SRM

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

RAMAPURAM CAMPUS

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR (2022-2023)

Sub Code/Name	18CSE390T - Computer Vision	Set	EVEN
Year/Sem/Branch	III/ V/ B.Tech-CSE-AIML A,B,C	Date	17.10.22
Max. Marks	50	Duration	90 Mins.

PART A (10 X 1= 10)

Q.No.	ANSWER ALL THE FOLLOWING QUEST MCQ Questions	Marks	CO	BL	PI
1,	For edge detection we observe a) intensity transition b) shape transition c) color transition d) sign transition	1	2	1	1.6.1
2	The direction of angle to the gradient is a) Orthogonal b) Isolated c) Isomorphic d) Isotropic	1	2	1	1.6.1
3	Edge detection in images is commonly accomplished by performing a spatial of the image field. a) Smoothing Filter b) Integration c) Differentiation d) Min Filter	1	2	2	1.6.1
4	Multi-dimensional hashing maps descriptors into based on some function applied to each descriptor vector. a) fixed size buckets b) variable sized buckets c) table d) Dbms	1	2	2	1.6.1
5	Isolated edge points can also be grouped intoa) Pixelb) region c) Longer curves or contours, as well as straight line segments d) Contour	1	2	1	1.6.1
6	Techniques like Livewire or Intelligent Scissors are used in a. Model based segmentation b. Semi automatic segmentation c. Threshold segmentation d. Segmentation	1	3	1	1.6.

7	Example of Active Contour a.Snakes, intelligent scissors, level set b. Successive Approximation c. Hough Transform d. Scissors	1	3	1	1.6.1
8	An Approach which optimize the contour in real time as the user is drawing a) Intelligent Scissors System b) Gaussian c) Similarity. d) Edge	1	3	1	1.6.1
9	In level set which define the curve a. Contrast b. Quantization c. Sampling d. Zero crossing of a characteristic function	1	3	1	1.6.1
10	Split and merge technique is a. Image Restoration Technique b. an Image Processing Technique Used To Segment An Image c. Image Enhancement Technique d. Image Acquisition Technique	1	3	1	1.6.1

PART B (4 X 4 = 16)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

Q. No.	Questions	Marks	со	BL	PI
11	Discuss about Bias and Gain normalization	4	2	1	2.5.1
12	Explain briefly about Vanishing points	4	2	2	2.5.2
13	Write short notes on Edge Linking	4	2	2	2.5.4
14	Discuss in detail about Snakes	4	3	2	2.5.1
15	Difference between Divisive and Agglomerative algorithms in Cluster analysis.	4	3	2	2.6.4
16	Write short note on Pose Estimation.	4	3	2	2.6.2

PART C (2 X 12 = 24) ANSWER EITHER OF OR IN EACH UNIT

Q. No.	Questions	Marks	со	BL	PI	
	 a) Explain in detail about Feature Detection techniques with relevant examples and diagrams. 	12	2	3	2.6.4	
	OR					
17	b) What are Feature Descriptors? Explain the followir g Feature Descriptors: ii) SIFT iii)GLOH.	12	2	2	2.7.1	
	a) List the approaches used to locate Boundary Curves in I nages. Explain Intelligent Scissors and Level Set in detail.	12	3	1	2.7.1	
18	OR					
	b) Illustrate the Expectation Maximization algorithm in K-neans and Mixtuge of Gaussians	12	3	3	2.7.1	