Importing the libraries

```
In [3]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Loading the dataset

```
In [5]:
```

```
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
```

In [9]:

```
print("The size of training dataset is", train_df.shape)
print("The size of testing dataset is ", train_df.shape)
```

```
The size of training dataset is (891, 12)
The size of testing dataset is (891, 12)
```

In [10]:

train_df

Out[10]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500

891 rows × 12 columns

In [3]:

```
Y_train = train_df['Survived']
Y_test_PassengerId = test_df['PassengerId'] # Save for submission

features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
train_df = train_df[features]
test_df = test_df[features]
```

In [4]:

```
combined = [train_df, test_df]
for df in combined:
    # Filling missing values.
    df['Age'].fillna(df['Age'].mean(),inplace=True)
    df['Fare'].fillna(df['Fare'].mean(),inplace=True)
    df['Embarked'].fillna(value='S',inplace=True)
    # Converting categorical features to numeric
    df['Sex'] = df['Sex'].replace(['female', 'male'], [0,1]).astype(int)
    df['Embarked'] = df['Embarked'].replace(['S','Q','C'],[1,2,3]).astype(int)
    # Another way to convert categorical features to numeric
    #df['Sex'] = df['Sex'].map({'male': 0, 'female': 1 }).astype(int)
    #df['Embarked'] = df['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}).astype(int)
    # Perform normalization
    df.loc[ df['Fare'] <= 7.91, 'Fare'] = 0</pre>
    df.loc[(df['Fare'] > 7.91) & (df['Fare'] <= 14.454), 'Fare'] = 1</pre>
    df.loc[(df['Fare'] > 14.454) & (df['Fare'] <= 31), 'Fare'] = 2</pre>
    df.loc[(df['Fare'] > 31) & (df['Fare'] <= 99), 'Fare'] = 3</pre>
    df.loc[(df['Fare'] > 99) & (df['Fare'] <= 250), 'Fare']</pre>
    df.loc[ df['Fare'] > 250, 'Fare'] = 5
    df['Fare'] = df['Fare'].astype(int)
# Make sure that train data does not contain NaN
assert not train df.isnull().values.any()
# Make sure that test data does not contain NaN
assert not test df.isnull().values.any()
```

In [5]:

```
train_df.head()
```

Out[5]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	22.0	1	0	0	1
1	1	0	38.0	1	0	3	3
2	3	0	26.0	0	0	1	1
3	1	0	35.0	1	0	3	1
4	3	1	35.0	0	0	1	1

In [6]:

```
test_df.head()
```

Out[6]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	34.5	0	0	0	2
1	3	0	47.0	1	0	0	1
2	2	1	62.0	0	0	1	2
3	3	1	27.0	0	0	1	1
4	3	0	22.0	1	1	1	1

Defining Sigmoid function

```
In [7]:
```

```
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
```

In [8]:

```
def initialize_with_zeros(dim):
    w = np.zeros(shape=(dim, 1))
    b = 0
    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))
    return w, b
```

....

This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.

Argument:

dim -- size of the w vector we want (or number of parameters in this case)

Returns:

```
w -- initialized vector of shape (dim, 1)
b -- initialized scalar (corresponds to the bias)
"""
```

Defining the cost and gradint functions

In [10]:

```
def propagate(w, b, X, Y):
   m = X.shape[1]
   # FORWARD PROPAGATION (FROM X TO COST)
   A = sigmoid(np.dot(w.T, X) + b)
                                                                                       # com
   cost = (-1 / m) * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
                                                                                 # compute c
   # BACKWARD PROPAGATION (TO FIND GRAD)
   dw = (1 / m) * np.dot(X,(A - Y).T)
   db = (1 / m) * np.sum(A - Y)
   assert(dw.shape == w.shape)
   assert(db.dtype == float)
   cost = np.squeeze(cost)
   assert(cost.shape == ())
   grads = {"dw": dw,
             "db": db}
   return grads, cost
```

""" Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)

```
Return:
```

```
cost -- negative log-likelihood cost for logistic regression dw -- gradient of the loss with respect to w, thus same shape as w db -- gradient of the loss with respect to b, thus same shape as b
```

.....

In [13]:

```
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    costs = []
    for i in range(num_iterations):
        # Cost and gradient calculation (≈ 1-4 lines of code)
        grads, cost = propagate(w, b, X, Y)
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        # update rule (≈ 2 lines of code)
        w = w - learning_rate * dw
        b = b - learning_rate * db
        # Record the costs
        if i % 100 == 0:
            costs.append(cost)
        # Print the cost every 100 training iterations
        if print cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
    params = \{"w": w,
              "b": b}
    grads = {"dw": dw,
             "db": db}
    return params, grads, costs
```

In [15]:

```
def predict(w, b, X):
    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)

# Compute vector "A" predicting the probabilities of a cat being present in the picture
    A = sigmoid(np.dot(w.T, X) + b)
    for i in range(A.shape[1]):

        # Convert probabilities A[0,i] to actual predictions p[0,i]
        Y_prediction[0, i] = 1 if A[0, i] >= 0.5 else 0

assert(Y_prediction.shape == (1, m))
    return Y_prediction
```

Defining the models

In [17]:

```
def model(X train, Y train, X test, num iterations = 2000, learning rate = 0.5, print cost
   w, b = initialize_with_zeros(X_train.shape[0])
   # Gradient descent (≈ 1 line of code)
   parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_ra
   # Retrieve parameters w and b from dictionary "parameters"
   w = parameters["w"]
   b = parameters["b"]
   # Predict test/train set examples (≈ 2 lines of code)
   Y_prediction_train = predict(w, b, X_train)
   Y_prediction_test = predict(w, b, X_test)
   # Print train/test Errors
   print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train))
   d = {"costs": costs,
         "Y_prediction_train" : Y_prediction_train,
         "Y_prediction_test": Y_prediction_test,
         "W" : W,
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
   return d
```

In [18]:

```
X_train = np.array(train_df).T
Y_train = np.array(Y_train)
Y_train = Y_train.reshape(Y_train.shape[0], 1).T
X_test = np.array(test_df).T

assert X_train.shape[1] == Y_train.shape[1]
assert X_train.shape[0] == X_test.shape[0]
X_train.shape, Y_train.shape, X_test.shape
Out[18]:
```

Training the model

((7, 891), (1, 891), (7, 418))

In [19]:

```
d = model(X_train, Y_train, X_test, num_iterations = 50000, learning_rate = 0.0001, print_c
train accuracy: 72.39057239057239 %
```

_

In [20]:

```
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
```


In [21]:

```
submission = pd.DataFrame({
          "PassengerId": Y_test_PassengerId,
          "Survived": d['Y_prediction_test'].T.flatten().astype(int)
     })
submission.to_csv('submission.csv', index=False)
```

Final thoughts:

- There is a lot that could be done to improve the score, like feature extraction, normalization, regularization, hyperparameter tuning, etc.
- Tuned scikit-learn algorithms like Random Forest or Decision Tree would perform slightly better, and some would be able to reach above 80%.
- For me the main goal was to implement Logistic Regression from scratch, and make it work!

In []: