HOHOHO: intracranial HemOrrHage detection enHenced by asymmetric lOss with CNN-LSTM

Ming-Yang Ho, Bin-Ray Wu, Hsin-Yu Ho, and Si-Yang Jiang

Introduction

- Cerebral hemorrhage, bleeding that occurs around or within the brains, is a serious health problem requiring rapid and often intensive medical treatment.
- The cerebral hemorrhage can be divided into 5 categories: Intracerebral hemorrhage (ICH), Intraventricular hemorrhage (IVH), Subarachnoid hemorrhage (SAH), Subdural hemorrhage (SDH), Epidural hemorrhage (EDH).
- While the diagnosis requires an urgent procedure, the process is complicated and often time-consuming. Herein, this problem is attempted to be solved by learning-based methods.

Methodology

Figure 1. Example of stacking CT image age 1: Train Resnet18 backbon

 $L = -yL_+ - (1-y)L_ L_- = p^{\gamma} \log(1-p)$ symmetric Focus $L_{+} = (1-p)^{\gamma_{+}} \log(p)$ $L_{-} = p^{\gamma_{-}} \log(1 - p)$

Figure 3. Asymmetric loss

Figure 2. Model architecture

A. Full Training Dataset

- One CT image was firstly stacked with two aside ones in the preprocessing step to extract more information owing to the property of sequential CT scanning (Fig. 1).
- Limited augmentation strategies, rotation with little color adjustment, were utilized to avoid interfering with the intrinsic CT data distribution.
- ResNet-18 was utilized as the features extraction backbone trained with asymmetric loss, which is an improved focal loss designed for unbalanced positive and negative samples training. A tunable parameter gamma can control the model to focus on positive samples. Furthermore, there was a clip design, which would prune the class if the confidence of the class was extremely excessive (Fig. 2 and 3).
- Finally, a stacked LSTM architecture trained with BCE loss utilizing 512-dim embedding from ResNet-18 was leveraged to further enhance the overall performance, which thoroughly considers a patient at the same time (Fig. 2).

B. Small Training Dataset

- Due to the label deficiency in the small dataset, a self-supervised method, SimCLR, which enables distinguishing the positive and negative samples without labels via appropriate data augmentation, was utilized to overcome this problem. Afterward, pretrained weight from SimCLR was fine-tuned by the labels from the small dataset (Fig. 4).

Figure 4. Self-supervised SimCLR training strategy

Result

Adam				SGD			
Batch	size	64	40	64	4	0	40
Colorjitter		0.5	0.1	0.1	0.2		0.1
Rota	tion	20	20	20	30	30	30
Crox	Train f2	0.8496	0.7273	0.8612	0.8140	0.7480	-
Gray	Val f2	0.6892	0.7045	0.7064	0.7143	0.7155	-
Stacked	Train f2	0.7208	0.7986	0.8140	0.8408	0.7726	0.7377
	Val f2	0.7011	0.7000	0.7143	0.7307*	0.7175	0.7153

Table 1. Comparison results of vanilla ResNet-18 under different hyperparameters setting

				Adam with as	symmetric loss		
Color	jitter	0	0.1	0.2	0.1	0.1	0.1
Rota	tion	20	20	20	30	40	50
	Train f2	0.843	0.842	0.829	0.865	0.843	0.854
Stacked	Val f2	0.741	0.743	0.729	0.781	0.773	0.771
	Test f2	0.743	0.750	0.735	0.736	0.749	0.755

Table 2. Comparison results of ResNet-18 with asymmetric loss under different hyperparameters setting

		ResNet 18 (rotation 20)		ResNet 18 (rotation 4	
Batch size		4	64	64	128
LSTM	units	64	64	64	64
	Train f2	0.8907	0.8943	0.8957	0.8988
Stacked	Val f2	0.7714	0.7714	0.7917	0.7911
	Test f2	0.7792	0.7787	0.7764	0.7726

Table 3. Comparison results of stage 2 LSTM

Atte	mpt	ResNet-34 With Adam BCE Loss	ResNet-34 With SGD BCE Loss	ResNet-50 With Adam BCE Loss	ResNet-50 With SGD BCE Loss	DenseNet121 With Adam BCE Loss	DenseNet121 With Adam BCE Loss
	Train f2	0.870	0.979	0.687	0.832	0.818	0.796
Stacked	Val f2	0.637	0.647	0.637	0.712	0.731	0.730
	Test f2	0.717	0.708	0.698	0.716	0.735	0.734

Table 4. Other attempts with vanilla ResNet and DenseNet

ResNet-18 Asymmetric Loss Relabeled with 0.5	ResNet-18 Asymmetric Loss Relabeled with 1	ResNet-18 Asymmetric Loss Filtered data	ResNet-18 Asymmetric Loss Magic normalization	CNN-LSTM END2END

	Relabeled with 0.5	Relabeled with 1	Filtered data	Magic normalization	END2END	
in f2	0.812	-	0.881	0.848	0.824	_
1 f2	0.757	0.769	0.753	0.759	0.741	
st f2	0.700	0.744	0.727	0.743	-	
Table 5. Other attempts with multifarious tricks						

Figure 5. Embedding visualization by t-SNE

Figure 6. Original image v.s. saliency map

- Multitudinous optimizers and augmentation parameters were firstly investigated with vanilla ResNet-18 trained with BCE loss, which demonstrated the detrimental effect of either large batch size or color adjustment (Table 1).
- Asymmetric loss was an effective strategy to further improve model performance (Table 2).
- Two-stage training with stacked LSTM enabled approximate 2% f2 enhancement **(Table 3).**
- Multifarious strategies were also leveraged but the endeavor was in vain (Table 4 and 5).
- The embedding itself did contain level information (Fig. 5).
- An explainable saliency map was utilized to elucidate what did the model learn (Fig. 6).
- The best results were shown in (Table 6).

Dat	taset	Full	Small
	Train f2		
Best	Val f2		
	Test f2		

Table 6. Best results

Discussion and Conclusions

- Stacked CT images, asymmetric loss, and a further LSTM model were actually competent strategies to tackle imbalanced sequential CT data.
- Strange patterns did occur in the sequential labels, which were potentially erroneously mislabeled and somehow deteriorated the model performance.
- However, the model could still rectify these serious mistakes, which definitely manifests the benefits of using deep learning techniques in clinical scenarios (Fig. 7).

EDH ground true: 1 Model prediction: 0.988

EDH ground true: 0

Model prediction: 0.987

SDH ground true: 1

Model prediction: 0.999

SDH ground true: 1

Figure 7. Example of potentially mislabeled CT image

SDH ground true: 1 Model prediction: 0.999

SDH ground true: 1 Model prediction: 0.999