Calibration tools for Johnson-Cook and Bammann-Chiesa-Johnson (BCJ) Models

Summer 2023

Daniel Kenney

SMART Internship Project

Material Models: Johnson-Cook

• 5 parameters to describe plasticity:

$$\sigma_e = \left[A + B(\varepsilon_e^p)^n \right] \left[1 + C \ln \left(\frac{\dot{\varepsilon}_e^p}{\dot{\varepsilon}_0} \right) \right] \left[1 - \hat{T}^m \right]$$

$$\hat{T} = \frac{T - T_r}{T_m - T_r}$$

Model Parameters		
Α	Yield coefficient	
В	Strain hardening coefficient	
n	Strain hardening exponent	
С	Strain rate coefficient	
m	Temperature sensitivity exponent	

5 additional parameters to predict failure:

$$\varepsilon_f = \left[D_1 + D_2 e^{D_3 \sigma^*} \right] \left[1 + D_4 \ln(\dot{\varepsilon}^*) \right] \left[1 + D_5 \hat{T} \right]$$
$$\sigma^* = \frac{\sigma_m}{\bar{\sigma}}$$

Material Models: BCJ

• Internal state variable (ISV) model with 3 ISVs and 19 constants

Model Variables		
Y(T)	Strain-rate independent yield stress	
V(T)	Strain-rate sensitive yield component	
f(T)	Strain-rate yielding sensitivity factor	
к	Isotropic hardening (ISV)	
<u>\alpha</u>	Kinematic hardening (ISV)	
ϕ	Damage (ISV)	

Characteristic yield function:

$$\Psi = |\underline{\sigma}' - \underline{\alpha}| - \kappa - (1 - \phi) \left(Y - V \operatorname{arcsinh} \left(\frac{\dot{\varepsilon}}{f} \right) \right)$$
Hardening Damage Initial Yield

BCJ: Strain Hardening

• Isotropic hardening:

$$\dot{\kappa} = H |\underline{D}^{in}| - (R_d |\underline{D}^{in}| + R_s) \kappa^2$$

Kinematic hardening:

$$\underline{\dot{\alpha}} = h\underline{D}^{in} - (r_d |\underline{D}^{in}| + r_s) |\underline{\alpha}|\underline{\alpha}$$

Calibration Parameters		
Н	Kinematic hardening term	
R_d	Dynamic recovery of isotropic hardening	
R_s	Strain-rate sensitive yield component	
h	Isotropic hardening term	
r_d	Strain-rate yielding sensitivity factor	
r_{s}	Isotropic hardening (ISV)	
$\underline{\mathcal{D}}^{in}$	Inelastic rate of deformation	

BCJ: Damage Accumulation

- Damage dependent on
- Damage:

$$\dot{\phi} = \chi \left[\frac{1}{(1-\phi)^m} - (1-\phi) \right] |\underline{D}^{in}|$$

$$\chi = \sinh \left(\frac{2(2m-1)p}{(2m+1)\bar{\sigma}} \right)$$

Calibration Parameters		
Н	Kinematic hardening term	
R_d	Dynamic recovery of isotropic hardening	
R_s	Strain-rate sensitive yield component	
h	Isotropic hardening term	
r_d	Strain-rate yielding sensitivity factor	
r_{s}	Isotropic hardening (ISV)	
$\underline{\mathcal{D}}^{in}$	Inelastic rate of deformation	

Workflow

Calibrate BCJ model to experimental data with BCJ GUI

Run Single Element verification to ensure calibrated parameters work in EPIC

Run EPIC simulations with notched specimens to calibrate damage parameter n

Simulate Taylor bar tests to validate model

Calibration Tools – Python GUIs

JC GUI Layout

Calibration sliders for initial yielding

Calibration sliders for **kinematic hardening** (α)

Calibration sliders for **isotropic hardening** (κ)

Yield adjustment constants (typically not used)

Equations relate constants with their influence on the model

Return sliders to their original values

Export constants to a new props file

Export model curves to .csv

Data file

 Each data set is contained in its own file

 Data and test conditions (T and *ἐ*) are contained

• The data set's handling tag is specified here

Headers specifying data locations

.csv data file contents

JC Props file

- .csv file
- Constants must correspond to the first column, but they can be given in any order

variable position В D Comment | Johnson & Cook 1985 2 700 3 510 0.26 0.014 6 1.03 m 295 Tr 8 1793 Tm 9 er0 10 11 .csv JC props file contents

First row

specifies

Reference strain rate should be 1 for EPIC/ABAQUS simulations

BCJ Props file

- .csv file
- Constants must correspond to the first column, but they can be given in any order

First column specifies variable position

.csv BCJ props file contents

BCJ Python Calibration Tool: BCJ_GUI_v2.py

- Calls BCJ_Basic_v2.py for calculations
 - BCJ_Basic_v2.py should not require any modifications, unless adjusting the model equations
- BCJ_GUI_v2.py will require modifications in most cases, for best use

• Material model can be calibrated in MPa or Pa, but careful consistency must be used with data, calibrated parameters, and FE model implementation

BCJ_GUI_v2.py Editing

incnum = number of increments

Istate = tension/compression type for data

• This should be modified to be included in test data info

Ask_Files if user wants to specify their files

• If Ask_Files is true, the location of the files must be specified in the body of the code

BCJ_GUI_v2.py Editing (cont.)

Material useful for switching between several materials

Material useful for switching between several materials

Plot_ISV to plot $\underline{\alpha}$ and κ on the σ - ε plot

Plot_ISV to plot $\underline{\alpha}$ and κ on the α plot

Scale_Mpa used to scale data files (for data values in MPa)

Scale_Mpa used to scale data file (for data values in MPa)

Max_stress used to format chart to size of data

Max_stress used to format chart size of data

BCJ_GUI_v2.py Editing (cont.)

Example of where to put file path locations in code

If user is prompted to select the files from a folder, the filename and path will be printed in terminal. This can be pasted into the code for easier repeated use.