idy Data 000000 00 000000000000 Pacote "do" Banco Central do Brasil

Mini curso Introdução prática ao R Parte 2: Tópicos Diversos

Vinícius M. de Sousa

Universidade do Estado de Santa Catarina

dy Data 000000 00 000000000000 Pacote "do" Banco Central do Brasil 0000000 000000 0

Introdução ao ggplot2 Gráficos Feitos com ggplot2 Como usar o ggplot2 Elementos do ggplot2

Tidy Data
Digressão
Introdução ao Conceito de Tidy Data
Dois problemas Comuns
Atividado Prático 1

Pacote "do" Banco Central do Brasil Digressão Apresentação do rbcb Atividade Prática 2

idy Data 000000 000 00000000000000000 Pacote "do" Banco Central do Brasil 000000 000000 0

O que é o ggplot2?

 ggplot2 é um pacote que foi desenvolvido com o objetivo de facilitar a execução de Data Visualization.

idy Data 0000000 000 000 Pacote "do" Banco Central do Brasil 0000000 000000 0

O que é o ggplot2?

- ggplot2 é um pacote que foi desenvolvido com o objetivo de facilitar a execução de Data Visualization.
- Mas o que é exatamente Data Visualization?

Introdução ao ggplot2

O
OOOOOO
OOOOOOOO

Pacote "do" Banco Central do Brasil 0000000 000000 0

Como usar o ggplot2

- É como um "idioma", onde utilizamos os elementos do idioma para nos comunicar;
- Vamos combinando os elementos (que podem ser entendidas como camadas) para criarmos os plots que desejamos. Como fazer um lanche no subway, onde vamos adicionando o que queremos.

Como usar o ggplot2

Elementos do ggplot...

Element	Description
Data	The dataset being plotted.
Aesthetics	The scales onto which we <i>map</i> our data.
Geometries	The visual elements used for our data.
Facets	Plotting small multiples.
Statistics	Representations of our data to aid understanding.
Coordinates	The space on which the data will be plotted.
Themes	All non-data ink.

Como usar o ggplot2

Elementos do ggplot que cobriremos...

Element	Description
Data	The dataset being plotted.
Aesthetics	The scales onto which we map our data.
Geometries	The visual elements used for our data.
Facets	Plotting small multiples.
Statistics	Representations of our data to aid understanding.
Coordinates	The space on which the data will be plotted.
Themes	All non-data ink.

Como usar o ggplot2

Mais especificamente...

Como usar o ggplot2

```
Sintaxe dos plots:
    ggplot(data = <DATA>) +
        <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Como usar o ggplot2

• Exemplo: Scatter Plot simples

```
#criando dados para serem plotados
dados <- tibble(x=1:100,
                y=x*0.5+rnorm(100,25,5))
dados
## # A tibble: 100 x 2
##
          X
##
      <int>
               <dbl>
## 1
          1 27.19474
## 2
          2 21,44107
## 3
          3 29.33936
## 4
          4 16,48718
## 5
          5 32.25920
## 6
          6 33.61547
## 7
          7 28.21178
          8 29.16906
## 8
          9 22.99460
## 9
## 10
      10 23.40452
  # ... with 90 more rows
```

Como usar o ggplot2

```
# plotando x vs. y
ggplot(data = dados)+geom_point(mapping = aes(x=x,y=y))
```


Como usar o ggplot2

Combinando geometries (camadas) para fazer adicionarmos uma linha de regressão

```
ggplot(data = dados)+geom_point(mapping = aes(x=x,y=y))+
  geom_smooth(mapping = aes(x=x,y=y),method = 'lm',se = F)
```


Como usar o ggplot2

Dica: Se sabemos que as variáveis usadas em diferentes *geometries* serão as mesmas, como no exemplo do slide anterior, podemos colocar o argumento **mapping** = **aes**(**x**=**x**,**y**=**y**) dentro da chamada **ggplot**(). Deste modo evitamos digitar duas vezes a mesma coisa.

Como usar o ggplot2

```
ggplot(data = dados, mapping = aes(x=x,y=y))+geom_point()+
  geom_smooth(method = 'lm',se = F)
```


Elementos do ggplot2

Pacote "do" Banco Central do Brasil

Elementos do ggplot2

Data: o arquivo (dentro do R) que contem as variáveis que serão utilizadas. Colocamos dentro da função **ggplot(data = "nome do arquivo")**.

Elementos do ggplot2

Aesthetics: são as características que serão "mapeadas" para o plot. Sendo alguma delas

- eixos x e y: definem as escalas e comprimentos dos eixos declaramos no ggplot(mappings = aes());
- colour: separa o elemento geometries em diferentes cores por grupos
 declaramos no ggplot(mappings = aes());
- fill: cria gráfico de proporção por grupos;
- linetype: cria linhas diferentes por cada grupo;
- alpha: controle a opacidade do geometries - declaramos no geom_.

Elementos do ggplot2

color

```
ggplot(data = dados_,aes(x=peso,y=altura,color=sexo))+geom_point()
```


Elementos do ggplot2

alpha

```
ggplot(data = dados_,aes(x=peso,y=altura))+geom_point(alpha=0.5)
```


Elementos do ggplot2

linetype

```
ggplot(data = dados_[1:100,],aes(x=periodo,y=peso,linetype=sexo)
```


Elementos do ggplot2

Geometries: a forma como queremos representar graficamente as variaveis. e são chamadas através de **geom_point()**, por exemplo. Sendo alguns deles

- point (já vimos);
- line (já vimos);
- histogram.

Elementos do ggplot2

ggplot(data = dados_,aes(x = peso))+geom_histogram()

Elementos do ggplot2

Statistics: são representações de estimações estatísticas no gráfico. Vamos ver a *Im*, de *Linear model*. Chamamos tal elemento através de **geom_smooth(method=metodo_aqui)**. (refazendo o primeiro exemplo)

```
ggplot(data = dados, mapping = aes(x=x,y=y))+geom_point()+
geom_smooth(method = 'lm',se = F)
```


Tidy Data

000000

000

000

000

Pacote "do" Banco Central do Brasil 000000 000000 0

ntrodução ao ggplot2 Gráficos Feitos com ggplot2 Como usar o ggplot2 Elementos do ggplot2

Tidy Data
Digressão
Introdução ao Conceito de Tidy Data
Dois problemas Comuns
Atividade Prática 1

Pacote "do" Banco Central do Brasil Digressão Apresentação do rbcb Atividade Prática 2

Pacote "do" Banco Central do Brasil

Pacotes Utilizados

library(tibble)
library(tidyr)
library(dplyr)

 Pacote "do" Banco Central do Brasil 0000000 000000 0 00

Digressão

```
## Visualização
df <- data.frame(id = letters[1:100].</pre>
                  idade = sample(x = 0:70, size = 100, replace = T),
                  x = rnorm(100,0,1))
df
##
         id idade
## 1
                12 -0.54372045
          а
## 2
          b
                62 0.72406463
## 3
                52 -1.11729560
          С
## 4
          d
                37 -0.17741012
                15 0.14300892
## 5
                   0.49249758
## 6
                33 0.06571036
## 7
                54 -2.07312104
## 8
          h
## 9
                    0.27258989
                31 -0.37629667
## 10
##
  11
          k
                 5 -1.08050809
##
                38 -0.43153046
  12
                   0.87705542
## 13
          m
## 14
                24 -1.34198041
```

 Pacote "do" Banco Central do Brasil 000000 000000 0 0

Digressão

```
## Visualização
tb <- tibble(id = letters[1:100].
                 idade = sample(x = 0:70, size = 100, replace = T),
                 x = rnorm(100,0,1))
tb
    A tibble: 100 x 3
##
         id idade
##
      <chr> <int>
                      <dbl>
## 1
               43 0.3864901
          а
## 2
               40
                  0.1255834
          b
                  0.2521172
## 3
          С
               28
## 4
          d
               48 -0.1424644
## 5
               24 -0.4926804
## 6
                  0.4000943
               22
## 7
               62 0.8615261
          h
               33 0.4210050
## 8
## 9
                   0.4322694
## 10
               18 -2.5326386
         with 90 more rows
```

Tidy Data

00 • 00 00

000

000

000

000

Pacote "do" Banco Central do Brasil

Digressão

Tidy Data

000 ● 000

000

000

000

000

Pacote "do" Banco Central do Brasi 0000000 000000 00

Digressão

```
## Criação de variaveis
tb <- tibble(id = letters[1:10],
                 idade = sample(x = 0:70, size = 10, replace = T),
                 x = 0.5*idade+rnorm(10,0,1))
t.b
## # A tibble: 10 x 3
##
         id idade
##
      <chr> <int>
                  <dbl>
               69 35.460038
## 1
          а
## 2
          b 47 22.948514
## 3
               69 35,409948
          C
## 4
          d
               57 29.531807
## 5
               42 20,642670
          е
## 6
               12 7.676983
## 7
               67 31.735749
## 8
               50 25.442991
          h
               27 12.574880
## 9
## 10
               22 13.039402
```

Introdução ao ggplot2 O OOOOOO OOOOOOOO OOOOOOOO Tidy Data

0000 ● 00

000

000

000

000

Pacote "do" Banco Central do Brasil

Digressão

Importando dados .csv

 Pacote "do" Banco Central do Brasil

Digressão

Importando dados .csv

Atividade

Importar e salvar no workingspace/environment as planilhas (i) "100_amostras" e "sexo".

Digressão

Pacote "do" Banco Central do Brasil 0000000 000000 0

Introdução ao Conceito de Tidy Data

O que é?

É uma maneira de se armazenar dados estatísticos de maneira a facilitar a análise dos dados. Tem três principios principais:

- Observações como linhas;
- Variaveis como colunas;
- Uma tipo de unidade observacional por matrix.

Introdução ao Conceito de Tidy Data

Dados conforme os princípios

name	age	eye_color	height 6'1"	
Jake	34	Other		
Alice	55	Blue	5'9"	
Tim	76	Brown	5'7"	
Denise	19	Other	5'1"	

Observation

Variable or Attribute

Pacote "do" Banco Central do Brasil 000000 000000 0 00

Introdução ao Conceito de Tidy Data

Dados em desconforme com os princípios

name	age	brown	blue	other	height
Jake	34	0	0	1	6'1"
Alice	55	0	1	0	5'9"
Tim	76	1	0	0	5'7"
Denise	19	0	0	1	5'1"

Tidy Data

Pacote "do" Banco Central do Brasil 000000 000000 0

Dois problemas Comuns

Variáveis como nome de Colunas

Dois problemas Comuns

Variáveis como nome de Colunas

```
errado
## # A tibble: 3 x 4
##
       id variavel 2015 2016
##
    <chr>
             <chr> <dbl> <dbl>
## 1
     7.e11s
             idade
                      10
                           11
## 2 Eliot
           idade
                      30
                            31
## 3
      Ela
             idade
                      NA
                            17
# filtrando para ter só individuos completos
errado <- errado[complete.cases(errado),]</pre>
errado
## # A tibble: 2 x 4
##
       id variavel 2015 2016
##
    <chr> <chr> <dbl> <dbl>
## 1
     Zeus
             idade
                      10
                            11
## 2 Eliot
             idade
                      30
                            31
```

Dois problemas Comuns

Variáveis como nome de Colunas

```
correto
## # A tibble: 4 x 3
##
        id
             ano idade
     <chr> <dbl> <dbl>
##
            2015
                     10
      Zeus
            2016
##
      Zeus
                     11
   3 Eliot
            2015
                     30
   4 Eliot
            2016
                     31
```

Dois problemas Comuns

Variáveis como nome de Colunas Função **gather()** faz isso. obs: todos os argumentos são sem aspas.

```
gather(data = "dados",key = "nome da coluna da variavel que esta espalhada em colunas",
    value = "nome da variavel que esta nas celulas",
    -c("colunas que não serão agrupadas"))
```

```
gather(data = errado, key = ano, value = idade,
      -c(id.variavel))
## # A tibble: 4 x 4
##
       id variavel ano idade
##
    <chr> <chr> <chr> <chr> <dbl>
##
     Zeus idade 2015
                           10
  2 Eliot idade 2015 30
  3 Zeus idade 2016 11
##
## 4 Eliot
             idade 2016
                           31
```


Pacote "do" Banco Central do Brasil 0000000 000000 0

Dois problemas Comuns

Variáveis como nome de Colunas (inner join)

Atividade

Colocar as planilhas (i) "100_amostra" e (ii) "sexo" de acordo com os princípios de $tidy\ data$

Dois problemas Comuns

```
amostras_100 <- gather(data = amostras_100,key = amostra,
                       value = consumo.
                       -renda)
as tibble(amostras 100)
## # A tibble: 10,000 x 3
##
      renda
              amostra
                        consumo
##
      <int>
                <chr>
                          <dbl>
## 1
        100 amostra.1 51.82646
## 2
        201 amostra.1 190.20948
## 3
        302 amostra.1 167.66289
## 4
        403 amostra.1 316.87276
## 5
        504 amostra.1 363.15662
## 6
        605 amostra.1 420.04058
## 7
        706 amostra.1 452.02989
## 8
        807 amostra.1 520.10506
## 9
        908 amostra.1 625.60375
      1009 amostra.1 659.64036
## # ... with 9,990 more rows
```

Dois problemas Comuns

```
sexo <- gather(data = sexo,key = amostra,value = sexo,-renda)</pre>
as_tibble(sexo)
## # A tibble: 9,000 x 3
##
      renda
              amostra
                        sexo
##
      <int> <chr> <chr>
## 1
        605 amostra.1 Homem
##
       706 amostra.1 Homem
## 3
       807 amostra.1 Homem
##
       908 amostra.1 Homem
## 5
      1009 amostra.1 Homem
##
       1110 amostra.1 Homem
      1211 amostra.1 Homem
##
##
       1312 amostra.1 Homem
##
       1413 amostra.1 Mulher
      1514 amostra.1 Homem
##
  10
## # ... with 8,990 more rows
```

 Pacote "do" Banco Central do Brasil

Dois problemas Comuns

Juntar duas Bases de dados (inner join)

 "do" Banco Central do Brasil 2000 200

Dois problemas Comuns

Juntar duas Bases de dados (inner join)

Dois problemas Comuns

Juntar duas Bases de dados (inner join): Exemplo

```
df1
    A tibble: 4 x 3
         id
##
               ano
                   peso
##
      <chr> <dbl> <dbl>
                       30
## 1
        ana
##
        ana
                       29
  3 daniel
                       60
  4 daniel
                       63
df2
    A tibble: 5 \times 3
##
            id
                 ano altura
        <chr> <dbl> <dbl>
##
## 1
           ana
                        1.60
##
                       1.60
           ana
##
       Daniel
                       1.78
  4 Gilberto
                       1.99
  5 Gilberto
                        1.98
```

Dois problemas Comuns

Juntar duas Bases de dados (inner join): Exemplo

```
df_juntos <- inner_join(x = df1,y = df2,c("id","ano"))
df_juntos

## # A tibble: 2 x 4

## id ano peso altura

## <chr> <dbl> <dbl> <dbl> ## 1 ana 1 30 1.6

## 2 ana 2 29 1.6
```


Dois problemas Comuns

Juntar duas Bases de dados (inner join): Exemplo

Atividade

Juntar as planilhas "100_amostras" e "sexo" em uma em apenas um data frame através da função **inner_join()**, de acordo com as faixas de renda e o número da amostra.

Dois problemas Comuns

```
dados <- inner_join(x = amostras_100,y = sexo,
                    bv = c("amostra", "renda"))
as tibble(dados)
## # A tibble: 9,000 x 4
##
     renda
              amostra
                        consumo
                                  sexo
                <chr>>
##
      <int>
                          <dbl>
                                 <chr>>
## 1
        605 amostra.1 420.0406
                                 Homem
## 2
       706 amostra.1 452.0299
                                 Homem
## 3
        807 amostra.1 520.1051 Homem
## 4
        908 amostra.1 625.6038
                                 Homem
## 5
       1009 amostra.1 659.6404
                                 Homem
## 6
       1110 amostra.1 743.1548
                                 Homem
## 7
      1211 amostra.1 815.8679
                                 Homem
## 8
      1312 amostra.1 950.7011
                                 Homem
## 9
       1413 amostra.1 1012.0082 Mulher
## 10
      1514 amostra.1 1025.5946
                                 Homem
## # ... with 8,990 more rows
```

HORA DE SUJAR

AS MÃOS

imgflip.com

•00

Pacote "do" Banco Central do Brasil 000000 000000 0 00

Atividade Prática 1

Contextualização

Você, como economista do departamento de desenvolvimento social do Banco Mundial, foi designado para realizar um estudo que busca verificar como a liberdade de imprensa e qualidade na democracia afetam a percepção de currupção ao redor do mundo.

Atividade Prática 1

Contextualização

Para tal, você utilizará os seguites dados:

- Índice de percepção de corrupção (International Transparency): entre 0 e 100, onde 0 é percepção máxma de corrupção e 100 percepção mínima;
- Índice de democracia (Economist Intelligence Unit): entre 0 e 10, onde quanto maior o valor do índice mais democrático é o país;
- Índice de liberdade de imprensa (Reporters Without Borders): entre 0 e 100, onde quanto menor o índice maior a liberdade de imprensa;
- Índice de desenvolvimento humano (Nações Unidas): utilizado com controle de diferenças entre os países.

Tidy Data

○○○○○
○○
○○
○○
○○
○○
○○
○○
○○
○○

Pacote "do" Banco Central do Brasil 0000000 000000 0

Atividade Prática 1

Estrutura

O trabalho será realizado nas seguintes etapas:

Importar os arquivos "democracy_index",
 "corruption_index", "human_development_index" e "press_freedom".
 Obs: Nessa etapa lembre-se de filtrar os países que tenham
 observações para todos os ano com a função complete.cases();

Atividade Prática 1

Estrutura

- Importar os arquivos "democracy_index",
 "corruption_index", "human_development_index" e "press_freedom".
 Obs: Nessa etapa lembre-se de filtrar os países que tenham
 observações para todos os ano com a função complete.cases();
- 2. Verificar se eles estão de acordo com os princípios de *tidy data*, se não estiverem arruma-los;

Pacote "do" Banco Central do Brasil 0000000 0000000 00

Atividade Prática 1

Estrutura

- Importar os arquivos "democracy_index",
 "corruption_index", "human_development_index" e "press_freedom".
 Obs: Nessa etapa lembre-se de filtrar os países que tenham
 observações para todos os ano com a função complete.cases();
- 2. Verificar se eles estão de acordo com os princípios de *tidy data*, se não estiverem arruma-los;
- 3. Juntar todos os dados em um mesmo data.frame;

Pacote "do" Banco Central do Brasil 0000000 000000 0

Atividade Prática 1

Estrutura

- Importar os arquivos "democracy_index",
 "corruption_index", "human_development_index" e "press_freedom".
 Obs: Nessa etapa lembre-se de filtrar os países que tenham
 observações para todos os ano com a função complete.cases();
- 2. Verificar se eles estão de acordo com os princípios de *tidy data*, se não estiverem arruma-los;
- 3. Juntar todos os dados em um mesmo data.frame;
- 4. Visualisar scatter plot da variáveis de interesse x índice de percepção de corrupção (com uma linha de regressão linear);

Pacote "do" Banco Central do Brasil 0000000 000000 0

Atividade Prática 1

Estrutura

- Importar os arquivos "democracy_index",
 "corruption_index", "human_development_index" e "press_freedom".
 Obs: Nessa etapa lembre-se de filtrar os países que tenham
 observações para todos os ano com a função complete.cases();
- 2. Verificar se eles estão de acordo com os princípios de *tidy data*, se não estiverem arruma-los;
- 3. Juntar todos os dados em um mesmo data.frame;
- 4. Visualisar scatter plot da variáveis de interesse x índice de percepção de corrupção (com uma linha de regressão linear);
- Salvar o data.frame com todos os dados arrumados através da função write.csv().

dy Data 000000 00 000000000000 Pacote "do" Banco Central do Brasil

Introdução ao ggplot2
Gráficos Feitos com ggplot2
Como usar o ggplot2
Elementos do ggplot2

Tidy Data
Digressão
Introdução ao Conceito de Tidy Data
Dois problemas Comuns
Atividado Prático 1

Pacote "do" Banco Central do Brasil Digressão Apresentação do rbcb Atividade Prática 2

Digressão

Como criar data no R: pontuais

```
x <- "27/07/2017"
str(x)

## chr "27/07/2017"

x_data <- as.Date(x,format = "%d/%m/%Y")
str(x_data)

## Date[1:1], format: "2017-07-27"</pre>
```

Pacote "do" Banco Central do Brasil ○●○○○○○ ○○○○○

Digressão

Como criar data no R: sequencias

```
### por dia
seq(as.Date('2017-07-20'),
    as.Date('2017-07-27'),
    by='day')

## [1] "2017-07-20" "2017-07-21" "2017-07-22" "2017-07-23" "2017-07-24"

## [6] "2017-07-25" "2017-07-26" "2017-07-27"

### por mês
seq(from=as.Date('2017-03-20'),
    to=as.Date('2017-07-27'),
    by='month')

## [1] "2017-03-20" "2017-04-20" "2017-05-20" "2017-06-20" "2017-07-20"
```

Pacote "do" Banco Central do Brasil OO●OOOO ○○○○○

Digressão

Como popular as colunas de uma tabela com o foor loop

```
# 1°) criar a matriz a ser populada
matriz <- data.frame(matrix(nrow = 11,ncol = 7))
colnames(matriz)[1] <- 'Data'
matriz[,1] <- seq(as.Date("2017-01-01"),length.out = 11,by='month')</pre>
```

Digressão

Como popular as colunas de uma tabela com o foor loop

```
# 1°) criar a matriz a ser populada
matriz <- data.frame(matrix(nrow = 11.ncol = 7))</pre>
colnames(matriz)[1] <- 'Data'</pre>
matriz[,1] <- seq(as.Date("2017-01-01"),length.out = 11,by='month')
matriz
            Data X2 X3 X4 X5 X6 X7
##
## 1
      2017-01-01 NA NA NA NA NA NA
## 2
      2017-02-01 NA NA NA NA NA NA
## 3
     2017-03-01 NA NA NA NA NA NA
## 4
      2017-04-01 NA NA NA NA NA NA
## 5
     2017-05-01 NA NA NA NA NA NA
## 6
      2017-06-01 NA NA NA NA NA NA
      2017-07-01 NA NA NA NA NA NA
## 7
## 8 2017-08-01 NA NA NA NA NA NA
## 9
      2017-09-01 NA NA NA NA NA NA
## 10 2017-10-01 NA NA NA NA NA NA
## 11 2017-11-01 NA NA NA NA NA NA
```

Pacote "do" Banco Central do Brasil ○○○○●○○ ○○○○○

Digressão

Como popular as colunas de uma tabela com o foor loop

Suponha que queiramos preencher cada uma das colunas com um vetor de numeros aleatórios gerado dentro do loop.

Pacote "do" Banco Central do Brasil ○○○○●○○ ○○○○

Digressão

Como popular as colunas de uma tabela com o foor loop

Suponha que queiramos preencher cada uma das colunas com um vetor de numeros aleatórios gerado dentro do loop. Fazemos isso da seguinte maneira

Digressão

Como popular as colunas de uma tabela com o foor loop

```
col_names <- paste('col',1:7,sep = '_')</pre>
col names
## [1] "col 1" "col 2" "col 3" "col 4" "col 5" "col 6" "col 7"
# 3°) usar o loop para popular a tabela
for (j in 2:ncol(matriz)){
  col <- rnorm(nrow(matriz)) # criando vetor que será coluna
  col <- round(col.2)</pre>
                         # arredondando casas decimais
  colnames(matriz)[j] <- col_names[j] # dando nome a coluna
  matriz[,j] <- col</pre>
                   # atribuindo à coluna j o vetor
```

Digressão

Como popular as colunas de uma tabela com o foor loop

```
matriz
##
           Data col 2 col 3 col 4 col 5 col 6 col 7
## 1
     2017-01-01 0.17 -0.09 0.01 -0.75 -0.48
                                              2.49
## 2
     2017-02-01 0.10 0.72 -1.26 -0.95 1.11 1.94
## 3
     2017-03-01 1.51 1.08 -0.34 -1.31
                                       0.12 - 0.17
## 4
     2017-04-01 -0.60 0.00 0.73 0.24 -0.05 -1.08
## 5
     2017-05-01 0.06 -0.55 1.38 1.52 -2.01 -0.18
## 6
     2017-06-01 0.43 1.32
                            2.41 -2.65 -1.35
                                              0.60
## 7
     2017-07-01 -0.06 -0.63 -2.03 -0.76 -0.60
                                              0.00
## 8
     2017-08-01 -0.44 0.63 -1.60 0.61
                                       0.55
                                              0.41
## 9
     2017-09-01 -0.32 1.28 0.03 2.59 -0.85 -0.20
     2017-10-01 -0.95 -0.88 -1.21 1.66
## 10
                                       0.56 0.33
## 11 2017-11-01 -0.07 -1.25 -0.44 -0.39 -0.56
                                              1.17
```

Apresentação do rbcb

É um pacote que permite pegar as séries do sistema gerenciador de séries temporais do Banco Central do Brasil e importá-los diretamente para o R:

```
install.packages("rbcb")
library(rbcb)
```

Apresentação do rbcb

Principal Função

```
get_series(code = "codigo da série",
    start_date = "inicio da serie",
    end_date = "final da série",
    name = "nome da série (colunm header)",
    as = "'data.frame','tibble'")
```

Apresentação do rbcb

Exemplo 1: Ipca de 2016

Apresentação do rbcb

Exemplo 1: Ipca de 2016

```
ggplot(ipca16,aes(x=date,y=ipca))+geom_line()+
labs(x='',title='Ipca - 2016',y="var %")+
geom_hline(yintercept = 0,color='red')
```


Introdução	ao	ggplot2	
0			
000000			
000000	00	000	
000000	00	0	

Apresentação do rbcb

Exemplo 2: Variação real do PIB dos últimos 15 anos

Apresentação do rbcb

Exemplo 2: variação real do PIB dos últios 15 anos

```
ggplot(pib_real,aes(x=date,y=var_real))+geom_line()+
labs(x='',y='Var %',title='PIB real')+
geom_hline(yintercept = 0,color='red')
```


HORA DE SUJAR

AS MÃOS

imgflip.com

Introdução ao ggplot2 0 000000 000000000 00000000

Pacote "do" Banco Central do Brasil

Atividade Prática 2

Contextualização

Na condição de analista macroeconômico da We the Analitics recebeu a função de medir a volatilidade dos grupos que compõem o IPCA em relação ao IPCA para o período entre 01/01/2002 até 01/06/2017. Porém para que a análise possa ser feita é necessário que você juntos os dados.

Pacote "do" Banco Central do Brasil

○○○○○

○
○
○
○
○
○
○

Atividade Prática 2

Estrutura da atividade

 criar um vetor com os números das séries do IPCA e seus componentes de acordo com o sistema do Bacen e um vetor com os nomes do IPCA e seus componentes. Obs: É importante que a ordem seja a mesma no vetor dos números e dos nomes;

Atividade Prática 2

- criar um vetor com os números das séries do IPCA e seus componentes de acordo com o sistema do Bacen e um vetor com os nomes do IPCA e seus componentes. Obs: É importante que a ordem seja a mesma no vetor dos números e dos nomes;
- Criar matrix (e transformar em data.frame) com o nome de "ipca_por_grupos",que receberá os valores das séries, e já popular a primeira coluna com a data;

Atividade Prática 2

- criar um vetor com os números das séries do IPCA e seus componentes de acordo com o sistema do Bacen e um vetor com os nomes do IPCA e seus componentes. Obs: É importante que a ordem seja a mesma no vetor dos números e dos nomes;
- Criar matrix (e transformar em data.frame) com o nome de "ipca_por_grupos",que receberá os valores das séries, e já popular a primeira coluna com a data;
- Utilizar a função get_series() dentro de uma estrutura de loop para pegar cada uma das séries. Quando feito isso salvar o data.frame através da função write.csv() para que ele possa ser utilizado depois;

Pacote "do" Banco Central do Brasil

○○○○○

○
○
○
○
○
○
○
○
○
○
○

Atividade Prática 2

- criar um vetor com os números das séries do IPCA e seus componentes de acordo com o sistema do Bacen e um vetor com os nomes do IPCA e seus componentes. Obs: É importante que a ordem seja a mesma no vetor dos números e dos nomes;
- Criar matrix (e transformar em data.frame) com o nome de "ipca_por_grupos",que receberá os valores das séries, e já popular a primeira coluna com a data;
- Utilizar a função get_series() dentro de uma estrutura de loop para pegar cada uma das séries. Quando feito isso salvar o data.frame através da função write.csv() para que ele possa ser utilizado depois;
- criar um data.frame (através da função gather()) chamado de "ipca_por_grupos_plot" que esteja de acordo com o principio de tidy data e criar um plot com linhas de cores diferentes para cada um dos grupos;

Atividade Prática 2

- criar um vetor com os números das séries do IPCA e seus componentes de acordo com o sistema do Bacen e um vetor com os nomes do IPCA e seus componentes. Obs: É importante que a ordem seja a mesma no vetor dos números e dos nomes;
- Criar matrix (e transformar em data.frame) com o nome de "ipca_por_grupos",que receberá os valores das séries, e já popular a primeira coluna com a data;
- Utilizar a função get_series() dentro de uma estrutura de loop para pegar cada uma das séries. Quando feito isso salvar o data.frame através da função write.csv() para que ele possa ser utilizado depois;
- criar um data.frame (através da função gather()) chamado de "ipca_por_grupos_plot" que esteja de acordo com o principio de tidy data e criar um plot com linhas de cores diferentes para cada um dos grupos;
- Estimar a volatilidade dos grupos em relação ao IPCA (próxima parte).

