Architettura dei Calcolatori

Specifiche del progetto:

- > Realizzare un controllore semaforico, posto al centro di un incrocio stradale. All'interno dell'incrocio sono presenti due sensori di traffico (Ta e Tb), tali sensori indicano "0" o "1" rispettivamente se rilevano traffico o meno.
- > Progettare una macchina a stati come in figura, avente i sensori, CLK e Reset come input e lo stato dei semafori come output.
- > Progettare l'FSM, specificare la codifica degli stati, sintetizzare con mappe di Karnaugh e realizzare il circuito in Logisim.

DESCRIZIONE DEL DISPOSITIVO SEMAFORICO

- 1 dispositivo semaforico al centro con:
- 2 dispositivi luminosi, uno per la strada ORIZZONTALE (LA) ed uno per la strada verticale (LB)
- 2 sensori di traffico, uno per la strada ORIZZONTALE (TA) ed uno per la strada verticale (TB)

Schema Verticale

Schema Orizzontale e Verticale

Architettura dei Calcolatori

INGRESSI

1	TA	0/1
2	ТВ	0/1
3	CLK	0/1
4	RESET	0/1

Sono presenti 4 ingressi ciascuno con due possibili configurazioni: 0 o 1.

(4 BIT DI INGRESSO)

USCITE

1	LAV	LA verde = LA verde, LB rosso
2	LB V	LB verde = LB verde, LA rosso

Sono possibili 4 configurazioni: se uno dei due semafori è verde o giallo, l'altro sarà sicuramente rosso, per cui abbiamo solamente 4 possibili combinazioni

(2 STATI DI USCITA = 1 BIT DI USCITA)

CODIFICA DEGLI STATI DI USCITA

s0 = bit 1

LAV	[A]	0
LB V	[B]	1

DESCRIZIONE DEL COMPORTAMENTO

Il cambio di stato avviene ad ogni ciclo di clock, con tempo di frequenza **Tclock = t** Nel caso uno dei due sensori segnali la presenza di traffico sulla direttrice stradale, il semaforo di quella strada si attiverà in posizione verde (e conseguentemente il semaforo opposto sarà rosso).

In caso di **reset si impone a 0 lo stato presente s0,** ed in caso di entrambi i **sensori ad 1** si dà priorità allo stato **LAV sul semaforo** per convezione.

SINTESI GRAFICA DEI 2 STATI DI USCITA

DIAGRAMMA DEGLI STATI (AUTOMA DI MOORE)

TABELLA DI TRANSAZIONE DEGLI STATI

STATO PRESENTE		INGRESSI		STATO FUTURO		
S	s0	TA	ТВ	S	s0	
LAV	0	0	0	LAV	0	
LAV	0	0	1	LB V	1	
LAV	0	1	0	LAV	0	
LAV	0	1	1	LB V	1	
LB V	1	0	0	LB V	1	
LB V	1	0	1	LB V	1	
LB V	1	1	0	LAV	0	
LB V	1	1	1	LAV	0	

SINTESI MINIMA STATI FUTURI

S0		TA, TB					
		0 0	0 1	11	10		
	0	0	1	1	0		
s0	1	1	1	0	0		

MAPPA DI KARNAUGH

S0		TA, TB					
		(0 0	0 1	1 1		10
	0		0	1	1		0
s0	1		1	1	0		0

SO TA-+ SO TB

CIRCUITO LOGICO COMBINATORIO

Viene creato il circuito con Logisim:

SEMPLIFICAZIONE LOGISIM

Si utilizza a questo punto la funzione integrata di semplificazione Logisim per vedere se il numero di gate è ottimizzato. Risulta lo stesso numero di gate:

CIRCUITO LOGICO SEQUENZIALE

Per finire, si crea un circuito sequenziale facendo tornare lo stato iniziale dentro il circuito combinatorio (Feedback – collegamento di reazione).

Si utilizza un Flip Flop D (che va abilitato tramite enable pin). Il reset porta il dato D a 0 (s0 = 0).

