07-frequency-analysis ECE 447: Control Systems
goal: frequency-damain analysis of control system performance

(a) transfer matrix $\dot{x} = Ax + Bu$ \Rightarrow $(gyu(s) = C(sI-A)^{-1}B+D)$ (i.e. matrix of transfer functions) $\dot{y} = Cx + Du$ $u = e^{st} \cdot u_0 \Rightarrow y = e^{st} \cdot (gyu(s) \cdot u_0)$

(b) Bode plots $u = e^{st} \cdot u_0 \sim y = e^{st} (qyu(s) \cdot u_0)$, $\sin(\omega t) = \lim_{s \to \infty} e^{j\omega t}$ so plotting $\log |q(j\omega)|$, $\angle q(j\omega)$ vs ω shows us how system responds

(c) effect of disturbances $y = \frac{1}{1+PC}w + \frac{P}{1+PC}v + \frac{PC}{1+PC}v$ so we can use sensitivity $S = \frac{1}{1+PC}w + \frac{PC}{1+PC}v + \frac{PC}{1+PC}v$

(d) fundamental limits

(a) transfer matrix [AMV2 ch 6.3, 9.27 [NV7 ch 4.11]

L) ie a matrix of transfer functions relating a vector of inputs to a vector of outputs

ogner LT1 system in state-space form, $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^n$ y = Cx + Du $y \in \mathbb{R}^0$ know that $x(t) = e^{At}x(0) + \int_0^t e^{A(t-z)}Bu(z)dz$ so $y(t) = Ce^{At}x(0) + C\int_0^t e^{A(t-z)}Bu(z)dz + Du(t)$

olets see what output is produced by $u(t) = e^{st} \cdot u_0$, $s \in \mathbb{C}$, $u_0 \in \mathbb{R}^p$ $y(t) = Ce^{At}x(0) + Cf^{t}e^{A(t-z)}Bf^{sz}u_{s}dz + De^{st}u_{s}$ $= C \int_{0}^{t} e^{A(t-z)} e^{sz} dz Bu_{o}$ $=e^{At} \cdot e^{-A\tau} \cdot e^{sT\tau} \leftarrow e^{s\tau} \cdot I = e^{s\tau}$ $y(t) = Ce^{At}x(0) + Ce^{At} \int_{0}^{pt} e^{(sI-A)z} dz dz dz$. B. u. + Dest. u. -> evaluate this integral bint: find expression whose derivative is the integrand $e^{(sI-A)\tau}$ - recall that $\frac{d}{d\tau}e^{(sI-A)\tau} = (sI-A)e^{(sI-A)\tau}$ $-so \frac{d}{d\tau} \left[(sI-A)^{-1} e^{(sI-A)\tau} \right] = e^{(sI-A)\tau}$ wheris this matrix invertible?

(a) det(sI-A) ≠0 (a) s € \(\lambda(A)\), i.e. s is if an eigenvalue of A oso $\int_{0}^{t} e^{(sT-A)T} dT = \left[(sT-A)^{-1} e^{(sT-A)T} \right]_{T=0}^{T=t}$ $= (sI-A)^{-1} \left[e^{(sI-A)t} - e^{(sI-A)} \right]$ = e At est = e At est Irence = u(t)

lec-fa20 Page 2

takeaway: given
$$\dot{x} = Ax + Bu$$
 get $Gyu(s) = ((sI-A)^{T}B+D)$
 $y = (x + Du)$ transfer matrix
(i.e. matrix of transfer functions)

ex: quadrotor

goodrotor imposs
$$u = \begin{bmatrix} F_a \\ F_b \end{bmatrix}$$
 outputs: $\begin{bmatrix} X \\ Z \end{bmatrix} = y$

$$ER^2 \qquad ER^3$$

$$G_{XF_a} \qquad G_{XF_b} \qquad G_{XF_b}$$

$$G_{3F_b} \qquad G_{9F_b}$$

$$G_{9F_b} \qquad G_{9F_b}$$

so if
$$u(t) = e^{st} \cdot u_0 \in \mathbb{R}^2$$
 then $y(t) = e^{st} \cdot Gyu(s) \cdot u_0 \in \mathbb{R}^3$

o since a complex expanential input est.
$$u_0$$
 gields complex expanential output est. $(q_{yu}(s) \cdot u_0)$ and $sin(wt) = lm e^{jwt}$, $w \in \mathbb{R}$

Figure 9.17: Bode plots for low-pass, band-pass, and high-pass filters. The upper plots are the gain curves and the lower plots are the phase curves. Each system passes frequencies in a different range and attenuates frequencies outside of that range.

* note:
$$G(s) = \frac{b_1(s) b_2(s)}{a_1(s) a_2(s)}$$
 $\Rightarrow log |G| = log |b_1| + log |b_2| - log |a_1| - log |a_2|$
 $\Rightarrow \angle G = \angle b_1 + \angle b_2 - \angle a_1 - \angle a_2$

ex: $(spring-mass-dampsf) / RLC circuit)$
 $m\ddot{g} + c\ddot{g} + kg = u \text{ or } L\ddot{g} + Rg + \frac{1}{2} + Rg + \frac{1}{2}$
 $\Rightarrow G(s) = \frac{1}{1 \cdot 2 + Rg + \frac{1}{2}}$
 $\Rightarrow G(s) = \frac{1}{1 \cdot 2 + Rg + \frac{1}{2}}$

lec-fa20 Page 4

 $A > G(s) = \frac{1}{ms^2 + cs + k}$ or = $\frac{1}{Ls^2 + Rs + k}$ note: as $s \rightarrow 0$, $G(s) \rightarrow 1/2$ or C, i.e. $|G(s)| \rightarrow constant$ $\angle (q(s) \rightarrow 0)$ as $s \to \infty$, $G(s) \to \frac{1}{MS^2}$ or $\frac{1}{LS^2}$, i.e. $\log |G(j\omega)| \propto -2\omega$ so we can sketch Bode plot: log/qqw)| \ log/qqw)|

(c) effect of disturbances [AMV2 (l. 12.1] [NV7 ch 7.5]

consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbance;

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances:

The consider negative feed back block diagram with disturbances feed back block diagram with disturbances;

The consider negative feed back block diagram with disturbances feed back block

* assuming input disturbance v and output disturbance w are independent of other signals in the diagram, they affect y linearly: -> derive transfer functions (qur, (-y=w+y=w+pu=w+p(v+u)=w+pv+pce= W + PN + PC(r - y)(I+PC)y = W + PV + PCF* assuming invertible y = (I+PC)-1w + (I+PC)-1PN+ (I+PC)-1PCr Gyv Gyr in single-input (ax: 1+PC) + + PC -* the "ideal" transformations are different for each transformation: -ideally Gyr ~ I so that y = Gyr - r ~ r -ideally Gyv, Gyw ~ O so that v & w don't affect y (we'll see that we can't adrieve all "ideals" at the same time) 1 /S(jw) /> /:

1101. 1111.

lec-fa20 Page 6

Ilt S = Gallan JAP.

oin terms of Bode plot: Islmox [log | S(jw)]

(d) fundamental limits [AMV2 Ch 12.1, 14.2]