VERIFICATION OF BOOLEAN THEOREMS

EXP.NO.: 2

AIM:

To study and verify the Boolean theorems using logic gates.

COMPONENTS REQUIRED:

S.No.	Apparatus	Specifications	Quantity
1.	IC Trainer kit		1 no
2.	Logic gate IC's	IC 7404, IC 7408	1no each
3.	Logic gate IC's	IC 7402, IC 7486	1no each
4.	Connecting wires		1 set

Theorems:

- 1. Idempotent laws:
 - a) x + x = x
 - **b**) $x \cdot x = x$
- 2. Identity law:

$$x + 1 = x$$

3. Null law:

$$x.0 = x$$

4. Involution law (or) double negation law:

$$(x')' = x$$

5. Associative law:

$$x + (y + z) = (x + y) + z$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

6. Demorgan's law:

$$(x + y)' = x' \cdot y'$$

 $(x \cdot y)' = x' + y'$

7. Adsorption theorem:

$$x + (x.y) = x$$

$$x.(x+y) = x$$

1. Idempotence laws:

a)
$$x + x = x$$

b)
$$x. x = x$$

2. Identity law:

$$x + 1 = 1$$

3. Null law:

$$x.0 = 0$$

IC 7408

4. Involution law (or) double negation law:

$$(x')' = x$$

IC 7404 IC 7404

TRUTH TABLE

x + x = x
0
1

x	<i>x</i> . <i>x</i>
	=x
0	0

X	x + 1 =
0	1
1	1

	0
X	x. 0
	= 0
0	0

х	<i>x</i> ′	(x')' $= x$
0	1	0

5. Associative law:

a)
$$x + (y + z) = (x + y) + z$$

L.H.S

x	y	Z	y + z	x+ (y+z)	$\begin{vmatrix} x \\ + y \end{vmatrix}$	(x + y) +z
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

<u>**R.H.S**</u>

IC 7432 IC 7432

b)
$$x.(y.z) = (x.y).z$$

L.H.S

_							
	x	у	Z	y. z	<i>x</i> .	<i>x.y</i>	(x. y)
					(y.z)		. Z
	0	0	0	0	0	0	0
	0	0	1	0	0	0	0
	0	1	0	0	0	0	0
	0	1	1	1	0	0	0
	1	0	0	0	0	0	0
	1	0	1	0	0	0	0
	1	1	0	0	0	1	0
	1	1	1	1	1	1	1
					L		

6. Demorgan's law:

a)
$$(x + y)' = x'.y'$$

L.H.Ś

IC 7432

IC 7404

х	Y	x + y	(x + y) '	<i>x</i> ′	y '	x'. y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

b)
$$(x.y)' = x' + y'$$

<u>L.H.S</u>

x	Y	x.y	(x.y) '	x'	y'	x'+y'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

R.H.S

x — C 7404	IC 7432
yy '	o/p = x'+y'

7. Adsorption theorem:

a)
$$x + (x, y) = x$$

X	у	<i>x</i> . <i>y</i>	$\begin{array}{c} x + (x. y) \\ = x \end{array}$
0	0	0	0
0	1	0	0
1	0	0	1

X	у	x + y	$\begin{array}{c c} x. (x + y) \\ = x \end{array}$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Procedure:

- 1. Connections are made as per the circuit diagram for each of the theorems.
- 2. Switch on the IC trainer kit.
- 3. Apply logic inputs 0 or 1 to input variables
- 4. Verify the truth table by observing the output indicators for all the theorems.

Result:

Thus, the Boolean theorems and Laws are studied and verified using logic gates.