Analyse Numérique TD 3, S4, 2015/2016

Exercice 1:

Déterminer la suite des premiers 3 itérés des méthodes de Dichotomie dans l'intervalle [1,3] et de Newton avec $x_0 = 2$ pouir l'approximation du zéro de la fonction $f(x) = x^2 - 2$.

Combien de pas de Dichotomie doit-on effectuer pour améliorer d'un ordre de grandeur la précision de l'approximation de la racine?

Exercice 2:

Le but de cet exercice est de calculer la racine cubique positif de a. Soit g la fonction définie sur \mathbb{R}_+^* par :

$$g(x) = \frac{2}{3}x + \frac{1}{3}\frac{a}{x^2}$$

Avec a > 0 fixé.

- 1- Faire l'etude compléte de la fonction g.
- 2- Comparer g à l'identité.
- 3- Soit la suite $(x_n)_{n\in\mathbb{N}}$ sur l'axe des abscices. Observer graphiquement la convergence.
- 4- Justifier mathématiquement la convergence observée graphiquement.
- 5- Calculer l'ordre de convergence de la suite.
- 6- Ecrire l'algorithme définie par suite $(x_n)_{n\in\mathbb{N}}$ qui permet de déterminer $\sqrt[3]{a}$ à une précision de 10^{-6} .
- 7- Expliquer la méthode de Newton pour la recherche du zéro de la fonction f définie par $f(x) = x^3 a$. Que remarque-t-on?

Exercice 3:

On veut résoudre l'équation $e^{-\alpha x} = x$ avec $0 < \alpha < 1$.

- 1- Vérifier que cette équation admet une unique solution réelle l_{α} .
- 2- Observer graphiquement la convergence de la méthode de point fixe associée à la fonction $g(x) = e^{-\alpha x}$, puis justifier mathématiquement la convergence observée graphiquement.
- 3- Écrire la méthode de Newton-Raphson pour résoudre l'équation $e^{-\alpha x} = x$.
- 4- Laquelle entre les deux méthodes faut-il choisir. (justifier votre réponse).

ENSAK A.N

Exercice 4:

Soit f une application de \mathbb{R} dans \mathbb{R} définie par :

$$g(x) = \exp(x^2) - 4x^2$$

On se propose de trouver les racines réelles de f.

- 1- Situer les 4 racines de f dans les quatres intervalles disjoints.
- 2- Montrer qu'il y a une racine a comprise entre 0 et 1.
- 3- Soit la méthode de point fixe :

$$\begin{cases} x_{k+1} = \phi(x_k) \\ x_0 \epsilon \end{bmatrix} 0, 1[$$

Avec ϕ l'application de $\mathbb R$ dans $\mathbb R$ définie par :

$$\phi(x) = \frac{\sqrt{\exp(x^2)}}{2}$$

 $\phi(x) = \frac{\sqrt{\exp(x^2)}}{2}$ Examiner la convergence de cette méthode et en préciser l'ordre de convergence.

- 4- Ecrire la méthode de Newton pour la recherche des zéros de la fonction f.
- 5- Entre la méthode de Newton et la méthode de point fixe, dans ce cas, quelle est la plus efficace ? justifier votre réponse.

Exercice 5:

Soit
$$f(x) = x^3 - \frac{11}{4}x^2 + \frac{7}{2}x - \frac{3}{2}$$

- 1- Calculer f(0) et f(1).
- 2- Que peut-on déduire?
- 3- En utilisant la méthode de Dichotomie, appliquée à f dans l'intervalle [0,1], calculer les deux premiéres
- 4- En partant de $x_0 = 0.5$, calculer les deux premières itérés obtenus par la méthode de Newton-raphson.

Exercice 6:

- 1- Montrer que l'équation tg(x) = x admet une solution unique α dans l'intervalle $\frac{\pi}{2}$, $\frac{3\pi}{2}$ [et vérifier que
- 2- Quel est le nombre d'itérations nécessaire pour approcher α à 10^{-3} par la méthode de Dichotomie?
- 3- Déterminer α à 10^{-3} prés.

ENSAK A.N