```
1/9/1 DIALOG(R) File 351: DERWENT WPI
(c) 2000 DERWENT INFO LTD. All rts. reserv.
```

011684738

WPI Acc No: 98-101648/199810 Related WPI Acc No: 98-101647 XRAM Acc No: C98-033629

Production of microcellular polyurethane elastomers with good static and dynamic mechanical properties - by using 3,3'-dimethoxy-4,4'-diisocyanato-diphenyl rather than the more expensive 1,5-NDI

Patent Assignee: BASF AG (BADI)

Inventor: BOLLMANN H; GENZ M; KRAUS R; MERGER R; POHL S; THARIGEN R;

VOELKEL R; THAERIGEN R

Number of Countries: 050 Number of Patents: 005

Patent Family:

Patent No Kind Date Applicat No Kind Date Main IPC Week DE 19628146 A1 19980115 DE 1028146 A 19960712 C08G-018/77 199810 B WO 9802477 A1 19980122 WO 97EP3395 A 19970630 C08G-018/81 199810 AU 9734389 A 19980209 AU 9734389 A 19970630 C08G-018/81 199823 ZA 9706164 A 19990331 ZA 976164 A 19970711 C08G-000/00 199918 EP 910597 A1 19990428 EP 97930439 A 19970630 C08G-018/81 199921 WO 97EP3395 A 19970630

Priority Applications (No Type Date): DE 1028146 A 19960712; DE 1028145 A 19960712

Patent Details:

Patent Kind Lan Pg Filing Notes Application Patent

DE 19628146 A1 11

WO 9802477 A1 G 32

Designated States (National): AL AU BA BG BR CA CN CZ EE GE HU IL JP KR LT LV MX NO NZ PL RO SG SI SK TR UA US UZ VN YU Designated States (Regional): AT BE CH DE DK EA ES FI FR GB GR IE IT LU

MC NL PT SE AU 9734389 A Based on WO 9802477

ZA 9706164 A 28

EP 910597 A1 G Based on WO 9802477

Designated States (Regional): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

Abstract (Basic): DE 19628146 A

Production of microcellular polyurethane elastomers is claimed by reacting (A) high mol. polyhydroxy compounds and optionally (B) low. mol. chain extenders and/or crosslinkers with (C) 3,3'-dimethoxy-4,4'-diisocyanato-diphenyl in presence or absence of (D) catalysts, foaming agents etc..

Preferably the polyhydroxy component (A) is of functionality 2-3 and mol. wt. 500-6,000 and is especially a difunctional polyester polyol, OH-containing polycarbonate or polyoxybutylene glycol of mol. wt. 800-3,500 while the chain extender is an alkane diol, dialkylene glycol or polyoxyalkylene glycol of mol. wt. up to 800 and the crosslinker is also of mol. wt. up to 800 and is a tri-or tetra-hydric alcohol or polyoxyalkylene polyol of functionality 3-4. Preparation of the elastomer is by: (1) first preparing a prepolymer of NCO content 2-20 wt.% by reacting (C) with (A) and optionally (B) and then reacting this prepolymer with water and optionally also (B); or (2) first reacting (C) with part of (A) and optionally also (B) and then reacting the prepolymer obtained with a mixture of water, the remainder of (A) and optionally also (B).

ADVANTAGE - Polyisocyanate components which are less expensive than 1,5-NDI can be used to prepare microcellular polyurethane elastomers of at least equivalent mechanical properties to the 1,5-NDI-based polymers. Further, the elastomers obtained have better compression set properties than those based on 4,4/-MDI. The reaction mixture is easy to handle and process.

Dwg.0/0

Title Terms: PRODUCE; MICROCELLULAR; POLYURETHANE; ELASTOMER; STATIC; DYNAMIC; MECHANICAL; PROPERTIES; DI; METHOXY; DI; ISO; CYANATO; DI; PHENYL; MORE; EXPENSE

(9) BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenl gungsschrift _® DE 196 28 146 A 1

PATENTAMT

- Akt nzeichen: 196 28 146.6 (2) Anmeldetag: 12. 7.96
- (43) Offenlegungstag: 15. 1.98

(5) Int. Cl.6:

C08 G 18/77 C 08 G 18/42 C 08 G 18/44 C 08 G 18/48

C 08 G 18/66 C 08 G 18/32 C 08 G 18/10 C 08 J 9/06 // (C08G 18/77, 101:00)C08G 18/38, 18/16

① Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Genz, Manfred, Dr., 49401 Damme, DE; Merger, Roland, Dr., 76669 Bad Schönborn, DE; Bollmann, Heinz, 49594 Alfhausen, DE; Thärigen, Raina, 49088 Osnabrück, DE

- (3) Verfahren zur Herstellung von zelligen Polyurethan-Elastomeren auf Basis von 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl
- Gegenstand der Erfindung ist ein Verfahren zur Herstellung von mikrozellularen Polyurethanelastomeren durch Umsetzung von
 - a) höhermolekularen Polyhydroxylverbindungen und gegebenenfalls
 - b) niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmitteln mit
 - c) 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl in Gegenwart oder Abwesenheit von
 - d) Katalysatoren
 - e) Treibmitteln und
 - f) Zusatzstoffen

und hierfür geeignete Isocyanatprepolymere.

Beschreibung

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von mikrozellularen P lyurethan-Elastomeren, im folgenden auch abgekürzt PU-Elastomeren genannt.

Die Herstellung von kompakten oder zelligen, z. B. mikrozellularen PU-Elastomeren ist seit langem aus zahlreichen Patent- und Literaturveröffentlichungen bekannt.

Ihre technische Bedeutung beruht auf der Kombination h chwertiger mechanischer Eigenschaften mit den Vorteilen der kostengünstigen Verarbeitungsmethoden. Durch die Verw ndung verschiedenartiger chemischer Aufbaukomponent n in unterschiedlichen Mengenverhältnissen können thermoplastisch verarbeitbare oder vernetzte, kompakte oder zellige PU-Elastomer hergestellt werden, die sich hinsichtlich ihrer Verarbeitbarkeit und ihren mechanischen Eigenschaften vielfältig unterscheiden. Eine Übersicht über PU-Elastomere, ihre Eigenschaften und Anwendungen wird z. B. im Kunststoffhandbuch, Band 7, Polyurethane, 1. Auflage 1966, herausgegeben von Dr. R. Vieweg und Dr. A. Höchstler, 2. Auflage, herausgegeben von Prof. Dr. G.W. Becker und Prof. Dr. D. Braun (Carl-Hanser-Verlag, München, Wien) gegeben.

Mikrozellulare PU-Elastomere zeichnen sich in Bezug auf die in analoger Weise verwendbaren Gummitypen durch ihre deutlich besseren Dämpfungseigenschaften bei einer ausgezeichneten Volumenkompressibilität aus, so daß sie als Bestandteile von schwingungs- und stoßdämpfenden Systemen, insbesondere in der Automobilindustrie, Verwendung finden. Zur Herstellung von mikrozellularen PU-Elastomeren haben sich Umsetzungsprodukte aus 1,5-NDI und Poly(ethylenglykoladipat) mit einem Molekulargewicht von 2000, die in Form eines Isocyanatprepolymeren mit einer aktivatorhaltigen, wäßrigen Lösung eines Fettsäuresulfonats zur Reaktion gebracht werden, bewährt. (Kunststoff-Handbuch, Band 7, Polyurethane, 1. Auflage, Seiten 270 ff und E.C. Prolingheuer, J.J. Lindzey, H. Kleimann, Journal of Elastomers und Plastics, Vol. 21, 1981, Seiten 100—121).

Da solche Basisformulierungen mikrozellulare PU-Elastomere mit sehr guten dämpfungscharakteristischen und statischen und dynamischen Leistungsparametern ergeben, sind aus dem Stand der Technik nur vereinzelte Bemühungen bekannt, das für die guten Elastomereigenschaften verantwortliche 1,5-NDI, trotz dessen schwieriger Handhabung wegen seines hohen Schmelzpunktes, durch leichter handhabbare und preisgünstigere Diisocyanate zu substituieren, da hierbei deutliche mechanische Eigenschaftsverluste resultieren.

JP-51,204,608 beschreibt ein Verfahren zur Herstellung von zelligen PU-Elastomeren unter Verwendung von Polyesterpolyolen und organischen Diisocyanaten, z. B. 3,3'-Dimethyl-4,4'-diisocyanatodiphenyl oder 4,4'-Diphenylmethandiisocyanat. Verbessert werden die Beständigkeit und es wird die Temperaturbeständigkeit erhöht.

US 53 43 639 beschreibt die Herstellung mikrozellularer PU-Elastomere aus Polyesterpolyolen und organischen Diisocyanaten, z. B. 3,3'-Dimethyl-4,4'-diisocyanato-diphenyl, 1,5-NDI oder 4,4'-Diphenylmethandiisocyanat. Vorteile dieser in Sportschuhen eingesetzten Materialien sind eine verbesserte Dämpfung und Stabilität.

Die Aufgabe der vorliegenden Erfindung bestand darin, ein Verfahren zur Herstellung mikrozellularer PU-Elastomere bereitzustellen, bei dem das teure 1,5-NDI durch leichter handhabbare und kostengünstigere organische Diisocyanate ersetzt werden kann. Dabei sollten die mechanischen Eigenschaften der so hergestellten PU-Elastomere verbessert werden oder zumindest solchen auf 1,5-NDI-Basis im wesentlichen entsprechen. Unabhängig von der Art der verwendeten höhermolekularen Polyhydroxylverbindung sollten die mikrozellularen PU-Elastomeren im Vergleich zu PU-Elastomeren auf 4,4'-MDI-Basis eindeutig verbesserte statische und mechanische Kennwerte, insbesondere Druckverformungsreste besitzen, so daß sie zur Herstellung von Schwingungs- und Stoßdämpfer-Systemen verwendet werden können.

Überraschenderweise wurde gefunden, daß unter Verwendung von 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl mikrozellulare Polyurethan-Elastomere mit außerordentlich guten mechanischen Eigenschaften erhalten werden.

- Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von mikrozellularen PU-Elastomeren durch Umsetzung von
 - a) höhermolekularen Polyhydroxylverbindungen und gegebenenfalls
 - b) niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmitteln mit
 - c) 3,3'-Dimethoxy-4,4'diisocyanato-diphenyl in Abwesenheit oder vorzugsweise in Gegenwart von
 - d) Katalysatoren
 - e) Treibmitteln und
 - f) Zusatzstoffen.
- 55 dadurch gekennzeichnet, daß als organisches Diisocyanat 3,3'-Dimethoxy-4,4'diisocyanato-diphenyl verwendet wird.

Nach der bevorzugt angewandten Herstellungsweise werden die PU-Elastomere nach dem Prepolymerverfahren hergestellt, wobei zweckmäßigerweise aus der höhermolekularen Polyhydroxylverbindung (a) und 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl (c) und gegebenenfalls einem niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmittel (b) ein Urethan- und Isocyanatgruppen aufweisendes Polyadditionsprodukt hergestellt wird. Mikrozellulare PU-Elastomere können aus derartigen Isocyanatgruppen aufweisenden Prepolymeren durch Umsetzung mit Wasser oder Mischungen aus Wasser und gegebenenfalls niedermolekularen Kettenverlängerungsund/oder Vernetzungsmitteln (b) und/oder höhermolekularen Polyhydroxylverbindungen (a) hergestellt werden.

G genstand der Erfindung sind ferner Isocyanatgruppen aufweisende Prepolymere mit inem NCO-Gehalt von 2 bis 20 Gew. -%, vorzugsweise 3,5 bis 10 Gew. -%, die hergestellt w rden durch Umsetzung mindestens einer h"hermolekularen P lyhydroxylv rbindung (a) oder einer Mischung aus (a) und einem niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmittel (b) mit 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl (c) zu ei-

nem Urethan- und Is cyanatgruppen aufweisenden Polyadditi nsprodukt.

Zu den Ausgangsstoffen (a) bis (f) zur Herstellung der kompakten oder vorzugsweis zelligen, z. B. mikrozellularen PU-Elastomeren und dem erfindungsgemäßen Verfahren ist folgendes auszuführen:

a) Geeignete höhermolekulare Polyhydroxylverbindungen besitzen vorteilhafterweise ine Funktionalität von 3 oder vorzugsweise 2 und ein Molekulargewicht von 500 bis 6000, vorzugsweise von 800 bis 3500 und insbesondere von 1000 bis 3300 und bestehen zweckmäßigerweise aus hydroxylgruppenhaltigen Polymeren, z. B. Polyacetalen, wie Polyoxymethylenen und vor allem wasserunlöslichen Formalen, z. B. Polybutandiolformal und Polyhexandiolformal, Polyoxyalkylenpolyolen, wie z. B. Polyoxybutylenglykolen, Polyoxybutylenpolyoxypropylenpolyoxyethylenglykolen, Polyoxybutylenpolyoxypropylenpolyoxyethylenglykolen, Polyoxypropylenpolyoxypropylenpolyoxyethylenglykolen, Polyoxypropylenpolyosyethylenglykolen, und Polyesterpolyolen, z. B. Polyesterpolyolen aus organischen Dicarbonsäuren und/oder Dialkylenglykolen, aus Hydroxycarbonsäuren und Lactonen sowie hydroxylgruppenhaltigen Polycarbonaten.

Als höhermolekularen Polyhydroxylverbindung hervorragend bewährt haben sich und daher vorzugsweise verwendet werden difunktionelle Polyhydroxylverbindungen mit Molekulargewichten von größer 800 bis 3500, vorzugsweise von 1000 bis 3300 ausgewählt aus der Gruppe der Polyesterpolyole, hydroxylgruppenhaltigen Polycarbonate und Polyoxybutylenglykole. Die höhermolekularen Polyhydroxylverbindungen können einzeln oder als Mischungen verwendet werden.

Geeignete Polyoxyalkylenpolyole können hergestellt werden nach bekannten Verfahren, beispielsweise durch anionische Polymerisation mit Alkalihydroxiden, wie z. B. Natrium- oder Kaliumhydroxid, oder Alkalialkoholaten, wie z. B. Natriummethylat, Natrium- oder Kaliumethylat oder Kaliumisopropylat, als Katalysatoren und unter Zusatz mindestens eines Startermoleküls, das 2 oder 3, vorzugsweise 2 reaktive Wasserstoffatome gebunden enthält, oder durch kationische Polymerisation mit Lewis-Säuren, wie z. B. Antimonpentachlorid, Borfluorid-Etherat u. a. oder Bleicherde als Katalysatoren aus einem oder mehreren Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen im Alkylenrest.

Geeignete Alkylenoxide sind beispielsweise 1,3-Propylenoxid, 1,2-bzw. 2,3-Butylenoxid, vorzugsweise Ethylenoxid und 1,2-Propylenoxid und insbesondere Tetrahydrofuran. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischung verwendet werden. Als Startermoleküle kommen beispielsweise in Betracht: Wasser, organische Dicarbonsäuren, wie Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, N-mono- und N,N'-dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie mono- und dialkylsubstituiertes Ethylenamin, 1,3-Propylendiamin, 1,3- bzw. 1,4-Butylendiamin, 1,2-, 1,3-, 1,4-, 1,5-, und 1,6-Hexamethylendiamin, Alkanolamine, wie z. B. Ethanolamin, N-Methyl- und N-Ethyl-diethanolamin und Trialkanolamine, wie z. B. Triethanolamin und Ammoniak. Vorzugsweise verwendet werden zwei- und/oder dreiwertige Alkohole, z. B. Alkandiole mit 2 bis 12 C-Atomen, vorzugsweise 2 bis 4 C-Atomen, wie z. B. Ethandiol, Propandiol-1,2 und -1,3, Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6, Glycerin und Trimethylolpropan und Dialkylenglykole, wie z. B. Diethylenglykole und Dipropylenglykol. Als Polyoxyalkylenpolyole bevorzugt verwendet werden Polyoxybutylenglykole(Polyoxytetramethylenglykole) mit Molekulargewichten von 500 bis 3000, vorzugsweise von 650 bis 2300. Als Polyhydroxylverbindungen (a) bevorzugt verwendet werden können ferner Polyesterpolyole, die bei-

spielsweise aus Alkandicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise Alkandicarbonsäuren 40 mit 4 bis 6 Kohlenstoffatomen und/oder aromatischen Dicarbonsäuren und mehrwertigen Alkoholen, vorzugsweise Alkandiolen mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen und/ oder Dialkylenglykolen hergestellt werden können. Als Alkandicarbonsäuren kommen beispielsweise in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure und Decandicarbonsäure. Geeignete aromatische Dicarbonsäuren sind z. B. Phthalsäure, Isophthalsäure und Terephthalsäure. Die Alkandicarbonsäuren können dabei sowohl einzeln als auch im Gemisch untereinander verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z.B. Dicarbonsäuremono- oder -diester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride eingesetzt werden. Vorzugsweise verwendet werden Dicarbonsäuregemische aus Bernstein-, Glutar- und Adipinsäure in Mengenverhältnissen von beispielsweise 20 bis 35: 35 bis 50: 20 bis 50 32 Gew.-Teilen, und insbesondere Adipinsäure. Beispiele für zwei- und mehrwertige Alkohole, insbesondere Alkandiole oder Dialkylenglykole sind: Ethandiol, Diethylenglykol, 1,2- bzw. 1,3-Propandiol, Dipropylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,10-Decandiol, Glycerin und Trimethylolpropan Vorzugsweise verwendet werden Ethandiol, Diethylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol oder Mischungen aus mindestens zwei der genannten Diole, insbesondere Mischungen aus 1,4-Butandiol, 1,5 55 Pentandiol und 1,6-Hexandiol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z. B. E-Caprolacton oder Hydroxycarbonsäuren, z. B. ω-Hydroxycapronsäure.

Zur Herstellung der Polyesterpolyole können die aromatischen und/oder aliphatischen Dicarbonsäuren und vorzugsweise Alkandicarbonsäuren und/oder -derivaten und mehrwertigen Alkoholen katalysatorfrei oder vorzugsweise in Gegenwart von Veresterungskatalysatoren, zweckmäßigerweise in einer Atmosphäre aus Inertgasen, wie z. B. Stickstoff, Helium, Argon u. a. in der Schmelze bei Temperaturen von 150 bis 250°C vorzugsweise 180 bis 220°C gegebenenfalls unter vermindertem Druck bis zu der gewünschten Säurezahl, die vorteilhafterweise kleiner als 10, vorzugsweise kleiner als 2 ist, polykondensiert werden. Nach einer bevorzugten Ausführungsform wird das Veresterungsgemisch bei den obengenannten Temperaturen bis zu einer Säurezahl von 80 bis 30, vorzugsweise 40 bis 30, unter Normaldruck und anschließend unter einem Druck von kleiner als 500 mbar, vorzugsweise 50 bis 150 mbar, polykond nsiert. Als Veresterungskatalysatoren kommen beispielsweise Eisen-, Cadmium-, Kobalt-, Blei-, Zink-, Antimon-, Magnesium-, Titan- und Zinnkatalysatoren in Form v n Metallen, Metalloxid n oder Metallsalzen in Betracht. Die Polykondensa-

tion kann jedoch auch in flüssiger Phase in Gegenwart von Verdünnungs- und/ der Schleppmitteln, wi z. B. Benzol, Toluol, Xylol oder Chlorb nzol, zur azeotropen Abdestillation des Kondensationswass rs durchgeführt werd n.

Zur Herst Ilung der Polyesterpolyole werden die organischen Polycarbonsäuren und/oder -derivate und mehrwertigen Alkohole vorteilhafterweise im Molverhältnis von 1:1 bis 1,8, vorzugsweise 1:1,05 bis 1,2 polykondensiert.

Als Polyesterpolyole vorzugsweise verwendet werden Poly(alkandioladipate) wie z. B. Poly(ethandioladipate), Poly(1,4-butandioladipate), Poly(1,6-hexandiol-neopentylglykoladipate) und Poly(1,6-hexandiol-1,4-butandioladipate) und Polycaprolactone.

- Als geeignete Polyesterpolyole sind ferner Hydroxylgruppen aufweisende Polycarbonate zu nennen. Derartige hydroxylgruppenhaltige Polycarbonate können beispielsweise hergestellt werden durch Umsetzung der vorgenannten Alkandiole, insbesondere von 1,4-Butandiol und/oder 1,6-Hexandiol, und/oder Dialkylenglykole, wie z. B. Diethylenglykol, Dipropylenglykol und Dibutylenglykol, mit Dialkyl- oder Diarylcarbonaten, z. B. Diphenylcarbonat, oder Phosgen.
- Als Hydroxylgruppen aufweisende Polycarbonate werden bevorzugt Polyetherpolycarbonatdiole verwendet, die hergestellt werden können durch Polykondensation von
 - a1) Polyoxybutylenglykol mit einem Molekulargewicht von 150 bis 500 oder von
 - a2) Mischungen, die bestehen aus

5

10

15

20

25

30

35

40

45

50

55

60

65

- i) mindestens 10 mol-%, vorzugsweise 50 bis 95 mol-% eines Polyoxybutylenglykols mit einem Molekulargewicht von 150 bis 500 (a1) und
- ii) weniger als 90 mol-%, vorzugsweise 5 bis 50 mol-% mindestens eines von (a1) verschiedenen Polyoxyalkylenglykols mit einem Molekulargewicht von 150 bis 2000, mindestens eines Dialkylenglykols, mindestens eines linearen oder verzweigten Alkandiols mit 2 bis 12 Kohlenstoffatomen und mindestens eines cyclischen Alkandiols mit 5 bis 15 Kohlenstoffatomen oder Mischungen davon

mit Phosgen, Diphenylcarbonat oder Dialkylcarbonaten mit C1- bis C4-Alkylgruppen.

b) Zur Herstellung der kompakten oder vorzugsweise zelligen PU-Elastomeren nach dem erfindungsgemäßen Verfahren können zusätzlich zu den höhermolekularen Polyhydroxylverbindungen (a) gegebenenfalls auch niedermolekulare difunktionelle Kettenverlängerungsmittel (b), niedermolekulare, vorzugsweise trioder tetrafunktionelle Vernetzungsmittel (b) oder Mischungen aus Kettenverlängerungs- und Vernetzungsmitteln verwendet werden.

mitteln verwendet werden. Derartige Kettenverlängerungs- und Vernetzungsmittel (b) werden eingesetzt zur Modifizierung der mechanischen Eigenschaften, insbesondere der Härte der PU-Elastomeren. Geeignete Kettenverlängerungsmittel, wie z.B. Alkandiole, Dialkylenglykole und Polyoxyalkylenglykole und Vernetzungsmittel, z.B. 3oder 4-wertige Alkohole und oligomere Polyoxyalkylenpolyole mit einer Funktionalität von 3 bis 4, besitzen üblicherweise Molekulargewichte kleiner als 800, vorzugsweise von 18 bis 400 und insbesondere von 60 bis 300. Als Kettenverlängerungsmittel vorzugsweise verwendet werden Alkandiole mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2,4 oder 6 Kohlenstoffatomen, wie z. B. Ethan-, 1,3-Propan-, 1,5-Pentan-1,6-Hexan-, 1,7-Heptan-, 1,8-Octan-, 1,9,Nonan-, 1,10-Decandiol und insbesondere 1,4-Butandiol und Dialkylenglykole mit 4 bis 8 Kohlenstoffatomen, wie z. B. Diethylenglykol und Dipropylenglykol sowie Polyoxyalkylenglykole. Geeignet sind jedoch auch verzweigtkettige und/oder ungesättigte Alkandiole mit üblicherweise nicht mehr als 12 Kohlenstoffatomen, wie z. B. 1,2-Propandiol, 2-Methyl-, 2,2-Dimethyl-propandiol-1,3, 2-Butyl-2-ethylpropandiol-1,3, Buten-2-diol-1,4 und Butin-2-diol-1,4, Diester der Terephthalsäure mit Glykolen mit 2 bis 4 Kohlenstoffatomen, wie z. B. Terephthalsäure-bisethylenglykol- oder -butandiol-1,4, Hydroxyalkylenether des Hydrochinons oder Resorcins, wie z. B. 1,4-Di-(p-hydroxyethyl)-hydrochinon oder 1,3-Di-(β-hydroxyethyl)-resorcin, Alkanolamine mit 2 bis 12 Kohlenstoffatomen, wie z. B. Ethanolamin, 2-Aminopropanol und 3-Amino-2,2- dimethylpropanol, N-Alkyldialkanolamine, wie z. B. N-Methyl- und N-Ethyl-diethanolamin, (cyclo)aliphatische Diamine mit 2 bis 15 Kohlenstoffatomen, wie z. B. Ethylen-,1,2-, 1,3-Propylen-, 1,4-Butylen- und 1,6-Hexamethylen-diamin, Isophorondiamin, 1,4-Cyclohexylen-diamin und 4,4'-Diaminodicyclohexylmethan, N-Alkyl- und N,N'-Dialkyl-alkylendiamine wie z.B. N-Methylpropylendiamin und N,N'-Dimethyl-ethylen-diamin und aromatische Diamine, wie z. B. Methylenbis-(4-amino-3-benzoesäuremethylester), 1,2-Bis-(2-aminophenyl-thio)-ethan, Trimethylenglykol-di-p-aminobenzoat, 2,4-und 2,6-Toluy-

len-diamin, 3,5-Diethyl-2,4- und -2,6-toluylen-diamin, 4,4,-Diamino-di-phenylmethan, 3,3'-Dichlor-4,4'-diamino-diphenylmethan und primäre orthodi-, -tri- und/oder -tetraalkylsubstituierte 4,4'-Diaminodiphenylmethane, wie z. B. 3,3'-Di- und 3,3', 5,5, Tetraisopropyl-4,4,-diamino-diphenylmethan.

Als mindestens trifunktionelle Vernetzungsmittel, die zweckmäßigerweise zur Herstellung der PU-Gießelastomere mitverwendet werden, seien beispielhaft genannt: tri- und tetrafunktionelle Alkohole, wie z. B. Glycerin, Trimethylolpropan, Pentaerythrit und Trihydroxycyclohexane und Tetrahydroxyalkylendiamine, wie z. B. Tetra-(2-hydroxyethyl)-ethylen-diamin oder Tetra-(2-hydroxypropyl)ethylen-diamin sowie oligo-

mere Polyoxyalkylen-polyole mit einer Funktionalität von 3 bis 4.
Die erfindungsgemäß geeigneten Kettenverlängerungs- und Vernetzungsmittel (b) können einzeln oder in Form von Mischungen verwendet werden. Verwendbar sind auch chemische aus Kettenverlängerungs- und Vernetzungsmitteln.

Zur Einstellung der Härte der PU-Elastomere können die Aufbaukomponenten (a) und (b) in relativ breiten Mengenv rhältnissen variiert werden, wobei die Härte mit zunehm ndem Gehalt an difunktionellen Kettenverlängerungs- und mindestens trifunktionellen Vernetzungsmitteln in PU-Elastomeren ansteigt. In Abhängigkeit von der gewünschten Härte können die erforderlichen Mengen der Aufbaukomponenten (a) und (b) auf einfache Weise experimentell bestimmt werden. Vorteilhaft rweise verwendet werden,

bezogen auf das Gewicht der höhermolekularen Polyhydroxylverbindung (a), 5 bis 50 Gew. -% des Kettenverlängerung- und/oder Vernetzungsmittels (b), wobei zur Herstellung von harten PU-Elastomeren vorzugsweise 30 bis 50 Gew.-% eingesetzt w rden.

c) Zur Herstellung der mikrozellularen Polyethanelastomere findet erfindungsgemäß 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl (c) Verwendung.

Bevorzugt sind Ausführungsf rmen, bei denen das 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl (c) in Form eines Isocyanatgruppen aufweisenden Prepolymers verwendet wird. Dieses kann beispielsweise hergestellt werden durch Umsetzung von 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl mit mindestens einer hochmole-kularen Polyhydroxylverbindung (a) oder einer Mischung aus (a) und mindestens einem niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmittel (b).

Wie bereits ausgeführt wurde, können zur Herstellung der isocyanatgruppenhaltigen Prepolymere Mischungen aus (a) und (b) verwendet werden. Nach einer bevorzugt angewandten Ausführungsform werden die Isocyanatgruppen enthaltenden Prepolymere jedoch hergestellt durch Umsetzung von ausschließlich höhermolekularen Polyhydroxylverbindungen (a) mit 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl (C). Insbesondere geeignet hierfür sind difunktionelle Polyhydroxylverbindungen mit einem Molekulargewicht von 500 bis 6000, vorzugsweise größer als 800 bis 3500 insbesondere von 1000 bis 3300, die ausgewählt werden aus der Gruppe der Polyesterpolyole, der hydroxylgruppenhaltigen Polycarbonate und Polyoxytetramethylenglykole

Die erfindungsgemäß verwendbaren Isocyanatgruppen aufweisenden Prepolymere besitzen vorteilhafterweise Isocyanatgehalte von 2 bis 20 Gew.-% vorzugsweise von 3,5 bis 10 Gew.-%, bezogen auf ihr Gesamtzonzicht

Zur Herstellung der Isocyanatgruppen enthaltenden Prepolymere können die höhermolekularen Polyhydroxylverbindungen (a) oder Mischungen aus (a) und niedermolekularen Kettenverlängerungsund/oder Vernetzungsmitteln (b) mit 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl bei Temperaturen von 80 bis 160°C, vorzugsweise von 110 bis 150°C zur Reaktion gebracht werden.

Nach Erreichen des theoretisch berechneten Isocyanatgehaltes wird die Reaktion beendet. Hierfür sind üblicherweise Reaktionszeiten im Bereich von 15 bis 200 Minuten, vorzugsweise von 40 bis 150 Minuten erforderlich.

Die Isocyanatgruppen aufweisenden Prepolymere können in Gegenwart von Katalysatoren hergestellt werden. Es ist jedoch auch möglich, die Isocyanatgruppen aufweisenden Prepolymere in Abwesenheit von 30 Katalysatoren herzustellen und diese der Reaktionsmischung zur Herstellung der PU-Elastomere einzuverleiben

d) Als Katalysatoren (d) werden zweckmäßigerweise Verbindungen verwendet, die die Reaktion der Hydroxylgruppen enthaltenden Verbindungen der Komponenten (a) und gegebenenfalls (b) mit 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl (c) stark beschleunigen. In Betracht kommen organische Metallverbindungen, vorzugsweise organische Zinnverbindungen, wie Zinn-(II)-salze von organischen Carbonsäuren, z. B. Zinn-(II)-acetat, Zinn-(II)-octoat, Zinn-(II)-ethylhexoat und Zinn-(II)-laurat und die Dialkylzinn-(IV)-salze von organischen Carbonsäuren, z. B. Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinnmaleat und Dioctylzinndiacetat. Die organischen Metallverbindungen werden allein oder vorzugsweise in Kombination mit stark basischen Aminen eingesetzt. Genannt seien beispielsweise Amidine, wie 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidin, tertiäre Amine, wie Triethylamin, Tributylamin, Dimethylbenzylamin, N-Methyl-, N-Ethyl-, N-Cyclohexylmorpholin, N,N,N',N'-Tetraalkylalkylendiamine, wie z. B. N,N,N',N'-Tetramethylendiamin, N,N,N',N'-Tetramethyl-butandiamin oder -hexandiamin, Pentamethyl-diethylentriamin, Tetramethyldiaminoethylether, Bis (dimethylaminopropyl)-harnstoff, 1,4-Dimethylpiperazin, 1,2-Dimethylimidazol, 1-Aza-bicyclo-(3,3,0)-octan und vorzugsweise 1,4-Diaza-bicyclo-(2,2,2)-octan und Alkanolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyldiethanolamin und Dimethylethanolamin. Vorzugsweise verwendet werden 0,001 bis 3 Gew.-%, insbesondere 0,01 bis 1 Gew.-% Katalysator bzw. Katalysatorkombination bezogen auf das Gewicht der Aufbaukomponenten (a), (c) und gegebenen-

e) Nach dem erfindungsgemäßen Verfahren können in Abwesenheit von Feuchtigkeit sowie physikalisch oder chemisch wirkenden Treibmitteln kompakte PU-Elastomere, wie z. B. PU-Gießelastomere hergestellt werden. Vorzugsweise angewandt wird das Verfahren jedoch zur Herstellung von zelligen, vorzugsweise mikrozellularen PU-Elastomeren. Als Treibmittel (e) findet hierfür Wasser Verwendung, das mit den organischen Polyisocyanaten und vorzugsweise Isocyanatgruppen aufweisenden Prepolymeren (a) in situ unter Bildung von Kohlendioxid und Aminogruppen reagiert, die ihrerseits mit den Isocyanatprepolymeren zu Harnstoffgruppen weiter reagieren und hierbei als Kettenverlängerungsmittel wirken.

Da die Aufbaukomponenten (a) und gegebenenfalls (b) aufgrund der Herstellung und/oder chemischen Zusammensetzung Wasser aufweisen können, bedarf es in manchen Fällen keiner separaten Wasserzugabe zu den Aufbaukomponenten (a) und gegebenenfalls (b) oder der Reaktionsmischung. Sofern jedoch der Polyurethan-Formulierung zusätzlich Wasser einverleibt werden muß zur Erzielung des gewünschten 60 Raumgewichts, wird dieses üblicherweise in Mengen von 0,001 bis 3,0 Gew.-%, vorzugsweise von 0,01 bis 2,0 Gew.-% und insbesondere von 0,2 bis 1,2 Gew.-%, bezogen auf das Gewicht der Aufbaukomponente (a) bis (c), verwendet.

Als Treibmittel () können anstelle von Wasser oder vorzugsweise in Kombinati n mit Wasser auch niedrigsiedende Flüssigkeiten, die unter dem Einfluß der exothermen Polyadditionsreaktion verdampf n und vorteilhafterw ise inen Siedepunkt unter Normaldruck im Bereich von -40 bis 120°C, vorzugsweise von 10 bis 90°C besitzen, oder Gase als physikalisch wirkende Treibmittel oder chemisch wirkende Treibmittel eingesetzt werden.

Die als Treibmittel ge igneten Flüssigkeiten der oben genannten Art und Gase können z. B. ausgewählt werden aus der Grupp der Alkane wie z. B. Propan, n- und iso-Butan, n- und iso-Pentan und v rzugsweis der technischen Pentangemische, Cycloalkane und Cycloalkene wie z. B. Cyclobutan, Cycl penten, Cycloh xen und v rzugsweise Cyclopentan und/ der Cycl hexan, Dialkylether, wie z. B. Dimethylether, Methylethylether oder Diethylether, tert. -Butylmethylether, Cycl alkylenether, wie z. B. Furan, Ketone, wie z. B. Aceton, Methylethylketon, Acetale und/ der Ketale, wie z. B. Formaldehyddimethylacetal, 1,3-Dioxolan und Acetondimethylacetal, Carbonsäureester, wie z. B. Ethylacetat, Methylformiat und Ethylen-Acrylsäuretertiärbutylester, tertiäre Alk h le, wie z. B. tertiär Butanol, Fluoralkane, die in der Troposphäre abgebaut werden und deshalb für die Oz nschicht unschädlich sind, wie z. B. Trifluormethan, Difluorethan, Tetrafluorethan und Hexafluorethan, Chloralkane, wie z. B. 2-Chlorpropan, und Gase, wie z. B. Stickstoff, Kohlenmonoxid und Edelgase wie z. B. Helium, Neon und Krypton und analog Wasser chemisch wirkende Treibmittel wie Carbonsäuren, wie z. B. Ameisensäure, Essigsäure und Propionsäure.

5

10

15

20

25

30

35

40

45

60

Von den als Treibmittel (e) geeigneten, bezüglich NCO-Gruppen inerten Flüssigkeiten werden vorzugsweise Alkane mit 4 bis 8 C-Atomen, Cycloalkane mit 4 bis 6 C-Atomen oder Mischungen mit einem Siedepunkt von -40°C bis 50°C unter Atmosphärendruck aus Alkanen und Cycloalkanen verwendet. Insbesondere eingesetzt werden C₅-(Cyclo)alkane wie z. B. n-Pentan, iso-Pentane und Cyclopentan und ihre technischen Mischungen.

Als Treibmittel geeignet sind ferner Salze, die sich thermisch zersetzen, wie z. B. Ammoniumbicarbonat, Ammoniumcarbamat und/oder Ammoniumsalze organischer Carbonsäuren, wie z. B. die Monoammoniumsalze der Malonsäure, Borsäure, Ameisensäure oder Essigsäure.

Die zweckmäßigste Menge an festen Treibmitteln, niedrigsiedenden Flüssigkeiten und Gasen, die jeweils einzeln oder in Form von Mischungen, z. B. als Flüssigkeits- oder Gasmischungen oder als Gas-Flüssigkeitsmischungen eingesetzt werden können, hängt von der Dichte ab, die man erreichen will und der eingesetzten Menge an Wasser. Die erforderlichen Mengen können durch einfache Handversuche leicht ermittelt werden. Zufriedenstellende Ergebnisse liefern üblicherweise Feststoffmengen von 0,5 bis 35 Gew.-Teilen, vorzugsweise von 2 bis 15 Gew.-Teilen, Flüssigkeitsmengen von 1 bis 30 Gew.-Teilen vorzugsweise von 3 bis 18 Gew.-Teilen und/oder Gasmengen von 0,01 bis 80 Gew.-Teilen, vorzugsweise von 10 bis 35 Gew.-Teilen, jeweils bezogen auf das Gewicht der Aufbaukomponenten (a), (c) und gegebenenfalls (b). Die Gasbeladung mit z. B. Luft, Kohlendioxid, Stickstoff und/oder Helium kann sowohl über die höhermolekularen Kettenverlängerungsund/oder Vernetzungsmittel (b) als auch über die Polyisocyanate (c) oder über (a) und (c) und gegebenenfalls (b) erfolgen.

Als Treibmittel keine Anwendung finden, wie bereits ausgeführt wurde, Perfluorchlorkohlenwasserstoffe.
f) Der Reaktionsmischung zur Herstellung der kompakten und vorzugsweise zelligen PU-Elastomeren können gegebenenfalls auch noch Zusatzstoffe (f) einverleibt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, Füllstoffe, Flammschutzmittel, Keimbildungsmittel, Oxidationsverzögerer, Stabilisatoren, Gleit- und Entformungshilfsmittel, Farbstoffe und Pigmente.

Als oberflächenaktive Substanzen kommen z. B. Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur zu regulieren. Genannt seien beispielsweise Emulgatoren, wie z. B. die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren sowie Salze von Fettsäuren mit Aminen, z. B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z. B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure und Ricinolsäure, Schaumstabilisatoren, wie Siloxan-Oxalkylen-Mischpolymerisate und andere Organopolysiloxane, oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Ricinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnußöl und Zellregler, wie Paraffine, Fettalkohole und Dimethylpolysiloxane. Zur Verbesserung der Emulgierwirkung, der Zellstruktur und/oder deren Stabilisierung eigen sich ferner oligonera Polyagendete mit Polyagendete

Zellstruktur und/oder deren Stabilisierung eignen sich ferner oligomere Polyacrylate mit Polyoxyalkylenund Fluoralkanresten als Seitengruppen. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile der höhermolekularen Polyhydroxylverbindungen (a) angewandt.

Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, üblichen organischen und anorganischen Füllstoffe, Verstärkungsmittel und Beschwerungsmittel zu verstehen. Im einzelnen seien beispielhaft genannt: anorganische Füllstoffe wie silikatische Mineralien, beispielsweise Schichtsilikate wie Antigorit, Serpentin, Hornblenden, Amphibole, Chrisotil, Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Aluminiumsilikat, Titanoxide und Eisenoxide, Metallsalze wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmiumsulfid, Zinksulfid sowie Glaspartikel. Als organische Füllstoffe kommen beispielsweise in Betracht; Ruß, Melamin, Blähgraphit, Kollophonium, Cyclopentadienylharze und Pfropfpolymerisate.

Als verstärkend wirkende Füllstoffe finden vorzugsweise Anwendung Fasern, beispielsweise Kohlefasern oder insbesondere Glasfasern, besonders dann, wenn eine hohe Wärmeformbeständigkeit oder sehr hohe Steifigkeit gefordert wird, wobei die Fasern mit Haftvermittlern und/oder Schlichten ausgerüstet sein können. Geeignet Glasfasern, z. B. auch in Form von Glasgeweben, -matte, -vliesen und/oder vorzugsweise Glasseidenrovings oder geschnittener Glasseide aus alkaliarmen E-Glasern mit einem Durchmesser von 5 bis 200 µm, vorzugsweise 6 bis 15 µm eingesetzt werden, weisen nach ihrer Einarbeitung in die Formmassen im allgemeinen eine mittlere Faserlänge von 0,05 bis 1 mm, vorzugsweise von 0,1 bis 0,5 mm auf.

Die anorganischen und organischen Füllst ffe können einzeln oder als Gemische verwendet w rden und werden der Reaktionsmischung üblicherweise in Mengen von 0,5 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, bezogen auf das Gewicht der Aufbaukomponenten (a) bis (c), einverleibt.

Geeignete Flammschutzmittel sind beispielsweise Trikresylphosphat, Tris-(2-chlorethyl)phosphat, Tris-

(2-chlor-propyl)phosphat, Tris-(1,3-dichlorpropyl)ph sphat, Tris-(2,3-dibrompropyl)phosphat und Tetrakis-(2-chl rethyl)-ethylendiph sphat.

Außer den bereits genannten halogensubstituierten Phosphaten können auch anorganische Flammschutzmittel wie roter Phosphor, Aluminiumoxidhydrat, Antimontrioxid, Arsentrioxid, Ammoniumpolyphosphat und Calciumsulfat od r Cyanursäurederivate, wie z. B. Melamin oder Mischungen aus mindestens zwei Flammschutzmitteln, wie z. B. Ammoniumpolyphosphaten und Melamin sowie gegebenenfalls Stärke und/oder Blähgraphit zum Flammfestmachen der erfindungsgemäß hergest Ilten PU-Elastomeren verwendet werden. Im allgemein n hat es sich als zweckmäßig erwiesen, 5 bis 50 Gew.-Teile, vorzugsweise 5 bis 25 Gew.-Teile der genannten Flammschutzmittel oder -mischungen für jeweils 100 Gew.-Teile der Aufbaukomponenten (a) bis (c) zu verwenden.

Als Keimbildungsmittel können z.B. Talkum, Calciumfluorid, Natriumphenylphosphinat, Aluminiumoxid und feinteiliges Polytetrafluorethylen in Mengen bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Aufbaukomponenten (a) bis (c), eingesetzt werden.

Geeignete Oxidationsverzögerer und Wärmestabilisatoren, die den erfindungsgemäßen PU-Elastomeren zugesetzt werden können, sind beispielsweise Halogenide von Metallen der Gruppe 1 des periodischen 59stems, z. B. Natrium-, Kalium-, Lithium-Halogenide, gegebenenfalls in Verbindung mit Kupfer-(1)-Halogeniden, z. B. Chloriden, Bromiden oder Iodiden, sterisch gehinderte Phenole, Hydrochinone sowie substituierte Verbindungen dieser Gruppen und Mischungen davon, die vorzugsweise in Konzentration bis zu 1 Gew.-%, bezogen auf das Gewicht der Aufbaukomponenten (a) bis (c), verwendet werden.

Beispiele für UV-Stabilisatoren sind verschiedene substituierte Resorcine, Salicylate, Benzotriazole und 20 Benzophenone sowie sterisch gehinderte Amine, die im allgemeinen in Mengen bis zu 2,0 Gew.-%, bezogen auf das Gewicht der Aufbaukomponenten (a) bis (c), eingesetzt werden.

Gleit- und Entformungsmittel, die in der Regel ebenfalls in Mengen bis zu 1 Gew.-%, bezogen auf das Gewicht der Aufbaukomponenten (a) bis (c), zugesetzt werden, sind Stearinsäuren, Stearylalkohol, Stearinsäureester und -amide sowie die Fettsäureester des Pentaerythrits.

Ferner können organische Farbstoffe, wie Nigrosin, Pigmente, z. B. Titandioxid, Cadmiumsulfid, Cadmiumsulfidselenid, Phthalocyanine, Ultramarinblau oder Ruß zugesetzt werden.

Nähere Angaben über die oben genannten anderen üblichen Hilfs- und Zusatzstoffe sind der Fachliteratur, beispielsweise der Monographie von J.H. Saunders und K.C. Frisch "High Polymers", Band XVI, Polyurethanes, Teil 1 und 2, Verlag Interscience Publishers 1962 bzw. 1964, oder dem Kunststoff Handbuch, 30 Polyurethane, Band VII, Carl-Hanser-Verlag, München, Wien, 1., 2. und 3. Auflage, 1966, 1983 und 1993 zu entnehmen.

Zur Herstellung der kompakten oder vorzugsweise zelligen PU-Elastomere können in Gegenwart oder Abwesenheit von Katalysatoren (d), physikalisch wirkenden Treibmitteln (e) und Zusatzstoffen (f), die höhermolekularen Polyhydroxylverbindungen (a), gegebenenfalls niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmittel (b) sowie gegebenenfalls die chemisch wirkenden Treibmittel, vorzugsweise die isocyanatgruppenhaltigen Prepolymeren aus (a), (b) und (c) oder vorzugsweise aus (a) und (c) und Kettenverlängerungsund/oder Vernetzungsmittel (b), Mischungen aus Teilmengen (a) und (b), Mischungen aus Teilmengen (a) und (b), Mischungen aus Teilmengen (a) und Wasser oder Wasser in solchen Mengen zur Umsetzung gebracht werden, daß das Äquivalenzverhältnis von NCO-Gruppen der Polyisocyanate (c) oder isocyanatgruppenhaltigen Prepolymeren zur Summe der reaktiven Wasserstoffe der Komponenten (a) und gegebenenfalls (b) sowie gegebenenfalls der chemisch wirkenden Treibmittel 0,8 bis 1,2:1, vorzugsweise 0,95 bis 1,15:1 und insbesondere 1,00 bis 1,05:1 beträgt.

Die kompakten oder vorzugsweise zelligen PU-Elastomere können nach den in der Literatur beschriebenen Verfahren, wie z.B. dem one shot- oder vorzugsweise Prepolymer-Verfahren, mit Hilfe bekannter Mischvorrichtungen hergestellt werden.

Zur Herstellung der kompakten PU-Elastomere können die Ausgangskomponenten in Abwesenheit von Treibmitteln (e) üblicherweise bei einer Temperatur von 80 bis 160°C, vorzugsweise von 110 bis 150°C homogen gemischt, die Reaktionsmischung in ein offenes, gegebenenfalls temperiertes Formwerkzeug eingebracht und aushärten gelassen werden. Zur Bildung von zelligen PU-Elastomeren können die Aufbaukomponenten in gleicher Weise in Gegenwart von Treibmittel, vorzugsweise Wasser, gemischt und in das gegebenenfalls temperierte Formwerkzeug eingefüllt werden. Nach der Befüllung wird das Formwerkzeug geschlossen und die Reaktionsmischung unter Verdichtung, z. B. mit einem Verdichtungsgrad von 1,1 bis 8, vorzugsweise von 1,2 bis 6 und insbesondere von 2 bis 4 zur Bildung von Formkörpern aufschäumen gelassen. Sobald die Formkörper eine ausreichende Festigkeit besitzen, werden diese entformt. Die Entformzeiten sind u. a. abhängig von der Formwerkzeugtemperatur, -Geometrie und der Reaktivität der Reaktionsmischung und liegen üblicherweise in einem Bereich von 10 bis 180 Minuten.

Die nach dem erfindungsgemäßen Verfahren hergestellten kompakten PU-Elastomere besitzen ohne Füllstoff eine Dichte von 1,0 bis 1,4 g/cm³, vorzugsweise von 1,1 bis 1,25 g/cm³, wobei Füllstoffe enthaltende Produkte üblicherweise eine Dichte größer als 1,2 g/cm³ aufweisen. Die zelligen PU-Elastomere zeigen 60 Dichten von 0,2 bis 1,1 g/cm³, vorzugsweise von 0,35 bis 0,80 g/cm³.

Die mikrozellularen PU-Elastomere zeigen hervorragende statische und dynamische Kennwerte. Aufgrund ihrer spezifischen Dämpfungscharakteristiken und Dauergebrauchseigenschaften finden sie insbesondere Verwendung in Vibrations- und St Bdämpfer-Sytemen.

Die nach dem Verfahren hergestellten PU-Elast mere finden Verwendung zur Herstellung von Formkörpern, Verkehrsmittelsektor. Die zelligen PU-Elastom re eignen sich insbesondere zur Herstellung von Dämpfungs- und Federelementen z. B. für Verk hrsmittel, vorzugsweis Kraftfahrzeuge, Puffern und Deckschichten.

Beispiele

Vergleichsbeispiel I

a) Herstellung eines Isocyanatgruppe aufweisenden Prep lymers auf 1,5-NDI-Basis

1000 Gew.-Teile (0,5 mol) eines Poly(ethandiol(0,5 mol)-1,4-butandi l(0,5 mol)-adipats (1 mol)) mit einem durchschnittlichen Molekulargewicht von 2000 (errechnet aus der experimentell ermittelten Hydroxylzahl) wurden auf 140°C erwärmt und bei dieser Temperatur mit 240 Gew.-Teilen (1,14 mol) festem 1,5-NDI unter intensivem Rühren versetzt und zur Reaktion gebracht.

Man erhielt ein Prepolymer mit einem NCO-Gehalt von 4,32 Gew. -% und einer Viskosität bei 90°C von 2800 mPas (gemessen mit einem Rotationsviskosimeter der Firma Haake, mit dem auch die Viskositäten der folgenden Vergleichsbeispiele und Beispiele gemessen werden).

b) Herstellung zelliger Formteile

Vernetzerkomponente, die bestand aus

20,7 Gew.-Teilen 2,2',6,6'-Tetraisopropyldiphenyl-carbodiimid

2,9 Gew.-Teilen eines Gemisches aus ethoxylierter Öl- und Ricinolsäure mit durchschnittlich 9 oxyethyleneinheiten

3,8 Gew.-Teilen des Monoethanolaminsalzes der n-Alkylbenzolsulfonsäure mit C9- bis C15-Alkylresten

36,3 Gew.-Teilen Natriumsalz von sulfatiertem Ricinusöl

36,3 Gew.-Teilen Wasser und

5

15

20

35

50

65

0,03 Gew.-Teilen einer Mischung aus

30 Gew.-% Pentamethyl-diethylentriamin und

70 Gew. -% N-Methyl-N'-(dimethylaminomethyl)-piperazin.

100 Gew.-Teile des auf 90°C temperierten Isocyanatprepolymeres, hergestellt nach Vergleichsbeispiel Ia, wurden mit 2,4 Gew.-Teilen der Vernetzerkomponente ca. 8 Sekunden lang intensiv gerührt. Die Reaktionsmischung wurde danach in ein auf 80°C temperiertes, verschließbares, metallisches Formwerkzeug eingefüllt, das Formwerkzeug verschlossen und die Reaktionsmischung aushärten gelassen. Nach 25 Minuten wurde der mikrozellulare Formkörper entformt und zur thermischen Nachhärtung bei 110°C 16 Stunden getempert.

Vergleichsbeispiel II

a) Herstellung eines Isocyanatgruppen aufweisenden Prepolymers auf 4,4'-MDI-Basis

Eine Mischung aus 1000 Gew.-Teilen des in Vergleichsbeispiel 1 beschriebenen Poly(ethandiol-1,4-butandioladipats) und 3 Gew.-Teilen Trimethylolpropan wurde analog den Angaben von Vergleichsbeispiel mit 380 Gew.-Teilen (1,52 mol) auf 50°C temperiertem 4,4'-MDI umgesetzt.

Man erhielt ein Prepolymer mit einem NCO-Gehalt von 5,80 Gew.-% und einer Viskosität bei 90°C von 1750 mPas (gemessen mit einem Rotationsviskosimeter).

b) Herstellung zelliger Formteile

Aus 100 Gew.-Teilen des Prepolymers nach Vergleichsbeispiel IIa und 3,1 Gew.-Teilen der Vernetzerkomponente nach Vergleichsbeispiel Ib wurden analog den Angaben des Vergleichsbeispiels 1 Formkörper hergestellt.

Vergleichsbeispiel III

a) Herstellung eines Isocyanatgruppen aufweisenden Prepolymers auf TODI-Basis

Man verfuhr analog den Angaben des Vergleichsbeispiels Ia, verwendete jedoch anstelle von 1,5-NDI 290 Gew.-Teile (1,097 mol) 3,3'-Dimethyl-4,4'-biphenyl-diisocyanat (Tolidindiisocyanat (TODI)).

Man erhielt ein Prepolymer mit einem NCO-Gehalt von 3,76 Gew. -% und einer Viskosität bei 90°C von 5100 mPas (gemessen mit einem Rotationsviskosimeter).

b) Herstellung zelliger Formteile

Aus 100 Gew.-Teilen des Prepolymers nach Vergleichsbeispiel IIIa und 2,07 Gew.-Teilen der Vernetzerkomponente nach Vergleichsbeispiel Ib wurden analog den Angaben des Vergleichsbeispiels I Formkörper hergestellt, die erst nach einer Formstandzeit von 40 Minuten entformt und zur thermischen Nachhärtung bei 110°C 16 Stunden getempert wurden.

Beispiel 1

 a) Herstellung eines Isocyanatgruppen aufweisenden Prepolymers auf 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl-Basis

1000 Gew.-Teile (0,5 mol) eines Poly(ethandiol(0,5 m l)-1,4-butandiol (0,5 mol)-adipats (1 mol)) mit einem durchschnittlichen Molekulargewicht von 2000 (errechnet aus der experimentell ermitt Iten Hydroxylzahl) wurden auf 140°C erwärmt und bei dieser Temperatur mit 360 Gew.-Teilen (1,22 mol) festem 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl unter intensivem Rühren versetzt und zur Reaktion gebracht.

Man erhielt ein Prepolymer mit einem NCO-Gehalt von 4,67 Gew. -% und einer Viskosität von 2700 5 (gemessen mit einem Rotationsviskosimeter).

b) H rstellung zelliger Formkörper

100 Gew.-Teile des auf 90°C temperierten Isocyanatprepolymers, hergestellt nach Beispiel Ia, wurde unter 10 intensivem Rühren mit 2,59 Gew.-Teilen der Vernetzerkomponente, hergestellt nach Vergleichsbeispiel Ib, gemischt.

Nach einer Rührzeit von ca. 8 Sekunden wurde die Reaktionsmischung in ein auf 80°C temperiertes, verschließbares, metallisches Formwerkzeug eingefüllt, das Formwerkzeug verschlossen und die Reaktionsmischung aushärten gelassen. Nach 140 Minuten Formstandzeit wurde der mikrozellulare Formkörper entformt 15 und zur thermischen Nachhärtung bei 110°C 16 Stunden lang getempert.

Beispiel 2

a) Herstellung eines Isocyanatgruppen aufweisenden Prepolymers auf 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl-Basis

20

30

40

45

50

55

60

65

1000 Gew.-Teile (0,5 mol) eines Poly(ethandiol(0,5 mol)-1,4-butandiol(0,5 mol)-adipats (1 mol)) mit einem durchschnittlichen Molekulargewicht von 2000 (errechnet aus der experimentell ermittelten Hydroxylzahl) wurden auf 140°C erwärmt und bei dieser Temperatur mit 440 Gew.-Teilen (1,49 mol) festem 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl unter intensivem Rühren versetzt und zur Reaktion gebracht.

Man erhielt ein Prepolymer mit einem NCO-Gehalt von 5,94 Gew. -% und einer Viskosität von 1900 mPas (gemessen mit einem Rotationsviskosimeter).

b) Herstellung zelliger Formkörper

100 Gew.-Teile des auf 90°C temperierten Isocyanatprepolymers, hergestellt nach Beispiel 2a, wurden unter intensivem Rühren mit 3,29 Gew.-Teilen der Vernetzerkomponente, hergestellt nach Vergleichsbeispiel Ib, gemischt.

Nach einer Rührzeit von ca. 8 Sekunden wurde die Reaktionsmischung in ein auf 80°C temperiertes, verschließbares, metallisches Formwerkzeug eingefüllt, das Formwerkzeug verschlossen und die Reaktionsmischung aushärten gelassen. Nach 140 Minuten Formstandzeit wurde der mikrozellulare Formkörper entformt und zur thermischen Nachhärtung bei 110°C 16 Stunden lang getempert.

9

Statische und dynamische mechanische Elgenschaften der zelligen PUR-Elastomere gemäß Vergleichs. beispielen I bis III und Beispielen 1 und 2 10 15 30

20

Beispiel	I (V)	(V) II	(V)	H	2
NCO-Gehalt [%]	4,32	5,8	3,76	4,67	5,94
Viskosität 90°C [mPas]	2800	1750	5100	2700	1900
Statisch-mechanische Elgenschaften					
Druckverformungsrest (80°C) [%]	20	20	18	21	20
Zugfestigkeit [N/mm]	3,6	4,3	3,5	3,8	4,0
Dehnung [%]	350	460	430	400	385
Weiterreißfestigkeit [N/mm]	16,2	17,3	17,1	16,9	16,8
Dynamisch-mechanische Eigenschaften	c				
Setzbetrag [%]	8	16-18	10-12	12,5	11,7
Wegzunahme [mm]	1,4-2,1	2,0-5,7	2,4-2,6	3,4	3,3

V = Vergleichsbeispiel

Patentansprüche

1. Verfahren zur Herstellung von mikrozellularen Polyurethan-Elastomeren durch Umsetzung von

a) höhermolekularen Polyhydroxylverbindungen und gegebenenfalls b) niedermolekularen Kettenverlängerungs- und/oder Vernetzungsmitteln mit 5 c) 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl in Abwesenheit oder vorzugsweis in Gegenwart von d) Katalysatoren e) Treibmitteln und f) Zusatzstoffen 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die höhermolekularen Polyhydroxylverbindun- 10 gen eine Funktionalität von 2 bis 3 und ein Molekulargewicht von 500 bis 6000 besitzen. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die höhermolekularen Polyhydroxylverbindungen difunktionell sind, ein Molekulargewicht von 800 bis 3500 besitzen und ausgewählt sind aus der Gruppe der Polyesterpolyole, hydroxylgruppenhaltigen Polycarbonate und Polyoxybutylenglykole. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kettenverlängerungsmittel 15 ein Molekulargewicht bis 800 besitzen und ausgewählt sind aus der Gruppe der Alkandiole, Dialkylenglykole und Polyoxyalkylenglykole und die Vernetzungsmittel ein Molekulargewicht bis 800 besitzen und ausgewählt sind aus der Gruppe der 3- oder 4-wertigen Alkohole und oligomeren Polyoxyalkylenpolyole mit einer Funktionalität von 3 bis 4. 5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß a) in einem ersten Reaktionsschritt aus 3,3'-Dimethoxy-4,4' -diisocyanato-diphenyl und höhermolekularen Polyhydroxylverbindungen und gegebenenfalls einem niedermolekularen Kettenverlängerungsund/oder Vernetzungsmittel ein Prepolymer mit einem NCO-Gehalt von 2 bis 20 Gew. - % hergestellt wird b) das erhaltene Prepolymer in einem zweiten Reaktionsschritt mit Wasser oder einer Mischung aus 25 Wasser und niedermolekularem Kettenverlängerungs- und/oder Vernetzungsmittel umgesetzt wird. 6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß a) in einem ersten Reaktionsschritt aus 3,3'-Dimethoxy-4,4'-diisocyanato-diphenyl und einem Teil der höhermolekularen Polyhydroxylverbindung und gegebenenfalls einem niedermolekularen Kettenverlängerung- und/oder Vernetzungsmittel ein Prepolymer hergestellt wird und b) das erhaltene Prepolymer in einem zweiten Reaktionsschritt mit einer Mischung aus dem Rest der höhermolekularen Polyhydroxylverbindung, Wasser und gegebenenfalls einem Kettenverlängerungsund/oder Vernetzungsmittel umgesetzt wird. 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis der NCO-Gruppe der Komponente (c) zu den Zerewitinoff-aktiven Wasserstoffatomen der Komponenten (a), (b) und (e) 0,8 bis 1,3 ist. 35 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die verwendete Wassermenge bis 5 Gew. -% bezogen auf das Gesamtgewicht der Komponenten (a), (c) und gegebenenfalls (b) beträgt. 9. Verfahren nach einem der Ansprüche 1 bis 8. dadurch gekennzeichnet, daß pro 1 Mol höhermolekulare Polyhydroxylverbindung 0 bis 0,3 mol Kettenverlängerungs- und/oder Vernetzungsmittel verwendet werden. 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Treibmittel (e) ausgewählt wird aus der Gruppe der Alkane mit 4 bis 8 C-Atomen und der Cycloalkane mit 4 bis 6 C-Atomen. 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die mikrozellularen Polyurethanelastomere Dichten von 250 bis 800 g/l besitzen. 45 50 55 60 65