CH7.差排與強化機構

基本概念

Edge 差排中,局部格子扭曲延著多<u>餘半平面的尾端(差排線)</u>產生 Screw 差排中差排線通過螺旋狀中心

塑性變型相當於很多差排的移動

Edge 差排線的移動方向與剪應力方向相同

*與 burger 關係比較

Screw 差排線的移動方向與剪應力方向垂直

2 種造成的 net 塑性變形是相同的!

差排密度→單位體積內的總差排長度(mm-2)

謹慎凝固的金屬→103 mm-2

陶瓷→10²~10⁴ mm⁻²

巨大變形的金屬 \rightarrow 10 9 ~10 10 mm $^{-2}$,透過熱處理可減至 10 5 ~10 6 mm $^{-2}$ IC 矽單品 \rightarrow 0.1~1 mm $^{-2}$

塑型變形能量幾乎以熱散失,剩約 5%以應變能的形式儲存(lattice strain)

塑變時,差排數量快速增加,舊差排為新差排的增殖來源,晶界、內部缺陷、表面不規則,應立集中,可做為差排形成的位置。

滑移系統→使差排移動造成最小的原子扭曲的平面和方向(最密平面、最密方向)

$$\mathbf{b}(FCC) = \frac{a}{2} \langle 110 \rangle$$

$$\mathbf{b}(\mathrm{BCC}) = \frac{a}{2} \langle 111 \rangle$$

$$\mathbf{b}(\mathrm{HCP}) = \frac{a}{3} \left\langle 11\overline{2}0 \right\rangle$$

Metals	Slip Plane	Slip Direction	Slip Systems
	Face-Centered Cubic		
Cu, Al, Ni, Ag, Au	{111}	$\langle 1\overline{1}0 \rangle$	12
	Body-Centered Cubic		
α-Fe, W, Mo	{110}	$\langle \overline{1}11 \rangle$	12
α-Fe, W	{211}	$\langle \overline{1}11 \rangle$	12
α-Fe, K	{321}	$\langle \overline{1}11 \rangle$	24
	Hexagonal Close-Packed		
Cd, Zn, Mg, Ti, Be	{0001}	$\langle 11\overline{2}0\rangle$	3
Ti, Mg, Zr	$\{10\overline{1}0\}$	$\langle 11\overline{2}0\rangle$	3
Ti, Mg	$\{10\overline{1}1\}$	$\langle 11\overline{2}0\rangle$	6

軍副的滑移(即塑性變形、降伏) 開始降伏所需應力

$$\sigma_y = \frac{\tau_{\rm crss}}{(\cos\phi\cos\lambda)_{\rm max}}$$

當 $\phi = \lambda = 45^{\circ}$,產生降伏所需的應力最小 \rightarrow $\sigma_y = 2\tau_{crss}$

對於 FCC 和 BCC,滑移或許可沿著第二個滑移系統開始進行

HCP 的最有利滑移系統,若應力垂直滑移方向或平形滑移面,臨界分解應力都是 0,而 這些方位產生的破壞通常都不是塑性變形

多晶的滑移

各單獨晶粒藉由滑移所產生的可觀扭曲,變形期間,延晶界保持完整,晶界不會 分裂。

多晶比單晶強,需要更大的應力才能產生滑移和伴隨降伏。

除了 slip 可以造成塑形變形 另一個造成塑性變形的方法是雙晶

雙晶會發生在特定的平面或方向,依結構不同 機械雙晶發生在 BCC.HCP,低溫,high rate of loading(shocking loading), 這些條件使得 slip 被限制(較少可用的滑移系統)

slip	Twinning
變形前後的結晶學方向同	會發生 reorientation
原子間距的整數倍	原子位移小於原子間距
bulk plastic deformation 較大	bulk plastic deformation 較小,然而,
	因為發生 reorientation,可能引發可用
	的 slip system 而發生 slip!
較多滑移系統	較少滑移系統

強化機構

簡單原則 restricting or hindering dislocation motion renders a material harder and stronger!

Grain boundary 是對差排的 barrier

- 1.二晶粒方向不同,差排需轉向
- 2.晶界的 atomic disorder 會使滑移面不連續

但高角度晶界就不是用以上來解釋

Dislocations tend to "pile up" (or back up) at grain boundaries,引入應力集中,產生新的差排。

然而,小角度晶界對干擾 slip 沒啥作用,因為 misalignment 很小而雙晶卻能有小的阻擋 slip,增加 strength

目前討論單相金屬的強化機構(10.11 章會討論多相)

Grain 尺寸減小	fine-grained(small)→晶界面積大→阻礙差排→降伏應力和尺	
	寸相依 $ o$ Hall-Petch equation $\sigma_y = \sigma_0 + k_y d^{-1/2}$	
	此式不能用在太大或太小的晶粒	
	晶粒尺寸可以藉由凝固速率或熱處理來控制	
	Toughness 也可藉此法增強	
固溶強化	雜質原子引入 lattice strains 給 host atoms,使差排受限	
Strain-hardening	plastically deformed、work hardening,通常低於溶點,cold	
Januari Haracining	plastically deformed work hardering 起情國於福温 cold	
Strain naracining	working	
Strain nardening		

回復	差排移動→儲存應變能釋放(高溫增強原子擴散)→減少差排數目→		
	應變能變低		
	物理性質如電導.熱導,會回復到冷加工前		
	internal stress greatly reduced		
	Polygonization:多邊形化,形成小角度晶界的 sub-grain,延性顯著		
	增加,而強度、硬度稍微減少		
再結晶	1.產生 strain-free and equiaxed grains		
	2.驅動力→difference in internal energy between the strained and		
	unstrained material		
	3.涉及短程擴散		
	4.機械性質會回復到冷加工前,即更軟.延		
	5.再結晶溫度→ the temperature at which recrystallization just		
	reaches completion in 1 h,通常是熔點的 1/3~1/2,影響因素包括冷		
	加工量和合金純度:		
	6.增加冷加工比會提升再結晶速率,使再結晶溫度降低		
	7.合金會存在一個冷加工臨界值(需最小變形量),超過此值無法再		
	結晶(不可能無限提升再結晶速率),通常在 2%~20%,高出變形量		
	越多,所需再結晶溫度越低。		
	8.再結晶在純金屬中比合金快,即 solid solution alloying additions 增		
	加再結晶溫度。		
	9.new grain nuclei form and then grow→ 晶界移動		
	10.雜質原子在晶界析出→降低再結晶率、提升再結晶溫度		
晶粒成長	1.驅動力:晶粒尺寸增加→總晶界面積減少→總能量獲得降低		
	2.大晶粒藉由吞併小晶粒成長		
	3.晶界移動與原子移動方向相反		
	$d^n - d^n_0 = Kt$		

*某合金未變形試樣從直徑 0.05mm, 欲使他變成 0.02mm 冷加工→退火→再結晶→晶粒成長到所需尺寸

smith

The two principal mechanisms of primary recrystallization are: the expansion of an isolated nucleus with a deformed grain; the migration of a high-angle grain boundary into a more highly deformed region of the metal.