高维数据

唐洁, 邹云龙 2022 年 11 月 15 日

目录

1	空间模型	1
	1.1 模型介绍	
	1.2 新想法	. 1
2	主成分分析	2
	2.1 原理	. 2
	2.2 应用	. 3
3	PCAEL	4
	3.1 主要结果	. 4
	3.2 模拟	. 5

1 空间模型 1

1 空间模型

1.1 模型介绍

含空间自相关误差的空间自回归模型 (SARARmodel):

$$Y_n = \rho_1 W_n Y_n + X_n \beta + u_{(n)}, u_{(n)} = \rho_2 M_n u_{(n)} + \epsilon_{(n)}, \tag{1}$$

其中,n 是空间单元数量, ρ_j , j=1,2 是空间自回归系数且 $|\rho_j|<1$,j=1,2, $X_n=(x_1,x_2,...,x_n)'$ 是 $n\times p$ 维解释变量的样本资料矩阵, β 是 $p\times 1$ 维 X_n 的回归系数向量, $Y_n=(y_1,y_2,...,y_n)'$ 是 $n\times 1$ 维响应变量, W_n 是解释变量 Y_n 的空间邻接权重矩阵, M_n 是扰动项 $u_{(n)}$ 的空间邻接权重矩阵, $\epsilon_{(n)}$ 是 $n\times 1$ 维空间误差向量,且满足

$$E\epsilon_{(n)} = 0, Var(\epsilon_{(n)}) = \sigma^2 I_n.$$

本汇报将呈现 $p \to \infty$ 的情形. 符号说明, $\mathbf{1}_k$ 表示数字 1 组成的 k 维列向量.

由 Qin , 得到关于 $\theta = (\beta', \rho_1, \rho_2, \sigma^2)' \in \mathbb{R}^{p+3}$ 的经验 (对数) 似然比统计量:

$$\ell_n(\theta) = -2\log L_n(\theta) = 2\sum_{i=1}^n \log\{1 + \lambda'(\theta)\omega_i(\theta)\},\,$$

$$L_n(\theta) = \sup \left\{ \prod_{i=1}^n (np_i) : p_1 \ge 0, \dots, p_n \ge 0, \sum_{i=1}^n p_i = 1, \sum_{i=1}^n p_i \omega_i(\theta) = 0 \right\},$$

其中

$$\omega_{i}(\theta) = \begin{pmatrix} b_{i}\epsilon_{i} \\ \tilde{g}_{ii}(\epsilon_{i}^{2} - \sigma^{2}) + 2\epsilon_{i} \sum_{j=1}^{i-1} \tilde{g}_{ij}\epsilon_{j} + s_{i}\epsilon_{i} \\ \tilde{h}_{ii}(\epsilon_{i}^{2} - \sigma^{2}) + 2\epsilon_{i} \sum_{j=1}^{i-1} \tilde{h}_{ij}\epsilon_{j} \\ \epsilon_{i}^{2} - \sigma^{2} \end{pmatrix}_{(p+3)\times 1}.$$

情形 1 当 p 固定时,模型 (1) 下,当 $\theta = \theta_0, n \to \infty$,有

$$el = \ell_n(\theta_0) \xrightarrow{d} \chi_{p+3}^2.$$

情形 2 当 $p \to \infty$ 时,模型 (1) 下,当 $\theta = \theta_0, p = cn^{index}, n \to \infty$,有

$$hel = \ell_n^h(\theta_0) \xrightarrow{d} \chi_1^2,$$

其中 $\ell_n^h(\theta) = -2\log L_n^h(\theta) = 2\sum_{i=1}^n \log\{1 + \lambda'(\theta)\omega_i^h(\theta)\},$ 且 $\omega_i^h(\theta) = \omega_i'(\theta)\mathbf{1}_{p+3}, i = 1, 2, \cdots, n.$

1.2 新想法

秦老师提出,既然 $\sum_{i=1}^{n} \omega_i(\theta)$ 可以由 p+3 维通过 $\sum_{i=1}^{n} \omega_i'(\theta) \mathbf{1}_{p+3}$ 的方式将为 1 维,那可不可以是 2 维,3 维,…, $s(s \le p+3)$ 维,而且哐地降为 1 维也没有什么依据. 不如理解为是对得分函数做一个选择,高维做选择,自然就是主成分分析 (PCA) 了. 话不多说,开干.

2 主成分分析 2

2 主成分分析

2.1 原理

a. 目标

我们假设将 p 维降为 s 维,已知 $y \in R^p$,y(已标准化)的协方差为 Σ . 进行主成分分析就是要找出 Z_p ,按照方差贡献度从多到少排序,按照累计贡献率选出前 s 个.

$$y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_p \end{pmatrix}, \ Cov(y) = \Sigma \implies Z = \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_p \end{pmatrix}, \ Cov(Z) = \widetilde{\Sigma}.$$

b. 计算

首先由待定系数法可知, 求 Z 即求 A.

$$Z_{1} = a'_{1}y = a_{11}Y_{1} + a_{12}Y_{2} + \dots + a_{1p}Y_{p}$$

$$Z_{2} = a'_{2}y = a_{21}Y_{1} + a_{22}Y_{2} + \dots + a_{2p}Y_{p}$$

$$\vdots$$

$$Z_{p} = a'_{p}y = a_{p1}Y_{1} + a_{p2}Y_{2} + \dots + a_{pp}Y_{p}$$

$$\widetilde{\Sigma} = \left(cov(Z_{i}, Z_{j})\right)_{p \times p} = \left(a'_{i}\Sigma a_{j}\right)_{p \times p}$$

其次对目标函数求解,可得

$$Z_1 = a_1'y \quad a_1'a_1 = 1 \quad \max a_1' \Sigma a_1 \qquad \qquad \max a_1' \Sigma a_1 = \lambda_1 \quad a_1 = e_1$$

$$Z_2 = a_2'y \quad a_2'a_2 = 1 \quad \max a_2' \Sigma a_2 \qquad \qquad \max a_2' \Sigma a_2 = \lambda_2 \quad a_2 = e_2$$

$$\vdots \qquad \qquad \vdots$$

$$Z_p = a_p'y \quad a_p'a_p = 1 \quad \min a_p' \Sigma a_p \qquad \qquad \min a_p' \Sigma a_p = \lambda_p \quad a_p = e_p$$

其中, λ_i 是 Σ 的特征值且 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$, e_i 是对应特征值 λ_i 所对应的特征向量.

最后,设 $V = diag(\lambda_1, \lambda_2, \dots, \lambda_p)$, $E'_p = (e_1, e_2, \dots, e_p)$,diag 表示由特征值组成的对角矩阵,由上述我们可得:

$$A = \begin{pmatrix} a'_1 \\ a'_2 \\ \vdots \\ a'_p \end{pmatrix} = \begin{pmatrix} e'_1 \\ e'_2 \\ \vdots \\ e'_p \end{pmatrix} = E_p$$
$$Z = Ay = E_p y$$

$$\widetilde{\Sigma} = \left(a_i' \Sigma a_j\right)_{p \times p} = \left(e_i' \Sigma e_j\right)_{p \times p} = \left(\lambda_i I_{\{i=j\}}\right)_{p \times p} = V$$

2 主成分分析 3

c. 举例

d. 总结

按照 $Z=E_py$ 的变换,信息并没有损失, $\sum_{j=1}^p Var(Z_j)=\sum_{j=1}^p \lambda_j=tr(\Sigma)=\sum_{j=1}^p Var(Y_j)$. 第 i 个主成分的信息含量:

$$Z_i = e'_i y, \ i = 1, 2, \cdots, p.$$

第 i 个主成分的方差贡献度:

$$\lambda_i, i = 1, 2, \cdots, p.$$

第 i 个主成分的方差贡献度:

$$\frac{\lambda_i}{\sum_{j=1}^p \lambda_j}, \ i = 1, 2, \cdots, p.$$

前 s 个主成分的方差累积贡献度率:

$$\frac{\sum_{i=1}^{s} \lambda_i}{\sum_{j=1}^{p} \lambda_j}, \ s \le p.$$

假设我们从 p 维降到 s 维,令 $E_s'=(e_1,e_2,\cdots,e_s)$,则做 $Z=E_sy$ 的变换,此时 $Z\in R^s$. s 的选择可以根据方差累积贡献率进行判断.

2 主成分分析 4

2.2 应用

将上述结论应用到空间模型的得分函数选择上,令 $y=\sum_{i=1}^n \omega_i(\theta)$,则我们得出根据主成分分析得到得分函数选择结果为:

$$\omega_i^{PCA}(\theta) = E_s \omega_i(\theta), i = 1, 2, \cdots, n,$$

其中 E_s 是 Σ_{p+3} 前 s 个最大特征值所对的特征向量组成的行特征向量矩阵.

3 PCAEL

3.1 主要结果

情形 3 当 $p \to \infty$ 时,模型 (1)下,当 $\theta = \theta_0, n \to \infty$,有

$$pcael = \ell_n^{PCAs}(\theta_0) \stackrel{d}{\longrightarrow} \chi_s^2,$$

其中 $\ell_n^{PCAs}(\theta) = -2\log L_n^{PCAs}(\theta) = 2\sum_{i=1}^n \log\{1 + \lambda'(\theta)\omega_i^{PCAs}(\theta)\}$ 且 $\omega_i^{PCAs}(\theta) = E_s\omega_i(\theta), i = 1, 2, \cdots, n,$

$$E_s = \begin{pmatrix} e_1' \\ e_2' \\ \vdots \\ e_s' \end{pmatrix}, \quad \widetilde{\Sigma}_s = Cov \left\{ \sum_{i=1}^n \omega_i^{PCA}(\theta) \right\} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_s \end{pmatrix}.$$

如此可将 $\omega_i(\theta)$ 从 p+3 维降为 s 维,其中 $(\lambda_i, e_i), i=1,2,\cdots,s$ 表示 Σ_{p+3} 的第 i 个特征值 λ_i 所对的特征向量 e_i ,

$$\Sigma_{p+3} = \Sigma'_{p+3} = Cov \left\{ \sum_{i=1}^{n} \omega_i(\theta) \right\} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \Sigma_{13} & \Sigma_{14} \\ \Sigma_{21} & \Sigma_{22} & \Sigma_{23} & \Sigma_{24} \\ \Sigma_{31} & \Sigma_{32} & \Sigma_{33} & \Sigma_{34} \\ \Sigma_{41} & \Sigma_{42} & \Sigma_{43} & \Sigma_{44} \end{pmatrix},$$

其中,

$$\begin{split} & \Sigma_{11} &= \sigma^2 \{B_n(\rho_2) X_n\}' B_n(\rho_2) X_n, \\ & \Sigma_{12} &= \sigma^2 \{B_n(\rho_2) X_n\}' B_n(\rho_2) W_n A_n^{-1}(\rho_1) X_n \beta + \mu_3 \{B_n(\rho_2) X_n\}' Vec(diag \ \tilde{G}_n), \\ & \Sigma_{13} &= \mu_3 \{B_n(\rho_2) X_n\}' Vec(diag \ \tilde{H}_n), \\ & \Sigma_{14} &= \mu_3 \{B_n(\rho_2) X_n\}' \mathbf{1}_n, \\ & \Sigma_{22} &= 2 \sigma^4 tr(\tilde{G}_n^{\ 2}) + \sigma^2 \{B_n(\rho_2) W_n A_n^{-1}(\rho_1) X_n \beta\}' B_n(\rho_2) W_n A_n^{-1}(\rho_1) X_n \beta \\ & \qquad + (\mu_4 - 3\sigma^4) \|Vec(diag \ \tilde{G}_n)\|^2 + 2 \mu_3 \{B_n(\rho_2) W_n A_n^{-1}(\rho_1) X_n \beta\}' Vec(diag \ \tilde{G}_n), \\ & \Sigma_{23} &= 2 \sigma^4 tr(\tilde{G}_n \tilde{H}_n) + (\mu_4 - 3\sigma^4) Vec'(diag \ \tilde{G}_n) Vec(diag \ \tilde{H}_n) \\ & \qquad + \mu_3 \{B_n(\rho_2) W_n A_n^{-1}(\rho_1) X_n \beta\}' Vec(diag \ \tilde{H}_n), \\ & \Sigma_{24} &= (\mu_4 - \sigma^4) tr(\tilde{G}_n) + \mu_3 \{B_n(\rho_2) W_n A_n^{-1}(\rho_1) X_n \beta\}' \mathbf{1}_n, \\ & \Sigma_{33} &= 2 \sigma^4 tr(\tilde{H}_n^{\ 2}) (\mu_4 - 3\sigma^4) \|Vec(diag \ \tilde{H}_n)\|^2, \\ & \Sigma_{34} &= (\mu_4 - \sigma^4) tr(\tilde{H}_n), \\ & \Sigma_{44} &= n(\mu_4 - \sigma^4). \end{split}$$

3.2 模拟

取定 α , $0 < \alpha < 1$, 设 $z_{\alpha}(p+3)$ 满足 $P(\chi_{p+3}^2 > z_{\alpha}(p+3)) = \alpha$, $z_{\alpha}(1)$ 满足 $P(\chi_1^2 > z_{\alpha}(1)) = \alpha$ 以及 $z_{\alpha}(s)$ 满足 $P(\chi_s^2 > z_{\alpha}(s)) = \alpha$.

我们通过模拟比较 EL 、HEL、和 PCAELs(s=1,2,3,4) 优劣,给定置信水平 $1-\alpha=0.95$,分别给出 $\ell_n(\theta_0) \leq z_{0.05}(p+3)$ 、 $\ell_n^h(\theta_0) \leq z_{0.05}(1)$ 和 $\ell_n^{PCAs}(\theta_0) \leq z_{0.05}(s)$ 在 1000 次模拟中出现的比例,其中 θ_0 是 θ 的真实值. 在模拟中,使用如下模型:

$$Y_n = \rho_1 W_n Y_n + X_n \beta + u_{(n)}, u_{(n)} = \rho_2 M_n u_{(n)} + \epsilon_{(n)},$$

其中 (ρ_1, ρ_2) 取为 (0.85, 0.15), $\{X_i\}$ 服从 $N(\mathbf{0}, \Sigma_P)$, $\Sigma_P = I_{\{i=j,1 \leq i,j \leq p\}}$, $\beta = \mathbf{1}_{p+3}$, $p = [cn^{index}]$,[] 表示取整函数,c = 4,index = 0、0.1、0.2、0.3、0.4、0.5、0.6、0.7 和 0.8, $\epsilon_i's$ 分别来自 N(0,1),N(0,0.75),t(5) 和 $\chi_4^2 - 4$,其对应的三阶矩分别为 $\mu_3 = 0$ 、0、0 和 32,四阶矩分别为 $\mu_4 = 3$ 、 $\frac{9}{4}$ 、25 和 384. 之所以选取这几个分布,是因为这四个分布代表了标准正态分布、对称薄尾分布、对称厚尾分布以及非对称分布。空间权重矩阵 $W_n = (w_{ij})$, w_{ij} 表示空间单元 i 与空间单元 j 之间的距离,同一空间单元的距离 w_{ii} 为 0, W_n 主对角元素为 0,显然, W_n 为对称矩阵,模拟中, w_{ij} 的度量采用皇后邻接(文献 [3] 第 18 页),即:

$$w_{ij} = \begin{cases} 1, & \text{空间单元 } i \text{ 和 } j \text{ 有公共边或公共点,} \\ 0, & \text{其他.} \end{cases}$$

考虑空间单元的 4 种理想情况: 规则正方形网格 $n=m\times m$, m=10、15、20 和 25 分别表示 W_n 为 $grid_{100}$ 、 $grid_{256}$ 、 $grid_{400}$ 和 $grid_{625}$.

表 1: EL 、HEL 和 PCAELs (s = 1, 2, 3, 4) 置信域中的覆盖率于 $\epsilon_i \sim \mathrm{N}(0,\,1)$

$W_n = M_n$	index	p	EL	HEL	PCAEL1	PCAEL2	PCAEL3	PCAEL4
$grid_{100}$	0.0	4		0.927	0.932	0.935	0.915	0.898
	0.1	6		0.948	0.934	0.915	0.921	0.894
	0.2	10		0.941	0.936	0.929	0.920	0.905
	0.3	16		0.936	0.951	0.945	0.932	0.922
	0.4	25		0.938	0.948	0.948	0.930	0.913
	0.5	40		0.943	0.942	0.930	0.922	0.907
	0.6	63		0.950	0.953	0.927	0.921	0.909
	0.7	100		0.947	0.943	0.939	0.932	0.924
	0.8	159		0.933	0.925	0.925	0.917	0.896
	0.9	252		0.954	0.955	0.939	0.935	0.915
$grid_{225}$	0.0	4		0.942	0.950	0.937	0.927	0.936
	0.1	7		0.953	0.952	0.938	0.937	0.943
	0.2	12		0.953	0.954	0.946	0.933	0.937
	0.3	20		0.947	0.959	0.953	0.938	0.933
	0.4	35		0.942	0.944	0.937	0.936	0.937
	0.5	60		0.957	0.954	0.946	0.939	0.935
	0.6	103		0.951	0.952	0.946	0.949	0.944
	0.7	177		0.947	0.940	0.934	0.931	0.933
	0.8	305		0.944	0.945	0.949	0.951	0.940
	0.9	524		0.935	0.940	0.930	0.933	0.932
$grid_{400}$	0.0	4		0.945	0.941	0.940	0.933	0.935
	0.1	7		0.953	0.941	0.939	0.939	0.938
	0.2	13		0.952	0.952	0.940	0.938	0.937
	0.3	24		0.950	0.945	0.945	0.953	0.943
	0.4	44		0.953	0.951	0.939	0.943	0.939
	0.5	80		0.944	0.948	0.943	0.950	0.943
	0.6	146		0.943	0.956	0.954	0.953	0.951
	0.7	265		0.949	0.947	0.946	0.949	0.955
	0.8	483		0.945	0.955	0.941	0.943	0.939
	0.9	879		0.956	0.955	0.948	0.944	0.949
$grid_{665}$	0.0	4		0.953	0.955	0.952	0.947	0.939
	0.1	8		0.950	0.950	0.941	0.932	0.932
	0.2	14		0.946	0.950	0.955	0.951	0.951
	0.3	28		0.944	0.944	0.956	0.955	0.954
	0.4	53		0.943	0.948	0.949	0.941	0.940
	0.5	100		0.955	0.947	0.939	0.952	0.948
	0.6	190		0.952	0.961	0.951	0.953	0.955
	0.7	362		0.940	0.948	0.938	0.948	0.942
	0.8	690		0.953	0.955	0.944	0.941	0.938
	0.9	1313		0.953	0.956	0.942	0.946	0.941

表 2: EL 、HEL 和 PCAELs (s = 1, 2, 3, 4) 置信域中的覆盖率于 $\epsilon_i \sim \mathrm{N}(0,\,0.75)$

$W_n = M_n$	index	p	EL	HEL	PCAEL1	PCAEL2	PCAEL3	PCAEL4
$grid_{100}$	0.0	4		0.942	0.941	0.930	0.922	0.914
	0.1	6		0.943	0.935	0.928	0.916	0.903
	0.2	10		0.953	0.945	0.933	0.929	0.919
	0.3	16		0.939	0.933	0.913	0.907	0.890
	0.4	25		0.952	0.942	0.932	0.914	0.909
	0.5	40		0.940	0.942	0.940	0.919	0.910
	0.6	63		0.942	0.939	0.926	0.923	0.915
	0.7	100		0.941	0.944	0.927	0.921	0.908
	0.8	159		0.943	0.930	0.931	0.919	0.906
	0.9	252		0.933	0.940	0.935	0.924	0.911
$grid_{225}$	0.0	4		0.941	0.944	0.943	0.929	0.919
	0.1	7		0.948	0.947	0.945	0.922	0.921
	0.2	12		0.944	0.946	0.949	0.944	0.934
	0.3	20		0.957	0.947	0.947	0.946	0.938
	0.4	35		0.937	0.939	0.933	0.939	0.920
	0.5	60		0.948	0.946	0.947	0.948	0.934
	0.6	103		0.942	0.948	0.948	0.947	0.939
	0.7	177		0.939	0.948	0.943	0.939	0.929
	0.8	305		0.944	0.949	0.942	0.941	0.935
	0.9	524		0.952	0.952	0.945	0.940	0.936
$grid_{400}$	0.0	4		0.955	0.939	0.944	0.941	0.940
	0.1	7		0.944	0.940	0.947	0.948	0.940
	0.2	13		0.957	0.957	0.956	0.960	0.956
	0.3	24		0.970	0.962	0.959	0.957	0.944
	0.4	44		0.936	0.948	0.947	0.943	0.945
	0.5	80		0.963	0.954	0.949	0.945	0.941
	0.6	146		0.947	0.943	0.950	0.940	0.947
	0.7	265		0.956	0.951	0.954	0.940	0.942
	0.8	483		0.941	0.939	0.936	0.933	0.940
	0.9	879		0.950	0.947	0.936	0.935	0.934

表 3: EL 、HEL 和 PCAELs (s = 1, 2, 3, 4) 置信域中的覆盖率于 $\epsilon_i \sim \mathrm{t}(5)$

$W_n = M_n$	index	p	EL	HEL	PCAEL1	PCAEL2	PCAEL3	PCAEL4
$grid_{100}$	0.0	4		0.916	0.904	0.887	0.867	0.837
	0.1	6		0.920	0.918	0.877	0.867	0.843
	0.2	10		0.923	0.909	0.874	0.847	0.840
	0.3	16		0.925	0.918	0.887	0.858	0.823
	0.4	25		0.914	0.924	0.890	0.869	0.853
	0.5	40		0.935	0.936	0.878	0.858	0.851
	0.6	63		0.949	0.934	0.873	0.852	0.830
	0.7	100		0.935	0.942	0.890	0.873	0.845
	0.8	159		0.924	0.935	0.879	0.862	0.837
	0.9	252		0.928	0.944	0.888	0.879	0.842
$grid_{225}$	0.0	4		0.932	0.920	0.914	0.911	0.898
	0.1	7		0.950	0.942	0.922	0.929	0.909
	0.2	12		0.936	0.948	0.923	0.915	0.906
	0.3	20		0.948	0.936	0.912	0.903	0.893
	0.4	35		0.932	0.950	0.918	0.911	0.903
	0.5	60		0.936	0.934	0.918	0.918	0.912
	0.6	103		0.950	0.948	0.924	0.925	0.903
	0.7	177		0.938	0.952	0.924	0.920	0.909
	0.8	305		0.948	0.919	0.907	0.888	0.892
	0.9	524		0.938	0.948	0.917	0.911	0.899
$grid_{400}$	0.0	4		0.944	0.923	0.935	0.923	0.925
0 -00	0.1	7		0.930	0.936	0.924	0.921	0.909
	0.2	13		0.941	0.930	0.920	0.911	0.904
	0.3	24		0.925	0.923	0.908	0.902	0.902
	0.4	44		0.946	0.937	0.918	0.906	0.905
	0.5	80		0.942	0.947	0.915	0.927	0.916
	0.6	146		0.943	0.949	0.914	0.912	0.898
	0.7	265		0.937	0.928	0.916	0.924	0.913
	0.8	483		0.949	0.954	0.918	0.912	0.901
	0.9	879		0.939	0.941	0.930	0.921	0.923
$grid_{625}$	0.0	4		0.930	0.926	0.936	0.935	0.930
0	0.1	8		0.942	0.945	0.924	0.936	0.935
	0.2	14		0.944	0.937	0.933	0.937	0.935
	0.3	28		0.927	0.933	0.919	0.925	0.917
	0.4	53		0.943	0.945	0.945	0.939	0.931
	0.5	100		0.951	0.947	0.934	0.938	0.925
	0.6	190		0.953	0.950	0.920	0.917	0.917
	0.7	362		0.929	0.935	0.926	0.926	0.922
	0.8	690		0.945	0.931	0.935	0.921	0.918
	0.9	1313		0.948	0.944	0.938	0.934	0.940

表 4: EL 、HEL 和 PCAELs (s = 1, 2, 3, 4) 置信域中的覆盖率于 $\epsilon_i \sim \chi^2(4) - 4$

$\overline{W_n = M_n}$	index	p	EL	HEL	PCAEL1	PCAEL2	PCAEL3	PCAEL4
$grid_{100}$	0.0	4		0.895	0.865	0.885	0.865	0.815
	0.1	6		0.915	0.890	0.885	0.870	0.855
	0.2	10		0.920	0.895	0.865	0.875	0.835
	0.3	16		0.920	0.920	0.915	0.880	0.875
	0.4	25		0.925	0.930	0.910	0.875	0.825
	0.5	40		0.955	0.950	0.925	0.900	0.860
	0.6	63		0.905	0.925	0.870	0.835	0.805
	0.7	100		0.935	0.935	0.900	0.860	0.870
	0.8	159		0.950	0.950	0.915	0.885	0.870
	0.9	252		0.940	0.935	0.875	0.840	0.855
$grid_{225}$	0.0	4		0.935	0.945	0.930	0.925	0.880
	0.1	7		0.910	0.955	0.955	0.905	0.880
	0.2	12		0.925	0.945	0.915	0.875	0.860
	0.3	20		0.950	0.920	0.925	0.900	0.885
	0.4	35		0.940	0.940	0.930	0.925	0.925
	0.5	60		0.955	0.945	0.930	0.900	0.890
	0.6	103		0.905	0.920	0.900	0.885	0.880
	0.7	177		0.935	0.920	0.935	0.895	0.890
	0.8	305		0.955	0.955	0.925	0.900	0.905
	0.9	524		0.955	0.920	0.945	0.900	0.895