## Trigonométrie.

## I. Le cercle trigonométrique.

### 1. Définition.

Définition : Le plan est rapporté à un repère orthonormé  $(O, \vec{i}, \vec{j})$ . Le cercle trigonométrique est le cercle C de centre O et de rayon 1 sur lequel on choisit le sens de parcours inverse aux aiguilles d'une montre (ce sens est appelé le sens direct).



### 2. Enroulement de la droite des réels autour du cercle.

Dans un repère orthonormé (O, I, J), on considère le cercle trigonométrique et la droite d tangente au cercle au point I. On définit sur cette droite un repère d'origine I et on imagine que la droite d s'enroule autour du cercle.

Pour tout nombre réel  $\alpha$ , le point d'abscisse  $\alpha$  sur d coïncide avec un unique point M du cercle trigonométrique. M s'appelle l'image de  $\alpha$  sur le cercle trigonométrique.



Réciproquement, à tout point M du cercle trigonométrique correspond une infinité de valeurs qui peuvent être considérées comme les abscisses de points de la droite d. Si  $\alpha$  est l'abscisse d'un de ces points sur d, tous les autres points de d ont pour abscisse  $\alpha+2\pi$ ,  $\alpha+4\pi$ , ...,  $\alpha-2\pi$ ,  $\alpha-4\pi$ , ...

Conséquence : A chaque réel  $\alpha$ , on associe un point M sur le cercle trigonométrique.  $\alpha$  est lié à l'angle au centre  $\widehat{IOM}$ . Ceci permet de définir une nouvelle unité d'angle appelée radian.

#### 3. Les radians.

Définition : Soit C le cercle trigonométrique. Soit M le point de C tel que l'arc IM mesure 1 unité. On définit un radian comme étant la mesure de l'angle  $\widehat{IOM}$ .

Propriété : La mesure, en radians, d'un angle géométrique est proportionnelle à sa mesure en degrés.

| Angle en radians   | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $2\frac{\pi}{3}$ | π   | 2π  |
|--------------------|---|-----------------|-----------------|-----------------|-----------------|------------------|-----|-----|
| Angle en<br>degrés | 0 | 30              | 45              | 60              | 90              | 120              | 180 | 360 |

#### II. Cosinus et sinus d'un réel.

#### 1. Définition.

Définition : Soit M un point sur le cercle trigonométrique C. Soit x une mesure en radian de l'angle  $\widehat{IOM}$ .

Le cosinus de x est l'abscisse de M. Il est noté  $\cos x$ .

Le sinus de x est l'ordonnée de M. Il est noté  $\sin x$ .



Exemples:  $\cos 0 = 1$ ,  $\sin 0 = 0$ ,  $\cos \frac{\pi}{2} = 0$ ,  $\sin \frac{\pi}{2} = 1$ 

## Propriétés:

- Pour tout réel x,  $-1 \le \cos x \le 1$ ,  $-1 \le \sin x \le 1$ . - Pour tout réel x,  $\cos^2 x + \sin^2 x = 1$ .

## 2. Valeurs remarquables.

| x        | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |
|----------|---|----------------------|----------------------|----------------------|-----------------|
| $\cos x$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               |
| $\sin x$ | 0 | 1/2                  | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               |

# 3. Propriétés.

Angles opposés.

Pour tout réel x, on a:  $\cos(-x) = \cos(x)$ 

$$\sin(-x) = -\sin(x)$$



Angles supplémentaires.

Pour tout réel x, on a:

$$\cos(\pi - x) = -\cos(x)$$

$$\sin(\pi - x) = \sin(x)$$



Angles complémentaires. Pour tout réel x, on a:

$$\cos\left(\frac{\pi}{2} - x\right) = \sin\left(x\right)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$



• Angles qui différent de  $\pi$ .

Pour tout réel x, on a:

$$\cos(\pi + x) = -\cos(x)$$

$$\sin(\pi + x) = -\sin(x)$$



- e. Application à la résolution d'équations.
- $\cos x = \cos a$ .

Les solutions de l'équation  $\cos x = \cos a$  sont les réels  $x = a + 2k\pi$  ou  $x = -a + 2k'\pi$ ,  $k \in \mathbb{Z}, k' \in \mathbb{Z}$ 

Exemple: Résoudre l'équation (E)  $\cos(x) = \frac{\sqrt{2}}{2}$ .

On sait que  $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ .

D'où l'équation (E) est équivalente à  $\cos(x) = \cos\left(\frac{\pi}{4}\right)$ .

Les solutions de (E) sont donc les réels  $x = \frac{\pi}{4} + 2k \pi$  ou  $x = -\frac{\pi}{4} + 2k' \pi$ ,  $k \in \mathbb{Z}$ ,  $k' \in \mathbb{Z}$ 

•  $\sin x = \sin a$ .

Les solutions de l'équation  $\sin x = \sin a$  sont les réels  $x = a + 2k\pi$  ou  $x = \pi - a + 2k'\pi$ ,  $k \in \mathbb{Z}$   $k' \in \mathbb{Z}$ 

Exemple: Résoudre l'équation (E)  $\sin(x) = \frac{\sqrt{3}}{2}$ .

On sait que  $\cos\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ .

D'où l'équation (E) est équivalente à  $\cos(x) = \cos\left(\frac{\pi}{3}\right)$ .

Les solutions de (E) sont donc les réels  $x = \frac{\pi}{3} + 2k\pi$  ou  $x = \frac{2\pi}{3} + 2k'\pi$ ,  $k \in \mathbb{Z}$ ,  $k' \in \mathbb{Z}$ 

- III. Fonctions cosinus et sinus.
- 1. Définition.

Définition:

- La fonction cosinus est la fonction, qui à tout réel x, associe le réel  $\cos x$ .
- La fonction sinus est la fonction, qui à tout réel x, associe le réel  $\sin x$ .

Notation:  $\cos : \mathbb{R} \to \mathbb{R}$   $\sin : \mathbb{R} \to \mathbb{R}$   $x \to \sin x$ 

- 2. Parité.
- Pour tout nombre réel t,  $\cos(-t) = \cos(t)$ . On dit que la fonction cosinus est paire.
- Pour tout nombre réel t,  $\sin(-t) = -\sin(t)$ . On dit que la fonction sinus est impaire.

Interprétation géométrique :

Le plan est muni d'un repère orthogonal (O,  $\vec{i}$ ,  $\vec{j}$ ).

1)



Soit  $t \in \mathbb{R}$  Soit  $M_t$  (t; cost) et M' (-t; cos(-t)). M et M' appartiennent à la représentation graphique de la fonction cos.  $\cos(-t) = \cos(t)$  Donc M et M' sont symétriques par rapport à l'axe  $(0, \vec{j})$ . D'où la représentation graphique de la fonction cosinus admet pour axe de symétrie l'axe  $(0, \vec{j})$ .

2)



Soit  $t \in \mathbb{R}$  Soit  $M_t$   $(t; \sin t)$  et M'  $(-t; \sin(-t))$ .

M et M' appartiennent à la représentation graphique de la fonction sin.  $\sin(-t) = -\sin(t)$  Donc M et M' sont symétriques par rapport à l'origine.

D'où la représentation graphique de la fonction sinus admet pour l'origine O pour centre de symétrie.

Remarque : connaissez vous d'autres fonctions paires ou impaires ? La fonction carré est paire et la fonction cube est impaire.

### 3. Périodicité.

Pour tout nombre réel t,  $\cos(t+2\pi) = \cos(t)$  et  $\sin(t+2\pi) = \sin(t)$ . On dit que les fonctions cosinus et sinus sont périodiques de période  $2\pi$  ou  $2\pi$  -périodique.

conséquence graphique :



Soit  $t \in \mathbb{R}$ 

Soit  $M(t;\cos t)$  et  $M'(t+2\pi;\cos t+2\pi)$ . M et M' appartiennent à la représentation graphique de la fonction cos.

$$\cos(t+2\pi) = \cos(t)$$
 Donc  $\overline{MM'} = 2\pi i$ .

Il suffit donc d'étudier la fonction cosinus sur un intervalle de longueur  $2\pi$ . On obtient la courbe sur  $\mathbb{R}$  par des translations de vecteurs  $2k\pi i$ ,  $k \in \mathbb{Z}$ 

Il en est de même pour la courbe représentative de la fonction sinus.

#### 4. Tableaux de variations.

Les fonctions sinus et cosinus étant périodiques de période  $2\pi$ , il suffit de les étudier sur un

intervalle d'amplitude  $\,2\,\pi$  .

On choisit l'intervalle  $]-\pi;\pi]$  centré en O.

• La fonction sinus.

| x     | - π |   | $-\pi/2$ |   | $\pi/2$ |   | π |
|-------|-----|---|----------|---|---------|---|---|
| f'(x) |     | _ | 0        | + | 0       | _ |   |
| f(x)  | 0   |   |          | A | 1       |   |   |
|       |     | * | -1       |   |         | * | 0 |

# • La fonction cosinus.

| x     | - π | 0     | π  |
|-------|-----|-------|----|
| f'(x) |     | + 0 – |    |
| f(x)  | -1  | 1     | -1 |

# 5. Courbes représentatives.

En utilisant les propriétés de parité et de périodicité vues auparavant, on obtient dans un repère orthogonal deux sinuisoides.

