Theory of Discounted Markov Decision Processes

Mohammad Sadegh Talebi m.shahi@di.ku.dk Department of Computer Science

STARTING FROM SLUDE 9

Markov Decision Process

An infinite-horizon discounted MDP is a tuple $M = (S, A, P, R, \gamma)$:

- ullet State-space ${\cal S}$ (finite, countably infinite, or continuous)
- Action-space $A = \bigcup_{s \in \mathcal{S}} A_s$ (finite, countably infinite, or continuous)
 - ullet \mathcal{A}_s is the set of actions available in state s
- Transition function P: Selecting $a \in \mathcal{A}_s$ in $s \in \mathcal{S}$ leads to a transition to s' with probability P(s'|s,a). $P(\cdot|s,a)$ is a probability distribution over \mathcal{S} , i.e.,

$$\sum_{s' \in \mathcal{S}} P(s'|s, a) = 1$$

- Reward function R: Selecting $a \in \mathcal{A}_s$ in $s \in \mathcal{S}$ yields a reward $r \sim R(s, a)$.
- Discount factor γ : Future rewards are discounted geometrically with a rate $0<\gamma<1$.

Recap: Interaction with MDP

An **agent** interacts with the MDP for N rounds.

At each time step t:

- ullet The agent observes the current state s_t and takes an action $a_t \in \mathcal{A}_{s_t}$
- The environment (MDP) decides a reward $r_t := r(s_t, a_t) \sim R(s_t, a_t)$ and a next state $s_{t+1} \sim P(\cdot|s_t, a_t)$
- The agent receives r_t (any time in step t before start of t+1)

This interaction produces a trajectory (or history)

$$h_t = (s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t)$$

Objective Function

Infinite-Horizon Discounted MDPs: $N=\infty$, and the goal is to maximize the total expected sum of discounted rewards

$$\max_{\text{all strategies}} \mathbb{E}\Big[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t)\Big]$$

Two views on discounting with a discount factor $\gamma \in [0, 1)$:

- \bullet Earlier rewards are more important. A unit reward at present will worth γ in the next slot.
- ullet Problems with random horizon N and absorbing states

Reward Function: Some Comments

Bounded Rewards Assumption: We assume

$$R_{\max} := \sup_{s,a} \left| \mathbb{E}_{r \sim R(s,a)}[r] \right| < \infty$$

- For simplicity, we assume deterministic rewards
 - Hence, $r \sim R(s, a)$ means r = R(s, a).
 - Hence, we may use r(s,a) and R(s,a) interchangeably, but tend to keep r(s,a) for generality.
 - The results in this lecture will hold for stochastic rewards under mild assumptions (and often by replacing R(s, a) or r(s, a) with its mean).

This lecture: We consider deterministic and bounded rewards.

Recap: Policy

When interacting with an MDP, actions are taken according to some policy:

	deterministic		randomized	
stationary	$\pi:\mathcal{S} o\mathcal{A}$,	Π^{SD}	$\pi: \mathcal{S} \to \Delta(\mathcal{A}),$	Π^{SD}
history-dependent	$\pi:\mathcal{H} o\mathcal{A}$,	Π^{SD}	$\pi: \mathcal{H} \to \Delta(\mathcal{A}),$	Π^{SD}

- $\Delta(A)$ denotes the simplex of probability distributions over A.
- \bullet \mathcal{H} the set of all possible histories (trajectories).

For $\pi \in \Pi^{SR}$, we write $a \sim \pi(\cdot|s)$ or $a \sim \pi(s)$. Also, given $f : \mathcal{A}_s \to \mathbb{R}$,

$$\mathbb{E}_{a \sim \pi(s)}[f(a)] = \sum_{a \in A_{-}} f(a)\pi(a|s)$$

The value function of policy π (or simply, value of π) is a mapping $V^{\pi}: \mathcal{S} \to \mathbb{R}$ defined as

$$V^{\pi}(s) := \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_1 = s \right].$$

where \mathbb{E}^{π} indicates expectation over trajectories generated by π .

- Intuitively, $V^{\pi}(s)$ measures the sum of future discounted rewards (in expectation) when the agent starts in s and follows π .
- A rough upper bound:

$$|V^{\pi}(s)| \le \frac{R_{\max}}{1 - \gamma}, \quad \forall s \in \mathcal{S}$$

COMPUTING ALL POSSIBLE TRATECTORES MAY BE TO COMPLEX BUT THE CAN DO SIMULATIONS

The value function of policy π (or simply, value of π) is a mapping $V^{\pi}: \mathcal{S} \to \mathbb{R}$ defined as

$$V^{\pi}(s) := \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_1 = s \right].$$

where \mathbb{E}^{π} indicates expectation over trajectories generated by π .

Example: Value of $\pi =$ 'always left'?

The value function of policy π (or simply, value of π) is a mapping $V^{\pi}: \mathcal{S} \to \mathbb{R}$ defined as

$$V^{\pi}(s) := \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_1 = s \right].$$

where \mathbb{E}^{π} indicates expectation over trajectories generated by π .

We may be interested in $V^{\pi}(s_{\text{init}})$.

Example: 4-room Grid-World

- Sinit IS . ABSORBING STATE
- Terminal state .
- Our interest is to estimate $V^{\pi}(\blacksquare)$

IN THIS CASE WE DON'T CARE ABOUT ALL THE POSSILE

Action-Value Function

The action-value function of policy π (or simply, Q-value of π) is a mapping $Q^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ defined as (Under the bounded reward assumption)

- Intuitively, $Q^{\pi}(s,a)$ measures the sum of future discounted rewards (in expectation) when the agent starts in s and takes action a in the first step (possibly $a \neq \pi(s)$), and then follows π afterwards.
- A rough upper bound:

$$|Q^{\pi}(s,a)| \leq \frac{R_{\max}}{1-\alpha}, \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

• For all $s \in \mathcal{S}$, $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

Policy Evaluation

Recap: Induced Markov Chains

• Every $\pi \in \Pi^{SR}$ induces a Markov chain on M, with transition probability matrix P^{π} given by:

$$P_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}_s} P(s'|s,a)\pi(a|s), \quad s,s' \in \mathcal{S}.$$

• Every $\pi \in \Pi^{SR}$ induces a reward vector $r^{\pi} \in \mathbb{R}^{S}$ on M defined by:

$$r^{\pi}(s) = \sum_{a \in \mathcal{A}_s} R(s, a) \pi(a|s), \quad s \in \mathcal{S}.$$

• If $\pi \in \Pi^{SD}$, then $P_{s,s'}^{\pi} = P(s'|s,\pi(s))$ and $r^{\pi}(s) = R(s,\pi(s))$.

Every policy $\pi \in \Pi^{SR}$ induces a Markov Reward Process (MRP) on M, specified by r^{π} and P^{π} .

Bellman Equation for π $V^* = r^* \cdot \gamma P^* V^* \Leftrightarrow V^* - \gamma P^* V^* = r^*$ $(1-r^*)V^* \cdot r^*$ $A \overset{\text{E}}{\approx} 15 \text{ we close} 0.50 we can't use it to actually compute V^{π}.}$ $\Leftrightarrow V^* \cdot (1-r^*)^* \cdot r^*$ BELLMAN EQUATION GOLVES THIS PROBLEM

Theorem (Bellman Equation for π)

Let $\pi \in \Pi^{SR}$. For all $s \in S$.

$$\begin{split} V^{\pi}(s) &= \mathbb{E}_{a \sim \pi(s)}[r(s, a)] + \gamma \mathbb{E}_{a \sim \pi(s)} \Big[\sum\nolimits_{x \in \mathcal{S}} P(x|s, a) V^{\pi}(x) \Big] \\ &= \sum\nolimits_{a \in \mathcal{A}_s} \pi(a|s) r(s, a) + \gamma \sum\nolimits_{a \in \mathcal{A}_s} \pi(a|s) \sum\nolimits_{x \in \mathcal{S}} P(x|s, a) V^{\pi}(x) \end{split}$$

Equivalently, $V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$.

- These relations are called the Bellman equation.
- The theorem tells us that for $\pi \in \Pi^{SR}$, V^{π} satisfies the Bellman equation.
- For a deterministic policy $\pi \in \Pi^{SD}$, the Bellman equation becomes:

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{x \in \mathcal{S}} P(x|s, \pi(s)) V^{\pi}(x), \quad s \in \mathcal{S}.$$

Bellman Operator for π

The Bellman operator associated to $\pi \in \Pi^{SR}$ is a mapping $\mathcal{T}^{\pi} : \mathbb{R}^{S} \to \mathbb{R}^{S}$, such that for any function $f : \mathcal{S} \to \mathbb{R}$,

$$\mathcal{T}^{\pi} f := r^{\pi} + \gamma P^{\pi} f.$$

- Intuitively, \mathcal{T}^{π} is the value of π for the same one-stage problem.
- \mathcal{T}^{π} applies to (or *operates on*) a function defined on \mathcal{S} and returns another function defined on \mathcal{S} .
- The Bellman equation $V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$ reads

$$V^{\pi} = \mathcal{T}^{\pi} V^{\pi}$$

In other words, V^{π} is the unique fixed-point of the operator \mathcal{T}^{π} .

Bellman Equation for π

We prove the theorem for $\pi \in \Pi^{SD}$. (See Lecture Notes for $\pi \in \Pi^{SR}$.)

Proof. Let $\pi \in \Pi^{SD}$ and $s \in \mathcal{S}$. We have

$$\begin{split} V^{\pi}(s) &= \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, \pi(s_t)) \Big| s_1 = s \right] \\ &= r(s, \pi(s)) + \mathbb{E}^{\pi} \left[\sum_{t=2}^{\infty} \gamma^{t-1} r(s_t, \pi(s_t)) \Big| s_1 = s \right] \\ &= r(s, \pi(s)) + \gamma \sum_{x \in \mathcal{S}} \mathbb{P}(s_2 = x | s_1 = s, a_1 = \pi(s_1)) \mathbb{E}^{\pi} \left[\sum_{t=2}^{\infty} \gamma^{t-2} r(s_t, \pi(s_t)) \Big| s_2 = x \right] \\ &= r(s, \pi(s)) + \gamma \sum_{x \in \mathcal{S}} \mathbb{P}(s_2 = x | s_1 = s, a_1 = \pi(s_1)) V^{\pi}(x) \\ &= r(s, \pi(s)) + \gamma \sum_{x \in \mathcal{S}} P(x | s, \pi(s)) V^{\pi}(x) \,. \end{split}$$

Policy Evaluation

$$x = f(x)$$

$$y(n) = xe^{x} - \sqrt{x+1} = 0$$

$$x = \sqrt{x+1} \cdot e^{-x}$$

$$x = f(x)$$

$$(2, 1)$$

$$(2, 1)$$

$$(2, 1)$$

$$(3, 2)$$

$$(3, 3)$$

$$(3, 4)$$

$$(4, 3)$$

$$(4, 3)$$

$$(4, 3)$$

$$(5, 4)$$

$$(5, 4)$$

$$(7, 1)$$

$$(7, 2)$$

$$(7, 3)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

$$(7, 4)$$

Policy Evaluation: Computing V^{π} for a given π

• Direct Computation: Using Bellman equation,

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$
 $\Longrightarrow_{I-\gamma P^{\pi}}$ is invertible $V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$

• Iterative Policy Evaluation: Using $V^{\pi} = \mathcal{T}^{\pi}V^{\pi}$, the sequence

$$V_{n+1} = \mathcal{T}^{\pi} V_n = \underbrace{\mathcal{T}^{\pi} \cdots \mathcal{T}^{\pi}}_{n+1 \text{ times}} V_0 \qquad \qquad \bigvee_{\substack{\mathbf{V}, \mathbf{T}^{\pi} \mathbf{V}, \\ \mathbf{V}_i : \mathbf{T}^{\pi} \mathbf{V}_i}}_{\mathbf{V}_i \cdot \mathbf{T}^{\pi} \mathbf{V}_i}$$

converges to V^{π} starting from any V_0 .

• Monte-Carlo Method: Generate a number of trajectories of π and use the sample mean as an estimator to V^{π} .

So far:

- We defined policies and the value function.
- We characterized the value of stationary policies (via Bellman equations and operator).
- We developed ways to compute the value of a *fixed* stationary policy.

How to find an optimal strategy/policy? Alternatively, how to find policies with good values? (ωπιουτ μαγική το compute V^{π} for all of them)

Optimization in Discounted MDPs: Optimal Policy and Value

Optimal Value and Policy

Solving a discounted MDP M amounts to solving the following optimization problem:

$$V^{\star}(s) = \sup_{\pi \in \Pi^{\mathsf{HR}}} V^{\pi}(s), \qquad \forall s \in \mathcal{S}.$$

- (i) $V^*: \mathcal{S} \to \mathbb{R}$ is called the optimal value function.
- (ii) If there exists π^* such that $V^{\pi^*}(s) = V^*(s)$ for all $s \in \mathcal{S}$, then π^* is called an optimal policy.
- (iii) π is ε -optimal for $\varepsilon > 0$ if

$$V^{\pi}(s) \ge V^{\star}(s) - \varepsilon, \quad \forall s \in \mathcal{S}$$

Bellman Optimality Equation

Theorem

V* satisfies the optimal Bellman equation:

$$V^{\star}(s) = \max_{a \in \mathcal{A}_s} \left(r(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V^{\star}(x) \right), \quad s \in \mathcal{S}$$

The optimal Bellman operator is a mapping $\mathcal{T}: \mathbb{R}^S \to \mathbb{R}^S$, such that for any function $f: \mathcal{S} \to \mathbb{R}$,

$$(\mathcal{T}f)(s) := \max_{a \in \mathcal{A}_s} \left(r(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) f(x) \right), \quad s \in \mathcal{S}$$

- V^* satisfies $\mathcal{T}V^* = V^*$.
- ullet We can define ${\mathcal T}$ and optimal Bellman equation for the optimal Q function (next lecture).

Optimality Theorems

Theorem

Suppose the state space S is finite. Then there exists a policy $\pi^* \in \Pi^{SD}$.

- Thus, when seeking π^* in a discounted MDP with a finite S, we can restrict our attention to Π^{SD} .
- In other words, for finite S,

$$\sup_{\pi \in \Pi^{\mathsf{HR}}} V^\pi = \sup_{\pi \in \Pi^{\mathsf{SD}}} V^\pi = \max_{\pi \in \Pi^{\mathsf{SD}}} V^\pi$$

Optimality Theorems

A fundamental result in the theory of discounted MDPs:

Theorem ()

A stationary deterministic policy π is optimal if and only if

$$\mathcal{T}^{\pi}V^{\star} = \mathcal{T}V^{\star}$$

Equivalently, π is optimal if and only if it attains the maximum in the Bellman optimality equations: For all $s \in \mathcal{S}$,

$$\pi(s) \in \underset{a \in \mathcal{A}_s}{\operatorname{arg\,max}} \left(r(s, a) + \sum_{x \in \mathcal{S}} P(x|s, a) V^{\star}(x) \right).$$

So far:

- We defined policies and the value function.
- We characterized the value of stationary policies (via Bellman equations and operator).
- We developed ways to compute the value of a *fixed* stationary policy.
- We defined the notion of optimality and showed that there exists $\pi^* \in \Pi^{SD}$ when S is finite.
- We characterized the optimal value function V^* (via optimal Bellman equation).

How to actually compute π^* ?

Algorithms for Solving Discounted MDPs

Major Solution Methods

Three major classes of algorithms for solving discounted MDPs:

- Value Iteration → GIVES A NEAR OPTIMAL POUCY E TT 50
- Policy Iteration → GIVES AN OPTIMAL POLICY E TT 50
- Linear Programming

THEY ARE NOT THE ONLY OPTIMAL POLICIES, THERE MAY BE OTHER MORE COMPLEY POLICIES, MAYBE ALSO IN TT SR GTC...

Value Iteration

Value Iteration (VI)

- The most well-known, and perhaps the simplest, algorithm for solving discounted MDPs
- Around since the early days of MDPs
- Also known as successive approximation, backward induction, etc.

Idea: The optimal Bellman operator \mathcal{T} is *contracting*. Iterate \mathcal{T} until convergence:

$$V_{n+1} = \mathcal{T}V_n, \quad n = 0, 1, 2, \dots$$

Indeed, VI is an algorithm for approximating the fixed point of \mathcal{T} .

Value Iteration (VI)

input: ε

- initialization: Select a value function $V_0 \in \mathbb{R}^S$, $V_1 = R_{\max}/(1-\gamma)\mathbf{1}$, and set n=0
- while $(\|V_{n+1}-V_n\|_{\infty} \geq \frac{\varepsilon(1-\gamma)}{2\gamma})$
 - (i) Update, for each $s \in \mathcal{S}$,

$$V_{n+1}(s) = \max_{a \in \mathcal{A}_s} \left(r(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V_n(x) \right)$$

(ii) Increment n.

output:

$$\pi^{VI}(s) \in \arg\max_{a \in \mathcal{A}_s} \left(r(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V_n(x) \right), \quad s \in \mathcal{S}$$

Why VI works?

Why does VI work?

⇒ Because of contraction properties of Bellman operators.

Contraction Mapping

An operator (or mapping) $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^n$ is called a κ -contraction mapping (with respect to $\|\cdot\|$) if there exists $\kappa \in [0,1)$ such that for all $v,v' \in \mathbb{R}^n$,

$$\|\mathcal{L}v - \mathcal{L}v'\| \le \kappa \|v - v'\|.$$

LIPSICH CONSTANT

Theorem (Banach Fixed-Point Theorem)

Suppose L is a contraction mapping. Then

- (i) there exists a unique $v^* \in \mathbb{R}^n$ such that $\mathcal{L}v^* = v^*$;
- (ii) for any $v_0 \in \mathbb{R}^n$, the sequence $(v_n)_{n \geq 0}$ with $v_{n+1} = \mathcal{L}v_n = \mathcal{L}^{n+1}v_0$ for $n \geq 0$ converges to v^* .

\mathcal{T}^{π} and \mathcal{T} Are Contraction Mapping

Lemma

For any $v, v' \in \mathbb{R}^S$, and any π ,

$$\|\mathcal{T}^{\pi}v - \mathcal{T}^{\pi}v'\|_{\infty} \leq \gamma \|v - v'\|_{\infty},$$

$$\|\mathcal{T}v - \mathcal{T}v'\|_{\infty} \leq \gamma \|v - v'\|_{\infty}.$$

Hence, \mathcal{T}^{π} and \mathcal{T} are γ -contraction mappings w.r.t. $\|\cdot\|_{\infty}$.

Proof. First statement is easy to prove. For the second, we have:

VI: Convergence

VI is a globally convergent method for finding an ε -optimal policy. Formally:

Theorem

Let $(V_n)_{n\geq 0}$ a sequence of value functions generated by VI with some $\varepsilon>0$ starting from an arbitrary initial point $V_0\in\mathbb{R}^S$. Then,

- (i) V_n converges to V^* in norm;
- (ii) the algorithm stops after finitely many iterations;
- (iii) π^{VI} is ε -optimal;
- (iv) when convergence criterion is satisfied, $\|V_{n+1} V^*\|_{\infty} < \varepsilon/2$.
 - Each iteration of VI involves $O(S^2A)$ arithmetic calculations.
 - The iteration complexity of VI depends on both ε and γ . The larger the γ , the more iteration until the algorithm finds an ε -optimal policy.

Policy Iteration

Policy Iteration (PI)

- A popular algorithm for solving discounted MDPs
- Around since early days of MDPs
- Like VI, it is an iterative algorithm but directly searches in the space of policies.

Idea: Starting from an initial policy, at each iterate n,

- (i) Find V^{π_n} (policy evaluation)
- (ii) Improve π_n to π_{n+1} using V^{π_n} (policy improvement)

Policy Iteration (PI)

- initialization: Select π_0 and π_1 arbitrarily $(\pi_0 \neq \pi_1)$, and set n=0
- while $(\pi_{n+1} \neq \pi_n)$
 - (i) Policy Evaluation: Find V_n , the value of π_n by solving

$$((I-\gamma P^{\pi_n})V_n=r^{\pi_n})$$
 — Here we can compute a 1665

VALUE

(ii) Policy Improvement: Choose π_{n+1} such that

$$\pi_{n+1}(s) \in \arg\max_{a \in \mathcal{A}_s} \left(r(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V_n(x) \right)$$

and if possible, set $\pi_{n+1} = \pi_n$. (iii) Increment n.

- output: $\pi^{PI} = \pi_n$
 - WHATCH OUT FOR LOOPS! THERE CAN BE HORE

 OPINMAL POLICES AND THE ALOUTHM CAN END UP

 SOON AS WE REACH A CERTAN

 UPDATING DETWEEN THEM

PI: Convergence

Theorem

Suppose M has a finite state-action space. Then,

(i) PI terminates in at most

IT'S A SUPER
CONSERVATIVE BOUND
(IN PRACTISE WE NEED
MANYLESS ITERATIONS)

$$O\left(\max\left\{\frac{SA}{1-\gamma}\log\frac{1}{1-\gamma}, \frac{A^S}{S}\right\}\right)$$
 iterations;

(ii)
$$\pi^{PI} = \pi^{\star}$$
.

- Under PI, $V_{n+1} \ge V_n$ for any n. Further, the number of policies is finite A^S .
- Each iteration in PI involves solving a linear system with S equations and S unknowns. Hence, per iteration complexity of PI is $O(S^3 + S^2A)$.
- In practice, PI converges within, at most, a few tens of iterations.

MORE COMPLEX ITERATION THAN VI, BUT HERE WE USALLY NEED LESS OF THEM

