Package 'eps'

June 14, 2022

```
Title Helper functions for my analysis
Version 0.1.3
Date 2021-07-27
Author person(given = ``Elena",
     family = ``Priego",
role = c(``aut", ``cre"),
     email = ``epriego@cnic.com",
     comment = c(ORCID = ``0000-0002-7560-0620"))
Maintainer Elena Priego Saiz <elena.priego.saiz@gmail.com>
Description R package with miscellaneous R functions that are
     useful to me.
Depends R (>= 3.5.0)
Suggests knitr,
     rmarkdown,
     pzfx,
     rstatix,
     scales,
     CytoML,
     broom,
     flowWorkspace
Imports tidyverse,
     readxl,
     here,
     ggtext,
     ggthemes
Encoding UTF-8
License GPL-3
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
VignetteBuilder knitr
R topics documented:
```

2 CFU2tidy_genotype

	CFU_boxplot	3
	CFU_tidytable_genotype	5
	cover_init	6
	elisa_tidytable	6
	experiment_init	7
	facs_boxplot	8
	facs_tidytable	9
	facs_tidytable_genotype	10
	facs_tree	11
	facs_ttest	12
	FC_bar	13
	gate_pattern	14
	genotype_mean_violin	15
	genotype_paired_violin	16
	genotype_violin	17
	get_genotype	19
	graphpad_column	20
	graphpad_grouped	20
	micecode	21
	path_builder	22
	<u> </u>	22
	relative_data	23
	save_tidy	
	-	24
	strain_bar	25
	-	27
	<u> </u>	28
	weight_individual_plot	
	$\mathcal{E} = -1$	30
	weight_relative_curve	
	weight_statistics	
	weight_tidytable	33
Index		35

Description

Function to use when the dilution is already calculated. Standard output. Can read multiple csv at the same time, but is better to do it separately inicating the different times. When multiple, write M. When no colonies, write 0.

```
CFU2tidy_genotype(
  file = c("^CFU", "$csv"),
  path_file = path_raw,
  animalario_file = c("^animalario", "$csv"),
  path_mice = path_raw,
  micecode = micecode,
```

CFU_boxplot 3

```
animalario_sep = ",",
multiple = "100",
marker = "CFU",
cell = "AM",
time = "0h",
treatment = "lp moi"
)
```

Arguments

file .csv with CFU counts. Header should be label with Code for mice column fol-

lowed by the different dilutions included in the experiment written written in the format "Dil-dilution". Example: in dil 1/100 (in 2mL) will be 200 Write NA in

raw file when can no count

path_file path where file is located. Usually path_output from path_builder()

animalario_file

raw csv downloaded from animalario with mice used in the experiment

path_mice path where animalario file to obtain the genotypes is located. usually path_raw

from path_builder.

micecode named list with the replacement for the genotypes. Load from micecode data

included in the package.

animalario_sep separator for the animalario csv file. Default to ","

multiple Number to replace when the CFU where incontable. Represented by M in the

original csv

marker usually CFU (by deffault)

cell Am. Indicate if they are from lung, BAL, ex vivo...

time Time after infection. Default to 0h

treatment Moi of infection

Value

a tibble with the tidy format of the CFU

Examples

CFU_boxplot CFU_boxplot

Description

CFU_boxplot

CFU_boxplot

Usage

```
CFU_boxplot(
  table,
  x_{ab} = "genotype",
  y_{lab} = "L.pneumophila CFU",
  title_lab = "",
  y_trans = "identity",
  x_angle = NULL,
  x_hjust = NULL,
 color_values = (ggthemes::tableau_color_pal("Classic Green-Orange 12"))(12)[1:12],
  color_breaks = waiver(),
  color_labels = waiver(),
  path_output = NULL,
  w = 10,
  h = 5,
  save_plot = FALSE,
  print_plot = FALSE
)
```

Arguments

table	tidy table coming form CFU_tidytable_genotype
x_lab	x-axis label
y_lab	y-axis label
title_lab	title label
y_trans	transformation for the y axis ("asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time")
x_angle	angle of the labels of the x-axis. NULL for horizontal, 45 for inclination
x_hjust	horizontal justification of the labels of the x-axis
color_values	a set of aesthetic values to map data values to. The values will be matched in order (usually alphabetical).
color_breaks	takes the limits as input and returns breaks as output
color_labels	takes the breaks as input and returns labels as output
path_output	ful name of the generated plot including the path (recommended path_output from path_builder())
W	width of the output plot
h	high of the output plot
save_plot	boolean indicating if the plot is saved or not. Default to TRUE.
print_plot	boolean indicating if the plot is printed or not. Default to FALSE.

Value

plot file in data folder

```
CFU_boxplot(table)
```

```
CFU_tidytable_genotype
```

CFU_tidytable_genotype

Description

DEPRECATED

Usage

```
CFU_tidytable_genotype(
  file = c("^CFU", "$csv"),
  path_file = path_raw,
  animalario_file = c("^animalario", "$csv"),
  path_mice = path_raw,
  micecode = micecode,
  animalario_sep = ","
)
```

Arguments

file .csv with CFU counts. Header should be label with Code for mice column fol-

lowed by the different dilutions included in the experiment written written in the

format "Dil-1/dilution"

path_file path where file is located. Usually path_output from path_builder()

animalario_file

raw csv downloaded from animalario with mice used in the experiment

path_mice path where animalario file to obtain the genotypes is located. usually path_raw

from path_builder.

micecode named list with the replacement for the genotypes. Load from micecode data

included in the package.

animalario_sep separator for the animalario csv file. Default to ","

Value

a tibble with the tidy format of the CFU

6 elisa_tidytable

cover_init

Generation of the experiment cover in Rmd

Description

Creation of the cover page in an Rmd to write the protocol and the analysis. Should be used directly in the console within the project folder

Usage

```
cover_init(experiment_name)
```

Arguments

```
experiment_name
```

Full name of the experiment. Should have the following structure: project, "hash", year, experiment number, "underscore", experiment title

Examples

```
cover_init("VHL-2101_experiment")
```

elisa_tidytable

Make tidytable from ELISA Function to calculate the concentrations of ELISA experiments giving two files as input, one coming from the spectrometer with the raw OD data and other with a template of the plate used. In the template is expected to be at least 1 point of blank_0 that will be subtracted to all values and two or more values from a standard curve labelled as standard_0, standard_10 ... For samples well the format is name_concentration as proportion of samples (for example a sample diluted 1/2 would be 0.5)

Description

Make tidytable from ELISA Function to calculate the concentrations of ELISA experiments giving two files as input, one coming from the spectrometer with the raw OD data and other with a template of the plate used. In the template is expected to be at least 1 point of blank_0 that will be subtracted to all values and two or more values from a standard curve labelled as standard_0, standard_10 ... For samples well the format is name_concentration as proportion of samples (for example a sample diluted 1/2 would be 0.5)

```
elisa_tidytable(
  data_file = "elisa.txt",
  template_file = "plate.csv",
  path_file = path_raw,
  sep_data = "\t",
```

experiment_init 7

```
sep_template = ",",
model = "log-log",
max_value = Inf,
plot_curve = TRUE
)
```

Arguments

data_file txt file with the OD data. template_file csv file with the template of the experiment. Format will be sample-type_concentration with standard and blank as required keyword path where data_file and template_file are located. Usually path_raw path_file sep_data separator character from data_file. Frequently tab separator character from template_file. Frequently sep sep_template model to fit the analysis: either linear ("lm") or 4-parameter log-logistic ("logmodel log") to restrict the standard curve to a maximal value max_value print the fitted plot plot_curve

Examples

```
elisa_tidytable(
  data_file = "elisa-IFNg.txt",
  template_file = "IFNg-plate.csv",
  path_file = path_raw,
  model = "lm",
  max_value = 50,
  plot_curve = FALSE
)
```

experiment_init

Initialize the experiment

Description

Generate the folders associated to the experiment in data, raw and output and creation of the cover page in an Rmd to write the protocol and the analysis. Should be used directly in the console within the project folder

Usage

```
experiment_init(experiment_name)
```

Arguments

```
experiment_name
```

Full name of the experiment. Should have the following structure: project, "hash", year, experiment number, "underscore", experiment title

8 facs_boxplot

Examples

```
experiment_init("VHL-2101_experiment")
```

facs_boxplot

Boxplot creation for cytometry data

Description

Boxplot generation for data created with facs_tidytable. Design to work inside an apply function with all the possible combinations of parameters in order to generate multiple plots (see examples).

Usage

```
facs_boxplot(
  table = "",
 organ.i = NULL,
 stat.i = NULL,
 time.i = NULL,
 marker.i = NULL,
 cell.i = NULL,
  treatment.i = NULL,
 x_value = "cell",
 title.i = "",
x_lab = "",
 y_lab = "",
 y_limit = 0,
 x_angle = 45,
 x_hjust = 1,
 color_values = (ggthemes::tableau_color_pal("Classic Green-Orange 12"))(12)[1:12],
  color_breaks = waiver(),
 color_labels = waiver(),
 path_output = NULL,
 w = 10,
 h = 5,
 print_plot = FALSE
```

```
table
                   tidy table coming form facs_tidytable
organ.i
                   optional organ selected to plot (specimen in .fcs file)
stat.i
                   optional statistic selected to plot
time.i
                   optional time selected to plot
marker.i
                   optional marker selected to plot
treatment.i
                   optional treatment selected to plot
title.i
                   title of the plot
x_lab
                   x-axis label
```

facs_tidytable 9

y_lab	y-axis label
y_limit	inferior limit for y-axis
x_angle	angle of the labels of the x-axis. NULL for horizontal, 45 for inclination
x_hjust	horizontal justification of the labels of the x-axis
color_values	a set of aesthetic values to map data values to. The values will be matched in order (usually alphabetical).
color_breaks	takes the limits as input and returns breaks as output
color_labels	takes the breaks as input and returns labels as output
path_output	Optional. Full file name desired (e.g. here(path_output, "plot.pdf"))
W	width of the output plot
h	high of the output plot
print_plot	boolean indicating if the plot is printed or not. Default to FALSE.

Value

plot file in data folder

Examples

facs_tidytable

Prepare the data in a tidy format from the data obtained in Flowjo

Description

Generation of a tidytable from the .xls generated from Flowjo. It's important to have the tubes correctly labelled: specimen should have a descriptive name without using "_" and each tube should be named using ONLY the full name of the mice. Generate standard columns: Time, mice, genotype, treatment, marker, stat, value, experiment, cell

```
facs_tidytable(
  file = c("^Table"),
  path_file = path_output,
  time = "0h",
  gate_pattern
)
```

Arguments

stage contact from Flowjo with cell percentages and fluorescent intensities path_file path where file is located. Usually path_output from path_builder()

named list with the replacements desired for the gates. Load from gate_pattern data included in the package. Common ones are: c("Freq. of Parent" = "Freq.", "Freq. of Grandparent" = "Freq.", "Geometric Mean" = "GMFI", "Median" = "MdFI", "\)" = "")

Value

a tibble with the tidy format

Examples

facs_tidytable_genotype

Prepare the data in a tidy format from the data obtained in Flowjo

Description

Generation of a tidytable from the .xls generated from Flowjo. It's important to have the tubes correctly labelled: specimen should have a descriptive name without using "_" and each tube should be named using ONLY the full name of the mice.

Usage

```
facs_tidytable_genotype(
  file = c("^Table", "$csv"),
  path_file = path_output,
  time = "0h",
  animalario_file = c("^animalario", "$csv"),
  gate_pattern,
  path_mice = path_raw,
  micecode,
  animalario_sep = ","
)
```

Arguments

file .xls generated from Flowjo with cell percentages and fluorescent intensities path_file path where file is located. Usually path_output from path_builder() animalario_file

raw csv downloaded from animalario with mice used in the experiment

facs_tree 11

gate_pattern named list with the replacements desired for the gates. Load from gate_pattern

data included in the package. Common ones are: c("Freq. of Parent" = "Freq.", "Freq. of Grandparent" = "Freq.", "Geometric Mean" = "GMFI", "Median" =

"MdFI", "\)" = "")

path_mice path where animalario file to obtain the genotypes is located. usually path_raw

from path_builder.

micecode named list with the replacement for the genotypes. Load from micecode data

included in the package.

animalario_sep separator for the animalario csv file. Default to ","

Value

a tibble with the tidy format

Examples

facs_tree

Generate a gatting tree from a FlowJo Analysis

Description

Plot showing the gatting hierarchy

Usage

```
facs_tree(file_pattern = "*.wsp", path_data = path_data, group = "All Samples")
```

Arguments

file_pattern Name of the .wps file. As default all the analysis are taken

path_data Path where the .wsp file locates.

group analysis group to be plotted. As defaul all Samples (gate 1)

```
facs_tree("C:/Users/elena/Desktop/working on", "analysis.wps")
```

12 facs_ttest

facs_ttest

t-test analysis for facs data

Description

```
DEPRECATED- use ggpubr::compare_means() instead. Later ggplot+stat_compare_means(label = "p.signif", label.x = 1.5))
```

Usage

```
facs_ttest(
  table,
  path_output = path_output,
  file1 = "t-test.csv",
  file2 = "significant-t-test.csv"
)
```

Arguments

table name of the table to be analyzed. Filter to make that genotype column contains

only 2 factors

path_output path were the output will be stored

file1 name of the file containing all the analysis

file2 name of the file containing only the significant analysis

Details

t-test analysis for data coming in a tidy format from facs_tidytable function.

Value

print in the screen the significant values

significant_values data table with the significant samples and their p-value

t-test.csv file with the whole analysis in output folder

significant-t-test.csv file with the samples that show a p-value lower than 0.05 in output folder

FC_bar

FC_bar

Bar plot representing FC Plot by column showing FC (KO/WT)

Description

Bar plot representing FC Plot by column showing FC (KO/WT)

Usage

```
FC_bar(
  table,
  genotype_levels = c("WT", "KO"),
  strain_levels = c("VHL", "VHL-HIF1a", "VHL-HIF2a", "VHL-HIF1a-HIF2a"),
  group_diff = "-WT|-KO",
  group_control = "WT",
  group_plot = "KO",
  identity_bar = "dodge",
  x_{lab} = "",
  y_{ab} = "FC (WT/K0)",
  title_lab = "",
  y_trans = "identity",
  y_label = waiver(),
  color_values = hue_pal()(200),
  shape_values = rep(21, 200),
  fill_values = hue_pal()(200),
  plot_stat = TRUE,
  path_output,
  w = 10,
  h = 5,
  save_plot = FALSE,
  print_plot = FALSE
)
```

table	tidy table with data coming from the analysis. Columns: genotype, value and experiment (time, mice, treatment, marker, stat, cell)	
genotype_levels		
	vector will all the genotypes all the analysis	
strain_levels	ordered levels to plot. Default to VHL groups	
group_diff	text to remove from the genotype column to generate the strain by which the relativation groups will be generated. Default to "-WT -KO"	
group_control	text that identify the group to relativize. Should be included inside group_diff. Default to "WT"	
group_plot	text that identify the group to plot. Should be included inside group_diff. Default to "KO" $$	
x_lab	X-axis label	
y_lab	y-axis label	
title_lab	title label	

14 gate_pattern

y_trans transformation of the y axis y_label default to waiver. Could be scientific_format() color_values color to be ploted. Same number as levels have genotype . For VHL paper table\$VHL_palette_color shape_values shape to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_shape fill_values fill color to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_fill Boolean indicating if include the stat. Default to TRUE. plot_stat ful name of the generated plot including the path (recommended path_output path_output from path_builder()) width of the output plot W high of the output plot h save_plot Boolean indicating if the plot is saved or not. Default to FALSE. print_plot Boolean indicating if the plot is printed or not. Default to TRUE.

Value

plot file in data folder

Examples

```
plot %>%
FC_bar(genotype_levels = VHL_table$genotypes,
color_values = VHL_table$palette_color,
shape_values = VHL_table$palette_shape,
fill_values = VHL_table$palette_fill)
```

Description

Named list containing common replacement for facs analysis

Usage

```
gate_pattern
```

Format

Named list with the desired replacements

genotype_mean_violin 15

```
genotype_mean_violin Violin plot of mean data by genotype
```

Description

Violin plot of mean data by genotype

Usage

```
genotype_mean_violin(
  table,
  genotype_levels = c("WT", "KO"),
  x_{lab} = "",
  y_lab = "".
  title_lab = "".
  y_trans = "identity",
  y_label = waiver(),
  x_angle = NULL,
  x_hjust = NULL,
  color_values = hue_pal()(200),
  shape_values = rep(21, 200),
  fill_values = hue_pal()(200),
  path_output,
  w = 10,
  h = 5,
  save_plot = FALSE,
  print_plot = FALSE
)
```

Arguments

table tidy table with data comming from the analysis. Columns: genotype, value (and experiment) genotype_levels vector will all the genotypes all the analysis X-axis label x_lab y-axis label y_lab title_lab title label transformation of the y axis y_trans y_label default to waiver. Could be scientific_format() x_angle Angle to display the x axis Justificacion of the x axis x_hjust color_values color to be ploted. Same number as levels have genotype . For VHL paper table\$VHL_palette_color shape to be ploted. Same number as levels have genotype. For VHL paper shape_values table\$VHL_palette_shape fill_values fill color to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_fill

```
path_output ful name of the generated plot including the path (recommended path_output from path_builder())

w width of the output plot

h high of the output plot

save_plot Boolean indicating if the plot is saved or not. Default to FALSE.

print_plot Boolean indicating if the plot is printed or not. Default to TRUE.
```

Value

plot file in data folder

Examples

```
genotype_mean_violin(genotype_levels = VHL_table$genotypes,
color_values = VHL_table$palette_color,
shape_values = VHL_table$palette_shape,
fill_values = VHL_table$palette_fill)
```

```
genotype_paired_violin
```

Paired violin plot by genotype

Description

Paired violin plot by genotype

```
genotype_paired_violin(
  table,
  genotype_levels = c("WT", "KO"),
  genotype_labels = genotype_levels,
  y_value = value,
  x_lab = "",
  y_lab = "",
  title_lab = "",
  color_values = hue_pal()(200),
  shape_values = rep(21, 200),
  fill_values = hue_pal()(200),
  path_output,
  w = 10,
  h = 5,
  save_plot = FALSE,
  print_plot = FALSE
```

genotype_violin 17

Arguments

table tidy table with at least the following columns: genotype, value and experiment

genotype_levels

vector will all the genotypes all the analysis

genotype_labels

name to be display in the legend

color_values color to be ploted. Same number as levels have genotype . For VHL paper

table\$VHL_palette_color

shape_values shape to be ploted. Same number as levels have genotype. For VHL paper

table\$VHL_palette_shape

fill_values fill color to be ploted. Same number as levels have genotype. For VHL paper

table\$VHL_palette_fill

path_output full name of the generated plot including the path (recommended path_output

from path_builder())

w width of the output ploth high of the output plot

save_plot Boolean indicating if the plot is saved or not. Default to FALSE.

print_plot Boolean indicating if the plot is printed or not. Default to TRUE.

Value

plot file in data folder

Examples

```
genotype_violin(genotype_levels = VHL_table$genotypes,
color_values = VHL_table$palette_color,
shape_values = VHL_table$palette_shape,
fill_values = VHL_table$palette_fill)
```

genotype_violin

Violin plot by genotype

Description

Violin plot by genotype

18 genotype_violin

Usage

```
genotype_violin(
  table,
  genotype_levels = c("WT", "KO"),
 genotype_labels = genotype_levels,
 x_{lab} = ""
 y_lab = ""
  title_lab = "",
 y_trans = "identity",
 y_label = waiver(),
  color_values = hue_pal()(200),
  shape_values = rep(21, 200),
 fill_values = hue_pal()(200),
 path_output,
 w = 10,
 h = 5,
 save_plot = FALSE,
 print_plot = FALSE
)
```

Arguments

table tidy table with data comming from the analysis. Columns: genotype, value (and

experiment)

genotype_levels

vector will all the genotypes all the analysis

genotype_labels

name to be display in the legend

x_lab X-axis label
y_lab y-axis label
title_lab title label

y_trans transformation of the y axis

y_label default to waiver. Could be scientific_format()

 $\operatorname{color_values}$ color to be ploted. Same number as levels have genotype . For VHL paper

table\$VHL_palette_color

shape_values shape to be ploted. Same number as levels have genotype. For VHL paper

table\$VHL_palette_shape

fill_values fill color to be ploted. Same number as levels have genotype. For VHL paper

table\$VHL_palette_fill

path_output ful name of the generated plot including the path (recommended path_output

from path_builder())

w width of the output ploth high of the output plot

save_plot Boolean indicating if the plot is saved or not. Default to FALSE.

print_plot Boolean indicating if the plot is printed or not. Default to TRUE.

x_angle Angle to display the x axisx_hjust Justificacion of the x axis

get_genotype 19

Value

plot file in data folder

Examples

```
genotype_violin(genotype_levels = VHL_table$genotypes,
color_values = VHL_table$palette_color,
shape_values = VHL_table$palette_shape,
fill_values = VHL_table$palette_fill)
```

get_genotype

Generate an object matching miceID with their genotype

Description

Extract mice number and genotype from multiple files animalario*.csv pattern as default download in english layout NOTE: take a look to determine if the first row is indicating sep=";" and remove in that case. NOTE: if an error ocurrs remove the accent mark. micecode as union from Nickname with Genotyping -> stored in data Return a data.table with two column: one for the miceID and the other with their genotype

Usage

```
get_genotype(
  file_name = c("^animalario", "$csv"),
  path_raw,
  micecode,
  csv_sep = ","
)
```

Arguments

```
file_name Input file

path_raw path were the file is located. Usually in the experiment subfolder inside raw

micecode Named chr list containing the replacement chr for the genotype. BBV, CCT,

DCX and DCW strains can be loaded with data(micecode)

csv_sep separator for the csv file. Default to ","
```

```
data(micecode)
get_genotype("Animalario-VHL2101.csv", micecode)
```

20 graphpad_grouped

graphpad_column

graphpad_column

Description

read a pzfx file containing column displayed data and convert it into a tidy table for further representation. Generate a csv file into data folder

Usage

```
graphpad_column(
  name_graphpad = "pzfx",
  sheet_n = 1,
  to_pivot = c(1, 2),
  folder = "",
  output_name = "table"
)
```

Arguments

name_graphpad name of the file to be open. By default select the files with pzfx extension

sheet_n number of the sheet to be read to_pivot columns selected to pivot

folder folder to look in. Partial pathway from here()
output_name name to be written the tidy_file. In folder data

Value

tidy table

Examples

```
table <- graphpad_column(file)</pre>
```

graphpad_grouped

graphpad_grouped

Description

Return a csv file into data folder

```
graphpad_grouped(
  name_graphpad = "pzfx",
  sheet_n = 1,
  folder = "",
  save = FALSE,
  output_name = "table"
)
```

micecode 21

Arguments

name_graphpad name of the file to be open. By default select the files with pzfx extension

sheet_n number of the sheet to be read

folder folder to look in. Partial pathway from here()

save conditional to decide if save the file

output_name name to be written the tidy_file. In folder data

Value

tidy table

Examples

```
table <- graphpad_grouped(file)</pre>
```

micecode Mice genotypes list

Description

Named list with the genotypes of the mice I am working with

Usage

```
data(micecode)
```

Format

Named chr

```
data(micecode)
get_genotype("Animalario-VHL2101.csv", micecode)
```

22 qPCR_ttest

path_builder

Initialize the experiment creating the needed pathways

Description

Generate the pathways to save the files of the projects and create specific folders in data, raw and output. The pathways are saved in R environment to be used along the analysis

Usage

```
path_builder(experiment_name)
```

Arguments

experiment_name

Full name of the experiment

Examples

```
path_builder("VHL-2101_experiment")
```

qPCR_ttest

ttest analysis form qPCR

Description

ttest analysis form qPCR

Usage

```
qPCR_ttest(
  table,
  genotype_levels,
  name,
  excluded_genes = c("Actin", "empty", "H20")
)
```

Arguments

table table with the information. Should have the columns "Cq", "Target", "mice",

"Mean_Cq", "Cq_SD", "genotype", "Delta", "Expression"

genotype_levels

Select 2 levels to perform the t.test

name of the output files (before -t-test.CSV)

excluded_genes name of the genes to be excluded in the analysis #know the present genes in

each sample to exclude in the t.test analysis the ones that doesn't appear table_target <- table %>% group_by(Target, genotype) %>% summarise(n=n()) %>% pivot_wider(id_cols=Target, names_from = genotype, values_from = n,

 $values_fill = 0$

relative_data 23

Examples

```
qPCR_ttest(table, c("VHL-WT ", "VHL-KO "), "VHL")
```

relative_data

Make relative data to genotype Make relative data to WT samples from

each experiment. representing this as 1.

Description

Make relative data to genotype Make relative data to WT samples from each experiment. representing this as 1.

Usage

```
relative_data(df, group_diff = "-WT|-KO", group_control = "WT")
```

Arguments

df input dataframe with at least genotype and value

group_diff text to remove from the genotype column to generate the strain by which the

relativation groups will be generated. Default to "-WTI-KO"

group_control text that identify the control group to relative by. Should be included inside

group_diff. Default to "WT"

Examples

```
my_data %>% relative_data(.) %>% genotype_violin()
```

save_tidy

save_tidy

Description

```
save_tidy
```

Usage

```
save_tidy(table, path_output = path_output)
```

Arguments

table final raw table

path_output generated with eps::path_builder()

```
save_tidy(table, path_output)
```

24 seahorse_curve

seahorse_curve

Plot OCR / ECAR profile from a Seahorse analysis

Description

Plot OCR / ECAR profile from a Seahorse analysis

Usage

```
seahorse_curve(
  table,
  genotype_levels = c("WT", "KO"),
  x_lab = "Time (minutes)",
  y_lab = "Oxygen Consumption Rate (OCR) \n (pmol/min)",
  title_lab = "",
  x_angle = 0,
  x_hjust = 0.5,
  color_values = hue_pal()(200),
  shape_values = rep(21, 200),
  fill_values = hue_pal()(200),
  lty_values = rep("solid", 200),
  path_output = "plot.png",
  w = 10,
  h = 5,
  save_plot = FALSE,
  print_plot = FALSE
```

table	tidy table with data comming from the analysis. Columns: time, genotype, mice, value
<pre>genotype_level</pre>	s
	vector will all the genotypes all the analysis
x_lab	X-axis label
y_lab	y-axis label
x_angle	Angle to display the x axis
x_hjust	Justificacion of the x axis
color_values	color to be ploted. Same number as levels have genotype . For VHL paper table $VHL_palette_color$
shape_values	shape to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_shape
fill_values	fill color to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_fill
lty_values	line structure. to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_lty
path_output	ful name of the generated plot including the path (recommended path_output from path_builder())

strain_bar 25

W	width of the output plot
h	high of the output plot
save_plot	boolean indicating if the plot is saved or not. Default to FALSE.
print_plot	boolean indicating if the plot is printed or not. Default to TRUE
title.i	title label

Value

plot file in data folder

Examples

```
seahorse_curve(curve, title.i = "GGP Seahorse",
color_values = table$VHL_palette_color,
shape_values = table$VHL_palette_shape,
fill_values = table$VHL_palette_fill,
lty_values = table$VHL_palette_lty)
```

strain_bar

Bar plot by strains Plot by column having WT and KO next on the same bar

Description

Bar plot by strains Plot by column having WT and KO next on the same bar

```
strain_bar(
  table,
 genotype_levels = c("WT", "KO"),
  strain_levels = c("VHL", "VHL-HIF1a", "VHL-HIF2a", "VHL-HIF1a-HIF2a"),
 group_diff = "-WT|-KO",
  identity_bar = "dodge",
 x_{ab} = "",
 y_lab = "",
  title_lab = "",
 y_trans = "identity",
 y_label = waiver(),
 color_values = hue_pal()(200),
  shape_values = rep(21, 200),
 fill_values = hue_pal()(200),
 path_output,
 w = 10,
 h = 5,
 save_plot = FALSE,
 print_plot = FALSE
```

26 strain_bar

Arguments

table tidy table with data comming from the analysis. Columns: genotype, value and

experiment (time, mice, treatment, marker, stat, cell)

genotype_levels

vector will all the genotypes all the analysis

strain_levels ordered levels to plot. Default to VHL groups

group_diff text to remove from the genotype column to generate the strain by which the

relativation groups will be generated. Default to "-WTI-KO"

identity_bar Position to plot the bar graph. "identity" to pile, "dodge" to put next to each

other. Default to dodge. Depending on the value, the points represented are

pilled up by strain or not

x_lab X-axis label
y_lab y-axis label
title_lab title label

y_trans transformation of the y axis

y_label default to waiver. Could be scientific_format()

color_values color to be ploted. Same number as levels have genotype . For VHL paper

table\$VHL palette color

shape_values shape to be ploted. Same number as levels have genotype. For VHL paper

table\$VHL palette shape

fill_values fill color to be ploted. Same number as levels have genotype. For VHL paper

table\$VHL_palette_fill

path_output ful name of the generated plot including the path (recommended path_output

from path_builder())

w width of the output ploth high of the output plot

save_plot Boolean indicating if the plot is saved or not. Default to FALSE.

print_plot Boolean indicating if the plot is printed or not. Default to TRUE.

x_angle Angle to display the x axis x_hjust Justificacion of the x axis

Value

plot file in data folder

```
plot %>%
strain_bar(genotype_levels = VHL_table$genotypes,
color_values = VHL_table$palette_color,
shape_values = VHL_table$palette_shape,
fill_values = VHL_table$palette_fill)
```

treatment_violin 27

treatment_violin Violin plot by treatment

Description

Violin plot by treatment

Usage

```
treatment_violin(
  table,
 genotype_levels = levels(table$genotype),
 x_{lab} = "",
 y_lab = "".
  title_lab = "",
 y_trans = "identity",
 y_label = waiver(),
  x_angle = NULL,
 x_hjust = NULL,
 color_values = hue_pal()(200),
  shape_values = rep(21, 200),
 fill_values = hue_pal()(200),
 path_output,
 w = 10,
 h = 5,
 save_plot = FALSE,
 print_plot = FALSE
)
```

Arguments

table tidy table with data coming from the analysis. Columns: time, mice, genotype, treatment, marker, stat, value, experiment genotype_levels vector will all the genotypes all the analysis X-axis label x_lab y-axis label y_lab title_lab title label transformation of the y axis y_trans y_label default to waiver. Could be scientific_format() x_angle Angle to display the x axis Justificacion of the x axis x_hjust color_values color to be ploted. Same number as levels have genotype . For VHL paper table\$VHL_palette_color shape to be ploted. Same number as levels have genotype. For VHL paper shape_values table\$VHL_palette_shape fill_values fill color to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_fill

28 weight_csv_read

path_output	ful name of the generated plot including the path (recommended path_output
	from path_builder())
W	width of the output plot
h	high of the output plot
save_plot	Boolean indicating if the plot is saved or not. Default to FALSE.
print_plot	Boolean indicating if the plot is printed or not. Default to TRUE.

Value

plot file in data folder

Examples

```
genotype_violin(genotype_levels = VHL_table$genotypes,
color_values = VHL_table$palette_color,
shape_values = VHL_table$palette_shape,
fill_values = VHL_table$palette_fill)
```

weight_csv_read

weight_csv_read function to read the csv were the mice weight is storage. Mice are represented in rows whereas days are represented in columns. To use inside weight_tidytable function to also get the genotype and make ID as factors.

Description

weight_csv_read function to read the csv were the mice weight is storage. Mice are represented in rows whereas days are represented in columns. To use inside weight_tidytable function to also get the genotype and make ID as factors.

Usage

```
weight_csv_read(
  csv_file,
  path_csv,
  relative = FALSE,
  csv_sep = ",",
  date_format = "%d.%b"
)
```

csv_file	name of the csv file with the introduced weights. Usually "weight-curve.csv"
path_csv	path were csv file is located. Usually path_output
relative	bool indicating if the final output will be raw number or the relative porcentage to day $\boldsymbol{1}$
csv_sep	sep parameter for read.delim function. Default ","
date_format	format parameter of strftime function. Character string. The default for the format methods is "%d.%b" that is for format "01.jul". Other common format are %d-%m

Examples

```
weight_csv_read("weight-curve.csv", path_output)
```

```
weight_individual_plot
```

weight_individual_plot plot a weight-loss curve with the individual value of each mice by day

Description

weight_individual_plot plot a weight-loss curve with the individual value of each mice by day

Usage

```
weight_individual_plot(
  table,
  title.i = "",
  x_lab = "",
  y_lab = "",
  y_limit = 0,
  color_values = RColorBrewer::brewer.pal(8, "Paired")[7:8],
  color_breaks = waiver(),
  color_labels = waiver(),
  path_output,
  w = 10,
  h = 5,
  save_plot = TRUE,
  print_plot = FALSE
)
```

tidy table coming form facs_tidytable
title of the plot
x-axis label
y-axis label
inferior limit for y-axis
a set of aesthetic values to map data values to. The values will be matched in order (usually alphabetical).
takes the limits as input and returns breaks as output
takes the breaks as input and returns labels as output
ful name of the generated plot including the path (recommended path_output from path_builder())
width of the output plot
high of the output plot
boolean indicating if the plot is saved or not. Default to TRUE.
boolean indicating if the plot is printed or not. Default to FALSE.

30 weight_mean_plot

Value

plot file in data folder

Examples

```
weight_individual_plot(table_raw, y_limit = 10,
path_output = here(path_output, "individual_raw.png"))
```

weight_mean_plot

weight_mean_plot plot a weight-loss curve with the mean value of each genotype by day

Description

weight_mean_plot plot a weight-loss curve with the mean value of each genotype by day

Usage

```
weight_mean_plot(
  table,
  title.i = "",
  x_lab = "",
  y_lab = "",
  y_limit = 0,
  color_values = RColorBrewer::brewer.pal(8, "Paired")[7:8],
  color_breaks = waiver(),
  color_labels = waiver(),
  path_output,
  w = 10,
  h = 5,
  save_plot = TRUE,
  print_plot = FALSE
)
```

```
table
                   tidy table coming form facs_tidytable
title.i
                   title of the plot
x_lab
                   x-axis label
y_lab
                   y-axis label
y\_limit
                   inferior limit for y-axis
color_values
                   a set of aesthetic values to map data values to. The values will be matched in
                   order (usually alphabetical).
color_breaks
                   takes the limits as input and returns breaks as output
color_labels
                   takes the breaks as input and returns labels as output
                   ful name of the generated plot including the path (recommended path_output
path_output
                   from path_builder())
                   width of the output plot
```

weight_relative_curve 31

```
h high of the output plot
save_plot boolean indicating if the plot is saved or not. Default to TRUE.
print_plot boolean indicating if the plot is printed or not. Default to FALSE.
```

Value

plot file in data folder

Examples

```
weight_mean_plot(table_raw, y_limit = 10,
path_output = here(path_output, "mean_raw.png"))
```

weight_relative_curve Plot of relative weight by mice

Description

Plot of relative weight by mice

Usage

```
weight_relative_curve(
  table,
  genotype_levels = c("WT", "KO"),
  x_{lab} = "Time (days)",
  y_lab = "Relative weight",
  title_lab = "",
  x_angle = 0,
  x_hjust = 0.5,
  color_values = hue_pal()(200),
  shape_values = rep(21, 200),
  fill_values = hue_pal()(200),
  lty_values = rep("solid", 200),
  path_output = "plot.png",
  w = 10,
  h = 5,
  save_plot = FALSE,
  print_plot = FALSE
)
```

32 weight_statistics

title_lab	title label
x_angle	Angle to display the x axis
x_hjust	Justificacion of the x axis
color_values	color to be ploted. Same number as levels have genotype . For VHL paper table $\$ The paper table VHL palette color
shape_values	shape to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_shape
fill_values	fill color to be ploted. Same number as levels have genotype. For VHL paper table $\$ VHL_palette_fill
lty_values	line structure. to be ploted. Same number as levels have genotype. For VHL paper table\$VHL_palette_lty
path_output	ful name of the generated plot including the path (recommended path_output from path_builder())
W	width of the output plot
h	high of the output plot
save_plot	boolean indicating if the plot is saved or not. Default to FALSE.
print_plot	boolean indicating if the plot is printed or not. Default to TRUE.

Value

plot file in data folder

Examples

```
weight_relative_curve(table, title_lab = "GGP Seahorse",
color_values = table$VHL_palette_color,
shape_values = table$VHL_palette_shape,
fill_values = table$VHL_palette_fill,
lty_values = table$VHL_palette_lty)
```

weight_statistics

weight_statistics Function to perform the statistic analysis of the weight-loss curve experiments.

Description

weight_statistics Function to perform the statistic analysis of the weight-loss curve experiments.

```
weight_statistics(
  table_tidy,
  path_to_save = path_output,
  file_name = "statistic.txt"
)
```

weight_tidytable 33

Arguments

table_tidy input table in tidy format with columns for genotype, day, value and mice.

path_to_save path where the output txt will be saved (path_output from the path_builder function)

lio

file_name Name of the output file. "statistic.txt" by default.

Examples

```
weight_statistics(table_raw, path_to_save = path_output)
```

weight_tidytable

weight_tidytable

Description

```
weight_tidytable
```

Usage

```
weight_tidytable(
  csv_file,
  path_csv,
  animalario_file,
  path_mice,
  micecode,
  mice_genotype,
  relative = FALSE,
  csv_sep = ",",
  date_format = "%d.%b"
)
```

Arguments

csv_file name of the csv file with the introduced weights. Usually "weight-curve.csv" path_csv path were csv file is located. Usually path_output

animalario_file

raw csv downloaded from animalario with mice used in the experiment

path_mice path where animalario file to obtain the genotypes is located. usually path_raw

from path_builder.

micecode Named chr list containing the replacement chr for the genotype. BBV, CCT,

DCX and DCW strains can be loaded with data(micecode)

mice_genotype ordered list containing the levels of the mice to be included. Can be obtain

from micecode data (followed by /t). For example c("VHL-HIF2a-WT", "VHL-

HIF2a-KO")

relative bool indicating if the final output will be raw number or the relative porcentage

to day 1

csv_sep sep parameter for read.delim function. Default ","

date_format format parameter of strftime function. Character string. The default for the

format methods is "%d.%b" that is for format "01.jul". Other common format

are %d-%m

34 weight_tidytable

```
data(micecode)
weight_tidytable("weight-curve.csv", path_output,
"Animalario-VHL2101.csv", micecode)
```

Index

```
* datasets
    micecode, 21
* data
    gate_pattern, 14
CFU2tidy_genotype, 2
CFU_boxplot, 3
CFU_tidytable_genotype, 5
cover_init, 6
elisa_tidytable, 6
experiment_init, 7
{\tt facs\_boxplot}, {\color{red} 8}
facs_tidytable, 9
facs\_tidytable\_genotype, 10
facs_tree, 11
facs_ttest, 12
FC_bar, 13
gate_pattern, 14
genotype_mean_violin, 15
{\tt genotype\_paired\_violin, 16}
genotype_violin, 17
get_genotype, 19
graphpad_column, 20
{\tt graphpad\_grouped}, \textcolor{red}{20}
micecode, 21
path_builder, 22
qPCR_ttest, 22
relative_data, 23
save_tidy, 23
seahorse_curve, 24
strain_bar, 25
treatment\_violin, 27
weight_csv_read, 28
weight_individual_plot, 29
weight_mean_plot, 30
weight\_relative\_curve, 31
weight_statistics, 32
weight_tidytable, 33
```