

IIC1253 — Matemáticas Discretas — 1'2017

INTERROGACION 2

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Demuestre que para todo conjunto A no existe una biyección entre A y el conjunto 2^A .

Pregunta 2

Sea $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$ el conjunto de todas las palabras (strings) binarios y sea $u \cdot v$ la concatenación de dos palabras $u,v \in \{0,1\}^*$ (ej. $00 \cdot 101 = 00101$). Se define la relación $R \subseteq \{0,1\}^* \times \{0,1\}^*$:

 $(w_1, w_2) \in R$ si, y solo si, existen palabras $u \ y \ v$ tal que $w_1 = u \cdot v \ y \ w_2 = v \cdot u$.

- 1. (4 puntos) Demuestre que R es una relación de equivalencia sobre $\{0,1\}^*$.
- 2. (2 puntos) Interprete en palabras a que corresponden las clases de equivalencia de R.

Pregunta 3

Considere una partícula en el plano $\mathbb{N} \times \mathbb{N}$ que parte en el punto (0,0). Una trayectoria de la partícula en el plano $\mathbb{N} \times \mathbb{N}$ es una secuencia $(i_0,j_0),(i_1,j_1),(i_2,j_2),\ldots$ en $\mathbb{N} \times \mathbb{N}$ tal que $(i_0,j_0)=(0,0)$ y para todo $k \geq 0$ se cumple que $|i_k-i_{k+1}|+|j_k-j_{k+1}|=1$. En otras palabras, la trayectoria de la partícula cambia en exactamente una coordenada +1 o -1.

- 1. Demuestre que el conjunto de todas las posibles trayectorias de la partícula son no-numerables.
- 2. ¿Qué sucede con la cardinalidad del conjunto de trayectorias si ahora las trayectorias están acotadas a un plano finito $\{0,\ldots,n\}\times\{0,\ldots,n\}$? Demuestre su respuesta.

Pregunta 4

Sea A un conjunto finito y (A, \preceq) un orden parcial.

- 1. Dos elementos $a, b \in A$ se dicen *incomparables* en (A, \preceq) si $a \not\preceq b$ y $b \not\preceq a$. Demuestre que si a y b son incomparables, entonces $(\preceq \cup \{(a,b)\})^t$ es un orden parcial de A donde $(\cdot)^t$ es la clausura transitiva de la relación.
- 2. Un orden total (A, \preceq^T) se dice un *orden topológico* para (A, \preceq) si se cumple que para todo $a, b \in A$ si $a \preceq b$, entonces $a \preceq^T b$. Demuestre que para todo orden parcial (A, \preceq) existe un orden topológico.