- Everyone trains their neural net!
- DL seems to be a magic power!
- Full of successful stories using DL

Solve Many Real-World Problems

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Image Classification [ResNet]

Object Detection [Yolo V3]

Object Detection [Yolo V3]

Object Detection + Segmentation [Mask R-CNN]

Image Generation [Style-Transfer]

Image Generation [CycleGAN]

Image Generation [Style2Paints]

Segmentation: brain tumor segmentation

The importance of skip connections

	Accuracy	Dice score			
		Whole	Core	Active	
3DNet_1	99.69	89.64	76.87	63.12	
3DNet_2	99.71	91.59	69.90	73.89	
3DNet_3	99.71	91.74	83.61	76.82	

	Precision			Recall						
	1-Nec	2-Edm	3-NEnh	4-Enh	0-Else	1-Nec	2-Edm	3-NEnh	4-Enh	0-Else
3DNet_1	65.33	81.49	28,40	66.94	99.95	44.71	74.09	28.40	66.94	99.95
3DNet_2	75.21	79.07	43,57	82.65	99.92	41.10	84.16	32.35	73.38	99.93
3DNet_3	67.45	85.06	49.44	74,06	99.90	51.29	77.50	37.61	87.29	99.95

Table 3: Results for our validation set from BRATS2015 training set.

Tumor Segmentation

News(Event) Based Trading Algorithm

The first recorded travels by Europeans to China and back date from this time. The most famous traveler of the period was the Venetian Marco Polo, whose account of his trip to "Cambaluc," the capital of the Great Khan, and of life there astounded the people of Europe. The account of his travels, Il milione (or, The Million, known in English as the Travels of Marco Polo), appeared about the year 1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of mentioning the Great Wall of China, tea houses, which would have been a prominent sight since Europeans had yet to adopt a tea culture, as well the practice of foot binding by the women in capital of the Great Khan. Some suggest that Marco Polo acquired much of his knowledge through contact with Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about China instead of by actually visiting it?

Answer: through contact with Persian traders

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	BERT + Synthetic Self-Training (ensemble)	84.292	86.967
Jan 10, 2019	Google Al Language		
	https://github.com/google-research/bert		
2	PAML+BERT (ensemble model)	83.457	86.122
Dec 21, 2018	PINGAN GammaLab		
2	Lunet + Verifier + BERT (ensemble)	83.469	86.043
Dec 16, 2018	Layer 6 AI NLP Team		

Question Answering [BERT]

Data Center Cooling Control [DeepMind]

Robot Hand Control [OpenAl]

How to learn move [DeepMind]

More project on ···

30 Amazing MachineLearning Project

Really Awesome GAN

Awesome DeepLearning

Get rid of feature engineering

Limitless performance improvement

Why Learning Deep Learning is Important?

Why Learning Deep Learning is Important?

- Understanding how other solve the problems
- Survive from Al invasion
- Utilize available techniques or source code
- Solve your own problem with nice performance
- To get a job and make money

What is Machine Learning?

" A Field of study that gives computer the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Deep Learning, Machine Learning, Artificial Intelligence

	Supervised Learning	Unsupervised Learning	Reinforcement Learning			
Discrete	Classification	Clustering	Discrete Action Space Agent			
Continuous	Regression	Dimensionality Reduction	Continuous Action Space Agent			
Semi-Supervised Learning						

Regression Problem

Price Prediction Based on Gi-Young Style Chart Analysis

Regression Problem

Fit the prediction function f(x) to the training data, to predict continuous real value

Linear regression

Classification Problem

Chihuahua or Muffin?

Classification Problem

Identifying which of a set of categories a new instance belongs

Clustering Problem

Grouping smilar samples into K groups

Clustering Problem

Automatic grouping of instances, such that the instances that belong to the same clusters are more similar to each other than to those in the other groups

Different cluster analysis results on "mouse" data set:

Dimensionality Reduction Problem

Reduce the dimension of input data, to avoid the effect of the curse of dimensionality

original data space

Reduce unnecessary representation axis

Feature & Data Representation

Case 1

ML

x1: quiz 1 score

X

X2: quiz 2 score

x3: study hour

y1: final exam score

y2: grade

Feature & Data Representation

Case 2

X

ML

Y

x1: first pixel value

X2: second pixel value

x3: third pixel value

• • •

x784: 784th pixel value

y1: digit

Feature & Data Representation

Summary