ゼミ用ノート

会田先生資料"Rough path analysis:An Introduction"

基礎工学研究科システム創成専攻 学籍番号 29C17095 百合川尚学

2018年4月8日

目次

0.1	導入	1
0.2	連結州党理の証明	6

0.1 導入

以下、 $x \in \mathbb{R}^d$ について成分を込めて表現する場合は $x = (x^1, \cdots, x^d)$ と書き、実 $m \times d$ 行列 a については $a = (a^i_j)_{1 \le i \le m, 1 \le j \le d}$ と表す。また T > 0 を固定し $C^1 = C^1([0,T] \to \mathbb{R}^d)$ とおく。ただし端点においては片側微分を考える。区間 $[s,t] \subset [0,T]$ の分割を $D = \{s = t_0 < t_1 < \cdots < t_N = t\}$ で表現し $|D| := \max_{1 \le i \le N} |t_i - t_{i-1}|$ とおく.また [s,t] の分割の全体を $\delta[s,t]$ と書く.

定理 0.1.1 (Riemann-Stieltjes 積分). $[s,t] \subset [0,T]$ とし, $D \in \delta[s,t]$ についてのみ考えるとき,任意の $x \in C^1$, $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して次の極限が確定する:*1

$$\lim_{|D|\to 0} \sum_{D} f(x_{s_{i-1}})(x_{t_i} - x_{t_{i-1}}) \in \mathbb{R}^m.$$

ここで s_{i-1} は区間 $[t_{i-1},t_i]$ に属する任意の点である. 極限は s_{i-1} の取り方にも依存しない.

証明. 各 x^j は C^1 -級であるから,平均値の定理より $\sum_D f(x_{s_{i-1}})(x_{t_i}-x_{t_{i-1}})$ の第 k 成分を

$$\sum_{j=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}})(x_{t_{i}}^{j} - x_{t_{i-1}}^{j})$$

$$= \sum_{i=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x^{j}(\xi_{i-1,j})(t_{i} - t_{i-1}), \quad (^{\exists} \xi_{i-1,j} \in [t_{i-1}, t_{i}])$$

と表現できる. 各 j,k について

$$\lim_{|D| \to 0} \sum_{D} f_j^k(x_{s_{i-1}}) \frac{d}{dt} x^j(\xi_{i-1,j}) (t_i - t_{i-1})$$

が確定すれば,第k成分の極限が確定し定理の主張を得る.いま, $t \longrightarrow f_j^k(x_t)$ 及び $t \longmapsto (d/dt)x_t^j$ は([s,t]上一様)連続であるから,分割Dによる各区間 $[t_{i-1},t_i]$ において次の最大最小値が定まる:

$$M_{i-1} \coloneqq \sup_{t_{i-1} \le t \le t_i} f_j^k(x_t) \frac{d}{dt} x_t^j, \quad m_{i-1} \coloneqq \inf_{t_{i-1} \le t \le t_i} f_j^k(x_t) \frac{d}{dt} x_t^j.$$

 $^{^{*1}}$ 極限の存在を保証する条件としては、f の有界性と微分可能性は必要ない.

ここで

$$S_D := \sum_D M_{i-1}(t_i - t_{i-1}), \quad s_D := \sum_D m_{i-1}(t_i - t_{i-1}), \quad \Sigma_D := \sum_D f_j^k(x_{s_{i-1}}) \frac{d}{dt} x^j (\xi_{i-1}) (t_i - t_{i-1})$$

とおいて

$$S := \inf_{D \in \delta[s,t]} S_D, \quad s := \sup_{D \in \delta[s,t]} s_D$$

を定めれば

$$s_D \le s \le S \le S_D$$
, $s_D \le \Sigma_D \le S_D$

が満たされる. 実際, 任意の $D_1, D_2 \in \delta[s,t]$ に対して, 分割の合併を D_3 とすれば

$$s_{D_1} \leq s_{D_3} \leq S_{D_3} \leq S_{D_2}$$

が成立し $s \leq S_D (\forall D \in \delta[s,t])$ すなわち $s \leq S$ が出る. 一方で一様連続性から

$$0 \le S - s \le S_D - s_D = \sum_{D} (M_{i-1} - m_{i-1})(t_i - t_{i-1}) \longrightarrow 0 \quad (|D| \longrightarrow 0)$$

が従い s = S を得る. 以上より

$$|S - \Sigma_D| \le |S - S_D| + |S_D - \Sigma_D| \le |S - S_D| + |S_D - S_D| \longrightarrow 0 \quad (|D| \longrightarrow 0)$$

が成り立つ.

上の証明において、各k,jごとに定まる極限Sを

$$S = \int_{s}^{t} f_{j}^{k}(x_{u}) dx_{u}^{j}$$

と書く.

定義 0.1.2 (C^1 -級のパスに対する汎関数). $x \in C^1$ と $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して, $[s,t] \subset [0,T]$ における Riemann-Stieltjes 積分を次で表現する:

$$I_{s,t}(x) = \int_{s}^{t} f(x_u) dx_u := \lim_{|D| \to 0} \sum_{D} f(x_{s_{i-1}})(x_{t_i} - x_{t_{i-1}}),$$

$$\left(\int_{s}^{t} f(x_u) dx_u\right)_{k} = \sum_{i=1}^{d} \int_{s}^{t} f_j^{k}(x_u) dx_u^{j}, \quad (k = 1, \dots, m).$$

ただし $D \in \delta[s,t]$ のみを考える.

定理 0.1.3 (Riemann-Stieltjes 積分の線型性). $x \in C^1$, $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ とする.

- (1) 任意の $0 \le s < u < t \le T$ に対し $I_{s,u}(x) + I_{u,t}(x) = I_{s,t}(x)$ が成り立つ.
- (2) $\alpha, \beta \in \mathbb{R} \geq g \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して

$$\int_{s}^{t} \alpha f(x_u) + \beta g(x_u) dx_u = \alpha \int_{s}^{t} f(x_u) dx_u + \beta \int_{s}^{t} g(x_u) dx_u.$$

が成り立つ.

証明.

(1) 各k,jに対して

$$\int_{s}^{u} f_{j}^{k}(x_{r}) dx_{r}^{j} + \int_{u}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} = \int_{s}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j}$$
 (1)

が成り立つことを示せばよい. 以下,分割 D に対する Riemann 和 $\sum_D f_j^k(x_{s_{i-1}})(x_{t_i}^j-x_{t_{i-1}}^j)$ を Σ_D と略記する. 定理 0.1.1 より,任意の $\epsilon>0$ に対して或る $\delta>0$ が存在し,

$$|D_1|, |D_2|, |D_3| < \delta$$
, $(D_1 \in \delta[s, u], D_2 \in \delta[u, t], D_3 \in \delta[s, t])$

である限り

$$\left| \int_{s}^{u} f_{j}^{k}(x_{r}) dx_{r}^{j} - \Sigma_{D_{1}} \right| < \epsilon, \quad \left| \int_{u}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} - \Sigma_{D_{2}} \right| < \epsilon, \quad \left| \int_{s}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} - \Sigma_{D_{3}} \right| < \epsilon$$

が成立する. $|D_1|, |D_2| < \delta/2$ を満たす D_1, D_2 を取り D_3 をその合併とすれば, $|D_3| < \delta$ かつ

$$\Sigma_{D_1} + \Sigma_{D_2} = \Sigma_{D_3}$$

が成り立ち,

$$\left| \int_{s}^{u} f_{j}^{k}(x_{r}) dx_{r}^{j} + \int_{u}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} - \int_{s}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} \right|$$

$$\leq \left| \int_{s}^{u} f_{j}^{k}(x_{r}) dx_{r}^{j} - \Sigma_{D_{1}} \right| + \left| \int_{u}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} - \Sigma_{D_{2}} \right| + \left| \int_{s}^{t} f_{j}^{k}(x_{r}) dx_{r}^{j} - \Sigma_{D_{3}} \right|$$

$$< 3\epsilon$$

が従い(1)を得る.

(2)

 C^1 において次でノルム $\|\cdot\|_{C^1}$ を定める:

$$||x||_{\infty} := \sup_{t \in [0,T]} |x(t)|, \quad ||x'||_{\infty} := \sup_{t \in [0,T]} |x'(t)|, \quad ||x||_{C^1} := ||x||_{\infty} + ||x'||_{\infty}.$$

以降, C^1 には $\|\cdot\|_{C^1}$ によりノルム位相を導入する.

定理 0.1.4 (有界な f の Stieltjes 積分は x に関し連続). $[s,t] \subset [0,T]$ とする. $x \in C^1$ と $f \in C_b(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ により定める $I_{s,t}(x)$ について, $C^1 \ni x \longmapsto I_{s,t}(x) \in \mathbb{R}^m$ は連続である.

証明. C^1 の各点は可算な基本近傍系を持つから $x \mapsto I_{0,T}(x)$ の点列連続性と連続性は一致する. すなわち $x^{(n)} \longrightarrow x$ なら $I_{0,T}(x^{(n)}) \longrightarrow I_{0,T}(x)$ が従うことを示せばよい. 今回も各 j,k について

$$\int_{s}^{t} f_{j}^{k}(x_{u}^{(n)}) dx_{u}^{(n),j} \longrightarrow \int_{s}^{t} f_{j}^{k}(x_{u}) dx_{u}^{j}, \quad (n \longrightarrow \infty)$$

が成り立つことを示せば十分である.

第一段

任意の分割 $D \in \delta[s,t]$ に対し、平均値の定理を使うと以下のように式変形される:

$$\begin{split} & \left| \sum_{D} f_{j}^{k}(x_{s_{i-1}}^{(n)})(x_{t_{i}}^{(n),j} - x_{t_{i-1}}^{(n),j}) - \sum_{D} f_{j}^{k}(x_{s_{i-1}})(x_{t_{i}}^{j} - x_{t_{i-1}}^{j}) \right| \\ & \leq \sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{j} \right| (t_{i} - t_{i-1}) \\ & \leq \sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{(n),j} + f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{j} \right| (t_{i} - t_{i-1}) \\ & \leq \sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} \right| (t_{i} - t_{i-1}) \\ & + \sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{j} \right| (t_{i} - t_{i-1}). \end{split}$$

ここで最終式第二項については

$$\sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{j} \right| (t_{i} - t_{i-1})$$

$$\leq \sum_{D} \left\| f_{j}^{k} \right\|_{\infty} \left\| x^{(n)} - x \right\|_{C^{1}} (t_{i} - t_{i-1}) = \left\| f_{j}^{k} \right\|_{\infty} \left\| x^{(n)} - x \right\|_{C^{1}} (t - s)$$

が成り立ち,第一項については

$$\begin{split} \sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} \right| (t_{i} - t_{i-1}) \\ \leq \sum_{D} \left| f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{j} \right. \\ &+ \left. f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\xi_{i-1},j}^{j} - f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\eta_{i-1},j}^{j} \right. \\ &+ \left. f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\eta_{i-1},j}^{j} - f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} \right. \\ &+ \left. f_{j}^{k}(x_{s_{i-1}}^{(n)}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} - f_{j}^{k}(x_{s_{i-1}}) \frac{d}{dt} x_{\eta_{i-1},j}^{(n),j} \right| (t_{i} - t_{i-1}) \\ \leq & 2 \left\| f_{j}^{k} \right\|_{\infty} \left\| x^{(n)} - x \right\|_{C^{1}} (t - s) + \left\| f_{j}^{k} \right\|_{\infty} (t - s) \sup_{\left| \xi - \eta \right| \leq |D|} \left| x_{\xi}^{j} - x_{\eta}^{j} \right| \\ &+ \left\| x \right\|_{C^{1}} (t - s) \sup_{t \in [0,T]} \left| f_{j}^{k}(x_{t}^{(n)}) - f_{j}^{k}(x_{t}) \right| \end{split}$$

定義 0.1.5 (p-variation). [0,T] 上の \mathbb{R}^d 値関数 x に対し,p-variation を次で定める:

$$||x||_p := \left\{ \sup_{D \in \delta[0,T]} \sum_{D} |x_{t_i} - x_{t_{i-1}}|^p \right\}^{1/p}.$$

また線形空間 $B_{n,T}(\mathbb{R}^d)$ を

$$B_{p,T}(\mathbb{R}^d) := \left\{ x : [0,T] \longrightarrow \mathbb{R}^d ; \quad x_0 = 0, \ x : \text{continuous}, \ \|x\|_p < \infty \right\}$$

により定める.

定理
$$0.1.6$$
. $\tilde{C}^1 \coloneqq \left\{ x \in C^1 \ ; \quad x_0 = 0 \right\}$ とおくと, $\tilde{C}^1 \subset B_{p,T}(\mathbb{R}^d)$ が成り立つ.

証明. $x \in \tilde{C}^1$ に対して

$$M := \sum_{i=1}^{d} \sup_{x \in [0,T]} |x^{j}(t)|$$

とおけば、x' の連続性より $M<\infty$ が定まる. 平均値の定理より、|D|<1 を満たす分割 D に対して

$$\left\{ \sum_{i=1}^{N} |x_{t_i} - x_{t_{i-1}}|^p \right\}^{1/p} \leq \left\{ \sum_{i=1}^{N} ||x||_{C^1}^p (t_i - t_{i-1})^p \right\}^{1/p} \leq MT < \infty$$

が成立し $||x||_p \leq MT < \infty$ が従う*2.

定理 0.1.7. $B_{p,T}(\mathbb{R}^d)$ は Banach 空間である.

証明. $(x^n)_{n=1}^\infty \subset B_{p,T}(\mathbb{R}^d)$ を Cauchy 列とする. つまり任意の $\epsilon>0$ に対して或る $n_\epsilon\in\mathbb{N}$ が存在し

$$\|x^{n} - x^{m}\|_{p} = \left\{ \sup_{D} \sum_{i=1}^{N} \left| \left(x_{t_{i}}^{n} - x_{t_{i}}^{m} \right) - \left(x_{t_{i-1}}^{n} - x_{t_{i-1}}^{m} \right) \right|^{p} \right\}^{1/p} < \epsilon, \quad (n, m > n_{\epsilon})$$

を満たす. いま, 任意の $t \in [0,T]$ に対して [0,T] の分割 $\{0 = t_0 \le t \le T\}$ を考えれば

$$|x_t^n - x_t^m| < \epsilon, \quad (n, m > n_\epsilon)$$

が得られ、実数の完備性より或る $x_t \in \mathbb{R}^d$ が存在して

$$|x_t^n - x_t| < \epsilon \quad (n > n_\epsilon)$$

を満たす. 実際, もし或る $n > n_{\epsilon}$ で $|x_t^n - x_t| =: \alpha \ge \epsilon$ が成り立つと, 任意の $m > n_{\epsilon}$ に対して

$$|x_{t}^{m} - x_{t}| \ge |x_{t}^{n} - x_{t}| - |x_{t}^{n} - x_{t}^{m}| > \alpha - \epsilon$$

が従い $x_t^m \longrightarrow x_t$ に反する. ゆえに収束は t に関して一様であり, $t \longmapsto x_t$ は 0 出発かつ連続である. あとは $\|x^n - x\|_p \longrightarrow 0$ $(n \longrightarrow \infty)$ であればよい.

定理 0.1.8. C^1 空間において, $\| \cdot \|_{C^1}$ で定まる位相は $\| \cdot \|_{p}$ で定まる位相より強い.

証明. 任意の $x \in \tilde{C}^1$ に対して

$$||x||_p \le T ||x||_{C^1}$$

を満たすことを証明する. 実際, 任意の分割 D に対して

$$\sum_{i=1}^{N} |x_{t_i} - x_{t_{i-1}}| \le \sum_{i=1}^{N} ||x||_{C^1} (t_i - t_{i-1}) = T ||x||_{C^1}$$

が成り立つ.

^{*2} $S_D \ge 0$ ならば $(\sup_D S_D)^{1/p} = \sup_D S_D^{1/p}$ が成り立つ.

 C^1 パス $[0,T] \longrightarrow \mathbb{R}^d$ に対し $f(x) = (f_i^i(x))$ の積分を

$$I_{s,t}(x) := \int_s^t f(x_u) dx_u = \left(\sum_{j=1}^d \int_s^t f_j^i(x_u) dx_u^j \right)$$

により定める. このとき次が成り立つ

$$\begin{split} I_{s,t}(x)_i &= \sum_{j=1}^d \int_s^t f_j^i(x_u) \, dx_u \\ &= \sum_{j=1}^d \int_s^t f_j^i(x_s) + f_j^i(x_u) - f_j^i(x_s) \, dx_u \\ &= \sum_{j=1}^d \int_s^t f_j^i(x_s) + \sum_{k=1}^d \left\{ \int_0^1 \partial_k f_j^i(x_s + \theta(x_u - x_s)) \, d\theta \right\} (x_u^k - x_s^k) \, dx_u \\ &= \sum_{j=1}^d \int_s^t f_j^i(x_s) + \sum_{k=1}^d \left\{ \int_0^1 \partial_k f_j^i(x_s) \, d\theta \right\} (x_u^k - x_s^k) \, dx_u \\ &+ \sum_{j=1}^d \int_s^t \sum_{k=1}^d \left\{ \int_0^1 \partial_k f_j^i(x_s + \theta(x_u - x_s)) - \partial_k f_j^i(x_s) \, d\theta \right\} (x_u^k - x_s^k) \, dx_u \end{split}$$

0.2 連続性定理の証明

定義 0.2.1 (control function). 関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ が任意の $0 \le s \le u \le t \le T$ に対して

$$\omega(s, u) + \omega(u, t) \le \omega(s, t)$$

を満たすとき, ω を control function と呼ぶ.

定理 0.2.2 (control function の例). 以下の関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ は control function である.

- (1) $\omega := \left(\omega_1^{1/p} + \omega_2^{1/p}\right)^p$, $(p \ge 1, \omega_1, \omega_2 : \text{control function})$.
- (2) $\omega: (s,t) \longmapsto \|X^1\|_{p:[s,t]}^p, \quad (p \ge 1, \ x \in B_{p,T}(\mathbb{R}^d)).$

(3)

定理 0.2.3.

(1)

(2) 任意の $D_1 \in \delta[s,u], D_2 \in \delta[u,t]$ に対して合併 $D_1 \cup D_2$ は [s,t] の分割であるから,

$$\sum_{D_1} \left| x_{t_i} - x_{t_{i-1}} \right|^p + \sum_{D_2} \left| x_{t_i} - x_{t_{i-1}} \right|^p \le \sup_{D \in \delta[s,t]} \sum_{D} \left| x_{t_i} - x_{t_{i-1}} \right|^p = \left\| X^1 \right\|_{p:[s,t]}^p$$

が成り立つ。左辺の D_1,D_2 の取り方は独立であるから、それぞれに対し上限を取れば

$$\|X^1\|_{p:[s,u]}^p + \|X^1\|_{p:[u,t]}^p \le \|X^1\|_{p:[s,t]}^p$$

が得られる.