

HE UNITED STATES PATENT AND TRADEMARK OFFICE REQUEST FOR FILING NATIONAL PHASE OF PCT APPLICATION UNDER 35 U.S.C. 371 AND 37 CFR 1.494 OR 1.495

To:

Hon. Commissioner of Patents Washington, D.C. 20231

	SMITTAL LETTER TO THE UNITED S		Atty Dkt:	P 0290430	/Z70564/UST		
DESIG	NATED/ELECTED OFFICE (DO/EO/	US)		<u>M#</u>	/Client Ref.		
From:	Pillsbury Winthrop LLP, IP Group:		Date: Ja	anuary 28, 2002			
	This is a REQUEST for <u>FILING</u> a Po	CT/USA National F	Phase Applica	tion based on:			
1.	International Application	2. Internationa	al Filing Date	3. Earlie	st Priority Date Claimed		
	PCT/US00/20401	27 July 200 Day Mo	00 ONTH Yea	27 Ju	ly 1999		
	û country code	Day Mo	ONTH Yea		MONTH Year		
4.	(use item 2 if no earlier priority Measured from the earliest priority date in item 3, this PCT/USA National Phase Application Request is being filed within:						
	(a) 20 months from above item 3	date (b) 🛛 3	0 months fron	n above item 3 dat	e,		
	(c) Therefore, the due date (unexter	idable) is <u>Janua</u>	ry 27, 2002				
5.	Title of Invention <u>Analysis and Patte</u> Low-Resolution Data Grouping	rn Recognition in L	₋arge, Multidir	nensional Data Se	ts Using		
6.	Inventor(s) Charles Lerman						
Applica	ant herewith submits the following und	er 35 U.S.C. 371 t	o effect filing:				
7. 🦠	☐ Please immediately start national	examination proc	edures (35 U.	S.C. 371 (f)).			
8.	Mark A copy of the International App English but, if in foreign language, fil	plication as filed (3 e only if <u>not</u> transr	35 U.S.C. 371 mitted to PTO	(c)(2)) is transmitted by the International	ed herewith (file if in al Bureau) including:		
	a. ⊠ Request;b. ⊠ Abstract;c. 82 pgs. Spec. and Claims;						
	d. 64 sheet(s) Drawing which are] informal 🔀 form	nal of size 🛛	A4 🗌 11"			
9.	☑ A copy of the International App	olication has been	n transmitted	by the Internatio	nal Bureau.		
10.		cluding: (1) 🔲 Re	equest; (2)	Abstract;			
	b. is not required, as the application is not herewith, but will be Notice per Rule 494(c) if	olication was filed in filed when require	in English. ed by the forth	ncoming PTO Miss	ing Requirements		
	d Translation verification at						

DE. 1	104 11 12	151		TENTE TOY TO	48022 Page 2 of 4
RE: I	• ,	onal Phase Filing of PCT	/US00/20401		CT/PTO 28 JAN 2002
11.	\boxtimes	Please see the attached I	Preliminary Amendmen	t	O O O O O O O O O O O O O O O O O O O
12.	ij	Amendments to the claim 371(c)(3)), i.e., before 15 herewith (file only if in E	8th month from first	pplication under PCT Article priority date above in item	∍ 19 (35 U.S.C. 3, are transmitted
13.	\boxtimes	PCT Article 19 claim ame	ndments (if any) have	been transmitted by the Inte	ernational Bureau
14.		claim amendments made	e before 18th month, is	der PCT Article 19 (35 U.S.) attached (<u>required by 20t</u> if box 4(b) is X'd, or else a	h month from the date in
15.	A dec a. ☐ b. ⊠	laration of the inventor (3 is submitted herewith is not herewith, but will be per Rule 494(c) if box 4(a)	☐ Original ☐ Original by a filed when required by	☐ Facsimile/Copy y the forthcoming PTO Missi if box 4(b) is X'd.	ng Requirements Notice
16.		ternational Search Reports s prepared by Europ has been transmitted by copy herewith (3 pg(s).)	pean Patent Office [the international Bureau	☐ Japanese Patent Office □ to PTO. amily members (_ pg(s).).	☐ Other
17.	b c.1 d	copy herewith in English IPER Annex(es) in origir during Examination) incl	this letter is filed after 2 n Annexes (if any) in or lal language ("Annexes uding attached amende s # claims #	<pre>8 months from date in item ; iginal language. " are amendments made to</pre>	claims/spec/drawings
18.	Inform a.	nation Disclosure Stateme Attached Form PTO-144 Attached copies of docu A concise explanation of	ent including: 9 listing documents ments listed on Form P		———·
19.		Assignment document assignment document batthis letter.	and Cover Sheet for rec ack to the person whose	cording are attached. Please e signature, name and addre	e mail the recorded ess appear at the end of
20.		Copy of Power to IA age	nt.		
21.		Drawings (complete only Formal of size	/ if 8d or 10a(4) not cor ☐ 11"	npleted): _ sheet(s) per set:	☐ 1 set informal; ☐
22. 22(a)		Entity Status	claimed	imed (pre -filing confirmation 0 Small Entity Statements(s)	required) not essential to make
23.	in (cour	the International Application of Americal States of Americal States of Americal (International International Inte	n during the internationa i <u>ca</u> of:		e certified copy, both
(1) (3)	09/361,1	Dication No. 22 27 July	Filing Date uly 1999 (2) (4)	Application No.	Filing Date
(5)	a. 🛛		(6)		
	a. <u>⊠</u> b. □	received, please procee	d promptly to obtain sai	of priority documents. If come from the IB.	by nas not been

10/048022 Page 3 of 4

JC13 Rec'd PCT/PTC 28 JAN 2002

RE: USA National Phase Filing of PCT/US00/2040.1

24.	Att	ache	d:						_	0
25	Pe	r Item	n 17.c2, <u>car</u>	icel original pa	iges #, clain	ns #, Drawing	Sheets #			
26. Based	Ca	lcula	tion of the	U.S. National F	Fee (35 U.S.C.		Other fees is as 1	follows	1	
Total I Indepe	ender	it Cla	ims	48 9 er) Multiple Dep	minus 20 = minus 3 = pendent claim is	6		= \$50 = \$50		966/967 964/965 968/969
BASIC	TAN	IONA	AL FEE (37	CFR 1.492(a)(1)-(4)): →→ BA	SIC FEE REQU	IRED, <u>NOW</u> → →	· > >		
A.	If c	ountr	y code lette	rs in item 1 are	not "US","BR",	"BB","TT","MX","	IL" "NZ", "IN" or "Z	<u>ZA"</u> -	ı	
	<u>See</u>		<u>n 16 re:</u> arch Report	was <u>not prepar</u>	ed by EPO or .	<u>JPO</u>	add\$1,040/\$52	.		960/961
	2.	Sea	arch Report	was prepared b	by EPO or JPO		u add\$890/\$445	+0		970/971
SKIP B	, C, D	AND	E UNLESS	country code let	tters in item 1 a	re "US","BR","BE	3","TT","MX","IL",	"NZ", "	IN", "ZA",	"LC" or
→ (X)	\boxtimes	B.	(ISR) <u>and</u>	(if box 4(b) abo	ve is X'd) the Ir	al Search Report nternational	add\$1,040/\$52 0	↓ +104	40	960/961
(only) (one) → (of)		C.	If USPTO X'd),	issued ISR but	not IPER (or bo	ox 4(a) above is	add\$740/\$370	+0		958/959
(these) (4) → (boxes)		D.	If <u>USPTO</u> YES,	issued IPER bu	it IPER Sec. V	boxes <u>not all</u> 3	add\$710/\$355	+0		956/957
→		E.	USPTO ar	onal preliminary nd Rules 492(a) V <u>all</u> 3 boxes <u>m</u>	(4) and 496(b)	ee was paid to <u>satisfied</u> (in r <u>all</u> claims),	add \$100/\$50	_+0		962/963
27.							SUBTOTAL =	\$2,04	48	_
28.	If As	ssignr	ment box 19	above is X'd, a	add Assignmen	t Recording fee o	of\$40	+0		- (581) -
29.	If bo diffe	x 15a rent t	a is x'd, dete han in inter	ermine whether national stage. I	inventorship or If yes, add (per	n Declaration is Rule 497(d)	\$130	+0		- _ (098)
30.	Atta	ched	is a check t	o cover the			TOTAL FEES	\$2,04	18	•
		Depo Orde		No. 03-3975 009901 C#	0290430 M#		009	09		
or hereafter duplicate co	relative	to this a s sheet	been filed nerewi application and the is attached.	r is hereby authorized to th or concerning any pa e resulting Official docur	ocharge any fee specif per filed hereafter, and ment under Rule 20, or	which may be required u	r, or any missing or insuffic nder Rules 16-18 and 492 to our Account/Order Nos.	ient fee(s) f	ingufficient for	
				Pillsbu	ıry Winthrop L ctual Property	LP				
				By Atty	/: Paul L. Sh	arer //	Reg	. No.	36004	
Atty/Sec	:: PLS	/kmh		Sig:	Dans	211	Fax:	- :	(703) 905 (703) 905	
	N	OTE:	File in dupl	icate with 2 pos	tcard receipts ((PAT-103) & atta			, ==, ==	

JC13 Rec'd PCT/PTO 28 JAN 2002

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re PATENT APPLICATION OF

Inventor(s): Charles Lerman

Filed: January 28, 2002

Title: Analysis and Pattern Recognition in Large, Multidimensional Data Sets Using

LOW-RESOLUTION DATA GROUPING

PRELIMINARY AMENDMENT

Hon. Commissioner of Patents Washington, D.C. 20231

Sir:

Prior to prosecution on the merits, please amend this application as follows herein.

IN THE SPECIFICATION

Please insert the following heading and paragraph after the title of the application on page 1 of the specification:

-- Cross Reference to Related Applications

This application is a national phase application based on PCT/US00/20401, filed July 27, 2000, and which further claims priority from U.S. Application No. 09/361,122, filed July 27, 1999. These applications are incorporated herein by reference.--

IN THE CLAIMS

Kindly amend the claims as follows:

- 7. (Amended) A method as in claim 3, wherein the breakpoints are selected from (a) numeric values; and (b) textual values.
- 13. (Amended) A method according to claim 11, wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the scoring of the grouped data comprises:

applying the function to the data to obtain a score for each case.

- 23. (Amended) A system as in claim 19, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.
- 29. (Amended) A system according to claim 27, wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the mechanism constructed and adapted to score of the grouped data comprises:

a mechanism constructed and adapted to apply the function to the data to obtain a score for each new case.

- 39. (Amended) A medium as in claim 35, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.
- 45. (Amended) A medium according to claim 43, wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the scoring of the grouped data comprises:

applying the function to the data to obtain a score for each case.

Please refer to the attached Appendix for changes made to the above claims.

REMARKS

The present amendment adds reference to the priority applications to the specification and further amends Claims 7, 13, 23, 29, 39 and 45 to remove multiple dependencies from the claims. No new matter has been added.

Favorable action on the merits is respectfully requested.

Respectfully submitted,

PILLSBURY WINTHROP LLP

Paul L. Sharer

Registration No. 36,004

1600 Tysons Boulevard McLean, Virginia 22102 (703) 905-2000 (703) 905-2500 Facsimile

Date: January 28, 2002

Attorney Reference: 009901/0290430

Attachment: Appendix

APPENDIX: VERSION TO SHOWS CHANGES MADE TO APPLICATION

In the Claims

The claims were amended as follows:

- 7. (Amended) A method as in [any one of claims 3 and 6] <u>claim 3</u>, wherein the breakpoints are selected from (a) numeric values; and (b) textual values.
- 13. (Amended) A method according to claim 11 [or 12]₂ wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the scoring of the grouped data comprises:

applying the function to the data to obtain a score for each case.

- 23. (Amended) A system as in [any one of claims 19 and 22] <u>claim 19</u>, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.
- 29. (Amended) A system according to claim 27 [or 28], wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the mechanism constructed and adapted to score of the grouped data comprises:

a mechanism constructed and adapted to apply the function to the data to obtain a score for each new case.

- 39. (Amended) A medium as in [any one of claims 35 and 38] <u>claim 35</u>, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.
- 45. (Amended) A medium according to claim 43 [or 44], wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the scoring of the grouped data comprises:

applying the function to the data to obtain a score for each case.

10148022

WO 01/08039

5

10

15

20

64/pst

__

ANALYSIS AND PATTERN RECOGNITION IN LARGE, MULTIDIMENSIONAL DATA SETS USING LOW-RESOLUTION DATA GROUPING

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

1. Field of the Invention

This invention relates to analysis and pattern recognition of data. More particularly, this invention relates to methods, systems and devices and combinations thereof for analysis and pattern recognition in large sets of multidimensional data using low-resolution data grouping.

2. Background

With the advent of computerization and the low cost of data storage and acquisition, people in many endeavors are now accumulating very large sets of data. For example, scientists in drug and chemical companies now use automation to perform so-called high-throughput screening ("HTS") of chemical compounds. HTS uses automated, relatively low-cost techniques to obtain various items of information about chemical compounds. The goal of using HTS is to obtain information about a very large number of compounds in a quick and relatively low-cost manner. Having accumulated a very large HTS data set, it is necessary to evaluate the data in order to determine which, if any, of the analyzed

compounds warrants further investigation. However, the results of such HTS tend to be very large sets of multidimensional data, on the order of thousands of rows and dozens of columns, and so it is very difficult to make decisions just by looking at the data.

In addition to the very large amounts of data produced by HTS, difficulties in existing data handling and analysis methods include the following:

5

10

15

- Data comes from very diverse sources, including HTS laboratories,
 physical measurements, bio-scientists' laboratories, various computational
 software programs, etc., and the different sources tend to have very diverse
 kinds of output including numbers, text, mixed data types, error notations,
 blank data, replicate data (more than one value per compound), etc.
- Not all sources produce data on the same list of compounds, or in the same order.
- Some data values are misleadingly too precise, i.e., have high relative experimental errors or noise, and can easily be over-interpreted.
- Medicinal chemists have to weigh very different kinds of factors (for example, molecular weight vs. dose-responsiveness vs. ClogP vs. secondary biology vs. selectivity across screens) in trying to determine which are the best compounds or clusters of compounds to which to devote further work.

SUMMARY OF THE INVENTION

This invention solves the above and other problems by providing automated tools to help with and speed up these data handling and analysis processes. These tools embody some assumptions about how the data should be treated by internalizing the most generally acceptable assumptions, but leaving more idiosyncratic decisions to individual users.

A central concept on which this invention is based is grouping data into a relatively small number of categories using low-resolution data grouping. The grouping is visualized by assigning colors to data groups, e.g., in spreadsheets.

Grouping of data potentially changes the precision of the data.

This categorization of data has several major benefits, including:

creating a visual means of finding data patterns;

5

10

15

20

- beneficially blurring small variations in numerical data that are, in practice, excessively fine distinctions, possibly due to experimental error; and
- providing, in the colors themselves, a means or "common currency" to
 evaluate candidates across a wide range of data types.

Accordingly, in one aspect, this invention provides mechanisms to expedite pattern recognition in large sets of multidimensional data, such as those that chemists assemble when evaluating hits from high-throughput screening (HTS) and deciding which ones will get priority for further investigation. In controlled trials, this invention has reduced the time to evaluate real data sets, from days of intense human effort, which is vulnerable to errors due to volume or fatigue, to a few minutes of automation with graphical presentation of results.

It quickly becomes obvious upon using the system that the tools also have value in data-handling areas other than HTS. Examples include selection and management of any kind of tabulated data, e.g., portfolio management for any kind of rated portfolios, selection of drug candidate compounds, selection and management of proteins that are candidates for targets for drugs, selection and management of research projects competing for resources, and evaluating employee performance or job candidates.

The system of this invention includes a new special command menu, a set of graphical user interface worksheets, and action buttons to facilitate the coloring and color analysis processes for the user. While the central process is the data grouping and coloring, there are also new tools for the upstream, or pre-grouping and coloring processes of importing, assembling, regularizing, and characterizing data in a spreadsheet, and for the downstream processes of visualizing, scoring, comparing, and sorting large amounts of color-coded data. The data-grouping and spreadsheet-coloring tool is presently implemented with a flexible, powerful, and convenient user interface that does not require knowledge of spreadsheet macros or of the Visual Basic language (used for the system's implementation).

Accordingly, this invention provides methods, systems and devices for operating on data.

In one aspect, the method of this invention provides at least one userdefined grouping rule for grouping the data into a user-definable number of
groups. At least one of the grouping rules is applied to the data. The data may be
provided in a table and the grouping rule applies to at least one user-selectable
column of the table. In some embodiments, the grouping rule defines breakpoints
corresponding to the user-definable number of groups. Application of the rule the

20

5

10

data divides the data into groups based on the breakpoints. The method may include presenting the grouped data in a manner that visually distinguishes the groups. In some embodiments, the grouping rules associate colors with groups and the grouped data is presented with an aspect of the data colored according to the rules.

Sometimes the data are in labeled columns in a spreadsheet, and the grouping rule specifies at least one breakpoint and a corresponding color for each range defined by the breakpoint. The grouped data are presented by coloring each data item in one labeled column of the data based on the breakpoint and the corresponding color of the breakpoint.

The breakpoints may be numeric or textual values. In some embodiments, the breakpoint is determined automatically based on the data.

10

15

20

Sometimes the data are provided in a table, and backgrounds of table cells are colored according to the rules.

The number of groups may be fewer than a number of possible data values.

In another aspect, this invention is a method of operating on data by providing at least one user-defined grouping rule for grouping the data into a user-definable number of groups. The grouping rule is applied to the data to generate grouped data. At least one user-defined scoring rule is used to score grouped data according to user-defined scores. The scoring rule is applied to the grouped data to score the grouped data.

In yet another aspect, this invention is a method of operating on data, in which data are grouped by applying to the data at least one user-defined grouping rule for grouping the data into a user-definable number of groups. The grouped

data are scored by applying to the grouped data at least one user-defined scoring rule for scoring the grouped data according to user-defined scores.

In some embodiments the data can be a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases. The scoring applies the function to the data to obtain a score for each case. Sometimes the method includes sorting the scored cases by score, individually or by cluster, as described below.

5

10

15

20

The notion of clustering is that subsets of the various cases may be associated into clusters by having identical entries in any user-selected column of data, known as a clustering column. In some embodiments of the invention, the integrated clusters are treated by averaging the properties of all the cases which comprise each cluster.

Thus, according to aspects of this invention, in order to facilitate analysis and pattern recognition in large, multidimensional data sets, the precision of the data is potentially changed (implemented, e.g., by grouping the data) and then the data are presented for visualization (implemented, e.g., by coloring the data).

BRIEF DESCRIPTION OF THE DRAWINGS

This file contains at least one drawing executed in color. Copies of this patent with color drawings will be provided by the United States Patent and Trademark Office upon request and payment of the necessary fee.

The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in

conjunction with the accompanying drawings, in which the reference characters refer to like parts throughout and in which:

FIGURE 1 shows a typical computer system on which the present invention operates;

FIGURE 2 shows an overview of the functionality of the present invention;

FIGURES 3A-3B depict a display of data in a spreadsheet;

FIGURES 4A-4B show a color control rules worksheet according to one embodiment of the present invention;

FIGURES 5A-5B show data coloring rules;

5

10

15

20

FIGURES 6A-6C show a data coloring control panel and a flow chart of the data coloring process, respectively;

FIGURES 7A-8B show the worksheet of FIGURE 3A and 3B after various coloring rules in FIGURE 4A have been applied;

FIGURES 9A, 9B, 10A, and 10B depict displays of data in spreadsheets;

FIGURES 11A and 11B show the form of the cluster control worksheet according to one embodiment of the present invention;

FIGURES 11C-11D shows control panels from the cluster control worksheet of FIGURES 11A-11B;

FIGURE 12 shows the enlarging of the cluster starts mechanism according to one embodiment of the present invention;

FIGURES 13A-13D show the application of vertical display re-scaling according to one embodiment of the present invention;

FIGURES 14A-14D and 15A-15B show the application of the scoring and sorting of clusters according to one embodiment of the present invention;

FIGURES 16A-16N, 16P and 16Q show aspects of the application of the dose-response scoring and estimation of potencies according to one embodiment of the present invention;

FIGURES 17A-17B show the application of the sheet statistics tool according to one embodiment of the present invention;

FIGURES 18A-18D show the application of the scoring and sorting of clusters for the purpose of project prioritization and management according to one embodiment of the present invention;

FIGURES 19-24 show examples of the application of this invention to various types of data; and

FIGURES 25 and 26 show application of an aspect of this invention.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

Overview

10

15

20

FIGURE 1 shows a typical computer system 100 on which the present invention operates. The computer system 100 includes a processor (CPU) 102 connected to a memory system 104 and a display 106. The computer system also includes various input devices including a keyboard 108 and a mouse 110 or other pointing device. Internal storage 112 (e.g., a hard disk, a CD ROM and the like) and external storage 114 (such as a floppy disk, CD ROM and the like) are also provided.

Various aspects of this invention are implemented as computer software programs or algorithms 116 which run on the computer system 100. The software programs 116 can reside in the internal storage 112, the external storage 114,

and/or in the memory 104. The software programs 116 operate on data 118 which is provided, e.g., on the external storage 114. The software programs 116 operate in a standard and known manner by being executed on the processor 102 of the computer system 100.

5

In some embodiments of the present invention, the user can create and modify various executable rules 120 which can operate on the data 118. For the sake only of explanation, the rules 120 are depicted separately from the data in the figures. However, as explained in more detail below, some or all of the rules 120 can be part of the data 118.

10

In preferred embodiments, the computer system 100 is capable of running the spreadsheet program ExcelTM 95 (hereinafter "Excel") from Microsoft Corporation, and the software computer programs 116 are written in Microsoft Corporation's Visual Basic (hereinafter "VB") and are provided as an add-in to Excel. A single copy of software thus serves all data files on a particular machine. To conserve Excel resources, in some embodiments, the package self-installs the add-in when the user opens a data file, and un-installs the add-in when the last data file in memory is closed.

20

15

In a preferred embodiment, this invention works entirely within the environment of EXCEL. EXCEL structures data files as workbook files which contain worksheets. The programs 116 of this invention consist of special EXCEL worksheets, called control sheets, on which input data is written by the user into designated labeled cells. The control sheets are part of the same EXCEL workbook file as the data. The control sheets also contain action buttons to execute the various procedures associated with this invention. The rules 120 are formed by setting various parameters in the control sheets.

When the workbook file is saved, the parameters (for the rules 120) are stored on the control sheets along with the data, and they can be modified and/or re-executed at any time without having to re-enter anything. The results of operations are automatically written as worksheets in the same workbook file, providing a convenient, integrated data environment in a single file.

The system according to the present invention operates, in one aspect, in accordance with FIGURE 2. Recall that the user's aim is to perform analysis and pattern recognition in large, multidimensional data sets using (potentially low resolution) data grouping. To this end, the user and/or the system will create rules for coloring and presenting the data. First (at 122) a user creates and organizes the data 118. Various tools (discussed below) are provided to aid in the creation and organization of the data. Then (at 124) the user creates rules 120 for operating on the data 118. The rules 120 can be created before or after the data 118, rules can be reused for different sets of data and multiple rules can apply to the same data. The creation and operation of rules are discussed in greater detail below. Once the data 118 and the rules 120 are created, the user then selects some (or all) of the rules to apply to the data (at 126). Specifically, the user groups and thereby colors the data according to selected rules. With the data grouped and colored according to the rules, the user can then perform group/color-mediated data mining (at 128).

FIGURES 3A-3B show views of the program of this invention in operation with a sample Excel sheet 300, denoted "DEMO 1" (302) containing data (not all the data in the sheet is visible). The views of Excel worksheets shown in the various figures and examples that follow are the views that are presented on the display 106 of the computer system 100. Sheets in an Excel workbook are labeled with tabs at the bottom of the worksheet. The data on the "DEMO1" sheet

5

10

15

300 consists of eight columns of data for each of a number of compounds. The compounds are denoted "Cmpdxx", where "xx" ranges from "01" to the number of compounds. In FIGURE 3B, the last compound visible on the data sheet is "Cmpd58". The eight columns are headed:

1. "Cmpd" (column A);

5

10

15

20

25

- 2. "Series" (column B);
- 3. "Test1" (column C);
- 4. "Test2" (column D);
- 5. "Test3" (column E);
- 6. "HTS SPA Dose-Resp % Inhib @3x10-6M" (column F);
- 7. "HTS SPA Dose-Resp % Inhib @ 1x10-6M" (column G);
- 8. "HTS SPA Dose-Resp % Inhib @ 3x10-7M" (column H); and
- 9. "HTS SPA Dose-Resp % Inhib @ 1x10-7M" (column I).

In addition to the "DEMO 1" worksheet 300, the EXCEL workbook shown in FIGURES 3A and 3B has seven other worksheets, denoted "DEMO 2" 304; "DEMO 3" 306; "clusterinfo DEMO" 308; "Append Control" 310; "Color Control" 312 and "Cluster Control" 314. The last three worksheets, denoted respectively "Append Control"; "Color Control" and "Cluster Control," contain various rules and controls (to be discussed below). The data in worksheets denoted "DEMO 1" 302; "DEMO 2" 304; "DEMO 3" 306; and "clusterinfo DEMO" 308 correspond to data 118 (FIGURE 1) and the controls or rules in the worksheets denoted "Append Control" 310; "Color Control" 312, and "Cluster Control" correspond to the rules 120 (FIGURE 1).

FIGURES 4A-4B show a color control rules worksheet (312, denoted "color control") according to the present invention, as displayed on display 106 of the

5

10

15

20

25

computer system 100. The color control worksheet 312 is shown with some rules already in place, i.e., having values set, and other rules left blank. These rules are shown as examples only, and, as with any of the other types of rules, any or all of the rules can be set by the user. A typical data coloring rule 130 is shown in FIGURE 5A. The rule 130 has already been set up and operates on the appropriate data when selected by a user (using mouse 110, FIGURE 1 or some other pointing device) in the area 132 marked "Click here to run these". The rule 130 (as with all of the preferred color control rules) has four parts, namely the name of the sheet 134 containing the data on which the rule is to operate ("DEMO 1" in the example of FIGURE 5A); the columns 136 of data of the sheet on which the rule is to operate ("E" in the example of FIGURE 5A); the number of colors 138 to be used by the rule 130; a number of breakpoints 140 (denoted "break 1" to "break 4" in the example of FIGURE 5A); and a corresponding number of colors 142 for each range defined by the breakpoints (denoted "color 1" to color 4" in the example of FIGURE 5A). Actually, as explained below, the number of breakpoints is one less than the number of colors.. In the specific example shown in FIGURE 5A, the rule has three breakpoints of 1, 5 and 10, defining four ranges with four corresponding colors 142, namely light green, yellow, orange and red. Preferably the named colors are also depicted in the actual colors, so that, in this example, the background of the word "lightgreen" is shown in light green, the background of the word "yellow" is shown in yellow and so on.

In this invention it is preferable to show data and meta-data (headings etc.) in color. In some embodiments, the coloring is implemented by showing a background area of the text representing the data in the appropriate color.

Sometimes the actual text representing the data is shown in the appropriate color.

In presently preferred embodiments, the font color is only changed in cases where necessary to improve contrast with the background color for readability. Only two font colors, dark (black) and light (pale gray), are used in the presently preferred embodiment. Combinations of both approaches can be used. For example, the background section of the word "yellow" is preferably shown in the color yellow. It is also possible to show the word itself, i.e., the font, in the color yellow, as long as that color is distinguishable from the background.

The particular rule 130 shown in FIGURES 4A and 5A, operates as follows, when selected:

10

5

In sheet "DEMO 1" 302, in column E, values less than or equal to 1 (break 1) are colored light green (color 1); values in the range 1 to 5 (between break 1 and break 2) are colored yellow (color 2); values in the range 5 to 10 (break 2 to break 3) are colored orange (color 3); and values greater than 10 (break 3) are colored red (color 4).

15

Another typical data coloring rule 130-1 from the color control sheet 312 is shown in FIGURE 5B. The rule 130-1 is set up to operate on columns "C" and "D" of sheet "DEMO 1". The rule 130-1 uses three (3) breakpoints (break1=0.1, break2=1 and break3=5) defining four ranges with four (4) corresponding colors ("lightgreen", "yellow", "orange", and "red").

20

The results of applying the rule 130-1 of FIGURE 5B to the data in sheet "DEMO 1" (302, FIGURE 3) are shown in FIGURES 7A-7B. As can be seen from FIGURES 7A-7B, after application of the rule 130-1, all of the data in columns C and D of the sheet labeled "DEMO 1" has been colored according to the rule. Specifically, data having a value less than or equal to break 1 (0.1) have been colored light green; data values in the range between break 1 and break 2 (0.1 to

1) have been colored yellow; data values in the range between break 2 and break 3 (1 to 5) have been colored orange; and data values greater than break 3 (5) have been colored red.

The results of applying all of the other color control rules shown in FIGURES 4A-4B to the data in sheet "DEMO 1" are shown in FIGURES 8A-8B.

The rules can be applied individually (as shown above with respect to FIGURES 7A-7B), or they can be all be applied at the same time. In order to apply all rules to a particular data set (sheet), each rule can be individually selected or the area labeled "RE-RUN ALL RULES FOR SHEET NAMED DEMO 1" (on the right side of FIGURE 4A) can be selected. Note that if two rules apply to the same column of the same sheet, the second rule run on that column will override the first rule run on that column.

To create a coloring rule a user performs the following (with reference to FIGURE 6B):

- (1) Select the "COLOR CONTROL" sheet 312 and pick a control panel on that sheet to use (an empty panel or one containing a rule no longer needed) (at 600). All control panels on a sheet can be cleared by clicking the button labeled "CLEAR ALL ENTRIES ON THIS SHEET" (318 in FIGURE 4A).
- (2) In the selected control panel, enter the name of the sheet to be colored (at 602).
- (3) In the selected control panel, enter a column or columns (at 604).

 For multiple columns, either list them separated by commas, or use a colon or hyphen to denote ranges, or some combination. For example, "A:D,F" means columns A,B,C,D, and F. To aid in

5

10

15

choosing columns, the user can right-click on the cell containing the name of the data sheet, and pick "Open Twin Screen" from the shortcut menu that appears, to create a special dual display. This also creates a "Close Twin Screen" button to go back.

- (4) Choose a number of colors to use (at 606), either by entering the number of colors or by repeatedly clicking the gray button adjacent the cell labeled "# of colors". In preferred embodiments, the system allows for five breakpoints and six colors per rule.
 Accordingly, the numbers will cycle from 1 to 6, and various cells below them will be blacked out accordingly.
- (5) Enter the breakpoints that define the color groups (at 608), in any of three modes:
 - a) Numeric data, manual mode: enter numbers to form the breakpoints, i.e., the boundaries between the color groups, one less than the number of colors, in increasing numerical order. Cells whose values exactly equal a breakpoint value will be colored with the lower group (breakpoint 1 is colored with color 1, etc.)
 - b) Numeric data, automatic mode: enter either "value", "log", or "count" as the first breakpoint. If multiple columns have been chosen, the user must also enter "yes" or "no" opposite "Re-scale all?" at the bottom of the panel, to indicate whether each column should get its own auto-breakpoints, or whether the

20

5

10

5

10

15

auto-breakpoints of the first column (first in list in the rule, not first on the data sheet) should be used for all.

This mode reports information about the breakpoints it determines, and thus could also be used to explore the distribution of numerical values in a column prior to a final *manual* breakpoint selection.

c) <u>Text data</u>: enter the strings to be matched and colored, in preferred embodiments, up to five (5) in number. Matching is case-insensitive unless the string is enclosed in double quotes (" and "); otherwise, no quotation marks are necessary.

Several special text strings act as operators if entered as the first word in a rule cell:

Rule Entry	
(OPERATORS need not be uppercase—here only for emphasis)	<u>Meaning</u>
test string	color data cell if its whole content matches the test string
NOT test string	 color data cell if its whole content does not match the test string; will not color numeric cells
CONTAINS test string	color data cell if contains the test string as a substring anywhere
NOTCONTAINS test	 color data cell if it does not contain the test string anywhere; will not color numeric cells

Rule Entry	
(OPERATORS need not be uppercase—here only for emphasis)	Meaning
BEGINS test string	color data cell if it begins with the test string
ENDS test string	color data cell if it ends with the test string
* (an asterisk)	(wildcard) color data cell containing any data, including numeric cells
BLANK	color data cells that are blank

Using quotes to force matching to be case-sensitive also works with strings that follow an operator.

5

10

15

It is possible to construct a text-coloring rule in which certain cells may satisfy more than one of the "breakpoint" values. For example, if a rule says that "active" is colored green and "contains act" is colored red, then the word "active" in a cell would satisfy both. In such cases, the system colors the cell according to the *first* condition satisfied on the list of breakpoints. This dependence on the order can be used advantageously to achieve complex coloring conditions. The sequence of conditions can be considered as a series of filters, through which only the as-yet-uncolored cells fall through to the next decision.

(6) Enter the names of the colors to use (at 610), in the order corresponding to the breakpoints. A display of color samples is provided at the right side of the Color Control sheet 312. A user need only enter the name, and the appropriate cell will become colored when the tool is executed. If the user wants the color to display immediately, he can copy and paste the sample cell into the rule's color cell. A special pseudo-color named "SKIP" is used to tell the system not to color the cells whose data falls in this group.

5

10

15

20

- (7) When the rule has been created, the user executes the rule by selecting the rule's "CLICK HERE TO RUN THESE" button on the panel filled in (at 612, FIGURE 6C).
- (8) To create different coloring rules for other columns, repeat the above in additional control panels. If the user runs out of control panels, he can create more control panels by copying an existing one and pasting it onto a blank section of the color control sheet.

To the extent that a single panel cannot hold all the requirements for a particular rule, a user can combine two or more panels to create a particular rule. For example, if a user needs ten (10) breakpoints, two panels can be used.

With reference to the coloring rule is shown in FIGURE 6A, once the rule has been set, a number of parameters are stored in the system. The parameters are "sheet name" ("DEMO 3" in FIGURE 6A), column specification, number of colors, array of breakpoints, array of colors, and multicolumn scaling mode.

The data coloring mechanism operates as follows, with reference to the flowchart of FIGURE 6C.:

1. The user enters the parameters into a rule panel on a "COLOR CONTROL" worksheet 312, e.g., as described above with reference to the panel of FIGURE 6A.

5

10

15

20

- 2. The user selects (clicks) the activation button (labeled "Click here to run these") on that panel (at 612). This causes the system to:
- (A) Read and interpret the parameters from the panel (at 614). The system can identify which button was clicked using the Visual Basic ("VB") "caller" property, described in more detail below. The parameters are then read based on the identity of the cell location of the button using the VB "TopLeftCell" property. The system retrieves the parameters (sheet name, column specification, number of colors, array of breakpoints, array of colors, and multicolumn scaling mode) from cells in this panel by relative reference to the button cell.
- (B) Next, determine the mode of the coloring rule (at 616) (i.e., numeric v. text or manual v. automatic, and, if automatic, which of value, log or count). This uses the analysis of the first breakpoint entry.
- (C) Compile a list of the columns specified in the "column specification" parameter (at 618). This is done by scanning the various areas contained in the selection, as follows:

```
For Each singlearea In Selection.Areas

For Each c In singlearea.Columns

If Not CountEmpty Then

lr = LastRowInColumn(c.Column)

End If
```

```
If Not CountEmpty And lr = 0 Then

'skir this empty column

ncols = ncols - 1

Else 'add this column to the list

icol = icol + 1

colnumarray(icol) = c.Column

End If

Next c

Next singlearea
```

10

- (D) If an auto-breakpoint mode is being used (determined at 620), analyze the data values to determine the breakpoints (at 622). This is done by:
 - (i) Collecting statistics on the data distribution in each specified column; and
 - (ii) Calculating the automatic break points for the appropriate mode. For example, the auto-value breakpoints are determined as follows:

- (iii) Displaying the results for user approval or cancellation.
- (C) Loop through the cells in the chosen columns on the chosen worksheet (at 624).

(D) Compare each cell's value to the list of breakpoints (at 626). If the coloring rule is in text mode, use the meanings of the special breakpoint operators ("contains", "blank", asterisk "*"; or quotation marks).

5

628).

(E) When a match is found, apply the appropriate color (at

The code below illustrates the processes (D) and (E) for numeric breakpoints:

10

```
For Each cell In Range (Cells (StartColoringRow, colnum),
                                Cells(FinishColoringRow, colnum))
             cvalue = cell.Value
             colored = False
             If IsNumeric(cell.Value) Then
15
                   If Not IsEmpty(cell) Then
                   ' (have to test both because EMPTY is numeric)
                        For ibreak = 1 To ncolors - 1
                              If cvalue <= break(ibreak) Then
                              If Color(ibreak) <> "SKIP"
20
                                   cell.Interior.ColorIndex =
                                    Color (ibreak)
                                   Call TextContrast(cell)
                              End If
                              colored = True
25
                        Exit For
                        End If
                        Next ibreak
             If colored = False Then
                   ' Not hit yet? Must be top category, so:
30
                   If Color(ncolors) <> "SKIP"
                        cell.Interior.ColorIndex = Color(ncolors)
```

Call TextContrast (cell)

End If
colored = True

End If

Else ' not numeric - just don't color it

End If

5

10

15

20

25

Next cell

The operation of the data coloring tool of this invention will now be described in greater detail. Each coloring rule is provided in a coloring control panel that has the general form of a coloring rule as shown in FIGURE 6A. In one preferred embodiment, each coloring control panel 144 is a double-outlined unit. sixteen (16) cells high by two (2) cells wide. As noted above, a user is provided with coloring control panels on the color control worksheet 312. A user can use the coloring control panel 144 to set the sheet and column(s) on which the rule is to operate, the number of colors, the various break points and the colors associated with those breakpoints. The sheet is set by entering its name into the cell 146 adjacent the cell labeled "sheet". The column (or columns) on which the rule is to operate is (are) set by entering its (their) name in the cell 148 adjacent the cell labeled "column(s)". The number of colors is set by the user by selecting the cell 150 adjacent to the cell labeled "# of colors". Each time the cell 150 is selected it increases the number of colors, up to a maximum of six (6), i.e., rotating through the values 1 to 6. I.e., when the cell 150 shows a "6" and is selected, it reverts back to "1". That is, selecting the cell 150 causes the value in the cell to cycle from "1" to "6" and then back to "1".

A Visual Basic ("VB") macro function ("CallColorColumn") is associated with the top cell 152 of the control panel 144. When the cell 152 is selected by

the user (with the mouse 110 or the like), the function associated with that cell is executed by the computer (CPU 102). In the presently preferred embodiments, the CallColorColumn function extracts the button name of the cell 152 and then calls a second function ("CallColorColumnSubroutine") with that button name as one of the parameters. The function CallColorColumnSubroutine takes three parameters, namely ButtonName, StartColoringRow, and FinishColoringRow.

The two parameters StartColoringRow, and FinishColoringRow are optional.

First, the function CallColorColumnSubroutine determines what specific values to use for the coloring by reading them from the control panel 144. Since the values are all in fixed positions relative to the selected button cell 152 that initiated the call to the function CallColorColumn, the values can be determined once the location of that button cell 152 has been determined. This is done using the following Visual Basic code:

```
Sheets("Color Control").Activate
headingrow =
         ActiveSheet.Buttons(ButtonName).TopLeftCell.Row
headingcol =
```

ActiveSheet.Buttons(ButtonName).TopLeftCell.Column

Note that if the function *CallColorColumnSubroutine* was called from another sheet (not "Color Control") then this method will not find it.

The various parameter values are then read as follows:

Sheet name:

10

15

```
datacol = headingcol + 1
sheetname = Trim(Cells(headingrow + 1, datacol).Value)
```

If there is no sheet named "sheetname" an error function is called.

Generally, in preferred embodiments, a great deal of error checking takes place to ensure that the user is provided with a friendly and useable interface to the program. Most of the error checking is not mentioned in this description, however, one skilled in the art would know what kinds of error checking to implement in order to provide a user-friendly working environment.

The column(s) to be colored are specified by:

5

10

15

20

25

Cells(headingrow + 2, datacol).Value

The number of colors is specified by the variable ncolors, where:

ncolors = Cells(headingrow + 3, datacol).Value

Within the function CallColorColumnSubroutine there are two arrays, named break and color, which are used to store the breakpoints and colors, respectively. The first breakpoint is set as follows:

break(1) = Cells(headingrow + 4, datacol).Value

The value of the first breakpoint is used to determine the break mode ("NUMERIC", "VALUE", "LOG", or "COUNT"). If break(1) (as determined above) is numeric, then the mode is set to "NUMERIC", otherwise, if break(1) is one of "VALUE", "LOG", or "COUNT", then the break mode is set to that mode, otherwise the break mode is set to "TEXT".

Next, the function determines whether multiple columns were specified, in which case it determines whether the user selected to re-scale all the columns.

The user's re-scale selection is determined by:

```
rescale_all_string = Cells(headingrow +
15,datacol).Value
```

10

15

20

25

Now the rest of the breakpoints (if any) are read. If the break-mode is "AUTO" then the breakpoints are set as follows:

```
For i = 2 To lastbreaknum
break(i) = Cells(headingrow + 3 + i, datacol).Value
```

Various possible errors are checked for. E.g., if any breakpoints are missing (i.e., if break(I) is empty, the user is notified. Also, if the break mode is "NUMERIC" and non-numeric breakpoints are set, the user is notified. If numeric breakpoints are not in increasing order, the user is notified. As noted above, generally, in preferred embodiments of the present invention, a great deal of error checking is performed on all user inputs to ensure that the values are correct and consistent. Most error checking is omitted from this description.

The CallColorColumnSubroutine maintains an array, colorname, which maps integers to colors. In preferred embodiments, there are fifty six (56) colors available. To use the higher numbered colors, the computer's video card must be set appropriately. Using the colorname array, the program next associates the user provided color names with index numbers. Specifically, for each of the (up to six in a preferred embodiment) colors specified, the user specifies an actual color name, denoted cname. This name is determined for each color by:

```
For j = 1 To ncolors
     cname = Cells(headingrow + 8 + j, datacol).Value
```

The interior of each color-specifying cell is then colored by the appropriate (selected) color by setting the color property (Interior.ColorIndex) of the cell:

Cells (headingrow + 8 + j, datacol).Interior.ColorIndex = Color(j),

where the value of the variable j ranges from 1 to ncolors.

Then the cell is further processed by a function *TextContrast*.

Call TextContrast (Cells (headingrow + 8 + j, datacol))
With the parameters read and checked, the system is ready to process and color the selected sheet (specified at cell 146 in FIGURE 6A). The selected columns (specified in cell 148 in FIGURE 6A) in the selected sheet are processed one-by-one by the following program code:

Next c
Next singlearea

Next singleare

5

10

15

20

30

The processing performed by the function *ProcessOneColumn* is as follows: The column designated by *colnum* on sheet *sheetname* is to be colored according to the breakpoints in the array *break* and the colors in the array *colors*. The designated column is colored from the row corresponding to *StartColoringRow* to the row corresponding to *FinishColoringRow*. Note that the

function *ProcessOneColumn* is also provided with the break mode and the variable *rescale all*.

Function *ProcessOneColumn* first calculates the automatic breakpoints, if necessary. Note that automatic breakpoints are determined from the whole column, even if this call says to color only a limited range of rows. If the value of *breakmode* is "VALUE" or "LOG" and the value of *rescale_all* is set to "True" Or the value of the first breakpoint (*break(1)*) is set to "VALUE" or "LOG", the program calls the function *AutoValueBreakpoints* as follows:

Call AutoValueBreakpoints(colnum, colletter, ncolors, break, Color, breakmode, rescale_all).

Otherwise, if the *breakmode* is set to "COUNT" and the value of rescale_all is set to "True" or the first breakpoint (break(1)) is set to "COUNT", then the program calls the function AutoCountBreakpoints, as follows:

Call AutoCountBreakpoints (colnum, colletter, ncolors, break, Color, breakmode, rescale_all, sheetname).

With the breakpoints calculated, the columns are colored according to the type of breakpoints specified by the user. Specifically, when the *breakmode* is any one of "VALUE", "COUNT", "LOG", or "NUMERIC", the system executes a function *ColorNumericColumn*. On the other hand, when the *breakmode* is "TEXT", the system executes a function *ColorNumericColumn*. The VB code for this is as follows:

25 Select Case breakmode

Case "VALUE", "COUNT", "LOG", "NUMERIC"

10

15

Call ColorNumericColumn(colletter, ncolors, break, Color, StartColoringRow, FinishColoringRow)

Case "TEXT"

Call ColorTextColumn(colletter, ncolors, break, Color, StartColoringRow, FinishColoringRow)
End Select

Then, when the rule in control panel 144 is selected for execution, the rule is applied to the selected column(s) (denoted in cell 148) of the named sheet (in cell 146). For each column in the named sheet, the value in each cell is compared to the various breakpoints and the cell is colored corresponding to the appropriate breakpoint.

Examples of the application of various coloring rules in the "COLOR CONTROL" worksheet of FIGURES 4A-4B, are shown with reference to the data in worksheet "DEMO 2" (depicted in FIGURES 9A, 9B, 10A and 10B).

Color-Mediated Data Mining

5

10

15

20

25

As noted above with reference to FIGURE 2, once the data have been colored according to the user-selected rules (at 126), the user can then perform color-mediated data mining (at 128). The presently preferred embodiment of this invention provides five mechanisms (each discussed below) for color-mediated data mining, namely mechanisms to:

- 1. enlarge/shrink cluster starts;
- 2. vertically re-scale the display;
- 3. score and sort clusters; and
- 4. score and sort dose-response data.

The following discussion refers to the cluster control worksheet which is shown in FIGURES 11A-11B.

1. Enlarge/Shrink Cluster Starts

5

10

15

20

The "Enlarge Cluster Starts" mechanism highlights the first row of each cluster in clustered data by enlarging the font of the cell containing the cluster number or label, thus enabling size reduction of the spreadsheet for the user to focus on the color patterns. When the cell height is dramatically reduced in order to see more cells on a screen or printed page, this enlargement allows the user to still read the label at the beginning of each cluster. The mechanism takes user input from a *Cluster Control* worksheet. A corresponding mechanism ("SHRINK CLUSTER STARTS") allows for undoing the enlarging. This mechanism handles cluster numbers or textual labels. Any column can be designated as the cluster labels to be processed.

Operation of the mechanism is as follows:

- (1) From the "CLUSTER CONTROL" sheet 314 pick a control panel to use (one which is empty or one containing inputs no longer needed). On this sheet, a single control panel extends vertically through the black, blue, red, and green sections, and provides input information for several tools.
- (2) In the blue section, enter a sheet name and the column to be considered as the cluster labels.
- (3) Click either the blue-text "Enlarge Cluster Starts" or "Shrink Cluster Starts" button.

The program code accomplishes this by scanning the column of cluster labels, identifying any entries that are different from the one immediately above, and enlarging them. Code that carries out this function is shown below:

Example

An example of the application of the enlarge cluster mechanism is shown in FIGURE 12 which shows the application of a rule (shown in the control panel FIGURE 11C) from the cluster control worksheet in FIGURE 11B to the data of worksheet "DEMO 2" as shown after coloring in FIGURES 10A-10B. As shown in FIGURE 11C, the rule is to be applied to column B of sheet "DEMO 2".

20

25

15

2. <u>Vertical Display Re-Scaling</u>

The vertical re-scaling mechanism operates by taking a user-provided scale factor and then changing height of data rows to facilitate visualization of large-scale color patterns. The mechanism leaves column heading heights and column widths unchanged. This makes headings remain readable and greatly simplifies examining long columns of data for color patterns.

FIGURES 13A-13D show the application of the vertical display re-scale mechanism according to the present invention. FIGURES 13A-13B show some of the data in the worksheet labeled "DEMO 3" 306 (FIGURE 13A shows the first thirty eight or so elements and FIGURE 13B shows the remaining elements of that worksheet). As can be seen from the figures, the worksheet "DEMO 3" 306 has three hundred and twenty eight (328) data entries (in rows 2-329). The user can vertically scale the display by selecting "Re-scale Vertical" from the system's special menu or by pressing a particular control key sequence (e.g., "CNTL-SHIFT-V" in a preferred embodiment). This presents the user with a dialog box 318, as shown in FIGURE 13C, which asks the user to enter a scaling factor relative to the current size. The user enters a scaling factor to enlarge or reduce or restore the display. In the example shown, the user enters a scaling factor of 0.1 which produces the vertically scaled display shown in FIGURE 13D.

5

10

15

Vertical scaling allows a user to get an overview of the data, based on the coloring.

The portion of the program code presented below carries out the central function of the vertical display rescaling mechanism:

```
rowspec = "2:" & lastrow ' leaves the headings unchanged,

i.e., readable

If factor = -1 Then

Rows(rowspec).Rows.AutoFit

Else

For irow = 2 To lastrow

Rows(irow).RowHeight =

Rows(irow).RowHeight * factor

Next irow

End If
```

After execution of the rescaling mechanism, as can be seen in FIGURE 13D, the height of each row (except the heading rows) has been scaled by factor, 0.1 in the example shown. In this manner, all rows of the data are made visible on a single page, thereby facilitating data analysis.

3. Scoring and Sorting Clusters

5

10

15

20

Scoring and sorting clusters assign numerical scores to the color patterns of individual rows or clusters of rows, thereby enabling comparison and sorting of the clusters by score.

The scoring and sorting mechanism accepts user's designations of colors and corresponding relative scores. It handles cluster numbers or textual labels.

Any column can be designated as the cluster labels to be processed. The mechanism scores a user-selected list of columns of data, with user-assigned relative weights, which need not be equal for all columns.

User input is taken from a Cluster Control worksheet 314 (see FIGURES 11A and 11B), which stores any number of parameter sets, each one with a user-specified name.

The input data is automatically sorted by cluster label before starting, in order to group the clusters together in case the user has previously sorted the data by some other criterion. Then scores are normalized to remove the effects of cluster size, absolute magnitude of scoring points chosen, and absolute size of weights chosen. The results are written to two new worksheets without altering the original data sheet. The first derived sheet is for the numerical scores; the second is like the original, but has the clusters sorted into descending score order,

so that the "best" are at the top, removing the need to visually scan a long colored worksheet. The derived output sheets have names that indicate their source data sheet and the name of the parameter set used for scoring. At the user's option, the system reversibly hides the un-scored columns in the cluster-sorted output sheet, focusing attention on the data that were used in scoring.

In preferred embodiments, the system detects uncolored cells in the data and offers the user two programmed modes of dealing with them, (uncolored = entry on user's list of scores or uncolored = "average of other colors in row"), or the option of stopping to color them manually.

5

10

15

20

If the user designates a column of individual compound labels as the "cluster labels," then the system compares single compounds rather than clusters.

The mechanism operates as follows, with reference to FIGURES 11A-11C.

- (1) On the "Cluster Control" sheet 314 the user picks a control panel (e.g., panel 1100) to use (a panel which is empty or one containing non-needed inputs). On this sheet, a single control panel extends vertically through the black, blue, red, and green sections, and provides input information for several tools.
- (2) In the top black section 1102 of the selected control panel 1100, the user gives this new parameter set a name if not already done. The name will be used to label the outputs.
- (3) In the blue section, the user enters a sheet name (in 1104) and the column (in 1106) to be considered as the cluster labels. Note: To score each compound separately rather than in clusters, enter a column with individual compound labels as the "Cluster Col."

(4) The red section of the contro panel is divided into two parts, with its action button 1108, with red text "Score and Sort Clusters", in the middle. Above the button, enter the names of the colors 1110 to be assigned point scores, along with their corresponding point scores 1112. The scores are arbitrary and relative; they will be normalized by the system as necessary. However, a user should be sure always to assign higher point scores to colors which denote favorable values, and lower point scores to colors which denote unfavorable values. The cells with entries need not be colored, and need not be in score order, because the system will color and sort these cells when run.

5

10

15

20

When assigning point values, a user should be aware that uncolored cells (which are most likely blank, i.e., unknown data) may have quality values above or below those that contain grouped and colored data. The user may decide that some of the colored groups are "better" or "worse" than data being unknown, and can assign a score to the color "NONE" accordingly.

- (5) Below the "Score and Sort Cluster" button 1108, the user enters the columns 1114 to use for scoring (using the same syntax as for the Data Coloring) and their corresponding relative weights 1116. The numbers for weights are arbitrary and relative; they will be scaled by the system as necessary. Note that a line with multiple columns will assign the entered weight to each of the columns.
- (6) The user the selects (clicks) the red-text "Score and Sort Clusters" button 1108.

(7) When the scoring and sorting tool runs (on the system 100), if the system detects uncolored cells in the data, the user will be offered two modes of dealing with them automatically, or a third manual option of stopping to color them. The two modes are:

- "Use score for the color "none" on my list"
 (RECOMMENDED)
- "uncolored = average of other colors in row".

10

(8) The program then scans the chosen columns in each row and adds up the chosen column's color scores for that row. These scores are then averaged for each cluster of rows, as defined by the user-selected "cluster column." The VB program code which accomplishes this is as follows:

```
For icol = 1 To ncols
15
            colorcode =
      Cells(irow,colnum(icol)).Interior.ColorIndex
            colorfound = False
             ' Add up the weighted scores
            For j = 1 To ncolors
20
                  If (icolor(j) = colorcode) Then
                        jscore = j
                        colorfound = True
                       Exit For
                  End If
25
            Next j
            If colorcode = xlNone And treatblanks = "AVERAGED"
      Then colorfound = True
            If Not colorfound Then
                  Cells(irow, colnum(icol)).Select
30
            If colorcode = xlNone Then
```

```
thiscname = "none"
            Else
                  Call ColorNameToIndex(thiscname, colorcode, True)
            End If
            addscore = score(jscore) * colweight(icol)
            cmpdscore = cmpdscore + addscore
             ' Next IF-THEN-ELSE block is
             ' special calculations for the "averaged" mode
            If colorcode = xlNone Then
                  lostweight = lostweight + colweight(icol)
10
                  minscore = Application.Min(minscore, 0)
                  maxscore = Application.Max(maxscore, 0)
            Else
                  cmpdscore2 = cmpdscore2 + addscore
15
            End If
       Next icol
```

(9) The scores are then normalized for the various cluster sizes (number of rows per cluster), and scaled to a value of one hundred (100) for a row which is colored entirely with the user's highest-scoring color and a value of zero for a row that is colored entirely with any color to which the user has assigned a score of zero.

20

(10)The results are presented as two newly inserted worksheets. The first is named by appending the word "SCORES" to the name of the original data sheet, and contains a list of the clusters with their sizes and scores.

(11)The second new sheet is named by appending the word "SORTED" to the name of the original data sheet. The "SORTED" sheet contains a copy of all the original data and coloring, but with the rows re-ordered to place the highest-scoring clusters at the top, and all the clusters in descending score order from there down.

5

10

15

20

25

(12)The user has two additional options regarding the appearance of the "SORTED" sheet: (a) a column containing the numerical scores can be added; and (b) the columns that were not used in the scoring can be hidden, so that only the ones actually used remain visible.

An example of user provided data is shown in the control panel in

FIGURE 11D which is taken from the cluster control worksheet shown in

FIGURE 11A. As shown in FIGURE 11A, the parameters are stored with the name

"Cmpd" 1102. The scoring a sorting parameters in the control panel 1100 of

FIGURE 11D give the color red a score of "-1", orange has a score of "0", yellow

has a score of "1" and light green has a score of "2". Columns C and D have

relative weights of "1", as does column E.

Note on the output of score and sort clusters: The system inserts two new sheets after the data (see, e.g., FIGURES 14C-14D). The first added sheet contains two score columns: the scores generated by *both* of the auto modes (uncolored = zero and uncolored = average), but the one not selected will be gray. The scores

are on a scale of "-100" to "+100", where a score of "-100" means that all cells had the maximally negative score available, and a score of "+100" means that all cells had the maximally positive score available. The second added sheet has clusters sorted according to the *one* auto mode chosen when the tool ran. The routine offers to hide all columns that were *not* used in the scoring and sorting. The user can selectively unhide certain columns by using the "Edit:GoTo" menu option (or typing "CTRL-G"), enter the columns in the "Reference" box (for example, C:F), then pick the "Format:Column:Unhide" menu option.

If the user wants to see a color-score-sorted list of compounds within a particular cluster (such as the best cluster), the user should do the following:

- 1. Sort by clusters to find the ID of the cluster wanted.
- 2. With a second rule, sort by compounds.
- 3. Go to the "SORTED by Compound" results sheet and turn on EXCEL's "Data:Filter:AutoFilter" feature for the column that specified the clustering in the first sort. The user can then choose to view only the compounds in one particular cluster, and they will be in compound-sorted order.

Example

5

10

15

20

With reference to the already-colored worksheet "DEMO 1" shown in FIGURES 8A-8B, the cluster control worksheet shown in FIGURE 11A, and the control panel shown in FIGURE 11D, application of the scoring and sorting of clusters is described. As noted above, in the control panel of FIGURE 11D, the parameters are stored with the name "Cmpd" 1102. The color red has a score of

"-1", orange has a score of "0", yellow has a score of "1" and lightgreen has a score of "2". Columns C and D have relative weights of "1", as does column E.

Application of control panel "Cmpd" of FIGURE 11D, by selecting "Score and Sort Clusters", produces the worksheets shown in FIGURES 14A-14B. When the user selects the "Score and Sort Clusters" button 1108 for the "Cmpd" control panel of FIGURE 11D, the system first presents a dialog box (1402 shown in FIGURE 14A) asking the user how un-colored cells should be scored for sorting. As noted above, un-colored cells can be scored explicitly by user entries (recommended) or as the average of the colors in the same row. Once the user makes a selection and clicks on the "OK" button, the system scores and sorts the data, producing the display screen shown in FIGURE 14B. The system provides a summary of what was done, including the information about the two new sheets ("DEMO 1 SCORES by Cmpd" and "DEMO 1 SORTED by Cmpd un=ze") which are added to the workbook. FIGURES 14C-14D show the data in the newly created worksheet "DEMO 1 SCORES by Cmpd".

Example

5

10

15

20

With reference to the already-colored worksheet "DEMO 2" shown in FIGURES 10A-10B, the cluster control worksheet shown in FIGURE 11A, and the control panel shown in FIGURE 11C, application of the scoring and sorting of clusters is described. In the control panel of FIGURE 11C, the parameters are stored with the name "acids" (1102). The color red has a score of "0", orange has a score of "1", yellow has a score of "2" and light green has a score of "3".

Column D has a relative weight of "1".

The application of the parameters or rules in the "acids" control panel produces two new worksheets ("DEMO 2 SORTED by acids" and "DEMO 2 SCORES by acids") shown in FIGURES 15A-15B.

4. Score and Sort Dose-Response Data.

5

10

15

20

Data grouping and visualized by color coding has also been found to enable an automated solution to another vexing pattern recognition problem. An HTS lab is currently able to provide dose-response data on some subset of the whole collection of compounds originally tested. Sometimes, logistical constraints (time and/or cost) dictate that only a few concentration points can be run on each compound, and the high-throughput nature of the process generates somewhat noisy data. A similar situation sometimes exists in other biological laboratories where assays are very time-consuming. Dose-response curves with few, noisy points are difficult to analyze by traditional curve-fitting methods. The present invention includes a mechanisms/algorithms for analyzing percent-of-maximal-effect data and accurately ordering the compounds by potency, even when faced with few points and high noise.

The mechanism recognizes two properties of the dose-response data for each compound:

"Dose-responsiveness," the drop-off of activity with dilution, is taken
as a sign that the compound has some reasonable pharmacological
mechanism of action.

The activity measurements at the various concentrations also provide a
confirmation of the general level of each compound's activity that was
indicated by the original single-poke HTS hit.

These two properties are somewhat independent, as illustrated by the example of a compound that is 95% active at all tested concentrations. It demonstrates very poor (i.e., no) dose-responsiveness over the range of concentrations tested, but is so active that it should not be ignored, because it might reveal a dose response if tested at even lower concentrations.

By using the data groupings and color codes of the dose-dependent activity data columns, which help to smooth out excessively fine distinctions in the numbers, this invention includes an algorithm to assign numerical scores for dose-responsiveness and overall activity in the dose-response data. Moreover, the algorithm also calculates a smart composite of these two scores, in such a way that a highly active compound will get a high composite score even if its dose-responsiveness is poor. This composite score is capable of extracting useful information, even from very noisy data, and has been validated to correctly order a list of test compounds. The system of this invention adds data columns that report all three scores for each compound, and these columns can themselves be color coded, and thus used in further comparison to other types of data by compound or cluster scoring and sorting as described above.

Moreover, within certain limits, the invention's dose-response scoring algorithm can also be used to make *quantitative* estimates of IC₅₀ values of compounds, even in the presence of large amounts of experimental error. This is accomplished by adding a set of hypothetical marker compounds with known potencies and theoretically calculated activities at the test concentrations. Since

5

10

15

20

25

the ordering algorithm is reliable, these markers will be ordered into their appropriate place, and can be used to calibrate the ordering scores in terms of actual IC_{50} 's. In other words, estimates of IC_{50} for the compounds can be generated by interpolating between the markers in the ordered list of composite scores.

5

10

15

20

Scoring and sorting dose-response data according to the present invention processes several columns of colored dose-response data (activity vs. concentration) to assign three numerical scores that can later also be color coded, and thus used by the "Score and Sort Clusters" mechanism (described above) to compare compounds or clusters of compounds. The three scores are:

- (a) degree of dose-responsiveness over the concentration range tested;
- (b) overall activity level demonstrated in the dose-response data; and
- (c) a variably weighted composite of (a) and (b), designed to give high scores for high activity even when dose-responsiveness is poor (e.g., a compound that is highly active at all concentrations).

The scoring and sorting dose-response data according to the present invention bases its scoring on colors rather than absolute activity numbers. The mechanism takes user input from a *Cluster Control* worksheet, e.g., as shown in FIGURES 11A-11B. FIGURE 11B shows a control panel from the cluster control worksheet shown in FIGURE 11A, wherein the user has selected columns F to I of worksheet "DEMO 1" for scoring dose-response.

The system detects uncolored data, notifies the user, and asks whether to continue. If yes, the system skips the row containing the uncolored data. The system inserts three new columns on the original spreadsheet to contain the new scores, the new columns immediately following the columns of dose-response data. The column headings show the name of the parameter set used for scoring. Preferably, the system offers to regenerate existing table of Sheet Statistics to correct it for newly added score columns. Further, the system offers to sort the data rows by decreasing score. The system also offers to carry out quantitative estimates of IC₅₀ values for the user's compounds, by adding artificial calculated calibration marker compounds.

In order to score and sort dose-response data:

5

10

15

20

- (1) Ensure that the dose-dependent activity data columns are ordered with highest concentration at the left and lowest concentration at the right. To ensure this, the system will remind the user of this requirement and ask him to confirm it when this tool is run. Note:
 If the data are for an undesired effect such as toxicity, the columns should be ordered the opposite way (lowest concentration left, highest right).
- (2) Use the Data Coloring (described above) to color the dose-response data columns.
- (3) Go to the Cluster Control sheet 314 (FIGURES 11A-11D) and pick a control panel 1100 to use. On this sheet, a single control panel extends vertically through the black, blue, red, and green sections, and provides input information for several tools.

(4) In the top black section, give this new parameter set a name (1102) if not already done. The name will be used to label the outputs.

(5) In the blue section, enter a sheet name (1104).

5

10

15

20

- (6) In the red section (1110), enter the colors used to color the dosedependent data, and relative point scores (1112) to be assigned to these colors.
- (7) In the green section (1118), enter the columns which contain the dose-response data (using the same syntax as for Data Coloring).
- (8) Click the green-text "Score Dose-Response" button (1120).
- (9) If the data are expressed as "percent of maximal effect," the user can follow the prompts to add calibration markers and make quantitative estimates of IC₅₀'s.

Note on the output of score and sort dose-response: the system inserts three score columns after the dose-dependent data. The three scores are all scaled to a 0-100 range, and have meanings as follows:

- (a) degree of dose-responsiveness over the concentration range tested:
 - 100 = smoothly decreasing with dilution, spanning the entire range of color groups;
 - 75 = flat dose-response; and
 - <75 = even more poorly behaved
- (b) overall activity level demonstrated in the dose-response data100 = highest activity color group at all concentrations.

(c) a variably weighted composite of (a) and (b), designed to give high scores for high activity even when dose-responsiveness is poor (e.g. a compound that is highly active at all concentrations).

5

The Dose-Responsiveness Scoring Algorithm

The data columns are ordered left to right, by decreasing concentration.

The scoring algorithm awards positive score points for each dilution step across the data that actually shows a decrease in the activity data *group* (i.e., the color), and to penalize every step that does not. The algorithm uses the following scoring:

- +1 point (awarded) when a dilution step moves to a lower activity group
- 0 points when a dilution step leaves the activity group unchanged
- -3 points (penalty) when a dilution step moves to a higher activity group

15

10

The maximum score would go to a compound that shows all the possible color group steps in the right direction, and has no reversals. The minimum score would go to a compound with all the possible reversals, and no correct steps. The program then scales the extremes to 100 and 0, in order to present a consistent interface to the user.

20

The relative magnitudes of the scoring parameters were empirically arrived at by testing "complete sets" of color patterns. This is possible because of the data simplification afforded by the value grouping. If we define the following numerical parameters:

C = number of colors used, i.e., number of data value groups

 $P \equiv$ number of points measured, i.e., number of different concentrations (doses) tested,

then the entire "universe" of possible color patterns includes (C^P) different cases. For some typical values that might be encountered in real HTS data, this total number of cases is manageable in EXCEL, as shown by TABLE 1, below.

5

10

15

TABLE 1. Total Number of Color Patterns

P ==	C =	total number
# of conc.	# of color groups	of
Points		possible cases
3	3	27
3	4	64
4	3	81
4	4	256
5	3	243
5	4	1024
6	3	729
6	4	4096
7	3	2187
7	4	16384*

^{*} For a spreadsheet with a heading row, this exceeds EXCEL's current limit (for EXCEL 95) by one. This value should not exceed the limit for Excel 97.

Scoring was done on several of these complete sets. In each set, the results were sorted by decreasing score and compared to "intuition" for general correctness of ordering of dose-responsiveness, and scanned for cases deemed to be clearly out of order. The (+1, -3) score set was found to produce satisfying ordering, while lesser penalties led to poorly ordered results. More objective tests of ordering (described below) were then used to further validate the algorithm

The case of P=3 and C=3 is presented below in its entirety for illustration.

TABLE 2 (FIGURE 16F) shows artificial data and processing for twenty seven (27) hypothetical compounds. The "percent inhibition" columns represent assay "data." If one defines three groups by breakpoints at 33% and 66%, each cell is

assigned to a data group as shown in the middle set of three columns. Here it is clear that the order of compounds in this table is systematic (111, 112, etc.), to illustrate that the complete set is present. The third set of three columns shows color coding, with the darkest being least active and the lightest being most active.

Then the data set was processed by the system to yield doseresponsiveness scores, and the results sorted by this score, giving TABLE 3

(FIGURE 16G), the complete set in order of decreasing dose-responsiveness.

TABLE 3 also shows the intermediate step-scoring and unscaled score points, to aid in following and understanding the algorithm. These points are not displayed by the system itself.

The Overall-Activity Scoring Algorithm

5

10

15

20

The second property of interest to be extracted from the data is the overall activity level exhibited by each compound. As explained above, this is largely independent of the dose-responsiveness.

The data value groups' ordinal index numbers are used as single-point activity measures instead of the original data numbers. Extra weight is given to activity shown at lower concentrations by the simple algorithm of weighting each data column by its serial position, again ignoring the actual concentration values. The scores are then scaled to the range 0 to 100. The results of this scoring on the same complete set are shown in Table 4 (Figure 16H) which has been re-sorted by decreasing overall activity.

The Composite Scoring Algorithm

5

10

15

20

Comparison of Tables 3 and 4 (FIGURES 16G & 16H) shows clearly that the compound ordering by dose-responsiveness is quite different from the ordering by overall activity. The user (a chemist) could now color-code the new score columns and use them as independent factors in a larger scoring. However, chemists also want a *single* index of compound quality derived from the dose-dependent data. Moreover, a composite index would further help to alleviate the effects of noise on data interpretation, by incorporating more information into the ordering process. This is an "information-based smoothing" of the data. Therefore, a procedure to calculate a third, "smart composite" score from the other two scores was devised.

The general idea is that when selecting good compounds from doseresponse data, compounds showing overall high activity should not be discarded for lack of responsiveness. Therefore, the smart composite score should give more weight to the overall activity when the overall activity is high, but lower weight when it is low. A generalized weighted average is written as

composite score = (activity weight)(activity score) +

(responsiveness weight)(responsiveness score)

or, defining corresponding symbols:

$$S_C = (W_A)(S_A) + (W_R)(S_R)$$

If the weights are normalized to sum to unity, then this becomes

$$S_C = (W_A)(S_A) + (1 - W_A)(S_R)$$

The activity weight W_A varies with the activity score S_A in such a way as to achieve the desired result.

The functional form of this variation was the subject of empirical testing. It was decided that the limits would be that W_A would approach 0.5 (activity and responsiveness equally weighted) in the limit of low activity, and that W_A would approach 1.0 (responsiveness ignored) in the limit of high activity. The actual variation was encoded as an exponential increase in order to have rather sharp onset of the activity bias at higher activities:

5

10

15

20

25

$$W_A = (C_1) \exp [(k)(S_A)] + C_2$$

The value of the coefficient k=0.06, for which the activity bias starts to become substantial around an activity score of eighty (80), was chosen for implementation in a preferred embodiment of this invention, according to empirical results. FIGURE 16I shows the variation for a few values of k. TABLE 5 (FIGURE 16J) shows all three scores for the example complete set, now sorted by decreasing composite score.

The details of the scoring algorithms were arrived at largely by comparing results to intuitive ordering of the test cases in the complete sets. Because the sets were complete, no really new results can be generated by further test sets.

However, one can generate test activity data sets from compounds of known potencies, whose real rank ordering is thus known, in order to see more objectively how well the scoring algorithms rank the results.

To this end, a set of pseudo-ligands was hypothesized, with dissociation constants from a fictitious receptor ranging from nanomolar to millimolar (pK = 9 to 3). The set included thirty one (31) compounds, with potencies evenly spaced by 0.2 log units (9.0, 8.8, 8.6, ..., 3.4, 3.2, 3.0). A "pseudo-screen" was created which "tested" binding of these ligands at five concentration points in the usual

range: 10⁻⁵ M, 3x10⁻⁶ M, 10⁻⁶ M, 3x10⁻⁷ M, and 10⁻⁷ M. Note that the span of potencies exceeds the span of concentrations tested by two log units on each end, so the test set includes both "very active" and "very inactive" compounds relative to the screening concentrations.

Then artificial binding data were created by calculation as follows.

Assuming a simple binding equilibrium of the ligand to a receptor, the "percent inhibition" at a given ligand concentration is equal to the fraction of receptor sites which are occupied by ligand, given by simple equilibrium equations as

5

10

15

20

25

 $p_{inhib} = 100 \bullet (ligand) / [K + (ligand)]$

For a more realistic simulation, artificial random noise was then added to the calculated numbers. The first experiment reported below used noise randomly distributed over the range of ± 10 inhibition percentage points, and the second with noise up to ± 30 inhibition percentage points. Note that this means ten or thirty percentage points of absolute error, not 10% or 30% of the value.

The artificial data were then color-coded according to the mechanisms of this invention (described above) into four color groups, using the simple breakpoints at 25, 50 and 75 percent inhibition. Note that in assigning these breakpoints, no consideration was given to the actual data values. Then the scoring algorithms of this invention were run, and the compounds sorted by the composite score. Rank order numbers were assigned to the compounds, with 1 being the most potent and 31 the least. In cases of ties in the composite score, equal rank numbers were assigned, with a value equal to the average of the rank numbers spanned by the tied group of compounds (e.g., a tie for 2nd and 3rd

would result in each compound being ranked "2.5"). For each experiment, the final rankings were plotted against the "real" rankings by known potency, to test how well the scoring algorithms ordered the compounds. These plots are shown in Figure 16K (for noise=10) and Figure 16L (for noise=30).

5

For the experiment with noise up to 10 inhibition percentage points, shown in FIGURE 16K, the ranking of the composite scores is "perfect" (in the sense of having no inversions) over the range of tested concentrations (pK = 5 to 7). The pseudo-screen is unable to distinguish the potencies of compounds above or below this range.

10

15

When the noise is much higher (30 percentage points), the ranking of individual compounds is not as precise, but one can identify three cleanly divided "good-medium-bad" groups, as indicated by the dashed boxes on **FIGURE 16L**. Thus, even with this rather extreme noise level, the invention's scoring still successfully prioritizes the compounds into groups. The range where discrimination is effective is still roughly the range of the test concentrations (pK = 5 to 7), but has been reduced somewhat by the higher noise. Note that the ranking within this range (the middle boxed group) is still mostly correct, with only one inversion, even for single compounds.

Quantitative Estimation of Potencies

20

With confidence established that the algorithms provide reliable rankings of compounds by potency, it is possible to proceed to making quantitative estimates. The method uses calibration marker compounds.

To understand this method, it is helpful to realize that the concept is analogous to the quantitative use of SDS polyacrylamide electrophoresis gels to

measure protein molecular weights. The proteins are known to migrate through the gel with speeds directly dependent on molecular weight, but it is difficult to calculate the absolute migration rates for a particular experiment. In doseresponse scoring, the compounds are known to be properly ordered, but it is not clear how to calculate a potency (e.g., K_{diss} or IC_{50}) directly from the score.

5

10

15

20

25

Protein chemists solve the molecular weight problem by running marker proteins, with know molecular weights, in the same gel, then using their band positions as calibration for the unknowns. Analogously, this invention's quantitative estimation method uses hypothetical marker compounds of know potency to internally calibrate the dose-response composite scores for the user's choice of a coloring rule, then interpolates the potencies of the unknowns.

To create markers, the system asks the user to input the concentrations used for each of the dose-dependent activity data columns. The system then picks a set of calibration concentrations, at intervals of 0.5 log units, to span the tested range. For each of these calibration concentrations, a marker compound is created and added to the user's compound list, and artificial data is calculated for each column, from the same simple equilibrium binding equation used above in the validation study (this time with no "noise"):

$$p_{inhib} = 100 \bullet (ligand) / [K + (ligand)]$$

The marker data are then colored by the same rule used for the user's compounds, and the scoring and sorting algorithm is re-run.

The result is that the markers are sorted into the list according to their potencies, and the potencies of the other compounds can be estimated by

interpolating between the markers, using the composite dose-response scores. To illustrate, a typical section of a sorted list is shown below in TABLE 6

(FIGURE 16M), using four colors.

Potencies for compounds that fall between two markers are calculated by linear interpolation between the logarithms of the markers. Given the various uncertainties in the data values themselves and in the evaluation process, it was found that linear interpolation between markers spaced at 0.5 log unit intervals was sufficiently precise, and no more complex curve fitting was necessary.

Validation of Quantitative Estimation

5

10

15

20

Validation of the quantitative estimation method followed a procedure very similar to that used to validate the scoring, and using the same sets of test data with various noise levels. As before, the testing concentrations were from 10⁻⁵ to 10⁻⁷ M (negative log from 5 to 7). Marker compounds (no noise) were added with pK's from 4.5 to 7.5, and K_{diss} estimates for the noisy compounds were carried out by the interpolation method. The results are shown below for the cases of 10 and 30 inhibition percentage points of noise.

FIGURES 16N and 16P show that the estimates are clearly quite good within the range of the testing concentrations (pK 5 to 7), but the quality of estimation deteriorates quickly beyond those limits, and algorithm does not reliably distinguish among compounds whose potencies are more than a half log unit beyond the testing range. Therefore, it was decided that presently preferred embodiments would not report any estimated values that fell outside the range of concentrations used in the testing data columns. Thus, in the example in Table 6 (FIGURE 16M), the lowest testing concentration was 10^{-7} M (= 0.1 μ M). For the

first compound in TABLE 6, the system has estimated a potency with pIC₅₀ > 7, but it conservatively only reports "<0.1 μ M."

TABLE 7 summarizes the statistics of the estimations within the testing limits. TABLE 7 shows that the method successfully estimates the potencies within about a factor of two, even with high noise levels.

5

10

15

20

TABLE 7. STATISTICS OF ESTIMATION VALIDATIONS

percentage points of noise	number of compounds	average of abs(log error)	Average error in IC ₅₀ (factor)
10	13	0.22	x 1.6
30	13	0.39	x 2.5

Comparison to Other Methods of Quantitative Estimation

Further corroboration was obtained by treating some real data from T-cell proliferation blockage assays. It is estimated that these data have *at least* as much noise as the artificial test set with 30 inhibition percentage points added. The standard treatment of this data in the past has been to fit a dose-response curve with a Hill coefficient of 1, using a PC-based program ORIGIN. (ORIGIN is a data analysis program from Microcal Software, Inc. of Northampton,

Massachusetts. ORIGIN is used in this instance for non-linear least-squares fitting of dose-response curves to functional equations.)

The data used here were from testing in the concentration range from 1 to 0.03 μ M (negative log from 6 to 7.5). The plot in FIGURE 16Q shows the correlation of values estimated by this invention with values from ORIGIN fits.

5

10

15

20

25

Two compounds that the present invention estimates to be beyond the testing range, i.e., pIC₅₀ below 6, are included as open diamonds, for illustrative purposes explained below. (As explained above, preferred embodiments of this invention would normally not report these values.)

The results are consistent with the properties observed in the validation study. The present invention estimates are quite good within the testing range (6 to 7.5). At the lower limit, this invention has made two estimations exactly at 10⁻⁶ M (arrows) which do not correlate as well with the ORIGIN fits. Nevertheless, because the whole plot spans only a relatively narrow range of potency, even these discrepancies are not very large. For all twenty eight (28) estimates within the testing range (including these two), the average logarithmic deviation between the two estimation methods is 0.18, corresponding to a factor of only 1.5.

It is further noted that the calibration marker estimation method does not uniformly "flatten out" beyond the testing concentration range. The two open diamonds in **FIGURE 16Q** are estimations that presently preferred embodiments of this invention would not normally report because they have $pIC_{50} < 6$, but they agree well with ORIGIN fits

It is interesting to compare calibration-marker with curve-fitting results for particularly badly behaved data, such as dose-response curves that are not monotonic with respect to concentration. This is sometimes the type of data that emerges from dose-dependent screening in a high-throughput mode. Studies of this type have been initiated by adding artificial noise to the extent of fifty (50) inhibition percentage points.

Finally, it should be pointed out that there is some mechanical advantage to using the present invention relative to current practice of using ORIGIN.

ORIGIN is used by manually filling in a template with data, then manually executing a fit. Depending on the number of points and the degree of customization of parameters, this can take one to ten minutes of the user's time. The present invention, on the other hand, processes a whole spreadsheet at once (i.e., up to 16,383 compounds), and goes at a rate of about 3,000-4,000 compounds per minute on a 200 MHz PC.

Examples

5

10

15

20

FIGURE 16A shows dose response data for twenty (20) compounds at four concentrations. The data have been grouped and the cells colored by the rule shown in FIGURE 16B. The result of the scoring and sorting process is shown in FIGURE 16C, where the compounds are ordered by decreasing values of the composite score (column H). Then, virtual "marker" compounds are added with known potencies spaced by 0.5 log units, and they are shown in FIGURE 16D, colored by the same rule and scored. The name of each marker compound designates the logarithm of its potency, e.g., "marker_7.0" has a potency IC₅₀ = 10^{-7} M. FIGURE 16E shows the result of sorting the list by decreasing composite score after adding the markers. This process then enables estimation of IC₅₀ values for the compounds by interpolating in the column (H) of ordered composite scores, and these estimates appear in two forms in columns I and J.

6. Summarize Spreadsheet Statistics Mechanism

This mechanism creates a table summarizing the entries in each column of a data sheet, to aid the user in deciding how to color each column. The

mechanism counts numeric, text, and data entries, and uses color to flag columns that have mixed types. The mechanism also counts blanks, and specially flags columns with "trailing blanks," i.e., columns which are shorter than the longest one on the spreadsheet. For numeric data, the mechanism calculates minimum, maximum, mean, and standard deviation, even in the presence of interspersed text entries. For text data, the mechanism presents a list of the text strings used and their occurrence counts. The mechanism creates a summary key of the column letters and headings as a text box that can be copied to other sheets for convenient reference.

5

10

15

20

FIGURE 17A shows a sample spreadsheet containing miscellaneous data on twenty four (24) compounds. FIGURE 17B is the statistics sheet calculated from it. Each row of the statistics sheet describes one column of the original data sheet. First, the counts of numeric, text, date, and blank entries are listed, followed by two columns describing the total length of the data sheet. Then the minimum, maximum, mean, and standard deviation of any numeric data are reported. Finally, the statistics sheet lists a summary of the text strings found in each original data column. As examples, in FIGURE 17B, one can see that original column A ("Cmpd") had twenty four (24) different text strings, that the numeric data in original column C ("Test1") had a mean of 2.385, and, flagged by the red coloring, that original data column E ("Test3") had a mixture of ten numeric data and two text strings, both "N.A."

The details of how the program code accomplishes this are straightforward, and one of ordinary skill in the art would know, from this description, including the Figures, how to make and use this invention. The

program loops through all the entries in the column, testing the data type of each, and tallying the counts and numerical statistics.

Spreadsheet Creation and Organization

5

The operations of this invention require a considerable amount of user input, e.g., to create well-structured spreadsheets, to define and apply diverse coloring rules for large numbers of columns, and to use these colors and the user's stated scientific priorities to create meaningfully ordered lists of compounds or clusters.

10

The user interface of this invention has been designed to ease this process and help the scientist focus on the tasks of formulating and recording clear descriptions of the evaluation parameters. Accordingly, this invention provides a number of tools and mechanisms to aid in the creation and organization of spreadsheets. These tools and mechanisms include:

15

- Smart Append Column Mechanism
- Merge Data Mechanism
- Data Import Mechanism
- Workbook Navigation Shortcuts
- Conversion of "uM" to μM and "UU" to μ

20

- Delete Pictures Mechanism
- Change Values in Column Mechanism
- Concatenate Values across Columns Mechanism
- Delete Leading Inequality Signs Mechanism
- Delete Derived Sheets Mechanism

Smart Append Column

5

10

15

20

This mechanism appends new columns of data onto an existing spreadsheet, matching rows by labels (e.g., compound numbers). The mechanism copies all data to a new sheet before doing its work, leaving the original sheets unchanged. There is no need for the user to pre-sort any of the data. The mechanism provides optional case-sensitive or case-insensitive label matching.

New rows are added at the bottom when new labels do not match any old labels. Rows with missing labels are identified and the system offers to fill them by copying previous label. Rows with repeated labels (i.e., replicate data) are also identified and the system offers a choice from among several automated processing rules, or manual fixing. A fast matching algorithm temporarily sorts rows by label, then restores original order when finished. Several intermediate stopping points are offered and extra data viewing options for conservative users worried about errors.

Merge Data Mechanism

The merge data mechanism copies new data values from an appended column into an older column. The mechanism copies all data to a new sheet before doing its work, leaving the original sheets unchanged. The mechanism detects cells where new data would overwrite old data that is different, flags them with color, and alerts the user. Several intermediate stopping points are offered to

the user, as are extra data viewing options are offered for conservative users worried about errors.

Data Import

5

10

15 G

20

One-button (or one-menu-click) import of existing EXCEL spreadsheets into an integrated file, which contains both the data and the related control sheets. The mechanism offers to search for and remove any leading or trailing spaces in the imported data and offers to consolidate replicate data rows into unique ones, using user choices as to how to handle the replicate data. The mechanism also detects hidden rows and offers to unhide them and detects formulas and offers to convert them to values. This mechanism is also used to update to newer version of the system.

Workbook Navigation Shortcuts

The system includes various workbook navigation shortcuts including:

- A special added drop-down menu which includes commands for jumping directly to the various control sheets. These commands also have keyboard shortcuts assigned to them.
- From a cell on a control sheet that contains the name of a data sheet, a
 special item on the right-click shortcut menu jumps directly to that data
 sheet. Other special items on this menu enable a "Twin Screen" display to
 see two sheets at once.

• To aid in choosing columns to enter on control sheets, there is a special "Twin Screen" display triggered by right-clicking any cell on a control sheet that contains the name of a data sheet.

Convert "uM" to µM and "UU" to µ

5

10

15

20

Preferred embodiments of the system of this invention require the data spreadsheet to have *one and only one* row of column headings. The user can type either of the encoded strings "uM" (lowercase u, uppercase M) or "UU" (both uppercase) into any column heading, select the cell or whole row of headings, then pick this command. Each "uM" in the selection will be converted to "μM", and each "UU" will be converted to a "μ". The code recognizes the special exception of the word "VACUUM" as long as it doesn't end with the cases "uM." This conversion allows the user to avoid the confusing use of lowercase "u" or the column-widening use of the full prefix "micro." This utility appears on the system menu.

Delete Pictures

The system provides a mechanism for removing pictures containing chemical structures, in order to reduce file size, processing time, and confusion when they do not align properly after row sorting.

Change Values in Column

This is a mechanism for regularizing data in a spreadsheet column. It facilitates replacement of all occurrences of a given value by another. The mechanism creates backup copies of the original column, and updates any existing data statistics for the edited sheet.

Concatenate Values across Columns

The system provides a mechanism for regularizing data in a spreadsheet column. Some possible uses include: (a) construction of unique row labels: Mnumber plus stroke number \rightarrow "M123456/001"; and (b) reconstitution of numerical inequalities from separate columns: ">" plus a number \rightarrow ">number". The user is provided with an option to include linking (delimiting) text strings between values and an option to include or skip blanks. The system retains the original columns and inserts a new one for the results.

15

20

10

5

Delete Leading Inequality Signs

Another mechanism for regularizing data in a spreadsheet column includes the mechanism to delete leading inequality signs. This mechanism converts entries like ">1000" to just the number "1000". This must be used with considerable caution, because it is the equivalent of creating a false test result. It is generally preferable to color the cells containing text strings with the data coloring mechanism described above, rather than alter them. All later processing is based on the colors, not the cell values. This mechanism also deletes inequality

sign only if it is the first character in the cell. The mechanism creates backup copies of the original columns.

Delete Derived Sheets

5

10

15

20

The system menu includes a command to delete all output sheets from the current workbook, with separate user confirmation for each one. This is intended as a cleanup mechanism for information that may be outdated and is easily regenerated by subsequent system runs.

Initial experience with the coloring tool has revealed that color coding has more subtle, but far-reaching usefulness. The colors themselves also can act as a "currency of exchange," a medium for comparing the quality of one kind of result to the quality of a very different kind of result. For example, an HTS activity of "95% inhibition" may be considered desirable and color coded, e.g., green. In the same list of compounds, a molecular weight between 400 and 600 may be considered optimally desirable, and thus also color-coded green. If the user takes care when assigning colors, "green" takes on a common meaning across the board. This translation of data values into colors then opens up a cornucopia of possibilities for processing the colors (as numerical color indices) and comparing compounds, searching, in our example, for the ones that are the "most green."

Accordingly, the system includes tools to numerically score individual compounds or clusters of compounds by the colors that appear in their various data columns. The system can then create a new spreadsheet sorted by this score

(either by single compounds, or cluster-by-cluster, the choice being the user's), in which the "most green" compounds will then appear at the top.

Examples

5

10

15

20

Application to Portfolio Management

The system can equally well be applied to any set of data where the rows are cases of a similar construct, with the columns being various properties of each case. For example, a data spreadsheet can contain a list of competing projects or investments for a company's portfolio, with the columns containing various managers' ratings of each project or investment. FIGURE 18A shows an example of twenty projects, each of which has been scored 1, 2, or 3 on two factors, one more important than the other, by each of three managers. The sheet has been colored by the rule shown in FIGURE 18B. Then the data were scored and sorted by the sorting rule of FIGURE 18C, and the result is shown in FIGURE 18D.

Clearly, the projects that were given a "3" in the important factor come to the top, and it can be seen that the less important factor does indeed matter less to the final ordering. The colors also help to flag anomalies, such as a low score by one manager on an otherwise high-ranking project.

In general, the data can be various sorts of data. Some examples are listed below and illustrated in the referenced Figures.

FIGURE 19 shows a list of drug candidate compounds, scored and sorted by a composite of ten parameters that describe their physical, chemical, and biological properties. Green shades indicated desirable values; red shades are

undesirable. The display is compressed vertically with the vertical re-scaling tool to clearly display the difference in coloring patterns between the top eighty (80) compounds and the bottom eighty (80) compounds (separated in the illustration by a blank band).

FIGURE 20 shows a list of proteins that are candidates for targets for drugs, chosen from a pool of candidate genes, scored and sorted by a composite of eleven parameters that describe their suitability.

FIGURE 21 shows a list of research projects competing for resources. Each project has been scored according to several evaluation factors, and the whole array has been sorted by color groups. The same construct is useful for evaluating employee performance or job candidates.

FIGURE 22 shows a list of pharmaceutical companies and their current status with regard to discovering or marketing products in each of various disease areas. Each company's line of products has been scored according to the maturity of the offerings, and the whole array has been sorted by color groups.

FIGURE 23 shows the use of data-grouping (coloring) rules to visualize the time courses of drug concentrations in blood. In this example, light colors were chosen to represent high concentrations of drug in the blood, while dark colors were chosen to represent low concentrations. The figure shows a wide range of differing time courses.

FIGURE 24 shows the use of data-grouping (coloring) rules to visualize the matrix of pairwise cross-correlations of the results of eight (80) drug screens. In this example, light colors were chosen to represent low correlations, while dark colors represent high correlations.

5

10

15

20

Quantitation of the Similarity of Data Grouping in Two Variables

As part of the present invention, a mechanism is provided for assigning a quantitative measure to the degree of similarity of grouping (visualized by color coding) of data in each of two columns of an EXCEL spreadsheet. The mechanism allows for a correlation-like analysis on a wide variety of data types, including text, or mixed numbers and text.

5

10

15

20

In the data-exploration paradigm of the present invention, one of the first steps a user takes is to divide the range of data values in each column into a small number of groups for further analysis, thus effecting a reduction of precision which has been found to be useful in various ways.

It is sometimes useful to explore whether the rows of the data matrix have been divided into similar groupings in each of two different columns. For example, a researcher might ask, "Do the high molecular weight compounds tend to be the ones whose solubilities fall below the limits of measurement?" In other words, this would mean to compare the groupings in the molecular weight column with the groupings in the solubility column.

If the data were strictly quantitative, this would be called *correlation* of variables, and there exist a number of perfectly good statistical measures of the phenomenon. However, one of the unique capabilities of the present invention lies in dealing with textual data and mixtures of numbers and text, and it would be helpful if one could translate the visible color patterns of the present invention to some kind of quantitative measure of correlation. In order to avoid confusion with standard statistical correlation, the distinct term "color grouping similarity" is used to describe the new measure.

5

10

15

20

In preferred embodiments of this invention, the data grouping is stored in the form of the colored backgrounds of data cells. At first glance, one might simply seek to compare the colors of the first column with those of the second, and count the number of rows with matching colors. However, a color grouping similarity tool must be able to cope with the possibility that the colors are different. This could happen because the user chooses completely different color schemes for the two columns, or because the correlation is negative. As an example of negative correlation, suppose column A contains random numbers between 0 and 1, colored such that those above 0.5 are green and those below 0.5 are red. Then imagine a column B where each value is equal to one minus the corresponding value in column A, i.e., the "one's complement." If the user colors the second column with exactly the same coloring rule as the first, every row will have a different color in column B than in column A. None of the colors will match, though the groupings are perfectly correlated. To be successful, the tool must deliver a high measure of correlation between such pairs of columns. The algorithm described below was designed to perform in this way.

Algorithm for Measuring Data Grouping Similarity

The algorithm was derived from semi-quantitative reasoning, as follows. It is based on the qualitative question, "For all rows that have one particular color in the first column, to what degree do they have a *uniform* color in the second column (not necessarily the *same* color as in the first column)?" The quantified answer to this question is then averaged over the set of colors used.

The details of the mechanism can be seen by example. First, to compare the grouping in two columns A and B, a matrix of "ordered color pair counts" (OCPC) is defined such that each matrix element $OCPC_{ij}$ is the count of spreadsheet rows where one finds color i in spreadsheet column A and color j in spreadsheet column B. Then, the rows of the two spreadsheet columns are scanned to count the number of occurrences of each ordered color pair and thus to determine the values of the matrix elements.

5

10

15

20

In the discussion below, carefully distinguish the rows and columns of the user's *spreadsheet* of data from the rows and columns of the derived OCPC matrix.

If the two spreadsheet columns had exactly the same coloring, the nonzero elements of the OCPC matrix would all be on the diagonal. As a simplified example, consider four colors (green, yellow, orange, red) and a total of 16 data rows. The diagonal matrix might be (zero elements left blank for emphasis)

color in column A color in colum	n B → green	yellow	orange	red
green	4			
yellow		2		
orange			7	
red				3

In the case above, there are groups of 4 spreadsheet rows colored green (in both columns), 2 rows colored yellow, 7 rows colored orange, and 3 rows colored red.

In contrast, if the groupings were the same, but the coloring rule for the second spreadsheet column used the same colors in a different order, the OCPC matrix might look like the following, no longer diagonal:

color in column A	color in column $B \rightarrow$	green	yellow	orange	red
green				4	
yellow		2			
orange					7
red			3		

A simple extension applies if *entirely different colors* (cyan, blue, maroon, purple) are used in the second spreadsheet column. The OCPC matrix might then be:

5

10

15

color in column A	color in column B →	cyan	blue	maroon	purple
green				4	
yellow		2			
orange					7
red			3		

In *any* of the three cases above, the groupings are identical, and the OCPC matrices have the property that each matrix row and matrix column has only one nonzero element. That lone element is necessarily equal to the sum of the row or column. This situation should receive the *highest* similarity score.

One way to define the contrasting situation that would deserves the *lowest* similarity score would be that for each user-defined group of spreadsheet rows in one spreadsheet column, the other spreadsheet column has a "maximally non-unique" set of colors. In the corresponding OCPC matrix, this corresponds to each matrix row or column having a broad distribution of values rather than a single non-zero, a uniform distribution has been chosen as the definition of this state:

color in column A	color in columr B →	cyan	blue	maroon	purple
green		1	1	1	1
yellow		1	1	1	1
orange		1	1	1	1
red		1	1	1	1

This low-similarity state can be more precisely defined by saying that each element in a given matrix row or column is the average of all the counts in that matrix row or column.

With these concepts defined and the OCPC matrix filled, the scores can then be derived. Each OCPC matrix row (corresponding to a color group in the first spreadsheet column) is selected in turn for scoring. Each element in the matrix row is given a score between zero and one, according to its linear interpolation between: on the one extreme, the average of the nonzero elements in the row, and on the other, the sum of the row or column (i.e., the maximum value it could have if all the others were zero). The scores are then averaged over all the rows of the OCPC matrix to generate a row-wise score component.

Next, the corresponding process is applied to the *columns* of the OCPC matrix (each corresponding to a color group in the second spreadsheet column rather than the first). The resulting column-wise score component is averaged with the row-wise score component, then the average is scaled to a maximum of 100 to generate the final similarity score for the two spreadsheet columns.

Interpretation of the Similarity Scores

5

10

15

20

Although the scores are quantitative and well-defined, their interpretation is best done in a partly subjective manner, based on experience. The behavior of

the scores is best understood by example. In FIGURE 25, the leftmost ("base") column has been compared to each of the others, and the scores are shown as well as pictures of the grouping patterns. Comparison of the base with the next column shows that the tool delivers a maximal score of 100 for identical grouping, even when the colors are completely different. Then, stepping across the figure toward the right, it can be seen how the score decreases as the grouping pattern gradually becomes less similar to that of the base column. All the way down to a similarity score of 40, it is still basically true that the light colors are on top and the dark on the bottom, with increasing "noise," but when the score falls to 20, the pattern appears to have no correspondence to that of the base.

Implementation of the Data Grouping Similarity Tool

In practice, the tool allows the user to choose two sets of spreadsheet data columns. The program then automatically generates all pairs containing a column from the first set with a column from the second set, then writes the similarity scores onto a newly inserted spreadsheet in the user's workbook. The output takes the form of a table where the degree of similarity is itself color-coded to aid the user in identifying significant cases. An example appears FIGURE 26.

20

15

. 5

10

While the invention has been described with reference to particular mechanisms (algorithms, processes and functions) and architectures, one skilled in

the art would realize that other mechanisms and/or architectures could be used while still achieving the invention.

While embodiments of the present invention have been described with particular setup and initialization procedures, other setup and/or initialization procedures can be used.

5

10

15

Further, while many of the operations have been shown as being performed in a particular order, one skilled in the art would realize that other orders, including some parallelization of operations, are possible and are considered to be within the scope of the invention.

While the present invention has been described with reference to analysis and pattern recognition in data sets relating to chemical compounds, the methods, systems and devices of this invention are considered to be general constructs covering other, non-chemical data sets.

Thus, are provided methods, systems and devices for analysis and pattern recognition in large, multidimensional data sets using low-resolution data grouping. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.

What is claimed is:

A method of operating on data, the method comprising:
 providing at least one user-defined grouping rule for grouping the data into
 a user-definable number of groups; and
 applying at least one of the grouping rules to the data.

- 2. A method as in claim 1 wherein the data are provided in a table and wherein the at least one grouping rule applies to at least one user-selectable column of the table.
- 3. A method as in claim 1 wherein the at least one grouping rule defines breakpoints corresponding to the user-definable number of groups, and wherein application of the at least one rule to the data divides the data into groups based on the breakpoints.
- 4. A method as in claim 1 further comprising:
 presenting the grouped data in a manner that visually distinguishes the groups.

20

10

15

5. A method as in claim 4 wherein the grouping rules associate colors with groups and wherein the presenting of the grouped data further comprises: coloring an aspect of the data according to the rules.

6. A method as in claim 4, wherein the data are in labeled columns in a spreadsheet, and wherein the at least one grouping rule specifies at least one breakpoint and a corresponding color for each at least one breakpoint, and wherein the presenting of the grouped data comprises:

coloring each data item in the at least one labeled column of the data based on the at least one breakpoint and the corresponding color of the at least one breakpoint.

7. A method as in any one of claims 3 and 6, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.

5

15

- 8. A method as in claim 3 wherein the at least one breakpoint is determined automatically based on the data.
- 9. A method as in claim 5 wherein the data are provided in a table, wherein the coloring of an aspect of the data comprises:

 coloring backgrounds of table cells according to the rules.
- 10. A method as in claim 1 wherein the number of groups is fewer than
 20 a number of possible data values.
 - 11. A method of operating on data, the method comprising:

 providing at least one user-defined grouping rule for grouping the data into
 a user-definable number of groups;

applying at least one of the grouping rules to the data to generate grouped data;

providing at least one user-defined scoring rule for scoring the grouped data according to user-defined scores; and

applying at least one of the scoring rules to the grouped data to score the grouped data.

5

10

15

20

25

- 12. A method of operating on data, the method comprising:

 generating grouped data by applying to the data at least one user-defined
 grouping rule for grouping the data into a user-definable number of groups; and
 scoring the grouped data by applying to the grouped data at least one userdefined scoring rule for scoring the grouped data according to user-defined scores.
- 13. A method according to claim 11 or 12 wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the scoring of the grouped data comprises:

applying the function to the data to obtain a score for each case.

- 14. A method according to claim 13, further comprising:
 sorting the scored cases by score.
- 15. A method according to claim 14, wherein the scored cases are sorted individually.

16. A method according to claim 14, wherein the scored cases are sorted by cluster.

5

17. A system for operating on data, the system comprising:

a mechanism constructed and adapted to provide at least one user-defined grouping rule for grouping the data into a user-definable number of groups; and a mechanism constructed and adapted to apply at least one of the grouping rules to the data.

10

18. A system as in claim 17 wherein the data are provided in a table and wherein the at least one grouping rule applies to at least one user-selectable column of the table.

15

19. A system as in claim 17, wherein the at least one grouping rule defines breakpoints corresponding to the user-definable number of groups, and wherein application of the at least one rule to the data divides the data into groups based on the breakpoints.

20

20.

a mechanism constructed and adapted to present the grouped data in a manner that visually distinguishes the groups.

A system as in claim 17, further comprising:

²WO 01/08039 PCT/US00/20401

21. A system as in claim 20, wherein the grouping rules associate colors with groups and wherein the mechanism constructed and adapted to present the grouped data further comprises:

a mechanism constructed and adapted to color an aspect of the data according to the rules.

5

10

15

22. A system as in claim 20, wherein the data are in labeled columns in a spreadsheet, and wherein the at least one grouping rule specifies at least one breakpoint and a corresponding color for each at least one breakpoint, and wherein the mechanism constructed and adapted to present the grouped data comprises:

a mechanism constructed and adapted to color each data item in the at least one labeled column of the data based on the at least one breakpoint and the corresponding color of the at least one breakpoint.

- 23. A system as in any one of claims 19 and 22, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.
- 24. A system as in claim 19 further comprising:
 a mechanism constructed and adapted to determine at least one breakpoint
 automatically, based on the data.
 - 25. A system as in claim 21 wherein the data are provided in a table, wherein the mechanism constructed and adapted to color an aspect of the data comprises:

a mechanism constructed and adapted to color backgrounds of table cells according to the rules.

26. A system as in claim 17 wherein the number of groups is fewer than a number of possible data values.

5

10

15

20

27. A system of operating on data, the system comprising:a mechanism constructed and adapted to provide at least one user-defined

grouping rule for grouping the data into a user-definable number of groups;

a mechanism constructed and adapted to apply at least one of the grouping rules to the data to generate grouped data;

a mechanism constructed and adapted to provide at least one user-defined scoring rule for scoring the grouped data according to user-defined scores; and

a mechanism constructed and adapted to apply at least one of the scoring rules to the grouped data to score the grouped data.

28. A system of operating on data, the system comprising:

a mechanism constructed and adapted to generate grouped data by applying to the data at least one user-defined grouping rule for grouping the data into a user-definable number of groups; and

a mechanism constructed and adapted to score the grouped data by
applying to the grouped data at least one user-defined scoring rule for scoring the
grouped data according to user-defined scores.

29. A system according to claim 27 or 28 wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the mechanism constructed and adapted to score of the grouped data comprises:

a mechanism constructed and adapted to apply the function to the data to obtain a score for each case.

5

10

15

20

- 30. A system according to claim 29, further comprising:a mechanism constructed and adapted to sort the scored cases by score.
- 31. A system according to claim 30, wherein the scored cases are sorted individually.
- 32. A system according to claim 30, wherein the scored cases are sorted by cluster.
- 33. A computer-readable memory medium encoded with program data representing a computer program that can cause a computer to implement a method of operating on data, the method comprising:

providing at least one user-defined grouping rule for grouping the data into a user-definable number of groups; and

applying at least one of the grouping rules to the data.

34. A medium as in claim 33 wherein the data are provided in a table and wherein the at least one grouping rule applies to at least one user-selectable column of the table.

35. A medium as in claim 33 wherein the at least one grouping rule defines breakpoints corresponding to the user-definable number of groups, and wherein application of the at least one rule to the data divides the data into groups based on the breakpoints.

5

10

20

25

- 36. A medium as in claim 33, wherein the method further comprises: presenting the grouped data in a manner that visually distinguishes the groups.
- 37. A medium as in claim 36 wherein the grouping rules associate colors with groups and wherein the presenting of the grouped data further comprises:

coloring an aspect of the data according to the rules.

38. A medium as in claim 36, wherein the data are in labeled columns in a spreadsheet, and wherein the at least one grouping rule specifies at least one breakpoint and a corresponding color for each at least one breakpoint, and wherein the presenting of the grouped data comprises:

coloring each data item in the at least one labeled column of the data based on the at least one breakpoint and the corresponding color of the at least one breakpoint.

39. A medium as in any one of claims 35 and 38, wherein the breakpoints are selected from: (a) numeric values; and (b) textual values.

40. A medium as in claim 35 wherein the at least one breakpoint is determined automatically based on the data.

5

10

15

20

25

- 41. A medium as in claim 37 wherein the data are provided in a table, wherein the coloring of an aspect of the data comprises:

 coloring backgrounds of table cells according to the rules.
- 42. A medium as in claim 33 wherein the number of groups is fewer than a number of possible data values.
- 43. A computer-readable memory medium encoded with program data representing a computer program that can cause a computer to implement a method of operating on data, the method comprising:

providing at least one user-defined grouping rule for grouping the data into a user-definable number of groups;

applying at least one of the grouping rules to the data to generate grouped data;

providing at least one user-defined scoring rule for scoring the grouped data according to user-defined scores; and

applying at least one of the scoring rules to the grouped data to score the grouped data.

44. A computer-readable memory medium encoded with program data representing a computer program that can cause a computer to implement a method of operating on data, the method comprising:

generating grouped data by applying to the data at least one user-defined grouping rule for grouping the data into a user-definable number of groups; and scoring the grouped data by applying to the grouped data at least one user-defined scoring rule for scoring the grouped data according to user-defined scores.

45. A medium according to claim 43 or 44, wherein the data comprises a number of parameters for each of a number of cases and the scoring rule comprises a scoring function of user-selectable parameters and user-defined weights for the selected parameters to be used in scoring the cases, wherein the scoring of the grouped data comprises:

applying the function to the data to obtain a score for each case.

- 46. A medium according to claim 44, the method further comprising: sorting the scored cases by score.
- 47. A medium according to claim 46, wherein the scored cases are sorted individually.
 - 48. A medium according to claim 46, wherein the scored cases are sorted by cluster.

20

5

10

15

CATION PUBLISHED UNDER THE PATER

OPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 February 2001 (01.02.2001)

PCT

(10) International Publication Number WO 01/08039 A2

(51) International Patent Classification⁷: G06F 17/00

(21) International Application Number: PCT/US00/20401

(22) International Filing Date: 27 July 2000 (27.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/361,122 27 July 1999 (27.07.1999) US

(71) Applicant (for all designated States except US): ZENECA LIMITED [GB/GB]; 15 Stanhope Gate, London W1Y 6LN (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): LERMAN, Charles, L. [US/US]; 501 Bishop Hollow Road, Newton Square, PA 19073-3138 (US).

(74) Agents: BIRD, Donald, J. et al.; Pillsbury Madison & Sutro, LLP, 1100 New York Avenue, N.W., Washington, DC 20005 (US). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: ANALYSIS AND PATTERN RECOGNITION IN LARGE, MULTIDIMENSIONAL DATA SETS USING LOW-RES-OLUTION DATA GROUPING

(57) Abstract: Methods, systems and devices for operating on data provide at least one user-defined grouping rule for grouping the data into a user-definable number of groups; and apply at least one of the grouping rules to the data. The data may be in a table, wherein the at least one grouping rule applies to at least one user-selectable column of the table. The grouping rule defines breakpoints corresponding to the user-definable number of groups, and application of the at least one rule to the data divides the data into groups based on the breakpoints. The grouped data is presented in a manner that visually distinguishes the groups, sometimes by coloring an aspect of the data according to the rules.

Fig.

3/64

300

Composition Composition	Cmpd Cmpd Cmpd Cmpd Cmpd Cmpd Cmpd Cmpd
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Series Test1 Series 1-6mo PA Series 1-6mo PA N N N N N N N N N N N N N N N N N N N

4/64

300

14. FO 33 ET	1	iki d			ź	:		*** 					\$\frac{1}{2}		: :					:				7.1	(-44	: 34						بوتان		76.			2		
A GEORGE (P. P.D.)						:				:	-	-	:		:		!	!								:			:		!						Contract.	1. Sec. 1.	
PERSONAL BONNEY				_	 	; : :	-		-	:	-	<u> </u>	<u>.</u>	-	<u>. </u>	-	-	:	<u>. </u>			·	i ·	-:	· ·								-	•	.	<u>. </u>	THE PERSON NAMED IN	NW	
Kar and				-		: :	-	-	-	•	-	<u> </u> -	:	-	! !			: 			!			· ·				_	· -		<u> </u>		! !	 :		- -			
建设的						<u>. </u>	!		+	:	 	-		-	:			i	:					· · :		 : :		-		-		 -				<u></u>	JOHN TO	7.50	1
WASAN I BRANKIN	HTS SPA	Wose-Kesp % Inhib @	1x10.7M	21	c	=	8	6	-	2 -	13	87	12	82	82	21	08	22	===	£	22	=	27	ន	82	37	23	64	:	:		:				:	1 (1 c)		
KANCH-MANA	HTS SPA	Wose-Kesp	3x10-7M	29	81	42	89	2	8	2	82	92	<u>.</u>	\$	ŏ	91	97	8	=	112	=	23	S :	76	09	22	2	22	1			:				-	CT TO 18 (4 20 C CCT UT) (8 (4 20 S CA UCT D) (9/4)	1000	
HARATE OF ALBERT		% inhib @	1x10-6M	62	82	83	8	5	2	2	9	18	183	8		21	3	20	Ç	Ξ	2:	24	<u>5</u> :	æ	75	8	2:	69		:		:					and sorted		
WINDS PARTY		2 &	3×10-6M	£6	3	93	89	06	47	2	99	102		28	Ξ	52	8	8	7	112	8:	83	2 :	6	5	8	<u>ē</u> .	92	:					:			PROCESS.	A STATE OF THE STA	
_		Test3		ន						:		· :	:				-			:	:	9 1	9.		:	 : :	:	-	:	:		:				:	TOTAL ST		
A STATE OF STANDING PARTY.		Test2		7.7	i	0.23		0.024	170		0.35	6.0	0.13	1.0					0.043			0.117	8. 8.			1	: : : : :					*****					CHOOSIG (STEER FIRE FOR ENC)	The will be	3
13 Sec. 62		Test1		221	8		123	0.003	990	0.368	9100	0.38	5	9200	9:0	T.	920	027	0.035	0.051	6200	033	0.035	23	21:	80	0.018	022	-	:							SENDEN!	Resolution	9
П		Series		7	7	7	z	_	u.	10	0	L	I	0	u		L	u.	Σ	u_i	O:	I!	∢;	<u>:</u>	3	o i	∢ :	S			-	-			Ti	1	MO 1		
7.4 VATE 81. 8.1.		Cmpd		Cmpd34	Cmpd35	Cmpd36	Cmpd37	Cmpd38	Cmpd39	Capdio	Cmpd41	Cmp442	Cmp443	Cmp444	Cmp445	Cmp446	Cmpd47	Cmpde	Cmpd49	Cmpd20	Cmpd51	Cmpd52	Cmpd53	Capa	Cmpd35	Cmpd56	Страбу	Cmpd58	:		-	:		 	П	+	E E		1

Fin 46

ഹ		Carried Sections of the Section of t		Wellow	Grange	peu		no	
break 3	break 4		color 1	color 2	color 3	color 4		Re-scale all	

	144		146		148	<u>?</u>	150							,		Fig. 6A	
	andurate in the sec	DEMO3		Bartist M. C. Land											-	اغ	
		sheet	column(s)	# of colors	break 1	break 2	break 3	break 4	break 5	color 1	color 2	color 3	color 4	color 5	color 6	Re-scale all?	
52																	

7A	
•	
.₫	1
L	

	5			-	; 	<u>:</u>	:	1	; :	<u>:</u>	:		-		<u>.</u>	;	; 	:	· ·		<u>!</u>					-			 .		: <u>-</u> -			: - -	<u> </u>	·_
3	-		••••		; _ <u>!</u> _		:	:		<u>.</u>	:						!	: : :	!	:	 	· :	•											· ; .		
2				1	:	<i>:</i>		-‡-	<u>:</u>	-	!		<u>.</u>			-	; 	-	:	: <u>:</u>	· 	:	<u>:</u>	:										:	_	
1	1			1	-		: -	; ;	; -	: -	!					!	:	: 	:	:	:	:	:	;							· 	<u>:</u>	:	!		<u> </u>
~	-			1	· · <u>·</u>		.	· 	<u>.</u>		· 				•	:	<u>;</u>	· 	· 	:	:		: : :	:										; 		<u>. </u>
-		·- <u>-</u> -		1	:			<u> </u>				•••	•••••		••••••	!	;	:	· :		·		:			******			•				:	:		:
	HTS SPA	Dose-Resp	% Inhib @		; ; ; ;	. ⊈	: 2:	3 6	3∹~	; >: \$. .	£	;· «:	37	: 2	!, ጵ	. 9 2	₹.	ີ ຮ	2	. 2		2	12	33	22. 8	3 8	3: K	: 3: = :	: :: \$: cc	33	-	7
E	HTS SPA	Dose-Resp	% Inhib @		2	# % # %		:: :: ::	5: S	2	. 82	: 2	. 2	. 22	. 22	2			: 89	: 😝	: 23	ន	8		8	بر چ	2 :	e: :	F. S	21 S	s, 2	 : !; on	21	2	2	8
-	HTS SPA		% Inhib @		; ;	; ; ;	20	9	3: =	: : ! !	. 58	: =	. 24	22	22	528	ន	9	. 28	***	25	≂.	601	2	72		6	<u>.</u>		 2: 8	3 23	<u>:</u> ;; ₽	•	8	83	85
	HTS SPA		% Inhib @ 3x10-6M		=	8	92	88	71	9	જ	8	2	S	4	8	8	8	1 0	8	2:	2	101	≈:	ま	& :	≘:	٤; ۶	6	:: 8	: 28	 :=	40	æ	112	<u>5</u> :
4		Test3		8	5.5	=	8	9.5	3.7	7.8	5.6	. :		:		R	!	-	8	8	,	:	:	:	:			- ! !	:		<u>:</u>	:	5.2		-	유:
		Test2		83	42	**************************************		Maria Burna	6.5		10.5				0.24	0.194 194	0.41	0.148	78.0	0.223			0.317	221	0.15		0.27		:	0.13		45	THE STREET	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		ŧ.
,		Test1			! ·				988	愛に変		0.119	0233			200	92.0	0.369	:		5.27	0.134	:			- :		0.665	0.11		<u>:</u>	10 A		7.1	_	Maria .
		Series		z		0	. :	• .	۵		۰	۵				•	I,	<u>.</u>	— <u>·</u>	Υ.	<u> </u>	_;	<u>.</u>	X !!	oo i	ם מ	ם ים	: : co	: 60	: : Ш	7	-		~	z	7
		Cmpd	-	Cmpd01	Cmp d02	Cmpd03	100	Cmpd05	Стребов	Cmpd07	Cmpd08	Cmpd03	8	Cmpdil	Cmpd12	£13	ŧ	Cmpd15	9: P:	Cmpd17	Cmpd18	Cmpdia	Cmpd20	Cmpd21	Cmpd22	Cmpdz3	Capazt	Cmed28	Cmpd27	Cmpd28	Cmpd29	Cmpd30	Cmpd31	Cmpd32	Cmpd33	Cmpd34

io 7B

4						.; !	· *:	·('	;. !	:				· !		•	34		:			772	8				26.50	PER .	25.2			****	M.			٠.٠	ᄍ	24
				!	- -	i	 ;	-							:			:	:														,		;	:		
E					; ;				:					·	:	:		i ·				· 	:	•	'	:					-	-	; ; : -		: -	:		
1		•				-	!	: :		;	<u> </u>			:	1	:	:	: 	!	:	_	:			:	:				:	<u>.</u>	<u>.</u>	: :	<u>:</u>	<u>:</u>	!		
¥						-	:		:	•		:		: :	-	•	:	:	1	:	· 	:			; 	: -:		_;	•	 	;		: ; :	-—	: -	: :		
				-						:	: i			!	<u> </u>	: 		:	! 	; ;		:	•••••			; ;	_	· 					: :	-	!	· 	:	
	HTS SPA Dose-Resp	% Inhib @ 1x10-7M	33	±	2	6	=	8	~	₽,	=	C	. 6	:	2 8	e :	:	7	8	ĸ	€:	æ:	≈:	≠.	23	ន	% :	⇔ :	₹	\$:			:	:		: 	·
H	HTS SPA Dose-Resp		15	ĸ	29	\$	42	8	51	82	.	28		: 2	2	₽.	<u>.</u>	9 ;	26	8 :	ਲ [:]	211	Į:	8:	2	. و	9	8	45	28				: :	: : : : : : : : : : : : : : : : : : : :	:	:	
	HTS SPA		8	29	29	8	ន	8	8	2		9	. 6	: 5	8	2 2	을:	21	104	102	£	Ξ	2	*	105	82	8	8	2	69	: .	:				:		
	HTS SPA	% Inhib @ 3x10-6M	29	112	56	*	8	: : : : : :	8	. 28	32	98		2 .	3	2 2;	Ξ	1 23	2	001	.	112	8 2	69	8	91	19	. &	5	. 25 :			:	: :			:	
		Test3			8			!	!	i i	:		:	:		:				!			i 1	6.	. 9.	! : :	: : : :									_	:	
Salaran O Salar		Test2			77.		023	İ		0.41	TATAL SECTION	•	8 6	R S	0.13	Ti,	•							0.117	0.18		:			! ·	-	! ! ! !					:	
a		Test1	1. P. S. O. S.	mean.	17. STATE	2	}	13.3	11.11	0 F.E.		Same.	8	0,00	10.4.45 X	3344	9:0		11 [7:1	027	Spill do		=	033	13.0	0.0	61.6	8	111	020		. :	-					
•		Series	-		!	:		- - - -	_	!, L	-: C)(()	;			O :	L	Σ	1 14		.; ≥	٠.	.: C	: I	· •	i 4	, :i C); C	. ◄	: :	· • •	: .					:	!
T.		Cmpd		Cmad33	Cmadat	Canadas				0000	2000		- Date	Cmpd42	Cmp443	Cmp444	Cmpd45	Cmod46	Cmp47	Candda	P 44.9	Capaci		290	Cmpd53	A Section	388		S S S S S S S S S S S S S S S S S S S	A K		: ·	; :		: :	: :		:

Fig. 8A

15/64

Fig. 8B

Test2 Test3 % Inhib @ 3x10-6M

Fig. 9A

Fig. 9E

Fig. 10A

		C C	:				:		:																						4							•		•	-
	<i>[</i> 2]		-					-	<u>.</u>		_																														_
			: :	:			:	:					•			:				•		:																			•
	٥		:	:			i		:	:		:					•	•																							
	7		!!!	<u>.</u>		_:	:	<u>:</u>	<u>:</u>	<u>.</u>		. 1	_:_		•		_!_	'	<u>.</u>		<u>;</u>	<u> </u>	:		<u> </u>	<u> </u>															
	4			:			!	:	:	:							:	:		!	!	:				. :							٠				-				
Ç	인				i	•	:	i	:	:		٠	:		:	i		:	:	:	:	•	:		:	•	: :	:			•										
3	ž					1	!	:	3	-	:		٠		٠		:				<u>:</u>	: 		!			<u>:</u> :	٠		·	•		; 								
ŗ.;;			:	:	:	•	٠	i		•			:	٠	٠	·	•		:		•	•			·	: '		•					į			. :	:				
	2			:	i	•	:	;	i	:	:					•	;				:			:	:	:	. :	:		i		:	:				:				
4			:	:			:	:		•						·					:	•		:		: .	٠,						•								
			;	:	•	,	!		:		٠.											;	;				:	:	•	:					•		:				_
	Σ		}		•	•	:	:			:							٠			•	:			•		٠,														:
	16		:	:	:	•	٠	:	•	٠	٠		:		•	:		:			•	:				:		:	:								:		•		:
15 33 4			<u></u> -	-	_	_	÷									 -				÷	•	÷	•										_								
*	انـا						:				٠	•																											_		-
	-:		:	•			:			•												٠														•	:		_		
	23.1		!		_						_				_							•-								_	 -										
				. ;			i																		•	;					٠										:
<u>.</u>	×		:	:	:		•			•						:														٠						•	: '	•	•		
·			:_			<u>:</u> -	4		<u>.</u>		<u>:</u>	:	÷			÷			:-	÷	<u> </u>	:	<u>.</u>		-		:		_	<u>.</u>	:						<u>.</u>		<u>:</u> _ :		
	Ŷ		•	1		:	;		:	i	;	,	:			:		i	:	:	٠	٠	•	;					•	•		;				:	į	•	: :		-
	7				:	:	į	į	:	÷	:	:	:	:		!		i	:			:	٠			•		:	Ì	:	:	i	:	•	•	:	:	:	. !		
عدي	ä. 2		-		_;	_:		į	<u>:</u>	<u>.</u>	i	:	<u>:</u>	<u>:</u> :			·	i		<u> </u>	:_	:_	<u>. </u>	·	·					:	<u>.</u>		<u>.</u>	· 	<u>:</u>	<u>:</u> _	<u>. </u>		<u>:</u>		_
Š., S.			1		:	!	í		1	:	:	i	:	i	:	:	i		;		:	:					. :	:		į	;	•	:			i	İ	ı	:		
	7		į		:	:	1	!	į	:	:	•	:	:	•	į	i	Ì	:	:	;			:		:	:		:	•	į	!	i		•			•	•	•	
	1.5		į		į	į	į		1	Ĺ	į	j	i	:		1	į	i	÷	1	:	i	:		:				•	;	:			:	:	i	<u> </u>	i	:	<u>:</u>	
Ç.						i	Ţ	1	•	;	Ţ	•	:		:	;	:	•	•	:		:	:	:	:			•	•		:	:				:		:		:	1
	Ĭ		i	! ;	:	!	į	- !	:	i	:	;			٠	:	;	:		:				•	•		-	•		. !	•	:	:	•	:	:	:	:	:	!	
6	÷		•	i :	1	1	Ì	i	:	:	:	:	;	:			:	:	•		•	٠		:			:		;	:		•	:			!		;	:		
구	7		i	: :		÷	<u>.</u>	<u> </u>		÷			<u> </u>		_		÷	Ť	÷								:			;			·			:	1	-		:	
<u> </u>	G		į		į	:	İ	1			:		•			:			٠										:		:		٠		:	:	į	:			
Ì	, D(į			•			,	•		i		:			:				•	:								;	:	:	i		,	:	1	į		:	
Ę	*	-	÷	1 :	<u>;</u>	- :	-	÷	-		- -		÷				_	_		-:-				÷			;	;;	:	:			- ! -		÷	.	+		 -	: -	
	F		1			:	İ	Ċ	:	٠	•	٠	•							•								: :	:	: .			÷		:	į	i	:	:		
8	-	l	į	įį	:	;	:	•			1									٠	•							•			:		:			:	:		:	ı	
loos Data <u>W</u> indow Heb	::		1	-	-;	:	÷		 -	 -		<u></u>	<u>i</u> .							<u>-</u>										بــــ	-·÷		- -			÷	÷	:	÷	÷	
ઝ	-	l	į	: !	į	:		:	:	:		•					:			•	:		•		:			•								:	į	i	:	•	
္ရည္	Ü	İ	į	! ;	İ	1	!	i	i	:						-	•	:			:				•	:		٠.					:	•		:	İ	i	:		
ୁଧ			<u>.</u>			į	į	٠,	:	:	:			-		:		: 	_	_;		_		_		:		: .	_	:	:	_	÷	:		i	<u>.</u>	į	i	: `	_
Ě	: .	<u> </u>							-	'n	Š		<u>.</u>	4	Į\$			-		2 X			٠.					_	Ę						1		1	į _			
75,	0	activity	; ≥		\$	è	N		3	Ç.		N.	₹:	∴ }	Ŋ,	إ≏	Ø.	2	? !	3 8	į	2 6	2 =	2 8	12	•	8	\$		4	ਨ	ij:	÷ ;	3	: ``	•	12	8	3 8	2	+
۲.	1	~ @							ì	Ų,	X	7	ai.	÷		É	Z,	<u>.</u>												ı	ı						Ē	Ĺ			
2		2 1	با	! ;	i	1	1	1	•	:		:		:		į			.!	:	:	_ :	:		:	•			_		. :		<u> </u>		i	i	i	j	:		
* The Edit Yew Insert Format	S	auhe	₹ •	œį	Οį	اِه	< (<u>ا</u> 00	:ن ;	۱۰	∢:	@ !(ייי	- !	≪!	œ !(ווט	<u> </u>	⊄!¢	ָם;נ);כ	314	c! a	aj C):C	ک!	100	Ċ	0	4	œ:	Oil	٦ļ<	C O	υļC	⊃اد	کاد	.jœ	ناد	10	<
:. ≸ :	÷	•		<u>!</u>			!_	<u>:</u>		:	_						:	:		<u>:</u>				<u></u>		<u>:</u>		<u>: </u>	·	<u>· </u>	_:	<u> </u>	-i-	_:					<u> </u>	<u> </u>	
حع	ā	\$ \$	Ī	ū	ωį	ωļ	ដ ដ	äļ	2		Si.	ញ្ជ	3	ដ	ŭ,	ŭį	ŭį	ŭ¦		ខ្យុ	3 1	រៀប	3:4	1 6	ű	ıμ	ū	Ē	ũ	Ē	Œ	Œ;i	٦١٤	716	٦İ۵	2 2	4 6	: [12	İΕ	ŭ
(18	-	;	Π	1	i	Ť	i	-;	- :	- 1	:	:	_ ;		_ i	. ;	_ ;			:	-	:		:			• .			_ :	. i	_;	-		1	1	Ī	ī	1	-
<u> </u>	A. P. A. W. Sed	mbature	A	اه)	잌	믜	<u>حار</u>		C)		۲۱	ا <u>م</u>			الح		ا <u>ب</u>		۲) ا	تار تار	عاد	ه اد		יוני);C	10	10	12	2			بان ان		مار	٦ľ٠	בן בר בר	72	,[0	20		¥
			11.1	11.11	t.ti				i i i i					انت	LÃ# L	iiiii	iieii	أأنت	iiii!	in it	iii		•14	1111	u	lita	تعفده	1101	سَا	144	la Ì	ı. ii	ı ii	. 11	L i ii	- 114	-144	_144	-166	سَنا.	íű

Fig. 10B

	File Columns Name: Edit:Paste. Edit:Paste. Edit:Paste.
	LIE: To eapture the name of a sheet for an entry into one of the control panels, double-click the sheet's tab to get a "Rename Sheet" dialog box. Then hit CTRL-C to Edit:Copy the name to the clipboard, and elick Cancel on the Rename box. Go to the cell where you want to paste the sheet name, and either hit CTRL-V or do an Edit:Paste.
1	If you specify more than one column in a row here, the weight will apply to EACH of the columns.
	All Soes to the Append Control
	the tab screen, to get a list of sheet names to pick from. Diber shortcuts (see also the PANDOBA.
	worksheets in gour workbook, especially it gou have a lot of them, RIGHT-click on any of the tab-secolling arrow buttons at the lower

ig. 11A

1100

			<u> </u>						: ``	: :	 ······································	
for an double.	et oto						:		 : : :			· .
ne of a sheet ntrol panels, get a "Renar s hit CTRL-C	ame bos. Go aste the she AL-V or do a		1					:			- 1	:
IIE: To capture the name of a sheet for an entry into one of the control panels, double click the sheet's tab to get a "Rename Sheet" dialog bos. Then hit CTRL-C to Edit.Cops the name to the clibboard, and	click Cancel on the Rename bos. Go to th cell where gou want to paste the sheet name, and either hit CTRL-Y or do an Edit:Paste.						:	, -		; ; ; !	İ	
IIE: To cap entrg into o click the sh Sheet diale	cilck Cance cell where g name, and e Edit:Paste.			. :			: !	·	: : 		:	
11	Response)	L CHARLE	DEMO3	Score		AT CHERRY	Ref. Weight	. :	: :		:	Columns F:1
	Reart Dase Respons	Name:	Sheet # DEMO3 Chuster Col	Color		BESUGARE BOT CHERRY	Columna) Rel. Weight				 :	Columns F.:
	olumns F.I	Name: amines	heet # DEMO 2 luster Col C	Score 0	Schrifter Bushir (1925) yellow 2 internen	ort Chesters	Rel. Weight	; ;	: : : : : : : : : : : : : : : : : : : :		 	olumns F.1
	Columns	Name:	Sheet # Cluster Col	<i>Color</i> 760	Motorings St. yellow	24.03.20 200 200 200 200 200 200 200 200 200	Columns)	:	: :		 	Columns
	i Mecore: Dolle mers Columns F.:I	Name: scids	Sheet # DEMO 2 Cluster Col B Kryston decessed with	Score 0	A changes was a second of the	244361 A08 88. 48. 48. 48. 48. 48. 48. 48. 48. 48	Columna) Rel. Weight	. !			 	Columns a.e
	Fracore: Dose Columns	Name:	Sheet # Cluster Col	Cotor red	colonial designation of the co	05.00.000	Olumnis) (: :				Columns a

314

Fig. 1

		77.	N.	Υ <u>ε</u>	E.		\(\frac{1}{2}\)	<u>.</u>			- ;	, , ,	<u>. ،</u>			_	<u></u>		·		·																		- <u>-</u>				I	Ē	3.5	1
2						: !	: <u>;</u>		, <u>:</u>	-	_	_; ;		_	<u>:</u>	:	-	<u>:</u>	_			<u> </u>				:	,	·																- (: .	PA)	7
2	_			L		-		· 		- 	: 	·				<u>:</u>	i Ļ				: 	L_	:			;	:				:							:						1		L
9 11 11 11 11 11 11 11 11 11 11 11 11 11					1			:		İ	4	:							:				:	:		<u> </u>		ì			!		:	:		:	:	:							E STATE OF	L
	-			\vdash	<u>i </u>	! -	÷	_;	-	╬	_ <u>L</u>	-	-; ;			-	با.	<u>.</u>	<u> </u>	_	_		<u>. </u>	<u>'</u>	<u>. </u>	<u>.</u>	<u>. </u>	:	:	-		- <u>;</u> -	 ,	:		 :	_:			<u></u> .	;					
×					: 1		1		1	!	:					:	:		:	1			:	:	:	i i	•	;		•	:		į			!						i				
~	-				:		!	:	:		:					:		٠		:	i		,		:	:	: :	:						:	·	:								T SEC.	Š	
6		בונה הידי	=	-		i-	١	5.00	- -		Sc.		6/987	328	 66	<u>-</u> -	2002		<u></u>	310.4			291.61		242.44	418.09	35.03	235.56		:8	 3:	-	-: -	- :-		_ <u>;</u> :		469.21		<u> </u>				1	8	1
::	1 2	ž 2	-	_		-	1	÷:∻	3	-	-		÷	33	œ	_	1 2			Ē;			2		*	=		X		=	; 	: 	: -;-	—;~			-	- 69		<u>:</u> -	; 	·			Š	
14.15	2740	T 4.5	7)631	4/10/97	4410/97	35530	28.499	25400	200	201010	Action		L/CR RFCCF	8/18/97	6123/97		6224197	201010	0110130	61/13/	8/20/97	8/7/97	8/19/97	8/19/97	877/97	7811617	7870617	712197	18121	8/18/97	7770767	20000	100000	Orcurs.		8720/97	***************************************	7800517				8421/97		To Manager Angel	Color controls ("Chister Control :	
Marina Harana	ICEO (AMA)	Tests	71631	8384	> 10000 (blank)	3133	(blank) > 10000	3575		4 is	3	30000	00007	282	88		75000	23161	22002	cocyc	43105	10000	85442	\$ 100000	34184	62295	2080	23000	no effect	1657	16967	Doellect	100000			no enrect	-	12484		:		, 100000		•	۲,	
9	PTC	Toeto	-	*	*	-		; ; ;			- -	1 2063 1 2300	4.4007 14600	6	-	-	9		; ; ;	3		ю.			ın:	ام <u>ا</u>		•	. 🛶	- 20	i	; i.ec	:		 ! !			LO.				ιo		The Carte	Append Condo	the surface of the
14	DATE	1 10		·	- 1	-	36197	13/97	10/9/97	36.87	10/8/47	19797	1016310	1010110	6418/3/	1/22/98	6/19/97	8/13/97	86.497		8/14/3/	18/9/8	8/14/97	8/14/97	8/6/97	7129197	7125/97	71187	78117	8/13/97	7125/97	8/14/97	8118797	10/8/01	0111107	Tototot	Coolor	/8/57/	20070	10/3/3/	lurarar	8/15/97	9/18/97		~	A STATE
Eur a	ICS0 (nM)	Test		no effect, 10000	no effect, 10000	Service Services	165,3333333	20.00	no effect	158.6666667	no effect	100		Transfer and the state of the s		no elfect		2. 食物	108	2 2	nace	10 enect	786- AND THE PERSON NAMED IN COLUMN 1	NO effect	5	5	145	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×300	Ξ	no effect	no effect	1.36	A CARLO CONTRACTOR	3	200	ווס בוובמו	000	2000	no ellect	no en en	no effect	no effect	College Services	₹:	
٥	#PTS	Test					9.1 1.5	-		4	: : : ;			 															ş	1,0	i.				i		14.2				į			DEMO 2	2	
ú		# W		-	:	:									ľ						7														,									با	51	4
80	**	replicates				4.7						1																		_		-												/DEMO?	₹	
	CWEO	Ω		Them exocute	• perkazocme	pentarocine	0277	0278	8290	1980	2630	0793	0958	1050	000	7.810.2	92	1329	1336	130		2	3		245	215		1362	1369	& ₹	1431	1139	111	1445	9771	14.67	4480	501	1464	1465	200	3	1467		~·	

A.	1							_		٠.							_					٠. "																	Ţ	Œ	Î,	1	蔔	K	U	
Z				-	·	:			-	i	-	:						:	_		<u> </u>		 -	_		:				-	-		-	-					-						-	(1) (1)
Σ.					:				- -	-	 !			-	 :		·— · :	: :		_	 :	_	:			•													- -						_	
ار					:	:						:		:	-			;			:		 ! :			:			-									:					-		No. in the second	
				-	— ; ;	†	 :	-	- -	: :	-	!	-	_: :			:	: :	·		- :- : !		_	·		:		:		_	 :			- · - -			:	<u>.</u>				- ·		-	Yan in	
Y					:		:		:			:	:	:			· : :	:	· .		:		:		•				:			:		:	:		:	1	:					:	111/	7
ا	-	אבנבני ן	ΥIX	82.09	17.15		2.5		23.75	1000		:			231.71	3.17	2	:			31.73	27.22	:		: 60	:		150.94	15.75	0.70	}		 8.		3		:			- 123.10 - 123.10		_ -	8:		2000	5 75 5
-	•		Test2	6/25/97	R125197		30190	9/11/97	5416/97	622.797	10000			4/10/97	781217	1127197	781917	!~-	6121197	2.5	9/18/3/	8/18/97	781187	9/16/97	9,9197	99997	9/9/97	7110/97	278197	8/19/97	419797	5			20.	100000	20200	200	LOISIE	9716/37	ZVOIZ	8720737	8120/97		THE PERSON NAMED IN	70. Y
I		Con (nivi)	Test2	11000	8000	9000	0007	2486	1330	10000	40000		::	2	19000	- 562	2706		, innonia	9699	7/81	2836	39852	no effect	3233	9480	10830	16000	2013	1158	3153	2		000		(for (d) to)) a ca	21360		2000	35.00	0.107	no en ecc. [Diank]	(blank) no effect			⋖:
5		<u>^</u>	Test2	-) · 6	 Θ:	<u>س</u>	: 	4		•		—; •i	ĸ	FC.		:	iec	314	- `	ю		10	. 10) · (C) . L C	- 10) . IC	 ع.د	· ·	n			0) 	,- ; ;	o · 1	 	n	S		Anna Cont	Append condo
	-		Test	6/20/97	6120197	5016510	3616136	9/4/97	9/17/97	6/18/97	201013	1010101		6/12/97	6/26/97	6412797	72777	9725/97	8/15/97		261313	8/13/97	7129/97	5118197	974797	914/97	914197	7128/97	B/13/97	6/13/97	477/97	001001	201771	1012131	4010104	201000	118,197	5	161717	161/17) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1614719	8124797		F	~
1.23 Electrical 1	Γ	(MM)	Testi	134				Š 8			900	3	104100	, 10000	22	ន	₹	no effect				(1)	>300	. 300		noelleat	no effect	106	113115		to offect	ווספוובמי	300	>300		1000000	10000	20001		00001	10000	no effect,> 10000	A ALTER PROPERTY.		ALCHARACTURES CO.	ч.
0		2.0	Testi	2				٠-:								*		Ç				ij															: .=		÷, ;	.\$:			7	(DEMOZ) DEMU 3
Ü	_	# U	;)	~										- 1					1.					ř.				0									İ	-	:						6	7
Ó		ō **	replicates														J	-				-		100						÷																-
A			ρ	5533	1000		2448	6573	6741		1206	9000	3	7368	7781	7946	8374	8437	12	3 ! 5	20.00	8617	. 1288	8826	8857	95		916	22	: 223	9393	3000	2389	200	3(3)	26.2	250	5	laloperidor	80 6	Ł	pregnenotone	progesterone		FIT NELLA	A I P I P I DEMO I

27/64

गह	e i i			·	·	<u></u>	,		· · ·																		Ī	EL	الرابعة
Ź		;	:			- <u>;</u> :		7	·	: 						` _						· 							Ī
Σ		<u> </u>	<u> </u>		·			: i 	-	·				<u></u> :	 ;		:		:		· 		· :					<u></u>	
						:			$\left \cdot \right $: :		: ;			:	٠	:		i				: ; 					واستالا	
¥									:		•				:	:	:		:			•				:		American J.P. J. Z.	
,	SELECT	i i	80	38.21		523		32.08	86. 80.	×		ð		0			235 56	!	41.95					469.21	:	- <u>;</u>	;- - :	Choo and	
	DATE Test2	4110/97	35530	35488		3/3/37	35539.85714	8418797	6423197		- The in Marie of		177	Carca			712197	712197	8418/97	7730/97	8/20/97	8/20/97		7130197		1	8/21/97	Control / Ch	5 1.
Ti	IC50 (nM) Test2	8384 > 10000 (blank)	3133	1514 TUUUU 3575		B 1.	26885	1283	000	ISPLAY							53000	no effect	4657	16967	100000	no effect		15484	;		200000	1 600	
5	#P1S Test2	4.4	<u>. </u>	m· m	: ;		4.285714286			CALING FACTOR FOR DISPLAY	A CONTRACTOR OF THE PROPERTY O						******	.	1 0:) (10	س	. :	<u></u>		 -	ъ.	Accord Control	
L	Test	7120197	, T	413/97	10/9/97	10/6/97	4117197	8/13/97	1/22/98	ING FAC	And Park of		6 Vargament	aduction		SAME OF THE PARTY	711197	781117	8113197	7/25/97	8/14/97	10/8/97	10/8/97	7/25/97	1013197	10/8/97	76/19/19	: -	⋠ ∵
	IC50 (nM) Test1	no effect, 10000	La lean Carle Contract	160,3333333	no effect	TO effect		1. vd)#1	¥.	ENTER S			29 8 7 T	A Lored		} }	A COLUMN	>300	Ξ:	To effect	THE PROPERTY.	no effect	no effect	. 300	no effect	no effect	So effect	10 Per 10	
	Test				ite ii								1			2.71	-									: .		2	
ن ه	# Of S#																								;;; ;;	 : :-:		(C. C. C. C. C. C. C. C. C. C. C. C. C.	

13D

a Basil	,
	13
Z. ∵]
Σ	7
-	
Į.	1
A P	3
5 5 ≥	3
SELECT MITY	3
17	3
DATE Test2	≾
a a F	흴
	3
ي ≩ ا	흸
H (C50 (nM)	⋠
	틾
	5
G #PTS Test2	닭
	ą
	~
DATE Test	£
	9
	€
S ICSO(nM) DA'S Test1	Ę
<u>ૄ</u> ં કું કું કું કું કું કું કું કું કું કુ	
	EMO 3
::13i	
4	3
\$# S	Ş
# of	7 NFMO 3 1
* *	Ľ
\$	DEMO.
	K
CMPD # of S# FF	
色	Ę

1.	Cherry		¥.6					W.S.	EAS.		Jie	1	O.	#E-6	i h	امة و	رن ۽	ł. (:					•	:		h	T.
2			:	:	:	:	:		:	:		 :	:	:	: i			:	<u> </u>	·						-			 ··	The state of the s
Σ	·				Ī	: j			:	:	•	•	:	:	: ;			:	!							:	:			- 1
		:		!	!	:	: :_	· 				<i>.</i>	:		: 								:	:		:	:			
.			<u> </u>	:	: 	· .							:					- -	<u>.</u>			•	· 	: :		;	·			7
~				:	-			~-		-	va	1=;	ن ا		: 53 %	<u> </u>	· *\$ \$:	:		٦.	:	:	:			!			V. A. C. L.
· ·	HTS SPA Dose-Resp % Inhib @ 1x10-7M	.5	£ ;	4	78	ដ	11	6.	2	×		0 A A A A A A A A A A A A A A A A A A A				F Welkbook	等 不					8	3 8	25	ı.	ი :	*	12	82	S. J. DEMOS
	HTS SPA Dose-Resp % Inhib @ 3x10-7M	Service Services		# 12 12 12 12 12 12 12 12 12 12 12 12 12	THE PARTY	S	23									efwriter in your	一次,					22		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	(1) / Abd (1) - 1; (1		23	2	The Charles
	HTS SPA Dose-Resp % Inhib @ 1x10-6M					10 m		2 8			"四本"品"古"。					n added of ov				NO.					62	TO THE STATE OF TH	200	252		1 SOBTED by Cmpd in =2#
	HTS SPA Dose-Resp % Inhib @ 3x10-6M	08	æ ;		99	99	69	indra Varanchi	البائند ما 60 داره دوم	Microsoft Excel			Š R	0.00	国	eets have been add	SCURES by Cripd										15	330000	1,000	DEMO 1 COD TEL
F.	Test3		:	9	2.6		82			Microsa				, i		1 3 O.₹	DEM	E		, L		:	:		: •				: .	E
	Test2			0.18		0.35	0.117	190	975	Part of the Part of the	041	80	}	:			:	70	•	0.317	0.15	0.27		0.13	9+0		0.23		:	Search Problem Property
0	Test1					Ē	0.33	0.08	_	12	•	0.38					0.139	0.233	0.134		:		0.665	;		0.0 23	932.0	FC	0.5	1
8	Series		:	Σ! ≪	٥	0:			: :::I	Ξ.α	-), LL _i	.; L L		i LL	0	- < ∷	:	ZI	:	.— : LL.;	(ໝ່	B Œ	ı W	ر. :	7	- -	:	• -	The Carlot
7	Стра	Cmp d38		Cmpd53	Cmpd08	Cmp441	Cmpd52	Capaci		200		Cmod42	Cmpd47	Cmp450	Cmpd51	Cmpd57	Cmpd03	Capalo	Cmpd19	Cmpd20	Cmpd22	Cmpd24	Cmpd26	Cmp428	Cmpd29	Cmp435	Cmpd36	CHOCA	Cmp445	A SIN THE

ig. 14C

H	N.S.	No.			11		X.	70	3	T	Ŧ,		13	ii l	a t	LFA	11	er o		II A	Į.	H													3	Print
1		<u> </u>	 : :	•	:	_		Ţ	:	•								i :							٠										<u> - </u>	1
٩			•	:	i	į		i	:							:	;																	_		K
-		_ <u>-</u> -	<u> </u>		:	i		_ <u>;</u>		•				; ;		!	;	!															•			
0		İ		•	:	i	:	:	:			:					;	:	!				:	٠												İ
4-			<u>-</u> -		ļ			<u></u> 1-	<u>-</u> -						_		:	- -			:		:												1	
Z					:			•									:	:						٠				:			:				1:	ļ
-		<u>'</u>				-!		<u>'</u>						-,	-		<u></u>	 :		:		_													<u></u>	
Σ		:				:		;									:			:			:	;									•		a	
L .						<u>.</u>			_						_							_										<u>. </u>			Ē	
					:	•		!												٠ ،				•									•	_	14.	3
Li.		;	<u>_</u> _		<u>.</u> .	į																. <u> </u>			· ·							- - -	_			į
اير		į			•	;					٠							:				•		:								:	:	: -		3
			<u>:</u>	,	: 	<u>.</u>			: ·				·_	- -			<u></u> :			<u>:</u> -	ــــــــــــــــــــــــــــــــــــــ		·	<u>.</u>								-	<u>:</u>	:	- 3	2
			!	•	•	i					-	:	•		•		: ;	:		:	:	:		1	1			:		-	•		;	:		5
	i.		<u>. </u>			!_				· .		_: _:	:	· 						<u>:</u>	<u>.</u>	.:		<u>!</u>						·:-	<u>.</u>	<u>!</u>	<u> </u>	· 		2
П	ق ن	•				i			į	!			-				:	:		•		•		:					•	:		:	1	:		5
	set.				•	•				:								:	-	: 		· :—		: _;		· 					. - –		! -	-:		É
	* **CMDQ**********************************				:	i											:				•	•									•	:	•		1	Š
Ξ	786		:		÷	•											_			_:_				· 											_	312
H			:			 :			:	-:								:		:	•									•			:	:	9,75	8
10	Ş		į	. ;			·		į	:			•	٠.				:		:	:	٠.		:	<u>:</u>						<u>.</u>			į.		2
	Ç	1		:		-		·	-	;			;		-		:			:	-;-	:		;	:	!	•		į		:	:	!	1	1	Č
1 6	į	¥ .		:			;		:	:		_			•			:		٠		:		:	:		٠	:	:	; :		:	ļ	:		7
	· .	5 20`	+	:				:	_' :		·	. 		 -	. <u>-</u> -		:	}	-		-:-				:	-				<u> </u>	:		Ì	ĺ		3
. E		500		i :	!		:	:	ł					٠			:	:	! !	:	:		•		:	:	•	:		• •	•	:	i			40
9		<u>;</u>	<u>.</u>	;	-	-			-	' -	<u>:</u> -	·		<u>—</u>	:-	<u> </u>		-	<u>.</u>	<u>-</u>	-	: :			<u>-</u> -	<u>:</u>			;	 !		:	Ţ	_ _		300
0	Hest byu	Š	Tarenare .	. Ş	<u> </u>	1,7	: ۲	: 1	Ŧ. :	: 5		<u></u>		- :	<u>.</u> ;	Ē.:	3	3	i <u>=</u> :	<u>-</u> .;	3	₹.	=	ē.,	7	- 1 :	F	3	1.7	į ¥;	ß	€.	ᆁ	₹. :	ī :	
밀		=		<u>:</u> _	!	<u> </u>			_ <u></u> ;_								<u>:</u>	:	<u>:</u>	;	<u></u>	: ;	<u>-</u> :	- - -	:	<u>.</u>		<u>:</u>	;	!	-	_		<u> </u>		5
ğ .	Score Town 100	Jore	- 250	: 2 ام	29	29	8	: සැ	: 818	સંદ	3; E	ः अस	818	: ::::::::::::::::::::::::::::::::::::	<u>ප</u>	ස::	8 8	i=	2	c	: ≃	~	=	=		≃ Ì:	≃!:	- 5	- =	=	=	=		=	<u>~∷</u> :	AND COLUMN TO A SECOND SECOND
Linser C	1 2 2	ğ	~ `	- ; -		į			_	!	:							-;- -	<u> </u>			:	_		i i	;		+	-	<u> </u>				_!		The Co
Big Fig. gew. Insert. rgmat	Č	empds (uncolored ture eleted	!.	-; -		!-		-;	-	_:-		-, -	-, -	-	_			-	-		_	-	-	- !	-	_:	- :-	- -		-	-	-	-	-		į
뛾 -	`		_ <u>:</u>	8:≢	: 2	: : :	18	= :	ह्या	<u>:</u> 513	<u> </u>	2 X	3 8	:≃	2	묤.	10 E	312	<u> </u>	-2	419	ଛ	422	8		427	8:	द्वाद	2 4	3 5	\$	\$	3	ě	35	Ţ
2	1		ľ			Cmod 53	8	Cmpd	Cmpd52		Z 7	E (Cmpd42	C mg	25 P	Cmpds		100	Cmpd12	Ě	Ě	Ě	Cmpd24	S.	Ê	Cmpd28	Ē			S S	١٤	Cmpd48	Ē	Cmpd56	Į
4					3	71 C	2	اب الحا	ران الح		3					9		~		12	122	R	77	2	æ	C-1	R	Ŕ		35	1	E		E		ال

14D

1	4			_														1	60	7		į.	14	<u>.</u> 5	, in	Š	5.6		4.5	Ĭ,		5;	4		31	3.Ý	10.	ū		EJ Y
1.	-:	•••				_						:																					•							
٦												:																												
1				··- ;		•••						_		;				:-				•										- •								••
0																																								
1		- ·				•						_						_						•••	-			—. -						- ·		•				•
2				•														•								•							٠							
								_										:			:			•				_												
Σ												-																					·							
														- 		_						_	_																	
 !				:										,								:						:				:								
						•				_		:		:			:	:				:				-			· • ••		•	- <u>;</u>	-			:	:			
×				:				•						:			;		:													:	:			:	:	:		
	_	_ :	•									:									_										 :	-:				:				•
				:								:						:										%			· 		:	_			:	:		
				,-										•																•				_						
- 1														:																	:_							:		
-			:	:				:						:																		:	:			:	:	:	•	
												:					·																:		. <u></u> .		:	_'_		
				:			:	; :			•	:		:			•	•					•					•				٠	:		:	:	:	!		
			•							_		: : 		· ·			<u>. </u>					. . .				_			:		· 	•	! - 	. -		:	: -:-	-	<u>. </u>	
	:	. ;	•	;			;			:		:		:	:													٠			:	:	:			:	:		:	
14.	<u>:</u>	; 	i						· 			<u>.</u>					.:						·					.:		•	: _:_	· : -	; ;			<u>.</u>				••
Ē		:		;		:				:	: :		•	•				:										:			:	:	:		:	:	i	-	:	
		_;	_	_		_; ;	: !-				: 	Ĺ		:			:		`	_					 .			:-				: نــ				_:_		_	<u>.</u>	<u></u>
	Z.	: :	Ş	ž.	ş	.= !	3	:	*:	. . .		 -	. ;	: ! =	· .	=	: =		· : •=	₌	:.5	∃.₹;	7	:.	3.	<u>.</u> :	ÿ:	<u>:</u> !			:	ì		•	!	į	İ	•	:	
Ö	_	·	1	•					!		:	L	. l <u></u> :				-						; ·	:			-	_;			:		: : :	_				: - -		
S	<u>~</u>	<u>~:</u> :	_:		 :	: !≏	_	_	2	. 0	:		· •		0			:): (2	.: 🏻	E	2	2	<u>ج</u>	:ع	ස.	: ::::::::::::::::::::::::::::::::::::	انو:	<u>~</u>	į	!	:		:	!	:	-		
	<u> </u>		-: :	_:				_			. –	:				-										-::	٠٧.	'Y!'	٠: '	- 	:		: :		:	!	· - -	!		
8	_				_		-	_	_	_	_	. -	-							-		 -:-	-	-	_	_	-			_			:			:	:			- '
H	£5.	 93	ġ:	2	- - - - - - - - - - - - - - - - - - -	B B B	÷	30	88	: S	Cmpd	: =	<u>.</u>	2	-24	123		3:		Chedie	Cmodil	ŝ	CmpdQ	2		용:	137		Ē.	 8		:	 :	•		· 	:	-	•	
٩	Cmpd35	Ĕ.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ě	Ĕ.	Ě	Ě	Ě	Ě	Cmpd05	Ě	ر ا	Ě	È	Ě	Ē	Ē	Ì			ě		Ĕ	Cmpd06	Cmpd18	Ĕ.	Cmpd37	Ĕ	Cmg	Ĕ		آء	•			:	٠			

THE RESIDENCE OF THE PROPERTY 9 The second of th Tusterinfo DEMO Appel 4 Σ He Eck Yew Insert Formet Tools Data Window Heb <-- Scoring of sheet "DEMQ 2" using parameter set "acids" ŏ

. 15B

3	歐		i	3	137	Įė.		3	15	Ą	Ø	<u> </u>		7	ii R	7	57	Š,	15.	¥.		iv		1	÷į:	ď	ų į į	4									<u> </u>	ar T	-
۵		~	:	;			_	:						_					:		:																	I	
<u> </u>		·	:	<u>:</u> 					_	_			· 			_	<u>:</u>	_ <u></u> -		 -	-	: 								<u>:</u>		<u>:</u> _						_	
o	:		:		; ;		:		. :						٠.				:	:	i								•	•	:	:						ļ	
<u> </u>			: : -	!	· 					<u> </u>		<u>. </u>	·	- 						- -	<u>:</u> -	<u>. </u>	÷						<u>.</u>	<u>.</u>	-:-							1	•
z	-	•	;	:	:							:	,		•				:	:	:	:								,								<u> </u>	-
-1		·		-			_			:-		<u></u>						<u>:</u> :	<u>.</u>		:											•		—		_		_ <u>-</u>	8
Σ			:	:															:		:		. •					•	. ;							:			2
			 -						.	-			.—	7		نين	120			<u>.</u>	-41		43		i j	94	S. et	3	_	- -		:						-	ġ
-			:	:				:		:	:	:	•	:	×	1.	Ť.	1	Ĺ			ğ.	í.	di.	7				! :	;	:	:							2
		_	 -	<u>-</u> -	:				<u>. </u>	-				-		4	į.		ij.		į.	Ĭ			X.	- -1	, i		: !		-:-	 -						0	4
¥				:	:							•		•		, in i		i L				3				٠. د	ر د		; •	-		:							į
				;	÷			; :	.	:		:	•	•		į			2		Ų.	5				ų.			1	:	:								
٦			•	:	:			•	:			•		:		1	ij.		8	1	1			:		r	1		: :	•		<u>:</u> .		_					Ş
			-:	,	•			;					:	٠		1	F.	*	3		į	3		1 1 1884		¥			:	: .	;	:							1
		:		:	:				<u>.</u> _					۱.		*		E.	3			B	ij.	# 2000	,	1			<u>:</u>	<u>.</u>	<u></u>	<u></u>				:			A POST TO Last A
Ţ			į	:	:	ì	:	:		!	<u>:</u>	:	:			1		<u> </u>	3	1		5	ă ă	ă Ż							٠.	:			;	:			5
		:	: - 	:	i		:	:	:	:	<u>.</u>	: 	<u>:</u>	<u> </u>	a			1		7		À	HES						-	<u> </u>	_	-			: 		•		
0					İ		:	:	:		•	:	:		dicrosoft Excel	4674		8		į	÷.5	2 2	252	1052	- -				i		:	:				. :			
		<u>:</u>		<u> </u>	<u>;</u>		<u>:</u> 	:	; 	<u> </u>		<u>:</u>	<u>:</u>	i	Soft	4	Ē		3	ğ		S. P.	2	웆							-			<u> </u>	<u>.</u>	-			
u		•		-	•		•	:		•	:				HI THE		JUNC	5		Ü	3	Ξ	Ö	Ö.	rie Liv				:	:	•					•		·	f
4	ļ	<u>:</u> _	! 	- T	· 7			<u>-</u> -	<u>:</u> -	 -																			: :	<u> </u>							<u>.</u>	'-	
w		:	:	١	۱	:	:	:	:	•	:			•						, : :										i					:	:	! .		
H	 =			١	,				:	Ī	-	1	I		1	ľ		1		1	i				i.					3				3		Ĭ_		[
- -				\$	3	•		7-1-			e :	2	1	2 :	, i	1	E.	R	8	-	1	8	3 2	7		2					7	1	13:	1.	ņ u	8	≘	9	
-	ļ	_	:					.: .:.	·	= _:.			■ .	٠		• •		.	:/-			m·	יייר	س. ر	·· m	. ()	بروالا	er:	mir) (C	: :	Ø		-	≪ ∩	- ::::	٥	•:ι	щ
ပ	. i				<u> </u>																															_	اما		
1 8	s cid				ت: ت											-i-		. 4		<u>-</u> -										-i		-							
	Tikture	id 	0	0	<u>م</u>	C:0	ם:c	ەند بار		۲.	8			د: _!	m; (ے ا - ا) (c	((O) (0	ام!	ار ا	<u>م</u>		2 S	(B	2	0 2	4	ajc S):	ع رد 11:	Y A	œ T	C	0		ם פוני		EGA	4
	1					•	•									2 1																					F		

4	Þ	C
•	C	j
•	_	1
	Š	_
	Ξ	
_	Ç	2
i	ī	

																								Figu
Ш	HTS SPA	Dose-Resp	% Inhib @	1×10-7M	<u>6</u>	<u>.</u>	<u>ව</u>	23	22	သ	43	38	15	വ	25	ന	37	12	36	-13	24	32	12	and the state of the state.
O	HTS SPA	Dose-Resp	% Inhib	3×10-7M	9	22	28	24	21	53	48	28	22	24	63	24	40	4	46	88	47	22	23	Service Bilders
J	HTS SPA	Dose-Resp	% Inhib @	1x10-6M	22	က	57	25	09	41	(7)	28	41	42	\mathcal{D}_{+}	25	23	23	46	raia .	64	54	12	
	HTS SPA	Dose-Resp	% Inhib @	3×10-6M	() [:	41	: E8	70			墨	65	.GG:	61	20	47		33	系	101	58	£.		101
A			8dE2		Cmpd01	Cmpd02	Cmpd03	Cmpd04	Cmpd05	Cmpd06	Cmpd07	Cmpd08	Cmpd09	Cmpd10	Cmpd11	Cmpd12	Cmpd13	Cmpd14	Cmpd15	Cmpd16	Cmpd17	Cmpd18	Cmpd19	Cmpd20
	-			-	7	m-6/2	4	S	9	~	8	6	10	=	12	13	#	15	16	17	18	19	20	21

8
9
5
夏
<u>.</u> 5

-							 	
run these DEMO 1	3. 3. E	33		red	yellow	Designation.		
Click here to run these sheet	column(s) # of colors	break 1 break 2	break 3	color 1	color 2	color 3		Re-scale all?

37/64

Fig. 16C

																										Œ
Н	D-R	composite	Score	(0 to 100)	2 2	Cmpd	001	79	22	75	22	29	25	25	22	25	25	25	26	5	46	46	45	45	45	45
9	D-R	activity	score	1001 01 00) A	Cmpd	100	77	2	2	යි	:	.83	23	ಜ	23	47	23	99	20	<u></u>	2	~	æ	~	7
4	D-R	-iveness	Score	(0 to 100) (0 to 100))	Cmpd	75	:8	. &	&	35	35	83	95	83	35	29	: 25	83	83	83	83	. &	.	8	83
В		HTS SPA	Dose-Kesb	% luhib @	1×10-7M	1.00e-07	Bar	43	37	36	18	24	15	22	ന	15	25	32	12	5	19	29	5	38	3	12
0	1	HTS SPA	Dose-Resp	% Inhib @	3x10-7M	3.00e-07	[113]	48	40	46	38	47	28	21	13	22	83	22	23	24	91	24	22	28	24	4
J		HTS SPA	Dose-Resp	% Inhib	1×10-6M	1.00e-06			59	46	E;	64	25	9	41	14		54		42	22	25	က	28	25	23
8		HTS SPA	Dose-Resp	% Inhib @	3×10-6M	3.00e-06	[3]			::			: : :	.		· · Æ	20			61		11/2	41	83	47	33
4		-		Cmpd	•		Cmpd20	Cmpd07	Cmpd13	Cmpd15	Cmpd16	Cmpd17	Cmpd03	Cmpd05	Cmod06	Cmpd09	Cmodil	Cmod18	Cmnd19	Cmpd10	Cmnd01	Cmnd04	Cmpd02	Cmnd08	Cmnd12	Cmpd14
						•	- ~	6	4	S	8	-	@	6	2	=	2	<u> </u>	7	2	2 4	2 2	2	0	2	2 2

	4	В	ວ	0	ш	L	Ů		
-	Cmpd	HTS SPA Dose-Resp % Inhib @ 3x10-6M 3.00e-06	HTS SPA Dose-Resp % Inhib @ 1x10-6M 1.00e-06	HTS SPA Dose-Resp % Inhib @ 3x10-7M 3.00e-07	HTS SPA Dose-Resp % Inhib @ 1x10-7M 1.00e-07	D-R -iveness score (0 to 100) by Cmpd	D-R D-R -iveness activity score score (0 to 100) (0 to 100) by by Cmpd Cmpd	D-R composite score (0 to 100) by Cmpd	
2	22 marker 7.5		11.			75	100	100	
2	23 marker 7.0	~[i		S. 92	50	83	87	88	
24	24 marker 6.5		Market S	49	. 24	35	2	20	
25	25 marker 6.0		50	23	6	35	23	25	
28	28 marker 5.5	49	24	6	3	83	~	45	
27	27 marker 5.0	. 23	6			55	0.		
	T		ì	Figure 16D	Q 9				

	¥	В	C	0	3	. F	9	Н	1	-
		HTS SPA	HTS SPA	HTS SPA	HTS SPA	D-R	D-R	D-R	interp	est
	7	Dose-Resp	Dose-Resp	Dose-Resp	Dose-Resp	Score	Score	score	Bol-	1050
	B E D	3×10-6M	1×10-6M	3x10-7M	1x10-7M	8	(0 to 100)	(0 to 100)	ි දු	کر ک <u>و</u>
		3.00e-06	1.00e-06	3.00e-07	1.00e-07	Cmbd	CHDQ	by Cmpd	Cmpd	Cmpd
7	Cmpd20	::: :::				75	8	100		ê
3	marker 7.5				A.	:K	2	6		
•	marker_7.0		74		22	83	8	. 98		
S	Cmpd07	. 153	Ç.	48	43	:8	2	-62	6.78	0.17
8	Cmpd13	∓	23	9	37	8	2	75	99.9	0.22
1	Cmpd15	11.	46	46	8	83	2	25	99.9	0 22
8	Cmpd16	:=:		88	18	:23	S	2	6.50	0.32
8	marker_6.5		-	6	24	35	20	20		
9	Cmpd17		64	47	24	35	£	29	6.38	0.41
=	Cmpd03		25	28	15	. 25	83	.25	8.9	-
7	Cmpd05	7	8	21	22	:23	23	.22	. 00.	-
13	Cmpd06	7	4	:3	င	85	23	22	6.00	_
*	Cmpd03	Œ V	4	22	15	8	83	25	9.00	-
15	Cmpd11	කි		ន	ં કટ	29	47	25	00.9	-
18	Cmpd18	ſ,	ক্র	22	32	35	23	25	9.00	-
17	marker_6.0		ය	23	6	95	23	25	·	
8	Cmpd19			23	12	8	R	. 92	5.96	1.1
19	Cmpd10	19	42	75	J.	83	20	51	5.75	8.
2	Cmpd01	ŗ.	22	9	19	83	2	9	5.54	5.9
2	Cmpd04	Ţ.	25	53	83	8	2	94	5.54	67.
2	Cmpd02	41	3	22 ·	D	8	~	24		× 33
ន	Cmpd08	83	28	28	88	82	33	45		, 33
24	Cmpd12	47	25	24	3	83	~	\$		×3
ß	Cmpd14	88	23	þ	12	8	~	54	-	×
82	marker_5.5		24	6	က	8	~	.		
27	27 marker_5.0	23	6	က	_	75	0	38		
	_				•					

Figure 16E

Fig. 16F

	r Jac	percent inhibition	fion	data (data group number	mber	data	data group color	olor
						Import	highest		lowest
	highest		owest	ngnest	,			?	8
punodwoo	S 2 2 3	î	20 20 20	conc		2			
Smod 01	2	82	22	-	-	- (
3	, ¥	Ç	38	-	-	7			
Campa UZ	2 2	- c	5	_	~ ~	က			
capa os	7	9 9	2 4	-	٥	+-			
campd 04	7	4	6			~			
cmpd 05	<u>ළ</u>	23	5		4 6	ı «			
empd 08	4	37	2		4 (,			
cmpd 07	56	8	7	_		- ‹			
SO pomo	9	8	æ		, co	4 (
60 6000	33	22	¥	_		.			
10	8	1	5	7	,	- (
cmpd 11	5	ထ	42	7		7			
24 72	. <u>.</u>	က	69	~	-				
_	8	93	4	7	7	- (
•	8	25	55	7	7	7			
_	2	2	87	7	~	ന			
		3 6	5 «	•	e	-			
cmpd 16	င္တ ⁽	7 ;	> ;		· (*)	7			
cmpd 17		= :	- ;	4 (9 (٠.			
cmpd 18	65	<u>თ</u>	= '	, (, 4	•			
cmpd 19	- 67	=	တ	~ ·	- •	- ر			
cmpd 20	87	ഹ	8	—- 		4 (_		
c pod 2	_	œ	2	<u>س</u>	_	ο ,			
		¥.	0	e -	~	_			
cmpa 22		3 \$. E	٠,	7	7			
cmpd 23		₹ !	3 6		°	e			
cmpd 24	_	24	g :	- -	4 (•			
cmpd 25	73	8	ဥ :	ი	י כ	. ~			
cmpd 26	_	82	32	? ·	,	1 6	_		
					•	•	•		

Fig. 166

Fig. 16H

Table 4, The complete set of data for 3 points and 3 colors, sorted by decreasing overall activity.

ő	חמוות מוסום שונים	3	Š	data group color				
highest	î	lowest	highest	î	lowest	activity	unscaled	scaled
20 80 10 10 10 10 10 10 10 10 10 10 10 10 10		200C	8 9 0		2008	scoring	points	0-100
6	3	3				1(3)+2(3)+3(3)	92	ş
~	ო	က				1(2)+2(3)+3(3)	11	95
က	7	က				1(3)+2(2)+3(3)	16	83
-	ო	с				1(1)+2(3)+3(3)	16	83
က	m	~				1(3)+2(3)+3(2)	5	75
7	7	က				1(2)+2(2)+3(3)	15	75
~	က	7				1(2)+2(3)+3(2)	<u>4</u>	67
က	-	က				1(3)+2(1)+3(3)	4	29
-	~	က				1(1)+2(2)+3(3)	4	67
ო	~	~				1(3)+2(2)+3(2)	13	28
-	ന	7				1(1)+2(3)+3(2)	. 5	28
7	-	က				1(2)+2(1)+3(3)	13	28
က	က	-				1(3)+2(3)+3(1)	12	20
7	7	~				1(2)+2(2)+3(2)	12	S
- -		က				1(1)+2(1)+3(3)	12	2
~	က	-				1(2)+2(3)+3(1)	Ξ	42
က	-	7				1(3)+2(1)+3(2)	=	45
-	7	7				1(1)+2(2)+3(2)	=	42
ر م	7	-				1(3)+2(2)+3(1)	2	33
-	က	_				1(1)+2(3)+3(1)	9	8
~	-	~				1(2)+2(1)+3(2)	5	33
~	7	-	1			1(2)+2(2)+3(1)	6	52
-	-	7				1(1)+2(1)+3(2)	o	25
m	-	_				1(3)+2(1)+3(1)	80	1
-	7	-				1(1)+2(2)+3(1)	60	11
~	-	-				1(2)+2(1)+3(1)	7	80
-	-	-				1(1)+2(1)+3(1)	ဖ	0

44/64

Fig. 16J

Table 5. The complete set of data for 3 points and 3 colors, sorted by decreasing composite score.

composite 0-100	00 00 00 00 00 00 00 00 00 00 00 00 00	
scaled activity 0-100	0	<u>:</u>
scaled responsive- ness 0-100	~ * * * * * * * * * * * * * * * * * * *	; -
lowest		_
î		
highest conc		
punodwoo	cmpd 27 cmpd 28 cmpd 28 cmpd 23 cmpd 25 cmpd 25 cmpd 15 cmpd 17 cmpd 17 cmpd 10	cmpd 02

Fig. 16K

Quality of Ranking when Noise = 10 Inhibition Percentage Points

46/64

Quality of Ranking when Noise = 30 Inhibition Percentage Points

47/64

Fig. 16M

Table 6. Quantitative Estimation of Potencies by Calibration Marker Compounds \$ 55 € £ 55 £ 0.17 0.20 0.22 0.22 0.23 0.23 0.29 interp -log IC50 7.00 D-R b % Inhib @ 1.00e-07 % Inhib @ 3.00e-07 **488** % Inhib @ 1.00e-06 % frhib @ 3.00e-06 marker 7.5 M221211 M371585 Marker_7.0
M345077
M371796
M143629
M371891
M309032
M198289
M224602
M318671
M373373 marker_6.5 M143630 punoduoò M353875 M371825 M181250 M338331

Fig. 16N

Quality of Estimation when Noise = 10 Inhibition Percentage Points

Fig. 16P

Quality of Estimation when Noise = 30 Inhibition Percentage Points

# Inhib @ # Inhib @ 1x10-5M 3x10-7M 3x	A B C D.	ည် က		ď	⊩	ш	F HTS SPA	G HTS SPA	HTS SPA	HTS SPA
3 22 5 57 28 15 57 28 15 58 24 22 60 21 22 60 21 22 60 21 22 73 48 43 74 13 3 75 63 24 3 77 63 24 3 77 63 40 37 78 46 36 64 47 24 64 47 24 71 23 12 71 23 33 71 23 33 71 23 12 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 71 23 33 72 36 112 73 36 113 74 113 75 69 33	Cmpd Series Test1 Test2 Test3 D.	es Test1 Test2 Test3				ă,	Dose-Resp	Dose-Resp	Dose-Resp	Dose-Resp
3 22 55 57 28 15 57 28 24 29 60 21 22 41 13 3 41 13 3 42 22 24 3 53 40 37 53 40 37 54 22 32 71 23 112 71 23 113 71 23 113 71 23 113 71 23 115 72 23 115 73 36 74 47 24 75 24 36 76 36 77 63 64 70 31 113 71 23 115 72 36 73 36 74 72 24 75 64 77 24 76 77 36 77 86 36 78 71 23 79 71 23 70 31 113						¥ω	3×10-6M	1×10-6M	3x10-7M	1×10-7M
3 22 55 25 24 28 60 21 23 41 13 3 48 43 48 43 49 43 40 37 53 40 37 54 22 54 40 37 55 40 37 64 47 24 64 47 24 65 25 64 47 24 65 36 66 46 36 67 71 23 71 23 71 23 72 36 73 36 74 6 36 75 63 64 76 70 31 77 86 88 38 18 87 77 63 89 38 18 80 38 100 70 31 103 71 23 72 36 73 37 74 6 36 75 63 64 76 64 67 77 86 36 78 78 78 78 78 78 78 78 78 78 78 78 78 7	-	-	-	-	R			,		
57 28 15 25 24 29 60 21 22 41 13 3 42 28 38 43 48 43 44 22 48 43 45 24 5 53 40 37 53 40 37 54 47 54 54 47 24 54 47 24 54 47 24 54 47 24 54 47 24 54 47 24 54 47 24 71 23 10 70 31 10 71 36 10 61 36 33 86 38 12 86 38 12 86 38 12 86 38 12 86 38 12 86 38		- 45 - 45	<u> </u>	<u> </u>	5.5		4	· (1)	22	വ
25 24 29 41 13 3 73 48 43 28 28 38 41 22 24 77 63 25 53 40 37 53 40 37 71 23 113 71 23 113 71 36 61 36	G 261	6 261	-	-	=		83	57	28	51
60 21 22 22 33 38 44 45 55 64 46 36 86 86 86 86 86 86 86 86 86 86 86 86 86	Cmpd04 N 30	Z	- OE	R	용		22	52	24	ଝ
41 13 3 28 48 43 28 28 38 41 22 15 42 24 3 53 24 5 54 24 3 55 40 37 56 46 46 36 64 47 24 36 65 47 24 36 71 23 47 24 54 47 24 36 71 23 10 72 36 10 73 36 10 77 36 10 81 69 39 91 69 39	8.	8.	1.8	. —	9.2		83	9	21	52
79 48 43 28 28 38 41 22 15 42 24 5 77 63 24 3 59 40 37 64 46 36 18 64 47 24 36 71 23 10 10 70 31 10 10 77 36 10 10 81 69 38 12 91 69 38 39	D 8.86 6.5	D 8.86 6.5	6.5		3.7		7	41	13	က
28 28 38 41 22 15 42 24 5 77 63 25 25 24 3 25 24 3 25 24 3 26 40 37 46 46 36 64 47 24 54 22 36 71 23 12 72 36 100 73 36 12 61 36 12 91 69 39	D 3.11 0.037 7.8	D 3.11 0.037 7.8	0.037 7.8	7.8			00	62	48	43
41 22 15 42 24 5 77 63 24 3 25 24 3 26 40 37 23 40 37 24 3 25 24 3 26 46 36 64 47 24 71 23 16 70 31 13 71 23 11 72 36 73 37 74 12 75 40 37 76 47 24 77 36 70 31 13 70 31 13 71 23 72 36 73 36 74 100 75 36 76 47 24 77 36 78 47 24 79 36 70 31 13 70 31 13 71 23 72 36 73 36 74 100 75 36 76 40 100 77 36 78 40 100 79 40 100 70 31 11 70 31 1	0.089 N.A.	D. 0.089 N.A.	0.089 N.A.	Z.			92	78	88	89
42 24 5 77 63 25 25 24 3 26 40 37 59 40 37 46 46 36 64 47 24 64 47 24 64 47 24 71 23 12 72 36 100 73 36 12 61 36 12 91 69 39							88	4	22	₹
77 63 25 25 24 3 59 40 37 23 4 12 46 46 36 82 38 18 64 47 24 54 22 32 71 23 12 70 31 13 77 36 10 61 36 12 91 69 39	N 0.233	N 0.233			—	Ф	7=	42	24	ഹ:
25 24 3 59 40 37 23 4 12 46 46 36 64 47 24 64 47 24 64 47 24 71 23 12 70 31 100 77 36 12 61 36 12 91 69 39	• •	• •	• •	• •		u,	9	22	83	25
59 40 37 46 46 36 46 46 36 82 38 18 64 47 24 71 23 12 71 23 12 70 31 13 77 36 12 81 69 39	0.24	0.24	0.24		-	•	<u>~</u>	22	24	m'
23 4 12 46 46 36 82 38 18 64 47 24 71 23 12 70 31 13 70 31 13 71 36 12 81 69 39	0.194 30	0.194 30	0.194 30	8		ω	_	23	40	37
46 46 36 82 38 18 64 47 24 71 23 12 70 31 13 77 36 12 81 69 39	4 H 0.26 0.41	0.41	0.41		<u>`</u>		മ	23	4	12
64 47 24 64 47 24 54 22 32 71 23 12 70 31 13 77 36 12 61 36 12 91 69 39	5 H 0.369 0.148	H 0.369 0.148	0.148		<u> </u>	נס	<u></u>	46	46	98
64 47 24 54 22 32 71 23 12 109 108 100 70 31 13 77 36 12 61 36 12	Cmpd16 0.87 30	0.87 30	0.87 30	유 		=	=	85	38	81
54 22 32 71 23 12 109 108 100 70 31 13 77 36 12 61 36 12	K 0.223 N.A.	K 0.223 N.A.	0.223 N.A.	Ą Z		ω	==	6 4	47	24
71 23 12 109 108 100 70 31 13 77 36 12 61 36 12 91 69 39	Cmpd18 5.27	5.27	-			_	စ္	54	22	32
109 108 100 70 31 13 77 36 12 61 36 12 91 69 39	Cmpd19 0.134	0.134		<u> </u>			_	71	23	12
70 31 13 77 36 12 61 36 12 91 69 39	Cmpd20 0.317	0.317	0.317		_	_	10	109	801	100
77 · 36 12 61 36 12 91 69 39	2.21		• ••••	• ••••			37	20	<u>ج</u>	<u>C</u>
61 36 12 91 69 39	Cmpd22 B 0.15	0.15	,	,	,		94	77	. 36	12
91 89	Cmpd23 B				<u>.</u>		96	19	36	12
	B 3.487 0.27 0.4	B 3.487 0.27 0.4	0.27 0.4	0.4			110	5	69	••••

178	
Figure	

		- THIS		ORIN	GNI 5	CATES	ADATA	COLUMN	* THIS COLORING INDICATES A DATA COLUMN WITH MIXED DATA TYPES	XED DAT	A TYPES	
ig 8	heading	## numeric text	text #	# # date blank		# total (longest col)	last occupied row num. _I	minimum (4 sig fig)	minimum maximum mean (4 sig fig) (4 sig fig)	mean (4 sig fig)	standard dev (4 sig fig)	unique text strings and
A	, Cmpd		24			24	22					(24 different)
												B(3)
00	Series		8		4	24	52					(E)
												H :
												(2) X (2) X (2) X
U	Test	12			2	5	52	0.119	98.8	2.385	2.726	<u> </u>
Δ	Test2	13			~	75	53	0.037	45	5.122	11.77	
Щ	Test3	10	2		2	24		0.4	R	15.76	12.59	N A. [2]
<u>щ</u> .	HTS SPA Dose-Resp % Inhib @ 3x10-6M				_	₹	22	ළ	=	77.57	20.43	•
G	HTS SPA Dose-Resp % Inhib @ 1x10-6M	ន			-	75	<u>ج</u>	ന	60	55.87	25.24	-
I	HTS SPA Dose-Resp % Inhib @ 3x10-7M				_	73	ĸ	· 	108	35.52	21.85	
_	HTS SPA Dose-Resp % Inhib @ 1x10-7M					7 5	52	ന	: <u>e</u>	23.91	20.74	

Figure 18A

Click here to run these	et Portfolio	column(s) B:G	# of colors 3		k2 2	К 3	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	r I	r 2 yellow	r 3	2 7	
Click	sheet	Colun	# of c	break 1	break 2	break 3		color 1	color 2	color 3		

18C
5
ਜੂ ਯੂ

Factors	Cluster Starts	Portfolio	4	Cluster Starts	Score	1.	2		Sort Clusters 3 1
Name:	u	Sheet#		Shrink	Color	red	yellow	14.1%	Score and S Column(s) B:D E:G

					_																				Figure
エ		score	(0-100)	<u> </u>		8	35	9	8		.	35	. 75	£:	22	න : ම	29	۔ ک فر	কু :c	: ا: مَ	ထူး		<u>چ</u>	ee 8	
9	less	important	factor	scored by	MngrC	Section 1	7			7	2		2		2		-	2			: :	- -		2	
LL.	less	important	Factor	scored by	Mngr B			2				2		7	2		7	2			2		2	_	
Ш	ssəl	important	Factor	scored by	Mngr A				77	-	 	~ · ·	·	2				5.			7.1		_	7	2
D	most	important	Factor	scored by	Mngr C				7				•	7	7	2		T :	2	•			2	-	
C	most	important	Factor	scored by	Mngr B				2	2		-		773			· · · · · · · · · · · · · · · · · · ·		2			-	2		-
В.	most	important	Factor	scored by	Mngr A			~	-				~	2	7	en	7	2	2			2	-		-
A		project	mala id	2000		Proj 18	Proi 05	Proj 04	Proj 14			Proj 09	Proj 12	Proj 15	Proj 01	Proj 08	Proj 06	Proj 17	Proj 19			Proj 10	Proj 16	Proj 02	Proj 11
					_		m	F				œ	6	9	=	T	13	14	15	-	17	18	13	20	21

₹ **₹**

Ratio A/Num

HTS Selectivity Ratio

₹

godo

8

8

APOP FITS

HIS

SDAS FITS

Cmpd ' Cluster

Fig. 19
Drug Candidate Compounds;
Scored, Sorted, and Vertically Compressed

Fig. 20 Target Protein Candidates

'WO 01/08039	59/64	PCT/US00/20401
less important factor scored by manager 3		
less important factor scored by manager 2		·
less important factor scored by manager 1		-
most important factor scored by manager 3		
most important factor scored by manager 2		
most important factor scored by manager 1		
project name Proj 18 Proj 05	Proj 14 Proj 13 Proj 13 Proj 13 Proj 15 Proj 16 Proj 17 Proj 10 Proj 10 Proj 10 Proj 10 Proj 10	Proj 02 Proj 11 Fig. 21

WO 01/0	08039										6 0-	64]	PCT	ΊU
	- 		_			_		1			i		7	Т	Т	7	ſ			١	ı	-	7	
Disea 12 Pha			<u> </u>	Ξ		רוורס			TI//TO	=										_				
Disease 11 Phase II		(0)		Phase I	LOCA	TI/LO					11/10													
60	TIILO		である。	1//10			Phase II					Ξ							TS					
0 -	FII/LO		Je	1.0/DE	07	1//LO																		
Disease [8	LIVLO	Phase II		Dhase I	.T	1//TO					0 1/1				Phase I									
Disease C	1/1/0 1/1/0		LO/DE!			0 1/1				Dhace III			Phase II			=								
Disease D	רוורס	=	Phase I		-	Dhace !	0000				-			0 /						S				
Disease D		-	2:34		10 Car		Dhaea III	C		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	rnase III	2 =	i =						Phasel/III		C.CO/DE			
Disease D		<u> </u>	W. CONTROLLER	13%			1 X	30	-									0						
Disease D	Phase II		a	×:	+	1		C 2	1:	Phase II		TI/TO	7			Phase II				13				
Disease C	3					Phase II		10 20 20 20 20 20 20 20 20 20 20 20 20 20	1															
<u> </u>	Phase I	LINLO		多人〇 1		144	LIILO		01			07//7	3	3	Phase II				0 1111	10	2 =		0	
<u> </u>	Company 1 P		Company 4				Company 9	Company 10	Company 11 1 LO	Company 12 個沙LO 職	Company 13	Company 14	Company 15	-	Company 17	Company 18	Company 19	Company 20	Company 24	Company	Company 44	Company 23	Company 24	Company 45

Fig. 22

`WO 01/08039

61/64

PCT/US00/20401

Fig. 23

PCT/US00/20401

WO 01/08039

FOR UTILITYIDESIGN
CIP/IPCT NATIONALIPLANT
ORIGINAL/SUBSTITUTE/SUPPLEMENTAL
DECLARATIONS

RULE 63 (37 C F R 163) DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Z70564/UST

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the INVENTION ENTITLED_ANALYSIS AND PATTERN RECOGNITION IN LARGE, MULTIDIMENSIONAL DATA SETS USING LOW-RESOLUTION DATA GROUPING.

The specific	ation of which (CHECK app	licable BOX (ES))			
BOX (ES)	A. ☐ Is attached hereto	as U.S. Applica	ation No		
BOX (E3)					
. →	C X was filed as PCT Int	ernational Application No	On PCT/US00/20401 ON 27"	¹ July 2000	
	and to U.S. or DCT control	ation) was amended on	I hereby s	tate that I have reviewed and un-	derstand the contents of the
And (II applie	find energication, Including	the claims, as amended by any am	endment referred to above. Lac	knowledge the duty to disclose a	all information known to me
be material t	a Datentability as defined in	37 C.F.R. 1.56. Except as noted b	elow. I hereby claim foreign pri	ority benefits under 35 U.S.C. 1.1	9(a)-(d) or 365(b) of any
foreign cooli	action(c) for nationt or invan	tor's certificate, or 365/a) of any PC	CT International Application whi	ch designated at least one other	country than the United
States lister	t below and have also ident	ified below any foreign application t	for patent or inventor's certificat	e, or PCT International Application	on, filed by me or my assign
disclosing th	e subject matter claimed in	this application and having a filing	date (1) before that of the appli	cation on which priority is claimed	Or (2) if no priority claime
before the fil	ing date of this application				
DRIOR EOE	REIGN APPLICATION (S)		Date first laid-	Date Patented	
Number	Country	Day/MONTH/Year filed	open or published	or Granted	Priority NOT Claime
- Tannoon	<u></u>				
09/361122	us	27 TH July 1999			
defined in 3 application:	7 C.F.R 1 56 which became	ed in such prior applications, I acknowled a vailable between the filing date of	of each such prior application a	nd the national or PCT internation	nal filing date of this
• • • • • • • • • • • • • • • • • • • •					Priority NOT Claim
PRIOR U.S.	PROVISIONAL, NON PRO	VISIONAL AND/OR PCT APPLIC	ATION (S)	Status nding, abandoned, patented	Priority NOT Claime
Application	No. (series code/serial no	DavIMONTHIYea	ir <u>Filed</u> <u>Fel</u>	iumg, abandoned, patented	
I hereby dec	lare that all statements mad	de herein of my own knowledge are	true and that all statements ma	ade on information and belief are	believed to be true, and
further that t	hese statements were mad	e with the knowledge that wilful fals	se statements and the like so m	ade are punishable by fine or imp	orisonment, or both, under
Section 100	1 of Title 16 of the United S	tates Code and that such wilful fals	e statements may jeopardize tr	e validity of the application of all	y paterit issued triefeon
		LLP, Intellectual Property Group, t	telephone number (202) 961-30	00 (to whom all communications	are to be directed), and
And I hereby	y appoint Pilisbury Winthrop	with USPTO Customer No 909 (se	e below label) individually and	collectively my attorney to prosec	cute this application and to
transact all l	augunoce in the Datent and "	Frademark Office connected therew	with and with the resulting paten	t and I hereby authorize them to	gelete from that Customer
Names of no	ersons no longer with their f	irm to add new persons of their Fir	m to that Customer No , and to	act and rely on instructions from	and communicate directly
the person/a	issignee/attorney/firm/organ	nization who/which first sends/sent	this case to them and by whom	/which I hereby declare that I hav	e consented after full
disclosure to	be represented unless/unt	il I instruct the above Firm and/or a	in attomey of that Firm in writing	to the contrary	
			00909		
		01 1 1			
		/ harke to		Date: 20 Dec -	2001
	TOR'S SIGNATURE	Mander of the	ma	LERMAN	2007
Name		HARLES U			
				amily Name USA	
Residence	Newtown Ne	wten Square	Pennsylvania		Ottoranabin
		City	State/Foreign Country	Country of	Cıtızenship
Mailing Addr		llow Road Newton Square Pe	nnsylvania 19073 3138		
(Include Zip	Code)	Newtown			

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

pplication deficien	cies found during	scanning:	
□ Page(s)	of		were not present
for scanning.		(Document title)	
□ Page(s)	of		were not present
for scanning.		(Document title)	

Some having fine are very dank