Disease Knowledge Transfer across Neurodegenerative Diseases

Răzvan Marinescu^{1,2}, Marco Lorenzi³, Stefano Blumberg¹, Alexandra Young¹, Pere Morell¹, Neil Oxtoby¹, Arman Eshaghi^{1,4}, Keir Young⁵, Sebastian Crutch⁵, Polina Golland², Daniel Alexander¹

³University of Côte d'Azur, Inria Sophia Antipolis, France

⁵Dementia Research Centre, UCL, UK

²Computer Science and Artificial Intelligence Laboratory, MIT, USA

⁴Queen Square MS Centre, UCL Institute of Neurology, UK

Aim Infer progression of non-MRI biomarkers in rare neurodegenerative diseases (NDs) by leveraging larger datasets of common NDs.

Why Posterior Cortical Atrophy (PCA): progression of non-MRI biomarkers not known → Identify outcome measures and suitable subjects for PCA clinical trials

Challenges

Typical Neurodeg. Diseases

- Large datasets
- Multimodal imaging
- Longitudinal

Rare Neurodeg. Diseases

- Small datasets X
- MRI only X
- Cross-sectional X

Method

1. Each disease characterised 2. Dysfunction score modelled by region-specific dysfunction using region-specific

profile $\gamma_{ij}^l = f(\beta_i + m_{ij}; \lambda_{d_i}^l)$ Disease 1 (e.g. tAD)

biomarkers $-\alpha(s\psi^{(k)}, \alpha_s) + M(0, c_s)$

3. Extend to multiple subjects, biomarkers and diseases $p(\mathbf{y}|\theta,\lambda,\beta,\epsilon) = \prod_{(i,j,k)\in\Omega} p(y_{ijk}|\theta_k,\lambda_{d_i}^{\psi(k)},\beta_i)$

Inference: Loopy belief propagation

Initialise $\boldsymbol{\theta}^{(0)}$, $\boldsymbol{\lambda}^{(0)}$, $\boldsymbol{\beta}^{(0)}$

while θ , λ , β not converged do

; // Estimate biomarker trajectories (disease agnostic) $\theta_k^{(u)} = \arg\min_{\theta_k} \sum_{(i,j) \in \Omega_k} \left[y_{ijk} - g \left(f(\beta_i^{(u-1)} + m_{ij}; \lambda_{d_i}^{\psi(k),(u-1)}); \theta_k \right) \right]^2$; // Estimate dysfunction trajectories (disease specific) $\lambda_d^{l,(u)} = \arg\min_{\lambda_d^l} \sum_{(i,j,k) \in \Omega_{d,l}} \left[y_{ijk} - g \left(f(\beta_i^{(u-1)} + m_{ij}; \lambda_d^l); \theta_k^{(u)} \right) \right]^2$; // Estimate subject-specific time shifts $\beta_i^{(u)} = \arg\min_{\beta_i} \sum_{(j,k) \in \Omega_i} \left[y_{ijk} - g \left(f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k),(u)}); \theta_k^{(u)} \right) \right]^2$

Demographics

- Dementia Research Center cohort: 76 PCA, 67 tAD, 87 agematched controls for training, 10 PCA with DTI for validation
- TADPOLE Challenge dataset split into three subgroups with different progressions: 21 hippocampal, 35 cortical, 27 subcortical.
- Synthetic dataset mimicking the DRC cohort: 50 subjects with "synthetic PCA", 100 subjects with "synthetic AD".

Results

In synthetic experiment, the estimated parameters are close to the true parameters

Inferred multimodal trajectories for Posterior Cortical Atrophy are plausible, suggesting late-stage parietal and occipital damage.

Our model has favourable performance compared to other models, on two different datasets

Model	Cingulate	Frontal	Hippocam.	Occipital	Parietal	Temporal			
	TADPOLE: Hippocampal subgroup to Cortical subgroup								
DKT (ours)	0.56 ± 0.23	$\textbf{0.35}\pm\textbf{0.17}$	$\textbf{0.58} \pm \textbf{0.14}$	-0.10 ± 0.29	0.71 ± 0.11	$\textbf{0.34}\pm\textbf{0.26}$			
Latent stage	0.44 ± 0.25	0.34 ± 0.21	$0.34 \pm 0.24^*$	$\textbf{-0.07}\pm\textbf{0.22}$	0.64 ± 0.16	$0.08 \pm 0.24^*$			
Multivariate	0.60 ± 0.18	$0.11 \pm 0.22^*$	$0.12 \pm 0.29^*$	-0.22 ± 0.22	$-0.44 \pm 0.14^*$	$-0.32 \pm 0.29^*$			
Spline	$-0.24 \pm 0.25^*$	$-0.06 \pm 0.27^*$	0.58 ± 0.17	-0.16 ± 0.27	$0.23 \pm 0.25^*$	$0.10 \pm 0.25^*$			
Linear	$-0.24 \pm 0.25^*$	$0.20 \pm 0.25^*$	0.58 ± 0.17	-0.16 ± 0.27	$0.23 \pm 0.25^*$	$0.13 \pm 0.23^*$			
	typical Alzheimer's to Posterior Cortical Atrophy								
DKT (ours)	0.77 ± 0.11	0.39 ± 0.26	0.75 ± 0.09	0.60 ± 0.14	$\textbf{0.55}\pm\textbf{0.24}$	$\textbf{0.35}\pm\textbf{0.22}$			
Latent stage	$\textbf{0.80}\pm\textbf{0.09}$	$\textbf{0.53}\pm\textbf{0.17}$	$\textbf{0.80} \pm \textbf{0.12}$	0.56 ± 0.18	0.50 ± 0.21	0.32 ± 0.24			
Multivariate	0.73 ± 0.09	0.45 ± 0.22	0.71 ± 0.08	$-0.28 \pm 0.21^*$	0.53 ± 0.22	$0.25 \pm 0.23^*$			
Spline	$0.52 \pm 0.20^*$	$-0.03 \pm 0.35^*$	$0.66 \pm 0.11^*$	$0.09 \pm 0.25^*$	0.53 ± 0.20	$0.30 \pm 0.21^*$			
Linear	$0.52 \pm 0.20^*$	0.34 ± 0.27	$0.66 \pm 0.11^*$	0.64 ± 0.17	0.54 ± 0.22	$0.30 \pm 0.21^*$			

Conclusion

- Developed a novel methodology and model for transfer learning across different diseases
- Inferred multimodal trajectories for Posterior Cortical Atrophy

Funders

Weblinks

- Source code: https://github.com/mrazvan22/dkt
- Website: https://people.csail.mit.edu/razvan/