Operatii cu matrice

1. Adunarea matricelor de acelasi tip

Fie A si B \in M_{m,n} (Q). Presupunem ca A = (α_{ij}), $1 \le i \le m$, $1 \le j \le n$ si B = (b_{ij}), $1 \le i \le p$, $1 \le j \le n$ ale carei elementes unt date de egalitatile $c_{ij} = \alpha_{ij} + b_{ij}$, oricare ar fi i = 1,2, ..., n si j = 1, 2, ..., n. Matricea C se numeste suma dintre matricele A si B si se noteaza C = A + B.

2. Inmultirea cu scalari a matricelor

Fie A = $(a_{ij})_{1 \le i \le m, 1 \le j \le n}$ o matrice de tipul (m, n) si λ . Definim matricea B= $(b_{ij})_{1 \le i \le m, 1 \le j \le n}$ de tipul (m,n) ale carei elemente sunt date de egalitatea $b_{ij} = \lambda a_{ij}$ (\forall) i $\in \{1, 2, 3, ..., m\}$ si (\forall) j $\in \{1, 2, 3, ..., n\}$. Matricea B se numeste produsul dintre numarul λ (scalarul lui λ) si matricea A si se noteaza B = λA .

3. Inmultirea matricelor

Fie A = $(a_{ij})_{1 \le i \le m, 1 \le j \le n}$ o matrice de tipul (m, n) si B = $(b_{ij})_{1 \le i \le m, 1 \le j \le p}$ de tipul (m, p) ale carui elemente sunt date de egalitatile: $c_{ik} = a_{i1}b_{ik} + a_{i2}b_{2k} + ... + a_{ip}b_{nk}$ = $\sum_{i=1}^{n} a_{ij} b_{jk}$ (\forall) I = 1,m si k = 1,p

4. Ridicarea la putere a matricelor

Pentru a ridica o matrice patratica de ordinul 2 la o putere naturala n avem urmatoarele metode:

Metoda I: Inmultirea matematica

Se calculeaza A^2 , A^3 , A^4 , ... pana observam o regula sau mai multe de calculare a lui A^n . Aceasta regula (sau reguli) se demonstreaza prin inductie completa

Metoda 2: cu ajutorul Binomului lui Newton

In anumite cazuri matricea $A \in M_2$ (C) se poate scrie sub forma A = B + C, unde B, $C \in M_2$ (C) cu proprietatea BC = CB si pentru care puterile se calculeaaza usor. Pentru calculul lui A^n se afla apoi binomul lui Newton.

$$A^{n} = (B + C)^{n} = C_{n}^{0}B^{n} + C_{n}^{1}B^{n-1}C + C_{n}^{2}B^{n-2}C^{2} + ... + C_{n}^{n}C^{n}$$

Metoda 3: cu ajutorul sirurilor

Calculam A, A², A³, Scriem A¹ = $\begin{pmatrix} x_n & y_n \\ z_n & t_n \end{pmatrix}$. Din relatia A¹+1 = A¹ A se obtine relatia de recurenta pentru sirurile ce apar in matrice. Prin rezolvarea acestora aflam A¹.