Матанализ, 1 курс Красносельский Формула оценки: $\frac{4P+6S+5K+5E}{20}$, где P,S,K,E — оценки за листки, семинары, колло-квиум и экзамен соответственно.

Вещественные числа

Определение 1. Бинарная операция — функция $(a,b) \in G \times G \mapsto a \oplus b \in G$, т.е. каждую упорядоченную пару элементов G переводит в какой-то элемент G.

Определение 2. Коммутативная группа — множество G с операцией \oplus со следующими свойствами:

- $\exists e \in G \forall x \in G : e \oplus x = x \oplus e = x$.
- $\forall x \in G \exists y \in G : x \oplus y = y \oplus x = e$.
- $\forall a, b, c \in G : (a \oplus b) \oplus c = a \oplus (b \oplus c)$ (ассоциативность).
- $\forall a, b \in G : a \oplus b = b \oplus a$ (коммутативность).

Определение 3. Поле — множество $(G, \oplus, \odot, 0)$ со следующими свойствами:

- (G, \oplus) аддитивная группа;
- $(G \setminus \{0\}, \odot)$ мультипликативная группа;
- $\forall a, b, c \in G : (a \oplus b) \odot c = a \odot c \oplus b \odot c$.

Определение 4. Отношение — подмножество $G \times G$. Например, отношение «a < b» в множестве $\{1,2,3\}$ — это $\{(1,2),(1,3),(2,3)\}$.

Определение 5. Отношение порядка — отношение ≤ со следующими свойствами:

- $\forall a : a \leq a$.
- $\forall a, b : (a \leqslant b \cap b \leqslant a) \implies a = b.$
- $\forall a, b, c : (a \leq b \cap b \leq c) \implies a \leq c$.
- $\forall a, b : (a \leqslant b \cup b \leqslant a)$.

Определение 6. Упорядоченное поле — множество F со следующими свойствами:

- F поле.
- На F есть отношение порядка.
- $\forall a, b, c \in F : a \leq b \implies a + c \leq b + c$.
- $\bullet \ \forall a,b \in F: 0 \leqslant a \cap 0 \leqslant b \implies \leqslant a \cdot b.$

Примеры упорядоченных полей: $\mathbb{Q}, \mathbb{R}, \mathbb{Q}(\sqrt{3})$, алгебраические числа, кроме того, рациональные функции над \mathbb{R} со следующим отношением порядка: $f_1 \leqslant f_2$, если у $f_1 - f_2$ отношение старших членов числителя и знаменателя меньше или равен 0.

Аксиома непрерывности. Пусть F — упорядоченное поле, и $A \neq \emptyset, B \neq \emptyset \subset F$. Кроме того, $\forall a \in A, b \in B : a \leqslant b$. Тогда $\exists c \in F : \forall a \in A, b \in B : a \leqslant c \leqslant b$.

Определение 7. Множество вещественных чисел — упорядоченное поле с аксиомой непрерывности.

 Π ример. $\mathbb{Q} \neq \mathbb{R}$, т.к. у множеств $\{r \in \mathbb{Q}: r>0, r^2<2\}$ и $\{r \in \mathbb{Q}: r>0; r^2>2\}$ нет разделителя.

Примеры моделей действительных чисел

- 0, 123 · · · ·
- Прямая с 0 и 1.
- Классы эквивалентности фундаментальных последовательностей из Q.
- Сечения Дедекинда.

Определение 8. Индуктивное множество — подмножество $K \subset \mathbb{R}$ такое, что если $x \in K$, то $x+1 \in K$.

Определение 9. Натуральные числа — минимальное индуктивное множество, содержащее единицу.

Определение 10. Целые числа — множество из всех натуральных чисел, нуля и чисел, противоположных натуральным.

Определение 11. Рациональные числа — такое множество: $\mathbb{Z} \cup \{mn^{-1} | m \in \mathbb{Z}, n \in \mathbb{Z} \setminus 0\}$ Теорема 1. У любого упорядоченного поля есть подполе, изоморфное \mathbb{Q} .

Аксиома Архимеда. $\forall a, h > 0 \exists n \in \mathbb{N} : an > h$.

Теорема 2 (Принцип Архимеда). $\forall h > 0 \exists a \in \mathbb{R} : \exists n \in \mathbb{Z} : (n-1)h \leqslant a < nh$.

Доказательство. Рассмотрим множество $E = \{n \mid n \in \mathbb{Z}, ah^{-1} < n\}$. Если a = 0, то это \mathbb{N} , а в противном случае оно непусто по аксиоме Архимеда. Кроме того, оно ограничено снизу нулём. Тогда у него есть минимальный элемент, он подходит в качестве n.

Следствие. $\forall \varepsilon > 0 \exists n \in \mathbb{N} : n^{-1} < \varepsilon$.

Следствие 2. $a < b \in \mathbb{R} \implies \exists r \in \mathbb{Q} : a < r < b$.

Доказательство. Возьмём n так, что $n^{-1} < b - a$, и m так, что $\frac{m-1}{n} \leqslant a < \frac{m}{n}$. Тогда $a < \frac{m}{n} < b$.

Следствие 3. $\forall x \in \mathbb{R} \exists [x]$.

Определение 12. Последовательность — функция натурального аргумента.

Определение 13. Вложенная последовательность — последовательность a_i множеств такая, что $a_i \subset a_{i-1}$ для всех i.

Определение 14. Стремящаяся к нулю последовательность — последовательность a_i вещественных чисел такая, что $\forall \varepsilon > 0 \exists n \in \mathbb{N} : \forall m > n : |a_m| < \varepsilon$.

Теорема 3. Пусть Δ_n — вложенная последовательность отрезков в \mathbb{R} , т.е. множеств вида $\{x \in \mathbb{R} \mid a \leqslant x \leqslant b, a, b \in \mathbb{R}\}$. Тогда $\bigcap_n \Delta_n \neq \emptyset$. Кроме того, если последовательность $|\Delta_n|$ стремится к 0, то $|\bigcap_n \Delta_n| = 1$.

Доказательство. Пусть $\Delta_n = [a_n, b_n]$. Рассмотрим $A = \{a_n \mid n \in \mathbb{N}\}$ и $B = \{b_n \mid n \in \mathbb{N}\}$. У нас верно, что $a_n \leq b_m$, т.к. последовательность вложена, тогда по аксиоме непрерывности $\exists \gamma : a_i < \gamma < b_j$. Тогда $\gamma \in [a_n, b_n] \forall n$. Кроме того, если таких γ хотя бы два, то длина каждого отрезка хотя бы $|\gamma_2 - \gamma_1|$, значит, последовательность длин не стремится к 0.

Определение 15. Окрестность — любой интервал, содержащий x.

Определение 16. ε **-окрестность** — интервал $(x - \varepsilon, x + \varepsilon)$.

Свойства

- Если $\mathcal{O}_1(x), \mathcal{O}_2(x)$ окрестности, то $\mathcal{O}_1 \cap \mathcal{O}_2$ тоже.
- $\forall x \neq y \exists \mathcal{O}(x) : y \notin O(x)$.

Определение 17. Предельная точка множества — такое число x, если в любой окрестности $\mathcal{O}(x)$ существует $a \neq x \in A$, такое, что $a \in \mathcal{O}(x)$ (это то же самое, как если бы в этой окрестности было бесконечно много точек из A). Множество предельных точек обозначается A'.

Теорема 4. Пусть A — бесконечное ограниченное множество. Тогда $A' \neq \emptyset$.

Доказательство. Пусть границы A — это точки a_1, b_1 . Поделим отрезок $[a_1, b_1]$ пополам, в одном из отрезков лежит бесконечное количество точек A. Пусть его границы — это a_2, b_2 . Его тоже поделим пополам и т.п. У нас получится вложенная последовательность отрезков, на каждом из которых лежит бесконечное количество A. Пусть γ — пересечение этих отрезков. Возьмём любую окрестность γ . Она целиком содержит какой-то из отрезков $[a_n, b_n]$, в котором бесконечное количество элементов A. Значит, γ — предельная точка.

Определение 18. Открытое множество — такое множество G, что $\forall x \in G \exists \mathcal{O}(x) \subset G$. Определение 19. Замкнутое множество — такое множество G, что $G' \subset G$. Определение 20. Внутренняя точка множества — такая точка x, что $\exists \mathcal{O}(x) \subset A$. Примеры

- \emptyset , $\mathbb R$ замкнутые и открытые одновременно. Других одновременно замкнутых и открытых множеств нет (это эквивалентно аксиоме непрерывности).
- \mathbb{N} замкнутое у него нет предельных точек.
- (a,b) открытое.
- [a,b] замкнутое.
- Канторово множество замкнутое.
- [a, b) ни открытое, ни замкнутое.

Теорема 5. Пусть A открытое, а B замкнутое. Тогда $A \setminus B$ открытое, а $B \setminus A$ замкнутое. В частности, $\mathbb{R} \setminus B$ открытое, а $\mathbb{R} \setminus A$ замкнутое.

Доказательство. Первая часть: пусть $x \in A \setminus B$. Тогда существует окрестность $O(x) \subset A$. Кроме того, $x \notin B$. Тогда $x \notin B'$, значит, существует окрестность O*(x) такая, что $O*(x) \cap B = \emptyset$. Тогда $O(x) \cap O*(x) \subset A \setminus B$.

Вторая часть: пусть $x \in (B \setminus A)'$. Это значит, что в любой O(x) бесконечно много точек из $B \setminus A$. Так как все эти точки в B, и B замкнутое, то $x \in B$. Предположим, что $x \in A$. Тогда есть $O * (x) \subset A$, значит, $O * (x) \cap B \setminus A = \emptyset$, противоречие. Значит, $x \in B \setminus A$.

Определение 21. Замыкание множества — множество $\overline{A} = A \cup A'$.

Лемма 6. Пусть $A \subset \mathbb{R}$. Тогда A' замкнуто.

Доказательство. Пусть $x \in A''$. Это значит, что в любой O(x) есть $y \in A'$. Возьмём окрестность O(y), такую, что $O(y) \subset O(x), x \not\in O(y)$. В этой окрестности есть $z \in A$. Но $z \in O(x)$, значит, x — предельная точка для A, т.е. $x \in A'$.

Лемма 7. Пусть $A \subset \mathbb{R}$. Тогда \overline{A} замкнуто.

Доказательство. Пусть $x \in (\overline{A})'$. Вначале докажем, что $x \in (A' \cup A'')$. Действительно, $x \in (A \cup B)'$ значит, что есть последовательность в $A \cup B$, которая сходится к x, и из неё можно выбрать бесконечную подпоследовательность, лежащую либо в A, либо в B.

Итак, $x \in (A' \cup A'')$. Но A' замкнуто, значит, $A'' \subset A'$. Тогда $x \in A' \subset \overline{A}$, т.е. \overline{A} замкнуто.

Лемма 8. Пусть $S \subset 2^{\mathbb{R}}$ и все множества в S открытые. Тогда $A = \bigcup_{s \in S} s$ открытое. Доказательство. Пусть $x \in A$. Тогда $x \in S$ для какого-то $s \in S$. Тогда $O(x) \in S \subset A$.

Лемма 9. Пусть $S \subset 2^{\mathbb{R}}$ и все множества в S замкнутые. Тогда $A = \bigcap_{s \in S} s$ замкнутое. Доказательство. Следует из **Т. 5** и **Т. 8**.

Лемма 10. Пусть $S \subset 2^{\mathbb{R}}$ конечно и все множества открытые. Тогда $A = \bigcap_{s \subset S} s$ открытое. **Доказательство.** Докажем для двух множеств (для большего числа по индукции). Пусть $A = S_1 \cap S_2$. Возьмём любое число $k \in S_1 \cap S_2$. Мы знаем, что $\exists O_1(k) \subset S_1, O_2(k) \subset S_2$. Значит, $O_1(k) \cap O_2(k) \subset S_1 \cap S_2$. Значит, A открытое.

Лемма 11. Пусть $S \subset 2^{\mathbb{R}}$ конечно и все множества замкнутые. Тогда $A = \bigcup_{s \subset S} s$ замкнутое. Доказательство. Следует из **Т. 5** и **Т. 10**.

Теорема 12. Пусть A открытое. Тогда $A = \bigsqcup_{i=1}^{\infty} A_i$, где $A_n = (a_n; b_n)$ (при этом a_n может быть равно $-\infty$, а $b_n = +\infty$).

Доказательство. Пусть $x \in A$. Тогда $O(x) \in A$. Рассмотрим все такие окрестности. Пусть L_x — множество левых их концов, а R_x — их правых концов. Мы знаем, что существуют $l_x = \inf L_x, r_x \sup R_x$ (причём они могут быть равны $\pm \infty$). Возьмём все эти интервалы (l_x, r_x) и в каждом из них выберем рациональную точку. Они все различные (если интервалы пересекаются, то они равны), значит, интервалов не более чем счётно.

Определение 22. Покрытие множества — набор множеств B, т.ч. $A \subset \bigcup_{b \in B} b$.

Определение 23. Открытое покрытие — покрытие B, т.ч. все его элементы открытые.

Определение 24. Компакт — множество A, такое, что из его любого открытого покрытия можно выбрать конечное подпокрытие.

Лемма 13 (Гейне, Борель). Отрезок [a, b] является компактом.

Доказательство. Пусть A=[a,b], и B — его открытое покрытие. Пусть такого конечного подпокрытия не существует. Разрежем отрезок пополам, у нас получатся отрезки C_1, D_1 . Тогда хотя бы для одного из них нет конечного подпокрытия (если нет у обоих, выберем другой). Разрежем его пополам на отрезки C_2, D_2 , хотя бы у одного из них нет конечного подпокрытия и т.п. Рассмотрим систему отрезков $E_i = C_i \cup D_i$. У них есть общая точка γ . Так как B — покрытие, то наша общая точка лежит в каком-то множестве b. Значит, $O(\gamma) \subset b$ (т.к. покрытие было открытым). Возьмём отрезок $E_k \subset O(\gamma)$ (он есть, т.к. длины этих отрезков стремятся к 0). Мы знаем, что для него нет конечного подпокрытия, но оно есть — это множество b. Противоречие.

Определение 25. Всюду плотное множество — такое множество $A \subset [0,1]$, что $\overline{A} = [0,1]$ (первое условие для определённости, в общем случае оно не нужно).

Определение 26. Нигде не плотное множество — такое множество A, что для любого (a,b) существует $(c,d)\subset (a,b)$ такой, что $(c,d)\cap A=\emptyset$.

Теорема 14 (Бэр). Отрезок [0,1] нельзя представить в виде объединения счётного количества нигде не плотных множеств.

Доказательство. Пусть $[0,1] = \bigcup_{i=1}^{\infty} B_i$ и все B_i нигде не плотные. Обозначим $C_1 = [0,1]$. Возьмём любой интервал на отрезке C_k , тогда в нём существует интервал, не пересекающийся с B_k , выберем в нём подмножество — отрезок и назовём его C_{k+1} . У нас получится система вложенных отрезков, у которой есть общая точка γ , которая не лежит ни в одном из наших множеств, т.к. C_t не пересекается с B_q при t > q.

Определение 27. Канторово множество — результат следующей процедуры. Обозначим $S_0 = \emptyset, K_i = [0,1] \setminus S_i$. На каждом шаге K_i будет дизъюнктным объединением конечного количества отрезков вида $[l_j,r_j]$. Тогда $S_{i+1} = S_i \cup \bigsqcup (\frac{2l_j+r_j}{3},\frac{l_j+2r_j}{3})$ будет дизъюнктным объединением конечного количества интервалов. Канторовым множеством называется $\bigcap_{i=1}^{\infty} K_i$.

Теорема 15. Канторово множество замкнутое, нигде не плотное, и равномощное [0,1].

Доказательство. Первая часть: $K = [0,1] \setminus \bigcap_{i=1}^{\infty} S_i$, и каждое S_i — объединение конечного кол-ва интервалов, значит, их объединение — объединение счётного кол-ва интервалов, т.е. открытое. Тогда K — дополнение открытого множества, значит, оно замкнутое.

Вторая часть: рассмотрим любой интервал I. Если он пересекается с $(\frac{1}{3},\frac{2}{3})$, то мы победили, иначе он лежит целиком внутри либо $[0,\frac{1}{3}]$, либо $[\frac{2}{3},1]$. Рассмотрим тот, в котором он лежит, и продолжим так делать до тех пор, пока мы не победим (мы победим, т.к. для какого-то r верно $|I|>\frac{1}{3r}$ и мы сделаем не более r+1 шага).

Третья часть: заметим, что канторово множество — это множество всех таких чисел на отрезке [0,1], что их троичная запись состоит только из 0 и 2. Заменим все 2 на 1 и рассмотрим число с такой двоичной записью. Это биекция между отрезком и канторовым множеством. \blacksquare

Теорема 16 (Вейерштрасс). Ограниченная монотонная последовательность сходится.

Доказательство. Пусть $A = \{x_n \mid n \in \mathbb{N}\}$ Рассмотрим $\sup A$. В любой окрестности $O(\sup A)$ есть точка x_N , и при n > N все x_n будут лежать в этой окрестности (т.к. они все меньше $\sup A$). Значит, $\sup A$ это предел.

Десятичная запись числа. Пусть у нас есть $\gamma \in \mathbb{R}$. Мы знаем, что $\exists n_0 = [\gamma]$. Пусть $S_1 = [n_0, n_0 + 1]$. На k-м шаге разделим S_k на 10 равных частей, в какой-то из них лежит γ (если в двух, то будем брать левую), обозначим её S_{k+1} . У нас будет последовательность S_k сходящихся отрезков, у них есть ровно одна общая точка, эта точка и будет соответствовать γ .

Пусть $a_n, b_n \to \infty$. Будем говорить, что a >> b, если $\frac{b_n}{a_n} \to 0$.

Лемма 17. Пусть $0 < \alpha < \beta, a > 1$. Тогда

$$a^{n^2} >> n^n >> n! >> a^n >> a^{\sqrt{n}} >> n^{\beta} >> n^{\alpha} >> \log_a(n) >> 1.$$

Определение 28. Частичный предел — предел какой-то подпоследовательности. Другое определение: a — частичный предел x_n , если в любой окрестности a есть бесконечно много членов x_n .

Теорема 18. Множество частичных пределов x_n замкнуто.

Доказательство. Пусть X — множество частичных пределов и $a \in X'$. Мы знаем, что в любой окрестности O(a) есть точка $y \in X$. Возьмём $O(y) \subset O(a)$. y — это частичный предел, значит, в O(y) есть $z \in \{x_n\}$. Мы нашли в каждой окрестности a точку из $\{x_n\}$, т.е. a — частичный предел.

Определение 29. Верхний предел — число $\limsup x_n = \sup X$, где X — множество частичных пределов.

Определение 30. Нижний предел — число $\liminf x_n = \inf X$, где X — множество частичных пределов.

Определение 31. Сумма ряда — предел последовательности $S_n = \sum_{i=1}^n x_i$.

Лемма 19. Ряд $1 + \frac{1}{2} + \frac{1}{3} + \dots$ не сходится.

Доказательство. Следует из того, что $S_{2^{n+1}} - S_{2^n} > \frac{1}{2}$.

Теорема 20 (Критерий Коши). Последовательность a_n сходится тогда и только тогда, когда $\forall \varepsilon > 0 \exists N : \forall n, m > N : |a_n - a_m| < \varepsilon$. В частности, ряд S_n сходится тогда и только тогда, когда $\forall \varepsilon > 0 \exists N : \forall n, m > N : |a_{m+1} + a_{m+2} + \ldots + a_n| < \varepsilon.$

Определение 32. Абсолютно сходящийся ряд — ряд a_n такой, что $\sum |a_n|$ сходится.

Определение 33. Условно сходящийся ряд — ряд, который сходится, но не абсолютно сходится.

Лемма 21. Абсолютно сходящийся ряд сходится.

Доказательство. Следует из Т. 20.

Лемма 22. Пусть $\sum a_n = A, \sum b_n = B, c_n = a_n + b_n$. Тогда $\sum c_n = A + B$.

Лемма 23. Пусть $\sum ca_n = A$. Тогда $\sum a_n = \frac{A}{c}$.

Лемма 24. Пусть $K \subset \mathbb{N}$ и $L = \mathbb{N} \setminus K$ бесконечны, кроме того, ряды a_n, b_n сходятся. Рассмотрим такую последовательность c_n : на k_n -м месте стоит a_n , а на l_m месте — b_m . Тогда $\sum c_n = \sum a_n + \sum b_n.$

Пусть $a_n \geqslant 0$. Тогда S_n не убывает, значит, $\sum a_i$ сходится тогда и только тогда, когда S_n ограничена. Дальше мы будем рассматривать только такие последовательности.

Лемма 25. Пусть $a_k \leqslant cb_k, c > 0$. Тогда если a_n расходится, то и b_n расходится.

Лемма 26. Пусть $a_n,b_n>0$, и $\lim \frac{a_n}{b_n}=L>0$. Тогда $\sum a_n$ и $\sum b_n$ либо оба сходятся, либо оба расходятся.

Лемма 27. Пусть $a_n, b_n > 0$, и $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$. Тогда если a_n расходится, то и b_n расходится. **Лемма 28.** Пусть a_n убывает. Тогда $\sum a_n$ и $\sum 2^n a_{2^n}$ либо оба сходятся, либо оба расходятся.

3амечание. Отсюда следует, что ряд $\sum n^{-1-\sigma}$ сходится при $\sigma>0,$ иначе расходится.

Теорема 29 (Признак Даламбера). Пусть $D_n = \frac{a_{n+1}}{a_n}$. Тогда, если $\lim D_n < 1$, то $\sum a_n$ сходится, а если $\lim D_n > 1$, то расходится.

Теорема 30 (Признак Коши). Пусть $C_n = \sqrt[n]{a_n}$. Тогда если $\lim c_n < 1$, то $\sum a_n$ сходится, а если $\lim c_n > 1$, то расходится.

Замечание. Эти признаки не дают ответа, сходится ли ряд, если $\lim D_n(C_n) = 1$ или если $D_n(C_n)$ расходится.

Число e

Рассмотрим $x_n = (1 + \frac{1}{n})^n$ и $y_n = (1 + \frac{1}{n})^{n+1}$.

Лемма 31. y_n убывает.

Доказательство. Докажем, что отношение соседних членов меньше 1:

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{n^{2n}}{(n^2 - 1)^n} \cdot \frac{n}{n+1} = \frac{n}{n+1} \left(1 + \frac{1}{n^2 + 1}\right)^n \geqslant \left(1 + \frac{n}{n^2 + 1}\right) \left(\frac{n}{n+1}\right) > 1,$$

где первое неравенство выполняется по неравенству Бернулли.

Лемма 32. x_n сходится.

Доказательство. Мы знаем, что y_n убывает, и ограничена снизу 0, значит, она сходится. Кроме того, $\lim x_n = \lim (y_n \cdot (\frac{n}{n+1})) = \lim y_n \cdot \lim \frac{n}{n+1}$.

Определение 34. Число e — предел последовательности $x_n = (1 + \frac{1}{n})^n$.

Лемма 33. x_n возрастает.

Доказательство. Раскроем x_n по биному Ньютона. Получится

$$1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2n^2} + \frac{n(n-1)(n-2)}{3!n^3} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots$$

Заметим, что если раскрыть так x_{n+1} , слагаемое с номером k будет не меньше слагаемого с номером k в разложении x_n . Значит, $x_{n+1} > x_n$.

Лемма 34. $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ (эта последовательность сходится по **Т. 29**).

Доказательство. Обозначим $S_n = \sum_{i=0}^n \frac{1}{i!}$. Рассмотрим такую последовательность $z_{k,n}$:

$$z_{k,n} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \ldots + \frac{1}{(k+1)!} \left(1 - \frac{1}{n} \right) \ldots \left(1 - \frac{k}{n} \right).$$

Очевидно, что $z_{k,n} \leqslant x_n$. Перейдём к пределу для n, получим $S_k \leqslant e$. С другой стороны, $z_{n,n} = x_n$ и $z_{k,n}$ возрастает по n, значит, $z_{n,r} > x_n$ при r > n, откуда $S_n > x_n$. Значит, $S_n \to e$.

Теорема 35. e иррационально.

Доказательство. Пусть e — рациональное число $\frac{m}{n}$. Рассмотрим $e - S_n$:

$$e - S_n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots = \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots \right) \leqslant$$

$$\leqslant \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)^2} + \dots \right) = \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+2}} \leqslant \frac{1}{n \cdot n!}.$$

Мы поняли, что $e-S_n=\frac{\theta}{n!}$, где $\theta\in(0,1)$ (на самом деле, $\theta\in(0,\frac{1}{n})$). Тогда $p(q-1)!=q!+q!+\ldots+\theta\not\in\mathbb{N}$. Противоречие.

Определение 35. Секвенциально компактное множество — множество E такое, что из любой $x_n \subset E$ можно выбрать подпоследовательность, сходящуюся к $x \in E$.

Теорема 36. Любое ограниченное замкнутое множество E секвенциально компактное.

Доказательство. Рассмотрим любую последовательность $x_n \subset E$. Т.к. E ограничено, в ней можно выбрать сходящуюся подпоследовательность. Её предел будет в E, т.к. E замкнуто.

Теорема 37. Любое ограниченное замкнутое множество E компактно.

Доказательство. Пусть $E \subset (a,b)$. Рассмотрим $F = (a-1,b+1) \subset E$. Заметим, что F открытое, т.к. (a-1,b+1) открытое, E замкнутое. Рассмотрим U_{α} любое открытое покрытие E. Тогда $U_{\alpha} \cup F$ — открытое покрытие [a,b]. По ?? из него можно выбрать конечное подпокрытие, которое будет и покрытием E.

Также очевидно, что неограниченные множества не компактны (можно рассмотреть открытое покрытие $(-n,n)\mid n\in\mathbb{N}$) и не секвенциально компактны. То же верно для незамкнутых множеств (можно рассмотреть открытое покрытие $(x^*+\frac{1}{n},+\infty)\bigcup(x^*-\frac{1}{n},-\infty)$, где $x^*\in E'\setminus E$). Таким образом, множество E компактное (секвенциально компактное) тогда и только тогда, когда E замкнуто и ограничено.

ПРЕДЕЛЫ ФУНКЦИЙ

Определение 36. Предел функции — число $A = \lim_{x \to a} f(x)$ такое, что

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in E : 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon.$$

Лемма 38 (Определение предела по Гейне). $A = \lim_{x \to a} f(x)$, если и только если

$$\forall x_n \to a, x_n \neq a : f(x_n) \to A$$
 при $n \to \infty$.

Кроме того, если для всех монотонных x_n это выполнено, то A — предел.

Определение 37. Частичный предел — число A такое, что существует последовательность $x_n \to a, x_n \neq a$ такая, что $f(x_n) \to A$.

Теорема 39 (Критерий Коши). $\lim_{x\to a} f(x)$ существует тогда и только тогда, когда

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x', x'' : |x' - a, x'' - a| \in (0, \delta) \implies |f(x') - f(x'')| < \varepsilon.$$