7. Verbundwerkstoffe

Gezielt aufgebaute Werkstoffe aus zwei oder mehreren Einzelstoffen. Der Verbund hat Eigenschaften, die kein der Materialien für sich alleine besitzt.

7.1. Bauprinzip und Einteilung von Verbundwerkstoffen

a) Bauprinzip → Bild 7-1

© Prof. Dr. Bozena Arnold - www.materialmagazin.com

b) Matrixstoffe → Bild 7-2

Das Hauptkriterium für die Auswahl eines Matrixstoffes ist die Einsatztemperatur des Verbundwerkstoffes.

c) Einteilung der Verbundwerkstoffe → Bild 7-3

Verbundwerkstoffe werden nach der Form des Verstärkungsstoffes eingeteilt.

7.2 Teilchenverbundwerkstoffe - Hartmetalle

Zu den Teilchenverbundwerkstoffen gehören u.a. Hartmetalle → Bilder 7-4, 7-5

© Prof. Dr. Bozena Arnold - www.materialmagazin.com

Vergrößerung

© Prof. Dr. Bozena Arnold - www.materialmagazin.com

Gips

Pappe

Verbundplatte

A207-Verbundwerkstoffe

Bild 7-4: Hartmetalle

Werkstofftechnik für Wirtschaftsingenieure

Hartmetalle und Cermets

- Matrix: zähes Metall (Kobalt, bis ca. 25%)
- Verstärkungsstoff: sehr harte Teilchen von Hartstoffen (meist Karbide und Nitride von Metallen)
- Herstellung: Sintertechnisch aus geeigneten Pulvern
- · Cermets haben durch gerundete Teilchen höhere Oxidationsbeständigkeit

© Prof. Dr. Bozena Arnold - www.materialmagazin.com

Quelle: K. Dreyer - Neue Entwicklungen..., WIDIA GmbH

A207-Verbundwerkstoffe

Bild 7-5: Eigenschaften und Anwendung von Hartmetallen

Werkzeuge aus Hartmetall

Werkstofftechnik für Wirtschaftsingenieure

Hartmetall-Wendeschneidplattenfür Dreh-, Bohr- und Fräswerkzeuge	
Eigenschaften	Einsatzgebiete
 Große Warmhärte (bis 1000 °C) Hohe Verschleiß- festigkeit Hohe Druckfestigkeit Schwingungs- dämpfend 	Wendeschneidplatten für Fräs- und Drehwerkzeuge, Wendeplattenbohrer, schwingungsdämpfende Werkzeuge aus Vollhartmetall, für nahezu alle Werkstoffe einsetzbar

- sehr hohe Härte (bis 2000HV)
- ausreichende Zähigkeit
- hohe Dichte
 (ca. 15 g/cm³)

7.3 Faserverbundwerkstoffe

Matrix: meist Polymere

z.B.: Epoxidharz, Polyesterharz, neulich auch Thermoplaste

Verstärkungsstoff: Faserwerkstoffe

Leichtbauwerkstoff mit guter spezifischer Festigkeit und Steifigkeit Verbund:

- spezifische Festigkeit: Zugfestigkeit/Dichte des Werkstoffs

- spezifische Steifigkeit: E-Modul/Dichte

7.3.1 Faserwerkstoffe

Ein Werkstoff in Form einer sehr dünnen Faser und mit anderen Eigenschaften als in der kompakten Form.

<u>a) Arten und Verwendungsformen von Faserwerkstoffen</u> → Bild 7-6

A207-Verbundwerkstoffe

Bild 7-6: Faserwerkstoffe

Werkstofftechnik für Wirtschaftsingenieure Meist Kreisquerschnitt L:D >> 1, L:D <10⁴ - Kurzfasern L - Länge

D - Durchmesser (meist ca. 10µm)

 Bessere Festigkeit als die des Werkstoffs in kompakter Form durch günstige statistische Verteilung von Fehlstellen

Wichtige Faserwerkstoffe:

- Glasfasern
- Kohlenstofffasern
- Aramidfasern
- Borfasern
- Polyethylenfasern
- Siliziumkarbid-Fasern

Verwendungs-Formen (Lieferformen) der Faserwerkstoffe

Rovings - unidirektionale, nicht versponnene Fasern Durchmesser ca. 1,0mm

Matten - unverwebte, zufällig orientierte Fasern

Gelege - durch dünne Fäden zusammengehaltene

Rovings in einer oder mehreren Lagen

Gewebe - verwobene Faserbündel,

die wichtigsten textilen Halbzeuge

Gewebe aus Kohle-, Aramid- und Glasfaser (v. links)

© Prof. Dr. Bozena Arnold - www.materialmagazin.com

b) Wichtige Faserwerkstoffe → Bild 7-7

7.3.2 Eigenschaftsbeeinflussung von Faserverbundwerkstoffen

Grundeigenschaften werden durch die Auswahl eines Matrix- und Faserwerkstoffes bestimmt. → Bild 7-8

Weitere Beeinflussung von Eigenschaften erfolgt durch \rightarrow Bild 7-8:

- Faseranteil
 - Je höher er ist, desto besser die Festigkeit.
 - Max. 80% wegen des Zusammenhalts
- Fasergeometrie
 - Je größer das Verhältnis L/D (d.h. je länger die Fasern) desto besser die Festigkeit.
 - Sehr gut für Verbunde sind sog. Endlosfasern.
 - In der Praxis oft ein Kompromiss zwischen Herstellungsaufwand und den erzielbaren Eigenschaften:
 - meist Fasern oberhalb eines kritischen Wertes von L_c/D
 - diese kritische Länge L_c wird ermittelt
 - und wenn Faserlänge ca. 15-mal L_c , dann Verhalten als endlose Fasern
- Faseranordnung und dadurch
 - Anpassung der Belastbarkeit der Verbunde an die Einsatzbedingungen
 - Erzielung isotroper bzw. anisotroper Eigenschaften
 - Eine Eigenheit der Faserverbunde: Fasern können auch zu dreidimensionalen Anordnungen verflochten werden.

7.3.3 Einteilung und Vergleich von Faserverbundwerkstoffen → Bild 7-9

Spezifischer E-Modul (104 N · m/g)

© Prof. Dr. Bozena Arnold – www.materialmagazin.com

Quelle: D. Askeland - Materialwissenschaften

Kunststoffen