Time Series Analysis Results

Oct 24, 2019

Chiemi Kato

PARAMETERS

MAE RESULTS (ALL 1 YEAR GAP FROM Y TARGET)

Model	Time Unit	# Lags	Lag Length	Rollavg Window	Parameters	MAE
KNN	Busi. Day	10	1 month	8 weeks	K=2	\$1199.13270
Polynomial	Busi. Day	10	1 month	8 weeks	Deg=3	\$1173.80122
Adaboost	Busi. Day	10	1 month	8 weeks	{'learning_rate': 0.0001, 'n_estimators': 150}	\$1841.94740
KNN	Busi. Day	10	1 month	2 weeks	K=7	\$1253.4538
Polynomial	Busi. Day	10	1 month	2 weeks	Deg=3	\$1264.15163
Adaboost	Busi. Day	10	l month	2 weeks	{'learning_rate': 0.0001, 'n_estimators': 50}	\$1364.1369
KNN	Busi. Day	10	2 week	3 weeks	K=6	\$1045.21761
Polynomial	Busi. Day	10	2 week	3 weeks	Deg=3	\$1301.42426
Adaboost	Busi. Day	10	2 week	3 weeks	{'learning_rate': 0.0001, 'n_estimators': 50}	\$1336.64916
KNN	Busi. Day	10	1 month	4 weeks	K=7	\$974.02
Polynomial	Busi. Day	10	1 month	4 weeks	Deg=3	\$1417.294
Adaboost	Busi. Day	10	l month	4 weeks	{'learning_rate': 0.0001, 'n_estimators': 50}	\$1401.205

PREPROCESSING METHODS

NOTE: window_setting refers to the rolling mean window column in results table

```
def preprocess(series, window_setting):
    moving_avg = series.rolling(window=window_setting).mean().shift()
    moving_avg_diff = series-moving_avg
    return moving_avg_diff
```

```
LME_stationary = preprocess(LME, window_setting)
   list one = list(LME stationary.index)
 4 list_two = list(LME_stationary)
   df = pd.DataFrame(list(zip(list one, list two)), columns = ['ds', 'lag0'])
   df.head()
   # How many lag periods? - LAG DAYS
   lag length = 10
10
   df['lag1'] = df.lag0.shift(periods=1*lag_length)
12 df['lag2'] = df.lag0.shift(periods=2*lag length)
13 df['lag3'] = df.lag0.shift(periods=3*lag length)
14 df['lag4'] = df.lag0.shift(periods=4*lag length)
15 df['lag5'] = df.lag0.shift(periods=5*lag length)
16
   df['lag6'] = df.lag0.shift(periods=6*lag_length)
18 df['lag7'] = df.lag0.shift(periods=7*lag length)
19 df['lag8'] = df.lag0.shift(periods=8*lag length)
20 df['lag9'] = df.lag0.shift(periods=9*lag length)
   df['lag10'] = df.lag0.shift(periods=10*lag length)
22
23 | df.index = df['ds']
   df = df.iloc[:, 1:]
25
26
   df['y'] = df['lag0'].shift(-261)
   df = df.dropna()
   df.head()
```

Selected Result Graphs... Below is graph of 10 lags, lag length = 4 weeks, rolling window length = 4 weeks

Graph of 10 lags, lag length = 4 weeks, rolling window length = 8 weeks

Graph of 10 lags, lag length = 4 weeks, rolling window length = 8 weeks

Polynomial Regression deg=3, Training Data - MAE 648.4059769831357

Graph of 10 lags, lag length = 4 weeks, rolling window length = 8 weeks

Graph of 10 lags, lag length = 4 weeks, rolling window length = 2 weeks

Graph of 10 lags, lag length = 2 weeks, rolling window length = 2 weeks

Graph of 10 lags, lag length = 4 weeks, rolling window length = 4 weeks

