Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 30 de agosto de 2024

Contenidos estimados para hoy

- Posets reticulados
 - Isomorfismo de posets

- 2 Retículos
 - Subreticulados
 - Isomorfismos
 - Incrustaciones
 - Reticulados acotados y complementados

caracterización de supremos e ínfimos

Lema

Sea (P, \leq) un poset reticulado y sean $x, y, z \in P$. Se satisfacen las siguientes equivalencias:

- $x \lor y \le z$ sii $x \le z$ y $y \le z$,
- $z \le x \lor y \text{ sii } z \le x \text{ y } z \le y.$

Aplicaciones

Leyes de compatibilidad o monotonía:

$$x \le y$$
 y $z \le w$ implica $x \lor z \le y \lor w$ (y $x \land z \le y \land w$)

Desigualdades distributivas:

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$
 y $x \land (y \lor z) \ge (x \land y) \lor (x \land z)$

Isomorfismo de posets

Definición

Sean $\mathbf{P} = (P, \leq)$ y $\mathbf{Q} = (Q, \leq')$ dos posets. Dada una función $f: P \to Q$, decimos que f es un *isomoforfismo* entre \mathbf{P} y \mathbf{Q} sii

- $\blacksquare f$ es biyectiva y
- para todo $x, y \in P$,

$$x \le y \Leftrightarrow f(x) \le' f(y).$$

Cuando **existe** uno de tales isomorfismos decimos que P y Q son *isomorfos* y escribimos $P\cong Q$.

Ejemplo

- D_{12} y D_{18} son isomorfos.
- $\mathbf{D_2}$ y $(\mathcal{P}(\{a\}), \subseteq)$ son isomorfos.

Isomorfismos preservan la estructura

Proposición

Sea f un isomorfismo de (P, \leq) en (Q, \leq') y sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de S sii f(u) es cota superior de $f(S) := \{f(x) : x \in S\}$.

Isomorfismos preservan la estructura

Proposición

Sea f un isomorfismo de (P, \leq) en (Q, \leq') y sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de S sii f(u) es cota superior de $f(S) := \{f(x) : x \in S\}$.

Lema

Sea f un isomorfismo de (P, \leq) en (Q, \leq') y sea $S \subseteq P$. Entonces

■ Existe el supremo de S sii existe el supremo de f(S). En tal caso se da además que

$$f(\sup(S)) = \sup(f(S)).$$

■ Existe el ínfimo de S sii existe el ínfimo de f(S). En tal caso se da además que

$$f(\inf(S)) = \inf(f(S)).$$

Propiedades de supremos en ínfimos

Leyes de idempotencia:

$$x \lor x = x \land x = x$$

2 Leyes conmutativas:

$$x \lor y = y \lor x$$
$$x \land y = y \land x$$

3 Leyes de absorción:

$$x \lor (x \land y) = x$$
$$x \land (x \lor y) = x$$

4 Leyes asociativas:

$$(x \lor y) \lor z = x \lor (y \lor z)$$
$$(x \land y) \land z = x \land (y \land z)$$

Retículos

Un retículo es una terna (L, \otimes, \otimes) , donde L es un conjunto y \otimes y \otimes son dos operaciones (binarias) que cumplen:

Idempotencia:

$$x \otimes x = x \otimes x = x$$
.

Conmutatividad:

$$x \otimes y = y \otimes x$$

$$x \otimes y = y \otimes x$$
.

3 Absorción:

$$x \otimes (x \otimes y) = x$$
,

$$x \otimes (x \otimes y) = x$$
.

4 Asociatividad:

$$(x \otimes y) \otimes z = x \otimes (y \otimes z),$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

Observación

Como vimos anteriormente, dado un poset reticulado (L,\leq) , las operaciones de supremo e ínfimo asociadas satisfacen todas estas propiedades por lo que (L,\vee,\wedge) es un retículo.

Observación

Como vimos anteriormente, dado un poset reticulado (L,\leq) , las operaciones de supremo e ínfimo asociadas satisfacen todas estas propiedades por lo que (L,\vee,\wedge) es un retículo.

Teorema

Sea (L, \otimes, \otimes) un retículo y sea \ll la relación sobre L definida por $x \ll y \iff x \otimes y = y$. Tenemos que (L, \ll) es un poset reticulado y además $\sup\{x,y\} = x \otimes y$ y $\inf\{x,y\} = x \otimes y$.

Observación

Como vimos anteriormente, dado un poset reticulado (L,\leq) , las operaciones de supremo e ínfimo asociadas satisfacen todas estas propiedades por lo que (L,\vee,\wedge) es un retículo.

Teorema

Sea (L, \otimes, \otimes) un retículo y sea \ll la relación sobre L definida por $x \ll y \iff x \otimes y = y$. Tenemos que (L, \ll) es un poset reticulado y además $\sup\{x,y\} = x \otimes y$ y $\inf\{x,y\} = x \otimes y$.

De ahora en más, la palabra reticulado (a secas) se referirá tanto a un poset reticulado como al retículo asociado. Usaremos los términos específicos si queremos dar énfasis a alguno de los aspectos (relacional o algebraico, respectivamente).

Definición

Sea (L, \vee, \wedge) un retículo y sea $S \subseteq L$. Diremos que S es un *subuniverso* de (L, \vee, \wedge) si es cerrado por las operaciones \vee y \wedge .

En tal caso, decimos que $(S, \vee|_S, \wedge|_S)$ (de aquí en más también obviaremos la notación de restricción) es un *subreticulado* o *subretículo* de (L, \vee, \wedge) .

Definición

Sea (L, \vee, \wedge) un retículo y sea $S \subseteq L$. Diremos que S es un *subuniverso* de (L, \vee, \wedge) si es cerrado por las operaciones \vee y \wedge .

En tal caso, decimos que $(S, \vee|_S, \wedge|_S)$ (de aquí en más también obviaremos la notación de restricción) es un *subreticulado* o *subretículo* de (L, \vee, \wedge) .

También escribimos usualmente " (S, \leq) es subreticulado de (L, \leq) " pero nos estaremos refirendo siempre a la noción algebraica definida anteriormente.

Definición

Sea (L,\vee,\wedge) un retículo y sea $S\subseteq L$. Diremos que S es un *subuniverso* de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge .

En tal caso, decimos que $(S, \vee|_S, \wedge|_S)$ (de aquí en más también obviaremos la notación de restricción) es un *subreticulado* o *subretículo* de (L, \vee, \wedge) .

También escribimos usualmente " (S, \leq) es subreticulado de (L, \leq) " pero nos estaremos refirendo siempre a la noción algebraica definida anteriormente.

No debemos confundir subreticulado de con subposet. Todo subconjunto de L dará lugar a un subposet, pero no todo subconjunto de L será un subuniverso.

Definición

Sea (L, \vee, \wedge) un retículo y sea $S \subseteq L$. Diremos que S es un *subuniverso* de (L, \vee, \wedge) si es cerrado por las operaciones \vee y \wedge .

En tal caso, decimos que $(S, \vee|_S, \wedge|_S)$ (de aquí en más también obviaremos la notación de restricción) es un *subreticulado* o *subretículo* de (L, \vee, \wedge) .

También escribimos usualmente " (S, \leq) es subreticulado de (L, \leq) " pero nos estaremos refirendo siempre a la noción algebraica definida anteriormente.

No debemos confundir subreticulado de con subposet. Todo subconjunto de L dará lugar a un subposet, pero no todo subconjunto de L será un subuniverso.

Ejemplo

 $(\{1,2,3,12\},|)$ es un suposet de D_{12} y es reticulado pero no es un subreticulado de $D_{12}.$

Ejemplo

- \blacksquare $(D_n, |)$ es subreticulado de $(\mathbb{N}, |)$.
- ¿Es $([0,1) \cup [2,3), \leq)$ subreticulado de (\mathbb{R}, \leq) ?

Isomorfismo de Retículos

Definición

Sean $\mathbf{L}=(L,\vee,\wedge)$ y $\mathbf{L}'=(L',\vee',\wedge')$ dos retículos y $f:L\to L'$ una función. Decimos que f es un ismomorfismo de \mathbf{L} en \mathbf{L}' sii f es biyectiva y para todo $x,y\in L$

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Isomorfismo de Retículos

Definición

Sean $\mathbf{L}=(L,\vee,\wedge)$ y $\mathbf{L}'=(L',\vee',\wedge')$ dos retículos y $f:L\to L'$ una función. Decimos que f es un ismomorfismo de \mathbf{L} en \mathbf{L}' sii f es biyectiva y para todo $x,y\in L$

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Teorema

Dados dos retículos $\mathbf{L}=(L,\vee,\wedge)$ y $\mathbf{L}'=(L',\vee',\wedge')$, sean (L,\leq) y (L,\leq') los posets reticulados asociados, respectivamente. Para toda función $f:L\to L'$ se tiene que

$$f:(L,\vee,\wedge)\to (L',\vee',\wedge') \text{ es un iso } \iff f:(L,\leq)\to (L,\leq') \text{ es un iso}.$$

Incrustaciones

Definición

Dados dos retículos $\mathbf{L} = (L, \vee, \wedge)$ y $\mathbf{L}' = (L', \vee', \wedge')$ decimos que \mathbf{L} se incrusta en \mathbf{L}' sii existe un subreticulado \mathbf{S} de \mathbf{L}' isomorfo \mathbf{L} .

Ejemplo

■ D_4 se incrusta en $(\mathcal{P}(\{a,b,c\}),\subseteq)$.

Reticulados acotados y complementados

Definición

- Decimos que un reticulado L es *acotado* sii tiene primer elemento, que llamamos 0^L y último elemento 1^L .
- Para un reticulado acotado ${\bf L}$ con primer elemento 0 y último elemento 1, dados elementos $a,b\in L$, decimos que b es un *complemento* de a sii $a\vee b=1$ y $a\wedge b=0$.
- Decimos que un reticulado acotado L es *complementado* sii todos sus elementos tienen complemento.