Function fitting

Lecture 4; Reading: ISLR sections 2.1, 3.2.1, 3.5

IFT6758, Fall 2020

Leveraging Input \rightarrow Output relationship in data

Leveraging Input → Output relationship in data

Examples:

- Genetic profile → Chance of developing disease
- Person's characteristics → Whether they'll vote
- Marketing plan → Total sales amount
- Image pixel values → What's in the image

Leveraging Input → Output relationship in data

Examples:

- Genetic profile → Chance of developing disease
- Person's characteristics → Whether they'll vote
- Marketing plan → Total sales amount
- Image pixel values → What's in the image

Mathematical expression

- $x_i = (x_{i_1}, \dots, x_{i_p}) \leftarrow inputs$
- $y_i = f(x_i) \leftarrow inputs to output relationship$

$$y_i = f(x_i) + \epsilon_i$$

Why is this decomposition?

Why is this decomposition?

 \blacksquare f describes systematic variation in y_i

$$y_i = f(x_i) + \epsilon_i$$

Why is this decomposition?

- f describes systematic variation in y_i
- ϵ_i reflects variations whose source is unknown to us. Consider <u>coin tosses</u>.

Why not just visualize the data we have?

- Why not just visualize the data we have?
- Reason 1: Prediction
 - lacktriangle We may want the y_i corresponding to an input x_i
 - Inputs may be much easier to collect than outputs
- Reason 2: Inference
 - lacktriangle We may care about the form of f, for personal understanding
 - e.g., is a particular input relevant at all?

- Why not just visualize the data we have?
- Reason 1: Prediction
 - lacktriangle We may want the y_i corresponding to an input x_i
 - Inputs may be much easier to collect than outputs
- Reason 2: Inference
 - \blacksquare We may care about the form of f, for personal understanding
 - e.g., is a particular input relevant at all?

We want quantitative estimates, not visual summaries

ightharpoonup In reality, we won't know f

- ightharpoonup In reality, we won't know f
- lacktriangle We estimate it from data and call the result \hat{f}

- In reality, we won't know f
- ightharpoonup We estimate it from data and call the result \hat{f}
- To predict y_i for some input x_i , we'd use $\hat{y} = \hat{f}(x_i)$

- In reality, we won't know f
- ightharpoonup We estimate it from data and call the result \hat{f}
- To predict y_i for some input x_i , we'd use $\hat{y} = \hat{f}(x_i)$

- **Approximation error:** \hat{f} isn't close to f
 - This error is reducible (use a better algorithm)

- **Approximation error:** \hat{f} isn't close to f
 - This error is reducible (use a better algorithm)

- **Approximation error:** \hat{f} isn't close to f
 - This error is reducible (use a better algorithm)

- Irreducible error: y_i isn't close to $f(x_i)$
 - Incur this error even if f were perfectly known

- **Approximation error:** \hat{f} isn't close to f
 - This error is reducible (use a better algorithm)

- Irreducible error: y_i isn't close to $f(x_i)$
 - Incur this error even if f were perfectly known

Extendable to high dimension

How to find \hat{f} ?

How to find \hat{f} ?

Propose a model family F: e.g., set of all linear functions of x_i

How to find \hat{f} ?

- Propose a model family F: e.g., set of all linear functions of x_i
- Define a procedure to choose $\hat{f} \in F$ based on the data

How to find \hat{f} ?

- Propose a model family F: e.g., set of all linear functions of x_i
- Define a procedure to choose $\hat{f} \in F$ based on the data
 - E.g., the choice \hat{f} that minimizes $\sum_i (y_i \hat{f}(x_i))^2$

How to find \hat{f} ?

- Propose a model family F: e.g., set of all linear functions of x_i
- ▶ Define a procedure to choose $\hat{f} \in F$ based on the data
 - E.g., the choice \hat{f} that minimizes $\sum_i (y_i \hat{f}(x_i))^2$

Ultimately, you want your model to perform well on out-of-sample data

Ultimately, you want your model to perform well on out-of-sample data

- Ultimately, you want your model to perform well on out-of-sample data
- Bias-Variance trade-off:
 - ightharpoonup Bias \equiv model inaccuracy
 - ightharpoonup Variance: Different samples \longrightarrow Different \hat{f}

- Ultimately, you want your model to perform well on out-of-sample data
- Bias-Variance trade-off:
 - ightharpoonup Bias \equiv model inaccuracy
 - ightharpoonup Variance: Different samples \longrightarrow Different \hat{f}
- Incurring some bias can lead to better stability and overall better predictions

If you don't have too many samples, you should prefer a simpler model

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- ► We'll need some sort of mechanism to tell which regime we're in

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- ► We'll need some sort of mechanism to tell which regime we're in
- Examples of different model families

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- ► We'll need some sort of mechanism to tell which regime we're in
- Examples of different model families
 - Useful tutorial: pyGAM

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- ► We'll need some sort of mechanism to tell which regime we're in
- Examples of different model families
 - Useful tutorial: <u>pyGAM</u>
- **Reading:** <u>ISLR</u> 2.1, 3.2.1, 3.5

- K fixed and given
- Samples: $(x_i, y_i)_{i=1}^N$
- Estimate data generating function: $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- \triangleright N_K : K nearest neighbors of x within the training set

- K fixed and given
- Samples: $(x_i, y_i)_{i=1}^N$
- Estimate data generating function: $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- \triangleright N_K : K nearest neighbors of x within the training set

- K fixed and given
- Samples: $(x_i, y_i)_{i=1}^N$
- Estimate data generating function: $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- \triangleright N_K : K nearest neighbors of x within the training set

- K fixed and given
- Samples: $(x_i, y_i)_{i=1}^N$
- Estimate data generating function: $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- \triangleright N_K : K nearest neighbors of x within the training set

- K fixed and given
- Samples: $(x_i, y_i)_{i=1}^N$
- Estimate data generating function: $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- \triangleright N_K : K nearest neighbors of x within the training set

Model complexity is controlled by the size of the neighborhood

- Model complexity is controlled by the size of the neighborhood
 - \blacksquare Large $K \longrightarrow$ Lower variance, larger bias
 - \longrightarrow Small $K \longrightarrow$ Higher variance, smaller bias

- Model complexity is controlled by the size of the neighborhood
 - \blacksquare Large $K \longrightarrow$ Lower variance, larger bias
 - \longrightarrow Small $K \longrightarrow$ Higher variance, smaller bias
 - Larger K learns smoother functions; smaller K can match more complex functions when the sampling density is high enough

The density of samples decreases with increase in dimension

The density of samples decreases with increase in dimension

- The density of samples decreases with increase in dimension
- Lack of close neighbors causes increases in bias and variance

- The density of samples decreases with increase in dimension
- Lack of close neighbors causes increases in bias and variance
- Need to look at almost the whole space to make a prediction

- The density of samples decreases with increase in dimension
- Lack of close neighbors causes increases in bias and variance
- Need to look at almost the whole space to make a prediction
- It means you average over points that are quite different

Categorical variables belonging to some classes

- Categorical variables belonging to some classes
- The probability that a location x gets assigned to class j is approximated by

$$\hat{p}_k(x) = \frac{1}{K} \sum_{i \in N_K(x)} \mathbb{I}(y_i = j)$$

- Categorical variables belonging to some classes
- The probability that a location x gets assigned to class j is approximated by

$$\hat{p}_k(x) = \frac{1}{K} \sum_{i \in N_K(x)} \mathbb{I}(y_i = j)$$

Assign the class with highest probability. This is like taking majority votes.

- Categorical variables belonging to some classes
- The probability that a location x gets assigned to class j is approximated by

$$\hat{p}_k(x) = \frac{1}{K} \sum_{i \in N_K(x)} \mathbb{I}(y_i = j)$$

Assign the class with highest probability. This is like taking majority votes.

Next up: Linear regression, logistic regression, decision trees

Go to this page