Chapitre 4_partie 2

Fonctions à une variable réelle

(Comparaison - Continuité)

4.3. Comparaison de fonctions

Soient f, g deux fonctions définies au voisinage d'un point a.

Définition 11. (Equivalence)

On dit que f est équivalente à g au voisinage de a, on note $f \sim g$, si a:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Exemples importants. Des équivalences au voisinage de a=0:

$$e^x \sim x + 1$$
 , $\ln(x + 1) \sim x$, $\sin x \sim x$, $\cos x \sim 1 + \frac{x^2}{2}$, $\tan x \sim x$

Théorème 3.

- 1) Si $f \sim g$ au voisinage de a, alors: $\lim_{x \to a} f(x)$ existe $\iff \lim_{x \to a} g(x)$ existe. Dans ce cas les limites sont égales.
- **2)** Si $f_1 \sim g_1$ et $f_2 \sim g_2$ au voisinage de a, alors : $f_1 \times f_2 \sim g_2 \times g_1$ et $\frac{f_1}{f_2} \sim \frac{g_2}{g_1}$.
- 3) Si $\lim_{x\to b} \varphi(x) = a$ et $f\sim g$ au voisinage de a , alors : $fo\varphi\sim go\varphi$ au voisinage de b .

Remarque. La somme des fonctions équivalentes n'est pas toujours équivalente.

Par exemple : $x^2 + x \sim -x$ et $x \sim x$ au voisinage de a=0 , par contre $x^2 \not\sim 0$.

Définition 11. (Négligeable)

On dit que $\,f\,$ est négligeable devant $g\,$ au voisinage de $a\,$, on note ${m f}={m o}({m g})$, si :

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Exemples importants. Au voisinage de a=0 , nous avons: $e^x-1=o~(x+1)$, $\ln x=o~\left(\frac{1}{x}\right)$

Au voisinage de $a = +\infty$, nous avons: $x = o(e^x)$, $\ln x = o(x)$

Exercice: Démontrer le cas général pour $\alpha, \beta, \gamma \in \mathbb{R}$

- $|\ln x|^{\alpha} = o\left(\frac{1}{x^{\beta}}\right)$, au voisinage de a = 0.
- $(\ln x)^{\alpha} = o(x^{\beta})$, au voisinage de $a = +\infty$
- $x^{\beta} = o(e^{\gamma x})$, au voisinage de $a = +\infty$

Proposition 7. Soient

1) Si
$$f = o(g)$$
 et = $o(h)$, alors: $f = o(h)$.

2) Si
$$f_1 = o(g_1)$$
 et $f_2 = o(g_2)$, alors : $f_1 \times f_2 = o(g_1g_2)$.
3) Si $f_1 = o(g)$ et $f_2 = o(g)$, alors : $f_1 + f_2 = o(g)$.

3) Si
$$f_1 = o(g)$$
 et $f_2 = o(g)$, alors: $f_1 + f_2 = o(g)$.

4) Si
$$f = o(g)$$
, alors: $\frac{1}{g} = o(\frac{1}{f})$.

Remarque. La somme et la division des fonctions négligeables n'est pas toujours négligeable.

Par exemple : $x^2 = o(x)$ et $-x^3 = o(-x + x^2)$ au voisinage de a = 0 , par contre $x^2 - x^3 \neq o(x^2)$.

Définition 12. (Dominée – notation de Landou)

• On dit que f est dominée par g au voisinage de a , on note $f = \mathbf{0}(g)$, si :

$$\exists d, K \in \mathbb{R}_+^*$$
: $|x - a| < d \Longrightarrow |f(x)| \le K|g(x)|$.

On dit que f est dominée par g en $+\infty$, si :

$$x > N \Longrightarrow |f(x)| \le C|g(x)|$$

Exemples en informatique.

En analysant un algorithme, on peut trouver que le temps (compté comme le nombre d'étapes) nécessaire afin de résoudre un problème de taille n est donné par

$$T(n) = 4 n^2 - 2 n + 2.$$

En ignorant les constantes (ce qui est fondé car elles dépendent du matériel particulier sur lequel le programme s'exécute) et les termes qui croissent le plus lentement, nous pourrions dire

«
$$T(n)$$
 croît comme n^2 » ou « $T(n)$ est de l'ordre de n^2 »

et nous écririons: $T(n) = O(n^2)$.

Voici une liste de catégories de fonctions qui sont utilisées dans les analyses d'algorithmes. Ils sont classées par ordre de croissance de la plus lente à la plus rapide.

notation	complexite
0(1)	constante
$O(\log n)$	logarithmique
$O((\log n)^c)$	poly logarithmique
O(n)	linéaire
$O(n \log n)$	«quasi-linéaire »
$O(n^2)$	quadratique
$O(n^c)$	polynomiale
$O(c^n)$	exponentielle
O(n!)	factorielle

Définition 13. Soient un intervalle I de \mathbb{R} , un point $a \in I$ et une fonction $f: I \to \mathbb{R}$.

• On dit que f est **continue** en a si :

$$\lim_{x \to a} f(x) = f(a)$$

Autrement dit:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

- On dit que f est continue sur I si f est continue en tout point de I.
- On note par $\mathcal{C}(I,\mathbb{R})$ l'ensemble des fonctions définies et continues sur I dans \mathbb{R} .

Exemple. La fonction f définie sur \mathbb{R} par

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

est continue au point a=0. En effet, on a : $|f(x)-f(a)|=\left|x\sin\left(\frac{1}{x}\right)\right|\leq |x|$.

Donc il suffit de choisir $\delta = \varepsilon$.

Remarques.

- 1) On peut remplacer la limite dans la définition par la suivante : $\lim_{h\to 0} f(a+h) = f(a)$
- 2) La somme, le produit et le quotient de fonctions continues est une fonction continue.
- 3) Une fonction qui n'est pas continue est dite « discontinue ».

Exemple.

- Les fonctions usuelles sont continues sur le domaine de définition : x^n , $\ln x$, e^x , $\cos x$, $\sin x$, $\tan x$
- La fonction partie entière E(x) n'est pas continue aux points entiers $a \in \mathbb{Z}$. Elle est continue en tout point $a \in \mathbb{R} \setminus \mathbb{Z}$.

Proposition 8. Si f est continue en $a \in I$ et si $f(a) \neq 0$, alors : $\exists \delta > 0, \forall x \in]a - \delta, a + \delta[t, q, f(x) \neq 0]$

Proposition 9. Soient deux intervalles I,J de $\mathbb R$, un point $a\in I$ et deux fonctions $f\colon I\to J$, $g\colon J\to \mathbb R$. Si f est continue en a et g est continue en (a), alors $g\circ f$ est continue en a.

Définition 14. Soient un intervalle I de \mathbb{R} , un point $a \in I$ et une fonction $f: I \to \mathbb{R}$.

• On dit que f est **continue à droite** en a si : $\lim_{\substack{x \to a \\ x \to a}} f(x) = f(a)$

Autrement dit : $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : 0 < x - a < \delta \implies |f(x) - f(a)| < \varepsilon$

• On dit que f est **continue à gauche** en a si : $\lim_{\substack{x \to a}} f(x) = f(a)$

Autrement dit : $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : \delta < x - a < 0 \implies |f(x) - f(a)| < \varepsilon$

Proposition 10. f est continue en $a \in I \iff f$ continue à droite et à gauche en a.

Exemple. La fonction f définie sur \mathbb{R} par

$$f(x) = \begin{cases} x - 1 & , & x \ge 0 \\ x + 1 & , & x < 0 \end{cases}$$

est continue à droite en a=0, mais n'est pas continue à gauche donc elle n'est pas continue en « 0 ».

En effet, on a:

$$\lim_{\substack{x \to 0}} f(x) = -1 = f(0) \qquad , \qquad \lim_{\substack{x \to 0}} f(x) = 1 \neq f(0)$$

 $\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = -1 = f(0) \qquad , \qquad \lim_{\substack{x \to 0 \\ x \to 0}} f(x) = 1 \neq f(0)$ Exemple. La fonction partie entière E(x) est pas continue à droite en tous points entiers $a \in \mathbb{Z}$, mais elle n'est pas continue à gauche en ces points.

Définition 15. Soient I de \mathbb{R} , $a \in I$ et $f: I \setminus \{a\} \to \mathbb{R}$. Si f admet une limite finie ℓ en a, on appel **prolongement par continuité** de f en a la fonction \tilde{f} définie par :

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si} \quad x \neq a \\ \ell & \text{si} \quad x = a \end{cases}$$

Dans ce cas, la fonction \tilde{f} est continue en .

Exemple. Pour $f(x) = x \sin\left(\frac{1}{x}\right)$ qui est définie sur \mathbb{R}^* , on a $\lim_{x \to 0} f(x) = 1$.

Donc f est prolongeable par continuité en « 0 », et son prolongement est donnée par :

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

La fonction \tilde{f} est continue en a=0 car $\lim_{x\to 0} \tilde{f}(x) = \tilde{f}(0)$.

Proposition 11. Soient $f: I \to \mathbb{R}$ une fonction et $a \in I$. Alors f est continue en a ssi pour toute suite $(x_n)_{n\in\mathbb{N}}$ converge vers , on a $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(a) . i.e.

$$\lim_{x \to a} f(x) = f(a) \iff \forall (x_n)_{n \in \mathbb{N}} \subset D \text{ tel que } \lim_{n \to +\infty} x_n = a \text{ on a } \lim_{n \to +\infty} f(x_n) = f(a)$$

Remarque. Pour montrer qu'une fonction n'est pas continue en $\,$, il suffit de trouver une suite $(x_n)_{n\in\mathbb{N}}$ qui converge vers a mais $\lim_{n \to +\infty} f(x_n) \neq f(a)$.

Exemple. Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$$

La fonction f n'est pas continue en a=0. En effet, on a pour la suite de terme général $x_n=\frac{2}{(2n+1)\pi}$ qui tends vers 0:

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin\left((2n+1)\frac{\pi}{2}\right) = 1 \neq 0 = f(0)$$

Théorèmes des valeurs intermédiaires (TVI) :

Théorème 4. Soit f une fonction définie et continue sur un intervalle [a,b]. Alors : Pour tout y compris entre f(a) et f(b), il existe $c \in [a,b]$ tel que f(c) = y.

Corollaire 1. Si f est une fonction continue et strictement monotone sur [a, b], alors pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une solution unique dans [a, b].

Corollaire 2. Si f est continue sur [a, b] et f(a). f(b) < 0, alors il existe $c \in [a, b]$ tel que f(c) = 0. Si de plus f est strictement monotone sur [a, b] le nombre c est unique.

Corollaire 3. Si f est une fonction continue sur un intervalle I, alors f(I) est un intervalle.

Théorème 5. Si f est une fonction continue sur un intervalle [a, b] alors f([a, b]) = [m, M], tels que $m = \min f$, $M = \max f$.

Exemple. La fonction $f(x) = x^3 - 2x + 2$ est définie et continue sur \mathbb{R} , donc sur l'intervalle [-2,1]. D'autre part, on a : f(-2). f(1) = -2 < 0. Alors l'équation f(x) = 0 admet au moins une solution sur [-2,1]. Pour calculer une valeur approchée de cette solution on applique la méthode de dichotomie, on trouve que c = -1.76929.

Corollaire 4. Si f est une fonction continue sur un intervalle I = [a, b] on a :

- Si f est croissante, alors ([a, b]) = [f(a), f(b)].
- Si f est décroissante, alors ([a, b]) = [f(b), f(a)].

Approximation des fonctions continues.

Le théorème de Stone-Weierstrass permet d'approcher uniformément sur un segment les fonctions continues par des fonctions plus simples (polynômes, fonctions en escalier, fonctions affines par morceaux).

Théorème 7. (Stone-Weierstrass)

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et soit $\varepsilon>0$. Alors il existe un polynôme P tel que :

$$\forall x \in [a, b]: |f(x) - P(x)| \le \varepsilon$$

Autrement dit, toute fonction continue est limite uniforme de polynômes.

Théorème 8. Soient $f: [a, b] \to \mathbb{R}$ une fonction continue et $\varepsilon > 0$. Alors il existe une fonction en escalier $h: [a, b] \to \mathbb{R}$ tel que : $\forall x \in [a, b]: |f(x) - h(x)| \le \varepsilon$

Théorème 9. Soient $f: [a, b] \to \mathbb{R}$ une fonction continue et $\varepsilon > 0$. Alors il existe une fonction affine $g: [a, b] \to \mathbb{R}$ tel que : $\forall x \in [a, b]: |f(x) - g(x)| \le \varepsilon$

Théorème des fonctions réciproques :

Théorème 6. Soit f une fonction définie sur un intervalle I. Si f est **continue** et **strictement monotone** sur I, alors :

1) La fonction f est bijective de I dans l'intervalle = f(I). Donc elle admet une fonction réciproque définie $\sup = f(I)$.

2) La fonction réciproque f^{-1} est continue et strictement monotone sur J et elle a le même sens de monotonie que f .

Remarque. Dans la pratique, si f n'est pas monotone sur I on découpe l'intervalle I en sous-intervalles sur lesquels la fonction f est strictement monotone.

Exemple. la restriction sur \mathbb{R}^+ de la fonction $x \to x^n$ est continue et strictement croissante sur \mathbb{R}^+ , l'image de zéro est zéro et la limite en $+\infty$ est $+\infty$.

Donc la fonction réciproque est définie de $\mathbb{R}^+ \to \mathbb{R}^+$ par : $y \to \sqrt[n]{y}$

$$\begin{cases} y \in \mathbb{R}^+ \\ x = \sqrt[n]{y} \end{cases} \Leftrightarrow \begin{cases} x \in \mathbb{R}^+ \\ y = x^n \end{cases}$$

Exemple. La fonction $f \to x^2 + 3$ est une bijection de $]-\infty,0]$ sur $[3,+\infty[$ et possède une application réciproque que l'on cherche à déterminer en résolvant, pour y dans $[3,+\infty[$, l'équation $x^2+3=y$, ou encore $x^2=y-3$. Puisque $y\geq 3$, cette équation possède deux solutions dont une seule appartenant à l'intervalle $]-\infty,0]$ c'est $x=-\sqrt{y-3}$. Donc la réciproque de f est f^{-1} définie par $f^{-1}(y)=-\sqrt{y-3}$.

Tableau des fonctions réciproques usuelles.

Fonction $f(x)$	Départ et arrivée	Fonction réciproque	Départ et arrivée	Notes
$f(x) = x^n$	$[0,+\infty[\to [0,+\infty[$	$f^{-1}(x) = \sqrt[n]{x}$	$[0, +\infty[\to [0, +\infty[$	$n \in \mathbb{N}^*$
$f(x) = e^x$	$\mathbb{R} \to [0, +\infty[$	$f^{-1}(x) = \ln x$	$]0, +\infty[\rightarrow \mathbb{R}$	
$f(x)=a^x$	$\mathbb{R} \to [0, +\infty[$	$f^{-1}(x) = \log x$	$]0, +\infty[\rightarrow \mathbb{R}$	$a \in \mathbb{R}^+$
$f(x) = x^{\alpha}$	$]0,+\infty[\rightarrow]0, +\infty[$	$f^{-1}(x) = x^{\frac{1}{\alpha}}$	$]0, +\infty[\rightarrow]0, +\infty[$	$a \in \mathbb{R}^*$
$f(x) = \sin x$	$\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right] \to [-1, 1]$	$f^{-1}(x) = \arcsin(x)$	$[-1, 1] \rightarrow \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$	
$f(x) = \cos x$	$[0,\pi] \to [-1, 1]$	$f^{-1}(x) = \arccos(x)$	$[-1, 1] \rightarrow [0, \pi]$	
$f(x) = \tan x$	$\left[-\frac{\pi}{2}, + \frac{\pi}{2}\right] \to \mathbb{R}$	$f^{-1}(x) = \operatorname{arct} g(x)$	$\mathbb{R} \to \left[-\frac{\pi}{2}, +\frac{\pi}{2} \right]$	