Graded quiz on Cartesian Plane and Types of Function

LATEST SUBMISSION GRADE

92.3%

1. Which of the following points in the Cartesian Plane have positive x-coordinate and negative y-coordinate?

1 / 1 point

- \bigcirc (0,0)
- \bigcirc (7,-1)
- $\bigcirc (-4,5)$
- \bigcirc (5,7)

✓ Correct

The x-coordinate, 7, is positive, and the y-coordinate, -1, is negative.

2. Which of the following points is in the first quadrant of the Cartesian Plane?

1 / 1 point

- $\bigcirc (-4, -7)$
- \bigcirc (5, -1)
- \bigcirc (7,11)
- $\bigcirc (-5,1)$

✓ Corre

The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.

3.	Let A, B, C	\mathcal{C}, D be points	in the Cartesiar	n Plane, and le	et the set $S=rac{1}{2}$	$\{B,C,D\}$

1 / 1 point

Suppose that the distances from A to B,C,D are 5.3,2.1, and 11.75, respectively.

Which of the following points is the nearest neighbor to the point A in the set S?

- A
- O D
- О в
- C

Correc

The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S.

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1 / 1 point

- O 25
- 5
- \bigcirc -25
- \bigcirc 1

. / Correc

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

5. Find the slope of the line segment between the points A=(0,1) and B=(1,0).

1 / 1 point

- \bigcirc 1
- $\bigcirc \sqrt{2}$
- \bigcirc 0

✓ Correct

The slope of this line segment is $\frac{0-1}{1-0}=-1$

$$y-4=-2(x-5)$$

$$y-4=2(x-5)$$

$$y-5=-2(x-4)$$

$$\bigcirc$$
 $(5,4)$

✓ Correct

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1/1 point

$$\bigcirc y = 5x$$

$$\bigcirc \ y = 8x - 3$$

$$y = 5x + 2$$

$$y = -3x - 8$$

✓ Correct

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

8. Which of the following equations is for a line with the same y-intercept as y=-3x+2?

1 / 1 point

$$\bigcirc y = 8x - 3$$

$$y = -3x - 8$$

$$\bigcirc y = 5x$$

$$y = 5x + 2$$

✓ Correct

The the slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis. This line has a y-intercept of 2 which is the same as the given line.

9.	How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 point
	O 2	
	○ None	
	infinitely many	
	1	
	\checkmark $\ \ $ Correct $ \ $ The line with equation $y=x$ is the one and only line that meets the stated requirements.	
10.	Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A\to Z$ are possible?	0 / 1 point
	O 4	
	There are infinitely many	
	○ There are none	
	O 1	
	! Incorrect $ \hbox{The set A is finite, and each element in A can only be transformed into finitely many choices of element in Z.} $	
11.	How many graphs contain both the point $A=\left(0,0 ight)$ and the point $B=\left(1,1 ight)$	1 / 1 point
	Infinitely many	
	O 2	
	O 1	
	○ None	
	\checkmark Correct	

- All of the above.
- \bigcirc g is neither strictly increasing nor strictly decreasing.
- $\bigcirc \ g$ is strictly increasing.
- \bigcirc g is strictly decreasing.

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

1 / 1 point

- \bigcirc $\sqrt{20}$
- \bigcirc $\frac{1}{2}$
- \bigcirc 4
- \bigcirc 2

The slope of this line segment is $\frac{3-1}{5-1}=\frac{1}{2}$, where 3-1 is the rise and 5-1 is the run.