Revision P102 Summation

CIE CAL FM P1 2004-06 Q1

Use the relevant standard results in the List of Formulae

to prove that
$$S_N = \sum_{n=1}^{N} (8n^3 - 6n^2) = N(N+1)(2N^2 - 1).$$
 [2]

Hence show that $\sum_{n=N+1}^{2N} (8n^3 - 6n^2)$ can be expressed in

the form $N(aN^3 + bN^2 + cN + d)$, where the constants a, b, c, d are to be determined. [2]

CIE CAL FM P1 2005-06 Q1

Use the method of differences to find S_N , where

$$S_N = \sum_{n=N}^{N^2} \frac{1}{n(n+1)}.$$
 [3]

Deduce the value of
$$\lim_{N\to\infty} S_N$$
. [1]

CIE CAL FM P13 2011-11 Q1

Verify that
$$\frac{1}{n^2} - \frac{1}{(n+1)^2} = \frac{2n+1}{n^2(n+1)^2}$$
. [1]

Let
$$S_N = \sum_{r=1}^N \frac{2r+1}{r^2(r+1)^2}$$
. Express S_N in terms

of N.

Let $S = \lim_{N \to \infty} S_N$. Find the least value of N such

that
$$S - S_N < 10^{-16}$$
. [3]

<u>ASSIGNMENT</u>

Attempt all the questions in the following slides.

Assignment is to be submitted within **one week** after instruction!!!

Please write your name and your student's id in the script upon submission.

CIE CAL FM P13 2011-06 Q1

Find
$$2^2 + 4^2 + \dots + (2n)^2$$
. [2]
Hence find $1^2 - 2^2 + 3^2 - 4^2 + \dots - (2n)^2$, simplifying your answer. [3]

CIE CAL FM P1 2003-06 Q3

Let v_1, v_2, v_3, \dots be a sequence and let $u_n = nv_n - (n+1)v_{n+1}$, for $n = 1, 2, 3, \dots$ Find $\sum_{n=1}^{N} u_n$. [2]

In each of the following cases determine whether the series $u_1 + u_2 + u_3 + \dots$ is convergent, and justify your conclusion. Give the sum to infinity where this exists.

(i)
$$v_n = n^{-\frac{1}{2}}$$
. [2]

(ii)
$$v_n = n^{-\frac{3}{2}}$$
. [2]

KFC

CIE CAL FM P1 2003-11 Q2

Given that
$$u_n = \frac{1}{n^2 - n + 1} - \frac{1}{n^2 + n + 1}$$
, find $S_N = \sum_{n=N+1}^{2N} u_n$ in terms of N . [3] Find a number M such that $S_N < 10^{-20}$ for all $N > M$.

Example:

Prove that
$$\sum_{r=1}^{n} \frac{1}{\sqrt{r} + \sqrt{r-1}} = \sqrt{n}.$$

Deduce that
$$\sum_{r=1}^{n} \frac{1}{\sqrt{r}} < 2\sqrt{n}$$
.