Robot grocery shopping in partially observable settings

Rodrigo Gomes, Xiaomin Wang, Dustin Tran May 13, 2015

MIT, 6.834j Cognitive Robotics

Outline

- 1. Background on POMDPs
- 2. Grocery shopping as planning in a POMDP
- 3. Demo!
- 4. What worked
- 5. What failed

A partially observable Markov decision process (POMDP) is a tuple (S, A, Ω, R, T, O)

- \square *S*: state space
- \Box A: action space
- \square Ω : observation space
- \square $R: S \times A \rightarrow \mathbb{R}$ reward function
- T: transition operator. $T(s' \mid s, a)$ is probability of next state s' given state s and action a
- O: observable operator. $O(o \mid s)$ is probability of observing o given at state s

A POMDP induces an equivalent representation as a *belief MDP* with tuple (B, A, τ, R)

- ☐ *B*: set of belief states over the POMDP states
- \Box A: action space of original POMDP
- o: belief state transition operator

$$\tau(b,a,b') = \sum_{o \in \Omega} P(b' \mid b,a,o) P(o \mid a,b)$$

 \Box $r: B \times A \rightarrow \mathbb{R}$ belief state reward function

$$r(b,a) = \sum_{s \in S} b(s)R(s,a)$$

Implemented MDP solvers:		
implemented MD1 Solvers.		
	Q-learning	
	SARSA	
	R-MAX	
	Thompson sampling	
There are a lot!		
	Function approximations with adaptive basis functions	
	BOSS	
	Spectral methods	
	Skill chaining	

Implemented MDP solvers: Q-learning (Watkins, 1989) SARSA (Rummery and Niranjan, 1994) R-MAX (Brafman and Tennenholtz, 2002) Thompson sampling (Strens, 2000) There are a lot more! Function approximations with adaptive basis functions (Mnih et al., 2013) BOSS (Asmuth et al., 2009) Spectral methods (Boots et al., 2009) Skill chaining (Konidaris and Barto, 2009) . . .

Grocery shopping

Grid World POMDP

Uncertain movement

Can only see around current cell (partially observable)

World is not fully known beforehand

- ☐ Model of how items in the same aisle correlate.
- ☐ Unknown arrangement of aisles
- Unknown arrangement of items within aisles

Grocery shopping

pygame running the visuals		
Every second:		
	Agent provides next action based on current belief state	
	Simulator executes action (errors may happen)	
	Belief state is updated based on transition probabilities	
	Belief state is updated based on observation	
	Belief about the world is updated based on belief state, and	
	observation	
Challenges:		
	Markov assumption is not completely accurate	
	Bias towards increasing probability of most likely states	

Our working solver

We encode a Max Probability MDP

Choose the most likely state from belief state to run value iteration

Our working solver

Value iteration:

$$v_{k+1}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s'} p(s' \mid s, a)[r(s, a, s') + \gamma v_k(s')]$

Failed tasks

- ☐ Continuous state space in belief MDP: Value iteration
 - Thompson sampling
- \Box TD(λ) methods

Most simplified task (GridWorld)

Play with it!

github.com/dustinvtran/bayesrl