Cvičení z logiky 1

Marta Vomlelová

Výklad:

https://dl1.cuni.cz/course/view.php?id=10297

skupiny 22vomSt, 22vomPa

16.11.2022 resp. 11.11.2022 a poslední cvičení písemky 45 min, pak výklad.

za aktivní účast trochu bodů navíc.

Konzultace: Středa 13:00-13:45 v S303 nebo po domluvě e-mailem.

Výklad: formule, logické spojky

- priorita:
 - o nejnižší → ↔
 - & ∧ ∨
 - ∘ nejvyšší ¬
- Implikace je ZPRAVA asociativní

0a) Uzávorkujte formuli, aby byla zřejmá priorita a asociativita operací

$$(p->(q->(r->((\neg s) \& q))))$$

0b) nakreslete vytvořující strom pro uvedenou formuli. # (viz přednáška)

- 1. Sestrojte pravdivostní tabulky pro následující formule:
- (tj. Určete pravdivostní hodnotu pro všechna možná ohodnocení prvovýroků)
- a) p&q
- b) $p \rightarrow q$
- c) $((p \rightarrow q) \rightarrow p) \rightarrow p$
- d) $\neg (p \lor q) \leftrightarrow \neg p \& \neg q$
- e) $(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow (p \rightarrow r)$

1) abc

ohodnocení	р	q	p&q	p->q	((p->q)->p)	((p->q)->p
V ₁	0	0	0	1	0	1
V ₄	0	1	0	1	0	1
V ₃	1	0	0	0	1	1
V_4	1	1	1	1	1	1

1) d

р	q	(p ∨ q)	¬(p ∨ q)	¬p&¬q	$\neg(p \lor q) \leftrightarrow (\neg p \& \neg q)$
0	0	0	1	1	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	0	0	1

e)

p	q	r	$(p \rightarrow (q \rightarrow r))$	$(p \rightarrow q)$	$(p \rightarrow r)$	$(p \rightarrow q) \rightarrow (p \rightarrow r)$	$(p \rightarrow (q \rightarrow r)) \rightarrow (p \rightarrow q) \rightarrow (p \rightarrow r)$
0	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1
1	0	0	<u>1</u>	0	0	1	1
1	1	0	0	1	0	0	1
0	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	1	1	0	1	1	1
1	1	1	1	1	1	1	1

Výklad: Vyrok je

splněn, pravdivý, lživý (sporný), nezávislý, splnitelný, ekvivalentní.

Model jazyka nad P je ohodnocení proměnných z P. Výrok v modelu M(P) pravdivý, lživý, sporný, ...

Model teorite T: ohodnocení, pro která jsou všechny výroky v T pravdivé.

Tautologie – pravdivá ve všech modelech jazyka.

Výroky jsou logicky ekvivalentní, pokud mají stejné modely.

2. V počítačové hře jste se dostali na místo se třemi bednami. Víte, že nejvýše

jeden z nápisů je pravdivý. Kde je klíč?

zlatá: Klíč není v této skříňce.

stříbrná: Klíč není v olověné skříňce.

olověná: Klíč je v této skříňce.

2) Pravdivost výroků na skřínkách pro jednotlivé možnosti polohy klíče:

klíč je ve:	Z:Klíč není v této skříňce.	S:Klíč není v olověné skříňce.	O:Klíč je v této skříňce.	
zlatá	0	1	0	jeden pravdivý
stříbrná	1	1	0	dvě pravdy
olověná	1	0	1	dvě pravdy

tj. klíč je ve zlaté skřínce.

3. V další místnosti víte, že právě jeden z nápisů je pravdivý. Kde je klíč?

zlatá: Klíč je ve stříbrné skříňce. stříbrná: Klíč je v olověné skříňce. olověná: Klíč je v této skříňce.

3)Pravdivost výroků na skřínkách pro jednotlivé možnosti polohy klíče:

-/· · · · · · · · · · · · · · · · · · ·					
klíč je ve:	Z:Klíč je ve stříbrné skříňce.	S:Klíč je v olověné skříňce.	O: Klíč je v této skříňce.		
zlatá	0	0	0	žádný pravdivý	
stříbrná	1	0	0	jeden pravdivý	
olověná	0	1	1	dvě pravdy	

tj. klíč je ve stříbrné skřínce.

4. U předchozí úlohy víme jen, že nejvýše jeden z nápisů je pravdivý. Kde je klíč?

V tabulce 3) vidíme, že klíč může být ve zlaté i stříbrné skříňce, nemáme dost informací pro rozhodnutí (výrok 'klíč je ve zlaté skříňce' je nezávislý v teorii dostupných informací, může a nemusí být pravdivý).

5. Na rozcestí dvou cest stojí dva bratři, z nichž jeden vždy mluví pravdu a druhý

nikdy pravdu neřekne, avšak vy nevíte, který je který. Chcete se jich zeptat, která z cest vede k cíli vašeho putování.

- a) Pokud smíte položit dvě otázky, je vaše úloha jednoduchá.
- b) Smíte položit jen jednu otázku.

a)

levý bratr je pravdomluvný	levá cesta vede k cíli	Levý odpoví na: 5=5?	Levý odpoví na: Vede levá cesta k cíli?
0	0	0	1
0	1	0	0
1	0	1	0
1	1	1	1

Na základě druhých dvou sloupců dokážeme odvodit, zda 'levá cesta vede k cíli'.

b) Ukaž mi na cestu, kterou by mi NEporadil tvůj bratr, kdybych se ho zeptal, kudy jít? - a po té se vydám Jakou cestu by mi poradil ten druhy?

V tabulce: Levý bratře, co odpoví pravý bratr, na otázku, jestli levá cesta vede k cíli?

	<u> </u>		
levý bratr je	levá cesta vede k cíli	Pravý bratr odpoví	Levý odpoví na:
pravdomluvný		na 'Vede levá cesta	Levý bratře, co odpoví pravý bratr, na
		k cíli?'	otázku, jestli levá cesta vede k cíli?
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Z posledního sloupce dokážeme odvodit, zda 'levá cesta vede k cíli' - odpověď vždy znegujeme.

Výklad: Příklady tvrzení v jazycích různých řádů

"Nebude-li pršet, nezmoknem. A když bude pršet, zmokneme, na sluníčku zase uschneme." výrok

$$(\neg p \rightarrow \neg z) \land (p \rightarrow (z \land u))$$

"Existuje nejmenší prvek." 1. Řádu ∃x ∀y (x ≤ y)

Axiom indukce. 2. řádu

$$\forall X ((X(0) \land \forall x(X(x) \rightarrow X(x + 1))) \rightarrow \forall x X(x))$$

"Libovolné sjednocení otevřených množin je otevřená množina." 3. řádu

$$\forall X \forall Y ((\forall X(X(X) \rightarrow O(X)) \land \forall X(Y(X) \leftrightarrow \exists X(X(X) \land X(X)))) \rightarrow O(Y))$$

- 6. Formalizuite věty:
- a) Každý programátor umí C#.
- a) **∀**p (programator(p)) => umí(p,c#))
- b) Každý programátor umí alespoň jeden jazyk.
- b) $\forall p$: (programator(p) => $\exists j (jazyk(j)) \land umi(p,j)$)

NE!!!!!!!!! \forall p \exists j: (programator(p) \land (jazyk(j))=> umi(p,j))

Za j zvolím programátora

∃j (jazyk(j)->false) # pokud existuje něco, co není jazyk, je formule pravdivá.

- b → ∀p∃j (jazyk(j) & (programator(p) => umi(p,j)))
- c) Každý programátor umí alespoň dva jazyky.
- c)(\forall p)(\exists j1)(\exists j2) (jazyk(j1)&jazyk(j2) \land ¬(j1=j2) \land ((programator(p) =>umi(p,j1)&umi(p,j2)))

d) Každý programátor, který má rád Linux, nemá rád Windows.

- $(\forall p)$ (programator(p) => \neg (MaRad(p, Linux) \land MaRad(p, Windows))
- $(\forall p)$: ((programator (p) \land marad(p, Linux)) -> (\neg marad(p, Windows)))

DÚ: Formalizujte v jazyce s ≤ a rovností tvrzení

- a) x je minimální prvek
- b) x je nejmenší prvek
- c) x má bezprostředního předchůdce
- d) každé dva prvky mají největšího společného předchůdce.

Výklad: Univerzum je vždy neprázdné (z definice)

(∀x p(x))-> (∃x p(x)) # pravda jen v neprázdném univerzu, proto univerzum vždy neprázdné

7. Pro dané n v jazyce s rovností formalizujte:

a) existuje nejvýše n prvků

∃m ∀k (k=m)#nejvýše jeden prvek

(∃m) (∃n) ¬(m = n)#existují alespoň dva různé prvky

 $(\exists m) (\exists q) \neg (m = q) \land \neg (\exists p)((p <> m) \land (p <> q)) \# právě dva prvky$

 $(\exists m) (\exists p) (\forall k) ((k = m) \lor (k = p))$ # nejvýše dva prvky

tudy ne: $(\exists m)(\exists n)(\neg (m = n)) \lor (m = n))$ # pravdivé vždy, i při více prvků

$$(\exists m_1)(\exists m_2)...(\exists m_n) \ (\forall k) \ ((k = m_1) \lor (k = m_2) \lor ... \lor (k = m_n))$$
#ano

b) existuje alespoň n prvků

$$(\exists m_1)(\exists m_2)...(\exists m_n)(\neg (m_1 = m_2)) \land (\neg (m_1 = m_3)) \land ... \land (\neg (m_{n-1} = m_n))$$

$$\neg((\exists m_1)(\exists m_2)...(\exists m_{n\text{--}1})\ (\forall k)\ ((k=m_1)\ \lor (k=m_2)\ \lor ...\ \lor (k=m_{n\text{--}1})))\ \#jde\ taky$$

nelze: ∃m∀n (|{ (m,n) non m = n }| >= n-1) #nemáme přirozená čísla, natož mohutnost množin

```
c) existuje právě n prvků  
a) \land b)  
nebo  
 (\exists m_1)(\exists m_2)...(\exists m_n) \ (\forall k) \ (((k=m_1) \lor (k=m_2) \lor ... \lor (k=m_n)) \land (\neg (m_1=m_2)) \land (\neg (m_1=m_3)) \land ... \land (\neg (m_{n-1}=m_n))) )
```

- d) lze vyjádřit "existuje nekonečně mnoho prvků" (proč ne, případně jak ano)
- 8. Hra dvou hráčů. Mějme konečnou hru dvou (střídajících se) hráčů. Hra končí po n kolech výhrou jednoho ze dvou hráčů označených X a Y, přičem X začíná. Hra je zadána formulí $\phi(x_1, y_1, ..., x_n, y_n)$ vyjadřující, že ve hře s tahy $x_1, y_1, ..., x_n, y_n$ vyhrává X. Pomocí kvantifikátorů sestrojte formuli vyjadřující
- a) "X nemůže prohrát",
- b) "Y nemůže prohrát",
- c) "X má vyhrávající strategii",
- d) "Y má vyhrávající strategii".
- 9. Vyjádřete formulí 1. řádu v grafu
- a) v grafu existuje cesta délky 4
- b) v grafu existuje kružnice délky 4
- c) u a v mají společného souseda
- d) existují tři nezávislé hrany
- e) existuje cesta mezi u a v délky n, n > 0 je předem dané
- f) v grafu existuje vrchol stupně 1
- g) graf je regulární stupně 3 (všechny uzly stupně 3)
- h) existuje vrcholové pokrytí velikosti n, n > 0 je předem dané.
- 10. Vyjádřete formulí 2. řádu v grafu
- a) existuje bipartitní rozklad
- b) existuje obarvení grafu třemi barvami
- c) graf má tvar vrstveného grafu s n vrstvami, kde n > 0 je předem dané
- *) existuje cesta mezi u a v
- 11. Formalizujte s relací dělitelnosti m|n (m dělí n) v teorii množin:
- a) z je společný dělitel x a y
- b) z je největší společný dělitel x a y
- c) z je největší společný dělitel všech čísel z množiny X
- 12. Formalizuite v jazyce s relacemi P(x) "x je prvočíslo" a R(x,v)
- a) pro nějaké prvočíslo x máme prvek y, že platí R(x,y)
- b) pro každé prvočíslo x máme prvek y, že platí R(x,y)
- 13. K rozmyšlení Lze obarvit čísla od 1 do n dvěma barvami tak, že neexistuje monochromatické řešení rovnice a+b=c s $1 \le a < b < c \le n$? Sestrojte výrokovou formuli ϕ_n (pokud možno v CNF) pro n=8, která je splnitelná, právě když to lze.

Nainstalujte glucose nebo sat4j.org

java -jar org.sat4j.core.jar demo.txt

Příště: konjunktivní a disjunktivní normální forma, univerzální množiny spojek.

Symboly ke kopírování: $\neg \land \lor \rightarrow \leftrightarrow \forall \exists \le \ge \in$