Linear Regression Regression-team-4

장지혜 정다은

데이터 살펴보기 (전처리: 피처설정/피처정규화)

1	bike.shape		
(876	0, 14)		
1	bike.info()		
Rang	ss 'pandas.core.frame.Datal elndex: 8760 entries, O to columns (total 14 columns	8759	
#	Column	Non-Null Count	Dtype
0	Date	8760 non-null	object
1 2 3	Rented Bike Count	8760 non-null	int64
2	<u>Hour</u> Temperature(℃)	8760 non-null 8760 non-null	int64 float64
4	Humidity(%)	8760 non-null	
5	Wind speed (m/s)	8760 non-null	
6	Visibility (10m)	8760 non-null	
7	Dew point Temperature(℃)		
8	Solar Radiation (MJ/m2)	8760 non-null	
9	Rainfall(mm)	8760 non-null	float64
	Snowfall (cm)	8760 non-null	
11	Seasons	8760 non-null	object
12	Holiday	8760 non-null	object
14	11011443		

memory usage: 958.2+ KB

Dataset: 'SeoulBikeData.csv'

Linear Regression Model-Bike Sharing Demand

- Date: 날짜 일/월/연도 (01/12/2017~30/11/2018)

- Rented Bike Count : 자전거 대여 횟수

- Hour : 시간(1시간 간격) - Temperature(°C) : 기온

- Humidiy(%) : 습도

- Wind speed(m/s) : 풍속

- Visibility(10m) : 71/17121

- Dew point Temperature(℃) : 이슬점

- Solar Radiation (NJ/m2) : 태양 복사량

- Rainfall(mm) : 강우량

- Snowfall (cm) : 강설량

- Seasons: 계절 (Winter, Spring, Summer, Atumn)

- Holiday: 휴일 (Holiday, No_Holiday)

- Functioning Day : 운영일 (Yes, No)

결측치 확인

대략적인 통계와 데이터 확인

1 bike["Functioning Day"].value_counts()	1 bike["Dat	te"].value_counts()	bike[" <mark>Seasons</mark> "],value_counts(
Ves 8465 No 295 Name: Functioning Day, dtype: int64	05/03/2018 13/02/2018 13/05/2018 07/10/2018 31/05/2018	24 24 24 24 24	Summer 2208 Spring 2208 Autumn 2184 Winter 2160		
1 bike["Holiday"].value_counts()	23/12/2017 24 26/05/2018 24 03/02/2018 24 31/01/2018 24 13/10/2018 24		Name: Seasons, dtype: int64		
No Holiday 8328 Holiday 432 Name: Holiday, dtype: int64		24 24			

| bike.describe()

	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point Temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)
count	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000
mean	704.602055	11.500000	12.882922	58.226256	1.724909	1436.825799	4.073813	0.569111	0.148687	0.075068
std	644.997468	6.922582	11.944825	20.362413	1.036300	608.298712	13.060369	0.868746	1.128193	0.436746
min	0.000000	0.000000	-17.800000	0.000000	0.000000	27.000000	-30.600000	0.000000	0.000000	0.000000
25%	191.000000	5.750000	3.500000	42.000000	0.900000	940.000000	-4.700000	0.000000	0.000000	0.000000
50%	504.500000	11.500000	13.700000	57.000000	1.500000	1698.000000	5.100000	0.010000	0.000000	0.000000
75%	1065.250000	17.250000	22.500000	74.000000	2.300000	2000.000000	14.800000	0.930000	0.000000	0.000000
max	3556.000000	23.000000	39.400000	98.000000	7.400000	2000.000000	27.200000	3.520000	35.000000	8.800000

대략적인 통계와 데이터 확인

자전거 대여 횟수 상자그림

Feature Drop (해당 피쳐 원핫인코딩 후 세분화해서 넣었던 모델 파일x)

Feature Drop 이유:

Temperature, Rainfall, Snowfall 등과 같이 계절적 요소의 영향을 받는 다른 Feature들이 있어 Seasons는 feature에서 제거

(범주형 데이터 변수화한 후 비교한 자료 누락)

Holiday : 휴일이 아닌경우에도 꾸준한 대여횟수. 기상요소에 집중하기 위해 해당 feature 제거

Feature Drop

월별 자전거 렌트 횟수

0

일/월/연도 정보를 가지고 있는 'Date' 를 'year', 'month'로 나눠 더미변수화하여 비교.

'Season' 또한 사계로 나눠 R-squared 및 상관계수 등을 관찰하였으나

데이터 특성상 이용시간대에 집중하는 것이 좋겠다는 판단하에 'Hour'를 나누기로 함

2

Feature Drop 이유 : 범주형 데이터를 더미변수화하여 각 피쳐별로 베교하였으나 'Hour'에 초점을 맞추는 것이 중요하다고 판단하여 방향을 수정함 데이터 전처리 과정에서 시기내 완수하지 못함 (Issue 차후계획 부분에서 설명)

각각의 피쳐를 넣고 되는 과정에서 높은 수치의 R-squared가 나왔으며, 일별 데이터에 시간까지 포함해 가중지가 불어 높게 측정 된 것으로 추측

시간과 관련된 feature**를 받**게 된 이유 (시간만 그**룹별**로 추출하고 나면 drop하려고 남겨둠)

예측하기

1-1. 피처설정

```
1 bike.drop(['Date','Hour', 'Functioning Day','Seasons', 'Holiday'], axis=1, inplace=True)
2 #'Holiday' 원화 인코딩
3 # bike["Seasons"] Drop 이유 : 계절보다 일별, 시간대 데이터의 영향을 우선/다중공선성 우려
bike
```

	Rented Bike Count	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point Temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)
0	254	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0
1	204	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0
2	173	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0
3	107	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0
4	78	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0

array([247, 1, 1, ..., 1, 1, 1], dtype=int64))

회귀분석을 위한 학습, 테스트 데이터셋 분리

```
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt

x = bike.drop('Rented Bike Count', axis=1)
y = bike['Rented Bike Count']

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state=13)
np.unique(y_train, return_counts=True)

(array([ 0,  2,  3, ..., 3404, 3418, 3556], dtype=int64),
```

Feature : 기상적 요인에 집중

각 Feature 마다 독립성을 유지하기 힘든 요소들이지만..

Scaling 전

OLS Regression Results

Dep. Variable	: Rented	Bike Count	R-s	squared (u	ncente	ered):		0.721
Model	Model:		Adj. R-squared (uncentered):					0.721
Method	: Le	ast Squares			F-stat	istic:	2264.	
Date	: Thu, 2	5 Mar 2021		Prob (F-stati	stic):		0.00
Time	:	00:40:06		Log-	Likelit	nood:	2	53523.
No. Observations	:	7008				AIC:	1.07	1e+05
Df Residuals	:	7000				BIC:	1.07	1e+05
Df Model	:	8						
Covariance Type	:	nonrobust						
		coef	std err	t	P> t	[0	.025	0.975
Tempe	66.7930	1.836	36.377	0.000	63	.194	70.392	
Hu	midity(%)	-1.2779	0.218	-5.858	0.000	-1	.706	-0.850
Wind sp	eed (m/s)	54.7244	6.316	8.664	0.000	42	.343	67.106
Visibi	lity (10m)	0.0214	0.012	1.853	0.064	-0	.001	0.044
Dew point Tempe	rature(℃)	-33.5347	1.701	-19.710	0.000	-36	.870	-30.199
Solar Radiation	n (MJ/m2)	-124.2501	9.726	-12.774	0.000	-143	.317	-105.183
Rai	nfall(mm)	-51.4735	5.252	-9.801	0.000	-61	.769	-41.178
Snov	wfall (cm)	32.3509	14.350	2.254	0.024	4	.221	60.480
Omnibus:	820.855	Durbin-W	latson:	1.984				
Prob(Omnibus):	0.000	Jarque-Ber	a (JB):	1402.065				
Skew:	0.802	Pro	b(JB):	3.51e-305				
Kurtosis:	4.494	Cor	nd. No.	3.75e+03				

Linear Regression

```
from sklearn.linear_model import LinearRegression

reg = LinearRegression()
reg.fit(x_train, y_train)
```

LinearRegression()

```
import numpy as np
from sklearn.metrics import mean_squared_error

pred_tr = reg.predict(x_train)
pred_test = reg.predict(x_test)
rmse_tr = (np.sqrt(mean_squared_error(y_train, pred_tr)))

rmse_test = (np.sqrt(mean_squared_error(y_test, pred_test)))

print('RMSE of Train Data: ', rmse_tr)
print('RMSE of Test Data: ', rmse_test)
```

RMSE of Train Data: 499.6000785012318 RMSE of Test Data: 504.12044149319263

예측 모델 평가하기

```
#reg = LinearRegression()
#reg.fit(x_train, y_train)
print(reg.score(x_train, y_train))
print(reg.score(x_test, y_test))
```

0.3954586543529801 0.4063129938538965

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 3.75e+03. This might indicate that there are strong multicollinearity or other numerical problems.

MinMax, Standard, Robust Scaler 비교

	Temperature(°C)	Humidity(%)	Wind_speed_(m/s)	Visibility_(10m)	Dew_point_Temperature(°C)	Solar_Radiation_(MJ/m2)	Rainfall(mm)	Snowfall_(cm)
count	7008.000000	7008.000000	7008.000000	7008.000000	7008.000000	7008.000000	7008.000000	7008.000000
mean	0.535811	0.592876	0.233260	0.715183	0.598653	0.163285	0.004230	0.008302
std	0.207689	0.207670	0.140851	0.308028	0.224735	0.247875	0.033534	0.049440
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.372378	0.428571	0.121622	0.465788	0.446367	0.000000	0.000000	0.000000
50%	0.548951	0.581633	0.202703	0.846427	0.614187	0.002841	0.000000	0.000000
75%	0.701049	0.755102	0.310811	1.000000	0.783737	0.269886	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

LinearRegresstion 학습 후 RMSE 및 성능확인 (MinMax Scaler 적용 후)

```
from sklearn.metrics import mean squared error
                                                                   25000
pred tr = reg.predict(X mms)
pred test = req.predict(X test)
rmse tr = (np.sqrt(mean squared error(y train,pred tr)))
                                                                  -25000
rmse test =(np.sqrt(mean squared error(y test,pred test)))
                                                                  -50000
print('RMSE of Train Data : ', rmse tr)
                                                                  -75000
print('RMSE of Test Data : ', rmse test)
                                                                 -100000
                                                                 -125000
RMSE of Train Data: 499.6000785012318
RMSE of Test Data: 82558.86585736295
                                                                 -150000
                                                                               1000
                                                                                      2000
                                                                                             3000
                                                                                                    4000
                                                                                                           5000
                                                                                                                 6000
```

교차검증

```
from sklearn.model_selection import cross_val_score

scores = cross_val_score(reg,X_mms, y_train, scoring = 'neg_mean_squared_error', cv=10)

X_mms_rmse_scores = np.sqrt(-scores)

def display_scores(scores):
    print("점수", scores)
    print("평균", scores.mean())
    print("표준 편차", scores.std())

display_scores(X_mms_rmse_scores)

점수 [485.36958491 454.16506775 509.70103542 521.46491431 521.88801338
489.1854826 511.46770102 508.48828526 494.20104967 504.43732279]
평균 500.03684571141764
표준 편차 19.29415674861269
```

Decision Tree Regressor

```
from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(random_state=13)
tree_reg.fit(X_mms, y_train)
```

DecisionTreeRegressor(random_state=13)

결과

```
predictions = tree_reg.predict(X_mms)
tree_mse = mean_squared_error(y_train, predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
```

15.980666651332308

교차 검증

```
1 scores = cross_val_score(tree_reg,X_mms, y_train, scoring = 'neg_mean_squared_error', cv=10)
2 tree_X_mms_rmse_scores = np.sqrt(-scores)
```

결과

```
| display_scores(tree_X_mms_rmse_scores)
```

```
점수 [544.04053669 533.37709773 548.86348144 582.40936429 552.78695564 603.84786844 578.28015956 553.89883756 529.56278732 551.64394184] 평균 557.8711030524211
표준 편차 22.105797070839213
```

RandomForest Regressor

```
from sklearn.ensemble import RandomForestRegressor
     forest_reg = RandomForestRegressor(n_estimators=100, random_state=13)
     forest_reg.fit(X_mms, y_train)
RandomForestRegressor(random state=13)
    predictions = forest_reg.predict(X_mms)
  2 forest_mse = mean_squared_error(y_train, predictions)
    forest_rmse = np.sart(forest_mse)
     forest rmse
152.18416850297916
     forest_scores = cross_val_score(forest_reg, X_mms, y_train,
                                   scoring="neg_mean_squared_error", cv=10)
     forest_rmse_scores = np.sqrt(-forest_scores)
    display_scores(forest_rmse_scores)
적수 [401,28531368 387,25897671 413,33910753 413,11061638 410,54642749
 423.10204938 402.63623709 390.56128251 407.44229973 399.073904171
평균 404.8356214687136
표준 편차 10.378775643742424
```

ISSUE (추후계획)

- Label or Feature 로그 스케잌링

Rented Bike Count	Hour	Temperature(캜)	Humidity(%)	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew poin Temperature(°C
254	0	-5.2	37	-5.2	37	2.2	2000	-17.6
204	1	-5.5	38	-5.5	38	0.8	2000	-17.6
173	2	-6.0	39	-6.0	39	1.0	2000	-17.1
107	3	-6.2	40	-6.2	40	0.9	2000	-17.0
78	4	-6.0	36	-6.0	36	2.3	2000	-18.6
		500	147		122	2.27	22.	

다중 공선성 확인

- ridge : 다중 공선성 방지 모델

- lasso : 작은 값의 파라미터를 0으로

만들어 변수를 모델에서 삭제하고 단순하게 만들

1 from statsmodels.stats.outliers influence import variance inflation factor 3 #피치마다의 VIF 계수를 출력 4 vif = pd.DataFrame() 5 vif["VIF Factor"] = [variance_inflation_factor(x,values, i) for i in range(x,shape[1])] 6 vif["features"] = x.columns 7 vif.round(1) VIF Factor features 29.1 Temperature(°C) 1 Humidity(%) 2 Wind speed (m/s) 3 9.1 Visibility (10m) 15.2 Dew point Temperature (°C) 5 Solar Radiation (MJ/m2) 1.1 Rainfall(mm) 7 1.1 Snowfall (cm)

다중 공선성 확인: 회귀 분석 예측 성능을 높이기 위한 방법

- robust 스케일러 적용 후 학습 (이상치)

ISSUE (추후계획) : 시간데이터 (구간별)

주제 선정 및 프로젝트의 의의 :

- 특정 피쳐가 공유자전거의 수요에 끼치는 영향 파악
- 약 2년간의 공유 자전거 사용자의 스타일 파악
- 어떤 피쳐가 가장 많은 영향을 끼치는지 살펴보고 공유자전거 수요에 알맞게 배치할 수 있는 비즈니스 모델 제시
 - 자전거를 언제 가장 많이 빌릴까
 - 자전거를 언제 탈까 (출퇴근 사용)

각각의 변수가 어떻게 발생하고 영향을 끼치는지

	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point Temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	TIME_1 TIME_2 TIME_3 TIME_
0	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	OAI~5AI 6~11AI 12AI~17AI 18AI~23
1	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	
2	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	
3	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	'Hour' Feature Drop
4	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	마찬가지로 모든 컬럼의
	734	194			100	***	(***)	(864)	***	300	값을 일 단위,
B755	1003	19	4.2	34	2.6	1894	-10.3	0.0	0.0	0.0	4등분한 '평균값'으로 묶어줘야함 (데이터 전처리)
8756	764	20	3.4	37	2.3	2000	-9.9	0.0	0.0	0.0	HOLIZOITE (CHOICI ETAICI)
8757	694	21	2.6	39	0.3	1968	-9.9	0.0	0.0	0.0	
8758	712	22	2.1	41	1.0	1859	-9.8	0.0	0.0	0.0	
8759	584	23	1.9	43	1.3	1909	-9.3	0.0	0.0	0.0	

O시I~23시I 시간을 특정 시간에 맞게 분할하여 Feature 로 생성

1	def hour(x):
2	if x >=0 and x <=5:
3	x=1
4	return x
5	bike["time_1"] = bike['Hour'].apply(hour)
6	bike["time_1"][bike["time_1"] != 1] = 0
7	bike["time_1"]

bike['time_1'].head(50)

당연한 이야기지만 데이터를 어떤 관점에서 접근하느냐에 따라 방법도 달라져야겠죠... Regression-repo-4

감사합니다!

Thank You:)

장지혜 정다은

Flow (발표자료 및 데이터 분석시 참고)

- 1. 데이터 살펴보기 -전처리 (데이터 파악: 피처설정/피처정규화)
- 2. 예측(원핫인코딩: 단위 맞추기), 테스트 데이터셋 분리, 회귀 분석계수학습(회귀 모델 학습)
- 3. 평가 : 어떤 피처가 가장 영향력이 강한 피처일까 피처들의 상관관계 분석(히트맵)/다중공선성 확인
- 4. 시각화 (분석결과 시각화하기)

ISSUE: 날짜, 시간 정보가 들어있지만 각각 나눠져 있고 TYPE이 다듬 카테고리화 해서 일정 시간대 분포를 보려고 하는데 잘 안됨 ㅠㅠ 왓 어제 강사님이 알려주신 Facebook Prophet는 활용이 ;;; 안될 듯(시계열 데이터-트렌드)