

MA068348

LEVEL NOS 3 65°

(F) si

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING PROGRAM QUARTERLY TECHNICAL REPORT

Contract Number

DAAB07-76-C-8135

LIGHT EMITTING DIODES FOR FIBER OFFIC COMMUNICATIONS

Prepared By:

LASER DIODS LABORATORIES, INC. 205 Porrest Street Metuchen, New Jersey 08840

JOC FILE COPY

Pifth Quarterly Report for the Period 1 October 1977 to 31 December 1977

Approved for public releaser distribution unlimited.

Placed By:

V. S. Army Blockrools Resemble and Development Communit Port Missiouth, J. J. 07701

29 05 07 088

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING PROGRAM QUARTERLY TECHNICAL REPORT

Contract Number

DAAB@7-76-C-8135

LIGHT EMITTING DIODES FOR FIBER OPTIC COMMUNICATIONS

12 35 p.

Prepared by:

Albert Gennaro
Product Development Manager

LASER DIODE LABORATORIES, INC. 205 Forrest Street Metuchen, New Jersey 08840

Fifth Quarterly Report. No. 5.
for the Period 1 October 1977 to 31 December 1977

This project has been accomplished as part of the Army Manufacturing and Technology Program, which has as its objective the timely establishment of manufacturing processes techniques or equipment to insure the efficient production of current or future programs.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Destroy this report when it is no longer needed. Do not return it to the originator.

This document has been approved for public release and sale; its distribution is unlimited.

405 626

slf

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Para Entered)

I. REPORT NUMBER	TATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
LIGHT EMITTING DIODES COMMUNICATIONS	Ouarterly Report 11/1/77 to 12/31/77 6. PERFORMING ORG. REPORT NUMBER	
		oral I
Albert Gennaro	cturing Methods and	DAAB07-76-C-8135
PERFORMING ORGANIZATION NAME AN	D ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Laser Diode Laborator 205 Forrest Street Metuchen, New Jersey		2769778
II. CONTROLLING OFFICE NAME AND ADD	PRESS	12. REPORT DATE
U. S. Army Elec. Res. Fort Monmouth, New Je		13. NUMBER OF PAGES
ATTN: DELSD-D-PC	SS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	esting	150, DECLASSIFICATION/DOWNGRADING
Approved for public r	elease; distribution	on unlimited.
		on unlimited.
Approved for public r		on unlimited.
		on unlimited.
15. DISTRIBUTION STATEMENT (of the abet 16. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aids III Light Emitting Diode Fiber Optic Communica Gallium Aluminum Arse	necessary and identify by block number	on unlimited.
19. KEY WORDS (Continue on reverse aids III Light Emitting Diode Fiber Optic Communica	necessary and identify by block number tions tien LED	on unlimited.

DD 1 JAN 73 1473 EDITION OF THOU SE IS OSSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TABLE OF CONTENTS

UNCLASSIFIED TO THE MAN COLUMN

REPORT DOCUMENTATION PAGE

18. KEY WORD'S SCHOOL OF CREEKS SIDE SERVICES and LINGSTE DE CLARK COMBESS.

BELLENS OF THE PORT OF THE PROPERTY OF THE PARTY OF

Section	Page Por Page Por Plush Office Por Plush OFFICE
ed cas, espost sumsing	Introduction
11 26.28-0-07-	Manufacturing Methods and Technology Engineering
22.1 03803 203689 thursho	Wafer Processing for Etched Well Light Emitting Diode Chip Fabrication 2-6
2.3	Diode Assembly Techniques 6-11
2.4	Device Evaluation and Testing 11
2.4.1	Device Evaluation
2.5	Test Equipment
2.5.1	Life Testing
III	Summary and Conclusions

DUK LESSIFIED

mend and court, again some agreement a series and a video ac-

The design and fabrication of bigh speed etched-well light emitting diodes for liber ontic communications is discussed with record to meterials synthesis via LPE, water fabrication,

and device argently in a manufacturing environment.

LIST OF FIGURES

Figure		Page
E1	Sliding Diffusion Furnace	5
2	LED Fiber-Ferrule Assembly with Support Sleeve	. 5 7
3	Chip Soldering Fixture	8 9
4	Soldering Fixture	10
5	Linearity (Small Signal Dynamic)	14
6	Linearity (Static)	15
7	Linearity Test Circuit	16
8	Rise and Fall Time	17
9	Rise and Fall Time Test Circuit	18

LIST OF TABLES

Ta	ab	Le																									Ī	age
e	L			Fo	rv	var	d	Vo	1	ag	je	٠, ١	J _f	SIL.	Q •0		101	80	31	2.0	100	•11	• 1	9 .				3
7	2			Se	cc	ond	l E	inc	jir	ee	er	ing	3	San	am	le	s		Lot	. E	UR	-в	-42	2 .	•			13
e	3			Lo	t	BU	JR-	В-	42	2	20	000	0	Hot	ur	L	if	e	į.	a•b.	[ear	•	• d)		•		19
14												y a			pi						i.c	50						
										Ī						(0	ij	61	2)	V.								
														±1.			0						n.L.	I				
																		1	fs;			9	eis					
									t.												MILE							

APPENDICES

								Page
A	Engineering Man-Hour Fifth Quarter of the	Utilizatio	on	for	t	he		21
В	Distribution List .							22-28

SECTION I

INTRODUCTION

The primary objective of this Manufacturing Methods and Technology Engineering Program is twofold. First, the manufacturing methods and techniques necessary for the volume production of the light emitting diode for use in fiber optic communications as outlined in Specification SCS-511 must be developed and implemented to insure the highest degree of device quality and reliability at a reasonable cost. Secondly, verification of device performance and quality for LED's produced in a volume manufacturing environment must be carried out by means of rigorous testing and evaluation in accordance with SCS-511 in order to demonstrate the technical adequacy of the manufacturing methods developed under this contract.

The major objective for the fifth quarter of the program include completion of 2000 hour life testing, delivery of second engineering samples from the completed life test group, establishment of an alternative fiber as a result of a request for change, start of re-design of the zinc diffusion furnace, and process change in the photolithography procedure.

the inner ampoule area after the seal has been completed

and checked viscally. The eliding furnece allows the

seal to be made before the heating process begins, and

by the same token by removing the furnace from the

SECTION II

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING

2.1 Wafer Processing for Etched Well Light Emitting Diode
Chip Fabrication.

By increasing the thickness of the 'n' blocking layer, it has been possible to allow room for the zinc diffusion without washing out the current confining contact dot. Lot Bur-B-48 was processed in this manner and has produced good results. Table 1 contains sample data on Lot Bur-B-48. Of particular significance is the uniformity of the forward voltage, a direct result of the zinc diffusion process. Included in the table for comparison is data on a non diffused lot, Lot But-B-20, which was processed early in the program. Although the diffusion process has yielded good results, run to run consistency is not good. In order to improve the run consistency and achieve predictability, the system is being redesigned. The most critical step in the process is the inner ampoule-ball sealing at the start of the process. At present this is accomplished in the hot furnace practically out of visual range and at best is a sometime successful step. This fault will be corrected by providing a sliding furnace which can be moved over the inner ampoule area after the seal has been completed and checked visually. The sliding furnace allows the seal to be made before the heating process begins, and by the same token by removing the furnace from the

TABLE 1. Forward Voltage, Vf.

		Loca	32 38	ucosais	inner	enta re	ofia .	0016	erson.	36	
		ma									
	E H		es thi	istrat	LI I	puppi	1.00		pnlik	ad T	
	20	100	a cut fi	adomán	a ed i	fin no	d with	e ,itol	of I Differ	01	
	0	9						and the second			
	- m	E mas	Editor	nud wo	E repl	etem va	by a side	path	of wo	15	
	Lt.	Its	a pai	s i veno	olide	, aan	d Lbaos	nols	nimes	000	
	(volts)	(volts)									
								. 188	mcoil	172-01	
	N _E	VE	Cosody	eds o	i epan	neen	esd e	s chan	aptou		
	ob 4 I have	mili	40 300	Brew Br	to ring	ataer	and the second	e o	aro Erni		
DATE	+	No.		min 1 Pag				10, N = 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2010	
TIME	1									SJ No.	 -
1	1.40	1.70							:swal	63	
2	1.41	1.72						-			
3	1.43	1.70		LOT	BUR-B-	8			510		
4	1.40	1.70	to Im O	15 171	F, 43	1 93)	19 8 - 97	daw I	30		
5	1.42	1.71		1							
6	1.40	1.70		62 f n 3	S 27 8	60 pai	016500	a Indo	pis.		
7	1.40	1.70		-70					Dai-		
8 9	1.42	1.72									
10	1.42	1.73	(RA 3 + C	toda i	TABAST	D. D.		ben	Lesta		
10	1.42	1.73	and the	yadaw.	100	Service of	Ent of		43.7		
		I DER	01.6	E - 2211 HP	Delse.		0.0920	g Res	self 8		
1	2.60	4.00	in toward	100	Every 1991	100			nc.		
2	2,50	3.60									To the
3	2.50	3.60	TOTAL	ty hop	Gran age	3 mage		apil/	05		
4	2.60	3.90		LOT	BUT-B-	20					
5	THE RESERVE TO SHARE THE PARTY OF THE PARTY	3.90	44.53	27 / 100 / 1	11:30-10:00			a supplied	46.4		
6	2.80			-	-	-	X 19		0.0		
7 8	2.50									Par	
9	2.80		20020			20117.3.6		2 2 1 2	1011 1001 13	10.0	
10	3.00		W 187	tiv one	Yo Di	or contents or	bers in	7.5310RE	I on I	10h	
	1	4.00									
	1 3365	2 24 2	10 18 100	Parties 1	an crassic		e Atas	APPROPRIESTA	at water	CAU	
	190 00	Introduction	0/4 mm	v make	Sec. 200	10 7 10 7 10 m	forms n	alog s	Ser man	A 11 / 1	
	LI BUTE	all simple	1 2131	erists	A A	enloss	D 093	of the	1580 5	dd	The Table
				APT 1	-				-		
	GHA I		S A S A S	angertal la	- TO (0.4 %)	10.0001110.0	STEED SITE	S 3410	Appendix Co. (A)	200	
NSP.											

diffusion area, allows the inner ampoule to cool before breaking the seal. Figure 1 illustrates this technique. In addition, a dry box will be attached to the system to allow loading the system under low humidity and low contamination conditions, while providing a safe work environment.

A process change has been made in the photolithographic technique to protect resist coated wafers during handling. The resist protective coating (RPC) process is as follows:

Dissolve 16.2 gr of polyvinyl alcohol in 2700 ml of DI water at 45° ± 5°C. Add 300 ml of isopropyl alcohol containing 0.3 gr of glyeryl monostearate and 1.5 gr of triton X-100. The solution is mixed well and filtered. Standard photo-resist procedures are used to resist coat the wafer. The RPC is spun on to cover the resist and then baked for 20 minutes at 100°C. Standard techniques are used to align and expose the coated wafer. The RPC is removed by a room temperature soak in water for 10 minutes. The wafer can now be developed.

The very thin RPC coating serves to protect the resist during insertion and removal of the wafer with respect to the hinged mask set. Improved pattern definition, fewer pin holes, and minimum tearing are the results of the use of the RPC coating. A peristaltic pump has replaced the conventional plastic impeller type pump

Figure 1. Sliding Diffusion Furnace.

weight in the disassabled configuration, The procedure

used in the soray etching apparatus. In this pump, where the etching solution is physically isolated from the pump mechanism by the plastic tubing, contamination of the solution is greatly reduced. Another feature of the peristaltic pump is the pulsing action which helps to clear away etching debris, producing better defined wells.

2.3 Diode Assembly Techniques.

During this quarter, discussions were held with ECOM personnel connected with the program. Due to fabrication, and flexability limitations of the fiber currently being used, a change was requested to update the fiber specification. A formal request for specification and program change will be written and submitted during the next quarter. Figure 2 contains the proposed fiber specifications and part dimensional changes necessary to accomodate the proposed fiber. In particular, this fiber has a smaller core as compared to the current fiber, but contains integral sheathing which allows great flexibility of the fiber before breakage occurs. New ferrule parts with a smaller I.D. will need to be fabricated to accomodate the fiber. In addition, the proposed fiber matches fiber currently being used by ECOM in systems already in use.

The proposed batch chip soldering fixture was implemented in the form of a two position fixture for test purposes. Figure 3 shows the fixture body, locating ring, and weight in the disassembled configuration. The procedure

for loading the fixture is as follows:

- 1. Place header in hole in slotted fixture body.
- 2. Place locating ring in position .
- Pick up solder pre-form with vacuum pick up and place in hole in locating ring.
- 4. Pick up diode chip with vacuum pick up and place in hole in locating ring.
- Using 60-40 lead-tin solder preforms, soldering has been accomplished cleanly and easily in the GCA infra red belt furnace. Because of the essentially concentric design of the fixture, the location of the soldered chip with respect to the center of the header is quite good. Figure 4 is a drawing of a multi-position fixture which is under construction.

A new adhesive developed by LOCTITE has been used to effect a fast temporary bonding of the ferrule and sleeve during assembly. Designated as "TAKPACK", the adhesive is designed for a wide range of electronic assembly operations. Consisting of two parts, adhesive and accelerator, the adhesive is applied to the parts first, and then a drop of accelerator is applied to the adhesive. Handling strength is achieved in five seconds or less. The bonded assembly can now be removed from the alignment fixture, freeing the fixture for the next assembly. Permanent epoxy can be applied to the "tacked" assemblies at a later time. This system has proven effective in

SCALE JES APPROVED SY DAYS OF THE SCALE JES APPROVED SY

DRAMING NEWSCH

M. RAPATSKI

YE MYLARO

LASER DIDDE LABS.

SIETZGEN HASTER FORM 199ME

increasing the thru-put at the assembly operation.

2.4 Device Evaluation and Testing.

2.4.1 Device Evaluation.

Table 2 contains data on lot Bur-B-42, which has completed 2176 hours of life testing, and will be supplied as the second engineering sample. Figure 5 is an actual chart recorder plot of small signal Dynamic Linearity. The diode has a 1 MHZ signal applied and detected by a PIN diode. The signal from the PIN diode is fed to a Hewlet Packard Spectrum Analyser. In slow scan mode the spectrum analyser is output to the chart recorder producing the plot in Figure 5. This plot is representative of the lot. As an added check on linearity, Figure 6 is a "static linearity" plot. What is illustrated here, is, that the thermal characteristics of the device are very good, and little distortion or fall off is introduced to the device under high dissipation static conditions. The curve as recorded is a very good approximation to a straight line, an indication of good linearity. Figure 7 is the circuit diagram for use in the small signal dynamic linearity measurement. CIN and RL are chosen to meet the input impedance of 50 Ω , and bandwidth of 1 MHZ and up. The circuit permits driving LED's with combined D.C. and A.C. modulation, and is capable of highly linear operation. Figure 8 is a chart recording of rise and fall time. The light output trace shows rise and fall times on the order of 15 ns, which is typical for this

lot. Figure 9 is the test circuit used for this measurement. Rx and Rs suppress parasitic oscillation due to negative resistance in the emitter follower. Values will be between 10 Ω and 100 Ω . C, may be inserted for speed up and has a value between 2 to 20 pf. Cp should be 0.1 µf or greater, and be non inductive. Current through the LED is determined by -V, RE, and Vp. In operation the circuit switches the main current from one transistor to the other effectively turning the LED on and off. Rise and fall times for the circuit are in the 5 ns region. A Tektronix CT-1 current probe is used to monitor the current.

2.5.1 Life Testing.

During this quarter, 2000 hour life was completed on Lot Bur-B-42. These devices were constructed with standard parts which comply with the SCS-511 dimensional outline. Table 3 lists data at the start of life, at the first down period of 176 hours, and at the end of life testing. The end of life testing data meets the requirements of SCS-511 in that the power output at 2176 hours has not decreased from the 0 hour reading by more than 5%. The second engineering sample will be supplied from this life test group.

operation. Figure 8 is a chart recording of rise and

fall time. The Ilqut output trace shows rise and fell

times on the order of 15 ne, which is typical for this

TABLE 2. Second Engineering Samples - Lot BUR-B-42

	P _O (mw) @ 100 ma	λ ρ (π α)	V _f (volts) @ 20 ma	V _f (volts) @ 100 ma	V _R (volts) @ 10 µa	Linearity - db
DATE						
ME						
#	G MI TO SEE SEE					
1	.550	820	1.43	1.70	6,0	35
2	.530	815	1.41	1.72	3.5	36
3	.560	805	1.40	1.70	3.5	37
4	.580	825	1.42	1.72	6.0	35
5	.500	830	1.42	1.75	5.5	38
6	.670	828	1.40	1.70	4.5	37
7	.490	818	1.41	1.72	3.0	36
8	.520	830	1.41	1.70	5.5	35
9	.540	805	1.40	1.71	4.0	37
10	.480	810	1.42	1.71	3.0	38
11	.480	820	1.43	1.73	3.8	39
12	.490	825	1.40	1.70	4.6	36
13	.540	820	1.41	1.71	5.5	38
14	.510	817	1.42	1.73	5.0	37
15 16	.560	815 820	1.40	1.70	6.0	36
	Francisco (Control			84		
		100			System 1 200	us4i
				4 萬 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71110	
			SECRETE SE	MILITA		
NSP.						

		(Mentales)	\$ 5 ₹ olk	20 WH2
800	\$p 0)=	ap de	1 0025	Pode Inte

Figure 5. Linearity (Small Signal Dynamic).

Figure 6. Linearity (Static).

9, AND 9. D3-28 CTC MICROWAYE TRANSISTOR

Figure 7. Linearity Test Circuit.

Figure 8, Rise and Fall Time,

Q1 AND Q2 D3-28 CTC MICROWAVE TRANSISTOR

Figure 9. Rise and Fall Time Test Circuit.

TABLE 3. Lot BUR-B-42 2000 Hour Life.

				IX SOLT	ME			
			asecras	erisekenis eneke	viranie.			
	l m	E E	m m					
	100 ma	0	100 ma	103 201	AL 20111	edo rela	: UC	
		e 100	100 hrs	ta legis	Tyros y£	blaseuc	M/R	
	hrs.							
	(mw) 0 h:	(mw) 176	(mw) (2176	5 DO 14 V E	were de	1 JE 20 12	190	
	E°		E 7	Alth an	s will be	apiaoo-	6.7	
	H Po	0 0	04 6					
	P.Salikou	material and	id saw hu	i of Auri	moral val	1053800	51	
	danvess o	d measond ad:	i i Lesba	Look Look	coat ny.	steative	pad	
DATE	.012.1	land on hair	elesa sa	f 3o tal	tea bas	midoda	(98	1
TIME								1
1	.550	.550	.550	Tall Tall	TX BILL	301 13	924	
2	.540	.535	.530	-	71 11 11	+		
3 4	.575	.560	.560					
5	.585	.585	.580		en familie o	t treenti	200	+
5	.685	.675	.670		_	+ +		-
7	.510	.510	.490					+
8	.530	.525	.520					+
9	.540	.540	.540					
10 11	.500	.490	.480					
11	.505	.490	.480					
12	.510	.500	.490					
12 13 14	.540	.540	.540					
14	.510	.510	.510			-		
15 16	.575	.560	.560					+
16	.570	.570	.570		$\rightarrow \downarrow$	+		+
								+
			+ +					+
	A MARKET ROLL							
			,					
	+							
								-
-								-
			-					-
NSP.						 		
BY								

ABLE 3. Lot BUR-8-42 2000 Hour Life.

SECTION III

SUMMARY AND CONCLUSIONS

During the fifth quarter, 2000 hour life testing was successfully completed. Sixteen units from the life test group were delivered as second engineering samples. Re-design of the zinc diffusion furnace to obtain repeatability from run to run was begun. Photo resist protective coating was included in the process to prevent scratching and tearing of the resist during handling. Plans for the next quarter include formal specification proposal for the new fiber, and construction of third engineering samples with the new fiber.

243; 018. ASO

DISTRIBUTION LIST

APPENDIX A

Engineering Man-Hour Utilization for the Fifth Quarter of the Program.

	TN: DDC-TCA	
	5th Qtr. Cumulative	
R. B. Gill	28 Hrs. 28 Hrs.	ia
A. Gennaro	217 Hrs. Viside13 Hrs. doct WT	TA.
M. Lai	178 Hrs. 1000 265 Hrs. 101011de	EW
T. E. Stockton	fense Corner 472 Hesero Agnecy -	De
R. E. Albano	- 202052480Hrs., notpnina	
Manufacturing doiM Personnel	viconmentari Ho2504 Hrs. the 1801 TN: IRIA Library O. Box 8618 n Arbon, MI 48107	TA

Washington, D. C. 20305 Chief, of Navai Research ATTN: Code 427 Department of the Navy Washington, D. C. 20325

Baval Ships Systems Command ATEM: Code 20525 (Technical hibrary) Nain Navy Building, Room 1528 Washington, D. C. 20360

Air Force Avienies Lab. AFTN: DNE (Mr. James Skaiski) Wright-Pattersen Air Force Base, OR 45433

Commander Mayal Research Laboratories ATTW: Dr. A. Fenner Milton (Code 5504.2) Washington, D. C. 20375

> Commander Naval Electronic System Command ATTW: Mr. L. Summery Washington, D. C. 20350

APPENDIX B

DISTRIBUTION LIST

Contract DAAB07-76-C-8135

On opineering Man-Rour Util xamion	pies
Defense Documentation Center	5
Cameron Station (Building 5) Alexandria, VA 22314	
Director of Defense R & E	1
ATTN: Technical Library Room 9E-1039, The Pentagon	. A
Washington, D. C. 20301 200 801	
Defense Communications Agnecy ATTN: Code 340	
Washington, D. C. 20305	
Environmental Research Institute of Michigan ATTN: IRIA Library P. O. Box 8618	
Ann Arbon, MI 48107	
Director, Defense Atomic Support Agency ATTN: Technical Library Washington, D. C. 20305	1
Chief, of Naval Research ATTN: Code 427 Department of the Navy Washington, D. C. 20325	1
Naval Ships Systems Command ATTN: Code 20526 (Technical Library) Main Navy Building, Room 1528 Washington, D. C. 20360	1
Air Force Avionics Lab. ATTN: DHE (Mr. James Skalski) Wright-Patterson Air Force Base, OH 45433	1
Commander Naval Research Laboratories ATTN: Dr. A. Fenner Milton (Code 5504.2) Washington, D. C. 20375	1
Commander Naval Electronic System Command ATTN: Mr. L. Sumney Washington, D. C. 20360	1

	oetso-p-pc
DELSD-D-PC Distribution List	Copies
Commander	IS Nagal Avionics Pacificky
Naval Electronics Laboratory	enter of some some : Vivo
ATTN: Dr. H. Wieder (Code 260	600 E. 21st Street
	Brand Mr Strodeugtpul
San Diego, CA 92152	Mayy Air Systems Command
Commander	ATTN: L. W. Conaway Code 83
Naval Electronics Laboratory C	enter 1860\$.0.0 . Appliates
ATTN: D. Williams (Code 2500) 271 Catalina Boulevard San Diego, CA 92152	Commander
San Diego, CA 92152	us Army Electronics was & Dev
C	NFTN: DELNV (R. Buser) Fort 's annouth, NJ 07703
Commander	BEC BEC - 1980년 1일 전 12 BEC -
Naval Electronics Laboratory C ATTN: D. J. Albares (Code 260 271 Catalina Boulevard San Diego, CA 92152	Director
271 Catalina Boulevard	Might Vision & Electro Option
San Diego, CA 92152	ATTN: DELNY-SD (Mr. S. Gibs
	Port Belvior, VA 22050
Commander	1
Naval Electronics Laboratory C	enter desimble has 10 housevil
271 Catalina Bouleward	Presidio of San Francisco
ATTN: R. Leduska (Code 4400) 271 Catalina Boulevard San Diego, CA 92152	San Francisco, CA 94129
Commander	Commagder
Naval Electronics Laboratory C	enter 1031 TOURS INCOME HE WITTEN
ATTN: S. Miller (Code 2600) 271 Catalina Boulevard	Washington D.C. 20438
San Diego, CA 92152	
	Commander
Texas Instruments, Inc.	US Acty Blectronics Rep & De
ATTN: W. Shaunfield	ATTW: DELNY-L-D (V. Rosati)
BOX 2017	Fort Monmouth, NJ 07703
Dallas, TX 75222	Compander
Commander	US Argy Materials Research A
US Army Comm Reg & Dev Comman	ATTM: AMDME-ED IME. Raymond
ATTN: DRDCO-COM-RM-1 (Dr. L.	Watertown, MA USII (mwodysaww
Fort Monmouth, NJ 07703	
Oniman A Commonth	Director US Arry Production Equipment
US Army Comm Res & Dev. Command	APPRO AMIPR-MY (Mr. C. E. M
ATTN: DRDCO-COM-ME (M. Pomera	LANGUIA DUDISI MONN
Fort Monmouth, NJ 07703	Rock Island, IL 61201
Reliability Analysis Center	Air Perce Avionice Laborator
	ATTM: Mr. William Schoonove ATTM: AFAL (AVRO)
Griffiss APB, NY 13441	Wright-Patterson in Force
Air Force Armanent Lab	
AFATL/DLMI/Mr. Lynn Deibler	1
Elgin AFB, FL 32542	

DELSD-D-PC Distribution List	Copies
US Naval Avionics Facility ATTN: Mr. Rod Katz (Code 813) 6000 E. 21st Street Indianapolis, IN 42618 Navy Air Systems Command ATTN: L. H. Conaway Code 533D)	Commander Neval Electronics Labors ATTN: Dr. B. Wieder (Co 271 Cataline, Boslevard San Biego, CA 92152
Washington, D.C. 20361	Naval Electronics Labors
Fort Monmouth, NJ 07703	San Diego, CA 92152 Dnan Commander Naval Electronics Labors
Night Vision & Electro Optics Lab ATTN: DELNV-SD (Mr. S. Gibson) Fort Belvior, VA 22050	ATTM: 2 D. J. Albares (Co 271 Catalina Boulevard San Diego, CA 92152
Division of Non-Ionizing Radiation Letterman Army Institute of Research Presidio of San Francisco San Francisco, CA 94129	Commander Naval Electronics Labora ATTN: R. Leduska (Coads 271 Catalina Bouleverd San Diego, CA 92152
Commander Harry Diamond Laboratory ATTN: AMSDC-RCB (mr. R. G. Humphre Washington, D.C. 20438	Commadier Naval Electronics Labora ATTN: S. Miller (Code (Ye) 271 Catalina Boulevard San Dieco, CA 92152
Commander US Army Electronics Res & Dev Comma ATTN: DELNV-L-D (V. Rosati) Fort Monmouth, NJ 07703	Pexas Instruments, inbni ATTN: N. Shauniield Rox Sel2
	Dallag, TS 75222 COMMANDER US Army Comma Ros & (WOT) ATTH: DRDCO-COM-EM-L (E
US Army Production Equipment Agency ATTN: AMIPE-MT (Mr. C. E. McBurney Rock Island Arsenal	markers or removed
Air Force Avionics Laboratory ATTN: Mr. William Schoonover ATTN: AFAL (AVRO) Wright-Patterseon Air Force Base, C	
	Air Force Armanent Lab

AFRTL/DiMI/Mr. Lynn Deibler Eigin AFB, FF. 32542

DELSD-D-PC Distribution List Copies
NASA Manned Spacecraft Center 1 ATTN: TF4, Mr. Ray R. Glemence Houston, TX 77058
Naval Ships Engineer Center ATTN: Section 6171 Department of the Navy Washington, D.C. 20360
Dr. Fred W. Quelle Office of Naval Research 495 Summer Street Boston, Massachusetts 02210
Department of the Navy Naval Electronics Systems Command ATTN: Code 05143 (Mr. Carl A. Rigdon) Washington, D. C. 20360
Bell Telephone Laboratories, Inc. 1 ATTN: Technical Reports Center WH2A-160 Whippany Road Whippany, N. J. 07981
Kenneth R. Hutchinson AFAL/DHO-2 Wright-Patterson Air Force Base. OH 45433
Commander AFML/LTE ATTN: Capt. George Boyd Wright-Patterson Air Force Base, OH 45433 Commander
Hq, AFSC/DLCAA ATTN: Major D. C. Luke Andrews Air Force Base Washington, D. C. 20331
Air Force Weapons Lab ATTN: ELP Kirtland Air Force Base, NM 87117
Commander US Army Missile Commandy ATTN: AMSMI-ILS (Mr. W. Tharp) Building 4488 Redstone Arsenal, AL 35809

DELSD-D-PC Distribution List	Copies
Code 3353 ATTN: Mr. R. Swenson	Copies St. 18 . 191 . 197 1 Spr. Xr . no seven
Director National Security Agency ATTN: R-4, Mr. P. S. Szozepanek Fort George G. Meade, MD 20755	ATTN: Section of the Department of the Washington, D.C.
Advisory Group on Electron Devices ATTN: Secretary, SPGR on Optical Ma 201 Varick Street New York, NY 10014	M Isven howerfile Magnic Tamma IP 1 (sers assem that so a
Institute Defense Analysis ATTN: Mr. Lucien M. Biberman 400 Army - Navy Drive Arlington, VA 22202	Brins Code 05143 Washington, D. C. Bell Welchone La
Commander US Army Electronics Res & Dev. Comma ATTN: DELSD-D-PC (Mr. J. Sanders) Fort Monmouth, NJ 07703	Entpheny Ready
Harry Diamond Lab and same sound and	
Commander, RADAC ATTN: EMEDA (Mr. M. Kesselman) Griffis Air Force Base, NY 13440	
Air Force Materials Laboratory ATTN: AMSL (LTE) Mrs. Tarrants Wright-Patterson Air Force Base, OH	actor of a sweether. 45433 actor dask
Commander US Naval Ordinance Laboratory ATTN: Technical Library White Oak, Silver Springs, MD 2091	ATTM: ELL
Griffiss Air Force Base, NY 13440	US Army Missile Co Affur Amemi-ILS (Muliding 4488
Electronic Systems Division (ESTI) L. G. Hanscom Field Bedford, Massachusetts 01730	Tensione Argenal,

DELSD-D-PC Distribution List	DQ-d-dalso
Air Force Weapons Laboratory ATTN: SUL Kirtland Air Force Base, New Mexic	Peylett Pacing Laboratories (501 Page Mill Road Nilo Alto, GA 94304 71170 or
OFC, Assistant Secretary of the AMATTN: Assistant for Research Room 3-E-379, The Pentagon Washington, D. C. 20310	
Chief of Research and Development Department of the Army ATTN: Mr. R. B. Watson Army Research Office Washington, D. C. 20310	sell Telephone Laboratörias TTN: Dr. T. Wisternitz Military Design Support Laborat Whippany, N. J. 07981
Commander US Army Materiel Development & Rea ATTN: DRCMT 5001 Eisenhower Avenue	Jorning, N. Y. 14830
Alexandria, VA 22333 RCA Electronic Components ATTN: Mr. N. R. Hangen New Holland Avenue Lancaster, PA 17604	Parris Industries Electro-Optics Operation ATTN: John Williams, Sales Mgs C. O. Box 37 Asibourne, FL 32901
ITT Electro-Optical Products Divi Box 7065 Roanoke, VA 24019 ATTN: R. Williams	Varo Texas División VITR: E. Legoblia 2201 W. Walnut St. P. O. Box 191267 Sarland, TX 75040
Richardson, TX 78080 ATTN: W. Kolander	Commander
Bell Northern Research Ltd. P. O. Box 3511 Station C Ottawa, Canada KlY4H7 ATTN: B. C. Kirk	1
RCA Laboratories Princeton, N. J. 08540 ATTN: Henry Kressel	1
Hughes Aircraft Company ATTN: Company Technical Document 6/Ell0 Centinela at Teale Culver City, CA 90230	Center

DELSD-D-PC Distribution List Copies Hewlett Packard Laboratories 1501 Page Mill Road Palo Alto, CA 94304 TITO COLEMN WOM GREES DOTOS THE BUSINESS ATTN: Mr. George Kaposhilih Hughes Research Laboratories ATTN: M. Barnaski 3011 Malibu Canyon Road Room 3-8-379, The Pentagon Malibu, CA 90265 Calef of Regearch and Development. Department of the Army Bell Telephone Laboratories ATTN: Dr. T. Winternitz ATTN: Mr. R. B. Watson Military Design Support Laboratory Almy Research Office Washington, D. C. 20310 Whippany, N. J. 07981 Corning Glass Work Commander 1 ATTN: Dr. Roy Love nood seemibsed & deadoleved leiteten yera 20 Corning, N. Y. 14830 Harris Industries Alexandria, IWA 22333 Electro-Optics Operation ATTN: John Williams, Sales Mgr. P. O. Box 37 ATTN: Mr. N. R. Handen Melbourne, FL 32901 Landagter, PA 17604 Varo Texas Division ATTN: R. Laughlin 2201 W. Walnut St. Roanoke, VA 24019 P. O. Box 401267 Garland, TX 75040 Commander Spectronics Inc. US Army Communications & Electronics book of Equity 3 018 Richirdson, TX 78080 Material Readiness Command ATTN: DRSEL-LE-SC (Mr. J. Inserra) Fort Monmouth, N. J. 07703 P. O. ROW 3511 Station C Ottawa, Canada KIY4H) ATTR: B. C. KITK RCA Esboratories Princaton, W. J. 08540 APTN: Heary Kressel Hughes Alreraft Company ATTW: Company Technical Document Center

Centinels at Teale Culver City, CA 90236