Feuille d'exercices 1 : Logique et raisonnement

1 Logique et quantificateurs

Exercice 1. Soient P, Q, R trois propositions. Montrer que :

$$(P \implies (Q \implies R))$$
 est équivalente à $((P \text{ et } Q) \implies R)$.

$$((P \text{ ou } Q) \implies R))$$
 est équivalente à $((P \implies R) \text{ et } (Q \implies R))$.

Exercice 2. Pour chacune des propositions suivantes, étudier si elle est vraie ou fausse :

- 1. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y^2 = 0,$
- $2. \ \forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x + y^2 = 0,$
- 3. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y^2 = 0,$ 4. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 = 0,$
- 5. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x + y^2 = 0,$

Exercice 3. Traduire en terme de quantificateurs les phrases suivantes :

- 1. Tous les réels ont un carré positif.
- 2. L'équation $x^3 + x + 1 = 0$ admet une unique solution réelle.
- 3. L'équation $x^2 + x + 1 = 0$ n'admet aucune solution réelle.
- 4. Il existe un seul réel x tel que $\ln(x) = 1$.

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Traduire les phrases suivantes en termes mathématiques puis les nier. Exercice 4.

- (a) La suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- (b) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée.
- (c) La suite $(u_n)_{n\in\mathbb{N}}$ est constante.
- 2. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Traduire les phrases suivantes en termes mathématiques puis les nier.
 - (a) f est croissante.
 - (b) f est bornée.
 - (c) f est constante.
 - (d) f est la fonction nulle.
 - (e) f ne s'annule jamais.
 - (f) f n'a jamais les mêmes valeurs en deux points distincts.
 - (g) f atteint toutes les valeurs de \mathbb{N} ;
 - (h) f n'est pas inférieure à g.

$\mathbf{2}$ Raisonnements

Exercice 5. Montrer que :

$$\forall n \in \mathbb{N}^*, \ \sqrt{n^2 + 1} \notin \mathbb{N}$$

Exercice 6. Soient $a, b, c, d \in \mathbb{R}$ tels que $a \leq b$ et $c \leq d$.

Montrer que si a + c = b + d, alors a = b et c = d.

1. Montrer que pour tout $n \in \mathbb{N}$, n est pair si et seulement si n^2 est pair.

- 2. En déduire que $\sqrt{2}$ est un irrationnel.
 - (on pourra raisonner par l'absurde et supposer qu'il existe $p, q \in \mathbb{Z}$ tels que $\sqrt{2} = \frac{p}{q}$ avec $\frac{p}{q}$ irréductible.).

Exercice 8. Soient $a, b \in \mathbb{R}$, montrer que :

$$(\forall x \in \mathbb{R}, \ ax + be^x = 0) \iff a = b = 0.$$

Exercice 9. Montrer que :

$$\exists ! x \in \mathbb{R}^+, \ x + \sqrt{x} - 2 = 0$$

Exercice 10. Résoudre dans \mathbb{R} l'équation $x = \sqrt{2+x}$

Exercice 11. Montrer que :
$$\exists x \in \mathbb{R}, \ e^x + e^{-x} = \frac{5}{2}$$
.

Exercice 12. Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x) \times f(y) - f(xy) = x + y$$

- 1. Analyse : supposons qu'il existe f solution du problème.
 - (a) Montrer que f(0) = 1.
 - (b) En déduire l'expression de f(x).
- 2. Synthèse
- 3. Conclure

Exercice 13. Soit $f: \mathbb{R} \to \mathbb{R}$ une application vérifiant :

$$\forall x \in \mathbb{R} , \forall y \in \mathbb{R} , \forall z \in \mathbb{R} , (x \neq y \text{ et } x \neq z) \Rightarrow \left(\frac{f(x) - f(y)}{x - y} = \frac{f(x) - f(z)}{x - z}\right).$$

Montrer qu'il existe un unique couple $(a, b) \in \mathbb{R}^2$ tel que $\forall x \in \mathbb{R}, f(x) = ax + b$.

Exercice 14. Soit $x \in \mathbb{R}$, montrer que $\max(x^2, (x-2)^2) \ge 1$

Exercice 15. Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \sqrt{\frac{1 + u_n}{2}}$. Montrer par récurrence que pour tout entier naturel n, $0 \le u_n \le 1$.

Exercice 16. Démontrer par récurrence que $\forall n \in \mathbb{N}^*, \ 2^n > n$

Exercice 17. Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\ u_1=6$ et pour tout entier $n\geq 2,\ u_n=6u_{n-1}-9u_{n-2}$. Montrer que pour tout entier naturel $n\in\mathbb{N},\ u_n=(n+1)\times 3^n$.

Exercice 18. On définit la suite réelle $(u_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} u_0 = 1 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n \end{cases}$$

Montrer que : $\forall n \in \mathbb{N}, \ u_n \leq \left(\frac{5}{3}\right)^n$.

Exercice 19. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 0 \\ u_2 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+3} = 3u_{n+2} - 3u_{n+1} + u_n \end{cases}$$

Montrer que : $\forall n \in \mathbb{N}, \ u_n = n(n-1)$

Exercice 20. Soit (u_n) la suite vérifiant :

$$u_0=0$$
 et $\forall n\in\mathbb{N}, u_{n+1}=\left\{ egin{array}{ll} 2u_{\frac{n}{2}}+1 & \mbox{si } n \mbox{ pair} \\ u_n+1 & \mbox{si } n \mbox{ impair} \end{array}
ight.$

Montrer que : $\forall n \in \mathbb{N}, u_n = n$.

Exercice 21. Soit $x \in \mathbb{R}^*$ tel que $x + \frac{1}{x} \in \mathbb{Z}$. Montrer que :

$$\forall n \in \mathbb{N}, \ x^n + \frac{1}{x^n} \in \mathbb{Z}.$$

2