Ejercicio 5 Learnmatrix

miércoles, 29 de abril de 2020 12:43 p. m.

Problema 1

Sean p = 3, n = 5 y ϵ >0. Es decir, se tienen 3 clases de patrones de dimensión 5; que se te presenta a continuación:

$$\mathbf{x}^1 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{y}^1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \ \mathbf{x}^1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{y}^1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \ \mathbf{x}^1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{y}^1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Comenzamos las iteraciones en forma de tabla para buscar la matriz.

Para y1, solo la primera fila tiene 0 entonces trabajaremos con la primera fila.

	$x_1^1 = 0$	$x_2^1 = 1$	$x_3^1 = 0$	$x_4^1 = 0$	$x_5^1 = 1$
$y_1^1 = 1$	- <i>E</i>	ε	- <i>E</i>	- <i>E</i>	ε
$y_2^1 = 0$	0	0	0	0	0
$y_3^1 = 0$	0	0	0	0	0

Para y2, solo la segunda fila tiene 0 entonces trabajaremos con la segunda fila.

	$x_1^2 = 1$	$x_2^2 = 1$	$x_3^2 = 0$	$x_4^2 = 1$	$x_5^2 = 1$
$y_1^2 = 0$	0	0	0	0	0
$y_2^2 = 1$	ε	ε	- <i>E</i>	ε	ε
$y_3^2 = 0$	0	0	0	0	0

Para y3, solo la tercera fila tiene 0 entonces trabajaremos con la tercera fila.

	$x_1^3 = 1$	$x_2^3 = 1$	$x_3^3 = 1$	$x_4^3 = 1$	$x_5^3 = 0$
$y_1^3 = 0$	0	0	0	0	0
$y_2^3 = 0$	0	0	0	0	0
$y_3^3 = 1$	ε	ε	ε	ε	- <i>E</i>

Todo esto es nuestra fase de entrenamiento, la creación de la siguiente matriz es lo que llamamos fase de recuperación.

$$\mathbf{M} = \begin{pmatrix} -\varepsilon & \varepsilon - \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon - \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon - \varepsilon \end{pmatrix}$$

Fase de pruebas

Ahora que tenemos nuestra matriz procederemos a probar con un nuevo patrón.

$$\mathbf{x}^4 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{M} \bullet \mathbf{x}^4 = \begin{bmatrix} -\varepsilon \, \varepsilon - \varepsilon - \varepsilon & \varepsilon \\ \varepsilon \, \varepsilon - \varepsilon & \varepsilon & \varepsilon \\ \varepsilon \, \varepsilon & \varepsilon & \varepsilon & -\varepsilon \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} =$$

Podemos observar que el resultado nos dice que el nuevo patrón es más posible que pertenezca al patrón X3

Agregando ruido

Una vez que la memoria ha aprendido, se probará si la memoria es capaz de recuperar un par de patrones del CFP, alterando dos tipos de ruido.

Ruido aditivo

Primero escogemos el patrón de ruido que queremos agregar y donde lo agregaremos, en este caso, el ruido será agregado al patrón x1, y el patrón agregado será x5 = [1, 1, 0, 0, 1].

Como estamos agregando el patrón solo hace falta recalcular para la primera Y

	$x_1^1 = 0$	$x_2^1 = 1$	$x_3^1 = 0$	$x_4^1 = 0$	$x_5^1 = 1$
$y_1^1 = 1$	$-\varepsilon + \varepsilon$	$\varepsilon + \varepsilon$	$-\varepsilon-\varepsilon$	$-\varepsilon - \varepsilon$	$\varepsilon + \varepsilon$
$y_2^1 = 0$	0	0	0	0	0
$y_3^1 = 0$	0	0	0	0	0

$$\mathbf{M} = \begin{pmatrix} 0 & 2\varepsilon - 2\varepsilon - 2\varepsilon & 2\varepsilon \\ \varepsilon & \varepsilon & -\varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & -\varepsilon \end{pmatrix}$$

Si volvemos a probar con el patrón de la prueba pasada:

$$\mathbf{M} \bullet \mathbf{x}^4 = \begin{bmatrix} 0 & 2\varepsilon - 2\varepsilon - 2\varepsilon & 2\varepsilon \\ \varepsilon & \varepsilon & -\varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & -\varepsilon \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2\varepsilon \\ -2\varepsilon \\ 2\varepsilon \end{bmatrix}$$

Podemos ver que aún con el ruido la prueba sigue arrojando un resultado correcto.