Université de Bretagne-Sud

Statistique Bayésienne

Travaux dirigés 5

Exercice 1 – On considère la loi de Dirichlet de paramètres $(\alpha_1, \alpha_2; \alpha_3)$.

- 1. Vérifier que la somme de la densité sur le simplexe est 1.
- 2. Calculer les lois marginales de X_1 et X_2 .

Exercice 2 – Montrer le résultat suivant :

Soient $X_1, X_2, \cdots, X_k, \ k+1$ variables aléatoires indépendantes de loi Gamma de paramètres respectifs $(\alpha_i, 1), \ i=1, \cdots, k+1$. On considère les variable :

$$Y_i = \frac{X_i}{X_1 + \dots + X_{k+1}}, \quad i = 1, \dots, k.$$

Alors (Y_1, \dots, Y_k) suit une loi de Dirichlet de paramètre $(\alpha_1, \alpha_2, \dots, \alpha_k; \alpha_{k+1})$.

Exercice 3 – Soient Y_1, \dots, Y_n , n variables aléatoires indépendantes de loi bêta de paramètres respectifs (α_i, β_i) , $i = 1, \dots, n$. On considère les v.a. :

$$X_i = Y_i \prod_{j=1}^{i-1} (1 - Y_j).$$

Montrer que (X_1, \dots, X_n) suit une loi de Dirichlet généralisée de paramètres $((\alpha_1, \xi_1), \dots, (\alpha_n, \xi_n))$ où $\xi_i = \beta_i - \alpha_i - \beta_i + 1$ pour $i = 1, \dots, n-1$ et $\xi_n = \beta_n + 1$.

Exercice 4 – Dans de nombreuses études statistiques, l'observation se résume à un effectif enregistré dans un intervalle donnée. On parle de données groupées. On dispose alors d'un échantillon (k_1, \dots, k_{n+1}) où k_i est le nombre de valeurs de la v.a. X dans l'intervalle $[t_{i-1}, t_i)$. $t_0 = 0$ et $t_{n+1} = +\infty$. On note $n = \sum_{i=1}^{n+1} k_i$.

On considère $f = (f_1, \dots, f_{n+1})$ une discrétisation de la densité de la loi de probabilité de X. C'est le paramètre que l'on souhaite étudier.

- 1. Ecrire la vraisemblance
- 2. On veut faire une estimation bayésienne de f. Proposer une loi a priori.
- 3. Calculer la loi a posteriori et donner un estimateur de f.
- 4. En déduire un estimateur de F.

Exercice 5 – Soit un échantillon (X_1, \dots, X_n) de durées i.i.d. de loi f(x) définie par :

$$f(x) = f_i$$
 pour $x \in [t_{i-1}, t_i], i = 1, \dots, m$ avec $t_0 = 0$ et $t_m = +\infty$.

Soit la fonction $\lambda(x)$ définie par :

$$\lambda(x) = \lim_{dx \to 0} \frac{P(X \le x + dx | X > x)}{dx}$$

On note, pour $x \in [t_i - 1, t_i[$, $\lambda(x) = \lambda_i$ et $R(t_i) = P(X > t_i) = R_i$, $i = 1, \dots, m$. On note (k_1, \dots, k_m) le vecteur du nombre d'observations dans chaque intervalle i.e. k_i est le nombre de durées dans dans l'intervalle $[t_i - 1, t_i[$. $\sum_{i=1}^m k_i = n$.

- 1. Montrer que $\lambda(x)=f(x)/(1-F(x))$ où F(x) est la fonction de répartition de X i.e. $\int_0^x f(t)dt$.
- 2. En considérant l'observation d'un vecteur de pannes, donner l'expression de la fonction de vraisemblance pour les paramètres (f_1, \dots, f_m) .
- 3. Donner cette expression pour les paramètres $(\lambda_1, \dots, \lambda_m)$.
- 4. En considérant une loi conjuguée pour le modèle obtenu précédemment, proposer un estimateur de Bayes du taux de survie. Commenter.
- 5. Construire une loi non informative (On pourra appliquer la règle de Jeffreys) et donner alors une estimation bayésienne du vecteur λ .

On souhaite maintenant introduire dans l'analyse l'idée a priori que le taux de survie est croissant. On pose $u_i = 1 - \lambda_i$. n.b. $u_i = P(X > t_i/X > t_{i-1})$. On se donne une loi a priori de type Dirichlet sur le vecteur $((y_1, \dots, y_k)$ où $y_i = u_{i-1} - u_i, u_0 = 1$ et $y_{m+1} = 1 - \sum_{j=1}^m y_j = u_m$. Les paramètres $(\beta \alpha_1, \dots, \beta \alpha_m)$ de cette loi sont tels que $\beta > 0$, $\alpha_i > 0$ pour tout i et $\sum_{j=1}^{m+1} \alpha_j = 1$.

1. Montrer que l'espérance mathématique des v.a. u_i est $\sum_{j=i+1}^{m+1} \alpha_j$.

M1 ISD

2. En utilisant la formule du binôme de Newton, montrer qu'une estimation Bayésienne des λ_i pour la loi a priori définie ci-dessus et sous l'hypothèse d'un coût quadratique a la forme suivante :

$$\tilde{\lambda}_i = \frac{C_{i,1}}{C_0} \ , \quad i = 1, \cdots, m$$

où $C_{i,1}$ est égal à C_0 où k_i est devenu $k_i+1,\,C_0$ étant :

$$C_0 = \sum_{l_m=0}^{k_m} \cdots \sum_{l_1=0}^{k_1} \frac{k_i}{l_i} (-1)^{l_i} B(\beta \alpha_i, \xi_i)$$

où B est le coefficient bêta.

M1 ISD