

Team Contest Reference Team: Romath

Roland Haase Thore Tiemann Marcel Wienöbst

Contents

1	DP	1
_	1.1	LongestIncreasingSubsequence
	1.2	LongestIncreasingSubsequence
2	Data	Structures
	2.1	Fenwick-Tree
	2.2	Range Maximum Query
	2.3	Union-Find
	2.4	clude <iostream></iostream>
3	Graj	oh 3
3	3.1	2SAT
	3.2	Breadth First Search
	3.3	BellmanFord
	3.4	Bipartite Graph Check
	3.5	Maximum Bipartite Matching
	3.6	Bitonic TSP
	3.7	Single-source shortest paths in dag
	3.8	Dijkstra
	3.9	EdmondsKarp
		Reference for Edge classes
		FloydWarshall
		Held Karp
		Iterative DFS
		Johnsons Algorithm
		Kruskal
		Min Cut
		Prim
		Recursive Depth First Search
		Strongly Connected Components
		Suurballe
		Kahns Algorithm for TS
		Topological Sort
		Tuple
		Reference for Vertex classes
	3.21	Telefolie for vertex chaptes
4	Mat	h 10
	4.1	Binomial Coefficient
	4.2	Binomial Matrix
	4.3	Divisability
	4.4	Graham Scan
	4.5	Iterative EEA
	4.6	Polynomial Interpolation
	4.7	Root of permutation
	4.8	Sieve of Eratosthenes
	4.9	Greatest Common Devisor

	4.10	Least Common Multiple	13		
5	Misc				
	5.1	Binary Search	13		
	5.2	Next number with n bits set			
	5.3	Next Permutation	14		
6	String				
	6.1	Knuth-Morris-Pratt	14		
	6.2	Levenshtein Distance	14		
	6.3	Longest Common Subsequence	15		
	6.4	Longest common substring	15		
7	Math	n Roland	15		
	7.1	Divisability Explanation	15		
	7.2	Combinatorics	15		
	7.3	Polynomial Interpolation	16		
		7.3.1 Theory	16		
	7.4	Fibonacci Sequence	16		
		7.4.1 Binet's formula	16		
		7.4.2 Generalization	16		
		7.4.3 Pisano Period	16		
	7.5	Reihen	16		
	7.6	Binomialkoeffizienten	16		
	7.7	Catalanzahlen	16		
	7.8	Geometrie	16		
	7.9	Zahlentheorie	16		
	7.10	Faltung	16		
8	Java	Knowhow	16		
	8.1	System.out.printf() und String.format()	16		
	8.2	Modulo: Avoiding negative Integers	16		
	8.3	Speed up IO	16		

\overline{n}	Runtime $100 \cdot 10^6$ in 3s
[10, 11]	$\mathcal{O}(n!)$
< 22	$\mathcal{O}(n2^n)$
≤ 100	$\mathcal{O}(n^4)$
≤ 400	$\mathcal{O}(n^3)$
≤ 2.000	$\mathcal{O}(n^2 \log n)$
≤ 10.000	$\mathcal{O}(n^2)$
$\leq 1.000.000$	$\mathcal{O}(n \log n)$
$\leq 100.000.000$	$\mathcal{O}(n)$

byte (8 Bit, signed): -128 ...127 short (16 Bit, signed): -32.768 ...23.767 integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647 long (64 Bit, signed): $-2^{63}\dots 2^{63}-1$

MD5: cat <string>| tr -d [:space:] | md5sum

1 **DP**

1.1 LongestIncreasingSubsequence

Computes the length of the longest increasing subsequence and is easy to be adapted.

Input: array arr containing a sequence of length N

 $\it Output:$ length of the longest increasing subsequence in $\it arr$

```
// This has not been tested yet
// (adapted from tested C++ Murcia Code)
public static int LISeasy(int[] arr, int N) {
  int[] m = new int[N];
  for (int i = N - 1; i >= 0; i--) {
    m[i] = 1; //init table
    for (int j = i + 1; j < N; j++) {</pre>
      // if arr[i] increases the length
      // of subsequence from array[j]
      if (arr[j] > arr[i])
        if (m[i] < m[j] + 1)</pre>
          // store lenght of new subseq
          m[i] = m[j] + 1;
    }
 }
  // find max in array
  int longest = 0;
```

```
for (int i = 0; i < N; i++) {</pre>
       if (m[i] > longest)
19
         longest = m[i];
21
     return longest;
22
23 }
```

MD5: 7561f576d50b1dc6262568c0fc6c42dd $| \mathcal{O}(n^2) |$

LongestIncreasingSubsequence

Computes the longest increasing subsequence using binary search.¹⁴ *Input*: array arr containing a sequence and empty array p of length 15 arr.length for storing indices of the LIS (might be usefull to have), Output: array s containing the longest increasing subsequence

```
public static int[] LISfast(int[] arr, int[] p) {
    // p[k] stores index of the predecessor of arr[k]
    // in the LIS ending at arr[k]
    // m[j] stores index k of smallest value arr[k]
    // so there is a LIS of length j ending at arr[k]
    int[] m = new int[arr.length+1];
    int 1 = 0:
    for(int i = 0; i < arr.length; i++) {</pre>
       // bin search for the largest positive j <= l</pre>
       // with arr[m[j]] < arr[i]</pre>
10
      int lo = 1;
11
      int hi = l;
12
       while(lo <= hi) {</pre>
13
         int mid = (int) (((lo + hi) / 2.0) + 0.6);
         if(arr[m[mid]] <= arr[i])
           lo = mid+1;
         else
17
18
           hi = mid-1;
19
20
       // lo is 1 greater than length of the
       // longest prefix of arr[i]
21
      int newL = lo;
22
       p[i] = m[newL-1];
23
      m[newL] = i;
24
       // if LIS found is longer than the ones
25
       // found before, then update l
26
      if(newL > l)
27
         l = newL;
28
29
                                                              13
    // reconstruct the LIS
30
                                                              14
    int[] s = new int[l];
31
                                                              15
    int k = m[l];
32
                                                              16
    for(int i= l-1; i>= 0; i--) {
33
                                                              17
      s[i] = arr[k];
34
      k = p[k];
35
    }
36
37
    return s;
                                                              21
38 }
                                                              22
                                                              23
```

MD5: $1d75905f78041d832632cb76af985b8e \mid \mathcal{O}(n \log n)$

DataStructures

2.1 Fenwick-Tree

Can be used for computing prefix sums.

```
1 //note that 0 can not be used
1 int[] fwktree = new int[m + n + 1];
```

```
public static int read(int index, int[] fenwickTree) {
   int sum = 0:
   while (index > 0) {
      sum += fenwickTree[index];
      index -= (index & -index);
   }
   return sum;
}
public static int[] update(int index, int addValue,
    int[] fenwickTree) {
   while (index <= fenwickTree.length - 1) {</pre>
      fenwickTree[index] += addValue;
      index += (index & -index);
   return fenwickTree;
```

MD5: 410185d657a3a5140bde465090ff6fb5 | $\mathcal{O}(\log n)$

2.2 Range Maximum Query

process processes an array A of length N in $O(N \log N)$ such that query can compute the maximum value of A in interval [i,j]. Therefore M[a,b] stores the maximum value of interval $[a, a+2^b-1].$

Input: dynamic table M, array to search A, length N of A, start index i and end index j

Output: filled dynamic table M or the maximum value of A in interval [i, j]

```
public static void process(int[][] M, int[] A, int N)
    for(int i = 0; i < N; i++)</pre>
      M[i][0] = i;
    // filling table M
    // M[i][j] = max(M[i][j-1], M[i+(1<<(j-1))][j-1]),
    // cause interval of length 2^j can be partitioned
    // into two intervals of length 2^(j-1)
    for(int j = 1; 1 << j <= N; j++) {</pre>
      for(int i = 0; i + (1 << j) - 1 < N; i++) {
        if(A[M[i][j-1]] >= A[M[i+(1 << (j-1))][j-1]])</pre>
          M[i][j] = M[i][j-1];
        else
          M[i][j] = M[i + (1 << (j-1))][j-1];
    }
  }
  public static int query(int[][] M, int[] A, int N,
                                         int i, int j) {
    // k = | log_2(j-i+1) |
    int k = (int) (Math.log(j - i + 1) / Math.log(2));
    if(A[M[i][k]] >= A[M[j-(1 << k) + 1][k]])
      return M[i][k];
    else
      return M[j - (1 << k) + 1][k];
25
  }
```

MD5: db0999fa40037985ff27dd1a43c53b80 $| \mathcal{O}(N \log N, 1) |$

2.3 Union-Find

24

Union-Find is a data structure that keeps track of a set of elements partitioned into a number of disjoint subsets. UnionFind creates

n disjoint sets each containing one element. union joins the sets a a and b are contained in. find returns the representative of the set a b is contained in.

Input: number of elements n, element x, element y

Output: the representative of element x or a boolean indicating whether sets got merged.

```
class UnionFind {
     private int[] p = null;
     private int[] r = null;
     private int count = 0;
     public int count() {
6
       return count;
                                                                17
     } // number of sets
     public UnionFind(int n) {
10
                                                                20
       count = n; // every node is its own set
11
       r = new int[n]; // every node is its own tree with 22
12
             height 0
       p = new int[n];
13
       for (int i = 0; i < n; i++)</pre>
14
                                                                25
         p[i] = -1; // no parent = -1
15
                                                                26
16
                                                                27
17
                                                                28
     public int find(int x) {
18
       int root = x;
19
       while (p[root] >= 0) { // find root
20
                                                                31
         root = p[root];
21
22
       while (p[x] \ge 0) \{ // \text{ path compression } 
23
                                                                34
         int tmp = p[x];
24
                                                                35
         p[x] = root;
25
                                                                36
26
         x = tmp;
                                                                37
27
                                                                38
28
       return root;
                                                                39
29
                                                                40
30
     // return true, if sets merged and false, if already 42
31
           from same set
                                                                43
     public boolean union(int x, int y) {
32
                                                                44
       int px = find(x);
33
       int py = find(y);
34
                                                                45
       if (px == py)
35
                                                                46
         return false; // same set -> reject edge
36
       if (r[px] < r[py]) { // swap so that always h[px</pre>
37
            ]>=h[py]
         int tmp = px;
                                                                56
         px = py;
                                                                51
         py = tmp;
40
                                                                52
41
                                                                53
       p[py] = px; // hang flatter tree as child of
42
                                                                54
           higher tree
       r[px] = Math.max(r[px], r[py] + 1); // update (
           worst-case) height
       count--;
44
       return true;
45
    }
46
47
  }
```

MD5: $5c507168e1ffd9ead25babf7b3769cfd \mid \mathcal{O}(\alpha(n))$

2.4 Suffix array

```
#include<vector>
#include<string>
```

```
#include<algorithm>
using namespace std;
vector<int> sa, pos, tmp, lcp;
string s;
int N, gap;
bool sufCmp(int i, int j) {
    if(pos[i] != pos[j])
  return pos[i] < pos[j];</pre>
    i += gap;
    j += gap;
    return (i < N && j < N) ? pos[i] < pos[j] : i > j;
}
void buildSA()
    N = s.size();
    for(int i = 0; i < N; ++i) {</pre>
  sa.push_back(i);
  pos.push_back(s[i]);
    }
    tmp.resize(N);
    for(gap = 1;;gap *= 2) {
  sort(sa.begin(), sa.end(), sufCmp);
  for(int i = 0; i < N - 1; ++i) {</pre>
      tmp[i+1] = tmp[i] + sufCmp(sa[i], sa[i+1]);
  for(int i = 0; i < N; ++i) {</pre>
      pos[sa[i]] = tmp[i];
  if(tmp[N-1] == N-1) break;
void buildLCP()
    lcp.resize(N);
    for(int i = 0, k = 0; i < N; ++i) {
  if(pos[i] != N - 1) {
      for(int j = sa[pos[i] + 1]; s[i + k] == s[j + k]
           1;) {
    ++k;
      lcp[pos[i]] = k;
      if (k) --k;
int main()
    string r, t;
    cin >> r >> t;
    s = r + "
```

MD5: e0f385df85f6c6d8500bf2239f78ceca | $\mathcal{O}(?)$

3 Graph

3.1 2SAT

```
public static boolean 2SAT(Vertex[] G) {
    //call SCC
    double DFS(G);
    //check for contradiction
    boolean poss = true;
    for(int i = 0; i < S+A; i++) {
        if(G[i].comp == G[i + (S+A)].comp) {
            poss = false;
        }
        return poss;
    }
}</pre>
```

MD5: 6c06a2b59fd3a7df3c31b06c58fdaaf5 | $\mathcal{O}(V+E)$

3.2 Breadth First Search

Iterative BFS. Uses ref Vertex class, no Edge class needed. In this²⁵ version we look for a shortest path from s to t though we could also find the BFS-tree by leaving out t. *Input*: IDs of start and goal vertex and graph as AdjList *Output*: true if there is a connection between s and g, false otherwise

```
public static boolean BFS(Vertex[] G, int s, int t) {
    //make sure that Vertices vis values are false etc
    Queue<Vertex> q = new LinkedList<Vertex>();
    G[s].vis = true;
    G[s].dist = 0;
    G[s].pre = -1;
    q.add(G[s]);
    //expand frontier between undiscovered and
         discovered vertices
    while(!q.isEmpty()) {
      Vertex u = q.poll();
10
11
       //when reaching the goal, return true
       //if we want to construct a BFS-tree delete this
12
           line
13
      if(u.id = t) return true;
       //else add adj vertices if not visited
14
       for(Vertex v : u.adj) {
15
         if(!v.vis) {
16
17
           v.vis = true;
           v.dist = u.dist + 1;
18
           v.pre = u.id;
19
           q.add(v);
20
21
         }
22
      }
23
                                                            18
    //did not find target
24
                                                            19
    return false;
25
                                                            20
26 }
                                                            21
```

MD5: 71f3fa48b4f1b2abdff3557a27a9a136 $\mid \mathcal{O}(|V| + |E|)$

3.3 BellmanFord

Finds shortest pathes from a single source. Negative edge weights are allowed. Can be used for finding negative cycles.

```
public static boolean bellmanFord(Vertex[] G) {
    //source is 0
    G[0].dist = 0;
    //calc distances
    //the path has max length |V|-1
    for(int i = 0; i < G.length-1; i++) {</pre>
```

```
//each iteration relax all edges
  for(int j = 0; j < G.length; j++) {</pre>
    for(Edge e : G[j].adj) {
      if(G[j].dist != Integer.MAX_VALUE
      && e.t.dist > G[j].dist + e.w) {
        e.t.dist = G[j].dist + e.w;
    }
 }
}
//check for negative-length cycle
for(int i = 0; i < G.length; i++) {</pre>
  for(Edge e : G[i].adj) {
    if(G[i].dist != Integer.MAX_VALUE
        && e.t.dist > G[i].dist + e.w) {
      return true;
    }
  }
}
return false;
```

MD5: d101e6b6915f012b3f0c02dc79e1fc6f $\mid \mathcal{O}(|V| \cdot |E|)$

3.4 Bipartite Graph Check

Checks a graph represented as adjList for being bipartite. Needs a little adaption, if the graph is not connected.

Input: graph as adjList, amount of nodes N as int

Output: true if graph is bipartite, false otherwise

```
public static boolean bipartiteGraphCheck(Vertex[] G){
  // use bfs for coloring each node
  G[0].color = 1;
  Queue<Vertex> q = new LinkedList<Vertex>();
  q.add(G[0]);
  while(!q.isEmpty()) {
    Vertex u = q.poll();
    for(Vertex v : u.adj) {
      // if node i not yet visited,
      // give opposite color of parent node u
      if(v.color == -1) {
        v.color = 1-u.color;
        q.add(v);
      // if node i has same color as parent node u
      // the graph is not bipartite
     } else if(u.color == v.color)
        return false;
      // if node i has different color
      // than parent node u keep going
    }
 }
 return true;
```

MD5: e93d242522e5b4085494c86f0d218dd4 $|\mathcal{O}(|V| + |E|)$

3.5 Maximum Bipartite Matching

Finds the maximum bipartite matching in an unweighted graph using DFS.

Input: An unweighted adjacency matrix boolean[M][N] with M nodes being matched to N nodes.

Output: The maximum matching. (For getting the actual matching, little changes have to be made.)

```
// A DFS based recursive function that returns true
  // if a matching for vertex u is possible
boolean bpm(boolean bpGraph[][], int u,
               boolean seen[], int matchR[]) {
    // Try every job one by one
    for (int v = 0; v < N; v++) {
       // If applicant u is interested in job v and v
       // is not visited
       if (bpGraph[u][v] && !seen[v]) {
         seen[v] = true; // Mark v as visited
10
11
         // If job v is not assigned to an applicant OR
12
         // previously assigned applicant for job v
13
         // (which is matchR[v]) has an alternate job
14
         // available. Since v is marked as visited in
15
         // the above line, matchR[v] in the following
16
         // recursive call will not get job v again
17
         if (matchR[v] < 0 ||</pre>
18
         bpm(bpGraph, matchR[v], seen, matchR)) {
19
           matchR[v] = u;
20
           return true;
21
         }
22
      }
23
    }
24
    return false;
25
26 }
27
  // Returns maximum number of matching from M to N
  int maxBPM(boolean bpGraph[][]) {
    // An array to keep track of the applicants assigned
30
    // to jobs. The value of matchR[i] is the applicant
31
32
    // number assigned to job i, the value -1 indicates
33
    // nobody is assigned.
                                                            12
    int matchR[] = new int[N];
34
                                                            13
    // Initially all jobs are available
35
                                                            14
    for(int i = 0; i < N; ++i)</pre>
36
      matchR[i] = -1;
37
    // Count of jobs assigned to applicants
38
    int result = 0;
39
    for (int u = 0; u < M; u++) {</pre>
40
       // Mark all jobs as not seen for next applicant.
      boolean seen[] = new boolean[N];
42
      for(int i = 0; i < N; ++i)</pre>
         seen[i] = false;
       // Find if the applicant u can get a job
       if (bpm(bpGraph, u, seen, matchR))
         result++;
47
48
    return result;
49
```

MD5: a4cc90bf91c41309ad7aaa0c2514ff06 | $\mathcal{O}(M \cdot N)$

3.6 Bitonic TSP

Input: Distance matrix d with vertices sorted in x-axis direction. Output: Shortest bitonic tour length

```
public static double bitonic(double[][] d) {
   int N = d.length;
   double[][] B = new double[N][N];
   for (int j = 0; j < N; j++) {
      for (int i = 0; i <= j; i++) {
        if (i < j - 1)
            B[i][j] = B[i][j - 1] + d[j - 1][j];
      else {</pre>
```

```
double min = 0;
    for (int k = 0; k < j; k++) {
        double r = B[k][i] + d[k][j];
        if (min > r || k == 0)
            min = r;
        }
        B[i][j] = min;
    }
    return B[N-1][N-1];
}
```

MD5: 49fca508fb184da171e4c8e18b6ca4c7 $\mid \mathcal{O}(?)$

3.7 Single-source shortest paths in dag

Not tested but should be working fine Similar approach can be used for longest paths. Simply go through ts and add 1 to the largest longest path value of the incoming neighbors

MD5: 552172db2968f746c4ac0bd322c665f9 | $\mathcal{O}(|V| + |E|)$

3.8 Dijkstra

u.vis = true;

Finds the shortest paths from one vertex to every other vertex in the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from result.

To get a different shortest path when edges are ints, add an $\varepsilon = \frac{1}{k+1}$ on each edge of the shortest path of length k, run again.

Input: A source vertex s and an adjacency list G.

Output: Modified adj. list with distances from s and predcessor vertices set.

```
public static void dijkstra(Vertex[] G, int s) {
   G[s].dist = 0;
   Tuple st = new Tuple(s, 0);
   PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
   q.add(st);

while(!q.isEmpty()) {
   Tuple sm = q.poll();
   Vertex u = G[sm.id];
   //this checks if the Tuple is still useful, both
        checks should be equivalent
   if(u.vis || sm.dist > u.dist) continue;
```

```
for(Edge e : u.adj) {
         Vertex v = e.t;
14
         if(!v.vis && v.dist > u.dist + e.w) {
15
           v.pre = u.id;
16
           v.dist = u.dist + e.w;
17
           Tuple nt = new Tuple(v.id, v.dist);
           q.add(nt);
19
      }
21
    }
22
23
```

MD5: e46eb1b919179dab6a42800376f04d7a $|\mathcal{O}(|E|\log|V|)$

3.9 EdmondsKarp

Finds the greatest flow in a graph. Capacities must be positive.

```
public static boolean BFS(Vertex[] G, int s, int t) {
                                                              16
     int N = G.length;
                                                              17
     for(int i = 0; i < N; i++) {</pre>
                                                              18
       G[i].vis = false;
                                                              19
                                                              20
                                                              21
     Queue<Vertex> q = new LinkedList<Vertex>();
                                                              22
                                                              23
     G[s].vis = true;
                                                              24
     G[s].pre = -1;
     q.add(G[s]);
10
11
     while(!q.isEmpty()) {
12
       Vertex u = q.poll();
13
       if(u.id == t) return true;
14
       for(int i : u.adj.keySet()) {
15
         Edge e = u.adj.get(i);
16
         Vertex v = e.t;
17
         if(!v.vis && e.rw > 0) {
18
           v.vis = true;
19
           v.pre = u.id;
20
           q.add(v);
21
22
23
24
25
     return (G[t].vis);
26
  //We store the edges in the graph in a hashmap
27
  public static int edKarp(Vertex[] G, int s, int t) {
28
     int maxflow = 0;
29
     while(BFS(G, s, t)) {
30
       int pflow = Integer.MAX_VALUE;
31
                                                              11
       for(int v = t; v!= s; v = G[v].pre) {
32
                                                              12
         int u = G[v].pre;
33
                                                              13
         pflow = Math.min(pflow, G[u].adj.get(v).rw);
                                                              14
35
                                                              15
       for(int v = t; v != s; v = G[v].pre) {
                                                              16
         int u = G[v].pre;
37
         G[u].adj.get(v).rw -= pflow;
         G[v].adj.get(u).rw += pflow;
39
41
       maxflow += pflow;
42
43
     return maxflow;
44
```

MD5: 6067fa877ff237d82294e7511c79d4bc | $\mathcal{O}(|V|^2 \cdot |E|)$

3.10 Reference for Edge classes

Used for example in Dijkstra algorithm, implements edges with weight. Needs testing.

```
//for Kruskal we need to sort edges, use: java.lang.
    Comparable
class Edge implements Comparable<Edge> {}
class Edge {
  //for Kruskal it is helpful to store the start as
  //well, moreover we might not need the vertex class
  int s:
  int t;
  //for EdKarp we also want to store residual weights
  int rw;
  Vertex t;
  int w;
  public Edge(Vertex t, int w) {
    this.t = t;
    this.w = w;
    this.rw = w;
 public Edge(int s, int t, int w) {...}
 public int compareTo(Edge other) {
    return Integer.compare(this.w, other.w);
```

MD5: aae80ac4bfbfcc0b9ac4c65085f6f123 | $\mathcal{O}(1)$

3.11 FloydWarshall

11

12

Finds all shortest paths. Paths in array next, distances in ans.

MD5: a98bbda7e53be8ee0df72dbd8721b306 | $\mathcal{O}(|V|^3)$

3.12 Held Karp

Algorithm for TSP

```
public static int[] tsp(int[][] graph) {
  int n = graph.length;
  if(n == 1) return new int[]{0};
```

```
//C stores the shortest distance to node of the
         second dimension, first dimension is the
         bitstring of included nodes on the way
     int[][] C = new int[1<<n][n];</pre>
     int[][] p = new int[1<<n][n];</pre>
     //initialize
     for(int k = 1; k < n; k++) {</pre>
       C[1 << k][k] = graph[0][k];
     for(int s = 2; s < n; s++) {
11
       for(int S = 1; S < (1<<n); S++) {
12
         if(Integer.bitCount(S)!=S || (S&1) == 1)
13
              continue;
         for(int k = 1; k < n; k++) {</pre>
14
           if((S & (1 << k)) == 0) continue;
15
17
           //Smk is the set of nodes without k
           int Smk = S \wedge (1 << k);
18
19
           int min = Integer.MAX_VALUE;
20
           int minprev = 0;
21
           for(int m=1; m<n; m++) {</pre>
22
                                                               15
23
             if((Smk & (1<<m)) == 0) continue;
              //distance to m with the nodes in Smk +
24
                                                               17
                  connection from m to k
                                                               18
25
             int tmp = C[Smk][m] +graph[m][k];
             if(tmp < min) {</pre>
26
                min = tmp;
27
28
                minprev = m;
29
             }
30
           }
           C[S][k] = min;
31
           p[S][k] = minprev;
32
33
34
       }
     }
35
36
     //find shortest tour length
37
     int min = Integer.MAX_VALUE;
38
     int minprev = -1;
39
     for(int k = 1; k < n; k++) {</pre>
40
       //Set of all nodes except for the first + cost
41
           from 0 to k
       int tmp = C[(1 << n) - 2][k] + graph[0][k];
42
                                                               11
       if(tmp < min) {</pre>
43
                                                               12
         min = tmp;
44
45
         minprev = k;
46
                                                               14
47
48
     //Note that the tour has not been tested yet, only
49
         the correctness of the min-tour-value backtrack
     int[] tour = new int[n+1];
50
     tour[n] = 0;
51
                                                               21
     tour[n-1] = minprev;
52
     int bits = (1 << n) - 2;
     for(int k = n-2; k>0; k--) {
       tour[k] = p[bits][tour[k+1]];
       bits = bits ^ (1<<tour[k+1]);
57
     tour[0] = 0;
     return tour;
59
```

MD5: f3e9730287dcbf2695bf7372fc4bafe0 | $\mathcal{O}(2^n n^2)$

31

32

33

3.13 Iterative DFS

Simple iterative DFS, the recursive variant is a bit fancier. Not tested.

```
//if we want to start the DFS for different connected
    components, there is such a method in the
    recursive variant of DFS
public static boolean ItDFS(Vertex[] G, int s, int t){
  //take care that all the nodes are not visited at
      the beginning
  Stack<Integer> S = new Stack<Integer>();
  s.push(s);
 while(!S.isEmpty()) {
    int u = S.pop();
    if(u.id == t) return true;
    if(!G[u].vis) {
     G[u].vis = true;
      for(Vertex v : G[u].adj) {
        if(!v.vis)
          S.push(v.id);
 }
 return false;
```

MD5: 80f28ea9b2a04af19b48277e3c6bce9e | $\mathcal{O}(|V| + |E|)$

3.14 Johnsons Algorithm

```
public static int[][] johnson(Vertex[] G) {
  Vertex[] Gd = new Vertex[G.length+1];
  int s = G.length;
  for(int i = 0; i < G.length; i++)</pre>
    Gd[i] = G[i];
  //init new vertex with zero-weight-edges to each
      vertex
  Vertex S = new Vertex(G.length);
  for(int i = 0; i < G.length; i++)</pre>
    S.adj.add(new Edge(Gd[i], 0));
  Gd[G.length] = S;
  //bellman-ford to check for neg-weight-cycles and to
       adapt edges to enable running dijkstra
  if(bellmanFord(Gd, s)) {
    System.out.println("False");
    //this should not happen and will cause troubles
    return null;
  }
  //change weights
  for(int i = 0; i < G.length; i++)</pre>
    for(Edge e : Gd[i].adj)
      e.w = e.w + Gd[i].dist - e.t.dist;
  //store distances to invert this step later
  int[] h = new int[G.length];
  for(int i = 0; i < G.length; i++)</pre>
    h[i] = G[i].dist;
  //create shortest path matrix
  int[][] apsp = new int[G.length][G.length];
  //now use original graph G
  //start a dijkstra for each vertex
  for(int i = 0; i < G.length; i++) {</pre>
    //reset weights
    for(int j = 0; j < G.length; j++) {</pre>
```

```
35    G[j].vis = false;
36    G[j].dist = Integer.MAX_VALUE;
37    }
38    dijkstra(G, i);
39    for(int j = 0; j < G.length; j++)
40     apsp[i][j] = G[j].dist + h[j] - h[i];
41    }
42    return apsp;
43 }</pre>
```

MD5: 0a5c741be64b65c5211fe6056ffc1e02 | $\mathcal{O}(|V|^2 \log V + VE)$ ₂₇

3.15 Kruskal

Computes a minimum spanning tree for a weighted undirected³² graph.

```
public static int kruskal(Edge[] edges, int n) {
    Arrays.sort(edges);
    //n is the number of vertices
    UnionFind uf = new UnionFind(n);
    //we will only compute the sum of the MST, one could
         of course also store the edges
    int sum = 0;
    int cnt = 0;
    for(int i = 0; i < edges.length; i++) {</pre>
      if(cnt == n-1) break;
      if(uf.union(edges[i].s, edges[i].t)) {
10
        sum += edges[i].w;
11
12
        cnt++;
13
14
15
    return sum;
16 }
```

MD5: 91a1657706750a76d384d3130d98e5fb | $\mathcal{O}(|E| + \log |V|)$

3.16 Min Cut

Calculates the min cut using Edmonds Karp algorithm.

MD5: d41d8cd98f00b204e9800998ecf8427e | $\mathcal{O}(?)$

3.17 Prim

```
//s is the startpoint of the algorithm, in general not 17
       too important; we assume that graph is connected
  public static int prim(Vertex[] G, int s) {
                                                           18
    //make sure dists are maxint
                                                           19
    G[s].dist = 0;
                                                           20
    Tuple st = new Tuple(s, 0);
    PriorityQueue<Tuple> q = new PriorityQueue<Tuple>(); 23
    q.add(st);
    //we will store the sum and each nodes predecessor
    int sum = 0;
10
11
                                                           27
    while(!q.isEmpty()) {
12
                                                           28
      Tuple sm = q.poll();
13
      Vertex u = G[sm.id];
14
      //u has been visited already
15
                                                           31
      if(u.vis) continue;
  //this is not the latest version of u
```

```
if(sm.dist > u.dist) continue;
u.vis = true;
//u is part of the new tree and u.dist the cost of
        adding it
sum += u.dist;
for(Edge e : u.adj) {
    Vertex v = e.t;
    if(!v.vis && v.dist > e.w) {
        v.pre = u.id;
        v.dist = e.w;
        Tuple nt = new Tuple(v.id, e.w);
        q.add(nt);
    }
}
return sum;
}
```

MD5: c82f0bcc19cb735b4ef35dfc7ccfe197 | $\mathcal{O}(?)$

3.18 Recursive Depth First Search

Recursive DFS with different options (storing times, connected/unconnected graph). Needs testing.

Input: A source vertex s, a target vertex t, and adjlist G and the time (0 at the start)

Output: Indicates if there is connection between s and t.

```
//if we want to visit the whole graph, even if it is
    not connected we might use this
public static void DFS(Vertex[] G) {
  //make sure all vertices vis value is false etc
  int time = 0;
  for(int i = 0; i < G.length; i++) {</pre>
    if(!G[i].vis) {
      //note that we leave out t so this does not work
           with the below function
      //adaption will not be too difficult though
      //time should not always start at zero, change
          if needed
      recDFS(i, G, 0);
 }
}
//first call with time = 0
public static boolean recDFS(int s, int t, Vertex[] G,
     int time){
  //it might be necessary to store the time of
      discovery
  time = time + 1;
  G[s].dtime = time;
  G[s].vis = true; //new vertex has been discovered
  //when reaching the target return true
  //not necessary when calculating the DFS-tree
  if(s == t) return true;
  for(Vertex v : G[s].adj) {
    //exploring a new edge
    if(!v.vis) {
      v.pre = u.id;
      if(recDFS(v.id, t, G)) return true;
  }
  //storing finishing time
  time = time + 1;
```

```
G[s].ftime = time;
return false;
```

MD5: 3cef44fd916e1aecfb0e3eacc355e2e3 $| \mathcal{O}(|V| + |E|)$

15

17

56

57

62

3.19 Strongly Connected Components

```
public static void fDFS(Vertex u, LinkedList<Integer>
       sorting) {
     //compare with TS
                                                               21
     u.vis = true;
                                                               22
     for(Vertex v : u.out)
                                                               23
       if(!v.vis)
         fDFS(v, sorting);
                                                               25
     sorting.addFirst(u.id);
                                                               26
     return sorting;
                                                               27
  }
9
11
public static void sDFS(Vertex u, int cnt) {
    //basic DFS, all visited vertices get cnt
13
                                                               31
    u.vis = true;
14
                                                               32
    u.comp = cnt;
15
                                                               33
     for(Vertex v : u.in)
16
       if(!v.vis)
17
                                                               35
         sDFS(v, cnt);
18
19
                                                               37
20
                                                               38
public static void doubleDFS(Vertex[] G) {
     //first calc a topological sort by first DFS
22
     LinkedList<Integer> sorting = new LinkedList<Integer 41
23
         >();
                                                               42
     for(int i = 0; i < G.length; i++)</pre>
24
                                                               43
       if(!G[i].vis)
25
                                                               44
         fDFS(G[i], sorting);
                                                               45
27
     for(int i = 0; i < G.length; i++)</pre>
                                                               46
       G[i].vis = false;
     //then go through the sort and do another DFS on ^{6}\text{T}_{_{48}}
     //each tree is a component and gets a unique number _{_{49}}
    int cnt = 0;
31
     for(int i : sorting)
32
                                                               50
       if(!G[i].vis)
33
                                                               51
         sDFS(G[i], cnt++);
34
                                                               52
35
  }
```

MD5: 1e023258a9249a1bc0d6898b670139ea | $\mathcal{O}(|V| + |E|)$

3.20 Suurballe

Finds the min cost of two edge disjoint paths in a graph. If vertex₆₀ disjoint needed, split vertices. 61

Input: Graph G, Source s, Target t

Output: Min cost as int

```
public static int suurballe(Vertex[] G, int s, int t){
    //this uses the usual dijkstra implementation with
        stored predecessors

dijkstra(G, s);
//Modifying weights
for(int i = 0; i < G.length; i++)
for(Edge e : G[i].adj)
        e.dist = e.dist - e.t.dist + G[i].dist;
//reversing path and storing used edges
int old = t;
int pre = G[t].pre;</pre>
```

```
HashMap<Integer, Integer> hm = new HashMap<Integer,</pre>
    Integer>();
while(pre != -1) {
  for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
    if(G[pre].adj.get(i).t.id == old) {
      hm.put(pre * G.length + old, G[pre].adj.get(i)
           .tdist);
      G[pre].adj.remove(i);
      break;
    }
  }
  boolean found = false;
  for(int i = 0; i < G[old].adj.size(); i++) {</pre>
    if(G[old].adj.get(i).t.id == pre) {
      G[old].adj.get(i).dist = 0;
      found = true;
      break;
    }
  }
  if(!found)
    G[old].adj.add(new Edge(G[pre], 0));
  old = pre;
  pre = G[pre].pre;
}
//reset graph
for(int i = 0; i < G.length; i++) {</pre>
  G[i].pre = -1;
  G[i].dist = Integer.MAX_VALUE;
  G[i].vis = false;
}
dijkstra(G, s);
//store edges of second path
old = t;
pre = G[t].pre;
while(pre != -1) {
  //store edges and remove if reverse
  for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
    if(G[pre].adj.get(i).t.id == old) {
      if(!hm.containsKey(pre + old * G.length))
        hm.put(pre * G.length + old, G[pre].adj.get(
             i).tdist);
        hm.remove(pre + old * G.length);
      break;
    }
  old = pre;
  pre = G[pre].pre;
//sum up weights
int sum = 0;
for(int i : hm.keySet())
  sum += hm.get(i);
return sum;
```

MD5: 222dac2a859273efbbdd0ec0d6285dd7 $\mid \mathcal{O}(VlogV+E)$

3.21 Kahns Algorithm for TS

Gives the specific TS where Vertices first in G are first in the sorting

```
public static LinkedList<Integer> TS(Vertex[] G) {
  LinkedList<Integer> sorting = new LinkedList<Integer
  >();
```

```
PriorityQueue<Vertex> p = new PriorityQueue<Vertex</pre>
         >();
    //inc counts the number of incoming edges, if they
         are zero put the vertex in the queue
    for(int i = 0; i < G.length; i++) {</pre>
       if(G[i].inc == 0) {
         p.add(G[i]);
         G[i].vis = true;
       }
    }
    while(!p.isEmpty()) {
11
       Vertex u = p.poll();
12
                                                               12
       sorting.add(u.id);
13
                                                               13
       //update inc
14
                                                               14
       for(Vertex v : u.out) {
15
         if(v.vis) continue;
17
         v.inc--;
         if(v.inc == 0) {
18
19
           p.add(v);
           v.vis = true;
20
21
22
       }
23
24
    return sorting;
25
  }
```

MD5: e53d13c7467873d1c5d210681f4450d8 | $\mathcal{O}(V+E)$

3.22 **Topological Sort**

```
public static LinkedList<Integer> TS(Vertex[] G) {
    LinkedList<Integer> sorting = new LinkedList<Integer</pre>
         >();
    for(int i = 0; i < G.length; i++)</pre>
      if(!G[i].vis)
        recTS(G[i], sorting);
      //check sorting for a -1 if the graph is not
           necessarily dag
       //maybe checking if there are too many values in
           sorting is easier?!
      return sorting;
  }
  public static LinkedList<Integer> recTS(Vertex u,
       LinkedList<Integer> sorting) {
    u.vis = true;
12
    for(Vertex v : u.adj)
13
      if(v.vis)
        //the -1 indicates that it will not be possible ^{23}
15
             to find an TS
         //there might be a much faster and elegant way ( ^{25}
             flag?!)
        sorting.addFirst(-1);
      else
        recTS(v, sorting);
19
    sorting.addFirst(u.id);
20
    return sorting;
21
22 }
                                                            32
```

MD5: f6459575bf0d53344ddd9e5daf1dfbb8 | $\mathcal{O}(|V| + |E|)$

33 34

35

3.23 Tuple

Simple tuple class used for priority queue in Dijkstra and Prim

```
class Tuple implements Comparable<Tuple> {
  int id;
  int dist;
 public Tuple(int id, int dist) {
    this.id = id;
    this.dist = dist;
 }
 public int compareTo(Tuple other) {
    return Integer.compare(this.dist, other.dist);
```

MD5: fb1aa32dc32b9a2bac6f44a84e7f82c7 | $\mathcal{O}(1)$

Reference for Vertex classes

Used in many graph algorithms, implements a vertex with its edges. Needs testing.

```
class Vertex {
  int id;
 boolean vis = false;
  int pre = -1;
  //for dijkstra and prim
  int dist = Integer.MAX_VALUE;
  //for SCC store number indicating the dedicated
      component
  int comp = -1;
  //for DFS we could store the start and finishing
 int dtime = -1;
  int ftime = -1;
  //use an ArrayList of Edges if those information are
 ArrayList<Edge> adj = new ArrayList<Edge>();
 //use an ArrayList of Vertices else
 ArrayList<Vertex> adj = new ArrayList<Vertex>();
  //use two ArrayLists for SCC
 ArrayList<Vertex> in = new ArrayList<Vertex>();
 ArrayList<Vertex> out = new ArrayList<Vertex>();
  //for EdmondsKarp we need a HashMap to store Edges,
      Integer is target
 HashMap<Integer, Edge> adj = new HashMap<Integer,</pre>
      Edge>();
  //for bipartite graph check
 int color = -1;
  //we store as key the target
 public Vertex(int id) {
    this.id = id;
 }
}
```

MD5: 90e8120ce9f665b07d4388e30395dd36 | $\mathcal{O}(1)$

4 Math

4.1 Binomial Coefficient

Gives binomial coefficient (n choose k)

```
public static long bin(int n, int k) {
   if (k == 0)
     return 1;
   else if (k > n/2)
     return bin(n, n-k);
   else
   return n*bin(n-1, k-1)/k;
}
```

MD5: 32414ba5a444038b9184103d28fa1756 | $\mathcal{O}(k)$

4.2 Binomial Matrix

Gives binomial coefficients for all $K \le N$.

```
public static long[][] binomial_matrix(int N, int K) { 17
long[][] B = new long[N+1][K+1];

for (int k = 1; k <= K; k++)

B[0][k] = 0;

for (int m = 0; m <= N; m++)

B[m][0] = 1;

for (int m = 1; m <= N; m++)

for (int k = 1; k <= K; k++)

B[m][k] = B[m-1][k-1] + B[m-1][k];

return B;

10</pre>
```

MD5: e6f103bd9852173c02a1ec64264f4448 | $\mathcal{O}(N\cdot K)$

4.3 Divisability

Calculates (alternating) k-digitSum for integer number given by 32 M.

```
public static long digit_sum(String M, int k, boolean 35
      alt) {
    long dig_sum = 0;
                                                            37
    int vz = 1;
                                                            38
    while (M.length() > k) {
      if (alt) vz *= -1;
      dig_sum += vz*Integer.parseInt(M.substring(M.
                                                            41
           length()-k));
      M = M.substring(0, M.length()-k);
                                                            42
    }
    if (alt)
10
      vz *= -1;
11
    dig_sum += vz*Integer.parseInt(M);
12
    return dig_sum;
13 }
14
15 // example: divisibility of M by 13
                                                            49
public static boolean divisible13(String M) {
    return digit_sum(M, 3, true)%13 == 0;
17
                                                            51
18 }
                                                            52
                                                            53
```

MD5: 33b3094ebf431e1e71cd8e8db3c9cdd6 | $\mathcal{O}(|M|)$

4.4 Graham Scan

11

12

13

15

16

Multiple unresolved issues: multiple points as well as collinearity. N denotes the number of points

```
public static Point[] grahamScan(Point[] points) {
  //find leftmost point with lowest y-coordinate
  int xmin = Integer.MAX_VALUE;
  int ymin = Integer.MAX_VALUE;
  int index = -1;
  for(int i = 0; i < points.length; i++) {</pre>
    if(points[i].y < ymin || (points[i].y == ymin &&</pre>
        points[i].x < xmin)) {</pre>
      xmin = points[i].x;
      ymin = points[i].y;
      index = i;
    }
  }
  //get that point to the start of the array
  Point tmp = new Point(points[index].x, points[index
      1.v);
  points[index] = points[0];
  points[0] = tmp;
  for(int i = 1; i < points.length; i++)</pre>
    points[i].src = points[0];
  Arrays.sort(points, 1, points.length);
  //for collinear points eliminate all but the
      farthest
  boolean[] isElem = new boolean[points.length];
  for(int i = 1; i < points.length-1; i++) {</pre>
    Point a = new Point(points[i].x - points[i].src.x,
         points[i].y - points[i].src.y);
    Point b = new Point(points[i+1].x - points[i+1].
        src.x, points[i+1].y - points[i+1].src.y);
    if(Calc.crossProd(a, b) == 0)
      isElem[i] = true;
  //works only if there are more than three non-
      collinear points
  Stack<Point> s = new Stack<Point>();
  int i = 0;
  for(; i < 3; i++) {
    while(isElem[i++]);
    s.push(points[i]);
  for(; i < points.length; i++) {</pre>
    if(isElem[i]) continue;
    while(true) {
      Point first = s.pop();
      Point second = s.pop();
      s.push(second);
      Point a = new Point(first.x - second.x, first.y
          - second.y);
      Point b = new Point(points[i].x - second.x,
          points[i].y - second.y);
      //use >= if straight angles are needed
      if(Calc.crossProd(a, b) > 0) {
        s.push(first);
        s.push(points[i]);
        break;
      }
    }
  }
  Point[] convexHull = new Point[s.size()];
  for(int j = s.size()-1; j >= 0; j--)
    convexHull[j] = s.pop();
  return convexHull;
  /*Sometimes it might be necessary to also add points
```

```
to the convex hull that form a straight angle. 10
         The following lines of code achieve this. Only
         at the first and last diagonal we have to add
         those. Of course the previous return-statement
         has to be deleted as well as allowing straight
         angles in the above implementation. */
57 class Point implements Comparable<Point> {
    Point src; //set seperately in GrahamScan method
    int x;
    int y;
    public Point(int x, int y) {
62
      this.x = x;
63
      this.y = y;
64
65
    //might crash if one point equals src
67
    //major issues with multiple points on same location
        - 1
    public int compareTo(Point cmp) {
69
    Point a = new Point(this.x - src.x, this.y - src.y);
70
    Point b = new Point(cmp.x - src.x, cmp.y - src.y);
71
    //checks if points are identical
72
    if(a.x == b.x && a.y == b.y) return 0;
73
    //if same angle, sort by dist
74
    if(Calc.crossProd(a, b) == 0 && Calc.dotProd(a, b) >
75
          0)
      return Integer.compare(Calc.dotProd(a, a), Calc.
76
           dotProd(b, b));
    //angle of a is 0, thus b>a
77
                                                           13
    if(a.y == 0 && a.x > 0) return -1;
78
                                                           14
    //angle of b is 0, thus a>b
79
                                                           15
    if(b.y == 0 && b.x > 0) return 1;
80
                                                           16
    //a ist between 0 and 180, b between 180 and 360
81
    if(a.y > 0 && b.y < 0) return -1;
82
    if(a.y < 0 && b.y > 0) return 1;
83
    //return negative value if cp larger than zero
84
    return Integer.compare(0, Calc.crossProd(a, b));
85
86
                                                           21
87 }
88
  class Calc {
89
    public static int crossProd(Point p1, Point p2) {
90
      return p1.x * p2.y - p2.x * p1.y;
91
92
    public static int dotProd(Point p1, Point p2) {
93
                                                           28
      return p1.x * p2.x + p1.y * p2.y;
94
                                                           29
95
96 }
```

MD5: 2555d858fadcfe8cb404a9c52420545d $\mid \mathcal{O}(N \log N)$

4.5 Iterative EEA

Berechnet den ggT zweier Zahlen a und b und deren modulare In-38 verse $x=a^{-1} \mod b$ und $y=b^{-1} \mod a$.

```
long q = b / a, r = b % a;
long m = x - u * q, n = y - v * q;
b = a; a = r; x = u; y = v; u = m; v = n;
}
long gcd = b;
// x = a^-1 % b, y = b^-1 % a
// ax + by = gcd
long[] erg = { gcd, x, y };
return erg;
}
```

MD5: 81fe8cd4adab21329dcbe1ce0499ee75 $\mid \mathcal{O}(\log a + \log b)$

4.6 Polynomial Interpolation

```
public class interpol {
  // divided differences for points given by vectors x
       and y
  public static rat[] divDiff(rat[] x, rat[] y) {
    rat[] temp = y.clone();
    int n = x.length;
    rat[] res = new rat[n];
    res[0] = temp[0];
    for (int i=1; i < n; i++) {</pre>
      for (int j = 0; j < n-i; j++) {</pre>
        temp[j] = (temp[j+1].sub(temp[j])).div(x[j+i].
            sub(x[j]));
      res[i] = temp[0];
    return res;
  // evaluates interpolating polynomial p at t for
      given
  // x-coordinates and divided differences
  public static rat p(rat t, rat[] x, rat[] dD) {
    int n = x.length;
    rat p = new rat(0);
    for (int i = n-1; i > 0; i--) {
      p = (p.add(dD[i])).mult(t.sub(x[i-1]));
    p = p.add(dD[0]);
    return p;
 }
// implementation of rational numbers
class rat {
  public long c;
  public long d;
  public rat (long c, long d) {
    this.c = c:
    this.d = d;
    this.shorten();
  public rat (long c) {
    this.c = c;
    this.d = 1;
  public static long ggT(long a, long b) {
    while (b != 0) {
```

```
long h = a\%b;
          a = b:
51
          b = h;
52
53
54
        return a;
55
56
     public static long kgV(long a, long b) {
57
        return a*b/ggT(a,b);
58
     public static rat[] commonDenominator(rat[] c) {
61
        long kgV = 1;
                                                                  15
62
        for (int i = 0; i < c.length; i++) {</pre>
63
          kgV = kgV(kgV, c[i].d);
                                                                  17
64
65
        for (int i = 0; i < c.length; i++) {</pre>
67
          c[i].c *= kgV/c[i].d;
                                                                  19
68
          c[i].d *= kgV/c[i].d;
                                                                  20
                                                                  21
69
        return c;
                                                                  22
70
     }
                                                                  23
71
72
                                                                  24
73
     public void shorten() {
                                                                  25
74
        long ggT = ggT(this.c, this.d);
                                                                  26
75
        this.c = this.c / ggT;
                                                                  27
76
        this.d = this.d / ggT;
                                                                  28
        if (d < 0) {
77
                                                                  29
          this.d *= -1;
78
          this.c *= -1;
79
                                                                  31
80
                                                                  32
     }
81
                                                                  33
82
     public String toString() {
83
                                                                  35
        if (this.d == 1) return ""+c;
84
                                                                  36
        return ""+c+"/"+d;
85
                                                                  37
86
                                                                  38
87
     public rat mult(rat b) {
88
        return new rat(this.c*b.c, this.d*b.d);
89
                                                                  41
                                                                  42
90
                                                                  43
91
     public rat div(rat b) {
92
        return new rat(this.c*b.d, this.d*b.c);
93
                                                                  45
94
                                                                  46
                                                                  47
95
     public rat add(rat b) {
96
        long new_d = kgV(this.d, b.d);
97
        long new_c = this.c*(new_d/this.d) + b.c*(new_d/b.50
98
        return new rat(new_c, new_d);
                                                                  52
99
                                                                  53
100
                                                                  54
101
     public rat sub(rat b) {
                                                                  55
102
        return this.add(new rat(-b.c, b.d));
103
104
                                                                  57
105
```

MD5: e7b408030f7e051e93a8c55056ba930b | $\mathcal{O}(?)$

61

62

4.7 Root of permutation

Calculates the K'th root of permutation of size N. Number at place i indicates where this dancer ended. needs commenting

```
public static int[] rop(int[] perm, int N, int K) {
  boolean[] incyc = new boolean[N];
```

```
int[] cntcyc = new int[N+1];
int[] g = new int[N+1];
int[] needed = new int[N+1];
for(int i = 1; i < N+1; i++) {</pre>
  int j = i;
  int k = K;
  int div;
  while(k > 1 && (div = gcd(k, i)) > 1) {
    k /= div;
    j *= div;
  needed[i] = j;
  g[i] = gcd(K, j);
}
HashMap<Integer, ArrayList<Integer>> hm = new
    HashMap<Integer, ArrayList<Integer>>();
for(int i = 0; i < N; i++) {
  if(incyc[i]) continue;
  ArrayList<Integer> cyc = new ArrayList<Integer>();
  cyc.add(i);
  incyc[i] = true;
  int newelem = perm[i];
  while(newelem != i) {
    cyc.add(newelem);
    incyc[newelem] = true;
    newelem = perm[newelem];
  int len = cyc.size();
  cntcyc[len]++;
  if(hm.containsKey(len)) {
    hm.get(len).addAll(cyc);
  } else {
    hm.put(len, cyc);
}
boolean end = false;
for(int i = 1; i < N+1; i++) {</pre>
  if(cntcyc[i] % g[i] != 0) end = true;
if(end) {
  //not possible
  return null;
} else {
  int[] out = new int[N];
  for(int length = 0; length < N; length++) {</pre>
    if(!hm.containsKey(length)) continue;
    ArrayList<Integer> p = hm.get(length);
    int totalsize = p.size();
    int diffcyc = totalsize / needed[length];
    for(int i = 0; i < diffcyc; i++) {</pre>
      int[] c = new int[needed[length]];
      for(int it = 0; it < needed[length]; it++) {</pre>
        c[it] = p.get(it + i * needed[length]);
      int move = K / (needed[length]/length);
      int[] rewind = new int[needed[length]];
      for(int set = 0; set < needed[length]/length;</pre>
          set++) {
        int pos = set * length;
        for(int it = 0; it < length; it++) {</pre>
          rewind[pos] = c[it + set * length];
          pos = ((pos - set * length + move) %
               length)+ set * length;
      int[] merge = new int[needed[length]];
```

for(int it = 0; it < needed[length]/length; it</pre>

```
++) {
             for(int set = 0; set < length; set++) {</pre>
               merge[set * needed[length] / length + it]
                    = rewind[it * length + set];
             }
           }
           for(int it = 0; it < needed[length]; it++) {</pre>
72
             out[merge[it]] = merge[(it+1) % needed[
                  length]];
         }
75
       }
76
       return out;
77
78
    }
79
  }
```

MD5: b446a7c21eddf7d14dbdc71174e8d498 | $\mathcal{O}(?)$

4.8 Sieve of Eratosthenes

Calculates Sieve of Eratosthenes.

Input: A integer N indicating the size of the sieve.

Output: A boolean array, which is true at an index i iff i is prime.

```
public static boolean[] sieveOfEratosthenes(int N) {
   boolean[] isPrime = new boolean[N+1];
   for (int i=2; i<=N; i++) isPrime[i] = true;
   for (int i = 2; i*i <= N; i++)
      if (isPrime[i])
      for (int j = i*i; j <= N; j+=i)
            isPrime[j] = false;
   return isPrime;
}</pre>
```

MD5: 95704ae7c1fe03e91adeb8d695b2f5bb | $\mathcal{O}(n)$

4.9 Greatest Common Devisor

Calculates the gcd of two numbers a and b or of an array of num-¹² bers input.

Input: Numbers a and b or array of numbers input

Output: Greatest common devisor of the input

```
private static long gcd(long a, long b) {
                                                             18
      while (b > 0) {
                                                             19
           long temp = b;
                                                             20
           b = a % b; // % is remainder
                                                             21
           a = temp;
                                                             22
      return a;
  }
  private static long gcd(long[] input) {
11
      long result = input[0];
12
      for(int i = 1; i < input.length; i++)</pre>
13
      result = gcd(result, input[i]);
      return result;
14
15 }
```

MD5: 48058e358a971c3ed33621e3118818c2 $|\mathcal{O}(\log a + \log b)|$

4.10 Least Common Multiple

Calculates the lcm of two numbers a and b or of an array of numbers input.

Input: Numbers a and b or array of numbers input Output: Least common multiple of the input

```
private static long lcm(long a, long b) {
    return a * (b / gcd(a, b));
}

private static long lcm(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
        result = lcm(result, input[i]);
    return result;
}</pre>
```

MD5: $3cfaab4559ea05c8434d6cf364a24546 \mid \mathcal{O}(\log a + \log b)$

5 Misc

15

16

5.1 Binary Search

Binary searchs for an element in a sorted array.

 ${\it Input:}\ {\it sorted}\ array$ to search in, amount N of elements in array, element to search for a

Output: returns the index of a in array or -1 if array does not contain a

```
public static int BinarySearch(int[] array,
                                     int N, int a) {
  int lo = 0;
  int hi = N-1;
  // a might be in interval [lo,hi] while lo <= hi
  while(lo <= hi) {</pre>
    int mid = (lo + hi) / 2;
    // if a > elem in mid of interval,
    // search the right subinterval
    if(array[mid] < a)</pre>
      lo = mid+1;
    // else if a < elem in mid of interval,
    // search the left subinterval
    else if(array[mid] > a)
      hi = mid-1;
    // else a is found
    else
      return mid:
  // array does not contain a
  return -1:
}
```

MD5: 203da61f7a381564ce3515f674fa82a4 $\mid \mathcal{O}(\log n)$

5.2 Next number with n bits set

From x the smallest number greater than x with the same amount of bits set is computed. Little changes have to be made, if the calculated number has to have length less than 32 bits.

Input: number x with n bits set (x = (1 << n) - 1)

Output: the smallest number greater than x with n bits set

```
public static int nextNumber(int x) {
  //break when larger than limit here
  if(x == 0) return 0;
  int smallest = x & -x;
  int ripple = x + smallest;
```

```
int new_smallest = ripple & -ripple;
int ones = ((new_smallest/smallest) >> 1) - 1;
return ripple | ones;
}
```

MD5: 2d8a79cb551648e67fc3f2f611a4f63c $\mid \mathcal{O}(1) \mid$

5.3 Next Permutation

Returns true if there is another permutation. Can also be used to compute the nextPermutation of an array.

Input: String a as char array

Output: true, if there is a next permutation of a, false otherwise

```
public static boolean nextPermutation(char[] a) {
    int i = a.length - 1;
    while(i > 0 && a[i-1] >= a[i])
      i--;
    if(i <= 0)
      return false;
    int j = a.length - 1;
    while (a[j] <= a[i-1])
      j--;
    char tmp = a[i - 1];
    a[i - 1] = a[j];
    a[j] = tmp;
    j = a.length - 1;
    while(i < j) {</pre>
                                                              12
      tmp = a[i];
      a[i] = a[j];
17
      a[j] = tmp;
18
      i++;
19
20
                                                              15
    }
21
                                                              16
    return true;
22
                                                              17
23 }
```

MD5: 7d1fe65d3e77616dd2986ce6f2af089b | $\mathcal{O}(n)$

6 String

6.1 Knuth-Morris-Pratt

Input: String s to be searched, String w to search for. *Output:* Array with all starting positions of matches

```
public static ArrayList<Integer> kmp(String s, String
    ArrayList<Integer> ret = new ArrayList<>();
    //Build prefix table
    int[] N = new int[w.length()+1];
    int i=0; int j =-1; N[0]=-1;
    while (i<w.length()) {</pre>
      while (j>=0 && w.charAt(j) != w.charAt(i))
        j = N[j];
      i++; j++; N[i]=j;
    }
10
    //Search string
11
    i=0; j=0;
12
                                                            11
    while (i<s.length()) {</pre>
13
      while (j>=0 && s.charAt(i) != w.charAt(j))
14
        j = N[j];
15
```

```
i++; j++;
    if (j==w.length()) { //match found
    ret.add(i-w.length()); //add its start index
    j = N[j];
    }
}
return ret;
}
```

MD5: $3cb03964744db3b14b9bff265751c84b \mid \mathcal{O}(n+m)$

6.2 Levenshtein Distance

Calculates the Levenshtein distance for two strings (minimum number of insertions, deletions, or substitutions).

Input: A string a and a string b.

Output: An integer holding the distance.

```
public static int levenshteinDistance(String a, String
    a = a.toLowerCase();
    b = b.toLowerCase();
    int[] costs = new int[b.length() + 1];
    for (int j = 0; j < costs.length; j++)</pre>
      costs[j] = j;
    for (int i = 1; i <= a.length(); i++) {</pre>
      costs[0] = i;
      int nw = i - 1;
      for (int j = 1; j <= b.length(); j++) {</pre>
        int cj = Math.min(1 + Math.min(costs[j], costs[j
           a.charAt(i - 1) == b.charAt(j - 1) ? nw : nw +
        nw = costs[j];
        costs[j] = cj;
    }
    return costs[b.length()];
19
  }
```

MD5: 79186003b792bc7fd5c1ffbbcfc2b1c6 $\mid \mathcal{O}(|a| \cdot |b|)$

6.3 Longest Common Subsequence

Finds the longest common subsequence of two strings.

Input: Two strings string1 and string2.

Output: The LCS as a string.

```
int s1position = s1.length, s2position = s2.length;
    List<Character> result = new LinkedList<Character>()
14
    while (s1position != 0 && s2position != 0) {
15
      if (s1[s1position - 1] == s2[s2position - 1]) {
16
        result.add(s1[s1position - 1]);
17
18
        s1position--;
        s2position--;
19
      } else if (num[s1position][s2position - 1] >= num[
           s1position][s2position])
         s2position--;
21
      else
22
        s1position--;
23
24
    Collections.reverse(result);
25
    char[] resultString = new char[result.size()];
27
    int i = 0;
    for (Character c : result) {
28
      resultString[i] = c;
29
30
31
32
    return new String(resultString);
33 }
```

MD5: 4dc4ee3af14306bea5724ba8a859d5d4 $\mid \mathcal{O}(n \cdot m)$

6.4 Longest common substring

gets two String and finds all LCSs and returns them in a set

```
public static TreeSet<String> LCS(String a, String b)
    int[][] t = new int[a.length()+1][b.length()+1];
    for(int i = 0; i <= b.length(); i++)</pre>
       t[0][i] = 0;
    for(int i = 0; i <= a.length(); i++)</pre>
       t[i][0] = 0;
    for(int i = 1; i <= a.length(); i++)</pre>
       for(int j = 1; j <= b.length(); j++)</pre>
10
         if(a.charAt(i-1) == b.charAt(j-1))
11
           t[i][j] = t[i-1][j-1] + 1;
12
13
           t[i][j] = 0;
14
    int max = -1:
15
    for(int i = 0; i <= a.length(); i++)</pre>
16
       for(int j = 0; j <= b.length(); j++)</pre>
17
         if(max < t[i][j])
18
           max = t[i][j];
19
    if(max == 0 \mid \mid max == -1)
20
       return new TreeSet<String>();
21
22
    TreeSet<String> res = new TreeSet<String>();
23
    for(int i = 0; i <= a.length(); i++)</pre>
24
       for(int j = 0; j <= b.length(); j++)</pre>
         if(max == t[i][j])
           res.add(a.substring(i-max, i));
27
    return res;
```

MD5: 9de393461e1faebe99af3ff8db380bde | $\mathcal{O}(|a| * |b|)$

7 Math Roland

7.1 Divisability Explanation

 $D \mid M \Leftrightarrow D \mid \text{digit_sum}(M, k, \text{alt})$, refer to table for values of D, k, alt.

7.2 Combinatorics

- Variations (ordered): k out of n objects (permutations for k = n)
 - without repetition: $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},$ $|M| = \frac{n!}{(n-k)!}$
 - with repetition: $M = \{(x_1, ..., x_k) : 1 \le x_i \le n\}, |M| = n^k$
- Combinations (unordered): k out of n objects
 - without repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1\}, x_1 + \dots + x_n = k\}, |M| = \binom{n}{k}$
 - with repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1, \dots, k\}, x_1 + \dots + x_n = k\}, |M| = \binom{n+k-1}{k}$
- Ordered partition of numbers: $x_1 + ... + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
 - #Solutions for $x_i \in \mathbb{N}_0$: $\binom{n+k-1}{k-1}$
 - #Solutions for $x_i \in \mathbb{N}$: $\binom{n-1}{k-1}$
- Unordered partition of numbers: $x_1 + ... + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)
 - #Solutions for $x_i \in \mathbb{N}$: $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where $P_{n,1} = P_{n,n} = 1$
- Derangements (permutations without fixed points): $!n = n! \sum_{k=0}^n \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

7.3 Polynomial Interpolation

7.3.1 Theory

Problem: for $\{(x_0, y_0), \dots, (x_n, y_n)\}$ find $p \in \Pi_n$ with $p(x_i) = y_i$ for all $i = 0, \dots, n$.

Solution: $p(x) = \sum_{i=0}^{n} \gamma_{0,i} \prod_{j=0}^{i-1} (x - x_i)$ where $\gamma_{j,k} = y_j$ for k = 0

and $\gamma_{j,k} = \frac{\gamma_{j+1,k-1} - \gamma_{j,k-1}}{x_{j+k} - x_j}$ otherwise.

Efficient evaluation of p(x): $b_n = \gamma_{0,n}$, $b_i = b_{i+1}(x - x_i) + \gamma_{0,i}$ for $i = n - 1, \dots, 0$ with $b_0 = p(x)$.

7.4 Fibonacci Sequence

7.4.1 Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \text{ where }$$

$$\phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

7.4.2 Generalization

$$g_n=\frac{1}{\sqrt{5}}(g_0(\phi^{n-1}-\tilde{\phi}^{n-1})+g_1(\phi^n-\tilde{\phi}^n))=g_0f_{n-1}+g_1f_n$$
 for all $g_0,g_1\in\mathbb{N}_0$

7.4.3 Pisano Period

Both $(f_n \mod k)_{n \in \mathbb{N}_0}$ and $(g_n \mod k)_{n \in \mathbb{N}_0}$ are periodic.

Reihen

$$\begin{split} \sum_{i=1}^n i &= \frac{n(n+1)}{2}, \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^n c^i &= \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^\infty c^i = \frac{1}{1-c}, \sum_{i=1}^n c^i = \frac{c}{1-c}, |c| < 1 \\ \sum_{i=0}^n ic^i &= \frac{nc^{n+2}-(n+1)c^{n+1}+c}{(c-1)^2}, c \neq 1, \sum_{i=0}^\infty ic^i = \frac{c}{(1-c)^2}, |c| < 1 \end{split}$$

Binomialkoeffizienten

Catalanzahlen

$$\begin{split} C_n &= \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!} \\ C_0 &= 1, C_{n+1} = \sum_{k=0}^n C_k C_{n-k}, C_{n+1} = \frac{4n+2}{n+2} C_n \end{split}$$

7.8 Geometrie

Polygonfläche:
$$A = \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + \cdots + x_{n-1}y_n - x_ny_{n-1} + x_ny_1 - x_1y_n)$$

Zahlentheorie 7.9

Chinese Remainder Theorem: Es existiert eine Zahl C, sodass: $C \equiv a_1 \mod n_1, \cdots, C \equiv a_k \mod n_k, \operatorname{ggt}(n_i, n_j) = 1, i \neq j$ Fall k = 2: $m_1 n_1 + m_2 n_2 = 1$ mit EEA finden.

Lösung ist $x = a_1 m_2 n_2 + a_2 m_1 n_1$.

Allgemeiner Fall: iterative Anwendung von k=2

Eulersche φ -Funktion: $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}), p \text{ prim}$ $\varphi(p) = p - 1, \varphi(pq) = \varphi(p)\varphi(q), p, q \text{ prim}$ $\varphi(p^k) = p^k - p^{k-1}, p, q \text{ prim}, k \ge 1$

Eulers Theorem: $a^{\varphi(n)} \equiv 1 \mod n$

Fermats Theorem: $a^p \equiv a \mod p$, p prim

7.10 Faltung

$$(f * g)(n) = \sum_{m=-\infty}^{\infty} f(m)g(n-m) = \sum_{m=-\infty}^{\infty} f(n-m)g(m)$$

8 Java Knowhow

System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv] flags:

left-justify (default: right)

always output number sign

zero-pad numbers

space instead of minus for pos. numbers (space)

group triplets of digits with,

width specifies output width

precision is for floating point precision

conv:

byte, short, int, long d

f float, double

char (use C for uppercase)

String (use S for all uppercase)

8.2 **Modulo: Avoiding negative Integers**

```
int mod = (((nums[j] % D) + D) % D);
```

8.3 Speed up IO

Use

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

Use

Double.parseDouble(Scanner.next());