Accenture Data Analyst

Interview

YoE (1-4 Years)

CTC: 9-13 LPA

SQL Questions

1. Write a query to fetch the top 3 employees with the highest salaries from an Employees table.

Fetch the Top 3 Employees with the Highest Salaries

Input Table: Employees

emp_id	emp_name	salary
101	Alice	95000
102	Bob	87000
103	Charlie	91000
104	David	75000
105	Eve	99000

Query:

SELECT emp_id, emp_name, salary

FROM Employees

ORDER BY salary DESC

LIMIT 3;

Mo 2. Write a Query to Find Customers Who Have Placed More Than 5 Orders in the Last 30 Days

Input Table: Orders

order_id	customer_id	order_date
201	1	2024-02-15
202	2	2024-02-10
203	1	2024-02-18
204	3	2024-02-20
205	1	2024-02-25
206	2	2024-02-27
207	1	2024-03-02

Query:

SELECT customer id

FROM Orders

WHERE order_date >= NOW() - INTERVAL 30 DAY

GROUP BY customer_id

HAVING COUNT(order_id) > 5;

3. Write a Query to Retrieve the First and Last Purchase Date for Each Customer

Input Table: Transactions

transaction_id	customer_id	purchase_date
301	1	2024-01-10
302	2	2024-01-12
303	1	2024-02-15
304	2	2024-02-20
305	1	2024-03-05

Query:

SELECT customer_id,

MIN(purchase_date) AS first_purchase,

MAX(purchase_date) AS last_purchase

FROM Transactions

GROUP BY customer id;

4. Write a Query to Fetch All Orders Placed on Weekends

Input Table: Orders

order_id	customer_id	order_date
401	1	2024-02-17
402	2	2024-02-18
403	3	2024-02-19
404	1	2024-02-24

Query:

SELECT*

FROM Orders

WHERE DAYOFWEEK(order_date) IN (1, 7); -- 1 for Sunday, 7 for Saturday

5. Write a Query to Calculate the Average Sales per Region

Input Table: Sales

sales_id	region	sales_amount
501	North	50000
502	South	70000
503	North	80000
504	West	90000

Query:

SELECT region,

AVG(sales_amount) AS avg_sales

FROM Sales

GROUP BY region;

6. Write a query to Find the Second-Highest Salary Without Using LIMIT or TOP

Query:

SELECT MAX(salary) AS second_highest_salary

FROM Employees

WHERE salary < (SELECT MAX(salary) FROM Employees);

7. Write a Query to Find Customers Who Have Never Placed an Order

Input Tables:

Customers Table

customer_id	customer_name
1	John
2	Alice
3	Bob

Orders Table

order_id	customer_id
101	1
102	2

Query:

SELECT c.customer_id, c.customer_name

FROM Customers c

LEFT JOIN Orders o ON c.customer_id = o.customer_id

WHERE o.customer_id IS NULL;

8. Write a Query to Find the Most Frequently Sold Product in Each Category

Input Table: Products

product_id	category	product_name
601	А	Apple

product_id	category	product_name
602	В	Banana
603	А	Orange

Input Table: Sales

sale_id	product_id	quantity_sold
701	601	50
702	602	30
703	601	40
704	603	60

Query:

```
SELECT p.category, p.product_name, s.total_sold
FROM (
 SELECT product_id, SUM(quantity_sold) AS total_sold,
    RANK() OVER (PARTITION BY p.category ORDER BY SUM(quantity_sold) DESC) AS rnk
 FROM Sales s
 JOIN Products p ON s.product_id = p.product_id
 GROUP BY p.category, s.product_id
) s
JOIN Products p ON s.product_id = p.product_id
WHERE s.rnk = 1;
```

9. Write a SQL query to Calculate Profit Margin for Each Product and Rank Them Within Their Category

Input Table: Products

product_id	category	revenue	cost
801	А	10000	7000
802	А	15000	9000
803	В	20000	15000

Query:

SELECT product_id, category,

(revenue - cost) / revenue AS profit_margin,

RANK() OVER (PARTITION BY category ORDER BY (revenue - cost) revenue DESC) AS rank

FROM Products;

10. Write a query to Fetch Orders Where the Total Order Value Exceeds the Average Order Value

Input Table: Orders

order_id	customer_id	total_value
901	1	5000
902	2	7000
903	3	6000
904	4	8000

Query:

SELECT *

FROM Orders

WHERE total_value > (SELECT AVG(total_value) FROM Orders);

Power BI Questions

1. How would you create a dynamic report that shows revenue by region and allows filtering by product and sales channel?

Creating a Dynamic Report for Revenue by Region with Filters for Product and Sales Channel

Steps:

- 1. Load the data into Power Bl.
- 2. Create a bar chart or matrix visual to display revenue by region.
- 3. Add slicers for Product and Sales Channel:
 - Click on the Slicer visual in Power BI.
 - Drag Product and Sales Channel fields into separate slicers.
- 4. Ensure that the slicers are synced across all report pages.
- 5. Use interactions to control how visuals respond to filters.

2. Write a DAX measure to calculate month-over-month revenue growth.

DAX Measure for Month-over-Month Revenue Growth

MoM Growth =

VAR PrevMonthSales =

CALCULATE(

SUM(Sales[Revenue]),

PREVIOUSMONTH(Sales[Date])

```
)

VAR CurrentMonthSales = SUM(Sales[Revenue])

RETURN

IF(PrevMonthSales = 0, BLANK(), (CurrentMonthSales - PrevMonthSales) /

PrevMonthSales)
```

This calculates the percentage change in revenue compared to the previous month.

3. Create a DAX measure to calculate cumulative sales for a product category year-to-date.

DAX Measure for Cumulative Sales Year-to-Date (YTD) for a Product Category

```
Cumulative Sales YTD =

CALCULATE(

SUM(Sales[Revenue]),

FILTER(

ALLSELECTED(Sales),

Sales[Date] <= MAX(Sales[Date])

)
```

 This calculates running total sales for the selected product category in the current year.

4. Explain how to create a slicer in Power BI to toggle between different time periods (Monthly, Quarterly, Yearly).

Creating a Slicer to Toggle Between Monthly, Quarterly, and Yearly Views Steps:

1. Create a calculated table with time periods:

```
TimePeriod = DATATABLE(

"Period", STRING,

{"Monthly", "Quarterly", "Yearly"}

)

2. Add this table to a slicer.

3. Create a switch-based measure to adjust the date aggregation:

Revenue by Period =

SWITCH(

SELECTEDVALUE(TimePeriod[Period]),

"Monthly", SUM(Sales[Revenue]),

"Quarterly", CALCULATE(SUM(Sales[Revenue]), DATESQTD(Sales[Date])),

"Yearly", CALCULATE(SUM(Sales[Revenue]), DATESYTD(Sales[Date])),

SUM(Sales[Revenue]) -- Default to monthly if none selected

)

4. Use this measure in the report visuals.
```

5. Write a DAX formula to rank sales representatives based on their total sales within each region.

DAX Formula to Rank Sales Representatives by Total Sales Within Each Region

```
Sales Rank =
RANKX(
    FILTER(ALL(Sales), Sales[Region] = MAX(Sales[Region])),
    SUM(Sales[Revenue]),
    ,
    DESC,
    DENSE
```

This ranks sales reps based on total sales within their respective regions.

6. How would you implement Row-Level Security (RLS) in Power BI to restrict data access based on user roles?

Implementing Row-Level Security (RLS) in Power BI

Steps:

- 1. Go to Model View → Manage Roles → Create New Role.
- 2. Define **DAX Filter** for the role:

[Region] = USERPRINCIPALNAME()

- This restricts users to see only their assigned region's data.
- 3. Assign roles to users in the **Power BI Service** under **Security** settings.

7. How would you design a dashboard that dynamically highlights top-performing regions and underperforming products?

Designing a Dashboard to Highlight Top-Performing Regions and Underperforming Products

Key Features:

- KPI Cards: Show overall revenue, profit, and sales trends.
- Bar Chart (Top-Performing Regions):
 - Sort revenue in descending order.
 - Use conditional formatting to highlight regions above the target.
- Table (Underperforming Products):
 - Apply a DAX measure to flag products with sales below a threshold:

Low Sales Flag = IF(SUM(Sales[Revenue]) < 10000, "Underperforming", "Good")

- Apply conditional formatting to highlight low-performing products.
- Slicers for dynamic filtering by region, product, and sales channel.

8. Explain the steps to create a Data Flow in Power BI Service to consolidate data from multiple sources.

Creating a Data Flow in Power BI Service

Steps:

- 1. Open Power BI Service → Go to Workspaces → Click New → Dataflow.
- Select Add Data → Choose a data source (SQL, Excel, API, etc.).
- 3. Use Power Query Online to clean and transform data.
- 4. Define relationships and apply aggregations if needed.
- 5. Save and Refresh the Dataflow → Use it as a dataset in Power BI reports.

9. How do you optimize a large dataset in Power BI to improve performance and refresh time?

Optimizing Large Datasets in Power BI for Performance & Refresh Time

Best Practices:

- Use Import Mode for smaller datasets, DirectQuery for real-time access.
- Remove Unused Columns in Power Query to reduce model size.
- Use Aggregations to pre-calculate summaries instead of detailed data.
- Create Star Schema: Avoid too many relationships and use fact & dimension tables.
- Optimize DAX Measures: Prefer SUMX() over FILTER() when working with row-level calculations.
- Reduce Data Granularity: Use pre-aggregated tables if possible.
- **Enable Query Folding**: Push transformations back to the database.

10. Demonstrate how you would use Power Query to:

Replace missing values in a dataset.

Unpivot columns to normalize the data.

Merge data from two files with different column names.

Power Query Tasks

(a) Replacing Missing Values

Steps:

- 1. Open Power Query Editor.
- 2. Select the column with missing values.
- 3. Click **Transform** → **Replace Values** → **En**ter a default value (0, Unknown, etc.).
- 4. Click Close & Apply to update the dataset.

M Code Alternative:

Table.ReplaceValue(Source, null, "Unknown", Replacer.ReplaceValue, {"ColumnName"})

(b) Unpivoting Columns to Normalize Data

Before Unpivoting:

Region	Jan Sales	Feb Sales	Mar Sales
North	5000	6000	7000
South	4000	5000	6000

After Unpivoting:

Region	Month	Sales
North	Jan Sales	5000

Region	Month	Sales
North	Feb Sales	6000
South	Jan Sales	4000

Steps in Power Query:

- 1. Select Jan Sales, Feb Sales, Mar Sales columns.
- 2. Click Transform → Unpivot Columns.
- 3. Rename the columns as Month and Sales.

(c) Merging Data from Two Files with Different Column Names

Example:

- File 1: Contains Customer_ID, Full_Name, Amount_Spent.
- File 2: Contains ID, Name, Total_Spent.

Steps in Power Query:

- 1. Load both files into Power Query.
- Rename columns in File 2 to match File 1 (ID → Customer_ID, Name → Full_Name, Total_Spent → Amount_Spent).
- 3. Click Home → Merge Queries.
- 4. Choose Customer_ID as the common key.
- 5. Expand the merged table and select required columns.

Behavioral & Scenario-Based Questions

1. Describe a time when you automated a reporting process to improve efficiency.

Automating a Reporting Process for Efficiency

Situation: At my current role at Unisys, I was responsible for generating weekly reports on incident resolution times for two clients. The manual process involved exporting data from a data warehouse, cleaning it in Excel, and then updating Power BI dashboards.

Task: The process was time-consuming and prone to errors, so I needed to automate it to improve efficiency.

Action:

- I leveraged **Power Query** to directly connect to the data warehouse and clean the data within Power BI instead of using Excel.
- I used scheduled refresh in Power BI Service to automate data updates.
- I built **DAX measures** to calculate key metrics dynamically instead of using static Excel formulas.

Result: The automation reduced report preparation time from **4 hours per week to 30 minutes**, eliminated manual errors, and improved data refresh speed, allowing stakeholders to access real-time insights.

2. Share an experience where you discovered a key business insight through data analysis that influenced a decision.

Discovering a Key Business Insight Through Data Analysis

Situation: While analyzing customer support data for a client, I noticed an unusual increase in **chat support resolution times** over the last quarter.

Task: My goal was to identify the cause of the issue and suggest improvements.

Action:

- I performed a **trend analysis** in Power BI and found that chat response times spiked between **6 PM 10 PM**.
- Using data segmentation, I discovered that a new offshore support team was handling chats during these hours.
- I compared chat transcripts before and after the shift change and identified that agents lacked proper training, leading to delays.

Result: I presented the findings to the operations team, who implemented targeted training. Within a month, chat resolution times improved by **25**%, reducing customer complaints.

3. How do you prioritize tasks when handling multiple projects with tight deadlines?

Prioritizing Tasks With Multiple Projects & Tight Deadlines

Situation: As a Business Intelligence Engineer, I often work on multiple dashboards for different clients, each with urgent deadlines.

Task: I needed to manage my time effectively while ensuring all deliverables met business expectations.

Action:

- I used the Eisenhower Matrix to categorize tasks into urgent-important, important-not-urgent, etc.
- I communicated with stakeholders to understand which insights were most critical for decision-making.
- I leveraged Power BI templates and reusable DAX measures to speed up development.
- I set up early-stage reviews to catch potential issues before the final submission.

Result: By focusing on high-impact tasks first and automating repetitive steps, I successfully delivered **all projects on time** without compromising quality.

4. Have you faced discrepancies in data from different sources? How did you resolve it?

Handling Discrepancies in Data From Different Sources

Situation: While building a **financial dashboard**, I noticed a mismatch between **SQL-based revenue data** and **Excel reports from the finance team**.

Task: My goal was to identify the root cause and ensure accurate reporting.

Action:

- I compared data from multiple sources to pinpoint where discrepancies originated.
- I checked data refresh logs in Power BI and found that SQL data was updating daily, while the Excel reports were manual uploads that were updated weekly.
- I worked with the finance team to standardize the data refresh frequency.
- I added a **data validation step** in Power Query to flag mismatches before the report refresh.

Result: After implementing these changes, we eliminated data mismatches and improved stakeholder trust in the dashboard.

5. How do you collaborate with cross-functional teams to ensure data insights align with business goals?

Collaborating With Cross-Functional Teams for Business Insights

Situation: I worked on a **customer retention dashboard** for a retail client, requiring inputs from **marketing**, **sales**, **and customer service teams**.

Task: My challenge was to ensure the dashboard provided insights that aligned with all stakeholders' needs.

Action:

- I conducted stakeholder interviews to understand key metrics each team needed.
- I created mockup dashboards in Power BI and iterated based on feedback.
- I used row-level security (RLS) to ensure teams saw only relevant data.

I set up **monthly review meetings** to refine the dashboard based on evolving business needs.

Result: The final dashboard provided actionable insights, helping **increase customer retention by 12%** in three months through targeted marketing campaigns.