Meta-analyses in R

Cathalijn H.C. Leenaars, Ph.D.

Note

This presentation has been adapted for online posting. Example plots no longer correspond to the code on the slide before.

CC-BY 4.0

Systematic reviews

Why do Systematic Reviews (SRs) and Meta-Analyses (MAs)?

How to do an SR?

Meta-analyses

Meta-analyses in R

- Relatively simple
- Several packages: meta, metafor, rmeta, metagear, mvmeta, netmeta
- This presentation: meta, metafor and netmeta
 - Simple MA
 - Forest plot
 - Meta-regression
 - Weighted bubble plot
 - Network meta-analysis
- Not in this presentation: Importing your data

Before you start

- Load the relevant packages
- Get your data into R
- Check if the import went well

```
(str, summary, dim, names)
```

Visualise the data to check if the structure is OK

```
1 # Load relevant packages
2 library(readxl)
3 library(meta)
4 library(metafor)
5 library(netmeta)
6
```

Simple MA function in R: metacont

- For continuous outcome data
- Comparing 2 conditions
- Fixed/ random effects
- Inverse variance weighting; SD

 $e \rightarrow experimental; c \rightarrow control$

Running a meta-analysis; example output

```
> metaSWS <- metacont(n_sws, SWS, SWS_SD,n_wake, W, W_SD,
                     studlab = STUDY_ID, data=NAMDMA,
                     comb.fixed = FALSE, comb.random = TRUE,
                     hakn=TRUE, sm="SMD")
> metasws
                                   95%-CI %W(random)
                     SMD
                 -0.6502 [-1.9427; 0.6423]
Orosco_95
                                                   8.1
Shouse 00
                 -0.8912 [-2.1036; 0.3211]
                                                   8.6
Shouse_00
                 -1.6756 [-3.0719: -0.2794]
                                                  7.5
Shouse_01
                 -1.6010 [-2.7708; -0.4311]
                                                   8.8
Shouse_01
                 -2.4503 [-3.8347; -1.0659]
                                                  7.6
Shouse 01
                 -1.3045 [-2.4141; -0.1948]
                                                  9.2
Shouse 01
                 -2.3671 [-3.7282: -1.0059]
                                                  7.7
Park_02
                 -4.6418 [-7.5342; -1.7494]
                                                  2.9
Lena_05
                 -0.9325 [-2.1523; 0.2872]
                                                  8.5
                 -0.8889 [-2.1009; 0.3230]
Lena_05
                                                   8.6
Shouse 00
                 -3.3766 [-5.0428; -1.7104]
                                                  6.2
Shouse_00
                 -2.1948 [-3.5092; -0.8804]
                                                   8.0
DeSaintHilaire_00 0.2129 [-1.0325; 1.4583]
                                                   8.4
Number of studies combined: k = 13
                                        95%-CI
                                                  t p-value
                        SMD
Random effects model -1.5404 [-2.1902; -0.8906] -5.17 0.0002
Quantifying heterogeneity:
tau^2 = 0.5214; H = 1.46 [1.07; 2.00]; I^2 = 53.3\% [12.3%; 75.1%]
Test of heterogeneity:
    Q d.f. p-value
25.68 12 0.0119
Details on meta-analytical method:
```

Creating a forest plot

Example Forest Plot

Study	TE	seTE	Mean Difference	MD	95%-CI	Weight
Blanco-Centurion_2006	44.07	17.5141		44.07	[9.74; 78.39]	12.4%
McKenna_2007B	45.00	7.0000	+	45.00	[31.28; 58.72]	17.4%
Porkka-Heiskanen_2000B	52.21	13.9000		52.21	[24.97; 79.45]	14.2%
Murillo-Rodriguez_2008	71.43	11.4286	-	71.43	[49.03; 93.83]	15.5%
McKenna_2007C	72.00	18.0000	-	72.00	[36.72; 107.28]	12.2%
Vazquez-DeRose_2014	86.52	15.7300		86.52	[55.69; 117.35]	13.3%
McKenna_2007D	115.00	31.0000	-	115.00	[54.24; 175.76]	7.2%
Basheer_1999	127.27	70.2479	 •	127.27	[-10.41; 264.96]	2.0%
Wigren_2007	185.00	40.0000	-	185.00	[106.60; 263.40]	5.1%
Kalinchuk_2011A	315.00	115.0000	•	315.00	[89.60; 540.40]	0.8%
Random effects model Heterogeneity: $I^2 = 69\%$, $\tau^2 =$	586.1468	3, <i>p</i> < 0.01	÷	74.72	[54.09; 95.34]	100.0%
		•	-400 -200 0 200 400			

General MA function in R: metagen

- Fixed/ random effects
- based on estimates (TE = Treatment Estimate)
 - MD/ SMD/ NMD → also for cross-over trials
 - Log hazard ratios
 - Risk difference
 - •
- Inverse variance weighting; SE

Meta-Regression

General MA function in R: rma

- Fixed/ random effects
- With or without moderators → meta-regression
- Inverse variance/ manual weighting

```
#meta-regression with rma function
mr_name <- rma(yi, sei, weights, mods,
knha=TRUE, data)</pre>
```

Creating the corresponding bubble plot

Example bubble plot

DOI: 10.1111/jnc.14552

CC-BY 4.0

Network Meta-analysis

Network meta-analysis

- Pairwise meta-analysis;
 compares pairs of treatments within a number of treatments for the same condition
- Transform your data (if needed)
- Fixed/ random effects

38

- based on estimates (TE = Treatment Estimate)
- Inverse variance weighting; SE

Resources

- Package documentation
- General R resources

• Meta-Analysis with R book (Use R!) – Schwarzer et al.