Notes on Surreal Numbers Math 285: Fall 2014

Class Taught by Prof. Aschenbrenner Notes by John Susice

December 3, 2014

Day 1: Friday October 3, 2014

We define a map which will eventually be proven to be an ordered field isomorphism.

$$K = \mathbb{R}((t^{\mathbf{No}})) \xrightarrow{\sim} \mathbf{No}$$

We have an element written as

$$f = \sum_{\gamma \in \mathbf{No}} f_{\gamma} t^{\gamma}$$

$$\operatorname{supp}(f) = \{ \gamma \colon f_{\gamma} \neq 0 \}$$

where supp(f) is a well-ordered subset. Now let $x = t^{-1}$ and write

$$f(x) = \sum_{i < \alpha} f_i x^{a_i}$$

where $(a_i)_{i<\alpha}$ is strictly decreasing in **No**, α ordinal and $f_i \in \mathbb{R}$ for $i < \alpha$. Also define l(f(x)) to be the order type of supp(f) (which may be smaller than α as we allow zero coefficients).

Question 1. What is the relationship of what we are going to do with Kaplansky's results from valuation theory?

For $f(x) = \sum_{i < \alpha} f_i x^{a_i}$ define $\sum_{i < \alpha} f_i \omega^{a_i} = f(\omega)$ recursively on α : When $\alpha = \beta + 1$ is a successor:

$$\sum_{i < \alpha} f_i \omega^{a_i} = \left(\sum_{i < \beta} f_i \omega^{a_i}\right) + f_\beta \omega^{a_\beta}$$

When α is a limit ordinal:

$$\sum_{i < \alpha} f_i \omega^{a_i} = \{ L \mid R \}$$

$$L = \left\{ \sum_{i < \beta} f_i \omega^{a_i} + (f_\beta - \epsilon) \omega^{a_\beta} \colon \beta < \alpha, \epsilon \in \mathbb{R}^{>0} \right\}$$

$$R = \left\{ \sum_{i < \beta} f_i \omega^{a_i} + (f_\beta + \epsilon) \omega^{a_\beta} \colon \beta < \alpha, \epsilon \in \mathbb{R}^{>0} \right\}$$

Simultaneously with this definition we prove the following statements by induction:

1. For

$$f(x) = \sum_{i < \alpha} f_i x^{a_i}$$
$$g(x) = \sum_{i < \alpha} g_i x^{a_i}$$

we have $f(x) > g(x) \Rightarrow f(\omega) > g(\omega)$

Tail property if $\gamma < \kappa < \alpha$

$$\left| \sum_{i < \alpha} f_i \omega^{a_i} - \sum_{i < \kappa} f_i \omega^{a_i} \right| << \omega^{a_{\gamma}}$$

Suppose we have

$$f(x) = \sum_{i < \alpha} f_i x^{a_i}$$
$$g(x) = \sum_{i < \alpha} g_i x^{a_i}$$

with f(x) < g(x)

Choose γ smallest such that $f_{\gamma} \neq g_{\gamma}$. It has to be that $f_{\gamma} > g_{\gamma}$. Also $f(x) \upharpoonright_{\gamma} = g(x) \upharpoonright_{\gamma}$ Case 1: $\alpha = \beta + 1$

$$f(x) = f(x) \upharpoonright_{\beta} + f_{\beta} x^{a_{\beta}}$$
$$g(x) = g(x) \upharpoonright_{\beta} + g_{\beta} x^{a_{\beta}}$$

Suppose $\gamma = \beta$. Then $\bar{f}(x) = \bar{g}(x)$, $\bar{f}(\omega) = \bar{g}(\omega)$, so compute

$$f(\omega) - g(\omega) =$$

$$= f(\omega) \upharpoonright_{\beta} + f_{\beta} \omega^{a_{\beta}} - g(\omega) \upharpoonright_{\beta} - g_{\beta} \omega^{a_{\beta}}$$

$$= f_{\beta} \omega^{a_{\beta}} - g_{\beta} \omega^{a_{\beta}}$$

$$= (f_{\beta} - g_{\beta}) \omega^{a_{\beta}} > 0$$

Now suppose $\gamma < \beta$. Group the terms

$$f(\omega) = h(\omega) + f_{\gamma}\omega^{a_{\gamma}} + f^* + f_{\beta}\omega^{a_{\beta}}$$

$$g(\omega) = h(\omega) + g_{\gamma}\omega^{a_{\gamma}} + g^* + g_{\beta}\omega^{a_{\beta}}$$

where

$$h(\omega) = f(\omega) \upharpoonright_{\gamma} = g(\omega) \upharpoonright_{\gamma}$$
$$f^* = f(\omega) \upharpoonright_{\beta} - f(\omega) \upharpoonright_{\gamma+1}$$
$$g^* = g(\omega) \upharpoonright_{\beta} - g(\omega) \upharpoonright_{\gamma+1}$$

Then we have by tail property $f^* << x^{a_{\gamma}}$ and $g^* << x^{a_{\gamma}}$. Compute

$$f(\omega) - g(\omega) = (f_{\gamma} - g_{\gamma})x^{a_{\gamma}} + (f * -g *) + (f_{\beta} - g_{\beta})x^{a_{\beta}}$$

We have $f_{\gamma} > g_{\gamma}$. All f*, g* and $(f_{\beta} - g_{\beta})x^{a_{\beta}}$ are $<< x^{a_{\gamma}}$. Thus $f(\omega) - g(\omega) > 0$ as needed. Case 2: α is a limit ordinal. $f(\omega)$ and $g(\omega)$ are defined as

$$f(\omega) = \{L_f \mid R_f\}$$
$$g(\omega) = \{L_g \mid R_g\}$$

Recall that

$$L_f = \left\{ \sum_{i < \beta} f_i \omega^{a_i} + (f_\beta - \epsilon) \omega^{a_\beta} : \beta < \alpha, \epsilon \in \mathbb{R}^{>0} \right\}$$

$$R_g = \left\{ \sum_{i < \beta} g_i \omega^{a_i} + (g_\beta + \epsilon) \omega^{a_\beta} : \beta < \alpha, \epsilon \in \mathbb{R}^{>0} \right\}$$

Pick any β with $\gamma < \beta < \alpha$ and $\epsilon \in \mathbb{R}^{>0}$, and pick limit elements $\bar{f}(\omega) \in L_f$ and $\bar{g}(\omega) \in R_g$ corresponding to β, ϵ .

Then $\bar{f}(x) < \bar{g}(x)$ as first coefficient where they differ is $x^{a_{\gamma}}$ and $f_{\gamma} > g_{\gamma}$. Thus by inductive hypothesis $\bar{f}(\omega) < \bar{g}(\omega)$. As choice of those was arbitrary we have $L_f < R_g$ so $f(\omega) > g(\omega)$.

Tail property

It is easy to see that statement holds for all $\gamma < \kappa < \alpha$ iff it holds for all $\gamma < \kappa \leq \alpha$.

Case 1: $\alpha = \beta + 1$.

Suppose we have $\gamma < \kappa < \alpha$, then $\gamma < \kappa \leq \beta$ and induction hypothesis applies.

$$\sum_{i < \alpha} f_i \omega^{a_i} - \sum_{i < \kappa} f_i \omega^{a_i} = \left[\sum_{i < \beta} f_i \omega^{a_i} - \sum_{i < \kappa} f_i \omega^{a_i} \right] + f_\alpha \omega^{a_\alpha}$$

Expression [...] is $<<\omega^{a_{\gamma}}$ by induction hypothesis. $f_{\alpha}\omega^{a_{\alpha}}<<\omega^{a_{\gamma}}$ as $a_{\alpha}< a_{\gamma}$. Thus the entire sum is $<<\omega^{a_{\gamma}}$ as needed.

Case 2: α is a limit ordinal.

Write definitions of $f(\omega)$ using κ

$$f(\omega) = \{L_f \mid R_f\}$$
$$F(\omega) = f(\omega) \upharpoonright_{\kappa} = \sum_{i \le \kappa} f_i \omega^{a_i}$$

$$L_f = \left\{ \sum_{i < \beta} f_i \omega^{a_i} + (f_\beta - \epsilon) \omega^{a_\beta} : \beta < \alpha, \epsilon \in \mathbb{R}^{>0} \right\}$$

$$R_f = \left\{ \sum_{i < \beta} f_i \omega^{a_i} + (f_\beta + \epsilon) \omega^{a_\beta} : \beta < \alpha, \epsilon \in \mathbb{R}^{>0} \right\}$$

Pick any β with $\kappa < \beta < \alpha$ and $\epsilon \in \mathbb{R}^{>0}$, and pick limit elements $\bar{l}(\omega) \in L_f$ and $\bar{r}(\omega) \in R_f$ corresponding to β, ϵ .

By induction hypothesis we have

$$\bar{l}(\omega) - F(\omega) = \bar{l}(\omega) - \bar{l}(\omega) \upharpoonright_{\kappa} << \omega^{a_{\kappa}}$$
$$\bar{r}(\omega) - F(\omega) = \bar{r}(\omega) - \bar{r}(\omega) \upharpoonright_{\kappa} << \omega^{a_{\kappa}}$$

$$l(\omega) \le f(\omega) \le r(\omega)$$

$$l(\omega) - F(\omega) \le f(\omega) - F(\omega) \le r(\omega) - F(\omega)$$

Thus $f(\omega) - F(\omega) \ll \omega^{a_{\kappa}}$ as it is between two elements that are $\ll \omega^{a_{\kappa}}$.

We also need to check that the function is well-defined. For f(x) define its reduced form, where we only keep non-zero coefficients.

$$f(x) = \sum_{i < \alpha} f_i \omega^{a_i}$$
$$\bar{f}(x) = \sum_{j < \alpha'} f'_j \omega^{a'_j}$$