Roll No. 2 02 102 1016

BCS - 151

B. Tech. (CSE) Year: 1st Semester: II Test-I (Examination): 2021-2022 INTRODUCTION TO C PROGRAMMING

Time: 1 Hr.

Max Marks: 10

Note: Attempt ALL questions. Each question carries equal marks.

	Q1.	Attempt any two parts of the following. Q. 1(a) is compulsory.	Marks	со	BL	PO	PI Code
*	a)	What are different types of errors occurred during the execution of C program. Write a C program to check whether an alphabet is vowel or consonant using switch case.	3	1,2,3	1,2,3	1,2,3	1.4.1
	b)	Define flowchart and algorithm. Write an algorithm for Fibonacci series (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89).	2	1, 2	1,2	1,2	1.4.1
	c)	Write a C program to find greatest common divisor (GCD) of two numbers using ternary operator and for loop?	2	3	2,3,4	2,3	1.4.1
C)2.	Attempt any two parts of the following. Q. 2(a) is compulsory.		- Tarre	la productiva de	in the second	
	a)	Write a C program to remove characters from the first string which are present in the second string.	3	3	2,3,4	1,2,3	1.4.1
1	57 1	Write a C program to print diagonals elements of a matrix.	2	3	2,3,4	2	1.4.1
	c)	Define recursive function and its types. Write a C function for swapping two integers where a function call is passed with two integers m and n.	2	4	1,2,3	1,2	1.4.1

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 - Creating)

CO - Course Outcomes

PO - Program Outcomes

PI Code - Performance Indicator Code

BCS - 152

B. Tech. (Computer Science & Engineering) Year: Ist Semester: IInd Test-I (Examination): 2021-2022 Web Designing - 2

Time: 1 Hr.

Max Marks: 10

Note: Attempt ALL questions. ALL questions carry equal marks.

Q1.	Attempt any Two parts of the following. Q. 1(a) is compulsory. (Units-I)	Marks	СО	BL	РО	PI Code
a)	What is Node .js? Explain the features of Node .js and Explain the callback concept in detail.	3	CO2	L1	1	1.4.1
b)	Explain the components of Node .js Application. How to display all files in a directory using Node.js?	2	CO2	L2	1,2	1.4.1
c)	Explain Node .js Modules and its type. How to Create Modules in Node.js? Explain with Example.	2	CO2	L2	1	1.4.1
Q2.	Attempt any Two parts of the following. Q. 2(a) is compulsory. (Units -II)					
a)	What is Express JS and its key feature? What is routing and how routing works in Express.js?	3	CO3	L3	1,2	1.4.1
b)	What is Middleware in express is? Explain the function and types of Middleware.	2	CO2	L2	1,2	1.4.1
(c)	How to implement JWT authentication in Express app ? Explain with an Example?	2	CO3	L3	1	1.4.1

BL - Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 - Applying, 4 -

PO - Program Outcomes

PI Code - Performance Indicator Code

BEC-154

Roll No. 2 0 2 10 2 10 1

B. Tech. EVEN SEMESTER (SEM-II) TEST- 1 EXAMINATION 2021 - 2022

Basic Electronic Components and Circuits

Max. Marks: 10

Time: 1 I	115.
-----------	------

Note:	Attempt all questions.	Marks	CO	BL	
Q. No.	Questions	1114111			
1.	Attempt any two parts of the following. Q1(a) is compulsory.	05		L1, L2	1.3.1
1(a)	With the help of suitable diagrams, discuss the principle operation of the PN junction diode for following configurations: (i) No biasing (ii) Forward biasing (iii) Reverse biasing	3	CO1		
1(b)	Write short notes with the suitable diagram on: Intrinsic & Extrinsic Semiconductor	2	CO2	L3,L4	1.3.1
1(c)	Discuss the basic concept of energy band bands in the material. Point out the basic characteristics of semiconductor materials.	2	CO1	L1,L2	1.3.1
2.	Attempt any two parts of the following. Q2(a) is compulsory.				
2(a)	Describe the basic working principle of NPN transistor and discuss about the CE configuration of it		CO2	L3,L4	1.3.1
2(b)	If the base current in a transistor is 30 μA when the emitter current is 7.2mA, what are the values of α and β? Also calculate the collector current.	2	CO4	L2,L3	1.3.1
2(c)	Determine I_B , I_C , I_E , V_C , V_C , V_C , and V_C for the network of Fig. 2. $B = 220$ $B = 220$ $0.75 \text{ k}\Omega$	1	CO4	L1,L2	1.3.1

CO = Course Outcomes (as per the syllabus made for BEC-154 according to NEP)

BL = Bloom Taxonomy (1- Remembering, 2- Understanding, 3 - Applying, 4 - Analysing, 5 - Evaluating, 6

PI- Program Indicator (Reference to Examination Reform AICTE (Page 15) - Program Outcome-1.3 Demonstrate competence in engineering fundamentals, Program Indicator- 1.3.1 Apply fundamental Sub. Code: BSM-156

2021021016 Roll No.

B. Tech.
Year: First Semester: Second
Minor Test-I (Examination): 2021-2022
Applied Statistics and Probability

Max marks:20

14.0800 Arch	Note	: 1 Hr.	npt ALL	question	e follow	questio	ns carry	equal n	ory.	3.	Marks	со	BL	PO	P Co
a)	Attempt any Two parts of the following. Q. 1 (a) is compulsory. Calculate the first four moments of the following distribution about the mean							6	2,6	1,5	1,3 ,5				
a)	and-h	ence fi	nd eta_1 and	β_2 .											
	X	0	1	2	3	4	5	28	7 8	8					
	f	1	8	28	56	70	56			c(v) are	4	2,5	1,3	1,3	
b)	given	below.	Find the	by 10 stee coeffici	ent of co	n matherrelation	ematics(x) between	II A and		8		ŕ			
Ch. Tibouthing	Y	75 85	30 45	60 80 54 9		63	35	43 4	5 4	4					
		- Commence	ant age	nerating f	iunction s	given tha	at P(X=r	$= pq^{r}$	¹ , r=1,	2,3	4	2,5	1,3	1,5	
c)	Hence	e also i	ind mea	n and vai	jano.										Y.
	Atten	Attempt any Two parts of the following. Q. 2 (a) is compulsory.								6	2,6	1,3	1,5		
a)	Obtain the equation of lines of regression for the data given and ther find the Karl Pearson's coefficient of correlation.											,5			
	X	William Market	6		2	10 5	8	-	7				AND AND ASSESSMENT OF THE PARTY OF		
	Y				0.11	na data					4	3,6	1,3	1,2	
b)	Fit the curve $y=ax^b$ for the following data;										ALL AND		And the second s		
	X		0.5		2	4.5	8		12.5		,	A MANAGEMENT A VALLEY AND	gradus it ispense en entrached		
			-	~2	·						4	2,6	1	5	
e)	1100 41	$-y = \sigma$	$x^2 + \sigma_y^2 - 2x$ befficientingle between	$\sigma_x \sigma_y$ It of corrupte ween the	elation b	between	two vai	riables an ⁻¹ (x and $\left(\frac{3}{5}\right)$. Sh	y is 0.5 now tha			,5		enanci i missioni dei proprio "il region fundo accordi accordinati delegido
	$\sigma = 2$														

BSM-179

Roll No. 2021091016

B. tech-1st Year (SEM-II) Even Semester TEST-1 (EXAMINATION) 2021 - 2022

Quantum Physics and Nanomaterials

Max. Marks: 10

Time: 1 Hrs.

Attempt all questions. Attempt any two parts of the following. Q.1(a) is		Marks	CO	BL	PO	PI Code
(a)	Define Specific heat capacity and derive the Specific heat	3 -	1	1	1	
(b)	Find out the dispersion relation of 1-dimensional monoatomic lattice and show that it acts like a low pass filter in long wavelength limit.	2	1	3	1	
(e)	Discuss the properties of paramagnetic and ferromagnetic materials. Write down the Curie-Weiss law for ferromagnetic materials.	2	1	1	1	
	Attempt any two parts of the following. Q.2(a) is compulsory.		1		1	
(a)		1	2	2	1	
(b)	Write down the truth table of OR, NAND and NOR gates Also draw their logical symbol.	. 2	4	1	1	
(c)	locate the fermi level with respect to intrinsic level in	n	2	5	1	
	(a) (b) (a)	Attempt any two parts of the following. Q.1(a) is compulsory. (a) Define Specific heat capacity and derive the Specific heat formula using Debye's theory. (b) Find out the dispersion relation of 1-dimensional monoatomic lattice and show that it acts like a low pass filter in long wavelength limit. Discuss the properties of paramagnetic and ferromagnetic materials. Write down the Curie-Weiss law for ferromagnetic materials. Attempt any two parts of the following. Q.2(a) is compulsory. (a) Draw the circuit diagram of common emitter amplifier using n-p-n transistor. Explain how it amplifies a weak signal. (b) Write down the truth table of OR, NAND and NOR gates Also draw their logical symbol. (c) Find the equilibrium electron and hole concentration and locate the fermi level with respect to intrinsic level in silicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i = 8ilicon at T = 300 K.	Attempt any two parts of the following. Q.1(a) is compulsory. (a) Define Specific heat capacity and derive the Specific heat formula using Debye's theory. (b) Find out the dispersion relation of 1-dimensional monoatomic lattice and show that it acts like a low pass filter in long wavelength limit. (c) Discuss the properties of paramagnetic and ferromagnetic materials. Write down the Curie-Weiss law for ferromagnetic materials. Attempt any two parts of the following. Q.2(a) is compulsory. (a) Draw the circuit diagram of common emitter amplifier using n-p-n transistor. Explain how it amplifies a weak signal. (b) Write down the truth table of OR, NAND and NOR gates. Also draw their logical symbol. (c) Find the equilibrium electron and hole concentration and locate the fermi level with respect to intrinsic level in silicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i =	Attempt any two parts of the following. Q.1(a) is compulsory. (a) Define Specific heat capacity and derive the Specific heat formula using Debye's theory. Find out the dispersion relation of 1-dimensional monoatomic lattice and show that it acts like a low pass filter in long wavelength limit. (b) Discuss the properties of paramagnetic and ferromagnetic materials. Write down the Curie-Weiss law for ferromagnetic materials. Attempt any two parts of the following. Q.2(a) is compulsory. (a) Draw the circuit diagram of common emitter amplifier using n-p-n transistor. Explain how it amplifies a weak signal. (b) Write down the truth table of OR, NAND and NOR gates. Also draw their logical symbol. (c) Find the equilibrium electron and hole concentration and locate the fermi level with respect to intrinsic level in silicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm ³ , n _i =	Attempt any two parts of the following. Q.1(a) is compulsory. (a) Define Specific heat capacity and derive the Specific heat formula using Debye's theory. (b) Find out the dispersion relation of 1-dimensional monoatomic lattice and show that it acts like a low pass filter in long wavelength limit. (c) Discuss the properties of paramagnetic and ferromagnetic materials. Write down the Curie-Weiss law for ferromagnetic materials. Attempt any two parts of the following. Q.2(a) is compulsory. (a) Draw the circuit diagram of common emitter amplifier using n-p-n transistor. Explain how it amplifies a weak signal. (b) Write down the truth table of OR, NAND and NOR gates. Also draw their logical symbol. (c) Find the equilibrium electron and hole concentration and locate the fermi level with respect to intrinsic level in silicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm³, n _i =	Attempt any two parts of the following. Q.1(a) is compulsory. (a) Define Specific heat capacity and derive the Specific heat formula using Debye's theory. (b) Find out the dispersion relation of 1-dimensional monoatomic lattice and show that it acts like a low pass filter in long wavelength limit. (c) Discuss the properties of paramagnetic and ferromagnetic materials. Write down the Curie-Weiss law for ferromagnetic materials. Attempt any two parts of the following. Q.2(a) is compulsory. (a) Draw the circuit diagram of common emitter amplifier using n-p-n transistor. Explain how it amplifies a weak signal. (b) Write down the truth table of OR, NAND and NOR gates. Also draw their logical symbol. (c) Find the equilibrium electron and hole concentration and locate the fermi level with respect to intrinsic level in silicon at T = 300 K. Given that N _d = 8×10 ¹⁶ /cm³, n _i =

BL- Bloom's Taxonomy Levels (1-Remembering, 2-Understanding, 3-Applying, 4-Analysing, 5-Evaluating, 6-Creating)

CO-Course Outcomes

PO - Program Outcomes

PI Code - Performance Indicator Code