

RATIONALE AND RESEARCH QUESTION

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

RATIONALE AND RESEARCH QUESTION

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

ABOUT ME

- Quang Trieu Nhat Phong ("Millions of sunbeams")
- MSc. Business Intelligence and Smart Services
- Ho Chi Minh City, Vietnam

sustainably.io

- start-up aimed at sustainability
- offer air quality measurement
- use biodegradable materials
- cooperate with partners that employ vulnerable people

sustainably.io

A quiet place (2018)

Don't make noise!

Don't look!

Bird box (2018)

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

RATIONALE

Energy crisis

The crisis facing us in winter (and already in summer with the rising price of energy).

Covid-19

We are not yet to live in an post-Coronavirus era.

GDPR

This gives everyone a right say "no" to privacy-invasive sensors.

RESEARCH OBJECTIVES

01

What level of occupancy can we derive from air data: binary detection, multiclass classification, or numerical estimation?

02

What algorithms and variables contribute to good occupancy detection modelling?

03

What are the requirements to successfully detect occupancy in an indoor place like SBE staff lounge?

RATIONALE AND RESEARCH QUESTION

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

PM

CO₂

RELATIVE AIR PRESSURE HUMIDITY

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

$$23{\rm O}_2 + {\rm C}_{16}{\rm H}_{32}{\rm O}_2 \rightarrow 16{\rm CO}_2 + 16{\rm H}_2{\rm O}$$

TEMPERATURE

MASS BALANCE OF CO2 EQUATION

$$V * \frac{dC}{dt} = E + Q(Co - Ci)$$

KEY RESEARCH GAPS

Privacy-preserving

Large room, multi-class

Multiple air variables

not camera, sound, and heat sensors

Ensemble model

XGBoost, Random Forest HVAC-equipped room

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

RESEARCH DESIGN

June 16 to July 11, 2022.

4552 minutely observations from 12 days.

On weekdays and during working hours.

ROOM LAYOUT

TOOL DEVELOPMENT

How it works?

People counter with 2 active IR sensors to detect people passing the device

Why it needs enhancement?

They are sensitive to sunlight, to arm swings, unable to detect groups

MACHINE LEARNING

Models

Logistic regression
Support Vector Machine
Random Forest
Gradient Extreme Boosting

ML concepts

Train-validation-test
5-fold rolling validation
Grid Search hyperparameter
optimization

MACHINE LEARNING

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

DESCRIPTIVE ANALYSIS

CORRELATION

CORRELATION

 $n_{\text{min}} = 2,253$ $n_{\text{mode}} = 2,253$ $n_{\text{max}} = 2,253$

correlation: Pearson

-0.5 -1.0

CORRELATION

DETECT VENTILATION

DETECT VENTILATION

OCCUPANCY DETECTION

OCCUPANCY DETECTION

Indoor CO2, ventilation	Accuracy	Sensitivity	Specificity	Precision
XGBoost	83.24%	84.19%	80.77%	91.97%
RF	77.39%	76.10%	80.77%	91.19%
Logistic regression	81.91%	78.68%	90.38%	95.54%
SVM	81.65%	85.29%	71.55%	88.55%

MULTI-CLASS CLASSIFICATION (imbalanced)

MULTI-CLASS CLASSIFICATION (imbalanced)

Without periodical validation data

Accuracy (70%)	Not crowded	Moderate	Crowded
Not crowded	248	49	0
Moderate	0	0	0
Crowded	27	37	15

MULTI-CLASS CLASSIFICATION (imbalanced)

With periodical validation data

Accuracy (93.62%)	Not crowded	Moderate	Crowded
Not crowded	261	8	0
Moderate	14	78	2
Crowded	0	0	13

MULTI-CLASS CLASSIFICATION (balanced)

MULTI-CLASS CLASSIFICATION (balanced) Without pariedical validation

Without periodical validation data

Accuracy (67.8%)	0-1	2-5	6-or-more
0-1	92	12	0
2-5	52	45	18
6-or-more	3	46	118

MULTI-CLASS CLASSIFICATION (balanced) With periodical validation data

Accuracy (72.9%)	0-1	2-5	6-or-more
0-1	73	31	0
2-5	25	71	19
6-or-more	0	27	130

RATIONALE AND RESEARCH QUESTION

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

06
DISCUSSION

RECOMMENDATIONS

OBJECTIVE 1 Level of occupancy

Binary detection
Multiclass classification
(balanced)
Multiclass classification
(imbalanced)

OBJECTIVE 2

Algorithm & variable

XGBoost -> Hybrid model

Indoor CO2

Ventilation modes -> Ventilation rates
Contextual and periodical validation data

Other indoor, outdoor air variables: invalid

OBJECTIVE 3Requirements

Periodical validation data Ventilation rate measurements

THEORIES, EMPIRICAL STUDIES AND GAPS

WHAT I'VE DONE

WHAT I'VE FOUND

DISCUSSION

RECOMMENDATIONS

RECOMMENDATIONS

Strategic approaches	Tactical solutions	Researche rs	sustainabl y.io	Facility team
Validation data	To manually collect occupancy data periodically	X		
	To deploy non-intrusive sensors: IR, heat, door, outdoor air	x	х	X
Ventilation airflow rate measurement	To interview building services engineer and facility staff	Х		
	To complete programming code to detect ventilation in real time	X	X	
	To install anemometer in ducts and pipes		Х	X
Occupancy-based application deployment for HVAC decisions		X	Х	Х

CONTRIBUTION

2-week

HVAC

ML

data

2-week data of occupancy, indoor air, and outdoor atmosphere

room setting

ventilation mode feature engineering

occupancy

detection and classification

LIMITATIONS

GAPS IN DATASET

UNCERTAINTY

ONLY 1 ROOM

LIMITATIONS & FUTURE RESEARCH

GAPS IN DATASET

UNCERTAINTY

ONLY 1 ROOM

COLLABORATION

WIND SENSOR

DIFFERENT CLASSROOMS

OCCUPANCY-BASED APPLICATION

