

AI 언어지능 중급과정

Day 01 - Basic Machine Learning

Machine Learning

Three Types of Machine Learning

Supervised Learning

- Labeled data
- Direct feedback
- Predict outcome/future

OD Unsupervised Learning

- No labels/targets
- No feedback
- Find hidden structure in data

Reinforcement Learning

- Decision process
- Reward system
- Learn series of actions

Supervised Learning Regression & Classification

Classification

- Learn to predict discrete values
- Predict most probable category, class

Regression

- Predict the value of a continuous response variable
- · Learn from continuous data

Supervised Learning

Unsupervised Learning Unclassified and unlabeled data to uncover patterns from the data

Clustering

- No label or target for given data
- Discovering hidden features

Reinforcement Learning

Goal-oriented Algorithm

- Attain a complex objective or Maximize along a particular dimension over many steps
- Reward feedback to learn which action is best for the agent
- Maximize points won in a game

Pipeline for Machine Learning System

Same for all machine learning and deep learning

Examples of Supervised Learning Linear Regression and Logistic Regression

Linear Regression

Mean Absolute Error

Mean Squared Error

$$MAE = 1/m \sum_{i} abs(\hat{y}_{i} - y_{i})$$
 $MSE = 1/2m \sum_{i} (\hat{y}_{i} - y_{i})^{2}$

$$MSE = 1/2m \sum_{i} (\hat{y}_{i} - y_{i})^{2}$$

• Adjust weights to reduce MAE or MSE

Gradient Descent Algorithm

- · Batch Gradient Descent
- Mini-batch Gradient Descent
- Stochastic Gradient

Logistic Regression

$$g(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Sigmoid function

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $0 \le y' \le 1$

Cost Function

Several terms for Machine Learning

For better models

Under-fitting & Over-fitting

- · Reduce number of features
- Regularization
 - L1 & L2 Regularization
- Early Stopping

Hyper-parameters

- · Learning rate: alpha
- Regularization: lambda

Cross-Validation

- Training, Validation and Test data
- Split into k parts, or "folds"

Thank You!