1. Rings, subrings and fields

- Ring R: set with binary operations addition and subtraction, where (R, +) is an abelian group and:
 - **Identity**: exists $1 \in R$ such that $\forall x \in R, 1 \cdot x = x \cdot 1 = x$
 - Associativity: for every $x, y, z \in R, x(yz) = (xy)z$
 - **Distributivity**: for every $x, y, z \in R, x(y+z) = xy + xz$ and (y+z)x = yx + zx
- Set of remainders modulo n (residue classes): \mathbb{Z} / $n=\left\{\overline{0},\overline{1},...,\overline{n-1}\right\}$
- \mathbb{Z} / n is a ring: $\overline{a} + \overline{b} = \overline{a+b}, \overline{a} \overline{b} = \overline{a-b}, \overline{a} \cdot \overline{b} = \overline{a \cdot b}$
- Subring S of ring R: a set $S \subseteq R$ that contains 0 and 1 and is closed under addition, multiplication and negation:
 - $0 \in S, 1 \in S$
 - $\forall a, b \in S, a+b \in S$
 - $\forall a, b \in S, ab \in S$
 - $\forall a \in S, -a \in S$
- Field F is a ring with:
 - *F* is commutative
 - $0 \neq 1 \in F$ (F has at least two elements)
 - $\forall 0 \neq a \in R, \exists b \in R, ab = 1. b$ is the **inverse** of a
- a is a **zero divisor** if ab = 0 for some $b \neq 0$

2. Integral domains

- Integral domain R: ring which is commutative, has at least two elements $(0 \neq 1)$, and has no zero divisors apart from 0
- Any subring of a field is an integral domain
- If R is an integral domain, then $R[x]=\{a_0+a_1x+\ldots+a_nx^n:a_i\in R\}$ is also an integral domain.
- a is a **unit** if ab = ba = 1 for some $b \in R$. $b = a^{-1}$ is the **inverse** of a
- Inverses are unique
- R^{\times} , set of all units in R, is a group under multiplication of R
- For field $F, F^{\times} = F \{0\}$
- $a \in \mathbb{Z} / n$ is a unit iff gcd(a, n) = 1
- \mathbb{Z} / p is a field iff p is prime
- \mathbb{Z} / n is an integral domain iff n is prime (iff \mathbb{Z} / n is a field)

3. Polynomials over a field

• Degree of $f(x) = a_0 + a_1 x + \dots + a_n x^n$:

$$\deg(f) = \begin{cases} \max\{i: a_i \neq 0\} \text{ if } f \neq 0 \\ -\infty & \text{if } f = 0 \end{cases}$$

- deg(fg) = deg(f) + deg(g)
- $\deg(f+g) \le \max\{\deg(f), \deg(g)\}$
- If $\deg(f) \neq \deg(g)$ then $\deg(f+g) = \max\{\deg(f), \deg(g)\}\$

• Let $f(x), g(x) \in F[x], g(x) \neq 0$, then $\exists q(x), r(x) \in F[x]$ with $\deg(r) < \deg(g)$ such that f(x) = q(x)g(x) + r(x)

4. Divisibility and greatest common divisor in a ring

- a divides b, $a \mid b$, if $\exists r \in R$ such that b = ra
- d is a **greatest common divisor** of a and b, gcd(a, b), if:
 - $d \mid a$ and $d \mid b$ and
 - If $e \mid a$ and $e \mid b$ then $e \mid d$
- gcd(0,0) = 0
- Euclidean algorithm example: find gcd of $f(x) = x^2 + 7x + 6$ and $g(x) = x^2 5x 6$ in $\mathbb{Q}[x]$:

$$f(x) = g(x) + 12(x+1)$$

$$g(x) = \frac{1}{12}x \cdot 12(x+1) - 6(x+1)$$

$$12(x+1) = -2 \cdot -6(x+1) + 0$$

Remainder is now zero so stop. A gcd is given by the last non-zero remainder, -6(x+1). We can write -6(x+1) as a combination of f(x) and g(x):

$$\begin{split} -6(x+1) &= g(x) - \frac{1}{12}x \cdot 12(x+1) \\ &= g(x) - \frac{1}{12}x \cdot (f(x) - g(x)) \\ &= \left(1 + \frac{1}{12}x\right)g(x) - \frac{1}{12}xf(x) \end{split}$$

- Let R be integral domain, $a, b \in R$ and $d = \gcd(a, b)$. Then $\forall u \in R^{\times}$, ud is also a $\gcd(a, b)$. Also, for d and d' gcds of a and b, $\exists u \in R^{\times}$ such that d = ud' (so gcd is unique up to units).
- Polynomial is **monic** if leading coefficient is 1
- There always exists a unique monic gcd of two polynomials in F[x]
- Let $R = \mathbb{Z}$ or $F[x], a, b \in R$. Then
 - A gcd(a, b) always exists
 - $a \neq 0$ or $b \neq 0$ then a gcd(a, b) can be computed by Euclidean algorithm
 - If d is a gcd(a, b) then $\exists x, y \in R$ such that ax + by = d

5. Factorisations in rings

- $r \in R$ irreducible if:
 - $r \notin R^{\times}$ and
 - If r = ab then $a \in R^{\times}$ or $b \in R^{\times}$
- $a \in F$ is **root** of $f(x) \in F[x]$ if f(a) = 0
- Let $f(x) \in F[x]$.
 - If deg(f) = 1, f is irreducible.
 - If deg(f) = 2 or 3 then f is irreducible iff it has no roots in F.

- If deg(f) = 4 then f is irreducible iff it has no roots in F and it is not the product of two quadratic polynomials.
- Let $f(x)=a_0+a_1x+\ldots+a_nx^n\in\mathbb{Z}[x],$ $\deg(f)\geq 1.$ If $f(p\mid q)=0,$ $\gcd(p,q)=1,$ then $p\mid a_0$ and $q\mid a_n.$
- Gauss's lemma: let $f(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x], \deg(f)\geq 1.$ Then f(x) is irreducible in $\mathbb{Z}[x]$ iff it is irreducible in $\mathbb{Q}[x]$ and $\gcd(a_0,a_1,...,a_n)=1.$
- If monic polynomial in $\mathbb{Z}[x]$ factors in $\mathbb{Q}[x]$ then it factors into integer monic polynomials.
- Let R be commutative, $x \in R$ be irreducible and $u \in R^{\times}$. Then ux is also irreducible.
- Eisenstein's criterion: let $f(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x]$, p be prime with $p\mid a_0$, $p\mid a_1,...,p\mid a_{n-1},p\nmid a_n,p^2\nmid a_0$. Then f(x) is irreducible in $\mathbb{Q}[x]$
- Let $f(x) \in F[x]$, then f can be uniquely factorised into a product of irreducible elements, up to order of factors and multiplication by units.
- Let R be commutative. $x \in R$ is **prime** if:
 - $x \neq 0$ and $x \notin R^{\times}$ and
 - If $x \mid ab$ then $x \mid a$ or $x \mid b$
- If $R = \mathbb{Z}$ or F[x] then $a \in R$ is prime iff it is irreducible.
- Let R be an integral domain and $x \in R$ prime. Then x is irreducible.
- Integral domain R is **unique factorisation domain (UFD)** if every non-zero non-unit element in R can be written as a unique product of irreducible elements, up to order of factors and multiplication by units.

6. Ring homomorphisms

- For R, S rings, $f: R \to S$ is **homomorphism** if:
 - f(1) = 1 and
 - f(a+b) = f(a) + f(b) and
 - f(ab) = f(a)f(b)
- Let $f: R \to S$ homomorphism, then
 - f(0) = 0 and
 - f(-a) = f(a)
- Kernel:

$$\ker(f) := \{ a \in R : f(a) = 0 \}$$

• Image:

$$Im(f) := \{ f(a) : a \in R \}$$

- **Isomorphism**: bijective homomorphism.
- R and S isomorphic, $R \cong S$ if there exists isomorphism between them.
- Homomorphism f injective iff $ker(f) = \{0\}$.
- Direct product of R and S, $R \times S$:
 - (r,s) + (r',s') = (r+r',s+s').
 - (r,s)(r',s') = (rr',ss').
 - Identity is (1, 1).

• For $p_1(r,s)=r$ and $p_2(r,s)=s$, $\ker(p_1)=\{(0,s):s\in S\}$ and $\ker(p_2)=\{(r,0):r\in R\}$. These are both rings, with $\ker(p_1)\cong S$ (via $(0,s)\to s$) and $\ker(p_2)\cong R$ (via $(r,0)\to r$). $(\ker(p_1)$ and $\ker(p_2)$ are not subrings of $R\times S$ though). So

$$\ker \bigl(p_1\bigr) \times \ker \bigl(p_2\bigr) \cong R \times S$$

7. Ideals and quotient rings

- $I \subseteq R$ is an **ideal** if I closed under addition and if $x \in I$, $r \in R$ then $rx \in I$ and $xr \in I$.
- Left ideal: I closed under addition and if $x \in I$, $r \in R$ then $rx \in I$.
- **Right ideal**: *I* closed under addition and if $x \in I$, $r \in R$ then $xr \in I$.
- If $x \in I$, then $(-1)x = x(-1) = -x \in I$ so I closed under negation.
- For $f: R \to S$ homomorphism, $\ker(f)$ is ideal of R.
- For R commutative ring and $a \in R$, principal ideal generated by a is

$$(a) := \{ra : r \in R\}$$

• For R commutative and $a_1, ... a_n \in R$,

$$(a_1, ..., a_n) := \{r_1 a_1 + \dots + r_n a_n : r_1, ..., r_n \in R\}$$

is an ideal. $(a_1,...,a_n)$ is **generated** by $a_1,...,a_n.$ $a_i\in(a_1,...,a_n)$ for all i.

- If ideal I contains unit u, then $u^{-1}u=1\in I$ so $\forall r\in R, r\cdot 1=r\in I$. So $R\subseteq I$ so R=I
- For field F, any ideal is either $\{0\}$ or F.
- Let $I_1=(a_1,...,a_m)$, $I_2=(b_1,...,b_n)$ then $I_1=I_2$ iff $a_1,...,a_m\in I_2$ and $b_1,...,b_n\in I_1$.
- $a, b \in R$ equivalent modulo I if $a b \in I$. Write $\overline{a} = \overline{b}$ or $a \equiv b \pmod{I}$.
- Let $a(x) \in \mathbb{Q}[x]$, then p(x) = q(x)a(x) + r(x) with $\deg(r) < \deg(a)$. $\underline{p(x)} r(x) = q(x)a(x) \in (a(x)) \text{ so } \overline{p(x)} = \overline{r(x)}. \ r(x) \text{ is } \mathbf{representative} \text{ of the class } \overline{p(x)}.$
- Let $I \subseteq R$ ideal. Coset of I generated by $x \in I$ is

$$\overline{x} \coloneqq x + I = \{x + r : r \in I\} \subseteq R$$

x is a **representative** of x + I.

• For $x, y \in R$,

$$x+I=y+I \Longleftrightarrow x+I\cap y+I \neq \emptyset \Longleftrightarrow x-y\in I$$

- If x is a representative of x + I, so is x + r for every $r \in I$.
- Quotient of R by I (" $R \mod I$ "): set of all cosets of R by I:

$$R / I := \{ \overline{x} : x \in R \} = \{ x + I : x \in R \}$$

with

- (x+I) + (y+I) = (x+y) + I.
- (x+I)(y+I) = xy + I.
- R / I is a ring, with zero element 0 + I = I and identity $1 + I \in R / I$.
- Quotient map (canonical map/homomorphism): $R \to R / I$, $r \to \overline{r} = r + I$.
- Kernel of quotient map is I and image is R / I. Hence every ideal is a kernel.

• First isomorphism theorem (FIT): Let $\varphi: R \to S$ be homomorphism. Then

$$\overline{\varphi}: R / \ker(\varphi) \to \operatorname{Im}(\varphi), \overline{\varphi}(\overline{x}) = \varphi(x)$$

is an isomorphism: $R / \ker(\varphi) \cong \operatorname{Im}(\varphi)$.

8. Prime and maximal ideals

- Ideal $I \subseteq R$ prime ideal if $I \neq R$ and $ab \in I \Longrightarrow a \in I$ or $b \in I$.
- $I \subseteq R$ maximal if only ideals containing I are I and R (so no ideals strictly between I and R).
- $x \in R$ is prime iff (x) is prime ideal.
- To contain is to divide:

$$a \in (x) \iff (a) \subseteq (x) \iff x \mid a$$

- For R commutative and I ideal:
 - I prime iff R / I integral domain.
 - I maximal iff R / I field.
- (I, x) is ideal generated by I and x:

$$(I, x) : \{rx + x' : r \in R, x' \in I\}$$

• If I is maximal ideal, then it is prime.

9. Principal ideal domains

- Principal ideal domain (PID): integral domain where every ideal is principal.
- \mathbb{Z} , F[x], $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{\pm 2}]$ are PIDs.
- Every PID is a UFD.
- Let R be PID and $a, b \in R$. Then $d = \gcd(a, b)$ exists and (d) = (a, b).

10. Fields as quotients

- Let R be PID, $a \in R$ irreducible. Then (a) is maximal.
- Let $f(x) \in F[x]$ irreducible. Then F[x] / (f(x)) is field and F[x] / (f(x)) is a vector space over F with basis $\{\overline{1}, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. So every element in F[x] / f(x) can be uniquely written as $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, $a_i \in F$.
- Let p prime and $n \in \mathbb{N}$, then there exists irreducible $f(x) \in (\mathbb{Z} / p)[x]$ with $\deg(f) = n$ and $(\mathbb{Z} / p)[x] / (f(x))$ is a field with p^n elements. Any two such fields are isomorphic so unique (up to isomorphism) field with p^n elements is written \mathbb{F}_{p^n} .

11. The Chinese remainder theorem

- $a, b \in R$ **coprime** if no irreducible element divides a and b.
- Let R be PID, $a, b \in R$ coprime. Then (a, b) = (1) = R so ax + by = 1 for some $x, y \in R$. So any $\gcd(a, b)$ is a unit.
- Chinese remainder theorem (CRT): Let R be PID, $a_1, ..., a_k$ pairwise coprime. Then

$$\varphi: R / (a_1 \cdots a_k) \to R / (a_1) \times \cdots \times R / (a_k)$$
$$\varphi(r + (a_1 \cdots a_k)) = (r + (a_1), ..., r + (a_k))$$

is an isomorphism.