```
In [8]: import pandas as pd
        df = pd.read_csv("Tensile modulus.csv" , encoding='unicode_escape')
        print("The Dataset is: ")
        df
```

The Dataset is:

Out[8]:		Specimen Index	direction	temperature (°C)	Humidity	Tensile modulus (GPa)
	0	1	longitude	20	50%	16.302
	1	2	longitude	20	50%	15.065
:	2	3	longitude	20	50%	13.124
;	3	4	longitude	20	50%	12.690
•	4	5	longitude	20	50%	11.714
••						
9	5	96	transverse	100	Immersed	0.020
90	6	97	transverse	100	Immersed	0.021
9.	7	98	transverse	100	Immersed	0.022
98	8	99	transverse	100	Immersed	0.016

```
In [44]: import matplotlib.pyplot as plt
         df1 = pd.read csv("L-20-dry-1.csv")
         df2 = pd.read csv("L-40-dry-1.csv")
         df3 = pd.read csv("L-60-dry-1.csv")
         df4 = pd.read csv("L-80-dry-1.csv")
         df5 = pd.read csv("L-100-dry-1.csv")
         df6 = pd.read csv("W-20-wet-1.csv")
         df7 = pd.read csv("W-40-wet-2.csv")
         df8 = pd.read csv("W-60-wet-1.csv")
         df9 = pd.read csv("W-80-wet-1.csv")
         df10 = pd.read csv("W-100-wet-1.csv")
         y1 = [df1["Stress (MPa)"] , df2["Stress (MPa)"] , df3["Stress (MPa)"] , df4["Stress (MPa)"] , df5["Stres
         x1 = [df1["Strain"] , df2["Strain"] , df3["Strain"] , df4["Strain"] , df5["Strain"]]
         y2 = [df6["Stress (MPa)"] , df7["Stress (MPa)"] , df8["Stress (MPa)"] , df9["Stress (MPa)"] , df10["Stress
         x2 = [df6["Strain"] , df7["Strain"] , df8["Strain"] , df9["Strain"] , df10["Strain"]]
         plt.figure(figsize=(10,6))
         plt.subplot(1, 2, 1)
         for i in range(5):
             plt.plot(x1[i], y1[i], label = f"Longitudinal - {(i+1) * 20}°C - Dry")
         plt.xlabel("Strain(%)")
         plt.ylabel("Stress(MPa)")
         plt.legend()
         plt.subplot(1, 2, 2)
         for i in range(5):
             plt.plot(x2[i], y2[i], label = f"Transverse-{(i+1) * 20}^{C-Wet"}
         plt.xlabel("Strain(%)")
         plt.ylabel("Stress(MPa)")
         plt.legend()
         plt.show()
```



```
In [54]: from sklearn.tree import DecisionTreeRegressor
         from sklearn.svm import SVR
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.metrics import r2_score
         from sklearn.inspection import permutation importance
         import pandas as pd
         df = pd.read csv("Tensile modulus(normal).csv" , encoding='unicode_escape')
         features = ["direction" , "temperature" , "Humidity"]
         X = df[features]
         y = df['Tensile modulus']
         def DT(X , y , testData):
             output = []
             reg = DecisionTreeRegressor(random state=0)
             reg.fit(X.values , y.values)
             predictedValue = reg.predict(testData)
             output.append(predictedValue[0])
             r2 = r2 score(y , reg.predict(X.values))
             output.append(r2)
             importance = reg.feature importances
             for i in range(3):
                 output.append(importance[i])
             return output
         def SVM(X , y , testData):
             output = []
             reg = SVR(kernel="rbf" , C=1 , epsilon=0.1)
             reg.fit(X.values , y.values)
             predictedValue = reg.predict(testData)
             output.append(predictedValue[0])
             r2 = r2 score(y , reg.predict(X.values))
             output.append(r2)
             importance = permutation importance(reg , X.values , y.values)
             for i in range(3):
```

```
output.append(importance['importances_mean'][i] / sum(importance['importances_mean']))

return output

def RF(X , y , testData):
    output = []
    reg = RandomForestRegressor(random_state=0 , n_estimators=100)
    reg.fit(X.values , y.values)

predictedValue = reg.predict(testData)
    output.append(predictedValue[0])

r2 = r2_score(y , reg.predict(X.values))
    output.append(r2)

importance = reg.feature_importances_
    for i in range(3):
        output.append(importance[i])

return output
```

Predicted Tensile Modulus Coefficient of Determination(R squared)

Decision Tree	13.779000	0.969057
Support Vector Machine	11.409722	0.942183
Random Forest	14.001540	0.968772

Decision Tree Support Vector Machine Random Forest

Feature Importance

Fiber Orientation	0.607056	0.659499	0.598331
Temperature	0.163298	0.151948	0.168610
Humidity	0.229646	0.204031	0.233059

```
In [ ]:
```