FIT3152 Data analytics

Assignment 1

Name: Lim Yu-Shan Student ID: 32685467

Title: Analysis of country-level predictors of pro-social behaviours to reduce the spread of COVID-19 during the early stages of the pandemic

Notes to marker:

- The main body of this report is just over 14 pages, with some long code blocks and outputs taking up much of the length. All other pages are the appendix, which include repeated code and outputs.
- Some lines of the code output (significant predictors and coefficients for rest-of-the-world models) on page 9 are too long and flow off the page. The full list of significant predictors and coefficients have been manually copied and pasted below the original output, and can also be seen in the visualisations on pages 10 and 14.

Section 1

1(a)

The data in the file PsyCoronaBaselineExtract.csv is a reduced version of the data collected for the PsyCorona baseline study, a psychological survey investigating pro-social behaviours in different countries during the COVID-19 pandemic, by Van Lissa et al. (2002).

The following code is run to generate an individual subset of the data for my analysis. The data is then attached to the R search path for more convenient access to variables.

```
rm(list = ls())
set.seed(32685467)
cvbase <- read.csv("PsyCoronaBaselineExtract.csv")
cvbase <- cvbase[sample(nrow(cvbase), 40000), ]
attach(cvbase)</pre>
```

Important libraries to be used for the analysis is imported.

```
library(ggplot2)
library(dplyr)
library(tidyr)
```

To get a good initial understanding of the dataset, the following code is run to learn about its features and properties.

```
dim(cvbase)
as.data.frame(sapply(cvbase, class)) # get data types of each column
summary(cvbase, na.rm = TRUE)
```

From the first two outputs, we learn that my individual dataset has 40,000 rows/entries (as specified in my parameters for sample()) and 54 columns. All columns contain integer data except for coded_country, which contains character data (full strings of country names), making it the only text attribute.

Based on the codebook extract, all columns except employstatus, gender, age, edu and coded_country columns contain ordinal data in the form of integers that code for degrees such as level of agreement, age group and education level. The integer values of the gender, age and edu columns code for different gender, age and education categories respectively. Only a maximum of one employstatus column can have a value of 1 in each entry, denoting that that is the employment status for that individual.

From the output of summary(), we learn that the numerical attributes have varied ranges. Survey questions that measure a one-sided degree of agreement range from 1 to a higher positive number such as 5 and 6, while those that evaluate a two-sided degree of agreement range from a negative number to its modulus.

For the only text attribute, coded_country, running the following code

```
sort(unique(cvbase$coded_country)) # get all country names
table(cvbase$coded_country) # get number of entries for each country
# get maximum and minimum number of entries, and their corresponding countries
max(table(cvbase$coded_country))
which(table(cvbase$coded_country)) == max(table(cvbase$coded_country))
max(table(cvbase$coded_country)) == min(table(cvbase$coded_country)))
```

reveals that there are 110 unique country names (including NA) in this dataset, and that each country has varied numbers of entries (the United States of America has the most with 6952, while 18 countries only have 1).

There are missing values in each column, though this is expected as each question in the survey is optional to answer. The employstatus columns have the most missing values among them as each participant only chooses one of 10 categories. For my dataset, employstatus_3 has the fewest missing values whereas employstatus_8 has the most. This implies that most of the participants are employed and working at least 40 hours per week, whereas the smallest minority in terms of employment status is disabled people.

One interesting observation is that the mean of the age groups in this dataset is 2.893, which means most participants are aged 35-44 years. This may be because most working-class adults with stable lifestyles fall into this category, and hence are studied more to better understand relationships between the pandemic and societal and job insecurity.

1(b)

No pre-processing is necessary as this dataset is tidy, with no faulty values or entries. The NA values in the employstatus columns, however, can be replaced with 0 as these columns are different answers to the same question, and the only other possible value being 1. This makes it easier for linear regression to be performed on these attributes later on. The head of cvbase is included in the **Appendix** to keep this report concise.

```
for (i in 21:30) {
  cvbase[, i][is.na(cvbase[, i])] <- 0
}</pre>
```

Section 2

2(a)

My focus country is the United States of America. To get a better view of how responses for the United States differ from other countries, bar charts are created for each group. The y-axis of each bar chart contains the survey question variables while the x-axis consists of the mean values of each question's responses. The following code creates the data frames for the mean values and plots the bar charts using ggplot2. coded_country is excluded as it is not a numerical attribute.

```
usa <- cvbase[coded_country == "United States of America", ]
rem <- anti_join(cvbase, usa)

means <- colMeans(usa[, !names(usa) %in% c("coded_country")], na.rm = TRUE)
usa_means <- data.frame(mean = means)

means <- colMeans(rem[, !names(rem) %in% c("coded_country")], na.rm = TRUE)
rem_means <- data.frame(mean = means)</pre>
```

```
usa_plot <- ggplot(usa_means) +
  geom_bar(mapping = aes(x = rownames(usa_means), y = mean), stat = "identity",
    fill = "blue") +
  coord_flip() +
  labs(x = "Survey questions", y = "Mean value of responses",
    title = "Mean values of responses for each survey question in the United States")

rem_plot <- ggplot(rem_means) +
  geom_bar(mapping = aes(x = rownames(rem_means), y = mean), stat = "identity",
    fill = "red") +
  coord_flip() +
  labs(x = "Survey questions", y = "Mean value of responses",
    title = "Mean values of responses for each survey question in the rest of the world")

usa_plot</pre>
```

Mean values of responses for each survey question in the United States

rem_plot

At first glance, participant responses in the United States is similar to that of the remaining countries as a group. The most notable difference is in the responses for PFS01. The possible responses for this question range from -2 (strongly disagree) to 2 (strongly agree). In the United States, the mean response is a positive number, while the same for other countries is a negative number, the only such difference among all variables.

2(b)

An initial look is taken at the correlation between predictor and pro-social attitude for the United States. The cor() function is used and the correlation matrix is visualised with a heatmap.

```
usa_cor <- cor(subset(usa, select = -coded_country), use = "complete.obs")

# reshapes matrix to long format for plotting
usa_melted <- reshape2::melt(usa_cor)

usa_cor_plot <- ggplot(data = usa_melted) +
    geom_tile(mapping = aes(x = Var1, y = Var2, fill = value)) +
    scale_fill_gradient2(low = "#6b74ff", mid = "white", high = "#e46c6c", midpoint = 0) +
    labs(title = "Correlation between predictors for the United States", x = "", y = "",
        fill = "correlation") +
    theme(axis.text.x = element_text(angle = 90))</pre>
```

usa_cor_plot

Red and blue tiles indicate positive and negative correlation respectively, with tiles becoming white as correlation approaches 0. From this heatmap, there are many instances of strong correlation between predictors, but the subsection of the heatmap showing the correlation between pro-social attitudes and all other attributes is fairly light. This indicates that the attributes may not predict pro-social attitudes extremely well for the United States.

By fitting a linear regression model of each pro-social attitude against the attributes, we can see how well the responses predict the response to the pro-social attitude question. We will also be able to find out which predictors are the best.

The following code fits a linear model of each pro=social attitude against the attributes. A function and for loop is used to summarise each model, including their R-squared values, significant predictors with p-value

less than 0.001, and their respective coefficients. prds and mdl are vectors that will be used to compare the strong predictors for each model in a table later.

```
prds <- NULL
mdl <- NULL
model_eval <- function(model) {</pre>
  rsqr <- summary(model)$r.squared</pre>
  a_rsqr <- summary(model)$adj.r.squared</pre>
  sig <- which(summary(model)$coefficients[-1, 4] < 0.001) + 1</pre>
  preds <- rownames(summary(model)$coefficients[sig, , drop = FALSE])</pre>
  coefs <- summary(model)$coefficients[sig, 1]</pre>
 return(list(rsqr, a_rsqr, preds, coefs))
}
fitted_usa1 <- lm(c19ProSo01 ~ .,</pre>
  data = subset(usa, select = -c(coded_country, c19ProSo02, c19ProSo03, c19ProSo04)))
fitted_usa2 <- lm(c19ProSo02 ~ .,</pre>
 data = subset(usa, select = -c(coded_country, c19ProSo01, c19ProSo03, c19ProSo04)))
fitted_usa3 <- lm(c19ProSo03 ~ .,</pre>
  data = subset(usa, select = -c(coded_country, c19ProSo01, c19ProSo02, c19ProSo04)))
fitted_usa4 <- lm(c19ProSo04 ~ .,</pre>
 data = subset(usa, select = -c(coded_country, c19ProSo01, c19ProSo02, c19ProSo03)))
cat("Summary of models for predicting pro-social attitudes in the United States\n\n")
## Summary of models for predicting pro-social attitudes in the United States
counter <- 1
for (model in list(fitted_usa1, fitted_usa2, fitted_usa3, fitted_usa4)) {
  cat("C19ProSo0", counter, "\n", sep = "")
  res <- model_eval(model)
  cat("R-squared value:", res[[1]], "\n")
  cat("Adjusted R-squared value:", res[[2]], "\n")
  cat("Significant predictors with p-value < 0.001:\n")</pre>
  cat(res[[3]], "\n")
  cat("Coefficients of predictors:\n")
  cat(res[[4]], "\n")
  cat("\n")
  for (pred in res[[3]]) {
    mdl <- c(mdl, paste0("USA C19ProSo0", counter))</pre>
  prds <- c(prds, res[[3]])</pre>
  counter <- counter + 1
}
## C19ProSo01
## R-squared value: 0.1224774
## Adjusted R-squared value: 0.1089812
## Significant predictors with p-value < 0.001:
## disc02 MLQ c19NormShould trustGovState
## Coefficients of predictors:
## 0.1351951 0.08717715 0.1441734 0.1642502
##
## C19ProSo02
```

```
## R-squared value: 0.1674081
## Adjusted R-squared value: 0.154603
## Significant predictors with p-value < 0.001:
## disc02 PFS01 c19NormShould trustGovState edu
## Coefficients of predictors:
## 0.1542413 -0.1637085 0.1788572 0.1799418 0.08186903
##
## C19ProSo03
## R-squared value: 0.09581283
## Adjusted R-squared value: 0.08190663
## Significant predictors with p-value < 0.001:
## PLRAC19 MLQ c19NormShould trustGovState edu
## Coefficients of predictors:
## 0.08652849 0.1013942 0.1728413 0.156691 0.07075706
##
## C19ProSo04
## R-squared value: 0.2232844
## Adjusted R-squared value: 0.2113349
## Significant predictors with p-value < 0.001:
## disc02 MLQ c19NormShould c19IsPunish
## Coefficients of predictors:
## 0.1299587 0.06540818 0.3805587 -0.07275021
```

The responses best predict C19ProSoO4, as evident from its adjusted R-squared value of 0.2113349, which is the highest among all models. Its best predictors are discO2, MLQ, c19NormShould and c19IsPunish. The model for C19ProSoO3 has the lowest adjusted R-squared value - 0.08190663 - with its best predictors being PLRAC19, MLQ, c19NormShould, trustGovState and edu.

The arguably small R-squared values among the models are unsurprising as most of the survey questions are subjective. For example, different participants perceive different levels of calmness differently, and interpret financial strain differently. As a vast and populous country with many working classes and standards of life, different parts of the United States are like separate countries on their own, with their own economies, healthcare and overall happiness. This makes it hard for the pro-social attitude responses to be predicted consistently.

Each model has its own list of significant predictors, but some predictors can be considered more reliable overall as they appear more often across the models. The prime example would be c19NormShould, which is a strong predictor for all four models. This makes sense as someone who is willing to assist society during the pandemic would want the best for it, and thus encourage members of society to self-isolate and socially distance. These measures of curbing viral spread are suggested by the United States' own Centers for Disease Control and Prevention (CDC), and as a developed nation with a well-educated population, individuals with pro-social intentions tend to follow these guidelines. On the other hand, someone without pro-social attitudes would be indifferent towards societal behaviours and not be bothered to follow new norms. The predictive strength of c19NormShould may also be affected by individuals who think that social distancing is bad for society, and that they are helping others by opposing these measures. Protests against lockdowns were common in the United States during the pandemic, proving that this belief does exist.

Other variables that predict three of the models well are disc02, MLQ and trustGovState. Individuals would tend to be more pro-social based on their concern about the society's future, their sense of purpose in life, and their belief on whether they can find common ground with society in dealing with the pandemic.

2(c)

To repeat the same task for the rest of the world, previous code is reused, but with the rem dataset instead of usa. The correlation matrix for this dataset is first visualised. From this point onwards, variants of reused code will appear in the **Appendix** to keep this report concise.

rem_cor_plot

Comparing both heatmaps we have thus far, we observe that usa_cor_plot has more darker-coloured tiles, indicating stronger correlation between predictors overall. In addition to having lighter tiles, rem_cor_plot looks "cleaner" with less scatter of coloured tiles. However, focusing on the subsections of the heatmaps that show the correlation between pro-social attitudes and all other attributes allows us to make an initial guess that the attributes for both groups of data should predict pro-social attitudes with roughly similar performance, as the subsections in both plots look fairly similar.

- ## Summary of models for predicting pro-social attitudes in the rest of the world
- ## C19ProSo01
- ## R-squared value: 0.1268007
- ## Adjusted R-squared value: 0.1240447
- ## Significant predictors with p-value < 0.001:

- ## affInsp PLRAC19 disc02 employstatus_10 fail03 lifeSat MLQ c19NormShould c19NormDo c19IsOrg trustGovS ## Coefficients of predictors:
- ## 0.06154919 0.0652525 0.1005851 0.3293603 0.06135636 0.05886684 0.08799994 0.1034505 0.0727743 0.0577 ##

C19ProSo02

- ## R-squared value: 0.1684555
- ## Adjusted R-squared value: 0.1658316
- ## Significant predictors with p-value < 0.001:
- ## affAnx affBor affExc affExh affInsp PLRAEco disc02 disc03 jbInsec02 PFS01 fail01 lifeSat MLQ c19Norm
- ## Coefficients of predictors:
- ## 0.04854233 0.06002516 0.06926414 0.04935493 0.04810877 -0.03626116 0.1502406 0.0650781 0.06608606 -0
- ## C19ProSo03
- ## R-squared value: 0.1243751
- ## Adjusted R-squared value: 0.121612
- ## Significant predictors with p-value < 0.001:
- ## affExc affExh affInsp PLRAC19 disc02 disc03 employstatus_10 lifeSat MLQ c19NormShould c19NormDo c19I
- ## Coefficients of predictors:
- ## 0.05042581 0.04464075 0.06039361 0.07098512 0.1348678 0.07466859 0.3418363 0.09238179 0.05582841 0.0
- ## C19ProSo04
- ## R-squared value: 0.1445334
- ## Adjusted R-squared value: 0.1418332
- ## Significant predictors with p-value < 0.001:
- ## affInsp PLRAC19 disc02 disc03 jbInsec01 employstatus_10 PFS02 fail01 fail02 fail03 lifeSat c19NormSh
- ## Coefficients of predictors:
- ## 0.07070157 0.08621845 0.1716264 0.04722402 0.06153325 0.348768 0.04779941 -0.06649288 -0.05701471 0.

Note: the lines for predictor names and their coefficients are too long and were cut off instead of wrapped when this PDF was knitted from my R Markdown file. The cut-off lines are, in order, as follows:

affInsp PLRAC19 disc02 employstatus_10 fail03 lifeSat MLQ c19NormShould c19NormDo c19IsOrg trustGovState edu

 $0.06154919\ 0.0652525\ 0.1005851\ 0.3293603\ 0.06135636\ 0.05886684\ 0.08799994\ 0.1034505\ 0.0727743\ 0.05776118\ 0.142124\ 0.02873322$

affAnx affBor affExc affExh affInsp PLRAEco disc02 disc03 jbInsec02 PFS01 fail01 lifeSat MLQ c19NormShould c19NormDo trustGovCtry trustGovState age edu

affExc affExh affInsp PLRAC19 disc02 disc03 employstatus_10 lifeSat MLQ c19NormShould c19NormDo c19IsOrg trustGovState age edu

affInsp PLRAC19 disc02 disc03 jbInsec01 employstatus_10 PFS02 fail01 fail02 fail03 lifeSat c19NormShould c19NormDo c19IsStrict trustGovState

Based on the summary for the rest of the world, all four models have roughly the same adjusted R-squared values between 0.12 and 0.17, which is narrower than the corresponding range for the US dataset (0.08 - 0.21). The models have many more significant predictors compared to the usa models. Strong predictors

that predict all four models well are disc02, lifeSat, c19NormShould, c19NormDo and trustGovState. These predictors include most of those that had good performance across the four usa models, which are c19NormShould, disc02 and trustGovState. As previously mentioned, the United States by itself resembles a collection of separate countries due to its size and diversity. Hence, it is no surprise that strong predictors for the United States would apply to other countries as a group as well.

The findings of the best predictors for each pro-social attitude for the United States and other countries as a group can be visualised in a table as shown below, generated using ggplot2.

```
summ_table <- table(predictors = prds, models = mdl)

# reorder the columns
summ_table <- summ_table[, c("USA C19ProSo01", "USA C19ProSo02", "USA C19ProSo03",
    "USA C19ProSo04", "Row C19ProSo01", "Row C19ProSo02", "Row C19ProSo03",
    "Row C19ProSo04")]

summ_table_vis <- ggplot(data = as.data.frame(summ_table)) +
    geom_tile(mapping = aes(x = models, y = predictors, fill = Freq, colour = "black")) +
    scale_fill_gradientn(colours = c("pink", "green")) +
    theme(legend.position = "none") +
    scale_x_discrete(position = "top") +
    scale_y_discrete(limits = rev) +
    labs(x = "Models", y = "Predictors",
        title = "Table of significant predictors for each model")

summ_table_vis</pre>
```

Table of significant predictors for each model

Section 3

3(a)

In addition to the indicators found in the sources listed in the references, some other socioeconomic and health data have been sourced from other websites as well. The final data table (in **Appendix**) that I have compiled for use in clustering consists of 8 indicators: HDI, GHS, freedom, political_stability, happiness, total_vax_per_hundred, total_cases_per_mil and total_deaths_per_mil. Details and explanations about each indicator and their sources are included in the **Appendix**.

To identify countries similar to the United States, k-means clustering is performed. Countries with NA values

are first removed for the kmeans() function to work. This has minimal impact on our results as most of these countries are very different from the United States in terms of development and data transparency (eg. Afghanistan, Syria), and also do not appear in the baseline data in the first place (eg. Solomon Islands, Cuba). The data is then scaled and K-means clustering is performed with 15 random starts.

```
collected <- read.csv("task3.csv")
collected_clean <- na.omit(collected)
collected_clean[, 2:9] <- scale(collected_clean[, 2:9])

kfit <- kmeans(collected_clean[, 2:9], round(nrow(collected_clean) / 5), nstart = 15)
clusters <- data.frame(country = collected_clean[[1]], cluster = kfit$cluster)

target <- filter(clusters, country == "United States of America")$cluster
similar <- filter(clusters, cluster == target)
similar</pre>
```

```
##
                         country cluster
## 17
                         Belgium
## 45
                 Czech Republic
                                        1
## 100
                       Lithuania
                                        1
## 156
                        Slovenia
                                        1
## 182
                  United Kingdom
## 183 United States of America
                                        1
```

Based on the clustering, countries similar to the United States are Belgium, Czech Republic, Lithuania, Slovenia and the United Kingdom.

3(b)

Baseline data of the countries belonging to the cluster are first extracted through an inner join of cvbase and similar, with the United States data removed. A visualisation of the correlation matrix for this subset of data is then plotted, just as for usa and rem.

```
colnames(similar)[colnames(similar) == "country"] <- "coded_country"
intersect <- merge(cvbase, similar, by = "coded_country", all = FALSE)
intersect <- intersect[, -ncol(intersect)]
clus <- filter(intersect, coded_country != "United States of America")

clus_cor <- cor(subset(clus, select = -coded_country), use = "complete.obs")
clus_melted <- reshape2::melt(clus_cor)

clus_cor_plot</pre>
```


The scatter of coloured tiles for this heatmap resembles that of the United States heatmap, illustrating the similarity between these countries. The subsection of tiles showing correlation between predictors and pro-social attitudes are overall darker compared to the previous plots, indicating that the predictors for this cluster of countries might have better predictive performance compared to the previous two groups of data.

To find out how participant responses predict pro-social attitudes for this cluster of similar countries, the same code as in 2(b) and 2(c) is reused to print a formatted summary of the four models.

```
## Summary of models for predicting pro-social attitudes in countries similar to the US
## C19ProSo01
## R-squared value: 0.2135323
## Adjusted R-squared value: 0.1284619
## Significant predictors with p-value < 0.001:</pre>
```

##

```
## Coefficients of predictors:
##
##
## C19ProSo02
## R-squared value: 0.1949902
## Adjusted R-squared value: 0.107914
## Significant predictors with p-value < 0.001:
##
## Coefficients of predictors:
##
##
## C19ProSo03
## R-squared value: 0.2164434
## Adjusted R-squared value: 0.1316878
## Significant predictors with p-value < 0.001:
##
## Coefficients of predictors:
##
##
## C19ProSo04
## R-squared value: 0.3212664
## Adjusted R-squared value: 0.2478493
## Significant predictors with p-value < 0.001:
## disc02 PFS02
## Coefficients of predictors:
## 0.3093201 0.2396266
```

C19ProSo02

From the output, the models for these similar countries generally have roughly the same adjusted R-squared values as the models for the United States and all other countries as a group. The highest adjusted R-squared value is seen in the model for C19ProSo04 (0.2478493), just as with the United States models. However, unlike the previous eight models, none of these models have significant predictors with p-values less than 0.001 except the model for C19ProSo04, whose significant predictors are disc02 and PFS02. disc02 also appears as a strong predictor in the United States model for C19ProSo04, but not PFS02. The rest-of-the-world model for C19ProSo04, however, has both disc02 and PFS02 as strong predictors.

Hence, the predictive performance of attributes for this cluster of countries is not significantly better than that of the United States nor the rest of the world, with similar R-squared values and predictors with overall higher p-values. The strong correlation we observed earlier may be due to chance or a small sample size, instead of actual statistically significant relationships between attribute and pro-social attitude.

For the sake of comparison, we can set the definition of a strong predictor relative to the overall p-values in a model. We define a strong predictor for these new cluster models as a predictor with a p-value less than 0.05 (a commonly used threshold). The model_eval function is updated to reflect this (see **Appendix**) and a new visualisation table is created.

```
## Summary of models for predicting pro-social attitudes in countries similar to the US
## C19ProSo01
## R-squared value: 0.2135323
## Adjusted R-squared value: 0.1284619
## Significant predictors with p-value < 0.05:
## c19IsOrg
## Coefficients of predictors:
## 0.1637241
##</pre>
```

```
## R-squared value: 0.1949902
## Adjusted R-squared value: 0.107914
## Significant predictors with p-value < 0.05:
## disc02 trustGovState
## Coefficients of predictors:
  0.2962495 0.2245365
##
##
## C19ProSo03
## R-squared value: 0.2164434
## Adjusted R-squared value: 0.1316878
## Significant predictors with p-value < 0.05:
## affBor affNerv affRel disc02 PFS01 PFS03 c19IsOrg trustGovState
## Coefficients of predictors:
## -0.1300093 -0.2459104 -0.1962942 0.2401793 0.3136709 -0.2414336 0.2064041 0.2300887
##
## C19ProSo04
## R-squared value: 0.3212664
## Adjusted R-squared value: 0.2478493
## Significant predictors with p-value < 0.05:
## PLRAC19 PLRAEco disc02 PFS02 lifeSat c19NormShould c19NormDo
## Coefficients of predictors:
## 0.1410079 0.09845499 0.3093201 0.2396266 0.183763 0.1646776 0.1250363
```


summ_table_vis_2

We observe that the distribution of strong predictors of the similar countries' models is more alike to that of the United States models (ie. they look as "sparse" as the US models), with a few common significant predictors shared. The models of the group of all other countries share many more common significant predictors with the United States models, with more similar p-values. However, these models also have many strong predictors which are not as strong in the United States models. Therefore, the cluster of similar countries might give a better match to the important attributes for predicting pro-social attitudes. The higher p-values and fewer shared common strong predictors seen in their models may no longer be observed when further analysis is done or a larger sample size is introduced.

A possible explanation is that, despite being similar to the United States, each country in the cluster are slightly different in terms of socioeconomic factors outside the indicators used for clustering. When these slight differences are aggregated as a group, their performance in predicting pro-social attitudes deviates more

from that of the United States alone. On the other hand, the United States models share many common strong predictors with the models of the group of all countries, due to the complexity of its politics, culture and other features of society, akin to a group of many countries. The group of all other countries may be too large and complex, and hence its models may report many significant predictors that are actually not significant in reality.

Appendix

Head of cvbase at the end of 1(b).

	aa 01 0	v babo ao	one end .	01 1(5).										
head(cvbase)														
##		affAnx a	affBor a	affCalm	affConte	ent a	affDe	pr a	ffEr	erg a	ffExc	affNe	rv	affExh
##	30480	3	4	3		2		2		1	1		4	1
##	34061	2	1	4		1		5		3	3		2	1
##	16871	3	2	3		3		2		4	2		2	1
##	21638	2	3	2		2		2		1	1		1	4
##	53709	4	3	3		3		2		3	2		2	2
##	49621	2	1	4		3		2		1	2		1	1
##		affInsp	affRel	PLRAC19	PLRAEco	di	sc01	disc	:02 d	lisc03	jbIns	sec01	jb]	Insec02
##	30480	1	2	Ę	5 6	3	1		1	1		1		-1
##	34061	3	4	3	3 6	3	1		1	-1		0		NA
##	16871	2	3	3	3 3	3	0		1	-1		0		1
##	21638	1	2	4	1 8	3	2		1	-2		NA		NA
##	53709	3	1	4	1 7	7	1		1	1		-1		1
##	49621	2	3	6	5 5	5	1		1	-2		-1		1
##		jbInsec	03 jbIn	sec04 en	nploystat	us_	1 emp	loys	statu	ıs_2 e	mploys	status	_3	
##	30480		1	0		(0			0			0	
##	34061		2	NA		(0			0			0	
##	16871		0	0			1			0			0	
##	21638	1	NA	NA		(0			0			0	
##	53709		0	-1		(0			0			1	
##	49621		1	-2			0			0			1	
##		employst	tatus_4	employs	status_5	emp.	loyst	atus	5_6 €	employ	status	s_7		
##	30480		0		0				0			0		
	34061		0		0				0			0		
	16871		0		0				0			0		
	21638		0		1				0			0		
	53709		0		0				0			0		
	49621		0		0				0			0		
##		employst	_	employs	status_9	emp.	loyst	atus						
	30480		0		1				0	-1			1	1
	34061		0		1				0	1	2		1	0
	16871		0		0				0	0	1		0	-1
	21638		0		1				0	0	2		2	2
	53709		0		0				0	0	1		0	-1
	49621	6 1300	0		0	_	4.037	a:	0	-1	1		1	
##	00400				ifeSat MI		19Nor	mSho		c19No		:191sS	tri	
	30480	0	0	6	5	0			3		2			4
	34061	-2	-1	7	2	2			3		3			5
	16871	-2	0	4		-2			2		-1			2
	21638	1	1	5	3	0			3		-1			1
	53709	0	1	6	4	2			2		1			5
	49621	-1	1	8	5	1	4	+ a	2		-2			5
##		c191sPur	nish c19	arsnad 4	rustGov(try	trus	tGov	stat	e gen	der ag	ge edu		

```
## 30480
                             5
                                          NA
                                                        NA
                                                                 2
                                                                     1
## 34061
                   5
                             4
                                          NΑ
                                                                 1
                                                                     2
                                                                         5
                                                        NΑ
## 16871
                   1
                                           2
                                                         2
                                                                 2
                                                                         5
                                                                 2
## 21638
                   1
                                           1
                                                                         5
                             1
                                                          1
                                                                     1
## 53709
                   5
                             4
                                           3
                                                          3
                                                                 2
                                                                     3
                                                                         7
## 49621
                   2
                             2
                                           3
                                                         3
                                                                 2
                                                                     3
                                                                         4
                     coded country c19ProSo01 c19ProSo02 c19ProSo03 c19ProSo04
                                            -1
## 30480
                             Spain
                                                        0
                                                                    1
## 34061
                             Spain
                                             2
                                                        1
                                                                   -2
                                                                                3
                                             2
                                                        -2
                                                                    2
## 16871 United States of America
                                                                                1
## 21638
                        Bangladesh
                                             3
                                                        1
                                                                   -3
                                                                               -3
                                                                                0
## 53709
                        Kazakhstan
                                                                    0
                                            -1
                                                        1
## 49621
                            Brazil
                                             2
                                                        2
                                                                    2
                                                                                2
```

Code for correlation matrix of rem from 2(c).

```
rem_cor <- cor(subset(rem, select = -coded_country), use = "complete.obs")</pre>
rem_melted <- reshape2::melt(rem_cor)</pre>
rem_cor_plot <- ggplot(data = rem_melted) +</pre>
  geom_tile(mapping = aes(x = Var1, y = Var2, fill = value)) +
  scale_fill_gradient2(low = "#6b74ff", mid = "white", high = "#e46c6c", midpoint = 0) +
  labs(title = "Correlation between predictors for the rest of the world", x = "", y = "",
    fill = "correlation") +
  theme(axis.text.x = element_text(angle = 90))
```

Code for summary results of rem models from 2(c).

```
fitted rem1 <- lm(c19ProSo01 ~ .,
  data = subset(rem, select = -c(coded_country, c19ProSo02, c19ProSo03, c19ProSo04)))
fitted rem2 <- lm(c19ProSo02 ~ .,
  data = subset(rem, select = -c(coded_country, c19ProSo01, c19ProSo03, c19ProSo04)))
fitted_rem3 <- lm(c19ProSo03 ~ .,</pre>
  data = subset(rem, select = -c(coded_country, c19ProSo01, c19ProSo02, c19ProSo04)))
fitted_rem4 <- lm(c19ProSo04 ~ .,</pre>
  data = subset(rem, select = -c(coded country, c19ProSo01, c19ProSo02, c19ProSo03)))
cat("Summary of models for predicting pro-social attitudes in the rest of the world\n\n")
counter <- 1
for (model in list(fitted_rem1, fitted_rem2, fitted_rem3, fitted_rem4)) {
  cat("C19ProSo0", counter, "\n", sep = "")
 res <- model_eval(model)</pre>
  cat("R-squared value:", res[[1]], "\n")
  cat("Adjusted R-squared value:", res[[2]], "\n")
  cat("Significant predictors with p-value < 0.001:\n")
  cat(res[[3]], "\n")
  cat("Coefficients of predictors:\n")
  cat(res[[4]], "\n")
  cat("\n")
  for (pred in res[[3]]) {
    mdl <- c(mdl, paste0("RoW C19ProSo0", counter))</pre>
 prds <- c(prds, res[[3]])</pre>
  counter <- counter + 1
}
```

collected

##		country	HDI	GHS	freedom	political_stability
##	1	Afghanistan	0.478	28.8	NA	-2.53
##	2	Albania	0.796	45.0	8.14	0.11
##	3	Algeria	0.745	26.2	5.26	-0.88
##	4	Andorra	0.858	34.7	NA	1.63
##	5	Angola	0.586	29.1	6.09	-0.71
##	6	Antigua and Barbuda	0.788	30.0	NA	0.96
##	7	Argentina	0.842	54.4	7.38	-0.11
##	8	Armenia	0.759	61.8	8.20	-0.84
##	9	Australia	0.951	71.1	8.84	0.85
##	10	Austria	0.916	56.9	8.67	0.91
##	11	Azerbaijan	0.745	34.7	6.16	-0.85
##	12	Bahamas	0.812	30.1	8.22	0.88
##	13	Bahrain	0.875	36.3	5.73	-0.51
##	14	Bangladesh			5.75	-0.97
##	15	Barbados			7.92	1.12
##	16	Belarus	0.808	43.9	6.73	-0.74
##	17	Belgium			8.61	0.61
##		Belize			7.64	0.46
##			0.525		7.32	-0.30
##		Bhutan			6.86	0.97
##		Bolivia			6.94	-0.32
##		Bosnia and Herzegovina			7.54	-0.38
##		Botswana			7.90	0.98
##		Brazil			7.22	-0.49
##		Brunei			6.46	1.17
##		Bulgaria			8.08	0.46
##		Burkina Faso			6.85	-1.64
##		Burundi			5.02	-1.36
##		Cape Verde			NA	0.90
##		Cambodia			6.47	-0.13
##		Cameroon			5.63	-1.41
## ##		Canada			8.85	0.94 -2.10
		Central African Republic			5.62 5.57	-2.10 -1.34
##			0.394		8.44	0.06
## ##			0.768		5.57	-0.48
##		Colombia			7.01	-0.48
##		Comoros			6.07	-0.91
##			0.556		5.55	-0.23
##		Costa Rica			8.25	0.87
##		Côte d'Ivoire			6.90	-0.95
##		Croatia			8.16	0.71
##			0.764		NA	0.43
##		Cyprus			8.42	0.44
##		Czech Republic			8.61	0.96
##		D.R. Congo			5.62	-1.61
##		Denmark Denmark			8.98	0.95
##		Djibouti			5.84	-0.71
##		Dominica			NA	1.39
##		Dominican Republic			7.88	0.14
	- 0	2 3miniodii 100 publio	5.101			5.11

##	51	Ecuador	0.740	50.8	7.43	-0.27
	52		0.731		4.49	-1.02
	53	El Salvador			7.39	-0.21
	54	Equatorial Guinea			NA	-0.29
	55	Eritrea			NA	-1.01
	56	Estonia			8.91	0.76
	57	Estonia Eswatini			5.79	-0.03
	58				5.95	-0.03 -2.07
	59	Ethiopia	0.730		7.36	0.67
	60	Finland			8.85	0.98
##		France			8.34	0.37
	62		0.706			
	63				6.80	-0.09 0.18
		Gambia			6.88	
	64	Georgia			8.20	-0.42
##		Germany			8.73	0.76
	66		0.632		7.49	0.07
##		Greece			7.86	0.15
	68	Grenada			NA	1.04
	69	Guatemala			7.63	-0.39
	70	Guinea			5.82	-0.97
##		Guinea-Bissau			NA	-0.28
	72	Guyana			7.49	-0.14
##			0.535		7.21	-1.10
	74	Honduras		26.2	7.09	-0.61
##		Hong Kong S.A.R.		NA	8.41	0.26
##		Hungary			7.73	0.86
##	77	Iceland	0.959	48.5	8.77	1.37
##	78	India	0.633	42.8	6.39	-0.62
##	79	Indonesia	0.705	50.4	7.10	-0.51
##	80	Iran	0.774	36.5	4.53	-1.62
##	81	Iraq	0.686	24.0	5.02	-2.40
##	82	Ireland	0.945	55.3	8.90	0.86
##	83	Israel	0.919	47.2	7.66	-1.06
##	84	Italy	0.895	51.9	8.49	0.58
##	85	Jamaica	0.709	31.8	7.91	0.22
##	86	Japan	0.925	60.5	8.73	1.03
##	87	Jordan	0.720	42.8	6.91	-0.28
##	88	Kazakhstan	0.811	46.1	6.77	-0.25
##	89	Kenya	0.575	38.8	6.73	-1.09
##	90	Kiribati	0.624	26.2	NA	1.19
##	91	Kuwait	0.831	36.8	6.34	0.30
##	92	Kyrgyzstan	0.692	42.4	7.18	-0.43
##	93		0.607		5.85	0.73
##	94	Latvia	0.863	61.9	8.67	0.69
##	95	Lebanon	0.706	33.4	6.76	-1.49
##	96	Lesotho	0.514	30.9	7.01	-0.22
##	97	Liberia	0.481	35.7	6.81	-0.24
##	98		0.718		5.05	-2.37
##		Liechtenstein			NA	1.64
	100				8.68	0.82
	101				8.80	1.21
	102	_			7.02	-0.64
	103	9			6.99	-0.11
	104				7.17	0.14
		naraybia	2.300			V.11

	105	Maldives			NA	0.50
	106		0.428		6.25	-2.35
	107		0.918		8.45	0.97
	108	Marshall Islands			NA	0.61
	109	Mauritania			5.73	-0.67
	110	Mauritius			8.07	0.86
	111	Mexico			6.92	-0.64
	112	Micronesia			NA	1.11
	113	Moldova			7.68	-0.21
	114	Mongolia			8.00	0.65
	115	Montenegro			7.88	-0.15
	116	Morocco			5.90	-0.40
	117	Mozambique			6.80	-1.23
	118	Myanmar			5.78	-2.07
	119	Namibia			7.56	0.55
	120	-	0.602		7.12	-0.24
	121	Netherlands			8.78	0.92
	122	New Zealand			9.01	1.44
	123	Nicaragua			6.24	-0.47
	124	_	0.400		6.41	-1.62
	125	Nigeria			6.28	-1.78
	126	North Macedonia			7.75	0.12
	127	Norway			8.76	1.10
	128		0.816		5.92	0.51
	129	Pakistan			5.63	-1.67
	130		0.767		NA	0.95
	131	Palestine		NA	NA	NA
	132	Panama			8.12	0.29
	133	Papua New Guinea			7.17	-0.58
	134	Paraguay			7.54	0.00
	135		0.762		7.93	-0.41
	136	Philippines			6.83	-0.93
	137	Poland			7.96	0.51
	138	Portugal			8.69	0.95
	139	·	0.855		6.15	0.96
	140	Romania			8.33	0.53
	141	Russia			6.23	-0.65
	142	Rwanda			6.36	0.17
	143	Saint Kitts and Nevis			NA	0.96
	144	Saint Lucia			NA	0.85
		Saint Vincent and the Grenadines			NA	1.04
	146		0.707		NA	1.11
	147	San Marino			NA	0.91
	148	Sao Tome and Principe			NA 5 10	0.60
	149	Saudi Arabia			5.12	-0.58
	150	Senegal			7.07	-0.17
	151	Serbia			7.54	-0.13
	152	Seychelles			7.84	0.76
	153	Sierra Leone			6.70	-0.16
	154	Singapore			7.98	1.49
	155	Slovakia			8.21	0.56
	156	Slovenia			8.37	0.76
	157	Solomon Islands			NA	0.49
##	158	South Africa	0.713	45.8	7.30	-0.71

```
## 159
                              South Korea 0.925 65.4
                                                         8.39
                                                                               0.66
## 160
                             South Sudan 0.385 21.3
                                                           NΑ
                                                                              -2.30
## 161
                                    Spain 0.905 60.9
                                                         8.56
                                                                               0.58
## 162
                                Sri Lanka 0.782 34.1
                                                         6.58
                                                                              -0.32
## 163
                                    Sudan 0.508 28.3
                                                         4.48
                                                                              -1.94
## 164
                                 Suriname 0.730 35.0
                                                         7.64
                                                                               0.37
## 165
                                   Sweden 0.947 64.9
                                                         8.83
                                                                               1.03
## 166
                             Switzerland 0.962 58.8
                                                         9.11
                                                                               1.13
## 167
                                    Syria 0.577 16.7
                                                         3.66
                                                                              -2.66
## 168
                                                         5.52
                              Tajikistan 0.685 29.3
                                                                              -0.61
## 169
                                 Tanzania 0.549 31.3
                                                         6.48
                                                                              -0.44
## 170
                                 Thailand 0.800 68.2
                                                         6.89
                                                                              -0.55
                             Timor-Leste 0.607 27.8
## 171
                                                         7.22
                                                                               0.17
## 172
                                     Togo 0.539 27.8
                                                         6.50
                                                                              -0.80
## 173
                                    Tonga 0.745 26.4
                                                           NA
                                                                               1.07
## 174
                     Trinidad and Tobago 0.810 36.8
                                                         7.70
                                                                               0.15
## 175
                                  Tunisia 0.731 31.5
                                                         6.46
                                                                              -0.70
## 176
                                   Turkey 0.838 50.0
                                                         5.79
                                                                              -1.10
## 177
                            Turkmenistan 0.745 31.9
                                                                              -0.32
                                                           NA
                                   Tuvalu 0.641 20.0
## 178
                                                           NA
                                                                               1.28
                                                         6.32
## 179
                                   Uganda 0.525 36.5
                                                                              -0.86
## 180
                                  Ukraine 0.773 38.9
                                                         6.86
                                                                              -1.10
## 181
                    United Arab Emirates 0.911 39.6
                                                         6.06
                                                                               0.65
## 182
                          United Kingdom 0.929 67.2
                                                         8.75
                                                                               0.54
## 183
               United States of America 0.921 75.9
                                                         8.73
                                                                               0.00
## 184
                                  Uruguay 0.809 40.3
                                                         8.36
                                                                               1.05
## 185
                               Uzbekistan 0.727 39.0
                                                           NA
                                                                              -0.24
## 186
                                  Vanuatu 0.607 25.9
                                                           NA
                                                                               0.79
## 187
                                Venezuela 0.691 20.9
                                                         4.03
                                                                              -1.53
## 188
                                  Vietnam 0.703 42.9
                                                         5.90
                                                                              -0.11
## 189
                                    Yemen 0.455 16.1
                                                         4.08
                                                                              -2.59
## 190
                                   Zambia 0.565 26.5
                                                         6.82
                                                                               0.06
## 191
                                 Zimbabwe 0.593 32.4
                                                         5.60
                                                                              -1.03
##
       happiness total_vax_per_hundred total_cases_per_mil total_deaths_per_mil
## 1
           2.523
                                   11.37
                                                     3843.027
                                                                             178.853
## 2
           5.117
                                   81.50
                                                    73495.999
                                                                            1130.064
## 3
           4.887
                                   27.94
                                                     4855.709
                                                                             139.656
## 4
                                  146.85
                                                   289593.327
                                                                            1753.441
              NΑ
## 5
              NA
                                                     2157.605
                                                                              49.369
                                   32.64
## 6
              NA
                                  129.19
                                                    45802.585
                                                                            1269.036
## 7
           5.929
                                  172.04
                                                   127015.620
                                                                            2596.686
## 8
           5.283
                                                   124054.477
                                                                            2867.139
                                   58.51
## 9
           7.183
                                  162.66
                                                    13850.033
                                                                              92.790
## 10
           7.268
                                  186.55
                                                   141452.592
                                                                            1866.187
## 11
           5.171
                                  109.54
                                                    59504.476
                                                                             805.748
## 12
                                   73.22
              NA
                                                    59699.163
                                                                            1748.827
## 13
           6.647
                                  219.14
                                                   191141.779
                                                                             946.858
## 14
           5.025
                                   62.26
                                                     9262.063
                                                                             163.985
## 15
              NA
                                  106.38
                                                   100516.251
                                                                             923.145
## 16
           5.534
                                   80.84
                                                    73162.372
                                                                             583.222
## 17
           6.834
                                  186.45
                                                   179883.824
                                                                            2432.755
## 18
              NA
                                  104.77
                                                    79122.099
                                                                            1473.037
## 19
           5.045
                                   13.28
                                                     1875.553
                                                                              12.057
## 20
               NA
                                  147.59
                                                     3399.548
                                                                               3.834
```

нн О1	F 716	00 11	40410 000	1607 470
## 21 ## 22	5.716 5.813	80.11 48.06	48410.298 89830.928	1607.478 4152.737
## 22 ## 23	3.467	42.89	84421.169	932.213
## 23 ## 24	6.330	153.86	103401.940	2874.028
## 2 4 ## 25	NA	200.09	34454.190	135.857
## 25 ## 26	5.266	54.57	109746.821	4554.734
## 27	4.834	4.65	777.639	14.025
## 28	3.775	0.06	2370.131	1.086
## 29	NA	96.29	68679.383	593.430
## 30	4.830	181.64	7185.596	179.629
## 31	5.142	3.65	3928.633	66.381
## 32	7.103	179.01	54674.470	779.054
## 33	NA	7.83	2232.240	18.103
## 34	4.355	1.61	321.667	10.213
## 35	6.172	226.05	92058.065	1994.314
## 36	5.339	198.85	92.420	3.997
## 37	6.012	124.71	99059.263	2503.488
## 38	4.289	69.50	7785.770	187.623
## 39	5.342	12.71	3563.730	61.805
## 40	7.069	149.71	110206.152	1419.462
## 41	5.306	25.26	2419.910	25.284
## 42	5.882	117.35	176082.986	3099.722
## 43	NA	275.36	86117.905	742.227
## 44	6.223	172.00	180555.509	720.977
## 45	6.965	147.62	239885.878	3462.077
## 46	NA	0.34	800.655	12.372
## 47	7.620	203.62	133231.468	553.529
## 48	NA	5.77	12162.187	168.622
## 49	NA	78.40	93652.932	645.977
## 50	5.545	125.45	37160.446	378.134
## 51	5.764	153.14	30320.534	1870.396
## 52	4.283	47.59	3466.327	195.756
## 53	6.061	151.83	19212.981	603.340
## 54	NA	27.03	8185.485	104.483
## 55	NA	NA	2166.643	20.358
## 56	6.189	136.41	182347.157	1456.943
## 57	4.308	33.25	54783.303	1080.987
## 58	4.275	8.85	3367.185	56.136
## 59	NA	136.28	57360.484	750.724
## 60	7.842	173.57	47621.033	307.720
## 61	6.690	183.22	146728.723	1871.705
## 62	4.852	16.45	17496.045	120.553
## 63 ## 64	5.051 4.891	10.89 67.11	3758.322 249638.058	126.756 3685.518
## 65		184.68	85942.734	1420.562
## 66	7.155 5.088	23.17	4364.905	39.013
## 67	5.723	168.22	112691.012	1994.035
## 68	NA	62.55	48406.252	1594.146
## 69	6.435	63.39	35119.817	902.380
## 09 ## 70	4.984	21.30	2341.236	28.212
## 70	NA	19.66	3079.437	70.764
## 72	NA NA	88.50	48518.227	1299.573
## 73	3.615	1.70	2258.869	66.724
## 74	5.919	91.91	36379.485	1000.109
	0.010	01.01	222.0.100	1000.100

##	75	5.477	132.54	NA	NA
##		5.992	151.24	126053.645	3931.454
##		7.554	192.26	75853.506	96.540
##	78	3.819	102.24	24583.308	339.465
##	79	5.345	99.73	15472.592	523.025
##	80	4.721	131.24	69934.029	1485.840
##	81	4.854	31.78	47047.604	542.834
##	82	7.085	196.18	149793.912	1211.999
##	83	7.157	177.65	146252.196	874.061
##	84	6.483	188.66	101315.788	2324.744
##	85	6.309	42.75	33101.647	873.600
##	86	5.940	162.94	13983.875	148.388
##	87	4.395	73.24	94060.939	1118.212
##	88	6.152	90.22	55265.342	939.633
##	89	4.607	18.51	5409.043	99.505
##	90	NA	62.61	NA	NA
##	91	6.106	162.63	97597.125	578.137
##	92	5.744	34.01	27853.952	422.585
##	93	5.030	77.43	14616.420	47.812
##		6.032	138.09	149500.663	2469.397
##		4.584	79.78	131816.711	1658.001
##		3.512	37.21	12859.600	291.002
##		4.625	16.60	1241.634	54.123
##		5.410	39.34	56982.296	836.129
##		NA	160.12	159827.214	1753.272
	100	6.255	150.25	190696.342	2689.761
	101	7.324	166.23	158256.396	1412.907
	102	4.208	2.51	1697.943	34.682
	103	3.600	8.83	3636.356	115.411
	104	5.384	170.46	81162.575	927.038
	105	5.198	150.85	182704.019	500.193
	106 107	4.723 6.602	4.68 201.07	914.861 98388.691	29.123 894.443
	107	NA	NA	96.170	NA
	109	4.227	40.90	8689.344	182.216
	110	6.049	156.75	70100.456	604.858
	111	6.317	116.71	31644.640	2382.841
	112	NA	NA	NA	NA
	113	5.766	54.28	114812.345	3137.495
	114	5.677	157.15	203809.588	584.397
	115	5.581	101.19	268446.551	3828.845
	116	4.918	134.19	25656.966	396.284
	117	4.794	44.64	5587.555	60.541
##	118	4.426	58.80	9797.725	355.634
	119	4.574	24.55	57981.149	1419.932
##	120	5.269	71.98	27119.361	379.539
##	121	7.464	162.32	177345.164	1189.079
##	122	7.277	157.86	2650.961	9.836
##	123	5.972	112.04	1951.962	31.230
##	124	5.074	3.71	281.021	10.455
##	125	4.759	6.79	1105.114	13.865
##	126	5.101	83.83	107493.483	3803.963
##	127	7.392	180.14	72669.388	256.518
##	128	NA	133.69	66754.583	979.612

##	129	4.934	66.41	5490.774	122.638
	130	4.954 NA	NA	552.975	122.038 NA
	131	4.517	64.44	89580.227	939.224
	132	6.180	140.49	111383.433	1684.215
	133	NA	4.97	3564.955	58.170
	134	5.653	100.78	68738.907	2451.648
	135	5.840	150.06	67181.253	5949.676
	136	5.880	93.92	24584.998	444.561
	137	6.166	117.89	103098.230	2435.147
	138	5.929	194.34	132070.771	1843.760
##	139	NA	193.15	92680.838	228.931
##	140	6.140	80.50	91927.269	2986.581
##	141	5.477	101.14	72557.126	2134.289
##	142	3.415	91.38	8024.998	97.919
##	143	NA	115.07	61198.381	587.236
##	144	NA	58.37	74903.265	1640.055
##	145	NA	58.87	57253.340	798.392
##	146	NA	118.35	8.993	NA
##	147	NA	160.11	244909.469	2938.557
##	148	NA	60.52	17049.777	250.667
##	149	6.494	139.79	15255.011	243.760
##	150	5.132	10.99	4323.634	109.145
##	151	6.078	119.91	188770.738	1846.455
	152	NA	171.25	231371.634	1176.086
	153	3.849	10.09	811.437	14.293
	154	6.377	209.25	49505.040	146.709
	155	6.331	88.61	149152.071	2947.662
	156	6.461	130.29	218941.214	2891.252
	157	NA	32.57	33.137	NA
	158	4.956	46.59	57543.972	1520.372
	159	5.845	200.63	12174.566	107.361
	160	NA	2.46	1431.848	12.462
	161	6.491	175.64	136797.480	1927.894
	162	4.325	155.01	26898.175	686.098
	163 164	NA NA	6.99 79.25	998.950 84186.290	71.191 1923.805
	165	NA 7.363	167.00	124623.804	1453.644
	166	7.571	158.42	152718.543	1363.885
	167	NA	7.93	2270.845	130.756
	168	5.466	66.37	1757.598	12.559
	169	3.623	3.71	447.435	11.252
	170	5.985	146.67	31011.538	302.635
	171	NA	NA	14789.405	90.957
	172	4.107	27.28	3408.749	28.027
	173	NA	121.87	9.357	NA
	174	NA	91.99	59324.918	1845.147
	175	4.596	98.39	58743.540	2068.935
	176	4.948	154.26	110635.410	962.067
	177	5.066	0.80	NA	NA
##	178	NA	106.87	NA	NA
	179	4.636	20.66	3019.518	69.778
	180	4.875	71.68	92380.048	2415.486
##	181	6.561	237.33	80446.976	228.998
##	182	7.064	197.47	199109.448	2220.847

##	183	6.951	157.08	158249.753	2421.163
##	184	6.431	203.91	119875.973	1802.036
##	185	6.179	112.73	5744.052	42.885
##	186	NA	46.74	21.423	NA
##	187	4.892	106.18	15694.676	188.010
##	188	5.411	153.72	17464.069	327.620
##	189	3.658	1.62	300.505	58.878
##	190	4.073	8.64	12448.652	186.335
##	191	3.145	44.51	12973.101	306.179

Explanation of each indicator used for clustering and their sources (from 3(a)).

- HDI: Human Development Index (2021); a value between 0 and 1 that measures average achievement in human development based on three dimensions life expectancy, education and standard of living. (Source: Human Development Reports)
- GHS: Global Health Security Index (2021); a value between 0 and 100 that benchmarks a country's health security and preparedness in preventing, detecting and responding to health emergencies. (Source: Global Health Security Index: Reports and Data)
- freedom: Human Freedom Index (2021); a value between 0 and 10 that assesses the level of human freedom in a country. Human freedom is a combination of two distinct dimensions personal freedom (freedom of religion, speech, sexual orientation, etc.) and economic freedom (size of government, judicial impartiality, freedom to trade, etc.) (Source: World Population Review)
- political_stability: a value approximately between -2.5 and 2.5 that evaluates political stability and absence of violence/terrorism of each country in 2021. (Source: The World Bank Data Collections (and Governance Indicators))
- happiness: World Happiness Report score (2021); a value between 0 and 10 that represents happiness of a country's citizens based on several socioeconomic factors. (Source: World Happiness Report)
- total_vax_per_hundred: latest updated total number of COVID-19 vaccinations administered per 100 people before 2022.
- total_cases_per_mil: latest updated total number of COVID-19 cases per 1,000,000 people before 2022
- total_deaths_per_mil: latest updated total number of COVID-19 cases per 1,000,000 people before 2022.

The last three indicators were sourced from Our World in Data's COVID-19 Github repository.

Visualisation of k-means clustering performed in 3(a) (cluster plot).

```
library(cluster)
clusplot(collected_clean, kfit$cluster, color = TRUE, shade = TRUE, labels = 0, lines = 0)
```

CLUSPLOT(collected_clean)

These two components explain 69.99 % of the point variability.

Code for correlation matrix of rem from 3(b).

```
clus_cor_plot <- ggplot(data = clus_melted) +
  geom_tile(mapping = aes(x = Var1, y = Var2, fill = value)) +
  scale_fill_gradient2(low = "#6b74ff", mid = "white", high = "#e46c6c", midpoint = 0) +
  labs(title = "Correlation between predictors for countries similar to the United States",
      x = "", y = "", fill = "correlation") +
  theme(axis.text.x = element_text(angle = 90))</pre>
```

Code for summary results of clus models from 3(b).

```
fitted_clus1 <- lm(c19ProSo01 ~ .,
  data = subset(clus, select = -c(coded_country, c19ProSo02, c19ProSo03, c19ProSo04)))
fitted_clus2 <- lm(c19ProSo02 ~ .,
  data = subset(clus, select = -c(coded_country, c19ProSo01, c19ProSo03, c19ProSo04)))
fitted_clus3 <- lm(c19ProSo03 ~ .,</pre>
  data = subset(clus, select = -c(coded_country, c19ProSo01, c19ProSo02, c19ProSo04)))
fitted_clus4 <- lm(c19ProSo04 ~ .,</pre>
  data = subset(clus, select = -c(coded country, c19ProSo01, c19ProSo02, c19ProSo03)))
cat("Summary of models for predicting pro-social attitudes in countries similar to the US\n\n")
counter <- 1
for (model in list(fitted_clus1, fitted_clus2, fitted_clus3, fitted_clus4)) {
  cat("C19ProSo0", counter, "\n", sep = "")
  res <- model_eval(model)</pre>
  cat("R-squared value:", res[[1]], "\n")
  cat("Adjusted R-squared value:", res[[2]], "\n")
  cat("Significant predictors with p-value < 0.001:\n")
  cat(res[[3]], "\n")
```

```
cat("Coefficients of predictors:\n")
cat(res[[4]], "\n")
cat("\n")
counter <- counter + 1
}</pre>
```

Code for summary results of clus models from 3(b), with updated model_eval function such that significant predictors have p-value less than 0.05.

```
model_eval_2 <- function(model) {</pre>
  rsqr <- summary(model)$r.squared
  a_rsqr <- summary(model)$adj.r.squared</pre>
  sig <- which(summary(model)$coefficients[-1, 4] < 0.05) + 1
  preds <- rownames(summary(model)$coefficients[sig, , drop = FALSE])</pre>
  coefs <- summary(model)$coefficients[sig, 1]</pre>
 return(list(rsqr, a_rsqr, preds, coefs))
}
cat("Summary of models for predicting pro-social attitudes in countries similar to the US\n\n")
for (model in list(fitted_clus1, fitted_clus2, fitted_clus3, fitted_clus4)) {
  cat("C19ProSo0", counter, "\n", sep = "")
  res <- model_eval_2(model)
  cat("R-squared value:", res[[1]], "\n")
  cat("Adjusted R-squared value:", res[[2]], "\n")
  cat("Significant predictors with p-value < 0.05:\n")
  cat(res[[3]], "\n")
  cat("Coefficients of predictors:\n")
  cat(res[[4]], "\n")
  cat("\n")
  for (pred in res[[3]]) {
    mdl <- c(mdl, paste0("Similar C19ProSo0", counter))</pre>
 prds <- c(prds, res[[3]])</pre>
  counter <- counter + 1</pre>
}
```

Code for table of strong predictors of usa, rem and clus models from 3(b).

```
summ_table_2 <- table(predictors = prds, models = mdl)
summ_table_2 <- summ_table_2[, c("USA C19ProSo01", "USA C19ProSo02", "USA C19ProSo03",
    "USA C19ProSo04", "RoW C19ProSo01", "RoW C19ProSo02", "RoW C19ProSo03", "RoW C19ProSo04",
    "Similar C19ProSo01", "Similar C19ProSo02", "Similar C19ProSo03", "Similar C19ProSo04")]

summ_table_vis_2 <- ggplot(data = as.data.frame(summ_table_2)) +
    geom_tile(mapping = aes(x = models, y = predictors, fill = Freq, colour = "black")) +
    scale_fill_gradientn(colours = c("pink", "green")) +
    theme(legend.position = "none") +
    scale_x_discrete(position = "top") +
    scale_y_discrete(limits = rev) +
    labs(x = "Pro-social attitudes", y = "Predictors",
        title = "Table of significant predictors for each pro-social attitude") +
    theme(axis.text.x = element_text(angle = 90))</pre>
```