# CS7015-Deep Learning Programming Assignment#1:Report

Team name: MagicalAI Ajmeera Balaji Naik(CS14B034) Satish G(CS14B042)

February 17, 2018

## 1. One Hidden Layer



# • Configuration: 200 Neurons Model Loss Model Accuracy 0.55 0.50 • Configuration: 300 Neurons Model Loss Model Accuracy 0.55 0.50 S 0.40 10.0 12.5 Epoch 10.0 12.5 Epoch 0.70 0.65 0.60 Name of the second of the train\_loss 0.4 0.50 0.3 0.45 12.5 15.0 best val\_acc @epoch best train\_acc @epoch no.of.neurons 92.17@20 88.52 @20 50 100 93.07@2088.86@20**89.56** @18 **200 93.81**@19 300 94.29@1989.2 @18

The best model for one layer is for 200 neurons

#### Observations and Comments:

- As number of neurons increases, the training accuracy increases as expected since the complexity of model increases which implies that over fitting tendency increases.
- One can see that validation accuracy increases till 200 neurons and thereafter it deceases (The model complexity at 200 neurons might be corresponds to sweet spot in **Bias-Variance** graph)

#### 2. Two Hidden Layers







• Configuration: 100 Neurons





• Configuration: 200 Neurons



The best model for two layer is for 300 neurons

# 3. Three Hidden Layers





The best model for three layer is for 200 neurons

#### 4. Four Hidden Layers

• Configuration: 50 Neurons



• Configuration: 100 Neurons





 $\bullet$  Configuration: 200 Neurons





• Configuration: 300 Neurons



The best model for four layer is for 300 neurons

### 5. Adam, NAG, Momentum, GD





Page 9

| Optimizier | best train_acc @epoch | best val_acc @epoch |
|------------|-----------------------|---------------------|
| gd         | 85.83 @20             | 85.16 @20           |
| momentum   | 90.82 @20             | 88.54 @20           |
| nag        | 91.71 @20             | 89.94 @20           |
| adam       | <b>93.65</b> @19      | <b>89.48</b> @12    |

#### Observations:

Based on above set of experiments, it is observed that "Adam" did good job when compared to others. In cased of Adam, Momentum and NAG, one can see the oscillations. Whereas in GD, nothing as such which is expected.

## 6. Sigmoid vs Tanh Activation Function





#### Observation:

Here, from the accuracy estimates, it is observed that architecture with Sigmoid activation function is performing well when compared to Tanh function

#### 7. Batch size



#### Observations:

As the batch size increased, the algorithm is almost working as standard GD which is implied from oscillations in above graph.

# 8. Tuning Learning Rate





Fine(linear) Search:

•  $\eta = 0.001$ 



•  $\eta = 0.002$ 



•  $\eta = 0.005$ 



•  $\eta = 0.0005$ 





•  $\eta = 0.000095$ 





#### Observations:

- It was observed that between  $\eta=0.001$  and  $\eta=0.0001$ , better learning rate occurs. Again we have searched in between these two, it is observed that better learning rate is  $\eta=0.001$
- One can observe that the oscillations decreases as learning rate decreases.

#### 9. Best Models

#### • Model 1

num hidden: 2, sizes: 300,300

activation: sigmoid, loss: ce, batch size: 50

opt: adam, lr: 0.001, momentum<br/>1: 0.9, momentum 2: 0.99, epsilon: 1e-8

anneal: False, dropout: False, Epochs: 20





| Trai | n accuuracy | 94.78@18 |
|------|-------------|----------|
| Vali | d accuracy  | 89.92@18 |
| Tes  | t accuracy  | 89.23@18 |

#### • Model 2

num hidden: 3, sizes: 200,200,200

activation: relu, loss: ce, batch size: 50

opt: adam, lr: 0.0001, momentum1: 0.9, momentum2: 0.99, epsilon: 1e-8

anneal: False, dropout: 0.8, Epochs: 100





| Train accuuracy | 94.8@41  |
|-----------------|----------|
| Valid accuracy  | 90.02@41 |
| Test accuracy   | 90.02@41 |

#### 10. Other Experiments:

- For Model 1, we have tried DROPOUT regularization technique without changing above mentioned configuration. It was observed that model(valid) accuracy increased up to 88.8 and after that it drastically fell.
- With annealing factor 0.8, it was observed that there wasn't much improvement in Model 1.
- For Model 2, we have tried L2 regularization.But it didn't seem to perform better than DROPOUT.