RR Lyrae Metallicities from CSTAR Data

Kenny Roffo and Michael Leone

Advisor: Shashi M. Kanbur SURC 2015 at Brockport

April 10, 2015

What is CSTAR?

- <u>Chinese Small Telescope</u> <u>ARray</u>
- Located in Antarctica
- Four Telescopes
- Ideal Observing Conditions

- Data was taken across several years
- Over 350 GB of data for 104 stars

- Data was taken across several years
- Over 350 GB of data for 104 stars
- Problems with the filters Only i-band data 2008, 2010

- Data was taken across several years
- Over 350 GB of data for 104 stars
- Problems with the filters Only i-band data 2008, 2010
- g and r band data from 2009 observing season

- Data was taken across several years
- Over 350 GB of data for 104 stars
- Problems with the filters Only i-band data 2008, 2010
- g and r band data from 2009 observing season
- Small mirror size produced some scattering in the data
- Long continuous data collection makes this data set desirable

RR Lyrae Variable Stars

- Commonly known as pulsating variable stars
- Older stars with lower mass

RR Lyrae Variable Stars

- Commonly known as pulsating variable stars
- Older stars with lower mass
- Some exhibit the Blazhko Effect more difficult to analyze

RR Lyrae Variable Stars

- Commonly known as pulsating variable stars
- Older stars with lower mass
- Some exhibit the Blazhko Effect more difficult to analyze
- 7 in the CSTAR Data, 2 Non-Blazkho

Phased Data for 118528 in the r band

Phased Data for 118528 in the r band

Binned Data for 118528 in the r band

Binned Data for 118528 in the r band

Metallicity

- A measure of the amount of metal in a star
- ullet Measured as the ratio of Iron to Hydrogen [Fe/H]

Metallicity

- A measure of the amount of metal in a star
- ullet Measured as the ratio of Iron to Hydrogen [Fe/H]
- Important for determining other physical quantities such as mass and luminosity
- Spectroscopic metallicities were compared with photometric data to yield photometric metallicity formulas:

Metallicity

- A measure of the amount of metal in a star
- ullet Measured as the ratio of Iron to Hydrogen [Fe/H]
- Important for determining other physical quantities such as mass and luminosity
- Spectroscopic metallicities were compared with photometric data to yield photometric metallicity formulas:

$$[Fe/H] = 0.313\phi_{31} - 3.65P - 0.493A_g - 0.66$$
 g-band $[Fe/H] = 0.175\phi_{31} - 2.29P - 0.301A_r - 0.75$ r-band (Oluseyi et al. 2012)

Fourier Analysis and Binning

- A method of interpolating periodic functions
- Approximate as a sum of sin terms
- Results were compared for different numbers of bins

$$f(t) = A_0 + \sum_{k=1}^{\infty} A_k \sin(k\omega t + \phi_k)$$

$$[Fe/H] = 0.313\phi_{31} - 3.65P - 0.493A_g - 0.66$$

 $[Fe/H] = 0.175\phi_{31} - 2.29P - 0.301A_r - 0.75$

$$[Fe/H] = 0.313\phi_{31} - 3.65P - 0.493A_g - 0.66 \qquad \text{g-band}$$

$$[Fe/H] = 0.175\phi_{31} - 2.29P - 0.301A_r - 0.75 \qquad \text{r-band}$$

• Phase Shift, ϕ_k was determined for the 1st and 3rd terms by the Fourier Analysis (ϕ_1 and ϕ_3)

$$[Fe/H] = 0.313\phi_{31} - 3.65P - 0.493A_g - 0.66$$

 $[Fe/H] = 0.175\phi_{31} - 2.29P - 0.301A_r - 0.75$

g-band r-band

- Phase Shift, ϕ_k was determined for the 1st and 3rd terms by the Fourier Analysis (ϕ_1 and ϕ_3)
- ϕ_{31} was calculated using $\phi_{jk} = k\phi_j j\phi_k$

$$[Fe/H] = 0.313\phi_{31} - 3.65P - 0.493A_g - 0.66$$

 $[Fe/H] = 0.175\phi_{31} - 2.29P - 0.301A_r - 0.75$

g-band r-band

- Phase Shift, ϕ_k was determined for the 1st and 3rd terms by the Fourier Analysis (ϕ_1 and ϕ_3)
- ϕ_{31} was calculated using $\phi_{jk} = k\phi_j j\phi_k$
- Periods were given in the Data set

$$\begin{aligned} [\textit{Fe}/\textit{H}] &= 0.313\phi_{31} - 3.65P - 0.493\textit{A}_g - 0.66 & \text{g-band} \\ [\textit{Fe}/\textit{H}] &= 0.175\phi_{31} - 2.29P - 0.301\textit{A}_r - 0.75 & \text{r-band} \end{aligned}$$

- Phase Shift, ϕ_k was determined for the 1st and 3rd terms by the Fourier Analysis (ϕ_1 and ϕ_3)
- ϕ_{31} was calculated using $\phi_{jk} = k\phi_j j\phi_k$
- Periods were given in the Data set
- Amplitudes were calculated by subtracting the maximum and minimum magnitudes

Metallicity for 118528

Fit order versus Binning Number (Zinn and West Scale)

118258 g-band	3rd Order Fit	5th Order Fit	7th Order Fit
50 Bins	-1.46	-1.46	-1.46
75 Bins	-1.47	-1.47	-1.47
100 Bins	-1.47	-1.47	-1.47

118258 r-band	3rd Order Fit	5th Order Fit	7th Order Fit
50 Bins	-1.42	-1.42	-1.42
75 Bins	-1.43	-1.43	-1.43
100 Bins	-1.43	-1.43	-1.43

Metallicity for 134610

Fit order versus Binning Number (Zinn and West Scale)

134610 g-band	3rd Order Fit	5th Order Fit	7th Order Fit
50 Bins	-2.08	-2.08	-2.08
75 Bins	-2.09	-2.09	-2.09
100 Bins	-2.08	-2.08	-2.08

134610 r-band	3rd Order Fit	5th Order Fit	7th Order Fit
50 Bins	-1.91	-1.91	-1.91
75 Bins	-1.95	-1.95	-1.95
100 Bins	-1.95	-1.95	-1.95

Expected Values

- The values we expect for metallicities of these stars on the Zinn & West scale range from about -1.9 to -1.4 (Sarka 2014)
- Our measured values are

star id	g-band	r-band
118528	-1.47	-1.43
134610	-2.08	-1.95

For the Future

 Find the absolute magnitude of the stars in order to find their distances

For the Future

- Find the absolute magnitude of the stars in order to find their distances
- We would like to begin looking at the RR Lyrae stars which exhibit the Blazkho effect

For the Future

- Find the absolute magnitude of the stars in order to find their distances
- We would like to begin looking at the RR Lyrae stars which exhibit the Blazkho effect
- Since we have data taken in several different wavelengths, we should be able to form color light curves

Acknowledgements

Thank you for all the support from Shashi Kanbur, Shivam Arora, Sukanta Deb and Harinder Singh.

Also thanks to SUNY Oswego, University of Delhi, and the Indo-US Science and Technology Forum.

Data Collectior Data Analysis Results In the Future

References

- SIMULATED LSST SURVEY OF RR LYRAE STARS THROUGHOUT THE LOCAL GROUP; The Astronomical Journal, July 2012, Hakeem M. Oluseyi, Andrew C. Becker, Christopher Culliton, et al.
- Characteristics of bright ab-type RR Lyrae stars from the ASAS and WASP surveys; arXiv:1409.5234, September 2014, M. Sarka