Statistical Evaluation on LLM Reversal Curse

UIUC ECE598 RKI PROJECT

Reversal Curse Problem

Given "A is B", LLMs can not correctly it will not automatically generalize to the reverse

direction "B is A" [1]

- Why this is a problem?

- What caused this?

	Same direction	Reverse direction
NameToDescription DescriptionToName	50.0 ± 2.1 96.7 ± 1.2	$0.0 \pm 0.0 \\ 0.1 \pm 0.1$

The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A" https://arxiv.org/abs/2309.12288

Related work

- The reversal curse is identified by [1]
- We have inspired by the unsupervised evaluation of LLM outputs in the work of [2]

[1]: The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A" https://arxiv.org/abs/2309.12288

[2]: Kuhn, L., Gal, Y., & Farquhar, S. (2023). Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation. ArXiv. /abs/2302.09664

Approach

- This problem is not explained, while there may be several reasons for that:
 - 1. Inherent ambiguity between the factual relations.
 - 2. Reverse Prompt noise have made it hard to get A given B.
 - 3. Uncertainty introduced due to entangled relations.

 We would like to investigate the underlying statistical deviation between the original query and reverse outcomes.

Goal

- We want to:
 - Evaluate that whether the reversal curse is really a critical issue, or just a normal phenomena as it is in the reality.
 - Identify the gap between the reversed outputs and original queries, and provide reasons for each correspondingly.

Our solution

- Use LLM itself as encoder and decoder to generate recovered queries of original queries
- Dataset: <u>https://huggingface.co/datasets/lberglund/rever</u> sal curse
- Sentence Feature-based Encoding to analyze deviation in reverse process

Evaluations and Outcomes

- Unsupervised clustering
- Majority cluster & Fact checking

Metrics:

- Rate of the majority cluster
- Fact checking on all clusters

Examples:

- Scenario 1: What is Newton's first law?
- Scenario 2: What factors contribute to income inequality in developed countries?

Timeline

10.5 - 10.30 Dataset preparation & Draft code implementation

11.1 - 11.30 Experiments & Verification

12.1 - 12.7 Result collection & Report writing