ЛАБОРАТОРНАЯ РАБОТА № 3. Методы многомерного поиска.

Цель работы:

- 1. Изучение алгоритмов многомерного поиска 1-го и 2-го порядка.
- 2. Разработка программ реализации алгоритмов многомерного поиска 1-го и 2-го порядка.
- 3. Вычисление экстремумов функции.

Методические указания.

4.2.1. Метод наискорейшего градиентного спуска. Стратегия поиска.

Стратегия решения задачи состоит в построении последовательности точек $\left\{x^k\right\}$, $k=0,1,\ldots$, таких, что $f(x^{k+1}) < f(x^k)$, $k=0,1,\ldots$. Точки последовательности $\left\{x^k\right\}$ вычисляются по правилу $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$, где точка x^0 задается пользователем; величина шага α^k определяется для каждого значения k из условия:

$$\varphi(\alpha^{k}) = f(x^{k} - \alpha^{k} \nabla f(x^{k})) \rightarrow \min_{\alpha^{k}}$$

Решение задачи $\alpha^{*k} = Arg \min f(x^k + \alpha^k d^k)$, где $d^k = -\nabla f(x^k)$, может осуществляться с использованием необходимого условия минимума $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0$ с последующей проверкой достаточного условия минимума $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k2}} > 0$. Такой путь может быть использован либо при простой минимизирующей функции $\varphi(\alpha^k)$, либо при аппроксимации достаточно сложной функции $\varphi(\alpha^{*k}) = f(x^k - \alpha^k \nabla f(x^k))$ полиномом $P(\alpha^k)$ (как правило, второй или третьей степени), и тогда условие $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0$ замещается условием $\frac{dP(\alpha^k)}{d\alpha^k} = 0$, а условие $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k2}} > 0$.

Другой путь решения задачи $\alpha^{*k} = Arg \min f(x^k + \alpha^k d^k)$ связан с использованием численных методов, когда ищется $\min_{\alpha^k \in [a,b]} \varphi(\alpha^{*k}) = \min_{\alpha^k \in [a,b]} f(x^k - \alpha^k \nabla f(x^k))$, т.е. с использованием методов одномерного поиска. Границы интервала [a,b] задаются пользователем. При этом степень близости найденного значения α^k к оптимальному значению α^{*k} , удовлетворяющему условиям $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0$ и $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k2}} > 0$, зависит от задания интервала [a,b] и точности методов одномерной минимизации.

Построение последовательности $\{x^k\}$, k=0,1,..., заканчивается в точке x^k , для которой $\|\nabla f(x^k)\| < \varepsilon_1$, где $\varepsilon_1 > 0$ - заданное число, или если $k \ge M$, M - предельное число итераций, или при двукратном одновременном выполнении неравенств $\|x^{k+1}-x^k\| < \varepsilon_1$, $|f(x^{k+1})-f(x^k)| < \varepsilon_2$, где ε_2 - малое положительное число. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки локального минимума x^* , решается путем дополнительного исследования.

Алгоритм.

Ш.1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, предельное число итераций M . Найти градиент

функции в начальной точке
$$\nabla f(x^0) = \left[\frac{\partial f(x^0)}{\partial x_1}, ..., \frac{\partial f(x^0)}{\partial x_n}\right]^T$$
.

- **Ш.2.** Положить k = 0.
- **Ш.3.** Вычислить $\nabla f(x^k)$.
- **Ш.4.** Проверить выполнение критерия окончания $\|\nabla f(x)\| < \varepsilon_1$:
- a) если неравенство выполнено, то $x^* = x^k$;
- *b*) если нет, то перейти на Ш.6.
- **Ш.5.** Проверить выполнение неравенства $k \ge M$:
- a) если неравенство выполнено, то $x^* = x^k$;
- *b*) если нет, то перейти на Ш.6.
- **Ш.6.** Вычислить величину шага $\alpha^{*k} = Arg \min f(x^k + \alpha^k d^k)$, где $d^k = -\nabla f(x^k)$.
- **Ш.7.** Вычислить $x^{k+1} = x^k \alpha^k \nabla f(x^k)$.
- **III.8.** Проверить выполнение условий: $\|x^{k+1} x^k\| < \varepsilon_1, |f(x^{k+1}) f(x^k)| < \varepsilon_2$:
- a) если оба условия выполнены при текущем значении k и k=k-1, то $x^*=x^{k+1}$; расчет окончен;
- b) если хотя бы одно из условий не выполнено, то положить k=k+1 и перейти на Ш.3.

Замечание 3.2.

Метод наискорейшего спуска гарантирует сходимость последовательности $\{x^k\}$ к точке минимума для сильно выпуклых функций.

4.2.2. Метод Флетчера-Ривза и Полака-Рибьера.

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т,е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$ на множестве допустимых решений $X \in R^n$. При этом предполагается использование методов одномерного поиска $\alpha^{*k} = Arg \min_{\alpha^k \in R^n} f(x^k + \alpha^k d^k)$ для определения величины шага в направлении поиска d^k .

Стратегия поиска.

Стратегия метода Флетчера-Ривза (FR) состоит в построении последовательности точек $\{x^k\}$, $k=0,1,\ldots$, таких, что $f(x^{k+1}) < f(x^k)$, $k=0,1,\ldots$. Точки последовательности $\{x^k\}$ вычисляются по правилу:

$$x^{k+1} = x^k + \alpha^k d^k, k = 0,1,...; (4.1.1.)$$

$$d^{k} = -\nabla f(x^{k}) + w^{k-1}d^{k-1}; (4.1.2.)$$

$$d^{0} = -\nabla f(x^{0}); (4.1.3.)$$

$$w^{k-1} = \frac{\|\nabla f(x^k)\|^2}{\|\nabla f(x^{k-1})\|^2}.$$
 (4.1.4.)

Точка x^0 задается пользователем, величина шага α^{*k} определяется для каждого значения k из условия $\alpha^{*k} = Arg \min_{\alpha^k \in \mathbb{R}^1} f(x^k + \alpha^k d^k)$. Решение задачи одномерной

минимизации может осуществляться либо из условия $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0, \frac{d^2\varphi(\alpha^k)}{d\alpha^{k^2}} > 0$, либо численно, с использованием методов одномерной минимизации, когда решается задача:

$$\varphi(\alpha^k) \to \min_{\alpha^k \in [a,b]}. \tag{4.1.5.}$$

При численном решении задачи определения величины шага степень близости найденного значения α^k к оптимальному значению α^{*k} , удовлетворяющему условиям $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0, \frac{d^2\varphi(\alpha^k)}{d\alpha^{k^2}} > 0, \text{ зависит от задания интервала } [a,b]$ и точности одномерной минимизации.

Вычисление величины w^{k-1} по формуле (4.1.4.) обеспечивает для квадратичной формы $f(x) = \sum_{i=1}^n \sum_{j=1}^n i_j x_i x_j$ построение последовательности H -сопряженных направлений $d^0, d^1, \dots, d^k, \dots$, для которых $\left\langle d^j, H d^i \right\rangle = 0, \ \forall i, j = 0, 1, \dots, k; i \neq j$. При этом в точках последовательности $\left\{ x^k \right\}$ градиенты функции f(x) взаимно перпендикулярны, т.е. $\left\langle \nabla f(x^{k+1}), \nabla f(x^k) \right\rangle = 0, k = 0, 1, \dots$

Для квадратичных функций f(x) с матрицей H>0 метод Флетчера-Ривза является конечным и сходится за число шагов, не превышающее n - размерность x вектора переменных.

При минимизации неквадратичных функций метод не является конечным, при этом следует отметить, что погрешность в решении задачи (4.1.5.) приводит к нарушению не только перепендикулярности градиентов, но и H -сопряженности направлений. Для неквадратичных функций, как правило, используется алгоритм Полака-Рибьеры, когда в формулах (4.1.1. – 4.1.3.) величина w^{k-1} вычисляется следующим образом:

$$w^{k-1} = \begin{cases} \frac{\left\|\nabla f(x^{k})\right\|^{2}}{\left\|\nabla f(x^{k-1})\right\|^{2}}, & k \notin J, \\ 0, & k \in J, \end{cases} \quad w^{k-1} = \begin{cases} \frac{\left\langle\nabla f(x^{k}), \left[\nabla f(x^{k}) - \nabla f(x^{k-1})\right\rangle}{\left\|\nabla f(x^{k-1})\right\|^{2}}, & k \notin J, \\ 0, & k \in J, \end{cases}$$

где $J=\{0,n,2n,\ldots\}$. В отличие от алгоритма Флетчера-Ривза алгоритм Полака-Рибьера предусматривает использование итерации наискорейшего спуска через каждые n шагов. Построение последовательности $\{x^k\}$ заканчивается в точке, для которой $\|\nabla f(x^k)\| < \varepsilon_1$, где $\varepsilon_1 > 0$ - заданное число, или при $k \ge M$, M - предельное число итераций, или при двукратном одновременном выполнении двух неравенств $\|x^{k+1}-x^k\| < \delta_2, |f(x^{k+1})-f(x^k)| < \varepsilon_2,$ где δ_2, ε_2 - малые положительные числа. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования.

Алгоритм.

- **III.1.** Задать x^0 , ε_1 , δ_2 , ε_2 , M предельное число итераций. Вычислить градиент $\nabla f(x^0)$.
 - **Ш.2.** Положить k = 0.
 - **Ш.3.** Вычислить $\nabla f(x^k)$.
 - **Ш.4.** Проверить выполнение критерия окончания $\|\nabla f(x^k)\| < \varepsilon_1$:
 - *a*) если критерий выполнен, $x^* = x^k$, расчет заканчивается;

b) если нет, то перейти на Ш.5.

Ш.5. Проверить условие $k \ge M$:

- *a*) если неравенство выполняется, то расчет окончен и $x^* = x^k$;
- *b*) если нет, то при k = 0 перейти на Ш.б., а при $k \ge 1$ перейти на Ш.7.

Ш.6. Определить $d^0 = -\nabla f(x^0)$.

Ш.7. Определить

$$w^{k-1} = \frac{\left\|\nabla f\left(x^{k}\right)\right\|^{2}}{\left\|\nabla f\left(x^{k-1}\right)\right\|^{2}}, \text{ или } w^{k-1} = \begin{cases} \frac{\left\langle\nabla f\left(x^{k}\right), \left[\nabla f\left(x^{k}\right) - \nabla f\left(x^{k-1}\right)\right\rangle}{\left\|\nabla f\left(x^{k-1}\right)\right\|^{2}}, & k \notin J, \\ 0, & k \in J. \end{cases}$$

Ш.8. Определить $d^k = -\nabla f(x^k) + w^{k-1}d^{k-1}$.

Ш.9. Найти α^{*k} из условия $\alpha^{*k} = Arg \min_{\alpha^k \in \mathbb{R}^1} f(x^k + \alpha^k d^k)$.

III.10. Вычислить $x^{k+1} = x^k + \alpha^k d^k$.

Ш.11. Проверить выполнение условий $||x^{k+1}-x^k|| < \delta_2, |f(x^{k+1})-f(x^k)| < \varepsilon$, :

- a) в случае выполнения обоих условий в двух последовательных итерациях с номерами k и k-1 расчет окончен, найдена точка $x^* = x^k$.
- **b**) если не выполняется хотя бы одно из условий, полагаем k = k + 1 и переход на Ш.3.

4.2.3. Метод Девидона-Флетчера-Пауэлла.

Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве \mathbb{R}^n и имеющая непрерывные частные производные во всех его точках (т.е. $f(x) \in C^1(X)$, $X = R^n$).

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X = R^n$, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска.

Стратегия метода Девидона-Флетчера-Пауэлла (DFP) состоит в построении последовательности точек $\left\{x^{k}\right\}$, таких, что $f(x^{k+1}) < f(x^{k})$, k = 0,1,... Точки последовательности x^k вычисляются по правилу: $x^{k+1} = x^k - \alpha^{*k} G^{k+1} \nabla f(x^k), k = 0,1,...$

$$x^{k+1} = x^k - \alpha^{*k} G^{k+1} \nabla f(x^k), k = 0,1,...$$
(4.2.1.)

где G^{k+1} - матрица размера $n \times n$, являющаяся аппроксимацией обратной матрицы Гессе. Она вычисляется по правилу:

$$G^{k+1} = G^k + \Delta G^k, G^0 = E, \tag{4.2.2.}$$

$$\Delta G^{k} = \frac{\Delta x^{k} (y^{k})^{T}}{(y^{k})^{T} \Delta g^{k}} - \frac{G^{k} \Delta g^{k} (G^{k} \Delta g^{k})^{T}}{(\Delta g^{k})^{T} G^{k} \Delta g^{k}},$$

$$\Gamma A = \Delta x^{k} = x^{k+1} - x^{k}, \Delta g^{k} = \nabla f(x^{k+1}) - f(x^{k}).$$
(4.2.3.)

Точка x^0 задается пользователем, величина шага α^{*k} определяется из условия:

$$\alpha^{*k} = Arg \min_{\alpha^k \in [a,b]} \varphi(x^k + \alpha^k d^k)$$
(4.2.4.)

Решение задачи (4.2.4.) может выполняться как из условия $\frac{d\varphi(\alpha)}{d\alpha^k} = 0, \frac{d^2\varphi(\alpha)}{d\alpha^{k\,2}} > 0$, либо численно, с использованием методов одномерной минимизации, когда решается задача: $\varphi(\alpha^k) \to \min_{\alpha^k \in [a,b]}$ оптимизации.

Формулы (4.2.2.), (4.2.3.) при аналитическом решении задачи (4.2.4.) обеспечивают построение последовательности $\{G^k\}$ положительно определенных матриц, таких, что $G^k \to H^{-1}(x^*)$ при $k \to \infty$. Следствием этого для квадратичной функции $f(x) = \frac{1}{2} \langle Hx, x \rangle + \langle b, x \rangle, H > 0$, является тот факт, что направления d^k , k = 0,1,..., будут H -сопряженными и, следовательно, алгоритм DFP сойдется не более чем за n шагов.

Для неквадратичных функций f(x) алгоритм DFP перестаёт быть конечным и его сходимость зависит от точности решения задачи (4.2.4.). Глобальную сходимость алгоритма можно гарантировать лишь при его обновлении через каждые n шагов, т.е. когда в формуле (4.2.1.):

$$G^{k+1} = \begin{cases} E, k \in J; J = \{0, n, 2n, \dots\}, \\ G^{k} + \Delta G^{k}, k \notin J. \end{cases}$$

Построение последовательности $\left\{x^k\right\}$ заканчивается в точке x^{*k} , для которой $\nabla f(x^k) < \mathcal{E}_1$, где \mathcal{E}_1 - заданное число, или при $k \geq M$ (M - предельное число итераций), или при двукратном одновременном выполнении двух неравенств: $\left\|x^{k+1}-x^k\right\| < \delta_2, \left|f(x^{k+1})-f(x^k)\right| < \mathcal{E}_2, \text{ где } \delta_2 > 0, \mathcal{E}_2 > 0$ - малые положительные числа. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки x^* минимума, решается путем проведения дополнительного исследования.

Алгоритм.

Ш.1. Задать x^0 , ε_1 , δ_2 , ε_2 , M - предельное число итераций. Найти градиент $\nabla f(x^0)$.

III.2. Положить k = 0, $G^0 = E$.

Ш.3. Вычислить $\nabla f(x^k)$.

Ш.4. Проверить критерий окончания $\|\nabla f(x^k)\| < \varepsilon_1$:

a) если критерий выполнен, $x^* = x^k$, расчет заканчивается;

b) Если нет, то перейти на Ш.5.

Ш.5. Проверить условие $k \ge M$:

a) если неравенство выполняется, то расчет окончен и $x^* = x^k$;

b) если нет, то при k = 0 перейти на Ш.10., а при $k \ge 1$ перейти на Ш.6.

Ш.6. Вычислить $\Delta g^k = \nabla f(\hat{x^{k+1}}) - \nabla f(x^k)$.

Ш.7. Вычислить $\Delta x^k = x^{k+1} - x^k$.

III.8. Вычислить $\Delta G^k = \frac{\Delta x^k (\Delta x^k)^T}{(\Delta x^k)^T \Delta g^k} - \frac{G^k \Delta g^k (\Delta g^k)^T G^{kT}}{(\Delta g^k)^T G^k \Delta g^k}$.

III.9. Вычислить $G^{k+1} = G^k + \Delta G^k$

Ш.10. Определить $d^{k} = -G^{k+1}\nabla f(x^{k})$.

Ш.11. Вычислить $\alpha^{*k} = Arg \min_{\alpha^k \in [a,b]} f(x^k + \alpha^k d^k)$.

Ш.12. Вычислить $x^{k+1} = x^k + \alpha^{*k} d^k$.

Ш.13. Проверить условия $\|x^{k+1} - x^k\| < \delta_2, |f(x^{k+1}) - f(x^k)| < \varepsilon_2$:

a) в случае выполнения обоих условий в двух последовательных итерациях с номерами k и k-1 расчет окончен, найдена точка $x^* = x^{k+1}$.

b) если не выполняется хотя бы одно из условий, полагаем k=k+1 и переход на III.3.

4.2.4. Метод Бройдена-Флетчера-Гольдфарба-Шенно.(BFGS).

Обозначим

$$y_k = \Delta g_k = \nabla \varphi_{k+1} - \nabla \varphi_k; s_k = \Delta x_k = x^{k+1} - x^k.$$

Тогда

$$\tilde{H}^{k+1}y_k = s_k; u H^{k+1}s_k = y_k.$$

Отсюда

$$H^{k+1} = H^{k} + \frac{y_{k}y_{k}^{T}}{y_{k}^{T}s_{k}} - \frac{H^{k}s_{k}s_{k}^{T}H^{k}}{s_{k}^{T}H^{k}s_{k}}$$

Такая замена обеспечивает более устойчивый процесс

поиска экстремума. Как видно из соотношений для $m{H}^{k+1}$ и $m{\widetilde{H}}^{k+1}$ формуль

пересчета для DFP и BFGS взаимнообратны.

$$\begin{split} \widetilde{H}^{k+1} &= \widetilde{H}^{k} + \frac{(s_{k} - \widetilde{H}^{k} y_{k})s_{k}^{T} + s_{k}(s_{k} - \widetilde{H}^{k} y_{k})^{T}}{s_{k}^{T} y_{k}} - \frac{(s_{k} - \widetilde{H}^{k} y_{k})^{T} y_{k}}{(s_{k}^{T} y_{k})^{2}} s_{k} s_{k}^{T}, \\ \widetilde{H}^{k+1} &= \left(I - \frac{s_{k} y_{k}^{T}}{s_{k}^{T} y_{k}}\right) \widetilde{H}^{k} \left(I - \frac{y_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}\right) + \frac{s_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}. \\ H^{k+1} &= H^{k} + \frac{(y_{k} - H^{k} s_{k}) y_{k}^{T} + y_{k} (y_{k} - H^{k} s_{k})^{T}}{y_{k}^{T} s_{k}} - \frac{(y_{k} - H^{k} s_{k})^{T} s_{k}}{(y_{k}^{T} s_{k})^{2}} y_{k} y_{k}^{T}, \\ H^{k+1} &= \left(I - \frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right) H^{k} \left(I - \frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right) + \frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}. \end{split}$$

4.2.4. Метод Левенберга-Марквардта.

Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве R^n и имеющая непрерывные вторые частные производные во всех его точках (т.е. $f(x) \in C^2(X)$, $X = R^n$).

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X = R^n$, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска.

Стратегия метода Левенберга-Марквардта (LM) состоит в построении последовательности точек $\{x^k\}$, таких, что $f(x^{k+1}) < f(x^k), k = 0,1,...$ Точки последовательности $\{x^k\}$ вычисляются по правилу:

$$x^{k+1} = x^k - \left[H(x^k) + \mu^k E\right]^{-1} \nabla f(x^k), k = 0, 1, \dots,$$
(4.3.1.)

где точка x^0 задается пользователем, E - единичная матрица, μ^k - последовательность положительных чисел, таких, что матрица $\left[H(x^k) + \mu^k E\right]^{\!-1}$ положительно определена. Как правило, число μ^0 назначается как минимум на порядок больше, чем самый большой элемент матрицы $H(x^0)$, а в ряде стандартных программ полагается $\mu^0 = 10^4$. Если $f\left(x^k - \left[H(x^k) + \mu^k E\right]^{\!-1} \nabla f(x^k)\right) < f(x^k)$, то $\mu^{k+1} = \frac{\mu^k}{2}$. В

противном случае $\mu^{k+1} = 2\mu^k$. Легко видеть, что алгоритм Левенберга-Марквардта в зависимости от величины μ^k на каждом шаге по своим свойствам приближается либо к алгоритму Ньютона, либо к алгоритму градиентного спуска.

Построение последовательности $\left\{x^k\right\}$ заканчивается, когда либо $\left\|\nabla f\left(x^k\right) < \varepsilon_1\right\|$, либо число итераций $k \geq M$, где ε_1 - малое положительное число, а M - предельное число итераций.

Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования.

Алгоритм.

- **Ш.1.** Задать x^0 , \mathcal{E}_1 , δ_2 , \mathcal{E}_2 , M предельное число итераций. Найти градиент $\nabla f(x^0)$ и матрицу Γ ессе $H(x^0)$.
 - **Ш.2.** Положить k = 0, $\mu^k = \mu^0$.
 - **Ш.3.** Вычислить $\nabla f(x^k)$.
 - **Ш.4.** Проверить критерий окончания $\|\nabla f(x^k)\| < \varepsilon_1$:
 - a) если критерий выполнен, $x^* = x^k$, расчет заканчивается;
 - *b*) если нет, то перейти на Ш.5.
 - **Ш.5.** Проверить условие $k \ge M$:
 - *a*) если неравенство выполняется, то расчет окончен и $x^* = x^k$;
 - *b*) если нет, то перейти на Ш.6.
 - **Ш.6.** Вычислить $H(x^k)$.
 - **Ш.7.** Вычислить $H(x^k) + \mu^k E$.
 - **Ш.8.** Вычислить $[H(x^k) + \mu^k E]^{-1}$.
 - **Ш.9.** Вычислить $d^k = -[H(x^k) + \mu^k E]^{-1} \nabla f(x^k)$.
 - **III.10.** Вычислить $x^{k+1} = x^k [H(x^k) + \mu^k E]^{-1} \nabla f(x^k)$.
 - **Ш.11.** Проверить выполнение условия $f(x^{k+1}) < f(x^k)$:
 - a) если неравенство выполняется, то перейти на Ш.12;
 - *b*) если нет, перейти на Ш.13.
 - **Ш.12.** Положить k = k + 1, $\mu^{k+1} = \frac{\mu^k}{2}$ и перейти на Ш.3.
 - **Ш.13.** Положить $\mu^{k+1} = 2\mu^k$ и перейти на Ш.7.

Замечание 4.1. В окрестности точки минимума x^* метод Левенберга-Марквардта обладает скоростью сходимости, близкой к квадратичной.

Задание.

Требуется найти минимум тестовой функции Розенброка:

$$f(x) = \sum_{i=1}^{n-1} \left[a(x_i^2 - x_{i+1})^2 + b(x_i - 1)^2 \right] + f_0.$$

- 1. Методами сопряженных градиентов (методом Флетчера-Ривза и методом Полака-Рибьера).
- 2. Квазиньютоновским методом (Девидона-Флетчера-Пауэлла).
- 3. Методом Левенберга-Марквардта.

Замечание 4.2. В качестве методов одномерного поиска использовать любой из известных методов одномерного поиска.

Варианты задания:

```
1. a = 50, b = 2, f_0 = 10, n = 2.
a = 150, b = 2, f_0 = 100, n = 3.
3. a = 80, b = 3, f_0 = 110, n = 2.
a = 250, b = 2, f_0 = 50, n = 2
5. a = 70, b = 5, f_0 = 30, n = 3.
6. a = 30, b = 2, f_0 = 80, n = 4
7. a = 250, b = 2, f_0 = 300, n = 2.
8. a = 158, b = 2, f_0 = 40, n = 2.
9. a = 500, b = 2, f_0 = 10, n = 2
10. a = 350, b = 2, f_0 = 110, n = 2.
11. a = 300, b = 5, f_0 = 15, n = 2;
12. a = 200, b = 1, f_0 = 25, n = 2;
13. a = 100, b = 15, f_0 = 15, n = 2;
14. a = 500, b = 5, f_0 = 35, n = 2;
15. a = 100, b = 3, f_0 = 15, n = 2;
16. a = 140, b = 2, f_0 = 24, n = 2;
17. a = 1000, b = 10, f_0 = 150, n = 2;
18. a = 100, b = 2, f_0 = 45, n = 3;
19. a = 220, b = 3, f_0 = 12, n = 2;
20. a = 500, b = 15, f_0 = 25, n = 2;
21. a = 30, b = 3, f_0 = 45, n = 3;
22. a = 180, b = 2, f_0 = 15, n = 2;
23. a = 200, b = 5, f_0 = 48, n = 3;
24. a = 300, b = 25, f_0 = 250, n = 2;
25. a = 10, b = 250, f_0 = 45, n = 3.
```

- 1. Найти все стационарные точки и значения функций соответствующие этим точкам.
- 2. Оценить скорость сходимости указанных алгоритмов и сравнить по времени получение результата оптимизации для разных методов.
- 3. Реализовать алгоритмы программированием на одном из языков высокого уровня (C^{++} , $C^{\#}$, Python, Haskell и др.).
- 4. Отчет представить в стандартном виде (TEX, PDF).

Требования к отчету.

- 1. Отчет должен содержать:
- 1.1. титульный лист;
- 1.2. цель работы;
- 1.3. постановку задачи;
- 1.4. проверку решения на допустимость.
- 2. Исследование выполнить с помощью написанной Вами программы с результатами в графическом виде.
- 3. Кроме текста исследования следует привести также текст исходного кода программ.
- 4. Отчет оформляется в формате PDF желательно в редакторе TEX.

Генетический алгоритм.

Цель работы:

- 1. Изучение методов решения задач многоэкстремальной оптимизации на основе генетического алгоритма.
- 2. Разработка программы реализации генетического алгоритма.
- 3. Решение задачи многоэкстремальной оптимизации для заданных многоэкстремальных функций.

Постановка задачи

Дана целевая функция $f(x) = f(x_1, x_2, ..., x_n)$, определенная на множестве допустимых решений $D \subseteq \mathbb{R}^n$. Требуется найти глобальные минимумы заданных функций f(x) на допустимом множестве D. То есть такую точку

$$x^e = Arg \min_{x \in D} f(x)$$
, где $x = (x_1, ..., x_n)^T$, $D = \{x | x_i \in [\alpha, \beta], i = 1, ..., n.\}$. (1)

Задача поиска максимума целевой функции f(X) сводится к задаче поиска минимума путем замены знака перед функцией на противоположный:

$$f(x^e) = \max_{x \in D} f(x) = -\min_{x \in D} [-f(x)]$$
.

Стратегия поиска

Генетические алгоритмы имитируют природные способы оптимизации, присущие процессам эволюции живых систем. А именно:

- генетическое наследование;
- изменчивость;
- естественный отбор.

Целевая функция f(x) соответствует природному понятию **приспособленности** живого организма. Вектор переменных $x = (x_1,...,x_n)^T$ целевой функции называется **фенотипом**, а отдельные его параметры – **признаками** i = 1,2,...,n.

Любой живой организм может быть представлен своим генотипом и фенотипом.

Генотип — это совокупность наследственных признаков, информация о которых заключена в хромосомном наборе генов.

Фенотип — совокупность всех признаков и свойств организма, формирующихся в процессе взаимодействия его генотипа и внешней среды. Каждый ген имеет своё отражение в фенотипе.

Генетические алгоритмы ведут поиск решения на уровне генотипа. Каждую координату x_i вектора $x=(x_1,...,x_n)^T\in D$ представляют в некоторой форме s_i , удобной для использования в генетическом алгоритме и называется геном. Для этого необходимо выполнить преобразование, в общем случае не взаимно однозначное, вектора переменных $x=(x_1,...,x_n)^T\in D$ в некоторую структуру $s=(s_1,s_2,...,s_n)^T\in S$, называемую хромосомой

(генотипом, особью): $D \stackrel{e}{\to} S$, где e функция кодирования, S - пространство представлений (как правило $D \neq S$).

Для того, чтобы восстанавливать по хромосоме решение, необходимо задать обратное преобразование $S \longrightarrow D$, где e^{-1} - функция декодирования.

В пространстве представлений S вводится так называемая **функция приспособленности** (функция фитнеса) $\mu(s): S \stackrel{\mu}{\longrightarrow} R$, где R - множество вещественных

чисел, аналогичная целевой функции f(x) на множестве D. Функция $\mu(s)$ может быть любая функция, удовлетворяющая условию:

$$\forall x^1, x^2 \in D: s^1 = e(x^1), s^2 = e(x^2), s^1 \neq s^2, eclu \ f(x^1) > f(x^2), mo \ \mu(s^1) > \mu(s^2)$$
.

При решении используются конечные наборы:

$$I = \{s^k = (s_1^k, s_2^k, ..., s_n^k)^T, k = 1, 2, ..., m\} \subset S$$

Возможных решений, называемых *популяциями*, где s^k - хромосомы с номером k, m- размер популяции, s_i^k - ген с номером i k - той популяции.

Затем осуществляется обратное преобразование:

$$x^e = e^{-1}(s^*).$$

Различают два способа кодирования:

- 1. Бинарное кодирование.
- 2. Вещественное кодирование.

Будем использовать второй вариант кодирования. В этом случае целевая функция может использоваться непосредственно как функция фитнеса. Тогда в качестве функции фитнеса $\mu(x)$ получается как преобразование целевой функции, т.е. функция фитнеса

 $\mu(x): D \xrightarrow{\mu} R$, где R - множество вещественных чисел, аналогична целевой функции f(x).

Функцией $\mu(x)$ может быть любая функция, удовлетворяющая следующему условию:

$$\forall x^1, x^2 \in D: x^1 \neq x^2, eclu \ f(x^1) > f(x^2), mo \ \mu(x^1) > \mu(x^2)$$
.

Решение исходной оптимизационной задачи $f(x^*) = \min_{x \in D} f(x)$ сводится к поиску решения x_u^* другой оптимизационной задачи:

$$\mu(x_{\mu}^{*}) = \max_{x \in D} \mu(x)$$
. (2)

В силу выбора функции $\mu(x)$, решение задач (1) и (2) (хромосома) совпадают:

$$x^{e} = x^{*} = Arg \min_{x \in D} f(x) = Arg \max_{x \in D} \mu(x) = x_{\mu}^{*}.$$
 (3)

 $x^e = x^* = Arg \min_{x \in D} f(x) = Arg \max_{x \in D} \mu(x) = x_{\mu}^*$. (3) При решении задачи (2) используются конечные наборы $I = \left\{x^k = \left(x_1^k, ..., x_n^k\right)^T, k = 1, 2, ..., Mp\right\} \subset D$ возможных решений, называемых *популяциями*, где x^k - хромосома с номером k , M - размер популяции, x_i^k - ген с номером i .

Генетический алгоритм.

Ш.1. Формирование исходной популяции.

- Ш.1.1. Задается номер популяции t = 0, максимальное количество популяций Np, номер итерации цикла k = 1, размер популяции Mp.
- Ш.1.2. Случайным образом выбирается начальная точка x^0 исходная хромосома. Она может быть выбрана как внутренняя точка гиперкуба области допустимых значений D. Из этой точки формируется исходная популяция. Для этого с помощью равномерного распределения на единичном отрезке [0,1] Mp раз генерируется последовательность из n случайных точек $\{P_i^{0k}\}_{i=1,n}^{k-1,Mp}, i=1,...,n; k=1,...,Mp$. Используя линейное преобразование, каждая точка отображается на соответствующий ей промежуток $[\alpha, \beta]: P_i^k = (\beta_i - \alpha_i) P_i^{0k} + \alpha_i$. Составляя векторы из точек последовательности $\{P_i^k\}$ при фиксированных k , получаем Mp начальных векторов $x^k = \left(x_1^k,...,x_n^k\right)^T$, $x_i^k = P_i^k$, i=1,...,n , координаты которых x_i имеют равномерное распределение на отрезках $[\alpha_i, \beta_i], i=1,...,n$.

Таким образом, может быть сформирована начальная популяция $I_0 = \left\{ \!\! x^k, k=1,\!...,Mp \left| x^k = \left(\!\! x_1^k, x_2^k,\!...,x_n^k \!\! \right) \!\! \in D \right. \!\!\! \right\}\!.$

Ш.1.3. Вычисляется значение функции фитнеса для каждой особи

$$x^k \in I_0: \mu_k = \mu(x^k), \, k=1,...,Mp$$
 и популяции I_0 в целом $\mu = \sum_{k=1}^{Mp} \mu_i$.

Ш.2. Отбор (селекция).

Селекция — это операция, которая осуществляет отбор особь (хромосом) x^k в соответствии со значениями функции фитнеса $\mu(x^k)$ для последующего их скрещивания.

- Ш.2.1. Вычислить кумулятивную вероятность $q_i = \sum_{j=1}^i \mu_j(x^j), i = 1,2,...,Mp$.
- Ш.2.2. Сформировать случайное действительное число r в интервале (0, Mp].
- Ш.2.3. Выбрать i ю хромосому x^i ($1 \le i \le Mp$) так, чтобы $q_{i-1} < r \le q_i$.
- Ш.2.4. Перейти на Ш.2.2. до тех пор, пока не будет сформирована новая популяция ($while(i \leq Mp)$).

Ш.3. Кроссинговер (скрещивание).

Скрещивание – это операция, при которой из нескольких, обычно двух хромосом (особей), называемых родителями, порождается одна или несколько новых, называемых потомками.

- Ш.3.1. Определяется параметр $Pc \in (0,1]$ как вероятность кроссинговера. Эта вероятность дает ожидаемое число $Pc \cdot Mp$ хромосом, подвергаемых операции кроссинговера.
- Ш.3.2. Для операции кроссинговера выполняется процесс, повторяющийся от i=1 до $Pc \cdot Mp$: формируется случайное действительное число r из сегмента [0,1], при этом, если r < Pc, то хромосома x^i выбирается как родительская.
- Ш.3.3. Отбираются пары родительских хромосом (x^i, x^j) , где $i \neq j$. Действие оператора кроссинговера осуществляется следующим образом:
- Ш.3.4. Формируется случайное число $c \in (0,1)$, затем оператор кроссинговера, действующий на исходные пары (x^i, x^j) , производит две хромосомы потомки X и Y:

$$X = c \cdot x^{i} + (1 - c) \cdot x^{j}, \quad Y = (1 - c) \cdot x^{i} + c \cdot x^{j}.$$

III.3.5. Если допустимое множество является выпуклым, то кроссинговер обеспечивает допустимость обоих потомков, в случае если допустимы оба родителя. Следует проверить допустимость каждого потомка перед тем, как он будет включен в новую популяцию. Если оба потомка являются допустимыми, тогда родители заменяются этими потомками. Если это не так, сохраняется допустимый потомок, если он существует, а затем вновь выполняется оператор кроссинговера с новым значением случайного числа c до тех пор, пока не будут получены два новых допустимых потомка или не будет превышено заданное число циклов. В этом случае осуществляется замена родителей только теми (сохраненными ранее) потомками, которые оказались допустимыми.

Ш.4. Мутация.

Мутация – это преобразование хромосомы, случайно изменяющее один или несколько из её генов. Оператор мутации предназначен для того, чтобы поддерживать разнообразие особей в популяции.

Ш.4.1. Определим параметр $Pm \in (0,1]$ как вероятность мутации. Эта вероятность дает ожидаемое число $Pm \cdot Mp$ хромосом, подвергаемых операции мутации.

- Ш.4.2. Для операции мутации выполняется процесс, повторяющийся от i=1 до $Pm\cdot Mp$: формируется случайное действительное число r из сегмента [0,1], при этом, если r < Pm, то хромосома x^i выбирается как родительская для операции мутации Для каждой выбранной родительской хромосомы x^i , обозначенной как $Z = (x_1, x_2, ..., x_n)$, производится мутация.
- Ш.4.3. Поочередно рассматривается каждый потомок из ожидаемого числа $Pm \cdot Mp$ хромосом. Среди генов выбранной родительской хромосомы $Z = (x_1, x_2, ..., x_n)$ случайно (с вероятностью 1/n) выбирается один с номером $p \in (1,2,...,n)$ подлежащий замене. Его новое значение x_p^M случайным образом выбирается из промежутка $\left[\alpha_p, \beta_p\right]$ изменения выбранной координаты x_p .

Ш.5. Формирование новой популяции.

- Ш.5.1. С равной вероятностью из потомков мугантов предыдущего шага выбирается один $x^M = (x_1, x_2, ..., x_p^M, ..., x_n)$.
- Ш.5.2. Выбранный потомок добавляется в популяцию вместо хромосомы, которой соответствует наименьшее значение функции фитнеса (наихудшее из допустимых значений).
 - Ш.5.3 Вычисляется значение функции фитнеса для мутантного потомка $\mu_{\scriptscriptstyle M}=\mu(x^{\scriptscriptstyle M})$.
 - Ш.5.4. Проверка условий:
 - Ш.5.4.1. Если k < Mp, то k = k + 1 и переход на Ш.2.
 - Ш.5.4.2. Если k = Mp, то t = t + 1 и переход на Ш.6.

Ш.б. Проверка условия останова генетического алгоритма.

Условием окончания работы генетического алгоритма является формирование заданного количества популяций t=Np.

- Ш.6.1. Если условие не выполнено, то полагаем k = 1 и переход на Ш.2.
- Ш.6.2. Если условие окончания работы выполнено, то в качестве решения (приближенного) задачи $\mu(x_{\mu}^*) = \max_{x \in D} \mu(x)$ выбирается особь с лучшим значением функции фитнеса из текущей популяции: $x_{\mu}^* \cong x_{\mu}^e = Arg \max \mu(x^k)$, а по нему определяется приближенное решение поставленной задачи $f(x^*) = \min f(x)$: $x^* = x_{\mu}^*$.

Замечание 1. В качестве *функции фитнеса* можно использовать обратную целевую функцию $\mu(x) = \frac{1}{f(x)}$.

Замечание 2. Обычно размер популяции выбирают в пределах 30-60 особей. **Замечание 3.** Вероятность кроссинговера принимается равной Pc = 0.3 - 0.5, вероятность мутации Pm = 0.05 - 0.2.