第2章 线性规划

2.4 两阶段单纯形算法

两阶段法

- 两阶段法解决如何找到单纯形算法的第一个基本可行解 (即初始解)的问题。
- 该方法的第一个阶段找一个初始解,第二阶段运行基本的 单纯形算法,故称为"两阶段法"。

辅助问题

$$\min z = c^{\mathrm{T}} x$$

设原问题为 s.t. $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$ 。不妨假设 $b \ge 0$ 。

考虑如下问题 (辅助问题)

$$\min g = \sum_{i=n+1}^{n+m} x_i$$
s.t.
$$\begin{cases} Ax + x_a = b \\ x \ge 0, \quad x_a \ge 0 \end{cases}$$

其中
$$x_a = (x_{n+1}, x_{n+2}, ..., x_{n+m})^T$$
。

基本思想

引理 记原 LP 的可行域为 D,辅助 LP 的可行域为 D'。则有: $D \neq \phi \Leftrightarrow g^* = 0$,其中 g*是辅助问题的最优解 证明:

- ullet (⇒) $D \neq \phi$ ⇒ $\exists x, Ax = b, x \geq 0$ 。 \diamondsuit $x' = \begin{pmatrix} x \\ 0 \end{pmatrix}$,则 Ax + 0 = b, $x' \geq 0$, 因此 $x' \in D'$ 。
- ●由 g(x') = 0,又因为 $g(.) \ge 0$,可知 $g^* = 0$ 。
- ullet (年)不妨令使 $g^*=0$ 的解为 $\begin{pmatrix} \widetilde{x} \\ \widetilde{x}_a \end{pmatrix}$ 。由于 $g\begin{pmatrix} \begin{pmatrix} \widetilde{x} \\ \widetilde{x}_a \end{pmatrix} \end{pmatrix} = 0$,可知 $\widetilde{x}_a=0$ 。 因此, $A\widetilde{x}=b$,即 $\widetilde{x}\in D$ 。 \square

求辅助LP的最优解得到原LP的bfs

- 1. 如果原 LP 有可行解,则辅助 LP 的最优值为 0,反之亦 然。
- 2. 由于 $b \ge 0$,所以以 $x_a = (x_{n+1}, x_{n+2}, ..., x_{n+m})^T$ 为基变量,就可以得到辅助 LP 的初始基本可行解 $(0, b^T)^T$ 。
- 3. 由于辅助 LP 有可行解,且 $g(.) \ge 0$,即目标函数有下界,所以辅助 LP 一定有最优解。

求辅助LP的三种情况

使用单纯形法,解辅助 LP, 得其最优基可行解 (\tilde{x}, \tilde{x}_a) 。

(1) $g^* = 0$ 且所有人工变量均为非基变量,则此时 \tilde{x} 是 原 LP 的基本可行解。

由于最优值为 0, 可知 $\tilde{x}_a = 0$, 所以 \tilde{x} 是原 LP 的可行解。

由于 (\tilde{x}, \tilde{x}_a) 是辅助 LP 的基本可行解,所以其非零分量(均在 \tilde{x} 中)对应系数矩阵的列向量线性无关,所以 \tilde{x} 是原 LP 的基本可行解。

- (2) $g^* = 0$ 但某些人工变量为基变量。
- (3) $g^* > 0$,则原 LP 没有可行解。

$g^* = 0$,但存在人工变量为基变量

● 设第一阶段的最优单纯形表如下:

_	x_1	•••	X_S	•••	\mathcal{X}_n	x_{n+1}	•••	$x_{B(r)}$	•••	x_{n+m}	
	μ_1		μ_s		μ_n	μ_{n+1}	•••	$\mu_{B(r)}$	•••	μ_{n+m}	0
$x_{B(1)}$		•••						0	•••		\overline{b}_1
:	:	•	÷	:	:	:	:	÷	:	:	:
$x_{B(r)}$			\overline{a}_{rs}					1			\overline{b}_r
:	:	:	÷	:	:	:	:	÷	:	:	:
$x_{B(m)}$	•••	•••		•••	•••	•••	• • •	0	•••	•••	\overline{b}_m

- 设人工变量 $x_{B(r)}$ 是一个基变量 $(n+1 \le B(r) \le n+m)$ 。
- ●考察第r行原变量所对应的前n个元素,即 $\overline{a}_{r_1}, \dots, \overline{a}_{r_n}$ 。
- ●有两种情况: (1) 它们不全为 0。(2) 它们全为 0。

两种情况(1)

(1) \bar{a}_{r1} ,..., \bar{a}_{rn} 不全为 0。

- ●不妨设 $\bar{a}_{rs} \neq \mathbf{0}$ 。以 \bar{a}_{rs} 为转轴元进行一次旋转变换,使人工变量 $x_{B(r)}$ 出基,原变量 x_s 进基,则在基变量中减少了一个人工变量。
- •注:此时不要求 $\bar{a}_{rs} > 0$ 。并且,在变换之前人工变量 $x_{B(r)}$ 为基变量,由于 $g^* = 0$,因此 $\bar{b}_r = 0$,于是 $\theta = 0$,因此该旋转变换不会改变最优解值,即旋转之后的解仍然是最优解。

两种情况(2)

(2) \bar{a}_{r1} ,..., \bar{a}_{rn} 全为 0。

●这表明
$$\overline{A} = \begin{pmatrix} \overline{a}_{11} & \cdots & \overline{a}_{1n} \\ \vdots & \ddots & \vdots \\ \overline{a}_{m1} & \cdots & \overline{a}_{mn} \end{pmatrix}$$
中第 r 行为全 0 ,即 $r(\overline{A}) < m$ 。

●因此 $r(A) = r(\overline{A}) < m$,即第r个约束方程是多余的,将其删去即可。人工变量 $x_{B(r)}$ 自然出基,当前的基余下的列构成新的基。

重复以上过程(1)(2),直到基变量中没有人工变量,则 获得了原 LP 的一个基本可行解。

两阶段单纯形算法

- 1 原问题化为标准型。行变换,使 $b \ge 0$ 。
- 2 添加人工变量,得到辅助问题。
- 3 使用人工变量作为初始的基,构造辅助问题的初始单纯形表。在该表中同时也包含原问题的检验数行。
- 4 使用单纯形算法求解辅助问题。(第一阶段)
- 5 若求得辅助问题最优解值 $g^* > 0$,则原问题无可行解,结束。
- 6 (否则 g*=0。)若某些人工变量为基变量,则调整,直到 没有人工变量为基变量。

两阶段单纯形算法

- 7 去掉当前单纯形表上的辅助问题的检验数行和人工变量对应的列,得到原问题的单纯形表。此时已有一个初始的基可行解。
- 8 (第二阶段)运行单纯形算法,解原问题。最后或判断得原问题无界,或求到最优解。

例2.4.1

首先引入人工变量,考虑辅助 LP

$$\min \ z = x_6 + x_7$$

s.t.
$$\begin{cases} x_1 - x_2 + 6x_3 - x_4 + x_6 = 2 \\ x_1 + x_2 + 2x_3 - x_5 + x_7 = 1 \\ x_j \ge 0; \quad \forall j \end{cases}$$

第1阶段

将约束矩阵、右端向量、原 LP 的价值向量、辅助 LP 的价值向量组织在单纯形表中:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
Z	-5	0	-21	0	0	0	0	0
g	0	0	0	0	0	-1	-1	0
x_6	1	-1	6	-1	0	1	0	2
x_7	1	1	2	0	-1	0	1	1

以人工变量 x_6 、 x_7 为基变量,通过行变换将 x_6 、 x_7 对应的检验数消为 0,得到新的单纯形表。

第1阶段

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
Z	-5	0	-21	0	0	0	0	0
g	2	0	8	-1	-1	0	0	3
x_6	1	-1	6	-1	0	1	0	2
x_7	1	1	2	0	-1	0	1	1

下面运行第一阶段的单纯形算法,求辅助问题的最优解。此时注意的是两行检验数都参与旋转变换。

第1阶段

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
z	-3/2	-7/2	0	-7/2	0	21/6	0	7
g	2/3	4/3	0	1/3	-1	-4/3	0	1/3
x_3	1/6	-1/6	1	-1/6	0	1/6	0	1/3
x_7	2/3	4/3	0	1/3	-1	-1/3	1	1/3
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
Z	1/4	$\frac{x_2}{0}$	x_3	x_4 $-21/8$		21/8	21/8	63/8
z g		-						63/8
	1/4	0	0	-21/8	-21/8	21/8	21/8	

第2阶段

- 第 1 阶段结束, 得到辅助问题的最优基可行解 $x^* = (0, 1/4, 3/8, 0, 0, 0, 0)^T$,且人工变量 x_6 、 x_7 都不在基中。
- 在单纯形表中去掉辅助 LP 的检验数行和人工变量对应的列,开始第 2 阶段的单纯形算法。

	x_1	x_2	x_3	x_4	x_5	
Z	1/4	0	0	-21/8	-21/8	63/8
x_3	1/4	0	1	-1/8	-1/8	3/8
x_2	1/2	1	0	1/4	-3/4	1/4

第2阶段

	x_1	x_2	x_3	x_4	x_5	
Z	0	-1/2	0	-11/4	-9/4	31/4
x_3	0	-1/2	1	-1/4	-1/4	1/4
x_1	1	2	0	1/2	-3/2	1/2

求到最优解 $x^* = (1/2, 0, 1/4, 0, 0)^T$,最优解值为 31/4。

例,最小费用流问题

- 离开 s 的流量为 1,进入 t 的流量为 1;
- ●除s、t外,其余每个顶点上都流守恒,即进入的流量和流出的流量相等;
- 在边 e_i 上定义变量 x_i ,表示在该边上(沿边的方向)的流量。

最小费用流问题的LP

min
$$z = x_1 + 2x_2 + 2x_3 + 3x_4 + x_5$$

s.t. (s) $x_1 + x_2 = 1$
(a) $-x_1 + x_3 + x_4 = 0$
(b) $-x_2 - x_3 + x_5 = 0$
(t) $-x_4 - x_5 = -1$
 $x_i \ge 0$ $\forall i$

解(1),第1阶段

- 当所有 n 个顶点都流守恒时,其中一个顶点的流守恒约束可以去掉。因此,将顶点 t 的行去掉。
- ●由于约束矩阵第 4 列、第 5 列已经是单位矩阵的列,因此只增加一个人工变量。
- ●得辅助问题的 LP (标准型) 如下:

	x_1	x_2	x_3	x_4	x_5	x_6	
Z	-1	-2	-2	-3	-1	0	0
g	0	0	0	0	0	-1	0
x_6	1	1	0	0	0	1	1
x_4	-1	0	1	1	0	0	0
x_5	0	-1	-1	0	1	0	0

解(1), 第1阶段

●将基变量的列的检验数消为 0:

	x_1	x_2	x_3	x_4	x_5	x_6	
Z	-4	-3	0	0	0	0	0
g	1	1	0	0	0	0	1
x_6	1	1	0	0	0	1	1
x_4	-1	0	1	1	0	0	0
x_5	0	-1	-1	0	1	0	0

解(1), 第1阶段

	x_1	x_2	x_3	x_4	x_5	x_6	
Z	0	1	0	0	0	4	4
g	0	0	0	0	0	-1	0
x_1	1	1	0	0	0	1	1
x_4	0	1	1	1	0	1	1
x_5	0	-1	-1	0	1	0	0

- ●第1阶段求到辅助 LP 的最优解,解值为 0,且没有人工变量是基变量。
- ●删除辅助问题的检验数行和人工变量列,开始第2阶段。

解(1), 第2阶段

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	
Z	0	1	0	0	0	4
<i>x</i> ₁	1	1	0	0	0	1
<i>X</i> 4	0	1	1	1	0	1
<i>x</i> ₅	0	-1	-1	0	1	0
	<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	X 5	
z	x_1 -1	x_2	<i>x</i> ₃	0	0	3
z x_2		-				3
	-1	0	0	0	0	

求到原问题的最优解,最小费用流为(0,1,0,0,1),最小费用为3。

- ●不删除多余的行,将顶点t的行乘以-1,使其右端项变为1。
- ●增加 4 个人工变量。得辅助问题的 LP (标准型) 如下:

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	
Z	-1	-2	-2	-3	-1	0	0	0	0	0
g	0	0	0	0	0	-1	-1	-1	-1	0
x_6	1	1	0	0	0	1	0	0	0	1
x_7	-1	0	1	1	0	0	1	0	0	0
x_8	0	-1	-1	0	1	0	0	1	0	0
<i>x</i> ₉	0	0	0	1	1	0	0	0	1	1

●将基变量对应的检验数消为 0:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	
Z	-1	-2	-2	-3	-1	0	0	0	0	0
g	0	0	0	2	2	0	0	0	0	2
x_6	1	1	0	0	0	1	0	0	0	1
x_7	-1	0	1	1	0	0	1	0	0	0
x_8	0	-1	-1	0	1	0	0	1	0	0
x_9	0	0	0	1	1	0	0	0	1	1

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	
z	-4	-2	1	0	-1	0	3	0	0	0
g	2	0	-2	0	2	0	-2	0	0	2
x_6	1	1	0	0	0	1	0	0	0	1
x_4	-1	0	1	1	0	0	1	0	0	0
x_8	0	-1	-1	0	1	0	0	1	0	0
<i>x</i> ₉	1	0	-1	0	1	0	-1	0	1	1

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	
Z	0	2	1	0	-1	4	3	0	0	4
g	0	-2	-2	0	2	-2	-2	0	0	0
x_1	1	1	0	0	0	1	0	0	0	1
x_4	0	1	1	1	0	1	1	0	0	1
x_8	0	-1	-1	0	1	0	0	1	0	0
<i>x</i> ₉	0	-1	-1	0	1	-1	-1	0	1	0

(选择出基变量时应用了 Bland 法则。)

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	<i>X</i> 9	
Z	0	1	0	0	0	4	3	1	0	4
g	0	0	0	0	0	-2	-2	-2	0	0
x_1	1	1	0	0	0	1	0	0	0	1
x_4	0	1	1	1	0	1	1	0	0	1
x_5	0	-1	-1	0	1	0	0	1	0	0
<i>X</i> ₉	0	0	0	0	0	-1	-1	-1	1	0

- 求到辅助问题的最优解, $g^* = 0$ 。
- ●人工变量 x_9 是基变量,但其所对应的行的前 n 列为全 0,因此将 x_9 的行和列去掉。
- ●剩下的表格中没有人工变量是基变量,因此将辅助 LP 的 检验数行和人工变量列全都删除,开始第 2 阶段。

28

解(2),第2阶段,与解(1)相同

_	x_1	x_2	x_3	x_4	x_5	
Z	0	1	0	0	0	4
x_1	1	1	0	0	0	1
x_4	0	1	1	1	0	1
x_5	0	-1	-1	0	1	0
	x_1	x_2	x_3	x_4	x_5	
z	x_1 -1	x_2	x_3	0	<i>x</i> ₅	3
z x_2						3
	-1	0	0	0	0	

求到原问题的最优解,最短 s-t 路为(e_2 , e_5),长度为 3。

退化问题的处理

- ●一个基可行解,若存在基变量为 0,则称该 bfs 为退化的。
- ●一个 LP 问题, 若存在退化的 bfs, 则称该问题为退化的。
- ●对于退化的 LP 问题,在应用单纯形算法时,有可能会出现 $\theta = \frac{\overline{b}_r}{\overline{a}_{...}} = 0$ 的情形,从而进行迭代时不能使当前解值减小。
- ●若连续出现不能使最优值减小的迭代,则就有可能退回到原来出现过的基,从而出现称为"循环"的情况。

Bland反循环法则

Bland 反循环法则(1977):

- (1) 选择进基变量 x_k 时,选择所有 $\zeta_j > 0$ 中下标最小的那一个,即 $k = \min\{j \mid \zeta_j > 0\}$ (选择编号最小的列进基);
- (2)选择出基变量 $x_{B(r)}$ 时,若有多个 \overline{a}_{jk} 同时达到最小,则选择下标 B(j)最小的那一个,即

$$B(r) = \min \left\{ B(j) \mid \forall 1 \le i \le m, \frac{\overline{b}_j}{\overline{a}_{jk}} \le \frac{\overline{b}_i}{\overline{a}_{ik}} \right\}$$
 (选择编号小的列出基)。

