

# Paracompactness.	
ACP(X) is said locally finite if each point pCX, which intersects finitely many elements (sets) in A	has some nbd
A is cover, you say another cover B is called refine for any BEB, FAEA such that BEA. Also B are open, then it is called a open refinement.	ment of A if if all sets in
Defn (paracompactness). X is said paracompact if eu has a locally finite open refinement	
# Partitions of Unity	
Defn. If $U = \{ U \times J \times C \times C \text{ cover of } X \}$, a partition of U it is a family conf. funcs $\{ V \times X \to \hat{L}(0, 1) \} \times C \times C$ which satisfies.	unity subordinate to
which satisfies.	X
(1) supp ta := \(\frac{1}{\alpha}(\tao_1)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1=UNUx supples
$\frac{1}{\{\lambda : \forall \lambda(\lambda) \neq 0\}}$	
2) The {supp Yx} xcA has to be locally finite	P
3 ZXEA YX(P)=1 YPEX	2 Mpp Haz Ux
(condition 1) says (3) is well defrined)	
Theorem. If M is a n-dim manifold then I embedding If M is a smooth n-dim manifold, I "	$i: M \longrightarrow \mathbb{R}^{2nt1}$ $i: M \longrightarrow \mathbb{R}^{2n}$
Theorem. Every compact manifold is homeomorphic a sub- space.	set of some enclidean
Pf. Suppose comp n-dim mani M.	
Pf. Suppose comp n-dim mani M. 3 a finite open cover say U.,, Us which are how a subset of RM.	neomorphic
∃ a partition of unity subordinate to U, V; : M → R (V; E[G1])	
	R"
forther Cli: Ui → R R R	
Fi: $M \rightarrow \mathbb{R}^n$ Wi(P) Cli(P) P & Ui Fi(P) = O if $P \in M \setminus \text{supp } V \in I$	supplic Wi
$Fi(p) = \begin{cases} 0 & \text{if } p \in M \setminus supp \forall i \end{cases}$	
Now define $F: M \rightarrow \mathbb{R}^{nk+k}$	
F(P) = (F(P),, Fx(P), Y(P),, Yx(P))	
R R	
E RNLtu	

```
5 k (x) = 2k (tily) =1 (by 3)
Take F(x) = F(y),
                                      (, some 4;(x)>0

⇒ 2€ supply; ⊆ Ui
     (5 Y;(a) = Y;(y)
       => \ti(y)>0
=> y & supple; \(\su_i\)
    \Rightarrow F_i(x) = F_i(y) \xrightarrow{: x, y \in U_i}
                                        41(2) di(2) = 41(4) di(4)
                                      => fi(x) = fi(y)
                                       => 2 = y
 Thus F is inj F(M) = M (closed map Lemma)
                                              F: X -> Y then
                                                 compact Housdorff
                                            1) If F is inj => embedding
                                            2 If F is bij => homeomorphism.
# Brownerts FPI
  Theorem f: D' > D' continuous, then it admits a fixed point, i.e fla) = x
              {xeirn: 11x11<1}
  n=1, (frivial)
  Say that f does not any fixed point fint a trep"
                                                         g: D^n \longrightarrow S^{n-1} continuous \bigcap_{\mathbb{R}^n} \mathbb{R}^n = \{x \in \mathbb{R}^n \mid \|x\| = 1\}
                                                         3 gnn = idgnn
                                                         thus I any continuous function of
n=2, g: D^2 \rightarrow S' such g(s) \equiv ids!
                                                            T_i: Top \longrightarrow Grp (\pi_i, \pi_i): X \longmapsto \pi_i(X) \leftarrow fundamental
        g_*: \overline{\Pi_1(D^2)} \to \overline{\Pi_1(S^1)}
                                                  induces G f: X — Y
               \{1\} \longrightarrow \mathbb{Z}
                                                            f_{\kappa}: \pi_{\iota}(x) \to \pi_{\iota}(y)
                     cannot happen
```