

SEQUENCE LISTING

<110> Clarkson, Kathleen A.
Fenel, Fred

<120> Modified Enzymes, Methods to Produce
Modified Enzymes and Uses Thereof

<130> GC812-C1

<140> US 11/404,460
<141> 2006-04-14

<150> US 10/565,954
<151> 2004-09-10

<150> US 60/503,251
<151> 2003-09-15

<160> 51

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 223
<212> PRT
<213> Trichoderma reesei

<400> 1
Met Val Ser Phe Thr Ser Leu Leu Ala Gly Val Ala Ala Ile Ser Gly
1 5 10 15
Val Leu Ala Ala Pro Ala Ala Glu Val Glu Ser Val Ala Val Glu Lys
20 25 30
Arg Gln Thr Ile Gln Pro Gly Thr Gly Tyr Asn Asn Gly Tyr Phe Tyr
35 40 45
Ser Tyr Trp Asn Asp Gly His Gly Gly Val Thr Tyr Thr Asn Gly Pro
50 55 60
Gly Gly Gln Phe Ser Val Asn Trp Ser Asn Ser Gly Asn Phe Val Gly
65 70 75 80
Gly Lys Gly Trp Gln Pro Gly Thr Lys Asn Lys Val Ile Asn Phe Ser
85 90 95
Gly Ser Tyr Asn Pro Asn Gly Asn Ser Tyr Leu Ser Val Tyr Gly Trp
100 105 110
Ser Arg Asn Pro Leu Ile Glu Tyr Tyr Ile Val Glu Asn Phe Gly Thr
115 120 125
Tyr Asn Pro Ser Thr Gly Ala Thr Lys Leu Gly Glu Val Thr Ser Asp
130 135 140
Gly Ser Val Tyr Asp Ile Tyr Arg Thr Gln Arg Val Asn Gln Pro Ser
145 150 155 160
Ile Ile Gly Thr Ala Thr Phe Tyr Gln Tyr Trp Ser Val Arg Arg Asn
165 170 175
His Arg Ser Ser Gly Ser Val Asn Thr Ala Asn His Phe Asn Ala Trp
180 185 190
Ala Gln Gln Gly Leu Thr Leu Gly Thr Met Asp Tyr Gln Ile Val Ala
195 200 205

Val Glu Gly Tyr Phe Ser Ser Gly Ser Ala Ser Ile Thr Val Ser
210 215 220

<210> 2

<211> 781

<212> DNA

<213> Trichoderma reesei

<400> 2

atggctcct tcacccct cctcgccggc gtcgcccga tctcgggcgt cttggccgt	60
cccgccgccc aggtcgaatc cgtggctgtg gagaagcgcc agacgattca gcccggcacg	120
ggctacaaca acggctactt ctactcgta tggaacgatg gccacggcgg cgtgacgtac	180
accaatggtc ccggcggca gttctccgtc aactggcca actcgggcaa ctttgcggc	240
ggcaaggat ggcagccgg caccaagaac aagaatgact acctactctt acccccttg	300
accaacacag cacaacacaa tacaacacat gtgactacca atcatggaat cgatctaacc	360
agctgtgtt tcaaaaaaaa gggcatcaa cttctcggtc agtacaacc ccaacggcaa	420
cagctaccc tccgtgtacg gctgggtcccg caacccctg atcgagttact acatgtcga	480
gaactttggc acctacaacc cgtccacggg cgccaccaag ctgggcgagg tcaccccgaa	540
cggcagcgta tacgacattt accgcacgca ggcgtcaac cagccgtcca tcatacgac	600
cggcacctt taccagttact ggtccgtccg cgcacccac cgctcgagcg gctccgtcaa	660
cacggcgaac cacttcaacg cgtgggctca gcaaggctg acgctcggtt cgtggat	720
ccagattgtt gccgtggagg gttacttttag ctctggctct gttccatca ccgtcagcta	780
a	781

<210> 3

<211> 234

<212> PRT

<213> Trichoderma reesei

<400> 3

Met Lys Phe Leu Gln Val Leu Pro Ala Leu Ile Pro Ala Ala Leu Ala	
1 5 10 15	
Gln Thr Ser Cys Asp Gln Trp Ala Thr Phe Thr Gly Asn Gly Tyr Thr	
20 25 30	
Val Ser Asn Asn Leu Trp Gly Ala Ser Ala Gly Ser Gly Phe Gly Cys	
35 40 45	
Val Thr Ala Val Ser Leu Ser Gly Gly Ala Ser Trp His Ala Asp Trp	
50 55 60	
Gln Trp Ser Gly Gly Gln Asn Asn Val Lys Ser Tyr Gln Asn Ser Gln	
65 70 75 80	
Ile Ala Ile Pro Gln Lys Arg Thr Val Asn Ser Ile Ser Ser Met Pro	
85 90 95	
Thr Thr Ala Ser Trp Ser Tyr Ser Gly Ser Asn Ile Arg Ala Asn Val	
100 105 110	
Ala Tyr Asp Leu Phe Thr Ala Ala Asn Pro Asn His Val Thr Tyr Ser	
115 120 125	
Gly Asp Tyr Glu Leu Met Ile Trp Leu Gly Lys Tyr Gly Asp Ile Gly	
130 135 140	
Pro Ile Gly Ser Ser Gln Gly Thr Val Asn Val Gly Gly Gln Ser Trp	
145 150 155 160	
Thr Leu Tyr Tyr Gly Tyr Asn Gly Ala Met Gln Val Tyr Ser Phe Val	
165 170 175	
Ala Gln Thr Asn Thr Thr Asn Tyr Ser Gly Asp Val Lys Asn Phe Phe	
180 185 190	
Asn Tyr Leu Arg Asp Asn Lys Gly Tyr Asn Ala Ala Gly Gln Tyr Val	
195 200 205	
Leu Ser Tyr Gln Phe Gly Thr Glu Pro Phe Thr Gly Ser Gly Thr Leu	

210	215	220	
Asn Val Ala Ser Trp Thr Ala Ser Ile Asn			
225	230		
<210> 4			
<211> 826			
<212> DNA			
<213> Trichoderma reesei			
<400> 4			
atgaagttcc ttcaagtccct ccctgcccctc ataccggccg ccctggccca aaccagctgt			60
gaccagtggg caacccatcac tgccaacggc tacacagtca gcaacaacctt ttggggagca			120
tcagccggct ctggatttgg ctgcgtgacg gcggtatcgc tcagcggcg ggccctcctgg			180
cacccagact ggcagtggc cggccggccag aacaacgtca agtcgtacca gaactctcag			240
attgccattc cccagaagag gaccgtcaac agcatcagca gcatgcccac cactgccagc			300
tggagctaca gccccggagcaa catccgcgct aatgttgcgt atgacttgtt caccgcagcc			360
aaccgaatc atgtcaccta ctcgggagac tacgaactca tgcataacttggta agccataaga			420
agtgaccctc cttgatagtt tcgactaaca acatgtcttg aggcttggca aatacggcga			480
tattggccg attgggtcct cacagggAAC agtcaacgtc ggtggccaga gctggacgct			540
ctactatggc tacaacggag ccatgcaagt ctattccctt gtggcccaga ccaacactac			600
caactacaggc ggagatgtca agaacttctt caattatctc cgagacaata aaggatacaa			660
cgctgcaggc caatatgttc ttagtaagtc accctcaactg tgactgggct gagtttgg			720
caacgttgc taacaaaacc ttctgtataagg ctaccaattt ggtaccgagc cttcacggg			780
cagtggaaact ctgaacgtcg catccctggac cgcatctatc aactaa			826
<210> 5			
<211> 222			
<212> PRT			
<213> Trichoderma reesei			
<400> 5			
Met Val Ser Phe Thr Ser Leu Leu Ala Ala Ser Pro Pro Ser Arg Ala			
1 5 10 15			
Ser Cys Arg Pro Ala Ala Glu Val Glu Ser Val Ala Val Glu Lys Arg			
20 25 30			
Gln Thr Ile Gln Pro Gly Thr Gly Tyr Asn Asn Gly Tyr Phe Tyr Ser			
35 40 45			
Tyr Trp Asn Asp Gly His Gly Val Thr Tyr Thr Asn Gly Pro Gly			
50 55 60			
Gly Gln Phe Ser Val Asn Trp Ser Asn Ser Gly Asn Phe Val Gly Gly			
65 70 75 80			
Lys Gly Trp Gln Pro Gly Thr Lys Asn Lys Val Ile Asn Phe Ser Gly			
85 90 95			
Ser Tyr Asn Pro Asn Gly Asn Ser Tyr Leu Ser Val Tyr Gly Trp Ser			
100 105 110			
Arg Asn Pro Leu Ile Glu Tyr Tyr Ile Val Glu Asn Phe Gly Thr Tyr			
115 120 125			
Asn Pro Ser Thr Gly Ala Thr Lys Leu Gly Glu Val Thr Ser Asp Gly			
130 135 140			
Ser Val Tyr Asp Ile Tyr Arg Thr Gln Arg Val Asn Gln Pro Ser Ile			
145 150 155 160			
Ile Gly Thr Ala Thr Phe Tyr Gln Tyr Trp Ser Val Arg Arg Asn His			
165 170 175			
Arg Ser Ser Gly Ser Val Asn Thr Ala Asn His Phe Asn Ala Trp Ala			
180 185 190			
Gln Gln Gly Leu Thr Leu Gly Thr Met Asp Tyr Gln Ile Val Ala Val			
195 200 205			

Glu Gly Tyr Phe Ser Ser Gly Ser Ala Ser Ile Thr Val Ser
 210 215 220

 <210> 6
 <211> 227
 <212> PRT
 <213> Humicola insolens

 <400> 6
 Met Val Ser Leu Lys Ser Val Leu Ala Ala Ala Thr Ala Val Ser Ser
 1 5 10 15
 Ala Ile Ala Ala Pro Phe Asp Phe Val Pro Arg Asp Asn Ser Thr Ala
 20 25 30
 Leu Gln Ala Arg Gln Val Thr Pro Asn Ala Glu Gly Trp His Asn Gly
 35 40 45
 Tyr Phe Tyr Ser Trp Trp Ser Asp Gly Gly Gln Val Gln Tyr Thr
 50 55 60
 Asn Leu Glu Gly Ser Arg Tyr Gln Val Arg Trp Arg Asn Thr Gly Asn
 65 70 75 80
 Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Thr Gly Arg Thr Ile Asn
 85 90 95
 Tyr Gly Gly Tyr Phe Asn Pro Gln Gly Asn Gly Tyr Leu Ala Val Tyr
 100 105 110
 Gly Trp Thr Arg Asn Pro Leu Val Glu Tyr Tyr Val Ile Glu Ser Tyr
 115 120 125
 Gly Thr Tyr Asn Pro Gly Ser Gln Ala Gln Tyr Lys Gly Thr Phe Tyr
 130 135 140
 Thr Asp Gly Asp Gln Tyr Asp Ile Phe Val Ser Thr Arg Tyr Asn Gln
 145 150 155 160
 Pro Ser Ile Asp Gly Thr Arg Thr Phe Gln Gln Tyr Trp Ser Ile Arg
 165 170 175
 Lys Asn Lys Arg Val Gly Gly Ser Val Asn Met Gln Asn His Phe Asn
 180 185 190
 Ala Trp Gln Gln His Gly Met Pro Leu Gly Gln His Tyr Tyr Gln Val
 195 200 205
 Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Glu Ser Asp Ile Tyr Val
 210 215 220
 Gln Thr His
 225

 <210> 7
 <211> 210
 <212> PRT
 <213> Bacillus stearothermophilus

 <400> 7
 Met Lys Leu Lys Lys Lys Met Leu Thr Leu Leu Leu Thr Ala Ser Met
 1 5 10 15
 Ser Phe Gly Leu Phe Gly Ala Thr Ser Ser Ala Ala Thr Asp Tyr Trp
 20 25 30
 Gln Tyr Trp Thr Asp Gly Gly Met Val Asn Ala Val Asn Gly Pro
 35 40 45
 Gly Gly Asn Tyr Ser Val Thr Trp Gln Asn Thr Gly Asn Phe Val Val
 50 55 60
 Gly Lys Gly Trp Thr Val Gly Ser Pro Asn Arg Val Ile Asn Tyr Asn
 65 70 75 80
 Ala Gly Ile Trp Glu Pro Ser Gly Asn Gly Tyr Leu Thr Leu Tyr Gly

85	90	95
Trp Thr Arg Asn Ala Leu Ile Glu	Tyr Tyr Val Val Asp Ser	Trp Gly
100	105	110
Thr Tyr Arg Pro Thr Gly Asn	Tyr Lys Gly Thr Val Asn Ser Asp Gly	
115	120	125
Gly Thr Tyr Asp Ile Tyr	Thr Thr Met Arg Tyr Asn Ala Pro Ser Ile	
130	135	140
Asp Gly Thr Gln Thr	Phe Gln Gln Phe Trp Ser Val Arg Gln Ser Lys	
145	150	155
Arg Pro Thr Gly Ser Asn Val Ser Ile	Thr Phe Ser Asn His Val Asn	
165	170	175
Ala Trp Arg Ser Lys Gly Met Asn	Leu Gly Ser Ser Trp Ala Tyr Gln	
180	185	190
Val Leu Ala Thr Glu Gly Tyr	Gln Ser Ser Gly Arg Ser Asn Val Thr	
195	200	205
Val Trp		
210		

<210> 8

<211> 229

<212> PRT

<213> Trichoderma reesei

<400> 8

Met Val Ala Phe Ser Ser Leu Ile Cys	Ala Leu Thr Ser Ile Ala Ser		
1	5	10	15
Thr Leu Ala Met Pro Thr Gly Leu Glu	Pro Glu Ser Ser Val Asn Val		
20	25	30	
Thr Glu Arg Gly Met Tyr Asp Phe Val	Leu Gly Ala His Asn Asp His		
35	40	45	
Arg Arg Arg Ala Ser Ile Asn Tyr Asp Gln	Asn Tyr Gln Thr Gly Gly		
50	55	60	
Gln Val Ser Tyr Ser Pro Ser Asn Thr	Gly Phe Ser Val Asn Trp Asn		
65	70	75	80
Thr Gln Asp Asp Phe Val Val Gly Val	Gly Trp Thr Thr Gly Ser Ser		
85	90	95	
Ala Pro Ile Asn Phe Gly Gly Ser Phe	Ser Val Asn Ser Gly Thr Gly		
100	105	110	
Leu Leu Ser Val Tyr Gly Trp Ser Thr	Asn Pro Leu Val Glu Tyr Tyr		
115	120	125	
Ile Met Glu Asp Asn His Asn Tyr Pro	Ala Gln Gly Thr Val Lys Gly		
130	135	140	
Thr Val Thr Ser Asp Gly Ala Thr Tyr	Thr Ile Trp Glu Asn Thr Arg		
145	150	155	160
Val Asn Glu Pro Ser Ile Gln Gly Thr	Ala Thr Phe Asn Gln Tyr Ile		
165	170	175	
Ser Val Arg Asn Ser Pro Arg Thr	Ser Gly Thr Val Thr Val Gln Asn		
180	185	190	
His Phe Asn Ala Trp Ala Ser Leu	Gly Leu His Leu Gly Gln Met Asn		
195	200	205	
Tyr Gln Val Val Ala Val Glu Gly	Trp Gly Gly Ser Gly Ser Ala Ser		
210	215	220	
Gln Ser Val Ser Asn			
225			

<210> 9

<211> 211

<212> PRT

<213> Aspergillus awamori

<400> 9

Met Lys Val Thr Ala Ala Phe Ala Gly Leu Leu Val Thr Ala Phe Ala
1 5 10 15
Ala Pro Val Pro Glu Pro Val Leu Val Ser Arg Ser Ala Gly Ile Asn
20 25 30
Tyr Val Gln Asn Tyr Asn Gly Asn Leu Gly Asp Phe Thr Tyr Asp Glu
35 40 45
Ser Ala Gly Thr Phe Ser Met Tyr Trp Glu Asp Gly Val Ser Ser Asp
50 55 60
Phe Val Val Gly Leu Gly Trp Thr Thr Gly Ser Ser Asn Ala Ile Thr
65 70 75 80
Tyr Ser Ala Glu Tyr Ser Ala Ser Gly Ser Ser Ser Tyr Leu Ala Val
85 90 95
Tyr Gly Trp Val Asn Tyr Pro Gln Ala Glu Tyr Tyr Ile Val Glu Asp
100 105 110
Tyr Gly Asp Tyr Asn Pro Cys Ser Ser Ala Thr Ser Leu Gly Thr Val
115 120 125
Tyr Ser Asp Gly Ser Thr Tyr Gln Val Cys Thr Asp Thr Arg Thr Asn

130 135 140
Glu Pro Ser Ile Thr Gly Thr Ser Thr Phe Thr Gln Tyr Phe Ser Val
145 150 155 160
Arg Glu Ser Thr Arg Thr Ser Gly Thr Val Thr Val Ala Asn His Phe
165 170 175
Asn Phe Trp Ala Gln His Gly Phe Gly Asn Ser Asp Phe Asn Tyr Gln
180 185 190
Val Met Ala Val Glu Ala Trp Ser Gly Ala Gly Ser Ala Ser Val Thr
195 200 205
Ile Ser Ser
210

<210> 10

<211> 330

<212> PRT

<213> Bacillus stearothermophilus

<400> 10

Met Cys Ser Ser Ile Pro Ser Leu Arg Glu Val Phe Ala Asn Asp Phe
1 5 10 15
Arg Ile Gly Ala Ala Val Asn Pro Val Thr Leu Glu Ala Gln Gln Ser
20 25 30
Leu Leu Ile Arg His Val Asn Ser Leu Thr Ala Glu Asn His Met Lys
35 40 45
Phe Glu His Leu Gln Pro Glu Glu Gly Arg Phe Thr Phe Asp Ile Ala
50 55 60
Ile Lys Ser Ser Thr Ser Pro Phe Ser Ser His Gly Val Arg Gly His
65 70 75 80
Thr Leu Val Trp His Asn Gln Thr Pro Ser Trp Val Phe Gln Asp Ser
85 90 95
Gln Gly His Phe Val Gly Arg Asp Val Leu Leu Glu Arg Met Lys Ser
100 105 110
His Ile Ser Thr Val Val Gln Arg Tyr Lys Gly Lys Val Tyr Cys Trp
115 120 125
Asp Val Ile Asn Glu Ala Val Ala Asp Glu Gly Ser Glu Trp Leu Arg

130	135	140													
Ser	Ser	Thr	Trp	Arg	Gln	Ile	Ile	Gly	Asp	Asp	Phe	Ile	Gln	Gln	Ala
145					150					155					160
Phe	Leu	Tyr	Ala	His	Glu	Ala	Asp	Pro	Glu	Ala	Leu	Leu	Phe	Tyr	Asn
					165					170					175
Asp	Tyr	Asn	Glu	Cys	Phe	Pro	Glu	Lys	Arg	Glu	Lys	Ile	Tyr	Thr	Leu
					180					185					190
Val	Lys	Ser	Leu	Arg	Asp	Lys	Gly	Ile	Pro	Ile	His	Gly	Ile	Gly	Met
					195					200					205
Gln	Ala	His	Trp	Ser	Leu	Asn	Arg	Pro	Thr	Leu	Asp	Glu	Ile	Arg	Ala
					210					215					220
Ala	Ile	Glu	Arg	Tyr	Ala	Ser	Leu	Gly	Val	Ile	Leu	His	Ile	Thr	Glu
					225					230					240
Leu	Asp	Ile	Ser	Met	Phe	Glu	Phe	Asp	Asp	His	Arg	Lys	Asp	Leu	Ala
					245					250					255
Ala	Pro	Thr	Asn	Glu	Met	Val	Glu	Arg	Gln	Ala	Glu	Arg	Tyr	Glu	Gln
					260					265					270
Ile	Phe	Ser	Leu	Phe	Lys	Glu	Tyr	Arg	Asp	Val	Ile	Gln	Asn	Val	Thr
					275					280					285
Phe	Trp	Gly	Ile	Ala	Asp	Asp	His	Thr	Trp	Leu	Asp	His	Phe	Pro	Val
					290					295					300
Gln	Gly	Arg	Lys	Asn	Trp	Pro	Leu	Leu	Phe	Asp	Glu	Gln	His	Asn	Pro
					305					310					320
Lys	Pro	Ala	Phe	Trp	Arg	Val	Val	Asn	Ile						
					325					330					

<210> 11

<211> 190

<212> PRT

<213> Trichoderma reesei

<400> 11

Gln	Thr	Ile	Gln	Pro	Gly	Thr	Gly	Tyr	Asn	Asn	Gly	Tyr	Phe	Tyr	Ser
1					5					10					15
Tyr	Trp	Asn	Asp	Gly	His	Gly	Gly	Val	Thr	Tyr	Thr	Asn	Gly	Pro	Gly
					20					25					30
Gly	Gln	Phe	Ser	Val	Asn	Trp	Ser	Asn	Ser	Gly	Asn	Phe	Val	Gly	Gly
					35					40					45
Lys	Gly	Trp	Gln	Pro	Gly	Thr	Lys	Asn	Lys	Val	Ile	Asn	Phe	Ser	Gly
					50					55					60
Ser	Tyr	Asn	Pro	Asn	Gly	Asn	Ser	Tyr	Leu	Ser	Val	Tyr	Gly	Trp	Ser
					65					70					80
Arg	Asn	Pro	Leu	Ile	Glu	Tyr	Tyr	Ile	Val	Glu	Asn	Phe	Gly	Thr	Tyr
					85					90					95
Asn	Pro	Ser	Thr	Gly	Ala	Thr	Lys	Leu	Gly	Glu	Val	Thr	Ser	Asp	Gly
					100					105					110
Ser	Val	Tyr	Asp	Ile	Tyr	Arg	Thr	Gln	Arg	Val	Asn	Gln	Pro	Ser	Ile
					115					120					125
Ile	Gly	Thr	Ala	Thr	Phe	Tyr	Gln	Tyr	Trp	Ser	Val	Arg	Arg	Asn	His
					130					135					140
Arg	Ser	Ser	Gly	Ser	Val	Asn	Thr	Ala	Asn	His	Phe	Asn	Ala	Trp	Ala
					145					150					160
Gln	Gln	Gly	Leu	Thr	Leu	Gly	Thr	Met	Asp	Tyr	Gln	Ile	Val	Ala	Val
					165					170					175
Glu	Gly	Tyr	Phe	Ser	Ser	Gly	Ser	Ala	Ser	Ile	Thr	Val	Ser		
					180					185					190

<210> 12
<211> 237
<212> PRT
<213> Aspergillus awamori

<400> 12

Met Lys Ala Phe His Leu Leu Ala Ala Leu Ser Gly Ala Ala Val Ala
1 5 10 15
Gln Gln Ala Gln Leu Cys Asp Gln Tyr Ala Thr Tyr Thr Gly Gly Val
20 25 30
Tyr Thr Ile Asn Asn Asn Leu Trp Gly Lys Asp Ala Gly Ser Gly Ser
35 40 45
Gln Cys Thr Thr Val Asn Ser Ser Ala Gly Thr Ser Trp Ser
50 55 60
Thr Lys Trp Asn Trp Ser Gly Gly Glu Asn Ser Val Lys Ser Tyr Ala
65 70 75 80
Asn Ser Gly Leu Ser Phe Asn Lys Lys Leu Val Ser Gln Ile Ser His
85 90 95
Ile Pro Thr Ala Ala Arg Trp Ser Tyr Asp Asn Thr Cys Ile Arg Arg
100 105 110
Gly Arg Ala Tyr Asp Leu Phe Thr Ala Ala Asp Ile Asn His Val Thr
115 120 125
Trp Ser Gly Asp Tyr Glu Leu Met Ile Trp Leu Ala Arg Tyr Gly Gly
130 135 140
Val Gln Pro Leu Gly Ser Gln Ile Ala Thr Ala Thr Val Glu Gly Gln
145 150 155 160
Thr Trp Glu Leu Trp Tyr Gly Val Asn Gly Ala Gln Lys Thr Tyr Ser
165 170 175
Phe Val Ala Ala Asn Pro Ile Thr Ser Phe Gln Gly Asp Ile Asn Asp
180 185 190
Phe Phe Lys Tyr Leu Thr Gln Asn His Gly Phe Pro Ala Ser Ser Gln
195 200 205
Tyr Leu Ile Thr Leu Gln Phe Gly Thr Glu Pro Phe Thr Gly Gly Pro
210 215 220
Ala Thr Leu Asn Val Ala Asp Trp Ser Ala Ser Val Gln
225 230 235

<210> 13
<211> 233
<212> PRT
<213> Trichoderma viride

<400> 13

Met Lys Phe Leu Gln Ile Ala Pro Thr Leu Leu Pro Val Ala Leu Ala
1 5 10 15
Gln Ser Ser Cys Ser Gln Tyr Ala Thr Phe Ser Gly Gly Asn Tyr Ala
20 25 30
Leu Ser Asn Asn Leu Trp Gly Gln Ser Ala Gly Ser Gly Ser Gly Cys
35 40 45
Ile Thr Asp Val Ser Leu Gly Gly Ser Ala Val Trp Ser Thr Thr Trp
50 55 60
Asp Trp Ser Gly Gly Gln Ser Asn Val Lys Gly Tyr Pro Asn Ile Ala
65 70 75 80
Leu Asn Ile Pro Asn Lys Arg Leu Val Ser Ser Ile Ser Ser Met Pro
85 90 95
Thr Thr Ala Gln Trp Ser Tyr Ser Gly Ser Ser Ile Arg Ala Asp Val

100	105	110													
Ala	Tyr	Asp	Leu	Phe	Thr	Ala	Ser	Asn	Pro	Asn	His	Val	Thr	Tyr	Ser
115						120						125			
Gly	Asp	Tyr	Glu	Leu	Met	Ile	Trp	Leu	Gly	Lys	Tyr	Gly	Asp	Ile	Gln
130						135					140				
Pro	Ile	Gly	Ser	Ser	Gln	Gly	Thr	Val	Asn	Val	Gly	Gly	Thr	Ser	Trp
145						150				155					160
Asn	Leu	Trp	Tyr	Gly	Pro	Asn	Gly	Ser	Met	Gln	Val	Tyr	Ser	Phe	Val
						165				170					175
Ala	Pro	Gly	Asn	Leu	Thr	Asn	Trp	Ser	Gly	Asp	Val	Lys	Asn	Phe	Tyr
						180				185					190
Thr	Tyr	Leu	Gln	Asn	Asn	Lys	Gly	Tyr	Pro	Ala	Ser	Ser	Gln	Tyr	Val
						195				200					205
Leu	Ser	Tyr	Gln	Phe	Gly	Thr	Glu	Ala	Phe	Thr	Gly	Ser	Gly	Thr	Leu
						210				215					220
Asn	Asn	Thr	Trp	Thr	Ala	Ser	Ile	Asn							
						225				230					

<210> 14

<211> 234

<212> PRT

<213> Hypocrea koningii

<400> 14

Met	Lys	Leu	Ile	His	Val	Leu	Pro	Ala	Leu	Ile	Pro	Ala	Ala	Leu	Ala
1						5				10					15
Gln	Thr	Ser	Cys	Asp	Gln	Tyr	Ala	Val	Phe	Thr	Gly	Ser	Asp	Tyr	Thr
						20				25					30
Val	Ser	Asn	Asn	Leu	Trp	Gly	Gln	Ser	Ala	Gly	Ser	Gly	Phe	Gly	Cys
						35				40					45
Val	Thr	Ala	Glu	Ser	Leu	Ser	Gly	Ser	Ala	Ser	Trp	His	Ala	Asp	Trp
						50				55					60
Gln	Trp	Ser	Gly	Gly	Gln	Asn	Asn	Val	Lys	Ser	Tyr	Gln	Asn	Ser	Gln
						65				70					80
Ile	Pro	Ile	Pro	Gln	Lys	Arg	Thr	Val	Asn	Ser	Ile	Ser	Ser	Met	Pro
						85				90					95
Thr	Thr	Ala	Ser	Trp	Ser	Tyr	Thr	Gly	Ser	Asp	Ile	Arg	Ala	Asn	Val
						100				105					110
Ala	Tyr	Asp	Leu	Phe	Thr	Ala	Ala	Asn	Pro	Asn	His	Val	Thr	Tyr	Ser
						115				120					125
Gly	Asp	Tyr	Glu	Leu	Met	Ile	Trp	Leu	Gly	Arg	Tyr	Gly	Asp	Ile	Gly
						130				135					140
Pro	Ile	Gly	Ser	Ser	Gln	Gly	Thr	Val	Asn	Val	Gly	Gly	Gln	Ser	Trp
						145				150					160
Thr	Leu	Tyr	Tyr	Gly	Tyr	Asn	Gly	Ala	Met	Gln	Val	Tyr	Ser	Phe	Val
						165				170					175
Ala	Gln	Thr	Asn	Thr	Thr	Ser	Tyr	Ser	Gly	Asp	Val	Lys	Asn	Phe	Phe
						180				185					190
Asn	Tyr	Leu	Arg	Asp	Asn	Lys	Gly	Tyr	Asn	Ala	Ala	Gly	Gln	Tyr	Val
						195				200					205
Leu	Ser	Tyr	Gln	Phe	Gly	Thr	Glu	Pro	Phe	Thr	Gly	Ser	Gly	Thr	Leu
						210				215					220
Asn	Val	Ala	Ser	Trp	Thr	Ala	Ser	Ile	Asn						
						225				230					

<210> 15

<211> 234

<212> PRT

<213> Hypocrea schweinitzii

<400> 15

Met Lys Phe Leu Gln Val Leu Pro Ala Ile Leu Pro Ala Ala Leu Ala
1 5 10 15
Gln Thr Ser Cys Asp Gln Tyr Ala Thr Phe Ser Gly Asn Gly Tyr Ile
20 25 30
Val Ser Asn Asn Leu Trp Gly Ala Ser Ala Gly Ser Gly Phe Gly Cys
35 40 45
Val Thr Ser Val Ser Leu Asn Gly Ala Ala Ser Trp His Ala Asp Trp
50 55 60
Gln Trp Ser Gly Gly Gln Asn Asn Val Lys Ser Tyr Gln Asn Val Gln
65 70 75 80
Ile Asn Ile Pro Gln Lys Arg Thr Val Asn Ser Ile Gly Ser Met Pro
85 90 95
Thr Thr Ala Ser Trp Ser Tyr Ser Gly Ser Asp Ile Arg Ala Asn Val
100 105 110
Ala Tyr Asp Leu Phe Thr Ala Ala Asn Pro Asn His Val Thr Tyr Ser
115 120 125
Gly Asp Tyr Glu Leu Met Ile Trp Leu Gly Lys Tyr Gly Asp Ile Gly
130 135 140
Pro Ile Gly Ser Ser Gln Gly Thr Val Asn Val Gly Gly Gln Thr Trp
145 150 155 160
Thr Leu Tyr Tyr Gly Tyr Asn Gly Ala Met Gln Val Tyr Ser Phe Val
165 170 175
Ala Gln Ser Asn Thr Thr Ser Tyr Ser Gly Asp Val Lys Asn Phe Phe
180 185 190
Asn Tyr Leu Arg Asp Asn Lys Gly Tyr Asn Ala Gly Gly Gln Tyr Val
195 200 205
Leu Ser Tyr Gln Phe Gly Thr Glu Pro Phe Thr Gly Ser Gly Thr Leu
210 215 220
Asn Val Ala Ser Trp Thr Ala Ser Ile Asn
225 230

<210> 16

<211> 237

<212> PRT

<213> Stachybotrys echinata

<400> 16

Met Lys Val Ala Ala Leu Leu Val Ala Leu Ser Pro Leu Ala Phe Ala
1 5 10 15
Gln Ser Leu Cys Asp Gln Tyr Ser Tyr Tyr Ser Ser Asn Gly Tyr Glu
20 25 30
Phe Asn Asn Asn Met Trp Gly Arg Asn Ser Gly Gln Gly Asn Gln Cys
35 40 45
Thr Tyr Val Asp Tyr Ser Ser Pro Asn Gly Val Gly Trp Arg Val Asn
50 55 60
Trp Asn Trp Ser Gly Gly Asp Asn Asn Val Lys Ser Tyr Pro Tyr Ser
65 70 75 80
Gly Arg Gln Leu Pro Thr Lys Arg Ile Val Ser Trp Ile Gly Ser Leu
85 90 95
Pro Thr Thr Val Ser Trp Asn Tyr Gln Gly Asn Asn Leu Arg Ala Asn
100 105 110
Val Ala Tyr Asp Leu Phe Thr Ala Ala Asn Pro Asn His Pro Asn Ser
115 120 125

Ser Gly Asp Tyr Glu Leu Met Ile Trp Leu Gly Arg Leu Gly Asn Val
 130 135 140
 Tyr Pro Ile Gly Asn Gln Val Ala Thr Val Asn Ile Ala Gly Gln Gln
 145 150 155 160
 Trp Asn Leu Tyr Tyr Gly Tyr Asn Gly Ala Met Gln Val Tyr Ser Phe
 165 170 175
 Val Ser Pro Asn Gln Leu Asn Tyr Phe Ser Gly Asn Val Lys Asp Phe
 180 185 190
 Phe Thr Tyr Leu Gln Tyr Asn Arg Ala Tyr Pro Ala Asp Ser Gln Tyr
 195 200 205
 Leu Ile Thr Tyr Gln Phe Gly Thr Glu Pro Phe Thr Gly Gln Asn Ala
 210 215 220
 Val Phe Thr Val Ser Asn Trp Ser Ala Gln Gln Asn Asn
 225 230 235

<210> 17

<211> 238

<212> PRT

<213> Fusarium equiseti

<400> 17

Met Lys Ser Thr Leu Leu Leu Ala Gly Ala Phe Ala Pro Leu Ala Phe
 1 5 10 15
 Ala Lys Asp Leu Cys Glu Gln Tyr Gly Tyr Leu Ser Ser Asp Gly Tyr
 20 25 30
 Ser Leu Asn Asn Asn Val Trp Gly Lys Asp Ser Gly Thr Gly Asp Gln
 35 40 45
 Cys Thr His Val Asn Trp Asn Asn Ala Asn Gly Ala Gly Trp Asp Val
 50 55 60
 Glu Trp Asn Trp Ser Gly Gly Lys Asp Asn Val Lys Ser Tyr Pro Asn
 65 70 75 80

Ser Ala Leu Leu Ile Gly Glu Asp Lys Lys Thr Ile Ser Ser Ile Thr
 85 90 95
 Asn Met Gln Ser Thr Ala Glu Trp Lys Tyr Ser Gly Asp Asn Leu Arg
 100 105 110
 Ala Asp Val Ala Tyr Asp Leu Phe Thr Ala Ala Asp Pro Asn His Glu
 115 120 125
 Thr Ser Ser Gly Glu Tyr Glu Leu Met Val Trp Leu Ala Arg Ile Gly
 130 135 140
 Gly Val Gln Pro Ile Gly Ser Leu Gln Thr Ser Val Thr Ile Glu Gly
 145 150 155 160
 His Thr Trp Glu Leu Trp Val Gly Met Asn Gly Ser Met Lys Val Phe
 165 170 175
 Ser Phe Val Ala Pro Thr Pro Val Asn Asn Phe Asn Ala Asp Ile Lys
 180 185 190
 Gln Phe Trp Asp Tyr Leu Thr Lys Ser Gln Asn Phe Pro Ala Asp Asn
 195 200 205
 Gln Tyr Leu Leu Thr Phe Gln Phe Gly Thr Glu Pro Phe Thr Gly Asp
 210 215 220
 Asn Ala Lys Phe Thr Val Thr Asn Phe Asn Ala His Leu Lys
 225 230 235

<210> 18

<211> 237

<212> PRT

<213> Bionectria ochroleuca

<400> 18

Met Lys Thr Gly Ile Ala Tyr Leu Ala Ala Val Leu Pro Leu Ala Met
1 5 10 15
Ala Glu Ser Leu Cys Asp Gln Tyr Ala Tyr Leu Ser Arg Asp Gly Tyr
20 25 30
Asn Phe Asn Asn Asn Glu Trp Gly Ala Ala Thr Gly Thr Gly Asp Gln
35 40 45
Cys Thr Tyr Val Asp Ser Thr Ser Ser Gly Gly Val Ser Trp His Ser
50 55 60
Asp Trp Thr Asn Ser Gly Ser Glu Ser Glu Ile Lys Ser Tyr Pro Tyr
65 70 75 80
Ser Gly Leu Asp Leu Pro Glu Lys Lys Ile Val Thr Ser Ile Gly Ser
85 90 95
Ile Ser Thr Gly Ala Glu Trp Ser Tyr Ser Gly Ser Asn Ile Arg Ala
100 105 110
Asp Val Ala Tyr Asp Ile Phe Thr Ala Ala Asp Pro Asn His Ala Thr
115 120 125
Ser Ser Gly Asp Tyr Glu Val Met Ile Trp Leu Ala Asn Leu Gly Gly
130 135 140
Leu Thr Pro Ile Gly Ser Pro Ile Gly Thr Val Lys Ala Ala Gly Arg
145 150 155 160
Asp Trp Glu Leu Trp Asp Gly Tyr Asn Gly Ala Met Arg Val Tyr Ser
165 170 175
Phe Val Ala Pro Ser Gln Leu Asn Ser Phe Asp Gly Glu Ile Met Asp
180 185 190
Phe Phe Tyr Val Val Lys Asp Met Arg Gly Phe Pro Ala Asp Ser Gln
195 200 205
His Leu Leu Thr Val Gln Phe Gly Thr Glu Pro Ile Ser Gly Ser Gly
210 215 220
Ala Lys Phe Ser Val Ser His Trp Ser Ala Lys Leu Gly
225 230 235

<210> 19

<211> 236
<212> PRT
<213> Bionectria ochroleuca

<400> 19

Met Lys Phe Gln Leu Leu Ser Leu Thr Ala Phe Ala Pro Leu Ser Leu
1 5 10 15
Ala Ala Leu Cys Gly Gln Tyr Gln Ser Gln Ser Gln Gly Gly Tyr Ile
20 25 30
Phe Asn Asn Asn Lys Trp Gly Gln Gly Ser Gly Ser Gly Ser Gln Cys
35 40 45
Leu Thr Ile Asp Lys Thr Trp Asp Ser Asn Val Ala Phe His Ala Asp
50 55 60
Trp Ser Trp Ser Gly Gly Thr Asn Asn Val Lys Ser Tyr Pro Asn Ala
65 70 75 80
Gly Leu Glu Phe Ser Arg Gly Lys Lys Val Ser Ser Ile Gly Thr Ile
85 90 95
Asn Gly Gly Ala Asp Trp Asp Tyr Ser Gly Ser Asn Ile Arg Ala Asn
100 105 110
Val Ala Tyr Asp Ile Phe Thr Ser Ala Asp Pro Asn His Val Thr Ser
115 120 125
Ser Gly Asp Tyr Glu Leu Met Ile Trp Leu Gly Lys Leu Gly Asp Ile
130 135 140

Tyr Pro Ile Gly Asn Ser Ile Gly Arg Val Lys Ala Ala Asn Arg Glu
145 150 155 160
Trp Asp Leu His Val Gly Tyr Asn Gly Ala Met Lys Val Phe Ser Phe
165 170 175
Val Ala Pro Ser Pro Val Thr Arg Phe Asp Gly Asn Ile Met Asp Phe
180 185 190
Phe Tyr Val Met Arg Asp Met Gln Gly Tyr Pro Met Asp Lys Gln Tyr
195 200 205
Leu Leu Thr Leu Gln Phe Gly Thr Glu Pro Phe Thr Gly Ser Asn Ala
210 215 220
Lys Phe Ser Cys Trp Tyr Phe Gly Ala Lys Ile Lys
225 230 235

<210> 20
<211> 240
<212> PRT
<213> Bionectria ochroleuca

<400>. 20
Met Lys Ala Asn Ile Val Ile Leu Ser Leu Phe Ala Pro Leu Ala Ala
1 5 10 15
Val Ala Gln Thr Leu Cys Gly Gln Tyr Ser Ser Asn Thr Gln Gly Gly
20 25 30
Tyr Ile Phe Asn Asn Asn Met Trp Gly Met Gly Ser Gly Ser Gly Ser
35 40 45
Gln Cys Thr Tyr Val Asp Lys Val Trp Ala Glu Gly Val Ala Trp His
50 55 60
Thr Asp Trp Ser Trp Ser Gly Gly Asp Asn Asn Val Lys Ser Tyr Pro
65 70 75 80
Tyr Ser Gly Arg Glu Leu Gly Thr Lys Arg Ile Val Ser Ser Ile Lys
85 90 95
Ser Ile Ser Ser Gly Ala Asp Trp Asp Tyr Thr Gly Ser Asn Leu Arg
100 105 110
Ala Asn Ala Ala Tyr Asp Ile Phe Thr Ser Ala Asn Pro Asn His Ala
115 120 125
Thr Ser Ser Gly Asp Tyr Glu Val Met Ile Trp Leu Gly Arg Tyr Gly
130 135 140
Gly Val Tyr Pro Ile Gly Asn Ser Ile Gly Thr Val Arg Ala Ala Gly
145 150 155 160
Arg Asp Trp Ala Leu His Ile Gly Tyr Asn Gly Ala Met Lys Val Phe
165 170 175
Ser Phe Val Ala Ala Asn Pro Val Thr Arg Phe Asp Gly Glu Ile Met
180 185 190
Asp Phe Phe Tyr Leu Leu Arg Asp Met Gln Gly Tyr Pro Met Thr Ser
195 200 205
Gln Tyr Leu Leu Thr Leu Gln Phe Gly Thr Glu Pro Phe Thr Gly Ser
210 215 220
Gly Ala Lys Phe Asn Cys Trp Tyr Phe Gly Ala Thr Leu Ser Tyr Trp
225 230 235 240

<210> 21
<211> 254
<212> PRT
<213> Humicola grisea

<400> 21
Met Leu Lys Ser Ala Leu Leu Leu Gly Ala Ala Val Ser Val Gln

1	5	10	15
Ser Ala Ser Ile Pro Thr Ile Pro Ala Asn Leu Glu Pro Arg Gln Ile			
20	25	30	
Arg Ser Leu Cys Glu Leu Tyr Gly Tyr Trp Ser Gly Asn Gly Tyr Glu			
35	40	45	
Leu Leu Asn Asn Leu Trp Gly Lys Asp Thr Ala Thr Ser Gly Trp Gln			
50	55	60	
Cys Thr Tyr Leu Asp Gly Thr Asn Asn Gly Gly Ile Gln Trp Asn Thr			
65	70	75	80
Ala Trp Glu Trp Gln Gly Ala Pro Asp Asn Val Lys Asn Tyr Pro Tyr			
85	90	95	
Val Gly Lys Gln Ile Gln Arg Gly Arg Lys Ile Ser Asp Ile Asn Ser			
100	105	110	
Met Arg Thr Ser Val Ser Trp Thr Tyr Asp Arg Thr Asp Leu Arg Ala			
115	120	125	
Asn Val Ala Tyr Asp Val Phe Thr Ala Arg Asp Pro Asp His Pro Asn			
130	135	140	
Trp Gly Gly Asp Tyr Glu Leu Met Ile Trp Leu Ala Arg Tyr Gly Gly			
145	150	155	160
Ile Tyr Pro Ile Gly Thr Phe His Ser Gln Val Asn Leu Ala Gly Arg			
165	170	175	
Thr Trp Asp Leu Trp Thr Gly Tyr Asn Gly Asn Met Arg Val Tyr Ser			
180	185	190	
Phe Leu Pro Pro Ser Gly Asp Ile Arg Asp Phe Ser Cys Asp Ile Lys			
195	200	205	
Asp Phe Phe Asn Tyr Leu Glu Arg Asn His Gly Tyr Pro Ala Arg Glu			
210	215	220	
Gln Asn Leu Ile Val Tyr Gln Val Gly Thr Glu Cys Phe Thr Gly Gly			
225	230	235	240
Pro Ala Arg Phe Thr Cys Arg Asp Phe Arg Ala Asp Leu Trp			
245	250		

<210> 22

<211> 247

<212> PRT

<213> Chaetomium brasiliense

<400> 22

Met Lys Leu Thr Leu Val Leu Phe Val Ser Ser Leu Ala Ala Ala Thr			
1	5	10	15
Pro Leu Gly Trp Arg Glu Arg Arg Gln Gln Val Ser Leu Cys Gly Gln			
20	25	30	
Ser Ser Ser Trp Ser Gly Asn Gly Tyr Gln Leu Asn Asn Leu Trp			
35	40	45	
Gly Gln Ser Arg Ala Thr Ser Gly Ser Gln Cys Thr Tyr Leu Asp Ser			
50	55	60	
Ser Ser Asn Ser Gly Ile His Trp His Thr Thr Trp Thr Trp Glu Gly			
65	70	75	80
Gly Glu Gly Glu Val Lys Ser Tyr Ala Tyr Ser Gly Arg Gln Val Ser			
85	90	95	
Thr Gly Leu Thr Ile Ala Ser Ile Asp Ser Met Gln Thr Ser Val Ser			
100	105	110	
Trp Glu Tyr Asn Thr Thr Asp Ile Gln Ala Asn Val Ala Tyr Asp Ile			
115	120	125	
Phe Thr Ala Glu Asp Pro Asp His Glu His Ser Ser Gly Asp Tyr Glu			
130	135	140	
Val Met Ile Trp Leu Ala Arg Tyr Asn Asn Val Ser Pro Ile Gly Ser			

145	150	155	160
Ser Val Ala Thr Ala Thr Val Gly Gly Asp Thr Trp Asp Leu Phe Ala			
165	170	175	
Gly Ala Asn Gly Asp Met Glu Val Tyr Ser Phe Val Ala Glu Asn Thr			
180	185	190	
Met Asn Ser Phe Ser Gly Asp Val Lys Asp Phe Phe Asp Tyr Leu Glu			
195	200	205	
Gln Asn Val Gly Phe Pro Val Asp Asp Gln Tyr Leu Leu Val Phe Glu			
210	215	220	
Leu Gly Ser Glu Ala Phe Thr Gly Gly Pro Ala Thr Leu Ser Val Ser			
225	230	235	240
Gln Phe Ser Ala Asn Ile Ala			
245			

<210> 23

<211> 357

<212> PRT

<213> Bionectria ochroleuca

<400> 23

Met Lys Ser Ile Ile Ser Phe Phe Gly Leu Ala Thr Leu Val Ala Ala			
1	5	10	15
Ala Pro Ser Gln Asn Pro Thr Arg Thr Gln Pro Leu Glu Lys Arg Ala			
20	25	30	
Thr Thr Leu Cys Gly Gln Trp Asp Ser Val Glu Thr Gly Gly Tyr Thr			
35	40	45	
Ile Tyr Asn Asn Leu Trp Gly Gln Asp Asn Gly Ser Gly Ser Gln Cys			

50	55	60	
Leu Thr Val Glu Gly Val Thr Asp Gly Leu Ala Ala Trp Ser Ser Thr			
65	70	75	80
Trp Ser Trp Ser Gly Gly Ser Ser Ser Val Lys Ser Tyr Ser Asn Ala			
85	90	95	
Val Leu Ser Ala Glu Ala Ala Arg Ile Ser Ala Ile Ser Ser Ile Pro			
100	105	110	
Ser Lys Trp Glu Trp Ser Tyr Thr Gly Thr Asp Ile Val Ala Asn Val			
115	120	125	
Ala Tyr Asp Leu Phe Ser Asn Thr Asp Cys Gly Asp Thr Pro Glu Tyr			
130	135	140	
Glu Ile Met Ile Trp Leu Ser Ala Leu Gly Gly Ala Gly Pro Ile Ser			
145	150	155	160
Ser Thr Gly Ser Ser Ile Ala Thr Val Thr Ile Ala Gly Ala Ser Trp			
165	170	175	
Asn Leu Trp Gln Gly Gln Asn Asn Gln Met Thr Val Phe Ser Phe Val			
180	185	190	
Ala Glu Ser Asp Gln Lys Ser Phe Ser Gly Asp Leu Asn Asp Phe Ile			
195	200	205	
Gln Tyr Leu Val Asp Ser Gln Gly Tyr Ser Gly Ser Gln Cys Leu Tyr			
210	215	220	
Ser Ile Gly Ala Gly Thr Glu Pro Phe Thr Gly Thr Asp Ala Glu Phe			
225	230	235	240
Ile Thr Thr Gly Tyr Ser Val Ser Val Ser Ala Gly Asp Ser Gly Ser			
245	250	255	
Asp Glu Thr Thr Thr Ser Ser Gln Ala Gln Ser Ser Thr Val Glu Thr			
260	265	270	
Ser Thr Ala Thr Gln Pro Gln Ser Ser Ser Thr Val Val Pro Thr Val			
275	280	285	

Thr Leu Ser Gln Pro Ser Asn Glu Ser Thr Thr Pro Val Gln Ser
290 295 300
Gln Pro Ser Ser Val Glu Thr Thr Pro Thr Ala Gln Pro Gln Ser Ser
305 310 315 320
Ser Val Gln Thr Thr Ala Gln Ala Gln Pro Thr Pro Glu Arg
325 330 335
Ala Ala Pro Asp Ala Gly Ser Ala Glu Leu Leu Ser Ser Ala Thr Met
340 345 350
His Leu Asp Arg Arg
355

<210> 24

<211> 247

<212> PRT

<213> Emericella desertorum

<400> 24

Met Lys Leu Leu Ala Leu Ser Leu Val Ser Leu Ala Ser Ala Ala Ser
1 5 10 15
Ala Ala Ser Ile Leu Ser Asn Thr Phe Thr Arg Arg Ser Asp Phe Cys
20 25 30
Gly Gln Trp Asp Thr Ala Thr Val Gly Asn Phe Ile Val Tyr Asn Asn
35 40 45
Leu Trp Gly Gln Asp Asn Ala Asp Ser Gly Ser Gln Cys Thr Gly Val
50 55 60
Asp Ser Ala Asn Gly Asn Ser Ile Ser Trp His Thr Thr Trp Ser Trp
65 70 75 80
Ser Gly Gly Ser Ser Ser Val Lys Ser Tyr Ala Asn Ala Ala Tyr Gln
85 90 95
Phe Thr Ser Thr Lys Leu Asn Ser Leu Ser Ser Ile Pro Thr Ser Trp
100 105 110
Lys Trp Gln Tyr Ser Thr Asp Ile Val Ala Asn Val Ala Tyr Asp
115 120 125
Leu Phe Thr Ser Ser Ala Gly Gly Asp Ser Glu Tyr Glu Ile Met
130 135 140
Ile Trp Leu Ala Ala Leu Gly Gly Ala Gly Pro Ile Ser Ser Thr Gly
145 150 155 160
Ser Ser Ile Ala Thr Val Thr Leu Gly Gly Val Thr Trp Ser Leu Tyr
165 170 175
Ser Gly Pro Asn Gly Ser Met Gln Val Tyr Ser Phe Val Ala Ser Ser
180 185 190
Thr Thr Glu Ser Phe Ser Ala Asp Leu Met Asp Phe Ile Asn Tyr Leu
195 200 205
Ala Glu Asn Gln Gly Leu Ser Ser Ser Gln Tyr Leu Thr His Val Gln
210 215 220
Ala Gly Thr Glu Pro Phe Thr Gly Thr Asp Ala Thr Leu Thr Val Ser
225 230 235 240
Ser Tyr Ser Val Ser Val Ser
245

<210> 25

<211> 244

<212> PRT

<213> Fusarium solani

<400> 25

Met Lys Ser Ala Ile Val Ala Ala Leu Ala Gly Leu Ala Ala Ala Ser

1	5	10	15												
Pro	Thr	Arg	Leu	Ile	Pro	Arg	Gly	Gln	Phe	Cys	Gly	Gln	Trp	Asp	Ser
20									25					30	
Glu	Thr	Ala	Gly	Ala	Tyr	Thr	Ile	Tyr	Asn	Asn	Leu	Trp	Gly	Lys	Asp
35									40					45	
Asn	Ala	Glu	Ser	Gly	Glu	Gln	Cys	Thr	Thr	Asn	Ser	Gly	Glu	Gln	Ser
50									55					60	
Asp	Gly	Ser	Ile	Ala	Trp	Ser	Val	Glu	Trp	Ser	Trp	Thr	Gly	Gly	Gln
65									70					75	
Gly	Gln	Val	Lys	Ser	Tyr	Pro	Asn	Ala	Val	Val	Glu	Ile	Glu	Lys	Lys
									85					90	
Thr	Leu	Gly	Glu	Val	Ser	Ser	Ile	Pro	Ser	Ala	Trp	Asp	Trp	Thr	Tyr
									100					105	
Thr	Gly	Asn	Gly	Ile	Ile	Ala	Asn	Val	Ala	Tyr	Asp	Leu	Phe	Thr	Ser
									115					120	
Ser	Thr	Glu	Ser	Gly	Asp	Ala	Glu	Tyr	Glu	Phe	Met	Ile	Trp	Leu	Ser
									130					135	
Ala	Leu	Gly	Gly	Ala	Gly	Pro	Ile	Ser	Asn	Asp	Gly	Ser	Pro	Val	Ala
145									150					155	
Thr	Val	Glu	Leu	Ala	Gly	Thr	Ser	Trp	Lys	Leu	Tyr	Gln	Gly	Lys	Asn
									165					170	
Asn	Gln	Met	Thr	Val	Phe	Ser	Phe	Val	Ala	Glu	Ser	Asp	Val	Asn	Asn
									180					185	
Phe	Cys	Gly	Asp	Leu	Ala	Asp	Phe	Thr	Asp	Tyr	Leu	Val	Asp	Asn	His
									195					200	
Gly	Val	Ser	Ser	Ser	Gln	Ile	Leu	Gln	Ser	Val	Gly	Ala	Gly	Thr	Glu
									210					215	
Pro	Phe	Glu	Gly	Thr	Asn	Ala	Val	Phe	Thr	Thr	Asn	Asn	Tyr	His	Ala
225									230					235	
Asp	Val	Glu	Tyr												240

<210> 26
<211> 250
<212> PRT
<213> Fusarium solani

<400> 26																
Met	Lys	Phe	Phe	Gly	Val	Val	Ser	Ala	Phe	Leu	Ala	Ala	Thr	Ala	Val	
1								5					10		15	
Ala	Thr	Pro	Thr	Thr	Pro	Thr	Glu	Thr	Ile	Glu	Lys	Arg	Asp	Thr	Thr	
									20					25		30
Trp	Cys	Asp	Ala	Phe	Gly	Ser	Leu	Ala	Thr	Ser	Gly	Tyr	Thr	Val	Tyr	
									35					40		45
His	Asn	Asn	Trp	Gly	Lys	Gly	Asp	Ala	Thr	Ser	Gly	Ser	Gln	Cys	Thr	
									50					55		60
Thr	Phe	Thr	Ser	Val	Ser	Asn	Asn	Asn	Phe	Val	Trp	Ser	Thr	Ser	Trp	
65									70					75		80
Thr	Trp	Ala	Gly	Gly	Ala	Gly	Lys	Val	Lys	Ser	Tyr	Ser	Asn	Val	Ala	
									85					90		95
Leu	Glu	Lys	Ile	Asn	Lys	Lys	Ile	Ser	Asp	Ile	Lys	Ser	Val	Ser	Thr	
									100					105		110
Arg	Trp	Ile	Trp	Arg	Tyr	Thr	Gly	Thr	Lys	Met	Ile	Ala	Asn	Val	Ser	
									115					120		125
Tyr	Asp	Leu	Trp	Phe	Ala	Pro	Thr	Ala	Ser	Ser	Asn	Asn	Ala	Tyr	Glu	
									130					135		140
Ile	Met	Ile	Trp	Val	Gly	Ala	Tyr	Gly	Gly	Ala	Leu	Pro	Ile	Ser	Thr	
									145					150		160

Pro Gly Lys Gly Val Ile Asp Arg Pro Thr Leu Ala Gly Ile Pro Trp
 165 170 175
 Asp Val Tyr Lys Gly Pro Asn Gly Asp Val Thr Val Ile Ser Phe Val
 180 185 190
 Ala Ser Ser Asn Gln Gly Asn Phe Gln Ala Asp Leu Lys Glu Phe Leu
 195 200 205
 Asn Tyr Leu Thr Ser Lys Gln Gly Leu Pro Ser Asn Tyr Val Ala Thr
 210 215 220
 Ser Phe Gln Ala Gly Thr Glu Pro Phe Glu Gly Thr Asn Ala Val Leu
 225 230 235 240
 Lys Thr Ser Ala Tyr Thr Ile Ser Val Asn
 245 250

<210> 27

<211> 371

<212> PRT

<213> Streptomyces sp. 11AG8

<400> 27

Met Arg Ser His Pro Arg Ser Ala Thr Met Thr Val Leu Val Val Leu
 1 5 10 15
 Ala Ser Leu Gly Ala Leu Leu Thr Ala Ala Ala Pro Ala Gln Ala Asn
 20 25 30
 Gln Gln Ile Cys Asp Arg Tyr Gly Thr Thr Ile Gln Asp Arg Tyr
 35 40 45
 Val Val Gln Asn Asn Arg Trp Gly Thr Ser Ala Thr Gln Cys Ile Asn
 50 55 60
 Val Thr Gly Asn Gly Phe Glu Ile Thr Gln Ala Asp Gly Ser Val Pro
 65 70 75 80
 Thr Asn Gly Ala Pro Lys Ser Tyr Pro Ser Val Tyr Asp Gly Cys His
 85 90 95
 Tyr Gly Asn Cys Ala Pro Arg Thr Thr Leu Pro Met Arg Ile Ser Ser
 100 105 110
 Ile Gly Ser Ala Pro Ser Ser Val Ser Tyr Arg Tyr Thr Gly Asn Gly
 115 120 125
 Val Tyr Asn Ala Ala Tyr Asp Ile Trp Leu Asp Pro Thr Pro Arg Thr
 130 135 140
 Asn Gly Val Asn Arg Thr Glu Ile Met Ile Trp Phe Asn Arg Val Gly
 145 150 155 160
 Pro Val Gln Pro Ile Gly Ser Pro Val Gly Thr Ala His Val Gly Gly
 165 170 175
 Arg Ser Trp Glu Val Trp Thr Gly Ser Asn Gly Ser Asn Asp Val Ile
 180 185 190
 Ser Phe Leu Ala Pro Ser Ala Ile Ser Ser Trp Ser Phe Asp Val Lys
 195 200 205
 Asp Phe Val Asp Gln Ala Val Ser His Gly Leu Ala Thr Pro Asp Trp
 210 215 220
 Tyr Leu Thr Ser Ile Gln Ala Gly Phe Glu Pro Trp Glu Gly Gly Thr
 225 230 235 240
 Gly Leu Ala Val Asn Ser Phe Ser Ser Ala Val Asn Ala Gly Gly Gly
 245 250 255
 Asn Gly Gly Thr Pro Gly Thr Pro Ala Ala Cys Gln Val Ser Tyr Ser
 260 265 270
 Thr His Thr Trp Pro Gly Gly Phe Thr Val Asp Thr Thr Ile Thr Asn
 275 280 285
 Thr Gly Ser Thr Pro Val Asp Gly Trp Glu Leu Asp Phe Thr Leu Pro
 290 295 300

Ala Gly His Thr Val Thr Ser Val Trp Asn Ala Leu Ile Ser Pro Ala
305 310 315 320
Ser Gly Ala Val Thr Ala Arg Ser Thr Gly Ser Asn Gly Arg Ile Ala
325 330 335
Ala Asn Gly Gly Thr Gln Ser Phe Gly Phe Gln Gly Thr Ser Ser Gly
340 345 350
Ala Gly Phe Thr Ala Pro Ala Gly Ala Arg Leu Asn Gly Thr Ser Cys
355 360 365
Thr Val Arg
370

<210> 28

<211> 221

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus sequence

<220>

<221> VARIANT

<222> (1)....(221)

<223> Xaa = Any Amino Acid

<400> 28

Cys Xaa Gln Tyr Xaa Xaa Xaa Xaa Xaa Xaa Gly Tyr Xaa Xaa Xaa Asn
1 5 10 15
Asn Xaa Trp Gly Xaa Xaa Xaa Xaa Ser Gly Xaa Gln Cys Thr Xaa
20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Xaa Xaa Xaa Trp
35 40 45
Xaa Trp Ser Gly Gly Xaa Xaa Xaa Val Lys Ser Tyr Xaa Xaa Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Ile Xaa Ser Xaa
65 70 75 80
Xaa Xaa Xaa Xaa Trp Xaa Tyr Xaa Gly Xaa Xaa Xaa Ala Asn
85 90 95
Val Ala Tyr Asp Leu Phe Thr Xaa Xaa Xaa Pro Xaa His Xaa Xaa Xaa
100 105 110
Xaa Gly Xaa Tyr Glu Xaa Met Ile Trp Leu Xaa Xaa Xaa Gly Gly Xaa
115 120 125
Xaa Pro Ile Gly Ser Xaa Xaa Xaa Xaa Val Xaa Xaa Xaa Xaa Xaa
130 135 140
Gly Xaa Xaa Trp Xaa Leu Xaa Xaa Gly Xaa Asn Gly Xaa Met Xaa Val
145 150 155 160
Xaa Ser Phe Val Ala Xaa Ser Ser Ser Ser Ser Phe Xaa Gly Asp
165 170 175
Xaa Xaa Xaa Phe Xaa Xaa Tyr Leu Xaa Xaa Xaa Xaa Gly Xaa Pro Xaa
180 185 190
Xaa Xaa Gln Tyr Leu Xaa Xaa Xaa Gln Xaa Gly Thr Glu Pro Phe Thr
195 200 205
Gly Xaa Xaa Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala
210 215 220

<210> 29

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 29
gaacgatggc aaggcgccg tgacg 25

<210> 30
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 30
cttctcgccc tgctacaacc caaacgg 27

<210> 31
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 31
acatcgtcga gtgtttggc acctac 26

<210> 32
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 32
catcgtagag aactggggca cctacaacc 29

<210> 33
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 33
ggcacctacc gaccgtccac g 21

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 34
caagctgggc gagcacacacct ccgac 25

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 35
cgccgcaact gtcgctcgag c 21

<210> 36
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 36
gtggagggtt accaaagctc tggctctgc 29

<210> 37
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 37
tctggctctg cttgcatac cgtcagc 27

<210> 38
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 38
gagaagcgcc agtgcatatca gcccgcc 27

<210> 39
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 39

gtgacgtact gcaatggtcc cggcggg

27

<210> 40

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 40

ggcaccaaga acagggtcat caacttctcg ggc

33

<210> 41

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 41

tccatcaccg tcagcgatta aagggggctc ttc

33

<210> 42

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 42

cccagacgat tcagtgcggc acgggctaca ac

32

<210> 43

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 43

cttctactcg tactggtgcg atggccacgg cg

32

<210> 44

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide

<400> 44
cgattcagcc cggctgcggc tacaacaacg gc 32

<210> 45
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 45
caacggctac ttctactgct actggaacga tggcc 35

<210> 46
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 46
ccggcacggg ctactgcaac ggctacttct actc 34

<210> 47
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 47
ggcgtgacgt acacctgcgg tcccgccgg c 31

<210> 48
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 48
ggcgccacca agtgccggcga ggtcacc 27

<210> 49
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 49

gcgtgggctc agtgcggcct gacgctcg

28

<210> 50

<211> 752

<212> DNA

<213> Trichoderma reesei

<400> 50

atgggtgcct	tttccaggcct	catctgcgct	ctcaccagca	tcgccagtag	tctggcgatg	60
cccacaggcc	tcgagcctga	gaggcgtgtc	aacgtcacag	agcgtggcat	gtacgacttt	120
gttcttggag	ctcacaatga	tcatcgccgt	cgtgctagca	tcaactacga	ccaaaactac	180
caaactggcg	gacaagtctag	ctattcgctt	tccaacactg	gcttctcagt	gaactggaac	240
actcaagatg	actttgttgt	gggcgttggt	tggacgactg	gatcttctgc	gtaggaggac	300
tcctcatcat	tctgcacttt	gaaagcatct	tctgacaaa	agcttctctt	agtcccatca	360
actttggcgg	ctcttttagt	gtcaacagcgc	gaactggcct	gcttccgtc	tatggctgga	420
gcaccaaccc	actgggttag	tactacatca	tggaggacaa	ccacaactac	ccagcacagg	480
gtaccgtcaa	gggaaccgctc	accagcgacg	gagccactta	caccatctgg	gagaataccc	540
gtgtcaacga	gccttccatc	cagggcacag	cgacacctaa	ccagttacatt	tccgtcgga	600
actcgcccag	gaccagcgga	actgttactg	tgcagaacca	cttcaatgct	tgggcctcgc	660
ttggcctgca	ccttggcag	atgaactacc	aggttgcgc	tgtcgaaggc	tggggtggt	720
gtgggtctgc	ctcacagagt	gtcagcaact	ag			752

<210> 51

<211> 248

<212> PRT

<213> Trichoderma reesei

<400> 51

Met	Val	Ala	Phe	Ser	Ser	Leu	Ile	Cys	Ala	Leu	Thr	Ser	Ile	Ala	Ser
1				5					10				15		
Thr	Leu	Ala	Met	Pro	Thr	Gly	Leu	Glu	Pro	Glu	Ser	Ser	Val	Asn	Val
							20			25			30		
Thr	Glu	Arg	Gly	Met	Tyr	Asp	Phe	Val	Leu	Gly	Ala	His	Asn	Asp	His
				35				40			45				
Arg	Arg	Arg	Ala	Ser	Ile	Asn	Tyr	Asp	Gln	Asn	Tyr	Gln	Thr	Gly	Gly
					50			55			60				
Gln	Val	Ser	Tyr	Ser	Pro	Ser	Asn	Thr	Gly	Phe	Ser	Val	Asn	Trp	Asn
					65			70			75			80	
Thr	Gln	Asp	Asp	Phe	Val	Val	Gly	Val	Gly	Trp	Thr	Thr	Gly	Ser	Ser
					85			90			95				
Ala	Glu	Asp	Ser	Ser	Ser	Phe	Cys	Thr	Leu	Lys	Ala	Ser	Ser	Asp	Gln
					100			105			110				
Lys	Leu	Leu	Leu	Val	Pro	Ser	Thr	Leu	Ala	Ala	Leu	Leu	Val	Ser	Thr
					115			120			125				
Ala	Glu	Leu	Ala	Cys	Phe	Pro	Ser	Met	Ala	Gly	Ala	Pro	Thr	His	Trp
					130			135			140				
Leu	Ser	Thr	Thr	Ser	Trp	Arg	Thr	Thr	Thr	Thr	Thr	Gln	His	Arg	Val
					145			150			155			160	
Pro	Ser	Arg	Glu	Pro	Ser	Pro	Ala	Thr	Glu	Pro	Leu	Thr	Pro	Ser	Gly
					165			170			175				
Arg	Ile	Pro	Val	Ser	Thr	Ser	Leu	Pro	Ser	Arg	Ala	Gln	Arg	Pro	Ser
					180			185			190				
Thr	Ser	Thr	Phe	Pro	Cys	Gly	Thr	Arg	Pro	Gly	Pro	Ala	Glu	Leu	Leu
					195			200			205				
Leu	Cys	Arg	Thr	Thr	Ser	Met	Leu	Gly	Pro	Arg	Leu	Ala	Cys	Thr	Leu
					210			215			220				
Gly	Arg	Thr	Thr	Arg	Leu	Ser	Leu	Ser	Lys	Ala	Gly	Val	Val	Val	Val

225

230

235

240

Leu Pro His Arg Val Ser Ala Thr
245