وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا قَلِيلًا

Ain Shams University – Faculty of Engineering – ECE Dept. – Integrated Circuits Lab. Dr. Hesham Omran

Analog IC Design Lab 05

Simple vs Low Compliance Cascode Current Mirror

Intended Learning Objectives

In this lab you will:

- Design and simulate low-voltage and simple current mirrors.
- Compare low-voltage and simple current mirrors.
- Learn how to use hierarchical design.

Part 1: Sizing Chart

1) We can show that the intrinsic gain of a MOSFET is given by

$$|A_v| \approx g_m r_o = \frac{2I_D}{V_{ov}} \times \frac{V_A}{I_D} = \frac{2V_A}{V_{ov}}$$

 $|A_v|\approx g_m r_o=\frac{2I_D}{V_{ov}}\times \frac{V_A}{I_D}=\frac{2V_A}{V_{ov}}$ Interestingly, the gain only depends on λ and V_{ov} . However, to derive this expression we used $g_m=0$. $\frac{2I_D}{V_{ov}}$ which is based on the square-law. For a real MOSFET, if we compute V_{ov} and $\frac{2I_D}{g_m}$ they will not be equal. Let's define a new parameter called V-star (V^*) which is calculated from actual simulation data using the formula

$$V^* = \frac{2I_D}{g_m} \leftrightarrow g_m = \frac{2I_D}{V^*}$$

For a square-law device, $V^* = V_{ov}$, however, for a real MOSFET they are not equal. The actual gain is now given by

$$|A_v| \approx \frac{2V_A}{V^*}$$

The lower the V^* the higher the gain, but the larger the area and the lower the speed. An often used sweet-spot that provides good compromise between different trade-offs is $V^* = 200mV$.

2) We want to design current mirrors with the parameters below.

Parameter	0.13um CMOS	0.18um CMOS
L	1μm	1μm
<i>V</i> *	125 <i>mV</i>	200mV
Supply	1.2 <i>V</i>	1.8 <i>V</i>
Current consumption	20μΑ	20μΑ

3) The remaining variable in the design is to calculate W. Since the square-law is not accurate, we cannot use it to determine the sizing. Instead, we will use a sizing chart generated from simulation. Create a testbench for NMOS transistor as shown below (we will use both NMOS and PMOS in this **lab**). Use $W=10\mu m$ (we will understand why shortly).

- 4) Sweep VGS from 0 to $\approx V_{TH} + 0.4V$ with 10mV step. Set $V_{DS} = V_{DD}/2$.
- 5) We want to compare $V^* = 2I_D/g_m$ and $V_{ov} = V_{GS} V_{TH}$ by plotting them overlaid. Use the calculator to create expressions for V^* and V_{ov} . You can save the expressions to reuse them later.
- 6) Plot V^* and V_{ov} overlaid vs VGS. Make sure the y-axis of both curves has the same range. From the chart, you will notice that in the region of moderate inversion, V^* and V_{ov} are relatively close to each other (i.e., square-law is relatively valid). For strong inversion (large V_{ov}) or weak inversion (near-threshold and subthreshold operation) the behavior is quite far from the square-law.
- 7) An often used sweet-spot that provides good compromise between different trade-offs is $V^* = 200mV$. On the V^* and V_{ov} chart locate the point at which $V^* = 200mV$. Find the corresponding V_{ov} 0 and V_{GS} 0.
- 8) Plot I_D , g_m , and g_{ds} vs V_{GS} . Find their values at V_{GSO} . Let's name these values I_{DX} , g_{mX} , and g_{dsX} .
- 9) Now back to the assumption that we made that $W=10\mu m$. This is not the actual value that we will use for our design. But the good news is that I_D is always proportional to W irrespective of the operating region and the model of the MOSFET (regardless square-law is valid or no). Thus, we can use ratio and proportion (cross-multiplication) to determine the correct width at which the current will be I_{DO} as given in the specs. Calculate W as shown below.

W	I_D
10μm	$I_{DX} \ @V_Q^*$ (from the chart)
?	$I_{DQ}=20\mu A$ (from the specs)

10) Now we are almost done with the design of the amplifier. Note that g_m is also proportional to W as long as V_{ov} is constant. On the other hand, $r_o = 1/g_{ds}$ is **inversely** proportional to W (I_D) as long as L is constant. Before leaving this part, calculate g_{mQ} and g_{dsQ} using ratio and proportion (cross-multiplication).

PART 2: Current Mirror

- 1) Create a new schematic and name it "lab_05_ws_cm". Construct the low compliance current mirror circuit shown below.
- 2) Construct the circuit shown below. Add labels (IBIN, IBOUT, AGND, AVDD) to nets (wires) using the hotkey "I", then create ports using the hotkey "p" or using the toolbar.
 - → Cadence Hint: For W and L we use pPar("VariableName"), which passes the variable to the upper level of hierarchy. The variables will appear when you instantiate the cell as explained below.
- 3) For the wide-swing bias transistor (the magic battery) note that we use longer length (6 * L) as shown below.

- 4) The current mirror takes input current IBIN and generates output current IBOUT = 2*IBIN (note the sizing of transistors in IBOUT branch).
- 5) Create a symbol for the CM (From the menu bar: Add -> Generate Symbol)
- 6) Create a testbench in a higher level of hierarchy as shown below to test the current mirror.
- 7) In the library manager copy the "lab_05_ws_cm" cell and name the new cell "lab_05_simple_cm". Edit the new cell to design another simple current mirror using two PMOS transistors only as shown below. Create a symbol for the simple current mirror. We will compare this simple mirror with the wide swing cascode you have just designed.

- 8) Create a new cell for the testbench schematic "lab_05_cm_tb" to test the two current mirrors.
- 9) When you instantiate the cells, you can set the pPar parameters as shown below.

10) Use IB = 20uA and set the sizing as in Part 1.

Report the following:

- 1) Schematic of the two CMs with DC node voltages clearly annotated at VOUT = VDD/2 (double click the symbol to go to lower level of hierarchy and show the schematic).
- 2) Snapshots showing the following parameters for all transistors at VOUT = VDD/2 (add monitors and filter your monitor). You may summarize the results in a table.

- 3) Check that all transistors have V_{GS} , g_m and g_{ds} as designed in Part 1.
- 4) Are all transistors operating in saturation?
- 5) Perform DC sweep (not parametric sweep) using VOUT = 0:10m:VDD. Report IBOUT vs VOUT for the two CMs overlaid in the same plot.
 - o Comment on the difference between the two circuits.
 - o IBOUT of the simple CM is exactly equal to IBIN*2 at a specific value of VOUT. Why?
- 6) Percent of error in IBOUT vs VOUT (ideal IBOUT should be IBIN*2) for the two CMs in the current mirror operating region (VOUT = 0 to VDD V^*) overlaid in the same plot.
 - o Comment on the difference between the two circuits.

- 7) Rout vs VOUT (take the inverse of the derivative of IBOUT plot) for the two CMs in the current mirror operating region (VOUT = 0 to VDD V^*) overlaid in the same plot. Use log scale on the y-axis. Add a cursor at VOUT = VDD/2.
 - o Comment on the difference between the two circuits.
 - o Does Rout change with VOUT? Why?
- 8) Analytically calculate Rout of both circuits at VOUT = VDD/2. Compare with simulation results in a table.

Lab Summary

In Part 1 you learned:

- How to generate and use design charts for NMOS and PMOS transistors.
- How to design a simple current mirror.
- How to design a low-voltage current mirror.

In Part 2 you learned:

- How to do a hierarchical design in Mentor tools.
- How the output resistance of a simple current mirror changes with the output voltage.
- How the output resistance of a low-voltage current mirror changes with the output voltage.

Acknowledgements