

THERMAL DESIGN AND ANALYSIS ON THE TIMATION III A SATELLITE

Final Report.

Naval Research Laboratory

Contract No./ N00173-72-C-0301

1575

NAVAL RESEARCH LABORATORY

511253

Submitted By

Fairchild Industries, Inc.

Fairchild Space and Electronics Division

Germantown, Maryland 20767

Sept. 1972

APPROVED FOR PURLIC RELFASE DISTRIBUTION CAL MITED

Prepared By H. Hwang-Bo Approved: J. F. Parmer

0/2 390885

Table of Contents

;			Page
1.	Intr	oduction	1
2.	The	rmal Design Approach and Optimization ON TIMATION SATELLY	2
		Thermal Design Concept	2
	2.2	The Maximum and the Minimum Sun Orbit	2
	2.3	Radiator and Solar Absorber	3
	2.4	Optimization of Solar Paddle Position	_ 3
3.	The	rmal Analysis	. 5
	3.1	Computer Model for Steady State Thermal Analysis	5
	3.2	Internal Power Dissipation	6
	3.3	The Nodal Termal Properties	6
	3.4	Computer Model for Transient Thermal Analysis of Solar Cell	. 7
		Array Panels .	
	3.5	Orbital Heat Flux	8
4.	Res	ults	. 9
5.	Con	clusion	11
6.	Rec	ommendations	12
7.	Refe	erence	13

Table of Figures

•		Page
Fi	gure	
1.	Orbital Average Heat Flux vs Sun Angle with Orbit Normal	4 14
2.	9 Node Thermal Math Model for Timation III Radiator Design	15
3.	Radiator Area vs Shelf Temperature without Gold Strip Thermal	16
	Absorber	
4.	Net Solar Energy Absorbed by Goldplated Strip Absorber vs	17
	Sun Angle with Orbit Normal	
5.	Radiator Area vs Shelf Temperature with Gold Strip Thermal Absorber	18
6.	Definition of the Coordinate System for Timation III A Satellite	19
7.	Total Orbital Projected Area of Solar Panels Towards the Sun-	20
	Noon Orbit and $\theta = 0^{\circ}$ Case	
8.	Total Orbital Projected Area of Solar Panels Towards the Sun-	21
	Noon Orbit and $\theta = 45^{\circ}$ Case	
9.	Total Orbital Projected Area of Solar Panels Towards the Sun-	22
	Minimum Sun Orbit and $\theta = 0^{\circ}$ Case	
10.	Total Orbital Projected Area of Solar Panels Towards the Sun-	23
	Minimum Sun Orbit and $\theta = 0^{\circ}$ Case	
11.	Total Orbital Projected Area of Solar Panels Towards	24
	Maximum Sun Orbit and $\theta = 0^{\circ}$ Case	
12.	Optimization of Solar Paddle Position for the Maximum Sunlight	25
13.	Nodal Configuration of Timation III A Thermal Model - 128 Nodes	26
14.	Timation III A Equipment Location and Weight Breadkown	27
15.	Internal Thermal Dissipation	28
16.	Schematic of Timation III A for Transient Thermal Analysis - 29 Nodes	29
17.	Orbital Heat Flux Data 1 - Noon Orbit	30
18.	Orbital Heat Flux Data 2 - Noon Orbit	31
19.	Orbital Heat Flux Data 3 - Noon Orbit	32
20.	Orbital Heat Flux Data 4 - Noon Orbit	. 33
21.	Orbital Heat Flux Data 5 - Noon Orbit	34
22.	Orbital Heat Flux Data 6 - Noon Orbit	35

(cor	Table of Figures	Page
23.	Orbital Heat Flux Data 7 - Noon Orbit	36
24.	Orbital Heat Flux Data 8 - Max. Sun Orbit	37
25.	Orbital Heat Flux Data 9 - Max. Sun Orbit	38
26.	Orbital Heat Flux Data 10 - Max. Sun Orbit	39
27.	Orbital Heat Flux Data 11 - Max. Sun Orbit	40
28.	Orbital Heat Flux Data 12 - Max. Sun Orbit	41
29.	Orbital Heat Flux Data 13 - Min. Sun Orbit	42
30.	Orbital Heat Flux Data 14 - Min. Sun Orbit	43
31.	Orbital Heat Flux Data 15 - Min. Sun Orbit	44
32.	Orbital Heat Flux Data 16 - Min. Sun Orbit	45
33.	Orbital Average Temperature - Max. Sun Orbit	46
34.	Orbital Average Temperature - Noon Orbit	47
35.	Orbital Average Temperature - Min. Sun Orbit	48
36.	Average Solar Paddle Temperature - Noon Orbit	49
37.	Orbital Temperature Distribution of Solar Panel - Max. Sun Orbit	50
38.	Orbital Temperature Distribution of Solar Panel - Min. Sun Orbit	51
39.	Temperature Gradient of A Solar Paddle - Noon Orbit	52
40.	Temperature Gradient of A Solar Panel - Max. Sun Orbit	53
41.	Temperature Gradient of A Solar Panel - Min. Sun Orbit	54
42.	Extendible Boom Housing Thermal Design	55
43.	Top Shell Design	56
44.	Bottom Cover Plate - Flange Design	57
45	Radiation Counter/Songer Design	58

:

.*

TABLE OF COMPUTER RUNS

1. CONFAC AND SCRIPT F

- A. Confac 64 node Timation III Inside
- B. Confac 26 node Timation III Outside
- C. Confac 28 node Timation III Outside
- D. Script F 64 node Timation III Inside
- E. Script F 28 Node Timation III Inside

2. ALL PLANET ORBIT HEAT FLUX

- F. Minimum Sun Orbit, $\lambda = 32^{\circ}$
- G. Twilight Orbit, $\lambda = 0^{\circ}$
- H. Maximum Sun Orbit, $\lambda = 72^{\circ}$
- I. Noon Orbit, $\lambda = 90^{\circ}$

3. ORBIT SHADOW DATA

- J. Noon and Twilight Crbit Shadow Data, $\psi = 5^{\circ}$
- K. Noon and Twilight Orbit Shadow Data, $\psi = 10^{\circ}$
- L. Noon and Twilight Orbit Shadow Data, $\psi = 15^{\circ}$
- M. Noon and Twilight Orbit Shadow Data, $\psi = 20^{\circ}$
- N. Noon and Twilight Orbit Shadow Data, $\psi = 30^{\circ}$
- O. Noon, Twilight, and Max. Sun Orbit Shadow, $\psi = 36^{\circ}$
- P. Noon, Twilight, and Max. Sun Orbit Shadow, $\psi = 42^{\circ}$
- Q. Noon and Twilight Orbit Shadow, $\psi = 40^{\circ}$
- R. Max. Sun Orbit, $\psi = 20^{\circ}$
- S. Max. Sun Orbit, $\psi = 40^{\circ}$
- T. Min. Sun Orbit Shadow, $\psi = 10^{\circ}$
- U. Min. Sun Orbit Shadow, $\psi = 20^{\circ}$
- V. Min. Sun Orbit Shadow, $\psi = 30^{\circ}$
- W. Min. Sun Orbit Shadow, $\psi = 44^{\circ}$
- X. Min. Sun Orbit Shadow, $\psi = 36^{\circ}$
- Y. Min. Sun Orbit Shadow, \vec{\psi} = 40°
- Z. Min. Sun Orbit Shadow Location, $\psi = 40^{\circ}$

4. THT OUTPUT

- A.1. 9 node Timation III THT Steady State
- B. l. 128 node Timation III THT Steady State
- B. 2. Max. Sun Orbit 128 Node THT
- B. 3. Noon Orbit 128 Node THT
- B. 4. Min. Sun Orbit 128 Node THT
- C.1. 29 node Timation III THT Transient Max. Sun Orbit
- D.1. 29 node Timation III THT Transient Min. Sun Orbit
- E.1. 29 node Timation III THT Transient Noon Orbit

TIMATION III A THERMAL DESIGN

1. Introduction

Phase II thermal design study and analysis on the Timation III A satellite were performed in accordance with NRL specifications;

1. Orbit parameters

145° inclination - 125° inclination

7500 NM circular orbit

2. Satellite structural details

NRL dwg. 79R04 - 16A

2 X0 - 19 - 0 X0

3. Thermal requirements

Battery pack temperature 25°C ± 15°

Oscillator/T. E. D. assembly heat sink temperature 20° C ± 12°

- 4. Internal power dissipation factors
 - A. Initial orbits

(1) Minimum sun

82 watts

(2) 100% sùn

92 watts

B. Allowing for degradation after 1 year in orbit

(1) Minimum sun

66 watts

(2) 100% sun

74 watts

C. Oscillator

2 watts

T. E. D. assembly

0 - 4 watts

D. Battery pack

(1) Minimum sun

9.0 watts

(2) 100% sun

7.0 watts

Timation III A satellite is gravity gradient stabilized with a preferred orientation. However, original capture may be upside down for several weeks before a flip maneuver.

Phase I study (1), based on the 36 node thermal analysis on Timation III, shows the feasibility, that the initial design criteria will meet the thermal requirements of the satellite. However, during the Phase II effort the orbital

inclination of the satellite was changed from 90° ± 5 to 145°. Therefore,

Phase II study was aimed to reevaluate the thermal design parameters such

as selection of thermal control coatings, location and sizing of thermal radiator

and solar absorber.

A 128 node thermal math model was generated to determine the detailed orbital average temperatures in the spacecraft structures for "hot" and "cold" orbital situations.

The solar panel position angle was optimized for the maximum orbital sunlight on the solar panels. The orbital variations of the temperature gradients in the solar panels were predicted for the noon, the maximum, and the minimum sun orbit.

2. Thermal Design Approach and Optimization

2.1 Thermal Design Concept

Since most of power dissipating components are mounted on the mid-shelf, the thermal design approach will be to maintain the shelf temperatures within thermal requirements by employing super insulation and radiators.

The design concept consists of essentially the following:

- Both cylindrical surfaces are covered by multilayered insulation blankets.
- 2. Fixed radiator areas (silver teflon coats) are located at both end plates.
- 3. Solar absorber strips may be employed to compensate for environmental variations.
- 4. The equipment mounting shelf is conductively isolated from both end plates and the outer shell.
- 5. Internal surfaces are coated by black paint (<=. 9) to increase radiation heat transfer.

2.2 The Maximum and the Minimum Sun Orbit

The spacecraft receives 100% sun during the flight of the orbits, whose sun angles, β , are greater than 18. degrees. However, the spacecraft experiences the earth's shadow, while it drifts from the 18° sun angle orbit to 0° sun angle orbit (noon orbit). The maximum time the spacecraft will spend in the earth's shadow is 48.7 minutes during the noon orbit.

Figure 1 shows the orbital average heat fluxes on the top and bottom surfaces of the spacecraft as functions of λ , sun angle with orbit normal. The

maximum sun orbit for the spacecraft was defined as the orbit with $\lambda=72^{\circ}$.

The maximum temperature in the equipment mounting shelf occurs during the maximum sun orbit, when the maximum internal power (92 watts)

dissipates in the spacecraft.

Two possible cold cases in the spacecraft should be considered in the thermal design analysis. One cold case occurs during the noon orbit with the minimum internal power dissipation of 66 watts. The other case may occur during the $\lambda=32^{\circ}$ orbit (100% sun time) with the internal power dissipation of 74 watts. The $\lambda=32^{\circ}$ orbit was defined as the minimum sun orbit, since the spacecraft receives the minimum orbital average sunlight during this orbit.

2.3 Radiator and Solar Absorber

A 9 node thermal analysis on the Timation satellite (Figure 2) was made to size the initial radiator area.

From the THT computer solution of the thermal model the total radiator areas for the three design cases are plotted as functions of the equipment mounting shelf themperatures in Figure 3. Three design cases include one hot case and two cold cases discussed in the previous section.

The design condition in Figure 3 shows that the total radiator area of 3. Ft² will barely meet the thermal requirement of the T. E. D. assembly and the battery pack mounting shelf. Therefore, the use of solar absorber was considered to narrow the shelf temperature differences between hot and cold case.

The cylindrical strips of the top and bottom shells can be goldplated to serve as solar absorber. The net absorbed solar energy by the solar absorber was plotted as a function of sun angle with orbit normal in Figure 4.

Utilizing the goldplated solar absorber the optimum radiator area was computed and shown in Figure 5. The total radiator area of 3.5 Ft² may be adaquate for thermal control of the spacecraft.

2.4 Optimization of Solar Paddle Position

Timation III A satellite has 4 solar array paddles. The paddle axes are attached to the top shell of the spacecraft by hinge fitting. The paddle

is 23 inches wide and 52 inches long and is an aluminum-honeycomb sandwich type construction. The solar cells are attached to both sides of the paddle.

The total projected area of the solar array panels in the direction of the sun varies around the orbit, and it changes from one orbit to the other.

Therefore, it is necessary to optimize the solar paddle position for the maximum sunlight.

For the purpose of the optimization study the solar paddle position angle ψ and initial attitude angle Θ are introduced. The spacecraft initial attitude angle Θ is defined as the angle between the spacecraft +X axis and the velocity vector of the spacecraft (Figure 6). The solar paddle position angle ψ is defined as the angle between the solar panel plane normal and the spacecraft X-Y plane.

Based on the spacecraft coordinate systems defined in Figure 6, the total orbital projected areas of the solar panels in the direction of sun are computed from the orbital heat flux and the shadow computer program.

For the noon orbit the orbital variations of the total solar panel projected area towards the sun are compared for $\psi=20^{\circ}$, $\psi=30^{\circ}$, and $\psi=40^{\circ}$ cases. Figure 7 and Figure 8 show the orbital projected area of the solar panels for the noon orbit with the paddle initial attitude angle $\theta=0^{\circ}$ and $\theta=45^{\circ}$, respectively. The $\psi=40^{\circ}$ case shows the largest orbital average projected area, while $\psi=30^{\circ}$ case shows smaller orbital variations for both initial attitude angles.

For the minimum sun orbit ($\lambda=32^{\circ}$) the orbital variations of the total projected area of the solar panels towards the sun are shown in Figure 9 and 10 for $\psi=20^{\circ}$, $\psi=30^{\circ}$, and $\psi=40^{\circ}$ cases. $\psi=20^{\circ}$ case shows the largest orbital average projected area among 3 cases for both spacecraft attitude angles, $\theta=0^{\circ}$ and $\theta=45^{\circ}$.

For the maximum sun orbit ($\lambda = 72^{\circ}$), the total orbital projected area of solar panels towards the sun are plotted in Figure 11 for $\psi = 20^{\circ}$, $\psi = 30^{\circ}$, $\psi = 40^{\circ}$ cases.

After the launch of the spacecraft on the initial orbit the spacecraft drifts in the orbit range between $\lambda = 32^{\circ}$ orbit and $\lambda = 90^{\circ}$ orbit. Therefore,

the orbital average projected area of the solar panels towards the sun are plotted as functions of the solar paddle angle ψ in Figure 12 for the noon and minimum sun orbit.

The solar paddle angle $\psi = 40^{\circ}$ was selected as the optimum position. Hence the orbital average projected area of the solar panels towards the sun will be no less than 14.6 Ft² for any orbit of the spacecraft.

3. Thermal Analysis

3.1 Computer Model for Steady State Thermal Analysis

A 128 node thermal math model was developed to determine the detailed temperature gradients in the frames and shells of the spacecraft.

The nodal designations for the thermal math model of the spacecraft are depicted in Figure 13. The spacecraft is divided into three shelves, the inner and outer cylinder shells, and the shelf frame nodes. The outer cylinder shells are divided into 32 nodes (16 shell nodes and 16 insulation outer cover nodes). The top and bottom shelves are divided into 16 nodes (8 radiator nodes and 8 insulator/solar cell nodes), while the mid shelf is divided into 8 nodes. The inner and outer midshelf frames are divided into 8 nodes each. There are 16 inner cylinder shell nodes.

The detailed nodal descriptions are given in Table 1.

Table 1 Nodal Description for 128 Node Model

Node	Description
1-16	Outer cylinder shell nodes
17-24	Top shelf - radiator nodes
25-32	Inner cylinder upper shell nodes
33-40	Mid shelf nodes
41-48	Inner cylinder lower shell nodes
49-56	Bottom shelf - radiator nodes
57-64	Inner midshelf frame nodes
65-72	Outer midshelf frame nodes
73	Bottom cover plates - Laser reflector
74	Bottom cover cylinder shell-flange
75-90	Outer cylinder shell insulation-Kapton cover nodes

91-98	Top shelf insulation - solar cell nodes
99	Upper boom housing - outside
100-117	Solar array/panel nodes
118	Upper boom housing insulation - inside
119	Lower boom housing - outside
120	Lower boom housing insulation - inside
121-128	Bottom shelf insulation outer cover nodes

3.2 Internal Power Dissipation

Based on the equipment location in Figure 14 and the internal power dissipation data for Timation III A the nodal power loads are chosen for one hot and two cold cases in Figure 15.

The hot case corresponds to the maximum sun orbit (100% sun time), when the equipments on the shelf dissipate 92 watts in the spacecraft. The cold case 1 occurs at the noon orbit (89.8% sun time after 1 year in orbit), when the internal power dissipation is at the minimum level of 36 watts. The cold case 2 corresponds to the 58 degree sun angle orbit (100% sun time) after 1 year in orbit when the internal power dissipation is at the level of 74. watts.

3.3 The Nodal Thermal Properties

Thermal finishes and properties of the external nodes are listed in Table 2.

	Table 2 Therm	al Radiation l	Properties of Extern	al Surfaces	Shape Factor
Nodes	Description	Emittance	Solar Absorptance	Area (Ft ²)	
17-24	Radiator	.78	.08	.225	.99-1.
25-32	Insulator- Inner shell	.013	.007	.72	. 29
41-48	Insulator- Inner shell	.013	.007	.72	.22
49-56	Radiator	.78	.08	. 225	. 96.
73*	Bottom Flange disk	. 18	.12	5. 17	1.0
74	Bottom Flange cylinder	e .06	. 17	2.5	1.0

^{*} Effective emittance and absorptance values are based on the white paint $(\frac{\varepsilon}{d} = \frac{.85}{.17})$ finishes at the top side and bare aluminum base of Node 73.

Nodes	Description	Emittance	Solar Absorptance	e Area (Ft ²)	Shape Factor to Space
75-90	Insulator	.80	. 40	1.5	.86-,97
	outer cover				
91-98	Solar Cell	: 83	. 70	.16668	. *99
99, 119	Boom	· 96	.98	.38	. 99
1 1	housings				A TARTER OF
100-111	Solar Cell	.83 .	.70	. 1.38	.8599
112-117	Solar Cell	. 83	.70	8.3	.9397
121-128	Insulator	. 80	. 40	.79	. 98

The detailed nodal radiation shape factors to space are computed by CONFAC program and listed on the attached THT computer input data for 128 node

Timation III model.

All the internal surfaces are covered by black paint (ϵ =. 9) to increase the radiation heat transfer. The internal radiation shape factors are computed by CONFAC computer program. The nodal effective emittance data are again computed by Script F computer program. 599 .nodal couplings and effective emittances are listed on the attached THT computer input data for 128 node Timation III model.

Three shelf areas were reduced by 15% to take into account the radiation blockings by internal harnesses and cables.

Based on the NRI.drawings, 79R04-16A and 2X0-19-0X0, the thermal conductances and capacities of Timation III are calculated. 188 conduction coupling pairs and their conductance values are listed on the attached THT computer input data for 128 node Timation III model.

3.4 Computer Model for Transient Thermal Analysis of Solar Cell Array Panels

A 29 node thermal math model was developed to determine the orbital temperature gradients in the solar panels. The nodal designations of the model are depicted in Figure 16.

The model consists of 1 spacecraft node and 28 external nodes, which are directly comparable to the external surface nodes of the 128 thermal model.

Therefore, the orbital heat flux data for 128 model are obtained by taking the average value of the corresponding heat flux data for the 29 node model.

The solar paddle, which experiences the worst orbital solar shadowing effect, is chosen for the detailed temperature gradient study. The solar paddle consists of 12 panel nodes. The nodal descriptions of the 29 node model are given in Table 3.

Table 3 Nodal Description for 29 Node Thermal Model

Node	Description
1-8	Insulation outer cover nodes
9	Radiator node on top shelf
10	Radiator node on bottom shelf
11-28	Solar Cell panel nodes
29	Spacecraft interior node

3.5 Orbital Heat Flux

The all planet orbit heat flux program was used to generate the orbital heat fluxes on the external nodes. The solar shadowing on the nodal surfaces were obtained from the orbit shadow program, which was specially developed for a gravity gradient stabilized spacecraft in a circular orbit with extended solar cell panels.

The nodal orbital solar heat fluxes for noon orbit are shown in Figure 17 through Figure 23, when the solar cell array panel positions are fixed at $\psi = 40^{\circ}$ and $\theta = 0^{\circ}$. The solid lines represent the real orbital solar fluxes on the exposed nodes by taking the nodal shadow percentages into account. The dotted curves with the primed node numbers are for the orbital solar fluxes without including the solar shadow effects.

The orbital solar heat flux data for the maximum sun and the minimum sun orbit are shown in Figure 24 through Figure 32. It was assumed for the thermal

analysis that the solar cell panels were fixed at $\psi=40^{\circ}$ and the initial attitude angle at $\theta=0^{\circ}$.

The albedos and earth's shines on the spacecraft and solar panels are comparatively smaller than solar heat fluxes. Therefore, the orbital average value of albedo. and earth's shine for each node was used in the thermal analysis.

4. Results

The results from the 128 node computer thermal analysis are tabulated on the attached THT computer output. The nodal orbital average temperature for the maximum sun orbit (hot case), noon orbit (cold case 1), and the minimum sun orbit (cold case 2) are shown in Figure 33 through Figure 35 respectively.

Table 4 shows the orbital average temperatures of the battery packs and the T.E.D. assembly mounting shelves during the maximum and the minimum power dissipation orbit. The maximum shelf temperature occur during the maximum power dissipation of 92 watts, and when β =18 degree sun angle orbit is obtained. The minimum shelf temperatures occur during noon orbit with internal power dissipation of 66 watts.

The results from 29 node transient thermal analysis are tabulated on the attached THT computer output.

The orbital variations of the solar panel temperature are shown in Figure 36 through Figure 38 for the noon, the maximum sun, and the minimum sun orbit. The minimum average solar panel temperature (-91°C) occurs during occultation, when the sun/orbit angle, β , is 0. degree (noon orbit). The maximum average solar panel temperatures for the noon and the minimum sun orbit (β = $^{\circ}$) are 48°C.

The orbital temperature gradients of the solar panels are shown in Figure 39 through 41 for the noon, the maximum sun, and the minimum sun orbit. The maximum orbital temperature gradients for the three orbits are shown in. Table 5. The worst axial temperature gradient (57°C) of the solar panel occured during the maximum sun orbit, when part of the solar panel was shadowed by the other solar panels.

Table 4 Equipment Mounting Shelf Temperature

Equipment	Location # Node	Orbital Average Temperature	Temperature	Control Requirement
		Max,	Min.	
1. Battery packs	35	29.4°C	14.5°C	25°C + 15
2. T.E.D. Assembly	38	28, 5°C	12.0°C	20°C ± 12
3. Navigation	33	33, 4°C	14. 2°C	
Subsystem				

Table 5 Maximum Temperature Gradients of Solar Panels

Orbit Noon Orbit	Orbit/Sun Angle β =0°	Location of Orbit Angle	Maximum Axial Temperature Gradient 46. °C
Maximum Sun Orbit	β = 18°	a =130°	57. °C
Minimum Sun Orbit	β = 58 ⁰	a =90°	54. °C

The temperature gradient through the honeycomb solar panels (.5 inch depth) were less than 2.5°C.

5. Conclusion

The solar panel position for the maximum sunlight was optimized and fixed at the angle $\psi = 40^{\circ}$. Hence the total orbital average projected area of the solar panels towards the sun will be no less than 14.6 Ft².

The results of the both steady state and transient thermal analysis show that the present thermal design is adaquate for the required temperature control of Timation III A satellite. The design essentially consists of the following:

- (1) The total radiator area of 3.6 Ft² will be evenly distributed at the both end plates of the spagecraft. The radiator will be coated by silver teflon.
- (2) The side strips of the top and bottom honeycomb shells will be gold plated and utilized as solar absorber to help the equipment mounting temperature in cold orbital situations.
- (3) The rest of the top and the bottom plates and both cylindrical surfaces will be covered by multilayered insulation blanket.

Since both radiator and solar absorber are equally divided and located at the top and the bottom shell, no serious impacts on the equipment mounting temperatures are expected by letting the spacecraft upside down before a flip maneuver.

Based on the present thermal analysis the following désigns are recommended.

6. Recommendations

(1) TOTAL RADIATING AREA: 3.60 Ft²

Location: Both end plates

Distribution: Even

Material Finish: Silver teffon coats

 $\frac{a}{4}$: ($^{.08}/.78$)

(2) SOLAR HEAT ABSORBER

Total Area: 1.65 Ft2

Location: Both honeycomb plate ends (3/4 inch strip)

Material Finish: Gold plated

a: (.3/.03)

(3) GRAVITY GRADIENT BOOM HOUSING

Thermal Design: Boom housing to be thermally insulated

Reference: Figure 42

(4) TOP AND BOTTOM SHELL

Thermal Design & Finish: Thermally isolated from outer shell and frame

Reference: Figure 43

(5) BOTTOM COVER PLATE - FLANGE DESIGN

Thermal Design: Thermally isolated from bottom plate

Thermal Finish: Refer Figure 44

(6) SOLAR CELLS ON TOP HONEYCOMB PLATE

Design: To be mounted outside the blanket by means of plastic stand-offs

(7) SPACECRAFT INTERIOR SURFACE FINISH

Coats: Black paints & =. 9 (3M velvet black)

(8) S/C CYLINDRICAL SURFACES

Thermal Design: Covered by super insulation blanket with Kapton outer cover

(9) POSITION OF SOLAR PADDLES

Angle ψ : 40. degree

(10) RADIATION COUNTER/SENSOR

Thermal Design: Hard mounting on top shell

Thermal Finishes: Refer Figure 45 Silver teflon - outside

Black paint - inside

7. Reference

"Thermal Design and Analysis on the Timation III Satellite,"
 Phase I Preliminary Report to Naval Research Laboratory, Fairchild Industries, Inc. Fairchild Space and Electronics Div., Germantown, Maryland, June 23, 1972.

2 ... Angle Between Sun Vector And Orbit Normal FIG. 1 Orbital Average Hant Flux vs sun Angle with Orbit Normal.

MEURIC O INCH TA 10 IN - ALUANCINE TA 10 IN - ALUAN

Ç(

Effective emittance and absorbtance of node 8 are obtained by script F computation, when surface 8 has white paint $(\frac{d}{\epsilon} = \frac{.17}{.05})$ finish.

FIG. 2 9 NODE THERMAL MATH MODEL FOR TIMATION III.

- RADIATOR DESIGN

Tantakata with the

Figure 15 Internal Thermal Dissipation

TIMATION -: (FIG. 17 ORBITAL MEAT FLUX DATA 0 NOON ORBIT 8 = 0. 400 300 200 100 -60 -120 -180 ORBIT ANOMALY & (DEGREE) NOTE 1. NODE 4 & B DO NOT RECEIVE 1. NUMBERS ON CUPVES CORRESPOND TO THE FOR 29 HODE MEDEL

TINATION III ORBITAL HEAT FLUX DATA NOON ORBIT 500 Node 9 Node 10_ Noch 10 200 4 (Node 10 albedo Node 10 Albedo 60 - 240 180 300 120 ORBIT ANOMALY (DEG) - &

TO X IO TO IO IN ON THE PARTY OF THE PARTY O

40 1350

								1		1	1	1 .1.;;;	
			741:73					1					
						117	1041	777	11.12	1	1		1111111
								111		1	-i	1-1-	
. (FI	4.19	111111	DR3	174	1 4/	47	TUV	-DA	74-	1.3		
				2/2/		112				1	1		
					N	OON	ORI	317					
1:-								[12.11.1		- : ::::	
										11:2:11:2:		1 1:	1:::::::
		500		.41111111111111111111111111111111111111		1111				y =	400	1	
		300						kiriai.		0 =	10	-	
X	1	F. F.								0 -	0	F	
in							!	-			1	/	
0 x		1-1-1		N	nde	25							
555	10	4.0	"/	· · · · · · · · · · · · · · · · · · ·	900						1==1=		l:::::::::::::::::::::::::::::::::::::
5: 5	18:11	-400-	1 1	1				1:3-1:3-2	11111		1	1	
	1		/-	 	===						1		
CH CH					\			1 2 2 2 2 2 2 2 2		1	1.721	1:::1::::	=:
5 00		.	/	l==i=	1			legies:			1		
	The Contract of					.: 1. :		- F		1 == -			
51		- 300 -	V	i	-		1.,11111					1 1 1 2	1:::.:::::
1350	12		\									1	}- ; - [
54	K						e him.					1/10	ode 2
	0		1	Nodel	Z \		11:11	11:	1.77	i e i -	1 /	1	-
	\sim			1 ~10			4	Tri.	-	1:	1		1.5
1 (200-		+		1	; <u>!</u> :			Tode11	1-1-		·
. (>	11.11.		. \					1	- 16	7	::[:	
	2			l :: . \ : - ! : :			iilii e	1-1:1		., ,		1	1
	L. C.	1.1.1.1			4				1		1		
		* * * * * * * * * * * * * * * * * * * *		\							1:		1.2
	1 1			-\-				Hi		- 7	/		
	1	100-		-\-							/		
		100-											
		100-						-					
		- <u>1</u> 00-		60		Ro			T		800	360	
			2	60		RO.					?00	360	
				1							1 : : : :	360	
				1				2 4 2 Y			300 ~	360	
			2	1							1 : : : :	360	
				1							1 : : : :	360	
				1	CB1				(050		1 : : : :	360	
			2	1	CB1				(050		1 : : : :	360	
				1	CB1				(050		1 : : : :	360	
				1	CB1				(050		1 : : : :	360	
				1	CB1				(050		1 : : : :	360	
			2	01	CB1				(050		1 : : : :	360	
				01	CB7				(050		1 : : : :	360	
				01	CB7				(050		1 : : : :	360	
				01	CB7				(050		1 : : : :	360	

32.

300) 504AR HEAT No 10 X 10 TO THE CENTIMETER 46 1510 and 10 X 25 CM. REUFEL A ESSCH CO. ORBIT ANGMALY ~ COEG) - d.

7

TIMATION III ORBITAL HEAT FLUX-DATA NOON ORBIT (j. - 40° Mess TX 10 TO 19 19 INCH TX 10 IN . ALTANTALE A REUTHEL A EASEN CO. Node 23 400 05E1 8h 300 Node 24 200 Nocle 23 100 -0 190 240 300 120 0 -----60 DRBIT ANDMALY (DEG) ~ X

35.

FIG. 23 ORBITAL-HEAT FLUX DATA Nooi! DEBI X. Node 28 300 Noile 27 Node 200 100 Noic 28 -SALE 27828 120 180 240 60 - 300 ORBIT ANOMALY (DES) ~ q 1

TIMATION MAX SUN ORBIT, 2 = 72 degree C -300 60 OREIT ANDMALY (DEGREE) 1 & NODE 8 DOES NOT RECEIVE SUNLIGHT ENTIRE ORBIT

	7					1		• • • •		11:	T. :		1	17	77.	7	7	1					1	1	T::::		1
			:::		1::					1			1	:1:::					::::				1				
	1111					: :		:::		1:::	1			11.			1::::				1::::			1:::	1:::	1::::	1
	1				1:::	:1::	!!			1	4	X	1	50	N	1:::	OR	BI	7	. : :			1::	1	1::::		
		,	= 7	G		25					P	RI	-	1	1	4	7	7	-		UX		0	4	4		9
				V.	1:::	T					1	ω <i>1</i> _		1:::				ĺ						1	ĺ	i i i	4
		***			1:::			:::		1:-:	+		1=	7.4	-			1	14-		0	٠ <u>٠</u>	1	-	-		1
			-	1 : : :		+	-!:			1:::	-		^	12	1 - 5	<i>>-</i> C	-/		7	· Y					1		1:::
					L ::									1													
	**:	<u> </u>	: :::	11:1	56	_ار	11:	:::	::::	1:::		:::::	1	1	1::::	1:::	1	11111		:::::	1111				1:::		1:::
				: : :	13.5			:::											1::::	-:::		-::.	1::::	1:::	1:::	;	
										1::	1			:								 T					
				1						1:::				:::::	1		1	FEE					1::::			1::::	1
						1	ö			====			-			1 70									i E	7	T: F
					400	- -	1/2-	-:	7777	::::	===		1		10	/-	1	2:							9/		
			7		<u>::</u>		_/			-	11:1:		1	11777	1/	1:2-	+\	· · · · · · ·		:::::			1::::	=	/		
			X		-	-		1		1:1:	1	11:	-1:::		Y	1::::		7					!::::	_/	1	1	1:::
			"	<u> </u>			::::	: \		1	1	1		11/	1		1:::	1						/			
			1		300				\:::i	1			=	1	1									<i> </i> ::	1		1::
	1		1							:-:	1			1	17.	•		li::					/			Ī.	1-:-
			2				: , :		1	•	1		1	1		1	i E		1							•	1
	-:-		1	-	: .:	-			==	: : :				1				122				-	1/:				
-			2					-									17.	= :::	- \				:				
		- <u>- :-</u>	/	;	200	0-					4:::			<u>:::::</u>		::::	1	::::::									
			x		·	1	: 1:	-:-		1		<u>:</u>	1		i =		1								1		1
			_ >		:-:				-::-	1			1	:::::	100			==		1		j	<u>:</u>		1	<u>:::</u>	! :
				: 12	1		. :			. ‡			1		1	= ::	1::::	F.E.		j.		1:			1		
							::::				(!::	: 1					1:-			j.							1
		· .	-:::		100	-	::	:			1		1]=:	7::::	1					1	1	[==	1	1	1
									===		1	-/:	:1:-				-		= :			<i></i>	i				İ
	::i		-:-:		-		: <u>:</u> :	:		:	1	-:-		· · · · ·	1	1	1				1	:	1			1	
					1:::	-						1			-	-	-				1	==			-		7
					0	1	-			7	11.	٧.,	-	4		- 1	1				1						
L		:	::::			1::				60		::::	15	0		16	0_	i	24	0			.0		1.3	3+0	1:-
				::::										,	1		!	.,			OF	/					
					1						6	10	17	·i.:.	/il	70.	mo	4		()	DE	7	1		0		
															1:-		Ī.					•					1
	::::				1					Ī.::	1.:	1:::			1		1								1:-		
	::: :		::-:			T							-							-							1
							-				1	-	+=	.;:	-	-	1::::						 -		1		-
	:				: ::::	1	-1:		:				44:	<u> </u>	ļ		ļ.:::										
							- 1:						1		[::::	L	ļ		1 - 1		!						
			:::		1	1																					1
		. :	•										: ! : :		1:	· · · ·	1			•			1::::				i i
1						1				1::				.].:.	1		1				:::	: .	!				1
	1											T	1			::::	1::::								1		
	. 1	£			Lini	1.					1	111.			1	1	1						1		1		1::

411.111 400 1.0 50 LAR MEA7 Note 10 x 10 THE CENTIMETER '46 1510 in x 25 CM. REVIEL & ESSER CO. ETE 18 780 5) **\d** 7

39

A TO THE A CONTRACT OF A TOTAL OF THE CO.

47

AVERAGE

1 1: 1 ... Nodell Node 16 KALT 10 X 10 TO THE CENTIMETER 18 X 23 CM. KEUFFEL & ESSEN CO. Earth Shadow O MONALY (DEF) SOLAR

C Kell 10 x 10 TO THE CENTIMETER 415 1510 NO. 25 CM. NEUFILL & USSUN CO. TEMPREATURE CDECREES CELCIUS MAXIMUM GRADIENT TEMPERATURE GRADIENT OF SOLAR
PANEL

11

147

FAIRCHILD

REPORT NO.	SPACE A ELECTIONICS DI	VISION	
MODEL .	•		PAGE
			4
Figure 42	EXTENDIRE BOO	M HOUSING	•
	THERMAL DEST	<u> </u>	
•			
THERMAL BARRIER .			
MICKARE VINA	- I	- Killing.	
Chillin I			VIIII
()			11/11/
Lungsycon n 175			·
MONEYCOMB PLATE	BOOM HI	DOSING S	. • 4
	IN		•
	NN I		
SUPER INSULATION	N	•	
BLANKET			
		INN	ER SHELL
	S/C INTERIO	R	
			l'
	•		
		A. t.	
PREPARED BY	CHECKED BY	DATE	REV.
ESED DIAS REV A 5-71			

FAIRCHILD

REPORT NO._ MODEL. PAGE _ Honeycould Figure 43. TOP SHELL DESIGN GOLD PLATED THERMAL BARRIER TOP SHELL outer shell THERMAL GARRIER DATE PREPARED BY CHECKED BY 16 REV.

FAIRICE-III D

REPORT NO.

PAGE _

Node	Surface	Thermal Finisher
73	8	. White Paint
73	c ·	Bare Aluminum
- 74	D	Bare Aluminum

PREPARED BY

CHECKED BY

57

DATE

HEV.

P

FAIRICHILD

REPORT NO.

MODEL _____

PAGE _

Node	Surface	Thermal Finisher
73	8	. while Paint .
73	c · .	Bare Aluminum
- 74	D	Bare Aluminum

PREPARED BY

CHECKED BY

57

DATE

HEV.

	 FAIRCETILE
EPORT NO.	 SPACE & ELECTHUNICH DIVISIO

PAGE .

Figure 45 Radiation Counter / Senson Design

PREPARED BY

((

CHECKED BY

58

DATE

REV.

FSED OGAS REV. A 5-71