ASSIGNMENT-5 PROCESS ENGINEERING

T = (a+b+10*c) = 0 + 2 + 10*0 = 2

 $X = 2 \mod 9 = 2$

 $Y = 2 \mod 19 = 2$

1. Achieving given specifications

Design specifications that can't be directly achieved: maintaining less than 37 lbmol/hr waste gas, 99% conversion, 99.2% purity cumene in output. To achieve these specifications we vary parameters that haven't been directly given in the problem. Those are as follows:

Specification	Parameter varied	Value of parameter for
		which specs achieved
37 lbmol/hr waste gas	Vapor fraction in distillate	0.02
99% conversion	Length of the reactor	3.54731947 m (DS-1)
99.2% purity cumene	Propylene inlet flow rate	50.5205273 kmol/hr (DS-2)

Figure-1: Waste gas flow < 37 lbmol/hr

					1
	Units	BZ-FEED ▼	COLD-OUT ▼	CUMENE +	FI
Average MW		78.1136	48.6529	119.836	
◆ Mole Flows	kmol/hr	40.8233	34.4924	40.7516	
Mole Fractions					
BENZE-01		1	0.39087	0.00852322	
CUMENE		0	0	0.991477	
METHA-01		2.04001e-07	0.470807	4.60956e-11	
METHA-02		9.30346e-13	0.0567036	1.06058e-26	
ACETY-01		1.90075e-10	0.0815999	6.64405e-20	
NITRO-01		2.1198e-21	8.18724e-06	0	
OXYGE-01		2.24188e-20	1.1965e-05	0	
PROPY-01		0	0	7.48682e-09	

Figure-2: Achieving 99.2% purity

All these were achieved using Flowsheeting options -> Design Specs in ASPEN. It is also found that 206.247 °F is the temperature for 30 degrees of superheating.

Sensitivity Results Curve Sensitivity Results Curve

2. Cumene product flowrate vs Preheater Temperature

Figure-3: Cumene product flowrate with the preheater temperature

3. PFD for process and stream table.

Figure-4: PFD

We see a significant pressure drop at the two distillation columns: BZ-COL and CUM-COL, so pumps are present in those two units (say, 1 pump for each).

Due to space constraints, I am sharing the stream table in this <u>drive link</u>.