```
1 from google.colab import files
2 uploaded = files.upload()
```

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to Saving dummydata.csv to dummydata.csv

```
1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv('dummydata.csv')
4 pd.DataFrame.from_records(df)
5 df.head()
```

•		Unnamed:	age	self_employed	family_history	mh_treatment	interfere	company_size	remote	tech_company	mh_negati
	0	1	3	1	1	0	3	1	1	1	
	1	2	2	0	1	1	3	4	0	1	
	2	3	2	1	0	0	1	1	1	1	
	3	4	3	0	0	1	4	3	1	1	
	1	5	3	0	0	1	1	6	0	0	

1 df.describe

8	<pre><bound methor<="" pre=""></bound></pre>	od ND	Frame	.describe of	Unnamed: 0	age	country_Ireland	country_India
	0	1	3	• • •	0	0		
	1	2	2	• • •	0	0		
	2	3	2	• • •	0	0		
	3	4	3	• • •	0	0		
	4	5	3	• • •	0	0		
	• •	• • •		• • •	• • •	• • •		
	891	892	2	• • •	0	0		
	892	893	2	• • •	0	0		
	893	894	2	• • •	0	0		
	894	895	2	• • •	0	0		
	895	896	3	• • •	0	0		

[896 rows x 51 columns]>

1 df.columns

```
Index(['Unnamed: 0', 'age', 'self employed', 'family history', 'mh_treatment',
       'interfere', 'company_size', 'remote', 'tech_company',
       'mh_negative_consequence_flag', 'ph_negative_consequence_flag',
       'mh_disscuss_coworker', 'mh_disscuss_supervisor',
       'interview_mh_bringup', 'interview_ph_bringup', 'witness_mh_nc',
       'anonymity_protected_Yes', 'anonymity_protected_No',
       'anonymity_protected_Don't know', 'awareness_mh_benefits_Not sure',
       'awareness_mh_benefits_Yes', 'awareness_mh_benefits_No', 'gender_M',
       'gender_F', 'gender_T', 'medical_leave_easy_Very easy',
       'medical leave easy Somewhat difficult',
       'medical_leave_easy_Don't know', 'medical_leave_easy_Very difficult',
       'medical_leave_easy_Somewhat easy', 'mh_benefits_Yes', 'mh_benefits_No',
       'mh_benefits_Don't know', 'mh_discuss_Yes', 'mh_discuss_No',
       'mh_discuss_Don't know', 'mh_resources_Don't know', 'mh_resources_No',
       'mh_resources_Yes', 'mh_serious_ph_Yes', 'mh_serious_ph_No',
       'mh_serious_ph_Don't know', 'country_United States',
       'country United Kingdom', 'country Canada', 'country Netherlands',
       'country_Australia', 'country_France', 'country_Germany',
       'country_Ireland', 'country_India'],
      dtype='object')
```

```
1 df.drop(df.columns[[0]], axis=1, inplace=True)
2 df.head()
```

	age	self_employed	family_history	mh_treatment	interfere	company_size	remote	tech_company	mh_negative_consequ
0	3	1	1	0	3	1	1	1	
1	2	0	1	1	3	4	0	1	
2	2	1	0	0	1	1	1	1	
3	3	0	0	1	4	3	1	1	
4	3	0	0	1	1	6	0	0	

```
1 df.shape
```

```
(896, 50)
```

Supervised ML

```
1 X=df.loc[:, df.columns != 'mh treatment']
```

2 X.he	•	.,		•					
•	age	self_employed	family_history	interfere	company_size	remote	tech_company	mh_negative_consequence_flag	g ph_

	age	seli_employed	family_nistory	interiere	company_size	remote	tecn_company	mn_negative_consequence_flag	pn_
0	3	1	1	3	1	1	1	0	
1	2	0	1	3	4	0	1	1	
2	2	1	0	1	1	1	1	0	
3	3	0	0	4	3	1	1	1	
4	3	0	0	1	6	0	0	1	

1 X.columns

```
Index(['age', 'self_employed', 'family_history', 'interfere', 'company_size',
       'remote', 'tech_company', 'mh_negative_consequence_flag',
       'ph_negative_consequence_flag', 'mh_disscuss_coworker',
       'mh_disscuss_supervisor', 'interview_mh_bringup',
       'interview_ph_bringup', 'witness_mh_nc', 'anonymity_protected_Yes',
       'anonymity_protected_No', 'anonymity_protected_Don't know',
       'awareness_mh_benefits_Not sure', 'awareness_mh_benefits_Yes',
       'awareness_mh_benefits_No', 'gender_M', 'gender_F', 'gender_T',
       'medical_leave_easy_Very easy', 'medical_leave_easy_Somewhat difficult',
       'medical_leave_easy_Don't know', 'medical_leave_easy_Very difficult',
       'medical_leave_easy_Somewhat easy', 'mh_benefits_Yes', 'mh_benefits_No',
       'mh_benefits_Don't know', 'mh_discuss_Yes', 'mh_discuss_No',
       'mh_discuss_Don't know', 'mh_resources_Don't know', 'mh_resources_No',
       'mh_resources_Yes', 'mh_serious_ph_Yes', 'mh_serious_ph_No',
       'mh_serious_ph_Don't know', 'country_United States',
       'country United Kingdom', 'country Canada', 'country Netherlands',
       'country_Australia', 'country_France', 'country_Germany',
       'country_Ireland', 'country_India'],
      dtype='object')
```

```
1 y=df.mh_treatment
2 y.head()
```

0 1 0 2 3 1 Name: mh_treatment, dtype: int64

```
1 np.random.seed(888)
2 #Split X and y into train (70%) and test (30%) sets.
3 from sklearn.model_selection import train_test_split
4 # Let 20% of the data to be a test set
5 train x, test x, train y, test y = train test split(X, y, test size=0.30, random state=0)
```

1. Linear Regression

```
1 #fit the model
2 from sklearn.linear_model import LinearRegression
3 from sklearn.metrics import mean squared error
4 model1 = LinearRegression()
5 model1.fit(train_x,train_y)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
1 # coefficeints of the trained model
2 print('\nCoefficient of model :', model1.coef_)
3
4 # intercept of the model
5 print('\nIntercept of model',model1.intercept_)
7 # predict the target on the test dataset
```

```
8 predict_train1 = model1.predict(train_x)
9
10 # Root Mean Squared Error on training dataset
11 rmse_train1 = mean_squared_error(train_y,predict_train1)**(0.5)
12 print('\nRMSE on train dataset : ', rmse_train1)
13
```



```
Coefficient of model: [ 7.94394178e-02 -3.13073938e-02 1.35247094e-01 2.00005298e-01 2.16494895e-03 6.28433680e-03 -3.96517007e-03 2.29191247e-02 -9.32070297e-03 6.02567060e-02 -8.94607436e-03 9.01932694e-03 1.84655909e-02 6.08269687e-03 2.47073445e+11 2.47073445e+11 2.47073445e+11 -6.17962248e+11 -6.17962248e+11 -6.17962248e+11 -2.39548373e+11 -2.39548373e+11 -2.39548373e+11 -3.63133064e+11 -3.63133064e+11 -3.63133064e+11 -3.63133064e+11 -3.63133064e+11 -5.22730142e+11 -5.22730142e+11 -5.22730142e+11 -7.48774855e+11 -7.48774855e+11 -7.48774855e+11 -7.48774855e+11 -1.33097841e+11 -1.
```

```
1 # predict the target on the testing dataset
2 predict_test1 = model1.predict(test_x)
3
4 # Root Mean Squared Error on testing dataset
5 rmse_test1 = mean_squared_error(test_y,predict_test1)**(0.5)
6 print('\nRMSE on test dataset : ', rmse_test1)
```


RMSE on test dataset: 0.3846918650527029

2. Tree

```
1 from sklearn.tree import DecisionTreeClassifier
2 from sklearn.metrics import accuracy_score
3 model2 = DecisionTreeClassifier()
4
5 # fit the model with the training data
6 model2.fit(train_x,train_y)
7
8 # depth of the decision tree
9 print('Depth of the Decision Tree :', model2.get_depth())
10
```

Depth of the Decision Tree: 21


```
1 # predict the target on the train dataset
2 predict_train2 = model2.predict(train_x)
3
4 # Accuray Score on train dataset
5 accuracy_train2 = accuracy_score(train_y,predict_train2)
6 print('accuracy_score on train dataset : ', accuracy_train2)
7
```

accuracy_score on train dataset : 1.0

```
1 # predict the target on the test dataset
2 predict_test2 = model2.predict(test_x)
3
4 # Accuracy Score on test dataset
5 accuracy_test2 = accuracy_score(test_y,predict_test2)
6 print('accuracy_score on test dataset : ', accuracy_test2)
```

accuracy_score on test dataset: 0.7026022304832714

3. Decision Tree Calssifier

```
1 model3 = DecisionTreeClassifier(max_depth=5)
2
3 # fit the model with the training data
4 model3.fit(train_x,train_y)
5
6 # depth of the decision tree
7 print('Depth of the Decision Tree :', model3.get_depth())
```

Depth of the Decision Tree : 5

8


```
1 # predict the target on the train dataset
2 predict_train3 = model3.predict(train_x)
3
4 # Accuray Score on train dataset
5 accuracy_train3 = accuracy_score(train_y,predict_train3)
6 print('accuracy_score on train dataset : ', accuracy_train3)
```

accuracy_score on train dataset : 0.8133971291866029

```
1 # predict the target on the test dataset
2 predict_test3 = model3.predict(test_x)
3
4 # Accuracy Score on test dataset
5 accuracy_test3 = accuracy_score(test_y,predict_test3)
6 print('accuracy_score on test dataset : ', accuracy_test3)
```

accuracy_score on test dataset : 0.758364312267658

4. SVM

```
1 from sklearn.svm import SVC
2 model4 = SVC()
3
4 # fit the model with the training data
5 model4.fit(train_x,train_y)
```

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)

```
1 # predict the target on the train dataset
2 predict_train4 = model4.predict(train_x)
3
4 # Accuray Score on train dataset
5 accuracy_train4 = accuracy_score(train_y,predict_train4)
6 print('accuracy_score on train dataset : ', accuracy_train4)
```

accuracy_score on train dataset: 0.81818181818182

```
1 # predict the target on the test dataset
2 predict_test4 = model4.predict(test_x)
3
4 # Accuracy Score on test dataset
5 accuracy_test4 = accuracy_score(test_y,predict_test4)
6 print('accuracy_score on test dataset : ', accuracy_test4)
```

accuracy_score on test dataset : 0.8066914498141264

5. KNN

```
1 from sklearn.neighbors import KNeighborsClassifier
2 model5 = KNeighborsClassifier()
3
4 # fit the model with the training data
5 model5.fit(train x train y)
```

```
6
7 # Number of Neighbors used to predict the target
8 print('\nThe number of neighbors used to predict the target: ',model5.n_neighbors)
```

The number of neighbors used to predict the target: 5

```
1 # predict the target on the train dataset
2 predict_train5 = model5.predict(train_x)
3
4 # Accuray Score on train dataset
5 accuracy_train5 = accuracy_score(train_y,predict_train5)
6 print('accuracy_score on train dataset : ', accuracy_train5)
```

accuracy_score on train dataset : 0.8197767145135566

```
1 # predict the target on the test dataset
2 predict_test5 = model5.predict(test_x)
3
4 # Accuracy Score on test dataset
5 accuracy_test5 = accuracy_score(test_y,predict_test5)
6 print('accuracy_score on test dataset : ', accuracy_test5)
```

accuracy_score on test dataset : 0.7211895910780669

6. GBM

```
1 from sklearn.ensemble import GradientBoostingClassifier
2 model6 = GradientBoostingClassifier(n_estimators=100,max_depth=5)
3
4 # fit the model with the training data
5 model6.fit(train_x,train_y)
```

GradientBoostingClassifier(ccp_alpha=0.0, criterion='friedman_mse', init=None, learning_rate=0.1, loss='deviance', max_depth=5, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_iter_no_change=None, presort='deprecated', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False)

```
1 # predict the target on the train dataset
2 predict_train6 = model6.predict(train_x)
3
4 # Accuray Score on train dataset
5 accuracy_train6 = accuracy_score(train_y,predict_train6)
6 print('\naccuracy_score on train dataset : ', accuracy_train6)
```

accuracy_score on train dataset: 0.9904306220095693

```
1 # predict the target on the test dataset
2 predict_test6 = model6.predict(test_x)
3
4 # Accuracy Score on test dataset
5 accuracy_test6 = accuracy_score(test_y,predict_test6)
6 print('\naccuracy_score on test dataset : ', accuracy_test6)
```

accuracy_score on test dataset: 0.724907063197026

7. XGBoost

```
1 from xgboost import XGBClassifier
2 model7 = XGBClassifier()
3
4 # fit the model with the training data
5 model7.fit(train_x,train_y)
```

8

```
1 # predict the target on the train dataset
2 predict_train7 = model7.predict(train_x)
3
4 # Accuray Score on train dataset
5 accuracy_train7 = accuracy_score(train_y,predict_train7)
6 print('\naccuracy_score on train dataset : ', accuracy_train7)
```

8

accuracy_score on train dataset : 0.8389154704944178

```
1 # predict the target on the test dataset
2 predict_test7 = model7.predict(test_x)
3
4 # Accuracy Score on test dataset
5 accuracy_test7 = accuracy_score(test_y,predict_test7)
6 print('\naccuracy_score on test dataset : ', accuracy_test7)
```

8

accuracy score on test dataset: 0.7695167286245354

Unsupervised ML

PCA + kmeans

```
1 #scaler data
2 from sklearn.preprocessing import MinMaxScaler
3 scaler = MinMaxScaler()
4 data_rescaled = scaler.fit_transform(df)
```

```
1 # find the suitable number of components
 2 from sklearn.decomposition import PCA
 3 pca = PCA().fit(data_rescaled)
 4
 5 % matplotlib inline
 6 import matplotlib.pyplot as plt
 7 plt.rcParams["figure.figsize"] = (12,6)
 9 fig, ax = plt.subplots()
10 xi = np.arange(1, 21, step=1)
11 y = np.cumsum(pca.explained_variance_ratio_)[1:21]
13 plt.ylim(0.0,1.1)
14 plt.plot(xi, y, marker='o', linestyle='--', color='b')
16 plt.xlabel('Number of Components')
17 plt.xticks(np.arange(0, 21, step=1))
18 plt.ylabel('Cumulative variance (%)')
19 plt.title('The number of components needed to explain variance')
21 plt.axhline(y=0.70, color='r', linestyle='-')
22 plt.text(0.5, 0.85, '70% cut-off threshold', color = 'red', fontsize=16)
24 ax.grid(axis='x')
25 plt.show()
```


In order to get aroud 70%, we decided to choose the first 12 components.

```
1 #fit the model
2 pca_final = PCA(n_components = 12)
3 pca_final.fit(data_rescaled)
4 data_pca = pca_final.fit_transform(data_rescaled)
5 data_pca.shape
```

```
(896, 12)
```

```
1 #find reasonable number of k with elbow method
 2 from sklearn.cluster import KMeans
 3 from sklearn import metrics
 4 from scipy.spatial.distance import cdist
 5 import numpy as np
 6 import matplotlib.pyplot as plt
 7
 8 distortions = []
 9 inertias = []
10 \text{ mapping1} = \{\}
11 \text{ mapping2} = \{\}
12 K = range(1,10)
13
14 for k in K:
15
       #Building and fitting the model
       kmeanModel = KMeans(n_clusters=k).fit(data_pca)
16
       kmeanModel.fit(data_pca)
17
18
19
       distortions.append(sum(np.min(cdist(data_pca, kmeanModel.cluster_centers_,
20
                          'euclidean'),axis=1)) / data_pca.shape[0])
21
       inertias.append(kmeanModel.inertia_)
22
23
       mapping1[k] = sum(np.min(cdist(data_pca, kmeanModel.cluster_centers_,
                     'euclidean'),axis=1)) / data_pca.shape[0]
24
       mapping2[k] = kmeanModel.inertia
25
26
```

```
1 plt.plot(K, distortions, 'bx-')
2 plt.xlabel('Values of K')
3 plt.ylabel('Distortion')
4 plt.title('The Elbow Method using Distortion')
5 plt.show()
```


The Elbow Method using Distortion 22 21 20 18 17 18 17 2 3 4 5 6 7 8 9

```
1 plt.plot(K, inertias, 'bx-')
2 plt.xlabel('Values of K')
3 plt.ylabel('Inertia')
4 plt.title('The Elbow Method using Inertia')
5 plt.show()
```


Based on the results, we chose to use k=5.

```
1 #fit the kmeans model
2 kmeans= KMeans(n_clusters=5)
3 kmeans5=kmeans.fit_predict(data_pca)
```

1 kmeans.cluster_centers_

```
array([[-0.4429739 , 1.05666511, 0.43913159, 0.28931182, 0.11870278, -0.09887435, -0.00617988, -0.07980882, -0.07975342, -0.05690273, 0.12475788, 0.15104256],
[-1.07536002, -0.34658112, -0.08408743, -0.11913515, 0.10029392, 0.18634079, -0.02428671, 0.00897236, 0.06673901, 0.05804446, -0.03544 , -0.17652532],
[1.53302396, 0.07519759, 0.0984913 , -0.14740826, 0.2511941 , 0.16342133, -0.03881158, -0.01913487, -0.05577262, 0.09761498, 0.04129115, -0.1241347 ],
[-0.00363126, -1.22165991, 0.41078203, 0.09182208, -0.23131532, -0.18612103, 0.15502751, -0.00565208, -0.06049708, -0.10816998, 0.06534425, 0.0312912 ],
[0.26556962, 0.15832695, -0.79598708, -0.08762594, -0.33144407, -0.14719943, -0.04429081, 0.0998988 , 0.10781135, -0.02589955, -0.18514208, 0.15876326]])
```

```
1 #visualizing clustering
2 plt.scatter(data_pca[:,0],data_pca[:,1],c=kmeans5,cmap="rainbow")
```


<matplotlib.collections.PathCollection at 0x7f457c7b1198>

- 1 # Get cluster assignment labels
- 2 labels = kmeans.labels_
- 3 df['Group']=labels
- 4 df.head()

i	age	self_employed	family_history	mh_treatment	interfere	company_size	remote	tech_company	mh_negative_consequ
0	3	1	1	0	3	1	1	1	
1	2	0	1	1	3	4	0	1	
2	2	1	0	0	1	1	1	1	
3	3	0	0	1	4	3	1	1	
4	3	0	0	1	1	6	0	0	

1 df.groupby('Group').describe()

8		age								self_e	mployed							family_history	
		count	mean	std	min	25%	50%	75 %	max	count	mean	std	min	25%	50%	75 %	max	count	mean
	Group																		
	0	190.0	2.100000	0.378664	1.0	2.0	2.0	2.0	3.0	190.0	0.100000	0.300793	0.0	0.0	0.0	0.0	1.0	190.0	0.384211
	1	218.0	2.059633	0.347637	1.0	2.0	2.0	2.0	3.0	218.0	0.114679	0.319367	0.0	0.0	0.0	0.0	1.0	218.0	0.371560
	2	178.0	2.207865	0.433805	2.0	2.0	2.0	2.0	4.0	178.0	0.061798	0.241467	0.0	0.0	0.0	0.0	1.0	178.0	0.500000
	3	136.0	2.080882	0.323297	1.0	2.0	2.0	2.0	3.0	136.0	0.367647	0.483947	0.0	0.0	0.0	1.0	1.0	136.0	0.433824
	4	174.0	2.132184	0.339668	2.0	2.0	2.0	2.0	3.0	174.0	0.011494	0.106901	0.0	0.0	0.0	0.0	1.0	174.0	0.637931

5 rows × 400 columns

1 df.groupby('Group').mean()

8		age	self_employed	family_history	mh_treatment	interfere	company_size	remote	tech_company	mh_negativ
	Group									
	0	2.100000	0.100000	0.384211	0.505263	2.257895	3.573684	0.315789	0.821053	
	1	2.059633	0.114679	0.371560	0.481651	2.481651	2.834862	0.288991	0.834862	
	2	2.207865	0.061798	0.500000	0.735955	2.477528	4.516854	0.224719	0.707865	
	3	2.080882	0.367647	0.433824	0.727941	2.801471	2.066176	0.514706	0.897059	
	4	2.132184	0.011494	0.637931	0.890805	2.816092	4.097701	0.229885	0.816092	

1 df.groupby('Group').mean().rank()

	age	self_employed	family_history	mh_treatment	interfere	company_size	remote	tech_company	mh_negative_con
Group)								
0	3.0	3.0	2.0	2.0	1.0	3.0	4.0	3.0	
1	1.0	4.0	1.0	1.0	3.0	2.0	3.0	4.0	
2	5.0	2.0	4.0	4.0	2.0	5.0	1.0	1.0	
3	2.0	5.0	3.0	3.0	4.0	1.0	5.0	5.0	
4	4.0	1.0	5.0	5.0	5.0	4.0	2.0	2.0	

PCA

```
1 distortions = []
 2 inertias = []
 3 \text{ mapping } 3 = \{\}
 4 \text{ mapping } 4 = \{\}
 5 K2 = range(1,20)
 7 for k in K2:
       #Building and fitting the model
 9
       kmeanModel2 = KMeans(n_clusters=k).fit(df)
       kmeanModel2.fit(df)
10
11
       distortions.append(sum(np.min(cdist(df, kmeanModel2.cluster_centers_,
12
                           'euclidean'),axis=1)) / df.shape[0])
13
14
       inertias.append(kmeanModel2.inertia_)
15
16
       mapping3[k] = sum(np.min(cdist(df, kmeanModel2.cluster_centers_,
17
                     'euclidean'),axis=1)) / df.shape[0]
18
       mapping4[k] = kmeanModel2.inertia_
```

```
1 plt.plot(K2, distortions, 'bx-')
2 plt.xlabel('Values of K')
3 plt.ylabel('Distortion')
4 plt.title('The Elbow Method using Distortion')
5 plt.show()
```



```
1 plt.plot(K2, inertias, 'bx-')
2 plt.xlabel('Values of K')
3 plt.ylabel('Inertia')
4 plt.title('The Elbow Method using Inertia')
5 plt.show()
```


0.4

0.2

0.0

1.0

1.5

3.0

The reason why we got imperfect plot is that there are two many dimensions here.

2.0

2.5