TERMOQUÍMICA

1-Sejam dadas as reações abaixo:

- ١. $Fe_{(s)} \rightarrow Fe_{(l)}$
- $H_2O_{(1)} \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$ II.
- III. $C(s) + O_{2(g)} \rightarrow CO_{2(g)}$
- IV.
- V.

Identifique quais as reações são endotérmicas e quais são exotérmicas.

2- O gráfico a seguir refere-se a uma reação genérica:

A partir das informações contidas no gráfico, calcule

- A) A energia de ativação da reação inversa
- B) A variação de entalpia da reação, indicando se a reação é endo ou exotérmica.
- C) A da energia do complexo ativado
- 3- O diagrama abaixo representa o ciclo de Born-Haber para a energia de rede do sólido iônico NaCl. O ciclo é representado por 6 etapas, cada uma delas com uma variação de entalpia.
 - A) Identifique as etapas 1 a 6 do ciclo.
 - B) Calcule a variação da entalpia de rede do NaCl.

4- CCl₄, um importante solvente comercial é preparado pela reação CS_{2(l)}, conforme a reação abaixo:

$$CS_{2(l)} + 3CI_{2(g)} \rightarrow CCI_{4(l)} + S_2CI_{2(l)}$$

As reações abaixo, fazem parte do processo de obtenção do CCI_4 . Utilize-as para calcular a variação de entalpia ΔH do CCI_4 .

$$\begin{array}{lll} CO_{2(g)} + 2SO_{2(g)} & \rightarrow CS_{2(l)} + 3O_{2(g)} & \varDelta H = + 1077 \text{ kJ} \\ 2S_{(s)} + CI_{2(g)} + \rightarrow S_2CI_{2(l)} & \varDelta H = -58.2 \text{ kJ} \\ C_{(s)} + 2CI_{2(g)} \rightarrow CCI_{4(l)} & \varDelta H = -135.4 \text{ kJ} \\ S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)} & \varDelta H = -296.8 \text{ kJ} \\ SO_{2(g)} & + CI_{2(g)} \rightarrow SO_2CI_{2(l)} & \varDelta H = + 97.3 \text{ kJ} \\ C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} & \varDelta H = -395.5 \text{ kJ} \\ COCI_{2(g)} & + CIO_{2(g)} \rightarrow CCI_{4(l)} + O_{2(g)} & \varDelta H = -5.2 \text{ kJ} \end{array}$$

5- Na Tabela abaixo estão representadas as entalpias da mudança de estado para algumas substâncias:

Substance	Formula	Freezing point (K)	ΔH _{fus} ° (kJ·mol ⁻¹)	Boiling point (K)	ΔH _{vap} ° (kJ·mol ⁻¹)
acetone	CH3COCH3	177.8	5.72	329.4	29.1
ammonia	NH ₃	195.4	5.65	239.7	23.4
argon	Ar	83.8	1.2	87.3	6.5
benzene	C ₆ H ₆	278.6	10.59	353.2	30.8
ethanol	C ₂ H ₅ OH	158.7	4.60	351.5	43.5
helium	He	3.5	0.021	4.22	0.084
mercury	Hg	234.3	2.292	629.7	59.3
methane	CH ₄	90.7	0.94	111.7	8.2
methanol	CH ₃ OH	175.2	3.16	337.8	35.3
water	H ₂ O	273.2	6.01	373.2	40.7 (44.0 at 25°C

A partir dos dados da Tabela calcule:

- A) A entropia padrão de vaporização da acetona, sabendo-se que sua temperatura de ebulição é 56.2°C.
- B) A entropia padrão de vaporização da água, na temperatura de ebulição.
- C) A entropia padrão de fusão do mercurio na sua temperatura de congelamento.
- D) Calcule a variação da energia livre de Gibss para o processo: $H_2O_{(l)} \leftrightarrows H_2O_{(g)}$ a 1 atm e 100°C. Indique se o processo é espontâneo ou não-espontâneo. Justifique.

CINÉTICA QUÍMICA

6-Na Tabela abaixo estão representados os dados da cinética de decomposição do iodeto de hidrogênio, conforme a reação: $HI_{(a)} \leftrightarrows H_{2(a)} + I_{2(a)}$

- A) Faça o gráfico da concentração de HI em função do tempo.
- B) Esboce as concentrações de H₂ e I₂ em função do tempo no mesmo gráfico.
- C) Determine a ordem de reação da reação.
- D) Determine a taxa de reação no tempo correspondente a 300 s.
- E) Qual o tempo de meia-vida do HI?

Tempo (s)	[HI] (mmol)	[H ₂] e [I ₂] (mmol)	
	,	(11111101)	
0	6		
1000	4.4		
2000	2.8		
3000	2.1		
4000	1.6		
5000	1.3		
6000	1.0		

EQUILÍBRIO QUÍMICO

7- A figura a seguir representa, sob o ponto de vista cinético, a evolução de uma reação química hipotética na qual o reagente A se transforma no produto B. Das curvas I, II, III e IV, duas dizem respeito à reação catalisada e duas, à reação não catalisada.

- A)Quais das curvas representam as concentrações de A e de B, em função do tempo, para a reação não catalisada?
- B) Indique a curva que se refere à concentração de A e a curva que se refere à concentração de B.
- C) Calcule o valor da constante de equilíbrio para a reação de transformação de A em B.

8) Determine K_p a partir dos seguintes dados das pressões particiais de equilíbrio, coletadas a 24°C para a reação:

$$NH_4HS_{(s)} \leftrightarrows NH_{3(g)} + H_2S_{(g)}$$

PNH₃ (bar) **PH**₂S (bar) 0.307 0.307

0.364 0.258 0.539 0.17

9) Os gases NH₃, O₂, NO, and H₂O são misturados em um cilindro e, depois de um certo tempo, a mistura atinge o equilíbrio, reagindo, conforme a equação abaixo:

$$4 \text{ NH}_{3(q)} + 5 \text{ O}_{2(q)} \leftrightarrows 4 \text{ NO}_{(q)} + 6 \text{ H}_2 \text{O}_{(q)}$$

10) Algumas variações são produzidas no sistema. Indique como a concentração das substâncias ou o valor de K_{eq} são alterados, considerando cada variação separadamente, conforme indicado abaixo. A temperatura e o volume do sistema são mantidos constantes.

Variação no sistema	Efeito
(a) adição de NO	$[H_2O]$
(b) adição de NO	$[O_2]$
(c) remoção de H ₂ O	[NO]
(d) remoção de O ₂	$[NH_3]$
(e) adição de NH₃	K_{eq}
(f) adição de NO	$[NH_3]$
(g) adição NH₃	[O ₂]
1. \	

h) comprimindo o sistema

i) expandindo o sistema

рΗ

- 11) Qual é o pH:
- A) do sangue humano, cuja $[H_3O^+]$ é 4.0×10^{-8} mol/L.
- B) de uma solução 0.020 mol/L de HCl_(aq)
- C) de uma solução 0.040 mol/L de KOH_(aq)
- 12) Um ácido é classificado como forte ou fraco, conforme sua capacidade de dissociar-se, quando dissolvido em água. Ácidos fortes são aqueles que se dissociam completamente, enquanto os ácidos fracos se dissociam apenas parcialmente. Sabe-se que o ácido clorídrico é um ácido forte e o ácido acético, um ácido fraco. Considere as soluções aquosas descritas no quadro a seguir:

Solução nº	Soluto	Quantidade de soluto	Volume da solução
I	HCl	0,025 mol	250 mL
II	CH ₃ COOH	0,025 mol	250 mL

- 1- CALCULE o pH da solução I. Deixe seus cálculos registrados, de modo a explicitar o seu raciocínio.
- 2- RESPONDA se o pH da solução II é menor, igual ou maior que o da solução I. JUSTIFIQUE sua resposta.
- 3- Dentre as espécies químicas citadas a seguir, uma delas NÃO se encontra presente na solução I. CITE qual é essa espécie e JUSTIFIQUE sua resposta.

Espécies: HCl (aq), H⁺ (aq), OH⁻ (aq), Cl⁻ (aq), H₂O

13) Os refrigerantes e outras bebidas gasosas contêm CO₂ dissolvido em uma mistura líquida, cujo solvente é a água. O equilíbrio de solubilidade do CO₂ em água pode ser representado pela equação:

$$CO_2(g) \xrightarrow{H_2O(l)} CO_2(aq)$$

Sabe-se, também, que pequena parte do CO₂ aquoso reage com a água, conforme o equilíbrio representado pela equação:

$$CO_2 (aq) + H_2O(l)$$
 \longleftrightarrow $HCO_3^-(aq) + H^+(aq)$

Considerando o exposto e desprezando qualquer outra reação que possa ocorrer, RESPONDA se o pH da mistura líquida presente em um refrigerante aumenta, diminui ou não se altera nas duas situações seguintes. **JUSTIFIQUE** suas respostas.

- 1- Ao se abrir o refrigerante.
- 2- Ao se adicionar bicarbonato de sódio (NaHCO3) ao refrigerante.