Agrégation Externe

L'anneau $\mathbb{Z}/n\mathbb{Z}$

Ce problème est en relation avec les leçons d'oral suivantes :

- 120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.
- 121: Nombres premiers. Applications.
- 126: Exemples d'équations diophantiennes.

On pourra consulter les ouvrages suivants.

- P. Boyer, J. J. Risler: Algèbre pour la licence 3. Groupes, anneaux, corps. Dunod (2006).
- F. Combes Algèbre et géométrie. Bréal (2003).
- M. Demazure. Cours d'algèbre. Cassini. (1997).
- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
- H. GIANELLA, F. KRUST, F. TAIEB, N. TOSEL: Problèmes choisis de mathématiques supérieures. Springer (2001).
- X. GOURDON. Les Maths en tête. Algèbre. Ellipses.
- K. Madere. Préparation à l'oral de l'agrégation. Leçons d'algèbre. Ellipses (1998).
- P. Ortiz. Exercices d'algèbre. Ellipses (2004).
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- G. Rauch. Les groupes finis et leurs représentations. Ellipses (2000).

Pour tout entier naturel $n \geq 0$, on note $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes résiduelles modulo n et, pour $n \neq 1$, $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{\overline{0}\}$.

Pour n = 0, l'anneau \mathbb{Z}_0 est isomorphe à \mathbb{Z} et pour n = 1, le groupe \mathbb{Z}_1 est réduit à $\{\overline{0}\}$.

Pour ce qui suit, on suppose que $n \geq 2$ et on note \mathbb{Z}_n^{\times} le groupe multiplicatif des éléments inversibles

Si k est un entier relatif, on note $\overline{k} = k + n\mathbb{Z}$ la classe de k dans \mathbb{Z}_n et en utilisant le théorème de division euclidienne, on vérifie que :

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} = \{\overline{1}, \cdots, \overline{n}\}$$

est d'ordre n.

Pour tout couple (a, b) d'entiers relatifs, on note $a \wedge b$ le pgcd de a et b et $a \vee b$ leur ppcm.

La fonction indicatrice d'Euler est la fonction φ qui associe à tout entier naturel non nul n, le nombre $\varphi(n)$ d'entiers compris entre 1 et n qui sont premiers avec n (pour n=1, on a $\varphi(1)=1$).

Tout groupe cyclique d'ordre n est isomorphe à \mathbb{Z}_n .

$$-$$
 I $-$ Généralités sur $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$

- 1. Montrer qu'il existe une unique structure d'anneau commutatif unitaire sur \mathbb{Z}_n telle que la surjection canonique π_n soit un morphisme d'anneaux.
 - Plus généralement, pour tout idéal I d'un anneau commutatif unitaire \mathbb{A} , Il existe une unique structure d'anneau commutatif unitaire sur $\frac{\mathbb{A}}{I}$ telle que la surjection canonique $\pi_I: a \in \mathbb{A} \to \mathbb{A}$
 - $\overline{a} = a + I \in \frac{\mathbb{A}}{I}$ soit un morphisme d'anneaux.
- 2. Montrer qu'un élément de $\mathbb{Z}_n \setminus \{\overline{0}\}$ est soit inversible, soit un diviseur de $\overline{0}$.
- 3. Quels sont les éléments nilpotents de l'anneau \mathbb{Z}_n ?
- 4. Montrer que tous les sous-groupes de \mathbb{Z}_n sont cycliques et que pour tout diviseur d de n, il existe un unique sous-groupe de \mathbb{Z}_n d'ordre d.
- 5. Montrer que les idéaux de l'anneau \mathbb{Z}_n sont ses sous-groupes additifs.
- 6. Déterminer tous les idéaux de \mathbb{Z}_n .
- 7. Quels sont les idéaux premiers, maximaux de $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}}$ pour $n \geq 2$?

- II - Morphismes de groupes, d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m . Le groupe $\mathrm{Aut}\,(\mathbb{Z}_n)$

Pour tout entier relatif k, on note respectivement \overline{k} la classe de k modulo n et \hat{k} sa classe modulo m.

Un morphisme d'anneaux commutatifs unitaires $\varphi : \mathbb{A} \to \mathbb{B}$ est tel que $\varphi(1_{\mathbb{A}}) = 1_{\mathbb{B}}$.

On note $\operatorname{Hom}_{gr}(\mathbb{Z}_n,\mathbb{Z}_m)$ [resp. $\operatorname{Hom}_{Ann}(\mathbb{Z}_n,\mathbb{Z}_m)$] l'ensemble des morphismes de groupes [resp. d'anneaux] de \mathbb{Z}_n dans \mathbb{Z}_m .

Pour tout entier $n \geq 2$, on note Aut (\mathbb{Z}_n) le groupe des automorphismes du groupe additif \mathbb{Z}_n .

1. Montrer que pour n = m = 0, on a :

$$\operatorname{Hom}_{qr}(\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z} \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z},\mathbb{Z}) = \{Id\}$$

2. Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\operatorname{Hom}_{gr}(\mathbb{Z}_n,\mathbb{Z}) = \{0\} \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z}_n,\mathbb{Z}) = \emptyset$$

3. Montrer que pour tout $m \in \mathbb{N}^*$, on a :

$$\operatorname{Hom}_{gr}(\mathbb{Z}, \mathbb{Z}_m) \cong \mathbb{Z}_m \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z}, \mathbb{Z}_m) = \{\pi_m\}$$

4. Montrer que pour n, m premiers entre eux dans \mathbb{N}^* , on a :

$$\operatorname{Hom}_{gr}\left(\mathbb{Z}_{n},\mathbb{Z}_{m}\right)=\left\{\widehat{0}\right\} \text{ et } \operatorname{Hom}_{Ann}\left(\mathbb{Z},\mathbb{Z}_{m}\right)=\emptyset$$

5. Montrer que pour n, m non premiers entre eux dans \mathbb{N}^* , on a :

$$\operatorname{Hom}_{gr}(\mathbb{Z}_n,\mathbb{Z}_m) \cong \mathbb{Z}_{\delta} = \mathbb{Z}_{n \wedge m}$$

et:

$$\operatorname{Hom}_{Ann}\left(\mathbb{Z}_{n},\mathbb{Z}_{m}\right)=\left\{\begin{array}{l}\left\{\overline{k}\mapsto\widehat{k}\right\} \text{ si }m\text{ divise }n\\\emptyset\text{ si }m\text{ ne divise pas }n\end{array}\right.$$

6. Montrer que pour tout $x \in \mathbb{Z}_n^{\times}$ l'application $\sigma(x)$ définie sur \mathbb{Z}_n par :

$$\forall y \in \mathbb{Z}_n, \ \sigma(x)(y) = xy$$

est un automorphisme du groupe additif \mathbb{Z}_n , puis que l'application σ réalise un isomorphisme de $(\mathbb{Z}_n^{\times}, \cdot)$ sur $(\operatorname{Aut}(\mathbb{Z}_n), \circ)$.

7. Montrer que pour tout entier $n \geq 2$, les idéaux de l'anneau \mathbb{Z}_n sont principaux. L'anneau \mathbb{Z}_n est-il principal? Quels sont les quotients de \mathbb{Z}_n ?

- III - Le groupe multiplicatif \mathbb{Z}_n^{\times} , fonction indicatrice d'Euler

- 1. Soit a un entier relatif. Montrer que les propriétés suivantes sont équivalentes :
 - (a) \overline{a} est inversible dans \mathbb{Z}_n ;
 - (b) a est premier avec n;
 - (c) \overline{a} est un générateur de $(\mathbb{Z}_n, +)$.
- 2. Montrer que pour tout entier relatif a premier avec n, on a $a^{\varphi(n)} \equiv 1$ (n) (théorème d'Euler).
- 3. Soit p un entier naturel premier. Montrer que pour tout entier relatif a premier avec n, on a $a^{p-1} \equiv 1$ (p) et pour tout entier relatif a, on a $a^p \equiv a$ (p) (théorème de Fermat).
- 4. Montrer que pour tout entier $n \geq 3$, $\varphi(n)$ est un entier pair.
- 5. Soit $p \ge 2$ un nombre premier. Expliquer comment utiliser le théorème de Fermat pour simplifier le calcul du reste dans la division euclidienne par p d'un entier de la forme a^b , où a, b sont des entiers plus grands que p, l'entier p ne divisant pas a.

Par exemple, calculer le reste dans la division euclidienne de 115^{2013} par 11.

- 6. Montrer que, pour tout entier $n \geq 2$, les assertions suivantes sont équivalentes :
 - (a) n est premier;
 - (b) pour tout entier naturel non nul α , on a $\varphi(n^{\alpha}) = (n-1) n^{\alpha-1}$;
 - (c) $\varphi(n) = n 1$;
 - (d) \mathbb{Z}_n est un corps;
 - (e) \mathbb{Z}_n est un intègre;
 - (f) $(n-1)! \equiv -1$ (n) (théorème de Wilson);
 - (g) $(n-2)! \equiv 1 \ (n)$;

- (h) pour tout k comprisentre 1 et n, on a $(n-k)!(k-1)! \equiv (-1)^k \pmod{n}$;
- (i) pour tout entier k compris entre 1 et n-1, on a $\binom{n}{k} \equiv 0 \pmod{n}$;
- (j) pour tout entier k compris entre 1 et n-1, on a $\binom{n}{k} \equiv 0 \pmod{n}$ et $\binom{n-1}{k} \equiv (-1)^k \pmod{n}$.
- 7. Soit p un nombre premier impair.
 - (a) Montrer qu'il y a exactement $\frac{p-1}{2}$ carrés et $\frac{p-1}{2}$ non carrés dans \mathbb{Z}_p^* .
 - (b) Montrer que l'ensemble des carrés de \mathbb{Z}_p^* est l'ensemble des racines du polynôme $X^{\frac{p-1}{2}} \overline{1}$ et que l'ensemble des non carrés de \mathbb{Z}_p^* est l'ensemble des racines du polynôme $X^{\frac{p-1}{2}} + \overline{1}$.
 - (c) Montrer que $-\overline{1}$ est un carré dans \mathbb{Z}_p si, et seulement si, p est congru à 1 modulo 4. Dans ce cas, donner une racine carrée explicite de $-\overline{1}$.
- 8. On s'intéresse aux racines du polynôme $P(X) = X^2 1$ dans \mathbb{Z}_n pour $n \geq 2$.
 - (a) Traiter le cas où $n=p^{\alpha}$ où $p\geq 3$ est premier et $\alpha\geq 1$.
 - (b) Traiter le cas où $n = 2^{\alpha}$ où $\alpha \ge 1$.
 - (c) Traiter le cas général $n \geq 2$.
- 9. Montrer que pour tout entier $n \geq 2$, on a :

$$n = \sum_{d \in \mathcal{D}_n} \varphi\left(d\right)$$

(formule de Möbius).

- IV - Le théorème chinois

- 1. Soient $(n_j)_{1 \le j \le r}$ une suite de $r \ge 2$ entiers naturels distincts de 0 et 1 et $n = \prod_{j=1}^r n_j$.
 - (a) Montrer que les entiers n_1, \dots, n_r sont deux à deux premiers entre eux si, et seulement si, les anneaux \mathbb{Z}_n et $\prod_{j=1}^r \mathbb{Z}_{n_j}$ sont isomorphes.
 - (b) Pour n_1, \dots, n_r sont deux à deux premiers entre eux, montrer que l'application :

$$\psi: \mathbb{Z}_n \to \prod_{j=1}^r \mathbb{Z}_{n_j}$$

$$\overline{k} \mapsto (\pi_1(k), \cdots, \pi_r(k))$$

est un isomorphisme d'anneaux d'inverse :

$$\psi^{-1}: \prod_{j=1}^{r} \mathbb{Z}_{n_{j}} \to \mathbb{Z}_{n}$$

$$(\pi_{1}(a_{1}), \cdots, \pi_{r}(a_{r})) \mapsto \sum_{i=1}^{r} a_{i} u_{i} m_{i}$$

où $(u_j)_{1 \le j \le r}$ est une suite d'entiers relatifs telle que $\sum_{j=1}^r u_j \frac{n}{n_j} = 1$.

4

2. Expliquer comment utiliser le théorème chinois pour étudier un système d'équations diophantiennes :

$$k \equiv a_j \pmod{n_j} \ (1 \le j \le r)$$

où $(a_j)_{1 \le j \le r}$ est une suite donnée d'entiers relatifs.

3. Résoudre le système d'équations diophantiennes :

$$\begin{cases} k \equiv 2 \pmod{4} \\ k \equiv 3 \pmod{5} \\ k \equiv 1 \pmod{9} \end{cases}$$

- 4. Montrer que si \mathbb{A} , \mathbb{B} sont deux anneaux unitaires et φ est un isomorphisme d'anneaux de \mathbb{A} sur \mathbb{B} , il réalise alors un isomorphisme de groupes de \mathbb{A}^{\times} (groupe des éléments inversibles de \mathbb{A}) sur \mathbb{B}^{\times} .
- 5. Montrer que si $n \geq 2$ a pour décomposition en facteurs premiers $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec $2 \leq p_1 < \cdots < p_r$ premiers et les α_i entiers naturels non nuls, on a alors :

$$\varphi(n) = \prod_{i=1}^{r} p_i^{\alpha_i - 1} (p_i - 1) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

6. Soient p et q deux nombres premiers distincts et n = pq. Montrer que si a et b sont deux entiers naturels tels que $ab \equiv 1 \pmod{\varphi(n)}$, alors pour tout entier relatif m, on a $m^{ab} \equiv m \pmod{n}$. Ce résultat est à la base du système cryptographique R.S.A.

$$-\mathbf{V}-\mathbb{Z}_{p^{\alpha}}^{\times}$$
 est cyclique pour $p\geq 3$ premier et $\alpha\geq 1$

1. On se propose de montrer que, pour tout nombre premier p, le groupe \mathbb{Z}_p^* est cyclique. Ce résultat est un cas particulier du suivant : tout sous-groupe fini du groupe multiplicatif $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$ d'un corps commutatif \mathbb{K} est cyclique.

Pour \mathbb{Z}_p^* , on peut en donner une démonstration directe basée sur des considérations arithmétiques relativement simples.

On peut aussi en donner une démonstration qui utilise la formule de Möbius.

- (a) Soient (G, \cdot) un groupe commutatif, $r \geq 2$ un entier et g_1, \dots, g_r dans G des éléments d'ordres finis respectifs n_1, \dots, n_r deux à deux premiers entre eux. Montrer que $g = g_1 \cdot \dots \cdot g_r$ est d'ordre $n = \prod_{k=1}^r n_k$.
- (b) Soient $p \geq 3$ un nombre premier impair et $p-1 = \prod_{j=1}^r p_j^{\alpha_j}$ sa décomposition en facteurs premiers où $2 \leq p_1 < \dots < p_r$ sont premiers et les α_j , pour j compris entre 1 et r, sont des entiers naturels non nuls.
 - i. Soient j compris entre 1 et $r, q_j = \frac{p-1}{p_j^{\alpha_j}}$ et $x \in \mathbb{Z}_p^*$. Montrer que x^{q_j} est d'ordre $p_j^{r_{x,j}}$ où $0 \le r_{x,j} \le \alpha_j$.
 - ii. Montrer que, pour j compris entre 1 et r, il existe dans \mathbb{Z}_p^* un élément d'ordre $p_j^{\alpha_j}$.
 - iii. En déduire que \mathbb{Z}_p^* est cyclique.

- (c) Soit p un nombre premier et \mathcal{D}_{p-1} l'ensemble des diviseurs de p-1 dans \mathbb{N}^* . Pour tout $d \in \mathcal{D}_{p-1}$, on note $\psi(d)$ le nombre d'éléments d'ordre d dans le groupe multiplicatif \mathbb{Z}_p^* .
 - i. Montrer que $p-1=\sum_{d\in\mathcal{D}_{p-1}}\psi\left(d\right)$.
 - ii. Montrer que $\psi(d) = \varphi(d)$ pour tout $d \in \mathcal{D}_{p-1}$ tel que $\psi(d) \ge 1$.
 - iii. En utilisant la formule de Möbius, montrer que $\psi(d) = \varphi(d)$ pour tout $d \in \mathcal{D}_{p-1}$ et en déduire que \mathbb{Z}_p^* est cyclique.
- 2. Montrer que si p est un nombre premier impair et α un entier supérieur ou égal à 2, alors le groupe multiplicatif $\mathbb{Z}_{p^{\alpha}}^{\times}$ est cyclique.
- 3. Montrer que \mathbb{Z}_2^{\times} et $\mathbb{Z}_{2^2}^{\times}$ sont cycliques.
- 4. On s'intéresse au groupe multiplicatif $\mathbb{Z}_{2^{\alpha}}^{\times}$ pour $\alpha \geq 3$.
 - (a) Montrer qu'il existe une suite $(\lambda_k)_{k\in\mathbb{N}}$ d'entiers impairs tels que :

$$\forall k \in \mathbb{N}, \ 5^{2^k} = 1 + \lambda_k 2^{k+2}$$

- (b) Montrer que la classe résiduelle de 5 modulo 2^{α} est d'ordre $2^{\alpha-2}$ dans $\mathbb{Z}_{2^{\alpha}}^{\times}$.
- (c) On désigne par ψ l'application qui à toute classe résiduelle modulo 2^{α} , $k+2^{\alpha}\mathbb{Z}$, associe la classe résiduelle modulo 4, $k+4\mathbb{Z}$. Montrer que cette application est bien définie, qu'elle induit un morphisme surjectif de groupes multiplicatifs de $\mathbb{Z}_{2^{\alpha}}^{\times}$ sur \mathbb{Z}_{4}^{\times} et que son noyau est un groupe cyclique d'ordre $2^{\alpha-2}$.
- (d) Montrer que l'application :

$$\pi: \ \mathbb{Z}_{2^{\alpha}}^{\times} \to \mathbb{Z}_{4}^{\times} \times \ker(\psi)$$
$$x \mapsto (\psi(x), \psi(x)x)$$

est un isomorphisme de groupes. En déduire que $\mathbb{Z}_{2^{\alpha}}^{\times}$ est isomorphe à $\mathbb{Z}_2 \times \mathbb{Z}_{2^{\alpha-2}}$. Le groupe $\mathbb{Z}_{2^{\alpha}}^{\times}$ est-il cyclique?

On peut montrer le résultat suivant.

Théorème 1 Le groupe multiplicatif \mathbb{Z}_n^{\times} est cyclique si, et seulement si, $n=2, 4, p^{\alpha}$ ou $2p^{\alpha}$ avec p premier impair et $\alpha \geq 1$.

- VI - Nombres de Carmichaël

On appelle nombre de Carmichaël tout entier $n \geq 2$ non premier tel que :

$$\forall x \in \mathbb{Z}_n^{\times}, \ x^{n-1} = \overline{1}$$

- 1. Montrer qu'un nombre de Carmichaël est impair.
- 2. Montrer que 561 est un nombre de Carmichaël.
- 3. Soit $n \geq 3$ un entier admettant un facteur carré, c'est-à-dire qu'il existe un nombre premier $p \geq 2$ et un entier $q \geq 1$ tels que $n = p^2q$. Montrer que n n'est pas un nombre de Carmichaël.
- 4. Soit $n \geq 3$ un entier. Montrer que les propriétés suivantes sont équivalentes :
 - (a) il existe un entier $r \ge 3$ et des nombres premiers $3 \le p_1 < \dots < p_r$ tels que $n = \prod_{j=1}^r p_j$ et, pour tout indice j compris entre 1 et r, $p_j 1$ divise n 1;

(b) n est non premier et :

$$\forall x \in \mathbb{Z}_n, \ x^n = x$$

- (c) n est un nombre de Carmichaël.
- 5. Soit $a \in \mathbb{N}^*$ tel que les entiers $p_1 = 6a + 1$, $p_2 = 12a + 1$ et $p_3 = 18a + 1$ soient premiers. Montrer que $n = p_1 p_2 p_3$ est un nombre de Carmichaël.

- VII - Le théorème de Frobénius-Zolotarev

Pour cette partie, $p \geq 3$ est un nombre premier impair et $n \geq 2$ est un entier.

Pour tout entier relatif a, on note $\overline{a} \in \mathbb{Z}_p$ la classe résiduelle de a modulo p.

On dit qu'un entier a non multiple de p est un résidu quadratique modulo p si il existe un entier k tel que $k^2 \equiv a \pmod{p}$, ce qui signifie que \overline{a} est un carré dans \mathbb{Z}_p^* .

Pour tout $\lambda \in \mathbb{Z}_p^*$, on définit le symbole de Legendre $\left(\frac{\lambda}{p}\right)$ par :

$$\left(\frac{\lambda}{p}\right) = \begin{cases} 1 \text{ si } \lambda \text{ est un carr\'e dans } \mathbb{Z}_p^* \\ -1 \text{ sinon} \end{cases}$$

1. Soit $\varphi: \mathbb{Z}_p^* \to \{-1,1\}$ un morphisme de groupes non trivial. Montrer que :

$$\forall \lambda \in \mathbb{Z}_p^*, \ \varphi\left(\lambda\right) = \left(\frac{\lambda}{p}\right)$$

- 2. Soit $\gamma: GL_n(\mathbb{Z}_p) \to \{-1,1\}$ un morphisme de groupes non trivial.
 - (a) Montrer que $\gamma(A) = 1$ pour toute matrice de transvection A.
 - (b) Montrer que $\gamma(A) = \left(\frac{\det(A)}{p}\right)$ pour toute matrice de dilatation A.
 - (c) Montrer que $\gamma(A) = \left(\frac{\det(A)}{p}\right)$ pour toute matrice $A \in GL_n(\mathbb{Z}_p)$.
- 3. Une matrice $A \in GL_n(\mathbb{Z}_p)$ peut être identifiée à un automorphisme de \mathbb{Z}_p^n qui est une permutation particulière de l'ensemble fini \mathbb{Z}_p^n , donc la restriction de la signature des permutations à $GL\left(\mathbb{Z}_p^n\right)$ permet de définir une morphisme de groupes ε de $GL_n\left(\mathbb{Z}_p\right)$ dans $\{-1,1\}$. Montrer que :

$$\forall A \in GL_n(\mathbb{Z}_p), \ \varepsilon(A) = \left(\frac{\det(A)}{p}\right)$$

– VIII – Groupes abéliens finis

On note $\theta(g)$ l'ordre d'un élément g d'un groupe G.

Pour un groupe fini G, l'entier $e\left(G\right)=\max_{g\in G}\theta\left(g\right)$ est l'exposant du groupe.

Un caractère d'un groupe G est un morphisme de groupes de G dans \mathbb{C}^* .

Pour tout entier $m \geq 2$, on note Γ_m le groupe cyclique des racines m-èmes de l'unité dans \mathbb{C}^* .

1. Soient (G, \cdot) un groupe commutatif, $r \geq 2$ un entier et g_1, g_2, \dots, g_r des éléments deux à deux distincts de G d'ordres respectifs m_1, m_2, \dots, m_r . Montrer qu'il existe dans G un élément g_0 d'ordre égal au ppcm de ces ordres. 2. Soit (G, \cdot) un groupe commutatif fini. Montrer que :

$$e\left(G\right) = \max_{g \in G} \theta\left(g\right) = \operatorname{ppcm}\left\{\theta\left(g\right) \mid g \in G\right\}$$

- 3. Soit (G, \cdot) un groupe commutatif fini d'ordre $n \geq 2$. Montrer que n et son exposant $m = \max_{g \in G} \theta(g)$ ont les mêmes facteurs premiers.
- 4. Montrer qu'un groupe de cardinal $p \geq 2$ premier est cyclique (donc commutatif et isomorphe à \mathbb{Z}_p).
- 5. Montrer qu'un groupe commutatif d'ordre pq, où p et q sont deux nombres premiers distincts, est cyclique. Il est donc commutatif et isomorphe à \mathbb{Z}_{pq} .
- 6. Montrer que si $n \ge 2$ est un entier premier avec $\varphi(n)$, alors tout groupe commutatif d'ordre n est cyclique.
- 7. Montrer que si $n \geq 2$ est un entier premier avec $\varphi(n)$, alors tout groupe d'ordre n est cyclique.
- 8. Montrer que si $n \geq 2$ est un entier non premier avec $\varphi(n)$, il existe alors un groupe non cyclique d'ordre n.

On a donc montré qu'un entier $n \geq 2$ est premier avec $\varphi(n)$ si, et seulement si, tout groupe d'ordre n est cyclique.

- 9. Soit G un groupe commutatif d'ordre $n \geq 2$.
 - (a) Soient H un sous-groupe de G distinct de G, $\varphi: H \to \mathbb{C}^*$ un caractère et g un élément de $G \setminus H$.
 - i. Justifier la définition de l'entier :

$$r = \min \left\{ k \in \mathbb{N}^* \mid g^k \in H \right\}$$

ainsi que l'existence d'un nombre complexe $\alpha \in \mathbb{C}^*$ tel que $\varphi(g^r) = \alpha^r$.

- ii. Montrer que le caractère $\varphi: H \to \mathbb{C}^*$ peut se prolonger en un caractère sur le groupe $\langle g, H \rangle$ engendré par g et H.
- iii. Déduire de ce qui précède que le caractère $\varphi: H \to \mathbb{C}^*$ peut se prolonger en un caractère sur G.
- (b) On se donne un élément g_0 de G d'ordre égal à l'exposant de G, soit :

$$m = \theta(g_0) = \max_{g \in G} \theta(g) = \operatorname{ppcm} \{\theta(g) \mid g \in G\}$$

En supposant que $m \leq n-1$, on note $K = \langle g_0 \rangle$ le sous groupe cyclique de G engendré par g_0 .

- i. Montrer qu'il existe un unique caractère $\varphi_0: K \to \mathbb{C}^*$ tel que $\varphi_0(g_0) = \omega = e^{\frac{2i\pi}{m}}$.
- ii. En prolongeant le caractère φ_0 en un caractère φ de G, montrer que l'application :

$$\theta: \langle g_0 \rangle \times \ker (\varphi) \to G (g_0^k, h) \mapsto g_0^k h$$

est un isomorphisme de groupes.

(c) Déduire de ce qui précède, qu'il existe une suite d'entiers $(n_k)_{1 \le k \le r}$ telle que $n_1 \ge 2$, n_2 est multiple de $n_1, ..., n_k$ est multiple de n_{k-1} et G est isomorphe au groupe produit $\Gamma = \prod_{k=1}^r \Gamma_{n_k}$.

(d) Soient $(n_k)_{1 \le k \le r}$ et $(m_j)_{1 \le j \le s}$ deux suites d'entiers telles que $r \ge 2$, $s \ge 2$, $n_1 \ge 2$, m_{k-1} divise n_k et m_{j-1} divise m_j pour k compris entre 2 et r et j compris entre 2 et s. Montrer que ces suites sont identiques si, et seulement si, on a :

$$\forall m \in \mathbb{N}^*, \ \prod_{k=1}^r \operatorname{pgcd}(m, n_k) = \prod_{j=1}^s \operatorname{pgcd}(m, m_j)$$

- (e) En utilisant le résultat précédent, montrer qu'il existe une unique suite d'entiers $(n_k)_{1 \le k \le r}$ telle que $n_1 \ge 2$, n_2 est multiple de n_1 , ..., n_k est multiple de n_{k-1} et G est isomorphe au groupe produit $\Gamma = \prod_{k=1}^r \Gamma_{n_k}$ (théorème de Kronecker).
 - La suite $(n_k)_{1 \leq k \leq r}$ est la suite des invariants de G et elle caractérise G à isomorphisme près.