Dérivabilité

1 Calculs

Exercice 1

Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ si $x > 1$

soit dérivable sur \mathbb{R}_{+}^{*} .

Indication ▼ Correction ▼

[000699]

Exercice 2

Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Indication ▼ Correction ▼ [000700]

Exercice 3

Étudier la dérivabilité des fonctions suivantes :

$$f_1(x) = x^2 \cos \frac{1}{x}$$
, si $x \neq 0$; $f_1(0) = 0$;

$$f_2(x) = \sin x \sin \frac{1}{x}$$
, si $x \neq 0$; $f_2(0) = 0$;

$$f_3(x) = \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}$$
, si $x \neq 1$; $f_3(1) = 1$.

Indication ▼ Correction ▼ [000698]

Exercice 4

Soit $n \ge 2$ un entier fixé et $f : \mathbb{R}^+ = [0, +\infty[\longrightarrow \mathbb{R} \text{ la fonction définie par la formule suivante } :$

$$f(x) = \frac{1 + x^n}{(1 + x)^n}, \ x \ge 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \ge 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 2. (a) En déduire l'inégalité suivante :

$$(1+x)^n \le 2^{n-1}(1+x^n), \ \forall x \in \mathbb{R}^+.$$

(b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors on a

$$(x+y)^n \le 2^{n-1}(x^n+y^n).$$

Correction ▼ [000739]

2 Théorème de Rolle et accroissements finis

Exercice 5

Montrer que le polynôme $X^n + aX + b$, (a et b réels) admet au plus trois racines réelles.

Indication ▼

[000717]

Exercice 6

Montrer que le polynôme P_n défini par

$$P_n(t) = \left[\left(1 - t^2 \right)^n \right]^{(n)}$$

est un polynôme de degré n dont les racines sont réelles, simples, et appartiennent à [-1,1].

Indication ▼

Correction ▼

Correction ▼

[000715]

Exercice 7

Dans l'application du théorème des accroissements finis à la fonction

$$f(x) = \alpha x^2 + \beta x + \gamma$$

sur l'intervalle [a,b] préciser le nombre "c" de [a,b]. Donner une interprétation géométrique.

Correction ▼

[000721]

Exercice 8

Soient x et y réels avec 0 < x < y.

1. Montrer que

$$x < \frac{y - x}{\ln y - \ln x} < y.$$

2. On considère la fonction f définie sur [0,1] par

$$\alpha \mapsto f(\alpha) = \ln(\alpha x + (1 - \alpha)y) - \alpha \ln x - (1 - \alpha) \ln y.$$

De l'étude de f déduire que pour tout α de]0,1[

$$\alpha \ln x + (1 - \alpha) \ln y < \ln(\alpha x + (1 - \alpha)y).$$

Interprétation géométrique?

Indication \blacktriangledown

Correction ▼

[000724]

3 Divers

Exercice 9

Déterminer les extremums de $f(x) = x^4 - x^3 + 1$ sur \mathbb{R} .

Correction ▼

[000733]

Exercice 10

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = (1-k)^3 x^2 + (1+k) x^3$ où k est un nombre réel. Déterminer les valeurs de k pour lesquelles l'origine est un extremum local de f.

Correction ▼ [000728]

Exercice 11

Soient $f,g:[a,b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a,b] (a < b) et dérivables sur]a,b[. On suppose que $g'(x) \neq 0$ pour tout $x \in]a,b[$.

- 1. Montrer que $g(x) \neq g(a)$ pour tout $x \in]a,b[$.
- 2. Posons $p = \frac{f(b) f(a)}{g(b) g(a)}$ et considérons la fonction h(x) = f(x) pg(x) pour $x \in [a,b]$. Montrer que h vérifie les hypothèses du théorème de Rolle et en déduire qu'il existe un nombre réel $c \in]a,b[$ tel que

$$\frac{f(a)-f(b)}{g(a)-g(b)} = \frac{f'(c)}{g'(c)}.$$

3. On suppose que $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \ell$, où ℓ est un nombre réel. Montrer que

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = \ell.$$

4. Application. Calculer la limite suivante :

$$\lim_{x \to 1^{-}} \frac{\operatorname{Arccos} x}{\sqrt{1 - x^2}}.$$

Indication ▼ Correction ▼

[000738]

Exercice 12

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(t) = \begin{cases} e^{1/t} & \text{si } t < 0\\ 0 & \text{si } t \ge 0 \end{cases}$$

- 1. Démontrer que f est dérivable sur \mathbb{R} , en particulier en t = 0.
- 2. Etudier l'existence de f''(0).
- 3. On veut montrer que pour t < 0, la dérivée n-ième de f s'écrit

$$f^{(n)}(t) = \frac{P_n(t)}{t^{2n}}e^{1/t}$$

où P_n est un polynôme.

- (a) Trouver P_1 et P_2 .
- (b) Trouver une relation de récurrence entre P_{n+1}, P_n et P'_n pour $n \in \mathbb{N}^*$.
- 4. Montrer que f est de classe C^{∞} .

Correction ▼ [000740]

Indication pour l'exercice 1 ▲

Vous avez deux conditions : il faut que la fonction soit continue (car on veut qu'elle soit dérivable donc elle doit être continue) et ensuite la condition de dérivabilité proprement dite.

Indication pour l'exercice 2 ▲

f est continue en 0 en la prolongeant par f(0) = 0. f est alors dérivable en 0 et f'(0) = 0.

Indication pour l'exercice 3 ▲

Le seul problème est en 0 ou 1. f_1 est dérivable en 0 mais pas f_2 . f_3 n'est dérivable ni en 0, ni en 1.

Indication pour l'exercice 5 ▲

On peut appliquer le théorème de Rolle plusieurs fois.

Indication pour l'exercice 6 ▲

Il faut appliquer le théorème de Rolle une fois au polynôme $(1-t^2)^n$, puis deux fois à sa dérivée première, puis trois fois à sa dérivée seconde,...

Indication pour l'exercice 8 ▲

- 1. Utiliser le théorème des accroissements finis avec la fonction $t \mapsto \ln t$
- 2. Montrer d'abord que f'' est négative. Se servir du théorème des valeurs intermédiaires pour f'.

Indication pour l'exercice 11 ▲

- 1. Raisonner par l'absurde et appliquer le théorème de Rolle.
- 2. Calculer h(a) et h(b).
- 3. Appliquer la question 2. sur l'intervalle [x, b].
- 4. Calculer f' et g'.

Correction de l'exercice 1 A

La fonction f est continue et dérivable sur]0,1[et sur $]1,+\infty[$. Le seul problème est en x=1.

Il faut d'abord que la fonction soit continue en x=1. La limite à gauche est $\lim_{x\to 1^-} \sqrt{x} = +1$ et à droite $\lim_{x\to 1^+} ax^2 + bx + 1 = a + b + 1$. Donc a+b+1=1. Autrement dit b=-a.

Il faut maintenant que les dérivées à droite et à gauche soient égales. Comme la fonction f restreinte à]0,1] est définie par $x \mapsto \sqrt{x}$ alors elle est dérivable à gauche et la dérivée à gauche s'obtient en évaluant la fonction dérivée $x \mapsto \frac{1}{2\sqrt{x}}$ en x = 1. Donc $f'_g(1) = \frac{1}{2}$.

Pour la dérivée à droite il s'agit de calculer la limite du taux d'accroissement $\frac{f(x)-f(1)}{x-1}$, lorsque $x \to 1$ avec x > 1. Or

$$\frac{f(x) - f(1)}{x - 1} = \frac{ax^2 + bx + 1 - 1}{x - 1} = \frac{ax^2 - ax}{x - 1} = \frac{ax(x - 1)}{x - 1} = ax.$$

Donc f est dérivable à droite et $f'_d(1) = a$. Afin que f soit dérivable, il faut et il suffit que les dérivées à droite et à gauche existent et soient égales, donc ici la condition est $a = \frac{1}{2}$.

Le seul couple (a,b) que rend f dérivable sur $]0,+\infty[$ est $(a=\frac{1}{2},\stackrel{\frown}{b}=-\frac{1}{2}).$

Correction de l'exercice 2

f est C^{∞} sur \mathbb{R}^* .

- 1. Comme $|\sin(1/x)| \le 1$ alors f tend vers 0 quand $x \to 0$. Donc en prolongeant f par f(0) = 0, la fonction f prolongée est continue sur \mathbb{R} .
- 2. Le taux d'accroissement est

$$\frac{f(x) - f(0)}{x - 0} = x \sin \frac{1}{x}.$$

Comme ci-dessus il y a une limite (qui vaut 0) en x = 0. Donc f est dérivable en 0 et f'(0) = 0.

3. Sur \mathbb{R}^* , $f'(x) = 2x\sin(1/x) - \cos(1/x)$, Donc f'(x) n'a pas de limite quand $x \to 0$. Donc f' n'est pas continue en 0.

Correction de l'exercice 3

1. La fonction f_1 est dérivable en dehors de x = 0. En effet $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* et $x \mapsto \cos x$ est dérivable sur \mathbb{R} , donc par composition $x \mapsto \cos \frac{1}{x}$ est dérivable sur \mathbb{R}^* . Puis par multiplication par la fonction dérivable $x \mapsto x^2$, la fonction f_1 est dérivable sur \mathbb{R}^* . Par la suite on omet souvent ce genre de discussion ou on l'abrège sous la forme "f est dérivable sur I comme somme, produit, composition de fonctions dérivables sur I".

Pour savoir si f_1 est dérivable en 0 regardons le taux d'accroissement :

$$\frac{f_1(x) - f_1(0)}{x - 0} = x \cos \frac{1}{x}.$$

Mais $x\cos(1/x)$ tend vers 0 (si $x \to 0$) car $|\cos(1/x)| \le 1$. Donc le taux d'accroissement tend vers 0. Donc f_1 est dérivable en 0 et $f_1'(0) = 0$.

2. Encore une fois f_2 est dérivable en dehors de 0. Le taux d'accroissement en x = 0 est :

$$\frac{f_2(x) - f_2(0)}{x - 0} = \frac{\sin x}{x} \sin \frac{1}{x}$$

Nous savons que $\frac{\sin x}{x} \to 1$ et que $\sin 1/x$ n'a pas de limite quand $x \to 0$. Donc le taux d'accroissement n'a pas de limite, donc f_2 n'est pas dérivable en 0.

3. La fonction f_3 s'écrit :

$$f_3(x) = \frac{|x||x-1|}{x-1}.$$

- Donc pour $x \le 1$ on a $f_3(x) = x$, pour $0 \le x < 1$ on $f_3(x) = -x$. Pour x < 0 on a $f_3(x) = x$.
- La fonction f_3 est définie, continue et dérivable sur $\mathbb{R} \setminus \{0,1\}$. Attention ! La fonction $x \mapsto |x|$ n'est pas dérivable en 0.

5

- La fonction f_3 n'est pas continue en 1, en effet $\lim_{x\to 1+} f_3(x) = +1$ et $\lim_{x\to 1-} f_3(x) = -1$. Donc la fonction n'est pas dérivable en 1.
- La fonction f_3 est continue en 0. Le taux d'accroissement pour x > 0 est

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{-x}{x} = -1$$

et pour x < 0,

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{x}{x} = +1.$$

Donc le taux d'accroissement n'a pas de limite en 0 et donc f_3 n'est pas dérivable en 0.

Correction de l'exercice 4

1. (a) Il est clair que la fonction f est dérivable sur \mathbb{R}^+ puisque c'est une fonction rationnelle sans pôle dans cet intervalle. De plus d'après la formule de la dérivée d'un quotient, on obtient pour $x \ge 0$:

$$f'(x) = \frac{n(x^{n-1} - 1)}{(1+x)^{n+1}}.$$

- (b) Par l'expression précédente f'(x) est du signe de $x^{n-1}-1$ sur \mathbb{R}^+ . Par conséquent on obtient : $f'(x) \le 0$ pour $0 \le x \le 1$ et $f'(x) \ge 0$ pour $x \ge 1$. Il en résulte que f est décroissante sur [0,1] et croissante sur $[1,+\infty[$ et par suite f atteint son minimum sur \mathbb{R}^+ au point 1 et ce minimum vaut $f(1)=2^{1-n}$.
- 2. (a) Il résulte de la question 1.b que $f(x) \ge f(1)$ pour tout $x \in \mathbb{R}^+$ et donc

$$(1+x)^n \le 2^{n-1}(1+x^n).$$

(b) En appliquant l'inégalité précédente avec x = b/a, on en déduit immédiatement l'inégalité requise.

Correction de l'exercice 5

- 1. Par l'absurde on suppose qu'il y a (au moins) quatre racines distinctes pour $P_n(X) = X^n + aX + b$. Notons les $x_1 < x_2 < x_3 < x_4$. Par le théorème de Rolle appliqué trois fois (entre x_1 et x_2 , entre x_2 et x_3 ,...) il existe $x_1' < x_2' < x_3'$ des racines de P_n' . On applique deux fois le théorème Rolle entre x_1' et x_2' et entre x_2' et x_3' . On obtient deux racines distinctes pour P_n'' . Or $P_n'' = n(n-1)X^{n-2}$ ne peut avoir que 0 comme racines. Donc nous avons obtenu une contradiction.
- 2. Autre méthode : Le résultat est évident si $n \le 3$. On suppose donc $n \ge 3$. Soit P_n l'application $X \mapsto X^n + aX + b$ de \mathbb{R} dans lui-même. Alors $P_n'(X) = nX^{n-1} + a$ s'annule en au plus deux valeurs. Donc P_n est successivement croissante-décroissante-croissante ou bien décroissante-croissante-décroissante. Et donc P_n s'annule au plus trois fois.

Correction de l'exercice 6 ▲

 $Q_n(t)=(1-t^2)^n$ est un polynôme de degré 2n, on le dérive n fois, on obtient un polynôme de degré n. Les valeurs -1 et +1 sont des racines d'ordre n de Q_n , donc $Q_n(1)=Q_n'(1)=\ldots=Q_n^{(n-1)}(1)=0$. Même chose en -1. Enfin Q(-1)=0=Q(+1) donc d'après le théorème de Rolle il existe $c\in]-1,1[$ telle que $Q_n'(c)=0$. Donc $Q_n'(-1)=0$, $Q_n'(c)=0$, $Q_n'(-1)=0$. En appliquant le théorème de Rolle deux fois (sur [-1,c] et sur [c,+1]), on obtient l'existence de racines d_1,d_2 pour Q_n'' , qui s'ajoutent aux racines -1 et +1.

On continue ainsi par récurrence. On obtient pour $Q_n^{(n-1)}$, n+1 racines : $-1, e_1, \ldots, e_{n-1}, +1$. Nous appliquons le théorème de Rolle n fois. Nous obtenons n racines pour $P_n = Q_n^{(n)}$. Comme un polynôme de degré n a au plus n racines, nous avons obtenu toutes les racines. Par constructions ces racines sont réelles distinctes, donc simples.

Correction de l'exercice 7

La fonction f est continue et dérivable sur \mathbb{R} donc en particulier sur [a,b]. Le théorème des accroissement finis assure l'existence d'un nombre $c \in]a,b[$ tel que f(b)-f(a)=f'(c)(b-a).

Mais pour la fonction particulière de cet exercice nous pouvons expliciter ce c. En effet f(b) - f(a) = f'(c)(b - a) implique $\alpha(b^2 - a^2) + \beta(b - a) = (2\alpha c + \beta)(b - a)$. Donc $c = \frac{a+b}{2}$.

Géométriquement, le graphe \mathscr{P} de f est une parabole. Si l'on prend deux points A=(a,f(a)) et B=(b,f(b)) appartenant à cette parabole, alors la droite (AB) est parallèle à la tangente en \mathscr{P} qui passe en $M=(\frac{a+b}{2},f(\frac{a+b}{2}))$. L'abscisse de M étant le milieu des abscisses de A et B.

Correction de l'exercice 8 A

- 1. Soit $g(t) = \ln t$. Appliquons le théorème des accroissements finis sur [x,y]. Il existe $c \in]x,y[$, g(y)-g(x)=g'(c)(y-x). Soit $\ln y \ln x = \frac{1}{c}(y-x)$. Donc $\frac{\ln y \ln x}{y-x} = \frac{1}{c}$. Or x < c < y donc $\frac{1}{y} < \frac{1}{c} < \frac{1}{x}$. Ce qui donne les inégalités recherchées.
- 2. $f'(\alpha) = \frac{x-y}{\alpha x + (1-\alpha)y} \ln x + \ln y$. Et $f''(\alpha) = -\frac{(x-y)^2}{(\alpha x + (1-\alpha)y)^2}$. Comme f'' est négative alors f' est décroissante sur [0,1]. Or $f'(0) = \frac{x-y-y(\ln x \ln y)}{y} > 0$ d'après la première question et de même f'(1) < 0. Par le théorème des valeurs intermédiaires, il existe $c \in [x,y]$ tel que f'(c) = 0. Maintenant f' est positive sur [0,c] et négative sur [c,1]. Donc f est croissante sur [0,c] et décroissante sur [c,1]. Or f(0) = 0 et f(1) = 0 donc pour tout $x \in [0,1]$, $f(x) \ge 0$. Cela prouve l'inégalité demandée.
- 3. Géométriquement nous avons prouvé que la fonction ln est concave, c'est-à-dire que la corde (le segment qui va de (x, f(x)) à (y, f(y)) est sous la courbe d'équation y = f(x).

Correction de l'exercice 9 A

 $f'(x) = 4x^3 - 3x^2 = x^2(4x - 3)$ donc les extremums appartiennent à $\{0, \frac{3}{4}\}$. Comme $f''(x) = 12x^2 - 6x = 6x(2x - 1)$. Alors f'' ne s'annule pas en $\frac{3}{4}$, donc $\frac{3}{4}$ donne un extremum local (qui est même un minimum global). Par contre f''(0) = 0 et $f'''(0) \neq 0$ donc 0 est un point d'inflexion qui n'est pas un extremum (même pas local, pensez à un fonction du type $x \mapsto x^3$).

Correction de l'exercice 10 ▲

 $f'(x) = 2(1-k)^3x + 3(1+k)x^2$, $f''(x) = 2(1-k)^2 + 6(1+k)x$. Nous avons f'(0) = 0 et $f''(0) = 2(1-k)^3$. Donc si $k \ne 1$ alors, la dérivée seconde étant non nulle en x = 0, 0 est un extremum (maximum ou minimum) local. Si k = 1 alors $f(x) = 2x^3$ et bien sûr 0 n'est pas un extremum local. Dans tous les cas 0 n'est ni un minimum global, ni un maximum global (regardez les limites en $+\infty$ et $-\infty$).

Correction de l'exercice 11 ▲

Le théorème de Rolle dit que si $h: [a,b] \longrightarrow \mathbb{R}$ est une fonction continue sur l'intervalle fermé [a,b] et dérivable sur l'ouvert [a,b] alors il existe $c \in [a,b]$ tel que h'(c)=0.

- 1. Supposons par l'absurde, qu'il existe $x_0 \in]a,b]$ tel que $g(x_0) = g(a)$. Alors en appliquant le théorème de Rolle à la restriction de g à l'intervalle $[a,x_0]$ (les hypothèses étant clairement vérifiées), on en déduit qu'il existe $c \in]a,x_0[$ tel que g'(c) = 0, ce qui contredit les hypothèses faites sur g. Par conséquent on a démontré que $g(x) \neq g(a)$ pour tout $x \in]a,b]$.
- 2. D'après la question précédente, on a en particulier $g(b) \neq g(a)$ et donc p est un nombre réel bien défini et $h = f p \cdot g$ est alors une fonction continue sur [a,b] et dérivable sur]a,b[. Un calcul simple montre que h(a) = h(b). D'après le théorème de Rolle il en résulte qu'il existe $c \in]a,b[$ tel que h'(c) = 0. Ce qui implique la relation requise.
- 3. Pour chaque $x \in]a,b[$, on peut appliquer la question 2. aux restrictions de f et g à l'intervalle [x,b], on en

déduit qu'il existe un point $c(x) \in]x, b[$, dépendant de x tel que

(*)
$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c(x))}{g'(c(x))}.$$

Alors, comme $\lim_{x\to b^-} \frac{f'(t)}{g'(t)} = \ell$ et $\lim_{x\to b^-} c(x) = b$, $(\operatorname{car} c(x) \in]x, b[)$ on en déduit en passant à la limite dans (*) que

$$\lim_{x \to b^{-}} \frac{f(x) - f(a)}{g(x) - g(a)} = \ell.$$

Ce résultat est connu sous le nom de "règle de l'Hôpital".

4. Considérons les deux fonctions $f(x) = \operatorname{Arccos} x$ et $g(x) = \sqrt{1-x^2}$ pour $x \in [0,1]$. Ces fonctions sont continues sur [0,1] et dérivables sur [0,1[et $f'(x) = -1/\sqrt{1-x^2}$, $g'(x) = -x/\sqrt{1-x^2} \neq 0$ pour tout $x \in]0,1[$. En appliquant les résultats de la question 3., on en déduit que

$$\lim_{x \to 1^{-}} \frac{\operatorname{Arccos} x}{\sqrt{1 - x^{2}}} = \lim_{x \to 1^{-}} \frac{\frac{-1}{\sqrt{1 - x^{2}}}}{\frac{-x}{\sqrt{1 - x^{2}}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1.$$

Correction de l'exercice 12 ▲

1. f est dérivable sur \mathbb{R}_{+}^{*} en tant que composée de fonctions dérivables, et sur \mathbb{R}_{+}^{*} car elle est nulle sur cet intervalle; étudions donc la dérivabilité en 0.

On a

$$\frac{f(t) - f(0)}{t} = \begin{cases} e^{1/t}/t & \text{si } t < 0\\ 0 & \text{si } t \ge 0 \end{cases}$$

or $e^{1/t}/t$ tend vers 0 quand t tend vers 0 par valeurs négatives. Donc f est dérivable à gauche et à droite en 0 et ces dérivées sont identiques, donc f est dérivable et f'(0) = 0.

2. On a

$$f'(t) = \begin{cases} -e^{1/t}/t^2 & \text{si } t < 0\\ 0 & \text{si } t \ge 0 \end{cases}$$

donc le taux d'accroissement de f' au voisinage de 0 est

$$\frac{f'(t) - f'(0)}{t} = \begin{cases} -e^{1/t}/t^3 & \text{si } t < 0\\ 0 & \text{si } t \ge 0 \end{cases}$$

et il tend vers 0 quand t tend vers 0 par valeurs supérieures comme inférieures. Donc f admet une dérivée seconde en 0, et f''(0) = 0.

- 3. (a) On a déjà trouvé que $f'(t) = -e^{1/t}/t^2$, donc $f'(t) = P_1(t)/t^2e^{1/t}$ si on pose $P_1(t) = 1$. Par ailleurs, $f''(t) = e^{1/t}/t^4 + e^{1/t}(-2/t^3) = \frac{1-2t}{t^4}e^{1/t}$ donc la formule est vraie pour n = 2 en posant $P_2(t) = 1 - 2t$.
 - (b) Supposons que la formule est vraie au rang n. Alors $f^{(n)}(t) = \frac{P_n(t)}{t^{2n}} e^{1/t}$ d'où

$$\begin{split} f^{(n+1)}(t) &= \frac{P_n'(t)t^{2n} - P_n(t)(2n)t^{2n-1}}{t^{4n}} e^{1/t} + \frac{P_n(t)}{t^{2n}} e^{1/t} (-1/t^2) \\ &= \frac{P_n'(t)t^2 - (2nt+1)P_n(t)}{t^{2(n+1)}} e^{1/t} \end{split}$$

donc la formule est vraie au rang n+1 avec

$$P_{n+1}(t) = P'_n(t)t^2 - (2nt+1)P_n(t).$$

4. Sur \mathbb{R}_{-}^{*} et sur \mathbb{R}_{+}^{*} , f est indéfiniment dérivable, donc il suffit d'étudier ce qui se passe en 0. Montrons par récurrence que f est indéfiniment dérivable en 0, et que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$. On sait que c'est vrai au rang 1. Supposons que f est n-fois dérivable, et que $f^{(n)}(0) = 0$. Alors le taux d'accroissement de $f^{(n)}$ en 0 est :

$$\frac{f^{(n)}(t) - f^{(n)}(0)}{t} = \begin{cases} P_n(t)e^{1/t}/t^{2n} & \text{si } t < 0\\ 0 & \text{si } t \ge 0 \end{cases}$$

et sa limite est 0 quand t tend vers 0 par valeurs supérieures comme inférieures. Donc $f^{(n)}$ est dérivable en 0, et $f^{(n+1)}(0) = 0$. Donc l'hypothèse de récurrence est vérifiée au rang n+1. Par conséquent, f est de classe C^{∞} .