

Udine, 29 September 2025

wild • SL

Wild operations (wild)

Filippo želi preizkusiti Francescovo sposobnost upravljanja z divjimi operacijami nad polji, zato mu da polje $A_0,...,A_{N-1}$ dolžine N.

Zdaj bo Filippo Francescu naročil izvajanje operacij nad polji, kjer lahko vsaka operacija:

- spremeni vrednost A_p v x, kjer je x celo število in p veljaven indeks.
- perturbiraj območje [l, r], tj. nastavi $A_p = \max(A_p, A_{p-1})$ istočasno za vse l . (Najprej se izračunajo vsi maksimumi, nato se pa nastavijo elementi)

Filippo lahko kadarkoli v
praša Francesca po vrednosti poljubnega A_n .

Francesco je zelo zaposlen, zato te prosi za pomoč pri odgovarjanju na Filippova vprašanja.

Implementacija

Oddati morate eno datoteko s končnico .cpp.

 \leftarrow

Med prilogami te naloge boste našli predlogo wild.cpp z zgledom implementacije.

Implementirati morate naslednje funkcije:

```
C++ void init(int N, vector<int> A);
```

- Ta procedura se kliče enkrat, na začetku izvajanja programa.
- N je dolžina polja.
- Polje A, indeksirano od 0 do N-1, je začetno polje, ki ga izbere Filippo.

```
C++ void change(int p, int x);
```

- Ta procedura se med izvajanjem vašega programa kliče večkrat, vsakič ko Filippo izvede spremembo.
- p je indeks v polju, na katerem se spremenjena vrednost.
- x je nova vrednost, ki naj se dodeli.

```
C++ void perturb(int 1, int r);
```

- Ta procedura se med izvajanjem vašega programa kliče večkrat, vsakič ko Filippo perturbira območje.
- l je levi rob območja, katerega Filippo perturbira.
- r je desni rob območja, katerega Filippo perturbira.

```
C++ int calc(int p);
```

- Ta funkcija se med izvajanjem vašega programa kliče večkrat, vsakič ko Filippo vpraša za vrednost nekega elementa polja.
- p je indeks elementa, ki zanima Filippa.
- Funkcija naj vrne vrednost A_p , upoštevajoč vse prejšnje operacije.

Stran 1 od 3

Vzorčni ocenjevalnik

Poenostavljena različica ocenjevalnika, ki se uporablja med ocenjevanjem, je na voljo v imeniku, povezanem s to nalogo. Uporabite ga lahko za lokalno testiranje vaših rešitev. Vzorčni ocenjevalnik prebere vhodne podatke iz stdin, kliče funkcijo, ki jo morate implementirati, ter piše v stdout v naslednji obliki.

Naj bo Q skupno število sprememb, perturbacij in vprašanj, ki jih izvede Filippo. Vhodna datoteka je sestavljena iz vrstic 2 + Q, ki vsebujejo:

- Vrstica 1: cela števila N, Q.
- Vrstica 2: N celih števil $A_0,...,A_{N-1}$, začetne vrednosti polja.
- Vrstice 3+i ($0 \le i < Q$): 2 ali 3 celih števil, v eni od naslednjih oblik:
 - 1 p x: pomeni, da Filippo spremeni A_p na x.
 - 2 l r: pomeni, da Filippo perturbira območje [l, r];
 - * 3 p: pomeni, da Filippo vpraša za vrednost A_p .

Izhodna datoteka je sestavljena iz vrstic Q_3 (kjer je Q_3 število klicev calc) in vsebuje vrednosti, ki jih vrne funkcija calc.

Omejitve

- 1 < N < 400000.
- $0 \le Q \le 400000$.
- $1 \le A_i \le 10^9$ za vse $0 \le i < N$.
- $0 \le p < N$ pri vsakem klicu change in calc.
- $0 \le l < r \le N-1$ pri vsakem klicu perturb.
- $1 \le x \le 10^9$ pri vsakem klicu change.

Točkovanje

Vaš program bo testiran na več testnih primerih, združenih v podnaloge. Za pridobitev točk za podnalogo morate v njej pravilno rešiti vse testne primere.

Naj bo Q_1 število klicev funkcije change v testnem primeru, potem:

- Podnaloga 0 [0 točk]: Primer.
- Podnaloga 1 [15 točk]: Funkcija change se nikoli ne kliče; $l=0,\,r=N-1$ pri vsakem klicu perturb.
- Podnaloga 2 [16 točk]: $A_i \le 10$ za vse $0 \le i < N$ in $x \le 10$ pri vseh klicih change.
- Podnaloga 3 [13 točk]: Klici funkcije change ne zmanjšujejo vrednosti $(x \ge A_p)$, $Q_1 \le 1000$ in l = 0, r = N 1 pri vsakem klicu perturb.
- Podnaloga 4 [22 točk]: Funkcija change se nikoli ne kliče.
- Podnaloga 5 [14 točk]: Klici funkcije change ne zmanjšujejo vrednosti $(x \ge A_n), Q_1 \le 1000.$
- Podnaloga 6 [20 točk]: Brez dodatnih omejitev.

wild Stran 2 od 3

Primeri vhoda/izhoda

stdin	stdout
10 28	1
5 1 7 8 3 2 5 6 9 4	3
1 1 1	1
1 0 1	7
2 0 1	8
2 2 6	1
1 6 5	8
2 2 9	3
2 2 5	6
2 4 5	4
1 4 5	9
2 3 8	
1 8 4	
3 0	
1 6 3	
1 4 1	
2 5 7	
1 0 3	
2 4 5	
1 6 3	
3 0	
3 1	
3 2	
3 3	
3 4	
3 5	
3 6	
3 7	
3 8	
3 9	

Razlaga

Začnemo s poljem A = [5, 1, 7, 8, 3, 2, 5, 6, 9, 4].

- Dogodek 1: Filippo spremeni A_1 na 1 (je že bil 1): novo polje je [5,1,7,8,3,2,5,6,9,4].
- Dogodek 2: Filippo spremeni A_0 na 1: novo polje je [1,1,7,8,3,2,5,6,9,4].
- Dogodek 3: Filippo perturbira [0,1]: novo polje je [1,1,7,8,3,2,5,6,9,4].
- Dogodek 4: Filippo perturbira [2,6]: novo polje je [1,1,7,8,8,3,5,6,9,4].

Od dogodka 19 naprej Filippo samo sprašuje po vrednostih v polju, brez sprememb ali perturbacij. V tem trenutku je polje [3, 1, 7, 8, 1, 8, 3, 6, 4, 9].

 $Stran \ 3 \ od \ 3$