- Cross validation is a more advanced set of methods for splitting data into training and testing sets.
- Cross Validation Relevant Reading:
 - Section 5.1 of ISLR

- We understand the intuition behind performing a train test split, we want to fairly evaluate our model's performance on unseen data.
- Unfortunately this means we are not able to tune hyperparameters to the entire dataset.

- Is there a way we can achieve the following:
 - Train on all the data
 - Evaluate on all the data
 - While it sounds impossible, we can achieve this with cross validation!
 - Let's have an overview of the concept...

• Imagine our data set:

Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

 Let's convert this data into colored blocks for cross-validation

> Area m² **Bedrooms Bathrooms** Price 200 3 \$500,000 190 \$450,000 3 230 \$650,000 180 \$400,000 210 \$550,000

У

Color based off train vs. test set.

X			У
x ₁	X ₂	X ₃	у
x ¹ ₁	x ¹ ₁	x ¹ ₁	У ₁
x ² ₁	X ² ₁	x ² ₁	y ₂
x ³ ₁	x ³ ₁	x ³ ₁	у ₃
x ⁴ ₁	x ⁴ ₁	x ⁴ ₁	y ₄
x ⁵ ₁	x ⁵ ₁	x ⁵	y ₅

TRAIN

TEST

Rotate and resize:

How does cross validation work?

Split data into K equal parts:

1/K left as test set

Train model and get error metric for split:

Repeat for another 1/K split

Keep repeating for all possible splits

MEAN ERROR

Jan-2024

Intro to ML

- We were able to train on all data and evaluate on all data!
- We get a better sense of true performance across multiple potential splits.
- What is the cost of this?
 - We have to repeat computations K number of times!

- This is known as K-fold cross-validation.
- Common choice for K is 10 so each test set is 10% of your total data.
- Largest K possible would be K equal to the number of number of rows.
 - This is known as leave one out cross validation.
 - Computationally expensive!

- One consideration to note with K-fold cross validation and a standard train test split is fairly tuning hyperparameters.
- If we tune hyperparameters to test data performance, are we ever fairly getting performance metrics?

- How can we understand how the model behaves for data that is has not seen and not been influenced by for hyperparameter tuning?
- For this we can use a hold out test set.
- Let's explore what this looks like...

Start with entire data set:

Remove a hold out test set

Perform "classic" train test split:

Train and tune on this data:

Or K-Fold cross validation

 After training and tuning perform final evaluation hold out test set.

 Can not tune after this final test evaluation!

Train | Validation | Test Split

21

- Allows us to get a true final performance metric to report.
- No editing model after this!

Train | Validation | Test Split

- Allows us to get a true final performance metric to report.
- No editing model after this!

- All these approaches are valid, each situation is unique!
- Keep in mind:
 - Previous modeling work
 - Reporting requirements
 - Fairness of evaluation
 - Context of data and model