

Overview of Propagation Studies at NASA Glenn Research Center

James Nessel

NASA Glenn Research Center Advanced High Frequency Branch

January 22, 2015

Outline

- Propagation Program Objectives
- Program History
- Summary of Current Propagation Campaigns
- Modeling Activities
- GRC Propagation Laboratories
- Future Plans

Program Objectives

As NASA and the Nation move toward operations at Ka-band frequencies and above, it is desirable to <u>characterize the site-dependent atmospheric propagation</u> <u>effects</u> to manage expectations for system performance and develop improved systems at current and future potential operational sites.

Objectives:

- To provide a good understanding of RF propagation effects
- To <u>develop or validate</u> models for the prediction of propagationrelated effects
- To <u>develop techniques</u> for the mitigation of these effects

How to accomplish the objectives:

- By making <u>long-term</u> measurements at multiple sites and analyzing the collected data
- A timely and full dissemination of results to users of propagation data

Program History

Advanced Component Technology Satellite (ACTS)

GRC possesses over 35+ station years of Ka-band propagation data collected through the Advanced Communications Technology Satellite (ACTS) program.

Overview of Current Efforts

Propagation Terminal Development

ACTS Propagation Terminal

Operational Frequency: 20.7/27.5 GHz

Dynamic Range: 20 dBSampling Rate: 1 Hz/10 Hz

Resolution: < 0.3 dB rms accuracy

Hardware-based FFT Receiver

Goldstone Interferometer

Operational Frequency: 20.2 GHz

Dynamic Range: 30 dB

Sampling Rate: 1 Hz

Resolution: < 0.1 dB rms accuracy

Software-based FFT Receiver

White Sands/Guam Terminal

Operational Frequency: 20.2 GHz

Dynamic Range: 40 dB

Sampling Rate: 1 Hz/10 Hz

Resolution: <0.1 dB rms accuracy

<u>Software-based Frequency</u> <u>Estimation Receiver</u>

Throughout propagation campaigns, ground station hardware has undergone evolutionary improvements in performance and autonomous operation procedures.

SITE SUMMARIES

7

Goldstone Campaign

Atmospheric Phase Turbulence Studies

Instrument: Two-Element Ka-Band Interferometer (20.2 GHz)

Data Collection Started: May 2007

Data Collection Completed: September 2012 (but ongoing)

Total Number of Months: 88 (7.3 Years)

Collected 7+ years of atmospheric attenuation measurements
Collected 7+ years of phase turbulence measurements
Measurements have been validated with interferometer at
secondary location at DSN Complex

White Sands Campaign

Atmospheric Phase Turbulence Studies

Instruments: Two-Element Ka-Band Interferometer (20.2 GHz)

Microwave Profiling Radiometer (22-60 GHz)

W/V-band Radiometer (82/72 GHz)

Data Collection Started: February 2009
Total Number of Months: 68 (5.7 Years)

Collected 5+ years of atmospheric attenuation measurements
Collected 5+ years of phase turbulence measurements

White Sands Campaign

Millimeter Wave Precursor Studies

Instrument : Profiler, W/V-Band Radiometer Data Collection Started : December 2012

Total Number of Months: 24 (2 years)

Collected 2+ years of W/V-band gaseous and cloud attenuation measurements Extrapolation of profiler measurements/absorption models to W/V-band validated with direct W/V-band radiometer measurements Attenuation [dB]

Guam Campaign

Propagation Studies in the Tropics

Instrument: Two-Element Ka-Band Interferometer (20.7 GHz)

Data Collection Started: May 2010

Total Number of Months: 54 (4.5 Years)

Collected 4+ years of atmospheric attenuation measurements Collected 4+ years of phase turbulence measurements Collected 4+ years of site diversity measurements

Attenuation [dB]

Guam Campaign

Site Diversity Analysis

- Compact, highly convective rainfall in Guam has shown evidence of rain diversity over short (600-m) antenna separation distances.
- Guam site diversity study indicates that meaningful diversity gain is possible within short baseline separation distances (<20 km) and is sufficient to overcome rain attenuation
- Analysis results lays foundation for modeling of short baseline site diversity, which his currently lacking
- IMPACT: Conclude that high availability Ka-band operations in a tropical environment is possible utilizing short baseline site diversity

Svalbard Campaign

Propagation Studies in the Polar Climate

Data Collection Started: May 2011

Total Number of Months: 42 (3.5 Years)

* K. McCarthy, F. Stocklin, B. Geldzahler, D. Friedman, P. Celeste, "NASA's Evolution to Ka-band Space Communications for Near-Earth Spacecraft," AIAA SpaceOps 2010, Apr. 25-30, 2010, Huntsville, AL

Collected 3+ years of low elevation angle gaseous absorption Coordinating with ESA to install Ka-band (20.2 GHz) beacon receiver for rain attenuation/scintillation measurements

Alphasat Campaign

Propagation Studies in the Q-band

Instrument: K/Q-band Beacon Receiver (20/40 GHz)
Optical Disdrometer

Data Collection Started: May 2014

Total Number of Months: 7 (0.6 Years)

- First 40 GHz propagation data collected by NASA
- GRC receiver recognized as highest-performing receiver of all Alphasat experimenters (>40 dB dynamic range)
- Collaboration with ASI for 20km site diversity measurements

MODEL DEVELOPMENT

Atmospheric Microwave Phase Turbulence Modeling

Model for Phase Turbulence Statistics (TBD):

$$\sigma_{\phi} = f(Nwet, v, \theta, v)$$

Derivation of Cn2 from Interferometric Measurements:

$$C_{\rm n}^2 = 0.043 D_{\Delta H}(\infty) \Lambda_1^{-1} d^{-\beta} H^{-1}$$

TABLE II

MEAN VALUES OF C_n^2 AT NASA GROUND SITES

Location	C _n ² [2010- 2012]	C _n ² [June- Aug.]	C _n ² [Dec Feb.]	C _n ² 99%
Goldstone, CA (DSN)	2.04x10 ⁻¹⁴	3.02x10 ⁻¹⁴	8.45x10 ⁻¹⁵	1.55x10 ⁻¹
White Sands, NM (SN)	2.08x10 ⁻¹⁴	4.40x10 ⁻¹⁴	5.99x10 ⁻¹⁵	2.85x10 ⁻¹
Guam (SN)	9.8x10 ⁻¹³	8.7x10 ⁻¹³	1.1x10 ⁻¹²	8.3x10 ⁻¹³

Atmospheric Phase Turbulence in an Array Environment

NASA

Deep Space Network (DSN)

Concept

Arraying of several small aperture antennas vs. single large aperture antenna provides the following advantages:

- Reduced maintenance costs
- Graceful degradation of performance of communications system
- Relative ease of meeting strict surface accuracy requirements for small apertures
- Enable new communications capabilities
- N² improvement in Effective Isotropic Radiated Power (EIRP)

$$EIRP_{array} = \sum_{m=1}^{N} G_m \cdot \sum_{n=1}^{N} P_n$$

Assuming identical antenna elements,

$$EIRP_{array} = G_{array} \cdot NP_0$$

$$\langle G_{array} \rangle = \eta D_0 \frac{1}{N} \sum_{m=1}^{N} \sum_{n=1}^{N} e^{\frac{\sigma_{mn}^2}{2}}$$

Propagation data characterizes this value (variance in phase amongst widely distributed antenna elements)

$$\sigma_{mn}^{2}(\theta_{el}, f, r) = \sigma_{mn}^{2}(\theta_{0}, f_{0}, r_{0}) \left(\frac{f}{f_{0}}\right) \left(\frac{r}{r_{0}}\right)^{\alpha} \left(\frac{\sin \theta_{0}}{\sin \theta_{el}}\right)$$

Atmospheric Phase Turbulence in an Array Environment

NASA

Deep Space Network (DSN)

Atmospheric Optical Scintillation Modeling

Preliminary Analysis of Optical Performance at White Sands

$$HV(h) = Ae^{-\frac{h}{H_A}} + Be^{-\frac{h}{H_B}} + Ch^{10}e^{-\frac{h}{H_C}} + De^{-\frac{(h-H_D)^2}{2d^2}}$$
 Coherence radius, $r_0 = 0.423 \left(\frac{2\pi}{\lambda}\right)^2 \int C_n^2(h) dh$, $\lambda = 1550$ nm

Modified Structure Parameters:

$$C_T^2(T, U, \Delta t) = \frac{4\langle (T(r) - T(r + U\Delta t))^2 \rangle}{k_U^{-2/3} \left[0.57722 + \log(U\Delta t) + \frac{3}{2} \log(2k_U^{2/3}) + \frac{1}{2} \left(\frac{v}{U} \right)^2 \right]}$$

$$C_n^2 = \left(\frac{77.689 \langle P \rangle}{\langle T \rangle^2} \right)^2 C_T^2(T, U, \Delta t)$$

Optical Link Budget Analysis Tool

- Rapid assessment of the operation of an optical communications link anywhere within the solar system as well as within GEO/LEO orbits
- Dynamic evaluation of optical link operation, accounting for the locations of deleterious noise sources with respect to the link and their impact on, e.g., achievable data rate during these periods
- Provides temporal and data rate connectivity throughout the lifetime of a mission yielding calculations for potential total data throughput of a mission
- Tool can be directly interfaced with the Satellite Tool Kit (STK) from which it gets its dynamic capability.
- Software configuration of tool allows extensive reporting capabilities as well as the flexibility to add as 'modules' new optical detector types, new modulations schemes, etc.
- Optical tool can be employed for the simulation of entire relay satellite system when used with an attendant tool for RF.

PROPAGATION LABORATORIES

RF Propagation Laboratory

Bldg. 55 Rooftop radiometer testing

Bldg. 55 Propagation Laboratory used for component/system level testing and integration

NASA Ground Station (NGS) 5.5-m beam waveguide antenna for receiver system testing/check-out

Millimeter Wave Laboratory

Bldg. 55 Millimeter Wave Laboratory for component/system level testing and integration

Presently transitioning test equipment to millimeter wave:

- Spectrum Analyzer (up to 90 GHz)
- Vector Network Analyzer (up to 110 GHz)
- Laboratory Investment Fund proposal in place to procure Signal Generator

(up to 110 GHz)

FUTURE PLANS

Activities in the Millimeter Wave

AFRL Terrestrial Link Experiment (Summer 2015)

Propagation Models/Measurements in the V/W-band

Collaboration with AFRL and University of New Mexico (UNM) provides cost-effective opportunity to conduct immediate near-term rain fade and depolarization measurements prior to having an active W/V-band beacon for model validation and rain fade mitigation.

Measurement equipment to include:

- Beacon Transmitter on Sandia Peak (72/84 GHz)
- Beacon Receiver at UNM
- V/W-band Microwave Radiometer at UNM
- Optical Transmitter/Receiver for concomitant measurements along path
- Multiple Optical Disdrometers along path for rain drop size distribution measurements
- Multiple weather stations along path for path profiling information
- Super Doppler Radar for path profiling information

IMPACT:

- Terrestrial Line-of-Sight Experiment in W/V-band will provide immediate preliminary validation/prediction of mm-wave rain attenuation and depolarization models prior to the expected W/V-band beacon payload launch in 2018 timeframe.
- Will provide a testbed for prototype propagation terminals to reduce experiment risk.

W/V-band Satellite Communications Experiment

Opening the Millimeter Wave

- AFRL W/V-band Satellite Communications Experiment (WSCE)
 - Conduct ACTS-like CONUS propagation campaign at V/W bands

Expected payload launch date in 2018

