1 Desarrollar la demostraciones

- 1. Demostrar que los valores propios de \mathbf{A}^{-1} , son $1/\lambda_1, 1/\lambda_2, \dots, 1/\lambda_n$, si los λ 's son los valores propios de \mathbf{A} .
- 2. Demostrar que

$$|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$$

Usando la descomposicion en valores singulares.

3. Se tiene una matriz de la forma

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix}.$$

Asuma que \mathbf{A}_{11} es $p \times p$, \mathbf{A}_{22} es $q \times q$, y \mathbf{A} es invertible. Demostrar que

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}_{11}^{-1} & -\mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ \mathbf{0} & \mathbf{A}_{22}^{-1} \end{bmatrix}.$$

2 Computacional

1. Encuentre la solución de mínimos cuadrados al problema $\mathbf{A}\mathbf{x} = \mathbf{b}$ usando la factorización QR, y resolviendo por medio de $\mathbf{R}\mathbf{x} = \mathbf{Q}^{\mathsf{T}}\mathbf{b}$. Donde $\mathbf{R}\mathbf{x}$ se resuelve por sustitución hacia atrás.

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ 1 & -5 & 1 \\ 6 & 1 & 0 \\ 1 & -1 & -5 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 9 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- 2. Realizar el problema anterior usando $\hat{\mathbf{x}} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$. Comparar si la matriz $(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}$ corresponde a la pseudo inversa, típicamente denotada como pinv en las librerías de algebra lineal.
- 3. Realizar el problema 1.3 en el PC. Generar las matrices \mathbf{A}_{11} , \mathbf{A}_{12} y \mathbf{A}_{22} de manera aleatoria, para p=3 y q=5. Verificar que se cumple la demonstración.
- 4. La matriz de banda **A** mostrada abajo puede ser utilizada para estimar la conducción inestable de calor en una barra cuando la temperatura en los puntos p_1, \ldots, p_5 sobre la barra cambian con el tiempo.

La constante C en una matriz depende de la naturaleza física de la barra, la distancia Δx entre los puntos sobre la barra, y la longitud del tiempo Δt entre medidas sucesivas de temperaturas. Suponga que para $k = 0, 1, 2, \ldots$ un vector $\mathbf{t}_k \in \mathbb{R}^5$ contiene las temperaturas

en el tiempo $k\Delta t$. Si los dos finales de la barra se mantienen en 0°, entonces los vectores temperatura satisfacen la ecuación $\mathbf{At}_{k+1} = \mathbf{t}_k$ (con $k = 0, 1, \ldots$), donde

$$\mathbf{A} = \begin{bmatrix} (1+2C) & -C \\ -C & (1+2C) & -C \\ & -C & (1+2C) & -C \\ & & -C & (1+2C) & -C \\ & & & -C & (1+2C) \end{bmatrix}$$

- (a) Determine la factorización LU de $\bf A$ cuando C=1. Una matriz como $\bf A$ con tres diagonales diferentes de cero es llamada matriz tri-diagonal. Los factores $\bf L$ y $\bf U$ son matrices bi-diagonales. Realizar la factorización a mano.
- (b) Suponga que C=1 y $\mathbf{t}_0=[10,12,12,12,10]^{\top}$. Usar la factorización LU de \mathbf{A} para encontrar la distribución de temperaturas \mathbf{t}_1 , \mathbf{t}_2 , \mathbf{t}_3 , y \mathbf{t}_4 .

C. Guarnizo 2