MAT5730-Álgebra Linear Terceira Prova 21/06/2011

Boa prova!

- 1. **(2,0)** Seja V espaço vetorial com produto interno \langle , \rangle e seja $E \in L(V)$ uma projeção, isto é, $E^2 = E$.
 - (a) Prove que KerE é ortogonal a ImE se e somente se $\langle Ev, v Ev \rangle = 0$ para todo $v \in V$. Solução
 - (\Rightarrow) É claro!
 - (\Leftarrow) Suponha que $u \in \text{Ker} E$ e $v \in V$. Queremos provar que $\langle Ev, u \rangle = 0$. Da hipótese temos que $\langle E(u+v), u+v-E(u+v) \rangle = 0$. Mas

$$0 = \langle E(u+v), u+v-E(u+v) \rangle = \langle Ev, u+v-Ev \rangle = \langle Ev, u \rangle + \langle Ev, v-Ev \rangle = \langle Ev, u \rangle \,,$$
 como queríamos.

(b) Mostre que $\|Ev\| \le \|v\|$ para todo $v \in V$ se e somente se E é a projeção ortogonal em ImE.

(**Sugestão:** Se existir $v \in V$ tal que $\langle Ev, v - Ev \rangle \neq 0$, considere o vetor

$$w = Ev - proj_{v-Ev}(Ev).$$

Isso é apenas uma sugestão, pode fazer de outro modo!!!)

Solução:

- (\Leftarrow) Se E é a projeção ortogonal de V em ImE, então $(v-Ev)\perp Ev$ para todo $v\in V$. Logo $\|v\|^2=\|Ev+v-Ev\|^2=\|Ev\|^2+\|v-Ev\|^2$. Logo $\|Ev\|\leq\|v\|$ para todo $v\in V$.
- (\Rightarrow) Vamos usar o item (a) . Suponha que $v \in V$ é tal que $\langle Ev, v Ev \rangle \neq 0$. Seja

$$w = Ev - proj_{v-Ev}(Ev) = Ev - \frac{\langle Ev, v - Ev \rangle}{\|v - Ev\|^2}(v - Ev).$$

Temos que Ev = Ew já que $v - Ev \in KerE$. Assim

$$||Ew||^2 = ||w||^2 + \frac{|\langle Ev, v - Ev \rangle|^2}{||v - Ev||^4} ||v - Ev||^2,$$

já que $w\perp (proj_{v-Ev}(Ev))$. Logo $\|Ew\|>\|w\|$ pois $\langle Ev,v-Ev\rangle\neq 0$, contra a hipótese.

2. **(2,0)** Seja V espaço vetorial de dimentão finita sobre $\mathbb C$ com produto interno \langle , \rangle . Seja $T \in L(V)$ um operador linear e sejam $\lambda_1, \lambda_2, ..., \lambda_n$ os autovalores de T, cada um escrito o número de vezes igual à sua multiplicidade algébrica. Prove que:

(a)
$$\sum_{i=1}^{n} |\lambda_i|^2 \le tr(T^*T),$$

onde tr é o traço.

(**Sugestão:** Use (se quiser) que existe uma base ortonormal de V tal que a matriz de T nessa base é triangular superior.

Solução:

Como \mathbb{C} é um corpo algebricamente fechado, existe uma base de V tal que a matriz de T nessa base é triangular superior. No caso de estarmos em um espaço com produto interno, o processo de ortonormalização de Gram-Schmidt garante a existência de uma base **ortonormal** B de V tal que $[T]_B = A = (a_{ij})$ é triangular superior, isto é, $a_{ij} = 0$ se i > j. (Verifique isso!)

Seja então B uma tal base ortonormal. Vale que $[T^*]_B = A^*$ e $A^*A = [T^*T]_B$. Os elementos da diagonal principal de A^*A são

$$c_{jj} = \sum_{i=1}^{n} \overline{a_{ij}} a_{ij} = \sum_{i=1}^{j} |a_{ij}|^{2}.$$

Como $\lambda_j = a_{jj}$, temos a desigualdade!

(b) Mostre que a igualdade em (a) vale se e somente se *T* é normal.

Solução:

Suponha que vale a igualdade em (a). Então $|a_{ij}|^2 = 0$ para todo i < j. Logo $a_{ij} = 0$ também se i < j e a matriz A é diagonal. Logo $[T]_B$ é diagonal, o que implica que T é normal.

Se T é normal, existe uma base ortonormal B tal que $[T]_B$ é diagonal. Daí segue facilmente a igualdade em (a).

3. **Verdadeiro** ou **Falso**? Prove ou dê um contra-exemplo.

(a) (1,0) Se $A \in M_n(\mathbb{C})$ é uma matriz autoadjunta tal que $A^7 + A^5 + A^3 + A + I = 5I$. Então A = I.

Solução: A afirmação é verdadeira!

Como $A^*=A$, os autovalores de A são números reais. Mas A é raiz de polinômio $f(x)=x^7+x^5+x^3+x-4$. Esse polinômio tem apenas uma raiz real já que sua derivada $f'(x)=x^6+x^4+x^2+1>0$ para todo $x\in\mathbb{R}$. Como f(1)=0, 1 é a única raiz real de f. Logo 1 é o único autovalor de A. Como A é uma matriz hermitiana, existe U matriz unitária tal que U^*AU é diagonal. Logo $U^*AU=I_n$ e $A=I_n$.

(b) (1,5) Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Então existe $P \in M_n(\mathbb{R})$ tal que $A = P^t P$. E se $A \in M_n(\mathbb{C})$?

Solução:

É fácil ver que a afirmação é falsa para $A \in M_n(\mathbb{R})$. Se $A = P^t P$ e se $T_A \in L(\mathbb{R}^n)$ é tal que $[T]_{can} = A$ então, $T_A^* = T_A$ e $T_A = T_P^* T_P$ onde $[T_P]_{can} = P$. Logo $\langle T_A v, v \rangle = \langle T_P v, T_P v \rangle \geq 0$ para todo $v \in \mathbb{R}^n$. Portanto, se λ for um autovalor de A então $\lambda \geq 0$. Para exibir um contraexemplo, basta tomar, por exemplo, $A = -I_n$.

Em $M_n(\mathbb{C})$ a afirmação é verdadeira...Entretanto os resultados necessários para resolver esse problema não foram desenvolvidos no curso. De qualquer modo, uma solução é a descrita a seguir.

Toda matriz simétrica em $M_n(\mathbb{K})$ define uma forma bilinear simétrica em um espaço vetorial V de dimensão n. Seja $B=\{v_1,v_2,...,v_n\}$ uma base de V, defina f nessa base por $f(v_i,v_j)=a_{ij}$, se $A=(a_{ij})$, e estenda a $V\times V$ por linearidade nas duas variàveis. Prova-se então que existe uma matriz inversível P tal que $P^tAP=D$, onde D é uma matriz diagonal. Usando esse resultado, é fácil provar que a afirmação é verdadeira. Essa matriz D está em $M_n(\mathbb{C})$. Tome então uma matriz diagonal $D_1\in M_n(\mathbb{C})$ tal que $D_1^2=D$. Então $P^tAP=D_1^2\Rightarrow A=(P^t)^{-1}D_1^2P^{-1}$. Seja $Q=D_1P^{-1}$. Então $A=Q^tQ$.

4. **(1,5)** Seja $A \in M_7(\mathbb{R})$ uma matriz **ortogonal** tal que $A^6 = I$. Quais são as possíveis formas racionais de A, sabendo que detA = -1?

Solução:

Na verdade nem é necessária a hipótese de que A é ortogonal, já que $m_A(x)|x^6-1$ e x^6-1

fatora-se como produto de polinômios irredutíveis distintos. Como

$$x^6 - 1 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)$$

e queremos que detA = -1, o escalar -1 tem que ser um autovalor de A de multiplicidade algébrica ímpar (pense nisso), assim x + 1 é um divisor de $m_A(x)$.

- (a) Se $m_A(x) = x^6 1$. Então o primeiro fator invariante $f_1 = x^6 1$ e só podemos ter $f_2 = x 1$.
- (b) Se $m_A(x) = (x+1)(x^2+x+1)(x^2-x+1)$, então $f_1 = m_A(x)$ e só podemos ter $f_2 = x^2+x+1$ (ou $f_2 = x^2-x+1$) ou então $f_2 = f_3 = x+1$.
- (c) Se $m_A(x) = (x-1)(x+1)(x^2+x+1)$ (ou se $m_A(x) = (x-1)(x+1)(x^2-x+1)$), o fator invariante $f_1 = m_A(x)$ tem grau 4 e f_2 não pode ser x^2+x+1 , pois teríamos que ter mais um fator invariante $f_3|f_2$ e x^2+x+1 é irredutível em $\mathbb{R}[x]$. Logo $f_2 = (x^2+x+1)(x+1)$ ou $f_2 = (x^2+x+1)(x-1)$. Mas, na primeira possibilidade, o det A não é igual a -1. Logo só temos a segunda possibilidade.
- (d) Se $m_A(x) = (x+1)(x^2+x+1) = f_1$ (ou $m_A(x) = (x+1)(x^2-x+1) = f_1$) temos $f_1 = f_2$ e $f_3 = x+1$ ou $f_2 = f_3 = x^2+x+1$ ou $f_2 = f_3 = f_4 = f_5 = x+1$.
- (e) Se $m_A(x) = (x-1)(x+1)$ então o polinômio característico será

$$p_A(x) = (x+1)^s (x-1)^{7-s}$$

onde *s* só pode ser igual a 1,3,5.

(f) Se $m_A(x) = x - 1$ então $A = -I_7$.

Observação: Na verdade, nesse exercício, basta você analisar apenas quais são todos os possíveis polinômios característicos de A de modo que $\det A = -1$. Observe que se saiba que o polinômio minimal é produto de fatores irredutíveis distintos, duas matrizes com esse mesmo polinômio minimal são semelhantes se e somente se têm o mesmo polinômio característico. Olhe a forma canônica dos operadores semisimples.

- 5. **(2,0)** Seja $N \in M_n(\mathbb{R})$ uma matriz nilpotente tal que dim $\operatorname{Ker}(N) = k$, 0 < k < n.
 - (a) Mostre que dim $\operatorname{Ker}(N^l) \le kl$, para todo $l \ge 1$. Solução:

Seja $T_N \in L(\mathbb{R}^n)$ o operador linear tal que $[T_N]_{can} = N$. Pelo Teorema da Decomposição Cíclica temos que existem vetores $v_1,...,v_r \in \mathbb{R}^n$ e inteiros $m_1 \geq m_2 \geq \geq m_r > 0$ com $\sum_{i=1}^r m_i = n$, tais que

i.
$$V = Z(v_1; T_N) \oplus ... \oplus Z(v_r; T_N)$$
.

ii. O polinômio N- anulador de cada $v_i, i=1,...,r$ é $f(x)=x^{m_i}$.

Além disso, o inteiro r e os inteiros m_i são únicos.

Seja $B_i=\{v_i,T_Nv_i,...,T_N^{m_i-1}v_i\}$ e $B=\bigcup_{i=1}^rB_i$. Por hipótese, dimKerN=k, logo, no nosso caso, r=k, pois , para cada $v_i,i=1,...,r$, os vetores $T_Nv_i,...,T_N^{m_1-1}$ são LI e $T_N^{m_i}v_i=0$, portanto, a matriz $[T_N]_B$ tem r colunas nulas e n-r colunas LI.

Seja $v \in \operatorname{Ker} N^l$ com $0 < l < m_1$, pois se $l \ge m_1$ então $\operatorname{Ker} T_N = \mathbb{R}^n$. Escreva v como combinação linear da base B. Então $v = w_1, ..., w_k$, onde $w_i \in Z(v_i; T_N)$. Temos que $T_N^l v = 0$, o que implica que $T_N^l w_i = 0$ para todo i = 1, ..., k.

Para facilitar a notação, vou chamar $v_i = u, m_i = s$ e $w_i = w$ e ver o que acontece $Z(v_i; T_N)$.

$$w = \sum_{j=0}^{s-1} a_j T_N^j u \Rightarrow 0 = T_N w = \sum_{j=0}^{s-1} a_j T_N^{j+l} u = \sum_{j=0}^{s-l-1} a_j T_N^{j+l} u,$$

já que se $j \ge s-l$, temos $T_N^{j+l}u=0$. Assim, temos que ter $a_j=0$ para todo j=0,...,s-l-1. Portanto

$$w = \sum_{j=s-l}^{s-1} a_j T_N^j u.$$

Agora basta ver quantos elementos tem um conjunto gerador para $Ker N^l$!

(b) Prove que $n \le kr$, onde r é o grau do polinômio minimal de N.

Solução: Isto é claro do Teorema da Decomposição Cíclica! Como $r=m_1$ e $m_1\geq m_2\geq\geq m_k>0$, a dimensão de $Z(v_i;T_N)$ é no máximo igual r. Logo dim $V\leq kr$.