Величину

$$\lambda = \frac{1}{2h} = \frac{1}{2 \cdot |q\alpha - p|}$$

назовем коэффициентом выгодности. Его смысл очень прост: коэффициент выгодности показывает, во сколько раз фактическая абсолютная погрешность меньше максимально возможной. Чем больше 2, тем выгоднее приближение. Очевидно,

$$1 \le \lambda < \infty$$
$$\lambda h = \frac{1}{2}$$

Не следует думать, что более мел- кие доли всегда дают более точное приближение! Может случиться, что при нанесении на числовую ось вось- мых долей число а занимает менее выгодное положение, чем при на- несении седьмых. Сделаем опыт с числом л, аппроксимируя его разны- ми долями - от первых до десятых. Вычисления опущены, читатель мо- жет воспроизвести их сам.

P	приближенное значение π	верхняя граница абсолютной пргрешности	Δ	h	λ
 1	3	$\frac{1}{2} = 0,5000$	0,1416	0,1416	3,5
2	$\frac{6}{2}$	$\frac{1}{4} = 0,2500$	0,1416	0,2832	1,8

Эта таблица показывает, что для аппроксимации и седьмые доли резко выгоднее ближайших соседних долей. Фактическая погрешность в 56 раз меньше, чем можно думать, судя по размеру долей *)

На рисунке 2 показано располо- жение числа π на числовой оси. Слу- чайно

(а впрочем, случайно ли?) π оказывается очень близко к $3\frac{1}{7}$. Если бы нам заранее предписали аппрок- симировать так, что- бы абсолютная

Рис. 1

погрешность не превысила 0,0013, какие доли выбрали бы? Мы записали бы условие $\frac{1}{2q} \geq 0,1300$, откуда $q \geq 4385$, а Архимед достиг той же точности, взяв гораздо меньший знаменатель.

Теперь вы убедились, читатель, что Архимед выбрал седьмые доли не случайно?

Через много веков голландский ма тематик Адриан Меций дал прибли- женное значение

$$\pi \approx \frac{355}{113}$$

Число Меция обладает теми же уди вительными свойствами, что и число Архимеда: знаменатель 113 гораздо

 $^{^{*)}}$ Вычисление дает $\lambda = \frac{1}{2 \cdot 0,0089} = 56, 2$. Чтобы правильно получить цифры десятых, надо взять и с пятью цифрами после запятой