344HW3

Shay Lebovitz

4/25/2020

We want to use adaptive squeezed rejection sampling to estimate $S = E[X^2]$ where X has a density proportional to $q(x) = \exp\{-|x|^3/3\}$. We will set k = 3 and x = -1, 0, 1.

First, we'll define all the functions and plot them, showing both the envelope and squeezing functions

```
q \leftarrow function(x)
    \exp(-abs(x)^3/3)
}
logq <- function (x) {</pre>
    -abs(x)^3/3
}
e_star_x = function (x) {
  ifelse (abs(x) > 2/3, -abs(x) + (2/3), 0)
}
e_x = function(x) {
  ifelse (abs (x) > 2/3, exp(-abs(x) + (2/3)), 1)
s star x = function (x) {
  ifelse (abs(x) < 1, -abs(x)/3, NA)
}
s x = function (x) {
  ifelse (abs(x)<1, \exp(-abs(x)/3), NA)
}
par(mfcol=c(1, 2))
plot(e_star_x, -3, 3, lty=2, xlab="x", ylab="")
plot(logg, -3, 3, lty=1, add=T)
plot(s_star_x, -3, 3, lty=3, add=T)
legend(0, -0.8, legend=c("loge(x)", "logf(x)", "logfs(x)"), lty=c(2,1,3), xjust = 0.5)
plot(e x, -2, 2, lty=2, asp = 1, xlab="x", ylab="")
plot(q, -2, 2, lty=1, add=T)
plot(s_x, -2, 2, lty=3, add=T)
legend(0, 3, legend=c("e(x)", "f(x)", "s(x)"), lty=c(2,1,3), xjust = 0.5)
```


Next, we'll need to define G⁻¹ (x), based on the inverse CDF method

```
g_inv = function (y) {
  if ((y < 0.3) | (y == 0.3)) {
    log ((10/3)*y) - 2/3
    }
  else if ((y > 0.3)&&((y<0.7) | (y==0.7))) {
    (10/3)*(y-1/2)
    }
  else {
    (2/3)-log(-(10/3)*(y-1))
    }
}</pre>
```

Next, we define the main function, which tests if the uniform value is less than or equal to s(x)/e(x). If not, then we check if U < q(x)/e(x). If not, we reject it.

```
ars = function (n, LIMIT=Inf) {
  y \le rep(NA,n);
  i < -0;
                             # index of y
  j <- 0;
                             # index of q
  i1 <- 0;
                              # index of acratio.sx
 while((i<n)&&(j<LIMIT)) {</pre>
    g <- g_inv(runif(1));</pre>
    u <- runif(1);
    if( (g>-1)&&(g<1) ) { #if in the range of s(x) function (-1, 1)
      if(u < s_x(g)/e_x(g)) { #if u < s(y)/e(y), keep g for y
          i<-i+1;
          y[i] < -g;
          i1<-i1+1;
      } else { # that is, if u > s(x)/e(x), we still need to test if u < q(x)/e(x)
        if(u < q(g)/e_x(g)) 
          i < -i + 1;
          y[i] < -g;
        }
    } else if( u < q(g)/e_x(g) ) { #if g falls outside range of s(x) (-1, 1) but sti
11 < f(y)/e(y)
      i<-i+1;
      y[i] < -g;
    j <- j + 1;
  if(i<n) cat("\n No enough random numbers! ", round(i/n*100), "% complete.\n");</pre>
  list(acratio.sx=i1/j, acratio=i/j, y=y);
}
temp <- ars(100000)
temp$acratio
```

```
## [1] 0.7723499
```

```
temp$acratio.sx
```

```
## [1] 0.5098359
```

Here, "acratio" is the total acceptance ratio, and "acratio.sx" is the acceptance ratio of the squeeze function.

We can compare these to the theoretical acceptance ratios, found by integrating the functions

theoretical acceptance ratios
integrate(q, lower=-Inf,upper=Inf)\$value/integrate(e_x, lower=-Inf,upper=Inf)\$value #
0.7715454

```
## [1] 0.7727395
```

integrate(s_x, lower=-1,upper=1)\$value/integrate(e_x, lower=-Inf,upper=Inf)\$value #0.
5071136

```
## [1] 0.5102436
```

This shows that our acceptance rates are accurate. Finally, we can draw a histogram and estimate $S = E[X^2]$

```
par (mfrow = c(1,1))
hist (temp$y, breaks = 50, freq=FALSE)
curve (q(x)/2.5758, add = T)
```

Histogram of temp\$y

mean(temp\$y^2)

[1] 0.7772555