SÉRIES TEMPORELLES LINÉAIRES Examen 2015-2016

Durée : 2 heures. Sans document.

Les exercices sont indépendants. Il est demandé de justifier les réponses de façon concise.

Exercice 1 9 points + 1 ou 2 points de bonus si les réponses sont particulièrement bien justifiées Soit n observations d'une série temporelle bivariée (Y_{1t}, Y_{2t}) pour $t = 1, \ldots, n$. On considère le modèle de régression linéaire

$$Y_{2t} = aY_{1t} + b + U_t$$

où U_t est centré et non corrélé avec Y_{1t} .

1. Comment est calculé l'estimateur des moindres carrés ordinaires (MCO) (\hat{a}_n, \hat{b}_n) du paramètre (a, b)? 2 points (même si la solution explicite n'est pas donnée) Par définition, il vérifie

$$(\hat{a}_n, \hat{b}_n) = \underset{(a,b)}{\operatorname{arg min}} \sum_{t=1}^n (Y_{2t} - aY_{1t} - b)^2.$$

Après un calcul standard, la solution est

$$\hat{b}_n = \overline{Y_2} - \hat{a}_n \overline{Y_1}, \quad \hat{a}_n = \frac{\sum_{t=1}^n (Y_{2t} - \overline{Y_2})(Y_{1t} - \overline{Y_1})}{\sum_{t=1}^n (Y_{1t} - \overline{Y_1})^2}, \quad \overline{Y_i} = \frac{\sum_{t=1}^n Y_{it}}{n}.$$

2. Lorsque $n \to \infty$, comment se comporte l'estimateur MCO quand la série bivariée est stationnaire? 2 points (même si la justification de la convergence n'est pas donnée) Si la série est stationnaire, au sens strict et au sens faible, et ergodique, quand $n \to \infty$ on a

$$\hat{a}_n \to a_0 = \frac{\text{Cov}(Y_{1t}, Y_{2t})}{\text{Var}(Y_{1t})}, \quad \hat{b}_n \to b_0 = EY_{2t} - a_0 EY_{1t}.$$

Comme U_t est centré et non corrélé avec Y_{1t} , on a

$$EY_{2t} = aEY_{1t} + b$$
, $Cov(Y_{1t}, Y_{2t}) = aVar(Y_{1t})$,

d'où la consistance de l'estimateur MCO, c'est-à-dire $a=a_0$ et $b=b_0$. Sous des hypothèses très générales, impliquant l'existence d'un TCL, la vitesse de convergence de l'estimateur MCO est en \sqrt{n} .

- 3. Comment se comporte l'estimateur MCO quand la série bivariée est cointégrée? 1 point D'après le cours, on sait dans ce cas que l'estimateur MCO est super-convergent, à la vitesse n (i.e. $n(\hat{a}_n a, \hat{b}_n b)$ a une loi asymptotique non dégénérée).
- 4. Comment se comporte l'estimateur MCO quand la série bivariée est non stationnaire et non cointégrée? 1 point Toujours d'après le cours, on sait dans ce cas que la régression peut être fallacieuse (spurious) et que l'estimateur MCO peut ne pas converger.
- 5. Comment se comporte l'estimateur MCO quand la série bivariée est non stationnaire et non cointégrée? 1 point On est dans le cas 2, l'estimateur MCO converge vers (a, b) = (2, 0)
- 6. Comment se comporte l'estimateur MCO si

$$\begin{pmatrix} Y_{1t} \\ Y_{2t} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{t} \eta_{1i} + 2t \\ \sum_{i=1}^{t} \eta_{2i} + t \end{pmatrix},$$

où (η_{1t}) et (η_{2t}) sont deux bruits blancs forts indépendants? 1 point On est dans le cas 4 de "spurious regression", l'estimateur MCO ne converge pas. D'ailleurs la régression de Y_{2t} sur Y_{1t} n'est pas constante : $Y_{2t} = aY_{1t} + b + U_t$ avec a = 0, b = t et $U_t = \sum_{i=1}^t \eta_{2i}$.

7. Comment se comporte l'estimateur MCO si

$$\begin{pmatrix} Y_{1t} \\ Y_{2t} \end{pmatrix} = \begin{pmatrix} 2\sum_{i=1}^{t} \eta_{1i} \\ \sum_{i=1}^{t} \eta_{1i} + \eta_{2t} \end{pmatrix},$$

où (η_{1t}) et (η_{2t}) sont deux bruits blancs forts indépendants ?1 point On est dans le cas 3 de variables cointégrées, l'estimateur MCO converge à grande vitesse vers les coefficients (a,b) de la régression $Y_{2t}=aY_{1t}+b+U_t$, où $a=1/2,\ b=0$ et $U_t=\eta_{2t}$.

Exercice 2 Soit (ϵ_t) et (η_t) deux bruits blancs forts indépendants de variances strictement positives, et

$$\begin{cases} X_t = \epsilon_t + a\eta_t + b\eta_{t-1} \\ Y_t = \eta_t. \end{cases}$$

- 1. La série (Y_t) cause-t-elle la série (X_t) au sens de Granger ? 2 points On a $E(X_t \mid \{X_u, Y_u, u < t\}) = bY_{t-1} \neq E(X_t \mid \{X_u, u < t\})$ dans le cas $b \neq 0$. La série (Y_t) cause donc la série (X_t) au sens de Granger lorsque $b \neq 0$.
- 2. La série (X_t) cause-t-elle la série (Y_t) au sens de Granger ? 1 point On a $E(Y_t \mid \{X_u, Y_u, u < t\}) = 0 = E(Y_t \mid \{Y_u, u < t\})$, donc la série (X_t) ne cause pas (Y_t) au sens de Granger.
- 3. A-t-on causalité instantanée entre les séries (X_t) et (Y_t) au sens de Granger? 1 point On a $E(X_t \mid \{X_u, Y_u, u < t\}, Y_t) = aY_t + bY_{t-1} \neq E(X_t \mid \{X_u, Y_u, u < t\})$ lorsque $a \neq 0$, donc il y a causalité instantanée entre les séries (Y_t) et (X_t) dans ce cas.

Exercice 3 Soit $X_t = \eta_t \eta_{t-3}$, où (η_t) est un bruit blanc fort de loi $\mathcal{N}(0,1)$.

- 1. Le processus X_t est-il stationnaire? est-il ergodique? 1 point Par application directe du théorème ergodique, le processus X_t est stationnaire et ergodique.
- 2. Quel type de modèle ARMA suit le processus X_t ? Quel type de modèle ARMA suit le processus X_t^2 ? 2 points Le processus X_t est un bruit blanc, car il est stationnaire centré et non corrélé (il est même semifort car $E(X_t \mid \{X_u, u < t\}) = 0$). Le processus X_t^2 est stationnaire au second ordre et $Cov(X_t^2, X_{t-h}^2) = 0$ pour h > 3, donc c'est une moyenne mobile d'ordre 3.
- 3. Soit les observations X_1, \ldots, X_n . Comment sont calculées les autocorrélations empiriques $\hat{\rho}_X(h)$ de ces observations (avec $0 \le h < n$)? Vers quoi converge $\hat{\rho}_X(h)$ lorsque $n \to \infty$? 2 points Les autocorrélations empiriques sont définies par $\hat{\rho}_X(h) = \hat{\gamma}_X(h)/\hat{\gamma}_X(0)$ avec

$$\hat{\gamma}_X(h) = \frac{1}{n} \sum_{t=1}^n (X_t - \overline{X}_n)(X_{t-|h|} - \overline{X}_n)$$

pour |h| < n, avec $\overline{X}_n = \sum_{t=1}^n X_t/n$. D'après le théorème ergodique, lorsque $n \to \infty$, on a $\hat{\rho}_X(h) \to \rho_X(h)$, qui vaut 0 pour $h \neq 0$ et 1 pour h = 1.

4. Quelle est la loi asymptotique de $\sqrt{n}\hat{\rho}_X(h)$? Comparer avec celle des autocorrélations empiriques d'un bruit blanc fort. 2 points Pour $h \neq 0$, une extension du TCL donne

$$\sqrt{n}\hat{\rho}_{X}(h) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma_{h}^{2}/\gamma_{X}^{2}(0))$$
avec $\gamma_{X}(0) = E\eta_{t}^{2}\eta_{t-3}^{2} = 1$ et
$$\sigma_{h}^{2} = \lim_{n \to \infty} \operatorname{Var}\sqrt{n}\hat{\gamma}_{X}(h)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{t,s=1}^{n} \operatorname{Cov}\left(X_{t}X_{t-|h|}, X_{s}X_{s-|h|}\right)$$

$$= \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}\left(X_{1}X_{1-|h|}, X_{1+\ell}X_{1+\ell-|h|}\right)$$

$$= EX_{1}^{2}X_{1-|h|}^{2} = E\eta_{1}^{2}\eta_{1-3}^{2}\eta_{1-|h|}^{2}\eta_{1-|h|-3}^{2}$$

$$= \begin{cases} 1 \operatorname{lorsque}|h| \neq 3, \\ 3 \operatorname{lorsque}|h| = 3. \end{cases}$$

Avec un bruit blanc fort la variance asymptotique vaut toujours 1.