# Subspace Based Meta-Learning



Yue Sun Joint work with:



Halil Ibrahim Gulluk



Adhyyan Narang



Samet Oymak



Maryam Fazel

April 21, 2021



Task, feature in  $\mathbb{R}^d$ , label in  $\mathbb{R}$ .

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ ,  $\Sigma_{\beta}$  approx low rank, Feature:  $x \sim \mathcal{N}(0, \Sigma_{X})$ , Noise:  $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon})$ , Label:  $y = \mathbf{x}^{\top} \boldsymbol{\beta} + \varepsilon$ .

▶ **Two steps:** Representation learning, Few-shot learning

Task, feature in  $\mathbb{R}^d$ , label in  $\mathbb{R}$ .

- ▶ **Two steps:** Representation learning, Few-shot learning
- ▶ **Rep learning:** Sample  $\beta_1,...,\beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n}$ . Evaluate y. Use x,y to estimate  $\Sigma_{\beta}$ , or span of  $\Sigma_{\beta}$ .

Task, feature in  $\mathbb{R}^d$ , label in  $\mathbb{R}$ .

- ► Two steps: Representation learning, Few-shot learning
- ▶ **Rep learning:** Sample  $\beta_1,...,\beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n}$ . Evaluate y. Use x,y to estimate  $\Sigma_{\beta}$ , or span of  $\Sigma_{\beta}$ .
- **Few-shot learning:** Sample  $\beta$ ,  $x_1, ..., x_n$ , evaluate y. Use x, y and estimate  $\beta$  in principal subspace of  $\Sigma_{\beta}$ .

Task, feature in  $\mathbb{R}^d$ , label in  $\mathbb{R}$ .

- ▶ **Two steps:** Representation learning, Few-shot learning
- ▶ **Rep learning:** Sample  $\beta_1,...,\beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n}$ . Evaluate y. Use x,y to estimate  $\Sigma_{\beta}$ , or span of  $\Sigma_{\beta}$ .
- ▶ Few-shot learning: Sample  $\beta$ ,  $x_1, ..., x_n$ , evaluate y. Use x, y and estimate  $\beta$  in principal subspace of  $\Sigma_{\beta}$ .
- **Few-shot learning:** Sample  $\beta$ ,  $x_1, ..., x_n$ , evaluate y. Use x, y and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .











Task, feature in  $\mathbb{R}^d$ , label in  $\mathbb{R}$ .

- ▶ **Two steps:** Representation learning, Few-shot learning
- ▶ **Rep learning:** Sample  $\beta_1,...,\beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n}$ . Evaluate y. Use x,y to estimate  $\Sigma_{\beta}$ , or span of  $\Sigma_{\beta}$ .
- ▶ Few-shot learning: Sample  $\beta$ ,  $x_1, ..., x_n$ , evaluate y. Use x, y and estimate  $\beta$  in principal subspace of  $\Sigma_{\beta}$ .
- **Few-shot learning:** Sample  $\beta$ ,  $x_1, ..., x_n$ , evaluate y. Use x, y and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .



# Meta-learning - Linear - Prior works

- ▶ Mei & Montanari. Double descent.
- ▶ Du et al. Matrix factorization type. No algorithm.
- Nong et al. Method of moment (MoM) estimator.  $O(dr^2)$  samples for rep learning, O(r) samples for few-shot learning.
- ▶ Tripuraneni et al. MoM estimator and gradient descent. MoM: same sample complexity as above. GD:  $O(dr^4)$  samples for rep learning
- Bartlett et al., Wu & Xu, Nakkiran et al. Overparameterized few-shot learning via optimal ridge regularization.

#### Overview

Representation learning - Linear

Few-shot learning - Linear

Meta learning - Nonlinear

# Rep learning - learn $\Sigma_{oldsymbol{eta}}$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $\mathbf{y} = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Suppose the principal subspaces of  $\Sigma_{\mathbf{X}}$  and  $\Sigma_{\beta}$  align.

Rep learning: Sample  $\beta_1, ..., \beta_k$ . For  $i \in [k]$ , Sample  $x_{i,1}, ..., x_{i,n}$ . Evaluate y. Use x, y to estimate  $\Sigma_{\beta}$ .

# Rep learning - learn $\Sigma_{oldsymbol{eta}}$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Suppose the principal subspaces of  $\Sigma_{\mathbf{X}}$  and  $\Sigma_{\beta}$  align.

Rep learning: Sample  $\beta_1, ..., \beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1}, ..., \mathbf{x}_{i,n}$ . Evaluate y. Use x, y to estimate  $\Sigma_{\beta}$ .

**Question:** What properties of feature & task covariance guarantees good overparameterized learning?

# Rep learning - learn $\Sigma_eta$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Suppose the principal subspaces of  $\Sigma_{\mathbf{X}}$  and  $\Sigma_{\beta}$  align.

Rep learning: Sample  $\beta_1, ..., \beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1}, ..., \mathbf{x}_{i,n}$ . Evaluate y. Use x, y to estimate  $\Sigma_{\beta}$ .

**Question:** What properties of feature & task covariance guarantees good overparameterized learning?

Previous meta-learning work:  $\Sigma_{X} = I$ .

# Rep learning - learn $\Sigma_eta$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top}\beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Suppose the principal subspaces of  $\Sigma_{\mathbf{X}}$  and  $\Sigma_{\beta}$  align.

**Rep learning:** Sample  $\beta_1, ..., \beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1}, ..., \mathbf{x}_{i,n}$ . Evaluate y. Use x, y to estimate  $\Sigma_{\beta}$ .

**Question:** What properties of feature & task covariance guarantees good overparameterized learning?

Previous meta-learning work:  $\Sigma_{\textbf{\textit{X}}} = \textbf{\textit{I}}$ .

Overparameterization: Spike feature covariance.

# Rep learning - learn $\Sigma_eta$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Suppose the principal subspaces of  $\Sigma_{\mathbf{X}}$  and  $\Sigma_{\beta}$  align.

**Rep learning:** Sample  $\beta_1, ..., \beta_k$ . For  $i \in [k]$ , Sample  $\mathbf{x}_{i,1}, ..., \mathbf{x}_{i,n}$ . Evaluate y. Use x, y to estimate  $\Sigma_{\beta}$ .

**Question:** What properties of feature & task covariance guarantees good overparameterized learning?

Previous meta-learning work:  $\Sigma_{\pmb{X}} = \pmb{I}$ .

Overparameterization: Spike feature covariance.

Our contribution: Analysis for general cov, feature-task alignment.

E.g., 
$$\Sigma_{\beta} = \text{diag}(I_{r_t}, 0)$$
,  $\Sigma_{X} = \text{diag}(I_{r_f}, \iota I_{d-r_f})$ .

# Motivating example: Multi-class classification



Motivation: classification of Gaussian mixture

# Motivating example: Multi-class classification



# Motivating example: Multi-class classification



# Naive case: estimating $\Sigma_{\pmb{X}}$ is enough

- 1.  $\Sigma_{\beta} = \Sigma_{X}$ .
- 2.  $\operatorname{span}(\Sigma_{\beta}) = \operatorname{span}(\Sigma_{X})$ .
- 3.  $\operatorname{span}(\Sigma_{\mathcal{A}}) \subset \operatorname{span}(\Sigma_{\mathcal{X}})$  but we are satisfied with  $\operatorname{span}(\Sigma_{\mathcal{X}})$ .

# Naive case: estimating $\Sigma_{\pmb{X}}$ is enough

- 1.  $\Sigma_{\beta} = \Sigma_{X}$ .
- 2.  $\operatorname{span}(\Sigma_{\beta}) = \operatorname{span}(\Sigma_{X})$ .
- 3.  $\operatorname{span}(\Sigma_{\mathcal{S}}) \subset \operatorname{span}(\Sigma_{\mathcal{X}})$  but we are satisfied with  $\operatorname{span}(\Sigma_{\mathcal{X}})$ .

#### MoM-F estimator:

$$\hat{\Sigma}_{\boldsymbol{X}} = \frac{1}{nk} \sum_{i=1}^{n} \sum_{i=1}^{k} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{\top}$$

Sample complexity:  $\mathcal{O}(r_f)$ . Error:  $\mathcal{O}(\sqrt{r_f/(nk)})$ .

#### General case: MoM estimator

When n is small.

$$\hat{Q} = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{n} y_{ij}^{2} \mathbf{x}_{ij} \mathbf{x}_{ij}^{\top}.$$

$$\hat{M} = \frac{1}{k} \sum_{i=1}^{k} \frac{2}{n^{2}} \left[ \sum_{i=1}^{n/2} y_{ij} y_{i(j+n/2)} \cdot (\mathbf{x}_{ij} \mathbf{x}_{i(j+n/2)}^{\top} + \mathbf{x}_{i(j+n/2)} \mathbf{x}_{ij}^{\top}) \right].$$

#### General case: MoM estimator

When n is small.

$$\hat{\mathbf{Q}} = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{n} y_{ij}^{2} \mathbf{x}_{ij} \mathbf{x}_{ij}^{\top}.$$

$$\hat{\mathbf{M}} = \frac{1}{k} \sum_{i=1}^{k} \frac{2}{n^{2}} \left[ \sum_{j=1}^{n/2} y_{ij} y_{i(j+n/2)} \cdot (\mathbf{x}_{ij} \mathbf{x}_{i(j+n/2)}^{\top} + \mathbf{x}_{i(j+n/2)} \mathbf{x}_{ij}^{\top}) \right].$$

Mean:

$$extbf{ extit{Q}} = 2 oldsymbol{\Sigma}_{ extbf{ extit{X}}} oldsymbol{\Sigma}_{ extbf{ extit{X}}} + ext{tr} ig( oldsymbol{\Sigma}_{ extbf{ extit{X}}} ig) oldsymbol{\Sigma}_{ extbf{ extit{X}}}.$$

$$M = \Sigma_{X} \Sigma_{\beta} \Sigma_{X}$$
.

Sample complexity:  $\mathcal{O}(r_f r_t^2)$ . Error:  $\mathcal{O}(\sqrt{r_f r_t^2/(nk)} + \sqrt{r_t/k})$ .

#### General case: MoM-TA estimator

We first define  $\hat{\boldsymbol{b}}_i = \sum_{j=1}^n y_{ij} \boldsymbol{x}_{ij}$ , for every i = 1, ..., k.

$$\hat{\mathbf{B}} = [\hat{\mathbf{b}}_1, ..., \hat{\mathbf{b}}_k],$$

$$\hat{\mathbf{G}} = k^{-1}\hat{\mathbf{B}}\hat{\mathbf{B}}^{\top}.$$

#### General case: MoM-TA estimator

We first define  $\hat{\boldsymbol{b}}_i = \sum_{j=1}^n y_{ij} \boldsymbol{x}_{ij}$ , for every i = 1, ..., k.

$$\hat{\mathbf{B}} = [\hat{\mathbf{b}}_1, ..., \hat{\mathbf{b}}_k],$$
  
 $\hat{\mathbf{G}} = k^{-1}\hat{\mathbf{B}}\hat{\mathbf{B}}^{\top}.$ 

Mean:

$$\boldsymbol{G} = \boldsymbol{\Sigma}_{\boldsymbol{X}} \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \boldsymbol{\Sigma}_{\boldsymbol{X}} + n^{-1} (\boldsymbol{\Sigma}_{\boldsymbol{X}} \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \boldsymbol{\Sigma}_{\boldsymbol{X}} + \operatorname{tr}(\boldsymbol{\Sigma}_{\boldsymbol{\beta}} \boldsymbol{\Sigma}_{\boldsymbol{X}}) \boldsymbol{\Sigma}_{\boldsymbol{X}})$$

Sample complexity:

- 1. Generally  $\mathcal{O}(r_f r_t^2)$ .
- 2.  $\mathcal{O}(r_f r_t)$  when  $n \geq r_t$ .

# Rep learning - learn $\Sigma_{oldsymbol{eta}}$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $\mathbf{y} = \mathbf{x}^{\top} \beta$ . Suppose  $\operatorname{rank}(\Sigma_{\mathbf{X}}) = r_f$ ,  $\operatorname{rank}(\Sigma_{\beta}) = r_t$ . Suppose the principal subspaces of  $\Sigma_{\mathbf{X}}$  and  $\Sigma_{\beta}$  align.

**Rep learning:** Sample  $\beta_1,...,\beta_k$ . For  $i \in [k]$ , Sample  $x_{i,1},...,x_{i,n}$ .

Evaluate y. Use x, y to estimate  $\Sigma_{\beta}$ .

Estimators: MoM, MoM-TA, MoM-F.

MoM:  $\sum_{i,j} y_{ij}^2 \mathbf{x}_{ij} \mathbf{x}_{ij}^{\top}$ .

MoM-TA: Let  $\hat{\pmb{b}}_i = \sum_{j=1}^n y_{ij} \pmb{x}_{ij}$ .  $\hat{\pmb{B}} = [\hat{\pmb{b}}_1,...,\hat{\pmb{b}}_k]$ . Need  $n \geq r_t$ .

MoM-F:  $\sum_{i,j} \mathbf{x}_{ij} \mathbf{x}_{ij}^{\top}$ .

 $\Sigma_{oldsymbol{eta}} = {\sf diag}(\emph{\textbf{I}}_{r_t},0).$  Extra  $(r_t/k)^{1/2}$  term in MoM and MoM-TA ignored.

| $2\beta = \operatorname{diag}(r_t, \sigma)$ . Extra $(r_t/\kappa)$ term in MoW and MoW 17 ignored. |                                        |                       |                                                                 |                          |
|----------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|-----------------------------------------------------------------|--------------------------|
| feature cov                                                                                        | $oldsymbol{\Sigma_{X}} = oldsymbol{I}$ |                       | $oldsymbol{\Sigma_{oldsymbol{X}}} = diag(oldsymbol{I_{r_f}},0)$ |                          |
| estimator                                                                                          | min sample                             | error                 | min sample                                                      | error                    |
| MoM                                                                                                | $dr_t^2$                               | $(dr_t^2/(nk))^{1/2}$ | $r_f r_t^2$                                                     | $(r_f r_t^2/(nk))^{1/2}$ |
| MoM-TA                                                                                             | dr <sub>t</sub>                        | $(r_t/n)^{1/2}$       | $r_f r_t$                                                       | $(r_t/n)^{1/2}$          |
| MoM-F                                                                                              | -                                      | -                     | r <sub>f</sub>                                                  | $(r_f/(nk))^{1/2}$       |

#### Tradeoff between n and k

n: Sample per task

k: Number of tasks need enough tasks to estimate  $\Sigma_{eta}$ 

 $n_{\text{tot}}$ : Total samples = nk.

**Question:** Fix  $n_{\text{tot}}$  and change n, k.

#### Tradeoff between n and k

n: Sample per task

k: Number of tasks need enough tasks to estimate  $\Sigma_{\beta}$ 

 $n_{\text{tot}}$ : Total samples = nk.

**Question:** Fix  $n_{\text{tot}}$  and change n, k.



$$\Sigma_{\beta} = (I_{10}, 0_{90}), \Sigma_{X} = I_{100}, \ \sigma_{\varepsilon} = 0.5, \ n_{\text{tot}} = 20000.$$

#### Overview

Representation learning - Linear

Few-shot learning - Linear

Meta learning - Nonlinear



# Few-shot learning - learn $oldsymbol{eta}$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Few-shot learning: Sample  $\beta$ ,  $\mathbf{x}_1, ..., \mathbf{x}_n$ , evaluate y. Use x, y and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .

# Few-shot learning - learn $oldsymbol{eta}$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $\mathbf{y} = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Few-shot learning: Sample  $\beta$ ,  $\mathbf{x}_1, ..., \mathbf{x}_n$ , evaluate  $\mathbf{y}$ . Use  $\mathbf{x}, \mathbf{y}$  and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .

Prior work: Restrict  $\hat{\beta}$  in principal subspace of  $\hat{\Sigma}_{\beta}$ . Dimension < n.

# Few-shot learning - learn $oldsymbol{eta}$

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top} \beta$ . Suppose  $\operatorname{rank}(\Sigma_{\mathbf{X}}) = r_f$ ,  $\operatorname{rank}(\Sigma_{\beta}) = r_t$ .

Few-shot learning: Sample  $\beta$ ,  $x_1, ..., x_n$ , evaluate y. Use x, y and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .

Prior work: Restrict  $\hat{\beta}$  in principal subspace of  $\hat{\Sigma}_{\beta}$ . Dimension < n.

Our work: An arbitrary dimension R, and set a shaping matrix  $\Lambda \in \mathbb{R}^{R \times d}$  as a function of  $\hat{\Sigma}_{\beta}$  that helps with few-shot learning.

### How does shaping matrix work

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top} \beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Few-shot learning: Sample  $\beta$ ,  $\mathbf{x}_1, ..., \mathbf{x}_n$ , evaluate y. Use x, y and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .

**Min norm solution** with  $\Lambda$ .

$$\hat{\boldsymbol{\alpha}}_{\Lambda} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{\ell_2} \text{ s.t. } \boldsymbol{y} = \boldsymbol{X} \Lambda \boldsymbol{\alpha}$$

$$\hat{\boldsymbol{\beta}}_{\Lambda} = \Lambda \hat{\boldsymbol{\alpha}}_{\Lambda} = \Lambda (\boldsymbol{X} \Lambda)^{\dagger} \boldsymbol{y}.$$

### How does shaping matrix work

Task:  $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$ , Feature:  $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ , Label:  $y = \mathbf{x}^{\top}\beta$ . Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$ , rank $(\Sigma_{\beta}) = r_t$ . Few-shot learning: Sample  $\beta$ ,  $\mathbf{x}_1, ..., \mathbf{x}_n$ , evaluate y. Use x, y and a shaping matrix as a function of  $\hat{\Sigma}_{\beta}$  to estimate  $\beta$ .

**Min norm solution** with  $\Lambda$ .

$$\hat{\boldsymbol{\alpha}}_{\Lambda} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{\ell_2} \text{ s.t. } \boldsymbol{y} = \boldsymbol{X} \Lambda \boldsymbol{\alpha}$$

$$\hat{\boldsymbol{\beta}}_{\Lambda} = \Lambda \hat{\boldsymbol{\alpha}}_{\Lambda} = \Lambda (\boldsymbol{X} \Lambda)^{\dagger} \boldsymbol{y}.$$

$$\hat{\boldsymbol{\beta}}_{\Lambda} = \lim_{t \to 0} \operatorname{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{X}^{\top} \boldsymbol{\beta} - \boldsymbol{y} \|^2 + t \boldsymbol{\beta}^{\top} \Lambda^{-2} \boldsymbol{\beta}$$

#### Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{\beta}) = \boldsymbol{E}(y - \boldsymbol{x}^{\top} \hat{\beta}_{\Lambda})^{2}$$
  
=  $\boldsymbol{E}(\hat{\beta}_{\Lambda} - \beta)^{\top} \Sigma_{\boldsymbol{X}} (\hat{\beta}_{\Lambda} - \beta).$ 

#### Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{oldsymbol{eta}}) = oldsymbol{E}(y - oldsymbol{x}^{ op} \hat{eta}_{\Lambda})^2 \ = oldsymbol{E}(\hat{eta}_{\Lambda} - oldsymbol{eta})^{ op} \Sigma_{oldsymbol{X}} (\hat{eta}_{\Lambda} - oldsymbol{eta}).$$

#### Optimal shaping matrix

$$\Lambda^* = rg \min_{\Lambda' \in oldsymbol{\mathcal{S}}_{\perp\perp}^d} \operatorname{risk}(\Lambda', oldsymbol{\Sigma}_{oldsymbol{eta}})$$

#### Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{oldsymbol{eta}}) = oldsymbol{E}(y - oldsymbol{x}^{ op} \hat{eta}_{\Lambda})^2 \ = oldsymbol{E}(\hat{eta}_{\Lambda} - oldsymbol{eta})^{ op} \Sigma_{oldsymbol{X}} (\hat{eta}_{\Lambda} - oldsymbol{eta}).$$

#### Optimal shaping matrix

$$\Lambda^* = rg\min_{\Lambda' \in oldsymbol{\mathcal{S}}_{++}^d} \operatorname{risk}(\Lambda', oldsymbol{\Sigma}_{oldsymbol{eta}})$$

As we do not know  $\Sigma_{\beta}$ , define

$$\Lambda = rg\min_{oldsymbol{\Lambda}' \in oldsymbol{\mathcal{S}}_{++}^d} \mathsf{risk}ig(oldsymbol{\Lambda}', \hat{oldsymbol{\Sigma}}_{oldsymbol{eta}}ig)$$

#### Risk function

$$\mathsf{risk}(\Lambda, \Sigma_{oldsymbol{eta}}) = oldsymbol{E}(y - oldsymbol{x}^{ op} \hat{eta}_{\Lambda})^2 \ = oldsymbol{E}(\hat{eta}_{\Lambda} - oldsymbol{eta})^{ op} \Sigma_{oldsymbol{X}} (\hat{eta}_{\Lambda} - oldsymbol{eta}).$$

#### Optimal shaping matrix

$$\Lambda^* = rg \min_{\Lambda' \in oldsymbol{\mathcal{S}}_{\perp\perp}^d} \operatorname{risk}(\Lambda', oldsymbol{\Sigma}_{oldsymbol{eta}})$$

As we do not know  $\Sigma_{\beta}$ , define

$$\Lambda = rg \min_{oldsymbol{\Lambda}' \in oldsymbol{S}^d} \operatorname{risk}(oldsymbol{\Lambda}', \hat{oldsymbol{\Sigma}}_{oldsymbol{eta}})$$

**Asymptotic:** Let  $n, d \to \infty$  and n/d be fixed.

#### Computing shaping matrix

**Asymptotic:** Let  $n, d \to \infty$  and n/d be fixed. Let  $\Sigma_X = I$  and  $\Sigma_B$  be diagonal. Let  $\xi$  solve

$$n = \sum_{i=1}^{d} (1 + (\xi \Sigma_{X_i})^{-1})^{-1}.$$

Define  $\theta \in \mathbb{R}^d$  to be  $\theta_i = \frac{\xi \Lambda_i^2}{1+\xi \Lambda_i^2}$ , and the risk is

$$\mathsf{risk}(\Lambda, \hat{\Sigma}_{\boldsymbol{\beta}}) = \frac{1}{n - \|\boldsymbol{\theta}\|^2} \left( \frac{n}{d} \sum_{i=1}^d (1 - \theta_i)^2 \hat{\Sigma}_{\boldsymbol{\beta}i} + \|\boldsymbol{\theta}\|^2 \sigma_{\varepsilon}^2 \right).$$

We denote the right hand side as  $f(\theta; \hat{\Sigma}_{\beta})$ .

### Computing shaping matrix

**Asymptotic:** Let  $n, d \to \infty$  and n/d be fixed. Let  $\Sigma_X = I$  and  $\Sigma_B$  be diagonal. Let  $\xi$  solve

$$n = \sum_{i=1}^{d} (1 + (\xi \Sigma_{X_i})^{-1})^{-1}.$$

Define  $\theta \in \mathbb{R}^d$  to be  $\theta_i = \frac{\xi \Lambda_i^2}{1+\xi \Lambda_i^2}$ , and the risk is

$$\mathsf{risk}(\mathsf{\Lambda}, \hat{\Sigma}_{\boldsymbol{\beta}}) = \frac{1}{n - \|\boldsymbol{\theta}\|^2} \left( \frac{n}{d} \sum_{i=1}^d (1 - \boldsymbol{\theta}_i)^2 \hat{\Sigma}_{\boldsymbol{\beta}i} + \|\boldsymbol{\theta}\|^2 \sigma_{\varepsilon}^2 \right).$$

We denote the right hand side as  $f(\theta; \hat{\Sigma}_{\beta})$ .

**Computation** of optimal representation:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \ f(oldsymbol{ heta}; \hat{oldsymbol{\Sigma}}_{oldsymbol{eta}}), \ ext{s.t.} \ \underline{ heta} \leq oldsymbol{ heta} < 1, \sum_{i=1}^d oldsymbol{ heta}_i = n.$$
  $oldsymbol{\Lambda}_i^* = ((1/oldsymbol{ heta}_i^* - 1)\xi)^{-2}$ 

#### Double descent



$$oldsymbol{\Sigma}_{oldsymbol{eta}} = ig(25 \cdot oldsymbol{I}_{10}, oldsymbol{I}_{90}ig), \; oldsymbol{\Sigma}_{oldsymbol{X}} = oldsymbol{I}_{100} \; \sigma_{arepsilon} = 0.5$$

### Error of meta-learning

Suppose  ${\mathcal E}$  is the error of representation learning.

$$\mathsf{risk}(\Lambda, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) \leq \mathsf{risk}(\Lambda^*, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) + \mathcal{O}\left(\frac{\mathit{n}^2 \cdot \mathcal{E}}{(\mathit{d} - \mathit{n})(2\mathit{n} - \mathit{d}\underline{\theta})\underline{\theta}}\right)$$

### Error of meta-learning

Suppose  $\mathcal{E}$  is the error of representation learning.

$$\mathsf{risk}(\Lambda, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) \leq \mathsf{risk}(\Lambda^*, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) + \mathcal{O}\left(\frac{n^2 \cdot \mathcal{E}}{(d-n)(2n-d\underline{\theta})\underline{\theta}}\right)$$

We have presented  $\Lambda \in \mathbb{R}^{d \times d}$ . We can similarly define a  $\mathbb{R}^{R \times d}$  representation  $\Lambda_R$  for arbitrary R > n by projecting onto a subspace.

### Error of meta-learning

Suppose  $\mathcal E$  is the error of representation learning.

$$\mathsf{risk}(\Lambda, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) \leq \mathsf{risk}(\Lambda^*, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) + \mathcal{O}\left(\frac{n^2 \cdot \mathcal{E}}{(d-n)(2n-d\underline{\theta})\underline{\theta}}\right)$$

We have presented  $\Lambda \in \mathbb{R}^{d \times d}$ . We can similarly define a  $\mathbb{R}^{R \times d}$  representation  $\Lambda_R$  for arbitrary R > n by projecting onto a subspace.

**Tradeoff:** when R increases, risk $(\Lambda_R^*, \Sigma_\beta)$  decreases,  $\mathcal{E}$  increases.

### Empirical observation



$$\Sigma_{oldsymbol{eta}}=(25\cdot \emph{\textbf{I}}_6,\emph{\textbf{I}}_{54}),~\Sigma_{oldsymbol{X}}=\emph{\textbf{I}}_{60}$$

We plot the error of few-shot learning versus varying dimension of  $\Lambda$ . Different curves correspond to different sample size for rep learning.

### Empirical observation



$$\Sigma_{\beta} = (25 \cdot I_6, I_{54}), \ \Sigma_{X} = I_{60}$$

We plot the error of few-shot learning versus varying dimension of  $\Lambda$ . Different curves correspond to different sample size for rep learning.

When rep learning sample size  $=\infty$ ,  $\hat{\Sigma}_{\beta}=\Sigma_{\beta}$ , smallest error at R=d.

## Empirical observation



$$\Sigma_{\beta} = (25 \cdot I_6, I_{54}), \ \Sigma_{X} = I_{60}$$

We plot the error of few-shot learning versus varying dimension of  $\Lambda$ . Different curves correspond to different sample size for rep learning.

When rep learning sample size  $=\infty$ ,  $\hat{\Sigma}_{\beta}=\Sigma_{\beta}$ , smallest error at R=d. Finite sample,  $\hat{\Sigma}_{\beta}\neq\Sigma_{\beta}$ , smallest error when R is slightly smaller than d.

#### Overview

Representation learning - Linear

Few-shot learning - Linear

Meta learning - Nonlinear

### Meta-learning - Linear



# Motivating example: Multi-class classification



#### Meta-learning - Nonlinear - Dataset

- Fix a matrix  $\mathbf{W} \in \mathbb{R}^{r \times d}$  satisfying  $\mathbf{W} \mathbf{W}^{\top} = \mathbf{I}$ .
- ▶ The *i*-th task is associated with function  $f^i : \mathbb{R}^r \to \mathbb{R}$ .
- ▶ Given input  $\mathbf{x} \in \mathbb{R}^d$ , the label y is distributed as  $p_i(y|\mathbf{x}) = p_i(y|\mathbf{W}\mathbf{x})$  and the expectation satisfies  $\mathbf{E}(y) = f^i(\mathbf{W}\mathbf{x})$ .

In words, the label depends on the relevant features induced by  $oldsymbol{W}$ .

#### Meta-learning - Nonlinear - Dataset

- Fix a matrix  $\mathbf{W} \in \mathbb{R}^{r \times d}$  satisfying  $\mathbf{W} \mathbf{W}^{\top} = \mathbf{I}$ .
- ▶ The *i*-th task is associated with function  $f^i : \mathbb{R}^r \to \mathbb{R}$ .
- ▶ Given input  $\mathbf{x} \in \mathbb{R}^d$ , the label y is distributed as  $p_i(y|\mathbf{x}) = p_i(y|\mathbf{W}\mathbf{x})$  and the expectation satisfies  $\mathbf{E}(y) = f^i(\mathbf{W}\mathbf{x})$ .

In words, the label depends on the relevant features induced by  $\boldsymbol{W}$ .

**Example:** Generalized linear models (GLM), which include logistic/linear regression, can be modeled by choosing  $f^i$  to be parameterized by a vector  $\boldsymbol{\beta}_i \in \mathbb{R}^r$  and a link function  $\phi : \mathbb{R} \to \mathbb{R}$  as  $f^i(\boldsymbol{W}\boldsymbol{x}_{ij}) := \phi((\boldsymbol{W}\boldsymbol{x}_{ij})^\top \boldsymbol{\beta}_i)$ .

- logistic regression, multi-class classification, etc.

#### Meta-learning - Nonlinear



## Representation learning

#### Moment estimator of covariance.

Define

$$egin{aligned} m{v}_1 &= \sum_{j=1}^{n_i/2} y_{ij} m{x}_{ij}, \ m{v}_{-1} &= \sum_{j=n_i/2+1}^{n_i} y_{ij} m{x}_{ij}, \ \hat{m{M}} &= \sum_{i=1}^k rac{2}{n_i^2} \left[ m{v}_1 m{v}_{-1}^{ op} + m{v}_{-1} m{v}_1^{ op} 
ight] \end{aligned}$$

# Representation learning

#### Moment estimator of covariance.

Define

$$\begin{split} \mathbf{v}_1 &= \sum_{j=1}^{n_i/2} y_{ij} \mathbf{x}_{ij}, \ \mathbf{v}_{-1} = \sum_{j=n_i/2+1}^{n_i} y_{ij} \mathbf{x}_{ij}, \\ \hat{\mathbf{M}} &= \sum_{i=1}^k \frac{2}{n_i^2} \left[ \mathbf{v}_1 \mathbf{v}_{-1}^\top + \mathbf{v}_{-1} \mathbf{v}_1^\top \right] \\ \hat{\mathbf{h}}^i(\mathbf{W}) : \mathbb{R}^{r \times d} &\to \mathbb{R}^d = \mathbf{E}_{\mathbf{x}} [f^i(\mathbf{W}\mathbf{x})\mathbf{x}] \\ \mathbf{M} := \mathbf{W}^\top \mathbf{W} \left( \frac{1}{k} \sum_{i=1}^k \hat{\mathbf{h}}^i(\mathbf{W}) (\hat{\mathbf{h}}^i(\mathbf{W}))^\top \right) \mathbf{W}^\top \mathbf{W}. \end{split}$$

M is the mean of  $\hat{M}$ , which is low rank.

#### Representation learning - Result

k tasks, each task contains n samples. Suppose  $y\mathbf{x}$  is subGaussian,  $\|\mathbf{Cov}(y\mathbf{x})\| \leq \sigma^2$ . (These conditions hold when  $|f^i(\mathbf{x})| < \sigma$ .) Let  $\epsilon \in (0,1)$ .

$$kn \gtrsim \frac{d}{\epsilon^2} \Rightarrow \|\hat{\boldsymbol{M}} - \boldsymbol{M}\| \le \epsilon \sigma^2$$

#### Representation learning - Result

k tasks, each task contains n samples. Suppose  $y\mathbf{x}$  is subGaussian,  $\|\mathbf{Cov}(y\mathbf{x})\| \leq \sigma^2$ . (These conditions hold when  $|f^i(\mathbf{x})| < \sigma$ .) Let  $\epsilon \in (0,1)$ .

$$kn \gtrsim \frac{d}{\epsilon^2} \Rightarrow \|\hat{\mathbf{M}} - \mathbf{M}\| \le \epsilon \sigma^2$$

If  $\lambda_r(\mathbf{M}) > \epsilon \sigma^2$ , then for some orthonormal matrix  $\mathbf{Q} \in \mathbb{R}^{r \times r}$ ,

$$\|\hat{\boldsymbol{W}} - \boldsymbol{Q}\boldsymbol{W}\| \le \epsilon \sigma^2 (\lambda_r(\boldsymbol{M}) - \epsilon \sigma^2)^{-1}.$$

#### Meta-learning - Nonlinear



#### Few-shot learning - Metric

Let  $\mathscr{P}_{x,y}$  be the joint distribution of x,y. We introduce population risk  $\mathcal{L}$  and empirical risk  $\mathcal{L}_e$  based on any single loss function between model prediction and true label.

$$\mathcal{L}(f; \mathbf{P}) = \mathbf{E}_{\mathscr{P}_{x,y}} loss(f(\mathbf{P}\mathbf{x}), y)$$
  
$$\mathcal{L}_{e}(f; \mathbf{P}) = \frac{1}{n} \sum_{i=1}^{n} loss(f(\mathbf{P}\mathbf{x}_{i}), y_{i}).$$

We make the following assumption on the population risk.

1.  $\mathcal{L}$  is L Lipschitz in  $\mathbf{Px}$ . 2.  $\min_{\mathbf{P}} \mathcal{L}(f; \mathbf{P}) = \mathcal{L}(f; \mathbf{W})$ .

### Few-shot learning - Metric

Let  $\mathscr{P}_{x,y}$  be the joint distribution of x,y. We introduce population risk  $\mathcal{L}$  and empirical risk  $\mathcal{L}_e$  based on any single loss function between model prediction and true label.

$$\mathcal{L}(f; \mathbf{P}) = \mathbf{E}_{\mathcal{P}_{x,y}} \text{loss}(f(\mathbf{P}\mathbf{x}), y)$$
  
$$\mathcal{L}_{e}(f; \mathbf{P}) = \frac{1}{n} \sum_{i=1}^{n} \text{loss}(f(\mathbf{P}\mathbf{x}_{i}), y_{i}).$$

We make the following assumption on the population risk.

1. 
$$\mathcal{L}$$
 is  $L$  Lipschitz in  $\mathbf{Px}$ . 2.  $\min_{\mathbf{P}} \mathcal{L}(f; \mathbf{P}) = \mathcal{L}(f; \mathbf{W})$ .

**Example:** Cross entropy

$$\mathcal{L}(f; \mathbf{P}) = -\mathbf{E}_{\mathscr{P}_{\mathbf{x}, \mathbf{y}}}(y \log f(\mathbf{P}\mathbf{x}) + (1 - y) \log(1 - f(\mathbf{P}\mathbf{x}))).$$

## Few-shot learning

In the few-shot learning phase, suppose  $\mathbf{x}, y \sim \mathscr{P}_{\mathbf{x},y}$  satisfy  $\mathbf{E}[y \mid \mathbf{x}] = f^*(\mathbf{W}\mathbf{x})$ . Let  $\mathcal{F}$  be a family of functions as the search space for few-shot learning model. We search for the solution

$$\hat{f}_e = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{L}_e(f; \hat{\boldsymbol{W}})$$

# Few-shot learning - Result

Suppose we have n i.i.d. examples with ground-truth model  $f^*(\mathbf{x}) = \phi((\mathbf{W}\mathbf{x})^\top \theta^*)$  where  $\|\theta^*\| \leq a$ . Let  $\mathcal{F}$  be the family of functions of  $\mathbf{x}$  expressed as  $\{\phi((\hat{\mathbf{W}}\mathbf{x})^\top \theta) : \|\theta\| \leq a\}$ , we solve for

$$\hat{f}_e = \operatorname{argmin}_{f \in \mathcal{F}} \, \mathcal{L}_e(f; \, \hat{\boldsymbol{W}})$$

There exist constants  $c>1,\ \delta\in(0,1)$ , with probability at least  $1-n^{-c+1}-\delta$ .

$$\mathcal{L}(\hat{f}_e; \hat{\boldsymbol{W}}) - \mathcal{L}(f^*; \boldsymbol{W}) \\ \leq \underbrace{\frac{caL(\sqrt{r} + \log(n))(1 + \sqrt{\log(1/\delta)})}{\sqrt{n}}}_{estimation\ err} + \underbrace{L\sqrt{r} \|\hat{\boldsymbol{W}} - \boldsymbol{W}\|}_{rep\ learning\ err}.$$

<sup>&</sup>lt;sup>1</sup>bounded norm for Rademacher complexity analysis.