Parcial 2

Métodos Computacionales Universidad de Antioquia Facultad de Ciencias Exactas y Naturales 2014-2

Nombre: Cédula:

26 Febrero 2015

El parcial tiene una duración de 2 horas. Cada numeral tiene un valor del 33.33%.

1. Para derivar numéricamente una función f(x) se pueden usar varias aproximaciones. La primera y más trivial está dada por:

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

para un paso h que sea suficientemente pequeño.

Aproximaciones mejores pueden ser derivadas a partir la fórmula de n-puntos vista durante clase. Como casos especiales se tiene la fórmula de punto medio para 3 y 5 puntos, dadas respectivamente por:

$$f'(x) = \frac{1}{2h} [f(x+h) - f(x-h)]$$

$$f'(x) = \frac{1}{12h} [f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)]$$

Tome la función $f(x)=x^2\cos(x)$ y derívela analíticamente en x=2. Calcule la misma derivada usando las tres anteriores aproximaciones para valores de h=0.5,0.1,0.05,0.01. Realice una tabla y tabule el error relativo para cada aproximación y para cada paso h. ¿Qué puede concluir del comportamiento del error con respecto al paso h para cada aproximación?

2. Asuma una función f(x) definida sobre un intervalo [a,b]. Usando el polinomio interpolante de Lagrange de orden n, es posible aproximar la integral de la función sobre el intervalo [a,b] a través de la siguiente expresión:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} a_{i} f(x_{i})$$

donde

$$a_i = \int_a^b \prod_{j=0, j \neq i}^n \frac{(x - x_j)}{(x_i - x_j)} dx$$

A partir de esto, demuestre la regla de trapecio:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[f(a) + f(b)]$$

con h = b - a.

Y la regla de Simpson:

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)]$$

con
$$x_0 = a$$
, $x_1 = (a + b)/2$, $x_2 = b$ y $h = (b - a)/2$.

- **3.** Dada una matriz no singular A de tamaño $n \times n$, es posible calcular su determinante a partir de las siguientes definiciones:
 - Si A = [a] es una matriz de tamaño 1×1 , el determinante es det(A) = a.
 - Si A es una matriz 2×2 dada por:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

su determinante está dado por

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- Si A es una matriz $n \times n$, el menor M_{ij} está definido como el determinante de la matrix $(n-1) \times (n-1)$ obtenida a partir de eliminar la i-ésima fila y la j-ésima columna de A.
- El cofactor A_{ij} asociado al menor M_{ij} está definido por:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

- El determinante de la matriz A puede calcularse a partir de cualquiera de las siguientes expresiones:

$$\det(A) = \sum_{j=1}^{n} a_{ij} A_{ij}$$

ó

$$\det(A) = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Es decir, puede usarse una columna o una fila para la sumatoria.

A partir de estas propiedades, cualquier determinante puede ser calculado de forma recursiva. Demueste que el número de multiplicaciones que son requeridas para calcular el determinante de una matriz A de tamaño $n \times n$, cuando n es grande, está dado por:

$$N_{mult} \approx n!e$$

donde e es el número de Euler.

Teniendo en cuenta que para un computador toma un tiempo mayor realizar una operación de multiplicación/división que una operación suma/resta, N_{mult} representa también el tiempo de cómputo total del algorítmo en unidades del tiempo inidividual de cada operación.

Ayuda: el término $(-1)^{i+j}$ del cofactor A_{ij} no representa un tiempo considerable para un computador puesto que el valor será siempre 1 o -1 y la multiplicación es trivial. Por lo tanto, no considere esta multiplicación cuando calcule N_{mult} .