

(19) <u>RU</u> (11) <u>2016617</u>

(51) 5 B 01 D 3/00

(13) CI

Комитет Российской Федерации по ватентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

(21) 4949054/26

(22) 25.06.91

(46) 30.07.94 From No 14

(71) Московская государственная академия эммического машиностроения

(72) Yexos Q.C.; CHERTHI AA

(73) Московская государственная академия жимеческого машиностроения

(56) 1. Рамы В.М. Абсорбция газов. М.: Хивия. 1976, с.656.

2. Патент ФРГ N 967462, ют. 12 a 5; В 01D, 1962.

3. Автороже свидетельство СССР N486522, . ил. В 01D 1/00, 1972.

(54) СПОСОБ ОРГАНИЗАЦИИ ПОТОКОВ В МАССООБМЕННЫХ АППАРАТАХ

(57) Изобретение относится к способам организации контакта фаз в системе газ (пар) — жид—

кость (зернистый материал) и может найти применение в жимической нефтеперерабатывающей пищевой и смежных отрастях промышленности. Сущность изобретения: по способу организации потоков в массообменных аппаратах при противоточном контактировании потоков газа (пара) и жидкости (зеримстого материала) с делением потока газа (лара) на части одну из частей газового (парового) потока направляют в обход ОДНОЙ ИЛИ НЕСКОЛЬЮСК СТУПЕНЕЙ КОНТАКТА, ПОСЛЕ чего перемецивают с основным потоком. Процесс деления и смещения потоков и их последующего разделения установлены контактные устройства имеющие большую пропускную способность. Для зон, охватывающих точки смешения и поспедующего разделения потоков, могут быть организованы дополнительные байпасные потоки, 1 ал. ф-лы, 3 ил, 1 табл.

Изобретение относится к сп. собам организации контакта фаз в системе газ (пар) - жидкость (зернистый материал) и может найти прим нение в химической, нефтеперерабатывающей, пищевой и смежных траслях промышленности в процессах вбсорбции, десорбции, ректификации и др., позволяет интенсифицировать действующие массообменные аппараты без полноя замены внутренних контактных устройств и снизить вследствие этого затраты на реконструкцию.

Целью изобретения является повышение производительности аппарата.

На фиг. 1 представлена схема движения 15 газовых (паровых) потоков; на фиг. 2 - схема движения газовых (паровых) потоков с организацией дополнительных байпасных потоков для зон между точками смешения и последующего разделения потоков; на фиг. 20 3 – схема организации потоков.

Поток 1 жидкости (зернистого материала) поступает в аппарат на верхнюю контактную ступень и движется сверху вниз. проходя поочередно все контактные ступе- 25 ни аппарата.

Газовый (паровой) поток поступает в нижнюю часть аппарата, делится на две части, одна из которых 2 проходит через контактные ступени эппарата снизу-аверх, 30 противотоком потоку жидкости (зернистого материала) и взаимодействует с ним, а другая 3 направляется в обход одной или нескольких ступеней контакта по каналам. установленным внутри или вне аппарата. Затем части газового (парового) потока встречаются и перемешиваются в точке 4 смешения. Объединенный газовый (паровой) поток 5 проходит далев одну (или немогут быть рассчитаны на большую производительность, затем в точке 7 вновь разделятся на основной 2 и байпасный 3. Для обеспечения нормальной работы ступеней контакта 6 без замены их на устройства с 45 большей пропускной способностью для зон, ограниченных точками смешения 4 и разделения 7 потоков, могут быть организованы дополнительные байпасные потоки 8. Каналы для прохода байпасных потоков 3 м 8 50 выполнены так, чтобы гидравлическое сопротивление движению отдельных частей газа (пара) было одинаковым, в результате: чего поток делится на части в требуемой пропорции.

Предлагаемый сп. соб позволяет увеличить производительность аппарата по сравнению с пропускной способностью, допустимой для контакти го устройства, использу мого в д Оствующем аппарате по традиционному способу организации потоков [1].

При организации работы аппарата п предлагаемому способу движущая сила процесса массообмена увеличивается, н снижается эффективность аппарата за счет разбавления основного потока байпасным и уменьшения вследствие этого концентрации компонента в легкой фазе на выходе из аппарата. Однако анализ работы действующих массообменных аппаратов показал, что при проектировании большинства из них число ступеней контакта принято с запасом, нередко значительным. Тем самым образуется определенный "запас по эффективности", который позволяет применять предлагаемый слособ организации потоков без снижения качества продукта.

Таким образом в соответствии с предлагаемым способом интенсификация действующих колонных массообменных аппарат в имеется возможность обеспечения повышенной производительности аппарата бе полной замены внутренних контактных устройств.

Пример. Для очистки 1400 м³ воздуха от ацетона с начальным содержанием Ун -**~0.06 до концентрации Ук − 0.004 водой** спроектирован вппарат диаметром 600 мм С количеством тарельчатых контактных ступеней п = 14, причем запас по количеству ступеней принят 15% (т.е. две дополнительные ступени). Реально концентрация ацетона на выходе воздуха из аппарат Yк' -0.0016. При организвции потоков в апсколько) ступеней контакта 6, которые 40 парате в соответствии с предлагаемым способом, с направлением байпасного потока... например через две ступени контакта (фиг. 3), возможно увеличение производительности аппарата на 40%. Изменени концентрации ацетона в газовой фазе для традиционного [1] и предлагаемого способов показано в таблице. Расчет проводился на ЭВМ ІВМ РС по модели, реализующей ступенчатый расчет концентрации в тарельчатом алпарате.

> Таким образом в реконструированном аппарате будет достигнута требуемая концентрация Ук - 0,004 при увеличении производительности аппарата до 1960 м п очищаемому воздуху.

№ таречки	Конц нтрация в аппарат при тр диционной организа- ции потоков	Конц нтрация в аппарате по предлагаемому способу с увеличением производит льности на 40%	
14	0,0016	0,0037	
13	0,0025	0,0043	
12	0,0037	0,0066	
11	0,0051	0.0090	
10	0,0067	0,0098	
9	0.0087	0.013	
8	0,011	0.017	
7	0.014	0,018	
6	0,018	0,023	
5	0,022	0,028	
4	0.027	0,030	
3	0,033	0.038	
2	0,040	0.046	
1	0,049	0,049	
Вход	0,06	0,06	

Формула изобретения

"

1. СПОСОБ ОРГАНИЗАЦИИ ПОТОКОВ В МАССООБМЕННЫХ АППАРАТАХ при противоточном контактировании потоков газа (пара) и жидкости (зернистого матери-. вле) с делением потока газа (пара) на части, отличающийся там, что, с целью обеспечения повышенной производительности аппарата, одну из частей газового (парового) потока направляют в обход одной или 10

нескольких ступеней контакта байпасом, после чего перемешивают с основным потоком, причем процесс деления и смешения потоков повторяют несколько раз п высоте аппарата.

2. Способ по п.1, отличающийся тем, что для зон, охватывающих точки смешения и последующего разделения поток в, организуют дополнительные байпасны потоки.

PUZ. 2

Puz 3

Редактор С. Кула	Составитель О. кова Техред М.Морген		М. Куль	•
3exas 505	Тираж	Подлисное	- (1)	•
•	НПО "Поиск" Рос 113035, Москва, Ж-35,		•	