Aufgabenblatt 02

21. November 2021

Aufgabe 02.1

Wo befindet sich der Massenmittelpunkt eines zylindrischen Wasserglases, das zu 3/4 mit Wasser gefüllt ist (also 75 % der maximal möglichen Wassermenge drin)? Außendurchmesser: $D=6,00\,\mathrm{cm}$, Höhe (außen): $H=10,00\,\mathrm{cm}$. Der Boden ist $h_0=1,50\,\mathrm{cm}$ dick, die Außenwand ist $d=4,00\,\mathrm{mm}$ dick. Dichte von Wasser: $\rho_W=1000\,\mathrm{kg/m^3}$, Dichte von Glas $\rho_G=2500\,\mathrm{kg/m^3}$. Skizze(n) erforderlich!

Aufgabe 02.2

Zwei Orte sind mittels GPS-Koordinaten gegeben, nämlich (51° 11' 14,0" N, 6° 47' 50,1" O) und (51° 13' 04,5" N, 6° 45' 42,3" O). Berechnen Sie den direkten geraden Abstand zwischen den beiden Punkten (Annahme: gleiche Seehöhe)! Wie genau ist die Angabe auf 0,1" in Meter? Skizze(n) erforderlich!

(Erdradius: $R_E = 6371,0 \,\mathrm{km}$, Erdkrümmung zwischen den Punkten vernachlässigen. Berechnen Sie den Abstand vorerst in jeder Koordinatenrichtung extra.)

Aufgabe 02.3

Die Bahnkurve eines Flugkörpers wurde folgendermaßen bestimmt:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} b_0 + b_1 \cdot t + b_2 \cdot t^2 \\ c_1 \cdot t + c_3 \cdot t^3 + c_4 \cdot t^4 \\ d_0 + d_2 \cdot t^2 + c_4 \cdot t^4 \end{pmatrix}$$
mit den Werten:

$$b_0 = 25,0 \text{ m} \quad b_1 = -15,0 \text{ m/s} \quad b_2 = 3,50 \text{ m/s}^2 \quad c_1 = 8,50 \text{ m/s} \quad c_3 = -1,20 \text{ m/s}^3$$

$$c_4 = 0,450 \text{ m/s}^4 \quad d_0 = 120,0 \text{ m} \quad d_2 = -4,90 \text{ m/s}^2 \quad d_4 = 1,50 \text{ m/s}^4$$

Berechnen Sie für die Zeitpunkte $t_0 = 0$, $t_1 = 2,50$ s und $t_3 = 10,0$ s (Vektor und Betrag): (a) Wo befindet sich der Flugkörper? (b) Welche Geschwindigkeit hat er an diesen Zeitpunkten? (c) Wie stark ist die momentan wirkende Beschleunigung?

Aufgabe 02.4

Zwei Radfahrer starten gemeinsam, um eine flache Strecke von $s=60,0\,\mathrm{km}$ zurückzulegen. Der erste fährt den ganzen Weg mit der konstanten Geschwindigkeit $v_1=33,0\,\mathrm{km/h}$. Der zweite startet mit $v_{2,0}=36,0\,\mathrm{km/h}$, wird aber kontinuierlich langsamer, nämlich um $1,00\,\mathrm{km/h}$ pro $15,0\,\mathrm{Minuten}$.

- (a) Wer ist wann im Ziel? (b) Treffen sich die beiden unterwegs? Wenn ja: Wann und Wo?
- (c) Wann und wo ist der Vorsprung Δx des zweiten Fahrers maximal? Wie groß ist Δx da?

Hinweis: Mit Anfangsgeschwindigkeit v_0 und konstanter Beschleunigung a legt man in der Zeit t die Strecke $L(t) = v_0 \cdot t + (a \cdot t^2)/2$ zurück.