Recent developments in MADS algorithms: ABAGUS and Squads

Dylan R. Harp Velimir V. Vesselinov LA-UR-11-11957

2011 EES-16 Brownbag Series

Model analysis and decision support (MADS) for complex problems

Complex problems:

- Large number of model parameters
- Nonlinear and hysteretic parameter correlations
- Multiple maxima/minima
- Flat response surface regions (portions of parameter space with low parameter sensitivity)
- Long execution times
- Require efficient and robust model analyses strategies

Model analysis and decision support (MADS) for complex models

Why do we care?		

Model analysis and decision support (MADS) for complex models

Why do we care?

- Model analysis
 - Calibration/parameter estimation
 - Uncertainty quantification
 - Parameter sensitivities and correlations
 - Predictive analysis
 - Model selection
 - Model averaging

Model analysis and decision support (MADS) for complex models

Why do we care?

- Model analysis
 - Calibration/parameter estimation
 - Uncertainty quantification
 - Parameter sensitivities and correlations
 - Predictive analysis
 - Model selection
 - Model averaging
- Decision support
 - Robust and/or optimal decisions

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

- Identify acceptable parameter ranges
- Sensitivity analysis

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

- Identify acceptable parameter ranges
- Sensitivity analysis
- Identify parameter correlations

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

- Identify acceptable parameter ranges
- Sensitivity analysis
- Identify parameter correlations
- Parameter uncertainty analysis

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

- Identify acceptable parameter ranges
- Sensitivity analysis
- Identify parameter correlations
- Parameter uncertainty analysis
- Predictive analysis

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

- Identify acceptable parameter ranges
- Sensitivity analysis
- Identify parameter correlations
- Parameter uncertainty analysis
- Predictive analysis
- Decision support

ABAGUS features:

- "Agent-based" model analysis
- Extends Particle Swarm Optimization (PSO) to uncertainty and sensitivity analysis
- Collects all model evaluation results in KD-Tree for efficient restart and hierarchical analysis
- Response surface sculpting discourages reinvestigation of "collected" regions of the parameter
- Discretized parameter space
- Automated discretization refinement

ABAGUS uses:

- Identify acceptable parameter ranges
- Sensitivity analysis
- Identify parameter correlations
- Parameter uncertainty analysis
- Predictive analysis
- Decision support
- Information for these are contained in the results from a single ABAGUS run

Harp, D.R. and V.V. Vesselinov (2011), An agent-based approach to global uncertainty and sensitivity analysis, *Computers & Geosciences*, doi:10.1016/j.cageo.2011.06.025.

Monte Carlo vs ABAGUS: Estimation of probability of success/failure based

Monte Carlo vs ABAGUS: Estimation of probability of success/failure based

- $f(x_1, x_2) \le 160$ is approximately 5% of domain
- x uniformly distributed
- Domain: x = [-50 : 50]

Monte Carlo estimation of probability of success/failure

Estimation of parameter space with $f(x_1, x_2) \leq 160$

- Probability of success/failure (i.e. domain fraction) estimated by fraction of random samples in "red circle"
- Monte Carlo uses an Improved Distance Latin Hypercube Sampling

ABAGUS estimation of probability of success/failure

ABAGUS estimation of probability of success/failure

- $f(x_1, x_2) = 160$ indicated by red circle
- Zoomed into $x_1, x_2 = [-20 : 20]$

- Response surface sculpted
- "Acceptable" parameter sets collected

ABAGUS estimation of probability of success/failure

ABAGUS results on more complicated response surfaces...

ABAGUS as predictive analyzer

ABAGUS as predictive analyzer

ABAGUS as predictive analyzer

Gradient contours of 2nd criterion

Max/min values of 2nd criterion within 1st criterion

Contaminant plume in aquifer...

- w wells (circles) existing wells
- d wells (stars) proposal wells
- Uncertain parameters: source location (x_s, y_s) dispervities (a_x, a_y, a_z)

• Min OF at each source location plotted

Adaptive Optimization: Squads

Squads

- Global optimization with local optimization speedup
- Global strategy: Adaptive Particle Swarm Optimization (APSO)
- Local strategy: Levenberg-Marquardt (LM)
- Adaptive rules balance strategies

Vesselinov, V.V. and D.R. Harp, Adaptive hybrid optimization strategy for calibration and parameter estimation of physical model, *C*omputers & Geosciences, In Review.

Squads comparisons

Squads is compared to:

- Levenberg-Marquardt (LM) local strategy
- Particle Swarm Optimization (PSO) Standard 2006 global strategy
- TRIBES Adaptive PSO global strategy
- hPSO (PSO + simplex) alternative hybrid strategy

Squads comparisons

Squads is compared to:

- Levenberg-Marquardt (LM) local strategy
- Particle Swarm Optimization (PSO) Standard 2006 global strategy
- TRIBES Adaptive PSO global strategy
- hPSO (PSO + simplex) alternative hybrid strategy

Comparison details:

- 2D, 5D, and 10D Rosenbrock and Griewank test functions
- Domain: $\mathbf{x} = [-100 : 100]$
- 20,000 allowable function evaluations for each optimization run
- 1000 runs per strategy for each test function
- Success: all parameters within 0.1 of optimal parameters

Squads: Rosenbrock comparisons

2D Rosenbrock

- Boxes indicate 25th to 75th percentile range for number of evaluations needed to achieve success
- Vertical lines in boxes indicate median value
- "Whiskers" indicate max and min values
- Number of successful runs out of 1000 are indicated above boxes

2D Rosenbrock function

Global minimum: $\mathbf{x} = \mathbf{1}$

Squads: Rosenbrock comparisons

Squads: Griewank comparisons

Griewank Function:

- Ideal for comparison of hybrid methods
- Becomes more difficult for global methods with increased dimensionality
- Becomes easier for local methods with increased dimensionality
- Hybrid methods should have a well balanced act

Squads: Griewank comparisons

SQUADS application

Conclusions

- ABAGUS presents efficient approach for model-based uncertainty analyses
- Squads provides an efficient and robust optimization strategy