Appendix for Malishev, M & Civitello, DJ Linking bioenergetics and parasite transmission models suggests mismatch between snail host density and production of human schistosomes

Model construction

We built an individual-based disease transmission and dynamic energy budget model for schistosomiasis infection (SIDEB) of a size-structured *Biomphalaria glabrata* host population and its human infectious parasite *Schistosoma mansoni*. The SIDEB model is informed by two sub models: a complete dynamic energy and mass budget (DEB) model for *B. glabrata*, including energy and mass compartments for *S. mansoni* parasite biomass and a disease transmission model.

Table A1. Key dynamic energy budget state variables for individual hosts and within-host parasite biomass (bold). Equations refer to the equation numbers listed under 'Dynamic energy budget for *B. glabrata*'. Dimensions and units: —, dimensionless; C, carbon; d, day; L, length; mg, milligrams; mm, millimeters.

Parameter	Definition	$\operatorname{Dimension}(\operatorname{unit})$	Equation
\overline{L}	structural length	mm	Eq. 2
e	scaled reserve density	_	Eq. 3
D	host development	mg C	Eq. 4
R_H	energy in reproduction buffer	mg C	Eq. 5
δ	damage density (infection and starvation costs)	d^{-1}	Eq. 8
H	starvation-related hazard rate	d^{-1}	Eq. 9
L_G	shell length	L(mm)	_
age	age of egg (hatches at 10 days)	d	_
$oldsymbol{P}$	parasite biomass	mg C	Eq. 6
R_P	energy in parasite reproduction	mg C	Eq. 7

Table A2. Definitions of model state variables for the simulation model environment. Dimensions and units: #, number; C, carbon; g, grams; L, liter; mg, milligrams.

Parameter	Definition	Dimension(unit)
$\overline{F_a}$	algae resource density	$mg \ C \ L^{-1}d^{-1}$
F_d	detritus resource density	$mg \ C \ L^{-1}d^{-1}$
M	total number of miracidia	$\# L^{-1}$
C	cercarial density	$\# 0.1 L^{-1}$
G	total number of host eggs	$\# L^{-1}$

Table A3. Parameters and compound functions for the bioenergetic model of within-host infection dynamics.

A) Primary parameters (Host)		
Quantity	Description	Units
i_M	Surface area-specific maximum host ingestion rate	$mg \ C \ d^{-1} \ mm^{-2}$
F_h	Host (Type-II) foraging half saturation constant	mg C
Y_{EF}	Yield of reserve on resources	dimensionless
Y_{VE}	Yield of structure on reserve	dimensionless
κ	Proportion of mobilized reserve allocated to soma	dimensionless
m_D	Maintenance rate for maturity	d^{-l}
L_M	Maximum physical host length	mm
χ	Ratio of structural biomass to physical length cubed	$mg\ C\ mm^{-3}$
E_M	Maximum host reserve biomass relative to structural biomass	dimensionless
D_R	Host maturity threshold for reproduction	mg C
<i></i> ЕН	Carbon content of host offspring	mg C
3) Primary par	rameters (Parasite)	
Y_{AE}	Yield of parasite assimilate on host reserve	dimensionless
Y_{PA}	Yield of parasite biomass on assimilate	dimensionless
Y_{RP}	Yield of parasite offspring biomass on assimilate	dimensionless
i_{PM}	Parasite maximum mass-specific ingestion rate	$mg \ C \ d^{-1}$
$\mathcal{C}h$	Parasite ingestion half saturation constant	dimensionless
p_h	Parasite allocation half-saturation constant	dimensionless
α	Parasite manipulation of host allocation rule	$mg C^{-l}$
m_P	Mass-specific maintenance rate for parasites	d^{-l}

(C) Primary parameters (Damage, hazard, and survivorship)			
k_R	Damage repair rate constant		d^{-l}
Θ	Intensity of parasite-induced damage	e	dimensionless
h_b	Background hazard rate		d^{-l}
h_{δ}	Hazard coefficient of damage		d^{-l}
m_R	Scaled energy expenditure rate for d	amage repair	d^{-I}
$\delta_{ heta}$	Damage density threshold		dimensionless
(D) Derived pa	rameters and functions		
	Equation	Description	Units
	$a_M = i_M Y_{EF}$	Maximum host assimilation rate	$mg \ C \ d^{-1} \ mm^{-2}$
	$g = \frac{1}{\kappa^* Y_{VE} E_m}$	Cost of structural growth relative to maximum possible allocation to soma	dimensionless
	$r_P = \frac{\frac{P^{-2}}{\chi L^3}}{p_h^2 + \frac{P^{-2}}{\chi L^3}}$	Proportional allocation of parasite assimilate to reproduction	dimensionless
	$Y_{PE} = Y_{PA}Y_{AE}$	Yield of parasite biomass on host reserve	dimensionless
	$\gamma_{RP} = \frac{Y_{RP}}{Y_{PA}}$	Relative yield of parasite reproduction on parasite assimilate	dimensionless
$C = \left(\frac{g}{g}\right)$	$\frac{de}{de} \left(a_M L^2 + \frac{(m_V + m_R E_M \delta) \chi L^3}{\kappa^* g} \right)$	Commitment/mobilization rate of reserve	mg C d ⁻¹
	$m_V = rac{\kappa a_M}{\chi L_M}$	Mass-specific maintenance rate for structure	d^{-l}
	$\mu_D = rac{m_D}{m_V}$	Scaled maturity maintenance rate	dimensionless

$M=\chi(1+E_M)$	Volume-biomass coefficient for hosts	mg C mm ⁻³
$\kappa^* = min(\kappa + \alpha P, 1)$	Realized proportion of mobilized reserve allocated to soma	dimensionless
$f_H = \frac{F}{F_h + F}$	Scaled host functional response	dimensionless
$f_P = \frac{e}{e_h + e}$	Scaled parasite functional response	dimensionless

Table A4. Parameter estimates used in this simulation study.

Parameter	Description	Estimate ^{1,2,3}	Units
Host parameter	<u>'S</u>		
К	Proportional allocation to soma	0.91	_
M	Mass:volume relationship	$5.46 \cdot 10^{-3}$	$mg\ C\ mm^{-3}$
E_M	Maximum host reserve biomass relative to structural biomass	1.32	mg C
L_M	Maximum physical host length	55.8	mm
i_M	Surface area-specific maximum host ingestion rate	3.06 · 10 ⁻²	$mg\ C\ d^{-l}\ mm^{-2}$
F_h	Host (Type-II) foraging half saturation constant	2.00	$mg~C~L^{-1}$
Y_{EF}	Yield of reserve on resources	0.279	_
Y_{VE}	Yield of structure on reserve	0.269	_
μ_D	Maintenance rate for maturity	0.139	_
D_R	Host maturity threshold for reproduction	0.633	mg C
€Н	Carbon content of host offspring	0.015	mg C
Parasite parame	eters eters		
α	Parasite manipulation of host allocation rule	1.88	$mg C^{-1}$
i_{PM}	Parasite maximum mass-specific ingestion rate	0.592	$mg \ C \ d^{-1}$
Y_{PE}	Yield of parasite biomass on reserve	0.937	_
Y_{RP}	Yield of parasite offspring biomass on assimilate	0.824	_
e_h	Parasite ingestion half saturation constant	$2.17 \cdot 10^{-2}$	_
m_P	Mass-specific maintenance rate for parasites	0.317	d^{-1}
p_h	Parasite allocation half-saturation constant	0.132	_
€P	Carbon content of parasite offspring	4 · 10 ⁻⁵	mg C

Damage, hazard, survival, and repair parameters					
k_R	Damage repair rate constant	$3.14 \cdot 10^{-2}$	d^{-1}		
δ_{θ}	Damage density threshold	$9.12 \cdot 10^{-2}$	_		
h_δ	Hazard coefficient of damage	$2.06 \cdot 10^{-3}$	d^{-l}		
h_b	Background hazard rate	$7.76 \cdot 10^{-4}$	d^{-l}		
Θ	Intensity of parasite-induced damage	259	_		
m_R	Scaled energy expenditure rate for damage repair	5.57 · 10 ⁻⁵	d⁻¹		
Transmission model					
arepsilon	Snail-miracidia contact rate	20.0	$L d^{\!-\!1}$		
σ	Miracidial infection probability given contact	0.50	_		
M_{in}	Miracidial input rate	10	$L^{-l} d^{-l}$		
m_M	Mortality rate of miracidia	1	d^{-1}		

Environmental/Resource parameters

ENV

r

K

det

 M_Z

Volume of environment

Algal maximum growth rate

Algal carrying capacity

Detritus subsidy rate

Mortality rate of cercariae

500

varied

5

varied

1

L d^{-l}

 $mg C L^{-l}$

 $mg C L^{-l} d^{-l}$

 d^{-l}

^{1.} All DEB parameter estimates rounded to three significant figures.

^{2.} Transmission model parameters rounded from estimates in Civitello and Rohr (2014).

^{3.} Environmental/resource parameters chosen to reflect a $1\text{m}^2 \cdot 0.5$ m deep volume of habitat, realistic quantities of algal growth or detrital input, and rates of parasite mortality.

Dynamic energy budget sub-model for B. glabrata.

We outline the energy and mass budget equations for the dynamic energy and mass budget state variables for the intermediate snail host *Biomphalaria glabrata*. Equation number in brackets refers to the equation references in Civitello *et al.* (2018).

Resource, F, growth in the environment (Eq. 1)

$$\frac{dF}{dt} = -i_M L^2 f_H$$

where i_M is the maximum ingestion rate per individual host, L is host length (cm), and f_H is the host functional feeding response.

Host body length, L (growth) (Eq. 2)

$$\frac{dL}{dt} = \frac{gY_{VE}}{3\chi} \cdot \left(\frac{\kappa^* a_M e - (m_V + m_R E_M \delta) \chi L}{e + g}\right)$$

where g is the energy investment ratio per unit of biomass cm^3 , Y_{VE} is yield of structure on host energy reserve, χ is the ratio of structural biomass to physical length (mg C mm⁻³), κ is the allocation of mobilized energy reserve e to somatic maintenance m_V and growth, a_M is the maximum assimilation rate of food converted into energy, m_R is maintenance of infected (damaged) biomass, E_M is maximum reserve (per unit of structural biomass V), and δ is scaled damage density.

Scaled host energy reserve, e (Eq. 3)

$$\frac{de}{dt} = (f_H - e) \frac{a_M}{\chi E_M L} - \frac{P}{\chi L^3} \left(\frac{i_{PM} f_P}{E_M} \right)$$

where P is the within-host parasite biomass (growth of parasite), i_{PM} is the maximum mass-specific within-host parasite ingestion rate, and f_P is the parasite functional feeding response.

The $\frac{P}{\chi L^3} \left(\frac{i_{PM} f_P}{E_M} \right)$ term equals the depleted energy reserve of infected hosts by parasites.

Host development, D (Eq. 4)

$$\frac{dD}{dt} = \begin{cases} \text{if } D < D_R, & (1 - \kappa^*)C - m_D D\\ \text{if } D \ge D_R, & \min[0, (1 - \kappa^*)C - m_D D] \end{cases}$$

where D_R is the maturity threshold for host reproduction, C is the rate of mobilized host reserve, and m_D is the rate of host maturity maintenance.

The min $[0, (1-\kappa^*)C - m_D D]$

term allows the host to 'regress' back to a previous maturity stage when volume-specific reserve becomes too low under starvation conditions, i.e. the shrinking and regression starvation rule (Kooijman 2010).

Host reproduction, R_H (Eq. 5)

$$\frac{dR_H}{dt} = \begin{cases} \text{if } D < D_R, & 0\\ \text{if } D \ge D_R, & (1 - \kappa^*)C - m_D D \end{cases}$$

Within-host parasite biomass, P (growth) (Eq. 6)

$$\frac{dP}{dt} = P(Y_{PE}i_{PM}f_P(1 - r_P) - m_P)$$

where Y_{PE} is the yield of parasite biomass on host energy reserve, r_P is the allocated parasite biomass assimilated to new parasite offspring (proportional to parasite biomass), and m_P is the mass-specific rate of parasite maturity maintenance.

Parasite reproduction, R_P (Eq. 7)

$$\frac{dR_P}{dt} = \gamma_{RP} Y_{PE} i_{PM} f_P r_P$$

where γ_{RP} is the relative yield of parasite offspring biomass from assimilated parasite reserve.

Host damage density, δ (Eq. 8)

$$\frac{d\delta}{dt} = \frac{\Theta}{\chi L^3} \cdot \frac{dR_P}{dt} + k_R(1 - e) - k_R \delta - \frac{3\delta}{L} \cdot \frac{dL}{dt}$$

where Θ is the intensity of parasite-induced damage to the host and k_R is a constant for the rate of damage repair via reserve depletion. The $\frac{3\delta}{L} \cdot \frac{dL}{dt}$ term is host "dilution by growth": as the host adds new biomass, this reduces the damage density to its overall biomass.

Cumulative hazard for host, H (Eq. 9)

$$\frac{dH}{dt} = h_b + h_\delta \cdot \max(0, \ \delta - \delta_0)$$

where h_b is the background hazard rate, h_δ is the hazard coefficient, and δ_0 is the linear function for damage density.

Host survival probability (Eq. 10)

$$P(Survival)[t] = e^{-H(t)}$$

Simulation model code for the within-host DEB model, the between-host disease transmission model, and the individual-based simulation model

All model code is found at https://github.com/darwinanddavis/MalishevCivitello_SICB.

Required files

```
"DEB_IBM.R"
"DEB_INF_GUTS_IBM.nlogo"
"FullStarve_shrink_dilute_damage3.Rda"
"IndividualModel_IBM3.c"
"IndividualModel_IBM3.so" # Mac OSX. generated from C
"IndividualModel_IBM3.o" # Mac OSX. generated from C
"IndividualModel_IBM.dll" # Windows. generated from C
```

Bibliography

Civitello DJ, Rohr JR. 2014. Disentangling the effects of exposure and susceptibility on transmission of the zoonotic parasite Schistosoma mansoni. Journal of Animal Ecology 83(6):1379-1386.

Civitello DJ, Fatima H, Johnson LR, Nisbet RM, Rohr JR. 2018. Bioenergetic theory predicts infection dynamics of human schistosomes in intermediate host snails across ecological gradients. Ecology Letters 21(5):692-701.

End Appendix