Adapting Models to Signal Degradation using Distillation

Jong-Chyi Su Subhransu Maji University of Massachusetts, Amherst

Motivation

Convolutional neural networks are effective at several visual recognition tasks. However, they are prone to the degradation of image quality.

59.3%

Various forms of image degradation:

Original

Low resolution

Unlocalized

Grayscale

Line drawing

Prior Work

- Problem-specific solutions
 - Super-resolution, Image colorization, etc.
- Domain adaptation
 - DSLR ⇒ webcam images, high ⇒ low resolution images
- Transfer learning
 - ImageNet ⇒ CUB low resolution data

Our Approach

- Cross Quality Distillation (CQD)
- Assumption: "paired" training data is available
 - 1. Train a model on high quality data
 - 2. Train a model on the low quality data to match:
 - (1)The target labels
 - (2) The "soft targets" produced by the first model

Soft targets provide more information per example leading to better knowledge transfer across domains [1, 2]

References

- [1] Distilling knowledge in a neural network. G. Hinton, O. Vinyals, and J. Dean, Deep Learning and Representation Learning Workshop, NIPS, 2014.
- [2] Model compression. C. Buciluă, R. Caruana, and A. Niculescu-Mizil, SIGKDD, 2006.

Results

Accuracy on CUB low quality dataset							
Model	Localization	Low resolution	Line drawing	Local. + low res.			
Oracle	67.0	67.0	67.0	67.0			
No adaptation	57.4	39.4	1.9	24.9			
Fine-tuning	60.8	61.0	29.2	46.2			
Data augmentation	63.6	62.2	32.5	51.7			
Staged training	62.4	62.3	30.4	50.4			
CQD	64.4	64.4	34.1	52.7			

Multi-Resolution Model

- 1. Train a model to predict image quality.
- 2. For each image:
- (1) If it's high resolution, apply model trained on high res. data
- (2) If it's low resolution, apply model trained by CQD

Model	Test on high res.	Test on low res.	Test on high res. + low res.
Train on high res. data	59.3	7.6	33.5
CQD	31.8	48.8	40.3
Train on high res. + low res.	57.3	47.3	52.3
Multi- resolution	-	_	54.0

48.8

59.3

Oracle

Multi- resolution model is better than using one model trained on high res. + low res. data.

Distillation and Model Compression

54.1

A deeper CNN trained on high-quality data can be distilled to a shallow CNN trained on low-quality data.

Model distilled	Training → Testing			
from → to	$A \rightarrow A$	$B \rightarrow B$	CQD → B	A: CUB localized B: CUB unlocalized
VGG-m → VGG-m	67.0	60.8	63.7	
VGG-16 → VGG-m	-	-	64.6	
VGG-16 → VGG-16	74.9	69.5	72.4	

Visualization

We visualize the gradient of an image w.r.t. true class label. By distilling from localized images to unlocalized images, the gradient is more focused inside the bounding-boxes.

CQD from

localized images

Unlocalized image Model trained on Red box: Localized image unlocalized images

Distillation from a localized image can help us localize the object on an unlocalized image.