Modelling the Neuroanatomical Progression of Alzheimer's Disease and Posterior Cortical Atrophy

Supervisors:

Author: Răzvan V. Marinescu Prof. Daniel C. Alexander Dr. Sebastian Crutch Dr. Neil P. Oxtoby

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

of

University College London

Centre for Medical Image Computing, University College London

Defense date: January 23, 2019

Abstract

In order to find effective treatments for Alzheimer's disease (AD), a devastating neurodegenerative disease affecting millions of people worldwide, we need to identify subjects at risk of AD as early as possible. To this end, recently developed disease progression models can be used to perform early diagnosis, as well as predict the subjects' disease stages and future evolution. However, these models have not yet been applied to rare neurodegenerative diseases, are not suitable to understand the complex dynamics of biomarkers, work only on large multimodal datasets, and their predictive performance has not been objectively validated.

In this work I developed novel models of disease progression and applied them to estimate the progression of Alzheimer's disease and Posterior Cortical atrophy, a rare neurodegenerative syndrome causing visual deficits. My first contribution is a study on the progression of Posterior Cortical Atrophy, using models already developed: the Eventbased Model (EBM) and the Differential Equation Model (DEM). My second contribution is the development of DIVE, a novel spatio-temporal model of disease progression that estimates fine-grained spatial patterns of pathology, potentially enabling us to understand complex disease mechanisms relating to pathology propagation along brain networks. My third contribution is the development of Disease Knowledge Transfer (DKT), a novel disease progression model that estimates the multimodal progression of rare neurodegenerative diseases from limited, unimodal datasets, by transferring information from larger, multimodal datasets of typical neurodegenerative diseases. My fourth contribution is the development of novel extensions for the EBM and the DEM, and the development of novel measures for performance evaluation of such models. My last contribution is the organization of the TADPOLE challenge, a competition which aims to identify algorithms and features that best predict the evolution of AD.

List of Figures									
Li	List of Tables								
1	Intr	oducti	on	19					
	1.1	Alzheimer's Disease							
	1.2	Poster	ior Cortical Atrophy	19					
	1.3	Disease	e Progression Models	2					
	1.4		m Statement	2					
	1.5	Justification							
		1.5.1	Longitudinal Modelling of Posterior Cortical Atrophy	2					
		1.5.2	Current Disease Progression Models Cannot Model Complex Dy-						
			namics	2					
		1.5.3	Comparative Performance of Different Disease Progression Models	2					
	1.6		Contributions	2					
		1.6.1	Longitudinal Neuroanatomical Progression of Posterior Cortical						
			Atrophy	4					
		1.6.2	DIVE: A Spatiotemporal Progression Model of Brain Pathology in	,					
		1.00	Neurodegenerative Disorders	2					
		1.6.3	Disease Knowledge Transfer across Neurodegenerative Diseases	2					
		1.6.4	Novel Extensions to the Event-based Model and Differential Equa-	6					
		1.6.5	TADROLE Challenger Prediction of Longitudinal Evalution in	2					
		1.0.5	TADPOLE Challenge: Prediction of Longitudinal Evolution in Alzheimer's Disease	6					
	1.7	Thosis	Structure	2					
	1.1	1 110313	Structure						
2	Bac	kgroun	nd – Alzheimer's Disease	2					
	2.1	Alzhei	mer's Disease	2					
		2.1.1	Symptoms	2					
		2.1.2	Disease Causes and Mechanisms	2					
		2.1.3	Other Risk Factors	3					
		2.1.4	Biomarkers	3					
		2.1.5	Diagnosis	3					
	2.2	Progre	ession of Alzheimer's Disease	3					
		2.2.1	Braak Staging	3					
		2.2.2	Neuroimaging	3					
	2.3		ior Cortical Atrophy	3					
		2.3.1	Symptoms	3					

		2.3.2	Causes	1						
		2.3.3	Diagnosis	1						
		2.3.4	Management	1						
		2.3.5		2						
		2.3.6		2						
3	Bac	kgroui	nd – Disease Progression Models 4	5						
	3.1	_	· · · · · · · · · · · · · · · · · · ·	6						
	3.2			7						
	3.3			8						
	3.4	Survival Analysis Models								
	3.5	Scalar Biomarker Models								
		3.5.1		19						
		3.5.2	Differential Equation Model	53						
		3.5.3		55						
		3.5.4		8						
		3.5.5		60						
	3.6			i1						
		3.6.1		1						
		3.6.2		64						
		3.6.3	1 0	64						
		3.6.4		55						
	3.7			55						
		3.7.1		55						
	3.8			57						
		3.8.1	0	8						
	3.9			8						
4	Lon	gitudi	nal Neuroanatomical Progression of PCA 7	1						
•	4.1			· 1						
	4.2			2						
	4.3	Metho		- 2						
	1.0	4.3.1		- 2						
		4.3.2	1	- '5						
		4.3.3		'5						
	4.4	Result		78						
	1.1	4.4.1		78						
		4.4.2		'9						
	4.5		0 1	3						
	4.6			34						
5	Nor	rol Esrt	ensions to the EBM and DEM 8	K						
J	5.1			35						
	5.1			5 5						
	5.3			55 86						
	ა.ა			86 86						
		5.3.1 5.3.2		88						
			1							
		5.3.3		9						
		5.3.4	Data Preprocessing	0						

		5.3.5	The Dementia Research Centre Cohort	90			
		5.3.6	The Alzheimer's Disease Neuroimaging Initiative Cohort	91			
	5.4	Result	SS	92			
		5.4.1	DRC Results	92			
		5.4.2	ADNI Results	93			
	5.5	Discus	ssion	94			
		5.5.1	Model Performance on DRC cohort	94			
		5.5.2	Model Performance on ADNI cohort	95			
		5.5.3	Staging-based Metrics	9.			
		5.5.4	Diagnosis Prediction Metrics	9			
	5.6	Summ	ary	9			
		5.6.1	Limitations and Future Work	9			
	5.7	Conclu	usion	9'			
6			Spatiotemporal Progression Model of Brain Pathology	99			
	6.1		eations	99			
	6.2		uction	99			
	6.3			10			
		6.3.1		10			
		6.3.2	0 1	10			
		6.3.3	· · ·	10			
		6.3.4	"	10			
		6.3.5	0 1	10			
		6.3.6		10			
		6.3.7	1	10			
		6.3.8	1	10			
		6.3.9		109			
	6.4			11			
		6.4.1		11			
		6.4.2	Results with ADNI and DRC Datasets	11			
		6.4.3	Model Evaluation	11			
	6.5	Discus		11			
		6.5.1	Summary and Key Findings	11			
		6.5.2	Limitations and future work	11			
	6.6	Conclu	usion	11			
7	Dia	ongo V	newledge Transfer cares Neurodegenerative Diseases	1 2 :			
1	7.1			12. 12			
	7.2			12			
	7.3			12			
	7.3						
	1.4	7.4.1		12 12			
		7.4.1 $7.4.2$		$\frac{12}{12}$			
		7.4.2	· · · · · · · · · · · · · · · · · · ·				
				12 12			
		7.4.4	V I				
	7 5	7.4.5		12			
	7.5			12			
		7.5.1	Synthetic Results	12			

		7.5.2	Results on TADPOLE and DRC Datasets .								128
	7.6	Valida	tion on DTI Data in PCA								133
	7.7	Discus	sion								134
	7.8	Conclu	asion						•		135
8	TADPOLE Challenge: Prediction of Evolution in Alzheimer's Disease 137										
	8.1		butions								137
	8.2		ations								137
	8.3		uction								138
	8.4	Comp	etition Design								139
	8.5	Foreca	sts								140
	8.6										140
		8.6.1	ADNI Data								141
		8.6.2	Image Preprocessing								141
	8.7	TADP	OLE Datasets								141
	8.8	Submi	ssions								143
	8.9	Foreca	st Evaluation								144
		8.9.1	Clinical Status Prediction								144
		8.9.2	Continuous Feature Predictions								145
	8.10	Prizes									146
	8.11	Discus	sion								147
	8.12	Conclu	asion								148
9	Con	clusio	ns								149
	9.1		ary						_		149
	9.2		e Research Directions								151
		9.2.1	Applications to Neurodegenerative Diseases								151
		9.2.2	Applications to Clinical Trials								154
		9.2.3	Methodological Developments								154
		9.2.4	Model Evaluation								156
Δ	Lone	citudi	nal Neuroanatomical Progression of PCA								157
	Lon	gruun	nai reuroanatonneai i rogression oi i ea								101
В			Spatiotemporal Progression Model of Br								171
	B.1		ations - Error in Estimated Trajectories and Dl								172
	B.2	_	arison Between DIVE and Other Models								172
		B.2.1	Motivation								172
		B.2.2	Experiment Design								173
	D 0	B.2.3	Results								173
	B.3		tion of the Generalised EM Algorithm								173
		B.3.1	E-step								174
		B.3.2	M-step								175
		B.3.3	Optimising Trajectory Parameters								176
		B.3.4	Estimating Subject Time Shifts - α , β								178
	.	B.3.5	Estimating MRF Clique Term - λ								179
	B.4		OIVE Implementation - Proof of Equivalence .								180
		B.4.1	Trajectory Parameters - θ								181
		B.4.2	Fast Implementation								181
		B.4.3	Slow Implementation								181

	B.4.5 Subjects-specific Time Shifts - α , β	182 182 182 183
\mathbf{C}	Disease Knowledge Transfer across Neurodegenerative Diseases	185
D	Novel Extensions to the EBM and DEM	187
	0.1 EBM Fitting using Expectation-Maximisation	187
	D.1.1 M-step	187
		190
\mathbf{E}	FADPOLE Challenge: Prediction of Longitudinal Evolution in AD	191
	E.1 Expected Number of Subjects and Available Data for D4	191
\mathbf{F}	Bibliography	193