Homework Assignment 5

Arjun Subramanian

1.

f.
$$2^n - 1$$

h.
$$(8!)^2$$

i.
$$\frac{(8!)^2}{3! \times 4!}$$

j.
$$(49 \times 50) \div 2 = 1225$$

k.
$$\binom{5}{2} \times \binom{6}{2} \times \binom{4}{3} = 10 \times 14 \times 4 = 560$$

$$1. \quad \frac{7!}{3! \times 2! \times 2!}$$

m.
$$6! \div 2!$$

n.
$$\frac{10!}{2!3!5!}$$

p.
$$\binom{7}{2} = 21$$

2

a.
$$\binom{4}{1} \times \binom{6}{2} = 60$$

b.
$$\binom{4}{2} \times \binom{8}{1} = 48$$

3.
$$\frac{9!}{2!2!3!}$$
 -> there is one way to ignore the last letter.

4.
$$3 \times \binom{12}{10}$$

5.
$$\left(\binom{8}{5} \times 5! \right) \times \left(\binom{8}{4} \times 4! \right) \times 7!$$

6.
$$\binom{4+95}{95} = \binom{99}{95}$$
: Each child gets at least $1M$ so $100M - 5M = 95M$.

7. $10! \div 5!$

8.

a.
$$\binom{12}{6}$$

b.
$$\binom{12}{6} - \binom{7}{3} \times \binom{5}{3}$$

9.
$$4 \times 3 \times \binom{11}{8}$$

10. Let $x_i = 2k_i + 1$ where k_i is a non-negative integer, so $\sum_{i=0}^{4} (2k_i + 1) = 98$.

Subtracting 4:
$$\sum_{i=0}^{4} 2k_i = 94$$
. Dividing by 2: $\sum_{i=0}^{4} k_i = 47$. $\binom{50}{47}$ combinations.

11. There are 2 ways to do this but I will give 1. First compare the first 3 oranges to the second 3. There are 2 cases:

Case 1: The oranges have the same weight: Here, the lighter orange is from the 2 oranges left over. Compare those 2 oranges and the lighter orange is the one.

Case 2: The lighter orange is one of the 3 oranges from the lighter group.

Compare 2 of those 3 oranges. If they are the same weight the orange left out is the one, otherwise the lighter of the two oranges is the one.