The balance between enthalpy change and entropy change determines the feasibility of a reaction. The table below contains enthalpy of formation and entropy data for some elements and compounds.

	N ₂ (g)	O ₂ (g)	NO(g)	C(graphite)	C(diamond)
$\Delta H_{\rm f}^{\oplus}$ / kJ mol ⁻¹	0	0	+90.4	0	+1.9
S [⊕] /J K ⁻¹ mol ⁻¹	192.2	205.3	211.1	5.7	2.4

2 (a)	Explain why the entropy value for the element nitrogen is much greater than the entropy value for the element carbon (graphite).			
		(2 marks)		
2 (b)	Suggest the condition under which the element carbon (diamond) would have entropy value of zero.	e an		
		(1 mark)		
2 (c)	Write the equation that shows the relationship between ΔG , ΔH and ΔS for a	reaction.		
		(1 mark)		
2 (d)	State the requirement for a reaction to be feasible.			
		(1 mark)		

2 (e)	Consider the following reaction that can lead to the release of the pollutant NO into the atmosphere.			
	$\frac{1}{2}$ N ₂ (g) + $\frac{1}{2}$ O ₂ (g) \longrightarrow NO(g)			
	Use data from the table on page 4 to calculate the minimum temperature above which this reaction is feasible.			
	(5 marks)			
2 (f)	At temperatures below the value calculated in part 2(e) , decomposition of NO into its elements should be spontaneous. However, in car exhausts this decomposition reaction does not take place in the absence of a catalyst. Suggest why this spontaneous decomposition does not take place.			
	(1 mark)			
2 (g)	A student had an idea to earn money by carrying out the following reaction.			
	C(graphite) → C(diamond)			
	Use data from the table on page 4 to calculate values for ΔH^{\ominus} and ΔS^{\ominus} for this reaction. Use these values to explain why this reaction is not feasible under standard pressure at any temperature.			
	$\Delta \mathcal{H}^{\odot}$			
	ΔS°			
	Explanation			
	(3 marks)			

Turn over ▶

14

