iGPU Leak

An Information Leakage Vulnerability on Intel Integrated GPU

Wenjian He Hong Kong Univ. of Science and Technology

Wei Zhang Hong Kong Univ. of Science and Technology

Sharad Sinha Indian Institute of Technology, Goa

Sanjeev Das Univ. of North Carolina at Chapel Hill, USA

Outline

- Introduction
- iGPU Leak Vulnerability
- Proof-of-concept Demo
- Attack Case Studies
- Discussion and Conclusion

Intel Skylake (Client)

Intel Integrated GPU (iGPU)

Introduction

iGPU Leak

Proof-of-concept Demo

Attack Case Studies

Discussion and Conclusion

Vulnerability Analysis on Intel iGPU

Threat model:

- Unprivileged GPU client
- Software-based

Identify an uninitialized hardware vulnerability

1.
GPU Shared
Local Memory
Leak

2. GPU Register Leak

Uninitialized Data

What is an uninitialized data bug? Steps:

1. Program 1 uses some memory.

Uninitialized Data

What is an uninitialized data bug? Steps:

- 1. Program 1 uses some memory.
- 2. Program returns the memory space to OS.

Program 1

Finish.

Resource

Uninitialized Data

Steps:

- 1. Program 1 uses some memory.
- 2. Program returns the memory space to OS.
- 3. OS gives the memory region to Program 2, without clearing the memory.

Intel iGPU

LLC: Last-level Cache

GTI: Graphic Technology Interface

Intel iGPU µArch

1 slice \times 3 subslices \times 8 EUs \times 7 threads \times 4 KB = 672 KB

GPU Programming

Goal: Userland GPU Spyware

Challenge: GPU programming

SLM Leak

OpenCL code for Shared Local Memory (SLM) leakage

Register Leak

Assembly programming for GPU register leakage:

Introduction

iGPU Leak

Attack Case Studies

Discussion and Conclusion

Model	Dell OptiPlex 7040
CPU	Intel Core i7 6700
iGPU	Intel HD 530 (Gen 9)
OS	Ubuntu 16.04 LTS / 18.04 LTS
OpenCL	Intel Graphics Compute Runtime 19.26

[Youtube] SLM Leak [Youtube] GRF Leak

Introduction

iGPU Leak

PoC Demo

Case Studies

1. Attacker does not know the source code

Website Fingerprinting Attack

2. Attacker knows implementation details

AES Key Recovery Attack

3. Leakage bandwidth measurement

Covert Channel

Discussion and Conclusion

Table: Experiment Configuration

Brower	Chrome 73.0.3683.103
Setting	Factory default
OS	Ubuntu 16.04 LTS
Websites	Alexa Top 40

1.2 Inference

- 1. Monitor GPU and accumulate samples.
- 2. Individual predictions on each sample.

3. Voting for the final inference.

1. Accuracy of different models.

RF	Random forest
CNN	Conv. neural network
MLP	Multilayer perceptron

^{* 3} inferences per second

1. Accuracy of different models.

2. Accuracy vs. inference frequency.

3. Model duration against changes on the webpages over time

2. AES Attack

Assume: Attacker knows the GPU program of the victim.

Goal: AES key.

2. AES Attack

Analyze its GPU assembly

AES Attack

Victim	Result	
AFC 400	Leaked 13 / 16 Bytes	
AES-128	0.15 s brute-force	
AES-196	Leaked 20 / 24 Bytes	
AES-196	2 min brute-force	

Leaked key byte = r26⊕ r32

3. Covert Channel

Bandwidth measurement

Register	Simplex	4 Gbps
	Duplex	8 Gbps
SLM	Simplex	1.3 Gbps
	Duplex	2.5 Gbps

Introduction

iGPU Leak

PoC Demo

Case Studies

Discussion & Conclusion

Discussion: Mitigation

Userland patch

GPU Binary

Code added by the compiler automatically

↑ performance (maybe) ↓ legacy programs

Kernel patch

2 1 2 1 1

Flushing GPU between jobs

↑ remove root cause
↓ performance

Conclusion

- > iGPU Leak: a dangerous vulnerability
- Privacy / Confidentiality / Covert channel
- Insufficient consideration of new peripherals
- > Exposure: CVE-2019-14615
- Affected products & Patch status:

Affected Products	Affected OS	Patch
Many Intel processor families	Win	Intel Graphics DCH Driver 26.20.100.7209
	Linux	To be released in 2020 Jan.

Please refer to <u>INTEL-SA-00314</u> for details.

THANK YOU

Q & A