Agenda

- 1. Modeling income
- 2. Two-parameter models
- 3. MAP estimation

Modeling income

Modeling income

Plan: model log income as normally distributed

Model of normally distributed log income:

 $y_i \sim \text{Norm}(\mu, \sigma)$

Two parameters:

 μ determines location σ determines width

Model of normally distributed log income:

$$y_i \sim \text{Norm}(\mu, \sigma)$$
 $\mu \sim ?$

Model of normally distributed log income:

$$y_i \sim \text{Norm}(\mu, \sigma)$$

$$\mu \sim \text{Norm}(0, 30)$$

Model of normally distributed log income:

```
y_i \sim \text{Norm}(\mu, \sigma)
\mu \sim \text{Norm}(0, 30)
\sigma \sim \text{Unif}(0, 50)
```


Multi-parameter posteriors

Updating marginal posterior distributions for μ and σ

μ

First 100 samples

https://mcmahanp.github.io/soci620/ media/updates mu sigma.gif

0.0

0.4

8.0

σ

1.2

1.6

2.0

Multi-parameter posteriors

Updated marginal posterior distributions for μ and σ

Full sample (n=35,127)

- Nearly normal in shape
- Very narrow bounds
- Lumpy because built from posterior sample

Multi-parameter posteriors

Updated joint posterior distribution for μ and σ

Full sample (n=35,127)

 $Pr(\mu, \sigma \mid Y)$

