ADsP 특강

- 단순선형회귀분석 -

조상구 빅데이터과 경복대학교

회귀분석(Regression analysis)

https://www.kaggle.com/code/ryanholbrook/stochastic-gradient-descent

회귀분석

- 어떤 변수가 다른 변수에 영향을 받는 경우, 아래와 같이 정의
 - 종속변수 (=y): 영향을 받는 변수
 - 독립변수 (=x): 영향을 주는 변수

- 회귀분석 (Regression Analysis)
 - 독립변수의 변화에 따른 종속변수의 변화를 예측하는 분석방법
- 단순선형회귀분석
 - 단순: 독립변수가 하나임
 - 선형: 독립변수와 종속변수의 관계가 선형 (직선) 으로 표현됨

단순선형회귀모형

- 관측치: (*X*₁, *Y*₁), (*X*₂, *Y*₂), ..., (*X*_n, *Y*_n)
- 모형: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, i = 1, 2, ..., n
- 회귀계수: β₀, β₁

단순선형회귀모형

■ 가정

- 독립변수는 결정되어 있음. 즉, 확률변수가 아님
- ϵ_i 는 오차를 나타내는 확률변수로 $N(0, \sigma^2)$ 를 따름
- Y는 X로 인해 예측되는 값에 오차가 더해진 값

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, 2, ..., n$$

 $\varepsilon_i \sim N(0, \sigma^2)$
 $Cov(\varepsilon_i, \varepsilon_j) = 0, \quad i \neq j$

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$

즉, Y_i 도 정규분포를 따르는 확률변수

회귀분석 계수(coefficients) 구하기 (1/2)

$$y = \alpha + \beta x$$
,

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
.

회귀분석 계수(coefficients) 구하기 (1/2)

$$y = \alpha + \beta x$$
,

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
.

회귀계수 추정 [1/2]

- 최소자승법 (method of least squares)
 - 종속변수의 관측된 값과 모형에 의한 예측된 값 사이의 오차의 제곱합을 최 소화 시키는 회귀계수를 추정함이 목적
 - 오차의 제곱을 최소화시키는 β_0, β_1 를 찾는 과정

$$\min_{\beta_0, \beta_1} Q = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)^2$$

$$\begin{cases} \frac{\partial Q}{\partial \beta_0} = -2\sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) = 0\\ \frac{\partial (Q)}{\partial \beta_1} = -2\sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) X_i = 0 \end{cases}$$

$$\begin{cases} n\hat{\beta}_0 + \hat{\beta}_1 \sum X_i = \sum Y_i \\ \hat{\beta}_0 \sum X_i + \hat{\beta}_1 \sum X_i^2 = \sum X_i Y_i \end{cases}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

오차항의 분산 [1/2]

- 오차항은 관측될 수 없으므로, 잔차의 표준편차에 의해서 추정됨
- 잔차(residual):

$$e_i = Y_i - \hat{Y}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

■ 잔차제곱합(error sum of squares; SSE):

$$SSE = \sum e_i^2 = \sum (Y_i - \hat{Y}_i)^2$$

■ 잔차평균제곱(mean square error; MSE):

$$MSE = \hat{\sigma}^2 = s^2 = \frac{SSE}{n-2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

• MSE 는 σ^2 의 불편 추정량이다. (증명해 볼 것)

회귀계수에 대한 검정 (1/3)

■ 두 회귀계수의 추정량 $\hat{\beta}_1$ 와 $\hat{\beta}_0$ 도 확률변수이며 정규 분포를 따름

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

$$\hat{\beta}_0 \sim N(\beta_0, \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2} \right)), \quad \hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{\sum (X_i - \overline{X})^2})$$

• $E[\hat{\beta}_1] = \beta_1$ 두 회귀계수의 추정량 $\hat{\beta}_1$ 와 $\hat{\beta}_0$ 은 각각 • $E[\hat{\beta}_0] = \beta_0$ 두 회귀계수의 불편추정량임

회귀계수에 대한 검정 (2/3)

■ *β*₁에 대한 t-검정

- 가설: $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$
- 검정통계량

$$T_1 = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} \quad se(\hat{\beta}_1) = \sqrt{\frac{MSE}{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

- T₁은 자유도 n-2 인 t 분포를 따름

데이터

								1 to 25 of 1	7000 entries Filter 🛭 🔞
index	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0
1	-114.47	34.4	19.0	7650.0	1901.0	1129.0	463.0	1.82	80100.0
2	-114.56	33.69	17.0	720.0	174.0	333.0	117.0	1.6509	85700.0
3	-114.57	33.64	14.0	1501.0	337.0	515.0	226.0	3.1917	73400.0
4	-114.57	33.57	20.0	1454.0	326.0	624.0	262.0	1.925	65500.0
5	-114.58	33.63	29.0	1387.0	236.0	671.0	239.0	3.3438	74000.0
6	-114.58	33.61	25.0	2907.0	680.0	1841.0	633.0	2.6768	82400.0
7	-114.59	34.83	41.0	812.0	168.0	375.0	158.0	1.7083	48500.0
8	-114.59	33.61	34.0	4789.0	1175.0	3134.0	1056.0	2.1782	58400.0
9	-114.6	34.83	46.0	1497.0	309.0	787.0	271.0	2.1908	48100.0
10	-114.6	33.62	16.0	3741.0	801.0	2434.0	824.0	2.6797	86500.0
11	-114.6	33.6	21.0	1988.0	483.0	1182.0	437.0	1.625	62000.0
12	-114.61	34.84	48.0	1291.0	248.0	580.0	211.0	2.1571	48600.0
13	-114.61	34.83	31.0	2478.0	464.0	1346.0	479.0	3.212	70400.0

상관계수

								1 to 9 o	f 9 entries Filter 📙 🔞
index	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
longitude	1.0	-0.93	-0.11	0.05	0.07	0.1	0.06	-0.02	-0.04
latitude	-0.93	1.0	0.02	-0.04	-0.07	-0.11	-0.07	-0.08	-0.14
housing_median_age	-0.11	0.02	1.0	-0.36	-0.32	-0.3	-0.3	-0.12	0.11
total_rooms	0.05	-0.04	-0.36	1.0	0.93	0.86	0.92	0.2	0.13
total_bedrooms	0.07	-0.07	-0.32	0.93	1.0	0.88	0.98	-0.01	0.05
population	0.1	-0.11	-0.3	0.86	0.88	1.0	0.91	-0.0	-0.03
households	0.06	-0.07	-0.3	0.92	0.98	0.91	1.0	0.01	0.06
median_income	-0.02	-0.08	-0.12	0.2	-0.01	-0.0	0.01	1.0	0.69
median_house_value	-0.04	-0.14	0.11	0.13	0.05	-0.03	0.06	0.69	1.0

결과 표 해석하기 (1/2)

Call:

lm(formula = median_house_value ~ median_income, data = data_df)

10

median_income

12

14

결과 표 해석하기 (2/2)

median_house_value = 294610.2 + 20,1* median_income

Residual standard error: 87590 on 98 degrees of freedom Multiple R-squared: 0.03007, Adjusted R-squared: 0.02017 F-statistic: 2.952 on 1 and 98 DF, p-value: 0.08874

- R-squared: 결정 계수는 모델이 데이터의 변동성을 얼마나 잘 설명하는지 나타내며, 이 경우에는 약 3.01%입니다.
- F-statistic과 그 p-값은 모델 전체가 유의한지를 나타냅니다.

```
Call:
lm(formula = median_house_value ~ median_income, data = data_df)
Residuals:
    Min
             1Q Median
                              3Q
                                      Max
-150196.3 -71794.5 -2145.9 67274.4 172644.8
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
             294610.2 29948.9 9.839 <2e-16 ***
median income
                20.1
                           11.7
                                 1.718 0.0887 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 87590 on 98 degrees of freedom
Multiple R-squared: 0.03007, Adjusted R-squared: 0.02017
F-statistic: 2.952 on 1 and 98 DF, p-value: 0.08874
```


모형의 적합도 검정 [1/4]

- 모형의 적합도와 결정계수 (R²)
 - 정의 : SST에 대한 SSR의 비율, 즉 모형으로 설명할 수 있는 부분의 비율 _{R2} SSR , SSE

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

• $0 \le R^2 \le 1$

전체제곱합의 분할: SST=SSR+SSE

전체제곱합(SST): $SST = \sum (Y_i - \overline{Y})^2$

회귀제곱합(SSR): $SSR = \sum (\hat{Y}_i - \overline{Y})^2$

잔차제곱합(SSE): SSE = $\sum (Y_i - \hat{Y}_i)^2$

모형의 적합도 검정 (3/4)

- 회귀모형에 대한 유의성 검정(F-검정)
 - 단순선형 회귀모형에서는 t-검정과 동일 (Part I page 10)
- 검정과정
 - 가설: $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$
 - 검정통계량: $F_0 = \frac{SSR/1}{SSE/(n-2)} = \frac{MSR}{MSE}$

(가설 H₀가 옳을 때 위의 F₀는 자유도 (1, n-2)를 갖는 F-분포를 따름.)

- 기각결정
 - F₀ ≥ F_(α; 1, n-2)이면 H₀ 를 기각한다.

잔차 분석 (1/4)

■ 단순회귀분석에서 모수의 추정은 오차항에 대한 가정을 바탕으로 함

- 오차는 정규분포를 따른다
- E[ε_i] = 0, i=1,2,...,n
 → 모든 입력변수 값에 대해 평균이 0이다
- 등분산성: Var[ε_i] = σ², i=1,2,...,n
 → 모든 입력변수 값에 대해 산포가 동일하다
- Cov[ε_i, ε_i] = 0, i≠j, i,j=1,2,...,n
 → 어떤 Y값에 대한 오차는 다른 Y값의 오차와 독립이다

잔차 분석 [2/4]

■ 잔차 산점도를 통해 오차항의 가정을 판단함

오차항의 가정에 위배되는 경우, 변수의 변환 혹은 다른 회귀모형을 사용해야함

=========	:======	OLS Regi	ress ====	ion Res	sults ======		========		
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	04:27:2 : 2064 2063		LS es 22 24 40 37 2	Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:			0.479 0.479 9502. 0.00 -25505. 5.102e+04 5.104e+04		
======================================	coef).5950).4342		134	t .836 .497 .375	P> t 0.000 0.000 0.000	0.428	======================================		
======================================	:=====	4804.11 0.00 1.25	79 00 50	Durbir	 n-Watson: e-Bera (JB) JB):	-======	0.69 12852.86 0.0		

$$y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \epsilon$$

