Rumour spreading

KOSTRYGIN Anatolii, NOGNENG Dorian

LIX

April 2, 2015

Plan

- Rumor spreading game
- ▶ 2 players
- ▶ 3 players
- n players

Table of Contents

Introduction

2 players

3 players

n players

Conclusion

Introduction - Content

In this talk:

• Rumour spreading in social networks

Introduction - Content

In this talk:

- Rumour spreading in social networks
- \Rightarrow Game on graphs

Introduction - Content

In this talk:

- Rumour spreading in social networks
- \Rightarrow Game on graphs
- Different cases: who can win?

Rumor spreading:

- Distributed algorithm
- Fast propagation of rumor in social network

- Friendship graph
- Each player picks a vertex in the row

- Friendship graph
- Each player picks a vertex in the row

• Rumors are spreading

• Rumors are spreading

- A convinced 5 vertices
- B convinced 4 vertices

- Rumors are spreading
- A and B convinced 3 vertices

- Last case :
- A convinced 4 vertices
- B convinced 5 vertices

Table of Contents

Introduction

2 players

3 players

n players

Conclusion

2 players - First can win

• B wins

Table of Contents

Introduction

2 players

3 players

n players

Conclusion

Assume by contradiction that B has a strategy for graph G

Assume by contradiction that B has a strategy for graph G

• If A chooses 1 then B chooses k and wins for any choice of C

Assume by contradiction that B has a strategy for graph G

- If A chooses 1 then B chooses k and wins for any choice of C
- If A chooses k and C chooses 1 if not chosen by B then A wins!

Assume by contradiction that B has a strategy for graph G

- If A chooses 1 then B chooses k and wins for any choice of C
- If A chooses *k* and C chooses 1 if not chosen by B then A wins!
- Can be extended: a player who is not last nor first cannot win

Build graph G:

Build graph G:

• m >> 1 queues of length L >>> anything else

Build graph G:

- m >> 1 queues of length L >>> anything else
- m! vertices S_{σ} for σ permutation of $\{1, \ldots, m\}$

Build graph G:

- m >> 1 queues of length L >>> anything else
- m! vertices S_{σ} for σ permutation of $\{1, \ldots, m\}$
- ullet path from S_{σ} to the head of jth queue ; length $m+\sigma(j)$

ullet players should choose some S_σ

• After A and B have played, C can stay below them

Table of Contents

Introduction

2 players

3 players

n players

Conclusion

• Use the same graph G as above, with m >> n

- Use the same graph G as above, with m >> n
- See the game without the last player

- Use the same graph G as above, with m >> n
- See the game without the last player
- Best player conquers $v \ge \frac{m}{n-1}$ queues

- Use the same graph G as above, with m >> n
- See the game without the last player
- Best player conquers $v \ge \frac{m}{n-1}$ queues
- ullet Last player can steal v-1 queues

- Use the same graph G as above, with m >> n
- See the game without the last player
- Best player conquers $v \ge \frac{m}{n-1}$ queues
- ullet Last player can steal v-1 queues
- \bullet It can be stolen evenly: other players keep at most $\nu \left(1-\frac{1}{n-1}\right)$ queues

Table of Contents

Introduction

2 players

3 players

n players

Conclusion

Conclusion - Summary

• First player can always win, and get a ratio close to 1

Conclusion - Summary

- First player can always win, and get a ratio close to 1
- Last player can always win, and get a ratio close to $\frac{1}{n-1}$

Conclusion - Summary

- First player can always win, and get a ratio close to 1
- Last player can always win, and get a ratio close to $\frac{1}{n-1}$
- Other players cannot

Conclusion - Open questions

• Can we reduce the size of graphs involved?

Conclusion - Open questions

- Can we reduce the size of graphs involved?
- Are the above ratios tight?

Conclusion - Open questions

- Can we reduce the size of graphs involved?
- Are the above ratios tight?
- $\rightarrow \frac{1}{n-1}$ can be improved to $\frac{2}{n}$