Quantum Monte Carlo Simulations of the Hubbard Model

Application to an interacting electronic systems in 2D: the TMD nanoribbon

Francisco M. O. Brito, João M.V.P. Lopes, Eduardo V. Castro May 18, 2018

Beyond graphene: TMD nanoribbons

Graphene's drawbacks

Single layer graphene is gapless

...while bilayer graphene has only a limited gap. A tunable gap is desirable in electronics applications.

Superconductivity?

A superconducting phase has been predicted for graphene.

However, it is hard to achieve. It remains challenging to use it for applications.

TMD nanoribbons: a possible solution

A nanoribbon consists of a 2D layer that is (nearly) infinitely long on one direction, but not on the other, so that edge states become relevant, and can be controlled to yield interesting properties.

Intrinsic gap \rightarrow better switching

Advantageous to design electronic components.

Topological superconductivity

Electron interactions could be responsible for the appearance of a promising superconducting phase.

Figure 1: Fabrication of TMD nanoribbons. (from Chen et al. 2017)

$e^- - e^-$ interactions and magnetism of metallic zigzag edges

Origin of magnetism

A high density of low-energy electronic states is localized at the zigzag edges, decaying quickly in the bulk, which suggests the possibility of magnetic ordering.

 $MF \ Hubbard \rightarrow magnetic moments localized at the edges.$

Figure 2: Left: 2 possible edges of a nanoribbon in a honeycomb lattice. Right: Accumulation of e^- edge states, leading to magnetism. (from *Yazyev 2010*)

Determinantal / Auxiliary Field

QMC

Back to classical Monte Carlo

Map the quantum d-dimensional problem to a classical d+1-dimensional problem, at the expense of introducing an auxiliary field ${\bf h}$.

Decoupling the fermions

Establish a *formal correspondence* between a system of *interacting fermions* and an ensemble of *non interacting fermion systems coupled to fluctuating external potentials.*

Computational complexity and the

sign problem

- Fermion sign problem \rightarrow exponential increase of the computing time with the number of particles. Solving the sign problem would imply NP = P (million dollar question).
- Which models allow a partial solution of the sign problem?
 Does the 2D fermionic Hubbard model belong to this class?
- Ultracold atoms in an optical lattice? → quantum simulator to study the phase diagrams of correlated quantum systems.

Why QMC? Emergence from strong

electron correlations

Closing remarks

- QMC accurately captures the effects of correlations in many-fermion systems.
- Some properties, like superconductivity, arise precisely due to such effects.
- This state-of-the-art method allows us to study the phases arising within 2D nanostructures, which have numerous applications, namely in healthcare and electronics.

Acknowledgements

The work at CFP is suported by the FCT grant UID/FIS/04650/2013.

