

FACULTAD DE INGENIERÍA Y CIENCIAS AGROPECUARIAS Ingeniería en Producción Industrial EIP-756-1/ ELECTRÓNICA INDUSTRIAL

Período 2016-1

1. Identificación

Número de sesiones: 48 sesiones

Número total de horas de aprendizaje: 120

Créditos – malla actual: 3 Profesor: Jean-Michel Clairand

Correo electrónico del docente (Udlanet): j.clairand@udlanet.ec

Coordinador: Ing. Christian Chimbo

Campus: Sede Queri

Pre-requisito: Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación					
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes	
	X				

2. Descripción del curso

Los alumnos aprenderán a solucionar problemas de electrónica básica por medio del uso de elementos semiconductores como diodos, transistores, amplificadores operacionales. Se da prioridad principalmente al análisis del problema y el diseño de la solución de una manera eficiente y acorde a las tecnologías actuales, con el desarrollo de documentación que sea usada para futuras investigaciones y la implementación física de la solución con dispositivos analógicos.

Para realizar todo lo anteriormente explicado los alumnos utilizarán y estarán en capacidad de reconocer el patillaje y función de los elementos semiconductores anteriormente citados y adicionalmente se utilizará software de simulación para complementar los casos prácticos.

3. Objetivo del curso

Diseñar circuitos electrónicos analógicos aplicando conocimientos de semiconductores, para mejorar las características de una señal analógica que proviene de un transductor, sensor o de un equipo electrónico

4. Resultados de aprendizaje deseados al finalizar el curso (Sílabo maestro)

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
 Explicar con precisión la estructura, funcionamiento y aplicación de los elementos semiconductores en la electrónica Implementar circuitos utilizando diodos, transistores y amplificadores operacionales para obtener señales analógicas deseadas, a partir de funciones como amplificación, rectificación, eliminación de ruido, etc. 	efectividad las tecnologías manufactureras (maquinaria, materiales, energía, etc.) adaptadas a cada proceso productivo, utilizando herramientas de	Inicial () Medio () Final (x)

5. Sistema de evaluación

Reporte de progreso 1: 35% Reporte de progreso 2: 35% Asistencia: 0% Evaluación final: 30%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen es de carácter complexivo y de alta exigencia, por lo que el estudiante necesita prepararse con rigurosidad.

6. Metodología del curso y de mecanismos de evaluación.

El curso estará esencialmente compuesto de sesiones de teoría, y de resolución de problemas para la correcta comprensión de ésta. Se realizará un pequeño test de unos 15 minutos cada 2 semanas para evaluar la comprensión de la teoría, así como las posibles dificultades que pueden encontrar los estudiantes, para que puedan perfeccionar sus problemas en los exámenes de progreso. De igual manera habrá unas 3 prácticas que permitirán evaluar la aplicación práctica, gracias a los conocimientos teóricos que posean los estudiantes.

La evaluación en cada progreso estará definida de esta forma, sobre un total de 100%:

-Promedio Tests: 30%

-Prácticas: 20%

-Examen Progreso: 50%

6.1. Escenario de aprendizaje presencial.

Resolución de ejercicios en clase, tests.

6.2. Escenario de aprendizaje virtual

Trabajos en grupo

6.3. Escenario de aprendizaje autónomo.

"Comprende el trabajo realizado por el estudiante, orientado al desarrollo de capacidades para el aprendizaje independiente e individual del estudiante. Son actividades de aprendizaje autónomo, entre otros: lectura, análisis de material bibliográfico, búsqueda de información, generación de datos, elaboración de trabajos, ensayos, proyectos, exposiciones, entre otros" (CES, 2013, p.10)

7. Temas y subtemas del curso (Sílabo maestro)

Deben seleccionarse los RdA y contenidos de cada asignatura de manera que sean los mismos en los diferentes paralelos. Sin embargo, el docente puede adaptar el orden de los temas y subtemas de acuerdo a las necesidades de sus grupos de estudiantes, siempre y cuando se cumpla con los objetivos establecidos.

RdA	Temas	Subtemas
Explicar con precisión la estructura,	1.SEMICONDUCTORES	1.1 Introducción
funcionamiento y aplicación de los		1.2 Clasificación de la
elementos semiconductores en la		materia
electrónica		1.3 Tipos de
		Semiconductores
		1.4 Modelado de Bandas
		de energía
		1.5 Modelo de los
		Elementos
		Semiconductores
		1.6 Materiales intrínsecos
		y Extrínsecos
		Dopaje
Aplicar con criterio los	2. DIODOS Y SUS	2.1 Estructura del Diodo
conceptos teóricos de	APLICACIONES	2.2 Curvas
diodos para la solución de		Características
problemas prácticos y		2.3 Polarización
evaluar sistemáticamente		2.4 Rectificador Media
los requerimientos		Onda
técnicos necesarios para		2.5 Rectificador Onda
la implementación de		Completa
fuentes de voltaje DC.		2.6 Recortadores
		2.7 Leds
		2.8 Diodos Zener
		2.9 Fuentes DC
		2.10 Reguladores
Diseñar con criterio amplificadores	3. TRANSISTORES	3.1 Estructura
de señal con transistores en		3.2 Curvas
configuración Emisor común,		Características
Colector Común y Base Común para		3.3 Cálculo de Corriente
optimizar señales analógicas		de Base, Colector
		y Emisor
		3.4 Cálculo de Voltaje de
		Base, Colector y
		Emisor

		3.5 Diseño de Circuitos en Emisor Común, Base Común y	
		Colector Común	
		3.6 Circuito Polarización DC	
		3.7 Circuito de	
		Amplificación en AC	
		3.8 Amplificadores de	
		Audio	
		3.9 Ejercicios.	
Implementar circuitos	4. AMPLIFICADORES	4.1 Introducción.	
utilizando amplificadores	OPERACIONALES	4.2 Características	
operacionales para		4.3 Circuitos con	
mejorar señales		amplificadores y	
analógicas y de esta		funciones	
manera transmitirlas de		4.4 Diagramas de Bode	
una manera adecuada a			
controladores			

8. Planificación secuencial del curso (Docente)

	Semana 1 -4				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	1.SEMICONDUCTO-RES	1.1 Introducción 1.2 Clasificación de la materia 1.3 Tipos de Semiconductores 1.4 Modelado de Bandas de energía 1.5 Modelo de los Elementos Semiconductores 1.6 Materiales intrínsecos y Extrínsecos 1.7 Dopaje	Clase Magistral componentes de la materia Presentación Tipos de Semiconductores Clase Magistral Bandas de Energía Clase Magistral Elementos Semiconductores Clase Magistral Elementos Semiconductores Video Sala Blanca	Revisión para tests	Portafolio de Ejercicios sobre: Bandas de Energía Elementos Semiconductores Dopaje de Semiconductores Taller de cálculo de electrones de Valencia Examen Complexivo de Tema 1

Semana 5-9

RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
2	2. DIODOS Y SUS APLICACIONES	2.1 Estructura del Diodo 2.2 Curvas	Clase Magistral Diodo	Ejercicios de aplicación de polarización de	Exposición sobre Estructura del Diodo,
		Características 2.3 Polarización	Presentación Curvas	Diodos	Portafolio de
		2.4 Rectificador Media Onda	Características del Diodo	Ejercicios de Diseño de	Ejercicios sobre: Polarización de
		2.5 Rectificador Onda Completa	Clase Magistral	rectificadores	Diodos Diseño de
		2.6 Recortadores 2.7 Leds	Polarización Diodos	Presentaciones Tipos de	Rectificadores Diseño de Fuente
		2.8 Diodos Zener 2.9 Fuentes DC 2.10 Reguladores	Ejercicios de Aplicación	diodos Revisión tests	de CD
		2.10 Neguladores	Clase Magistral	Nevision tests	Portafolio de Laboratorios
			Recificadores		sobre Diodos
			Ejercicios de Aplicación		Recortadores
			Presentación		Examen Complexivo de
			Recortadores		Tema 2
			Clase Magistral Leds, Zener		
			Diseño de Fuente DC		

	Semana 10-14				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
2	3. TRANSISTORES	3.1 Estructura	Clase Magistral	Revisión	Exposición sobre
		3.2 Curvas	Transistor	Literatura y	Estructura del
		Características		Videos sobre	Diodo,
		3.3 Cálculo de	Presentación	cada tema	
		Corriente de Base,	Curvas		Portafolio de
		Colector y Emisor	Características	Ejercicios de	Ejercicios sobre:
		3.4 Cálculo de	del Transistor	aplicación de	Polarización de
		Voltaje de Base,		polarización	Transistores
		Colector y Emisor	Clase Magistral	de	Diseño de
		3.5 Diseño de	Circuitos de	Transistores	Circuitos en
		Circuitos en	Polarización		varias
		Emisor Común,		Ejercicios de	configuraciones
		Base Común y	Ejercicios de	Diseño de	

Colector Común	Aplicación	Amplificadores	Implementación
3.6 Circuito			de detector de
Polarización DC	Clase Magistral	Diseño de	paso
3.7 Circuito de	Diseño de	Amplificador	
Amplificación en	Amplificadores	de Audio	
AC			Portafolio de
3.8 Amplificadores	Ejercicios de	Revisión Tests	Laboratorios
de Audio	Aplicación		sobre
3.9 Ejercicios.			Transistores

	Semana 15-18				
RdA	Tema	Sub tema	Actividad/	Tarea/	MdE/Producto/
			estrategia de	trabajo	fecha de entrega
			clase	autónomo	
2	4. AMPLIFICADO	4.1 Introducción.	Clase Magistral	Revisión	Exposición sobre
	RES OPERACIONA	4.2 Características	Amplificador	Literatura y	Amplificador
	LES	4.3 Circuitos con	Operacional	Videos sobre	Operacional
		amplificadores y		cada tema	
		funciones	Presentación		Portafolio de
		4.4 Diagramas de	Circuitos de	Ejercicios de	Ejercicios sobre:
		Bode	Polarización	aplicación de	Polarización de
				polarización	Amplificadores
			Simulación de	de	Diseño de
			Circuitos de	Amplificadores	Circuitos en
			Polarización	Operacionales	varias
					configuraciones
			Clase Magistral	Simulación de	
			de Amplificador	Circuitos	
			Inversor		
				Revisión Tests	Implementación
			Clase Magistral		Portafolio de
			de Amplificador		Laboratorios
			No Inversor		sobre
					Amplificadores
			Ejercicios de		en varias
			Aplicación		configuraciones
			Apricación		comiguraciones

9. Normas y procedimientos para el aula

Los alumnos tienen que llegar a la hora a la clase. Transcurridos los 10 minutos, serán marcados como ausente. No se aceptará ninguna justificación, eso tendrá que ser hablado con secretaría. En caso de ausencia, los alumnos tendrán que recuperar la clase con las notas de sus compañeros y solicitar tutorías en caso de que no se entienda el curso, para evitar estar perdidos en las clases siguientes. El uso del celular es prohibido.

10. Referencias bibliográficas (Docente)

10.1. Principales.

Floyd, T. (2008). Dispositivos Electrónicos. (8a.ed)

10.2. Referencias complementarias.

- Boylestad, R., Nashelsky, L. (2008). Electrónica y teoría de Circuitos. (10ma.ed)
- Malvino, P. (2007). Principios de la Electrónica. (3ra. ed.).(pp. 85-120). Monterrey, Mexico: MacGraw Hill.
- Savant, C. (2008). Diseño Electrónico Circuitos y Sistemas. (3ra. ed.).(pp. 117-130). Juarez, México: Prentice Hall.
- NTE. (2013). Manual de Electrónica. Recuperado el 3 de marzo de 2013 de http://www.nteinc.com/qc14/qc14setup.exe.

11. Perfil del docente

Nombre de docente: Jean-Michel Clairand

"Candidato a PhD en Ingeniería y Producción Industrial por la Univrstitat Politècnica de Valencia, con enfoque en eficiencia energética, vehículos eléctricos y su integración en redes eléctricas inteligentes, Master en Automática y Electrónica Industrial por l'Ecole Nationale Supérieure de l'Electronique et Ses Applications (ENSEA) de Cergy-Francia, al igual que Ingeniero Electrónico por la misma institución. Experiencia de un año como docente en la Universidad de las Américas. Experiencia profesional relacionada con proyectos de vehículos eléctricos e híbridos, generación de electricidad y redes eléctricas inteligentes.

Contacto: j.clairand@udlanet.ec

Teléfono: 0995860613