Markov Chain Monte Carlo & Sampling Methods

LSSTC Fellowship Program Session 16

Jiayin Dong, Flatiron Research Fellow Center for Computational Astrophysics, Flatiron Institute 9/20/2022

In the last lecture, we learned to compute the posterior using "grid approximation".

The technique is limited to problems with a small number of random variables.

In this lecture, we will introduce another approach to approximate posteriors, the Markov Chain Monte Carlo.

Each ball has two possible colors: black and white.

We draw 1 ball from the bag and it's black.

Q: What is the posterior of number of black balls?

Begin with a random state i.

Calculate $P(\theta_{\text{cur}} | D) = p(D | \theta_{\text{cur}}) p(\theta_{\text{cur}})$.

Flip a coin.

- If head, propose to move to i+1
- If tail, propose to visit i-1

Calculate
$$P(\theta_{\text{prop}} | D) = p(D | \theta_{\text{prop}}) p(\theta_{\text{prop}})$$
.

If
$$P(\theta_{\text{prop}} | D) > P(\theta_{\text{cur}} | D)$$
, accept the proposal.

Else, accept the proposal with probability of $P(\theta_{\rm prop} \,|\, D)/P(\theta_{\rm cur} \,|\, D)$.

Each ball has two possible colors: black and white.

We draw 1 ball from the bag and it's black.

Q: What is the posterior of number of black balls?

Begin with a random state i.

Calculate $P(\theta_{\text{cur}} | D) = p(D | \theta_{\text{cur}}) p(\theta_{\text{cur}})$.

Flip a coin.

- If head, propose to move to i+1
- If tail, propose to visit i-1

Calculate
$$P(\theta_{\text{prop}} | D) = p(D | \theta_{\text{prop}}) p(\theta_{\text{prop}})$$
.

If
$$P(\theta_{\text{prop}} | D) > P(\theta_{\text{cur}} | D)$$
, accept the proposal.

Else, accept the proposal with probability of $P(\theta_{\rm prop} \,|\, D)/P(\theta_{\rm cur} \,|\, D)$.

Each ball has two possible colors: black and white.

We draw 1 ball from the bag and it's black.

Q: What is the posterior of number of black balls?

Begin with a random state i.

Calculate $P(\theta_{\text{cur}} | D) = p(D | \theta_{\text{cur}}) p(\theta_{\text{cur}})$.

Flip a coin.

- If head, propose to move to i+1
- If tail, propose to visit i-1

Calculate
$$P(\theta_{\text{prop}} | D) = p(D | \theta_{\text{prop}}) p(\theta_{\text{prop}})$$
.

If $P(\theta_{\text{prop}} | D) > P(\theta_{\text{cur}} | D)$, accept the proposal.

Else,

accept the proposal with probability of $P(\theta_{\rm prop} \,|\, D)/P(\theta_{\rm cur} \,|\, D)$.

Each ball has two possible colors: black and white.

We draw 1 ball from the bag and it's black.

Q: What is the posterior of number of black balls?

Each ball has two possible colors: black and white.

We draw 1 ball from the bag and it's black.

Q: What is the posterior of number of black balls?

Each ball has two possible colors: black and white.

We draw 1 ball from the bag and it's black.

Q: What is the posterior of number of black balls?

Markov Chain Monte Carlo (MCMC)

- The process of random sampling to approximate the posterior is a "Monte Carlo" process.
- Sampling a proposal only based on the current state is a "Markov Chain".
- Philosophy of MCMC: We want the number of visits to each state proportional to the posterior density.

Metropolis-Hastings Algorithm

$\alpha = \frac{P(\theta_{\text{prop}} | D)}{P(\theta_{\text{cur}} | D)} \times$

Proposal acceptance rate

Hastings

$$\langle \frac{q(\theta_{\rm cur} | \theta_{\rm prop})}{q(\theta_{\rm prop} | \theta_{\rm cur})} \rangle$$

 $q(A \mid B)$ is a proposal kernel from B to A.

The ratio corrects for the bias introduced by the proposal kernel.

Metropolis-Hastings Algorithm with an unbiased coin.

We draw from [-1, +1] to propose the next state.

Metropolis-Hastings Algorithm with a biased coin.

We draw from [-1, -1, +1, +1, +1, +1] to propose the next state.

Before Hastings correction

Metropolis-Hastings Algorithm with a biased coin.

We draw from [-1, -1, +1, +1, +1, +1] to propose the next state.

Random Walk Chain

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Begin with some random position.

• Kick the particle with some momentum drawn from a Normal distribution.

Hamiltonian Monte Carlo

- Define a Hamiltonian system, where $H = U(\theta) + K(v)$.
- We can write the system's Gibbs canonical distribution as $p(\theta, v) \propto e^{-H} \propto e^{-U(\theta)} e^{-K(v)}$. The probability of observing θ at certain state is described as $p(\theta) \propto e^{-U(\theta)}$.
- Let's then define $U(\theta) = -\log(P(\theta \mid D))$.
- It's saying sampling particles in the space, which follows the canonical distribution, will also represent the posterior distribution.


```
# Step 1: built a pymc model
with pm.Model() as model:
 # priors
  mu = pm.Normal('mu', mu=1., sigma=0.1, initval=1.)
  sd = pm.HalfNormal('sd', sigma=1., initval=0.5)
 # likelihood
  logl = pm.Normal('logl', mu=mu, sigma=sd, observed=data)
# Step 2: sampling
with model:
  pm.sample(tune=1000, draws=1000, target_accept=0.9)
```

References

- McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 2nd Edition (2 ed.) CRC Press. (book)
- Hamiltonian Monte Carlo explained

https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html