計量分析 2:復習テスト 2

学籍番号		
	2023年10月3日	

注意:すべての質問に解答しなければ提出とは認めない.正答に修正した上で,復習テスト $1\sim8$ をまとめて左上でホチキス止めし,中間試験実施日(11 月 28 日の予定)に提出すること.

- 1. $\vec{r} p \hat{e} (x_1, ..., x_n) \hat{e}$
 - (a) $y_i := ax_i + b$ と一次変換すると,

$$\mu_y = a\mu_x + b$$
$$\sigma_y^2 = a^2 \sigma_x^2$$

となることを示しなさい.ただし μ_x,μ_y は平均, σ_x^2,σ_y^2 は分散を表す.

(b) 上の結果を利用して, $z_i := (x_i - \mu_x)/\sigma_x$ と標準化すると,平均が 0,分散が 1 となることを示しなさい.

- 2. 1 変量データ (x_1,\ldots,x_n) の平均を μ , 分散を σ^2 とする.
 - (a) σ^2 の定義を式で書きなさい.
 - (b) σ^2 が次のようにも書けることを示しなさい.

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \mu^2$$

- 3. 2 変量データ $((x_1, y_1), \dots, (x_n, y_n))$ の平均を μ_x, μ_y , 分散を σ_x^2, σ_y^2 , 共分散を σ_{xy} , 相関係数を ρ_{xy} とする.
 - (a) σ_{xy} の定義を式で書きなさい.
 - (b) σ_{xy} が次のようにも書けることを示しなさい.

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \mu_x \mu_y$$

- (c) ρ_{xy} の定義を式で書きなさい.
- (d) ρ_{xy} が次のように書けることを示しなさい.

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

解答例

1. (a)

$$\mu_{y} := \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (ax_{i} + b)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} ax_{i} + \sum_{i=1}^{n} b \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} ax_{i} + \frac{1}{n} \sum_{i=1}^{n} b$$

$$= a \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} + b$$

$$= a\mu_{x} + b$$

$$\sigma_{y}^{2} := \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \mu_{y})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} [(ax_{i} + b) - (a\mu_{x} + b)]^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} [a(x_{i} - \mu_{x})]^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} a^{2}(x_{i} - \mu_{x})^{2}$$

$$= a^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu_{x})^{2}$$

$$= a^{2} \sigma_{x}^{2}$$

(b) $z_i:=(x_i-\mu_x)/\sigma_x=(1/\sigma_x)x_i-\mu_x/\sigma_x$ と書けるから, $a=1/\sigma_x$, $b=-\mu_x/\sigma_x$ と置くと,

$$\mu_z = a\mu_x + b$$

$$= \frac{1}{\sigma_x}\mu_x - \frac{\mu_x}{\sigma_x}$$

$$= 0$$

$$\sigma_y^2 = a^2\sigma_x^2$$

$$= \left(\frac{1}{\sigma_x}\right)^2\sigma_x^2$$

$$= 1$$

2. (a)

$$\sigma^2 := \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

(b)

$$\sigma^{2} := \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\mu + \mu^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\mu + \sum_{i=1}^{n} \mu^{2} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} 2x_{i}\mu + \frac{1}{n} \sum_{i=1}^{n} \mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - 2\mu \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} + \mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - 2\mu^{2} + \mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

3. (a)

$$\sigma_{xy} := \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

(b)

$$\sigma_{xy} := \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - x_i \mu_y - \mu_x y_i + \mu_x \mu_y)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \mu_y - \sum_{i=1}^{n} \mu_x y_i + \sum_{i=1}^{n} \mu_x \mu_y \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \mu_y - \frac{1}{n} \sum_{i=1}^{n} \mu_x y_i + \frac{1}{n} \sum_{i=1}^{n} \mu_x \mu_y$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \cdot \mu_y - \mu_x \cdot \frac{1}{n} \sum_{i=1}^{n} y_i + \mu_x \mu_y$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \mu_x \mu_y - \mu_x \mu_y + \mu_x \mu_y$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \mu_x \mu_y$$

(c)

$$\rho_{xy} := \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu_x}{\sigma_x} - \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \mu_x}{\sigma_x} \right) \left(\frac{y_i - \mu_y}{\sigma_y} - \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \mu_y}{\sigma_y} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \mu_x}{\sigma_x} \frac{y_i - \mu_y}{\sigma_y}$$

(d)

$$\rho_{xy} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \mu_x}{\sigma_x} \frac{y_i - \mu_y}{\sigma_y}$$

$$= \frac{(1/n) \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sigma_x \sigma_y}$$

$$= \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$