MLT Homework 8

Ana Borovac Bas Haver

November 11, 2018

Question 1

Let $\psi(\lambda) = \frac{\lambda^2}{2}$. The Legendre-Fenchel transform of ψ is given by

$$\psi^*(\epsilon) = \sup_{\lambda \in \mathbb{R}} \lambda \epsilon - \psi(\lambda).$$

Subquestion 1.1

$$\psi^*(\epsilon) = \frac{\epsilon^2}{2}$$
.

Solution

Let define $\psi_1(\lambda)$:

$$\psi_1(\lambda) = \lambda \epsilon - \frac{\lambda^2}{2}$$

Furthermore:

$$\psi_1'(\lambda) = \epsilon - \lambda$$

So, the maximum is reached at:

$$\lambda = \epsilon \quad \Rightarrow \quad \psi_1(\epsilon) = \epsilon \cdot \epsilon - \frac{\epsilon^2}{2} = \frac{\epsilon^2}{2}$$

We can conclude:

$$\psi^*(\epsilon) = \psi_1(\epsilon) = \frac{\epsilon^2}{2}$$

Subquestion 1.2

$$(\psi^*)^{-1}(z) = \pm \sqrt{2z}.$$

Solution

From previous point we know:

$$\psi^*(\epsilon) = \frac{\epsilon^2}{2}$$

It follows:

$$z = \frac{\epsilon^2}{2}$$
$$2z = \epsilon^2$$
$$\epsilon = \pm \sqrt{2z}$$

So:

$$(\psi^*)^{-1}(z) = \pm \sqrt{2z}$$

Question 2

The Blooper Reel

Subquestion 2.1

Deterministic fails for Adversarial Bandits Show that any deterministic algorithm (UCB included) has linear regret in the adversarial bandit setting. Hint: you can use the argument on the top of page 23.

Question 3

We consider an adversarial bandit model with K^2 arms indexed by $i \in [K]$ and $j \in [K]$. For each arm (i,j), the loss at time t is $a_t^i + b_t^j$, where $a_t^i \in [0,1]$ and $b_t^j \in [0,1]$ are chosen by the adversary before the start of the interaction. Then each round the learner picks an arm $(I_t, J_t) \in [K]^2$ and observes $a_t^{I_t}$ and $b_t^{J_t}$ separately (and incurs their sum as the loss).

Subquestion 3.1

Consider running a single instance of EXP3 on all K^2 arms (with loss range [0,2]). Show that the expected pseudo-regret compared to the best arm (i^*,j^*) is bounded by

$$\bar{R}_n \le 2\sqrt{2nK^2\ln(K^2)}$$

Solution

$$\begin{split} \bar{R}_n &= \mathbb{E} \sum_{t=1}^T l_{t,I_t,J_t} - \min_{k_1,k_2} \sum_{t=1}^T l_{t,k_1,k_2} \\ \tilde{l}_{t,i,j} &= \frac{l_{t,i,j}}{p_{t,i,j}} \mathbb{1}_{I_t=i,J_t=j} \quad \Rightarrow \quad \mathbb{E} \left[\tilde{l}_{t,i,j} \right] = l_{t,i,j} \end{split}$$

EXP3 algorithm:

learning rate η

set
$$p_{t,i,j} = \frac{exp(\eta \sum_{s=1}^{t-1} \tilde{l}_{t,i,j})}{norm}$$

sample $I_t \sim p_t, J_t \sim p_t$
set $\tilde{l}_{t,i,j} = \frac{l_{t,i,j}}{p_{t,i,j}} \mathbb{1}_{I_t=i,J_t=j}$
Theorem: $\bar{R}_T \leq \sqrt{2TK^2 \ln K^2}$
Lemma: $\bar{R}_T \leq \frac{K^2T\eta}{2} + \frac{\log K^2}{\eta}$

Hadge analysis on \tilde{l}

Subquestion 3.2

Now we will use the a_t^i and b_t^j observations separately. Consider running two K-arm instances of EXP3, one with $i \to a_t^i$ as the loss and one with $j \to b_t^j$ as the loss. Have the first algorithm control I_t and the second J_t . Show that the overall expected pseudo-regret is bounded by

$$\bar{R}_n < 2\sqrt{2nK\ln K}$$
.

Solution

From the lectures we know that the regret of one K-arm EKP3 algorithm is bounded with $\sqrt{2nK} \ln K$. So, in our case:

$$\bar{R}_n = \bar{R}_n^1 + \bar{R}_n^2 \le \sqrt{2nK \ln K} + \sqrt{2nK \ln K} = 2\sqrt{2nK \ln K}$$