Maximum Permissible Exposure calculations

The MPE distance will be calculated for the worst case of a 100% transmitter duty cycle. For an isotropic radiator the surface area of a sphere can be used to determine the area over which the transceiver energy is radiated.

```
Surface area of a sphere = 4 * \pi * radius_2
```

In the case where there is an antenna gain, the worst case energy density is increased by the antenna gain. In this case, the exposure level for a controlled environment can be calculated as follows:

MPE distance =((output power*duty cycle*10*(antenna gain/10))/($4*\pi$ *Exposure Limit [mW/cm2]))1/2

In the case of 5 dBi Omni antenna

MPE distance =
$$((267 \text{ mW} * 1 * 3.16) / (4 * 3.14 * 1))_{1/2}$$

= 8.2 cm

In the case of 3 dBi Omni antenna

```
MPE distance = ((267 \text{ mW} * 1 * 1.99) / (4 * 3.14 * 1))_{1/2}
= 6.5 cm
```