# Introductory Microeconomics

Tutorial 8 Nhan La

#### Production functions



#### Production functions

Total Product: TP(L) = Q(L)

Marginal Product:  $MP(L) = \frac{\partial Q(L)}{\partial L}$ 

Total cost: SRTC(Q) = FC + VC(Q)

Marginal cost:  $SRMC(Q) = \frac{\partial SRTC(Q)}{\partial Q} = \frac{\partial VC(Q)}{\partial Q} = \frac{w}{MP(Q)}$ 

- Supply curve (SRMC > AVC)

Total Revenue:  $TR = P \times Q$ 

Marginal/Average revenue:  $AR = MR = \frac{TR}{Q} = P$ 

Demand curve

# Profit maximisation

Total decision



Marginal decision



## Short run decision

#### Operate

$$MR = P > AVC(Q)$$

#### Exit

$$MR = P < AVC(Q)$$





a/

| Events | VC   | SRMC                | FC  | SRTC               |                 | TC              |
|--------|------|---------------------|-----|--------------------|-----------------|-----------------|
|        |      | $(TC_{t+1} - TC_t)$ |     | (VC + FC)          |                 | 7 C'N           |
| 0      | 0    | -                   | 500 | 500+0=5<br>00      | -               | -               |
| 1      | 1000 | 1500-<br>500= 1000  | 500 | 1000+50<br>0= 1500 | 1000/1=<br>1000 | 1500/1=<br>1500 |
| 2      | 2400 | 1400                | 500 | 2900               | 1200            | 2900/2=<br>1450 |
| 3      | 4200 | 1800                | 500 | 4700               | 1400            | 1566.7          |
| 4      | 6400 | 2200                | 500 | 6900               | 1600            | 1725            |
| 5      | 9000 | 2600                | 500 | 9500               | 1800            | 1900            |

b/ 
$$P = AR = MR = 1,500$$

| Events | VC   | $\begin{array}{c} SRMC \\ (TC_{t+1} - TC_t) \end{array}$ | FC  | $\begin{array}{c} \mathbf{SRTC} \\ (VC + FC) \end{array}$ |      | L      |
|--------|------|----------------------------------------------------------|-----|-----------------------------------------------------------|------|--------|
|        |      |                                                          |     |                                                           | 1,   | ·      |
| 0      | 0    | -                                                        | 500 | 500                                                       | -    | -      |
| 1      | 1000 | 1000                                                     | 500 | 1500                                                      | 1000 | 1500   |
| 2      | 2400 | 1400<1500                                                | 500 | 2900                                                      | 1200 | 1450   |
| 3      | 4200 | 1800                                                     | 500 | 4700                                                      | 1400 | 1566.7 |
| 4      | 6400 | 2200                                                     | 500 | 6900                                                      | 1600 | 1725   |
| 5      | 9000 | 2600                                                     | 500 | 9500                                                      | 1800 | 1900   |

$$c/\Pi = TR - TC = P * Q - TC = 1500 \times 2 - 2900 = 100$$

Entry/exit:  $TR \leq TVC \iff MR = AR = P \leq AVC$ 

Profit:  $TR \leq TC \iff MR = AR = P \leq ATC$ 

$$a/TC(Q) > TR(Q)$$
  
 $\Rightarrow TFC + TVC(Q) > TR(Q)$ 

Need more information

b/
$$TVC(Q) > TR(Q)$$
  
 $\Rightarrow AVC > AR = MR = P$ 

Shut down

Entry/exit:  $TR \leq TVC \Leftrightarrow MR = AR = P \leq AVC$ 

Profit:  $TR \leq TC \iff MR = AR = P \leq ATC$ 

c/MR(Q) > MC(Q)

Need more information

d/TR(Q) > TFC

Need more information

e/MR = AR = P > ATC

Produce

$$AR = MR = P = 80$$
;  $FC = 1000$ ;  $VC(Q) = 10Q + Q^{2}$   
 $a/SRTC = FC + VC = 1000 + 10Q + Q^{2}$   
 $SRAFC = \frac{FC}{Q} = \frac{1000}{Q}$   
 $SRAVC = \frac{VC}{Q} = 10 + Q$   
 $SRATC = \frac{SRTC}{Q} = \frac{1000}{Q} + 10 + Q$   
 $MC = \frac{\partial SRTC}{\partial Q} = 10 + 2Q$ 

#### b/ As Q increases:

- SRAFC monotonically decreases
- SRAVC increases
- SRATC lies above SRAVC but these lines catch up
  - Why? SRAFC decreases
- MC goes through the minimum on SRAVC and SRATC



c/  

$$MR = AR = P = 80$$
  
 $TC = 1000 + 10Q + Q^{2}$   
 $MC = 10 + 2Q$ 

To maximise profit firm sets:

$$MR = P = MC \iff 80 = 10 + 2Q^* \iff Q^* = 35$$

$$TR = PQ^* = 80 \times 35 = 2800$$
  
 $TC = 1000 + 10 \times 35 + 35^2 = 2575$ 

$$\Pi = TR - TC = 2800 - 2575 = 225$$

d/ Tax on restaurant: Shift the supply curve (MC) upward



d/ Tax on restaurant:

$$VC = 4Q + 10Q + Q^2$$

$$VC = 14Q + Q^2$$

Supply: MC = 14 + 2Q (Compare with before tax: MC = 10 + 2Q)

Still, to maximise profit firm sets:

$$MR = P = MC \Leftrightarrow 80 = 14 + 2Q^* \Leftrightarrow Q^* = 33$$

$$TR = PQ^* = 80 \times 33 = 2640$$

$$TC = 1000 + 14 \times 33 + 33^2 = 2551$$

$$\Pi = TR - TC = 2640 - 2551 = 89$$

d/ Tax on customers: Shift the demand curve (or market price) downward



d/ Tax on customers:

Demand: 
$$MR = P = 80 - 4 = 76$$

Supply: 
$$MC = 10 + 2Q$$

Again, to maximise profit firm sets:

$$MR = P = MC \Leftrightarrow 76 = 10 + 2Q^* \Leftrightarrow Q^* = 33$$

$$TR = PQ^* = 76 \times 33 = 2508$$

$$TC = 1000 + 10 \times 33 + 33^2 = 2419$$

$$\Pi = TR - TC = 2508 - 2419 = 89$$