Math 4570 - Homework 1 - Maxwell Arnold

Question 1. Show that the following sets of numbers are fields if the usual addition and multiplication of arithmetic are used:

(1) the set of all numbers of the form $a + b\sqrt{2}$ where a and b are rational numbers.

A field is a set F on which the operations addition and multiplication are defined such that $\forall (a+b\sqrt{2}), (c+d\sqrt{2}) \in F$ there are unique elements $(a+b\sqrt{2})+(c+d\sqrt{2})$ and $(a+b\sqrt{2})*(c+d\sqrt{2})$ in F such that the following conditions hold $\forall (a+b\sqrt{2}), (c+d\sqrt{2}), (x+y\sqrt{2}) \in F$:

(i.) Commutativity of Addition:

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (c + d\sqrt{2}) + (a + b\sqrt{2}) \checkmark$$

(ii.) Associativity of Addition:

$$(a+b\sqrt{2}+c+d\sqrt{2})+x+y\sqrt{2}=c+d\sqrt{2}+(a+b\sqrt{2}+x+y\sqrt{2})$$

(iii.) Identity of Addition:

$$(0+0*\sqrt{2}) + (a+b\sqrt{2}) = (a+b\sqrt{2}) + (0+0*\sqrt{2}) = (a+b\sqrt{2})$$

$$\therefore \exists e \in F \text{ s.t. } e = \text{Identity of Addition} = (0 + 0 * \sqrt{2}) = 0 \checkmark$$

(iv.) Inverse of Addition:

$$(a + b\sqrt{2}) + (-a - b\sqrt{2}) = 0$$

$$\therefore \forall \ a + b\sqrt{2} \in F$$
 the inverse of addition is $-a - b\sqrt{2} \checkmark$

(v.) Commutativity of Multiplication:

$$(a + b\sqrt{2}) * (c + d\sqrt{2}) = (c + d\sqrt{2}) * (a + b\sqrt{2}) \checkmark$$

(vi.) Associativity of Multiplication:

$$((a+b\sqrt{2})*(c+d\sqrt{2}))*x+y\sqrt{2} = c+d\sqrt{2}*((a+b\sqrt{2})*(x+y\sqrt{2}))$$

$$(a+b\sqrt{2})*(c+d\sqrt{2})*(x+y\sqrt{2}) = (c+d\sqrt{2})*(a+b\sqrt{2})*(x+y\sqrt{2}) \checkmark$$

(vii.) Identity of Multiplication:

$$(a+b\sqrt{2})*(1+0*\sqrt{2}) = (1+0*\sqrt{2})*(a+b\sqrt{2}) = (a+b\sqrt{2})*1 = (a+b\sqrt{2})$$

$$\therefore \forall (a+b\sqrt{2}) \in F$$
 the identity of multiplication is $(1+0*\sqrt{2})=1$

(viii.) Inverse of Multiplication:

$$(a+b\sqrt{2})^{-1} := (x+y\sqrt{2})$$

$$(a + b\sqrt{2}) * (x + y\sqrt{2}) = 1$$

$$(ax + 2by) + (ay + bx)\sqrt{2} = 1$$

 \therefore we need to solve the linear system ax + 2by = 1 and ay + bx = 0 for x, y

We need to solve the augmented matrix $A = \begin{bmatrix} a & 2b & 1 \\ b & a & 0 \end{bmatrix}$ to find the values of x and y:

$$R_{1} = \frac{R_{1}}{a} \Rightarrow \begin{bmatrix} 1 & \frac{2b}{a} & \frac{1}{a} \\ b & a & 0 \end{bmatrix}$$

$$R_{2} = R_{2} - R_{1} * b \Rightarrow \begin{bmatrix} 1 & \frac{2b}{a} & \frac{1}{a} \\ 0 & a - \frac{2b^{2}}{a} & -\frac{b}{a} \end{bmatrix}$$

$$R_{2} = R_{2} * \frac{1}{a - \frac{2b^{2}}{a}} \Rightarrow \begin{bmatrix} 1 & \frac{2b}{a} & \frac{1}{a} \\ 0 & 1 & -\frac{b}{a^{2} - 2b^{2}} \end{bmatrix}$$

$$R_{1} = R_{1} - R_{2} * \frac{2b}{a} \Rightarrow \begin{bmatrix} 1 & 0 & \frac{a}{a^{2} - 2b^{2}} \\ 0 & 1 & -\frac{b}{a^{2} - 2b^{2}} \end{bmatrix} = RREF(A)$$

$$\therefore x = \frac{a}{a^{2} - 2b^{2}} \text{ and } y = -\frac{b}{a^{2} - 2b^{2}}$$

$$(a + b\sqrt{2})^{-1} = (\frac{a}{a^{2} - 2b^{2}} - \frac{b}{a^{2} - 2b^{2}} \sqrt{2}) \checkmark$$

(ix.) Distributivity of Multiplication:

$$(a+b\sqrt{2})*(c+d\sqrt{2}+x+y\sqrt{2}) = ((a+b\sqrt{2})*(c+d\sqrt{2})) + ((a+b\sqrt{2})*(x+y\sqrt{2}))$$

$$ac + ad\sqrt{2} + ax + ay\sqrt{2} + bc\sqrt{2} + 2bd + bx\sqrt{2} + 2by = (ac + ad\sqrt{2} + bc\sqrt{2} + 2bd) + (ax + ay\sqrt{2} + bx\sqrt{2} + 2by) \checkmark$$

 \therefore the set of all numbers of the form $a+b\sqrt{2}$ where a and b are rational numbers is a field on multiplication and addition \square

(2) the set of all numbers of the form $a+b\sqrt{-1}$ where a and b are real numbers. What is this field?

This particular field is the set of all complex numbers, \mathbb{C} . Complex numbers are denoted a+bi, where $i=\sqrt{-1}$. A field is a set F on which the operations addition and multiplication are defined such that $\forall (a+bi), (c+di) \in F$ there are unique elements (a+bi)+(c+di) and (a+bi)*(c+di) in F such that the following conditions hold $\forall (a+bi), (c+di), (x+yi) \in F$:

(i.) Commutativity of Addition:

$$(a + bi) + (c + di) = (c + di) + (a + bi)$$

(ii.) Associativity of Addition:

$$(a + bi + c + di) + x + yi = c + di + (a + bi + x + yi)$$

(iii.) Identity of Addition:

$$(0+0*i) + (a+bi) = (a+bi) + (0+0*i) = (a+bi)$$

$$\therefore \exists e \in F \text{ s.t. } e = \text{Identity of Addition} = (0 + 0 * i) = 0 \checkmark$$

(iv.) Inverse of Addition:

$$(a+bi) + (-a-bi) = 0$$

 $\therefore \forall a + bi \in F$ the inverse of addition is $-a - bi \checkmark$

(v.) Commutativity of Multiplication:

$$(a+bi)*(c+di) = (c+di)*(a+bi)$$

(vi.) Associativity of Multiplication:

$$((a+bi)*(c+di))*x+yi = c+di*((a+bi)*(x+yi))$$

$$(a+bi)*(c+di)*(x+yi) = (c+di)*(a+bi)*(x+yi)$$

(vii.) Identity of Multiplication:

$$(a+bi)*(1+0*i) = (1+0*i)*(a+bi) = (a+bi)*1 = (a+bi)$$

 $\therefore \forall (a+bi) \in F$ the identity of multiplication is (1+0*i)=1

(viii.) Inverse of Multiplication:

$$(a+bi)^{-1} := (x+yi)$$

$$(a+bi)*(x+yi) = 1$$

$$(ax - by) + (ay + bx)i = 1$$

 \therefore we need to solve the linear system ax - by = 1 and ay + bx = 0 for x, y

We need to solve the augmented matrix $A = \begin{bmatrix} a & -b & 1 \\ b & a & 0 \end{bmatrix}$ to find the values of x and y:

$$R_{1} = \frac{R_{1}}{a} \Rightarrow \begin{bmatrix} 1 & \frac{-b}{a} & \frac{1}{a} \\ b & a & 0 \end{bmatrix}$$

$$R_{2} = R_{2} - R_{1} * b \Rightarrow \begin{bmatrix} 1 & \frac{-b}{a} & \frac{1}{a} \\ 0 & a + \frac{b^{2}}{a} & -\frac{b}{a} \end{bmatrix}$$

$$R_{2} = R_{2} * \frac{1}{a + \frac{b^{2}}{a}} \Rightarrow \begin{bmatrix} 1 & \frac{-b}{a} & \frac{1}{a} \\ 0 & 1 & -\frac{b}{a^{2} + b^{2}} \end{bmatrix}$$

$$R_{1} = R_{1} + R_{2} * \frac{b}{a} \Rightarrow \begin{bmatrix} 1 & 0 & \frac{a}{a^{2} + b^{2}} \\ 0 & 1 & -\frac{b}{a^{2} + b^{2}} \end{bmatrix} = \text{RREF}(A)$$

$$\therefore x = \frac{a}{a^{2} + b^{2}} \text{ and } y = -\frac{b}{a^{2} + b^{2}}$$

$$(a + bi)^{-1} = (\frac{a}{a^{2} + b^{2}} - \frac{b}{a^{2} + b^{2}}i) \checkmark$$

(ix.) Distributivity of Multiplication:

$$(a+bi)*(c+di+x+ui) = ((a+bi)*(c+di)) + ((a+bi)*(x+ui))$$

$$ac + adi + ax + ayi + bci - bd + bxi - by = (ac + adi + bci - bd) + (ax + ayi + bxi - by)$$

 \therefore the set of all numbers of the form $a+b\sqrt{-1}$ where a and b are rational numbers is a field on multiplication and addition \square

Question 2. Show that the set of all $n \times n$ matrices $\mathbb{R}^{n \times n}$ with the usual matrix addition and multiplication is not a field if n > 1.

The set of all $n \times n$ matrices is not a field with matrix addition and multiplication because the axiom of commutativity of multiplication does not hold true. Proof by counterexample. Suppose we have the following 2×2 matrices:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and } B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$AB \stackrel{?}{=} BA$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & f \\ g & h \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} \neq \begin{bmatrix} ae + cf & be + df \\ ag + ch & gb + dh \end{bmatrix} \checkmark$$

Question 3. Write down the two operations on field \mathbb{Z}_3 .

+	[0]	[1]	[2]
[0]	0	1	2
[1]	1	2	0
[2]	2	0	1

×	[0]	[1]	[2]
[0]	0	0	0
[1]	0	1	2
[2]	0	2	1

Question 4. Show that \mathbb{C} is a field with the usual sum, scalar product and product.

This question has already been solved in **Question 1** - (2)

Question 5. Determine which of the matrices below are in reduced row-echelon form.

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 5 \end{bmatrix}; D = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \end{bmatrix}; E = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 4 \end{bmatrix}$$

(A): Yes, (B): Yes, (C): No, (D): Yes, (E): No

Question 6. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ be two matrices over the field \mathbb{Z}_2 . Compute A + B, A^2 , and $A \times B$ over the field \mathbb{Z}_2 .

(1)
$$A + B = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$

(2)
$$A^2 = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(3) $A \times B = \begin{bmatrix} 2 & 3 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Question 7. For which values of t does the matrix
$$A = \begin{bmatrix} 6 & -1 & 1 \\ t & 0 & 1 \\ 0 & 1 & t \end{bmatrix}$$
 NOT have an inverse?

The determinant of A = (t-2)(t+3). In order for A to have an inverse, the determinant cannot be equal to zero. Therefore, A does not have an inverse for t=2 and t=-3.

Question 8. Find all values of h that make the following matrices **consistent**, i.e., has at least one solution.

(a)
$$\begin{bmatrix} 1 & h & | & 4 \\ 3 & 6 & | & 8 \end{bmatrix} \rightarrow x_1 = \frac{8h-24}{3h-6}, x_2 = \frac{-4}{6-3h} \rightarrow \text{the matrix is consistent when } h \neq 2$$
(b) $\begin{bmatrix} -4 & 12 & | & h \\ 2 & -6 & | & -3 \end{bmatrix} \rightarrow \text{The RREF of the matrix is } \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, so the matrix is consistent when $x_1 - 3x_2 = 0$

Question 9. We say that two $m \times n$ matrices in reduced row-echelon form are the same type if they have the same number of leading 1's in the same position.

- (1) How many types of 3×2 matrices in reduced row-echelon form? $\rightarrow 4$
- (2) How many types of 2×3 matrices in reduced row-echelon form? $\rightarrow 5$
- (3) Find all 4×1 matrices in reduced row-echelon form:

Rank 0:
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, Rank 1: $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, Rank 2: $\begin{bmatrix} * \\ 1 \\ 0 \\ 0 \end{bmatrix}$, Rank 3: $\begin{bmatrix} * \\ * \\ 1 \\ 0 \end{bmatrix}$, Rank 4: $\begin{bmatrix} * \\ * \\ * \\ 1 \end{bmatrix}$

Question 10. For which values of a, b, c, d, and e is the following matrix in reduced row-echelon form?

$$A = \begin{bmatrix} 1 & a & b & 3 & 0 & -2 \\ 0 & 0 & c & 1 & d & 3 \\ 0 & e & 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow a = \text{any value}, b = \text{any value}, c = 1 \text{ or } 0, d = \text{any value}, e = 0$$

$$\mathbf{Question \ 11.} \ \text{Let} \ A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix}$$

(1) Calculate $\mathbf{rref}(A)$ over \mathbb{R} . Solve $A \vec{x} = \overset{\rightarrow}{0}$ and write all solutions in parametric vector forms.

$$RREF(A) = \begin{bmatrix} 1 & 0 & 0 & | & \frac{6}{7} \\ 0 & 1 & 0 & | & \frac{8}{7} \\ 0 & 0 & 1 & | & \frac{2}{7} \end{bmatrix}, \vec{x} = \begin{bmatrix} \frac{6}{7} \\ \frac{8}{7} \\ \frac{2}{7} \end{bmatrix}$$

(2) Calculate $\mathbf{rref}(A)$ over field \mathbb{Z}_7 .

RREF(A) in
$$\mathbb{Z}_7 = \begin{bmatrix} 1 & 0 & 4 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}, \vec{x} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{2} \\ -\frac{1}{6} \end{bmatrix}$$

(3 Calculate $\mathbf{rref}(A)$ over field \mathbb{Z}_2 and \mathbb{Z}_3 .

RREF(A) in
$$\mathbb{Z}_2 = \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}, \vec{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

RREF(A) in
$$\mathbb{Z}_3 = \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}, \vec{x} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$

(4) Is it possible that a matrix M has a different rank over different fields \mathbb{Z}_p ?

Yes, the rank of RREF(A) in \mathbb{Z}_7 is 2, but rank of RREF(A) is 3.

Question 12. (Solve a linear system over field \mathbb{Z}_7 .) Let $A = \begin{bmatrix} 3 & 1 & 4 \\ 5 & 2 & 6 \\ 0 & 5 & 2 \end{bmatrix}$ and $\overrightarrow{b} = \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}$.

(1) Calculate $\mathbf{rref}(A|\stackrel{\rightarrow}{b})$ over field \mathbb{Z}_7 .

The following python code will give us $\mathbf{rref}(A|\overrightarrow{b})$ over field \mathbb{Z}_7 :

 $\operatorname{GF7} = \operatorname{galois.GF(7)} \# \operatorname{Define the} \mathbb{Z}_7 \operatorname{field}$

A = GF7([[3, 1, 4, 1], [5, 2, 6, 5], [0, 5, 2, 1]]) # Define the augmented matrix

GF7.row_reduce(A) =
$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(2) Find the solution to the linear system $A \vec{x} = \vec{b} \mod 7$.

From part (1) we know that $\vec{x} = [4, 3, 0]$

Question 13. (Use python) Solve the linear system and write solutions in parametric vector forms:

$$\begin{bmatrix} 3 & 11 & 19 & | & -2 \\ 7 & 23 & 39 & | & 10 \\ -4 & -3 & -2 & | & 6 \end{bmatrix} \to \text{RREF}(A) = \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \to \vec{x} = \begin{bmatrix} t \\ -2t \\ t \end{bmatrix}$$

Question 14. (Use python) Solve the linear system and write solutions in parametric vector forms:

$$\begin{bmatrix} 3 & 6 & 9 & 5 & 25 & | & 53 \\ 7 & 14 & 21 & 9 & 53 & | & 105 \\ -4 & -8 & -12 & 5 & -10 & | & 11 \end{bmatrix} \rightarrow \text{RREF}(A) = \begin{bmatrix} 1 & 2 & 3 & 0 & 5 & | & 6 \\ 0 & 0 & 0 & 1 & 2 & | & 7 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \vec{x} = \begin{bmatrix} t + 11u - 20 \\ 13 - 4u \\ u \\ 7 - 2t \\ t \end{bmatrix}$$

Question 15. (Use python) Solve the linear system and write solutions in parametric vector forms:

$$\begin{bmatrix} 2 & 4 & 3 & 5 & 6 & | & 37 \\ 4 & 8 & 7 & 5 & 2 & | & 74 \\ -2 & -4 & 3 & 4 & -5 & | & 20 \\ 1 & 2 & 2 & -1 & 2 & | & 126 \\ 5 & -10 & 4 & 6 & 4 & | & 24 \end{bmatrix} \rightarrow \text{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & | & -\frac{126,221}{4,340} \\ 0 & 1 & 0 & 0 & 0 & | & -\frac{57,409}{8,680} \\ 0 & 0 & 1 & 0 & 0 & | & \frac{21,695}{434} \\ 0 & 0 & 0 & 1 & 0 & | & -\frac{12,659}{434} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{8,499}{434} \end{bmatrix} \vec{x} = \begin{bmatrix} -\frac{126,221}{4,340} \\ -\frac{57,409}{8,680} \\ \frac{21,695}{434} \\ -\frac{12,659}{434} \\ \frac{8,499}{434} \end{bmatrix}$$

Question 16. (1) If A, B, C are $n \times n$ matrices and $ABC = I_n$ is each of the matrices invertible? What are their inverses?

$$\rightarrow C^{-1} = AB \text{ and } A^{-1} = BC$$

$$\rightarrow ABC = (BC)^{-1}B(AB)^{-1}$$

$$\rightarrow ABC = C^{-1}B^{-1}BB^{-1}A$$

$$\rightarrow ABC = C^{-1}B^{-1}A$$

$$\rightarrow CABC = B^{-1}A$$

$$\rightarrow CABCA^{-1} = B^{-1}$$

(2) Suppose A and B are $n \times n$ matrices. If AB is invertible, are both A and B invertible?

Any $n \times n$ matrix M is invertible if and only if $\det(M) \neq 0$. Note that the $\det(AB) = \det(A)^* \det(B)$. Since AB is invertible, the $\det(AB) \neq 0$. Therefore, the $\det(A) \neq 0$ and the $\det(B) \neq 0$.

Question 17. Provide a counter-example to the statement: for any $n \times n$ matrices A and B, $(AB)^2 = A^2B^2$.

$$A = \begin{bmatrix} 1 & 10 \\ -3 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 4 \\ 7 & 3 \end{bmatrix}$$
$$(AB)^2 = \begin{bmatrix} 5456 & 2244 \\ 528 & 308 \end{bmatrix} \text{ and } A^2B^2 = \begin{bmatrix} 122 & 530 \\ -1198 & -1142 \end{bmatrix}$$

Question 18. Find an example of a 2×2 nonidentity matrix whose transpose is its inverse.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Question 19. Here are a couple of new definitions: An $n \times n$ matrix is *symmetric* provided $A^T = A$ and *skew-symmetric* provided $A^T = -A$.

- (1) Give examples of symmetric and skew-symmetric 2×2 , 3×3 , and 4×4 matrices.
 - (a) Symmetric: $\begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix}$, Skew-Symmetric: $\begin{vmatrix} 0 & 8 \\ -8 & 0 \end{vmatrix}$

 - (b) Symmetric: $\begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$, Skew-Symmetric: $\begin{bmatrix} 0 & 4 & 3 \\ -4 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}$ (c) Symmetric: $\begin{bmatrix} 0 & 3 & 2 & 1 \\ 3 & 0 & 3 & 2 \\ 2 & 3 & 0 & 3 \\ 1 & 2 & 3 & 0 \end{bmatrix}$, Skew-Symmetric: $\begin{bmatrix} 0 & 3 & 2 & 1 \\ -3 & 0 & 3 & 2 \\ -2 & -3 & 0 & 3 \\ -1 & -2 & -3 & 0 \end{bmatrix}$
- (2) What can you say about the main diagonal of a skew-symmetric matrix?

The main diagonal of a skew-symmetric matrix must be all zeroes. This is because transposing a matrix does not change the value of its diagonal but negating a matrix will change the value. Therefore, we need a value in the diagonals where x = -x, and this is only true for x = 0.

(3) Give an example of a matrix that is both symmetric and skew-symmetric.

Symmetric and Skew-Symmetric: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

- (4) Prove that for any $n \times n$ matrix, the matrices $A + A^T$, AA^T , and A^TA are symmetric and $A - A^T$ is skew-symmetric.
 - (a) $A + A^T$ is symmetric if and only if $A + A^T = (A + A^T)^T$. The properties of transpose tell us that for any $n \times n$ matrices A, B:

$$(A+B)^T = A^T + B^T \text{ and } (B^T)^T = B$$

$$\therefore (A+A^T)^T = A^T + (A^T)^T = A^T + A$$

$$\to A + A^T = A^T + A\checkmark$$

(b) $A \times A^T$ is symmetric if and only if $A \times A^T = (A \times A^T)^T$. The properties of transpose tell us that for any $n \times n$ matrices A, B:

$$(A \times B)^T = B^T \times A^T \text{ and } (B^T)^T = B$$

$$\therefore (A \times A^T)^T = (A^T)^T \times A^T = A \times A^T$$

$$\rightarrow A \times A^T = A \times A^T \checkmark$$

(c) $A^T \times A$ is symmetric if and only if $A^T \times A = (A^T \times A)^T$. The properties of transpose tell us that for any $n \times n$ matrices A, B:

$$(A \times B)^T = B^T \times A^T \text{and}(B^T)^T = B$$
$$\therefore (A^T \times A)^T = A^T \times (A^T)^T = A^T \times A$$
$$\rightarrow A^T \times A = A^T \times A \checkmark$$

(d) $A - A^T$ is skew-symmetric if and only if $(A - A^T)^T = -(A - A^T)$. The properties of transpose tell us that for any $n \times n$ matrices A, B:

$$(A - B)^T = A^T - B^T \operatorname{and}(B^T)^T = B$$
$$\therefore (A - A^T)^T = A^T - (A^T)^T = A^T - A$$

The properties of matrices tell us that for any scalar k and any $n \times n$ matrices A, B:

$$k(A+B) = kA + kB$$

$$\therefore -(A-A^T) = -A + A^T = A^T - A$$

$$\rightarrow A^T - A = A^T - A\checkmark$$

(5) Prove that any $n \times n$ can be written as the sum of a symmetric and skew-symmetric matrices.

From the previous problem, we know that $A + A^{T}$ is symmetric and $A - A^{T}$ is skewsymmetric. Also, we know that multiplying a matrix by a positive and non-zero scalar will not change whether a matrix is symmetric or skew-symmetric. Therefore, if the following statement is true then it must also be true that any square matrix can be written as the sum of a symmetric and skew-symmetric matrices.

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$

$$A = \frac{1}{2}A + \frac{1}{2}A^{T} + \frac{1}{2}A - \frac{1}{2}A^{T}$$

$$A = \frac{1}{2}A + \frac{1}{2}A$$

$$A = A\checkmark$$

Question 20. Mark each of the following functions $F: \mathbb{R} \to \mathbb{R}$ injective, surjective, or bijective, as is most appropriate.

- (a) $F(x) = x^2 \to \text{injective}$
- (b) $F(x) = \frac{x^3}{x^2+1} \rightarrow \text{bijective}$ (c) $F(x) = x(x-1)(x-2) \rightarrow \text{injective}$
- (d) $F(x) = e^x + 2 \rightarrow \text{bijective}$

Question 21. Skipped Question (1/3)

Question 22. Skipped Question (2/3)

Question 23. Skipped Question (3/3)

Question 24. Let I_n be the $n \times n$ identity matrix. Let \vec{u} be a unit vector in \mathbb{R}^n . Define $H_n = I_n - 2 \overrightarrow{u} \overrightarrow{u}^T$. Here a unit vector \overrightarrow{u} means that norm $\|\overrightarrow{u}\| = 1$

(1) Is H_n a symmetric matrix? Prove your result.

 H_n is symmetric if and only if $H = H^T$:

$$H^{T} = (I - 2uu^{T})^{T} = I^{T} - 2(uu^{T})^{T} = I - 2(u^{T})^{T}u^{T} = I - 2u^{T} = H\checkmark$$

(2) Is H_n an orthogonal matrix? (i.e. is $H_n^T H_n = I_n$).

 H_n is orthogonal if and only if $H^TH = I$:

$$H^{T}H = HH = (I - 2uu^{T})(I - 2uu^{T}) = I - 2uu^{T} - 2uu^{T} + 4(uu^{T})(uu^{T})$$
$$= I - 4uu^{T} + 4u(u^{T}u)u^{T} = I - 4uu^{T} + 4uu^{T} = I\checkmark$$

(3) What is H_n^2 ?

$$H^2 = HH = I \text{ (From (2))}$$

(4) What is $H_n \stackrel{\rightarrow}{u}$?

$$Hu = (I - 2uu^T)u = u - (2uu^T)u = u - 2u(u^Tu) = u - 2u = -u$$

(5) Suppose
$$\vec{u} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$$
 Write down H_3 and H_4 .
$$H_3 = I_3 - 2uu^T = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} - 2\left(\frac{1}{\sqrt{3}}\begin{bmatrix}1\\1\\1\end{bmatrix} \times \frac{1}{\sqrt{3}}\begin{bmatrix}1 & 1 & 1\end{bmatrix}\right)$$

$$= \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} - \frac{2}{3}\begin{bmatrix}1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1\end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3}\\-\frac{2}{3} & \frac{1}{3} & -\frac{2}{3}\\-\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3}\\-\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

$$H_4 = I_4 - 2uu^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - 2 \left(\frac{1}{\sqrt{4}} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \times \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \right)$$