IETF-87 Berlin (July 2013)

Cooperative Network Coding Scheme over harsh scenarios

IRTF-(NWCRG)

Josu Bilbao {jbilbao@ikerlan.es}

Cooperative Network Coding Scheme over harsh scenarios:

Outline:

- 1. Introduction
- 2. Previous work
- 3. Network Coding Applicability
 - Research Challenges
 - NC scheme configuration
- 4. Useful hints when facing with Harsh environments
 - Cooperative Link Layer Control (CLLC)
 - Help Algorithm
 - Coding Methods
 - Cooperative Behavior
- 5. Network Coding over PLC
 - How we started (Once upon a time...)
 - Demonstrator
- 6. Conclusions

Introduction

- Embedded Systems Research Line
 - Reliability on embedded systems (SIL, Safety Integrity Level).
 - Certified by TÜVRheinland (IEC61508).
 - Mixed Criticality
 - Dependability, Availability
 - High timing constraints (real-time)
 - We have developed wired and wireless interfaces to enhance QoS.
 - Industrial communications
 - Reliable communications
- Research Projects related with Network Coding
 - Open to collaboration opportunities

Introduction

Reliable communications over harsh environments

- What do we consider as a <u>harsh environment</u>?
 - Interference
 - Mobility: Dynamic scenarios.
 - Multipath, fading, etc.
 - Link degradation (e.g. wireless mesh networks)
- Current research fields:
 - Reliable communications
 - Industrial Wireless with network coding
 - No-New-Wires
 - Embedded system integration
 - Tentative on Cross layer approach.

Previous work...

- Previous work:
 - Increasing communication reliability in classical solution
 - Store-and-forward routing algorithms
 - Forward Error Correction (FEC) methods
 - ...
- Can we do anything else?

Network Coding applicability

- Bring the features of wireless networks into line with the wired solutions
 - Noisy and lossy nature of wireless medium.
 - Provide a comparable QoS and reliability
- Lack of Reliability avoids/limits the use of wireless solutions for:
 - Mission-critical applications under harsh environments
- New research "branch" emerges from innovative information Theory field
 - Random Linear Network Coding.
 - [1] R. Koetter and M. Médard, "An algebraic approach to network coding," IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782-795, 2003.

Research Challenges

- Distribution of (e.g. multimedia) streaming with High QoS requirements is a very active research topic:
 - We deal with <u>High QoS constraints</u> and <u>packet loss sensitive</u> flows.
 - CooMuN: Cooperative Multimedia Network Coding scheme

- Propagation effects
- Receiver(s)/Transmitter Mobility: Dynamic scenarios
- Interfering nodes (jammer nodes)
- Highly sensitive to communication link degradation
 - Immediate impact in the quality perceived by users.

NC scheme configuration

- Inter-node cooperative scheme with the aim of:
 - Improve achievable QoS level
 - Multicast streaming
 - OPNET Modeler implementation
- Coding structure
 - Coding Density Variation
 - Real-time comms trade-off

- Redundancy blocks
 - Redundancy type variation
 - Coding benefits

[2] J. Bilbao, A. Calvo, I. Armendariz and P. Crespo, "Reliable and high QoS wireless communications over harsh environments," Journal of Telecommunications and Information Technology, vol. 2013, pp. 32-40.

Cooperative Behavior

- HelpRequest + HelpResponse strategies.
- Several different approaches on reception of a HelpRequest packet ... depending on *AbleToResponse()* method:
 - Ignore ()
 - Ignores HelpRequests
 - ResponseIfAble ()
 - If relay node's rank > receiver's rank.
 - ResponselfComplete ()
 - Relay nodes have full rank

[3] J. Bilbao, A. Calvo, I. Armendariz en P. M. Crespo "Cooperative Network Coding Scheme for Multimedia Content Distribution over Noisy Environments," IEEE BMSB 2013.

HelpRequest Adaptive timeout scheduler

- Timer is calculated adaptively to varying conditions of the medium.
 - Control cooperative patience.
- Based on calculation based on receiver heard degrees of freedom update.
- Avoid medium saturation by excessive number of HelpRequest.

[3] J. Bilbao, A. Calvo, I. Armendariz en P. M. Crespo "Cooperative Network Coding Scheme for Multimedia Content Distribution over Noisy Environments," IEEE BMSB 2013.

Measurement Metrics

- Received Bytes
- Decoding Ratio
- Throughput
- Channel utilization
- Link Failure
- ...

- We could find a consensus of which are the most suitable metrics.
 - Challenge for IRTF-NWCRG

Cooperative Link Layer Control (CLLC)

Based on nodes cooperation to improve reliability

[3] J. Bilbao, A. Calvo, I. Armendariz en P. M. Crespo "Cooperative Network Coding Scheme for Multimedia Content Distribution over Noisy Environments," IEEE BMSB 2013.

Cooperative Link Layer Control (CLLC)

Based on nodes cooperation to improve reliability

[3] J. Bilbao, A. Calvo, I. Armendariz en P. M. Crespo "Cooperative Network Coding Scheme for Multimedia Content Distribution over Noisy Environments," IEEE BMSB 2013.

NC over PLC (example of harsh environment)

Network Coding over PLC

- We started a couple of years ago
 - MIT (Muriel Médard) + IKERLAN (Josu Bilbao, Aitor Calvo, Igor Armendariz and IK4-CEIT/Tecnun Pedro Crespo)
- Where we are now (experimental real implementation)
- Based on physical layer characterization
- Demo on streaming

[4] J. Bilbao, A. Calvo, I. Armendariz et al. Ask for references at: jbilbao@ikerlan.es

NC over PLC (example of harsh environment)

[4] J. Bilbao, A. Calvo, I. Armendariz et al. Ask for references at: jbilbao@ikerlan.es

NC over PLC (example of harsh environment)

[4] J. Bilbao, A. Calvo, I. Armendariz et al. Ask for references at: jbilbao@ikerlan.es

16

Conclusions

- Network Coding helps to improve link reliability
 - Harsh environments are main issue for Mission-Critical applications
 - Interesting research topic
- Measurement metrics definition
 - I am volunteer to describe it with an IRTF draft.
- Research Projects related with Network Coding
 - Open to collaboration opportunities
 - Concept ideas and implementations

Cooperative Network Coding Scheme over harsh scenarios

IKERLAN

IETF 87

Berlin (Germany), July 2013

Eskerrik asko

Muchas gracias

Thank you

Merci beaucoup

Contact: jbilbao@ikerlan.es

P.º J.M. Arizmendiarrieta, 2

20500 Arrasate-Mondragón (Gipuzkoa)

Tel.: 943 71 24 00

Fax: 943 79 69 44

www.ikerlan.es

