Overview

Network Information System Technologies

Schedule and Instructor

- Group 3E Theory + Seminars
 - Wednesday 1:00 to 2:30 PM
 - Friday 9:30 to 11:00 AM
- Francisco Daniel Muñoz Escoí
 - fmunyoz@dsic.upv.es, fmunyoz@iti.upv.es
 - Consultations:
 - By appointment
 - Office:
 - ▶ ID43 (DSIC)
- Questions and doubts about theory and labs are welcome.

- . Goals
- 2. Structure
- 3. Theory
- 4. Labs
- 5. Grading
- 6. Bibliography

General:

Provide a pragmatic approach to the design and implementation of distributed systems.

Specific:

- 1. Understand the main properties of distributed systems
- 2. Ability to leverage some relevant technologies and approaches
- 3. Ability to propose adequate architectures to resolve specific problems

General:

Provide a pragmatic approach to the design and implementation of distributed systems.

Specific:

- I. Understand the main properties of distributed systems:
 - Problems that need to be addressed
 - Attainable properties, use cases
 - Impact of system architecture on the attainable properties, and ability to address potential problems

General:

Provide a pragmatic approach to the design and implementation of distributed systems.

Specific:

- I. Understand the main properties of distributed systems
- Ability to leverage some relevant technologies and approaches
 - Asynchronous programming for component implementation
 - Middleware to ease component composition and interaction

6

General:

Provide a pragmatic approach to the design and implementation of distributed systems.

Specific:

- 1. Understand the main properties of distributed systems
- Ability to leverage some relevant technologies and approaches
- 3. Ability to propose adequate architectures to resolve specific problems
 - Study and analysis of system examples
 - Hands-on usage of relevant technologies for lab assignments

- . Goals
- 2. Structure
- 3. Theory
- 4. Labs
- 5. Grading
- 6. Bibliography

2. Structure

- Course with 6 credits
 - Theory and seminars have a common set of units
- ▶ Theory (I.5 cr)
 - General principles
 - Reachable properties
 - Problems imposed
- Seminars (3 cr)
 - Basic technologies
 - Examples, case studies, and problem resolution
- ▶ Labs (1.5 cr)
 - Implementation of simple systems

2. Structure

- Course with 6 credits
 - Theory and seminars have a common set of units
- ► Theory (I.5 cr)
 - General principles
 - Reachable properties
 - Problems imposed
- Seminars (3 cr)
 - Basic technologies
 - Examples, case studies, and problem resolution
- ▶ Labs (1.5 cr)
 - Implementation of simple systems

These two parts are taught in the classroom. They are jointly considered as "theory" in the following sections.

- I. Goals
- 2. Structure
- 3. Theory
- 4. Labs
- 5. Grading
- 6. Bibliography

3. Theory. Units

- Introduction and Motivation
- JavaScript and NodeJS
- 3. Middleware. ZeroMQ
- 4. Service deployment. Docker
- 5. Failure management
- 6. Scalability
- 7. Epilogue

3. Theory. Units

- Considering the 28 classes in this first semester, those units will be distributed in the following way:
 - Unit 1:3 sessions (including also the current overview)
 - Unit 2: 7 sessions
 - Unit 3: 6 sessions
 - Unit 4: 4 sessions
 - Unit 5: 3 sessions
 - Unit 6: 3 sessions
 - Unit 7: 2 sessions

- . Goals
- 2. Structure
- 3. Theory
- 4. Labs
- 5. Grading
- 6. Bibliography

4. Labs

- Lab sessions will start next week.
 - Project 0: JavaScript basics. Without supervision.
- Technologies to be used:
 - JavaScript + NodeJS
 - ØMQ (NodeJS mapping)
 - Docker
- Three projects that use those technologies:
 - Reverse TCP/IP proxy (3 sessions)
 - 2. NodeJS and ØMQ application development (4 sessions)
 - 3. Deployment (3 sessions)

- I. Project I: Reverse TCP/IP proxy (3 sessions)
 - Technology: JavaScript, NodeJS
 - Goals: Warm-up to JavaScript+NodeJS development, server asynchronous programming, callbacks, application development
 - Assessment: In the same date as the Ist partial

TSR Overview 16

- I. Project I: Reverse TCP/IP proxy (3 sessions)
- Project 2: NodeJS and ØMQ application development (4 sessions)
 - Technology: ØMQ, JSON
 - Goals: Distributed application development whose components are processes that communicate, adopting specific roles, using the ØMQ messaging system
 - Assessment: Written exam (2 December)

- Project I: Reverse TCP/IP proxy (3 sessions)
- Project 2: NodeJS and ØMQ application development (4 sessions)
- 3. Project 3: Deployment (3 sessions)
 - Technology: Docker
 - Goals: To understand and manage a multi-component distributed service deployment, using current technologies about containers and deployment configuration / automation.
 - Assessment: In the same date as the 2nd partial.

- Lab sessions in DSIC Lab 4 on Tuesdays (10:00-11:30).
- Lab teacher:
 - José Manuel Bernabeu Aubán (josep@iti.upv.es)
- Lab schedule:

Lab project	Lab session	Monday	Tuesday	Wednesday	Thursday	Friday
0		16 September	10 September	11 September	12 September	13 September
		23 September	17 September	18 September	19 September	20 September
1	1	30 September	24 September	25 September	26 September	27 September
	2	7 October	1 October	2 October	3 October	4 October
	3	14 October	15 October	8 October	10 October	11 October
2	4	21 October	5 November	23 October	24 October	8 November
	5	4 November	12 November	6 November	7 November	15 November
	6	11 November	19 November	13 November	14 November	22 November
	7	18 November	26 November	20 November	21 November	29 November
3	8	25 November	3 December	27 November	28 November	5 December
	9	9 December	10 December	4 December	12 December	13 December
	10	16 December	17 December	11 December	19 December	18 December

- . Goals
- 2. Structure
- 3. Theory
- 4. Labs
- 5. Grading
- 6. Bibliography

- ▶ There are two parts to be considered:
 - I. Theory (60%)
 - 2. Lab projects (40%)
- ▶ Those two parts are arranged in three exams:
 - I. First partial:
 - Theory: Units 1, 2 and (part of) 3 (30%)
 - Lab projects: Lab 1 (10%)
 - 2. Lab 2 (20%)
 - 3. Second partial:
 - Theory: Units (end of 3,) 4, 5, 6 and 7 (30%)
 - Lab projects: Lab 3 (10%)

- I. Two partial exams (with second-chance) (80%)
 - Individual objective assessment
 - Multiple choice test
 - Minimum grade (in order to compute the global average): 3 points
 - These exams include the contents of:
 - Theory (60% of the grade)
 - Lab I and 3 (20% of the grade)
 - Dates:
 - ▶ 21 October (first partial)
 - 9 January (second partial)
 - 27 January (remedial)

- I. Two partial exams (with second-chance) (80%)
- 2. Second lab exam (with second-chance) (20%)
 - Individual written exercise(s). Date: 2 December.
 - A minimum grade of 3 points is required to consider this part in the global grade.

- Summary of dates:
 - ▶ 21 October: Ist partial.
 - ▶ 2 December: individual written exercise(s) for 2nd lab project.
 - ▶ 9 January: 2nd partial.
 - ▶ 27 January: remedial (both partials, 2nd lab project).
 - Grading: If the remedial exam is delivered, your final grade will be that obtained in the remedial.

- . Goals
- 2. Structure
- 3. Theory
- 4. Labs
- 5. Grading
- 6. Bibliography

6. Bibliography

- No text fitting properly the course material.
 - Although we have provided a student guide for each unit.
 - And a set of short presentations that explain several important concepts.
 - ▶ They are available at the PoliformaT site.
- ▶ Tons of available material to consult, though.
- General texts and web sites, to further dig into the material presented in theory.

6. Bibliography

General sources

- Distributed Systems: Principles and Paradigms (2nd Edition). Andrew S. Tanenbaum and Maarten van Steen. Prentice Hall International, 2006.
- Distributed Systems: Concepts and Design (5th Edition). George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. Addison-Wesley, 2011.
- <u>http://zguide.zeromq.org</u>. Good source of discussions and structural examples.

6. Bibliography

Technology

- Basic sources.
 - http://nodejs.org
 - http://zguide.zeromq.org
 - http://mongodb.org
 - http://docker.com/

Case studies

For each case, the instructor will provide references.