Derived Satake equivalence for Godement–Jacquet monoids

Jonathan Wang (joint w/ Tsao-Hsien Chen)

Perimeter Institute

Yale Geometry, Symmetry and Physics Seminar Oct. 18, 2021

Outline

- Main result
- 2 Connections to physics & number theory
- 3 Properties of the equivalence
- Invariant theory and sketch of proof

The main equivalence of categories

- Let $k = \overline{\mathbb{F}}_q$ or \mathbb{C} .
- F = k((t)) and O = k[t].

Theorem (Tsao-Hsien Chen-W)

There exists an equivalence of categories

$$\mathcal{D}_c^!(\mathsf{GL}_n(\mathcal{O})\backslash \mathsf{M}_n(F)/\mathsf{GL}_n(\mathcal{O}))\cong \mathsf{Perf}(\mathsf{GL}_n\times \mathfrak{gl}_n^*[2]\times \mathsf{V}[2]\times \mathsf{V}^*)^{\mathsf{GL}_n\times \mathsf{GL}_n}$$

where

- M_n is monoid of $n \times n$ -matrices,
- RHS means perfect complexes of $GL_n \times GL_n$ -equivariant $k[GL_n] \otimes Sym(\mathfrak{gl}_n[-2] \times V^*[-2] \times V)$ -modules.

Note:
$$GL_n \times \mathfrak{gl}_n^* \times V \times V^* = T^*(GL_n \times V)$$

Connections to physics

•
$$G = GL_n \times GL_n = \check{G}$$

$$\boxed{M_n T^* M_n \circlearrowleft G} \leadsto \boxed{T^* (GL_n \times V) \circlearrowleft \check{G}}$$

- $D_c^!(M_n(F))$ is quantization of $T^*M_n(F)$.
- $T^*M_n \longleftrightarrow T^*(GL_n \times V)$ is a special case of duality between Hamiltonian varieties.
- S-duality in super Yang–Mills $\mathcal{N}=4$ d=4 TQFT¹ matches boundary theories
- Gaiotto–Witten: Hamiltonian *G*-variety → boundary theory

¹Kapustin–Witten: this is geometric Langlands TQFT

$$\boxed{T^*\mathsf{M}_n\circlearrowleft G}\longleftrightarrow \boxed{T^*(\mathsf{GL}_n\times\mathsf{V})\circlearrowleft \check{\mathsf{G}}}$$

Taking A-twist on left and B-twist on right of boundary theories predicts our equivalence:

$$D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) = \mathsf{Perf}(T^*(\mathsf{GL}_n \times V)[?])^{\check{G}}$$

Can swap! \mathcal{B} -twist on left and \mathcal{A} -twist on right:

Theorem (Braverman-Finkelberg-Ginzburg-Travkin)

There is equivalence of categories

$$\mathsf{Perf}(\mathsf{M}_n[2] \times \mathsf{M}_n^*)^{\mathsf{GL}_n \times \mathsf{GL}_n} \cong \mathcal{D}_c^!((\mathsf{GL}_n(\mathcal{O}) \backslash \mathsf{GL}_n(F) \times \mathsf{V}(F))/\mathsf{GL}_n(\mathcal{O}))$$

Connections to number theory

Connection is due to forthcoming work of Ben-Zvi–Sakellaridis–Venkatesh.

$$\boxed{T^*\mathsf{M}_n\circlearrowleft G}\longleftrightarrow \boxed{T^*(\mathsf{GL}_n\times\mathsf{V})\circlearrowleft \check{\mathsf{G}}}$$

- Rankin–Selberg convolution: some integral involving $GL_n \times V$ produces L-function for representation $V \otimes V \in Rep(GL_n \times GL_n)$.
- Godement–Jacquet: some integral involving M_n produces L-function for $V \in \text{Rep}(GL_n)$.
- "Induction" of T^*V from ΔGL_n to $GL_n \times GL_n$ gives $T^*(GL_n \times V)$.

Derived Satake equivalence

Theorem (Bezrukavnikov–Finkelberg, after Ginzburg)

For any reductive group G, there is equivalence of monoidal categories

$$\mathsf{Sph}_G^{loc.c} := D_c(G(\mathcal{O}) \backslash G(F) / G(\mathcal{O})) \cong \mathsf{Perf}(\check{\mathfrak{g}}^*[2])^{\check{G}}$$

Theorem (Tsao-Hsien Chen-W)

Let $G = GL_n \times GL_n$. The equivalence

$$D_c^!(\mathsf{M}_n(F)/G(\mathcal{O}))\cong\mathsf{Perf}(\mathsf{GL}_n imes\mathfrak{gl}_n^*[2] imes\mathsf{V}[2] imes\mathsf{V}^*)^{\check{G}}$$

is compatible with action of Sph^{loc.c}, where

- Sph^{loc.c} acts on left by convolution.
 - Perf(ğ*[2])^Ğ acts on right by pullback under moment map

$$T^*(GL_n \times V) \rightarrow \check{\mathfrak{g}}^*$$
.

Categories of sheaves

- In derived Satake, $GL_n(F)/GL_n(\mathcal{O}) = Gr_{GL_n}$ is ind-finite type.
- However, $M_n(F)/GL_n(\mathcal{O})$ is infinite type, so we need constructible sheaf theory on infinite type stacks.

Two good sheaf theories $D^!$ and D_* :

- $M_n(F) = \operatorname{colim}_{i \in \mathbb{N}} t^{-i} M_n(\mathcal{O}) = \operatorname{colim}_{i \in \mathbb{N}} \lim_{j \in \mathbb{N}} t^{-i} M_n(\mathcal{O}) / t^j M_n(\mathcal{O})$
- $X_{ij} := t^{-i} \mathsf{M}_n(\mathcal{O}) / t^j \mathsf{M}_n(\mathcal{O})$ is finite type scheme, and $G(\mathcal{O})$ acts through a finite type quotient $G(\mathcal{O}) \twoheadrightarrow G_{ij}$ with unipotent kernel.

Definition

$$D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) = \underset{i!}{\operatorname{colim}} \underset{j}{\operatorname{colim}} D_c(X_{ij}/G_{ij})$$

$$D_{*c}(\mathsf{M}_n(F)/G(\mathcal{O})) = \underset{i*}{\operatorname{colim}} \underset{i}{\operatorname{colim}} D_c(X_{ij}/G_{ij})$$

Analogy:

 $D_c^! \leftrightarrow \text{compactly supported smooth functions}$

 $D_{*c} \leftrightarrow$ compactly supported smooth measures

Because M_n is **smooth**, we have:

Theorem (Tsao-Hsien Chen–W)

We have commutative diagram of equivalences

$$\begin{array}{c} D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) \xrightarrow{\Phi^{2,0}} \mathsf{Perf}(\mathfrak{gl}_n^*[2] \times \mathsf{V}[2] \times \mathsf{V}^*)^{\mathsf{GL}_n} \\ \text{\it shift} \Big| \sim & \sim \Big| \text{\it shift in coh.} \\ D_{*c}(\mathsf{M}_n(F)/G(\mathcal{O})) \xrightarrow{\Phi^{0,2}} \mathsf{Perf}(\mathfrak{gl}_n^*[2] \times \mathsf{V} \times \mathsf{V}^*[2])^{\mathsf{GL}_n} \end{array}$$

Right arrow does not come from an isomorphism of dg algebras.

Fourier transform

Since M_n can be thought of as a vector space, we can define Fourier transform on sheaves/functions of it.

Theorem (Tsao-Hsien Chen-W)

We have commutative diagram of equivalences

$$\begin{array}{c} D_{*c}(\mathsf{M}_n(F)/G(\mathcal{O})) \stackrel{\Phi^{0,2}}{\sim} \mathsf{Perf}(\mathfrak{gl}_n^*[2] \times \mathsf{V} \times \mathsf{V}^*[2])^{\mathsf{GL}_n} \\ \mathsf{FT} \Big| \sim & \sim \Big| \mathit{swap} \\ D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) \stackrel{\Phi^{2,0}}{\sim} \mathsf{Perf}(\mathfrak{gl}_n^*[2] \times \mathsf{V}[2] \times \mathsf{V}^*)^{\mathsf{GL}_n} \end{array}$$

where swap is pullback along $V[2] \times V^* \to V \times V^*[2] : (v, \xi) \mapsto (\xi, v)$ after identifying $V \cong V^*$ (up to Chevalley automorphism)

We do not need the commutativity of this diagram to prove $\Phi^{2,0}$ is an equivalence!

Equivariant cohomology

- $f^!$ is naturally defined on $D_c^!$ and f_* naturally defined on D_{*c} .
- Consider the maps

$$\operatorname{pt} \xrightarrow{0} \operatorname{M}_n(F)$$
 and $\operatorname{M}_n(F) \xrightarrow{p} \operatorname{pt}$

Both maps very not finite type.

Consider functors

$$\begin{array}{c} D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) \stackrel{0^!}{\longrightarrow} D_c(\mathsf{pt}/G(\mathcal{O})) = \mathsf{Perf}(H^{\bullet}(BG)) \\ D_{*c}(\mathsf{M}_n(F)/G(\mathcal{O})) \stackrel{p_*}{\longrightarrow} D_c(\mathsf{pt}/G(\mathcal{O})) = \mathsf{Perf}(H^{\bullet}(BG)) \end{array}$$

- $p_* = R\Gamma_{G(\mathcal{O})}(M_n(F), -)$ is equivariant cohomology
- $0^! = R\Gamma_{G(\mathcal{O}),c}(M_n(F), -)$ by contraction principle
- $H_{G(\mathcal{O})}^{\bullet}(\mathsf{M}_n(F),\mathbb{C}) = H^{\bullet}(BG) = \mathbb{C}[\mathfrak{t}[2]]^W$

Kostant-Weierstraß sections

What do $0^!$ and p_* correspond to spectrally?

Fact: $T^*(GL_n \times V) /\!\!/ \check{G} = \mathfrak{t} /\!\!/ W = \mathbb{A}^n \times \mathbb{A}^n$ (recall $\check{G} = GL_n \times GL_n$) Quotient identifies with invariant moment map

$$T^*(\mathsf{GL}_n \times \mathsf{V}) \to \check{\mathfrak{g}}^* \to \check{\mathfrak{g}}^* /\!\!/ \check{\mathsf{G}}.$$

The invariant moment map has **two** inequivalent sections

$$\kappa^{2,0}: \mathfrak{t}/\!\!/ W = \mathbb{A}^n \times \mathbb{A}^n \to \operatorname{GL}_n \times \mathfrak{gl}_n^* \times \operatorname{V} \times \operatorname{V}^*$$

$$(a_0,\ldots,a_{n-1},b_0,\ldots,b_{n-1})\mapsto \operatorname{\sf Id}, egin{pmatrix} 0 & & a_0 \ 1 & \ddots & dots \ & \ddots & 0 & dots \ & 1 & a_{n-1} \end{pmatrix}, b-a,e_n^*$$

and $\kappa^{0,2}(a,b) = (\text{Id}, \kappa(a)^T, e_n, (b-a)^T).$

The \check{G} -action on $T^*(GL_n \times V)$ extends $\kappa^{2,0}$ to open embedding

$$\tilde{\kappa}^{2,0}: \check{G} \times \mathfrak{t} /\!\!/ W \hookrightarrow T^*(\mathsf{GL}_n \times \mathsf{V})$$

and similarly for $\kappa^{0,2} \rightsquigarrow \tilde{\kappa}^{0,2}$.

- Image of $\tilde{\kappa}^{2,0}$ is open with complement of codimension 1 and same for $\tilde{\kappa}^{0,2}$
- Key Fact: the union of two images has complement of codimension 2

$$\begin{array}{c} D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) \stackrel{0^!}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} D_c(\mathsf{pt}/G(\mathcal{O})) \\ \downarrow^{\circ} \downarrow^{\sim} & \downarrow^{\sim} \end{array}$$

$$\mathsf{Perf}^{[?]}(\mathcal{T}^*(\mathsf{GL}_n \times \mathsf{V}))^{\check{G}} \stackrel{(\tilde{\kappa}^{2,0})^*}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathsf{Perf}^{[?]}(\check{G} \times \mathfrak{t} /\!\!/ W)^{\check{G}}$$

and similarly $p_* = H^{ullet}_{G(\mathcal{O})}(\mathsf{M}_n(F),-)$ corresponds to $(\tilde{\kappa}^{0,2})^*$.

Proof sketch

Want:
$$\Phi^{2,0}: D_c^!(\mathsf{M}_n(F)/G(\mathcal{O})) \cong \mathsf{Perf}(\mathsf{GL}_n \times \mathfrak{gl}_n^*[2] \times \mathsf{V}[2] \times \mathsf{V}^*)^{\check{G}}$$
.

By (non-derived) geometric Satake, $\operatorname{Rep}(\check{G}) = \operatorname{Perv}(G(\mathcal{O}) \setminus G(F) / G(\mathcal{O}))$ acts on $D_c^!(M_n(F)/G(\mathcal{O}))$.

Fact: Rep(\check{G}) action on $\omega_{\mathsf{M}_n(\mathcal{O})}$ generates $D_c^!(\mathsf{M}_n(F)/G(\mathcal{O}))$.

• Consider de-equivariantized algebra

$$A = R \operatorname{\mathsf{Hom}}_{D^!_c}(\omega_{\mathsf{M}_n(\mathcal{O})}, \omega_{\mathsf{M}_n(\mathcal{O})} \star k[\check{G}]).$$

- ullet Apply $0^!$ and $p_*\circ ext{shift}$ to get maps $A
 ightharpoonup k[\check{G} imes \mathfrak{t}/\!\!/W]$ (with shifts)
- By purity argument, A is formal and above maps are injective.
- Define map $\phi: k[\operatorname{GL}_n] \otimes \operatorname{Sym}(\mathfrak{gl}_n[-2] \times \operatorname{V}^*[-2] \times \operatorname{V}) \to A$ by explicit generators + derived Satake
- Check compositions equal $\tilde{\kappa}^{2,0}, \tilde{\kappa}^{0,2}$.
- Codimension 2 implies ϕ is isomorphism.

Thank you!