MATH378 - Nonlinear Optimization

Based on lectures from Fall 2025 by Prof. Tim Hoheisel. Notes by Louis Meunier

Contents

1 Preliminaries	
1.1 Terminology	
1.2 Convex Sets and Functions	
2 Unconstrained Optimization	
2.1 Theoretical Foundations	4
2.1.1 Quadratic Approximation	
2.2 Differentiable Convex Functions	
2.3 Matrix Norms	g
3 Descent Methods	11
3.1 A General Line-Search Method	11
3.1.1 Global Convergence of Algorithm 3.1	12
3.2 The Gradient Method	

§1 Preliminaries

§1.1 Terminology

We consider problems of the form

minimize
$$f(x)$$
 subject to $x \in X$, (†)

with $X \subset \mathbb{R}^n$ the feasible region with x a feasible point, and $f: X \to \mathbb{R}$ the objective (function); more concisely we simply write

$$\min_{x \in X} f(x)$$
.

When $X = \mathbb{R}^n$, we say the problem (†) is *unconstrained*, and conversely *constrained* when $X \subseteq \mathbb{R}^n$.

⊗ Example 1.1 (Polynomial Fit): Given $y_1, ..., y_m \in \mathbb{R}$ measurements taken at m distinct points $x_1, ..., x_m \in \mathbb{R}$, the goal is to find a degree $\leq n$ polynomial $q : \mathbb{R} \to \mathbb{R}$, of the form

$$q(x) = \sum_{k=0}^{n} \beta_k x^k,$$

"fitting" the data $\{(x_i, y_i)\}_i$, in the sense that $q(x_i) \approx y_i$ for each i. In the form of (†), we can write this precisely as

$$\min_{\beta \in \mathbb{R}^{n+1}} \frac{1}{2} \sum_{i=0}^{n} \left(\underbrace{\beta_n x_i^n + \dots + \beta_1 x_i + \beta_0}_{q(x_i)} - y_i \right)^2;$$

namely, we seek to minimize the ℓ^2 -distance between $(q(x_i))$ and (y_i) . If we write

$$X \coloneqq \begin{pmatrix} 1 & x_1 & \dots & x_1^n \\ \vdots & \dots & \dots & \vdots \\ 1 & x_m & \dots & x_m^n \end{pmatrix} \in \mathbb{R}^{m \times (n+1)}, \qquad y \coloneqq \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m,$$

then concisely this problem is equivalent to

$$\min_{\beta \in \mathbb{R}^{n+1}} \frac{1}{2} ||X \cdot \beta - y||_2^2,$$

a so-called *least-squares* problem.

We have two related tasks:

- 1. Find the optimal value asked for by (†), that is what $\inf_X f$ is;
- 2. Find a specific point \overline{x} such that $f(\overline{x}) = \inf_X f$, i.e. the value of a point

$$\overline{x} \in \operatorname{argmin}_X f := \left\{ x \in X \mid f(x) = \inf_X f \right\}.$$

(noting that argmin should be viewed as a set-valued function, as there may be multiple admissible minimizers) Notice that if we can accomplish 2., we've accomplished 1. by computing $f(\overline{x})$.

1.1 Terminology

Note that $\overline{x} \in \operatorname{argmin}_X f \Rightarrow f(\overline{x}) = \inf_X f$, but $\inf_X f \in \mathbb{R}$ does not necessarily imply $\operatorname{argmin}_X f \neq \emptyset$, that is, there needn't be a feasible minimimum; for instance $\inf_{x \in \mathbb{R}} e^x = 0$, but $\operatorname{argmin}_{\mathbb{R}} f = \emptyset$ (there is no x for which $e^x = 0$).

- \hookrightarrow **Definition 1.1** (Minimizers): Let $X \subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$. Then $\overline{x} \in X$ is called a
- *global minimizer* (of f over X) if $f(\overline{x}) \le f(x) \forall x \in X$, or equivalently if $\overline{x} \in \operatorname{argmin}_X f$;
- *local minimizer (of f over X)* if $f(\overline{x}) \le f(x) \forall x \in X \cap B_{\varepsilon}(\overline{x})$ for some $\varepsilon > 0$.

In addition, we have *strict* versions of each by replacing " \leq " with "<".

```
\hookrightarrow Definition 1.2 (Some Geometric Tools): Let f : \mathbb{R}^n \to \mathbb{R}.
```

- gph $f := \{(x, f(x)) \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^n \times \mathbb{R}$
- $f^{-1}(\{c\}) := \{x \mid f(x) = c\} \equiv contour/level \ set \ at \ c$
- $\operatorname{lev}_c f := f^{-1}((-\infty, c]) = \{x \mid f(x) \le c\} \equiv lower \ level/sublevel \ set \ at \ c$

Remark 1.1:

- $lev_{inf} f = argmin f$
- assume *f* continuous; then all (sub)level sets are closed (possibly empty)

We recall the following result from calculus/analysis:

```
→Theorem 1.1 (Weierstrass): Let f : \mathbb{R}^n \to \mathbb{R} be continuous and X \subset \mathbb{R}^n compact. Then, \operatorname{argmin}_X f \neq \emptyset.
```

From, we immediately have the following:

Proposition 1.1: Let $f : \mathbb{R}^n \to \mathbb{R}$ continuous. If there exists a $c \in \mathbb{R}$ such that lev_cf is nonempty and bounded, then $\operatorname{argmin}_{\mathbb{R}^n} f \neq \emptyset$.

PROOF. Since f continuous, $\operatorname{lev}_c f$ is closed (being the inverse image of a closed set), thus $\operatorname{lev}_c f$ is compact (and in particular nonempty). By Weierstrass, f takes a minimimum over $\operatorname{lev}_c f$, namely there is $\overline{x} \in \operatorname{lev}_c f$ with $f(\overline{x}) \leq f(x) \leq c$ for each $x \in \operatorname{lev}_c f$. Also, f(x) > c for each $x \notin \operatorname{lev}_c f$ (by virtue of being a level set), and thus $f(\overline{x}) \leq f(x)$ for each $x \in \mathbb{R}^n$. Thus, \overline{x} is a global minimizer and so the theorem follows.

§1.2 Convex Sets and Functions

Definition 1.3 (Convex Sets): $C \subset \mathbb{R}^n$ is *convex* if for any $x, y \in C$ and $\lambda \in (0, 1)$, $\lambda x + (1 - \lambda)y \in C$; that is, the entire line between x and y remains in C.

1.2 Convex Sets and Functions

 \hookrightarrow **Definition 1.4** (Convex Fucntions): Let $C \subset \mathbb{R}^n$ be convex. Then, $f: C \to \mathbb{R}$ is called

1. convex (on C) if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

for every $x, y \in C$ and $\lambda \in (0, 1)$;

- 2. strictly convex (on C) if the inequality \leq is replaced with \leq ;
- 3. *strongly convex* (on *C*) if there exists a $\mu > 0$ such that

$$f(\lambda x + (1 - \lambda)y) + \mu \lambda (1 - \lambda) ||x - y||^2 \le \lambda f(x) + (1 - \lambda)f(y),$$

for every $x, y \in C$ and $\lambda \in (0,1)$; we call μ the modulus of strong convexity.

Remark 1.2: $3. \Rightarrow 2. \Rightarrow 1.$

Remark 1.3: A function is convex iff its epigraph is a convex set.

⊗ Example 1.2: exp : $\mathbb{R} \to \mathbb{R}$, log : $(0, \infty) \to \mathbb{R}$ are convex. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ of the form f(x) = Ax - b for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ is called *affine linear*. For m = 1, every affine linear function is convex. All norms on \mathbb{R}^n are convex.

\hookrightarrow Proposition 1.2:

- 1. (Positive combinations) Let f_i be convex on \mathbb{R}^n and $\lambda_i > 0$ scalars for i = 1, ..., m, then $\sum_{i=1}^m \lambda_i f_i$ is convex; as long as one is strictly (resp. strongly) convex, the sum is strictly (resp. strongly) convex as well.
- 2. (Composition with affine mappings) Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and $G : \mathbb{R}^m \to \mathbb{R}^n$ be affine. Then, $f \circ G$ is convex on \mathbb{R}^m .

§2 Unconstrained Optimization

§2.1 Theoretical Foundations

We focus on the problem

$$\min_{x\in\mathbb{R}^n} f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Definition 2.1 (Directional derivative): Let $D \subset \mathbb{R}^n$ be open and $f: D \to \mathbb{R}$. We say f directionally differentiable at $\overline{x} \in D$ in the direction $d \in \mathbb{R}^n$ if

$$\lim_{t \to 0^+} \frac{f(\overline{x} + td) - f(\overline{x})}{t}$$

exists, in which case we denote the limit by $f'(\bar{x}; d)$.

2.1 Theoretical Foundations

Lemma 2.1: Let $D \subset \mathbb{R}^n$ be open and $f : D \to \mathbb{R}$ differentiable at $x \in D$. Then, f is directionally differentiable at x in every direction d, with

$$f'(x;d) = \nabla f(x)^T d = \langle \nabla f(x), d \rangle.$$

Example 2.1 (Directional derivatives of the Euclidean norm): Let $f : \mathbb{R}^n \to \mathbb{R}$ by f(x) = ||x|| the usual Euclidean norm. Then, we claim

$$f'(x;d) = \begin{cases} \frac{x^T d}{\|x\|} & x \neq 0 \\ \|d\| & x = 0 \end{cases}$$

For $x \neq 0$, this follows from the previous lemma and the calculation $\nabla f(x) = \frac{x}{\|x\|}$. For x = 0, we look at the limit

$$\lim_{t \to 0^+} \frac{f(0+td) - f(0)}{t} = \lim_{t \to 0^+} \frac{t||d|| - 0}{t} = ||d||,$$

using homogeneity of the norm.

Lemma 2.2 (Basic Optimality Condition): Let *X* ⊂ \mathbb{R}^n be open and $f: X \to \mathbb{R}$. If \overline{x} is a *local minimizer* of f over X and f is directionally differentiable at \overline{x} , then $f'(\overline{x};d) \ge 0$ for all $d \in \mathbb{R}^n$.

PROOF. Assume otherwise, that there is a direction $d \in \mathbb{R}^n$ for which the $f'(\overline{x};d) < 0$, i.e.

$$\lim_{t \to 0^+} \frac{f(\overline{x} + td) - f(\overline{x})}{t} < 0.$$

Then, for all sufficiently small t > 0, we must have

$$f(\overline{x} + td) < f(\overline{x}).$$

Moreover, since X open, then for t even smaller (if necessary), $\overline{x} + td$ remains in X, thus \overline{x} cannot be a local minimizer.

→Theorem 2.1 (Fermat's Rule): In addition to the assumptions of the previous lemma, assume further that f is differentiable at \overline{x} . Then, $\nabla f(\overline{x}) = 0$.

PROOF. From the previous, we know $0 \le f'(\overline{x}; d)$ for any d. Take $d = -\nabla f(\overline{x})$, then using the representation of a directional derivative for a differentiable function, and the fact that norms are nonnegative,

$$0 \le -\|\nabla f(\overline{x})\|^2 \le 0,$$

which can only hold if $\|\nabla f(\overline{x})\| = 0$ hence $\nabla f(\overline{x}) = 0$

We recall the following from Calculus:

2.1 Theoretical Foundations

5

Theorem 2.2 (Taylor's, Second Order): Let $f: D \to \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable, then for each $x, y \in D$, there is an η lying on the line between x and y such that

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(\eta) (y - x).$$

Theorem 2.3 (2nd-order Optimality Conitions): Let $X \subseteq \mathbb{R}^n$ open and $f: X \to \mathbb{R}$ twice continuously differentiable. Then, if x a local minimizer of f over X, then the Hessian matrix $\nabla^2 f(x)$ is positive semi-definite.

PROOF. Suppose not, then there exists a d such that $d^T \nabla^2 f(x) d < 0$. By Taylor's, for every t > 0, there is an η_t on the line between x and x + td such that

$$f(x+td) = f(x) + t \underbrace{\nabla f(x)^T}_{=0} d + \frac{1}{2} t^2 d^T \nabla^2 f(\eta_t) d$$
$$= f(x) + \frac{t^2}{d^T} \nabla^2 f(\eta_t) d.$$

As $t \to 0^+$, $\nabla^2 f(\eta_t) \to \nabla^2 f(x) < 0$. By continuity, for t sufficiently small, $\frac{t^2}{2} d^T \nabla^2 f(\eta_t) d < 0$ for t sufficiently small, whence we find

$$f(x+td) < f(x),$$

for sufficiently small t, a contradiction.

Lemma 2.3: Let $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}$ in C^2 . If $\overline{x} \in \mathbb{R}^n$ is such that $\nabla^2 f(\overline{x}) > 0$ (i.e. is positive definite), then there exists $\varepsilon, \mu > 0$ such that $B_\varepsilon(\overline{x}) \subset X$ and

$$d^T \nabla^2 f(x) d \geq \mu \|d\|^2, \qquad \forall d \in \mathbb{R}^n, x \in B_\varepsilon(\overline{x}).$$

Combining this and Taylor's Theorem, we can deduce the following (our first "sufficient" result of this section):

Theorem 2.4 (Sufficient Optimality Condition): Let $X \subset \mathbb{R}^n$ open and $f \in C^2(X)$. Let \overline{x} be a stationary point of f such that $\nabla^2 f(\overline{x}) > 0$. Then, \overline{x} is a *strict* local minimizer of f.

2.1.1 Quadratic Approximation

Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2 and $\overline{x} \in \mathbb{R}^n$. By Taylor's, we can approximate

$$f(y) \approx g(y) \coloneqq f(\overline{x}) + \nabla f(\overline{x})^T (y - \overline{x}) + \frac{1}{2} (y - \overline{x})^T \nabla^2 f(\overline{x}) (y - \overline{x}).$$

Example 2.2 (Quadratic Functions): For $Q \in \mathbb{R}^{n \times n}$ symmetric, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$, let

$$f: \mathbb{R}^n \to \mathbb{R}, \quad f(x) = \frac{1}{2}x^TQx + c^Tx + \gamma,$$

a typical quadratic function. Then,

$$\nabla f(x) = \frac{1}{2} \big(Q + Q^T \big) x + c = Qx + c, \qquad \nabla^2 f(x) = Q.$$

We find that f has no minimizer if $c \notin \operatorname{rge}(Q)$ or Q is not positive semi-definite, combining our previous two results. In turn, if Q is positive definite (and thus invertible), there is a unique local minimizer $\overline{x} = -Q^{-1}c$ (and global minimizer, as we'll see).

§2.2 Differentiable Convex Functions

 \hookrightarrow Theorem 2.5: Let $C \subset \mathbb{R}^n$ be open and convex and $f: C \to \mathbb{R}$ differentiable on C. Then:

1. *f* is convex (on *C*) iff

$$f(x) \ge f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x})$$
 *1

for every $x, \overline{x} \in C$;

- 2. *f* is *strictly* convex iff same inequality as 1. with strict inequality;
- 3. f is *strongly* convex with modulus $\sigma > 0$ iff

$$f(x) \geq f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x}) + \frac{\sigma}{2} \|x - \overline{x}\|^2 \qquad \star_2$$

for every $x, \overline{x} \in C$.

PROOF. $(1., \Rightarrow)$ Let $x, \overline{x} \in C$ and $\lambda \in (0, 1)$. Then,

$$f(\lambda x + (1-\lambda)\overline{x}) - f(\overline{x}) \le \lambda \big(f(x) - f(\overline{x})\big),$$

which implies

$$\frac{f(\overline{x}+\lambda(x-\overline{x}))-f(\overline{x})}{\lambda}\leq f(x)-f(\overline{x}).$$

Letting $\lambda \to 0^+$, the LHS \to the directional derivative of f at \overline{x} in the direction $x - \overline{x}$, which is equal to, by differentiability of f, $\nabla f(\overline{x})^T(x - \overline{x})$, thus the result.

$$(1., \Leftarrow)$$
 Let $x_1, x_2 \in C$ and $\lambda \in (0, 1)$. Let $\overline{x} := \lambda x_1 + (1 - \lambda)x_2$. \star_1 implies

$$f(x_i) \ge f(\overline{x}) + \nabla f(\overline{x})^T (x_i - \overline{x}),$$

for each of i=1,2. Taking "a convex combination of these inequalities", i.e. multiplying them by λ , $1-\lambda$ resp. and adding, we find

$$\lambda f(x_1) + (1-\lambda)f(x_2) \geq f(\overline{x}) + \nabla f(\overline{x})^T \big(\lambda x_1 + (1-\lambda)x_2 - \overline{x}\big) = f\big(\lambda x_1 + (1-\lambda)x_2\big),$$

thus proving convexity.

 $(2., \Rightarrow)$ Let $x \neq \overline{x} \in C$ and $\lambda \in (0, 1)$. Then, by 1., as we've just proven,

$$\lambda \nabla f(\overline{x})^T (x - \overline{x}) \leq f(\overline{x} + \lambda (x - \overline{x})) - f(\overline{x}).$$

But $f(\overline{x} + \lambda(x - \overline{x})) < \lambda f(x) + (1 - \lambda)f(\overline{x})$ by strict convexity, so we have

$$\lambda \nabla f(\overline{x})^T (x - \overline{x}) < \lambda \big(f(x) - f(\overline{x}) \big),$$

and the result follows by dividing both sides by λ .

- $(2., \Leftarrow)$ Same as $(1., \Leftarrow)$ replacing " \leq " with "<".
- (3.) Apply 1. to $f \frac{\sigma}{2} \|\cdot\|^2$, which is still convex if f σ -strongly convex, as one can check.
- \hookrightarrow Corollary 2.1: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Then,
- a) there exists an *affine function* $g : \mathbb{R}^n \to \mathbb{R}$ such that $g(x) \leq f(x)$ everywhere;
- b) if f strongly convex, then it is coercive, i.e. $\lim_{\|x\|\to\infty} f(x) = \infty$.
- \hookrightarrow Corollary 2.2: Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable, then TFAE:
- 1. \bar{x} is a global minimizer of f;
- 2. \overline{x} is a local minimizer of f;
- 3. \overline{x} is a stationary point of f.

PROOF. 1. \Rightarrow 2. is trivial and 2. \Rightarrow 3. was already proven and 3. \Rightarrow 1. follows from the fact that differentiability gives

$$f(x) \ge f(\overline{x}) + \underline{\nabla(f)(\overline{x})^T(x-\overline{x})}$$

for any $x \in \mathbb{R}^n$.

Corollary 2.3: (2.2.4)

- **→Theorem 2.6** (Twice Differentiable Convex Functions): Let $Ω ⊂ \mathbb{R}^n$ open and convex and $f ∈ C^2(Ω)$. Then,
- 1. f is convex on Ω iff $\nabla^2 f \ge 0$;
- 2. f is strictly convex on $\Omega \leftarrow \nabla^2 f > 0$;
- 2. f is σ -strongly convex on $\Omega \Leftrightarrow \sigma \leq \lambda_{\min}(\nabla^2 f(x))$ for all $x \in \Omega$.
- **Corollary 2.4**: Let $A \in \mathbb{R}^{n \times n}$ be symmetric, $b \in \mathbb{R}^n$ and $f(x) := \frac{1}{2}x^TAx + b^Tx$. Then,
- 1. f convex $\Leftrightarrow A \ge 0$;
- 2. f strongly convex $\Leftrightarrow A > 0$.

Theorem 2.7 (Convex Optimization): Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and continuous, $X \subset \mathbb{R}^n$ convex (and nonempty), and consider the optimization problem

$$\min f(x)$$
 s.t. $x \in X$ (\star) .

Then, the following hold:

- 1. \overline{x} is a global minimizer of $(\star) \Leftrightarrow \overline{x}$ is a local minimizer of (\star)
- 2. $\operatorname{argmin}_X f$ is convex (possibly empty)
- 3. f is strictly convex \Rightarrow argmin_Xf has at *most* one element
- 4. f is strongly convex and differentiable, and X closed, \Rightarrow argmin_Xf has exactly one element

PROOF. $(1., \Rightarrow)$ Trivial. $(1., \Leftarrow)$ Let \overline{x} be a local minimizer of f over X, and suppose towards a contradiction that there exists some $\hat{x} \in X$ such that $f(\hat{x}) < f(\overline{x})$. By convexity of f, X, we know for $\lambda \in (0,1)$, $\lambda \overline{x} + (1-\lambda)\hat{x} \in X$ and

$$f(\lambda \overline{x} + (1 - \lambda)\hat{x}) \le \lambda f(\overline{x}) + (1 - \lambda)f(\hat{x}) < f(\overline{x}).$$

Letting $\lambda \to 1^-$, we see that $\lambda \overline{x} + (1 - \lambda)\hat{x} \to \overline{x}$; in particular, for any neighborhood of \overline{x} we can construct a point which strictly lower bounds $f(\overline{x})$, which contradicts the assumption that \overline{x} a local minimizer.

- (2.) and (3.) are left as an exercise.
- (4.) We know that f is strictly convex and level-bounded. By (3.) we know there is at most one minimizer, so we just need to show there exists one. Take $c \in \mathbb{R}$ such that $\text{lev}_c(f) \cap X \neq \emptyset$ (which certainly exists by taking, say, f(x) for some $x \in X$). Then, notice that (\star) and

$$\min_{x \in \text{lev}_c f \cap X} f(x) \qquad (\star \star)$$

have the same solutions i.e. the same set of global minimizers (noting that this remains a convex problem). Since f continuous and $\text{lev}_c f \cap X$ compact and nonempty, f attains a minimum on $\text{lev}_c f \cap X$, as we needed to show.

Remark 2.1: Note that level sets of convex functions are convex, this is left as an exercise.

§2.3 Matrix Norms

We denote by $\mathbb{R}^{m \times n}$ the space of real-valued $m \times n$ matrices (i.e. of linear operators from $\mathbb{R}^n \to \mathbb{R}^m$).

 \hookrightarrow Proposition 2.1 (Operator Norms): Let $\|\cdot\|_*$ be a norm on \mathbb{R}^m and \mathbb{R}^n , resp. Then, the map

$$\mathbb{R}^{m \times n} \ni A \mapsto \|A\|_* \coloneqq \sup_{\substack{x \in \mathbb{R}^n, \\ \|x\|_* \neq 0}} \frac{\|Ax\|_*}{\|x\|_*} \in \mathbb{R}$$

is a norm on $R^{m \times n}$. In addition,

$$||A||_* = \sup_{||x||_*=1} ||Ax||_* = \sup_{||x||_* \le 1} ||Ax||_*.$$

2.3 Matrix Norms 9

PROOF. We first note that all of these sup's are truely max's since they are maximizing continuous functions over compact sets.

Let $A \in \mathbb{R}^{m \times n}$. The first "In addition" equality follows from positive homogeneity, since $\frac{x}{\|x\|_*}$ a unit vector. For the second, note that " \leq " is trivial, since we are supping over a larger (super)set. For " \geq ", we have for any x with $\|x\|_* \leq 1$,

$$||Ax||_* = ||x||_* ||A\frac{x}{||x||_*}||_* \le ||A\frac{x}{||x||_*}||.$$

Supping both sides over all such *x* gives the result.

We now check that $\|\cdot\|_*$ actually a norm on $\mathbb{R}^{m\times n}$.

- $1. \ \|A\|_* = 0 \Leftrightarrow \sup_{\|x\|_* = 1} \|Ax\|_* = 0 \Leftrightarrow \|Ax\|_* = 0 \forall \|x\|_* = 1 \Leftrightarrow Ax = 0 \forall \|x\|_* = 1 \Leftrightarrow A = 0$
- 2. For $\lambda \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, $\|\lambda A\|_* = \sup \|\lambda Ax\|_* = |\lambda| \cdot \sup \|Ax\|_* = |\lambda| \|A\|_*$
- 3. For $A, B \in \mathbb{R}^{m \times n}$, $||A + B||_* \le ||A||_* + ||B||_*$ using properties of sups of sums

Proposition 2.2: Let $A = (a_{ij})_{i=1,...,m} \in \mathbb{R}^{m \times n}$, then: j=1,...,n

- 1. $||A||_1 = \max_{j=1}^n \sum_{i=1}^m |a_{ij}|$
- 2. $||A||_2 = \sqrt{\lambda_{\max}(A^T A)} = \sigma_{\max}(A)$
- 3. $||A||_{\infty} = \max_{i=1}^{m} \sum_{i=1}^{n} |a_{ij}|$

 \hookrightarrow Proposition 2.3: Let $\|\cdot\|_*$ be a norm on \mathbb{R}^n , \mathbb{R}^m , and \mathbb{R}^p . For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,

- 1. $||Ax||_* \le ||A||_* \cdot ||x||_*$
- 2. $||AB||_{*} \leq ||A||_{*} \cdot ||B||_{*}$

Proposition 2.4 (Banach Lemma): Let $C \in \mathbb{R}^{n \times n}$ with ||C|| < 1, where $||\cdot||$ submultiplicative. Then, I + C is invertible, and

$$||(1+C)^{-1}|| \le \frac{1}{1-||C||}.$$

Proof. We have for any m,

$$\left\| \sum_{i=1}^{m} (-C)^{i} \right\| \leq \sum_{i=1}^{m} \|C\|^{i} \underset{m \to \infty}{\longrightarrow} \frac{1}{1 - \|C\|}.$$

Hence, $A_m := \sum_{i=1}^m (-C)^i$ a sequence of matrices with bounded norm uniformly in m, and thus has a converging subsequence, so wlog $A_m \to A \in \mathbb{R}^{n \times n}$ (by relabelling). Moreover, observe that

$$A_m \cdot (I+C) = \sum_{i=0}^m (-C)^i (I+C) = \sum_{i=0}^m \left[(-C)^i - (-C)^{i+1} \right] = (-C)^0 - (-C)^{m+1} = I - (-C)^{m+1}.$$

Now, $||C^{m+1}|| \le ||C||^{m+1} \to 0$, since ||C|| < 1, thus $C \to 0$. Hence, taking limits in the line above implies

2.3 Matrix Norms 10

$$A(I+C) = \lim_{m \to \infty} A_m(I+C) = I,$$

implying A the inverse of (I + C), proving the proposition.

Corollary 2.5: Let $A, B \in \mathbb{R}^{n \times n}$ with ||I - BA|| < 1 for $||\cdot||$ submultiplicative. Then, A and B are invertible, and $||B^{-1}|| \le \frac{||A||}{1 - ||I - BA||}$.

§3 DESCENT METHODS

§3.1 A General Line-Search Method

We deal with the unconstrained problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad (\star).$$

Definition 3.1 (Descent Direction): Let $f : \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}^n$. $d \in \mathbb{R}^n$ is a *descent direction* of f at x if there exists a $\bar{t} > 0$ such that f(x + td) < f(x) for all $t \in (0, \bar{t})$.

Proposition 3.1: If $f : \mathbb{R}^n \to \mathbb{R}$ is directionally differentiable at $x \in \mathbb{R}^n$ in the direction d with f'(x;d) < 0, then d a descent direction of f at x; in particular if f differentiable at x, then true for d if $\nabla f(x)^T d < 0$.

Corollary 3.1: Let $f : \mathbb{R}^n \to \mathbb{R}$ differentiable, $B \in \mathbb{R}^{n \times n}$ positive definite, and $x \in \mathbb{R}^n$. Then $\nabla f(x) \neq 0 \Rightarrow -B\nabla f(x)$ is a descent direction of f at x.

PROOF.
$$\nabla f(x)^T (-B\nabla f(x)) = -\nabla f(x)^T B\nabla f(x) < 0.$$

A generic method/strategy for solving (\star):

- S1. (Initialization) Choose $x^0 \in \mathbb{R}^n$ and set k := 0
- S2. (Termination) If x^k satisfies a "termination criterion", STOP
- S3. (Search direction) Determine d^k such that $\nabla f(x^k)^T d^k < 0$
- S4. (Step-size) Determine $t_k > 0$ such that $f(x^k + t_k d^k) < f(x^k)$
- S5. (Update) Set $x^{k+1} := x^k + t_k d^k$, iterate k, and go back to step 2.

Remark 3.1: a) The generic choice for d^k in 3. is just $d^k := -B_k \nabla f(x^k)$ for some $B_k > 0$. We focus on:

- $B_k = I$ (gradient-descent)
- $B_k = \nabla^2 f(x^k)^{-1}$ (Newton's method) $B_k \approx \nabla^2 f(x^k)^{-1}$ (quasi Newton's method)
- b) Step 4. is called *line-search*, since $t_k > 0$ determined by looking at

$$0 < t \mapsto f(x^k + td^k),$$

i.e. along the (half)line t > 0.

- c) Executing Step 4. is a trade-off between
 - (i) decreasing f along $x^k + td^k$ as much as possible;
 - (ii) keeping computational efforts low.

For instance, the exact minimization rule $t_k = \operatorname{argmin}_{t>0} f\left(x_k + td^k\right)$ overemphasizes (i) over (ii).

 \hookrightarrow **Definition 3.2** (Step-size rule): Let $f \in C^1(\mathbb{R}^n)$ and

$$\mathcal{A}_f \coloneqq \big\{ (x,d) \mid \nabla f(x)^T d < 0 \big\}.$$

A (possible set-valued) map

$$T:(x,d)\in \mathcal{A}_f\mapsto T(x,d)\in \mathbb{R}_+$$

is called a *step-size rule* for *f* .

If T is well-defined for all C^1 -functions, we say T well-defined.

3.1.1 Global Convergence of Algorithm 3.1

 \hookrightarrow **Definition 3.3** (Efficient step-size): Let $f \in C^1(\mathbb{R}^n)$. The step-size rule T is called *efficient* for *f* if there exists $\theta > 0$ such that

$$f(x+td) \le f(x) - \theta \left(\frac{\nabla f(x)^T d}{\|d\|}\right)^2, \quad \forall t \in T(x,d), (x,d) \in A_f.$$

Theorem 3.1: Let $f \in C^1(\mathbb{R}^n)$. Let $\{x^k\}, \{d^k\}, \{t_k\}$ be generated by Algorithm 3.1. Assume the following:

- 1. $\exists c > 0$ such that $-\left(\nabla f(x^k)^T d^k\right) / \left(\|\nabla f(x^k)\| \cdot \|d^k\|\right) \ge c$ for all k (this is called the *angle* condition), and
- 2. there exists $\theta > 0$ such that $f(x^k + t_k d^k) \le f(x^k) \theta \cdot \left(\nabla f(x^k)^T d^k / \|d^k\|\right)^2$ for all k (which is satisfied if $t_k \in T(x^k, d^k)$ for an efficient T).

Then, every cluster point of $\{x^k\}$ is a stationary point of f.

Proof. By condition 2., there is $\theta > 0$ such that

$$f(x^{k+1}) \le f(x^k) - \theta \left(\frac{\nabla f(x^k)^T d^k}{\|d^k\|}\right)^2$$

for all $k \in \mathbb{N}$. By 1., we know

$$\left(\frac{\nabla f(x^k)^T d^k}{\|d^k\|}\right)^2 \ge c^2 \|\nabla f(x^k)\|^2.$$

Put $\kappa := \theta c^2$, then these two inequalities imply

$$f(x^{k+1}) \le f(x^k) - \kappa \cdot \|\nabla f(x^k)\|^2$$
. (*)

Let \overline{x} be a cluster point of $\{x^k\}$. As $\{f(x^k)\}$ is monotonically decreasing (by construction in the algorithm), and has cluster point $f(\overline{x})$ by continuity, it follows that $f(x_k) \to f(\overline{x})$ along the whole sequence. In particular, $f(x^{k+1}) - f(x^k) \to 0$; thus, from (*),

$$0 \le \kappa \left\| \nabla f(x^k) \right\|^2 \le f(x^k) - f(x^{k+1}) \to 0,$$

and thus $\nabla f(x^k) \to \nabla f(\overline{x}) = 0$, so indeed \overline{x} a stationary point of f.

§3.2 The Gradient Method

We specialize Algorithm 3.1 here. Specifically, we'll take

$$d^k := -\nabla f(x^k);$$

it's know that

$$\frac{-\nabla f(x^k)}{\|\nabla f(x^k)\|} = \operatorname{argmin}_{d:\|d\| \le 1} \nabla f(x^k)^T d,$$

with $\|\cdot\|$ the 2 norm.

We use a step-size rule called "Armijo rule". Choose parameters β , $\sigma \in (0,1)$. For $(x,d) \in A_f$, we define our step-size rule by

$$T_A(x,d) \coloneqq \max_{\ell \in \mathbb{N}_0} \left\{ \beta^\ell \mid \underbrace{f(x + \beta^\ell d) \leq f(x) + \beta^\ell \sigma \nabla f(x)^T d}_{\text{"Armijo condition"}} \right\}.$$

For instance, consider $f(x) = (x-1)^2 - 1$. The minimum of this function is $f^* = -1$. Choose $x^k := \frac{1}{k}$, then

$$f(x^k) = \frac{2k+1}{k^2} \to 0 \neq f^*,$$

even though $f(x^{k+1}) - f(x^k) < 0$; we don't actually reach the right stationary point with our chosen step size.

3.2 The Gradient Method 13

Example 3.1 (Illustration of Armijo Rule): For (x,d) ∈ A_f and f smooth on \mathbb{R}^n , defined ϕ : $\mathbb{R} \to \mathbb{R}$, $\phi(t) := f(x+td)$. The map $t \mapsto \sigma \phi'(0)t + \phi(0) = \sigma t \nabla f(x)^T d + \phi(0)$

Proposition 3.2: Let f : \mathbb{R}^n → \mathbb{R} be differentiable with β , $\sigma \in (0,1)$. Then for $(x,d) \in A_f$, there exists $\ell \in \mathbb{N}_0$ such that

$$f(x + \beta^{\ell} d) \le f(x) + \beta^{\ell} \sigma \nabla f(x)^{T} d,$$

i.e. $T_A(x,d) \neq \emptyset$.

Proof. Suppose not, i.e.

$$\frac{f(x + \beta^{\ell} d) - f(x)}{\beta^{\ell}} > \sigma \nabla f(x)^{T} d, \forall \ell \in \mathbb{N}_{0}.$$

Letting $\ell \to \infty$, the left-hand side converges to $\nabla f(x)^T d$, so

$$\nabla f(x)^T d \ge \sigma \nabla f(x)^T d.$$

But $(x, d) \in A_f$, so $\nabla f(x)^T d < 0$ so dividing both sides of this inequality by this quantity, this implies $\sigma \le 0$, which is a contradiction.

We now prove convergence of an algorithm based on the Armijo Rule:

Gradient Descent with Armijo Rule

S0. Choose $x^0 \in \mathbb{R}^n$, σ , $\beta \in (0,1)$, $\varepsilon \ge 0$, and set k := 0

S1. If $\|\nabla f(x^k)\| \le \varepsilon$, STOP

S2. Set $d^k := -\nabla f(x^k)$

S3. Determine $t_k > 0$ by

$$t_k = T_A(x, d)$$

as defined above.

S4. Set $x^{k+1} = x^k + t_k d^k$, iterate k and go to S1.

Lemma 3.1: Let $f \in C^1(\mathbb{R}^n)$, $x^k \to x$, $d^k \to d$ and $t_k \downarrow 0$. Then

$$\lim_{k \to \infty} \frac{f\left(x^k + t_k d^k\right) - f\left(x^k\right)}{t^k} = \nabla f(x)^T d.$$

Proof. Left as an exercise.

→Theorem 3.2: Let $f \in C^1(\mathbb{R}^n)$. Then every cluster point of a sequence $\{x^k\}$ generated by Algorithm 3.2 is a stationary point of f.

PROOF. Let \overline{x} be a cluster point of $\left\{x^k\right\}$ and let $x^k \underset{k \in K}{\to} \overline{x}$, K an infinite subset of \mathbb{N} . Assume towards a contradiction $\nabla f(\overline{x}) \neq 0$. As $f\left(x^k\right)$ is monotonically decreasing with cluster point $f(\overline{x})$, it must be that $f\left(x^k\right) \to f(\overline{x})$ along the whole sequence so $f\left(x^{k+1}\right) - f\left(x^k\right) \to 0$. Thus,

3.2 The Gradient Method 14

$$0 \le t_k \|\nabla f(x^k)\|^2 \stackrel{\text{S2}}{=} -t_k \nabla f(x^k)^T d^k \stackrel{\text{S3}}{\leq} \frac{f(x^k) - f(x^{k+1})}{\sigma} \to 0.$$

Thus, $0 = \lim_{k \in K} t_k \|\nabla f(x^k)\| = \|\nabla f(\overline{x})\| \lim_{k \in K} t_k$. We assumed \overline{x} not a stationary point, so it follows that $t_k \underset{k \in K}{\longrightarrow} 0$. By S3, for $\beta^{\ell_k} = t_k$,

$$\frac{f(x^k + \beta^{\ell_k - 1} d^k) - f(x^k)}{\beta^{\ell_k - 1}} > \sigma \nabla f(x^k)^T d^k.$$

Letting $k \to \infty$ along K, the LHS converges to, by the previous lemma, to

$$\nabla f(\overline{x})^T d = -\nabla f(\overline{x})^T \nabla f(\overline{x}) = -\|\nabla f(\overline{x})\|^2,$$

and the RHS converges to $\sigma \|\nabla f(\overline{x})\|^2$, which implies

$$-\|\nabla f(\overline{x})\|^2 \ge \sigma \|\nabla f(\overline{x})\|^2,$$

which implies σ negative, a contradiction.

Remark 3.2: The proof above shows, the following: Let $\{x^k\}$ such that $x^{k+1} := x^k + t_k d^k$ for $d^k \in \mathbb{R}^n$, $t_k > 0$, and let $f(x^{k+1}) \le f(x^k)$ and $x^k \xrightarrow{K} \overline{x}$ such that $d^k = -\nabla f(x^k)$, $t_k = T_A(x^k, d^k)$ for all $k \in K$. Then $\nabla f(\overline{x}) = 0$; i.e., all of the "focus" is on the subsequence along K. The only time we needed the whole sequence was to use the fact that $f(x^k) \to f(\overline{x})$ along the whole sequence.

3.2 The Gradient Method 15