Homework 6

Gus Lipkin ~ glipkin6737@floridapoly.edu (mailto:glipkin6737@floridapoly.edu)

Vacuum pumps are being audited to determine if the process is in control and also capable of meeting the customer specifications. Samples of size n=5 are taken each hour of the day and tested with the data on vacuum recorded. The results of 10 consecutive hours of testing are provided.

```
library(tidyverse)
## - Attaching packages -
                                                                - tidyverse 1.3.1 —
## ✓ ggplot2 3.3.5
                       √ purrr
                                 0.3.4
## ✓ tibble 3.1.6
                       ✓ dplyr
                                 1.0.8
## ✓ tidyr 1.2.0
                       ✓ stringr 1.4.0
## ✓ readr
             2.1.2
                       ✓ forcats 0.5.1
## - Conflicts -
                                                          - tidyverse conflicts() —
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(data.table)
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
  The following object is masked from 'package:purrr':
##
##
       transpose
```

```
dt <- fread("Homework 6.csv")
dt</pre>
```

S	ample	One	Two	Three	Four	Five
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
	1	15	17	16	17	14
	2	16	16	9	14	15
	3	17	17	15	15	14
	4	18	15	16	16	16
	5	13	15	17	16	19
	6	10	15	11	17	18
	7	15	15	14	14	16
	8	14	13	12	15	14
	9	15	18	18	12	10
	10	12	12	15	15	16

```
 \text{valueTable} <- \text{ data.table}(\text{"SampleSize"} = 2:7, \\ \text{"A2"} = \text{c}(1.88, 1.02, .73, .58, .48, .42), \\ \text{"D3"} = \text{c}(\text{rep}(0, 5), .08), \\ \text{"D4"} = \text{c}(3.27, 2.57, 2.28, 2.11, 2.00, 1.92), \\ \text{"d2"} = \text{c}(1.13, 1.69, 2.06, 2.33, 2.53, 2.70))   \text{valueTable} <- \text{ valueTable}[\text{ncol}(\text{dt}) - 2]
```

A.

Find the x and R of each sample and record above.

Sample <int></int>	One <int></int>	Two <int></int>	Three <int></int>	Four <int></int>	Five <int></int>	xBar <dbl></dbl>	R <int></int>
1	15	17	16	17	14	15.8	3
2	16	16	9	14	15	14.0	7
3	17	17	15	15	14	15.6	3
4	18	15	16	16	16	16.2	3
5	13	15	17	16	19	16.0	6
6	10	15	11	17	18	14.2	8
7	15	15	14	14	16	14.8	2
8	14	13	12	15	14	13.6	3
9	15	18	18	12	10	14.6	8
10	12	12	15	15	16	14.0	4
1-10 of 10 rows							

1-10 of 10 rows

Find and record the grand mean $\bar{\bar{x}}$ and \bar{R} in the appropriate boxes.

```
writeLines(paste("The grand mean is:", xBar <- mean(dt$xBar)))</pre>
```

```
## The grand mean is: 14.88
```

```
writeLines(paste("The R is:", R <- mean(dt$R)))</pre>
```

The R is: 4.7

Find the UCL and LCL for the \bar{x} chart.

```
writeLines(paste("The UCL for the x chart is:", xBarUCL <- xBar + (valueTable$A2 * R)
))

## The UCL for the x chart is: 17.606

writeLines(paste("The LCL for the x chart is:", xBarLCL <- xBar - (valueTable$A2 * R)
))

## The LCL for the x chart is: 12.154</pre>
```

D

Find the UCL and LCL for the R chart.

```
writeLines(paste("The UCL for the R chart is:", RUCL <- valueTable$D4 * R))

## The UCL for the R chart is: 9.917

writeLines(paste("The LCL for the R chart is:", RLCL <- valueTable$D3 * R))</pre>
```

```
## The LCL for the R chart is: 0
```

Sketch out a control chart for the x-bar chart. Is the process in control in terms of the "average" vacuum pressure? _____ Yes or No

```
dt %>%
  ggplot() +
  geom_hline(yintercept = xBarLCL, color = "red") +
  geom_hline(yintercept = xBar, color = "green") +
  geom_hline(yintercept = xBarUCL, color = "red") +
  geom_line(aes(x = Sample, y = xBar)) +
  geom_point(aes(x = Sample, y = xBar), size = 2) +
  scale_x_continuous("Sample", 1:nrow(dt)) +
  ylim(c(xBarLCL - (xBarLCL * .05), xBarUCL * 1.05))
```



```
if(min(dt$xBar) > xBarLCL & max(dt$xBar) < xBarUCL) {
   writeLines("The process is in control in terms of the average.")
} else {
   writeLines("The process is not in control in terms of the average.")
}</pre>
```

The process is in control in terms of the average.

F

Sketch out a control chart for the R chart. Is the process in control in terms of the "variation" in the process? _____ Yes or No

```
dt %>%
  ggplot() +
  geom_hline(yintercept = R, color = "green") +
  geom_hline(yintercept = RLCL, color = "red") +
  geom_hline(yintercept = RUCL, color = "red") +
  geom_line(aes(x = Sample, y = R)) +
  geom_point(aes(x = Sample, y = R), size = 2) +
  scale_x_continuous("Sample", 1:nrow(dt)) +
  ylim(c(RLCL - (RLCL * .05), RUCL * 1.05))
```



```
if(min(dt$R) > RLCL & max(dt$R) < RUCL) {
   writeLines("The process is in control in terms of the variation")
} else {
   writeLines("The process is not in control in terms of the variation")
}</pre>
```

```
## The process is in control in terms of the variation
```

The process is in control in terms of the average.

G

Find the process standard deviation (σ)

```
writeLines(paste("The standard deviation is:", sigma <- (R / valueTable$d2)))</pre>
```

```
## The standard deviation is: 2.01716738197425
```

H

Find the appropriate process capability index for the process if the lower and upper specification limits are 8 to 20.

```
## The process is not centered
```

```
writeLines(paste("C is:", C))
```

```
## C is: 0.846070921985816
```

What is your interpretation of the capability index?

```
if(C < 1) {
   writeLines("Because C is less than one, the process is not capable and process impr
   ovement should begin immediately.")
} else {
   writeLines("Because C is greater than one, the process is capabale.")
   if(C < 1.33) {
      writeLines("However, because C is still under 1.33, we should probably improve th
   e process a bit more.")
   }
}</pre>
```

Because C is less than one, the process is not capable and process improvement sho uld begin immediately.