

Table of Contents

- PART 1 Introduction to databases
 - Chapter 1 Databases and Database Users
 - Chapter 2 Database System Concepts and Architecture
- PART 2 Conceptual Data Modeling and Database Design
 - Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model
 - Chapter 4 The Enhanced Entity-Relationship (EER) Model

Table of Contents

PART 3 Conceptual Data Modeling and Database Design

- Chapter 5 The Relational Data Model and Relational Database Constraints
- Chapter 6 Basic SQL
- Chapter 7 More SQL: Complex Queries, Triggers, Views
- Chapter 8 The Relational Algebra and Relational Calculus
- Chapter 9 Relational Database Design by ER- and EERto-Relational Mapping

PART 6 Design Theory and Normalization

- Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases
- Chapter 15 Further Dependencies

Table of Contents

- PART 7 File Structures, Hashing, Indexing, and Physical Database Design
 - Chapter 16 Disk Storage, File Structures, Hashing
 - Chapter 17 Indexing Structures for Files and Physical DD
- PART 8 Query Processing and Optimization
 - Chapter 18 Strategies for Query Processing
 - Chapter 19 Query Optimization
- PART 9 Transaction Processing, Concurrency Control, and Recovery
 - Chapter 20 Introduction to TP Concepts and Theory
 - Chapter 21 Concurrency Control Techniques
 - Chapter 22 Database Recovery Techniques

CHAPTER 1:

Databases and Database Users

Introduction

OUTLINE

- Types of Databases and Database Applications
- Basic Definitions
- Typical DBMS Functionality
- Example of a Database (UNIVERSITY)
- Main Characteristics of the Database Approach
- Types of Database Users
- Advantages of Using the Database Approach
- Historical Development of Database Technology
- Extending Database Capabilities
- When Not to Use Databases

Types of Databases and Database Applications

- Traditional Applications:
 - Numeric and Textual Databases
- More Recent Applications:
 - Multimedia Databases
 - Geographic Information Systems (GIS)
 - Biological and Genome Databases
 - Data Warehouses
 - Mobile databases
 - Real-time and Active Databases
- First part of book focuses on traditional applications
- A number of recent applications are described later in the book (for example, Chapters 24,25,26,27,28,29)

Recent Developments (1)

- Social Networks started <u>capturing a lot of information</u> about people and about communications among people-posts, tweets, photos, videos in systems such as:
 - Facebook
 - Twitter
 - Linked-In
- All of the above constitutes data
- Search Engines- Google, Bing, Yahoo : <u>collect their own</u> repository of web pages for searching purposes

Recent Developments (2)

- New technologies are emerging from the so-called <u>non-database software vendors to manage vast amounts of datagenerated on the web:</u>
- Big Data storage systems involving large clusters of distributed computers (Chapter 25)

NoSQL (Not Only SQL) systems (Chapter 24)

 A large amount of data now resides on the "cloud" which means it is in huge data centers using thousands of machines.

Basic Definitions

Database:

- A collection of related data.
- A collection of data that requires to operate and manage an organization

Data:

Known facts that can be recorded and have an implicit meaning.

Miniworld:

 Some part of the <u>real world</u> about which data is stored in a database. For example, student grades and transcripts at a university.

Database Management System (DBMS):

 A software package/ system to facilitate the definition and manipulation (insert, update, delete, retrieve) of a computerized database.

Database System:

- The DBMS software together with the data itself. Sometimes, the applications are also included.
- DBS = Databases + DBMS + Application Programs + Users + ...

Impact of Databases and Database Technology

Businesses:

Banking, Insurance, Retail, Transportation, Healthcare, Manufacturing

Service Industries:

Financial, Real-estate, Legal, Electronic Commerce, Small businesses

Education :

Resources for content and Delivery

More recently:

 Social Networks, Environmental and Scientific Applications, Medicine and Genetics

Personalized Applications:

based on smart mobile devices

Simplified Database System Environment

Figure 1.1 A simplified database system environment.

Typical DBMS Functionality

- <u>Define</u> a particular database in terms of its data types, structures, and constraints
- <u>Construct</u> or Load the initial database contents on a secondary storage medium
- Manipulating the database:
 - Retrieval: Querying, generating reports
 - Modification: Insertions, deletions and updates to its content
 - Accessing the database through Web applications
- <u>Processing and Sharing</u> by a set of concurrent users and application programs – yet, keeping all data valid and consistent

An Example

Example of a Database (with a Conceptual Data Model)

Mini-world for the example:

Part of a UNIVERSITY environment.

Some mini-world entities:

- STUDENTs
- COURSEs
- SECTIONs (of COURSEs)
- (academic) DEPARTMENTs
- INSTRUCTORs

Example of a Database (with a Conceptual Data Model)

- Some mini-world relationships:
 - SECTIONs are of specific COURSEs
 - STUDENTS take SECTIONS
 - COURSEs have prerequisite COURSEs
 - INSTRUCTORs teach SECTIONs
 - COURSEs are offered by DEPARTMENTs
 - STUDENTS major in DEPARTMENTS
- Note: The above <u>entities and relationships are typically</u> <u>expressed in a conceptual data model</u>, such as the <u>ENTITY-</u> <u>RELATIONSHIP data model</u> (see Chapters 3, 4)

Example of a simple database

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Figure 1.2 A database that stores student and course information.

Main Characteristics of the Database Approach

Main Characteristics of the Database Approach

Self-describing nature of a database system:

- A DBMS catalog stores the description of a particular database (e.g. data structures, types, and constraints)
- The description is called meta-data*.
- This allows the DBMS software to work with different database applications.

Example of a simplified database catalog

RELATIONS

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

Figure 1.3

An example of a database catalog for the database in Figure 1.2.

Tables(catalog) are describing tables

STUDENT			
Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerared type with all known majors. XXXXNNNN is used to define a type with four alpha characters followed by four digits

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Figure 1.2

Main Characteristics of the Database Approach

Insulation between programs and data:

- Called program-data independence.
- Allows changing data structures and storage organization without having to change the DBMS access programs.

Data Item Name	Starting Position in Record	Length in Characters (bytes)
Name	1	30
Student_number	31	4
Class	35	1
Major	36	4

Internal storage format for a STUDENT record, based on the database catalog in Figure 1.3.

Main Characteristics of the Database Approach (continued)

Data Abstraction:

- A data model is used to <u>hide storage details</u> and present the users with a conceptual view of the database.
- Programs refer to the data model constructs rather than data storage details

Main Characteristics of the Database Approach (continued)

Support of <u>multiple views of the data</u>:

Each user may <u>see a different view of the database</u>, which describes
 only the data of interest to that user.

TRANSCRIPT

Ctudent neme	Student_transcript				
Student_name	Course_number	Grade	Semester	Year	Section_id
Smith	CS1310	С	Fall	08	119
Silliti	MATH2410	В	Fall	08	112
	MATH2410	Α	Fall	07	85
Brown	CS1310	Α	Fall	07	92
Drown	CS3320	В	Spring	08	102
	CS3380	Α	Fall	08	135

COURSE PREREQUISITES

	Course_name	Course_number	Prerequisites		
	Database	CS3380	CS3320		
	Dalabase	C33380	MATH2410		
	Data Structures	CS3320	CS1310		

(b)

Two views derived from the database in Figure 1.2.

- (a) The TRANSCRIPT view.
- (b) The COURSE_PREREQUISITES view.

Main Characteristics of the Database Approach (continued)

- Sharing of data and multi-user transaction processing:
 - Allowing a set of concurrent users to retrieve from and to update the database.
 - Concurrency control within the DBMS guarantees that each transaction is correctly executed or aborted
 - Recovery subsystem ensures each completed transaction has its effect permanently recorded in the database
 - OLTP (Online Transaction Processing) is a major part of database applications. This allows hundreds of concurrent transactions to execute per second.

Actors on the Scene

Database Users

Users may be divided into

- Those who <u>actually use and control the database content</u>, and those who design, develop and maintain database applications (<u>called "Actors</u> on the Scene"), and
- Those who <u>design and develop the DBMS software</u> and related tools, and the computer systems operators (called <u>"Workers Behind the</u> <u>Scene"</u>).

Users

Peoples who are related with database systems

Database Users

Database Administrators:

 Responsible for authorizing access to the database, for coordinating and monitoring its use, acquiring software and hardware resources, controlling its use and monitoring efficiency of operations.

Database Designers:

Responsible to define the content, the structure, the constraints, and functions or transactions against the database. They must communicate with the end-users and understand their needs.

Database End Users

End-users:

 use the data for queries, reports and some of them update the database content.

End-users can be categorized into:

- Casual: access database <u>occasionally when needed</u>
- Naïve or Parametric: they make up a large section of the end-user population.
 - They use previously well-defined functions in the form of <u>"canned transactions"</u> against the database.
 - Users of Mobile Apps mostly fall in this category
 - Bank-tellers or reservation clerks are parametric users who do this activity for an entire shift of operations.
 - Social Media Users post and read information from websites

Database End Users (continued)

– Sophisticated:

- These include <u>business analysts</u>, <u>scientists</u>, <u>engineers</u>, others thoroughly familiar with the system capabilities.
- Many use tools in the form of software packages that work closely with the stored database.

– Stand-alone:

- Mostly <u>maintain personal databases</u> using ready-to-use packaged applications.
- An example is the user of a tax program that creates its own internal database.
- Another example is a user that <u>maintains a database of personal photos and videos.</u>

Database Users

System Analysts and Application Developers

- This category currently accounts for a very large proportion of the IT work force.
- System Analysts:
 - They <u>understand the user requirements of naïve and sophisticated users and</u>
 <u>design applications</u> including canned transactions to meet those requirements.
- Application Programmers:
 - Implement the specifications developed by analysts and test and debug them before deployment.
- Business Analysts:
 - There is an increasing need for such people who can <u>analyze vast amounts of</u>
 <u>business data and real-time data ("Big Data")</u> for better decision making
 related to planning, advertising, marketing etc.

Workers behind the Scene

Workers behind the Scene

System Designers and Implementers:

 Design and implement DBMS packages in the form of modules and interfaces and test and debug them. The DBMS must interface with applications, language compilers, operating system components, etc.

Tool Developers:

 Design and implement software systems called <u>tools for modeling</u> and designing databases, <u>performance monitoring</u>, prototyping, test data generation, user interface creation, simulation etc. that facilitate building of applications and allow using database effectively.

Operators and Maintenance Personnel:

 They manage the actual running and <u>maintenance of the database</u> system hardware and software environment.

Advantages of using the DBMS Approach

Advantages of Using the Database Approach

- Controlling (reducing) redundancy in data storage and in development and maintenance efforts.
 - Sharing of data among multiple users.

GRADE REPORT

Student_number	Student_name	Section_identifier	Course_number	Grade
17	Smith	112	MATH2410	В
17	Smith	119	CS1310	С
8	Brown	85	MATH2410	Α
8	Brown	92	CS1310	Α
8	Brown	102	CS3320	В
8	Brown	135	CS3380	Α

GRADE REPORT

	Student_number	Student_name	Section_identifier	Course_number	Grade
(b)	17	Brown	112	MATH2410	В

Figure 1.6 Redundant storage of Student_name and Course_name in GRADE_REPORT. (a) Consistent data. (b) Inconsistent record.

Advantages of Using the Database Approach

- Sharing data from multiple users
- Restricting unauthorized access to data. Only the DBA staff uses privileged commands and facilities.
- Providing persistent storage for program Objects
 - E.g., Object-oriented DBMSs make program objects persistent
 see
 Chapter 12.

Providing Storage Structures (e.g. indexes) for <u>efficient Query</u>
 <u>Processing</u> – see Chapter 17.

Advantages of Using the Database Approach (continued)

- Providing optimization of queries for efficient processing.
- Providing <u>backup and recovery</u> services.
- Providing <u>multiple interfaces to different classes of users</u>.
- Representing complex relationships among data.
- Enforcing <u>integrity constraints</u> on the database.
- Drawing <u>inferences and actions</u> from the stored data using <u>deductive and active rules and triggers</u>.

Additional Implications of Using the Database Approach

Potential for enforcing standards:

 This is very crucial for the success of database applications in large organizations. Standards refer to data item names, display formats, screens, report structures, meta-data (description of data), Web page layouts, etc.

Reduced application development time:

Incremental time to add each new application is reduced.

Additional Implications of Using the Database Approach (continued)

Flexibility to change data structures:

Database structure may evolve as new requirements are defined.

Availability of current information:

Extremely important for on-line transaction systems such as shopping,
 airline, hotel, car reservations.

Economies of scale:

 Wasteful overlap of resources and personnel can be avoided by consolidating data and applications across departments.

A Brief History of Database Applications

Historical Development of Database Technology

Early Database Applications:

tightly coupled conceptual design ↔ physical design

- The <u>Hierarchical and Network Models were introduced in mid 1960s</u> and dominated during the seventies.
- A bulk of the worldwide database processing still occurs using these models, particularly, the hierarchical model using IBM's IMS system.

Hierarchical Model

- a top-down structure
- supports one-to-one and
- one-to-many relationships

Network Model

- supports one-to-one
- one-to-many
- and many-to-many relationships
- problem was the inability to support ad hoc queries

Charles William Bachman III (Born on December 11, 1924 – July 13, 2017) was an American computer scientist.

Historical Development of Database Technology

Relational Model based Systems:

independence conceptual design ↔ physical design

- Relational model was originally introduced in 1970, was heavily researched and experimented within IBM Research and several universities.
- Relational DBMS Products emerged in the early 1980s.

Edgar Frank "Ted" Codd (19 August 1923 – 18 April 2003) was an English computer scientist who, while working for IBM, invented the relational model for database management, the theoretical basis for relational databases and relational database management systems.

Historical Development of Database Technology (continued)

Object-oriented and emerging applications:

- Object-Oriented Database Management Systems (OODBMSs) were introduced in late 1980s and early 1990s to cater to the need of complex data processing in CAD and other applications.
 - Their use has not taken off much.
- Many relational DBMSs have incorporated object database concepts,
 leading to a new category called *object-relational* DBMSs (ORDBMSs)
- Extended relational systems add further capabilities (e.g. for multimedia data, text, XML, and other data types)

Historical Development of Database Technology (continued)

Data on the Web and E-commerce Applications:

- Web contains data in HTML (Hypertext markup language) with links among pages.
- This has given rise to a new set of applications and E-commerce is using new standards like XML (eXtended Markup Language). (see Ch. 13).
- Script programming languages such as PHP and JavaScript allow generation of dynamic Web pages that are partially generated from a database (see Ch. 11).
 - Also allow database updates through Web pages

Extending Database Capabilities (1)

- New functionality is being added to DBMSs in the following areas:
 - Scientific Applications Physics, Chemistry, Biology Genetics
 - Earth and Atmospheric Sciences and Astronomy
 - XML (eXtensible Markup Language)
 - Image Storage and Management
 - Audio and Video Data Management
 - Data Warehousing and Data Mining a very major area for future development using new technologies (see Chapters 28-29)
 - Spatial Data Management and Location Based Services
 - Time Series and Historical Data Management
- The above gives rise to new research and development in incorporating new data types, complex data structures, new operations and storage and indexing schemes in database systems.

Extending Database Capabilities (2)

Background since the advent of the 21st Century:

- First decade of the 21st century has seen tremendous growth in user generated data and automatically collected data from applications and search engines.
- Social Media platforms such as Facebook and Twitter are generating millions of transactions a day and businesses are interested to tap into this data to "understand" the users
- Cloud Storage and Backup is making unlimited amount of storage available to users and applications

Extending Database Capabilities (3)

Emergence of Big Data Technologies and NOSQL databases

- New data storage, management and analysis technology was necessary to deal with the onslaught of data in petabytes a day (10**15 bytes or 1000 terabytes) in some applications – this started being commonly called as "Big Data".
- Hadoop (which originated from Yahoo) and MapReduce Programming approach to distributed data processing (which originated from Google) as well as the Google file system have given rise to Big Data technologies (Chapter 25). Further enhancements are taking place in the form of Spark based technology.
- NOSQL (Not Only SQL- where SQL is the de facto standard language for relational DBMSs) systems have been designed for rapid search and retrieval from documents, processing of huge graphs occurring on social networks, and other forms of unstructured data with flexible models of transaction processing (Chapter 24).

When Not to Use a DBMS

When not to use a DBMS

Main inhibitors (costs) of using a DBMS:

- High initial investment and possible need for additional hardware.
- Overhead for providing generality, security, concurrency control, recovery, and integrity functions.

When a DBMS may be unnecessary:

- If the database and applications are simple, well defined, and not expected to change.
- If access to data by multiple users is not required.

When a DBMS may be infeasible:

 In embedded systems where a general purpose DBMS may not fit in available storage

When not to use a DBMS

When no DBMS may suffice:

- If there are stringent real-time requirements that may not be met because of DBMS overhead (e.g., telephone switching systems)
- If the database system is not able to handle the complexity of data because of modeling limitations (e.g., in complex genome and protein databases)
- If the database users need special operations not supported by the DBMS (e.g., GIS and location based services).

Chapter Summary

- Types of Databases and Database Applications
- Basic Definitions
- Typical DBMS Functionality
- Example of a Database (UNIVERSITY)
- Main Characteristics of the Database Approach
- Types of Database Users
- Advantages of Using the Database Approach
- Historical Development of Database Technology
- Extending Database Capabilities
- When Not to Use Databases