Exercise 1 參考解答

- 一、單選題: (100 小題, 每題 1 分, 共 100 分)
- **1.** ()設 a 為實數,若 $ax^2-2ax+2a+3<0$ 的解為任意實數,則下列何者正確? (A) a<-3 (B) -3< a<0 (C) 0< a<3 (D) a>3

【108 數(A)歷屆試題】

解答

A

解析

 $\therefore ax^2 - 2ax + (2a+3) < 0$ 的解為任意實數 即 $ax^2 - 2ax + (2a+3) < 0$ 恆成立 故① a < 0

②判別式
$$D = (-2a)^2 - 4a(2a+3) < 0$$

 $\Rightarrow 4a^2 - 8a^2 - 12a < 0 \Rightarrow -4a^2 - 12a < 0$
 $\Rightarrow a^2 + 3a > 0 \Rightarrow a(a+3) > 0$
 $\Rightarrow a < -3 \Rightarrow a > 0$

由(1)**②**得 *a* < -3

2. ()已知正三角形 ABC 的三個頂點分別為 A(a,b) 、 B(-1,1) 、 C(1,-1) ,則 ab=(A)1 (B)2 (C)3 (D)4

【108 數(A)歷屆試題】

解答

全

∵△ABC 為正三角形

$$\therefore \overline{AB} = \overline{AC} = \overline{BC}
\Rightarrow \sqrt{(a+1)^2 + (b-1)^2} = \sqrt{(a-1)^2 + (b+1)^2} = \sqrt{(-2)^2 + 2^2}
\exists || \begin{cases} (a+1)^2 + (b-1)^2 = 8 \\ (a-1)^2 + (b+1)^2 = 8 \end{cases} \Rightarrow \begin{cases} a^2 + b^2 + 2a - 2b = 6 \cdot \dots \cdot \text{1} \\ a^2 + b^2 - 2a + 2b = 6 \cdot \dots \cdot \text{2} \end{cases}$$

$$1-2$$
 $4a-4b=0 \Rightarrow a=b$

(1) + (2)
$$2(a^2 + b^2) = 12 \Rightarrow a^2 + b^2 = 6$$

$$\sum : a = b$$

$$\therefore 2a^2 = 6 \Rightarrow a^2 = 3 \Rightarrow a = \pm \sqrt{3} = b$$

$$\therefore ab = \left(\pm\sqrt{3}\right)^2 = 3$$

3. () 函數 $f(x) = -x^2 + 4x - 1$ 的圖形**不經過**哪一個象限? (A)— (B)二 (C)三 (D)四

【龍騰自命題,進階卷】

解答

 $f(x) = -x^2 + 4x - 1 = -(x^2 - 4x + 4) - 1 + 4 = -(x - 2)^2 + 3$ ⇒ 圖形的頂點為(2,3)又 $f(x) = -x^2 + 4x - 1$ 與 y 軸交於(0,-1)由圖得知, $f(x) = -x^2 + 4x - 1$ 的圖形不經過第二象限

4. ()設 $\triangle ABC$ 之三頂點坐標分別為 A (10,8)、B (5,-4)、C (-7,1),則 $\triangle ABC$ 為何種三角形? (A)直角三角形 (B)等腰三角形 (C)等邊三角形 (D)等腰直角三角形

【龍騰自命題,進階卷】

解答 D

解析

$$\overline{AB} = \sqrt{(5-10)^2 + (-4-8)^2} = 13$$
 $\overline{BC} = \sqrt{(-7-5)^2 + [1-(-4)]^2} = 13$
 $\overline{AC} = \sqrt{(-7-10)^2 + (1-8)^2} = 13\sqrt{2}$
 $\therefore \overline{AB} = \overline{BC} \perp \overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$
 $\therefore \text{此三角形為等腰直角三角形}$

5. ()解不等式 |px-1| > q,可得 x > 3 或 x < -1,則 p+q 之值為何? (A) 3 (B) 4 (C) 5 (D) 6

【龍騰自命題,進階卷】

解答 解析

A

由圖可知:|x-1| > 2

$$\therefore p = 1 \coprod q = 2 \Rightarrow p + q = 3$$

$$1 \longrightarrow 2 \longrightarrow 2 \longrightarrow 2 \longrightarrow 3$$

6. ()解不等式 $|ax-5| \le b$,可得 $2 \le x \le 6$,則 a+b 之值為何? (A) -2 (B) -1 (C) $\frac{15}{4}$ (D) 5

【龍騰自命題,進階卷】

解答

解析

曲圖可知:
$$|x-4| \le 2 \Rightarrow |\frac{5}{4}x-5| \le 2 \times \frac{5}{4}$$

$$\therefore a = \frac{5}{4} \perp b = \frac{5}{2} \Rightarrow a+b = \frac{5}{4} + \frac{5}{2} = \frac{15}{4}$$

【107數(A)歷屆試題】

解答

解析

$$x^{2}+bx+c \ge 0$$
的解為 $x \le 1$ 或 $x \ge 3$

$$(x-1)(x-3) \ge 0$$

$$x^{2}-4x+3 \ge 0$$

與 $x^{2}+bx+c \ge 0$ 比較係數得

$$b=-4, c=3$$

故 $2b+3c=2\times(-4)+3\times3=1$

8. ()下列何者為不等式 $3x^2 - 3x \le 6$ 之解 ? (A) $x \le -2$ 或 $x \ge 1$ (B) $-2 \le x \le 1$ (C) $-1 \le x \le 2$ (D) $x \le -1$ 或 $x \ge 2$

【super 講義-綜合評量】

原式
$$\Rightarrow$$
 $3x^2 - 3x - 6 \le 0$

$$\Rightarrow x^2 - x - 2 \le 0$$

$$\Rightarrow$$
 $(x+1)(x-2) \le 0$

$$\therefore$$
 $-1 \le x \le 2$

)設a和b均為實數,若不等式 $ax^2 + bx - 5 < 0$ 的解為 $-\frac{3}{2} < x < \frac{5}{2}$,則 $a + b = (A)\frac{5}{2}$ (B) $\frac{7}{2}$ (C) 9. (5 (D)7

【super 講義-綜合評量】

解答

解析」 :
$$-\frac{3}{2} < x < \frac{5}{3}$$
 \Rightarrow $\left(x + \frac{3}{2}\right) \left(x - \frac{5}{3}\right) < 0$

$$\Rightarrow$$
 $(2x+3)(3x-5)<0$

$$\Rightarrow$$
 $6x^2 - x - 15 < 0$

$$\Rightarrow 2x^2 - \frac{1}{3}x - 5 < 0 \bowtie ax^2 + bx - 5 < 0$$

比較係數

得
$$a=2$$
, $b=-\frac{1}{3}$

$$\therefore a+b=\frac{5}{3}$$

10. ()設 $a \cdot b$ 均為實數,若不等式 $ax^2 + 11x + b \ge 0$ 的解為 $-\frac{1}{3} \le x \le 4$,則a + b = (A)0 (B)1 (C) 2 (D)3

【super 講義-綜合評量】

解答

В

解析

$$\boxplus -\frac{1}{3} \le x \le 4$$

可得不等式 $(3x+1)(x-4) \le 0$

展開得 $3x^2-11x-4 \le 0 \cdots (1)$

將①式×(-1) 得 -3 x^2 +11x +4 ≥0

與 $ax^2 + 11x + b \ge 0$ 比較係數

得 a = -3 , b = 4

 $\pm a + b = -3 + 4 = 1$

11. () 不等式 $|x| \le 2$ 的解為 (A) -2 < x < 2 (B) x > 2 或 x < -2 (C) $-2 \le x \le 2$ (D) $x \ge 2$ 或 $x \le -2$

【隨堂卷】

解析 $|x| \le 2 \Rightarrow -2 \le x \le 2$

)有關二次函數 $y = -3(x+1)^2 + 8$ 的圖形,下列敘述何者正確? (A)圖形頂點為(1,8) (B) 12. (圖形開口向上 (C)圖形的對稱軸為x=1 (D)圖形有最大值8

【隨堂卷】

解答

觀察二次函數可發現:

圖形頂點為(-1,8),開口向下,對稱軸為x=-1,有最大值8

)絕對值|x|=2可改寫成絕對值|x-0|=2,即表示數線上x到0的距離等於2,請問滿足此 **13.** (條件的x有哪些數字? (A)0和2 (B)0和-2 (C)2和-2 (D)2和4

 \mathbf{C}

觀察數線格子,跟數字0距離2的有2和-2

)在下面數線上,跟數字0距離5格的整數有哪些數字? 14. (

【隨堂卷】

解析

觀察數線格子,跟數字0距離5格的有5和-5

15. ()設某沙漠地區某一段時間的溫度函數為 $f(t) = -t^2 + 10t + 10$,其中 $1 \le t \le 10$,則這段時間內 該地區的最大溫差為幾度? (A)10 (B)19 (C)25 (D)35

【super 講義-綜合評量】

 \mathbf{C}

 \mathbf{C}

解析
$$f(t) = -t^2 + 10t + 10 = -(t-5)^2 + 35, \quad \exists 1 \le t \le 10$$
又 $f(1) = -(1-5)^2 + 35 = 19$

$$f(5) = -(5-5)^2 + 35 = 35 \cdots$$
最大值
$$f(10) = -(10-5)^2 + 35 = 10 \cdots$$
敬最大溫差 = $35-10=25$ 度

16. ()已知點P(a-b,ab)在坐標平面的第四象限,則下列敘述何者正確? (A)A(-a,b)在第一 $(B) B(|ab|, -a^2b)$ 在第二象限 $(C) C(\frac{a^2}{b}, -b)$ 在第三象限 $(D) D(a-b, \frac{a}{b})$ 在第四象 限

【課本自我評量】

P(a-b,ab)在第四象限,則 a-b>0,ab<0,得 a>0,b<0 (A)A(-a,b),即(-,-) 在第三象限 (B) $B(|ab|, -a^2b)$,即(+,+)在第一象限 (C) $C(\frac{a^2}{b}, -b)$,即(-,+)在第二 (D) $D(a-b,\frac{a}{b})$,即(+,-)在第四象限

17. () 設 f(x) = ax + b 為一線型函數,且圖形通過點(-2,4)、(1,1),則 f(x) =(A)-x+2 (B) x-2 (C) x+2 (D)-x-2

【課本自我評量】

解答 A

設 f(x) = ax + b ,因圖形通過(-2,4) 、(1,1)兩點 ,則 $\begin{cases} f(-2) = -2a + b = 4 \\ f(1) = a + b = 1 \end{cases}$ 解析 解聯立得 a = -1, b = 2, 所以 f(x) = -x + 2

)利用截距定義,試問下列何者**不可能**是函數y = f(x) = ax - 3的圖形? **18.** ((A)

【課本自我評量】

y = f(x) = ax - 3, $\Leftrightarrow x = 0$,則 y = -3 ,即圖形必通過(0, -3)故選項(A)圖形是不可能的

)試判斷拋物線 $y = 3x^2 + 2x + 4$ 的頂點落在哪一象限 ? (A)第一象限 (B)第二象限 (C) **19.** (第三象限 (D)第四象限

【課本自我評量】

解答

 $y = 3x^2 + 2x + 4 = 3(x^2 + \frac{2}{3}x) + 4 = 3(x + \frac{1}{3})^2 - \frac{1}{3} + 4 = 3(x + \frac{1}{3})^2 + \frac{11}{3}$ 頂點為 $(-\frac{1}{3}, \frac{11}{3}) \Rightarrow (-, +)$ 故頂點在第二象限

20. ()已知88℃蛋糕店每天製作 x 個水果蛋糕時,每個水果蛋糕的平均成本 y 元,已知 x 與 y 的 關係式為二次函數 $y = 2x^2 - 80x + 1000$ 。請問每天製作幾個蛋糕時,其平均成本最低,且 平均成本為多少元? (A)40個,100元 (B)30個,150元 (C)20個,200元 (D)10個, 250元

【課本自我評量】

$$y = 2x^2 - 80x + 1000 = 2(x^2 - 40x) + 1000 = 2(x^2 - 40x + 20^2 - 20^2) + 1000$$

= $2(x - 20)^2 + 1000 - 800 = 2(x - 20)^2 + 200$
所以每天應製作 20 個蛋糕,每個最低成本為 200 元

) 設 A(-5,2) 、 B(1,-6) ,則 \overline{AB} 的長度為 (A) $2\sqrt{5}$ (B) $\sqrt{2}$ (C) 5 (D) 10 21. (

【學習卷】

解析
$$\overline{AB} = \sqrt{[(-5)-1]^2 + [2-(-6)]^2} = \sqrt{100} = 10$$

)函數 $y = -5(x+4)^2 - 3$ 的最大值為何? (A)-5 (B)-4 (C)-3 (D)4 **22.** (

【學習卷】

解答 C

函數 $y = -5(x+4)^2 - 3$ 的最大值為-3

)不等式 $9x^2 + 12x + 4 \ge 0$ 之解為何? (A) x 為實數,但 $x \ne \frac{2}{3}$ (B) x 為實數,但 $x \ne -\frac{2}{3}$ (C) 23. (x 為所有實數 (D) $x \le 0$ 或 $x \ge \frac{2}{3}$

解答C

解析 原式 \Rightarrow $(3x+2)^2 \ge 0$ \therefore x 為所有實數

24. () 已知 $A(-3,4) \cdot B(k,2) \cdot C(-2,7)$,且 $\overline{AB} = \overline{BC}$,則 k 之值為 (A) 8 (B) -8 (C) 4 (D) -4

【學習卷】

解答 A

解析 $\overrightarrow{AB} = \overrightarrow{BC} \Rightarrow \overrightarrow{AB}^2 = \overrightarrow{BC}^2 \Rightarrow (-3-k)^2 + (4-2)^2 = (k+2)^2 + (2-7)^2$ $\Rightarrow k^2 + 6k + 9 + 4 = k^2 + 4k + 4 + 25 \Rightarrow 2k = 16 \Rightarrow k = 8$

【學習卷】

解答B

26. ()解不等式 | *x* | < −3 (A) *x* > 3 或 *x* < −3 (B) −3 < *x* < 3 (C) *x* 無實數解 (D) *x* 為任意實數

【龍騰自命題】

解答C

27. () 若 |x-3|+|y+5|=0,則 x+y 之值為何? (A) -2 (B) -1 (C) 0 (D) 1

【龍騰自命題】

解答A

原幹 |x-3|+|y+5|=0 \Rightarrow $\begin{cases} x-3=0\\ y+5=0 \end{cases}$ \Rightarrow $\begin{cases} x=3\\ y=-5 \end{cases}$ $\therefore x+y=-2$

28. () 若 | x | + 3 = 5 , 則 x 之值為何 ? (A) 2 或−5 (B) −2 或 5 (C) ±2 (D)無實數解

【龍騰自命題】

解答C

解析 $|x|+3=5 \Rightarrow |x|=2 \Rightarrow x=\pm 2$

29. () 試求絕對值小於 8 的整數有多少個 ? (A) 7 (B) 10 (C) 12 (D) 15

【龍騰自命題】

解答 D

 \perp 由題意知:|x| < 8

 $\therefore |x - 0| < 8 \Rightarrow -8 < x < 8$

又∵x 為整數

 $\therefore x = -7 \cdot -6 \cdot -5 \cdot -4 \cdot -3 \cdot -2 \cdot -1 \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7$,共 15 個

30. () 設 A(-2,5)、B(a,3)、C(4,b)、D(-1,1),若四邊形 ABCD 為平行四邊形,則 b=(A)-1(B)-2(C)-3(D)-4

【龍騰自命題】

解答A

解析
$$\overline{AC}$$
 中點 $=\overline{BD}$ 中點 $\Rightarrow (\frac{-2+4}{2}, \frac{5+b}{2}) = (\frac{a+(-1)}{2}, \frac{3+1}{2})$
 $\therefore a = 3$, $b = -1$

31. ()在數線上A(4)且 $\overline{AB}=7$,B點在A點之左側,則B點所對應的數為 (A)-7 (B)-3 (C)

【龍騰自命題】

B

B 點华標 = 4 - 7 = -3

) v 軸上之點,其x 坐標為 0,故其坐標必為 (A)(v,0) (B)(0,y) (C)(x,0) (D)(0,x)**32.** (

【龍騰白命題】

解答 В

解析 v 軸上之點,坐標為(0,v)

33. ()設 $\triangle ABC$ 之三頂點坐標分別為A(2,-3)、B(6,3)、C(0,7),則 $\triangle ABC$ 為何種三角形? (A)銳角三角形 (B)等腰直角三角形 (C)等邊三角形 (D)三邊不等長之三角形

【龍騰自命題】

解答 В

 $\overline{AB} = \sqrt{(2-6)^2 + [(-3)-3]^2} = \sqrt{52}$ $\overline{BC} = \sqrt{(6-0)^2 + (3-7)^2} = \sqrt{52}$ $\overline{AC} = \sqrt{(2-0)^2 + [(-3)-7]^2} = \sqrt{104}$

又 $\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$,且 $\overline{AB} = \overline{BC}$... $\triangle ABC$ 為等腰直角三角形

)已知 $A(-3,4) \cdot B(k,2) \cdot C(-2,7)$,且 $\overline{AB} = \overline{BC}$,則 k 之值為 (A) 8 (B) -8 (C) 4 (D) **34.** (

【龍騰自命題】

 $\overrightarrow{AB} = \overline{BC} \Rightarrow \overline{AB}^2 = \overline{BC}^2$ $\Rightarrow (-3-k)^2 + (4-2)^2 = (k+2)^2 + (2-7)^2$ $\Rightarrow k^2 + 6k + 9 + 4 = k^2 + 4k + 4 + 25 \Rightarrow 2k = 16 \Rightarrow k = 8$

) 設函數 $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$,則 f(2) - f(-5)的值為 (A) 2 (B) 7 (C) -3 (D) -7 **35.** (

【龍騰自命題】

解析 $f(2) = \frac{|2|}{2} = 1$, $f(-5) = \frac{|-5|}{-5} = -1$ f(2) - f(-5) = 1 - (-1) = 2

36. (【龍騰自命題】

 $g(x-1) = -(x+3)^2 + 4(x+3) + 1 = -x^2 - 2x + 4$ $\Rightarrow x - 1 = -2 \Rightarrow x = -1$ $\therefore g(-2) = g(-1-1) = -1 + 2 + 4 = 5$

) 設函數 $f(x-1) = x^2 + 2x - 2$, 則 f(0)等於 (A) 0 (B) -2 (C) -3 (D) 1 **37.** (

【龍騰自命題】

 $\Rightarrow x = 1$ 代入f(x-1), 得f(0) = 1 + 2 - 2 = 1

38. (【龍騰自命題】

Α

g(0) = f(0+1) = f(1) = 1-2+5-3=1

 $y = -x^2 + px + q$ 圖形最高點的坐標為(2,6), 則 p + q = (A) 8 (B) 6 (C) 5 (D) 4

【龍騰白命題】

解答

解析
$$y = -(x - \frac{p}{2})^2 + \frac{p^2}{4} + q$$

::最高點為(2,6)

$$\therefore \frac{p}{2} = 2$$
, $\frac{p^2}{4} + q = 6 \Rightarrow p = 4$, $q = 2$

)二次函數 $f(x) = ax^2 + bx + c$ 圖形如下,下列何者**不真**? **40.** (

(A) a > 0 (B) b > 0 (C) c > 0 (D) $b^2 - 4ac < 0$

【龍騰自命題】

解答

В

::頂點之x坐標為 $-\frac{b}{2a} > 0$,又a > 0

 $\therefore h < 0$

41. () 設 $f(x) = x^2 - 6x + 5$ 且 $0 \le x \le 4$,則 f(x)之最大值與最小值之和為 (A) 1 (B) -1 (C) 2 (D) -2

【龍騰自命題】

 $f(x) = x^2 - 6x + 5 = (x^2 - 6x + 9) + 5 - 9 = (x - 3)^2 - 4$ 當 x = 3 時有最小值-4,而 f(0) = 5,f(4) = -3

故最大值為 $5 \Rightarrow 5 + (-4) = 1$

)一元二次不等式 $x^2 - 4x - 12 < 0$,其解為何? (A) x > 6或x < -2 (B) x > 2或x < -6 (C) **42.** (-2 < x < 6 (D) -6 < x < 2

【龍騰自命題】

 $x^2 - 4x - 12 < 0 \Rightarrow (x - 6)(x + 2) < 0 \Rightarrow -2 < x < 6$

)一元二次不等式 x^2 – 8x – 20 ≤ 0, 共有多少個整數解 ? (A) 11 (B) 12 (C) 13 (D) 14 【龍騰白命題】

$$x^2 - 8x - 20 \le 0 \Rightarrow (x - 10)(x + 2) \le 0 \Rightarrow -2 \le x \le 10$$

::x 為整數

 $\therefore x = -2 \cdot -1 \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10$, 共 13 個

)不等式 $(x-1)(3-2x) \ge 0$,其解為何? (A) $1 \le x \le \frac{3}{2}$ (B) $-\frac{3}{2} \le x \le -1$ (C) $x \ge \frac{3}{2}$ 或 $x \le 1$ 44. (

(D)
$$x \ge -1 \implies x \le \frac{-3}{2}$$

【龍騰自命題】

解答A

解析 $(x-1)(3-2x) \ge 0 \Rightarrow (x-1)(2x-3) \le 0 \Rightarrow 1 \le x \le \frac{3}{2}$

45. ()若不等式 $ax^2 - bx - 3 < 0$ 的解為-1 < x < 3,則 a + b 之值為何? (A) -1 (B) 1 (C) 2 (D) 3

【龍騰自命題】

解答 D

解析 ∵-1 < x < 3

 $\therefore (x+1)(x-3) < 0 \Rightarrow x^2 - 2x - 3 < 0$ 與 $ax^2 - bx - 3 < 0$ 比較得知: $a = 1 \cdot b = 2$ $\therefore a + b = 3$

46. ()試求不等式 $x^2 - 2x - 3 > 0$ 之解為何? (A) $-1 \le x \le 3$ (B) -1 < x < 3 (C) x < -1 或 x > 3 (D) $x \le -1$ 或 $x \ge 3$

【課本自我評量】

解答

所 \oplus \oplus x $x^2 - 2x - 3 > 0$,分解得(x + 1)(x - 3) > 0 故不等式的解為 x < -1 或 x > 3

47. ()已知數線上兩點 A(-2)、B(8),則 A、B 兩點之距離為何? (A) 2 (B) 8 (C) 10 (D) 16

【龍騰自命題】

解答(

解析 $\overline{AB} = |8 - (-2)| = 8 + 2 = 10$

48. ()解不等式 $|2x+1| \ge 5$ (A) $-\frac{5}{2} \le x \le \frac{5}{2}$ (B) $-3 \le x \le 2$ (C) $x \ge 2$ 或 $x \le -3$ (D) $x \ge \frac{5}{2}$ 或 $x \le -\frac{5}{2}$

【龍騰自命題】

解答

49. ()設A(2,3),B(-4,1),若 $\triangle ABC$ 重心G坐標為(1,0),則C點坐標為 (A) $(-\frac{1}{3},\frac{4}{3})$ (B)(4,-3) (C) $(\frac{5}{3},-\frac{4}{3})$ (D)(5,-4)

【龍騰自命題】

解答 」

解析 $\Rightarrow C(x,y)$

::G 是 $\triangle ABC$ 之重心

$$\therefore (\frac{2-4+x}{3}, \frac{3+1+y}{3}) = (1, 0) \Rightarrow \begin{cases} x=5 \\ y=-4 \end{cases} \therefore C(5, -4)$$

50. () f(x) = 2 - x 在平面坐標中,f的圖形為 (A)圓 (B)直線 (C)拋物線 (D)一點

【龍騰自命題】

解答

解析 f(x) = 2 - x

$$\begin{array}{c|cc} x & 0 & 2 \\ \hline y & 2 & 0 \end{array}$$

51. () 聯立不等式
$$\begin{cases} 2x^2 - 7x - 15 \le 0 \\ 6x^2 + 7x - 20 \ge 0 \end{cases}$$
,其解為何? (A) $-\frac{3}{2} \le x < \frac{4}{3}$ (B) $\frac{4}{3} \le x \le 5$ (C) $-\frac{5}{2} < x < -\frac{3}{2}$ (D) $x \le -\frac{3}{2}$ 或 $x \ge \frac{4}{3}$

【龍騰白命題】

解答

解析 (i)
$$2x^2 - 7x - 15 \le 0 \Rightarrow (2x + 3)(x - 5) \le 0 \Rightarrow -\frac{3}{2} \le x \le 5$$

(ii)
$$6x^2 + 7x - 20 \ge 0 \Rightarrow (2x + 5)(3x - 4) \ge 0 \Rightarrow x \ge \frac{4}{3} \text{ if } x \le \frac{-5}{2}$$

曲(i)、(ii)可知:
$$\frac{4}{3} \le x \le 5$$

52. ()若不等式
$$|x+a| \le b$$
 的解為 $-1 \le x \le 5$,試求 $a+b$ 之值為 (A)1 (B)3 (C) -2 (D) -4 【super 講義-綜合評量】

解答 | A

 $|x+a| \le b \Rightarrow -b \le x + a \le b \Rightarrow -b - a \le x \le b - a$, $\nabla -1 \le x \le 5$

$$\therefore -b - a = -1$$
, $b - a = 5 \Rightarrow a = -2$, $b = 3$ $\therefore a + b = -2 + 3 = 1$

53. ()已知數線上兩點
$$A(-3)$$
、 $B(9)$,則 A 、 B 兩點之中點坐標為何? (A) 0 (B) 1 (C) 2 (D) 3

【龍騰自命題】

$$\boxed{\text{解析}} \quad \frac{-3+9}{2} = 3$$

54. ()解不等式
$$|x| > 3$$
 (A) $x > 3$ 或 $x < -3$ (B) $-3 < x < 3$ (C) $x > 0$ (D) $x < 0$

【龍騰自命題】

学析
$$|x| > 3 \Rightarrow |x - 0| > 3$$

55. () 解不等式
$$|x+3| \ge 1$$
 (A) $x \ge 1$ 或 $x \le -1$ (B) $x \ge -2$ 或 $x \le -4$ (C) $-1 \le x \le 1$ (D) $-4 \le x < -2$

【龍騰自命題】

解答

 $|x+3| \ge 1 \Rightarrow |x-(-3)| \ge 1$ 解析

56. () 若 | x | = 5 , 則 x 之值為何 ? (A) 5 (B) −5 (C) ±5 (D)無解

【龍騰自命題】

解答

 \mathbf{C}

解析

57. ()解不等式 $3 \le |x+2| \le 7$ (A) $-9 \le x \le -5$ 或 $1 \le x \le 5$ (B) $-7 \le x \le -3$ 或 $2 \le x \le 3$ (C) -1 $\le x \le 7$ (D) $\frac{-1}{2} \le x \le \frac{5}{2}$

【龍騰自命題】

解答

答 A

58. () 對於函數 $f(x) = x^2 + 6x + 5$ 的圖形而言,下列敘述何者**錯誤**? (A)其圖形頂點坐標為 (-3,-4) (B)其圖形經過第四象限 (C)其圖形是開口向上的拋物線 (D)函數 f(x)之最小值為 f(-3)

【super 講義-綜合評量】

解答

В

解析 由 $f(x) = x^2 + 6x + 5 = (x+3)^2 - 4$ 圖形知:

- ①圖形開口向上,且經過一,二,三象限
- ②當x = -3時,有最小值-4
- ③圖形頂點坐標(-3,-4)
- ∴選項(B)為錯誤
- **59.** () 下列哪一個圖形可能為函數 y = f(x) = 2x + 3 的圖形?

解答

"一"

$$y = 2x + 3$$

В

x	0	$-\frac{3}{2}$
у	3	0

描圖如下:

∴選(B)

60. ()若函數 $y = x^2 + kx + 4$ 之圖形與 x 軸不相交,則 k 之範圍為 (A) k = 4 或 -4 (B) -4 < k < 4 (C) k < -4 或 k > 4 (D) k < -1 或 k > 3

【super 講義-綜合評量】

解答解析

В

 $y = x^2 + kx + 4$ 之圖形與x 軸不相交 $\Rightarrow y > 0$ (恆正)

$$\Rightarrow D = k^2 - 4 \times 1 \times 4 < 0 \Rightarrow k^2 - 16 < 0 \Rightarrow (k-4)(k+4) < 0 \quad \therefore -4 < k < 4$$

61. ()設 $x \cdot a \cdot b \cdot c$ 皆屬於實數, $f(x) = ax^2 + bx + c$, $a \neq 0$,若f(x) < 0,則下列選項何者正確? (A) $a(b^2 - 4ac) > 0$ (B) $a(b^2 - 4ac) = 0$ (C) $a(b^2 - 4ac) < 0$ (D)無法判斷

【super 講義-綜合評量】

解答

Α

解析 $f(x) = ax^2 + bx + c < 0 \quad (恆負) \Rightarrow \begin{cases} a < 0 \\ b^2 - 4ac < 0 \end{cases} , \quad \text{則} a(b^2 - 4ac) > 0$

62. ()解不等式 $|px+3| \ge k$,可得 $x \ge 1$ 或 $x \le -5$,則 p+k 之值為何? (A) 5 (B) 6 (C) 7 (D) 8

【龍騰自命題】

解答

В

解析 由圖可知: $|x+2| \ge 3 \Rightarrow |\frac{3}{2}x+3| \ge \frac{9}{2}$

$$\therefore p = \frac{3}{2} \coprod k = \frac{9}{2} \Rightarrow p + k = 6$$

63. () 設 A(2,-3)、B(-4,8),若 P(x,y)在線段 \overline{AB} 的延長線上,且 \overline{AP} : $\overline{BP}=5:3$,則外分點 P 的坐標為 $(A)(-\frac{2}{5},\frac{7}{5})$ $(B)(\frac{9}{8},\frac{13}{8})$ $(C)(-\frac{3}{2},\frac{5}{2})$ $(D)(-13,\frac{49}{2})$

【龍騰自命題】

解答

D

$$\therefore \overline{AP} : \overline{BP} = 5:3$$

$$Argle \overline{AB} : \overline{BP} = 2:3$$

64. () 不等式 $\frac{2x+1}{x-1}$ - 1 < 0,其解為何? (A) x < -2 (B) x > -2 (C) -2 < x < 1 (D) x < -2 或 x > 1

【龍騰自命題】

解答(

| 解析 | $\frac{2x+1}{x-1} - 1 < 0 \Rightarrow \frac{2x+1}{x-1} < 1$ | 同乘 $(x-1)^2 : (2x+1)(x-1) < (x-1)^2 \Rightarrow 2x^2 - x - 1 < x^2 - 2x + 1$ | $\Rightarrow x^2 + x - 2 < 0 \Rightarrow (x+2)(x-1) < 0 \Rightarrow -2 < x < 1$

65. () 解不等式|3x+1|>1 (A)0<x< $\frac{2}{3}$ (B)x> $\frac{2}{3}$ 或x<0 (C)- $\frac{2}{3}$ <x<0 (D)x>0或x<- $\frac{2}{3}$

【龍騰自命題,進階卷】

解答

D

解析 $|3x+1| > 1 \Rightarrow 3x+1 > 1$ 或 $3x+1 < -1 \Rightarrow 3x > 0$ 或 3x < -2 $\therefore x > 0$ 或 $x < -\frac{2}{3}$

66. ()不等式 $(2x+1)(x-1) > (x-1)^2$,其解為何? (A)x < -2 (B)x > -2 (C)x < -2 或 x > 1 (D) -2 < x < 1

【龍騰自命題,進階卷】

解答

 \mathbf{C}

 $(2x+1)(x-1) > (x-1)^2 \implies 2x^2 - x - 1 > x^2 - 2x + 1 \implies x^2 + x - 2 > 0$ $\implies (x+2)(x-1) > 0 \implies x < -2 \implies x > 1$

67. () 設函數 $f(x+2) = 2x^2 + 3x - 4$,則f(1) = (A) - 5 (B) 1 (C) 6 (D) 10

【龍騰自命題】

解答

Α

 $\Rightarrow x + 2 = 1 \Rightarrow x = -1$: $f(1) = 2 \times (-1)^2 + 2 \times (-1) = 4 = -1$

$$\therefore f(1) = 2 \times (-1)^2 + 3 \times (-1) - 4 = 2 - 3 - 4 = -5$$

68. ()已知拋物線 $y = ax^2 + 4bx + 4a$ 與 x 軸有兩相異交點,且頂點在第一象限,則下列敘述何者正確? (A) a < 0 , $a^2 < b^2$ (B) a < 0 , $a^2 > b^2$ (C) a > 0 , $a^2 < b^2$ (D) a > 0 , $a^2 > b^2$

【105 數(B)歷屆試題】

解答

A

因為 $y = ax^2 + 4bx + 4a$ 與 x 軸有兩交點且頂點在第一象限

(1)可知a < 0,且圖形開口朝下,如圖:

(2)又圖形與x軸有兩交點,故判別式>0

即 $(4b)^2 - 4 \times a \times (4a) > 0 \Rightarrow 16b^2 - 16a^2 > 0$,則 $b^2 > a^2$

69. ()設 $a \cdot b \cdot c$ 為實數,且二次函數 $y = ax^2 + bx + c$ 的圖形如圖所示,則點 $P(b^2 - 4ac, abc)$ 在 第幾象限?

(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

【100數(C)歷屆試題】

解答

解析

對於 $y = ax^2 + bx + c$ 的圖形,如下所示:

(1)開口向上 $\Rightarrow a > 0$

(2) 頂點
$$\left(-\frac{b}{2a}, -\frac{b^2 - 4ac}{4a}\right)$$
 在 y 軸右側 $\Rightarrow -\frac{b}{2a} > 0 \Rightarrow b < 0$

(3)與y軸的交點(0,c)在y軸的負向⇒c<0

70. ()在二次函數 $f(x) = 3x^2 + 4x + k$ 中,若對於任意實數 x ,其對應的函數值 y 恆為正數,則 實數 k 取值的範圍為何? $(A)k < \frac{3}{4}$ $(B)k > \frac{3}{4}$ $(C)k < \frac{4}{3}$ $(D)k > \frac{4}{3}$

【課本自我評量】

解答解析

D

函數值 f(x)恆正 $\Leftrightarrow a > 0$,且 $D = b^2 - 4ac < 0$ 即 a = 3 > 0,且 $D = 4^2 - 4 \times 3 \times k < 0$

整理得 $16 < 12k \Rightarrow 4 < 3k$,故 $k > \frac{4}{3}$

[另解]

$$f(x) = 3x^{2} + 4x + k = 3(x^{2} + \frac{4}{3}x) + k = 3[x^{2} + \frac{4}{3}x + (\frac{2}{3})^{2} - (\frac{2}{3})^{2}] + k$$
$$= 3[x^{2} + \frac{4}{3}x + (\frac{2}{3})^{2}] - 3 \times (\frac{2}{3})^{2} + k = 3(x + \frac{2}{3})^{2} - \frac{4}{3} + k > 0$$

因為 $3(x+\frac{2}{3})^2$ 恆大於0,所以 $-\frac{4}{3}+k$ 亦要大於0,即 $-\frac{4}{3}+k>0$,故 $k>\frac{4}{3}$

71. ()在坐標平面上,點P(a,-b)在第二象限,則點Q(ab,a+b)在第幾象限內? (A)— (B)二 (C)三 (D)四

【岡山農工段考題 light 講義-類題】

點P(a,-b)在第二象限 \Rightarrow a<0、-b>0 \Rightarrow a<0、b<0 \Rightarrow ab>0、a+b<0 \therefore 點 Q(ab,a+b) \Rightarrow (+,-) 在第四象限

72. ()數線上 A(-5)、 B(10) 兩點間的距離為 (A)15 (B)25 (C)10 (D)20

【light 講義-綜合評量】

解答

 $\overline{AB} = |-5-10| = |-15| = 15$

) 數線上,若|x|=2,則x為 (A)2 (B)-2 (C)2 或-2 (D)1 或-1 **73.** (

【light 講義-綜合評量】

|x|=2,表示x在數線上與原點距離為 2 的點所代表的數,所以x=2或-2

)下列哪一個二次函數圖形的頂點落在第二象限內? (A) $y = x^2 - 5$ (B) $y = 2(x - 3)^2 + 1$ **74.** ((C) $y = -\frac{1}{2}x^2 + 2$ (D) $y = -2(x+1)^2 + 5$

【light 講義-綜合評量】

解答 解析 D

(A) $y = x^2 - 5$ 的頂點為(0,-5) ,在y軸上 (B) $y = 2(x-3)^2 + 1$ 的頂點為(3,1) ,在第一象限 (C) $y = -\frac{1}{2}x^2 + 2$ 的頂點為(0,2),在y 軸上 (D) $y = -2(x+1)^2 + 5$ 的頂點為(-1,5),在第二 象限

75. ()已知 $A \cdot B \cdot C$ 三家某知名商店,B 店位於A 店往西 240 公尺往北 120 公尺處,而C 店 位於 B 店往東 180 公尺往南 40 公尺位置。求 A 店與 C 店的距離為多少公尺? (A)100 (B)120 (C)140 (D)160

【110 數(B)歷屆試題】

解答

解析

A

依題書圖如圖

並設立 $D \cdot E \cdot F$ 三點於圖

所以
$$\overline{CF} = \overline{EF} - \overline{EC} = 120 - 40 = 80$$

$$\overline{FA} = \overline{DA} - \overline{DF} = 240 - 180 = 60$$

因此 $\overline{AC} = \sqrt{80^2 + 60^2} = 100$

76. () 小克在天文雜誌上看到以下的資訊「可利用北斗七星斗杓的天璇與天樞這兩顆星來尋找 北極星:由天璇起始向天樞的方向延伸便可找到北極星,其中天樞與北極星的距離為天 樞與天璇距離的 5 倍。」今小克將所見的星空想像成一個坐標平面,其中天璇的坐標為 A(10,9) 及天樞的坐標為B(8,12)。請依上述資訊,求出北極星的坐標C(x,y)。

【super 講義-綜合評量】

解答

如圖,由題意知:
$$\overline{AB}$$
: \overline{BC} = 1:5

代入內分點公式得
$$\begin{cases} 8 = \frac{1 \times x + 5 \times 10}{5 + 1} \\ 12 = \frac{1 \times y + 5 \times 9}{5 + 1} \end{cases} \Rightarrow \begin{cases} 48 = x + 50 \\ 72 = y + 45 \end{cases}$$

$$\Rightarrow \begin{cases} x = -2 \\ y = 27 \end{cases}$$
 故北極星的坐標為 $C(-2, 27)$

另解:

$$\pm \overline{BC} = 5\overline{AB}$$
 , $\pm \overline{BC} = 5\overline{AB}$

$$(x-8, y-12)=5\times(8-10, 12-9)$$
, $(x-8, y-12)=5\times(-2, 3)$, $(x-8, y-12)=(-10, 15)$

$$\begin{cases} x - 8 = -10 \\ y - 12 = 15 \end{cases} \Rightarrow \begin{cases} x = -2 \\ y = 27 \end{cases}$$

故北極星的坐標為C(-2,27)

)滿足不等式 $\frac{2x+5}{4} \le \frac{x-7}{3}$ 的最大整數x = (A)-19 (B)-20 (C)-21 (D)-22**77.** (

【107數(A)歷屆試題】

解析
$$\frac{2x+5}{4} \le \frac{x-7}{3}$$

$$\Rightarrow 3(2x+5) \le 4(x-7)$$

$$\Rightarrow$$
 $6x+15 \le 4x-28$

$$\Rightarrow$$
 $6x-4x \le -28-15$

$$\Rightarrow$$
 $2x \le -43$

$$\Rightarrow x \le -\frac{43}{2} = -21.5$$

故取 x = -22

)下列方程式所對應的圖形中,何者恆在*x*軸的上方? **78.** ((A) $y = 5x^2 - 3x + 1$ (B) $y = 3x^2 + 5x - 1$ (C) $y = x^2 - 5x + 3$ (D) $y = 3x^2 + x - 5$

【進階卷,104 數(C)歷屆試題】

解答

解析 函數
$$y = f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

頂點為 $\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$,又四個選項的 x^2 項係數a均為正數

:.皆為開口向上的拋物線,因此只需判斷 b^2-4ac 的正負

$$(A)(-3)^2-4\times5\times1=-11<0$$

(B)
$$5^2 - 4 \times 3 \times (-1) = 37 > 0$$

$$(C)(-5)^2-4\times1\times3=13>0$$

(D)
$$1^2 - 4 \times 3 \times (-5) = 61 > 0$$

故選項(A)的圖形恆在x軸的上方

79. ()設A(-1,-3)與B(6,4)為坐標平面上之兩點。若點C 在線段AB上,且 $4\overline{AC} = 3\overline{BC}$,則 $\overline{BC} = (A)\sqrt{2}$ (B) $3\sqrt{2}$ (C) $4\sqrt{2}$ (D) $5\sqrt{2}$

【99數(A)歷屆試題】

解答 C

$$A(-1,-3)$$
 $C(x,y)$ $B(6,4)$

曲內分點公式知:
$$\begin{cases} x = \frac{4 \times (-1) + 3 \times 6}{3 + 4} = 2 \\ y = \frac{4 \times (-3) + 3 \times 4}{3 + 4} = 0 \end{cases} \Rightarrow C(2,0)$$

$$\therefore \overline{BC} = \sqrt{(6-2)^2 + (4-0)^2} = \sqrt{32} = 4\sqrt{2}$$

80. ()已知 A(-1,4) 、 B(5,4) 為坐標平面上兩點。若拋物線 $H: y = C(x-h)^2$ 通過 A 、 B 兩點,則 C+h=? (A) $\frac{13}{5}$ (B) $\frac{22}{9}$ (C) $\frac{18}{7}$ (D) $\frac{17}{4}$

【109數(B)歷屆試題】

解答 B

坪台 」

$$A(-1,4)$$
 及 $B(5,4)$ 在 $y = C(x-h)^2$ 上

$$\Rightarrow$$
 4 = $C(-1-h)^2 \perp 4 = C(5-h)^2 \Rightarrow C(-1-h)^2 = C(5-h)^2$

因為H 為拋物線,所以 $C \neq 0$

$$\Rightarrow$$
 $(-1-h)^2 = (5-h)^2$ \Rightarrow $1+2h+h^2 = 25-10h+h^2$

$$\Rightarrow$$
 12h = 24 \Rightarrow h = 2 \Rightarrow 4 = $C(-1-2)^2$ \Rightarrow C = $\frac{4}{9}$

$$\therefore C + h = \frac{4}{9} + 2 = \frac{22}{9}$$

81. ()若點 A 與點 B 在數線上的坐標分別是 -1 與 5,則線段 \overline{AB} (包含兩端點,如圖所示)是下列哪一個不等式之解的圖形?

列哪一個不等式之解的圖形?
$$\begin{array}{c}
A & B \\
-1 & 5
\end{array}$$

(A)
$$|x-1| \le 4$$
 (B) $|x+1| \le 5$ (C) $x^2 - 4x - 5 \le 0$ (D) $x^2 + 6x + 5 \le 0$

【109 數(B)歷屆試題】

解答

C

解析 如題目所敘述,x的範圍為 $-1 \le x \le 5$

考慮每個選項所得出x解之情形 (A) $|x-1| \le 4 \Rightarrow -4 \le x-1 \le 4 \Rightarrow -3 \le x \le 5$

(B)
$$|x+1| \le 5 \Rightarrow -5 \le x+1 \le 5 \Rightarrow -6 \le x \le 4$$

$$(C) x^2 - 4x - 5 \le 0 \quad \Rightarrow \quad (x - 5)(x + 1) \le 0 \quad \Rightarrow \quad -1 \le x \le 5$$

(D)
$$x^2 + 6x + 5 \le 0 \implies (x+1)(x+5) \le 0 \implies -5 \le x \le -1$$

82. ()解不等式 $|ax+2| \le b$,可得 $-4 \le x \le 8$,則 a-b 之值為何? (A) -5 (B) -6 (C) -7 (D) -8

【龍騰自命題,進階卷】

解答 C

由圖可知: $|x-2| \le 6 \Rightarrow |-x+2| \le 6$

$$\therefore a = -1 \perp b = 6 \Rightarrow a - b = -7$$

$$-4 \qquad 6 \qquad 2 \qquad 6 \qquad 8$$

83. ()不等式 $|3x+2| \le |2x-1|$,其解為何? (A) $-3 \le x \le \frac{-1}{5}$ (B) $-\frac{1}{5} \le x \le 3$ (C) $x \ge 3$ 或 $x \le \frac{-1}{5}$ (D) $x \ge -\frac{1}{5}$ 或 $x \le -3$

【龍騰自命題,進階卷】

解答

A

 $|3x + 2| \le |2x - 1| \Rightarrow |3x + 2|^2 \le |2x - 1|^2 \Rightarrow (3x + 2)^2 \le (2x - 1)^2$ \Rightarrow 9x^2 + 12x + 4 \le 4x^2 - 4x + 1 \Rightarrow 5x^2 + 16x + 3 \le 0 \Rightarrow (5x + 1)(x + 3) \le 0 \Rightarrow -3 \le x \le -\frac{1}{5}

84. ()二次函數 $y = -x^2 + 2bx + a$,當 x = 2 時,y 有最大值 5,則 a + b = (A) 1 (B) -1 (C) 2 (D) 3

【龍騰自命題,進階卷】

解答

ナナル カカルピ

 $y = -(x - b)^2 + b^2 + a$ $\therefore x = 2$ 時有最大值 5 $\therefore b = 2$, $b^2 + a = 5 \Rightarrow a = 1$ 故 a + b = 3

85. () 一元二次不等式 $9x^2 - 6x + 1 \ge 0$,其解為何? (A) $x \ge \frac{1}{3}$ (B) $x \le \frac{1}{3}$ (C) x 為所有實數 (D)無實數解

【龍騰自命題】

解答(

解析 $9x^2 - 6x + 1 \ge 0 \Rightarrow (3x - 1)^2 \ge 0 \Rightarrow x$ 為所有實數

86. ()一元二次不等式 $49x^2 + 14x + 1 \le 0$,其解為何? (A) $x \ge \frac{-1}{7}$ (B) $x \le \frac{-1}{7}$ (C) $x = \frac{-1}{7}$ (D) 無實數解

【龍騰自命題】

解答C

解析 $49x^2 + 14x + 1 \le 0 \Rightarrow (7x + 1)^2 \le 0 \Rightarrow x = \frac{-1}{7}$

87. ()若 n 為整數且二次函數 $f(x) = (n^2 - n - 12)x^2 + 6x - 3$ 之圖形為開口向下的拋物線,則 n 有 幾個解? (A)4 (B)5 (C)6 (D)7

【112 數(B)歷屆試題】

f(x) 為開口向下的拋物線 $n^2-n-12<0$

 \Rightarrow (n+3)(n-4)<0 \Rightarrow -3<n<4 且 n 為整數

- \therefore n = -2, -1, 0, 1, 2, 3 ± 6 個解
-) 設 a 為正數 , |x| = a 表示 (A) x > a (B) x > a 或 x < -a (C) x = a 或 x = -a (D) -a < x < a88. (

【super 講義-綜合評量】

解答

a 為正數,|x|=a 表示 x=a 或 x=-a

) 設x 、y 為實數且滿足 $|x+1|+(y-6)^2=0$,則 $x\times y=$ **89.** ((A)-6 (B)6 (C)-1 (D)1

【super 講義-綜合評量】

 $\therefore x+1$ 與 y-6 均為實數 $\therefore |x+1| \ge 0$, $(y-6)^2 \ge 0$ 又原式 $|x+1|+(y-6)^2=0$,故得 $\begin{cases} x+1=0\\ y-6=0 \end{cases}$ $\Rightarrow x=-1$, y=6 ,則 $x\times y=-6$

90. ()不等式|2x+3| > 5的解為 (A)x < -4或x > 1 (B)x < 1或x > 4 (C)x < -4或x > -1 (D) x < -1 或 x > 4

【super 講義-綜合評量】

 $|2x+3| > 5 \Rightarrow 2x+3 < -5 \implies 2x+3 > 5 \Rightarrow 2x < -8 \implies 2x > 2 \Rightarrow x < -4 \implies x > 1$ 故不等式的解為x < -4或x > 1

) 設 P(x,y) 為坐標平面上一點,且滿足 $\sqrt{(x-1)^2 + (y-2)^2} + \sqrt{(x-3)^2 + (y-4)^2}$ **91.** ($=\sqrt{(3-1)^2+(4-2)^2}$,則 P 點的位置在第幾象限 ? (A) 一 (B) 二 (C) 三 (D) 四

【super 講義-綜合評量】

解答

設坐標平面上,點P(x,y),A(1,2),B(3,4)解析

 $\iiint \sqrt{(x-1)^2 + (y-2)^2} + \sqrt{(x-3)^2 + (y-4)^2} = \sqrt{(3-1)^2 + (4-2)^2}$

可表示為 $\overline{PA} + \overline{PB} = \overline{AB}$,如圖表示,點P(x,y)必為 \overline{AB} 之內分點

 \therefore 點P(x,y)的位置在第一象限

) 函數 $y = f(x) = 3x^2 - 6x + 2$ 之最小值為 (A)0 (B)1 (C)-1 (D)2 **92.** (

【super 講義-綜合評量】

解答 C

 $y=3x^2-6x+2=3(x^2-2x)+2=3(x-1)^2-1$,故當x=1時,f(x)有最小值-1

93. ()若二次函數 $y = f(x) = -3x^2 + 6x$ 的頂點 A 到原點 O 的距離為 d ,則 (A) 2 < d < 3 (B) 3 < d < 4 (C) 4 < d < 5 (D) 5 < d < 6

解答]

解析 : $y = f(x) = -3x^2 + 6x = -3(x^2 - 2x) = -3(x - 1)^2 + 3$

 $\sqrt{3} = \sqrt{9} < \sqrt{10} < \sqrt{16} = 4$, 3 < d < 4

94. () 設函數 $f(x) = \begin{cases} x^2 - x + 3, 0 \le x < 2 \\ 3x + 5, 2 \le x \le 7 \end{cases}$,則 f(0) + f(5) =(A) 20 (B) 21 (C) 22 (D) 23

【super 講義-綜合評量】

解答 I

解析 f(0)=0-0+3=3, $f(5)=3\times5+5=20$ ∴ f(0)+f(5)=3+20=23

95. () 拋物線 $y = x^2 - 3x - 10$ 與 x 軸交於 A , B 兩點,則 A , B 兩點之距離為 (A)2 (B)5 (C) 6 (D)7

【super 講義-綜合評量】

解答

D

96. ()已知平面上三點P(a,b)、Q(-1,2)、R(-2,1)共線,R介於P、Q之間且 $\overline{PQ} = 2\overline{QR}$,則 a-b=? (A)-5 (B)-3 (C)-1 (D)1

【104 數(S)歷屆試題】

解答

В

Q(-1,2) P(a,b)

97. ()設直角坐標平面上四點 A(-2,1)、 $B(b_1,b_2)$ 、 $C(c_1,c_2)$ 、 D(4,3)在同一直線上,依序為 $A \cdot B \cdot C \cdot D$,且 $B \cdot C$ 兩點將線段 AD 三等分,則點 C 之坐標 (c_1,c_2) 為何? (A) $\left(2,\frac{7}{3}\right)$

 $(B)\left(\frac{2}{3}, \frac{4}{3}\right) \quad (C)\left(\frac{1}{3}, \frac{2}{3}\right) \quad (D)\left(0, \frac{5}{3}\right)$

【101 數(B)歷屆試題】

解答

A

解析

 $(-2,1) \qquad (c_1,c_2) \qquad (4,3)$ $A \qquad B \qquad C \qquad D$

由圖知C為A與D的內分點且 \overline{AC} : \overline{CD} =2:1

曲內分點公式得 $c_1 = \frac{2 \times 4 + 1 \times (-2)}{2 + 1} = 2$, $c_2 = \frac{2 \times 3 + 1 \times 1}{2 + 1} = \frac{7}{3}$... $C\left(2, \frac{7}{3}\right)$

98. () 設點 A(x+5, y-3) 在第二象限,則點 B(y+1, x+1) 在第幾象限? (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

【100數(A)歷屆試題】

A(x+5,y-3)在第二象限 解析

$$\Rightarrow \begin{cases} x+5<0 \\ y-3>0 \end{cases} \Rightarrow \begin{cases} x<-5 \\ y>3 \end{cases} \Rightarrow \begin{cases} x+1<-4<0 \\ y+1>4>0 \end{cases} \Rightarrow \mathbb{H} B(y+1,x+1) \Rightarrow (+,-)$$

 \therefore 點B(y+1,x+1)在第四象限

)函數 $f(x) = -2x^2 + 3x - 4$ 的圖形,其頂點落在第幾象限? (A)— (B)二 (C)三 (D)四 **99.** (

【101 數(A)歷屆試題】

解答 D

 $f(x) = -2x^2 + 3x - 4 = -2\left(x^2 - \frac{3}{2}x\right) - 4 = -2\left(x - \frac{3}{4}\right)^2 - \frac{23}{8}$ 解析

即頂點為 $\left(\frac{3}{4}, -\frac{23}{8}\right)$ 且落在第四象限

100. ()某直角三角形的高度 $h \, \text{cm}$ 比它的底邊長度少 $4 \, \text{cm}$,且三角形的面積不大於 $30 \, \text{cm}^2$,則 $h \, \text{cm}$ 可取的範圍為

(A) $0 < h \le 6$ (B) $0 \le h \le 6$ (C) $-10 \le h \le 6$ (D) $-10 \le h < 6$

【課本自我評量】

解析

高度 h cm ,則底邊長度為(h+4) cm ,因為三角形的面積不大於 30 cm^2

所以 $\frac{h(h+4)}{2} \le 30$,則 $h(h+4) \le 60$,整理得 $h^2 + 4h - 60 \le 0$

分解得 $(h+10)(h-6) \le 0$,計算得 $-10 \le h \le 6$

由於高度必定是正數,因此 $0 < h \le 6$,所以h的取值範圍為 $0 < h \le 6$