Machine Learning - 2020-2021

Universitat Pompeu Fabra

PROBLEMS 6A: SUPPORT VECTOR MACHINE

Goal

The goal of this practice is to understand how Support Vector Machine is defined and work in supervised classification problems.

EXERCISES

- 1. Consider two classes: class $C_1 = \{\mathbf{x}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\}$ with a label 1 and class $C_2 = \{\mathbf{x}_2 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}\}$ with label -1.
 - (a) Plot the points and write in parametric form the Support Vector Machine (SVM) classifier $g(\mathbf{x})$.
 - (b) Write the primal problem, i.e., the optimisation problem that provides the SVM classifier.
 - (c) Write the dual Lagrangian problem. Solve it and compute the values of α_i , i = 1, 2, 3.
 - (d) Write the final classifier $g(\mathbf{x})$ and draw the decision hyperplane.
 - (e) What is the margin value of the obtained classifier?
- 2. Consider two classes: the class $C_1 = \{\mathbf{x}_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}\}$ with a label 1 and the class $C_2 = \{\mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}\}$ with label -1.
 - (a) Plot the points and write in parametric form the Support Vector Machine (SVM) classifier $g(\mathbf{x})$.
 - (b) Write the primal problem, i.e., the optimisation problem that provides the SVM classifier.
 - (c) Write the dual Lagrangian \mathcal{L}_D and derive the values of α_i , i = 1, 2, 3.
 - (d) Write the final classifier $g(\mathbf{x})$ and draw the decision hyperplane.
 - (e) What is the margin value of the obtained classifier?