线性代数复习题

一、选择题

1.	设 A	为 n 阶矩阵,	则下列说法中正确的是(B	().

- A. 若 A 是非零矩阵,则 A 可逆 B. 若 A 可逆,则 A 没有全零行
- C. 若 A 没有全零行,则 A 可逆
- D. 若 A 可逆,k为任意实数,则kA可逆
- 2. 设非零阵 A 满足等式 $A^3 = 0$. 则下列说法正确的是(A).
 - A. 矩阵 E+A 与 E-A 均可逆
- B. 矩阵 E-A 可逆, 矩阵 E-A 不可逆
- C. 矩阵 E+A 不可逆, 矩阵 E-A 可逆 D. 矩阵 E+A 与 E-A 均不可逆
- 3. 以下结论或等式正确的是(**D**).
 - A. 若AB = AC, 且A \neq 0, 则B = C B. 若A \neq 0, B \neq 0, 则AB \neq 0
 - C. 若 A, B 均为零矩阵,则有A = B D. 对角矩阵是对称矩阵
- 4. 设 A, B, C 是n阶矩阵, 且 ABC=E, 则必有(B).
 - A. CBA=E
- B. BCA=E C. BAC=E

5. 设 A 为 3 阶矩阵,
$$P = (\alpha_1, \alpha_2, \alpha_3)$$
为可逆矩阵,使得 $P^{-1}AP = \begin{pmatrix} 0 & 1 & \\ & 1 & \\ & & 2 \end{pmatrix}$,则 $A(\alpha_1, \alpha_2, \alpha_3) = (B)$.

$$A(\alpha_1, \alpha_2, \alpha_3) = (B)$$

- A. $\alpha_1 + \alpha_2$ B. $\alpha_2 + 2\alpha_3$ C. $\alpha_2 + \alpha_3$ D. $\alpha_1 + 2\alpha_2$
- 6. 若 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是 4 维列向量,且 4 阶行列式 $| \alpha_1, \alpha_2, \alpha_3, \beta_1 | = m, |\alpha_1, \alpha_2, \beta_2, \alpha_3 | = n,$ 则 4 阶行列式| α_3 , α_2 , α_1 , β_1 + β_2 | = (B).

- A. m-n B. n-m C. m+n D. -(m+n)
- 7. 设 A, B 为 3 阶矩阵, 且|A| = 3, |B| = 2, $|A^{-1} + B| = 2$, 则 $|A + B^{-1}| = (C)$.
- B. -2

8. 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$, 其中 c_1 , c_2 , c_3 , c_4 为任意常数,则下列向量线性相关的为(\mathbf{C}).

- A. $\alpha_1, \alpha_2, \alpha_3$
- B. $\alpha_1, \alpha_2, \alpha_4$ C. $\alpha_1, \alpha_3, \alpha_4$ D. $\alpha_2, \alpha_3, \alpha_4$
- 9. 设向量组 α_1 , α_2 , α_3 线性无关,则下列向量组线性相关的是(A).
 - A. $\alpha_1 \alpha_2$, $\alpha_2 \alpha_3$, $\alpha_3 \alpha_1$
- B. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$
- C. $\alpha_1 2\alpha_2, \alpha_2 2\alpha_3, \alpha_3 2\alpha_1$ D. $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$
- 10. 设 $\lambda = 2$ 是可逆矩阵 A 的一个特征值,则矩阵 $(\frac{1}{2}A^2)^{-1}$ 有一个特征值等于(B).
 - A. $\frac{4}{3}$ B. $\frac{3}{4}$ C. $\frac{1}{2}$ D. $\frac{1}{4}$
- 11. 设 A, B 为同阶可逆矩阵, 且 A 是对称矩阵, 则下列等式不成立的是(D).
 - A. $(A^TB)^{-1} = B^{-1}A^{-1}$ B. $(AB)^T = B^TA$
 - C. $(AB^{T})^{-1} = (B^{-1})^{T}A^{-1}$ D. $(AB^{T})^{-1} = A^{-1}(B^{-1})^{T}$
- 12. 设二次型 $f(x_1,x_2,x_3)$ 在正交变换x = Py下的标准形为 $y_1^2 + 2y_2^2 2y_3^2$,其中P =

 (p_1, p_2, p_3) ,若 $Q = (p_2, p_3, -p_1)$,则 $f(x_1, x_2, x_3)$ 在正交变换x = Qy下的标准形为(A).

A.
$$2y_1^2 - 2y_2^2 + y_3^2$$
 B. $2y_1^2 + y_2^2 - 2y_3^2$ C. $2y_1^2 - y_2^2 - 2y_3^2$ D. $2y_1^2 + 2y_2^2 + y_3^2$

D.
$$2y_1^2 + 2y_2^2 + y_3^2$$

二、填空题

- 2. 设 A 为 3 阶矩阵, |A| = 3, A^* 为 A 的伴随矩阵, 若交换 A 的第 1 行与第 2 行得矩阵 B, 则 $|BA^*| = -27$.
- 3. 若 4 阶矩阵 A 与 B 相似,矩阵 A 的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, 则行列式 $|B^{-1} E| = 24$.
- 4. 设 3 阶方阵 A 按列分块为 $A = (\alpha_1, \alpha_2, \alpha_3)$,且|A| = 5,设 $B = (\alpha_1 + 2\alpha_2, 3\alpha_1 + \alpha_2, \alpha_3)$ $4\alpha_3, 5\alpha_2$), $\mathbb{I}|B| = -100$.
- 5. 设 α_1 , α_2 , α_3 均为 3 维列向量,记矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3)$ $4\alpha_3$, $\alpha_1 + 3\alpha_2 + 9\alpha_3$),若|A| = 1,则|B| = 2.
- 6. 设 3 阶矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$,向量 $\alpha = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$,已知 $A\alpha$ 与 α 线性相关,则 $a = \underbrace{\quad -1 \quad }$
- 7. 设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, $\alpha_1, \alpha_2, \alpha_3$ 为线性无关的 3 维列向量组,则向量组 $A\alpha_1, A\alpha_2, A\alpha_3$ 的秩为
- 8. 设矩阵 $A = \begin{pmatrix} 3 & 2 \\ 1 & 3 \end{pmatrix}$, E 为 2 阶单位矩阵, 矩阵 B 满足 BA=B+2E, 则|B| = 2.
- 9. 已知方程组 $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ 无解,则 $a = \underbrace{-1}$.
- 10. 若二次型 $f = x_1^2 + 4x_2^2 + 4x_3^2 + 2ax_1x_2 2x_1x_3 + 4x_2x_3$ 为正定二次型,则a的取值范围 是 -2<a<1 .
- 11. 已知 $f = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ 经正交变换x = Py可化为标准形f =
- 12. 如果矩阵 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & a & 6 \\ 2 & 6 & a \end{pmatrix}$ 正定,则a的取值范围是<u>9<a</u>.
- 13. 齐次线性方程组 $\begin{cases} x_1 + 3x_3 + 4x_4 5x_5 = 0 \\ x_2 2x_3 3x_4 + x_5 = 0 \end{cases}$ 的解空间的维数是 3...

15. 设矩阵A =
$$\begin{pmatrix} 4 & 1 & -2 \\ 1 & 2 & a \\ 3 & 1 & -1 \end{pmatrix}$$
的一个特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, 则 $a = \underline{\quad -1 \quad}$

三、计算题、简答题与证明题

1. 设矩阵
$$A = \begin{pmatrix} 4 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
, 计算 $(A - 2E)^{-1}$

Solution

$$(\mathbf{A} - 2\mathbf{E})^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

2. 计算行列式

$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix}.$$

Solution

$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \end{vmatrix} \xrightarrow{c_2+c_1} \begin{vmatrix} 1 & 0 & 0 & x \\ 1 & 0 & x & 0 \\ 1 & x & 0 & 0 \\ x+1 & x & -x & x \end{vmatrix}$$

$$\frac{x+1}{x+1} = \begin{vmatrix} 1 & 0 & x & 0 \\ 1 & x & 0 & 0 \\ x+1 & x & -x & x \end{vmatrix} = \begin{vmatrix} 0 & x & 0 \\ x & 0 & 0 & -x \\ x & -x & x & x \end{vmatrix} = \begin{vmatrix} 1 & 0 & x \\ 1 & x & 0 & 0 \\ x & -x & x & x \end{vmatrix}$$

$$= -x^3 - x[-x^2 + x^2 - x^2(x+1)]$$

$$= x^4.$$

3. 设在 R^3 中,线性变换T关于 α_1 , α_2 , α_3 的矩阵为 $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 3 \\ 2 & 1 & 5 \end{pmatrix}$,求T在新基 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = \alpha_1 + \alpha_2 + \alpha_3$ 下的矩阵.

Solution

$$\begin{pmatrix} 2 & 4 & 4 \\ -3 & -4 & -6 \\ 2 & 3 & 8 \end{pmatrix}$$

4. 设 $\alpha_1, \alpha_2, \alpha_3$ 是 R^3 上的一个基,线性变换T在该基下的矩阵为

$$A = \begin{pmatrix} 2 & 0 & 2 \\ 1 & -3 & -2 \\ -2 & 2 & 0 \end{pmatrix},$$

求T在新基 $\beta_1 = \alpha_1 + 2\alpha_3$, $\beta_2 = \alpha_1 - \alpha_2$, $\beta_3 = \alpha_2 + \alpha_3$ 下的矩阵.

Solution 从基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵为

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}.$$

T在基 β_1 , β_2 , β_3 下的矩阵为

$$\boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 1 & -1 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 2 \\ 1 & -3 & -2 \\ -2 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -5 & -10 & 5 \\ 11 & 12 & -3 \\ 8 & 16 & -8 \end{pmatrix}.$$

5. 已知
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 是 R^3 的一组基,

(1) 证明
$$\beta_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\beta_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$ 也是 R^3 的一组基;

(2) 求由基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵.

Solution (1)由于 $|\beta_1, \beta_2, \beta_3| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{vmatrix} = 4 \neq 0$,所以 $\beta_1, \beta_2, \beta_3$ 线性无关,

因此它是三维空间 R^3 的一组基.

(2)

$$P = (\alpha_1, \alpha_2, \alpha_3)^{-1}(\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

- 6. 设A 为已知的 $m \times n$ 向量, $V = \{Ax | x \in \mathbb{R}^n\}$.
- (3) 验证 V 对通常的矩阵加法和数乘运算构成线性空间;

(4)
$$\stackrel{\text{$}}{=}$$
 $\stackrel{\text{$}}{=}$ $\stackrel{\text{$}}{=}$

Solution (1) 对任意 $\alpha, \beta \in V$, 存在向量 $x_1, x_2 \in \mathbb{R}^n$, 使得 $\alpha = Ax_1, \beta = Ax_2$.

于是 $\alpha + \beta = Ax_1 + Ax_2 = A(x_1 + x_2), x_1 + x_2 \in \mathbb{R}^n$, 所以 $\alpha + \beta \in V$.

对任意常数 $k \in \mathbb{R}$, $k\alpha = k(Ax_1) = A(kx_1), kx_1 \in \mathbb{R}^n$, 所以 $k\alpha \in V$.

因此V对通常的矩阵加法和数乘运算构成线性空间

(2) 当将 A 列分块为A = $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,则

$$V = \{Ax | x \in \mathbb{R}^4\} = \{x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4 | x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4\},\$$

即 V 是由向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 生成的向量空间,所以要求 V 的一个基,只需求出向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个极大无关组即可. 由

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 & -2 \\ 1 & -2 & 3 & -1 \\ 3 & -1 & 5 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 3 & -1 \\ 0 & 5 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

即得向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个极无关组为

$$\alpha_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}.$$

7. 若n阶矩阵A与B相似,证明R(A) = R(B)且|A| = |B|.

Solution 由于A与B相似,所以存在可逆矩阵 P 使得 $B = P^{-1}AP$.

由 P 可逆可知, $P=P_1P_1\cdots P_t$,其中 P_1,P_1,\cdots,P_t 是初等矩阵,于是 A 与 B 等价,故R(A) = R(B).

$$|B| = |P^{-1}AP| = |P^{-1}||A||P| = |A|$$

8. 设 λ_1 , λ_2 是对称阵 A 的两个不同的特征值, α_1 , α_2 是对应的两个特征向量,证明 α_1 与 α_2 正 交.

Solution 已知A $\alpha_1 = \lambda_1 \alpha_1$, A $\alpha_2 = \lambda_2 \alpha_2$, $\lambda_1 \neq \lambda_2$, A 为对称矩阵,于是 $\lambda_1 \alpha_1^T \alpha_2 = (\lambda_1 \alpha_1^T) \alpha_2 = (\lambda_1 \alpha_1)^T \alpha_2 = (A\alpha_1)^T \alpha_2 = \alpha_1^T A^T \alpha_2 = \alpha_1^T (A^T \alpha_2) = \alpha_1^T (\lambda_2 \alpha_2) = \lambda_2 \alpha_1^T \alpha_2$, 所以 $(\lambda_1 - \lambda_2) \alpha_1^T \alpha_2 = 0$, 即 $\alpha_1 = 0$, 即 $\alpha_1 = 0$, 即 $\alpha_2 = 0$, 即 $\alpha_1 = 0$, 即 $\alpha_2 = 0$, 即 $\alpha_1 = 0$, 即 $\alpha_2 = 0$, 即 $\alpha_1 = 0$, 即 $\alpha_2 = 0$, 即 $\alpha_1 = 0$, 即 $\alpha_2 = 0$, 即 $\alpha_3 = 0$, 即 $\alpha_3 = 0$, 即 $\alpha_4 = 0$, 即 α_4

9. 设n阶方阵 A 满足 A² - A - 2E = 0, 证明矩阵 A 和 A+2E 均可逆, 并求出A⁻¹ 和 $(A + 2E)^{-1}$.

Solution

$$A^{2}-A-2E=O,$$

$$A(A-E)-2E=O,$$

$$A \cdot \frac{1}{2}(A-E)=E,$$

又由
$$A^2 - A - 2E = 0$$
 得 $A^2 - A - 6E + 4E = 0$,

即
$$(A-3E)(A+2E) = -4E$$
, $\frac{1}{4}(3E-A)(A+2E) = E$,

所以
$$A + 2E$$
可逆,且 $(A + 2E)^{-1} = \frac{1}{4}(3E - A)$.

10. 求一个正交变换把下列二次型化为标准型

$$(1)f = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_2x_3$$
;

$$(2) f = 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
;

Solution (1)

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & -1 \\ 0 & -1 & 2 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda - 2)(\lambda - 3)$$

得 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$.

对应特征向量为

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix},$$

将特征向量单位化, 得正交变换矩阵

$$P = (p_1, p_2, p_3) = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix},$$

在正交变换x = Py下,二次型化为标准形

$$f = y_1^2 + 2y_2^2 + 3y_3^2$$
.

(2)
$$|A - \lambda E| = -(1 + \lambda)^2 (\lambda - 2)$$

得 A 的特征值为 $\lambda_1 = \lambda_2 = -1$, $\lambda_3 = 2$.

特征向量为

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

将特征向量正交化、单位化,得正交变换矩阵

$$P = (p_1, p_2, p_3) = \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix},$$

在正交变换x = Py下,二次型化为标准形

$$f = -y_1^2 - y_2^2 + 2y_3^2$$
.

11. 已知
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ 4 \\ a \end{pmatrix}$, $\beta = \begin{pmatrix} 1 \\ 0 \\ b \\ 1 \end{pmatrix}$, 讨论参数 a, b 取何值时,

- (1) β 不能由向量组 α_1 , α_2 , α_3 线性表示;
- (2) β 能由向量组 α_1 , α_2 , α_3 线性表示, 且表达式唯一;
- (3) β 能由向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,且表达式不唯一,并写出此表达式.

Solution 设 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$, 对 $(\alpha_1, \alpha_2, \alpha_3|\beta)$ 做初等行变换, 有

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} \mid \boldsymbol{\beta}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 0 \\ 2 & 1 & 4 & b \\ 2 & 3 & a & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & -1 & 2 & b-2 \\ 0 & 1 & a-2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b-3 \end{pmatrix},$$

(1)当 $b \neq 3$ 时,线性方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$ 无解,从而 β 不能由向量组 α_1 , α_2 , α_3 线性表示;

(2)当b = 3且 $a \neq 0$ 时,由

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} | \boldsymbol{\beta}) \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b-3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

知,线性方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$ 有唯一解,从而 β 能由向量组 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示, 表达式为

$$\beta = 2\alpha_1 - \alpha_2 + 0 \cdot \alpha_3.$$

(3)当b = 3且a = 0时,由

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} | \boldsymbol{\beta}) \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b-3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

知,线性方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$ 有无穷多解,

$$\begin{cases} x_1 = 2 - 3c, \\ x_2 = -1 + 2c, c 为任意常数. \\ x_3 = c, \end{cases}$$

从而 β 能由向量组 α_1 , α_2 , α_3 线性表示, 且表达式不唯一, 即

$$\beta = (2 - 3c)\alpha_1 + (-1 + 2c)\alpha_2 + c\alpha_3.$$

12. 设有向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$ 和向量组 $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix}$, $\beta_2 = \begin{pmatrix} -2 \\ a \\ 4 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} -2 \\ a \\ a \end{pmatrix}$, 确定常数 a , 使得向量组A能由向量组B线性表示,但是向量组B不能由向量组A

线性表示.

Solution

- (1)当 $a+2\neq 0$ 且 $a-4\neq 0$ 时,矩阵方程 $(\alpha_1,\alpha_2,\alpha_3)=(\beta_1,\beta_2,\beta_3)X$ 有解. 即当 $a\neq -2$ 且 $a\neq 0$ 4时,向量组 A 可由向量组 B 线性表示.
- (2)当a-1=0或 $2-a-a^2=0$ 时,矩阵方程 $(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)X$ 无解。即当a=1或 a = -2时,向量组B不能由向量组A线性表示.
- 13. 设 A 为n阶实对称矩阵,且满足 $A^3 + A^2 + A = 3E$,证明 A 是正定矩阵.

Solution 求得 A 的全部特征值为 $1(n extbf{1})$ 故 A 是正定矩阵.

- 14. 设 3 阶实对称矩阵 A 的各行元素之和为 3,向量 $\alpha_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ 是线性方程组 Ax = 0的两个解.
- (1) 求 A 的特征值和特征向量;
- (2) 求正交矩阵 Q 和对角矩阵 Λ . 使得 $Q^TAQ = \Lambda$.

Solution

- (1) 特征值为 3, 特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- (2) $Q = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}$

$$oldsymbol{Q}^{\mathrm{T}} oldsymbol{A} oldsymbol{Q} = oldsymbol{\Lambda} = \left(egin{array}{ccc} 0 & & & \\ & 0 & & \\ & & 3 \end{array}
ight) .$$