SE2 Project Plan Document

Edoardo Giacomello

Mattia Fontana

February 2, 2016

Contents

1	Intr	roduction 2
	1.1	Revision History
	1.2	Purpose and Scope
		1.2.1 Purpose
		1.2.2 Scope
	1.3	List of Definitions and Abbreviations
	1.4	List of Reference Documents
2	Pro	ject Size and Cost Estimation 4
	2.1	Project Size: Function Points
		2.1.1 Complexity Weights
		2.1.2 ILF: Internal Logical Files
		2.1.3 EIFs (External Interface Files)
		2.1.4 EIs (External Inputs)
		2.1.5 EIQs (External Inquiries) 6
		2.1.6 EOs (External Outputs) 6
		2.1.7 UFPs (Un-adjusted Function-Points) 6
	2.2	Effort and Cost Estimation: COCOMO
		2.2.1 Source Lines of Code (SLOC)
		2.2.2 Scale Drivers
		2.2.3 Cost Drivers
		2.2.4 Effort Equation
		2.2.5 Schedule Estimation
3	Tas	ks and Schedule 15
	3.1	RASD:
	3.2	DD:
	3.3	Planning:
	3.4	Development
	3.5	Unit Testing
	3.6	Integration Testing:
	3.7	Inspection:
4	Res	sources Allocation and Schedule 17
	4.1	Considerations
5	Ris	ks and Management 21
6	Wo	rk Hours 23

1 Introduction

1.1 Revision History

1.2 Purpose and Scope

1.2.1 Purpose

The purpose of this document is to provide an estimation of the size, the costs and the possible risks in the development context for the MyTaxiServiceSystem.

1.2.2 Scope

The scope of this document is the planning and allocation of resources designated at the MyTaxiServicesoftware development. This document represent a starting point in cost and effort estimation.

1.3 List of Definitions and Abbreviations

- **FP Function Points**: Function points measure a software project by quantifying the information processing functionality associated with major external data or control input, output, or file types.
- **RET Record Element Type**: A RET is user recognizable sub group of data elements within an ILF or an EIF.
- **DET Data Element Type** A DET is a unique user recognizable, non-recursive (non-repetitive) field. A DET is information that is dynamic and not static. A dynamic field is read from a file or created from DETs contained in a FTR. Additionally, a DET can invoke transactions or can be additional information regarding transactions. If a DET is recursive then only the first occurrence of the DET is considered not every occurrence.
- EI External Input : Every unique user data or user control input type that enters the external boundary of the software system being measured
- **EO External Output**: Every unique user data or control output type that leaves the external boundary of the software system being measured.
- ILF Internal Logical File : Every major logical group of user data or control information that is generated, used or maintained by the software system

- **EIF External Interface File**: Files that are passed or shared between different software systems.
- **EQ External Inquiry** Every unique input-output combination, where input causes and generates an immediate output.

1.4 List of Reference Documents

- Assigment 1: Project Description
- MyTaxiServiceRequirement and Specification Analysis Document
- MyTaxiServiceDesign Document
- $\bullet \ \, COCOMO \ \, Model \ \, Definition \ \, Manual: \\ http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf \\$

2 Project Size and Cost Estimation

2.1 Project Size: Function Points

2.1.1 Complexity Weights

In the evaluation of the complexity weights we referred to this table:

Table 2.	FP Coun	ting Weight	s		
For Internal Logical Files and External Interface Files					
	Data Elements				
Record Elements	<u>1 - 19</u>	<u> 20 - 50</u>	<u>51+</u>		
1	Low	Low	Avg.		
2 - 5	Low	Avg.	High		
6+	Avg.	High	High		

For External Output and External Inquiry

		ata Element	S
File Types	1-5	<u>6 - 19</u>	20+
0 or 1	Low	Low	Avg.
2 - 3	Low	Avg.	High
4+	Avg.	High	High

For External Input

	L	ala Elemeni	.5
File Types	1-4	<u>5 - 15</u>	<u>16+</u>
0 or 1	Low	Low	Avg.
2 - 3	Low	Avg.	High
3+	Avg.	High	High

2.1.2 ILF: Internal Logical Files

The data model resides in the database, which is typically counted as a single ILF which is structured as follow:

Name	RET	DET	Complexity
Zone	1	6	Low
Location	1	3	Low
Taxi	1	5	Low
Requests and Reservations	1	8	Low
Account	1	8	Low
Logs	1	≤ 4	Low

2.1.3 EIFs (External Interface Files)

The system does not rely on files that resides on external systems

2.1.4 EIs (External Inputs)

Name	RET	DET	Complexity
Login / Logout /	1: Account	≤8	Low
Registration			
TaxiProbe	1: Location	3	Low
TaxiReservation	2	16	High
input and pro-	Account, Reser-		
cessing	vation, Zones,		
	Taxi		
DriverResponse	1	3	Low
		(ReqId + TaxiId)	
		+ Accepted)	
DriverNotification	1	3	Low
		(ReqId + TaxiId)	
		+ Completed)	
LocationUpdate	1: Location	3	Low
BackupDatabase	n.a.		Avg
RestoreDatabase	n.a		Avg

${\bf 2.1.5}\quad {\bf EIQs}\ ({\bf External\ Inquiries})$

Name	RET	DET	Complexity
ShowProfile	1	8	Low
ShowAccounts	1	8	Low
ShowTaxiList	2	16	Avg
ShowLogs	n.a.		Avg

2.1.6 EOs (External Outputs)

Name	\mathbf{RET}	DET	Complexity
TaxiProbeResponse	1	5(Taxi + Location)	Low
Confirmation	1Reservation	8	Low
Notification	1Reservation	8	Low
DriverRequest	1Reservation	8	Low

${\bf 2.1.7}\quad {\bf UFPs}\ ({\bf Un-adjusted}\ {\bf Function-Points})$

Name	Low	Avg	High	Total
ILF	6*7	0	0	42
EIFs	0	0	0	0
EIs	5*3	2 *4	1*6	29
EIQs	2*3	2*4	0	14
EOs	4*4	0	0	16
UFP	79	16	6	101

2.2 Effort and Cost Estimation: COCOMO

All the tables used in this analysis have been taken from COCOMO II, Model Definition Manual at:

 $http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf \\ Elements of the COCOMO II model:$

- Source Lines of Code (SLOC)
- Scale Drivers
- Cost Drivers
- The Effort Equation
- The Effort Adjustment Factor
- The Schedule Equation
- The SCED (Schedule Constraints) Cost Driver

2.2.1 Source Lines of Code (SLOC)

101 FPs * 46 = 4646 SLOC

Where 46 is found from this table:

Table 4. UFP to SLOC Conversion Ratios

Language	Default SLOC / UFP	Language	Default SLOC / UFP
Access	38	Jovial	107
Ada 83	71	Lisp	64
Ada 95	49	Machine Code	640
Al Shell	49	Modula 2	80
APL	32	Pascal	91
Assembly - Basic	320	PERL	27
Assembly - Macro	213	PowerBuilder	16
Basic - ANSI	64	Prolog	64
Basic - Compiled	91	Query – Default	13
Basic - Visual	32	Report Generator	80
C	128	Second Generation Language	107
C++	55	Simulation – Default	46
Cobol (ANSI 85)	91	Spreadsheet	6
Database – Default	40	Third Generation Language	80
Fifth Generation Language	4	Unix Shell Scripts	107
First Generation Language	320	USR_1	1
Forth	64	USR_2	1
Fortran 77	107	USR_3	1
Fortran 95	71	USR_4	1
Fourth Generation Language	20	USR_5	1
High Level Language	64	Visual Basic 5.0	29
HTML 3.0	15	Visual C++	34
Java	53		

2.2.2 Scale Drivers

We use this table:

Table 10. Scale Factor Values, SF_i, for COCOMO II Models

	Tuble 10: Scale Factor Values, ST , 101 COCOMO IT Models					
Scale Factors	Very Low	Low	Nominal	High	Very High	Extra High
PREC	thoroughly unpreceden ted	largely unpreceden ted	somewhat unpreceden ted	generally familiar	largely familiar	thoroughly familiar
SF _J :	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	rigorous	occasional relaxation	some relaxation	general conformity	some conformity	general goals
SF _J :	5.07	4.05	3.04	2.03	1.01	0.00
RESL	little (20%)	some (40%)	often (60%)	generally (75%)	mostly (90%)	full (100%)
SF _j :	7.07	5.65	4.24	2.83	1.41	0.00
	very difficult interactions	some difficult interactions	basically cooperative interactions	largely cooperative	highly cooperative	seamless interactions
TEAM		Interdetions	Interdetions			
SF _J :	5.48	4.38	3.29	2.19	1.10	0.00
	The estimated Equivalent Process Maturity Level (EPML) or					
PMAT	SW-CMM Level 1 Lower	SW-CMM Level 1 Upper	SW-CMM Level 2	SW-CMM Level 3	SW-CMM Level 4	SW-CMM Level 5
SF _J :	7.80	6.24	4.68	3.12	1.56	0.00

for create this results:

Scale Driver	Factor	Value
Precedentedness	Low	4.96
Development Flexibility	High	2.03
Architecture / Risk Resolution	Very High	1.41
Team Cohesion	Nominal	3.29
Process Maturity	High	3.12
Total:	/	14.81

Analisy of the results:

- Precedentedness: Low because this is the first enterprise project the team develops.
- Development Flexibility: High because only general requirements are given by the client, and the team can design the system with a large degree of flexibility.
- Architecture / Risk Resolution : Reflects the extent of risk analysis carried out, most of risks were considered in the requirements.

- Team Cohesion: Reflects how well the development team know each other and work together, this is Nominal because this is the first project that we do together but each team member knows the capabilities of other members.
- Process Maturity: This was evaluated around the 18 Key Process Area (KPAs) in the SEI Capability Model.

2.2.3 Cost Drivers

Cost Driver	Factor	Value
Required Software Reliability	Very Low	0.82
Data Base Size	High	1.14
Product Complexity	High	1.17
Required Reusability	High	1.07
Documentation match to life-cycle needs	Nominal	1.00
Execution Time Constraint	High	1.11
Main Storage Constraint	Nominal	1.00
Platform Volatility	Very Low	n/a
Analyst Capability	High	0.85
Programmer Capability	High	0.88
Application Experience	Low	1.10
Personnel continuity	Very Low	1.29
Platform Experience	Low	1.09
Language and Tool Experience	Low	1.09
Usage of Software Tools	Nominal	1.00
Multisite development	Extra High	0.80
Required development schedule	High	1.00
Total:	/	16.41/17=0.96

For defining this table we used the information contained in these tables : **Required Software Reliability :** Very Low some slight inconvenience aren't crucial.

Table 17. RELY Cost Driver

RELY Descriptors:	slight inconven-	low, easily recoverable	moderate, easily	high financial	risk to human life	
	ience	losses	recoverable losses	loss		
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	0.82	0.92	1.00	1.10	1.26	n/a

Data Base Size:

P=4646 SLOC

 $D\!=\,640~\mathrm{KB}$

D/P = 137.75

This result show that the value is High.

Table 18. DATA Cost Driver

DATA* Descriptors		Testing DB bytes/Pgm SLOC < 10	10 ≤ D/P < 100	100 ≤ D/P < 1000	D/P ≥ 1000	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	n/a	0.90	1.00	1.14	1.28	n/a

Product Complexity: high according to the new COCOMO II CPLEX rating scale.

Control operations, computational operations, device-dependent operations, data management operations and user interface management operations are the five areas in this complexity is organized.

Table 20. CPLX Cost Driver

Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	0.73	0.87	1.00	1.17	1.34	1.74

Required Reusability: Across program could apply to reuse across multiple financial applications projects for a single organization.

Table 21. RUSE Cost Driver

RUSE Descriptors:		none	across project	across program	across product line	across multiple product lines
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	n/a	0.95	1.00	1.07	1.15	1.24

Documentation match to life-cycle needs: This is Nominal because we defined all information necessary to understand the system in the RASD and DD document.

Table 22. DOCU Cost Driver

DOCU Descriptors:	Many life- cycle needs uncovered	Some life- cycle needs uncovered.	Right-sized to life-cycle needs	Excessive for life-cycle needs	Very excessive for life-cycle needs	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	0.81	0.91	1.00	1.11	1.23	n/a

Execution Time Constraint: is High because the system must be available the most of the time.

Table 23. TIME Cost Driver

TIME Descriptors:			≤ 50% use of available execution time	70% use of available execution time	85% use of available execution time	95% use of available execution time
			ume	unie	une	une
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	n/a	n/a	1.00	1.11	1.29	1.63

Main Storage Constraint: is Nominal because the system doesn't use all the information storage

Table 24. STOR Cost Driver

STOR Descriptors:			≤ 50% use of available storage	70% use of available storage	85% use of available storage	95% use of available storage
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	n/a	n/a	1.00	1.05	1.17	1.46

Platform Volatility: is Very Low because the hardware and software structure don't change very often in normal conditions.

Table 25. PVOL Cost Driver

PVOL Descriptors:		Major change every 12 mo.; Minor change every 1 mo.	Major: 6 mo.; Minor: 2 wk.	Major: 2 mo.;Minor: 1 wk.	Major: 2 wk.;Minor: 2 days	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	n/a	0.87	1.00	1.15	1.30	n/a

Analyst Capability: is High because this project is based on analysis of the problem of MytaxiService.

Table 26. ACAP Cost Driver

ACAP	15th	35th	55th	75th	90th	
Descriptors:	percentile	percentile	percentile	percentile	percentile	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.42	1.19	1.00	0.85	0.71	n/a

Programmer Capability: is High because this is an ability that is very important to communicate and collaborate.

Table 27. PCAP Cost Driver

PCAP	15th	35th	55th	75th	90th	
Descriptors	percentile	percentile	percentile	percentile	percentile	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.34	1.15	1.00	0.88	0.76	n/a

Application Experience: is low because we works to this project since less than 6 months.

Table 29. APEX Cost Driver

				-	-	
APEX Descriptors:	≤ 2 months	6 months	1 year	3 years	6 years	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.22	1.10	1.00	0.88	0.81	n/a

Platform Experience: is Low because the platforms that we used in this project were new to us.

Table 30. PLEX Cost Driver

PLEX Descriptors:	≤ 2 months	6 months	1 year	3 years	6 year	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.19	1.09	1.00	0.91	0.85	n/a

Language and Tool Experience: is Low because the language that tools we used in this project were new to us.

Table 31. LTEX Cost Driver

LTEX Descriptors:	≤ 2 months	6 months	1 year	3 years	6 year	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.20	1.09	1.00	0.91	0.84	

Personnel continuity: is Very Low because this project cover a period of time that is very small.

Table 28. PCON Cost Driver

PCON Descriptors:	48% / year	24% / year	12% / year	6% / year	3% / year	Egyptonia english
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.29	1.12	1.00	0.90	0.81	

Usage of Software Tools: is Nominal because for creating this project we use basic tools.

Table 32. TOOL Cost Driver

TOOL	414					
Descriptors	edit, code, debug	simple, frontend, backend CASE, little integration	basic life- cycle tools, moderately integrated	strong, mature life- cycle tools, moderately integrated	strong, mature, proactive life-cycle tools, well integrated with processes, methods, reuse	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.17	1.09	1.00	0.90	0.78	n/a

Multisite development: is Extra High because for doing this project we used different instruments: phone, mail and drive.

Table 33. SITE Cost Driver

SITE:	Inter-	Multi-city	Multi-city or	Same city	Same	Fully
Collocation	national	and Multi-	Multi-	or metro.	building or	collocated
Descriptors:		company	company	area	complex	
SITE:	Some	Individual	Narrow	Wideband	Wideband	Interactive
Communications	phone, mail	phone, FAX	band email	electronic	elect.	multimedia
Descriptors:				communicat	comm.,	
				ion.	occasional	
					video conf.	
Rating Levels	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multipliers	1.22	1.09	1.00	0.93	0.86	0.80

Required development schedule: is High because our efforts were well distributed over the available development time in order to deliver the project in time for the deadlines.

Table 34. SCED Cost Driver

SCED	75%	85%	100%	130%	160%	
Descriptors	of nominal					
Rating Level	Very Low	Low	Nominal	High	Very High	Extra High
Effort Multiplier	1.43	1.14	1.00	1.00	1.00	n/a

2.2.4 Effort Equation

 $Effort = A*EAF*(KSLOC)^{E}$ Where:

- A = 2.94
- EAF = product of all the cost drivers, equal to: 0.96;
- \bullet E = exponent derived from Scale Drivers. Is calculated as: B + 0.01 * sum{i} SF[i] := B + 0.01 *14.81 = 0.91 + 0.1481 = 1.0581; in which B is equal to: 0.91 for COCOMO.2000 .
- KSLOC = estimated lines of code using the FP analysis: 4.646

$$Effort = 2.94 * 0.96 * 4.646^{1.0581} = 14.33689 Person - months$$

2.2.5 Schedule Estimation

 $Duration := 3.67 * Effort^F$ Where:

•
$$F := 0.28 + 0.2 * (E - B) = 0.28 + 0.2 * (1.0581 - 0.91) = 0.30962$$

 $Duration = 3.67*14.33689^{0.30962} = 8.37 = 8Months$ As for the required number of people the estimation is: P = Effort/Duration = 14.33689/8 = 1.79 = 2People

We want to give a more precise estimation adjusting some Scale Driver. To evaluate the COCOMO II and determine the effort required to complete the software project we also use an online tool (http://csse.usc.edu/tools/COCOMOII.php). This is the result of the online tool:

COCOMO II - Constructive Cost Model

Software	Size	Sizing Method	Source Lines of	Code 🗸					
	SLOC		% Code % Modified Integr Requ	ation and	Understanding	Unfamiliarity (0-1)			
New	4646								
Reused		0 0							
Modified									
Software	Scale Driver	s							
Preceder	ntedness		Low V	Architecture / R	isk Resolution	Very High 🗸	Process Maturity	High	~
Develop	ment Flexibility	1	High 🔻	Team Cohesion	1	Nominal 🗸			
Software	e Cost Driver	s					Platform		
	Software Rel	intellite.	Very Low Y	Personnel			Time Constraint	High	~
		iability		Analyst Capabil		High 💙			_
Data Bas			High 🗸	Programmer Ca		High 🗸	Storage Constraint	Nominal	~
	Complexity		High ∨	Personnel Cont	inuity	Very Low ➤	Platform Volatility	Low	~
Develope	ed for Reusab	ility	High 🔻	Application Exp	erience	Low 🗸	Project		
Documer	ntation Match	to Lifecycle Need	s Nominal 🗸	Platform Experi	ence	Low 🗸	Use of Software Tools	Nominal	▽
				Language and	Toolset Experien	ce Low 🗸	Multisite Development	Extra High	~
							Required Development Schedule	High	~
Maintena	nce Off 🗸								
		(Dollars) 2000							

Results

Software Development (Elaboration and Construction)

Effort = 16.8 Person-months Schedule = 12.1 Months Cost = \$33638

Total Equivalent Size = 4646 SLOC

Acquisition Phase Distribution

Phase	Effort (Person- months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	1.0	1.5	0.7	\$2018
Elaboration	4.0	4.5	0.9	\$8073
Construction	12.8	7.6	1.7	\$25566
Transition	2.0	1.5	1.3	\$4037

Software Effort Distribution for RUP/MBASE (Person-Months)

Software Ellort L	Software Effort Distribution for ROP/MBASE (Person-Month							
Phase/Activity	Inception	Elaboration	Construction	Transition				
Management	0.1	0.5	1.3	0.3				
Environment/CM	0.1	0.3	0.6	0.1				
Requirements	0.4	0.7	1.0	0.1				
Design	0.2	1.5	2.0	0.1				
Implementation	0.1	0.5	4.3	0.4				
Assessment	0.1	0.4	3.1	0.5				
Deployment	0.0	0.1	0.4	0.6				

Your output file is http://csse.usc.edu/tools/data/COCOMO January 25 2016 11 46 19 488404.txt

Created by Ray Madachy at the Naval Postgraduate School. For more information contact him at rjmadach@nps.edu

3 Tasks and Schedule

3.1 RASD:

- Identify the project objectives.
- Describe the structure and functions of the project.
- Define the specific requirements.
- Identify the use cases and scenarios.
- \bullet Representing UML diagrams.
- Representing the model in Alloy.
- Latex document.

3.2 DD:

- Describe the architecture of the system.
- Describe component view and deployment view.
- Describe runtime view and component interfaces.
- Describe algorithm design.
- Define user interface design.
- Latex document.

3.3 Planning:

- Define Function points.
- Define effort and cost estimation : Cocomo.
- Describe tasks for the project and the schedule.
- Define the risks.
- Latex document.

3.4 Development

- Web Service
- Mobile Application
- Back-end
- Database
- Documentation

3.5 Unit Testing

- Web Service
- Mobile Application
- \bullet Back-end
- Database
- Documentation

3.6 Integration Testing:

- $\bullet\,$ Describe integration strategy.
- \bullet Define individual steps and test description.
- Define program stubs.
- Latex document.

3.7 Inspection:

- $\bullet\,$ Define functional rules.
- $\bullet\,$ Describe assignment checklist.
- Latex document.

4 Resources Allocation and Schedule

Based on the results provided by COCOMO, a possible schedule has been produced.

Given the statistical nature of COCOMO, this schedule may vary during development according to the actual effort and project state.

Here is presented the resource (team members) allocation with the relative deadline for each task. If a deadline is not present it means that that task is not assigned to the team member.

Task ID	Description	Giacomello	Fontana
1.1	Identify the project objectives.	15/10/2015	15/10/2015
1.2	Describe the structure and	15/10/2015	
	functions of the project.		
1.3	Define the specific require-	15/10/2015	
	ments.		
1.4	Identify the use cases and sce-		15/10/2015
	narios.		
1.5	Representing UML diagrams.	30/10/2015	
1.6	Representing the model in Al-		30/10/2015
	loy.		
1.7	Documentation	30/10/2015	30/10/2015
]	DESIGN DOCUMENT		
2.1	Describe the architecture of the	30/11/2015	30/11/2015
	system		
2.2	Describe component view and	30/11/2015	
	deployment view		
2.3	Describe runtime view and		30/12/2015
	component interfaces		
2.4	Describe algorithm design	15/01/2016	
2.5	Define user interface design		15/02/2016
2.6	Documentation	15/02/2016	15/02/2016
	PLANNING		
3.1	Define Function points	30/02/2016	
3.2	Define Cocomo		30/02/2016
3.3	Describe task for the project	30/02/2016	30/02/2016
	and the schedule		
3.4	Define the risks	30/02/2016	30/02/2016
3.5	Documentation	30/02/2016	30/02/2016

	DEVELOPMENT					
4.1	Web Service		15/04/2016			
4.2	Mobile Application		30/04/2016			
4.3	Backend	30/04/2016				
4.4	Database	15/04/2016				
4.5	Documentation	30/04/2016	30/04/2016			
	UNIT TESTING					
5.1	Web Service	30/04/2016				
5.2	Mobile Application	30/04/2016				
5.3	Backend		30/04/2016			
5.4	Database		30/04/2016			
5.5	Documentation	30/04/2016	30/04/2016			
	INTEGRATION TESTING					
6.1	Component Stubs	30/06/2016	30/06/2016			
6.2	Phase 1	30/06/2016				
6.3	Phase 2		15/07/2016			
6.4	Phase 3	30/07/2016				
6.5	Phase 4		15/08/2016			
6.6	Documentation	15/08/2016	15/08/2016			
	INSPECTION DOCUMENT					
7.1	Define functional rules	15/09/2016				
7.2	Describe assignment check list		15/09/2016			
7.3	Documentation	15/09/2016	15/09/2016			

4.1 Considerations

Since the actual project has not exactly followed this particular schedule, this is to be intended as a simulation of a real situation in which the system would have really developed.

Anyway, in a scenario in which our team had to actually develop the system, it is possible to notice that the theoretical schedule fits the one we followed quite well.

In particular, the develop process should begin on march, since more time has to be allocated to the design document reduction process.

This choice has been made because of the lack of some details in the design document we provided in the given time; in this way the team could spend the month of February to enrich the Design Document while getting acknowledgement from the stakeholders.

Moreover, we consider the development period as quite appropriate to develop the system given its complexity, provided that the developers periodically write and runs unit-tests while writing components.

5 Risks and Management

Risk	Severity	Possible Resolution
Inadequate Infrastructures	High	The client should be informed about the infrastructure costs and the device requirements and an agreement has to be reached.
Frequent Data loss	High	A system administrator should be assigned to investigate the problem. Frequent database backups should be performed anyway.
Excessive Average System Load	High	A code inspection could be performed for analysing the complexity of the code. It it's not sufficient the managers could consider a system upgrade or the implementation of a distributed system, depending on the costs. A cloud hosting is also a feasible possibility.
The system security is proven to be not sufficient	High	A security specialist have to join the team in order to improve overall security of the system
Malfunction of any device used to communicate with the system.	Moderate	Periodic maintenance should be performed on the sys- tem infrastructure. If a taxi driver terminal is not func- tional, it has to be replaced
JEE platform malfunctions	Moderate	The platform has to be updated
Faults in reusable software components have to be repaired before these components are reused.	Moderate	A team will be dedicated to repair the malfunctioning components before reusing.
The database used in the system cannot process as many transactions per second as expected.	Moderate	A system upgrade should be considered, the cost analysis should consider a possible increase in the number of users and requests.

Improper use of application	Moderate	User Interface improvement -
- i.e. Taxi Drivers interact		It could be possible to add
with the application while		a control that prevents the
driving		users to interact with the ap-
		plication while the device is
		in movement
Delays in project develop-	Moderate	The schedule could be re-
ment		organised to better fit the
		team members necessities.
		The precedence could be
		given to the core functional-
		ities and testing, while the
		code and user interface in-
		spection could be delayed.
Low Web Interface quality	Moderate	A web specialist could be en-
Low Web Interface quanty	Moderate	rolled in order to improve the
		_
The expenientian is restruct	Low	interface quality The responsibles have to be
The organization is restructured so that different man-	LOW	informed about the current
agers are responsible for the		state of the project. This
project.		documentation has to be
	T	kept updated constantly
Personnel Adaptation	Low	For taxi driver users the in-
		terface has been kept as sim-
		ple as possible, so it is diffi-
		cult to have issues in migrat-
		ing to the new system. Sys-
		tem Administrators should
		be instructed to accomplish
		their new tasks as the sys-
		tem is delivered, although
		the process should not re-
		quire much time
A new feature is requested	Low	By design it is possible to add
		a new component to improve
		the system functionalities
Changes in the user interface.	Low	The modularity of this sys-
_		tem should allow modifica-
		tions on system interface
		with no or small modification
		of the system backend, de-
		pending on the nature of the
		modification.

6 Work Hours

• Edoardo Giacomello: 23 hours

• Mattia Fontana: 18,5 hours