可測基数ノート

でいぐ

2023年1月29日

目次

1	可測基数の初歩	1
2	Ulam の定理の証明	2
3	正規フィルター	2
4	可測基数の存在と実数値可測基数の存在の無矛盾等価性	2
5	ジェネリック超冪	2

1 可測基数の初歩

- **定義 1.1.** (1) 基数 κ が**可測基数**であるとは、 κ 上の κ -完備な非単項超フィルターが存在することを言う.
 - (2) 基数 κ が**実数値可測基数**であるとは、 κ 上の非自明な κ 完備測度が存在することを言う.

補題 1.2. κ を次を満たす最小の基数とする:非単項 σ -完備な超フィルターが存在する.U をそのような超フィルターの一つとする.このとき,U は κ -完備である.

証明. U が κ -完備でないと仮定する. すると κ の分割 $\{X_\alpha:\alpha<\gamma\}$ があって, $\gamma<\kappa$ かつ各 X_α は U の意味で小さい. $f\colon\kappa\to\gamma$ を次で定める:

$$f(x) = \alpha \iff x \in X_{\alpha}.$$

つまり,各入力 $x<\kappa$ について,x が何番目のピースに属しているかを返す関数である. γ 上の超フィルター D を

$$D = \{ Z \subseteq \gamma : f^{-1}(Z) \in U \}$$

で定める. U が σ 完備なので,D も σ 完備である.D は非単項でもある:なぜなら,各 $\alpha<\gamma$ について $f^{-1}\{\alpha\}=X_{\alpha}\not\in U$ より $\alpha\not\in D$ だからである.したがって,D は γ 上の単項 σ -完備な超フィルターだが, $\gamma<\kappa$ より,これは κ の最小性に矛盾.

補題 1.3. 可測基数は到達不能基数である.

証明. κ を可測基数とする.

 κ の正則性を示す. κ 上の κ -完備な非単項超フィルター U を取る. κ が特異だとすると, κ の共終列 $\langle \lambda_i : i < \mathrm{cf}(\kappa) \rangle$ でおのおのの λ_i は κ 未満なものが取れる. 今, $\kappa = \bigcup_{i < \mathrm{cf}(\kappa)} \lambda_i$ である. 左辺 κ は U に属するが,右辺はおのおのの λ_i が U の意味で小さく,その $\mathrm{cf}(\kappa) < \kappa$ 個の和集合だから U の意味で小さい.矛盾した.なお,ここで,おのおのの λ_i が小さいのは各 1 点集合が小さく, λ_i はその $\lambda_i < \kappa$ 個の和集合として書けるからである.

 κ の強極限性を示す.背理法で,ある $\lambda<\kappa$ について, $2^{\lambda}\geq\kappa$ だと仮定する.集合 $S\subseteq\{0,1\}^{\lambda}$ で $|S|=\kappa$ となるものを取る.集合 S 上の κ -完備な非単項超フィルター U を取る.各 $\alpha\in\lambda$ について集合 $X_{\alpha}\subseteq S$ を

$$\{f \in S : f(\alpha) = 0\}$$
 もしくは $\{f \in S : f(\alpha) = 1\}$

でUに属する方とする.集合Xを

$$X = \bigcap_{\alpha < \lambda} X_{\alpha}$$

で定めると $X \in U$ であるが、明らかに X は 1 点集合である.これは U の非単項性に矛盾.

- 2 Ulam の定理の証明
- 3 正規フィルター
- 4 可測基数の存在と実数値可測基数の存在の無矛盾等価性
- 5 ジェネリック超冪