Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{+}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$\frac{\ \ + \alpha \beta \ }{1^+} - \frac{\ \sqrt{2} k(t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	0	0	0	0
•	$_{1}^{#1}$ $+^{\alpha\beta}$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$_{1}^{#1}+^{lphaeta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2} f_{1^{-}\alpha}^{\#1} f_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\tilde{u} k t_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha \beta$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{\alpha}$

$\omega_2^+ + \gamma$	2	~	<u></u>	O			3		
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$		0			$f_{0}^{#2}$		
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	C)	$k^2 r_1 + \frac{t}{2}$	<u>1</u> 2		$f_{0}^{\#1}$		
	$\sigma_{2}^{\#1}$ a	-		$ au_{2}^{\#1}_{\alpha\beta}$	($\sigma_{2^{-}lphaeta\chi}^{\#1}$	f		
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$				$\frac{2i\sqrt{2}k}{+2k^2)^2t_1}$		0	$\omega_0^{\#1}$		
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}}{(1+2k^2)}$	$\frac{k}{2}t_1$		$\frac{4k^2}{+2k^2)^2t_1}$	$\frac{4k^2}{2k^2)^2t_1}$		_		
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$				0	2	$\frac{2}{2k^2r_1+t_1}$			
Source constraints/gauge generators									
SO(3) i	rreps			Multip	Multiplicities				
$\tau_{0+}^{\#2} == 0$			1			7#2			
$\tau_{0}^{\#1}$ - 2 i	$k \sigma_{0}^{\#1} =$	= 0	1			.			
$\tau_1^{\#2\alpha}$ +	$2ik \sigma_1^{\#}$	2α=	3			1 #1			
$\tau_1^{\#1}{}^{\alpha} ==$	0		3						

 $\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$ 3

 $\tau_{2^{+}}^{\#1\,\alpha\beta} - 2\,i\,k\,\sigma_{2^{+}}^{\#1\,\alpha\beta} == 0$ 5

Total constraints:

 $\omega_{2^{+}\alpha\beta}^{*1} f_{2^{+}\alpha\beta}^{*1} \omega_{2^{-}\alpha\beta\chi}^{*1}$

			<u>"</u>		
	0	0	$-t_1$ $-\overline{l}\sqrt{2} kt_1$	$\omega_{0}^{\#1}$	
	$\omega_{0}^{\#1}$ †	$f_0^{\#2} +$	$\omega_0^{*\pm} + f_0^{*\pm} + f_0^{\pm} + f_0^{*\pm} +$	<u> </u>	
$\frac{1}{k^2 r_2 + t_2}$	0	0	0	$\sigma_{0}^{\#1}$	
0	0	0	0	τ ^{#2} ₀ +	
0	0	$-\frac{2k^2}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$t_0^{\#1}$	
0	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$\sigma_{0}^{\#1}$	
$\sigma_{0}^{\#1}$ \dagger	$\tau_{0}^{\#2}$ †	$\tau_{0}^{\#1}$ †	$\sigma_{0}^{\#1}$ †		

 $2 k^2 t_1$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_1} > 0$$
Polarisations: 5
Square mass: $-\frac{t_1}{2r_1} > 0$
Spin: 2
Parity: Odd

	Massive particle						
?	Pole residue:	$-\frac{1}{r_2} > 0$					
	Polarisations:	1					
	Square mass:	$-\frac{t_2}{r_2} > 0$					
	Spin:	0					
	Parity:	Odd					

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$