PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(E1) Intermediated Data (CI to to 6		r -		(101)		
(51) International Patent Classification 6: C12N 9/16, 15/55, C12P 13/02, 7/64, 7/62		(11)	International Publication Number:	WO 98/46730		
C121 7/10, 13/33, C12F 13/02, 7/04, 7/02	A1	(43)	International Publication Date:	22 October 1998 (22.10.98)		
(21) International Application Number: PCT/US	98/079	28 (8	81) Designated States: AU, CA, JP,	European patent (AT. BE		
(22) International Filing Date: 16 April 1998 (16.04.9		CH, CY, DE, DK, ES, FI, FR NL, PT, SE).	, GB, GR, IE, IT, LU, MC,		
(30) Priority Data: 08/842.827 17 April 1997 (17.04.97)			ublished			
08/842,827 17 April 1997 (17.04.97)	τ	JS	With international search repor	t.		
(71) Applicant: CELL THERAPEUTICS, INC. [US/US]; S 201 Elliott Avenue West, Seattle, WA 98119 (US)	Suite 40).	00,				
(72) Inventors: LEUNG, David, W.; 7625 E. Mercer Way Island, WA 98040 (US). TOMPKINS, Christon 17660 86th Avenue, N.E., Bothell, WA 98011 (US)	pher I	cer K.;				
(74) Agents: BENT, Stephen, A. et al.; Foley & Lardner, S 3000 K Street, N.W., Washington, DC 20007-510	Suite 50	00,				
(54) Title: HUMAN PHOSPHATIDIC ACID PHOSPHA	TASE					

(57) Abstract

This invention relates to a biotechnology invention concerning human phosphatidic acid phosphatase. More particularly, this invention relates to three variants of human phosphatidic acid phosphatase namely $PAP-\alpha(1 \text{ and } 2)$, $PAP-\beta$ and $PAP-\gamma$ and uses thereof.

BNSDOCID: <WO

9846730A1 I >

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	O.	
AM	Armenia	FI	Finland	LT	Lithuania	SI	Slovenia
AT	Austria	FR	France	LU	Luxembourg	SK	Slovakia
AU	Australia	GA	Gabon	LV	Latvia	SN	Senegal
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	SZ	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TD	Chad
BB	Barbados	GH	Ghana	MG		TG	Togo
BE	Belgium	GN	Guinea	MK	Madagascar	TJ	Tajikistan
BF	Burkina Faso	GR	Greece	MIK	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Republic of Macedonia Mali	TR	Turkey
BJ	Benin	IE	Ireland	MN		TT	Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mongolia Mauritania	UA	Ukraine
BY	Belarus	IS	Iceland	MW		UG	Uganda
CA	Canada	IT	Italy	MX	Malawi Mexico	US	United States of Americ
CF	Central African Republic	JP	Japan	NE		UZ	Uzbekistan
CG	Congo	KE	Kenya	NL	Niger	VN	Viet Nam
СН	Switzerland	KG	Kyrgyzstan	NO	Netherlands	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	Norway	zw	Zimbabwe
CM	Cameroon		Republic of Korea	PL	New Zealand		
CN	China	KR	Republic of Korea	PT	Poland		
CU	Cuba	KZ	Kazakstan	RO	Portugal		
CZ	Czech Republic	LC	Saint Lucia	RU	Romania		
DE	Germany	LI	Liechtenstein	SD	Russian Federation		
DΚ	Denmark	LK	Sri Lanka	SE	Sudan		
EE	Estonia	LR	Liberia	SG	Sweden Singapore		

HUMAN PHOSPHATIDIC ACID PHOSPHATASE

5

10

15

20

25

30

Field of the Invention

This invention relates to human phosphatidic acid phosphatase. More particularly, this invention relates to three variants of human phosphatidic acid phosphatase namely PAP- α (1 and 2), PAP- β and PAP- γ and uses thereof. The invention encompasses biotechnology inventions, including biotechnology products and processes.

Background of the Invention

Phosphatidic acid phosphatase (PAP) (also referred to in the art as phosphatidate phosphohydrolase) is known to be an important enzyme for glycerolipid biosynthesis. In particular, PAP catalyzes the conversion of phosphatidic acid (PA) (also referred to in the art as phosphatidate) into diacylglycerol (DAG). DAG is an important branch point intermediate just downstream of PA in the pathways for biosynthesis of glycerophosphate-based phospholipids (Kent, Anal. Rev.Biochem. 64: 315-343, 1995).

In eukaryotic cells, PA, the precursor molecule for all glycerophospholipids, is converted either to CDPdiacylglycerol (CDP-DAG) by CDP-DAG synthase (CDS) or to DAG by phosphatidic acid phosphatase (PAP). In mammalian cells, CDP-DAG is the precursor to phosphatidylinositol (PI), phosphatidylglycerol (PG), and cardiolipin (CL); whereas diacylglycerol is the precursor triacylglycerol (TG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) in all eukaryotic Therefore, the partitioning of phosphatidic acid between

10

15

20

25

30

CDP-diacylglycerol and diacylglycerol is an important regulatory point in eukaryotic phospholipid metabolism (Shen et al., J. Biol. Chem. 271: 789-795, 1996).

In addition to being an important enzyme for glycerolipid biosynthesis, PAP is also an important enzyme for signal transduction. PAP catalyses the dephosphorylation of PA to DAG. DAG is a well-studied lipid second messenger which is essential for the activation of protein kinase C (Kent, Anal. Rev.Biochem. 64: 315-343, 1995); whereas PA itself is also a lipid messenger implicated in various signaling pathways such as NADPH oxidase activation and calcium mobilization (English, Cell Signal. 8: 341-347, 1996). The regulation of PAP activity can therefore affect the balance of divergent signaling processes that the cell receives in terms of PA and DAG (Brindley et al., Chem. Phys. Lipids 80: 45-57, 1996).

Various forms of PAP have been isolated in porcine (Kai et al., J. Biol. Chem. 271: 18931-18938, 1996) and rat species (Brindley et al., Chem. Phys. Lipids 80: 45-57, 1996). Furthermore, the putative amino acid sequence of murine PAP has been identified. Kai et al., supra. Prior to the instant invention, however, human PAP had not been identified or isolated.

Genes coding for PAP have been identified in *E. coli* (Dillon et al, J. Biol. Chem. 260: 12078-12083, 1985) and in mouse (Kai et al., J. Biol. Chem. 271: 18931-18938, 1996). Furthermore, the following GenBank human cDNA clones are available: accession nos. H17855, N75714, and W70040. No uses were known, however, for these polynucleotide sequences.

Accordingly, there is a need for the identification and isolation of human PAP and for methods of using human

10

15

20

25

30

PAP, for example, for the dephosphorylation of a substrate.

Summary of the Invention

It is therefore an object of the present invention to provide a polynucleotide sequences encoding three or more variants of human PAP, namely PAP- α (1 and 2), PAP- β and PAP- γ .

It is a further object to provide the isolated protein of these three variants.

It is yet a further object to provide a biotechnology method for preparing these variants via recombinant methods.

It is a further object to provide a biotechnology method of using these variants or human PA in general to synthesize DAG.

In accomplishing these and other objects there is provided an isolated polynucleotide encoding human phosphatidic acid phosphatase wherein the polynucleotide encodes a protein comprising a polypeptide sequence selected from the group consisting of (i) the sequence at amino acid number 1 to amino acid number 284 (SEQ ID NO:2) in Figure 1, (ii) the sequence at amino acid number 1 to amino acid number 1 to amino acid number 285 (SEQ ID NO:4) in Figure 2, and (iii) the sequence at amino acid number 1 to amino acid number 276 (SEQ ID NO:8) in Figure 4.

There is further provided an isolated human phosphatidic acid phosphatase protein, wherein the protein comprises a polypeptide sequence selected from the group consisting of (i) the sequence at amino acid number 1 to amino acid number 284 (SEQ ID NO:2) in Figure 1, (ii) the sequence at amino acid number 1 to amino acid number 285 (SEQ ID NO:4) in Figure 2, and (iii) the sequence at amino acid number 1 to amino acid number 276 (SEQ ID NO:8) in Figure 4.

10

15

20

25

30

35

There if further provided a method of preparing a human phosphatidic acid phosphatase- β protein comprising the steps of (i) transforming a host cell with an expression vector comprising a polynucleotide encoding human phosphatidic acid phosphatase, (ii) culturing the transformed host cells which express the protein and (iii) isolating the protein.

There if further provided а of dephosphorylating a substrate comprising contacting the substrate with an effective amount of isolated human phosphatidic acid phosphatase protein such that the protein catalyzes the dephosphorylation of the substrate. It is further provided that the substrate of this method is selected from the group consisting of phosphatidic acid, lysophosphatidic acid, ceramide 1-phosphate, and sphingosine 1-phosphate. It is further provided that this method occurs in vitro, and comprises a step of isolating the dephosphoryled substrate. Additionally, the method can occur in vivo, and is effected by the administration of human phosphatidic acid phosphatase to a mammal in need thereof.

Brief Description of the Drawings

Figure 1 shows the DNA sequence of the cDNA insert of the human PAP- α l isolated herein and the corresponding amino acid sequence (SEQ ID NOS:1 and 2).

Figure 2 shows the DNA sequence of the cDNA insert of the human PAP- $\alpha 2$ isolated herein and the corresponding amino acid sequence (SEQ ID NOS:3 and 4).

Figure 3 shows the DNA sequence of the cDNA insert of the human PAP- β isolated herein and the corresponding amino acid sequence (SEQ ID NOS:5 and 6).

Figure 4 shows the DNA sequence of the cDNA insert of the human PAP- γ isolated herein and the corresponding amino acid sequence (SEQ ID NOS:7 and 8).

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

Figure 5 shows amino acid sequences alignment of the murine PAP coding sequence and the coding sequences for human PAP- α (1 and 2), PAP- β and PAP- γ (SEQ ID NOS:9-13).

Figure 6 shows the effect of IL-1 β on PAP- β expression in human endothelial ECV304 cells using Northern blot analysis.

Figure 7 depicts a thin layer chromatography analysis demonstrating the increase in PA dephosphorylation in cells transfected with either the PAP- α 1 or PAP- α 2 cDNA expression plasmids.

Figure 8 shows the differential expression of PAP- α mRNA in various tumor versus normal tissues.

Figure 9 is a schematic representation of glycerophospholipid biosynthesis involving the conversion of PA to either DAG or CDP-DAG. The synthesis of PA to DAG involves the PAP enzyme, while the synthesis of PA to CPD-DAG involves the CDS enzyme.

Detailed Description of Preferred Embodiments

This invention relates to isolated human phosphatidic acid phosphatase. More particularly, this invention relates to three variants of human phosphatidic acid phosphatase namely PAP- α (1 and 2), PAP- β and PAP- γ .

Examples of the uses for human PAP include the following. PAP is an important tool for enzymatic catalysis of several biologically significant proteins. As discussed above, PAP catalyzes the dephosphorylation of PA to DAG. DAG, in turn, is essential for the activation of protein kinase C (Kent, Anal. Rev. Biochem. 64: 315-343, 1995).

Moreover, PAP catalyzes the dephosphorylation of lysophosphatidic acid (LPA), ceramide 1-phosphate (C-1-P), and sphingosine 1-phosphate (S-1-P) (Brindley et al., Chem. Phys. Lipids 80: 45-57, 1996). In the case of LPA, S-1-P, and C-1-P, the products of the PAP reaction are monoacylglycerol, sphingosine, and ceramide,

PCT/US98/07928

respectively. PAP can control the balance of a wide spectrum of lipid mediators of cell activation and signal transduction by modulating the phosphorylated state of these lipids.

Additionally, the human PAP of the present invention are likely to define a new family of tumor suppressor genes that can be used as candidate genes for gene therapy for the treatment of certain tumors. relationship of PAP and tumor suppression is evidenced in findings that PAP activity is lower in fibroblast cell lines transformed with either the ras or fps oncogene than in the parental rat1 cell line (Brindley et al., Chem. Phys. Lipids 80: 45-57, 1996). Decrease in PAP activity in transformed cells correlates with concomitant increase in PA concentration. elevated PAP activity and lower level of PA has been observed in contact-inhibited fibroblasts relative to proliferating and transformed fibroblasts (Brindley et al., Chem. Phys. Lipids 80: 45-57, 1996). Therefore, PAP plays a role in decreasing cell division and as such can provide a useful tool in treating cancer.

Additionally, PA, the substrate for the enzyme PAP, has been implicated in cytokine induced inflammatory responses (Bursten et al., Circ. Shock 44: 14-29, 1994; Abraham et al., J. Exp. Med. 181: 569-575, 1995; Rice et al., Proc. Natl. Acad. Sci. USA 91: 3857-3861 1994; Leung et al., Proc. Natl. Acad. Sci. USA 92: 4813-4817, 1995) and the modulation of numerous protein kinases involved in signal transduction (English et al., Chem. Phys. Lipids 80: 117-132, 1996). Because of the possibility that activation of human PAP expression can counterinflammatory response from the stimulation through degradation of excess amount of PA in cells, the genes encoding human PAP can be used in gene therapy for the treatment of inflammatory diseases.

35

5

10

15

20

25

Human PAP described herein can also be used in gene therapy for the treatment of obesity associated with diabetes. PAP activity is decreased in the livers and hearts of the grossly obese and insulin resistant JCR:LA corpulent rat compared to the control lean phenotype (Brindley et al., Chem. Phys. Lipids 80: 45-57, 1996). Human PAP described herein therefore can provide an important tool for the treatment of obesity associated with diabetes.

10

15

20

25

30

35

5

1. Human PAP

As used herein, "phosphatidic acid phosphatase" or "PAP" refers to a protein capable of catalyzing the dephosphorylation of PA to DAG. PAP also includes proteins capable of catalyzing the dephosphorylation of lysophosphatidic acid (LPA), ceramide 1-phosphate (C-1-P), and sphingosine 1-phosphate (S-1-P).

As used herein, "isolated" PAP denotes a degree of separation of the protein from other materials endogenous to the host organism. As used herein, "purified" denotes a higher degree of separation than isolated. A purified protein is sufficiently free of other materials endogenous to the host organism such that any remaining materials do not adversely affect the biological properties of the protein, for example, a purified protein is one sufficiently pure to be used in a pharmaceutical context.

As used herein, "human" PAP refers to PAP naturally occurring (or "native") in the human species, including natural variations due to allelic differences. The term "human PAP," however, is not limited to native human proteins, but also includes amino acid sequence variants of native human PAP that demonstrate PAP activity, as defined above.

Variants often exhibit the same qualitative biological activity as the naturally-occurring analogue,

10

15

20

25

30

35

although variants also are selected in order to modify the characteristics of PAP protein. In a preferred embodiment, therefore, human PAP includes the amino acid sequences of Figures 1-4 (SEQ ID NOS:2, 4, 6 and 8), being PAP- α 1, PAP- α 2, PAP- β and PAP- γ , respectively and variants thereof.

Amino acid sequence variants of the protein can be substitutional, insertional or deletion variants. Deletion variants lack one or more residues of the native protein which are not essential for biological activity. An example of a common deletion variant is a protein lacking transmembrane sequences. Another example is a protein lacking secretory signal sequences or signal sequences directing the protein to bind to a particular part of a cell.

Substitutional variants typically contain exchange of one amino acid for another at one or more sites within the protein, and are designed to modulate one or more properties of the protein such as stability against proteolytic cleavage. Substitutions preferably are conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well known in the art and include, for example, the changes of: alanine to serine; arginine to lysine; asparigine to glutamine or histidine; aspartate glutamine glutamate; cysteine to serine; asparigine; glutamate to aspartate; glycine to proline; histidine to asparigine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine, glutamine, or glutamate; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine. course, other amino acid substitutions can be undertaken.

10

15

20

25

30

35

Insertional variants contain fusion proteins such as those used to allow rapid purification of the protein and also can include hybrid proteins containing sequences from other proteins and polypeptides which are protein homologues.

Variants of human PAP also include fragments, analogs, derivatives, muteins and mimetics of the natural PAP protein that retain the ability to cause the beneficial results described above. Fragments of the human PAP protein refer to portions of the amino acid sequence of the PAP polypeptide that also retain this ability.

Variants can be generated directly from the human PAP protein itself by chemical modification by proteolytic enzyme digestion, or by combinations thereof. Additionally, methods of synthesizing polypeptides directly from amino acid residues also exist.

Non-peptide compounds that mimic the binding and function of the human PAP protein ("mimetics") can be produced by the approach outlined in Saragovi et al., Science 253: 792-95 (1991). Mimetics are peptidecontaining molecules which mimic elements of protein secondary structure. See, for example, Johnson al., "Peptide Turn Mimetics" in BIOTECHNOLOGY AND PHARMACY, Pezzuto et al., Eds., (Chapman and Hall, New York, 1993).

The underlying rationale behind the use of peptide mimetics is that the peptide backbone of proteins exists chiefly to orient amino acid side chains in such a way as to facilitate molecular interactions. For the purposes of the present invention, appropriate mimetics can be considered to be the equivalent of the human PAP protein itself.

More typically, at least in the case of gene therapy, variants are created by recombinant techniques employing genomic or cDNA cloning methods. Site-specific

10

15

20

25

30

and region-directed mutagenesis techniques can be employed. See CURRENT PROTOCOLS IN MOLECULAR BIOLOGY vol. 1, ch. 8 (Ausubel et al. eds., J. Wiley & Sons 1989 & Supp. 1990-93); PROTEIN ENGINEERING (Oxender & Fox eds., A. Liss, Inc. 1987). In addition, linker-scanning and PCR-mediated techniques can be employed for mutagenesis. See PCR TECHNOLOGY (Erlich ed., Stockton Press 1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vols. 1 & 2, supra. Protein sequencing, structure and modeling approaches for use with any of the above techniques are disclosed in PROTEIN ENGINEERING, loc. cit. and CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vols. 1 & 2, supra.

2. Polynucleotides Encoding Human PAP

The present invention further includes isolated encoding human phosphatidic polynucleotides an "isolated" herein, used As phosphatase. polynucleotide denotes a degree of separation of the polynucleotide from its naturally occurring environment, In a preferred e.g., from its native intact genome. embodiment, the isolated polynucleotides correspond to those shown in Figure 1 at nucleotide number 342 to nucleotide number 1193 of SEQ ID NO:1; Figure 2 at nucleotide number 342 to nucleotide number 1196 of SEQ ID NO:3; Figure 3 at nucleotide number 294 to nucleotide number 1226 of SEQ ID NO:5; and Figure 4 at nucleotide number 4 to nucleotide number 833 of SEQ ID NO:7.

The invention furthermore relates to a polynucleotide whose sequence is degenerate with respect to the sequences mentioned above in accordance with the nature of the genetic code. Degeneracy is often referred to as codon/anticodon wobble, and is discussed in Watson et al., MOLECULAR BIOLOGY OF THE GENE (4th ed. 1987) at 437-43.

10

15

20

25

30

35

.The present invention further includes bases, nucleosides, nucleotides, oligonucleotides derived from the isolated polynucleotides of the present invention. The term "derived" when used in the context of the present invention connotes a degree of similarity that is sufficient to indicate the original polynucleotide from which hybrid forms, or portions thereof, were obtained. Also within the scope of the invention are socalled "polyamide" or "peptide" nucleic acids ("PNAs") from the polynucleotides οf the PNAs are constructed by replacing the invention. backbone phosphate of (deoxy) ribose polynucleotide with an achiral polyamide backbone or the like. See Nielsen et al., Science 254: 1497-54 (1991).

The above polynucleotides and derivations thereof can be used as important tools in recombinant DNA and other protocols involving nucleic acid hybridization techniques. More specifically, oligonucleotides and nucleic acids derived from the isolated polynucleotides shown in Figures 1-4 (SEQ ID NOS:1, 3, 5, and 7) can be used as hybridization probes, capable of recognizing and specifically binding to complementary nucleic acid sequences, providing thereby a means of detecting, identifying, locating and measuring complementary nucleic acid sequences in a biological sample.

Biological samples include, among a great many others, blood or blood serum, lymph, ascites fluid, urine, microorganism or tissue culture medium, cell extracts, or the like, derived from a biological source, or a solution containing chemically synthesized protein, or an extract or solution prepared from such fluid from a biological source.

An oligonucleotide containing a modified nucleotide of the invention can be used as a primer to initiate nucleic acid synthesis at locations in a DNA or RNA molecule comprising the sequence complementary to the

10

15

20

25

30

35

oligonucleotide sequence. The synthesized nucleic acid strand would have incorporated, at its 5' terminus, the oligonucleotide primer bearing the invention and would, detectable by exploitation of the be characteristics of the detectable label. Two such primers, specific for different nucleotide sequences on complementary strands of dsDNA, can be used in the polymerase chain reaction (PCR) to synthesize and amplify the amount of a nucleotide sequence. The detectable label present on the primers will facilitate the identification of desired PCR products. PCR, combined with techniques for preparing complementary DNA (cDNA) can be used to amplify various RNAs, with oligonucleotide primers again serving both to provide points initiation of synthesis in the cDNA duplex flanking the desired sequence and to identify the desired product. Primers labeled with the invention may also be utilized for enzymatic nucleic acid sequencing by the dideoxy chain-termination technique.

The invention can be applied to measure or quantitate the amount of DNA present in a sample. For instance, the concentration of nucleic acid can be measured by comparing detectable labels incorporated into the unknown nucleic acid with the concentration of detectable labels incorporated into known amounts of nucleic acid.

Such a comparative assessment can be done using biotin where the respective concentrations are determined by an enzyme-linked assay utilizing the streptavidinalkaline phosphatase conjugate and a substrate yielding a soluble chromogenic or chemiluminescent signal.

3. Recombinant Production of Human PAP

In a further embodiment human PAP is expressed via recombinant methods known to those of skill in the art. The polynucleotides of the present invention can be

10

15

20

25

30

expressed in any number of different recombinant DNA expression systems to generate large amounts of protein, which can then be purified and used for the various applications of human PAP described above. Included within the present invention are proteins having native glycosylation sequences, and deglycosylated or unglycosylated proteins prepared by the methods described below.

Recombinant technology for producing desired proteins is known by ordinarily skilled artisans and includes providing a coding sequence for a desired protein, and operably linking the coding sequence to polynucleotide sequences capable of effecting its expression.

With regard to one aspect of the invention, it often is desirable to produce human PAP as a fusion protein, freed from upstream, downstream or intermediate sequences, or as a protein linked to leader sequences, effecting secretion of human PAP into cell culture medium.

A typical expression system will also contain for transcription control sequences necessary Known control sequences. translation of a message. include constitutive or inducible promoter systems, initiation signals (in eucaryotic. translational expression), polyadenylation translation termination transcription terminating sequences. and Expression vectors containing controls which permit operably linking of desired coding sequences to required control systems are known by the skilled artisan. Such vectors can be found which are operable in a variety of hosts.

Human PAP of the present invention may be produced in procaryotic cells using appropriate controls, such as trp or lac promoters, or in eucaryotic host cells, capable of effecting post-translational processing that

10

15

20

25

30

35

permits proteins to assume desired three-dimensional conformation. Eucaryotic control systems and expression vectors are known; including leu and glycolytic promoters useful in yeast, the viral SV40 and adenovirus and CMV promoters in mammalian cells, and the baculovirus system which is operable in insect cells. Plant vectors with suitable promoters, such as the nos promoter are also available.

Standard laboratory manuals (e.g., Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989) present standard techniques and methodologies for expressing polynucleotides encoding a desired protein, culturing appropriate cells, providing suitable expression conditions, and recovering a resulting protein from culture.

In preparing the inventive human PAP, a suitable polynucleotide encoding human PAP, constructed utilizing any of the foregoing techniques is operable linked to an expression vector which is then transformed into a compatible host. Host cells are cultured using conditions appropriate for growth. Expression of the desired human PAP is preferably induced after some predetermined growth level has occurred. Human PAP production is monitored and the desired protein isolated from culture either from a supernatant, or by first lysing host cells with an appropriate agent, or by other methods known to the skilled artisan.

In another preferred embodiment, a polynucleotide encoding human PAP is ligated into a mammalian expression vector. A preferred mammalian expression vector is the plasmid "pCE2." The plasmid pCE2 is derived from pREP7b (Leung, et al., Proc. Natl. Acad. Sci. USA, 92: 4813-4817, 1995) with the RSV promoter region replaced by the CMV enhancer and the elongation factor- 1α (EF- 1α) promoter and intron. The CMV enhancer of the pCE2 vector

is constructed from a 380 bp Xba I-Sph I fragment produced by PCR from pCEP4 (Invitrogen, San Diego, CA) using the primers 5'-GGCTCTAGAT ATTAATAGTA ATCAATTAC-3' (SEQ ID NO:14) and 5'-CCTCACGCAT GCACCATGGT AATAGC-3' (SEQ ID NO:15). The EF-1α promoter and intron (Uetsuki, et al., J. Biol. Chem., 264: 5791-5798, 1989) are constructed from a 1200 bp Sph I-Asp718 I fragment produced by PCR from human genomic DNA using the primers 5'-GGTGCATGCG TGAGGCTCCG GTGC-3' (SEQ ID NO:16) and 5'-GTAGTTTTCA CGGTACCTGA AATGGAAG-3' (SEQ ID NO:17). These 2 fragments are ligated into a Xba I/Asp718 I digested vector derived from pREP7b to generate pCE2.

In another preferred embodiment of the present invention, pCE2 containing a polynucleotide expressing human PAP is used to transform a host cell which then expresses the protein. Preferred host cells include the human embryonic kidney cell line 293-EBNA (Invitrogen, San Diego, CA), endothelial ECV304 cells, and epithelial A549 cells.

20

25

5

10

15

4. Dephosphorylation of Substrate

In another embodiment, the present invention includes a method of dephosphorylating a substrate by contacting the substrate with an effective amount of isolated human PAP. An "effective amount" of human PAP is an amount which will dephosphorylate a detectable amount of substrate. Such an amount can be determined empirically based on variables well known to those of skill in the art, such as reaction time and temperature.

. 30

In one embodiment, the substrate includes phosphatidic acid, lysophosphatidic acid, ceramide 1-phosphate, and sphingosine 1-phosphate. In another embodiment, the isolated human PAP includes PAP- α (1 and 2), PAP- β and PAP- γ and variants thereof.

35

In a further embodiment, the dephosphorylation of substrate occurs in vitro, by contacting a substrate with

10

15

20

25

30

35

recombinantly produced human PAP expressed by the methods described above. The dephosphorylated substrate is then isolated by standard isolation and purification methods, including for example, thin layer chromatography or high pressure liquid chromatography.

In another embodiment, the dephosphorylation of substrate occurs in vivo via the administration of human PAP to a mammal, preferably a human. "Administration" means delivery of human PAP protein to a mammal by methods known to those of skill in the art including, but not limited to: orally, for example in the form of pills, tablets, lacquer tablets, coated tablets, granules, hard gelatin capsules, soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures; rectally, for example in the form suppositories; parenterally, for example in the form of injection solutions or infusion solutions, microcapsules or rods; percutaneously, for example in the form of ointments or tinctures; transdermally; intravascularly, intracavitarily; intramuscularly; subcutaneously; and nasally, for example in the form of nasal sprays or inhalants.

The administration of human PAP protein includes the administration of the protein combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g. human serum albumin, are described for example in Remington's *Pharmaceutical Sciences* by E.W. Martin, which is hereby incorporated by reference. Such compositions will contain an effective amount of protein hereof together with a suitable amount of vehicle in order to prepare pharmaceutically acceptable compositions suitable for effective administration to the host.

Such compositions should be stable for appropriate periods of time, preferably are acceptable for administration to humans and preferably are readily

10

15

20

25

30

35

manufacturable. Although pharmaceutical solution formulations are provided in liquid form appropriate for immediate use, formulations may also be provided in frozen or in lyophilized form. In the former case, the composition must be thawed prior to use. The latter form is often used to enhance the stability of the medicinal agent contained in the composition under a wide variety of storage conditions. Such lyophilized preparations are reconstituted prior to use by the addition of suitable pharmaceutically acceptable diluents, such as sterile water or sterile physiological saline solution.

Additionally, administration is meant to include delivery of human PAP protein to a mammal by means of gene therapy techniques, i.e., by the delivery of polynucleotides encoding human PAP to PAP-deficient cells, whereby human PAP is then expressed in the cell. Gene therapy techniques are known to those of skill in the art. For example, listing of present-day vectors suitable for use in gene therapy of the present invention is set forth in Hodgson, Bio/Technology 13: 222 (1995). See also, Culver et al., Science, 256:1550-62 (1992).

Additionally, liposome-mediated gene transfer is another suitable method for the introduction of a recombinant vector containing a polynucleotide encoding human PAP into a PAP-deficient cell. See Caplen et al., Nature Med. 1:39-46 (1995) and Zhu et al., Science 261:209-211 (1993).

Additionally, viral vector-mediated gene transfer is also a suitable method for the introduction of a recombinant vector containing the gene encoding human PAP into a PAP-deficient cell. Examples of appropriate viral vectors are adenovirus vectors. Detailed discussions of the use of adenoviral vectors for gene therapy can be found in Berkner, Biotechniques 6:616-629 (1988), Trapnell, Advanced Drug Delivery Rev. 12:185-199 (1993).

10

15

20

25

30

35

The following examples merely illustrate the invention and, as such, are not to be considered as limiting the invention set forth in the claims.

Example 1 Cloning and Expression of Human PAP- α , PAP- β and PAP- γ

Homology search of the Genbank database (Boguski, et al., Science 265:1993-1994, 1994) of expressed sequence tag (dbEST) using the murine PAP protein sequence (Kai et al., J. Biol. Chem. 271: 18931-18938, 1996) as probe identified several short stretches of human cDNA sequences with homology to the murine PAP protein sequence. These cDNA sequences of interest were derived from single-run partial sequencing of random human cDNA cloning projects carried out mainly by I.M.A.G.E. Consortium [LLNL] cDNA clones program. Based on the partial DNA sequences available in the GenBank database, the human cDNA clones that are homologous to the murine PAP protein sequence can be grouped into three classes, suggesting the presence of at least three different human PAP variants, designated as PAP- α , PAP- β , and PAP- γ here. For instance, a potential human PAP- α clone (GenBank #H17855) identified contains sequence homologous to aa 272-283 and the 3'-untranslated region of murine PAP; a potential human PAP- β clone (GenBank #W70040) identified contains sequence similarities corresponding to aa 175-251 of murine PAP; and a potential human PAP-γ clone (GenBank #N75714) identified contains sequences similarities corresponding to aa 18-142 of murine PAP. These cDNA clones were purchased (Genome Systems, St. Louis, MO) for further analysis. DNA sequence determination of the entire cDNA inserts of these clones showed clone H17855 contained sequences that are homologous to the N- and C-terminal sequences of murine PAP with a gap of about 150 bp that led to a frame shift in reading frame. This clone is most likely a

10

15

20

25

30

35

spuriously spliced form of PAP- α clone. Clone W70040 was found to be a full-length PAP- β clone, and clone N75714 was found to be a partial PAP- γ clone with an open reading frame homologous to the region from aal8 to the C-terminus of murine PAP.

To assemble a full-length functional PAP- α clone, oligonucleotides o_papa1F, 5'-ggcatggtAC synthetic CATGTTTGAC AAGACGCGGC-3' (SEQ ID NO:18), based on the Nterminal region of PAP- α and o_papalR, 5'-CATATGTAGT ATTCAATGTA ACC-3' (SEQ ID NO:19), based on a region downstream of a Pst I site complementary to the coding strand of PAP- α were used to amplify the N-terminal coding region of PAP- α from a human lung cDNA library (Life Technologies, Inc., Gaithersburg, MD). The 450 bp Acc65 I - Pst I fragment generated was inserted into a Acc65 I / Pst I vector from pBluescript(II)SK(-) (Stratagene, San Diego, CA) for further analysis. DNA sequence analysis of the subclones obtained revealed at least two different classes of clones with sequences that diverged at the putative exon of interest, suggesting the presence of two alternatively spliced forms of PAP- α . These two alternatively spliced forms of PAP- α are designated as PAP- α 1 and PAP- α 2 here. Each of individual 450 bp Acc65 I - Pst I fragment generated by PCR was combined with the 810 bp Pst I - Not I fragment derived from clone H17855 for ligation into a Acc65 I /Not I mammalian expression vector derived from pCE2 for the generation of expression plasmids for PAP- α 1 and PAP- $\alpha 2$. The plasmid pCE2 was derived from pREP7b (Leung, et al., Proc. Natl. Acad. Sci. USA, 92: 4813-4817, 1995) with the RSV promoter region replaced by the CMV enhancer and the elongation factor- 1α (EF- 1α) promoter and intron. The CMV enhancer of the pCE2 vector was constructed from a 380 bp Xba I-Sph I fragment produced by PCR from pCEP4 (Invitrogen, San Diego, CA) using the primers 5'-GGCTCTAGAT ATTAATAGTA ATCAATTAC-3' (SEQ ID NO:14) and 5'-

CCTCACGCAT GCACCATGGT AATAGC-3' (SEQ ID NO:15). The EF-1α promoter and intron (Uetsuki, et al., J. Biol. Chem., 264: 5791-5798, 1989) was constructed from a 1200 bp Sph I-Asp718 I fragment produced by PCR from human genomic DNA using the primers 5'-GGTGCATGCG TGAGGCTCCG GTGC-3' (SEQ ID NO:16) and 5'-GTAGTTTTCA CGGTACCTGA AATGGAAG-3' (SEQ ID NO:17). These 2 fragments were ligated into a Xba I/Asp718 I digested vector derived from pREP7b to generate pCE2.

The DNA sequence determined from clone N75714 was used as a probe to search for clones with overlapping sequences in the GenBank database. Clone Z43618 was found to contain an additional 5'-sequence with a potential ATG initiation codon. To assemble length PAP- γ clone, synthetic oligonucleotides o_papg1F, 5'-tgatggctag cATGCAGAGA AGATGGGTCT TCGTGCTGCT CGACGTG-3' (SEQ ID NO:20), based on the N-terminal region of PAP- γ and o_papg1R, 5'-AGTGCGGGAT CCCATAAGTG GTTG-3', (SEQ ID NO:21) based on a region complementary to the coding strand of PAP- γ just downstream of its stop codon were used to generate the full-length coding region of PAP- γ by PCR using the clone N75714 as template. The 820 bp Nhe I - BamH I fragment obtained was then ligated into a Nhe I / BamH I mammalian expression vector derived from pCE2.

Figures 1, 2, 3 and 4 show the translated DNA sequences of the putative human cDNA clones for PAP- α 1, α 2, β and γ , (SEQ ID NOS:1, 3, 5 and 7) respectively. The designated ATG initiation site for translation of each cDNA clone fulfills the requirement for an adequate initiation site according to Kozak (Kozak, Critical Rev. Biochem. Mol. Biol. 27:385-402, 1992).

The amino acid sequence of each open reading frame (Figures 1, 2, 3 and 4 (SEQ ID NOS:2, 4, 6 and 8)) was used as the query sequence to search for homologous sequences in protein databases. Search of the Genbank

35

5

1.0

15

20

25

database from the National Center for Biotechnology Information (NCBI) using the blastp program showed that these proteins are most homologous to the murine PAP sequence (Kai et al., J. Biol. Chem. 271: 18931-18938, 1996), and a rat endoplasmic reticulum resident transmembrane protein of unknown function, Dri 42, whose expression is up-regulated during epithelial differentiation (Barila et al., J. Biol. Chem. 271: 29928-29936, 1996).

10

15

20

5

Example 2 Activation of PAP- β Transcription by IL1- β

It is possible that activation of PAP- β expression can counter-balance the inflammatory response from IL-1 β stimulation through degradation of the excess amount of PA in cells. To determine whether IL1- β , an inflammatory cytokine, would activate the transcription of PAP mRNAs, Northern analysis of PAP- β mRNA levels (Fig. 6) was performed in human endothelial ECV304 cells at various times after IL-1 β stimulation. Figure 6 shows that PAP- β mRNA expression was induced after incubation of ECV304 cells with IL-1 β after at least 6 hours, suggesting that PAP- β is a late-response gene to IL-1 β stimulation. This indicates that human PAP may act to reduce IL-1 β induced inflammation by degrading excess PA in cells.

30

35

25

The expression of PAP- α 1 and PAP- α 2 cDNA was found to increase PA dephosphorylation in mammalian cells. The expression plasmids for PAP- α 1, PAP- α 2 and the control vector were transiently transfected into 293-EBNA (EB293) cells (Invitrogen, San Diego, CA) using the lipofectant DOTAP (Boehringer Mannheim, Indianapolis, IN). PAP activities were followed by TLC analysis based on the conversion of [C¹⁴]PA (DuPont NEN, Boston, MA) to

10

15

20

25

30

[C¹⁴] DAG using membrane fractions isolated from the various cell extracts. Figure 7 shows membrane fractions derived from cells transfected with either the PAP- α 1 (lanes 6 and 7) or PAP- α 2 (lanes 8 and 9) produced more $[C^{14}]$ DAG those from untransfected cells (lanes 2 and 3) or from cells transfected with the control pCE2 vector (lanes 4 and 5). In this particular chromatography system, DAG can be resolved into two bands, possibly due It appears that to heterogeneity in the acyl-chains. dephosphorylate preferentially $PAP-\alpha2$ and $PAP-\alpha1$ different species of PA as evidenced by the change in relative intensity of the two DAG bands (lanes 6 to 9).

Example 4 Differential Expression of PAP-α mRNA in Selected Tumor Versus Normal Tissues

The possibility that PAP- α expression can degrade the excess amount of PA in cells suggests that PAP-lpha may be down-regulated in tumor cells when compared to normal cells, as tumor cells tend to be more inflammatory due to a possibly higher level of PA when compared to normal or To test this hypothesis, Northern resting cells. analysis using PAP- α (1 and 2) cDNA probe was performed on RNA blots derived from various matching pairs of tumor and normal tissues (Invitrogen, Carlsbad, CA). Figure 8 the expression levels of $PAP-\alpha$ mRNA substantially higher in five out of eight of the normal colon, rectal, breast, tissues examined; namely, fallopian tube, and ovarian tissues when compared to the corresponding tumor tissues.

SEQUENCE LISTING

(1	GENERAL	INFORMATION:
----	---------	--------------

- (i) APPLICANT: LEUNG, David W. TOMPKINS, Christopher K.
- (ii) TITLE OF INVENTION: HUMAN PHOSPHATIDIC ACID PHOSPHATASE
- (iii) NUMBER OF SEQUENCES: 21
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Foley & Lardner
 - (B) STREET: 3000 K Street, N.W., Suite 500
 - (C) CITY: Washington
 - (D) STATE: D.C.
 - (E) COUNTRY: USA
 - (F) ZIP: 20007-5109
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/842,827
 - (B) FILING DATE: 17-APR-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BENT, Stephen A.
 - (B) REGISTRATION NUMBER: 29,768
 - (C) REFERENCE/DOCKET NUMBER: 77319/125
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202)672-5300
 - (B) TELEFAX: (202)672-5399
 - (C) TELEX: 904136
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1563 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 342..1193
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 342..1193
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- CCTGTGGGAG AGAGCGCCGG GATCCGGACG GGGTAGCAAC CGGGGCAGGC CGTGCCGGCT 6
- GAGGAGGTCC TGAGGCTACA GAGCTGCCGC GGCTGGCACA CGAGCGCCTC GGCACTAACC

GAGTGTTCGC GGGGC	CTGTG AGGGGA	redec cccee	GCGCC ATTGCTGGCG GTGGGAGCGC	180
CGCCCGGTCT CAGC	CGCCC TCGGCT	מבדכ דככדכי	CTCCG GCTGGGAGGG GCCGTATCTC	240
GGGGCCGTCG CCAG	cccee cccee	SCTCG ATAAT	CAAGG GCCTCGGCCG TCGTCCCGC	300
CCTCATTCCA TCGC	CCTTGC CGGGC	AGCCC GGGCA(GAGAC C ATG TTT GAC AAG Met Phe Asp Lys 1	353
ACG CGG CTG CCG Thr Arg Leu Pro	TAC GTG GCC Tyr Val Ala 10	CTC GAT GT Leu Asp Va	G CTC TGC GTG TTG CTG GCT l Leu Cys Val Leu Leu Ala 15 20	401
GGA TTG CCT TTT Gly Leu Pro Phe	GCA ATT CTT Ala Ile Leu 25	Thr Ser Ar	GG CAT ACC CCC TTC CAA CGA GG His Thr Pro Phe Gln Arg 35	449
GGA GTA TTC TGT Gly Val Phe Cys	: Asn Asp Glu	TCC ATC AF Ser Ile Ly 45	AG TAC CCT TAC AAA GAA GAC ys Tyr Pro Tyr Lys Glu Asp 50	497
ACC ATA CCT TA Thr Ile Pro Ty 55	GCG TTA TTA Ala Leu Leu	A GGT GGA A 1 Gly Gly I 60	TA ATC ATT CCA TTC AGT ATT le Ile Ile Pro Phe Ser Ile 65	545
ATC GTT ATT AT Ile Val Ile Il 70	r CTT GGA GAM e Leu Gly Glu 7	u Thr Leu S	CT GTT TAC TGT AAC CTT TTG er Val Tyr Cys Asn Leu Leu 80	593
CAC TCA AAT TO His Ser Asn Se 85	C TTT ATC AGG r Phe Ile Arg 90	G AAT AAC T g Asn Asn T	AC ATA GCC ACT ATT TAC AAA 'yr Ile Ala Thr Ile Tyr Lys 95 100	641
GCC ATT GGA AC Ala Ile Gly Th	C TTT TTA TT r Phe Leu Ph 105	e Gly Ala A	GCT GCT AGT CAG TCC CTG ACT Ala Ala Ser Gln Ser Leu Thr 110 115	689
Asp Ile Ala Ly	G TAT TCA AT vs Tyr Ser Il 0	CA GGC AGA C Le Gly Arg I 125	CTG CGG CCT CAC TTC TTG GAT Leu Arg Pro His Phe Leu Asp 130	737
GTT TGT GAT C Val Cys Asp P 135	CA GAT TGG TC CO Asp Trp Se	CA AAA ATC A er Lys Ile A 140	AAC TGC AGC GAT GGT TAC ATT Asn Cys Ser Asp Gly Tyr Ile 145	785
GAA TAC TAC A Glu Tyr Tyr I 150	le Cys Arg G	GG AAT GCA ly Asn Ala 55	GAA AGA GTT AAG GAA GGC AGG Glu Arg Val Lys Glu Gly Arg 160	3 833 3
TTG TCC TTC T Leu Ser Phe T 165	AT TCA GGC C yr Ser Gly H 170	AC TCT TCG is Ser Ser	TTT TCC ATG TAC TGC ATG CTC Phe Ser Met Tyr Cys Met Let 175 18	n
TTT GTG GCA C Phe Val Ala I	TT TAT CTT C eu Tyr Leu G 185	AA GCC AGG In Ala Arg	ATG AAG GGA GAC TGG GCA AG Met Lys Gly Asp Trp Ala Ar 190 195	A 929 g
Leu Leu Arg	CC ACA CTG C Pro Thr Leu G	CAA TTT GGT Sln Phe Gly 205	CTT GTT GCC GTA TCC ATT TA Leu Val Ala Val Ser Ile Ty 210	T 977
			AAA CAC CAC TGG AGC GAT GT Lys His His Trp Ser Asp Va 225	

TTG Leu	ACT Thr 230	GGA Gly	CTC Leu	ATT Ile	CAG Gln	GGA Gly 235	GCT Ala	CTG Leu	GTT Val	GCA Ala	ATA Ile 240	TTA Leu	GTT Val	GCT Ala	GTA Val	1073
TAT Tyr 245	GTA Val	TCG Ser	GAT Asp	TTC Phe	TTC Phe 250	AAA Lys	GAA Glu	AGA Arg	ACT Thr	TCT Ser 255	TTT Phe	AAA Lys	GAA Glu	AGA Arg	AAA Lys 260	1121
GAG Glu	GAG Glu	GAC Asp	TCT Ser	CAT His 265	ACA Thr	ACT Thr	CTG Leu	CAT His	GAA Glu 270	ACA Thr	CCA Pro	ACA Thr	ACT Thr	GGG Gly 275	AAT Asn	1169
			AGC Ser 280					TGA	AAGG	CAG (CAGG	GTGC	CC A	GGTG	AAGCT	1223
GGC	CTGT	TTT	CTAA	AGGA	AA A	TGAT	TGCC.	A CA	AGGC.	AAGA	GGA	TGCA	TCT	TTCT	TCCTGG	1283
TGT	ACAA	GCC	TTTÀ	aaga	CT T	CTGC	TGCT	g at	ATGC	CTCT	TGG	ATGC	ACA	CTTT	GTGTGT	1343
ACA	TAGT	TAC	CTTT	AACT	CA G	TGGT	TATC	T AA	TAGC	TCTA	AAC	TCAT	TAA	AAAA	ACTCCA	1403
AGC	CTTC	CAC	CAAA	ACAG	TG C	CCCA	.CCTG	T AT	ACAT	TTTT	ATT	AAAA	AAA	TGTA	ATGCTT	1463
ATG	TATA	AAC	ATGT	'ATGT	'AA T	ATGC	TTTC	TA T	GAAT	GATG	TTT	GATT	TAA	ATAT	AATACA	1523
TAT	TAAA	ATG	TATG	GGAC	AA C	CAAA	AAAA	A AA	AAAA	AAAA	,					1563

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Phe Asp Lys Thr Arg Leu Pro Tyr Val Ala Leu Asp Val Leu Cys

Val Leu Leu Ala Gly Leu Pro Phe Ala Ile Leu Thr Ser Arg His Thr

Pro Phe Gln Arg Gly Val Phe Cys Asn Asp Glu Ser Ile Lys Tyr Pro

Tyr Lys Glu Asp Thr Ile Pro Tyr Ala Leu Leu Gly Gly Ile Ile Ile

Pro Phe Ser Ile Ile Val Ile Ile Leu Gly Glu Thr Leu Ser Val Tyr
65 75 80

Cys Asn Leu Leu His Ser Asn Ser Phe Ile Arg Asn Asn Tyr Ile Ala

Thr Ile Tyr Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala Ser 100 105

Gln Ser Leu Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg Pro

His Phe Leu Asp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys Ser

Asp Gly Tyr Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val 145 150 150	
Lys Glu Gly Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met 165 170 175	
Tyr Cys Met Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly 180 185 190	
Asp Trp Ala Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala 195 200 205	
Val Ser Ile Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His 210 220	
Trp Ser Asp Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile 225 230 235 240	
Leu Val Ala Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe 245 250 255	
Lys Glu Arg Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro 260 265 270	
Thr Thr Gly Asn His Tyr Pro Ser Asn His Gln Pro	
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1566 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ix) FEATURE:	
(A) NAME/KEY: CDS (B) LOCATION: 3421196	
(B) LOCATION: 3421150	
<pre>(ix) FEATURE: (A) NAME/KEY: mat_peptide</pre>	
(B) LOCATION: 3421196	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CCTGTGGGAG AGAGCGCCGG GATCCGGACG GGGTAGCAAC CGGGGCAGGC CGTGCCGGCT	60
GAGGAGGTCC TGAGGCTACA GAGCTGCCGC GGCTGGCACA CGAGCGCCTC GGCACTAACC	120
GAGTGTTCGC GGGGGCTGTG AGGGGAGGGC CCCGGGCGCC ATTGCTGGCG GTGGGAGCGC	180
CGCCCGGTCT CAGCCCGCCC TCGGCTGCTC TCCTCCTCCG GCTGGGAGGG GCCGTATCTC	240
	300
GGGGCCGTCG CCAGCCCCGG CCCGGGCTCG ATAATCAAGG GCCTCGGCCG TCGTCCCGCA	353
CCTCATTCCA TCGCCCTTGC CGGGCAGCCC GGGCAGAGAC C ATG TTT GAC AAG Met Phe Asp Lys 1	353
ACG CGG CTG CCG TAC GTG GCC CTC GAT GTG CTC TGC GTG TTG CTG GCT	401
Thr Arg Leu Pro Tyr Val Ala Leu Asp Val Leu Cys Val Leu Leu Ala	
10 15 20	

CCC ATG CCT ATG CCT GTT CTA AAA TTG GGC CAA ATA TAT CCA TTT CAG Ser Met Pro Met Ala Val Leu Lys Leu Gly Gln lie Tyr Pro Phe Gln																		
Arg Gly Phe Phe Cys Lys Asp Asn Ser Ile Asn Tyr Pro Tyr His Asp 40 AGT ACC GCC GCA TCC ACT GTC CTC ATC CTA GTG GGG GTT GGC TTG CCC Ser Thr Ala Ala Ser Thr Val Leu Ile Leu Val Gly Val Gly Leu Pro 55 GTT TCC TCT ATT ATT CTT GGA GAA ACC CTG TCT GTT TAC TGT AAC CTT Val Ser Ser Ile Ile Leu Gly Glu Thr Leu Ser Val Tyr Cys Asn Leu 70 TTG CAC TCA AAT TCC TTT ATC AGT AAT AAC TAC ATA GCC ACT ATT TAC Leu His Ser Asn Ser Phe Ile Ser Asn Asn Tyr Ile Ala Thr Ile Tyr 85 AAA GCC ATT GGA ACC TTT TTA TTT GGT GCA GAG GCT GCT AGT CAG TCC CTG Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala Ser Gln Ser Leu 105 AAT GAC ATT GCC AAG TAT TCA ATA AGC AGA GTG CG CCT CAC TTC TTG Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg Pro His Phe Leu 125 GAT GTT TGT GAT CCA GAT TGG TCA AAA ATC AAC TGC AGC GAT GGT TAC Asp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys Ser Asp Gly Tyr 1135 ATT GAA TAC TAC ATA TGT CGA GGG AAT GCA GAA AGT AAG GAA GGC TIC GTU Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val Lys Glu Gly 155 AGG TTG TCC TTC TAT TCA GGC CAC TCT TCG TTT TCC ATG TAC Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met Tyr Cys Met 165 AGG TTG TCC TTC TAT TCA GGC CAC TCT TCG TTT TCC ATG TAC TGC ATG ARG Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met Tyr Cys Met 165 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT Arg Leu Leu Arg Pro Thr Leu Gln Ala Arg Met Lys Gly Asp Trp Ala 189 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 200 TAT GTG GGC CTT TCT CGA GTT TCT GAT TAT AAA CAC CAC TGG AGC GAT Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GGA CTT GGT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Tala Ile Leu Val Ala 210 GTA TAT GTA CGA CTC ATT CAG GGA ACT CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Tala Ile Leu Val Ala 220 GTA TAT GGA GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT CGA ACA CCA TAT CCA GAC ACT CCT CAT GAA ACA CC	TCC Ser	ATG Met	CCT Pro	ATG Met	Ala	GTT Val	CTA Leu	AAA Lys	TTG Leu	Gly	CAA Gln	ATA Ile	TAT Tyr	CCA Pro	Phe	CAG Gln		449
Ser Thr Ala Ala Ser Thr Val Leu Ile Leu Val Gly Val Gly Leu Pro 55				Phe					Ser					Tyr				497
Val Ser Ser Ile Ile Leu Gly Glu Thr Leu Ser Val Tyr Cys Asn Leu 70 80 61 75 75 75 75 75 75 75 75 75 75 75 75 75	AGT Ser	ACC Thr	Ala	GCA Ala	TCC Ser	ACT Thr	GTC Val	Leu	ATC Ile	CTA Leu	GTG Val	GGG Gly	Val	Gly	TTG Leu	CCC Pro		545
Leu His Ser Asn Ser Phe Ile Ser Asn Asn Tyr Ile Ala Thr Ile Tyr 95 100 AAA GCC ATT GGA ACC TTT TTA TTT GGT GCA GCT GCT AGT CAG TCC CTG Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala Ser Gln Ser Leu 105 115 ACT GAC ATT GCC AAG TAT TCA ATA GGC AGA CTG CGG CCT CAC TTC TTG Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg Pro His Phe Leu 120 125 GAT GTT TGT GAT CCA GAT TGG TCA AAA ATC AAC TGC AGC GAT GGT TAC Asp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys Ser Asp Gly Tyr 135 ATT GAA TAC TAC ATA TGT CGA GGG AAT GAA ATC CTG TAT AAG GAA GGC Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val Lys Glu Gly 150 AGG TTG TCC TCT TAT TCA GGC CAC TCT TCG TTT TCC ATG TAC TGC ATG ARG Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met Tyr Cys Met 165 CTG TTT GTG GCA CTT TAT CTT CAA GCC AGG ATG AAG GAA GAC TGG GCA Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly Asp Trp Ala 185 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT ATG Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 205 TAT GTG GGC CTT TCT CGA GTT TCT GAT TAT AAA CAC CAC TGG AGC GAT TYr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 225 GTG TTG ACT GGA CTC ATT CAG GGA GAC TCT GTT GCA GAT ATT TAT GTT GCT TGT ACT GAT TAT GTT GCT TGT TGT GAT TTT AAA CAC CAC TGG AGC GAT TYr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 225 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT TGT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TCT CAT ACA ACA CTC CTG GAT ACA ACA ACA CTA GGG Lys Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216	GTT Val	Ser	TCT Ser	ATT Ile	ATT Ile	CTT Leu	Gly	GAA Glu	ACC Thr	CTG Leu	TCT Ser	Val	Tyr	TGT Cys	AAC Asn	CTT Leu		593
Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala Ser Gln Ser Leu 110 105 105 105 110 115 115 115 115 115	Leu					Phe					Tyr	Ile				Tyr		641
Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg Pro His Phe Leu 120 GAT GTT TGT GAT CCA GAT TGG TCA AAA ATC AAC TGC AGC GAT GGT TAC ASp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys Ser Asp Gly Tyr 135 ATT GAA TAC TAC ATA TGT CGA GGG AAT GCA GAA AGA GGT TAC GAG GGC ISS ARG GIV Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val Lys Glu Gly 150 AGG TTG TCC TTC TAT TCA GGC CAC TCT TCG TTT TCC ATG TAC TGC ATG ARG Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met Tyr Cys Met 170 CTG TTT GTG GCA CTT TAT CTT CAA GCC AGG ATG AAG GGA GAC TGG GCA 180 Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly Asp Trp Ala 185 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT ATG Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 200 TAT GTG GGC CTT TCT CGA GTT TCT GAT TAT AAA CAC CAC TGG AGC GAT Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT Yal Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTG ACT GGA TTC TTC AAA GAA AGA ACT TCT TTT AAA GAA AGA ACT TCT TTT AAA GAG GAG GAC CAC ACA CTG GAT TCT TTT AAA GAA AGA ACT TCT TTT AAA GAA AGA ACA CAC CAC CAC GGG ATG CAC CAC CAC CAC CAC CAC CAC CAC CAC CA					Thr	Phe				Ala	Ala				Ser	Leu		689
ASP Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys Ser Asp Gly Tyr 135 ATT GAA TAC TAC ATA TGT CGA GGG AAT GCA GAA AGA GTT AAG GAA GGC Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val Lys Glu Gly 150 AGG TTG TCC TTC TAT TCA GGC CAC TCT TCG TTT TCC ATG TAC TGC ATG ARG Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met Tyr Cys Met 170 CTG TTT GTG GCA CTT TAT CTT CAA GCC AGG ATG AAG GGA GGA GGG GCA Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly Asp Trp Ala 185 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT ARG Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 205 TAT GTG GGC CTT TCT CGA GTT TAT AAA CAC CAC TGG AGC GAT TYR Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TCT CAA AGA ACA CTG CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TTC TTC AAA GAA AGA ACT TCT TTT AAA GAA AGA AGA ACT Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe Lys Glu Arg 240 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 ASD His Tyr Pro Ser Asn His Gln Pro				Ala	Lys				Gly	Arg				His	Phe			737
Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val Lys Glu Gly 155			Cys	Asp				Ser	Lys				s Se	r Ası				785
Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met Tyr Cys Met 175 CTG TTT GTG GCA CTT TAT CTT CAA GCC AGG ATG AAG GGA GAC TGG GCA Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly Asp Trp Ala 185 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 205 TAT GTG GGC CTT TCT CGA GTT TCT GAT TAT AAA CAC CAC TGG AGC GAT Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TCT TCT AAA GAA AGA ACT TCT TTT AAA GAA AGA 1121 GTA TAT GTA TCG GAT TCT TCT AAA GAA AGA ACT TCT TTT AAA GAA AGA 1121 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAAA CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216		Glu	Туз				Arg	Gl)				Arg	y Va					833
Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly Asp Trp Ala 185 AGA CTC TTA CGC CCC ACA CTG CAA TTT GGT CTT GTT GCC GTA TCC ATT Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 200 TAT GTG GGC CTT TCT CGA GTT TCT GAT TAT AAA CAC CAC TGG AGC GAT Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TTC TCT AAA GAA AGA ACT TCT TTT AAA GAA AGA Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe Lys Glu Arg 245 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAA CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 AAA CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216	Arg	Leu				r Sei	Gly				r Phe	e Se				s Met		881
Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala Val Ser Ile 200 TAT GTG GGC CTT TCT CGA GTT TCT GAT TAT AAA CAC CAC TGG AGC GAT TYr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TTC TTC AAA GAA AGA ACT TCT TTT AAA GAA AGA CAC Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe Lys Glu Arg 255 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 275 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAAGGCAG CAGGGTGCCC 1216					a Le	u Ty				a Ar	g Me				p Tr	p Ala		929
Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His Trp Ser Asp 215 GTG TTG ACT GGA CTC ATT CAG GGA GCT CTG GTT GCA ATA TTA GTT GCT Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TTC TTC AAA GAA AGA ACT TCT TTT AAA GAA AGA Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe Lys Glu Arg 245 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 ASD HIS TYR PRO SER ASD HIS Gln PRO				u Ar	g Pr				n Ph	e Gl				a Va	l Se			977
Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile Leu Val Ala 230 GTA TAT GTA TCG GAT TTC TTC AAA GAA AGA ACT TCT TTT AAA GAA AGA Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe Lys Glu Arg 245 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 Asn His Tyr Pro Ser Asn His Gln Pro			Gl	y Le				l Se	r As				s Hi	s Tr				1025
Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe Lys Glu Arg 245 AAA GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT GGG Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 270 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC ASn His Tyr Pro Ser Asn His Gln Pro	GT(Va	l Le	u Th	T GG	A CT y Le	C AT	e Gl	n Gl	A GC y Al	T CI a Le	rG GT	1 A	la I	TA TI	A GI	T GCT	:	1073
Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr Gly 265 270 275 AAT CAC TAT CCG AGC AAT CAC CAG CCT TGAAAGGCAG CAGGGTGCCC 1216 Asn His Tyr Pro Ser Asn His Gln Pro	Va	l Ty	T GT r Va	A TO	CG GA	sp Pi	ie Ph	C AA	AA GA /s Gl	A AC	g Tì	ır S	er P	IT AM	AA GA ys Gl	lu Arg	3	1121
Asn His Tyr Pro Ser Asn His Gln Pro	AA Ly	A GA s Gl	.G G! .u G:	AG GI Lu As	sp Se	er H	AT AC	CA AC	er ci	eu H	is G	AA A	CA C hr P	CA A	hr T	hr Gl	g Y	1169
	AA As	T CA	AC T	yr P	ro S	GC A er A	AT C	AC C	ln P	ro	GAAA	GGCA	G CA	.GGGT	GCCC			1216

PCT/US98/07928

AGGTGAAGCT	GGCCTGTTTT	CTAAAGGAAA	ATGATTGCCA	CAAGGCAAGA	GGATGCATCT	1276
TTCTTCCTGG	TGTACAAGCC	TTTAAAGACT	TCTGCTGCTG	ATATGCCTCT	TGGATGCACA	1336
CTTTGTGTGT	ACATAGTTAC	CTTTAACTCA	GTGGTTATCT	AATAGCTCTA	AACTCATTAA	1396
AAAAACTCCA	AGCCTTCCAC	CAAAACAGTG	CCCCACCTGT	ATACATTTT	AAAAAATTA	1456
					TTTGATTTAA	1516
	TATTAAAATG					1566

(2) INFORMATION FOR SEQ ID NO:4:

(i) SECTIENCE	CHARACTERISTIC	s:
---------------	----------------	----

- (A) LENGTH: 285 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Phe Asp Lys Thr Arg Leu Pro Tyr Val Ala Leu Asp Val Leu Cys

Val Leu Leu Ala Ser Met Pro Met Ala Val Leu Lys Leu Gly Gln Ile

Tyr Pro Phe Gln Arg Gly Phe Phe Cys Lys Asp Asn Ser Ile Asn Tyr

Pro Tyr His Asp Ser Thr Ala Ala Ser Thr Val Leu Ile Leu Val Gly

Val Gly Leu Pro Val Ser Ser Ile Ile Leu Gly Glu Thr Leu Ser Val

Tyr Cys Asn Leu Leu His Ser Asn Ser Phe Ile Ser Asn Asn Tyr Ile

Ala Thr Ile Tyr Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala 105

Ser Gln Ser Leu Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg

Pro His Phe Leu Asp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys

Ser Asp Gly Tyr Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg 155

Val Lys Glu Gly Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser 165

Met Tyr Cys Met Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys 185

Gly Asp Trp Ala Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val

Ala Val Ser Ile Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His

His Trp Ser Asp Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala

Ile Leu Val Ala Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser 250

Phe Lys Glu Arg Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr

Pro Thr Thr Gly Asn His Tyr Pro Ser Asn His Gln Pro

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1362 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 294..1226
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 (B) LOCATION: 294..1226
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGCGCAGCTC TGCAAAAGTT TCTGCTCGGG ATCTGGCTCT CTTCCCCTTG GACTTTAGAA	60
CGATTTAGGG TTGACAGAGG AAAGCAGAGG CGCGCAGGAG GAGCAGAAAA CACCACCTTC	120
TGCAGTTGGA GGCAGGCAGC CCCGGCTGCA CTCTAGCCGC CGCGCCCGGA GCCGGGGCCG	180
ACCCGCCACT ATCCGCAGCA GCCTCGGCCA GGAGGCGACC CGGGCGCCTG GGTGTGTGGC	240
TGCTGTTGCG GGACGTCTTC GCGGGGCGGG AGGCTCGCGC CGCAGCCAGC GCC ATG Met 1	296
CAA AAC TAC AAG TAC GAC AAA GCG ATC GTC CCG GAG AGC AAG AAC GGC Gln Asn Tyr Lys Tyr Asp Lys Ala Ile Val Pro Glu Ser Lys Asn Gly 5 10 15	344
GGC AGC CCG GCG CTC AAC AAC AAC CCG AGG AGG AGC GGC AGC AAG CGG Gly Ser Pro Ala Leu Asn Asn Asn Pro Arg Arg Ser Gly Ser Lys Arg 20 25 30	392
GTG CTG CTC ATC TGC CTC GAC CTC TTC TGC CTC TTC ATG GCG GGC CTC Val Leu Leu Ile Cys Leu Asp Leu Phe Cys Leu Phe Met Ala Gly Leu 35 40 45	440
CCC TTC CTC ATC ATC GAG ACA AGC ACC ATC AAG CCT TAC CAC CGA GGG Pro Phe Leu Ile Ile Glu Thr Ser Thr Ile Lys Pro Tyr His Arg Gly 50 55 60 65	488
TTT TAC TGC AAT GAT GAG AGC ATC AAG TAC CCA CTG AAA ACT GGT GAG Phe Tyr Cys Asn Asp Glu Ser Ile Lys Tyr Pro Leu Lys Thr Gly Glu 70 75 80	536

ACA ATA AAT GAC GCT GTG CTC TGT GCC GTG GGG ATC GTC ATA THE ILE ASN ASP ALA VAL Leu Cys Ala Val Gly ILE Val ILE ALA ILE 85 90 95	584
CTC GC3 ATC ATC ACG GGG GAA TTC TAC CGG ATC TAT TAC CTG AAG AAG Leu Ala Ile Ile Thr Gly Glu Phe Tyr Arg Ile Tyr Tyr Leu Lys Lys 100 105 110	632
TCG CGG TCG ACG ATT CAG AAC CCC TAC GTG GCA GCA CTC TAT AAG CAA Ser Arg Ser Thr Ile Gln Asn Pro Tyr Val Ala Ala Leu Tyr Lys Gln 115 120 125	680
GTG GGC TGC TTC CTC TTT GGC TGT GCC ATC AGC CAG TCT TTC ACA GAC Val Gly Cys Phe Leu Phe Gly Cys Ala Ile Ser Gln Ser Phe Thr Asp 130 145	728
ATT GCC AAA GTG TCC ATA GGG CGC CTG CGT CCT CAC TTC TTG AGT GTC Ile Ala Lys Val Ser Ile Gly Arg Leu Arg Pro His Phe Leu Ser Val	7 7 6
TGC AAC CCT GAT TTC AGC CAG ATC AAC TGC TCT GAA GGC TAC ATT CAG Cys Asn Pro Asp Phe Ser Gln Ile Asn Cys Ser Glu Gly Tyr Ile Gln 165 170	824
AAC TAC AGA TGC AGA GGT GAT GAC AGC AAA GTC CAG GAA GCC AGG AAG Asn Tyr Arg Cys Arg Gly Asp Asp Ser Lys Val Gln Glu Ala Arg Lys 180 185	872
TCC TTC TCT GGC CAT GCC TCC TTC TCC ATG TAC ACT ATG CTG TAT Ser Phe Phe Ser Gly His Ala Ser Phe Ser Met Tyr Thr Met Leu Tyr 195 200 205	920
TTG GTG CTA TAC CTG CAG GCC CGC TTC ACT TGG CGA GGA GCC CGC CTG Leu Val Leu Tyr Leu Gln Ala Arg Phe Thr Trp Arg Gly Ala Arg Leu 210 225	968
CTC CGG CCC CTC CTG CAG TTC ACC TTG ATC ATG ATG GCC TTC TAC ACG Leu Arg Pro Leu Leu Gln Phe Thr Leu Ile Met Met Ala Phe Tyr Thr 230 235 240	1016
GGA CTG TCT CGC GTA TCA GAC CAC AAG CAC CAT CCC AGT GAT GTT CTG Gly Leu Ser Arg Val Ser Asp His Lys His His Pro Ser Asp Val Leu 245 250 255	1064
GCA GGA TTT GCT CAA GGA GCC CTG GTG GCC TGC TGC ATA GTT TTC TTC Ala Gly Phe Ala Gln Gly Ala Leu Val Ala Cys Cys Ile Val Phe Phe 260 265 270	1112
GTG TCT GAC CTC TTC AAG ACT AAG ACG ACG CTC TCC CTG CCT GCC CCT Val Ser Asp Leu Phe Lys Thr Lys Thr Thr Leu Ser Leu Pro Ala Pro 275 280 285	1160
GCT ATC CGG AAG GAA ATC CTT TCA CCT GTG GAC ATT ATT GAC AGG AAC Ala Ile Arg Lys Glu Ile Leu Ser Pro Val Asp Ile Ile Asp Arg Asn 290 295 300 305	1208
AAT CAC CAC AAC ATG ATG TAGGTGCCAC CCACCTCCTG AGCTGTTTTT Asn His His Asn Met Met 310	125
GTAAAATGAC TGCTGACAGC AAGTTCTTGC TGCTCTCCAA TCTCATCAGA CAGTAGAATG	131
TAGGGARAAA CTTTTGCCCG ACTGATTTTT AAAAAAAAA AAAAAA	136

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Gln Asn Tyr Lys Tyr Asp Lys Ala Ile Val Pro Glu Ser Lys Asn 10

Gly Gly Ser Pro Ala Leu Asn Asn Pro Arg Arg Ser Gly Ser Lys

Arg Val Leu Leu Ile Cys Leu Asp Leu Phe Cys Leu Phe Met Ala Gly

Leu Pro Phe Leu Ile Ile Glu Thr Ser Thr Ile Lys Pro Tyr His Arg 55

Gly Phe Tyr Cys Asn Asp Glu Ser Ile Lys Tyr Pro Leu Lys Thr Gly
65 70 75 80

Glu Thr Ile Asn Asp Ala Val Leu Cys Ala Val Gly Ile Val Ile Ala

Ile Leu Ala Ile Ile Thr Gly Glu Phe Tyr Arg Ile Tyr Tyr Leu Lys

Lys Ser Arg Ser Thr Ile Gln Asn Pro Tyr Val Ala Ala Leu Tyr Lys

Gln Val Gly Cys Phe Leu Phe Gly Cys Ala Ile Ser Gln Ser Phe Thr 135

Asp Ile Ala Lys Val Ser Ile Gly Arg Leu Arg Pro His Phe Leu Ser

Val Cys Asn Pro Asp Phe Ser Gln Ile Asn Cys Ser Glu Gly Tyr Ile

Gln Asn Tyr Arg Cys Arg Gly Asp Asp Ser Lys Val Gln Glu Ala Arg 185

Lys Ser Phe Phe Ser Gly His Ala Ser Phe Ser Met Tyr Thr Met Leu 200 -205

Tyr Leu Val Leu Tyr Leu Gln Ala Arg Phe Thr Trp Arg Gly Ala Arg 215

Leu Leu Arg Pro Leu Leu Gln Phe Thr Leu Ile Met Met Ala Phe Tyr

Thr Gly Leu Ser Arg Val Ser Asp His Lys His His Pro Ser Asp Val

Leu Ala Gly Phe Ala Gln Gly Ala Leu Val Ala Cys Cys Ile Val Phe 265

Phe Val Ser Asp Leu Phe Lys Thr Lys Thr Thr Leu Ser Leu Pro Ala

Pro Ala Ile Arg Lys Glu Ile Leu Ser Pro Val Asp Ile Ile Asp Arg 295

Asn Asn His His Asn Met Met 305 310

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1232 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 4..833
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 4..833
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ACC	ATG Met 1	CAG Gln	CGG Arg	AGG Arg	TGG Trp 5	GTC Val	TTC Phe	GTG Val	CTG Leu	CTC Leu 10	GAC Asp	GTG Val	CTG Leu	TGC Cys	TTA Leu 15	48
CTG Leu	GTC Val	GCC Ala	TCC Ser	CTG Leu 20	CCC Pro	TTC Phe	GCT Ala	ATC Ile	CTG Leu 25	ACG Thr	CTG Leu	GTG Val	AAC Asn	GCC Ala 30	CCG Pro	96
TAC Tyr	AAG Lys	CGA Arg	GGA Gly 35	TTT Phe	TAC Tyr	TGC Cys	GGG Gly	GAT Asp 40	GAC Asp	TCC Ser	ATC Ile	CGG Arg	TAC Tyr 45	CCC Pro	TAC Tyr	144
CGT Arg	CCA Pro	GAT Asp 50	Thr	ATC Ile	ACC Thr	CAC His	GGG Gly 55	CTC Leu	ATG Met	GCT Ala	GGG Gly	GTC Val 60	ACC Thr	ATC Ile	ACG Thr	192
GCC Ala	ACC Thr 65	Val	ATC Ile	CTT Leu	GTC Val	TCG Ser 70	GCC Ala	GGG Gly	GAA Glu	GCC Ala	TAC Tyr 75	Leu	GTG Val	TAC Tyr	ACA Thr	240
GAC Asp 80	Arg	CTC Leu	TAT	TCT Ser	CGC Arg 85	Ser	GAC Asp	TTC Phe	AAC As n	AAC Asn 90	Tyr	GTG Val	GCT Ala	GCT Ala	GTA Val 95	288
TAC	AAG Lys	GTC Val	CTG Lev	GGG Gly 100	Thr	TTC Phe	CTG Lev	TTT Phe	GGG Gly 105	/ Ala	GC0	GTG a Val	AGC Ser	CAG Glr 110	TCT Ser	336
CT(Lev	ACA 1 Thi	A GAG Asi	CTC Lev 119	ı Ala	AAG Lys	TAC Tyr	: ATC	3 ATT : Ile 120	• Gl	G CGT	CTC J Lei	G AAG u Lys	CCC Pro 125) Ası	TTC n Phe	384
			l Cy					o Sei					s Sei		C TAT l Tyr	432
GT Va	G CA 1 Gl: 14	n Le	G GA u Gl	G AA	G GT(s Va	G TG0 1 Cy:	s Ar	g GG;	A AA y As	c cc n Pr	T GC o Al 15	a As	r GT(p Va	C AC l Th	C GAG r Glu	480

170

GCC AGG TTG TCT TTC TAC TCG GGA CAC TCT TCC TTT GGG ATG TAC TGC Ala Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Gly Met Tyr Cys

165

ATG GTG TTC TTG GCG CTG TAT GTG CAG GCA CGA CTC TGT TGG AAG TGG Met Val Phe Leu Ala Leu Tyr Val Gln Ala Arg Leu Cys Trp Lys Trp 180 185 190	576
GCA CGG CTG CGA CCC ACA GTC CAG TTC TTC CTG GTG GCC TTT GCC Ala Arg Leu Arg Pro Thr Val Gln Phe Phe Leu Val Ala Phe Ala 195	624
CTC TAC GTG GGC TAC ACC CGC GTG TCT GAT TAC AAA CAC CAC TGG AGC Leu Tyr Val Gly Tyr Thr Arg Val Ser Asp Tyr Lys His His Trp Ser 210 220	672
GAT GTC CTT GTT GGC CTC CTG CAG GGG GCA CTG GTG GCT GCC CTC ACT Asp Val Leu Val Gly Leu Leu Gln Gly Ala Leu Val Ala Ala Leu Thr 225 230 235	720
GTC TGC TAC ATC TCA GAC TTC TTC AAA GCC CGA CCC CCA CAG CAC TGT Val Cys Tyr Ile Ser Asp Phe Phe Lys Ala Arg Pro Pro Gln His Cys 250 255	768
CTG AAG GAG GAG CTG GAA CGG AAG CCC AGC CTG TCA CTG ACG TTG Leu Lys Glu Glu Leu Glu Arg Lys Pro Ser Leu Ser Leu Thr Leu 260 265 270	816
ACC CTG GGG CGA GGC TG ACCACAACCA CTTATGGGAT ACCCGCACTC Thr Leu Gly Arg Gly 275	863
TTCTTCCTGA GGCCGGACCC CGCCCAGGCA GGGAGCTGCT GTGAGTCCAG CTGATGCCCA	923
CCCAGGTGGT CCCTCCAGCC TGGTTAGGCA CTGAGGGTTC TGGACGGGCT CCAGGAACCC	983
TGGGCTGATG GGAGCAGTGA GCGGTTCCGC TGCCCCCTGC CCTGCACTGG ACCAGGAGTC	1043
TGGAGATGCC TGGGTAGCCC TCAGCATTTG GAGGGGAACC TGTTCCCGTC GGTCCCCAAA	1103
TATCCCCTTC TTTTTATGGG GTTAAGGAAG GGACCGAGAG ATCAGATAGT TGCTGTTTTG	116
TAAAATGTAA TGTATATGTG GTTTTTAGTA AAATAGGGCA CCTGTTTCAC AAAAAAAAAA	122
ΔΔΔΔΛΛΛΛ	123

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Gln Arg Arg Trp Val Phe Val Leu Leu Asp Val Leu Cys Leu Leu
10 15

Val Ala Ser Leu Pro Phe Ala Ile Leu Thr Leu Val Asn Ala Pro Tyr

Lys Arg Gly Phe Tyr Cys Gly Asp Asp Ser Ile Arg Tyr Pro Tyr Arg

Pro Asp Thr Ile Thr His Gly Leu Met Ala Gly Val Thr Ile Thr Ala 50

Thr Val Ile Leu Val Ser Ala Gly Glu Ala Tyr Leu Val Tyr Thr Asp

Arg Leu Tyr Ser Arg Ser Asp Phe Asn Asn Tyr Val Ala Ala Val Tyr

Lys Val Leu Gly Thr Phe Leu Phe Gly Ala Ala Val Ser Gln Ser Leu

Thr Asp Leu Ala Lys Tyr Met Ile Gly Arg Leu Lys Pro Asn Phe Leu 120

Ala Val Cys Asp Pro Asp Trp Ser Arg Val Asn Cys Ser Val Tyr Val

Gln Leu Glu Lys Val Cys Arg Gly Asn Pro Ala Asp Val Thr Glu Ala 155

Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Gly Met Tyr Cys Met

Val Phe Leu Ala Leu Tyr Val Gln Ala Arg Leu Cys Trp Lys Trp Ala

Arg Leu Leu Arg Pro Thr Val Gln Phe Phe Leu Val Ala Phe Ala Leu 200

Tyr Val Gly Tyr Thr Arg Val Ser Asp Tyr Lys His His Trp Ser Asp

Val Leu Val Gly Leu Leu Gln Gly Ala Leu Val Ala Ala Leu Thr Val

Cys Tyr Ile Ser Asp Phe Phe Lys Ala Arg Pro Pro Gln His Cys Leu

Lys Glu Glu Glu Leu Glu Arg Lys Pro Ser Leu Ser Leu Thr Leu Thr

Leu Gly Arg Gly **27**5

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 283 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Phe Asp Lys Thr Arg Leu Pro Tyr Val Ala Leu Asp Val Ile Cys

Val Leu Leu Ala Gly Leu Pro Phe Ala Ile Leu Thr Ser Arg His Thr

Pro Phe Gln Arg Gly Ile Phe Cys Asn Asp Asp Ser Ile Lys Tyr Pro

Tyr Lys Glu Asp Thr Ile Pro Tyr Ala Leu Leu Gly Gly Ile Val Ile

Pro Phe Cys Ile Ile Val Met Ser Ile Gly Glu Ser Leu Ser Val Tyr 70 75 80

Phe Asn Val Leu His Ser Asn Ser Phe Val Gly Asn Pro Tyr Ile Ala 85 90 95

Thr Ile Tyr Lys Ala Val Gly Ala Phe Leu Phe Gly Val Ser Ala Ser 100 105 110

Gln Ser Leu Thr Asp Ile Ala Lys Tyr Thr Ile Gly Ser Leu Arg Pro 115 120 125

His Phe Leu Ala Ile Cys Asn Pro Asp Trp Ser Lys Ile Asn Cys Ser 130 135 140

Asp Gly Tyr Ile Glu Asp Tyr Ile Cys Gln Gly Asn Glu Glu Lys Val 145 150 155 160

Lys Glu Gly Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met 165 170 175

Tyr Cys Met Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly
180 185 190

Asp Trp Ala Arg Leu Leu Arg Pro Met Leu Gln Phe Gly Leu Ile Ala 195 200 205

Phe Ser Ile Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His 210 215 220

Trp Ser Asp Val Thr Val Gly Leu Ile Gln Gly Ala Ala Met Ala Ile 225 230 235 240

Leu Val Ala Leu Tyr Val Ser Asp Phe Phe Lys Asp Thr His Ser Tyr 245 250 255

Lys Glu Arg Lys Glu Glu Asp Pro His Thr Thr Leu His Glu Thr Ala 260 265 270

Ser Ser Arg Asn Tyr Ser Thr Asn His Glu Pro 275 280

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Phe Asp Lys Thr Arg Leu Pro Tyr Val Ala Leu Asp Val Leu Cys
1 10 15

Val Leu Leu Ala Gly Leu Pro Phe Ala Ile Leu Thr Ser Arg His Thr 20 25 30

Pro Phe Gln Arg Gly Val Phe Cys Asn Asp Glu Ser Ile Lys Tyr Pro

Tyr Lys Glu Asp Thr Ile Pro Tyr Ala Leu Leu Gly Gly Ile Ile Ile 50 55 60

Pro Phe Ser Ile Ile Val Ile Ile Leu Gly Glu Thr Leu Ser Val Tyr
65 70 75 80

Cys Asn Leu Leu His Ser Asn Ser Phe Ile Arg Asn Asn Tyr Ile Ala

Thr Ile Tyr Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala Ser

Gln Ser Leu Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg Pro 115 120 125

His Phe Leu Asp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys Ser 130 135

Asp Gly Tyr Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg Val 145 150 150 160

Lys Glu Gly Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser Met 165 170 175

Tyr Cys Met Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys Gly
180 185 190

Asp Trp Ala Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val Ala 195 200 205

Val Ser Ile Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His His 210 215 220

Trp Ser Asp Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala Ile 225 230 235 240

Leu Val Ala Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser Phe 245 250 255

Lys Glu Arg Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro 260 265 270

Thr Thr Gly Asn His Tyr Pro Ser Asn His Gln Pro 275 280

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 285 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Phe Asp Lys Thr Arg Leu Pro Tyr Val Ala Leu Asp Val Leu Cys
10 15

Val Leu Leu Ala Ser Met Pro Met Ala Val Leu Lys Leu Gly Gln Ile

Tyr Pro Phe Gln Arg Gly Phe Phe Cys Lys Asp Asn Ser Ile Asn Tyr 35 40 45

Pro Tyr His Asp Ser Thr Ala Ala Ser Thr Val Leu Ile Leu Val Gly 50 55 60

Tyr Cys Asn Leu Leu His Ser Asn Ser Phe Ile Arg Asn Asn Tyr Ile 85
Ala Thr Ile Tyr Lys Ala Ile Gly Thr Phe Leu Phe Gly Ala Ala Ala Ala Ser Gln Ser Leu Thr Asp Ile Ala Lys Tyr Ser Ile Gly Arg Leu Arg 115
Pro His Phe Leu Asp Val Cys Asp Pro Asp Trp Ser Lys Ile Asn Cys 130
Ser Asp Gly Tyr Ile Glu Tyr Tyr Ile Cys Arg Gly Asn Ala Glu Arg 145
Val Lys Glu Gly Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Ser 175

Val Gly Leu Pro Val Ser Ser Ile Ile Leu Gly Glu Thr Leu Ser Val

Met Tyr Cys Met Leu Phe Val Ala Leu Tyr Leu Gln Ala Arg Met Lys

Gly Asp Trp Ala Arg Leu Leu Arg Pro Thr Leu Gln Phe Gly Leu Val 195 200 205

Ala Val Ser Ile Tyr Val Gly Leu Ser Arg Val Ser Asp Tyr Lys His 210 220

His Trp Ser Asp Val Leu Thr Gly Leu Ile Gln Gly Ala Leu Val Ala 225 230 235 240

Ile Leu Val Ala Val Tyr Val Ser Asp Phe Phe Lys Glu Arg Thr Ser 245 250 255

Phe Lys Glu Arg Lys Glu Glu Asp Ser His Thr Thr Leu His Glu Thr 260 265 270

Pro Thr Thr Gly Asn His Tyr Pro Ser Asn His Gln Pro 275 280 285

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Gln Asn Tyr Lys Tyr Asp Lys Ala Ile Val Pro Glu Ser Lys Asn 1 5 10 15

Gly Gly Ser Pro Ala Leu Asn Asn Asn Pro Arg Arg Ser Gly Ser Lys
20 25 30

Arg Val Leu Leu Ile Cys Leu Asp Leu Phe Cys Leu Phe Met Ala Gly

Leu Pro Phe Leu Ile Ile Glu Thr Ser Thr Ile Lys Pro Tyr His Arg

Gly Phe Tyr Cys Asn Asp Glu Ser Ile Lys Tyr Pro Leu Lys Thr Gly 65 70 75 80

Glu Thr Ile Asn Asp Ala Val Leu Cys Ala Val Gly Ile Val Ile Ala 85 90 95

Ile Leu Ala Ile Ile Thr Gly Glu Phe Tyr Arg Ile Tyr Tyr Leu Lys
100 105 110

Lys Ser Arg Ser Thr Ile Gln Asn Pro Tyr Val Ala Ala Leu Tyr Lys 115 120 125

Gln Val Gly Cys Phe Leu Phe Gly Cys Ala Ile Ser Gln Ser Phe Thr 130 135 140

Asp Ile Ala Lys Val Ser Ile Gly Arg Leu Arg Pro His Phe Leu Ser 145 150 155 160

Val Cys Asn Pro Asp Phe Ser Gln Ile Asn Cys Ser Glu Gly Tyr Ile 165 170 175

Gln Asn Tyr Arg Cys Arg Gly Asp Asp Ser Lys Val Gln Glu Ala Arg 180 185 190

Lys Ser Phe Phe Ser Gly His Ala Ser Phe Ser Met Tyr Thr Met Leu 195 200 205

Tyr Leu Val Leu Tyr Leu Gln Ala Arg Phe Thr Trp Arg Gly Ala Arg 210 220

Leu Leu Arg Pro Leu Leu Gln Phe Thr Leu Ile Met Met Ala Phe Tyr 225 230 235

Thr Gly Leu Ser Arg Val Ser Asp His Lys His His Pro Ser Asp Val
245 250 255

Leu Ala Gly Phe Ala Gln Gly Ala Leu Val Ala Cys Cys Ile Val Phe 260 265 270

Phe Val Ser Asp Leu Phe Lys Thr Lys Thr Thr Leu Ser Leu Pro Ala 275 280 285

Pro Ala Ile Arg Lys Glu Ile Leu Ser Pro Val Asp Ile Ile Asp Arg 290 295 300

Asn Asn His His Asn Met Met

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Gln Arg Arg Trp Val Phe Val Leu Leu Asp Val Leu Cys Leu Leu 1 10 15

Val Ala Ser Leu Pro Phe Ala Ile Leu Thr Leu Val Asn Ala Pro Tyr
20 25 30

Lys Arg Gly Phe Tyr Cys Gly Asp Asp Ser Ile Arg Tyr Pro Tyr Arg

Pro Asp Thr Ile Thr His Gly Leu Met Ala Gly Val Thr Ile Thr Ala

Thr Val Ile Leu Val Ser Ala Gly Glu Ala Tyr Leu Val Tyr Thr Asp

Arg Leu Tyr Ser Arg Ser Asp Phe Asn Asn Tyr Val Ala Ala Val Tyr

Lys Val Leu Gly Thr Phe Leu Phe Gly Ala Ala Val Ser Gln Ser Leu

Thr Asp Leu Ala Lys Tyr Met Ile Gly Arg Leu Lys Pro Asn Phe Leu

Ala Val Cys Asp Pro Asp Trp Ser Arg Val Asn Cys Ser Val Tyr Val

Gln Leu Glu Lys Val Cys Arg Gly Asn Pro Ala Asp Val Thr Glu Ala 150

Arg Leu Ser Phe Tyr Ser Gly His Ser Ser Phe Gly Met Tyr Cys Met

Val Phe Leu Ala Leu Tyr Val Gln Ala Arg Leu Cys Trp Lys Trp Ala 180 185

Arg Leu Leu Arg Pro Thr Val Gln Phe Phe Leu Val Ala Phe Ala Leu

Tyr Val Gly Tyr Thr Arg Val Ser Asp Tyr Lys His His Trp Ser Asp

Val Leu Val Gly Leu Leu Gln Gly Ala Leu Val Ala Ala Leu Thr Val

Cys Tyr Ile Ser Asp Phe Phe Lys Ala Arg Pro Pro Gln His Cys Leu

Lys Glu Glu Glu Leu Glu Arg Lys Pro Ser Leu Ser Leu Thr Leu Thr

Leu Gly Arg Gly 275

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GGCTCTAGAT ATTAATAGTA ATCAATTAC

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:

29

(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

	xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CCTC	CGCAT GCACCATGGT AATAGC	26
(2)	NFORMATION FOR SEQ ID NO:16:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GGT	CATGCG TGAGGCTCCG GTGC	24
(2)	INFORMATION FOR SEQ ID NO:17:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
GT	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	28
(2)	INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
GG	ATGGTAC CATGTTTGAC AAGACGCGGC	30
(2	INFORMATION FOR SEQ ID NO:19:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

23

41

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: CATATGTAGT ATTCAATGTA ACC (2) INFORMATION FOR SEQ ID NO:20:

AGTGCGGGAT CCCATAAGTG GTTG

- (i) SEQUENCE CHARACTERISTICS: (\bar{A}) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: 47 TGATGGCTAG CATGCAGAGA AGATGGGTCT TCGTGCTGCT CGACGTG (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 24

SUBSTITUTE SHEET (RULE 26)

5

10

15

20

25

30

What Is Claimed Is:

- 1. An isolated polynucleotide encoding human phosphatidic acid phosphatase wherein said polynucleotide encodes a protein comprising a polypeptide sequence selected from the group consisting of (i) the sequence at amino acid number 1 to amino acid number 284 in Figure 1 (SEQ ID NO:2), (ii) the sequence at amino acid number 1 to amino acid number 285 in Figure 2 (SEQ ID NO:4), and (iii) the sequence at amino acid number 1 to amino acid number 276 in Figure 4 (SEQ ID NO:8).
 - 2. An isolated human phosphatidic acid phosphatase protein, wherein said protein comprises a polypeptide sequence selected from the group consisting of (i) the sequence at amino acid number 1 to amino acid number 284 in Figure 1 (SEQ ID NO:2), (ii) the sequence at amino acid number 1 to amino acid number 285 in Figure 2 (SEQ ID NO:4), and (iii) the sequence at amino acid number 1 to amino acid number 276 in Figure 4 (SEQ ID NO:8).
 - 3. A method of preparing a human phosphatidic acid phosphatase- β protein comprising the steps of (i) transforming a host cell with an expression vector comprising a polynucleotide encoding human phosphatidic acid phosphatase, (ii) culturing said transformed host cells which express said protein and (iii) isolating said protein.
- 4. The method of claim 3, wherein said polynucleotide encoding human phosphatidic acid is selected from the group consisting of (i) the sequence at amino acid number 1 to amino acid number 284 in Figure 1 (SEQ ID NO:2), (ii) the sequence at amino acid number 1 to amino acid number 285 in Figure 2 (SEQ ID NO:4), (iii) the sequence at amino acid number 311 in Figure 3 (SEQ ID NO:6), and (iv) the sequence at

35

5

10

15

20

25

3.0

35

amino acid number 1 to amino acid number 276 in Figure 4 (SEQ ID NO:8).

- 5. A method of dephosphorylating a substrate comprising recombinantly producing a human phosphatidic acid phosphatase protein and contacting said substrate with an effective amount of said recombinantly produced human phosphatidic acid phosphatase protein such that said protein catalyzes the dephosphorylation of said substrate.
- 6. The method of claim 5, wherein said protein comprises the polypeptide sequence at amino acid number 1 to amino acid number 284 in Figure 1 (SEQ ID NO:2).
- 7. The method of claim 5, wherein said protein comprises the polypeptide sequence at amino acid number 1 to amino acid number 285 in Figure 2 (SEQ ID NO:4).
- 8. The method of claim 5, wherein said protein comprises the polypeptide sequence at amino acid number 1 to amino acid number 311 in Figure 3 (SEQ ID NO:6).
- 9. The method of claim 5, wherein said protein comprises the polypeptide sequence at amino acid number 1 to amino acid number 276 in Figure 4 (SEQ ID NO:8).
 - 10. The method of claim 5, wherein said substrate is selected from the group consisting of phosphatidic acid, lysophosphatidic acid, ceramide 1-phosphate, and sphingosine 1-phosphate.
 - 11. The method of claim 5, wherein said contacting is effected in vitro, and further comprises the step of isolating said dephosphoryled substrate.

12. The method of claim 5, wherein said contacting step occurs in vivo and is effected by the administration of said human phosphatidic acid phosphatase to a mammal in need thereof.

5

10

13. A method of dephosphorylating a substrate comprising contacting said substrate with an effective amount of isolated human phosphatidic acid phosphatase the. said protein catalyzes such that protein said substrate, wherein said dephosphorylation of substrate is selected from the group consisting of ceramide 1-phosphate, and lysophosphatidic acid, sphingosine 1-phosphate.

Fig. 1A

ССТ	הדכה	CACA	CACC	ccc	ССВТ	cccc	7 CCC								
GGA	GGTC	CTGA	GGCT.	aceg Acag	AGCT	GCCG:	ACGG	GGTA TGGC	GCAA	CCGG	GGCA	GGCC	GTGC	CGGCTG ACCGA	A 62
GTG	TTCG	CGGG	GGCT	GTGA	GGGG	AGGG			CCC	GAGC	CCT	CGGC	ACTA	ACCGA	122
CCC	GGTC'	TCAG	CCCG	СССТ	CGGC	TCCT.		TCCT	GCCA	TTGC	TGGC	GGTG	GGAG	ACCGA CGCCG	182
GGC	CGTC	GCCA						TCCT	CCGG	CTGG	GAGG	GGCC	GTAT	CGCCG CTCGG GCACC	242
TCA	TTCC	TOCA		TCCC		GCIC	GATA	ATCA.	AGGG	CCTC	GGCC	GTCG	TCCC	GCACC	302
I CM	1100	MI CG		IGCC	باعاعاعا	AGCC	CGGG	CAGA	GACC	ATG	TTT	GAC	AAG	GCACC ACG	
										Met	Phe	Asp	1 1/6	ACG	356
												пэр	LyS	ini	
CGG	CTG	CCG	TAC	GTG	GCC	CTC	GAT	GTG	CTC	TGC	CTC	mmo		5	
Arg	Leu	Pro	Tyr	Val	Ala	Leu	Asp	Val	Len	C	77-7	110	CTG	GCT	401
				10					15	Cys	vaı	Leu	Leu	Ala	
GGA	TTG	CCT	TTT	GCA	ATT	רייי	АСТ	TO N	7.00		_			20 CAA	
Glv	Len	Pro	Phe	Δla	Tle	Leu	Wr-	ICA	AGG	CAT	ACC	CCC	TTC	CAA	446
				25		neu	III	Ser	Arg	His	Thr	Pro	Phe	Gln	
CCA	CCN	מינים	TITE C	TCD	220	~~~			30					35	
N	Clas	GIA	TIC	161	AAT	GAT	GAG	TCC	ATC	AAG	TAC	CCT	TAC	מממ	401
Arg	GIA	vai	Phe	3 -	Asn	Asp	Glu	Ser	Ile	Lvs	Tur	Pro	T	AAA Tara	491
				40					4.5	, -	- 4 -	110	TYL	rās	
GAA	GAC	ACC	ATA	CCT	TAT	GCG	TTA	TTA		CCA	N m n	200		50	
Glu	Asp	Thr	Ile	Pro	Tvr	Ala	Len	Lou	Cl	CL	ATA	ATC	ATT	CCA	536
	-			55	4 -		200	neu	GIA	GIÀ	тте	Ile	Ile	Pro	
TTC	AGT	ATT	ATC	CTT	ערעי ע	ATT	Cmm		60					65	
Phe	Ser	Tle	Tlo	Val	Tlo	TI-	CIT	GGA	GAA	ACC	CTG	TCT	GTT	TAC	581
1110	JUI	116	116		116	Ile	ьеu	Gly	Glu	Thr	Leu	Ser	Val	Tur	551
mcm	77.	Cmm	mm-c	70					75					80	
161	MAC	CTT	TTG	CAC	TCA	AAT	TCC	TTT	ATC	AGG	AAT	AAC	TAC	איייא	626
Cys	Asn	Leu	Leu	His	Ser	Asn	Ser	Phe	Ile	Ara	Asn	Acr.	TAC	AIA	626
				85					90	9	71311	V211	ıyr	TTE	
GCC	ACT	ATT	TAC	AAA	GCC	ATT	GGA	ACC	mmm	מ חידי	mmm			95	
Ala	Thr	Ile	Tvr	Lvs	Ala	Ile	Gly	Th~	111	11A	TTT	GGT	GCA	GCT	671
				100			Gry	TIII	Pne	теп	Phe	Gly	Ala	Ala	
GCT	AGT	CAG	TCC	CTG	א רייי	CAC	3 mm		105					110	
212	Sor	Clo	200	Tan	ML.	GAC	ATT	GCC	AAG	TAT	TCA	ATA	GGC	AGA	716
AIG	261	GIII	Ser		Thr	Asp	Ile	Ala	Lys	Tyr	Ser	Ile	Glv	Arg	
ama	~~~			115					120					125	
CTG	-	CCT	CAC	TTC	TTG	GAT	GTT	TGT	GAT	CCA	GAT	TGG	TCA	723	761
Leu	Arg	Pro	His	Phe	Leu	Asp	Val-	Cvs	Asp	Pro	Asn	Tro	Con	AAA Tara	761
				130				-	4-		op	тър	set	Lys	
ATC	AAC	TGC	AGC	GAT	GGT	TAC	ATT	GAA	TAC	ጥልሮ	ת ידי ת	mcm	000	140	
Ile	Asn	Cys	Ser	Asp	Glv	Tyr	Tle	Glu	T::-	TAC	AIA	161	CGA	GGG	806
AAT	GCA	GAA	AGA	CTT	AAC	GAA	000		150					155	
Asn	Ala	Gla	Δτα	Val'	Tiro	Class	GGC	AGG	TTG	TCC	TTC	TAT	TCA	GGC	-851
	**** u	GIU	ALG	V 44 1	Lys	Glu	GTA	Arg	Leu	Ser	Phe	Tyr	Ser	Glv	
CAC	ICT	TCG	TTT	TCC	ATG	TAC	TGC	ATG	CTG	TTT	GTG	GCA	СТТ		896
Hls	Ser	Ser	Phe	Ser	Met	Tyr	Cys	Met	Leu	Phe	Val	Δla	LON	Т.	090
				175			-		180		• • •	AT a	Leu	105	
CTT	CAA	GCC	AGG	ATG	AAG	GGA	GAC	TGG	CCN	DCD.	CTC	mmn	~~~	182	
Leu	Gln	Ala	Ara	Met	Lvs	Gly	Asp	T	NI-	NOA.	CIC	TTA	CGC	CCC	941
	•		5	190	-,0	U _y	nsp	ττb	ATA	Arg	Leu	Leu	Arg	Pro	
ACA	CTG	ממיז	ጥጥጥ	CCT	CTT	CTT	000		195					200	
The	LOU	Cla	Dha	Class	CII	GTT	GCC	GTA	TCC	ATT	TAT	GTG	GGC	CTT	986
1111	neu.	GIII	Pne	<u></u>	ren	Val	Ala	Val	Ser	Ile	Tyr	Val	Glv	Leu	
TCT	CGA	GTT.	TCT	GAT	TAT	AAA	CAC	CAC	TGG	AGC	СДТ	GTG	Trunc		1021
Ser	Arg	Val	Ser	Asp	Tvr	Lys	His	Hie	Trn	505) ~~	010	116	ACT	1031
				220	-		****	****	225	Ser	ASD	vai	теп		
GGA	CTC	ATT	CAG	GGA	CCT	CTG	Cmm	CC-	225			_		230	
Glv	Leu	Tle	Cla	GI	OCT.	CTG	GTT	GCA	ATA	TTA	GTT	GCT	GTA	TAT	1076
Gly	u	*TE	9111	OT A	wig	ьeи	val	Ala	Ile	Leu	Val	Ala	Val	Tyr	
GTA	106	GAT	TTC	TTC	AAA	GAA	AGA	ACT	TCT	TTT	AAA	GAA	AGA		1121
val	Ser	Asp	Phe	1110	Lys	Glu	Arg	Thr	Ser	Phe	Lvs	G) 11	Ara	Luc	
				250			. •	-	255		_,_		•••		
														260	

Fig. 1B

GAG GAG GAC TCT CAT ACA ACT CTG CAT GAA ACA CCA ACA ACT Glu Glu Asp Ser His Thr Thr Leu His Glu Thr Pro Thr Thr	r GGG 1166 r Gly 275
ANT CAC TAT CCG AGC AAT CAC CAG CCT TGA AAG GCAGCAGGGT	GCCCAG 1215
Asn His Tyr Pro Ser Asn His Gln Pro ***	;
280 GTGAAGCTGGCCTGTTTTCTAAAGGAAAATGATTGCCACAAGGCAAGAGGATGC.	ATCTTT 1275
GTGAAGCTGGCCTGTTTTCTAAAGGAAAATGATTGCCACATAGCCTCTTGGATGCCTCTTGGATGCCTCCTGGTGTACAAGCCTTTAAAGACTTCTGCTGCTGATATGCCTCTTTGGATG	CACACT 1335
CTTCCTGGTGTACAAGCCTTTAAAGACTCTGCTGCTGATATAGCTCTAAAACTCA TTGTGTGTACATAGTTACCTTTAACTCAGTGGTTATCTAATAGCTCTAAAACTCA	TTAAAA 1395
TTGTGTGTACATAGTTACCTTTAACTCAGTGGTTATCATTTTATTAAA AAACTCCAAGCCTTCCACCAAAACAGTGCCCCACCTGTATACATTTTTATTAAA	AAAATG 1455
AAACTCCAAGCCTTCCACCAAAACAGIGCCCCACCIGITATICAT TAATGCTTATGTATAAACATGTATGTAATATGCTTTCTATGAATGA	TTAAAT 1515
TAATGCTTATGTATAAACATGTATGGGAGAACCAAAAAAAA	1563

WO 98/46730 PCT/US98/07928

Fig. 2A

GGAG GTGT CCCG GGCC	GTCC TCGC GTCT GTCG	TGAG GGGG CAGC CCAG	GCTA GCTG CCGC	CCGGG CAGAG TGAGG CCTCG GGCCG	GGA(GGGCT(GGGG(CCGCC GGGCC GCTC CTCG	GGCTG CCCGG CCCTC ATAA1	GCAC GCGC CCTCC CCAAC	CACG CCAT CGGC GGGC ACC	AGCG TGCT TGGG CTCG ATG	CCTC GGCG AGGG GCCG TTT	GGCA GTGG GCCG TCGT	CTAA GAGC TATC CCCG AAG	GCCG TCGG CACC ACG Thr	1 1 2 3	62 22 82 42 302 356
CGG	CTG	CCG	TAC	GTG (SCC (CTC (GAT (STG (CTC	TGC	GTG	TTG	CTG	5 GCT	4	101
				Val A												
				GCT (GGC					TTT	4	146
Ser	Met	Pro	Met	Ala v 25	Val	Leu	Lys :	Leu	Gly 30	Gln	Ile	Tyr	Pro	Phe 35		
				TTC '					AGC						4	191
Gln	Arg	Gly	Phe	Phe 40	Cys	Lys	Asp .	Asn	Ser 45	Ile	Asn	Tyr	Pro	Tyr 50		
				GCC					CTC							536
His	Asp	Ser	Thr	Ala 55	Ala	Ser	Thr	Val	Leu 60	Ile	Leu	Val	Gly	Val 65		
GGC	TTG	CCC	GTT	TCC	TCT	ATT	ATT	CTT		GAA	ACC	CTG	TCT			581
Gly	Leu	Pro	Val	Ser	Ser	Ile	Ile	Leu	Gly	Glu	Thr	Leu	Ser	Val 80		
TAC	TGT	AAC	CTT	70 TTG	CAC	TCA	AAT	TCC	75 TTT	ATC	AGT	AAT	AAC	-		626
				Leu					Phe					Tyr		
ΔΤΔ	GCC	АСТ	TTA	85 TAC	AAA	GCC	ATT	GGA	90 ACC	ттт	TTA	ттт	GGT	.95 GCA		671
Ile	Ala	Thr	Ile	Tyr	Lys	Ala	Ile	Gly	Thr	Phe	Leu	Phe	Gly	Ala		
CCT	CCT	ΔСТ	י כמה	100 TCC	СТС	АСТ	GAC	דידע	105 GCC	AAG	TAT	TCA	ATA	110 GGC		716
Ala	Ala	Ser	Gln	Ser	Leu	Thr	Asp	Ile	Ala	Lys	Tyr	Ser	Ile	Gly		
ח כי ח	CTC	ccc	- CCT	115 CAC	ጥጥር	ጥጥር	CAT	ርጥጥ	120	GAT	CCA	GAT	TGG	125 TCA		761
Arg	Leu	Arg	g Pro	His	Phe	Leu	Asp	Val	Cys	Asp	Pro	Asp	Trp	Ser		
_		•		130	•				135					140 CGA		806
AAA Lvs	ATC	AAC Asi	n Cvs	Ser	Asp	Gly	Tyr	Ile	Glu	Tyr	Tyı	Ile	Cys	Arg		
_				145					150)				155		851
GGC	AA!	GCA Ala	A GAA a Gli	A AGA 1 Ara	Val	AAG Lvs	GAA Glu	Glv	AGG	. TTC	ı Se:	r Phe	Ty:	TCA r Ser		031
_				160					165	5				170		896
GGG	CAC	C TC	T TCC	TTT	TCC	: ATG	TAC	TGC	: AT(G CTO	G TT'	r Gro e Val	i GC. L Al	A CTT a Leu		
_	=			175					180)				185		0.41
TA'	r cr	r ca	A GC	CAGG	ATO	AAC	GGA	GAC	TGO	G GC	A AG.	A CTO	C TT	A CGC u Arg		941
_				190	}				19:	5				200		
CC	C AC	A CT	G CA	A TTI	GG:	r ct	r GTT	GCC	C GT	A TC	C AT	T TA	T GT	G GGC		986
				205	5				21	0				1 Gly 215		
CT	T TC	T CG	A GT	T TCT	GA'	TA'	T AA	A CA	C CA	C TG	G AG	C GA	T GI	G TTG		1031
				220)				22	5				1 Leu 230		
AC	T GG	A CI	C AT	T CA	G GG	A GC	T CT	GGT	T GC	IA A	T A	A GT	T GO	T GTA	•	1076
Th	r Gl	y Le	eu Il	e Gli	n Gl	y Al	a Le	u Va	1 A1	a II	re re	eu va	II A.	La Val		

Fig. 2B

TAT	GTA	TCG	GAT	TTC	TTC	AAA	GAA	AGA	ACT	TCT	TTT	AAA	GAA	AGA	1121
Tyr	Val	Ser	Asp	Phe 250	Phe	Lys	GIu	Arg	Thr	Ser	Pne	гÀг	GIU	260	
AAA	GAG	GAG	GAC	TCT	CAT	ACA	ACT	CTG	CAT	GAA	ACA	CCA	ACA	ACT	1166
Lys	Glu	Glu	Asp		His	Thr	Thr	Leu	His	Glu	Thr	Pro	Thr	Thr 275	
ccc	יי ע ע	CAC	ТАТ	265 CCG	AGC	AAT	CAC	CAG		TGA	AAG	GCAG	CAGG	STGCC	1215
Gly	Asn	His	Tyr	Pro	Ser	Asn	His	Gln	Pro	***					
				280			~~~	* m a *	285	~~ ~ ~	7000	<u>አ</u> አሮፕ	~~ n m	CCNTC	1275
CAG	GTGA	AGCT	GGCC'	TGTT	TTCT.	AAAG	GAAA	ATGA	TIGO	CACA	AGGC	MAGA	GGAI	GCATC	
արարա	ር ጥጥር ነ	ርጥርር	тста	CAAG	CCTT	TAAA	GACT	TCTG	CTGC	TGAT.	ATGC	\mathtt{CTCT}	TGGA	TGCAC	1335
111		CTCT	አሮአሞ	V C.L.L.	ልርርጥ	ממיחיתי	CTCA	CTGG	יי ב יי	СТДД	TAGC	ТСТА	AACT	CATTA	1395
ACT	TIGI	6161	ACAI	AGII	ACCI	11177		2222	7 COM	CENE	7 C 7 D	mmmm	7 mm 7	ת ת ת ת ת	1455
AAA	AAAC	TCCA	AGCC	TTCC	ACCA	AAAC	AGTG	CCCC	ACCT	GTAT	ACAT	TTTT	ATTA	AAAAA	
ATG	TAAT	GCTT	ATGT	ATAA	ACAT	GTAT	GTAA	TATG	CTTT	CTAT	GAAT	GATG	TTTG	ATTTA	1515
									AAAA						1566

Fig. 3A

																
					AGTT". GGAA										AGAACG TCTG	62 122
					GCCC											182
					CAGC											242
	CTGT	TGCG	GGAC	GTCT	TCGC	GGGG	CGGG	AGGC'	TCGC	GCCG	CAGC	CAGC	GCC .	ATG	CAA	299
														Met		
					GAC 2											344
	Asn	Tyr		Tyr	Asp	Lys .	Ala		Val	Pro	GLu	Ser .	Lys 15	Asn	GIÀ	
	GCC	אכר	5 CCG	ccc	CTC .	אאר	ממכ	10 244	CCG	AGG	AGG	AGC (AGC	AAG	389
					Leu .											
	-		20					25					30			
					ATC											434
	Arg	Val		Leu	Ile	Cys	Leu	_	Leu	Phe	Cys	Leu		Met	Ala	•
		ama	35	mmc	CMC	אשכ	N m c	40	202	A C C	N.C.C	אשכ	45	CCT	ጥክሮ	479
					CTC Leu											4/3
	GIY	Leu	50	rne	Leu	116	116	55	1111	Jer	1111	110	60	110	1 7 1	
	CAC	CGA		TTT	TAC	TGC	AAT		GAG	AGC	ATC	AAG	TAC	CCA	CTG	524
					Tyr											
			65					70					75			
					ACA											569
	Lys	Thr		Glu	Thr	Ile	Asn		Ala	Val	Leu	Cys		Val	GTĀ	
	איניכ	כיייכ	90 יייינית	GCC	ATC	רייר	ccc	85 2TC	ΔͲC	ACG	GGG	CDD	90 TTC	TAC	CGG	614
					Ile											011
	110	• • • •	95					100			~- <u>1</u>		105	- 1 -		
					AAG											659
	Ile	Tyr	Tyr	Leu	Lys	Lys	Ser		Ser	Thr	Ile	Gln		Pro	Tyr	
			110					115					120	~~~	mam	704
					TAT											704
	vaı	Ala	125		Tyr	гуѕ	GIN	130	СТУ	СУБ	Pne	ьеu	135	GIY	Cys	
	GCC	ATC			TCT	TTC	ACA		ATT	GCC	AAA	GTG		ATA	GGG	749
	Ala	Ile	Ser	Gln	Ser	Phe	Thr	Asp	Ile	Ala	Lys	Val	Ser	Ile	Gly	
			140			•		135					150			704
					CAC											794
	Arg	' Leu	Arg 155		His	Phe	Leu	Ser 160		Cys	Asn	Pro	Asp 165	Pne	ser	•
	CAG	ነ ውጥር			יייטיי	GAA	GĞC			CAG	AAC	TAC		TGC	AGA	839
															Arg	
			170) _			-						180			
															TCT	. 8.84
	Gly	Asp	_		Lys	Val	Gln			Arg	Lys	Ser			e Ser	
	~~~		185		n mic	. mcc	, yw.	190		3 3 100 0	· cmc	יים עים י	195		ב כידים	929
٠															CTA Leu	223
	GIA	, ut;	200		. FIIe	Ser	. Met	205		. Mec	. Dec	LYL	210		, Dea	
	TAC	: ст			CGC	TTC	ACI			A GGA	A GCC	CGC			CGG	974
															ı Arg	
	-		215	5				220	)				225	5		
	CCC	CT	C CT	G CA	G TTC	ACC	TTC	ATO	CATO	G ATO	GCC	TTC	: TAC	C AC	G GGA	1019
	Pro	Le			n Phe	Th:	c Lev			t Met	: Ala	a Phe	240		r Gly	
	CIT!	- 60	23		א החריז	) (D) (	ר מי	235		ר רשי	ף ככי	ר אכיי			T CTG	1064
	CTU real	3 IC	r Ar	a Vai	n ICA 1 Sei	r Ast	o Hi	S J.V.	s Hi	s His	s Pro	o Sei	Ası	o Va	l Leu	<b>-</b>
	יטת		24				<b></b> •	25					25	5		

## Fig. 3B

GCA Ala	GGA Gly	TTT Phe	GCT Ala	CAA Gln	GGA Gly	GCC Ala	пец	GTG Val	GCC Ala	TGC Cys	TGC Cys	ATA Ile 270	GTT Val	TTC Phe	1109
,		260					265	አ አ C	ACC.	ACG	CTC	TCC	CTG	CCT	1154
TTC	GTG Val	TCT	GAC	CTC	TTC	AAG	ACT	LUS	Thr	Thr	Leu	Ser	Leu	Pro	
Phe	Val	Ser	Asp	Leu	Pne	гда	1111	Бур				285			
		275		~~~	אאכ	כאא	אשכ	CUT	TCA	CCT	GTG	GAC	TTA	ATT Ile	1199
GCC	CCT	GCT	ATC	7 50	Tue	Glu	Tle	Leu	Ser	Pro	Val	Asp	Ile	Ile	
Ala	Pro	Ala	TTE	ALG	пуз	014	295					300	)		1249
	200	290	ייממ	CAC	CAC	AAC	ATG	ATG	AT:	GTO	CCAC	CCAC	CTCC	TGAGC	1243
GAC	AGG Arg	AAC	7	. Uic	Hic	Asn	Met	Met	. ***	•					
Asp	Arg	Asn	ASI	i ura			310	)							1309
		305	)	mc	- cm c 1	~~~~	ים ב רמי	העה כהעה.	rGCT	GCTC	CCAA	ATCT(	CATC	AGACAG	
TGT	TTTT	'GTAF	TAA	SACTO		CAGC	AAAG 1	- v andra	מ חידים	AAAA	- XAAA	AAAA	AAA	AGACAG	1362
	- n n m c	ጥአርር	CAAR	AACI	${ m TTTT}$		-A - 1	2WTT.	TITL	7 7 7 7					

# Fig. 4A

40													GTG Val				47
L													CTG Leu				92
G(	CC								Cys				TCC Ser				137
T.	AC yr					GAT					GGG		ATG Met				182
G V	al					ACC	Val				TCG	Ala	GGG Gly				227
T	yr					GAC	CGG Arg				CGC	TCG Ser	GAC Asp				272
	Asn					GTA	TAC Tyr				GGG	ACC Thr	TTC Phe				317
(	Sly					CAC	TCI Ser				CTC	GCC Ala	AAG Lys				362
2	Ile	GGG Gly	CĞ' Ar	r CT	G AAG u Ly	G CCC	AAC Asi	TTC Phe	CTA Leu	A GCC	GTO	TGC L Cys	C GAC s Asp	C CCC	C GA	C SP	407
	Trp	Ser				C TGO	TC0				G CAC	CTO	G GAG				452
	Cys	AG(	GG GG	A AA y As	C CC	o Al	T GA	r GT( p Val	C ACC	C GAG	u Ala	C AGO	G TTO	G TC	T TT r Pi	rc ne	497
	Туг	TC Se					C TT r Ph					C AT	G GT t Va				542
	Ala	CT Le	G TA	T GT	G CA	G GC	A CG	A CT g Le	C TG u Cy	T TG	G AA	G TG s Tr	G GC p Al	A CG a Ar	G C	TG eu	587
	Le	CG Ar	A CC	CC AC	CA GT	C CA	G TT	C TT e Ph	C CT	'G GT u Va	G GC	C TT	T GC e Al	C CT	C T	AC yr	632
	Va.	G GG 1 Gl	C TA	AC AC	CC CC	GC G1 rg Va	G TC	T GA	TT TE	C AA	A CA	C CA	C TO	G AG	SC G	AT .sp	677
	۷a	C CI	T G	TT G	GC C	rc cr	rg ca	AG GO	GG GG Ly Al	CA CI La Le	rg Gr eu Va	rg go	CT GC La Al	CC CT	rc A eu T	CT hr	722
	۷a	C TO	C T	AC A yr I	TC T le S	CA G	sp P	rc Ti	rc Ai	AA G ys A	CC CC	GA CO	CC CC ro P	CA CA	AG C	CAC His	767
	СУ	T C'	rg A eu L	AG G	AG G	AG G lu G	lu L	TG G eu G	AA C lu A	GG A	AG C	CC A	GC C	TG T eu S	CA (	CTG Leu	812
	Tì	G T	TG A eu T	cc chr I	CTG C	GG C	60 GA G Lrg G	GC T ly *	GA C	CACA			TGGG	ATAC	CCG	CACT	864

## Fig. 4B

CTTCTTCCTGAGGCCGGACCCCGCCCAGGCAGGAGCTGCTGTGAGTCCAGCTGATGCCC ACCCAGGTGGTCCCTCCAGCCTGGTTAGGCACTGAGGGTTCTGGACGGGCTCCAGGAACC CTGGGCTGATGGGAGCAGTGAGCGGTTCCGCTGCCCTGCCCTGCACTGGACCAGGAGT CTGGAGATGCCTGGGTAGCCCTCAGCATTTGGAGGGAACCTGTTCCCGTCGGTCCCCAA ATATCCCCTTCTTTTATAGGGGTTAAGGAAGGGACCGAGAGATCAGATAGTTGCTGTTTT ATATCCCCTTCTTTTTATAGGGGTAAAAAAAAAA	924 984 1044 1104 1164 1224
ATATCCCCTTCTTTTTATGGGGTTAAGGAAGGGACCGAGAGATCAGATACTTGTTTTATGGGGTTAAGGAAGG	1224 1234

Fig. 5

		10	20	30	40	50
M PAP.AMI	1				-1007477	
PAP Al.AMI	1 1 1	N			- 10 10 10 10 10	THE SECOND
PAP A2.AMI	ī	U				a ve da MB
PAP B.AMI	ī	MIVIONIT	VDESKNICKSD	ALNNNPRRSG		LFC FMALL
	1	11/1	VFESIMOGSF	AMMINIANS	-R WVFVL	VIIIV
PAP_G.AMI	4	60	70	80	90	100
M PAP.AMI	51	ESTU-DSRHT	PROREITONS	DSTEZPYKE-	Da i e la bleg	CILLAM
PAP Al.AMI			POVECNO			III
PAP A2.AMI		MINTEKLGORY	PERKEFFCKD	NSINKAHDS	-BAASTEIL	VOVGLPASS
PAP B.AMI		LEIETEK	PARTECES	ESTE ELETG	ENDANCA	VIVIAILA
PAP G.AMI	51	A I - LVNA			THGIMAL	TATULV
		110	120	130	140	150
M PAP.AMI	101	I S S F	VEH STORE	G	AVCALLEY VS	
PĀP A1.AMI	101	100720132440	NILIHANG-EI	ESSECTIVE TEXT	RICHTER CAR	ESCALIDIAS
PAP A2.AMI	101	HIGHTISUY	HIRENS-FIL	RNNYTATOYK		BECSLIDIES
PAP B.AMI	101	TEEFYRINY	KKSRST	OXXXXXXXI	OVECEDECCE	ISOSFEDERIS
PAP G.AMI	101	AYLYT	DREYSRED -			VS
-	•	160	170		190	200
M_PAP.AMI	151		LAILNEUNSK	THESCHYLL-	DYLOGINEER	VERGELSEE
PĀP Al.AMI	151	NATOFIA PRE	LOVERTHANK	10 5 7 5 7 8 - 11 5 5 5 5 1 -	YYURANAER	TREGRESE S
PAP A2.AMI	151	YST SPERFILE		THE SDGYTH-	RGIALR	VICTORILORIS
PAP B.AMI	151	VSIGRIB2HE	US VENPOFSQ	INCSEPTIO-	NERCEDDS	<b>VOLUMENTS</b>
PAP G.AMI	151	MICHIKEN	P	VNSV-VXVQL	EKVERENPAD	AL WITCH
<del></del>		210				250
M PAP.AMI	201	CHSSISKUS		MKGUWARLLE		
PĀP Al.AMI	201	<b>GHESESNYCL</b>	LEVALVICA	MATERIAL PROPERTY.		SINCLERS
PAP A2.AMI	201	CHC OPSIVO			PELGEGLVAV	
PAP B.AMI	201			FTMRGARLLE		AFYTGLERVS
PAP G.AMI	201	<b>SHEET GRAN</b>				ELEGATING ALE
<del></del>		260		280	290	
M PAP.AMI	251	<b>DESCRIPTION</b>	VGLUGAM	10.7V 10.7V 10.7V	DTHEYER	CLEED PROBLEM
PĀP Al.AMI	251	DYKHEWSDVI	I GULLOVILIO	LIVAVYVSDI	FERRE	KEEDSHIN
PAP A2.AMI	251	. CIKHWSOVI	DESTRUCTION	IIVAVYV5U	PKERTSFKER	KON SHUME
PAP B.AMI	251	DHKEE PSTV		CCIMFF	. KTKETLSLP	APAIRKEIS
PAP G.AMI	251	DYKERVEN	VCTLOGALV	ATTICKI		, <b>KEE</b> EE
- <del>-</del>		310		330		350
M PAP.AMI	301	L ENASTRIA	S TORES*			
PAP A1.AMI	301	LEGETTENEY	H SIMMOR			
PAP A2.AMI	301	LETPLENH	SNHOR*			
PAP B.AMI	303	PVDIIDRNN	н нұйми*			
PAP_G.AMI	30:	l RKELSLTL	T LGRG*			

Fig. 6

15 min 15 min 1 hr 1 hr 6 hr 6 hr 24 hr 24 hr

10/13

**Fig.** 7



11/13

Fig. 8



12/13

Fig. 9

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/07928

IPC(6) :0	SIFICATION OF SUBJECT MATTER C12N 9/16, 15/55; C12P 13/02, 7/64, 7/62 536/23.2; 435/196, 128, 134, 135, 147		
According to	o International Patent Classification (IPC) or to both national c	lassification and IPC	
	DS SEARCHED		
	ocumentation searched (classification system followed by classi	fication symbols)	
	536/23.2; 435/196, 128, 134, 135, 147	,	
Documentati	ion searched other than minimum documentation to the extent tha	t such documents are included	in the fields searched
	lata base consulted during the international search (name of date Extra Sheet.	a base and, where practicable	, search terms used)
c. Doc	UMENTS CONSIDERED TO BE RELEVANT		**************************************
Category*	Citation of document, with indication, where appropriate	, of the relevant passages	Relevant to claim No.
Y	KAI, M. et al. Identification and cDNA Phosphatidic Acid Phosphatase (Type 2) Membranes. The Journal of Biological Chemis Vol. 271, No. 31, pages 18931-18938. see e	Bound to Plasma stry, 02 August 1996.	2, 3, 5, 6, 10-13
Y	Database GENBANK on STN, National (Bethesda MD), Accession No. AA040858, WashU-Merck EST Project, 30 August 1996	HILLIER et al., The	2, 3, 5, 6, 10-13
Y	Database GENBANK on STN, National Institution MD), Accession No. H68363, HILLIER et al EST Project, 18 October 1995.		2, 3, 5, 6, 10-13
X Furt	her documents are listed in the continuation of Box C.	See patent family annex.	
.V. qe	pecial categories of cited documents:  ocument defining the general state of the art which is not considered  be of particular relevance	later document published after the int data and not in conflict with the app the principle or theory underlying the	lication but cited to understand invention
°L° de	ocument published on or after the international filing data ocument which may throw doubts on priority claim(s) or which is ited to establish the publication date of another citation or other pecial reason (as specified)	document of particular relevance; the considered novel or cannot be conside when the document is taken alone document of particular relevance; the considered to involve an inventive	e claimed invention cannot be
*P* de	ocument referring to an oral disclosure, use, exhibition or other seems  comment published prior to the international filing date but later than *g.*	combined with one or more other suc being obvious to a person skilled in document member of the same paten	h documents, such combination the art
th	pe priority date claimed		
Date of the	9 (	mailing of the international se  JUN 1998	arch report
Commission Box PCT	oner of Patents and Trademarks	ded afficient Sphilips Many Sphilips BECCA PROUTY	d
Facsimile I	No. (703) 305-3230 Telepho	ne No. (703) 308-0196	

Form PCT/ISA/210 (second sheet)(July 1992)*

BNSDOCID: <WO_____9846730A1_I_>

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/07928

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
Y	Database GENBANK on STN, National Institute of He (Bethesda MD), Accession No. W04968, HILLIER et a WashU-Merck EST Project, 23 April 1996.		2, 3, 5, 6, 10-13
Y	Database GENBANK on STN, National Institute of He (Bethesda MD), Accession No. U79294, YU et al., Lar Concatenation cDNA Sequencing, 25 March 1997.	ealth, ge Scale	3, 4
Y	BRINDLEY, D.N. Phosphatidate Phosphohydrolase ar Transduction. Chemistry and Physics of Lipids. 1996. pages 45-57, especially pages 47-50.		13
			·

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

DRIEDOCID. AND

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/07928

B. FIELDS SEARCHED  Electronic data bases consulted (Name of data base and where practicable terms used):	
APS, MEDLINE, SCISEARCH, LIFESCI, BIOTECHDS, BIOSIS, EMBASE, CAPLUS, NTIS, WPI search terms: phosphatidic acid or phosphatidate, phosphatase# or phosphohydrolase#, human or isolat? or purif? or gene# or sequence#	

Form PCT/ISA/210 (extra sheet)(July 1992)*

BNSDOCID: <WO_____9846730A1_I_>