Chapitre 10

Les nombres réels

1 Bornes supérieure et inférieure dans $\mathbb R$

Définition 1.1 (Bornes supérieure et inférieure)

Soit $X \subset \mathbb{R}$ non vide.

- 1. La borne supérieure de X, si elle existe, est le plus petit des majorants de X, i.e. un majorant $M \in \mathbb{R}$ de X tel que si M' est un majorant de X, on ait $M \leq M'$. On la note sup(X).
- 2. La borne inférieure de X, si elle existe, est le plus grand des minorants de X, i.e. un minorant $m \in \mathbb{R}$ de X tel que si m' est un minorant de X, on ait $m' \leq m$. On la note $\inf(X)$.

Remarques.

- 1. Un sous-ensemble X de \mathbb{R} n'admet pas nécessairement de borne supérieure ou inférieure.
- 2. La borne inférieure de X est la borne supérieure de -X, et inversement.

Proposition 1.2

Soit $X \subset \mathbb{R}$.

- 1. Si X admet une borne supérieure, elle est unique.
- 2. Si X admet une borne inférieure, elle est unique.

Proposition 1.3

Soit $X \subset \mathbb{R}$.

- 1. L'ensemble X admet un maximum si et seulement s'il admet une borne supérieure et si $\sup(X) \in X$, et alors $\max(X) = \sup(X)$.
- 2. L'ensemble X admet un minimum si et seulement s'il admet une borne inférieure et si $\inf(X) \in X$, et alors $\min(X) = \inf(X)$.

Remarque.

On dit que le plus grand élément est une "borne supérieure atteinte".

Théorème 1.4

- 1. Tout sous-ensemble non vide et majoré de \mathbb{R} admet une borne supérieure.
- 2. Tout sous-ensemble non vide et minoré de \mathbb{R} admet une borne inférieure.

Méthode 1.5

Soit X un sous-ensemble non vide de \mathbb{R} .

- 1. Soit $M \in \mathbb{R}$. Pour montrer que $M = \sup(X)$, on montre que M est un majorant de X, et que si M' est un majorant de X, alors $M \leq M'$, ou que si M' < M, alors M' ne majore pas X.
- 2. Soit $m \in \mathbb{R}$. Pour montrer que $m = \inf(X)$, on montre que m est un minorant de X, et que si m' est un minorant de X, alors $m \ge m'$, ou que si m' > m, alors m' ne minore pas X.

Proposition 1.6 (Caractérisation des bornes inférieures/supérieures parmi les minorants/majorants)

Soit X un sous-ensemble non vide de \mathbb{R} .

1. Soit a un majorant de X. Alors $a = \sup(X)$ si et seulement si pour tout réel b < a, il existe $x \in X$ tel que b < x, ou plus formellement

$$a = \sup(X) \iff \forall \ b \in \mathbb{R}, \ b < a \implies \exists \ x \in X \mid b < x$$
 $\iff \forall \ \varepsilon > 0, \ \exists \ x \in X \mid a - \varepsilon < x$
 $\iff \text{aucun r\'eel } b < a \text{ n\'est un majorant de } X.$

2. Soit a <u>un minorant</u> de X. Alors $a = \inf(X)$ si et seulement si pour tout réel b > a, il existe $x \in X$ tel que x < b, ou plus formellement

$$a = \inf(X) \iff \forall \ b \in \mathbb{R}, \ a < b \Longrightarrow \exists \ x \in X \mid x < b \\ \iff \forall \ \varepsilon > 0, \ \exists \ x \in X \mid x < a + \varepsilon \\ \iff \text{ aucun r\'eel } b > a \text{ n\'est un un minorant de } X.$$

Méthode 1.7 (Montrer qu'un réel est la borne supérieure d'un ensemble)

On considère un ensemble non vide $X \subset \mathbb{R}$, et un réel M. On veut montrer que X admet une borne supérieure et que $\sup(X) = M$.

- 1. On montre que M majore X. Ceci prouve que X admet une borne supérieure.
- 2. On fixe $\varepsilon > 0$. On montre qu'il existe $x \in X$ tel que $M \varepsilon < x$.

Méthode 1.8 (Montrer qu'un réel est la borne inférieure d'un ensemble)

On considère un ensemble non vide $X \subset \mathbb{R}$, et un réel m. On veut montrer que X admet une borne inférieure et que $\inf(X) = m$.

- 1. On montre que m minore X. Ceci prouve que X admet une borne inférieure.
- 2. On fixe $\varepsilon > 0$. On montre qu'il existe $x \in X$ tel que $x < m + \varepsilon$.

Méthode 1.9 (Montrer qu'un réel est la borne supérieure, avec les suites)

On considère un ensemble non vide $X \subset \mathbb{R}$, et un réel M. On veut montrer que X admet une borne supérieure et que $\sup(X) = M$.

- 1. On montre que M majore X. Ceci prouve que X admet une borne supérieure.
- 2. On montre qu'il existe une suite $(u_n)_{n\in\mathbb{N}}\subset X$ telle que $u_n\underset{n\to+\infty}{\longrightarrow} M$.

Ce résultat sera démontré dans le chapitre sur les suites.

Méthode 1.10 (Montrer qu'un réel est la borne inférieure, avec les suites)

On considère un ensemble non vide $X \subset \mathbb{R}$, et un réel m. On veut montrer que X admet une borne inférieure et que $\inf(X) = m$.

- 1. On montre que m minore X. Ceci prouve que X admet une borne inférieure.
- 2. On montre qu'il existe une suite $(u_n)_{n\in\mathbb{N}}\subset X$ telle que $u_n\underset{n\to+\infty}{\longrightarrow} m$.

Ce résultat sera démontré dans le chapitre sur les suites.

Méthode 1.11 (Passage à la borne supérieure/inférieure)

Soit $X \subset \mathbb{R}$, $X \neq \emptyset$, et un réel y.

- 1. Si : $\forall x \in X, x \leq y$, alors $\sup(X) \leq y$. On dit alors qu'on "passe à la borne supérieure dans l'inégalité large".
- 2. Si : $\forall x \in X, y \leqslant x$, alors $y \leqslant \inf(X)$. On dit alors qu'on "passe à la borne inférieure dans l'inégalité large".

2 Droite numérique achevée

Définition 2.1

La droite numérique achevée est l'ensemble $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ muni de la relation d'ordre de \mathbb{R} prolongée par

- 1. $\forall x \in \overline{\mathbb{R}}, x \leqslant +\infty$.
- 2. $\forall x \in \overline{\mathbb{R}}, -\infty \leqslant x$.

Proposition 2.2

On a:

- 1. $+\infty$ est le plus grand élément de $\overline{\mathbb{R}}$.
- 2. $-\infty$ est le plus petit élément de $\overline{\mathbb{R}}$.

Théorème 2.3

Toute partie non vide de $\overline{\mathbb{R}}$ admet une borne inférieure et une borne supérieure dans $\overline{\mathbb{R}}$.

Proposition 2.4

Soit X un sous-ensemble non vide de \mathbb{R} . Alors :

- 1. X est majoré si et seulement si $\sup(X) < +\infty$.
- 2. X est minoré si et seulement si $-\infty < \inf(X)$.

On prolonge partiellement les opérations algébriques de \mathbb{R} à $\overline{\mathbb{R}}$. On pose

- 1. $-\infty + y = -\infty$ pour tout $y \neq +\infty$.
- 2. $-\infty + \infty$ est indéterminé.
- 3. $+\infty + y = +\infty$ pou tout $y \neq -\infty$.

De même pour les produits. Seuls restent indéterminés les produits de 0 par $\pm \infty$.

3 Intervalles de \mathbb{R}

Définition 3.1 (Intervalles de \mathbb{R})

Un intervalle de \mathbb{R} est un sous-ensemble I de \mathbb{R} tel que

$$\forall a, b \in I, \ \forall \ x \in \mathbb{R}, \ a \leqslant x \leqslant b \Longrightarrow x \in I.$$

Remarque.

L'ensemble vide et les ensembles réduits à un point sont des intervalles, appelés intervalles triviaux.

On rappelle que pour $a \leq b$, on définit les ensembles

$$]a, b[, [a, b[,]a, b], [a, b],] - \infty, b[,] - \infty, b],] - \infty, +\infty[,]a, +\infty[, [a, +\infty[$$
 par $[a, b] = \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}, \text{ etc...}$

Proposition 3.2

Les ensembles ci-dessus sont des intervalles.

Théorème 3.3

Soit I un intervalle non vide de \mathbb{R} , $a = \inf(I)$, $b = \sup(I)$ (dans $\overline{\mathbb{R}}$). Alors

$$I = \begin{cases} [a, b] & \text{si } a, b \in I \\]a, b] & \text{si } a \notin I, b \in I \\ [a, b[& \text{si } a \in I, b \notin I \\]a, b[& \text{si } a, b \notin I \end{cases}$$

4 Partie entière

Proposition 4.1 (Propriété d'Archimède)

Pour tous $x, y \in \mathbb{R}_+^*$, il existe $n \in \mathbb{N}$ tel que nx > y.

Proposition 4.2 (Partie entière)

Soit $x \in \mathbb{R}$.

- 1. Il existe un unique entier $p \in \mathbb{Z}$ tel que $p \leqslant x < p+1$. C'est la partie entière de x, et on la note |x|.
- 2. La partie entière de x est le plus grand entier relatif inférieur ou égal à x, et $\lfloor x \rfloor + 1$ est le plus petit entier strictement plus grand que x.

Remarque.

On peut être tenté de faire cette démonstration (fausse!) : A est un sous-ensemble non vide et majoré de \mathbb{Z} . Il admet donc un plus grand élément, qui est justement $\lfloor x \rfloor$. Mais attention : a priori, A n'est pas majoré dans \mathbb{Z} , mais seulement dans \mathbb{R} .

Proposition 4.3 (Croissance)

La partie entière est une fonction croissante sur \mathbb{R} .

Proposition 4.4

Soit $x \in \mathbb{R}$ et $n \in \mathbb{Z}$. Alors:

- 1. $n \leqslant x \iff n \leqslant \lfloor x \rfloor$.
- $2. \quad x < n \iff \lfloor x \rfloor + 1 \leqslant n.$
- 3. $n \le x < n+1 \iff n = \lfloor x \rfloor$.

Proposition 4.5

Soit $x \in \mathbb{R}$ et $n \in \mathbb{Z}$. Alors :

- 1. $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.
- 2. $\lfloor -x \rfloor = \begin{cases} -x & \text{si } x \in \mathbb{Z} \\ -\lfloor x \rfloor 1 & \text{sinon.} \end{cases}$

Méthode 4.6 (Montrer qu'un entier est la partie entière d'un réel)

On considère $x \in \mathbb{R}$ et $n \in \mathbb{Z}$. On veut montrer que $n = \lfloor x \rfloor$.

- 1. Si ce n'est pas fait, on vérifie que $n \in \mathbb{Z}$.
- 2. On montre que $n \leq x$.
- 3. On montre que si $m \in \mathbb{Z}$ vérifie $m \leq x$, alors $m \leq n$. Ou on montre que x < n + 1.

5 Approximation décimale des réels

Définition 5.1

Soit $x \in \mathbb{R}$. On définit les suites $(d_n)_{n \in \mathbb{N}}$ et $(e_n)_{n \in \mathbb{N}}$ par

$$d_n = \frac{\lfloor 10^n x \rfloor}{10^n}, \quad e_n = \frac{1 + \lfloor 10^n x \rfloor}{10^n} = d_n + \frac{1}{10^n}.$$

Le décimal d_n est la valeur approchée par défaut à 10^{-n} près de x, et e_n la valeur approchée par excès à 10^{-n} près de x.

Proposition 5.2

- 1. La suite $(d_n)_{n\in\mathbb{N}}$ est croissante.
- 2. La suite $(e_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. Pour tout $n \in \mathbb{N}$, on a $d_n \leqslant x < e_n$.
- 4. $(d_n)_{n\in\mathbb{N}}$ et $(e_n)_{n\in\mathbb{N}}$ convergent vers x.

Définition 5.3

Un sous-ensemble A de \mathbb{R} est dense dans \mathbb{R} s'il rencontre tout intervalle ouvert non vide de \mathbb{R} .

Proposition 5.4

Soit A un sous-ensemble de \mathbb{R} . Alors

$$A \text{ dense dans } \mathbb{R} \iff \forall \ x,y \in \mathbb{R} \ | \ x < y, \ A \cap \]x,y[\neq \emptyset \\ \iff \forall \ (x,\varepsilon) \in \mathbb{R} \times \mathbb{R}_+^*, \ A \cap \]x - \varepsilon,x + \varepsilon[\neq \emptyset$$

Proposition 5.5

Les ensembles \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

6 Compétences

- 1. Savoir déterminer la borne supérieure/inférieure d'un ensemble.
- 2. Connaître et reconnaître la caractérisation d'une borne supérieure.
- 3. Savoi utiliser la caractérisation de la partie entière.