Axiomatizations of Orderings

Revision: August 24, 2018; Rendered: May 25, 2021

Formalized with the PIE system.

1 General Properties of Binary Relations

$is_reflexive(P)$	
Defined as	
	$\forall x Pxx.$
$is_irreflexive(P)$	
Defined as	
	$\forall x \neg Pxx.$
$is_symmetric(P)$	
Defined as	
	$\forall xy (Pxy \to Pyx).$
$is_asymmetric(P)$	
Defined as	
	$\forall xy (Pxy \to \neg Pyx).$

 $is \quad antisymmetric(P)$

Defined as

$$\forall xy (Pxy \land Pyx \rightarrow x = y).$$

 $is_total(P)$

Defined as

$$\forall xy (Pxy \lor Pyx).$$

 $is_transitive(P)$

Defined as

$$\forall xyz (Pxy \land Pyz \longrightarrow Pxz).$$

 $is_trichotomous(P)$

Defined as

$$\forall xy \left((Pxy \land \neg Pyx \land x \neq y) \\ (\neg Pxy \land Pyx \land x \neq y) \\ (\neg Pxy \land \neg Pyx \land x = y) \right).$$

 $is_connected(P)$

Defined as

$$\forall xy \, (Pxy \vee Pyx \vee x = y).$$

2 Orderings of Binary Relations

 $is_total_order(P)$

Defined as

 $is_antisymmetric(P) \land is_transitive(P) \land is_total(P).$

is strict total order(P)

Defined as

 $is_irreflexive(P) \land is_transitive(P) \land is_connected(P).$

 $is_strict_total_order_v_2(P)$

Defined as

 $is_transitive(P) \land is_trichotomous(P).$

 $is_partial_order(P)$

Defined as

is $antisymmetric(P) \wedge is transitive(P) \wedge is reflexive(P)$.

 $is_strict_partial_order(P)$

Defined as

is $irreflexive(P) \wedge is transitive(P)$.

Some properties of orderings, for testing with theorem provers. Not all these problems are for all provers as easy as they seem – see comments in the source.

test $orderings_1$

Defined as

 $is_asymmetric(p) \leftrightarrow is_antisymmetric(p) \land is_irreflexive(p).$

 $test_orderings_2$

Defined as

 $is_transitive(p) \rightarrow (is_asymmetric(p) \leftrightarrow is_irreflexive(p)).$

 $test_orderings_3$

Defined as

$$\begin{array}{ll} is_irreflexive(p) \land is_transitive(p) & \rightarrow \\ (is_connected(p) \leftrightarrow is_trichotomous(p)). \end{array}$$

 $test_orderings_4$

Defined as

$$is_strict_total_order_v_{2}(\mathsf{p}) \leftarrow is_strict_total_order(\mathsf{p}).$$

 $test_orderings_5$

Defined as

$$is_strict_total_order_v_2(p) \rightarrow is_strict_total_order(p).$$

 $test_orderings_6$

Defined as

$$is_strict_total_order_v_2(p) \leftrightarrow is_strict_total_order(p).$$

test orderings7

Defined as

is total
$$order(p) \rightarrow is partial order(p)$$
.

test orderings₈

Defined as

$$is_strict_total_order(p) \rightarrow is_strict_partial_order(p).$$

 $test_orderings_{9}$

Defined as

$$is_strict_partial_order(p) \rightarrow \neg is_partial_order(p).$$

 $test_orderings_{10}$

Defined as

$$is_strict_total_order(p) \rightarrow \neg is_total_order(p).$$

\mathbf{Index}

$is_antisymmetric(P), 2$	$is_transitive(P), 2$
$is_asymmetric(P), 1$	$is_trichotomous(P), 2$
$is_connected(P), 2$	tt
$is_irreflexive(P), 1$	$test_orderings_1, 3$ $test_orderings_{10}, 5$
$is_partial_order(P), 3$	$test_orderings_{10}, 3$ $test_orderings_{2}, 3$
$is_reflexive(P), 1$	$test_orderings_2, o$ $test_orderings_3, 4$
$is_strict_partial_order(P), 3$	test orderings ₄ , 4
$is_strict_total_order(P), 3$	$test_orderings_5, 4$
$is_strict_total_order_v_2(P), 3$	$test_orderings_6, 4$
$is_symmetric(P), 1$	$test_orderings_7, 4$
$is_total(P), 2$	$test_orderings_8, 4$
is total $order(P), 2$	$test \ orderings_9, 5$