Inertia Wheel Lab Report

Arnav Patri

May 4, 2022

Data

m_w (kg)	$(\Delta t)_{\rm avg}$ (s)	$\Delta y \text{ (m)}$	$a \left(\text{m/s}^2 \right)$	$\alpha (\mathrm{rad/s^2})$	$\tau_{ m net} \; ({ m N} \cdot { m m})$
0.02	$ \begin{array}{c cccc} 96 & 1, 1 \\ 97 & 0 \\ 98 & \\ 99 & 1, 7 \\ 100 & 0 \\ 101 & 6 \\ \hline & 11 1 = 1.11 \\ & (\Delta t)_{\text{avg}} = 9.85 \end{array} $		$v_0 = 0$ $\Delta y = v_0 \Delta t + 0.5a(\Delta t)^2$ $= v_0 (\Delta t)_{\text{avg}} + 0.5a(\Delta t)_{\text{avg}}^2$ $a = \frac{2(\Delta y - v_0(\Delta t)_{\text{avg}})}{(\Delta t)_{\text{avg}}^2}$ $= \frac{2(1 - 0)}{9.85^2} \approx 0.021$	$\alpha = \frac{a}{r_p}$ $\approx \frac{0.021}{0.125}$ ≈ 0.275	$\tau_{\text{net}} = F_{\text{net}} \times r_p$ $= mr_p(g - a)$ $\approx 0.02(9.8 - 0.021)$ ≈ 0.007
0.04	$ \begin{array}{c cccc} 64 & 1 \\ 65 & 0, 1, 1, 5 \\ 66 & 0 \\ \hline 11 1 = 1.11 \\ (\Delta t)_{\text{avg}} \approx 6.513 \end{array} $		≈ 0.047	≈ 1.257	≈ 0.015
0.06	$ \begin{vmatrix} 49 & 2 \\ 50 & 0, 3 \\ 51 & 52 \\ 53 & 1 \\ 54 & 0, 1, 1 \end{vmatrix} $	1	≈ 0.074	≈ 1.964	≈ 0.022
0.08	$ \begin{vmatrix} 43 & 0 \\ 44 & 1, 2, 5, 8 \\ \hline 11 & 1 = 1.11 \\ (\Delta t)_{\text{avg}} \approx 5.211 $		≈ 0.104	≈ 2.772	≈ 0.029
0.1	$ \begin{vmatrix} 37 & 3 \\ 38 & 4 \\ 39 & 3 \\ 40 & 1, 8 \\ 41 & 0 \\ 41 & 5 \end{vmatrix} $ $ \boxed{11 1 = 1.11} $ $ (\Delta t)_{\text{avg}} \approx 3.994 $		≈ 0.125	≈ 3.343	≈ 0.036

 $I_{\rm net}$

$$I_{\text{net,th}} = 0.5m_d r_d^2 + m_p r_p^2$$

= 0.5(1.3)(0.125)^20.1(0.0375)^2
\approx 0.01 N \cdot m

$$I_{
m net,exp} pprox 0.01$$
% error = $\left| \frac{I_{
m net,exp} - I_{
m net,th}}{I_{
m net,th}} \right| pprox 1.25\%$

The reason that the least-squares regression line relating $\tau_{\rm net}$ to α does not display direct variation is that a lack of angular acceleration may occur when torque is not great enough to overcome friction.