Download from finelybook www.finelybook.com

Lifecycle of a Node Value

When you evaluate a node, TensorFlow automatically determines the set of nodes that it depends on and it evaluates these nodes first. For example, consider the following code:

```
w = tf.constant(3)
x = w + 2
y = x + 5
z = x * 3
with tf.Session() as sess:
    print(y.eval()) # 10
    print(z.eval()) # 15
```

First, this code defines a very simple graph. Then it starts a session and runs the graph to evaluate y: TensorFlow automatically detects that y depends on w, which depends on x, so it first evaluates w, then x, then y, and returns the value of y. Finally, the code runs the graph to evaluate z. Once again, TensorFlow detects that it must first evaluate w and x. It is important to note that it will not reuse the result of the previous evaluation of w and x. In short, the preceding code evaluates w and x twice.

All node values are dropped between graph runs, except variable values, which are maintained by the session across graph runs (queues and readers also maintain some state, as we will see in Chapter 12). A variable starts its life when its initializer is run, and it ends when the session is closed.

If you want to evaluate y and z efficiently, without evaluating w and x twice as in the previous code, you must ask TensorFlow to evaluate both y and z in just one graph run, as shown in the following code:

```
with tf.Session() as sess:
    y_val, z_val = sess.run([y, z])
    print(y_val) # 10
    print(z val) # 15
```


In single-process TensorFlow, multiple sessions do not share any state, even if they reuse the same graph (each session would have its own copy of every variable). In distributed TensorFlow (see Chapter 12), variable state is stored on the servers, not in the sessions, so multiple sessions can share the same variables.

Linear Regression with TensorFlow

TensorFlow operations (also called ops for short) can take any number of inputs and produce any number of outputs. For example, the addition and multiplication ops each take two inputs and produce one output. Constants and variables take no input Download from finelybook www.finelybook.com

(they are called *source ops*). The inputs and outputs are multidimensional arrays, called *tensors* (hence the name "tensor flow"). Just like NumPy arrays, tensors have a type and a shape. In fact, in the Python API tensors are simply represented by NumPy ndarrays. They typically contain floats, but you can also use them to carry strings (arbitrary byte arrays).

In the examples so far, the tensors just contained a single scalar value, but you can of course perform computations on arrays of any shape. For example, the following code manipulates 2D arrays to perform Linear Regression on the California housing dataset (introduced in Chapter 2). It starts by fetching the dataset; then it adds an extra bias input feature ($x_0 = 1$) to all training instances (it does so using NumPy so it runs immediately); then it creates two TensorFlow constant nodes, X and y, to hold this data and the targets,⁴ and it uses some of the matrix operations provided by Tensor-Flow to define theta. These matrix functions—transpose(), matmul(), and matrix_inverse()—are self-explanatory, but as usual they do not perform any computations immediately; instead, they create nodes in the graph that will perform them when the graph is run. You may recognize that the definition of theta corresponds to the Normal Equation ($\hat{\theta} = \mathbf{X}^T \cdot \mathbf{X}$)-1 · $\mathbf{X}^T \cdot \mathbf{y}$; see Chapter 4). Finally, the code creates a session and uses it to evaluate theta.

```
import numpy as np
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
m, n = housing.data.shape
housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]

X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
XT = tf.transpose(X)
theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)
with tf.Session() as sess:
    theta_value = theta.eval()
```

The main benefit of this code versus computing the Normal Equation directly using NumPy is that TensorFlow will automatically run this on your GPU card if you have one (provided you installed TensorFlow with GPU support, of course; see Chapter 12 for more details).

⁴ Note that housing.target is a 1D array, but we need to reshape it to a column vector to compute theta. Recall that NumPy's reshape() function accepts -1 (meaning "unspecified") for one of the dimensions: that dimension will be computed based on the array's length and the remaining dimensions.

Download from finelybook www.finelybook.com

Implementing Gradient Descent

Let's try using Batch Gradient Descent (introduced in Chapter 4) instead of the Normal Equation. First we will do this by manually computing the gradients, then we will use TensorFlow's autodiff feature to let TensorFlow compute the gradients automatically, and finally we will use a couple of TensorFlow's out-of-the-box optimizers.

When using Gradient Descent, remember that it is important to first normalize the input feature vectors, or else training may be much slower. You can do this using TensorFlow, NumPy, Scikit-Learn's StandardScaler, or any other solution you prefer. The following code assumes that this normalization has already been done.

Manually Computing the Gradients

The following code should be fairly self-explanatory, except for a few new elements:

- The random_uniform() function creates a node in the graph that will generate a tensor containing random values, given its shape and value range, much like NumPy's rand() function.
- The assign() function creates a node that will assign a new value to a variable. In this case, it implements the Batch Gradient Descent step $\theta^{(\text{next step})} = \theta \eta \nabla_{\theta} \text{MSE}(\theta)$.
- The main loop executes the training step over and over again (n_epochs times), and every 100 iterations it prints out the current Mean Squared Error (mse). You should see the MSE go down at every iteration.

```
n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
gradients = 2/m * tf.matmul(tf.transpose(X), error)
training_op = tf.assign(theta, theta - learning_rate * gradients)

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)

for epoch in range(n epochs):
```