$$f_{n-1}(ax) = f_{n-1}(bx)$$
 donc $\int_{0}^{1} x |f_{n-1}(ax)|^{2} dx = 0$

(u(1) = v(1) = 0!) et par suite $f_{n-1}(ax) = 0$ $\forall x \in [0,1]$ ce qui est absurde. Toutes les racines de f_{n-1} sont donc imaginaires pures

Montrons qu'il en existe une infinité :

$$f_{n-1}(ix) = i^{n-1} x^{n-1} \sum_{0}^{\infty} \frac{(1)^m x^{2m}}{m!(n-1+m)!} = 1^{n-1} x^{n-1} \int_{0}^{\infty} f_{n-1}(x)$$
. De la

convergence uniforme sur [0,1[de $\sum \frac{2m (-1)^m x^{2m-1}}{m! (n-1+m)!}$ on déduit que f_{n-1} existe

et
$$f_{n-1}$$
 existe et f_{n-1} - 2x f_n = 0. D'où il résulte que si f_{n-1}

(donc \hat{f}_{n-1}^t !) a une infinité de zéros réels, \hat{f}_n aussi. Il suffit donc de

regarder
$$f_0(x) = f_0(ix)$$

or
$$f_o(Z) = \frac{1}{2\pi i} \int_{\gamma} g(Z,t) \frac{dt}{t}$$

et
$$\hat{f}_0 = \frac{2}{\pi} \int_0^{\pi/2} \cos (2x \cos \theta) d\theta$$

$$\hat{f}_{0} = \frac{2}{\pi} \int_{0}^{2x} \frac{\cos u}{\sqrt{4x^{2} - u^{2}}} du$$

ce qui montre que \hat{f}_0 ($\pi/2$), ..., \hat{f}_0 ($\frac{2q+1}{2}$ π) ... sont négatifs alors que \hat{f}_0 (π) \hat{f}_0 ($2q\pi$)... sont positifs. D'où l'infinité de zéros.

Année 1959

ÉQUATIONS DIFFÉRENTIELLES

ÉNONCÉ

L'objet du problème est l'étude, soit dans le champ complexe, soit dans le champ réel, des solutions de l'équation de Riccati :

$$x \frac{dy}{dx} = x + y^2.$$

Dans <u>certaines</u> questions, il sera utile d'effectuer le changement de fonction inconnue défini par $y = -\frac{x}{z} \frac{dz}{dx}$ accompagné éventuellement du changement de variable $x = e^t$; on formera d'abord les équations différentielles transformées de (1) par ces deux changements : celle notée (!'), où x est la variable et z la fonction inconnue, puis celle où t est la variable et z la fonction inconnue.

- I.- Dans toute cette première partie, on se place dans le champ complexe.
- 1°) Montrer que (1) admet une solution et une seule, notée dans toute la suite Y, holomorphe à l'origine; posant

$$Z = \sum_{n \ge 0} a_n x^n$$

montrer que l'on a, pour tout n, a_n réel et $0 \le a_n \le \frac{1}{n}$

Chercher les solutions de (1') holomorphes à l'origine. Etablir la formule

(2)
$$Y = \frac{\sum_{n \geq 1} \frac{(-1)^{n-1} n}{(n!)^2} x^n}{\sum_{n \geq 0} \frac{(-1)^2}{(n!)^2} x^n}$$

et montrer qu'il existe une fonction entière f(x) telle que

$$\frac{f'(x)}{f(x)} = -2 \frac{y}{x} \text{ et } f(0) = 1$$

2°) Montrer que, en dehors de l'origine et du point à l'infini, les solutions de (1) n'ont d'autres singularités que des pôles simples; préciser le résidu d'une solution de (1) en un pôle \mathbf{x}_0 .

Former l'équation différentielle (3), où x est la variable et w la fonction inconnue, transformée de (1) par le changement de fonction inconnue $y = Y + \frac{1}{w f(x)}$,

46

ÉNONCÉ

47

où les fonctions Y et f(x) sont regardées comme connues.

Montrer que toute solution de (1) tend vers 0 avec x et préciser la nature de la singularité que présentent, à l'origine, les solutions de (1) autres que Y.

- 3°) On se donne, dans le plan complexe, un ensemble ouvert w, simplement connexe, ne contenant pas l'origine et, dans ω , une solution y de (1), autre que Y; on note y la solution de (!) que l'on déduit de y par prolongement analytique lorsqu'on décrit n fois dans le même sens un même lacet autour de l'origine : montrer que la suite $\mathbf{y}_{\mathbf{n}}$ a une limite uniforme sur tout ensemble compact contenu dans ω et ne contenant aucun pôle de Y.
- II.- Dans cette deuxième partie, on se place dans le champ réel au 1°) et au 2°), à nouveau dans le champ complexe au 3°).
 - 1°) Etablir les propositions préliminaires suivantes :
 - a) Soit a_n une suite de nombres réels tels que $(a_{n+1} a_n) \rightarrow 1$ quand $n \to +\infty$; alors $\frac{a}{n} \to 1$ quand $n \to +\infty$.
 - b) On considère, dans le champ réel, l'équation différentielle

(4)
$$\frac{d^2z}{dt^2} + F(t)z = 0$$

où F(t) est une fonction donnée, continue et positive; montrer que, si 1'on a $E(t) \ge m > 0$ pour $t \ge t_0$, alors toute solution réelle de (4) s'annule au moins une fois dans l'intervalle

$$t_0 < t \le t_0 + \frac{\pi}{m}.$$

(On pourra considérer la solution z, de l'équation

$$\frac{d^2z_1}{dt^2} + mz_1 = 0$$

qui, pour t = t_0 , vérifie $z_1 = z$, $\frac{dz_1}{dt} = \frac{dz}{dt}$, et comparer z à z_1 en étudiant les variations de $\frac{z}{z}$.)

Montrer que, si u et v (u < v) sont deux zéros consécutifs d'une solution réelle, non identiquement nulle de (4), et si l'on a $0 < m \le F(t) \le M$ pour $u \le t \le v$, alors

$$\frac{\pi}{M} \leq v - u \leq \frac{\pi}{m}$$

2°) Dans le champ réel, préciser l'allure à l'origine des solutions de (1). Montrer que toute solution réelle de (1) a, pour x > 0, une infinité de pôles, notés x_n par ordre de valeurs croissantes; trouver la partie principale de x_n quand $n \rightarrow + \infty$.

3°) Revenant à l'étude des solutions de (1) dans le champ complexe, montrer que le prolongement analytique d'une solution quelconque de (1) fait apparaître une infinité de pôles.

III .- Dans toute cette troisième partie, on se place dans le champ réel, avec x > 0.- On tracera d'abord la parabole P, lieu des points où les courbes représentatives des solutions de (1) ont une tangente parallèle à l'axe des x, puis le lieu des points d'inflexion de ces courbes, qui comprend une autre parabole P2; dans chaque région du plan limitée par ces deux lieux, on indiquera les signes de $\frac{dy}{dx}$ et $\frac{d^2y}{dx^2}$

1°) Etude de Y.- Montrer que, pour toute valeur négative de x, on a

Y fini et négatif,
$$\frac{dY}{dx} > 0$$
 $\frac{d^2Y}{dx^2} \ge 0$

Quand $x \rightarrow -\infty$, trouver la limite de $\frac{dY}{dx}$, puis la partie principale de Y.

2°) Reprenant le changement de fonction inconnue effectué au I. 2°), montrer que toute solution w de l'équation différentielle (3) a une limite finie a quand $x \rightarrow -\infty$.

Etudier les deux familles de solutions réelles de (1) correspondant, l'une aux valeurs strictement positives, l'autre aux valeurs strictement négatives, de α : dans chaque famille, on donnera, pour x < 0, le tableau de variation, le nombre de zéros et de pôles, le comportement quand $x \rightarrow -\infty$.

3°) Etude de la solution Y_0 de (1) correspondant à $\alpha = 0$.

Montrer que, pour toute valeur négative de x, on a

$$Y_0$$
 fini et supérieur à - Y, $\frac{dY_0}{dx} < 0$, $\frac{d^2Y_0}{dx^2} \le 0$,

et que

$$\frac{Y_0}{V} \rightarrow -1$$
 quand $x \rightarrow -\infty$.

4°) Montrer que, quand $x \to -\infty$, toutes les courbes représentatives des solutions réelles de (1) sont asymptotes à la parabole P_2 . [On pourra associer à chaque solution réelle y de (1), la fonction $\eta = y - \epsilon$ -x, où $\epsilon = \pm 1$ a le signe de y quand $x \to -\infty$, puis montrer que cette fonction η est la solution particulière d'une équation différentielle linéaire :

(6)
$$2 \epsilon -x \frac{d\eta}{dx} + 4 g(x)\eta = 1,$$

où g(x) + 1 quand x + - ∞ , enfin étudier le comportement, quand x + - ∞ , les solutions de (6).]

CORRIGÉ

I. Les équations transformées sont

$$x - \frac{d^2 Z}{dx^2} + \frac{dZ}{dx} + Z = 0$$
 (1')

et

$$\frac{d^2Z}{dt^2} + e^t Z = 0.$$

1) On cherche une solution formelle $Y = \sum_{n \ge 0} a_n x^n$ et on dérive formellement: $Y' = \sum_{n \ge 0} n a_n x^{n-1}$. En identifiant les coefficients des dif

férentes puissances de x dans (1), on a

$$a_0 = 0$$
; $a_1 = 1$; $n a_n = \sum_{i=1}^{n-1} a_i a_{n-p}$.

Si la solution cherchée existe, les a doivent vérifier ces formules, ce qui prouve l'unicité.

Par récurrence les $a_i \in \mathbb{R}^+$ De plus si $a_i \le \frac{1}{i}$ pour i < n, on a $n \cdot a_n \le \sum \frac{1}{p} \frac{1}{n-p} \le 1$ car $p(n-p) \ge n-1$ si $1 \le p \le n-1$; d'où $a_n \le \frac{1}{n} \cdot \frac{\Psi}{n}$.

La série Σ a \mathbf{x}^n est majorée par Σ $\frac{|\mathbf{x}|^n}{n}$ qui converge si $|\mathbf{x}| < 1$. D'où l'existence de Y, analytique dans $|\mathbf{x}| < 1$ et les calculs ci-dessus sont justifiés. (Majorante de Cauchy)

Le même procédé pour (1)' conduit aux séries entières $\lambda \sum_{0}^{\infty} \frac{(-1)^n}{(n!)^2} x^n$ dont le rayon de convergence est infini et qui représentent dans C les solutions de (1)' holomorphes en 0.

Si
$$Z(x) = \sum_{0}^{\infty} \frac{(-1)^n}{(n!)^2} x^n$$
, $\frac{dZ}{dx} = \sum_{1}^{\infty} \frac{(-1)^n nx^{n-1}}{(n!)^2}$.

Par le changement de variable qui conduit à (1)' $-\frac{x}{z} \frac{dz}{dx}$ est solution

de (1), est holomorphe en 0 ($Z(0) \neq 0$) donc elle coı̈ncide avec Y ce qui prouve (2).

$$\frac{f'}{f} = 2 \frac{Y}{x}$$
 donne $\frac{f'}{f} = 2 \frac{Z'}{Z}$ et $f = Z^2$ compte tenu

de f(0) = 1 et Z^2 est entière comme Z.

▶ 2) Les solutions de (1') Z" + Z' + $\frac{Z}{x}$ = 0 n'ont pas d'autres singularités que celles de ses coefficients : elles sont donc holomorphes ,en tout point point à distance finie autre que 0. (Dieudonné. Calcul infinitésimal).

Comme $y = -\frac{x}{Z} \frac{dZ}{dx}$, les seules singularités de y proviennent des zéros de Z; elles sont donc les pôles simples. (si $Z(X_0) = 0 = Z'(X_0)$, avec $X_0 \neq 0$, on en déduit via (1)' que $Z''(X_0)$ puis en dérivant que $Z'''(X_0) = 0$... et $Z \equiv 0$).

Z"'' $(X_o) = 0$... et $Z \equiv 0$). Le résidu de y est donné par $-\frac{X_o(\frac{dZ}{dX})(x_o)}{(\frac{dZ}{dX})_{X_o}} = -x_o$.

On a facilement
$$\frac{dw}{dx} = -\frac{1}{xf(x)}$$
 (3).

Comme f(0) = 1 et $\frac{1}{f}$ est holomorphe en 0,

$$\frac{\mathrm{d}\mathbf{w}}{\mathrm{d}\mathbf{x}} = -\frac{1}{\mathbf{x}} + \varphi(\mathbf{x})$$