ANÁLISIS DE FLUJOS DE INFORMACIÓN EN APLICACIONES ANDROID

LINA MARCELA JIMÉNEZ BECERRA

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN BOGOTA 2015

ANÁLISIS DE FLUJOS DE INFORMACIÓN EN APLICACIONES ANDROID

LINA MARCELA JIMÉNEZ BECERRA

Asesores

Martín Ochoa, Ph. D.

Researcher at the software engineering chair of the TU Munich Sandra Julieta Rueda Rodriguez, Ph. D.

Profesora Asistente, DISC Universidad de los Andes

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍAS DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN BOGOTA 2015

Índice general

1.	Intr	oducc	ión	7
	1.1.	Conte	xto	7
2.	Des	cripció	on del problema	11
	2.1.	Traba	jos Relacionados	13
		2.1.1.	JIF	13
		2.1.2.	JOANA	13
		2.1.3.	JoDroid	14
		2.1.4.	FlowDroid	14
		2.1.5.	TaintDroid, Dinamic Taint Tracking, para la detección de fugas de Información	15
		2.1.6.	Comparación de técnicas	16
		2.1.7.	Clasificación de Sources y Sinks	17
	2.2.	Backg	round	18
		2.2.1.	Aplicaciones Android	18
		2.2.2.	Estructura de trabajo en JIF	18
		2.2.3.	Sintaxis de Anotación en Jif	18
	2.3.	Prelim	ninares para diseño de la solución	19
3.	Dise	eño e l	Implementación	22
	3.1.	Limita	aciones técnicas	22
	3.2.	Diseño	de la solución	25
		3.2.1.	Definición de la política de seguridad	25
		3.2.2.	Consideraciones para verificar el cumplimiento de la política mediante Jif	26

		3.2.3.	Cómo funciona el sistema de anotaciones en Jif(Para Justificar, las anotaciones propuestas)(Ubicación temporal)	27
		3.2.4.	Lineamientos de anotación	28
		3.2.5.	Diseño del anotador	31
		3.2.6.	Descripción implementación prototipo	32
4.	Eva	luaciói	n	33
	4.1.	Consid	deraciones de evaluación	33
	4.2.	Conju	nto de evaluación	33
		4.2.1.	Evaluación FlowDroid y Prototipo	35
		4.2.2.	Evaluación JoDroid y Prototipo	37
		4.2.3.	Análisis de evaluación FlowDroid, JoDroid, Prototipo	39
	4.3.	Tipos	de análisis y técnicas evaluadas	40
5.	Tra	bajo F	uturo y Conclusiones	43
	5.1.	Discus	sión	43
		5.1.1.	Analizar flujo de información de aplicaciones Android mediante Jif:	43
		5.1.2.	Qué tanto cambia la anotación del código original	43
	5.2.	Traba	jo Futuro	44
	5.3.	Conclu	usiones	44
6.	Ane	exos		45
	6.1.	Diagra	ama de clases para el anotador	46
	6.2.	Descri	pción de testcases para evaluación	47
	6.3.	Formu	las	51
	6.4.	Instru	cciones para probar del prototipo	51
	6.5.	Instru	cciones para uso de FlowDroid	52

ÍNDICE DE TABLAS

4.1.	Descripción aplicaciones de prueba. Se considera con nivel de seguridad alto, variables y métodos que almacenan y modifican(respectivamente), información catalogada como privada(Sources). Se considera con nivel de seguridad bajo, canales para envío de mensajes, muestra de logs y canales creados durante el control de flujo del programa.
4.2.	Resultados de evaluación para FlowDroid y Prototipo. Donde $Testcase$ especifica el nombre de la aplicación que se está evaluando; $Leaks$ indica si el testcase presenta fugas de información; F y P muestran los resultados devueltos por FlowDroid y por el Prototipo; tF y tP , señalan el tiempo(en segundos) que toma el análisis para Flowdroid y para el Prototipo, respectivamente
4.3.	Resultados de precisión para FlowDroid y Prototipo, de acuerdo al escenario, incluyendo o excluyendo flujos implícitos(FI). Resume el total de falsos positivos(FP), verdaderos positivos(TP), verdaderos negativos(TN) y falsos negativos(FN); obtenidos tanto con FlowDroid como con el Prototipo
4.4.	Resultados de evaluación para JoDroid y Prototipo. Donde <i>Testcase</i> especifica el nombre de la aplicación que se está evaluando; <i>Leaks</i> indica si el testcase presenta fugas de información; <i>J</i> y <i>P</i> muestran los resultados devueltos por JoDroid y por el Prototipo; <i>tJ</i> y <i>tP</i> , señalan el tiempo que toma el análisis para JoDroid y para el Prototipo, respectivamente
4.5.	Resultados de precisión para JoDroid y Prototipo. Muestra los escenarios en que mide. Resume el total de falsos positivos(FP), verdaderos positivos(TP), verdaderos negativos(TN) y falsos negativos(FN); obtenidos tanto con JoDroid como con el Prototipo
4.6.	Resultados de precisión para FlowDroid y Prototipo. Resume el total de falsos positivos(FP), verdaderos positivos(TP), verdaderos negativos(TN) y falsos negativos(FN)

4.7.	Comparación entre FlowDroid, JoDroid y Prototipo. Ilustra los porcentajes para Precisión, Recall, y la detección de leaks mediante flujos implícitos.	
		39
4.8.	Síntesis ventajas, desventajas, similitudes y diferencias; del Prototipo frente a FlowDroid y JoDroid(respectivamente).	
		40
4.9.	Generalidades técnicas de análisis evaluadas	42
6.1.	Descripción aplicaciones de prueba	48
6.2.	Descripción aplicaciones de prueba	49
6.3.	Descripción aplicaciones de prueba	50

ÍNDICE DE GRÁFICAS

2.1.	de la herramienta propuesta para el análisis estático de aplicaciones Android	20
2.2.	Static Analisys Tool. Ilustra el input esperado por la herramienta, y el resultado devuelto	20
3.1.	Mecánismos de anotación para clases de la API	29
3.2.	Entradas y salidas para el generador de anotaciones	31
6.1	Clases necesarias para la implementación del anotador	46

Resumen

Breve resumen del trabajo : contexo, problema, solución propuesta, resultados alcanzados.

La presente investigación plantea aplicar técnicas de análisis basadas en control de flujo de información, con el fin de verificar la ausencia de fugas de información en aplicaciones Android. Puesto que, controlar el acceso y uso de la información, representa una de las principales preocupaciones de seguridad en dichos aplicativos.

Un estudio reciente de seguridad en dispositivos móviles, publicado por McAfee[1], revela que en el contexto de aplicativos Android: 80 % reúnen información de la ubicación, 82 % hacen seguimiento de alguna acción en el dispositivo, 57 % registran la forma de uso del celular (mediante Wi-Fi o mediante la red de telefonía), y 36 % conocen información de las cuentas de usuario.

Diferentes trabajos de investigación han abordado el problema de pérdida de información en aplicativos Android, sin embargo, la literatura científica existente al respecto, permite inferir que la mayoría de trabajos aplican técnicas para hacer dataflow análisis a partir del bytecode. De modo que, su finalidad es detectar fugas de información y no, verificar que el aplicativo respeta determinadas políticas de seguridad. Así, el desarrollador de la aplicación carece de herramientas de apoyo para verificar si la aplicación que implementa, cumple con determinadas políticas de seguridad.

CAPÍTULO 1

Introducción

En aplicativos Android, el manejo de la información del usuario, es una de las principales preocupaciones de seguridad. Según un estudio reciente de seguridad en dispositivos móviles, publicado por McAfee[1], una importante cantidad de aplicaciones Android invaden la privacidad del usuario, reuniendo información detallada de su desplazamiento, acciones en el dispositivo, y su vida personal.

Por otro lado, para controlar el acceso a información manipulada por sus aplicaciones, el desarrollador cuenta con los mecanismos de seguridad proveídos por la API de Android, sin embargo, al estar basados en políticas de control de acceso, se limitan a verificar el uso de los recursos del sistema acorde a los privilegios del usuario, lo qué suceda con la información una vez sea accedida, está fuera del alcance de este tipo de controles. Al no contar con herramientas de análisis de flujo de información en aplicaciones Android, para el desarrollador es difícil verificar el cumplimiento de políticas de confidencialidad e integridad en la aplicación próxima a liberar. Por consiguiente, el desarrollador no tiene como asegurar la ausencia de fugas de información en la aplicación.

Si bien, en el campo de aplicativos Android, existen diferentes propuestas para detectar fuga de información, en su mayoría están enfocadas a analizar aplicaciones de terceros, asumiendo que el atacante provee bytecode malicioso. Por tanto, aplican data-flow analysis partiendo del bytecode. Estas propuestas no abordan el problema del lado del desarrollador, analizando flujos de información de la aplicación para verificar el cumplimiento de políticas de confidencialidad.

Ante esto, y con el fin de proveer una herramienta de apoyo al desarrollador, de modo que verifique el cumplimiento de políticas de seguridad en sus aplicaciones, el presente trabajo aborda el problema de fugas de información en aplicaciones Android, analizando flujos de información de la aplicación, mediante técnicas de lenguajes tipados de seguridad .

1.1. Contexto

Las soluciones propuestas para detectar fuga de información en aplicaciones Android, se enmarcan en el análisis estático o dinámico de la aplicación, en algunos casos, se combinan ambos tipos.

En análisis estático, se estudia el código del programa para inferir todos los posibles caminos de ejecución. Esto se logra construyendo modelos de estado del programa, y determinando los estados posibles que puede alcanzar el programa. No obstante, debido a que existen múltiples posibilidades de ejecución, se opta por construir un modelo abstracto de los estados del programa. La consecuencia de tener un modelo aproximado es pérdida de información y posibilidad de menor precisión en el análisis. Por otro lado, en análisis dinámico se ejecuta el programa y se analiza su comportamiento, verificando el camino de ejecución que ha tomado el programa. Esa exactitud en la ejecución que se verifica, da precisión al análisis, porque no es necesario construir un modelo aproximado de todos los posibles caminos de ejecución.

Aunque los resultados del análisis estático pueden perder precisión, la ventaja es que son generalizables, es decir, el modelo construido representa una descripción del comportamiento del programa, independientemente de las entradas y el contexto en que este se ejecute. Ahora, con el análisis dinámico, no es posible generalizar sus resultados para futuras ejecuciones, porque no existen garantías de que las entradas para las cuales fue ejecutado el programa, contengan características para todos los posibles caminos de ejecución.

Además de las ventajas y desventajas de ambas clases de análisis, cada uno implica su propio reto, así, mientras en el análisis estático la dificultad está en construir el modelo de abstracción adecuado, en el análisis dinámico, es complejo encontrar un conjunto de casos de prueba representativo, a analizar durante la ejecución del programa.

Por otra parte, dependiendo de la finalidad con qué se detecte la fuga de información, un tipo de análisis puede ser más apropiado que otro. Si se busca contener la fuga de información a tiempo de ejecución, análisis dinámico es el camino apropiado. Por el contrario, si se busca garantizar que a tiempo de ejecución la aplicación no incurrirá en fugas de información, resulta más conveniente aplicar análisis estático, porque cumplir con tales garantías implica definir políticas de confidencialidad y/o integridad desde la implementación de la aplicación.

Precisamente, el propósito fundamental del presente trabajo es ofrecer al desarrollador de aplicaciones Android una herramienta para aplicar políticas de confidencialidad en la aplicación que implementa, así, la aplicación se ejecutará exitosamente, si y sólo si, cumple con las políticas definidas, de lo contrario, el desarrollador puede revisar y corregir su código.

En análisis estático, generalmente, se aplican técnicas de seguridad de tipado (Typed-Inference/Security-Typed Analysis) y técnicas de flujo de datos (Data/Control Flow Analysis). Con técnicas Security-Typed las propiedades de confidencialidad e integridad son anotadas en el código, y verificadas a tiempo de compilación para garantizar que se cumplen en tiempo de ejecución. Con las técnicas de flujo de control o flujo de datos, se hace seguimiento al flujo de los datos o control de flujo para verificar el cumplimiento de políticas de seguridad, generalmente se utilizan grafos de Control de Flujo CFG (Control Flow Graph), Grafos de Flujo de Datos DFG (Data Flow Graph) y Grafos de llamadas CG (Call Graphs).

Al consultar la literatura científica, es posible inferir que parte importante de las propuestas para análisis de fuga de información en aplicativos Android(TaintDroid[2], Flow-Droid[3], DidFail[4], DroidForce[5]), parten del bytecode para realizar data-

flow analysis, mediante técnicas de análisis tainting. Tainting es un tipo especial de análisis de flujo de datos, que hace seguimiento al flujo de datos entre un conjunto de fuentes considerados privados y/o sensibles; y un conjunto de destinos considerados no confiables, sources y sinks, respectivamente.

Tales propuestas se enfocan en analizar aplicativos de terceros para detectar flujos de datos indebidos en aplicaciones ya implementadas, y no: para garantizar el cumplimiento de determinadas políticas de seguridad desde la construcción de los mismos.

En consecuencia, es complejo que el desarrollador garantice la ausencia de fugas de información en la aplicación que implementa, partiendo de tales herramientas. Puesto que, al seguir únicamente a los datos marcados, los datos no marcados para el análisis, pueden acarrear fugas de información(under-tainting). Adicionalmente, si no se hace seguimiento al flujo de control pueden existir fugas de información a través de flujos implícitos, ya que, el análisis estará centrado en flujos explícitos.

No obstante, las limitaciones propias de un análisis basado en flujo de datos, pueden superarse enfocando el análisis de la aplicación hacia técnicas de análisis basadas en control de flujo de información, ya que estas analizan el aplicativo de forma estática para identificar todos los posibles caminos que podría tomar la aplicación en tiempo de ejecución. Así, con análisis basado en control de flujo de información es posible garantizar el cumplimiento de determinadas políticas de seguridad, desde la construcción del aplicativo.

Ahora, las reglas para evaluar control de flujo de información pueden definirse mediante técnicas Security-Typed, por ejemplo como se definen con JIF 2.1.1, una herramienta basada en lenguajes tipados de seguridad para realizar control de flujo de información, el inconveniente es que está implementada para aplicaciones en Java, y no para aplicativos Android.

En general, herramientas como estas, basadas en técnicas de análisis Security-Typed, implican conceptos como flujo de información, políticas de confidencialidad e integridad, y chequeo de tipos.

El flujo de información describe el comportamiento de un programa, desde la entrada de los datos hasta la salida de los mismos.

Confidencialidad e integridad son políticas de seguridad, aplicables mediante control de flujo de información. La confidencialidad busca prevenir que la información fluya hacia destinos no apropiados, mientras que, la integridad busca prevenir que la información provenga de fuentes no apropiadas. Una importante diferencia entre confidencialidad e integridad, es que la integridad de la información de un programa puede ser alterada sin la interacción con agentes externos.

Ambas políticas son fundamentales para garantizar propiedades de seguridad. Con políticas de confidencialidad, es posible garantizar ausencia de fugas de información. Mientras que, con políticas de integridad, la finalidad es evitar modificación de la información, de forma no consentida.

Por consiguiente, verificar que un programa utilice la información acorde a tales políticas, implica analizar sus flujos de información, de inicio a fin. Para el análisis, se deben definir: políticas de flujo de información y controles de flujo de información, es decir, las políticas de seguridad a evaluar y los mecanismos para aplicarlas.

Al usar un lenguaje tipado de seguridad, las políticas son definidas a través del lenguaje, porque son expresadas mediante anotaciones en el código fuente del programa a verificar, y su evaluación se realiza mediante chequeo de tipos. El chequeo de tipos consiste en una técnica estática, también utilizada para analizar flujo de información durante la compilación de un programa, más específicamente en la etapa de análisis

semántico, el compilador identifica el tipo para cada expresión del programa y verifica que corresponda al contexto de la expresión. Bajo este principio de chequeo, lenguajes tipados de seguridad aplican políticas de control de flujo, definiendo para cada expresión del programa un tipo de seguridad(security type), de la forma: tipo de dato y label de seguridad(security label), regulador de uso del dato, acorde a su tipo. El compilador realiza el chequeo de tipos, partiendo del conjunto de labels de seguridad. Así, si el programa pasa el chequeo de tipos y compila correctamente, se espera que cumpla con las políticas de control de flujo evaluadas.

CAPÍTULO 2

Descripción del problema

En Android, por defecto, el desarrollador no cuenta con mecanismos para definir políticas de confidencialidad e integridad que regulen el flujo de información de sus aplicaciones. Siendo complejo prevenir fugas de información del usuario, puesto que, el desarrollador carece de herramientas que le garanticen la ausencia de flujos indeseados.

Precisamente, una de las principales preocupaciones de seguridad en aplicativos Android, es la manipulación de información del usuario. Así lo evidencia un estudio reciente de seguridad en dispositivos móviles, publicado por McAfee[1], este señala que una importante cantidad de aplicaciones Android invaden la privacidad del usuario, reuniendo información detallada de su desplazamiento, acciones en el dispositivo, y su vida personal. De este modo, 80 % reúnen información de la ubicación, 82 % hacen seguimiento de alguna acción en el dispositivo , 57 % registran la forma de uso del celular (mediante Wi-Fi o mediante la red de telefonía), y 36 % conocen información de las cuentas de usuario.

Las motivaciones para este tipo de acciones varían acorde al tipo de información, por ejemplo: monitorear información de ubicación para mostrar publicidad no solicitada; seguir las acciones sobre el dispositivo, para conocer qué aplicaciones son rentables de desarrollar, o para ayudar a aplicaciones maliciosas a evadir defensas; acceder a información de cuentas del usuario con fines delictivos; obtener información de contactos y calendario del usuario, buscando modificar los datos; obtener información del celular (número, estado, registro de MMS y SMS) para interceptar llamadas y enviar mensajes sin consentimiento del usuario.

Con o sin autorización de acceso, existen motivaciones suficientes para que un tercero desee manipular información del usuario.

Adicionalmente, el informe señala que una aplicación invasiva no necesariamente contiene malware, y que su finalidad no siempre implica fraude; de las aplicaciones que más vulneran la privacidad del usuario, 35 % contienen malware.

Si bien, aplicaciones invasivas no necesariamente implican malware y/o acciones delictivas, el cuestionamiento de fondo es la forma y finalidad con que están accediendo la información, es decir, si información de usuario manipulada por una determinada aplicación, realmente debería ser accedida por otros aplicativos del dispositivo, aún cuando sean considerados no maliciosos; y qué garantías puede ofrecer el desarrollador para que tal acceso, efectivamente sea consentido.

La falta de control sobre los flujos de información de la aplicación puede ocasionar

fugas de información, generando problemas de seguridad tanto para quien la implementa como para quien la usa.

Como contramedida a este problema, la API de Android ofrece herramientas de seguridad basadas en políticas de control de acceso, y el desarrollador puede implementarlas en su aplicación. Sin embargo, estos mecanismos se centran en regular el acceso de los usuarios del sistema a determinados recursos, y no en verificar qué sucede con la información una vez es accedida.

Para superar tal carencia, diferentes trabajos de investigación han abordado el problema de fuga de información en aplicaciones Android, tanto desde un enfoque dinámico como desde un enfoque estático, la literatura existente al respecto(TaintDroid[2], Flow-Droid[3], DidFail[4], DroidForce[5]), indica que la mayoría de propuestas hacen data-flow analysis mediante técnicas de análisis usando tainting, partiendo del bytecode. Una característica sobresaliente entre estos trabajos es el modelo de ataque, puesto que, se centran en analizar aplicaciones de terceros asumiendo que el atacante provee bytecode malicioso. Guiar el análisis de aplicaciones propias con el fin de verificar políticas de confidencialidad e integridad, bajo tales propuestas, puede implicar: mayor dificultad en el código a analizar, incompletitud en el análisis (under-tainting) y no detección de flujos implícitos. Esto debido a que, aún cuando el desarrollador conoce la funcionalidad de su propio código, las optimizaciones realizadas por el compilador pueden adicionar complejidad al mismo[6, pag. 43]; el seguimiento de los datos a través del programa está centrado en datos marcados, datos no marcados quedan fuera del análisis; flujos de datos a través de estructuras de control, por ejemplo, las sentencias if, permiten inferir valores de datos marcados como source, sin necesidad de generar flujos explícitos entre sources y sinks, los cuales si pueden ser detectados por las técnicas de análisis tainting.

Otra razón fundamental para no analizar aplicaciones propias con tales propuestas es que están diseñadas para detectar flujos de datos indebidos, y no para garantizar el cumplimiento de políticas de seguridad en una aplicación.

Los riesgos de seguridad tras el under-tainting de datos, y la ausencia de garantías en el cumplimiento de determinadas políticas de seguridad, pueden superarse mediante control de flujo de información, Information Flow Control(IFC), puesto que, con esta técnica se analiza estáticamente la aplicación para identificar todos los posibles caminos que podrían tomar sus flujos de información, garantizando que a tiempo de ejecución, la aplicación respeta políticas de seguridad.

Finalmente, partiendo del contexto que se plantea, dónde se cuenta con el código fuente Android, porque es el propio desarrollador quien requiere evaluar políticas de confidencialidad en su aplicación, para garantizarle al usuario que la aplicación las cumple. Resulta apropiado proveer una herramienta de apoyo al desarrollador, mediante la cual analice el flujo de información de la aplicación próxima a liberar, y verifique el cumplimiento de políticas de seguridad.

2.1. Trabajos Relacionados

2.1.1. JIF

JIF(Java Information Flow), es un lenguaje tipado de seguridad que permite extender el lenguaje de programación Java, con control de flujo de información y control de acceso, usando anotaciones de seguridad. El compilador usa estas anotaciones durante el chequeo de tipos, verificando el cumplimiento de la propiedad de seguridad non-interference.

Usar JIF para el análisis estático de flujo de información de un programa, requiere implementar la versión del mismo, especificando mediante el conjunto de labels de JIF, las políticas de seguridad a verificar. La implementación de programas JIF está basada en el modelo de etiquetas DLM(Decentralized Label Model), donde un principal es una entidad con autoridad para observar y cambiar aspectos del sistema, así, un principal puede definir y hacer cumplir los requerimientos de seguridad del dueño de la información. Para expresar una relación de confianza entre principals, se define la relación acts-for, a partir de la cual, se derivan dos tipos de principals: top principal y botton principal, un top principal puede actuar para todos los principals, mientras que, un botton principal permite que todos los principals actúen para el. Las políticas de seguridad se condensan en Políticas de Confidencialidad y Políticas de Integridad, con ellas se determina el conjunto de principals readers y writes, y el comportamiento que deberían tener. El compilador de JIF aplica chequeo de labels para verificar el cumplimiento de las políticas de seguridad definidas en el programa, cuando determina que efectivamente las cumple, da paso al compilador de Java para generar su versión ejecutable.

Además del modelo de labels en que se centra, JIF incluye mecanismos que aportan características adicionales en la implementación de programas para seguimiento de Flujo de información. La opción de flexibilizar las políticas de seguridad de la información, hace parte de estas características adicionales, y se logra aplicando el mecanismo Downgrading. Dependiendo del tipo política al que se realiza downgrading, políticas de confidencialidad o políticas de integridad, el proceso se conoce como Declasificación o Endorsement, respectivamente.

2.1.2. **JOANA**

JOANA (Java Object-sensitive ANAlysis)- Information Flow Control Framework for Java[7]. Verifica si una aplicación java contiene fugas de información, mediante análisis estático de flujos de información. El análisis parte de anotaciones en el código fuente de la aplicación. JOANA utiliza técnicas de análisis de flujo de datos y técnicas de análisis de control de flujo. El frontend de la herramienta está basado en el framework de análisis de programas WALA[8], a partir del cual obtiene la representación intermedia del código Java en forma SSA(Static Single Assignement), lo que permite obtener información dinámica del programa. Por otro lado, utiliza Grafos de Dependencia, System Dependence Graphs(SDG), para detectar dependencias entre las sentencias del programa, es decir, si existen caminos entre sentencias etiquetadas con nivel de seguridad alto y sentencias con nivel de seguridad bajo. Para esta

etapa del análisis recurre a técnicas de slicing y chopping, reduciendo la cantidad de caminos posibles sólo a los válidos. Así obtiene como resultado, una mayor precisión y reducción de falsas alarmas en el análisis.

Aunque JOANA provee sencillez a la hora de anotar el código a analizar, pues sólo es necesario anotar inputs y outputs del programa, porque la herramienta se encarga de propagar las anotaciones en el resto del programa; carece de características adicionales ofrecidas por sistemas de tipado de seguridad, por ejemplo, el mecanismo downgrading facilitado por JIF.

Si bien, al igual que JOANA, la herramienta propuesta a través del presente trabajo, aplica análisis de control de flujo de información, esta última busca analizar aplicaciones implementadas en código Android, aprovechando las ventajas del sistema de anotaciones de JIF. Proporcionando una herramienta de apoyo al desarrollador de aplicaciones Android, ya que por el momento, JOANA sólo analiza aplicaciones en JAVA.

2.1.3. JoDroid

JoDroid es una extención a la herramienta de análisis JOANA para soportar analisis de aplicaciones Android.

El análisis de JOANA está basado en Program Dependence Graphs(PDG) y técnicas slicing. Con PDGs obtiene una representación del programa que analiza, donde los nodos representan statements y expresiones; y las aristas modelan las dependencias sintacticas entre los statements y expresiones: dependencias de datos y dependencias de control, por tanto el grafo está en capacidad de modelar, tanto flujos explícitos como flujos implícitos.

Con técnicas slicing provee sensibilidad al contexto, puesto que el PDG se construye de manera tal que al hacer el backwards slice de un determinado nodo, se obtiene cada nodo que es alcanzable por caminos del grafo que conservan llamadas al contexto.

El PDG es generado mediante el Front-end de WALA, framework que analiza bytecode de Java. Así, los ajustes hechos a JOANA adaptan parte del Front-end de WALA para generar el PDG de aplicaciones Android.

JoDroid detecta tanto flujos explícitos como flujos implícitos.

2.1.4. FlowDroid

FlowDroid es una herramienta para análisis estático de flujo de datos en Aplicaciones Android. También permite el análisis de aplicaciones Java.

Esta herramienta utiliza un tipo especial de análisis de flujo de datos: análisis tainting, que hace seguimiento al flujo de datos entre un conjunto de sources y un conjunto de sinks. Define tales conjuntos a partir de SuSi[2.1.7], un clasificador automático de sources y sinks para la Api de Android.

FlowDroid provee un alto recall y precisión[3] en el análisis. El recall, mediante un fiel modelamiento del ciclo de vida de una aplicación Android; la precisión, incluyendo

elementos de análisis como: context-, flow-, field- y object-sensitive. Para proveer sensibilidad al flujo y al contexto, recurre a grafos de llamada; y con grafos que modelan todos los procedimientos del programa(inter-procedural control-flow graph), analiza el flujo de datos entre procedimientos, proporcionando field- y object-sensitive. Los autores de esta propuesta, alcanzan precisión en la construcción del grafo de llamadas extendiendo Soot[9], un framework que genera código intermedio para código Java y código ejecutable Android(dex). Adicionalmente, con el framework Heros[10], incluyen llamadas multihilos en el análisis de flujo de datos entre procedimientos.

Entre las limitaciones de FlowDroid está el over-tainting y la no detección de flujos implícitos. Por tanto, la herramienta no distingue elementos marcados ni dentro de arrays, ni dentro de collections, si se inserta un elemento marcado dentro de alguna de estas estructuras, inmediatamente se marca el resto de elementos. La herramienta tampoco identifica flujos implícitos, puesto que, según los resultados de evaluación de DroidBench[11], su benchmark; cuando Flowdroid analiza el conjunto de aplicaciones de prueba para la identificación de flujos implícitos, no detecta fuga de datos, generando falsos negativos en la detección de flujos implícitos[3, pags 32-36].

Aún cuando el problema a atacar es el mismo: fuga de información, la propuesta que se expone a través del presente trabajo difiere en el enfoque de análisis de FlowDroid, mientras FlowDroid se concentra en detectar si la aplicación de un tercero presenta fugas de información, la herramienta planteada aborda el análisis del lado del desarrollador de la aplicación, apoyándolo en la verificación del cumplimiento de políticas de seguridad. Así, resulta más conveniente guiar el análisis mediante control de flujo de información, ya que se previene fuga por datos no marcados para el análisis (under-tainting) y por la no detección de flujos implícitos, siendo posible garantizar el cumplimiento de políticas de seguridad.

2.1.5. TaintDroid, Dinamic Taint Tracking, para la detección de fugas de Información

A diferencia de las propuestas expuestas anteriormente, caracterizadas por ejecutar el análisis de manera estática, TaintDroid es una herramienta de análisis dinámico. Está herramienta extiende la plataforma de dispositivos celulares Android, con el fin de verificar el uso dado por aplicaciones de terceros a datos sensibles del usuario. El análisis aplica técnicas de análisis tainting, marcando automáticamente como sources, datos provenientes de fuentes consideradas privadas y/o sensibles; y como sinks, canales que permiten salir datos de la aplicación, como por ejemplo internet. Cada vez que un dato marcado como source sale de la aplicación, se genera un log. Para reducir sobrecarga en el dispositivo, pues el análisis es ejecutado a nivel de instrucciones, instrumentan la máquina virtual de Android con marcas de propagación a nivel de: variables, métodos, mensajes y archivos. Las marcas de variable hacen seguimiento a datos dentro de aplicaciones consideras no confiables. Las marcas de mensaje siguen mensajes entre aplicaciones. Debido a que TaintDroid no hace seguimiento a la ejecución de código nativo, utiliza las marcas de métodos para hacer seguimiento a lo retornado luego de invocar métodos de librerías nativas. Las marcas de archivo son utilizadas para verificar la persistencia de los datos, acorde a las

políticas de seguridad.

Otra medida para reducir sobrecarga en la ejecución del análisis, consiste en no hacer seguimiento a flujos de control, generando no detección de flujos implícitos[2, pag 12].

Si bien, TaintDroid supera el inconveniente de sobrecarga en la ejecución del análisis, un inconveniente característico en análisis dinámico, está limitado para detectar fuga de datos mediante flujos implícitos, puesto que se enfoca en hacer seguimiento a flujos de datos directos(flujos explícitos).

Al ser una herramienta de análisis dinámico, TaintDroid sólo detecta fugas de información correspondiente a las ejecuciones presentadas por el programa, y para la finalidad de su análisis: informar al usuario de posibles fugas de información, se puede decir que es adecuado. No obstante, para los propósitos de la propuesta planteada a través del presente trabajo, con la que se pretende brindar una herramienta de análisis para que el desarrollador verifique el cumplimiento de políticas de seguridad en la aplicación que implementa, no resulta viable aplicar análisis dinámico, ni técnicas de análisis tainting para hacer seguimiento a flujos flujos de datos.

2.1.6. Comparación de técnicas

Las técnicas utilizadas para análisis de seguridad en aplicaciones, pueden aplicarse estática o dinámicamente, dependiendo de las propiedades del programa en que se centre el análisis.

La ejecución dinámica o estática del análisis, trae sus propias ventajas y desventajas. En el caso de análisis estático, completitud en el análisis es una de sus principales ventajas. Esto debido a qué, el análisis contempla todas los caminos de ejecución en que podría incurrir el programa. Evitando que se pierdan casos a analizar. Por otra parte, al carecer de información que sólo se puede obtener a tiempo de ejecución, por ejemplo, las entradas que el programa recibe, el análisis estático suele generar falsos positivos.

En el análisis dinámico, una de las principales ventajas es la baja generación de falsos positivos, puesto que, el análisis no se centra en los posibles casos de ejecución, sino que verifica el caso de ejecución que efectivamente está ocurriendo. No obstante, el análisis dinámico podría incurrir en incompletitud, porque sólo verifica los casos de ejecución que se presenten, es decir, el aplicativo podría presentar fugas de información no reportadas por el análisis, como consecuencia de la no ejecución de los casos que permiten identificarlos.

Así, el análisis dinámico genera menor cantidad de falsos positivos que el análisis estático, sin embargo, el análisis estático ofrece mayor completitud en el análisis. Adicional a la forma en que son aplicadas, estática o dinámicamente, las técnicas de análisis pueden enfocarse en hacer seguimiento al flujo de datos a través del programa, o en verificar flujos de información. Las técnicas basadas en tanting análisis, permiten hacer análisis de flujo de datos, marcando los datos de interés y verificando su flujo entre sources(fuentes del programa consideradas sensibles y/o confidenciales) y sinks(destinos considerados no confiables). Entre las desventajas de está técnica, esta el under-tainting, es decir, la posibilidad de fugas a través de datos no marcados para el análisis.

Las técnicas para aplicar análisis mediante control de flujo de información, general-

mente permiten definir anotaciones de seguridad en el código fuente de la aplicación, para verificar sus flujos de información. Estas generalmente se basan en técnicas de seguridad de tipado (Security-Typed Analyses), o en grafos que describen el comportamiento del programa, como Contol Dependence Graphs (PDG) y System Dependence Graphs (SDG). Ambas técnicas recurren a etapas de análisis de compilación (se basan en técnicas de compilación), sin embargo, mientras las técnicas de Security-Typed sólo requieren llegar hasta el chequeo de tipos; las basadas en grafos de dependencia deben llegar hasta la representación de código intermedio para generar los respectivos grafos. Si bien, con grafos de dependencia se tiene mayor precisión en el análisis, su ejecución es costosa, ya que genera una complejidad de orden polinomial, O(N)3[12, page 3]. Las motivaciones para guiar el análisis bajo una u otra perspectiva, implica poner a consideración tanto el nivel de precisión requerido por las propiedades de seguridad a evaluar, como el costo de implementación y de ejecución del análisis.

2.1.7. Clasificación de Sources y Sinks

En el ámbito de análisis de flujo de información de aplicaciones, independientemente del tipo de análisis, estático o dinámico, el punto de partida es la definición de políticas de privacidad, los pasos sucesivos para detectar la perdida de información giran en torno a las políticas de privacidad definidas. Muchas de las propuestas para análisis de flujo de información en aplicaciones Android, parten de un listado de sources y sinks para definir sus políticas de privacidad. Así, en el grupo de sources se incluyen las fuentes de datos sensibles, mientras que en el grupo de sinks, se incluyen los medios o canales que podrían filtrar información sensible de forma no autorizada. La efectividad del análisis se ve limitada al listado de sources y sinks, y la veracidad de los mismos. El inconveniente con estos sources y sinks, es que su clasificación suele hacerse de forma manual, por tanto, existe mayor probabilidad de error u omisión. Con el fin de precisar dicha clasificación, el trabajo de investigación SuSi propone el uso de machine-learning para la clasificación y categorización de sources y sinks, partiendo del código fuente de la API Android. La propuesta de análisis se materializa en una herramienta, que recibe como entrada métodos de Android y devuelve una lista con la respectiva categorización de sources y sinks.

La construcción del modelo de análisis propuesto, parte definiendo los elementos necesarios para el reconocimiento de sources y sinks; inicialmente define: Sources y sinks, respectivamente, como las entradas y salidas de flujo de datos del programa; un dato como un valor o una referencia a un valor; un Resource Method como un método que lee o escribe datos en un recurso compartido. Seguidamente, define el concepto de sources y sinks, considerando el contexto de Android: Android Sources como llamadas a métodos tipo resources(Resources method) que retornan valores no constantes al código de la aplicación. Android Sinks como llamadas a methods resource, aceptando como argumento al menos un valor no constante desde el código de la aplicación, y qué además adicionen o modifiquen valores del recurso invocado. El modelo de entrenamiento de SuSi usa el clasificador SMO, una implementación del clasificador SVM(Support Vector Machines) para Weka, al que inicialmente enseña a clasificar partiendo de ejemplos entrenados manualmente. Adicionalmente, lo adapta utilizando la técnica de clasificación one-againts-all, de modo que pueda

representar, tanto los ejemplos de entrenamiento, en tres clases: sources, sinks, o ninguno; como las categorías de los sources y sinks identificados.

Los criterios de clasificación están basados en un conjunto de características, es decir, funciones que asocian ejemplos de entrenamiento o ejemplos de prueba, con un determinado valor.

El proceso de análisis se compone de dos rondas secuenciales: clasificación y categorización. Cada una se compone de las fases input, preparation, classification y output. Así, la salida de la primera ronda: sources y sinks, se convierte en entrada para la ronda de categorización, donde se definen diferentes tipos de categorías, 12 para sources y 15 para sinks.

2.2. Background

2.2.1. Aplicaciones Android

Explicar composición de aplicaciones Android, actividades, servicios, etc.

2.2.2. Estructura de trabajo en JIF

- estructura de los directorios del compilador Jif y estructura de trabajo en Jif(para entender cómo funciona y cómo afecta el diseño de la solución).

2.2.3. Sintaxis de Anotación en Jif

-Definición de variables:

 $type\{L\} \ varName;$

donde type especifica el tipo de dato que almacena la variable, {L} el label de seguridad para especificar quien es el dueño de la variable, y name, el respectivo nombre de la variable.

-Definición de arrays:

en jif un array cuenta con dos labels de seguridad, Base Label(BL) y Size Label(SL). BL indica el nivel de seguridad de los elementos que almacena el array, controlando quien puede conocer la información del mismo. SL especifica quienes pueden conocer la número de elementos almacenados.

-Definición de métodos.

 $type \{RTL\} \ methodName \{BL\} \ (arg1\{AL\},,, \ argn\{AL\}) : \{EL\}$

RTL, Return Type Label, indica el label de seguridad con que queda el tipo de dato devuelto por el método.

BL begin label, representa el máximo nivel se seguridad del pc label desde donde se invoca el método, de este modo, el program counter label desde donde se invoca el método debe ser menor o igual de restrictivo que el BL del método.

AL argument label, indica el máximo nivel de seguridad para los argumentos con que se llama el método, así, los labels de los argumentos con que se invoca el método deben ser menor o igual de restrictivos que los AL con que han definido el método.

EL end label, indica el pc label en el punto de terminación del método, y representa la información que puede ser conocida.

Cuando un label no es especificado, Jif define unos por defecto. En el caso de RTL, jif hace un join entre los diferentes AL con que ha sido definido el método.

2.3. Preliminares para diseño de la solución

La propuesta para detectar fuga de información en aplicaciones Android, antes de su publicación, consiste en proveer al desarrollador una herramienta para análisis estático de flujos de información de la aplicación. Así, partiendo de las anotaciones de seguridad que el desarrollador defina en el código fuente, se verifica si la aplicación cumple con políticas de confidencialidad.

Los requerimientos iniciales para construir tal herramienta son: un lenguaje tipado de seguridad que permita anotar código fuente Android, y el conjunto de reglas que evaluarán las políticas de confidencialidad.

Al consultar literatura científica al respecto, se encuentran herramientas como JIF 2.1.1 y JOANA 2.1.2, especializadas en anotar código Java, pero no código Android. Si bien, ambas analizan flujos de información en aplicaciones Java, y podrían ser extendidas para anotar código Android, las técnicas utilizadas por cada una son diferentes, por un lado, JIF es un lenguaje tipado de seguridad que basa su análisis en el chequeo de tipos. Por el otro, JOANA es un framework basado en análisis de grafos de dependencia. Mientras JOANA se enfoca en precisión, JIF posee un modelo de anotaciones (DLM) encargado de definir la lattice de seguridad adecuada para las anotaciones en el código fuente, ofreciendo un maduro sistema que además de evaluar políticas de confidencialidad, e integridad, permite definir características de seguridad adicionales como declasificación y endorsement. Acorde a los propósitos del presente trabajo, JIF ofrece los beneficios de un lenguaje tipado de seguridad y un sistema sólido de anotaciones, facilitando la definición de las propiedades de seguridad a verificar.

Partiendo de JIF como el lenguaje tipado de seguridad, los retos subsiguientes son: implementar el setup de JIF para Android e integrar a JIF un clasificador para sources y sinks de Android. El setup de JIF para Android consiste en implementar las adaptaciones necesarias para que el lenguaje JIF reconozca código de la API de Android, y admita anotaciones JIF dentro de código Android, pues aunque en esencia el código Android es código Java, JIF no tiene como saberlo. También se requiere la integración de un clasificador de sources y sinks al sistema de anotaciones de JIF, con el fin de proveer información necesaria para evaluar las políticas de confidencialidad.

La figura 2.1 expone los elementos necesarios para construir la herramienta de análisis. Básicamente, se requiere un módulo que extienda las clases en JIF para que el lenguaje reconozca código de la API de Android, es decir, para que admita anotaciones dentro del código Android: Setup extended JIF classes. Un módulo que integre el clasificador de sources y sinks de Android al sistema de anotaciones en JIF: Android Sources and Sinks. Adicionalmente, se requiere un modulo que evalúe las políticas de confidencialidad, Checking Rule Sets, que debe tener comunicación con los módulos anteriormente descritos. Como entrada, la herramienta recibe el código fuente de la aplicación, debidamente anotado por el desarrollador, y parte de las anotaciones

Figura 2.1: Static Analisys Tool Diagrama interno. Ilustra la composición interna de la herramienta propuesta para el análisis estático de aplicaciones Android.

Figura 2.2: Static Analisys Tool. Ilustra el input esperado por la herramienta, y el resultado devuelto.

definidas para retornar los resultados del análisis.

Habiendo realizado las extensiones necesarias, se espera contar con una herramienta de análisis de flujo de información, para un conjunto definido de clases en Android. En la figura 2.2 se ilustra el comportamiento esperado.

Luego, la estrategia de evaluación, consiste en verificar si la herramienta implementada identifica pérdida de información mediante detección de flujos implícitos. Esto debido a que, como se menciona en la descripción del problema, parte importante de las propuestas para detección de fuga de información en aplicaciones Android, hacen data-flow analysis aplicando técnicas de análisis tainting, y en contraste con las técnicas de análisis de flujo de información, las técnicas de análisis tainting no necesariamente consideran flujos implícitos. Por tanto, al estar basada en JIF, cuyo enfoque de análisis es precisamente flujo de información, se esperaría que la herramienta planteada esté en capacidad de reconocer flujos implícitos.

Más específicamente, se puede partir de DroidBench[11], el benchmark de Flow-droid[2.1.4], tomar el conjunto de aplicaciones con que prueban la detección de flujos implícitos, y analizarlas con la herramienta propuesta.

Finalmente estos resultados serían comparados con los obtenidos mediante otras herramientas para análisis de fuga de información en aplicaciones Android.

En este orden de ideas, la evaluación de la herramienta propuesta está enfocada en: medir recall frente a la detección de flujos implícitos, es decir, medir que no genere falsos negativos ante la existencia de fugas de información, provenientes de flujos implícitos.

Por último, cabe anotar que aunque la presente propuesta está centrada en verificar políticas de confidencialidad, en caso de contar con el tiempo prudente, sería interesante analizar políticas adicionales como por ejemplo, integridad y declasificación, pues estas son verificables mediante el modelo de evaluación de JIF, modelo del que parte la herramienta de evaluación planteada.

CAPÍTULO 3

Diseño e Implementación

3.1. Limitaciones técnicas

Como parte del diseño de la solución, se inicia con una etapa exploratoria. En esta se anotan manualmente varias aplicaciones de Android, y se identifican limitaciones del lenguaje Jif para anotar código de la API de Android. Tales limitaciones son adicionales a las características del lenguaje Java no reconocidas por Jif, a continuación se describen tanto las encontradas, como las especificadas en el manual de referencia de Jif.

-Características del lenguaje Java no soportadas por jif

Si bien, el sistema de anotaciones de Jif hace extensiones al lenguaje java, permitiendo la evaluación de políticas de confidencialidad e integridad para aplicativos implementados en dicho lenguaje, el manual de referencia de Jif precisa las características del lenguaje Java no soportadas[13]. Estas son:

- nested classes: clases que son definidas dentro de otras clases.
- initializer blocks: bloques de código declarados dentro de la clase pero sin pertenecer a ningún método, dependiendo de si se trata de static initialization blocks, su código es el primero en ejecutarse, una vez se carga la clase; o si se trata de instance initialization blocks, su código se ejecutan cada vez que se crea una instancia de la clase.
- threads.

Partiendo de estas precisiones, aplicaciones Android que presenten tales características son excluidas del grupo de aplicaciones a analizar(conjunto de aplicaciones evaluables) mediante la herramienta propuesta.

- Soporte para sobreescritura de métodos

En la construcción de aplicaciones Android, según el componente que se esté implementando (activities, content providers, receivers, services), se requiere sobreescribir métodos de la clase que extienda el componente. Así, cuando se define un componente tipo Activity, que debe extender de la clase Activiy, java, se sobreescriben métodos

como Oncreate. Cada que se sobreescribe un método se utiliza el statement @Override, con el cual se informa al compilador de Java que el método es sobreescrito. No obstante, al implementar la versión Jif de aplicaciones Android con dicho statement, el compilador de Jif no lo reconoce. La dificultad que se presenta está en el reconocimiento del statement(carácter @ y clase Override), y no en la sobreescritura de métodos, puesto que Jif soporta tal característica. El soporte para la sobreescritura de métodos es confirmado con una sencilla prueba, anotando la clase Activity.java del framework Android (con un único método, el método Ocreate), e implementando la versión Jif de una aplicación Android que extiende de tal clase, en la cual se define una actividad y sobreescribe el método Oncreate. Cuando se comenta la sentencia @Override, el compilador de Jif identifica la sobreescritura del método y reporta comentarios para el flujo de información.

Al investigar el por qué Jif no reconoce tal sentencia, se encuentra que dentro de las clases Java estándar soportadas por el compilador de Jif, no está contenida la clase java.lang.Override.

Las clases Java estándar pertenecientes a los paquetes io, lang, math, net y sql; para las que el compilador Jif brinda soporte, vienen implementadas con anotaciones en el directorio sig-src, directorio que forma parte de la distribución del compilador de Jif con que se esté trabajando.

Una alternativa para permitir el análisis de flujo de información entre métodos que se sobreescriben, es comentar las líneas del programa que contengan la sentencia @Override, puesto que, al no ser reconocida por el compilador de Jif, es la generadora de errores de compilación.

- Casting entre tipos EditText y View

El framework de Android cuenta con diferentes clases para manejar las interfaces gráficas que presenta al usuario, entre las cuales se encuentran EditText y View. View es la clase principal para la creación de widgets, necesarios para la implementación de componentes interactivos en las interfaces de usuario(UI). EditText permite adicionar campos de texto editables en UI. El casting entre los tipos de datos que representan ambas clases, se hace cuando la aplicación debe procesar datos provenientes de campos en las interfaces del usuario, por ejemplo como se observa a continuación:

```
EditText editPassword = (EditText)findViewById(R.id.password);
String password = editPassword.getText().toString();
```

la interfaz de usuario (que es de tipo View) contiene un campo R.id.password, y para manipular la información que almacena, debe ser de tipo EditText, siendo necesario un casting de tipo View a tipo EditText. La dificultad que se presenta con este tipo de casting es que para el sistema de anotaciones de jif no es válido. Luego de probar con la anotación manual de ambas clases, tratando de dar soporte a este tipo de casting, sin obtener resultados satisfactorios, se opta por "simular" estos casos, es decir, si el tipo de dato de una variable es de tipo EditText, se crea una variable tipo String con un valor determinado, así se omite el casting y se puede analizar el flujo de información.

- Clase nested R

El framework de Android utiliza identificadores para hacer referencia a recursos utilizados por la aplicación, recursos como strings, widgets y layouts, tales identificadores son autogenerados en la clase R.java, allí cada recurso es descrito como una clase

individual. Al tratarse de una clase nested, la clase R no puede ser anotada con jif. Esto puede solucionarse implementando una versión Jif generalizada de la clase R, que contenga los recursos utilizados en una aplicación, definidos como variables y no como clases.

- Sources y Sinks

En los preliminares para el diseño de la solución se propone utilizar SuSi para clasificar los sources y sinks en las aplicaciones a analizar, sin embargo, partir del extenso conjunto de sources y sinks, clasificados por SuSi para la API de Android, implica una mayor complejidad en el análisis, puesto que, en un aplicativo todo el código que le conforma puede hacer parte de sources o de sinks. Adicional a lo complejo que se puede tornar el análisis, los sources y sinks a considerar deben depender de la política de seguridad a evaluar. En ese orden de ideas, resulta más viable tomar un subconjunto del listado proveído por SuSi, partiendo de los sources y sinks que evalué la política de seguridad que se defina.

- Enhanced for loop

Además de soportar la estructura de control for, el lenguaje Java permite el uso de enhanced for, que es utilizado para simplificar la iteración en arrays y colecciones, por ejemplo:

```
for(char c : imei.toCharArray())
obfuscated += c + "_";
```

A diferencia de Java, Jif no soporta el enhanced for.

Debido a que ambas sentencias de control son equivalentes, la solución que se propone para poder analizar flujo de información en los aplicativos Android que contengan dicha estructura de control, es generar el equivalente del programa haciendo uso del for, de este modo se cambia la sintaxis sin afectar la lógica del aplicativo a analizar.

- Otras limitaciones

Adicional a las limitaciones descritas anteriormente, para las cuales se propone una solución, se identifica que Jif no soporta la sintaxis utilizada para definir estructuras de datos HashMaps, LinkedList y Sets, que en Java se definen de la siguiente manera:

```
Map<String, String> hashMap = new HashMap<String, String>();
List<String> listData;
Set<String> phoneNumbers = new HashSet<String>();
```

Jif tampoco permite la definición de interfaces como argumentos de un método. El siguiente fragmento de código en una aplicación Android, muestra la definición de una interfaz pasada como parámetro al método setOnClickListener.

```
Button button1= (Button) findViewById(R.id.button1);
button1.setOnClickListener(new View.OnClickListener() {
...
....} });
```

En estos casos, la dificultad está en encontrar una sintaxis que permita obtener la versión equivalente del programa que las contenga. A lo que se suma, la falta de documentación disponible para solventar los mismos. En consecuencia, se omite del conjunto de aplicaciones evaluables, aplicaciones Android que requieran en su implementación las estructuras de datos descritas.

3.2. Diseño de la solución

Pregunta: los siguientes tres parrafos explican que se cambió la propuesta incial y por qué. Es adecuado clarificarlo aquí, o se debe actualizar la propuesta inicial acorde al diseño real? Nota: Sandra recomienda que discutamos si los cambios han sido en el diseño o en la implementación. De ello depende dónde deben ir, es decir, si se cambian los preliminares para el diseño de la solución o si se dejan aquí.

En los preliminares para el diseño de la solución se consideró la siguiente opción: Anotar un conjunto de clases de la API de Android mediante el sistema de anotaciones de Jif, de modo que el compilador de Jif reconociera clases propias de esa API, y por tanto, permitiese el análisis de flujo de información a través de estas. Habiendo asegurado el reconocimiento a un conjunto de clases de la API de Android, era tarea del desarrollador implementar la versión Jif del aplicativo a evaluar.

Si bien, con dicha opción de diseño se aporta para que el desarrollador Android evalúe flujos de información en su aplicación, mediante Jif; también se incrementa su carga de programación, puesto que, al delegarle la anotación de la aplicación a analizar, este debe pensar dos versiones. La versión .java, donde utiliza los métodos proveídos por la API Android para definir las funcionalidades de su aplicación; y la versión .jif, donde define las anotaciones pertinentes para evaluar flujos de información; tarea para la cual, se requiere un conocimiento previo del sistema de anotaciones de Jif y la implementación de aplicaciones haciendo uso de las mismas.

En consecuencia, se opta por un diseño en que el análisis del aplicativo no implique carga de programación adicional para el desarrollador, sino que por el contrario, facilite la labor del análisis.

El diseño de solución consta de dos elementos fundamentales: anotaciones a la API de Android, más el anotador que genere la versión Jif del aplicativo a analizar, acorde a una política de seguridad previamente definida.

Ambos elementos son complementarios, puesto que, por más que se genere la versión Jif del aplicativo a analizar, si el compilador no reconoce clases específicas de la API que allí se usan, .jif no puede ser compilado.

Así, (1) se parte definiendo la política de seguridad a evaluar 3.2.1, (2) se toman a consideración elementos influyentes para verificar el cumplimiento de la política mediante Jif 3.2.2, y finalmente, teniendo en cuenta (1) y (2), se especifican anotaciones a la API de Android ?? y se definen los lineamientos del anotador 3.2.5.

3.2.1. Definición de la política de seguridad

Detectar si una aplicación Android(perteneciente al conjunto evaluable) presenta flujos de información entre, información con nivel de seguridad alto e información con nivel de seguridad bajo.

Detectando fugas de información catalogada con nivel de seguridad alto, vía: canales creados durante el control de flujo del programa(flujos implícitos), mensajes de texto y mensajes de Log.

3.2.2. Consideraciones para verificar el cumplimiento de la política mediante Jif

Teniendo definida la política de seguridad a verificar, se describen elementos influyentes en el diseño de la solución.

Versión de la API de Android

Las aplicaciones utilizadas para los experimentos previos a la implementación del prototipo, y las aplicaciones a anotar con el mismo, se realiza partiendo de la versión Android 4.2.2(API Level 17).

Versión del compilador de Jif

se parte de la versión 3.4.2 del compilador de jif, para llevar a cabo tanto los experimentos previos como el análisis de las aplicaciones anotadas por el prototipo.

Diferencia entre una aplicación Android y una aplicación Java convencional En esencia, una aplicación Android es una aplicación Java con interfaces descritas en XML, que para ser ejecutada necesita del framework de Android, porque este le provee acceso al hardware del dispositivo y funcionalidades del sistema.

Por otro lado, Jif permite hacer seguimiento al flujo de información de una aplicación Java, extendiendo el lenguaje mediante labels de seguridad.

Para analizar flujo de información de una aplicación Android mediante Jif, es importante mencionar que mientras una aplicación Java convencional cuenta con un único punto de entrada para iniciar su ejecución, esto es, la clase principal donde se implementa el método main; una aplicación Android puede tener más de un punto de entrada, generados a partir de los diferentes tipos de componentes que le integren(Activity, Service, Content Provider y Broadcast Receiver). La necesidad de interacción del usuario para activar tales puntos de entrada varía acorde al tipo de componente, así, en el caso de componentes tipo Activity su ejecución sólo inicia hasta que el usuario interactúe con la actividad, y para manejar dicha interacción, la API Android provee el método OnCreate. De otro modo, componentes tipo Service y Broadcast Receiver, inician su ejecución a través de los métodos OnStartCommand y OnReceive, respectivamente, sin necesidad de interacción del usuario.

Teniendo en cuenta lo anterior, se asume que la aplicación a evaluar tiene un único punto de entrada, que depende del tipo de componente que implemente.

Chequeo de excepciones tipo Runtime

En lenguaje Java las excepciones tipo Runtime tales como NullPointerException, no son verificadas a tiempo de compilación, sin embargo, buscando evitar la generación de canales encubiertos mediante las mismas, Jif si las verifica. En consecuencia, si un programa requiere excepciones NullPointerException, ClassCastException y/o ArrayIndexOutOfBoundsException, el programador debe declararlas en el programa, de lo contrario, el compilador de Jif genera error. Para las aplicaciones a analizar, se espera que el desarrollador haya especificado las excepciones necesarias.

Información considerada con nivel de seguridad alto

Para verificar el cumplimiento de la política de seguridad a evaluar se parte de un conjunto de sources, caracterizados por dar a conocer información del usuario, considerada como privada o sensible. Los métodos que integran el conjunto de sources son: getDeviceId, getSimSerialNumber, findViewById, getLatitude, getLongitude y getSubscriberId. Adicional a estos métodos, se incluye el tipo de dato EditText, si

y sólo si, el campo UI al que referencia corresponde a un campo tipo textPassword, es decir, un campo que almacena contraseñas.

Canales que muestran información con nivel de seguridad bajo

La información enviada a través de mensajes de texto y la información conocida tanto a través de mensajes de Log, como a través de canales generados por el control de flujo del programa, tiene en común que debe poder ser conocida por terceros. En consecuencia, se considera que estos canales deben dar a conocer información con nivel de seguridad bajo.

En el caso de mensajes de texto y mensajes de Log, se hace referencia específicamente a las clases Log y SmsManager de la API de Android.

Evaluación del flujo de información

Para evaluar el flujo de información, se asume que todos los métodos definidos en la clase serán invocados, y por tanto, todos son incluidos en el análisis.

Esta decisión de análisis busca evitar el paso inadvertido de flujos de información, generados por omisión.

Acceso a métodos de sobreescritura.

Los métodos de las clases Activity, Service y BroadcastReceiver, son métodos que se pueden sobreescribir, todo programa Android que extienda de tales clases debe poder utilizarlos.

3.2.3. Cómo funciona el sistema de anotaciones en Jif(Para Justificar, las anotaciones propuestas)(Ubicación temporal)

Jif es un lenguaje tipado de seguridad que extiende al lenguaje Java con labels de seguridad, a través de los cuales se especifican restricciones de cómo debería ser utilizada la información.

Jif está compuesto por un compilador y un sistema de anotaciones.

Para hacer seguimiento al control de flujo de información de un programa implementado en Java, se debe implementar la respectiva versión Jif, es decir, la versión del programa donde mediante el sistema de anotaciones se especifican las políticas de seguridad a evaluar.

Luego, la versión Jif del programa se compila con el compilador de Jif. Este aplica chequeo de labels(label checking)[13] para verificar que los flujos de información que se generan al interior del programa, cumplen con las políticas definidas.

-DML(Decentralized Label Model)

Jif basa su sistema de anotaciones en el modelo de etiquetas DLM(Decentralized Label Model), donde se manejan tres elementos fundamentales: Principals, Políticas y Labels.

Principals: un principal es una entidad con autoridad para observar y cambiar aspectos del sistema. Jif cuenta con una serie de principals ya definidos, por ejemplo, Alice, Bob, Chunck, etc, que pueden ser utilizados al momento de anotar.

Políticas: mediante políticas de seguridad el dueño de la política, que es el principal que la define, determina qué otros principals pueden leer o influenciar la información. Así, una política puede ser de confidencialidad o de integridad, y se especifican de la forma: {owner: reader list} u {owner: writer list}.

Labels: un label consiste en un conjunto de políticas de confidencialidad e integridad. Los labels se escriben en las expresiones del progrma que se anota(labels de seguridad), esto es métodos, variables, arrays, etc..

En sisntesís, las políticas de seguridad definen que principals pueden leer o modificar la información, y esas políticas se expresan mediante labels.

- Label Checking

Para hacer seguimiento al flujo de información de un programa, el compilador de Jif asocia un label al program counter de cada punto del programa, progam-counter label(pc). En cada punto del programa, el (pc) representa la información que podría conocerse tras la ejecución de ese punto del programa. El (pc) es afectado por los labels con que se define cada sentencia y expresión del programa, por tanto este es considerado como el límite superior(máxima información que podría conocerse) de los labels que han afectado el flujo de información para llegar a un determinado punto de ejecución.

Adicionalmente, jif define labels que representan la información que podría conocerse tras la terminación normal, o terminación por excepción de las sentencias del programa. Y labels enviroments, que para cada punto del programa determinan la forma en que se relacionan labels y principals.

El valor dichos labels es verificado durante la compilación del programa, si se detecta que no cumplen con las restricciones establecidas en la anotación del mismo, el compilador genera error, indicando los puntos del programa que las incumple.

- Sintaxis de labels y sintaxis para anotación de sentencias en Jif

En Jif, cada expresión del programa está conformada por dos partes: java type + security labels un label.

- -Llamada a métodos
- -Implicit flows and program-counter labels
- sobreescritura de métodos

3.2.4. Lineamientos de anotación

Para verificar el cumplimiento de la política de seguridad establecida 3.2.1 mediante el sistema de anotaciones de Jif, se requiere: (a) definir los elementos básicos de anotación, (b) definir las anotaciones necesarias para la API de Android y (c) definir los criterios de anotación para los aplicativos a analizar, tales criterios se sintetizan en un anotador.

(a) Elementos básicos de anotación

En 3.2.2 se definió qué Canales muestran información con nivel de seguridad bajo y cuál es la Información considerada con nivel de seguridad alto. Ahora, para anotar la información catalogada con uno u otro nivel de seguridad, de modo que, partiendo de tales anotaciones se evalué la existencia de flujos de información entre información con nivel de seguridad alto e información con nivel de seguridad bajo, lo primero que

se debe definir es quíen representa la autoridad principal del sistema(Top Principal) y cuáles son los labels de seguridad.

Top principal (Alice): aprovechando que Jif ya trae una serie de principals establecidos, se define que la autoridad máxima es el principal Alice. Este principal tendrá todo el poder para actuar sobre los aspectos del sistema.

Label de seguridad con nivel de seguridad alto ({Alice:}): en base al top principal, se define el label de seguridad que expresa el mayor nivel de seguridad. Las variables con nivel de seguridad alto deben ser anotadas con tal label de seguridad, ya que esté epecífica que la información contenida en la variable solámente podrá ser Accedida por el Top principal.

Label de seguridad con nivel de seguridad bajo ({}): se define un label de seguridad que expresa el menor nivel de seguridad, para anotar información que es de nivel de seguridad bajo y que por tanto puede ser de conocimiento público.

(b)Anotaciones a la API de Android

Figura 3.1: Mecánismos de anotación para clases de la API.

- Anotaciones para Canales que muestran información con nivel de seguridad bajo: para controlar el flujo de información que se envía hacia Canales que muestran información con nivel de seguridad bajo, es necesario anotar la definición de los métodos de las clases Log y SmsManager de la API Android, de manera tal, que se controle el nivel de seguridad de los argumentos con que se invocan. Por consiguiente, en la definición del método el AL del parametro que recibe la información a mostrar(logs) o la información a enviar(sms), se anota con el label de seguridad bajo(label público{}). Con esto se garantiza que la información se muestra o envía, si y sólo si el nivel de seguridad del argumento con que se invoca el método es público. Por ejemplo, si el método se llama con información anotada con label de seguridad alto, se genera error en la compilación del programa que le llama.

El resto de labels del método BL y AL se anotan con el top principal. Al anotar el BL con el top principal, se permite que el método sea invocado desde cualquier punto de un programa. Para el resto de labels de los argumentos XXX

- Anotaciones para metódos de sobreescritura: en 3.2.2, también se definieron las clases de la API para las que se debe soportar el Acceso a métodos de sobreescritura (Activity, Service y BroadcastReceiver). La anotación para la definición de tales métodos se basa en los siguientes criterios: (1) reglas de Jif para la sobreescritura de métodos y (2) desde dónde pueden ser invocados. (1) Jif exige que el nivel de seguridad del BL del método desde donde se invoca el método a sobreescribir, no debe ser

menos restrictivo que el BL de la definición de tal método(Cómo se traduce qué es más restrictivo y que es más restrictivo? Definiciones previas). (2) la sobreescritura de métodos se debe poder utilizar desde cualquier aplicativo que extienda de las clases Activity, Service y BroadcastReceiver.

Para cumplir con (1) y (2), los métodos que requieren ser sobreescritos se definen con BL público({}). De este modo los aplicativos desde dónde se invocan los métodos a sobreescribir deben tener igual BL.

- Adicional a las clases de la API (Log, SmsManager, Activity, Service y BroadcastReceiver), es necesario brindar soporte a un conjunto de clases que representan librerias importadas por los aplicativos a analizar. (Estas son) Brindar soporte significa que deben ser reconocidas por el compilador Jif.
- Integración de clases de la API de Android a las clases reconocidas por el compilador de Jif:

Definidos los criterios de anotación para las clases de la API, a las cuales se debe implementar su respectiva versión Jif. Se definen los mécanismos a utilizar para implementar tal versión. Además del mecanismo de anotación completa en que se basa la implementación de aplicativos en Jif(mecanismo de anotación), el compilador provee un mecanismo que permite reutilizar código de clases Java ya existentes, para esto, se recurre a signaturas nativas. Así, se implementa una versión Jif de una clase Java ya existente, en la que se declaran signaturas nativas proveídas por Jif, constructor y métodos necesarios de la clase(mecanismo de signaturas nativas). Dependiendo de las implicaciones que pueda tener para el análisis de flujo de información del sistema, a la versión simplificada puede específicar u omitir labels de seguridad(mecanismo de signaturas nativas más labels de seguridad).

Para el presente caso y de acuerdo a los criterios de anotación previamente establecidos las clases a implementar mediante uno u otro mecanismo, son ilustrados en la siguiente figura 3.1.

Nota: Falta decir qué las anotaciones a la API se implementan manualmente.

(c)Criterios de anotación de los aplicativos a analizar

- Aquí se definen los criterios de anotación del aplicativo a analizar, y partiendo de estos se define un algoritmo de anotación.
- Al final describir exactamente las entradas y salidas del anotador, que es donde se condensa el algoritmo de anotación.

Para evaluar los flujos de información de una aplicación Android, de modo que se verifique si cumplen con la política de seguridad definida 3.2.1; es necesario implementar su respectiva versión Jif, esto implica que variables y métodos de la clase sean anotados haciendo uso del sistema de anotaciones de Jif.

Ante esto, se propone un esquema de anotación enfocado a detectar flujos de información desde: información considerada con nivel de seguridad alto, hacia: canales considerados con nivel de seguridad bajo.

Retomando definiciones previas:

- (a)Elementos básicos de anotación

Top principal (Alice), label de seguridad con nivel de seguridad alto ({Alice:}) y label de seguridad con nivel de seguridad bajo ({}).

- Canales que muestran información con nivel de seguridad bajo; como la anotación para los métodos que representan tales canales se realiza desde la definición misma

de los métodos en la API, los labels de seguridad para la información a mostrar(logs) o enviar(msn), debe ser pública si realmente se pude mostrar xxx.

- Información considerada con nivel de seguridad alto

Los métodos que integran el conjunto de sources son: getDeviceId, getSimSerialNumber, findViewById, getLatitude, getLongitude y getSubscriberId. Adicional a estos métodos, se incluye el tipo de dato EditText, si y sólo si, el campo UI al que referencia corresponde a un campo tipo textPassword, es decir, un campo que almacena contraseñas.

3.2.5. Diseño del anotador

Figura 3.2: Entradas y salidas para el generador de anotaciones.

El anotador debe recibir como entrada el código fuente de la aplicación Android(perteneciente al conjunto evaluable), para retornar su respectiva implementación en Jif, versión que contiene las anotaciones para evaluar la política de seguridad definida. Tal como se ilustra en la figura 3.2

Luego la versión obtenida se evalúa con el compilador de Jif.

A continuación, se definen los lineamientos de anotación:

Una clase Android tendrá una Autoridad máxima (un principal), en este caso Alice, así que, información con nivel de seguridad alto deberá pertenecer a dicha autoridad.

Jif hace seguimiento al flujo de información del programa, asociando un label de seguridad al program counter de cada sentencia y expresión del programa, program counter(pc) label. Este pc es afectado por el label de seguridad que se especifique en la declaración de variables y métodos2.2.3. Partiendo de que Jif se fundamenta en labels de seguridad para hacer seguimiento al flujo de información del programa, es necesario definir los labels a anotar para métodos y variables del programa.

En el caso de variables con nivel de seguridad alto, la anotación debe ser: $type\{Alice:\}\ varName;$

Para el resto de variables, entran a jugar las anotaciones definidas por Jif acorde al contexto donde están definidas.

Ahora en el caso de los métodos, la anotación varía según si el método debe influenciar(acceder, modificar) o no, información anotada con nivel de seguridad alto.

En base a lo anterior, se define un algoritmo de anotación que se condensa en un generador de anotaciones; y está fundamentado en las siguientes definiciones:

Definición A: anotación de variables con nivel de seguridad alto:

modifier type{Alice:} varName;

Definición B: métodos que se sobreescriben. El sistema de anotaciones de Jif exige que el nivel de seguridad del método desde donde se invoca la sobreescritura de un método, no debe ser menos restrictivo que el método a sobreescribir, y los métodos

a sobreescribir deben poder ser invocados desde todo programa Android, siguiendo con este principio, y buscando que jif no limite el flujo de información, estos métodos deben ser anotados con BL público({}).

Definición C: anotación de métodos con sources

La definición de los terminos etá en: Sintaxis de anotación en Jif 2.2.3, debo recordar lo que significan, o remito el lector a dicha sección?

Los labels para la definición del método(BL, EL, AL)se anotan de la siguiente manera:

modifier type nameMethod{Alice:} type{Alice:} (arg1,....type{Alice:} argn) {} Si dentro del método se definen arrays, sus respectivos BL y SL, deben ser anotados así: modifier type{Alice:}[]{Alice:}

Definición D: anotación de métodos que no reciben información del source. name-Method $\{\}$ (type $\{Alice:\}$ arg1,....type $\{Alice:\}$ arg1) $\{\}$

Teniendo claras las anteriores definiciones, los pasos para el algoritmo son los siguiente:

- (1) Identificar sources de la clase. Si se encuentran sources continuar con los pasos
- (2) a (4), sino, continuar con paso (2) y aplicar definiciones B y D.
- (2) Identificar el total de métodos de la clase.
- (3) Del total de métodos listar los que son invocados con el source.
- (4) Del total de métodos listar los que no son invocados con el source.
- (5) Aplicar definición C a listado del paso(3).
- (6) Aplicar definición D a listado del paso (4).
- (7) Aplicar definición B.
- (8) Aplicar definición A a listado del paso (1).

3.2.6. Descripción implementación prototipo

-Diagrama de clases o descripción

En la sección 6.1 de los anexos, se incluye el diagrama de clases para la implementación del anotador.

El anotador consta de cinco clases

CAPÍTULO 4

Evaluación

4.1. Consideraciones de evaluación

El flujo de información es analizado al interior de una sola aplicación, no se consideran flujos de información vía interApp, es decir, varias aplicaciones que se comunican entre sí.

4.2. Conjunto de evaluación

Para la evaluación se parte de DroidBech versión 1.0[11], benchmark integrado por 39 casos de prueba para aplicaciones Android, cuyos autores son los mismos creadores de FlowDroid. Se opta por utilizar DroidBench puesto que, en la literatura científica consultada al respecto, no se encuentran otros benchmarks diseñados específicamente para evaluar aplicaciones Android.

De DroidBech se toma un grupo de testcases evaluables frente a la política de seguridad establecida 3.2.1, este grupo está integrado por 20 testcases. De los cuales, 14 presentan fugas de información.

La tabla 4.1 describe parte del grupo de testcases a evaluar. En los casos en que se requiere, se precisan observaciones entre los resultados de evaluación esperados para la técnica de análisis utilizada por FlowDroid(análisis de flujo de datos) y la técnica de análisis propuesta en el presente trabajo(análisis de flujo de información). En la sección6.2 de los anexos, se encuentra la descripción del grupo de prueba completo.

El conjunto de prueba es analizado con FlowDroid, JoDroid y con el Prototipo. Los resultados del análisis que devuelve cada herramienta son calificados como: Falso Positivo(FP) cuando se detecta un leak que no existe; Falso Negativo(FN) cuando no se detecta un leak existente; Verdadero Positivo(TP) cuando se detecta un leak existente; Verdadero Negativo(TN) cuando no existe leak que detectar.

En base a estos resultados se calcula la Precisión y el Recall, para cada una de las herramientas evaluadas. La Precisión mide la cantidad de verdaderos Positivos(TP) frente a la cantidad de Falsos positivos(FP), reportados por la herramienta. A mayor Precisión, la herramienta detecta menos falsos positivos(FP).

El Recall(r) mide la cantidad de verdaderos Positivos(TP) frente a la cantidad de Falsos negativos(FN), reportados por la herramienta. A mayor Recall, menos leaks deja pasar la herramienta, es decir menor reporte de falsos negativos. Las formulas 6.1 y 6.2, permiten el calculo de ambas métricas de seguridad.

Adicionalmente, para medir el desempeño de cada herramienta se utiliza el comando time[14] de unix.

AndroidSpecific_DirectLeak1		
Descripción	Leaks	
La variable mrg tiene un nivel de seguridad alto, almacena información retornada por	1	
el método source getDeviceId. Se genera flujo de información directo entre información		
con nivel de seguridad alto e información con nivel de seguridad bajo, al enviar como		
parámetro del método sendTextMessage, información de la variable mrg.		
AndroidSpecific_LogNoLeak		
Descripción	Leaks	
El caso de prueba no presenta información con niveles de seguridad alto. Se presentan	0	
flujos de información entre información con el mismo nivel de seguridad, en este caso		
bajo, lo cual es permitido.		
ArraysAndLists_ArrayAccess1		
Descripción	Leaks	
Se tiene un array en que se almacena información tanto proveniente como no prove-	0	
niente de sources, parte de la información que almacena es enviada como parámetro del		
método sendTextMessage. Observación: Para la técnica de análisis de FlowDroid(taint		
analysis), se marca únicamente el índice del array donde se almacena el dato conside-		
rado como source, así, cuando se envía como parámetro del método sendTextMessage,		
el dato de un índice no marcado, no se genera leak. Para nuestra técnica de análi-		
sis(flujo de información mediante JIF), para que un array almacene información con		
nivel de seguridad alto, primero debe ser catalogo(anotado) con nivel de seguridad		
alto, lo que implica que el array podrá almacenar información tanto de nivel de segu-		
ridad alto como bajo, pero toda la información quedará con nivel de seguridad alto.		
En consecuencia, al enviar cualquier índice del array como parámetro del método		
sendTextMessage se presenta un flujo de información no permitido.		
GeneralJava_Exceptions2		
Descripción	Leaks	
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por el	1	
método getDeviceId. El control de flujo del programa conduce de manera implícita a		
la captura de una excepción tipo RuntimeException, desde allí se utiliza información		
proveída por la variable <i>imei</i> , como parámetro para invocar el método <i>sendTextMes</i> -		
sage. Generando un flujo de información indebido.		
$ImplicitFlows_ImplicitFlow2$		
Descripción	Leaks	
La variable userInputPassword con nivel de seguridad alto, almacena información	1	
de un campo EditText tipo textPassword(password suministrado por el usuario).		
Se generan flujos de información indebidos: al tratar de asignar información a la		
variable passwordCorrect con nivel de seguridad bajo, a partir de la comparación de		
información con nivel de seguridad alto(variable textPassword), después, al tratar de		
mostrar en el log información que depende de tal comparación.		

Cuadro 4.1: Descripción aplicaciones de prueba.

Se considera con nivel de seguridad alto, variables y métodos que almacenan y modifican(respectivamente), información catalogada como privada(Sources). Se considera con nivel de seguridad bajo, canales para envío de mensajes, muestra de logs y canales creados durante el control de flujo del programa.

4.2.1. Evaluación FlowDroid y Prototipo

Del total de testcases(20), 14 presentan fugas de información mientras que 6 de ellos no. Los resultados de evaluación para FlowDroid y el Prototipo, son presentados en la tabla 4.2. En esta, por cada caso de prueba se indica la cantidad de leaks que presenta, el resultado y el tiempo que tarda el análisis.

Testcase	Leaks	F	P	tF	tP
AndroidSpecific_DirectLeak1	1	TP	TP	5.371s	2.063s
AndroidSpecific_InactiveActivity	0	TN	FP	3.255s	2.469s
AndroidSpecific_LogNoLeak	0	TN	TN	5.505s	2.946s
AndroidSpecific_Obfuscation1	1	TP	TP	6.734s	2.706s
AndroidSpecific_PrivateDataLeak2	1	TP	TP	6.144s	2.644s
ArraysAndLists_ArrayAccess1	0	FP	FP	4.708s	1.278s
ArraysAndLists_ArrayAccess2	0	FP	FP	4.4s	1.361s
GeneralJava_Exceptions1	1	TP	TP	6.397s	2.755s
GeneralJava_Exceptions2	1	TP	TP	5.887s	1.980s
GeneralJava_Exceptions3	0	FP	FP	6.008s	2.032s
GeneralJava_Exceptions4	1	TP	TP	5.731s	2.313s
GeneralJava_Loop1	1	TP	TP	5.605s	2.800s
GeneralJava_Loop2	1	TP	TP	4.719s	1.361s
GeneralJava_UnreachableCode	0	TN	FP	3.792s	1.197s
ImplicitFlows_ImplicitFlow1	1	FN	TP	4.853s	1.331s
ImplicitFlows_ImplicitFlow2	1	FN	TP	4.496s	1.212s
ImplicitFlows_ImplicitFlow4	1	FN	TP	4.375s	1.224s
Lifecycle_ActivityLifecycle3	1	TP	TP	4.792s	1.222s
Lifecycle_BroadcastReceiverLifecycle1	1	TP	TP	4.456s	1.061s
Lifecycle_ServiceLifecycle1	1	TP	TP	5.225s	1.180s

Cuadro 4.2: Resultados de evaluación para FlowDroid y Prototipo. Donde Testcase especifica el nombre de la aplicación que se está evaluando; Leaks indica si el testcase presenta fugas de información; F y P muestran los resultados devueltos por FlowDroid y por el Prototipo; tF y tP, señalan el tiempo(en segundos) que toma el análisis para Flowdroid y para el Prototipo, respectivamente.

Análisis de evaluación entre FlowDroid y Prototipo

-Resultados de desempeño

Acorde a los datos señalados en los campos tF y tP de la tabla 4.2, en promedio, FlowDroid tarda 3,3 segundos más que el Prototipo para ejecutar el análisis.

-Resultados de precisión

En lo que respecta a los resultados del Prototipo, los FP correspondientes a AndroidSpecific_InactiveActivity y GeneralJava_UnreachableCode, surgen como consecuencia de un análisis pesimista, donde se asume que el desarrollador utiliza lo que implementa, es decir, que los métodos serán invocados.

Por otro lado, en el caso de ArraysAndLists: ArrayAccess1 y ArrayAccess2, no es sencillo calificar los resultados como FP, puesto que, para lo que está analizando FlowDroid(verificar que su técnica de análisis diferencie entre los elementos marcados y no marcados de un array), efectivamente se presentan FP, sin embargo, para

	Con	FI	Sin FI		
	FlowDroid	Prototipo	FlowDroid	Prototipo	
FP	3	5	3	5	
FN	3	0	0	0	
TP	11	14	11	11	
TN	3	1	3	1	

Cuadro 4.3: Resultados de precisión para FlowDroid y Prototipo, de acuerdo al escenario, incluyendo o excluyendo flujos implícitos(FI). Resume el total de falsos positivos(FP), verdaderos positivos(TP), verdaderos negativos(TN) y falsos negativos(FN); obtenidos tanto con FlowDroid como con el Prototipo.

la forma en que se deben implementar los programas en Jif, donde se suele definir un nivel de seguridad para todo el array antes de almacenar los elementos en el mismo, podría decirse que no se trata de un FP, porque se revelo información que había sido catalogada con nivel de seguridad alto.

A diferencia de FlowDroid, el Prototipo detecta fugas de información través de flujos implícitos. La no detección de Flujos implícitos por parte de FlowDroid, responde al tipo de análisis y las técnicas en que se fundamenta la herramienta: análisis de flujo de datos mediante técnicas tainting. Basada en asociar una o más marcas con el valor de los datos en el programa, y en propagarlas. Dependiendo de los criterios definidos para el análisis, la marca puede ser propagada a causa de flujos explícitos o de flujos implícitos, o a causa de ambos. En flujos explícitos la propagación ocurre cuando el valor de una variable marcada está implicada en el calculo de otra variable. En flujos implícitos la propagación tiene lugar a través de dependencias en el control de flujo del programa, por ejemplo, cuando el valor de un dato marcado afecta indirectamente otra variable.

En el caso de FlowDroid, los criterios que fundamentan el análisis de la herramienta, hacen que el marcado de datos se propague para flujos explícitos y y no para flujos implícitos. Por consiguiente, FlowDroid no detecta flujos implícitos.

Con esto presente, se definen dos escenarios de análisis: Precisión y Recall, incluyendo flujos implícitos; y Precisión y Recall, excluyendo flujos implícitos, donde se incluyen u omiten los testcases para flujos implícitos(ImplicitFlows_ImplicitFlow 1, 2 y 4). La tabla 4.3 muestra los resultados de evaluación para ambos casos.

Precisión y Recall, incluyendo flujos implícitos

Los resultados obtenidos en la tabla 4.3 señalan que de las 14 fugas existentes, el Prototipo las detecta todas, presenta 14 TP(verdaderos positivos); mientras que, FlowDroid deja pasar 3.

Por otro lado, el Prototipo presenta más falsos positivos que FlowDroid, de los 6 testcases que no presentan leaks, el prototipo reporta 5 como si fuesen fugas, mientras que FlowDroid reporta 3.

Así, en lo que respecta a Precisión, FlowDroid presenta un porcentaje del 78 %, siendo más preciso frente al Prototipo, que presenta un porcentaje del 73 %.

Por otro lado, el Prototipo presenta un porcentaje en Recall del $100\,\%$, mientras que FlowDroid presenta un porcentaje del $78\,\%$.

Precisión y Recall, excluyendo flujos implícitos

Excluyendo los testcases para flujos implícitos, el conjunto de prueba se reduce a 17 casos. De los cuales, 11 presentan leaks.

En este contexto, el porcentaje de Precisión para FlowDroid es de 78,57%, mientras que para el Prototipo es del 68,75%. El porcentaje de Recall es igual para FlowDroid y el Prototipo: 100%.

4.2.2. Evaluación JoDroid y Prototipo

A continuación se ilustran los resultados de evaluación para JoDroid y el Prototipo, en base a los cuales, se calculan las métricas de precisión y recall.

Testcase	Leaks	J	P	tJ	tP
AndroidSpecific_DirectLeak1	1	TP	TP	22m11.991s	2.063s
AndroidSpecific_InactiveActivity	0	FP	FP	22m25.617s	2.469s
AndroidSpecific_LogNoLeak	0	TN	TN	21 m 6.548 s	2.946s
AndroidSpecific_Obfuscation1	1	TP	TP	22m46.541s	2.706s
AndroidSpecific_PrivateDataLeak2	1	TP	TP	21m32.447s	2.644s
ArraysAndLists_ArrayAccess1	0	FP	FP	22m01.926s	1.278s
ArraysAndLists_ArrayAccess2	0	FP	FP	22m11.023s	1.361s
GeneralJava_Exceptions1	1	FN	TP	22m52.134s	2.755s
GeneralJava_Exceptions2	1	FN	TP	21m4.434s	1.980s
GeneralJava_Exceptions3	0	TN^1	FP	21m37.040s	2.032s
GeneralJava_Exceptions4	1	FN	TP	21m10.240s	2.313s
GeneralJava_Loop1	1	TP	TP	21 m 15.30 s	2.800s
GeneralJava_Loop2	1	TP	TP	21m41.224s	1.361s
GeneralJava_UnreachableCode	0	TN	FP	22m84.138s	1.197s
ImplicitFlows_ImplicitFlow1	1	TP	TP	22m55.645s	1.331s
ImplicitFlows_ImplicitFlow2	1	TP	TP	22m32.231s	1.212s
ImplicitFlows_ImplicitFlow4	1	TP	TP	22m43.110s	1.224s
Lifecycle_ActivityLifecycle3	1	TP	TP	22m54.651s	1.222s
Lifecycle_BroadcastReceiverLifecycle1	1	TP	TP	22m42.347s	1.061s
Lifecycle_ServiceLifecycle1	1	TP	TP	22m92.722s	1.180s

Cuadro 4.4: Resultados de evaluación para Jo
Droid y Prototipo. Donde *Testcase* especifica el nombre de la aplicación que se está evaluando;
 Leaks indica si el testcase presenta fugas de información;
 J y P muestran los resultados devueltos por Jo
Droid y por el Prototipo; tJ y tP, señalan el tiempo que toma el análisis para Jo
Droid y para el Prototipo, respectivamente.

Análisis de evaluación entre JoDroid y Prototipo

-Resultados de desempeño

Para el análisis mediante JoDroid se deben seguir una serie de pasos, tal como se describen en el manual de referencia[15], de estos, únicamente se contabiliza el tiempo

¹Al igual que en los testcases General Java_Exceptions
(1, 2 y 4), la herramienta no detecta leaks, la diferencia para el presente caso, es que efectivamente no existe leak. Por tanto se califica como TN.

	Con ex	cepciones	Sin exceptiones	
	JoDroid	Prototipo	JoDroid	Prototipo
FP	3	5	3	4
FN	3	0	0	0
TP	11	14	11	11
TN	3	1	2	1

Cuadro 4.5: Resultados de precisión para JoDroid y Prototipo. Muestra los escenarios en que mide. Resume el total de falsos positivos(FP), verdaderos positivos(TP), verdaderos negativos(TN) y falsos negativos(FN); obtenidos tanto con JoDroid como con el Prototipo.

correspondiente al paso para generar el grafo de dependencia del programa (PDG), del cual parte el análisis. En general, el tiempo que tarda la generación del PDG para cada aplicación analizada, oscila entre 21 y 22 minutos. Cabe anotar que estos valores podrían cambiar con otras características de hardware, sin embargo, asignando 1048 MB de Ram a la máquina virtual de Java, para la generación del PDG, es ese el rango de tiempo obtenido. En consecuencia, para los valores de tiempo que señala la presente evaluación, es posible decir que la herramienta es costosa en desempeño.

-Resultados de Precisión

La tabla 4.4 muestra que al igual que el Prototipo, JoDroid detecta fugas de información presentes en flujos implícitos.

Por otro lado, es importante resaltar que del conjunto de casos de prueba, JoDroid ignora el control de flujo de información para excepciones(GeneralJava_Exceptions1 a GeneralJava_Exceptions4), puesto que, su actual implementación no soporta análisis del flujo de información a través de tales sentencias[pag 93 [16]]. En la tabla4.5 se muestran dos escenarios para los resultados de evaluación: Con excepciones y Sin excepciones. Con base en tales resultados se calcula la Precisión y Recall para cada uno de los escenarios.

Precisión y Recall incluyendo excepciones

Del total de testcases (20), 14 presentan fugas de información. De los casos con fuga de información, 3 corresponden a las excepciones incluidas (General Java_Exceptions), y se califican como falsos negativos (FN) puesto que JoDroid no los detecta. La tabla 4.5 ilustra los resultados de evaluación.

En cuanto a la Precisión(p), JoDroid presenta un porcentaje del 78,57 %, mientras que el Prototipo presenta un porcentaje del 73,68 %.

En cuanto a Recall(r), el Prototipo presenta un porcentaje del 100 %, frente a un porcentaje del 78,57 % presentado por JoDroid.

Precisión y Recall excluyendo exceptions

Omitiendo los casos de prueba de GeneralJava_Exceptions1 a GeneralJava_Exceptions4, el total de testcases(20) queda reducido a 16. De estos, 11 presentan fugas de información.

En lo que respecta a la métrica de Precisión, JoDroid presenta un porcentaje del 78,57%; frente al Prototipo que presenta un porcentaje del 73,33%.

Para la métrica de Recall, tanto JoiDroid como el Prototipo, presentan el mismo porcentaje esto es 100 %.

	FlowDroid	JoDroid	Prototipo
FP	3	5	3
FN	3	0	0
TP	11	14	11
TN	3	1	3

Cuadro 4.6: Resultados de precisión para FlowDroid y Prototipo. Resume el total de falsos positivos(FP), verdaderos positivos(TP), verdaderos negativos(TN) y falsos negativos(FN).

	FlowDroid	JoDroid	Prototipo
Precisión	78%	$78,\!57\%$	$73{,}68\%$
Recall	78%	$78,\!57\%$	100 %
Detección Flujos Implícitos	No	Si	Si

Cuadro 4.7: Comparación entre FlowDroid, JoDroid y Prototipo. Ilustra los porcentajes para Precisión, Recall, y la detección de leaks mediante flujos implícitos.

4.2.3. Análisis de evaluación FlowDroid, JoDroid, Prototipo

En base a los resultados para el conjunto de evaluación(compuesto por 20 testcases, de los cuales 14 presentan leaks), obtenidos en los anteriores apartados, se comparan las tres herramientas(FlowDroid, JoDroid y Prototipo) frente a Precisión, Recall, y la detección de fugas de información mediante flujos implícitos. La tabla 4.6 ilustra todos los resultados y la tabla 4.7 ilustra los respectivos porcentajes.

-Desempeño

Como muestran las tablas 4.2 y 4.4, el Prototipo presenta mejor desempeño frente FlowDroid y JoDroid. En el caso de FlowDroid, en promedio tarda 3,3 segundos más que el Prototipo para ejecutar el análisis. En el caso de JoDroid, el tiempo de análisis es costoso en comparación a las otras herramientas, puesto que su tiempo de ejecución oscila entre 21 y 22 minutos.

-Precisión y Recall

Tanto FlowDroid como JoDroid presentan mejor Precisión que el Prototipo, es decir que el Prototipo presenta más falsos positivos(FP).

Por otro lado, el Prototipo presenta mayor Recall frente a FlowDroid y JoDroid, por tanto, el Prototipo detecta mayor cantidad de fugas existentes (reporta menos FN). Para este caso particular, el Prototipo detecta todos los TP.

En consecuencia, es posible decir que aunque el Prototipo presenta mayor cantidad de FP frente a FlowDroid y JoDroid, deja pasar menos fugas de información.

En lo que respecta a flujos implícitos, a diferencia de FlowDroid, tanto JoDroid como el Prototipo detectan fugas de información a través de Flujos implícitos.

Analizando los resultados para las métricas de desempeño, precisión y recall; descritas anteriormente, acorde al tipo de análisis y técnicas en que se basa cada herramienta, es posible anotar:

- Desempeño: la técnica de lenguajes tipados se seguridad en que se basa el prototipo aprovecha las ventajas de optimización con que se construyen los compiladores, permitiendo que el tiempo para ejecución del análisis sea despreciable.
- -Precisión, Recall y detección de Flujos implícitos: el análisis pesimista en que se basa el Prototipo, donde se asume que todos los métodos implementados en la aplicación serán invocados, hace que los resultados del análisis sean menos precisos. Al basar su técnica de análisis en flujo de información, el Prototipo y JoDroid ofrecen mayor Recall que FlowDroid, que se basa en flujo de datos.

Una ventaja de las técnicas basadas en control de flujo de información es la detección de fugas de información a través de flujos implícitos.

La tabla 4.9 resume las ventajas, desventajas, similitudes y diferencias entre el Prototipo y las herramientas de comparación, FlowDroid y JoDroid, respectivamente. En esta se ilustra por ejemplo, como el prototipo detecta automáticamente los sources y sinks, mientras que JoDroid no.

Item	Prototipo vs FlowDroid			Prototipo vs JoDroid				
Item	ventaja	desvent	similit	diff	ventaja	desvent	similit	diff
Menor Precisión		✓				✓		
Mayor Recall	✓				✓			
Menor costo en desem-					√			
peño								
Bajo costo en desempeño			√					
Detección de flujos	√						✓	
implícitos								
Detección automática de			√		√			
sources y sinks								
No soporte para Análisis		√					✓	
interApp								
Tipo de análisis(flujo de in-				✓				
formación; flujo de datos)								
Tipo de análisis IFC							\checkmark	
Técnica de análisis: PDG,								√
slicing								

Cuadro 4.8: Síntesis ventajas, desventajas, similitudes y diferencias; del Prototipo frente a FlowDroid y JoDroid(respectivamente).

4.3. Tipos de análisis y técnicas evaluadas

FlowDroid se fundamenta en análisis de flujo de datos, mediante técnicas tainting. El código .dex a ser analizado es transformado a una representación intermedia(Jimple representation).

El análisis parte de la construcción de un super-grafo del programa que se analiza, el super-grafo es una colección de grafos dirigidos, mediante los cuales se representa el programa, donde los nodos asocian las sentencias del programa y las aristas, la forma en que estas se conectan. Para recorrer el super-grafo utiliza un algoritmo basado en el problema de graph-reachability[17]; cuyo costo computacional es de orden polinomial O(ED3), donde E representa funciones de flujo de datos(dataflow functions)

y D conjunto de elementos para guiar el seguimiento de los datos marcados(set of data flow facts).

Para propagar la marca en los datos que analiza omite el control de flujo de información, sólo se centra en el flujo de datos marcados como sources y sinks.

La herramienta recibe como entrada el apk del aplicativo, detecta automáticamente los sources y sinks del programa mediante el uso de SuSi y genera un reporte del análisis.

JoDroid se fundamenta en análisis de control de flujo de información, aplicando técnicas de grafos de dependencia(PDG) y técnicas slicing.

El código .dex es transformado a código de representación intermedio(SSA-form). Construye un grafo PDG, donde los nodos representan statements y expresiones, y las aristas modelan las dependencias sintácticas entre los statements y expresiones. Este PDG permite modelar flujos explícitos e implícitos.

El costo computacional un análisis basado en PDG es de orden polinomial O(N)3[12, page 3].

Para hacer seguimiento al control de flujo de información, utiliza labels de seguridad, estos califican con nivel de seguridad alto o bajo información de variables y statements.

Los procedimientos para usar la herramienta comprenden: generar el punto de entrada del análisis, generar el PDG, ejecutar el respectivo análisis. Primero, recibe como entrada el apk y manifest del aplicativo para generar un archivo con el punto de entrada del análisis; luego, a partir del archivo devuelto anteriormente genera el PDG, finalmente, recibe como entrada el PDG, lista los statements y variables del aplicativo para que se indique manualmente los sources y sinks, y genera el respectivo análisis.

La propuesta está basada en análisis de flujo de información mediante lenguajes tipados de seguridad, más específicamente mediante Jif.

Para cada programa a analizar se debe implementar la versión Jif, es decir el programa debe estar implementado acorde al sistema de anotaciones de Jif. A partir de tales anotaciones el compilador verifica la generación de flujos de información que incumplan la política de seguridad establecida, para reportarlos como flujos de información indebidos. Al ser evaluado directamente por un compilador, obtiene los beneficios de bajo costo computacional del mismo.

La generación del análisis para verificar la política de seguridad definida, requiere dos pasos. Primero, se genera la versión Jif del aplicativo a analizar usando el prototipo de anotación, este recibe como entrada el código fuente del aplicativo a analizar. No requiere la especificación de sources y sinks.

Segundo, se compila el .jif, para obtener el reporte de análisis.

En el cuadro 4.9 se resumen los puntos comparados anteriormente.

Herramienta	Tipo	Técnicas	Costo	Entradas
			compu-	
			tacional	
FlowDroid	Flujo de	Tainting; super-grafo integrado	Polinomial	apk
	datos	por grafos dirigidos; Representa-	O(ED3)[17]	
		ción intermedia Jimple; algorit-		
		mo graph-reachability		
JoDroid	Flujo de	PDG; slicing; Representación	polinomial	apk; Mani-
	informa-	intermedia(SSA- form)	O(N)3[12]	fest; sources
	ción			y sinks
Prototipo	Flujo de	Lenguajes tipados de seguridad;	Tiempo de	código fuente
	informa-	Type checking	compila-	
	ción		ción(Tiempo	
			realmente	
			bajo)	

Cuadro 4.9: Generalidades técnicas de análisis evaluadas

CAPÍTULO 5

Trabajo Futuro y Conclusiones

5.1. Discusión

Límites de la solución propuesta

5.1.1. Analizar flujo de información de aplicaciones Android mediante Jif:

- Si bien, con el prototipo de anotación se evita la anotación manual del aplicativo Android, mediante el sistema de anotaciones de Jif, el trabajo subyacente para generar tal anotación implica grandes retos, entre ellos:
- -la versión java del programa debe ser pensada e implementada mediante el sistema de anotaciones de Jif, es decir, se debe aprender a implementar aplicativos en jif, y para esto, la documentación existente es poca.
- Para generar la versión Jif del programa, se deben anotar una serie de clases de la Api de Android.
- No todas las características del lenguaje Java son soportadas.

5.1.2. Qué tanto cambia la anotación del código original

En el diseño de la solución se describieron los retos técnicos3.1 que implica anotar código Android, y cómo superar algunos de estos. Específicamente, las limitaciones para las que se propone un mecanismo que permita soportarlas son: Statement @Override; Casting entre tipos EditText y View; Clase Nested R y Enhanced for loop.

Adicionalmente, se describió que el compilador de Jif exige la declaración del chequeo de excepciones tipo runtime, en programas que lo requieran3.2.2. Ahora, cumplir con los requisitos del compilador de Jif y aplicar mecanismos que soporten tales limitaciones, implica una serie de transformaciones en el código fuente del programa Android a analizar, tanto en la etapa previa a la anotación como en la anotación misma.

Previa a la anotación el desarrollador debe garantizar dos cosas, primero debe adicionar las runtime exceptions que su programa necesite, segundo cuando requiera el uso de bucles for, debe usar la versión sencilla y no la versión mejorada del mismo(Enhanced for loop).

Durante la anotación, además de aplicar los criterios de anotación definidos en el diseño de la solución 3.2.5, se aplican los mecanismos propuestos para soportar el Statement @Override, Casting entre tipos EditText y View; y Clase Nested R. Así, en el caso de la sentencia Statement @Override, se comenta la línea que lo contenga; para el casting entre tipos EditText y View, la información implicada en este tipo de casting es abstraída mediante un tipo de dato String; finalmente para la clase nested R se crea una clase que define los define los recursos utilizados por la aplicación a través de variables.

Si bien, la idea que fundamenta el diseño de la solución consiste en generar la versión Jif del aplicativo Android a analizar, lo cual se traduce en adicionar las anotaciones correspondientes para evaluar determinada política de seguridad, de modo que el compilador de Jif entienda el programa y permita analizar el flujo de información en el mismo; no es suficiente con sólo anotar el código, en otras palabras, sin los ajustes previamente mencionados, el compilador genera error. Por otro lado, lo positivo es que tales ajustes no alteran la lógica del programa.

5.2. Trabajo Futuro

Cómo puede ser extendido el trabajo y qué beneficios tendría esa extensión

5.3. Conclusiones

Qué aprendimos con este trabajo.

Buscando contribuir en la labor del desarrollador de aplicaciones Android, de modo que este pueda garantizar el cumplimiento de determinadas políticas de seguridad, en el presente trabajo se exploró el análisis de flujo de información en aplicaciones Android, mediante técnicas de lenguajes tipados de seguridad, específicamente mediante el sistema de anotaciones de Jif.

Acorde a la literatura científica consultada, el análisis de aplicaciones Android mediante el sistema de anotaciones de Jif, es una opción no antes explorada.

Habiendo superado una serie de limitaciones técnicas, se implementó un prototipo de anotación, y se comparó con otras herramientas de análisis(FlowDroid y JoDroid). Partiendo de los tipos de análisis y técnicas evaluadas, de sus ventajas y desventajas, soportadas no solamente en los resultados de evaluación sino también en la literatura científica, es posible decir que

CAPÍTULO 6

Anexos

6.1. Diagrama de clases para el anotador

Figura 6.1: Clases necesarias para la implementación del anotador

6.2. Descripción de testcases para evaluación

En las tablas 6.1, 6.2 y 6.3, se describe el comportamiento de los casos de prueba evaluados, donde:

Se considera con nivel de seguridad alto, variables y métodos que almacenan y modifican(respectivamente), información catalogada como privada(Sources).

Se considera con nivel de seguridad bajo, canales para envío de mensajes, muestra de logs y canales creados durante el control de flujo del programa.

En los casos en que se requiere, se precisan observaciones entre los resultados de evaluación esperados para la técnica de análisis utilizada por FlowDroid y la técnica de análisis propuesta en el presente trabajo.

Cuadro 6.1: Descripción aplicaciones de prueba

AndroidSpecific_DirectLeak1				
Descripción	Leaks			
La variable mrg tiene un nivel de seguridad alto, almacena información retornada por	1			
el método source getDeviceId. Se genera flujo de información directo entre información	_			
con nivel de seguridad alto e información con nivel de seguridad bajo, al enviar como	.			
parámetro del método send Text Message, información de la variable mrg.				
AndroidSpecific_InactiveActivity				
	Leaks			
Descripción				
La variable <i>imei</i> tiene un nivel de seguridad alto, almacena información retornada por	0			
el source getDeviceId. La variable es enviada como parámetro a <i>Log</i> , canal que muestra				
información con nivel de seguridad bajo. Observación: debido a que la actividad en que				
se presenta este flujo de información no está activada en el Manifest de la aplicación,				
para la técnica de análisis de FlowDroid no existen leaks. Para nuestra propuesta de				
análisis si existe leak, porque se asume que los métodos y sus aplicaciones podrán ser				
ejecutados.				
AndroidSpecific_LogNoLeak				
Descripción	Leaks			
El caso de prueba no presenta información con niveles de seguridad alto. Se presentan	0			
flujos de información entre información con el mismo nivel de seguridad, en este caso				
bajo, lo cual es permitido.				
AndroidSpecific_Obfuscation1				
Descripción	Leaks			
La variable <i>mrg</i> tiene un nivel de seguridad alto, almacena información retornada				
por el método source getDeviceId(). Se genera flujo de información entre información	.			
con nivel de seguridad alto e información con nivel de seguridad bajo, al enviar como				
parámetro del método send Text Message, información de la variable mrg. Observación:				
el elemento adicional para este testcase es proveer una suplantación de la clase an-				
droid.telephony.TelephonyManager, en el apk de la aplicación. Para la evaluación que				
proponemos, se verifica acorde a la versión que se tiene anotada para esta clase, es				
	ı			
decir, independientemente de la ofuscación de la clase, nuestro análisis debe detectar	ı			
que existe un flujo de información indebido.				
AndroidSpecific_PrivateDataLeak2	T 1			
Descripción	Leaks			
La variable info tiene un nivel de seguridad alto, almacena información suministrada	1			
por el campo EditText de tipo textPassword. Se genera flujo de información entre				
información con nivel de seguridad alto e información con nivel de seguridad bajo, al	ı			
pasar la variable info como parámetro de Log, que muestra información con nivel de	ı			
seguridad bajo.				
ArraysAndLists_ArrayAccess1				
Descripción	Leaks			
Se tiene un array en que se almacena información tanto proveniente como no prove-	0			
niente de sources, parte de la información que almacena es enviada como parámetro del	,			
método sendTextMessage. Observación: Para la técnica de análisis de FlowDroid(taint	,			
analysis), se marca únicamente el índice del array donde se almacena el dato conside-	,			
rado como source, así, cuando se envía como parámetro del método sendTextMessage,	,			
el dato de un índice no marcado, no se genera leak. Para nuestra técnica de análi-	ı			
sis(flujo de información mediante JIF), para que un array almacene información con	1			
nivel de seguridad alto, primero debe ser catalogo(anotado) con nivel de seguridad	1			
alto, lo que implica que el array podrá almacenar información tanto de nivel de segu-				
ridad alto como bajo, pero toda la información quedará con nivel de seguridad alto.				
En consecuencia, al enviar cualquier índice del array como parámetro del método	.			
send Text Message se presenta un flujo de información no permitido.	.			
onwirewinewaye se presenta un nujo de información no permitido.				

Cuadro 6.2: Descripción aplicaciones de prueba

ArraysAndLists_ArrayAccess2				
	T 1			
Descripción	Leaks			
Se presenta el contexto descrito en ArraysAndLists_ArrayAccess1, con un elemento	0			
adicional, se implementa el método calculateIndex(), que calcula el índice del array a	ı			
ser enviado como parámetro del método sendTextMessage.				
GeneralJava_Exceptions1				
Descripción	Leaks			
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por	1			
el método getDeviceId. Se genera flujo de información entre información de nivel de	ı			
seguridad alto e información con nivel de seguridad bajo, al enviar como parámetro del	ı			
método sendTextMessage información de la variable imei. Este flujo de información	ı			
se presenta dentro de la captura de una excepción RuntimeException(no es verificada	ı			
en tiempo de compilación).	ı			
GeneralJava_Exceptions2				
Descripción	Leaks			
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por el				
método getDeviceId. El control de flujo del programa conduce de manera implícita a	1			
la captura de una excepción tipo RuntimeException, desde allí se utiliza información	ı			
proveída por la variable <i>imei</i> , como parámetro para invocar el método <i>sendTextMes</i> -	ı			
sage. Generando un flujo de información indebido.	ı			
GeneralJava_Exceptions3				
Descripción General de la Capación d	Leaks			
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por el				
método getDeviceId. La información proveída por imei es utilizada como parámetro	U			
para invocar el método sendTextMessage dentro de la captura de una excepción tipo	ı			
	ı			
RuntimeException, sin embargo, el programa no genera un caso que haga ejecutar la	ı			
captura de la excepción. GeneralJava_Exceptions4				
	Leaks			
Descripción				
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por el	1			
método getDeviceId. información proveída por esta variable es enviada como paráme-	ı			
tro para la captura de una excepción en tiempo de ejecución, donde es utilizado como	ı			
parámetro para invocar el método sendTextMessage, generando un flujo de informa-	ı			
ción indebido.				
GeneralJava_Loop1	T ,			
Descripción	Leaks			
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por el	1			
método getDeviceId. Se generan flujos de información indebidos, primero al tratar de	ı			
asignar la información de la variable a un array con nivel de seguridad bajo(donde	1			
se intenta ofuscar la información), luego al tratar de enviar la información ofuscada	ı			
como parámetro del método sendTextMessage, con nivel de seguridad bajo.	ı			
GeneralJava_Loop2				
Descripción	Leaks			
La variable <i>imei</i> es de nivel de seguridad alto, almacena información devuelta por	1			
el método getDeviceId. Se busca ofuscar la información de imei mediante ciclos for	1			
anidados, allí se asigna la información de la variable a un array con nivel de seguridad	1			
bajo. Luego se envía la información ofuscada, como parámetro del método sendText-	 			
Message, con nivel de seguridad bajo, generando otro flujo de información indebido.	ı			
<u> </u>				

Cuadro 6.3: Descripción aplicaciones de prueba

Looks
Leaks
0
T 1
Leaks
1
т ,
Leaks
1
Leaks
1
Leaks
1
Leaks
1
Leaks
Leaks 1

6.3. Formulas

Las formulas 6.1 y 6.2 son aplicadas para calcular los porcentajes de Precisión(p) y Recall(r).

$$p = TP/(TP + FP) \tag{6.1}$$

$$r = TP/(TP + FN) \tag{6.2}$$

Donde:

TP representa el total de verdaderos positivos; FP corresponde al total de falsos positivos y FN representa el total de falsos negativos; reportados por la herramienta.

6.4. Instrucciones para probar del prototipo

En el directorio /home/testing/eule están los elementos necesarios para evaluar los casos de prueba, de allí interesan los subdirectorios androidFlows, InputLabelGenerator y el jar LabelGenerator.jar.

El subdirectorio androidFlows contiene la estructura de archivos necesaria para ejecutar un programa jif, así: sig-src aloja clases java y clases de la API de Android, con signaturas para que jif las reconozca de forma nativa. jif-src/test tiene clases de la API de Android con anotaciones jif(Activity.jif, BroadcastReceiver.jif, Log.jif, R.jif, Service.jif, SmsManager.jif). Allí se deben alojar los programas jif a ejecutar.

En InputLabelGenerator están los fuentes java a pasar como entrada para el generador de labels(LabelGenerator.jar), que devuelve la versión jif de los mismos. Se recomienda utilizar estos, ya que contienen las adaptaciones necesarias para poder ser analizadas con JIF, la adición de excepciones NullPointerException, ClassCastException y ArrayIndexOutOf-BoundsException, son algunos ejemplos de elementos adicionados.

Instrucciones de ejecución:

(1) Ejecutar el jar para la generación de los labels:

```
testing@debianJessie:~/eule$ java -jar LabelGenerator.jar
```

Una vez se ejecuta el .jar, se solicita el directorio de entrada(que contiene las aplicaciones a anotar) y el directorio de salida(para alojar las aplicaciones anotadas). Separados por el simbolo @

```
Ingrese la ruta completa para el directorio de entrada, y para el
directorio de salida:
Ejemplo: dir-entrada@dir-salida
```

Se deben pasar los directorios:

InputLabelGenerator@androidFlows/jif-src/test/

(2) ejecutar el script setup.sh(basta con ejecutarlo una sola vez)

testing@debianJessie:~/eule/androidFlows\$./setup.sh

(3) Ejecutar el .jif generado:

En la ruta pasada como directorio de salida en el punto anterior androidFlows/jif-src/test, se genera un subdirectorio por aplicación, con un .java y un *-out.jif. Se debe ejecutar el *-out.jif. Por ejemplo, para evaluar el testcase ArraysAndLists_ArrayAccess1:

```
testing@debianJessie:~/eule/androidFlows$ ./jifc-java-libraries.sh \
jif-src/test/ArraysAndLists_ArrayAccess1/ArrayAccess1-out.jif
```

Cuando se presentan flujos indebidos, el compilador genera una salida señalando los problemas de seguridad.

Cuando el caso de prueba no presenta flujos indebidos, el compilador no genera salidas, por ejemplo, al evaluar el testcase AndroidSpecific_LogNoLeak, el compilador retorna el prompt de la shell, sin ningún comentario.

6.5. Instrucciones para uso de FlowDroid

En el directorio /home/estudiante/eule también se encuentran los subdirectorios /FlowDroid y /DroidBench-master que contienen los elementos necesarios para probar los testcases con FlowDroid.

Para ello se requiere ejecutar el jar de FlowDroid, indicando el apk a analizar, los apk están en el subdirectorio DroidBench-master. Por ejemplo, para analizar el testace ImplicitFlow4:

```
testing@debianJessie: ``/eule/FlowDroid\$ java -jar FlowDroid.jar \setminus ../DroidBench-master/apk/ImplicitFlows/ImplicitFlow4.apk/home/estudiante/android-sdks/platforms/
```

El archivo howRunIt contenido en el directorio /FlowDroid, indica como se debe ejecutar.

Bibliografía

- [1] McAfee. (2014, February) Who's watching you?, mcafee mobile security report. [Online]. Available: http://www.mcafee.com/us/resources/reports/rp-mobile-security-consumer-trends.pdf
- [2] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, "Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones," 9th USENIX Symposium on Operating Systems Design and Implementation(OSDI'10), pp. 1–15, October 2010.
- [3] C. Fritz, "Flowdroid: A precise and scalable data flow analysis for android," Master's thesis, Technische Universität Darmstadt, July 2013.
- [4] A. S. Bhosale, "Precise static analysis of taint flow for android application sets," Master's thesis, Heinz College Carnegie Mellon University Pittsburgh, PA 15213, May 2014.
- [5] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, "Droidforce: Enforcing complex, data-centric, system-wide policies in android," *Proceedings of the 9th International Conference on Availability, Reliability and Security (ARES)*, pp. 1–10, September 2014.
- [6] B. Chess and J. West, Secure Programming with Static Analysis. Gary McGraw, June 2007.
- [7] J. Graf, M. Hecker, and M. Mohr, "Using joans for information flow control in java programs a practical guide," *Proceedings of the 6th Working Conference on Programming Languages (ATPS'13)*, pp. 123–138, February 2013.
- [8] IBM T.J. Watson Research Center. (2013, July) Walawiki. [Online]. Available: http://wala.sourceforge.net/wiki/index.php/Main_Page
- [9] Soot. (2012, January) Soot: a java optimization framework. [Online]. Available: http://www.sable.mcgill.ca/soot/
- [10] Eric Bodden. (2013, June) Soot: a java optimization framework. [Online]. Available: http://sable.github.io/heros/
- [11] Secure Software Engineering Group at EC SPRIDE. (2013, June) Droidbench benchmarks. [Online]. Available: https://github.com/secure-software-engineering/DroidBench/blob/e64bf483949bf4cb91af642a415fadc9c65e4be5/README.md
- [12] C. Hammer and G. Snelting, "Flow-sensitive, context-sensitive, and object-sensitive information flow control based on program dependence graphs," *International Journal of Information Security*, vol. 8, no. 6, pp. 399–422, Dec. 2009.
- [13] Cornell University. (2014, March) Jif reference manual. [Online]. Available: http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
- [14] Panagiotis Christias. (2015, April) Unix on-line man pages. [Online]. Available: http://dell9.ma.utexas.edu/cgi-bin/man-cgi?00+00

- [15] Karlsruhe Institute of Technology. (2015, March) https://github.com/jgf/joana/blob/master/wala/joana.wala.jodroid/readme.md. [Online]. Available: https://github.com/jgf/joana/blob/master/wala/joana.wala.jodroid/README.md
- [16] T. Blaschke, "Automated model generation for the lifecycle of android applications and the application of that model to an ifc-analysis," April 2014.
- [17] T. Reps, S. Horwitz, and M. Sagiv, "Precise interprocedural dataflow analysis via graph reachability," *Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '95*, 1995.