(iii) Define $D(A^n):=\{f\in D(A^{n-1}): Af\in D(A^{n-1})\}$, $D(A^1)=D(A)$. Then $D(A^\infty):=\bigcap_{n\in N}D(A^n)$ is dense in E and a core for A .

<u>Example 1.10.</u> Property (iii) above does not hold for general densely defined closed operators. Take E = C[0,1], $D(B) = C^1[0,1]$ and $Bf = q \cdot f'$ for some nowhere differentiable function $q \in C[0,1]$. Then B is closed, but $D(B^2) = \{0\}$.

<u>Proposition</u> 1.11. For the generator A of a strongly continous semigroup $(T(t))_{t\geq 0}$ on a Banach space E the following holds. If $\int_0^\infty e^{-\lambda t} T(t) f$ dt exists for every $f\in E$ and some $\lambda\in \mathbb{C}$, then $\lambda\in \rho(A)$ and $R(\lambda,A)f=\int_0^\infty e^{-\lambda t} T(t)f$ dt. In particular,

(1.7)
$$R(\lambda,A)^{n+1}f = \frac{(-1)^n}{n!} (\frac{d}{d\lambda})^n R(\lambda,A)f = \int_0^\infty e^{-\lambda t} t^n/n! T(t) f dt$$

for every $f \in E$, $n \ge 0$ and $\lambda \in C$ with $Re\lambda > \omega$.

Remarks 1.12. (1) For continuous Banach space valued functions such as t \rightarrow T(t)f we consider the Riemann integral and define $\int_0^\infty T(t)f \,dt$ as $\lim_{t\to\infty} \int_0^t T(s)f \,ds$. Sometimes such integrals for strongly continuous semigroups $(T(t))_{t\geq 0}$ are written as $\int_a^b T(t) \,dt$ and understood in the strong sense.

- (2) Since the generator (A,D(A)) determines the semigroup $(T(t))_{t\geq 0}$ uniquely, we will speak occasionally of the growth bound of the generator instead of the semigroup, i.e. we write $\omega = \omega(A) = \omega((T(t))_{t\geq 0})$.
- (3) For one-parameter groups it might seem to be more natural to define the generator as the 'derivative' rather than just the 'right derivative' at t=0. This yields the same operator as the following result shows:

The strongly continuous semigroup $(T(t))_{t\geq 0}$ with generator A can be extended to a strongly continuous one-parameter group $(U(t))_{t\in \mathbb{R}}$ if and only if -A generates a semigroup $(S(t))_{t\geq 0}$.

In that case
$$(U(t))_{t \in \mathbb{R}}$$
 is obtained as
$$U(t) := \begin{cases} T(t) & \text{for } t \ge 0 \\ \\ S(-t) & \text{for } t \le 0 \end{cases}$$
We refer to [Daylog (1980)]. From 1.144.

We refer to [Davies (1980), Prop.1.14] for the details.