

Introduction to modelbased clustering

Victor Medina
Researcher at SBIF

What is clustering?

The procedure of partitioning a set of observations into a set of meaningful subclasses

→ Help to explore and understand the natural structure in a dataset

Applications of clustering

- Medicine
 - Ex. In medical imaging to distinguish between different types of tissue
- Business
 - Ex. To discover distinctive groups of customers to develop targeted marketing programs
- Social Sciences
 - Ex. To identify zones in a city by the type of committed crimes to manage law enforcement resources more effectively

Clustering methods

- Partitioning techniques
 - Find centers of clusters among the observations and each one is assigned to the cluster that has the closest center. Ex. Kmeans
- Hierarchical techniques
 - Connect the observations based on their similarity to form clusters. Ex.

Hierarchical clustering

- Model-base methods
 - Use probabilistic distributions to create the clusters. Ex. Mixture models

Gender dataset

6 67.25302 152.2122 23.66049

```
gender <- read.csv("gender.csv")
head(gender)

Height Weight BMI
1 73.84702 241.8936 31.18576
2 68.78190 162.3105 24.12104
3 74.11011 212.7409 27.23291
4 71.73098 220.0425 30.06706
5 69.88180 206.3498 29.70803</pre>
```

Gender dataset: Can you guess the gender?

```
library(ggplot2)
ggplot(gender, aes(x = Weight, y = BMI)) + geom_points()
```


Gender dataset: Can you guess the gender?

Under traditional cluster approaches

Model-based clustering

Model-based clustering

Let's practice!

Gaussian distribution

Victor Medina Researcher at SBIF

Mixture model to Gender dataset

Packages for fitting Mixture Models

- mixtools
 - The Poisson distribution is not implemented.
- bayesmix
 - Bayesian inference is outside the scope of the course.
- EMCluster
 - Only Gaussian distributions.
- flexmix
 - Has all the distributions we need and gives you the flexibility to perform more complex models.

Properties of Gaussian distribution

Mean

Standard deviation

Sample from a Gaussian distribution

To generate samples from a Gaussian distribution:

```
• rnorm(n, mean, sd)
```

Example: Generate 100 values from a Gaussian distribution with a mean of 10 and a standard deviation of 5

```
> population_sample <- rnorm(n = 100, mean = 10, sd = 5)
> head(population_sample)

[1] 6.248874 9.564190 16.006521 9.139647 10.114969 16.423538
```

Estimation of the Mean

- Don't know the mean and the standard deviation, only know the observations
 - Need to be estimated from the observations
- To estimate the mean, we can calculate the sample mean

```
> mean_estimate <- mean(population_sample)
```

[1] 10.35759

Estimation of the Standard Deviation (sd)

• To estimate the sd, we perform the following procedure

$$value_i
ightarrow (.-mean_estimate)
ightarrow (.)^2
ightarrow mean(.)
ightarrow \sqrt(.)$$

```
> population_sample %>%
+    subtract(mean_estimate) %>%
+    raise_to_power(2) %>%
+    mean() %>%
+    sqrt()
[1] 5.318641
```

• Using the sd function

```
> standard_deviation_estimate <- sd(population_sample)
> standard_deviation_estimate
```

```
[1] 5.345435
```


Visualizing the sample with estimated Gaussian distribution

Let's practice!

Gaussian mixture models (GMM)

Victor Medina
Researcher at SBIF

Flipping and sampling

Heads

Tails

Flipping the coin

Sampling and simulate the mixture

```
> # Gaussian 1 "heads"
> gauss_1 <- rnorm(n = number_of_obs, mean = 5, sd = 2)
> # Gaussian 2 "tails"
> gauss_2 <- rnorm(n = number_of_obs)

> # Simulate the mixture
> mixture_simulation <- ifelse(coin, gauss_1, gauss_2)
> head(cbind(coin, gauss_1, gauss_2, mixture_simulation))
```

```
coin gauss 1 gauss 2 mixture simulation
       0 \ 7.3787\overline{12} \ -0.45595\overline{9}6
                                      -0.4559596
[1,]
       1 6.102770 3.3595880
                                     6.1027696
[2,]
      0 5.707269 -0.0731496
                               -0.0731496
[4,]
                               3.5920586
      1 3.592059 -1.2407104
[5,]
      0 5.236851 -0.5110058
                                     -0.5110058
[6,]
       0 4.152619 -0.5124031
                                      -0.5124031
```


Plot the mixture

Changing the proportions

Mixture of three distributions

Let's practice!