অধ্যায় ২

ভেক্টর

Vector

রাশি ও সদিক রেখাংশ

রাশি

ভৌত জগতে যা কিছু পরিমাপ করা যায়, তাকে রাশি বলে। রাশি ২ প্রকারের। যথাঃ

- অদিক রাশি বা স্কেলার রাশি (Scalar):
 সম্পূর্ণরূপে প্রকাশ করতে শুধু মান প্রয়োজন। যেমনঃ দৈর্ঘ্য, দূরত্ব, ভর, আয়তন ইত্যাদি।
- ২. সদিক রাশি বা ভেক্টর রাশি (Vector):
 সম্পূর্ণরূপে প্রকাশ করতে মান এবং দিক উভয়ই প্রয়োজন। যেমনঃ বল, সরণ, বেগ, ত্বরণ ইত্যাদি।

চিত্র ২.১: সদিক রেখাংশ (Directed Line Segment)

দিক নির্দেশক রেখাংশ বা সদিক রেখাংশ

কোনো সরলরেখার এক প্রান্তকে আদিবিন্দু (Initial Point) এবং অপর প্রান্তকে অন্তবিন্দু (Terminal Point) হিসেবে চিহ্নিত করলেই, ঐ সরলরেখাটি একটি দিক নির্দেশক রেখাংশ বা সদিক রেখাংশ (directed line segment) হবে। কোনো সরলরেখার আদিবিন্দু A এবং অন্তবিন্দু B হলে, AB রেখাংশটি একটি সদিক রেখাংশ যাকে \overrightarrow{AB} দ্বারা প্রকাশ করা হয়। \overrightarrow{AB} এর দিক হবে A (initial point) থেকে B (terminal point) এর দিকে।

ভেক্টরের ধারক ও সমতা

চিত্র ২.২: ভেক্টর এর ধারক

- (i) ধারক (Support): কোনো ভেক্টর নির্দেশক সদিক রেখাংশ যে অসীম সরলরেখার অংশ, তাকে ঐ ভেক্টরের ধারক রেখা বলে। চিত্র ২.২ এ \overrightarrow{AB} বা \underline{a} এর ধারক XY।
- (ii) মান (Magnitude): ভেক্টরের আদিবিন্দু ও অন্তবিন্দুর মধ্যবর্তী দূরত্বকে ঐ ভেক্টরের মান বলে। \overrightarrow{AB} বা \underline{a} ভেক্টর এর মানকে $|\overrightarrow{AB}|=a$ দ্বারা প্রকাশ করা হয়।
- (iii) দিক (Sense or Direction): ভেক্টরের দিক হবে আদিবিন্দু হতে অন্তবিন্দুর দিকে। \overrightarrow{AB} এর দিক A বিন্দু থেকে B বিন্দুর দিকে।
- (iv) ভেক্টরের সমতাঃ দুইটি ভেক্টর সমান হবে যদি,
 - ১. তাদের ধারক রেখা একই বা সমান্তরাল হয়।
 - ২. তাদের মান সমান হয়।
 - ৩. তাদের দিক একই হয়।

চিত্র ২.৩ এ $\overrightarrow{AB} = \overrightarrow{CD}$

চিত্র ২.৩: ভেক্টরের সমতা

বিভিন্ন প্রকারের ভেক্টর (Different Types of Vector)

- ১. শূন্য ভেক্টর ও প্রকৃত ভেক্টর (Null Vector & Proper Vector): যে ভেক্টরের মান শূন্য ও দিক নির্ণয় করা যায় না, তাকে শূন্য ভেক্টর বলে যাকে 0 বা 0 দ্বারা প্রকাশ করা হয়। শূন্য ভেক্টর ব্যতীত সকল ভেক্টরকে প্রকৃত ভেক্টর বলা হয়।
- ২. **একক ভেক্টর (Unit Vector):** যে ভেক্টরের মান এক, তাকে একক ভেক্টর বলে। প্রকৃত ভেক্টরকে তার মান দ্বারা ভাগ করলে একক ভেক্টর পাওয়া যায়। একক ভেক্টর এর উপর (^) চিহ্ন ব্যবহার করা হয়।

 $\overrightarrow{Example}: \overrightarrow{AB}$ বরাবর একক ভেক্টর $\hat{\pmb{a}} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{a}{a}$

৩. সমরৈখিক ভেক্টর (Collinear Vectors): যেসকল ভেক্টরের ধারক রেখা একই বা সমা- ন্তরাল, তাদেরকে সমরৈখিক ভেক্টর বলা হয়। যদি \underline{a} ও \underline{b} ভেক্টর দুইটি সমরৈখিক হয় তবে $\underline{a}=\lambda \underline{b}$; যেখানে λ একটি অশূন্য ক্ষেলার। সমরৈখিক ভেক্টর দুই প্রকারেরঃ

চিত্ৰ ২.8: Collinear Vectors

- (i) সদৃশ ভেক্টর (Like Vectors): যেসকল ভেক্টর এর দিক একই, তাদের সদৃশ ভেক্টর বলা হয়। এক্ষেত্রে $\lambda>0$ । চিত্র ২.৪ এ a ও b সদৃশ ভেক্টর।
- (ii) বিসদৃশ ভেক্টর (Unlike Vectors): যেসকল ভেক্টর এর দিক পরস্পর বিপরীত, তাদের বিসদৃশ ভেক্টর বলা হয়। এক্ষেত্রে $\lambda < 0$ । চিত্র ২.৪ এ a ও c বিসদৃশ ভেক্টর।
- 8. বিপরীত ভেক্টর (Opposite Vector): দুইটি ভেক্টরকে পরস্পরের বিপরীত বলা হবে যদি,
 - (i) তাদের ধারক রেখা একই বা সমান্তরাল হয়।
 - (ii) তাদের মান সমান হয়।
 - (iii) তাদের দিক বিপরীত হয় বা ভেক্টর দুইটি বিসদৃশ হয়।

চিত্ৰ ২.৫ এ
$$\overrightarrow{AB} = -\overrightarrow{CD}$$

$$A \xrightarrow{\underline{a}} B \qquad |\overrightarrow{AB}| = |\overrightarrow{CD}|$$

$$C \leftarrow b \qquad |\overrightarrow{AB}| = |\overrightarrow{CD}|$$

চিত্ৰ ২.৫: Opposite Vector

- ৫. সমতলীয় ভেক্টর (Coplanar Vectors): কতগুলো ভেক্টরকে সমতলীয় বলা হয়, যদি তাদের ধারক রেখা অভিন্ন সমতলের সমান্তরাল হয়।
- ৬. **অবস্থান ভেক্টর (Position Vector):** স্থির প্রসঙ্গ কাঠামো ও মূলবিন্দুর সাপেক্ষে কোনো বিন্দুর অবস্থান নির্দেশক ভেক্টরকে অবস্থান ভেক্টর বলে। চিত্র ২.৬ এ P বিন্দুর অবস্থান ভেক্টর \underline{r} । অর্থাৎ $\overrightarrow{OP} = \underline{r}$ বা $P(\underline{r})$ ।

চিত্ৰ ২.৬: Position Vector

৭. ভেক্টরের যোগাশ্রয়ী সমাবেশ (Linear Combination of Vectors): কোনো ভেক্টর \underline{r} কে $\underline{v_1},\underline{v_2},\cdots,\underline{v_n}$ ভেক্তরগুলির যোগাশ্রয়ী সমাবেশ বলা হয় যদি $\underline{r}=\alpha_1\underline{v_1}+\alpha_2\underline{v_2}+\cdots+\alpha_n\underline{v_n}$ হয়। যেখানে $\alpha_1,\alpha_2,\cdots,\alpha_n$ ক্ষেলার রাশি।

দুইটি ভেক্টরের অন্তর্ভুক্ত কোণ (Angle Between Two Vectors)

চিত্র ২.৭: দুইটি ভেক্টরের অন্তর্ভুক্ত কোণ

মনেকরি \underline{u} ও \underline{v} ভেক্টর দুইটি একটি নির্দিষ্ট বিন্দুতে ছেদ করেছে। তাদের অন্তর্ভুক্ত কোণ θ হলে $0 \leq \theta \leq \pi$ । (চিত্র ২.৭)।

Note: দুইটি ভেক্টরের অন্তর্ভুক্ত কোণ মাপার সময় অবশ্যই ভেক্টর দুইটির আদিবিন্দু অথবা অন্তবিন্দু একই বিন্দুতে মিলিত হতে হবে।

ভেক্টর সংক্রান্ত সূত্রসমূহ (Law's of Vector)

ভেক্টর যোগের ত্রিভুজ সূত্র (Triangle Law of Addition)

ত্রিভুজ সূত্র

কোনো ভেক্টর \underline{u} এর প্রান্তবিন্দু হতে অপর একটি ভেক্টর \underline{v} অঙ্কন করা হলে $\underline{u}+\underline{v}$ দ্বারা এরুপ একটি ভেক্টর বোঝায় যার আদিবিন্দু \underline{u} এর আদিবিন্দু এবং যার প্রান্তবিন্দু \underline{v} এর প্রান্তবিন্দু ।

চিত্র ২.৮: ত্রিভুজ সূত্র

ভেক্টর যোগের সামান্তরিক সূত্র (Parallelogram Law of Addition)

সামান্তরিক সূত্র

ভেক্টর \underline{u} ও \underline{v} কে একটি সামান্তরিকের দুইটি সন্নিহিত বাহু দ্বারা মানে ও দিকে সূচিত করা হলে, ভেক্তরদয়ের ছেদবিন্দুগামি সামান্তরিকের কর্ণটি ভেক্তরদয়ের লব্ধি $\underline{u}+\underline{v}$ কে মানে ও দিকে প্রকাশ করবে।

চিত্র ২.৯: সামান্তরিক সূত্র

অন্তর্বিভক্তিকরণ সূত্র

A,B,C এর অবস্থান ভেক্টর যথাক্রমে $\underline{a},\underline{b},\underline{c}$ হলে এবং C বিন্দু AB রেখাংশকে m:n অনুপাতে অন্তর্বিভক্ত করলে $\underline{c}=\dfrac{m\underline{b}+n\underline{a}}{m+n}$

প্রমাণঃ দেওয়া আছে.

$$AC:BC=m:n$$

$$\Rightarrow \frac{AC}{BC} = \frac{m}{n}$$

$$\Rightarrow \frac{AC}{AC+BC} = \frac{m}{m+n}$$

$$\Rightarrow \frac{AC}{AB} = \frac{m}{m+n}$$

$$\therefore AC = \frac{m}{m+n}AB$$

$$\therefore \overrightarrow{AC} = \frac{m}{m+n}\overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{AC} = \frac{m}{m+n}(\overrightarrow{OB} - \overrightarrow{OA})$$

$$\therefore \overrightarrow{AC} = \frac{m}{m+n}(b-a)$$

$$\therefore \overrightarrow{AC} = \frac{m}{m+n}(b-a)$$

$$(1)$$

 $\triangle OAC$ হতে পাই,

$$\overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$$

$$\Rightarrow \underline{a} + \frac{m}{m+n} (\underline{b} - \underline{a}) = \underline{c} \quad [\because (1) \text{ হত}]$$

$$\Rightarrow \underline{c} = \frac{m(\underline{b} - \underline{a}) + (m+n)\underline{a}}{m+n}$$

$$\Rightarrow \underline{c} = \frac{m\underline{b} + (m+n-m)\underline{a}}{m+n}$$

$$\therefore \underline{c} = \frac{m\underline{b} + n\underline{a}}{m+n}$$

বহির্বিভক্তিকরণ সূত্র

A,B,C এর অবস্থান ভেক্টর যথাক্রমে $\underline{a},\underline{b},\underline{c}$ হলে এবং C বিন্দু AB রেখাংশকে m:n অনুপাতে বহির্বিভক্ত করলে $\underline{c}=\dfrac{m\underline{b}-n\underline{a}}{m-n}$

প্রমাণঃ দেওয়া আছে,

$$AC:BC=m:n$$

$$\Rightarrow \frac{AC}{BC} = \frac{m}{n}$$

$$\Rightarrow \frac{AC - BC}{BC} = \frac{m-n}{n}$$

$$\Rightarrow \frac{AB}{BC} = \frac{m-n}{n}$$

$$\therefore BC = \frac{n}{m-n}AB$$

$$\therefore \overrightarrow{BC} = \frac{n}{m-n}\overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{BC} = \frac{n}{m-n}(\overrightarrow{OB} - \overrightarrow{OA})$$

$$\therefore \overrightarrow{BC} = \frac{n}{m-n}(\underline{OB} - \overrightarrow{OA})$$

$$(1)$$

 $\triangle OBC$ হতে পাই.

$$\overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OC}$$

$$\Rightarrow \underline{b} + \frac{n}{m-n}(\underline{b} - \underline{a}) = \underline{c} \quad [\because (1) \text{ হত}]$$

$$\Rightarrow \underline{c} = \frac{(m-n)\underline{b} + n(\underline{b} - \underline{a})}{m-n}$$

$$\Rightarrow \underline{c} = \frac{(m-n+n)\underline{b} - n\underline{a}}{m-n}$$

$$\therefore \underline{c} = \frac{m\underline{b} - n\underline{a}}{m-n}$$

বিকল্প প্রমাণঃ চিত্র ২.১১ এ B বিন্দু AC কে m-n:n অনুপাতে অন্তর্বিভক্ত করে। সুতরাং অন্তর্বিভক্তিকরণ সূত্র অনুযায়ী,

$$\therefore \underline{b} = \frac{(m-n)\underline{c} + n\underline{a}}{(m-n) + n}$$

$$\Rightarrow \underline{b} = \frac{(m-n)\underline{c} + n\underline{a}}{m}$$

$$\Rightarrow m\underline{b} = (m-n)\underline{c} + n\underline{a}$$

$$\therefore \underline{c} = \frac{m\underline{b} - n\underline{a}}{m-n}$$