Class AB CMOS Amplifier Design

1. Introduction

Objective:

- Design and analyze a Class AB CMOS audio amplifier capable of:
 - o Driving a 16Ω load with a 1.2V power supply.
 - Achieving >54dB gain at 20kHz.
 - o Maintaining a phase margin >55° for stability.
 - $_{\odot}$ Limiting input noise to <100 μ Vrms between 20Hz and 40kHz.

Figure 1 - Class AB Amplifier Circuit.

Approach:

 A combination of circuit modeling, transistor sizing, and simulation was used to meet design specifications while minimizing power consumption and area.

2. Circuit Design and Analysis

• Circuit Simplification:

 Nested Miller Compensation was applied to simplify the AC model and facilitate pole-zero analysis.

Figure 2 - Simplified Circuit with Nested Miller Compensation.

Key Design Parameters:

- o DC Gain: ~59 dB (theoretical), ~28 dB (simulated).
- o Dominant Pole (P1): 10 kHz (simulated), 20 kHz (theoretical).
- o Phase Margin: Approximately 55°, ensuring stability.
- Noise Performance: Input noise compliant in medium frequencies, with significant flicker noise observed at low frequencies.

3. Methodology

Transistor Sizing:

- Transistors were dimensioned to balance gain, bandwidth, and noise performance:
 - \circ Example M₁ and M₀ (L_n = 120 nm, gm/Id = 29.3).
- Sizing decisions informed by plots of pole and gain behavior.

Figure 3 - Pole Frequency Behaviour Plot.

Symbolic Analysis:

- Used Python's SymPy library to derive and validate transfer functions.
- Key equations for poles and zeros simplified for dominant contributions.

4. Simulations and Results

Key Simulation Results:

1. DC Operating Point:

• Verified correct transistor operation, VDSAT values below expected thresholds, indicating potential redesign for optimized operation.

Figure 4 - Operating Point Simulation of the Class AB Amplifier.

Figure 5 - Operating Point Simulation of the BIAS Circuit.

Figure 6 - Operating Point Simulation of the Testbench Circuit.

2. Gain and Phase Stability:

- Simulated Gain: ~28 dB.
- **Phase Margin**: Approximately 10°, very distant value from the required specification.

Figure~7-Closed~Loop~Simulation~Plot.

3. Noise Analysis:

- Input noise within acceptable limits in medium frequencies.
- Flicker noise prominent at low frequencies; suggested mitigation via additional filtering.

Figure~8-Input~Referred~Noise~Simulation~Plot.

4. Power Supply Rejection Ratio (PSRR):

• Strong performance at low frequencies; drop-off at higher frequencies.

Figure 9 - PSSR Simulation Plot.

5. Time-Domain Analysis:

• Stable output with minimal distortion under a 400mV input signal.

Figure 10 - Time Domain Operation Plot of the Closed Loop Circuit.

5. Conclusion

Strengths:

- Stable, low-distortion output for a 400 mV input signal.
- Noise compliance in medium frequencies.

Areas for Improvement:

- Gain: ~28 dB(below the required >54 dB).
- **Phase Margin**: ~10° (below the required >55°), indicating instability. Compensation design must be revised.
- Flicker Noise: Significant at low frequencies, requiring mitigation strategies.
- **PSRR**: Performance drops at high frequencies and needs optimization.
- Transistor Sizing: Biasing conditions and V_{DSAT} should be re-evaluated for improved operation.