Computer Vision Image Filtering in Spatial Domain

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Today's Agenda

Image Filtering in Spatial Domain

Order-Statistic (Nonlinear) Filters

Nonlinear

Based on ordering (ranking) the pixels contained in the filter mask

 Replacing the value of the center pixel with the value determined by the ranking result

E.g., median filter, max filter, min filter

Example: Use of Median Filtering for Noise Reduction

a b c

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Sharpening Spatial Filters

- Foundation
- Laplacian Operator
- Unsharp Masking and Highboost Filtering
- Using First-Order Derivatives for Nonlinear Image Sharpening
 - The Gradient

Sharpening Spatial Filters: Foundation

 The first-order derivative of a one-dimensional function f(x) is the difference

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

The second-order derivative of f(x) as the difference

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

a b c

FIGURE 3.36

Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid.

Sharpening Spatial Filters: Laplacian Operator

The second-order isotropic derivative operator is the Laplacian for a function (image) f(x, y)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)$$

$$-4f(x, y)$$

Sharpening Spatial Filters: Laplacian Operator

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.37

(a) Filter mask used to implement Eq. (3.6-6).
(b) Mask used to implement an extension of this equation that includes the diagonal terms.
(c) and (d) Two other implementations of the Laplacian found

frequently in

practice.

Sharpening Spatial Filters: Laplacian Operator

Image sharpening in the way of using the Laplacian:

$$g(x, y) = f(x, y) + c \left[\nabla^2 f(x, y) \right]$$

where,

f(x, y) is input image,

g(x, y) is sharpenend images,

c = -1 if $\nabla^2 f(x, y)$ corresponding to Fig. 3.37(a) or (b)

and c = 1 if either of the other two filters is used.

a o c

FIGURE 3.38

- (a) Blurred image of the North Pole of the moon.
- (b) Laplacian without scaling.
- (c) Laplacian with scaling. (d) Image sharpened using the mask in Fig. 3.37(a). (e) Result of using the mask in Fig. 3.37(b). (Original image courtesy of NASA.)

Unsharp Masking and Highboost Filtering

Unsharp masking

Sharpen images consists of subtracting an unsharp (smoothed) version of an image from the original image e.g., printing and publishing industry

Steps

- Blur the original image
- II. Subtract the blurred image from the original
- III. Add the mask to the original

Unsharp Masking and Highboost Filtering

Let $\overline{f}(x, y)$ denote the blurred image, unsharp masking is

$$g_{mask}(x, y) = f(x, y) - \overline{f}(x, y)$$

Then add a weighted portion of the mask back to the original

$$g(x, y) = f(x, y) + k * g_{mask}(x, y)$$
 $k \ge 0$

when k > 1, the process is referred to as highboost filtering.

Unsharp Masking and Highboost Filtering

FIGURE 3.39 1-D illustration of the mechanics of unsharp masking. (a) Original signal. (b) Blurred signal with original shown dashed for reference. (c) Unsharp mask. (d) Sharpened signal, obtained by adding (c) to (a).

Unsharp Masking and Highboost Filtering: Example

a b c d

FIGURE 3.40

- (a) Original image.
- (b) Result of blurring with a Gaussian filter.
- (c) Unsharp mask. (d) Result of using unsharp masking.
- (e) Result of using highboost filtering.

Image Sharpening based on First-Order Derivatives

For function f(x, y), the gradient of f at coordinates (x, y) is defined as

$$\nabla f \equiv \operatorname{grad}(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

The *magnitude* of vector ∇f , denoted as M(x, y)

Gradient Image
$$M(x, y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

Image Sharpening based on First-Order Derivatives

The *magnitude* of vector ∇f , denoted as M(x, y)

$$M(x, y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$M(x, y) \approx |g_x| + |g_y|$$

Z_1	Z_2	Z ₃
Z_4	Z_5	z_6
Z ₇	z_8	Z 9

$$M(x, y) = |z_8 - z_5| + |z_6 - z_5|$$

Image Sharpening based on First-Order Derivatives

-1	0	0	-1
0	1	1	0

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

a b c d e

FIGURE 3.41

A 3×3 region of an image (the zs are intensity values). (b)–(c) Roberts cross gradient operators. (d)–(e) Sobel operators. All the mask coefficients sum to zero, as expected of a derivative operator.

Example

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the image by sharpening it and by bringing out more of the skeletal detail

a b c d

FIGURE 3.43

- (a) Image of whole body bone scan.
- (b) Laplacian of(a). (c) Sharpenedimage obtained byadding (a) and (b).(d) Sobel gradientof (a).

Example

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the image by sharpening it and by bringing out more of the skeletal detail

e f g h

FIGURE 3.43

(Continued) (e) Sobel image smoothed with a 5×5 averaging filter. (f) Mask image formed by the product of (c) and (e). (g) Sharpened image obtained by the sum of (a) and (f). (h) Final result obtained by applying a powerlaw transformation to (g). Compare (g) and (h) with (a). (Original image courtesy of G.E. Medical Systems.)

Thank you: Question?