CONCEPTION ET DIMENSIONNEMENT DES INSTALLATIONS D'ÉVACUATION DES EAUX PLUVIALES DES BÂTIMENTS

TABLE DES MATIÈRES

	NCEPTION ET DIMENSIONNEMENT DES INSTALLATIONS S EAUX PLUVIALES DES BÂTIMENTS	
1	PORTÉE	5
2	DÉFINITIONS ET SYMBOLES	5
2.1	Définitions	5
2.2	Symboles	
3 PLU	CONCEPTION DES INSTALLATIONS D'ÉVACUATION D JVIALES ET DE LEURS ÉLÉMENTS	
3.1	description générale d'une installation d'évacuation des eaux pluviale	es10
3.2	Chéneaux	13
	.2.1 Chéneau extérieur	
3.	.2.2 Chéneau intérieur	13
3.3	Ouvertures d'évacuation	16
	3.1 Tubulure	
	3.2 Avaloir	
	.3.3 Exutoire latéral	
3.4	trop-plein	18
3.5	Tuyau collecteur	19
3.6	Tuyau de descente	19
3.7	Collecteur	20
3.8	Dispositifs d'inspection	21
3.	.8.1 Chambre de visite	
3.	8.2 Regard de visite	21
4	CONDITIONS ET PRINCIPES DE CONCEPTION	22
4.1	Dimensionnement en plusieurs étapes	22
4.2	Débit d'évacuation par section de toiture	24
4.	.2.1 Intensité pluviométrique	24
	1211 Statistiques pluviométriques	2/

	pluviales	intensite pluviometrique pour la conception de l'installation d'evacuation de 25	
		Intensité pluviométrique pour la conception des trop-pleins	
		ntensité pluviométrique pour la conception de l'évacuation de l'eau de surf	
		ment dur entourant des bâtiments	
4.	2.2 Surfac	e réceptrice	27
4.3	Ouvertures	d'évacuation	29
4.4	Trop-pleins		29
4.5		emplacement des ouvertures d'évacuationtures d'évacuation normales	
4.		Toitures avec chéneaux	
		Toitures sans chéneaux	
		au calculée	
		aux	
4.		es plates	
4.7	Surface utile	e de la section transversale du chéneau	37
	,		
5	METHOD	E DE DIMENSIONNEMENT SIMPLIFIÉE	38
5.1	Chéneaux		38
5.		au extérieur	
		Chéneau semi-circulaire	
_		Chéneau non semi-circulaire	
5.	1.2 Chéne	au intérieur	41
5.2	Tubulure		42
		onnement normal	
	5.2.1.1	Règle de calcul de la NBN 306	42
	5.2.1.1.1		
		Toitures plates	
		Tubulure dans des chéneaux non semi-circulaires	
		Tubulure dans des chéneaux semi-circulaires	
		Tubulure dans une toiture plate Tubulure dans une toiture plate conformément au nomogramme du CSTC	
5.		plein	
5.3			
		onnement normal	
5.	3.2 Trop-p	olein	48
5.4	Exutoire late	éral	49
5.	4.1 Foncti	onnement normal	49
		Exutoire latéral rectangulaire	
		Exutoire latéral circulaire	
5.		olein (déversoir)	
		Déversoir rectangulaire	
	5.4.2.2	Déversoir circulaire	53
5.5	Tuyaux de d	escente	53
5.6	(Tuyau) coll	ecteur	56
57	L)ichocitife d	l'inspection	57

6	6 MÉTHODE DE DIMENSIONNEMENT DÉTAILLÉE		
6.1	INTRODUCTION	58	
6.2	CHÉNEAUX	58	
6.	5.2.1 Chéneau extérieur		
•	6.2.1.1 Semi-circulaire		
	6.2.1.2 Non semi-circulaire		
6	5.2.2 Chéneau intérieur		
0.	7.2.2 Cherical Interior		
6.3	TUBULURE	• • • • • • • • • • • • • • • • • • • •	
6.	5.3.1 Fonctionnement normal		
	6.3.1.1 Evacuation sans boîte collectrice		
	6.3.1.2 Évacuation à partir d'une boîte collectrice		
6.	5.3.2 Trop-plein	68	
6.4	AVALOIR	68	
6.5	EXUTOIRE LATÉRAL	68	
6.	5.5.1 Fonctionnement normal	68	
	6.5.1.1 Exutoire latéral rectangulaire	68	
	6.5.1.2 Exutoire latéral circulaire	68	
6.	5.5.2 Trop-plein	68	
6.6	TUYAU DE DESCENTE	68	
6.7	(Tuyau) collecteur	69	
6.8	DISPOSITIFS D'INSPECTION	69	
6.9	FACTEURS	60	
	5.9.1 Facteur d'évacuation FL		
-	5.9.2 Facteur de réduction F _R		
_	5.9.3 Facteur de profondeur F _D		
_	5.9.4 Facteur de forme F _S		
_	5.9.5 Facteur hauteur à l'ouverture d'évacuation F _H		
	2.5.5 Fuelcal fluction at ouverture a evacuation in	73	
7	ANNEXE I – EXEMPLES	77	
7.1	INTRODUCTION	77	
7.2	Exemple 1 : Évacuation d'eaux pluviales par des chéneaux extérieurs		
	7.2.1 Description		
	7.2.2 Calcul du débit d'évacuation		
	7.2.3 Dimensionnement des chéneaux extérieurs		
	7.2.4 Dimensionnement des ouvertures d'évacuation en cas de fonctionne		
	7.2.5 Dimensionnement des tuyaux de descente		
	7.2.6 Dimensionnement des collecteurs		
/.	7.2.7 Autres possibilités	83	
7.3	EXEMPLE 2 : ÉVACUATION D'EAUX PLUVIALES PAR DES CHÉNEAUX INTÉR	IEURS 86	
7.	7.3.1 Description	86	
7.	7.3.2 Calcul du débit d'évacuation	86	
7.	7.3.3 Dimensionnement du chéneau intérieur	87	
7.	7.3.4 Dimensionnement des ouvertures d'évacuation en cas de fonctionne		
7.	7.3.5 Dimensionnement des trop-pleins	89	
7.	7.3.6 Dimensionnement des tuyaux collecteurs	90	
	7.3.7 Dimensionnement des tuyaux de descente		
7.	7.3.8 Dimensionnement des collecteurs	91	

7.3	3.9 Autres possibilités	92
7.4	EXEMPLE 3 : ÉVACUATION D'EAUX PLUVIALES SUR UNE TOITURE PLATE	93
7.4	4.1 Description	93
7.4	4.2 Calcul du débit d'évacuation	93
7.4	4.3 Dimensionnement des ouvertures d'évacuation en cas de fonctionnement r	normal 94
7.4	4.4 Dimensionnement des trop-pleins	
7.4	4.5 Dimensionnement des tuyaux collecteurs	96
7.4	4.6 Dimensionnement des tuyaux de descente	
7.4	4.7 Dimensionnement des collecteurs	97
8	ANNEXE III - ENTRETIEN ET INSPECTION	99
	ANNEXE III - ENTRETIEN ET INSPECTIONANNEXE IV - LEXIQUE	
		101
9	ANNEXE IV – LEXIQUE	101

1 PORTÉE

Ce document énonce des directives pour la conception et le dimensionnement, selon la norme NBN EN 12056-3, des installations d'évacuation des eaux pluviales à écoulement libre, y compris des trop-pleins.

Il y a lieu de se référer aux ATG (Agréments Techniques) et aux prescriptions des fabricants de ces systèmes pour le dimensionnement détaillé des systèmes d'évacuation en dépression. Ces systèmes sont uniquement mentionnés à titre informatif, comme au § 3, mais ne sont pas traités ici.

Les sujets suivants sont abordés dans le document :

- 1) description des différents éléments de l'installation d'évacuation des eaux pluviales à évaluer (chapitre 3)
- 2) conditions posées à la conception, accompagnées d'un certain nombre de recommandations (chapitre 4)
- 3) méthode de dimensionnement simplifiée, déduite de la méthode de dimensionnement détaillée, en recourant également, dans une certaine mesure, aux résultats de tests obtenus dans notre propre laboratoire et à l'étranger (chapitre 5)
- 4) méthode de dimensionnement détaillée conformément à la norme NBN EN 12056-3 relative au système classique d'évacuation des eaux pluviales (chapitre 6)
- 5) exemples illustrant la méthode (chapitre 7).

La méthode simplifiée présentée au chapitre 5 permet de réduire sensiblement le volume de calculs. Cette simplification a toutefois pour conséquence inévitable de limiter le domaine d'application de la méthode à un petit nombre de cas. Les conditions limites sont clairement précisées dans chaque cas. Lorsque ces mesures ne sont pas d'application, il convient toujours d'appliquer la méthode de dimensionnement détaillée présentée au chapitre 6.

En règle générale, il convient d'arrondir les dimensions obtenues par calcul aux dimensions les plus proches disponibles dans le commerce.

2 DÉFINITIONS ET SYMBOLES

2.1 DÉFINITIONS

Dénomination	Unité	Description	
Pente	cm/m	Inclinaison de pans de toiture, conduites,	
		réalisée délibérément pour permettre	
		l'écoulement de l'eau.	
Capacité d'évacuation	1/s	Débit d'évacuation maximal pour une partie	
		de l'installation d'évacuation des eaux	
		pluviales.	
Débit d'évacuation	1/s	Volume d'eaux pluviales évacué par unité de	
		temps.	
Ouverture	/	Ouverture réalisée dans un chéneau, une	
d'évacuation		toiture, le long de laquelle les eaux pluviales	

		peuvent s'écouler.
Longueur	mm ou m	La plus grande distance à parcourir par l'eau
d'évacuation		dans le chéneau du point d'arrivée jusqu'à
a evacation		l'ouverture d'évacuation, équivalant soit à la
		distance entre l'extrémité du chéneau et une
		ouverture d'évacuation, soit à la moitié de la distance entre 2 ouvertures d'évacuation du
<u> </u>	,	chéneau.
Chéneau intérieur	/	Chéneau de toiture situé entièrement à
		l'intérieur du plan de façade.
Bord extérieur	/	Bord de chéneau côté extérieur du bâtiment,
		c'est-à-dire le bord le plus éloigné de la
		toiture.
Chéneau extérieur	/	Chéneau de toiture situé entièrement à
		l'extérieur du plan de façade.
Collecteur	/	Conduite souterraine ou non qui évacue l'eau
(Égout d'eaux		provenant des tuyaux collecteurs et des tuyaux
pluviales, dans la NIT		de descente vers la citerne d'eau de pluie, les
200 : égout privé)		dispositifs d'infiltration ou de rétention, le
0 1 /		raccordement domestique, ou vers tout autre
		dispositif d'évacuation d'eaux pluviales en
		dehors du domaine privé. Plusieurs collecteurs
		peuvent être raccordés à un seul collecteur.
Section de toiture	m ²	Un ou plusieurs pans de toiture dont les eaux
Section de toiture	111	pluviales sont évacuées simultanément.
Avaloir	/	Dispositif d'évacuation préfabriqué à poser
Avaioii		
		dans le pan de toiture, servant d'ouverture d'évacuation.
Exutoire latéral	1	
Exutoire lateral	/	Dispositif d'évacuation d'eau d'une toiture
X7.	2	plate traversant un acrotère
Versant	m ²	Pan de toiture incliné
Pan de toiture	m ²	Part de toiture délimitée par des lignes de
		comble (faîtage, arêtier, noue, etc.).
Chéneau	Ι /	Canal préformé ou non, établi en toiture ou en
		rive, destiné à récolter les eaux pluviales
		s'écoulant de l'ouvrage et à les évacuer vers
		les tuyaux de descente.
Section de chéneau	mm	Partie d'un chéneau dont la longueur
(segment de chéneau)		correspond à la longueur d'évacuation.
Équerre de chéneau	0	Changement de direction du chéneau dans le
1		plan horizontal.
Chéneau semi-	/	Chéneau extérieur présentant une section
circulaire		semi-circulaire ou similaire.
Eaux pluviales	/	Dénomination générique pour la pluie, la neige
-unit bin inton	,	et la grêle, y compris l'eau de dégel.
Installation	/	L'ensemble des composants qui collectent et
d'évacuation des eaux	'	évacuent les eaux pluviales qui s'écoulent du
pluviales		
piuviaies		toit. Les composants se situent aussi bien à
		l'intérieur qu'à l'extérieur du bâtiment et aussi
D : /: 1 : 1	2	bien à la surface qu'en sous-sol.
Projection horizontale	m ²	Projection de la surface d'un plan de toiture
		sur le plan horizontal.

Noue	/	
Chéneau court	/	Chéneau dont la longueur d'évacuation ne
	,	dépasse pas 50 fois la hauteur d'eau calculée.
Chéneau long	/	Chéneau dont la longueur d'évacuation
enonous reng	,	dépasse 50 fois la hauteur d'eau calculée.
Intensité	l/s.m² ou	Quantité d'eaux pluviales tombant par unité de
pluviométrique	l/min.m ²	surface et de temps
pravionicarque	ou l/s.ha	Sarrace et de temps
Chéneau non semi-	/	Chéneau dont la forme de la section n'est pas
circulaire ¹	,	ronde : chéneau à section rectangulaire,
		trapézoïdale, triangulaire ou similaire.
Évacuation de secours	/	Ensemble des ouvertures et conduites
Evacuation de secours	,	d'évacuation de secours.
Conduite	/	Conduite évacuant les eaux pluviales arrivées
d'évacuation de	'	dans le trop-plein vers l'extérieur du bâtiment.
secours		dans ie trop piem vers i exterieur du outiment.
Trop-plein	/	Ouverture pratiquée dans un chéneau, une
Trop piem	'	toiture, pour l'évacuation des eaux pluviales
		en cas d'obstruction ou de surcharge des
		installations d'évacuation normales.
Fonctionnement		Fonctionnement pendant lequel les eaux
normal		pluviales ne déborderont pas par-dessus le
normar		bord extérieur des chéneaux extérieurs et les
		trop-pleins ne seront pas en fonction.
Hauteur d'eau	mm	Hauteur d'eau atteinte dans le chéneau
calculée	111111	pendant l'averse de référence en cas de
curcuree		fonctionnement normal
Largeur développée	mm	Largeur initiale de la feuille de métal servant à
zwigowi wo votoppoo	11111	fabriquer le chéneau ou le tuyau de descente.
Surface réceptrice	m ²	Projection horizontale d'une surface de toiture,
Surface receptive	III.	augmentée de la moitié de la surface des
		façades adjacentes qui peuvent faire écouler
		l'eau vers cette partie de la toiture.
Hauteur de	mm	Distance mesurée à partir du point le plus bas
débordement		du fond de chéneau jusqu'au point de
		débordement du chéneau.
Averse de référence	/	Averse dont l'intensité pluviométrique
		(l/min.m²), la durée (minutes) et la période de
		retour (années) sont utilisées pour le
		dimensionnement des éléments de
		l'installation d'évacuation des eaux pluviales,
		à l'exclusion des trop-pleins.
Averse de pointe de	/	Averse de pointe dont l'intensité
référence		pluviométrique (l/min.m²), la durée (minutes)
		et la période de retour (années) sont utilisées
		pour le dimensionnement des trop-pleins.
Déversoir	/	Orifice en pente légère dans un relevé
		dimensionné pour évacuer une averse de
		pointe de référence.
L	I	1 3

 $^{^1}$ Dans la présente Note d'Information Technique, un chéneau non semi-circulaire désigne toujours un chéneau à fond plat, sauf mention contraire.

Gargouille	/	Orifice en pente légère disposé dans un relevé
Gargouine	/	1 0 1
		et n'assurant qu'un rôle d'alerte en cas
		d'obturation des déversoirs.
Tuyau de descente	/	Conduite d'évacuation verticale ou oblique qui
_		dirige les eaux pluviales qui coulent de la
		toiture vers le bas.
Tubulure	/	Ouverture d'évacuation pour toiture plate ou
		raccord entre le chéneau et le tuyau de
		descente.
Période de retour	ans	Nombre d'années entre deux averses d'une
		intensité et d'une durée déterminées.
Tuyau collecteur	/	Conduite d'évacuation d'allure horizontale
		collectant les eaux provenant de plusieurs
		ouvertures d'évacuation.
Boîte collectrice	/	Réservoir entre le chéneau extérieur et le tuyau
(réservoir encastré)		de descente.
Franc-bord	mm	Hauteur totale du chéneau moins la hauteur
		d'eau calculée.
Solin	/	

2.2 SYMBOLES

Symbole	Description	Unité
а	franc-bord	mm
A	surface réceptrice équivalente de toiture (projection	m ²
	horizontale)	
A_E	section transversale d'un chéneau extérieur jusqu'à la	mm²
	hauteur de débordement	
A_W	section transversale d'un chéneau intérieur jusqu'à la	mm ²
	hauteur de débordement, c'est-à-dire sous le franc-bord	
A_0	surface horizontale d'une sortie de chéneau	mm²
B_R	projection horizontale de la distance séparant le chéneau	m
	du faîte d'un toit	
С	coefficient d'évacuation	/
d_i	diamètre intérieur d'une conduite	mm
D	diamètre effectif de la sortie de chéneau	mm
D_0	diamètre réel de la sortie de chéneau	mm
DN_{cal}	diamètre de calcul d'une conduite d'évacuation	mm
F_d	facteur de profondeur	/
F_h	facteur hauteur à l'ouverture d'évacuation	/
F_L	facteur d'évacuation	/
F_{S}	facteur de forme	/
h	hauteur d'eau au-dessus d'une ouverture d'évacuation	mm
Н	hauteur totale du déversoir	mm
h_p	hauteur au-dessus du bord inférieur du trop-plein	mm
h_{max}	niveau d'eau maximal admis sur une toiture	mm
i	pente de la conduite	%
		(cm/m)
L	longueur d'évacuation	mm
L_s	longueur (périphérique) de la boîte collectrice	mm
Q	débit	1/s
Q_p	débit de pointe	1/s
Q_{RWP}	capacité du tuyau de descente	1/s
r	intensité pluviométrique	l/s.m²
S	largeur du fond de chéneau	mm
T	largeur du chéneau au niveau de la hauteur d'eau calculée	mm
W	hauteur d'eau calculée	mm
Z	hauteur totale du chéneau (franc-bord compris)	mm

3 CONCEPTION DES INSTALLATIONS D'ÉVACUATION DES EAUX PLUVIALES ET DE LEURS ÉLÉMENTS

3.1 DESCRIPTION GÉNÉRALE D'UNE INSTALLATION D'ÉVACUATION DES EAUX PLUVIALES

Une installation d'évacuation des eaux pluviales comportent plusieurs éléments :

Figure 1 : Exemple d'installation d'évacuation des eaux pluviales (source : Wavin)

Les eaux pluviales qui ruissellent du toit peuvent être évacuées par l'intermédiaire d'ouvertures d'évacuation réalisées dans le pan de toiture, être collectées dans des chéneaux, ou s'écouler directement d'un bord de toiture. Dans ce dernier cas, il ne s'agit pas vraiment d'une installation d'évacuation des eaux pluviales.

Selon la position du bord extérieur du chéneau par rapport au plan de façade, on distingue le **chéneau intérieur** et le **chéneau extérieur** (§ 3.2 et Figures 1, 2 et 3).

Figure 2: Collecte d'eaux pluviales dans un chéneau extérieur

Une **ouverture d'évacuation** dans un pan de toiture ou un chéneau peut être une **tubulure**, un **avaloir** ou un **exutoire latéral** (§ 3.3). Les eaux pluviales sont évacuées vers les conduites d'évacuation (tuyaux de descente ou collecteurs) par le biais de ces éléments (voir le § 3.6).

Un tuyau collecteur se trouve le plus souvent à l'intérieur du bâtiment. Un tuyau de descente se trouve généralement à l'extérieur du bâtiment (Figure 2) mais peut également être prévu à l'intérieur (Figure 4).

Figure 3 : Collecte d'eaux pluviales dans un chéneau intérieur avec tuyau de descente à l'extérieur du bâtiment

Figure 4 : Collecte d'eaux pluviales dans un chéneau intérieur avec tuyau de descente à l'intérieur du bâtiment

Un tuyau de descente est généralement raccordé à un **collecteur** (voir aussi le § 3.7). Eventuellement, l'eau évacuée par plusieurs collecteurs est rassemblée dans un autre collecteur. Le collecteur qui se trouve le plus en aval amène l'eau vers une citerne d'eaux pluviales, un dispositif d'infiltration ou de rétention, un raccordement domestique ou un autre dispositif d'évacuation des eaux pluviales en dehors du domaine privé. Les conduites d'évacuation raccordées aux trop-pleins d'une citerne d'eaux pluviales ou bien aux dispositifs d'infiltration et de rétention font partie de l'installation d'évacuation des eaux pluviales. Les citernes d'eaux pluviales et les dispositifs d'infiltration ou de rétention proprement dits n'en font pas partie.

Il est important que tous les tuyaux restent accessibles pour l'entretien. Il convient de prévoir une possibilité d'inspection et d'entretien des conduites souterraines grâce à un regard d'inspection et d'entretien sous forme de **chambre de visite** ou de **regard de visite** (§ 3.8).

Sur la base de leur fonctionnement, les installations d'eaux pluviales peuvent être divisées en 2 catégories (Figure 4) :

- 1) installations évacuant les eaux pluviales à écoulement libre. Lorsque l'eau s'écoule dans les conduites d'évacuation, celles-ci sont remplies à la fois d'eau et d'air.
- 2) installations évacuant les eaux pluviales en **dépression**. En un point donné, déterminé par le concepteur de l'installation, l'évacuation passe d'une évacuation en dépression à une évacuation à écoulement libre. Les avaloirs sont conçus de manière à n'aspirer pratiquement plus d'air à partir d'un certain niveau d'eau au-dessus de l'avaloir. Dès lors, le tuyau de descente se remplit totalement et le système d'évacuation se place en dépression, ce qui accroît fortement le débit évacué par rapport à une évacuation à écoulement libre pour une même hauteur d'eau au-dessus de l'avaloir.

De telles installations peuvent être utilisées pour l'évacuation des eaux pluviales de :

- o toitures plates
- o chéneaux auxquels sont raccordées des toitures plates ou à versants.

Dans tous les cas de toitures et de pans de toiture enfermé(e)s, comme les toitures plates à acrotère, et dans le cas de chéneaux intérieurs, il convient de prévoir des **trop-pleins** en plus de l'installation d'évacuation des eaux pluviales.

3.2 CHÉNEAUX

Les chéneaux sont des canaux d'évacuation encastrés dans un pan de toiture ou appliqués sur un côté de celui-ci, dans le but :

- de collecter les eaux pluviales qui s'écoulent de la toiture
- et de les évacuer vers une ouverture d'évacuation.

On distingue les chéneaux extérieurs et les chéneaux intérieurs.

3.2.1 Chéneau extérieur

Un chéneau extérieur est un chéneau situé d'un côté d'un pan de toiture et dont un bord (le bord extérieur) est situé à l'extérieur de la façade. Ce bord extérieur est <u>plus</u> <u>bas</u> que le bord intérieur adjacent au pan de toiture. En cas d'obstruction de l'évacuation ou d'averses exceptionnellement violentes, ce bord extérieur peut donc servir de déversoir afin d'éviter toute infiltration d'eau.

Parmi les **chéneaux extérieurs**, on distingue (voir la Figure 5) :

- les gouttières pendantes: semi-circulaires ou non semi-circulaires (trapézoïdales ou en forme de bac), seulement soutenues localement au moyen de crochets de chéneau fixés à la façade ou à la sablière. Les gouttières ardennaises, qui sont directement fixées sur le versant de la toiture, sont considérées comme des gouttières pendantes.
- *les corniches en encorbellement*: soutenues sur toute la longueur, elles forment également la corniche du bâtiment. Le revêtement étanche proprement dit n'est pas autoportant.

3.2.2 Chéneau intérieur

Parmi les chéneaux intérieurs, on distingue :

- les chéneaux *entre 2 versants* dont les pentes se rejoignent (Figure 8)
- les chéneaux *entre un versant de toiture et un mur extérieur en élévation* qui monte plus haut que le bord intérieur du chéneau (Figure 9)

La section d'un chéneau intérieur est toujours non semi-circulaire.

Figure 5 : Types de gouttières et de chéneaux extérieurs (de gauche à droite) : gouttière pendante semi-circulaire, gouttière pendante non semi-circulaire, gouttière ardennaise, chéneau corniche.

Figure 6 : Chéneaux extérieurs semi-circulaires

Figure 7 : Chéneaux non semi-circulaires

Figure 8 : Chéneau intérieur : chéneau entre 2 versants de toiture

Figure 9 : Chéneau intérieur : chéneau entre un versant de toiture et un mur extérieur

Remarques

1. Les chéneaux encastrés (c'est-à-dire encastrés dans le versant de la toiture : voir la Figure 10) sont choisis lorsque l'on souhaite dissimuler le chéneau. Il est préférable de ne pas opter pour cette solution : l'entretien du chéneau est plus difficile et le risque de fuites dans le bâtiment est accru.

Figure 10 : Exemple de chéneau encastré

2. Les noues et les chéneaux à l'intersection de cheminées ne sont pas considérés comme des chéneaux mais comme des parties du parachèvement étanche de la toiture. Les noues sont mises en œuvre à l'endroit où se rejoignent 2 versants d'orientation différente et les solins à l'endroit où le versant atteint l'arrière de la cheminée (voir la Figure 12).

Figure 11 : Exemple de noue

Figure 12 : Solin

3.3 OUVERTURES D'ÉVACUATION

Il existe trois types d'ouvertures d'évacuation : les tubulures, les avaloirs et les exutoires latéraux.

3.3.1 Tubulure

Une tubulure est un tuyau court effectuant la transition entre une ouverture d'évacuation et une conduite d'évacuation, préfabriquée ou non. Elle peut être de forme conique, à angles arrondis ou à angles droits : voir la Figure 13. Une tubulure peut être utilisée pour évacuer les eaux pluviales d'une toiture plate ou pour créer la transition entre un chéneau et un tuyau de descente.

Figure 13: 3 types de tubulures

Figure 14 : Exemples de tubulures à appliquer dans un chéneau (gauche) et de tubulure avec bavette à appliquer dans une toiture plate (droite) (source : Defrancq et Asphalt Equipment)

3.3.2 Avaloir

Un avaloir est une évacuation préfabriquée installée dans un pan de toiture ou dans le fond d'un chéneau non semi-circulaire, fonctionnant comme ouverture d'évacuation, les eaux pluviales s'écoulant avant d'être évacuées sans coupe-air par la partie inférieure : voir la Figure 15 et la Figure 16.

Figure 15: Avaloir

Figure 16 : Exemple d'avaloir pour système à écoulement libre (source : Wavin)

3.3.3 Exutoire latéral

Un exutoire latéral est un dispositif à poser contre l'acrotère sur une toiture plate pour évacuer l'eau en pente légère à travers l'acrotère : voir la Figure 17 et la Figure 18.

Figure 17 : Exutoire latéral

Figure 18 : Exemple d'exutoire latéral

3.4 TROP-PLEIN

Dans le cas de toitures plates avec acrotère et de chéneaux intérieurs, lorsque l'installation est obstruée ou les pluies sont exceptionnellement abondantes, le niveau d'eau sur la toiture risque d'être trop élevé, ce qui peut entraîner une infiltration d'eau, voire un risque d'effondrement de la toiture. Afin de limiter ces risques, il est nécessaire de prévoir des évacuations de secours supplémentaires.

Les évacuations de secours comportent des trop-pleins et des conduites d'évacuation de secours.

Les trop-pleins peuvent être réalisés de différentes manières (Figure 19) :

- a) en prévoyant des ouvertures en pente légère dans les acrotères entourant la toiture ou à l'extrémité d'un chéneau intérieur, pour que l'eau puisse s'écouler par ces ouvertures. On parle dans ce cas de **déversoirs**. Le bord inférieur d'un déversoir est situé de telle sorte que le trop-plein n'entre pas en service en cas de fonctionnement normal de l'installation d'évacuation des eaux pluviales. Les trop-pleins se situent de préférence à proximité des ouvertures d'évacuation normales.
- b) en prévoyant des avaloirs de secours ou des tubulures de secours (supplémentaires) dans la toiture ou le chéneau intérieur, **surélevés** par rapport aux avaloirs ou tubulures normaux. Ces trop-pleins sont raccordés à des conduites d'évacuation de secours distinctes qui évacuent les eaux pluviales à l'extérieur du bâtiment, au-dessus du niveau du sol ou au-dessus du niveau de reflux des égouts.

Remarque

Les gargouilles ne sont pas considérées comme des trop-pleins; elles ont pour seule fonction d'attirer l'attention sur un dépassement du niveau d'eau maximal admis. Les gargouilles ne sont pas dimensionnées.

Figure 19: Exemples de trop-pleins

3.5 TUYAU COLLECTEUR

Un tuyau collecteur est une conduite d'évacuation quasi horizontale, située pour ainsi dire juste en dessous de la toiture, collectant les eaux provenant de plusieurs ouvertures d'évacuation. Un tuyau collecteur est raccordé au collecteur par le biais d'un tuyau de descente.

Les tuyaux collecteurs sont fréquents dans les installations d'évacuation des eaux pluviales de toitures plates.

Figure 20 : Exemple de tuyau collecteur

3.6 TUYAU DE DESCENTE

Un tuyau de descente est une conduite d'évacuation verticale ou oblique qui dirige les eaux pluviales d'une toiture vers un collecteur.

Figure 21 : Exemple de tuyau de descente

3.7 COLLECTEUR

Un **collecteur** est une conduite d'évacuation souterraine ou non, située dans le bas du bâtiment, qui évacue l'eau provenant de tuyaux de descente vers une citerne d'eaux pluviales, des dispositifs d'infiltration ou de rétention, un raccordement domestique, ou un autre dispositif d'évacuation des eaux pluviales en dehors du domaine privé. Plusieurs collecteurs peuvent être raccordés à un seul collecteur.

Figure 22 : Exemple de collecteur

3.8 DISPOSITIFS D'INSPECTION

3.8.1 Chambre de visite

Les chambres de visite sont des dispositifs enterrés (préfabriqués ou non) auxquels plusieurs conduites d'évacuation sont raccordées et permettant l'inspection et le nettoyage de l'installation. Elles sont établies :

- à chaque intersection de canalisations, à chaque changement de direction,
- à chaque modification de diamètre,
- à chaque changement discontinu de la profondeur ou de la pente des canalisations,
- à chaque endroit où le contrôle et le nettoyage de l'installation doivent être possibles (chambre d'inspection ou chambre de contrôle).

Remarque:

Une chambre de visite comporte toujours une seule conduite de départ. La *chambre* de répartition est le lieu dans lequel un collecteur se subdivise en deux ou plusieurs collecteurs, ou le lieu de transition vers un épandage souterrain.

3.8.2 Regard de visite

Un **regard de visite** est un accessoire faisant partie de la conduite (par exemple, un élément en T) permettant d'inspecter une partie de l'installation.

4 CONDITIONS ET PRINCIPES DE CONCEPTION

4.1 DIMENSIONNEMENT EN PLUSIEURS ÉTAPES

Le dimensionnement d'une installation d'évacuation des eaux pluviales est un **processus itératif** : des choix effectués peuvent être rectifiés par la suite s'il s'avère que les dimensions calculées ne sont pas souhaitables ou pas réalisables en pratique.

Le processus de dimensionnement est présenté dans le schéma ci-dessous.

On vérifie d'abord la quantité d'eau de pluie susceptible de ruisseler sur la toiture par unité de temps. Pour ce faire, on divise la surface totale de la toiture en plusieurs **parts** dont les eaux seront évacuées dans un système de canalisations unique, indépendant des autres. La Figure 23 donne quelques exemples de subdivision de la toiture.

On procède ensuite au dimensionnement de chaque élément, d'amont en aval, en fonction de la quantité d'eau à évacuer. À cet égard, il est important de ne pas oublier que les diamètres de conduites d'évacuation raccordées les unes aux autres ne doivent jamais diminuer d'amont en aval.

Figure 23 : Subdivision en pans de toiture

Le dimensionnement s'opère étape par étape pour **chaque partie de toiture**, dans l'ordre suivant :

- a) Calculer le débit à évacuer (§)
 - i) Définir l'intensité pluviométrique
 - (1) en fonctionnement normal (§)
 - (2) pour les trop-pleins (§)
 - ii) Calculer la surface réceptrice (§)
- b) Déterminer le nombre d'ouvertures d'évacuation et leur emplacement (§ 4.5)
 - i) fonctionnement normal (§ 4.5.1)
 - ii) trop-plein (§0)
- c) Dimensionner les chéneaux (§ 5.1)
 - i) Chéneaux extérieurs (§ 5.1.1)
 - (1) Chéneau semi-circulaire (§ 0)
 - (2) Chéneau non semi-circulaire (§ 0)
 - ii) Chéneaux intérieurs (§ 5.1.2)
- d) Dimensionner les ouvertures d'évacuation en fonctionnement normal
 - i) Tubulure (§ 5.2.1)
 - ii) Avaloir (§ 5.3.1)

- iii) Exutoire latéral (§)
- e) Dimensionner les trop-pleins
 - i) Tubulure (§ 5.2.2)
 - ii) Avaloir (§ 5.3.2)
 - iii) Déversoir (§ 5.4.2)
- f) Dimensionner les tuyaux collecteurs (§ 5.6)
- g) Dimensionner les tuyaux de descente (§ 5.5)
- h) Dimensionner les collecteurs (§ 5.6)
- i) Choisir les dispositifs d'inspection (§ 5.7)

4.2 DÉBIT D'ÉVACUATION PAR SECTION DE TOITURE

Le débit d'évacuation d'une section de toiture est la quantité d'eaux pluviales qui doit pouvoir être évacuée par unité de temps, par l'intermédiaire d'un chéneau ou d'une ouverture d'évacuation, soit :

$$Q = r \times A \times C$$

où

Q = le débit d'évacuation en l/s

r = l'intensité pluviométrique – voir le § 4.2.1

A = la surface réceptrice en m^2 – voir le § 4.2.2

C = le coefficient d'évacuation – est égal à 1 (aussi pour les eaux pluviales s'écoulant de la moitié des murs adjacents).

Le coefficient d'évacuation dépend normalement du parachèvement du pan de toiture. La partie des eaux pluviales qui ne s'écoule pas, par exemple en raison d'une évaporation ou d'une évapotranspiration (toitures vertes), est prise en compte grâce à ce coefficient. En réalité, le coefficient d'évacuation sera toujours inférieur à 1. Le choix d'un coefficient égal à 1 pour le calcul introduit une certaine marge de sécurité.

4.2.1 Intensité pluviométrique

4.2.1.1 Statistiques pluviométriques

La norme NBN EN 12056-3 présente 2 possibilités pour déterminer l'intensité pluviométrique r à l'aide de la formule ci-dessus :

- l'intensité pluviométrique peut être déterminée sur la base des données pluviométriques statistiques (période de retour, intensité, durée) des averses de pointe.
- Dans le cas où les statistiques associées aux données pluviométriques ne sont pas disponibles, une valeur peut être sélectionnée dans la norme, multipliée par un coefficient de sécurité V égal à 1, 1,5, 2 ou 3 selon la nature et la fonction du bâtiment. Le débit d'évacuation peut être calculé comme suit : Q = r x V x A x C.

La première option est retenue dans cette Note d'information technique, dans la mesure où il existe en Belgique des normes reprenant des statistiques pluviométriques, les averses étant caractérisées par :

- <u>une durée d'averse t (min)</u>, c'est-à-dire la durée pendant laquelle une averse a atteint son intensité maximale r. Par exemple, une averse peut durer plusieurs heures, mais n'atteindre une intensité maximale « r » que pendant quelques minutes. C'est cette durée qui est qualifiée de « durée d'averse ».
- <u>une intensité pluviométrique r</u> (l/m².min ou l/m².s) : l'intensité maximale constatée pendant une averse déterminée ;
- <u>une période de retour T</u> (années): la fréquence d'une averse présentant une intensité r déterminée.

La durée d'averse t est la durée nécessaire pour qu'une goutte tombée le plus loin de l'ouverture d'évacuation atteigne cette ouverture. Cette durée correspond à la durée de concentration de l'eau sur la toiture; selon la norme britannique BS EN 12056-3, elle équivaut généralement à 2 minutes.

La période de retour T d'une averse est choisie en fonction de la conception. En règle générale, on choisira une période de retour plus grande selon la nécessité urgente d'éviter une surcharge d'eau.

Le rapport entre ces 3 grandeurs est caractéristique d'un territoire donné. Pour la Belgique, ces statistiques pluviométriques sont données dans la NBN B52-011 :

$$r = \frac{1018 \times (T - 1,3931)^{0,16233}}{(2,6085 + t)^{0,73456}}$$

Pour une période de retour T donnée, l'intensité de l'averse diminue au fur et à mesure que sa durée augmente. Les averses les plus violentes sont donc de courte durée. La Figure 24 présente, pour différentes périodes de retour, le rapport entre la durée d'averse et l'intensité pluviométrique.

Figure 24 : Statistiques pluviométriques en Belgique

La Figure 24 démontre qu'une averse d'une durée de 6 minutes et d'une intensité de 0,030 l/s.m² survient par exemple tous les 10 ans en moyenne, alors qu'une averse de la même durée mais d'une intensité de 0,045 l/s.m² ne survient qu'une fois tous les 100 ans.

4.2.1.2 Intensité pluviométrique pour la conception de l'installation d'évacuation des eaux pluviales

Une installation d'évacuation des eaux pluviales doit être dimensionnée conformément à la norme NBN 306 pour une averse présentant une intensité de **0,05 l/s.m²** (**3 l/min.m²**), ce qui correspond à une durée t de 2 minutes et à une période de retour T de 15 ans. Cette intensité est désignée par le symbole r_n.

Remarque:

En supposant qu'un bâtiment ait une durée de vie de 50 ans, la probabilité d'avoir une averse d'une intensité supérieure pendant cette période s'établit à environ 97 %.

4.2.1.3 Intensité pluviométrique pour la conception des trop-pleins

Les trop-pleins sont dimensionnés de manière à réduire la probabilité de dépasser le niveau d'eau maximal sur la toiture ou dans les chéneaux et ce, afin d'éviter des infiltrations éventuelles ou une surcharge de l'ouvrage. Pour ce faire, on considère dans les calculs une averse de pointe d'une durée t de 2 minutes et d'une intensité de 0,062 l/s.m² (3,72 l/min.m²), ce qui correspond à une période de retour T d'environ 50 ans. L'intensité de pointe est désignée par le symbole r_p.

Remarque

En supposant à nouveau qu'un bâtiment ait une durée de vie de 50 ans, la probabilité d'avoir une averse d'une intensité supérieure à 0,062 l/s.m² pendant cette période s'établit alors à environ 64 %.

Pour la majorité des bâtiments, le système d'évacuation normal est supposé rester fonctionnel lors d'une averse de pointe. Pour ce type de bâtiments, les trop-pleins sont alors dimensionnés par rapport à une intensité de $r_p - r_n = 0.062 - 0.050 = 0.012 \text{ l/s.m}^2$ (0.72 l/min.m²).

Cependant, il se peut, en cas d'averse de pointe de r_p = 0.062 l/s.m², que le système normal d'évacuation des eaux pluviales ne fonctionne pas, par exemple en cas d'obstruction, et ne soit pas en mesure d'évacuer tout le débit Q quand r = 0,050 l/s.m². Il est dès lors conseillé de dimensionner les trop-pleins dans des cas exceptionnels, quand la fonction du bâtiment implique que d'éventuelles infiltrations d'eaux entraînent des dégâts importants, pour des averses de r_p = 0,062 l/s.m². Il conviendra par exemple d'envisager cette solution pour les bâtiments où sont conservées des collections d'art, les bâtiments dans lesquels fonctionnent beaucoup d'appareils de haute technologie, ... Il appartient dès lors au maître d'ouvrage ou à son représentant de décider, en fonction du type de bâtiment et du risque de dégâts des eaux, de l'intensité pluviométrique à prendre en compte pour le dimensionnement des trop-pleins.

4.2.1.4 Intensité pluviométrique pour la conception de l'évacuation de l'eau de surfaces au sol à revêtement dur entourant des bâtiments

En ce qui concerne les averses tombant sur le terrain qui entoure le bâtiment, il convient bien entendu de tenir compte en premier lieu de la législation locale en vigueur (régionale, provinciale, communale).

En règle générale, cette averse devra de préférence s'infiltrer le plus possible dans le terrain, même lorsqu'il n'existe pas d'obligation à ce propos. Si cela s'avère impossible et si les eaux pluviales sont évacuées vers un autre endroit, la pratique allemande — pour autant qu'une éventuelle accumulation d'eau n'entraı̂ne pas de risques inadmissibles — préconise une intensité pluviométrique de $r=0.0211\ l/s.m^2$ (~ 0.02 $l/s.m^2$) pour la conception de la conduite

d'évacuation, ce qui implique, pour une période de retour T de 2 ans, une averse d'une durée t d'environ 5 minutes.

Des intensités pluviométriques supérieures peuvent être choisies si le maître d'ouvrage ou son représentant estime que le risque d'une surcharge d'eau est élevé, qu'une éventuelle accumulation d'eau sur le terrain peut entraîner des dégâts importants,... (par ex. en présence de garages souterrains, de locaux techniques, de quais de chargement pour des camions,...).

S'il y a lieu de raccorder à un égout (d'eaux pluviales), il se peut que l'égout privé présente un diamètre supérieur à celui de l'égout public. Dans ce cas, il y a lieu de prévoir un dispositif de rétention d'eau (par ex. sous la forme d'une chambre de visite) permettant un raccordement à l'égout public de diamètre inférieur au diamètre de la conduite entrante. Il convient de prévoir une possibilité de débordement au droit de ce dispositif de rétention d'eau (ou à un autre endroit de l'installation d'évacuation) pour les cas d'urgence.

4.2.2 Surface réceptrice

La surface réceptrice A de chaque part de toiture est calculée comme suit :

- pour une *toiture isolée* : la projection horizontale de chaque pan de toiture (voir la Figure 25)
- pour une toiture *encastrée* ou *adjacente* à une ou plusieurs façade(s): la projection horizontale de chaque pan de toiture + la moitié de la surface des façades adjacentes (voir la Figure 26)

Figure 25: Projection horizontale du pan de toiture: LxB ou LxTx cos A

Figure 26 : Projection horizontale du pan de toiture + <u>moitié de</u> la surface des façades adjacentes

Exemple

Habitation sur plan en L, composée de 5 versants (voir le plan terrier : Figure 27). L'eau qui coule des pans 2 et 5 sera évacuée par le même chéneau. Ceci s'applique également aux pans de toitures 3 et 4. Les pans 2 et 5 et les pans 3 et 4 représentent donc chaque fois une part de toiture.

Surface réceptrice de la part de toiture $1 = A1 = 4 \times 18 = 72 \text{ m}^2$ Surface réceptrice de la part de toiture $2 = A2 (4 \times 12 = 48 \text{ m}^2) + A5 (4 \times 8 = 32 \text{ m}^2) = 80 \text{ m}^2$

Surface réceptrice de la part de toiture 3 = A3 (4 x 2 = 8 m²) + A4 (4 x 8 = 32 m²) = 40 m²

Figure 27 : Plan terrier de l'habitation

Remarque

La norme NBN EN 12056-3 propose 2 possibilités pour calculer la surface réceptrice A, en tenant compte ou non des effets du vent. Par dérogation à ces dispositions, le calcul proposé ci-dessus tient compte en partie des effets du vent. À nouveau, il appartient au concepteur d'indiquer comment déterminer les surfaces réceptrices.

4.3 OUVERTURES D'ÉVACUATION

Il existe plusieurs possibilités pour la conception d'ouvertures d'évacuation:

- système comportant uniquement des exutoires latéraux
- système comportant uniquement des avaloirs et des tubulures
- système combinant les deux solutions précédentes.

Les **dimensions** d'une ouverture d'évacuation sont déterminées par :

- le **débit à évacuer** en fonctionnement normal (voir le § 4.2.1.2)
 - o $Q_n = r_n \times A \times C \text{ où } r_n = 0.050 \text{ l/s.m}^2$
- la **hauteur d'eau calculée autorisée** sur la toiture ou dans le chéneau comportant l'ouverture.

La **capacité d'évacuation** d'une ouverture d'évacuation est liée au débit qu'une ouverture d'évacuation présentant des dimensions déterminées peut évacuer, compte tenu de la hauteur d'eau calculée autorisée. La capacité d'évacuation d'une tubulure et d'un exutoire latéral peut être calculée. Dans le cas d'un avaloir préfabriqué, conçu dans le but d'évacuer un débit déterminé, il convient de se référer aux informations du fabricant pour choisir un avaloir capable d'évacuer le débit requis.

Lorsque les eaux pluviales s'écoulant d'une part de toiture sont évacuées par un chéneau intérieur ou par des ouvertures d'évacuation sur une toiture plate, il convient toujours de prévoir au moins un trop-plein (voir le § 4.5.1.2).

4.4 TROP-PLEINS

S'agissant de la conception de trop-pleins, on dénombre les possibilités suivantes :

- système comportant uniquement des déversoirs
- système comportant uniquement des avaloirs ou des tubulures de secours (= avaloirs et tubulures surélevés)
- système combinant les deux solutions précédentes
- une des 3 solutions précédentes combinée à des gargouilles non dimensionnées.

Les **dimensions** d'un trop-plein sont déterminées par :

- le **débit de pointe à évacuer** (voir le § 4.2.1.3)
 - o $Q_p = (r_p r_n) \times A \times C \text{ où } r_p r_n = 0.012 \text{ l/s.m}^2$; ou
 - o $Q_p = r_p \times A \times C$ où $r_p = 0$,062 l/s.m², si l'on part du principe que le système d'évacuation, en fonctionnement normal, n'entre plus en fonction pendant l'averse de pointe
- la **hauteur d'eau calculée autorisée** sur la toiture ou dans le chéneau comportant l'ouverture.

La capacité d'évacuation d'un trop-plein correspond au débit de pointe qu'une ouverture d'évacuation présentant des dimensions déterminées peut évacuer, compte tenu de la hauteur d'eau calculée autorisée. La capacité d'évacuation d'une tubulure surélevée et d'un déversoir peut être calculée. Dans le cas d'un avaloir de secours préfabriqué, conçu dans le but d'évacuer un débit déterminé, il convient de se référer aux informations du fabricant pour choisir un avaloir capable d'évacuer le débit requis.

Les trop-pleins débouchent de préférence à l'extérieur du bâtiment, à l'air libre et toujours au-dessus du niveau de reflux d'eau possible. L'emplacement d'un ou de plusieurs débouchés est choisi de manière à ne pas constituer un obstacle pour le bâtiment et ses utilisateurs, tout en restant clairement visible. En effet, le fonctionnement fréquent du trop-plein montre que le système d'évacuation normal est défectueux.

4.5 NOMBRE ET EMPLACEMENT DES OUVERTURES D'ÉVACUATION

4.5.1 Ouvertures d'évacuation normales

Le débit d'évacuation Q d'une part de toiture s'écoule vers une ou plusieurs ouvertures d'évacuation, par le biais ou non d'un chéneau.

La dimension de la section du chéneau et/ou des ouvertures d'évacuation dépend du choix du nombre et de l'emplacement de ces ouvertures. Ce choix dépend de la conception du bâtiment. En effet, il n'est pas possible de prévoir une ouverture d'évacuation dans la toiture ou un tuyau de descente contre la façade à n'importe quel endroit.

L'augmentation ou la diminution du nombre d'ouvertures d'évacuation dans le projet a pour conséquence logique de diminuer ou d'augmenter le débit à traiter par ouverture d'évacuation. Le débit que les ouvertures d'évacuation doivent pouvoir traiter est égal au débit d'évacuation de la part de toiture :

$$Q_{part\;de\;toiture} = \sum Q_{ouvertures\;d'\acute{e}vacuation}$$

4.5.1.1 Toitures avec chéneaux

Le chéneau est subdivisé par les ouvertures d'évacuation en un certain nombre de sections de chéneau. Le débit provenant de la part de toiture passe par les différentes sections du chéneau et se dirige vers les ouvertures d'évacuation :

$$Q_{part\;de\;toiture} = \sum Q_{sections\;de\;ch\'eneau} = \sum Q_{ouvertures\;d'\'evacuation}$$

L'emplacement des ouvertures d'évacuation est choisi de préférence de sorte que chaque section de chéneau et chaque ouverture d'évacuation ait le même débit à traiter.

Dans un système comportant une seule ouverture d'évacuation dans le chéneau (et donc un seul tuyau de descente), l'emplacement de cette ouverture a un impact sur la répartition du débit dans le chéneau. Si le tuyau de descente est prévu à une extrémité du chéneau, le chéneau doit pouvoir évacuer tout le débit Q: la longueur d'évacuation L est alors égale à la longueur du chéneau. Si le tuyau de descente est placé au milieu du chéneau, le chéneau est divisé en 2 sections de chéneau égales présentant chacune une longueur d'évacuation $\frac{L}{2}$. Dans ce cas, les deux sections de chéneau doivent pouvoir évacuer un débit $\frac{Q}{2}$. L'ouverture d'évacuation doit toujours traiter la totalité du débit Q (voir la Figure 28).

Figure 28 : Chéneau avec 1 tuyau de descente et 1 section (gauche) ou 2 sections (droite)

Dans le cas d'un système comportant 2 ouvertures d'évacuation, la répartition du débit dans le chéneau dépend à nouveau de l'emplacement des ouvertures d'évacuation. Deux ouvertures d'évacuation aux extrémités du chéneau (exemple à la Figure 29 - gauche) divisent le chéneau en 2 parties égales qui évacuent chacune un débit $\frac{Q}{2}$. Lorsque les tuyaux de descente sont placés à une distance d'1/4 des extrémités du chéneau (exemple à la Figure 29 - droite), le chéneau est divisé en 4 parties qui évacuent chacune $\frac{Q}{4}$. Chaque ouverture d'évacuation doit traiter un débit $\frac{Q}{2}$

Figure 29 : Chéneau avec 2 tuyaux de descente et 2 sections égales (à gauche) ou 4 sections égales (à droite)

Dans une *conception asymétrique*, le débit d'évacuation n'est pas réparti de manière égale entre les différentes ouvertures d'évacuation et sections de chéneau (exemple à la Figure 30).

En principe, les ouvertures d'évacuation pourraient avoir un diamètre différent et les sections de chéneau ne devraient pas avoir la même hauteur. En pratique, les dimensions du chéneau dans sa totalité seront déterminées par la section présentant le débit le plus élevé.

Figure 30 : Chéneau avec 3 tuyaux de descente et des sections inégales

Remarque

Il est préférable d'éviter des changements de direction près d'une ouverture d'évacuation.

4.5.1.2 Toitures sans chéneaux

En cas de toitures plates sans chéneaux, les ouvertures d'évacuation (de secours) peuvent être disposées au travers d'un mur extérieur ou dans le plan de la toiture. Les ouvertures sont placées de préférence de façon symétrique dans la section de toiture. Dans le cas de toitures plates, leur nombre et leur emplacement ne dépendent pas seulement de la surface de la toiture, mais aussi de la forme spécifique de la toiture.

Les recommandations générales suivantes sont applicables au moment de concevoir l'évacuation d'une toiture plate :

- au moment de la conception des ouvertures d'évacuation, il ne faut pas perdre de vue la structure de toiture sous-jacente. Il est interdit de prévoir des ouvertures d'évacuation au-dessus de poutres ou de colonnes.
- Prévoir au moins 1 ouverture d'évacuation pour une surface de toiture jusqu'à 100 m². Il est recommandé, dans certains cas, d'équiper la toiture d'au moins 2 ouvertures d'évacuation, par exemple dans une toiture encastrée.

- Toujours prévoir au moins 2 ouvertures d'évacuation si la surface de toiture > 100 m²
- La distance entre 2 ouvertures d'évacuation se limite de préférence à 20 m; la surface de toiture raccordée à une seule évacuation de toiture s'établit alors à maximum 400 m².
- De préférence, les ouvertures d'évacuation sont placées à au moins 0,5 m des angles extérieurs (où 2 acrotères se rejoignent), dans la mesure où ces endroits sont sensibles à l'accumulation de détritus.
- Les ouvertures d'évacuation sont prévues au niveau le plus bas de la toiture. C'est pourquoi elles sont placées de préférence sur la ligne d'intersection de deux pans inclinés. Ces lignes d'intersection auront de préférence un tracé horizontal, de telle manière qu'en cas d'obstruction d'une ouverture d'évacuation, les eaux puissent atteindre facilement les ouvertures voisines.
- Toujours prévoir au moins 1 trop-plein.
- Des trop-pleins sont également prévus au pied de l'inclinaison de la toiture plate et à proximité des ouvertures d'évacuation en fonctionnement normal.
- Les déversoirs ont une pente légèrement orientée vers l'extérieur du bâtiment et font saillie sur une longueur de 50 mm au moins par rapport au plan de la façade.
- La distance entre 2 déversoirs ne peut excéder 30 m. Si cette distance est plus longue, il est recommandé de combiner les déversoirs à des ouvertures d'évacuation surélevées supplémentaires.

Exemple:

Dans la toiture plate ci-dessous, de $30 \times 12 = 360 \text{ m}^2$, 6 ouvertures d'évacuation sont prévues, chacune devant pouvoir évacuer une zone de $10 \times 6 = 60 \text{ m}^2$. Chaque avaloir ou tubulure aura donc le même diamètre.

Figure 31 : Positionnement symétrique des ouvertures d'évacuation sur une toiture plate

4.6 HAUTEUR D'EAU CALCULÉE

Les dimensions de chéneaux et d'ouvertures d'évacuation (de secours) sont déterminées sur la base du débit à évacuer, en tenant compte de la hauteur d'eau maximale pouvant être atteinte au-dessus du point le plus bas au niveau duquel l'eau s'écoule.

Une hauteur d'eau supérieure entraîne une pression de l'eau plus élevée, de sorte que l'eau s'écoulera plus rapidement : dans ce cas, les dimensions pourront être plus petites. À l'inverse, dans le cas d'une faible hauteur d'eau, la largeur du chéneau ou les dimensions de l'ouverture d'évacuation devront être suffisamment grandes pour pouvoir évacuer un débit donné.

4.6.1 Chéneaux

Dans le cas de chéneaux, la hauteur d'eau calculée dépend des dimensions du chéneau :

$$Z = W_{\text{max}} + a = W_{\text{n}} + W_{\text{p}} + a$$

où:

- Z : hauteur totale du chéneau (mm)
- W_{max}: hauteur d'eau calculée = hauteur d'eau maximale autorisée dans le chéneau (mm)
- W_n: hauteur d'eau pouvant être atteinte dans le chéneau pendant l'averse de référence = hauteur d'eau jusqu'au point où le trop-plein entre en fonction (mm)
- W_p: hauteur d'eau dans le chéneau en conséquence d'une averse de pointe = hauteur d'eau au-dessus du niveau où le trop-plein entre en fonction (mm)
- a : franc-bord (mm)

Figure 32 : Exemple de section de chéneau

En ce qui concerne la hauteur d'eau calculée, une distinction est opérée entre les chéneaux extérieurs et les chéneaux intérieurs.

Pour les chéneaux extérieurs, la hauteur d'eau calculée est assimilée au symbole W_n , généralement abrégé W dans la mesure où il s'agit de la seule hauteur d'eau. En l'occurrence, tant la valeur W_p que la valeur a sont égales à 0. Dans le cas de chéneaux extérieurs, le bord extérieur du chéneau fait office de trop-plein : il est toujours positionné au minimum 2 cm plus bas que le bord intérieur, de sorte que, en cas de niveaux d'eau trop élevés dans le chéneau, l'eau débordera toujours pardessus le bord extérieur. En effet, il ne se situe jamais plus haut que le bord intérieur, de sorte que les eaux pluviales excédantes puissent être évacuées du côté extérieur de la façade.

Pour cette raison, il n'est pas nécessaire que le chéneau extérieur puisse recevoir le surplus d'eau se retrouvant dans le chéneau pendant une averse de pointe.

Dans le cas de chéneaux intérieurs, le risque d'une surcharge d'eau dans le bâtiment au moment où la capacité du chéneau n'est plus suffisante est bien réel. On opère une distinction entre la hauteur d'eau W_n résultant d'une averse de référence (d'une intensité r_n), une hauteur d'eau W_p résultant d'une averse de pointe (d'une intensité r_p) et un franc-bord a au-dessus de la hauteur d'eau maximale, ce qui permet de prendre en compte une marge de sécurité supplémentaire.

Pour le franc-bord a, le calcul suivant est d'application :

$$a \ge 0.3 \times Z$$

avec un minimum de 25 mm. Si cette condition donne un franc-bord de plus de 75 mm, celui-ci peut être limité à 75 mm : voir le Tableau 1.

La formule suivante est donc aussi d'application : $W \le 0.7 \text{ x Z}$.

Hauteur totale de chéneau Z, franc-bord	Franc-bord a
compris (mm)	minimum (mm)
Moins de 85	25
de 85 à 250	0,3Z
Supérieure à 250	75

Tableau 1 : Franc-bord minimum en fonction de la hauteur du chéneau

La hauteur d'eau au-dessus du bord des ouvertures d'évacuation pendant l'averse de référence d'une intensité r_n est h_n .

La hauteur d'eau au-dessus du bord du trop-plein pendant l'averse de pointe d'une intensité r_p est h_p .

La Figure 33 représente schématiquement :

- la longueur d'évacuation L du chéneau (mm) : voir également le § 4.5.
- les hauteurs d'eau calculées W dans le chéneau (mm)
- la hauteur d'eau h au-dessus du bord de l'ouverture d'évacuation (mm).

En règle générale, il est recommandé de toujours réaliser le fond d'un chéneau avec une pente légère vers l'ouverture d'évacuation. L'endroit où l'on observe la hauteur d'eau maximale dans le chéneau se trouve :

- a. au point le plus éloigné de l'ouverture d'évacuation si le fond du chéneau n'est pas en pente,
- b. près du bord de l'ouverture d'évacuation si le fond du chéneau présente une pente vers l'ouverture d'évacuation.

Lors du dimensionnement, il est toujours plus sûr de calculer le chéneau comme s'il n'y avait pas de pente. En outre, dans la pratique, les chéneaux extérieurs sont souvent placés horizontalement.

Figure 33 : Présentation schématique d'un chéneau extérieur

Il existe un rapport entre la hauteur d'eau calculée W et la hauteur d'eau h_n dans les chéneaux sans pente ou à pente négligeable.

Ce rapport est utilisé lors de l'application de la méthode de dimensionnement détaillée : voir le § 6.9.5.

4.6.2 Toitures plates

Figure 34 : Tubulure surélevée comme trop-plein (2) près d'une tubulure en fonctionnement normal

Dans le cas de toitures plates, la hauteur d'eau calculée h_{max} est déterminée par le concepteur de la toiture, dans la mesure où le poids des eaux pluviales sur la toiture doit être pris en compte lors du calcul de la structure.

Pour la hauteur d'eau calculée sur la toiture, h_{max} est égale à :

$$h_{\text{max}} = h_{\text{n}} + h_{\text{p}}$$

où:

- h_{max} : hauteur d'eau maximale autorisée sur la toiture (mm)
- h_n: hauteur d'eau pouvant être atteinte sur la toiture pendant l'averse de référence = hauteur d'eau jusqu'au point où le trop-plein entre en fonction (mm)
- h_p: hauteur d'eau sur la toiture en conséquence d'une averse de pointe = hauteur d'eau au-dessus du niveau où le trop-plein entre en fonction (mm)
 Le bord inférieur d'un trop-plein est donc placé à la hauteur h_n.

Les valeurs fréquemment utilisées pour h_{max} , h_n et h_p sont reprises dans le Tableau 2. Il est cependant interdit d'utiliser ces mesures sans l'autorisation du concepteur de la toiture.

	h _n (mm)	h _p (mm)	h _{max} (mm)
béton	50	25	75
tôles d'acier profilées	35	25	60

Tableau 2 : Valeurs fréquemment utilisées pour h_n , h_p et h_{max}

La hauteur d'eau maximale autorisée peut être beaucoup plus grande si de l'eau est stockée sur la toiture. Sauf mesures supplémentaires à prendre en considération concernant la stabilité et l'étanchéité à l'eau du bâtiment, cela aura également un impact sur la conception du système d'évacuation.

4.7 SURFACE UTILE DE LA SECTION TRANSVERSALE DU CHÉNEAU

La surface utile de la section transversale du chéneau représente la coupe transversale de la section de chéneau d'une hauteur correspondant à la hauteur d'eau calculée.

Pour les chéneaux extérieurs, la surface utile de la section transversale du chéneau A_E représente la section transversale complète de ce chéneau : voir la Figure 35.

Figure 35

Pour les chéneaux intérieurs, la surface utile de la section transversale du chéneau A_W est inférieure à la section transversale totale : voir la Figure 36.

5 MÉTHODE DE DIMENSIONNEMENT SIMPLIFIÉE

5.1 CHÉNEAUX

5.1.1 Chéneau extérieur

Les dimensions de gouttières pendantes métalliques disponibles dans le commerce sont généralement standardisées et représentées comme la largeur développée de la feuille de métal. Les graphiques de la Figure 37 et de la Figure 38 montrent le rapport entre la capacité d'évacuation (Q) et la longueur d'évacuation (L) pour différentes largeurs développées de chéneaux extérieurs métalliques semi-circulaires ou rectangulaires.

Bien que l'on n'utilise pas de dimensions normalisées pour les gouttières pendantes synthétiques, la largeur de la partie supérieure du chéneau (T=e) ou la surface utile de la section transversale du chéneau dans le Tableau 3 peut également être utilisée pour une gouttière en matière synthétique.

Ces graphiques peuvent être utilisés pour dimensionner des chéneaux extérieurs semi-circulaires ou rectangulaires présentant une pente < 3 mm/m.

Pour tous les autres chéneaux, il convient de suivre la méthode détaillée à l'annexe I. La capacité d'évacuation d'un chéneau peut également être déterminée par voie d'essais conformément à l'annexe A de la norme NBN EN 12056-3. Les valeurs obtenues après avoir multiplié les résultats des essais par un facteur de sécurité de 0,9 peuvent être utilisées comme capacité d'évacuation du chéneau.

Pour chaque angle de chéneau > 10°, il y a lieu de réduire la capacité d'évacuation de 15 %.

En présence de crapaudines, la capacité d'évacuation du chéneau doit être réduite de 50 %.

5.1.1.1 Chéneau semi-circulaire

Figure 37 : Rapport entre le débit d'évacuation et la longueur d'évacuation L pour différentes largeurs développées d'un chéneau extérieur semi-circulaire

largeur	a = W	T =	surface	épaisseur minimale de la paroi du matériau selon la NBN EN 612				
développée		e	utile de la	matéi	riau se	lon la NBI	N EN 612	
			section	Al	Cu	acier	acier	Zn
			transversale			(revêtu)	inoxydable	
			du chéneau			,		
			(cm ²)					
200	48	80	30	0,7	0,6	0,6	0,4	0,65
	(>40*)							
250	61,5	105	52	0,7	0,6	0,6	0,4	0,65
	(>50*)							
280	72,5	127	73	0,7	0,6	0,6	0,4	0,7
	(>50*)							
333	72,5	153	106	0,7	0,6	0,6	0,4	0,7
	(>50*)							
400	86,5	192	164	0,8	0,7	0,7	0,5	0,8
	(>55*)				ĺ	ŕ		ŕ
500	107	250	270	0,8	0,7	0,7	0,5	0,8
	(>65*)							
(*): Dimens	ions mini	males	selon la NBN	EN 61:	2			

Tableau 3 : Dimensions des chéneaux semi-circulaires en fonction de leur largeur développée

5.1.1.2 Chéneau non semi-circulaire

Figure 38 : Rapport entre le débit d'évacuation et la longueur d'évacuation L pour différentes largeurs développées d'un chéneau extérieur non semi-circulaire

largeur	a = W	b =	surface	épaisseur minimale de la paroi du				
développée		e =	utile de la	matériau selon la NBN EN 612				
		T	section	Al	Cu	acier	acier	Zn
			transversale			(revêtu)	inoxydable	
			du chéneau					
			(cm ²)					
200	42	70	29	0,7	0,6	0,6	0,4	0,65
	(>40*)							
250	55	85	47	0,7	0,6	0,6	0,4	0,65
	(>50*)							
280	65	100	63	0,7	0,6	0,6	0,4	0,7
	(>50*)							
333	75	120	90	0,7	0,6	0,6	0,4	0,7
	(>55*)							
400	90	150	135	0,8	0,7	0,7	0,5	0,8
	(>65*)							
500	110	200	220	0,8	0,7	0,7	0,5	0,8
	(>75*)							
(*): Dimens	ions mini	males	selon la NBN	EN 61	2			

5.1.2 Chéneau intérieur

La Figure 39 présente, pour 8 hauteurs d'eau différentes W, le débit que le chéneau peut évacuer en fonction de la largeur du chéneau intérieur. Cette figure est d'application en cas de rapport $L/W \le 50$. Si L/W > 50, le résultat peut être multiplié par le facteur d'évacuation FL (voir le § 6.9.1). Pour d'autres hauteurs d'eau W et si $S \ne T$, il convient de se référer à la méthode de dimensionnement détaillée.

Figure 39: Capacité d'évacuation Q de chéneaux intérieurs en fonction de la largeur de chéneau S et de la hauteur d'eau W

Q (I/s)		W (mm)							
T = S									
(mm)	50	75	100	125	150	175	200	250	
200	3.5	5.8	8.3	11.0	13.8	16.8	19.8	26.2	
250	4.6	7.7	11.0	14.5	18.3	22.2	26.2	34.6	
300	5.8	9.6	13.8	18.3	22.9	27.8	32.9	43.5	
350	7.0	11.7	16.8	22.2	27.8	33.7	39.9	52.7	
400	8.3	13.8	19.8	26.2	32.9	39.9	47.1	62.3	
450	9.6	16.0	22.9	30.3	38.1	46.2	54.6	72.1	
500	11.0	18.3	26.2	34.6	43.5	52.7	62.3	82.3	
550	12.4	20.6	29.5	39.0	49.0	59.4	70.1	92.7	
600	13.8	22.9	32.9	43.5	54.6	66.2	78.2	103.3	

Tableau 5 : Capacité d'évacuation Q de chéneaux intérieurs en fonction de la largeur de chéneau S et de la hauteur d'eau W

Normalement, il convient de calculer la capacité d'évacuation de chéneaux intérieurs spécifiques. Le graphique de la Figure 41 montre, à titre d'exemple, le rapport entre la capacité d'évacuation et la longueur d'évacuation d'un certain nombre de sections transversales de chéneaux intérieurs rectangulaires : voir la Figure 40. Ce graphique s'applique à des chéneaux intérieurs présentant une pente < 3 mm/m.

Figure 40

Figure 41 : Rapport entre la capacité d'évacuation et la longueur d'évacuation L pour 3 largeurs développées (650, 800 en 1000 mm) d'un chéneau intérieur de section rectangulaire et de pente < 3 mm/m

5.2 TUBULURE

5.2.1 Fonctionnement normal

5.2.1.1 Règle de calcul de la NBN 306

La norme NBN 306 compte 1 cm² de section d'une ouverture d'évacuation droite pour 1 m² de surface d'évacuation raccordée.

Cette règle empirique n'est pas toujours d'application, dans la mesure où elle ne tient pas compte de la hauteur d'eau sur la toiture ou dans le chéneau (voir le § 4.3).

5.2.1.1.1 Chéneaux

Pour les tubulures dans des gouttières pendantes, la règle de calcul de 1 cm² de section d'ouverture d'évacuation droite pour 1 m² de surface réceptrice raccordée à l'ouverture d'évacuation peut généralement être appliquée, tant pour les ouvertures d'évacuation circulaires que carrées.

Si, dans le cas de fonds de gouttières pendantes non semi-circulaires, le rapport entre le diamètre résultant du calcul et la largeur développée du chéneau est supérieur à 30 %, le résultat est moins fiable.

Pour des résultats plus précis, nous renvoyons aux § 5.2.1.2 et 5.2.1.3 qui présentent les résultats de mesures d'un certain nombre de combinaisons testées.

5.2.1.1.2 Toitures plates

La possibilité d'appliquer la règle de calcul de 1 cm² de section d'ouverture d'évacuation droite pour 1 m² de surface réceptrice raccordée à l'ouverture d'évacuation dans le cas d'une toiture plate dépend de la hauteur d'eau autorisée sur la toiture

Le Tableau 6 montre jusqu'à quelle surface réceptrice raccordée la règle de calcul simple peut être utilisée en fonction de la hauteur d'eau sur la toiture. Il s'agit en l'occurrence de la hauteur d'eau qui doit pouvoir être évacuée par une ouverture d'évacuation en fonctionnement normal. Pour les tubulures surélevées servant de trop-pleins, il convient de se référer au § 5.2.2.

Pour de plus grandes surfaces réceptrices raccordées par hauteur d'eau, il y a lieu de se référer à la méthode de dimensionnement détaillée.

Figure 42 : Dimensionnement de l'ouverture d'évacuation : comparaison entre la règle de 1 cm²/1 m² et le calcul conformément à la NBN EN 12056-3

Hauteur d'eau	Surface réceptrice	Diamètre
(mm)	maximale à raccorder à	correspondant de
	l'ouverture	l'ouverture
	d'évacuation (m²)	d'évacuation (mm)
35	38	70
50	113	120
60	196	160
70	311	200
80	464	250

5.2.1.2 Tubulure dans des chéneaux non semi-circulaires

Le Tableau 7 présente des résultats d'essais pour la capacité d'évacuation d'un certain nombre de combinaisons fréquentes chéneau-tuyau de descente. Pour d'autres combinaisons, il y a lieu de se référer à la méthode de dimensionnement détaillée.

	évacuation		évacuation	
largeur	circulaire		rectangulaire	
développée	D (mm)	Q (I/s)	(mm)	Q (I/s)
250	60	1.1	60	1.3
250	80	1.4	80	1.8
280	80	1.8	80	2.3
280	100	2.3	100	2.8
333	80	2.3	80	2.8
333	100	2.8	100	3.5
400	100	3.7	100	4.6
400	120	4.4	120	5.6
500	100	4.8	100	6.0
500	120	6.0	120	7.5
500	150	7.5	150	9.4

Tableau 7 : Capacité d'évacuation de chéneaux non semi-circulaires combinés à des tuyaux de descente

5.2.1.3 Tubulure dans des chéneaux semi-circulaires

Le Tableau 8 présente des résultats de mesures pour la capacité d'évacuation d'un certain nombre de combinaisons fréquentes de tuyaux de descente raccordés perpendiculairement à un chéneau (à gauche) et de tuyaux de descente à transition progressive vers le chéneau (à droite).

largeur développée (mm)	tuyau descente diamètre (mm) transition forme d'entonnoir	de de d _i avec en	capacité d'évacuation Q (I/s)	tuyau de descente de diamètre d _i sans transition en forme d'entonnoir	capacité d'évacuation Q (I/s)
250	60		1,8	60	1,5
250	80		2,2	80	2,0
280	80		3,0	80	2,6
280	100		3,3	100	3,0
333	80		5,0	80	4,0
333	100		5,3	100	4,5
400	100		9,0	100	6,8
400	100		9,3	120	7,4
500				100	10,5

500		120	12,0
500		150	14,5

a) Fallleitung mit Rinnen-Einhangstutzen

b) Fallleitung ohne Einlauftrichter

Tableau 8 : Capacité d'évacuation de chéneaux semi-circulaires combinés à des tuyaux de descente

Figure 43: Sortie évasée de chéneau semi-circulaire

L'expérience dans la pratique démontre que l'ouverture d'évacuation sera en mesure d'évacuer le débit si la surface de la projection horizontale de l'ouverture dans un chéneau semi-circulaire est environ deux fois supérieure à celle de la section du plus petit tuyau de descente capable d'évacuer le débit (voir le Tableau 12). À noter que, dans ce cas, la transition de l'ouverture dans le chéneau vers le tuyau de descente doit être progressive.

Remarques:

- 1) Le diamètre de la tubulure ne peut jamais excéder la largeur du chéneau.
- 2) L'utilisation d'une boîte collectrice est indiquée quand :
 - a. la largeur du chéneau > 3 x la hauteur d'eau calculée W
 - b. la pente du chéneau est importante (≥ 10 mm/m).

5.2.1.4 Tubulure dans une toiture plate

Outre la règle de calcul courante d'1 cm² pour 1 m² de surface réceptrice raccordée dans son champ d'application spécifique, on peut également utiliser la Figure 44 ou le Tableau 9 pour dimensionner une tubulure dans une toiture plate.

Figure 44: Diamètre D d'une tubulure dans une toiture plate en fonction de la capacité Q à évacuer et de la hauteur d'eau h au-dessus du bord de l'ouverture d'évacuation

Diamètre D =	Capacité d	l'évacuatio	n Q (I/s) e	n fonction	de la haut	eur d'eau	ı h (mm)	
diamètre intérieur d _i (mm)	h = 25	h = 35	h = 45	h = 50	h = 55	h = 60	h = 75	h = 90
50	0.83	0.99	1.12	1.18	1.24	1.29	1.44	1.58
55	0.92	1.19	1.35	1.43	1.50	1.56	1.75	1.91
60	1.00	1.42	1.61	1.70	1.78	1.86	2.08	2.28
65	1.08	1.67	1.89	1.99	2.09	2.18	2.44	2.67
70	1.17	1.93	2.19	2.31	2.42	2.53	2.83	3.10
75	1.25	2.07	2.52	2.65	2.78	2.90	3.25	3.56
80	1.33	2.21	2.86	3.02	3.16	3.30	3.70	4.05
85	1.42	2.35	3.23	3.41	3.57	3.73	4.17	4.57
90	1.50	2.48	3.62	3.82	4.00	4.18	4.68	5.12
100	1.67	2.76	4.02	4.71	4.94	5.16	5.77	6.32
110	1.83	3.04	4.43	5.19	5.98	6.25	6.99	7.65
120	2.00	3.31	4.83	5.66	6.53	7.44	8.31	9.11
130	2.17	3.59	5.23	6.13	7.07	8.06	9.76	10.69
140	2.33	3.87	5.63	6.60	7.61	8.68	11.32	12.40
150	2.50	4.14	6.04	7.07	8.16	9.30	12.99	14.23
160	2.67	4.42	6.44	7.54	8.70	9.91	13.86	16.19
170	2.83	4.69	6.84	8.01	9.25	10.53	14.72	18.28
180	3.00	4.97	7.24	8.49	9.79	11.15	15.59	20.49
190	3.17	5.25	7.65	8.96	10.33	11.77	16.45	21.63
200	3.33	5.52	8.05	9.43	10.88	12.39	17.32	22.77

220	3.67	6.07	8.85	10.37	11.96	13.63	19.05	25.05
240	4.00	6.63	9.66	11.31	13.05	14.87	20.78	27.32
260	4.33	7.18	10.46	12.26	14.14	16.11	22.52	29.60
280	4.67	7.73	11.27	13.20	15.23	17.35	24.25	31.88
300	5.00	8.28	12.07	14.14	16.32	18.59	25.98	34.15

Tableau 9 : Capacité d'évacuation Q d'une tubulure dans une toiture plate en fonction du diamètre D et de la hauteur d'eau h au-dessus du bord de l'ouverture d'évacuation

Pour d'autres hauteurs d'eau, il convient de se référer à la méthode de dimensionnement détaillée (voir le §).

5.2.1.5 Tubulure dans une toiture plate conformément au nomogramme du CSTC

Sous certaines conditions, il est possible également d'effectuer un dimensionnement « plus serré » pour les tubulures sur la base d'un nomogramme établi par le CSTC.

Les nomogrammes du CSTC sont basés sur des essais dont les résultats sont présentés à la Figure 45. La capacité d'évacuation de tubulures à arêtes vives et coniques est présentée ici en fonction de la hauteur d'eau au-dessus de la tubulure.

Pour pouvoir utiliser la Figure 45, le tuyau de descente auquel est raccordée la tubulure doit répondre en outre aux conditions suivantes :

- le tuyau de descente doit être rectiligne sur tout son parcours
- il n'y a pas de crapaudines
- le raccord entre la tubulure et le tuyau de descente doit être étanche à l'air
- le tuyau de descente ne peut comporter qu'un ou deux coudes maximum de 45 ou 90° à sa base.

Figure 45 : Nomogramme de la capacité d'évacuation de tubulures

5.2.2 Trop-plein

La Figure 44 ou le Tableau 5 peuvent être utilisés pour le dimensionnement d'une tubulure comme trop-plein. Pour d'autres hauteurs d'eau, il y a lieu de se référer à la méthode de dimensionnement détaillée.

5.3 AVALOIR

5.3.1 Fonctionnement normal

Les valeurs du Tableau 10 indiquent la capacité minimale que doivent présenter des avaloirs de dimensions conformes à l'EN 1253-2 pour la hauteur d'eau h au-dessus du bord de l'avaloir mentionnée dans le tableau.

En pratique, toutefois, les avaloirs ont une capacité d'évacuation plus importante que celle indiquée dans le tableau. On consultera à ce sujet la documentation technique et les directives des fabricants. Il est conseillé de ne pas utiliser d'avaloirs n'ayant pas été testés et dont la capacité d'évacuation n'est pas connue.

	al de la sortie de sance	Évacuation	n gravitaire	
DN/DE	DN/DI	Débit minimal	Hauteur de couverture d'eau h	
		l/s	mm	
40				
	40		_	
50		0.0		
	50	0,9		
63		1,0		
75		1,7		
	70	1,7	35	
80		2,6	33	
	75	2,0		
90		3,0		
110		4,5		
	100	4,0		
125		7,0		
	125	7,0	45	
160		0.1	45	
	150	8,1		

Tableau 10 : Capacité minimale à laquelle des avaloirs doivent répondre conformément à l'EN 1253-2 (2015)

5.3.2 Trop-plein

Dimensionnement : voir le § 5.3.1. La hauteur d'eau h au-dessus du bord de l'avaloir indiquée au Tableau 10 correspond ici à h_p .

5.4 EXUTOIRE LATÉRAL

5.4.1 Fonctionnement normal

5.4.1.1 Exutoire latéral rectangulaire

La capacité d'évacuation d'un déversoir rectangulaire peut être déduite de la Figure 47 ou du Tableau 11 en fonction de la hauteur d'eau h_n au-dessus du bord inférieur de l'ouverture, pour les largeurs L données. La largeur de l'exutoire latéral L peut, en fonction du débit Q calculé, être déduite de la Figure 48 en fonction des hauteurs d'eau déclarées.

Figure 46 :: Exutoire latéral pour un fonctionnement normal et comme trop-plein (déversoir)

Pour d'autres largeurs et/ou hauteurs d'eau, on peut utiliser la méthode de dimensionnement détaillée.

Figure 47: Capacité d'évacuation Q d'une ouverture rectangulaire dans une rive de toiture d'une largeur L en fonction de la hauteur d'eau h au-dessus du bord inférieur de l'ouverture

Figure 48 : Largeur L d'une ouverture rectangulaire dans une rive de toiture en fonction de la capacité Q à évacuer et de la hauteur d'eau h au-dessus du bord inférieur de l'ouverture

Q (I/s)					L (mn	n)			
h (mm)	50	100	150	200	300	400	500	600	800
15	0.12	0.24	0.36	0.48	0.73	0.97	1.21	1.45	1.94
20	0.19	0.37	0.56	0.75	1.12	1.49	1.86	2.24	2.98
25	0.26	0.52	0.78	1.04	1.56	2.08	2.60	3.13	4.17
30	0.34	0.68	1.03	1.37	2.05	2.74	3.42	4.11	5.48
35	0.43	0.86	1.29	1.73	2.59	3.45	4.31	5.18	6.90
40	0.53	1.05	1.58	2.11	3.16	4.22	5.27	6.32	8.43
45	0.63	1.26	1.89	2.52	3.77	5.03	6.29	7.55	10.06
50	0.74	1.47	2.21	2.95	4.42	5.89	7.37	8.84	11.79
55	0.85	1.70	2.55	3.40	5.10	6.80	8.50	10.20	13.60
60	0.97	1.94	2.90	3.87	5.81	7.75	9.68	11.62	15.49
70	1.22	2.44	3.66	4.88	7.32	9.76	12.20	14.64	19.52
80	1.49	2.98	4.47	5.96	8.94	11.93	14.91	17.89	23.85
90	1.78	3.56	5.34	7.12	10.67	14.23	17.79	21.35	28.46
100	2.08	4.17	6.25	8.33	12.50	16.67	20.83	25.00	33.33
110	2.40	4.81	7.21	9.61	14.42	19.23	24.04	28.84	38.46
120	2.74	5.48	8.22	10.95	16.43	21.91	27.39	32.86	43.82

Tableau 11 : Capacité d'évacuation Q d'une ouverture rectangulaire dans une rive de toiture d'une largeur L en fonction de la hauteur d'eau h

La hauteur totale H de l'exutoire rectangulaire sera toujours supérieure de 10 % à h_p, avec un minimum de 50 mm.

5.4.1.2 Exutoire latéral circulaire

La capacité d'évacuation d'un exutoire latéral circulaire peut être déduite de la Figure 49 en fonction de la hauteur d'eau h_n au-dessus du point le plus bas de l'ouverture pour des tuyaux de diamètres nominaux DN 50, 75, 90, 110 et 125 et de la Figure 50 pour les tuyaux de diamètres nominaux DN 160 et 200.

Le diamètre minimal d'un exutoire latéral circulaire est DN50.

Figure 49: Capacité d'évacuation d'ouvertures circulaires dans une rive de toiture (DN50, DN75, DN90, DN110, DN125) en fonction de la hauteur d'eau h au-dessus du point le plus bas de l'ouverture

Figure 50 : Capacité d'évacuation d'ouvertures circulaires dans une rive de toiture (DN160, DN200) en fonction de la hauteur d'eau h au-dessus du point le plus bas de l'ouverture

5.4.2 Trop-plein (déversoir)

La hauteur totale d'un déversoir sera toujours supérieure de 10 % à h_p, avec un minimum de 50 mm ou un diamètre intérieur de DN50.

5.4.2.1 Déversoir rectangulaire

La capacité d'évacuation d'un déversoir rectangulaire peut être déduite de la Figure 47 ou du Tableau 11 en fonction de la hauteur d'eau h_p au-dessus du bord inférieur de l'ouverture, pour les largeurs L données. La largeur de l'exutoire latéral L peut, en fonction du débit Q calculé, être déduite de la Figure 48 en fonction des hauteurs d'eau h_p déclarées.

Pour d'autres largeurs et/ou hauteurs d'eau, on peut utiliser la méthode de dimensionnement détaillée.

5.4.2.2 Déversoir circulaire

La capacité d'évacuation d'un exutoire latéral circulaire peut être déduite de la Figure 49 en fonction de la hauteur d'eau h_p au-dessus du point le plus bas de l'ouverture pour les tuyaux de diamètres nominaux DN 50, 75, 90, 110 et 125 et de la Figure 50 pour les tuyaux de diamètres nominaux DN 160 et 200.

Le diamètre minimal d'un déversoir circulaire est DN50.

5.5 TUYAUX DE DESCENTE

Dans le cas de tubulures définies conformément à la Figure 45 (§ 5.2.1.5), une conduite verticale d'au moins 50 cm de longueur et de même diamètre est placée sous la tubulure et y est raccordée de façon étanche à l'air.

Dans le cas d'avaloirs conformes à la NBN EN 1253 et de tubulures calculées conformément à la NBN EN 12056-3, le tuyau de descente est dimensionné selon la Figure 52 ou le Tableau 12. Ce tableau donne le diamètre intérieur minimal exigé en fonction de la capacité du tuyau de descente.

Le Tableau 13 donne, pour un certain nombre de matériaux, le rapport entre le diamètre intérieur du tuyau de descente selon NBN EN 12056-3 et les diamètres (nominaux) correspondants dans les normes de produits des matériaux pouvant être utilisés.

Les dimensions intérieures minimales des tuyaux de descente sont de 50 mm de diamètre pour les descentes à section circulaire, de 50 mm de côté pour les descentes carrées et de 50 mm de petit côté pour les descentes rectangulaires. La capacité d'un tuyau de descente dépend de la surface de la section transversale et non de la forme de cette section. On suppose un degré de remplissage de 33 %.

Il va de soi que, dans le cas de chéneaux, les dimensions du tuyau de descente ne doivent pas dépasser la largeur du chéneau. En outre, il doit exister un espace suffisant entre le bord de l'ouverture d'évacuation et le côté d'un chéneau non semi-circulaire pour que la tubulure puisse être installée dans le chéneau.

Si les dimensions du tuyau de descente s'avèrent inférieures aux dimensions de l'ouverture d'évacuation, les dimensions du tuyau de descente sont adaptées à celles de l'ouverture. Dans le cas où l'ouverture d'évacuation est une tubulure, on peut éventuellement envisager de prévoir une tubulure conique (§ 3.3.1).

Si le tuyau de descente comporte un coude formant un angle inférieur à 10° par rapport à l'axe horizontal, la partie de la conduite présentant cette pente < 10° est calculée comme un (tuyau) collecteur avec un remplissage de 70 %.

Figure 51 : Calcul comme tuyau de descente (gauche) et calcul comme collecteur (droite)

Figure 52 : Capacité d'évacuation du tuyau de descente

diamètre	débit	diamètre	débit d'évacuation
intérieur du	d'évacuation	intérieur du	Q_{RWP} (1/s)
tuyau de	Q_{RWP} (1/s)	tuyau de	
descente d _i		descente d _i	
(mm)		(mm)	
50	1,7	140	26,3
55	2,2	150	31,6
60	2,7	160	37,5
65	3,4	170	44,1

70	4,1	180	51,4
75	5,0	190	59,3
80	5,9	200	68,0
85	6,9	220	87,7
90	8,1	240	110,6
95	9,3	260	137
100	10,7	280	166,9
110	13,8	300	200,6
120	17,4	> 300	Utiliser l'équation
130	21,6		Wyly-Eaton

Équation de Wyly-Eaton:

$$Q_{\text{RWP}} = 2.5 \cdot 10^{-4} \cdot k_{\text{b}}^{-0.167} \cdot d_{\text{l}}^{2.667} \cdot f^{1.667}$$

où:

Q_{RWP}: capacité du tuyau de descente (l/s)

κ_b : coefficient de rugosité en mm (admis : 0,25 mm)

d_i: diamètre intérieur du tuyau de descente (mm)

f: taux de remplissage du tuyau de descente, c'est-à-dire la proportion de la section transversale remplie d'eau (-)

Tableau 12 : Capacité d'évacuation de tuyaux de descente

NBN EN 12056-3	PVC-U NBN EN 12200-1	PE NBN EN 1519-1	métal NBN EN 612
ID_{min}	DN/OD	DN/OD	di
50	53	63	50
55	63	63	55
60	63	75	60
65	68	75	65
70	75	68	70
75	80	80	75
80	90	90	80
85	90	90	85
90	100	100	90
95	100	100	95
100	105	110	100
110	125	125	110
120	125	160	120
130	140	160	130
140	160	160	140
150	160	160	150
160		200	160
170		200	170
180		200	180

190	200	190
200	250	200
220	250	220
240	315	240
260	315	260
280	315	280
300	315	300

ID_{min} : diamètre intérieur

minimal

DN/OD : diamètre nominal =

diamètre extérieur d_i: diamètre intérieur

Tableau 13 : Rapport entre les diamètres intérieurs selon la NBN EN 12056-3 et les diamètres (nominaux) selon les normes de produits applicables aux tuyaux de descente

5.6 (TUYAU) COLLECTEUR

Le Tableau 14 donne la capacité d'évacuation de tuyaux collecteurs (§ 3.5) et de collecteurs (§ 3.7) en fonction du diamètre et de l'inclinaison. Une pente minimale de 0,50 cm/m est recommandée. À cet égard, on se base sur un taux de remplissage de 70 % dans la mesure où les eaux pluviales sont évacuées. La vitesse d'évacuation doit être de minimum 0,7 m/s. Le diamètre du collecteur ne peut pas être inférieur à celui des tuyaux d'évacuation qui y sont raccordés et ne peut jamais être inférieur à DN_{cal} 100. Au moment de choisir un tuyau d'un matériau déterminé, il faut toujours s'assurer que le diamètre intérieur soit plus grand ou égal à DN_{CAL} .

	Capacité d'évacuation du collecteur (I/s)							
	DN _{CAL} 100		DN _{CAL} 125		DN _{CAL} 150		DN_{CAL} 200	
Pente I (cm/m)	Q _{max} (I/s)	v (m/s)	Q _{max} (I/s)	v (m/s)	Q _{max} (I/s)	v (m/s)	Q _{max} (I/s)	v (m/s)
0,50	2,9	0,5	4,8	0,6	9,0	0,7	16,7	0,8
1,00	4,2	0,8	6,8	0,9	12,8	1,0	23,7	1,2
1,50	5,1	1,0	8,3	1,1	15,7	1,3	29,1	1,5
2,00	5,9	1,1	9,6	1,2	18,2	1,5	33,6	1,7
2,50	6,7	1,2	10,8	1,4	20,3	1,6	37,6	1,9
3,00	7,3	1,3	11,8	1,5	22,3	1,8	41,2	2,1
3,50	7,9	1,5	12,8	1,6	24,1	1,9	44,5	2,2
4,00	8,4	1,6	13,7	1,8	25,8	2,1	47,6	2,4
4,50	8,9	1,7	14,5	1,9	27,3	2,2	50,5	2,5
5,00	9,4	1,7	15,3	2,0	28,8	2,3	53,3	2,7
	Capacité c	d'évacuat	on de la co	nduite d'e	évacuation	horizonta	le (I/s)	
	DN_{CAL} 225		DN _{CAL} 250		DN _{CAL} 300			
Pente I	Q _{max}	V (m/s)	Q _{max}	V (m/s)	Q _{max}	V (m/s)		
(cm/m)	(I/s)	(m/s)	(I/s)	(m/s)	(I/s)	(m/s)		
0,50	26,5	0,9	31,6	1,0	56,8	1,1		
1,00	37,6	1,3	44,9	1,4	80,6	1,6		
1,50	46,2	1,6	55,0	1,7	98,8	2		
2,00	53,3	1,9	63,6	2,0	114,2	2,3		
2,50	59,7	2,1	71,1	2,2	127,7	2,6		

3,00	65,4	2,3	77,9	2,4	140,0	2,8
3,50	70,6	2,5	84,2	2,6	151,2	3
4,00	75,5	2,7	90,0	2,8	161,7	3,2
4,50	80,1	2,8	95,5	3,0	171,5	3,4
5,00	84,1	3,0	100,7	3,1	180,8	3,6

Tableau 14 : Capacité d'évacuation de tuyaux collecteurs et de collecteurs

Diamètre nominal	Diamètre intérieur minimum
DN	d i _{min} (mm)
30	26
40	34
50	44
56	49
60	56
70	68
80	75
90	79
100	96
125	113
150	146
200	184
225	207
250	230
300	290

Tableau 15 : Diamètre intérieur minimal par rapport au diamètre nominal DN (ou DN_{CAL})

5.7 DISPOSITIFS D'INSPECTION

Les chambres de visite (§ 3.8.1) et les regards de visite (§ 3.8.2) ne sont pas dimensionnés mais sont choisis en fonction du nombre de conduites à raccorder en amont et en aval.

Les dimensions minimales exigées des chambres de visite en fonction de leur accessibilité sont enregistrées dans la norme NBN EN 476 : voir le Tableau 16.

Chambres de visite				
Dimensions	Accessibilité			
Ø < 800 mm	contrôle et nettoyage des tuyaux possibles			
	chambre de visite pas accessible au personnel			
$800 \text{ mm} \le \emptyset < 1000$	chambre de visite uniquement accessible au			
mm	personnel équipé d'un harnais de sécurité			
$\emptyset \ge 1000 \text{ mm (*)}$	chambre de visite totalement accessible au			
	personnel			

Tableau 16 : Accessibilité des chambres de visite selon la NBN EN 476

6 MÉTHODE DE DIMENSIONNEMENT DÉTAILLÉE

6.1 INTRODUCTION

Le mode d'approche de la méthode de dimensionnement détaillée est identique à celui du § 4 (p. 22).

Cette annexe présente la méthode complète de calcul pour un certain nombre d'étapes du § 5 (Méthode de dimensionnement simplifiée), conformément à la norme NBN EN 12056-3.

6.2 CHÉNEAUX

Lors du calcul complet des chéneaux, on évalue la surface de la section utile du chéneau (§ 4.7). Celle-ci est d'abord calculée sans tenir compte d'un certain nombre de propriétés spécifiques du chéneau (longueur, pente, direction, profondeur, forme) puis ajustée à l'aide de facteurs (§ 6.9).

Pour les chéneaux horizontaux semi-circulaires et rectangulaires (dont la pente est inférieure ou égale à 3 mm/m), on peut recourir à la méthode de calcul simplifiée présentée au § **5.1**.

Le dimensionnement d'un chéneau intervient toujours par section de chéneau (voir également le point §4.5.1.1.). Lorsque différentes sections de chéneau sont raccordées les unes aux autres pour former un seul chéneau, on retient alors la surface utile la plus élevée, calculée pour la section transversale du chéneau.

6.2.1 Chéneau extérieur

6.2.1.1 Semi-circulaire

Soit, pour chaque élément de chéneau à section semi-circulaire :

$$Q = k_0 \times \frac{0.9 \times 2.78}{100000} \times A_E^{1.25} \times F_L \times F_R$$

(équation 1)

où

0,9 = facteur de sécurité (-)

Q = débit que la section de chéneau doit pouvoir évacuer = capacité d'évacuation de la section de chéneau (l/s)

A_E = surface utile de la section transversale du chéneau, voir le § 4.7 (mm²)

 F_L = facteur d'évacuation, voir le § 6.9.1 (-)

 F_R = facteur de réduction, voir le § 6.9.2 (-)

 k_0 = facteur hauteur à l'ouverture d'évacuation (-):

• 1 pour les ouvertures d'évacuation dont l'évacuation est libre

• 0,5 pour les ouvertures protégées par des crapaudines Le placement de crapaudines aux ouvertures d'évacuation réduit donc de moitié la capacité du chéneau : voir également la remarque 3 du § 6.3.1.1.

Méthode de travail:

1. Calculer la surface utile de la section transversale du chéneau sans tenir compte des propriétés spécifiques du chéneau, $A_{E(id\acute{e}al)}$. Dans un premier temps, on fait donc abstraction du facteur d'évacuation F_L et du facteur de réduction F_R .

Si
$$F_L = F_R = 1$$
, il en découle que (équation 1)

$$A_{E(id\acute{e}al)} = \left(\frac{100000 \times Q}{0.9 \times 2.78}\right)^{0.8} = 4801.43 \times Q^{0.8}$$

2. Choisir la forme de chéneau et calculer les dimensions pour cette forme, en tenant compte d' $A_{E(id\acute{e}al)}$ avec W* comme hauteur d'eau calculée.

Pour le calcul des surfaces et des dimensions des trois formes typiques de chéneaux semi-circulaires, on peut utiliser les formules du Tableau 17 avec $W=W^*$.

Surface demi cercle: $A_E = \pi \times \frac{r^2}{2}$ Surface rectangle + partie cercle : $A_E = \frac{\pi}{4} \times W^2 + S \times W$	$W = \sqrt{\frac{2 \times A_E}{\pi}}$ $T = 2 \times W$ $W = \frac{-S + \sqrt{S^2 + \pi \times A_E}}{\frac{\pi}{2}}$
Surface triangle + partie cercle : $A_E = \frac{\pi}{4} \times W^2 + \frac{W^2}{2}$	$W = \sqrt{\frac{4 \times A_E}{2 + \pi}}$

Tableau 17: Formes typiques de chéneaux semi-circulaires : calcul des dimensions

- 3. Calculer $\frac{L}{W^*}$ et déterminer le facteur d'évacuation F_L conformément au § 6.9.1.
- 4. Vérifier les changements de direction horizontaux dans la section de chéneau et choisir la valeur F_R conformément au § 6.9.2.

5. Calculer la surface utile de la section transversale du chéneau A_E de l'élément de chéneau semi-circulaire avec A_{E(idéal)}, F_L et F_R comme suit :

$$A_{E} = \frac{A_{E(id\acute{e}al)}}{F_{L}^{0,8} \times F_{R}^{0,8}}$$

6. Le Tableau 17 permet par exemple de calculer les dimensions de la surface utile définitive de la section transversale du chéneau en respectant les mêmes proportions largeur/hauteur que pour A_{E(idéal)}. Le chéneau choisi aura au moins ces dimensions.

6.2.1.2 Non semi-circulaire

Soit, pour un élément de chéneau à section non semi-circulaire :

$$Q = k_0 \times \frac{0.9 \times 3.48}{100000} \times A_E^{1,25} \times F_L \times F_R \times F_D \times F_S$$
 (équation 2)

où

0,9 = facteur de sécurité (-)

Q = capacité d'évacuation de la section de chéneau (1/s)

A_E = surface utile de la section transversale du chéneau, voir le § 4.7(mm²)

 F_L = facteur d'évacuation, voir le § 6.9.1 (-)

 F_R = facteur de réduction, voir le § 6.9.2 (-)

 F_D = facteur de profondeur, voir le § 6.9.3 (-)

 F_S = facteur de forme, voir le § 6.9.4 (-)

k₀ = facteur hauteur à l'ouverture d'évacuation (-) :

- 1 pour les ouvertures d'évacuation dont l'évacuation est libre
- 0,5 pour les ouvertures protégées par des crapaudines Le placement de crapaudines aux ouvertures d'évacuation réduit donc de moitié la capacité du chéneau : voir également la remarque 3 du § 6.3.1.1.

Méthode de travail:

1. Calculer la surface utile de la section transversale du chéneau sans tenir compte des propriétés spécifiques du chéneau, A_{E(idéal)}. Dans un premier temps, on fait donc abstraction du facteur d'évacuation F_L, du facteur de réduction F_R, du facteur de profondeur F_D et du facteur de forme F_S. Le chéneau est considéré comme un chéneau « idéal », la longueur du débit d'évacuation, la pente, le changement de direction, la profondeur et la forme n'ayant pas d'influence sur les performances du chéneau.

Si
$$F_L = F_R = F_D = F_S = 1$$
, il en découle que (équation 2)

$$A_E(id\acute{e}al) = \left(\frac{100000 \times Q_L}{0.9 \times 3.48}\right)^{0.8} = 4012 \times Q_L^{0.8}$$

2. Choisir la forme de chéneau et calculer les dimensions de la largeur de fond S et de la hauteur d'eau calculée W* de la section transversale utile du chéneau.

La règle générale suivante s'applique : plus la largeur de fond de chéneau retenue est grande en comparaison avec la hauteur d'eau calculée, plus le diamètre de l'ouverture d'évacuation sera élevé. Un faible niveau d'eau audessus du bord de l'ouverture d'évacuation entraîne en effet une pression d'eau moindre et donc une évacuation plus lente.

De préférence, choisir S de sorte que :

$$1,5.W^* \le S \le 3.W^*$$

Pour le calcul des surfaces et des dimensions des formes de chéneaux non semi-circulaires, on pourra utiliser les formules du Tableau 18 avec $W = W^*$.

Tableau 18 : Formes de chéneaux non semi-circulaires : calcul des dimensions

- 3. L, W*, T et S étant connus, on peut alors calculer les rapports $\frac{L}{W^*}$, $\frac{W}{T}$ et $\frac{S}{T}$. Déterminer ensuite les valeurs correspondantes pour les facteurs F_L , F_D et F_S conformément aux § 6.9.1, 6.9.3, 6.9.4.
- 4. Si la section de chéneau présente un changement de direction horizontal, il convient de prendre en compte un facteur de réduction F_R conformément au \S 6.9.2.

5. Calculer la surface utile de la section transversale du chéneau A_E de l'élément de chéneau non semi-circulaire avec $A_{E(id\acute{e}al)}$ comme suit :

$$A_{E} = \frac{A_{E(id\acute{e}al)}}{F_{L}^{0,8} \times F_{d}^{0,8} \times F_{s}^{0,8} \times F_{R}^{0,8}}$$

6. Le Tableau 18 permet par exemple de calculer les dimensions de la surface utile définitive de la section transversale du chéneau en respectant les mêmes proportions largeur/hauteur que pour $A_{E(id\acute{e}al)}$. Le chéneau choisi aura au moins ces dimensions.

6.2.2 Chéneau intérieur

Formule d'application pour un chéneau intérieur :

$$Q = k_0 \times \frac{0.9 \times 3.89}{100000} \times A_W^{1,25} \times F_L \times F_D \times F_S \times F_R$$
(équation 3)

où

0,9 = facteur de sécurité (-)

Q = capacité d'évacuation de la section de chéneau (l/s)

A_W = surface utile de la section transversale du chéneau, voir le § 4.7 (mm²)

 F_L = facteur d'évacuation, voir le § 6.9.1 (-)

 F_R = facteur de réduction, voir le § 6.9.2 (-)

 F_D = facteur de profondeur, voir le § 6.9.3 (-)

 F_S = facteur de forme, voir le § 6.9.4 (-)

 k_0 = facteur d'évacuation (-):

- 1 pour les ouvertures d'évacuation dont l'évacuation est libre
- 0,5 pour les ouvertures protégées par des crapaudines Le placement de crapaudines aux ouvertures d'évacuation réduit donc de moitié la capacité du chéneau : voir également la remarque 3 du § 6.3.1.1

Méthode de travail:

1. Calculer la surface utile de la section transversale du chéneau sans tenir compte des propriétés spécifiques du chéneau, A_{W(idéal)}. Dans un premier temps, on fait donc abstraction du facteur d'évacuation F_L, du facteur de réduction F_R, du facteur de profondeur F_D et du facteur de forme F_S. Le chéneau est considéré comme un chéneau « idéal », la longueur du débit d'évacuation, la pente, la profondeur et la forme n'ayant pas d'influence sur les performances du chéneau.

Si
$$F_L = F_R = F_D = F_S = 1$$
, il en découle que (équation 3)

$$A_W(id\acute{e}al) = \left(\frac{100000 \times Q_L}{0.9 \times 3.89}\right)^{0.8} = 3670 \times Q_L^{0.8}$$

2. Choisir la forme de chéneau et calculer les dimensions de la largeur de fond S et de la hauteur d'eau calculée W* de la section transversale utile du chéneau.

La règle générale suivante s'applique : plus la largeur de fond de chéneau retenue est grande en comparaison avec la hauteur d'eau calculée, plus le diamètre de l'ouverture d'évacuation sera élevé. Un faible niveau d'eau audessus du bord de l'ouverture d'évacuation entraîne en effet une pression d'eau moindre et donc une évacuation plus lente.

De préférence, choisir S de sorte que :

$$2 \times W^* \le S \le 3 \times W^*$$

Pour le calcul des surfaces et des dimensions des formes de chéneaux non semi-circulaires, on pourra utiliser les formules du Tableau 18 avec $W = W^*$.

- 3. L, W*, T et S étant connus, on peut alors calculer les rapports $\frac{L}{W^*}$, $\frac{W^*}{T}$ et $\frac{S}{T}$. Déterminer ensuite les valeurs correspondantes pour les facteurs F_L , F_D et F_S conformément aux § 6.9.1, 6.9.3, 6.9.4.
- 4. Calculer la surface utile de la section transversale du chéneau A_W de l'élément de chéneau intérieur avec A_{W(idéal)} comme suit :

$$A_{W} = \frac{A_{W(id\acute{e}al)}}{F_{L}^{0,8} \times F_{R}^{0,8} \times F_{D}^{0,8} \times F_{S}^{0,8}}$$

5. Le Tableau 18 permet de calculer la surface utile définitive de la section transversale du chéneau en respectant les mêmes proportions largeur/hauteur que pour $A_{W(id\acute{e}al)}$. La largeur de la section transversale A_W correspond à la largeur minimale du chéneau choisi. Z=0,3 x W^* représente la hauteur minimale du chéneau.

Remarque

En principe, les chéneaux intérieurs peuvent aussi bien être des chéneaux semicirculaires que non semi-circulaires. Cependant, en termes de technique de construction, les chéneaux intérieurs semi-circulaires sont plus difficiles à construire. Dans ce document, on se base sur des chéneaux intérieurs non semi-circulaires à fond plat.

6.3.1 Fonctionnement normal

Le diamètre de la tubulure est calculé en fonction du débit à évacuer (sur la base d'une intensité pluviométrique r_n – voir le § 4.2.1.2) et pour une hauteur donnée $h = h_n$.

6.3.1.1 Evacuation sans boîte collectrice

La section de la tubulure peut être circulaire ou rectangulaire.

L'écoulement au droit de cette ouverture varie selon que la hauteur d'eau au-dessus de l'ouverture d'évacuation augmente ou diminue.

Lorsque de l'eau afflue à l'entrée d'une ouverture d'évacuation, elle atteint un niveau h par rapport au bord de l'ouverture. A partir d'une certaine valeur de h, il s'établit dans l'orifice un **écoulement par déversoir**. Dans ce cas, un noyau central d'air se trouve dans la tubulure. Plus on augmente le débit à évacuer et donc le niveau d'eau h, plus le noyau central d'air diminuera jusqu'à atteindre une plus petite section.

À ce moment-là, la section de ce noyau d'air peut à nouveau augmenter pour atteindre finalement un niveau maximum avant de redescendre subitement et de disparaître complètement. L'ouverture d'évacuation se remplit alors et le régime d'écoulement change : l'écoulement par déversoir laisse place à un écoulement par conduite en charge. Il n'y a plus d'air dans la conduite et un nouvel accroissement du débit entraînera une forte augmentation du niveau d'eau au-dessus de l'ouverture d'évacuation.

Dans un système à écoulement libre, le passage d'un écoulement par déversoir à un écoulement par conduite en charge se fait généralement par le biais d'un **écoulement par orifice** : cet écoulement est très probable lorsque le raccordement entre l'ouverture d'évacuation et le tuyau de descente n'a pas été réalisé de façon totalement étanche à l'air.

L'écoulement par conduite en charge n'est pas souhaitable et doit être évité en cas d'écoulement libre. C'est pourquoi le dimensionnement des ouvertures d'évacuation ne tient compte que d'un écoulement par déversoir et d'un écoulement par orifice.

Le diamètre D est calculé au Tableau 19 selon les deux méthodes. Le résultat correct est celui qui répond à la condition supplémentaire dans le tableau ($h \le D/2$ ou h > D/2).

Les dimensions de la tubulure ne peuvent être calculées de cette manière que si la tubulure est placée dans un chéneau non semi-circulaire. Dans le cas de chéneaux semi-circulaires, il convient de se référer à la méthode de dimensionnement simplifiée : § 5.2.1.3. Dans le cas de chéneaux semi-circulaires, le rapport entre le diamètre et la capacité de la tubulure peut aussi être calculé par voie d'essai, conformément à l'annexe A de la NBN EN 12056-3.

Tubulures circulaires	Tubulures rectangulaires
Ecoulement par	r déversoir
$D = \frac{7500 \times Q}{k_0 \times h^{1.5}}$	$L_W = \frac{24000 \times Q}{k_0 \times h^{1.5}}$
$si h \leq \frac{D}{2}$	$\sin h \le \frac{2A_0}{L_W}$
Écoulement p	ar orifice
$D = \sqrt{\frac{15000 \times Q}{k_0 \times h^{0.5}}}$	$A_0 = \frac{12000 \times Q}{k_0 \times h^{0.5}}$
$\sin h > \frac{D}{2}$	$\sin h > \frac{2A_0}{L_W}$

Avec:

Q = capacité d'évacuation de la tubulure (l/s)

D = diamètre effectif de la tubulure (voir la Figure 53) (mm)

h = hauteur d'eau à l'ouverture d'évacuation/au-dessus du bord de l'ouverture d'évacuation (mm)

 k_0 = coefficient d'évacuation (-)

- $k_0 = 1$ pour les ouvertures d'évacuation dont l'évacuation est libre
- k₀ = 0,5 pour les ouvertures d'évacuation protégées par des crapaudines
 Le placement de crapaudines aux ouvertures d'évacuation réduit donc de moitié la capacité de la tubulure : voir également la remarque 3 du § 5.1.

 L_W = longueur du bord sur lequel l'eau s'écoule, en l'occurrence la circonférence de la tubulure

 A_0 = surface de la section horizontale de la tubulure (mm²)

Remarque

Dans le cas d'une toiture plate comportant une couche de lestage, lorsque l'on place un garde-gravier autour de l'ouverture d'évacuation, la capacité de cette ouverture peut être supérieure au débit évacué par le biais de ce garde-gravier. À cette fin, il convient également d'envisager l'application d'un coefficient d'évacuation k₀ (voir ci-dessus).

Tableau 19

Le rapport entre la hauteur d'eau h_n à l'ouverture d'évacuation et la hauteur d'eau calculée W dans le chéneau est donné au \S 6.9.5.

Figure 53 : Diamètre effectif D pour les 3 types de tubulures conformément au § 3.3.1

6.3.1.2 Évacuation à partir d'une boîte collectrice

Quand la transition entre le chéneau et le tuyau de descente passe par une boîte collectrice rectangulaire, il convient de suivre les recommandations de la norme britannique BS EN 12056-3 (boîte collectrice = box-receiver = slump).

Dimensions of box-receivers need to be large enough to allow the flow to discharge freely from the gutter to which it is connected. Typical designs for box-receivers are given in Figure 11.

The minimum width of the box should be not less than the width of flow in the gutter at a depth equal to half the overall depth of gutter, Z. If flow enters the box-receiver from only one direction, the length of the box in the direction of flow should be not less than 0.75 W. If the flow enters from opposite directions, the length of the box should be not less than 1.5 W. The top of the box should be level with the top of the gutter except where the box is external to the building, when the outer edge of the box may be lowered to act as an emergency overflow.

NE.2.10.6 Design of sumps. The procedure given in a) to f) below may be used to determine the recommended dimensions of sump.

- a) Locate the position of the sump and calculate the effective catchment area that it drains.
 Where possible, the sump should be placed centrally.
- b) Choose the design rate of rainfall (see national annex NB) and calculate the total rate of runoff, Q, (in l/s) assuming that the roof is impermeable.
- c) Select the design depth of water on the roof and use Figure 12 to calculate the perimeter of the sump, which may be taken as the length of weir, L_w, needed for Q.
- d) Using Table 7, select a suitable outlet to drain the sump and calculate the head of water, h, in the sump.
- e) The depth of sump above the level of the outlet should be at least h + 25 mm.
- f) Use Table 8 to calculate the minimum size of rainwater pipe.

above: Sump at end of valley gutter or parapet outlet below: Sump in valley gutter

Figure 11 - Box receivers or sumps

a Flow per 100 mm length of weir (I/s)

b Head (mm)

$$Q_{W} = \frac{L_{W} \cdot h^{1.5}}{24000}$$

where

 L_W = length of weir, mm; h = head over weir, mm;Qw = flow rate over weir, I/s.

Figure 12 — Flow over sharp-edged weirs

6.3.2 Trop-plein

Le diamètre de la tubulure est calculé en fonction du débit à évacuer (sur la base d'une intensité pluviométrique r_p – voir le § 4.2.1.3) et de la hauteur d'eau maximale h_{max} sur la toiture, pour une hauteur h_n donnée.

Dimensionnement : voir le § 6.3.1.1.

6.4 AVALOIR

La méthode de dimensionnement simplifiée est applicable : voir le § 5.3.

6.5 EXUTOIRE LATÉRAL

6.5.1 Fonctionnement normal

6.5.1.1 Exutoire latéral rectangulaire

La largeur L_s de l'exutoire latéral est donnée par la formule :

$$L_S = \frac{24000 \times Q}{h^{0.5}}$$

où:

L_s = longueur du bord inférieur de l'exutoire dans lequel l'eau s'écoule, c'est-àdire la largeur de l'exutoire latéral (mm)

h = h_n = hauteur d'eau entre le bord inférieur de l'exutoire latéral et le point de déversement

Q = débit à évacuer par l'exutoire latéral (l/s).

La hauteur totale H de l'exutoire latéral sera toujours supérieure de 10 % à h_p, avec un minimum de 75 mm.

6.5.1.2 Exutoire latéral circulaire

Voir la méthode de dimensionnement simplifiée au § 5.4.1.2

6.5.2 Trop-plein

Le diamètre du déversoir est calculé en fonction du débit à évacuer (sur la base d'une intensité pluviométrique r_p – voir le § 4.2.1.3) et de la hauteur d'eau maximale h_{max} sur la toiture, pour une hauteur h_n donnée.

Dimensionnement : voir le § 6.5.1.

6.6 TUYAU DE DESCENTE

La méthode de dimensionnement simplifiée est applicable : voir le § 5.5.

6.7 (TUYAU) COLLECTEUR

La méthode de dimensionnement simplifiée est applicable : voir le § 5.6.

Les capacités d'évacuation mentionnées dans le Tableau 14 ont été calculées à l'aide de la formule de Colebrook-White. La formule simplifiée suivante peut éventuellement être utilisée pour obtenir d'autres diamètres/capacités d'évacuation :

$$V = -2.(2.g.D.s)^{0.5}.\log\left(\frac{k}{3.7.D} + \frac{2.5.\nu}{D.(2.g.D.s)^{0.5}}\right)$$

Où:

V = vitesse de l'eau (m/s)

D = diamètre intérieur de la conduite (m)

g = accélération due à la pesanteur = 9,81 m/s²

s = inclinaison de la conduite (m/m)

k = coefficient de rugosité (ici : 1,0 mm)

 ν = viscosité cinématique de l'eau (m²/s) (ici : 1,31.10⁻⁶ m²/s)

6.8 DISPOSITIFS D'INSPECTION

La méthode de dimensionnement simplifiée est applicable : voir le § 5.7.

6.9 FACTEURS

Un certain nombre de caractéristiques du chéneau comme la longueur, la pente, le sens, la forme et la profondeur sont prises en compte lors du dimensionnement détaillé.

Un facteur d'évacuation est pris en considération pour tenir compte de la longueur et de la pente du chéneau.

Dans le cas de chéneaux, il convient également de tenir compte de l'influence du facteur de réduction F_R. Celui-ci tient compte des éventuels changements de direction du chéneau.

Si un chéneau est plutôt haut que large, l'eau pourra être évacuée plus rapidement. La pression de l'eau au-dessus de(s) (l') ouverture(s) d'évacuation augmente en effet en cas de hauteur d'eau plus élevée dans le chéneau. De surcroît, dans le cas de chéneaux semi-circulaires, l'eau s'écoule plus facilement que dans le cas de chéneaux non semi-circulaires dans la mesure où le rapport entre la hauteur du chéneau et la superficie du matériau par lequel l'eau s'écoule dans ces chéneaux est le plus élevé.

Pour prendre en compte la forme non optimale des chéneaux non semi-circulaires, on recourt à un facteur de profondeur F_D et un facteur de forme F_S .

Enfin, la hauteur d'eau au-dessus de l'ouverture d'évacuation d'une tubulure dans un chéneau ou sur une toiture plate peut être calculée en multipliant la hauteur d'eau calculée – appelée W dans le cas d'un chéneau et h_{max} dans le cas d'une toiture plate – par le facteur hauteur à l'ouverture d'évacuation F_H .

6.9.1 Facteur d'évacuation F_L

Le facteur d'évacuation F_L est fonction de $\frac{L}{W}$, L étant la longueur d'évacuation. Ce facteur est choisi dans le Tableau 20 si $L > 50 \times W$. Dans le cas où $L \le 50 \times W$, $F_L = 1$.

Dans le cas d'un chéneau de 16 m comportant un tuyau de descente à l'extrémité du chéneau, la longueur d'évacuation est égale à 16 m. Dans le cas d'un chéneau de 16 m comportant un tuyau de descente en son milieu, nous sommes en présence de 2 longueurs d'évacuation de L=8 m. Si le chéneau comporte 3 tuyaux de descente dont un en son milieu et deux aux extrémités du chéneau, ce dernier comporte 4 longueurs d'évacuation et donc L=4 m.

Lors de son dimensionnement, le chéneau sera considéré comme un chéneau horizontal si la pente est inférieure à 3 mm/m. Il est toujours plus sûr de concevoir le chéneau sans pente si l'on n'est pas certain que la pente souhaitable pourra être réalisée.

Facteur d	Facteur d'évacuation F_L							
L/W	sans pente : de 0 à 3 mm/m	pente de 4 mm/m	pente de 6 mm/m	pente de 8 mm/m	pente de 10 mm/m			
50	1,00	1,00	1,00	1,00	1,00			
75	0,97	1,02	1,04	1,07	1,09			
100	0,93	1,03	1,08	1,13	1,18			
125	0,90	1,05	1,12	1,20	1,27			
150	0,86	1,07	1,17	1,27	1,37			
175	0,83	1,08	1,21	1,33	1,46			
200	0,80	1,10	1,25	1,40	1,55			
225	0,78	1,10	1,25	1,40	1,55			
250	0,77	1,10	1,25	1,40	1,55			
275	0,75	1,10	1,25	1,40	1,55			
300	0,73	1,10	1,25	1,40	1,55			
325	0,72	1,10	1,25	1,40	1,55			
350	0,70	1,10	1,25	1,40	1,55			
375	0,68	1,10	1,25	1,40	1,55			
400	0,67	1,10	1,25	1,40	1,55			
425	0,65	1,10	1,25	1,40	1,55			
450	0,63	1,10	1,25	1,40	1,55			
475	0,62	1,10	1,25	1,40	1,55			
500	0,60	1,10	1,25	1,40	1,55			

Tableau 20 : Facteur d'évacuation \mathcal{F}_L en fonction de la longueur et de la pente

6.9.2 Facteur de réduction F_R

Dans le cas de chéneaux extérieurs, il y a lieu de prendre en compte un facteur de réduction F_R de 0,85 lorsque le chéneau présente un angle de 10° ou plus dans le plan horizontal. F_R Dans les autres cas, F_R est égal à 1.

Figure 54 : Angle extérieur (1) et angle intérieur (2)

6.9.3 Facteur de profondeur F_D

Le facteur de profondeur F_D est déduit comme suit du rapport entre la hauteur d'eau calculée W et la largeur du côté supérieur du chéneau T:

$$F_{\rm D} = \left(\frac{W}{T}\right)^{0.25}$$

La Figure 55 et le Tableau 21 présentent les valeurs pour F_D.

Figure 55 : Facteur de profondeur F_D en fonction du rapport $\frac{W}{T}$

W/T	$\mathbf{F_d}$	W/T	$\mathbf{F_d}$	W/T	$\mathbf{F_d}$	W/T	$\mathbf{F_d}$
0,00	0,000	0,75	0,931	1,50	1,107	2,25	1,225
0,01	0,316	0,76	0,934	1,51	1,109	2,26	1,226
0,02	0,376	0,77	0,937	1,52	1,110	2,27	1,227

0,03	0,416	0,78	0,940	1,53	1,112	2,28	1,229
0,03	0,410	0,78	0,943	1,54	1,114	2,29	1,230
0,05	0,473	0,80	0,946	1,55	1,116	2,30	1,231
0,06	0,495	0,81	0,949	1,56	1,118	2,31	1,233
0,07	0,514	0,82	0,952	1,57	1,119	2,32	1,234
0,08	0,532	0,83	0,954	1,58	1,121	2,33	1,235
0,09	0,548	0,84	0,957	1,59	1,123	2,34	1,237
0,10	0,562	0,85	0,960	1,60	1,125	2,35	1,238
0,11	0,576	0,86	0,963	1,61	1,126	2,36	1,239
0,12	0,589	0,87	0,966	1,62	1,128	2,37	1,241
0,13	0,600	0,88	0,969	1,63	1,130	2,38	1,242
0,14	0,612	0,89	0,971	1,64	1,132	2,39	1,243
0,15	0,622	0,90	0,974	1,65	1,133	2,40	1,245
0,16	0,632	0,91	0,977	1,66	1,135	2,41	1,246
0,17	0,642	0,92	0,979	1,67	1,137	2,42	1,247
0,18	0,651	0,93	0,982	1,68	1,138	2,43	1,249
0,19	0,660	0,94	0,985	1,69	1,140	2,44	1,250
0,20	0,669	0,95	0,987	1,70	1,142	2,45	1,251
0,21	0,677	0,96	0,990	1,71	1,144	2,46	1,252
0,22	0,685	0,97	0,992	1,72	1,145	2,47	1,254
0,23	0,693	0,98	0,995	1,73	1,147	2,48	1,255
0,24	0,700	0,99	0,997	1,74	1,149	2,49	1,256
0,25	0,707	1,00	1,000	1,75	1,150	2,50	1,257
0,26	0,714	1,01	1,002	1,76	1,152	2,51	1,259
0,27	0,721	1,02	1,005	1,77	1,153	2,52	1,260
0,28	0,727	1,03	1,007	1,78	1,155	2,53	1,261
0,29	0,734	1,04	1,010	1,79	1,157	2,54	1,262
0,30	0,740	1,05	1,012	1,80	1,158	2,55	1,264
0,31	0,746	1,06	1,015	1,81 1,82	1,160 1,161	2,56 2,57	1,265 1,266
0,32	0,758	1,07	1,017	1,83	1,163	2,58	1,267
0,34	0,764	1,09	1,022	1,84	1,165	2,59	1,269
0,35	0,769	1,10	1,024	1,85	1,166	2,60	1,270
0,36	0,775	1,11	1,026	1,86	1,168	2,61	1,271
0,37	0,780	1,12	1,029	1,87	1,169	2,62	1,272
0,38	0,785	1,13	1,031	1,88	1,171	2,63	1,273
0,39	0,790	1,14	1,033	1,89	1,173	2,64	1,275
0,40	0,795	1,15	1,036	1,90	1,174	2,65	1,276
0,41	0,800	1,16	1,038	1,91	1,176	2,66	1,277
0,42	0,805	1,17	1,040	1,92	1,177	2,67	1,278
0,43	0,810	1,18	1,042	1,93	1,179	2,68	1,279
0,44	0,814	1,19	1,044	1,94	1,180	2,69	1,281
0,45	0,819	1,20	1,047	1,95	1,182	2,70	1,282
0,46	0,824	1,21	1,049	1,96	1,183	2,71	1,283
0,47	0,828	1,22	1,051	1,97	1,185	2,72	1,284
0,48	0,832	1,23	1,053	1,98	1,186	2,73	1,285
0,49	0,837	1,24	1,055	1,99	1,188	2,74	1,287

0,50	0,841	1,25	1,057	2,00	1,189	2,75	1,288
0,51	0,845	1,26	1,059	2,01	1,191	2,76	1,289
0,52	0,849	1,27	1,062	2,02	1,192	2,77	1,290
0,53	0,853	1,28	1,064	2,03	1,194	2,78	1,291
0,54	0,857	1,29	1,066	2,04	1,195	2,79	1,292
0,55	0,861	1,30	1,068	2,05	1,197	2,80	1,294
0,56	0,865	1,31	1,070	2,06	1,198	2,81	1,295
0,57	0,869	1,32	1,072	2,07	1,199	2,82	1,296
0,58	0,873	1,33	1,074	2,08	1,201	2,83	1,297
0,59	0,876	1,34	1,076	2,09	1,202	2,84	1,298
0,60	0,880	1,35	1,078	2,10	1,204	2,85	1,299
0,61	0,884	1,36	1,080	2,11	1,205	2,86	1,300
0,62	0,887	1,37	1,082	2,12	1,207	2,87	1,302
0,63	0,891	1,38	1,084	2,13	1,208	2,88	1,303
0,64	0,894	1,39	1,086	2,14	1,209	2,89	1,304
0,65	0,898	1,40	1,088	2,15	1,211	2,90	1,305
0,66	0,901	1,41	1,090	2,16	1,212	2,91	1,306
0,67	0,905	1,42	1,092	2,17	1,214	2,92	1,307
0,68	0,908	1,43	1,094	2,18	1,215	2,93	1,308
0,69	0,911	1,44	1,095	2,19	1,216	2,94	1,309
0,70	0,915	1,45	1,097	2,20	1,218	2,95	1,311
0,71	0,918	1,46	1,099	2,21	1,219	2,96	1,312
0,72	0,921	1,47	1,101	2,22	1,221	2,97	1,313
0,73	0,924	1,48	1,103	2,23	1,222	2,98	1,314
0,74	0,927	1,49	1,105	2,24	1,223	2,99	1,315
						3,00	1,316

Tableau 21 : Facteur de profondeur F_D en fonction du rapport $rac{W}{T}$

6.9.4 Facteur de forme F_S

Le facteur de forme F_S est un facteur de perte qui n'est pris en compte que dans le cas de chéneaux non semi-circulaires. F_S est déduit comme suit du rapport entre la largeur S du fond et la largeur T du côté supérieur du chéneau :

largeur S du fond et la largeur T du côté supérieur du chéneau :
$$F_S = -0.0612 \times \left(\frac{S}{T}\right)^4 + 0.1832 \times \left(\frac{S}{T}\right)^3 - 0.2705 \times \left(\frac{S}{T}\right)^2 + 0.2581 \times \left(\frac{S}{T}\right) + 0.8903$$

Figure 56 : Facteur de forme F_S en fonction de $\frac{S}{T}$

S/T	$\mathbf{F_s}$	S/T	$\mathbf{F_s}$	S/T	F _s	S/T	$\mathbf{F_s}$
0,00	0,890	0,26	0,942	0,52	0,973	0,78	0,991
0,01	0,893	0,27	0,944	0,53	0,974	0,79	0,992
0,02	0,895	0,28	0,945	0,54	0,974	0,80	0,992
0,03	0,898	0,29	0,946	0,55	0,975	0,81	0,993
0,04	0,900	0,30	0,948	0,56	0,976	0,82	0,993
0,05	0,903	0,31	0,949	0,57	0,977	0,83	0,994
0,06	0,905	0,32	0,951	0,58	0,978	0,84	0,994
0,07	0,907	0,33	0,952	0,59	0,979	0,85	0,995
0,08	0,909	0,34	0,953	0,60	0,979	0,86	0,995
0,09	0,911	0,35	0,954	0,61	0,980	0,87	0,996
0,10	0,914	0,36	0,956	0,62	0,981	0,88	0,996
0,11	0,916	0,37	0,957	0,63	0,982	0,89	0,996
0,12	0,918	0,38	0,958	0,64	0,982	0,90	0,997
0,13	0,920	0,39	0,959	0,65	0,983	0,91	0,997
0,14	0,922	0,40	0,960	0,66	0,984	0,92	0,998
0,15	0,924	0,41	0,962	0,67	0,985	0,93	0,998
0,16	0,925	0,42	0,963	0,68	0,985	0,94	0,998
0,17	0,927	0,43	0,964	0,69	0,986	0,95	0,999
0,18	0,929	0,44	0,965	0,70	0,987	0,96	0,999
0,19	0,931	0,45	0,966	0,71	0,987	0,97	0,999
0,20	0,932	0,46	0,967	0,72	0,988	0,98	0,999
0,21	0,934	0,47	0,968	0,73	0,988	0,99	1,000
0,22	0,936	0,48	0,969	0,74	0,989	1,00	1,000
0,23	0,937	0,49	0,970	0,75	0,990		
0,24	0,939	0,50	0,971	0,76	0,990		
0,25	0,941	0,51	0,972	0,77	0,991		

Tableau 22 : Facteur de forme $F_{\mathcal{S}}$ en fonction de $\frac{\mathcal{S}}{T}$

6.9.5 Facteur hauteur à l'ouverture d'évacuation F_H

Le facteur F_H permet de calculer la hauteur d'eau au-dessus d'une ouverture d'évacuation à partir de la hauteur d'eau calculée pour le chéneau (W). F_H est déduit du rapport entre la largeur S du fond du chéneau et la largeur T du côté supérieur du chéneau, soit :

$$F_{\rm H} = 0.1766 \times \left(\frac{S}{T}\right)^2 - 0.3498 \times \left(\frac{S}{T}\right) + 0.6458$$

L'endroit où la hauteur d'eau est la plus élevée dépend de la pente du chéneau :

- c. En l'absence de pente, la hauteur d'eau la plus élevée se situe au point le plus éloigné de l'ouverture d'évacuation : voir la Figure 57.
- d. En présence d'une pente, la hauteur d'eau la plus élevée se situe tout près du bord de l'ouverture d'évacuation.

Le facteur F_H se calcule à l'aide de la formule suivante :

$$h_n = F_H \times W$$

La Figure 58 et le Tableau 23 présentent les valeurs pour F_H en fonction de $\frac{s}{\tau}$.

Figure 57 : W le plus éloigné du point d'évacuation en cas de chéneau horizontal

Remarque

- Il est plus sûr de procéder aux calculs comme s'il n'y avait pas de pente.
- En cas de chéneau rectangulaire, nous avons S = T et $h_n = 0.47 \times W$.

Figure 58 : F_H en fonction de S/T dans le cas de chéneaux non semi-circulaires

S/T	Fh	S/T	Fh	S/T	F _h	S/T	$\mathbf{F_h}$
0,00	0,646	0,26	0,567	0,52	0,512	0,78	0,480
0,00	0,642	0,20	0,564	0,53	0,512	0,78	0,480
0,02	0,639	0,28	0,562	0,54	0,508	0,80	0,479
0,03	0,635	0,29	0,559	0,55	0,507	0,81	0,478
0,04	0,632	0,30	0,557	0,56	0,505	0,82	0,478
0,05	0,629	0,31	0,554	0,57	0,504	0,83	0,477
0,06	0,625	0,32	0,552	0,58	0,502	0,84	0,477
0,07	0,622	0,33	0,550	0,59	0,501	0,85	0,476
0,08	0,619	0,34	0,547	0,60	0,499	0,86	0,476
0,09	0,616	0,35	0,545	0,61	0,498	0,87	0,475
0,10	0,613	0,36	0,543	0,62	0,497	0,88	0,475
0,11	0,609	0,37	0,541	0,63	0,496	0,89	0,474
0,12	0,606	0,38	0,538	0,64	0,494	0,90	0,474
0,13	0,603	0,39	0,536	0,65	0,493	0,91	0,474
0,14	0,600	0,40	0,534	0,66	0,492	0,92	0,473
0,15	0,597	0,41	0,532	0,67	0,491	0,93	0,473
0,16	0,594	0,42	0,530	0,68	0,490	0,94	0,473
0,17	0,591	0,43	0,528	0,69	0,489	0,95	0,473
0,18	0,589	0,44	0,526	0,70	0,487	0,96	0,473
0,19	0,586	0,45	0,524	0,71	0,486	0,97	0,473
0,20	0,583	0,46	0,522	0,72	0,485	0,98	0,473
0,21	0,580	0,47	0,520	0,73	0,485	0,99	0,473
0,22	0,577	0,48	0,519	0,74	0,484	1,00	0,473
0,23	0,575	0,49	0,517	0,75	0,483		
0,24	0,572	0,50	0,515	0,76	0,482		
0,25	0,569	0,51	0,513	0,77	0,481		

Tableau 23 : F_H en fonction de S/T dans le cas de chéneaux à fond plat

ANNEXES

7 ANNEXE I - EXEMPLES

7.1 INTRODUCTION

Voici 3 exemples illustrant le dimensionnement détaillé d'installations d'évacuation d'eaux pluviales conformément à la norme NBN EN 12056-3. Le premier exemple concerne le dimensionnement de chéneaux extérieurs, le deuxième exemple concerne un chéneau intérieur et le troisième des ouvertures d'évacuation sur une toiture plate.

Les éléments de l'installation d'évacuation des eaux pluviales sont dimensionnés par partie de toiture conformément au plan par étapes du § 4.1 « Dimensionnement en plusieurs étapes ».

Ci-dessous, les calculs sont commentés étape par étape pour chaque exemple.

7.2 EXEMPLE 1 : ÉVACUATION D'EAUX PLUVIALES PAR DES CHÉNEAUX EXTÉRIEURS

7.2.1 Description

Pour une habitation traditionnelle isolée en forme de L présentant 5 versants de toiture, il y a lieu de calculer aussi bien les chéneaux extérieurs et les ouvertures d'évacuation de ces chéneaux que les tuyaux de descente et les collecteurs. Une vue aérienne avec les dimensions est présentée à la Figure 59.

Figure 59 : Habitation isolée en forme de L

7.2.2 Calcul du débit d'évacuation

Le Tableau 24 présente les surfaces réceptrices de toiture des 5 versants de l'habitation ainsi que leurs dimensions et le débit d'évacuation Q s'écoulant de chaque versant. Ce débit d'évacuation est établi par la formule :

$$Q = r_n \times A \times C$$

avec $r_n = 0.05 \text{ l/s.m}^2$ et A la surface réceptrice de toiture du versant respectif.

Surface		
réceptrice	$A (m^2)$	Q(1/s)
A1	72	3,6
A2	48	2,4
A3	8	0,4
A4	32	1,6
A5	32	1,6

Tableau 24

Les eaux pluviales s'écoulant des versants de toiture 2 et 5 vont être évacuées par le même chéneau. Il en va de même pour les versants 3 et 4. Les versants 2 et 5 et les versants 3 et 4 constituent donc chaque fois une partie de toiture. Par conséquent, 3 chéneaux doivent être dimensionnés : voir le Tableau 25 et la Figure 60.

Dé	Débit d'évacuation par partie de toiture :											
Surface réceptrice (m²) Chéneau Débit à évacuer (
		raccordé:	(1/s):									
A1	72	1	3,6									
A2 + A5	80	2	4									
A3 + A4	40	3	2									

Tableau 25

Figure 60

7.2.3 Dimensionnement des chéneaux extérieurs

Afin de pouvoir calculer la section transversale des chéneaux extérieurs devant évacuer l'eau d'une averse normale, il y a lieu d'effectuer les choix de conception suivants :

- L'emplacement des tuyaux de descente : voir le choix à la Figure 61
- La forme des chéneaux : chéneaux semi-circulaires

Il convient de calculer 5 fois la surface de la section transversale du chéneau :

- o pour les 2 sections du chéneau 1
- o pour les 2 sections du chéneau 2
- o pour le chéneau 3,

les 2 sections des chéneaux 1 et 2 devant chaque fois évacuer la moitié du débit d'évacuation, c'est-à-dire la moitié de 3,6 l/s pour le chéneau 1 et la moitié de 4 l/s pour le chéneau 2.

Dans la mesure où le chéneau 1 est divisé en 2 sections de chéneau identiques, un seul calcul suffira

Dans le cas du chéneau 2, l'une des deux sections comporte un angle de 90 $^{\circ}$: comme il y a lieu de prendre en compte un facteur de réduction F_R , cette section de chéneau aura une section transversale différente (plus grande) que la section droite, ce qui sera déterminant pour les dimensions du chéneau concerné.

Dans un premier temps, la surface de la section de chéneau est toujours calculée dans des conditions « idéales », donc sans tenir compte des caractéristiques qui pourraient compliquer l'évacuation des eaux pluviales :

$$A_{E(id\acute{e}al)} = \left(\frac{100000 \times Q_L}{0.9 \times 2.78}\right)^{0.8}$$

À partir d' $A_{E(id\acute{e}al)}$, on peut ensuite calculer comme suit la hauteur d'eau calculée W* provisoire :

$$W^* = \sqrt{\frac{2 \times A_{E(id\acute{e}al)}}{\pi}}$$

À ce stade, on dispose de suffisamment d'informations pour déterminer le coefficient d'évacuation F_L, que l'on déduit du rapport L/W*.

Le facteur de réduction F_R est de 0,85 si la section de chéneau considérée présente un changement de direction de plus de 10° , ce qui est le cas de la deuxième section du chéneau 2. Dans les autres cas, F_R est égal à 1.

La surface de la section transversale idéale du chéneau peut être corrigée à l'aide de F_L et de F_R :

$$A_{E} = \frac{A_{E(id\acute{e}al)}}{F_{L}^{0,8} \times F_{R}^{0,8}}$$

La hauteur d'eau calculée W correspondant à A_E est finalement :

$$W = \sqrt{\frac{2 \times A_E}{\pi}}$$

Les résultats des calculs sont repris dans le Tableau 26.

Sections de chéneau	Q (I/s) partie de	Q (I/s) sectio n de chéne	1	A _E (idéal)	w*				AF	w
calculées :	toiture	au	(mm)	(cm ²)	(mm)	L/W	FL	F _R	(cm²)	(mm)
section de chéneau 1 = section de chéneau 2 = moitié										
du chéneau 1	3.6	1.8	9000	77	70	129	0.88	1.0	85	74
section de chéneau 3 = moitié du chéneau 2 (sans angle)	4	2.0	8000	84	73	110	0.94	1.00	88	75
section de chéneau 4 = moitié du chéneau 2 (avec angle)		2.0	8000	84	73	110	0.94	0.85	100	80
section de chéneau 5 = chéneau 3	2	2.0	6000	84	73	82	0.95	1.0	87	74

Tableau 26

Les surfaces minimales des sections transversales des sections de chéneau correspondantes s'établissent à 85, 88, 100 et 87 cm². Dans la mesure où une moitié du chéneau 2 doit mesurer au moins 88 cm² et l'autre moitié 100 cm², la section transversale du chéneau 2 sera de 100 cm². La largeur de la partie supérieure du chéneau sera de l'ordre de grandeur 2 x W.

Pour des chéneaux métalliques, on choisira, pour l'habitation considérée, un chéneau semi-circulaire d'une largeur développée de 333 et d'une largeur de chéneau de 155 mm.

7.2.4 Dimensionnement des ouvertures d'évacuation en cas de fonctionnement normal

Chaque tuyau de descente présente une tubulure. Il y a donc 5 tubulures au total. Dans la mesure où l'ouverture d'évacuation dans un chéneau semi-circulaire ne peut pas être calculée, on utilise le tableau du § 5.2.1.3. Même sans transition en forme d'entonnoir entre le chéneau semi-circulaire et le tuyau de descente, un Ø80 sera largement suffisant dans la mesure où il peut évacuer 4 l/s s'il est combiné à un chéneau d'une largeur développée de 333.

Diamètre	s de t	ubulures						Hauteur	\emptyset de	\varnothing de
								d'eau	tubu-	tubu-
								h =	lure	lure
			Q (I/s)	Q (I/s)				F_H^*W	(D) si	(D) si
			(partie	(section	Q (I/s)			(mm)	h≤	h >
	ouv	erture	de	de	(tubu-	W			D/2	D/2
chéneau	d'é\	/acuation	toiture)	chéneau)	lure)	(mm)	F _H		(mm)	(mm)
chéneau	2a	gauche		2	2	75	0.646	48.3	44.7	65.7
2	2b	droite	4	2	2	80	0.646	51.7	40.4	64.6

Tableau 27

7.2.5 Dimensionnement des tuyaux de descente

Un tuyau de descente doit pouvoir évacuer le même débit que la tubulure à laquelle il est raccordé. En fonction du débit d'évacuation, on peut déduire du Tableau 28 que le diamètre intérieur du tuyau de descente ne peut chaque fois mesurer que 55 mm. En l'occurrence, on opte pour une tubulure à angles droits. Par conséquent, le diamètre du tuyau de descente sera au moins de 75 mm.

Diamètre	Capacité	Diamètre	Capacité
intérieur du	Q _{RWP}	intérieur du	Q_{RWP}
tuyau de		tuyau de	
descente d _i		descente d _i	
(mm)		(mm)	
50	1,7	140	26,3
55	2,2	150	31,6
60	2,7	160	37,5
65	3,4	170	44,1
70	4,1	180	51,4
75	5,0	190	59,3
80	5,9	200	68,0
85	6,9	220	87,7
90	8,1	240	110,6
95	9,3	260	137,0
100	10,7	280	166,9
110	13,8	300	200,6
120	17,4		
130	21,6		

Tableau 28

7.2.6 Dimensionnement des collecteurs

Pour les collecteurs, on suppose un schéma de conduites semblable à celui présenté à la Figure 62.

Le Tableau 29 et le Tableau 30 présentent les diamètres minimums en fonction du débit d'eaux pluviales à évacuer dans le cas d'une pente d'1 cm/m. Si le collecteur 5, qui doit évacuer l'eau vers la citerne d'eau de pluie, est placé suivant une pente de 2 cm/m, on peut également prévoir un diamètre DN_{CAL}125 pour ce collecteur.

Capacité d'évacuation du collecteur (I/s) DN_{CAL} 100 DN_{CAL} 125 DN_{CAL} 150 DN_{CAL} 200 $\mathbf{Q}_{\mathsf{max}}$ Pente I Q_{max} Q_{max} Q_{max} V v (cm/m)(m/s)(m/s)(m/s)(m/s)(I/s) (I/s)(I/s)(I/s) 0,50 2,9 4,8 9,0 0,5 0,6 0,7 16,7 0,8 1,00 0,8 0,9 6,8 4,2 12,8 1,0 23,7 1,2 1,50 5,1 1,0 8,3 1,1 15,7 1,3 29,1 1,5 1,1 2,00 5,9 9,6 1,2 18,2 1,5 33,6 1,7 2,50 1,2 10,8 1,4 6,7 20,3 1,6 37,6 1,9 3,00 7.3 1,3 11,8 1,5 22,3 1,8 41,2 2,1 3,50 7,9 1,5 12,8 24,1 1,9 44,5 2,2 1,6 2,4 4,00 8,4 1,6 13,7 1,8 25,8 2,1 47,6 4,50 14,5 27,3 2,5 8,9 1,7 1,9 2,2 50,5 5,00 9,4 1,7 15,3 2,0 28,8 2,3 53,3 2,7

Tableau 29

	Q		
Débit à évacuer :	(1/s)	collecteur	$\mathrm{DN}_{\mathrm{CAL}}$
Q(A2 + A5)/2	2	C1	100
Q(A2 + A5)/2 + Q(A1)/2	3.8	C2	100
Q(A2 + A5)/2 + Q(A1)	5.6	C3	125

Q(A5 + A2)/2	2	C4	100
Q(A3 + A4) + Q(A5 + A2)/2	3	C5	100
Q(A3 + A4) + Q(A5 + A2) + Q(A1)	9.6	C6	150

Tableau 30

7.2.7 Autres possibilités

Voici, à titre d'illustration, les résultats obtenus pour les chéneaux et les tubulures en cas de choix différents :

- option 1 : chéneau 1 avec 1 tuyau de descente à une extrémité
- option 2 : chéneau 2 avec 1 tuyau de descente à une extrémité
- option 3 : chéneau 2 avec 1 tuyau de descente dans l'angle
- option 4 : mêmes ouvertures d'évacuation, mais chéneau et tuyaux de descente carrés
- option 5 : chéneau 1 avec 1 tuyau de descente en son milieu

Berekende gootdelen:	Q (I/s) dak- deel	Q (I/s) goot- deel		AE (ideaal) (cm²)	W* (mm)	S	Т	L/W	S/T	W/T	FL	F _R	FD	F _S	AE (cm²)	W (mm)
optie 1				1111000												
gootdeel 1 = goot 1	3.6	3.6	18000	134	92	0	3	195	0		0.82	1.0	1	1	157	100
optie 2		(S) (O)			N.	2.1		50 19 m		\$						
gootdeel 2 = goot 2	4	4.0	16000	146	96	0		166	0		0.84	0.85	1	/	191	110
optie 3																
gootdeel links = (10/16) x goot 2		2.5	10000	100	80	0		125	0		0.94	1	1	/	105	82
gootdeel rechts = (6/16) x goot 2	4	1.5	6000	66	65	0	% :	92	0		0.99	1	1	/	67	65

optie 4																
Berekende gootdelen:	Q (I/s) dak- deel	Q (I/s) goot- deel	100000000000000000000000000000000000000	AE (ideaal) (cm²)	W* (mm)	s	т	L/W	S/T	W/T	F _L	F _R	F _D	F _s	120	W (mm)
gootdeel 1 = gootdeel 2 = helft goot 1	3.6	1.8	9000	77	72	107.4	107.4	126	1.0	0.67	0.89	1	1	1	91	78
gootdeel 3 = helft goot 2 (zonder bocht)	4	2	8000	84	75	112.0	112.0	107	1.0	0.67	0.95	1	1	1	94	79
gootdeel 4 = helft goot 2 (met bocht)		2	8000	84	75	112.0	112.0	107	1.0	0.67	0.95	0.85	1	1	107	85
gootdeel 5 = goot 3	2	2	6000	84	75	112.0	112.0	80	1.0	0.67	0.94	1	1	1	95	80

Tableau 31

Les tuyaux de descente correspondant à ces choix sont alors :

Tapbuisdi	ame	ters						water-	tapbuis-	tapbuis-
			Q (I/s)	Q (I/s)	Q (I/s)			hoogte	Ø (D)	Ø (D)
			(dak-	(goot-	(tap-	W		h =	indien	indien
goot	afvo	peropening	deel)	deel)	buis)	(mm)	F_{H}	F _H *W	h ≤ D/2	h > D/2
optie 1										
goot 1	1	links	3.6	3.6	3.6	100	0.646	64.5	52.1	82.0
optie 2										
goot 2	2	links	4	4	4	110	0.646	71.2	50.0	84.3
optie 3										
				2.5	4	82	0.646	52.8	78.2	90.9
goot 2	2	in bocht	4	1.5	4	65	0.646	42.2	109.5	96.1

Tableau 32

optie 4														
ta p buisd	liame	ters	Q (I/s)	Q (I/s)	00	1	water-	L _w (mm)			A (mm²)		10	af-
goot	afvo	oeropening	(goot- deel)	(tapbuis)	W	F _H	hoogte h =	indien h ≤ 2A/L _W	A	1	indien h > 2A/L _w	L _w	2A/L _w	meting zijde
goot 1	1a	links (=rechts)	3.6	1.8	74	0.473	34.8	210.3	2763	26.3	3661	242.0	30.3	60.5
40	2a	links	2	2	75	0.473	35.4	228.2	3254	28.5	4035	254.1	31.8	63.5
goot 2	2b	rechts	2	2	80	0.473	37.8	206.2	2658	25.8	3902	249.8	31.2	62.5
goot 3	3a	bovenaan	1	0.5	74	0.473	35.2	57.4	206	7.2	1011	127.2	15.9	31.8

Tableau 33

Remarque

Les dimensions de la section de chéneau raccordée à la tubulure 2a sont un peu plus petites que celles de la section de chéneau raccordée à la tubulure 2b. Par conséquent, la hauteur d'eau calculée W, et donc la hauteur d'eau h à la tubulure 2a, est plus petite. Une hauteur d'eau h plus petite signifie une pression de l'eau moins élevée au-dessus du bord de la tubulure, de sorte que l'eau s'écoule moins vite. C'est la raison pour laquelle le diamètre de la tubulure 2a est légèrement supérieur à celui de la tubulure 2b.

optie 5									
Tapbuisdia	meter	S					water-	tapbuis-	tapbuis-
							hoogte	\emptyset (D)	Ø (D)
			Q (I/s)	Q (I/s)			h =	indien	indien
			(goot-	(tap-	W		F _H *W	h ≤ D/2	h > D/2
goot	afvo	peropening	deel)	buis)	(mm)	F _H	(mm)	(mm)	(mm)
			1.8	3.6	74	0.646	47.6	82.3	88.5
goot 1	1	midden	1.8	3.6	74	0.646	47.6	82.3	88.5

Tableau 34

Figure 63

Si l'on place l'ouverture d'évacuation du chéneau 1 en son milieu (option 5), on obtient alors la même grandeur pour les sections de chéneau que dans le cas de tuyaux de descente placés aux extrémités. Cependant, l'ouverture d'évacuation est plus grande que lorsqu'une ouverture d'évacuation est placée à une extrémité : en raison d'une hauteur d'eau calculée W plus petite dans l'option 5 que dans l'option 1, la hauteur d'eau h à l'ouverture d'évacuation est moindre. La pression de l'eau est moins importante, l'eau s'écoule moins vite et l'ouverture d'évacuation doit donc être plus grande.

Une ouverture d'évacuation prévue de l'autre côté du chéneau, comme au chéneau 3 de l'option 6, n'a aucune influence sur la taille du chéneau ou de l'ouverture d'évacuation.

7.3 EXEMPLE 2 : ÉVACUATION D'EAUX PLUVIALES PAR DES CHÉNEAUX INTÉRIEURS

7.3.1 Description

L'exemple concerne 2 espaces de stockage contigus sous une toiture inclinée à 30 ° comme présenté à la Figure 64. Les dimensions des 2 versants de toiture raccordés à un chéneau intérieur sont données à la Figure 65. Il y a lieu de calculer les dimensions de ce chéneau intérieur, mais aussi de l' (des) ouverture(s) d'évacuation, du (des) trop-plein(s), du (des) tuyau(x) de descente et du (des) collecteur(s).

A1 A2 9 A1 A2

Figure 65

7.3.2 Calcul du débit d'évacuation

Le Tableau 35 présente les surfaces réceptrices des 2 versants raccordés au chéneau intérieur ainsi que leurs dimensions et le débit d'évacuation Q s'écoulant de chaque versant. Ce débit d'évacuation est établi par la formule :

$$Q = r_n \times A \times C$$

A étant la surface réceptrice du versant respectif.

Surface	T	L		A	r		Q
réceptrice	(m)	(m)	cos(A°)	(m^2)	$(1/s.m^2)$	C	(1/s)
A1	6	16	0.87	83	0.05	1	4.157
A2	7.2	16	0.87	100	0.05	1	5.0
					Q (chéne	eau)	
A (total) (m ²)				183	(1/s)		9.15

Tableau 35

7.3.3 Dimensionnement du chéneau intérieur

Afin de calculer la section du chéneau intérieur qui doit pouvoir évacuer l'eau d'une averse normale, il y a lieu tout d'abord de déterminer l'emplacement du (des) tuyau(x) de descente ainsi que la forme du chéneau intérieur :

- o 2 tuyaux de descente sont prévus aux extrémités du chéneau
- o On opte pour un chéneau intérieur rectangulaire

Il convient de calculer 2 sections de chéneau censées évacuer chacune 4,57 l/s (la moitié du débit d'évacuation total de 9,15 l/s). Dans la mesure où les 2 sections de chéneau sont identiques, un seul calcul suffit.

Figure 66

La surface de la section transversale de la partie de chéneau est d'abord calculée dans des conditions « idéales », donc sans tenir compte des caractéristiques qui pourraient compliquer l'évacuation des eaux pluviales :

$$A_W(id\acute{e}al) = \left(\frac{10000 \times Q_L}{0.9 \times 3.89}\right)^{0.8} = \left(\frac{10000 \times 4,57}{0.9 \times 3.89}\right)^{0.8} = 12382 \ mm^2 = 124 \ cm^2$$

Le rapport est choisi entre les valeurs provisoires de W et S : supposons que $S^* = 2 x W^*$. À partir d' $A_{W(id\acute{e}al)}$, ici égale à $S^* x W^*$, on peut ensuite calculer comme suit la hauteur d'eau calculée W^* provisoire :

$$W^* = \sqrt{\frac{A_{W(id\acute{e}al)}}{2}} = 79 \ mm$$

Les différents facteurs de perte F_L , F_D et F_S peuvent désormais être calculés à partir des rapports L/W^* , W^*/T^* , S^*/T^* : voir leTableau 36. Le chéneau ne comporte pas de changement de direction de plus de 10° : le facteur de réduction F_R est donc égal à 1

Facteur	rs					
L/W*	W*/T*	S*/T*	$F_{\rm L}$	F_{R}	F_{D}	F_{S}
102	0.5	1.00	0.92	1.0	0.84	1.0

Tableau 36

La section transversale idéale de la section de chéneau $A_{W(id\acute{e}al)}$ peut ensuite être corrigée à l'aide de F_L , F_R , F_D et F_S :

$$A_W = \frac{A_{W(id\acute{e}al)}}{F_L^{0,8} \times F_R^{0,8} \times F_D^{0,8} \times F_S^{0,8}} = 15202 \, mm^2 = 152 \, cm^2$$

La hauteur d'eau calculée W correspondant à A_W est :

$$W = \sqrt{\frac{A_W}{2}} = 87 \ mm$$

On connaît alors S puisque $S = 2 \times W = 174 \text{ mm}$. T = S = 174 mm car le chéneau est rectangulaire.

Soit, pour la hauteur totale Z du chéneau : Z = W/0,7 = 124 mm. Pour le franc-bord, la formule suivante est d'application : a = Z - W = 37 mm.

Figure 67

La largeur S du fond est seulement de 174 mm. Cela ne pose pas de problème pour l'évacuation de l'eau mais, dans la pratique, il est recommandé de toujours prévoir

un fond de chéneau intérieur d'au moins 200 mm de large afin qu'il reste accessible pour le contrôle et l'entretien.

Les résultats des calculs sont repris dans le Tableau 37.

S = 2 x	W	a	30 Y		90 ×			ox /	o a		ox .				so a	×	ox
Q (I/s)	L (mm)	AW (ideaal) (cm²)	W (mm)	S (~ 2W)	T (mm)	L/W	W/T	S/T	FL	FR	FD	Fs	AW (cm²)	W (mm)	S (mm)	Z (mm)	a (mm)
4.57	8000	124	79	157	157	102	0.5	1.00	0.92	1.0	0.84	1.0	152	87	174	124	37

Tableau 37

7.3.4 Dimensionnement des ouvertures d'évacuation en cas de fonctionnement normal

Deux tubulures doivent être dimensionnées : comme les tubulures 1 et 2 donneront le même résultat, un seul calcul suffit. Les calculs ne tiennent pas compte de la largeur supérieure du chéneau intérieur au moment de sa mise en œuvre. On prévoit des tubulures circulaires à angles vifs (voir la Figure 13).

Afin de pouvoir calculer le diamètre d'une tubulure, il est nécessaire de connaître la hauteur d'eau h_n au-dessus du bord de la tubulure :

$$h_n = F_H \times W = 0.473 \times 87 = 41 \text{ mm}$$

où F_H est déduit du rapport S/T = 1 (chéneau rectangulaire) : voir le Tableau 23.

Le diamètre de la tubulure peut être calculé à partir de h_n au-dessus du bord de la tubulure et du débit Q évacué par la tubulure :

$$D = \frac{7500 \times Q}{k_0 \times h_n^{1,5}} = 130 \text{ mm si } h_n \le \frac{D}{2}$$

$$D = \sqrt{\frac{15000 \times Q}{k_0 \times h_n^{0.5}}} = 103 \text{ mm si } h_n > \frac{D}{2}$$

Comme la première condition $(41 \le 130/2)$ est remplie, le diamètre D de la tubulure mesurera au moins 130 mm.

7.3.5 Dimensionnement des trop-pleins

Des gargouilles rectangulaires servant de trop-pleins sont placées aux deux extrémités du chéneau intérieur. Chacune des gargouilles doit pouvoir évacuer la moitié d'un débit d'évacuation Q_p . La fonction du bâtiment n'implique pas que des infiltrations d'eaux puissent entraı̂ner des dégâts importants. On suppose donc que, lors de l'averse de pointe, l'évacuation normale continue à fonctionner :

$$Q_p = (r_p - r_n) \times A \times C = (0.062 - 0.050) \times 183 \times 1 = 2.19 \frac{l}{s}$$

La largeur du trop-plein (= bord sur lequel les eaux pluviales s'écoulent) peut être égale à celle du chéneau intérieur. La hauteur d'eau h_p au-dessus du bord du tropplein est alors :

$$h_p = \left(\frac{24000 \times \frac{Q_p}{2}}{L_W}\right)^{\frac{2}{3}} = \left(\frac{24000 \times 1,1}{174}\right)^{\frac{2}{3}} = 28 \text{ mm}$$

Les trop-pleins peuvent consister en un abaissement de l'extrémité du chéneau. Dans ce cas, les bords du chéneau sont uniquement fermés aux extrémités sur une hauteur h_n .

À titre de contrôle, la formule suivante est d'application : $h_n + h_p \le Z$

7.3.6 Dimensionnement des tuyaux collecteurs

Le dimensionnement des tuyaux collecteurs n'est pas applicable ici.

7.3.7 Dimensionnement des tuyaux de descente

Des deux côtés du chéneau intérieur, les ouvertures d'évacuation débouchent dans un tuyau de descente. Celui-ci doit pouvoir évacuer le même débit que la tubulure à laquelle il est raccordé : en l'occurrence 4,57 l/s. Le diamètre intérieur du tuyau de descente doit mesurer au moins 75 mm : voir le Tableau 38.

Dans la mesure où le diamètre de la tubulure doit mesurer au moins 130 mm et comme la tubulure est raccordée au tuyau de descente, il convient ici aussi de prévoir un diamètre de 130 mm.

Dans le cas de tuyaux synthétiques (PVC, PE), cela signifie concrètement qu'il y a lieu de prévoir un tuyau de diamètre DN 160.

Remarque:

Ouverture conique

d'évacuation

On peut obtenir un diamètre plus petit pour le tuyau de descente en utilisant une tubulure à ouverture d'évacuation conique. Les formules suivantes sont d'application dans ce cas :

$$D = D_0 \ge 1.5 \times d_i$$
$$L_T \ge D_0$$

Internal diameter of rainwater pipe, d _i (mm)	Q_{R}	pacity WP s)	Internal diameter of rainwater pipe, d _i (mm)	Q	acity RWP /s)
	_	Filling degree f = 0,33			Filling degree f = 0,33
50 55 60 65 70 75 80 85 90 95 100 110 120		1,7 2,2 2,7 3,4 4,1 5,0 5,9 6,9 8,1 9,3 10,7 13,8 17,4 21,6	140 150 160 170 180 190 200 220 240 260 280 300 > 300		26,3 31,6 37,5 44,1 51,4 59,3 68,0 87,7 110,6 137,0 166,9 200,6 Use Wyly- Eaton equation

Tableau 38

7.3.8 Dimensionnement des collecteurs

Les collecteurs directement raccordés aux tuyaux de descente doivent pouvoir évacuer chacun un débit de 4,57 l/s. Cependant, leur diamètre doit toujours être au moins égal à celui des tuyaux de descente. Si l'on place un tuyau de descente de diamètre DN 160, il conviendra dès lors de prévoir un collecteur de diamètre DN_{CAL}150 ce qui correspond, pour les matériaux synthétiques, à un diamètre DN 160. S'il est possible d'appliquer une tubulure conique, un collecteur DNCAL 100 (DN 110 pour les matériaux synthétiques) constitue une autre possibilité, à condition de prévoir une pente de 1,5 cm/m.

Ces 2 collecteurs débouchent dans un collecteur qui devra évacuer le débit total de 9,15 l/s. À pente égale, il faudra prévoir pour ce collecteur un diamètre DN_{CAL} 150 ou DN 160.

	Capacité d	d'évacuat	ion du colle	cteur (I/s)				
	DN _{CAL} 100		DN _{CAL} 125		DN _{CAL} 150		DN _{CAL} 200	
Pente I (cm/m)	Q _{max} (I/s)	v (m/s)	Q _{max} (I/s)	v (m/s)	Q _{max} (I/s)	v (m/s)	Q _{max} (I/s)	v (m/s)
0,50	2,9	0,5	4,8	0,6	9,0	0,7	16,7	0,8
1,00	4,2	0,8	6,8	0,9	12,8	1,0	23,7	1,2
1,50	5,1	1,0	8,3	1,1	15,7	1,3	29,1	1,5
2,00	5,9	1,1	9,6	1,2	18,2	1,5	33,6	1,7
2,50	6,7	1,2	10,8	1,4	20,3	1,6	37,6	1,9
3,00	7,3	1,3	11,8	1,5	22,3	1,8	41,2	2,1
3,50	7,9	1,5	12,8	1,6	24,1	1,9	44,5	2,2

4,00	8,4	1,6	13,7	1,8	25,8	2,1	47,6	2,4
4,50	8,9	1,7	14,5	1,9	27,3	2,2	50,5	2,5
5,00	9,4	1,7	15,3	2,0	28,8	2,3	53,3	2,7

Tableau 39

7.3.9 Autres possibilités

Si l'évacuation n'était possible que d'un côté du chéneau, les dimensions du chéneau, de la tubulure et du trop-plein seraient les suivantes :

S = 2 x	W																
		AW															
		(ideaal)	W	S (~									AW	W	S	Z	а
Q (I/s)	L (mm)	(cm²)	(mm)	2W)	T (mm)	L/W	W/T	S/T	F_L	F_R	F_D	F_S	(cm²)	(mm)	(mm)	(mm)	(mm)
9.15	16000	216	104	208	208	154	0.5	1.00	0.86	1.0	0.84	1.0	279	118	236	169	51

Tableau 40

S = 2*W		Q (goot)	The state of the s	A _w (cm ²)						tapbuis-	
			(afvoer-						hoogte	\emptyset (D)	\emptyset (D)
			opening)						h =	indien	indien
binnengoot	afvoeropening	- 5000	DETAIL OF THE PARTY.						F _H *W	h ≤ D/2	h > D/2
					S/T		W (mm)	F _H	(mm)	(mm)	(mm)
	aan 1 gevel	9.15	9.15	298		1.0	106	0.473	50.0	194.0	139.3

Tableau 41

1 trop-plein :	Q_p	L = S	h _p	W	F _H	h	Z	а
S = 2*W	2.19	211	39.6	106	0.473	50	151	45

Tableau 42

Supposons que le rapport de départ soit S/W = 2.5 au lieu de 2. Le Tableau 43 présente les résultats des calculs pour S = 2.5 x W. Dans ce cas, la largeur du chéneau remplit la condition de 200 mm. La hauteur d'eau calculée est légèrement plus petite que lorsque S/W = 2, ce qui est logique puisque la même quantité d'eau arrive dans un chéneau plus large.

S = 2.5	S = 2.5 x W																
		AW															
		(ideaal)	W	s (~									AW	w	S	Z	a
Q (I/s)	L (mm)	(cm²)	(mm)	2W)	T (mm)	L/W	W/T	S/T	F_L	F_R	F_D	F_S	(cm²)	(mm)	(mm)	(mm)	(mm)
4.57	8000	124	70	176	176	114	0.4	1.00	0.9	1.0	0.8	1.0	162	80	201	114	34

Tableau 43

7.4 EXEMPLE 3 : ÉVACUATION D'EAUX PLUVIALES SUR UNE TOITURE PLATE

7.4.1 Description

Un hall d'entreprise est recouvert d'une toiture plate (béton) d'une superficie de 60 x 30 = 1.800 m², dont l'eau sera évacuée par des avaloirs placés dans la toiture. Il convient de dimensionner ces avaloirs, de même que les trop-pleins, les tuyaux de descente et les collecteurs.

Figure 68

7.4.2 Calcul du débit d'évacuation

Le débit d'évacuation provenant de la toiture plate après une averse normale se traduit par la formule :

$$Q = r_n \times A \times C$$

A étant la surface réceptrice de la toiture plate.

Surface réceptrice	B (m)	L (m)	A (m ²)	r (l/s.m²)	С	Q (l/s)
A	60	30	1800	0.05	1	90 l/s

Tableau 44

7.4.3 Dimensionnement des ouvertures d'évacuation en cas de fonctionnement normal

Comme représenté à la Figure 69, 6 ouvertures d'évacuation sont prévues de façon symétrique au niveau le plus bas de la toiture. Deux lignes de combles inférieures sont prévues pour chaque groupe de 3 avaloirs.

Figure 69

Chaque avaloir devra évacuer $1/6^{e}$ du débit, à savoir 90/6 = 15 l/s.

Une hauteur d'eau h_{max} de 90 mm est autorisée sur la toiture : $h_n = 65$ mm et $h_p = 25$ mm.

Dans la mesure où les avaloirs ne sont pas calculés, on utilise les informations fournies par le fabricant : voir le Tableau 45. Si hn = 65 mm, un avaloir du premier type (Dallbit) DN 100 d'une capacité de 17,90 l/s suffira. Si hn = 55 mm, il convient de choisir un diamètre DN 150 ou, par exemple, un avaloir du troisième type (« clamp ring ») DN 100.

Flow rate in litres/second tested to DIN EN 1253										
Gravity drainage										
renova roof drain	Dimension	DIN EN 1253				ater leve				
			5 mm	15 mm	25 mm	35 mm	45 mm		65 mm	
Renova roof drain type 63 T DallBit	DN 70 vertical	1,7 (35 mm)	0,60	2,10	3,50	6,10	9,60	11,80	13,30	13,40
**	DN 100 vertical	4,5 (35 mm)	0,70	2,50	4,60	7,50	10,40	13,50	17,90	22,50
	DN 125 vertical	7,0 (45 mm)	0,70	2,40	4,20	6,90	9,40	12,60	16,50	20,10
	DN 150 vertical	8,1 (45 mm)	1,00	4,30	7,40	10,70	15,00	19,00	23,70	29,80
Renova roof drain type 63 T FPO-PP	DN 70 vertical	1,7 (35 mm)	0,60	2,10	3,50	6,10	9,60	11,80	13,30	13,40
	DN 100 vertical	4,5 (35 mm)	0,70	2,50	4,60	7,50	10,40	13,50	17,90	22,50
	DN 125 vertical	7,0 (45 mm)	0,70	2,40	4,20	6,90	9,40	12,60	16,50	20,10
Renova roof drain type 63 T clamp ring	DN 70 vertical	1,7 (35 mm)	0,80	3,60	6,80	9,70	12,90	13,30	13,50	13,60
	DN 100 vertical	4,5 (35 mm)	0,90	3,90	6,90	9,60	12,50	15,50	17,50	22,30
	DN 125 vertical	7,0 (45 mm)	0,90	4,30	7,50	10,90	14,20	18,50	23,00	24,30
	DN 150 vertical	8,1 (45 mm)	1,00	4,30	7,40	10,70	15,00	19,00	23,70	29,80
Renova roof drain type 63 T PVC	DN 70 vertical	1,7 (35 mm)	0,80	2,70	4,90	7,90	11,00	13,30	13,50	13,60
	DN 100 vertical	4,5 (35 mm)	0,80	2,80	5,10	8,10	11,70	15,50	19,00	23,90
	DN 125 vertical	7,0 (45 mm)	0,80	2,80	5,20	8,30	11,80	15,50	19,50	24,00
	DN 150 vertical	8,1 (45 mm)	0.80	2,50	5,00	8.00	11,30	14,80	18,90	
Renova roof drain type 84	DN 70 vertical	1,7 (35 mm)	0,50	2,10	3,60	4,90	6,40	8,60	11,40	_
	DN 100 vertical	4,5 (35 mm)	0,50	2,60	4,60	6,20	7,80	10,50	14,20	17,30

Tableau 45 : Capacité d'évacuation d'avaloirs, testés conformément à l'EN 1253 (source : Dallmer)

Remarque

Si l'on utilise ici les valeurs courantes de h_{max} , h_n et h_p (Tabeau 2 : $h_{max} = 75$ mm, $h_n = 50$ mm et $h_p = 25$ mm), on peut éventuellement, dans un premier temps, demander des informations au fabricant pour le cas où $h_n = 50$ mm. À défaut, on vérifie quel avaloir est conforme si $h_n = 45$: il conviendra de choisir DN 150.

7.4.4 Dimensionnement des trop-pleins

Le débit que les trop-pleins devront évacuer en cas d'averse de pointe se traduit par la formule ci-dessous. La fonction du bâtiment n'implique pas que des infiltrations d'eaux puissent entraîner des dégâts importants. On suppose donc que, lors de l'averse de pointe, l'évacuation normale continue à fonctionner :

$$Q = (r_p - r_n) \times A \times C$$

A étant la surface réceptrice de la toiture plate.

Surface				r		Q
réceptrice	B (m)	L (m)	$A(m^2)$	$(l/s.m^2)$	C	(l/s)
A	60	30	1800	0.012	1	21.60

Tableau 46

Des avaloirs surélevés sont prévus comme trop-pleins : un avaloir de secours pour chaque avaloir classique, également placé sur les lignes de combles inférieures. Cela signifie que chaque avaloir de secours doit avoir une capacité d'au moins 3,60 l/s : à nouveau, le diamètre DN 100 répond à cette exigence (voir le Tableau 45).

7.4.5 Dimensionnement des tuyaux collecteurs

L'eau passe par les 3 avaloirs placés sur la même ligne de combles et arrive dans un tuyau collecteur. Ce tuyau, dont le diamètre intérieur mesure au moins 125 mm, est dimensionné conformément au § 5.6 selon le débit récolté dans la partie située le plus en aval, à savoir 45 l/s. Une conduite $DN_{CAL}300$ d'une pente minimale de 0,50 cm/m constitue une possibilité pour l'évacuation de ce débit (comme $Q_{max} \ge 45$ l/s et $v \ge 0,7$ m/s). Cependant, un diamètre $DN_{CAL}200$ est également possible en cas de pente de 4 cm/m pour le tuyau collecteur : voir le Tableau 47.

Les avaloirs assurant l'évacuation de secours seront également raccordés par groupes de 3 à un tuyau collecteur censé évacuer 10,8 l/s dans la partie située le plus en aval. Une conduite DN_{CAL}125 présentant une pente de 2,5 cm/m suffit : voir le Tableau 47.

	Capacité d	l'évacuati	ion du colle	cteur (I/s))			
	DN _{CAL} 100		DN _{CAL} 125		DN _{CAL} 150	1	DN _{CAL} 200	
Pente I	Q _{max}	v	Q _{max}	v	Q _{max}	v	Q _{max}	v
(cm/m)	(I/s)	(m/s)	(I/s)	(m/s)	(I/s)	(m/s)	(I/s)	(m/s)
0,50	2,9	0,5	4,8	0,6	9,0	0,7	16,7	0,8
1,00	4,2	0,8	6,8	0,9	12,8	1,0	23,7	1,2
1,50	5,1	1,0	8,3	1,1	15,7	1,3	29,1	1,5
2,00	5,9	1,1	9,6	1,2	18,2	1,5	33,6	1,7
2,50	6,7	1,2	10,8	1,4	20,3	1,6	37,6	1,9
3,00	7,3	1,3	11,8	1,5	22,3	1,8	41,2	2,1
3,50	7,9	1,5	12,8	1,6	24,1	1,9	44,5	2,2
4,00	8,4	1,6	13,7	1,8	25,8	2,1	47,6	2,4
4,50	8,9	1,7	14,5	1,9	27,3	2,2	50,5	2,5
5,00	9,4	1,7	15,3	2,0	28,8	2,3	53,3	2,7
	Capacité d	l'évacuati	ion de la co	nduite d'e	évacuation	horizonta	le (I/s)	
	DN _{CAL} 225		DN _{CAL} 250		DN _{CAL} 300	ı		
Pente I	Q _{max}	v	Q _{max}	v	Q _{max}	v		
(cm/m)	(I/s)	(m/s)	(I/s)	(m/s)	(I/s)	(m/s)		
0,50	26,5	0,9	31,6	1,0	56,8	1,1		
1,00	37,6	1,3	44,9	1,4	80,6	1,6		
1,50	46,2	1,6	55,0	1,7	98,8	2		
2,00	53,3	1,9	63,6	2,0	114,2	2,3		
2,50	59,7	2,1	71,1	2,2	127,7	2,6		
3,00	65,4	2,3	77,9	2,4	140,0	2,8		
3,50	70,6	2,5	84,2	2,6	151,2	3		
4,00	75,5	2,7	90,0	2,8	161,7	3,2		
4,50	80,1	2,8	95,5	3,0	171,5	3,4		
5,00	84,1	3,0	100,7	3,1	180,8	3,6		

Tableau 47

7.4.6 Dimensionnement des tuyaux de descente

Chaque tuyau collecteur est raccordé à un tuyau de descente qui amènera l'eau vers le collecteur. Le débit d'évacuation qui arrive dans chaque tuyau de descente pour l'évacuation « normale » est de 45 l/s. Dans ce cas, il convient de prévoir des tuyaux de descente d'un diamètre intérieur de 180 mm minimum pouvant évacuer jusqu'à 51,4 l/s. Un diamètre DNCAL200 répond donc à cette exigence. Dans la mesure où les tuyaux collecteurs sont raccordés aux tuyaux de descente, il conviendra de prévoir aussi pour ces derniers au minimum un diamètre DN_{CAL}200.

Le diamètre intérieur du tuyau de descente raccordé au tuyau collecteur du système d'évacuation de secours doit mesurer au moins 110 mm en cas de débit d'évacuation de 10.8 l/s : voir le Tableau 48 ci-dessous. Le diamètre du tuyau de descente est DN_{CAL} 125. Ce diamètre peut être maintenu pour les 2 tuyaux de descente du système d'évacuation de secours.

			5000000000
diamètre	capacité	diamètre	capacité
intérieur du	Q_{RWP} (1/s)	intérieur du	Q_{RWP} (1/s)
tuyau de		tuyau de	
descente d _i		descente d _i	
(mm)		(mm)	
50	1,7	140	26,3
55	2,2	150	31,6
60	2,7	160	37,5
65	3,4	170	44,1
70	4,1	180	51,4
75	5,0	190	59,3
80	5,9	200	68,0
85	6,9	220	87,7
90	8,1	240	110,6
95	9,3	260	137
100	10,7	280	166,9
110	13,8	300	200,6
120	17,4	> 300	Utiliser
130	21,6		l'équation
			Wyly-Eaton

Tableau 48

7.4.7 Dimensionnement des collecteurs

Les collecteurs raccordés aux tuyaux de descente évacuent le même débit de 45 l/s nécessitant au moins un diamètre $DN_{CAL}200$, à condition que la conduite soit placée avec une pente de 4 cm/m. Ces collecteurs se rejoignent en aval dans un collecteur qui devra évacuer 90 l/s. Pour ce collecteur, un diamètre $DN_{CAL}250$ peut suffire si, à nouveau, une pente de 4 cm/m peut être respectée.

Une autre possibilité consiste à choisir un diamètre DN_{CAL}300, avec une pente de 1,5 cm/m.

Pour le collecteur raccordé au tuyau de descente du système d'évacuation de secours, il convient de prévoir au minimum un diamètre $DN_{CAL}125$, étant donné qu'il s'agit du diamètre minimum du tuyau collecteur. En cas de pente de 2,50 cm/m, ce tuyau aura une capacité d'évacuation de 10,8 l/s, ce qui est juste suffisant.

	Capacité d	d'évacuati	ion du colle	cteur (I/s)			
	DN _{CAL} 100		DN _{CAL} 125	•	DN _{CAL} 150		DN _{CAL} 200	
Pente I (cm/m)	Q _{max} (I/s)	v (m/s)						
0,50	2,9	0,5	4,8	0,6	9,0	0,7	16,7	0,8
1,00	4,2	0,8	6,8	0,9	12,8	1,0	23,7	1,2
1,50	5,1	1,0	8,3	1,1	15,7	1,3	29,1	1,5
2,00	5,9	1,1	9,6	1,2	18,2	1,5	33,6	1,7
2,50	6,7	1,2	10,8	1,4	20,3	1,6	37,6	1,9
3,00	7,3	1,3	11,8	1,5	22,3	1,8	41,2	2,1
3,50	7,9	1,5	12,8	1,6	24,1	1,9	44,5	2,2
4,00	8,4	1,6	13,7	1,8	25,8	2,1	47,6	2,4
4,50	8,9	1,7	14,5	1,9	27,3	2,2	50,5	2,5
5,00	9,4	1,7	15,3	2,0	28,8	2,3	53,3	2,7
	Capacité d	d'évacuat	on de la co	nduite d'e	évacuation l	norizonta	le (I/s)	
	DN _{CAL} 225		DN _{CAL} 250		DN _{CAL} 300			
Pente I	Q _{max}	v	Q _{max}	V	\mathbf{Q}_{max}	v		
(cm/m)	(I/s)	(m/s)	(I/s)	(m/s)	(I/s)	(m/s)		
0,50	26,5	0,9	31,6	1,0	56,8	1,1		
1,00	37,6	1,3	44,9	1,4	80,6	1,6		
1,50	46,2	1,6	55,0	1,7	98,8	2		
2,00	53,3	1,9	63,6	2,0	114,2	2,3		
2,50	59,7	2,1	71,1	2,2	127,7	2,6		
3,00	65,4	2,3	77,9	2,4	140,0	2,8		
3,50	70,6	2,5	84,2	2,6	151,2	3		
4,00	75,5	2,7	90,0	2,8	161,7	3,2		
4,50	80,1	2,8	95,5	3,0	171,5	3,4		
5,00	84,1	3,0	100,7	3,1	180,8	3,6		

Tableau 49

Remarque

Les collecteurs du système d'évacuation de secours ne sont jamais raccordés à un égout (d'eaux pluviales), mais débouchent en plein air.

8 ANNEXE III - ENTRETIEN ET INSPECTION

Pendant l'utilisation du système d'évacuation des eaux pluviales, l'occupant doit régulièrement surveiller le système. En fonction des constatations, il peut s'avérer nécessaire de faire nettoyer, réparer ou remplacer les éléments. Les recommandations énoncées au Tableau 50 sont basées sur le « Guide de l'entretien pour des bâtiments durables » édité par le CSTC.

Élément	Périodicité	Actions	Points importants / remarques
Chéneaux,	P	Inspection de la façade et de la finition intérieure	Tâches d'humidité, développements biologiques, décolorations,
avaloirs, tubulures, trop-pleins		Inspection du fonctionnement des différentes ouvertures d'évacuation et des troppleins	
	2A	Entretien de la peinture éventuelle en cas de bois	
	1A	Contrôle de l'état du bois en cas de chéneaux en bois et de chéneaux corniches	Un prétraitement du bois avant la pose est généralement recommandé. Il convient pour cela d'utiliser des produits homologués.
		Contrôle des transitions entre sections de chéneau, d'un chéneau à un tuyau	Des traces de fuites indiquent des dégradations ou des raccordements non étanches à l'eau
		de descente (tubulure), du raccord d'une couverture de toiture à un avaloir,	non etanones a r eta
		Contrôle des soudures, des joints, des tasseaux et des fixations du chéneau.	
	6M	Évacuation des feuilles, de la boue, de la mousse et de la végétation présentes dans les chéneaux, les ouvertures d'évacuation et les toitures plates	À réaliser de préférence au printemps (après la chute des graines des arbres et des plantes) et à l'automne (après la chute des feuilles). Les déchets à éliminer ne peuvent pas être emportés par le système d'évacuation.
		Nettoyage des avaloirs et des crapaudines	d evacuation.
Conduite d'évacuatio n souterraine	1A	Contrôle de la présence d'obstructions et d'affaissements.	Contrôle possible par la chambre de visite ou la citerne d'eau de pluie. Des changements de l'état du sol à l'endroit où le tuyau d'évacuation est enterré peuvent être un signe d'affaissement.

Tuyau collecteur et tuyau de descente	P	Contrôle de l'état des conduites	Des traces de fuites sur un tuyau collecteur ou un tuyau de descente indiquent des dégradations ou des raccordements non étanches à l'eau.
	1A	Contrôle de l'étanchéité à l'eau aux endroits de raccordement des tuyaux	
		Contrôle de l'état et renforcement des fixations	
		Contrôle du joint au pied du tuyau de descente	

Tableau 50

P = permanent; dès que l'on remarque des changements, il y a lieu de prendre des mesures.

A = annuel;

2A = tous les 2 ans

M = mensuel

6M = tous les 6 mois

Remarque:

Les recommandations précitées sont des valeurs indicatives minimales. La périodicité de l'entretien est influencée par les facteurs environnementaux.

9 ANNEXE IV - LEXIQUE

LEXIQUE FRANÇAIS-NÉERLANI	DAIS
FRANÇAIS	NÉERLANDAIS
Avaloir	Dakkolk
Averse de pointe de référence	Referentie piekbui
Averse de référence	Referentie neerslagbui
Boîte collectrice	Verzonken reservoir
Bord extérieur	Buitenboord
Capacité d'évacuation	Afvoercapaciteit
Chéneau court	Korte goot
Chéneau extérieur	Buitengoot
Chéneau intérieur	Binnengoot
Chéneau long	Lange goot
Chéneau non semi-circulaire	Niet-halfronde goot
Chéneau semi-circulaire	Halfronde goot
Collecteur	Collector
Débit d'évacuation	Afvoerdebiet
Eaux pluviales	Hemelwater
Equerre de chéneau	Goothoek
Fonctionnement normal	Normale werking
Franc-bord	Vrijboord
Gargouille	Spuwer
Gargouille avec rôle d'alerte	Spuwer met signaalfunctie
Hauteur d'eau calculée	Ontwerpwaterhoogte
Hauteur de débordement	Overloopniveau
Installation d'évacuation des eaux pluviales	Hemelwaterafvoerinstallatie
Intensité pluviométrique	Neerslagintensiteit
Largeur développée	Ontwikkelde breedte
Ouverture d'évacuation	Afvoeropening
Pan de toiture	Dakvlak
Part de toiture	Dakdeel
Pente	Afschot
Période de retour	Terugkeerperiode
Projection horizontale	Horizontale projectie
Surface réceptrice	Opvangoppervlakte
Trop-plein	Noodafvoer
Tubulure	Tapbuis
Tuyau collecteur	Verzamelleiding
Tuyau de descente	Standleiding
Versant	Dakschild

10 ANNEXE V - DOCUMENTS DE RÉFÉRENCE

10.1 CONCEPTION DES INSTALLATIONS D'EVACUATION DES EAUX PLUVIALES

Les normes suivantes s'appliquent aux ouvertures d'évacuation :

- NBN EN 1253-1 « Avaloirs et siphons pour bâtiments Partie 1: Spécifications » pour les avaloirs.
- NBN EN 12056-3 « Réseaux d'évacuation gravitaire à l'intérieur des bâtiments Partie 3 : Système d'évacuation des eaux pluviales, conception et calculs » pour les tubulures.

Les normes suivantes s'appliquent aux chéneaux :

- NBN EN 607 Gouttières pendantes et leurs raccords en PVC-U. Définitions, exigences et méthodes d'essai.
- NBN EN 612 Gouttières pendantes et descentes d'eaux pluviales en métal laminé.
- NBN EN 1462 Crochets de gouttières pendantes Exigences et méthodes d'essai

Les matériaux les plus souvent utilisés pour les tuyaux collecteurs, les tuyaux de descente et les collecteurs (et les normes de produit d'application à cet égard) sont mentionnés ci-dessous.

	Normes d	le produit en vigueur					
		Collecteurs enterrés					
	grès	NBN EN 295					
IL	PVC-U	NBN EN 1401					
Collecteurs	PE	NBN EN 12666					
Coll	PP	NBN EN 1852					
		Intérieur: collecteurs, tuyaux collecteurs, tuyaux de descente non enterrés	Extérieur: tuyaux de descente				
ion	cuivre		NBN EN 1172				
uat	zinc		NBN EN 988				
vac	acier galvanisé		NBN EN 10346 NBN EN 1396				
1, é	aluminium		NBN EN 1396				
es c	acier inoxydable		NBN EN 10088-2				
luit	PVC-U	NBN EN 1329	NBN EN 12200				
Conduites d'évacuation aériennes	PE	NBN EN 1519	NBN EN 1519				
aé aé	PP	NBN EN 1451	/				

Tableau 51 : Matériaux pour les conduites d'évacuation des eaux pluviales

Les normes suivantes s'appliquent aux chambres de visite :

- NBN EN 13598 « Systèmes de canalisations en plastique pour les branchements et les collecteurs d'assainissement enterrés sans pression Poly(chlorure de vinyle) non plastifié (PVC-U), polypropylène (PP) et polyéthylène (PE) » s'applique aux *chambres de visite en matière synthétique* et comprend 2 parties :
 - Partie 1 « Spécifications pour raccords auxiliaires, y compris les boîtes de branchement » pour les chambres d'un diamètre compris entre 200 mm et 400 mm et d'une profondeur d'encastrement maximale de 2 m, mesurée à partir du fond de la chambre (dans le cadre de la certification BENOR).
 - Partie 2 « Spécifications relatives aux regards de visite et aux boîtes d'inspection et de branchement dans les zones de circulation et dans les réseaux enterrés profondément » pour les chambres d'un diamètre compris entre 400 mm et 1200 mm distingue deux classes :
 - une profondeur d'encastrement maximale de 3 m, mesurée à partir du fond de la chambre et une nappe phréatique de 2 m
 - une profondeur d'encastrement maximale de 6 m, mesurée à partir du fond de la chambre et une nappe phréatique de 5 m (dans le cadre de la certification BENOR)
- NBN EN 1917 « Regards de visite et boîtes de branchement préfabriquées en béton » et NBN B 21-101 « Regards de visite et boîtes de branchement en béton non armé, béton fibré acier et béton armé » pour les *chambres de visite en béton* d'un diamètre extérieur d'au moins 800 mm.
- NBN EN 476 : « Prescriptions générales pour les composants utilisés dans les réseaux d'évacuation, de branchement et d'assainissement à écoulement libre » pour les *chambres de visite en béton* devant être accessibles aux personnes.

10.2 PRINCIPES DE CONCEPTION

Pour le dimensionnement des éléments de l'installation d'évacuation des eaux pluviales, on aura recours aux documents de référence suivants :

- NBN EN 306 : Couvertures de bâtiments Code de bonne pratique Evacuation des eaux
 - o Pour l'intensité pluviométrique
- NBN EN 12056-3 : Réseaux d'évacuation gravitaire à l'intérieur des bâtiments Partie 3 : Système d'évacuation des eaux pluviales, conception et calculs.
 - O Pour l'intensité pluviométrique, la surface réceptrice des eaux pluviales et le dimensionnement d'un chéneau, d'un tuyau de descente et d'une conduite d'évacuation horizontale
- NBN EN 12056-2 : Réseaux d'évacuation gravitaire à l'intérieur des bâtiments Partie 2 : Systèmes pour les eaux usées, conception et calculs :
 - o Pour le dimensionnement d'un collecteur
- NBN EN 1253-1 : Avaloirs et siphons pour bâtiments Partie 1: Exigences
 - o Pour le dimensionnement d'un avaloir