

Temasek Junior College 2022 JC1 H2 Computing

Practical 7 – Iteration Control Structures in Python I

Session Objectives

By the end of this session, you will learn:

- (i) the use of the for loop in Python.
- (ii) the use of the while loop in Python.

For this practical session, we shall make use of a Jupyter Notebook to document the exercises.

- Download the Jupyter Notebook Practical_7.ipynb from Google Classroom.
- Submit your file through the Practical 7 Google Classroom link at the end of the session.

§7.1 Performing Iteration in Python

In Python, loops are used to repeatedly execute a block of statements so long as some conditions remain true.

There are two types of loops in Python:

- for loop;
- while loop.

The use of loops is important to ensure that statements that need to be repeatedly executed are coded once only and not repeatedly. This reduces unnecessary code length.

§7.2 The for loop

A for loop provides a way to perform actions for all items in an iterable.

An iterable can be a string, a list, a range of values, a tuple, a dictionary etc.

The general syntax structure of a for loop is as follows:

```
for <item> in iterable:
    statement
```

Exercise 1

Type the following code in a new cell of your Jupyter Notebook.

```
# for loop (range with upper limit only, default lower limit is 0).
for i in range(10): # loop condition where i < 10.
    print("Computing is fun")</pre>
```

Exercise 2

Type the following code in a new cell of your Jupyter Notebook.

```
# for loop (printing 0 to 4).
for i in range(0, 5): # loop condition where 0<=i<5.
    print(i)</pre>
```

Exercise 3

Type the following code in a new cell of your Jupyter Notebook.

```
# for loop (to understand how range works with step size)
\# loop condition where 0 <= i < 30 and increases by 3 each iteration
for i in range(0, 30, 3):
   print(i)
```

Exercise 4

Can you implement the code in Exercise 3 using the modulo (%) operator instead of a step

Type your code in a new cell of your Jupyter Notebook.

Exercise 5

Can you implement a code that counts down from 10 to 0 using the concept of step size in

Type your code in a new cell of your Jupyter Notebook.

Exercise 6

Type the following code in a new cell of your Jupyter Notebook.

```
# for loop (summation of values from 1 to n)
total = 0
n = 100
```

for i in range (1, n+1): # use n+1 since upper limit is not included. # add the value of i in current iteration to the existing total total = total + iprint(total) # print total after final iteration

Exercise 7

Can you implement a code that finds the product of all integers from 1 to 100? Type your code in a new cell of your Jupyter Notebook.

Exercise 8

Type the following code in a new cell of your Jupyter Notebook.

```
# for loop iteration of a string
for letter in 'Python':
    print(letter)
```

§7.3 The while loop

The Python while loop operates on the following principle:

As long as the condition remains ${\tt True}$, the statement will be executed repeatedly until the condition is no longer True.

The general syntax structure of a while loop is as follows:

```
while <condition>:
    statement
```

Exercise 9

In Exercise 2, we used the for loop to print the integer values 0, 1, 2, 3 and 4.

We shall now print the same values by implementing a while loop.

Type the following code in a new cell of your Jupyter Notebook.

```
# while loop (printing 0 to 4)
i = 0  # initialize
n = 5
while i < n:
    print(i)
    # i is set to increase by 1 at the end of each iteration.
i = i + 1</pre>
```

Exercise 10

Type your code in a new cell of your Jupyter Notebook. Use a new cell for each part of the question.

Can you implement a while loop that finds the

- (i) sum of all integers from 1 to 100?
- (ii) product of all integers from 1 to 100?

Mini Hackathon - 30 minutes

In the same Jupyter Notebook, complete the questions in this mini hackathon.

*You are reminded to use meaningful identifiers and identifier conventions adhering to PEP 8.

*You are reminded to also include the use proper commenting in your program

Problem 1

Write a program to prompt the user for x positive integers, one at a time. Compute and output the sum of all x integers entered.

Problem 2

Write an enhanced version of the program in **Problem 1** to also compute and output the average of x positive integers.

Problem 3

Write a program to prompt the user for x positive integers, one at a time, until the user terminates with -1. Compute and output the sum of all x integers entered.

Problem 4a (Tutorial 2.4 Q6 of Problem Solving and Algorithm Design 2)

Write a program to prompt the user for a positive integer n, compute and output n factorial, using for loop.

Problem 4b (Tutorial 2.4 Q6 of Problem Solving and Algorithm Design 2)

Write a program to prompt the user for a positive integer n, compute and output n factorial, using while loop.

Problem 5

Create a number guessing game that will perform the following

- Generate at random a secret integer value from 1 to 100
- Allow user to make a guess
 - o If the guess is correct, congratulate the user
 - o If the guess is too small, prompt the user to guess a larger value.
 - If the guess is too large, prompt the user to guess a smaller value.

To generate a random value, think of how you can use the follow statements:

```
import random
\# x is the lower limit, y is the upper limit
random.randint(x, y)
```

You may search the internet on the use of the above two statements.