Serie 6

Aufgabe 1

Welche der folgenden Funktionen sind auf ganz \mathbb{R}^2 definiert?

- a) $f(x,y) = \sqrt{x + \ln(y^2)}$
- b) $f(x,y) = \frac{x^2 + y}{x + y}$
- c) $f(x,y) = \tan(x+y)$
- d) $f(x,y) = \sqrt{x^2 + 2y^2}$

Aufgabe 2

Welche der folgenden Aussagen sind richtig? Begründen Sie Ihre Antwort.

- a) Die Funktionen f, g mit $f(x, y) = x + \ln(y)$ und $g(x, y) = y + \ln(x)$ besitzen denselben maximalen Definitionsbereich.
- b) Die Funktionen f, g mit $f(x, y) = \sqrt{1 (x^2 + y^2)}$ und $g(x, y) = \sqrt{1 (x + y)}$ besitzen denselben maximalen Definitionsbereich.
- c) Die Menge $\{(x,y) \in \mathbb{R}^2 \mid x>0, \ y>0\}$ ist der maximale Definitionsbereich der Funktion f mit $f(x,y)=\ln(xy)$.
- d) Der Wertebereich der Funktion f mit $f(x,y) = \sin(x) + \cos(y)$ ist das Intervall [-1,1].

Aufgabe 3

- a) Gegeben sei die Funktion f mit $f(x,y) = e^{-(2x^2+3y^2)}$. Der Schnitt des Graphen von f mit der xz-Ebene ist der Graph einer Funktion $\varphi : \mathbb{R} \to \mathbb{R}$. Bestimmen Sie φ .
- b) Gegeben sei die Funktion f mit $f(x,y)=\frac{x}{x^2+y^2}$. Zeichnen Sie die Höhenlinien von f zur Höhe c mit c=-2,-1,0,1,2.

Aufgabe 4

Berechnen Sie die partiellen Ableitungen (erster Ordnung) nach x und y der folgenden Funktionen.

- a) $f(x,y) = x^2 e^{y^2 + xy}$
- b) $g(x,y) = x^{y+2}$
- c) $h(x,y) = y\sin^2(xy)$
- d) $k(x,y) = \frac{x^2 \cos(xy)}{x^2 + y^2}$

Aufgabe 5

Für die Funktion f mit

$$f(x,y) = e^{-(2x^2+3y^2)}$$

berechne man die partiellen Ableitungen f_{xx} , f_{xy} , f_{yx} und f_{yy} .

Abgabe der schriftlichen Aufgaben

Dienstag, den 04.04.2017 / Mittwoch, den 05.04.2017 in den Übungsstunden und ausserhalb der Zeiten in den Fächern im HG E 66.1.

Präsenz der Assistenzgruppe

Zweimal in der Woche beantworten Doktoranden in einer Präsenz Fragen: Montag und Donnerstag von 12 bis 13 Uhr im HG G 32.6.