I. Quelques propriétés de $F = \theta(f)$.

1.1.

$$\theta(1)(x) = \int_{x}^{x+1} dt = 1$$

1.2. Soit $k \in \mathbb{N}^*$.

$$\theta(t^k)(x) = \int_x^{x+1} t^k dt = \frac{1}{k+1} ((x+1)^{k+1} - x^{k+1})$$

Remarque : la formule est encore valable si k = 0 ce qui unifie les deux questions.

2.1. D'après un théorème foncdamental du cours, $x \mapsto \int_a^x g(t) dt$ est une primitive de g sur l'intervalle I quand g est continue sur I et $a \in I$. Ici, notons $f_1 : x \mapsto \int_0^x f(t) dt$. C'est une primitive de f et

$$\forall x, \ F(x) = f_1(x+1) - f_1(x)$$

Cette formule montre que $F \in \mathcal{C}^1$ avec

$$\forall x, F'(x) = f'_1(x+1) - f'_1(x) = f(x+1) - f(x)$$

- 2.2. Si f croît sur J_{x_0} alors pour $x \ge x_0$ on a (puisque $x + 1 \ge x \ge x_0$) $f(x + 1) f(x) \ge 0$. F' est ainsi positive sur J_{x_0} et F est donc croissante sur J_{x_0} . La preuve est la même dans le cas décroissant.
- 2.3. F est constante sur \mathbb{R} si et seulement F' est nulle c'est à dire si et seulement si $\forall x, f(x+1) = f(x)$. Comme f est continue, cette condition équivaut à $f \in \mathcal{C}_1^0$.
- 2.4. $f: t \mapsto |\sin(\pi t)|$ étant élément de \mathcal{C}_1^0 , son image par θ est constante. On a

$$\forall x, \ F(x) = F(0) = \int_0^1 |\sin(\pi t)| \ dt = \int_0^1 \sin(\pi t) \ dt = \left[-\frac{\cos(\pi t)}{\pi} \right]_0^1 = \frac{2}{\pi}$$

2.5. Si f est constante égale à L_1 alors F l'est aussi. On devine donc que $L_2 = L_1$. On forme donc la différence et on montre qu'elle est de limite nulle en $+\infty$.

$$\left| \int_{x}^{x+1} f(t) \ dt - L_{1} \right| = \left| \int_{x}^{x+1} (f(t) - L_{1}) \ dt \right| \le \int_{x}^{x+1} |f(t) - L_{1}| \ dt$$

 $t \mapsto |f(t) - L_1|$ étant continue sur le segment [x, x + 1], elle est bornée et atteint ses bornes sur ce segment et

$$\exists c_x \in [x, x+1] / \left| \int_x^{x+1} f(t) dt - L_1 \right| \le |f(c_x) - L_1|$$

Comme $c_x \to +\infty$ quand $x \to +\infty$, le majorant est, par composition des limites, de limite nulle en $+\infty$. On a donc

$$\lim_{x \to +\infty} F(x) = L_1$$

3.1. Le changement de variable x = -t donne

$$\psi(-u) = \int_{-u-1/2}^{-u+1/2} f(t) dt = -\int_{u+1/2}^{u-1/2} f(-x) dx = \int_{u-1/2}^{u+1/2} f(-x) dx$$

Ainsi, si f est paire (resp. impaire), ψ l'est aussi.

3.2. Le graphe d'une fonction impaire est symétrique par rapport à l'origine et celui d'une fonction paire est symétrique par rapport à l'axe des abscisses. Par ailleurs, le graphe de F se déduit de celui de ψ par translation de vecteur (-1/2,0). Ainsi,

- si f est paire, le graphe de F est symétrique par rapport à la droite x = -1/2.
- si f est impaire, le graphe de F est symétrique par rapport au point (-1/2,0).
- 4.1. Soit $f_k: t \mapsto \frac{e^{-kt^2}}{k^2+1}$. On a $||f_k||_{\infty} \leq \frac{1}{k^2+1}$. Le majorant étant le terme général d'une série convergente, $\sum f_k$ converge normalement sur \mathbb{R} . Les f_k étant continues, on a donc $f \in \mathcal{C}^0(\mathbb{R})$.
- 4.2. f_k est de classe \mathcal{C}^1 sur \mathbb{R} avec

$$\forall k, \ f'_k : t \mapsto \frac{-2kt}{k^2 + 1}e^{-kt^2}$$

On remarque alors que

$$\forall b > a > 0, \ \forall |t| \in [a, b], \ |f'_k(t)| \le \frac{2kb}{k^2 + 1}e^{-ka^2}$$

Le majorant est indépendant de t et, par croissance comparées, est négligeable devant $1/k^2$ quand $k \to +\infty$. C'est donc le terme général d'une série convergente. $\sum f'_k$ est ainsi normalement convergente sur tout segment de \mathbb{R}^* . Le cours indique que

$$f \in \mathcal{C}^1(\mathbb{R}^*)$$
 et $\forall x \neq 0, \ f'(x) = -2t \sum_{k \geq 1} \frac{ke^{-kt^2}}{k^2 + 1}$

Cette étude ne permet pas de conclure en 0. Soyons donc plus fins. La fonction $g_k : t \mapsto te^{-kt^2}$ est dérivable et $g'_k(t) = (1 - 2kt^2)$. On a donc le tableau de variations suivant

$$\begin{array}{c|cccc}
t & 0 & 1/\sqrt{2k} & +\infty \\
g_k(t) & & \sqrt{e/2k} & & \\
0 & & & 0
\end{array}$$

 g_k étant impaire, on a $||g_k \mathbf{L}_{\infty}| = \sqrt{\frac{e}{2k}}$ et donc

$$||f_k'||_{\infty} = \frac{\sqrt{2ke}}{k^2 + 1} \mathop{\sim}_{k \to +\infty} \frac{\sqrt{2e}}{k^{3/2}}$$

Il y a donc convergence normale de $\sum f'_k$ sur \mathbb{R} et, comme auparavant,

$$f \in \mathcal{C}^1(\mathbb{R}) \text{ et } \forall x \neq 0, \ f'(x) = \sum_{k \geq 1} \frac{-2tke^{-kt^2}}{k^2 + 1}$$

Remarque: on ne peut ici factoriser par t car pour t = 0 la série qui resterait serait divergente.

4.3. La normale convergence sur \mathbb{R} prouvée en 4.1 permet d'appliquer le théorème de double limite. Comme chaque f_k $(k \ge 1)$ est de limite nulle en $+\infty$, on a donc

$$\lim_{t \to +\infty} f(t) = 0$$

- 4.4. f est paire (comme les f_k), de limite nulle en l'infini, de dérivée nulle en 0. De plus, la fonction décroît sur \mathbb{R}^+ (dérivée négative). C'est une fonction qui est ainsi positive. On a donc une fonction "en cloche"
- 4.5. On a $t^2 f(t) = \sum_{k \ge 1} t^2 f_k(t)$. La fonction $t \mapsto t^2 e^{-t^2}$ est continue sur \mathbb{R} et de limite nulle en $\pm \infty$. C'est donc une fonction bornée sur \mathbb{R} . Notons M un de ses majorants. On a alors :

$$\forall t, |t^2 f_k(t)| = t^2 e^{-t^2} \frac{e^{-(k-1)t^2}}{k^2 + 1} \le \frac{M}{k^2 + 1}$$

Le majorant est indépendant de t et est le terme général d'une série convergente. $\sum t^2 f_k(t)$ est donc normalement convergente sur \mathbb{R} et on peut, en particulier, utiliser le théorème de double limite en $\pm \infty$. $t^2 f_k(t)$ étant de limite nulle en $\pm \infty$, on obtient que

$$\lim_{t \to \pm \infty} \sum_{k=1}^{+\infty} \frac{t^2 e^{-kt^2}}{k^2 + 1} = 0$$

c'est à dire que f est négligeable devant $1/t^2$ au voisinage des infinis. Elle est donc intégrable au voisinage des infinis et, étant continue sur \mathbb{R} , est finalement intégrable sur \mathbb{R} .

4.6. F est, comme f, de limite nulle en $+\infty$ (question 2.5) et décroissante sur $[0, +\infty[$ (question 2.2). Par ailleurs, f est paire et la question 3.2 montre que le graphe de F est symétrique par rapport à la droite x = -1/2.

Le graphe de F a lui aussi l'allure d'une cloche (décalée sur la gauche par rapport à la première. f étant décroissante (et positive) sur \mathbb{R}^+ , on a

$$\forall x \ge 0, \ 0 \le F(x) = \int_x^{x+1} f(t) \ dt \le f(x) \int_x^{x+1} dt = f(x)$$

F est ainsi continue sur \mathbb{R}^+ , positive et dominée par une fonction intégrable sur \mathbb{R}^+ . C'est donc elle même une fonction intégrable sur \mathbb{R}^+ . Par parité, elle est intégrable sur \mathbb{R} .

II. L'endomorphisme θ .

- 1. On a $Im(\theta) \subset \mathcal{C}^1$. Comme $x \mapsto |x|$ est continue et non de classe \mathcal{C}^1 , c'est une fonction qui n'admet pas d'antécédent par θ . θ n'est pas un endomorphisme surjectif de \mathcal{C}^0 .
- 2.1. Supposons $f \in Ker(\theta)$. On a alors $F = \theta(f)$ qui est constante (nulle) et donc (question I.2.3) $f \in \mathcal{C}_1^0$. De plus, $F(0) = \int_0^1 f(t) dt = 0$. Réciproquement, si $f \in \mathcal{C}_1^0$ alors $F = \theta(f)$ est constante (quastion I.2.3) et cette constante vaut

F(0) et elle est nulle si $\int_0^1 f = 0$.

On a ainsi prouvé que

$$Ker(\theta) = \left\{ f \in \mathcal{C}_1^0 / \int_0^1 f = 0 \right\}$$

2.2. c_k est clairement continue et 1-périodique (continuité et 2π périodicité du cosinus). Les formules de trigonométrie donnent

$$\langle c_j | c_k \rangle = \frac{1}{2} \int_0^1 \left(\cos(2\pi(j+k)t) + \cos(2\pi(j-k)t) \right) dt$$

Comme $\int_0^1 \cos(2\pi pt) dt$ est nul si $p \in \mathbb{Z}^*$ et vaut 1 si p = 0, on a donc

$$\forall j, k \in \mathbb{N}^*, < c_j | c_k > = \delta_{j,k}$$

Remarque : $\delta_{j,k}$ vaut 1 si j = k et 0 sinon.

On a $c_k \in Ker(\theta)$ (continuité, 1-périodicité, intégrale nulle sur [0,1]) et donc

$$Vect((c_k)_{k\in\mathbb{N}^*})\subset Ker(\theta)$$

Par ailleurs, (c_k) est libre car elle est orthonormée. Ainsi, $Ker(\theta)$ est de dimension infinie (il contient une famille libre infinie).

2.3. - f étant continue, ϕ_n est une primitive de f. Une intégration par parties donne alors

$$W_n = \left[\frac{\phi_n(t)}{t}\right]_n^{n+1} + \int_n^{n+1} \frac{\phi_n(t)}{t^2} dt$$

Par ailleurs, $\phi_n(n) = 0$ par définition et, f étant 1-périodique,

$$\phi_n(n+1) = \int_n^{n+1} f(t) dt = \int_0^1 f(t) dt = \phi_0(1)$$

On a donc finalement

$$W_n = \frac{\phi_0(1)}{n+1} + \int_n^{n+1} \frac{\phi_n(t)}{t^2} dt$$

Le changement de variable u = t - n montre (avec la périodicité de f) que

$$\phi_n(x) = \int_0^{x-n} f(u+n) \ du = \int_0^{x-n} f(u) \ du = \phi_0(x-n)$$

 $|\phi_0|$ est continue sur le SEGMENT [0,1] et admet, sur ce segment, un maximum M. La formule précédente montre que $|\phi_n|$ admet ce maximum M sur [n,n+1]. On a donc

$$\left| \int_{n}^{n+1} \frac{\phi_n(t)}{t^2} dt \right| \le M \int_{n}^{n+1} \frac{dt}{t^2} = \frac{1}{n(n+1)}$$

Ainsi, $\int_n^{n+1} \frac{\phi_n(t)}{t^2} \; dt$ est le terme général d'une série convergente.

- Si $f \in Ker(\theta)$ alors $\phi_0(1)$ et $\sum W_n$ converge.
- Sinon, W_n est somme de termes généraux de séries convergente et divergente $(\phi_0(1)/n)$. On a donc divergence de $\sum W_n$.
- 3.1. Si $a \neq 0$, on a

$$\theta(h_a)(x) = \int_x^{x+1} e^{at} dt = \frac{1}{a} (e^{a(x+1)} - e^{ax}) = \frac{e^a - 1}{a} h_a(x)$$

 h_a (qui est non nul) est donc vecteur propre de θ associé à la valeur propre $\frac{e^a-1}{a}$.

Quant à $h_0=1$, on a vu en I.1.1 qu'il est vecteur propre de θ associé à la valeur propre 1 (satisfaisant puisque $\frac{e^a-1}{a} \to 1$ quand $a \to 0$).

3.2. La fonction $h: u \mapsto \frac{e^u - 1}{u}$ est dérivable sur \mathbb{R}^* avec

$$\forall u \neq 0, \ h'(u) = \frac{g(u)}{u^2} \text{ où } g(u) = ue^u - e^u + 1$$

g est dérivable sur \mathbb{R} avec $g'(u) = ue^u$. g est donc décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}^+ . Etant nulle en 0, elle reste positive. Ainsi, h' est positive sur \mathbb{R}^* . On en déduit que h croît sur chaque intervalle \mathbb{R}^{+*} et \mathbb{R}^{*-} .

Remarque : on a $h(u) \to 1$ quand $u \to 0$. h est donc prolongeable par continuité et on a croissance de la fonction prolongée $sur \mathbb{R}$.

3.3. D'après la question 3.1, tout $\frac{e^a-1}{a}$ est dans le spectre de a pour tout a. Avec la question précédente, quand a parcourt \mathbb{R}^{*-} , $\frac{e^a-1}{a}$ parcourt]0,1[(valeurs limites en $-\infty$ et 0 de la fonction). De même, quand a parcourt \mathbb{R}^{*-} , $\frac{e^a-1}{a}$ parcourt $]1,+\infty[$ (valeurs limites en 0 et $+\infty$ de la fonction). Ainsi, tout élément de $\mathbb{R}^{+*}\setminus\{0,1\}$ est dans le spectre de θ . Comme 0 et 1 sont aussi valeurs propres (fonctions c_1 et 1 par exemple), on a

$$Sp(\theta) \cap \mathbb{R}^+ = \mathbb{R}^+$$

III. Une suite de fonctions propres.

1.1. ρ est dérivable sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \ \rho'(t) = 2t\cos(2t) - 2t = -4t\sin^2(t)$$

La fonction est donc décroissante sur \mathbb{R}^+ et donc sur I_k . On a le tableau suivant

$$\begin{array}{c|cc}
t & 2k\pi & (2k+1)\pi \\
\hline
\rho(t) & -4k^2\pi^2 \\
\hline
 & -(2k+1)^2\pi
\end{array}$$

En particulier, ρ est négative sur I_k .

1.2. g est dérivable sur I_k et

$$\forall t \in I_k, \ g'(t) = \frac{\rho(t)}{t \sin^2(t)} < 0$$

g est de classe \mathcal{C}^1 sur l'intervalle I_k à dérivée non nulle sur I_k . g réalise donc un \mathcal{C}^1 -difféomorphisme de I_k dans son image $g(I_k)$ qui, par décroissance de g, vaut

$$g(I_k) = \left[\lim_{(2k+1)\pi} g, \lim_{2k\pi} g \right]$$

En $(2k+1)\pi$ par valeurs négatives, on n'a pas d'indétermination pour la limite $(-\infty - \infty)$. En $(2k\pi)^+$, on obtient $+\infty - \infty$ et il faut préciser. Ecrivons que

$$g(t) = \frac{1}{\sin(t)} \left(t \cos(t) + \sin(t) \ln(\sin(t)) - \sin(t) \ln(\lambda t) \right)$$

Comme $u \ln(u) \to 0$ quand $u \to 0$, la parenthèse tend vers $2k\pi$ quand $t \to 2k\pi$. g est alors de limite égale à $+\infty$ en $(2k\pi)^+$. Finalement,

$$g(I_k) = \mathbb{R}$$

2.1. γ étant non nul, on a

$$\int_{x}^{x+1} e^{\gamma t} dt = \frac{1}{\gamma} \left(e^{\gamma(x+1)} - e^{\gamma x} \right) = \frac{e^{\gamma} - 1}{\gamma} e^{\gamma x}$$

2.2. On a alors

$$\int_{x}^{x+1} e^{at} \cos(bt) \ dt = Re\left(\int_{x}^{x+1} e^{\gamma t} \ dt\right) = Re\left(\frac{e^{\gamma} - 1}{\gamma}e^{\gamma x}\right)$$

On a $h \in E_{\lambda}$ si et seulement si

$$\forall x, \ Re\left(\frac{e^{\gamma}-1}{\gamma}e^{\gamma x}\right) = Re\left(\lambda e^{\gamma x}\right)$$

Comme $e^{\gamma x} = e^{ax}e^{ibx}$ et comme e^{ax} est un réel non nul, cette condition équivaut à

$$\forall x, \ Re\left(\frac{e^{\gamma}-1}{\gamma}e^{ibx}\right) = Re\left(\lambda e^{ibx}\right)$$

- Si la condition a lieu alors x=0 donne $\lambda=Re\left(\frac{e^{\gamma}-1}{\gamma}\right)$. $x=\frac{\pi}{2b}$ donne alors (en notant que Re(iz)=-Im(z)) $Im\left(\frac{e^{\gamma}-1}{\gamma}\right)=0$. Une condition nécessaire est donc

$$\lambda = \frac{e^{\gamma} - 1}{\gamma}$$

- La réciproque est immédiate.
- 3. En écrivant $\gamma = a + ib$, la consition précédente s'écrit

$$e^a \cos(b) - 1 = \lambda a$$
 et $e^a \sin(b) = \lambda b$

ce que l'on peut écrire (après transformation, on exprime e^a avec la seconde équation et on remplace a par sa valeur dans la première)

$$e^{-a} = \frac{\sin(b)}{\lambda b}$$
 et $\lambda g(b) = 1$

Dans chaque I_k , on peut trouver b_k tel que $g(b_k) = 1/\lambda$ (du fait de la bijectivité prouvée en question III.1.2). On a alors un unique a_k tel que $e^{-a_k} = \frac{\sin(b_k)}{\lambda b_k}$ (bijectivité de exp de \mathbb{R} dans \mathbb{R}^{+*}). Pour tout $k, f_k : t \mapsto e^{a_k t} \cos(b_k t)$ est alors vecteur propre pour θ associé à la valeur propre λ .