

CSEN1022: Machine Learning

Discriminant Functions (1)

Seif Eldawlatly

Supervised Learning

Definition

The task of inferring a function from labeled data

- Typically involves two phases
 - Training phase: Infer the function from provided input vectors and their corresponding labels
 - Test phase: Use the inferred function to predict the label of a new input vector (different from input vectors used during training)

Formally

Given a training dataset of N observations $\{x_n\}$, where n = 1, 2, ..., N together with the corresponding target values $\{t_n\}$, the goal is to predict the value of t for a new value of x

2

Linear Classification

- Classification
 Take an input x and assign it to one of K discrete classes
- Decision Boundary
 A boundary (could be linear or non-linear) between two decision regions
- Decision Regions:
 - Red or Blue, 1 or -1, Friend or Enemy

Linear Classification

 Classification Problem
 Goal: Determine the target value (label) for a data point

Input vector: **x**Target variable: *t*

• Two Classes (K = 2)

$$t \in \{0,1\}$$
 $t = 0 \Rightarrow \text{Class } C_1$
$$t = 1 \Rightarrow \text{Class } C_2$$

K Classes (K > 2)

$$\mathbf{t}_i = [t_1, t_2, ..., t_K]$$
, where $t_n = 1$ for $\mathbf{x}_i \in C_n$ and $t_m = 0, m \neq n$

Example:
$$\mathbf{x}_i \in C_3$$
, $K = 5 \rightarrow \mathbf{t} = [0, 0, 1, 0, 0]$

Linear Classifiers

- We will discuss 3 major types of linear classifiers:
 - Discriminant Functions
 - Probabilistic Generative Models
 - Probabilistic Discriminative Models

Discriminant Functions

For the case of two classes

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

x: Input vector

w: Weight vector

 w_0 : bias

For this example, w is a (2 x 1) vector
 and each input vector x is also a (2 x 1)
 vector

$$y(\mathbf{x}) = \begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + w_0$$

If the total number of input vectors is 100, then the input dataset consists of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_{100}$, where $\mathbf{x}_i = [x_{i1}, x_{i2}]$, i = 1:100

Decision Surface is a hyperplane

Discriminant Functions

 In this type of methods, the decision boundary is linear but the classification decision is always non-linear

Discriminant Function Properties

 $y > 0 \qquad x_2$ y = 0 $y < 0 \qquad \mathcal{R}_1$

w is orthogonal to the decision boundary so it defines the orientation of the decision boundary

 $\frac{-w_0}{\|\mathbf{w}\|}$

is the distance from the origin

 $\frac{y(\mathbf{x})}{\|\mathbf{w}\|}$

is the distance from any point to the decision boundary

Discriminant Function Properties

w is orthogonal to the decision boundary

We need to prove that the dot product between w and the direction of the decision boundary is 0.

Assume any 2 points \mathbf{x}_A and \mathbf{x}_B on the decision boundary. These 2 points must satisfy the following equation since they are on the decision boundary

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$
Therefore,
$$\mathbf{w}^T \mathbf{x}_A + w_0 = 0$$

$$\mathbf{w}^T \mathbf{x}_B + w_0 = 0$$

By subtracting the last 2 equations we get, $\mathbf{w}^T(\mathbf{x}_A - \mathbf{x}_B) = 0$ Since $\mathbf{x}_A - \mathbf{x}_B$ is the vector from the point \mathbf{x}_B to the point \mathbf{x}_A , then such vector is in the same direction as the decision boundary.

Since $\mathbf{w}^T(\mathbf{x}_A - \mathbf{x}_B)$ is the dot product between \mathbf{w} and the vector that is in the same direction of the decision boundary and we proved that it is 0, therefore \mathbf{w} is orthogonal to the decision boundary given that the such dot product is equal to $\mathbf{w} \cdot \mathbf{u} = \|\mathbf{w}\| \|\mathbf{u}\| \cos \theta$ which will be 0 if $\cos \theta = 0$ which will happen if the angle is 90° (in the non-trivial case)

Discriminant Function Properties

• $\frac{-w_0}{\|\mathbf{w}\|}$ is the distance between the decision boundary and the origin

We need to find the norm of the vector \mathbf{x}_D

Since the point \mathbf{x}_D is on the decision boundary, then it satisfies $\mathbf{w}^T \mathbf{x}_D + w_0 = 0$ (1)

Since the dot product of w and x_D is equal to

$$\mathbf{w} \cdot \mathbf{x}_D = \mathbf{w}^T \mathbf{x}_D = \|\mathbf{w}\| \|\mathbf{x}_D\| \cos \theta$$

Since w and \mathbf{x}_D are both in the same direction, therefore $\cos \theta = 1$ and

$$\mathbf{w}^T \mathbf{x}_D = \|\mathbf{w}\| \|\mathbf{x}_D\| \tag{2}$$

Since from equation (1), $\mathbf{w}^T \mathbf{x}_D = -w_0$

By substituting in (2), we get $\|\mathbf{x}_D\| = \frac{-w_0}{\|\mathbf{w}\|}$

Learning Classifier Parameters

A Simple Solution

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

Goal: Find w and w_0 such that $y(\mathbf{x}) = t$

Let
$$\widetilde{\mathbf{w}} = [\mathbf{w}; w_0]$$
 $\widetilde{\mathbf{x}} = [\mathbf{x}; 1]$

We define an error function as

$$E_D(\widetilde{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^n (\widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}}_i - t_i)^2$$

where n is the total number of input vectors

• Least squares classifier tries to minimize the difference between the actual $(y(\mathbf{x}))$ and desired (t) target values for all input vectors

Let

$$\widetilde{\mathbf{w}} = [\mathbf{w}; w_0] \qquad \widetilde{\mathbf{x}} = [\mathbf{x}; 1]$$

$$E_D(\widetilde{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^{n} (\widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}}_i - t_i)^2$$

To find $\widetilde{\mathbf{w}}$ such that error E_D is minimum, we need to take derivative of E_D with respect to $\widetilde{\mathbf{w}}$ and equate with zero

For 2-dimensional input vectors, let

$$\widetilde{\mathbf{w}} = \begin{bmatrix} w_1 \\ w_2 \\ w_0 \end{bmatrix} \qquad \widetilde{\mathbf{X}} = \begin{bmatrix} x_{11} & x_{12} & 1 \\ x_{21} & x_{22} & 1 \\ \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & 1 \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$$

Weights Vector

Input Data Matrix

Targets Vector

• The equation $E_D(\tilde{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^n \left(\tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i - t_i \right)^2$ can be then written as $E_D(\tilde{\mathbf{w}}) = \frac{1}{2} \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} - \mathbf{t} \right)^T \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} - \mathbf{t} \right)$ $= \frac{1}{2} \left[\left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^T \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right) - \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^T \mathbf{t} - \mathbf{t}^T \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right) + \mathbf{t}^T \mathbf{t} \right]$ $= \frac{1}{2} \left[\left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^T \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right) - \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^T \mathbf{t} - \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^T \mathbf{t} + \mathbf{t}^T \mathbf{t} \right]$

$$= \frac{1}{2} \left[\left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^{T} \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right) - 2 \left(\tilde{\mathbf{X}} \tilde{\mathbf{w}} \right)^{T} \mathbf{t} + \mathbf{t}^{T} \mathbf{t} \right]$$

• We next compute the derivative with respect to $\widetilde{\mathbf{w}}$ and equate with 0

$$\frac{\partial}{\partial \tilde{\mathbf{w}}} E_D(\tilde{\mathbf{w}}) = \frac{1}{2} \left[2\tilde{\mathbf{X}}^T \tilde{\mathbf{X}} \tilde{\mathbf{w}} - 2\tilde{\mathbf{X}}^T \mathbf{t} \right] = 0$$

$$\therefore \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} \tilde{\mathbf{w}} - \tilde{\mathbf{X}}^T \mathbf{t} = 0 \to \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} \tilde{\mathbf{w}} = \tilde{\mathbf{X}}^T \mathbf{t}$$

$$\therefore \tilde{\mathbf{w}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{t}$$

A Simple Example

- Consider the data given by
- The least squares solution is

$$\widetilde{\mathbf{w}} = \left(\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^T \mathbf{t}$$

$$\widetilde{\mathbf{X}} = \begin{vmatrix} 1 & 5 & 1 \\ 2 & 4 & 1 \\ 6 & 5 & 1 \\ 7 & 4 & 1 \end{vmatrix}$$

$$\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} = \begin{bmatrix} 1 & 2 & 6 & 7 \\ 5 & 4 & 5 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 & 1 \\ 2 & 4 & 1 \\ 6 & 5 & 1 \\ 7 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 90 & 71 & 16 \\ 71 & 82 & 18 \\ 16 & 18 & 4 \end{bmatrix} \qquad \left(\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}}\right)^{-1} = \begin{bmatrix} 0.04 & 0.04 & -0.34 \\ 0.04 & 1.04 & -4.84 \\ -0.34 & -4.84 & 23.39 \end{bmatrix}$$

$$(\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T = \begin{bmatrix} -0.1 & -0.1 & 0.1 & 0.1 \\ 0.4 & -0.6 & 0.6 & -0.4 \\ -1.15 & 3.35 & -2.85 & 1.65 \end{bmatrix}$$

$$(\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} = \begin{bmatrix} 0.04 & 0.04 & -0.34 \\ 0.04 & 1.04 & -4.84 \\ -0.34 & -4.84 & 23.39 \end{bmatrix}$$

A Simple Example

$$\mathbf{t} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

$$(\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{t} = \begin{bmatrix} -0.1 & -0.1 & 0.1 & 0.1 \\ 0.4 & -0.6 & 0.6 & -0.4 \\ -1.15 & 3.35 & -2.85 & 1.65 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.4 \\ -0.4 \\ 3.4 \end{bmatrix} = \widetilde{\mathbf{w}}$$

$$(6, 5)$$

$$* t = -1$$

$$(2, 4)$$

$$(7, 4)$$

$$= \begin{bmatrix} -0.4 \\ -0.4 \\ 3.4 \end{bmatrix} = \widetilde{\mathbf{w}}$$

$$y(\widetilde{\mathbf{x}}) = \widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}} = -0.4x_1 - 0.4x_2 + 3.4$$

Problems: Not robust to outliers

Reason: The error function penalizes points that are too correct

$$E_D(\widetilde{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^n \left(\widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}}_i - t_i \right)^2$$

K-class Discriminant Function

To classify to multiple classes, a number of ways could be used

Solution: Use K linear functions

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}, k \in \{1, 2, ..., K\}$$

if $y_k(\mathbf{x}) > y_j(\mathbf{x})$ for all $j \neq k$, then $C = C_k$