Caratterizzazione e Clustering di Matrici di Correlazione ADNI-2 Tramite Distribuzione di Wishart

Carlo Mengucci

ALMA MATER STUDIORUM · UNIVERSITÁ DI BOLOGNA

28 Novembre 2017

Obiettivi dello Studio

- Organizzazione ed esplorazione preliminare della sezione del DataBase ADNI-2 contenente le matrici di correlazione di Resting State di soggetti sani e affetti da Alzheimer
- Giustificazione analitica dell'utilizzo della *Distribuzione* di *Wishart* come ipotesi nulla per la caratterizzazione
- Sviluppo di un algoritmo in grado di separare i soggetti sani dai malati e di individuare un gruppo di significativo di features per il clustering

ADNI-2

- 404 soggetti totali
- Ad ogni soggetto è associata una matrice di correlazione $N \times N$, N = 549
- Ognuno degli N elementi rappresenta un Macrovoxel di cui è estratta la correlazione topologica rispetto a tutte le altre componenti del sistema
- Ogni Macrovoxel è definito su un insieme di 3 · 10³
 Voxel
- Dei 404 soggetti sono stati utilizzati soltanto gli ultimi 300 a causa di discrepanze tra procedure di normalizzazione tra due sezioni distinte individuabili all'interno del DataBase

Forma Analitica ^a

^a Hardle, Wolfgang and Leopold Simar. 2012. Applied Multivariate Statistical Analysis. Heidelberg: Springer Berlin Heidelberg

- La distribuzione di Wishart consiste in una famiglia di distribuzioni per matrici simmetriche definite positive
- Siano $X_1...X_n$ vettori indipendenti $N_p(0,\Sigma)$ e tali da formare una matrice di dati $p \times n$, $X = [X_1...X_n]$. La distribuzione di matrici random $p \times p$,
 - $M = XX' = \sum_{i=1}^{n} X_i X_i'$ è una distribuzione di Wishart.

Forma Analitica a

^a Hardle, Wolfgang and Leopold Simar. 2012. Applied Multivariate Statistical Analysis. Heidelberg: Springer Berlin Heidelberg

• La matrice random $M_{p \times p} = \sum_{i=1}^{n} X_i X_i'$ segue una distribuzione di Wishart a n gradi di libertà e matrice di covarianza Σ ed è definita $M \sim W_p(n, \Sigma)$. Per $n \geq p$ la pdf di M assume la forma :

$$f(M) = \frac{1}{2^{\frac{np}{2}} \Gamma_p(\frac{n}{2}) \|\Sigma\|^{\frac{n}{2}}} \|M\|^{\frac{n-p-1}{2}} \exp[-\frac{1}{2} trace(\Sigma^{-1}M)]$$
(1)

• La Wishart può essere interpretata come l'estensione multivariata di una distribuzione χ^2

Definizione delle Condizioni di Applicazione

- Le matrici di correlazione sono per definizione simmetriche definite positive
- Il numero n di gradi di libertà del sistema è dato dal campionamento ($n = 3 \cdot 10^3$) del singolo Macrovoxel
- Utilizzando come matrice di scala la matrice data dalla media delle matrici di correlazione delle due categorie di soggetti, è possibile ricostruire la Wishart attesa per le categorie stesse.

Pipeline

Calcolo delle Ridotte: Approfondimento

- Definizione: sia A una matrice $n \times n$, una sottomatrice $k \times k$ di A ottenuta eliminando n k righe e le stesse n k colonne di A è detta sottomatrice principale.
- Teorema: Se A è simmetrica definita positiva, ogni sottomatrice principale di A è anch'essa simmetrica definita positiva.
- Queste proprietà permettono di calcolare il peso che ogni componente del sistema possiede, in termini di variazione di LogPdf rispetto alla matrice di scala generatrice della distribuzione attesa.
- Vengono cioè valutate N variazioni di LogPdf su N sottomatrici principali di dimensioni $(N-1) \times (N-1)$.

Clustering

LogPdf Distribution

