Mateusz Bartnicki, grupa nr 3 środa 16:45-18:15

Metody obliczeniowe w nauce i technice, ćwiczenie 6 - 22.05.2024 r.

Rozwiązywanie układów równań liniowych metodami bezpośrednimi

1. Opis ćwiczenia

Ćwiczenie to składa się z 3 zadań, w których rozwiązywane będą układy równań liniowych metodą eliminacji Gaussa oraz z wykorzystaniem algorytmu Thomasa. Zadania te są realizowane w taki sposób, że zadana jest macierz $\bf A$. Początkowo, zakładam wektor $\bf x$ jako znany, jest on dowolną n-elementową permutację ze zbioru $\{1, -1\}$. Na tej podstawie obliczam wektor $\bf b$ (wyliczam to z równania postaci $\bf A \bf x = \bf b$). Gdy mam już wyliczony wektor $\bf b$, "zapominam" o znajomości wektora $\bf x$ i próbuję go wyliczyć rozwiązując równanie tej samej postaci. Celem ćwiczenia jest zbadanie różnic pomiędzy z góry wyznaczonym wektorem $\bf x$ oraz tym obliczonym. Celem zadania 3 natomiast jest porównanie algorytmów Gaussa i Thomasa.

2. Dane techniczne

Program został napisany przy użyciu języka Python (3.10.12) z wykorzystaniem bibliotek numpy oraz matplotlib. Ćwiczenie zostało wykonane na WSL (Windows Subsystem for Linux) - Ubuntu 22.04.3 LTS na procesorze Intel Core i5-11400H 2.70GHz.

3. Kryterium pomiaru błędu

Kryterium, którym posłużyłem się aby wyznaczyć wartości błędów dla obliczonych wartości wektora **x** względem zadanego wektora **x** była norma maksimum, która opisana jest wzorem:

 $\max_{i=1,\dots,n}\{|x_i-x_i'|\}$, gdzie x_i to i – ta wartość zadanego wektora \mathbf{x} , natomiast x_i ' to i – ta wartość obliczonego wektora \mathbf{x} .

4. Zadanie 1

Elementy macierzy **A** o wymiarze $n \times n$ są określone wzorem:

$$\begin{cases} a_{1j} = 1 \\ a_{ij} = \frac{1}{i+j-1} dla \ i \neq 1 \end{cases}$$
 i, j = 1, 2, ..., n

W tym zadaniu jako wektor **x** przyjąłem wektor postaci [1, -1, 1, -1, ...], a obliczenia przeprowadziłem dla wartości n z zakresu [2 – 25] odpowiednio dla precyzji float32 i float64.

	Wartość błędu w precyzji:	
N	Float32	Float64
2	0	0
3	2.0862e-06	0
4	2.6822e-06	1.4932e-13
5	0.002	6.4275e-12
6	0.0933	2.5183e-10
7	0.9195	6.8303e-09
8	1.9272	5.5975e-08
9	15.2125	4.4172e-07
10	7.5025	0.0001
11	17.0151	0.0078
12	5.7873	0.6846
13	3.4012	14.0699
14	9.2875	15.2886
15	7.4101	10.2914
16	25.7688	17.2375
17	98.6097	17.1994
18	64.1519	16.6886
19	22.1518	61.6105
20	19.5204	24.0810
21	22.4629	37.3366
22	29.6309	27.1942
23	1658.9425	19.1262
24	50.9217	22.5087
25	10.9018	21.4118

Tabela 1 – Wartości błędów dla kolejnych n dla precyzji float32 i float64 dla macierzy z zadania 1

Analizując otrzymane wartości błędów zamieszczone w tabeli 1 widzimy, że dla precyzji float32 początkowe wartości błędów są niewielkie. Dla n = 7 błąd już prawie sięga wartości 1, co oznacza, że wartości obliczonego wektora **x** mogą sporo różnić się od wektora zadanego. Dla kolejnych n wartości błędów wahają się w okolicach 1-20, a dla n > 16 błędy sięgają nawet rzędów setek i tysięcy. Dla precyzji float64 można dostrzec spodziewany efekt – obliczenia są dokładniejsze (wartości błędów są mniejsze), a pierwszy błąd, który sięga okolic liczby 1 otrzymujemy dopiero dla n = 12. Dla kolejnych wartości n, tak samo jak dla precyzji float32, błędy są rzędu 10². Ciekawym spostrzeżeniem jest to, że dla n z zakresu [13, 25] zdarzają się przypadki, że mniejsze błędy uzyskujemy dla precyzji float32 (np. dla n = 13). Nie należy się tym jednak sugerować, gdyż jest to po prostu przypadek, który wynika z arytmetyki komputerowej.

5. Zadanie 2

W tym zadaniu postępuję tak samo jak w przypadku zadania 1 (przyjmuję również ten sam wektor \mathbf{x}), jednak tym razem wzór macierzy \mathbf{A} wygląda następująco:

$$\begin{cases} a_{ij} = \frac{2i}{j} dla j \geq i \\ a_{ij} = a_{ji} dla j < i \end{cases}$$
 i, j = 1, 2, ..., n

N	Wartość błędu dla precyzji:	
IN	Float32	Float64
2	0	0
3	5.9605e-08 2.2204e-16	
4	1.1921e-07	1.1102e-16
5	1.1921e-07	3.3307e-16
6	1.7881e-07	6.6613e-16
7	1.2517e-06	6.6613e-16
8	8.9407e-07	2.4425e-15
9	8.9407e-07	1.1102e-15
10	2.4438e-06	1.5543e-15
11	2.6822e-06	2.4425e-15
12	5.1260e-06	1.1768e-14
13	6.6161e-06 1.2212e-14	
14	7.2122e-06	1.2434e-14
15	7.4506e-06	1.6209e-14
16	4.1723e-06	2.0206e-14
17	4.6492e-06	2.0206e-14
18	4.8876e-06	2.0206e-14
19	5.6028e-06	2.1760e-14
20	7.3314e-06	1.9540e-14
21	9.3579e-06	1.9540e-14
22	1.0550e-05	2.6201e-14
23	1.1742e-05 2.1982e-14	
24	1.3173e-05 1.7986e-14	
25	1.2100e-05 1.7319e-14	
50	5.54323e-05 1.1324e-13	
100	0.00029	5.95301e-13
200	0.00127	5.50338e-12
500	0.03446	8.36522e-11
1000	0.231	5.02786e-10
2500	2.104	7.53647e-09

Tabela 2 – Wartości błędów dla kolejnych n dla precyzji float32 i float64 dla macierzy z zadania 2

	Wartość błędu dla precyzji:			
N	Float32		Float64	
	Macierz nr 1	Macierz nr 2	Macierz nr 1	Macierz nr 2
2	0	0	0	0
3	2.0862e-06	5.9605e-08	0	2.2204e-16
4	2.6822e-06	1.1921e-07	1.4932e-13	1.1102e-16
5	0.002	1.1921e-07	6.4275e-12	3.3307e-16
6	0.0933	1.7881e-07	2.5183e-10	6.6613e-16
7	0.9195	1.2517e-06	6.8303e-09	6.6613e-16
8	1.9272	8.9407e-07	5.5975e-08	2.4425e-15
9	15.2125	8.9407e-07	4.4172e-07	1.1102e-15
10	7.5025	2.4438e-06	0.0001	1.5543e-15
11	17.0151	2.6822e-06	0.0078	2.4425e-15
12	5.7873	5.1260e-06	0.6846	1.1768e-14
13	3.4012	6.6161e-06	14.0699	1.2212e-14
14	9.2875	7.2122e-06	15.2886	1.2434e-14
15	7.4101	7.4506e-06	10.2914	1.6209e-14
16	25.7688	4.1723e-06	17.2375	2.0206e-14
17	98.6097	4.6492e-06	17.1994	2.0206e-14
18	64.1519	4.8876e-06	16.6886	2.0206e-14
19	22.1518	5.6028e-06	61.6105	2.1760e-14
20	19.5204	7.3314e-06	24.0810	1.9540e-14
21	22.4629	9.3579e-06	37.3366	1.9540e-14
22	29.6309	1.0550e-05	27.1942	2.6201e-14
23	1658.9425	1.1742e-05	19.1262	2.1982e-14
24	50.9217	1.3173e-05	22.5087	1.7986e-14
25	10.9018	1.2100e-05	21.4118	1.7319e-14

Tabela 3 – Zestawienie wartości błędów dla kolejnych n dla precyzji float32 i float64 dla różnych macierzy

W przypadku macierzy z zadania 2, otrzymane błędy są o wiele mniejsze. Dla precyzji float32 dla n <= 25 są one nie większe niż 10^{-5} , co mówi nam o tym, że otrzymane wyniki są naprawdę zadowalające. Dla wyższych n błędy również nie są duże, w tabeli 2 jedyny błąd większy od 1 jest dla n = 2500. Analizując wartości błędów z tabeli 2, dochodzimy do tego samego wniosku, co w zadaniu 1 – zastosowanie precyzji float64 znacząco zwiększa dokładność obliczeń, a tym samym wartości otrzymanych błędów są dużo mniejsze. W tym przypadku nie przekraczają one liczby 10^{-9} . W tabeli 3, które jest zestawieniem wartości błędów z macierzy z zadania 1 i zadania 2, dostrzegamy, jak duże znaczenie ma uwarunkowanie macierzy na wyniki.

Aby uzasadnić tak duże różnice w błędach pomiędzy tabelą 1 a tabelą 2, postanowiłem policzyć wskaźnik uwarunkowania obydwóch macierzy, który wyliczony został przy pomocy funkcji *cond* z biblioteki numpy.

N	Wartość wskaźnika uwarunkowania macierzy z zadania:	
N	Nr 1	Nr 2
2	12.084	1.8866
3	392	3.1063
4	11247	4.5403
5	283662	6.1156
6	1.4638e+07	7.7990
7	4.5393e+08	9.5698
8	1.3372e+10	11.4135
9	5.3898e+11	13.3195
10	1.5537e+13	15.2795
11	5.4700e+14	17.2871
12	2.0354e+16	19.3371
13	3.7985e+17	21.4251
14	4.5003e+17	23.5476
15	5.3574e+17	25.7016
16	6.2255e+17	27.8844
17	1.0451e+18	30.0939
18	5.6631e+18	32.3280
19	1.5766e+19	34.5850
20	3.0858e+18	36.8635
21	4.1564e+18	39.1621
22	3.7920e+18	41.4795
23	3.1146e+18	43.8148
24	2.6921e+18	46.1668
25	2.6588e+18	48.5348

Tabela 4 – Wartość wskaźnika uwarunkowania macierzy zadanej w danym zadaniu

Jak widać na powyższej tabeli, dla macierzy zadanej w zadaniu 2 wartości wskaźnika uwarunkowania macierzy są o wiele niższe niż w przypadku zadania 1, bo dla n = 4 jest to już różnica aż 4 rzędów wielkości, a dla kolejnych n wartość wskaźnika nadal drastycznie rośnie. Oznacza to, że wykonywane obliczenia są o wiele stabilniejsze numerycznie, a więc otrzymywane są mniejsze wartości błędów, co tłumaczy tak duże rozbieżności pomiędzy tabelą 1 i tabelą 2.

6. Zadanie 3

(Wszystkie obliczenia w tym zadaniu wykonywane były tylko na precyzji float64).

W zadaniu 3, zadana macierz prezentuje się następująco: (parametry k = 7, m = 4)

$$\begin{cases} a_{i,i} = k \\ a_{i,i+1} = \frac{1}{i+m} \\ a_{i,i-1} = \frac{k}{i+m+1} dla \ i > 1 \\ a_{i,j} = 0 \ dla \ j < i-1 \ oraz \ j > i+1 \end{cases}$$
 i, j = 1, 2, ..., n

W moim programie wykorzystującym algorytm Thomasa macierz tę przedstawiłem jako 3 wektory **a, b i c.**

Zadanie to polegało na zestawieniu ze sobą algorytmu eliminacji Gaussa oraz algorytmu Thomasa. W tym celu, na samym początku, porównałem ze sobą wartości otrzymanych błędów.

N	Wartość błędu dla algorytmu:	
IN	Gaussa	Thomasa
2	0	0
3	0	0
4	2.2204e-16	0
5	2.2204e-16	0
6	2.2204e-16	1.1102e-16
7	2.2204e-16	2.2204e-16
8	2.2204e-16	1.1102e-16
9	2.2204e-16	1.1102e-16
10	2.2204e-16	1.1102e-16
11	2.2204e-16	1.1102e-16
12	2.2204e-16	1.1102e-16
13	2.2204e-16	1.1102e-16
14	2.2204e-16	1.1102e-16
15	2.2204e-16	1.1102e-16
16	2.2204e-16	1.1102e-16
17	2.2204e-16	1.1102e-16
18	2.2204e-16	1.1102e-16
19	2.2204e-16	1.1102e-16
20	2.2204e-16	2.2204e-16
21	2.2204e-16	1.1102e-16
22	2.2204e-16	2.2204e-16
23	2.2204e-16	1.1102e-16
24	2.2204e-16	1.1102e-16
25	2.2204e-16	1.1102e-16
50	2.2204e-16	1.1102e-16
100	2.2204e-16	1.1102e-16
250	2.2204e-16	2.2204e-16
500	2.2204e-16	2.2204e-16
1000	2.2204e-16	2.2204e-16
2500	2.2204e-16	2.2204e-16

Tabela 5 – Wartości błędów w normie maksimum dla algorytmów Gaussa i Thomasa

Na powyższej tabeli widać, że wartości tych błędów dla analizowanych n są praktycznie identyczne nawet dla dużych wartości n, a jak występują różnice, to dopiero na 16 miejscu po przecinku, a więc są one pomijalne. Wniosek stąd płynie taki, że otrzymane wyniki są niemalże identyczne. Płynie to stąd, że algorytm Thomasa oparty jest o algorytm Gaussa – jest on tylko jego usprawnieniem, zarówno czasowym, jak i pamięciowym.

Aby sprawdzić, czy algorytm Thomasa jest faktycznie wydajniejszy czasowo, postanowiłem przeprowadzić testy.

N -	Czas [w sekundach] wykonywania algorytmu:	
	Gaussa	Thomasa
2	7.057e-05	6.675e-06
5	0.00011	6.437e-06
10	0.00023	1.311e-05
50	0.0038	4.887e-05
100	0.048	0.0002
200	0.124	0.00036
500	0.489	0.001
1000	1.81	0.002
1500	4.27	0.0036
2500	15.43	0.0067
5000	86.94	0.016

Tabela 6 – Wartość wskaźnika uwarunkowania macierzy zadanej w danym zadaniu

Próbowałem również obliczyć wektor \mathbf{x} dla n = 10000, jednak udało mi się to tylko z wykorzystaniem algorytmu Thomasa, który wykonał się w 0,02s. Potwierdza się więc hipoteza, że algorytm Thomasa jest wydajniejszy czasowo. Złożoność tego algorytmu wynosi O(n), podczas gdy złożoność czasowa algorytmu Gaussa wynosi O(n³).

Algorytm Thomasa również przeważa nad algorytmem Gaussa pod względem wykorzystanej pamięci. Algorytm Gaussa wymaga zapisania całej macierzy (a więc $n \times n$ komórek) oraz wektorów \mathbf{x} i \mathbf{b} , każdy długości n. Natomiast w implementacji algorytmu Thomasa dla zapisu macierzy wystarczy użyć 3 wektorów długości n (oczywiście również trzeba zapisać wektory \mathbf{x} i \mathbf{b}).

7. Wnioski

- Na dokładność obliczeń wpływa nie tylko precyzja, ale równie ważne jest zwrócenie uwagi na uwarunkowanie macierzy.
- Metoda Gaussa jest uniwersalna i pozwala rozwiązywać wszystkie układy równań liniowych (które są rozwiązywalne), jednak ma wysoką złożoność czasową i pamięciową.
- Jeśli wiemy, że w rozwiązywanym równaniu Ax = b, macierz A jest macierzą trójdiagonalną, warto jest zastosować algorytm Thomasa, który jest o wiele szybszy i wymaga użycia mniejszej ilości pamięci.