KURVOR OCH PÅ PARAMETER FORM

KURVOR I R³

En kurva i R³ beskrivs anges oftast på parameter form med tre skalära ekvationer:

$$x = f_1(t), \quad y = f_2(t), \quad z = f_3(t) \quad , \quad t \in D \subseteq R$$
 (*)

För varje t får vi en punkt på kurvan $P(t) = (f_1(t), f_2(t), f_3(t))$.

Omvänt en given punkt $P(a_1,a_2,a_3)$ ligger på kurvan (*) om och endast om det finns $t=t_0$ så att $a_1=f_1(t_0)$, $a_2=f_2(t_0)$ och $a_3=f_3(t_0)$.

Man kan ange kurvan (*) med en vektor ekvation $\vec{r} = (f_1(t), f_2(t), f_3(t)), t \in D$ eller ekvivalent

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} f_1(t) \\ f_2(t) \\ f_3(t) \end{pmatrix} \text{ eller } (x, y, z) = (f_1(t), f_2(t), f_3(t)) \text{ och även kortast } \vec{r} = \vec{r}(t)$$

Med andra ord: Vi definierar en kurva i R^3 med hjälp av tre reellvärda funktioner av en variabel t (eller ekvivalent med en vektorfunktion av en variabel t)

Definitionsmängden D är vanligen ett intervall på reella axeln.

En vektor som är **parallell med tangentlinje** till kurvan $\vec{r} = \vec{r}(t)$ i punkten

$$P(t) = (f_1(t), f_2(t), f_3(t) \text{ är } \vec{r}' = (f_1'(t), f_2'(t), f_3'(t))$$

Om $\vec{r} = \vec{r}(t)$ visar position vid tiden t, för en partikel som rör sig i rymden, då är

vektorn \vec{r}' lika med **hastighetsvektorn** \vec{v} dvs $\vec{v} = \vec{r}' = (f_1'(t), f_2'(t), f_3'(t))$

Partikelns farten är då $|\vec{v}| = \sqrt{(f_1'(t))^2 + (f_2'(t))^2 + (f_3'(t))^2}$

Accelerationsvektorn = $\vec{v}' = \vec{r}'' = (f_1''(t), f_2''(t), f_3''(t))$

Uppgift 1. Vi betraktar kurvan

$$\vec{r} = (2 + t, 1 + t^2, \sin t)$$
.

Låt P₀.vara den punkt på kurvan som svarar mot t= 0 som

- a) Bestäm en vektor som är parallell med tangentlinje i punkten P₀.
- b) Bestäm tangentlinjens ekvation i punkten P.

Lösning:

a) Vi beräknar $\overline{T}(t) = \vec{r}'(t) = (1, 2t, \cos t)$.

Om t=0 har vi en riktnings vektor för tangentlinjen $\overline{T}(P_0) = (1, 0, 1)$.

b) Tangentens ekvation i punkten P(0) =(2,1,0) blir då:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Uppgift 2.

Låt $\vec{r}=(4\sin t,4\cos t,\cos t)$, $0\leq t\leq 4\pi$ vara positionen vid tiden t, för en partikel som rör sig i rymden. Bestäm

- a) Hastighetsvektorn, accelerationsvektorn och farten vid tiden t.
- b) För vilka t, $0 \le t \le 4\pi$ är farten störst/ minst. Bestäm fartens största / minsta värde inom definitionsintervallet .

Lösning:

a) Hastighetsvektorn \vec{v} dvs $\vec{v} = \vec{r}' = (4\cos t, -4\sin t, -\sin t)$

Farten =
$$|\vec{r}'| = \sqrt{16\cos^2 t + 16\sin^2 t + \sin^2 t} = \sqrt{16 + \sin^2 t}$$

Accelerationsvektorn = $\vec{a} = \vec{v}' = \vec{r}'' = (f_1''(t), f_2''(t), f_3''(t)) = (-4\sin t, -4\cos t, -\cos t)$

b) Eftersom $0 \le \sin^2 t \le 1$ ser vi att **fartens största värde** är $\sqrt{17}$ om $\sin^2 t = 1$ som är uppfylld för följande t-värden inom definitionsintervallet $0 \le t \le 4\pi$:

$$t = \pi/2$$
, $t = 3\pi/2$, $t = 5\pi/2$ och $t = 7\pi/2$.

Fartens minsta värde är $\sqrt{16}$ om $\sin^2 t = 0$ som är uppfylld

för följande t-värden inom definitionsintervallet $0 \le t \le 4\pi$:

$$t=0$$
 , $t=\pi$, $t=2\pi$, $t=3\pi$ och $t=4\pi$

Uppgift 4. En kurva är given som skärningskurvan mellan två ytor

$$x^{2} + y + z = 5$$
 och $x^{2} + y - xy = 1$.

Bestäm kurvans ekvation på parameterform

Lösning:

Vi betecknar x = t.

Från andra ekvationen har vi

$$t^{2} + y - ty = 1 \Rightarrow y = \frac{1 - t^{2}}{1 - t} = 1 + t$$
, $t \neq 0$.

Insättning i första ekvationen ger

$$z = 5 - x^2 - y = 5 - t^2 - 1 - t = 4 - t^2 - t$$

Svar: $\vec{r}(t) = (t, 1+t, 4-t-t^2)$

Uppgift 5. En kurva är given som skärningskurvan mellan två ytor:

$$x + y + 4z = 4$$
 och $x^2 + 4y^2 = 4$

Bestäm kurvans ekvation på parameterform

Andra ekvationen $x^2 + 4y^2 = 4$ som kan skrivas $\frac{x^2}{4} + y^2 = 1$ har endast två variabler och beskriver en ellips i R² . Vi parametriserar ellipsen genom

$$x = 2\cos t$$
, $y = \sin t$ (då gäller $\frac{x^2}{4} + y^2 = 1$)

Från första ekvationen har vi då

$$z = (4 - x - y)/4 \Rightarrow z = \frac{1}{4}(4 - 2\cos t - \sin t)$$

KURVOR IR²

EXPLICIT FORM y = f(x)

IMPLICIT FORM F(x, y) = 0

PARAMETER FORM $\vec{r}(t) = (x(t), y(t))$

Några ofta förekommande elementära kurvor.

1. **Cirkeln** med radien r=a och centrum i punkten (x_0, y_0) kan anges på :

i)
$$(x-x_0)^2 + (y-y_0)^2 = a^2$$
 (IMPLICIT FORM)

ii)
$$x = x_0 + a \cos t$$
, $y = y_0 + a \sin t$ $0 \le t \le 2\pi$ (PARAMETER FORM)

iii) eller med två ekvationer på EXPLICIT FORM som vi får genom att lösa i) på y:

$$(x - x_0)^2 + (y - y_0)^2 = a^2 \Rightarrow (y - y_0)^2 = a^2 - (x - x_0)^2 \Rightarrow$$

$$\Rightarrow y - y_0 = \pm \sqrt{a^2 - (x - x_0)^2} \Rightarrow y = y_0 \pm \sqrt{a^2 - (x - x_0)^2}$$

Där $y = y_0 + \sqrt{a^2 - (x - x_0)^2}$ är en ekvation för övre halvcirkeln

och $y = y_0 - \sqrt{a^2 - (x - x_0)^2}$ är en ekvation för nedre halvcirkeln

2. Ellipsen med halvaxlar a,b och centrum i (x_0, y_0) kan kan anges på :

i)
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$
 (IMPLICIT FORM)

ii)
$$x = x_0 + a \cos t$$
, $y = y_0 + b \sin t$ $0 \le t \le 2\pi$ (PARAMETER FORM)

iii) eller med **två** ekvationer på EXPLICIT FORM som vi får genom att lösa i) på y:

$$y = y_0 \pm \sqrt{b^2 (1 - \frac{(x - x_0)^2}{a^2})} \Rightarrow y = y_0 \pm \frac{b}{a} \sqrt{a^2 - (x - x_0)^2}$$

3. En kurva på explicit form y = f(x), kan enkelt parametriseras genom att välja

$$x = t$$
, och därmed $y = f(t)$. Då blir $\vec{r}(t) = (t, f(t))$.

Uppgift 6. Beskriv med ord och rita kurvan $y = 5 - \sqrt{4 - (x - 4)^2}$

Lösning:
$$y = 5 - \sqrt{4 - (x - 4)^2} \Rightarrow (y - 5)^2 + (x - 4)^2 = 4$$
.

Vi ser att varje punkt på kurvan satisfierar också cirkelns ekvation (men det betyder inte att varje punkt på cirkeln satisfierar kurvans ekvation; cirkeln kan ha flera punkter än kurvan) och därmed är kurvan en del av cirkeln $(x-4)^2 + (y-5)^2 = 4$.

Cirkelns ekvation leder till TVÅ explicita ekvationer $y=5\pm\sqrt{4-(x-4)^2}$ som svarar mot övre/nedre halvcirkeln. Vår kurvan $y=5-\sqrt{4-(x-4)^2}$ är **nedre halvcirkeln** med centrum i (4,5) och radien 2.

TANGENTLINJE OCH NORMALLINJE I R²

4. Låt $\vec{r}(t) = (x(t), y(t))$. En riktningsvektor till kurvans tangentlinje i punkten P(t) är

$$\vec{T}(t) = \vec{r}'(t) = (x'(t), y'(t))$$

För en **normalvektor** (bland oändligt många) till kurvan $\vec{r}(t) = (x(t), y(t))$ kan vi välja då

$$\vec{n} = (-y'(t), x'(t))$$
 (eftersom $\vec{T}(t) \cdot \vec{n} = 0$.)

(Anmärkning: För en given vektor $\vec{u}=(a,b)$ kan vi välja på ett enkelt sätt en (bland oändligt många) normalvektor: $\vec{n}=(-b,a)$

(För detta val blir skalärprodukten $\vec{u}\cdot\vec{n}=-ab+ab=0$.)

Uppgift 7. Bestäm ekvationer för tangentlinje och normallinje till kurvan

$$y = 2x + x^3$$
 i punkten (1,3)

Lösning:

Vi betecknar x = t. Då är $\vec{r}(t) = (t, 2t + t^3)$ kurvans ekvation på parametersform .

Vi beräknar

$$\vec{r}'(t) = (1, 2 + 3t^2) \text{ och } \vec{r}'(1) = (1, 5)$$

Vektorn $\vec{T} = \vec{r}'(1) = (1, 5)$ är parallell med tangentlinje i punkten (1,1)

Tangentlinjens ekvation blir då (x, y) = (1,1) + s(1, 5).

För en normalvektor kan vi använda t ex $\vec{n}=(-5,1)$ (Vi ändrar plats och tt tecken i vektorn \vec{T} , då blir $\vec{n}\vec{T}=0$)

Normallinjens ekvation är därför (x, y) = (1,1) + s(-5, 1)

5. Om en kurva i R^2 är given på **IMPLICIT FORM** F(x,y)=0 form kan vi med följande formel

$$\vec{n} = (F_x', F_y')$$

beräkna en normalriktning till kurvan i en given punkt P.

Då är $\vec{T}=(-F_y$ ', F_x ') en vektor (bland oändligt många) som är parallell med tangentlinje i punkten .

Uppgift 8.

- a) Bestäm ekvationer för tangentlinje och normallinje till ellipsen $x^2 + 3y^2 = 7$ i punkten P(2,1)
- b) Ange tangentlinjens ekvation på explicit form

Lösning:

a) Den här gången (implicit form) är det enklare att beräkna en normalvektor till kurvan i punkten P.

Vi skriver ekvationen på formen F(x, y) = 0, dvs

$$x^2 + 3y^2 - 7 = 0$$

och använder formeln $\vec{n} = (F_x', F_y')$

I vårt fall är $F(x, y) = x^2 + 3y^2 - 7$,

$$F_x' = 2x$$
, $F_x'(P) = 4$

$$F_{y}' = 6y$$
, $F_{y}'(P) = 6$

Därför en normalvektor i punkten P är $\vec{n} = (4,6)$,

[Vi kan även använda en parallell vektor $\vec{n}_1 = (2,3)$]

För en vektor (bland oändligt många) som är parallell med tangenten kan vi $\ t$ ex välja $\vec{T}=(-3,2)$

Nu har vi

Tangentlinjens ekvation: (x, y) = (2,1) + s(-3,2)

Normallinjens ekvation: (x, y) = (2,1) + s(2,3)

Svar: Tangentlinjen: (x, y) = (2,1) + s(-3,2). Normallinjen (x, y) = (2,1) + s(2,3)

b) För att ange tangentlinjens ekvation (x, y) = (2,1) + s(-3,2) på explicit form eliminerar vi parameter s ur x = 2 - 3s, y = 1 + 2s

$$x = 2 - 3s \Rightarrow s = (2 - x)/3$$

Detta insättes i

$$y = 1 + 2s \Rightarrow y = 1 + 2 \cdot (2 - x)/3 \Rightarrow y = 7/3 - 2x/3$$

Svar b)
$$y = 7/3 - 2x/3$$