Topic: Exploratory Data Analysis (EDA)

Measures of Variability - Part B

Quartiles, IQR & Box Plots

School of Mathematics and Applied Statistics

2/13

How do we Measure Variability?

Variability (spread) can be measured by:

- / Variance σ^2 or s^2
 - uses all data values but is inflated by outliers
- $/ \bullet$ Standard deviation σ or s
 - uses all data values but is inflated by outliers
- **Note:** Range = maximum minimum = $x_{(n)}$ $x_{(1)}$
 - unreliable measure, depends on extreme values

- Interquartile range: $IQR = Q_3 Q_1$
 - spans middle 50% of data.
 - unaffected by outliers, ignores variation in tails

Exploratory Data Analysis Measures of Variability Part B

Interguartile Range (IQR)

- IQR = Upper quartile (Q_3) lower quartile (Q_1)
- or IQR = 75^{th} 25^{th} percentile
- There are different ways of calculating quartiles: we will use the repeated median method
 - Q_1 = median of lower half of sorted data.
 - Q_3 = median of upper half of sorted data.
 - For n even, split the data into two halves find median of lower half to get Q_1 : find median of upper half to get Q_3 .
 - For n odd, leave Q_2 in both halves to find Q_1 and Q_3 .

Exploratory Data Analysis

Five-number summaries

Data for a quantitative variable can be summarised by giving the following five numbers:

the minimum value. $x_{(1)}$ (min)

the lower quartile, Q_1 (or LQ)

the median. Q_2

the upper quartile, Q_3 (or UQ)

the maximum value. $x_{(n)}$ (max)

The ordered set $(x_{(1)}, Q_1, Q_2, Q_3, x_{(n)})$ is the **five-number summary** of the data.

They can be used to construct box plots.

Exercise: Handspan Set 1

1=16

(cm)

Draw a dot plot and calculate the 5 number summary for handspan (right) for 16 students in a tutorial class. 811, 91, 11, 12, 15, 17, 18, 18, 18, 18, 21, 22, 22, 23students in a tutorial class.

For
$$O_2$$

$$\frac{\Delta T}{2} = \frac{1}{2} = 85 \text{ th value}$$

$$O_2 = 16$$

$$Q_3 = 19.5$$
 $Q_3 = 19.5$
 $Q_3 = 19.5$

Exercise: Handspan Set 2

0=17. Draw a dot plot and calculate the 5 number summary for handspan (right) for 17

students in a tutorial class. (17, 18, 19, 20, 21, 22, 22, 22.5, 23)

Dot Plot:

$$\frac{0+1}{2} = \frac{18}{2} = 9 \text{ th Value}$$

$$0 = 0$$

10

Basic box plots

The most basic **box plot** is a box-and-whisker diagram drawn alongside a scale to indicate the **five-number summary**.

The interquartile range (= $Q_3 - Q_1$) is the length of the central box.

Question: What proportion of points lie within each section of the box plot?

25%

Exploratory Data Analysis

8 / 13

Box plots

- Centre and spread can be seen at a glance.
- Width of box (if drawn horizontally) or Height of box (if drawn vertically) is IQR.
- Shows whether the distribution is
 - approximately symmetric (equal whiskers, crossbar in the middle of the box) or
 - not symmetric so it is skewed.
- Can plot boxplots side-by-side on same scale when comparing 2 or more groups.
- Outliers can be plotted separately as dots.

Quartiles in R

R code: In R, the repeated median method is implemented in the : fivenum function

• For *n* even: (n=16) $x \leftarrow c(8.5, 8.5, 9, 10, 11, 11, 12, 15, 17, 18, 18, 18, 21, 22, 22, 23)$ fivenum(x) [1] 8.5 10.5 16.0 19.5 23.0 V agree Min QI QZ QZ MAY TOK= O3- Q1 $IQRx \leftarrow fivenum(x)[4] - fivenum(x)[2]$ = 19.5 - 10.5 IQRx[1] 9 /

Quartiles in R cont.

R code: In R, the repeated median method is implemented in the : fivenum function

```
For n odd: (n=17)
y<-c(8.5, 9, 9, 10, 11, 11.5, 12, 15, 17, 18, 19, 20, 21, 22, 22, 22.5, 23
fivenum(y)
[1] 8.5 11.0 17.0 21.0 23.0
                                                TOL = 21 - 11
IQRy <- fivenum(y)[4] - fivenum(y)[2]</pre>
IQRy
[1] 10
```

Quartiles in R - a different method

For your information, another widely used definition is to use the ranks where:

$$Q_1$$
 is the $\frac{(n+3)}{4}^{th}$ observation; Q_3 is the $\frac{(3n+1)}{4}^{th}$ observation.

In R, this method is implemented in the quantile function

```
quantile(x)
0% 25% 50% 75% 100%
8.50 10.75 16.00 18.75 23.00
quantile(y)
0% 25% 50% 75% 100%
8.5 11.0 17.0 21.0 23.0
```

In R: Box Plots

R code:

boxplot(y) draws a single boxplot of data y.

Exploratory Data Analysis Measures of Variability Part B 12 / 13

In R: Box Plots

R code:

Add options for labels:

boxplot(Temps_Airport\$Temp_Wollo,
ylab="Temperature (degrees Celcius)"
xlab="Wollongong Monthly Average
Temperature")

Wollongong Monthly Average Temperature