Bài hình học thi chuyên KHTN năm 2014 ngày 1

Trần Quang Hùng

Tóm tắt nôi dung

Bài viết này sẽ xoay quanh và phát triển bài toán hình học thi chuyên KHTN năm 2014 ngày 1 bằng các công cụ hình học của cấp 3.

Trong kỳ thi tuyến sinh vào trường THPT chuyên KHTN năm 2014 ngày 1 có bài toán hình học hay như sau

- **Bài 1.** Cho tam giác ABC nhọn với AB < BC. D là điểm thuộc cạnh BC sao cho AD là phân giác của $\angle BAC$. Đường thẳng qua C song song với AD cắt trung trực của AC tại E. Đường thẳng qua B song song với AD cắt trung trực của AB tại F.
 - 1) Chúng minh rằng tam giác ABF đồng dạng với tam giác ACE.
 - 2) Chứng minh rằng các đường thẳng BE, CF, AD đồng quy tại một điểm, gọi điểm đó là G.
- 3) Đường thẳng qua G song song với AE cắt đường thẳng BFtại Q. Đường thẳng QEcắt đường tròn ngoại tiếp tam giác GEC tại P khác E. Chứng minh rằng các điểm A, P, G, Q, F cùng thuộc một đường tròn.

Lời giải. 1) Hai tam giác $\triangle ABF$ và $\triangle ACE$ lần lượt cân tại F, E. Ta có $\angle FBA = \angle BAD =$

- $\angle CAD = \angle ECA \text{ suy ra } \triangle ABF \sim \triangle ACE, \text{ diều phải chứng minh.}$ 2) Giả sử G là giao điểm của BE và CF. Ta có $\frac{GF}{GC} = \frac{BF}{CE} = \frac{AB}{AC} = \frac{DB}{DC}$ suy ra $GD \parallel FB$. Kết hợp với $FB \parallel AD$ ta có $G \in AD$, điều phải chứng minh.
- 3) Ta có $\angle BQG = \angle QGA = \angle GAE = \angle GAC + \angle CAE = \angle GAB + \angle BAF = \angle GAF$. Suy ra tứ giác AGQF nội tiếp. Mặt khác ta có $\angle QPG = \angle GCE = \angle GFQ$. Vậy tứ giác FQGP nội tiếp. Do đó các điểm A, P, G, Q, F cùng thuộc một đường tròn, điều phải chứng minh.

Nhận xét. Đây là bài toán hay có kết cấu chặt chẽ các ý liên quan tới nhau. Ba câu được chia ra ba mức độ dễ, trung bình và khó để phân loại được học sinh. Ý chính của bài toán tập trung vào việc chứng minh năm điểm A, P, G, Q, F cùng thuộc một đường tròn. Đây là ý hay có nhiều khai thác thú vị. Xin giới thiệu với bạn đọc một vài khai thác như vậy

- **Bài 2.** Cho tam giác ABC phân giác AD với D thuộc đoạn BC. Đường thẳng qua C song song AD cắt trung trực AC tại E. Đường thẳng qua B song song AD cắt trung trực AB tại F.
 - 1) Chứng minh rằng BE, CF và AD đồng quy tại điểm G.
- 2) Đường tròn ngoại tiếp tam giác GAF và GCE cắt nhau tại P khác G. PE cắt BF tại Q. Gọi đường tròn ngoại tiếp tam giác APE cắt AC tại M khác P. Gọi FG cắt AC tại N. Chứng minh rằng bốn điểm Q, M, P, N cùng thuộc một đường tròn.

Lời giải. 1) Ta đã chứng minh trong ý 2 của bài 1.

2) Ta có tứ giác PECG nội tiếp suy ra $\angle QPG = \angle ECG = \angle BFG$ đẳng thức cuối do $BF \parallel CE$ nên góc so le trong bằng nhau. Từ đó suy ra tứ giác FPGQ nội tiếp. Suy ra Q nằm trên đường tròn ngoại tiếp tam giác GAF. Ta có $\angle QGA = 180^{\circ} - \angle AFB = 2\angle FAB = \angle GAE$ suy ra $GQ \parallel AE$. Từ đó $\angle MPQ = \angle MAE = \angle MNQ$ suy ra tứ giác MPNQ nội tiếp, điều phải chứng minh.

Nhận xét. Bài toán là sự khai thác rất đẹp yếu tố $GQ \parallel AE$. Từ bài toán gốc việc năm điểm A, P, G, Q, F cùng thuộc một đường tròn khiến ta nghĩ nhiều tới định lý Pascal. Sau đây là một hướng khai thác đẹp mắt cho ý tưởng này.

- **Bài 3.** Cho tam giác ABC phân giác AD với D thuộc đoạn BC. Đường thẳng qua C song song AD cắt trung trực AC tại E. Đường thẳng qua B song song AD cắt trung trực AB tại F.
 - 1) Chứng minh rằng BE, CF và AD đồng quy tại điểm G.

2) Gọi AE cắt đường tròn ngoại tiếp tam giác GEC tại H khác E. Đường thẳng qua G song song AE cắt FB tại Q. QE cắt đường tròn ngoại tiếp tam giác GEC tại P khác E. FB cắt GH tại M. FA cắt GP tại S. Chứng minh rằng SM, QE và AD đồng quy.

Hình 3.

Lời giải. 1) Đã chứng minh trong bài toán 1.

2) Trước hết theo bài toán 1 thì năm điểm A, P, G, Q, F cùng thuộc một đường tròn. Ta lại có $\angle PGH = \angle PEH = \angle PQG$. Từ đó PH tiếp xúc đường tròn đi qua A, P, G, Q, F. Áp dụng định lý Pascal cho bộ các điểm $\begin{pmatrix} G & A & Q \\ F & G & P \end{pmatrix}$ ta suy ra các giao điểm của $GP \cap FQ \equiv X$, $AP \cap GQ \equiv Y$, $GH \cap FA \equiv Z$ thẳng hàng. Từ đó áp dụng định lý Desargues cho tam giác $\triangle PSA$ và $\triangle QMG$ có các giao điểm $PS \cap QM \equiv X$, $SA \equiv MG \equiv Z$, $QP \cap GQ \equiv Y$ thẳng hàng. Từ đó PQ, SM, AG đồng quy. Ta có điều phải chứng minh.

Nhận xét. Việc chỉ ra PH tiếp xúc đường tròn đi qua A, P, G, Q, F đóng vai trò quan trọng. Sau đó việc xử lý bằng các định lý xạ ảnh là Pascal và Desargues làm bài toán trở nên có ý nghĩa hơn. Bài toán vẫn còn rất nhiều ứng dụng thú vị khác, các bạn hãy dành thời gian khám phá.

Tài liệu

[1] Đề thi chuyên KHTN ngày 1 tại http://diendantoanhoc.net/forum

Trần Quang Hùng, trường THPT chuyên KHTN, ĐHKHTN, ĐHQGHN. E-mail: analgeomatica@gmail.com