Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [44]: # Dependencies and Setup
    import pandas as pd
    import numpy as np

# File to Load (Remember to Change These)
    file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
    purchase_data = pd.read_csv(file_to_load)
    purchase_data.head()
```

Out[44]:		Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
	0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
	1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
	2	2	Ithergue48	24	Male	92	Final Critic	4.88
	3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
	4	4	Iskosia90	23	Male	131	Fury	1.44

Player Count

• Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
#basic calulations for values
In [67]:
          unique= len(purchase_data["Item Name"].unique())
          AveragePrice = purchase_data["Price"].mean()
          NumberPurchase = len(purchase data["Item Name"])
          revenue = purchase data["Price"].sum()
          #new df
          Purchase Analysis df = pd.DataFrame({"Number of Unique Items": [unique],
                                                       "Average Price": [AveragePrice],
                                                       "Number of Purchases": [NumberPurch
                                                       "Total Revenue": [revenue]})
          #cleaner formatting
          Purchase Analysis df["Average Price"] = Purchase_Analysis_df["Average Price"]
          Purchase Analysis df["Total Revenue"] = Purchase Analysis df["Total Revenue"]
          Purchase Analysis df.head()
            Number of Unique Items  Average Price  Number of Purchases  Total Revenue
Out[67]:
          0
                             179
                                        $3.05
                                                             780
                                                                     $2,379.77
```

Gender Demographics

In []:

- Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

Out[69]:

	Total Count	Percentage of Players
Male	484	84.03%
Female	81	14.06%
Other / Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
gender = purchase data.groupby(["Gender"])
In [70]:
          #values
          count = gender["SN"].count()
          price = gender["Price"].mean()
          value = gender["Price"].sum()
          #delete duplicates
          duplicates = purchase_data.drop_duplicates(subset='SN', keep="first")
          duplicate = duplicates.groupby(["Gender"])
          avg_total = (gender["Price"].sum() / duplicate["SN"].count())
          #gender purchases df
          purchase_gender = pd.DataFrame({"Purchase Count": count,
                                        "Average Purchase Price": price,
                                        "Total Purchase Value": value,
                                        "Avg Total Purchase per Person": avg total})
          #cleaner formatting
          purchase gender["Average Purchase Price"] = purchase gender["Average Purchase
          purchase_gender["Total Purchase Value"] = purchase_gender["Total Purchase Val
          purchase gender["Avg Total Purchase per Person"] = purchase gender["Avg Total
          purchase_gender
```

Out[70]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non- Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
#set prameters & create bins
In [157...
          age_bins = [0, 9, 14, 19, 24, 29, 34, 39, 9999]
          group names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "
          #sort players into bins
          purchase_data["Age Demographics"] = pd.cut(purchase_data["Age"], age_bins, lab
          age_demo = purchase_data.groupby("Age Demographics")
          #calculate the numbers and percentages
          count = age demo["SN"].nunique()
          percentage = count / players * 100
          #summary data frame
          age_demo_df = pd.DataFrame({"Total Count": count,
                                      "Percentage of Players": percentage})
          #cleaning the percentage column
          age_demo_df["Percentage of Players"] = age_demo_df["Percentage of Players"].m
          age demo df
```

Out[157...

Total Count Percentage of Players

Age Demographics

<	:10 17	2.95%
10-	· 14 22	3.82%
15-	· 19 107	18.58%
20-	24 258	44.79%
25-	29 77	13.37%
30-	34 52	9.03%
35-	39 31	5.38%
4	0+ 12	2.08%

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
#set prameters & create bins
In [162...
          age_bins = [0, 9, 14, 19, 24, 29, 34, 39, 9999]
          group names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "
          #create the bins
          purchasing df = purchase data
          purchasing_df['Age Groups'] = pd.cut(purchase_data['Age'], age_bins, labels =
          #calculations for values
          purchase count = purchasing df[['Price', 'Age Groups']].groupby(['Age Groups'])
          avg_price = purchasing df[['Price', 'Age Groups']].groupby(['Age Groups']).me
          total_purchase = purchasing_df[['Price', 'Age Groups']].groupby(['Age Groups'
          avg total = (purchase data["Price"].sum() / count)
          #summary data frame
          purchase_age = pd.DataFrame({"Purchase Count": [purchase_count],
                                       "Average Purchase Price": [avg price],
                                       "Total Purchase Value": [total purchase],
                                       "Avg Total Purchase per Person": [avg_total]})
          purchase age.head()
```

Out[162...

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
0	Price Age Groups <10	Price Age Groups <10	Price Age Groups <10	Age Demographics <10 139.986471 10-14

Top Spenders

- Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

Out[118...

Purchase Count	Average Purchase Price	Total Purchase Value
i di ciidoc ocaiit	Average i di chase i lice	Total I alonase Value

SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, average item price, and total purchase value
- Create a summary data frame to hold the results
- Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
#retrieve the Item ID, Item Name, and Item Price columns
In [119...
          pop_items = purchase_data[["Item ID", "Item Name", "Price"]]
          #group by items
          items = pop_items.groupby(["Item ID", "Item Name"])
          purchase_count = items["Item ID"].count()
          item_price = items["Price"].mean()
          tpv = items["Price"].sum()
          #summary data frame
          items_df = pd.DataFrame({"Purchase Count":purchase_count,
                                    "Item Price":item_price,
                                   "Total Purchase Value":tpv})
          #sort by descending order
          items_df = items_df.sort_values(["Purchase Count"], ascending=False)
          #cleaner formatting
          items_df["Item Price"] = items_df["Item Price"].map("${:,.2f}".format)
          items df["Total Purchase Value"] = items df["Total Purchase Value"].map("${:,
          items df.head()
```

Out[119			Purchase Count	Item Price	Total Purchase Value
	Item ID	Item Name			
	92	Final Critic	13	\$4.61	\$59.99
	178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
	145	Fiery Glass Crusader	9	\$4.58	\$41.22
	132	Persuasion	9	\$3.22	\$28.99
	108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

Most Profitable Items

- Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

```
In [134... #sort by total purchase value
  items_df = items_df.sort_values(["Total Purchase Value"], ascending=False)
  #cleaner formatting
  items_df["Total Purchase Value"] = items_df["Total Purchase Value"].map("${:,
    items_df.head()
```

Out[134...

Purchase

Count

Item

Price

Total Purchase

Value

	Item ID	Item Name			
	92	Final Critic	13	\$4.61	\$59.99
	178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
	82	Nirvana	9	\$4.90	\$44.10
	145	Fiery Glass Crusader	9	\$4.58	\$41.22
	103	Singed Scalpel	8	\$4.35	\$34.80
In []:					
In []:					
In []:					