Спетральные серии оператора Шрёдингера с дельта-потенциалом в полюсах двух- и трехмерных поверхностей вращения

Рыхлов Владислав Владимирович

Московский Государственный Университет им. М.В. Ломоносова vladderq@gmail.com

Соавторы: А. И. Шафаревич

Секция: Уравнения в частных производных, математическая физика и спектральная теория

Рассматривается спектральная задача для оператора Шрёдингера

$$H\psi=E\psi+o(h)$$
, $H=-rac{h^2}{2}\Delta+\delta_{x_1}(x)+\delta_{x_2}(x)$, $x\in M$,

где $h \to +0$, x_j — полюса M, M — двумерная $M^2 \subset \mathbb{R}^3$ или трехмерная $M^3 \subset \mathbb{R}^4$ поверхность вращения:

$$M^2 = \{(v(s)\cos\varphi, v(s)\sin\varphi, w(s)) \mid s \in [s_1, s_2], \varphi \in \mathbb{S}^1\}$$
 и

$$M^3 = \{(v(s)\cos\theta\cos\varphi, v(s)\cos\theta\sin\varphi, v(s)\sin\theta, w(s)) \mid s \in [s_1, s_2], \varphi \in \mathbb{S}^1, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]\},$$

 $s\in [s_1,s_2]$ — натуральный параметр кривой $(v(s),w(s))\subset \mathbb{R}^2$, и значения s_j соответствуют точкам x_j .

Оператор H определен на функциях из $L^2(M)$ как самосопряженное расширение оператора Δ , действующего на функциях $\psi_0 \in W_2^2(M)$, обращающихся в нуль в полюсах x_j . В области определения оператора H лежат функции, имеющие особенности в точках x_j , а именно, для $\psi \in D(H)$ имеется асимптотическое равенство [1] при $x \to x_j$

$$\psi(x) = -\frac{a_j}{2\pi} \ln d(x, x_j) + b_j + o(1) \text{ Ha } M^2, \quad \psi(x) = \frac{a_j}{4\pi} \frac{1}{d(x, x_j)} + b_j + o(1) \text{ Ha } M^3, \quad (1)$$

где $d(x, x_j)$ — геодезическое расстояние на M между точками x и x_j , а коэффициенты a_i при сингулярной части и b_i при регулярной связаны следующим образом:

$$i(\mathbf{I} + U)\alpha + \frac{2}{h^2}(\mathbf{I} - U)b = 0, \quad \alpha = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$$
 (2)

где I — единичная матрица, U — некоторый унитарный оператор.

В работе получены явные выражения для условий квантования Бора-Зоммерфельда-Маслова, позволяющие изучить поведение асимптотического спектра. Асимптотические собственные функции имеют представление в терминах функций Бесселя и Неймана.

1. J. Brüning, V. A. Geyler, Scattering on compact manifolds with infinitely thin horns, J. Math. Phys., 44:2 (2003), 371–405

- 2. В. П. Маслов, М. В. Федорюк, Квазиклассическое приближение для уравнений квантовой механики, Изд. Наука, Москва, 1976
- 3. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Изд. Interscience Publ. John Wiley & Sons, Inc., New York–London–Sydney, 1965