MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning

实验分析

韩子坚

华中师范大学计算机学院

2024年12月27日

Content

- 1) 实验概览
- 2 分析 wa

- 1) 实验概览

论文中的实验结果

Method	Alg	P.Cal	P.Alg	Geom	Prob	N.Th	Int.Alg	O.Acc
Baselines with gpt-3.5-turbo (*)								
CoT-LTP (Guo et al., 2023)	49.6	16.3	52.3	22.5	30.2	29.8	16.9	31.1
ComplexCoT (Fu et al., 2023)	49.1	16.8	53.8	22.3	29.7	33.4	14.6	34.1
ComplexCoT+PHP (Zheng et al., 2023)	51.1	16.1	57.7	25.4	33.7	35.1	17.1	36.5
SKiC (Chen et al., 2023a)	57.9	23.0	62.0	30.1	38.2	35.5	17.8	40.6
Baselines with GPT-4								
CoT (Zhou et al., 2024)	70.8	26.7	71.6	36.5	53.1	49.6	23.4	50.4
PHP (Zhou et al., 2024)	74.3	29.8	73.8	41.9	56.3	55.7	26.3	53.9
Ours								
SG (*)	46.7	18.1	55.7	25.3	32.9	30.2	16.2	34.5
KR+SG (III+II)	49.1	15.0	58.0	24.4	34.3	29.6	12.0	34.4
BS+SG (⊕+ ∅)	51.6	20.1	63.3	27.1	36.1	39.6	16.3	38.7
PG+SG (*+*)	60.0	26.5	66.1	30.7	42.1	40.5	21.1	44.6
PG+CR+SG (♥+♣+♥)	59.7	25.2	63.9	26.9	48.3	43.0	26.9	44.8
PG'[♂]+SG (♥+♥)	55.4	23.5	58.0	22.9	32.7	42.2	17.9	39.6
WA+SG (O+O)	57.8	26.1	58.5	26.3	37.6	37.8	31.5	42.6
PG+BS+SG (♥+©+♥)	53.1	20.7	58.7	28.6	37.8	36.6	19.9	39.0
BS+PG+SG (@+*+*)	55.0	23.1	61.2	27.5	35.4	35.4	20.5	39.8
WA+PG+SG (*+*+*)	62.5	28.9	61.5	27.1	42.6	45.7	33.4	46.3
PG+WA+SG (*+□ + □)	61.6	28.7	64.7	30.5	42.8	49.1	35.0	47.6
BS+WA+SG (⊕+ ♥ + ♥)	56.2	22.9	61.0	29.8	37.5	44.0	28.9	42.9
WA+BS+SG (♥+®+♥)	60.0	27.0	65.0	29.0	40.5	42.2	31.4	45.4
BS+PG+WA+SG (⊕+*+*+**)	60.2	26.4	65.0	31.3	44.7	48.7	31.6	46.7

图 1: 论文中的实验结果

1) 实验概览 自己跑的实验-闭源模型

MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning

4o-mini: 不使用 WA (只使用 sg)

wa: Wolfram Alpha sg: Solution Generation

ACC	Value		
Accuracy Math data	65.0		
Total No of examples	100		
Accuracy by level			
Accuracy Level 3	70.0		
Accuracy Level 1	87.5		
Accuracy Level 4	68.0		
Accuracy Level 2	94.11764705882352		
Accuracy Level 5	36.66666666666664		
Accuracy by type			
Accuracy Algebra	73.07692307692307		
Accuracy Number Theory	81.81818181818183		
Accuracy Counting & Probability	66.6666666666666		
Accuracy Intermediate Algebra	60.0		
Accuracy Prealgebra	75.0		
Accuracy Precalculus	35.714285714285715		
Accuracy Geometry	42.857142857142854		
No of errors in output format	12		

| 40-mini: wa + sg (wa 最大尝试 3 次)

• 100 例样本中有 12 例 3 次 wa 尝试均失败.

ACC	Value
Accuracy Math data	73.0
Total No of examples	100
Accuracy by level	
Accuracy Level 3	85.0
Accuracy Level 2	94.11764705882352
Accuracy Level 5	53.33333333333333
Accuracy Level 1	87.5
Accuracy Level 4	68.0
Accuracy by type	
Accuracy Precalculus	50.0
Accuracy Algebra	73.07692307692307
Accuracy Number Theory	72.727272727273
Accuracy Prealgebra	85.0
Accuracy Counting & Probability	83.33333333333334
Accuracy Intermediate Algebra	70.0
Accuracy Geometry	71.42857142857143
No of errors in output format	0

|4o-mini: wa + sg (wa 最大尝试 10 次)

• 100 例样本中有 7 例 10 次 wa 尝试均失败.

ACC	Value
Accuracy Math data	69.0
Total No of examples	100
Accuracy by level	
Accuracy Level 5	46.66666666666664
Accuracy Level 3	90.0
Accuracy Level 4	64.0
Accuracy Level 2	82.35294117647058
Accuracy Level 1	87.5
Accuracy by type	
Accuracy Intermediate Algebra	50.0
Accuracy Counting & Probability	75.0
Accuracy Prealgebra	75.0
Accuracy Precalculus	50.0
Accuracy Algebra	73.07692307692307
Accuracy Geometry	71.42857142857143
Accuracy Number Theory	81.818181818183
No of errors in output format	0

4o-mini: wa + sg (wa 最大尝试 20 次)

- 100 例样本中有 3 例 19 次 wa 尝试均失败.
- Increasing max attempts has almost no effect.

ACC	Value
Accuracy Math data	72.0
Total No of examples	100
Accuracy by level	
Accuracy Level 1	75.0
Accuracy Level 3	85.0
Accuracy Level 5	56.66666666666664
Accuracy Level 2	82.35294117647058
Accuracy Level 4	72.0
Accuracy by type	
Accuracy Prealgebra	85.0
Accuracy Counting & Probability	75.0
Accuracy Number Theory	81.81818181818183
Accuracy Algebra	80.76923076923077
Accuracy Intermediate Algebra	40.0
Accuracy Precalculus	42.857142857142854
Accuracy Geometry	85.71428571428571
No of errors in output format	0

1) 实验概览

自己跑的实验-闭源模型自己跑的实验-开源模型

2 分析 W8

qwen2.5:32b-instruct-fp16: 不使用 WA (只使用 sg)

ACC	Value
Accuracy Math data	72.0
Total No of examples	100
Accuracy by level	
Accuracy Level 1	75.0
Accuracy Level 2	100.0
Accuracy Level 3	75.0
Accuracy Level 5	56.66666666666666
Accuracy Level 4	68.0
Accuracy by type	
Accuracy Algebra	69.23076923076923
Accuracy Intermediate Algebra	70.0
Accuracy Prealgebra	80.0
Accuracy Counting & Probability	91.6666666666666
Accuracy Number Theory	72.72727272727273
Accuracy Precalculus	42.857142857142854
Accuracy Geometry	85.71428571428571
No of errors in output format	0

qwen2.5:32b-instruct-fp16: wa + sg (wa 最大尝试 3 次)

• 100 例样本中有 11 例 3 次 wa 尝试均失败.

ACC	Value		
Accuracy Math data	77.0		
Total No of examples	100		
Accuracy by level			
Accuracy Level 3	95.0		
Accuracy Level 1	100.0		
Accuracy Level 5	63.333333333333333		
Accuracy Level 4	56.000000000000001		
Accuracy Level 2	100.0		
Accuracy by type			
Accuracy Number Theory	72.72727272727273		
Accuracy Algebra	84.61538461538461		
Accuracy Precalculus	71.42857142857143		
Accuracy Prealgebra	85.0		
Accuracy Geometry	85.71428571428571		
Accuracy Counting & Probability	75.0		
Accuracy Intermediate Algebra	50.0		
No of errors in output format	0		

- 1 实验概览
- 2 分析 wa

代码中处理 wa 存在的问题

- 代码中的 WA 处理方式存在问题,它没有对 WA 返回的结果进行有效处理。
- 大量无关信息被直接传递给大模型,可能会影响大模型的推理。

WA 返回信息示例

例如: 对于计算2*17-1时, wa 的返回结果如下:

```
...
 1 {'@success': True, '@error': 'false', '@xml:space': 'preserve', '@numpods': '5', '@datatypes': 'Nath', '@timedout':
    ''. 'Stimedoutnods': ''. 'Stiming': '8.422'. 'Sparsetiming': '8.154'. 'Sparsetimedout': 'false'. 'Srecalculate':
   ", '@id': 'MSP3881da7ale87baf881a888657d4o999h4e17e77', '@host': 'https://www6b3.wolframalpha.com', '@server':
   '19', '@related': 'https://www6b3.wolframalpha.com/api/vl/relatedQueries.jsp?
   id-MSPa3891da7ale87baf80la08803bfe5041.455g9d997179915778051379692', '@version': '2.6', '@inputstring': '2*17-1',
    'pod': [{'Stitle': 'Input', 'Scanner': 'Identity', '@id': 'Input', '@position': 188.8, '@error': 'false',
    '@numsubpods': 1, 'subpod': {'@title': '', 'ing': {'@src':
   MSPStoreType=image/gif6s=19', '@alt': '2x17 - 1', '@title': '2x17 - 1', '@yidth': 62, '@height': 19, '@type':
    Default, 'Sthemes': '1,2,3,4,5,6,7,8,9,18,11,12', 'Scolorinvertable': 'true', 'Scontenttype': 'inage/gif'),
    'plaintext': '2×17 - 1'}, 'expressiontypes': ('@count': '1', 'expressiontype': ('@name': 'Default')}}, ('@title':
    'Result', '@scanner': 'Simplification', '@id': Result', '@position': 208.8, '@error': 'false', '@nunsubpods': 1.
    '@primary': True, 'subpod': {'@title': '', 'ing': {'@src':
   MSPStoreType=image/qif6s=19', '@sit': '33', '@title': '33', '@width': 16, '@meight': 19, '@type': 'Default',
    'Sthemes': '1,2,3,4,5,6,7,8,9,18,11,12', 'Scolorinvertable': 'true', 'Scontentivee': 'image/gif'), 'plaintext':
    '33'), 'expressiontypes': ('Occumt': '1', 'expressiontype': ('Oname': 'Default'))), ('Otitle': 'Number line',
    'Ascanner': 'NumberLine', 'Gid': 'NumberLine', 'Goosition': 380.0, 'Gerror': 'false', 'Gnumsubcods': 1, 'subcod':
   C'etitle': '', 'img': C'esrc':
   MSPStoreType=image/gif6s=19', '@alt': 'Number line', '@title': '', '@width': 330, '@height': 60, '@type':
    '20MathPlot 1', '@themes': '1.2.3.4.5.6.7.8.9.18.11.12', '@colorinvertable': 'true', '@contenttyne': 'image/gif'),
    'plaintext': None), 'expressiontypes': ('@count': '1', 'expressiontype': ('@name': 'Default'))), ('@title': 'Number
   name', '@scanner': 'Integer', '@id': 'NumberName', '@position': 408.8, '@error': 'false', '@numsubpods': 1,
    'subpod': ('@title': '', 'img': ('@src':
   MSPStoreType=image/gif6s=19', '@alt': 'thirty-three', '@itte': 'thirty-three', '@width': 74, '@height': 19,
    '@type': 'Default', '@themes': '1,2,3,4,5,6,7,8,9,10,11,12', '@colorinvertable': 'true', '@contenttype':
    'image/gif'b, 'plaintext': 'thirty-three'b, 'expressiontypes': ('Scount': '1', 'expressiontype': ('Spage':
    'Default'}}}, {'@title': 'Percent decrease', '@scanner': 'Numeric', '@ld': 'PercentIncrease/decrease', '@position':
   500 0. 'derror': 'false', 'Goussubpods': 1. 'subpod': f'Stitle': '', 'ing': f'Strc':
   MSPStoreType=image/gif&s=19', '@alt': '2 17 - 1 = 33 is 2.941% smaller than 2 17 = 34.', '@title': '2 17 - 1 = 33
   is 2.941% smaller than 2 17 = 34.'. '@width': 331. '@height': 19. '@type': 'Default'. '@themes':
    '1,2,3,4,5,6,7,8,9,19,11,12', '@colorinvertable': 'true', '@contenttype': 'image/gif'}, 'plaintext': '2 17 - 1 = 33
   is 2.941% smaller than 2.17 = 34.1), 'expressiontypes'; ('@count'; '1', 'expressiontype'; ('@name'; 'Default')))))
```

实际上, 返回结果中只有 @inputstring' 和 'plaintext' 是有用的信息。

调用 wa 的常见错误

- 生成的查询过于复杂: 不符合 wa 语法规范,无法获得答案。
 - 例如,对于查询语句: Calculate the distances PQ, QR, PR; check which sides form a right angle; use ((1)/(2)) × base × height to find the area of \triangle PQR.

调用 wa 的常见错误

- 生成的查询过于复杂: 不符合 wa 语法规范,无法获得答案。
 - 例如,对于咨询语句: Calculate the distances PQ, QR, PR; check which sides form a right angle; use ((1)/(2)) × base × height to find the area of \triangle PQR.
- 混杂自然语言: 生成了正确的 wa 查询语句, 但是混杂在自然语言中。
 - 例如, 对于查询语句: Find the minimum x greater than 10 such that PrimeQ[x + 7] && PrimeQ[x + 13] && PrimeQ[x + 15].
 - wa 返回结果: '@success': False, Did you mean: PrimeQ[x + 7] && PrimeQ[x + 13] && PrimeQ[x + 15] ?
 - 如果按照 wa 的提示,把 PrimeQ[x + 7] && PrimeQ[x + 13] && PrimeQ[x + 15] 作为查询语句再次调用 wa, wa 是可以理解的, 但这和我们的问题没有关联。
 - 如何把 Find the minimum x greater than 10 such that PrimeQ[x + 7] && PrimeQ[x + 13] && PrimeQ[x + 15]. 转换为一个有效的 wa 查询语句?这似乎 非常困难。

• 代码中有纠错的方式,如果返回结果中 @success 为 false,则再生成新的查询 并调用 wa,最多尝试三次。

- 代码中有纠错的方式,如果返回结果中 @success 为 false,则再生成新的查询 并调用 wa,最多尝试三次。
- 但是, 三次都失败的概率并不低。
 - 对于 qwen2.5:32b-instruct-fp16, 100 个测试样例有 11 个样例出现 3 次调用 wa 均 失败的情况。
 - 对于 4o-mini, 100 个测试样例有 12 个样例出现 3 次调用 wa 均失败的情况。

- 代码中有纠错的方式,如果返回结果中 @success 为 false,则再生成新的查询 并调用 wa,最多尝试三次。
- 但是, 三次都失败的概率并不低。
 - 对于 qwen2.5:32b-instruct-fp16, 100 个测试样例有 11 个样例出现 3 次调用 wa 均失败的情况。
 - 对于 40-mini, 100 个测试样例有 12 个样例出现 3 次调用 wa 均失败的情况。
- 增加最大尝试次数对于提高正确率帮助很小,并且显著增加推理时间。

- 代码中有纠错的方式,如果返回结果中 @success 为 false,则再生成新的查询 并调用 wa,最多尝试三次。
- 但是, 三次都失败的概率并不低。
 - 对于 qwen2.5:32b-instruct-fp16, 100 个测试样例有 11 个样例出现 3 次调用 wa 均 失败的情况。
 - 对于 4o-mini, 100 个测试样例有 12 个样例出现 3 次调用 wa 均失败的情况。
- 增加最大尝试次数对于提高正确率帮助很小,并且显著增加推理时间。
- 性能较差的模型还有其他问题,例如,使用 qwen2.5:7b-instruct-fp16,发现 7b 模型有很多次出现生成的内容没有 Final Query:字符串,导致提取失败而多次尝试的情况(4omini 和 qwen2.5:32b-instruct-fp16 没有观察到),并且有四例十次最终没有生成 wa 查询语句的情况(不是生成了错误的查询,是 llm 生成的内容没有相应的关键词而无法提取出查询)

对于性能较差的模型来说,正则匹配或者关键词提取可能不是一个很好的方式,可以考虑结构化输出的方式。

- 对于性能较差的模型来说,正则匹配或者关键词提取可能不是一个很好的方式,可以考虑结构化输出的方式。
- 例如,查阅 qwen api 文档,发现结构化输出功能支持 qwen2.5 系列所有模型 (除了 math 与 coder 模型)。

```
1 from openai import OpenAI
 2 import os
 4 def get response():
       client = OpenAI(
           api key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API_Key进行替换
           base url="https://dashscope.alivuncs.com/compatible-mode/v1", # 填写DashScope服务的base url
 9
       completion = client.chat.completions.create(
10
           model="gwen2.5-72b-instruct".
          messages=[
              {'role': 'system', 'content': 'You are a helpful assistant.'}.
              {'role': 'user', 'content': '请用json格式输出一个学生的信息, 姓名是张三, 学号是12345678"'}],
           response format={
14
               "type": "json_object"
16
18
       print(completion.model dump ison())
20
21 if __name__ == '__main__':
       get response()
```

图 2: qwen api 文档结构化输出示例请求


```
. . .
       "id": "chatcmpl-756a4ce7-64fc-986f-bfe3-cdba914d38d5".
       "choices": [
               "finish_reason": "stop",
               "index": 0.
               "logprobs": null,
               "message": {
                   "content": "{\n \"姓名\": \"张三\",\n \"学号\": \"12345678\"\n}",
                   "refusal": null,
                   "role": "assistant",
                   "function call": null.
                   "tool calls": null
14
16
       "created": 1726654530,
18
       "model": "gwen2.5-72b-instruct".
       "object": "chat.completion",
20
       "service_tier": null.
       "system fingerprint": null.
       "usage": {
           "completion tokens": 25.
24
           "prompt tokens": 57.
           "total tokens": 82
26
27 }
```

图 3: qwen api 文档结构化输出示例响应

问:有什么方式增加生成正确查询的概率?

- 在 prompt 中加入一些合法的 wa 查询作为 few-shot 是否可行?大概需要多少条才能有效提升生成正确查询的概率?
- 如何分解问题, 多次调用 wa?
- 如何结合 CoT、ToT 等方式?

问:有什么方式增加生成正确查询的概率?

- 在 prompt 中加入一些合法的 wa 查询作为 few-shot 是否可行?大概需要多少条才能有效提升生成正确查询的概率?
- 如何分解问题, 多次调用 wa?
- 如何结合 CoT、ToT 等方式?
- 对于类似于 Find the minimum x greater than 10 such that PrimeQ[x + 7] && PrimeQ[x + 13] && PrimeQ[x + 15]. 这种很难转化为 wa 查询的问题,是否可以结合 python 程序去解决?什么样的问题适合用 python 程序解决?什么样的问题适合用 wa 解决?如果 wa 和 python 都使用,对于一个具体的问题,LLM 如何决策选择哪一种工具?更复杂地,如果一个问题经过分解后,有一部分适合用 wa 解决,有一部分适合用 python 解决,LLM 如何决策?

Thank you!