GRANICE NIEWŁAŚCIWE CIĄGU

♦ Ciąg liczbowy $\{a_n\}$ jest **rozbieżny** do $-\infty$ (piszemy lim $a_n = -\infty$) wtedy i tylko wtedy, gdy $n \to \infty$

$$\bigwedge_{M<0} \bigvee_{\delta} \bigwedge_{n>\delta} a_n < M$$

♦ Ciąg liczbowy $\{a_n\}$ jest **rozbieżny** do $+\infty$ $(\lim_{n\to\infty} a_n = +\infty)$ wtedy i tylko wtedy, gdy

$$\bigwedge_{M>0} \bigvee_{\delta} \bigwedge_{n>\delta} a_n > M$$

O ciągach rozbieżnych do $+\infty(-\infty)$ mówimy, że mają granice niewłaściwe $+\infty$ (lub $-\infty$).

Przykład:

- 1. Ciąg o wyrazie ogólnym $a_n = n^2$ jest rozbieżny $do + \infty$: $\lim_{n \to \infty} n^2 = +\infty$
- 2. Ciąg o wyrazie ogólnym $a_n = n \frac{1}{2}n^2$ jest rozbieżny do $-\infty$: $\lim_{n\to\infty} \left(n \frac{1}{2}n^2\right) = -\infty$
- 3. Ciąg $\{(-1)^n\}$ jest rozbieżny, ale nie jest rozbieżny ani do $+\infty$, ani do $-\infty$.

Twierdzenie:

- 1. Jeżeli $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = +\infty$, to
 - $\lim_{n\to\infty} (a_n + b_n) = +\infty,$
 - $\lim_{n\to\infty} (a_n b_n) = -\infty$
 - $\lim_{n \to \infty} (a_n \cdot b_n) = \begin{cases} +\infty & \text{dla} & a > 0 \\ -\infty & \text{dla} & a < 0 \end{cases}$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \begin{cases} +\infty & dla & a > 0 \\ -\infty & dla & a < 0 \end{cases}$$

2 Jeżeli
$$\lim_{n\to\infty} a_n = +\infty$$
, $\lim_{n\to\infty} b_n = +\infty$, to

- $\lim_{n\to\infty} (a_n + b_n) = +\infty,$
- $\lim_{n\to\infty} (a_n \cdot b_n) = +\infty$

Przykład:

$$\lim_{n \to \infty} \frac{5n^2 + 1}{n^3 + n^2 + 4} = \lim_{n \to \infty} \frac{n^2 \left(5 + \frac{1}{n^2}\right)}{n^3 \left(1 + \frac{1}{n} + \frac{4}{n^3}\right)} =$$

$$= \lim_{n \to \infty} \frac{1}{n} \cdot \frac{5 + \frac{1}{n^2}}{1 + \frac{1}{n} + \frac{4}{n^3}} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{5 + \frac{1}{n^2}}{1 + \frac{1}{n} + \frac{4}{n^3}} =$$

$$= 0 \cdot \frac{5 + 0}{1 + 0 + 0} = 0$$

GRANICA FUNKCJI JEDNEJ ZMIENNEJ

■ Sąsiedztwem punktu x_0 o promieniu δ ($\delta > 0$) nazywamy sumę przedziałów

$$S(x_0,\delta) = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

■ Symbolem S oznaczamy dowolne sąsiedztwo punktu x₀.

Niech y = f(x) będzie funkcją określoną w pewnym sąsiedztwie S punktu x_0 (w punkcie x_0 może być nieokreślona). Oznaczmy przez $\{x_n\}$ taki ciąg liczbowy (o wyrazach z tego sąsiedztwa), że

$$\lim_{n\to\infty} x_n = x_0.$$

Definicja Heinego

Liczbę g nazywamy granicą funkcji y = f(x) w punkcie x_0 wtedy i tylko wtedy, gdy dla każdego ciągu $\{x_n\}$ elementów z S zbieżnego do x_0 , ciąg wartości funkcji $\{f(x_n)\}$ jest zbieżny do liczby g:

$$\bigwedge_{\{x_n\}: x_n \in S} \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = g$$

Symbolicznie:
$$\lim_{x \to x_0} f(x) = g$$
, $f(x) \xrightarrow{x \to x_0} g$.

Definicja Cauchy'ego

Liczba g jest granicą funkcji f w punkcie x_0 wtedy i tylko wtedy, gdy dla każdego $\varepsilon > 0$ istnieje taka liczba $\delta > 0$, że dla każdego x z sąsiedztwa $S(x_0, \delta)$ spełniona jest nierówność: $|f(x)-g| < \varepsilon$

$$\lim_{x \to x_0} f(x) = g \Leftrightarrow \bigwedge_{\epsilon > 0} \bigvee_{\delta > 0} \bigwedge_{x \in S(x_0, \delta)} |f(x) - g| < \epsilon$$

Twierdzenie: Funkcja f(x) ma w punkcie $x = x_0$ granicę g w sensie **definicji Heinego** wtedy i tylko wtedy, gdy ma w tym punkcie granicę g w sensie **definicji Cauchy'ego**.

<u>Dowód:</u> Niech S będzie sąsiedztwem punktu x₀. Należy wykazać, że warunki

1.
$$\bigwedge_{\{x_n\} \in S} \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = g$$

2.
$$\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in S(x_0,\delta)} |f(x)-g| < \varepsilon$$

są równoważne.

Wykażemy, że z warunku 1 wynika warunek 2.

Przypuśćmy, że nie jest spełniony warunek 2, tj. istnieje takie $\varepsilon > 0$, że dla każdego $\delta > 0$ istnieje takie $x \in S(x_0, \delta)$, że $|f(x) - g| \ge \varepsilon$.

W szczególności dla
$$\delta=\frac{1}{n}$$
, $n=1,2,3,...$ istniałby ciąg $\{x_n\}$ o wyrazach x_n spełniających warunki: $0<|x_n-x|<\frac{1}{n}$ $|f(x_n)-g|\geq \epsilon$.

Wynikałoby stąd, że dla ciągu $\{x_n\}$ zbieżnego do x_0 ciąg $\{f(x_n)\}$ nie jest zbieżny do g, co jest sprzeczne z przyjętym warunkiem 1.

Warunek 2 jest zatem spełniony!

Wykażemy, że z warunku 2 wynika warunek 1.

Niech $\{x_n\}$ będzie dowolnym ciągiem o wyrazach z sąsiedztwa S zbieżnym do x_0 oraz takim, że $\bigwedge_{n>\delta} x_n \in S(x_0,\delta).$

Z warunku 2 wynika, że dla każdej liczby $\varepsilon > 0$ istnieje taka liczba $\delta > 0$, że dla każdej liczby naturalnej $n > \delta$ spełniona jest nierówność

$$|f(x_n)-g|<\varepsilon,$$

co oznacza, że ciąg $\{f(x_n)\}$ jest zbieżny go g, czyli spełniony jest warunek 1.

Z powyższego twierdzenia wynika, że definicje granicy funkcji f(x) w punkcie x_0 w sensie Heinego i Cauchy'ego <u>są</u> <u>równoważne</u>.

GRANICE JEDNOSTRONNE FUNKCJI

Przedziały

$$S^{-}(x_0,\delta) = (x_0 - \delta, x_0) i S^{+}(x_0,\delta) = (x_0, x_0 + \delta)$$

nazywamy odpowiednio **sąsiedztwem lewostronnym i prawostronnym punktu** \mathbf{x}_0 o promieniu δ ($\delta > 0$).

Sąsiedztwa o dowolnym promieniu oznaczmy symbolami S⁻ i S⁺. Niech funkcja f(x) będzie określona w pewnym lewostronnym sąsiedztwie S^- punktu x_0 , a $\{x_n\}$ niech będzie ciągiem liczbowym którego wszystkie wyrazy $x_n \in S^-$ oraz $\lim_{n \to \infty} x_n = x_0$. W punkcie x_0 funkcja może nie być określona.

Definicja granicy lewostronnej funkcji

Liczba L jest granicą lewostronną funkcji f(x) w punkcie x₀ wtedy i tylko wtedy, gdy

$$\bigwedge_{\{x_n\}:x_n\in S^-}\lim_{n\to\infty}x_n=x_0\Rightarrow\lim_{n\to\infty}f(x_n)=L.$$

Niech funkcja f(x) będzie określona w pewnym prawostronnym sąsiedztwie S^+ punktu x_0 , a $\{x_n\}$ niech będzie ciągiem liczbowym którego wszystkie wyrazy $x_n \in S^+$ oraz $\lim_{n \to \infty} x_n = x_0$. W punkcie x_0 funkcja może nie być określona.

Definicja granicy prawostronnej funkcji:

Liczba P jest granicą prawostronną funkcji f(x) w punkcie x₀ wtedy i tylko wtedy, gdy

$$\bigwedge_{\{x_n\}:x_n\in S^+}\lim_{n\to\infty}x_n=x_0\Rightarrow\lim_{n\to\infty}f(x_n)=P.$$

Symbolicznie:
$$\lim_{x \to x_{\overline{0}}} f(x) = L$$
, $\lim_{x \to x_{\overline{0}}^{+}} f(x) = P$.

Powyższe granice nazywamy **granicami jednostronnymi** (definicje wg Heinego).

$$f(x) = x^2 + \frac{|x|}{x}$$

Funkcja jest określona w dowolnym lewostronnym sąsiedztwie S $\bar{}$ punktu x = 0. Tworzymy ciąg $\{x_n\}$ taki, że

$$\bigwedge_{n} x_{n} \in S^{-} \text{ oraz } \lim_{n \to \infty} x_{n} = 0.$$

Wtedy
$$f(x_n) = x_n^2 + \frac{|x_n|}{x_n} = x_n^2 - 1.$$

Ciąg wartości funkcji $\{x_n^2 - 1\}$ jest zbieżny do -1 przy $x_n \to 0$, czyli

$$\lim_{x \to 0^{-}} \left(x^2 + \frac{|x|}{x} \right) = -1.$$

Funkcja ta jest także określona w dowolnym prawostronnym sąsiedztwie S^+ punktu x=0.

Tworzymy teraz ciąg $\{x_n\}$ taki, że $\bigwedge_n x_n \in S^+$ oraz $\lim_{n \to \infty} x_n = 0.$

Wtedy
$$f(x_n) = x_n^2 + \frac{|x_n|}{x_n} = x_n^2 + 1.$$

Ciąg wartości funkcji $\{x_n^2 + 1\}$ jest zbieżny do 1 przy $x_n \to 0$, a zatem $\lim_{x \to 0^-} \left(x^2 + \frac{|x|}{x}\right) = 1$.

Twierdzenie:

Funkcja f(x) ma w punkcie x_0 granicę wtedy i tylko wtedy, gdy istnieją obie granice jednostronne funkcji f(x) w punkcie x_0 i są sobie równe. Granica ta jest równa wspólnej wartości granic jednostronnych.

GRANICE NIEWŁAŚCIWE FUNKCJI

Niech funkcja f(x) będzie funkcją określoną w pewnym sąsiedztwie S punktu x₀ oraz niech {x₁} będzie ciągiem liczbowym którego wszystkie wyrazy należą do S i lim x₁ = x₀.
 i lim x₁ = x₀.

Definicja Heinego

Mówimy, że funkcja f(x) ma w punkcie x_0 granicę niewłaściwą $-\infty$ (lub $+\infty$), jeżeli dla każdego ciągu $\{x_n\}$ o wyrazach z S zbieżnego do x_0 ciąg liczbowy $\{f(x_n)\}$ jest rozbieżny do $-\infty$ (lub $+\infty$).

Symbolicznie: $\lim_{x \to x_0} f(x) = -\infty$, $\lim_{x \to x_0} f(x) = +\infty$.

Przykład:

$$\lim_{x \to 1} \frac{1}{|x - 1|} = +\infty$$

Dla każdego ciągu $\{x_n\}$ o wyrazach z dowolnego sąsiedztwa punktu x=1 i zbieżnego do 1, ciąg $\{f(x_n)\}$,

czyli ciąg
$$\left\{ \frac{1}{|x_n - 1|} \right\}$$
 jest rozbieżny do + ∞

Granice funkcji w nieskończoności

Niech funkcja f(x) będzie określona w przedziale $(a,+\infty)$ oraz niech $\{x_n\}$ będzie dowolnym ciągiem z tego przedziału.

Definicja Heinego

Funkcja f(x) ma $w + \infty$:

- 1. granicę właściwą g,
- 2. granicę niewłaściwą $-\infty$,
- 3. granicę niewłaściwą $+\infty$, jeżeli dla każdego ciągu $\{x_n\}$ z przedziału, ciągu rozbieżnego do $+\infty$, ciąg $\{f(x_n)\}$ jest odpowiednio:
 - 1. zbieżny do g,
 - 2. rozbieżny do $-\infty$,
 - 3. rozbieżny do $+\infty$.

Symbolicznie:
$$\lim_{x \to +\infty} f(x) = g$$
,
 $\lim_{x \to +\infty} f(x) = -\infty$,
 $\lim_{x \to +\infty} f(x) = +\infty$.

Przykład:

$$\lim_{x \to +\infty} \frac{3}{x^2} = 0, \quad \lim_{x \to +\infty} \left(2 - 3x^2\right) = -\infty, \quad \lim_{x \to +\infty} x = +\infty$$

Uwaga:

Poniższe granice nie istnieją!

```
\lim_{x \to -\infty} \sin x,
x \to +\infty
\lim_{x \to +\infty} \cos x,
x \to -\infty
\lim_{x \to -\infty} \cos x.
x \to +\infty
```