# Two-Graphs and NSSDs: An Algebraic Approach

Luke Collins Irene Sciriha

Department of Mathematics University of Malta

S<sup>3</sup> Annual Science Conference 2<sup>nd</sup> March, 2018





#### Structure of the Talk

- Introduction
  - Definition of a Graph
  - Representing Graphs as Matrices
  - Spectrum and Seidel Switching
  - Defining Two-Graphs
- Regular Two-Graphs
  - The Involution M
  - Descendant Form of a Regular Two-Graph
  - Results about Descendants of Regular Two-Graphs
- Strongly Regular Graphs
  - Definition
  - Structure of Descendants of Regular Two-Graphs

In mathematics, a graph is not one of these:

In mathematics, a graph is not one of these:



3/25

In mathematics, a graph is not one of these:





3/25

In mathematics, a graph is not one of these:







#### Definition (Graph)

A **graph** G is a pair (V, E) where V is a non-empty finite set, and E is a set of unordered pairs of the elements of V.

#### Definition (Graph)

A **graph** G is a pair (V, E) where V is a non-empty finite set, and E is a set of unordered pairs of the elements of V.

The elements of the set V are called *vertices*, and the pairs in E are called *edges*.

#### Definition (Graph)

A **graph** G is a pair (V, E) where V is a non-empty finite set, and E is a set of unordered pairs of the elements of V.

The elements of the set V are called *vertices*, and the pairs in E are called *edges*.

#### Example

 $V = \{1, 2, 3, 4, 5\}$  and  $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}$  define a graph.

#### Definition (Graph)

A **graph** G is a pair (V, E) where V is a non-empty finite set, and E is a set of unordered pairs of the elements of V.

The elements of the set V are called *vertices*, and the pairs in E are called *edges*.

#### Example

 $V = \{1,2,3,4,5\} \text{ and } E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},\{4,5\}\} \}$  define a graph.



4 / 25

#### Definition (Graph)

A **graph** G is a pair (V, E) where V is a non-empty finite set, and E is a set of unordered pairs of the elements of V.

The elements of the set V are called *vertices*, and the pairs in E are called *edges*.

#### Example

 $V = \{1, 2, 3, 4, 5\}$  and  $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}$  define a graph.





◆ロト ◆個ト ◆重ト ◆重ト ■ からの

#### Definition (Graph)

A **graph** G is a pair (V, E) where V is a non-empty finite set, and E is a set of unordered pairs of the elements of V.

The elements of the set V are called *vertices*, and the pairs in E are called *edges*.

#### Example

 $V = \{1,2,3,4,5\} \text{ and } E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},\{4,5\}\}$  define a graph.







4 / 25

We usually use the letter n for the number of vertices, that is, n = |V|.

We usually use the letter n for the number of vertices, that is, n = |V|. To encode graphs algebraically, we can use an *adjacency matrix*:

We usually use the letter n for the number of vertices, that is, n = |V|. To encode graphs algebraically, we can use an adjacency matrix:

#### Definition (Adjacency matrix)

The **adjacency matrix** of a graph G = (V, E) is the  $n \times n$  matrix  $(a_{ij})$  where

5/25

We usually use the letter n for the number of vertices, that is, n = |V|. To encode graphs algebraically, we can use an adjacency matrix:

#### Definition (Adjacency matrix)

The **adjacency matrix** of a graph G = (V, E) is the  $n \times n$  matrix  $(a_{ij})$  where

$$a_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ is adjacent to vertex } j, \text{ i.e. } \{v_i, v_j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

Example

#### Example

The graph from the previous example has the following adjacency matrix.

6/25

#### Example

The graph from the previous example has the following adjacency matrix.

#### Example

The graph from the previous example has the following adjacency matrix.



#### Example

The graph from the previous example has the following adjacency matrix.

Note that in general,

#### Example

The graph from the previous example has the following adjacency matrix.

Note that in general,

• The adjacency matrix is symmetric

#### Example

The graph from the previous example has the following adjacency matrix.

Note that in general,

- The adjacency matrix is symmetric
- Each 1 represents an edge, and each 0 represents a non-edge

|▶ ◀鬪▶ ◀불▶ ◀불▶ = 불 = 쒸٩;◎

#### Example

The graph from the previous example has the following adjacency matrix.

Note that in general,

- The adjacency matrix is symmetric
- Each 1 represents an edge, and each 0 represents a non-edge
- Each entry on the diagonal is 0, since we consider simple graphs

Another way of encoding graphs is the Seidel matrix:

Another way of encoding graphs is the *Seidel matrix*:

#### Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the  $n \times n$  matrix  $(s_{ij})$  where

Another way of encoding graphs is the *Seidel matrix*:

#### Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the  $n \times n$  matrix  $(s_{ij})$  where

$$s_{ij} = \left\{ egin{array}{ll} 0 & ext{if i} = ext{j} \ -1 & ext{if vertex $i$ and vertex $j$ are adjacent} \ 1 & ext{otherwise}. \end{array} 
ight.$$

Another way of encoding graphs is the *Seidel matrix*:

#### Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the  $n \times n$  matrix  $(s_{ij})$  where

$$s_{ij} = \left\{ egin{array}{ll} 0 & ext{if i} = ext{j} \ -1 & ext{if vertex $i$ and vertex $j$ are adjacent} \ 1 & ext{otherwise}. \end{array} 
ight.$$

Eventually we will work with a variant of the Seidel matrix, which we will introduce later.

Example

## Example

The graph from the previous example has the following Seidel matrix.



## Example

The graph from the previous example has the following Seidel matrix.



#### Example

The graph from the previous example has the following Seidel matrix.



#### Seidel Matrix

#### Example

The graph from the previous example has the following Seidel matrix.



Note that in general, if  ${\bf A}$  and  ${\bf S}$  are the adjacency and Seidel matrices of a graph  ${\it G}$  respectively, then

$$S = J - I - 2A$$

where **J** is the matrix consisting entirely of 1's and **I** is the identity matrix.

The distinct eigenvalues  $\mu_1, \mu_2, \ldots, \mu_s$  of a given matrix **X** together with their multiplicities  $m_1, m_2, \ldots, m_s$  form the **spectrum** of **X**, denoted  $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$ .

9/25

The distinct eigenvalues  $\mu_1, \mu_2, \ldots, \mu_s$  of a given matrix **X** together with their multiplicities  $m_1, m_2, \ldots, m_s$  form the **spectrum** of **X**, denoted  $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$ .

#### Definition (Spectra)

The distinct eigenvalues  $\mu_1, \mu_2, \ldots, \mu_s$  of a given matrix **X** together with their multiplicities  $m_1, m_2, \ldots, m_s$  form the **spectrum** of **X**, denoted  $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$ .

#### Definition (Spectra)

 $oldsymbol{0}$  The **spectrum** of a graph G is the spectrum of its adjacency matrix

The distinct eigenvalues  $\mu_1, \mu_2, \ldots, \mu_s$  of a given matrix **X** together with their multiplicities  $m_1, m_2, \ldots, m_s$  form the **spectrum** of **X**, denoted  $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$ .

#### Definition (Spectra)

- $oldsymbol{0}$  The **spectrum** of a graph G is the spectrum of its adjacency matrix
- The Seidel spectrum of a graph G is the spectrum of its Seidel matrix

Given a graph G = (V, E) and a subset of the vertices  $U \subseteq V$ , the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and  $V \setminus U$  to obtain the graph SS(U).

Given a graph G = (V, E) and a subset of the vertices  $U \subseteq V$ , the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and  $V \setminus U$  to obtain the graph SS(U).



Given a graph G=(V,E) and a subset of the vertices  $U\subseteq V$ , the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and  $V\setminus U$  to obtain the graph  $\mathrm{SS}(U)$ .



Given a graph G = (V, E) and a subset of the vertices  $U \subseteq V$ , the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and  $V \setminus U$  to obtain the graph SS(U).



Given a graph G = (V, E) and a subset of the vertices  $U \subseteq V$ , the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and  $V \setminus U$  to obtain the graph SS(U).



Given a graph G = (V, E) and a subset of the vertices  $U \subseteq V$ , the operation of Seidel switching with respect to U exchanges all edges and **non-edges** between U and  $V \setminus U$  to obtain the graph SS(U).

# Example

Introduction

000000000000



Given a graph G = (V, E) and a subset of the vertices  $U \subseteq V$ , the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and  $V \setminus U$  to obtain the graph SS(U).

#### Example



We can assume that the vertices of the set  $U \subseteq V$  are labelled first (otherwise simply relabel the vertices).

We can assume that the vertices of the set  $U \subseteq V$  are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

G



SS(U), where  $U = \{1,3\}$ 



We can assume that the vertices of the set  $U \subseteq V$  are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

G







We can assume that the vertices of the set  $U \subseteq V$  are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

(

SS(U), where  $U = \{1,3\}$ 







|   | 1   | 3  | 2  | 4                                                                                                            | 5   |
|---|-----|----|----|--------------------------------------------------------------------------------------------------------------|-----|
| 1 | / 0 | -1 | 1  | -1                                                                                                           | -1  |
| 3 | -1  | 0  | 1  | $     \begin{array}{r}       -1 \\       1 \\       \hline       -1 \\       0 \\       -1     \end{array} $ | -1  |
| 2 | 1   | 1  | 0  | -1                                                                                                           | 1   |
| 4 | -1  | 1  | -1 | 0                                                                                                            | -1  |
| 5 | \_1 | _1 | 1  | _1                                                                                                           | o / |

In general, if **S** and  $\mathbf{S}_{\mathrm{SS}(U)}$  are the Seidel matrices of G and  $\mathrm{SS}(U)$ , then

$$S = \begin{pmatrix} S_U & R \\ \hline R^T & S_{V \setminus U} \end{pmatrix} \iff$$

In general, if **S** and  $\mathbf{S}_{\mathrm{SS}(U)}$  are the Seidel matrices of G and  $\mathrm{SS}(U)$ , then

$$\mathbf{S} = \left( \begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & \mathbf{R} \\ \hline \mathbf{R}^\top & \mathbf{S}_{\mathcal{V} \setminus \mathcal{U}} \end{array} \right) \iff \mathbf{S}_{\mathrm{SS}(\mathcal{U})} = \left( \begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & -\mathbf{R} \\ \hline -\mathbf{R}^\top & \mathbf{S}_{\mathcal{V} \setminus \mathcal{U}} \end{array} \right).$$

In general, if **S** and  $\mathbf{S}_{\mathrm{SS}(U)}$  are the Seidel matrices of G and  $\mathrm{SS}(U)$ , then

$$\mathbf{S} = \left( \begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & \mathbf{R} \\ \hline \mathbf{R}^\top & \mathbf{S}_{V \setminus \mathcal{U}} \end{array} \right) \iff \mathbf{S}_{\mathrm{SS}(\mathcal{U})} = \left( \begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & -\mathbf{R} \\ \hline -\mathbf{R}^\top & \mathbf{S}_{V \setminus \mathcal{U}} \end{array} \right).$$

In other words,  $\mathbf{S}_{\mathrm{SS}(U)} = \mathbf{D}^{-1}\mathbf{S}\mathbf{D}$ , where  $\mathbf{D}^{-1} = \mathbf{D}$  is the diagonal matrix with  $d_{ii} = +1$  if  $i \in U$  and  $d_{ii} = -1$  otherwise.

In general, if **S** and  $S_{SS(U)}$  are the Seidel matrices of G and SS(U), then

$$\mathbf{S} = \left( \begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & \mathbf{R} \\ \hline \mathbf{R}^\top & \mathbf{S}_{V \setminus \mathcal{U}} \end{array} \right) \iff \mathbf{S}_{\mathrm{SS}(\mathcal{U})} = \left( \begin{array}{c|c} \mathbf{S}_{\mathcal{U}} & -\mathbf{R} \\ \hline -\mathbf{R}^\top & \mathbf{S}_{V \setminus \mathcal{U}} \end{array} \right).$$

In other words,  $\mathbf{S}_{\mathrm{SS}(U)} = \mathbf{D}^{-1}\mathbf{S}\mathbf{D}$ , where  $\mathbf{D}^{-1} = \mathbf{D}$  is the diagonal matrix with  $d_{ii} = +1$  if  $i \in U$  and  $d_{ii} = -1$  otherwise.

It follows that **S** and  $\mathbf{S}_{SS(U)}$  are similar, and therefore G and SS(U) have the same Seidel spectrum.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

#### Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

#### Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

• A two-graph on *n* vertices consists of all the *n*-vertex graphs with the same Seidel spectrum.

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

#### Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

- A two-graph on *n* vertices consists of all the *n*-vertex graphs with the same Seidel spectrum.
- The term 'two-graph' originally arose in a combinatorial context, and actually refers to a couple  $(V, \Delta)$  where  $\Delta \subseteq \binom{V}{3}$  is a collection of triples  $\{v_1, v_2, v_3\}$  with the property that any 4-subset of V contains an even number of triples of  $\Delta$ . This is known to be equivalent to our definition.

#### Definition (Regular two-graph)

A two-graph is said to be **regular** if the Seidel matrix of any representative has precisely two distinct eigenvalues.

#### Definition (Regular two-graph)

A two-graph is said to be **regular** if the Seidel matrix of any representative has precisely two distinct eigenvalues.

 This is a valid definition because the Seidel spectrum of any member of a two-graph is the same.

#### Definition (Regular two-graph)

A two-graph is said to be **regular** if the Seidel matrix of any representative has precisely two distinct eigenvalues.

- This is a valid definition because the Seidel spectrum of any member of a two-graph is the same.
- Reverting to the combinatorial definition of 'two-graph',  $(V, \Delta)$  is said to be regular if every pair of vertices lies in the same number of triples of  $\Delta$ . This is known to be equivalent to our definition.

#### The Involution M

#### The Involution **M**

Suppose  ${\bf M}$  is a symmetric matrix which is involutionary, that is,  ${\bf M}^2={\bf I}.$  Then

#### The Involution M

Suppose  ${\bf M}$  is a symmetric matrix which is involutionary, that is,  ${\bf M}^2={\bf I}.$  Then

• By spectral decomposition, **M** has eigenvalues 1 and -1.

### The Involution M

Suppose  ${\bf M}$  is a symmetric matrix which is involutionary, that is,  ${\bf M}^2={\bf I}$ . Then

- By spectral decomposition, **M** has eigenvalues 1 and -1.
- If M is written as

$$\mathbf{M} = \left(\begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \hline \mathbf{v}^\top & -\lambda \end{array}\right),$$

then  $\mathbf{B}v = \lambda v$  and  $|\lambda| < 1$ .

### The Involution M

Suppose  ${\bf M}$  is a symmetric matrix which is involutionary, that is,  ${\bf M}^2={\bf I}$ . Then

- By spectral decomposition, **M** has eigenvalues 1 and -1.
- If M is written as

$$\mathbf{M} = \left(\begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \hline \mathbf{v}^\top & -\lambda \end{array}\right),$$

then  $\mathbf{B}v = \lambda v$  and  $|\lambda| < 1$ .

Furthermore, if the spectrum of **M** is  $1^{(n-k)}(-1)^{(k)}$ , then it follows by Cauchy's interlacing inequalities that the spectrum of **B** is

$$1^{(n-k-1)}(-1)^{(k-1)}\lambda^{(1)}$$
.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on n vertices with eigenvalues  $\mu_1, \mu_2$ , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

where

$$\alpha = \frac{2}{\mu_1 - \mu_2} \quad \text{and} \quad \lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$$

is an involution.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on n vertices with eigenvalues  $\mu_1, \mu_2$ , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

where

$$\alpha = \frac{2}{\mu_1 - \mu_2} \quad \text{and} \quad \lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$$

is an involution.

This matrix still gives us an encoding of the graph.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on n vertices with eigenvalues  $\mu_1, \mu_2$ , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

where

$$\alpha = \frac{2}{\mu_1 - \mu_2} \qquad \text{and} \qquad \lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$$

is an involution.

- This matrix still gives us an encoding of the graph.
- $\mu_1\mu_2 = 1 n$ .

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Example  $(K_{2,4})$ 



$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$



$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$



$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

## Example $(K_{2,4})$



# Seidel spectrum: $(-1)^5(5)^1$

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$

$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

# Example $(K_{2,4})$



## Seidel spectrum: $(-1)^5(5)^1$

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$

$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{S} = \begin{pmatrix} 0 & -1 & 1 & 1 & -1 & 1 \\ -1 & 0 & -1 & -1 & 1 & -1 \\ 1 & -1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 & -1 & 1 \\ -1 & 1 & -1 & -1 & 0 & -1 \\ 1 & -1 & 1 & 1 & -1 & 0 \end{pmatrix}$$

### $\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$

# Example $(K_{2,4})$



# Seidel spectrum: $(-1)^5(5)^1$

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$
$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I} = \begin{pmatrix} 2/3 & 1/3 & -1/3 & -1/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 & 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & 2/3 & -1/3 & 1/3 & -1/3 \\ -1/3 & 1/3 & -1/3 & 2/3 & 1/3 & -1/3 \\ 1/3 & -1/3 & 1/3 & 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & -1/3 & -1/3 & 1/3 & 2/3 \end{pmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♥900

Every two-graph on n vertices has a class representative of the form  $D \stackrel{.}{\cup} K_1$  where D is a graph on n-1 vertices.

18 / 25

Every two-graph on n vertices has a class representative of the form  $D \stackrel{.}{\cup} K_1$  where D is a graph on n-1 vertices.

## Definition (Descendant)

Any two-graph representative of the form  $D \dot{\cup} K_1$  is said to be in descendant form, and the component D is said to be a descendant of the two-graph.

Every two-graph on n vertices has a class representative of the form  $D \stackrel{.}{\cup} K_1$  where D is a graph on n-1 vertices.

## Definition (Descendant)

Any two-graph representative of the form  $D \dot{\cup} K_1$  is said to be in descendant form, and the component D is said to be a descendant of the two-graph.

#### Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

Every two-graph on n vertices has a class representative of the form  $D \stackrel{.}{\cup} K_1$  where D is a graph on n-1 vertices.

## Definition (Descendant)

Any two-graph representative of the form  $D \dot{\cup} K_1$  is said to be in descendant form, and the component D is said to be a descendant of the two-graph.

#### Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

• Pick any vertex  $v \in V$ .

Every two-graph on n vertices has a class representative of the form  $D \stackrel{.}{\cup} K_1$  where D is a graph on n-1 vertices.

## Definition (Descendant)

Any two-graph representative of the form  $D \dot{\cup} K_1$  is said to be in descendant form, and the component D is said to be a descendant of the two-graph.

### Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

- Pick any vertex  $v \in V$ .
- 2 Let U be the set of all neighbours of v.

Every two-graph on n vertices has a class representative of the form  $D \stackrel{.}{\cup} K_1$  where D is a graph on n-1 vertices.

## Definition (Descendant)

Any two-graph representative of the form  $D \dot{\cup} K_1$  is said to be in descendant form, and the component D is said to be a descendant of the two-graph.

### Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

- Pick any vertex  $v \in V$ .
- 2 Let U be the set of all neighbours of v.
- **1** Then the vertex v is isolated in SS(U).

Example (The Petersen Graph)

## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8.

## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8. Its set of neighbours is  $U = \{7, 3, 9\}$ .

### Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8. Its set of neighbours is  $U = \{7, 3, 9\}$ . Now we focus on the edges between U and  $V \setminus U$ .

## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8. Its set of neighbours is  $U = \{7, 3, 9\}$ . Now we focus on the edges between U and  $V \setminus U$ . And the non-edges.

S3 ASC

19 / 25

#### Descendant Form

## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8. Its set of neighbours is  $U = \{7, 3, 9\}$ . Now we focus on the edges between U and  $V \setminus U$ . And the non-edges. Switch edges and non-edges.

19/25

### Descendant Form

## Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8. Its set of neighbours is  $U = \{7, 3, 9\}$ . Now we focus on the edges between U and  $V \setminus U$ . And the non-edges. Switch edges and non-edges. Obtain SS(U).

### Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.



Let us isolate vertex 8. Its set of neighbours is  $U = \{7,3,9\}$ . Now we focus on the edges between U and  $V \setminus U$ . And the non-edges. Switch edges and non-edges. Obtain  $\mathrm{SS}(U)$ . Move vertices around to look nicer.

Using the fact that  $\mathbf{M}^2 = \mathbf{I}$ , we easily obtain the following known results for descendants of regular two-graphs.

Using the fact that  $\mathbf{M}^2 = \mathbf{I}$ , we easily obtain the following known results for descendants of regular two-graphs.

**1** D is a  $\rho$ -regular subgraph, each vertex having degree

$$\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1.$$

Using the fact that  $\mathbf{M}^2 = \mathbf{I}$ , we easily obtain the following known results for descendants of regular two-graphs.

**1** D is a  $\rho$ -regular subgraph, each vertex having degree

$$\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1.$$

② Substituting for  $\alpha$  and  $\lambda$ , we also get that n and  $\mu_1 + \mu_2$  have the same parity (even/odd).

We prove the first result, that D is  $\rho$ -regular with  $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$ .

We prove the first result, that D is  $\rho$ -regular with  $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$ .

#### Proof.

Let the Seidel eigenvalues of G be  $\mu_1$  and  $\mu_2$ , where G is in descendant form. Using the values of  $\alpha$  and  $\lambda$ , the first and last rows of the involution  $\mathbf{M}$  are of the form

Row 1 
$$\begin{pmatrix} -\lambda & \pm \alpha & \pm \alpha & \cdots & \pm \alpha & \alpha \\ & & \vdots & & & \\ \alpha & \alpha & \alpha & \cdots & \alpha & -\lambda \end{pmatrix}$$

where we are assuming that the last row corresponds to the isolated vertex. The number of  $-\alpha$ 's in row 1 is the degree of vertex 1. Since  $\mathbf{M}^2 = \mathbf{I}$ , the inner product  $\langle \text{Row } 1, \text{Row } n \rangle = 0$ .



### Results and Descendants of a Regular Two-Graphs

We prove the first result, that D is  $\rho$ -regular with  $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$ .

#### Proof.

Row 1 
$$\begin{pmatrix} -\lambda & \pm \alpha & \pm \alpha & \cdots & \pm \alpha & \alpha \\ & & \vdots & & & \\ \alpha & \alpha & \alpha & \cdots & \alpha & -\lambda \end{pmatrix}$$

$$\langle \text{Row } 1, \text{Row } n \rangle = 0 \implies -\alpha \lambda - (n-2)\alpha^2 - 2\rho_1 \alpha - \alpha \lambda = 0$$

where  $\rho_1$  denotes the degree of vertex 1.

Note that  $\rho_1$  is independent of the vertex label 1, since

$$\langle \text{Row } 1, \text{Row } i \rangle = 0$$

for all  $1 \le i \le n-1$ . Thus D is  $\rho$ -regular.

**Recall**: A graph is called *regular* if all the vertices are of the same degree.

**Recall**: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

Recall: A graph is called regular if all the vertices are of the same degree.

#### Definition (Strongly regular graph)

**Recall**: A graph is called *regular* if all the vertices are of the same degree.

#### Definition (Strongly regular graph)

A graph G is said to be a strongly regular graph or an  $srg(n, \rho, e, f)$  if:

• it has *n* vertices,

**Recall**: A graph is called *regular* if all the vertices are of the same degree.

#### Definition (Strongly regular graph)

- 1 it has *n* vertices,

**Recall**: A graph is called *regular* if all the vertices are of the same degree.

#### Definition (Strongly regular graph)

- 1 it has *n* vertices,
- 2 each vertex has degree  $\rho$ ,
- every two adjacent vertices have e common neighbours, and

**Recall**: A graph is called *regular* if all the vertices are of the same degree.

#### Definition (Strongly regular graph)

- 1 it has *n* vertices,
- 2 each vertex has degree  $\rho$ ,
- every two adjacent vertices have e common neighbours, and
- every two non-adjacent vertices have f common neighbours.

Example (Descendant of Petersen Graph)



#### Example (Descendant of Petersen Graph)

The descendant from the last example is an srg(9, 4, 1, 2).



Consider a descendant form  $D \dot{\cup} K_1$  of a regular two-graph, and for any two adjacent vertices, let  $\tilde{e}$  denote the number of common neighbours and let  $\tilde{e}$  denote the number of common non-neighbours.

Consider a descendant form  $D \dot{\cup} K_1$  of a regular two-graph, and for any two adjacent vertices, let  $\tilde{e}$  denote the number of common neighbours and let  $\tilde{e}$  denote the number of common non-neighbours.

Similarly, for any two non-adjacent vertices, let  $\tilde{f}$  denote the number of common neighbours and let  $\tilde{f}$  denote the number of common non-neighbours.

Consider a descendant form  $D \dot{\cup} K_1$  of a regular two-graph, and for any two adjacent vertices, let  $\tilde{e}$  denote the number of common neighbours and let  $\tilde{e}$  denote the number of common non-neighbours.

Similarly, for any two non-adjacent vertices, let  $\tilde{f}$  denote the number of common neighbours and let  $\tilde{f}$  denote the number of common non-neighbours.

By considering the rows of  ${f M}$  we obtain the following formulæ:

• 
$$\tilde{e} + \tilde{e} = \frac{1}{2}(n-2) - \frac{\lambda}{\alpha}$$
  
 $\tilde{e} - \tilde{e} = 2\rho - n$ 

• 
$$\tilde{f} + \tilde{f} = \frac{1}{2}(n-2) + \frac{\lambda}{\alpha}$$
  
 $\tilde{f} - \tilde{f} = 2\rho - (n-2)$ 

24 / 25

Consider a descendant form  $D \dot{\cup} K_1$  of a regular two-graph, and for any two adjacent vertices, let  $\tilde{e}$  denote the number of common neighbours and let  $\tilde{e}$  denote the number of common non-neighbours.

Similarly, for any two non-adjacent vertices, let  $\tilde{f}$  denote the number of common neighbours and let  $\tilde{f}$  denote the number of common non-neighbours.

By considering the rows of  ${\bf M}$  we obtain the following formulæ:

• 
$$\tilde{e} + \tilde{e} = \frac{1}{2}(n-2) - \frac{\lambda}{\alpha}$$
  
 $\tilde{e} - \tilde{e} = 2\rho - n$ 

• 
$$\tilde{f} + \tilde{f} = \frac{1}{2}(n-2) + \frac{\lambda}{\alpha}$$
  
 $\tilde{f} - \tilde{f} = 2\rho - (n-2)$ 

From these it follows that  $\tilde{e}$ ,  $\tilde{e}$ ,  $\tilde{f}$  and  $\tilde{f}$  are invariant for any pair of adjacent/non-adjacent vertices.

(ロ > 《圖 > 《플 > 《플 > \_ 플 \_ જ)의(

From the formulæ obtained previously, we get the following results.

From the formulæ obtained previously, we get the following results.

• Given a descendant form  $D \dot{\cup} K_1$  of a regular two-graph on n vertices, then D is an  $srg(n-1, \rho, e, f)$  where  $e = \tilde{e}$  and  $f = \tilde{f} = \frac{\rho}{2}$ .

From the formulæ obtained previously, we get the following results.

- Given a descendant form  $D \dot{\cup} K_1$  of a regular two-graph on n vertices, then D is an  $srg(n-1, \rho, e, f)$  where  $e = \tilde{e}$  and  $f = \tilde{f} = \frac{\rho}{2}$ .
- n must be even.

From the formulæ obtained previously, we get the following results.

- Given a descendant form  $D \dot{\cup} K_1$  of a regular two-graph on n vertices, then D is an  $srg(n-1, \rho, e, f)$  where  $e = \tilde{e}$  and  $f = \tilde{f} = \frac{\rho}{2}$ .
- n must be even.
- $\frac{\lambda}{\alpha}$  is an integer.

From the formulæ obtained previously, we get the following results.

- Given a descendant form  $D \dot{\cup} K_1$  of a regular two-graph on n vertices, then D is an  $srg(n-1, \rho, e, f)$  where  $e = \tilde{e}$  and  $f = \tilde{f} = \frac{\rho}{2}$ .
- n must be even.
- $\frac{\lambda}{\alpha}$  is an integer.

THE END

