Homework 9 Ali Lacey Thomas Pattara Stat 560

- 1. Analyze the data ex1. See attached.
- a.) Plot the production data in ex1 and its ACF and PACF. (5 points)

Figure 1

Figure 2

b.) Fit an ARIMA(p,d,q) model to the production by ML estimate methods. (Hint: choose the model which has the minimum aic.) Specify the model, i.e. don't forget the coefficients and intercept. (10 points)

Table 1

Table 2

Figure 3 Figure 4

Table 3

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	-0.0153		0.0241	0.8765	1	-0.0153	
2	-0.0251		0.0898	0.9561	2	-0.0254	
3	0.0617		0.4907	0.9209	3	0.0610	
4	0.0774		1.1276	0.8899	4	0.0790	
5	-0.0493		1.3886	0.9256	5	-0.0442	
6	-0.1100		2.7007	0.8454	6	-0.1131	
7	0.0333		2.8226	0.9009	7	0.0182	
8	-0.0984		3.8951	0.8665	8	-0.1037	
9	0.0335		4.0211	0.9100	9	0.0543	
10	-0.0413		4.2143	0.9372	10	-0.0333	
11	0.1634		7.2747	0.7764	11	0.1700	
12	-0.0450		7.5098	0.8222	12	-0.0480	
13	-0.0267		7.5934	0.8690	13	-0.0238	
14	0.0018		7.5938	0.9094	14	-0.0429	
15	0.0948		8.6714	0.8941	15	0.0941	
16	0.0628		9.1498	0.9071	16	0.0685	
17	-0.0727		9.7996	0.9118	17	-0.0165	
18	0.0930		10.8762	0.8995	18	0.0592	
19	-0.0466		11.1495	0.9187	19	-0.0446	
20	-0.0536		11.5160	0.9317	20	-0.0810	
21	-0.0819		12.3821	0.9287	21	-0.0614	1
22	-0.0627		12.8961	0.9360	22	-0.1007	
23	0.0254		12.9815	0.9524	23	0.0751	
24	-0.1276		15.1651	0.9158	24	-0.0979	
25	0.0397		15.3798	0.9321	25	0.0515	

Iteration History								
Iter	Iteration History	Step	Delta- Criterion	Obj- Criterion				
0	244.34692124	Initial		1.35205381				
0	244.33597112	BFGS		1.27483219				
1	244.32607771	BFGS		1.20249666				
2	244.24604115	BFGS		0.11164698				
3	244.245808	BFGS		0.09361527				
4	244.24554343	BFGS		0.07560436				
5	244.24525394	BFGS		0.05162916				
6	244.2451319	BFGS		0.03042582				
7	244.24511067	BFGS		0.0222385				
8	244.24510738	BFGS		0.02065212				
9	244.24510302	BFGS		0.01821158				
10	244.24509605	BFGS		0.01319606				
11	244.24509006	BFGS		0.00674992				
12	244.24508786	BFGS		0.00214985				
13	244.2450876	BFGS		0.00041853				
14	244.24508759	BFGS		0.00004214				
15	244.24508759	BFGS		2.39696e-6				
16	244.24508759	BFGS		6.44554e-7				
17	244.24508759	BFGS		3.80882e-7				
18	244.24508759	BFGS		5.77425e-7				

Figure 5

We used the AR(2) model because it had the lowest minimum AIC. The model is: y_t = 4.263872 + 0.38578 $y_{t\text{--}1}$ + 0.27973 $y_{t\text{--}2}$

c.) Use MOM (Method of Moments) to estimate the coefficients of the model that you selected in part b). (Hint: Calculate the coefficients by hand. Type your results. You can use the acf and pacf function in R to obtain the corresponding estimators.) (10 points)

ex1 <- read.csv("/Users/AliLacey/Desktop/TimeSeries/ex1.csv") head(ex1) var(ex1\$production) mean(ex1\$production)

Table 4

```
> var(ex1$production)
[1] 1.337814
> mean(ex1$production)
[1] 12.73125
>
```

Figure 6

```
\gamma_{(0)} = 1.337
\hat{p}_{(1)} = 0.5119
\hat{p}_{(2)} = 0.4562

0.5119 = \Phi_{(1)} + \Phi_{(2)}(0.44562)
0.4562 = \Phi_{(2)}(0.5119) + \Phi_{(2)}

\Phi_{(1)} = 0.3772
\Phi_{(2)} = 0.2631

\bar{y} = 12.7313

\delta = 12.7313(1-0.3772 - 0.2631)
\delta = 4.579

y_{(1)} = 4.579 + 0.377 y_{(1-1)} + 0.263 y_{(1-2)} + \epsilon_{1}
```

d.) Use the model in part b) to obtain the fitted values. (10 points)

Table 5

Predicted Production			
12.747695854			
12.043793423			
12.037704854			
12.31363359			
11.987934602			
11.870118103			
12.006873385			
12.002374849			
12.197257926			
12.736224438			

e.) Calculate the residuals. But don't print all values, list only the first 10 residuals. (5 points)

Table 6

Residual Production
-1.314195854
-0.183553423
0.2283451458
-1.18608359
-0.340254602
-0.245098103
-0.377083385
0.1291151512
0.9675120738
-1.486014438

f.) Analyze the residuals. Your analysis should include: Box-Ljung test and interpretation (5 points), ACF, PACF, and their interpretation (5 points) and 4-in-1 plot of residuals and interpretation (5 points).

Figure 7

Figure 8

In Figure 8, we can see a normal distribution of residuals in both the histogram and the normal quantile plot. The ACF and PACF for each lag are within the confidence interval and fluctuates around 0, between -0.2 and 0.2 . Also, with the Residual by row plot we can finally conclude the time series is stationary.

The Ljung–Box test is uncommonly used in (ARIMA) modeling. Note that it is applied to the residuals of a fitted ARIMA model, not the original series, and in such applications the hypothesis actually being tested is that the residuals from the ARIMA model have no autocorrelation. Hence from Figure 7, none of the Ljung–Box Q values have significant p-values. Therefore we accept the hypothesis that residuals from the ARIMA model have no autocorrelation.

g.) Plot the observations and fitted values in the same graph. Are you satisfactory with your model? (5 points)

Yes, we are satisfied with our model. The observations seem to follow the fitted values.

- 2. Analyze the data ex3. See attached.
- a.) Plot the data y in ex3, and its ACF and PACF. (10 points)

Figure 10

b.) Plot the first difference of y and its ACF and PACF. Interpret your outputs. (10 points)

Figure 11

The first difference transforms the initial non stationary times series into a stationary time series, all the ACF and PACF values lie between the upper and lower limits.

c.) Fit an ARIMA(p,d,q) model to the y by ML estimate methods. Specify the model and its coefficients. (10 points)

Figure 12

Figure 13

The model chosen is ARIMA(2,1,2) since this model has the best fit under the maximum likelihood function (minimum -2LogLikelihood). All the parameter estimates can be seen significant for ARIMA(2,1,2), whereas in Figure 12, there are three models which have lower AIC than ARIMA(2,1,2), but from Figure 13 we see that these models do not have significant parameters. The ARIMA(2,1,2) model equation can be written as

$$y_t$$
 = -0.045273 + 1.53698 y_{t-1} - 0.8202 y_{t-2} + 1.73971 ϵ_{t-1} - 0.9999 ϵ_{t-2}

d.) Plot a realization of your fitted model (you will need the outputs in part c)), also show its ACF and PACF. Compare them with the results in part a). (10 points)

Figure 14

The non stationary time series in part a is transformed to a stationary time series. The model is stable with all ACF and PACF values in between the upper and lower limits.