Abstract

Notes on a formal semantics for GFX.

1. Semantics

We now describe the semantics of languages in the FX family.

Each language \mathcal{L} in the family is defined over a given input constraint system \mathcal{X} . Given a program P, we now show how to build a larger constraint system $O(\mathcal{X})$ on top of \mathcal{X} which captures constraints related to the object-oriented structure of P. O is sensitive to \mathcal{X} only in that O depends on the types defined by \mathcal{L} , and these may depend on \mathcal{X} .

The static and dynamic semantics of \mathcal{L} rests on $\mathcal{O}(X)$.

1.1 The Object constraint system, O

Given \mathcal{L} , its input constraint system \mathcal{X} we now show how to define \mathcal{O} . The inference relation for \mathcal{O} depends on the object-oriented structure of the input program \mathcal{P} in \mathcal{L} . For some members of \mathcal{L} , viz. the generic languages, \mathcal{X} itself may use some of the constraints defined by \mathcal{O} . Thus we should think of \mathcal{X} and \mathcal{O} as being defined simultaneously and recursively.

The constraints of O are given by:

Intuitively, $S \subseteq T$ is intended to hold if it can be established that S is extends T. For a variable x, fields(x) is intended to specify the (complete) set of typed fields available to x. x has M is intended to specify that the member M (field or method) is available to x.

O satisfies the following axioms and inference rules:

$$\frac{\mathsf{class}\,\mathsf{C}(\overline{\mathsf{f}}\,;\overline{\mathsf{V}})\,\,\mathsf{extends}\,\mathsf{D}\,\ldots\in\mathsf{P}}{\vdash_{O}\,\mathsf{class}(\mathsf{C}),\mathsf{C}\,\!\triangleleft\!\,\mathsf{D}} \tag{CLASS}$$

$$\vdash_{\mathcal{O}} T \unlhd T$$
 (V-ID)

$$\frac{\Gamma \vdash_{\mathcal{O}} T_1 <: T_2, T_2 <: T_3}{\Gamma \vdash_{\mathcal{O}} T_1 <: T_3} \tag{S-Trans}$$

$$\frac{\Gamma \vdash_{\mathcal{O}} \mathsf{t} \stackrel{\mathcal{}}{\leq} \mathsf{T}}{\Gamma \vdash_{\mathcal{O}} \mathsf{t} \stackrel{\mathcal{}}{<:} \mathsf{T}} \tag{Sub-X}$$

$$x: Object \vdash_{\mathcal{O}} fields(x) = \bullet$$
 (FIELDS-B)

$$\frac{\Gamma, \mathbf{x} : \mathsf{D} \vdash_{\mathcal{O}} \mathtt{fields}(\mathbf{x}) = \overline{g} : \overline{\mathsf{V}} \qquad \mathtt{class} \ \mathsf{C}(\overline{\mathbf{f}} : \overline{\mathbb{U}})\{c\} \ \mathtt{extends} \ \mathsf{D}\{\overline{\mathbb{M}}\} \in \mathsf{C}}{\Gamma, \mathbf{x} : \mathsf{C} \vdash \mathtt{fields}(\mathbf{x}) = \overline{g} : \overline{\mathsf{V}}, \overline{\mathbf{f}} : \overline{\mathbb{U}}[\overline{\mathbf{x}/\mathtt{this}}]} \qquad (\mathsf{Fields-I})$$

$$\begin{split} &\frac{\Gamma, \mathbf{x} : \mathsf{S} \vdash_{\mathcal{O}} \mathtt{fields}(\mathbf{x}) = \overline{\mathbf{f}} : \overline{\mathtt{V}}}{\Gamma, \mathbf{x} : \mathsf{S}\{\mathsf{d}\} \vdash_{\mathcal{O}} \mathtt{fields}(\mathbf{x}) = \overline{\mathbf{f}} : \overline{\mathtt{V}\{\mathtt{d}[\mathbf{x}/\mathtt{self}]\}}} \\ &\Gamma, \mathbf{x} : (\mathbf{y} : \mathtt{U}; \mathtt{S}) \vdash_{\mathcal{O}} \mathtt{fields}(\mathbf{x}) = \overline{\mathbf{f}} : (\mathbf{y} : \mathtt{U}; \mathtt{V})} \end{split}$$
 (FIELDS-C,E)

$$\frac{\Gamma \vdash_{\mathcal{O}} \mathtt{fields}(\mathtt{x}) = \overline{\mathtt{f}} : \overline{\mathtt{V}}}{\Gamma \vdash_{\mathcal{O}} \mathtt{x} \ \mathtt{has} \ \mathtt{f}_{\mathtt{i}} : \mathtt{V}_{\mathtt{i}}} \tag{has-F}$$

$$\vdash_{\mathcal{O}} \mathsf{new} \, \mathtt{D}(\overline{\mathtt{t}}).\mathtt{f_i} = \mathtt{t_i} \tag{SEL}$$

$$\frac{\Gamma, \mathbf{x} : \mathsf{C} \vdash_{\mathcal{O}} \mathsf{class}(\mathsf{C}) \qquad \theta = [\mathbf{x} / \mathsf{this}] \qquad \mathsf{def} \ \mathsf{m}(\overline{\mathbf{z}} : \overline{\mathbf{V}}) \{\mathsf{c}\} : \mathsf{T} = \mathsf{e} \in \mathit{P}}{\Gamma, \mathbf{x} : \mathsf{C} \vdash_{\mathcal{O}} \mathbf{x} \ \mathsf{has} \ (\mathsf{m}(\overline{\mathbf{z}} : \overline{\mathbf{V}}\overline{\boldsymbol{\theta}}) \{\mathsf{c}\boldsymbol{\theta}\} : \mathsf{T}\boldsymbol{\theta} = \mathsf{e})} \qquad (\mathsf{Method-B})$$

$$\frac{\Gamma, \mathbf{x} : \mathsf{D} \vdash_{\mathcal{O}} \mathbf{x} \text{ has } m(\overline{\mathbf{z}} : \overline{\mathbf{V}})\{c\} : T = e \qquad \text{class } \mathsf{C}(\ldots) \text{ extends } \mathsf{D}\{\overline{\mathtt{M}}\} \qquad \mathsf{m} \not\in \overline{\mathtt{M}}}{\Gamma, \mathbf{x} : \mathsf{C} \vdash_{\mathcal{O}} \mathbf{x} \text{ has } m(\overline{\mathbf{z}} : \overline{\mathbf{V}})\{c\} : T = e}$$

$$\begin{split} \frac{\Gamma, x : S \vdash_{\mathcal{O}} x \text{ has } m(\overline{z} : \overline{V})\{c\} : T = e}{\Gamma, x : S\{d\} \vdash_{\mathcal{O}} x \text{ has } m(\overline{z} : \overline{V})\{c\} : T\{d[x/self]\} = e} \\ \Gamma, x : (y : U; S) \vdash_{\mathcal{O}} x \text{ has } m(\overline{z} : \overline{V})\{c\} : (y : U; T) = e} \end{split}$$

Note: Figure out whether consistency checks need to be added.

1.2 Extensions of FX

1.2.1 FX(G)

Generics as in FGJ are supported by adding the following productions:

and the following rule:

$$\frac{\Gamma \vdash p : T \qquad \Gamma, x : T \vdash x \text{ has } X : \text{ type}}{\Gamma \vdash p.X \text{ type}} \tag{PATH}$$

$$\Gamma, X: \mathsf{type} \vdash X \; \mathsf{type}$$
 (Type Var)

$$\frac{\Gamma \vdash_{\mathcal{O}} p \unlhd T \qquad \Gamma, x : T \vdash_{\mathcal{O}} x \text{ has M}}{\Gamma, x : p \vdash_{\mathcal{O}} x \text{ has M}} \tag{Inh-p}$$

$$\frac{\Gamma \vdash_{\mathcal{O}} \mathbf{X} \underline{\lhd} \mathbf{T} \qquad \Gamma, \mathbf{x} : \mathbf{T} \vdash_{\mathcal{O}} \mathbf{x} \text{ has } \mathbf{M}}{\Gamma, \mathbf{x} : \mathbf{X} \vdash_{\mathcal{O}} \mathbf{x} \text{ has } \mathbf{M}} \qquad \qquad (\textbf{Inh-X})$$

1.2.2 FX(D(A))

Only the following rules are needed; no additional rules are needed for sub-typing, type-equivalence, expression typing or dynamic semantics. Below, q(f) ranges over all predicates (functions) specified by \mathcal{C} :

We need the following rules:

$$\frac{p(\overline{T}) : o \in C \qquad \Gamma \vdash \overline{t} : \overline{T}}{\Gamma \vdash p(\overline{T}) : o}$$
 (PRED)

$$\frac{\mathtt{f}(\overline{T}): T \in \mathcal{C} \qquad \Gamma \vdash \overline{\mathtt{t}}: \overline{T}}{\Gamma \vdash \mathtt{f}(\overline{T}): T} \tag{Fun}$$

$$\begin{array}{ccc} \Gamma \vdash \textbf{t}_{0}: T_{0} & \Gamma \vdash \textbf{t}_{1}: T_{1} \\ \underline{(\Gamma \vdash T_{0} <: T_{1} \lor \Gamma \vdash T_{1} <: T_{0})} \\ \hline \Gamma \vdash \textbf{t}_{0} = \textbf{t}_{1}: o \end{array}$$
 (EQUALS)

1.2.3 FX(G,D(A),P)

Only the following rules are needed beyond those of FX(G) and FX(D(A)).

1.3 Judgements

1

In the following Γ is a *well-typed context*, i.e. a (finite, possibly empty) sequence of formulas x : T, T type and constraints c satisfying:

1. for any formula ϕ in the sequence all variables x (X) occurring in ϕ are defined by a declaration x: T (X type) in the sequence to the left of ϕ .

2008/7/14

FX productions:

FX sub-typing and type-equivalence rules:

Γ⊢C type

$$\frac{\text{class C}(\ldots) \text{ extends D}\{\ldots\} \in P}{\vdash C <: D} \quad \left(S\text{-EXTENDS}\right) \qquad \frac{\Gamma, c \vdash S <: T}{\Gamma \vdash S \{c\} <: T} \quad \left(S\text{-CONST-L}\right) \qquad \frac{\Gamma, \text{self}: S \vdash c \qquad \Gamma \vdash S <: T}{\Gamma \vdash S <: T \{c\}} \quad \left(S\text{-CONST-R}\right) \\ \frac{\text{Gamma} \vdash U \text{ type} \qquad \Gamma \vdash S <: T \qquad (x \text{ fresh})}{\Gamma \vdash x : U; S <: T} \qquad \frac{\text{Gamma} \vdash t : U \qquad \Gamma \vdash S <: T[t/x]}{\Gamma \vdash S <: x; U : T} \quad \left(S\text{-EXISTS-R}\right) \qquad \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{YPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S <: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right) \\ \frac{\Gamma \vdash S =: T \qquad \Gamma \vdash T <: S}{\Gamma \vdash S \equiv T} \quad \left(T\text{TPE-EQUIV}\right)$$

(DEP)

Type judgement rules:

$$\begin{split} \Gamma, \mathbf{x} : \mathsf{T} \vdash \mathbf{x} : \mathsf{T} \big\{ \mathsf{self} == \mathbf{x} \big\} \, (\mathsf{T}\text{-}\mathsf{VAR}) & \frac{\Gamma \vdash e : \mathsf{U} \quad \Gamma \vdash \mathsf{T} \, \mathsf{type}}{\Gamma \vdash e \, \mathsf{as} \, \mathsf{T} : \mathsf{T}} \, (\mathsf{T}\text{-}\mathsf{CAST}) & \frac{\Gamma \vdash e : \mathsf{S} \quad \Gamma, \mathsf{z} : \mathsf{S} \vdash \mathsf{z} \, \mathsf{has} \, \mathsf{f} : \mathsf{T} \quad (\mathsf{z} \, \mathsf{fresh})}{\Gamma \vdash e \, \mathsf{f} : (\mathsf{z} : \mathsf{S}; \mathsf{T})} \, (\mathsf{T}\text{-}\mathsf{FIELD}) \\ & \frac{\Gamma \vdash e : \mathsf{T}, \overline{\mathsf{e}} : \overline{\mathsf{T}}}{\Gamma \vdash \mathsf{e} \, \mathsf{has} \, (\mathsf{m}(\overline{\mathsf{v}} : \overline{\mathsf{V}}), \mathsf{c} \to \mathsf{U}), \overline{\mathsf{T}} <: \overline{\mathsf{V}}, \mathsf{c} \quad (\mathsf{v}, \overline{\mathsf{v}} \, \mathsf{fresh})}{\Gamma \vdash \mathsf{e} \, \mathsf{m}(\overline{\mathsf{e}}) : (\mathsf{v} : \mathsf{T}; \overline{\mathsf{v}} : \overline{\mathsf{T}}; \mathsf{U})} \, (\mathsf{T}\text{-}\mathsf{INVK}) \\ & \frac{\Gamma, \mathsf{v} : \mathsf{C} \vdash \mathsf{fields}(\mathsf{v}) = \overline{\mathsf{f}} : \overline{\mathsf{V}}}{\Gamma, \mathsf{v} : \mathsf{C}, \overline{\mathsf{v}} : \overline{\mathsf{T}}, \mathsf{v} : \overline{\mathsf{f}} = \overline{\mathsf{v}} \vdash \overline{\mathsf{T}} <: \overline{\mathsf{V}}, \mathsf{inv}(\mathsf{C}, \mathsf{v})}{\Gamma \vdash \mathsf{new} \, \mathsf{C}(\overline{\mathsf{e}}) : C\{\overline{\mathsf{v}} : \overline{\mathsf{T}}; \mathsf{self}. \overline{\mathsf{f}} = \overline{\mathsf{v}}, \mathsf{inv}(\mathsf{C}, \mathsf{self})\}} \, (\mathsf{T}\text{-}\mathsf{NEW}) \\ & \frac{\mathsf{this} : \mathsf{C}, \overline{\mathsf{x}} : \overline{\mathsf{V}}, \mathsf{c} \vdash \mathsf{T} \, \mathsf{type}, \overline{\mathsf{V}} \, \mathsf{type}, \mathsf{e} : \mathsf{U}, \mathsf{U} <: \mathsf{T}}{\mathsf{def} \, \mathsf{m}(\overline{\mathsf{x}} : \overline{\mathsf{V}}) \{\mathsf{c}\} : \mathsf{T} = \mathsf{e}; \, \mathsf{OK} \, \mathsf{in} \, C} \, (\mathsf{METHOD} \, \mathsf{OK}) \\ & \frac{\overline{\mathsf{M}} \, \mathsf{OK} \, \mathsf{in} \, \mathsf{C} \quad \mathsf{this} : \mathsf{C}, \mathsf{c} \vdash \overline{\mathsf{V}} \, \mathsf{type}, \mathsf{N} \, \mathsf{type}}{\mathsf{class} \, \mathsf{OK}} \, (\mathsf{CLASS} \, \mathsf{OK}) \\ & \frac{\overline{\mathsf{M}} \, \mathsf{OK} \, \mathsf{in} \, \mathsf{C} \quad \mathsf{class} \, \mathsf{C}(\overline{\mathsf{f}} : \overline{\mathsf{V}}) \{\mathsf{c}\} \, \mathsf{extends} \, \mathsf{N}\{\overline{\mathsf{M}}\} \, \mathsf{OK} \, (\mathsf{CLASS} \, \mathsf{OK}) \\ & \frac{\mathsf{N}[\mathsf{M}]}{\mathsf{C}} \, \mathsf{C}(\mathsf{m}(\mathsf{m}(\mathsf{u})) \cap \mathsf{C}) \, \mathsf{C}(\mathsf{m}(\mathsf{u})) \, \mathsf{C}(\mathsf{u}) \, \mathsf{C}(\mathsf{u$$

Transition Rules:

Figure 1. Semantics of FX

2 2008/7/14 2. for any variable x (X), there is at most one formula x : T (X type) in Γ .

The judgements of interest are:

Type well-formedness $\Gamma \vdash T$ type

Subtyping $\Gamma \vdash S <: T$

Typing $\Gamma \vdash e : T$

Method ok $\Gamma \vdash M$ OK in C (method M is well-defined for the class C).

Field ok $\Gamma \vdash f : T$ OK in C (field $\mathbf{f} : \mathbf{T}$ is well-defined for the class C).

Class ok $\Gamma \vdash \mathsf{Cl}\ \mathit{OK}\ (\mathsf{class}\ \mathsf{definition}\ \mathsf{Cl}\ \mathsf{is}\ \mathsf{ok}).$

In defining these judgements we will use $\Gamma \vdash_{\mathcal{C}} c$, the judgement corresponding to the underlying constraint system. For simplicity, we define $\Gamma \vdash c$ to mean $\sigma(\Gamma) \vdash_{\mathcal{C}} c$, where the *constraint projection*, $\sigma(\Gamma)$ is defined thus:

```
\sigma(\epsilon) = \text{true}
\sigma(x: C\{c\}, \Gamma) = c[x/\text{self}], \sigma(\Gamma)
\sigma(c, \Gamma) = c, \sigma(\Gamma)
```

1.4 Well formedness rules

We posit a special type o (traditionally the type of propositions), and regard constraints as expressions of type o. See Figure ??.

2. Type inference rules

2.1 Expression typing judgement

Now we consider the rule for method invocation. Assume that in a type environment Γ the expressions \overline{e} have the types \overline{T} . Since the actual values of these expressions are not known, we shall assume that they take on some fixed but unknown values \bar{z} of type \bar{T} . Now for z as receiver, let us assume that the type $T \equiv C\{d\}$ has a method named m with signature $\overline{z}: \overline{Z}, c \to U$. If there is no method named m for the class C then this method invocation cannot be type-checked. Without loss of generality we may assume that the parameters of this method are named \overline{z} , since we are free to choose variable names as we wish because of α -equivalence. Now in order for the method to be invocable, it must be the case that the types \overline{T} are subtypes of \overline{Z} . (Note that there are no occurrences of this in \overline{Z} ; they have been replaced by z – see Section 1.1) Further, it must be the case that for these parameter values, the constraint c is entailed. Given all these assumptions it must be the case that the return type is U — with all the parameters \bar{z} existentially quantified.

3 2008/7/14