Particle spectrograph

Wave operator and propagator

wave operator and propagator																														
		$\mathcal{A}_{1}^{\sharp 1}$	αβ		$\mathcal{A}_{1}^{\#2}$		$f_{1}^{#1}$	αβ		A	#1 1 α		,	$\mathscr{F}_1^{\#_2}$	α	$f_{1}^{#1}\alpha$	f	c#2 1 α							1.2					t ₂
$\mathcal{A}_{1}^{\sharp 1}\! +^{lphaeta}$	k ² (2	$r_3 + r$	₅)+	2 <i>t</i> ₂ 3	$\frac{\sqrt{2} t_2}{3}$	2 <u>1</u> 3	ī V	$\frac{1}{2}kt_2$			0			0		0		0		$\sigma_{0}^{\#1}$	0			0	$\frac{1}{k^2 r_2 + t_2}$	${\mathscr A}_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$\mathcal{A}_{1}^{ ext{#2}}\dagger^{lphaeta}$		$\frac{\sqrt{2}}{3}$			<u>t2</u> 3		<u>i ki</u> 3				0			0		0		0		$\tau_0^{\#2}$		c		0	0	$f_{0}^{#2}$	0	0	0	0
$f_{1+}^{#1} \dagger^{\alpha\beta}$	<u>-</u> -	$\frac{1}{3}$ i $\sqrt{2}$	_ 2 kt ₂		$-\frac{1}{3}\bar{l}k$	t_2	<u>k²</u>	<u>t2</u>			0			0		0		0		${\mathfrak r}_0^{\#1}$	$i\sqrt{2}k$	2 k ²	$(1+2k^2)^2t_3$	0	0		. kt3	$k^2 t_3$		
${\mathscr R}_1^{\sharp 1}\dagger^lpha$		0			0		C)	k ² (^r 3 +	r ₅)-	+ ^{2 t} 3	_	$\frac{\sqrt{2} t}{3}$	<u>3</u>	0	_ <u>2</u>	ikt₃	3	1	- <u>i</u> -	2	(1+2			$f_0^{\#1}$	$-i \sqrt{2}$	2 K ²	0	0
$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$		0			0		C)	$-\frac{\sqrt{2} t_3}{3}$			<u>t3</u> 3		0	$\frac{1}{3}$ \bar{I}	$\sqrt{2} k$	<i>t</i> ₃	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	i √2 k	(2) ² t ₃	0	0	${\mathcal A}_0^{\#1}$	<i>t</i> ₃	2 kt3	0	0		
$f_{1}^{#1} \dagger^{\alpha}$		0			0		0		0			0		0		0		Ь	-					B		Ĭ √2				
$f_{1}^{#2} \dagger^{\alpha}$		0			0		C			<u>2 i</u>	3 3		$-\frac{1}{3}i$	i √2	kt ₃	0	2	3 2 k ² t ₃			$\sigma_{0}^{\#1}$ †	,#1 +	, 0 ₊ 1	τ ₀ + †	$\sigma_{0}^{\#1}$ †		$\mathcal{A}_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ -	$\mathcal{A}_{0}^{\#1}$ †
Source constraints SO(3) irreps Fundamental fields Multiplicities	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} == 0 \qquad \partial_{\beta} \partial_{\alpha} \tau^{\alpha\beta} == \partial_{\beta} \partial^{\beta} \tau^{\alpha}_{\ \alpha} + 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \sigma^{\alpha\beta}_{\ \alpha} \qquad 1$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0 \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} $ 3	$\tau_{1}^{\#1}{}^{\alpha} == 0 \qquad \qquad \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} == \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau^{\beta \alpha} \qquad \qquad 3$	$\tau_{1}^{\#1}{}^{\alpha\beta} + ik \ \sigma_{1}^{\#2}{}^{\alpha\beta} = 0 \ \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3 \ 3 \ \beta = 0$	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	$\sigma_{2}^{\#1}{}^{\alpha\beta\chi} == 0 \qquad 3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta\delta\epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta\delta}{}^{\delta} + \qquad 5$	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\delta\chi} +$	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon}{}_{\delta} +$	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\alpha \delta} \rangle_{\varepsilon} = =$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} +$	$2 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\beta} \sigma^{\delta \varepsilon} +$	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\alpha \delta \varepsilon} +$	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\beta\delta}{}_{\delta}$	$\tau_{2}^{\#1}{}^{\alpha\beta} == 0 \qquad 4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi\delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau^{\chi}{}_{\chi} + \qquad 5 \qquad \qquad 5$	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\delta}$	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi \delta} ==$	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} +$	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \iota^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \iota^{\chi \alpha} +$	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	Total constraints/gauge generators:	

$A_{\alpha}^{\theta} \partial_{i} f^{\alpha i} - 8t_{3}$ $A_{i}^{\theta} \partial_{i} f^{\alpha i} - 8t_{3}$ $A_{i}^{\theta} \partial_{i} f^{\alpha i} \partial_{i} f_{i}^{\alpha} - 8t_{3}$ $8t_{3}^{\theta} \partial_{i} f^{\alpha} \partial_{i} f_{i}^{\theta} - 8t_{3}$ $8t_{3}^{\theta} \partial_{i} f^{\alpha i} - 8t_{4}^{\theta} - 8t_{5}^{\theta} \partial_{i} f^{\alpha i} + 8t_{5}^{\theta} \partial_{i} f^{\alpha i} - 8t_{5}^{\theta} \partial_{i} f^{\alpha i}$	$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	
$A = 6 f^{\alpha\beta} t_{\alpha\beta} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 8t_3 \mathcal{A}_{\alpha}^{\ \theta} \partial_i f^{\alpha i} - 8t_3$ $\mathcal{A}_{i}^{\ \theta} \partial^{i} f^{\alpha} + 4t_3 \partial_i f^{\theta} \partial^{j} f^{\alpha} - 3r_3 \partial_{\beta} \mathcal{A}_{i}^{\ \theta} \partial^{j} f^{\alpha i} - 8t_3$ $\mathcal{A}_{i}^{\ \theta} \partial^{j} f^{\alpha} + 4t_3 \partial_{i} f^{\theta} \partial^{j} f^{\alpha} - 3r_3 \partial_{\beta} \mathcal{A}_{i}^{\ \theta} \partial^{j} f^{\alpha i} - 8t_3 \partial_{i} f^{\alpha i} \partial_{i} f^$	$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	
adratic (free) action == $ \iint_{c} \left\{ (-4t_3) \mathcal{A}_{\alpha}^{a} \mathcal{A}_{\beta}^{a} + 6 f^{a\beta} t_{\alpha\beta} + 6 \mathcal{A}^{a\beta X} \sigma_{a\beta X} + 8t_3 \mathcal{A}_{\beta}^{a} \theta_{\beta} f^{aa} - 8t_3 \right\} $ $ \mathcal{A}_{\beta}^{\theta} \partial^{\beta} f^{a}_{\alpha} + 4t_3 \partial_{\beta} f^{\theta} \partial^{\beta} f^{a}_{\alpha} - 3t_3 \partial_{\beta} \mathcal{A}_{\beta}^{a} \theta_{\beta} \partial^{\beta} f^{a}_{\alpha} - 8t_3 \partial_{\beta} \mathcal{A}_{\beta}^{a} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} + 4t_3 \partial_{\beta} f^{aa} \partial_{\beta} f^{aa} \partial_{\beta} f^{aa} \partial_{\beta} f^{aa} \partial^{\beta} f^{aa} - 8t_3 \partial_{\beta} f^{aa} \partial_{\beta} f^{aa} \partial^{\beta} f^{aa} + 4t_3 \partial_{\beta} f^{aa} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} + 6t_3 \partial_{\beta} f^{aa} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} \partial^{\beta} f^{aa} + 2t_2 \partial_{\alpha} f^{a} \partial^{\beta} f^{aa} \partial^{\beta} f^$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	
Quadratic (free) action $S == \begin{cases} S == \\ \iiint_{\epsilon} (-4 t_3 \mathcal{A}^{\alpha'} \mathcal{A})^{\epsilon} \\ t t \end{cases}$	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	
Quadrat S == [Simple colored to the colored to th		$\sigma_{1}^{\#1} \dagger^{\alpha \beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha^{\beta}$	

 $\mathcal{A}_{2}^{\#1} +^{\alpha \beta \chi}$

 $\tau_{1}^{\#2}{}_{\alpha}$

 $\sigma_{1^{-}\alpha}^{\#2}$

 $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$

 $\sigma_1^{\#2} +^{\alpha}$

 $\tau_{1}^{\#1} \dagger^{\alpha}$

Massive and massless spectra

Massive particl	e
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd

?		
? /	Quadratic pole	2
?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} >$
?	Polarisations:	2
?		

Unitarity conditions