Ієрархічні матриці у методі граничних елементів

Солук Олена

Львівський національний університет імені І.Франка

1 / 15

Зміст

- 1. Кластерне дерево і блочне кластерне дерево.
- 2. Умова допустимості.
- 3 Означення ${\cal H}$ -матриці.
- 4. Модельна задача ВЕМ.
- 5. Побудова \mathcal{H} -матриці(n-вимірний простір).
- 6. Задача Діріхле для рівняння Лапласа.

2/15

Кластерне дерево

Означення

Дерево \mathbb{T}_I називається кластерне дерево над множиною індексів I з $root(\mathbb{T}_I)=I$, якщо наступні умови виконуються:

- $I \in V$ є коренем \mathbb{T}_I і $\forall v \in V, v \neq \emptyset \Rightarrow v \subseteq I$.
- Якщо $v \in V$ не є листком $(S(v) \neq \emptyset)$, то він рівний об'єднанню своїх синів, тобто $v = \bigcup_{w \in S(v)} w$.

Блочне кластерне дерево

Означення

Нехай \mathbb{T}_I і \mathbb{T}_J - кластерні дерева над множинами індексів I та J відповідно. Кластерне дерево $\mathbb{T}_{I\times J}=\mathbb{T}_{\mathbb{T}_I\times \mathbb{T}_J}=(V,E)$ називається блочне кластерне дерево над добутком множини індексів $I\times J$, якщо $\forall v\in V$ виконуються наступні умови:

- $\mathbb{T}_{I \times J}^{(0)} = I \times J$
- Якщо $v \in \mathbb{T}_{I \times J}^{(I)}$, то існують $\tau \in \mathbb{T}_I^{(I)}$ і $\sigma \in \mathbb{T}_J^{(I)}$ такі, що $v = \tau \times \sigma$.
- Для синів $v = \tau \times \sigma$, де $\tau \in \mathbb{T}_I$ і $\sigma \in \mathbb{T}_J$ виконується $\mathsf{S}(\mathsf{v}) = \begin{cases} \emptyset,\mathsf{якщо} \ S(\tau) = \emptyset \ \mathsf{a}\mathsf{fo} \ S(\sigma) = \emptyset \\ \{\tau' \times \sigma' : \tau' \in S(\tau), \sigma' \in S(\sigma)\},\mathsf{інакшe} \end{cases}$

Умова допустимості

Стандартна умова допустимості

Блок $b= au imes\sigma$ задовольняє стандартину умову допустимості, якщо

$$\mathsf{Adm}(b) = \mathsf{true} \Leftrightarrow \mathsf{min}(\mathsf{diam}(\Omega_{\tau}), \mathsf{diam}(\Omega_{\sigma})) \leq \cdot \mathsf{dist}(\Omega_{\tau}, \Omega_{\sigma})$$

Для одновимірної проблеми:

$$diam(\tau) \leq dist(\tau, \sigma)$$

Приклад побудови блочного кластерного дерева

Означення \mathcal{H} -матриці

Означення

Нехай $\mathbb{T}_{I \times I}$ - блочне кластерне дерево над множиною індексів I. Означаємо множину \mathcal{H} -матриць як

$$\mathcal{H}(\mathbb{T}_{I imes I},k):=\{M\in\mathbb{R}^{I imes I}| \mathit{rank}(M|_{t imes s})\leq k$$
 для всіх

допустимих листків t imes s дерева $\mathbb{T}_{I imes I} \}$

Метод граничних елементів

Нехай задано функцію $F:[0,1] \to \mathbb{R}$. Шукаємо функцію $u:[0,1] \to \mathbb{R}$, яка задовільняє наступне інтегральне рівняння:

$$\int_0^1 \ln|x - y| u(y) dy = F(x), x \in [0, 1]$$
 (1)

Метод Гальоркіна

$$V_n = span\{\varphi_0, \dots, \varphi_{n-1}\}$$

$$\int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| u(y) dy dx = \int_0^1 \varphi_i(x) F(x) dx \tag{2}$$

Потрібно знайти u_n в просторі V_n :

$$u_n = \sum_{j=0}^{n-1} u_j \varphi_j \tag{3}$$

таке, що вектор коефіцієнтів u є розв'язком лінійної системи

$$Gu = f$$

$$G_{ij} = \int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| \varphi_j(y) dy dx$$

$$f_i = \int_0^1 \varphi_i(x) F(x) dx$$
(4)

9 / 15

Базисні функції визначені як

$$\varphi_i(x) = \begin{cases} 1, & \text{якщо } \frac{i}{n} \leq x \leq \frac{i+1}{n} \\ 0, & \text{інакше} \end{cases}$$

Шукаємо наближену матрицю \tilde{G} . Для цього заміняємо ядро $g(x,y)=\ln|x-y|$ на розкладене ядро

$$\tilde{g}(x,y) = \sum_{\nu=0}^{k-1} g_{\nu}(x) h_{\nu}(y)$$
 (5)

Будуємо локальні наближення на підобластях $[0,1] \times [0,1]$, де g є гладкою: $\tau := [a,b]$, $\sigma := [c,d]$, $\tau \times \sigma \subset [0,1] \times [0,1]$, $\tau \cap \sigma = \emptyset$.

4 D > 4 D > 4 D > 4 D > 5 P

Геометрична бісекція

Ділимо множину індексів $\hat{t} \in I$, що відповідає кластеру t. Для кожного індекса $i \in \hat{t}$, що відповідає точці $x_i \in \mathbb{R}^n$ можемо визначити

$$a_I := \min\{(x_i)_I : i \in \hat{t}\}$$

$$b_I := \max\{(x_i)_I : i \in \hat{t}\}$$

для кожного $I \in \{1,...,n\}$.

Таким чином всі точки знаходяться в паралельній осі коробці $[a_1,b_1] imes... imes [a_n,b_n].$

Обмежувальні коробки

Якщо $Q_t=[a_1,b_1] imes... imes[a_n,b_n]$ і $Q_s=[c_1,d_1] imes... imes[c_n,d_n]$, то діаметр і відстань рахуємо за наступними формулами

$$extit{diam}(Q_t) = \left(\sum_{l=1}^n (b_l - a_l)^2
ight)^{rac{1}{2}}$$

$$diam(Q_s) = \left(\sum_{l=1}^n (d_l - c_l)^2\right)^{\frac{1}{2}}$$

$$dist(Q_t, Q_s) = \left(\sum_{l=1}^n dist([a_l, b_l], [c_l, d_l])^2\right)^{\frac{1}{2}}$$

Внутрішня задача Діріхле

Знайти
$$u\in C^2(\Omega)\cap C(ar\Omega)$$
 :

$$riangle u = 0$$
 в Ω

$$u=f$$
 на Γ

де $f \in C(\Gamma)$ - задана.

Потенціал простого шару

$$\Upsilon_{slp}[u](x) := -\frac{1}{2\pi} \int_{\Gamma} \log(|x-y|) u(y) dy$$

Інтерполяція

Внаслідок інтерпрляції отримуємо

$$\tilde{g}(x,y) := \sum_{v \in K} g(x_v,y) \mathcal{L}_v(x)$$

Відповідні матриці визначені наступним чином

$$A_{iv} := \int_{\Omega} \varphi_i(x) \mathcal{L}_v(x) dx$$

$$B_{jv} := \int_{\Omega} \varphi_j(x) \tilde{g}(x_v, y) dy$$

Дякую за увагу!