Smart Home Monitoring

Student Name: Florian Poppinger Student ID: W20108867

The Smart Home Monitoring System is designed to enhance home security and environmental monitoring through a network of sensors and devices integrated via a Raspberry Pi. The system captures real-time data on environmental conditions and detects motion, instantly notifying the homeowner with detailed information and images. The primary technologies used include the Raspberry Pi with a Sense HAT, a camera for motion detection, MQTT for messaging, Firebase for image storage, and Blynk for real-time interaction.

2. System Requirements

Hardware:

- Raspberry Pi 3B+ or newer
- Sense HAT
- o Pi Camera
- Stable internet connection
- o Power supply for Raspberry Pi

Software:

- o Raspbian OS (or any compatible Raspberry Pi OS)
- o Python 3.6 or later
- Libraries: paho-mqtt, PIL, numpy, firebase-admin, BlynkLib, smtplib, email, cryptography
- o Firebase account and setup
- o Blynk app with an account

3. Installation and Setup

a. System Setup

- Raspberry Pi Setup:
 - o Install the Raspbian OS on your Raspberry Pi.
 - o Connect the Sense HAT and Pi Camera to the Raspberry Pi.
 - o Ensure the Raspberry Pi is connected to the internet.
- Dependency Installation:

- Install required Python libraries using pip:
 pip install paho-mqtt Pillow numpy firebase-admin BlynkLib cryptography
- Firebase Setup:
 - Set up a Firebase project in the Firebase console.
 - o Enable Firebase Storage.
 - Download the Firebase Admin SDK credentials file and place it in the project directory. (is not able to be pushed to git)

b. Software Configuration

- MQTT Broker Setup:
 - Register for an account with a broker like EMQX Cloud and get the broker details.
- Blynk Setup:
 - o Create a new Blynk project to obtain an Auth token.
 - Set up virtual pins in Blynk app corresponding to the data types you are monitoring (temperature, humidity, pressure, etc.).
- Email Configuration:
 - Configure the SMTP settings in the Email_handler.py to match your email provider's requirements.

4. Code Overview

a. Main Components

- Controller.py:
 - Manages the main operational loop, threading, and integration of all components.
- sensehat.py:
 - o Interfaces with the Sense HAT to read environmental data.
- motion.py:
 - Handles motion detection logic using the Pi Camera.
- storeFileFB.py:
 - Manages uploading images to Firebase and retrieving URLs.
- blynk_handler.py:
 - o Provides real-time interaction and status updates through Blynk.
- Email handler.py:
 - Sends email notifications with attachments and environmental data.
- clients_sub.py, client_pub.py:
 - Handle MQTT subscriptions and publications, respectively.

b. Execution Flow

- System initializes and starts separate threads for motion detection, data publication, and user control.
- On detecting motion via MQTT or upon user request via Blynk, images are captured, stored in Firebase, and emailed to the user.
- Blynk and MQTT facilitate real-time data updates and user interaction.

5. Usage Instructions

- Starting the System:
 - o Run Controller.py to start the system:
 - python Controller.py
- Interacting with the System:
 - Use the Blynk app to view real-time data and control the system remotely.
 - o Monitor your email for alerts and captured images from motion events.

6. Troubleshooting

MQTT Connection Failure: Ensure the broker details are correct and that your internet connection is stable.

Camera Not Working: Check the camera connection with the Raspberry Pi and verify File permissions in the OS.

Email Not Sending: Validate your SMTP settings and check the app password if using two-factor authentication.

8. Conclusion

This Smart Home Monitoring System offers a robust framework for home security and environmental monitoring, leveraging modern IoT technologies for efficient real-time updates and interactions. It is scalable, flexible, and can be enhanced with additional features as per user requirements.