Élève 1*

Question de cours. Qu'est-ce qu'un anneau principal? Pour k un corps, k[X] est-il principal?

Exercice. Soit $P \in \mathbb{C}[X]$. On suppose que $P(\mathbb{Q}) = \mathbb{Q}$.

- 1. Montrer que $P \in \mathbb{Q}[X]$.
- 2. En déduire que P est de degré 1. Indication : raisonner par l'absurde et partir de P(r)=1/m avec $r\in\mathbb{Q}$ et m un nombre premier.

Exercice. Soient k un corps, E un k-espace vectoriel de dimension finie et F un k-espace vectoriel.

1. Soient $f,g\in\mathcal{L}(E,F).$ Montrer les inégalités

$$|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg} (f+g) \leq \operatorname{rg} f + \operatorname{rg} g$$

2. Soient f et g des endomorphismes de E vérifiant fg=0 et $f+g\in {\rm GL}(E).$ Montrer que rg f+ rg $g=\dim E.$

Élève 1

Exercice CCP. Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que $E=\operatorname{im} f\oplus\ker f\implies\operatorname{im} f=\operatorname{im} f^2.$
- 2. a) Démontrer que im $f = \operatorname{im} f^2 \iff \ker f = \ker f^2$.
 - b) Démontrer que im $f = \operatorname{im} f^2 \implies E = \operatorname{im} f \oplus \ker f$.

Exercice. Soient $A\in \mathrm{GL}_n(\mathbb{K}),\, B\in \mathrm{GL}_m(\mathbb{K}),\, C\in \mathcal{M}_{n,m}(\mathbb{K})$ et T la matrice triangulaire par blocs donnée par

$$T = \left(\begin{array}{cc} A & C \\ 0 & B \end{array} \right)$$

Justifier que T est inversible et donner son inverse.

Exercice. Soit $P=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_0\in\mathbb{Z}[X]$. Démontrer que si le rationnel r=p/q (avec $p\wedge q=1$) est racine de P, alors p divise a_0 et q divise a_n . En déduire les racines du polynôme $3X^3-8X^2+8X-5$.

Élève 2

Exercice CCP.

- 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P dans la base $(1,(X-a),\dots,(X-a)^n)$.
 - b) Soit $r \in \mathbb{N}^*$. En déduire que a est racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in \{1, \dots, r-1\}$, $P^{(k)}(a) = 0$.
- 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P=X^5+aX^2+bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.

Exercice. On considère $E = \mathbb{R}^{\mathbb{R}}$, \mathbb{R} -espace vectoriel. Pour $n \in \mathbb{N}^*$, on désigne par f_n l'élément de E défini par $f_n(x) = \sin(x^n)$. Montrer que la famille $(f_n)_{n\geq 1}$ est libre dans E.

Élève 3

Exercice CCP. Soient a_1,a_2,a_3 trois scalaires distincts donnés dans $\mathbb{K}=\mathbb{R},\mathbb{C}.$

- 1. Montrer que $\Phi:\mathbb{K}_2[X]\to\mathbb{K}^3,\ P\mapsto (P(a_1),P(a_2),P(a_3))$ est un isomorphisme d'espaces vectoriels.
- 2. On note (e_1,e_2,e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k\in\{1,2,3\},$ $L_k=\Phi^{-1}(e_k).$
 - a) Justifier que (L_1,L_2,L_3) est une base de $\mathbb{K}_2[X].$
 - b) Exprimer les polynômes L_1, L_2, L_3 en fonciton de $a_1, \, a_2$ et $a_3.$
 - c) Soit $P\in\mathbb{K}_2[X].$ Déterminer les coordonnées de P dans la base $(L_1,L_2,L_3).$
 - d) **Application :** on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3) et C(2,1). Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Exercice. Soit B la matrice par blocs

$$\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_n \end{pmatrix}$$

Exprimer le rang de B en fonction du rang des A_i .

Exercice. On désigne par E l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ continues. Soit F l'ensemble des éléments constants de E et G l'ensemble des éléments dont l'intégrale sur [0,1] nulle.

- 1. Vérifier que E, F et G sont des \mathbb{R} -espace vectoriels.
- 2. Montrer que $E = F \oplus G$.
- 3. Pour $f \in E,$ déterminer la projection de f sur F parallèlement à G.