5.7.3 吟夫 奏编码

利用哈夫曼树可以构造一种不等长的二进制 编码,并且构造所得的哈夫曼编码是一种最优前缀编码,即所传电文的总长度最短。

前缀编码:任何一个字符的编码都不是同一字符集中另一个字符的编码的前缀。

Letter	code
A :	0
T:	10
C:	110
S:	111

Letter	Freq	Code	Bits
С	6	00	2
K	7	01	2
E	9	10	2
Α	5	110	3
V	2	111	3
V	2	111	3

١	Letter	code
	C:	1110
١	D:	101
١	E:	0
	M:	11111
	K:	111101
	L:	110
	U:	100
	Z:	111100
ľ		

128

哈夫曼编码(2)

给定持编码字符集, 哈夫曼编码步骤如下:

- 1. 将各个字符的频度作为权值,构造哈夫曼树;
- 2. 给每个内部结点左右两条边赋0和1的权值;
- 3. 将每个叶结点从根开始路径上的权值按顺序 排列,即得该叶结点对应字符的编码码字。

129

130

132

本章我们学到了

- 树的基本概念和定义
- 二叉树的定义和性质
- 二叉树的遍历,前序,中序,后序,广度优先
- 二叉树结点的执行: 基于指针、基于数组
- ●二叉搜索树(BST): 定义, 基本操作
- 堆(heap)/优先队列: 定义, 基本操作
- huffman编码树: 定义,构建,编码

134

答夫要编码树 若各叶子权值相同,哈夫曼编码码字的bits是否相同呢字符集合: {A, B, C, D, E} 权值W: {1, 1, 1, 1, 1} 字符集合: {A, B, C, D, E, F, H, I} 权值W: {1, 1, 1, 1, 1, 1, 1} 若各叶专点权值相同具叶结点个数为2的整数次方,则对应的Huffman Tree是一个叶子专点构在最高层完全满二叉树,此时情况结果等同于等表情码。

133

134