A unified view of basis functions in 1-3 dimensions.

Lagrange Poly nomials:

Recall 1 D: o Linears:

$$N'_{2}$$
 $N'_{1}(\xi_{1}) = \frac{1-\xi_{1}}{2}$ $N'_{2}(\xi_{1}) = \frac{1-\xi_{1}}{2}$

$$N^{2} = (1-\frac{1}{4})^{2}$$

$$N^{2}(\frac{1}{4}) = (1-\frac{1}{4})^{2}$$

$$N^{2}(\frac{1}{4}) = (1-\frac{1}{4})^{2}$$

$$N^{3}(\frac{1}{4}) = (1+\frac{1}{4})^{2}$$

$$N^{3}(\frac{1}{4}) = (1+\frac{1}{4})^{2}$$

Lagrange Polynomials of order k:

$$R = d.o.f - 1$$
 $k = N_{n_1} - 1$
 $N_{n_1} = \frac{1}{11} \left(\frac{2}{2} - \frac{2}{2}\right)$
 $N_{n_2} = \frac{1}{11} \left(\frac{2}{2} - \frac{2}{2}\right)$
 $N_{n_3} = \frac{1}{11} \left(\frac{2}{2} - \frac{2}{2}\right)$

Tensor Product Basis Functions in 2-D:

Recall bi-linears.

$$N_{ne} = d.o.f = 4$$

$$= (N_{n_1})^2 \quad \text{for} \quad A=1$$

hnz=2 k. linear case.

$$N^{A}(\xi_{1},\xi_{2}) = \widetilde{N}^{B}(\xi_{1}) \cdot \widetilde{N}^{C}(\xi_{2})$$
 for $B,C = 1,..., N_{n_{1}}$
 $A = 1,..., N_{n_{2}}$
Formula.

A= 1, ... nno

N'(\(\xi_1,\xi_2) = \(\tilde{\chi}'(\xi_1).\(\tilde{\chi}'(\xi_2)\) N2(8,82) = N2(8,) ·N(82)

Likewise, in 3D:

$$n_{ne} = (n_{n1})^3 = (2)^3 = 8$$

$$n_e = (n_{11})^{\circ} = (2)^{3} = 8$$

 $N^{A}(\xi_{1},\xi_{2},\xi_{3}) = \tilde{N}^{B}(\xi_{1})\tilde{N}^{C}(\xi_{2})\tilde{N}^{C}(\xi_{3})$

Where B, C, D E & 1, ..., n n 10} A E & 1, ... , n ne }

Triquadratics:

Numerical Integration in 1 thm 3 dimensions.

Gaussian Quadrature:

$$N_{int} = 1$$
 $\xi_1' = 0, w_1 = 2$

$$W = \frac{5}{9}$$

$$\xi_1^2 = 0$$
 $W_2 = \frac{8}{9}$

$$W_3 = \sqrt{3} = \sqrt{3}$$

hint point rule integrals : $q_1 = -\sqrt{3}$ $w_1 = \frac{5}{9}$ $w_2 = \frac{8}{9}$ $w_3 = \frac{8}{9}$

Numerical integration: $= \begin{cases} g(\xi_1, \xi_2) d\xi_1 d\xi_2 \\ \text{Numerical integration:} \end{cases} = \begin{cases} g(\xi_1^1, \xi_2) d\xi_1 d\xi_2 \\ \frac{1}{2} & \text{of integration points} \end{cases}$ Remark: Can use $\text{different # of integration} = \begin{cases} \sum_{i=1}^{n_{int}} g(\xi_1^1, \xi_2) \cdot W_{\ell_i} d\xi_2 \\ \sum_{i=1}^{n_{int}} f(\xi_1^1, \xi_2^2) \cdot W_{\ell_i} d\xi_2 \end{cases}$ Points along $\xi_1 \otimes \xi_2 = \begin{cases} \sum_{i=1}^{n_{int}} g(\xi_1^1, \xi_2^2) \cdot W_{\ell_i} d\xi_2 \\ \sum_{i=1}^{n_{int}} f(\xi_1^1, \xi_2^2) \cdot W_{\ell_i} d\xi_2 \end{cases}$

Use Gaussian Quadrature points & weights along each direction.

8.04 Simpler Elements: 2D & 3D

Triangular Elements-linear basis functions

Also define \(\xi_3 = 1 - \xi_1 - \xi_2 \)

(8.05)
$$N'(\xi_1,\xi_2,\xi_3) = \xi_1$$
 linear $N^2(\xi_1,\xi_2,\xi_3) = \xi_2$ basis functions. $N^3(\xi_1,\xi_2,\xi_3) = \xi_3$

Simplest elements in general are simpler than quadralaterals and hexahedra.

Similarly for N2N3

N (\(\xi_1, \xi_2, \xi_3, \xi_4 \) = \xi_4

Remark: Linear Simpler elements lead to constant gradiants: NAR

Can define higher-order tetrahedron

- Numerical integration rules: (Gaussian Quadrature no longer optimal)