Toric Geometry: Theorems and Definitions

Isaac Martin Lent 2022 Last compiled February 1, 2022

Contents

1	Dictionary		2	
2	What makes a toric variety?			
	2.1	Tori	3	
	2.2	Toric Varieties	3	
	2.3	Cones and Fans	3	

1 Dictionary

Toric geometry is concerned with the construction of varieties and schemes given by specifying semigroups and fans and other combinatorial objects. It is therefore useful to fix certain symbols.

- N: We define $N = \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{C}^*, (\mathbb{C}^*)^n)$ and note that $N \cong \mathbb{Z}^n$.
- M: We define M to be the dual lattice of N, $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z}) \cong \mathbb{Z}^n$.
- $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$: We define $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{R}} \mathbb{R} \cong \mathbb{R}^n$.

2 What makes a toric variety?

- 2.1 Tori
- 2.2 Toric Varieties
- 2.3 Cones and Fans

Throughout this section, let $T \cong (\mathbb{C}^*)^n$ and $N = \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{C}^*, T) \cong \mathbb{Z}^n$. Note that N is the collection of 1-parameter subgroups of T, or the set of cocharacters if you prefer that terminology. In addition, every variety is an integral separated scheme of finite type over $\operatorname{Spec} \mathbb{C}$ unless otherwise specified.

Definition 2.1. A *rational polyhedral cone* σ in N is a set $\sigma \subseteq N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$ given by the positive span of some finite subset of $N_{\mathbb{R}}$, i.e. a set

$$\sigma = \operatorname{cone}(v_1, ..., v_k) = \left\{ \sum_{i=1}^k c_i v_i \, \middle| \, c_i \in \mathbb{R}_{\geq 0} \right\}.$$

Definition 2.2. Let $\sigma = \text{cone}\{v_1, ..., v_k\}$ be a rational polyhedral cone. The *span* of σ is the smallest vector subspace V containing σ . We have that

$$V = \sigma + (-\sigma) = \{v_1, ..., v_k\} = \{\sigma\}.$$

The dimension of σ is the dimension of the span of σ . We say that σ is full-dimensional if dim $\sigma = \dim N_{\mathbb{R}} = n$.

Definition 2.3. A rational polyhedral cone is said to be *strictly convex* if it doesn't contain a line, i.e. if it doesn't contain a one dimensional affine subspace of $N_{\mathbb{R}}$.

Unless otherwise specified, by "cone" we mean "strictly convex rational polyhedral cone".

Definition 2.4. A fan Σ in N is a collection of cones in N such that

- (i) if $\sigma \in \Sigma$ then every face of σ belongs to Σ
- (ii) if $\sigma_1, \sigma_2 \in \Sigma$ then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .

Definition 2.5. Given a cone $\sigma \subseteq N_{\mathbb{R}}$, the *dual cone* $\sigma \vee \subseteq M_{\mathbb{R}}$ is defined

$$\sigma^{\vee} = \{ m \in M_{\mathbb{R}} \mid \langle m, v \rangle \ge 0, \ \forall v \in \sigma \}.$$

The pairing $\langle -, - \rangle : M_{\mathbb{R}} \times N_{\mathbb{R}} \to \mathbb{R}$ is simply the evaluation map $\langle m, u \rangle = m(u)$.

We further define the double dual $(\sigma^{\vee})^{\vee}$ by

$$(\sigma^{\vee})^{\vee} = \{ v \in N_{\mathbb{R}} \mid \langle m, v \rangle \ge 0, \ \forall m \in \sigma^{\vee} \}$$

The following are fundamental facts regarding σ and σ^{\vee} .

Proposition 2.6. Let σ be a cone in N and σ^{\vee} be its dual.

- (a) σ^{\vee} is a rational polyhedral cone in M (not necessarily strictly convex)
- (b) $(\sigma^{\vee})^{\vee} = \sigma$
- (c) σ is full-dimensional if and only if σ^{\vee} is strictly convex