Matrices

#matrice

On note une matrice $A=(a_{ij})_{1\leq i\leq n}$ avec n lignes et p colonnes $1\leq j\leq p$

Opérations sur les matrices

Addition de deux matrices

$$A+B=(a_{ij}+b_{ij})_{\substack{1\leq i\leq n\1\leq j\leq p}}$$

Multiplication par un scalaire

$$\lambda A = (\lambda a_{ij})_{\substack{1 \leq i \leq n \ 1 \leq j \leq p}}$$

Multiplication matricielle

Soit
$$A=(a_{ik})_{\substack{1\leq i\leq n\ 1\leq k\leq p}}$$
 et $B=(b_{kj})_{\substack{1\leq k\leq p\ 1\leq j\leq q}}$

• Le nombre de colonnes de A doit être égal au nombre de lignes de B.

$$\bullet \ \ C = AB = (c_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq q}}$$

$$ullet c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

- Les matrices sont distributives et associatives.
- $AB \neq BA$ en général.

Transposition

Si
$$A=(a_{ij})$$
 alors $A^T=(a_{ij}^\prime)=(a_{ji})$

$$ullet (A+B)^T=A^T+B^T, (\lambda A)^T=\lambda A^T, (\lambda A+\mu B)^T=\lambda A^T+\mu B^T, \ (AB)^T=B^TA^T$$

Opérations élémentaires

Chaque opération élémentaire correspond à la multiplication par une matrice particulière. A Gauche pour les lignes, à droite pour les colonnes.

La transposition

Echange de 2 lignes : $L_i \leftrightarrow L_j$; de 2 colonnes $C_i \leftrightarrow C_j$

La transvection

Pour $\lambda \in \mathbb{K}$: $L_i \leftarrow L_i + \lambda L_j$ ou $C_i \leftarrow C_i + \lambda C_j$

La dilatation

Pour $\lambda \in \mathbb{K}^*$: $L_i \leftarrow \lambda L_i$ ou $C_i \leftarrow \lambda C_i$

Systèmes linéaires

Soit le système $(S) \Leftrightarrow AX = B$

• Si on trouve le même nombre de rang et de pivot, alors A^{-1} existe.

Matrices Carrée

D'ordre n

$\mathcal{M}_n(\mathbb{K})$ Est l'ensemble des matrices carrées

- Diagonal si orall i
 eq j, $a_{ij}=0$
- Triangulaires supérieurs si $orall i>j, a_{ij}=0$
- Triangulaires inferieurs si $orall i < j, a_{ij} = 0$
- Symétriques si $A^T=A, a_{ij}=a_{ji}$
- Antisymétriques si $A^T = -A$
- Si AB = BA Alors on peut appliquer le binôme de Newton.

Matrices carres inversibles

A est inversible si il existe B ; $A imes B = B imes A = I_n$

- Chacune des matrices des opérations élémentaires est inversible.
- A est inversible $\Leftrightarrow AX = B$ a une unique solution.