Regiment this argument and construct its truth table.

Observe: This argument can be adequately regimented and evaluate in SL.

Negation

Uninitiated

- A1. If Sam attended the gathering, then he has been initiated.
- A2. Sam is uninitiated.
- A3. Sam did not attend the gathering.

Observe: Being uninitiated is the same as not being initiated.

Uninvited

B1. Arden is not invited.

B2. Arden is uninvited.

Observe: Arden can fail to be invited without being uninvited.

Question: What about the converse?

Disjunction

Party

- C1. If Adi or James make it to the party, Isa will be happy.
- C2. If Adi and James make it to the party, Isa will be happy.

Observe: This argument suggests an inclusive reading of 'or'.

Race

- D1. Sasha won the 100 meter dash.
- D2. Josh won the high jump.
- D3. Either Sasha won the 100 meter dash or Josh won the high jump

Observe: We could strengthen the conclusion.

Vault

- E1. If Kin uses the remote, the trunk will open.
- E2. If Yu tries the handle, the trunk will open.
- E3. If Kin uses the remote and Yu tries the handle, the trunk won't open.
- E4. If Kin uses the remote or Yu tries the handle, the trunk will open.

Observe: We cannot regiment the conclusion with inclusive-'or'.

Question: Can we salvage the validity of this argument?

Conjunction

Exam

- F1. Henry failed and Megan passed.
- F2. Megan passed and Henry failed.

Observe: Perfectly adequate and valid regimentation.

Gym

- G1. Kate took a shower and went to the gym.
- G2. Kate went to the gym and took a shower.

Observe: Conjunction in English can track temporal order.

Question: How can we capture the invalidity of this argument in \mathcal{L}^{PL} ?