Jonas Bilal Robin Vogt 05.06.2020

Systemtheorie und Regelungstechnik Übungsblatt 4

UNI FREIBURG

Aufgabe 1

Sei u = 1, K = 2.

$$5\dot{y} + y = 2\tag{1}$$

Aufgabe 2

a)

$$i_1(t) + i_2(t) + i_C(t) = 0 (2)$$

$$\frac{v_E(t)}{R_1} + \frac{v_C(t)}{R_2} + C\dot{v}_C(t) = 0 \tag{3}$$

$$\dot{v}_C(t) = -\frac{1}{R_2 C} v_C(t) - \frac{1}{R_1 C} v_E(t) \tag{4}$$

Jetzt noch in die Standardform, also $v_c(t) := x(t), v_E(t) := u(t)$:

$$f(x,u) = \dot{x}_C(t) = -\frac{1}{R_2 C} x(t) - \frac{1}{R_1 C} u(t)$$
(5)

b)

Aus der Elektronik ist bekannt, das gilt:

$$y(t) = y(0) - \frac{1}{R_2 C} \int_0^t u_E(\tau) d\tau$$
 (6)

$$v_c(t) = v_c(0) + \frac{1}{C} \int_0^t i_c(\tau) d\tau$$
 (7)

Mit

$$i_c(t) = -(i_1(t) + i_2(t)) = -\left(\frac{v_E(t)}{R_1} + \frac{v_C(t)}{R_2}\right) \text{ und } u(t) = v_E(t), x(t) = v_c(t)$$
 (8)

folgt:

$$y(t) = y(0) - \frac{1}{C} \int_0^t \frac{u(\tau)}{R_1} + \frac{x(\tau)}{R_2} d\tau$$
 (9)

c)

Das System ist linear, weil die DGL linear ist (man kann zeigen, dass eine DGL linear ist, wenn jeder Summand linear ist). Davon abgesehen, sind die Bauteile lineare Bauteile. Zeitinvarianz: $\partial_t f = 0$, also zeitinvariant.

d)

$$\dot{y}(t) + \frac{1}{R_2 C} y(t) = \frac{1}{R_1 C} u(t) \tag{10}$$

e)

Abbildung 1: Blockschaltbild

f)

Um ein Verzögerungsglied erster Ordnung.

g) + h)

Abbildung 2: Ein- und Ausgänge bei Gleich und Wechselssignalen

In den Plots 3 bis 4 ist deutlich zu erkennen, dass die Verstärkung mit größerer Frequenz geringer wird und das Signal eine Phasenverschiebung um bis zu $\frac{\pi}{2}$ erleidet. Je größere die Frequenz, desto mehr wird das Signal also abgeschwächt. Man hat also einen Tiefpass.