Math 415 - Lecture 13

Basis and Dimension

Wednesday September 23rd 2015

Textbook reading: Chapter 2.3

Suggested practice exercises: Chapter 2.3 Exercise 1, 2, 3, 5, 6, 9, 11, 16, 19, 20, 22, 27.

Khan Academy video: Introduction to Linear Independence, More on linear independence, Span and Linear Independence Example, Basis of a Subspace

Strang lecture: Independence, Basis, and Dimension

- * Exam 1 (7-8:15 pm Tuesday September 29):
- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ
 - 100 MSEB: AD4, ADV, ADY, ADI, ADR
 - 150 ASL: ADA, ADB, ADJ, ADK

 MSEB is the Materials Science and Engineering Building. ASL is the Animal Science Lab.

- * Conflicts: You should have signed up for a conflict exam by now.
- * No Discussion Sections next week.
- * No Class on Wednesday next week.

1 Review

• Vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ are linearly **Dependent** if

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \dots + x_p\mathbf{v_p} = \mathbf{0},$$

and not all the coefficients are zero.

- The columns of A are linearly **IN**dependent \iff each column of A contains a pivot \iff there are no free variables for $A\mathbf{x} = \mathbf{0}$.
- Are the vectors $\begin{bmatrix} 1\\1\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3\\3 \end{bmatrix}$ independent?

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

So no, they are dependent! (Coeff's for instance $x_3 = 1, x_2 = -2, x_1 = 3$)

• Any set of 11 vectors in \mathbb{R}^{10} is linearly dependent. Why?

Definition 1. In a list of vectors $(\mathbf{v_1}, \dots, \mathbf{v_p})$ in a vector space V we call $\mathbf{v_k}$ redundant if v_k is a linear combination of the previous vectors. In this case $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_{k-1}}, \mathbf{v_k}) = \mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_{k-1}})$, i.e., you can delete the redundant vector and get the same span.

Example 2. Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$. Are there redunant vectors?

Solution. Since $\mathbf{v_3} = \mathbf{v_1} + \mathbf{v_2}$, $\mathbf{v_3}$ is redundant and $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}) = \mathrm{Span}(\mathbf{v_1}, \mathbf{v_2})$.

Today we are going to study sets of vectors without redundant elements.

2 A Basis of a Vector Space

Definition. A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a basis of V if

- $V = \operatorname{Span} \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$, and
- $\bullet \ \ {\rm the \ vectors \ } \mathbf{v_1}, \dots, \mathbf{v_p} \ {\rm are \ linearly \ independent}.$

Fact: $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a basis of V if and only if every vector \mathbf{w} in V can be uniquely expressed as $\mathbf{w} = c_1\mathbf{v_1} + \dots + c_p\mathbf{v_p}$.

Fact: A basis is a *minimal spanning set*: the elements of the basis span V but you cannot delete any of these elements and still get all of V. There are no redundant vectors.

Example 3. Let $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a basis of \mathbb{R}^3 . (It is called the **standard basis**.)

Solution. • Clearly, Span $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\} = \mathbb{R}^3$.

• $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ are independent, because $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has a pivot in each column, no free variables. Note that we can not delete one of $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ and still get all of \mathbb{R}^3 .

Definition. V is said to have **dimension** p if it has a basis consisting of p vectors.

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors. Why? (Think of $V = \mathbb{R}^3$.) A basis of \mathbb{R}^3 cannot

have more than 3 vectors, because any set of 4 or more vectors in \mathbb{R}^3 is linearly dependent. A basis of \mathbb{R}^3 cannot have less than 3 vectors, because 2 vectors span at most a plane. (Challenge: can you think of an argument that is more "rigorous"?)

Example 4. \mathbb{R}^3 has dimension 3. Indeed, the standard basis

$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

has three elements. Likewise, \mathbb{R}^n has dimension n.

Example 5. Not all vectors spaces have a finite basis. For instance, the vector space of all polynomials has infinite dimension. Its standard basis is $1, t, t^2, t^3, \ldots$ Why?

Solution. This is indeed a basis, because any polynomial can be written as a unique linear combination:

$$p(t) = a_0 + a_1 t + \dots + a_n t^n$$

for some n.

Recall that vectors in V form a **basis** of V if

- They span V.
- They are linearly independent.

These are two conditions. If we know the dimension of V, we only need to check one of these two conditions:

Theorem 1. Suppose that V has dimension d.

- ullet A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Why?

- **Solution.** If the d vectors were not independent, then d-1 of them would still span V. In the end, we would find a basis of less than d vectors.
 - If the d vectors would not span V, then we could add another vector to the set and have d+1 independent ones.

Example 6. Are the following sets a basis for \mathbb{R}^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix} \right\}$$

Solution. (a) No, the set has less than 3 elements.

(b) No, the set has more than 3 elements.

Example 7. (c) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$. Is this a basis?

Solution. (c) The set has 3 elements. Hence, it is a basis if and only if the vectors are independent.

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 5 \end{bmatrix}$$

Since each column contains a pivot, the three vectors are independent. Hence, this is a basis for \mathbb{R}^3 .

Example 8. Let P_2 be the space of polynomials of degree at most 2.

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of P_2 ?

Solution. • The standard basis for P_2 is $\{1, t, t^2\}$. This is indeed a basis because every polynomial

$$a_0 + a_1 t + a_2 t^2$$

can clearly be written as a linear combination of $1, t, t^2$ in a unique way. Hence, P_2 has dimension 3.

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements. Hence, it is a basis if and only if the three polynomials are linearly independent. We need to check whether

$$x_1t + x_2(1-t) + x_3(1+t-t^2) = 0$$

has only the trivial solution $x_1 = x_2 = x_3 = 0$. We get the equations

$$\begin{array}{rcl}
 x_2 + x_3 & = & 0 \\
 x_1 - x_2 + x_3 & = & 0 \\
 -x_3 & = & 0
 \end{array}$$

which clearly only have the trivial solution. (If you don't see it, solve the system!) Hence, $\{t, 1-t, 1+t-t^2\}$ is a basis of P_2 .

3 Shrinking and Exanding Sets of Vectors

We can find a basis for $V = \operatorname{Span}\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ by discarding, if necessary, some of the vectors in the spanning set.

Example 9. Produce a basis of \mathbb{R}^2 from the vectors

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution. Here, we notice that $\mathbf{v_2} = -2\mathbf{v_1}$. The remaining vectors $\{\mathbf{v_1}, \mathbf{v_3}\}$ are a basis for \mathbb{R}^2 , because the two vectors are clearly linearly independent.

Example 10. Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solution. $\mathbf{v_1}$ is independent. But is does not span \mathbb{R}^2 . For instance $\mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not in the span of $\mathbf{v_1}$. Let's add it! Then $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2})$ is all of \mathbb{R}^2 and we found a basis.

4 Checking Our Understanding

Example 11. Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

- The only 0-dimensional subspace is $\{0\}$.
- A 1-dimensional subspace is of the form Span $\{v\}$ where $v \neq 0$. These subspaces are lines through the origin.
- A 2-dimensional subspace is of the form $\mathrm{Span}\,\{\mathbf{v},\mathbf{w}\}$ where \mathbf{v} and \mathbf{w} are not multiples of each other. These subspaces are planes through the origin.

• The only 3-dimensional subspace is \mathbb{R}^3 itself.

True or false?

- 1. Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.
- 3. The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional. True. A still-infinite-dimensional subspace are the polynomials.
- 4. Consider $V = \operatorname{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_p} \}$. If one of the vectors, say $\mathbf{v_k}$, in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V. True. $\mathbf{v_k}$ is not adding anything new.