UBC Mathematics 320(101)—Assignment 1 Due by PDF upload to Canvas at 18:00, Saturday 16 Sep 2023

Readings: Loewen, lecture notes for Week 1; Rudin, pages 24–30.

- **1.** Prove or disprove: For each $n \in \mathbb{N}$, $n^2 n + 41$ is prime.
- **2.** If A, B, and C are sets, prove that
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
 - (b) $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$,
 - (c) $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$.
- **3.** Let $f: A \to B$. Let C, C_1 , and C_2 be subsets of A, and let D be a subset of B. Prove:
 - (a) If f is one-to-one, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.
 - (b) If f is 1-1, then $f^{-1}(f(C)) = C$.
 - (c) If f is onto, then $f(f^{-1}(D)) = D$.

In each part, find an inclusion relation (either " \subseteq " or " \supseteq ") that can be used to replace the symbol "=" and produce a true statement even without the given hypothesis.

[Recall that $f^{-1}(y) = \{x \in A : f(x) = y\}$ is, in general, a set-valued operation. It is not safe to infer that f is invertible just because the symbol f^{-1} appears.]

- **4.** For Question 3(a), construct a specific example in which the indicated equation fails. (Of course the given hypothesis will have to be false too.) Repeat for parts 3(b) and 3(c).
- **5.** Prove that there is no (a, b) in $\mathbb{Z} \times \mathbb{Z}$ for which $a^2 = 4b + 3$. (*Hint*: Every integer a must be either even or odd.)
- **6.** Let $f: A \to B$ and $g: B \to C$ be given functions. Use the symbol $g \circ f$ to denote the function from A to C defined by $(g \circ f)(x) = g(f(x))$ for all $x \in A$. Prove:
 - (a) If f and g are one-to-one, then $g \circ f$ is one-to-one.
 - (b) If $g \circ f$ is one-to-one, then f is one-to-one.
 - (c) If f is onto and $g \circ f$ is one-to-one, then g is one-to-one.
 - (d) It can happen that $g \circ f$ is one-to-one, but g is not. (To "prove" this, simply provide a specific example with the indicated properties.)
- **7.** (a) Suppose $f: X \to X$ is a function, and define $g = f \circ f$. Prove: If g(x) = x for all $x \in X$, then f is one-to-one and onto.
 - (b) Extend the result in (a) to the function $g = f \circ f \circ \cdots \circ f$ defined by composing f with itself n times. Show that the result is valid for each $n \in \mathbb{N}$.
- **8.** Let $f: A \to B$ and let $C \subseteq A$.
 - (a) Proof or counterexample: $f(A \setminus C) \subseteq f(A) \setminus f(C)$.
 - (b) Proof or counterexample: $f(A \setminus C) \supseteq f(A) \setminus f(C)$.
 - (c) What condition on f will guarantee $f(A \setminus C) = f(A) \setminus f(C)$? (Choose between "f is 1-1" and "f is onto"; prove that your answer is correct.)