Algorithmics 2025

Algorithmics

Lecture 7

Dr. Oana Andrei
School of Computing Science
University of Glasgow
oana.andrei@glasgow.ac.uk

Section 3 - Graphs and graph algorithms

Graph basics

- definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

breadth/depth first search

Topological ordering

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)

Graphs - Recap

An (undirected) graph G = (V, E)

- V is finite set of vertices (the vertex set)
- E is set of edges, each edge is a subset of V of size 2 (the edge set)
- each edge is a set vertices of the form {u,v}

A directed graph (digraph) G = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Weighted graphs - Recap

Each edge e has a positive integer weight given by wt(e)>0

- graph may be undirected or directed
- weight may represent length, cost, capacity, etc
- if an edge is not part of the graph its weight is infinity

Spanning trees

Spanning tree:

- subgraph (subset of edges) which is both a tree and 'spans' every vertex
- a spanning tree is obtained from a connected graph by deleting edges
- the weight of a spanning tree is the sum of the weights of its edges

Problem: for a weighted connected undirected graph, find a minimum weight spanning tree

this represents the 'cheapest' way of interconnecting the vertices

Applications include:

- design of networks for computer, telecommunications, transportation, gas, electricity, ...
- clustering, approximating the travelling salesman problem

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

delete edges while still 'spanning' vertices

> cannot delete any more edges and we have a tree

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Spanning tree for G

weight 28

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

delete edges while still 'spanning' vertices

> cannot delete any more edges and we have a tree

Weighted graph G

spanning tree:
subgraph which is
both a tree and
'spans' every vertex

Spanning tree for G

weight 24

Minimum weight spanning tree problem

An example of a problem in combinatorial optimisation

- find 'best' way of doing something among a (large) number of candidates
- can always be solved, at least in theory, by exhaustive search (how?)
- however this may be infeasible in practice
- typically an exponential-time algorithm
 - \cdot e.g. K_n (clique of size n) has n^{n-2} spanning trees (Cayley's formula)
 - · recall: a graph is a clique if every pair vertices is joined by an edge

a much more efficient algorithm may be possible
 and is true in the case of minimum weight spanning trees

Minimum weight spanning tree problem

An example of a problem in combinatorial optimisation

- find 'best' way of doing something among a (large) number of candidates
- can always be solved, at least in theory, by exhaustive search
- however this may be infeasible
- typically an exponential-time algorithm

The Prim-Jarnik minimum spanning tree algorithm

- an example of a greedy algorithm
- it makes a sequence of decisions based on local optimality
- and ends up with the globally optimal solution

For many problems, greedy algorithms do not yield optimal solution

see examples later in the course

The Prim-Jarnik algorithm

Min spanning tree is constructed by choosing a sequence of edges

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
   find edge e = {p,q} of the graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```


Weighted graph G

could also have
chosen {u,w}

minimum such edge is {v,w}

Weighted graph G

Minimum spanning tree for G

– weight 24

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
   find edge e = {p,q} of graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
   find edge e = {p,q} of graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0) {
   find edge e = {p,q} of graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```

Analysis (n is the number of vertices)

initialisation O(n) (n operations to set vertices to be tv or ntv)

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
   find edge e = {p,q} of graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```

- initialisation O(n) (n operations to set vertices to be tv or ntv)
- the outer loop is executed n-1 times
 - initially n-1 ntv vertices and each iteration turns one ntv to a tv

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
   find edge e = {p,q} of graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```

- initialisation O(n) (n operations to set vertices to be tv or ntv)
- the outer loop is executed n-1 times
- the inner loop checks all edges from a tree-vertex to a non-tree-vertex
- there can be O(n²) of these

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
   find edge e = {p,q} of graph such that
      p is a tv;
      q is an ntv;
      wt(e) is minimised over such edges;
   adjoin edge e to the (spanning) tree;
   make q a tv;
}
```

- initialisation O(n) (n operations to set vertices to be tv or ntv)
- the outer loop is executed n-1 times
- the inner loop O(n²)
- updating tree 0(1) each iteration

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
    find edge e = {p,q} of graph such that
        p is a tv;
        q is an ntv;
        wt(e) is minimised over such edges;
        adjoin edge e to the (spanning) tree;
        make q a tv;
}
```

- initialisation O(n) (n operations to set vertices to be tv or ntv)
- the outer loop is executed n-1 times
- the inner loop $O(n^2)$ and updating tree O(1) each iteration
- so overall the algorithm is $O(n) + O(n^3) = O(n^3)$

Section 3 - Graphs and graph algorithms

Graph basics

- definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

breadth/depth first search

Topological ordering

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)

Min spanning tree is constructed by choosing a sequence of edge

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
while (number of ntv > 0){
    find edge e = {p,q} of graph such that
        p is a tv;
        q is an ntv;
        wt(e) is minimised over such edges;
        adjoin edge e to the (spanning) tree;
        make q a tv;
}
```

- initialisation O(n) (n operations to set vertices to be tv or ntv)
- the outer loop is executed n-1 times
- the inner loop $O(n^2)$ and updating tree O(1) each iteration (!)
- so overall the algorithm is $O(n) + O(n^3) = O(n^3)$

Dijkstra's refinement

Introduce an attribute bestTV for each non-tree vertex (ntv) q

bestTV is set to the tree vertex (tv) p for which wt({p,q}) is minimised

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
   find ntv q for which wt({q, q.bestTV}) is minimal;
   adjoin {q, q.bestTV} to the tree;
   make q a tv;

   for (each ntv s) update s.bestTV;
   // update bestTV as tree vertices have changed
}
```

Weighted graph G

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

tree vertices: z

O non-tree vertices: u, v, w, x, y

Weighted graph G

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	Z	∞
V	Z	∞
W	Z	5
х	Z	6
У	Z	7
Z	1	-

tree vertices: z

o non-tree vertices: u, v, w, x, y

initialise **bestTV** to the only **tv z**

Weighted graph G

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	Z	∞
V	Z	∞
W	Z	5
Х	Z	6
У	Z	7
Z	1	-

tree vertices: z

o non-tree vertices: u, v, w, x, y

Weighted graph G

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	Z	∞
V	Z	∞
W	Z	5
Х	Z	6
У	Z	7
Z	1	-

tree vertices: z

O non-tree vertices: u, v, w, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	Z	00
V	Z	00
W	Z	5
X	Z	6
У	Z	7
Z	ı	_

- tree vertices: w, z
- o non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	z→w	∞→5
V	z→w	∞→5
W	ı	1
х	Z	6
У	z→w	7→4
Z	ı	-

- tree vertices: w, z
- O non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	z→w	∞→5
V	z→w	∞→5
W	ı	-
Х	Z	6
У	z→w	7→4
Z	ı	-

- tree vertices: w, z
- O non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	z→w	∞→5
V	z→w	∞→5
W	ı	-
X	z	6
У	z→w	7→4
Z	ı	-

- tree vertices: w, z
- O non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	z→w	∞→5
V	z→w	∞→5
W	-	-
х	Z	6
у	z→w	7→4
Z	1	-

- tree vertices: w, z
- o non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W	5
V	W	5
W	ı	-
Х	Z	6
У	W	4
Z	-	_

- tree vertices: w, z
- o non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W	5
V	W	5
W	ı	_
Х	Z	6
У	W	4
Z	1	-

- tree vertices: w, z
- o non-tree vertices: u, v, x, y

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W	5
V	W	5
W	ı	_
X	Z	6
У	W	4
Z	ı	_

- tree vertices: w, y, z
- o non-tree vertices: u, v, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	W	5
V	W	5
W	ı	-
Х	Z	6
У	ı	-
Z	1	-

- tree vertices: w, y, z
- o non-tree vertices: u, v, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	W	5
V	W	5
W	ı	-
Х	Z	6
У	1	-
Z	1	-

- tree vertices: w,y,z
- o non-tree vertices: u, v, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	W	5
V	W	5
W	ı	-
X	Z	6
У	ı	-
Z	1	-

- tree vertices: w,y,z
- o non-tree vertices: u, v, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W	5
V	W	5
W	ı	-
Х	Z	6
У	ı	-
Z	1	-

- tree vertices: w, y, z
- o non-tree vertices: u, v, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	W	5
V	W	5
W	ı	_
Х	Z	6
У		- -
Z	1	-

- tree vertices: w,y,z
- o non-tree vertices: u, v, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W	5
V	W	5
W	_	_
X	Z	6
У	-	_
Z	-	_

- tree vertices: v,w,y,z
- onon-tree vertices: u, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W→V	5→4
V	ı	-
W	ı	-
Х	Z	6
У	ı	-
Z	1	-

- tree vertices: v,w,y,z
- o non-tree vertices: u, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	w→v	5→4
V	ı	-
W	ı	-
Х	Z	6
У	-	- -
Z	-	-

- tree vertices: v,w,y,z
- onn-tree vertices: u, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	W→V	5→4
V	ı	-
W	ı	_
X	z	6
У	1	-
Z	1	-

- tree vertices: v,w,y,z
- onn-tree vertices: u, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	V	4
V	ı	-
W	ı	-
Х	Z	6
У	1	-
Z	1	-

- tree vertices: v,w,y,z
- o non-tree vertices: u, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	V	4
V	ı	-
W	1	-
х	z	6
У	1	-
Z	-	-

- tree vertices: v,w,y,z
- onon-tree vertices: u, x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	V	4
V	-	_
W	-	_
X	Z	6
У	ı	_
Z	ı	_

- tree vertices: u,v,w,y,z
- onn-tree vertices: x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	wt({q.bestTV,q})
u	ı	-
V	_	-
W	-	-
х	z	6
У	1	-
Z	-	-

- tree vertices: u,v,w,y,z
- o non-tree vertices: x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	ı	-
V	_	-
W	_	-
Х	z	6
У	_	-
Z	-	-

- tree vertices: u,v,w,y,z
- non-tree vertices: x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	ı	_
V	ı	-
W	-	_
X	z	6
У	1	-
Z	-	-

- tree vertices: u,v,w,y,z
- onn-tree vertices: x

- choose ntv q for which wt({q, q.bestTV}) is minimal and make q a tv
- update s.bestTV for all ntv s

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	ı	-
V	-	-
W	-	-
Х	-	-
У	1	-
Z	1	-

- tree vertices: u,v,w,x,y,z
- non-tree vertices:

Weighted graph G

Minimum spanning tree for G

– weight 24

q	q.bestTV	<pre>wt({q.bestTV,q})</pre>
u	_	ı
V	_	-
W	_	
X	_	ı
У	-	-
Z	-	ı

Dijkstra's refinement

Introduce an attribute bestTV for each non-tree vertex (ntv) q

bestTV is set to the tree vertex (tv) p for which wt({p,q}) is minimised

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
   find ntv q for which wt({q, q.bestTV}) is minimal;
   adjoin {q, q.bestTV} to the tree;
   make q a tv;

   for (each ntv s) update s.bestTV;
   // update bestTV as tree vertices have changed
}
```

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
  find ntv q for which wt({q, q.bestTV}) is minimal;
  adjoin {q, q.bestTV} to the tree;
  make q a tv;

for (each ntv s) update s.bestTV; // update as tvs have changed
}
```

initialisation is O(n)

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
  find ntv q for which wt({q, q.bestTV}) is minimal;
  adjoin {q, q.bestTV} to the tree;
  make q a tv;

for (each ntv s) update s.bestTV; // update as tvs have changed
}
```

- initialisation is O(n)
- while loop is executed n-1 times

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
   find ntv q for which wt({q, q.bestTV}) is minimal;
   adjoin {q, q.bestTV} to the tree;
   make q a tv;

for (each ntv s) update s.bestTV; // update as tvs have changed
}
```

- initialisation is O(n)
- while loop is executed n-1 times
- first part takes O(n)
 - \cdot O(n) to find minimal **ntv** and O(1) to adjoin and update

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
  find ntv q for which wt({q, q.bestTV}) is minimal;
  adjoin {q, q.bestTV} to the tree;
  make q a tv;

for (each ntv s) update s.bestTV; // update as tvs have changed
}
```

- initialisation is O(n)
- while loop is executed n-1 times
- first part takes O(n) and second part takes O(n)
 - for each ntv s only need to compare weights for s.bestTV and new tv vertex
 (i.e. q) to update the value of s.bestTV

```
set an arbitrary vertex r to be a tree-vertex (tv);
set all other vertices to be non-tree-vertices (ntv);
for (each ntv s) set s.bestTV = r; // r is the only tv

while (number of ntv > 0){
  find ntv q for which wt({q, q.bestTV}) is minimal;
  adjoin {q, q.bestTV} to the tree;
  make q a tv;

for (each ntv s) update s.bestTV; // update as tvs have changed
}
```

- initialisation is O(n)
- while loop is executed n-1 times
 - first and second parts each take O(n) so for both parts O(n)+O(n) = O(n)
- overall the algorithm is $O(n) + O(n^2) = O(n^2)$
 - while Prim-Jarnik is O(n³)

Plan for next week

In class test on Monday

- 1h30 class test, additional time 15 min to deal with submission, plus 30 minutes for those entitled to additional time
- online, word document to fill in your answers and upload
- open book assessment
- 3 questions: 2 on algorithms tracing and one on describing an algorithm to solve a problem (based on some algorithms covered in weeks 1 & 2)

The assessed exercise will be released on Tuesday

- based on graph theory
 - ask for help re: the AE during any subsequent tutorial session
- two lab sessions 2h each to prepare for and help with the AE
 - Wednesday 19 March with a lab exercise to get you going
 - Wednesday 26 March dedicated for working on the AE and ask for help

Quiz week 2 and mid-way feedback

The quiz for week 2 opens on Wednesday 12 March at 12:00

- 5 questions
- time limit 1
- closes on Friday at 22:00

Mid-way feedback opens on Wednesday 12 March at 11:00

- remains open until Wednesday 19 March 13:00

Outline of course

Section 0: Quick recap on algorithm analysis

Section 1: Sorting algorithms

Section 2: Strings and text algorithms

Section 3: Graphs and graph algorithms

Section 4: An introduction to NP completeness

Section 5: A (very) brief introduction to computability