# **MATLAB**

# 高级编程与工程应用 (第三讲)

谷源涛 清华大学电子工程系 2024年7月





# 10. 高级编程知识

- 函数和变量
- 函数句柄

#### 10.1 函数和变量

- 主函数
- 子函数
- 嵌套式函数
- 局部函数
- 内联函数
- 输入输出变量
- 全局变量
- 永久变量

## 知识点(21)单元数组

- 定义
  - A = {'hehe', 1; [1,2], [3;4]};
- 引用
  - A(1,1)
  - A(2,1)
- 取内容
  - A{1,1}
  - A{2,1}

#### 10.2 函数句柄

- 函数句柄
- 匿名函数

例10.1在四个子图中分别 绘制 sin(t)、cos(t)、  $e^t$ 和  $t^2 - 4t + 1$ 四个信号在  $t \in [0, 2\pi]$ 区间的波形。

#### 11. Simulink仿真

- 启动Simulink
- 建立、打开和保存仿真模型
- 编辑仿真模型
- 运行仿真模型
- 建立子系统
- 利用MATLAB 函数和程序
- 访问工作空间中的变量和硬盘上的数据
- Simulink 支持的库和模块

# Simulink仿真

例11.1如下图(a)所示RC低通网络,在输入端 1-1加入矩形脉冲 $v_1(t)$ 如图(b)所示,利用傅里叶分析方法求 2-2端电压 $v_2(t)$ 。图中E=1, $\tau=0.5$ 。





$$v_1(t) = u(t) - u(t - 0.5)$$

#### 13. 傅里叶变换应用于通信系统

- 利用系统函数H(jw) 求响应
- 无失真传输
- 理想低通滤波器
- 系统函数的约束特性
- 调制与解调
- 从抽样信号恢复连续时间信号
- 脉冲编码调制(PCM)

#### 13.5 调制和解调

例13.6 假设基带信号为  $g(t) = 3\cos(10t) + 2\cos(20t)$  被调制成 频带信号 $f(t) = g(t)\cos(100t)$ 。 频带信号在收端又被解调为  $g_0(t) = f(t)\cos(100t)$ ,并通过低通滤波器

$$H(\omega) = \begin{cases} 1 & |\omega| < 30 \\ 0 & \text{otherwise} \end{cases}$$

恢复出基带信号 $g_1(t)$  请绘制上述各个信号的时域波形和频谱。

例13.7基带信号、载波频率和接收端的理想低通滤波器带宽都和上例相同。请用 Simulink实现双边带和单边带的调制/解调。

# 14. 信号的矢量空间分析

- 相关
- 能量谱和功率谱
- 信号通过线性系统的分析
- 匹配滤波器

#### 15. 通信系统仿真

- 频分多址(FDMA)
- 时分多址(TDMA)
- 码分多址(CDMA)

# FDMA (频分多址)



# TDMA (时分多址)



# CDMA (码分多址)





分析信道容量和远近效应

#### 18. 控制系统仿真

- 潜水艇下潜控制
  - 实际深度c(t)可以用压力传感器测出,并和期望深度r(t)进行比较,两者之间的差异被用来控制尾翼调节器,调整尾翼角度进而导致上浮或下潜。



## 12.高级绘图技术

- 三维绘图和特殊图形
- 图形高级控制

## 12.1 三维绘图和特殊图形

例12.1对矩形脉冲信号

$$x(t) = \begin{cases} 1 & 0 < t < 10 \\ 0 & \text{otherwise} \end{cases}$$

做拉氏变换和傅里叶变换, 绘图说 明两者之关系。

例12.2 对矩形序列

$$x(n) = \sum_{i=0}^{9} \delta(n-i)$$

做z变换和离散时间傅里叶变换,绘图说明两者之关系。

## 三维绘图和特殊图形

- 曲面、三维曲线、等高线、瀑布线、三维等高线、 网格面
- 柱状图、三维柱状图、直方图、面积图、三维饼图、极坐标直方图、零阶抽样保持图、三维序列图、场强图、极坐标图、原点指向图、线性指向图

#### 12.2 图形高级控制

- 颜色和光照控制
- 视点控制
- 图形旋转

• 动画:太阳照耀在z平面上

## 19.图形用户界面设计

- AppDesigner
- 启动
- 设计和保存
- 运行
- 修改控件属性
- 编程控制

# 20.强大的App集合

• 分类学习器

• . . . . .

|        | MATLAB                   | Python                      |
|--------|--------------------------|-----------------------------|
| 性质     | 商业软件, 需付费                | 开源软件, 免费                    |
| 易用性    | 直观, 适合初学者                | 语法简洁, 易于学习                  |
| 性能     | 在矩阵运算和数值计算方面性能优越         | 通过库如NumPy和SciPy提升性能,但一般较慢   |
| 工具箱和库  | 专业开发和测试的工具箱,适用于科学和工程应用   | 丰富的开源库,适用于广泛的应用             |
| 集成开发环境 | 内置IDE, 功能强大              | 多种选择,如Spyder和<br>JupyterLab |
| 社区支持   | 专业支持,用户群体主要是工程师和科学家      | 大型社区支持, 广泛的在线资源             |
| 可移植性   | 需要特定的运行环境                | 跨平台, 代码易于共享                 |
| 成本     | 许可费用高,工具箱需额外付费           | 免费,无需许可费用                   |
| 图形和可视化 | 强大的内置绘图工具                | 通过Matplotlib等库实现强大的<br>绘图功能 |
| 应用领域   | 数值计算、数据分析、信号处理、<br>控制系统等 | 科学计算、数据科学、人工智能、<br>Web开发等   |
| 学习曲线   | 初学者易上手, 但高级功能复杂          | 语法简单,适合长期学习和应用              |
| 调试和文档  | 强大的调试工具和详细的文档            | 丰富的在线文档和社区支持                |
| 交互性    | 适合交互式数据分析和图形密集型任务        | 适合快速开发和跨平台应用                |

# 图像处理大作业

- 基础知识
- 图像压缩编码
- 信息隐藏
- 人脸检测

# 连连看大作业

- 制作自己的连连看
- 攻克别人的连连看

## 作业

- 同前
- 阅读课本第十~十五章,第十九章
  - 运行并理解所有例程
- 浏览Help
  - MATLAB——Graphics, 3-D Visualization, Creating Graphical User Interfaces

#### 谢谢同学们认真听讲

- 有问题请在微信群或网络学堂提出
- 或者联系
  - 谷源涛 gyt@tsinghua.edu.cn
  - 金澄 jinc21@mails.tsinghua.edu.cn