Système d'équations linéaires

La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique Les systèmes linéaires interviennent à travers leurs applications dans de nombreux contextes, car ils forment la base calculatoire de l'algèbre linéaire. Ils permettent également de traiter une bonne partie de la théorie de l'algèbre linéaire en dimension finie. C'est pourquoi ce cours commence avec une étude des équations linéaires et de leur résolution. Le but de ce chapitre est essentiellement pratique : il s'agit de résoudre des systèmes linéaires. La partie théorique sera revue et prouvée dans le chapitre « Matrices »

I Exemple introductif

La somme des tailles d'un fils et du père est de 2,5 mètres. La différence de tailles est de 0.5 mètres. Quel est la taille du fils?

A Modélisation

Soit la variable x représentant la taille du fils et la variable y représentant la taille du père.

La somme est 2,5 donc x + y = 2, 5.

La différence est 0,5 donc y - x = 0, 5.

Ainsi on cherche x et y vérifiant le système (S):

B Résolution par pivot de Gauss

Pour déterminer l'ensemble des solutions x et y vérifiant ce système, une idée est de découpler par itérations les dépendances entre les inconnues dans les équations par combinaison ou élimination. A chaque itération, ces deux opérations transforment un système d'équations en un autre équivalent (ayant les mêmes solutions). L'application à l'exemple introductif est :

1. pour éliminer x de la ligne 2, on ajoute à la ligne 2 la ligne 1 :

$$\begin{cases} x + y &= 2, 5 \\ 2y &= 3 \end{cases}$$

2. pour déterminer y, on divise la ligne 2 par 2 :

$$\begin{cases} x+y &= 2,5\\ y &= 1,5 \end{cases}$$

3. pour éliminer y de la ligne 2, on soustraie à la ligne 1 la ligne 2 :

$$\begin{cases} x = 1 \\ y = 1, 5 \end{cases}$$

Ainsi l'ensemble des solution est l'unique solution (1,1,5) car ce dernier système d'équations est équivalent au premier.

\mathbf{C} Structure de l'ensemble des solutions

Le système équation :

(S)
$$\begin{cases} x+y = 2,5 & (D_1) \\ -x+y = 0,5 & (D_2) \end{cases}$$

 $(S) \quad \begin{cases} x+y &= 2,5 \quad (D_1) \\ -x+y &= 0,5 \quad (D_2) \end{cases}$ est constitué de deux équations de deux droites D_1 et D_2 . Trois cas se présentent alors :

1. Si les droites D_1 et D_2 ne sont pas parallèles, alors elle s'intersecte en un unique point et le système (S)a une unique solution.

2. Si les droites D_1 et D_2 sont parallèles et non confondues, alors elle ne s'intersecte pas et le système (S)n'a pas de solution.

3. Si les droites D_1 et D_2 sont parallèles et confondues, alors elle s'intersecte en une infinité de points et le système (S) a une infinité de solutions.

Dans notre exemple, comme les vecteurs normaux aux deux droites $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ ne sont pas colinéaires, les deux droites ne sont pas parallèles et donc admettent un unique point d'intersection.

II Étude théorique 3

Ainsi l'ensemble des solution admet une unique solution.

La prochaine section est l'étude théorique qui permettra de généraliser à quelque soit le système d'équations linéaires

- la méthode de résolution à l'aide du pivot de gauss,
- la structure de l'ensemble des résultats du système, c'est à dire une unique solution ou bien aucune solution ou bien une infinité de solutions.

II Étude théorique

Définition Équation linéaire _

On appelle équation linéaire dans les variables (ou inconnues) x_1, \ldots, x_n toute relation de la forme

$$a_1x_1 + \dots + a_nx_n = b$$

où a_1, \ldots, a_n et b sont des nombres réels.

Exemple

2x+3y=6 est une équation linéaire, alors que les équations suivantes ne sont pas des équations linéaires : $2x+y^2=1$ ou $y=\sin x$.

Définition Système d'équations linéaires -

Un système de n équations linéaires à p variables est une liste de n équations linéaires dans les variables x_1, \ldots, x_p .

La forme générale d'un système linéaire de n équations à p inconnues est la suivante :

$$\begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1p}x_p & = & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2p}x_p & = & b_2 \\ \vdots & & \vdots & & & \vdots & = & \vdots \\ a_{i1}x_1 & + & a_{i2}x_2 & + & \dots & + & a_{ip}x_p & = & b_i \\ \vdots & & \vdots & & & \vdots & = & \vdots \\ a_{n1}x_1 & + & a_{n2}x_2 & + & \dots & + & a_{np}x_n & = & b_n \end{cases}$$

où les nombres a_{ij} sont les coefficients du système et les nombres b_i constituent le second membre du système. Les coefficients a_{ij} et b_i donnés.

Le système est rangé

- en lignes, L_i , correspondant aux équations numérotées de 1 à n,
- en colonnes, C_j , correspondant aux variables x_j numérotées de 1 à p.

La notation avec double indice a_{ij} correspond à ce rangement : i la ligne et j la colonne.

Exemple

Le système suivant a 2 équations et 3 variables :

$$\begin{cases} x_1 - 2x_2 + 4x_3 = 1 \\ 2x_1 + 1x_2 - 3x_3 = 2 \end{cases}$$

Définition Solution

Une solution du système linéaire est un p-uplet (s_1, s_2, \ldots, s_p) tel que si l?on substitue s_1 pour x_1 , s_2 pour x_2 et ainsi de suite dans le système linéaire, on obtient une égalité.

L'ensemble des solutions du système est l'ensemble de tous ces p-uplets.

Définition Implicite et explicite -

Un système d'équation linéaire est **implicite** en décrivant une liste de de relations linéaires entre les variables.

Résoudre un système signifie le rendre explicite en déterminant l'ensemble des solutions du système.

Exemple

Soit le système constitué de l'équation linéaire $3x_1 + x_2 = 6$.

On paramètre x_1 avec t puis on résolve l'équation par rapport à $t: x_1 = t, x_2 = -3t + 6$.

La représentation paramétrique de l'ensemble des solutions du système est :

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = t \begin{pmatrix} 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 0 \\ 6 \end{pmatrix}, \quad \forall t \in \mathbb{R}.$$

Elle est explicite.

Définition Équation homogène ____

Un **système homogène** est un système ayant un second membre avec des coefficients nuls. Il est de la forme :

$$(S_H): \begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1p}x_p & = & 0 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2p}x_p & = & 0 \\ \vdots & & \vdots & & & \vdots & = & \vdots \\ a_{i1}x_1 & + & a_{i2}x_2 & + & \dots & + & a_{ip}x_p & = & 0 \\ \vdots & & \vdots & & & \vdots & = & \vdots \\ a_{n1}x_1 & + & a_{n2}x_2 & + & \dots & + & a_{np}x_n & = & 0 \end{cases}$$

Le système homogène, noté S_H , correspondant à un système S, est le même excepté que les coefficients du second membre ont été fixés à zéro.

Exemple

Le système homogène de ce système
$$\begin{cases} x_1 & - & 2x_2 & + & 4x_3 & = & 1 \\ 2x_1 & + & 1x_2 & - & 3x_3 & = & 2 \end{cases} \text{ est } \begin{cases} x_1 & - & 2x_2 & + & 4x_3 & = & 0 \\ 2x_1 & + & 1x_2 & - & 3x_3 & = & 0 \end{cases}$$

Théorème Structure de l'ensemble des solutions d'un système linéaire

Deux cas se présentent :

- ou bien le système n'admet pas de solution, on dit qu'il est incompatible,
- ou bien le système admet au moins une solution (x_1, \ldots, x_n) , appelée solution particulière, on dit qu'il est compatible. Dans ce cas, les solutions sont de la forme :

$$S = \{ \overbrace{(x_1, \dots, x_n)}^{\text{Solution particulière}} + \overbrace{(y_1, \dots, y_p)}^{\text{Solution homogène}} : (y_1, \dots, y_p) \in S_H \}.$$

Démonstration

Voir le chapitre sur les matrices.

Exemple

Déterminer les solutions du système :

$$\begin{cases} x_1 & - & 2x_2 & + & 6x_3 & = & 1 \\ 2x_1 & + & x_2 & - & 3x_3 & = & 2 \end{cases}.$$

On a une solution particulière évidente (1,0,0). L'équation homogène est :

$$\begin{cases} x_1 & - & 2x_2 + 6x_3 = 0 \\ 2x_1 & + & 1x_2 - 3x_3 = 0 \end{cases}.$$

En soustrayant deux fois la ligne 1 à la ligne 2, on obtient :

$$\begin{cases} x_1 & - & 2x_2 + 6x_3 = 0 \\ & 5x_2 - 15x_3 = 0 \end{cases}$$

En posant $x_3 = t$, la ligne 2 donne $x_2 = 3t$ et la ligne 1 donne $x_1 = 0$. Ainsi l'ensemble des solutions du

système est

$$\{ \overbrace{(1,0,0)}^{\text{Sol particulière}} + \overbrace{t(0,3,1)}^{\text{Sol homogène}} : \forall t \in \mathbb{R} \}.$$

III Résolution par pivot de Gauss

Définition Système équivalent _____

On dit que deux systèmes linéaires sont équivalents s'ils ont le même ensemble de solutions.

Définition Opérations élémentaires ____

Les opérations suivantes sont appelées opérations élémentaires sur le système :

- 1. $L_i \leftrightarrow L_k$: échanger deux lignes,
- 2. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: multiplier une ligne par un nombre non nul,
- 3. $L_i \leftarrow L_i + \lambda L_k$ avec $\lambda \in \mathbb{R}$ et $i \neq k$: ajouter à la ligne L_i λ d'une autre ligne L_k .

Proposition Équivalence par opérations élémentaires _____

Les opérations élémentaires transforment un système linéaire en un système linéaire équivalent.

Démonstration

Voir le chapitre sur les matrices.

Remarque

Pour résoudre un système, on utilisera une succession d'opérations élémentaires jusqu'à obtenir un système où l'on peut effecteur des substitutions.

Exemple

Le système $\begin{cases} x+y &= \frac{5}{2} \\ -x+y &= \frac{1}{2} \end{cases}$ et le système $\begin{cases} x+y &= \frac{5}{2} \\ 2y &= 3 \end{cases}$ sont équivalents car le second système est la transformation du premier système par l'opération élémentaire $L_2 \leftarrow L_2 + L_1$. La ligne 2 du dernier système donne $y=\frac{3}{2}$ et substituant

Algorithme Pivot de Gauss _____

Afin de faciliter la compréhension, nous noterons \bigstar un pivot, \blacksquare un coefficient non nul et un coefficient nul.

1. Identifier la colonne se trouvant le plus à gauche contenant au moins un élément non nul qui est le pivot.

Exemple:

Le pivot est sur la deuxième colonne et deuxième ligne.

2. Permuter, s'il le faut, la première ligne avec une autre, pour que le coefficient en haut de la colonne soit non nul. C'est le pivot.

Exemple suite:

On effectue $L_1 \leftrightarrow L_2$

3. Ajouter des multiples adéquats de la première ligne aux lignes en-dessous pour annuler les coefficients.

Exemple suite:

On effectue $L_3 \leftarrow L_3 - \lambda L_1$

4. Recommencer à l'étape (1) avec oubli de la première ligne.

Exemple suite:

Le nouveau pivot est sur la troisième colonne et deuxième ligne

Comme le nouveau pivot est déjà en haut de la colonne, on n'effectue rien à l'étape (2). Pour l'étape (3), $L_3 \leftarrow L_3 - \lambda L_2$

On recommence à l'étape (1) avec oubli des deux premières lignes. Le nouveau pivot est sur la dernière ligne et dernière colonne :

La boucle se termine car chaque ligne contient un pivot.

Exemple: Unique solution

Système d'équations	Opérations élémentaires
$ \begin{cases} 2x_1 + x_2 - x_3 = 8 \\ -3x_1 - x_2 + 2x_3 = -11 \\ -2x_1 + x_2 + 2x_3 = -3 \end{cases} $ $ \begin{cases} 2x_1 + x_2 - x_3 = 8 \end{cases} $	Pivot première ligne première colonne
$\begin{cases} \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \end{cases}$	$L_2 \leftarrow L_2 - \frac{3}{2}L_1$ $L_3 \leftarrow L_3 + L_1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L_3 \leftarrow L_3 - 4L_2$
$ \begin{cases} 2x_1 + x_2 - x_3 = 8 \\ & \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ & 2x_2 + 1x_3 = 5 \end{cases} $	$L_2 \leftarrow L_2 - \frac{3}{2}L_1$ $L_3 \leftarrow L_3 + L_1$
$ \begin{cases} 2x_1 + x_2 & = 7 \\ & \frac{1}{2}x_2 & = \frac{3}{2} \\ & -x_3 & = 1 \end{cases} $	$L_1 \leftarrow L_1 - L_3$ $L_2 \leftarrow L_2 + \frac{1}{2}L_3$
$ \begin{cases} 2x_1 & = 4 \\ & \frac{1}{2}x_2 & = \frac{3}{2} \\ & -x_3 & = 1 \end{cases} $	$L_1 \leftarrow L_1 - 2L_2$
$\begin{cases} x_1 & = 2 \\ x_2 & = 3 \\ x_3 & = -1 \end{cases}$	$L_1 \leftarrow L_1 - 2L_2$
emble des solution est l'unique triplet $(2, 3, -1)$	

L'ensemble des solution est l'unique triplet (2, 3, -1).

Exemple : Une infinité de solutions

Considérons le système homogène

$$\begin{cases} 3x_1 & + & 3x_2 & - & 2x_3 & - & x_5 & = 0 \\ -x_1 & - & x_2 & + & x_3 & + & 3x_4 & + & x_5 & = 0 \\ 2x_1 & + & 2x_2 & - & x_3 & + & 2x_4 & + & 2x_5 & = 0 \\ & & & x_3 & + & 8x_4 & + & 4x_5 & = 0 \end{cases}$$

L'application de l'algorithme du pivot de Gauss donne le système équivalent suivant :

$$\begin{cases} x_1 & + & x_2 & & + & 13x_5 & = 0 \\ - & + & x_2 & & + & 20x_5 & = 0 \\ & & & x_4 & - & x_5 & = 0 \\ & & & x_3 & + & 8x_4 & + & 4x_5 & = 0 \end{cases}$$

Les variables pivots sont x_1 , x_3 et x_4 alors que les variables paramétrées sont x_2 et x_5 . Posons alors $x_2 = s$ et $x_5 = t$. On obtient

$$\begin{cases} x_1 & = -s & -13t \\ x_2 & = s \\ x_3 & = & -20t \\ x_4 & = & 2t \\ x_5 & = & t \end{cases}$$

L'ensemble des solutions est donc

$$S = \{s(-1, 1, 0, 0, 0) + t(-13, 0, -20, 2, 1) : \forall s, y \in \mathbb{R}\}.$$

Exemple: Pas de solutions

Considérons le système homogène

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 1 \\ x_1 - 2x_2 = 2 \end{cases}$$

L'application de l'algorithme du pivot de Gauss $(L_2 \leftarrow L_2 - L_1$ et $L_3 \leftarrow L_3 - L_1)$ donne le système

équivalent suivant :

$$\begin{cases} x_1 + x_2 = 1 \\ -2x_2 = 0 \\ -3x_2 = 1 \end{cases}$$

Comme x_2 doit être égale à 0 et à $-\frac{3}{2}$, il n'existe pas de solution au système.