ЗАНЯТИЕ 27 ОКТЯБРЯ

Домашнее задание на 3 ноября

Задачи 8.3 и 8.4.

7.8. Пусть оператор $A: H \to H$ таков, что $Ax = \sum_{n=1}^{\infty} \lambda_n(x, e_n) e_n$ для $x \in H$, где $\{e_n\}_{n=1}^{\infty}$ – ортонормированная система в H, а $\{\lambda_n\}_{n=1}^{\infty}$ – бесконечно малая числовая последовательность. Доказать, что $A \in \sigma(H)$.

Решение. Пусть $x_k \to x$ слабо в H. Тогда

$$Ax_k - Ax = A(x_k - x) = \sum_{n=1}^{\infty} \lambda_n (x_k - x, e_n) e_n.$$

Поэтому

$$||Ax_k - Ax||^2 = \sum_{n=1}^{\infty} |\lambda_n|^2 |(x_k - x, e_n)|^2 =$$

$$= \sum_{n=1}^{N} |\lambda_n|^2 |(x_k - x, e_n)|^2 + \sum_{n=N+1}^{\infty} |\lambda_n|^2 |(x_k - x, e_n)|^2 \le$$

$$\le \sum_{n=1}^{N} |\lambda_n|^2 |(x_k - x, e_n)|^2 + \sup_{n \ge N+1} |\lambda_n|^2 ||x_k - x||^2.$$

Второе слагаемое делаем меньше $\varepsilon/2$ выбором N. Затем делаем меньше $\varepsilon/2$ первое слагаемое для всех $k>K(\varepsilon)$.

7.9. Пусть $A \in \mathcal{L}(H)$. Показать, что оператор A вполне непрерывен тогда и только тогда, когда вполне непрерывен оператор A^*A .

Решение. Пусть A вполне неперывен. Тогда A^* тоже вполне непрерывен и произведение A^*A двух вполне непрерывных операторов также является вполне непрерывным оператором.

Пусть теперь вполне непрерывен оператор A^*A . Пусть $x_n \to x$ слабо в H. Тогда

$$||Ax_n - Ax||^2 = (A(x_n - x), A(x_n - x)) = (x_n - x, A^*A(x_n - x)) \to 0.$$

7.10. Пусть $A \in \sigma(X, Y)$, где Y – банахово пространство. Показать, что образ оператора A замкнут тогда и только тогда, когда он конечномерен.

Решение. Пусть dim $\operatorname{Im} A < \infty$. Тогда подпространство $\operatorname{Im} A$ замкнуто как всякое конечномерное подпространство.

Предположим, что dim ${\rm Im}\, A=\infty$ и $L={\rm Im}\, A$ является замкнутым подпространством в Y. Значит, L является банаховым пространством Заметим, что

$$L = \bigcup_{N=1}^{\infty} A(B_N(0)), \tag{*}$$

где каждое из множеств $M_N = A(B_N(0))$ предкомпактно.

Покажем, что множество \overline{M}_N компактно. Рассмотрим последовательность $\{y_n\}_{n=1}^{\infty}\subset \overline{M}_N$. Для каждого $y_n\in \overline{M}_N$ существует $y_n'\in M_N$ такой, что $\|y_n'-y_n\|_Y<1/n$. Выделим из последовательности $\{y_n'\}_{n=1}^{\infty}$ подпоследовательность $y_{n_k}'\to y\in \overline{M}_N$ и заметим, что $y_{n_k}\to y\in \overline{M}_N$.

Так как \overline{M}_N компактио, оно не может содержать в себе целиком ни одного шара из L. Значит \overline{M}_N нигде не плотно в L.

Равенство (*) означает, что полное метрическое пространство представлено в виде счетного объединения нигде не плотных множеств, что противоречит теореме Бэра.

7.11. Пусть $A \in \sigma(X,Y)$, где Y – бесконечномерное банахово пространство. Показать, что уравнение Ax = y разрешимо не для всех $y \in Y$.

Решение. В силу предыдущей задачи $\operatorname{Im} A \neq Y$.

7.12. Может ли оператор $A \in \sigma(H)$ иметь ограниченный обратный?

Решение. В силу задачи 7.10 ${\rm Im}\, A \neq H$. Поэтому не существует оператора A^{-1} , определенного на всем H.

Если даже оператор A имеет ограниченный оператор, определенный на некотором ${\rm Im}\,A,$ то $A^{-1}A=I.$ Это невозможно, так как оператор $A^{-1}A$ является вполне непрерывным.

- **8.3.** Найти характеристические значения и собственные функции интегрального оператора $A \in \mathcal{L}(L_2(0,1)), Au(x) = \int\limits_0^1 K(x,s)u(s)\,ds$ в следующих случаях:
 - a) K(x, s) = x s;
 - 6) $K(x,s) = x^2 + s^2$;
 - в) K(x,s) = s;
 - г) K(x,s) = x(1-s) при $x \le s$ и K(x,s) = s(1-x) при x > s.

Решение. б) Решение интегрального уранения

$$\mu \int_{0}^{1} (x^{2} + s^{2})u(s) ds = u(x)$$

должно иметь вид $u(x) = C_1 x^2 + c_2$.

$$\mu \int_{0}^{1} (x^{2} + s^{2})(C_{1}s^{2} + C_{2}) ds = C_{1}x^{2} + C_{2}$$

Приходим к системе уравнений

$$\left(\mu \frac{1}{3} - 1\right) C_1 + \mu C_2 = 0,$$
$$\mu \frac{1}{5} C_1 + \left(\mu \frac{1}{3} - 1\right) C_2 = 0.$$

Приравнивая к нулю определитель системы, приходим к уравнению

$$\left(\mu \frac{1}{3} - 1\right)^2 - \mu^2 \frac{1}{5} = 0 \Leftrightarrow -\frac{4}{45}\mu^2 - \frac{2}{3}\mu + 1 = 0$$

Решая его, находим

$$\mu_{1,2} = -\frac{15}{4} \pm \frac{9\sqrt{5}}{4}.$$

Характеристическому значению $\mu_1 = \frac{15}{4} - \frac{9\sqrt{5}}{4}$ отвечает семейство собственных функций

$$u(x) = C_1 \left(x^2 + \frac{1}{\mu_1} - \frac{1}{3} \right), \quad C_1 \neq 0,$$

а характеристическому значению $\mu_1 = \frac{15}{4} + \frac{9\sqrt{5}}{4}$ отвечает семейство собственных функций

$$u(x) = C_1 \left(x^2 + \frac{1}{\mu_2} - \frac{1}{3} \right), \quad C_1 \neq 0.$$

в) В случае K(x,s)=s имеем $\mu=2$ и собственные функции имеют вид $u(x)=C, \quad C\neq 0.$

г) K(x,s) = x(1-s) при $x \leqslant s$ и K(x,s) = s(1-x) при x > s.

$$\mu \left[\int_{0}^{x} s(1-x)u(s) \, ds + \int_{x}^{1} x(1-s)u(s) \, ds \right] = u(x).$$

Дифференцируя по x имеем

$$\mu \left[-\int_{0}^{x} su(s) ds + \int_{x}^{1} (1-s)u(s) ds \right] = u'(x).$$
$$-\mu u(x) = u''(x).$$

Приходим к задаче Штурма - Лиувилля

$$-u''(x) = \mu u(x),$$

$$u(0) = 0, \quad u(1) = 0.$$

Решая ее, находим

$$\mu_n = \pi^2 n^2$$
, $u_n(x) = C_n \sin \pi n x$, $C_n \neq 0$, $n \in \mathcal{N}$.

8.4. Решить интегральные уравнения в $L_2(a,b)$:

a)
$$u(x) - \mu \int_{-\pi}^{\pi} (x \cos s + s^2 \sin x + \cos x \sin s) u(s) ds = x, \quad (a, b) = (-\pi, \pi);$$

б)
$$u(x) = \int_{0}^{1/2} x s u(s) ds + f(x), \quad (a, b) = (0, 1/2), \quad f \in L_2(0, 1/2);$$

в)
$$u(x) = \mu \int_0^1 K(x,s) u(s) ds + x$$
, где K – ядро из задачи 8.2г, $(a,b) = (0,1)$;

$$\Gamma(x) = \int_{0}^{\pi} \cos(x+s)u(s) ds + 1, \quad (a,b) = (0,\pi);$$

д)
$$u(x) = 6 \int_{0}^{1} (xs - \frac{x+s}{2} + \frac{1}{3})u(s) ds + x$$
, $(a,b) = (0,1)$.

8.5. Исследовать разрешимость в $L_2(0,1)$ следующих интегральных уравнений (μ – комплексный параметр, $f \in L_2(0,1)$):

a)
$$u(x) - \mu \int_{0}^{1} (x^{2} + s^{2})u(s) ds = f(x);$$

6)
$$u(x) - \mu \int_{0}^{1} su(s) ds = f(x).$$