U00916945

Assignment 2: UML

Problem 1: Remote-Controlled Robotic Humanoid System

a. Minimal List of Structural Things:

- 1. The robotic humanoid system includes the following structural components as listed below.
 - o Robotic Unit (Hardware & Software)
 - o Microcontroller The central brain that executes commands.
 - o Motors & Wheels Support movement (go, back, turn).
 - o Sensors Inform of obstacles or environmental change.
 - Webcam Records real-time video for observation.
 - Wireless Communication Module Supports remote control.
 - Speaker Speaks greeting messages
- 2. The remote control unit (Smartphone app) would have the following units:
 - o UI Components Movement command buttons.
 - o Live Video Interface Shows real-time video feed.
 - o Wireless Communication Interface Transmits commands to the robot

b. Use Case List and Relationships

Use Case	Actor	Description	Relationships
Move Robot	User	User sends	Association (User →
		movement	Robot)
		commands (Forward,	
		Backward, Left,	
		Right).	
Monitor Video Feed	User	The robot streams	Association (User →
		video from its	Robot)
		webcam to the	
		remote control unit.	
Greet on Power Up	Robot	When turned on, the	Association (Robot
		robot plays a greeting	→ User)
		message.	
Emergency Stop	User	The robot stops	Extends "Move

U00916945

		movement when it	Robot"
		detects an obstacle or	
		receives a stop	
		command.	
Authenticate User	System	The system verifies	Includes "Monitor
		user credentials	Video Feed"
		before enabling video	
		streaming.	

c. Draw the following UML diagrams:

Class diagram:

U00916945

Deployment Diagram:

Use case diagram:

State Chart Diagram space:

U00916945

Sequence Diagram:

Problem 2: Elevator System Design

2a. Structural Components

U00916945

1. Elevator System (Hardware & Software)

- Elevator Cab The moving physical unit.
- Motor & Pulley System Regulates movement between floors.
- Sensors Sense doors, floors, and occupancy.
- Control Panel Selection of floors within the elevator.
- Call Buttons Outside buttons to call for the elevator.
- Fan & Light System Turned on when occupied.

2. Components in an Embedded System

- Microcontroller Executes the elevator logic.
- Actuators Close/open doors, mobilize the elevator.
- Communication Module Processes the button pressings and logic.

2b. Use Case List and Relationships

Use Case	Actor	Description	Relationships
Call Elevator	User	User presses an	Association (User →
		external button to	Elevator)
		call the elevator.	
Select Floor	User	Inside the elevator,	Association (User →
		the user chooses a	Elevator)
		floor.	
Move Elevator	System	The elevator moves	Extends "Select
		to the selected floor.	Floor"
Open/Close Doors	User	The user can open or	Association (User →
		close the doors	Elevator)
		manually.	
Automated Fan &	System	The system turns on	Includes "Move
Light Control		fan/light when	Elevator"
		occupied.	

U00916945

b. Generate the following UML diagrams:

Class Diagram:

Component Diagram:

Deployment Diagram:

U00916945

Case Diagram:

U00916945

Interaction Diagram:

Collaboration Diagram:

U00916945

State Chart diagram:

Activity Diagram:

U00916945

