MAVROS 常用话题简介

一、mavros 订阅消息:

1、global position 订阅 GPS 数据

消息名称: mavros/global position/global

类型名称: sensor msgs::NavSatFix.h

类型所在头文件: sensor_msgs/NavSatFix.h

常用类成员变量:

- 1、float64 latitude *//经*
- 2、float64 lontitude *//纬*
- 3、float64 altitude *//海拔*
- 4, float64[9] position covariance
- 5, uint8 position_covariance_type

2、imu pub 订阅 IMU 信息

消息名称:滤波后的 mavros/imu/data (或原始信息 mavros/imu/data_raw)

类型名称: sensor_msgs::Imu

类型所在头文件: sensor msgs/Imu.h

常用类成员变量:

- 1、geometry_msgs::Quaternion orientation *//旋转四元数(xyzw)*
- 2、float64[9] orientation covariance *//方差*
- 3、geometry msgs::Vector3 angular velocity *//3 轴角速度(xyz)*
- 4、float64[9] angular_velocity_covariance *//方差*
- 5、geometry msgs::Vector3 linear accleration *//线性加速度(xyz) *
- 6、float64[9] linear accleration covariance *//方差*

3、local_position 订阅本地位置数据

消息名称: mavros/local_position/pose

类型名称: geometry msgs::PoseStamped

类型所在头文件: geometry_msgs/PoseStamped.h

常用类成员变量:

1, geometry_msgs::Pose pose

4、manual_control 订阅遥控器的值

消息名称: mavros/manual_control/control

类型名称: mavros_msgs::ManualControl

类型所在头文件: mavros_msgs::ManualControl.h

5、sys_status 查询系统状态

消息名称: mavros/state

类型名称: mavros_msgs::State

类型所在头文件: mavros msgs/State.h

6、waypoint 航点信息

消息名称: mavros/mission/waypoint

类型名称: geometry_msgs::WaypointList

类型所在头文件: mavros_msgs/WaypointList.h

二、mavros 发布消息:

1、actuator_control 控制飞控 IO 输出(混控器)

消息名称: mavros/actuator_control

类型名称: geometry msgs::PoseStamped

类型所在头文件: mavros_msgs/Actuator_Control.h

常用类成员变量:

1、uint8 group_mix *//要控制的混控器分组 1-8(control group)

2、float32[8] controls *//控制量(前四个分别是: roll、pitch、yaw、thrust)

2、setpoint_accel 控制期望的加速度

消息名称: mavros/setpoint accel/accel

类型名称: geometry_msgs::Vector3Stamped

类型所在的头文件: geometry_msgs/Vector3Stamped.h

常用类成员变量:

1、geometry_msgs::Vector3 vector *//三轴加速度*

3、setpoint_attitude 控制期望的姿态

消息名称: mavros/setpoint_attitude/attitude

类型名称: geometry_msgs::PoseStamped

类型所在的头文件: geometry_msgs/PoseStamped.h

常用类成员变量:

1、geometry_msgs::Pose pose *//三个欧拉角,或者是四元数任选其一*

4、setpoint_position 控制期望的位置(相对坐标)

消息名称: mavros/setpoint_position/local

类型名称: geometry msgs::PoseStamped

类型所在的头文件: geometry_msgs/PoseStamped.h

常用类成员变量:

1、geometry msgs::Pose pose //NED 坐标系下的位置(xyz), 只有 position 成员变量生效

5、setpoint_velocity 控制期望的速度

消息名称: mavros/setpoint velocity/cmd vel

类型名称: geometry_msgs::TwistStamped

类型所在的头文件: geometry_msgs/TwistStamped.h

常用类成员变量:

- 1、geometry_msgs::Twist twist *//三轴速度*
- 2、geometry_msgs::Twist 类成员变量:
- 3、geometry msgs::Vector3 linear *//三轴线性速度*
- 4、geometry_msgs::Vector3 angular *//三轴角速度*

6、setpoint_position 控制期望的位置(GPS 坐标)

消息名称: mavros/setpoint_position/global

类型名称: mavros msgs::GlobalPositionTarget

类型所在的头文件: mavros msgs/GlobalPositionTarget.h

常用类成员变量:

- 1、uint8 coordinate_frame *//5 为绝对 GPS 坐标系, 6 为相对高度 GPS 坐标*
- 2 uint16 type_mask

三、mavros 服务:

1、arming Services 加解锁服务

消息名称: mavros/cmd/arming

类型名称: mavros_msgs::CommandBool

类型所在的头文件: mavros_msgs/CommandBool.h

2、模式切换消息名称: mavros/set_mode

类型名称: mavros_msgs::SetMode

类型所在的头文件: mavros_msgs/SetMode.h

一、常用接收的话题详解:

1.1 系统状态

消息名称: mavros/state

类型: mavros_msgs::State

头文件: mavros_msgs/State.h

```
//这里只列 PX4 的,APM 的用 rosmsg show mavros_msgs/State 查看
```

```
string MODE PX4 MANUAL=MANUAL
string MODE PX4 ACRO=ACRO
string MODE PX4 ALTITUDE=ALTCTL
string MODE PX4 POSITION=POSCTL
string MODE PX4 OFFBOARD=OFFBOARD
string MODE PX4 STABILIZED=STABILIZED
string MODE PX4 RATTITUDE=RATTITUDE
string MODE PX4 MISSION=AUTO.MISSION
string MODE PX4 LOITER=AUTO.LOITER
string MODE_PX4_RTL=AUTO.RTL
string MODE PX4 LAND=AUTO.LAND
string MODE PX4 RTGS=AUTO.RTGS
string MODE PX4 READY=AUTO.READY
string MODE_PX4_TAKEOFF=AUTO.TAKEOFF
std msgs/Header header
 uint32 seq
 time stamp
 string frame_idbool connected //是否连接 bool
armed //是否解锁 bool
guidedbool
manual_input
string mode //当前飞行模式
uint8 system status //系统状态
```

1.2 GPS 数据

消息名称: mavros/global_position/global

类型: sensor_msgs::NavSatFix

头文件: sensor_msgs/NavSatFix.h

成员变量:

uint8 COVARIANCE_TYPE_UNKNOWN=0uint8
COVARIANCE_TYPE_APPROXIMATED=1uint8
COVARIANCE_TYPE_DIAGONAL_KNOWN=2uint8
COVARIANCE_TYPE_KNOWN=3std_msgs/Header header

uint32 seq

time stamp

string frame_idsensor_msgs/NavSatStatus status

int8 STATUS_NO_FIX=-1

int8 STATUS_FIX=0

int8 STATUS_SBAS_FIX=1

int8 STATUS_GBAS_FIX=2

uint16 SERVICE_GPS=1

uint16 SERVICE_GLONASS=2

uint16 SERVICE_COMPASS=4

uint16 SERVICE_GALILEO=8

int8 status

uint16 servicefloat64 latitudefloat64 longitudefloat64 altitudefloat64[9]

position_covarianceuint8 position_covariance_type

1.3 本地位置

消息名称: mavros/local_position/pose

类型: geometry_msgs::PoseStamped

头文件: geometry_msgs/PoseStamped.h

1.4 三轴速度

消息名称: mavros/local_position/velocity

类型: geometry_msgs::TwistStamped

头文件: geometry_msgs/TwistStamped.h

1.5 IMU 原始数据

消息名称: mavros/imu/data(_raw)//data_raw 为原始数据, data 为滤波后数据

类型: sensor_msgs::Imu

头文件: sensor_msgs/Imu.h

```
std_msgs/Header header

uint32 seq

time stamp

string frame_idgeometry_msgs/Quaternion orientation

float64 x

float64 y

float64 wfloat64[9] orientation_covariancegeometry_msgs/Vector3 angular_velocity

float64 x

float64 y

float64 zfloat64[9] angular_velocity_covariancegeometry_msgs/Vector3

linear_acceleration

float64 x

float64 y

float64 zfloat64[9] linear_acceleration_covariance
```

1.6 遥控器数据

消息名称: mavros/manual_control/control

类型: mavros_msgs::ManualControl

头文件: mavros_msgs/ManualControl.h

成员变量:

std_msgs/Header header

uint32 seq

time stamp

string frame idfloat32 xfloat32 yfloat32 zfloat32 ruint16 buttons

1.7 waypoint 查询航点

消息名称: mavros/mission/waypoints

类型: mavros_msgs::WaypointList

头文件: mavros msgs/WaypointList.h

成员变量:

uint16 current_seqmavros_msgs/Waypoint[] waypoints

uint8 FRAME GLOBAL=0

uint8 FRAME LOCAL NED=1

uint8 FRAME MISSION=2

uint8 FRAME GLOBAL_REL_ALT=3

uint8 FRAME_LOCAL_ENU=4

uint8 frame //坐标系 3: 经纬度为绝对,高度为相对(起飞点为 0) uint16 command //

命令id 16: 航点 bool is_current

bool autocontinue

float32 param1

float32 param2

float32 param3

float32 param4

float64 x_lat

float64 y_long

 $float64\ z_alt$

二、常用发布的话题

2.1、 控制期望的位置(GPS 坐标)

2.1.1, mavros/setpoint_raw/global

消息名称: mavros/setpoint raw/global

类型: mavros msgs::GlobalPositionTarget

头文件: mavros msgs/GlobalPositionTarget.h

成员变量:

uint8 FRAME GLOBAL INT=5

uint8 FRAME GLOBAL REL ALT=6

uint8 FRAME_GLOBAL_TERRAIN_ALT=11

uint16 IGNORE LATITUDE=1 //只想控制经纬高则设置

type_mask=8+16+32+64+128+256+512+1024+2048

uint16 IGNORE_LONGITUDE=2

uint16 IGNORE_ALTITUDE=4

uint16 IGNORE VX=8 // 只想控制速度则设置

type mask=1+2+4+64+128+256+512+1024+2048

uint16 IGNORE_VY=16uint16 IGNORE_VZ=32

uint16 IGNORE_AFX=64 //只想控制加速度则设置

type mask=1+2+4+8+16+32+512+1024+2048

uint16 IGNORE_AFY=128

uint16 IGNORE_AFZ=256

uint16 FORCE=512 //Force in af vector flag

uint16 IGNORE YAW=1024

uint16 IGNORE_YAW_RATE=2048std_msgs/Header header

uint32 seq

time stamp

string frame_iduint8 coordinate_frame //5 为绝对 amsl 高度, 6 为相对 amsl 高度 uint16 type mask //用于确定控制哪些量

float64 latitude //经纬高

float64 longitude

float32 altitude //in meters, AMSL or above terraingeometry_msgs/Vector3 velocity //速度

float64 x

```
float64 y
float64 zgeometry_msgs/Vector3 acceleration_or_force //加速度 float64 x
float64 y
float64 zfloat32 yaw //偏航 float32 yaw_rate //偏航角速度
```

2.1.2, mavros/setpoint_position/global

消息名称: mavros/setpoint_position/global

类型: geographic_msgs::GeoPoseStamped

头文件: geographic_msgs/GeoPoseStamped.h

```
std_msgs/Header header

uint32 seq

time stamp

string frame_idgeographic_msgs/GeoPose pose
geographic_msgs/GeoPoint position

float64 latitude

float64 longitude

float64 altitude
geometry_msgs/Quaternion orientation

float64 x

float64 y

float64 z

float64 w
```

2.2、控制期望的位置

消息名称: mavros/setpoint_position/local

类型: geometry_msgs::PoseStamped

头文件: geometry_msgs/PoseStamped.h

```
std_msgs/Header header
uint32 seq
time stamp
string frame_idgeometry_msgs/Pose pose //NED 坐标系下的位置(xyz), 只有 position 成
页变量生效 geometry_msgs/Point position
float64 x
float64 y
float64 z
geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 y
float64 y
```

2.3、控制期望的速度

消息名称: mavros/setpoint_velocity/cmd_vel_unstamped

类型: geometry_msgs::Twist

头文件: geometry_msgs/Twist.h

成员变量:

```
geometry_msgs/Vector3 linear //三轴线速度 float64 x float64 y float64 zgeometry_msgs/Vector3 angular //三轴角速度 float64 x float64 y float64 z
```

2.4、控制期望的加速度

消息名称: mavros/setpoint_accel/accel

类型: geometry_msgs::Vector3Stamped

头文件: geometry_msgs/Vector3Stamped.h

```
std_msgs/Header header
uint32 seq
time stamp
string frame_idgeometry_msgs/Vector3 vector //三轴加速度 float64 x
float64 y
float64 z
```

2.5、 控制期望的姿态

消息名称: mavros/setpoint_attitude/attitude

类型: geometry msgs::PoseStamped

头文件: geometry_msgs/PoseStamped.h

成员变量:

```
std_msgs/Header header
uint32 seq
time stamp
string frame_idgeometry_msgs/Pose pose //三个欧拉角,或者 4 元数任选其一
geometry_msgs/Point position
float64 x
float64 y
float64 z
geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 y
float64 y
```

2.6、 控制飞控 10 输出(混控器)

消息名称: mavros/actuator_control

类型: mavros_msgs::ActuatorControl

头文件: mavros msgs/ActuatorControl.h

```
uint8 PX4_MIX_FLIGHT_CONTROL=0uint8
PX4_MIX_FLIGHT_CONTROL_VTOL_ALT=1uint8 PX4_MIX_PAYLOAD=2uint8
PX4_MIX_MANUAL_PASSTHROUGH=3std_msgs/Header header
    uint32 seq
    time stamp
    string frame_iduint8 group_mix //要控制的混控器分组 1-8 (control group) float32[8]
controls //控制量(前四个分别是,roll pitch yaw thrust)
```

三、常用服务

3.1、 上/解锁服务

消息名称: mavros/cmd/arming

类型: mavros_msgs::CommandBool

头文件: mavros_msgs/CommandBool.h

请求参数

bool value //true 解锁 false 上锁---bool successuint8 result //错误信息

3.2、模式切换

特别是像例程那样反复在 while 循环中设置 offboard 模式,要是控制不了机载电脑关闭该节点的话飞机就永远保持 offboard 模式了,如果发出的还是速度指令的话就祈祷别砸到人吧。所以设置电子围栏也很重要。此处建议使用我们提供的代码,可以实现遥控器接管无人机,同时针对室外无人机气压计以及 GPS 漂移问题给出了软件校准

消息名称: mavros/set mode

类型: mavros msgs::SetMode

头文件: mavros_msgs/SetMode.h

uint8 MAV_MODE_PREFLIGHT=0uint8
MAV_MODE_STABILIZE_DISARMED=80uint8
MAV_MODE_STABILIZE_ARMED=208
uint8 MAV_MODE_MANUAL_DISARMED=64
uint8 MAV_MODE_MANUAL_ARMED=192
uint8 MAV_MODE_GUIDED_DISARMED=88
uint8 MAV_MODE_GUIDED_ARMED=216
uint8 MAV_MODE_AUTO_DISARMED=92
uint8 MAV_MODE_AUTO_ARMED=220
uint8 MAV_MODE_TEST_DISARMED=66
uint8 MAV_MODE_TEST_DISARMED=194

uint8 base_mode //基本模式,若 customs_mode 非空,则无效 string custom_mode //可用的模式见 mavros/mavros/src/lib/uas_stringify.cpp 中的 px4(如果用的是 APM 就搜 APM)
---bool mode_sent //true 表示正确切换模式

以下为PX4可用的飞行模式

static const cmode_map px4_cmode_map{{

{ px4::define_mode(px4::custom_mode::MAIN_MODE_MANUAL),

"MANUAL" },

{ px4::define_mode(px4::custom_mode::MAIN_MODE_ACRO),

"ACRO" },

```
{ px4::define_mode(px4::custom_mode::MAIN_MODE_ALTCTL),
                                                                                                                                                                                   "ALTCTL" },
{ px4::define_mode(px4::custom_mode::MAIN_MODE_POSCTL),
                                                                                                                                                                                  "POSCTL" },
{ px4::define_mode(px4::custom_mode::MAIN_MODE_OFFBOARD),
                                                                                                                                                                                     "OFFBOARD" },
{ px4::define_mode(px4::custom_mode::MAIN_MODE_STABILIZED),
                                                                                                                                                                                   "STABILIZED" },
{ px4::define_mode(px4::custom_mode::MAIN_MODE_RATTITUDE),
                                                                                                                                                                                    "RATTITUDE" },
{ px4::define_mode_auto(px4::custom_mode::SUB_MODE_AUTO_MISSION), "AUTO.MISSION" },
{ px4::define_mode_auto(px4::custom_mode::SUB_MODE_AUTO_LOITER), "AUTO.LOITER" },
{ px4::define_mode_auto(px4::custom_mode::SUB_MODE_AUTO_RTL),
                                                                                                                                                                                  "AUTO.RTL" },
{ px4::define_mode_auto(px4::custom_mode::SUB_MODE_AUTO_LAND),
                                                                                                                                                                                   "AUTO.LAND" },
{ px4::define mode auto(px4::custom mode::SUB MODE AUTO RTGS),
                                                                                                                                                                                   "AUTO.RTGS" },
\{\ px4:: define\_mode\_auto(px4:: custom\_mode:: SUB\_MODE\_AUTO\_READY),
                                                                                                                                                                                    "AUTO.READY" },
{ px4::define_mode_auto(px4::custom_mode::SUB_MODE_AUTO_TAKEOFF), "AUTO.TAKEOFF" },
\{\ px4:: define\_mode\_auto(px4:: custom\_mode:: SUB\_MODE\_AUTO\_FOLLOW\_TARGET), "AUTO.FOLLOW\_TARGET"\ \}, the property of the pro
{ px4::define_mode_auto(px4::custom_mode::SUB_MODE_AUTO_PRECLAND), "AUTO.PRECLAND" },}};
```