1 Classification error

Linear discriminant analysis assumes that the random variables $(X,Y) \in \mathbb{R}^d \times \{0,1\}$ have the following distribution. For all $A \in \mathcal{B}(\mathbb{R}^d)$ and all $y \in \{0,1\}$,

$$\mathbb{P}(X \in A; Y = y) = \pi_y \int_A g_y(x) dx,$$

where π_0 and π_1 are positive real numbers such that $\pi_0 + \pi_1 = 1$ and g_0 (resp. g_1) is the probability density of a Gaussian random variable with mean $\mu_0 \in \mathbb{R}^d$ (resp. μ_1) and positive definite covariance matrix $\Sigma_0 \in \mathbb{R}^{d \times d}$ (resp. Σ_1). Define the classifier $h_* : \mathbb{R}^d \to \{0,1\}$ by

$$h_*: x \mapsto \mathbb{1}_{\{\pi_1 q_1(x) > \pi_0 q_0(x)\}}$$
.

1. Give the distribution of the random variable X and prove that

$$\mathbb{P}(h_*(X) \neq Y) = \min_{h: \mathbb{R}^d \to \{0,1\}} \left\{ \mathbb{P}(h(X) \neq Y) \right\} .$$

2. Assume that $\mu_0 \neq \mu_1$. Prove that when $\Sigma_0 = \Sigma_1 = \Sigma$, for all $x \in \mathbb{R}^d$,

$$h_*(x) = 1 \Leftrightarrow (\mu_1 - \mu_0)^{\top} \Sigma^{-1} \left(x - \frac{\mu_1 + \mu_0}{2} \right) > \log(\pi_0/\pi_1).$$

Provide a geometrical interpretation.

3. Prove that when $\pi_1 = \pi_0$,

$$\mathbb{P}(h_*(X) = 1|Y = 0) = \Phi(-d(\mu_1, \mu_0)/2),$$

where Φ is the cumulative distribution function of a standard Gaussian random variable and

$$d(\mu_1, \mu_0)^2 = (\mu_1 - \mu_0)^{\top} \Sigma^{-1} (\mu_1 - \mu_0).$$

4. Assume now that $\Sigma_1 \neq \Sigma_0$. What is the nature of the frontier between $\{x; h_*(x) = 1\}$ and $\{x; h_*(x) = 0\}$?

2 Maximum likelihood estimation

We assume that the joint distribution of (X,Y) belongs to a family of distributions parametrized by a vector θ with real components. For $k \in \{-1,1\}$, write $\pi_k = \mathbb{P}(Y=k)$. Assume that conditionally on the event $\{Y=k\}$, X has a Gaussian distribution with mean $\mu_k \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$, whose density is denoted g_k . In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0,1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$. The parameter π_{-1} is not part of the components of θ since $\pi_{-1} = 1 - \pi_1$. In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0,1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$. The parameter π_{-1} is not part of the components of θ since $\pi_{-1} = 1 - \pi_1$.

When Σ and μ_1 and μ_{-1} are unknown, the discriminant analysis classifier cannot be computed explicitly. Assume that $(X_i, Y_i)_{1 \leq i \leq n}$ are independent observations with the same distribution as (X, Y).

- 1. Write the joint loglikelihood of the observations.
- 2. Let M_d be the space of real-valued $d \times d$ symmetric positive matrices. Show that the function $\Sigma \mapsto \log \det \Sigma$ is concave on M_d .
- 3. Show that the derivative of the real valued function $\Sigma \mapsto \log \det(\Sigma)$ defined on $\mathbb{R}^{d \times d}$ is given by:

$$\partial_{\Sigma} \{ \log \det(\Sigma) \} = \Sigma^{-1} ,$$

where, for all real valued function f defined on $\mathbb{R}^{d\times d}$, $\partial_{\Sigma} f(\Sigma)$ denotes the $\mathbb{R}^{d\times d}$ matrix such that for all $1\leqslant i,j\leqslant d$, $\{\partial_{\Sigma} f(\Sigma)\}_{i,j}$ is the partial derivative of f with respect to $\Sigma_{i,j}$.

- 4. Provide the maximum likehood estimator of θ .
- 5. How do you suggest to use this estimator to build a classifier?