WO 01/01781

10/019481 PCT/US00/17895

JC13 Rec'd PCT/PTO 3 1 DEC 2001

APPLICATION THEREOF

5

BACKGROUND OF THE INVENTION FIELD OF THE INVENTION

The present invention relates to novel ant controller containing a hydrazine derivative as an active ingredient and to a method for application of the ant controller.

RELATED ART

The hydrazine derivatives represented by the formula (I) which can be used as active ingredient of 15 the ant controllers of the present invention are known compounds disclosed in JP-A-5-4958, JP-A-5-17428, JP-A-5-32603, JP-A-5-262712, etc. In these patents, it is described that these derivatives have an insecticidal activity as agrihorticultuarl insecticides against 20 LEPIDOPTERA such as diamondback moth, rice leafroller, etc., HEMIPTERA such as tea green leafhopper, pear lace bug, etc., COLEOPTERA such as twenty-eight-spotted ladybird, maize weevil, etc., DIPTERA such as melon fly, 25 house fly, house mosquito, etc., and TYLENCHIDA such as coffee root-lesion nematode, root-knot nematode, etc.

Any of these patent gazettes, however, does neither describe nor suggest that said hydrazine derivatives have a marked insecticidal effect against

10

15

20

25

ISOPTERA such as formosan subterranean termite, kolbe, etc., HYMENOPTERA such as cabbage sawfly, Carpenter ant, etc., ORTHOPTERA such as Japanese cockroach, field cricket, rice grasshopper, etc., and PSOCOPTERA such as large pale booklouse, etc.

SUMMARY OF THE INVENTION

The present inventors have conducted extensive studies with the aim of creating a novel ant controller having a marked controlling effect upon ants doing harm to the wooden materials constituting houses, furniture, etc. or crops and human being. As a result, it has been found that some of the hydrazine derivatives described in the above-mentioned prior art have a marked insecticidal effect upon termites and ants. The present invention has been accomplished on the basis of this findings.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to ant

controllers containing as active ingredient thereof a

hydrazine derivative represented by the following

formula (I) and method for application of the ant

controllers:

$$Z = \begin{bmatrix} W & R^2 \\ -N(R^1)-C-A-C & R^3 \end{bmatrix} Y \quad (1)$$

wherein A represents:

-N(R4)-N=C-

(wherein R⁴ represents hydrogen atom or C₁-C₅ alkyl group, and X represents 1 to 5, same or different substituents selected from the group consisting of hydrogen atom, halogen atom, C₁-C₆ alkyl group and halo C₁-C₆ alkyl group),

10

15

wherein R^4 and X are as defined above, and R^5 represents hydrogen atom, C_1 - C_6 alkylcarbonyl group or phenylcarbonyl group which may have 1 to 2, same or different substituents selected from the group consisting of C_1 - C_6 alkyl groups),

(wherein R^4 and X are as defined above), or

10

25

-CH(R⁴)-NH-N-

(wherein R⁴ and X are as defined above);

 R^1 represents hydrogen atom or C_1 - C_5 alkyl group;

 R^2 and R^3 , which may be same or different, represent hydrogen atom, hydroxyl group, C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 alkylcarbonyl group or phenylcarbonyl group;

Y represents 1 to 5, same or different substituents selected from the group consisting of hydrogen atom, halogen atom, nitro group and cyano group;

2 represents halogen atom, cyano group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylsulfinyl group or halo C_1 - C_6 alkylsulfonyl group; and

W represents oxygen atom or sulfur atom.

The ant controller of the present invention is an excellent ant controller for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as shrines, temples, houses, outhouses, factories, etc. from ants such as termites, and for controlling ants doing harm to crops or human being.

15

20

In the definition of the formula (I) shown above, the term "halogen atom" means chlorine atom, bromine atom, iodine atom and fluorine atom; the term "C₁-C₆ alkyl" means a straight or branched chain alkyl group having 1 to 6 carbon atoms; and the term "halo C₁-C₆ alkyl" means an alkyl group having 1 to 6 carbon atoms substituted with at least one, same or different halogen atoms.

Preferable examples of the hydrazine derivative represented by the formula (I) of the present invention are the hydrazine derivatives represented by the formulas (I-1) and (I-2) as mentioned below.

Preferable examples of each substituent of the hydrazine derivatives of formulas (I-1) and (I-2) are the compounds wherein W is oxygen atom, X is trifluoromethyl group, Y is cyano group, Z is trifluoromethoxy group, and each of R¹, R², R³ and R⁴ is simultaneously a hydrogen atom. More preferable examples are the compounds wherein X is substituted on the 3-position, and Y is substituted on the 4-position of the phenyl ring.

Most preferable example is the hydrazine derivative represented by the formula (I-1), wherein each of R², R², R³ and R⁴ is simultaneously a hydrogen atom, X is trifluoromethyl group substituted on the 3-position of the phenyl ring, Y is cyano group substituted on the 4-position of the phenyl ring, and Z is trifluoromethoxy group.

Typical examples of the hydrazine derivative

5 represented by the formula (I) used as an active ingredient of the ant controller of the present invention are shown in Table 1 to Table 4, but the present invention is by no means limited to the compounds exemplified herein.

Formula (I-1)

<

Table 1

[] ďw	199	149	206	197	217	128	116
3	0	0	0	0	0	ഗ	S
2	CJ	OCF	C1	OCF	CJ	C]	OCF3
X	н	x	4-C1	4-C1	4-CN	4-CN	4-CN
×	H	æ	æ	æ	æ	ж	£
∞	æ	I	I	I	Ħ	Ŧ	ж
R	H	Ħ	ш	æ	· #	×	н
R ²	H	×	Ħ	I	I	evel and	Н
R.	æ	I	×	I	I	Ξ	н
No.	1	7	က	4	5	9	7

U dw	214	E-form	159	Z-form	222	206	189	139	200	212	201	206	
3	0		0		0	တ	0	ഗ	0	0	0	0	
2 .	OCF3		OCF3		C1	C1	OCF	OCF,	SCF3	OCF3	OCF3	C1	
7	4-CN		4-CN		4-NO ₂	x	4-C1	4-CN	-				
×	=		=		æ	Ξ	Ħ	=	æ	3-C1	3-C1	3-C1	
X	ж		Œ		Ħ	Ħ	H	Ħ	Ħ	Ħ	Н	H	
R³	Н	٠.	I		H	×	Ŧ	Ħ	Ħ	Ħ	æ	H	
R ²	Ŧ				x	Ħ	Ħ	H	Ħ	æ	ĸ	×	
<u>-</u> ~	æ		ı		x	I	H	н	Ħ	x	н	н	
No.	8	•	<u></u>		. 10	11	12	13	14	. 15	16	17	

Table 1 (Cont'd)

\neg				Ę										
O du	187	E-form	148	2-form	199	215	205	212	191	209	205	176	206	
3	0		0		လ	0	0	0	0	0	0	Ο.	0	
2	OCF3		OCF		OCF	SCF3	SOCF	SO2CF3	C1	OCF	CI	OCF3	SCF3	
Α.	4-CN		4 - CN		4-CN	4-CN	4 - CN	4-CN	ж	H	4-CN	4-CN	4-CN	
×	3-C1		3-C1		3-C1	3-c1	3-c1	3-C1.	3-Br	3-Br	3-Br	3-Br	3-Br	
R	æ		Ħ		н	Ħ	æ	Ħ	æ	æ	#.	H	×	
R.3	æ		H	•	H	Ħ	H	×	H	æ	£	=	æ	
R ²	=		н		ж	н	н	H	н	#	Н	н	ж	
-W	H		Ξ		н	Ħ	Ħ	Ħ	×	エ	×	н	· #3	
No.	18		19		20	21	22	23	24	25	26	27	28	

Table 1 (Cont'd)

O dw	216	215	206	. 200	191	208	202	213	201	185	198	200	189	
3	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	SOCE	SO.CF,	CI	OCF	OCF	C1	OCF3	CJ	OCF3	C1	OCF3	C1	OCF3	
¥	4-CN	4-CN	I	¤	4-C1	4-C1	4-CN	4-CN	4-CN	Ħ	æ	4-CN	4-CN	
×	3-Br	3-Br	3-F	3 - F	3-F	3-6	3-1	3-I	3-I	3-CH ₃	3-CH3	3-CH3	3-CH3	
R*	н	×	Ħ	Ξ	æ	H	Ħ	æ	æ	Ħ	#	Ħ	Ħ	
R³	н	Ξ	Ξ	æ	н	H	Н	×	н	Ħ	Ħ	Ξ:	Ħ	
R ²	H	Ħ	Ħ	=	Ŧ	H	Ħ	н	Ŧ	=	Ξ	×	æ	
R1	Æ	=	H	×	н	H	н	н	н	æ	Ħ	Ħ	Ξ	
No.	29	30	31	32	33	34	35	36	37	38	39	40	41.	

Table 1 (Cont'd)

No.	R ¹	R ²	R³	R ⁴	×	Y	2	3	O ďw
42	Н	Н	н	н	3-CF3	Ħ	ជ	0	206
43	æ	æ	æ	Æ	3-CF3	æ	OCF3	0	210
44	æ	æ	Ħ	æ	3-CF3	4-CN	OCF	0	191
45	æ	x	H	Ħ	3-CF3	4-CN	OCF	S	149
46	СН	=	Œ	æ	=	=	CI	0	132
47	CH,	×	I	-	==	Œ.	OCF,	0	108
48	ж	СНЭ	Ħ	æ	Ħ	ж	CI	0	86
49	ж	CH3	H	æ	æ	×	Br	0	85
20	Ħ	СН	#	Ξ	Ħ	II	OCF3	0	115
									EZ-form
51	Ħ	СН3	==	æ	Ħ	æ	OCF	0	95
									E-form
52		СН3	Œ	æ	Ħ	æ	OCF	0	99
									2-form

Table 1 (Cont'd)

D dw	121	105	140	86	188	170	Viscous	185	E-form	95	Z-form	Viscous	113	164	118
×	0	0	0	0	0	0	0	0		0		0	0	0	S
2	5	OCF3	C1	OCF3	CI	OCF	CI	OCF		OCF		C1	OCF3	C1	OCF,
¥	4-C1	4-C1	4-CN	4-CN	I	Ξ	4-C1	4-C1		4-C1		4-CN	4-CN	Ħ	н
×	н	×	3-C1	3-C1	×	×	Ħ	Ħ		н		×	н	æ	н
R4	Æ	H	Ħ	×	Ħ	×	×	Ħ		æ		н	æ	ж	ж
R³	H	æ	×	I	НО	но	НО	НО		НО		НО	НО	СН	CH ₃
R ²	СН,	CH ₃	CH3	CH3	×	Ŧ	Ħ	æ		H		=	Ħ	I	н
۳. ا	Æ	æ	æ	æ	I	×	н	н		Ħ		æ	Ħ	ж	н
, cN	53	54	55	26	57	28	59	09		61		62	63	64	65

Table 1 (Cont'd)

155 193 176 184 182 168 115 130 214 214 165 157 183 181 앝 $SOCF_3$ SOCF SCF, OCF, OCF, OCF3 OCF3 C1 OCF, ದ c_1 2 4-CN 4-CN 4-CN 4-CN 3-C1 4-F 3-₽ 3-F CH3 0-CO-CH3 0-C0-Ph 0C4H,-i OC,H,-i OC4H9-1 0C3H1-1 OCH3 OCH3 ᆼ НО \mathbb{R}^3 ~ 19 Š. 99 89 70 73 67

Table 1 (Cont'd)

Table 1 (Cont'd)

Note: Ph is phenyl group.

Table 2 (R¹ and R³ are hydrogen atoms)

No.	R ²	R4	R ⁵	×	Y	2	3	mp (1)
. 84	н	н	Ħ	æ	Ħ	IJ	0	211
85	x	×	×	×	×	OCF	0	194
98	Ħ	ж	Ħ	×	4-C1	OCF	0	209
87	×	#	Ħ	Ħ	4-CN	OCF,	0	204
88	Ξ	H	×	æ	4-NO ₂	OCF	0	203
68	Ħ	H	×	3-₽	4-C1	OCF,		203
06	æ	н	×	3-C1	4-C1	OCF	0	176

O dw	193	177	178	170	187	165	164	171	149	209	178	221	
32	0	0	0	0	0	0	0	ဟ	လ	တ	0	0	
2	OCF3	SCF	SOCF	SO2CF3	OCF	OCF	SCF_3	OCF,	OCF3	OCF.	OCF3	OCF3	
Y	4-CN	4-CN	4-CN	4-CN	4-CN	4-CN	4-CN	4-C1	4-CN	4-CN	4-CN	4-CN	
×	3-C1	3-C1	3-C1	3-C1	3-Br	3-CF3	3-CF3	=	3-C1	3-CF3	3-C1	3-C1	
R ⁵	Н	Ħ	×	×		Ħ	Ħ	¤	=	Ŧ	CO-CH3	CO-Ph	
₽å	æ	×	æ	ㅍ	n	Ħ	Ħ	_ II	н	Ħ	π	Ħ	
R²	H	æ	æ	0 XX	Ħ	H	Ħ	×	*	=	н	×	
No.	91	92	93	94	95	96	97	86	66	100	101	102	

Table 2 (Cont'd)

[] dw	201	190	195	183	186	156	209	233	201	176	197	189	
32	0	0	0	0	0	0	0	0	0	0	0	0	
2	OCF3	OCF3	CJ	OCF,	OCF	OCF	OCF	C1	OCF3	OCF3	OCF	OCF	
Y	4-CN	æ	ж	×	I	4-CN	4 - F	4-Br	4-Br	3-CN	2-NO ₂	4-CN	
×	3-C1	×	Ħ	æ	#	3-C1	×	Ħ	×	Ħ	Ħ	3-F	
R ⁵	CONHC2H5	Œ	æ	æ	æ	I	Œ	×	I	I	æ	×	
R4	н	НО	OCH,	OCH ₃	OCH3	×	Ħ	æ	Ħ	I	I	×	
R ²	н	Ħ	Ħ	×	X.	CH ₃	Ħ	H	Ħ	H	Ħ	Ħ	
No.	103	104	105	106	107	108	109	110	111	112	113	114	

Table 2 (Cont'd)

Table 2 (Cont'd)

[] dw	189	166	131	(-)-Isomer	126	(+)-Isomer	Glassy	Glassy	120	
32	0	0	0		0		0	0	0	
. 2	SCF3	SOCF3	OCF3	-	OCF3		SOCF	SO2CF,	OCF3	
¥	4-CN	4-CN	4-CN		4-CN		4-CN	4-CN	3-CN	
×	3-F	3-5	3-CF3		3-CF3		3-CF3	3-CF3	#	
R ⁵	н	=	Ħ		æ		#	I	I	
R4	н	Н	æ		н		æ	II.	Ħ	
R ²	H	Ħ	×		H		н	×	X	
No.	115	116	117		118		119	120	121	

Note: Ph is phenyl group.

Compounds 106 and 107 are diasteromers.

Compound 106 is higher than Compound 107 in the Rf value.

Table 3 (R^2 and R^3 are hydrogen atoms, and W is oxygen atom.)

No	R ²	R÷	х	Y	Z	mp □, Refractive index
122	Н	Н	н	н	OCF3	113.3-114.0
123	н	н	н	4-Cl	OCF₃	137.8
124	н	н	Н	4-CN	Cl	163
125	H	н	н	4-CN	OCF3	138
126	н	н	3-C1	4-Cl	Cl	143.5-144.0
127	н	н	3-C1	4-C1	OCF3	139.6-141.5
128	Н	н	3-C1	4-NO2	Cl	174.0-176.5
129	Н	н	3 - C1	4-NO2	OCF3	151.6-151.7
130	н	н	3-C1	4-CN	Cl	191.0-192.0
131	н	н	3-C1	4-CN	OCF₃	160.5-162.0
132	н	н	3-C1	4-CN	SCF₃	188.0
133	н	н	3-C1	4-CN	SOCF ₃	206.1
134	н	н	3-F	4-CN	Cl	154-156
135	н	н	3-F	4-CN	OCF ₂	155.9-156.8

Table 3 (Cont'd)

No	R ¹	R ⁴	х	Y	Z	mp [], Refractive index
136	Н	н	3-CH ₃	4-CN	Cl	127
137	н	н	3-CH ₃	4-CN	OCF ₃	166
138	Н	н	3-CF ₃	4-CN	Cl	164-165
139	Н	н	3-CF ₃	4-CN	OCF3	151.0
140	н	CH ₃	3-C1	4-CN	OCF ₃	nD 1.5950 (2500
141	CH ₃	н	3-CF ₃	4-CN	Cl	209-211
142	H	н	3-Cl	2-CN	OCF ₃	148
				_		

- 20 -

Table 4 (R^1 , R^2 , R^3 and R^4 are hydrogen atoms.)

	T	r	Υ''	T
No	х	Y	Z	mp 3, Refractive index
1.43	н	н	OCF ₃	51.0-53.0
144	н	4-C1	OCF ₃	92.1
145	Н	4-CN	Cl	106-108
146	н	4-CN	OCF₃	nD 1.5685 (27□)
147	3-C1	4-C1	Cl	105.3-106.4
148	3-C1	4-C1	OCF3	38.0
149	3-C1	4-NO2	Cl	Viscous
150	3-C1	4-NO2	OCF ₃	Viscous
151	3-C1	4-CN	Cl	153.1
152	3-C1	4-CN	OCF ₃	43.5-45.0
153	3-F	4-CN	· C1	164-165
154	3-F	4-CN	OCF3	nD 1.5615 (27🗆)
155	3-CH ₃	4-CN	Cl	138-139
156	3-CH3	4-CN	OCF ₃	nD 1.5315 (280)
157	'3-CF ₃	4-CN	Cl	43
158	3-CF ₃	4-CN	OCF ₃	153.1

Some of the compounds shown in Tables 1 to 4 are viscous or glassy substances. Their $^1\text{H-NMR}$ data are summarized in Table 5.

Table 5

No	'H-NMR[CDCl ₃ /TMS, δ (ppm)]
59	6.29 (s, 1H), 7.65-7.92 (m, 13H), 9.14 (bs, 1H),
	10.70 (bs, 1H). (DMSO-d ₆)
62	3.88 (bs, 1H), 3.87 (s, 1H), 6.91-7.55 (m, 13H),
	7.73 (s, 1H), 8.13 (bs, 1H).
119	3.12 (dd, 1H), 3.23 (dd, 1H), 4.12-4.32 (m, 2H),
	6.13 (bs, 1H), 7.24-7.93 (m, 12H), 8.08 (bs, 1H).
120	3.11 (dd, 1H), 3.23 (dd, 1H), 4.13-4.28 (m, 2H),
	5.97 (s, 1H), 7.25-7.75 (m, 12H), 7.90-8.00 (bs,
	1H).
149	3.65 (d, 2H), 4.20 (t, 1H), 4.70 (s, 2H), 6.85 (dd,
	1H), 6.93 (dd, 1H), 7.08 (dd, 1H), 7.15-7.21 (m,
	3H), 7.24 (d, 2H), 7.40 (d, 2H), 8.13 (d, 2H), 8.40
	(s, 1H).
150	3.64 (s, 2H), 4.69 (s, 2H), 6.84 (dd, 1H), 6.94
	(dd, 1H), 7.09 (m, 3H), 7.23 (t, 1H), 7.29 (d, 2H),
	7.40 (d, 2H), 8.12 (d, 2H), 8.40 (s, 1H).
	<u> </u>

- 5 The ant controller of the present invention exhibits a markedly high killing effect at a low dosage upon all the termites doing harm to houses, construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables, for example, RHINOTERMITIDAE including Coptotermes formosanus Shiraki, Reticulitermes 10 speratus (Kolbe), Reticulitermes hesperus which inhabits the North America, Reticulitermes tibialis, Reticulitermes flavipes, Reticulitermes lucifugus which inhabits the shore of the Mediterranean, Reticulitermes santonensis, Incisitermes minor (Hagen), TERMITIDAE 15 including Odontotermes formosanus (Shiraki), KALOTERMITIDAE including Cryptotermes domesticus (Haviland), TERMOPSIDAE including Hodotermopsis japonica (Holmgren), etc.
- 20 Further, the ant controller of the present invention exhibits a markedly high killing effect at a low dosage upon all the ants doing harm to crops, or to human being when the ants invade into houses and public facilities such as parks, for example, FORMICIDAE
- including Monomorium pharaonis Linne, Monomorium
 nipponense Wheelex, Camponotus kiusiuensis Santschi,
 Formica japonica Motschulsky, Lasius fuliginosus
 (Latreille), Solenopsis richteri, Solenopsis invicta,
 Solenopsis geminata (Fireant), etc.
- For using the ant controller of the present invention containing the hydrazine derivative of formula (I) as an active ingredient efficiently, the ant

ontroller is formulated with a proper solid carrier and/or liquid carrier. If necessary, it is formulated with auxiliaries in a proper proportion according to the conventional recipe of formulation, and homogenized together with the carrier by the method of dissolution, suspension, mixing, impregnation, adsorption or adhesion, so as to be made it into an appropriate preparation form such as oily solution, emulsifiable concentrate, solubilized concentrate, dust, granule, wettable powder, aerosol, fumigant, flowable preparation or the like. It is also possible to form the termite controller into a bait preparation by compounding it

with a bait containing an attractant or the like.

As the solid carrier used in the present invention, there can be exemplified clays such as 20 kaolin, bentonite, acid clay and the like; talcs such as talc, pyrophillite and the like; silica materials such as diatomaceous earth, siliceous sand, mica, synthetic silicate, synthetic high-dispersion silica and the like; and inorganic mineral powders such as pumice, sand and 25 the like; organic matters such as pieces of wood, chips of pulp wood, grain flour, sugars and the like. As the liquid carrier, there can be exemplified alcohols such as methyl alcohol, ethyl alcohol, ethylene glycol and the like; ketones such as acetone, methyl ethyl ketone, 30 cyclohexanone and the like; ethers such as ethyl ether, dioxane, tetrahydrofuran, Cellosolves and the like; aliphatic hydrocarbons such as light oil, kerosene and

present invention, surfactants, dispersants, sticking agents, etc. can be referred to. As the surfactants, there can be exemplified polyoxyethylene alkylaryl ethers, polyoxyethylene sorbitan monolaurates, alkylaryl sorbitan monolaurates, alkylbenzesulfonates, alkylnaphthalene-sulfonates, ligninsulfonates, higher alcohol sulfuric ester salts, etc. These surfactants may be used either alone or in the form of a mixture.

As the auxiliaries which can be used in the

As the dispersants or sticking agents, for example, casein, gelatin, starch, alginic acid, carboxymethyl cellulose, agar, polyvinyl alcohol, turpentine oil, etc. can be used according to the need.

The ant controller of the present invention is applied not only to the surrounding soil surface or into the under-floor soil in order to protect wooden materials such as trees, board fences, sleepers, etc. and structures such as shrines, temples, houses, outhouses, factories, etc., but it can also be applied to lumbered articles such as surfaces of the under-floor concrete, alcove posts, beams, plywoods, furniture,

boards, etc. and vinyl articles such as coated electric wires, vinyl sheets, heat insulating material such as styrene foams, etc. In case of application against ants doing harm to crops or human beings, the ant controller of the present invention is applied to the crops or the surrounding soil, or is directly applied to the nest of ants or the like.

The present invention is not limited to the embodiments mentioned above, but it also includes the embodiments of applying the ant controller of the invention preventively to places at which occurrence of ants is expected.

In putting the ant controller of the present invention, the dosage may be appropriately selected from the ranges properly chosen. In case of application to wooden materials, the quantity of active ingredient ranges from 0.1 to 50 g per m²; and in case of soil treatment or application to the nests, the quantity of active ingredient ranges from 1 to 500 g per m².

25 EXAMPLES

Next, typical examples and test example of the present invention are presented below. The invention is by no means limited to these examples.

In the examples, "parts" are by weight.

5 Formulation Example 1

Each hydrazine derivative listed

in Tables 1-4

20 parts

Xylene

80 parts

The ingredients mentioned above were made into 10 a uniform solution to obtain an oily solution.

Formulation Example 2

Each hydrazine derivative listed

in Tables 1-4

10 parts

Polyoxyethylene styrylphenyl ether

10 parts

15 Cyclohexanone

80 parts

The ingredients mentioned above were uniformly mixed and dissolved together to obtain an emulsifiable concentrate.

Formulation Example 3

20 Each hydrazine derivative listed

in Tables 1-4

10 parts

Sodium alkylbenzenesulfonate

2 parts

White carbon

10 parts

Clay

78 parts

The ingredients mentioned above were uniformly mixed and pulverized to obtain a wettable powder.

Formulation Example 4

Each hydrazine derivative listed

in Tables 1-4

8 parts

5 Cyclohexanone

4 parts

Mixture of polyoxyethylene nonylphenyl
ether and alkylbenzenesulfonic acid 3 parts
A granular composition was prepared by
uniformly mixing and dissolving together the ingredients
mentioned above, and spraying the resulting solution

onto 85 parts of granular pumice, followed by drying.

Test Example 1

group of 10 insects.

A filter paper was spread in a glass dish having a diameter of 9 cm, onto which was dropped 1 ml of a 500 ppm solution of the ant controller of the present invention. Then, the filter paper was inoculated with Coptotermes formosanus Shiraki. Seven days after the inoculation, percentage of dead insects was investigated, from which mortality was calculated.

The results were evaluated according to the following criterion. The test was carried out with triplicate

Criterion	Mortality	(%)
A	100	
В	99-90	
С	89-80	
D	79-50	

The results are summarized in Table 6.

Table 6

Compound No.	Termite-killing effect	Compound No.	Termite-killing effect
1	A	5	Ä
. 2	В	6	A
3	A	7	A
4	A	. 8	. C

!

5 Table 6 (Cont'd)

Compound No.	Termite-killing effect	Compound No.	Termite-killing effect
9	В	32	A
10	A	33	С
11	A	34	A
12	A	35	A
13	A	36	В
14	A	37	A
15	В	38	В
16	c	39	A
17	A	40	D
18	A	41	A
19	A	42	A
20	A	43	A
21	A	44	С
22	В	45	A
23	A	46	A
24	С	47	A
25	ם	48	A
26	A	49	· c
27	A	50	A
28	С	51	A
29	. c	52	A
30	A	53	В
31	A	54	A:

- 30 -

5 Table 6 (Cont'd)

Compound No.	Termite-killing effect	Compound No.	Termite-killing effect
55	A	78	A
56	A	79	В
57	D	80	A
58	A	81	A
59	С	82	В
60	С	83	D
61	A	84	A
62	A	85	С
63	A	86	A
64	A	87	С
65	С	88	A
66	A	89	B
67	A	90	A
68	A	91	A
69	В	92	, A
70	A	93	D
71	A	94	A
72	A .	95	A .
73	A	96	A
74	A	97	A
75	A	98	A
76	A	99	A
77	A	100	A

5 Table 6 (Cont'd)

Compound No.	Termite-killing effect	Compound No.	Termite-killing effect
101	A	124	D
102	A	125	A
103	A	126	A
104	A	127	A
105	В	128	A
106	A	129	A
107	D	130	С
108	С	131	С
109	С	132	A
110	В	133	A
111	D	134	A
112	A	135	В
113	A	136	A
114	В	137	A
115	A	138	А
116	В	139	A
117	A	140	A
118	D	141	ם
119	A	142	С
120	A	143	С
121	С	144	В
122	D	145	A
123	A	146	D

7...

5 Table 6 (Cont'd)

Compound No.	Termite-killing effect	Compound No.	Termite-killing effect
147	A	153	A
148	A	154	В
149	A	155	A
150	С	156	В
151	С	157	A
152	В	158	С

Test Example 2

one nest.

The ant controller of the present invention

10 was applied to nests (anthill) of fireant (Solenopsis geminata) with drench treatment, in terms of 1 g of the active ingredient per one nest. 14 Days after the treatment of the ant controller, the activity of the nests was evaluated according to the following

15 criterion. The test was carried out with one block per

5	Criterion	Effect
	A	Nest is completely destructed or
		activity of the nest is extremely low.
	В	Activity of the nest is exhibited.
	С	High activity of the nest is
10		exhibited.
	D	Activity of the nest is extremely
		high.

As a result of the test, compound Nos. 44 and 96 of the present invention exhibited the effect "A".