MTH 316 Homework 2

Evan Fox (efox20@uri.edu) February 17, 2022

Question 1.

Let $|G| = \infty$, Prove G has infinitly many subgroups.

Proof. We consider the case where G contains at least one element of infinite order separatly. So Assume $|G| = \infty$ and that all elements of G have finite order. Then we let

$$S = \{ \langle a \rangle | a \in G \}$$

If S is infinite we have found an infinite collection of subgroups and are done. So assume S is finite. Then since S contains all cyclic subgroups of G the union $\bigcup_{x \in S} x = G$ must hold since $a \in \langle a \rangle$ and for all $a \in G$ either $\langle a \rangle$ is an element of S or it is equivalent to an element of S. But every element of S has finite order and thus all the cyclic subgroups have finite order. But then the finite union of finite sets must be finite, and since the union of S is equal to S this implys that S is finite; a contradiction. Hence S must be an infinite family of subgroups.

Now we consider the cases where G contains at least one element of infinite order. So let $h \in G$ and $|h| = \infty$. Now consider $\langle h \rangle$. It is clear the subgroup generated by h is both cyclic and infinite so it will suffice to show that h has infinite subgroups. Since the order of h is infinite we have $h^n \neq h^m$ for all $n \neq m$ since otherwise we would have $h^{n-m} = e$ implying the order of h is finite. Now let $n, m \in \mathbb{N}$ with n < m and assume $\langle h^n \rangle = \langle h^m \rangle$. Then $h^n \in \langle h^m \rangle$ so $h^n = (h^m)^t$ for $t \in \mathbb{N}$. But this implys m < n a contradiction. So then we must have $\langle h^n \rangle \neq \langle h^m \rangle$ for 0 < n < m. Thus we can easily create infinitly many subgroups of $\langle h \rangle$ and it follows that G has infinitly many subgroups.

Question 2.

Let G be a group such that the only subgroups of G are the trivial subgroup and G itself. Prove |G| is prime

Proof. It is clear by the previous result that G must be finite, if it were infinite then it must have infinitly many subgroups. We first prove that G is cyclic and then we use the fundamental theorem of finite cyclic groups. Let |G|=n. Note for all non idenity elements $g\in G$ we must have $\langle g\rangle=G$, otherwise g would generate a proper subgroup of G. Thus G is cyclic. We then have by the FTFCG that there exists a unique subgroup of order k for each $k\in\mathbb{N}$ such that k|n. Since the only subgroups of of G have orders 1 and n it follows that the only divisors of n are one and itself. Thus n is prime.