Міністерство освіти і науки України Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики

Кафедра Теорії оптимальних процесів

Лабораторна робота №3

МНОЖЕННЯ МАТРИЦЬ. АЛГОРИТМ ШТРАССЕНА.

з курсу "Алгоритми обчислювальних процесів"

Виконав: студент групи ПМА-11 Ковтун Віталій Олегович

Реалізація

У даному досліджені було реалізовано два алгоритми множення матриць: стандартний та алгоритм Штрассена.

- Стандартний метод (функція multiply()) показує часову складність $O(n^3)$, для обчислення використовується три вкладених цикли.
- Метод Штрассена (функція strassen()) показує часову складність $O(n^2.81)$.

Реалізується за допомогою семи рекурсивних викликів, що ефективно знижує кількість операцій порівняно з класичним методом. Після отримання проміжних результатів, вони комбінуються для отримання кінцевого результату.

Приклади

Приклад 1.

Дано дві матриці розміру 128 x 128, заповнені випадковими числами. Алгоритм Штрассена стає ефективним вже на матрицях таких розмірів.

```
Enter the size of the matrix:
128
Time taken by Standard algorithm: 8 milliseconds
Time taken by Strassen algorithm: 7 milliseconds
```

Приклад 2.

Дано дві матриці розміру 1024 х 1024, заповнені випадковими числами.

```
Enter the size of the matrix:
1024
Time taken by Standard algorithm: 4561 milliseconds
Time taken by Strassen algorithm: 2916 milliseconds
```

Загалом було проведено кілька тестів для $n == 2^k$:

128	8	7
256	61	58
512	555	420
1024	4772	2992
2048	51045	15934

Відносно стандартного алгоритму на матрицях невеликих розмірів (до \sim n == 128) алгоритм Штрассена не ε ефективним, зі зростанням розміру матриці ефективність алгоритму відчутно зроста ε .

А для розмірів, які не ϵ степенем двійки, алгоритм потребу ϵ додаткових операцій (додавання рядків/стовпців, заповнених нулями).

Тестування програми

Для тестування алгоритмів було використано бібліотеку cassert(#include <cassert>) та створено функцію runTest():

```
void runTest() {
    {
        const int n = 3;
        int** A = createMatrix(n);
        int** B = createMatrix(n);
        int** result;
        randomize(B, n);
        for (int i = 0; i < n; ++i) {</pre>
            for (int j = 0; j < n; ++j) {
                 A[i][j] = 0;
        result = multiply(A, B, n);
        for (int i = 0; i < n; ++i) {</pre>
             for (int j = 0; j < n; ++j) {</pre>
                 assert(result[i][j] == 0);
        }
        remove(A, n);
        remove(B, n);
        remove(result, n);
    }
        const int n = 3;
        int** A = createMatrix(n);
        int** B = createMatrix(n);
        int** result;
        randomize(A, n);
        for (int i = 0; i < n; ++i) {</pre>
             for (int j = 0; j < n; ++j) {</pre>
                 A[i][j] = 0;
             }
        result = multiply(A, B, n);
        for (int i = 0; i < n; ++i) {</pre>
             for (int j = 0; j < n; ++j) {
```

```
assert(result[i][j] == 0);
             }
        }
        remove(A, n);
        remove(B, n);
        remove(result, n);
    }
    {
        int** A = createMatrix(1);
        int** B = createMatrix(1);
        A[0][0] = 3;

B[0][0] = 2;
        int** result = strassen(A, B, 1);
        assert(result[0][0] == 6);
        remove(A, 1);
        remove(B, 1);
        remove(result, 1);
    cout << "Tests passed successfully!" << endl;</pre>
}
```

У функції написано три тести: множення нульової матриці на заповнену числами, множення матриці, заповнену числами, на нульову матрицю і обчислення матриці розміру 1 х 1.

Висновок

Для обчислення матриць невеликого розміру алгоритм Штрассена не ε ефективнішим, ніж стандартний алгоритм множення матриць. Алгоритм Штрассена також потребує великої кількості пам'яті через використання рекурсій. Загалом, з часовою складністю $O(n^2.81)$, метод не ε найшвидшим з відомих варіантів множення матриць. Також даний метод не ε практичним, оскільки без модифікацій працює тільки на матрицях розміру $n \times n$, де $n = 2^k$.