Lab Assignment-3

MTH 308 AND & MTH 308B: NUMERICAL ANALYSIS AND SCIENTIFIC Computing-I

January-April 2024, IIT Kanpur

1. Write a C program on Gaussina Elimination (on $n \times n$ system) with backward substitution. Hint: (You can use the following algorithm)

INPUT: Number of unknowns and equations n, the augmented matrix $A = [a_{ij}]$ for $1 \le i \le n \text{ and } 1 \le j \le n+1.$

OUTPUT: The solution vector $x = [x_i]$ or message that the system has no unique solution.

Step-1: For i = 1, 2, ..., n - 1 do Steps 2 to 4.

Step-2: Let p be the smallest integer with $i \leq p \leq n$ and $a_{pi} \neq 0$.

If no integer p can be found, then OUTPUT ('no unique solution exists'); STOP

Step-3: If $p \neq i$ then perform $R_i \leftrightarrow R_p$

Step-4: For $k = i + 1, \dots, n$ do Steps 5 and 6.

Step-5: Set $m_{ki} = \frac{a_{ki}}{a_{ii}}$

Step-6: Perform $(R_k - m_{ki}R_i) \to R_k$

Step-7: If $a_{nn} = 0$, then OUTPUT ('no unique solution exists'); STOP.

Step-8: Set $x_n = \frac{a_{n,n+1}}{a_{nn}}$ Step-9: For i = n - 1, ..., 1, set $x_i = (a_{i,n+1} - \sum_{j=i+1}^n a_{ij}x_j)/a_{ii}$.

Step-10: OUTPUT $x = [x_1, x_2, ..., x_n]$

STOP.

2. Write a C program on LU decomposition of a square matrix A.

Hint: (You can use the following algorithm)

INPUT: The dimension n and the entries a_{ij} , $1 \le i, j \le n$, of A, the diagonal

$$l_{11} = l_{22} = \dots = l_{nn} = 1$$

of L or the diagonal $u_{11} = u_{22} = \cdots = u_{nn} = 1$ of U.

OUTPUT: The entries l_{ij} , $1 \le j \le i$, $1 \le i \le n$ of L and the entries, u_{ij} , $i \le j \le n$, $1 \le n$ $i \leq n \text{ of } U$.

Step-1: Select l_{11} and u_{11} satisfying $l_{11}u_{11} = a_{11}$.

If $l_{11}u_{11} = 0$, then OUTPUT ('Factorization impossible'); STOP.

Step-2: For j = 2, ..., n set $u_{1j} = a_{1j}/l_{11}$; or $l_{j1} = a_{j1}/u_{11}$;

Step-3: For i = 2, ..., n - 1 do Steps 4 and 5.

Step-4: Select l_{ii} and u_{ii} satisfying $l_{ii}u_{ii} = a_{ii} - \sum_{k=1}^{i-1} l_{ik}u_{ki}$.

If $l_{11}u_{11} = 0$ then OUTPUT ('Factorization impossible');

STOP.

Step-5: For
$$j = i + 1, ..., n$$
, set $u_{ij} = \frac{1}{l_{ii}} \left[a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \right]$, $l_{ji} = \frac{1}{u_{ii}} \left[a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki} \right]$.

Step-6: Select l_{nn} and u_{nn} satisfying $l_{nn}u_{nn}=a_{nn}-\sum_{k=1}^{n-1}l_{nk}u_{kn}$. **Step-7**:

OUTPUT $(l_{ij} \text{ for } j = 1, \ldots, i \text{ and } i = 1, \ldots, n)$; and OUTPUT $(u_{ij} \text{ for } j = i, \ldots, n \text{ and } i = 1, \ldots, n)$; STOP.

End.