Design and Analysis of Algorithms (CS206)

Assignment - 3

U19CS012

- 1. Given the following algorithms, answer the questions.
 - Merge sort: Sorting Problem

<u>Input</u>: A Sequence of Unsorted 'n' numbers, a1,a2,...,an

<u>Output</u>: A Permutation (Reordering) (a1',a2',...,an') of Input Sequence such that a1' \leq a2' \leq ... \leq an'

- 1. Write a program to sort an array, arr, consisting n numbers using the divide and conquer approach Use only merge sort.
- (1) The divide step should split the array into two (nearly) equal sub-arrays.
- (2) The divide step should split the array into three (nearly) equal sub-arrays
- 1.1. (T) Write pseudocodes to design the algorithms for above mentioned computational problem. Both algorithms should sort the data by dividing them into two and three (nearly) equal sub-arrays respectively.
- (1) The divide step should split the array into two (nearly) equal sub-arrays.
- A.) MergeSort2 Function

```
Merge_Sort2(arr,low,high)
1. if low < high</li>
2. int mid = low + (high-low)/2
// Call this Function to Recursively Divide into Smaller Sub-array [l,m]
3. Merge_Sort2(arr, low, mid);
// Call this Function to Recursively Divide into Smaller Sub-array [m+1,h]
4. Merge_Sort2(arr, mid + 1, high);
// Merge the Both Sorted Array
5. Merge2(arr, low, mid, high);
6. return
```

B.) Merge2 Function

```
// To Merge Two Sorted Array
• Merge2(arr, low, mid, high)
   tmp(high - low + 1, 0);
2. i = low, j = mid + 1, k = 0;
   while i <= mid AND j <= high
3.
4.
    if (arr[i] <= arr[j])</pre>
5.
         tmp[k] = arr[i];
6.
         k++;
7.
         i++;
8. else
9.
         tmp[k] = arr[j];
10.
         k++;
11.
         j++;
// Remaining Elements in Second Interval
12. while i <= mid
13.
       tmp[k] = arr[i];
14.
        į++;
15.
         k++;
16. while j <= high
17.
      tmp[k] = arr[j];
18.
        j++;
19.
         k++;
20. for i = low to high
       arr[i] = tmp[i - low];
21.
```

(2) The divide step should split the array into three (nearly) equal sub-arrays A.) MergeSort3 Function

```
• Merge_Sort3(vll &arr, ll low, ll high)
      if (high - low < 2)
1.
2.
         return;
3.
     mid1 = low + ((high - low) / 3);
4.
     mid2 = low + 2 * ((high - low) / 3) + 1;
     Merge_Sort3(arr, low, mid1);
      Merge_Sort3(arr, mid1, mid2);
      Merge_Sort3(arr, mid2, high);
     Merge3(arr, low, mid1, mid2, high);
8.
9.
     return;
```

B.) Merge3 Function

```
while ((i < mid1) && (j < mid2))</pre>
         if (arr[i] < arr[j])</pre>
             tmp[id++] = arr[i++];
         else
             tmp[id++] = arr[j++];
    while ((j < mid2) && (k < high))</pre>
         if (arr[j] < arr[k])</pre>
             tmp[id++] = arr[j++];
             tmp[id++] = arr[k++];
    while ((i < mid1) && (k < high))</pre>
         if (arr[i] < arr[k])</pre>
             tmp[id++] = arr[i++];
             tmp[id++] = arr[k++];
    while (i < mid1)</pre>
         tmp[id++] = arr[i++];
    while (j < mid2)</pre>
         tmp[id++] = arr[j++];
    while (k < high)</pre>
         tmp[id++] = arr[k++];
// Copy Temp Array to Original Array
    for (i = low; i < high; i++)</pre>
         arr[i] = tmp[i - low];
```

1.2. (T) Analyze the time complexity of both algorithms (split the array into two and three sub-arrays) using the recursion tree method.

A.) Merge Sort Analysis by Dividing into Two Parts

UI9CSO12					
	Merge-sort (A, p, r)	// Ton (Assume)			
8	$q = \Gamma(b+x)/3$	+ (
	q = L (P+8)/2	t c			
	Merge-sort- (A, p, q)	+ T(1/2)			
	Merge sort (A, 9+1, 2)	+ + (1/2)			
	Merge (A, P, q, r)	+ O(n)			
		(: in function merg			
	$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$	it take linear time)			
	Recursion Tree				
	(n)	—— (°, cn)			
		†			
	$\begin{pmatrix} \gamma_2 \end{pmatrix}$ $\begin{pmatrix} \gamma_2 \end{pmatrix}$	O _g (n)			
		+			
	(γ_2) (γ_2) (γ_2)	$O_2(n)$			
		,			
0		/ \ (1.0.0)			
	(n) + (n) + + (n)	(leaf node)			
	$\frac{n}{2^k} + \frac{n}{2^k} + \cdots + \frac{n}{2^k}$	$\begin{pmatrix} n & n & 1 \\ 2^{k} & 2^{k} \end{pmatrix}$			
		[k = log(n)]			
	$0/\left\{\frac{1}{2}in\right\} = 0/\left\{\frac{1}{2}n\right\} = 0(K.n)$				
	$0\left(\sum_{i=0}^{k} 2^{i} n\right) = 0\left(\sum_{i=0}^{k} n\right) = 0(k \cdot n)$				
	=	(log (n) × n)			
	Time complexity for Merge sort	$= \Theta(n \log n)$			

B.) Merge Sort Analysis by Dividing into Three Parts

	U19CS017
	Followwing the cimiler logic
	Followsing the similar logic (for 3 parts)
R	Merge-sost3 (arr, low, high) / Tch)
	if & high-low > < 2 + C
	helum
	mid1 = low + ((high low)/3); + C
	mid2 = low+ 2* ((high-low)/3); + C
	Merge-sox13 (arr, low, mid1); T(1/3)
	Merge-sort 3 (arr, mid1, mid2), T(1/3)
	Murge-sort 3 (arr, mid2, high); T (1/3)
	Merge (arr, low, mid1, mid2, high); OCA)
	7 (19 (277 , 100) 11102 , 111911) CI)
	T(n) = 3 + (n) + 6(n)
	T(n) = 3 + 0(n)
	time
	(n) cn
	(n) 3(n)
0	$\frac{1}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$
	MM m m m m m 32/11)
	$\frac{\sqrt{1}}{3}$ \sqrt
	1 A high
	N leaf Node
	$\frac{N}{3^k} - \frac{1}{3^k} + \frac{1}$
	$0\left(\sum_{i=1}^{k}3^{i}n\right)=0\left(\sum_{i=1}^{k}n\right)=0\left(\sum_{i=1}^{k}n\right)$
	= O(log3cn)*n)
	Time complexity for Merge sort = O(n log3 cn)

1.3. (L) Provide the details of Hardware/Software you used to implement algorithms and to measure the time.

Hardware Details of My Laptop:

PARAMETER	LAPTOP CONFIGURATION		
Operating System	Microsoft Windows 10.0.19042		
Processor	Intel(R) Core(TM) i5-10210U [Core i5 10th Gen]		
<i>C</i> PU	1.60GHz, 2112 Mhz, 4 Core(s), 8 Logical Processor(s)		
System Type	x64-based PC [64 Bit]		
RAM	8.00 <i>G</i> B		
Hard Drive/SSD	512 GB SSD		

Software Used:

PARAMETER	LAPTOP CONFIGURATION
Code Editor	Visual Studio Code [Version 1.52]
Compiler	gcc (MinGW.org GCC-8.2.0-5) 8.2.0
Time	Measured using chrono Library in C++
Programming Language Used	C++

1.4. (L) Submit the code (complete programs).

A.) Merge Sort Program by Dividing into Two Parts

```
// HEADERS AND NAMESPACE
#include <bits/stdc++.h>
// INSTEAD OF ALL THESE
#include <iostream>
// For Creating File
#include <fstream>
#include <vector>
// For set - precision
#include <iomanip>
// For Time Calculation
#include <chrono>
// For File Name and Output File Name
```

```
#include <string>
using namespace std;
using namespace std::chrono;
typedef long long 11;
typedef vector<ll> vll;
void merge(vll &arr, ll low, ll mid, ll high)
    vll tmp(high - low + 1, 0);
    11 i = low, j = mid + 1, k = 0;
    while (i <= mid && j <= high)</pre>
        if (arr[i] <= arr[j])
            tmp[k] = arr[i];
            k++;
            i++;
        else
            tmp[k] = arr[j];
            k++;
            j++;
    while (i <= mid)</pre>
        tmp[k] = arr[i];
        i++;
        k++;
    while (j <= high)</pre>
        tmp[k] = arr[j];
        j++;
        k++;
```

```
for (i = low; i <= high; i++)</pre>
        arr[i] = tmp[i - low];
void merge_sort(vll &arr, ll low, ll high)
    if (low < high)</pre>
        11 mid = low + (high - low) / 2; // To Avoid Overflow
        merge_sort(arr, low, mid);
        merge_sort(arr, mid + 1, high);
        merge(arr, low, mid, high);
    return;
int main()
    freopen("output.txt", "w", stdout);
    int file_no = 1;
    int limit = 10;
    int each_file_runs = 2;
    for (; file_no <= limit; file_no++)</pre>
        string inp_file = "File";
        string num = to_string(file_no);
        string ext = ".txt";
        inp file += num;
        inp_file += ext;
        ifstream File;
        File.open(inp_file);
        vector<ll> arr;
        11 number, idx = 0;
```

```
while (!File.eof())
   File >> number;
   arr.push_back(number);
11 Best_Duration = 0, Worst_Duration = 0, Average_Duration = 0;
auto start = high resolution clock::now();
auto end = high_resolution_clock::now();
auto time_taken = duration_cast<nanoseconds>(end - start);
ll n1 = arr.size();
for (int f = 0; f < each_file_runs; f++)</pre>
    start = high_resolution_clock::now();
   merge sort(arr, ∅, arr.size() - 1);
   end = high_resolution_clock::now();
   time_taken = duration_cast<nanoseconds>(end - start);
   Average_Duration += time_taken.count();
   start = high_resolution_clock::now();
   merge_sort(arr, 0, arr.size() - 1);
   end = high_resolution_clock::now();
   time_taken = duration_cast<nanoseconds>(end - start);
   Best_Duration += time_taken.count();
   reverse(arr.begin(), arr.end());
   start = high_resolution_clock::now();
   merge_sort(arr, 0, arr.size() - 1);
   end = high_resolution_clock::now();
   time_taken = duration_cast<nanoseconds>(end - start);
   Worst_Duration += time_taken.count();
cout << "----" << endl;</pre>
cout << inp_file << endl;</pre>
```

```
cout << "AVERAGE CASE : ";</pre>
    double avg = (double)Average_Duration / (double)each_file_runs;
    avg *= 1e-9;
    cout << fixed << avg << setprecision(9);</pre>
    cout << " seconds" << endl;</pre>
    cout << "BEST CASE
    double best = (double)Best_Duration / (double)each_file_runs;
    best *= 1e-9;
    cout << fixed << best << setprecision(9);</pre>
    cout << " seconds" << endl;</pre>
    cout << "WORST CASE : ";</pre>
    double worst = (double)Worst_Duration / (double)each_file_runs;
    worst *= 1e-9;
    cout << fixed << worst << setprecision(9);</pre>
    cout << " seconds" << endl;</pre>
return 0;
```

B.) Merge Sort Program by Dividing into Three Parts

```
// HEADERS AND NAMESPACE
#include <bits/stdc++.h>
// INSTEAD OF ALL THESE
#include <iostream>
// For Creating File
#include <vector>
// For set - precision
#include <iomanip>
// For Time Calculation
#include <chrono>
// For File Name and Output File Name
#include <string>
using namespace std;
using namespace std::chrono;
// COMMONLY USED TYPES
typedef long long ll;
typedef vector<ll> vll;
// Basic Algorithm Implementation of Merge Sort
// To Merge Two Sorted Array
void merge(vll &arr, ll low, ll mid1, ll mid2, ll high)
{
    // Create a Temp Array
```

```
vll tmp(high - low + 1, 0);
ll i = low, j = mid1, k = mid2, id = 0;
while (i < mid1 && j < mid2 && k < high)
    if (arr[i] < arr[j])</pre>
        if (arr[i] < arr[k])</pre>
             tmp[id++] = arr[i++];
        else
             tmp[id++] = arr[k++];
    else
        if (arr[j] < arr[k])
             tmp[id++] = arr[j++];
         }
        else
             tmp[id++] = arr[k++];
while ((i < mid1) && (j < mid2))
    if (arr[i] < arr[j])</pre>
        tmp[id++] = arr[i++];
    else
        tmp[id++] = arr[j++];
while ((j < mid2) && (k < high))</pre>
    if (arr[j] < arr[k])
        tmp[id++] = arr[j++];
```

```
else
            tmp[id++] = arr[k++];
    while ((i < mid1) && (k < high))
        if (arr[i] < arr[k])</pre>
            tmp[id++] = arr[i++];
        else
            tmp[id++] = arr[k++];
   while (i < mid1)</pre>
        tmp[id++] = arr[i++];
    while (j < mid2)</pre>
        tmp[id++] = arr[j++];
    while (k < high)
        tmp[id++] = arr[k++];
   for (i = low; i < high; i++)</pre>
        arr[i] = tmp[i - low];
void merge_sort(vll &arr, ll low, ll high)
    if (high - low < 2)
        return;
```

```
11 \text{ mid} 1 = 1 \text{ ow} + ((\text{high - 1ow}) / 3);
    11 \text{ mid2} = 1 \text{ ow} + 2 * ((\text{high - low}) / 3) + 1;
    merge_sort(arr, low, mid1);
    merge_sort(arr, mid1, mid2);
    merge_sort(arr, mid2, high);
    merge(arr, low, mid1, mid2, high);
    return;
int main()
    freopen("output.txt", "w", stdout);
    int file no = 1;
    int limit = 10;
    int each_file_runs = 3;
    for (; file_no <= limit; file_no++)</pre>
        string inp file = "File";
        string num = to_string(file_no);
        string ext = ".txt";
        inp_file += num;
        inp_file += ext;
        ifstream File;
        File.open(inp_file);
        vector<ll> arr;
        11 number, idx = 0;
        while (!File.eof())
             File >> number;
             arr.push_back(number);
        11 Best_Duration = 0, Worst_Duration = 0, Average_Duration = 0;
        auto start = high_resolution_clock::now();
        auto end = high_resolution_clock::now();
```

```
auto time_taken = duration_cast<nanoseconds>(end - start);
11 n1 = arr.size();
for (int f = 0; f < each_file_runs; f++)</pre>
   start = high_resolution_clock::now();
   merge_sort(arr, ∅, arr.size());
   end = high_resolution_clock::now();
   time_taken = duration_cast<nanoseconds>(end - start);
   Average Duration += time taken.count();
   start = high resolution clock::now();
   merge sort(arr, ∅, arr.size() - 1);
   end = high resolution clock::now();
   time_taken = duration_cast<nanoseconds>(end - start);
   Best Duration += time taken.count();
   reverse(arr.begin(), arr.end());
   start = high_resolution_clock::now();
   merge_sort(arr, 0, arr.size() - 1);
   end = high resolution clock::now();
   time taken = duration cast<nanoseconds>(end - start);
   Worst_Duration += time_taken.count();
cout << "----" << endl;</pre>
cout << inp file << endl;</pre>
cout << "AVERAGE CASE : ";</pre>
double avg = (double)Average_Duration / (double)each_file_runs;
avg *= 1e-9;
cout << fixed << avg << setprecision(9);</pre>
cout << " seconds" << endl;</pre>
cout << "BEST CASE : ";</pre>
double best = (double)Best_Duration / (double)each_file_runs;
best *= 1e-9;
cout << fixed << best << setprecision(9);</pre>
```

```
cout << "seconds" << endl;
cout << "WORST CASE : ";
double worst = (double)Worst_Duration / (double)each_file_runs;
worst *= 1e-9;
cout << fixed << worst << setprecision(9);
cout << "seconds" << endl;
}
return 0;
}</pre>
```

1.5. (L) Measure the best-case time, average-case time and worst-case time of the above two algorithms for all ten files (Assignment 1). Plot a graph.

A.) Merge Sort Program by Dividing into Two Parts

FILE	No. of Elements	BEST CASE [in sec]	AVERAGE CASE [in sec]	WORST CASE [in sec]
1	1024 = 2^10	0.000000000	0.000519000	0.000000000
2	4096 = 2^12	0.003997500	0.008046500	0.003997500
3	16384 = 2^14	0.017086500	0.017533500	0.017251500
4	65536 = 2^16	0.037438500	0.043737500	0.042738500
5	262144 = 2^18	0.154819000	0.198323000	0.147636500
6	1048576 = 2^20	0.634084000	0.711899500	0.616180000
7	2097152 = 2^21	1.255310000	1.427379000	1.311771000
8	4194304 = 2^22	2.629683500	2.973717500	2.677120500
9	8388608 = 2^23	5.407570500	6.219963500	5.513057500
10	16777216 = 2^24	11.222652500	12.724297000	11.212041500

^{*}Worst Case = Reverse Sorted Array

Merge Sort [2 Parts]

B.) Merge Sort Program by Dividing into Three Parts

FILE	No. of Elements	BEST CASE [in sec]	AVERAGE CASE [in sec]	WORST CASE [in sec]
1	1024 = 2^10	0.000000000	0.000332	0.001713000
2	4096 = 2^12	0.003036000	0.002839667	0.001595667
3	16384 = 2^14	0.003331667	0.007095667	0.010413333
4	65536 = 2^16	0.024336000	0.030064667	0.025325667
5	262144 = 2^18	0.105656333	0.126667667	0.111899000
6	1048576 = 2^20	0.477917333	0.528992333	0.476208667
7	2097152 = 2^21	1.054969667	0.936536667	0.931854000
8	4194304 = 2^22	2.252637667	2.009962000	1.972199000
9	8388608 = 2^23	3.994126333	4.524697667	3.966805333
10	16777216 = 2^24	8.216317333	9.190697000	8.110807000

^{*}Worst Case = Reverse Sorted Array

Merge Sort [3 Parts]

1.7. (L) Compare the average-case performance of bubble sort, selection sort, insertion sort, and merge sort for all ten files. Plot a graph.

AVERAGE CASE

File	No. Of	Bubble Sort	Selection Sort	Insertion	Merge Sort
	Elements			Sort	
1	2^10	0.01099400	0.002992000	0.000000000	0.000519000
2	2^12	0.111313000	0.050864000	0.038989000	0.008046500
3	2^14	1.501978000	0.669212000	0.345732500	0.017533500
4	2^16	24.017980000	11.059123000	4.971833000	0.043737500
5	2^18	487.501293000	174.081319000	78.119213000	0.198323000

AVERAGE CASE

1.6. (L) Compare the best-case performance of bubble sort, selection sort, insertion sort, and merge sort for all ten files. Plot a graph.

BEST CASE

File	No. Of	Bubble Sort	Selection Sort	Insertion	Merge Sort
	Elements			Sort	
1	2^10	0.008177500	0.001993000	0.00000000	0.00000000
2	2^12	0.057657500	0.048870000	0.00000000	0.003997500
3	2^14	0.913967500	0.667217000	0.005000000	0.017086500
4	2^16	14.563756500	10.864665000	0.00000000	0.037438500
5	2^18	483.525254500	172.253910000	0.001998500	0.154819000

1.8. (L) Compare the worst-case performance of bubble sort, selection sort, insertion sort, and merge sort for all ten files. Plot a graph.

WORST CASE

File	No. Of	Bubble Sort	Selection Sort	Insertion Sort	Merge Sort
	Elements				[Rev Sort]
1	2^10	0.014323500	0.003026000	0.010075500	0.000000000
2	2^12	0.142320000	0.045876000	0.086874000	0.003997500
3	2^14	2.449665000	0.743014000	1.208551500	0.017251500
4	2^16	37.231916500	13.791273000	18.156971000	0.042738500
5	2^18	571.021661500	248.630703000	289.277434500	0.147636500

After File 5 Onwards, It would take a <u>Minimum of 2 hrs</u> for Each File Execution. So Avoided Executing for Rest of the Files.

Note: Real Worst Case is Calculated in Following Manner:

The worst case of merge sort will be the one where merge sort will have to do **maximum number** of comparisons.

So I will try building the worst case in bottom up manner:

- 1. Suppose the array in final step after sorting is {0,1,2,3,4,5,6,7}
- 2. For worst case the array before this step must be {0,2,4,6,1,3,5,7} because here left subarray= {0,2,4,6} and right subarray= {1,3,5,7} will result in maximum comparisons. (Storing alternate elemets in left and right subarray)

Reason: Every element of array will be compared atleast once.

- 3. Applying the same above logic for left and right subarray for previous steps: For array $\{0,2,4,6\}$ the worst case will be if the previous array is $\{0,4\}$ and $\{2,6\}$ and for array $\{1,3,5,7\}$ the worst case will be for $\{1,5\}$ and $\{3,7\}$.
- 4. Now applying the same for previous step arrays: *For worst cases*: {0,4} must be {4,0}, {2,6} must be {6,2}, {1,5} must be {5,1} {3,7} must be {7,3}. Well if you look clearly this step is **not necessary** because if the size of set/array is 2 then every element will be compared atleast once even if array of size 2 is sorted.

MERGE SORT ALL CASE [THEORATICAL CALCULATION]

FILE	NUMBER OF ELEMENTS	NO OF OPERATIONS O(N*LOG₂(N))	APPROX TIME TAKEN [OP/10^8]
FILE 1	1024 = 2^10	1024*10	0.0001024
FILE 2	4096 = 2^12	4096*12	0.00049152
FILE 3	16384 = 2^14	16384*14	0.00229376
FILE 4	65536 = 2^16	65536*16	0.01048576
FILE 5	262144 = 2^18	262144*18	0.04718592
FILE 6	1048576 = 2^20	1048576*20	0.20971520
FILE 7	2097152 = 2^21	2097152*21	0.44040192
FILE 8	4194304 = 2^22	4194304*22	0.92274688
FILE 9	8388608 = 2^23	8388608*23	1.92937984
FILE 10	16777216 = 2^24	16777216*24	4.02653184

For Bubble Sort, Selection Sort and Insertion Sort.

BEST CASE [THEORATICAL CALCULATION]

FILE	NUMBER OF ELEMENTS	NO OF OPERATIONS [CASE] = O(N)	APPROX TIME TAKEN [OP/10^8]
FILE 1	1024 = 2^10	1024	0.00001024
FILE 2	4096 = 2^12	4096	0.00004096
FILE 3	16384 = 2^14	16384	0.00016384
FILE 4	65536 = 2^16	65536	0.00065536
FILE 5	262144 = 2^18	262144	0.00262144
FILE 6	1048576 = 2^20	1048576	0.01048576
FILE 7	2097152 = 2^21	2097152	0.02097152
FILE 8	4194304 = 2^22	4194304	0.04194304
FILE 9	8388608 = 2^23	8388608	0.08388608
FILE 10	16777216 = 2^24	16777216	0.16777216

WORST/AVERAGE CASE [THEORATICAL CALCULATION]

FILE	NUMBER OF ELEMENTS	NO OF OPERATIONS [CASE] = O(N^2)	APPROX TIME TAKEN [OP/10^8]
FILE 1	1024 = 2^10	2^20	0.0104 seconds = 0.01 sec
FILE 2	4096 = 2^12	2^24	0.167 seconds = 0.16 sec
FILE 3	16384 = 2^14	2^28	2.684 seconds = 2.6 sec
FILE 4	65536 = 2^16	2^32	43 seconds = 43 sec
FILE 5	262144 = 2^18	2^36	687 seconds = 11 mins
FILE 6	1048576 = 2^20	2^40	10995 seconds = 3 hrs 3 mins
FILE 7	2097152 = 2^21	2^42	43980 seconds = 12 hrs 13 mins
FILE 8	4194304 = 2^22	2^44	175922 seconds = 2 days 52 hrs 2 mins
FILE 9	8388608 = 2^23	2^46	703687 seconds = 8 days 3 hrs 28 mins
FILE 10	16777216 = 2^24	2^48	2814750 seconds = 32 days 13 hrs 52 mins

CONCLUSION:

<u>Bubble sort</u>: repeatedly compare neighbor pairs and swap if necessary.

<u>Selection sort:</u> repeatedly pick the smallest element to append to the result.

Insertion sort: repeatedly add new element to the sorted result.

Sorting Algorithm	Time Complexity			Space Complexity
	Best Case	Average Case	Worst Case	Worst Case
Bubble Sort	0(N)	0(N ²)	0(N ²)	0(1)
Selection Sort	0(N ²)	0(N ²)	0(N ²)	0(1)
Insertion Sort	0(N)	0(N ²)	0(N ²)	0(1)

Merge Sort:

- 1.) If it is only one element in the list it is already sorted, return.
- 2.) Divide the list recursively into two halves until it can no more be divided.
 - 3.) Merge the smaller lists into new list in sorted order.
- ✓ Merge Sort is useful for sorting linked lists.
- ✓ Merge Sort is a stable sort which means that the same element in an array maintain their original positions with respect to each other.
- ✓ Overall time complexity of Merge sort is O(nLogn).
 It is more efficient as it is in worst case also the runtime is O(nlogn).
- \checkmark The space complexity of Merge sort is O(n). [Not In-Place]
- ✓ This means that this algorithm takes a <u>lot of space</u> and may slower down operations for the last data sets.

SUBMITTED BY:

U19CS012

BHAGYA VINOD RANA