Măsurători cu osciloscopul în timp real III

1. Măsurători pentru diferența de fază, frecvența în modul dual și filtre

Osciloscoapele pot măsura diferența de fază dintre două semnale de intrare cu amplitudini diferite ($U_1 \neq U_2$) dar cu frecvență identică ($f_1 = f_2$) folosind modul DUAL sau modul X-Y.

1.1. Modul de operare Yt

Folosind montajul din Figura 3, se obțin semnalele afișate în Figura 1, care trebuie aduse la:

- amplitudine identică
- referință comună (baza)

 τ (distanța dintre semnale) și T (perioada) sunt expimate în cm. Baza de timp nu trebuie calibrată!

Diferența de fază este:

$$\varphi = \frac{\tau}{T} \cdot 360^{\circ}$$

1.2. Modul de operare XY

Baza de timp este dezactivată atunci cînd alegem modul XY! Imaginea obținută reprezintă dependența X-Y (Figura 2). Diferența de fază este:

$$\varphi = \arcsin\left(\frac{a}{b}\right)$$

Fig. 1. Measurement of phase difference (Yt mode)

Fig. 2. Măsurarea diferenței de fază (în modul XY): (a) 0°, (b) 45°, (c) 90° (d) 135° ...

Fig. 3. Configurarea măsurătorilor cu circuitul de schimbare a fazei P.S.C. (phase shift circuit), care este un divizor de tensiune CR, vezi Fig. 3. dreapta. Sursa (SOURCE) din Fig. 3. stânga este un generator de undă sinusoidală.

1.3. Măsurarea frecvenței prin comparație (Figurile Lissajous)

Această metodă prevede compararea frecvenței necunoscute, f_x cu o frecvență etalon cunoscută, f_e.

Fig. 4. stânga: Generați două semnale cu aceeași amplitudine și frecvență (f1 = f2), sau un multiplu de aceeași frecvență (f1 = n x f2) de la două surse diferite! și utilizați modul XY (DUAL). Fig.4. dreapta: Se obțin așa numitele figuri Lissajous.

În exemplul din Fig.4. dreapta, se poate calcula numărul maxim de intersecții: cu dreapta verticală, n_V = 4, şi cu dreaptă orizontală n_H = 2. Astfel, raportul dintre cele două frecvențe este:

$$\frac{f_{x}}{f_{e}} = \frac{n_{v}}{n_{H}}$$
de unde rezultă că:
$$f_{x} = f_{e} \cdot \frac{n_{v}}{n_{H}} = 2 \cdot f_{e}$$

1.4. Filtrarea semnalelor

Folosind un rezistor și un condensator puteți construi filtre trece-jos [INTEGRATOR] și trece-sus [DERIVATOR]. Care este **frecvența de tăiere** (f_c) în cele două cazuri? Care sunt valorile pentru **R** și **C**?

2. Modularea semnalelor

Modularea în amplitudine (AM)

Semnalele sinusoidale modulate în amplitudine pot fi studiate pe osciloscop în modul dual sau XY:

Modulația în amplitudine însemnă semnalul de intrare (modulating signal) este combinat cu purtătoarea (carrier signal) astfel încât să varieze amplitudinea semnalului de intrare. Pentru a afla în ce măsură este modulat semnalul, se determină modularea, m(%):

 $m = \frac{A - B}{A + B} \cdot 100(\%)$

B poate avea și valori negative, un caz în care avem supramodulație (m > 100%). Folosiți următorul montaj pentru a obține imaginea de mai sus.

3. Desfășurarea lucrării de laborator

Pentru punctele 1.1 și 1.4 faceți tabele individuale cu 5, și respectiv 7 valori diferite de frecvență (20 Hz – 50 kHz) și respectiv diferență de fază. Calculați eroarea de măsurare! Pentru punctul 1.4 calculați frecvența de tăiere și valorile rezistenței R și capacității C care conduc la obținerea valorii acesteia!

La punctul 2, generați 3 – 5 valori diferite pentru modulare.

Amplitudine (V)	Frecvență (Hz)	φ (τ/T · 360)	φ (arcsin(a/b))	ϵ_{ϕ}

Amplitudine semnal (V)	Frecvență (Hz)	Frecvența de tăiere (Hz)

А	В	m