# Feed Forward Error Back Propagation Artificial Neural Networks

**CSE** 



Malaviya National Institute of Technology Jaipur

February 14, 2025

#### Connectionist Models

#### Consider humans:

- Neuron switching time ~ .001 second
- Number of neurons ~ 10<sup>10</sup>
- Connections per neuron  $\sim 10^{4-5}$
- Scene recognition time ~ .1 second
- → much parallel computation

### Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

#### When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant

#### Examples:

- Speech phoneme recognition
- Image classification
- Financial prediction

### Perceptron



$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + \cdots + w_nx_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \left\{ egin{array}{ll} 1 & ext{if } \vec{w} \cdot \vec{x} > 0 \ -1 & ext{otherwise.} \end{array} 
ight.$$



# Perceptron Training Rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t-o)x_i$$

#### Where:

- $t = c(\vec{x})$  is target value
- o is perceptron output
- ullet  $\eta$  is small constant (e.g., .1) called *learning rate*

# Perceptron Training Rule

#### Can prove it will converge

- If training data is linearly separable
- ullet and  $\eta$  sufficiently small

### Perceptron: Example

| D | a | t | a |
|---|---|---|---|
|   | _ |   |   |

| Input I <sub>1</sub> | Input I <sub>2</sub> | Target $O/T$ |
|----------------------|----------------------|--------------|
| 0                    | 0                    | 0 [-1]       |
| 0                    | 1                    | 0 [-1]       |
| 1                    | 0                    | 0 [-1]       |
| 1                    | 1                    | 1 [+1]       |

Network Parameters
Learning Rate=0.4
Input Nodes=2 Output Node =1
Initial Weights  $[w_1 \ w_2] = [0.6, -0.2]$ Activation Function Step Function
Activation Threshold 1.5

# Perceptron: Example

### Connection weights:

| Step | Input Values | Net Input | Output | Weight Adjustment          | Updated Weights |
|------|--------------|-----------|--------|----------------------------|-----------------|
| 1    | (0,0)        | 0.0       | -1     | $w_1 = 0.4 * (-1 + 1) * 0$ | 0.6             |
|      |              |           |        | $w_2 = 0.4 * (-1 + 1) * 0$ | -0.2            |
| 2    | (0,1)        | -0.2      | -1     | $w_1 = 0.4 * (-1 + 1) * 0$ | 0.6             |
|      |              |           |        | $w_2 = 0.4 * (-1 + 1) * 1$ | -0.2            |
| 3    | (1,0)        | 0.6       | -1     | $w_1 = 0.4 * (-1+1) * 1$   | 0.6             |
|      |              |           |        | $w_2 = 0.4 * (-1 + 1) * 0$ | -0.2            |
| 4    | (1,1)        | 0.4       | -1     | $w_1 = 0.4 * (1+1) * 1$    | 1.4             |
|      |              |           |        | $w_2 = 0.4 * (1+1) * 1$    | 0.6             |
| 5    | (0,0)        | 0.0       | -1     | $w_1 = 0.4 * (-1 + 1) * 0$ | 1.4             |
|      |              |           |        | $w_2 = 0.4 * (-1 + 1) * 0$ | 0.6             |
| 6    | (0,1)        | 0.6       | -1     | $w_1 = 0.4 * (-1 + 1) * 0$ | 1.4             |
|      |              |           |        | $w_2 = 0.4 * (-1 + 1) * 1$ | 0.6             |
| 7    | (1,0)        | 1.4       | -1     | $w_1 = 0.4 * (-1 + 1) * 1$ | 1.4             |
|      |              |           |        | $w_2 = 0.4 * (-1 + 1) * 0$ | 0.6             |
| 8    | (1,1)        | 2         | +1     | $w_1 = 0.4 * (1 - 1) * 1$  | 1.4             |
|      |              |           |        | $w_2 = 0.4 * (1 - 1) * 1$  | 0.6             |

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \cdots + w_n x_n$$

Let's learn  $w_i$ 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Gradient

$$\nabla E[\vec{w}] \equiv \left[ \frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) 
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) 
\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

### **Gradient-Descent**( $training\_examples, \eta$ )

Each training example is a pair of the form  $\langle \vec{x}, t \rangle$ , where  $\vec{x}$  is the vector of input values, and t is the target output value.  $\eta$  is the learning rate (e.g., 0.05).

- Initialize each w<sub>i</sub> to some small random value
- Until the termination condition is met, Do
  - Initialize each  $\Delta w_i$  to zero.
  - For each  $\langle \vec{x}, t \rangle$  in training\_examples, Do
    - Input the instance  $\vec{x}$  to the unit and compute the output o
    - For each linear unit weight wi, Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

• For each linear unit weight  $w_i$ , Do

$$w_i \leftarrow w_i + \Delta w_i$$



# Gradient-Descent Training Rule Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- ullet Sufficiently small learning rate  $\eta$

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- ullet Given sufficiently small learning rate  $\eta$
- Even when training data contains noise
- Even when training data not separable by H

# Sigmoid Unit



 $\sigma(x)$  is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Nice property:  $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ 

We can derive gradient decent rules to train

- One sigmoid unit
- ullet Multilayer networks of sigmoid units o Backpropagation



## Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) 
= \sum_{d} (t_d - o_d) \left( -\frac{\partial o_d}{\partial w_i} \right) 
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

### Error Gradient for a Sigmoid Unit

But we know:

$$\begin{split} \frac{\partial o_d}{\partial net_d} &= \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d) \\ \frac{\partial net_d}{\partial w_i} &= \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d} \end{split}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

### Error Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
  - Input the training example to the network and compute the network outputs
  - For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

Update each network weight w<sub>i,j</sub>

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

## More on Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
  - In practice, often works well (can run multiple times)
- Often include weight momentum  $\alpha$

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over training examples
  - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast





An example of a multilayer feed-forward neural network. Assume that the learning rate  $\eta$  is 0.9 and the first training example, X=(1,0,1) whose class label is 1.

The sigmoid function is applied to hidden layer and output layer.

### Connection wieghts:

| $w_{14}$ | $W_{15}$ | W <sub>24</sub> | W <sub>25</sub> | W <sub>34</sub> | W <sub>35</sub> | W <sub>46</sub> | W <sub>56</sub> | W <sub>04</sub> | W <sub>05</sub> | <i>w</i> <sub>06</sub> |
|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| 0.2      | -0.3     | 0.4             | 0.1             | -0.5            | 0.2             | -0.3            | -0.2            | -0.4            | 0.2             | 0.1                    |

#### Net Input and Output Calculations

| Unit j | Net Input <i>I<sub>j</sub></i>       | $Output O_j$            |
|--------|--------------------------------------|-------------------------|
| 4      | 0.2+0-0.5-0.4= -0.7                  | $1/(1+e^{0.7})=0.332$   |
| 5      | -0.3+0+0.2+0.2= 0.1                  | $1/(1+e^{-0.1})=0.525$  |
| 6      | (0.3)(0.332)-(0.2)(0.525)+0.1=-0.105 | $1/(1+e^{0.105})=0.474$ |

Error Calculations at Each Node

| Unit j | Error $\delta_j$                         |
|--------|------------------------------------------|
| 6      | (0.474)(1-0.474)(1474) = 0.1311          |
| 5      | (0.525)(1-0.525)(0.1311)(-0.2) = -0.0065 |
| 4      | (0.332)(1-0.322)(0.1311)(-0.3) = -0.0087 |

### Weight Update Calculations

| Weight          | New Value                         |  |  |  |
|-----------------|-----------------------------------|--|--|--|
| W <sub>46</sub> | -03+(0.9)(0.1311)(0.332)=-0.261   |  |  |  |
| W <sub>56</sub> | -0.2+(0.9)(0.1311)(0.525)=-0.138  |  |  |  |
| W <sub>14</sub> | 0.2 + (0.9)(-0.0087)(1) = 0.192   |  |  |  |
| W <sub>15</sub> | -0.3 + (0.9)(-0.0065)(1) = -0.306 |  |  |  |
| W <sub>24</sub> | 0.4+(0.9)(-0.0087)(0)=0.4         |  |  |  |
| W <sub>25</sub> | 0.1+(0.9)(-0.0065)(0)=0.1         |  |  |  |
| W34             | -0.5+(0.9)(-0.0087)(1) = -0.508   |  |  |  |
| W35             | 0.2 + (0.9)(-0.0065)(1) = 0.194   |  |  |  |
| W <sub>06</sub> | 0.1 + (0.9)(0.1311) = 0.218       |  |  |  |
| W <sub>05</sub> | 0.2 + (0.9)(-0.0065) = 0.1941     |  |  |  |
| W <sub>04</sub> | -0.4 + (0.9)(-0.0087) = -0.408    |  |  |  |

### Convergence of Backpropagation

#### Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

#### Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses