(5) Int. Cl. 5:

G 01 N 21/64

G 01 J 1/42

DEUTSCHES PATENTAMT

② Aktenzeichen:

P 39 15 692.3

Anmeldetag:
Offenlegungstag:

13. 5.89 22.11.90 **JE 39 15 692 A**

12 Pages

(7) Anmelder:

Gesellschaft für Strahlen- und Umweltforschung mbH (GSF), 8000 München, DE

(74) Vertreter:

Gottlob, P., Dipl.-Ing., Pat.-Ass., 7513 Stutensee, Ortsteil Friedrichstal

② Erfinder:

Ruth, Bernhard, Dr., 8046 Garching, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(S) Verfahren und Anordnung zur Bestimmung schnell veränderlicher Fluoreszenzvorgänge

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung nach dem Oberbegriff der Patentansprüche 1 und 4.

Das Photonensynthesesystem (PS) von dunkel-adaptierten Pflanzen zeigt nach Beginn der Anregung mit sichtbarem Licht eine Fluoreszenz ab etwa 665 nm. die sich zeitlich verändert. In der Abb. 1 ist der Verlauf schematisch dargestellt. Mit Einschalten des Anregungslichtes Ia (Fig. 1a, 1b) steigt die Fluoreszenz F(t) mit verschiedenen Zeitkonstanten im Bereich zwischen 1 ns und etwa 500 ms stark an und durchläuft dabei einige Wendepunkte und ggf. Zwischenmaxima und -minima. Nach etwa 1 s erreicht die Fluoreszenz das Maximum Fm, sinkt dann ab und erreicht, möglicherweise über mehrere Wendepunkte oder Zwischenmaxima innerhalb weniger Minuten den Gleichgewichtswert Fs. Der ausgeprägte Kurvenverlauf wird nur bei Intensitäten des Anregungslichts von einigen mW/cm² erreicht.

Wenn das Anregungslicht abgeschaltet wird, dann sinkt die Fluoreszenz F (t) rasch ab. Es treten auch hier Zeitkonstanten vom ns-Bereich bis in den Minutenbereich auf, die Intensitäten überstreichen daher mehrere Größenordnungen.

Die bei der Induktionskinetik und der verzögerten Fluoreszenz auftretenden Zeitkonstanten können mit verschiedenen Komponenten des Photosynthesesystems in Verbindung gebracht werden. Der Verlauf der Fluoreszenz kann damit Aufschluß über die Effektivität 30 einzelner Komponenten geben.

Die Schwierigkeit bei der Messung und der Interpretation der Ergebnisse besteht nun darin, daß sowohl Intensitäten als auch die auftretenden Zeitkonstanten nicht klar, welches Meßvolumen von der Fluoreszenz erfaßt wird. Die Messungen werden daher in Verbindung mit der Bestimmung der Chlorophyll-Konzentration, CO2-Fixierung und Sauerstoff-Erzeugung durchgeführt. Diese Verfahren sind im Vergleich zur der Mes- 40 sung selbst aufwendig.

Der Anwendung der Verfahren bei der Messung von intakten Blättern sind aber auch deshalb Grenzen gesetzt, weil die Abgrenzung von bestrahltem und nicht bestrahltem Blattbereich unklar ist und außerdem durch 45 die Dichte der Chloroplasten Anregungslicht absorbiert wird und durch Absorption und Re-Emission Spektrum und Intensität des Fluoreszenzlichts beeinflußt werden.

Es ist daher vorgeschlagen worden, die "Grundfluoreszenz" als Normierung zu verwenden. Darunter ver- 50 steht man die Fluoreszenz, die auftritt, wenn die Reaktionszentren des Photosynthesesystems nicht besetzt sind. Die Grundfluoreszenz kann naturgemäß nur am Anfang der Anregung mit Licht bestimmt werden, das aber ist schwierig, da sich gerade hier die Fluoreszenz 55 schnell ändert. Im allgemeinen sieht man deshalb den ersten Meßwert ungleich Null nach Einschalten als ein Maß für die Grundfluoreszenz an. Eine Normierung auf die Grundfluoreszenz führt daher zu beträchtlichen Fehlern.

In der Praxis wird daher selten die Normierung auf die Grundfluoreszenz benutzt, sondern man betrachtet das Verhältnis Fm/Fs. Auf diese Weise geht Information verloren, da in jedem der beiden Signale Informationen über die Effektivität verschiedener Komponenten des 65 Photosynthesesystems enthalten ist. Außerdem ist die Variation dieser Größe beträchtlich.

Es ist für diese Art der Messungen notwendig, die

Probe sehr schnell mit einer Lichtquelle zu bestrahlen, deren Intensität nach Beginn der Anregung konstant sein muß. Mit Blitzlampen oder gepulsten Lasern lassen sich diese Effekte nicht untersuchen.

Von M. Voss et al., Fluorometric Detection of Photosystem II Herbicide Penetration and Detoxification in Whole Leaves, Weed Science 32 (1984) 675 wird ein Laser mit einem mechanischen Verschluß beschrieben. Damit werden Öffnungszeiten im Bereich von etwa 2 ms 10 erreicht. Da aber die interessierende Fluoreszenz mit einer Zeitkonstanten von µSekunden ansteigen kann, ändert sich die Fluoreszenz während der Öffnung schon stark und man erhält keine zuverlässige Messung der Grundfluoreszenz.

Weiterhin ist aus U. Schreiber et el, Portable solidstate Fluorometer for the Measurement of chlorophyll Fluorescence induction in plants. Rev.Sci.Instrum. 46 (1975) 538, eine Meßanordnung bekannt, bei der eine Diode zur Erzeugung des Anregungslichts verwendet wird. Dioden kann man innerhalb einiger ns an- und abstellen. Der Nachteil ist, daß Dioden im Vergleich zu anderen Lichtquellen eine geringe Intensität haben und außerdem ein Emmissionsspektrum aufweisen, das mit dem der Fluoreszenz überlappt. Die geringe Intensität 25 des Anregungslichts und die Notwendigkeit der Separation des Fluoreszenzlichts mit Filtern führt dazu, daß wenig Licht zur Detektion zur Verfügung steht. Aus diesem Grund kann die Fluoreszenz erst dann erfaßt werden, wenn sie schon eine beträchtliche Intensität erreicht hat. Die Bestimmung der Grundfluoreszenz kann daher ebenfalls nur ungenau erfolgen.

Man hilft sich daher damit, den ersten gemessenen Wert als Grundfluoreszenz anzusehen.

Der Erfindung liegt die Aufgabe zugrunde, bei der über einen weiteren Bereich variieren. Außerdem ist 35 Messung der Induktions-Kinetik wie auch der verzögerten Fluoreszenz des Photosynthesesystems eine Normierung zu ermöglichen. Diese Normierung kann durch die Bestimmung der Grundfluoreszenz geleistet werden. Das aber ist mit den bestehenden Verfahren nur unzureichend möglich.

> Außerdem wird mit dem Anstieg der Fluoreszenz von der Grundfluoreszenz aus eine weitere Komponente ermittelt, die ebenfalls Aussagen über das Photosynthesesystem liefert.

> Diese Aufgabe wird erfindungsgemäß durch den kennzeichnenden Teil der Patentansprüche 1 und 4 gelöst. Die übrigen Patentansprüche stellen vorteilhafte Ausgestaltungen der Erfindungen dar.

> Folgende Vorteile lassen sich mit der Erfindung erzie-

Die Kombination Laser, schneller optischer Schalter und mechanischer Schalter zusammen mit der Intensitätsstabilisierung erlaubt

- a) das Ein- und Ausschalten des Anregungslichts in weniger als 10 ns (Vorteil gegenüber mechanischen Schaltern, ms).
- b) das Schalten und Aufrechterhalten einer konstanten Leistung für eine beliebig lange Zeit (Vorteil gegenüber gepulsten Lasern),
- c) das Schalten einer ausreichend hohen Intensität des Anregungslichts, die einen ausgeprägten Kurvenverlauf der Induktions-Kinetik und eine für die Detektion ausreichende Intensität des Fluoreszenzlichts erzeugt (Vorteil gegenüber der Erzeugung des Anregungslichts mit einer Diode) und d) das Schalten des Anregungslichts mit einer ho-

hen Frequenzschärfe, die die Separation des Fluo-

reszenzlichts vom Erregerlicht erleichtert (Vorteil gegenüber einer Diode, die üblicherweise eine Bandbreite von über 20 nm hat.

Durch die der gegebenen Intensität angepaßten Detektorempfindlichkeit ergeben sich folgende Vorteile:

a) Die stark unterschiedlichen Intensitäten können mit einem Detektor erfaßt werden. Dadurch blei-Meßwinkel konstant und es entfallen sonst notwendige Anpassungsmessungen:

b) Bei der digitalen Meßwerterfassung ist das Detektorausgangssignal an den Eingangsbereich des angeschlossenen Analog-Digital-Konverters angepaßt. Dem Auftreten von niedrigen Ausgangssignalen muß nicht dadurch Rechnung getragen werden, daß ein Analog-Digital-Konverter mit sehr hoher Auflösung eingesetzt werden muß. Die hohe Auflöauch die maximale Abtastrate.

Bei den bisherigen Verfahren wird eine konstante Empfindlichkeit benutzt.

Die Anpassung der Zeitkonstante an die notwendige 25 Abtastrate verringert das Rauschen und trägt so zur Datenreduktion bei. In den bisherigen Verfahren wird nur eine Zeitkonstante verwendet.

In der speziellen Aufgabe der Messung der Chlorophyll-Fluoreszenz ist es möglich, mit dem gleichen De- 30 tektor die Grundfluoreszenz mit einer Auflösung von 10 µs zu bestimmen und die sehr viel höhere Maximalfluoreszenz. Insbesondere ist es möglich, die verzögerte Fluoreszenz über mehrere Größenordnungen hinweg zu verfolgen.

Ein Ausführungsbeispiel für die Erfindung wird im folgenden anhand der Figuren näher beschrieben:

Fig. 1a und 1b den zeitlichen Verlauf der Intensität Ia der geschalteten Laserintensität bzw. die Intensität F(t) 40 der Fluoreszenz.

Fig. 2 eine schematische Darstellung der Meßanordnung.

Fig. 3 ein Blockschaltbild für die Anordnung.

Fig. 4 zeigt die Steuerung für die Hochspannung 12.

Fig. 5 zeigt zwei Beispiele für den Beginn der Fluo-

Fig. 6 zeigt den Anfang einer Fluoreszenz im vergrö-Berten Zeitmaßstab.

Fig. 7a, b, c, zeigt die Wirkung von optischem und 50 mechanischem Schalter auf die Intensität des Lasers 1.

Der Aufbau der Optischen Anordnung und eine Prinzipschaltung der Elektronik sind in Fig. 2 dargestellt.

Zur Anregung der Fluoreszenz wird ein Laser 1 benutzt, da er genügend Intensität liefert und aufgrund der 55 Frequenzschärfe des Lichts die Separation des Fluoreszenzlichts wesentlich erleichtert.

Der Optische Schalter 2 dient zum Ein- und Ausschalten des Lichtes für die Anregung.

Es können mehrere Geräte benutzt werden (z.B. auch 60 Pockels-Zellen). In dem ersten Anwendungsbeispiel wird ein akusto-optischer Modulator verwendet, der z.B. wesentlich einfacher und preiswerter ist als ein Q-switsch im Laser. Es lassen sich Schaltzeiten von einigen 10 ns erreichen und die Leistung des eingestrahlten 65 Lichts kann einige 10 mW betragen.

Mit einem Laser läßt sich der akusto-optische Modulator in einfacher Weise betreiben.

Für die exakte Erfassung der Induktions-Kinetik und den Vergleich der Intensitäten bei verschieden zeitlichen Phasen ist es notwendig, daß die Intensität des Anregungslichts nach dem Einschalten zeitlich konstant bleibt. Da die Laserintensität schwanken kann und auch die optischen Eigenschaften der Schalter nach dem Einschalten nicht sofort stabilisiert sind, werden folgende Komponenten zur Stabilisierung eingesetzt.

Vor dem optischen Schalter 2 ist ein zusätzlicher meben spektrale Empfindlichkeit, Raumwinkel und 10 chanischer Schalter 31 eingesetzt, der Öffnungs- und Schließzeiten unter 10 ms hat. Der mechanische Schalter 31 ermöglicht es, den optischen Schalter fast immer eingeschaltet zu lassen, so daß sich seine Eigenschaften stabilisieren können (thermische Effekte). Soll nun der Strahl eingeschaltet werden, so schließt der optische Schalter 2 (siehe Fig. 7a), der mechanische Schalter 31 öffnet (siehe Fig. 7b) und der optische Schalter 2 öffnet ebenfalls, nachdem 31 vollständig offen ist. Auf diese Weise wird der optische Schalter 2 nur während der sung des Analog-Digital-Konverters reduziert 20 Verschlußzeiten des mechanischen Schalters geschlossen, so daß seine Stabilität nicht beeinträchtigt wird. Beim Ausschalten des Strahls wird in umgekehrter Reihenfolge verfahren. Zuerst schließt der optische Schalter 2, dann der mechanische Schalter 31 und anschlie-Bend öffnet sich wieder der optische Schalter 2.

Um weitere Schwankungen der Strahlintensität zu kompensieren, wird mit einem teildurchlässigen Spiegel 28 ein Teil des Strahls auf den Detektor zur Strahlkontrolle 29 gelenkt. Dessen Signal 37 wird in einer Steuereinheit "Strahlkontrolle" 30 verarbeitet, die den optsichen Schalter 2 über das Signal 38 so moduliert, daß die Strahlintensität konstant ist (Feinregulation). Der Beginn dieser Steuerung muß gegenüber dem Signal 36 verzögert sein, da der Strahl sonst nicht seine volle Lei-35 stung erreicht.

Das Licht wird über ein Faserbündel 3 auf die Probe 4 in der Meßküvette 5 gelenkt. Durch den anderen Arm des Faserbündels wird das Licht zum optischen Filter 6, vorzugsweise ein Interferenzfilter, geführt, der das Fluoreszenzlicht im Bereich ab 665 nm selektiert.

Die Detektoreinheit 7 ist in ihrer Empfindlichkeit durch das Signal 32 steuerbar und erzeugt das Meßsignal 33. Die Einheit 8 erzeugt aufgrund von vorgegebenen Steuersignalen 34 und dem Meßsignal 33 das Signal 32 zur Einstellung der Empfindlichkeit des Detektors. Außerdem modifiziert Einheit 8 Signal 33 in der Weise, daß aufgrund der gegebenen Intensität und Zeitkonstante eine optimale Erfassung des resultierenden Meßsignals 35 durch die Einheit 9 (Datenerfassung und Versuchssteuerung) ermöglicht wird. Einheit 9 erzeugt auch die Steuersignale 36 für Steuereinheit Strahlinensität 30 und Signal 34 für die Einheit 8.

Die Beschreibung der Komponenten im Einzelnen (Fig. 3)

Die Fluoreszenz überstreicht einen beträchtlichen Intensitätsbereich. Ein Photomultiplier 10 als Detektor-Einheit 7 hat eine wesentlich größere Empfindlichkeit als eine Diode. Auf diese Weise kann man Anregungsund Fluoreszenzlicht wesentlich besser trennen, was aus Mangel an scharfkantigen optischen Filtern auch zu einem beträchtlichen Verlust an Fluoreszenzintensität führt. Der Photomutiplier hat aber noch als weiteren wesentlichen Vorteil, daß die Empfindlichkeit durch die Variation der PM-Spannung 32 über einen weiteren Bereich den Erfordernissen angepaßt werden kann.

Eine logische Schaltung zur Hochspannungs-Steue-

rung 12 erkennt aufgrund des Steuersignals 34, das eine Zusammenfassung der einzelnen Signale 39, 40 und 41 ist und des Photomultiplier-Ausgangssignals 42 das eine Realisierung des Detektorsignals 33 ist, wann die Empfindlichkeit größer oder kleiner eingestellt werden muß. In diesem Fall wird der Wert 43 geändert, der die regelbare Hochspannungsversorgung 11 steuert (Ausgang

Die Änderungen von 43, bewirken Änderungen der entsprechenden Verstärkungsfaktoren im Zwischen- 10 speicher 18 bzw. Interface 19.

Die Kombination zwischen Hochspannungssteuerung 11 und Photomultiplier 10 ist deshalb günstig, weil eine relativ geringe Spannungsänderung durch die Multiplier-Eigenschaft eine Änderung der Empfindlichkeit 15 um eine Größenordnung bewirkt. In einem Anwendungsbeispiel wird die Empfindlichkeit innerhalb von 2 – 10 us umgestellt.

Bei niedrigen Intensitäten wird der Photomultiplier 10 mithilfe der Einheit 13 (Verstärker-Diskriminator) als 20 Photonenzähler geschaltet, so daß 44 eine Impulsfolge logischer Signale ist, deren Zählrate proportional zur Intensität des Fluoreszenzlichts ist.

Die Bestimmung sehr niedriger Intensitäten der Fluoreszenz ist gerade bei der verzögerten Fluoreszenz un- 25 bedingt notwendig, da hier die Intensität über einen Bereich von 8 Zehnerpotenzen abfällt.

Bei höheren Lichtintensitäten ist die Photonenzähltechnik nicht mehr einsetzbar, da die einzelnen Impulse nicht mehr auflösbar sind. In diesem Fall wird 42 als 30 Analogsignal im Verstärker 14 weiterverarbeitet, dessen Verstärkung und Zeitkonstante an die gegebene Intensität und die Abtastrate 51 für das Eingangssignal 46 des Analog-Digital-Konverters 17 angepaßt sind.

Die bisher auftretenden Zeitkonstanten sind so kurz, 35 daß die Meßwertaufnahme nicht direkt mit einem Rechner erfolgen kann. Sobald dies aber der Fall ist, werden die Signale 47 aus dem Verstärker 15 direkt mit dem Interface 19 verarbeitet. Es empfiehlt sich aber für Verstärker 15 eine größere Zeitkonstante zu wählen, da die 40 geringere Zeitkonstante von Verstärker 14 nicht nötig ist und darüber hinaus aufgrund der größeren Bandbreite des Rauschen unnötig groß bleibt.

In der Einheit 9 sind folgende Komponenten enthalten:

Bei sehr schnell veränderlicher Fluoreszenz ist ein Zwischenspeicher und eine Steuerung notwendig (Einheit 18). Entsprechend dem Takt 50 zählt Zähler 16 die Photonenimpulse und übergibt die Zählrate in Form der Binärzahl 48 an den Zwischenspeicher 18. In ähnlicher 50 Bezugszeichenliste Weise wandelt der Analog-Digital-Konverter 17 das Analogsignal 46 in die Binärzahl 49 um und übergibt sie entsprechend Takt 51 an Einheit 18. Die Steuersignale 39, 40 und 41 steuern die Hochspannungssteuerung 12 und aktivieren die Verstärker 13, 14 und 15. Nach Ende 55 des aktuellen Versuchs werden aufgrund der Steuersignale 52 die Daten 53 aus dem Zwischenspeicher 18 über das Interface 19 in den Rechner 20 gelesen. Interface 19 erzeugt auch das Signal 36 für die Steuereinheit Strahlintensität 30.

Die Steuereinheit Strahlintensität 30 hat folgende Aufgaben:

Aufgrund des Signals 36, das Ein- und Ausschalten der Laserintensität anzeigt, erzeugt Einheit 30 das Signal 38 für den optischen Schalter 2 und das Signal 54 für den 65 14 Verstärker mechanischen Schalter 31 in einer Reihenfolge, die die Verzögerung und Öffnungs- und Schließzeiten von mechanischem Schalter 31 berücksichtigen und in Abb. 7

dargestellt sind.

Fig. 7a zeigt das Verhalten des optischen Schalters 2, der die Steilheit der Flanken bestimmt und Fig. 7b zeigt das Verhalten des mechanischen Schalters mit Verzögerung und Öffnungs- und Schließzeiten.

Fig. 7c zeigt die resultierende Laser-Leistung, die durch die Schaltung von optischem Schalter 2 bestimmt

Die Steuereinheit 30 verarbeitet auch das Signal 37, das bei ansteigender Strahlintensität das Signal 38 modifiziert, um den optischen Schalter 2 so zu steuern, daß die Intensität wieder sinkt.

Zu Beginn ist 38 auf einem voreingestellten Wert und erst nach einer Verzögerung beginnt diese Steuerung zu arbeiten. Die Dauer der Verzögerung hängt von den Zeitkonstanten aus optischem Schalter 2 und des Detektors "Strahlkontrolle" 29 ab. Es muß darauf geachtet werden, daß der Sollwert unter der maximalen Intensität eingestellt wird.

Die Steuerung der Hochspannung 12 ist in Abb. 4 genauer dargestellt. Das Photomultipliersignal 42 wird in den beiden Komparatoren 23 und 24 mit den Schwellen 55 und 56 verglichen (55 kleiner 56). Bei Überschreiten der Schwelle werden die logischen Signale 57 und 58 high. Der Ausgang 59 von Einheit (25), Exklusives Oder, ist genau dann high, wenn 42 zwischen R 1 und R 2 liegt. Wenn das entsprechende Signal 39, 40, 41 anliegt, ist das Signal 60 ebenfalls high und der Schalter 27 schaltet das vorher festgelegte Signal 61 auf den Ausgang 62 zur Steuerung der regelbaren Hochspannung. Die Signale 57 und 58 können für die Erhöhung und Erniedrigung der Empfindlichkeit weiter verarbeitet werden.

Die eindeutige Bestimmung der Grundfluoreszenz Fo ist mit diesem Verfahren möglich.

In Fig. 5 ist die Induktionskinetik der Fluoreszenz in den ersten 70 ms aufgetragen. Man erkennt anhand der unterschiedlichen Steigung, daß mehrere Zeitkonstanten zum tragen kommen. Die Abtastrate von 10 µs gesattet es, Zeitkonstanten bis zu dieser Größe festzustellen. Nach Stand der Literatur können damit alle Zeitkonstanten im Zusammenhang mit der Elektronenstransportkette und den biochemischen Vorgängen erfaßt werden.

In Fig. 6 ist der Anfang der Fluoreszenz nocheinmal 45 herausgezeichnet. Es ist offensichtlich, daß man durch Extrapolation aus dem Bereich zwischen 0,2 ms und 3 ms auf den Zeitpunkt 0 die Grundfluoreszenz Fo sicher bestimmen kann.

- 1 Laser
- 2 optischer Schalter
- 3 Faserbündel
- 4 Probe
 - 5 Meßküvette
- 6 Optischer Filter
- Detektoreinheit
- 8 Einheit zur Empfindlichkeitssteuerung
- 9 Einheit Datenerfassung und Versuchssteuerung
- 10 Photomultiplier
- 11 Regelbare Hochspannungsversorgung
- 12 Hochspannungssteuerung
- 13 Verstärker Diskriminator
- 15 Verstärker
- 16 Zähler
- 17 Analog-Digital-Wandler

45

7

18 Zwischenspeicher und Steuerung 19 Interface 20 Rechner 21 Potentiometer 5 22 Potentiometer 23 Komparator 24 Komparator 25 Exclusives Oder 26 Und-Stufe 10 27 Analog-Schalter 28 Teildurchlässiger Spiegel 29 Detektor zur Strahlkontrolle 30 Steuereinheit Strahlintensität 31 Mechanischer Schalter 32 Empfindlichkeitssteuerung von 7 33 Detektor-Ausgangssignal 34 Steuersignal für Empfindlichkeitssteuerung 8 35 Modifiziertes Meßsignal 36 Steuersignal für Laserintensität 37 Meßsignal der Laserintensität 38 Steuerung des optischen Schalters 39 Steuersignale für Einheit 12 und 13 40 Steuersignale für Einheit 12 und 14 41 Steuersignale für Einheit 12 und 15 25 42 Ausgangssignale des PM 43 Eingangssignal für regelbare Hochspannung 44 Photonenimpulse 45 Taktrate für ADC 17 46 Ausgang Verstärker 14 47 Ausgang Verstärker 15 30 48 Binärzahl aus Zähler 16 49 Binärzahl aus ADC 17 50 Takt für Zähler 16 51 Takt für ADC 17 52 Steuersignal für Zwischenspeicher 18 53 Daten aus Zwischenspeicher 18 54 Steuersignal für mechanischen Schalter 55 Unteres Referenz-Signal 56 Oberes Referenz-Signal 57 Indikator für Unterschreiten von 55 40 58 Indikator für Unterschreiten von 56 59 Indikator für Schwellenüberschreitung 60 Logisches Signal für Änderung der Empfindlichkeit

Patentansprüche

61 Vorgewähltes Signal für Analog-Schalter

1. Verfahren zur Bestimmung schnell veränderlicher Fluoreszenzvorgänge an biologischen Proben durch Anregung mit einem abschaltbaren Laser, 50 wobei das Fluoreszenzlicht der Probe mit einem Detektorsystem erfaßt wird, dadurch gekennzeichnet, daß

a) die Laserintensität in weniger als einer µsec eingeschaltet und während der gesamten Bestrahlungszeit konstant gehalten wird, dabei wird

b) die Fluoreszenzstrahlung in einem durch ein optisches Filter vorgegebenen Wellenlängenbereich mit einem Detektor erfaßt, derart daß für geringe Intensitäten Photonen gezählt werden und daß für höhere Intensitäten die Verstärkung des Detektorausgangssignals automatisch so verändert wird, daß der Dynamikbereich eines Analog-Digital-Wandlers 65 voll ausgenützt wird, wobei

c) die Abtastraten und die Verstärkerzeitkonstanten an die zeitliche Veränderung der Fluoreszenzintensität angepaßt werden und dann d) nach einer Bestahlungszeit im Minutenbereich die Laserintensität in weniger als einer µsec abgeschaltet wird

e) und schließlich die Fluoreszenz ohne Laseranregung für eine bestimmte Zeit erfaßt wird.

2. Verfahren nach Anspruch 1, dadurch gekennnzeichnet, daß das Ein- und Abschalten der Laserintensität mit einer Kombination aus einem mechanischen Schalter und einem optischen Schalter durchgeführt wird, derart daß der optische Schalter nur während der Öffnungs- und Schließphase des mechanischen Schalters geschlossen wird.

3. Verfahren nach Anspruch 1 oder dem folgenden, dadurch gekennzeichnet, daß als Detektor ein Photomultiplier verwendet wird, dessen Verstärkung über die Variation der Hochspannung verändert wird.

4. Vorrichtung zur Bestimmung schnell veränderlicher Fluoreszenzvorgänge an biologischen Proben durch Anregung mit einem abschaltbaren Laser, wobei das Fluoreszenzlicht der Probe mit einem Detektorsystem erfaßt wird, dadurch gekennzeichnet, daß eine steuerbare Kombination von einem optischen und einem mechanischen Schalter zwischen dem Laser und der Probe angeordnet ist, und daß eine Empfindlichkeitssteuerung (8) zwischen Detektoreinheit (7) und der Datenerfassung und Versuchssteuerung (9) vorgesehen ist.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Detektoreinheit (7) ein Photomultiplier (10) ist.

6. Vorrichtung nach Anspruch 4 oder dem folgenden, dadurch gekennzeichnet, daß die Probe durch ein Faserbündel (3) an den Laser (1) und an die Detektoreinheit (7) angekoppelt ist.

7. Vorrichtung nach Anspruch 4 oder einem der folgenden, dadurch gekennzeichnet, daß zwischen der Detektoreinheit (7) und dem benachbarten Faserbündelende (3a) ein Interferenzfilter (6) angeordnet ist.

8. Vorrichtung nach Anspruch 4 oder einem der folgenden, dadurch gekennzeichnet, daß vor dem Faserbündelende (3b) ein Strahlteiler angeordnet ist, in dessen reflektierten Strahlengang ein weiterer Detektor (29) liegt.

9. Vorrichtung nach Anspruch 4 oder einem der folgenden, dadurch gekennzeichnet, daß sie für Messungen an Photosynthesesystemen verwendet wird.

Hierzu 7 Seite(n) Zeichnungen

Offenlegungstag:

DE 39 15 692 A1 G 01 N 21/64

22. November 1990

Offenlegungstag:

DE 39 15 692 A1 G 01 N 21/64

22. November 1990

Nummer:

Int. Cl.⁵:

Offenlegungstag:

DE 39 15 692 A1 G 01 N 21/64

22. November 1990

Offenlegungstag:

DE 39 15 692 A1 G 01 N 21/64 22. November 1990

DE 39 15 692 A1

G 01 N 21/64 22. November 1990

Int. Cl.º: Offenlegungstag: DE 39 15 692 A1 G 01 N 21/64 22. November 1990

