Signatures and models for syntax and operational semantics in the presence of variable binding

Ambroise LAFONT¹

¹DAPI IMT Atlantique

PhD, 2019

Outline

- Reduction monads
 - Graphs
 - Substitution
- Syntax
 - Operations
 - Equations
- Semantics

Outline

- Reduction monads
 - Graphs
 - Substitution
- Syntax
 - Operations
 - Equations
- Semantics

- Programming languages (PLs) as graphs
 - (Syntax) vertices = terms
 - (**Semantics**) arrows = reductions between terms
- Parallel substitution: variables → terms
 - monads and modules over them
- (untyped PLs)

Example

 λ -calculus with β -reduction:

Syntax:

$$S, T ::= x | S T | \lambda x. S$$

Reductions:

$$(\lambda x.t) u \xrightarrow{\beta} t[x \mapsto u] + \text{congruences}$$

modulo α -equivalence, e.g.

$$\lambda x.x = \lambda y.y$$

Outline

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics

PLs as graphs

Example: λ -calculus with β -reduction

- (Syntax) vertices = terms
- (Semantics) arrows = reductions (dedicated syntax: Cf labels)

Graph = a quadruple
$$(A, V, \sigma, \tau)$$
 where

$$A \xrightarrow{\sigma} V$$

$$A = \{arrows\}$$
 $V = \{vertices\}$

$$\sigma: A \to V \qquad \tau: A \to V t \xrightarrow{r} u \mapsto t \qquad t \xrightarrow{r} u \mapsto u$$

$$\sigma(r) \xrightarrow{r} \tau(r)$$

PLs as bipartite graphs

Example: λ -calculus cbv with big-step operational semantics

- term \rightarrow value
- variables = placeholders for values

Bipartite graphs

Definition

Bipartite graph = a quadruple (A, V_1, V_2, ∂) where

$$V_1 \stackrel{\sigma}{\leftarrow} A \stackrel{\tau}{\rightarrow} V_2$$

$$A = \{arrows\}$$
 $V_1 = \{vertices in first group\}$ $V_2 = \{vertices in second group\}$

For simplicity, we focus on the particular case of **graphs**: $V_1 = V_2$.

Outline

- Reduction monads
 - Graphs
 - Substitution
- Syntax
 - Operations
 - Equations
- Semantics

Syntax comes with substitution

terms (e.g. λ -terms) = trees with free variables as (distinguished) leaves.

Parallel substitution made formal

Free variables indexing

 $X \mapsto \{\text{terms taking free variables in } X\}$

Example: λ -calculus

$$L(\lbrace x,y\rbrace) = \left\{\begin{array}{c|cccc} \lambda z.z & , & x & , & y & , & \dots \\ \hline & & & & & \downarrow & & \\ \hline & & & & & & x & y & \\ \hline & & & & & & & x & y & \\ \end{array}\right\}$$

Parallel substitution

For any
$$f: X \to L(Y)$$
, bind_f: $L(X) \to L(Y)$
 $t \mapsto t[x \mapsto f(x)]$ (or $t[f]$)

Monads

 λ -calculus as a monad (L, bind, η)

- Parallel substitution (*L*, bind)
- Variables are terms

Monadics laws:

$$\underline{x}[f] = f(x)$$
 $t[x \mapsto \underline{x}] = t$

+ associativity:

$$t[f][g] = t[x \mapsto f(x)[g]]$$

Substitution for semantics

Our notion of PL:

- Syntax: a monad $(L, bind, \eta)$
- Semantics:
 - graphs $R(X) \xrightarrow{\sigma} L(X)$ for each X

$$R(X) = { total set of reductions between } { terms taking free variables in } X$$

• substitution of reduction: variables \mapsto *L*-terms.

$$\frac{t \xrightarrow{r} u}{t[f] \xrightarrow{r[f]} u[f]}$$

Substitution for semantics made formal

R as a **module** over L

For any $f: X \to L(Y)$,

$$\mathsf{bind}_f: \ R(X) \to R(Y)$$
$$r \mapsto r[x \mapsto f(x)] \ (\mathsf{or} \ r[f])$$

s.t.

$$r[x \mapsto \underline{x}] = r$$
 $r[f][g] = r[x \mapsto f(x)[g]]$

σ and τ as L-module morphisms

$$\sigma(r[f]) \xrightarrow{r[f]} \tau(r[f])$$
Then,
$$\frac{\sigma(r) \xrightarrow{r} \tau(r)}{\sigma(r)[f] \xrightarrow{r[f]} \tau(r)[f]} \text{ enforces } \sigma(r[f]) = \sigma(r)[f]$$

$$\tau(r[f]) = \sigma(r)[f]$$

Commutation with substitution \Leftrightarrow Module morphisms $\sigma, \tau : R \to L$.

Reduction monads

Definition

A **reduction monad** is a quadruple $R \xrightarrow{\sigma} T$ s.t.

- \bullet T = monad
- R = module over T
- $\sigma, \tau : R \to T$ are T-module morphisms.

Example

 λ -calculus with β -reduction.

How can we specify a reduction monad?

- signature for the (syntactic) operations for the monad;
- 2 reduction rules, involving some specified syntactic operations.

Use of a general notion of **signature** managing this dependency.

Outline

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics

Overview

- Syntax = monad L
- Operations = module morphisms $\Sigma(L) \to L$
- 1-signatures specify operations
- 2-signatures specify operations + equations.

Outline

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics

Operations as module morphisms

Application commutes with substitution

$$(t\ u)[x \mapsto v_x] = t[x \mapsto v_x]\ u[x \mapsto v_x]$$

Categorical formulation

$$L \times L$$
 supports L -substitution

 $L \times L$ is a module over L

application commutes with substitution

 $app: L \times L \rightarrow L$ is a

module morphism

[Hirschowitz-Maggesi 2007 : Modules over Monads and Linearity]

Examples of modules

module over a monad T: supports the T-monadic substitution

Examples

- T itself
- $M \times N$ for any modules M and N:

$$\forall (t, u) \in M(X) \times N(X), \qquad X \xrightarrow{f} T(Y),$$

$$\boxed{(t,u)[f]=(t[f],u[f])}\in M(Y)\times N(Y)$$

• M' = **derivative** of a module M:

X extended with a fresh variable \diamond

$$M'(X) = M(X \coprod \{\diamond\})$$

used to model an operation binding a variable (Cf next slide).

Case of λ -calculus

 $Operations = module \ morphisms = maps \ commuting \ with \ substitution:$

Example: λ -calculus

$$\begin{array}{lll} \mathsf{app}: & \mathsf{L} \times \mathsf{L} & \to \mathsf{L} \\ \mathsf{abs}: & \mathsf{L'} & \to \mathsf{L} \end{array} \quad \left\{ \begin{array}{ll} \mathsf{abs}_{\mathsf{X}}: \mathsf{L}(\mathsf{X} \coprod \{ \diamond \}) \to \mathsf{L}(\mathsf{X}) \\ & t \mapsto \lambda \diamond .t \end{array} \right.$$

Combine operations into a single one:

$$[\mathsf{app},\mathsf{abs}]: (\mathit{L} \times \mathit{L}) \coprod \mathit{L}' \to \mathit{L}$$

1-signatures and their models

Definition

A 1-signature Σ is a (functorial) assignment

e.g. $\Sigma_{LC}(T) = (T \times T) \coprod T'$

Definition

1 **model** of a 1-signature Σ is a pair (T, m) where

- T is a monad
- $\Sigma(T) \xrightarrow{m} T$ is a module morphism

Example: λ -calculus

[app, abs] :
$$\Sigma_{LC}(L) \rightarrow L$$

Syntax

(suitable notion of model morphism [Hirschowitz-Maggesi 2012]

Definition

The syntax specified by a 1-signature Σ is the initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: $\Sigma(R) = \mathcal{P}_{\varsigma} \circ R$

Powerset endofunctor on Set.

Examples of 1-signatures generating syntax

λ -calculus	
Signature	$T \mapsto (T \times T) \times T'$
Model	$T (T \times T) \coprod T' o T$, or $T \times T \to T$
Syntax	initial model: $(L \times L) \coprod L' \xrightarrow{[app,abs]} L$

Language with a constant and a binary operation

Signature	$T\mapsto 1\coprod (T imes T)$
Model	$1 \coprod (T \times T) o T$, or $\begin{pmatrix} 1 o T \\ T imes T o T \end{pmatrix}$
Syntax	initial model

Can we generalize this pattern?

Initial semantics for algebraic 1-signatures

Definition

Algebraic 1-signatures = 1-signatures built out of derivatives, finite products, disjoint unions, and the 1-signature $\Theta: T \mapsto T$.

Algebraic 1-signatures \simeq binding signatures [Fiore-Plotkin-Turi 1999] \Rightarrow specification of *n*-ary operations, possibly binding variables.

Theorem (Hirschowitz-Maggesi 2007)

Syntax exists for any algebraic 1-signature.

Question: Can we enforce some equations in the syntax?

e.g. commutativity or associativity of a binary operation.

Quotient of algebraic signatures

Theorem (Ahrens-Lafont-Hirschowitz-Maggesi 2018)

Syntax exists for any "quotient" of algebraic 1-signatures.

Example

a commutative binary operation +:

$$\forall a, b, a+b=b+a$$

Outline

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics

Example: a commutative binary operation

Specification of a binary operation

1-Signature: $R \mapsto R \times R$ Model: $(R \cdot + : R \times R \rightarrow R)$

What is an appropriate notion of model for a commutative binary operation?

Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation?

Answer: a monad equipped with a commutative binary operation

Equation (1) states an equality between R-module morphisms:

Equations

Given a 1-signature Σ , (e.g. binary operation: $\Sigma(R) = R \times R$)

a Σ -equation A \Rightarrow B is a functorial assignment: e.g. commutativity:

$$R \mapsto \left(\begin{array}{c} A(R) \Longrightarrow B(R) \end{array}\right) \qquad \qquad R \mapsto \left(\begin{array}{c} R \times R \Longrightarrow R \end{array}\right)$$
 model of Σ parallel pair of module morphisms over R

A **2-signature** is a pair

$$(\Sigma, E)$$
1-signature set of Σ -equations

model of a 2-signature (Σ, E) :

- a model R of Σ
- s.t. \forall (A \Rightarrow B) \in E, the two morphisms $A(R) \Rightarrow B(R)$ are equal

Initial semantics for algebraic 2-signatures

Our main theorem
Syntax exists for any algebraic 2-signature.

a Σ -equation A
ightharpoonup B is **elementary** if A maps pointwise epis to pointwise epis, and $B(R) = R^{\text{t.-t}}$

Main instances of **elementary** Σ -equations $A \Rightarrow B$:

- A =algebraic 1-signature e.g. $A(R) = R \times R$
- B(R) = R

Example: fixpoint operator

Definition [AHLM CSL 2018]

A **fixpoint operator** in a monad R is a module morphism fix: $R' \rightarrow R$ s.t. for any term $t \in R(X | \{ \})$, $fix(t) = t[\diamond \mapsto fix(t)]$

Intuition:

$$fix(t) := let rec \diamond = t in t$$

Algebraic 2-signature (Σ_{fix} , E_{fix}) of a fixpoint operator:

$$\Sigma_{ ext{fix}}\left(ext{R}
ight) := ext{R'} \hspace{1cm} E_{ ext{fix}} = \left\{egin{array}{c} r' & & \\ t & & \\ t & & \\ t & & \\ \end{array}
ight. R
ight.
ight\}$$

Outline

- Reduction monads
 - Graphs
 - Substitution
- Syntax
 - Operations
 - Equations
- Semantics

Specifying reduction monads

 λ -calculus with β -reduction as a reduction monad:

- vertices = L = initial model of the signature of λ -calculus.
- arrows = $R, \sigma, \tau = ?$
 - Idea: defined inductively through reduction rules.

$$(\lambda x.t) u \to t[x := u]$$
 $\frac{t \to t'}{t u \to t' u}$...

Example: binary congruence for application.

metavariables: as a L-module L^4

$$\underbrace{t, t', u, u'} \mapsto$$

Hypothesis/conclusion = pair of λ -terms using metavariables

• as parallel module morphisms $L^4 \rightrightarrows L$

e.g.
$$t u \rightarrow t' u'$$
: $(t, t', u, u') \mapsto t u$
 $(t, t', u, u') \mapsto t' u'$

• Generalization: $L \sim$ any model T of Σ_{LC} , with application denoted by app: $T \times T \rightarrow T$,

e.g.
$$t u \rightarrow t' u'$$
: $(t, t', u, u') \mapsto \operatorname{app}(t, u)$

Reduction rules

Definition

Let $\Sigma =$ signature for monads (e.g. $\Theta \times \Theta$ for congruence for application).

Definition of Σ-reduction rules

A Σ-reduction rule $(\vec{\sigma}, \vec{\tau})$

$$\frac{\sigma_1 \to \tau_1 \dots \sigma_n \to \tau_n}{\sigma_0 \to \tau_0}$$

assigns (functorially) to each Σ -model T:

- V(T) = T-module of metavariables (e.g. $V(T) = T^4$)
- parallel *T*-module morphisms $V(T) \xrightarrow{\sigma_{i,T}} T' \cdots T'$

We write

$$\sigma_i, \tau_i: V \to \Theta^{(n_i)}$$
 $n_i = \text{number of derivatives}$

Definition

A **reduction signature** is a pair (Σ, \mathfrak{R}) where

- \bullet Σ is a signature for monads
- \Re is a family of Σ -reduction rules

Example: λ -calculus with β -reduction

- $\Sigma = \Theta \times \Theta + \Theta'$ for app and abs.
- Σ-reduction rules:
 - congruence for application
 - congruence for abstraction:

$$\frac{\textit{u} \rightarrow \textit{u'}}{\lambda \textit{x}.\textit{u} \rightarrow \lambda \textit{x}.\textit{u'}} \; \rightsquigarrow \; \frac{\pi_1 \rightarrow \pi_2}{\mathsf{abs} \circ \pi_1 \rightarrow \mathsf{abs} \circ \pi_2} \qquad \textit{T'} \times \textit{T'} \xrightarrow[\pi_2,\tau]{\pi_1,\tau} \textit{T'}$$

• β -reduction

39/43

A **model** of a signature (Σ, \mathfrak{R}) consists of:

- a reduction monad $R \xrightarrow{\sigma} T$ with a Σ -model structure on T
- for each reduction rule

• a mapping, for each $v \in V(T)(X)$,

$$\begin{pmatrix} \sigma_1(v) \xrightarrow{r_1} \tau_1(v) \\ \dots \\ \sigma_n(v) \xrightarrow{r_n} \tau_n(v) \end{pmatrix} \quad \mapsto \quad \sigma_0(v) \xrightarrow{op(r_1, \dots r_n)} \tau_0(v)$$

compatible with substitution:

$$op(r_1,\ldots r_n)[f] = op(r_1[f],\ldots,r_n[f])$$

Initiality

(appropriate notion of model morphisms)

Theorem

 Σ has an initial model (e.g. Σ is algebraic) \Rightarrow (Σ, \mathfrak{R}) has an initial model.

Examples

- The reduction signature of the previous slide for λ -calculus with β -reduction has an initial model.
- λ -calculus with explicit substitution [Kesner 2009].
 - A Theory of Explicit Substitutions with Safe and Full Composition

Generalizing from graphs to bipartite graphs yields more examples:

Examples

- (big step) cbv λ -calculus.
- π-calculus

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - What we have not done yet.
 - Even more stuff.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal on This and That. 2(1):50–100, 2000.