The AC is a lie - ICPC Library

Contents

1		ng Algorithms		
	$\frac{1.1}{1.2}$	String Alignment		
	1.3	KMP		
	1.3	Trie		
	1.5	Algoritmo de Z		
	1.6	Suffix Array		
2				
4	2.1	a Structures BIT - Binary Indexed Tree		
	2.2	BIT 2D		
	2.3	BIT 2D		
	2.4	Iterative Segment Tree		
	2.5	Iterative Segment Tree with Interval Updates		
	2.6	Iterative Segment Tree with Lazy Propagation		
	2.7	Recursive Segment Tree		
	2.8	Segment Tree with Lazy Propagation		
	2.9	Persistent Segment Tree		
	2.10	Treap		
	2.11	Sparse Table		
	2.12	Policy Based Structures		
	2.13	Color Updates Structure		
	2.14	Centroid Decomposition		
	2.15	Li Chao Tree		
	~	1 41 41		
3		ph Algorithms		
	3.1	Dinic Max Flow		
	3.2	Euler Path and Circuit		
	3.3	Articulation Points/Bridges/Biconnected Components		
	3.4	SCC - Strongly Connected Components / 2SAT		
	$\frac{3.5}{3.6}$	LCA - Lowest Common Ancestor		
	3.7	Sack		
	3.8	Min Cost Max Flow		
	3.9	Hungarian Algorithm - Maximum Cost Matching		
4	Mat			
	4.1	Discrete Logarithm		
	4.2	GCD - Greatest Common Divisor		
	4.3	Extended Euclides		
	4.4	Fast Exponentiation		
	4.5	Matrix Fast Exponentiation		
	4.6	FFT - Fast Fourier Transform		
	4.7	NTT - Number Theoretic Transform		
	$4.8 \\ 4.9$	Miller and Rho		
	4.9	Determinant using Mod		
5	Geo	ometry 17		
•	5.1	Geometry		
	5.2	Convex Hull		
	5.3	Closest Pair		
	5.4	Intersection Points		
	5.5	Delaunay Triangulation		
	5.6	Java Geometry Library		
	_			
6		namic Programming 22		
	6.1	Convex Hull Trick		
	6.2	Divide and Conquer Optimization		
	6.3	Knuth Optimization		
7	Miscellaneous 23			
•	7.1	LIS - Longest Increasing Subsequence		
	7.2	Ternary Search		

	7.3 7.4 7.5	Random Number Generator 2 Submask Enumeration 2 Java Fast I/O 2
8	Teo: 8.1 8.2 8.3 8.4	emas e formulas uteis 25 Grafos 2 Math 2 Geometry 2 Mersenne's Primes 2
1	\mathbf{S}	ring Algorithms
1.	1 5	tring Alignment

1.

```
int pd[ms][ms];
int edit_distance(string &a, string &b) {
  int n = a.size(), m = b.size();
  for(int i = 0; i <= n; i++) pd[i][0] = i;</pre>
  for(int j = 0; j <= m; j++) pd[0][j] = j;</pre>
  for (int i = 1; i \le n; i++) {
    for(int j = 1; j <= m; j++) {</pre>
      int del = pd[i][j-1] + 1;
      int ins = pd[i-1][j] + 1;
      int mod = pd[i-1][j-1] + (a[i-1] != b[j-1]);
      pd[i][j] = min(del, min(ins, mod));
  return pd[n][m];
```

1.2 KMP

```
string p, t;
int b[ms], n, m;
void kmpPreprocess() {
  int i = 0, j = -1;
  b[0] = -1;
  while(i < m) {</pre>
    while(j \ge 0 \&\& p[i] != p[j]) j = b[j];
    b[++i] = ++j;
void kmpSearch() {
  int i = 0, j = 0, ans = 0;
  while(i < n) {</pre>
    while (j \ge 0 \&\& t[i] != p[j]) j = b[j];
    i++; j++;
    if(j == m) {
      //ocorrencia aqui comecando em i - j
      ans++;
      j = b[j];
  return ans;
```

1.3 Trie

```
int trie[ms][sigma], terminal[ms], z;
void init() {
 memset(trie[0], -1, sizeof trie[0]);
  z = 1:
int get id(char c) {
  return c - 'a';
void insert(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      memset(trie[z], -1, sizeof trie[z]);
      trie[cur][id] = z++;
    cur = trie[cur][id];
  terminal[cur]++;
int count(string &p) {
 int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
   int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      return false;
    cur = trie[cur][id];
  return terminal[cur];
```

1.4 Aho-Corasick

```
// Construa a Trie do seu dicionario com o codigo acima
int fail[ms];
queue<int> q;
void buildFailure() {
  q.push(0);
  while(!q.empty()) {
    int node = q.front();
    q.pop();
    for(int pos = 0; pos < sigma; pos++) {</pre>
      int &v = trie[node][pos];
      int f = node == 0 ? 0 : trie[fail[node]][pos];
      if(v == -1) {
        v = f;
      } else {
        fail[v] = f;
        q.push(v);
```

1.5 Algoritmo de Z

```
string s;
int fz[ms], n;

void zfunc() {
   fz[0] = n;
   for(int i = 1, 1 = 0, r = 0; i < n; i++) {
      if(l && i + fz[i-l] < r)
        fz[i] = fz[i-l];
   else {
      int j = min(l ? fz[i-l] : 0, i > r ? 0 : r - i);
      while(s[i+j] == s[j] && ++j);
      fz[i] = j; l = i; r = i + j;
   }
}
```

1.6 Suffix Array

```
namespace SA {
  typedef pair<int, int> ii;
  vector<int> buildSA(string s) {
    int n = (int) s.size();
    vector<int> ids(n), pos(n);
    vector<ii>> pairs(n);
    for (int i = 0; i < n; i++) {
     ids[i] = i;
      pairs[i] = ii(s[i], -1);
    sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
      return pairs[a] < pairs[b];</pre>
    });
    int on = 0;
    for (int i = 0; i < n; i++) {
      if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
      pos[ids[i]] = on;
```

```
for(int offset = 1; offset < n; offset <<= 1) {</pre>
      //ja tao ordenados pelos primeiros offset caracteres
      for (int i = 0; i < n; i++) {
        pairs[i].first = pos[i];
        if (i + offset < n) {
          pairs[i].second = pos[i + offset];
          pairs[i].second = -1;
      sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
        return pairs[a] < pairs[b];</pre>
      });
      int on = 0;
      for (int i = 0; i < n; i++) {
        if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
        pos[ids[i]] = on;
   return ids;
  vector<int> buildLCP(string s, vector<int> sa) {
   int n = (int) s.size();
   vector<int> pos(n), lcp(n, 0);
   for(int i = 0; i < n; i++) {</pre>
      pos[sa[i]] = i;
   int k = 0;
    for (int i = 0; i < n; i++) {
      if (pos[i] + 1 == n) {
       \mathbf{k} = 0;
        continue;
      int j = sa[pos[i] + 1];
      while(i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
      lcp[pos[i]] = k;
      k = \max(k - 1, 0);
   return lcp;
} ;
```

2 Data Structures

2.1 BIT - Binary Indexed Tree

```
int bit[ms], n;

void update(int v, int idx) {
  while(idx <= n) {
    bit[idx] += v;
    idx += idx & -idx;
  }
}

int query(int idx) {</pre>
```

```
int r = 0;
while(idx > 0) {
   r += bit[idx];
   idx -= idx & -idx;
}
return r;
}
```

2.2 BIT 2D

```
int bit[ms][ms], n, m;

void update(int v, int x, int y) {
    while(x <= n) {
        while(y <= m) {
            bit[x][y] += v;
            y += y&-y;
        }
        x += x&-x;
    }
}

int query(int x, int y) {
    int r = 0;
    while(x > 0) {
        while(y > 0) {
            r += bit[x][y];
            y -= y&-y;
        }
        x -= x&-x;
}
    return r;
}
```

2.3 BIT 2D Comprimida

```
// by TFG
#include <vector>
#include <utility>
#include <algorithm>
typedef std::pair<int, int> ii;
struct Bit2D {
public:
  Bit2D(std::vector<ii> pts) {
    std::sort(pts.begin(), pts.end());
    for(auto a : pts) {
      if(ord.empty() || a.first != ord.back())
        ord.push_back(a.first);
    fw.resize(ord.size() + 1);
    coord.resize(fw.size());
    for(auto &a : pts)
      std::swap(a.first, a.second);
    std::sort(pts.begin(), pts.end());
    for(auto &a : pts) {
      std::swap(a.first, a.second);
```

```
for(int on = std::upper_bound(ord.begin(), ord.end(), a.first) -
           ord.begin(); on < fw.size(); on += on & -on) {
        if(coord[on].empty() || coord[on].back() != a.second);
          coord[on].push_back(a.second);
    for(int i = 0; i < fw.size(); i++) {</pre>
      fw[i].assign(coord[i].size() + 1, 0);
  void upd(int x, int y, int v) {
    for(int xx = std::upper_bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx < fw.size(); xx += xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
          (x, y) - coord(xx).begin(); yy < fw(xx).size(); yy += yy & -yy
        fw[xx][yy] += v;
  int qry(int x, int y) {
    int ans = 0;
    for(int xx = std::upper_bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx > 0; xx -= xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
          , y) - coord[xx].begin(); yy > 0; yy -= yy & -yy) {
        ans += fw[xx][yy];
    return ans;
private:
  std::vector<int> ord;
  std::vector<std::vector<int>> fw, coord;
};
```

2.4 Iterative Segment Tree

```
// If is non-commutative
S query(int 1, int r) {
   S resl, resr;
   for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
    if (1&1) resl = combine(resl, t[1++]);
    if (r&1) resr = combine(t[--r], resr);
   }
   return combine(resl, resr);
}
```

2.5 Iterative Segment Tree with Interval Updates

```
int n, t[2 * ms];
void build() {
  for (int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1|1]; // Merge
void update(int v, int 1, int r) {
  for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
    if(1&1) t[1++] += v; // Merge
    if(r&1) t[--r] += v; // Merge
int query(int p) {
  int res = 0;
  for(p += n; p > 0; p >>= 1) res += t[p]; // Merge
  return res;
void push() { // push modifications to leafs
  for(int i = 1; i < n; i++) {</pre>
   t[i<<1] += t[i]; // Merge
   t[i<<1|1] += t[i]; // Merge
    t[i] = 0;
```

2.6 Iterative Segment Tree with Lazy Propagation

```
struct LazyContext {
  int v;

LazyContext(int v = 0) : v(v) { }

  void reset() {
  v = 0;
  }

  void operator += (LazyContext o) {
  v += o.v;
  }
};

struct Node {
  int sz, v;
```

```
Node() { // neutral element
        v = 0: sz = 0:
  Node(int i) { // init
       v = i; sz = 1;
  Node (Node &1, Node &r) { // merge
        sz = 1.sz + r.sz;
        v = 1.v + r.v;
  void apply(LazyContext lazy) {
 v += lazy.v * sz;
};
Node tree[2*ms]:
LazyContext lazy[ms];
bool dirty[ms];
int n, h, a[ms];
void init() {
   h = 0;
   while((1 << h) < n) h++;</pre>
    for(int i = 0; i < n; i++) {
        tree[i + n] = Node(a[i]);
    for (int i = n - 1; i > 0; i--) {
        tree[i] = Node(tree[i + i], tree[i + i + 1]);
        lazy[i].reset();
        dirty[i] = 0;
void apply(int p, LazyContext &lc) {
    tree[p].apply(lc);
    if(p < n) {
        dirty[p] = true;
        lazy[p] += lc;
void push(int p) {
    for (int s = h; s > 0; s--) {
        int i = p \gg s;
        if(dirty[i]) {
            apply(i + i, lazy[i]);
            apply(i + i + 1, lazy[i]);
            lazy[i].reset();
            dirty[i] = false;
void build(int p) {
    for(p /= 2; p > 0; p /= 2) {
        tree[p] = Node(tree[p + p], tree[p + p + 1]);
        if(dirty[p]) {
            tree[p].apply(lazy[p]);
```

```
Node query(int 1, int r) {
    if(l > r) return Node();
    1 += n, r += n+1;
    push(1);
    push(r - 1);
    Node lp, rp;
    for (; 1 < r; 1 /= 2, r /= 2) {
        if(1 & 1) lp = Node(lp, tree[1++]);
        if(r \& 1) rp = Node(tree[--r], rp);
    return Node(lp, rp);
void update(int 1, int r, LazyContext lc) {
    if(1 > r) return;
    1 += n, r += n+1;
    push(1);
    push(r - 1);
    int 10 = 1, r0 = r;
    for (; 1 < r; 1 /= 2, r /= 2) {
       if(l & 1) apply(l++, lc);
        if(r & 1) apply(--r, lc);
    build(10);
    build(r0 - 1);
```

2.7 Recursive Segment Tree

```
int arr[4 * ms], seq[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(1 == r) {
    seg[idx] = arr[l];
    return;
 build(left, 1, mid); build(right, mid + 1, r);
  seq[idx] = seq[left] + seq[right]; // Merge
int query(int L, int R, int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(R < 1 | | L > r) return 0; // Valor que nao atrapalhe
  if(L <= 1 && r <= R) return seg[idx];</pre>
 return query(L, R, left, 1, mid) + query(L, R, right, mid + 1, r);
      // Merge
void update(int V, int I, int idx = 0, int l = 0, int r = n -1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 if(1 > I | | r < I) return;
 if(1 == r) {
    arr[I] = V;
    seg[idx] = V; // Aplicar Update
    return;
```

```
}
update(V, I, left, 1, mid); update(V, I, right, mid + 1, r);
seg[idx] = seg[left] + seg[right]; // Merge
}
```

2.8 Segment Tree with Lazy Propagation

```
int arr[4 * ms], seg[4 * ms], lazy[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  lazy[idx] = 0;
 if(l == r) {
   seg[idx] = arr[l];
   return;
 build(left, 1, mid); build(right, mid + 1, r);
  seq[idx] = seq[left] + seq[right]; // Merge
void propagate(int idx, int 1, int r) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 if(lazv[idx]) {
   seq[idx] += lazy[idx] * (r - 1 + 1); // Aplicar lazy no seq
   if(1 < r) {
     lazy[2*idx+1] += lazy[idx]; // Merge de lazy
      lazy[2*idx+2] += lazy[idx]; // Merge de lazy
   lazy[idx] = 0; // Limpar a lazy
int query(int L, int R, int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  propagate(idx, l, r);
  if(R < 1 | | L > r) return 0; // Valor que nao atrapalhe
  if(L <= 1 && r <= R) return seg[idx];</pre>
  return query(L, R, left, l, mid) + query(L, R, right, mid + 1, r);
      // Merge
void update(int V, int L, int R, int idx = 0, int l = 0, int r = n -1)
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 propagate(idx, l, r);
  if(1 > R | | r < L) return;
 if(L <= 1 && r <= R) {
   lazy[idx] += V; // Merge de lazy/ou so colocar
   propagate(idx, l, r);
   return;
  update(V, L, R, left, 1, mid); update(V, L, R, right, mid + 1, r);
  seg[idx] = seg[left] + seg[right]; // Merge
```

2.9 Persistent Segment Tree

```
private:
 int z, t, sz, *tree, *L, *R, head[112345];
  void _build(int 1, int r, int on, vector<int> &v) {
    if(1 == r){
      tree[on] = v[1];
      return;
    L[on] = ++z;
    int mid = (1+r) >> 1;
    _build(l, mid, L[on], v);
    R[on] = ++z;
    _build(mid+1, r, R[on], v);
    tree[on] = tree[L[on]] + tree[R[on]];
  int _upd(int ql, int qr, int val, int l, int r, int on) {
    if(1 > qr | | r < ql) return on;
    int curr = ++z;
    if(l >= ql && r <= qr) {</pre>
     tree[curr] = tree[on] + val;
      return curr;
    int mid = (1+r) >> 1;
    L[curr] = \_upd(ql, qr, val, l, mid, L[on]);
    R[curr] = \_upd(ql, qr, val, mid+1, r, R[on]);
    tree[curr] = tree[L[curr]] + tree[R[curr]];
    return curr;
  int _query(int ql, int qr, int l, int r, int on) {
    if(1 > qr || r < ql) return 0;
    if(1 >= q1 \&\& r <= qr) {
      return tree[on];
    int mid = (1+r) >> 1;
    return _query(q1, qr, 1, mid, L[on]) + _query(q1, qr, mid+1, r,
        R[on]);
public:
 PSEGTREE (vector<int> &v) {
    tree = new int[1123456];
    L = new int[1123456];
    R = new int[1123456];
    build(v);
  void build(vector<int> &v) {
    t = 0, z = 0;
    sz = v.size();
    head[0] = 0;
    _build(0, sz-1, 0, v);
  void upd(int pos, int val, int idx) {
   head[++t] = \_upd(pos, pos, val, 0, sz-1, head[idx]);
  int query(int 1, int r, int idx){
    return _query(l, r, 0, sz-1, head[idx]);
```

2.10 Treap

```
typedef struct item * pitem;
struct item {
        int prior, value, cnt;
        bool rev;
        pitem 1, r;
};
int cnt (pitem it) { return it ? it->cnt : 0; };
void upd_cnt (pitem it) {
        if (it) it->cnt = cnt(it->1) + cnt(it->r) + 1;
void push (pitem it) {
        if (it && it->rev) {
                it->rev = false;
                swap (it->1, it->r);
                if (it->1) it->1->rev ^= true;
                if (it->r) it->r->rev ^= true;
void merge (pitem & t, pitem l, pitem r) {
        push (1), push (r);
        if (!1 || !r) t = 1 ? 1 : r;
        else if (l->prior > r->prior)
                merge (1->r, 1->r, r), t = 1;
        else
                merge (r->1, 1, r->1), t = r;
        upd_cnt (t);
void split (pitem t, pitem & l, pitem & r, int key) {
        if (!t) return void( l = r = 0 );
        push (t);
        int cur_key = cnt(t->1);
        if (key <= cur_key)</pre>
                split (t->1, 1, t->1, key), r = t;
                split (t->r, t->r, r, key - (1 + cnt(t->1))), l = t;
        upd cnt (t);
void reverse (pitem t, int 1, int r) {
        pitem t1, t2, t3;
        split (t, t1, t2, 1);
        split (t2, t2, t3, r-1+1);
        t2->rev ^= true;
        merge (t, t1, t2);
        merge (t, t, t3);
pitem unite (pitem 1, pitem r) {
        if (!l || !r) return 1 ? 1 : r;
        if (l->prior < r->prior) swap (l, r);
        pitem lt, rt;
```

```
split (r, 1->key, lt, rt);
l->1 = unite (l->1, lt);
l->r = unite (l->r, rt);
return 1;
```

2.11 Sparse Table

```
template < class Info t>
class SparseTable {
private:
  vector<int> log2;
  vector<vector<Info t>> table;
  Info_t merge(Info_t &a, Info_t &b) {
  SparseTable(int n, vector<Info_t> v) {
    log2.resize(n + 1);
    log2[1] = 0;
    for (int i = 2; i <= n; i++) {
      log2[i] = log2[i >> 1] + 1;
    table.resize(n + 1);
    for (int i = 0; i < n; i++) {
      table[i].resize(log2[n] + 1);
    for (int i = 0; i < n; i++) {</pre>
      table[i][0] = v[i];
    for (int i = 0; i < log2[n]; i++) {</pre>
      for (int j = 0; j < n; j++) {
        if (j + (1 << i) >= n) break;
        table[j][i + 1] = merge(table[j][i], table[j + (1 << i)][i]);
  int get(int 1, int r) {
    int k = log2[r - 1 + 1];
    return merge(table[1][k], table[r - (1 << k) + 1][k]);</pre>
};
```

2.12 Policy Based Structures

```
X.insert(1);
X.find_by_order(0);
X.order_of_key(-5);
end(X), begin(X);
```

2.13 Color Updates Structure

```
struct range {
  int 1, r;
  int v:
  range(int l = 0, int r = 0, int v = 0) : l(1), r(r), v(v) {}
 bool operator < (const range &a) const {
    return 1 < a.1;</pre>
};
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
  vector<range> ans;
  if(l >= r) return ans;
  auto it = ranges.lower_bound(1);
 if(it != ranges.begin()) {
    it--:
   if(it->r>1) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, 1, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
  if(it != ranges.begin()) {
    it--;
    if(it->r>r) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, r, cur.v));
      ranges.insert(range(r, cur.r, cur.v));
  for(it = ranges.lower_bound(l); it != ranges.end() && it->l < r; it</pre>
    ans.push_back(*it);
  ranges.erase(ranges.lower_bound(1), ranges.lower_bound(r));
  ranges.insert(range(l, r, v));
  return ans:
int query(int v) { // Substituir -1 por flag para quando nao houver
    resposta
  auto it = ranges.upper_bound(v);
  if(it == ranges.begin()) {
    return -1;
  return it->r >= v ? it->v : -1;
```

2.14 Centroid Decomposition

setDis(u, v, nv, d + 1);

```
//Centroid decomposition1
void dfsSize(int v, int pa) {
  sz[v] = 1;
 for(int u : adj[v]) {
    if (u == pa || rem[u]) continue;
    dfsSize(u, v);
    sz[v] += sz[u];
int getCentroid(int v, int pa, int tam) {
  for(int u : adj[v]) {
    if (u == pa || rem[u]) continue;
    if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void decompose (int v, int pa = -1) {
  //cout << v << ' ' << pa << '\n';
 dfsSize(v, pa);
  int c = getCentroid(v, pa, sz[v]);
  //cout << c << '\n':
  par[c] = pa;
  rem[c] = 1;
  for(int u : adj[c]) {
    if (!rem[u] && u != pa) decompose(u, c);
  adj[c].clear();
//Centroid decomposition2
void dfsSize(int v, int par) {
  for(int u : adj[v]) {
    if (u == par || removed[u]) continue;
    dfsSize(u, v);
    sz[v] += sz[u];
int getCentroid(int v, int par, int tam) {
  for(int u : adj[v]) {
    if (u == par || removed[u]) continue;
    if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void setDis(int v, int par, int nv, int d) {
 dis[v][nv] = d;
  for(int u : adj[v]) {
    if (u == par || removed[u]) continue;
```

```
void decompose(int v, int par, int nv) {
    dfsSize(v, par);
    int c = getCentroid(v, par, sz[v]);
    ct[c] = par;
    removed[c] = 1;
    setDis(c, par, nv, 0);
    for(int u : adj[c]) {
        if (!removed[u]) {
            decompose(u, c, nv + 1);
        }
    }
}
```

2.15 Li Chao Tree

// by luucasv

```
typedef long long T;
const T INF = 1e18, EPS = 1;
const int BUFFER_SIZE = 1e4;
struct Line {
 T m, b;
 Line (T m = 0, T b = INF) : m(m), b(b) {}
 T apply(T x) { return x * m + b; }
};
struct Node {
 Node *left, *right;
  Line line;
 Node(): left(NULL), right(NULL) {}
};
struct LiChaoTree {
 Node *root, buffer[BUFFER_SIZE];
  T min value, max value;
  int buffer_pointer;
  LiChaoTree (T min_value, T max_value): min_value (min_value),
      max_value(max_value + 1) { clear(); }
  void clear() { buffer_pointer = 0; root = newNode(); }
  void insert_line(T m, T b) { update(root, min_value, max_value, Line
      (m, b)); }
  T eval(T x) { return query(root, min_value, max_value, x); }
  void update(Node *cur, T l, T r, Line line) {
    T m = 1 + (r - 1) / 2;
    bool left = line.apply(l) < cur->line.apply(l);
    bool mid = line.apply(m) < cur->line.apply(m);
    bool right = line.apply(r) < cur->line.apply(r);
      swap(cur->line, line);
    if (r - 1 <= EPS) return;</pre>
    if (left == right) return;
    if (mid != left) {
      if (cur->left == NULL) cur->left = newNode();
      update(cur->left, 1, m, line);
```

```
} else {
      if (cur->right == NULL) cur->right = newNode();
      update(cur->right, m, r, line);
  T query(Node *cur, T l, T r, T x) {
    if (cur == NULL) return INF;
    if (r - 1 <= EPS) {
      return cur->line.apply(x);
    T m = 1 + (r - 1) / 2;
    T ans:
    if (x < m) {
      ans = query(cur->left, l, m, x);
      ans = query(cur->right, m, r, x);
    return min(ans, cur->line.apply(x));
  Node* newNode() {
      buffer[buffer_pointer] = Node();
      return &buffer[buffer pointer++];
};
```

3 Graph Algorithms

3.1 Dinic Max Flow

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];
void clear() { // Lembrar de chamar no main
  memset(adj, -1, sizeof adj);
  z = 0;
void add(int u, int v, int k) {
  to[z] = v;
  ant[z] = adj[u];
  wt[z] = k;
  adj[u] = z++;
  swap(u, v);
  to[z] = v;
 ant[z] = adj[u];
 wt[z] = 0; // Lembrar de colocar = 0
  adj[u] = z++;
int bfs(int source, int sink) {
 memset(level, -1, sizeof level);
  level[source] = 0;
  int front = 0, size = 0, v;
 fila[size++] = source;
  while(front < size) {</pre>
```

```
v = fila[front++];
  for(int i = adj[v]; i != -1; i = ant[i]) {
   if(wt[i] && level[to[i]] == -1) {
   level[to[i]] = level[v] + 1;
   fila[size++] = to[i];
 return level[sink] != -1;
int dfs(int v, int sink, int flow) {
 if(v == sink) return flow;
 int f;
 for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
 if(wt[i] && level[to[i]] == level[v] + 1 &&
   (f = dfs(to[i], sink, min(flow, wt[i])))) {
   wt[i] -= f;
   wt[i ^ 1] += f;
   return f;
 return 0;
int maxflow(int source, int sink) {
 int ret = 0, flow;
 while(bfs(source, sink)) {
 memcpy(copy_adj, adj, sizeof adj);
 while((flow = dfs(source, sink, 1 << 30))) {</pre>
   ret += flow;
 return ret;
```

3.2 Euler Path and Circuit

```
int pathV[me], szV, del[me], pathE, szE;
int adj[ms], to[me], ant[me], wt[me], z, n;

// Funcao de add e clear no dinic

void eulerPath(int u) {
  for(int i = adj[u]; ~i; i = ant[u]) if(!del[i]) {
    del[i] = del[i^1] = 1;
    eulerPath(to[i]);
    pathE[szE++] = i;
  }
  pathV[szV++] = u;
}
```

3.3 Articulation Points/Bridges/Biconnected Components

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], z, n;
```

```
int idx[ms], bc[me], ind, nbc, child, st[me], top;
// Funcao de add e clear no dinic
void generateBc(int edge) {
  while(st[--top] != edge) {
    bc[st[top]] = nbc;
  bc[edge] = nbc++;
int dfs(int v, int par = -1) {
  int low = idx[v] = ind++;
  for (int i = adj[v]; i > -1; i = ant[i]) {
    if(idx[to[i]] == -1) {
      if(par == -1) child++;
      st[top++] = i;
      int temp = dfs(to[i], v);
      if(par == -1 && child > 1 || ~par && temp >= idx[v]) generateBc(
      if(temp >= idx[v]) art[v] = true;
      if(temp > idx[v]) bridge[i] = true;
      low = min(low, temp);
    } else if(to[i] != par && idx[to[i]] < low) {</pre>
      low = idx[to[i]];
      st[top++] = i;
  return low;
void biconnected() {
 ind = 0;
  nbc = 0;
  top = -1;
  memset(idx, -1, sizeof idx);
  memset (art, 0, sizeof art);
  memset(bridge, 0, sizeof bridge);
  for (int i = 0; i < n; i++) if (idx[i] == -1) {
   child = 0:
   dfs(i);
```

3.4 SCC - Strongly Connected Components / 2SAT

```
vector<int> g[ms];
int idx[ms], low[ms], z, comp[ms], ncomp;
stack<int> st;

int dfs(int u) {
   if(~idx[u]) return idx[u] ? idx[u] : z;
   low[u] = idx[u] = z++;
   st.push(u);
   for(int v : g[u]) {
      low[u] = min(low[u], dfs(v));
   }

   if(low[u] == idx[u]) {
      while(st.top() != u) {
      int v = st.top();
   }
}
```

```
idx[v] = 0;
      low[v] = low[u];
      comp[v] = ncomp;
      st.pop();
    idx[st.top()] = 0;
    st.pop();
    comp[u] = ncomp++;
  return low[u];
bool solveSat() {
 memset(idx, -1, sizeof idx);
  z = 1; ncomp = 0;
  for(int i = 0; i < n; i++) dfs(i);</pre>
  for(int i = 0; i < n; i++) if(comp[i] == comp[i^1]) return false;</pre>
  return true;
// Operacoes comuns de 2-sat
// v = "nao v"
#define trad(v) (v<0?((~v)*2)^1:v*2)
void addImp(int a, int b) { g[trad(a)].push(trad(b)); }
void addOr(int a, int b) { addImp(~a, b); addImp(~b, a); }
void addEqual(int a, int b) { addOr(a, ~b); addOr(~a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// valoracao: value[v] = comp[trad(v)] < comp[trad(~v)]</pre>
```

3.5 LCA - Lowest Common Ancestor

```
int par[ms][mlg+1], lvl[ms];
vector<int> q[ms];
void dfs (int v, int p, int l = 0) {
  lvl[v] = 1;
  par[v][0] = p;
  for(int u : g[v]) {
    if (u != p) dfs(u, v, l + 1);
void processAncestors(int root = 0) {
  dfs(root, root);
  for (int k = 1; k \le mlg; k++) {
    for(int i = 0; i < n; i++) {</pre>
      par[i][k] = par[par[i][k-1]][k-1];
int lca(int a, int b) {
  if(|v|[b] > |v|[a]) swap(a, b):
  for(int i = mlq; i >= 0; i--) {
    if(lvl[a] - (1 << i) >= lvl[b]) a = par[a][i];
  if(a == b) return a;
  for(int i = mlg; i >= 0; i--) {
    if(par[a][i] != par[b][i]) a = par[a][i], b = par[b][i];
```

```
return par[a][0];
```

3.6 Heavy Light Decomposition

```
// HLD + Euler Tour by adamant
int sz[ms], par[ms], h[ms];
int t, in[ms], out[ms], rin[ms], nxt[ms];
void dfs_sz(int v = 0, int p = -1) {
  sz[v] = 1:
  for (int i = 0; i < q[v].size(); i++) {
    int &u = g[v][i];
    if(u == p) continue;
    h[u] = h[v]+1, par[u] = v;
    dfs_sz(u, v);
    sz[v] += sz[u];
    if(q[v][0] == p || sz[u] > sz[g[v][0]]) {
      swap(u, g[v][0]);
void dfs_hld(int v = 0, int p = -1) {
  in[v] = t++;
  rin[in[v]] = v;
  for(int i = 0; i < q[v].size(); i++){}
    int &u = q[v][i];
    if(u == p) continue;
   nxt[u] = u == q[v][0] ? nxt[v] : u;
    dfs_hld(u, v);
  out[v] = t;
int up(int v){
  return (nxt[v] != v) ? nxt[v] : (~par[v] ? par[v] : v);
int getLCA(int a, int b) {
  while(nxt[a] != nxt[b]){
    if(h[a] == 0 || h[up(a)] < h[up(b)]) swap(a, b);
    a = up(a);
  return h[a] < h[b] ? a : b;
int queryUp(int a, int p = 0){
 int ans = 0:
 while(nxt[a] != nxt[p]){
    ans += query(in[nxt[a]], in[a]);
    a = par[nxt[a]];
  ans += query(in[p], in[a]);
  return ans;
int queryPath(int u, int v) {
  int lca = getLCA(u, v);
```

```
return queryUp(u, lca) + queryUp(v, lca) - queryUp(lca, lca);
}
```

3.7 Sack

```
void solve(int a, int p, bool f) {
  int big = -1;
  for(auto &b : adj[a]){
    if(b != p \&\& (big == -1 || en[b]-st[b] > en[big]-st[big])){}
      biq = b;
  for(auto &b : adj[a]){
    if(b == p || b == big) continue;
    solve(b, a, 0);
  if("big) solve(big, a, 1);
  add(cnt[v[a]], -1);
  cnt[v[a]]++;
  add(cnt[v[a]], +1);
  for(auto &b : adj[a]){
    if(b == p || b == big) continue;
    for(int i = st[b]; i < en[b]; i++) {</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]++;
      add(cnt[ett[i]], +1);
  for(auto &q : Q[a]){
    ans[q.first] = query(mx-1)-query(q.second-1);
  if(!f){
    for(int i = st[a]; i < en[a]; i++) {</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]--;
      add(cnt[ett[i]], +1);
```

3.8 Min Cost Max Flow

```
template <class flow_t, class cost_t>
class MinCostMaxFlow {
private:
    typedef pair<cost_t, int> ii;

    struct Edge {
        int to;
        flow_t cap;
        cost_t cost;
        Edge(int to, flow_t cap, cost_t cost) : to(to), cap(cap), cost(
            cost) {}
};

int n;
vector<vector<int>> adj;
vector<Edge> edges;
```

```
vector<cost t> dis;
  vector<int> prev, id_prev;
        vector<int> q;
        vector<bool> inq;
  pair<flow t, cost t> spfa(int src, int sink) {
    fill(dis.begin(), dis.end(), int(1e9)); //cost_t inf
    fill(prev.begin(), prev.end(), -1);
    fill(ing.begin(), ing.end(), false);
    q.clear();
    q.push_back(src);
    inq[src] = true;
    dis[src] = 0;
    for(int on = 0; on < (int) q.size(); on++) {
        int cur = q[on];
        ing[cur] = false;
        for(auto id : adj[cur]) {
                if (edges[id].cap == 0) continue;
                int to = edges[id].to;
                if (dis[to] > dis[cur] + edges[id].cost) {
                        prev[to] = cur;
                        id prev[to] = id;
                        dis[to] = dis[cur] + edges[id].cost;
                        if (!ing[to]) {
                                q.push_back(to);
                                inq[to] = true;
    flow_t mn = flow_t (1e9);
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
      int id = id_prev[cur];
      mn = min(mn, edges[id].cap);
    if (mn == flow_t(1e9) || mn == 0) return make_pair(0, 0);
    pair<flow t, cost t> ans(mn, 0);
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
      int id = id_prev[cur];
      edges[id].cap -= mn:
      edges[id ^ 1].cap += mn;
      ans.second += mn * edges[id].cost;
    return ans;
public:
  MinCostMaxFlow(int a = 0) {
    n = a;
    adj.resize(n + 2);
    edges.clear();
    dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    ing.resize(n + 2);
  void init(int a) {
    adj.resize(n + 2);
    edges.clear():
    dis.resize(n + 2);
    prev.resize(n + 2);
```

```
id_prev.resize(n + 2);
inq.resize(n + 2);
}
void add(int from, int to, flow_t cap, cost_t cost) {
    adj[from].push_back(int(edges.size()));
        edges.push_back(Edge(to, cap, cost));
        adj[to].push_back(int(edges.size()));
        edges.push_back(Edge(from, 0, -cost));
}
pair<flow_t, cost_t> maxflow(int src, int sink) {
    pair<flow_t, cost_t> ans(0, 0), got;
    while((got = spfa(src, sink)).first > 0) {
        ans.first += got.first;
        ans.second += got.second;
    }
    return ans;
}
```

3.9 Hungarian Algorithm - Maximum Cost Matching

```
const int inf = 0x3f3f3f3f;
int n, w[ms][ms], maxm;
int lx[ms], ly[ms], xy[ms], yx[ms];
int slack[ms], slackx[ms], prev[ms];
bool S[ms], T[ms];
void init_labels() {
  memset(lx, 0, sizeof lx); memset(ly, 0, sizeof ly);
  for (int x = 0; x < n; x++) for (int y = 0; y < n; y++) {
    lx[x] = max(lx[x], cos[x][y]);
void updateLabels() {
  int delta = inf;
  for(int y = 0; y < n; y++) if(!T[y]) delta = min(delta, slack[y]);</pre>
  for (int x = 0; x < n; x++) if (S[x]) lx[x] -= delta;
  for (int y = 0; y < n; y++) if (T[y]) ly [y] += delta;
  for (int y = 0; y < n; y++) if (!T[y]) slack[y] -= delta;
void addTree(int x, int prevx) {
  S[x] = 1; prev[x] = prevx;
  for(int y = 0; y < n; y++) if(lx[x] + ly[y] - w[x][y] < slack[y]) {
    slack[y] = lx[x] + ly[y] - cost[x][y];
    slackx[y] = x;
void augment() {
  if(maxm == n) return;
  int x, y, root;
  int q[ms], wr = 0, rd = 0;
  memset(S, 0, sizeof S); memset(T, 0, sizeof T);
  memset (prev, -1, sizeof prev);
  for (int x = 0; x < n; x++) if (xy[x] == -1) {
    q[wr++] = root = x;
    prev[x] = -2;
```

```
S[x] = 1;
    break;
  for (int y = 0; y < n; y++) {
    slack[y] = lx[root] + ly[y] - w[root][y];
    slackx[y] = root;
  while(true) {
    while(rd < wr) {</pre>
      x = q[rd++];
      for(y = 0; y < n; y++) if(w[x][y] == 1x[x] + 1y[y] && !T[y]) {
        if(yx[y] == -1) break;
        T[y] = 1;
        q[wr++] = yx[y];
        addTree(yx[y], x);
      if(y < n) break;</pre>
    if(y < n) break;</pre>
    updateLabels();
    wr = rd = 0;
    for(y = 0; y < n; y++) if(!T[y] && !slack[y]) {</pre>
      if(yx[y] == -1) {
        x = slackx[y];
        break;
      } else {
        T[y] = true;
        if(!S[yx[y]])
          q[wr++] = yx[y];
          addTree(yx[y], slackx[y]);
    if(y < n) break;</pre>
  if(y < n) {
    for(int cx = x, cy = y, ty; cx != -2; cx = prev[cx], cy = ty) {
      ty = xy[cx];
      yx[cy] = cx;
      xy[cx] = cy;
    augment();
int hungarian() {
  int ans = 0; maxm = 0;
  memset(xy, -1, sizeof xy); memset(yx, -1, sizeof yx);
  initLabels(); augment();
  for (int x = 0; x < n; x++) ans += w[x][xy[x]];
  return ans;
```

4 Math

4.1 Discrete Logarithm

```
ll discreteLog(ll a, ll b, ll m) {
```

```
// a^ans == b mod m
// ou -1 se nao existir
11 \text{ cur} = a, \text{ on } = 1;
for (int i = 0; i < 100; i++) {
  cur = cur * a % m;
while (on \star on \leq m) {
  cur = cur * a % m;
 on++;
map<ll, 11> position;
for (11 i = 0, x = 1; i * i <= m; i++) {
  position[x] = i * on;
  x = x * cur % m;
for (11 i = 0; i \le on + 20; i++) {
  if(position.count(b)) {
    return position[b] - i;
  b = b * a % m;
return -1;
```

4.2 GCD - Greatest Common Divisor

```
11 gcd(11 a, 11 b) {
   while(b) a %= b, swap(a, b);
   return a;
}
```

4.3 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<ll, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
        a = a - b * q;
        swap(a, b);
        swap(v, oldv);
    }
    return make_pair(oldu, oldv);
}
```

4.4 Fast Exponentiation

```
const 11 \mod = 1e9+7;
```

```
11 fExp(ll a, ll b) {
    ll ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
```

4.5 Matrix Fast Exponentiation

```
const 11 \mod = 1e9+7;
const int m = 2; // size of matrix
struct Matrix {
  11 mat[m][m];
 Matrix operator * (const Matrix &p) {
    Matrix ans:
    for (int i = 0; i < m; i++)
      for (int j = 0; j < m; j++)
        for (int k = ans.mat[i][j] = 0; k < m; k++)
          ans.mat[i][j] = (ans.mat[i][j] + mat[i][k] * p.mat[k][j]) %
    return ans;
};
Matrix fExp(Matrix a, ll b) {
 Matrix ans;
  for (int i = 0; i < m; i++) for (int j = 0; j < m; j++)
    ans.mat[i][j] = i == j;
  while(b) {
    if(b \& 1) ans = ans * a;
    a = a * a;
    b >>= 1;
  return ans;
```

4.6 FFT - Fast Fourier Transform

```
typedef complex<double> Complex;
typedef long double ld;
typedef long long ll;

const int ms = maiortamanhoderesposta * 2;
const ld pi = acosl(-1.0);

int rbit[1 << 23];
Complex a[ms], b[ms];

void calcReversedBits(int n) {
  int lg = 0;
  while(1 << (lg + 1) < n) {
    lg++;
  }</pre>
```

```
for (int i = 1; i < n; i++) {
    rbit[i] = (rbit[i >> 1] >> 1) | ((i & 1) << lg);
void fft(Complex a[], int n, bool inv = false) {
  for (int i = 0; i < n; i++) {
    if(rbit[i] > i) swap(a[i], a[rbit[i]]);
  double ang = inv ? -pi : pi;
  for(int m = 1; m < n; m += m) {</pre>
    Complex d(cosl(ang/m), sinl(ang/m));
    for (int i = 0; i < n; i += m+m) {
      Complex cur = 1;
      for (int j = 0; j < m; j++) {
        Complex u = a[i + j], v = a[i + j + m] * cur;
        a[i + j] = u + v;
        a[i + j + m] = u - v;
        cur *= d;
  if(inv) {
    for (int i = 0; i < n; i++) a[i] /= n;
void multiply(ll x[], ll y[], ll ans[], int nx, int ny, int &n) {
  while (n < nx+ny) n <<= 1;
  calcReversedBits(n);
  for (int i = 0; i < n; i++) {
   a[i] = Complex(x[i]);
   b[i] = Complex(y[i]);
  fft(a, n); fft(b, n);
  for (int i = 0; i < n; i++) {
   a[i] = a[i] * b[i];
  fft(a, n, true);
  for (int i = 0; i < n; i++) {
    ans[i] = 11(a[i].real() + 0.5);
  n = nx + ny;
```

4.7 NTT - Number Theoretic Transform

```
long long int mod = (11911 << 23) + 1, c_root = 3;

namespace NTT {
  typedef long long int 11;

11 fexp(ll base, 11 e) {
    11 ans = 1;
    while(e > 0) {
        if (e & 1) ans = ans * base % mod;
        base = base * base % mod;
        e >>= 1;
```

```
return ans;
11 inv mod(ll base) {
  return fexp(base, mod - 2);
void ntt(vector<ll>& a, bool inv) {
  int n = (int) a.size();
 if (n == 1) return;
  for (int i = 0, j = 0; i < n; i++) {
    if (i > j) {
      swap(a[i], a[j]);
    for (int 1 = n / 2; († ^= 1) < 1; 1 >>= 1);
  for(int sz = 1; sz < n; sz <<= 1) {
    11 delta = fexp(c_root, (mod - 1) / (2 * sz)); //delta = w_2sz
    if (inv) {
      delta = inv mod(delta);
    for(int i = 0; i < n; i += 2 * sz) {
     11 w = 1;
      for (int j = 0; j < sz; j++) {
        ll u = a[i + j], v = w * a[i + j + sz] % mod;
        a[i + j] = (u + v + mod) % mod;
        a[i + j] = (a[i + j] + mod) % mod;
        a[i + j + sz] = (u - v + mod) % mod;
        a[i + j + sz] = (a[i + j + sz] + mod) % mod;
        w = w * delta % mod;
  if (inv) {
   11 inv_n = inv_mod(n);
    for(int i = 0; i < n; i++) {</pre>
      a[i] = a[i] * inv_n % mod;
  for (int i = 0; i < n; i++) {
   a[i] %= mod;
    a[i] = (a[i] + mod) % mod;
void multiply(vector<11> &a, vector<11> &b, vector<11> &ans) {
  int lim = (int) max(a.size(), b.size());
  int n = 1;
 while (n < lim) n <<= 1;
 n <<= 1;
  a.resize(n);
 b.resize(n);
  ans.resize(n);
 ntt(a, false);
  ntt(b, false);
  for(int i = 0; i < n; i++) {</pre>
    ans[i] = a[i] * b[i] % mod;
  ntt(ans, true);
```

};

4.8 Miller and Rho

```
typedef long long int 11;
bool overflow(ll a, ll b) {
  return b && (a >= (111 << 62) / b);
11 add(ll a, ll b, ll md) {
 return (a + b) % md;
11 mul(ll a, ll b, ll md) {
  if (!overflow(a, b)) return (a * b) % md;
  11 \text{ ans} = 0;
  while(b) {
   if (b & 1) ans = add(ans, a, md);
   a = add(a, a, md);
   b >>= 1;
  return ans;
ll fexp(ll a, ll e, ll md) {
 11 \text{ ans} = 1;
 while(e) {
   if (e & 1) ans = mul(ans, a, md);
   a = mul(a, a, md);
    e >>= 1;
  return ans;
11 my_rand() {
 ll ans = rand();
  ans = (ans << 31) | rand();
  return ans;
11 gcd(ll a, ll b) {
  while(b) {
   11 t = a % b;
   a = b;
   b = t;
  return a;
bool miller(ll p, int iteracao) {
 if(p < 2) return 0:
  if(p % 2 == 0) return (p == 2);
 11 s = p - 1;
 while(s % 2 == 0) s >>= 1:
  for(int i = 0; i < iteracao; i++) {</pre>
    11 a = rand() % (p - 1) + 1, temp = s;
    11 \mod = fexp(a, temp, p);
    while(temp != p - 1 && mod != 1 && mod != p - 1) {
```

```
mod = mul(mod, mod, p);
      temp <<= 1:
    if(mod != p - 1 && temp % 2 == 0) return 0;
  return 1;
ll rho(ll n) {
  if (n == 1 || miller(n, 10)) return n;
  if (n % 2 == 0) return 2;
  while(1) {
   11 x = my_rand() % (n - 2) + 2, y = x;
   11 c = 0, cur = 1;
    while (c == 0) {
      c = my_rand() % (n - 2) + 1;
    while(cur == 1) {
     x = add(mul(x, x, n), c, n);
      y = add(mul(y, y, n), c, n);
     y = add(mul(y, y, n), c, n);
      cur = gcd((x >= y ? x - y : y - x), n);
    if (cur != n) return cur;
```

4.9 Determinant using Mod

```
// by zchao1995
// Determinante com coordenadas inteiras usando Mod
11 mat[ms][ms];
11 det (int n) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      mat[i][j] %= mod;
  11 \text{ res} = 1;
  for (int i = 0; i < n; i++) {</pre>
    if (!mat[i][i])
      bool flag = false;
      for (int j = i + 1; j < n; j++) {
        if (mat[j][i]) {
          flag = true:
          for (int k = i; k < n; k++) {
            swap (mat[i][k], mat[j][k]);
          res = -res;
          break;
      if (!flag)
        return 0;
    for (int j = i + 1; j < n; j++) {
      while (mat[j][i]) {
```

```
ll t = mat[i][i] / mat[j][i];
  for (int k = i; k < n; k++) {
    mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
    swap (mat[i][k], mat[j][k]);
  }
  res = -res;
  }
}
res = (res * mat[i][i]) % mod;
}
return (res + mod) % mod;
}</pre>
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
struct PT {
        double x, y;
        PT (double x = 0, double y = 0) : x(x), y(y) {}
        PT operator + (const PT &p) { return PT(x + p.x, y + p.y); }
        PT operator - (const PT &p) { return PT(x - p.x, y - p.y); }
        PT operator * (double c) { return PT(x * c, y * c); }
        PT operator / (double c) { return PT(x / c, y / c); }
        bool operator < (const PT &p) const {
                if(fabs(x - p.x) >= eps) return x < p.x;
                return fabs (y - p.y) >= eps && y < p.y;
        bool operator == (const PT &p) const {
                return fabs(x - p.x) < eps && fabs(y - p.y) < eps;
};
double dot(PT p, PT q) { return p.x * q.x + p.y * q.y; }
double dist2(PT p, PT q) { return dot(p - q, p - q); }
double dist(PT p, PT q) {return hypot(p.x-q.x, p.y-q.y); }
double cross(PT p, PT q) { return p.x * q.y - p.y * q.x; }
// Rotaciona o ponto CCW ou CW ao redor da origem
PT rotateCCW90(PT p) { return PT(-p.y, p.x); }
PT rotateCW90(PT p) { return PT(p.y, -p.x); }
PT rotateCCW(PT p, double t) {
   return PT(p.x * cos(t) - p.y * sin(t), p.x * sin(t) + p.y * cos(t)
// Projeta ponto c na linha a - b assumindo a != b
PT projectPointLine(PT a, PT b, PT c) {
   return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
// Projeta ponto c no segmento a - b
PT projectPointSegment(PT a, PT b, PT c) {
   double r = dot(b - a, b - a);
   if(abs(r) < eps) return a;</pre>
   r = dot(c - a, b - a) / r;
```

```
if(r < 0) return a;</pre>
    if(r > 1) return b;
    return a + (b - a) * r;
// Calcula distancia entre o ponto c e o segmento a - b
double distancePointSegment(PT a, PT b, PT c) {
    return dist(c, projectPointSegment(a, b, c));
// Determina se o ponto c esta em um segmento a - b
bool ptInSegment(PT a, PT b, PT c) {
 bool x = min(a.x, b.x) \le c.x \le c.x \le max(a.x, b.x);
  bool y = min(a.y, b.y) \le c.y \le c.y \le max(a.y, b.y);
  return x && y && (cross((b-a),(c-a)) == 0); // testar com eps se for
       double
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz =
double distancePointPlane(double x, double y, double z, double a,
    double b, double c, double d) {
    return abs(a \star x + b \star y + c \star z - d) / sqrt(a \star a + b \star b + c \star c
// Determina se as linhas a - b e c - d sao paralelas ou colineares
bool linesParallel(PT a, PT b, PT c, PT d) {
    return abs(cross(b - a, c - d)) < eps;</pre>
bool linesCollinear(PT a, PT b, PT c, PT d) {
    return linesParallel(a, b, c, d) && abs(cross(a - b, a - c)) < eps
         && abs(cross(c - d, c - a)) < eps;
// Determina se o segmento a - b intersecta com o segmento c - d
bool segmentsIntersect(PT a, PT b, PT c, PT d) {
    if(linesCollinear(a, b, c, d)) {
        if(dist2(a, c) < eps | | dist2(a, d) < eps | | dist2(b, c) < eps
             || dist2(b, d) < eps) return true;</pre>
        if(dot(c - a, c - b) > 0 & dot(d - a, d - b) > 0 & dot(c - b)
            , d - b) > 0) return false;
        return true;
    if(cross(d - a, b - a) * cross(c - a, b - a) > 0) return false;
    if(cross(a - c, d - c) * cross(b - c, d - c) > 0) return false;
    return true:
// Calcula a intersecao entre as retas a - b e c - d assumindo que uma
     unica intersecao existe
// Para intersecao de segmentos, cheque primeiro se os segmentos se
    intersectam e que nao paralelos
PT computeLineIntersection(PT a, PT b, PT c, PT d) {
   b = b - a; d = c - d; c = c - a;
    assert (cross (b, d) != 0); // garante que as retas nao sao
        paralelas, remover pra evitar tle
    return a + b * cross(c, d) / cross(b, d);
// Calcula centro do circulo dado tres pontos
```

```
PT computeCircleCenter(PT a, PT b, PT c) {
    b = (a + b) / 2;
    c = (a + c) / 2;
                                                                             // Calcula intersecao da linha a - b com o circulo centrado em c com
    return computeLineIntersection(b, b + rotateCW90(a - b), c, c +
        rotateCW90(a - c));
                                                                              vector<PT> circleLineIntersection(PT a, PT b, PT c, double r) {
                                                                               vector<PT> ans;
                                                                                b = b - a;
// Determina se o ponto p esta dentro do triangulo (a, b, c)
                                                                                a = a - c;
                                                                                double x = dot(b, b);
bool ptInsideTriangle(PT p, PT a, PT b, PT c) {
  if(cross(b-a, c-b) < 0) swap(a, b);
                                                                                double y = dot(a, b);
  11 x = cross(b-a, p-b);
                                                                                double z = dot(a, a) - r * r;
                                                                                double w = y * y - x * z;
  11 y = cross(c-b, p-c);
  11 z = cross(a-c, p-a);
                                                                                if (w < -eps) return ans;</pre>
  if (x > 0 \& \& y > 0 \& \& z > 0) return true;
                                                                               ans.push_back(c + a + b \star (-y + sqrt(w + eps)) / x);
                                                                               if (w > eps)
  if(!x) return ptInSegment(a,b,p);
  if(!y) return ptInSegment(b,c,p);
                                                                                 ans.push_back(c + a + b \star (-y - sqrt(w)) / x);
  if(!z) return ptInSegment(c,a,p);
                                                                                return ans:
  return false;
                                                                             // Calcula intersecao do circulo centrado em a com raio r e o centrado
// Determina se o ponto esta num poligono convexo em O(lqn)
                                                                                   em b com raio R
bool pointInConvexPolygon(const vector<PT> &p, PT g) {
                                                                             vector<PT> circleCircleIntersection(PT a, PT b, double r, double R) {
 PT pivot = p[0];
                                                                                vector<PT> ans;
  int x = 1, y = p.size();
                                                                                double d = sgrt(dist2(a, b));
  while (y-x != 1)
                                                                                if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ans;
                                                                                double x = (d * d - R * R + r * r)/(2 * d);
    int z = (x+y)/2;
    PT diagonal = pivot - p[z];
                                                                                double y = sqrt(r * r - x * x);
    if(cross(p[x] - pivot, q - pivot) * cross(q-pivot, p[z] - pivot)
                                                                                PT v = (b - a) / d;
                                                                                ans.push_back(a + v * x + rotateCCW90(v) * y);
        >= 0) v = z;
    else x = z;
                                                                                if (\lor > 0)
                                                                                  ans.push_back(a + v * x - RotateCCW90(v) * y);
  return ptInsideTriangle(q, p[x], p[y], pivot);
                                                                                return ans;
// Determina se o ponto esta num poligono possivelmente nao-convexo
                                                                              // Calcula a area ou o centroide de um poligono (possivelmente nao-
// Retorna 1 para pontos estritamente dentro, 0 para pontos
                                                                                  convexo)
    estritamente fora do poligno
                                                                              // assumindo que as coordenadas estao listada em ordem horaria ou anti
// e 0 ou 1 para os pontos restantes
                                                                                  -horaria
// Eh possivel converter num teste exato usando inteiros e tomando
                                                                              // O centroide eh equivalente a o centro de massa ou centro de
    cuidado com a divisao
                                                                                  gravidade
                                                                             double computeSignedArea(const vector<PT> &p) {
// e entao usar testes exatos para checar se esta na borda do poligno
bool pointInPolygon(const vector<PT> &p, PT q) {
                                                                                double area = 0;
 bool c = 0;
                                                                                for(int i = 0; i < p.size(); i++) {</pre>
  for(int i = 0; i < p.size(); i++) {</pre>
                                                                                 int j = (i + 1) % p.size();
    int j = (i + 1) % p.size();
                                                                                 area += p[i].x * p[j].y - p[j].x * p[i].y;
    if((p[i].y \le q.y \& q.y < p[j].y || p[j].y \le q.y \& q.y < p[i].y
                                                                                return area / 2.0;
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
      c = !c;
                                                                             double computeArea(const vector<PT> &p) {
                                                                                return abs(computeSignedArea(p));
  return c;
                                                                             PT computeCentroid(const vector<PT> &p) {
// Determina se o ponto esta na borda do poligno
                                                                                PT c(0,0);
bool pointOnPolygon(const vector<PT> &p, PT q) {
                                                                                double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++)
                                                                                for(int i = 0; i < p.size(); i++){</pre>
    if(dist2(projectPointSegment(p[i], p[(i + 1) % p.size()], q), q) <</pre>
                                                                                 int j = (i + 1) % p.size();
                                                                                 c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
      return true;
    return false;
                                                                                return c / scale;
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p)) {
  int n = p.size(), k = 0;
  vector<PT> h(2 * n);
  sort(p.begin(), p.end());
  for(int i = 0; i < n; i++) {
    while(k >= 2 && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
    h[k++] = p[i];
  }
  for(int i = n - 2, t = k + 1; i >= 0; i--) {
    while(k >= t && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
    h[k++] = p[i];
  }
  h.resize(k);
  return h;
}</pre>
```

5.3 Closest Pair

```
double closestPair(vector<PT> p) {
  int n = p.size(), k = 0;
  sort(p.begin(), p.end());
  double d = inf;
  set<PT> ptsInv;
  for(int i = 0; i < n; i++) {
    while(k < i && p[k].x < p[i].x - d) {
      ptsInv.erase(swapCoord(p[k++]));
    }
  for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
    it != ptsInv.end() && it->x <= p[i].y + d; it++) {
      d = min(d, !(p[i] - swapCoord(*it)));
    }
  ptsInv.insert(swapCoord(p[i]));
}
return d;
}</pre>
```

5.4 Intersection Points

```
// Utiliza uma seg tree
int intersectionPoints(vector<pair<PT, PT>> v) {
 int n = v.size();
  vector<pair<int, int>> events, vertInt;
  for(int i = 0; i < n; i++) {
    if(v.first.x == v.second.x) { // Segmento Vertical
      int y0 = min(v.first.y, v.second.y), y1 = max(v.first.y, v.
      events.push_back({v.first.x, vertInt.size()}); // Tipo = Indice
          no arrav
      vertInt.push_back({y0, y1});
    } else { // Segmento Horizontal
      int x0 = min(v.first.x, v.second.x), x1 = max(v.first.x, v.
          second.x);
      events.push back({x0, -1}); // Inicio de Segmento
      events.push_back({x1, inf}); // Final de Segmento
  sort(events.begin(), events.end());
  int ans = 0:
  for(int i = 0; i < events.size(); i++) {</pre>
    int t = events[i].second;
    if(t == -1) {
      seqUpdate(events[i].first, 1);
    } else if(t == inf) {
      seqUpdate(events[i].first, 0);
    } else {
      ans += segOuery(vertInt[t].first, vertInt[t].second);
  return ans:
```

5.5 Delaunay Triangulation

```
bool ge(const 11& a, const 11& b) { return a >= b; }
bool le(const ll& a, const ll& b) { return a <= b; }</pre>
bool eq(const 11& a, const 11& b) { return a == b; }
bool gt(const ll& a, const ll& b) { return a > b; }
bool lt(const ll& a, const ll& b) { return a < b; }</pre>
int sqn(const 11& a) { return a >= 0 ? a ? 1 : 0 : -1; }
struct pt {
    11 x, y;
    pt() { }
    pt(ll _x, ll _y) : x(_x), y(_y) { }
    pt operator-(const pt& p) const {
        return pt(x - p.x, y - p.y);
    11 cross(const pt& p) const {
        return x * p.y - y * p.x;
    11 cross (const pt& a, const pt& b) const
        return (a - *this).cross(b - *this);
```

```
11 dot(const pt& p) const {
        return x * p.x + y * p.y;
    11 dot(const pt& a, const pt& b) const {
        return (a - *this).dot(b - *this);
    11 sqrLength() const {
        return this->dot(*this);
    bool operator == (const pt& p) const {
        return eq(x, p.x) && eq(y, p.y);
};
const pt inf_pt = pt(1e18, 1e18);
struct QuadEdge {
    pt origin;
    OuadEdge* rot = nullptr:
    OuadEdge* onext = nullptr;
    bool used = false;
    OuadEdge* rev() const {
        return rot->rot;
    QuadEdge* lnext() const {
        return rot->rev()->onext->rot;
    QuadEdge* oprev() const {
        return rot->onext->rot;
    pt dest() const {
        return rev()->origin;
};
QuadEdge* make_edge(pt from, pt to) {
    QuadEdge* e1 = new QuadEdge;
    QuadEdge* e2 = new QuadEdge;
    QuadEdge* e3 = new QuadEdge;
    OuadEdge* e4 = new OuadEdge:
    e1->origin = from;
    e2->origin = to;
    e3->origin = e4->origin = inf_pt;
    e1->rot = e3;
    e2 - rot = e4;
    e3 \rightarrow rot = e2;
    e4->rot = e1;
    e1->onext = e1;
    e2 \rightarrow onext = e2;
    e3 \rightarrow onext = e4:
    e4 \rightarrow onext = e3;
    return e1;
void splice(QuadEdge* a, QuadEdge* b) {
    swap (a->onext->rot->onext, b->onext->rot->onext);
    swap(a->onext, b->onext);
void delete_edge(QuadEdge* e) {
    splice(e, e->oprev());
```

```
splice(e->rev(), e->rev()->oprev());
    delete e->rot:
    delete e->rev()->rot;
    delete e;
    delete e->rev();
OuadEdge* connect(OuadEdge* a, OuadEdge* b) {
    OuadEdge* e = make edge(a->dest(), b->origin);
    splice(e, a->lnext());
    splice(e->rev(), b);
    return e:
bool left_of(pt p, QuadEdge* e) {
    return gt(p.cross(e->origin, e->dest()), 0);
bool right of (pt p, OuadEdge* e) {
    return lt(p.cross(e->origin, e->dest()), 0);
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {
    return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
           a3 * (b1 * c2 - c1 * b2);
bool in_circle(pt a, pt b, pt c, pt d) {
// If there is int128, calculate directly.
// Otherwise, calculate angles.
#if defined(__LP64__) || defined(_WIN64)
    _{int128} det = -det3<_{int128} (b.x, b.y, b.sqrLength(), c.x, c.y,
                                   c.sqrLength(), d.x, d.y, d.
                                        sqrLength());
    det += det3<__int128>(a.x, a.y, a.sqrLength(), c.x, c.y, c.
        sarLenath(), d.x.
                          d.y, d.sqrLength());
    det -= det3 < __int128 > (a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), d.x,
                          d.y, d.sqrLength());
    det += det3<__int128>(a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), c.x,
                          c.v, c.sqrLength());
    return det > 0;
#else
    auto ang = [](pt l, pt mid, pt r) {
       ll x = mid.dot(l, r);
        11 v = mid.cross(1, r);
        long double res = atan2((long double)x, (long double)y);
        return res;
    };
    long double kek = ang(a, b, c) + ang(c, d, a) - ang(b, c, d) - ang
        (d, a, b);
    if (kek > 1e-8)
        return true;
    else
        return false:
#endif
```

```
pair<QuadEdge*, QuadEdge*> build_tr(int 1, int r, vector<pt>& p) {
    if (r - 1 + 1 == 2) {
        QuadEdge* res = make_edge(p[l], p[r]);
        return make_pair(res, res->rev());
   if (r - 1 + 1 == 3) {
        QuadEdge *a = make\_edge(p[1], p[1 + 1]), *b = make\_edge(p[1 + 1])
            1], p[r]);
        splice(a->rev(), b);
        int sg = sgn(p[1].cross(p[1 + 1], p[r]));
        if (sq == 0)
            return make_pair(a, b->rev());
        QuadEdge* c = connect(b, a);
        if (sq == 1)
            return make_pair(a, b->rev());
        else
            return make_pair(c->rev(), c);
   int mid = (1 + r) / 2;
   QuadEdge *ldo, *ldi, *rdo, *rdi;
   tie(ldo, ldi) = build_tr(l, mid, p);
   tie(rdi, rdo) = build_tr(mid + 1, r, p);
    while (true) {
        if (left of(rdi->origin, ldi)) {
            ldi = ldi->lnext();
            continue;
        if (right_of(ldi->origin, rdi)) {
            rdi = rdi->rev()->onext;
            continue;
        break:
   QuadEdge* basel = connect(rdi->rev(), ldi);
    auto valid = [&basel](QuadEdge* e) { return right_of(e->dest(),
        basel); };
   if (ldi->origin == ldo->origin)
        ldo = basel->rev();
   if (rdi->origin == rdo->origin)
        rdo = basel:
   while (true) {
        QuadEdge* lcand = basel->rev()->onext;
        if (valid(lcand)) {
            while (in_circle(basel->dest(), basel->origin, lcand->dest
                             lcand->onext->dest())) {
                OuadEdge* t = lcand->onext;
                delete_edge(lcand);
                lcand = t;
        QuadEdge* rcand = basel->oprev();
        if (valid(rcand)) {
            while (in circle(basel->dest(), basel->origin, rcand->dest
                (),
                             rcand->oprev()->dest())) {
                OuadEdge* t = rcand->oprev();
                delete_edge(rcand);
                rcand = t:
```

```
if (!valid(lcand) && !valid(rcand))
        if (!valid(lcand) ||
            (valid(rcand) && in_circle(lcand->dest(), lcand->origin,
                                        rcand->origin, rcand->dest())))
            basel = connect(rcand, basel->rev());
        else
            basel = connect(basel->rev(), lcand->rev());
    return make_pair(ldo, rdo);
vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) {
    sort(p.begin(), p.end(), [](const pt& a, const pt& b) {
        return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y));
    });
    auto res = build_tr(0, (int)p.size() - 1, p);
    QuadEdge* e = res.first;
    vector<OuadEdge*> edges = {e};
    while (lt(e->onext->dest().cross(e->dest(), e->origin), 0))
        e = e \rightarrow onext:
    auto add = [&p, &e, &edges]() {
        QuadEdge* curr = e;
            curr->used = true;
            p.push_back(curr->origin);
            edges.push_back(curr->rev());
            curr = curr->lnext();
        } while (curr != e);
    };
    add();
    p.clear();
    int kek = 0;
    while (kek < (int)edges.size()) {</pre>
        if (!(e = edges[kek++])->used)
            add();
    vector<tuple<pt, pt, pt>> ans;
    for (int i = 0; i < (int)p.size(); i += 3) {
        ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2]));
    return ans:
```

5.6 Java Geometry Library

```
import java.util.*;
import java.io.*;
import java.awt.geom.*;
import java.lang.*;
//Lazy Geometry
class AWT{
    static Area makeArea(double[] pts){
        Path2D.Double p = new Path2D.Double();
        p.moveTo(pts[0], pts[1]);
        for(int i = 2; i < pts.length; i+=2){
            p.lineTo(pts[i], pts[i+1]);
        }
        p.closePath();
        return new Area(p);</pre>
```

```
static double computePolygonArea(ArrayList<Point2D.Double> points) {
 Point2D.Double[] pts = points.toArray(new Point2D.Double[points.
 double area = 0;
  for (int i = 0; i < pts.length; i++) {
   int j = (i+1) % pts.length;
   area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
 return Math.abs(area)/2;
static double computeArea(Area area) {
 double totArea = 0;
 PathIterator iter = area.getPathIterator(null);
 ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>()
 while (!iter.isDone()) {
   double[] buffer = new double[6];
   switch (iter.currentSegment(buffer)) {
      case PathIterator.SEG_MOVETO:
      case PathIterator.SEG_LINETO:
       points.add(new Point2D.Double(buffer[0], buffer[1]));
       break;
      case PathIterator.SEG CLOSE:
       totArea += computePolygonArea(points);
       points.clear();
       break;
   iter.next();
 return totArea;
```

6 Dynamic Programming

6.1 Convex Hull Trick

```
typedef long double double_t;
typedef long long int l1;

class HullDynamic {
  public:
    const double_t inf = 1e9;

    struct Line {
        ll m, b;
        double_t start;
        bool is_query;

        Line() {}

        Line(ll _m, ll _b, double_t _start, bool _is_query) : m(_m), b(_b)
            , start(_start), is_query(_is_query) {}

        ll eval(ll x) {
            return m * x + b;
        }
    }
}
```

```
double t intersect(const Line& 1) const {
    return (double t) (1.b - b) / (m - 1.m);
  bool operator< (const Line& 1) const {</pre>
    if (is_query == 0) return m > 1.m;
    return (start < 1.start);</pre>
};
typedef set<Line>::iterator iterator_t;
bool has_prev(iterator_t it) {
  return (it != hull.begin());
bool has_next(iterator_t it) {
  return (++it != hull.end());
bool irrelevant(iterator t it) {
  if (!has_prev(it) || !has_next(it)) return 0;
  iterator_t prev = it, next = it;
 prev--;
 next++;
  return next->intersect(*prev) <= it->intersect(*prev);
void update_left(iterator_t it) {
  if (it == hull.begin()) return;
  iterator_t pos = it;
  --it;
  vector<Line> rem;
  while(has_prev(it)) {
    iterator_t prev = it;
    if (prev->intersect(*pos) <= prev->intersect(*it)) {
      rem.push_back(*it);
    } else {
     break;
    --it:
  double_t start = pos->intersect(*it);
 Line f = *pos;
  for (Line r : rem) hull.erase(r);
 hull.erase(f);
  f.start = start;
 hull.insert(f);
void update_right(iterator_t it) {
  if (!has next(it)) return;
  iterator_t pos = it;
  ++it;
  vector<Line> rem;
  while(has_next(it)) {
   iterator_t next = it;
    if (next->intersect(*pos) <= pos->intersect(*it)) {
```

```
rem.push_back(*it);
      } else {
        break;
      ++it;
    double_t start = pos->intersect(*it);
    Line f = *it;
    for (Line r : rem) hull.erase(r);
    hull.erase(f);
    f.start = start;
    hull.insert(f);
  void insert_line(ll m, ll b) {
    Line f(m, b, -inf, 0);
    iterator_t it = hull.lower_bound(f);
    if (it != hull.end() && it->m == f.m) {
      if (it->b <= f.b) {
        return:
      } else if (it->b > f.b) {
        hull.erase(it);
    hull.insert(f);
    it = hull.lower_bound(f);
    if (irrelevant(it)) {
     hull.erase(it);
      return;
    update_left(it);
    it = hull.lower bound(f);
    update_right(it);
  11 get(l1 x) {
    Line f(0, 0, x, 1);
    iterator_t it = hull.upper_bound(f);
    assert(it != hull.begin());
    --it:
    return it->m * x + it->b;
private:
  set < Line > hull;
```

6.2 Divide and Conquer Optimization

```
int n, k;
11 dpold[ms], dp[ms], c[ms][ms]; // c(i, j) pode ser funcao

void compute(int l, int r, int optl, int optr) {
    if(l>r) return;
    int mid = (l+r)/2;
    pair<ll, int> best = {inf, -l}; // long long inf
    for(int k = optl; k <= min(mid, optr); k++) {
        best = min(best, {dpold[k-1] + c[k][mid], k});
    }
    dp[mid] = best.first;</pre>
```

```
int opt = best.second;
   compute(l, mid-1, optl, opt);
   compute(mid+1, r, opt, optr);
}

ll solve() {
    dp[0] = 0;
    for(int i = 1; i <= n; i++) dp[i] = inf; // initialize row 0 of
        the dp
   for(int i = 1; i <= k; i++) {
        swap(dpold, dp);
        compute(0, n, 0, n); // solve row i of the dp
   }
   return dp[n]; // return dp[k][n]
}</pre>
```

6.3 Knuth Optimization

7 Miscellaneous

7.1 LIS - Longest Increasing Subsequence

```
int arr[ms], lisArr[ms], n;
// int bef[ms], pos[ms];

int lis() {
   int len = 1;
   lisArr[0] = arr[0];
   // bef[0] = -1;
   for(int i = 1; i < n; i++) {
        // upper_bound se non-decreasing
        int x = lower_bound(lisArr, lisArr + len, arr[i]) - lisArr;
        len = max(len, x + 1);
        lisArr[x] = arr[i];
        // pos[x] = i;
        // bef[i] = x ? pos[x-1] : -1;
   }
   return len;</pre>
```

```
vi getLis() {
  int len = lis();
  vi ans;
  for(int i = pos[lisArr[len - 1]]; i >= 0; i = bef[i]) {
    ans.push_back(arr[i]);
  }
  reverse(ans.begin(), ans.end());
  return ans;
}
```

7.2 Ternary Search

```
for(int i = 0; i < LOG; i++) {
  long double m1 = (A * 2 + B) / 3.0;
  long double m2 = (A + 2 * B) / 3.0;
  if(f(m1) > f(m2))
   A = m1;
  else
    B = m2;
ans = f(A);
//Z
while (B - A > 4) {
  int m1 = (A + B) / 2;
  int m2 = (A + B) / 2 + 1;
  if(f(m1) > f(m2))
   A = m1;
  else
    B = m2:
ans = inf:
for (int i = A; i \le B; i++) ans = min(ans, f(i));
```

7.3 Random Number Generator

7.4 Submask Enumeration

```
for (int s=m; ; s=(s-1)&m) {
    ... you can use s ...
    if (s==0) break;
```

7.5 Java Fast I/O

```
import java.util.*;
import java.io.*;
// https://www.spoj.com/problems/INTEST/
class Main{
  public static void main(String[] args) throws Exception{
    Reader s = new Reader();
    PrintWriter out = new PrintWriter(new BufferedOutputStream(System.
        out));
    int n = s.nextInt();
    int k = s.nextInt();
    int count=0;
    while (s.hasNext()) {
      int x = s.nextInt();
      if (x%k == 0)
      count++;
    out.printf("%d\n", count);
    out.close();
    s.close();
  // fast io
  static class Reader {
    final private int BUFFER_SIZE = 1 << 16;</pre>
    private DataInputStream din;
    private byte[] buffer;
    private int bufferPointer, bytesRead;
    public Reader() {
      din = new DataInputStream(System.in);
      buffer = new byte[BUFFER_SIZE];
      bufferPointer = bytesRead = 0;
    public Reader(String file_name) throws IOException {
      din = new DataInputStream(new FileInputStream(file_name));
      buffer = new byte[BUFFER SIZE];
      bufferPointer = bytesRead = 0;
    public String readLine() throws IOException {
      byte[] buf = new byte[64]; // line length
      int cnt = 0, c;
      while ((c = read()) != -1) {
        if (c == '\n') break;
       buf[cnt++] = (byte) c;
      return new String(buf, 0, cnt);
    public int nextInt() throws IOException {
      int ret = 0;
      bvte c = read();
      while (c <= ' ') c = read();</pre>
      boolean neg = (c == '-');
      if (neg) c = read();
```

```
do{
    ret = ret * 10 + c - '0';
  while ((c = read())) >= '0' \&\& c <= '9');
  if (neg) return -ret;
  return ret;
public long nextLong() throws IOException {
  long ret = 0;
  byte c = read();
  while (c <= ' ') c = read();</pre>
  boolean neg = (c == '-');
  if (neg) c = read();
  do {
   ret = ret * 10 + c - '0';
  } while ((c = read()) >= '0' \&\& c <= '9');
  if (neg) return -ret;
  return ret:
public double nextDouble() throws IOException {
  double ret = 0, div = 1;
  byte c = read();
  while (c <= ' ')</pre>
  c = read();
  boolean neg = (c == '-');
  if (neg) c = read();
  do {
   ret = ret * 10 + c - '0';
  } while ((c = read())) >= '0' \&\& c <= '9');
  if (c == '.') {
    while ((c = read()) >= '0' \&\& c <= '9') {
      ret += (c - '0') / (div *= 10);
  if (neg) return -ret;
  return ret;
private void fillBuffer() throws IOException {
  bytesRead = din.read(buffer, bufferPointer = 0, BUFFER SIZE);
  if (bytesRead == -1) buffer[0] = -1;
public boolean hasNext() throws IOException {
  if (bufferPointer < bytesRead) return true;</pre>
  fillBuffer();
  if(buffer[0] == -1) return false;
  return true;
private byte read() throws IOException {
  if (bufferPointer == bytesRead) fillBuffer();
  return buffer[bufferPointer++];
public void close() throws IOException {
```

```
if (din == null) return;
    din.close();
    }
}
```

8 Teoremas e formulas uteis

8.1 Grafos

```
Formula de Euler: V - E + F = 2 (para grafo planar)
Handshaking: Numero par de vertices tem grau impar
Kirchhoff's Theorem: Monta matriz onde Mi, i = Grau[i] e Mi, j = -1 se
    houver aresta i-j ou 0 caso contrario, remove uma linha e uma
    coluna qualquer e o numero de spanning trees nesse grafo eh o det
    da matriz
Grafo contem caminho hamiltoniano se:
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de
    vertices for pelo menos n
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Caley Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label
    do vizinho eh adicionado ao codigo ate ter 2 vertices
Max Edge-disjoint paths: Max flow com arestas com peso 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em
    um com as arestas de chegadas e um com as arestas de saida e uma
    aresta de peso 1 conectando o vertice com aresta de chegada com
    ele mesmo com arestas de saida
Koniq's Theorem: minimum node cover = maximum matching se o grafo for
    bipartido, complemento eh o maximum independent set
Min Node disjoint path cover: formar grafo bipartido de vertices
    duplicados, onde aresta sai do vertice tipo A e chega em tipo B,
    entao o path cover eh N - matching
Min General path cover: Mesma coisa mas colocando arestas de A pra B
    sempre que houver caminho de A pra B
Dilworth's Theorem: Min General Path cover = Max Antichain (set de
    vertices tal que nao existe caminho no grafo entre vertices desse
\operatorname{Hall}'s marriage: um grafo tem um matching completo do lado \operatorname{X} se para
    cada subconjunto W de X,
    |W| \le |vizinhosW| onde |W| eh quantos vertices tem em W
```

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b
   onde a e b sao primos
Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4
   quadrados
```

```
Zeckendorf's: todo numero pode ser representado pela soma de dois
    numeros de fibonnacis diferentes e nao consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
    (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par
Wilson's: n \in Primo quando (n-1)! \mod n = n - 1
Mcnugget: Para dois coprimos x, y o maior inteiro que nao pode ser
    escrito como ax + by eh (x-1)(y-1)/2
Fermat: Se p eh primo entao a(p-1) % p = 1
Se x \in m tambem forem coprimos entao x^k % m = x^(k \mod (m-1)) % m
Euler's theorem: x^(phi(m)) mod m = 1 onde phi(m) eh o totiente de
    euler
Chinese remainder theorem:
Para equacoes no formato x = a1 \mod m1, ..., x = an \mod mn onde todos
     os pares m1, ..., mn sao coprimos
Deixe Xk = m1 * m2 * ... * mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = somatorio com k de 1 ate n de ak*Xk*(Xk,mk^-1 mod mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de <math>i=0 \rightarrow n-1 de Ci \star C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q,
    prob de em todo ponto ter mais As do que Bs antes dele = (p-q)/(p+
Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de
    possibilidades nos dois casos basta multiplicar por (p + q escolhe
Propriedades de Coeficientes Binomiais:
Somatorio de k = 0 -> m de (-1)^k * (n escolhe k) = (-1)^m * (n -1)
    escolhe m)
(N \text{ escolhe } K) = (N \text{ escolhe } N-K)
(N \text{ escolhe } K) = N/K * (n-1 \text{ escolhe } k-1)
Somatorio de k = 0 \rightarrow n de (n escolhe k) = 2^n
Somatorio de m = 0 \rightarrow n de (m = scolhe k) = (n+1 = scolhe k + 1)
Somatorio de k = 0 \rightarrow m de (n+k \text{ escolhe } k) = (n+m+1 \text{ escolhe } m)
Somatorio de k = 0 \rightarrow n de (n \text{ escolhe } k)^2 = (2n \text{ escolhe } n)
Somatorio de k = 0 ou 1 \rightarrow n de k*(n escolhe k) = n * 2^(n-1)
Somatorio de k = 0 \rightarrow n de (n-k \text{ escolhe } k) = \text{Fib}(n+1)
Hockey-stick: Somatorio de i = r \rightarrow n de (i = scolhe r) = (n + 1)
    escolhe r + 1
Vandermonde: (m+n \text{ escolhe } r) = \text{somatorio de } k = 0 \rightarrow r \text{ de } (m \text{ escolhe } k = 0)
```

```
) * (n escolhe r - k)

Burnside lemma: colares diferentes nao contando rotacoes quando m = cores e n = comprimento
(m^n + somatorio i =1 - > n-1 de m^gcd(i, n))/n

Distribuicao uniforme a,a+1, ..., b Expected[X] = (a+b)/2
Distribuicao binomial com n tentativas de probabilidade p, X = sucessos:
   P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n

Distribuicao geometrica onde continuamos ate ter sucesso, X = tentativas:
   P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p

Linearity of expectation: Tendo duas variaveis X e Y e constantes a e b, o valor esperado de aX + bY = a*E[X] + b*E[X]
```

8.3 Geometry

```
Formula de Euler: V - E + F = 2

Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b de pontos no perimetro do poligono

Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde a = lado oposto ao vertice a, incentro eh onde cruzam as bissetrizes, eh o centro da circunferencia inscrita e eh equidistante aos lados
```

8.4 Mersenne's Primes

```
Primos de Mersenne 2^n - 1
Lista de Ns que resultam nos primeiros 41 primos de Mersenne:
2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607; 1.279; 2.203;
2.281; 3.217; 4.253; 4.423; 9.689; 9.941; 11.213; 19.937; 21.701;
23.209; 44.497; 86.243; 110.503; 132.049; 216.091; 756.839;
859.433; 1.257.787; 1.398.269; 2.976.221; 3.021.377; 6.972.593;
13.466.917; 20.996.011; 24.036.583;
```