Referential Integrity Rule in DBMS is based on Primary and Foreign Key. The Rule defines that a foreign key has a matching primary key. Reference from a table to another table should be valid.

Student_ID	Enroll Number	Roll Number	Name	Address	City	Dept_ID
1	AX001	1-BSCS-2018	John	Street 13 House 14	Lahore	3
2	AX002	2-BSBT-2018	Faiz	house 18 Defence Club	Karachi	4
3	AX003	3-BSEN-2018	Nouman	Street 19 House 20	Faislabad	5
4	AX004	4-PEEN-2018	Jerry	Street 18 House 29	Dubai	6

Dept_Id	Name	Phone Extension
3	Computer Science	398974
4	Botany	988784
5	English	898418

Anomalies:

- 1. Insert Anomaly: occurs when we insert an attribute which cannot be inserted without the mandatory presence of other attributes. We cannot insert a student with dept id 6 as that doesn't exist in the dept table.
- 2. Delete Anomaly: If deletion of an attribute leads to deletion of other attributes, it is deletion anomaly. Example: If dept Comp Sci deleted all related info deleted, if John deleted, all corresponding dept info deleted.
- 3. Update anomaly: Duplicated information updated at 1 instance and not other instances.

Functional dependencies:

Determinant → Dependent

Full and partial functional dependencies:

 $A \rightarrow B$

A - composite key

B - not already functionally dependent on a part of the composite key A

Example - Composite key = (studentID, ProfessorID)

Dependent = grade

(studentID, ProfessorID) \rightarrow gradeFull functional dependency as grade can be found with the combination of sID and pID and not any 1 individually

Dependent = student name

(studentID, ProfessorID) \rightarrow student name ... Partial functional dependency as name can be found with studentID which is only a part of the composite key.

For partial dependency:

- LHS should be a proper subset of CK AND
- 2. RHS should be a non prime attribute

Normalization is used to efficiently organize data to achieve following goals:

1. To eliminate redundant data

2. To ensure data dependencies hold true

1NF: No multivalued attribute. Single cell has a single value. "Atomicity"

2NF: 1NF + no partial dependencies

3NF : 2NF + no transitive dependencies (LHS must be CK/SK or RHS = prime attribute)

3NF madhe RHS can be a prime attribute

Condition: LHS = CK/SK or RHS is a prime attribute

BCNF Boyce Codd Normal Form: 3NF + determinant is always a super key (subset of CK)

But in BCNF, if A->B and A is non prime and B is prime is not allowed

Weak entity set : CK = primary key of strong + weak

BCNF example : CK = Patient name + Appointment ID

Time \rightarrow Appointment ID -- -----non prime determines prime. Not allowed in BCNF

Another table for them

Doctor	Patient name	Appointment ID	Time