9.

(1)FFFF8000H (2)020AH (3)0000FFFAH (4)40H (5)BF8CCCCCH (6)40250000 00000000H

10.

(1)-65530 (2)-8196 (3)4294967290 (4)字符'*' (5)-800 (6)-10.25

17.

(1)440 (2)20 (3)-424 (4)-396 (5)68 (6)-312 (7)16 (8)12 (9)276 (10)32

21.

M=15, N=4

24.

32位补码整数: 0000 0000 0000 0001 0000 0000 0010

IEEE754单精度格式为: 0 10001011 0000 0000 0010 0000 000

这12位相等,因为4098数比较小,在32位补码整数和23位浮点尾数部分都能精确表示,所以对应相等。

28.

	大端机	小端机
地址	内容	内容
100	ВЕН	00H
101	00H	00H
102	00H	00H
103	00H	ВЕН
108	40H	00H
109	FOH	00H
110	00H	FOH
112	00H	40H
112	00H	64H

	大端机	小端机
113	64H	00H

29.

表示	X	X	Y	у	X+Y	x+y	OF	SF	CF	X-Y	х-у	OF	SF	CF
无符号	0xB0	176	0x8C	140	0x3C	60	1	0	1	0x24	36	0	0	0
带符号	0xB0	-80	0x8C	-116	0x3C	60	1	0	1	0x24	36	0	0	0
无符号	0x7E	126	0x5D	93	0xDB	219	1	1	0	0x21	33	0	0	0
带符号	0x7E	126	0x5D	93	0xDB	-37	1	1	0	0x21	33	0	0	0

31.

不能

unsigned long long arraysize = count*(unsigned long long)sizeof(int)

size t myarraysize = (size t) arraysize;

if(myarraysize!= arraysize) return -1; //如果转换后不等,说明arraysize溢出,直接退出 34.

- (2)x=-2147483648 (4)x=-2147483648 (6)x=-2147486348 $y\neq x$
- (8) 永真,(int)(ux-uy)=[x-y]_补=[-y+x]_补=[-(y-x)]_补
- (10)永真,带符号数x乘以 2^k 等于x左移k位
- (12)永真, x×y和ux×uy的低32位是完全一样的位序列
- (14)永真, -y=~y+1, ux×uy=x×y, 故等式左边为x×(-y-1)+x×y=-x

35.

- (1)永真,double型数据用IEEE754标准表示,符号和数值部分分开运算,结果如何不影响乘积符号
- (3)dx+dy不会溢出, x+y可能溢出, x, x均为2147483647时不满足

(5)浮点乘可能产生舍入,不满足交换律,x,y,z均为65535时不满足

36.

(1)结果为±1x.xx...x时需要进行右规,尾数右移一位,阶码加1

(2)结果为±0.00...01x...x的情况需要进行左规,数值位依次左移,阶码逐次减1,直到将第一位"1"移到小数点左边

39.

$$x = 0.75 = 0.110...0B = (1.10...0)_2 \times 2^{-1}$$

$$y = -65.25 = -1000001.01000...0B = (-1.00000101...0)_2 \times 2^6$$

[x] $_{\mathcal{F}}$ =0 0111 1110 10...0 阶码 E_x =01101110 尾数 M_x =0(1).1...0

[y] 字=1 1000 0101 000001010...0 阶码 E_x =10000101 尾数 M_x =1(1).000001010...0

括号内为隐藏位

(1)

①对阶 [ΔE] $_{\begin{subarray}{c} A E \end{subarray}}$ = E_X +[$-E_y$] $_{\begin{subarray}{c} A \end{subarray}}$ (mod 2^n) = 0111 1110 + 0111 1011 = 1111 1001 = -7

 E_x = E_y =10000101, M_x =00.000000110...000, M_x 右移7位

- ②尾数相加 M_b =11.0000001000...000,最后两位为附加位
- ③规格化尾数数值部分最高位为1,不需要进行
- ④舍入 M_b=11.000000100...0
- ⑤溢出判断 未发生溢出问题 E_b =10000101 M_b =1(1).000000100...0

即为(-1.0000001)₂×2⁶= (-1000000.1)₂=-64.5

(2)

①对阶 [ΔE] $_{\hat{a}\hat{b}}$ = E_x + [$-E_y$] $_{\hat{a}\hat{b}}$ (mod 2^n) = 0111 1110 + 0111 1011 = 1111 1001 = -7

 E_x = E_y =10000101, M_x =00.000000110...000, M_x 右移7位

- ②尾数相加 M_b =01.00001000...000
- ③规格化 尾数数值部分最高位为1,不需要进行
- ④舍入 M_b =01.00001000...0
- ⑤溢出判断 未发生溢出问题 E_b =10000101 M_b =0(1).00001000...000

即为(+1.00001)₂×2⁶=(+1000010)₂=+66