Our first survival example (script 2)!

Modelmarr~multinomial(rel, p)

Prior

S~beta(1,1)

f~beta(1,1)

$$P = \begin{bmatrix} f_1 & S_1 f_2 & 1 - f_1 - S_1 f_2 \\ 0 & f_2 & 1 - f_2 \end{bmatrix}$$

Random effects (script 3)

Random effects (script 3)

Model

 $marr \sim multinomial(rel, p)$

logit(
$$\mathbf{S}$$
) = $\mu_S + \varepsilon_{S,t}$
logit(\mathbf{f}) = $\mu_f + \varepsilon_{f,t}$

Priors

 $\varepsilon_{S,t} \sim \text{Normal}(0, \sigma_S^2)$ $\varepsilon_{f,t} \sim \text{Normal}(0, \sigma_f^2)$ $\sigma_S \sim \text{Gamma}(1,1)$ $\sigma_f \sim \text{Gamma}(1,1)$

Covariates (script 4; m4a)

Model

$$marr \sim multinomial(rel, p)$$

 $logit(f) = \mu_f + \beta_f \times D_t$

Priors

S~beta(1,1) μ_f ~Logistic(0,1) β_f ~Normal(0,1)

Covariates (script 4; m4b)

Model

 $marr \sim multinomial(rel, p)$ $logit(f) = \mu_f + \beta_f \times D_t + \varepsilon_{f,t}$

Priors

S~beta(1,1) $\varepsilon_{f,t}$ ~Normal(0, σ_f^2)

 $\sigma_f \sim \text{Gamma}(1,1)$

 $\mu_f \sim \text{Logistic}(0,1)$

 $\beta_f \sim Normal(0,1)$

