2004/2005

Durée 2 heures

Tout document interdit

- On considère la clause C : C $(P(x,a) \lor P(f(y),y))$.

 1. Trouver un facteur commun à C. On désignera ce facteur par F.
- 2. Montrer que C est satisfiable si et seulement si F est satisfiable.
- 3. Trouver un ensemble S' de clauses tel que : S' \cup {C} forme un ensemble inconsistant.

Exercice 2 (2, 2, 3)

S: $\{ P(x) \lor Q(y) \lor R(x, y), P(x) \lor Q(f(y)), P(f(x)) \lor R(x, y), R(x, f(y)) \}$

- 1. Donnez un arbre sémantique clos pour S. Indiquer clairement les clauses correspondant à chaque nœud d'échec et à chaque nœud d'inférence.
- 2. Montrer en utilisant le principe de la résolution que S est inconsistant.
- 3. Former à partir de S une formule α valide.

Exercice 4. (1, (1, 1, 1), 2)

- 3.1. Rappeler la définition d'une relation récursive.
- 3.2. Soient R_1 et R_2 deux relations récursives à n arguments. Montrer que les relations suivantes sont aussi récursives :
 - \bullet non \mathcal{R}_1 ,
 - \blacksquare \mathcal{R}_1 ou \mathcal{R}_2 ,
 - \mathcal{R}_1 et \mathcal{R}_2
- **3.3.** En déduire que si f est récursive, alors $x \ge y \to f(x) \ge f(y)$ est récursive.
- N. B. Remettre, au plus, une seule double feuille et une seule intercalaire.

Bon courage

Examen de Remplacement

Exercico 2: 5= { 4x4g (7Pa) VQ(g) VA(x,g)), 4x4g(7Pa) V7P(g(g)), 42 49 (P(Q(x)) VR(x,y)), 4x4y (7R/x,Q(y)) Anbre Démontique Clos pour S:

« d'aubre sémantique étant clos l'enable 5 est incon-sistant.

21 le Principe de la résolution

- 1) TP(x) VQ(4)VR(x,4)
- 2) 1P(x) 4T (Q(g))
- P(8(3)) V R(3, w)
- 7R (a, 2(v))
- après unilitation 5) P(Q(u))
- U-Lu13, &(v) /W} aprè unification 6) A(u,w) (3,5)
- Rés (4,6 fw/(v)/ k=D

3) Sérant in consistant alors: $\alpha_1, \alpha_2, \alpha_3 \models \forall \alpha_1. <= 5$ $\alpha \wedge \alpha \wedge \alpha = 7\alpha_4$ $(=) \models (\alpha_1 \wedge \alpha_1 \wedge \alpha_3) \rightarrow 7\alpha_4$ on pose a: Exercice 4.4) $\Re(x_1,...,x_n)$ en récursible (=) $\operatorname{Cor}(x_1,-,x_n)$ et $\Re(x_1,-,x_n)$ et $\Re(x_1,-,x_n)$ $\Re(x_1,-,x_n)$ Car $\Omega(x_1,...,x_n) = \int_{-\infty}^{\infty} \Omega \operatorname{ii}(\operatorname{non} \Omega_1)(x_1,...,x_n) \operatorname{ext} V$ non $\Omega(x_1,...,x_n) = \int_{-\infty}^{\infty} 1 \operatorname{sinon}.$ = $\int_{1}^{\infty} O \sin \Theta_{1}(x_{1},...,x_{m}) e dF$ $= \begin{cases} 0 & \text{in Con}(\alpha_1, \ldots, \alpha_m) = 1 \\ 0 & \text{unon} \end{cases}$ = Sug ((Carp(x,...,x,)-7/). = Sig (Corg (x, x)).

P.B. R. donc non Rath Con $(x, -, x_n) = \int 0 \text{ with } (x, -, x_n) \text{ outh } (x, -, x_n) es$ = for in Blanca) en Vouldan, a) or sion

 $= \int_{a}^{b} 0 \text{ sin } (x_{1}, x_{2}, x_{3}) = 0 \text{ ou } (x_{1}, x_{3}, x_{3}) = 0$ $\int_{a}^{b} 1 \text{ sinon}$ = Couplex..., x_n) x Couplex..., x_n). $= \times (Coup, Coup) (20, ..., 20)$ R d'on ConRonde. * Coup($(x_1, x_2) = \{0\}$ in $(x_1, x_2) = 1$) of $(x_1, x_2) = 1$ of $(x_1, x_2) = 1$ $= 29 \left(Cor \left(S(1, -1, x) + Cor(S(1, x)) \right) \right)$ $= Sog(+(Corp,Corp))(x,...,x_m)$ Radon RadR i felk alos xzy alos fre zgy ekk Boson: B(x,y): x 7,y. ent R. (x zig alon g(x) >, g(y)) (=) (monB(x,y)) V(B(g(x),g(y))) (=) ((mon B) (1,41)) ((R(p), R(p2)) e R.

txercice 1:				
	e Ca fle: VxVy		£(4),8)).	
1)- Un Rac	Yeur commun à	C :		
Onse	: é (y) fantikadre	a: P(Q(g))	, a) VP(Z(y),	Q).
On s	paritue da y	$O(2) G : \beta$	(), a) V P (g(a)	, Φ, ·
Le Ja	ilsskikue (y) à substikue "a" à y dreur commun F	er: PQ	(a),a) VP (g)	$(\rho, (x))$
2) Montro	ns que:	fratis ji	dr mi Fr	atis.
=>) =>	Las Cracagy	is fisher:		•
il esciste	ppoon Crations une interprétaire	or I de di	moune D'	relle pre
T(C) =				
on a:	Jx Yy (P(x,a) VP	(Q(4),4))	->(P(Q(a),a)\	1P(Q(a),a)
donc:	T(F)-V		Y	
	Frest satisfical			
(=) Supp ratio	2020m F rationalis Riable. Nation: it exist	m de slak	mon our	Cent
Félant	ration: it exist	e une inte	rélation I	de Dom
D _T	T(T)=V.			
cette in	renpréhation I	interprét.	e: P, Q, el	- Q ,
On cherd	he à montrer a l'une interprétable	me E ent.	Melificital	t.e:
On cherche	largyernismus	ion 5	Le donneine	12 rella
J(C)=V	construisse	ns Jan	me uit.	7
	$= \{ \mathbf{I} \mathbf{a} \} \mathbf{c} \mathbf{b}.$	por con	équent:	
XTa	-Ta			
* Jq	· Tab	J J	Da identi	rée.

J(P(x,y)) $\nabla(x=d)$ (y=d')=I(P)(I(f)(d), d').Pour tout $d, d' \in \{Ia\}.$ on a alon: $J(P(x,a)) \stackrel{!}{=} I(P)(I(\xi)(Ia), Ia) = V$ V(x = Ia)Pur poly d'où: $\mathcal{J}(A \propto P(\alpha, \alpha)) = \Lambda$ carle seul'elt de De et Ia. J (4x4y (P(or,a) VP(g(y),g)) = V. $C = (AxP(\alpha,\alpha)) \vee (AAP(\beta(y),y)).$ don Cet rotished. memodo2: on amont pu veriljer que Cat satis et que Feit rotifiable. Certatin (=> Fabration veilfie Véuljée. 3/ il sulfit de choisir $S'=\{TP(g(a),a)\}$.

Vériform que: $S'U\{C\}=\{YxYy(P(x,a)VP(g(g),y)),\ TP(g(a),a)\}$ et vincon supposons que: $S'U\{C\}$ est consistant; il escrit de une I de domaine D_I bq. I(C)=I(K)=V=TI(TK)=II impossible =V