Recurrence Relations

- 1. Write down the simplest possible recurrence relation for the following sequences of numbers:
 - (a) The number of bit strings of length n in which any two consecutive occurrences of 1 are separated by an even number of 0's.
 - (b) The number of ternary strings (with symbols 0,1,2) such that each symbol occurs an even number of times in the string.
 - (c) The number of subsets of [n] such that if i does not belong to the subset then either i-1 or i+1 must belong to the subset.
 - (d) Let A be a finite set of letters. A string over A is a finite sequence of letters $a_1a_2...a_n$. A substring of $a_1...a_n$ is a string of the form $a_ia_{i+1}...a_j$. A substring with i=1 is a prefix and if j=n it is a suffix. Let w be any fixed string over A such that no proper prefix of w is a suffix of w. Find the number of strings of length n over A that do not contain w as a substring. Show that this number depends only on the length of w. Can you find an explicit bijection between these, for two different strings w_1, w_2 of the same length? Also, find such a recurrence for arbitrary strings w.
- 2. Write down two parameter recurrence relations for the following:
 - (a) The number of onto functions from an [n] to [k].
 - (b) The number of ways of partitioning [n] into k non-empty parts. Also, find a recurrence for the total number of ways of partitioning [n].
 - (c) The number of permutations of n with k ascents, where an ascent in an index i such that $p_i < p_{i+1}$.
 - (d) The number of binary trees with n nodes in total and k leaf nodes. Also, find the number of binary trees with n nodes and height h.
 - (e) The number of bit strings of length n that contain exactly k occurrences of '10' as a substring. Do the same for k occurrences of '11'.
- 3. Let f(x) be the generating function of a sequence f_n such that f_0 is non-zero. Show that there exists a unique function g(x) such that f(x)g(x) = 1, and show how to compute the sequence g_n from the sequence f_n . Do the same for the square-root of f(x), that is find a function g(x) such that g(x)g(x) = f(x). assuming that $f_0 > 0$.
- 4. A partition of a number n is a sequence of numbers n_1, n_2, \ldots, n_k such that $n = \sum_{i=1}^k n_i$, and $n_1 \geq \cdots \geq n_k \geq 1$. Let P(n) denote the number of partitions of n. Write down the generating function for P(n). An odd partition is a partition in which each n_i is an odd number. Prove that the number of odd partitions of n is equal to the number of partitions of n into distinct parts. Prove this using generating functions as well as bijections.
- 5. Let a_n, b_n be sequences of numbers. Suppose $b_n = \sum_{k=0}^n \binom{n}{k} a_k$. Express the sequence a_n in terms of the sequence b_n . Do the same when $b_n = \sum_{k=0}^n k a_{n-k}$.