Überblick

Nervensystem — Überblick

- Unterscheidung nach Lage
- Zentrales Nervensystem (ZNS): Gehirn und Rückenmark
- Peripheres Nervensystem (PNS): Außerhalb von Gehirn und Rückenmark
- Autonomes Nervensystem (ANS): Steuerung lebenswichtiger Funktionen

Autonomes Nervensystem — Unterteilung

- Sympathisches Nervensystem (fight or flight): Bei Stressreizen → Notfallfunktionen des Organismus werden aktiviert:
- o Steigerung Puls + Blutdruck + Blutglukosespiegel (mehr Energie)
- o Steigerung Aufmerksamkeitslevel + Schweißproduktion
- Vergrößerung Pupillen
- o Erhöhung Muskeltonus (= Grundspannung der Muskel)
- Parasympathisches Nervensystem (rest and digest): Stoffwechsel + Aufbau Körperreserven bei Erholung:
- o Reduktion Herz-Pumpleistung
- o Steigerung Darmaktivität

DERMATOM + SPINALNERV

- Spinalnerv: Nerv, der zu einer bestimmten Seite und einem bestimmten Rückenmarksegment gehört (zw. 2 Wirbeln treten jeweils 2 Spinalnerven aus Wirbelkanal)
- Dermatom: Hautbereich, der von den sensiblen Fasern einer Spinalnervenwurzel autonom versorgt wird.

HIRNNERVEN

- Besondere Paar-Nerven mit Ursprung im Hirn (statt Rückenmark)
- Nummerierung: römisch von oben nach unten (je nach Austrittsstelle)

Nerven

- Kommunikationssystem des Körpers
- Geben Impulse zwischen ZNS und Körperbereichen weiter
- Bestehen aus vielen Neuronen
- Ernährung + Sauerstoffversorgung durch Blutgefäße
- Aufbau
- o Nervenfaserbündel, umgeben von Bindegewebshülle
- o Alle Bündel umgeben von weiterer Bindegewebshülle (hält alle zusammen)

Motorik und Sensorik

ÜBERSICHT MOTORIK

- Motorik = Gesamtheit der Aktionen der Muskulatur
- Sensomotorik: Zusammenhang zwischen Sinneseindrücken und Muskelaktivität (Steuerungs- und Regelsysteme)
- Psychomotorik: Zusammenhang zwischen geistig-seelischer Verfassung und Körperbefindlichkeiten (Gestik, Körperhaltung,...)

ÜBERSICHT SENSORIK

- Sensorik (in Technik) = Sensoren nutzen f
 ür Messung + Regulation von biologischen/technischen Systemen
- Üblicherweise: Verwendung von Einheitssignalen

Muskulatur — Struktur

- Motorische Endplatte: überträgt elektrischen Nervenfaser-Reiz als chemischen Impuls an Muskelfaser (chemische Synapse, Neurotransmitter Acetylcholin)
- Muskel \to Muskelfaser-Bündel \to Muskelfaser \to Muskelfibrille \to Sarkomer \to Myosin- und Aktin-Filamente

Muskulatur – zelluläre Grundlagen

- 1. ATP-beladene Myosinköpfchen über Troponin an Aktinfilament angedockt
- 2. ATP zerfällt zu ADP und P, Ca wird abgestoßen, ADP bleibt in Myosinköpfchen
- 3. Myosinköpfchen schlagen um → Kontraktion
- 4. ADP wird abgegeben, Myosinköpfchen in Endstellung
- Aktin-Myosinbindung wird gelöst, Myosinköpfchen durch ATP neu gespannt
 → ATP macht Myosinköpfchen "weich"

Muskulatur — Kontraktion

- = Aktinfilamente bewegen sich zu Zentrum von dickstem Filament
- Bewegung durch Klappbewegung Myosinköpfchen → Ruderbewegung
- ATP zur Lösung von Myosin und Aktin benötigt \sim Totenstarre wenn keine

TROPONIN

- = An Muskelkontraktion beteiligtes Strukturprotein
- Tropomyosinfaden blockiert Myosinbindungsstelle
- Muskelkontraktion \to Anstieg Ca²⁺-Konzentration \to Bindung Ca²⁺ an Troponin \to Troponinmoleküle bewegen Tropomyosinfaden \to Kontaktstelle zwischen Aktin und Myosinköpfchen frei

Motorcortex

- = abgrenzbarer Großhirnrinde-Bereich und funktionelles System
- steuert willkürliche Bewegungen
- Zusammenstellung komplexer Bewegungsabfolgen aus einfachen Mustern
- Reizleitung Motorkortex \rightarrow Rückenmark \rightarrow Nerv (siehe motorische Endplatte)
- Primär-Motorische Rinde (M1): unmittelbare Bewegungssteuerung (liegt überwiegend auf gyrus praecentralis)
- Supplementär-Motorische Rinde (SMA): Erstellen Bewegungsabfolgen aus Bewegungs-Fundus + Vorbereitung willkürlicher (bewusst + unbewusst) Bewegungen

SOMATOSENSORISCHER CORTEX

- = abgrenzbarer Großhirnrinde-Bereich
- zentrale Verarbeitung haptischer Wahrnehmungen (Tasten + Temperatur)
- Mechanorezeptoren: Sinneszellen, die mech. Kräfte in Signale wandeln
- $\bullet \ \ Ber\"{u}hrungs-\ und\ Druckrezeptoren:$
 - Vater-Pacini-Körperchen: Mechanorezeptoren auf Haut, besonders gut bei Vibrationsempfindungen
- $\circ \ \ \mathsf{Merkelsche} \ \mathsf{Scheiben:} \ \mathsf{Mechanorezeptoren} \ \mathsf{auf} \ \mathsf{Haut,} \ \mathsf{Druckrezeptoren}$
- $\circ \ \ Haarfollikelrezeptoren, \dots$
- Wärmerezeptoren:
 - $\circ \ \ Krausesche \ Endkolben: Ermitteln \ Temperatur \ auf \ Hauptoberfläche$

<u>SOMATOTOPIE</u>

= Abbildung Körperregionen/-strukturen auf Nervenzellenareale im Gehirn

- Homunculus: Modell neuronale Beziehung zwischen kortikalen Bereichen und Skelettmuskeln/sensorischen Feldern
 - → Benachbarte Körperregionen auf benachbarte Kortexgebiete abgebildet
- · Unterscheidung sensorischer und motorischer Cortex

Nervenzelle — Aufbau

- Soma: Zellkörper, enthält Zellkern + verschiedene Organellen (raues/glattes ER, Mitochondrien,...)
- Dendriten: Von Soma auswachsende, fein verästelte Zellfortsätze
 → Kontaktstellen für andere Zellen, Erregungsübertragung über Synapse
- Axon: Zellfortsätze, entspringen Axonhügel, Weiterleitung Erregung an andere Zellen
- Synaptischer Spalt: Zwischenraum zwischen präsynaptischer Membranregion (Präsynapse) und postsynaptischer/subsynaptischer Membranregion (Postsynapse) bei einer nachgeschalteten Zelle
- Neurotransmitter: Botenstoffe an chemischen Synapsen für Erregungsübertragung (Transmission): Acetylcholin, Noradrenalin, Dopamin, Serotonin, ...
 - 1. Senderzelle schüttet bei Erregung Neurotransmitter präsynaptisch aus
- 2. Neurotransmitter überbrücken synaptischen Spalt
- 3. Empfängerzellen-Rezeptoren empfangen postsynaptisch Neurotransmitter

AKTIONSPOTENTIAL, ELEKTRO-CHEMISCHE MECHANISMEN

- · Zellmembran:
- o Lipid-Doppelschicht, lipophile Seite innen, hydrophile Seite außen
- Proteine mit verschiedenen Funktionen in Lipid-Doppelschicht integriert
 (7 B. Jonenkanäle)
- Ionenkonzentration unterschiedlich \rightarrow viele K^+ , wenige Na^+ im Zellinneren
- Ionenpumpe hält Konzentrationsgefälle aufrecht
 - → Energiegewinnung durch ATP-Spaltung
- Einige $\mathrm{K}^+\text{-}\mathrm{Kan\"{a}le}$ immer offen $\to\mathrm{K}^+\text{-}\mathrm{lonen}$ diffundieren aus Zelle heraus
- Gleichzeitig wenige Na⁺-Kanäle offen → kaum Na⁺-Ionen zum Ausgleich
 → Zellinneres verliert positive Ladungen, negative Spannung entsteht
- Ruhepotential: Potential differenz bremst Ausstrom von $\ensuremath{\mathsf{K}^{+}}$
- \rightarrow Gleichgewichtszustand zwischen nach außen gerichteter Diffusions-Tendenz und nach innen gerichteter elektrischer Anziehung der K $^+$
- Depolarisation:
- o Axon durch elektrischen Reiz leicht depolarisiert \to einige spannungsgesteuerte Na $^+$ -Poren öffnen sich
- o Depolarisation erreicht Schwellwert \to alle Na $^+$ -Kanäle offen, Anzahl durchlässiger K $^+$ -Poren zuerst gleich
 - ightarrow Überschuss positiver Ladung im Inneren des Axons
- Repolarisation: Na⁺-Poren schließen nach kurzer Zeit wieder, alle noch geschlossenen K⁺-Kanäle öffnen → schneller K⁺-Ausstrom führt zu Rückkehr des Membranpotentials zu Ruhewert

NERVENLEITUNG

- Reizung an bestimmter Stelle → Aktionspotential → Angrenzung positiver und negativer Ladungen ohne trennende Membran
- 2. Ausgleichsströme entstehen → Membranpotential benachbarter Stellen wird erniedrigt → Schwellwert wird erreicht, Aktionspotential auch bei Nachbar
- 3. Signal wird weiterverbreitet

SIGNALMODULATION

- Aktionspotential hat immer selbe Amplitudenform
- Information codiert über Frequent + Dauer der Entstehung von Aktionspotentialen
- Gewöhnung (Habituation): verminderte Neurotransmitter-Ausschüttung bei wiederholter Reizung
- Sensibilisierung: erhöhte Ausschüttung bei Wiederholung
- Habituation + Sensibilisierung kurzfristig, langfristige Änderungen durch strukturelle Veränderung der Synapsenregion

SYNAPSE

- Neurotransmitter in Nervenzelle produziert, wandern zu Axon-Endköpfchen
- · Synapse: Umwandlung elektrisches in chemisches Signal
- 1. Aktionspotential → Freisetzung Neurotransmitter
- 2. Öffnung spannungsaktivierter Ca⁺-Kanäle → Anstieg intrazelluläres Ca⁺
- 3. Vesikel binden an präsynaptische Membran, Vesikel-Inhalt wird in synaptischen Spalt freigesetzt
- Chemische Botenstoffe diffundieren durch synaptischen Spalt zu angrenzenden Zellen → bewirken dort auch elektrischen Impuls
- Informationsübertragung meist chemisch, gibt aber auch elektrische
- Elektrische Synapse: Aktionspotential wird direkt auf nachfolgende Zelle über direkte Verbindungskanäle weitergeleitet (gap junctions)
- Chemische Synapse: Unterscheidung zwischen exzitatorischen (aktivierende) und inhibitorischen (hemmende) Synapsen
- o Effektorsynapsen: Enden an Drüsen/Muskelzellen
- $\circ \ \ Rezeptorsynapsen: Zwischen \ Nerven- \ und \ Sinneszellen$
- Interneuronale Synapsen: Stellen Kontakt zwischen einzelnen Nervenzellen (vor allem im Gehirn) her

GANGLION

- = Ansammlung von Nervenzellenkörpern → Verdickung Nervenstrang
- · Kommt besonders im PNS vor
- Prä-Ganglionär: Nervenfasern/Neuronen von vegetativem Nervensystem, ziehen von ZNS zu Ganglion
- Post-Ganglionär: Nervenfasern/Neuronen von vegetativem Nervensystem, ziehen vom Ganglion zu Zielorgan

HAUT

- Oberflächensensibilität: Empfindungen, die über Hautrezeptoren wahrgenommen werden (Mechano-, Thermo-, Schmerzrezeptoren)
- Tiefensensibilität: Wahrnehmung bestimmter Reize aus Körperinnerem (Lage-, Kraft-, Bewegungssinn)
- Zwei-Punkt-Diskrimination: Fähigkeit, zwei taktile Reize räumlich unterscheiden zu können (hoch z.B. an Lippe, gering z.B. am Hintern)

Sinnesorgane

GERUCHSSINN

- Nase: Atmung (Reinigung + Filterung) + Geruchswahrnehmung
- Geruchswahrnehmung:
 - o komplexer chemisch-neuraler Vorgang
 - Riechschleimhaut: Luft scheidet Geruchsmoleküle an Rezeptormoleküle ab
- Auf einzelne Duftstoffe ansprechende Rezeptoren (>350 Rezeptortypen) bilden durch Riechköpfchen Matrixstruktur an Oberfläche der Riechschleimhaut
- \circ Vereinigung Duftmolekül + Rezeptor o Kaskade in Rezeptorzellen o neuronale Signale über Riechnerv-Axone an Großhirn
- Olfaktorisches System hochkomplex, Verbindungen zu Hypothalamus (Nahrungsaufnahme + Sexualverhalten) und limbischem System (Instinktverhalten + Gedächtnisleistungen)

GESCHMACKSSINN

- 5 Grundqualitäten:
- 1. Süß: Zucker + Derivate, Aminosäuren, Peptide, Alkohole
- 2. Salzig: Speise- + Mineralsalze
- 3. Sauer: saure Lösungen, organische Säuren
- 4. Bitter: Bitterstoffe, Alkaloide, Glycoside (Chinin, Wermut)
- 5. Umami: Glutaminsäure, Asparaginsäure
- ! Scharf kein Geschmack, sondern Schmerzsignal
- Primärer gustatorischer Cortex (Inselcortex): für Geschmackswahrnehmung zuständige Hirnstruktur, mit anderen Sinneseindrücken (z.B. Tast- und Temperaturinformationen) aus Mundhöhle integriert
- Sekundärer gustatorischer Cortex: in orbito-frontalem Cortex (überlappt mit sekundären olfaktorischem Cortex)

- Augapfel: kugelförmig, kardanische Aufhängung → beliebig drehbar
- · Auge besteht aus drei Schichten:

1. Äußere Augenhaut:

- o Durchsichtige Hornhaut (cornea) dort, wo Licht ins Auge tritt
- Geht über in weiße Lederhaut (sclera), größter Teil der Augapfelhülle

 teils von Bindehaut bedeckt, nur Cornea wird direkt von Tränenflüssigkeit benetzt
- Tränenflüssigkeit: fließt von Tränendrüse über canaliculi licrimales superior und inferior (oberer + unterer Tränenkanal) in Nasenhöhle ab

2. Mittlere Augenhaut uvea:

- o hinten gut durchblutete Aderhaut → Nährstoffversorgung
- Übergang zu Ziliarkörper (corpus ciliare) → Aufhängung Augenlinse
- \circ vorne Regenbogenhaut (iris) + Pupille \rightarrow Regulierung Lichteinfall

3. Innere Augenhaut:

- o Netzhaut + Retina, enthält Lichtsinneszellen (Photorezeptoren)
- o Blinder Fleck dort, wo Sehnerv das Auge verlässt (Sehnervenpapille)
- o Gelber Fleck (fovea): Stelle des schärfsten Sehens

• Sensorzellen in Retina:

- Stäbchen: Lichtsensoren (Hell-Dunkel-Unterscheidung), im peripheren Bereich
- o Zäpfchen: Farbsensoren (3 Gruppen, violett-grün-gelb), im Fovea-Bereich

VISUELLE WAHRNEHMUNG — WEITERLEITUNG ZUM HIRN

Zäpfchen + Stäbchen ergänzt durch Rezeptoren, an welche spezielles G-Protein gebunden ist (bestehen aus Bestandteilen von Vitamin A + Opsin-Protein)

• Ablauf:

- Eintreffende Photonen lösen in Vitamin A Strukturveränderung aus
 → Opsin kann mit Vitamin A agieren, Enzym-Ausschüttung
- 2. Negative Ladung in Zellmembran \Rightarrow optisches zu elektrischem Signal
- 3. Auswertezellen in Netzhaut: verarbeiten elektrisches Signal
- 4. Weiterleitung Ganglienzellen, Fortsätze bilden II. Hirnnerv (nervus opticus)

VISUELLE WAHRNEHMUNG — VISUELLES SYSTEM

- Sehrinde: Empfängt elektrische Impulse über Sehbahnen
- Sehnervenkreuzung (chiasma opticum): Hier kreuzen sich nach Eintritt in Schädelhöhle die Sehnerven der beiden Augen
- Äußere Fasern verlaufen weiter, Innere kreuzen zur Gegenseite
 → Fasern linke Netzhauthälfte beider Augen in linke Hirnhälfte, rechte analog
- Tractus opticus: Weiterleitung Nervenfasern zu seitlichen Kniehöckern (corpus geniculatum laterale)
- breite Fächerung der Sehstrahlung hin zur **Sehrinde** (visueller Cortex)

Gehörsinn - Ohr

- Äußeres Ohr (Ohrmuschel, Ohrknorpel, äußerer Gehörgang): Einfangen von Schall, Codieren der Einfallsrichtung
- Mittelohr (Trommelfell, Gehörknöchelchen, Eustachische Röhre): Mechanische Impedanzwandlung → optimale Übertragung Außenohr-Innenohr
- Innenohr (Labyrinth: Gehörschnecke (cochlea), Bogengänge, Hörnerv):
 Gehörschnecke setzt Schall in Nervenimpulse um, Innenohr beherbergt
 Gleichgewichtsorgan (besteht aus drei Bogengängen + zwei Aussackungen (utriculus. sacculus))
- Steigbügel = Übertragungselement zur Gehörschnecke
- Schwingungen erregen Haarzellen in Cochlea, welche mit Hörnerv verbunden sind → Ausschüttung Neurotransmitter → Weiterleitung ans Gehirn

GEHÖRSINN — COCHLEA + EINORTSTHEORIE

- Frequenzabhängiges Schwingungsmaximum zw. Steigbügel und helicotrema
- Hohe Frequenz \rightarrow nah bei Steigbügel, tiefe Frequenz \rightarrow nah bei Helicotrema
- Anregung Sinneszellen bei Maximum → erregte Zellen frequenzabhängig
- → Konstante Töne weniger angenehm als variierende

GEHÖRSINN — AUDITIVES WAHRNEHMEN

- Auditiver Cortex: Auditorische Fasern rückverschaltet → Impulse beider Ohren kommen in beiden auditiven Cortices an
- \rightarrow Richtungshören, Resthörempfinden bei Schäden
- Oberer Olivenkomplex: Rücksendung von Fasern zum Innenohr
 - $\rightarrow \mathsf{Empfindlichkeitsmodulierung}$

GEHÖRSINN — GLEICHGEWICHTSSINN

- Utriculus + Sacculus: besitzen von Gallertmasse umhüllte Sinneshaarzellen
- Calciumkarbonatkristalle auf Sinneshaarzellen, umgeben von weniger dichter Flüssigkeit
- Translationsbewegung → Kristalle hinken gegenüber Bewegung nach
 → Beugung + Reizung Sinneshaarzellen
- Rotatorische Bewegungen: Ermittlung durch 3 Bogengänge
- Signale über VIII. Hirnnerv in Vestibularis-Kerne im Stammhirn weitergeleitet
- Nutzung zusätzlicher Informationen von Augen, Kopf und Körperstellung zur eindeutigen Lagebestimmung

Gehirnfunktionen

DENKEN UND LERNEN

- Denken: Geistige Modelle bilden + in Verbindung setzen (psychologische Grundfunktion)
- Lernen: Erwerb von geistigen, k\u00f6rperlichen und sozialen Kenntnissen, F\u00e4higkeiten und Fertigkeiten

Intelligenz

- Geistige Leistungsfähigkeit; Fähigkeit, Probleme und Aufgaben effektiv + schnell lösen und in ungewohnten Situationen zurecht finden zu können
- Neuropsychologie: Neuronale Grundlagen von Intelligenz (Verarbeitung von Signalen und Informationen)
- Großhirn (Neocortex): Neurale Leistung für Intelligenz besonders relevant
- Kleinhirn, Stammhirn + andere phylogenetisch ältere Bereiche: für Intelligenzforschung weniger relevant
- Dezentral: Intelligenz nicht in bestimmten Gehirnbereichen lokalisiert
- Generalfaktor g vs. multiple Intelligenzen: Manche Forscher vermuten bereichsübergreifenden Intelligenzfaktor, andere vermuten unabhängige Intelligenzen (verbales Verständnis, räumliches Vorstellungsvermögen, ...)
- Erbe vs. Umwelt: Intelligente Personen sterben mit mehr Synapsen
- Intelligenzquotient: Maß zur Bewertung intellektuelles Leistungsvermögen
- o Durchschnitt 100
- o Standardabweichung 15
- o Frauen und Männer gleicher Mittelwert, Männer größere Varianz

MEDIKAMENTE

- Methylphenidat (Ritalin): steigert Kapazität des räuml. Arbeitsgedächtnis und Planungsfähigkeit
- o Amphetamin-ähnliche Substanz, hauptsächlich bei ADHS eingesetzt
- o Anwendung bei Narkolepsie, Steigerung Antidepressia-Wirksamkeit
- Vertrieben als Ritalin
- Modafinil: steigert Leistung bei Mustererkennung + räumliches Planen, verbessert Kurzzeitgedächtnis für Zahlen
 - o Gehört zur Psychostimulanzen-Gruppe
 - o Behandlung bei Narkolepsie
 - \circ hält wach und fördert Konzentration \rightarrow brain-booster
- Physostigmin (Acetylcholinesterase-Hemmer): verbessert Arbeitsgedächtnis bei Gesichtserkennung
 - o Hydrolisiert Acetylcholin zu Essigsäure und Cholin
 - wirkt ähnlich wie Insektizid Parathion (E 605) oder chemische Kampfstoffe Sarin und Tabun
 - Verursacht erhöhte Acetylcholin-Konzentration in synaptischem Spalt und damit eine Erhöhung des Parasympathikotonus (Erregung)
 - o Krämpfe im Magen-Darm-Trakt, Tod durch Atemlähmung
- Erythropoetin: steuert Bildung von Erythrozyten aus Vorgängerzellen in Knochenmark, verursacht eine Woche nach einmaliger Injektion Wortflüssigkeit (Vermutung: Erhöhung Neuroplastizität)
- GTS-21: Steigert Leistungsfähigkeit Arbeitsgedächtnis, in Zulassungsphase

KOGNITION UND GEDÄCHTNIS

- Kognition: Oberbegriff h\u00f6here geistige Funktionen (Denken, Erkennen, Wahrnehmung, Verstand)
- Abgrenzung zwischen kognitiven und geistigen Fähigkeiten
 - ightarrow Unterschied zwischen Gehirn und Geist
- Gedächtnis: Fähigkeit, Wahrnehmungen (Sinnesreize) + psychische Erlebnisse zu merken (engrammieren) + erinnern (ekphorieren)
- o Amnesie: Gedächtnisverlust
- Sensorisches Gedächtnis (Ultrakurzzeitgedächtnis): speichert Informationen 5ms-20sec, elektrische Impulse
- Arbeitsgedächtnis (Kurzzeitgedächtnis): speichert Informationen Minuten bis Tage, Bildung von Proteinen in speziellen Neuronen
- Langzeitgedächtnis: speichert Informationen über Jahre, Einlagerung der Proteine in Neuronen

Gehirn — Grosshirn

- = cerebrum, telencephalon
- ${f Großhirnrinde}$: äußere, Nervenzellen-reiche Sicht (graue Substanz)
 - o Frontallappen: motorische Funktionen
 - Temporallappen: primärer auditorischer Cortex, Wernicke-Sprachzentrum, wichtige Gedächtnis-Strukturen (Hippocampus)
- Lateralisation: Zuordnung zwischen k\u00f6rperlichen/mentalen Funktionen und Gro\u00dfhirnhemisph\u00e4re
- Balken (corpus callosum): dicker Nervenstrang, verbindet beide Hemisphären

GEHIRN — ZWISCHENHIRN

- Thalamus + Hypothalamus
- Zentren für Riech-, Seh- und Hörbahn, Oberflächensensibilität, Tiefensensibilität, emotionale Empfindung
- Weitere überlebenswichtige Empfindungen, Triebe und Instinkte (Hunger, Durst, Schlaf- und Fortpflanzungsbedürfnis, Überlebensinstinkt)

Gehirn – Kleinhirn

- = Cerebellum
- Kleinhirnrinde: äußere, Nervenzellen-reiche Schicht (graue Substanz)
- Steuerung Motorik: Koordination + Feinabstimmung, unbewusste Planung, Erlernen von Bewegungsabläufen

GEHIRN — STAMMHIRN

- = Mittelhirn
- Steuert überlebenswichtige Funktionen (Atmung, Blutdruck, Reflexe, $\ldots)$

HIPPOCAMPUS

- = Struktur, die Erinnerungen generiert
- · Ort des Informationszusammenflusses verschiedener Sensorsysteme
- Verarbeitung von Informationen, Zurücksenden an Cortex
- Cortex speichert Gedächtnisinhalte an verschiedenen anderen Stellen
- wichtig für Gedächtniskonsolidierung (Überführung von Kurzzeit- zu Langzeitgedächtnis)
- Anterograde Amnesie: beide Hippocampi zerstört → keine neuen Erinnerungen formbar, alte Erinnerungen bleiben erhalten

DEMENZ

- Oberbegriff für Erkrankungsbilder mit Verlust geistiger Funktionen (Denken, Erinnern, Orientierung, Verknüpfung Denkinhalte)
 - → alltägliche Aktivitäten nicht mehr eigenständig durchführbar
- · Alzheimer-Demenz: Häufigste Demenz-Form
 - o Ursache: Störung im Glutamat-Gleichgewicht
 - \rightarrow Absterben von Hirnzellen
 - ightarrow Ablagerung von Eiweis-Spaltprodukten (Amyloide) im Gehirn
 - → Behinderung Reizübertragung
 - → Entstehung seniler Plaques
 - o Konsequenzen: immer weniger Acetylcholin wird produziert
 - \rightarrow Glutamatkonzentration zwischen Nervenzellen durchgehend erhöht
 - \rightarrow Signale können nicht richtig erkannt/weitergeleitet werden
 - \rightarrow Nervenzelle stirbt aufgrund von Überreizung ab
- o Behandlung: Störungen durch Antidementiva (z.B. Memantine) mindern
- Vaskuläre Demenz: Durchblutungsstörung, plötzliche Hirnleistungs-Verschlechterung \rightarrow schlaganfallartige Symptomatik
- Sekundäre Demenzen: Verursacht durch nicht-hirnorganische Grunderkrankungen
- o Rückbildung Gedächtnisstörung nach erfolgreicher Behandlung möglich
- Mögliche Ursachen: Stoffwechselstörungen, Schilddrüsenerkrankungen, B12-Mangel, Alkoholismus, andere chronische Vergiftungen, Infektionskrankheiten (Hirnhautentzündungen, AIDS, ...)
- Morbus Pick, Fronto-Teporale Demenz und weitere

HIRNHÄLFTEN

- Split-Brain-Entdeckung: Großhirn besteht aus zwei physiologischen Hemisphären mit unterschiedlichen Funktionen
- Erkenntnisse:
- o Stärkere Beanspruchung beider Seiten
 - → Entwicklung einer Hirnhälfte kommt auch anderer zugute
- Stärkere Beanspruchung unterschiedlicher Funktionsbereiche
 - → Erhöhung Gesamtkapazität Gedächtnis
- Schul- und Bildungssystem beansprucht hauptsächlich linke Seite
- Gedächtnistraining: Soll gefühl- und fantasieorientierte rechte Gehirnhälfte besser in Merkprozess einbeziehen

NEUROINFORMATIK UND ROBOTIK

- Neuroinformatik: Informationsverarbeitung in neuronalen Systemen zur technischen Anwendung → Arbeitsweise Gehirn simulieren
- Künstliche Intelligenz: Maschinen/Programme mit "intelligenten" Ergebnissen entwickeln
- Computational Neuroscience: Aus Neurobiologie, Verständnis biologischneuronaler Systeme durch mathematische Modelle
- Robotik:
- o Stereotaktische Operationen: Platzieren von Ableitelektroden
- Endoskopische Operationen: Instrumente gezielt führen + exakt halten

Neurodiagnostik

DIAGNOSTIK

Unterscheidung invasive und nicht-invasive Diagnostik

- Lumbalpunktion (Liquordiagnostik): Hohlnadel wird in Lumbalkanal auf Lendenhöhe eingeführt + Nervenwasser entnommen
- Ultraschall
- Elektrophysiologie
- Positronen-Emmisions-Tomographie (PET, Radiologische Diagnostik):
- 1. Zerfall eines Radionuklids → Positron entsteht
- 2. Positron trifft auf Elektron → Annihilation
- 3. Zwei Protonen entstehen (Gammastrahlung) → Abstrahlung
- 4. Winkel 180° zwischen Gammastrahlen \rightarrow treffen je auf Detektor

ELEKTROPHYSIOLOGIE

- Neurophysiologie-Teilbereich, befasst sich mit elektrochemischer Signalübertragung in Nervensystem
- Klinische Elektrophysiologie: Neurologie-Teilbereich, Unterschiedliche Methoden zur Messung ganzer polysynaptischer zentraler Nervenbahnen + peripherer Nerven
 - Methoden: Elektroenzephalographie (EEG), Messung evozierter Potenziale (somatosensorisch, motorisch, visuell, akustisch evoziert), Elektroneurographie (ENG) mit Messung Nervenleitgeschwindigkeit (NLG), Elektromyographie (EMG)

ELEKTROENZEPHALOGRAPHIE (EEG)

- Wegen CT + MRT nicht mehr häufig eingesetzt
- Aufzeichnung Hirnströme als Maßeinheit elektrischer Hirnaktivität (5-100 μ V)
- Oberflächen-EEG: Messung mit auf Kopfhaut aufgebrachten Elektroden
- Spannungsunterschiede zwischen Elektroden (= Hirnströme) auf Monitor wellenförmig sichtbar
- · Einteilung Hirnströme nach Frequenz in 3-4 Rhythmen
- Frequenz schnell ightarrow Person wach, Hirnaktivität normal
- Frequenz langsam \rightarrow Schlafstadium oder krankhafter Befund
- Alpha-Wellen (8-13 Hz): wach, entspannt
- Beta-Wellen (14-30 Hz): Medikamente oder fehlende Entspannung
- Gamma-Wellen (>30 Hz): Starke Konzentration
- Theta-Wellen (4-7 Hz): bei Kindern/Jugendlichen normal
- Delta-/Subdelta-Wellen (0.5-3 Hz): Tiefschlaf, Trance
- · Spiked/Sharp Waves: Epilepsie

Nervenleitgeschwindigkeit (NLG)

- Prinzip:
- 1. Kurzer elektrischer Impuls am Arm oder Beim → Reizung Nerv
- 2. Nerv depolarisiert → Weiterleitung in beide Richtungen
- → Messung ausgelöste Spannungsänderung entlang Nerv
- Berechnung:
- o Nerv an zwei Orten stimulieren
- o Reizantworten im Muskel messen
- o Differenz Leitungszeiten (Latenz, ms) und Reizorte (mm) bestimmen
- \circ NLG = Δ mm/ Δ ms
- Verwendung: Ort + Schwere von Nervenschaden ermitteln, z.B. Polyneuropathie oder Nervenkompressionssyndrom (Karpaltunnelsyndrom)

ELEKTROMYOGRAPHIE (EMG)

- elektrische Muskelaktivität messen durch Einstechen von dünner Nadelelektrode in Muskel → Ableitung von Potentialschwankungen einzelner motorischer Einheiten durch konzentrische Nadelelektroden
- Feststellbar, ob Muskel- oder Nerv-Erkrankung bei Muskelschwäche
 Differenzierung zwischen Myo- und Neuropathien
- Intraoperativ: EMG als Monitoring von Rückenmarksfunktion bei Wirbelsäulenoperation oder Registrierung Hirnnervenfunktionen bei Hirnstamm-Operationen

EVOZIERTE POTENTIALE

- Prinzip:
- 1. Sinnesreiz \rightarrow el. Potentialänderung in sensorischen Großhirnrinde-Arealen
- 2. Wesentlich kleinere Amplituden (schwer erfassbar)
- → Evozierte Aktivität = Ø mehrere evozierte Potentiale

- Somatosensorisch evozierte Potentiale (SSEP): Beurteilung zentrale somatosensible Leitungsbahnen + peripherer, sensibler Nerven
- Visuell evozierte Potentiale (VEP): Beurteilung Sehnerv und -bahn

SONOGRAPHIE (ULTRASCHALL)

- Ultraschall: Schall oberhalb des hörbaren Frequenzbereichs (20 kHz 1GHz)
- Sonographie (Echographie): Ultraschall als bildgebendes Verfahren für medizinische Untersuchung organisches Gewebe
- Ultraschallgerät: Elektronik Schallerzeugung, Signalverarbeitung + -darstellung, Schnittstellen für Monitor/Drucker/Speichermedien, auswechelbare Ultraschallsonde (Schallkopf)
- · Schallkopf:
 - o Kristalle, die bei Wechselspannung mitschwingen (piezoelektrischer Effekt)
 - \circ Sendet Schwingungen \rightarrow unterschiedliche Reflektion d. Organe/Gewebe
 - o Impedanz: Wellen-Ausbreitung entgegenwirkender Widerstand
 - Grauwert = Reflexionsstärke (hohe Reflexion an Grenzflächen zweier Stoffe mit großem Impedanzunterschied)
- Dopplereffekt: Bestimmung Blutflussgeschwindigkeit → reflektiertes Signal um Frequenz relativ zu ausgesandter verschoben (Dopplersonographie)

RÖNTGEN

- Röntgendiagnostik: Körper mit kurzwelliger, unsichtbarer Strahlung durchstrahlen (Wellenlänge 0.01 - 10nm)
- Durchleuchtung: Durchstrahltes Gewebe schwächt Strahlung ab \to Darstellung mit fluoreszierendem Schirm/Bildverstärker
- Radiographie: Sichtbar-machen auf Filmmaterial oder durch elektronische Sensoren (digitale Radiographie)
- Erzeugung: Elektronen von Glühwendel (Kathode) beschleunigt, treffen auf Anode → Abbremsen, entstehung von Bremsstrahlung (= Röntgenstrahlung) + viel Wärme
- · Röntgenstrahlen-Absorption durch Gewebe dichteabhängig
 - → keine Abbildung des Körperinneren möglich
- · Häufigste Indikation bei Verdacht auf Knochenbruch
- Unterschiedliche Strahlenqualitäten (weich/hart), um unterschiedlich dichte Gewebe (Fett, Muskel, Knochen) zu durchdringen
- $\circ~$ we
nige kV auf Röntgenröhre \leadsto weiche Strahlung
- o 25-35kV (Mammographie), 38-120kV (Rest)
- weicher → höhere Absorption → höhere Strahlenbelastung
- weicher → feinere Gewebeunterschiede sichtbar
- o härter → durchdringt mehr (>100kV durchdringt sogar Bleischürzen)
- härter → weniger Kontrastunterschiede

NATÜRLICHE STRAHLENBELASTUNG

- Maßeinheit: Millisievert (mSv)
- Äquivalentdosis: Dosisgröße für ionisierende Strahlung
- berücksichtigt übertragene Energiedosis
- o berücksichtigt relative biologische Wirksamkeit (RBW) von Strahlenarten
- Kosmische Strahlung: 0.3mSv/Jahr. Entsteht in äußerer Atmosphäre durch Kollision von Wasserstoff-Atomkernen und Luftmolekülen
- Terrestrische Strahlung: 0.4mSv/Jahr. Emittiert durch Radionuklide in Böden/Gesteinen der Erdkruste
- Innere Strahlung: 1.4mSv/Jahr. Emittiert durch Zerfall natürlicher radioaktiver Stoffe, Aufnahme durch Essen, Trinken, Atmen
- Hauptbelastung: Inhalation von Radon

KÜNSTLICHE STRAHLENBELASTUNG

- Medizinische Anwendungen: 2.0mSv/Jahr
- CT: einmalig 10-25mSv
- · Zigaretten, Flugreisen,...
- Militärische Radaranlagen: Größere Strahlenbelastung durch in Geräten erzeugte Röntgenstrahlung (nicht durch eigentliche Radar-Mikrowellenstrahlung!)

Computertomographie (CT)

- = Computer-Auswertung vieler Röntgenaufnahmen aus versch. Richtungen
- Spiralverfahren: Patient wird mit konstanter Geschwindigkeit entlang Längsachse durch Strahlenebene bewegt, während Strahlenquelle mit konstanter Winkelgeschwindigkeit rotiert
- Herkömmliches Röntgen: Projektion von Volumen auf Fläche
- CT: 3D-Rekonstruktion aus Einzelschnitten

Angiographie

- = mit Kontrastmittel gefüllte Blutgefäße durch Röntgenstrahlung darstellen
- Phlebographie: Darstellung von arteriellen und venösen Blutgefäßen
- Lymphographie: Darstellung von Lymphgefäßen
- Exakte Darst. Gefäßarchitektur \rightarrow Aufspüren von Engstellen + Blutungen
- Digitale Subtraktionsangiographie (DSA):
- 1. Leeraufnahme anfertigen
- 2. KM über Katheter in Gefäß spritzen
- 3. schnell hintereinander Aufnahmen machen
- 4. Leeraufnahme subtrahieren \rightarrow Störungen (zB Knochen) ausblenden
- · Informationsgewinn aus Hämodynamik (Blutbewegung)
- · Reine Diagnose zunehmend auch mit CT/Kernspintomographie
- Interventionelle Radiologie: Angiographie zur Problembehandlung
- Ballondilatation: Aufweitung Gefäßverengungen durch winzige Ballons
- Stents: kleine Drahtkörbchen zur Gefäßwandabstützung
- Coils: kleine Platinspiralen zur inneren Blutungsverschließung

MAGNETRESONANZROMOGRAPHIE (MRT)

- Konzept: Atomkerne mit ungerader Protonen-/Neutronenzahl verfügen über Eigendrehimpuls (Spin) → werden zu winzigen Magneten
- · Nutzung starker Magnetfelder und elektromagnetische Wechselfelder:
- 1. Resonante Anregung Atomkerne im Körper (meist H)
- 2. Induktion elektrischer Signale in Empfängerstromkreis
- Nutzung von Wasserstoff-Spins → besonders wasserhaltige Gewebe gut abbildbar (zB innere Organe, Rückenmark, Gehirn)
- Unterscheidung nach Magnetfeldstärke:
- o <0.5 Tesla: Permanentmagnete oder konventionelle Elektromagnete
- o 1.5-3 Tesla: supraleitende Magnete
- Relaxation: Nach Abschalten von hochfrequentem Wechselfeld richten sich Spins wieder zu normalem Magnetfeld aus
 - → unterschiedliche Abklingzeit
 - → unterschiedliche Signalstärken (= Helligkeiten) im Bild
- Gefahr: durch magnetische Metalle am Körper
- · Auflösung: klinische Standardsysteme auf ca. 1mm begrenzt
- · Artefakte: Auslöschungs- und Verzerrungsartefakte
 - o lokale Magnetfeldinhomogenitäten
 - $\circ \ \ \mathsf{Bewegungs}\text{-}\ \mathsf{und}\ \mathsf{Flussartefakte}$
 - o Funkstörungen + metallische Gegenstände
- Untersuchungsmodalitäten
- o Anatomische Bildgebung
- o Diffusionsbildgebung (Diffusion von Wasser in Gewebe messen)
- $\circ \ \ Perfusions bildgebung \ (Durchblutung \ darstellen + quantifizieren) \\$
- Spektroskopie (Konzentration bestimmter Moleküle in Bereich)
- o Funktionelle MRT (fMRT, Größen wie uB Blutfluss messen)
- o Zelluläre Bildgebung

SONSTIGES

Koloskopie: Darmspiegelung, Gastroskopie: Magenspiegelung

Neurologische Krankheitsbilder

STRATEGIE

- Anamnese: Erhebung Krankheitsgeschichte
- Untersuchung: klinisch + neurologisch
- · Adaptive Diagnostik
- Therapie + Planung
- Nachuntersuchungen (follow-up)

ÜBERSICHT NEUROLOGISCHE ERKRANKUNGEN

Unterscheidung ${\bf zerebral}$ (Großhirn betreffend) + ${\bf spinal}$ (zur Wirbelsäule, zum Rückenmark gehörend)

- Zirkulationsstörungen
- Infarkt: Gewebsuntergang (Nekrose) infolge einer Sauerstoffunterversorgung (Hypoxie) durch unzureichenden Blutzufluss (Ischämie)
- $\circ \ \ Infarzierung: Hypoxie durch \ Abluffhindernis$
- o Thrombose: Bildung Blutgerinnsel (Thrombus) in Blutgefäß
- Blutung (Hämorraghie): Austreten von Blut aus beliebigem Bereich von Blutbahn/-kreislauf
- Raumforderungen: Benigne + maligne Tumore, Blutungen

- Infektionen: Bakteriell, Viral, durch Prionen (Proteine, die in normalen und pathogenen Konformationen vorliegen können), Parasitär (Protozonen (Urtiere), Würmer, Pilze), Autoimmunerkrankungen (zB multiple Sklerose)
- · Gefäßmissbildungen:
 - o Aneurysmen: Krankhafte Gefäßaussackung
 - $\circ~$ Angiome: Tumorartige Gefäßneubildung oder Gefäßfehlbildung
 - o Kavernome: Hämangiom (= Gefäßmissbildung)
- Epilepsien
- Stoffwechselerkrankungen: Speicherkrankheiten, Vergiftungen, ...
- Erkrankungen PNS
- Myopathien (Muskelerkrankungen)
- · Neuropathien
- Systemerkrankungen ZNS:
 - Nukleäre Atrophien: Gewebe-Verkleinerungen
 - o Spinalparalyse
 - o Amyotrophe Lateralsklerose (ALS)
- Psychiatrische Störungen
 - o Schizophrenie, Psychose, Neurose, Angst
 - o Anpassungsstörungen, Persönlichkeitsstörungen

QUERSCHNITTSSYNDROM

- = Schädigung Rückenmark in gesamtem Durchmesser
- → darunterliegende Spinalnerven funktionslos

EPILEPSIE

- Krankheitsbild: spontan auftretende Krampfanfälle
- Grund: Folge anfallsartiger (paroxysmaler) synchroner Entladungen von Neuronengruppen im Gehirn → plötzliche, unwillkürliche Verhaltens- oder Befindensstörungen
- Diagnostik: Anamnese, Hirnstromkurve mit EEG, ggf Hirn-MRT
- Therapie: Antikonvulsiva (krampfunterdrückende Medikamente)
 - therapieresistent → operative Methoden
- Gelegenheitskrämpfe (Fieberkrämpfe): Haben 4-5% aller Menschen wenige Male im Leben
- Fokale Anfälle: nur eine Hirnregion in einer Gehirnhälfte betroffen
- → Erkrankung geht von "Krankheitsherd" aus (Ausgangsstelle)
- Aura: Sinneswahrnehmungen, die bei manchen Menschen kurz danach eintreffenden epileptischen Anfall ankündigen
- Generalisierte Anfälle: Betrifft gesamtes Hirn, Anfallsverlauf und Symptome zeigen keine anatomisch begrenzte Lokalisation
- Absencen: Bewusstseinspausen (petit-mal)
- Tonisch-klonische Anfälle: Anfall mit Bewusstseinsverlust, Sturz, Verkrampfung, rhythmische Zuckungen, Zungenbiss (grand-mal)
- Astatische Anfälle: Sturzanfälle mit atoner Muskulatur (Erschlaffung)
- Status epilepticus: Anfallsserie (ggf lebensbedrohlich)

GEHIRNTUMORE — BEGRIFFE

- Ossär: Knochen betreffend
- Neurogen: Nervensystem betreffend
- Vaskulär: Blutgefäße betreffend
- Intrasellär: Liegt in Sella (Teil von Schädelknochen), beinhaltet Drüse (Hirnanhangsdrüse), die wichtige Botenstoffe herstellt
- Rezidiv: Wiederauftreten einer Krankheit

GEHIRNTUMORE — GUTARTIG

- **Definition**: Basierend auf Morphologie/Histologie, Wachstumsverhalten (Zellteilungsindex, Verteilung in andere Gewebe (*infiltrativ*)), Lokalisation, Größe, ärztliche Einschätzung, klinische und statistische Ergebnisse
- Hirneigene Tumore:
- o Astrozytome: ursprünglich in Astrozyten (gehören zu ZNS-Stützgewebe)
- Gliom: Sammelbegriff für einige ZNS-Hirntumoren, entstehen aus Gliazellen (Stütz- und Nährgewebe von Nervenzellen), treten meist in Gehirn auf, aber auch in Rückenmark und Hirnnerven möglich
- Oligodendrogliome: Neuroepithelialer Tumor, geht vermutlich von Oligodendrozyten (Glia-Telltyp) aus
- Mischgliome/Oligoastrozytome: diffuse Gliome, weisen Anteile von Oligodendrogliom und Astrozytom auf
- Ependymome
- Meningeome, Hypophysenadenome, Neurinome, Hämangioblastome, Dysplastome
- Kraniopharyngeom: Ensteht durch Fehlbildung von Restgewebe bei Hirnanhangsdrüse

FISTEL

- pathologische oder k\u00fcnstlich angelegte rohrf\u00f6rmige Verbindung zwischen zwei Hohlorganen oder zwischen Organ und K\u00f6rperoberfl\u00e4che
- · Koagulation: Gerinnung durch Wärmeentwicklung
- Dura: Äußerste Haut

ANATOMISCHE HAUPTRICHTUNGEN

- · dorsal: rückenseits, am Rücken gelegen
- · ventral: bauchseits, am Bauch gelegen
- · kranial: zum Schädel hin
- kaudal: zum Schwanz (Gesäß) hin
- · proximal: zum Körperzentrum hin
- · distal: vom Körperzentrum entfernt
- medial: in der Mitte gelegen
- · lateral: seitlich

ANEURYSMA

- Ursachen (Pathologie): Embryonaler Gefäßwanddefekt, Gefäßteilungsstellen, Exogene Faktoren, Entzündungen, Hämodynamik
- Ruptur: Riss Gefäßwand durch Schwäche des Gefäßes, je nach Gefäßlage lebensbedrohlich
- Subarachnoidalblutung (SAB): Freies Blut gelagt in mit Hirnflüssigkeit (liquor cerebrospinalis) gefüllten Subarachnoidalraum
- Symptome innozenter Aneurysmen: Symptomlos, Warnblutungen, anfallartige Kopfschmerzen, Visusminderung (Sehschärfe), Schädigung von Nerven
- Symptome ruptierter Aneurysmen: plötzlicher vernichtender Kopfschmerz, Bewusstseinstrübung, Bewusstlosigkeit, Nackenschmerz, Nackensteifheit, Steigung intrakranieller Druck (ICP), Abfall zerebraler Perfusionsdruck

Neurochirurgische Therapie

NEUROCHIRURGIE

- Gehirnchirurgie: Hirntumore, Gefäßmissbildungen, Aneurysmen, \dots
- Wirbelsäulenchirurgie: Bandscheiben (Hals-, Brust- und Lendenwirbelsäule (HWS, BWS, LWS)), Verletzungen, Rückenmarktumore, Gefäßmissbildungen, ...
- Periphere Nervenchirurgie: Nervenengpass, Tumore, Verletzungen

STRATEGIE

- 1. Individuelle Beratung
- 2. Fallbezogene Aufklärung
- 3. Risikoabschätzung
- 4. Alternative Therapieoptionen
- 5. Zeitplanung
- $6. \ \ Operations ziel \ (Funktion en erhaltend?)$

OPERATIONSTECHNISCHE HILFSMITTEL

- · Bildgebende Diagnostik
- · Computer-assistierte Chirurgie
- Intraoperative Bildgebung, Elektrophysiologie und Dopplersonographie
- Neuroendoskopie

OPERATION — BENIGNE TUMOREN

- Trepanation (Zugangsplanung)
- Adäquate Tumor-Exposition (so klein wie möglich, so groß wie nötig)
- Kosmetik und Funktion: Vermeidung Sinusöffnung (Nasennebenhölen), knöcherne Rekonstruktion

OPERATION — PLANUNG

- · Anatomisch geführte Zugänge
- Kraniotomie: Öffnung des Schädels
- Indirekter Zugang

OPERATION — CHIRURGISCHE DURCHFÜHRUNG

- · Lagerung Patient: Kopf eingespannt, Haarschnitt (makro-, mikrochirurgisch)
- · Hautdesinfektion, steriles Abdecken
- · Hautschnitt, Darstellung Kalotte (Schädeldecke)
- Kraniotomie (Schädelöffnung)
- · Eröffnung Hirnhaut
- Auffinden Läsion (Verletzung/Störung)
- Tumorentfernung (Mechanisch, Ultraschall, Laser, bipolare Koagulation)

Aneurysmen — Therapie

- Clipping: Klammer aus Aneurysma-Hals ausestzen, um Blutzustrom in Aussackung vollständig zu unterbinden (offene Gehirnoperation)
- Coiling: Platin-Spirale in Aneurysma platzieren → füllt Aneurysma aus (minimalinvasive Operation, meist über Leistenarterie)

Fehleranalyse Neuronavigation

HAUPTPROBLEME

- Maschinenfehler
- Strategische Fehler: menschengemachter Fehler (zB wenig Erfahrung)
- Brain Shift: Gehirn verschiebt sich
- Datenakquise: Inkompatibel, Datentransfer, Artefakte, image reconstruction
- Registrierung: Wie Kopf positionieren? Wie möglichst fest? Wie den Halt nicht verlieren?
- · Marker-Probleme:
- o Skin Marker: Können leicht abgezogen werden
- o CT-Marker: besser
- o Knochen-Marker: sehr exakt, aber invasiv
- o Tooth Splints: wiederholbar, akkurat, nicht-invasiv, aber teuer
- Interoperatives Data Refreshing: mobile CT, ...
- Interoperativer Workflow: Displays, Instrumente, ...
- Education, Simulation, Training:
 - o Präoperative Planung
 - o Mikrochirurgische Anatomie
 - o Ansätze, Trajektorienplanung
 - o unbloody training, Operationssimulierung

Navigationsgeführte Operation – Workflow

- 1. Datenakquise
- 2. Simulation + Planung
- 3. Registrierung
- 4. Navigation
- 5. Fehlerquellen