GLYCERYL OLIGONUCLEOTIDE

Patent number:

JP8208687

Publication date:

1996-08-13

Inventor:

HOTODA HITOSHI; KOIZUMI MAKOTO; OMINE

HISANORI; FURUKAWA HIDEHIKO; NISHIGAKI TAKASHI; ABE YASUSHI; KANEKO MASAKATSU

Applicant:

SANKYO CO LTD

Classification:

- international:

C07H21/04

- european:

Application number: JP19950301020 19951120

Priority number(s):

Abstract of JP8208687

PURPOSE: To obtain a new compound, a specific glyceryl oligonucleotide, useful as an anti-HIV agent having excellent anti-HIV activity and improved stability in blood by partially substituting deoxyribose with glycerol.

CONSTITUTION: This glyceryl oligonucleotide is shown by formula I [DBB is 3,4-(dibenzyloxy)benzyl; R<1> is guanin-9-yl or adenin-9-yl; R<2> is adenin-9-yl, guanin-9-yl, cytosin-1-yl, thymin-1-yl or uracil-1-yl; (m) is integer of 0 or 1-6; (n) is an integer of 1-6; m+n is 2-10], has excellent anti-HIV activity and improved stability in blood). The compound is obtained by introducing a nucleic acid base into a protected glycerol of formula II, reacting the resultant substance with 4,4'-dimethoxytrityl chloride, reacting the resulting substance with succinic anhydride to give a compound of formula III (R<3> is a nucleic acid base; DMT is 4,4'-dimethoxytrityl), subjecting the compound to extension reaction by phosphoamidite method and deprotecting.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-208687

(43)公開日 平成8年(1996)8月13日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 7 H 21/04

Z

// A 6 1 K 31/70

ADY

審査請求 未請求 請求項の数4 OL (全 16 頁)

			•
(21)出願番号	特顯平7-301020	(71)出願人	000001856
			三共株式会社
(22)出顧日	平成7年(1995)11月20日		東京都中央区日本橋本町3丁目5番1号
		(72)発明者	穂戸田 仁
(31)優先権主張番号	特願平6-291207		東京都品川区広町1丁目2番58号 三共株
(32)優先日	平6 (1994)11月25日		式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	小泉 誠
(,			東京都品川区広町1丁目2番58号 三共株
			式会社内
		(72)発明者	大峰 寿典
			東京都品川区広町1丁目2番58号 三共株
			式会社内
		(74)代理人	弁理士 大野 彰夫 (外2名)
			最終頁に続く

(54) [発明の名称] グリセリルオリゴヌクレオチド

(57)【要約】

*目的とする。

[課題] 本発明は、優れた抗HIV活性を有し、しかも、優れた安定性も有する抗HIV剤を提供することを*

【解決手段】 一般式

【化1】

(1)

[式中、DBBは3、4-(ジベンジルオキシ) ベンジル基; R¹ はグアニル又はアデニル基; R² はアデニル、グアニル、シトシル、チミニル又はウラシリル基;

mは0又は1乃至6;nは1乃至6。但し、m及 ∇ nの和は2乃至10]で表される化合物及 ∇

BEST AVAILABLE COPY

【特許請求の範囲】 【請求項1】一般式 *【化1】

REST AVAILABLE COL

(1)

「「式中、DBBは3、4~(ジベンジルオキシ)ベンジ ル基を示し、R1 はそれぞれ独立にグアニン-9-イル 又はアデニン-9-イル基を示し、R² はそれぞれ独立 にアデニン-9-イル、グアニン-9-イル、シトシン -1-イル、チミン-1-イル又はウラシル-1-イル 基を示し、mは0又は1乃至6の整数を示し、nは1乃 ある。〕で表される化合物及びその塩。

【請求項2】請求項1において、R2 がグアニン-1-イル基である化合物及びその塩。

「請求項3】請求項1において、m及びnの和が5であ り、塩基配列がTGGGGGGXはTGGGAGである化 合物及びその塩。

【請求項4】請求項1において、m及びnの和が6であ り、塩基配列がTGGGAGGである化合物及びその 塩。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、抗H I V活性を有 するオリゴデオキシリポヌクレオチド誘導体で、一部の デオキシリポースをグリセロールに置き換え、血中安定 性を向上させた、グリセリルオリゴヌクレオチド誘導体 に関する。

[0002]

【従来の技術】近年、オリゴヌクレオチド誘導体が、種 々の生物活性を示すことがわかってきた。例えば、Cala brettaらは、慢性骨髄性白血病に対する18量体のアン チセンスオリゴヌクレオチドを報告した(B. Calabretta et al., Proc. Natl. Acad. Sci. USA, 88, 2351-2355(1991) <u>)。また、Griffin らは、15景体のオリゴヌクレオ</u> チドがトロンピン阻害剤として作用することを報告した (L.C. Griffin et al, Gene, 137, 25-31(1994))。しか し、これらのオリゴヌクレオチド誘導体は天然型の構造 であり、天然型のオリゴヌクレオチドは、血中での分解 が非常に早いことが知られている(S. Akbtar et al, Li

手段として、リン酸ジエステル結合をチオエートに変換 する方法が知られている。例えば、Agrawal らは、抗H IV-1活性を有するホスホロチオエート型の25量体 のオリゴヌクレオチドを報告した(A. Agrawal et al, Cl in. Res., 42, 282A(1994))。しかし、ホスホロチオエー ト型のオリゴヌクレオチドは非常に多くのジアステレオ 至6の整数を示す。但し、m及びnの和は2乃至10で 20 マーの混合物となり、単一の化合物を得ることが困難で あった。

> 【0004】一方、本発明者らは、5'ー末端が修飾さ れた短鎖のオリゴヌクレオチドが、抗HIV-1活性を 示すことを報告した(特開平5-138517号)。

[0005]

【発明が解決しようとする課題】生理活性を有するオリ ゴヌクレオチド誘導体として、オリゴヌクレオチド部分 が天然型の化合物は、血中安定性が低いことが知られて いる。また、血中安定性を向上させるために、オリゴヌ 30 クレオチド部分をホスホロチオエート型にした化合物は 非常に多くのジアステレオマーの混合物になってしま う。従って、オリゴヌクレオチド部分がジアステレオマ ーの混合物とならない形で修飾することにより、血中安 定性が向上するような、生理活性を有するオリゴヌクレ オチド誘導体の開発が望まれている。

[0006]

【課題を解決するための手段】本発明者らは、前記の課 題を解決すべく鋭意研究の結果、抗HIV-1活性を有 するオリゴヌクレオチド誘導体のリポース部分をグリセ ロールに置き換えた化合物が血中のヌクレアーゼによる 分解に対して非常に安定で、ジアステレオマーの混合物 とならず、強い抗HIV-1活性を有することを見出し た。また、これらのオリゴヌクレオチド誘導体の合成に あたっては、グリセリルヌクレオシドホスホロアミダイ ト中間体が有用であることを見出した。

【0007】本発明のグリセリルオリゴヌクレオチド は、一般式

[0008]

(1)

[0009] [式中、DBBは3、4-(ジペンジルオ キシ) ペンジル基を示し、R1 はグアニン-9-イル又 はアデニン-9-イル基を示し、R² はアデニン-9-イル、グアニン-9-イル、シトシン-1-イル、チミ ン-1-イル又はウラシル-1-イル基を示し、mは0 又は1乃至6の整数を示し、nは1乃至6の整数を示 す。但し、m及びnの和は2乃至10である。〕で表さ れる化合物及びその塩である。

アニンー9-イル基であり、m及びnの和は好適には 5、6又は7であり、さらに好適には5又は6である。

【0011】また、R³の「イミド基に保護基を有して いてもよいチミン-1-イル若しくはウラシル-1-イ ル基」の保護基としては、アシル型の保護基であれば特 に限定はないが、好適にはベンゾイル基又はアニソイル 基である。

【0012】一般式(1)の化合物のうち、好適な化合 物としては、下記の [A群] に示す塩基配列をもつ化合 物があげられ、さらに好適には [B群] に示す塩基配列 をもつ化合物があげられる。なお、Tはチミン残基を、 Gはグアニン残基を、Aはアデニン残基を示す。

[0013] [A群] TGGGGG、TGGGAG、T GGGAGG, TGGGGGGG, TGGGGAG, TG GGGTG, TGGGGGTG, TGGGGCG, TG GGGUG, TGGGAGGG, TGGGAGTG, T GGGTGGG, TGGGGTTGGG, TGGGGTT [0010] 一般式 (1) において、R2 は好適にはグ 20 GGG、TGGGGAGG、TGGGGAAGG、TGG GGTTGGTG, TGGGGTTGGGG.

> [B群] TGGGGG、TGGGAG、TGGGAG G.

[0014]

【発明の実施の形態】

(製造方法) 次に本発明のグリセリルオリゴヌクレオシ チドの製造方法について説明する。

[0015]

[化3]

*【化4】 [0016] (6) (9) (10)

[0017]

【化5】

DEST AVAILABLE COL

(1a)

【0019】以下に、各工程について、詳しく説明する。

【0020】 (第1工程) メシル化

本工程は、不活性溶剤中、化合物(3)に、塩基の存在下、メタンスルホニルクロリドを反応させて、化合物(4)を得る工程である。

【0021】使用される溶剤としては、反応を阻害せず、原料化合物をある程度溶解するものであれば特に限

定はないが、好適には、メチレンクロリド、クロロホルム、ジクロロエタンのようなハロゲン化炭化水素類(特にメチレンクロリド)である。使用される塩基としては、トリエチルアミン、ピリジン等の有機アミン(特にトリエチルアミン)があげられる。

【0022】反応温度及び反応時間は、原料、試薬により異なるが、0乃至40℃で、30分乃至5時間である。

[0023] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。 グネシウムで乾燥する。乾燥剤を濾去し、減圧下、溶剤 を留去することにより得ることができる。

[0025] 得られた目的化合物は必要ならば、常法、 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

【0026】 (第2工程) 2-アミノ-6-クロロプリンの導入

30 本工程は、不活性溶剤中、化合物(4)に、塩基の存在下、2ーアミノー6ークロロプリンを反応させて、化合物(5)を得る工程である。

[0027] 使用される溶剤としては、反応を阻害せず、原料化合物をある程度溶解するものであれば特に限定はないが、好適には、ジメチルホルムアミドである。

[0028] 使用される塩基は、好適には、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩である。

【0029】反応温度及び反応時間は、原料、試薬によ40 り異なるが、50乃至150℃で、10乃至48時間である。

[0030] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

[0031] 例えば、溶剤を減圧下留去し、残渣に酢酸エチルを加えて溶解し、飽和重曹水で洗浄し、無水硫酸マグネシウムで乾燥し、溶剤を減圧下留去することにより得ることができる。

【0032】得られた目的化合物は必要ならば、常法、

(

【0033】(第3工程)クロルの加水分解、アミノ基の保護、ジメトキシトリチル化

本工程は、連続する3工程からなる。

3 a) 不活性溶剤中、化合物(5)に、希塩酸等の無機酸を加え、80万至150℃で、30分乃至2時間、反応させる。終了後、氷冷下、水酸化ナトリウム水溶液で中和し、溶剤を減圧下留去する。残渣をビリジンを用いて、3回共沸して乾燥させ、そのまま、次工程に用いる。

[0034] <u>3b</u>) 3 a で得られる化合物を無水ピリジ 10 ンに懸濁させて、-20乃至5℃で攪拌しながら、トリメチルシリルクロリド (TMSC1) を滴下する。滴下が終了してから30分後に無水イソプチリル酸を加え、10乃至40℃で、30分乃至4時間攪拌する。その後、-20乃至5℃で、水を加え、さらに10乃至30分間攪拌し、濃アンモニア水を加えて30分乃至2時間 攪拌する。

[0035] 反応終了後、溶剤を減圧下に留去し、水を加えて溶解後、エーテル等の水と混和しない溶剤で洗浄する。水を減圧下に留去し、ピリジンを用いて共沸によ 20 り乾燥して、目的化合物を得ることができる。

[0036] 通常、目的化合物は、精製せずに次の工程 に用いる。

[0037] 3c) 3bで得られる化合物を無水ビリジンに溶解し、4、4'ージメトキシトリチルクロリドを加え、10万至40℃で、1万至10時間攪拌する。反応終了後、塩化メチレンで希釈し、飽和重曹水で洗浄する。有機層を乾燥剤で乾燥後、溶剤を留去し、残渣をクロマトグラフィーにて精製して、目的化合物を得ることができる。

[0038] (第4工程) TMS化、ペンゾイル化、加水分解

本工程は、化合物(9)を原料として、化合物(10) を得る工程である。

【0039】本工程は、連続した3工程からなる。

【0040】4a)ピリジン中、化合物(9)に、トリメチルシリルクロリドを反応させ、10万至40℃で、30分乃至2時間攪拌する。

【0041】4b)終了後、反応液へ、ベンソイルクロ ノビリジンの存在下、無水 リドを加え、10乃至40℃で、30分乃至5時間攪拌 40 物(7)を得る工程である。 する。 【0057】反応温度及び

【0042】4c)終了後、反応液へ水を加え、10万 至40℃で、5分乃至2時間機律する。

[0043] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

[0044] 例えば、溶剤を減圧下留去し、残渣に塩化 メチレンを加えて溶解し、飽和重曹水で洗浄し、無水硫 酸マグネシウムで乾燥し、溶剤を減圧下留去することに 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

10

【0046】(第5工程) ジメトキシトリチル化 本工程は、ピリジン中、化合物(10)に、ジメトキシ トリチルクロリドを反応させて、化合物(6)を得る工 程である。

[0047] 反応温度及び反応時間は、原料、試薬により異なるが、10乃至40℃で、3乃至12時間である。

[0 【0048】反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

[0049] 例えば、溶剤を減圧下留去し、残渣に塩化 メチレンを加えて溶解し、飽和重曹水で洗浄し、無水硫 酸マグネシウムで乾燥し、溶剤を減圧下留去することに より得ることができる。

[0050] 得られた目的化合物は必要ならば、常法、 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

[0051] (第6工程) 3価のリンの導入

本工程は、塩化メチレン中、化合物(6)に、1H-テトラゾールジイソプロピルアミン塩の存在下、2-シアノエチル-N,N,N',N'-テトライソプロピルホスホロジアミダイトを反応させて、本発明の目的中間体(2)を得る工程である。

[0052] 反応温度及び反応時間は、原料により異なるが、0万至40℃で、10分乃至48時間である。

[0053] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

[0054] 例えば、溶媒を減圧下留去し、水と混和し 30 ない溶剤、例えば酢酸エチルを加え、残さを溶解し、氷 冷した炭酸ナトリウム水溶液及び飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥した。乾燥剤を濾去し、減 圧下、溶剤を留去することにより得ることができる。

【0055】得られた目的化合物は必要ならば、常法、 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

【0056】(第7工程) コハク酸残基の導入 本工程は、ピリジン中、化合物(6)に、ジメチルアミ アピリジンの存在下、無水コハク酸を反応させて、化合物(7)を得る工程である。

【0057】反応温度及び反応時間は、原料により異なるが、0万至40℃で、10万至48時間である。

【0058】反応終了後、目的化合物は、常法に従い 反応混合物から採取される。

【0059】例えば、溶媒を減圧下留去し、水と混和しない溶剤、例えば酢酸エチルを加え、残さを溶解し、10%クエン酸水溶液及び水で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾去し、減圧下、溶剤を留去

例えば再結晶 (特にアセトニトリルを用いて) 等によって更に精製できる。

[0061] (第8工程) CPGとの結合 本工程は、化合物 (7) を原料として、化合物 (8) を 得る工程である。

[0062] 本工程は、連続した3工程からなる。

[0063] 8 a) 化合物(7) を、テトラヒドロフランとピリジンに溶解し、ペンタクロロフェノール及びジシクロヘキシルカルボジイミド(DCC)を加え、-20万至5℃で30分乃至2時間攪拌した後に、10万至 1040℃で12万至24時間攪拌する。反応終了後、不溶物を濾過して除き、溶剤を減圧下に留去する。

[0064] 得られた目的化合物は必要ならば、常法、 例えばクロマトグラフィー等によって更に精製できる。

【0065】8b)8aで得られたら化合物を、ピリジンを用いて共沸して乾燥させた後に、ジメチルホルムアミド (DMF) に溶解し、アミノプロピルCPG (CPGINC.;AMP00500B;521A;120/200;85.7μmo1/g) 及びトリエチルアミンを加え、10乃至40℃で10乃至24時間放置する。得られる不溶物を濾過して集め、DMF及び塩化メチレンで洗浄する。

【0066】8c)8bで得られる化合物に無水酢酸と ピリジンを加え、ジメチルアミノビリジンを加え、10 乃至40℃で1時間放置する。得られる不溶物を濾過し て集め、ピリジンと塩化メチレンで洗浄し、乾燥させる ことにより、目的化合物(8)を得ることができる。

[0067] (第9工程) 伸長反応、脱保護、脱CPG 本工程は、通常のDNA合成機を用いた通常のオリゴデオキシヌクレオチドの合成に準じて行うことができる。

【0068】例えば、パイオサーチ(日本ミリポア・リミテッド)のCycloneTM Plus DNA/R NAシンセサイザーに、プログラムとしてアミダイトカートリッジを用いて伸長反応を行っていく。

[0069] この際、所望に応じ使用する各ユニット試 薬としては、通常のアデニン及びグアニンに対応するβ ーシアノエチルアミダイト溶液(35mMアセトニトリ ル溶液)、5′-O-(3,4-ジベンジルオキシベン*

*ジル) チミジン-3'-O-(2-シアノエチル N, N-ジイソプロピル) ホスホロアミダイト(穂戸田ら、Nucleosides & Nucleotides, 13, 1375-1395(1994)) のアセトニトリル溶液(35mM)、所望の化合物(2)のアセトニトリル溶液(35mM)である。

12

[0070] 固相担体としては、5 μmol の化合物 (8) を用いる。

[0071] 最後のユニットを縮合した後には酸処理を 行なわない設定にしておき、コントロールドポアグラス (CPG) 上に、保護されたオリゴヌクレオチドが構築 された誘導体を得ることができる。これを減圧下乾燥 し、カラムからとり出し、濃アンモニア水にひたして密 閉し、10万至40℃で2日間反応する。切断されたC PGを濾過により除き、水で洗浄し、ろ液と洗浄液を合 わせて、ジエチルエーテルで洗浄し、減圧下にアンモニ アとジエチルエーテルを除いた後、水溶液を濃縮する。 これをミリポアフィルターで濾過した後に、逆相HPL C (Inertsil PREP-ODS, 20×25 20 0mm; 0. 1 M酢酸トリエチルアミン水溶液 (TEA A), pH7; 25→55% CH; CN/30mi n, linear gradient; 7mL/mi n; 254nm) にアプライし、16.9分に溶出する 画分を集める。減圧下、アセトニトリルを留去し、凍結 乾燥することにより本発明の目的化合物(1)を得るこ とができる。

[0072] 化合物(3) 又は(9)の光学活性体を用いることにより、所望の逆配位の本発明の化合物(1)を同様にして製造することができる。化合物(3)の光30 学活性体は、市販のものを用いることができる。化合物(9)の光学活性体は、公知の方法により製造することができる(A. Holy, Collection Czechoslov. Chem. Commun., 40, 187(1975).)。

[0073]

【実施例】

(実施例1)

[0074]

[化6]

[0075] (1a) (R) - (2, 2-ジメチル-1, 3-ジオキソラン-4-イル) メチル メタンスル ホネート

1. 32g(10mmol)の(S)-(+)-(2, 2-ジメチルー1, 3-ジオキソラン-4-イル)メタ チレンに溶解し、0℃にて攪拌した。ここに、2.12 mL (15.2mmol)のトリエチルアミンを加え、0.854mL (11mmol)のメシルクロリドを滴下して加えた。1時間後に50mLの水を加え、さらに10分間攪拌した。有機層を分取し、50mLづつの飽

13

標記目的化合物 (oil) を得た。

 $[0\ 0\ 7\ 6]$ ¹ H - NMR (270MHz, CDCl₈) δ ppm : 4.38 (m, 1H); 4.22(d, 2H, J=5.28Hz); 4.11 (dd, 1H, J=6.60, 8. 58Hz); 3.83(dd, 1H, J=5.94, 8.58Hz); 3.06(s, 3H); 1.45 (s.3H): 1.37(s.3H).

(1b) $2-7 \le 1-6-000-9-[(2, 2-3)]$ メチルー1, 3-ジオキソラン-4-イル) メチル] プ リン

(1 a) で得られた化合物1. 051g(5mmol) を90mLのジメチルホルムアミド (DMF) に溶か し、1. 059g (6. 25mmol) の2-アミノー 6-クロロプリンと0.888g(6.43mmol) のK2 CO2 を加え、90℃にて一夜攪拌した。溶媒を 減圧下留去した後に、100mLの酢酸エチルに溶解 し、100mLの飽和重曹水で洗浄した。水層を100 mLの酢酸エチルで2回抽出し、前の有機層と合わせて 無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し た後に、100g (230-400mesh) のシリカ ゲルカラムにアプライし、2万至3%メタノール-塩化 メチレンで溶出して、0.9622g(68%)の標記 20 目的化合物を得た。

 $[0\ 0\ 7\ 7]$ ¹ H - NMR (270MHz, DMSO-d₆) δ ppm : 8. 08(s, 1H); 6. 92(s, 2H); 4. 52-4. 43(m, 1H); 4. 20-4. 10(m, 2H); 4.01(dd, 1H, J=6.60, 8.57Hz); 3.77(dd, 1H, J=5. 28, 8.57Hz); 1.29(s, 3H); 1.24(s, 3H).

MASS: 283

IR (KBr, cm⁻¹):3430,3312,3186,2984,2941,2860,1642, 1616, 1560, 1517, 1429.

UV (MeOH) ε : 223(22300), 248(4800), 310(6000).

(1c)

[0078]

【化7】

【0079】 (1b) で得られた化合物925mg (3. 26mmol) に2. 75mLの水と0. 55m 40 Lの12N-HC1を加え、75分間加熱還流した。反 応容器を氷水浴にて冷却しながら、約2.6mLの2. 5N-NaOHにて中和した。溶媒を減圧下留去した後 に、ビリジンで3回共沸して乾燥させた。33mLの乾 燥ピリジンに懸濁させて、反応容器を氷水浴にて冷却し ながら攪拌し、2. 1mLのTMSC1を滴下して加え た。30分後に2.8mLの無水イソプチリル酸を加 え、室温にもどして2時間攪拌した。反応容器を氷水浴

間攪拌した。溶媒を減圧下に留去し、100mLの水に 溶かした後に、100mLのエーテルで洗浄した。溶媒 を減圧下に留去した後に、ピリジンで2回共沸して乾燥 させた。33mLの乾燥ビリジンに溶かし、1.267 g (3.26mmol) のジメトキシトリチルクロリド を加えて攪拌した。3時間後に200mgのジメトキシ トリチルクロリドを追加し、さらに2時間攪拌した。2 00mLの塩化メチレンで希釈して、100mLの飽和 **重曹水で3回洗浄した後に、無水硫酸マグネシウムにて** 乾燥させた。溶媒を留去した後に、100g(70-2 30mesh) のシリカゲルカラムにアプライレ、1-4%メタノールを含む塩化メチレンにて溶出し、標記目 的化合物を924.7mg(47%)得た。

14

 1 H - NMR (270MHz, CDCl₃) δ ppm:11.81(s, 1H); 8.55 (s, 1H); 7.54(s, 1H); 7.47-6.81(m, 13H); 4.90(brs, 1)H); 4.40-3.98(m, 3H); 3.79(s, 6H); 3.35-3.20(m, 2H); 2. 70-2. 55 (m, 1H); 1. 27-1. 22 (m, 6H).

(1d)

[0080]

【化8】

【0081】(1c)で得られた化合物690mg

(1. 15mmol) をピリジンで1回共沸して乾燥さ

30 せた後に6mLの塩化メチレンに溶かし、98.8mg

(0.577mmol)の1H-テトラゾールジイソプ ロピルアミン塩と404μL (1. 27mmol) の2 ーシアノエチルーN. N. N'. N'ーテトライソプロ ピルホスホロジアミダイトを加え、室温で7時間20分 攪拌した。 100μ Lの2-シアノエチル-N, N,N', N'-テトライソプロピルホスホロジアミダイト と10mgの1H-テトラゾールジイソプロピルアミン 塩を追加して、さらに室温で14時間攪拌した。溶媒を 留去した後に、50mLの酢酸エチルに溶かし、50m しの氷冷した10%炭酸ナトリウム水で2回洗浄し、5 0mLの飽和食塩水で洗浄した。無水硫酸ナトリウムで 乾燥後溶媒を留去し、40g(70-230mesh) のシリカゲルカラムにアプライし、酢酸エチルで溶出し て標記目的化合物を806.5mg (88%) 得た。 [0082] 1H-NMR (270MHz, CDCl s, mixture of d iastereomers) oppm: 11.90, 11.85(2s, 1H); 8.65, 8.31 (2s, 1H); 7.54, 7.49(2s, 1H); 7.45-6.79(m, 13H); 4.50 (brs, 1H); 4.33 (d, 2H, J=5.93Hz); 3.79(s, 6H); 3.70-

(1e) [0083] [化9]

[0084] (1d) で得られた化合物179mg (0.3 mm o 1) をピリジンで1回共沸して乾燥させ た後に、4.5mLの乾燥ピリジンに溶かし、12mg (0. 1 mm o 1) のジメチルアミノビリジン(DMA P) と30mg (0.3mmol) の無水コハク酸を加 え、室温で攪拌した。3時間後に12mgのDMAPを 追加し、さらに15時間30分後に41µL(0.3m mo1) のトリエチルアミンを加えた。さらに90分後 に30mgの無水コハク酸を加え、さらに2時間30分 後に60mgの無水コハク酸を加え、さらに2時間後に 60mgの無水コハク酸を加えて、さらに16時間30 分攪拌した。溶媒を減圧下に留去して、20mLの酢酸 エチルに溶かし、20mLの10%クエン酸水溶液で2 回洗浄し、20mLの水で1回洗浄した。無水硫酸マグ ネシウムで乾燥させた後に、溶媒を減圧下に留去して、 アセトニトリルから再結晶して、若干無水コハク酸を含 む標記目的化合物を151.8mg (72.5%) 得 た。

[0 0 8 5] 1 H - NMR (270MHz, CDCl_s) δ : 9.49(s, 1 H); 7.56(s, 1H); 5.22(brs, 1H); 4.52-4.30(m, 2H); 3.7 9(s.6H): 3.27-2.40(m, 7H); 1.17(d, 6H, J=7.26Hz).

(1f)

[0086]

[化10]

【0087】(1e)で得られた化合物151、8mg (0. 217mmol)をピリジンで2回共沸して乾燥 させた後に、2mLのテトラヒドロフランと50μLの ピリジンに溶かし、58mg(0.217mmol)の ペンタクロロフェノールと113mg(0.55mmo 1) のDCCを加え、氷水浴中で攪拌した。1時間後に 室温にもどし、さらに16時間攪拌した。不溶物を濾過 して除き、溶媒を減圧下に留去し、10g(70-23 Omesh) のシリカゲルカラムにアプライし、3%メ タノールを含む塩化メチレンで溶出することにより23 9. 4mgの若干ジシクロヘキシルウレアを含む活性エ ステル誘導体を得た。これをピリジンで2回共沸して乾 燥させた後に、1.2gのアミノプロピルCPG(CP GINC. ; AMP 0 0 5 0 0 B; 5 2 1 A; 1 2 0/ $200;85.7 \mu mol/g) \geq 5 m L O D M F \geq 2$ 8 μ L (0. 2 mm o 1) のトリエチルアミンを加え、 室温で放置した。19時間後に不溶物を濾過して集め、 DMFと塩化メチレンで洗浄した。9mLのピリジンと 1mLの無水酢酸と122mg (1mmol) のジメチ ルアミノピリジンを加え、室温で放置した。1時間後に 不溶物を濾過して集め、ピリジンと塩化メチレンで洗浄 し、乾燥させて、目的とする標記目的化合物を得た。グ リセリルグアニン導入量をジメトキシトリチル基で定量 30 したところ、46. 7 μmol/gであった。

[0088] (1g)

[0089]

【化11】

(0090) ミリジェン/パイオサーチ (日本ミリボア・リミテッド) のCycloneTMPlus DNA/RNAシンセサイザーに、付属する合成用試薬類と、プログラムとして $15.0\mu moleアミダイトカートリッジを接続した。ただしこのとき、チミジンに対応する<math>\beta$ -シアノエチルアミダイト溶液のかわりに、35mMに調製した5'-O-(3,4-ジベンジルオキシベンジル) チミジン-<math>3'-O-(2-シアノエチル N, N-ジイソプロピル) ホスホロアミダイト (穂戸田ら、Nucleotide

シアプエチルアミダイト溶液のかわりに、35mMに調製した(1d)で得られた化合物のアセトニトリル溶液を用いた。固相担体として5μmol分のグリセリルグアニン誘導体が結合した、(1f)で得られた化合物を用い、プログラムにTGGGAGCという塩基配列を入力し、最後のTを縮合した後には酸処理を行なわない設定のプログラムを作動させることにより、コントロールドボアグラス(CPG)上に、保護されたオリゴヌクレオチドが構築された誘導体を得た。これを減圧下乾燥したのちにカラムからとり出し、10mLの濃アンモニア

洗浄液を合わせて、30mL づつのジエチルエーテルで 3回洗浄し、減圧下にアンモニアとジエチルエーテルを 除き、水溶液を約3mL まで濃縮した。これを0.45 ミクロンのミリボアフィルターで濾過した後に、逆相H PLC (Inertsil PREP-ODS, $20\times250mm;0.1Mm$ で 0.1Mm で 0.1Mm

*9分に溶出する画分を集めた。減圧下にアセトニトリル を留去したのちに凍結乾燥し、50mLの水にとかして から再度凍結乾燥して、アモルファス状の標記目的化合 物を85units (A260)得た。

18

[0091] UVmax: 254nm

(実施例2)

[0092]

【化12】

[0093] 実施例1と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGGACという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を124units(A260)得た。

※ [0094] UVmax:255nm (実施例3)

[0095]

[化13]

【0096】実施例1と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGGCCという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を48units(A 260)得た。

★ [0097] UVmax:253nm

(実施例4)

[0098]

[化14]

【0099】実施例1と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTGGCCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を74units(A ☆ [0100] UVmax:253nm

(実施例5)

[0101]

【化15】

260) 得た。

【0102】実施例1と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTGCCCCという塩基配列を入力した。その結果、 [0103] UVmax:253nm

(実施例6)

[0104]

[0105] 実施例1と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTCCCCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を75units(A 10

* [0106] UVmax:253nm (実施例7) [0107] [化17]

260) 得た。

20

[0108] (7a)

[0109]

【化18】

【0110】(R)-(-)-(2,2-ジメチルー1,3-ジオキソラン-4-イル)メタン(和光純薬)を用いて、実施例1(1a)と同様にして合成した。

[0111] (7b)

[0112]

【化19】

【0113】7aで得られた化合物を用いて、実施例1

(1b) と同様にして合成した。

[0114] (7c)

[0115] [化20]

CH₂O OH OH

【0116】7bで得られた化合物を用いて、実施例1

[0118] [化21]

【0119】7cで得られた化合物を用いて、実施例1

(1d) と同様にして合成した。

[0120] (7e)

[0121]

30 【化22】

【0122】7cで得られた化合物を用いて、実施例1

(1e) と同様にして合成した。

40 [0123] (7f)

[0124]

[化23]

*【化24】

(実施例8)

[0126] (7g) [0127]

[0128] (7d) で得られた化合物及び(7f)で

得られた化合物を、(1 d)で得られた化合物及び(1 f) で得られた化合物のかわりに用いて、実施例1(1 10 [0130]

【化25】 g) と同様にして合成し、アモルファス状の標記目的化

合物を64units (A260)得た。

[0131] 実施例7と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTGGGACという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を68units (A 260) 得た。

★ [0132] UVmax: 255nm (実施例9)

[0133] [化26]

[0134] 実施例7と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTGGGCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を54units (A 260) 得た。

☆ [0135] UVmax: 252nm (実施例10)

[0136] [化27]

【0137】実施例7と同様にして合成した。ただし、

♦ [0138] UVmax: 252nm

プログラムにはTGGGAGCという塩基配列のかわり にTGGCCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を48units(A 260) 得た。

(実施例11) [0139] [化28]

* [0142]

23

260) 得た。

[0141] UVmax: 252nm

(実施例12)

[0143] 実施例7と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTCCCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を83units (A 260) 得た。

[0144] UVmax: 252nm

(実施例13)

[0145]

[化30]

[0146] (13a)

[0147]

[化31]

[0148] 9-(R)-(2, 3-ジヒドロキシプロ

ピル) アデニン (A. Holy, Collection Czechoslov. Che m.Commun., 40, 187(1975).) 4 9 6 mg (2. 3 7 mm o1)をピリジンで共沸して乾燥させた後に、25mL のピリジンに溶解した。1.6mLのトリメチルシリル クロリドを加えて室温で30分間攪拌した後に、1、5 mLの塩化ペンゾイルを加え、室温で一夜攪拌した。反 応容器を氷水浴中で冷却しながら5mLの水を加えて1 5分間攪拌した後に、5mLの29%アンモニア水を加 えて1時間提拌した。溶媒を減圧下に留去した後に、残 渣を25mLのH₂Oに溶かし、20mLのジエチルエ

塩化メチレンでトリチュレートし、2.545gの粗結 晶を得た。これをピリジンで共沸して乾燥させた後に、 50mLのピリジンに溶かし、4,4'-ジメトキシト リチルクロリド813mg (2.4mmol) を加えて 室温で18時間攪拌した。813mgの4、4'-ジメ トキシトリチルクロリドを追加した後に、さらに6時間 攪拌した。1mLのH₂Oを加えて反応を停止させ、2 00mLのクロロホルムで希釈した後に、200mLづ つの5%NaHCO。水で2回洗浄した。有機層をNa 2 S〇, で乾燥した後に溶媒を減圧下留去し、残渣を1 20 00g (70-230mesh) のシリカゲルカラムに アプライし、0~3%メタノール-塩化メチレンで溶出 することにより、980.3mg(67%)の目的物を 得た。

[0 1 4 9] ${}^{1}H-NMR$ (270MHz, CDCl₃) δ : 9.14(s,1 H); 8.74(s, 1H); 8.06-6.80(m, 19H); 4.52-4.15(m, 3H); 3.78(s, 6H); 3.25-3.12(m, 2H).

(13b)

[0150]

[化32]

30

[0151] (13a) で得られた化合物123mg (0.2mmol)をピリジンで共沸して乾燥させた後 に、1mLのテトラヒドロフランに溶かし、ジイソプロ ピルエチルアミン 140μ Lと2-シアノエチルN, N<u>ージイソプロピルクロロホスホロアミダイト70 μLを</u> 加え、室温で攪拌した。1時間後に溶媒を留去し、残渣 を50mLの酢酸エチルに溶かし、50mLづつの10 %Na₂ CO₃ 水で2回洗浄し、Na₂ SO₄ で乾燥し た。滅圧下に溶媒を留去した後に、残渣を40g(70 -230mesh) のシリカゲルカラムにアプライレ、

⊅ -----

[0 1 5 2] 1 H - N M R (270MHz, CDC1₈) δ : 9. 07, 9. 06 (2s, 1H); 8. 80, 8. 79 (2s, 1H); 8. 08-6. 79 (m, 19H); 4. 63-4. 30 (m, 3H); 3. 79 (s, 3H); 3. 78 (s, 3H); 3. 72-3. 40 (m, 4H); 3. 33-3. 12 (m, 2H); 2. 51-2. 36 (m, 2H); 1. 12-0. 97 (m, 12H).

[0153]

【製剤例】

(製剤例1) (ハードカプセル剤)

標準二分式ハードゼラチンカプセルの各々に、100 頭の粉末状の実施例化合物 1、150 頭のラクトース、50 頭のセルロース及び6 頭のステアリン酸マグネシウムを充填することにより、単位カプセルを製造し、洗浄後、乾燥する。

【0154】(製剤例2)(ソフトカプセル剤)

消化性油状物、例えば、大豆油、綿実油又はオリーブ油中に入れた、実施例化合物1の混合物を調製し、正置換ポンプでゼラチン中に注入して、100 嘘の活性成分を含有するソフトカプセルを得、洗浄後、乾燥する。

【0155】(製剤例3)<u>(錠剤)</u>

常法に従って、100 咳の実施例化合物 1、0.2 咳のコロ 20 イド性二酸化珪素、5咳のステアリン酸マグネシウム、2 75 咳の微結晶性セルロース、11 咳 のデンプン及び98. 8 咳 のラクトースを用いて製造する。

【0156】尚、所望により、剤皮を塗布する。

[0157] (製剤例4) (注射剤)

1.5 重量%の実施例化合物1、10容量%のプロピレングリコール中で撹拌し、次いで、注射用水で一定容量にした後、滅菌して製造する。

【0158】(製剤例5) (懸濁剤)

5 ml中に、100 mgの微粉化した実施例化合物 1、100 mg * 30

*のナトリウムカルボキシメチルセルロース、5 咳の安息 香酸ナトリウム、1.0 g のソルビトール溶液 (日本薬局 方) 及び0.025 mlのパニリンを含有するように製造す る。

[0159]

【試験例】

(試験例1) 安定性試験

血液は、ヘパリン存在下、SD系雄性ラット腹部大動脈より採取した。採取後、速やかに4 $\mathbb C$ 、3,000 rpm 、1 5分間遠心分離して血漿を得た。得られた血漿 1. 4 m L a m \mathrm

【0160】得られたサンプル 100μ Lに、ライシスパッファー 100μ L、等張リン酸塩緩衝液(pH7. 4、PBS) 70μ L、200mMトリス-塩酸緩衝液(pH8) 10μ L、プロテイネースK(25mg/m L) 10μ L、液クロ定量のための内部標準物質(下記化35に示す、 200μ g/mL) 10μ Lを添加し、60℃、30分間加温した。室温まで冷却した後、フェノール/クロロホルム/イソアミルアルコール混液(25/24/1) 300μ Lで201曲出した。さらに上清の水層にクロロホルム 300μ Lを添加し、余分なフェノールを除去した。上清の水層をHPLCにて分析した。

[0161]

[作33]

【0162】なお、対照化合物として、下記に示す化合

物a (特願平6-9772号) を用いた。

※[0163]

【化34】

【0164】HPLC条件は以下の通りである。

【0165】装置: 島津LC-10A

カラム:Wakopak-WS-DNA (4.6x15

0 mm)

溶媒: 0. 1Mトリエチルアミン-酢酸塩緩衝液 (pH

7):アセトニトリル= 74:26 感度:0.005~0.01AUFS

注入量:10~20μL

【表1】

closet had	F (1)	0.04	• #4-88
実施例 	5分 ————————	3 0分 	1時間
2	92.89±1.26*	80.96±1.83	79. 19±2. 64
3	99.41 ± 2.54	97.57 ± 1.58	129.11 ± 26.41
6	98.16±1.24	92.92 ± 9.37	109.66 ± 15.63
8	96.75 ± 2.84	83.33 ± 1.68	73.91 ± 1.94
9	99.16 ± 7.91	103.60 ± 6.49	127.24 ± 28.87
1 2	100.45 ± 2.70	102.72 ± 6.67	102.90 ± 17.17
:合物 a	52.29±3.24	5.79±1.77	2. 93±1. 52

*n = 3

本発明の化合物は、血漿中での高い安定性を示した。 【0167】(試験例2)<u>修飾オリゴデオキシリボヌク</u> レオチドの抗HIV-1 活性の測定

抗HIV-1 活性はパウエルらの方法によって測定した (R. Pauel et al., J. Virological Methods 20, 309-321(1 988))。 すなわち, 対数増殖期にあるMT-4細胞を15 0 × gで5 分間遠心し, 得られた細胞沈澱を培地にて懸濁したのちHIV-1 (IIIB 型)を10 CCIDs。 の濃度で37℃で1 時間感染させた。その後, 牛胎児血清10%を含むRP MI-1640 培地(以下「血清培地」と称する)で遠心し、洗浄することによりHIV-1 感染MT-4細胞を得た。

【0 1 6 8】 HIV-1 感染MT-4細胞およびHIV-1 非感染MT-4細胞をそれぞれ4 \times 10 5 細胞/ $_{\rm ml}$ になるように血清培地に懸濁した。96穴プラスチックマイクロタイタープレート中にあらかじめ段階希釈した検体化合物溶液(血清 30 培地に溶解したもの)を各穴に100 $_{\rm ml}$ づつ入れ,次いでこの各穴に上記細胞懸濁液を各々100 $_{\rm ml}$ づつ添加し、5%の炭酸ガス存在下で6 日間静置培養した。

【0169】同様に、検体化合物添加のHIV-1 感染MT-4細胞および検体化合物無添加のHIV-1 非感染MT-4細胞を培養した。

[0170] 培養終了後、MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazoliumbromide)法に基づき、

生細胞数を測定し(L.M.Green et al., J. Immunol. Methods, 70, 257-268(1984)), HIV-1 による細胞障害活性を求めた。検体化合物無添加のHIV-1 感染MT-4細胞の細胞障害活性を100%とし、検体化合物無添加のHIV-1(II

IB 型)非感染MT-4細胞の細胞障害活性を0%として、HIV-1 感染MT-4細胞の細胞障害活性を50%抑制しうる検体の濃度(IC60)を求めた。また、検体化合物の細胞毒性活性として、HIV-1 非感染MT-4細胞の増殖を50%抑制する濃度(CC60)を求めた。これらの測定結果を表2に示す。

[0171]

【表2】

実施例	I C _{5 0} (μg/ml)	CCso (µg/ml)
1	5. 3	>50
2	1.2	>50
3	1.0	>50
5	9. 1	>50
7	3.8	>50
8	2. 0	>50
9	4. 3	>50
1 1	4. 3	>50

その結果、表2にあげた修飾オリゴデオキシリポヌクレオチドはいずれも,特に高い抗HIV-1 活性を有すること

が明らかとなった。

【0172】これらの化合物はいずれも10μg/ml 以下の濃度で抗HV-1 括性を示した。

フロントページの続き

(72)発明者 安部 康司 東京都品川区広町1丁目2番58号 三共株 式会社内 (72)発明者 金子 正勝 東京都品川区広町1丁目2番58号 三共株 式会社内

BEST AVAILABLE COPY