Höhere Mathematik

Vorlesung von Prof. Dr. Harald Ita im Sommersemester 2019

Markus Österle Damian Lanzenstiel

24. April 2019

Inhaltsverzeichnis

0	Einführung			
	0.1	Wichtige Infos	2	
	0.2	Inhalt der Vorlesung	2	

Kapitel 0

Einführung

0.1 Wichtige Infos

e-mail harals.ita@physik.uni-freiburg.de

Zimmer 803

Homepage www.qft.physik.uni-freiburg/Teaching

Tutorate 24. Aprill ab 14:00 Einschreibungsbeginn

60% sind zum bestehen der Studienleistung erforderlich. Die Teilnahme an der Prüfung ist nicht daran gebunden und kann auch ohne bestehen mitgeschrieben werden.

0.2 Inhalt der Vorlesung

Die Vorlesung orientiert sich stark am Script von Prof. Dittmeier.

Funktionentheorie Theorie der Funktionen in einer komplexen Veränderlichen

1. Komplexe Zahlen

- natürliche Zahlen $\mathbb{N} = \{1, 2, \dots\}$ mit definierten Operatoren + und ×
- ganze Zahlen $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$ mit den Operationen + mit Inversion und \times ohne Inversion
- rationale Zahlen $\mathbb{Q}=\left\{\frac{a}{b}\big|a,b\in\mathbb{Z},b\neq0\right\}$ mit den Operatoren + und × und ihren Inversionen
 - $x^2=z$ algebraisch unvollständig, konvergente Folge, die nicht in $\mathbb Q$ liegenden Limes hat (Cauchy Folge $^1).$
- reelle Zahlen $\mathbb{R}=\mathbb{Q}\cup\{\text{irrationale Zahlen}\}$. Vollständiger Körper 2 aber algebraisch nicht abgeschlossen.
 - $x^2 = -1$ nicht lösbar in \mathbb{R}
- komplexe Zahlen $\mathbb{C} = \mathbb{R}$, i algebraisch abgeschlossen, vollständiger Körper konstuktion über imaginäre Einheit i mit $(i)^2 = (-1)$, Euler 1777

Def: komplexe Zahlen

a) komplexe Zahlzist ein Zahlenpaar z=(x,y)mit $x,y\in\mathbb{R}.$ xist der Realteil von zmit $\Re(z)=x$ und y der Imaginärteil von zmit $\Im(z)=y.$

¹Mit einer Cauchy Folge kann gezeigt werden, dass eine Folge konvergiert, ohne dass der Limes bekannt ist.

²Bei einem vollständigen Körper liegen die Grenzwerte aller konvergenter Folgen wieder in dem Körper.

Definieren wir zwei komplexe Zahlen $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$, so ist: die **Addition** definiert als:

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

die Multiplikation definiert als:

$$z_1 \cdot z_2 = (x_1 x_2 + y_1 y_2, x_1 y_2 + x_2 y_1)$$

b) Das Symbol der Menge der komplexen Zahlen ist \mathbb{C} .

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{-\infty\}$$

- c) Kurzschreibweise: i = (0, 1); $z = (x, y) = x + i \cdot y$
- d) komplex konjugierte Zahl

$$z = (x, y) = x + iy \rightarrow \overline{z} = (x, -y) = x - iy$$

e) Betrag einer komplexen Zahl

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$$

f) Polardarstellung

$$z = (r\cos\varphi, r\sin\varphi) = r\cos\varphi + i \cdot r\sin\varphi$$
$$\varphi \in (-\pi, \pi] \qquad r \in \mathbb{R}^+$$

r ist der Betrag von z: r = |z|. φ ist das Argument von z: $\varphi = \arg(z)$

Satz: Rechenregeln im \mathbb{C}

für $z_i \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \qquad \overline{\overline{z_1}} = z_1$$

$$\Re(z) = \frac{1}{2}(z + \overline{z}) \qquad \Im(z) = \frac{1}{2i}(z - \overline{z})$$

$$|z_1 z_2| = |z_1||z_2| \qquad |\overline{z}| = |z|$$

$$|z| \ge 0 \quad \text{und} \quad |z| = 0 \quad \Rightarrow \quad z = (0, 0) = 0 + i0 = 0$$

$$|z_1| + |z_2| \ge |z_1 + z_2| \ge |z_1| - |z_2|$$

Gaußsche Zahlenebene

 \mathbb{C} bildet einen 2-dimensionale Vektorraum wie \mathbb{R}^2 . Es gibt also eine gemeinsame Struktur mit dem \mathbb{R}^2 , dennoch ist \mathbb{C} eine Erweiterung.

- a) Vektoraddition, Multiplikation mt reeller zahl, Länge und Abstandsbegriff.
- b) Multiplikation komplexer Zahlen \rightarrow Darstellung in Polarform

$$z_1 z_2 = (r_1 \cos \varphi_1, r_1 \sin \varphi_1) \cdot (r_2 \cos \varphi_2, r_2 \sin \varphi_2)$$

= $r_1 r_2 \cdot (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2, \cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1)$
= $r_1 r_2 \cdot (\cos(\varphi_1 + \varphi_2), \sin(\varphi_1 + \varphi_2))$

⇒ Beträge multiplizieren, Argumente addieren

Kehrbruch einer komplexen Zahl

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{1}{r^2} (r\cos\varphi, -r\sin\varphi)$$
$$= \frac{1}{r} (\cos(-\varphi), \sin(-\varphi))$$

mit
$$r' = \frac{1}{r}$$
, $\varphi' = -\varphi$

Riemannsche Sphäre

Kompaktifizierung der komplexen Zahlen Ebene \mathbb{C} durch stereographische Projektion: $\hat{\mathbb{C}} = \overline{\mathbb{C}} = \mathbb{C} \cup \{-\infty\}.$

Es wird also ein Punkt im unendlichen zu $\mathbb C$ hinzugefügt.

$$N = (0, 0, 1)$$

Sphäre mit Radius R=1, um Koordinatenuhrsprung in \mathbb{R}^3 . \mathbb{C} wird identifiziert mit der (x,y)-Ebene.

stereographische Projektion = Zuordnung von Punkten auf Sphäre mit Punkten in (x, y)-Ebene.

Vorschrift: Gerade durch Punkt $(x_{\Re}, y_{\Im}, 0)$ und den Nordpol N. Durchstoßpunkt = projezierter Punkt auf Sphäre. Bildpunkte: $\boldsymbol{w}(z)$.

Def: Chordaler Abstand

 $\chi(z_1, z_2) =$, Abstand der Bilder $\boldsymbol{w}_1 = \boldsymbol{w}(z_1)$, $\boldsymbol{w}_i = \boldsymbol{w}(z_i)$ unter stereographischen Projektion im \mathbb{R}^3 ."

$$\chi(z_1, z_2) = |\boldsymbol{w}(z_1) - \boldsymbol{w}(z_2)|$$