Study question 3.8.1.

Consider the causal model of Figure 3.10.

Figure 3.10

- (a) Identify three testable implications of this model.
- (b) Identify a testable implication assuming that only X, Y, W_3 , and Z_3 are observed.
- (c) For each of the parameters in the model, write a regression equation in which one of the coefficients is equal to that parameter. Identify the parameters for which more than one such equation exists.
- (d) Suppose X, Y and W_3 are the only variables observed. Which parameters can be identified from the data? Can the total effect of X on Y be estimated?
- (e) If we regress Z_1 on all other variables in the model, which regression coefficient will be zero?
- (f) The model in Figure 3.10 implies that certain regression coefficients will remain invariant when an additional variable is added as a regressor. Identify five such coefficients with their added regressors.
- (g) Assume that variables Z_2 and W_2 cannot be measured. Find a way to estimate b using regression coefficients. [Hint: Find a way to turn Z_1 into an instrumental variable for b.]

Solution to study question 3.8.1

Part (a)

Testable implications are conditional independence relationships implied by the structure of the graph. These conditional independences translate into vanishing regression coefficients in the data. Examining Figure 3.10, three regression equations that could be used to test the model could be:

- 1. W_3 is independent of W_1 given X, giving us the regression equation: $W_3 = r_X X + r_{W_1} W_1$ with $r_{W_1} = 0$. This means that if we fit the data to the line $W_3 = r_X X + r_{W_1} W_1$, we expect to find $r_{W_1} = 0$, or else the model is wrong.
- 2. W_1 is independent of Z_3 given Z_1 , giving us the regression equation: $W_1 = r_{Z_1}Z_1 + r_{Z_3}Z_3$ with $r_{Z_3} = 0$
- 3. Y is independent of Z_1 given W_1, Z_2 , and Z_3 , giving us the regression equation: $Y = r_{Z_1}Z_1 + r_{W_1}W_1 + r_{Z_2}Z_2 + r_{Z_3}Z_3$ with $r_{Z_1} = 0$

Part (b)

The only conditional independence that involves the measured variables is the one between Z_3 and W_3 given X, which leads to $r_{Z_3}=0$ in the corresponding regression equation:

$$W_3 = r_{Z_3} Z_3 + r_X X$$
 with $r_{Z_3} = 0$

Part (c)

- (i) If we regress a variable on its parents, we get a regression equation whose coefficients equal the model parameters. Therefore:
 - 1. $a = r_{W_3}, b = r_{Z_3}, c = r_{W_2}$ in the equation:

$$Y = r_{W_3}W_3 + r_{Z_3}Z_3 + r_{W_2}W_2$$

2. $a_1 = r_{Z_1}$ in:

$$W_1 = r_{Z_1} Z_1$$

3. $a_3 = r_{Z_1}, b_3 = r_{Z_2}$ in:

$$Z_3 = r_{Z_1} Z_1 + r_{Z_2} Z_2$$

4. $c_2 = r_{Z_2}$ in:

$$W_2 = r_{Z_2} Z_2$$

5. $c_3 = r_X$ in:

$$W_3 = r_X X$$

6. $t_1 = r_{W_1}, t_2 = r_{Z_3}$:

$$X = r_{W_1} W_1 + r_{Z_3} Z_3$$

(ii) The "Regression Rule for Identification" tells us that, if G_{α} has several backdoor sets, each would lead to a regression equation in which α is a coefficient. Therefore, a,b,c can be identified by:

1. $a = r_{W_3}, b = r_{Z_3}, c = r_{W_2}$ in:

$$Y = r_{W_3}W_3 + r_{Z_3}Z_3 + r_{W_2}W_2$$

Or, by $a = r_{W_2}, b = r_{Z_3}, c = r_{Z_2}/c_2$ in:

$$Y = r_{W_3}W_3 + r_{Z_3}Z_3 + r_{Z_2}Z_2$$

2. Likewise, t_1 can be identified either by $t_1 = r_{W_1}$ in:

$$X = r_{W_1} W_1 + r_{Z_1} Z_1$$

Or, by $t_1 = r_{W_1}$ in:

$$X = r_{W_1}W_1 + r_{Z_3}Z_3$$

Part (d)

To determine which parameters are estimable from data, we consult "The Regression Rule for Identification." For example, the parameter c_3 can be estimated from data because $W_3 = r_X X + U_3' = c_3 X + U_3'$, since W_3 is d-separated from Y given X in G_{W_3} . Likewise, $a = r_{YW_3 \cdot X}$.

Lastly, we note that W_3 is a front-door admissible variable for attaining the total effect of X on Y, and so the effect is estimable. Indeed the total effect of X on Y is simply the product of $a * c_3$, which we identified above.

Part (e)

Regressing Z_1 on all other variables in the model gives:

$$Z_1 = r_{Z_2}Z_2 + r_{Z_3}Z_3 + r_XX + r_{w_1}W_1 + r_{W_2}W_2 + r_{W_3}W_3 + r_YY$$

By d-separation, we see that Z_1 is independent of $\{X,W_3,Y,W_2\}$ given W_1,Z_3,Z_2 . Therefore, $r_X=0,r_{W_2}=0,r_{W_3}=0,r_Y=0$

Part (f)

In order for a coefficient to remain invariant under the addition of a new regressor, the dependent variable must be independent of the added regressor given all of the old regressors.

Thus, for example, if we regress W_1 on Z_3 and X, adding W_3 would keep all regression coefficients in tact, but adding Y or Z_2 would change them, because of the path: $Y \leftarrow W_2 \leftarrow Z_2 \rightarrow Z_3 \leftarrow Z_1 \rightarrow W_1$ is opened by conditioning on Z_3 . If we regress W_1 on Z_1 , then we can add Z_3 , Z_2 , or W_2 without changing the regression coefficient.

Part (g)

Note that if we condition on W_1 , we turn Z_1 into an instrument relative to the effect τ of Z_3 on Y. Using this idea, we can write the regression of Y on Z_1 given W_1 , as the product τa_3 where $\tau = t_2 c_3 a + b$. Since each of t_2, c_3, a can be separately identified (see Part a above), we can then solve for b. Formally, we have:

$$t_2 c_3 a + b = r_{Z_1} / r_{Z_1'}$$

Where r_{Z_1} and $r_{Z_1^\prime}$ are the regression coefficients in the following equations:

$$Y = r_{Z_1} Z_1 + r_{W_1} W_1 + \epsilon$$

 $Z_3 = r_{Z_1'} Z_1 + \epsilon$