Лабораторная работа №8

Модель *TCP/AQM*

Ибатулина Дарья Эдуардовна, НФИбд-01-22

Содержание

1	Теоретическое введение	4
2	Цель работы	5
3	Задание	6
4	Выполнение лабораторной работы 4.1 Реализация в xcos	7 7 11 15
5	Выводы	18
Сп	Список литературы	

Список иллюстраций

4.1	Установка контекста	7
4.2	Задание времени моделирования	8
4.3	Модель TCP/AQM в xcos	8
4.4	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	9
4.5	Фазовый портрет (W, Q)	9
4.6	Изменение параметра С = 0.9	10
4.7	Динамика изменения размера TCP окна W (t) и размера очереди	
	Q(t) при C = 0.9	10
4.8	Фазовый портрет (W, Q) при C = 0.9	11
4.9	Код для параметра С=1	12
4.10	Установка параметров симуляции	13
4.11	Динамика изменения размера TCP окна W (t) и размера очереди	
	Q(t). OpenModelica	13
	Фазовый портрет (W, Q). OpenModelica	13
	Код для параметра С=0.9	14
4.14	Динамика изменения размера TCP окна W (t) и размера очереди	
	Q(t). OpenModelica	15
4.15	Фазовый портрет (W, Q). OpenModelica	15

1 Теоретическое введение

Рассмотрим упрощённую модель поведения *TCP*-подобного трафика с регулируемой некоторым *AQM* алгоритмом динамической интенсивностью потока [1].

W(t) – средний размер TCP-окна (в пакетах, функция положительна),

Q(t) – средний размер очереди (в пакетах, функция положительна),

R(t) – время двойного оборота (Round Trip Time, сек.)

C – скорость обработки пакетов в очереди (пакетов в секунду)

N(t) – число ТСР-сессий

p(t-R(t)) – вероятностная функция сброса (отметки на сброс) пакета, значения которой лежат на интервале [0,1].

Примем $N(t)\equiv N$, $R(t)\equiv R$, т. е. указанные величины положим постоянными, не изменяющимися во времени. Также положим p(t-R(t))=KQ(t), т.е. функция сброса пакетов пропорциональна длине очереди Q(t) [2–5].

Тогда получим систему:

$$\dot{W}(t) = \frac{1}{R} - \frac{W(t)W(t-R)}{2R}KQ(t-R)$$
 (1.1)

$$\dot{Q}(t) = \begin{cases} \frac{NW(t)}{R} - C, & Q(t) > 0, \\ \max\left(\frac{NW(t)}{R} - C, 0\right), & Q(t) = 0. \end{cases} \tag{1.2}$$

2 Цель работы

Реализовать модель TCP/AQM в хсоs и OpenModelica.

3 Задание

- 1. Построить модель *TCP/AQM* в xcos;
- 2. Построить графики динамики изменения размера TCP -окна W(t) и размера очереди Q(t);
- 3. Построить модель TCP/AQM в OpenModelica.

4 Выполнение лабораторной работы

4.1 Реализация в хсоѕ

Построим схему xcos, моделирующую нашу систему, с начальными значениями параметров N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1. Для этого сначала зададим переменные окружения (рис. 4.1) и зададим конечное время моделирования - 100 (рис. 4.2).

Рис. 4.1: Установка контекста

Рис. 4.2: Задание времени моделирования

Затем реализуем модель *TCP/AQM*, разместив блоки интегрирования, суммирования, произведения, констант, а также регистрирующие устройства (рис. 4.3):

Рис. 4.3: Модель TCP/AQM в xcos

В результате получим динамику изменения размера TCP -окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. 4.4, 4.5):

Рис. 4.4: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 4.5: Фазовый портрет (W, Q)

Уменьшив скорость обработки пакетов C до 0.9 (рис. 4.6) увидим, что автоколебания стали более выраженными (рис. 4.7, 4.8).

Рис. 4.6: Изменение параметра С = 0.9

Рис. 4.7: Динамика изменения размера TCP окна W (t) и размера очереди Q(t) при C = 0.9

Рис. 4.8: Фазовый портрет (W, Q) при C = 0.9

4.2 Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Зададим параметры, начальные значения и систему уравнений (рис. 4.9).

```
model lab8

parameter Real N=1;

parameter Real R=1;

parameter Real K=5.3;

parameter Real C=1;

parameter Real W0=0.1;

parameter Real Q0=1;

Real W(start=W0);

Real Q(start=Q0);

equation
```

```
der(W) = 1 / R - W * delay(W, R) * K * delay(Q,R) / (2 * R);

der(Q) = if (Q > 0) then (N * W / R - C) else max(N * W / R - C, 0);

end lab8;
```

```
model lab8
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=1;
parameter Real W0=0.1;
parameter Real Q0=1;

Real W(start=W0);
Real Q(start=Q0);

equation

der(W) = 1 / R - W * delay(W, R) * K * delay(Q,R) / (2 * R);
der(Q) = if (Q > 0) then (N * W / R - C) else max(N * W / R - C, 0);
end lab8;
```

Рис. 4.9: Код для параметра С=1

Задав установки симуляции (время моделирования) (рис. 4.10) и затем выполнив симуляцию, получим динамику изменения размера TCP окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. 4.11, 4.12).

Рис. 4.10: Установка параметров симуляции

Рис. 4.11: Динамика изменения размера TCP окна W (t) и размера очереди Q(t). OpenModelica

Рис. 4.12: Фазовый портрет (W, Q). OpenModelica

Затем выполним построение, задав параметр = 0.9 (рис. 4.13, 4.14, 4.15).

```
model lab8
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=0.9;
parameter Real W0=0.1;
parameter Real Q0=1;
Real W(start=W0);
Real Q(start=Q0);
equation
der(W) = 1 / R - W * delay(W, R) * K * delay(Q,R) / (2 * R);
der(Q) = if (Q > 0) then (N * W / R - C) else max(N * W / R - C, 0);
end lab8;
                model lab8
               parameter Real N=1;
parameter Real R=1;
                parameter Real K=5.3;
               parameter Real C=0.9;
parameter Real W0=0.1;
               parameter Real Q0=1;
               Real W(start=W0);
             10 Real Q(start=Q0);
               14
15
            16
17 end lab8;
```

Рис. 4.13: Код для параметра С=0.9

Рис. 4.14: Динамика изменения размера TCP окна W (t) и размера очереди Q(t). OpenModelica

Рис. 4.15: Фазовый портрет (W, Q). OpenModelica

4.3 Различия в графиках с различными значениями параметра C

1. График длины очереди (Q)

При
$$C=1$$
:

- Более высокая скорость уменьшения очереди (N*W/R C будет меньше при равных W).
- Быстрее достигается состояние Q=0.
- Меньшие пиковые значения при перегрузках.

При C = 0.9:

- Уменьшенная пропускная способность вызывает:
- Более медленное опустошение очереди.
- Большую среднюю длину очереди.
- Возможность накопления пакетов при тех же значениях W.

2. График размера окна (W)

При C=1:

- Более стабильное поведение с меньшими колебаниями.
- Быстрее достигается равновесие.

При C = 0.9:

- Более агрессивное снижение скорости передачи (W) из-за роста Q.
- Увеличенная амплитуда колебаний.
- Задержки в реакции системы из-за delay(Q, R).

3. Фазовый портрет (Q vs W)

При C=1:

- Меньшая область притяжения.
- Быстрее достигается стационарная точка.
- Узкие предельные циклы.

При C = 0.9:

• Расширенная фазовая плоскость.

- Возможно появление бифуркаций.
- Увеличенный гистерезис при переходных процессах.

Математическое обоснование

Различие следует из уравнения для der(Q) (Q'):

der(Q)=if(Q>0)then(N*W/R-C)elsemax(N*W/R-C,0) При C=0.9 порог срабатывания условия N*W/R-C>0 достигается при меньших значениях W, что приводит к более раннему началу роста очереди.

Итог

 $\mathit{\Pi pu} \ C = 1$ система демонстрирует устойчивое равновесие с малыми колебаниями.

 $\mathit{\Pi pu}\, C = 0.9$ наблюдается тенденция к нелинейным колебаниям и увеличению амплитуды.

Различие особенно заметно при моделировании переходных процессов.

5 Выводы

В процессе выполнения данной лабораторной работы я реализовала модель TCP/AQM в xcos и OpenModelica.

Список литературы

- 1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии. М.: ФИЗМАТЛИТ, 2010. 400 с.
- 2. OMoverall User's Guide. OpenModelica, 2020.
- 3. Xcos. Scilab Enterprises.
- 4. Modelica Language. Modelica Association.
- 5. OpenModelica. Open Source Modelica Consortium.