Wisku \mathbb{N} de in- \mathbb{Z} icht

Wiskunde in muziek

Pieter Belmans (pieter.belmans@uantwerpen.be)
Matthias Roels (matthias.roels@uantwerpen.be)

Voor we beginnen

Log-in en wachtwoord computers: US103User

We downloaden de samples waarmee we werken:

- 1. ga naar http://is.gd/WisinZ
- download samples.zip
- 3. en dan uitpakken (!)

Instellingen Audacity:

1. Venstertype: Blackman-Harris

2. Grootte: 1024-2048

3. Frequentie-as: Logaritmisch

Deel 1

Fourierreeksen

Wat is geluid?

- ► Geluid is een periodisch signaal (een "golf")
- ► Wiskundig: een functie die afhangt van de tijd zodat

$$f(t+P)=f(t),$$

met *P* de periode.

Vraag

Hoe beschrijft men deze functies?

Wat zijn de meest eenvoudige signalen?

► Dit zijn de goniometrische functies

$$f(t) = A\cos(\omega t)$$
 en $g(t) = B\sin(\omega t)$,

met A en B de amplitude en ω de frequentie.

- ► Amplitude: $\frac{1}{2}$ (het verschil tussen piek en dal)
- ► Frequentie: (afstand tussen twee toppen van de golf)⁻¹

Vraag

- 1. Hoe klinkt zo'n signaal?
- 2. Kunnen we deze gebruiken om complexere signalen te beschrijven?

Audiofragment

 ${\tt Sin_wave.aup}$

Audiofragment

Sin_wave.aup

Een analogie met vectoren

▶ Een vector kan geschreven worden als $\vec{v} = a\vec{e}_x + b\vec{e}_v$.

► We willen iets gelijkaardigs doen met signalen: deze schrijven als lineaire combinaties van "basisfuncties".

Fourierreeksen

▶ periodische signalen ontbinden in (mogelijk oneindige) som van eenvoudige signalen

$$f(t) = \frac{A_0}{2} + \sum_{n=0}^{\infty} (A_n \cos(\omega_n t) + B_n \sin(\omega_n t)).$$

oneindige som mag niet oneindig geven.

 \implies amplitudes A_n en B_n zullen kleiner en kleiner worden naarmate n groter wordt.

Blokgolf (2)

Vorige slide: grafische weergave van eerste 4 termen van fourierreeks:

$$s(x) \approx \sin(t) + \frac{1}{\pi}\sin(2t) + \frac{2}{3\pi}\sin(3t) - \frac{1}{2\pi}\sin(4t).$$

Opmerking

Dit is slechts een benadering! Deze wordt beter en beter naarmate er meer termen worden toegevoegd.

Audiofragment:

Square_wave.aup

Audiofragment:

Square_wave.aup

Zaagtand golf (2)

Vorige slide: grafische weergave van eerste 4 termen van fourierreeks:

$$s(x) \approx \frac{2}{\pi} \sin(t) - \frac{1}{\pi} \sin(2t) + \frac{2}{3\pi} \sin(3t) - \frac{1}{2\pi} \sin(4t).$$

Opmerking

De zaagtand (net zoals de blokgolf) klinkt onnatuurlijk: de verticale stukken vereisen "oneindig veel energie" omdat we zonder overgang van 1 naar -1 springen. Daarom kunnen dit soort geluiden nooit in de natuur voorkomen, en luisteren we ook nu naar een benadering.

Zaagtand golf (3)

Audiofragment:

Sawtooth_wave.aup

Zaagtand golf (3)

Audiofragment:

Sawtooth_wave.aup

Deel 2

Instrumenten analyseren

Hoe ontstaat gitaargeluid?

- ► Trilling van snaren wordt omgezet in wisselspanning door magnetische spoel: *de pickups*. (Wet van Faraday-Lenz)
- Wisselspanning moet versterkt worden om via luidsprekers hoorbare klank op te leveren.

Versterking van gitaargeluid

- ► Inputspanning van versterkers begrensd door minimum en maximum.
- ▶ Binnen deze grenzen: versterking lineair, d.w.z. elke frequentie in signaal wordt met zelfde factor versterkt.
- ► Levert cleane gitaarklank.

Audiofragment

Cleanguitar-sample.aup

Vraag

Wat gebeurt er wanneer de inputspanning de maximumspanning nadert?

Versterking van gitaargeluid (2)

Versterking van gitaargeluid (3)

- ► Versterking niet meer lineair: kleinere spanningen worden (relatief gezien) meer versterkt dan grotere.
- ► Toppen van golven met te grote amplitude worden afgerond: overdrive of clipping met vollere en warmere klank tot gevolg.
- ► Distortion/hard clipping: golftoppen worden afgekapt, dit levert vreemde componenten in spectrum
- ► Clipping levert typische rocksound.

Audiofragment

Overdriveguitar-sample.aup

Een enkele noot (piano)

Audiofragment:

Piano-G-sharp.aup

Een enkele noot (piano)

Audiofragment:

Piano-G-sharp.aup

Een enkele noot (mondharmonica)

Audiofragment:

Harmonica-G-note.aup

50Hz 70Hz 100Hz

30Hz

Een enkele noot (mondharmonica)

500Hz

1000Hz

2000Hz

200Hz 300Hz

4000Hz 6100Hz 10000Hz 20000Hz

Een enkele noot (gitaar)

Audiofragment:

A-flat-note.aup

Een enkele noot (gitaar)

Audiofragment:

A-flat-note.aup

Een enkele noot (gitaar) (2)

Audiofragment:

A-flat-harmonic.aup

Een enkele noot (gitaar) (2)

Audiofragment:

Een enkele noot: conclusie

- ► Grondnoot is in beide gevallen duidelijk herkenbaar.
- Verschil gitaar/piano: zelfde boventonen maar andere amplitudes.
- ► Kleinere pieken door discretisatie van signaal en algoritme.

Oefening: juiste noten herkennen

Audiofragment:

Note1.aup

Note2.aup

Note3.aup

Fragment 1

C-noot: gitaar vs. mondharmonica

Audiofragment:

Exercise-sample1.aup

Exercise-sample2.aup

Exercise-sample3.aup

Fragment 1

C-powerchord.aup

C-powerchord.aup

C-powerchord-overdriven.aup

C-powerchord-overdriven.aup

C-powerchord-heavily-distorted.aup

C-powerchord-heavily-distorted.aup

Conclusie: clipping

- ► Clean: akkoordnoten duidelijk terug te vinden.
- ► Effect van clipping duidelijk zichtbaar in spectra!

C-major-chord.aup

C-major-chord.aup

Deel 3

A Hard Day's Night

Analyse van het beginakkoord

Hoe pakken we dit aan?

We houden rekening met:

1. boventonen die niet als aparte noten geteld moeten worden

Hoe pakken we dit aan?

We houden rekening met:

- 1. boventonen die niet als aparte noten geteld moeten worden
- 2. de bezetting, en dus de (on)mogelijkheden van de instrumenten:
 - 2.1 George Harrison: 12-snarige gitaar
 - 2.2 John Lennon: gitaar
 - 2.3 Paul McCartney: basgitaar

Hoe pakken we dit aan?

We houden rekening met:

- 1. boventonen die niet als aparte noten geteld moeten worden
- 2. de bezetting, en dus de (on)mogelijkheden van de instrumenten:
 - 2.1 George Harrison: 12-snarige gitaar
 - 2.2 John Lennon: gitaar
 - 2.3 Paul McCartney: basgitaar
- 3. extra lid van de bezetting: George Martin op piano

Resultaat

