CT561: Systems Modelling & Simulation

Lecture 9: SIR Model Part 1

Prof. Jim Duggan,
School of Engineering & Informatics
National University of Ireland Galway.
https://github.com/JimDuggan/SDMR

NUI OÉ G

Galway aillimh Lecture 9 – SIR Model Part 1

CT 561 2020/21

1

Public Health: Modelling Infectious Disease Outbreaks

- Context
- SIR Model
- Related variables

MI OÉ

NUI Galway

Lecture 9 – SIR Model Part 1

CT 561 2020/21

(1) Context – Outbreak Dynamics

Figure 9-3 Dynamics of epidemic disease Sources: British Medical Journal, 4 March 1978, p. 587;.

Influenza epidemic at an English boarding school, January 22-February 3, 1978. The data show the number of students Confined to bed for influenza at any time (the stock of symptomatic individuals).

Lecture 9 – SIR Model Part 1

CT 561 2020/21

Examples of Infectious Agents – Microparasites (Vynnycky & White)

Type of Agent	Characteristics	Examples
Virus	Small, simple, obligatory parasites of larger cells	Measles, Mumps, Rubella, Ebola, Smallpox, SARS, Influenza
Bacteria	Larger and more complex than viruses- many are able to grow independently but some require a cell host	Bordella pertussis (whooping cough), Mycobacterium tuberculosis (tubercolosis), Salmonella typhi (typhoid fever)
Protozoa	Large single-celled organisms, more complex than bacteria- many are able to grow independently but some require a cell host	Plasmodium falciparum (Malaria)

Lecture 9 – SIR Model Part 1

CT 561 2020/21

Data from 1918/19

- The second wave of the 1918 pandemic was much deadlier than the first.
- The first wave had resembled typical flu epidemics; those most at risk were the sick and elderly, while younger, healthier people recovered easily.
- But in August, when the second wave began in France, Sierra Leone and the United States, the virus had mutated to a much deadlier form. This has been attributed to the circumstances of the First World War.

http://en.wikipedia.org/wiki/1918 flu pandemic

NUI Galway

Lecture 9 – SIR Model Part 1

CT 561 2020/21

′

(2) Susceptible-Infected-Recovered Model

- The total population of a region/community is divided into three categories:
 - Those susceptible to the disease (S)
 - Those who are infectious (I)
 - Those who have recovered (R)
- · Births, deaths & migration ignored
- Population homogenous (no subgroups)
- Once infected people recover after a time lag

NUI Galway OÉ Gaillimh Lecture 9 – SIR Model Part 1

CT 561 2020/21

Example 9999 0 Susceptible Infectious Recovered Population Population Population R Infection Recovery (в ∮ Rate **(**R) (в ≱ Rate IR RR Contact Infectivity Rate i 0.25 Total **Average Duration** С **Population** of Infectivity N Number of Infectious Contacts = 1 * 6 = 6 (#Encounters for infectious people) Chance of Meeting Susceptible = 9999/10000 = 0.999 **Probability of Transmission = 0.25** IR = 6 * 0.9999 * 0.25 = 1.4985 Lecture 9 – SIR Model Part 1 CT 561 2020/21

Summary: Key feature of SIR model

- It captures a fundamental feature of infectious diseases
- The disease spreads through contact between susceptible and infectious
- Nonlinear equation

IR = Contact Rate * Infectious * (Susceptible/N) * Infectivity

NUI Galway OÉ Gaillimh

Lecture 9 – SIR Model Part 1

CT 561 2020/21

(3) Related variables

- · Effective contacts
- Reproduction Number

NUI Galway OÉ Gaillimh

Lecture 9 – SIR Model Part 1

CT 561 2020/21

Effective Contacts $(C_e) = c * i$

- Defined as one which is sufficient to lead to infection, were it to occur between a susceptible and infectious individuals
- For example, if C_e = 2
 - An infectious person will infect two susceptible people in one day
 - They could meet 4 people, and pass on the virus with probability (0.50)

NUI Ga OÉ Gail

Lecture 9 – SIR Model Part 1

CT 561 2020/21

19

Reproduction Number – R₀

 Formally defined as the average number of secondary infectious resulting from a typical infectious person being introduced to a totally susceptible population

 $D = 2 \quad c_e = 1 \quad R_0 = 2$

NUI Galway OÉ Gaillimh Lecture 9 – SIR Model Part 1

CT 561 2020/21

Approximate data for common potentially vaccinepreventable diseases

Infection	Serial Interval (Range)	R _o	Herd Immunity
Diphtheria	2-30 Days	6-7	85
Influenza	2-4 Days	2-4	50-75
Malaria	20 Days	5-100	80-99
Measles	7-16 Days	12-18	83-94
Pertussis	5-35 Days	12-17	92-94

NUI Galway OÉ Gaillimh

Lecture 9 – SIR Model Part 1

CT 561 2020/21

21

Challenge 9.4 COVID-19 Model

- Build a population model of COVID-19
- Assume an SEIR basic structure
- Assume two streams:
 - Clinical Fraction (Pre-Clinical and Clinical)
 - Sub-clinical Fraction
- Assume subclinical are 50% as infectious as clinical
- Use Population ~ 5M
- 10 People infected at start
- Estimate R0

medicine	LETTER: https://dei.org/10.1018/s41991-020-0962
	(R) Check for upo
Age-depen	dent effects in the transmission and
ontrol of C	OVID-19 epidemics

Parameter	Description	Value
Latent Time	Time Spent in Exposed Stock	3 Days
Pre-Infectious Clinical Time	Time Spent Pre-Infectious (and spreading)	2.1 Days
Infectious Time (Clinical)	Time spent infectious (and spreading)	2.9 Days
Infectious Time (Sub Clinical)	Time spent infectious	5 Days
Clinical Fraction	Proportion of infected who show symptoms	0.60
Contacts	Contacts/Person/Day	10
Infectivity	Probability of transmission	0.10

NUI Galway OÉ Gaillimh Lecture 9 – SIR Model Part 1

CT 561 2020/21