BASIC RESEARCH AND DATA ANALYSIS FOR THE - EARTH AND OCEAN PHYSICS APPLICATIONS PROGRAM

AND FOR THE

NATIONAL GEODETIC SATELLITE PROGRAM *

Third Semiannual Status Report Research Grant No. NGR 36-008-204 OSURF Project No. 3820-A1

and

Fifteenth Semiannual Status Report Research Grant No. NGL 36-008-093 OSURF Project No. 2514)

Period Covered: July - December 1974

(NASA-GR-142515) BASIC RESEARCH AND DATA ANALYSIS FOR THE EARTH AND OCEAN PHYSICS APPLICATIONS PROGRAM AND FOR THE NATIONAL GEODETIC SATELLITE PROGRAM Semiannual Status Reports, Jul. - Dec. 1974 (Ohio State 00/98 11049 Prepared for

Unclas

N75-72716

National Aeronautics and Space Administration Washington, D. C.

> The Ohio State University Research Foundation Columbus, Ohio 43212

PREFACE

These projects are under the supervision of Professor Ivan I. Mueller, Department of Geodetic Science, The Ohio State University, and are under the technical direction of Mr. James P. Murphy, Special Programs, Office of Applications, NASA Headquarters, Washington, D. C. The contracts are administered by the Office of University Affairs, NASA Headquarters, Washington, D. C. 20546.

TABLE OF CONTENTS

																Page
	PREFA	ACE .				•		•		•	•			•		ii
1.	STATE	MEN'	TOFV	WORK				•			•	•				1
2.			RELA				NO	SP		•	•	•	•	•	•	3
	2.1 I	Data A	Acquisit	tion a	nd 3	Proc	essi	ng		•				•		3
			WĒST 1			•			•		•	• .	. •	•	٠	3
		•	ISAGEX			•	•	• _	•	•	•	•	٠	•	٠	. 4 11
	-		minatio								rs	•	٠	. •	٠	11
		•	Modific						aer	•	•	•	•	•	٠	12
•	2	4,22	The Va	nicek-	-mo	aer	•	•	•	•	•	•	•	•	•	
			minatio Determ							tions	for	•	•	•	•	35
	2		the NA		11 0.					•		•		•		35
	2	2.32	Determ the Aus	inatio										_		57
									OLK	(AU	υ,	•	•	•	•	
3.			RELA NGR 3				PAP	•	•	٠	•	•	•	•	•	71
			evel SI			ng th	e C	ontin	enta	1 Bo	unda	ries				ms
			U.S.A		•	•	•	•	•	•	•	•	•	•	•	71
			Introdu		_	•	•		•	•	•	•	•	•	•	71 71
	• •	3.12	Method					·	.onti	പ്	· iffom	• on oo	•	•	•	72
			3.121 3.122										•	•	•	,,,
			0.122	Diffe				. CIZOI.								75
			3,123				•	Resul	ts				•			75
		0.10		-												75
			Conclui Guide			· +ho	· Fate	Midd	•	nt of	. W	Zorlo	I	•	•	••
			. Guide. Geodeti													79
			uter Pi) <u>.</u> C	cous						87
			Analyti						of :	Depr	it			•		87
			Numer			_						of				
:		-	JPL							•						89
•	:	3,33	Goddar	d Tra	ijec	lory	Det	ermi	ning	Sys	tem	(GT	DS)	•		89
4.	PERSO	ONNE	L						•	•		. ,				121
5.	TRAV	EL														121
6	BEDO	RTS	PUBLIS	HED	то	DAT	E					•				123

1. STATEMENT OF WORK

The statement of work includes data analysis and supporting research in connection with the following broad objectives:

- (1) Provide a precise and accurate geometric description of the earth's surface.
- (2) Provide a precise and accurate mathematical description of the earth's gravitational field.
- (3) Determine time variations of the geometry of the ocean surface, the solid earth, the gravity field, and other geophysical parameters.

2. ACTIVITIES RELATED TO THE NGSP (Grant No. NGL 36-008-093)

2.1 Data Acquisition and Processing

An updated position regarding the acquisition and processing of the data of the ISAGEX and WEST programs is given below.

2.11 WEST Data

The unified optical observation program, now known as WEST (Western European Satellite Triangulation), was begun in 1966. The program was conducted by a subcommittee of the IAG (International Association of Geodesy). The program was formally terminated in 1972 (Resolution No. 1, Sixth Meeting of the Subcommittee in 1972). During the program approximately 3,500 simultaneous plates were acquired.

The Department of Geodetic Science is examining the possibility of including data from the WEST campaign in the OSU WN-14 worldwide solution for two reasons: firstly, to strengthen station coordinates which are presently included in WN-14; and secondly, to add selected new stations where appropriate.

• The WEST data was given to OSU in two forms. The first form consisted of cards in two sets. One set contained the direction cosines, referred to the Greenwich Hour Angle/Declination coordinate system, for single fictitious images for each plate for all simultaneous events. The other set contained information on the standard errors associated with the direction data. The second form contained the direction cosines of seven fictitious events for each plate for all simultaneous events. No specific information concerning the precision of this data was received although some information was derived from the earlier data.

All data was transcribed to magnetic tape and is listed below:

Tape Name

WN0002

DCB characteristics

RECFM = FB, LRECL = 80,

BLKSIZE = 8000

File No. 1 Single image direction cosines

Preceding page blank

File No. 2 Standard errors associated with single images

File No. 3 Seven image direction cosines

Steps were taken to use the single image data when it arrived. OSU did not hold any program which could reduce this type of data at first, but another program (OSUGOP) used for similar data was modified. Previously OSUGOP had been used to reduce the BC-4 seven image data and was later modified by Dr. J. P. Reilly to accept single image observations. By the time of this last mentioned modification, however, the seven-image data had been received, hence there are no further intentions of pursuing this aspect of the computations.

The WEST data will eventually be added to the WN-14 solution by combination of normal equations. In order to generate these and assess the internal consistency of the data, closed figures will need to be identified. These will then be computed as an independent network. Residuals and standard errors at the stations will indicate the quality of the data. Since all data has been preprocessed in a consistent manner, it should be of high quality.

During the WEST campaign a series of bulletins was distributed which documented the current status of the operation and also gave information concerning the definition of the participating stations, coordinates, movements, etc. To eliminate some of the confusion an attempt has been made to identify all stations in WEST, ISAGEX and the WN-14 net which are identical and then obtain ties between the remaining stations which are in close proximity and have been connected. Correspondence was initiated with Mr. Gunther of Computer Sciences Corporation in this regard. It is not expected, however, that the problem will ever be completely resolved.

2.12 ISAGEX Data

The Centre National d'Etudes Spatiales has provided OSU with data

acquired during the ISAGEX satellite observation compaign. The data consists of 5,186 laser ranges and 3,562 optical observations which were purported to be simultaneous. The intention behind the acquisition of this data was to examine its suitability for inclusion (either in whole or in part) in the OSU WN-14 solution which contains some unacceptably large uncertainties in the area of Western Europe. Because most of these stations had participated in the ISAGEX campaign, it was expected that their uncertainties could be reduced.

A number of dynamic solutions have been made by other agencies using both optical and laser data from ISAGEX. The interest at OSU was to make solutions in the geometric mode.

The laser data was examined for simultaneity by computing the observation times at the satellite in International Atomic Time for all data.

These times were then examined for simultaneity. The OSU program GEOMSG which was to have been used for the solution, defines simultaneity in terms of a discrepancy of 0.2 ms. Using this definition no simultaneous observations were detected.

Examination of the optical data was more complicated. The first test was to discover the amount of data which was simultaneous by using the above criterion. This would show whether further processing was warranted. A wider definition of simultaneity was used to accommodate possible variations in observation times which would arise from preprocessing. Approximately 10% of the data satisfied the test, indicating that further examination was warranted.

The requirements for preprocessing were considered. The ISAGEX Data Handling Booklet, No. 16 [April, 1973] provided most of the information required; and other data was extracted from the remaining ISAGEX publications. A summary of the information extracted can be seen in the attached table. The summary indicated that preprocessing by OSU was possible but not practical due to limited resources. Wolf Research and Development Corp. offered to undertake preprocessing of the data using their GEODYN program, suitably modified. The offer was accepted.

Observations made on satellites GEOS I, GEOS II, DIADEME-C and DIADEME-D were preprocessed initially because their orbital elements were available at Wolf for the observational period. Elements for MIDAS and PAGEOS were later provided by SAO.

The preprocessed data was then tested for simultaneity and a total of 353 observations proved satisfactory. Before including the data in the WN-14 solution it was to be tested for acceptable quality. The test was to consist of performing solutions using only ISAGEX simultaneous data. If the data was satisfactory the normal equations so generated were to be added to the WN-14 solution directly.

Of the simultaneous data, only observations between stations 1147, 8009, 8010, 8034 and 9004 formed a closed net. Consequently the data from these stations was extracted and a number of solution runs were made. Very large residuals resulted even after a number of iterations. The constraints imposed were as follows:

"inner" constraint station coordinates for 8010 chord distance for the line 8010 - 9006 station heights for all stations.

Station heights were found by adding levelled heights to geoidal undulations computed for the stations under consideration.

Station 1147 showed very large residuals and was removed; then the solution was repeated. Variances and weights were altered in accordance with the estimated variance of an observation of unit weight. Although the residuals were greatly reduced, they remained unacceptably large. Furthermore the variances of the resulting station coordinates were also very large. The residuals were tabulated and compared with those from the current WN-14 solution and were found to be larger by a factor of about 100.

The position will be re-examined on receipt of preprocessed data for MIDAS 4 and PAGEOS from Wolf Research & Development Corp.

A summary of the status of ISAGEX data held at OSU is given in Attachment 1. A summary of the preprocessing in respect to the data held at CNES is given in Attachment 2.

Status of ISAGEX Data Held at OSU

CNES has sent three sets of printouts containing ISAGEX observations data:

- a. The first set is dated September 1973.
- b. The second set is dated December 1973 and was accompanied by a magnetic tape on which the data was recorded. The tape has been retained. A listing of simultaneous observations was also included. Tape is numbered No. 1.
- c. The third set is dated April 1974 and was accompanied by a magnetic tape on which the data was recorded.

 The tape has been retained. This is Tape No. 2 and is the revised version of Tape No. 1.

Note that CNES tapes are written in 7 track, 556 bpi, even parity, the characteristics of which are given below:

The data is held in both cards and card images on magnetic tape.

TAPES:

Tape No. 1 and Tape No. 2 have been received from CNES.

Tape No. 2 has been designated ID WN0004.

We have an additional tape, ID WN 0003

The revised Tape No. 2 that was received from CNES, contains both laser and optical ISAGEX data current as of February 1974. The tape was written with the following characteristics:

Seven tracks Even parity 556 bpi Record length 80 Block size 80 Tape ID WN0004 Tape No. 2.

The data has been transcribed in identical format onto OSU tape with the following characteristics:

Nine tracks Odd parity 800 bpi Record length 80 Block size 8000 Tape ID WN0003 Label=(,BLP).

File No. 1 Laser data. Unaltered. 5186 records. Most recent data, raw format.

<u>File No. 2</u> Optical data. Unaltered. 3562 records. Most recent data, raw format.

File No. 3 Both laser and optical combined. Reformatted as follows:

Laser Section

Column	. Char	acters
1	1	Quality index
2	2	Year
4	2	Month
6	2	Day
8	11	Time - hours, min, sec
19	4	Station number
23	6.	Satellite number
29	10	Range
39	7	Synchronization
46	4	Time scale
50	7	Time to UT1
57	1	Timing accuracy index
58	4	Range correction
62	4	Pressure
66	3	Range correction index
69	5	Orbit number
74	3	Temperature
77	3	Relative humidit
80	1	Observation type

Optical Section

Column	Char	acters
1	1	Quality index
2	2	Year
4	2	Month
6	2	Day
8	11	Time - hours, min, sec
19	4	Station number
23	6	Satellite number
29	5	Film number
34	9	Right ascension
43	9	Declination
52		BLANK
53	3	Timing accuracy
56	1	Index for observation type
57	1	Reference system index
58	1	Camera type
59	7	Time scale correction
66	5	Correction to UT1
71	6	Observation accuracy
77	3	Time scale code

File No. 4 As for No. 3, but in chronological sequence (by raw time).

File No. 5 Optical data in chronological sequence (in UT1) in original CNES format.

CARDS:

Data set A — ISAGEX optical in chronological sequence. All observations have been reduced to the same time scale (UT1). Not preprocessed (File No. 5).

Data set B — ISAGEX laser in chronological sequence. All observations have been reduced to the same time scale (UT1), at the satellite, at the instant of reflection.

Data set C — ISAGEX optical, preprocessed, arranged in chronological sequence.

Data set D — ISAGEX optical, preprocessed, as received.

Summary of Data Preprocessing as Held at CNES

SAO	GRGS	ASTRO- SOVJET	ONDREJOV/ POTSDAM	BRITISH	DUTCH	SWISS
Mean,1950.0	Mean,1950.0	Mean,1950.0	True of date	True of date	Mean,1950.0	Mean, 1950.
No	No	No	Yes	Yes	No	No
No	No	No	1181 only	Yes	No	No
At plate	At plate	Flash and at plate	Flash and at plate	Flash	Flash	Flash
Yes	No	No	Yes	Yes	No	Yes
Stationary	Dakar Tracking 8019 Sidereal	Sidereal Tracking		Stationary		Sidereal Tracking
Yes	No	n/A	Not known	Not known	Not known	Not known
AS	Passive Station Clock	Passive UT1(USSR)	Passive,UTC	-		
	Mean, 1950.0 No No At plate Yes Stationary	Mean,1950.0 Mean,1950.0 No No No No At plate At plate Yes No Stationary Dakar Tracking 8019 Sidereal Yes No AS Passive Station	Mean, 1950.0 Mean, 1950.0 Mean, 1950.0 No No No No At plate At plate Flash and at plate Yes No No Stationary Dakar Tracking 8019 Sidereal Yes No N/A AS Passive Station UT1(USSR)	Mean, 1950.0 Mean, 1950.0 Mean, 1950.0 True of date No No No No 1181 only At plate At plate Flash and at plate Yes No No Yes Stationary Dakar Tracking 8019 Sidereal Yes No N/A Not known AS Passive Station UT1(USSR)	Mean, 1950.0 Mean, 1950.0 Mean, 1950.0 True of date No No No No Yes Yes No No No 1181 only Yes At plate At plate Flash and at plate Yes No No Yes Yes Stationary Dakar Tracking 8019 Sidereal Tracking 8019 Sidereal Yes No N/A Not known Not known AS Passive Station UT1(USSR)	SOVJET POTSDAM Mean, 1950.0 Mean, 1950.0 Mean, 1950.0 True of date No No No No No 1181 only Yes No At plate At plate Flash and at plate Yes No No Yes Yes No Stationary Dakar Tracking 8019 Sidereal Yes No N/A Not known Not known Not known AS Passive Station UT1(USSR)

All active observations recorded as GEOS-2 flash times.

2.2 Determination of Transformation Parameters

2.21 Modification of the Veis-model

Subsequent to inclusion of transformation modes [section 2.21 of the Fourteenth Semiannual Status Report of OSURF, Project No. 3820 A-1, January through June 1974], our program was modified to obtain Veis's model rotation angles from Molodensky's angles which have been obtained directly from direction cosines.

If ω , ψ , ϵ and dA, d ξ , d η are the respective angles of Molodensky's and Veis's models, from Equation 3 of the above quoted reference,

$$\begin{bmatrix} dA \\ d\xi \\ d\eta \end{bmatrix} = \begin{bmatrix} \sin \varphi_0 & \cos \varphi_0 \sin \lambda_0 & \cos \lambda_0 \\ 0 & \cos \lambda_0 & -\sin \lambda_0 \\ -\cos \varphi_0 & \sin \varphi_0 \sin \lambda_0 & \cos \lambda_0 \end{bmatrix} \begin{bmatrix} \omega \\ \psi \\ \epsilon \end{bmatrix}$$
(1)

Further, applying the principle of propagation of errors,

$$\sum_{\mathrm{dAd}\xi\,\mathrm{d}\eta} = G \sum_{\omega\psi\,\epsilon\,G'},\tag{2}$$

where

 $\sum_{\rm dAd\eta\,d\xi~is~the~variance-covariance~matrix~for~dA,~d\eta,~d\xi,\\ \sum_{\omega\psi\,\epsilon~is~the~variance-covariance~matrix~for~\omega,\psi,~\epsilon.}$

$$G = \begin{bmatrix} \sin \phi_0 & \cos \phi_0 \sin \lambda_0 & \cos \phi_0 \cos \lambda_0 \\ 0 & \cos \lambda_0 & -\sin \lambda_0 \\ -\cos \phi_0 & \sin \phi_0 \sin \lambda_0 & \sin \phi_0 \cos \lambda_0 \end{bmatrix}$$

The information vide equation (1) and (2) above can then be used as weighted constraints in our standard seven parameter solutions. Earlier Veis-model solutions were without these constaints.

The above modification was then used to obtain fresh solutions in respect of four major datums viz North American, European, South American and Australian—superseding Tables 2.2-2, 2.2-5, 2.2-9 and 2.2-11 of the reference quoted above.

The results are given below:

- A. Australian \rightarrow WN14 (Table 2.2-1)
- B. European $50 \rightarrow WN14$ (Table 2.2-2)
- C. North American 27 \rightarrow WN14 (Table 2.2-3)
- D. South American 1969 → WN14 (Table 2.2-4)

A summary of the results is presented in Table 2.2-5, which supersedes the corresponding results in Table 2.2-12 of the <u>Fourteenth Seminarual Status Report</u>.

2.22 The Vanicek-model

A new model for correlating geodetic datums with satellite systems was presented at the International Symposium on Problems Related to the Redefinition of North American Geodetic Networks, May 20-25, 1974, Fredericton, N.B., Canada by P. Vanicek. The salient features of the model are:

- (a) The fundamental system for reference is taken as the Average Terrestrial System (ATS).
- (b) The satellite system is assumed to have the same origin as ATS but not the same orientation, i.e., three rotation angles (ω, ψ, ϵ) would be needed to bring it in the ATS system.
- (c) Any geodetic datum is related to ATS through three translations, one scale and one orientation parameter. In this model Vanicek showed that a geodetic datum can be made parallel with ATS by means of a single rotation (Δ) about the ellipsoidal normal at the origin point of the datum.

Table 2.2-5
Summary of Datum Transformations to WN-14 System

	Datum	Australia	n National	EI)–50 .	NAI)-27	SAO-69	
		4	7	4	٠7	4	7	4	7
Transformation Model		Parameters	Parameters	Parameters	Parameters	Parameters.	Parameters	Parameters	Parameters
	Δu		-157.0±1.8		- 99.4±4.4	•	- 31.7±1.4	,	- 96.6±3.0
	Δv		- 59.1±1.8	,	-132.0±4.5		142.3±1.3		- 13.7±3.0
, ,	Δw		131.2±2.0	`	-116.0±4.3		177.3±1.2		- 29.4±3.2
Veis	Δ*10-e		1.20±0.71		6.75±0.84		- 0.80± 0.27		- 6.67±0.59
	ω″		- 0.35±0.14		0.51±0.21		-, 0,33±0,05		- 0.02±0.11
	ψ"		0.49±0.24		-0.25 ± 0.33		- 0.29± 0.10		- 0.03±0.13
	€″		1.31±0.19		0.15±0.21		0.84± 0.06		- 0.66±0.17
					,,,		<u> </u>	<u> </u>	

Table 2.2-1 Australian National to WN-14 (Veis Model)

				ALPHA SECONDS		
-156.97	-59.14	131.23	1.20	-0.35	0.49	1.31
<u>+</u> 1.85	<u> +</u> 1.82	± 2.03	± 0.71	± 0.14	± 0.24	± 0.19

VARIANCE - COVARIANCE MATRIX

\$02= 0.48 0.341D+01 0.615D-02 0.258D-01 0.511D-07 0.383D-08 -0.255D-07 -0.264D-06 0.615D-02 0.331D+01 0.444D-01 0.172D-06 0.818D-07 0.217D-06 -0.537D-07 0.258D-01 0.444D-01 0.410D+01 -0.903D-07 0.141D-06 0.319D-06 -0.219D-06 0.511D-07 0.172D-06 -0.903D-07 0.507D-12 -0.880D-14 0.139D-13 0.556D-15 0.383D-08 0.818D-07 0.141D-06 -0.880D-14 0.461D-12 -0.176D-13 -0.234D-13 -0.255D-07 0.217D-06 0.319D-06 0.139D-13 -0.176D-13 0.134D-11 -0.435D-12 -0.264D-06 -0.537D-07 -0.219D-06 0.556D-15 -0.234D-13 -0.435D-12 0.859D-12

COEFFICIENTS OF CORRELATION

0.100D+01 0.183D-02 0.690D-02 0.389D-01 0.305D-02 -0.119D-01 -0.154D+00 0.183D-02 0.100D+01 0.120D-01 0.133D+00 0.662D-01 0.103D+00 -0.319D-01 0.690D-02 0.120D-01 0.100D+01 -0.626D-01 0.102D+00 0.136D+00 -0.117D+00 0.389D-01 0.133D+00 -0.626D-01 0.100D+01 -0.182D-01 0.169D-01 0.843D-03 0.305D-02 0.662D-01 0.102D+00 -0.182D-01 0.100D+01 -0.224D-01 -0.371D-01 -0.119D-01 0.103D+00 0.136D+00 0.169D-01 -0.224D-01 0.100D+01 -0.406D+00 +0.154D+00 -0.319D-01 -0.117D+00 0.843D-03 -0.371D-01 -0.406D+00 0.100D+01

NOTE: THE POSITIVE ROTATIONS ARE TOWARDS SOUTH

EAST, AND ALONG FLLIPSOIDAL NORMAL UPWARDS.

Note: Scale factor and rotation parameters constrained.

Table 2.2-1 (Continued)

RESIDUALS V

V1(AUS.NAT.)				V2 (WN	- 14)	V1 - V2				
6023	0.9	-0.4	-2.9	6023	-0.8	0.4	1.8	1.7	-0.8	-4.8
6032	1.0	1.2	0.7	6032	-0.9	-1.2	- 0.5	2.0	2.4	1.2
6060	-1.9	-0.8	1.9	6060	1.8	0.7	-1.4	-3.7	-1.5	3.2

UNIT OF RESIDUALS (METERS)

Table 2.2-2

ED-50 to WN-14 (Veis Model)

				ALPHA SECONDS		
-99.43	-132.00	-115.98	6.75	0.51	-0.25	0.15
± 4.39	± 4.54	± 4.34	± 0.84	± 0.21	± 0.33	± 0.21

VARIANCE - COVARIANCE MATRIX

S02= 1.03

-0.722D-08	-0.106D-05	0.1220-06	-0.153D-06	0.1720+00	0.1870+00	0.193D+02
0.248D-06	-0.5310-06	0.479D-06	-0.1290-06	0.100D÷00	0.206D+02	0.187D÷00
0.667D-07	-0.611D-06	0.189D-06	0.316D-06	0.1880+02	0.1000+00	0.172D+00
0.8080-15	-0.108D-15	-0.149D-14	0.700D-12	0.3160-06	-0.129D-06	-0.153D-06
-0.226D-13	-0.6310-12	0.1020-11	-0.149D-14	0.189D-06	0.479D-06	0.122D-06
-0.289D-15	0.2610-11	-0.631D-12	-0.1080-15	-0.611D-06	-0.5310-06	-0.106D-05
0.1040-11	-0.2890-15	-0.226D-13	0.808D-15	0.667D-07	0.248D-06	-0.722D-08

COEFFICIENTS OF CORRELATION

-0.161D-02	-0.1490+00	0.276D-01	-0.417D-01	0.9010-02	0.936D-02	0.100D+01
0.5370-01	-0.724D-01	0.105D+00	-0.3390-01	0.5080-02	0.100D+01	0.936D-02
0.1510-01	-0.8730-01	0.4320-01	0.8700-01	0.100D+01	0.508D-02	0.9010-02
0.948D-03	-0.8010-04	-0.177D-02	0.100D+01	0.870D-01	-0.339D-01	-0.417D-01
-0.2200-01	-0.387D+00	0.100D+01	-0.177D-02	0.4320-01	0.105D+00	0.276D-01
-0.176D-03	0.1000+01	-0.387D+00	-0.801D-04	-0.873D-01	-0.724D-01	-0.149D+00
0.1000+01	-0.176D-03	-0.220D-01	0.948D-03	0.1510-01	0.5370-01	-0.161D-02

NOTE: THE POSITIVE ROTATIONS ARE TOWARDS SOUTH

EAST , AND ALONG ELLIPSOIDAL NORMAL UPWARDS.

Note: Scale factor and rotation parameters constrained.

Table 2.2-2 (Continued)

RESIDUALS V

	V1(ED- 50)				•	V- 14	V :			
6006 6015 6016 6065 8009 8010 8011 8015 8019 8030 9004 9006	0.1 0.3 0.2 -2.7 -1.3 -0.5 -0.2 -0.0 -1.7 0.1	-1.1 0.0 -1.2 -1.1 0.1 1.6 10.0 5.4 1.8 7.7 1.9	0.4 0.1 -0.0 -0.2 0.6 1.0 0.2 0.0 -0.0 0.7 0.0	6065 8009 8010 8011 8015 8019 8030 9004 9006	1.4 0.9 5.8 -7.3 6.0	-4.3 35.0 14.1 -0.2 -5.8 -30.7 -12.1 -17.6 -11.9 -19.8 -8.4	-12.0 -14.6 1.1 3.1 -3.3 -8.7 -2.1 -0.1 0.7 -2.9 -3.0 3.9	12.4 13.4 3.5 -12.2 -11.4 -4.3 -1.6 -1.0 -7.4 7.4	17.4 19.3 19.5 21.7 8.8	12.4 14.7 -1.1 -3.3 3.9 9.7 2.2 0.1 -0.7 3.6 3.1
9008 9091 9426 9431	-0.5 -0.2 0.4 -0.5	0.9 5.7 1.6 14.0	0.7 -0.3 -0.3 -3.6	9008 9091 9426 9431	5.9 -2.6	-15.7 -23.6 -8.2 -70.5	-12.5 6.9 4.4 32.4	-8.1 -6.1 3.1 -1.9	16.6 29.3 9.9 84.5	13.3 -7.2 -4.7 -36.0

UNIT-OF RESIDUALS (METERS)

Table 2.2-3
NAD-27 to WN-14 (Veis Model)

				ALPHA SECONDS		
-31.71	142.34	177.32	-0.80	-0.33	-0.29	0.84
<u>+</u> 1.35	<u>+</u> 1.26	± 1.23	± 0.27	<u>+</u> 0.05	± 0.10	± 0.06
		VARIANCE	- COVARIA	ANCE MATR	IX	

SD2= 0.76

0.8710-08	0.113D-07	0.1890-07	-0.724D-07	-0.280D-02	-0.258D-02	0.1820+01
-0.544D-07	0.851D-07	0.3200-07	0.1030-07	0.1540-02	0.1590+01	-0.258D-02
0.400D-07	0.214D-07	0.370D-07	0.207D-07	0.1510+01	0.154D-02	-0.280D-02
0.118D-15	0.256D-15	-0.1710-15	0.734D-13	0.2070-07	0.103D-07	-0.724D-07
-0.448D-I4	-0.504D-14	0.618D-13	-0.171D-15	0.370D-07	0.320D-07	0.189D-07
0.1050-13	0.2470-12	-0.504D-14	0.256D-15	0.214D-07	0.851D-07	0.113D-07
0.800D-13	0.1050-13	-0.448D-14	0.118D-15	0.400D-07	-0.5440-07	0.871D-08

COEFFICIENTS OF CORRELATION

0.1000+01	-0.151D-02	-0.169D-02	-0.198D+00	0.563D-01	0.169D-01	0.2280-01
-0.1510-02	0.100D+01	0.992D-03	0.302D-01	0.1020+00	0.136D+00	-0.152D+00
-0.169D-02	0.992D-03	0.1000+01	0.6210-01	0.1210+00	0.3500-01	0.1150+00
-0.198D+00	0.3020-01	0.621D-01	0.100D+01	-0.2540-02	0.190D-02	0.1540-02
0.563D-01	0.102D+00	0.121D+00	-0.254D-02	0.100D+01	-0.408D-01	-0.637D-01
0.1690-01	0.136D+00	0.350D-01	0.1900-02	-0.408D-01	0.1000+01	0.7480-01
0.2280-01	-0.152D+00	0.1150+00	0.154D-02	-0.637D-01	0.7480-01	0.100D+0.1

NOTE: THE POSITIVE ROTATIONS ARE TOWARDS SOUTH

EAST , AND ALONG ELLIPSOIDAL NORMAL UPWARDS.

Note: Scale factor and rotation parameters constrained.

Table 2.2-3 (Continued)

RESIDUALS V

	V1(NAD-27)				V2 (WN	- 14)		V		
						· *** *** *** *** ***, #*,	-			
1021	1.0	0.2	1.3	1021	-3.9	-0.9	-3.8	4.8	1.1	5.1
1022	0.0	0.5	0.5	1022	-0.1	-3.0	-2.3	0.2	3.5	2.8
1030	-0.5	-0.3	1.4	1030	2.7	0.9	-6.2	- 3.2	-1.2	7.6
1034	-2.9	1.8	1.2	1034	5.4	-5.4	-3.9	-8.3	7.1	5.0
1042	2.5	0.2	1.1	1042	-7.6	-0.8	-3.1	10.1	1.0	4.1
3400	0.5	0.6	2.2	3400	-1.5	-3.2	- 5.1	2.0	3.8	7.4
3401	2.2	-0.8	-1.1	3401	-9.1	3.1	3.1	11.3	-3.9	-4.2
3402	0.2	-047	0.7	3402	-0.3	2.4	-1.6	0.5	-3.1	2.3
3648	-1.1	0.2	1.5	3648	2.5	-0.8	-2.7	~3.6	1.0	4.2
3657	2.5	0.6	-0.4	3657	-8.8	-2.4	1.0			-1.4
3861	-1.5	-0.8	-0.2	386I	4.7	3.4	0.6	- 6.2		-0.8
4280	0.9	-1.0	-0.9	4280	-4.4	5.1	4.1	5.3	-6.1	-5.1
6002	0.1	-0.6	-0.9	6002	-0.5	5.8	6.5	0.5	-6.3	-7.4
6003	0.0	-0.5	-0.9	6003	-0.5	17.5	6.9		-18.1	-7.7
6134	0.5	-0.4	-0.6	6134	-5.5	4.5	5.2	6.0	-4.9	-5.8
7036	-2.2	2.2	0.2	7036	4.5	-9.6	-0.7	-6.7		0.9
7043	0.1	-0.6	-0.9	7043	-0.5	5 8	6.4	0.5		-7.3
7045	-3.6	0.5	-0.6	7045	7.5	-1.9	2.0	-11.1		-2.6
7072	0.4	0.2	0.4	7072	-4.1	-2.5	-4.7		2.7	5.1
7075	-2.7	-0.8	-0.1	7075	6.3	2.3	0.2	-9.0		-0.3
9001	0.4	0.4	0.6	9001	5.2	-6.8	-6.2	-5.6		6.8

UNIT OF RESIDUALS (METERS)

Table 2.2-4 SAD-69 to WN-14 (Veis Model

				ALPHA SECONDS		
-96.57	-13.67	-29.36	-6.67	-0.02	-0.03	-0.66
± 3.02	± 302	± 3.15	± 0.59	<u>+</u> 0.11	± 0.13	± 0.17
		VARIANCE	- COVARIA	ANCE MATR	ΙX	

S02= 0.97

0.915D+01 -0.172D+00 -0.202D+00 0.419D-06 -0.271D-06 0.244D-06 -0.248D-06 -0.172D+00 0.912D+01 0.697D-01 0.231D-06 -0.378D-07 -0.266D-06 0.831D-06 -0.202D+00 0.697D-01 0.989D+01 -0.410D-06 -0.317D-06 0.928D-07 0.244D-06 0.419D-06 0.231D-06 -0.410D-06 0.352D-12 0.436D-16 0.294D-14 -0.137D-14 -0.271D-06 -0.378D-07 -0.317D-06 0.436D-16 0.287D-12 0.319D-13 0.529D-13 0.244D-06 -0.266D-06 0.928D-07 0.294D-14 0.319D-13 0.417D-12 0.583D-13 -0.248D-06 0.831D-06 0.244D-06 -0.137D-14 0.529D-13 0.583D-13 0.667D-12

COEFFICIENTS OF CORRELATION

0.100D+01 -0.188D-01 -0.212D-01 0.234D+00 -0.167D+00 0.125D+00 -0.101D+00 -0.188D-01 0.100D+01 0.734D-02 0.129D+00 -0.234D-01 -0.136D+00 0.337D+00 -0.212D-01 0.734D-02 0.100D+01 -0.219D+00 -0.188D+00 0.457D-01 0.950D-01 0.234D+00 0.129D+00 -0.219D+00 0.100D+01 0.137D-03 0.767D-02 -0.283D-02 -0.167D+00 -0.234D-01 -0.188D+00 0.137D-03 0.100D+01 0.923D-01 0.121D+00 0.125D+00 -0.136D+00 0.457D-01 0.767D-02 0.923D-01 0.100D+01 0.11D+00 -0.101D+00 0.337D+00 0.950D-01 -0.283D-02 0.121D+00 0.11D+00 0.100D+01

NOTE: THE POSITIVE ROTATIONS ARE TOWARDS SOUTH

EAST . AND ALONG ELLIPSOIDAL NORMAL UPWARDS.

Note: Scale factor and rotation parameters constained.

Table 2.2-4 (Continued)

RESIDUALS V

	V1(SAD-69)					- 14			- V.2	
3414	4.1	-1.3	6.3	3414	-1.8	0.8	-3.0	5.9	-2.1	9.2
3431	-1.0	2.5	0.1	3431	1.1	- 3.7	-0.1	-2.0	6.2	0.2
3477	16.3	2.3	13.9	3477	-10.1	-3.4	-9.8	26.3	5.8	23.7
6008	0.0	0.3	2.0	6008	-0.3	-5.1	-14.6	0.4	5•4	16.6
6009	-2.0	-1.0	-1.9	6009	9.9	5.4	7.1	-11.9	-6.4	-9.0
6019	-0.1	-0.2	-0.8	6019	1.5	2.1	3.8	-1.6	-2.3	-4.6
6067	-0.2	- 0.5	-0.8	6067	2.8	7.4	7.5	-3.0	-7.9	-8.3
9007	1.0	0.4	-1.2	9007	-10.7	-2.9	3.9	11.8	3.3	-5.1
9009	-0.5	0.0	-1.9	9009	5.8	-0.6	10.8	-6.3	0.6	-12.8
9031	-5.0	1.6	2.2	9031	4.6	-1.3	-1.1	-9.6	2.9	3.3

UNIT OF RESIDUALS (METERS)

(d) To avoid the singularity in the solution and add necessary strength, the model needs at least three datums well distributed over the globe with minimum of three stations on each datum.

The model is as under (a correction sheet to the original paper is given in Attachment 1):

$$Q(\omega, \psi, \epsilon) \stackrel{\rightarrow}{\rho_i} - Q(\Delta) \stackrel{\rightarrow}{r_i} - \Delta L(\stackrel{\rightarrow}{r_0} + \stackrel{\rightarrow}{r_i}) - \stackrel{\rightarrow}{r_{sg}} = \stackrel{\rightarrow}{d_i}$$
 (3)

where

$$Q(\omega, \psi, \epsilon) = \begin{bmatrix} 0 & \epsilon & -\psi \\ -\epsilon & 0 & \omega \\ \psi & -\omega & 0 \end{bmatrix}$$

$$Q(\Delta) = \Delta \begin{bmatrix} 0 & \sin \varphi_0 & -\cos \varphi_0 \sin \lambda_0 \\ -\sin \varphi_0 & 0 & \cos \varphi_0 \cos \lambda_0 \end{bmatrix}$$

$$\cos \varphi_0 \sin \lambda_0 & -\cos \varphi_0 \cos \lambda_0$$

 (φ_0, λ_0) = Coordinates of the initial point.

 Δ L \equiv Scale factor for the datum.

$$\overline{\rho}_i$$
: $\begin{bmatrix} x \\ y \\ z \end{bmatrix}_i$ = Position vector for point i in the satellite system.

$$\overline{r}_i = \begin{vmatrix} u \\ v \end{vmatrix} \equiv \text{Position vector for the corresponding point i on the geodetic datum.}$$

$$r_{s_0}$$
 or Δx

$$\Delta y$$

$$\Delta z$$
= Position vector of datum origin defining three translation parameter.

$$\vec{\mathbf{d}}_{\mathbf{i}} \equiv \vec{\mathbf{r}}_{\mathbf{0}} + \vec{\mathbf{r}}_{\mathbf{i}} - \overline{\rho}_{\mathbf{i}}$$

Note: Thus the unknowns to be considered are three parameters $(\omega$, ψ , ϵ) for the satellite system and five parameters (r_{sg} , Δ , ΔL) for each geodetic datum considered, i.e., a minimum of eighteen parameters with three datums.

Pij denotes a point "i" falling on datum "j", then extending the above equation (3) to include more than one datum (j = 1, 2, 3), we can further modify as under:

$$BV + AX + W = 0 \tag{4}$$

where

$$V^{T} \equiv [V_{x_{i}} V_{y_{f}} V_{z_{i}}, V_{u_{i1}} V_{v_{i1}} V_{u_{i1}} V_{u_{i2}} V_{u_{i3}} V_{v_{i3}} V_{u_{i3}}, V_{u_{i3}} V_{v_{i3}} V_{v_{i3}}]$$

$$X^{\mathsf{T}} \equiv [\omega, \psi, \epsilon, \Delta_1, \Delta x_1 \ \Delta y_1 \ \Delta z_1 \ \Delta L_1, \Delta_2, \Delta x_2 \ \Delta y_2 \ \Delta z_2 \ \Delta L_2,$$

$$\Delta_3 \ \Delta x_3 \ \Delta y_3 \ \Delta z_3 \ \Delta L_3]$$

with
$$R_i \equiv \begin{bmatrix} -y & z & 0 \\ x & 0 & -z \\ 0 & -x & y \end{bmatrix}_i$$

$$S_{i,j} \equiv \begin{bmatrix} -\sin \varphi_{0,j} & (V_i - \Delta V_j) & -1 & 0 & 0 & -U_i \\ +\cos \varphi_{0,j} & \sin \lambda_{0,j} & (w_i - \Delta w_j) & & & & & \\ & \sin \varphi_{0,j} & (u_i - \Delta u_j) & & 0 & -1 & 0 & -V_i \\ -\cos \varphi_{0,j} & \cos \lambda_{0,j} & (w_i - \Delta w_j) & & & & & \\ & -\cos \varphi_{0,j} & \sin \lambda_{0,j} & (u_i - \Delta u_j) & & 0 & 0 & -1 & -W_i \\ +\cos \varphi_{0,j} & \cos \lambda_{0,j} & (v_i - \Delta v_j) & & & & & \\ \end{bmatrix}$$

$$W_{i,j} \equiv \begin{bmatrix} \mathbf{U} & - & \mathbf{X} \\ \mathbf{V} & - & \mathbf{Y} \\ \mathbf{W} & - & \mathbf{Z} \end{bmatrix}_{i,j}$$

A test solution was run with four major datums viz Australian (3 points), South American (10 points), European 1950 (16 points) and North American (21 points) with corresponding 50 points from WN-14 system. The results are given in Table 2.2-6.

Table 2.2-6
Transformations of four datums and the WN-14 System to the Average Terrestrial System (Vanicek Model)

CMFGA SECUNDS	PSI SECUNDS	EPSILON SECONDS	DELTA SECONOS		DV METERS	CW METERS	\$C4LF (X 1.06)	
0.40 ± 0.20	0.86 ± 0.33	-0.15 ± 0.28	0.15 ± 0.51	-131.75 ± 8.11				.TAY.2UA
			+0.76 ± 0.45	-72.57 ± 9.83			-6.77 ± 1.35	9.901 ባላ?
			0.82 ± 0.63	-140•25 <u>±</u> 14•3ć			6.96 ± 2.73	, in 1950
; : -	Reproduced from best available c	n copy.	-0.75 ± 0.42	-F8.49 ± 6.01				MAE 1927
1	besi available							

VVRIANCE-COVAFIANCE/CORRELATION MATEIX

5000= 1.04 0.16058[-1] -0.117300-1] 0.231940-12 -0.162480-11 0.317369-05 0.565790-05 0.542:10-65 -0.25:7:0-14 0.612:00-13 -0.101140-04 -0.4440000-05 -0.237440-05 6.670141-05 -0.560080-05 -3.400300-05 0.7-4100-14 -0.185910-34 (.95/00D-12 0.102156-05 0.212270-05 0.047467-14 1..187171-11 -3.212-15-15-03 -0.1647A9+(0 0.763750-)1 -0.87160.-)2 (.67/216-)1 0.235/60-05 -0.312019-05 -0.1-101(-10 -0.46)7-0-12 -6.131531-04 (0.45-0.70-06 0.11-130-04 -0.197170-14 -0.277831-11 -0.478435-05 -0.424350-65 -0.589836-05 0.255176-13 0.172030450 -0.304010+00 0.105000-11 -0.170005-11 -0.174050-05 -0.423448-05 -0.404431-05 0.113720-12 0.176950-11 -0.350570-05 -0.325610-05 0.448590-05 -0.394526-13 0.685646-12 0.416266-65 0.798966-05 -0.526440-65 -0.103735-13 -1.516 WINTO 1.12 WASE FOR -0.516325 FOR 10.76 FAR-11 0.361619-06 -0.496711-06 -C.266655-65 -C.85457[-]: -C.2757]:-11 (.130,25-64 0.7417][-05 0.3000[C-05 0.16709[-13 -0.1 6.4[-1] -0.13909[-(- -0.2090]-6. 0.137150-0. 0.137150-0. -0.266136-11 -0.1619:6-05 -0.765466-15 -0.166616-64 0.366691-15

Table 2.2-6 (Continued - 2)

VARIANCE-COVARIANCE/CORRELATION MATRIX

```
1.04
       S02=
             0.17899D+00 -0.12224D+00 0.18065D-01 0.65845D+02 -0.22258D+02
 0.308350+00
              0.10034D-04 -0.34454D-05 -0.10260D+02 -0.68560D+01
 0.21769D+02
                                                                  U.39863D+01
              0.25723D-05 -0.810940+01 -0.17746D+62 0.10820D+02
                                                                  0.230090-07
-0.47763E-07
 0.11279D-06 -0.24542D+02 -0.48197D+01 -0.66667D+01. 0.81254D-07
 0.50788D+00 -0.14948D+00 -0.35438D+00 -0.22653D-01 -0.31231D+00
                                                                  0.771410+02
-0.17251D+00 -0.954216-05 -0.23223E-05 -0.29399D+02 -0.10445D+02 -0.24954E+02
 0.99818D-07 0.13044D-05 0.14969b+02 -0.41358D+02 -0.44355D+01
                                                                  0.571660-07
 0.54617D-05 -0.18717D+02 -0.12873D+02 -0.17943D+02 0.88772D-07
 0.33551[+00 -0.48930b+00 -0.36818D+00 -0.13085b+60 0.33226f+60 -0.24326D-02
 0.651940+02 0.619760-05 0.167970-05 -0.268330+02 -0.491360+01 -0.410420+02
 0.20995U-06 -0.18569D-05 0.32870D+02 -0.32950D+02 -0.218725+02
                                                                  0.477240-07
 0.75677D-05 0.88651D+01 -0.11259D+02 -0.1576PE+02 0.85358D-08
                                                     0.787200+00 -0.691600+00
              0.13449D-01 0.53210D-02 -0.22310D-01
-0.1.2987b-62
                                       0.71464F-07 -0.43207D-08 0.17925F-05
 0.488620+00 0.246770-11 -0.191410-13
                                                     0.127010-06 -0.109850-15
                                        6.69171D-07
-0.10132D-14
             0.165630-13 -0.161620-06
                                       0.291710-07
                                                    U.25632D-15
-0.301530-13 -J.123130-06 0.277560-07
 0.231470+00 -0.662650+00
                           0.601976+00 -0.535430+00 -0.263410+00 -0.126676+00
 6.99661D-01 -0.583730-02 0.43572D-11 -0.97344D-05 -0.48795D-05 -0.29833C-05
                                       0.564020-05 -0.106510-04 -0.652960-14
                           0.109140-04
-0.13347[-13]
             0.629560-12
                           0.69369D-05 0.96495D-05 -0.36492D-13
 0.200300-11
              0.5859AD-05
                                        0.574150+00 -0.128630+00 -0.340520+00
-0.811196+00
              0.69485D+00 -0.26663D+00
                                        0.96625D+02
                                                     0.885620+01 0.203350+02
-0.338086+00
              0.466040-02 -0.474420+00
                                                     0.478220+02 -0.347780-07
-0.51575D-05 -0.5935@D-05 -0.59767@+02
                                        0.215040+02
-0.14548D-04 0.505650+01 -0.18699D+02 -0.26044D+02
                                                     0.418340-07
```

Table 2.2-6 (Continued - 3)

VARIANCE-COVARIANCE/COPRELATION MATRIX

1.04 S02= -0.452010+00 0.342370+00 -0.27500F+00 0.345130+00 -0.97078D-01 -0.13664D+00 0.123500+02 -0.69921D-01 -0.316020-03 -0.26959D+00 0.10266D+00 0.75750D+02 0.332320+01 0.224740+02 -0.70121(-08 0.943895-05 -0.348840-05 -0.264630+02 -0.65260E-05 0.50365D+01 -0.14283D+02 -0.19916D+02 0.28535D-07 0.4764(5+60 0.477686+60 0.107560+00 0.65342D+01 -0.37790F+00 -0.317720+00 C.275160+00 0.188730+00 0.56526F+02 -0.676090+60 0.15176D-01 -0.19069D+00 0.3541%[+02 0.166666+02 -0.507576-07 10.156180-05 0.242960-05 -0.298010+02 -0.69265D-G5 -0.84815C+01 0.14523C+02 0.20319D+02 -0.19212D-07 -0.10838B-02 -0.64533B-02 -0.21455B-01 0.3017ID-02 -0.43548D-02 0.940820-02 0.14288D-01 -0.47719D-03 -0.47806D-02 -0.28817D+00 0.80836D+00 0.153696+00 0.18276L-11 -0.284978-13, 0.66320L-07 -0.184865-06 -0.19308D-07 0.256440-15 0.1402cD-13 0.65881D-07 -0.13459b-06 -0.18805D-06 0.21510D-15 0.213725+66 -0.171255+66 0.10+661+60 0.487545-61 0.24774[+00 -0.93354[-0] 0.99070[-01 -0.19822[+06 -0.15645[+60 0.1366[[+66 -0.75468[-0] 0.346120-0? 0.213766-65 0.422166-05 -0.156766-05 -0.152610-12 -0.643490-(2 6.927540-13 0.350046-05 0.488830-05 -0.284850-14 0.65260B-12 -0.20122D-05 0.20996[+00 -0.29-320+00 -0.8959[[-01 0.115880+00 0.373676+06 -0.50462(+06 0.360750+00 -0.423390+00 -0.211730+00 -0.276010+00 0.21348[+00 -0.716440-02 0.206320+00 0.246430+02 0.806171+02 +0.300250+04 C.3-1-71-62 0.5111:00-01 0.205196+02 0.285261+02 -0.115025-06 0.141696-04 6.190120+02 U.619401460 -6.447765-01 -0.124061400 -C.F07076+00 C. 12/07/04/1 -(4-77/45+(6 0.28430P+10 (...23432P+00 P. +C+552-01 P. +C41414141 0.47127P-02 -(.436)56+00 U.183(4F+60 C.17303F+07 C.312195+02 -0.81076F-05 -t.lacist-vi th.148271.486 0.268000+02 0.370600+02 -0.109020-06 -0.433930-05 0.12094 +01

Table 2.2-6 (Continued - 4)

VARIANCE-COVARIANCE/CORRELATION MATRIX

```
502=
             1.04
-0.25647D+00 0.46722D+00 -0.25735D+00 0.34261D+00
                                                     0.88648E - 01 - 0.335749 - 01
-0.18008D+00 0.53749D-02 -0.339216+00
                                      0.323430+00
                                                     0.17166D+00
                                                                 0.165060+00
                                                     0.225260+03 -0.342420-04
-0.949680-03 -0.34527D-01 0.374130+00 0.222130+00
                                                     0.128105-06
-0.11555D-04 -0.212966+02 -0.23584D+02 -0.32811D+02
 0.214520-02 -0.443960-03 -0.278819-02 0.257060-03 0.103690-02
                                                                 0.237970-02
 0.21613D-02 -0.25569D-04 -0.11438D-02 -0.12937D-02 -0.29460U-03 -0.24686D-02
                                                                 0.74789D-11
 0.69375D-04 -0.18247D-01 -0.76452D+00 -0.31729D+00 -0.83242D+00
 U.69722F-14 -U.27766F-07 -U.34129E-07 -U.47606B-07 U.17598E-15
                                                                  0.304450+00
 0.72323D+00 -G.52252D+00 0.23351D+00 -0.59362D+00 0.68052D-02
                          0.459610+00 -0.724580+00 -0.367100+00 -0.451050+00
 0.458870+00 -0.939750-02
                           0.453700+00 -0.216840+00 -0.376090+00
                                                                 0.124820-02
 0.50803D-02 0.13704D+00°
                           0.397316-05 U.57888D-05 -0.446340-13
 0.417190-11
              0.202120-05
                           0.28910[+00 -0.198140+00 -0.502905+00 -0.354350+00
-0.40955P+00 -0.483709+00
                           0.466776+00 0.455346-01 0.962716-01 -0.187586+00
 0.182576+00 -0.130336-01
                                        0.39322D+00 -0.235420+00 -0.168820-02
 0.810460-02 -0.153510+00
                           0.220380+00
                                        0.14126E+02 -0.429820-06
 0.16454U+00 0.36168D+02
                           0.780289+01
 0.15674D+00 -0.2-142D+00
                           0.659530+00 -0.405440+00 -0.776126-01 -0.191515+00
-0.182210+00. 0.230870-02
                           0.453876+00 -0.24856E+00 -0.21445F+00 U.25240F+00
                                        0.374810+00 -0.204170+00 -0.163110-02
-0.130110-01
              0.150150+00
                           0.186700+00
                           0.585690+02 0.139530+02 0.592810-05
              0.169530+00
 0.254170+00
                           0.84276L+00 -0.51756D+00 -0.98283D-01 -0.24464D+00
 0.200410+00 -0.434520+00
                           0.553570+00 -0.317280+00 -0.274020+00 0.323640+00
-0.23386D+00
              0.298500-02
                           0.237670+00
                                       0.47892D+00 -0.26121D+00 -0.20846D-02
-0.16660D-01
              0.1921cD+00
 U.33938D+00
              0.281285+00
                           0.21832D+00
                                       0.697350+02 -0.463780-05
```

Table 2.2-6 (Continued - 5)

VAPIANCE-COVAFIANCE/COFFELATION MATRIX

502= 1.04

U-28627P-U2	0.143360-61	-0.179000:-01	0.113440-01	0.913650-02	0.922200-02
0.664588-03	0.148870-05	-0.150516-01	0.388310-6?	0.200150-62	-0.233150-02
0.145201-03	-0.792690-03	-0.718070-02	-0.135770-01	0.777646-02	0.467131-04
-0.199280-01	-0.652110-01	0.7(6770+00	-0.506746±00	0.120120-11	

Table 2.2-6 (Continued - 6)

RESIDUALS V

	V1(4-DATUMS)			V2 (kN - 14)				V1 - V2		
			_				•	- -		
6023 6032	0.2	0.1 -0.7	-3.6 2.5	6023 6032	-0.2 -2.6	-0.2 0.7	7.3 -1.6	0.3 5.5	0.5 -1.5	-5.9 4.1
6060	-3.0	0.0	0.0	6052	2.8	-6.6	-0.7	-5.8	1.2	1.5
3414	2.2	2.5	· 6.5	3414	-0.0	-1.6	-3.1	3.1	4.1	0.6
3431	-2.0	4.3	0.5	3431	2.3	-6.4	-0.3	-4.3		0.7
3477	19.4	-0.7	13.1	2477		1.0	-6.5	31.4		22.2
6008	0.1	0.3	1.9	6008	-1.6		-13.8	1.9		15.7
6009	-1.1	-2.2	-2.1	6009	5.5	12.2	8.1	-6.7		-10.3
6019	-0.3	0.1	-0.6	0019	3.8	-e.5	2.8	-4.1		-3.4
6067	-0.5	-0.0	-0.7	6067	7.9	Ŭ.I	6.3	-8.4		-7.0
9007	1.2	9.2	-1-3	9007	-12.6	-1.4		13.8		-5.7
÷009	-0.1	-0.4	-2.1	9009	1.6	6.3	11.0	-1.7		-14.0
9031	-8.3	3.3	4.5	9031	7.7	-2.8	-2.3	1	6.1	بر. ۲۰۰۶
6006	0.2	-1.1	C.5	6006	-8.2		-16.7		-33.0	17.2
6015	0.0	0.0	(+1	6015	-G, G		-15.5	10.0		16.7
6015	0.2	-1.2	-0.1		-10.4		3.4		-36.6	-3.5
6 UE5	0.2	-1.1	- <u></u>	6665	-3.6		2.6		-14.9	
S 00.6	-2.5	0.3	0.7	9009	8.0		-3.6	-10.6		4.3
6010	-1.3	1.7	0.9	£010		-6.2	-5.1	-31.3		c.n
8011.	-n-3	10.3	0.2	8011		-31.5	-2.8	-2.6		₹.0
8015	-0.3	5.5	-0.1	8615		-12.4	1.0	-2.3		-1.1
8019	-0.0	1.8	-0.1	£019		-17.0	1.6	-1.5	19.7	-î.ê
8 UEU	-1.5	8.0	e.7	6.030		-12.4	_2 C	-6.7	20.4	3.5
5004	ű.l	2.0	0.0	9004		-30.6	-1.5	4.7	22.6	1.5
د (بار ت	-1.2	7.2	0.1	40ē6	ن ۽ ۽		~2.2	-1.1-1	3.8	2.3
< 0.05	−0 ° c	C.7	(.8	9008		-17.3		-12.9	12.1	
9651	-0.3	E E	-6.4	9001		-27.5	5.0	-6.b	20.3	-0.3
9-2A	1.0	1.8	-0.2	9-26	5- 6	-: · ·	77.3		10.7	-5.4
9411	0.2	14.0	-:.5	9451		-76.6	31.0	(.8		-34.4
1621	() . c	0.4	1.2	1021		-1.7	-2.5	4.8	2.1	4.7
1012	-0.0	0.2	3.0	1022	(.]		-2.6	-0.1		
10.50	-0.5	-0.3	1.4	1030	2.5	1.0	-6. l	-2.0		
1034	-2.8	2.5	0.7	1034	5.2		-2	-8.0		3.2
1042	7.5	ک و ن	1.2	1042	-7.5		-3.4	10.0		
3400	05	0.7	2.2		-1.7		-0.1	2.2		
34G1	2.2	-0.4	-1.5	3401	-9.0		4.4			
3402	0.2	-1.0	1.1	2402	-0.3	2.1	-2.7			
3048	-1.1	0.1	1.8	36-9	2.6		-3.3			
3657	2.5	0.9	-6.6	3657	₽.₽		1.6	11.2		
2801	-1.6	-1.2	(• 3	3861	5.0		-(1.9	-6.5		1.2
4250	1.0	-1.1	-1.0	4780	-4.7	Б _{* *f}	4.4	5.6		
6402	0.1	-1.5	-1.0	6002	-(1,	44 + E	7.1	0.5		-8.1
6003	0.0	-0.5	-1.2	6002	-1.0		6.2		-15.6	
£ 134	G. e	-0.4	-1.5	¢13	_r		5.3	6.3		
7.636	-2.3	1.5	1.7	7038	$\mathcal{L}_{t} = \frac{T}{2}$	-7.8	-7.5		٥,5	

Table 2.2-6 (Continued - 7)

RES	1	Di	LA	L	S	٧

	V1 (4-DATLMS)			V1(4-DATUMS) V2(WN - 14)							V1 - V2		
7043	G . 1	-0.5	-1.0	7043	-0.4	4.8	7.0	. 0.5	-5.3	-7.9			
			-0.7					-10.8	3.5	-2.8			
			06					4.2	0.8	6.8			
			-0.6					-8.8	-0.5	-2.2			
			0.7					-5-4	6.4	6.0			

UNIT OF RESIDUALS (METERS)

Mr. Alfred Leick
Department of Geodetic Science
The Ohio State University
1958 Neil Avenue
Columbus, Ohio 43210
U.S.A.

Dear Mr. Leick:

Thank you for your letter of August 2. We were delighted to hear that you are interested in using our method to investigate geodetic net distortions. Thank you for drawing our attention to the errors which you have found in the equations. Unfortunately, you are correct in all cases. We obtained an additional error in equation 18. The attached sheet summarizes changes which should be made to equations, 16, 17, 18, 25, 25a, 25b, and 28.

Please keep us informed of the progress you make using this method. We in turn will send you any further thoughts which we have.

Yours truly,

Petr Vanicek

DE Wells

D. E. Wells

PV/DEW/ga

Encl.

Corrections to Equations in "Positioning of Geodetic Datums"

By P. Vanicek and D. E. Wells

(16) use
$$R(-\eta_0, -\xi_0, -\zeta_0)$$

(17) use
$$\begin{bmatrix} 0 & -\zeta_{0} & \xi_{0} \\ \zeta_{0} & 0 & -\eta_{0} \\ -\xi_{0} & \eta_{0} & 0 \end{bmatrix}$$

(18) use
$$\begin{bmatrix} 0 & -\zeta_0 & \xi_0 \\ \zeta_0 & 0 & -\eta_0 \\ -\xi_0 & \eta_0 & 0 \end{bmatrix} \begin{bmatrix} \cos A & \sin B \\ \sin A & \sin B \\ \cos B \end{bmatrix}$$

(25) introduced by "(expressing all vectors in the Average Terrestrial system)"

(25a) is
$$R(\omega,\psi,\varepsilon) = \begin{bmatrix} 1 & \varepsilon & -\psi \\ -\varepsilon & 1 & \omega \\ \psi & -\omega & 1 \end{bmatrix}$$

(25b) is
$$R(\Delta) = R(\omega_{G}, \psi_{G}, \varepsilon_{G}) = \begin{bmatrix} 1 & \varepsilon_{G} & -\psi_{G} \\ -\varepsilon_{G} & 1 & \omega_{G} \\ \psi_{G} & -\omega_{G} & 1 \end{bmatrix}$$

after eqn. (26) list is $^{11}\omega, \psi, \epsilon, \Delta, \overrightarrow{r}_{SG}, \Delta L^{11}$.

(28) is
$$Q(\Delta) = \Delta \begin{bmatrix} 0 & \sin \phi_{0} & \cos \phi_{0} \sin \lambda_{0} \\ -\sin \phi_{0} & 0 & \cos \phi_{0} \cos \lambda_{0} \end{bmatrix}$$

$$\cos \phi_{0} \sin \lambda_{0} - \cos \phi_{0} \cos \lambda_{0} = 0$$

2.3 Determination of Network Distortions

During the past months further investigations as to the determination of distortions in major geodetic networks have been made. The procedure used is described in the <u>Fourteenth Semiannual Status Report</u> on pages 50 and 51. The principle of this procedure is to look for the systematic residuals of station coordinates after the transformations between the satellite system and the geodetic datum were performed.

Detailed investigations were done for the South American (SAD69) and the European geodetic Datums using the OSU 275 satellite system as reference. No systematic pattern for the residuals $V_{\text{SAT}} - V_{\text{GEOD}}$ could be seen in either case. Three, four and seven parameter transformations were computed using both the Molodensky and Veis models. The Vanicek model, which is detailed in section 2.22, was not used since its requirements concerning the distribution of stations is not fulfilled for the available stations.

2.31 Determination of Network Distortions for NAD-27

Despite the work which was done in regard to deformations for the North American Datum, which was presented in the Fourteenth Semiannual Status Report, it was felt that the procedure should be tested again using the more homogeneous NWL-9D Doppler system as comparison standard.

Mr. Meade of the National Ocean Survey, Rockville, Maryland, supplied the coordinates of 88 Geoceiver stations and the corresponding geodetic coordinates for the NAD. Additional coordinates for Doppler stations in South America and Europe are expected to be at our disposal shortly. See also the correspondence in Attachments 1 and 2.

The NOS data was given in the form of geodetic coordinates ϕ , λ , h. In each case the antenna height was given and had to be reduced to the marks. Although the transformation program permits geodetic or

Cartesian coordinates as input data, geodetic coordinates were computed for later convenience using the NWL-9D ellipsoid:

a = 6378145 m

f = 1/298.25

A summary of coordinates is given in Tables 2.3-1 through 2.3-4.

Before the coordinates were used in the transformations, double stations and nearby stations, etc. were eliminated. Some comments to particular stations can be found in a paper by K. Meade, "Geoceiver Positions Compared with Results of Precise Surveys," which was presented at the meeting of the International Federation of Surveyors (FIG), Washington D.C., September 7-16, 1974.

A summary is given here:

10028	EGLIN AFB, FL	NAD position not verified
10053	BUCKLEY, CO	NAD position not verified
30029	MOSES LAKE, WASH	Two re-observations available; same station numbers; all observations can be considered equivalent
51063	DOS PALOS, CA	Height is in error by about 5 m
52063 , 530	63	Re-observations for station 51063
20001 52001 52002 60001	BELTSVILLE, MD	Identical or nearby stations
51068	YULEE, FLA	Substitute station for station 20015
20003	WRIGHTWOOD, CA	Eccentric station with 51070
T008	AZ ·	The name of this station could not be identified from the data sheet. In order not to change the available programs the station was renumbered to 9008.

Most of the data obtained from NOS contained standard deviations for the NWL-9D coordinates. However, these figures represent the internal consistencies only, and had to be increased by a common factor for subsequent use.

In those cases where no information was given at all, a standard deviation of ± 1.50 m for each component was adopted. This is in agreement with accuracy estimates obtained by comparing Doppler coordinates with those from the Transcontinental Traverse. The variances are listed in Table 2.3-5.

It is a well known fact that there is no unique way to estimate the actual accuracy of geodetic coordinates for older datums such as the North American Datum. Several empirical formulas have been published. In order to be consistent with the work reported in the <u>Fourteenth Semiannual Status Report</u> concerning NAD distortions, the following formula was used to estimate the standard deviations of the NAD coordinates:

$$\sigma_{(m)} = \pm \frac{1}{20000 \sqrt[3]{M_{(km)}}} \cdot M_{(m)}$$

where M is the distance between the point under consideration and the initial point of the geodetic datum. This formula was given by L. G. Simmons in an article entitled "How Accurate is the First Order Triangulation?" [The Journal, U.S. Coast and Geodetic Survey, No. 3, April 1950]. The variances are listed in Table 2.3-6.

Considering the remarks made above about certain problematic stations, there were 81 points left to use for the transformation. A preliminary plot of the stations and comparison of residuals indicated that several "nearby" stations could be also deleted without loosing information. Only stations 51072, Oil Platform – Gulf of Mexico, La., exhibited unusually large residuals and was subsequently deleted. The variances for the remaining 67 stations were scaled such that the standard deviation of unit weight, $\hat{\sigma}_0$, approached unity to within 10%. The final transformations are as follows:

a) Seven Parameter Solution (Molodensky-model)Total number of points: 67

NAD weighting : factor = .1

NWL-9D: factor = 80

Note: Simmons formula does not give an estimate for the initial point; thus a variance of 0.20 m² for each axis was assumed.

(b) Three Parameters Solution: (variances as above)

The results of the above transformations to the NWL-9D system are in the table below. The notation is the same as used earlier.

	Δu	(m)	-28.5 ± 0.41	- 28.0±0.49
fts	Δv	(m)	153.8 ± 0.35	153.7±0.42
Shifts	Δw	(m)	179.7 ± 0.34	· 179.8± 0.41
Scale	Δ	(x 10 ⁻⁶)	1.76±0.06	-
ns	ω	(")	0.30±0.01	,
Rotations	ψ	(")	0.01±0.01	
Ro	€	(")	- 0.30±0.02	,

The after-transformation residuals are in Figures 2.3-1 through 2.3-6.

Table 2.3-1

NWL-9D Coordinates for North American Stations

			φ			λ		h (m)
10000	CHEYENNE, WY.	41°	07'	59, 956	255°	07	54,514	1857.71
	GREENVILLE, MISS.			42.7920				5.74
	MEADES RANCH.KAN.			26.627				564.67
10008	GRAND FORKS, ND	47	56	38.503	262	37	09.155	237.40
10018	JOMESTOWN, TEX	30	26	48.898	262	01	15.690	291.68
10019	FRANKTON, IND	40	14	07.031	274	10	26.544	221.09
10020	MARYVILLE, IND	38		20.951			07.152	175.15
10021	CASH, KY	37		06.950			09.761	227.74
	IUKA, MISS			15.800	271		29.412	210.78
10023	WEBSTER, MISS			55.013	270		03.498	101.33
				04.883	273	47		1.547
	PATRICK AFB, FL			38.950			37.830	-22.184
	GOLDSTONF, CALIF.			39.568			36.935	981.349
	FOWARDS AFR.CA			50.549			06.937 27.054	746.194 1663.758
	BUCKLEY, CO TULA PEAK WSMR, NM			02.094 36.353			38.832	1311.808
	SALT WSMR.NM	33		12.404			09.118	1204.538
	PILLAR POINT.CA	37		53.099			04.981	11.858
	SAN NICHOLS.CA	33		48.821			46.780	234.54
	GALLUP, NEW MEXICO	35		00.596			22.212	2006.397
	BELTSVILLE, MD	39		39.814	-	_	27.104	3.08
	LAS CRUCES, NM			43.954			45.479	1167.637
	WRIGHTWOOD, CAL			54.447			05.495	2244.29
	WOODLINE.GA .	30		55.695			07.737	-25.86
	COLUMBIA, MISS	31	12	45.099	270	16	27.059	76.35
20176	AJO, ARIZONA	32	26	54.600	247	() R:	51.637	344.77
20177	DOUGLAS, ARIZONA	31	22	36.952	250	27	32.654	1197.44
20208	KINGMAN, ARIZONA	35		48.172			31.854	1112.44
	BLOOMFIELD, OHIO .			11.784		15	39.474	321.80
	COLUMBUS.OHIO			27.799			29.862	207.75
	GREENVILLE, OHIO			51.465			26.296	276.34
	METAMORA. ILL			20.412				211.80
	MOSES LAKE, WASH			06.541			43.165	338.37
	GREEN RIVER, UTAH			44.214				1288,256
	BLAINE, WASHINGTON			47.191				-10.94 105.33
	WESTEORD.MASS ORLAND.CALIFORNIA			04.258 44.086			53.043	32.464
	CHANCE1967, MONTANA	47		07.425			04.173	984.20
	CHARLESTIN, WV			10.835			32.776	249.382
	CORBIN, KENTUCKY						08.520	354.976
	CLEVELAND, THNMES.			06.961			55.188	261.137
	LAURENS, SOUTH CAR.			08.446			35.479	182.541
	BOLIVIA. MORTH CAR.			10.816			39.664	-34.318
	SHELRY, ALARAMA			03.355			00.801	181.752
51010	SANDERSVILLE.G.	33	03	38.462	277	05	29.905	112.977
	FARMVILLE.VIRGINIA	37	18	52.043	281	33	38.270	102.434
	BONTEAY, FLORIDA	30	39	05.829	274	11	37.636	-6.31
	CLFARWATER-ST.P.FL	27		13.006			24.529	-32.083
	VALKARIA. FLURIDA			26.282			31.981	-30.265
	HIALFAH, FLURTUA						34.325	-28.143
	MIFFLINVILLE, PA						42.036	256.467
51019	HUDSON, N.Y.	42	14	37.676	286	13	24.447	72.477

Table 2.3-1 (Continued)

			•	φ		λ		h (m)
51020	ALBURG(GSC).VER.	44°	54	29"267	286	42	30,669	29.527
	ORLEANS. MASS	41		19.234				-19.649
	FAIRFIELD, ME	44		59.522				7.587
51023	BOUCHARD RM2.MAINE	47	1.1	53.912	291	26	48.671	326.393
51024	FREEPORT, TX	29	02	31.525	264	39	49.664	-31.911
51025	NEWTON, TEXAS	30	54	24.714	266	23	55.765	49.897
51026	CLARKSVILLE, TEXAS	33	38	22.877	264	58	55.424	117.625
51027	SPRINGDALE, ARK.	36	10	23.417	265	52	34.252	374.242
51028	THAYER, MISSOURI	36	34	37.098	268	22	23.142	259.787
51029	PLATTE CITY, MO	39	16	50.854	265	13	49.562	261.807
51030	KINGFISHER, OKLAH	35	47	01.478	262	01	11.075	327.349
51031	CLAY CITY, ILL	38	38	14.569	271	39	00.669	105.314
51032	EL DARA, ILL	39	37	27.900	268	58	33.650	201.181
51033°	WOODBINE.IOWA	41	42	12.609	264	21	19.399	384.342
51041	MEYFR 1946, NEB	41	38	26.726	258	24	01.345	1151.98
51043	•	44	48	C1.457	251	39	16.310	1193.35
51044		41	36	55.678	252	12	53.888	2208.722
	KEARNS, UTAH	40	38	36.160	248	01		1364.895
51057		40	23	41.717		47		18 <u>2</u> 8.559
51058			49	37.575	241	00	52.340	1275.178
	DOS PALOS.CA			50.765	239		44.563	-1.310
53063		36		50.743			44.530	-1.437
51066				31.282	238		12.208	861.277
51067		32		44.997	261		35.104	323.845
5106B	YULEF. FLORIDA -	30	41	46.311	278		59.114	-19.419
51069	ASHEPOO.S.C.	32		31.674			36.774	-38.685
	WRIGHTWOOD, CALIF.	34		44.387	242	19		2153.871
51072		28	56		276	15	10.521	-4.551
	MIDLAND, OR	42	07	21.398	238	10	21.891	1218.160
	UPPER 1965, MICH.	46	18	30.359	274	32	35.124	216.647
	LITTLE RM1, MICH.	43	44	11.082	275	11	32.141	238.112
	MAYHOOD 1971, CALIF	38	08	31.754	238	16	33.529	10.232
	AGAMENTICUS, MAINE	43	13	24.265		18	28.169	175.472
52001		39	01	39.775			27.054	-0.485
	· · · · · · · · · · · · · · · · · ·	39	01	39.293	283		27.278	1.687
	BELTSVILLE, MD	39	01	39.779			27.054	0.447
90008	???, ARIZUNA	32	39	11.004	245	24	29.186	40.71

Table 2.3-2

NWL-9D Coordinates for North American Stations

	X(m)	Y(m)	Z(m)
10000	-1234810.34479	-4651148.68714	4174812.84885
10003	-93190.22405	-5324578.26616	3498357.53337
10006	-734990.46861	-4892186.64195	4011979.40879
10008	-549887.01523	-4245038.24274	4712891.39485
10018	-763949.81704	-5450296.58834	3213333.93701
10019	354909.62027	-4863115.05179	4098111.72536
10020	378813.81379	-4977652.25554	3956883.44462
10021	346075.33324	-5051239.60916	3866278.25302
10022	160893.78147	-5241609.73580	3618675.36159
10023	77466.09114	-5319596.99528	3506429.79645
10028	362692.68467	-5484531.06898	3224754.30961
10029	917920.73638	-5548410.67279	2998733.93464
10031	-2353582.30711	-4641223.76242	3677203.67495
10032	-2450021.89427	-4624408.97654	3635030.06239
10033	-1253284.35437	-4751609.95914	4054954.02422
10045	-1488252.93036	-5142959.85546	3457166.54839
10046	-1506813.25660	-5131569:83846	3465785.07069
10055	-2722152.23814	-4273150.81962	3861406.85452
10056	-2631050.99977	-4646517.58020	3477023.60556
10071	-1657728.05935	-4927594.52800	3685857.92988
20001	1130764.10147	-4830822.62934	3994715.06391
20002	-1556220.62943	-5169436.28406	3387244.13678
20003	-2448848.35412	-4667969.51863	3582748.89299
20015	792114.42740	-5417292.09969	3261017.23183
20016	26127.64213	-5459827.53282	3286111.78910
20176	-2092423.34076	-4964981.48058	3402723.38344
20177	-1823377.95546	-5137394.44202	3302271.79881
20208	-2126098.53690	-4766079 . 94095	3656367.81594
30025	702141.41918	-4836067.60863 -4856284.12728	4085559.51361 4078777.27857
30026	592688.90427 458565.44577	-4856590.95856	4092126.36406
30027	59980.32619	-4833306.24006	4147655.93697
30028	-2127824.96370	-2785852.43423	4656031.95123
30029	-1707513.13264	-4663005.92492	3991315.35939
30030 30038	-2271129.67549	-3532651.75399	4784210.85529
30078	1492300.44823	-4457731.14319	4296433.64456
30078	-2613387.68066	-4157720.62551	4056330.75583
30099	-1371924.26386	-4069030.48968	4701610.99752
51004	732263.41817	-4953431.48498	3937856.75321
51005	523305.69429	-5076315.22859	3813714.44134
51006	465504.99379	-5200166.84308	3651815.98075
51007	726444.68845	-5206374.95067	3600228.55228
51008	1085993.59359	-5178330.35168	3549772.19384
51009	326478.96891	-5337543.79675	3464992.73182
51010	660605.36604	-5304973.17219	3459666.56586
51011	1017856.33785	-4975965.47110	3845273.01778
51012	401614.56491	-5477079.93053	3232726.60242
51013	7172×9.41982	-5594041.54702	2968690.23123
51014	924916.88205	-5561535.20681	2972315.52571
51015	966695.26915	-5654642.01745	2764155.16523
51017	1138337.87655	-4682261.00483	4163941.43212
51019	1321178.95323	-4540588.28022	4265743.21216

Table 2.3-2 (Continued)

	X(m)	Y(m)	Z(m)
51020	1300902.22758	-4333791.68425	4480149.24505
51021	1631121.89077	-4469385.10750	4233641.57170
51022	1586590.26501	-4262277.41136	4455807.10314
51023	1587514.48558	-4041129.01323	4657017.32931
51024	-518990.17029	-5556368.82666	3077968.50440
51025	-344038.01084	-5466536.55310	3257067.55379
51026	-464943.50883	-5295234.36211	3513312.70175
51027	-370581.45088	-5141652.18507	3743945.08865
51028	-145598.35752	-5126254.61386	3779956.29377
51029	-411074.58993	-4926739.43748	4016665.17115
51030	-719196.02498	-5130171.71830	3708948.19848
51031	143659.13081	-4986581.31819	3961023.14441
51032	-87917.51068	-4918783.49404	4046085.67069
51033	469094.58885	-4746142.64147	4221337.38980
51041	-960010.38566	-4676960.75679	4216638.28646
51043	-1427089.14345	-4303659.34812	4472482.73584
51044	-1459157.32103	-4548825.60091	4215240.07808
51056	-1813679.78182	-4495449.79318	4133350.65657
51057	-2072378.89625	-4402418.88813	4112669.95257
51058	-2377392.28887	-4291497.04963	4064082.40225
52063	-2595520.92498	-4396788.44576	3809779.14754
53063	-2595521.78387	-4396788.29383	3809778.52903
51066	-2371753.82195	-3901369.89640	4439929.85159
51067	-753907.72463	-5303702.30432	3450649.92098
51068	789224.05276	-5432220.05147	3236970.55862
51069	880918.03063	-5296209.15464	3431476.64619
51070	-2448903.18382	-4668054.21314	3582441.91265
51072	608423.53781	-5552858.42244	3068032.01801
51074	-2499045.55974	-4026270.50591	4256536.73841
51081	349607.90968	-4399882.09211	4589158.33848
51082	417734.61088	-4597009.49347	4387147.00671
51089	-2641085.10147	-4272274.06522	3917876.46313
51095	1539185.82105	-4393301.31088	4345745.53359
52001	1130762.47186	-4830820.94428	3994711.88475
52002	1130770.23580	-4830830.47253	3994701.70560
60001	1130762.61917	-4830821-57361	3994712.56745
90008	-2236973.31784	-4887800.63011	3421652.06989

		φ	•	λ		h(m)
10000 CHEYENNE, WY.	41°	08	'00 <mark>"</mark> 06912	55° 07	157"2024	1889.5
10003 GREENVILLE, MISS.			42.46962			44.2
10006 MEADES RANCH, KAN.			26.686 2			599.4
10008 GRAND FORKS.ND	47		38,594 2			274.0
10018 JONESTOWN, TEX	30		48.273 2			327.1
10019 FRANKT(IN.INI)	40	14	06.956 2	74 10	27.186	259.0
10020 MARYVILLE, IND	38	35	20.787 2	74.21	07.740	212.6
10071 CASH.KY	37	33	06.807 2	73 55	10.384	264.5
10022 IUKA, MISS			15.547 2	71 45	30.291	250.4
10023 WEBSTER, MISS	33					14].3
10028 EGLIN AFR, FL	30		04.343 2			40.9
10029 PATPICK AFB, FL	28		38.08412			16.3
10031 GOLDSTONE, CALIF.	35		39.81832			994.0
10032 EDWARS AFB,CA			50.74272		11.0552	758.4
10033 BUCKLEY, CO			02.208 2			1691.1
10045 TULA PEAK WSMR, NM	33		36.21402			1338.8
10046 SALT WSMR, NM			12.22152		12.0076	1233.3
10055 PILLAR POINT, CA			53.441 2			21.0
10056 SAN NICHOLS, CA			48.875 2		50.994	248.3
10071 GALLUP, NEW MEXICO	. 35		00.605 2		25.292	2030.6
20001 BELTSVILLE, MD	39		39.49162		26.7558	40.1
20002 LAS CRUCES, NM	32		43.702 2		48.285	1196.4
20003 WRIGHTHUOD, CAL	34		54.537 2		09.484	2256.6
20015 WOODLINE, GA	30	56		78 19	07.845	11.6
20016 COLUMBIA, MISS	31	12		70 16	28.098	113.6
20176 AJN, ARIZONA	32				54.990	422.9
20177 DOUGLAS, ARIZONA	31	22		50 27		1225.0
20208 KINGMAN, ARIZONA 30025 BLOOMFIELD, DHIO	35		48.275 2			1130.7
30026 COLUMBUS.OHIO	40 40			78 15	39.706	360.6
30027 GREENVILLE.DHIO	40		27.649 2			24(1.2
30028 METAMORA-ILL	40	09	_	75 23	26.854	313.5
30029 MOSES LAKE, WASH.	47		20.343 2 07.132 2			249.0
30030 GREEN RIVER, UTAH	38					355.0
30038 BLAINE, WASHINGTUN					20.567	1311.1
30078 WESTFORD.MASS	40	27	47.88032 04.08392	56 3V	27.8030 20.0000	7•I
30098 ORLAND, CALIFORNIA			44.602 2			
30099 CHANCE1967, MONTANA			07.507 2			42.6 1011.9
51004 CHARLESTIIN, WV			10.576 2			290.7
51005 CORBIN, KENTUCKY			21.573 2			394.51
51006 CLEVELAND. TENNES.			06.794 2			303.01
51007 LAURENS, SOUTH CAR.			08.08772			224.20
51008 BOLIVIA, MORTH CAR.			10.298 2			6.8
51009 SHELBY, ALAHAMA			03.02772			222.7
51010 SANDERSVILLE, G.			38.048 2			154.05
51011 FARMVILLE, VIRGINIA			51.59552			142.5
\$1012 BONIFAY, FLURIDA			05.274 2			34.70
51013 CLEARWATER-ST.P.FL			12.034 2			10.40
51014 VALKARIA. FLURIDA			25.330 2			13.258
51015 HIALFAH, FLURIDA			24.868 2			16.3
51017 MIFFLINVILLE, PA			57.554 28			295.8
51019 HUDSON, N.Y.			37.446 28			112.12
			- 4,			* * ! • ! {~

Table 2.3-3 (Continued)

			φ		λ		h(m)
	11 2112 C (C C C) 11 2	, , °	5 7.	29 . 145 28	96°43'	20"065	66.8
	ALBURG(GSC), VER.	41	51	18.929 25	30 TZ	58.042	18.54
51021				59.357229			45.827
51022				53.849 29		47.633	362.0
51023	BOUCHARD RM2, MAINE	29		30.776 26		51.252	5.68
51024		30		24.116 26		57.198	87.8
51025		33	38				153.1
	CLARKSVILLE, TEXAS	36		23.216 26			412.3
51027	4			36.984 26		24.460	296.82
51028		39		50.961 26			300.00
	PLATTE CITY-MO			01.393 26		13.051	363.0
-	KINGFISHER, OKLAH			14.473827		01.6445	144.16
51031			37			34.875	240.24
	EL DARA, ILL	41		12.717 26			425.5
	WOODBINE, IOWA	41		26.878 25		03.785	1184.0
51041	MEYER 1946, NEB			01.705 25		19.481	1220.35
	LAKE 1957, WY			55.887 25		56.957	2236.5
	HIRSE 1972.WY			36.430 24	-		1392.1
	KEARNS ,UTAH			42.057 24			1847.62
	DRY 1965, NEVADA DIATOM 1958, NEVADA			37.992 24			1290.9
	DAS PALOS, CA			51.030 23			9.68
52063	DOS PALOS, CA	36		51.030 23		45.988	9.68
				31.948.23			874.9
51066		32		44.684 26		37.082	357.6
51067				45.583227		59.260	21.4
51068	YULEF, FLORIDA, ASHEPOO, S.C.			31.14192			1.9
51069	WRIGHTWOOD, CALIF.			44.441324		09.2715	
		28		21.335 2		11.898	32.1
	OIL PLATFORM, LA		07			26.638	1229.88
51074				22.163 23		38.179	21.10
51089	MAYHOOD 1971, CALIF					27.146	
51095				24.048 28		26.7558	
52001				39,491628		26.9420	
	BELTSVILLE, MARYL			39.003028		26.7558	
		. 39		54.491628 10.828 24			61.3
90008	???, ARIZHNA	26	27	ጊዜ•ሮረው ረኅ	+2 (4	3/ • 04/	0.1.0

Note: The coordinates of station 51081 (Newberry, Michigan) and 51082 (Rosebush, Michigan) are not given since the elevation of the mark above MSL is not available at this date.

<u>Table 2.3-4</u>
NAD-1927 Coordinates for North American Stations

	X(m)	Y(m)	Z(m)
10000	-1234787.03287	-465]305.24820	4174632.26703
10003	-93163.3274	-5324727.7588	3498182.6345
10006	-734965.10287	-4892338.99853	4011801.66913
10008	~549864.35647	-4245193.85197	4712710.80810
10018	-763921.55654	-5450447.70184	3213157.09664
10019	354935.89169	-4863266.51618	4097931.65607
10020	378839.58697	-4977803.37641	3956702.89265
10021	346100.87337	-5051388.65185	3866099.25380
10022	160920.74798	-5241759.84364	3618500.13789
10023	77494.23557	-5319747.61046	3506254.62638
10028	362718.24714	-5484677.72920	3224581.38896
10029	917944.49834	-5548556.09040	2998558.65948
10031	-2353546.10986	-464]377.63202	3677024.23533
10032	-2449986.10613	-4624564.61870	3634850.06573
10033	-1253257.28417	-475]762.52618	4054772.24688
10045	-1488218.80804	-5143110.83040	3456991.15919
10046	-1506780.22231	-5131723.27751	3465609.29068
10055	-2722117.58595	-4273314.41220	3861222.98818
10056	-2631015.98190	-4646677.14191	3476845.38285
10071	-1657697.43448	-4927746.97241	3685678.93531
20001	1130791.47330	-483(976.31625	3994529.88936 3387068.69774
20002	-1556189.96316	-5169589.19696 -4668124.67174	3582567.78721
20003	-2448814.66620	-5417439.98761	3260837.74799
20015	792138.94872 26155.85120	-5459974.93349	3285935.96242
20016 20176	-2092393.53049	-4965136.27632	3402547.73088
20177	-1823346.61493	-5137548.72238	3302098.14912
20208	-2126064.99762	-4766234.73910	3656188.45587
30025	702169.27593	-4836221.21900	4085376.99993
30026	592716.63644	-4856435.77982	4078595,38194
30027	458592.98239	-4859742.21159	4091944.89497
30028	60006.26530	-4833458.77091	4147474.96655
30029	-2127796.09549	-3786013.91927	4655847.15013
30030	-1707485.39103	-4663160.59124	3991132.57877
30038	-2271103.52778	-3532815.59222	4784027.11280
30078	1492329.65190	-4457885.09067	4296247.84148
50098	-2613354.5°563	-4157882.56192	4056147.47172
30099	-1371903.72852	-4069191.13759	4701423.61322
51004	732292.70433	-4952586.09926	3937676.59777
51005	523334.33832	-5076466.17623	3813536.44814
51006	465534.30520	-5200316.56071	3651643.51554
51007	726471.17226	-5206526.82108	3600052.21709
51008	1086020.84071	-5178483.49970	3549592.57927
51009	326506.36836	-5337692.95772	3464819.88045
51010	660632.57821	-5310122.98023	3459491.67290
51011	1017891.46347	-4976120.02327	3845089.92317
51012	401640.65947	-5477228.26993	3232553.90268
51013	717313.54522	-5594191.42876	2968514.90610
51014	924941.78326	-556]685.60454	2972141.11812
51015	966720.05300	-5659793.73112	2767977.48766 4163757.84166
51017	1138365.19529	-4682416.92001	4265559.04429
51019	1321206.75726	-4540745.87589	サムロンシング・ロササイグ

Table 2.3-4 (Continued)

	X(m)	Y(m)	Z(m)
51020	1300932.42103	-4335945.98825	4479964.74932
51021	1631151.37676	-4469543.88152	4233454.95837
51022	1586623.28185	-4262433.68813	4455622.42510
51023	1587550.58235	-404]280.65898	4656832.72282
51024	-518961.02488	-5556518.78229	3077793.47765
51025	-344009.35009	-5466687.00629	3256891.44616
51026	-464915.53902	-5295383,11407	3513137.36851
51027	-370555.96439	-5141805.11752	3743767.68838
51028	-145569.82647	-5126404.32935	3779779.74733
51029	-411047.44629	-4926890.91895	4016490.69597
51030	-719167.16105	-5130323.29882	3708772.98525
51031	143687.10534	-4986733.03793	3960845.05825
51032	-87891.03953	-4918937.43898	4045906.78638
51033	-469068.20706	-4746295.11729	4221159.04138
51041	-959984.22416	-4677114.25299	4216458.25801
51043	-1427067.38845	-4303815.21224	4472299.13266
51044	-1459132.62716	-4548981.33003	4215058.57208
51:056	-1813652.53308	-4495605.81371	4133168.02645
51057	-2072350.55979	-4402576.42778	4112487.25633
51058	-2377361.79737	-4291657.78291	4063900.21512
52063	-2595488.22949	-4396948.71761	3809595.73462
53063	-2595488.33949	-4396948.71761	3809595.73462
51066	-2371722.77412	-3901531.97290	4439746.33500
51067	-753877 . 13100	-5303852.11993	3450473.87748
51068	789249.87219	-5432370.39721	3236793.06675
51069	880947.07468	-5296359.48282	3431299.11481
51070	-2448868.9(626	-4668216.49201	3582263.62636
51072	608476.4]708	-5552998.63492	3067857 . 59850
51074	-2499017.23397	-4026431.67655	4256351.92947
51089	-2641052.03915	-4272435.92691	3917643.44328
51095	1539215.86721	-4393456.87232	4345558.60275
52001	1130741.47330	-4830976.31625	3994529.88936
52002	1130797.49669	-4830984.53345	3994518.15455
60001	1130791.47330	-4830976.31625	3594529.87436
90008	-2236940.7CX11	-4887958.64470	3421473.22711

Table 2.3-5
Variances of the NWL-9D Coordinates

$\sigma_x^2 (m^2)$	$\sigma_y^2 (m^2)$	$\sigma_z^2 (m^2)$
10000 0.165600D+01	0.1656000+01	0.165600D+01
10003 0.311400D+01	0.3114000±01	0.311400D+01
10006 0.2000000+00	0.2000000+00	0.2000000+00
10008 0.3306000+01	0.3306000+01	0.3306000+01
10018 0.331600D+01	0.3318000+01	0.331800D+01
10019 0.356900D+01	0.3869000+01	0.386900D+01
10020 0.398200D+01	0.3962000+01	0.2982000+01
10022 0.361200D+01	0.3612000+01	0.3612000+01
10031 0.690600D+01	0.4806000+01	0.680600D+01
10045 0.328300D+01	0.3283000+01	0.328300D+01
10055 0.915800D+01	0.9158000+01	0.915860D+01
10056 0.357500D+01	0.8575000+01	0.857500D+01
, 10071 0.334100D+01	0.3341000+01 0.7885000+01	0.2341000+01- 1
20001 0.788500D+01 20016 0.435600D+01	0.4356000+01	0.788500D+01 0.435600D+01
20176 0.5837000+01	0.5837000+01	0.583700D+01
20177 0.4984000+01	0.4984000+01	- 0.498400D+01
20208 0.559500D+01	0.5595000+01	0.559500D+01
30025 0.558000D+01	0.5580000+01	0.558000D+01
30028 0.2591000+01	0.2591000+01	0.259100D+01
30029 0.8028000+01	0.802800D+01	0.802800D+01
$-\frac{30030}{30038} - \frac{0.3434000 + 01}{0.9781000 + 01}$	0.3434000+01 0.9781000+01	0.343400 <u>0</u> +01 0.9781005+01
30098 0.676100D+01	0.8761000+01	0.8761000+01
30099 0.462400D+01	0.4624000+01	0.462400D+01
51064 0.5746000+01 51005 0.4802005+01 51006 0.4816000+01	0.5746000±01 0.4802000±01	0.574600D+01 0.480200D+01
51007 0.616200D+01	0.481600D+01 0.616200D+01	0.481600D+01 0.616200D+01
51008 0.808200D+01	- 0.80F200D+01	0.808200D*01
51009 0.474700D+01	0.4747007+01	0.474700b+01
51010 0.619400D+01	0.6194000+01	0.619400D+01
51011 0.731000D+01	0.7310000+01	0.731000D+01
510120.588300D+01	0.588300[:+01	0.588300D+01
51013	0.8190000+01	0.819000D+01
51014 0.9063000+01	0.906300U+01	0.9063000+01
51015 0.1008000+02	0.1000000+1	0.100800D+02
510170.8028000+01	0.802600D±01_	0.802800D+01
510190.923500D+01	0.923500D±01	0.923500D+01
51021 0.1110900+02	0.111090D+02	0.111090D+02
51022 0.1132100+02	0.113210D+02	0.113210D+02
51024 0.421200D+01	0.4212000+01_	0.4212000+01 0.355200D+01
51025 0.355200D+01 51026 0.2116000+01 51027 0.1421009+01	0.2116000+01 0.1421000+01	0.355200D+01 0.211600D+01 0.142100D+01
51028 0.2034000+01 51029 0.7670000+00	0.203400P+01_	0.2034000+01 0.767000D+00
51030 0.5610000+00 51031 0.2916000+01		0.961000D+00 0.291-00D+01
51032 0.192700D+01 51033 0.9060009+00	0-192700D+01 0-966000D+00	0.192700D+01 ·
: 52003 0.328100D+01	0.8281009+01	0.906000D±00 0.828100D±01
51066 0.8427000+01	0.842700D+01	0.842700D+01
51067 0.2116000+01	0.211600D+01	0.211600D+01
51068 0.748200b+01	U.742200 <u>0+01</u>	0.7482000+01
51069 0.731000b+01	0.731000D+01	0.7310000+01
51074 0.853600b+01	0.853800D+01	0.8538000+01
51020 0. 9800000+00	0.4400000D+00	0.980 00000+00
510-1 0.3040000+00	0.1090000±01 0.30460001±00 0.592000±00	0.1096000+01 0.3040000+00
51044 0.5160000+00	0.5930000+00 0.5160000+00	0.593000D+00 0.516000D+00
51036 0.6450000±00 51057 0.7433000±00 51058 0.8510000±00	6.6450000±00 0.7430000±00	0.6450000+00 0.7430000+00
\$1689 0. 932600b+66	0.85100PD+00 0.49320005+00	0.8510000+00 0.9520000+00
<u>. 51895 0-10364004-61</u>	0.1036000+01	0.103600D+01

<u>Table 2.3-6</u>
Variances of the NAD-27 Coordinates

	$\sigma_x^2 (m^2)$	$\sigma_y^2 (m^2)$	$\sigma_z^2 (\text{m}^2)$
10000 10003	0.560000D+01 0.136000D+01	0.264000D+01 0.480000D+00	0.246000D+01 0.480000D+00
10006	n.232000D±01	0.104000D+01	0.1040000+01 0.1920000+01
10018	0.496000D+01 0.256000D+01	0.2000000+01 0.9600000+00	0.960000D+00
$\frac{10019}{10020}$	0.208000D+01 0.456000D+01	0.800 <u>0000</u> +00	0.80000000+00 0.1920000+01
10022	0.134400D+02 0.157040D+03	0.440000D+01 0.102160D+03	0.4880000±01 0.8120000±02
10045	0 <u>-996800D+02</u>		0.4168000+02 0.2250000+01
10056	0.225000D+01 0.969600D+02	0.620000D+02	0.4248000+02/
	0.10000000+01 0.3120000+01	0.100000D+01 0.1280065+01	0.1000000+01 0.1120000+01
	0.256000D+01 0.100000D+01	0.10400005+01 0.1000000+01	0.112000D+01 0.100000D+01
20177	0.100000D+01	0.1000000±01 0.4000000±01	.0.1000000±01 0.4000000±01
30025	0.400.0000±01 0.4560000+01	0.1920000+01	0.1970000+01
30029	0.8160000+01 0.312000D+01	0.280000D+01 0.232000P+01	0.2720000+01 0.200000D+01
<u>30030</u> 30038	0.3920000 <u>+01</u> 0.472000D+01	0.208000D+01 _0.320000D+01	0.1840000+01 0.2160000+01
30098	0.1000000+01 0.5120000+01	0:1000000+01 0:2560000+01	0.100000D+01 0.216000D+01
51004	0.5760000±01	_0.224000D+01	0.224000D+01
51006	0.456000D+01 0.536000D+01	0.197000D+01 0.208000D+01	0.197000D+01 0.208000D+01
	0.126400D+02 0.528000D+01	0.448000D+01 0.248000D+01	0.442G00D+01 0.232000D±01
51009	0.2250000*01 0.2250000+01	0.225000D+01 0.225000D+01	0.2250000+01 0.2250000+01
51011.	0.568000D+01	0.2480005+01 0.225000r+01	0.2320000+01 0.225000D+01
51013	0,2250000+01 0,2250000+01	0.2250000+01	0.2250000+01
.51014 51015	0.225000D+01 0.225000D+01	0.225000D+01 0.225000D+01	0.225000D+01 0.225000D+01
510 <u>17</u>	0.3760000+01 0.336000D+01	0.1520000±01 0.1520000±01	0.136000D±01
51021	0.2250000+01	0.2250000+01	0.2250000401 0.2250000+01
51024	0.225000D+01 0.320000D+01	0.2250000+01 _0.1360000+01	0.1360000+01
	0.624000D+01 0.288000D+01	0.216000D+01 0.120000D+01	0.2240000+01 0.1120000+01
	0.872000D+01 0.225000D+01	0.3040000+01 _0.2250000+01	0.3120009+01 0.2250000+01
51029	0.225000D+01 0.120000D+02	0.2250000+01 0.4720000+01	0.2250000+01 0.4540005+01
51031	0.2250000+01	0.225000D÷01	0+2256000+01
	0.225000D+01 0.225000D+01	0.225000P+01 0.225000D+01	0.2250000+01 0.2250000+01
52063	0.2240000+01 0.352000D+01	0.152000D+01 0.232000D+01	0.112000D+01 0.150000D+01
51067	0-416000D+01	0.1680000:+01	0.1760000+01
51069	0.288000D+01 0.312000D+01	-0.120000D+01 0.128000D+01	-0.1120000+01
51020	0.121600D+02 0.585000D+01	0.7920000+01 0.387000D+01	0.520000D+01 0.269000D+01
51023	0.396000D+01 0.315000D+01		-0.162000D+01
51043	0.333060D+01	0.153000D401	0.126000D+01 0.1080000+01
51056	0.333000D+01 0.648000D+01	0.135000D+01 _0.333000D+01	_ 0.275000D+01,
51058	0.675000D+01 0.342000D+01	0.378000D+01 0.207000D+01	0.2880000+01 0.1530000+01
51089	0.4320000±01 0.369000U±61	0.2970000+01 0.1620000+01	0.216000P+01 _0.120000+01
		The management of the policy of the management of	war of the second of the secon

RESIDUALS 3 Parameter Transformation (NWL9D - NAD): Latitude

Figure 2.3-1

RESIDUALS 3 Parameter Transformation (NWL9D - NAD): Longitude

Figure 2.3-2

RESIDUALS 3 Parameter Transformation (NWL9D - NAD): Height

Figure 2.3-3

RESIDUALS
7 Parameter Transformation (NWL9D -NAD): Latitude

Figure 2,3-4

RESIDUALS 7 Parameter Transformation (NWL9D - NAD): Longitude

Figure 2.3-5

RESIDUALS
7 Parameter Transformation (NWL9d - NAD): Height

Figure 2.3-6

DEFENSE MAPPING AGENCY

TOPOGRAPHIC CENTER WASHINGTON, D.C. 20315

REPLY TO ATTENTION OF:

DMATC-G(52310)

2 2 OCT 1974

Mr. Alfred Leick
Department of Geodetic Science
1958 Neil Avenue
Columbus, Ohio 43210

Dear Mr. Leick:

Reference is made to your letter dated 30 August 1974 requesting coordinates in the NWL 9D and SAD 69 systems for Doppler stations in Latin America. These data, while not classified, are restricted to the use of the country involved and the United States, and any exception will require the prior approval of the country involved.

We are initiating action to obtain the necessary approvals for the release of the

Sincerely,

KENNETH I. DAUGHERTY

Chief, Department of Geodesy

55

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL OCEAN SURVEY Rockville, Md. 20852 . C13

November 7, 1974

Dr. Ivan I. Mueller Department of Géodetic Science Ohio State University Columbus, Ohio 43210

Dear Dr. Mueller:

In accordance with our telephone conversation on this date, data sheets for 76 Doppler stations are enclosed. Data for each station includes Doppler coordinates referred to center of the antenna and geodetic data referred to the marks. In each case, the antenna height is tabulated and the Doppler values can be reduced to the marks. An index of stations by state is also enclosed. Please note my comments in the enclosed copy of my FIG report on page 4.

As discussed, the AFCRL input for IAG is enclosed.

Sincerely,

B. K. Meade

Chief, Control Networks Division

National Geodetic Survey

Enclosures

2.32 Determination of Network Distortions for the Australian Geodetic Network (AUS)

The OSU-275 System as Comparison Standard

The OSU-275 system provided a total of 17 stations which could be used for the computations. They included four Doppler stations which were added to the WN14 gometric solution either by direct survey connections or by transformations. Several transformations were performed to delete nearby and double stations and those with unusually large residuals. It was found that the residuals of the Doppler stations did not compare well with the other stations of the WN14. It was, therefore decided to use the Doppler stations independently of the others.

The number of stations thereby was reduced to six stations. The variances as given in the Fourteenth Semiannual Status Report were used in the satellite system. In order to obtain the variance of unit weight close to unity, the variances of the geodetic coordinates had to be scaled to 2.0 m² in each axis. The residual maps for the three and seven parameter (Molodensky model) transformations can be found in Figures 2.3-7 through 2.3-12.

The NWL-9D System as Comparison Standard

Mr. A. G. Bomford provided the coordinates of nine Doppler stations which are given in Tables 2.3-7 and 2.3-8. Station 2744, THURSDAY, showed large residuals and station 2726, MANUS IS, was not used since it is too far away from the Australian continent. Again, a three and seven parameter (Molodensky) transformation was performed with respective variances 25.0 m² and 2.0 m² for the Doppler system and the geodetic system in each coordinate. The distortion maps, are shown in Figures 2.3-13 through 2.3-18.

<u>Table 2.3-7</u>

Coordinates in NWL-9D System for Australia

•	$oldsymbol{arphi}$	λ	h(m)
2112 SMITHFIELD	- 34° 40′	26.26138°39'	16.47 15.2
2707 DARWIN	- 12 27	13.02130 48	55.43 52.2
2709 MUCHEA	- 31 36	25.47115 55	52.45 44.0
2725 TOWNSVILLE	- 19 15	24.64146 42	58.89 47.4
2726 MANUS IS	- 2 03	02.59147 21	37.37 124.0
2743 WOOMERA	- 31 23	25.49136 52	41.88 127.0
2744 THURSDAY	- 10 35	00.64142 12	39.90 137.1
2749 TIDBINBILLA	- 35 24	12.88148 58	56.16 644.2
2805 CULGOURA	- 30 18	34.13149 33	40.30 223.9

Table 2.3-8

Coordinates in Australian Geodetic Datum

a = 6378160 m, // f = 298.25

		φ	λ	h(m)
2112	SMITHFIELD .	- 34°40′	31. ["] 43138 [°] 39 [']	12.28 36.6
2707	DARWIN	- 12 27	17.89130 48	51.95 25.7
2709	MUCHEA	- 31 36	29.51115 55	47.61 93.8
2725	TOWNSVILLE	- 19 15	30.01146 42	55.62 14.5
2726	MANUS IS	- 2 03	7.12147 21	34.46 53.1
2743	WOOMERA	- 31 23	30.61136 52	37.89 142.0
2744	THURSDAY	- 10 35	6.15142 12	37.06 61.3
2749	TIDRIMBILLA	- 35 <i>?</i> 4	18.36148 58	52.75 654.3
2805	CULGOORA	- 30 18	39.61149 33	36.72 215.4

Figure 2.3-7

Figure 2.3-8

Figure 2.3-9

Figure 2.3-10

Figure 2.3-11

Figure 2.3-12

Figure 2.3-13

Figure 2.3-14

Figure 2.3-15

Figure 2.3-16

Figure 2.3-17

Figure 2.3-18

3. ACTIVITIES RELATED TO EOPAP (Grant No. NGR 36-008-204)

3.1 Sea Level Slopes Along the Continental Boudaries of the U.S.A.

3.11 Introduction

Geodesists and oceanographers have disagreed on the direction and magnitude of the North-South sea level slopes along the East and West Coasts of the United States.

There was some room to doubt the validity of the comparisons between the results of the geodesists and the oceanographers since they use different methods and different reference surfaces for the determination of these slopes.

An attempt has now been made to compare the results of the oceanographers and geodesists by reducing them to the same terms.

3.12 Method of Calculation

The results of both geodetic and oceanic leveling have been reduced to the following compatible quantities for comparison at several stations along the two coasts:

- (i) Geopotential difference between the sea level and the deep sea isobaric surface used as a reference surface in oceanic leveling;
- (ii) Orthometric height between the sea level and the same deep sea isobaric surface.

Values at the various stations for the (anamolous) dynamic heights of the sea level with respect to the deep sea isobaric surface of reference have been taken from the graphs of Wilton Sturges [4]. Values at these stations for the geometric height differences between the sea level and the reference geopotential surface used in geodetic leveling have been taken from the graphs of Emery Balazs [1].

The standard geopotential difference between the 0-db surface (sea level) and the 1000-db surface has been taken as $9704.032 \text{ m}^2 \text{ s}^{-2}$ [3]. The standard geopotential difference between the 0-db surface and the 2000-db surface has

been taken as 19364, 200 m² s⁻² [2].

Computations have been carried out for 21 stations along the East Coast (West Atlantic) and for 8 stations along the West Coast (East Pacific). The following assumptions have been made:

- (i) The deep sea isobaric surface used as a reference in oceanic leveling is an equipotential surface;
- (ii) Oceanic and geodetic leveling is in perfect agreement at Neah

 Bay on the West Coast and Port Maine on the East Coast, both

 sea levels having been used as references in geodetic leveling

 along the West and East Coasts respectively;
- (iii) The gravity field of the earth is well described by normal gravity field in the areas under investigation and gravity varies.

 linearly with height/depth up to 2 kilometers.

3.121 Calculation of Geopotential Difference

A. Oceanic Leveling

Figure 3.1-1

$$\Delta W_{0_{i}} = \Delta W_{s} + dW_{0_{i}} = g_{m_{i}} (H_{s} + h_{0_{i}})$$
 (1) where

 ΔW_{0} is the geopotential difference between the deep sea isobaric surface and the sea level at station i, as per oceanic leveling;

ΔW_s is the standard geopotential difference between the deep sea isobaric surface and the sea level (0-db surface). The value for this is 9707.032 m² s⁻² for 1000-db surface (used as a reference on West Coast) and 19364.200 m² s⁻² for 2000-db surface (used as reference on East Coast);

 $dW_{\text{o,}}$ is the anomalous geopotential difference at station $i\,;$

h_{D₁} is the dynamic height at the computation station as per graphs of W. Sturges and is interpreted as per Equation (1) above;

 g_{n_i} is the mean normal gravity between the sea level and the deep sea isobaric surface, at the computation station in gals;

 H_s is the orthometric height corresponding to the standard geopotential difference ΔW_s ;

therefore,
$$dW_{0_1} = h_0 \times g_{m_1}$$
, since $\Delta W_8 = g_{m_1} \times H_8$. (2)

Based on the geodetic reference system 1967:

$$g_{m_{1}} = 978.03185 (1 + 0.005278895 \sin^{2} \varphi_{1} + 0.000023462 \sin^{4} \varphi_{1} - 0.0000003155 \frac{H_{1}}{2})$$
(3)

where

 φ_i is the latitude at the computation station; and

H_i is the orthometric height between the deep sea isobaric surface and the sea level at the computation station (in meters).

0.0000003155 H represents the free air altitude effect on gravity. Also,

$$\Delta W_{0_{i}} = g_{u} \times H_{i}. \tag{4}$$

 g_{n_1} and H_i are determined such that Equations (2), (3) and (4) are satisfied. Initial value of H_i has been taken as -1000 meters for the West Coast and -2000 meters for the East Coast.

B. Geodetic Leveling

$$\Delta W_{g_{\bullet}} = \Delta \overline{W} - dW_{g_{\bullet}} \tag{5}$$

where

 ΔW_{g_i} is the geopotential difference between the deep sea isobaric surface and the sea level at a station i, as per geodetic leveling;

ΔW is the geopotential difference between the deep sea isobaric surface and the sea level at the station used as reference in geodetic leveling (reference geop), computed as given in section A; and

 dW_{ϵ_1} is the difference of geopotential between the reference geop of geodetic leveling and the sea level at the computation station.

$$dW_{s_i} \approx h_{s_i} \times g_{s_i}, \qquad (6)$$

where

- is the geometric height difference at the computation station
 (between the reference geop and the sea level), obtained from the graphs of E. Balazs;
- is the gravity at sea level obtained by inserting H = 0 in Equation (3).

3.122 Calculation of Orthometric Height Differences

A. Oceanic Leveling

 H_0 , the orthometric height between the sea level and the deep sea isobaric surface at a station i, as per oceanic leveling, will be identical to H_1 computed in section 3.121/A.

B. Geodetic Leveling

If \overline{H}_i is the orthometric height at station i between the deep sea isobaric surface and the reference geop of geodetic leveling (corresponding to the geopotential difference $\Delta \overline{W}$), computed as per section 3.121/B, then

$$H_{g_{i}} = \overline{H}_{i} - h_{g_{i}}$$
Where

H_{si} is the orthometric height between the sea level and the deep sea isobaric surface at station i, as per geodetic leveling.

3.123 Comparison of Results

 ΔW_{0_1} and ΔW_{g_1} have been computed as per section 3.121, and graphs for $\Delta W_1 = \Delta W_{0_1} - \Delta W_{g_1}$ against latitude have been shown in Figures 3.1-4 and 3.1-6 for the East and West Coasts respectively.

 H_{0} and H_{ϵ} have been computed as per section 3.122, and graphs for these quantities against latitude have been shown in Figures 3.1-3 and 3.1-5 for the East and West Coasts respectively.

3.13 Conclusions

- (i) The results of oceanic and geodetic leveling are comparable. In terms of magnitude, the discrepancies as pointed out by oceanographers, between oceanographic and geodetic leveling, do exist.
- (ii) If the deep sea isobaric surface is taken as the level surface of reference, the results of both oceanic and geodetic leveling indicate that the ocean is sloping down from South to North, along both the East and West Coasts.

- (iii) Height differences are more on the West Coast where the deep sea isobaric surface of reference is 1000-db, as compared to the East Coast where the reference surface is 2000-db. ΔW_1 is predominantly negative and increases with the distance from the reference station.
- (iv) The crucial factors in the above comparisons are the actual gravity and the choice of deep sea isobaric surface. Actual gravity is not measured directly either by oceanographers or geodesists. Errors due to non measurement of actual gravity and to the deep sea isobaric surface not being an equipotential surface are likely to account for a small part of the discrepancy in magnitude. But the discrepancy about the direction of the slope seems to have been resolved.
- (v) It is hoped that altimeter measurements from satellites will resolve the apparent discrepancy.

References

- 1. Balazs, E., 1973. 'Local Mean Sea Level in Relation to Geodetic Leveling Along the United States Coastlines,' Fourth GEOP Research Conference, August 16-17, Boulder, Colorado.
- 2. Bjerknes, V. and Sandstrom, J. W., 1910. 'Dynamic Meteorology and Hydrology,' Table 7H, The Carnegie Institution of Washington, D.C.
- 3. Montgomery, R. B., 1973. 'Departures of Sea Surface From the Geoid,' Fourth GEOP Research Conference, August 16-17, Boulder, Colorado.
- 4. Sturges, W., 1974. "Sea Level Slope Along Continental Boundaries," JGR, Vol. 79, No. 6, p. 826.

3.2 <u>Initial Guidelines for the Establishment of a Worldwide Geodetic</u> Reference Frame for Geodynamics

The establishment of a Worldwide Geodetic Reference Frame (WWGRF) will be required to satisfy the geophysical needs to describe features such as continental drift, fault motions, etc.

The velocities of tectonic plates are such that observations of 10^{-9} precision (and/or accuracy: 3 cm, 0.001, 1 μ gal, I E) are required to monitor these movements.

Most likely, a Fundamental Polyhedron (FP) will serve as WWGRF. Two main aspects can be recognized:

a.) Internal motions by the points describing the FP. The most important non-common motions (relative motions) will be:

Continental drift

Fault motions

Earth-ocean tides

Ocean loading effects.

b.) External motions by the points describing the FP. The most important common motions with respect to an inertial frame (absolute motions) will be:

Precession

Nutation

Earth rotation

Polar wandering

Polar wobble.

From the observational point of view the relative motions of those FP points will be monitored with high precision in the near future. A technique such as very long baseline interferometry (VLBI) should be capable of establishing a FP with high precision.

The realization of such a FP will be essentially a coordinate free problem: the shape (lenth ratios and angles) and the size (scale from the velocity of light) of a FP are the only essential features to be established. Problems of optimization from a geometrical, statistical and geophysical point of view need to be resolved.

The description of absolute motions of those FP points requires the establishment of a coordinate system which is a much more difficult and intriguing task: the orientation of a FP with respect to the inertial frame of quasars for VLBI and with respect to the inertial tensor of the earth for satellite laser ranging and the position of a FP with respect to the inertial tensor of the earth for satellite laser ranging and the positions of a FP with respect to the center of mass of the solid earth and the fluid atmosphere for VLBI and satellite laser ranging and with respect to the barycenter of the earth and the moon for lunar laser ranging.

The feasibility of the establishment of a highly accurate (10⁻⁹) coordinate system which is either inertial with respect to extragalactic sources or described by the inertia tensor of the earth itself (gravity observations) needs to be investigated.

'Summarizing, the problems involving the establishment of a World-wide Geodetic Reference Frame can be represented in the following schematic charts.

THE ESTABLISHMENT OF A WORLD WIDE GEODETIC REFERENCE FRAME

TYPES OF OBSERVATIONS FIND THEIR PROBLEM FREAS

A1 LASER TO SATELLITE

POSITION : FROM DYNAMICAL SOLUTIONS :

Chm, Snm - ORBIT - INFLUENCE ON CENTER OF MASS (GEOCENTER) DUE

TO

- CUT OFF POINT AFTER N DEGREE,
 ORDER OF SPHERICAL HARMONICS
- EXPANSION
- REFRACTION, DRAG, RADIATION,

ORIENTATION: WITH RESPECT TO INERTIA TENSOR (Com, Som)

A2 LASER - TO MOON

POSITION : WITH RESPECT TO EARTH-MOON

BARY CENTER

ORIENTATION : FROM EPHEMERIS

B VLBI

ORIENTATION: - PRECESSION, NUTATION OBTAINED

WITHOUT A PRIORI KNOWLEDGE

- POLAR MOTION OBTAINED INSTANTLY

POSITION : ???

REFERENCE FRAME : POLYHEDRON OF QUASARS

(FEDORDY) WHEREBY ONLY ANGULAR DISTAN-

CES BETWEEN QUASARS ARE DETERTINED

-EXTENSION OF EXTRA GALAC

TIC SOURCES (0".01) MAY FORM APROBLEM

REALIZATION

A. INTERNATIONAL MOTION SERVICE (I.M.S.)

HONITORS, MODELS THE HOTION OF THE FUNDAMENTAL POLYHEDRON WITH RESPECT TO THE QUASAR POLYHEDRON

- ROTATION (UT)
- POLAR MOTION
- PRECESSION, NUTATION

DHTH

3. FUNDAMENTAL POLYHEDRON SERVICE (F.P.S.)

- REMOVES COMMON HOMON FROM ALL POINTS AS DETERMINED, MODELED BY I.M.S.
- THONITORS, MODELS NON COMMON (INERTIAL) MOTION OF ALL POINTS ABOUT MODELED MEAN POSITIONS AND MOTIONS
- MODELED MEAN POSITIONS DETERMINE WWERF AT SOME EDOCH TO

NOTE: 3 POINTS NECESSARY TO DEFINE A COORDINATE SYSTEM: E.G. 3 POINTS ON THE AMERICAN, EURASIAN AND ANTAROTIC PLATE BECAUSE OF THEIR SMALLEST RELATIVE MOTIONS

- UPDATES HEAN POSITIONS + HODELED MOTIONS IF NECESSARY

References

IAU Colloquium No. 26 on 'Reference Coordinate Systems for Earth Dynamics," Torun., Poland, August 26-31, 1974:

- a. Bender, P.L., "Reference Coordinate System Requirements for Geophysics"
- b. Fedorov, E.P., "Magnitudes and Spectra of Important Dynamical Phenomena"
- c. Krasinsky, G.A., "On Constructing the Inertial System of High Accuracy by VLBI Methods"
- d. Newton, R.R., "Coordinates used in Range or Range-Rate Systems, and their Extension to a Dynamic Earth"
- e. Zhongolovitch, I., "The Role of VLBI in the Establishment of Coordinate Systems"
- f. "Requirements, Concepts, Realization and Corrections as collected by four Colloquium Working Groups".

Earth and Ocean Physics Applications Program, Vol. II, 1972. Rationale and Program Plans, National Aeronautics and Space Administration, September.

Cohen, M.H., 1973. 'Introduction to Very Long Baseline Interferometry, Proceedings of the IEEE, 61, pp 1192-1197.

Counselman, C.C. 1973. "Very Long Baseline Interferometry Techniques Applied to Problems of Geodesy, Geophysics, Planetary Science, Astronomy and General Relativity," Proceedings of the IEEE, 61, pp 1225-1230.

Hinteregger, H.F., 1972. 'Geodetic and Astrometric Applications of Very Long Baseline Interferometry,' Ph.D. thesis, Massachusettes Institute of Technology.

Mather, R. S., 1973. "Geodetic Reference Systems for Long Period Studies in Earth Physics," Goddard Space Flight Center, March.

Moran, J. M., 1974. "Geodetic and Astrometric Results of Very Long Baseline Interferometric Measurements of Natural Radio Sources," Center for Astrophysics, No. 128, June.

Rogers, A.E., 1970. "Very Long Baseline Interferometry with Large Effective Bandwidth for Phase-Delay Measurements," <u>Radio Science</u>, Vol. S, No. 10, pp 1239-1247, October.

Solomon, S. C. and N.H. Sleep, 1974. "Some Simple Physical Models for Absolute Plate Motions, <u>JGR</u>, Vol. 79, No. 17, pp 2557-2567, June.

Van Gelder, B. H. W., 1974. "The Altitude of LAGEOS," <u>First Semi-annual Status Report</u>, NGR 36-008-204, pp 76-85, January.

Van Gelder, B. H. W., 1974. "The LAGEOS Problem," Second Semiannual Status Report, NGR 36-008-204, pp 58-82, July.

Whitney, A.R., 1974. "Precision Geodesy and Astronomy with Very Long Baseline Interferometry," Ph.D. thesis, Massachusettes Institute of Technology.

3.3 Computer Programs Acquisition

3.31 Analytical Lunar Ephemeris of Deprit

In order to make use of lunar ephemeris (kept at system: Tape No. UC2999 - Slot No. 049) and clarify certain doubts, M. Kumar made a trip to the University of Cincinnati on November 25, 1974 to meet Dr. Andre Deprit. The relevant information and various points clarified during discussion are as under:

- (a) The various constants used in the development of the ephemeris:
 - (i) Mean Anomaly of Moon at time T $(\ell_T) = \ell_0 + n_g (T T_0)$
 - (ii) Mean Anomaly of Sun at time T (ℓ_1') = ℓ_0' + n_{ℓ_1}' (T T_0)
 - (iii) Argument of Perigee at time T $(g_7) = g_0 + n_g (T - T_0)$
 - (iv) Longitude of Node at time T $(h_T) = h_0 + n_h$ (T - T₀)

where .

$$T_0 = 1900 \text{ January } 0.5 \text{ E.T. (MJD } 15019.5)$$

$$n_{g} = 1732559353.561 / Julian Century$$

$$n_{g'} = 129597742.380 / Julian Century$$

$$n_g = 14642682''579 / Julian Century$$

$$n_h = -6967199.408 / Julian Century$$

$$l_0 = 5.168000340 \cdot \text{radians} *$$

$$l_0' = 6.256583523 \text{ radians } *$$

$$g_{0,..} = 1.311550024 \text{ radians } *$$

$$h_0 = 4.523601515 \text{ radians *}$$

Then

$$F_{\tau} = \ell_{\tau} + g_{\tau}$$

$$D_{\tau} = \ell_{\tau} + g_{\tau} + h_{\tau} - \ell_{\tau}'.$$

- * Taken from Supplement to AENA, 1961, pp 44.
- * Taken from Supplement to AENA, 1961, pp 44 as (Fo lo).

$$e'(sun) = 0.01675104$$

$$\Pi_{MOON} = 3422.452.$$

(b) The parameters used are:

$$m = n'(sun) / n (moon)$$

e = Eccentricity of the lunar orbit

e' = Eccentricity of the sun orbit

 Υ = Constant of lunar inclination (sin i/2)

$$\alpha = (1 - 2\sigma)^{\alpha}/\alpha'^{*} **$$

where

÷

α = Semi major axis of lunar orbit

a' = Semi major axis of sun orbit

$$\sigma = \frac{M_{\text{MOON}}}{M_{\text{EARTH}} + M_{\text{MOON}}}$$

- ** Refer to <u>Boeing Scientific Research Lab.</u> <u>Document No. D1-82-0963</u>, March, 1970, (pp 4, 6, 8); "Analytical Lunar Ephemeris Definition of Main Problem" by A. Deprit, J. Henrard and A. Rom.
 - (c) All coefficients on the tape are in arc of seconds. Three files contain information about longitude, latitude and parallax of the moon in terms of Delaunay arguments and partial derivatives with respect to five arguments vide section (b) above.
 - (d) In the discussion it was brought out by Dr. Deprit that even though his ephemeris contains only the main problem, the partials available as computed from the tape for any epoch should be compatible in accuracy for a least square adjustment. He further suggested that certain coefficients in the order of 10^{-6} or smaller may also be omitted while computing partials so as to improve the computational time.
 - (e) This ephemeris does contain Van Flandern's correction [1969]

between constants of lunar theory and FK4 system.

3.32 Numerically Integrated Lunar Ephemeris of JPL

A new lunar ephemeris (which is kept at System: Tape No. LURE02, Slot No. 4126) is detailed in Attachment 1.

3.33 Goddard Trajectory Determining System (GTDS)

During the report period Goddard Space Flight Center,
Greenbelt, Maryland, was approached to acquire latest computer program
for artificial satellite orbit generation/data simulation.

The program obtained by us forms the part of GSFC's comprehensive computer program, "Goddard Trajectory Determining System (GTDS)" and contains mainly the orbit generation and data simulation capabilities. The relevant information and details about the tapes containing the program are:

Tape Name — ORBIT 1

Where Lodged - Room No. 404 Cockins Hall, OSU

Remarks: The tape contains 5 files.

- 1. Source deck listing
- 2. Overlay structure
- 3. Load module created from file 1 & 2;
- 4. Solar lunar planetary ephemeris in 1950.0 mean reference frame for period of January 1971 to November 1981
- 5. Information as in file 4 in true of date system.

Tape Name — ORBIT 2

Where Lodged - Room No. 404 Cockins Hall, OSU

Remarks: Defines time and polar motion coefficients.

Tape Name — GTDS01

Slot No. — H073

Where Lodged - Systems Engineering, OSU

Remarks: File No. 1 - Source deck information as unloaded data set.

If the source deck is required at any time then data set has

File No. 2 — Load module as partition data set (member name - GTDS). Program is being set up on the system disk as ORBGEN.GTDS.NEWLOAD for use and renamed as 'MAN.' This renaming became necessary due to modification in main program (subroutine: ODSEXEC in GTDS) to suit the computer system at OSU (see attachment 4).

Tape Name - GTDS02

Slot No. — H120

Where Lodged - Systems Engineering, OSU

Remarks:

File Nos. 1 to 20 — Data and various constants information to be used with program GTDS. Available on the system disk IRCC71 and IRCC74 as permanent sequential data sets.

File No. 21 — Information about overlay structure for use with GTDS (see details in Attachment 2).

File No. 22 — Information about Goddard Space Flight Center procedure as used by them to run the program GTDS. (See details in Attachment 3).

NOTE:

- (i) As the computer at OSU generally works with limited number of disk units, a special object deck was obtained from Mr. P. Pandhi of IRCC for inclusion in overlay structures while setting up of the load module. (See JCL set up listing in Attachment 4).
- (ii) The program GTDS can now be run at OSU as it is or with over-riding subroutine temporarily. The required JCL set ups for these two cases are shown as Attachment 5 and Attachment 6, respectively.
- (iii) The Tapes Nos. ORBIT1 and ORBIT2 contain only the orbit generation capability of GTDS.

JET PROPULSION LABORATORY

ENGINEERING MEMORANDUM

391-605

10 December 1974

TO: - Distribution -

FROM: J. G. Williams and W. S. Sinclair

SUBJECT: LURE 2 Ephemeris

The LURE 2 ephameris (LE 40) is a new lumar ephameris based on lumar laser ranging data. The data span for the fit was August 1969 to June 1974, but the first year of data was very sparse. 1252 ranges to the Apollo 11, 14, 15 and Lunokhod 2 reflectors were fit with an rms residual of 45 cm.

The list of constants used in the integration is given in this memo. In many cases the number of digits given in a constant exceeds the significant digits of that constant. The earth harmonics are from the 1973 SAO standard earth III model. The lumar harmonics \mathbf{C}_{30} , \mathbf{C}_{32} , \mathbf{S}_{32} , and \mathbf{S}_{33} were derived from the laser ranging data while the remaining harmonics were adopted from the lumar orbiter work. \mathbf{C}_{20} and \mathbf{C}_{22} were adjusted from lumar orbiter values so that their ratio matches the constraint imposed by β and γ . The mass of the earth-moon system was determined from the lumar laser data while the earth-moon mass ratio is adopted from spacecraft tracking results. The newly adopted speed of light was used in this work but parameters scaled to the old value are given for comparison. The new speed of light is recommended by both the IAU and the International Committee for Weights and Measures and we do encourage that it be used in all future astronomical and geodetic work for compatibility.

Attachment 1 (§ 3.3) (Continued)

Distribution -2-

EM 391-605 10 December 1974

The relativistic effects have been chosen so that the time argument of the ephemeris is heliocentric coordinate time and the space components of the moon are differenced heliocentric coordinates of the earth and moon An isotropic line element is used. The accelerations due to the earth's figure include the leading term of nutations and the lunar figure effects include the most important terms of physical librations in longitude. The tidal friction effect is modeled as a perturbation from a tidal bulge raised on the earth by the moon and phase shifted in right ascension by a constant phase lag. For the secular acceleration of the moon's orbital longitude the product of the Love number k_2 and the phase lag δ has been chosen to approximately reproduce the value of $\frac{1}{2}$ $\hat{n} = -20^{\rm m}/{\rm century}^2$, a value close to that of several recent investigations. At present the lunar laser data is not able to significantly correct this number though this should soon become possible.

The planetary ephemeris was integrated simultaneously with the moon.

The starting conditions for the planets were modified from DE84. The modifications consisted of the new earth-moon mass and a rotation of the orbit planes of the four inner planets to match obliquity and equinox corrections derived from the lunar laser data analysis. The corrections make the lunar and planetary orbit planes and the earth's equatorial plane consistent at the present time. The zero point of right ascension is not adjusted to the dynamical equinox. The inner planets were rotated together because the planetary ranging data tends to determine the relative orientations of their orbital planes well. The cause of this rotation is still under investigation and as a consequence this planetary ephemeris is considered highly experimental. The planetary ephemeris with

Distribution

Span of integration

-3-

EM 391-605 10 December 1974

the lunar ephemeris is designated DE86 and resides on J663 in the type 50 format. Type 66 tapes are also available.

The radial earth-moon distance is uncertain by a constant, corresponding to the mass of the system, which is ≤ 30m. Uncertainties in variations of the radial component apart from the constant are ≤ 1.5m. The uncertainty in relative celestial longitudes is thought to be less than a few thousandths of a second of arc while the zero point matches that of the earth-moon barycenter in the planetary ephemeris at the present time. Celestial latitudes in the sense of relative earth equatorial, earth orbital, and moon orbital planes are thought to be better than a few hundredths of a second of arc. The above numbers apply to the time span of the fit, the errors increasing in the past or future.

2440400.5 - 2444000.5

Span of type 50 tape	2440424.5 - 2443960.5	
Mass ratio earth/moon	81.3007	
Mass ratio sun/(earth+moon)	328900.526	

•	-10 3	7
GM barycenter	8.997012 315 x10 ⁻¹⁰ au ³ /c	1 [~]
	•	

•	Old c	New C
c :	299 792.5	299 792.458 km/sec
AU .	149. 597 891:916 95.	149 597 870.95869 km
GM sun	132 712 496 508.11	132 712 440 729.53 km ³ /sec
GM earth	398 600.6538	$398\ 600.4854\ \mathrm{km}^3/\mathrm{sec}^2$
GM moon	4902.7948	$4902.7894 \text{ km}^3/\text{sec}^2$
REM (type 50 tapes only)	6378.15009	6378.14920 kms

Attachment 1 (§ 3.3) (Continued)

Distribution

-4-

EM 391-605 10 December 1974

Earth Parameters

$$J_2 = 1082.637 \times 10^{-6}$$
 $J_3 = -2.541 \times 10^{-6}$
 $J_4 = -1.618 \times 10^{-6}$

Earth radius used with harmonics 6378.156 kms Potential Love number $k_2=0.29$ Tidal phase lag $\delta=0.0713$ radians

Lunar Parameters

Harmonics (units of 10-6

$$c_{20} = -203.822$$
 $c_{22} = 22.396$
 $c_{30} = -10.44$
 $c_{31} = 28.6$
 $c_{32} = 4.82$
 $c_{33} = 2.7$
 $c_{34} = 2.7$
 $c_{35} = 2.7$
 $c_{35} = 2.7$
 $c_{36} = 2.7$
 $c_{36} = 2.7$
 $c_{37} = 2.7$

Radius used with harmonics 1738.09 kms

Harmonics consistent with $C/MR^2 = 0.394$

Tilt of moon's pole to ecliptic, I = 5552.7"

JGW/WSS:mpg

Distribution

J. D. Anderson
P. B. Esposito
W. G. Melbourne
W. L. Sjogren
X X Newhall
E. M. Standish
M. A. Slade

```
OVLY
                                                                                      2
ENTRY MAIN
 REPLACE BLKLET, PLTDMP, QUICKY, TYPLIN, UCS, TYPWRITE
                                                                              DVLY
                                                                                      4
                                                                              OVLY
                                                                                      6
INCLUDE TAPELIB
                                                                                      -8
                                                                              OVLY
REPLACE RIOBS, VPFORC, GOFUNO, GO24, SELRUN
                                                                              OVLY
                                                                                     10
INCLUDE SYSLIB(GTDS)
                                                                              OVLY
                                                                                     12
OVERLAY REGISEGI
                                                                              OVLY
                                                                                     14
INSERT READER, IHCSLOG, IHCSSCN, IHCFRXPI, IHCFRXPR, IHCSEXP, GSCALE, CPLOTS
                                                                              OVLY
                                                                                     16
 INSERT DATE, EDITT, GRID, GRDNUM, HORLIN, MINT, PLOTST, SCHAR, SC4020, TIMING
                                                                              OVLY
                                                                                     18
OVERLAY
         REG1SEG1
                                                                              OVLY
                                                                                     20
I-NSERT
          ORBIT, INTP
                                                                              OVLY
                                                                                     22
INSERT -
         WORKER, HEMITR, TIMREG, VCROSS
                                                                              OVLY
                                                                                     24
OVERLAY REGISEG2
        FORCES, DPART, SECHEK, SECUPD, DFIX, INV2, OSMEAN, BRWORB, DKEPLR
                                                                              OVLY
                                                                                     26.
INSERT
                                                                              OVLY
                                                                                     28
OVERLAY
          REG1SEG3
                                                                              OVLY
                                                                                     30
INSERT
        ORBITB, RESINB, INTOGA, BROCOR
                                                                              OVLY
                                                                                     32
          REG1SEG3
OVERLAY
                                                                                     34
                                                                              OVLY
                CSHAD, AERO, DRAGV, FAPX, FORCV, HARMON, HARMV, HEIGHT
INSERT
                                                                                     36
              PMASS, PMASSV, SECHKN, SLRADV, SULRAD, SPART, MANEUV
                                                                              OVLY
INSERT
                                                                              OVLY
                                                                                     38
          SUMS, TESTH, TWOBDY, VARERC, RESUME, SPARTV
INSERT
                                                                             · DVLY
                                                                                     40
         GMTRA, TOBODY
INSERT
                                                                              OVLY
                                                                                     42
INSERT AMPART, BURN, BURNV, SCATT, TKPTC
                                                                                     44
                                                                              OVLY
OVERLAY REGISEG4
                                                                              OVLY
                                                                                     46
INSERT COVUP, SOLTAB, GVCVL, SYMINV
                                                                                     48
                                                                              OVLY
OVERLAY REGISEG4
                                                                              OVLY
                                                                                     50
INSERT LG5, PARTE
                                                                                     52
                                                                              DVLY
OVERLAY REGISEG4
                                                                                     54
                                                                              0VLY
INSERT ATMOS
                                                                              OVLY
                                                                                     56
OVERLAY REGISEG4 *
                                                                                     58
                                                                              OVLY
INSERT JACROB, DRAGON,
                                                                               OVLY
                                                                                     60
OVERLAY REGISEGS
                                                                              OVLY
                                                                                     62
INSERT LOWALT, RUOTS
                                                                               OVLY
                                                                                     64
OVERLAY REGISEG6
                                                                               0VLY
                                                                                     66
INSERT DIFFDE
                                                                               OVLY
                                                                                     68
OVERLAY REGISEG6
                                                                               OVLY
                                                                                     70
INSERT BARODE
                                                                               OVLY
                                                                                     72
OVERLAY REGISEG5
                                                                                     74
                                                                               OVLY
INSERT HIALT, JACCWF
                                                                               OVLY
                                                                                     76
OVERLAY
          REG1SEG2
                                                                               OVLY
                                                                                     78
          GETHOR, ORBITF, INTOGF, ERRGET
INSERT
                                                                               OVLY
                                                                                     80
          REGISEG3
OVERLAY
                                                                               OVLY
                                                                                     82
          GREC1, OUTEC1
INSERT
                                                                               OVLY
                                                                                     84
INSERT CMPVCT, GREC2, OUTEC2
                                                                               OVLY
                                                                                     86
OVERLAY REGISEGS
                                                                               OVLY
                                                                                      88
INSERT DSPING, DSPCBK, DSPFL, TPSCHL
                                                                               OVLY
                                                                                     90
OVERLAY REGISEG4
                                                                               UVLY
                                                                                     92
INSERT INTDEP, OUTDS1, EVENT, GETDSP, GRDSI
                                                                               DVLY
                                                                                     94
OVERLAY REGISEG4
                                                                               UVLY
                                                                                     96
INSERT DSPSUM, GAUSS, DODSWR, OUTDS2, SCHDUL, NOCCLT, RANDU
                                                                               OVLY
                                                                                     98
OVERLAY REGISFA
                                                                               OVLY 100
INSERT OUTDS3, GDSSUM, STARPT, BCD
                                                                               OVLY 102
OVERLAY REGISEGI
                                                                               OVLY 104
INSERT WECONT
                                                                               OVLY 106
OVERLÁY REGISEG2
```

```
OVLY 108
INSERT IRWF, IONGEN, SOLGET, REFGEN, MAGERT, SICORT, DKSIRT, GKRT
                                                                            DVLY 110
INSERT DKGKRT, IGETRT, COEFF1
                                                                            OVLY 112
INSERT IRWCSC, COEF1, NBSDAT
                                                                            OVLY 114
OVERLAY REGISEG2
                                                                            DVLY 116
INSERT DODSEL, ELSWF, ELSGET
                                                                            OVLY 118
INSERT ATMWF, ICWF, MANWF, PCWF, SECWF, SETLIF
                                                                            OVLY 120
OVERLAY
         REG1SEG2
                                                                            DVLY 122
INSERT OBSWF, REJRPT
                                                                            OVLY 124
         REGISEG3
OVERLAY
                                                                            DVLY 126
         REFRMT, DWRITE, UPSTAT, OBSCRD, SELCON, DODSDT
INSERT
                                                                            OVLY 128
         DODSOB, GEOWF, USBOBS, PCERD, GEOCON, GETGEO
INSERT
                                                                            DVLY 130
         REG1SEG3
OVERLAY
                                                                            OVLY 132
   INSERT SORTIT, SORTOR, SORTB
                                                                            OVLY 134
         REG1SEG2
OVERLAY
                                                                            DVLY 136
INSERT
         SLPEPH
         AMATRX, CMATRX, GETTAP, INPUTI, CHEBY, READE, SLPTAP
                                                                            OVLY 138
INSERT
                                                                            OVLY 140
         CETBL1, CETBL3, CETBL4, CETBL9, SAVE, INPUT, SLPWF, CHEV
INSERT
                                                                            OVLY 142
         REGISEG4(REGION)
OVERLAY
                                                                            OVLY 144
         CROSSV, RESINV, MULSTP, USER, USE, ORBITV
INSERT
                                                                            OVLY 146
OVERLAY REGISEG5
                                                                            OVLY 148
INSERT
         INARRY, DPX2EL
                                                                            DVLY 150
OVERLAY REGISEG5
                                                                            OVLY 152
INSERT CETODS.
                                                                            OVLY 154
OVERLAY REGISEG5
                                                                            OVLY 156
INSERT ASCOEF, IBINC, RESWRV, APPSUM
                                                                            UVLY 158
INSERT PARCOR
                                                                            OVLY 160
OVERLAY REGISEG5
                                                                            OVLY 162
INSERT CSTFPX, EQUMTN, AVRAGE, INTPAR
                                                                            OVLY 164
OVERLAY REGISEG6
                                                                            DVLY 166
INSERT
         DPEL2X, FUNCTE
                                                                            DVLY 168
OVERLAY REGISEG6
               PERFOR, CAPEFO, COMATD, FIDPAR, HEMIDS, DSTOCE
                                                                            OVLY 170
                                                                            OVLY 172
OVERLAY REGISEG6
                                                                            OVLY 174
INSERT EQUMPY, PARTED, AVSTRT, GOFUN, VOQUAD
                                                                            OVLY 176
DVERLAY REGISEG6
                                                                            OVLY 178
INSERT DORTIC, DCUBIC
                                                                            OVLY 180
OVERLAY REGISEG6
                                                                            DVLY 182
         IDLPV, IPART
INSERT
                                                                            OVLY 184
OVERLAY REGISEG6
                                                                            OVLY 186
INSERT
         DALLPV, PARDT
                                                                            OVLY 188
OVERLAY REGISEG5
                                                                            OVLY 190
INSERT ISTART
                                                                            OVLY 192 ·
OVERLAY REGISEG5
                                                                            DVLY 194
INSERT
         IDEAL, CNVPV
                                                                            OVLY 196
          REGISEG4
OVERLAY
                                                                            OVLY 198
        SETORB, SATTIP, AEROPR
INSERT
                                                                            OVLY 200
OVERLAY
         REGISEG4
                                                                            OVLY 202
         ORBITT, COPS, CROSST, CHIRP, VARARR, CO, EVA, EVAPT, INTEGT
INSERT
                                                                            OVLY 204
INSERT CHETO, TCTP, PDP, EATRAN, CHVTP
                                                                            OVLY 206
         REGISEG5
OVERLAY
                                                                            DVLY 208
INSFRT
         RESNTT
                                                                            UVLY 210
OVERLAY
         REGISEG5
                                                                            OVLY 212
         RESUMT
INSERT
                                                                            DVLY 214
OVERLAY
         REGISEG4
                                                                            OVLY 216
          INTUGN, NEPOCH, HARM
INSFRT
                                                                            UAFA 518
OVERLAY
         REGISEG4
                                                                            UVLY 220
INSERT ORBINI
                                                                            OVLY 222
         REGISEGA
OVERLAY
                                                                             OVLY 224
INSERT
         CRUSSR, FOMULA, ORBITA
                                                                            OVLY 226
```

OVERLAY

REGISEG5

		(Continued - 3)	
INSERT	RESINR, RK\$8R	OVLY 2	228
OVERLAY		OVLY 2	
INSERT	CSTEPR, RSWRMR	OVLY 2	
OVERLAY		OVLY 2	
INSERT		OVLY 2	
	REGISEGB	OVLY 2	
INSERT I		OVLY 2	
	CSTEP	OVLY 2	
	REG1SEGB	OVLY 2	
	CROSSC, RESINC	OVLY 2	
	REG1SEG5	OVLY 2	
INSERT	XSUM	OVLY 2	
	REGISEG6	OVLY 2	
	MSTART, XCOR, XDCOR	OVLY 2	
OVERLAY	REG1SEG6	OVLY 2	
INSERT	RESWRM	OVLY 2	258
OVERLAY	REG1SEG5	OVLY 2	260
INSERT F	RKS8	OVLY 2	262
OVERLAY	REG1SEG4	OVLY 2	264
· INSER	T RPDATO	OVLY 2	266
	REG1SEG5	OVLY 2	268
	RUNACC, STADRO, OUTDC6	OVLY 2	
	REG1SEG5	OVLY 2	
	SCAN, UFCOV, GETOBN, SCALE	OVLY 2	
	REGISEG4	OVLY 2	
INSERT I		OVLY 2	
	REGISEG5	OVLY 2	
INSERT		OVLY 2	
		OVLY 2	
	REGISEG5		
INSERT (•	0VLY 2	
	REG1SEG5	OVLY 2	
INSERT I		OVLY 2	
OVERLAY		OVLY 2	
	NOREST, RESTAT, GRDCO	OVLY 2	
OVERLAY	REG2SEGH	OVLY 2	296
INSERT	ANTRA,OBS,OBSCOR,OBSP,OBSRD,READWF,SORREG,TRANF,ORSU		
INSERT	TRUANO, WEIGHT, OUTDC5, 18PNT, CNVPCK, MA1333, OBSED, TCC	DNVO,ITERCT UVLY 3	300
OVERLAY	REG2SEG3	OVLY 3	302
INSERT	CORDBA, LCLARG	OVLY 3	304
INSERT	ION, BETA, COEFF2, MUDEL	OVLY 3	306
	REG2SEG5	OVLY 3	808
	REG2SEG5	OVLY 3	314
	PRFLRT, INTERP, REFGET, TABLES	OVLY 3	
	REG2SEG3	OVLY 3	
	CORCSC, REFCON, IONOSP, SZZ, VCROSW	OVLY 3	
OVERLAY		OVLY 3	
	IHCLSCHH, INVL	OVLY 3	
INSERT	OUTPUT, SPAT, ELEME, ROTRAN, KPART, PPART, CELEM, POLAR, S		
INSERT		OVLY 3	
		OVLY 3	
OVERLAY			
INSERT	OUTDC4,OUTDC3,OUTDC7,OUTDC2,OUTDC8	OVLY 3	
OVERLAY		OVLY 3	
	ORBOUT,OBOUT2,GROEFI,CUNSC2,OUTLIH,DIFD,MINSTR,SHURT		
INSERT	EPHFM	OVLY 3	
INSERT	ORB1	OVLY 3	5 4 ()
	_ _		

```
OVLY 342
OVERLAY REG2SEG2
                                                                             OVLY 344
INSERT W24WF, OBSAVE
                                                                             DVLY 346
OVERLAY REG2SEG2
                                                                             OVLY 348
         ADVANS
INSERT
                                                                             OVLY 350
OVERLAY REG2SEGA
                                                                             OVLY 352
INSERT GRDCRS, COMPER
                                                                             DVLY 354
OVERLAY REG2SEG3
                                                                             OVLY 356
INSERT GRDCI, IHCFMAXI
                                                                             DVLY 358
OVERLAY REG2SEG4
                                                                             OVLY 360
INSERT GRSLVA
                                                                             DVLY 362
OVERLAY REG2SEG4
                                                                             OVLY 364
INSERT GREDIT
                                                                             OVLY 366
OVERLAY REG2SEG3
                                                                             DVLY 368
         ĞREPAD
INSERT
                                                                             OVLY 370
OVERLAY REG2SEG3
                                                                             OVLY 372
INSERT GRPEL
                                                                             DVLY 374
OVERLAY REG2SEG3
                                                                            · OVLY 376
INSERT GR24HH
                                                                             OVLY 378
OVERLAY REG2SEG3
                                                                             DVLY 380
INSERT GRDCON
                                                                             OVLY 382
OVERLAY REG2SEG3
                                                                             OVLY 384
INSERT GRBIAS
                                                                             OVLY 386
OV.ERLAY
         REG2SEGA
                                                                             OVLY 388
INSÉŘT
          INTDC, EIGEN, CHIN, SOLVGP
                                                                             OVLY 390
OVERLAY
         REG2SEG3
                                                                             OVLY 392
          SLOBT, CONDR
INSERT
                                                                             OVLY 394
OVERLAY
         REG2SEG3
                                                                             DVLY 396
          OUTDC1,OUTOG1
INSERT
                                                                             OVLY 398
OVERLAY
         REG2SEG4
                                                                             OVLY 400
 INSERT OUTSLY, OUTCOR
                                                                             OVLY 402
         REG2SEG4
OVERLAY
                                                                             OVLY 404
 INSERT OUTEDT, OUTOUT, OUTSEC, OUTPHC, OGCROS
                                                                             OVLY 406
OVERLAY
         REG2SEG4
                                                                             DVLY 408
 INSERT OUTCRD, OUTGEN, OUTTIC
                                                                             OVLY 410
OVERLAY
         REG2SEG2
                                                                             OVLY 412
INSERT PSET, MATCON, ELSIG, ELSIG], PPLHXY
                                                                             OVLY 414
OVERLAY REG2SEG2
                                                                             OVLY 416
INSERT GRREPT, GRDC2, GRPRUM, FDORB
                                                                             OVLY 418
         REG2SEG2
OVERLAY
                                                                             DVLY 420
INSERT GRPMEN, GENONE, GENTWO, GRSORT, IHCGSPO4, WAIT, GRPLOT, GRTRAK
OVERLAY
         REG2SEG2
                                                                             OVLY 422
                                                                             OVLY 424
          IGRAPH, IGRPH2
INSERT
                                                                             OVLY 426
OVERLAY REG2SEG1
                                                                             OVLY 428
INSERT GETCMP.CMPOPT, PLOTTP
                                                                            10VLY 430
OVERLAY REG2SEG1
                                                                             OVLY 432
INSERT
         DUTSG, PLHXYZ
                                                                             OVLY 434
         REG2SEG2
OVERLAY
                                                                             OVLY 436
         WRKREP
INSERT
         OUTWAD, OUTWEL, OUTWIC, OUTWMN, OUTWPC, OUTWSC, OUTWIR, OUTWOB
                                                                             OVLY 438
INSERT
                                                                             OVLY 440
INSERT
         OUTWSL, OUTWIC
                                                                             OVLY 442
         REG2SEG2
OVERLAY
                                                                             OVLY 444
INSERT
          PERCON
         OUTPAD, OUTPEL, OUTPIC, OUTPIR, OUTPOB, OUTPPC, OUTPSL
                                                                             OVLY 446
INSERT
                                                                             OVLY 448
         OUTPTC. DU [24H, OUTPMN, GUTPSC
INSFRI
                                                                             UVLY 450
         REG3SEG1(REGION)
OVERLAY
                                                                             UVLY 452
INSERT
        · EPHGEN
                                                                             UVLY 454
DVERLAY
         REG3SEG2
         OUTOG2, OUTOG3, OUTOG4, OUTPAR, PRINT, UNIT, OUTMAP
                                                                             DVLY 456
INSERT
                                                                             OVLY 458
OVERLAY
         REG3SEG2
```

INSERT	ACWFRP, ADWFRP, EPWFRP, FSWFRP, IGRPH2, LPWFRP, OGMENU	OVLY 460
OVERLAY	REG3SEG2	OVLY 462
INSERT	OGBUG	OVLY 464
OVERLAY	REG3SEG1	0.VLY 466
INSERT E	PHCMP, RDORB1, ADDYMD, ADTIME	BVLY 468
OVERLAY	REG3SEG1	OVLY 470
INSERT	DCING, DCFL, DCBUG, STAGE1	OVLY 472
OVERLAY	REG3SEG2	OVLY 474
INSERT	DC, ITERCT '	OVLY 47€
OVERLAY	REG3SEG2	OVLY 478
INSERT	DSPEXC	OVLY 480
OVERLAY	REG3SEG1	OVLY 482
INSERT 0	RERR, DUMPER	OVLY 484
OVERLAY	REG3SEG1	OVLY 486
INSERT	SETRUN, MSGW1R, OKERR, CKSCOP	OVLY 488
OVERLAY	REG3SEG2	DVLY 49(
INSERT	SETANL	OVLY 492
OVERLAY	REG3SEG2	OVLY 494
INSERT	SETCMP	OVLY 496
OVERLAY	REG3SEG2	OVLY 498
INSERT	SETDC	OVLY 500
-OVERLÀY	REG3SEG2	OVLY 502
INSERT	SETDM, DIFF	OVLY 504
OVERLAY	REG3SEG2	OVLY 506
INSERŤ	SETRPT, SETPFR	OVLY 508
OVERLAY	REG3SEG2	OVLY 510
INSERT (CRTIN, GRCARD, KDPDS, CSTAE, INTGR	OVLY 512
OVERLAY	REG3SEG1	OVLY 514
INSERT E	EARLYO, SECULA, RANGLE, EO, ELEMGN, ANGLES, POLRT	. OVLY 516

```
2
//GTDS PROC MODULE=GTDS, SORT='DUMMY, ', GRAPH='DUMMY, ', UNIT=2250
                                                                               JCL
                                                                               JCL
                                                                                      4
         EXEC PGM=IEFFR14
//S1
                                                                               JCL.
                                                                                      6
//DD1 DD DSN=GJFEM.GTDS.L()ADMOD.LOAD(&MODULE),DISP=(SHR,PASS)
                                                                               JCL
                                                                                      8
//****OWNER'S PGM'MER ID: "GJFEM" ****
                                                     UPDATED 28JUN74
                                                                                     10
         EXEC PGM=*.S1.DD1, REGION=490K
                                                                               JCL
//G0
//FT01F001 DD DISP=SHR, DSN=GJFEM. GTDS. DIRECTRY. DATA, DCB=BUFNO=1
                                                                               JCL
                                                                                     12
//FT02F001 DD DISP=SHR, DSN=GJFEM. GTDS. ATMOSDEN. DATA, DCB=BUFNO=1
                                                                               JCL
                                                                                     14
//FT03F001 DD DISP=SHR, DSN=GJFEM.GTDS.MANEUVER.DATA, DCB=BUFNO=1
                                                                               JCL
                                                                                     16
//FT04F001 DD DISP=SHR, DSN=GJFEM. GTDS. ASTROCON. DATA, DCB=BUFNO=1
                                                                               JCL
                                                                                     18
                                                                               JCL
                                                                                     20
//FT05F001 DD DDNAME=DATA5
                                                                               JCL
                                                                                     22
//FTO6FOO1 DD SYSOUT=A, DCB=(RECFM=VBA, LRECL=137, BLKSIZE=7265),
                                                                                     24
                                                                               JCL
               SPACE=(CYL,(3,1),RLSE)
//
                                                                               JCL
                                                                                    26
//FTO7FOO1 DD SYSOUT=B, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800, BUFNO=1)
//FT08F001 DD DISP=SHR,DSN=GJFFM.GTDS.EARTHFLD.DATA,DCB=BUFNO=1
                                                                               JCL
                                                                                     28
//FT09F001 DD DISP=SHR, DSN=GJFEM. GTDS. LUNARFLD. DATA, DCB=BUFNO=1
                                                                               JCL
                                                                                     30
//FT10F001 DD DISP=SHR, DSN=GJFEM. GTDS. INTCUEF. DATA, DCB=BUFNO=1
                                                                                     32
                                                                               JCL
//FT11F001 DD DISP=SHR, DSN=GJFEM. GTDS. SECTIONS. DATA, DCB = BUFNO=1
                                                                                     34
                                                                               JCL
                                                                                     36
                                    TEMPORARY DATA FOR CRT INPUT MODE
                                                                               JCL
//FT12F001 DD &GRAPH.UNIT=DISK,
               DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000, BUFNU=1),
                                                                               JCL
                                                                                     38
//
               DISP=(NEW, DELETE), SPACE=(TRK, (1,1)), DSN=&&INPROMPT
                                                                               JCL
                                                                                     40
11
//FT13F001 DD DISP=SHR, DSN=GJFEM. GTDS. ERRORMSG. DATA, DCB=BUFNO=1
                                                                               JCL
                                                                                     42
7/FT14F001 DD UISP=SHR, DSN=GJFEM. GTDS. SLP1950. DATA,
                                                                               JCL
                                                                                     44
                                                                       4 1
               LABEL=(,,, IN), DCB=BUFNO=1
                                                                               JCL
                                                                                     46
                                                                               JCL
                                                                                     48
                                     OBSERVATION CARDS
//FT15F001 DD DDNAME=OBSCARDS
                                     DATA SIMULATION SUMMARY WORKING FILE
//FT16F001 DD UNIT=DISK,
                                                                               JCL
                                                                                     50
                                                                               .JCL. .52
               SPACE=(TRK,(1,6)),DCB=(RECEM=VBS,LRECL=124,BLKSIZE=3352, ...
//
                                                                                     54
                                                                               JCL
               DSORG=DA, BUFNO=1)
                                                                               JCL
                                                                                     56
                                     OBSERVATIONS WORKING FILE
//FT17F001 DD UNIT=DISK,
               SPACE=(CYL, 4), DCB=(DSORG=DA, BUFNO=1)
                                                                               JCL
                                                                                     58
//FT18F001 DD UNIT=DISK,
                                     SLP WORKING FILE
                                                                               JCL
                                                                                     60
                                                                                     62
               SPACE=(3520,12), DCB=(DSORG=DA, BUFNO=1)
                                                                               JCL
                                     DISK ORBIT FILE WITH PARTIALS
                                                                               JCL
                                                                                     64
//FT19F001 DD DUMMY,
                                                                               JCL
//
               UNIT=DISK, DCB=(RECFM=F, BLKSIZE=6660, DSORG=DA, BUFNO=1),
                                                                                     66
               SPACE=(6660,240)
                                                                               JCL
                                                                                     68
//
//FT20F001 DD DUMMY,
                                    DISK ORBIT FILE WITHOUT PARTIALS
                                                                               JCL
                                                                                     70
                                                                               JCL
               UNIT=UISK, DCB=(RECFM=F, BLKSIZE=1092, DSURG=DA, BUFNO=1),
                                                                                     72
11
                                                                               JCL
                                                                                     74
               SP4CE=(1092,240)
//
                                     TAPE ORBIT FILE WITH PARTIALS
                                                                               JCL
                                                                                     76
//FT21F001 DU DUNMY,
               UNIT=9TRACK, DCB=(RECFM=VS, LRECL=6664, BLKSIZE=6668,
                                                                               JCL
                                                                                     78
//
                                                                               JCL
                                                                                    80
               BUFNO=1), LABEL=(, BLP), DISP=SHR
//
                                                                               JCL
                                                                                    82
//FT22F001 DD DUMMY,
                                    TAPE ORBIT FILE WITHOUT PARTIALS
                                                                               JCL
               UNIT=97RACK, DCB=(RECFM=VS, LRECL=1096, BLKSIZE=1100,
                                                                                    84
//
               BUFNO=1), LABFL=(, BLP), DISP=SHR
                                                                               JCL
                                                                                    86
//
//FT23F001 DD &GRAPH.UNIT=DISK,
                                    ERROR MESSAGES FOR SCOPE
                                                                               JCL
                                                                                    88
               $PACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                               JCL
                                                                                    90
11
               PUFNO=1)
                                                                               JCL
                                                                                    92
//FT24F001 DD UNIT=DISK,
                                    1ST ORBI OR EPHEM OUTPUT FILE
                                                                               JCL
                                                                                    94
               SPACE=(TRK,(1,20)), DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
                                                                               JCL
                                                                                    96
//
//FT25F001 DD DISP=SHR, DSN=GJFEM. GTDS. ELEMENTS. DATA, DCB=BUFNU=1
                                                                               JCL
                                                                                    98
//FT26F001 DD DISP=SHR,DSN=GJFEM.GTDS.D24HOUR.DATA,DCB=BUFNO=1
                                                                               JCL 100
//FT27F001 DD DISP=SHR, DSN=GJFEM. GTDS. GEODTICS. DATA, DCB=BUFNO=1
                                                                               JCL 102
                                                                               JCL 104
//F128FOOL DD &GRAPH.UNIT=DISK,
                                    SATELLITE EPHEMERIS TO SCOPE
              DCB=(RFCFM=FB, LRECL=80, BLKSIZE=3200, BUFNU=1),
                                                                               JCL 106
//
//
               SPACE=(RK,(1,20))
                                                                               JCL 108
```

```
//FT29F001 DD DUMMY,
                                                      GTDS OBSERVATION TAPE FILE
                                                                                                                             JCL 110
//
                        UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408,
                                                                                                                             JCL 112
//
                                                                                                                             JCL 114
                        BUFNO=1), LABEL=(, BLP), DISP=SHR
                                                                                                                             JCL 116
//FT30F001 DD DUMMY,
                                                          DODS OBSERVATION TAPE
                       UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=104, BLKSIZE=1044,
                                                                                                                             JCL 118
                        BUFNO=1), LABEL=(, RLP), DISP=SHR
//
                                                                                                                             JCL 120
                                                                                                                             JCL 122
//FT31F001 DD.DUMMY.
                                                          GTDS OBSERVATION DISK FILE
                                                                                                                             JCL 124
                        UNIT=DISK, DISP=SHR
//FT32F001 DD DISP=SHR, DSN=GRKEL. POBS. DATA
                                                                                   DODS OBSERVATIONS
                                                                                                                             JCL 126
                                                                                                                             JCL 128
//FT33F001 DD DUMMY,
                                                          SLP TAPE
11
                                                                                                                             JCL 130
                       UNIT=9TRACK, DCB=(RECFM=VS, BLKSIZE=3460, BUFNO=1),
                        LABEL=(,BLP),DISP=SHR
                                                                                                                             JCL 132
//FT34F001 DD DUMMY,
                                                          JPL TAPE
                                                                                                                             JCL 134
                        UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=8304, BLKSIZE=8308,
                                                                                                                             JCL 136
//
                                                                                                                             JCL 138
//
                        BUFNO=1, DEN=2), LABEL=(,BLP,,IN), DISP=SHR
//FT35F001. DD &GRAPH.UNIT=DISK,
                                                        INTEGRATION STATISTICS FOR SCOPE
                                                                                                                             JCL 140
                        SPACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                                                                             JCL 142
//
                        BUFNO=1)
                                                                                                                             JCL 144
                                                          FINAL ORBIT GENERATOR DISPLAY FOR SCOP
                                                                                                                            JCL 146
//FT36F001 DD &GRAPH.UNIT=DISK,
                                                                                                                             JCL 148
                        SPACE = (IRK, (1, 20)), DCB = (RECFM = FB, LRECL = 80, BLKSIZE = 3200, BLKSI
//
                        BUFNO=1)
                                                                                                                             JCL 150
//FT37F001 DD &SORT.UNIT=DISK,
                                                          OBSERVATIONS SORT FILE
                                                                                                                             JCL 152
                                                                                                                             JCL 154
//
                        DCB=(RECFN=VBS,LRECL=148,BLKSIZE=3408,BUFNO=1),
                                                                                                                             JCL 156
                        SPACE=(CYL,(2,1))
//FT38F001 DD DSN=GJFEM.GTDS.TIMCOF.DATA,DISP=SHR
                                                                                                                             JCL 158
//FT39F001 DD DISP=SHR, DSN=GJFEM. GTDS. GENCOF. DATA, DCB=BUFNO=1
                                                                                                                             JCL 160
//FT40F001 DD DUMMY
                                                          PERMANENT FILES TO SCOPE
                                                                                                                             JCL 162
//FT41F001 DD UNIT=DISK.
                                                                                                                             JCL 164
                                                          TEMPORARY STARTER ARRAYS
//
                        SPACE=(TRK,(1,10)),DCB=(RECFM=VBS,LRECL=1452,BUFNO=1,
                                                                                                                             JCL 166
//
                        BLKSIZE=7264)
                                                                                                                             JCL 168
//FT42F001 DD &GRAPH.UNIT=DISK.
                                                          OBSERVATION RESIDUALS FOR SCOPE
                                                                                                                             JCL 170
                        SPACE=(1RK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                                                                             JCL 172
                                                                                                                             JCL 174
                        BUFNO=1)
//FT43F001 DD &GRAPH.UNIT=DISK,
                                                          SOLVE PARAMETERS FOR SCOPE
                                                                                                                             JCL 176
                                                                                                                             JCL 178
//
                        SPACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                                                                             JCL 180
                        BUENO=1)
//FT44F001 DD &GRAPH.UNIT=DISK,
                                                          ELEMENTS FOR SCOPE
                                                                                                                             JCL 182
                     SPACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                                                                             JCL 184
//
11
                                                                                                                             JCL 186
                        BUFNO=1)
//FT45F001 DD UNIT=DISK.
                                                          OBSERVATIONS WORKING FILE HEADER
                                                                                                                             JCL 188
//
                        SPACE=(TRK,(1,1)),DCB=(RECFM=VS,BLKSIZE=928,BUFNO=1),
                                                                                                                             JCL 190
                                                                                                                             JCL 192
11
                        VOL=RFF=*.FT17F00]
                                                          SAME VOLUME AS THE WORKING FILE
//FT46F001 DD LABEL=(2,BLP),
                                                          GTDS OBSERVATION TAPE HEADER
                                                                                                                             JCL 194
//
                        DCB=(RECFM=VS,BLKSIZE=928,BUFNO=1),DISP=SHR,
                                                                                                                             JCL 196
                                                          SAME VOLUME AS GTDS TAPE
                                                                                                                             JCL 198
                        VOL=REF=*.FT29F001
//FT47F001 DD UNIT=DISK, DISP=SHR, GTDS OBSERVATIONS DISK HEADER
                                                                                                                             JCL 200
                        VOL=REF=*.FT31F001
                                                          SAME VOLUME AS GTDS DISK OBSERVATIONS
                                                                                                                             JCL 202
//FT48F001 DD &SORT.UNIT=DISK, OBSERVATIONS SORT FILE HEADER
                                                                                                                             JCL 204
                        DCB=(RECFM=VS,BLKSIZE=928,BUFNO=1),
                                                                                                                             JCL 206
//
                        SPACE=(1KK,(5,1))
                                                          SAME VOLUME AS OBSERVATION SORT FILE
                                                                                                                             JCL 208
//FT49F001 DD &GRAPH.UNIT=DISK,
                                                          D. C. SUMMARY REPORT FOR SCOPE
                                                                                                                             JCL 210
//
                        SPACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                                                                             JCL 212
                                                                                                                             JCL 214
11
                        BUFNO=1)
                                                                                                                             JCL 216
//FT50F001 DD DDNAME=DODSUM
                                                          TRACKING DATA ACQUISITION SUMMARY
//FT51F001 DD DUMMY, UNIT=9T9ACK, TELETYPE ELEMENTS REPORT
                                                                                                                             JCL 218
        LABEL=(,BLP),DCB=(RECFM=FBA,LRECL=80,BLKSIZE=800,BUFNO=1),
                                                                                                                             JCL 220
```

```
JCL 222
              DISP=SHR
                                                                             JCL 224
                                   DATA SIMULATION INPUT DODS TAPE
//FT52F001 DD DUMMY,
                                                                             JCL 226
              UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=104, BLKSIZE=1044,
11
                                                                             JCL 228
              BUFNO=1), LABEL=(, RLP), DISP=SHR
//
//FT53F001 DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800), UNIT=2314,
                                                                             JCL 230
                                                                             JCL 232
              DISP=SHR
                      CHEBYSHEV EPHEMERIS FOR PDP-11
                                                                             JCL 234
//FT54F001 DD DUMMY,
                                                                             JCL 236
              UNIT=9TRACK, LABEL=(1, BLP),
//
              DCB=(RECFM=FB, LRECL=316, BLKSIZE=316, DEN=2, BUFND=1)
                                                                             JCL 238
11
                                                                             JCL 240
                                   GRAPHICS DEVICE (2250)
//FT55F001 DD &GRAPH.UNIT=&UNIT
                                                                             JCL 242
                                    STADAN OBSERVATION TAPE
//FT56F001 DD DUMMY,
              UNIT=9TRACK, DCB=(RECFM=FB, LRECL=80, BLKSIZE=8000, DEN=2,
                                                                             JCL 244
//
                                                                             JCL 246
              BUFNO=1), LABEL=(,BLP), DISP=SHR
                                                                             JCL 248
                                    SCRATCH AREA FOR COMMON
//FT57F001 DD UNIT=DISK,
                                                                             JCL 250
              SPACE=(TRK, (1, 10)), DISP=(NEW, DELETE), DCB=BUFN0=1
11
                                                                             JCL 252
                                    IONOSPHERE WORKING FILE
//FT58F001 DD UNIT=2314,
                                                                             JCL 254
              SPACE=(1332,20), DCB=(DSORG=DA, BUFNO=1), DSN=&&WIONO
//
                                                                             JCL 256
//FT59F001 DD DISP=SHR, DSN=GJFEM.GTDS.SOLDAT.DATA, DCB=BUFNO=1
                                                                             JCL 258
//FT60F001 DD DISP=SHR, DSN=GJFEM. GTDS. ACCOUNT. DATA, DCB=BUFNO=1
                                                                             JCL 260
//FT63F001 DD DUMMY, DCB=DSORG=DA
                                                                             JCL 262
//FT64F001 DD DISP=SHR,
                                    DODS ELEMENTS
                                                                             JCL 264
              DSN=GRKEL.PELS.DATA
//
                                                                             JCL 266
                                    IONOSPHERE WORKING FILE
//FT65F001 DD UNIT=2314,
               SPACE=(TRK, (1,20), RLSE), DCB=(DSORG=DA, BUFNO=1),
                                                                             JCL 268
//
                                                                             JCL 270
              DSN=&&IUNDAT
                                                                             JCL 272
                                    REAL TIME IONOSPHERE DATA
//FT66F001 DD DUMMY,
                                                                             JCL 274
              UNIT=2314, SPACE=(TRK, (1, 20)), DCB=BUFNO=1
                                    REAL TIME IONOSPHERE DATA
                                                                             JCL 276
//FT67F001 DD DUMMY,
              UNIT=2314, SPACE=(1416, 151), DCB=(DSORG=DA, BUFNO=1)
                                                                             JCL 278
//
//FT68F001 DD DISP=SHR, DSN=GJFEM.GTDS.TRODAT.DATA, DCB=BUFNU=1
                                                                             JCL 280
                                                                             JCL 282
//FT70F001 DD DUMMY, UNIT=2314, DISP=SHR
                                                                             JCL 284
//FT75F001 DD DISP=SHR, DSN=GJFEM. GTDS. JACCHIA. DATA
                                                                             JCL 286
                                    EPHEM WORKING FILE
//FT77F001 DD UNIT=DISK,
                                                                             JCL 288
               SPACE=(TRK,(1,20)),DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
                                                                             JCL 290
                                     DODS PERM OBSERVATIONS
//FT78F001 DD
               DUMMY,
                                                                             JCL 292
               ·DISP=SHR, DCB=BUFNO=1,
//
                                                                             JCL 294
                DSN=GRKEL.DODS.DATA.POBSDC.DATA
//
                                                                             JCL 296
//FT81F001 DD UNIT=DISK,
                                    2ND ORB1 OR EPHEM OUTPUT FILE
               SPACE=(TRK,(1,20)),DCB=(RECFM=VS,BLKSIZE=2808,BUFNU=1)
                                                                             JCL 298
                                    COMPARE SEQ ORBIT FILE 2, WITH PARTS
                                                                             JCL 300
//FT82F001 DD DUMMY,
                                                                             JCL 302
              UNIT=9TRACK, DCB=(RECFM=VS, LRECL=6664, BLKSIZE=6668,
//
                                                                             JCL 304
               BUFNO=1), LABEL=(, BLP), DISP=SHR
                                  , 3RD ORB1 OR EPHEM OUTPUT FILE
                                                                             JCL 306
//FT83F001 DD UNIT=DISK,
               SPACE=(1RK,(1,20)),DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
                                                                             JCL 308
                                                                             JCL 310
                                    COMPARE SEQ ORBIT FILE 2, W/O PARTS
//FT84F001 DD DUMMY,
              UNIT=9TRACK, DCB=(RECFM=VS, LRECL=1096, BLKSIZE=1100,
                                                                             JCL 312
//
                                                                             JCL 314
               BUFNO=1), LABEL=(,BLP), DISP=SHR
//
                                                                             JCL 316
                                    4TH ORB1 OR EPHEM OUTPUT FILE
//FT85F001 DD UNIT=DISK,
                                                                             JCL 318
               SPACE=(TRK,(1,20)),DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
11
                                                                             JCL 320
                                    COMPARE DA ORBIT FILE 2, WITH PARTS .
//FT86F001 DD DUMMY,
                                                                             JCL 322
              UNIT=DISK, DCB=(RECFM=F, BLKSIZE=6660, DSORG=DA, BUFNO=1),
//
                                                                             JCL 324
               SPACE=(6660,240)
11
                                                                             JCL 326
                                    5TH ORBI OR EPHEM OUTPUT FILE
//FT87F001 DD UNIT=DISK,
               SPACE=(TRK, (1,20)), DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1)
                                                                             JCL 328
                                                                             JCL 330
                                    COMPARE DA ORBIT FILE 2, W/O PARTIALS
//FT88F001 DD DUMMY,
                                                                             JCL 232
              UNIT=DISK, DCR=(RECFN=F, BLKSIZE=1092, DSDRG=DA, BUFNO=1),
11
                                                                             JCL 334
               SPACE=(1092,240)
11
                                                                             JCL 336
                                    USB OBSERVATIONS (72-BYTE)
//FT91F001 DD DUMMY,
              UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=76, BLKSIZE=5248),
                                                                             JCL 338
```

```
JCL 342
//FT97F001 DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=80)
                                                                             JCL 344
//INPUTPDS DD DUMMY,
                                   CRT INPUT
              UNIT=2314, DISP=SHR
                                                                             JCL 346
                                                                             JCL 348
//NUCLEUS DD DISP=SHR, VOL=REF=SYS1. SVCLIB, DCB=BUFNO=1
                                                                             JCL . 350
//SYSUDUMP DD SYSOUT=A, SPACE=(TRK, 10)
//ERRDUMP DD &GRAPH.SYSOUT=A,SPACE=(CYL,(1,1))
                                                                             JCL 352
               SORT='DUMMY,',GRAPH='DUMMY,',UNIT=2250
                                                                             JCL 354
//UCLEG
        PROC
                                                                             JCL 356
//PDSUP EXEC PGM=MACTS, REGION=84K
                                                               FEM/28JUN74
                                                                             JCL 358
//**************
                                                                             JCL 360
//STEPLIB DD DSN=GJFEM.GTDS.UPDATE.LOAD.DISP=SHR
//SYSPRINT DD SYSOUT=A
                                                                             JCL 362
                                                                             JCL 364
//SYSIN
           DD DDNAME=DATA5
//PDSIN DD DSN=GJFEM.GTDS.SORSLIB.FORT,DISP=SHR
                                                                             JCL 366
                                                                             JCL 368
//SEQUUT
           DD DSN=&SCR,UNIT=DISK,SPACE=(CYL,(5,1),RLSE),DISP=(MOD,PASS)
                                                                             JCL 370
//SUBRLIST DD SYSOUT=A, SPACE=(CYL, (0,5), RLSE), UNIT=(DISK,3)
//SOURCE EXEC PGM=IEKAAOO, PARM='XREF, OPT=2', REGION=300K
                                                                             JCL 372
                                                                             JCL 374
//SYSLIN DD DSN=&&DBJMOD,UNIT=DISK,SPACE=(CYL,(1,1)),
                                                                             JCL 376
              DISP=(MOD, PASS), DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200)
                                                                             JCL 378
//SYSTERM
           DD
               SYSOUT=A
//SYSPRINT DD SYSOUT=A, DCB=(RECFM=VBA, LRECL=137, BLKSIZE=7265),
                                                                             JCL 380
                                                                             JCL 382
              SPACE=(CYL,(4,2),RLSE)
//SYSPUNCH DD SYSOUT=B, DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200),
                                                                             JCL 384
                                                                             JCL 386
              SPACE=(TRK,(0,5),RLSE)
                                                                     1.3
                                                                             JCL 388
//SYSUT1
           DD UNIT=DISK, SPACE=(CYL, (1,1))
                                                                             JCL 390
//SYSUT2
           UD UNIT=DISK, SPACE=(CYL, (1,1))
                                                                             JCL 392
//SYSIN
           DD DSN=&SCR,UNIT=2314,DISP=(OLD,DELETE)
                                                                             JCL 394
//LINK EXEC PGM=IEWL, PARM=*LET, LIST, MAP, OVLY, SIZE=(240K, 48K)*,
                                                                             JCL 296
         COND=(5,LT), REGION=250K
                                                                             JCL 398
//LOADLIB
           DD DUMMY
                                                                             JCL 400
//WEWLIN
           DD DUMMY
                                                                             JCL 402
//SYSLIB
           DD DSN=SYS2.DUMMY, DISP=SHR
                                                                             JCL 404 --
11
           DD DSN=SYS2.DUMMY, DISP=SHR
                                                                             JCL 406
11
           DD DSN=GJFEM.GTDS.LOADMOD.LOAD,DISP=SHR
           DD DSN=SYS1.FORTLIB, DISP=SHR
                                                                             JCL 408
//
                                                                             JCL 410
11
           DD DSN=SYS2.GSFCLIB,DISP=SHR
                                                                             JCL 412
           DD DSN=SYS1.PL1LIB,DISP=SHR
//
                                                                             JCL 414
//SYSLMOD
           DD DSN=&&LUDMOD(GTDSTEMP),DISP=(,PASS),
11
               SPACE=(CYL, (17,1,1), RLSE), UNIT=DISK
                                                                             JCL 416
                                                                             JCL 418
//SYSPRINT DD SYSOUT=A, DCB=(RECFM=FBA, LRECL=121, BLKSIZE=1210),
                                                                             JCL 420
                SPACE=(CYL,(2,1))
//SYSUT1 DD UNIT=(DISK,3),SPACE=(CYL,(17,1))
                                                                             JCL 422
                                                                             JCL 424
//SYSUDUMP DD SYSOUT=A
                                                                             JCL 426
           DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200)
//TAPELIB
                                                                             JCL 428
           DD DSN=&&UBJMUD, DISP=(OLD, DELETE), DCB=RECFM=FB
//SYSLIN
                                                                             JCL 430
11
               DSN=GJFEM.GTDS.OVERLAY.DATA,DISP=SHR
           DD
                                                                             JCL 432
//
           DD DDNAME=UBJECT
                                                                             JCL 434
77G0
      EXEC
           PGM=*.LINK.SYSLMOD,COND=((5,LT,SOURCE),EVEN),REGION=490K
                                                                             JCL 436
//FT01F001 DD DISP=SHR, DSN=GJFEM.GTDS.DIRECTRY.DATA, DCB=BUFNO=1
                                                                             JCL 438
//FTO2FOO1 DD DISP=SHR, DSN=GJFEM. GTDS. ATMOSDEN. DATA, DCB=BUFNO=1
//FT03F001 DD DISP=SHR, DSN=GJFEM.GTDS.MANEUVER.DATA, DCB=BUFNO=1
                                                                             JCL 440
                                                                             JCL 442
//FTO4FOO1 DD DISP=SHR, DSN=GJFEM.GTDS.ASTROCON.DATA, DCB=BUFNO=1
                                                                             JCL 444
//FT05F001 DD DDNAME=DATA5
                                                                             JCL 446
//FTO6FOO1 DD SYSOUT=A, DCB=(RECFM=VBA, LRECL=137, BLKSIZE=7265),
                                                                             JCL 448
               SPACE = (CYL, (3,1), RLSE)
                                                                             JCL 450
//FTO7FOO1 DD SYSOUT=6,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,BUFNU=1)
                                                                             JCL 452
//FIO8ECO1 DD DISP=SHR,DSN=GJFEN.GTDS.EARTHFLD.DATA,DCB=BUEND=1
                                                                             JCL 454
//FT09F001 DD UISP=SHR, DSN=GJHEM.GTDS.LUNARFLD.DATA, DCB=BUFNO=1
//FT10F001 DD DISP=SHR, DSM=GJFEM. GTDS. INTCUEF. DATA, DCB=BUFNO=1
                                                                             JCL 456
//FT11F001 DD DISP=SHR, DSN=GJFEM. GTDS. SECTIONS. DATA, DCB=BUFN0=1
                                                                             JCL 458
```

```
TEMPORARY DATA FOR CRT INPUT MODE
                                                                             JCL 460
//FT12F001 DD &GRAPH.UNIT=DISK,
                                                                              JCL 462
              DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000, BUFNO=1),
//
                                                                              JCL 464
               DISP=(NEW, DELETE), SPACE=(TRK, (1,1)), DSN=&&INPROMPT
//
//FT13F001 DD DISP=SHR, DSN=GJFEM. GTDS. ERRORMSG. DATA, DCB=BUFNO=1
                                                                              JCL 466
                                                                              JCL 468
//FT14F001 DD DISP=SHR, DSN=GJFEM.GTDS.SLP1950.DATA,
                                                                              JCL 470
              LABEL=(,,,IN),DCB=BUFNO=1
                                    OBSERVATION CARDS
                                                                              JCL 472
//FT15F001 DD DDNAME=OBSCARDS
                                    DATA SIMULATION SUMMARY WORKING FILE
                                                                              JCL 474
//FT16F001 DD UNIT=DISK,
               SPACE=(TRK, (1,6)), DCB=(RECFM=VBS, LRECL=124, BLKSIZE=3352,
                                                                              JCL 476
//
                                                                              JCL 478
              DSORG=DA, BUFNO=1)
//
                                    OBSERVATIONS WORKING FILE
                                                                              JCL 480
//FT17F001 DD UNIT=DISK,
                                                                              JCL 482
               SPACE=(CYL, 4), DCB=(DSORG=DA, BUFNO=1)
                                                                              JCL 484
                                    SLP WORKING FILE
//FT18F001 DD UNIT=DISK,
                                                                              JCL 486
               SPACE=(3520,12), DCB=(DSORG=DA, BUFNO=1)
                                    DISK ORBIT FILE WITH PARTIALS
                                                                              JCL 488
//FT19F001 DD DUMMY,
              UNIT=DISK, DCB=(RECFM=F, BLKSIZE=6660, DSORG=DA, BUFNU=1),
                                                                              JCL 490
//
                                                                              JCL 492
               SPACE = (6660, 240)
11
                                    DISK ORBIT FILE WITHOUT PARTIALS
                                                                              JCL 494
//FT20F001 DD DUMMY,
               UNIT=DISK, DCB=(RECFM=F, BLKSIZE=1092, DSORG=DA, BUFNO=1),
                                                                              JCL 496
//
                                                                              JCL 498
11
               SPACE=(1092,240)
                                                                              JCL 500
                                    TAPE ORBIT FILE WITH PARTIALS
//FT21F001 DD DUMMY,
                                                                            - JCL 502
              UNIT=9TRACK, I)CB=(RECFM=VS, LRECL=6664, BLKSIZE=6668,
11 .
                                                                              JCL 504
               BUFNO=1), LABEL=(, BLP), DISP=SHR
11
                                                                              JCL 506
                                    TAPE ORBIT FILE WITHOUT PARTIALS
//FT22F001 DD DUMMY,
                                                                              JCL 508
               UNIT=9TRACK, DCB=(RECFM=VS, LRECL=1096, BLKSIZE=1100,
//
                                                                              JCL 510
               BUFNO=1), LABEL=(,BLP), DISP=SHR.
11.
                                                                              JCL 512
                                   ERROR MESSAGES FOR SCOPE
//FT23F001 DD &GRAPH.UNIT=DISK,
               SPACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                              JCL 514
                                                                              JCL 516
               BUFNO=1)
                                    1ST ORB1 OR EPHEM OUTPUT FILE
                                                                              JCL 518
//FT24F001 DD UNIT=DISK,
                                                                              JCL 520
               SPACE=(TRK,(1,20)),DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
                                                                              JCL 522
//FT25F001 DD DISP=SHR, DSN=GJFEM. GTDS. ELEMENTS. DATA, DCB=BUFNU=1
                                                                              JCL 524
//FT26F001 DD DISP=SHR, DSN=GJFEM. GTDS. D24HOUR. DATA, DCB=BUFNO=1
                                                                              JCL 526
//FT27F001 DD DISP=SHR, DSN=GJFEM. GTDS. GEODTICS. DATA, DCB=BUFNO=1
                                                                              JCL 528
                                  SATELLITE EPHEMERIS TO SCOPE
//FT28F001 DD &GRAPH.UNIT=DISK,
                                                                              JCL 530
               DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200, BUFNO=1),
//
                                                                              JCL 532
               SPACE=(RK,(1,20))
                                                                              JCL 534
                                    GTDS OBSERVATION TAPE FILE
//FT29F001 DD DUMMY,
                                                                              JCL 536
               UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408,
//
                                                                              JCL 538
               BUFNO=1), LABEL=(, BLP), DISP=SHR
//
                                    DODS OBSERVATION TAPE
                                                                              JCL 540
//FT30F001 DD DUMMY,
                                                                              JCL 542
               UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=104, BLKSIZE=1044,
//
                                                                              JCL 544
               BUFNO=1), LABEL=(, RLP), DISP=SHR
//
                                                                              JCL 546
                                    GTDS OBSERVATION DISK FILE
//FT31F001 DD DUMMY,
                                                                              JCL 548
               UNIT=DISK, DISP=SHR
                                                                              JCL 550
//FT32F001 DD DISP=SHR, DSM=GRKEL. POBS. DATA
                                                                              JCL 552
                                    SLP TAPE
//FT33F001 DD DUMMY,
                                                                              JCL 554
               UNIT=9TRACK, DCB=(RECFM=VS, BLKSIZE=3460, BUFNO=1),
//
                                                                              JCL 556
               LABEL=(,BLP),DISP=SHR
//
                                                                              JCL 558
                                    JPL TAPE
//FT34F001 DD DUMMY,
               UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=8304, BLKSIZE=8308,
                                                                             JCL 560
11
                                                                              JCL 562
               BUFNO=1, DEN=2), LABEL=(,BLP,,IN), DISP=SHR
11
//FT35F001 DD &GRAPH.UNIT=DISK, INTEGRATION STATISTICS FOR SCOPE
                                                                              JCL 564
```

```
JCL 460
                                    TEMPORARY DATA FOR CRT INPUT MODE
//FT12F001 DD &GRAPH.UNIT=DISK.
                                                                              JCL 462
              DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000, BUFN0=1),
//
                                                                              JCL 464
              DISP=(NEW, DELETE), SPACE=(TRK, (1, 1)), DSN=&&INPROMPT
//
                                                                              JCL 466
//FT13F001 DD DISP=SHR,DSN=GJFEM.GTDS.ERRORMSG.DATA,DCB=BUFNO=1
//FT14F001 DD DISP=SHR, DSN=GJFEM. GTDS. SLP1950. DATA,
                                                                              JCL 468
                                                                              JCL 470
               LABEL=(,,,IN),DCB=BUFNO=1
                                                                              JCL 472
//FT15F001 DD DDNAME=OBSCARDS
                                    OBSERVATION CARDS
                                    DATA SIMULATION SUMMARY WORKING FILE
                                                                              JCL 474
//FT16F001 DD UNIT=DISK.
               SPACE=(TRK,(1,6)),DCB=(RECFM=VBS,LRECL=124,BLKSIZE=3352,
                                                                              JCL 476
//
                                                                              JCL 478
               DSORG=DA, BUFNO=1)
//
                                                                              JCL 480
                                    DBSERVATIONS WORKING FILE
//FT17F001 DD UNIT=DISK,
                                                                              JCL 482
               SPACE=(CYL, 4), DCB=(DSORG=DA, BUFNO=1)
                                                                              JCL 484
                                    SLP WORKING FILE
//FT18F001 DD UNIT=DISK.
                                                                              JCL 486
               SPACE=(3520,12), DCB=(DSORG=DA, BUFNO=1)
                                                                              JCL 488
//FT19F001 DD DUMMY,
                                    DISK ORBIT FILE WITH PARTIALS
                                                                              JCL 490
               UNIT=DISK, DCB=(RECFM=F, BLKSIZE=6660, DSORG=DA, BUFNO=1),
//
                                                                              JCL 492
11
               SPACE=(6660,240)
                                    DISK ORBIT FILE WITHOUT PARTIALS
                                                                              JCL 494
//FT20F001 DD DUMMY,
               UNIT=DISK, DCB=(RECFM=F, BLKSIZE=1092, DSORG=DA, BUFNO=1),
                                                                              JCL 496
//
                                                                              JCL 498
11
               SPACE=(1092,240)
                                    TAPE ORBIT FILE WITH PARTIALS
                                                                              JCL 500
//FT21F001 DD DUMMY,
                                                                              JCL 502
               UNIT=9TRACK, DCB=(RECFM=VS, LRECL=6664, BLKSIZE=6668,
//
                                                                              JCL 504
11
               BUFNO=1), LABEL=(, BLP), DISP=SHR
                                    TAPE ORBIT FILE WITHOUT PARTIALS
                                                                              JCL 506
//FT22F001 DD DUMMY,
                                                                              JCL 508
               UNIT=9TRACK, DCB=(RECFM=VS, LRFCL=1096, BLKSIZE=1100,
//
                                                                              JCL 510
               BUFNO=1), LABEL=(, BLP), DISP=SHR
//
                                                                              JCL 512
//FT23F001 DD &GRAPH.UNIT=DISK,
                                    ERROR MESSAGES FOR SCOPE
               SPACE=(TRK, (1,20)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200,
                                                                              JCL 514
//
               BUFNO=1)
                                                                              JCL 516
11
                                                                              JCL 518
                                    1ST ORBI OR EPHEM OUTPUT FILE
//FT24F001 DD UNIT=DISK.
               SPACE=(TRK, (1, 20)), DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1)
                                                                              JCL 520
                                                                              JCL 522
//FT25F001 DD DISP=SHR, DSN=GJFEM. GTDS. ELEMENTS. DATA, DCB=BUFNO=1
//FT26F001 DD DISP=SHR, DSN=GJFEM. GTDS. D24HQUR. DATA, DCB=BUFNQ=1
                                                                              JCL 524
                                                                              JCL 526
//FT27F001 DD DISP=SHR, DSN=GJFEM.GTDS.GEODTICS.DATA, DCB=BUFNU=1
                                                                              JCL 528
                                    SATELLITE EPHEMERIS TO SCOPE
//FT28F001 DD &GRAPH.UNIT=DISK,
               DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200, BUFNO=1),
                                                                              JCL 530
11
                                                                              JCL 532
               SPACE=(TRK,(1,20))
//
                                                                              JCL 534
                                    GTDS OBSERVATION TAPE FILE
//FT29F001 DD DUNMY,
                                                                              JCL 536
               UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408,
//
                                                                              JCL 538
               BUFNO=1), LABEL = (, BLP), DISP=SHR
                                    DODS OBSERVATION TAPE
                                                                              JCL 540
//FT30F001 DD DUMMY,
               UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=104, BLKSIZE=1044,
                                                                              JCL 542
//
                                                                              JCL 544
               BUFNO=1), LABFL=(,BLP), DISP=SHR
                                                                              JCL 546
//FT31F001 DD DUMMY,
                                    GTDS OBSERVATION DISK FILE
                                                                              JCL 548
               UNIT=DISK, DISP=SHR
//FT32F001 DD DISP=SHR, DSN=GRKEL. POBS. DATA
                                                                              JCL 550
                                                                              JCL 552
//FT33F001 DD DUMMY,
                                    SLP TAPE
                                                                              JCL 554
               UNIT=9TRACK, DCB=(RECFM=VS, BLKSIZE=3460, BUFNO=1),
77
               LABEL=(,BLP),DISP=SHR
                                                                              JCL 556
11
                                                                              JCL 558
                                     JPL TAPE
//FT34F001 DD DUMMY,
                                                                              JCL 560
               UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=8304, BLKSIZE=8308,
//
               BUFNO=1, DEN=2), LAPEL=(, BLP,, IN), DISP=SHR
                                                                              JCL 562
                                                                              JCL 564
//FT35F001 DD &GRAPH.UNIT=DISK, INTEGRATION STATISTICS FOR SCOPE
               SPACE=(TRK, (1,20)), DCB=(RECFM=FB, LRECL=80, BLKSIZH=3200,
                                                                              JCL 506
11
                                                                               JCL 568
11
               BUFNO=1)
                                    FINAL ORBIT GENERATOR DISPLAY FOR SCOP JCL 570
//FT36F001 DD &GRAPH.UNIT=DISK,
               SPACE=(TRK, (1, 20)), DCB=(RECFM=FB, LRECL=80, BLKSIZF=3200,
                                                                             . JCL 572
1.[
```

```
JCL 574
11
              BUFNO=1)
//FT37F001 DD &SORT.UNIT=DISK, OBSERVATIONS SORT FILE
                                                                            JCL 576
              DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408, BUFNO=1),
                                                                            JCL 578
                                                                            JCL 580
              SPACE=(CYL,(2,1))
11
                                                                            JCL 582
//FT38F001 DD DSN=GJFEM.GTDS.TIMCOF.DATA,DISP=SHR
                                                                            JCL 584
//FT39F001 DD DISP=SHR, DSN=GJFEM. GTDS. GENCOF. DATA, DCB=BUFNO=1
                                   PERMANENT FILES TO SCOPE
                                                                            JCL 586
//FT40F001 DD DUMMY
                                                                            JCL 588
                                   TEMPORARY STARTER ARRAYS
//FT41F001 DD UNIT=DISK,
              SPACE=(TRK,(1,10)),DCB=(RECFM=VBS,LRECL=1452,BUFNO=1,
                                                                            JCL. 590
//
                                                                            JCL 592
11
              BLKSIZE=7264)
                                                                            JCL 594
                                   OBSERVATION RESIDUALS FOR SCUPE
//FT42F001 DD &GRAPH.UNIT=DISK,
              SPACE=(1RK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                            JCL 596
//
                                                                            JCL 598
              BUFNO=1)
//
//FT43F001 DD &GRAPH.UNIT=DISK, SOLVE PARAMETERS FOR SCOPE
                                                                            JCL 600
              SPACE=(TRK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                            JCL 602
//
                                                                            JCL 604
              BUFNO=1)
//
//FT44F001 DD &GRAPH.UNIT=DISK, · ELEMENTS FOR SCOPE
                                                                            JCL 606
                                                                            JCL 608
              SPACE=(1RK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
//
                                                                            JCL 610
              BUFNO=1)
                                                                            JCL 612
                                   OBSERVATIONS WORKING FILE HEADER
//FT45F001 DD UNIT=DISK,
                                                                            JCL 614
              SPACE=(TRK,(1,1)),DCB=(RECFM=VS,BLKSIZE=928,BUFNO=1),
//
                                                                            JCL 616
              VOL=REF=*.FT17F00] SAME VOLUME AS THE WORKING FILE
                                   GTDS OBSERVATION TAPE HEADER
                                                                            JCL 618
//FT46F001 DD LABEL=(2,BLP),
                                                                            JCL 620
              DCB=(RECFM=VS,BLKSIZE=928,BUFNO=1),DISP=SHR,
//
              VOL=REF=*.FT29F001 SAME VULUME AS GTDS TAPE
                                                                            JCL 622
11
//FT47F001 DD UNIT=DISK.DISP=SHR, GTDS OBSERVATIONS DISK HEADER
                                                                            JCL 624
              VOL=REF=*.FT31F001 SAME VOLUME AS GTDS DISK OBSERVATIONS
                                                                            JCL 626
//FT48F001 DD &SORT.UNIT=DISK, OBSERVATIONS SORT FILE HEADER
                                                                            JCL 628
                                                                            JCL 630
              DCB=(RECFM=VS,BLKSIZE=928,BUFNO=1),
//
// SPACE=(TRK,(5,1)) SAME VOLUME AS OBSERVATION SORT FILE 
//FT49F001 DD &GRAPH.UNIT=DISK, D. C. SUMMARY REPORT FOR SCOPE
                                                                            JCL 632
                                                                            JCL 634
              SPACE=(1RK,(1,20)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,
                                                                            JCL 636
//
                                                                            JCL 638
11
              BUFNO=1)
                                                                            JCL 640
//FT50F001 DD DDNAME=D0DSUM
                                   TRACKING DATA ACQUISITION SUMMARY
                                                                            JCL 642
//FT51F001 DD DUMMY, UNIT=9TRACK,
                                   TELETYPE ELEMENTS REPORT
                                                                            JCL 644
     LABEL=(,BLP),DCB=(RECFM=FBA,LRECL=80,BLKSIZE=800,BUFNU=1),
//
                                                                            JCL 646
               DISP=SHR
//
                                                                            JCL 648
                                   DATA SIMULATION INPUT DOOS TAPE
//FT52F001 DD DUMMY,
                                                                            JCL 650
              UNIT=9TRACK, DCB=(RECFM=VBS, LRECL=104, BLKSIZE=1044,
//
                                                                            JCL 652
              BUFNO=1), LABEL=(, RLP), DISP=SHR
11
                                                                            JCL 654
//FT53F001 DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800), UN1T=2314,
                                                                            JCL 656
              DISP=SHR
                                                                            JCL 658
//FT54F001 DD DUMMY, CHEBYSHEV EPHEMERIS FOR PDP-11 -
                                                                            JCL 660
              UNIT=9TRACK, LABEL=(1, BLP),
//
              DCB=(RECFM=FB, LRECL=316, BLKSIZE=316, DEM=2, BUFNO=1)
                                                                            JCL 662
                                                                            JCL 664
//FT55F001 DD &GRAPH.UNIT=&UNIT
                                   GRAPHICS DEVICE (2250)
                                   STADAN OBSERVATION TAPE
                                                                            JCL 666
//FT56F001 DD DUMMY,
                                                                            JCL 668
              UNIT=9TRACK, DCB=(RECFM=FB, LRECL=80, BLKSIZE=8000, DEN=2,
//
                                                                            JCL 670
              BUFNO=1), LABEL=(, BLP), DISP=SHR
//
                                                                            JCL 672
//FT57F001 DD UNIT=DISK,
                                   SCRATCH AREA FOR COMMON
              SPACE=(TRK, (1,10)), DISP=(NEW, DELETE), DCB=BUFNO=1
                                                                            JCL 674
                                                                            JCL 676
//FT58F001 DD UNIT=23]4, IONOSPHERE WORKING FILE
                                                                            JCL 678
              SPACE=(1332,20), DCB=(DSORG=DA, BUFNO=1), DSN=&&WIONO
                                                                            JCL 680
//FT59F001 DD DISP=SHR,DSN=GJFEA.GTDS.SOLDAT.DATA,DCB=BUFNO=1
//FT60F001 DD DISP=SHR, DSN=GJFEM. GTDS. ACCOUNT. DATA, DCB=BUFNO=1
                                                                            JCL 682
                                                                            JCL 684
//FT63FOC1 DD DUMMY, DCB=DS(IRG=DA
                                                                            JCL 686
//FT64F001 DD DISP=SHR, DSN=GRKEL. PELS. DATA
                                               DOOS ELEMENTS
                                                                            JCL 688
//FT65F001 DD UNIT=2314,
                                   IONOSPHERE WORKING FILE
```

```
JCL 690
11
              SPACE=(TRK,(1,20),RLSE),DCB=(DSORG=DA,BUFNO=1),
              DSN=&&IONDAT
                                                                              JCL 692
11
                                    REAL TIME IONOSPHERE DATA
                                                                              JCL 694
//FT66F001 DD DUMMY,
                                                                             JCL 696
              UNIT=2314, SPACE=(TRK, (1, 20)), DCB=BUFNO=1
                                    REAL TIME IONOSPHERE DATA
                                                                              JCL 698
//FT67F001 DD DUMMY,
              UNIT=2314, SPACE=(1416,151), DCB=(DSORG=DA, BUFNO=1)
                                                                              JCL 700
                                                                              JCL 702
//FT68F001 DD DISP=SHR, DSN=GJFEM. GTDS. TRODAT. DATA, DCB=BUFNO=1
                                                                              JCL 704
//FT70F001 DD DUMMY, UNIT=2314, DISP=SHR
                                                                              JCL 706
//FT75F001 DD DISP=SHR, DSN=GJFEM. GTDS. JACCHIA. DATA
                                    EPHEM WORKING FILE
                                                                              JCL 708
//FT77F001 DD UNIT=DISK,
                                                                              JCL 710
               SPACE=(TRK,(1,20)),DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
//
                                                                              JCL 712
               DUMMY, UNIT=(2321,3),
//FT78F001 DD
                                                                              JCL 714
11
                DISP=SHR, DCB=BUFNO=1,
                                                                              JCL 716
11
                DSN=GRKEL.DODS.DATA.POBSDC.DATA
                                    2ND ORBI OR EPHEM OUTPUT FILE
                                                                              JCL 718
//FT81F001 DD UNIT=DISK,
                                                                              JCL 720
               SPACE=(TRK, (1,20)), DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1)
//
                                                                              JCL 722
                                    COMPARE SEO ORBIT FILE 2, WITH PARTS .
//FT82F001 DD DUMMY,
               UNIT=9TRACK, DCB=(RECFM=VS, LRECL=6664, BLKSIZE=6668,
                                                                              JCL 724
//
                                                                              JCL 726
               BUFNO=1), LABEL=(,BLP), DISP=SHR
11
                                                                              JCL 728
//FT83F001 DD UNIT=DISK,
                                    3RD ORB1 OR EPHEM OUTPUT FILE
               SPACE=(TRK, (1,20)), DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1)
                                                                              JCL 730
                                                                              JCL 732
//FT84F001 DD DUMMY,
                                    COMPARE SEQ ORBIT FILE 2, W/O PARTS
               UNIT=9TRACK, DCB=(RECFM=VS, LRECL=1096, BLKSIZE=1100,
                                                                              JCL 734
//
                                                                              JCL 736
               BUFNO=1), LABFL=(, FLP), DISP=SHR
//
                                                                              JCL 738
//FT85F001 DD UNIT=DISK.
                                    4TH ORBI OR EPHEM OUTPUT FILE
               SPACE=(TRK, (1,20)), DCB=(RFCFM=VS, BLKSIZE=2808, BUFNO=1)
                                                                              JCL 740
                                    COMPARE DA ORBIT FILE 2, WITH PARTS
                                                                              JCL 742
//FT86F001 DD DUMMY.
                                                                              JCL 744
               UNIT=DISK, DCB=(RECFM=F, BLKSIZE=6660, DSURG=DA, BUFNO=1),
11
                                                                              JCL 746
               SPACE=(6660,240):
11
                                                                              JCL 748
                                    5TH ORBI OR EPHEM OUTPUT FILE
//FT87F001 DD UNIT=DISK.
               SPACE=(TRK, (1,20)), DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1)
                                                                              JCL 750
                                                                              JCL 752
//FT88F001 DD DUMMY,
                                    COMPARE DA ORBIT FILE 2, W/O PARTIALS
                                                                              JCL 754
               UNIT=DISK, DCB=(RECFM=F, BLKSIZE=1092, DSORG=DA, BUFNO=1),
11
                                                                              JCL 756
               SPACE=(1092,240)
11
                                                                              JCL 758
//FT91F001 DD DUMMY,
                                    USB OBSERVATIONS (72-BYTE)
                                                                              JCL 760
               UNIT=9TRACK,DCB=(RECFM=VBS,LRECL=76,BLKSIZE=5248),
//
                                                                              JCL 762
11
               DISP=SHR
//FT97F001 DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=80)
                                                                              JCL 764
                                                                              JCL 766
//INPUTPDS DD DUMMY,
                                    CRT INPUT
                                                                              JCL 768
               UMIT=2314, DISP=SHR
//
                                                                              JCL 770
//NUCLEUS DD DISP=SHR, VOL=REF=SYS1.SVCLIB, DCB=BUFNO=1
                                                                              JCL 772
            DD &SORT.SYSOUT=A
                                                                        IBM
//SYSQUT
                                                                              JCL 774
//SYSUDUMP DD SYSOUT=A, SPACE=(TRK, 10)
                                                                              JCL 776
            DD &GRAPH.SYSOUT=A.SPACE=(CYL.(1,1))
//ERRDUMP
```

```
(8000,5000),CLASS=D
         EXEC PROC=FORTRANG, PARM= 'MAP, ID', TIME, CMP=(0,15)
//STEP1
//CMP.SYSIN
            DĐ
                                                                            64250001
      VERSION OF JAN. 27,1974
С
                                                                            64250002
C
      PURPOSE
                                                                           64250003
          TO PROVIDE AN EXECUTIVE PROGRAM FOR CONTROL OF THE
C
                                                                            64250004
С
          GTDS ORBIT DETERMINATION SUBSYSTEM
                                                                            64250005
      CALLING SEQUENCE
C
Ċ
                                                                            64250006
          NONE
                                                                            64250007
C
      SUBROUTINES CALLED
          SETDAF, RUNACC, SETRUN, CRTIN, WFCONT, DC, EPHGEN, DSPEXC, SELKUN, EO
                                                                            64250008
C
                                                                            64250009
C
                                                                            64250010
      COMMON BLOCK VARIABLES
C
                                                                            64250011
C
          TEND-OF-FILE FLAG
                                                                            64250012
          IPRMPT= CRT INPUT MODE INDICATOR(1=YES, 2=NO)
C
                                                                            64250013
                    TYPE RUN INDICATOR
C
                                                                           .64250014
                      1= DIFFERENTIAL CORRECTION
C
                                                                            64250015
                      2= ORBIT GENERATOR
C
                                                                            64250016
                      3= DATA SIMULATION
C
                                                                            64250017
C
                      4= ORBIT CUMPARE
                                                                            64250018
                      5= DATA MANAGEMENT
C
                                                                            64250019
C
                      6= PERMANENT FILE REPORT
                                                                            64250020
                      7= ERROR ANALYSIS
C
                                                                            64250021
C
                    O FOR AN ODS RUN
                    1 FOR A PERMANENT FILE MAINTENANCE RUN
                                                                            64250022
                    NUMBER OF CURRENT D.C. RUN
                                                                            64250023
C
          NBRDC =
                                                                            64250024
                    NUMBER OF CURRENT RUN
C
          NBRRUN=
      NOPTS = THE FRN OF THE OPTIONS INPUT DATA SET
                                                                            64250025
C
                                                                            64250026
                    THE FRN OF THE PRINTER OUTPUT
C
          NOUT
                    EXECUTIVE CONTINUATION INDICATOR (1=YES ,2=NO)
                                                                            64250027
C
                                                                            64250028
          IPASWD= PASSWORD OF NBTST FILE
           ITSTR = NBTST RECORD NUMBER TO USE
                                                                            64250029
€
                                                                            64250030
          NBNOM = FRN OF NOMINAL BENCHMARK CASES
С
          NBTST = FRN OF TEST BENCHMARK CASES
                                                                            64250031
C
                                                                            64250032
C
                                                                            64250033
C
      REFERENCE
                                                                            64250034
          GTDS TASK SPEC. 'ODS EXECUTIVE CONTROL(MAIN)' BY J. E. DUNN
C
                                                                            64250035
      PROGRAMMER
С
          M. A. WELKER - COMPUTER SCIENCES CORPORATION
                                                                            64250036
C
                                                                            64250037
C
                                                                            64250038
C
      PROGRAM MODIFICATIONS
                                                                            64250039
C
          04/10/72 W.M. WESTON, GSFC
                                                                            64250040
C
            (A) READ AND WRITE INPUT DATA SET
             (B) STORE NOMINAL CUMMON BLOCK VALUES TO A TEMPORARY DATA SE64250041
                                                                            64250042
          06/15/72 D. BUSHI, C&S INC
          UPDATE TO CALL THE EARLY ORBIT PROGRAM
                                                                            64250043
C
                                                                            64250044
          AUGUST 1, 1972
                           J.FEIN COMPUTER SCIENCES CORPORATION
C
              CALL DSPEXC(DATA SIMULATION PROGRAM) INSTEAD OF DOGGON
                                                                            64250045
C
      09/14/72 J. E. DUNN, JR., COMPUTER SCIENCES CORPURATION
                                                                            64250046
C
                                                                            64250047
         (A) ADDED PAGING CONTROL FOR PRINT-OUT
                                                                            64250048
         (B) MODIFIED ERROR PROCESSING LOGIC
         (C) ADDED CALL TO WRKREP AFTER WECONT CALL
                                                                            64250049
C
          10/12/72 J. E. DUNN, JR., CUMPUTER SCIENCES CORPURATION
                                                                            64250050
C
                                                                            64250051
C
              (A) DELETED WRITE OF COMMON BLOCK EDIT
                                                                            64250052
              (B) DELETED COMMON BLOCK EDIT
```

```
64250053
C
              (C) DELETED COMMON BLOCK WORKER
                                                                              64250054
C
      MODIFIED ON JAN 25,1973
                                            E. JAHN, CSC
                                                                               64250055
С
         IMPLEMENT CRI INPUT MODE
С
                    D. BUSHI, C&S INC
                                                                              64250056
          10/27/72
C
                                                                               64250057
             (A) UPDATE TO CALL THE EPHEMERIS COMPARISON PROGRAM
C
                                                                               64250058
          NOV 1972 BY ANN WELKER , C S C
                                                                               64250059
           A) ADD CALCULATIONS FOR TEST MODE .
C
                                                                               64250060
C
      MODIFIED ON MARCH 25,1973
                                       E. JAHN, C.S.C.
C
                                                                               64250061
          CHANGE CALLING SEQUENCE TO CRTIN
                                                                               64250062
C
                                                     C.S.C.
     · MODIFIED ON OCTOBER 25,1973 BY E. JAHN,
                                                                               64250063
C
         REMOVE INTERNAL WRITES .. CALL ERROUT
                                                                              64250064
C
C
                                                                               64250065
                                                                               64250066
      IMPLICIT
                      REAL*8 (A-H, D-Z)
                                                                               64250067
                       LOGICAL*1 LUGDCP
                                             , LSTA
                                                                               64250068
C
      COMMON/DCFL / DPDFL(2425)
                                                                               64250069
                                                                   ,LOGDCP(72)64250070
      COMMON/DCINPT/ DPDCP (300)
                                             ,INTDCP(200).
                                                                               64250071
      COMMON/DCINT / DPDCI (432)
                                             , INTDC1( 26)
                                                                               64250072
                    / DPFRC(1300)
                                             , INTERC( 38)
      COMMON/FRC
                                                                               64250073
      COMMON/INTEG / DPINT (149)
                                             , INTINT( . 2)
                                                                               64250074
      COMMON/SATMAN/ DPSTM (164)
                                             , INTSTM(10)
                                                                               64250075
                                            , INTSTP(- 6).
      COMMON/SAIPOS/ DPSTP (100)
                                                                    , IGDS(14), 64250076
                                                         , IATL
      COMMON/SCOPE /IGSP
                                   , NO
                                              , I2250
                                                                               64250077
                      ISCOPE
                                , NOBSD
                                                                               64250078
      COMMON/SECTN / DPSEC. (675)
                                             , INTSEC (325,)
                                             , INTSLP( 12)
                                                                               64250079
      COMMON/SLPOPT/ OPSLP ( 1)
                                                                   ,LSTA(80)
                                                                               64250080
      COMMON/STAGEO/ DPSTA(435)
                                             , INTSTA(182)
                                                                               64250081
      COMMON/TITLE / HEADER(9,6)
                                                 .MODWF(6)
      COMMON/FILES / INFILE(100)
                                                                               64250082
                                                                               64250083
      COMMON/SWITCH/ INSW(200)
                                                                               64250084
C
                                                                               64250085
                                  ,XDTO(3)
                                             , IREC(10)
      DIMENSION
                       XTO(3)
                                                                               64250086
      DIMENSION
                       CARD(10)
                                                                               64250087
C
                                             , INFILE(22)
                                                                             1,64250088
      EQUIVALENCE
                       TUON)
                                                                             1,64250089
                       (NOPTS
                                             , INFILE(21)
     水
                                                                             1,64250090
                       TNOIDS
                                             , INFILE (57)
                                                                             1,64250091
     zk.
                       (FND48
                                             , INSW (48)
     *
                       (IEOH
                                             , INSW(164)
                                                                             1,64250092
                                                                             ),64250093
                                             , INSW(171)
                       (MBRRUN
                                                                             ),64250094
                       ( NBRDC
                                          . , INSW(172)
     *
                                                                             ) 64250095
    - 14
                       (IPRMPT
                                             , INSW(175)
                                                                               64250096
       EQUIVALENCE
                       (NBNOM
                                             , INFILE(72)),
                                                                               64250097
                                             , INFILE(73))
                       (MBTST
                                                                               64250098
                                             ,INSW(190)),
      EQUIVALENCE
                       (IPASWD
                                                                               64250099
                       (ITSTR
                                             • INSW(189))
                                                                             1.64250100
                                             ,DPDCI(1)
       EQUIVALENCE
                       (XTO(1)
                                                                             ),64250101
     X.
                       \{XDT\{i\{1\}\}
                                             , DPDCI(4)
                                                                             ) 64250102
                                             ,DPDFL(1675)
                       (RMS
                                                                               64250103
                                             , 1REC(1)),
       EQUIVALENCE
                       (POSN
```

```
64250104
                                              , IREC(3)),
                       (VELN
     *
                                                                                 64250105
                       (RMSS
                                              , IREC(5)),
     *
                                                                                 64250106
                                              , IREC(7)),
                       (SPR1
     *.
                                                                                 64250107
                                              , IREC(9))
                       (SPR2
     *
                                                                                 64250108
      DATA SPR1, SPR2 /0. , 0./
                                                                                 64250109
¢
                                                                                 64250110
      INSW(45)=2
                                                                                 64250111
      NERR = 0
                                                                                 64250112
      IPRMPT = 2
                                                                                 64250113
      INSW(183)=1
                                                                                 64250114
      ISCOPE=2
      CALL CKSCOP TO SET FLAGS IF SCOPE IS AVAILABLE
                                                                                 64250115
C
                                                                                 64250116
      CALL CKSCOP
      CALL SUBROUTINE SETDAF TO SUPPLY FORTRAN I/O SUBROUTINES WITH
                                                                                 64250117
C
      INFORMATION DESCRIBING THE DIRECT ACCESS DATA SETS
                                                                                 64250118
C
                                                                                 64250119
C
                                                                                 64250120
   10 CALL SETDAF
                                                                                 64250132
               * 8 Fortran statement deleted
                                                                                 64250133
                                                                                 64250134
      WRITE NOMINAL COMMON BLOCK VALUES TO DATA SET
C
                                                                                 64250135
C
                                                         , DPDCI
                                                                    , INTOCI
                                                                                ,64250136
      WRITE(NOJDS)
                       DPDCP
                                   , INTOCP
                                              , LUGDCP
                                                                                 64250137
     3,0
                       DPFRC
                                  , INTERC
                                                         , INTSTM
                                                                                 64250138
     *
                       DPINT
                                   , INTINT
                                              , DPSTM
                                                                                 64250139
                                                         , INTSEC
     *
                       DPSTP
                                   , INTSTP
                                              , DPSEC
                                                                    ,LSTA
                                   , INTSLP
                                              , DPSTA
                                                         , INTSTA
                                                                                ,64250140
     3,0
                       DPSLP
                                                                                 64250141
                       HEADER
                                  , MODWF
                                              , INSW
                                                                                 64250142
      REWIND NOIDS
```

Remaining Subroutine 'ODSEXEC'

```
/*
//STEP2
         EXEC PGM=IEWL, PARM='LET, LIST, MAP, UVLY, NCAL, SIZE=(240K, 48K)',
         COND=(5,LT),TIME=(0,30),REGION=252K
           DD DUMMY
//NEWLIN
           DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200)
//TAPELIB
//LOADLIB
           DD DUMMY
         DD
             DSN=ORBGEN.GTDS.LOMODUL,DISP=SHR
//MYLIB
//SYSUT1 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE=(CYL, (2,1))
//LKED.SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
              DD DSNAME=SYS2.FURTSSP, DISP=SHR
//
                SYSOUT=A, UCB=(LRECL=120, RECFM=FBA, BLKSIZE=600)
//SYSPRINT
            DD
//SYSLMOD DD UNIT=USERDA, DISP=(NEW, CATLG),
         DSN=ORRGEN.GTDS.NEWLOAD(MAIN),SPACE=(CYL,(1,1,1))
//LKED.SYSLIN DD DSNAFE=*.STEP1.CMP.SYSLIM,DISP=(OLD,DELETE)
          To include object deck to open Units 1-99.
```

^{*} Changes made to suit OSU Computer System.

ENTRY MAIN	OVLY	2
REPLACE BLKLET, PLTDMP, QUICKY, TYPLIN, UCS, TYPWRITE	OVLY	4
INCLUDE TAPELIB	OVLY	6
REPLACE RTOBS, VPFORC, GOFUNO, GO24, SELRUN	OVLY	8
*INCLUDE MYLIB(GTDS)	,	
OVERLAY RFG1SEG1	OVLY	12
INSERT READER, IHCSLOG, IHCSSCN, IHCFRXPJ, IHCFRXPR, IHCSEXP, GSCALE, CPLOTS	OVLY	14
INSERT DATE, EDITT, GRID, GRDNUM, HORLIN, MINT, PLOTST, SCHAR, SC4020, TIMING	OVLY	16
OVERLAY REGISEG1	OVLY	18
INSERT ORBIT, INTP	OVLY	20
INSERT WORKER, HEMITR, TIMREG, VCROSS	OVLY	22
	OVLY	24
INSERT FORCES, DPART, SECHEK, SECUPD, DFIX, INV2, OSMEAN, BRWORB, DKEPLR	OVLY	26
OVERLAY REGISEGS	OVLY	28
INSERT ORBITB, RESINB, INTOGA, BROCOR	UVLY	30
OVERLAY REGISEGS	OVLY	32
	ÜVLY	34
INSERT PMASS, PMASSV, SECHKN, SLRADV, SOLRAD, SPART, MANEUV	OVLY	36
INSERT SUMS, TESTH, TWOBDY, VARFRC, RESUME, SPARTV	OVLY	38
INSERT GMTRA, TOBODY	OVLY	40
INSERT ANPART, BURNY, SCATT, TKPTC	OVLY	42
OVERLAY REGISEG4	OVEY	44
INSERT COVUP, COLTAB, GVCVL, SYMINV	OVLY	46
OVERLAY REGISEG4	OVLY	4 8
INSERT LG5, PARTE	0VLY	50
OVERLAY REGISEG4	0VLY	52
I-NSFRT ATMOS	OVEY	54
OVERLAY REGISEG4	OVLY	56
INSERT JACROB, DRAGON	OVLY	58
OVERLAY REGISEG5	· DAFA	60
INSERT LOWALT, ROOTS	OVLY	62
OVERLAY REGISEG6	OVLY	64
INSERT_DIFFDE	OVLY	66
OVERLAY REGISEG6	OVLY	68
INSERT BARODE	OVLY	70
OVERLAY REGISEG5	OVLY	72
INSERT HIALT, JACCHE	OVLY	74
OVERLAY REGISEG2	OVLY	76
INSERT GETHOR, ORBITE, INTOGE, ERRGET	OVLY	78
OVERLAY REGISEG3	OVLY	80
INSERT GREC1, OUTEC1	OVLY	82
INSERT CMPVCT, GREC2, OUTEC2	OVLY	84
OVERLAY REGISEG3	OVLY	86
INSERT DSPING. DSPCBK, DSPFL, TPSCHL	UNTA.	
OVERLAY REGISEG4	OVLY	
INSERT INTDEP, OUTDS1, EVENT, GETOSP, GROSI	OVLY	
OVERLAY REGISEG4	DVLY	
INSERT DSPSUM, GAUSS, DODSWR, OUTDS2, SCHDUL, NOCCLT, RANDU	OVEY	
OVERLAY REGISEG4	DVLY	
INSERT OUTDS3, GDSSUM, STARPT, BCD	OAFA	
OVERLAY REGISEG1		
	OVEY	
INSERT WECONT	OVLY	
OVERLAY REGISEG2	OVLY	TOP

^{*} Member 'GTDS' as obtained from GSFC.

```
INSERT IRWF, IONGEN, SOLGET, REFGEN, MAGFRT, SICORT, DKSIRT, GKRT
                                                                              OVLY 108
                                                                               OVLY 110
 INSERT DKGKRT, IGETRT, COEFF1
                                                                              OVLY 112
 INSERT IRWCSC, COEF1, NBSDAT
                                                                               OVLY 114
           REGISEG2
 OVERLAY
                                                                              OVLY 116
 INSERT DODSEL, ELSWF, ELSGET
                                                                               OVLY 118
 INSERT ATMWF, ICWF, MANWF, PCWF, SECWF, SETLIF
                                                                              OVLY 120
          REGISEG2
 OVERLAY
                                                                               OVLY 122
 INSERT OBSWF, REJRPT
                                                                              OVLY 124
           REGISEG3
 OVERLAY
                                                                               OVLY 126
           REFRMT, DWRITE, UPSTAT, CBSCRD, SELCON, DODSDT
INSERT
                                                                              OVLY 128
           DODSOB, GEOWF, USBOBS, PCERD, GEOCON, GETGEO
 INSERT
                                                                               OVLY 130
 OVERLAY
           REGISEG3
                                                                               OVLY 132
    INSERT SORTIT, SORTOB, SORTB
                                                                               OVLY 134
 OVERLAY
           REG1SEG2
                                                                               OVLY 136
           SLPEPH
 INSERT
           AMATRX, CMATRX, GETTAP, INPUT1, CHEBY, READE, SLPTAP
                                                                               OVLY 138
 INSERT
                                                                               OVLY 140
           CETBL1, CETBL3, CETBL4, CETBL9, SAVE, INPUT, SLPWF, CHEV
 INSERT
                                                                               OVLY 142
           REGISEG4(REGION)
 OVERLAY
                                                                               OVLY 144
           CROSSV, RESINV, MULSTP, USER, USE, ORBITV
 INSERT
                                                                               UVLY 146
 OVERLAY REGISEG5
                                                                               DVLY 148
           INARRY, DPX2EL
 INSERT
                                                                               OVLY 150
 OVERLAY REGISEG5
                                                                               OVLY 152
 INSERT CETODS
                                                                               OVLY 154
 OVERLAY REGISEG5
                                                                               DVLY 156
 INSERT ASCOEF, IBINC, RESWRV, APPSUM
                                                                               OVLY 158
 INSERT PARCOR
                                                                               OVLY 160
 OVERLAY REGISEG5
                                                                               OVLY 162
          CSTEPX, EQUMTN, AVRAGE, INTPAR
 INSERT
                                                                               DVLY 164
 OVERLAY REGISEG6
                                                                               OVLY 166
          DPEL2X, FUNCIE

    INSERT

                                                                               OVLY 168
 OVERLAY REGISEG6
                                                                               OVLY 170
                PERFOR, CAPEFO, COMATD, FIDPAR, HEMIDS, DSTUCE
 INSERT
                                                                               OVLY 172
 OVERLAY REGISEG6
 INSERT EQUMPY, PARTED, AVSTRT, GOFUN, VOQUAD
                                                                               OVLY 174
                                                                               OVLY 176
 OVERLAY REGISEG6
                                                                               OVLY 178
 INSERT DORTIC, DCUBIC
                                                                               OVLY 180
 OVERLAY REGISEG6
                                                                               OVLY 182
 INSERT
           IDLPV, IPART
                                                                               DVLY 184
 OVERLAY REGISEG6
                                                                               OVLY 186
          DALLPV, PARDI
 INSERT
                                                                               UVLY 188
 OVERLAY REGISEG5
                                                                               OVLY 190
 INSERT ISTART
                                                                               UVLY 192
 OVERLAY REGISEG5
                                                                               OVLY 194
 INSERT
           IDEAL, CNVPV
                                                                               DVLY 196
 OVERLAY
           REG1SEG4
                                                                               UVLY 198
          SETORB, SATTIP, AEROPR
 INSERT
                                                                               OVLY 200
           REGISEG4
 OVERLAY
           ORBITT, COPS, CROSST, CHIRP, VARARR, CO, EVA, EVAPT, INTEGT
                                                                               DVLY 202
 INSERT
                                                                               OVLY 204
 INSERT CHETO, TCTP, PDP, EATRAN, CHVTP
                                                                               0VLY 206
           REGISEG5
 OVERLAY
                                                                               UVLY 208
           RESNIT
 INSERT
                                                                               DVLY 210
 OVERLAY
           REGISEG5
                                                                               OVLY 212
 INSERT
           RESWMT
                                                                               OVLY 214
 OVERLAY
           REGISEG4
                                                                               UVLY 216
           INTOGN, NEPUCH, HARM
 INSERT
```

•	
OVERLAY REGISEG4	OVLY 218
INSERT ORBINT	OVLY 220
OVERLAY REGISEGA	OVLY 222
INSERT CROSSR, EQMOTR, ORBITR	O.VLY 224
OVERLAY REGISEG5	0VLY 226
INSERT RESIME, RKS8R	OVLY 228
OVERLAY REGISEG5	OVLY 230
·	OVLY 232
INSERT CSTEPR, RSWRMR	OVLY 234
OVERLAY REGISEGA	QVLY 236
INSERT ORBITC, RKG4	
OVERLAY REGISEGB	OVLY 238
INSERT NEWTAR	OVLY 240
INSERT CSTEP	OVLY 242
OVERLAY REGISEGB	OVLY 244
INS.ERT CROSSC, RESINC	OVLY 246
OVERLAY REGISEG5	D.V.L.Y. 248
INSERT XSUM	OVLY 250
OVERLAY REGISEG6	OVLY 252
INSERT MSTART, XCOR, XDCOR	OVLY 2.54
OVERLAY REGISEG6	NV.LY 256
INSERT RESWRM	OVLY 258
OVERLAY REGISEG5	DVLY 260
	OVLY 262
INSERT RKS8	OVLY 264
OVERLAY REGISEG4	OVLY 266
INSERT RPDATO	DVLY 268
OVERLAY REGISEG5	OVLY 270
INSERT RUNACC, STADRO, OUTDC6	
OVERLAY REGISEG5	OVLY 272
INSERT SCAN, UPCOV, GETORN, SCALE	OVLY 274
OVERLAY REGISEG4	OVLY 276
INSERT EDFLTR	OVLY 278
OVERLAY REGISEG5	DVLY 280
INSFRT EGAUSS .	OVLY 282
OVERLAY REGISEG5	OV:LY 284
INSERT DOUBLR	OVLY 286
OVERLAY REGISEG5	DVLY 288,
INSERT POSFIX	OVLY 290´
OVERLAY REG2SEG1(REGION)	OVLY 292
INSERT NOREST, RESTAT, GRDCO	OVLY 294
OVERLAY REG2SEGH	OVLY 296
INSERT ANTRA, OBS, OBSCOR, OBSP, OPSRD, READWF, SORREG, TRANF, OBSUSB, OBSUS1	OVEY 298
	OVLY 300
	OVLY 302
OVERLAY REG2SEG3	OVLY 304
INSERT CORDBA, LCLARG	OVLY 306
INSERT ION, BETA, COEFF2, MODEL	
OVERLAY REG2SEG5	0VLY 308
INSERT PRELPF, MAGFIN, SICOJT, DKSICO, GK, DKGK, IONGET	OVLY 310
INSERT TROPOA, TROGET, F, A'SC	0VLY-312
OVERLAY REG2SEG5	OVLY 314
INSERT PRFLRT, INTERP, REFGET, TABLES -	OVEY 316
OVERLAY REG2SEG3 .	SIE YIVO
IMSERT CORCSC, REFCON, IONOSP, SZZ, VCROSW	UVLY 320
OVERLAY REG2SEGH	CIVLY 322
INSERT IHCLSCNH, INVL	UVLY 324
•	

```
BVLY 326
          OUTPUT, SPAT, ELEME, ROTRAN, KPART, PPART, CELEM, POLAR, SCART, ROT
INSERT
                                                                              DVLY 328
INSERT CAIRS
                                                                              OVLY 330
OVERLAY
          REG2SEG2
                                                                              OVLY 332
               .OUTDC4, OUTDC3, OUTDC7, OUTDC2, OUTDC8
INSERT
                                                                              OVLY 334
          REG2SEG2
OVERLAY
INSERT URBOUT, OBOUT2, GROEFI, CONSC2, OUTLIF, DIFD, MINSTR, SHORTP
                                                                              OVLY 336
                                                                              OVLY 338
INSERT
          EPHEM
                                                                              OVLY .340
INSERT
          ORB1
                                                                              OVLY 342
OVERLAY REG2SEG2
                                                                              OVLY 344
INSERT W24WF, OBSAVE
                                                                              OVLY 346
          RFG2SEG2
OVERLAY
                                                                              OVLY 348
INSERT
          ADVANS
                                                                              OVLY 350
OVERLAY REG2SEGA
                                                                              GVLY 352
INSERT GRDCRS, COMPER
                                                                              OVLY 354
OVERLAY REG2SEG3
                                                                              OVLY 356
INSERT GRDCI, IHCFMAXI
                                                                             . OVLY 358
OVERLAY REG2SEG4
                                                                              DVLY 360
INSERT GRSLVA
                                                                              DVLY 362
OVERLAY REG2SEG4
                                                                              OVLY 364
INSERT GREDIT
                                                                              DVLY 366
OVERLAY REG2SEG3
                                                                              DVLY 368
INSERT
          GREPAD
                                                                              OVLY 370
OVERLAY REG2SEG3
                                                                              OVLY 372
INSERT GRPEL
                                                                              OVLY 374
OVERLAY REG2SEG3
                                                                              OVLY 376
INSERT GR24HH
                                                                              OVLY 378
OVERLAY REG2SEG3
                                                                              OVLY 380
 INSERT GROCON
                                                                              OVLY 382
OVFRLAY REG2SEG3
                                                                              OVLY 384
 INSERT GRBIAS
                                                                              DVLY 386
OVERLAY
          REG2SEGA
                                                                              OVLY 388
 INSERT
          INTDC, EIGEN, CHIN, SOLVGP
                                                                              OVLY 390
OVERLAY
          REG2SEG3
          SLOBT, CONDR
                                                                              OVLY 392
 INSERT
                                                                              UVLY 394
          REG2SEG3
OVERLAY
                                                                              OVLY 396
 INSERT
          OUTDC1, OUTOG1
                                                                              DVLY 398
OVERLAY
          REG2SEG4
                                                                              UVLY 400
  INSERT OUTSLY, OUTCOR
                                                                              OVLY 402
          REG2SEG4
OVERLAY
                                                                              OVLY 404
  INSERT OUTEDT, OUTOUT, OUTSEC, OUTPHC, OGCROS
                                                                              UVLY 406
OVERLAY
          REG2SEG4
                                                                              UVLY 408
  INSERT OUTCRD, OUTGEN, OUTTIC
                                                                              GVLY 410
OVERLAY
          REG2SEG2
                                                                              OVLY 412
 INSERT PSET, MATCON, ELSIG, ELSIG1, PPLHXY
                                                                              ()VLY 414
          REG2SEG2
OVERLAY
                                                                              OVLY 416
 INSERT GRREPT, GRDC2, GRPROM, FDORB
                                                                              OVLY 418
OVERLAY
          REG2SEG2
                                                                              OVLY 420
 INSERT GRPMEN, GENONE, GENTWO, GRSURT, IHCGSPO4, WAIT, GRPLOT, GRTRAK
                                                                              UVLY 422
OVERLAY
          REG2SEG2
                                                                              ÜVLY 424
          IGRAPH, IGRPH2
 INSERT
                                                                              DVLY 426
OVERLAY REG2SEG1
                                                                              OVLY 428
 INSERT GETC*P, CMPOPT, PLOTTP
                                                                              OVLY 430
OVERLAY
          RFG2SEG1
                                                                              UVLY 432
 INSERT
          OUTSG, PLHXYZ
```

```
DVLY 434
          RFG2SEG2
OVERLAY
                                                                             DVLY 436
INSERT
          WRKREP
          OUTWAD, OUTWEL, OUTWIC, COUTWMN, OUTWPC, OUTWSC, OUTWIR, OUTWOB
                                                                             OVLY 438
INSERT
          OUTWSL, OUTWTC
                                                                             DVLY 440
INSERT
                                                                             OVLY 442
OVERLAY
          REG2SEG2
                                                                             OVLY 444
          PERCON
INSERT
                                                                             OVLY 446
          OUTPAD, OUTPEL, OUTPIC, OUTPIR, OUTPOB, OUTPPC, OUTPSL
INSERT
                                                                             OVLY 448
INSERT
          OUTPTC, OUT24H, OUTPMN, OUTPSC
                                                                              OVLY 450
OVERLAY
          REG3SEG1(REGION)
                                                                             OVLY 452
INSERT.
          EPHGEN
                                                                             OVLY 454
          REG3SEG2
OVERLAY
                                                                             DVLY 456
INSERT
          OUTOG2, OUTOG3, OUTOG4, OUTPAR, PRINT, UNIT, OUTMAP
OVERLAY
          REG3SEG2
                                                                              OVLY 458
                                                                             .OVLY 460
          ACWERP, ADWERP, EPWERP, FSWERP, IGRPH2, LPWERP, OGMENU
INSERT
                                                                              DVLY 462
OVERLAY
          REG3SEG2
                                                                             DVLY 464
INSERT
          OGBUG
                                                                             · OVLY 466
OVERLAY
          REG3SEG1
INSERT EPHCMP, RDORB1, ADDYMD, ADTIMÉ
                                                                             364 YJVO
                                                                              OVEY 470
OVERLAY
          REG3SEG1
                                                                              OVLY 472
INSERT
          DCING, DCFL, DCBUG, STAGE1
                                                                              DVLY 474
OVERLAY
          REG3SEG2
                                                                              OVŁY 476
          DC, ITERCI
INSERT
                                                                              OVLY 478
OVERLAY
          REG3SEG2
                                                                              OVLY 480
 INSERT
          DSPEXC
                                                                              OVEY 482
DVERLAY REGSSEG1
                                                                              OVLY 484
 INSERT GRERR, DUMPER
                                                                              OVLY 486
 OVERLAY
          REG3SEG1
                                                                             DVLY 488
          .SETRUN, MSGWTR, OKERR, CKSCOP
 INSERT
                                                                              OVEY 490
 OVERLAY REG3SEG2
                                                                              (IVLY 492
 INSERT - SETANL
                                                                              OVLY 494
 OVERLAY
          REG3SEG2
                                                                              DVLY 496
 INSERT. SETCMP
                                                                              OVLY 498
 OVERLAY
          REG3SEG2
                                                                              OVLY 500
 INSERT SETDC
                                                                              OVLY 502
          REG3SEG2
 OVERLAY
                                                                              OVLY 504
 INSERT
          SETDM, DIFF
                                                                              DVLY 506
 OVERLAY
          REG3SEG2
                                                                              OVLY 508
 INSERT
         SETRPT, SETPER
                                                                              OVLY 510
 DVERLAY REG3SEG2
                                                                              UVLY 512
 INSERT CRTIN, GRCARD, RDPDS, CSTAE, INTGR
 OVERLAY REG3SEG1
                                                                              OVLY 514
                                                                              GVLY 516
 INSERT EARLYO, SECULA, RANGLE, ED, ELEMGN, ANGLES, POURT
/*
//GO
     EXEC PGM=MAIN, TIME=(5,00), REGION=504K
//STEPLIB DD DSN=ORBGEN.GTDS.NEWLOAD, DISP=SHR*
//GO.FTO.1FOO1 : DD DSN=ORBGEN.GTDS.DIRECTRY.DATA,
```

UNIT=3330, VOL=SER=IRCC74, DISP=SHR

UNIT=3330, VOL=SER=IRCC74, DISP=SHR

DD DSN=ORBGEN.GTDS.ATMOSDEN.DATA,

//

//GO.FT02F001

^{*} New Partition Data Set as created in Step 2 and Member name changed to 'MAIN.'

```
DSN=ORBGEN.GTDS.MANEUVER.DATA,
//GD_FT03F001
                DD
         UNIT=3330.VOL=SER=IRCC74.DISP=SHR
11
//GO.FT04F001 DD DSN=URBGEN.GTDS.ASTROCON.DATA,
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//GO.FT06F001
                DD
                    SYSOUT=A
                    SYSOUT=B
                DD
//GD.FT07F001
                    DSN=ORBGEN.GTDS.EARTHFLD.DATA,
//GO.FT08F001
                DD
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                DD DSN=ORBGEN.GTDS.LUNARFLD.DATA,
//GO.FT09F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                DD DSN=DRBGEN.GTDS.INTCOEF.DATA,
//GO.FT10F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                DD DSN=URBGEN.GTDS.SECTIONS.DATA.
//GO.FT11F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
                DD DSN=URBGEN.GTDS.ERRORMSG.DATA,
//GO.FT13F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                DD DSN=ORBGEN.GTDS.SLP1950.DATA,
//GO.FT14F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                DD UNIT=USERDA, SPACE=(TRK, (1,6)),
//GO.FT16F001
         DCB=(RECFM=VBS, LRECL=124, BLKSIZE=3352, DSORG=DA, BUFNO=1)
//
//GO.FT17F001
                DD UNIT=USERDA, SPACE=(CYL, 4),
         DCB=(DSORG=DA,BUFNO=1)
//GO.FT18F001 DD UNIT=USERDA, SPACE=(3520,12), DCB=(DSURG=DA, BUFNO=1)
//GO.FT20F001 DD DSN=&&ORBT, DISP=(NEW, PASS), UNIT=USERDA,
         SPACE=(1092,240), DCB=(RECFM=F, BLKSIZE=1092, DSORG=DA, BUFN0=1)
//GO.FT22F001 DD DSN=&&ORBF, SPACE=(CYL, (5,1)),
         UNIT=USERDA, DISP=(NEW, PASS)
                DD UNIT=USERDA, SPACE=(TRK, (1,20)),
//GO.FT24F001
         DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1)
                DD DSN=ORBGEN:GTDS.ELEMENTS.DATA,
//GO.FT25F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                DD DSN=ORBGEN.GTDS.D24HOUR.DATA.
//GO.FT26F001
11
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                    DSN=ORBGEN.GTDS.GEODTICS.DATA,
//GD.FT27F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GO.FT30F001 DD DSN=&&FMOBS,UNIT=USERDA,
        . DISP=(NEW, PASS), SPACE=(CYL, (5,1))
//GO.FT38F001
                DD DSM=ORBGEN.GTDS.TIMCOF.DATA,
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
11
                    DSN=ORBGEN.GTDS.GENCOF.DATA,
//GO.FT39F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//
                DD DSN=ORBGEN.GTDS.SOLDAT.DATA,
//GO.FT59F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GO.FT60F001
                DD DSN=ORBGEN.GIDS.ACCOUNT.DATA.
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                    DSN=ORBGEN.GTDS.TRODAT.DATA,
//GO.FT68F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                    DSN=OR8GEN.GTDS.JACCHIA.DATA,
//GB.FT75F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                DD *
//GD.FT05F001
/*
11
```

Note: The JCLs in "GO" Step would require changes according to a different job (see Attachment 6 also).

```
// (8000,5000),CLASS=D
//STEP1 EXEC PROC=FORTRANG,PARM='MAP,ID',TIME.CMP=(0,15)
//CMP.SYSIN DD *
```

Subroutines to be Modified or Added

```
/*
//STEP2
         EXEC PGM=IEWL, PARM='LET, LIST, MAP, OVLY, NCAL, SIZE=(240K, 48K)',
         COND=(5,LT), TIME=(0,30), REGION=252K
//wewlin
           DD DUMMY
//TAPELIB DD DUMMY, DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200)
           DD DUMMY
//LOADLIB
         DD DSN=ORBGEN.GTDS.NEWLOAD, DISP=SHR
//MYLIB
//SYSUT1 DU UNIT=SYSDA, DISP=(NEW, DELETE), SPACE=(CYL, (2,1))
//LKED.SYSLIB OD DSNAME=SYS1.FORTLIB.DISP=SHR
              DD DSNAME=SYS2.FORTSSP.DISP=SHR
//SYSPRINT
            DD SYSUUT=A, DCB=(LRECL=120, RECFM=FBA, BLKSIZE=600)
//SYSLMOD DD DSNAME=&GO(MAIN), UNIT=SYSDA, SPACE=(CYL, (1,1,1)),
           DISP=(NEW. PASS)
//LKED.SYSLIN DD DSNAME=*.STEP1.CMP.SYSLIN,DISP=(OLD,DELETE)
// DD *
```

Object Deck and Overlay Structure from Attachment 4

Note: In statement 'Include MyLib(GTDS)', member name would now be punched as 'MAIN.'

```
//GO EXEC PGM+*.STEP2.SYSLMOD,TIME=(04,10),REGION=504K
//GO.FT01F001 DD DSN=ORBGEN.GTDS.DIRFCTRY.DATA,
// UNIT=3330,VOL=SER=IRCC74,DISP=SHR
//GO.FT02F001 DD DSN=ORBGEN.GTDS.ATMOSDEN.DATA,
// UNIT=3330,VOL=SER=IRCC74,DISP=SHR
//GO.FT03F001 DD DSN=ORBGEN.GTDS.MANEUVER.DATA,
```

```
UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                DD USN=ORBGEN.GTDS.ASTROCON.DATA,
//GO.FT04F001
//
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                     SYSOUT = A
//GD.FT06F001
                 DD
                DD
                     SYSOUT=B
//GO.FT07F001
//GO.FT08F001
                     DSN=ORBGEN.GTDS.EARTHFLD.DATA,
                 DD
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                 DD
                     DSN=ORBGEN.GTDS.LUNARFLD.DATA,
//GD.FT09F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
                     DSN=ORBGEN.GTDS.INTCOEF.DATA,
//GO.FT10F001
                DD
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
                     DSN=ORBGEN.GTDS.SECTIONS.DATA,
//GO.FT11F001
                 DD
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                 DD DSN=ORBGEN.GTDS.ERRORMSG.DATA,
//GO.FT13F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                     DSN=ORBGEN.GTDS.SLP1950.DATA,
                 DD
//GO.FT14F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                    UNIT=USERDA, SPACE=(TRK, (1,6)),
//GO.FT16F001
                 DD
         DCB=(RECFM=VBS, LRECL=124, BLKSIZE=3352, DSOkG=DA, BUFNO=1)
//GO.FT17F001
                DD UNIT=USERDA, SPACE=(CYL, 4),
         DCB=(DSORG=DA, BUFNO=1)
//GO.FT18F00] DD UNI1=USERDA, SPACE=(3520,12), DCB=(DSORG=DA, BUFNG=1)
//GO.FT20F001 DD DSN=&&ORBT, DISP=(NEW, PASS), UNIT=USERDA,
         SPACE=(1092,240), DCB=(RECFM=F, BLKSIZE=1092, DSURG=DA, BUFNU=1)
//
//GO.FT22F001 DD DSN=&&ORBF, SPACE=(CYL, (5,1)),
         UNIT=USERDA, PISP=(NEW, PASS)
.//
                DD UNIT=USERDA, SPACE=(TRK, (1,20)),
//GO.FT24F001
         DCB=(RECFM=V5,BLKSIZE=2808,BUFNO=1)
                     DSN=ORBGEN.GTDS.ELEMENTS.DATA,
//GO.FT25F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GO.FT26F001
                DD
                    DSN=ORBGEN.GTDS.D24HOUK.DATA,
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                DD USN=ORBGEN.GTDS.GEODTICS.DATA,
//GO.FT27F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GO.FT30F001 DD DSN=&&FMOBS,UNIT=USERDA,
          DISP=(NEW, PASS), SPACE=(CYL, (5,1))
//
                     DSN=ORBGEN.GTDS.TIMCOF.DATA,
//GD.FT38F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//
                DD DSN=ORBGEN.GTDS.GENCOF.DATA,
//GO.FT39F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GO.FT59F001
                DD DSN=ORBGEN.GTDS.SOLDAT.DATA,
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GQ.FT60F001
                DD
                    DSN=ORBGEN.GTDS.ACCDUNT.DATA,
11
         UNIT=3330. VOL=SER=IRCC71. DISP=SHR
                DD DSN=ORBGEN.GTDS.TRUDAT.DATA,
//GO.FT68F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                DD DSN=ORBGEN.GTDS.JACCHIA.DATA,
//GO.FT75F001
         UNIT=3330, VOL=SEK=IRCC71, DISP=SHR
//GO.FT05F001
                100 *
1%
//
```

```
(05500,5000),CLASS=D,REGI(N=504K
               UNIT=TAPE9, ID=(, 1056, WRITE, COGEOS)
/*SETUP
/*SETUP
               UNIT=TAPE9, ID=(, J158, WRITE, CLGS29)
            PGM=MAIN, 1 IME=(9,45)
//GO
     EXEC
//STEPLIB
               DSN=ORBGEN.GTDS.MEWLOAD, DISP=SHR 1
           DĐ
//GO.FT01F001
                     DSN=ORBGEN.GTDS.DIRECTRY.DATA,
                DD
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
//GO.FT02F001
                DD
                     DSN=ORBGEN.GTDS.ATMOSDEN.DATA,
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
                DD
                    DSN=ORBGEN.GTDS.MANEUVER.DATA,
//GO.FT03F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//GO.FT04F001
                DD DSN=ORBGEN.GTDS.ASTROCON.DATA,
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
//GO.FT06F001
                DĐ
                     SYSOUT=A
//GO.FT07F001
                 DD
                     SYSOUT=B
//GO.FT08F001
                 DD
                    DSN=ORBGEN.GTDS.EARTHFLD.DATA,
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                    DSN=ORBGEN.GTDS.LUNARFLD.DATA,
//GO.FT09F001
                 DD
JI
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
                 DD
                    DSN=ORBGEN.GTDS.INTCOEF.DATA,
//GO.FT10F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
                 DD DSN=ORBGEN.GTDS.SECTIONS.DATA,
//GO.FT11F001
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
//GD.FT13F001
                 DD DSN=ORBGEN.GTDS.ERRORMSG.DATA,
         UNIT=3330, VOL=SER=IRCC74, DISP=SHR
//
//GO.FT14F001
                 DD
                     DSN=ORBGEN.GTDS.SLP1950.DATA,
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
11 .
                    UNIT=USERDA, SPACE=(CYL, (1,1)),
//GO.FT16F001
                 DD
         DCB=(RECFM=VES, LRECL=124, BLKSIZE=3352, DSORG=DA, BUFNO=1)
//
                 DD UNIT=USERDA, SPACE=(CYL, (4,1)),
//GO.FT17F001
         DCB=(DSORG=DA, BUFNO=1)
               DD UNIT=USERDA, SPACE=(3520,12), DCB=(DSURG=DA, BUFNO=1)
//GO.FT18F001
                   UNIT=USERDA, SPACE=(6660,240),
//GO.FT19F001
                DD
     DCB=(RECFM=F, BLKSIZE=6660, DSDRG=DA, BUFNO=1)
//GO.FT20F001 DB DSN=&&ORBT, DISP=(NEW, PASS), UNIT=USERDA,
         SPACE=(1092,240), DCB=(RECFM=F,BLKSIZE=1092,DSORG=DA,BUFNO=1)
//GU.FT22F001 DD DSN=&&ORBF, SPACE=(CYL, (5,1)),
         UNIT=USERDA, DISP=(NEW, PASS)
//GD.FT24F001
                 DD UNIT=TAPE9, LABEL=(1, BLP), DISP=(OLD, KEEP),
// DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1), VOL=(PRIVATE, RETAIN, SER=CUGEUS)
                    DSN=DRBGEN.GTDS.ELEMENTS.DATA,
                 DD
//GO.FT25F001
         UNIT=3330, VUL=SER=IRCC71, DISP=SHR
                     DSM=ORBGEN.GTDS.D24HOUR.DATA,
//GU.FT26F001
                 DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//
                     USN=ORBGEN.GTDS.GEUUTICS.DATA,
//GO.FT27F001
                 DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GO.FT29F001 DD DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408, BUFNO=1),
// UNIT=TAPE9, LABEL=(, BLP), DISP=SHR, VOL=(PRIVATE, RETAIN, SER=CLGS29)
//GO.FT30F001 DD DSN=&&FMOBS,UNIT=USERDA,
    DISP=(NEW, PASS), SPACE=(CYL, (5,1))
//GO.FT31F001 DD UNIT=USERDA, DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408),
      -DISP=(NEW, PASS).SPACE=(CYL, (1,1))
```

```
//GO.FT37F001 DD DSN=&SORT, UNIT=USERDA, SPACE=(CYL, (2,1)),
     DCB=(RECFM=VBS, LRECL=148, BLKSIZE=3408, BUFNO=1), DISP=(NEW, PASS)
//
                    DSN=ORBGEN.GTDS.TIMCOF.DATA;
//GO.FT38F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GD.FT39F001
               DD DSN=ORBGEN.GTDS.GENCOF.DATA,
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//GD.FT45F001 DD
                   UNIT=USERDA, SPACE=(TRK, (10,1)), DISP=SHR,
      VOL=REF=*.GO.FT17F001
//GO.FT46F001 DD LAREL=(2,BLP), DISP=SHR, VOL=REF=*.GO.FT29F001,
// DCB=(RECFM=VS,BLKSIZE=928,AUFNO=1)
                   UNIT=USERDA, SPACE=(CYL, (01,1)), DISP=SHR,
//GO.FT47F001 DD
      VOL=REF=*.GO.FT31F001
                   UNIT=USERDA, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800),
//GD.FT53F001
              DD
      DISP=(NEW, PASS), SPACE=(CYL, (1, 1))
//GO.FT57F001 DD UNIT=USERDA, SPACE=(TRK, (10, 10)),
       DCB=BUFNO=1, DISP=(NEW, DELETE)
//
                   UNIT=USERDA, SPACE=(1332,20),
//GD.FT58F001
               DD
       DCB=(DSORG=DA, BUFNO=1), DSN=&&WIONO,
//
//
      DISP=(NEW, PASS)
                     DSN=ORBGEN.GTDS.SOLDAT.DATA,
//GD.FT59F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
//
                     DSN=ORBGEN.GTDS.ACCOUNT.DATA,
//GO.FT60F001
                DD
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
11
                   UNIT=USERDA, DCB=DSORG=DA,
//GO.FT63F001
               DD
      SPACE=(CYL, (1,1)), DISP=(NEW, PASS)
                   UNIT=USERDA, SPACE=(TRK, (1, 20)),
               DD
//GO.FT65F001
       DCB=(DSURG=DA, BUFNU=1), DSN=&&IUNDAT
                   DUMMY
//GD.FT66F001
               DD
//GU.FT67F001
               DD
                    DUMMY
                 DD
                   DSN=ORBGEN.GTDS.TRODAT.DATA,
//GO.FT68F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
               DD
                   DUMMY
//G0.FT70F001
                DD DSN=ORBGEN.GTDS.JACCHIA.DATA,
//GO.FT75F001
         UNIT=3330, VOL=SER=IRCC71, DISP=SHR
                   UNIT=USERDA, SPACE=(TRK, (1,20)),
//GO.FT77F001
       DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1),DISP=(NEW,PASS)
//GO.FT78F001
               DD
                    YMMUD
                    UMIT=USERDA, SPACE=(TRK, (1,20)),
//GO.FT81F001
               DD
       DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1), DISP=(NEW, PASS)
//GO.FT82F001
                    DUMAY
               DD
                    UNIT=USERDA, SPACE=(TRK, (1, 20)),
               DD
//GD.FT83F001
11
       DCB=(RFCFM=VS,BLKSIZE=2808,BUFNO=1),DISP=(NEW,PASS)
               DD
                    DUI MY
//G0.FT84F00l
                    UNIT=USERDA, SPACE=(TRK, (1,20)),
               DD
//GO.FT85F001
       DCB=(RECFM=VS, BLKSIZE=2808, BUFNO=1), DISP=(NEW, PASS)
//GO.FT86F001 DD
                   DUMMY
                    UNIT=USERDA, SPACE=(TRK, (1,20)),
//GO.FT87F001 DD
       DCB=(RECFM=VS,BLKSIZE=2808,BUFNO=1),DISP=(NEW,PASS)
//
               DD
                    DUMMY
//GO.FT88F001
//GO.FT91F001
               DD
                    DUMMY
               DD
                    DUIMY
//GO.FT97F001
//GO.F105F001
                ()() *
```

4. PERSONNEL

Ivan I. Mueller, Project Supervisor, part time
Manohar G. Arur, Graduate Research Associate, part time from 10/1/74
Athanasis Dermanis, Graduate Research Associate, part time from 10/1/74
Muneendra Kumar, Graduate Research Associate, part time from 10/1/74
Alfred Leick, Graduate Research Associate, part time
Anne S. Mason, Administrative Assistant, part time from 10/29/74
Daniel McLuskey, Graduate Research Associate, part time
Narendra K. Saxena, Research Associate, part time through 8/2/74
Tomas Soler, Graduate Research Associate, part time
Boudewijn H. W. van Gelder, Graduate Research Associate, part time from 9/1/74

5. TRAVEL

Mueller, Ivan I.

Torun (Poland) August 19 - September 7, 1974

To attend International Astronomical Union Colloquium No. 26 (partial support)

Mueller, Ivan I.

Washington, D. C. December 2 - 5, 1974

To attend Precise Time and Time Interval Planning Meeting at the U. S. Naval Research Laboratory

Mueller, Ivan I.

San Francisco, California and Huntsville, Alabama December 12 - 18,
1974

To attend the meeting of the American Geophysical Union and to
visit NASA/MSFC to discuss LAGEOS and CLOGEOS projects

Kumar, Muneendra
Cincinnati, Ohio November 25, 1974
To visit Cincinnati Observatory for discussion with Dr. A. Deprit
regarding his Analytical Lunar Ephemeris

Kumar, Muneendra
Washington, D. C. December 29 - January 1, 1975
To visit NASA/GSFC to discuss GTDS Computer Program

McLuskey, Daniel

Washington, D. C. July 30 - August 3, 1974 To discuss computer programs with Wolf Research and Development Corporation re. preprocessing ISAGEX and WEST data

van Gelder, Boudewijn H. W.

Huntsville, Alabama December 16 - 18, 1974
To visit NASA/MSFC to discuss LAGEOS and CLOGEOS projects

6. REPORTS PUBLISHED TO DATE

OSU Department of Geodetic Science Reports published under Grant

- No. NSR 36-008-003:
- 70 The Determination and Distribution of Precise Time by Hans D. Preuss
 April, 1966
- 71 Proposed Optical Network for the National Geodetic Satellite Program by Ivan I. Mueller May, 1966
- Preprocessing Optical Satellite Observations by Frank D. Hotter April, 1967
- Least Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 1 of 3: Formulation of Equations by Edward J. Krakiwsky and Allen J. Pope September, 1967
- East Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 2 of 3: Computer Programs by Edward J. Krakiwsky, George Blaha, Jack M. Ferrier August, 1968
- Least Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 3 of 3: Subroutines by Edward J. Krakiwsky, Jack Ferrier, James P. Reilly December, 1967
- 93 Data Analysis in Connection with the National Geodetic Satellite Program by Ivan I. Mueller
 November, 1967
 - OSU Department of Geodetic Science Reports published under Grant
- No. NGR 36-008-093:
- 100 Preprocessing Electronic Satellite Observations by Joseph Gross March, 1968
- 106 Comparison of Astrometric and Photogrammetric Plate Reduction Techniques for a Wild BC-4 Camera by Daniel H. Hornbarger
 March, 1968

- 110 Investigations into the Utilization of Passive Satellite Observational Data by James P. Veach
 June, 1968
- 114 Sequential Least Squares Adjustment of Satellite Triangulation and Trilateration in Combination with Terrestrial Data by Edward J. Krakiwsky October, 1968
- The Use of Short Arc Orbital Constraints in the Adjustment of Geodetic Satellite Data by Charles R. Schwarz December, 1968
- The North American Datum in View of GEOS I Observations by Ivan I. Mueller, James P. Reilly, Charles R. Schwarz June, 1969
- 139 Analysis of Latitude Observations for Crustal Movements by M. G. Arur
 June, 1970
- 140 SECOR Observations in the Pacific by Ivan I. Mueller, James P. Reilly, Charles R. Schwarz, George Blaha August, 1970
- 147 Gravity Field Refinement by Satellite to Satellite Doppler Tracking by Charles R. Schwarz December, 1970
- 148 Inner Adjustment Constraints with Emphasis on Range Observations by Georges Blaha
 January, 1971
- 150 Investigations of Critical Configurations for Fundamental Range Networks by Georges Blaha
 March, 1971
- 177 Improvements of a Geodetic Triangulation through Control-Points Established by Means of Satellite or Precision Traversing by Narendra K. Saxena June, 1972
- 184 Coordinate Transformation by Minimizing Correlations Between Parameters by Muneendra Kumar

 July, 1972
- On the Geometric Analysis and Adjustment of Optical Satellite Observations by Emmanuel Tsimis August, 1972

- 187 Geodetic Satellite Observations in North America (Solution NA-9) by Ivan I. Mueller, J. P. Reilly and Tomas Soler September, 1972
- 188 Free Adjustment of a Geometric Global Satellite Network (Solution MPS-7)
 by Ivan I. Mueller and M. C. Whiting October, 1972
- 190 The Ohio State University Geometric and Orbital (Adjustment) Program (OSUGOP) for Satellite Observations by James P. Reilly, Charles R. Schwarz and M. C. Whiting December, 1972
- 191 Critical Configurations (Determinantal Loci) for Range and Range-Difference Satellite Networks by E. Tsimis January, 1973
- 193 Free Geometric Adjustment of the DOC/DOD Cooperative Worldwide Geodetic Satellite (BC-4) Network by Ivan I. Mueller, M. Kumar, J. Reilly and N. Saxena February, 1973
- 195 Free Geometric Adjustment of the Secor Equatorial Network (Solution SECOR-27)
 by Ivan I. Mueller, M. Kumar and Tomas Soler
 February, 1973
- 196 Geometric Adjustment of the South American Satellite Densification (PC-1000) Network
 by Ivan I. Mueller and M. Kumar February, 1973
- Global Satellite Triangulation and Trilateration for the National Geodetic Satellite Program (Solutions WN 12, 14 and 16) by Ivan I. Mueller and M. Kumar, J. P. Reilly, N. Saxena, T. Soler May, 1973
- 216 Marine Geodesy, A Multipurpose Approach to Solve Oceanic Problems by Narendra K. Saxena October. 1974

The following papers were presented at various professional meetings:

"Report on OSU participation in the NGSP" 47th Annual meeting of the AGU, Washington, D.C., April 1966

"Preprocessing Optical Satellite Observational Data" 3rd Meeting of the Western European Satellite Subcommission, IAG, Venice, Italy, May 1967.

"Global Satellite Triangulation and Trilateration" XIVth General Assembly of the IUGG, Lucerne, Switzerland, September 1967, (Bulletin Geodesique, March 1968).

"Investigations in Connection with the Geometric Analysis of Geodetic Satellite Data"

GEOS Program Review Meeting, Washington, D.C., Dec. 1967.

"Comparison of Photogrammetric and Astrometric Data Reduction Results for the Wild BC-4 Camera"

Conference on Photographic Astrometric Technique, Tampa, Fla., March 1968.

"Geodetic Utilization of Satellite Photography"
7th National Fall Meeting, AGU, San Francisco, Cal., Dec. 1968.

"Analyzing Passive-Satellite Photography for Geodetic Applications" 4th Meeting of the Western European Satellite Subcommission, IAG, Paris, Feb. 1969.

"Sequential Least Squares Adjustment of Satellite Trilateration" 50th Annual Meeting of the AGU, Washington, D.C., April 1969.

"The North American Datum in View of GEOS-I Observations"
8th National Fall Meeting of the AGU, San Francisco, Cal., Dec. 1969 and GEOS-2 Review Meeting, Greenbelt, Md., June 1970 (Bulletin Geodesique, June 1970).

"Experiments with SECOR Observations on GEOS-I" GEOS-2 Review Meeting, Greenbelt, Md., June 1970.

"Experiments with Wild BC-4 Photographic Plates" GEOS-2 Review Meeting, Greenbelt, Md., June 1970.

"Experiments with the Use of Orbital Constraints in the Case of Satellite Trails on Wild BC-4 Photographic Plates" GEOS-2 Review Meeting, Greenbelt, Md., June 1970.

"GEOS-I SECOR Observations in the Pacific (Solution SP-7)"
National Fall Meeting of the American Geophysical Union, San Francisco,
California, December 7-10, 1970.

"Investigations of Critical Configurations for Fundamental Range Networks" Symposium on the Use of Artificial Satellites for Geodesy, Washington, D.C., April 15-17, 1971.

"Gravity Field Refinement by Satellite to Satellite Doppler Tracking" Symposium on the Use of Artificial Satellites for Geodesy, Washington, D.C., April 15-17, 1971.

"GEOS-I SECOR Observations in the Pacific (Solution SP-7)" Symposium on the Use of Artificial Satellites for Geodesy, Washington, D.C., April 15-17, 1971.

"Separating the Secular Motion of the Pole from Continental Drift - Where and What to Observe?"

IAU Symposium No. 48, "Rotation of the Earth," Morioka, Japan, May 9-15, 1971:

"Geodetic Satellite Observations in North America (Solution NA-8)" Annual Fall Meeting of the American Geophysical Union, San Francisco, California, December 6-9, 1971.

"Scaling the SAO-69 Geometric Solution with C-Band Radar Data (Solution SC 11)" Annual Fall Meeting of the American Geophysical Union, San Francisco, California, December 6-9, 1971.

"The Impact of Computers on Surveying and Mapping"
Annual Meeting of the Permanent Committee, International Federation of Surveyors,
Tel Aviv, Israel, May 1972.

"Investigations on a Possible Improvement of Terrestrial Triangulation by Means of Super-Control Points"

IAG International Symposium - Satellite and Terrestrial Triangulation,
Graz, Austria, June, 1972.

"Free Adjustment of a Geometric Global Satellite Network (Solution MPS7)" IAG International Symposium - Satellite and Terrestrial Triangulation, Graz, Austria, June, 1972.

"Conjugate Gradient Method (Cg-Method) for Geodetic Adjustments" Annual Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-6, 1972.

"Preliminary Results of the Global Satellite Triangulation Related to the NGSP" Journees Luxembourgeoises de Geodynamique, Luxembourg, February 19-21, 1973.

"Present Status of Global Geometric Satellite Triangulation and Trilateration" 54th Annual Spring Meeting of the American Geophysical Union, Washington, D.C., April 16-20, 1973.

"Free Geometric Adjustment of the OSU/NGSP Global Network (Solution WN4)" First International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics, Athens, Greece, May 14-21, 1973.

"Earth Parameters from Global Satellite Triangulation and Trilateration" International Symposium on Earth's Gravitational Field and Secular Variations in Position, Sydney, Australia, November 26-30, 1973.

"Review of Problems Associated with Geodetic Datums" International Symposium on Problems related to the Redefinition of North American Geodetic Networks, Fredericton, N.B., Canada, May 20-25, 1974.

"Marine Geodesy - Problem Areas and Solution Concepts" International Symposium on Application of Marine Geodesy, Battelle Auditorium, Columbus, Ohio, June 3-5, 1974.

"Station Coordinates and Geodetic Datum Positions from the National Geodetic Satellite Program"

First Pan American Congress and the

Third National Congress of Photogrammetry, Photointerpretation and Geodesy, Mexico City, Mexico, July 7-12, 1974.

"Review of Classical Methods for the Determination of Geodetic Datums" International Colloquium on Reference Coordinate Systems for Earth Dynamics (IAU Colloquium No. 26)

Torun, Poland, August 26-31, 1974.

"Global Satellite Triangulation and Trilateration Results" Intercosmos Symposium on Results of Satellite Observations Budapest, Hungary, October 21-24, 1974.