Feng Chia University

Electrical Engineering Fundamentals I Lab

Laboratory 6

Input/Output Resistance and Δ-Y Conversion

Instructor: Prof. Shyan-Lung Lin

Student Name: 周嘉禾

Student ID: D1166506

Experiment Date:21/09/2023

I. Introduction

- a. To learn to use the "proportional measurement method" for input and output resistance measurement
- b. To learn the experimental measurement for Wheatstone bridge and the analysis and application of Δ -Y Conversion

II. Materials

- a. DC Power Supply
- b. Digital Multimeter
- c. Components
 - 1. $1.1 \text{ k}\Omega \times 2, 2.2 \text{ k}\Omega \times 2, 3.3 \text{ k}\Omega \times 2, \text{ Variable Resistor RT} \times 1$
 - 2. $1 \text{ k}\Omega \times 2$, $3 \text{ k}\Omega \times 4$, $6.2 \text{ k}\Omega \times 1$

III. Circuit diagram

▲ Figure 1. Circuit of Experiment 6.a.1 Input Resistance

▲ Figure 2. Circuit of Experiment 6.a.2 Output Resistance

▲ Figure 3. Circuit of Experiment 6.a Input/Output Resistance Measurement

▲ Figure 4. Circuit of Experiment 6.b Δ-Y Conversion

IV. Methods

Determine the input/output resistance $R_{\text{in}}/R_{\text{out}}$ of the circuit with Proportional Method and direct measurement.

V. Experiments data

- a. Experiment 6.a Input/Output Resistance Measurement
 - 1. Input Resistance

Table 1: Results of the V_{in} and I_{in} Measurements

V _{in}	I _{in}
12 V	0.00245 A

Table 2: Results of the R_{in} with proportional method

R _{in} (Proportional)	R _{in} (Theorem)	% Error
4912.8 Ω	4897.9592 Ω	0.30%

Table 3: Results of the R_{in} with direct measurement

R _{in} (Direct)	R _{in} (Theorem)	% Error
4914.6 Ω	4897.9592 Ω	0.34%

2. Output Resistance

Table 4: Results of the V_{out} and I_{out} Measurements

V _{out} (V)	I _{out} (A)
2.187 V	0.00089 A

Table 5: Results of the R_{in} with proportional method

R _{out} (Proportional)	R _{out} (Theorem)	% Error
2457.5 Ω	$2457.3034~\Omega$	0.01%

Table 6: Results of the Rin with direct measurement

R _{out} (Direct)	Rout(Theorem)	% Error
2633.7 Ω	2457.3034 Ω	7.18%

b. Experiment 6.b Δ -Y Conversion

1. Based on Direct Measurement

Table 7: Measurement of practical resistance of the resistors and Rab

	Measured	Theorem	
R_1	2975.8 Ω	3000 Ω	
R_2	2964.7 Ω	$3000~\Omega$	
R ₃	2960.1 Ω	3000 Ω	
R ₄	2983.5 Ω	3000 Ω	
R ₅	988.5 Ω	1000 Ω	
Rab	2972.3 Ω	3000 Ω	

2. Based on Theoretical Calculation

Table 8: Calculation of equivalent resistance of R_{13} , R_{15} , and R_{35}

	Measured	Theorem
R ₁₃	1272.1197 Ω	1285.7143 Ω
R ₁₅	424.8135 Ω	428.5714Ω
R ₃₅	422.5722 Ω	428.5714 Ω

Table 9: Calculation of equivalent resistance of Rab with different R4

R ₄	R _{ab}
1000 Ω	2274.1442 Ω
3000 Ω	$2975.1010~\Omega$
6200 Ω	3514.1398 Ω

3. Based on Current-Voltage Measurement

Table 10: Calculation of Rab by definition

R ₄	I_{ab}	R _{ab}
1000 Ω	5.2971 mA	2265.3905 Ω
3000 Ω	4.0415 mA	2969.1946 Ω
6200 Ω	3.4217 mA	3507.0287Ω

4. Bridge Current Measurement

Table 11: Results of I_{R5} measurement based on different R₄

R ₄	I _{R5} (mA)
1000 Ω	0.9325 mA
3000 Ω	0.0087 mA
6200 Ω	-0.4727 mA

Table 12: Results of I_{R5} by applying Thevenin's Theorem

, 11 , 6					
R_4	V_{Th}	R_{Th}	I_{R5}	% Error	
1000Ω	3.0000 V	$2250.0000~\Omega$	0.9231 mA	1.021%	
3000Ω	0.0000 V	$3000.0000~\Omega$	0.0000 mA	N/A	
$6200~\Omega$	-2.0870 V	3521.7391 Ω	-0.4615 mA	2.418%	

VI. Results

▲ Figure 5. Experiment 6.a.1 Input Resistance Measurement

▲ Figure 6. Experiment 6.a.2 Output Resistance Measurement

▲ Figure 7. Experiment 6.b Δ-Y Conversion

VII. Discussion

With applying Thevenin's theorem to Wheatstone bridge, the calculation of resistance and current are easy to understand and calculate.

VIII. Conclusion

Once the equivalent resistances on both side of Wheatstone bridge are unbalanced, the current will flow through. Otherwise, the current won't flow through resistance.