ESTACIÓN DE TRABAJO

FUENTE REGULADA GENERADOR DE SEÑALES

- Fuente regulada +12V
- Fuente regulada -12V
- Fuente regulable 2V ~ 10V
- Generador de señales cuadrada senoidal triangular. 2 Hz ~ 1,3 MHz

FUENTE REGULADA ±12V

La figura 1 muestra la implementación de la fuente. La entrada se toma de la red mediante un transformador reductor a 20 volts eficaces aproximadamente. Cuanto mayor es la tensión eficaz de entrada, peor es el rendimiento de la fuente puesto que esa tensión cae en los CI LM7812 y LM7912 aumentado la disipación de potencia para una misma corriente de salida.

Figura 1. Esquemático del circuito de fuente regulada ± 12 V.

FUENTE REGULABLE 2V ~ 10V

En la figura 2 se observa el circuito implementado para la fuente regulable. La alimentación del circuito se toma directamente de la salida de la fuente regulada +12V del circuito anterior.

Figura 2. Esquemático del circuito de fuente regulable 2V ~ 10V.

GENERADOR DE SEÑALES cuadrada – senoidal/triangular. 2 Hz ~ 1,3 MHz

El circuito del generador se implementó con el CI XR2206, como se aprecia en la figura 3.

Figura 3. Esquemático del circuito generador de señales con XR2206.

A continuación se detalla el funcionamiento de cada bloque.

- 1. Alimentación ±12V y filtros.
- 2. Control de amplitud. Sólo la salida senoidal/triangular se ven afectadas por este control. La amplitud de salida senoidal vale aproximadamente 60 mV por $k\Omega$ conectado al pin 3. La amplitud de salida triangular aproximadamente 160 mV por $k\Omega$ conectado al pin 3.
- 3. Control de frecuencia. Modifica la R del oscilador RC, que sigue la siguiente ecuación:

$$f_0 = \frac{1}{RC} [Hz]$$

4. Selector de capacitor del oscilador para modificar el rango de frecuencia. Siguiendo la misma ecuación, se modifica la capacidad entre 5 valores distintos, otorgando 5 escalas distintas de variación. Con los valores elegidos para este diseño esas escalas se observan en la tabla 1.

Escala (posición	Rango
del selector)	
1	2 Hz ~ 220 Hz
2	20 Hz ~ 2,2 kHz
3	450 Hz ~ 50 kHz
4	2 kHz ~ 200 kHz
5	15 kHz ~ 1 3 MHz

Tabla 1. Escalas de frecuencia del generador de señales.

- 5. Los pines 13 y 14 deben estar conectados a través de una resistencia de 330ohm para tener una salida senoidal, o abiertos para tener una salida triangular. La resistencia debe ser lo más precisa posible pues la onda se deforma para otros valores de resistencia.
- 6. Salida senoidal/triangular. El capacitor se encarga de eliminar la componente de continua y se un amplificador operacional para no cargar la salida del XR2206. El divisor resistivo se utiliza para reducir la amplitud de la señal sin tener que reducir la amplitud de la salida del XR2206 a valores muy pequeños.
- 7. Salida de señal cuadrada. La salida se toma desde un divisor resistivo y no posee control de amplitud.

Figura 4. Diseño del circuito impreso completo.

Figura 5. Renderizado 3D del circuito con los componentes montados.

Se realizaron curvas de regulación para evaluar el rendimiento del circuito. En las figuras TANTO se muestran las curvas de regulación de las fuentes sin disipador. La figura TANTO muestra la respuesta en frecuencia del generador de señales.

Figura 6. Curva de regulación de carga fuente +12V.

Figura 7. Curva de regulación de carga fuente -12V

Figura 8. Curva de regulación de carga fuente regulable al mínimo.

Figura 9. Curva de regulación de carga fuente regulable al máximo.

Figura 10. Curva de regulación de carga fuente regulable ajustada a 5V en vacío.

Figura 11. Respuesta en frecuencia del generador de señales para 220mV de amplitud.

Figura 12. Onda cuadrada del generador en baja frecuencia.

**Figura 13. Onda senoidal a ~200kHz. Se empieza a hacer notorio ruido en los picos positivos y negativos de la señal.

**Figura 14. Onda senoidal a 1,3MHz. La distorsión es muy grande y la señal ya no se parece a una senoidal pura.

La onda senoidal y triangular presenta que para amplitudes bajas se hace muy notorio. Este ruido de alta frecuencia puede atenuarse con filtros con una frecuencia de corte por encima de 1MHz. En las figuras 15 y 16 puede verse el efecto de agregar una red RC en serie con la salida. La señal se suaviza pero se empeora la respuesta en frecuencia debido a la respuesta de la red RC. Se pueden adoptar filtros con un corte más abrupto y respuesta más plana en la banda de paso.

Figura 15. Presencia de ruido en la señal senoidal para amplitudes bajas.

Figura 16. Eliminación del ruido con filtro RC con frecuencia de corte alta.

LISTA DE COMPONENTES

Componente	Nota	Valor
J3	Conector Phoenix 2 Pines	-
J11	Conector Phoenix 2 Pines	-
J8	Conector Phoenix 3 Pines	-
J 9	Conector 3 Pines	-
J1	Conector 5 Pines	-
J2	Conector (1 pin o 5 pines)	-

J5	Conector 2 Pines	
J4, J6	Conector 3 Pines p/potenciómetro	500k ⊆
J7	Conector 3 Pines p/potenciómetro	10k ⊆
J10	Conector 3 Pines p/potenciómetro	2k s
C2	Capacitor cerámico	100pl
C3	Capacitor cerámico	2,2n
C4	Capacitor cerámico	47n]
C5, C12, C14, C15, C17	Capacitor cerámico	100n
C10, C11	Capacitor cerámico	220n
C1	Capacitor electrolítico	100u
C6, C18	Capacitor electrolítico	1u
C7, C8	Capacitor electrolítico	4700u
C9, C13, C16	Capacitor electrolítico	10u
D1, D2, D3, D4	Diodo	1N400
U1	Regulador lineal 12V	LM781
U2	Regulador lineal -12V	LM791
U5	Regulador lineal	LM31
U4A	Amplificador Operacional	TL07
R1	Resistencia	1k9
R2	Resistencia	33kg
R3	Resistencia	3309
R4, R5, R6	Resistencia	4,7ks
R7	Resistencia	1009
R8	Resistencia	2409
R9	Resistencia	6809
R10	Resistencia	10k s