MATH 131BH (Real Analysis)

March 30, 2022

1 3.28 Monday Week 1

2 3.30 Wednesday Week 1

Recall: $f: X \to Y$ is said to be **continuous at** $x \in X$ if $\forall \varepsilon > 0 \exists \delta > 0 \forall z \in x : \rho_X(x, z) < \delta \Rightarrow \rho(f(z), f(x)) < \varepsilon$.

Alternatives:

• $f(B_X(x,\delta)) \subseteq B_Y(f(x),\varepsilon)$

Definition 2.1

A function $f: X \to Y$ has limit $y \in Y$ at $x \in X$, notation $\lim_{z \to x} f(z) = y$, if

$$\forall \varepsilon \exists \delta > 0 \forall z \in X : 0 < \rho_X(x, z) < \delta \Rightarrow \rho_Y(f(z), y) < \varepsilon.$$

Alternatives:

- $f(B_X(x,\delta)\setminus\{x\})\subseteq B_Y(y,\varepsilon));$
- $\forall \{x_n\}_{n\in\mathbb{N}} \in X^{\mathbb{N}} : (\forall n \in \mathbb{N} : x_n \neq x) \land x_n \to x \Rightarrow f(x_n) \to y;$
- $g(z) := \begin{cases} f(z) & z \neq x \\ y & z = x \end{cases}$ is continuous at x.

Definition 2.2

f has a **removable discontinuity** at *x* if $\lim_{z\to x} f(z)$ exists but $\neq f(x)$.

Definition 2.3

Let $A \subseteq X$ be nonempty, $x \in \overline{A}$ be not an isolated point. Then $\lim_{z \to x} f(z) = \lim_{z \to x} f_A(z)$ where f_A is the restriction of f to A.

Definition 2.4

For $f: \mathbb{R} \to \mathbb{R}$, let $x \in \overline{\mathrm{Dom}(f)}$ be such that $\mathrm{Dom}(f) \cap (x, \infty) \neq \emptyset$ and $\mathrm{Dom}(f) \cap (-\infty, x) \neq \emptyset$. Then $\lim_{z \to x^+} f(z) := \lim_{z \to x, z \in \mathrm{Dom}(f) \cap (x, \infty)} f(z) \wedge \lim_{z \to x^-} f(z) := \lim_{z \to x, z \in \mathrm{Dom}(f) \cap (-\infty, x)} f(z)$ are the **right** / **left limits of** f **at** x.

Alternate notation: $f(x^+)$, $f(x^-)$.

Example 2.5.

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$
 (2.1)

has no right or left limits.

Example 2.6.

$$f(x) = \begin{cases} \frac{1}{n+1} & x = q_n \text{ where } \{q_n\}_{n \in \mathbb{N}} \text{ enumerates } \mathbb{Q} \\ 0 & x \notin \mathbb{Q}. \end{cases}$$
 (2.2)

Then $\forall x \notin \mathbb{Q} : \lim_{z \to x} f(z) = 0$ so f is continuous on $\mathbb{R} \setminus \mathbb{Q}$, and $\forall x \in \mathbb{Q} : \lim_{z \to x} f(z) = 0$ but f is not continuous at x.

Lemma 2.7

$$\forall \, r > 0 \, \forall \, \varepsilon > 0 : \left\{ x \in \mathbb{R} : |x| < r \land \left| f(x) \right| > \varepsilon \right\} \text{ finite} \Longrightarrow \forall \, x \in \mathbb{R} : \lim_{z \to x} f(z) = 0.$$

Definition 2.8

A function $f: \mathbb{R} \to \mathbb{R}$ has a **discontinuity of**

- **first kind** at *x* if $f(x^+)$ and $f(x^-)$ exist but are not both equal to f(x);
- **second kind** at x if one or both of $f(x^+)$ and $f(x^-)$ don't exist.

Example 2.9.

$$f(x) := \begin{cases} (-1)^n & x = \frac{1}{n+1}, n \in \mathbb{N} \\ \text{linear} & x \in (0, \infty) \setminus \left\{ \frac{1}{n+1} : n \in \mathbb{N} \right\} \\ 0 & x \le 0. \end{cases}$$
 (2.3)

This function has a discontinuity of second kind at 0.

Lemma 2.10

Let $f: \mathbb{R} \to \mathbb{R}$ (Dom $(f) = \mathbb{R}$) be monotone. Then $\forall x \in \mathbb{R} : f(x^+), f(x^-)$ exist and so f has no discontinuities of second kind.

Proof. Let $x \in \mathbb{R}$ and assume f is nondecreasing. We claim that $\lim_{z \to x^+} f(z) = \inf \left\{ f(z) : z > x \right\} =: L$. Indeed, $\forall z > x : f(z) \ge f(x)$, so $L \ge f(x)$ and so $L \in \mathbb{R}$. Then $(\forall z > x : L \le f(z)) \land (\forall \varepsilon > 0 \ \exists z_\varepsilon > x : f(z_\varepsilon) < L + \varepsilon$. Let $\delta := z_\varepsilon - x$. Then $\forall z \in (x, x + \delta) : f(z) \le f(z_\varepsilon) < L + \varepsilon$. Then $\forall z \in (x, x + \delta) : L \le f(z) < L + \varepsilon$ and therefore $|f(z) - L| < \varepsilon$.