

Guía de Ejercicios

- 1. Considere la sucesión $a_n = \frac{1}{n}$ cuyo límite es l = 0. Para cada $\epsilon \in \{1, \frac{1}{100}\}$ encuentre algún $n_0 \in \mathbb{N}$ que para todo $n \geq n_0$ satisfaga $|a_n l| \leq \epsilon$. Repita el ejercicio para $a_n = \frac{2}{n^2} - 1$ y l = -1.
- 2. Use la definición de convergencia de una sucesión para demostrar las siguientes igualdades.
 - a) $\lim \frac{2n-5}{2n-7} = 1$.
 - b) $\lim \frac{2n^2+1}{3n^2+6n+2} = \frac{2}{3}$.
 - c) $\lim \cos(n!\pi x) = 1$, para $x \in \mathbb{Q}$.
 - d) $\lim n(|x + \frac{1}{n}| |x|) = -1$, para x < 0.
 - e) $\lim \left[\frac{a}{n}\right] \frac{n}{b} = 0.$
 - $f) \lim \sqrt{\frac{1}{n}} = 0.$
- 3. Calcule los siguientes límites.
 - a) $\lim \frac{2n+4}{3n+1}$.
 - b) lím $\frac{4n^4+2}{5n^5-6n+1}$.
 - c) $\lim \frac{n-n^3+3}{n^3+n-7}$.
 - d) lím $\frac{n\sqrt{n}-n+3}{n^2+n-7}$ (puede usar 2(f)).
 - e) lím $\frac{(-1)^n}{n}$.
 - $f) \ \ \text{l\'{i}} \text{m} \, \text{m\'{a}} \text{x} \big\{ \frac{(-1)^n}{n}, \frac{(-1)^{n+1}}{n} \big\}.$ $g) \ \ \text{l\'{i}} \text{m} \, \frac{n(-1)^n}{1-(n+3)^4}.$

 - h) lím $\frac{n-sen(n)}{n^2-16}$.
- **4.** Demuestre que si lím $a_n = l$ entonces lím $a_{n+1} = l$, lím $a_{n+2} = l$, $\lim a_{n-1} = l$, $\lim a_{2n} = l$ y $\lim a_{2n+1} = l$.
- 5. Demuestre que si $\sqrt{a_n}$ es una sucesión con lím $a_n = l$ entonces lím $\sqrt{a_n} = l$ \sqrt{l} . Se sugiere que separe su análisis en los casos l=0 y l>0. En el primero caso demuestre la propiedad usando la definición de convergencia.

Ingeniería Matemática Universidad de Chile

En el segundo caso, escriba $\sqrt{a_n}-\sqrt{l}$ como el producto $\frac{1}{\sqrt{a_n}+\sqrt{l}}(a_n-l)$, demuestre que el primer término es una sucesión acotada y note que el segundo es una sucesión nula. Termine el análisis de este caso usando el álgebra de límites. >Por qué era necesario separar los casos l=0 y l>0?.

- 6. Calcular los siguientes límites.
 - a) $\lim (\sqrt{n+\sqrt{n}} \sqrt{n-\sqrt{n}}).$
 - b) $\lim (\sqrt{n+1} \sqrt{n})\sqrt{n+3}$.
- 7. Sea (u_n) una sucesión que verifica $(\exists n_0)(\forall \epsilon > 0) \ n > n_0 \Rightarrow |u_n u| < \epsilon$. Probar que el número de términos distintos de la sucesión es finito.