Gödel's functional interpretation in constructive algebra

Thomas Powell

Technische Universität Darmstadt

(jww Peter Schuster and Franziskus Wiesnet)

ALGEBRA AND ALGORITHMS

Djerba, Tunisia 4 February 2020

This talk is about the extraction of programs from proofs

$$\mathsf{PROOFS} o \mathsf{PROGRAMS}$$

More specifically, for us:

- PROOFS = nonconstructive maximality arguments from commutative algebra
- PROGRAMS = state-based sequential algorithms

Our main technique for extraction will be:

This talk is about the extraction of programs from proofs:

$PROOFS \rightarrow PROGRAMS$

More specifically, for us:

- PROOFS = nonconstructive maximality arguments from commutative algebra
- PROGRAMS = state-based sequential algorithms

Our main technique for extraction will be:

This talk is about the extraction of programs from proofs:

 $PROOFS \rightarrow PROGRAMS$

More specifically, for us:

- PROOFS = nonconstructive maximality arguments from commutative algebra
- PROGRAMS = state-based sequential algorithms

Our main technique for extraction will be

This talk is about the extraction of programs from proofs:

$$PROOFS \rightarrow PROGRAMS$$

More specifically, for us:

- PROOFS = nonconstructive maximality arguments from commutative algebra
- PROGRAMS = state-based sequential algorithms

Our main technique for extraction will be:

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_D(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x,y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e. $A \mapsto A^N \mapsto \exists x \forall y A_D^N(x, y)$,
- · key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's)

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^D(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_{\mathcal{D}}(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x, y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e.
 A → A^N → ∃x∀yA^N_D(x, y),
- · key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's)

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^D(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_{\mathcal{D}}(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x,y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e.
 A → A^N → ∃x∀yA^N_D(x, y),
- key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's)

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^D(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics,
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_{\mathcal{D}}(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x, y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e.
 A → A^N → ∃x∀yA^N_D(x, y),
- key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^D(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics,
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_{\mathcal{D}}(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x, y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e. $A \mapsto A^N \mapsto \exists x \forall y A_D^N(x, y)$,
- key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^D(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics,
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_{\mathcal{D}}(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x, y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e. $A \mapsto A^N \mapsto \exists x \forall y A_D^N(x, y)$,
- · key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's)

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^N(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics,
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_{\mathcal{D}}(x,y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x, y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e. $A \mapsto A^N \mapsto \exists x \forall y A_D^N(x, y)$,
- · key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's)

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^N(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Formally speaking, a translation from formulas A is some logical theory \mathcal{L} to formulas $\exists x \forall y A_D(x, y)$ in some (related) theory \mathcal{P} . Key points:

- $A_D(x, y)$ is 'computationally neutral',
- terms of ${\mathcal P}$ are usually those of some typed lambda calculus,
- for classical theories, we first apply a negative translation i.e. $A \mapsto A^N \mapsto \exists x \forall y A_D^N(x, y)$,
- · key results are soundness theorems.

Theorem (Gödel - published 1958, already conceived 1930's)

Let A be a formula in the language of PA. Then whenever PA \vdash A, there is some term t of System T such that $T \vdash \forall y A_D^D(t, y)$.

- 1. Case studies which explore term extraction in different areas of mathematics,
- 2. New soundness theorems ('logical metatheorems') which describe general phenomena.

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y)) \text{ for } D(z) \text{ decidable. A witness for } x \text{ not computable in general.}$

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

Example (Drinkers paradox: constructive variant)

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

$$\exists F \forall \phi (\neg D(F\phi) \lor D(\phi(F\phi))$$
. Can be solved by setting

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

$$\exists F \forall \phi (\neg D(F\phi) \lor D(\phi(F\phi))$$
. Can be solved by setting

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

$$\exists F \forall \phi (\neg D(F\phi) \lor D(\phi(F\phi))$$
. Can be solved by setting

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

$$\exists F \forall \phi (\neg D(F\phi) \lor D(\phi(F\phi))$$
. Can be solved by setting

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi))$$

Example (Drinkers paradox: constructive variant)

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

Example (Drinkers paradox: constructive variant)

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

Example (Drinkers paradox: constructive variant)

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

Example (Drinkers paradox: constructive variant)

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

Many non-constructive theorems have the form $\exists x \forall y P(x, y)$ for decidable P(x, y).

Example (Drinkers paradox: classical variant)

 $\exists x \forall y (\neg D(x) \lor D(y))$ for D(z) decidable. A witness for x not computable in general.

$$\exists x \forall y \ P(x,y) \mapsto \neg \neg \exists x \forall y P(x,y)$$

$$\mapsto \neg \forall x \exists y \neg P(x,y)$$

$$\mapsto \neg \exists \phi \forall x \neg P(x,\phi x)$$

$$\mapsto \forall \phi \exists x P(x,\phi x)$$

$$\mapsto \exists F \forall \phi P(F\phi,\phi(F\phi)).$$

Example (Drinkers paradox: constructive variant)

$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$

$$(\exists x \forall y P(x, y) \to \exists v Q(v)) \mapsto \forall x \exists y, v (P(x, y) \to Q(v)) \\ \mapsto \exists g, h \forall x (P(x, gx) \to Q(hx))$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi,\phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg,g(Fg)) \quad P(Fg,g(Fg)) \rightarrow Q(h(Fg))}{Q(h(Fg))}$$

$$(\exists x \forall y P(x, y) \to \exists v Q(v)) \mapsto \forall x \exists y, v(P(x, y) \to Q(v)) \\ \mapsto \exists g, h \forall x (P(x, gx) \to Q(hx))$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi,\phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg,g(Fg)) \quad P(Fg,g(Fg)) \rightarrow Q(h(Fg))}{Q(h(Fg))}$$

$$(\exists x \forall y P(x,y) \to \exists v Q(v)) \mapsto \forall x \exists y, v (P(x,y) \to Q(v)) \\ \mapsto \exists g, h \forall x (P(x,gx) \to Q(hx))$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi, \phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg, g(Fg)) \quad P(Fg, g(Fg)) \rightarrow Q(h(Fg))}{O(h(Fg))}$$

$$\begin{split} (\exists x \forall y P(x,y) \to \exists v Q(v)) &\mapsto \forall x \exists y, v (P(x,y) \to Q(v)) \\ &\mapsto \exists g, h \forall x (P(x,gx) \to Q(hx)) \end{split}$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi, \phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg, g(Fg)) \quad P(Fg, g(Fg)) \rightarrow Q(h(Fg))}{O(h(Fg))}$$

$$(\exists x \forall y P(x, y) \to \exists v Q(v)) \mapsto \forall x \exists y, v (P(x, y) \to Q(v))$$

$$\mapsto \exists g, h \forall x (P(x, gx) \to Q(hx))$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi, \phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg, g(Fg)) \quad P(Fg, g(Fg)) \rightarrow Q(h(Fg))}{O(h(Fg))}$$

$$\begin{split} (\exists x \forall y P(x,y) \to \exists v Q(v)) &\mapsto \forall x \exists y, v (P(x,y) \to Q(v)) \\ &\mapsto \exists g, h \forall x (P(x,gx) \to Q(hx)) \end{split}$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \ \exists x \forall y P(x,y) \to \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi, \phi(F\phi)) \ \forall x (P(x,gx) \to Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg, g(Fg)) \ P(Fg, g(Fg)) \to Q(h(Fg))}{Q(h(Fg))}$$

$$(\exists x \forall y P(x, y) \to \exists v Q(v)) \mapsto \forall x \exists y, v (P(x, y) \to Q(v)) \\ \mapsto \exists g, h \forall x (P(x, gx) \to Q(hx))$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi,\phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg,g(Fg)) \quad P(Fg,g(Fg)) \rightarrow Q(h(Fg))}{Q(h(Fg))}$$

$$(\exists x \forall y P(x,y) \to \exists v Q(v)) \mapsto \forall x \exists y, v (P(x,y) \to Q(v))$$

$$\mapsto \exists g, h \forall x (P(x,gx) \to Q(hx))$$

Example (Drinkers paradox as a lemma)

 $\exists x \forall y (\neg D(x) \lor D(y)) \to \exists v (\neg D(v+2) \lor D(3v+1))$ is valid, and would be translated to

$$\exists g, h \forall x (\neg D(x) \lor D(gx) \to \neg D(hx+2) \lor D(3hx+1)).$$

$$\frac{\exists x \forall y P(x,y) \quad \exists x \forall y P(x,y) \rightarrow \exists v Q(v)}{\exists v Q(v)} \mapsto \frac{\forall \phi P(F\phi,\phi(F\phi)) \quad \forall x (P(x,gx) \rightarrow Q(hx))}{Q(-)}$$
$$\mapsto \frac{P(Fg,g(Fg)) \quad P(Fg,g(Fg)) \rightarrow Q(h(Fg))}{Q(h(Fg))}$$

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1))$)

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \ \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi:= \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$
 and $gx:=3x-5$ and $hx:=x-2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \to \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$v := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1)))$

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \ \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi:= egin{cases} 0 & ext{if } D(\phi 0) \ \phi 0 & ext{if } \neg D(\phi 0) \end{cases}$$
 and $gx:=3x-5$ and $hx:=x-2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \rightarrow \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$v := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1)))$

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \quad \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi:=egin{cases} 0 & ext{if } D(\phi 0) \ \phi 0 & ext{if }
eg D(\phi 0) \end{cases}$$
 and $gx:=3x-5$ and $hx:=x-2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \to \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$\nu := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1)))$

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \quad \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$
 and $gx := 3x - 5$ and $hx := x - 2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \to \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$\nu := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1)))$

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \quad \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$
 and $gx := 3x - 5$ and $hx := x - 2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \rightarrow \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$\nu := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

Direct witnesses from nonconstructive proofs

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1))$)

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \quad \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$
 and $gx := 3x - 5$ and $hx := x - 2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \rightarrow \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$\nu := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

We can check this directly: If D(-5) then $\neg D(-2+2) \lor D(3 \cdot (-2)+1)$, otherwise if $\neg D(-5)$ then $\neg D(-7+2) \lor D(3 \cdot (-7)+1)$.

Direct witnesses from nonconstructive proofs

Example (A nonconstructive proof of $\exists v (\neg D(v+2) \lor D(3v+1))$)

$$\frac{\exists x \forall y (\neg D(x) \lor D(y)) \quad \exists x \forall y (\neg D(x) \lor D(y)) \rightarrow \exists v (\neg D(v+2) \lor D(3v+1))}{\exists v (\neg D(v+2) \lor D(3v+1))}$$

Define
$$F\phi := \begin{cases} 0 & \text{if } D(\phi 0) \\ \phi 0 & \text{if } \neg D(\phi 0) \end{cases}$$
 and $gx := 3x - 5$ and $hx := x - 2$. Then:

$$\neg D(Fg) \lor D(g(Fg))$$
 and $\neg D(Fg) \lor D(g(Fg)) \rightarrow \neg D(h(Fg) + 2) \lor D(3h(Fg) + 1)$

Therefore $\exists v (\neg D(v+2) \lor D(3v+1))$ is witnessed by v := h(Fg) i.e.

$$\nu := \begin{cases} 0 - 2 & \text{if } D(3 \cdot 0 - 5) \\ (3 \cdot 0 - 5) - 2 & \text{if } \neg D(3 \cdot 0 - 5) \end{cases} = \begin{cases} -2 & \text{if } D(-5) \\ -7 & \text{if } \neg D(-5) \end{cases}$$

We can check this directly: If D(-5) then $\neg D(-2+2) \lor D(3 \cdot (-2)+1)$, otherwise if $\neg D(-5)$ then $\neg D(-7+2) \lor D(3 \cdot (-7)+1)$.

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

 $\exists x \forall y P(x,y) \sim$ a maximality principle (e.g. 'the ring R contains maximal ideal')

 $\exists v Q(v) \sim$ an existential theorem (e.g. 'the element r is nilpotent')

 $\forall \phi \exists x P(x, \phi x) \sim \text{existence of 'approximately maximal' objects}$

F satisfying $\forall \phi P(r,\phi r) \sim$ a sequential bar recursive algorithm

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

 $\exists x \forall y P(x,y) \sim \text{a maximality principle (e.g. 'the ring R contains maximal ideal')}$

 $\forall \phi \exists x P(x, \phi x) \sim \text{existence of 'approximately maximal' objects}$

F satisfying $\forall \phi P(r,\phi r) \sim$ a sequential bar recursive algorithm

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

 $\exists x \forall y P(x,y) \sim$ a maximality principle (e.g. the ring R contains maximal ideal')

 $\exists v Q(v) \sim \text{an existential theorem (e.g. 'the element r is nilpotent')}$

 $\forall \phi \exists x P(x, \phi x) \sim \text{existence of 'approximately maximal' objects}$

F satisfying $\forall \phi P(r,\phi r) \sim$ a sequential bar recursive algorithm

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

 $\exists x \forall y P(x,y) \sim$ a maximality principle (e.g. 'the ring R contains maximal ideal') $\exists v Q(v) \sim$ an existential theorem (e.g. 'the element r is nilpotent')

 $\forall \phi \exists x P(x, \phi x) \sim \text{existence of 'approximately maximal' objects}$

F satisfying $\forall \phi P(r,\phi r) \sim$ a sequential bar recursive algorithm

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

$$\exists x \forall y P(x,y) \sim$$
 a maximality principle (e.g. 'the ring R contains maximal ideal')
$$\exists v Q(v) \sim \text{an existential theorem (e.g. 'the element r is nilpotent')}$$
 $\forall \phi \exists x P(x,\phi x) \sim \text{existence of 'approximately maximal' objects}$

F satisfying $\forall \phi P(r,\phi r) \sim$ a sequential bar recursive algorithm

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

$$\exists x \forall y P(x,y) \sim$$
 a maximality principle (e.g. 'the ring R contains maximal ideal')
$$\exists v Q(v) \sim \text{an existential theorem (e.g. 'the element r is nilpotent')}$$
 $\forall \phi \exists x P(x,\phi x) \sim \text{existence of 'approximately maximal' objects}$ F satisfying $\forall \phi P(r,\phi r) \sim \text{a sequential } bar recursive \text{ algorithm}$

We now focus on 'textbook' proofs in commutative algebra which follow the above pattern. More specifically:

$$\exists x \forall y P(x,y) \sim$$
 a maximality principle (e.g. 'the ring R contains maximal ideal')
$$\exists v Q(v) \sim \text{an existential theorem (e.g. 'the element r is nilpotent')}$$
 $\forall \phi \exists x P(x,\phi x) \sim \text{existence of 'approximately maximal' objects}$ F satisfying $\forall \phi P(r,\phi r) \sim \text{a sequential } bar recursive \text{ algorithm}$

We start of with an abstract generating relation ▷:

- · X is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \triangleright^* x$ if $A \triangleright x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$

Example

Let X be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff I is an ideal of X.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- X is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$

Example

Let X be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff I is an ideal of X.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \triangleright^* x$ if $A \triangleright x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let X be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff I is an ideal of X.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \triangleright^* x$ if $A \triangleright x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$

Example

Let X be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff I is an ideal of X.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$

Example

Let X be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff I is an ideal of X.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let X be a commutative ring and $\{a_1,\ldots,a_k\} \triangleright x$ iff $a_1\cdot x_1+\ldots+a_k\cdot x_k=x$ for $x_1,\ldots,x_k\in X$. Then $I=\langle I\rangle$ iff I is an ideal of X.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let *X* be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff *I* is an ideal of *X*.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let *X* be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff *I* is an ideal of *X*.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let *X* be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff *I* is an ideal of *X*.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation ▷:

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let *X* be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff *I* is an ideal of *X*.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let *X* be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff *I* is an ideal of *X*.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend *Q* to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

We start of with an abstract generating relation \triangleright :

- *X* is a set.
- \triangleright is a relation on $\mathcal{P}_{fin}(X) \times X$, where we say 'A generates x' if $A \triangleright x$.
- We write $S \rhd^* x$ if $A \rhd x$ for some $A \subseteq S$.
- $\langle S \rangle$ is the closure of $S \subseteq X$ i.e. $S \subseteq \langle S \rangle$ and $\langle S \rangle \rhd^* x$ implies $x \in \langle S \rangle$.

Example

Let *X* be a commutative ring and $\{a_1, \ldots, a_k\} \triangleright x$ iff $a_1 \cdot x_1 + \ldots + a_k \cdot x_k = x$ for $x_1, \ldots, x_k \in X$. Then $I = \langle I \rangle$ iff *I* is an ideal of *X*.

We also consider the notion of an open predicate Q on subsets of X.

- Let Q(x) be an arbitrary predicate on elements of X.
- Extend Q to subsets $S \subseteq X$ by defining $Q(S) := (\forall x \in S)Q(x)$.
- Note that Q(S) and $T \subseteq S$ implies Q(T).

Example

Theorem (P., Schuster & Wiesnet, WoLLIC '19)

Suppose that $Q(\langle \emptyset \rangle)$. Then there exists some $M \subseteq X$ such that

- M is closed i.e. $M = \langle M \rangle$,
- Q(M) holds
- $\neg Q(M \oplus x)$ for all $x \notin M$, where $M \oplus x := \langle M \cup \{x\} \rangle$.

We say that M is maximal w.r.t. \triangleright and Q.

Proof (sketch).

Define $\mathcal{U} := \{S \subseteq X \mid S \text{ is closed and } Q(S)\}$. Then $\langle \emptyset \rangle \in \mathcal{U}$ and \mathcal{U} is chain complete w.r.t. \subseteq , therefore by Zorn's lemma it has a maximal element M.

M is closed and Q(M) holds since $M \in \mathcal{U}$. For $x \notin M$ we have $M \subset M \oplus x$ and thus $M \oplus x \notin \mathcal{U}$. But since $M \oplus x$ is closed then we must have $\neg Q(M \oplus x)$.

Example

Let X be a commutative ring with $0 \neq 1$. Continuing our previous example, we would have $S \in \mathcal{U}$ precisely when S is a *proper* ideal. Thus M is a maximal ideal.

Theorem (P., Schuster & Wiesnet, WoLLIC '19)

Suppose that $Q(\langle\emptyset\rangle)$. Then there exists some $M\subseteq X$ such that

- M is closed i.e. $M = \langle M \rangle$,
- Q(M) holds,
- $\neg Q(M \oplus x)$ for all $x \notin M$, where $M \oplus x := \langle M \cup \{x\} \rangle$.

We say that M is maximal w.r.t. \triangleright and Q.

Proof (sketch).

Define $\mathcal{U}:=\{S\subseteq X\mid S \text{ is closed and } Q(S)\}$. Then $\langle\emptyset\rangle\in\mathcal{U}$ and \mathcal{U} is chain complete w.r.t. \subseteq , therefore by Zorn's lemma it has a maximal element M.

M is closed and Q(M) holds since $M \in \mathcal{U}$. For $x \notin M$ we have $M \subset M \oplus x$ and thus $M \oplus x \notin \mathcal{U}$. But since $M \oplus x$ is closed then we must have $\neg Q(M \oplus x)$.

Example

Let X be a commutative ring with $0 \neq 1$. Continuing our previous example, we would have $S \in \mathcal{U}$ precisely when S is a *proper* ideal. Thus M is a maximal ideal.

Theorem (P., Schuster & Wiesnet, WoLLIC '19)

Suppose that $Q(\langle\emptyset\rangle)$. Then there exists some $M\subseteq X$ such that

- M is closed i.e. $M = \langle M \rangle$,
- Q(M) holds,
- $\neg Q(M \oplus x)$ for all $x \notin M$, where $M \oplus x := \langle M \cup \{x\} \rangle$.

We say that M is maximal w.r.t. \triangleright and Q.

Proof (sketch).

Define $\mathcal{U}:=\{S\subseteq X\mid S \text{ is closed and }Q(S)\}$. Then $\langle\emptyset\rangle\in\mathcal{U}$ and \mathcal{U} is chain complete w.r.t. \subseteq , therefore by Zorn's lemma it has a maximal element M.

M is closed and Q(M) holds since $M \in \mathcal{U}$. For $x \notin M$ we have $M \subset M \oplus x$ and thus $M \oplus x \notin \mathcal{U}$. But since $M \oplus x$ is closed then we must have $\neg Q(M \oplus x)$.

Example

Let X be a commutative ring with $0 \neq 1$. Continuing our previous example, we would have $S \in \mathcal{U}$ precisely when S is a *proper* ideal. Thus M is a maximal ideal

Theorem (P., Schuster & Wiesnet, WoLLIC '19)

Suppose that $Q(\langle\emptyset\rangle)$. Then there exists some $M\subseteq X$ such that

- M is closed i.e. $M = \langle M \rangle$,
- Q(M) holds,
- $\neg Q(M \oplus x)$ for all $x \notin M$, where $M \oplus x := \langle M \cup \{x\} \rangle$.

We say that M is maximal w.r.t. \triangleright and Q.

Proof (sketch).

Define $\mathcal{U}:=\{S\subseteq X\mid S \text{ is closed and }Q(S)\}$. Then $\langle\emptyset\rangle\in\mathcal{U}$ and \mathcal{U} is chain complete w.r.t. \subseteq , therefore by Zorn's lemma it has a maximal element M.

M is closed and Q(M) holds since $M \in \mathcal{U}$. For $x \notin M$ we have $M \subset M \oplus x$ and thus $M \oplus x \notin \mathcal{U}$. But since $M \oplus x$ is closed then we must have $\neg Q(M \oplus x)$.

Example

Let X be a commutative ring with $0 \neq 1$. Continuing our previous example, we would have $S \in \mathcal{U}$ precisely when S is a *proper* ideal. Thus M is a maximal ideal.

Theorem (P., Schuster & Wiesnet, WoLLIC '19)

Suppose that $Q(\langle \emptyset \rangle)$. Then there exists some $M \subseteq X$ such that

- M is closed i.e. $M = \langle M \rangle$,
- Q(M) holds,
- $\neg Q(M \oplus x)$ for all $x \notin M$, where $M \oplus x := \langle M \cup \{x\} \rangle$.

We say that M is maximal w.r.t. \triangleright and Q.

Proof (sketch).

Define $\mathcal{U}:=\{S\subseteq X\mid S \text{ is closed and }Q(S)\}$. Then $\langle\emptyset\rangle\in\mathcal{U}$ and \mathcal{U} is chain complete w.r.t. \subseteq , therefore by Zorn's lemma it has a maximal element M.

M is closed and Q(M) holds since $M \in \mathcal{U}$. For $x \notin M$ we have $M \subset M \oplus x$ and thus $M \oplus x \notin \mathcal{U}$. But since $M \oplus x$ is closed then we must have $\neg Q(M \oplus x)$.

Example

Let X be a commutative ring with $0 \neq 1$. Continuing our previous example, we would have $S \in \mathcal{U}$ precisely when S is a proper ideal. Thus M is a maximal ideal.

From now on, suppose that $X := \{x_n \mid n \in \mathbb{N}\}$ is countable Define $[S](n) := S \cap \{x_m \mid m < n\}$.

Theorem

Suppose that $M \subseteq X$ satisfies

$$x_n \in M \Leftrightarrow Q([M](n) \oplus x_n)$$

for all $n \in \mathbb{N}$. Then $Q(\langle \emptyset \rangle)$ implies that M is maximal.

Idea. In the countable case, maximal objects can be constructed in a sequential fashion (formally, using dependent choice).

Example

Let X be a commutative ring with $0 \neq 1$ and suppose that M satisfies

$$x_n \in M \Leftrightarrow \forall b \in X^*, y \in X(b \cdot [M](n) + y \cdot x_n \neq 1).$$

Then M is a maximal ideal.

This is a standard trick in reverse math (cf. Lemma III.5.4. of Simpson's Reverse Maths book, where a similar argument is used to show that the existence of maximal ideals in countable rings is provable in AGA_0).

From now on, suppose that $X := \{x_n \mid n \in \mathbb{N}\}$ is countable. Define $[S](n) := S \cap \{x_m \mid m < n\}$.

Theorem

Suppose that $M \subseteq X$ satisfies

$$x_n \in M \Leftrightarrow Q([M](n) \oplus x_n)$$

for all $n \in \mathbb{N}$. Then $Q(\langle \emptyset \rangle)$ implies that M is maximal.

Idea. In the countable case, maximal objects can be constructed in a sequential fashion (formally, using dependent choice).

Example

Let X be a commutative ring with $0 \neq 1$ and suppose that M satisfies

$$x_n \in M \Leftrightarrow \forall b \in X^*, y \in X(b \cdot [M](n) + y \cdot x_n \neq 1)$$

Then M is a maximal ideal.

This is a standard trick in reverse math (cf. Lemma III.5.4. of Simpson's Reverse Maths book, where a similar argument is used to show that the existence of maximal ideals in countable rings is provable in AGA_0).

From now on, suppose that $X := \{x_n \mid n \in \mathbb{N}\}$ is countable. Define $[S](n) := S \cap \{x_m \mid m < n\}$.

Theorem

Suppose that $M \subseteq X$ satisfies

$$x_n \in M \Leftrightarrow Q([M](n) \oplus x_n)$$

for all $n \in \mathbb{N}$. Then $Q(\langle \emptyset \rangle)$ implies that M is maximal.

Idea. In the countable case, maximal objects can be constructed in a sequential fashion (formally, using dependent choice).

Example

Let X be a commutative ring with $0 \neq 1$ and suppose that M satisfies

$$x_n \in M \Leftrightarrow \forall b \in X^*, y \in X(b \cdot [M](n) + y \cdot x_n \neq 1).$$

Then M is a maximal ideal.

This is a standard trick in reverse math (cf. Lemma III.5.4. of Simpson's Reverse Maths book, where a similar argument is used to show that the existence of maximal ideals in countable rings is provable in ACA_0).

From now on, suppose that $X := \{x_n \mid n \in \mathbb{N}\}$ is countable. Define $[S](n) := S \cap \{x_m \mid m < n\}$.

Theorem

Suppose that $M \subseteq X$ satisfies

$$x_n \in M \Leftrightarrow Q([M](n) \oplus x_n)$$

for all $n \in \mathbb{N}$. Then $Q(\langle \emptyset \rangle)$ implies that M is maximal.

Idea. In the countable case, maximal objects can be constructed in a sequential fashion (formally, using dependent choice).

Example

Let *X* be a commutative ring with $0 \neq 1$ and suppose that *M* satisfies

$$x_n \in M \Leftrightarrow \forall b \in X^*, y \in X(b \cdot [M](n) + y \cdot x_n \neq 1).$$

Then M is a maximal ideal.

This is a standard trick in reverse math (cf. Lemma III.5.4. of Simpson's Reverse Maths book, where a similar argument is used to show that the existence of maximal ideals in countable rings is provable in ACA_0).

From now on, suppose that $X := \{x_n \mid n \in \mathbb{N}\}$ is countable. Define $[S](n) := S \cap \{x_m \mid m < n\}$.

Theorem

Suppose that $M \subseteq X$ satisfies

$$x_n \in M \Leftrightarrow Q([M](n) \oplus x_n)$$

for all $n \in \mathbb{N}$. Then $Q(\langle \emptyset \rangle)$ implies that M is maximal.

Idea. In the countable case, maximal objects can be constructed in a sequential fashion (formally, using dependent choice).

Example

Let X be a commutative ring with $0 \neq 1$ and suppose that M satisfies

$$x_n \in M \Leftrightarrow \forall b \in X^*, y \in X(b \cdot [M](n) + y \cdot x_n \neq 1).$$

Then M is a maximal ideal.

This is a standard trick in reverse math (cf. Lemma III.5.4. of Simpson's Reverse Maths book, where a similar argument is used to show that the existence of maximal ideals in countable rings is provable in AGA_0).

From now on, suppose that $X := \{x_n \mid n \in \mathbb{N}\}$ is countable. Define $[S](n) := S \cap \{x_m \mid m < n\}$.

Theorem

Suppose that $M \subseteq X$ satisfies

$$x_n \in M \Leftrightarrow Q([M](n) \oplus x_n)$$

for all $n \in \mathbb{N}$. Then $Q(\langle \emptyset \rangle)$ implies that M is maximal.

Idea. In the countable case, maximal objects can be constructed in a sequential fashion (formally, using dependent choice).

Example

Let X be a commutative ring with $0 \neq 1$ and suppose that M satisfies

$$x_n \in M \Leftrightarrow \forall b \in X^*, y \in X(b \cdot [M](n) + y \cdot x_n \neq 1).$$

Then M is a maximal ideal.

This is a standard trick in reverse math (cf. Lemma III.5.4. of Simpson's Reverse Maths book, where a similar argument is used to show that the existence of maximal ideals in countable rings is provable in ACA_0).

Suppose that Q(x) is a Π_1^0 -formula, and $A \triangleright x$ can be encoded as a Σ_1^0 -formula. Then $Q(\langle S \rangle)$ can be encoded as a Π_1^0 -formula.

- $x \in \langle S \rangle$ iff there exists some finite derivation tree t whose leaves are elements of S and whose nodes represent instances of \triangleright .
- if $A \triangleright x$ is Σ_1^0 , then being a derivation tree is also Σ_1^0 , and hence so is the existence of a derivation tree i.e. $x \in \langle S \rangle$.
- $Q(\langle S \rangle)$ is Π_1^0 since

$$Q(\langle S \rangle) \Leftrightarrow (\forall x) \underbrace{x \in \langle S \rangle}_{\Sigma_1^0} \Rightarrow \underbrace{Q(x)}_{\Pi_1^0}$$

Theorem

The existence of a maximal structure can be encoded

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

for some suitable decidable predicate $R_A(p)$

Suppose that Q(x) is a Π_1° -formula, and $A \rhd x$ can be encoded as a Σ_1° -formula. Then $Q(\langle S \rangle)$ can be encoded as a Π_1° -formula.

- $x \in \langle S \rangle$ iff there exists some finite derivation tree t whose leaves are elements of S and whose nodes represent instances of \triangleright .
- if A > x is Σ₁⁰, then being a derivation tree is also Σ₁⁰, and hence so is the existence of a derivation tree i.e. x ∈ ⟨S⟩.
- $Q(\langle S \rangle)$ is Π_1^0 since

$$Q(\langle S \rangle) \Leftrightarrow (\forall x) \underbrace{(x \in \langle S \rangle}_{\Sigma_1^0} \Rightarrow \underbrace{Q(x)}_{\Pi_1^0}$$

Theorem

The existence of a maximal structure can be encoded

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

for some suitable decidable predicate $R_A(p)$.

Suppose that Q(x) is a Π_1° -formula, and $A \rhd x$ can be encoded as a Σ_1° -formula. Then $Q(\langle S \rangle)$ can be encoded as a Π_1° -formula.

- $x \in \langle S \rangle$ iff there exists some finite derivation tree t whose leaves are elements of S and whose nodes represent instances of \triangleright .
- if $A \triangleright x$ is Σ_1^0 , then being a derivation tree is also Σ_1^0 , and hence so is the existence of a derivation tree i.e. $x \in \langle S \rangle$.
- $Q(\langle S \rangle)$ is Π_1^0 since

$$Q(\langle S \rangle) \Leftrightarrow (\forall x) \underbrace{(x \in \langle S \rangle}_{\Sigma_1^0} \Rightarrow \underbrace{Q(x)}_{\Pi_1^0}$$

Theorem

The existence of a maximal structure can be encoded

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

for some suitable decidable predicate $R_A(p)$

Suppose that Q(x) is a Π_1° -formula, and $A \rhd x$ can be encoded as a Σ_1° -formula. Then $Q(\langle S \rangle)$ can be encoded as a Π_1° -formula.

- $x \in \langle S \rangle$ iff there exists some finite derivation tree t whose leaves are elements of S and whose nodes represent instances of \triangleright .
- if $A \triangleright x$ is Σ_1^0 , then being a derivation tree is also Σ_1^0 , and hence so is the existence of a derivation tree i.e. $x \in \langle S \rangle$.
- $Q(\langle S \rangle)$ is Π_1° since

$$Q(\langle S \rangle) \Leftrightarrow (\forall x) \underbrace{(x \in \langle S \rangle}_{\Sigma_1^0} \Rightarrow \underbrace{Q(x)}_{\Pi_1^0})$$

Theorem

The existence of a maximal structure can be encoded

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

for some suitable decidable predicate $R_A(p)$.

The logical complexity of $Q(\langle S \rangle)$

Suppose that Q(x) is a Π_1° -formula, and $A \rhd x$ can be encoded as a Σ_1° -formula. Then $Q(\langle S \rangle)$ can be encoded as a Π_1° -formula.

- $x \in \langle S \rangle$ iff there exists some finite derivation tree t whose leaves are elements of S and whose nodes represent instances of \triangleright .
- if $A \triangleright x$ is Σ_1^0 , then being a derivation tree is also Σ_1^0 , and hence so is the existence of a derivation tree i.e. $x \in \langle S \rangle$.
- $Q(\langle S \rangle)$ is Π_1^0 since

$$Q(\langle S \rangle) \Leftrightarrow (\forall x)(\underbrace{x \in \langle S \rangle}_{\Sigma_1^0} \Rightarrow \underbrace{Q(x)}_{\Pi_1^0})$$

Theorem

The existence of a maximal structure can be encoded

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

for some suitable decidable predicate $R_A(p)$.

The logical complexity of $Q(\langle S \rangle)$

Suppose that Q(x) is a Π_1° -formula, and $A \rhd x$ can be encoded as a Σ_1° -formula. Then $Q(\langle S \rangle)$ can be encoded as a Π_1° -formula.

- $x \in \langle S \rangle$ iff there exists some finite derivation tree t whose leaves are elements of S and whose nodes represent instances of \triangleright .
- if $A \triangleright x$ is Σ_1^0 , then being a derivation tree is also Σ_1^0 , and hence so is the existence of a derivation tree i.e. $x \in \langle S \rangle$.
- $Q(\langle S \rangle)$ is Π_1^0 since

$$Q(\langle S \rangle) \Leftrightarrow (\forall x)(\underbrace{x \in \langle S \rangle}_{\Sigma_1^0} \Rightarrow \underbrace{Q(x)}_{\Pi_1^0})$$

Theorem

The existence of a maximal structure can be encoded

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

for some suitable decidable predicate $R_A(p)$.

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

Written out fully we get:

$$(\exists M)(\forall n) \begin{pmatrix} x_n \in M \Rightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p) \\ \wedge x_n \notin M \Rightarrow (\exists p) \neg R_{[M](n) \cup \{x_n\}}(p) \end{pmatrix}$$

Bringing the quantifiers to the front

$$(\exists M, f)(\forall n, p) \begin{pmatrix} x_n \in M \Rightarrow R_{[M](n) \cup \{x_n\}}(p) \\ \land x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n)) \end{pmatrix}$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M,f)} \in M \Rightarrow R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(\phi(M,f)) \\ \land x_{\omega(M,f)} \notin M \Rightarrow \neg R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(f(\omega(M,f))) \end{pmatrix}$$

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

Written out fully we get

$$(\exists M)(\forall n) \begin{pmatrix} x_n \in M \Rightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p) \\ \wedge x_n \notin M \Rightarrow (\exists p) \neg R_{[M](n) \cup \{x_n\}}(p) \end{pmatrix}$$

Bringing the quantifiers to the front

$$(\exists M, f)(\forall n, p) \begin{pmatrix} x_n \in M \Rightarrow R_{[M](n) \cup \{x_n\}}(p) \\ \land x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n)) \end{pmatrix}$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M,f)} \in M \Rightarrow R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(\phi(M,f)) \\ \land x_{\omega(M,f)} \notin M \Rightarrow \neg R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(f(\omega(M,f))) \end{pmatrix}$$

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

Written out fully we get:

$$(\exists M)(\forall n) \left(x_n \in M \Rightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p) \\ \land x_n \notin M \Rightarrow (\exists p) \neg R_{[M](n) \cup \{x_n\}}(p) \right)$$

Bringing the quantifiers to the front:

$$(\exists M, f)(\forall n, p) \begin{pmatrix} x_n \in M \Rightarrow R_{[M](n) \cup \{x_n\}}(p) \\ \land x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n)) \end{pmatrix}$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M,f)} \in M \Rightarrow R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(\phi(M,f)) \\ \wedge x_{\omega(M,f)} \notin M \Rightarrow \neg R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(f(\omega(M,f))) \end{pmatrix}$$

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

Written out fully we get:

$$(\exists M)(\forall n) \left(\begin{array}{c} x_n \in M \Rightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p) \\ \wedge x_n \notin M \Rightarrow (\exists p) \neg R_{[M](n) \cup \{x_n\}}(p) \end{array} \right)$$

Bringing the quantifiers to the front:

$$(\exists M, f)(\forall n, p) \left(\begin{array}{c} x_n \in M \Rightarrow R_{[M](n) \cup \{x_n\}}(p) \\ \wedge x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n)) \end{array} \right)$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M,f)} \in M \Rightarrow R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(\phi(M,f)) \\ \wedge x_{\omega(M,f)} \notin M \Rightarrow \neg R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(f(\omega(M,f))) \end{pmatrix}$$

$$(\exists M)(\forall n) (x_n \in M \Leftrightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p))$$

Written out fully we get:

$$(\exists M)(\forall n) \left(\begin{array}{c} x_n \in M \Rightarrow (\forall p) R_{[M](n) \cup \{x_n\}}(p) \\ \wedge x_n \notin M \Rightarrow (\exists p) \neg R_{[M](n) \cup \{x_n\}}(p) \end{array} \right)$$

Bringing the quantifiers to the front:

$$(\exists M, f)(\forall n, p) \begin{pmatrix} x_n \in M \Rightarrow R_{[M](n) \cup \{x_n\}}(p) \\ \land x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n)) \end{pmatrix}$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M, f)} \in M \Rightarrow R_{[M](\omega(M, f)) \cup \{x_{\omega(M, f)}\}}(\phi(M, f)) \\ \land x_{\omega(M, f)} \notin M \Rightarrow \neg R_{[M](\omega(M, f)) \cup \{x_{\omega(M, f)}\}}(f(\omega(M, f))) \end{pmatrix}$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M,f)} \in M \Rightarrow R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(\phi(M,f)) \\ \land x_{\omega(M,f)} \notin M \Rightarrow \neg R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(f(\omega(M,f))) \end{pmatrix}$$

The functional interpretation of maximality inspires the following definition:

Definition

Given functionals (ω, ϕ) , we say that $M \subseteq X$ and $f: \text{dom}(X \setminus M) \to \mathbb{N}$ constitute ar approximate maximal object relative to (ω, ϕ) if they satisfy

•
$$x_n \in M \Rightarrow R_{[M](n)\cup\{x_n\}}(p)$$

•
$$x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n))$$

for all $n \leq \omega(M, f)$ and $p = \phi(M, f)$.

We now design a sequential algorithm

$$M_0, f_0 \mapsto M_1, f_1 \mapsto \ldots \mapsto M_k, f_k$$

$$(\forall \omega, \phi)(\exists M, f) \begin{pmatrix} x_{\omega(M,f)} \in M \Rightarrow R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(\phi(M,f)) \\ \land x_{\omega(M,f)} \notin M \Rightarrow \neg R_{[M](\omega(M,f)) \cup \{x_{\omega(M,f)}\}}(f(\omega(M,f))) \end{pmatrix}$$

The functional interpretation of maximality inspires the following definition

Definition

Given functionals (ω, ϕ) , we say that $M \subseteq X$ and $f: \text{dom}(X \setminus M) \to \mathbb{N}$ constitute ar approximate maximal object relative to (ω, ϕ) if they satisfy

•
$$x_n \in M \Rightarrow R_{[M](n) \cup \{x_n\}}(p)$$

•
$$x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n))$$

for all $n \leq \omega(M, f)$ and $p = \phi(M, f)$.

We now design a sequential algorithm

$$M_0, f_0 \mapsto M_1, f_1 \mapsto \ldots \mapsto M_k, f_k$$

$$(\forall \omega, \phi)(\exists \mathsf{M}, f) \begin{pmatrix} x_{\omega(\mathsf{M}, f)} \in \mathsf{M} \Rightarrow \mathsf{R}_{[\mathsf{M}](\omega(\mathsf{M}, f)) \cup \{x_{\omega(\mathsf{M}, f)}\}}(\phi(\mathsf{M}, f)) \\ \land x_{\omega(\mathsf{M}, f)} \notin \mathsf{M} \Rightarrow \neg \mathsf{R}_{[\mathsf{M}](\omega(\mathsf{M}, f)) \cup \{x_{\omega(\mathsf{M}, f)}\}}(f(\omega(\mathsf{M}, f))) \end{pmatrix}$$

The functional interpretation of maximality inspires the following definition:

Definition

Given functionals (ω, ϕ) , we say that $M \subseteq X$ and $f : \text{dom}(X \setminus M) \to \mathbb{N}$ constitute an approximate maximal object relative to (ω, ϕ) if they satisfy

•
$$x_n \in M \Rightarrow R_{[M](n)\cup\{x_n\}}(p)$$

•
$$x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n))$$

for all $n \leq \omega(M, f)$ and $p = \phi(M, f)$.

We now design a sequential algorithm

$$M_0, f_0 \mapsto M_1, f_1 \mapsto \ldots \mapsto M_k, f_k$$

$$(\forall \omega, \phi)(\exists \mathsf{M}, f) \begin{pmatrix} x_{\omega(\mathsf{M}, f)} \in \mathsf{M} \Rightarrow \mathsf{R}_{[\mathsf{M}](\omega(\mathsf{M}, f)) \cup \{x_{\omega(\mathsf{M}, f)}\}}(\phi(\mathsf{M}, f)) \\ \land x_{\omega(\mathsf{M}, f)} \notin \mathsf{M} \Rightarrow \neg \mathsf{R}_{[\mathsf{M}](\omega(\mathsf{M}, f)) \cup \{x_{\omega(\mathsf{M}, f)}\}}(f(\omega(\mathsf{M}, f))) \end{pmatrix}$$

The functional interpretation of maximality inspires the following definition:

Definition

Given functionals (ω, ϕ) , we say that $M \subseteq X$ and $f : \text{dom}(X \setminus M) \to \mathbb{N}$ constitute an approximate maximal object relative to (ω, ϕ) if they satisfy

•
$$x_n \in M \Rightarrow R_{[M](n)\cup\{x_n\}}(p)$$

•
$$x_n \notin M \Rightarrow \neg R_{[M](n) \cup \{x_n\}}(f(n))$$

for all $n \leq \omega(M, f)$ and $p = \phi(M, f)$.

We now design a sequential algorithm

$$M_0, f_0 \mapsto M_1, f_1 \mapsto \ldots \mapsto M_k, f_k$$

A state s is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$ • $\neg R[M[s_i](n) \cup \{r_i\}(p_i)]$
- if none is found, terminate
- e else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state *s* is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}\$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n)\cup\{x_n\}}(p_i)$
- if none is found, terminate
- e else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state s is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n) \cup \{x_n\}}(p_i)$
 - if none is found, terminate
- e else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state *s* is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n) \cup \{x_n\}}(p_i)$
 - if none is found, terminate
- e else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state s is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n) \cup \{x_n\}}(p_i)$
- if none is found, terminate
- e else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state s is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n) \cup \{x_n\}}(p_i)$
 - , if none is found, terminate
 - e else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state s is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n)\cup\{x_n\}}(p_i)$
 - if none is found, terminate
 - else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state *s* is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n) \cup \{x_n\}}(p_i)$
 - if none is found, terminate
- else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

A state s is defined to be a function $\mathbb{N} \to \{(*)\} + \mathbb{N}$. Any state induces a set M[s] and a function $f : \text{dom}(X \setminus M[s]) \to \mathbb{N}$ via

$$M[s] := \{x_n \mid s_i(n) = (*)\}$$

 $f[s] := \lambda n \cdot s_i(n)$

Define the sequential algorithm $\{s_i\}_{i\in\mathbb{N}}$ by $s_0(n)=(*)$ (i.e. $M[s_0]=X$) and

- 1. set $n_i, p_i := \omega(M[s_i], f[s_i]), \phi(M[s_i], f[s_i])$
- 2. search from 0 up to n_i for some n such that
 - $x_n \in M[s_i]$
 - $\neg R_{[M[s_i]](n) \cup \{x_n\}}(p_i)$
 - if none is found, terminate
 - else, set $s_{i+1} := [s_i](n) :: p_i :: \lambda k . (*)$

Theorem

It is well known that in any commutative ring:

r lies in intersection of all prime ideals \Rightarrow *r* is nilpotent

We can formalise this using \triangleright as before and $Q(x) := (\forall e > 0)(x \neq r^e)$

Suppose $\psi : \mathcal{P}(X) \to \{0,1,2\} + (\{3,4,5\} \times \mathbb{N}^3)$ witnesses the premise of the above in the following sense:

- $\psi(S) = 0 \Rightarrow 0_X \notin S$
- $\psi(S) = 1 \Rightarrow 1_X \in S$
- $\psi(S) = 2 \Rightarrow r \in S$
- $\psi(S) = (3, i, j, k) \Rightarrow (x_i + x_j = x_k) \land (x_i, x_j \in S) \land (x_k \notin S)$
- $\psi(S) = (4, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i \in S) \land (x_k \notin S)$
- $\psi(S) = (5, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i, x_j \notin S) \land (x_k \in S)$

It is well known that in any commutative ring:

r lies in intersection of all prime ideals \Rightarrow *r* is nilpotent

We can formalise this using \triangleright as before and $Q(x) := (\forall e > 0)(x \neq r^e)$.

Suppose $\psi : \mathcal{P}(X) \to \{0,1,2\} + (\{3,4,5\} \times \mathbb{N}^3)$ witnesses the premise of the above in the following sense:

- $\psi(S) = 0 \Rightarrow 0_X \notin S$
- $\psi(S) = 1 \Rightarrow 1_X \in S$
- $\psi(S) = 2 \Rightarrow r \in S$
- $\psi(S) = (3, i, j, k) \Rightarrow (x_i + x_j = x_k) \land (x_i, x_j \in S) \land (x_k \notin S)$
- $\psi(S) = (4, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i \in S) \land (x_k \notin S)$
- $\psi(S) = (5, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i, x_j \notin S) \land (x_k \in S)$

It is well known that in any commutative ring:

r lies in intersection of all prime ideals \Rightarrow *r* is nilpotent

We can formalise this using \triangleright as before and $Q(x) := (\forall e > 0)(x \neq r^e)$.

Suppose $\psi: \mathcal{P}(X) \to \{0,1,2\} + (\{3,4,5\} \times \mathbb{N}^3)$ witnesses the premise of the above in the following sense:

•
$$\psi(S) = 0 \Rightarrow 0_X \notin S$$

•
$$\psi(S) = 1 \Rightarrow 1_X \in S$$

•
$$\psi(S) = 2 \Rightarrow r \in S$$

•
$$\psi(S) = (3, i, j, k) \Rightarrow (x_i + x_j = x_k) \land (x_i, x_j \in S) \land (x_k \notin S)$$

•
$$\psi(S) = (4, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i \in S) \land (x_k \notin S)$$

•
$$\psi(S) = (5, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i, x_j \notin S) \land (x_k \in S)$$

It is well known that in any commutative ring:

r lies in intersection of all prime ideals \Rightarrow *r* is nilpotent

We can formalise this using \triangleright as before and $Q(x) := (\forall e > 0)(x \neq r^e)$.

Suppose $\psi: \mathcal{P}(X) \to \{0,1,2\} + (\{3,4,5\} \times \mathbb{N}^3)$ witnesses the premise of the above in the following sense:

- $\psi(S) = 0 \Rightarrow 0_X \notin S$
- $\psi(S) = 1 \Rightarrow 1_X \in S$
- $\psi(S) = 2 \Rightarrow r \in S$
- $\psi(S) = (3, i, j, k) \Rightarrow (x_i + x_j = x_k) \land (x_i, x_j \in S) \land (x_k \notin S)$
- $\psi(S) = (4, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i \in S) \land (x_k \notin S)$
- $\psi(S) = (5, i, j, k) \Rightarrow (x_i \cdot x_j = x_k) \land (x_i, x_j \notin S) \land (x_k \in S)$

- Each state s_i encodes some $M[s_i] \subseteq X$, where $x_n \notin M[s_i]$ only if we have found evidence that $[M[s_i]](n) \cup \{x_n\}$ generates r^e for some e > 0, in which case this evidence is encoded as $s_i(n) \in \mathbb{N}$.
- We start off at s_0 with the full set $M[s_0] = X$.
- At state s_i we interact with our functional ψ , which provides us with evidence that either $M[s_i]$ is not a prime ideal, or $r \in M[s_i]$.
- If this evidence takes the form of anything other than $O_X \notin S$, then we are able to use this to find some $x_n \in M$ and evidence that $[M](n) \cup \{x_n\}$ generates r^e for some e > 0. We exclude x_n from $M[s_i]$ but add all x_k for all k > n (since now the evidence that $[M[s_i]](k) \cup \{x_k\}$ generates $r^{e'}$ could be falsified by the removal of x_n).
- Eventually, using a continuity argument, the algorithm terminates in some state s_i . The only way this can be is if $\psi(M[s_i]) = 0$, which indicates that $O_X \notin M[s_i]$. Thus $\{O_X\}$ generates r^e for some e > 0 encoded in the state.

- Each state s_i encodes some $M[s_i] \subseteq X$, where $x_n \notin M[s_i]$ only if we have found evidence that $[M[s_i]](n) \cup \{x_n\}$ generates r^e for some e > 0, in which case this evidence is encoded as $s_i(n) \in \mathbb{N}$.
- We start off at s_0 with the full set $M[s_0] = X$.
- At state s_i we interact with our functional ψ, which provides us with evidence that either M[s_i] is not a prime ideal, or r ∈ M[s_i].
- If this evidence takes the form of anything other than $O_X \notin S$, then we are able to use this to find some $x_n \in M$ and evidence that $[M](n) \cup \{x_n\}$ generates r^e for some e > 0. We exclude x_n from $M[s_i]$ but add all x_k for all k > n (since now the evidence that $[M[s_i]](k) \cup \{x_k\}$ generates $r^{e'}$ could be falsified by the removal of x_n).
- Eventually, using a continuity argument, the algorithm terminates in some state s_j . The only way this can be is if $\psi(M[s_j]) = 0$, which indicates that $O_X \notin M[s_j]$. Thus $\{O_X\}$ generates r^e for some e > 0 encoded in the state.

- Each state s_i encodes some $M[s_i] \subseteq X$, where $x_n \notin M[s_i]$ only if we have found evidence that $[M[s_i]](n) \cup \{x_n\}$ generates r^e for some e > 0, in which case this evidence is encoded as $s_i(n) \in \mathbb{N}$.
- We start off at s_0 with the full set $M[s_0] = X$.
- At state s_i we interact with our functional ψ, which provides us with evidence that either M[s_i] is not a prime ideal, or r ∈ M[s_i].
- If this evidence takes the form of anything other than $O_X \notin S$, then we are able to use this to find some $x_n \in M$ and evidence that $[M](n) \cup \{x_n\}$ generates r^e for some e > 0. We exclude x_n from $M[s_i]$ but add all x_k for all k > n (since now the evidence that $[M[s_i]](k) \cup \{x_k\}$ generates $r^{e'}$ could be falsified by the removal of x_n).
- Eventually, using a continuity argument, the algorithm terminates in some state s_i . The only way this can be is if $\psi(M[s_i]) = 0$, which indicates that $O_X \notin M[s_i]$. Thus $\{O_X\}$ generates r^e for some e > 0 encoded in the state.

- Each state s_i encodes some M[s_i] ⊆ X, where x_n ∉ M[s_i] only if we have found evidence that [M[s_i]](n) ∪ {x_n} generates r^e for some e > 0, in which case this evidence is encoded as s_i(n) ∈ N.
- We start off at s_0 with the full set $M[s_0] = X$.
- At state s_i we interact with our functional ψ , which provides us with evidence that either $M[s_i]$ is not a prime ideal, or $r \in M[s_i]$.
- If this evidence takes the form of anything other than $O_X \notin S$, then we are able to use this to find some $x_n \in M$ and evidence that $[M](n) \cup \{x_n\}$ generates r^e for some e > 0. We exclude x_n from $M[s_i]$ but add all x_k for all k > n (since now the evidence that $[M[s_i]](k) \cup \{x_k\}$ generates $r^{e'}$ could be falsified by the removal of x_n).
- Eventually, using a continuity argument, the algorithm terminates in some state s_i . The only way this can be is if $\psi(M[s_i]) = 0$, which indicates that $O_X \notin M[s_i]$. Thus $\{O_X\}$ generates r^e for some e > 0 encoded in the state.

- Each state s_i encodes some $M[s_i] \subseteq X$, where $x_n \notin M[s_i]$ only if we have found evidence that $[M[s_i]](n) \cup \{x_n\}$ generates r^e for some e > 0, in which case this evidence is encoded as $s_i(n) \in \mathbb{N}$.
- We start off at s_0 with the full set $M[s_0] = X$.
- At state s_i we interact with our functional ψ , which provides us with evidence that either $M[s_i]$ is not a prime ideal, or $r \in M[s_i]$.
- If this evidence takes the form of anything other than $O_X \notin S$, then we are able to use this to find some $x_n \in M$ and evidence that $[M](n) \cup \{x_n\}$ generates r^e for some e > 0. We exclude x_n from $M[s_i]$ but add all x_k for all k > n (since now the evidence that $[M[s_i]](k) \cup \{x_k\}$ generates $r^{e'}$ could be falsified by the removal of x_n).
- Eventually, using a continuity argument, the algorithm terminates in some state s_i . The only way this can be is if $\psi(M[s_i]) = 0$, which indicates that $O_X \notin M[s_i]$. Thus $\{O_X\}$ generates r^e for some e > 0 encoded in the state.

- Each state s_i encodes some $M[s_i] \subseteq X$, where $x_n \notin M[s_i]$ only if we have found evidence that $[M[s_i]](n) \cup \{x_n\}$ generates r^e for some e > 0, in which case this evidence is encoded as $s_i(n) \in \mathbb{N}$.
- We start off at s_0 with the full set $M[s_0] = X$.
- At state s_i we interact with our functional ψ , which provides us with evidence that either $M[s_i]$ is not a prime ideal, or $r \in M[s_i]$.
- If this evidence takes the form of anything other than O_X ∉ S, then we are able to use this to find some x_n ∈ M and evidence that [M](n) ∪ {x_n} generates r^e for some e > 0. We exclude x_n from M[s_i] but add all x_k for all k > n (since now the evidence that [M[s_i]](k) ∪ {x_k} generates r^{e'} could be falsified by the removal of x_n).
- Eventually, using a continuity argument, the algorithm terminates in some state s_j . The only way this can be is if $\psi(M[s_j]) = 0$, which indicates that $O_X \notin M[s_j]$. Thus $\{O_X\}$ generates r^e for some e > 0 encoded in the state.

We have achieved the following:

$$\frac{r \text{ lies in intersection of all prime ideals}}{\text{witnessing functional } \psi} \Rightarrow \underbrace{r \text{ is nilpotent}}_{e > 0 \text{ with } r^e = 0}$$

For existential statements which use this, we simply need to instantiate ψ .

Theorem

Let $f = \sum_{i=0}^n a_i T^i$ be a unit in X[T]. Then a_i is nilpotent for all i > 0.

Proof

Let fg = 1 and take some prime ideal P. Then fg = 1 also in X/P[T], and since X/P is a domain we have $\deg(f) + \deg(g) = \deg(fg) = 0$. Thus for all i > 0, $a_i = 0$ in X/P and hence $a_i \in P$. Since a_i in intersection of all prime ideals, it is nilpotent.

We have achieved the following:

For existential statements which use this, we simply need to instantiate $\psi.$

Theorem

Let $f = \sum_{i=0}^{n} a_i T^i$ be a unit in X[T]. Then a_i is nilpotent for all i > 0.

Proof

Let fg = 1 and take some prime ideal P. Then fg = 1 also in X/P[T], and since X/P is a domain we have $\deg(f) + \deg(g) = \deg(fg) = 0$. Thus for all i > 0, $a_i = 0$ in X/P and hence $a_i \in P$. Since a_i in intersection of all prime ideals, it is nilpotent.

We have achieved the following:

For existential statements which use this, we simply need to instantiate ψ .

Theorem

Let $f = \sum_{i=0}^{n} a_i T^i$ be a unit in X[T]. Then a_i is nilpotent for all i > 0.

Proof

Let fg = 1 and take some prime ideal P. Then fg = 1 also in X/P[T], and since X/P is a domain we have $\deg(f) + \deg(g) = \deg(fg) = 0$. Thus for all i > 0, $a_i = 0$ in X/P and hence $a_i \in P$. Since a_i in intersection of all prime ideals, it is nilpotent.

We have achieved the following:

For existential statements which use this, we simply need to instantiate ψ .

Theorem

Let $f = \sum_{i=0}^{n} a_i T^i$ be a unit in X[T]. Then a_i is nilpotent for all i > 0.

Proof

Let fg = 1 and take some prime ideal P. Then fg = 1 also in X/P[T], and since X/P is a domain we have $\deg(f) + \deg(g) = \deg(fg) = 0$. Thus for all i > 0, $a_i = 0$ in X/P and hence $a_i \in P$. Since a_i in intersection of all prime ideals, it is nilpotent.

We have achieved the following:

r lies in intersection of all prime ideals
$$\Rightarrow$$
 r is nilpotent witnessing functional ψ $e > 0$ with $r^e = 0$

For existential statements which use this, we simply need to instantiate ψ .

Theorem

Let $f = \sum_{i=0}^{n} a_i T^i$ be a unit in X[T]. Then a_i is nilpotent for all i > 0.

Proof.

Let fg = 1 and take some prime ideal P. Then fg = 1 also in X/P[T], and since X/P is a domain we have $\deg(f) + \deg(g) = \deg(fg) = 0$. Thus for all i > 0, $a_i = 0$ in X/P and hence $a_i \in P$. Since a_i in intersection of all prime ideals, it is nilpotent.

We have achieved the following:

For existential statements which use this, we simply need to instantiate ψ .

Theorem

Let $f = \sum_{i=0}^{n} a_i T^i$ be a unit in X[T]. Then a_i is nilpotent for all i > 0.

Proof.

Let fg = 1 and take some prime ideal P. Then fg = 1 also in X/P[T], and since X/P is a domain we have $\deg(f) + \deg(g) = \deg(fg) = 0$. Thus for all i > 0, $a_i = 0$ in X/P and hence $a_i \in P$. Since a_i in intersection of all prime ideals, it is nilpotent.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T) = 1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4

Our algorithm would give rise to the following computation sequence

$$\begin{aligned} c_0 &= [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)] \\ &\mapsto [(*), ([1], 1), ([0, 1], 1), (*)] \\ &\mapsto [([0], 2), (*), (*), (*)] \end{aligned}$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \setminus \{1\} \mapsto \mathbb{Z}_4 \setminus \{1,2\} \mapsto \mathbb{Z}_4 \setminus \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let
$$X=\mathbb{Z}_4$$
 and consider $f=1+2T$, which is a unit in $\mathbb{Z}_4[T]$ since
$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_{o} = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)] \\ \mapsto [(*), ([1], 1), ([0, 1], 1), (*)] \\ \mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \setminus \{1\} \mapsto \mathbb{Z}_4 \setminus \{1,2\} \mapsto \mathbb{Z}_4 \setminus \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X=\mathbb{Z}_4$ and consider f=1+2T, which is a unit in $\mathbb{Z}_4[T]$ since (1+2T)(1+2T)=1.

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_{o} = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)] \\ \mapsto [(*), ([1], 1), ([0, 1], 1), (*)] \\ \mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X=\mathbb{Z}_4$ and consider f=1+2T, which is a unit in $\mathbb{Z}_4[T]$ since (1+2T)(1+2T)=1.

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)] \\ \mapsto [(*), ([1], 1), ([0, 1], 1), (*)] \\ \mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X=\mathbb{Z}_4$ and consider f=1+2T, which is a unit in $\mathbb{Z}_4[T]$ since (1+2T)(1+2T)=1.

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X=\mathbb{Z}_4$ and consider f=1+2T, which is a unit in $\mathbb{Z}_4[T]$ since (1+2T)(1+2T)=1.

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X=\mathbb{Z}_4$ and consider f=1+2T, which is a unit in $\mathbb{Z}_4[T]$ since (1+2T)(1+2T)=1.

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \setminus \{1\} \mapsto \mathbb{Z}_4 \setminus \{1,2\} \mapsto \mathbb{Z}_4 \setminus \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \setminus \{1\} \mapsto \mathbb{Z}_4 \setminus \{1,2\} \mapsto \mathbb{Z}_4 \setminus \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \setminus \{1\} \mapsto \mathbb{Z}_4 \setminus \{1,2\} \mapsto \mathbb{Z}_4 \setminus \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \setminus \{1\} \mapsto \mathbb{Z}_4 \setminus \{1,2\} \mapsto \mathbb{Z}_4 \setminus \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Let $X = \mathbb{Z}_4$ and consider f = 1 + 2T, which is a unit in $\mathbb{Z}_4[T]$ since

$$(1+2T)(1+2T)=1.$$

Then it follows that 2 is nilpotent in \mathbb{Z}_4 .

Our algorithm would give rise to the following computation sequence:

$$s_0 = [(*), (*), (*), (*)] \mapsto [(*), ([2], 1), (*), (*)]$$
$$\mapsto [(*), ([1], 1), ([0, 1], 1), (*)]$$
$$\mapsto [([0], 2), (*), (*), (*)]$$

This corresponds to the following sequence of approximately maximal ideals

$$\mathbb{Z}_4 \mapsto \mathbb{Z}_4 \backslash \{1\} \mapsto \mathbb{Z}_4 \backslash \{1,2\} \mapsto \mathbb{Z}_4 \backslash \{0\}$$

where the removal of an element is justified by including evidence that it can be used to generate 2^e for some e > 0.

Theorem

Take $f = \sum_{i=0}^{n} a_i T^i$ and $g = \sum_{i=0}^{m} b_i T^i$ in X[T] and write $fg = \sum_{i=0}^{n+m} c_i T^i$. Then

$$a_ib_j\in\sqrt{(c_0,\ldots,c_{i+j})}$$

for all $i = 0, \ldots, n$ and $j = 0, \ldots, m$

Proof (sketch)

We show that $a_ib_j \in P$ for all prime ideals with $\{c_0, \ldots, c_{i+j}\} \subseteq P$. Then $\{c_0, \ldots, c_{i+j}\}$ generates $(a_ib_j)^e$ for some e > 0, and thus $a_ib_j \in \sqrt{(c_0, \ldots, c_{i+j})}$.

A generalisation of our framework enables us to produce, in a uniform way, a sequential algorithm which for any i, j computes some

$$x_0,\ldots,x_{i+j}\in X_j$$

such that $c_0x_0 + ... + c_{i+j}x_{i+j} = (a_ib_i)^e$

Theorem

Take
$$f=\sum_{i=0}^n a_i T^i$$
 and $g=\sum_{i=0}^m b_i T^i$ in $X[T]$ and write $fg=\sum_{i=0}^{n+m} c_i T^i$. Then $a_i b_j \in \sqrt{(c_0,\ldots,c_{i+j})}$

for all $i = 0, \ldots, n$ and $j = 0, \ldots, m$.

Proof (sketch).

We show that $a_ib_j \in P$ for all prime ideals with $\{c_0, \ldots, c_{i+j}\} \subseteq P$. Then $\{c_0, \ldots, c_{i+j}\}$ generates $(a_ib_j)^e$ for some e > 0, and thus $a_ib_j \in \sqrt{(c_0, \ldots, c_{i+j})}$.

A generalisation of our framework enables us to produce, in a uniform way, a sequential algorithm which for any i, j computes some

$$x_0,\ldots,x_{i+j}\in X_j$$

such that $c_0 x_0 + \ldots + c_{i+j} x_{i+j} = (a_i b_i)^e$.

Theorem

Take
$$f=\sum_{i=0}^n a_i T^i$$
 and $g=\sum_{i=0}^m b_i T^i$ in $X[T]$ and write $fg=\sum_{i=0}^{n+m} c_i T^i$. Then $a_i b_j \in \sqrt{(c_0,\ldots,c_{i+j})}$

for all $i = 0, \ldots, n$ and $j = 0, \ldots, m$.

Proof (sketch).

We show that
$$a_ib_j \in P$$
 for all prime ideals with $\{c_0, \ldots, c_{i+j}\} \subseteq P$. Then $\{c_0, \ldots, c_{i+j}\}$ generates $(a_ib_j)^e$ for some $e > 0$, and thus $a_ib_j \in \sqrt{(c_0, \ldots, c_{i+j})}$.

A generalisation of our framework enables us to produce, in a uniform way, a sequential algorithm which for any *i*, *j* computes some

•
$$x_0, \ldots, x_{i+j} \in X$$
,
• $e > 0$
Such that $c_0x_0 + \ldots + c_{i+i}x_{i+j} = (a_ib_i)^e$

Theorem

Take $f = \sum_{i=0}^n a_i T^i$ and $g = \sum_{i=0}^m b_i T^i$ in X[T] and write $fg = \sum_{i=0}^{n+m} c_i T^i$. Then

$$a_ib_j\in\sqrt{(c_0,\ldots,c_{i+j})}$$

for all $i = 0, \ldots, n$ and $j = 0, \ldots, m$.

Proof (sketch).

We show that $a_ib_j \in P$ for all prime ideals with $\{c_0, \ldots, c_{i+j}\} \subseteq P$. Then $\{c_0, \ldots, c_{i+j}\}$ generates $(a_ib_j)^e$ for some e > 0, and thus $a_ib_j \in \sqrt{(c_0, \ldots, c_{i+j})}$.

A generalisation of our framework enables us to produce, in a uniform way, a sequential algorithm which for any i, j computes some

•
$$x_0,\ldots,x_{i+j}\in X$$
,

such that $c_0x_0 + \ldots + c_{i+j}x_{i+j} = (a_ib_j)^e$.

In this talk, I hope to have given some insight into how

- (a) Gödel's functional interpretation
- (b) sequential algorithms

can be used to construct witnesses for existential theorems in algebra.

- 1. How many interesting theorems can be dealt with in a uniform way through our main computational framework?
- 2. So far we assume that our underlying algebraic structure is countable. Can we generalise this, perhaps by introducing some 'abstract type' X for representing arbitrary commutative rings.
- 3. How do our algorithms compare to those which arise from dynamical algebra?

In this talk, I hope to have given some insight into how

- (a) Gödel's functional interpretation
- (b) sequential algorithms

can be used to construct witnesses for existential theorems in algebra.

- 1. How many interesting theorems can be dealt with in a uniform way through our main computational framework?
- 2. So far we assume that our underlying algebraic structure is countable. Can we generalise this, perhaps by introducing some 'abstract type' X for representing arbitrary commutative rings.
- 3. How do our algorithms compare to those which arise from dynamical algebra?

In this talk, I hope to have given some insight into how

- (a) Gödel's functional interpretation
- (b) sequential algorithms

can be used to construct witnesses for existential theorems in algebra.

- 1. How many interesting theorems can be dealt with in a uniform way through our main computational framework?
- 2. So far we assume that our underlying algebraic structure is countable. Can we generalise this, perhaps by introducing some 'abstract type' X for representing arbitrary commutative rings.
- 3. How do our algorithms compare to those which arise from dynamical algebra?

In this talk, I hope to have given some insight into how

- (a) Gödel's functional interpretation
- (b) sequential algorithms

can be used to construct witnesses for existential theorems in algebra.

- 1. How many interesting theorems can be dealt with in a uniform way through our main computational framework?
- 2. So far we assume that our underlying algebraic structure is countable. Can we generalise this, perhaps by introducing some 'abstract type' X for representing arbitrary commutative rings.
- 3. How do our algorithms compare to those which arise from dynamical algebra?

In this talk, I hope to have given some insight into how

- (a) Gödel's functional interpretation
- (b) sequential algorithms

can be used to construct witnesses for existential theorems in algebra.

- 1. How many interesting theorems can be dealt with in a uniform way through our main computational framework?
- 2. So far we assume that our underlying algebraic structure is countable. Can we generalise this, perhaps by introducing some 'abstract type' X for representing arbitrary commutative rings.
- 3. How do our algorithms compare to those which arise from dynamical algebra?

In this talk, I hope to have given some insight into how

- (a) Gödel's functional interpretation
- (b) sequential algorithms

can be used to construct witnesses for existential theorems in algebra.

- 1. How many interesting theorems can be dealt with in a uniform way through our main computational framework?
- 2. So far we assume that our underlying algebraic structure is countable. Can we generalise this, perhaps by introducing some 'abstract type' X for representing arbitrary commutative rings.
- 3. How do our algorithms compare to those which arise from dynamical algebra?

For more details, see our initial paper:

An algorithmic approach to the existence of ideal objects in commutative algebra
 T. Powell, P. Schuster and F. Wiesnet. Proceedings of Wollie '19, LNCS 11541:

 533–549, 2019.

An extended follow up paper encompassing a lot more is on the way:

A universal algorithm for Krull's lemma (working title)
 T. Powell, P. Schuster and F. Wiesnet. In progress.

- A universal Krull-Lindenbaum theorem

 D. Rinaldi and P. Schuster. **Journal of Pure and Applied Algebra**, 200: 3207–3232, 2016.
- Sequential algorithms and the computational content of classical proofs
 T. Powell. Preprint, https://arxiv.org/abs/1812.11003, 2019

For more details, see our initial paper:

An algorithmic approach to the existence of ideal objects in commutative algebra
 T. Powell, P. Schuster and F. Wiesnet. Proceedings of Wollic '19, LNCS 11541: 533–549, 2019.

An extended follow up paper encompassing a lot more is on the way:

A universal algorithm for Krull's lemma (working title)
 T. Powell, P. Schuster and F. Wiesnet. In progress.

- A universal Krull-Lindenbaum theorem

 D. Rinaldi and P. Schuster. **Journal of Pure and Applied Algebra**, 2009-3207–3232, 2016.
- Sequential algorithms and the computational content of classical proofs
 T. Powell. Preprint, https://arxiv.org/abs/1812.11003, 2019

For more details, see our initial paper:

An algorithmic approach to the existence of ideal objects in commutative algebra
 T. Powell, P. Schuster and F. Wiesnet. Proceedings of Wollic '19, LNCS 11541: 533–549, 2019.

An extended follow up paper encompassing a lot more is on the way:

A universal algorithm for Krull's lemma (working title)
 T. Powell, P. Schuster and F. Wiesnet. In progress.

- A universal Krull-Lindenbaum theorem
 D. Rinaldi and P. Schuster. **Journal of Pure and Applied Algebra**, 2006
 3207–3232, 2016.
- Sequential algorithms and the computational content of classical proofs
 T. Powell. Preprint, https://arxiv.org/abs/1812.11003, 2019

For more details, see our initial paper:

An algorithmic approach to the existence of ideal objects in commutative algebra
 T. Powell, P. Schuster and F. Wiesnet. Proceedings of Wollic '19, LNCS 11541: 533–549, 2019.

An extended follow up paper encompassing a lot more is on the way:

A universal algorithm for Krull's lemma (working title)
 T. Powell, P. Schuster and F. Wiesnet. In progress.

- A universal Krull-Lindenbaum theorem
 D. Rinaldi and P. Schuster. Journal of Pure and Applied Algebra, 200: 3207–3232, 2016.
- Sequential algorithms and the computational content of classical proofs
 T. Powell. Preprint, https://arxiv.org/abs/1812.11003, 2019.

For more details, see our initial paper:

An algorithmic approach to the existence of ideal objects in commutative algebra
 T. Powell, P. Schuster and F. Wiesnet. Proceedings of Wollic '19, LNCS 11541: 533–549, 2019.

An extended follow up paper encompassing a lot more is on the way:

A universal algorithm for Krull's lemma (working title)
 T. Powell, P. Schuster and F. Wiesnet. In progress.

- A universal Krull-Lindenbaum theorem
 D. Rinaldi and P. Schuster. Journal of Pure and Applied Algebra, 200: 3207–3232, 2016.
- Sequential algorithms and the computational content of classical proofs
 T. Powell. Preprint, https://arxiv.org/abs/1812.11003, 2019.

