AΘHNA 5 - 4 - 2022

1η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "Συστήματα Μικροϋπολογιστών"

(παράδοση μέχρι 19 Απριλίου 2022)

Ασκήσεις προσομοίωσης

Να γίνει έλεγχος των προγραμμάτων με τη χρήση του προσομοιωτή του εκπαιδευτικού συστήματος μLAB. Περιγραφή του συστήματος, το πρόγραμμα προσομοίωσης, τις οδηγίες χρήσης και εγκατάστασης θα βρείτε στο site του μαθήματος.

(Οι 3 ασκήσεις που ακολουθούν είναι όλες ασκήσεις προσομοίωσης - να υλοποιηθούν και να δοκιμαστούν στο πρόγραμμα προσομοίωσης του εκπαιδευτικού συστήματος μLAB)

1 ΑΣΚΗΣΗ: Σε ένα μΥ-Σ 8085 να γραφεί σε assembly το παρακάτω πρόγραμμα που δίνεται σε γλώσσα μηχανής και <mark>να εξηγηθεί η λειτουργία του</mark>:

06 01 **3A** 00 20 **FE** 00 **CA** 13 08 **1F DA** 12 08 **04 C2** 0A 08 **78 2F 32** 00 30 **CF**

Το πρόγραμμα υποθέτουμε ότι είναι φορτωμένο στη μνήμη με αρχή τη διεύθυνση 0800 και δίνεται για διευκόλυνσή σας ότι οι bold κωδικοί είναι εντολές.

Η διαδικασία της αποκωδικοποίησης (disassembly) θα διευκολυνθεί με τη χρήση του πίνακα 2 του παραρτήματος 2 των σημειώσεων σελ. 98-99, Εισαγωγή στο Εκπαιδευτικό Σύστημα mLAB. Να δοθεί το πρόγραμμα σε assembly (και με συμβολικές διευθύνσεις). Επίσης α γίνει και το διάγραμμα ροής του προγράμματος 📆 αλλαγές πρέπει να γίνουν για να έχουμε συνεχή λειτουργία του παραπάνω προγράμματος, δηλαδή να επαναλαμβάνεται χωρίς τέλος;

Υπόδειζη: Μπορείτε να ακολουθήσετε τη διαδικασία της εφαρμογής 1 της 1^{ης} εργαστηριακής άσκησης (σελ. 36) των σημειώσεων - Εισαγωγή στο Εκπαιδευτικό Σύστημα mLAB.

2^η ΑΣΚΗΣΗ: Να γραφεί σε assembly πρόγραμμα που να απεικονίζει, στη θύρα εξόδου 3000 Hex, <mark>ένα</mark> αναμμένο led το οποίο να κινείται αριστερά (από το LSB προς το MSB) και όταν φτάνει στο όγδοο (MSB) να κινείται δεξιά (προς το LSB) κ.ο.κ. (θέσεις led 1234567876543212... κ.λπ.) όταν το LSB της θύρας των dip switch (θύρα εισόδου 2000 Hex) είναι ΟΝ. Αλλιώς, οποτεδήποτε είτε στην αρχή είτε ενδιάμεσα, γίνεται OFF το LSB των dip switch, το led να κάνει κυκλική κίνηση (θέσεις led 1234567812... κ.λπ.). Τέλος, τ<mark>ο 2° LSB της θύρας των dip switch όταν γίνεται ΟΝ, το led να σταματάει</mark> εκεί που βρίσκεται. Στη συνέχεια, όταν ξαναγίνει OFF να συνεχίζεται η κίνησή του από το σημείο που είγε μείνει, με κατεύθυνση σύμφωνα με το LSB των dip switch.

Να γίνει χρήση της θύρας εισόδου dip switch (θέση μνήμης 2000 Hex) και της θύρας εξόδου των LED (που αντιστοιχεί στη θέση μνήμης 3000 Hex – προσοχή στην αντίστροφη λογική απεικόνισης). (Διάρκεια ανάμματος ~1/2 sec).

Μπορείτε να εισάγετε χρονοκαθυστέρηση μέσω της ρουτίνα DELB (προκαλεί μεταβλητή καθυστέρηση ίση με την τιμή του ζεύγους BC επί 1 ms) που υπάρχει στο παράρτημα 1 (σελ. 91: των σημειώσεων -Εισαγωγή στο Εκπαιδευτικό Σύστημα mLAB). Για να κάνετε έλεγχο ορθότητας υπάρχουν 2 τρόποι: α. βηματική εκτέλεση του προγράμματός σας (προσοχή να έχετε αντικαταστήσει τη ρουτίνα DELB με 3 εντολές NOP), β. για να ελέγξετε σε ένα επιλεγμένο σημείο του προγράμματος την ορθότητα λειτουργίας μέχρι εκεί, εισάγετε την εντολή CF (αντιστοιχεί σε RST 1, σελ. 60: των σημειώσεων -Εισαγωγή στο Εκπαιδευτικό Σύστημα mLAB) που προκαλεί επιστροφή στο monitor πρόγραμμα όπου μπορείτε να εξετάσετε τιμές καταχωρητών και θέσεων μνήμης.

Παρατήρηση: Να σημειωθεί ότι χρειάζεται να δίνεται στην αρχή ενός προγράμματος η εντολή ΙΝ 10Η που αίρει την προστασία της μνήμης του εκπαιδευτικού συστήματος μLAB επιτρέποντας έτσι πρόσβαση για αποθήκευση μεταβλητών και δεδομένων οπουδήποτε στην διαθέσιμη μνήμη RAM του συστήματος (0800 – 0BFF Hex) βλ. χάρτη μνήμης μLAB - σελ. 7 των σημειώσεων - Εισαγωγή στο Εκπαιδευτικό Σύστημα mLAB. Αλλιώς επιτρέπεται πρόσβαση μόνο στην περιοχή των διευθύνσεων 0W0 - 0BAF Hex (χώρος δεδομένων χρήστη).

3η ΑΣΚΗΣΗ: Να επεκταθεί το 4ο παράδειγμα που αφορά στη μετατροπή δυαδικού αριθμού των 8 bits σε δεκαδική μορφή 2 ψηφίων (σελ. 84 του βιβλίου) χωρίς τον περιορισμό να είναι μικρότεροι του 100₁₀. Τα 8 bit του δυαδικού αριθμού υποθέτουμε δίνονται από τα dip switches της πόρτας εισόδου (θέση μνήμης 2000 Hex). Το αποτέλεσμα να εμφανισθεί στην πόρτα εξόδου των LED (που αντιστοιχεί στη θέση 3000 Hex) ως εξής: οι μονάδες στα 4 LSB και οι δεκάδες 4 MSB. Αναφορικά με την απεικόνιση των αριθμών, η σύμβαση να είναι: αναμμένο =>1, σβηστό=>0.

Στην περίπτωση που ο αριθμός είναι μεγαλύτερος του 99 και μικρότερος του 200, να εμφανίζεται ο αριθμός x-100. Αν ο αριθμός είναι μεγαλύτερος του 199, να αναβοσβήνουν συνεχώς (μέχρι να αλλάξει ο αριθμός) τα 4 LSB των LED. Επιλέξτε ένα ρυθμό που να είναι ορατός. Το πρόγραμμα να είναι συνεχούς λειτουργίας.

Παρατήρηση: Τα προγράμματα να συνοδεύονται υποχρεωτικά στα κυριότερα σημεία τους από **σύντομα** σχόλια.

Θεωρητική Άσκηση

4^η ΑΣΚΗΣΗ: Να μελετηθεί από τεχνικο-οικονομική άποψη η κατασκευή μιας φορητής ηλεκτρονικής συσκευής με τη χρήση τριών διαφορετικών τεχνολογιών:

- Χρήση διακριτών στοιχείων και Ι.C. όπως μικροελεγκτών, περιφερειακών, μνημών κλπ. Τοποθετημένα σε μια σε μια σχετικά μεγάλη πλακέτα. Το αρχικό κόστος σχεδίασης θεωρούμε ότι είναι 15.000€. Το κόστος των Ι.C. ανά τεμάχιο θεωρούμε ότι είναι 10€ και η κατασκευή της πλακέτας με την συναρμολόγησή της επίσης 10€ ανά τεμάχιο.
- Χρήση FPGAs και μικρού αριθμού περιφερειακών τοποθετημένα σε μια σε μια πλακέτα. Αρχικό κόστος σχεδίασης: 7.000€, κόστος ανά τεμάχιο των Ι.С.: 50€, κόστος πλακέτας ανά τεμάχιο και συναρμολόγησης: 10€.
- Σχεδίαση ειδικού SoC-1 με μια μικρή πλακέτα. Αρχικό κόστος σχεδίασης: 47.000€, κόστος ανά τεμάχιο των I.C.: 2€, κόστος πλακέτας και συναρμολόγησης ανά τεμάχιο: 2€.
- Σχεδίαση ειδικού SoC-2 με μια πολύ πιο μικρή πλακέτα. Αρχικό κόστος σχεδίασης: 61.000€, κόστος ανά τεμάχιο των Ι.C.: 1€, κόστος πλακέτας και συναρμολόγησης ανά τεμάχιο: 1€.

Να δοθούν οι σχέσεις και να σχεδιαστούν οι αντίστοιχες καμπύλες κόστους ανά τεμάχιο για τις 4 τεχνολογίες. Να υποδειχθούν οι τέσσερις περιοχές (αριθμού τεμαχίων) που είναι συμφερότερες (χαμηλότερου κόστους) για την κάθε μία τεχνολογία. Επίσης διερευνήστε για ποια τιμή κόστους και κάτω ανά τεμάχιο των Ι.C. στην τεχνολογία των FPGAs (αντί των 50€) θα μπορούσε να εξαφανιστεί η επιλογή της 1^{ης} τεχνολογίας; Σχολιάστε τα αποτελέσματα.

Υπόδειζη: Κόστος= Αρχικό + (Κόστος-ΙCs + Κόστος-κατασκευής)*Πλήθος τεμαχίων

Παρατηρήσεις:

Η παρούσα 1^η ομάδα ασκήσεων θα πρέπει να παραδοθεί ηλεκτρονικά (upload στο site του μαθήματος) μέχρι την **Τρίτη 19 Απριλίου 2022**. Οι ασκήσεις παραδίδονται κατά ομάδες των δυο (2) ή του ενός (1) ατόμου χωρίς αυτό να έχει επίπτωση στο βαθμό. Στην 1^η περίπτωση θα πρέπει να γίνεται upload και από τους 2 σπουδαστές η ίδια αναφορά και με τα δυο ονόματα στην 1^η σελίδα της αναφοράς. Αλλιώς θα θεωρείται ότι δεν έχει παραδοθεί. Σε ξεχωριστά αρχεία να είναι οι κώδικες των προσομοιώσεων. Τα αρχεία με τους κώδικες και η αναφορά να συμπιεστούν σε ένα αρχείο που θα γίνει upload. Οι αναφορές σας να είναι σύντομές και περιεκτικές. Τα προγράμματα να έχουν σύντομα σχόλια όπου κρίνετε ότι χρειάζονται για να κατανοηθεί η λειτουργία τους.

Ο βαθμός από τις Ομάδες Ασκήσεων, που συνολικά θα δοθούν, θα ληφθεί υπόψη κατά 20%. Η Εργαστηριακή Άσκηση θα ληφθεί υπόψη κατά 10% και ο βαθμός της γραπτής εξέτασης κατά 70% στην διαμόρφωση του τελικού βαθμού.

Διευκρινίζεται ότι όσοι περσινοί σπουδαστές παρέδωσαν τις Ομάδες των Ασκήσεων δεν χρειάζεται να τις παραδώσουν φέτος (αυτές ισχύουν για 1 έτος).

Σημείωση: Αν θέλετε να εγκαταστήσετε το mLab σε σύστημα linux μπορείτε να κάνετε χρήση της Virtual Machine στο Oracle Virtualbox.