lava REFERENCE CARD

Linear Latent Variable Models in R

MODEL BUILDING		NON-LINEAR CONSTRAINTS	
• Initialize model (empty or multivarite regr. model)	m <- lvm(); m <- lvm(c(y1,y2)~x+z)	Non-linear parameter constraints	<pre>constrain(m,psi~beta+gamma) <- funct</pre>
Initialize from list of regression models	m <- lvm(list(y~x,y~z,))	 Non-linear regression (covariate x) 	constrain(m,psi~beta+x) <- funct
 Add extra regression associations (slopes) 	regression(m) <- c(y1,y3)~u	Add extra parameters to model	parameter(m) <- ~beta+gamma
Add correlation between residual terms	covariance(m) <- y1~y2+y3	Add predictor/exogenous variable to model	exogenous(m) <- ~x1+x2
Remove associations between variables	cancel(m) <- ~y1+y2	Random slopes (x name of covariate)	regression(m) <- y1~f(eta,x)
Add variables	addvar(m) <- ~y1+y2	Print non-linear constraints	constrain(m)
Remove variables	kill(m) <- ~y1+y2		
Code as latent (reverse with arg. clear=TRUE)	latent(m) <- ~y1+y2	MODEL INSPECTION	
Binary variables; library(lava.tobit)	binary(m) <- ~y1+y2	- Evansina navamatan aanatusinta	
		 Examine parameter constraints Extract variable names 	intercept, covariance, regression, constrain
EQUALITY CONSTRAINTS		Submodel (see also measurement)	exogenous, endogenous, latent, manifest, vars
- Intercente		· · · · · · · · · · · · · · · · · · ·	subset(m,~y1+y2+eta+x)
Intercepts Constrain intercents to be identical.	· · · · · · · · · · · · · · · · · · ·	 List parameter names Parents and children of nodes (union)) 	coef(m,mean=TRUE,labels=FALSE,)
o Constrain intercepts to be identical	<pre>intercept(m) <- c(y1,y2)~f(a)</pre>		parents(m,~y1+y2);children(m,~x1+x2)
 Simultaneously fix several intercepts 	<pre>intercept(m,~y1+y2) <- list("a",2)</pre>	Extract (directed) pathways between variables	path(m,y~x)
 Variance/covariance parameters 		PLOTTING	
 Fix variance term and covariance between residual to v1 resp. 1 	covariance(m) <- y1~f(y1,v1)+f(y2,1)	Plot method (1vm and 1vmfit)	plot(m,labels=TRUE,)
 Fix multiple variance parameters 	<pre>covariance(m,~y1+y2) <- list("a",2)</pre>	Change appearance of nodes	nodecolor(m,~y1+x,labcol=c("red","blue"),
 Simultaneously fix several covariance parameters 	covariance(m,c(y1,y2)~y2+y3) <-	0	border,1wd=2,) <- c("blue","red")
·	list(2,"a","b",1)	Change label and appearance of edges	<pre>edgelabels(m,y~x+z,col,) <- expression(rho)</pre>
 Slope/regression parameters 		Change labels of nodes (e.g. math expressions)	labels(m) <- c(eta=expression(eta))
$ \begin{array}{ll} \circ & y_1 = x + az + \cdots \\ y_2 = x + bx + \cdots \end{array} $	regression(m,c(y1,y2)~x+z) <- list(1,"a",2,"b")	• Extract graphNEL object (library(Rgraphviz))	Graph(m)
$\circ y_1 = x + \cdots, y_2 = az + \cdots$	regression(m,c(y1,y2)~x+z) <- list(1,"a")	STATISTICAL INFERENCE	
$\circ \qquad y_i = ax + \cdots$	regression(m) <- $c(y1,y2,y3)^f(x,a)$	Estimate parameters (default MLE)	e <- estimate(m,data,estimator,)
 Fix parameters defined by index (see coef) 	parfix(m,c(3,4,12)) <- list(1,"a",2)	Estimate parameters (default MEE) Estimate multigroup model (default MLE)	estimate(list(m,),list(data,),)
• Label all free parameters (see multigroup)	<pre>m <- baptize(m)</pre>	Estimate indugroup moder (detaut MEE) Estimate under MAR assumption	estimate(m,data,missing=TRUE,)
 Remove linear constraints by fixing to NA (applies also to the intercept and covariance methods) 	regression(m) <- c(y1,y2)~f(x,NA)	Likelihood ratio tests vs. saturated model	compare(e)
• <i>Bracket notation</i> . Define intercept and variance of	regression(m) <- y[0:v]~f(x[a,1],b)	Likelihood ratio tests	compare(e1,e2,e3,)
residual of y to 0 and 'v' and of x to 'a' and 1. And	regression(m) <- y[0:v] i(x[a,i],b)	 Model indices based on score tests (or Wald tests) 	modelsearch(e,)
define $\mathbb{E}(y x) = b \cdot x$.		Identify empirical equivalent models	equivalence(e,y~x,k=1,)
		 Calculate indirect and total effects of x on y 	effects(e, y~x)
SIMULATION		 Non-linear constraints and approx. std.errors 	constraints(e)
Simulate 100 observations from model m	sim(m,100,)	 Mixtures of LLVM; library(lava.mixture) 	mixture(list(m1,m2),data)
 Simulate 100 observations from model in Simulate with the slope-parameter of x on y set to 	sim(m,100,p=c("y"=1, "y<-x"=-2),)	 Extract various likelihood summaries 	coef,score,information,logLik,AIC,gof
-2, and intercept of y to 1 (see coef)	51m(m,100,p-0(y -1, y \ \ \ - 2),)	Clustered correlated data	<pre>estimate(m,data,cluster="id",)</pre>
Define conditional distribution	distribution(m,~y1+y2) <-	Robust standard errors	<pre>coef(e,type="robust")</pre>
	function(n,mu,var,)	• Test for linearity; library(gof)	cumres(e,)
 Predefined distributions 	binomial.lvm,,uniform.lvm,normal.lvm,poisson.lvm	Non-parametric bootstrap	bootstrap(e,R=100,)

STRUCTURAL EQUATION MODEL

MIMIC model

```
> m <- lvm(c(y1,y2,y3)~u)
> regression(m) <- u ~ x1+x2
> latent(m) <- ~ u
> d <- sim(m,100)
> e <- estimate(m,d)
> plot(e)
```


RANDOM REGRESSION

Random slopes allowing for unbalanced designs

```
> m <- lvm(c(y1,y2,y3)^f(eta,1))
> regression(m,c(y1,y2,y3)^u) <- list("x1","x2","x3")
> intercept(m,~y1+y2+y3) <- list("mu")
> covariance(m,~y1+y2+y3) <- list("v","v","v")
> latent(m) <- ~u+eta
> estimate(m,data,missing=TRUE)
```

GRAPHICS I

```
> m <- lvm(list(y ~ b+v+w, c(b,w) ~ x+z, u ~ b))
> latent(m) <- ~b
> plot(m)
```


GRAPHICS II

```
> m <- lvm(y~x+z+u)
> labels(m) <- c(y=expression(psi), z=expression(zeta))
> nodecolor(m,~y+z+x,border=c("white","white","black"),
+ labcol="white", lwd=c(0,0,5)) <-
+ c("orange", "indianred", "lightgreen")
> edgelabels(m,y~z+x, cex=c(2,3), col=c("orange", "black"),
+ labcol="darkblue",lwd=c(3,1)) <- expression(phi,rho)
> plot(m,layoutType="circo")
```


INSTRUMENTAL VARIABLE

IV estimator (not available with e.g. non-recursive structures)

```
> estimate(m,data,estimator="IV")
```

SIMULATION

Weibull with exponential distributed censoring

```
> m <- lvm(y~x1+x2+x3)
> distribution(m,~y) <- weibull.lvm(shape=0.5,cens=rexp)
> distribution(m,~x3) <- binomial.lvm()
> d <- sim(m,100)</pre>
```

MULTIVARIATE PROBIT

```
> m <- lvm(c(y1,y2)~f(x,b)+f(z,b))
> binary(m) <- ~y1+y2
> covariance(m) <- y1~y2
> estimate(m,data,control=list(trace=1))
```

MULTIGROUP ANALYSIS I

```
\begin{split} \log L(\theta|d) &= \sum_i \log L_i(\theta|d_i) \\ > & \texttt{estimate(list(m1,m2,m3),list(d1,d2,d3))} \end{split}
```

INDIRECT EFFECTS. TOBIT/PROBIT MODEL

```
\begin{split} \mathbb{E}(y \mid x, z) &= a(x + z) \\ &> \texttt{m} <- \text{lvm}(\text{list}(\texttt{y}^\texttt{z} + \texttt{x}, \texttt{z}^\texttt{x})) \\ &> \texttt{d} <- \text{transform}(\text{sim}(\texttt{m}, 100), \texttt{z} = \text{factor}(\texttt{z} > 0), \texttt{y} = \text{Surv}(\text{ifelse}(\texttt{y} < 1, \texttt{y}, 1), \texttt{y} < 1)) \\ &> \texttt{e} <- \text{ estimate}(\texttt{m}, \texttt{d}) \\ &> \text{effects}(\texttt{e}, \texttt{y}^\texttt{x}) \end{split}
```

NON-LINEAR REGRESSION

Bi-variate non-linear regression with random intercept. Estimated via Fischer scoring