Formation à blanc Initiation R

E.HIRCHAUD F.SIMONET

BiRD

3 septembre 2013

Sommaire

- Notions informatiques
 - Systéme d'exploitation
 - Les applications
 - Chemins et fichiers
 - Types de mémoires
 - Synthèse
- 2 F
 - Aperçu
 - Objectif du TP
 - Comparaison Excel R
 - Les objets

3 septembre 2013

Les systéme d'exploitation : OS (Operating System)

3 septembre 2013

Les applications : logiciels, programmes,

Arborescence

Appélation

- Fichiers données numeriques de type variés
- Directory = Répertoire = Dossier : contient des fichiers.

Schématisation

La navigation

Deux types de navigation

- Chemin absolu
- Chemin relatif

Symboles utilisés dans la navigation

- La racine : Windows une lettre, linux et mac, symbole /
- Séparateur de répertoire : Windows : \, linux et mac /
- Le Répertoire courrant : . (point)
- Le Répertoire parent : .. (deux points)

Formalisation: Chemin absolu

Formalisation: Chemin relatif exemple 1

Formalisation: Chemin relatif exemple 2

Les mémoires

Synthèse

R: Apperçu

- Crée par Ross Ihaka et Robert Gentleman (1996)
- C'est un logiciel libre et gratuit
- Disponible sur les systèmes d'exploitation les plus utilisés
- Utilisé dans de nombreux domaines dont la bio analyse.

- Assimiler le vocabulaire
- Se servir de R comme d'une calculatrice
- Écrire et modifier des lignes de commande
- Utiliser un script déjà écrit
- Savoir où trouver de l'aide (documentation)
- Utiliser un éditeur convivial (RStudio)

- Assimiler le vocabulaire
- Se servir de R comme d'une calculatrice
- Écrire et modifier des lignes de commande
- Utiliser un script déjà écrit
- Savoir où trouver de l'aide (documentation)
- Utiliser un éditeur convivial (RStudio)

- Assimiler le vocabulaire
- Se servir de R comme d'une calculatrice
- Écrire et modifier des lignes de commande
- Utiliser un script déjà écrit
- Savoir où trouver de l'aide (documentation)
- Utiliser un éditeur convivial (RStudio)

- Assimiler le vocabulaire
- Se servir de R comme d'une calculatrice
- Écrire et modifier des lignes de commande
- Utiliser un script déjà écrit
- Savoir où trouver de l'aide (documentation)
- Utiliser un éditeur convivial (RStudio)

- Assimiler le vocabulaire
- Se servir de R comme d'une calculatrice
- Écrire et modifier des lignes de commande
- Utiliser un script déjà écrit
- Savoir où trouver de l'aide (documentation)
- Utiliser un éditeur convivial (RStudio)

- Assimiler le vocabulaire
- Se servir de R comme d'une calculatrice
- Écrire et modifier des lignes de commande
- Utiliser un script déjà écrit
- Savoir où trouver de l'aide (documentation)
- Utiliser un éditeur convivial (RStudio)

Excel R

Excel	R
Cellule	Elément simple
Plage de données	data.frame matrix, list, vector

Excel	R
Cellule	Elément simple
Plage de données	data.frame matrix, list, vector
Valeur	Valeur (value)
Format	Туре

Excel	R
Cellule	Elément simple
Plage de données	data.frame matrix, list, vector
Valeur	Valeur (value)
Format	Туре
Fonction	Fonction
Macro	Script

Les Objets

Deux types d'objets à retenir

- Les objets de données
- Les fonctions

Les Objets de données

- Un nom : que l'on appelle variable
- Valeur(s)
- Les valeurs ont un type :
 - numérique : 1,2, 3.14
 - chaine de caratères : A,B genes
 - ▶ logique : TRUE/FALSE

Les objets sont temporaires, ils sont stocker dans la mémoire vive de l'ordinateur. Il faudra donc les sauvegarder.

- vector ⇒ vecteur (type homogène)
- matrix ⇒ matrice (type homogène)
- data.frame ⇒ tableau de données (type hétèrogène)
- factor ⇒ classe de paramètres qualitatifs (type homogène)
- list ⇒ liste(type hétèrogène)

- vector ⇒ vecteur (type homogène)
- matrix ⇒ matrice (type homogène)
- data.frame ⇒ tableau de données (type hétèrogène)
- factor ⇒ classe de paramètres qualitatifs (type homogène)
- list ⇒ liste(type hétèrogène)

- vector ⇒ vecteur (type homogène)
- matrix ⇒ matrice (type homogène)
- data.frame ⇒ tableau de données (type hétèrogène)
- factor ⇒ classe de paramètres qualitatifs (type homogène)
- list ⇒ liste(type hétèrogène)

- vector ⇒ vecteur (type homogène)
- matrix ⇒ matrice (type homogène)
- data.frame ⇒ tableau de données (type hétèrogène)
- factor ⇒ classe de paramètres qualitatifs (type homogène)
- list ⇒ liste(type hétèrogène)

- vector ⇒ vecteur (type homogène)
- matrix ⇒ matrice (type homogène)
- data.frame ⇒ tableau de données (type hétèrogène)
- factor ⇒ classe de paramètres qualitatifs (type homogène)
- list ⇒ liste(type hétèrogène)

18 / 34

Création d'objets

```
# Objet Simple
monNombre < - 4.5
# Vecteur numerique
monVecNum \leftarrow c(500, 452, 8)
# Vecteur de caractaire
monVecCara <- c("A", "B", "C")
# Matrice de 10 colones et 50 lignes
maMatrice <- matrix(rnorm(500), ncol=10)
# data frame formé deux vecteurs:
monDataFrame <- data.frame (monVecNum, monVecCara)
```


Acceder aux valeurs

Notion d'indices index

- Les indices sont entouré de crochets
- Il s'agit de la position d'une valeur
- Pour les vecteurs, simple indice. [i]
- Pour les data.frame et matrice, double indice, [Ligne, Colone]

Vecteur

```
monVecNum <- c(500 , 452, 8)
element3 <- monVecNum[3]
```

Indices	[1]	[2]	[3]
Valeurs	500	452	8

Matrices

```
maMatrice <- matrix(1:15, ncol=5)
maLigne2 <- maMatrice[2, ]
maColone3 <- maMatrice[, 3]
elementL2C3<- maMatrice[2,3]</pre>
```

	[,1]	[,2]	[,3]	[,4]	[,5]
[1,]	1	2	3	4	5
[2,]	6	7	8	9	10
[3,]	11	12	13	14	15

Data Frame

```
Ech <- c(1:6)
Type <- c("WT", "WT", "MUT1", "MUT1", "MUT2", "MUT2")
monDataFrame <- data.frame(Ech, Type)

#Reccupere la colonne Type
colType <- monDataFrame$Type
colType2 <- monDataFrame[, 2]</pre>
```

	Ech	Type
[1,]	1	WT
[2,]	2	WT
[3,]	3	MUT1
[4,]	4	MUT1
[5,]	5	MUT2
[6,]	6	MUT2

Les Fonctions

- On également un nom
- Une description (leur rôle)
- Des arguments, paramétres
- Retourne un ou des résultats
- Créent, modifient et informent sur les données
- Contiennent des arguments et des instructions

Utilisation d'une fonction

Une fonction c'est une recette de cuisine : La recette de la pâte à pizza

Le quatre quarts : ingredients

- 500g de farine
- 250ml d'eau
- 20g de levure de boulanger fraîche

La pâte à pizza : une suite d'actions ordonées

- Verser la farine dans un saladier, y creuser un puits et ajouter l'eau
- 2 Danns un petit bol, faire fondre la levure dans un peu d'eau tiède.
- ect...

Un résultat

Une pâte à pizza prête à garnire.

En informatique:

- La fonction à un nom : preparerPateAPizza
- Les ingredients sont des arguments : poidsFarine, volumeEau, poidsLevure
- Les actions sont des suites d'insctruction (ligne de commandes)
- Le retour de la fonction est un objet que l'on peut stoker dans une variable : maPateAPizza.

```
maPateAPizza <- preparerPateAPizza(poidsFarine = 250, volumeEau = 250,
poidsLevure = 20)
```


Ce qu'il faut retenir sur les fonctions

- Les reconnaitres
- Identifier les arguments
- Modifier les arguments
- Stocker le résultat dans une variable.
- Lire la documentation de la fonction pour connaitre son utilisation
- Il n'est pas essentiel de connaître son fonctionement dans le détail.

Utilisation des arguments

Généralité sur les arguments.

- L'ordre des arguments n'a pas d'importance si leur noms est écrits
- Les variables doivent être dans un ordre précis si les noms ne sont pas écrits
- Certains arguments ont une valeur par défaut, si on ne la change pas, aucun besoin de l'écrire.
- Les valeurs attribuée aux arguments peuvent être des variables.

Package

- Les packages contienent un ensemble de fonctions et parfois de jeux de données.
- library(ggplot2)
- BioConductor : ensemble de package pour la bioanalyse

31 / 34

Script/Programme

- Un script permet l'exécution automatique d'une série d'instruction, de fonction...
- Ces instructions sont écrites dans un fichier texte qui à pour extension .R
- Un script comporte généralement des lignes de commentaire, précédées par le symbole #.

Règles de nomenclatures

- Importance de la casse (majuscule/minuscule)
 - ▶ : pizza ≠ Pizza
- Informatique anglo-saxone
 - Ne pas nommer les noms des objets avec des acents
 - Le point sert de décimal, la virgule non !
- Ne JAMAIS mettre d'espace dans un nom
- Ne JAMAIS commencer un nom par un chiffre
- Eviter d'utiliser des symboles (+ / ...)
- Mots reservés

Objets

Objets

RAM (Temporaire)

Objets

RAM (Temporaire)

Objets

Disque dur

Disque dur

