Experimental study on laser-based micromachining of acrylic plate

Submitted by			
Gokul V S	244103219	Sk Mushraf Parvez	246103011
Ritwik Jain	244103208		
Mohit Singh	244103222	Upendra Sharma	244103230

1. Introduction:

Laser Beam Micro Machining (LBMM) involves the fabrication of microfeatures with nanometer (nm) tolerances. It utilizes the properties of an ultrashort laser to acquire an exceptional degree of control in generating microfeatures internal to the materials without any collateral damage to the surroundings. The manufacturing industries use LBMM in various fields like microoptics, micro-electronics, micro-biology, and micro-chemistry. It can fabricate 3-D submicronsized structures, miniature photonic components, read-only memory chips, hollow channel waveguides used in optical communication networks, optical data memory, and biological optical chips [1].

Lasers are installed widely in everyday life across numerous applications: CD and DVD, barcode scanners, entertainment, welding or cutting in the industry, aid to fire control or alignment of roads and tunnels. In the medical field, lasers are diagnostic and therapeutic instruments offering various solutions. The laser enables greater surgical precision, is less invasive, and promotes healing time or cure. This technique is generally much less traumatic than traditional surgical techniques. The first use of lasers in medicine was to damage the retina and understand ocular injury due to accidental exposure. Several devices have been improved since the first ruby laser, placing ophthalmology at the forefront of medical specialties using this technology. The laser has also many applications in the field of biology. Researchers take the technology to its limits by playing on two main parameters, the short laser pulses—to the femtosecond—and energy beams. Since then, pulsed lasers have become increasingly popular for their ability to ablate biological tissue. For patient diagnosis and experimental studies, biological tissue can be analyzed under a microscope after immuno-histostaining or crushed for further molecular analysis [2].

Laser technology is favored over other methods due to its unparalleled precision, speed, and versatility. Lasers provide exceptional accuracy, enabling intricate cutting, welding, and engraving tasks essential in high-precision industries like electronics and aerospace. They operate at high speeds, significantly enhancing productivity and reducing operational costs. Moreover, lasers are highly versatile, working effectively on various materials, from metals to plastics [3]. Their non-contact process minimizes wear and tear on tools and prevents contamination, ensuring high-

quality finishes. The ability to focus laser beams into tiny spots results in minimal waste and excellent energy efficiency. Furthermore, the high degree of control and automation available with laser technology enhances safety and flexibility, making it an indispensable tool in modern manufacturing and numerous other fields.

1.1 Types of Lasers used in LBMM

In LBMM, short and ultrashort laser pulses obtained from gas or solid lasers selectively remove material. A laser pulse is called as ultrashort pulse when the thermal diffusion depth (√4at where "a" is the thermal diffusivity and "t" is the diffusion time) is equal to or less than the optical penetration depth. A wide variety of lasers, which provide wavelengths from deep ultraviolet (D-UV) to mid-infrared (M-IR), are used for LBMM. The wavelength conversion of IR laser is possible by passing the light through proper non-linear optical crystals like lithium niobate or beta barium borate. The third and fourth harmonics of laser in the neodymium family i.e. Nd:YAG, Nd: YLF and Nd:YVO4 are in UV range. Table 1 shows some representative lasers in the wavelength range from deep UV to mid-IR which are extensively used for microfabrication applications [1].

Table 1 Types of Laser based on source [2]

Type of laser	Laser material	Wavelength	Pulse length	Frequency
	Nd:YAG (second harmonic)	532 nm	100-10 ns	50 Hz
	Nd:YAG (third harmonic)	355 nm		
	Nd:YAG (fourth harmonic)	266 nm		
	Nd:YVO	1064 nm	2.8 - 7.9 ps	84 MHz to 77 GHz
	Nd:GdVO3	1053 nm	37 ps	100 MHz
	Nd:BEL	1070 nm	2.9-7.5 ps	250 MHz to 20 GHz
	Nd:LSB	1062 nm	1.6-208 ps	177-240MHz
	Nd:glass	1054" nm "	7 ps	
	Nd:VAN	750-870" nm "		
	Nd:YLF	1047-1053 nm	1.5-37 ps	76 MHz to 2.85 GHz
	Yb:YAG	1030 nm	340-730 fs	35-81MHz
Solid state laser	Yb:glass	1025-1082 nm	58-61 fs	112 MHz
Solid state laser	Yb:GdCOB	1045 nm	90 fs	100 MHz
	Yb:KGW	1037 nm	176 fs	86 MHz
	Ti:sapphire	750-880 nm	6-150 fs	15 MHz to 2 GHz
	Cr:LiSAF	800-880 nm	12-220 s	82-200 MHz
	Cr:LiCAF	800-820 nm	20-170 fs	90-95 MHz
	Cr:LiSGaF	830-895 nm	14-100 fs	71-119 MHz
	Cr:LiSCaF	860 nm	90 fs	140 MHz
	Cr :Forsterite	1.21-1.29 mum	14-78 fs	81-100 MHz
	Cr:YAG	1.52 mum	44 - 120 fs	81 MHz to 1.2 GHz
	Fiber lasers	1064 nm	100 ns	20-50 Hz
	Diode lasers	0.8 mum		
	Microchip lasers	1064 nm	Less than 100 ps	100 kHz
	ArF	193	5-25 ns	1-1000 Hz
	KrF	248	2-60 ns	1-500Hz
Gas laser	XeCl	308	1-250 ns	1-500Hz
Gas lasti	XeF	353	0.3-35	1-1000Hz
	CO2 laser	10,600	200 mus	5Hz
	Copper vapor lasers	611-578	30	4-20Hz

2. Methodology & Experiment

The material removal in LBMM is happen because of laser ablation. Laser ablation is a material removal mechanism by high-intensity laser irradiation resulting from strong laser—material interactions, as shown in Figure 1. Although laser ablation is not used for active-material synthesis, it is a valuable technique for precise cutting and patterning of materials, particularly in the fabrication of WEGs. Metals, semiconductors, ceramics, and polymers can be machined by laser cutting, making laser ablation suitable for machining the layers and components in WEGs, including electrodes, active materials, and packaging layers [4].

Figure 1:Illustration of interaction between laser and material [1]

The experiment employed a CO2 laser with a scanning velocity ranging from 0.1 mm/s to 250 mm/s and a power range of 9 W to 180 W. Compressed air was continuously supplied at the tip of the laser nozzle to minimize unwanted fire generation. The primary objective of the experiments was to investigate the effects of power and scanning velocity while maintaining a constant distance of 6 mm. The acrylic sheet was positioned on the laser bed, aligned with the origin of the laser cutter's grid, as illustrated in Figure 2. A slot measuring 20 mm was created using the parameters outlined in Table 3.

Table 2 Parameters and corresponding levels

Davamatav		Levels		
Parameter		-1	0	1
Power (W)		40	60	80
Scanning	velocity			
(mm/s)		70	140	210

Figure 2Experimental Setup

Table 3 Experimental Parameters

Trail No.	Power (%)	Scanning velocity (mm/s)	SOD (mm)
1	40	70	6
2	40	140	6
3	40	210	6
4	60	70	6
5	60	140	6
6	60	210	6
7	80	70	6
8	80	140	6
9	80	210	6

3. Results

The machined acrylic sample is studied for kerf length, laser entry, and exit hole diameter using a microscope (Make: Leica DMC) in the material science lab. The responses are given in Table 4.

Figure 3 Slot made on the acylic sheet using laser micromachining

Figure 4 Microscope setup

Table 4 Response table

Power	Scanning	Average kerf	Average redeposited	Average HAZ	End Radius
(W) velocity (mm/s)	width (mm)	material length (mm)	(mm)	(mm)	
72	70	0.430	1.001	2.080	0.181
72	140	0.403	0.884	2.110	0.165
72	210	0.435	0.863	1.980	0.181
108	70	0.473	1.030	2.253	0.258
108	140	0.465	0.966	2.270	0.245
108	210	0.444	0.920	2.050	0.251
144	70	0.477	1.058	2.330	0.255
144	140	0.455	0.991	2.273	0.266
144	210	0.469	0.936	2.333	0.261

Figure 5: Effect of power and scanning velocity on average kerf width

Figure 5 shows the average kerf width, indicating that as laser power increases, kerf width also tends to expand across all scanning velocity. At 72 W, the kerf width is at its narrowest for the lowest scanning velocity of 70 mm/s and reaches its widest at 140 mm/s. However, as the power increases to 108 W and 144 W, the kerf width increases at all speeds, with 140 mm/s consistently producing a slightly wider kerf than the other speeds. This trend suggests that laser power and

scanning velocity influence kerf width, with higher power generally leading to an increase in kerf width, while certain scanning velocity further exacerbates this effect.

Figure 6: Effect of power and scanning velocity on average redeposited material length

Figure 6 shows the average length of redeposited material, revealing less variation across different power levels and scanning velocities. At 72 W, all scanning velocities produce a redeposited material length close to 1.0 mm, with only minor fluctuations. As the power increases to 108 W and 144 W, this length remains relatively stable, though slight decreases are at higher scanning velocities. This consistency in redeposited material length suggests that laser power and scanning velocity may have a limited impact on this parameter compared to other machining outcomes.

Figure 7: Effect of power and scanning velocity on heat affected zone

Figure 7 shows the average heat-affected zone (HAZ), and it shows at lower scanning velocity, the heat-affected zone decreases as the power increases. At a power level of 72 W, the HAZ is slightly wider at scanning velocity of 140 mm/s and 210 mm/s compared to 70 mm/s. As the power increases to 108 W, there is a marked increase in HAZ width, particularly at the higher scanning velocity of 140 mm/s and 210 mm/s. This trend continues at 144 W, where the HAZ width at 210 mm/s reaches its peak value. These findings indicate that both laser power and scanning velocity

significantly influence the HAZ, with higher power and faster speeds generally resulting in a broader HAZ, which may affect the thermal impact on the material.

Figure 8: Effect of power and scanning velocity on end radius

Figure 8 shows the end radius, showing that as the scanning velocity increases, the radius at the end of the slot increases. At a power level of 72 W, the end radius is smallest at a scanning velocity of 70 mm/s, while it reaches its maximum at speeds of 140 mm/s and 210 mm/s. As the power increases to 108 W and 144 W, the end radius also rises, with higher scanning velocity resulting in even larger end radii. This indicates that laser power and scanning velocity play a crucial role in determining the size of the end radius, with increased settings leading to a larger radius.

4. Conclusion

Based on the result:

• Average Kerf Width:

 As the power increases from 72 W to 144 W, it increases 8% - 13% of kerf width at different scanning velocities.

• Average Redeposited Material Length:

- Changes in laser power and scanning velocity have a limited effect on redeposited material length.
- The redeposited material length varies by only 3% across different power levels and scanning velocities, indicating minimal influence from these parameters.

• Average Heat-Affected Zone (HAZ):

o Increasing power from 72 W to 144 W leads to an **8%–18% increase** in the width of the HAZ, particularly noticeable at higher scanning velocities.

o At 210 mm/s, the HAZ **decreases by 80%** compared to 70 mm/s when the power is held constant at 108 W, showing that faster scanning velocity decreases the thermal effect.

• End Radius:

- The end radius increases by approximately 40 61 % when power is increased from 72 W to 144 W.
- O Scanning velocity also affects the end radius significantly, with a **10% larger** radius observed at 210 mm/s compared to 70 mm/s for the same power setting.

References

- [1] V. Y. Sanjay Mishra, "Laser Beam MicroMachining (LBMM) A review," *Optics and Lasers in Engineering*, pp. 89-122, 2015.
- [2] C. C. M. V. A. J. Luc G. Legres, "The Laser Technology: New Trends in Biology and Medicine," *Journal of Modern Physics*, vol. 5, pp. 267-279, 2014.
- [3] A. K. Maini, Lasers and Optoelectronics, John Wiley and Sons Ltd, 2013.
- [4] X. Z. L. Z. Daozhi Shen, "Laser processing for electricity generators: Physics, methods and applications," *Nano Energy*, vol. 120, 2024.