Отчёт по заданию № 1

Постановка задачи и выбор программного обеспечения

Используя одну из библиотечных программ БПФ, выполнить дискретное преобразование Фурье

$$U(k) = \frac{1}{N} \sum_{j=0}^{N-1} u(j) W_N^{-kj}, k = 0, 1, \dots, N-1,$$

для N=16 действительных отсчётов u(j), значения которых приведены в файле.

С полученными гармониками выполнить обратное преобразование Фурье и сравнить результат с исходными отсчётами. Построить графики исходных гармоник и спектральной плотности мощности.

Для решения данной задачи я использую Matlab со встроенной функцией Y = fft(X), которая вычисляет дискретное преобразование Фурье от X с помощью алгоритма БПФ.

```
clear all
close all
%% исходный сигнал
file = fopen('24.txt')
[Signal, N] = fscanf(file,'%f')
fclose(file);
figure(1);
plot(1:N, Signal)
%% вычисление спектра сигнала
Spectrum = fftshift(fft(fftshift(Signal)))/N;
N2 = -N/2:1:N/2 - 1;
% построение графика спектральной плотности мощности
figure(2);
semilogy(N2, abs(Spectrum).^2, '-o', 'LineWidth', 1.5)
title('Спектральная плотность мощности сигнала')
xlabel('номер гармоники')
%% восстановление сигнала по спектру
Signal_reconstructed = fftshift(ifft(fftshift(Spectrum)))*N;
%% сравнение исходного сигнала и сигнала, восстановленного по спектру
figure(3);
subplot(2, 1, 1)
plot(1:N, Signal,'-o', 'LineWidth', 1.5)
title('Исходный сигнал')
subplot(2, 1, 2)
plot(1:N, Signal reconstructed, '-o', 'LineWidth', 1.5);
title('Сигнал, восстановленный по спектру')
```

Нормировка

Проверим необходимость дополнительной нормировки при использовании встроенной функции БП Φ fft(X). Достаточно проверить выполнение равенства Парсеваля:

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |S(\omega)|^2 d\omega$$

Положим dt=1. Размер временной области в таком случае равен количеству отсчётов N=16. Шаг частотной сетки $d\omega$ =2 π /N. Частотная сетка определяется как ω = $t\cdot d\omega$. Проверяем справедливость равенства Парсеваля и видим, что 13.0438 = 13.0438.

Следовательно, дополнительная нормировка не нужна.

Таблица исходного и восстановленного сигнала и комплексных значений гармоник

N	u(j)	u'(j)	N гармоник	U(k)
1	0.444276000000000	0.444276000000000	-8	-0.0271171875000000 + 0.00000000000000i
2	1.20496700000000	1.20496700000000	-7	-0.0127427571022394 + 0.0195096409553401i
3	0.504733000000000	0.504733000000000	-6	-0.0120210551503663 + 0.0171483321907987i
4	-0.7759000000000000	-0.775900000000000	-5	-0.0219161100371645 + 0.0201379864669408i
5	-1.16790800000000	-1.16790800000000	-4	0.00998106250000000 - 0.0128406250000000i
6	-0.119498000000000	-0.119498000000000	-3	-0.206876705542748 - 0.600128052897725i
7	1.28187500000000	1.28187500000000	-2	0.00776255515036626 - 0.000734792809201289i
8	1.09737700000000	1.09737700000000	-1	0.0334205726821518 + 0.00573760159067459i
9	-0.388184000000000	-0.388184000000000	0	0.0437180625000000 + 0.00000000000000i
10	-1.01227800000000	-1.01227800000000	1	0.0334205726821518 - 0.00573760159067459i
11	-0.582988000000000	-0.582988000000000	2	0.00776255515036626 + 0.000734792809201289i
12	0.959401000000000	0.959401000000000	3	-0.206876705542748 + 0.600128052897725i
13	1.25806800000000	1.25806800000000	4	0.00998106250000000 + 0.0128406250000000i
14	0.107425000000000	0.107425000000000	5	-0.0219161100371645 - 0.0201379864669408i
15	-1.21706500000000	-1.21706500000000	6	-0.0120210551503663 - 0.0171483321907987i
16	-0.894812000000000	-0.894812000000000	7	-0.0127427571022394 - 0.0195096409553401i

По результатам таблицы построен график спектральной плотности мощности в логарифмической шкале.

По спектру был восстановлен исходный сигнал с использованием встроенной функции вычисления обратного преобразования Φ урье X'=ifft(Y). Сравнение исходного сигнала и сигнала, восстановленного по спектру приведено на рисунке.

