Éléments clés du cours PTSI 1 Jules Ferry

Chapitre 1 : Logique

- Rudiments de logiques : négation, P et Q, P ou Q, implication, équivalence, réciproque, contraposée
- Quantificateurs
- Méthodes de raisonnement : raisonnement par l'absurde, démonstration d'une implication (démonstration directe, par contraposée, par l'absurde), démonstration d'une équivalence (double implication, par équivalence), raisonnement par analyse/synthèse, raisonnement par récurrence (simple, d'ordre p, forte).

Questions de cours

- Q1 Énoncer le tableau de vérité des connecteurs logiques.
- Q2 Soient P et Q deux propositions. Démontrer que

$$(P \implies Q) \iff (\neg Q \implies \neg P).$$

Q3 Déterminer le contraire de l'assertion

$$\exists \lambda \in \mathbb{R}, \forall x \in [0,1], \exp(\pi x) = \lambda \implies x = 9.$$

Chapitre 2 : Complexes

- Nombres complexes
 - Définition par la forme algébrique et l'existence d'un nombre i qui vérifie $i^2 = -1$.
 - Opérations sur les complexes, partie réelle, imaginaire.
 - Conjugaison : compatibilité avec les opérations
 - Module : opérations sur le module, inégalité triangulaire et cas d'égalité.
- Nombres complexes de module 1 noté U : cercle trigonométrique, paramétrisation de U par les foncitons circulaires, formules d'Euler, factorisation par l'angle moitié, factorisation d'une somme ou une différence de cosinus.
- Formule de Moivre, linéarisation de $\cos^k(x)\sin^l(x)$.
- Transformation de cos(nx) en puissance de cos et de sin.
- Forme trigonométrique et argument d'un complexe.
- Opérations sur les arguments, transformation de $a\cos(x) + b\sin(x)$ en $A\cos(x w)$.
- Équations algébriques dans C.
 - Racines carrées d'un complexe.
 - Résolution des équations du second degré à coefficients complexes.
 - Racines n-ièmes de l'unité noté $\mathbb{U}_n = \{e^{2ik\pi/n} \ / \ k \in [0 ; n-1]\}$. Somme des racines n-ièmes de l'unité, racines n-ième d'un complexe non nul.
- Exponentielle complexe
- Nombres complexes et géométrie plane
 - Alignement et orthogonalité
 - Transformations remarquables du plan : translation, rotation, symétrie selon l'axe des abscisses.

- Q1 Énoncer et démontrer l'inégalité triangulaire. Cas d'égalité.
- Q2 Propriétés de l'exponentielle complexe.
- Q3 Résoudre l'équation $(z+1)^n = (z-i)^n$ pour $z \in \mathbb{C}$. On mettra les solutions sous forme exponentielle.
- On mettra les solutions sous forme exponentielle. Q4 Montrer que $\mathbb{U}_n = \{e^{\frac{2ik\pi}{n}}/k \in \mathbb{Z}\}$, pour tout entier naturel $n \geq 2$.
- Q5 Soit $n \geq 2$ un entier naturel. En admettant que $\mathbb{U}_n = \{e^{\frac{2ik\pi}{n}}/k \in \mathbb{Z}\}$, montrer que Card $(\mathbb{U}_n) = n$.

Chapitre 3 : Généralités sur les fonctions

- ullet Inégalités dans $\mathbb R$
 - Relation d'ordre sur \mathbb{R}
 - Majorant, minorant, maximum, minimum.
 - Valeur absolue : inégalités triangulaires
- Généralités sur les fonctions à valeurs réelles
 - Ensemble de définition, opérations sur les fonctions (somme, produit, quotient, composée)
 - Représentation graphique. Graphes des fonctions $x \mapsto f(x) + a, x \mapsto f(x+a), x \mapsto f(a-x), x \mapsto f(ax), x \mapsto af(x)$
 - Propriétés des fonctions : parité, périodicité, fonctions majorées, minorées, bornées. Interprétation géométriques de ces propriétés. Caractérisation des fonctions bornées. Monotonie
 - Rappels sur le calcul de limites : comme produit, quotient, composée, Théorème d'encadrement, de minoration, de majoration, théorème de la limite monotone, asymptote verticale, asymptote horizontale.
 - Rappels sur la continuité : définition, opérations, théorème des valeurs intermédiaires.
 - Bijectivité : définition, réciproque, propriétés, théorème prouvant qu'une fonction continue strictement monotone sur un intervalle réalise une bijection, graphe de la réciproque.

• Dérivation

- Dérivabilité en un point, interprétation géométrique, équation de la tangente. Fonction dérivée
- Opérations sur les fonctions dérivables : somme, produit, quotient, composée, signe de la dérivée et variations
- Dérivée de la fonction réciproque
- Dérivées d'ordre supérieur
- Plan d'étude d'une fonction

- Q1 Soit $f: \mathbb{N} \to \mathbb{N}$. Montrer qu'il y a équivalence entre les énoncés
 - (i): f est strictement croissante.
 - (ii): $\forall n \in \mathbb{N}, f(n) < f(n+1).$
- Q2 Écrire la définition d'un majorant, minorant et leur contraire.
- Q3 Écrire la définition de croissance, décroissance et leur contraire.
- Q4 Écrire la définition de contuité et de dérivabilité sur un intervalle.
- Q5 Déterminer une fonction continue qui n'est pas dérivable.
- Q6 Déterminer une fonction dérivable strictement croissante dont la dérivée n'est pas strictement positive.

Chapitre 4: Fonctions usuelles

- Logarithme, exponentielle, puissance
 - Fonction logarithme népérien : Définition, dérivée, propriétés algébriques, limites, tableau de variations, graphe, bijection.
 - Logarithme décimal.
 - Fonction exponentielle : Définition, dérivée, limites, propriétés algébriques, tableau de variations, graphe.
 - Fonctions hyperboliques : définition de ch et sh , parités, dérivées, ch 2 sh 2 = 1, limites, graphes.
 - Fonctions puissances : définition, propriétés algébriques, dérivée, limites et prolongation éventuelle en 0, tableau de variations et graphe.
 - Croissances comparées
- Fonction circulaires
 - $\bullet\,$ congruence module $2\pi\,$
 - Fonctions sinus, cosinus, tangente : parité, périodicité, continuité, dérivée, tableau de variations, cas d'égalité $\cos(x) = \cos(y)$, cas d'égalité $\sin(x) = \sin(y)$.
 - Fonctions circulaires réciproques : arccos, arcsin, arctan. Définition, continuité, dérivabilité, expression de la dérivfée, étude de la parité de arcsin et arctan. Graphes.

Questions de cours

- Q1 Montrer que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.
- Q2 Montrer que

$$\forall x > 0, \arctan(x) + \arctan(1/x) = \pi/2.$$

Q3 Montrer que :

$$\forall x < 0, \arctan(x) + \arctan(1/x) = -\pi/2.$$

- Q4 Montrer que arcsin est dérivable sur] -1,1[et donner une expression de la dérivée.
- Q5 Montrer que arccos est dérivable sur] -1,1[et donner une expression de la dérivée.
- Q6 Montrer que arctan est dérivable sur $]-\infty, +\infty[$ et donner une expression de la dérivée.

Chapitre 5 : Calcul algébrique

- 1. Sommes et produits :
 - (a) définition, règles de calcul, changement d'indice:
 - (b) somme et produit téléscopique;
 - (c) regroupement de termes;
 - (d) somme des termes d'une suite arithmétique;
 - (e) somme des termes d'une suite géométrique;
 - (f) Factorisation de $a^n b^n$, avec $n \in \mathbb{N}^*$.
- 2. Sommes doubles générales, sur un rectangle, sur un triangle. (Fubini)
- 3. Factoriel, coefficients binomiaux (définis par une expression explicite), triangle de Pascal.
- 4. Binôme de Newton.

- Q1 Somme des termes d'une suite arithmétique.
- Q2 Somme des termes d'une suite géométrique.
- Q3 Factorisation de $a^n b^n$.
- Q4 Binôme de Newton.
- Q5 Triangle de Pascal.

Chapitre 6: Primitives

- Calcul de primitives
 - Généralités : définition d'une primitive, lien entre deux primitives
 - Existence de primitives : théorème fondamental de l'analyse (admis).
 - Primitives usuelles
- Intégration par parties
- Changement de variables
- Techniques classiques de calcul de primitives
 - Primitive de la forme $x \mapsto g'(u(x))u'(x)$
 - Primitive de fractions rationnelles
 - Primitive de la forme $x \mapsto \frac{1}{ax^2 + bx + c}$
 - Primitive de la forme $x \mapsto e^{ax} \cos(bx)$
 - Primitive de la forme $x \mapsto e^{ax} \sin(bx)$
 - Primitive de la forme $x \mapsto \sin^p(x) \cos^q(x)$, avec $(p,q) \in \mathbb{N}^2$.

Questions de cours

- Q1 Intégrale de Wallis : donner une relation entre I_{2p} et I_{2p+2} , et en déduire une expression de I_{2p} , pour tout entier naturel $p \in \mathbb{N}$.
- Q2 Intégrale de Wallis : donner une relation entre I_{2p+1} et I_{2p+3} , et en déduire une expression de I_{2p+1} , pour tout entier naturel $p \in \mathbb{N}$.
- Q3 Donner une primitive de $x \mapsto \frac{1}{ax^2 + bx + c}$ pour a, b, et c trois nombres réels avec $b^2 4ac < 0$.
- Q4 Déterminer une pritimive de $x \mapsto ax^n + bx^3 + c$ où $(a,b) \in \mathbb{R}^2$ et $n \in \mathbb{Z}$.

Chapitre 7 : Équations différentielles

- Équation différentielle linéaire du premier ordre générale
 - Résolution de l'équation homogène
 - Résolution de l'équation avec second membre : solution évidente, principe de superposition, méthode de variation de la constante.
 - Théorème de Cauchy-Lipschitz.
 - Idées sur le principe de recollement : importance de l'intervalle d'étude.
- Équation différentielle linéaire du second ordre à coefficients constants (dans \mathbb{R} ou \mathbb{C}).
 - Résolution de l'équation homogène
 - Résolution de l'équation avec second membre : principe de superposition, dans le cas d'un second membre de la forme $x \mapsto Ae^{\lambda x}$ ou $x \mapsto e^{\alpha x}(A_1 \cos(\beta x) + A_2 \sin(\beta x))$
 - Théorème de Cauchy-Lipschitz.

- Q1 Résolution de y' + a(x)y = 0 avec $y(x_0) = y_0$.
- Q2 Soit y_p une solution de l'équation différentielle y' + a(x)y = b(x), avec $a, b : I \to \mathbb{K}$ continues. Montrer que y vérifie y' + a(x)y = b(x) si et seulement si il existe y_0 solution de l'équation homogène tel que $y = y_p + y_0$.
- Q3 Résolution dans \mathbb{C} de y'' + ay' + by = 0 dans le cas où $a^2 4b = 0$.
- Q4 Résolution dans \mathbb{C} de y'' + ay' + by = 0 dans le cas où $a^2 4b \neq 0$.
- Q5 Résolution dans \mathbb{R} de y'' + ay' + by = 0 dans le cas où $a^2 4b < 0$.

Chapitre 8: Ensembles et applications

- Ensembles
 - Définition d'un ensemble comme collection d'objets appelés éléments.
 - Opérations sur les ensembles : partie, union, intersection, complémentaire, « privation », produit cartésien.
 - Rapide extension de l'union et l'intersection d'une famille d'ensembles.
- Applications
 - Définition comme un procédé d'association
 - Lien avec une définition par les graphes.
 - Exemples d'applications : identité, indicatrice, prolongement, famille d'éléments
 - Composition des applications
 - Image directe et réciproque d'une application.
 - Injection, surjection et bijection.
- Relation d'équivalence : définition comme relation binaire, définition d'une classe d'équivalence.

Questions de cours

- Q1 Soit $f: E \to F$. Montrer que f bijective si et seulement si il existe $g: F \to E$ telle que $f \circ g = \mathrm{Id}_F$ et $g \circ f = \mathrm{Id}_E$.
- Q2 Soit $f:E\to F$ une bijection. Montrer que $f\circ f^{-1}=\mathrm{Id}$ et que $f^{-1}\circ f=\mathrm{Id}$.
- Q3 Soit E un ensemble. Montrer que :

$$\forall A \in \mathcal{P}(E), \quad \mathbb{1}_{C_E(A)} = 1 - \mathbb{1}_A.$$

Q4 Soit E un ensemble. Montrer que :

$$\forall (A,B) \in \mathcal{P}(E)^2, \ \mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}.$$

Q5 Soit E un ensemble. Montrer que :

$$\forall (A,B) \in \mathcal{P}(E)^2, \quad \mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B.$$

Chapitre 9 : Systèmes linéaires

- Matrice et matrice augmentée associé à un système linéaire.
- Opérations élémentaires
- Échelonnement par l'algorithme de Gauss-Jordan.
- Ensemble des solutions d'un système linéaire

Questions de cours

Q1 Résoudre le système linéaire

$$\begin{cases} 3x + 2y + 7z = 1 \\ 2x + 2y + z = 2 \\ 12x + 12y + 6z = 12 \end{cases}$$

Q2 Déterminer le rand du système linéaire

$$\left\{ \begin{array}{l} 3x + 2y + 7z + t = 1 \\ 2x + 2y + z - t = 2 \\ 12x + 12y + 6z + 2t = 11 \end{array} \right.$$

Chapitre 10 : Ensembles usuels de nombres

- Nombres entiers, nombres relatifs, nombres rationnels, nombres réels et complexes.
- Nombres réels
 - Borne supérieure, borne inférieure : définition, caractérisation
 - \bullet Caractérisation des intervalles de $\mathbb R.$
 - Partie entière : définition, approximation décimale.

Questions de cours

- Q1 Soit A une partie non vide de \mathbb{R} majorée. Soit $s \in R$. Montrer que $\sup(A)$ existe et que
 - (i): $s = \sup(A)$

(ii) :
$$\begin{cases} \forall x \in A, & x \le \sup(A) \\ \forall \epsilon > 0, & \exists x \in A, & \sup(A) - \epsilon < x \end{cases}$$

- Q2 Soient A et B deux parties non vides et majorées de \mathbb{R} . Montrer que $A+B=\{a+b \ / \ (a,b)\in A\times B\}$ admet une borne supérieure et que $\sup(A+B)=\sup(A)+\sup(B)$.
- Q3 Montrer que $\lfloor \cdot \rfloor$ est croissante. Soit x un nombre réel. Montrer que

$$\forall n \in \mathbb{Z}, |x+n| = |x| + n.$$

L'égalité est-elle encore vraie lorsque $n \in \mathbb{R}$?

Chapitre 11 : Suites réelles

- Généralités
 - Opérations : somme, produit, multiplication par un scalaire.
 - Relation d'ordre : croissance, décroissance, monotononie, majoration, minoration, bornitude, stationnarité.
- Cas particuliers
 - Suite arithmétique, géométrique, arithméticogéométrique, récurrente linéaire d'odre deux à coefficients constants.
 - Compositions successives $u_{n+1} = f(u_n)$: intervalle stable par f, la suite est bien définie si u_0 est dans un intervalle stable, lien entre la monotonie de $(u_n)_{n\in\mathbb{N}}$ et les variations de f, cas des limites dans le cas où f est continue.
- Limite d'une suite réelle
 - Notion d'à partir d'un certain rang. Ne pas autosier l'abréviation « apcr ».
 - Limite finie $l \in \mathbb{R}$, limite $+\infty$, limite $-\infty$, unicité.
 - Opérations sur les limites.
 - Passage à la limite dans les inégalités larges.
- Existence de limites
 - Théorème d'encadrement : convergence par encadrement, divergence par minoration ou majoration.
 - Théorème de la limite monotone.
 - Suites adjacentes.
- Suites extraites
- Extension rapide aux suites complexes : suite bornée, convergence vers $l \in \mathbb{R}$, lien avec la partie réelle et la partie imaginaire.

- Q1 Passage à la limite dans les inégalités larges.
- Q2 Unicité de la limite.
- Q3 Opération : limite d'une somme, limite d'un produit.
- Q4 Théorème de la limite monotone : cas croissant, cas décroissant.

Chapitre 12 : Limite et continuité de fonctions

- Limites de fonctions
 - Définition : limites en un point réel, en $+\infty$, en $-\infty$, unicité de la limite.
 - Limites à droite et à gauche. Définition de la limite en une singularité.
 - Caractérisation séquentielle de la limite.
 - Opérations sur les limties : combinaison linéaire, produit, quotient, composition.
- Existence de limite
 - Théorèmes d'encadrement : cas d'un encadrement par des fonctions qui admettent une limite finie en un même point, cas d'une majoration par une fonciton qui tend vers $-\infty$, cas d'une minoration par une fonciton qui tend vers $+\infty$.
 - Théorème de la limite monotone.
- Continuité
 - Définition de la continuité en un point, à droite et à gauche, en une singularité.
 - Définition de la continuité d'une fonction sur un intervalle (éventuellement privé d'un point singulier).
 - Opérations sur les fonctions continues sur un intervalle.
 - Théorème des valeurs intermédiaires (par la borne supérieure).
 - Théorème de Heine dans le cas des fonctions réelles.
 - Inversion d'une fonction continue et strictement monotone et conservation de la continuité.
- Extension rapide aux fonctions à valeurs dans \mathbb{C} : fonciton continue, bornée, lien avec les parties réelles et parties imaginaires.

- Q1 Passage à la limite dans les inégalités larges.
- Q2 Unicité de la limite.
- Q3 Opération : limite d'une somme, limite d'un produit.
- Q4 Théorème de la limite monotone : cas croissant, cas décroissant.
- Q5 Théorème d'encadrement.
- Q6 Théorème des valeurs intermédaires.
- Q7 Caractérisation séquentielle de la limite.
- Q8 Composition des limites

Chapitre 13: Dérivation

- Nombre dérivé, fonction dérivée.
 - Dérivabilité en un point comme limite du taux d'accroissement en ce point.
 - Dérivabilité à gauche et à droite
 - Développement limité à l'ordre 1, lien continuité et dérivabilité
 - Opérations sur les fonctions dérivables : combinaison linéaire, produit, quotient, composée, réciproque
- Fonction de classe C^n
 - Définition par récurrence
 - Opérations sur les fonctions de classe C^n : combinaison linéaire, formule de Leibniz, quotient, composée, réciproque.
- Théorèmes de dérivation
 - Extremum local
 - Théorème de Rolle
 - Égalité des accroissements finis et application aux fonctions monotones
 - Théorème de la limite de la dérivée
 - Inégalité des accroissements finis et application aux suites récurrentes
 - Définition des fonctions lipschitziennes
- $\bullet\,$ Extension aux fonctions à valeurs complexes.

Questions de cours

- Q1 Linéarité de la dérivation
- Q2 Formule de dérivation d'une composition
- Q3 Formule de dérivation d'un produit
- Q4 Théorème de Rolle
- Q5 Théorème des accroissements finis et application au théorème de la limite de la dérivée.
- Q6 Soit $f: I \to I$ une fonction contractante qui admet un point fixe l. Soient $u_0 \in I$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Montrer que (u_n) converge vers l.

Chapitre 14 : Entiers naturels et dénombrement

- Arithmétique élémentaire dans N.
 - $\bullet\,$ Divisibilité dans $\mathbb N$: multiples, diviseurs, division euclidienne.
 - pgcd et ppcm : définition, caractérisation, algortihme d'Euclide.
 - Nombres premiers : crible d'Eratosthène, décomposition en facteurs premiers.
- Ensembles finis
 - Cardinal d'un ensemble fini, parties d'un ensemble fini, prnicipe des tiroirs.
 - Opérations sur les ensembles finis : union et produit caractésien.
- Dénombrement
 - Listes : nombre de p-listes, nombre de parties d'un ensemble fini, nombre de p-liste d'éléments deux à deux distincts, nombre d'injections, nombre de permutations
 - Nombre de partie à p éléments d'un ensemble fini de cardinal n.
 - Démonstration combinatoire du binôme de Newton

- Q1 Théorème d'Euclide
- Q2 Soit E un ensemble fini. Montrer que toute partie de E est finie.
- Q3 Soient E et F deux ensembles de même cardinal. Montrer que f injective $\iff f$ surjective.
- Q4 Calculer le cardinal de $\mathcal{P}(E)$ lorsque E est un ensemble fini.
- Q5 Soient E et F deux ensembles finis. Montrer que $E \times F$ est un ensemble fini et calcul du cardinal.
- Q6 Démonstration combinatoire du triangle de Pascal.
- Q7 Démonstration combinatoire du binôme de Newton.

Chapitre 15: Matrices

- Ensemble des matrices
 - définition en tant qu'application de $\mathbb{K}^{[1,n]\times[1,p]}$ représenté par un « tableau de nombres », ligne, colonne, matrice ligne, matrice colonne, matrice carrée, matrice nulle.
 - Opérations dans $\mathcal{M}_{n,p}(\mathbb{K})$: somme, produit par un scalaire, produit
 - Matrices et vecteurs colonnes : lien entre système linéaire et matrice.
 - Matrices élémentaires.
 - Matrices carrées : diagonales, triangulaires.
 - Puissance d'une matrice, binôme de Newton, Bernoulli.
- Opérations élémentaires et pivot de Gauss.
 - Matrices associées aux opérations élémentaires : transvection, transposition, dilatation.
 - Opérations sur les lignes et les colonnes.
- Matrices inversibles : définition et propriétés, caractérisation de l'inversibilité. Méthode du pivot de Gauss-Jordan pour la calcul de l'inverse. Calcul d'inverse par la résolution d'un système linéaire associé.
- Transposition : définition et propriétés, matrices symétriques et antisymétriques.

Questions de cours

- Q1 Associativité du produit matriciel.
- Q2 Matrices diagonales inversibles.
- Q3 Linéarité de la transposition.
- Q4 Transposée d'un produit.

Chapitre 16 : Géométrie plane

- Géométrie du triangle : somme des angles, égalité et théorème de Pythagore, bissectrice d'un angle, théorème de Thalès.
- Modes de repérage d'un point
 - coordonnées cartésiennes, obtention du milieu d'un segment, les équations cartésiennes
 - affixe d'un point du plan dans un repère otrhonormé, lien entre vecteur et nombres complexes, relation de Chasles, changement d'origine
 - systèmes de coordonnées polaires, les équations polaires, cas particulier du cercle
 - changement de représentation.
- Produit scalaire : définition géométrique, bilinéarité, symétrie, carré scalaire. Lien avec l'orthogonalité, décomposition d'un vecteur dans un repère orthonormé. Théorème d'Al-Kashi, inégalité de Cauchy-Schwarz.

- Produit mixte : définition géométrique, bilinéarité, antisymétrie. Lien avec la colinéarité, expression dans un repère orthonormé.
- Droites: définition par un point et une direction, espace vectoriel directeur, équations paramétrique et cartésiennes, vecteur normaux, distance d'un point à une droite.
- Cercles : équations cartésiennes, équations polaires, intersection avec une droite.
- Transformations: définition comme une bijection du plan, représentation complexe. Translation, rotation, symétrie axiale, homothétie ainsi que leur représentation complexe.

- Q1 Égalité et théorème de Pythagore.
- Q2 Décomposition d'un vecteur dans un repère othonormé.
- Q3 Distance d'un point à une droite.
- Q4 Réprésentation complexe des transformations usuelles.

Chapitre 17: Polynômes

- Ensemble $\mathbb{K}[X]$ où $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.
 - Définition d'un polynôme comme une expression algébrique faisant intervenir des puissance d'une indéterminée X.
 - Opérations dans $\mathbb{K}[X]$: addition, multiplication, associativité, commutativité, distributivité, intégrité. Compositions de polynômes.
 - Formules sommatoires : Newton, Bernoulli.
 - Degré d'un polynôme : cas d'une somme, d'un produit, d'une composition, éléments inversibles de $\mathbb{K}[X]$, définition de $\mathbb{K}_n[X]$.
 - Fonction polynomiale associée à un polynôme.
- Divisibilité et division euclidienne dans $\mathbb{K}[X]$, multiples, polynômes associés.
- Dérivation d'un polynôme : définition, propriétés. Dérivées successives, formule de Leibniz, formule de Taylor.
- Racines d'un polynôme
 - Définition d'une racine, lien avec la divisibité, majoration du nombre de racines deux à deux distinctes d'un polynôme non nul. Identification entre polynôme et fonction polynomiale (dans le cas de $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).
 - ordre de multiplicité d'une racine : caractérisation, lien avec la divisibilité.
 - Polynômes scindés : définition et caractérisation pour les polynômes non constants.
 - Décomposition en facteurs irreductibles dans $\mathbb{C}[X]$, factorisation dans $\mathbb{R}[X]$
 - Relation coefficients et racines.

Questions de cours

- Q1 Degré d'une somme de polynômes.
- Q2 Théorème de division euclidienne.
- Q3 Formule de Taylor dans le cadre des polynômes.
- Q4 Formule de Newton.
- Q5 Formule de Bernoulli.
- Q6 Dérivation d'un produit.
- Q7 Dérivation d'une composition.
- Q8 Formule de Leibniz (en admettant la dérivation d'un produit).
- Q9 Si a_1, \dots, a_n sont $n \in \mathbb{N}^*$ racine(s) deux à deux distinctes de $P \in \mathbb{K}[X]$, montrer que

$$\prod_{i=1}^{n} (X - a_i)|P.$$

Chapitre 18: Espace vectoriel

- Définition et espaces de référence : \mathbb{K}^n , $\mathcal{F}(\Omega, \mathbb{K})$, $\mathcal{M}_{n,p}(\mathbb{K})$, $\mathbb{K}[X]$, $E \times F$.
- Sous espace vectoriel
- Espace vectoriel engendré par un ensemble/une famille
- Somme de sous-espace vectoriels : définition, somme directe, espaces supplémentaires
- Famille libre, liée, génératrice
- Base : définition, lien avec les sommes directes, bases canoniques des esapces de référence.

- Q1 Si F et G sont deux sous espaces vectoriels de E, montrer que $F \cap G$ est un espace vectoriel.
- Q2 Déterminer une famille génératrice de $\{(x,y,z) \ / \ x+y+z=x-z=0\}.$
- Q3 Soit E un espace vectoriel. Soient F et G deux sousespaces vectoriels de E. Montrer que $E=F\oplus G$ si et seulement si

$$\forall x \in E, \exists ! (f,g) \in F \times G, \quad x = f + g.$$

Chapitre 19 : Espace vectoriel de dimension finie

- Définition, existence de base
- Théorème de la base extraite d'une famille génératrice, théorème de la base incomplète.
- Calcul de dimension d'espaces classiques : $\mathbb{K}^n, \mathbb{K}_n[X], \mathcal{M}_{n,p}(\mathbb{K}).$
- Exemples d'espaces vectoriels de dimension infinie : $\mathbb{R}[X], \mathcal{C}^0$.
- Rang d'une famille de vecteur
- Dimension d'un sous-espace vectoriel
- Formule de Grassmann

Questions de cours

- Q1 Formule de Grassmann
- Q2 Soit (x_1, \dots, x_n) une famille libre d'un espace vectoriel E. Soit $x \in E$. Montrer que (x_1, \dots, x_n, x) est liée si et seulement si $x \in \text{Vect}(x_1, \dots, x_n)$.

Chapitre 20: Intégration

- Intégration des fonctions en escalier : notion de subdivision, définition de l'intégrale et propriétés.
- Intégration des fonctions continues : linéariré, Chasles, positivité, croissance, valeur moyenne, fonction continue d'intégrale nulle.
- Somme de Riemann
- ullet Extension aux fonctions à valeurs dans ${\mathbb C}$
- Calcul intégrale : Théorème fondamental de l'analyse, intégration par parties, formule de changement de variable
- Formules de Taylor : Young, avec reste intégral.

Questions de cours

- Q1 Convergence des sommes de Riemann
- Q2 Linéarité de l'intégrale pour les fonctions continues
- Q3 Formule de Taylor avec reste intégral
- Q4 Toute fonction de signe constant d'intégrale nulle est nulle

Chapitre 21 : Analyse asymptotique

- Intégration des fonctions en escalier : notion de subdivision, définition de l'intégrale et propriétés.
- Intégration des fonctions continues : linéariré, Chasles, positivité, croissance, valeur moyenne, fonction continue d'intégrale nulle.
- Somme de Riemann
- ullet Extension aux fonctions à valeurs dans ${\mathbb C}$
- Calcul intégrale : Théorème fondamental de l'analyse, intégration par parties, formule de changement de variable
- Formules de Taylor : Young, avec reste intégral.

- Q1 Convergence des sommes de Riemann
- Q2 Linéarité de l'intégrale pour les fonctions continues
- Q3 Formule de Taylor avec reste intégral
- Q4 Toute fonction de signe constant d'intégrale nulle est nulle

Chapitre 22 : Géométrie dans l'espace

- coordonnées cartésiennes, produit scalaire, décomposition d'un vecteur dans une base orthonormée, coordonnées cylindrique et sphériques.
- produit vectoriel : orthonoganilé, vecteurs colinéaires, bilinéarité, antisymétrie, Cauchy-Schwarz
- produit mixte : règle de Sarrus, coplanéarité.
- droites : équations catrésiennes, paramétriques, direction. plans : représentation paramétrique, cartésienne, direction, vecteur normal, parallélisme. sphères : équations cartésinnes et sphériques.
- projection d'un point sur une droite et un plan.
- intersections : droite, plan, sphère.

Questions de cours

- Q1 Décomposition d'un vecteur dans une base orthonormée.
- Q2 Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs de l'espace alors $\|\overrightarrow{u} \wedge \overrightarrow{v}\|^2 + (\overrightarrow{u} \cdot \overrightarrow{v})^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2$.
- Q3 Distance d'un point à un plan, à une droite.

Chapitre 23 : Applications linéaires

- Définition, caractérisation, opérations
- Novau et image
- Isomorphisme : définition, lien avec l'image d'une base, cas de la dimension finie
- Modes de définition d'une application linéaire : explicite, avec une base, à l'aide d'une décomposition en deux espaces supplémentaires
- Endomorphismes remarquables : homothétie, projections, symétries
- Rang d'une application linéaire
- Équations linéaires

Questions de cours

- Q1 Soient E et F deux espaces vectoriels de dimension finie. Soit $f \in \mathcal{L}(E, F)$. Montrer que $\ker(f)$ et $\operatorname{Im}(f)$ sont des espaces vectoriels.
- Q2 Soient E et F deux espaces vectoriels de dimension finie. Soit $f \in \mathcal{L}(E,F)$. Montrer que tout supplémentaire de $\ker(f)$ est isomorphe à $\operatorname{Im}(f)$. En déduire aussi le théorème du rang.
- Q3 Soit $f \in \mathcal{L}(E)$ telle que $\forall x \in E, \exists \lambda \in \mathbb{K}, f(x) = \lambda x$. Montrer que f est une homothétie.

Chapitre 24 : Probabilités

- Notion d'expérience aléatoire, univers, évênements.
- Évênements particuliers : certain, impossible, contraire, union et intersection.
- Système complet d'évênements
- Espaces probabilisés fini. Définition d'une probabilité, propriétés, détermination d'une probabilité par l'image des singletons, probabilité uniforme.
- Probabilités conditionnelles
- Formule des probabilités composées, formule des probabilités totales, formyle de Bayes
- Indépendance, indépendance mutuelle et deux à deux.

- Q1 Formule des probabilités composées.
- Q2 Formule des probabilités totales puis application à la formule de Bayes.
- Q3 Soit B un évènement tel que $\mathbb{P}(B) \neq 0$, montrer que \mathbb{P}_B est une probabilité.

Chapitre 25 : Séries numériques

- Définition, symbologies : terme général d'une série, convergence, divergence, convergence grossière (terme général qui ne tend pas vers 0), convergence absolue.
- Reste d'une série convergente.
- Propriétés linéaires des séries.
- Séries usuelles : géométrique, Riemann, exponentielle
- Critères de comparaison des séries à termes positifs
- Technique de la monotonie intégrale.
- Inégalité triangulaire.
- Développement décimal

Chapitre 26 : Variables aléatoires

- Définition en tant que fonction sur un univers. Notations ensemblistes de l'évênement X=a.
- Loi d'une variable aléatoire. Transformation d'une variable aléatoire et loi induite.
- Lois usuelles : Bernoulli, uniforme, Binomiale.
- Couple de variable aléatoires : définition, loi conjointe, lois marginales, loi conditionnelle.
- Indépendance de variables aléatoires : cas d'un couple, indépendance mutuelle.
- Somme de variables aléatoires de Bernoulli indépendantes.
- Espérance : définition, cas des lois usuelles.
- Variance : König-Huygens, variance d'une somme de variables indépendantes, variances usuelles
- Inégalité de concentration : Markov, Bienaymé-Tchebychev.

Questions de cours

- Q1 Divergence de la série harmonique.
- Q2 Donner un équivalent de $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ lorsque $1 < \alpha$.
- Q3 Critère de comparaison des séries à termes positifs.
- Q4 Nature des séries de Riemann.
- Q5 Nature des séries géométriques.
- Q6 Montrer que $\forall x \in \mathbb{R}, e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.
- Q7 Montrer qu'une série absolument convergente est une série convergente. En déduire l'inégalité triangulaire.

- Q1 Inégalité de Bienaymé-Tchebychev.
- Q2 Lois usuelles, espérance, variance.
- Q3 Somme de variables aléatoires de Bernoulli indépendantes.
- Q4 Formule de transfert.