Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НГУ)

Физический факультет

Кафедра общей физики

Лабораторная работа N4.1

Компенсационные методы измерений

Руководитель: Старший преподаватель Яцких А. А. Работу выполнил: Высоцкий М. Ю. гр. 24301

1 Теоретическое введение

Цель работы: изучение компенсационных методов измерения ЭДС, напряжений и сопротивлений.

Оборудование:

1. Потенциометр постоянного тока P4833; нормальный элемент Вестона МЭ4700; батарея питания потенциометра; нуль-индикатор, милливольтметр; термопара ТЭДС ХК (ТХК); нуль-термостат; печь с тиглем; источник питания печи (24В); регистратор ЭДС термопары.

Рис 1.7. Схема измерения температуры плавления олова 1 — тигель с оловом; 2 — сосуд с водно-ледяной смесью; 3 — нагреватель; 4 — дифференциальная термопара; 5 — регистратор ЭДС термопары; 6 — потенциометр.

Рис. 1: Схема установки

2 Ход работы

2.1 Задания 1-2

Цель задания: измерить ЭДС термопары и определить зависимость ЭДС от температуры среды, в которую помещён спай термопары, используя компенсационный метод измерения.

Путём помещения одного спая дифференциальной термопары в ёмкость с оловом, переходящим при нагревании в жидкое состояние и обратно при остывании, а другого в сосуд Дьюра, была измерена ЭДС термопары.

Рис. 2: График зависимости $\mathcal{E}(t)$

Среда	\mathcal{E} , мВ	$T_{\text{reop}}, {}^{\circ}C$
Комната	1,56	24
Олово	16	231,9
Палец Егора	2,08	36,6
Локоть Егора	2,1	36,6
Кипящая вода	6,6	100

Таблица 1: Значения ЭДС и температур

Далее по формуле мы ищем температуры и чувствительность термопары для разных случаев:

$$t = K^{-}1 * \mathcal{E} \tag{1}$$

$$K = \frac{\mathcal{E}}{t} \tag{2}$$

K_1	0,069
$t_{\scriptscriptstyle \mathrm{B}}$	95,66 °C
$t_{\rm пал}$	30,15 °C
$t_{\scriptscriptstyle m JOK}$	$30,44~^{\circ}C$
K_2	0,066
$t_{ m o}$	242,42 °C
$t_{ m max}$	31,52 °C
$t_{\scriptscriptstyle m JOK}$	31,82 °C

Таблица 2: Значения температур и чувствительности термопары