Experimento 04 Máquina de Atwood

Beatriz Sechin Zazulla RA: 154779 Guilherme Lucas da Silva RA: 155618 Henrique Noronha Facioli RA: 157986 Isadora Sophia RA: 158018 Lucas Alves Racoci RA: 156331

October 12, 2014

1 Resumo

Neste experimento, estudamos uma Máquina de Atwood, um sistema físico que consiste de:

- 1. Um cilindro de latão funcionando como polia, ou seja com liberdade de girar em torno de um eixo fixo;
- 2. Um fio que será considerado:
 - (a) Leve, isto é com massa irrelevante e
 - (b) Inestensível, isto é, inelástico.
- 3. Dois corpos: 1 e 2, pendurados na polia por meio do fio anteriormente citado, onde:
 - O corpo 1 consiste de um sub-corpo de massa \widetilde{m}_1 e mais n_1 de 5 sub-corpos;
 - $\bullet\,$ O corpo 2 consiste de um sub-corpo de massa \widetilde{m}_2 e mais n_2 de 5 sub-corpos;
 - n_1 e n_2 são tais que: $n_1 + n_2 = 5$;
 - \bullet As massas dos corpos 1 e 2 serão chamadas respectivamente de m_1 e m_2

Sabemos que a diferença entre as massas dos dois corpos gera um torque não nulo na polia, o que nos permite estudar seu Momento de Inercia I, ou a aceleração da grávidade g através da fórmula a seguir:

$$\Delta m = \frac{2h}{qR^2}(I + MR^2)\frac{1}{t^2} + \frac{\tau_a}{qR}$$

2 Objetivos

Este experimento teve como objetivo principal o estudo da máquina de Atwood e a determinação do momento de inérciada da polia e o torque da força de atrito.

3 Procedimento Experimental e Coleta de Dados

3.1 Materiais utilizados

Na realização deste experimento foram utilizados os seguintes materiais:

- Polia de latão com euixo;
- Barbante;
- Dois pesos de suspensão;
- Conjunto de discos mestálicos;
- Trena;
- Paquimetro;
- Balança de Precisão e
- Cronômetro

- 3.2 Procedimento
- 3.3 Dados Obtidos
- 4 Análise dos Resultados e Discussões
- 4.1 Linearização
- 4.2 Regressão linear
- 5 Conclusões