CS 375 – Analysis of Algorithms

Professor Eric Aaron

Lecture – M W 1:00pm

Lecture Meeting Location: Davis 117

Business

- SA6 due 11:59pm, Dec. 1
 - SA6 involves working through an example of the algo we covered last Monday
- PS4 due already
- PS5 out, due Dec. 9
 - PS5 will be the final PS for the semester
- PS3, SA4, SA5 grading update
- If you have any questions or comments, please see me about feedback on your graded PS3's
- Project 4 due 11:59pm, Monday, Dec. 12
 - Tell me your team by end of day *today*
 - Intended team size: 4 (but talk to me if you'd prefer to work with a smaller team size)

See CLRS, Sec. B.5.1 and B.5.2

The Trees

See also the Rush album Hemispheres, which many people may find even more dense and inaccessible than the CLRS textbook.

- A tree (sometimes called a free tree) is an acyclic, connected, undirected graph A collection of (possibly)
 - We've seen rooted trees such as binary trees before, but from a more general graph-oriented perspective, trees do not need to have roots

disconnected trees is called a forest. Really.

- Important properties of (free) trees—the below statements are all equivalent for undirected graph G = (V, E):
 - G is a free tree
 - Any two vertices in G are connected by a unique simple path
 - G is connected, but if any edge is removed, the resulting graph is disconnected
 - G is connected and |E| = |V|-1
 - G is acyclic and |E| = |V|-1
 - G is acyclic, but if any edge is added to G, the resulting graph has a cycle

Minimum Spanning Trees (MSTs)

- Given a connected undirected graph G = (V,E), an acyclic subgraph that connects all the vertices in V is a spanning tree of G
 - It's a tree; and it covers ("spans") all the vertices of G
 - For network G, represents unique connections / paths between each pair of nodes in G
- Consider the *minimum spanning tree* (MST) problem: given weighted, undirected, connected graph G, find a spanning tree T with minimal total weight over all edges in T

"In the not too distant future..."

A Generic MST Algorithm

• Minimum spanning trees can be grown one edge at a time

```
• Safe here means an edge that can be added without violating the property that A is a subgraph of an MST.
```

• Digression: How do we argue correctness of the algorithm?

 $A = \emptyset$ **while** A is not a spanning tree find an edge (u, v) that is safe for A

GENERIC-MST(G, w)

 $A = A \cup \{(u, v)\}$ **return** A

- Some vocabulary
 - A cut (S,V-S) of an undirected graph G=(V,E) is a partition of V_{i}
 - An edge (u,v) crosses a cut if u is in S and v is in V-S
 - A cut respects a set of edges if no edge in the set crosses the cut
 - A light edge is a minimum-weight edge satisfying a property (e.g.,
 a light edge that crosses a cut)
 How can this vocab be used to describe an MST algorithm?

Greedy MST Algorithms

- Greedy strategy for building MSTs: Add the best edge (from edge set E of graph G); repeat until an MST is built
 - Overall structure: Turn a forest (some trees have only 1 node) into a tree by adding light edges connecting separate components
- Question: What is the best edge (the greedy choice) to add?
 - A possibility: Pick the least-weight edge from E that connects two separate components

 Invariant: All subgraphs are
 - Possibly results in multiple trees growing in the forest, but all will be connected by the end of the algorithm
 - I.e., maintains a disjoint set of sub-trees

Data Structures Flashback: Disjoint Sets / Union-Find

- A *union-find* data structure is used to maintain a collection of disjoint sets
- Operations on disjoint sets:
 - Find: Given v, find component (set) containing v
 - *Union*: Given components A, B, replace them by their union A U B
- Representation: a disjoint-set forest of rooted trees
 - Union operation joins trees A and B into a new rooted tree
 - Find operation gives the root of the tree containing v
- Use this representation with *union-by-rank* and *path-compression* heuristics as data structure for MST algorithm

See CLRS Chapter 21.3 for details of implementation and run-time complexity.

Kruskal's Algorithm

- MST possibility: Pick the least-weight edge from E that connects two separate components
 - Disjoint-set data structure maintains forest of MST sub-trees
 - Efficient to determine whether two vertices are already connected
 - Start by sorting edges, least-weight first, and take edges in that order, as long as they connect separate components

KRUSKAL(G, w) $A = \emptyset$ for each vertex $v \in G.V$ MAKE-SET(v)sort the edges of G.E into nondecreasing order by weight wfor each (u, v) taken from the sorted list

if FIND-SET $(u) \neq$ FIND-SET(v) $A = A \cup \{(u, v)\}$

UNION(u, v)

return A

... i.e., add light edges that connect sub-trees

Kruskal's Algorithm, kontinued

• What's a *correctness* argument for Kruskal's algorithm?

```
KRUSKAL(G, w)
A = \emptyset

for each vertex v \in G.V

MAKE-SET(v)

sort the edges of G.E into nondecreasing order by weight w

for each (u, v) taken from the sorted list

if FIND-SET(u) \neq FIND-SET(v)

A = A \cup \{(u, v)\}

UNION(u, v)

return A
```

• What's a complexity argument for it?

Kruskal's Algorithm, kontinued

• What's a *complexity* argument for Kruskal's algorithm?

```
KRUSKAL(G, w)
A = \emptyset

for each vertex v \in G.V

MAKE-SET(v)

sort the edges of G.E into nondecreasing order by weight w

for each (u, v) taken from the sorted list

if FIND-SET(u) \neq FIND-SET(v)

A = A \cup \{(u, v)\}

UNION(u, v)
```

- Depends on the complexity of Find-Set and Union, from previous slide: O((V + E) \alpha(E))
- And O(E lg E) to sort E, so [O(E lg E), thus...] O(E lg V), total

Example Exercise: Greedy Algorithms & MSTs

```
KRUSKAL(G, w)
A = \emptyset
for each vertex v \in G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight u
for each (u, v) taken from the sorted list
if FIND-SET(u) \neq FIND-SET(v)
A = A \cup \{(u, v)\}
UNION(u, v)
return A
```


- Apply Kruskal's algorithm to this graph, to find a minimum spanning tree.
- (Break ties, where applicable, by alphabetical ordering on the endpoints of edges.)