Multi-carrier Modulation and OFDM

Prof. Luiz DaSilva dasilval@tcd.ie +353 1 896-3660

Multi-carrier systems: basic idea

- Typical mobile radio channel is a fading channel that is flat or frequency selective
- For high bandwidth applications channel is frequency selective and delay spread dictates throughput
- Multicarrier modulation is a technique where multiple low data rate carriers are combined by a transmitter to form a composite high data rate transmission
- In a classic multi-carrier system, the available spectrum is split into several non-overlapping frequency sub channels. The individual data elements are modulated into these sub channels and are thus frequency multiplexed

Multi-carrier transmission

- Converts a high-data rate bit stream into multiple lower-data rate substreams
- Each substream is modulated onto a different carrier

Advantage

- Since symbols are transmitted at a lower rate, the effects of delay spread are reduced
 - Reduced inter-symbol interference
- This in turn reduces the complexity of the equalizer

Robustness to delay spread

 MC-modulation increases the symbol time by modulating into narrow sub-channels

Channel frequency responses for a single carrier and multicarrier system. In the multicarrier system each sub channel only undergoes slight distortion

Orthogonal Frequency Division Multiplexing

- In classic multicarrier system guard bands have to be inserted, resulting in poor spectral efficiency
- A more efficient approach is to allow the spectra of individual subcarriers to overlap
- Problem: If individual subcarriers are overlapping isn't there interference between carriers?
- Answer: No! If subcarrier tones are separated by the inverse of the signaling symbol duration, independent separation of frequency multiplexed tones is possible
 - This ensures that the spectra of individual sub channels are zeros at other subcarrier frequencies

OFDM carrier

 Orthogonal waveforms are generated by using signals that have integer number of cycles in the duration T_s

Subcarriers in OFDM

OFDM symbols

- Consider N_c complex-valued source symbols: $S_n \text{, } n = 0 \text{, 1, ..., } N_c \text{ 1}$
- \bullet These symbols are transmitted in parallel using N_{c} sub-carriers
 - All of these symbols combined are referred to as an OFDM symbol
- If the source symbol duration is $T_{\rm d},$ then the OFDM symbol duration is $T_{\rm s}$ = $N_{\rm c}T_{\rm d}$
- \bullet The $N_{\mbox{\tiny c}}$ sub-carriers have a spacing of

$$f = \frac{1}{T_s}$$

OFDM carriers

 The baseband information of the kth carrier can be expressed as

$$(x_k + jy_k)(\cos 2\pi kft + j\sin 2\pi kf)$$
data symbol kth carrier

 The OFDM signal is the sum of all the signals in each of its subcarriers which can be written as (usually implemented using IFFT)

$$s(t) = \sum_{k=0}^{N_c - 1} (x_k + jy_k)(\cos 2\pi k f t + j \sin 2\pi k f)$$

Recovering the individual symbols

- The individual modulated symbols at the receiver are recovered using the FFT
- The kth output from the FFT is:

$$z_{k} = \int_{0}^{T_{k}} s(t)(\cos 2\pi k f t - j \sin 2\pi k f) dt =$$

$$\sum_{n=0}^{N_{k}-1} \left\{ \int_{0}^{T_{k}} (x_{n} + j y_{n}) \cos 2\pi n f (\cos 2\pi k f t - j \sin 2\pi k f) dt + j \int_{0}^{T_{k}} (x_{n} + y_{n}) \sin 2\pi n f (\cos 2\pi k f t - j \sin 2\pi k f) dt \right\}$$

Solving these integrals...

• Trigonometry reminder:

$$2\cos A\cos B = \cos(A-B) + \cos(A+B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$2\sin A\cos B = \sin(A-B) + \sin(A+B)$$

OFDM spectrum

- The individual spectra of the subcarriers are sinc functions
- Zero crossings occur at every integer multiple of f and hence no Inter-Carrier Interference occurs in the frequency domain
- Note the analogy with time-domain sinc pulses

Spectral efficiency

• For N sub-carriers, the bandwidth of conventional FDM is 2N/T while that of OFDM is (N+1)/T. By allowing the sub-carrier spectra to overlap, OFDM improves the spectral efficiency.

Guard interval

- As N_c increases, the OFDM symbol duration T_s becomes large as compared to the duration of the impulse response τ_{max} of the channel
- To completely eliminate ISI, must add a guard interval $T_g \geq \tau_{max}$
- The new duration of the OFDM symbol is then

$$T_s' = T_s + T_g$$

Sampled sequence with cyclic guard extension

$$L_g \ge \left\lceil \frac{ au_{\max} N_c}{T_s}
ight
ceil$$

 The sampled signal with the guard extension becomes

$$x_v = \frac{1}{N_c} \sum_{n=0}^{N_c-1} S_n e^{j2\pi nv/N_c}, v = -L_g, ..., N_c -1$$

Matrix notation

• Complex-valued source symbols, transmitted in parallel as an OFDM symbol

$$\mathbf{s} = \begin{pmatrix} S_0 & S_1 & \dots & S_{N_c-1} \end{pmatrix}^T$$

• $N_c \times N_c$ channel matrix

$$\mathbf{H} = \begin{pmatrix} H_{0,0} & 0 & \dots & 0 \\ 0 & H_{1,1} & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & H_{N_c-1,N_c-1} \end{pmatrix}$$

(Why is this a diagonal matrix?)

Matrix notation (cont'd)

• Additive noise

$$\mathbf{n} = \begin{pmatrix} N_0 & N_1 & \dots & N_{N_c-1} \end{pmatrix}^T$$

• Received signals

$$\mathbf{r} = \begin{pmatrix} R_0 & R_1 & \dots & R_{N_c-1} \end{pmatrix}^T$$

$$r = Hs + n$$

OFDM advantages

- High spectral efficiency for large number of subcarriers: nearly rectangular frequency-domain representation of signal
- Low-complexity receivers: due to low ICI and ISI if guard interval is long enough
- Flexible spectrum adaptation: good for DSA
- Different modulation can be applied to different subcarriers to suit the transmission conditions on each subcarrier

OFDM disadvantages

- High peak-to-average power ratio (PAPR): requires highly linear power amplifiers
- Some loss of spectral efficiency due to guard interval
- Average frequency and time synchronization is required
- More sensitive to Doppler spread than single-carrier systems

OFDM example: DVB-T

Bandwidth	8 MHz	
# of carriers	1705 (2k FFT)	6817 (8k FFT)
Symbol duration T _s	224 μs	896 μs
Carrier spacing F _s	4.464 kHz	1.116 kHz
Guard time T _g	$T_s/32$, $T_s/16$, $T_s/8$, $T_s/4$	
Modulation	QPSK, 16-QA	AM, 64-QAM
FEC coding	Reed Solomon + convolutional with code rate $\frac{1}{2}$ up to $\frac{7}{8}$	
Max. data rate	31.7 Mbps	

OFDM example: IEEE 802.11a

Bandwidth	20 MHz
# of carriers	52 (64 FFT)
Symbol duration T _s	4 μs
Carrier spacing F _s	312.5 kHz
Guard time T _g	0.8 μs
Modulation	BPSK, QPSK, 16-QAM, 64-QAM
FEC coding	Convolutional code with rate ½ up to 3/4
Max. data rate	54 Mbps

OFDM example: IEEE 802.16a

Bandwidth	From 1.5 to 28 MHz
# of carriers	256
Symbol duration T _s	from 8 to 125 μs (depending on the bandwidth)
Guard time T _g	from 1/32 up to $\frac{1}{3}$ of T _s
Modulation	QPSK, 16-QAM, 64-QAM
FEC coding	Reed Solomon + convolutional code with rate $\frac{1}{2}$ up to $\frac{5}{6}$

OFDM applications

- Wireline
 - Asymmetric Digital Subscriber Loop (ADSL)
- Wireless
 - Digital Audio Broadcasting (DAB)
 - Digital Video Broadcasting-Terrestrial
 (DVB-T)
 - Integrated Services Digital
 Broadcasting-Terrestrial (ISDB-T)
 - Wireless LAN (IEEE 802.11(a),
 HiperLAN/2)
 - Wireless MAN (IEEE 802.16 a/b)