Introduction to Electrical Engineering

Course Code: EE 103

Department: Electrical Engineering

Instructor Name: B. G. Fernandes

E-mail id: bgf@ee.iitb.ac.in

Review

Sequential circuits: Output depends on the present set of inputs and <u>also</u> on the past output (Eg: Latches, Flip-flops, Digital Clocks)

S-R Latch

Clocked S-R Flip-Flop:

D Flip-Flop: (Data Flip-Flop) One input split into two and used as S and R with a clock.

- For every second rising edge output will change .
- Frequency of signal at 'Q' is $\frac{1}{2}$ of Clk frequency $\Rightarrow \div 2$ Counter

3 bit Asynchronous (Ripple) Counter (Asynchronous or Ripple) Why ripple/ Asynchronous? Q_0 changes at every clock (+ve or –ve rising). \Rightarrow J-K in toggle mode. (Q_2) (Q_1) (Q_0) Q_1 changes when Q_0 CLK< CLK< Q_1 Q_0 \Rightarrow Use Q_0 as clock to 2^{nd} Flip-Flop. Q_2 changes when Q_1 0 *All J and K inputs \Rightarrow Use Q₁ as clock to 3rd Flip-Flop. assumed to be 1. 0 CLOCK 0 В 0 0 0 8 distinct states \Rightarrow mod-8 counter

3 bit Asynchronous (Ripple) Counter

- ⇒ Only 1st Flip-Flop changes with external clock.
- \Rightarrow 2nd Flip-Flop waits for 1st Flip-Flop to $\boxed{}$.
- ⇒ This takes a finite delay between external clock and output of 1st Flip-Flops to (a few ns) known as ⇒ PROPOGATION DELAY.
- \Rightarrow Similarly for 3rd Flip-Flop.
- ⇒ Outputs of all the Flip-Flops do not change simultaneously.
- ⇒ Hence Asynchronous or ripple (Flip-Flops respond one after another).
- ⇒ If clock frequency is high and there are many Flip-Flops (n-bit counter) this delay is not acceptable.

How to Design a counter whose number $\neq 2^N$ (N=1,2,3,...)?

- ⇒ J-K, D, S-R are synchronous Inputs.
- ⇒ Their effect on the output is synchronized with its clock input.
- \Rightarrow There are asynchronous inputs also.

PRESET (PRE or
$$\overline{PRE}$$
) \Rightarrow Output= 1 when PRE pin = 1 (\overline{PRE} = 0); NO MATTER what conditions are present at J, K and Clk.

 $\overline{\text{PRE}} \Rightarrow \text{is } \underline{\text{ACTIVE}} \text{ when } \underline{\text{LOW}}.$

Similarly CLEAR (CLR or $\overline{\text{CLR}}$) \Rightarrow Output= 0 when CLR pin = 1 ($\overline{\text{CLR}}$ = 0)

PRE (\overline{PRE})	$CLR (\overline{CLR})$	
0(1)	0(1)	Clocked operation
1(0)	0(1)	Q=1
0(1)	1(0)	Q=0

Mod-6 Counter:

Reset all the counts to 000 when this happens.

Asynchronous Down Counter:

They change at alternate edge trigger.

Q_2	Q_1	Q_0
1	1	Q ₀
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0
1	1	1

Synchronous Counter (Parallel Counter):

- ➤ All Flip-Flops receive clock simultaneously.
- Making J=K=1 and apply same clock pulses to all Flip-Flops will not give us the required 'Mod' number or sequence.
- > Some means must be used to control when an Flip-Flop should toggle and when it remains unaffected by a clock pulse.

Characteristic Table

	J	K	Q_{t+1}	
	0	0	Q(Hold)	
	1	0	1	
	0	1	0	
_	1	1	toggle	

Learn this to derive this

Transition Table

		Inputs Required at			
N th state	(N+1) th state	J	K		
0	0	0	X		
0	1	1	X		
1	0	X	1		
1	1	X	0		
7					

Design Procedure: Mod-8 Synchronous Counter

Steps to make mod 8 synchronous counter:

1. Determine the desired number of bits (Flip-Flops) and the possible states .

Q_2	Q_1	Q_0		
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
0	0	0		

Example with 3 bits and corresponding 8 states.

Design Procedure: Mod-8 Synchronous Counter

2. Prepare a table that lists all the <u>present states</u> and their <u>next state</u>.

	Q_2	Q_1	Q_0	Q_{2+}	Q_{1+}	Q_{0+}
(0)	0	0	0	0	0	1 (1)
(1)	0	0	1	0	1	0 (2)
(2)	0	1	0	0	1	1 (3)
(3)	0	1	1	1	0	0 (4)
(4)	1	0	0	1	0	1 (4)
15	1	0	1	1	1	0 (6)
(6)	1	1	0	1	1	1 (7)
(7	1	1	1	0	0	0 (0)
_	0	0	0	0	0	1

N th state	(N+1) th state	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

<u>Design Procedure</u>: Mod-8 Synchronous Counter

3. Add two column per Flip-Flop (one for each J and K). There will be six columns for each 'PRESENT' state, indicate the levels requires at each J and K input in order to produce the transition to the 'NEXT' state

Q_2	Q_1	Q_0	Q ₂₊	Q_{1+}	Q_{0+}	J_0	K_0	J_1	K_1	J ₂	K_2
0	0	0	0	0	1	1	X	0	X	0	X
0	0	1	0	1	0	X	1	1	X	0	X
0	1	0	0	1	1	1	X	X	0	0	X
0	1	1	1	0	0	X	1	X	1	1	X
1	0	0	1	0	1	1	X	0	X	X	0
1	0	1	1	1	0	X	1	1	X	X	0
1	1	0	1	1	1	1	X	X	0	X	0 🔨
1	1	1	0	0	0	X	1	X	1	X	1
0	^	^	0		4						

N th state	(N+1) th state	J	К
0	0	0	Χ
0	1	1	X
1	0	Χ	1
1	1	Χ	0

Now learn this to derive this:(

Design Procedure: Mod-8 Synchronous Counter

4. Design the logic circuit needed to generate the levels required at each J&K input

$$J_0=1$$
 (or $J_0=\overline{Q_0}$)

$$J_1 = Q_0$$

$$J_2 = Q_0 Q_1$$

$$K_0 = 1 \text{ (or } K_0 = Q_0)$$

$$K_1 = Q_0$$

Logic Realisation: Mod-8 Synchronous Counter

$$J_0=1 (\text{or } J_0=\overline{Q_0})$$

$$J_1 = Q_0$$

$$J_2 = Q_0 Q_1$$

$$K_0 = 1 \text{ (or } K_0 = Q_0)$$

$$K_1 = Q_0$$

$$K_2 = Q_0 Q_1$$

