UNIT 4:

Distance-Based Models:

- 1. Neighbors and Examples
- 2. Nearest Neighbor Classification (KNN)
 - Introduction to KNN:
 - KNN is used for both classification and regression.
 - For classification, it predicts the class based on the majority vote of the nearest neighbors.
 - For regression, it predicts the value based on the mean value of the nearest neighbors.
 - The principle is that "birds of a feather flock together."

• KNN Classification Process:

- Determine the value of kk (number of neighbors).
- Calculate the distance to find the nearest neighbors.
- Classify based on the majority class among the nearest neighbors.

Finding the Optimal kk Value:

- Too small *kk* can lead to sensitivity to outliers.
- Too large *kk* makes the model dominated by the majority class.
- Use the square root of the number of data points or error plots to find an optimal *kk*.
- Always use an odd kk to avoid ties.

Distance Measures:

- Euclidean Distance: Derived from Pythagoras theorem.
- Manhattan Distance, Minkowski Distance.

• Example Dataset:

Demonstrates KNN classification using height and weight to predict BMI categories.

Kernel-Based Models:

1. Support Vector Machines (SVM)

- Linear SVM:
 - Classifies data by finding the best hyperplane that separates the classes.
- RBF SVM:
 - Uses a radial basis function to handle non-linear classification.
- Sigmoid SVM:
 - Uses a sigmoid kernel for the SVM algorithm.
- Polynomial SVM:
 - Uses a polynomial kernel to handle complex relationships in the data.

Probability-Based Models:

- 1. Conditional Probability
- 2. Bayes Theorem
- 3. Naive Bayes Classification
 - Assumes independence between predictors and calculates the probability of each class.

4. Bayesian Regression

• Combines Bayes' theorem with regression models to incorporate prior distributions.

Case Studies:

- Classification Algorithm for Student Learning Capacity
 - Applying classification algorithms to predict student performance.

Clustering Techniques (Related Topics):

1. K-Means Clustering:

- **Elbow Method**: Determines the optimal number of clusters by plotting within-cluster sum of squares against the number of clusters.
- **Python Implementation**: Demonstrates how to preprocess data, apply K-Means, and analyze clusters.

2. Hierarchical Risk Parity (HRP):

- An innovative portfolio construction method that uses hierarchical clustering for asset allocation.
- Steps for Implementation:
 - Calculate correlation and distances.
 - Perform hierarchical clustering.
 - Quasi-diagonalize the covariance matrix.
 - Recursive bisection for weight allocation.
- Python Implementation: Uses numpy, pandas, scipy, and matplotlib.

Pairs Trading Using K-Means Clustering:

- 1. Data Collection:
 - Collect historical price data, volumes, and volatility measures.
- 2. Feature Selection:
 - Choose features like returns, volatility, trading volume, and other technical indicators.

3. Preprocessing:

- Normalize data using z-score or min-max scaling.
- Calculate distances for clustering.

4. Apply K-Means Clustering:

- Choose the number of clusters (using elbow method).
- Perform clustering and analyze clusters.

5. Identify Potential Pairs:

• Select pairs with similar financial characteristics and test for correlation and cointegration.

6. Trading Strategy Development:

- Define entry and exit points.
- Backtest the strategy with historical data.

7. Implementation and Monitoring:

• Deploy capital and monitor performance, adjusting as necessary.

Tools and Technologies:

Python Libraries:

• Scikit-learn for K-Means, Pandas for data manipulation, NumPy for numerical calculations, Matplotlib for plotting data.

This document provides a comprehensive overview of supervised learning techniques, focusing on KNN, SVM, and probability-based models, and extends into practical applications such as clustering for pairs trading and risk parity in portfolio management.

Key Concepts:

1. Supervised vs. Unsupervised Learning

- Supervised Learning:
 - The model learns using labeled data.
 - Example: Training a model to recognize cats and dogs using labeled images where each image is tagged as 'cat' or 'dog'.
- Unsupervised Learning:
 - The model learns using unlabeled data.
 - Example: Feeding a model with images of cats and dogs without labels. The model tries to find patterns and group similar images together.

Unsupervised Learning Process:

- The model analyzes the raw data to find hidden patterns.
- Suitable algorithms, such as K-Means clustering, are applied to group data into clusters based on similarities.

K-Means Clustering:

- **Objective**: To partition data points into *kk* clusters.
- Example Data Points:
 - A1(2,10), A2(2,5), A3(8,4)
 - B1(5,8), B2(7,5), B3(6,4)
 - C1(1,2), C2(4,9)
- **Distance Function**: Euclidean distance is used to measure the similarity between data points.

Steps in K-Means Clustering:

- 1. Initial Cluster Centers:
 - Start by assigning initial centers (centroids) for each cluster, e.g., A1, B1, and C1.
 - Calculate distances from each data point to the initial centroids.
 - Assign each data point to the nearest cluster based on the distance.

2. Assigning Data Points to Clusters:

- For each data point, compute the distance to all centroids and assign it to the closest one.
- Example:
 - Point A1 (2,10) is closest to centroid A1.
 - Point A2 (2,5) is closest to centroid C1.
 - And so on.

3. Recomputing Centroids:

- After assigning all points to clusters, recalculate the centroids by averaging the points in each cluster.
- Example:
 - If A1, B1, and C2 belong to Cluster 1, compute the new centroid by averaging their coordinates.

4. Iterate:

• Repeat the assignment and centroid recalculation steps until the centroids no longer change significantly, indicating that the clusters are stable.

Example Calculation:

- Initial Assignment:
 - Calculate distances of each point from initial centroids A1, B1, and C1.
 - Assign points to the nearest centroids and form initial clusters.
- Recompute Centroids:
 - Example: For Cluster 1 with points (2,10), (5,8), (4,9):
 - New centroid = Average of coordinates = ((2+5+4)/3, (10+8+9)/3) = (3.67, 9)

• Reassign Points:

- Calculate distances from each point to the new centroids.
- Reassign points based on the new distances.
- Continue until centroids stabilize.

Final Clusters:

• After several iterations, the data points stabilize into distinct clusters with minimal changes in centroids.

Conclusion:

- K-Means clustering is an iterative process that partitions data into clusters based on similarity.
- It involves selecting initial centroids, assigning points to clusters, recomputing centroids, and iterating until the clusters are stable.

This document provides a detailed explanation of unsupervised learning and a step-by-step guide to applying K-Means clustering to group data points into meaningful clusters.

1. Definition of NLP

• Natural Language Processing (NLP): A field of computer science, artificial intelligence, and linguistics focused on the interaction between computers and human languages. It enables machines to understand, interpret, and respond to human language.

2. Applications of NLP

- 1. **Question Answering**: Systems that automatically answer questions posed by humans.
- 2. **Spam Detection**: Identifying and filtering unwanted emails.
- 3. **Sentiment Analysis**: Analyzing the attitude, emotions, and opinions expressed in text.
- 4. **Machine Translation**: Translating text or speech from one language to another (e.g., Google Translator).
- 5. **Spelling Correction**: Correcting spelling errors in text (e.g., Microsoft Word).
- 6. **Speech Recognition**: Converting spoken words into text, used in applications like virtual assistants and voice-activated systems.
- 7. **Chatbots**: Automated systems that engage in conversation with users, commonly used for customer service.
- 8. **Information Extraction**: Extracting structured information from unstructured or semi-structured text.
- 9. **Natural Language Understanding (NLU)**: Converting large text sets into structured, formal representations for easier manipulation by computers.

3. Challenges in NLP

- Contextual Understanding: Words and phrases can have different meanings based on context.
- 2. **Synonyms**: Multiple words can express the same idea.
- 3. Irony and Sarcasm: Difficult for models to detect due to literal vs. intended meanings.
- 4. **Ambiguity**: Words or sentences can have multiple interpretations.
- 5. **Errors in Text and Speech**: Misspellings and misused words can cause issues.
- 6. **Colloquialisms and Slang**: Informal language varies by region and culture.
- 7. **Domain-Specific Language**: Different fields use specialized terminology.

4. NLP Pipeline

- Steps to build an NLP Pipeline:
 - 1. **Sentence Segmentation**: Breaking down text into sentences.
 - 2. **Word Tokenization**: Splitting sentences into words or tokens.
 - 3. **Stemming**: Reducing words to their root form.
 - 4. **Lemmatization**: Grouping different forms of a word to its base form.
 - 5. **Identifying Stop Words**: Removing common words like "is", "and", "the".
 - 6. **Dependency Parsing**: Analyzing the grammatical structure of a sentence.
 - 7. **POS Tagging**: Identifying parts of speech in text.
 - 8. **Named Entity Recognition (NER)**: Detecting and classifying named entities (e.g., people, organizations).
 - 9. **Chunking**: Grouping tokens into meaningful phrases.

5. Phases of NLP

- 1. **Lexical Analysis**: Breaking down text into words and sentences.
- 2. **Syntactic Analysis (Parsing)**: Checking grammar and structure.
- 3. **Semantic Analysis**: Understanding the meaning of words and sentences.
- 4. Discourse Integration: Understanding the context of sentences within a larger text.
- 5. **Pragmatic Analysis**: Interpreting the intended meaning based on context.

6. Text Summarization

• **Need for Text Summarization**: Managing the vast amount of data generated daily by creating concise summaries that convey the main points.

• Approaches:

- 1. **Extraction-based Summarization**: Selecting key phrases from the text.
- 2. **Abstraction-based Summarization**: Generating new sentences that capture the essence of the text.

7. Advantages and Disadvantages of NLP

• Advantages:

- Efficient and direct responses to queries.
- Improved communication between computers and humans.
- Enhanced documentation processes and information retrieval.

• Disadvantages:

- Contextual limitations.
- Unpredictability and potential for requiring more input.
- Inability to adapt to new domains without specific training.

8. Components of NLP

- 1. Natural Language Understanding (NLU): Extracting meaningful information from text.
- 2. Natural Language Generation (NLG): Generating natural language text from data.

The document provides a comprehensive overview of NLP, from its fundamental concepts and applications to the challenges and methodologies involved in processing natural language.