Базовые рекомендательные системы

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- 1 Задача построения рекомендаций
- 2 Доступная информация
- 3 Алгоритмы построения рекомендаций

Постановка задачи

- Задача: рекомендовать пользователю приобрести новые товары/услуги по его интересам.
- Примеры рекомендаций:

сервис	предмет рекомендаций			
YouTube, Netflix	видео			
last.fm, pandora	музыка			
amazon, ozon	товары			
Яндекс.Дзен	новости			
вконтакте	группы, друзья, посты			
TripAdvisor	достопримечательности			

Постановка задачи

- Информационный поиск (information retrieval)
 - пользователь знает, что ищет.
 - задача: уточнение поиска
- Рекомендательные системы (recommender systems)
 - пользователь не знает, что ищет.
 - задача: расширение кругозора

Цели рекомендаций

Цели рекомендаций:

Цели рекомендаций

Цели рекомендаций:

- ↑ user experience, ↑ лояльность сервису
 - продать то, что нужно; рекомендовать интересное
- ↑ прибыль
 - продать подороже и доп. опции
- распродать остатки на складе
 - рекомендуем их в первую очередь
- изучить пользователя/товар
 - даём более случайные рекомендации
 - для продвинутых систем всегда присутствует exploration-exploitation tradeoff.

Виды рекомендаций

Виды рекомендаций:

- Привязанные / не привязанные к пользователю
 - др. название: персональные / не персональные
- Привязанные / не привязанные к текущему товару
 - могут учитывать и более сложный контекст (время, локация, история запросов)

Виды рекомендаций

Виды рекомендаций:

- Привязанные / не привязанные к пользователю
 - др. название: персональные / не персональные
- Привязанные / не привязанные к текущему товару
 - могут учитывать и более сложный контекст (время, локация, история запросов)

В привязке к товару рекомендации бывают:

- более продвинутой версии товара (up-selling)
- более простой версии товара (down-selling)
- дополняющих товаров др. категорий (cross-selling)
- товаров, часто покупаемых вместе

Содержание

- 1 Задача построения рекомендаций
- 2 Доступная информация
- 3 Алгоритмы построения рекомендаций

Доступная информация

Доступная информация:

- о пользователе: анкетные данные, время регистрации, браузер, ОС, взаимодействие с системой
- о товаре: описание, цена, категория, характеристики, отзывы пользователей
- о контексте: время, погода, запрос пользователя, локация запроса

Доступная информация

Информация о взаимодействии пользователей и товаров:

- бинарная:
- целочисленная:
- вещественная:

Доступная информация

Информация о взаимодействии пользователей и товаров:

- бинарная:
 - искал, смотрел, добавил в корзину, купил, написал отзыв
- целочисленная:
 - поставил рейтинг, количество покупок
- вещественная:
 - объем потраченных денег, время просмотра, количество скачанных данных

Примеры матрицы рейтингов

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U1	1			5		2
U ₂		5			4	
U ₃	5	3		1		
U ₄			3			4
U ₅				3	5	
U ₆	5		4			

GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
1			1		1
	1			1	
1	1		1		
		1			1
			1	1	
1		1			
	1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- Могут быть и вещественные значения: время просмотра видео, объем скачанной информации.
- По сути задача рекомендации \sim заполнение пропусков в матрице рейтингов (missing value estimation)
 - но матрица очень разреженная

Виды информации о взаимодействии

Виды информации о взаимодействии:

- явные оценки товаров (explicit)
 - оценка, отзыв
- неявные оценки товаров (implicit)
 - бинарные:
 - посмотрел, положил в корзину, купил
 - ранговые:
 - в списке товаров кликнул на предпочтительный

Другая доступная информация

Также могут быть доступны

- взаимодействия пользователей
 - обмениваются комментариями
 - похожие интересы, паттерны поведения
- взаимодействия товаров:
 - субституты
 - более простые/сложные версии
 - дополняющие друг друга товары
 - частота совместной покупки

Содержание

- 1 Задача построения рекомендаций
- Доступная информация
- Алгоритмы построения рекомендаций
 - Контентные рекомендации
 - Коллаборативная фильтрация
 - Усредняющий алгоритм
 - User-based рекомендации
 - Item-based рекомендация

Виды рекомендательных систем

Виды рекомендательных систем

- неперсональные:
 - summary-based: основаны на общей популярности товаров
 - product-based: отталкиваются от текущего товара
 - по смысловой совместимости с товаром
 - по частоте совместной покупки с товаром
- персональные:
 - content-based: основаны на сочетаемости данных о пользователе и товаре
 - collaborative filtering: используют только матрицу рейтингов
 - context-aware: дополнительно учитывают контекст (запрос, время, локацию)
 - knowledge-based: учитывают характеристики товаров
 - hybrid: ансамбль из разных типов рек. систем
 - самый точный подход

Алгоритм общей популярности

- Алгоритм общей популярности (summary-based).
 - неперсональные рекомендации, основанные на средней оценке товара.
- Если оценок мало доверие к ним меньше, поэтому варианты сортировки:

$$\frac{1}{N} \sum_{i=1}^{N} r_i \to \frac{1}{N+\alpha} \sum_{i=1}^{N} r_i, \ \alpha \sim 100$$

$$\bar{r} - \beta \sqrt{\mathsf{Var}[\bar{r}]}, \ \beta > 0$$

Product-based: правиловый алгоритм

- Правиловый алгоритм рекомендует товар, часто покупаемый с заданными
 - неперсональный
 - использует поиск ассоциативных правил вида: (association rules mining)
 - $\{A, B, C\} \Rightarrow D$ (были в одной сессии/чеке)
 - $A \rightarrow B \rightarrow C \Rightarrow D$ (были последовательно перед)
 - ullet $A o ... o B o ... o C o ... \Rightarrow D$ (встретились до)
 - отбор правил:
 - следствие возникает с большой условной вероятностью
 - правило часто встречалось (достоверность)

- 3 Алгоритмы построения рекомендаций
 - Контентные рекомендации
 - Коллаборативная фильтрация
 - Усредняющий алгоритм
 - User-based рекомендации
 - Item-based рекомендация

Контентные рекомендации

Контентные рекомендации

Контентные рекомендации (content-based) - используют

- признаки о пользователе f(u)
 - как минимум: о просмотренных/купленных товарах
- \bullet признаки о товаре f(i)
- ullet признаки о прошлом взаимодействии f(u,i)
 - например факт просмотра товара
 - hybrid: подставляем оценки рейтинга/эмбеддинги из коллаборативной фильтрации

Прогноз рейтинга - по обучаемой модели:

• (классификация, логистическая регрессия, ordered probit)

$$\widehat{r}_{ui} = G_{\theta}(f(u), f(i), f(u, i))$$

Контентные рекомендации

Простейший пример

- Простейший пример контентных рекомендаций:
 - f(i): TF-IDF описания товара
 - f(u): TF-IDF конкатенации описаний ранее купленных товаров

$$\widehat{r}_{ui} = \operatorname{cos-sim}(f(u), f(i))$$

Напоминание TF-IDF:

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

 $tf_{x,y}$ = частота слова х в описании товара у df_x = количество товаров, содержащих слово х N = общее количество товаров

• Здесь вообще не нужна матрица рейтингов. Если есть - лучше настроить $\widehat{r}_{ui} = G_{\theta}\left(f(u), f(i), f(u, i)\right)$

Анализ контентных рекомендаций

Анализ контентных рекомендаций:

- не нужно статистики взаимодействия, сразу строим прогноз по описанию
- ⊖: нужен хороший контент (музыка, видео сложно)
- ⊖ : однообразные рекомендации (описание товара статично)
- ⊖ : хуже коллаборативной фильтрации при наличии статистики

- 3 Алгоритмы построения рекомендаций
 - Контентные рекомендации
 - Коллаборативная фильтрация
 - Усредняющий алгоритм
 - User-based рекомендации
 - Item-based рекомендация

Обозначения

- ullet $R=\{r_{u,i}\}_{i\in I,u\in U}$ матрица рейтингов
 - ullet $r_{u,i}$ рейтинг товара i пользователем u
 - и отдельный пользователь
 - і отдельный товар
- ullet $\widehat{r}_{u,i}$ предсказанный рейтинг
- *U* множество пользователей (users)
- I множество товаров (items)
- ullet I_u множество товаров, оцененных пользователем u
- ullet U_i множество пользователей, оценивших товар i.

Coревнование Netflix - предшественник kaggle

- Netflix сервис по онлайн-аренде DVD и доступа к цифровым каналам.
- Октябрь 2006 сентабрь 2009: выложил данные для рекомендаций фильмов клиентам.
 - коллаборативная фильтрация с
 - 480.189 пользователями
 - 17.770 фильмами
 - оценками: 1,2,3,4,5.
 - призовой фонд: 1.000.000 \$
- Формат данных (коллаборативная фильтрация+время):
 - < пользователь, фильм, датаоценки, оценка >

Coревнование Netflix - предшественник kaggle

- Netflix сервис по онлайн-аренде DVD и доступа к цифровым каналам.
- Октябрь 2006 сентабрь 2009: выложил данные для рекомендаций фильмов клиентам.
 - коллаборативная фильтрация с
 - 480.189 пользователями
 - 17.770 фильмами
 - оценками: 1,2,3,4,5.
 - призовой фонд: 1.000.000 \$
- Формат данных (коллаборативная фильтрация+время):
 - < пользователь, фильм, датаоценки, оценка >
- Привлечены аналитики со всего мира.
- Лучший алгоритм ансамбль большого количества хороших решений (не был внедрен).

Использование R

 Пользователи различаются по средним оценкам и разбросу (пессимисты/оптимисты):

$$u_1 = (1, 3, 1, 3)$$

 $u_2 = (6, 9, 6, 9)$

- Также товары различаются по средним оценкам и разбросу (модные/не модные)
- Можно нормализовать R перед обработкой, потом денормализовать
 - по μ_u (самое важное)
 - по μ_{u}, σ_{u}
 - по $\mu_{\it u},\sigma_{\it u},\mu_{\it i},\sigma_{\it i}$

Пример нормализации

- Пример нормализации по и:
 - для каждого u:

•
$$\mu_u = \text{mean}(r_{u:}), \ \sigma_u = \text{std}(r_{u:}); \ r_{u:} := \frac{r_{u:} - \mu_u}{\sigma_u}$$

- ullet счтиаем похожести u,i; строим прогнозы \widehat{r}_{ui}
- для каждого u:

$$\widehat{\mathbf{r}}_{\mathsf{u}:} := \sigma_{\mathsf{u}} \widehat{\mathbf{r}}_{\mathsf{u}:} + \mu_{\mathsf{u}}$$

- 3 Алгоритмы построения рекомендаций
 - Контентные рекомендации
 - Коллаборативная фильтрация
 - Усредняющий алгоритм
 - User-based рекомендации
 - Item-based рекомендация

Простейшие базовые алгоритмы

Простейшие базовые алгоритмы:

•
$$\hat{r}_{u,i} = \mu \ (\mu = \frac{1}{K} \sum_{u,i} r_{u,i}, \ K = |\{(u,i) : \exists r_{u,i}\}|)$$

•
$$\widehat{r}_{u,i} = \overline{r}_u = \frac{1}{|I_u|} \sum_{i \in I_u} r_{u,i}$$

$$\bullet \ \widehat{r}_{u,i} = \overline{r}_i = \frac{1}{|U_i|} \sum_{u \in U_i} r_{u,i}$$

Усредняющий алгоритм

• Прогноз базового алгоритма:

$$b_{u,i} := \widehat{r}_{u,i} = \mu + \Delta_u + \Delta_i$$

$$\Delta_u = \frac{1}{|I_u|} \sum_{i \in I_u} (r_{u,i} - \mu)$$

$$\Delta_i = \frac{1}{|U_i|} \sum_{u' \in I_t} (r_{u',i} - \mu - \Delta_{u'})$$

- Интуиция:
 - ullet Δ_u насколько u оценивает товары выше среднего
 - Δ_i насколько *i* в моде.

Усредняющий алгоритм с регуляризацией

• Усредняющий алгоритм с регуляризацией (with damping):

$$\widehat{r}_{u,i} = \mu + \Delta_u + \Delta_i$$

$$\Delta_u = \frac{1}{|I_u| + \alpha} \sum_{i \in I_u} (r_{u,i} - \mu)$$

$$\Delta_i = \frac{1}{|U_i| + \beta} \sum_{u' \in U_i} (r_{u',i} - \mu - \Delta_{u'})$$

• $\alpha>0, \beta>0$ - сила регуляризации, $\alpha=\beta\approx 25$.

Усредняющий алгоритм

Усредняющий алгоритм с регуляризацией

• Усредняющий алгоритм с регуляризацией (with damping):

$$\widehat{r}_{u,i} = \mu + \Delta_u + \Delta_i$$

$$\Delta_u = \frac{1}{|I_u| + \alpha} \sum_{i \in I_u} (r_{u,i} - \mu)$$

$$\Delta_i = \frac{1}{|U_i| + \beta} \sum_{u' \in U_i} (r_{u',i} - \mu - \Delta_{u'})$$

- $\alpha>0, \beta>0$ сила регуляризации, $\alpha=\beta\approx$ 25.
- ullet Интуиция: доверяем Δ только когда выборка велика.

$$\Delta = rac{1}{N+lpha} \sum_{n=1}^N z_n = egin{cases} pprox 0 &$$
для малых $N \ pprox rac{1}{N} \sum_{n=1}^N z_n &$ для больших $N \ \end{cases}$

Применения усредняющего алгоритма

Применения усредняющего алгоритма:

- R слишком разреженная для более сложных моделей
- заполнение пропусков для dense SVD
- ullet $\widehat{r}_{u,i}$ доп. признак для content-based модели
- ullet сложная модель предсказывает $r_{u,i} \widehat{r}_{u,i}$ вместо $r_{u,i}$
 - концентрируется на сложных случаях

Усредняющий алгоритм

Неявные отклики: алгоритм YouTube

B YouTube

$$r_{u,i} = egin{cases} 1, & u ext{ посмотрел } i \ 0, & u ext{ не посмотрел } i \end{cases}$$

- Рассматриваются просмотры в последние 24часа.
- Первый рекомендательный алгоритм системы.
- Считаем похожесть видео і и ј:

$$\operatorname{sim}(i,j) = \frac{\sum_{u} r_{u,i} \cdot r_{u',j}}{\left(\sum_{u} r_{u,i}\right) \cdot \left(\sum_{u'} r_{u',j}\right)}$$

- Пусть S_u множество просмотренных u видео, $R(S_u)$ похожие на них.
- Рекомендации по принципу "друг моего друга мой друг":

$$R(S) \cup R(R(S)) \cup ...$$

Рекомендация на основе графа

- Строим двудольный граф пользователи-товары.
- ullet Ребро между (u,i), если $r_{ui}>0$ $(r_{ui}$ сила связи)

- Запускаем процесс случайного блуждания.
- Обозначим P(a|b)=вероятность оказаться в вершине a, если стартовали в b (Personalized PageRank)
- Предсказываем предпочтения, основываясь на

$$\hat{r}_{ui} = P(i|u)$$

Рекомендация на основе графа

• Также можно считать (для user-based и item-based)

$$sim (u, u') = \frac{1}{2} (P(u'|u) + P(u|u'))$$
$$sim (i, i') = \frac{1}{2} (P(i'|i) + P(i|i'))$$

- 3 Алгоритмы построения рекомендаций
 - Контентные рекомендации
 - Коллаборативная фильтрация
 - Усредняющий алгоритм
 - User-based рекомендации
 - Item-based рекомендация

User-based алгоритм

Определим функцию близости между пользователями $s\left(u_1,u_2\right)$.

Построения прогноза $\widehat{r}_{u,i}$:

- Найдем подмножество пользователей U_i , оценивших товар i.
- ② Используя $s\left(u_{1},u_{2}\right)$ найдем похожих на u пользователей N_{u}

ullet Прогноз-средний рейтинг среди пользователей $U_i\cap N_u$.

User-based алгоритм

Определим функцию близости между пользователями $s\left(u_1,u_2\right)$.

Построения прогноза $\widehat{r}_{u,i}$:

- Найдем подмножество пользователей U_i , оценивших товар i.
- ② Используя $s\left(u_{1},u_{2}\right)$ найдем похожих на u пользователей N_{u}
 - альтернатива: кластеризуем пользователей
 - тогда N_{u^-} все пользователи кластера, где u
 - ullet при кластеризации не учитываем пропуски $(r_{ui}=0)$
- lacktriangledown Прогноз-средний рейтинг среди пользователей $U_i\cap N_u.$
 - лучше взвешенное среднее

User-based рекомендации

User-based алгоритм

Базовый user-based прогноз:

$$\widehat{r}_{u,i} = \frac{\sum_{u' \in U_i \cap N_u} s(u, u') r_{u',i}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

User-based алгоритм

Базовый user-based прогноз:

$$\widehat{r}_{u,i} = \frac{\sum_{u' \in U_i \cap N_u} s(u, u') r_{u',i}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

явный учет пользовательских смещений (оптимисты/пессимисты):

$$\widehat{r}_{u,i} = \overline{r}_{u} + \frac{\sum_{u' \in U_{i} \cap N_{u}} s(u, u') \left(r_{u',i} - \overline{r}_{u'}\right)}{\sum_{u' \in U_{i} \cap N_{u}} |s(u, u')|}$$

User-based рекомендации

User-based алгоритм

Базовый user-based прогноз:

$$\widehat{r}_{u,i} = \frac{\sum_{u' \in U_i \cap N_u} s(u, u') r_{u',i}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

явный учет пользовательских смещений (оптимисты/пессимисты):

$$\widehat{r}_{u,i} = \overline{r}_{u} + \frac{\sum_{u' \in U_{i} \cap N_{u}} s(u, u') \left(r_{u',i} - \overline{r}_{u'}\right)}{\sum_{u' \in U_{i} \cap N_{u}} |s(u, u')|}$$

явный учет смещений и разбросов:

$$\widehat{r}_{u,i} = \overline{r}_{u} + \sigma_{u} \frac{\sum_{u' \in U_{i} \cap N_{u}} s(u, u') \left(r_{u',i} - \overline{r}_{u'}\right) / \sigma_{u'}}{\sum_{u' \in U_{i} \cap N_{u}} |s(u, u')|}$$

 μ_{u} , σ_{u} - среднее и стд. отклонение пользователя u.

Выбор пользователей, похожих на u

Выбор пользователей N_u , похожих на u:

- ullet использовать всех: $U \setminus \{u\}$
- ullet использовать K самых похожих на u (обычно $K \in [20, 50]$)
- использовать $\{u': s(u',u) \geq \mathsf{threshold}\}$

User-based рекомендации

Похожесть пользователей

$$s(u,v) = \frac{\sum_{i \in I_u \cap I_v} (r_{u,i} - \overline{r}_u) (r_{v,i} - \overline{r}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (r_{u,i} - \overline{r}_u)^2} \sqrt{\sum_{i \in I_u \cap I_v} (r_{v,i} - \overline{r}_v)^2}}$$

- Учитывает только линейную связь (можно считать ранговую корреляцию),
- ullet Если есть нейтральная оценка: $ar r o r_{neutral}$
- Можно штрафовать похожесть за малое пересечение по товарам:

$$s'(u, v) = s(u, v) \min\{|I_u \cap I_v|/50, 1\}$$

 Для более сильного учёта мнений пользователей, оценивших мало товаров, можно предварительно

$$m{r}_u \leftarrow m{r}_u/f\left(\|m{r}_u\|
ight)$$
 для некоторой $\uparrow f(\cdot)$

 $\uparrow \boldsymbol{r}_u$ при малом $\|\boldsymbol{r}_u\|$.

Похожесть пользователей

• Можно сравнивать u, v по мере Жаккарда:

$$s(u,v) = \frac{|I_u \cap I_v|}{|I_u \cup I_v|}$$

• В чем недостаток?

Похожесть пользователей

• Можно сравнивать u, v по мере Жаккарда:

$$s(u,v) = \frac{|I_u \cap I_v|}{|I_u \cup I_v|}$$

- В чем недостаток?
- Отсутствует учет величины рейтингов. Воспользуемся <u>взвешенной</u> мерой Жаккарда:

$$s(u, v) = \frac{\sum_{i \in I_u \cap I_v} \min \{r_{u,i}, r_{v,i}\}}{\sum_{i \in I_u \cap I_v} \max \{r_{u,i}, r_{v,i}\}}$$

• Применима только для $r_{u,i} \ge 0$. Позволяет оценивать похожесть множеств по степени представленности элементов в множествах.

- 3 Алгоритмы построения рекомендаций
 - Контентные рекомендации
 - Коллаборативная фильтрация
 - Усредняющий алгоритм
 - User-based рекомендации
 - Item-based рекомендация

Item-based алгоритм

Определим похожесть товаров $s(i_1, i_2)$.

Алгоритм определения $\widehat{r}_{u,i}$:

- lacktriangle Определим подмножество товаров I_u , оцененных u.
- **②** Используя $s(i_1, i_2)$, определим подмножество товаров S_i , похожих на i.

③ Прогноз=средний рейтинг *u* по товарам $I_u \cap S_i$:

$$\widehat{r}_{u,i} = \frac{\sum_{i' \in I_u \cap S_i} s(i,i') r_{u,i'}}{\sum_{i' \in I_u \cap S_i} |s(i,i')|}$$

+поправка на среднее & разброс:

$$\widehat{r}_{u,i} = \mu_i + \sigma_i \frac{\sum_{i' \in I_u \cap S_i} s(i,i') \left(r_{u,i'} - \mu_{i'}\right) / \sigma_{i'}}{\sum_{i' \in I_u \cap S_i} |s(i,i')|}$$

Item-based алгоритм

Определим похожесть товаров $s(i_1, i_2)$.

Алгоритм определения $\widehat{r}_{u,i}$:

- lacktriangledown Определим подмножество товаров I_u , оцененных u.
- **②** Используя $s(i_1, i_2)$, определим подмножество товаров S_i , похожих на i.
 - альтернатива: кластеризуем товары, S_i -все товары кластера, где i. При кластеризации не учитываем пропуски.
- **③** Прогноз=средний рейтинг u по товарам $I_u \cap S_i$:

$$\widehat{r}_{u,i} = \frac{\sum_{i' \in I_u \cap S_i} s(i,i') r_{u,i'}}{\sum_{i' \in I_u \cap S_i} |s(i,i')|}$$

+поправка на среднее & разброс:

$$\widehat{r}_{u,i} = \mu_i + \sigma_i \frac{\sum_{i' \in I_u \cap S_i} s(i,i') \left(r_{u,i'} - \mu_{i'}\right) / \sigma_{i'}}{\sum_{i' \in I_u \cap S_i} |s(i,i')|}$$

Особенность item-based алгоритма

- Необходимо быстро пересчитывать рекомендации по динамически наполняемой корзине товаров в магазине.
- Использовать user-based или item-based алгоритм?

Item-based рекомендация

Особенность item-based алгоритма

- Необходимо быстро пересчитывать рекомендации по динамически наполняемой корзине товаров в магазине.
- Использовать user-based или item-based алгоритм?
- Профиль пользователя динамически меняется.
 - User-based: нужно пересчитывать похожих пользователей, долго.
 - Item-based: $s(i,i') \approx const$, предпосчитаем их вместе с S_i $\forall i$. Меняется только I_u и $r_{u,i'}$, поэтому item-based быстро пересчитать.

Похожесть товаров

$$s(i,j) = \frac{\langle \mathbf{r}_{i}, \mathbf{r}_{j} \rangle}{\|\mathbf{r}_{i}\| \|\mathbf{r}_{j}\|} = \frac{\sum_{u \in U_{i} \cap U_{j}} r_{u,i} r_{u,j}}{\sqrt{\sum_{u \in U_{i} \cap U_{j}} r_{u,i}^{2}} \sqrt{\sum_{u \in U_{i} \cap U_{j}} r_{u,j}^{2}}}$$
$$s(i,j) = \frac{\sum_{u \in U_{i} \cap U_{j}} (r_{u,i} - \overline{r}_{i}) (r_{u,j} - \overline{r}_{j})}{\sqrt{\sum_{u \in U_{i} \cap U_{j}} (r_{u,i} - \overline{r}_{i})^{2}} \sqrt{\sum_{u \in U_{i} \cap U_{j}} (r_{v,j} - \overline{r}_{j})^{2}}}$$

Можем использовать корреляцию между рангами, штрафовать малые $|U_i \cap U_j|$.

Базовые рекомендательные системы - Виктор Китов

Алгоритмы построения рекомендаций

Item-based рекомендация

Комментарии

• User-based или item-based более применим в онлайн-режиме?

Комментарии

- User-based или item-based более применим в онлайн-режиме?
- 🕀 : простые методы, не надо обучать
- \ominus : много вычислений для s(u,u'), s(i,i')
- ⊖ : приходится хранить всю матрицу рейтингов