CS 274A Homework 6

Zachary DeStefano, 15247592

Due Date: Wednesday March 12th in class

Solution to Problem 1, Part 1

Using Bayes rule we will start with the following

$$p(c_1|x) = \frac{p(x|c_1)p(c_1)}{p(x|c_1)p(c_1) + p(x|c_2)p(c_2)}$$

We will find when that is equal to 0.5 as that is the decision boundary. This occurs when

$$\frac{1}{2} = \frac{1}{1 + \frac{p(x|c_2)p(c_2)}{p(x|c_1)p(c_1)}}$$

After some simple manipulation

$$\frac{p(x|c_2)p(c_2)}{p(x|c_1)p(c_1)} = 1$$

$$\frac{p(x|c_2)}{p(x|c_1)} = \frac{p(c_1)}{p(c_2)}$$

Let

$$K_1 = \frac{1}{\sigma_1 \sqrt{2\pi}}$$

$$K_2 = \frac{1}{\sigma_2 \sqrt{2\pi}}$$

$$f_1(x) = \frac{(x - \mu_1)^2}{\sigma_1^2}$$

$$f_2(x) = \frac{(x - \mu_2)^2}{\sigma_2^2}$$

We now have to solve the following

$$\frac{K_2 \cdot e^{-f_2(x)/2}}{K_1 \cdot e^{-f_1(x)/2}} = \frac{p(c_1)}{p(c_2)}$$

Let

$$Q = \frac{p(c_1)K_1}{p(c_2)K_2} = \frac{p(c_1)\sigma_2}{p(c_2)\sigma_1}$$

Then we have to solve the following

$$\frac{e^{-f_2(x)/2}}{e^{-f_1(x)/2}} = Q$$

After some algebraic manipulation

$$e^{f_1(x)-f_2(x)} = Q^2$$

$$f_1(x) - f_2(x) = 2log(Q)$$

$$\frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{(x - \mu_2)^2}{\sigma_2^2} = 2log(Q)$$

Let $S = 2log(Q)\sigma_2^2\sigma_1^2$ then it holds that

$$\sigma_2^2(x-\mu_1)^2 - \sigma_1^2(x-\mu_2)^2 = S$$

Expanding and then collecting terms together we get

$$x^{2}(\sigma_{1}^{2} - \sigma_{2}^{2}) + 2x(\mu_{1}\sigma_{2}^{2} - \mu_{2}\sigma_{1}^{2}) + (\sigma_{1}^{2}\mu_{2}^{2} - \sigma_{2}^{2}\mu_{1}^{2} - S) = 0$$

We now let

$$a = \sigma_2^2 - \sigma_1^2$$

$$b = 2(\mu_2 \sigma_1^2 - \mu_1 \sigma_2^2)$$

$$c = \sigma_2^2 \mu_1^2 - \sigma_1^2 \mu_2^2 - S$$

Then the solutions are the roots of the quadratic equation $ax^2 + bx + c = 0$ which are as follows

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solution to Problem 1, Part 2

For this problem we will be using

$$p(x|c_1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
$$p(x|c_2) = \frac{1}{\sqrt{6\pi}}e^{-\frac{(x-3)^2}{6}}$$

To get the decision boundaries we will solve the quadratic equation with

$$a = 2$$

$$b = 6$$

$$Q = \sqrt{3}$$

$$S = 2log(Q)3 = 3log(3)$$

$$c = -9 - 3log(3)$$

Figure 1: Probability of Class Labels with decision boundaries marked

Solution to Problem 1, Part 3

For this case, if we let a and b be the decision boundaries and E be the error, then

$$E = \int_{-\infty}^{a} p(c_1|x)p(x) \, dx + \int_{a}^{b} p(c_2|x)p(x) \, dx + \int_{a}^{\infty} p(c_1|x)p(x) \, dx$$

For our case we can simplify this to

$$E = \int_{-\infty}^{a} p(x|c_1)p(c_1) dx + \int_{a}^{b} p(x|c_2)p(c_2) dx + \int_{a}^{\infty} p(x|c_1)p(c_1) dx$$
$$E = 0.5(\int_{-\infty}^{a} p(x|c_1) dx + \int_{a}^{b} p(x|c_2) dx + \int_{a}^{\infty} p(x|c_1) dx)$$

For this case, according to the Matlab computation, we have a=-4.3979 and b=1.3979. According to Wolfram Alpha

$$\int_{-\infty}^{a} p(x|c_1) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-4.3979} e^{-x^2/2} dx = \frac{0.0000136991}{\sqrt{2\pi}} = 5.46515 \cdot 10^{-6}$$
$$\int_{a}^{b} p(x|c_2) dx = \frac{1}{\sqrt{6\pi}} \int_{-4.3979}^{1.3979} e^{-(x-3)^2/6} dx = \frac{0.77055}{\sqrt{6\pi}} = 0.177480$$

$$\int_{b}^{\infty} p(x|c_1) dx = \frac{1}{\sqrt{2\pi}} \int_{1.3979}^{\infty} e^{-x^2/2} dx = \frac{0.203216}{\sqrt{2\pi}} = 0.0810715$$

Summing these three together we get the following estimate

$$E = 0.1293$$

Solution to Problem 1, Part 4

To get the decision boundaries we will solve the quadratic equation with

$$a=2$$

$$b=6$$

$$Q=9\sqrt{3}$$

$$S=2log(Q)3=6log(Q)=6log(9\sqrt{3})=12log(3)+3log(3)=15log(3)$$

$$c=-9-15log(3)$$

Figure 2: Probability of Class Labels with decision boundaries marked

For this case, if we let a and b be the decision boundaries and E be the error, then

$$E = \int_{-\infty}^{a} p(c_1|x)p(x) dx + \int_{a}^{b} p(c_2|x)p(x) dx + \int_{a}^{\infty} p(c_1|x)p(x) dx$$

For our case we can simplify this to

$$E = \int_{-\infty}^{a} p(x|c_1)p(c_1) dx + \int_{a}^{b} p(x|c_2)p(c_2) dx + \int_{a}^{\infty} p(x|c_1)p(c_1) dx$$
$$E = 0.9 \int_{-\infty}^{a} p(x|c_1) dx + 0.1 \int_{a}^{b} p(x|c_2) dx + 0.9 \int_{a}^{\infty} p(x|c_1) dx$$

For this case, according to the Matlab computation, we have a=-5.3716 and b=2.3716. According to Wolfram Alpha

$$\int_{-\infty}^{a} p(x|c_1) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-5.3716} e^{-x^2/2} dx = \frac{9.781 \cdot 10^{-8}}{\sqrt{2\pi}} = 3.90205 \cdot 10^{-8}$$

$$\int_{a}^{b} p(x|c_2) dx = \frac{1}{\sqrt{6\pi}} \int_{-5.3716}^{2.3716} e^{-(x-3)^2/6} dx = \frac{1.55592}{\sqrt{6\pi}} = 0.358374$$

$$\int_{b}^{\infty} p(x|c_1) dx = \frac{1}{\sqrt{2\pi}} \int_{2.3716}^{\infty} e^{-x^2/2} dx = \frac{0.0221978}{\sqrt{2\pi}} = 0.00885564$$

Summing these three together we get the following estimate

$$E = 0.0438$$

Solution to Problem 2, Part 1

Starting from one of the first steps of the last problem, we have to solve

$$\frac{p(x|c_2)}{p(x|c_1)} \le \frac{p(c_1)}{p(c_2)}$$

Given our values this becomes

$$\frac{p(x|c_2)}{p(x|c_1)} \le 1$$

$$p(x|c_2) \le p(x|c_1)$$

That is when it is optimal to choose c_1 Inserting the function this occurs when

$$exp(-x) \le 0.5$$

$$x \ge log(2)$$

However, we can only choose c_1 for $2 \le x \le 4$. Our condition is satisfied in that region, thus the decision regions are as follows:

$$c_1$$
 if $2 \le x \le 4$

 c_2 otherwise

Solution to Problem 2, Part 2

Figure 3: Probability of Class Labels with decision boundaries marked

Solution to Problem 2, Part 3

For this case, if we let a and b be the decision boundaries and E be the error, then

$$E = \int_{-\infty}^{a} p(c_1|x)p(x) dx + \int_{a}^{b} p(c_2|x)p(x) dx + \int_{a}^{\infty} p(c_1|x)p(x) dx$$

For our case we can simplify this to

$$E = \int_{-\infty}^{a} p(x|c_1)p(c_1) dx + \int_{a}^{b} p(x|c_2)p(c_2) dx + \int_{a}^{\infty} p(x|c_1)p(c_1) dx$$
$$E = 0.5 \int_{-\infty}^{a} p(x|c_1) dx + 0.5 \int_{a}^{b} p(x|c_2) dx + 0.5 \int_{a}^{\infty} p(x|c_1) dx$$

For this case we have a = 2 and b = 4.

$$\int_{-\infty}^{a} p(x|c_1) dx = 0$$

$$\int_{a}^{b} p(x|c_2) dx = \int_{2}^{4} e^{-x} dx = e^{-2} - e^{-4} = 0.1170$$

$$\int_{b}^{\infty} p(x|c_1) \, dx = 0$$

Summing these three together we get the following estimate

$$E = 0.0585$$

Solution to Problem 2, Part 4

From previous problem we have to solve

$$\frac{p(x|c_2)}{p(x|c_1)} \le \frac{p(c_1)}{p(c_2)}$$

Given our values we have

$$\frac{p(x|c_2)}{p(x|c_1)} \le 1$$

$$p(x|c_2) \le p(x|c_1)$$

That is when it is optimal to choose c_1 . This occurs when

$$exp(-x) \le 0.05$$

$$x \ge log(20) = 2.9957$$

However, we can only choose c_1 for $2 \le x \le 22$. Thus our decision boundaries are as follows:

$$c_2$$
 if $x \leq log(20)$

$$c_1 \text{ if } log(20) \le x \le 22$$

$$c_2$$
 if $x \geq 22$

Figure 4: Probability of Class Labels with decision boundaries marked

For this case, if we let a and b be the decision boundaries and E be the error, then

$$E = \int_{-\infty}^{a} p(c_1|x)p(x) dx + \int_{a}^{b} p(c_2|x)p(x) dx + \int_{a}^{\infty} p(c_1|x)p(x) dx$$

For our case we can simplify this to

$$E = \int_{-\infty}^{a} p(x|c_1)p(c_1) dx + \int_{a}^{b} p(x|c_2)p(c_2) dx + \int_{a}^{\infty} p(x|c_1)p(c_1) dx$$
$$E = 0.5 \int_{-\infty}^{a} p(x|c_1) dx + 0.5 \int_{a}^{b} p(x|c_2) dx + 0.5 \int_{a}^{\infty} p(x|c_1) dx$$

For this case we have a = log(20) and b = 22.

$$\int_{-\infty}^{a} p(x|c_1) dx = \int_{2}^{\log(20)} 0.05 dx = (0.05)(\log(20) - 2) = 0.0498$$

$$\int_{a}^{b} p(x|c_2) dx = \int_{\log(20)}^{22} e^{-x} dx = \frac{1}{20} - e^{-22} = 0.0500$$

$$\int_{b}^{\infty} p(x|c_1) dx = 0$$

Summing these three together we get the following estimate

$$E = 0.0499$$

Solution to Problem 3, Part 1

First, we will let

$$K = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}}$$
$$f_1(x) = (x - \mu_1)^T \Sigma^{-1} (x - \mu_1)$$
$$f_2(x) = (x - \mu_2)^T \Sigma^{-1} (x - \mu_2)$$

then it holds that

$$\begin{split} g_1(x) &= log(K) - \frac{1}{2} f_1(x) + log(p(c_1)) \\ g_1(x) &= -log((2\pi)^{d/2} |\Sigma|^{1/2}) - \frac{1}{2} f_1(x) + log(p(c_1)) \\ g_1(x) &= -\frac{1}{2} (d \cdot log(2\pi) + log(|\Sigma|) + f_1(x)) + log(p(c_1)) \end{split}$$

By the same token

$$g_2(x) = -\frac{1}{2}(d \cdot \log(2\pi) + \log(|\Sigma|) + f_2(x)) + \log(p(c_2))$$

Solution to Problem 3, Part 2

By some algebraic manipulation, it holds that

$$g(x) = g_1(x) - g_2(x) = -\frac{1}{2}f_1(x) + \frac{1}{2}f_2(x) + \log(p(c_1)) - \log(p(c_2))$$
$$g(x) = \frac{1}{2}(f_2(x) - f_1(x)) + \log(p(c_1)) - \log(p(c_2))$$

Let $v = 2(log(p(c_2)) - log(p(c_1)))$ then we have to solve

$$v = f_2(x) - f_1(x)$$

$$(x^T \Sigma - \mu_2^T \Sigma^{-1})(x - \mu_2) - (x^T \Sigma^{-1} - \mu_1^T \Sigma^{-1})(x - \mu_1) = v$$

$$(x^T \Sigma^{-1} x - \mu_2^T \Sigma^{-1} x - x^T \Sigma^{-1} \mu_2 + \mu_2^T \Sigma^{-1} \mu_2) - (x^T \Sigma^{-1} x - \mu_1^T \Sigma^{-1} x - x^T \Sigma^{-1} \mu_1 + \mu_1^T \Sigma^{-1} \mu_1) = v$$

Collecting terms we end up with

$$(\mu_1^T \Sigma^{-1} - \mu_2^T \Sigma^{-1})x + x^T (\Sigma^{-1} \mu_1 - \Sigma^{-1} \mu_2) + \mu_2^T \Sigma^{-1} \mu_2 - \mu_1^T \Sigma^{-1} \mu_1 = v$$

If we let

$$u = v - \mu_2^T \Sigma^{-1} \mu_2 + \mu_1^T \Sigma^{-1} \mu_1$$

Then after some factoring we have

$$(\mu_1^T - \mu_2^T)\Sigma^{-1}x + x^T\Sigma^{-1}(\mu_1 - \mu_2) = u$$

If we let $\mu_0 = \mu_1 - \mu_2$ then we further have

$$\mu_0 \Sigma^{-1} x + x^T \Sigma^{-1} \mu_0 = u$$

If we let $m=\mu_0^T\Sigma^{-1}$ then because Σ^{-1} is symmetric, $m^T=\Sigma^{-1}\mu_0$. We thus have

$$mx + x^T m^T - u = 0$$

This is the same as

$$dot(m, x) + dot(m, x) - u = 0$$

Thus we can further say that

$$2mx - u = 0$$

Thus finally let

$$w = 2m$$

$$w_0 = -u$$

then we have the linear decision boundary as described.

Solution to Problem 3, Part 3

If $p(c_1) = p(c_2)$ then v = 0 in the above equations, thus they would end with

$$f_1(x) = f_2(x)$$

After substituting the equation back in, we have

$$(x - \mu_1)^T \Sigma^{-1} (x - \mu_1) = (x - \mu_2)^T \Sigma^{-1} (x - \mu_2)$$

The decision boundary is thus when the two MH distances are equal so the class will end up taking on the value of whichever mean is closer.

Solution to Problem 4, Part 1

Using problem 3, but where v = 0, we will use the following variables to simplify our problem

$$u = \mu_1^T \Sigma^{-1} \mu_1 - \mu_2^T \Sigma^{-1} \mu_2$$

$$\mu_0 = \mu_1 - \mu_2$$

$$m = \mu_0^T \Sigma^{-1}$$

For our purposes, we have $\mu_1=(1,1)$ and $\mu_2=(4,4)$, thus $\mu_0=(-3,-3)$. Additionally

$$\Sigma^{-1} = \frac{1}{3} \left(\begin{array}{cc} 4 & -1 \\ -1 & 1 \end{array} \right)$$

After computing these out, we get the following numbers

$$u = -15$$

$$m = (-3, 0)$$

This leads us to the following numbers for the line

$$w = (-6, 0)$$

$$w_0 = 15$$

This leads us to the following linear equation

$$-6x_1 + 15 = 0$$

$$x_1 = 2.5$$

Figure 5: The decision boundary with the means

Solution to Problem 4, Part 2

The vector for w will be the same as Part 1. The vector for u will be different. We have already found that u=-15 when v=0, thus for our case, u=v-15 so we just need to calculate v. By Problem 3,

$$v = 2(log(p(c_2)) - log(p(c_1)))$$

Thus after plugging in the values

$$\begin{aligned} v &= 2(\log(0.2) - \log(0.8)) \\ v &= 2(\log(\frac{1}{5}) - \log(\frac{4}{5})) \\ v &= 2(-\log(5) - (\log(4) - \log(5))) \\ v &= -2\log(4) \end{aligned}$$

This means that u = -2log(4) - 15 and thus of course $w_0 = 15 + 2log(4)$. Our equation for the decision boundary will then become

$$-6x_1 + 15 + 2log(4) = 0$$
$$x_1 = \frac{15 + 2log(4)}{6} \approx 2.9621$$

Because class 1 is weighted higher in this case, its decision region will be bigger, thus the decision boundary will shift toward the mean for class 2, as shown in the below graph.

Figure 6: The decision boundary with the means

Here are the initial steps:

1. Figure out a probability on the class labels given the parameters of the model, which are specified as follows

$$p(c|\hat{\theta}, M_1), p(c|\hat{\phi}, M_2)$$

2. Attach a prior to the parameters if desired, which are specified as

$$p(\hat{\theta}|M_1), p(\hat{\phi}|M_2)$$

3. Get a probability for the model correctness, which will be specified as

$$p(M_1), p(M_2)$$

To figure out the class probability we will start by saying that

$$p(c|x) = \frac{p(x|c)p(c)}{p(x)}$$

We can treat p(x) as a normalization constant because it will be the same for both classes, thus

$$p(c|x) \propto p(x|c)p(c)$$

By law of total probability and adding in the parameters of the model, we can further say that

$$p(c|x) \propto p(x|c, \hat{\theta}, M_1)p(c, \hat{\theta}, M_1) + p(x|c, \hat{\phi}, M_2)p(c, \hat{\phi}, M_2)$$

We can factor out the c values in order to use the probability of the class label. This yields

$$p(c|x) \propto p(x|c, \hat{\theta}, M_1)p(c|\hat{\theta}, M_1)p(\hat{\theta}, M_1) + p(x|c, \hat{\phi}, M_2)p(c|\hat{\phi}, M_2)p(\hat{\phi}, M_2)$$

We can then factor out the probability of the parameters in order to use the prior on the parameters and the prior on the model, finally yielding

$$p(c|x) \propto p(x|c, \hat{\theta}, M_1)p(c|\hat{\theta}, M_1)p(\hat{\theta}|M_1)p(M_1) + p(x|c, \hat{\phi}, M_2)p(c|\hat{\phi}, M_2)p(\hat{\phi}|M_2)p(M_2)$$

The final step is to do this for both classes c and see which one yields a greater probability.

For this problem, we are assuming that at each pair of points, there is a Gaussian distribution for y given x where the mean $\mu_y = ax + b$ and the variance is σ^2 .

We will then define $\theta = (a, b, \sigma)$ and assert that

$$L(D|\theta) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} exp(-\frac{(y_i - (ax_i + b))^2}{2\sigma^2})$$

Taking the log to get log-likelihood we have

$$l(\theta) = -\frac{N}{2}log(2\pi\sigma^2) + \sum_{i=1}^{N} -\frac{(y_i - (ax_i + b))^2}{2\sigma^2}$$

Simplifying further we have

$$l(\theta) = -\frac{N}{2}log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$

Expanding out the square we have

$$l(\theta) = -\frac{N}{2}log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} y_i^2 - 2y_i(ax_i + b) + (ax_i + b)^2$$

Expanding out the square again

$$l(\theta) = -\frac{N}{2}log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[y_i^2 - 2ay_i x_i - 2by_i + a^2 x_i^2 + 2abx_i + b^2 \right]$$

We will find \hat{a}_{ML} and \hat{b}_{ML} by first taking the partials

$$\frac{\partial l}{\partial a} = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[-2y_i x_i + 2ax_i^2 + 2bx_i \right]$$

$$\frac{\partial l}{\partial b} = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[-2y_i + 2ax_i + 2b \right]$$

Setting both equal to zero we end up having to solve the following equations

$$\sum_{i=1}^{N} \left[-y_i x_i + a x_i^2 + b x_i \right] = 0$$

$$\sum_{i=1}^{N} \left[-y_i + ax_i + b \right] = 0$$

Rearranging the sums and putting into a linear system form, we have the solve the following

$$a\sum_{i=1}^{N} x_i^2 + b\sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i x_i$$

$$a\sum_{i=1}^{N} x_i + b \cdot N = \sum_{i=1}^{N} y_i$$

For shorthand, we will now let

$$A = \sum_{i=1}^{N} x_i^2$$

$$B = \sum_{i=1}^{N} x_i$$

$$C = \sum_{i=1}^{N} y_i x_i$$

$$D = \sum_{i=1}^{N} y_i$$

Then we are left with solving

$$\left(\begin{array}{cc} A & B \\ B & N \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} C \\ D \end{array}\right)$$

After doing the matrix inverse, we have the following

$$\left(\begin{array}{c} a \\ b \end{array}\right) = \frac{1}{AN - B^2} \left(\begin{array}{cc} N & -B \\ -B & A \end{array}\right) \left(\begin{array}{c} C \\ D \end{array}\right)$$

Thus finally we can say that

$$\hat{a}_{ML} = \frac{NC - BD}{AN - B^2}$$

$$\hat{b}_{ML} = \frac{AD - BC}{AN - B^2}$$

We now want to find $\hat{\sigma}_{ML}^2$. If we let

$$K = \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$

then we will have after letting $v = \sigma^2$

$$l(\theta) = -\frac{N}{2}log(2\pi v) - \frac{K}{2v}$$

Taking the derivative with respect to v we have

$$l'(\theta) = -\frac{N}{2v} + \frac{K}{2v^2}$$

Setting it equal to zero we have to solve

$$Kv = Nv^2$$

We can assume a non-zero variance thus we can assert that

$$v = \frac{K}{N}$$

Substituting the formula back in using the max likelihood estimates, we finally have

$$\hat{\sigma}^{2}_{ML} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - (\hat{a}_{ML}x_{i} + \hat{b}_{ML}))^{2}$$