4.8 Ελάχιστα και Μέγιστα

Ορισμός

Έστω συνάρτηση f(x,y) και (x_0,y_0) σημείο στο πεδίο ορισμού της.

- Η f έχει **τοπικό μέγιστο** στο (x_0,y_0) αν υπάρχει δίσκος με κέντρο το (x_0,y_0) ώστε $f(x,y) \leqslant f(x_0,y_0)$ για κάθε σημείο (x,y) του δίσκου.
- Η f έχει **ολικό μέγιστο** στο (x_0, y_0) αν $f(x, y) \le f(x_0, y_0)$ για κάθε σημείο (x, y) του πεδίο ορισμού της.
- Η f έχει **τοπικό ελάχιστο** στο (x_0,y_0) αν υπάρχει δίσκος με κέντρο το (x_0,y_0) ώστε $f(x,y) \ge f(x_0,y_0)$ για κάθε σημείο (x,y) του δίσκου.
- Η f έχει **ολικό ελάχιστο** στο (x_0,y_0) αν $f(x,y) \ge f(x_0,y_0)$ για κάθε σημείο (x,y) του πεδίου ορισμού της.
- Τοπικό ακρότατο = Τοπικό μέγιστο ή ελάχιστο
- Ολικό ακρότατο = Ολικό μέγιστο ή ελάχιστο

Ορισμός

- Ένα υποσύνολο του \mathbb{R}^2 λέγεται φραγμένο αν υπάρχει ορθογώνιο της μορφής $[a,b]\times [c,d]$ που το περιέχει.
- Ένα υποσύνολο του \mathbb{R}^3 λέγεται φραγμένο αν υπάρχει παραλληλεπίπεδο της μορφής $[a,b] \times [c,d] \times [k,l]$ που το περιέχει.

Θεώρημα (Μέγιστης κι Ελάχιστης Τιμής)

Αν η συνάρτηση f(x,y) είναι συνεχής σε κλειστό και φραγμένο υποσύνολο R του \mathbb{R}^2 τότε λαμβάνει μέγιστη κι ελάχιστη τιμή στο R.

Θεώρημα (Fermat)

Αν η συνάρτηση f(x,y) έχει τοπικό ακρότατο στο (x_0,y_0) και οι μερικές παράγωγοι υπάρχουν σε αυτό το σημείο τότε

$$f_x(x_0, y_0) = 0$$
 kai $f_y(x_0, y_0) = 0$.

Ορισμός

Ενα σημείο (x_0,y_0) στο πεδίο ορισμού της f(x,y) ονομάζεται **κρίσιμο** σημείο, αν $f_x(x_0,y_0)=0$ και $f_y(x_0,y_0)=0$ ή αν κάποια ή και οι δύο μερικές παράγωγοι δεν ορίζονται.

Παρατήρηση

Το αντίστροφο του Θεωρήματος Fermat δεν ισχύει.

Παράδειγμα

Δείξτε ότι το (0,0) είναι κρίσιμο σημείο της $f(x,y)=y^2-x^2$ αλλά όχι τοπικό ακρότατο.

Ορισμός

Ένα κρίσιμο σημείο το οποίο είναι τοπικό μέγιστο σε μία κατεύθυνση και τοπικό ελάχιστο σε άλλη κατεύθυνση λέγεται σαγματικό σημείο.

Θεώρημα (Κριτήριο 2ης παραγώγου)

Έστω f(x,y) συνάρτηση με συνεχείς μερικές παραγώγους σε δίσκο με κέντρο ένα κρίσιμο σημείο (x_0,y_0) και έστω

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0).$$

- Αν D>0 και $f_{xx}(x_0,y_0)>0$, η f έχει τοπικό ελάχιστο στο (x_0,y_0) .
- Αν D>0 και $f_{xx}(x_0,y_0)<0$, η f έχει τοπικό μέγιστο στο (x_0,y_0) .
- Aν D < 0, η f έχει σαγματικό σημείο στο (x_0, y_0) .
- Αν D = 0 δεν υπάρχει συμπέρασμα.

Να βρεθούν τα τοπικά ακρότατα και σαγματικά σημεία της $f(x,y) = 3x^2 - 2xy + y^2 - 8y$.

Να βρεθούν τα τοπικά ακρότατα και σαγματικά σημεία της $f(x,y) = 4xy - x^4 - y^4$.

Θεώρημα

Αν μια συνάρτηση δύο μεταβλητών έχει ολικό ακρότατο στο εσωτερικό του πεδίου ορισμού της, τότε αυτό λαμβάνεται σε κρίσιμο σημείο.

Βήματα εύρεσης ολικών ακροτάτων σε κλειστό και φραγμένο σύνολο R

- Εύρεση κρίσιμων σημείων στο εσωτερικό του R.
- Εύρεση πιθανών ακροτάτων στο σύνορο του R.
- Σύγκριση των τιμών όλων των προηγούμενων σημείων.

Να βρεθούν η μέγιστη κι ελάχιστη τιμή της f(x,y)=3xy-6x-3y+7 στο τριγωνικό χωρίο R με κορυφές (0,0), (3,0) και (0,5).

Να βρεθούν η μέγιστη κι ελάχιστη τιμή της f(x,y)=3xy-6x-3y+7 στο τριγωνικό χωρίο R με κορυφές (0,0), (3,0) και (0,5).

Να βρεθούν οι διαστάσεις ορθογωνίου κουτιού χωρίς καπάκι με όγκο $32\,cm^3$ με ελάχιστο εμβαδόν επιφάνειας.

Να βρεθούν οι διαστάσεις ορθογωνίου κουτιού χωρίς καπάκι με όγκο $32\,cm^3$ με ελάχιστο εμβαδόν επιφάνειας.