python语言程序设计 Design and Programming of Python Language

主讲教师: 张小东

方式: <u>z_xiaodong7134@163.com</u>

地点:哈尔滨工业大学(威海)

研学楼422室

群 号:693864916 该群暂时不能被搜索 请设置群头像和群名称

◆ 参考资料

https://www.python.org/

教python那个教师给的学习资料

《python基础教程》, Magnus Lie Hetland, 人民邮电出版社

・课时安排

- 授课: 32学时

成绩构成:

平时作业10% + 综合作业20% + 翻转课堂10% +期末考试60%

课程体系结构

数据基础

类数字字符串元组集合字节字典

基本操作

运算符 内置函数 库函数 控制与组织

顺序结构 循环结构 分支结构 函数 异常 高级应用

图形用户界面 网络程序 文件与数据库 人工智能基础 Web微服务

面向对象的程序设计

- 1、掌握语言基础,设计编写完整的小程序
- 2、以python为实现工具,提高工程业务设计能力
- 3、按软件工程要求,实现一个小型应用系统

第1章 python语言编程入门

主要内容

- > python简介
- > python的基本语法
- > 类与对象的传说
- > 基本数据类型及操作
- > python库的使用

? 你认为是什么推动了计算机技术的发展?

1.计算机系统结构阶段

3.大数据、互联网+,云计算...

2.计算机网络和视窗

4. ChatGPT、DeepSeek...

② 请问你的Pyhton学习目标是什么?

===python简介===

Guido van Rossum

- ◆ python 20世纪80年代末由荷兰人Guido van Rossum设计实现的。
- ◆ 1991年, Ver 0.9.0 python,实现了类、函数以及列表、字典和字符串等基本的数据类型,集成了模块系统。
- ◆ 1994年,python 1.0发布了。1.0新增了 函数式工具。

当前最高版本: python3.13.2

- ◆ 2001年,推出python 2.0,它集成了列表推导式(List comprehension)。 优雅 明确 简单
- ◆ 2009年,推出python 3.0,为了不带入过多的累赘, python 3.0在设计的时候没有考虑向下兼容。

===python简介===

Mar 2025	Mar 2024	Change	Programming Language	Ratings	Change	
1	1		Python	23.85%	+8.22%	
2	3	^	C++	11.08%	+0.37%	
3	4	^	Java	10.36%	+1.41%	
4	2	•	G c	9.53%	-1.64%	
5	5		G C#	4.87%	-2.67%	
6	6		JS JavaScript	3.46%	+0.08%	

TIOBE Programming Community Index

Source: www.tiobe.com

===python简介===

◆ python的安装 https://www.python.org/downloads/

集成开发工具

1.vscode+python extension for VSCode2.JetBrains PyCharm

新特性、改进现有 功能或提供信息的 文档

第1章 python语言编程入门

主要内容

- > python简介
- > python的基本语法
- > 类与对象的传说
- > 基本数据类型及操作
- > python库的使用

2.1两种运行模式:命令行交互与程序文件

(意)

n = 1

n=2

n > 2

===python的基本语法=== 2.2 语句与段落

₹还记得C语言中的小兔子吗?

 $\mathbf{a_i}/\mathbf{a_{i-1}}$

耶契数列

2.3 python语法元素分析

【例题1-1】一个hitter开着飞机去美国看女神。到达纽约上空时,指挥塔告诉他:当前面温度77F。问转换为摄氏度为多少?

【问题分析】 1标准大气压下水的结冰点与沸点

摄氏度(Celsius): OC, 100C; 华氏度(Fahrenheit): 32F, 212F

转换公式: C = (F - 32)/1.8 ; F = C*1.8 +32

【IPO原则】

输入: 带华氏或摄氏标志的温度值

处理: 根据温度标志选择适当的温度转换算法

输出: 带摄氏或华氏标志的温度值

2.3 python语法元素分析

【例题1-1】当前面温度77F时...

```
CFSwitch.py > ...
     # Both of temperatures Convert each other
     author: zxd
     date:2025-03-05
                           PEP 572
                                              PEP 8
     TempStr=input("请输入带有所号的温度值:")
     if TempStr[-1] in ['F', 'f']:
        C = (eval(TempStr[0:-1]) - 32)/1.8
  8
        print("转换后的温度是{:.2f}C".format(C))
     elif TempStr[-1] in ['C','c']:
 10
        F = 1.8*eval(TempStr[0:-1]) + 32
 11
        print("转换后的温度是{:.2f}F".format(F))
 12
 13
     else:
        print("输入格式错误")
 14
 15
               端口
```

PS D:\vscodework\python> & C:/Users/z xia/AppData/Local/Mi 请输入带有所号的温度值: 77f

转换后的温度是25.00C

下列语法元素出现在

程序中的哪些地方 🥡

- 1. 注释
- 2. 标识符
- 3. 关键字
- 4. 表达式
- 4. 函数/预定义标识符
- 5.语句
- 6. 段落

技巧

>>>help()

Help>keywords

Help>return

- ② 请问python架构风格是什么?
- ₹ 本小节当中你学到哪些语法元素?
- ? 试编写一个程序完成角度与弧度转换?

第1章 python语言编程入门

主要内容

- > python简介
- > python的基本语法
- > 类与对象的传说
- > 基本数据类型及操作
- > python库的使用

===类与对象===

3.2 类图—类之间的逻辑关系

===类与对象===

3.3 python中对象与类定义与使用

```
>>> name = "张三丰" ( # 1. 声明字符串对象
#定义私有属性,在类外部无法直接进行访问
#定义构造方法
              #4. 观测对象
def init (self,...):
               id(): 获取对象的标识
#定义其它方法
               type(): 获取对象类型
               >>> id(11)
```

>>> id('python') def del (self,...): 48172648

类规定了对象所具有的属性和操作这些属性的方法

>>> type(12)

>>> **type**(1.2)

<class 'float'>

<class 'int'>

#定义析构方法

1657845120

- ? 请问类与对象是什么关系?
- 类间关系有几种?这些关系的作用是什么?

第1章 python语言编程入门

主要内容

- > python简介
- > python的基本语法
- > 类与对象的传说
- > 基本数据类型及操作
- > python库的使用

4.1 变量与常量

变量: 以赋值(=)方式来声明变量(对象)

技巧 Python没有提供内置的方式来声明*常量* (象C中用const修饰) 可以用约定的形式用变量来模拟或用相关类库

4.2 数字类型及其操作

【分类】整数、浮点数(科学计数法)、高精度数、复数、分数

- >>> import decimal #1.高精度数
- >>> a = decimal.Decimal('3.141592653')
- >> b = decimal.Decimal('1.234567898')
- >>> decimal.getcontext().prec=20
- >>> a*b

Decimal('3.878509437986453394')

- >>> from fractions import Fraction #2.分数
- >>> Fraction(12,20) #Fraction(3, 5)
- >>> Fraction(1.25) #Fraction(5, 4)
- >>> a=Fraction(1,3)
- >>> b=Fraction(2,3)
- >>> print(a+b) #1

>>> x = 1.25

>>> a = 1.2e-3

>>> b = 12.3 + 1i

a=Fraction(1.6) print(a)

4.2 数字类型及其操作

【操作】操作符、内置函数、类方法

- (1) 操作符: +, -, *, /,%, //(整除), **(幂运算), 二元操作符+=...
- (2) 内置函数: abs(x), divmod(x, y), pow(x, y [,z]),

round(x[, ndigits]), max(a, b, c,...), min(a, b, c,...)

类型转换: int(x), float(x), complex(re[,im])

【例题1-2】请用每天努力的效率诠释毛泽东的提词寄语?

dayup = (1.0 + ex)**365

daydown = (1.0 - ex)**365

print("向上: {:.2f}, 向下: {:.2f}.".format(dayup, daydown))

输入每天的提升效率:0.01 向上: 37.78, 向下: 0.03

4.3 字符串及其操作

【字符集与编码方式】

1. Unicode: 全球性的

字符集,为世界上所有字符分配唯一的编号(称为码位或码点),实现跨语言、跨平台的文本处理,它解决了不同文字系统间传递文本时出现的乱码问题。

2. **UTF-8:** Unicode的一种实现方式,使用变长的编码规则,将Unicode的码位转换为字节序列,使用1到4个字节表示一个字符,优化了存储空间并兼容ASCII码。

【声明字符串变量】

>>> a = '单引号'

>>> b = "双引号"

/// a /单引号' /// b // 双引号' /// c

'三引号嵌套"双引号"和\'单引号\',可以换行'

>>> c = '''三引号嵌套"双引号"和'单引号',可以换行'''

- 4.3 字符串及其操作 【操作】
 - 1. 支持正向和反向索引
- 2. 支持片选: [N:M],[:M],[N:]

如: hi = "hello,hitter"; hi[0:5] #'hello'; hi[-1] # 'r'

hi[0:-1] #'hello,hitte'

字(1~7),输出对应的星期字符串名称。

索引

反向递减序号

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 h e l l o , h i t t i e r

0 1 2 3 4 5 6 7 8 9 10 11 12

正向递增序号

4.3 字符串及其操作

【操作】4. 内置函数(6个)

函数	功能描述				
len(x)	返回字符串x的长度。 也可返回其他组合数招类型元素个数				
str(x)	返回任意类型x所对应的字符串形式				
chr(x)	返回Unicode编码x对应的单字符				
ord(x)	返回单字符表示的Unicode编码				
hex(x)	返回整数x对应十六进制数的小写形式字符串				
oct(x)	返回整数x对应八进制数的小写形式字符串				

【操作】5. 字符串对象函数 (16个)

函数	功能描述
str.lower()	返回字符串str的副本,全部字符小写
str.upper()	返回字符串str的副本,全部字符大写
str.islower()	当str所有字符都是小写时,返回True,否则返回False

4.3 字符串及其操作

【操作】5.字符串对象函数(16个)

函数	功能描述	
str.split(sep=None, maxsplit=-1)	返回一个列表,由str根据sep被分隔的部分构成	
str.replace(old new[, count)	返回字符串str的副本,所有old子串被替换为new,如果count给出,则前count次old出现被替换	
str.strip([chars])	返回字符串str的副本,在其左侧和右侧去掉chars中列出的字符	
str.zfill(width)	返回字符串str的副本,长度为width,不足部分在左侧添0	
str.count(sub[,start[, end])	返回str[start, end]中sub子串出现的次数	
str.format()	返回字符串str的一种排版格式	
str.join(iterable)	返回一个新字符串,由组合数据类型iterable变量的每个元素组成,元素间用str分隔	

4.3 字符串及其操作【操作】5. 字符串对象函数 (16个)

format()方法的基本使用

(1) 格式: <模板字符串>. format (<逗号分隔的参数>)

槽

```
>>> "{}:计算机{}的CPU占用率为{}%。".format("2025-4-3","PYTHON",10)
```

'2025-4-3:计算机PYTHON的CPU占用率为10%。' ↑

1

槽: 0

1

2

数: 0

2

>>> "**{1}**:计算机**{0}**的CPU占用率为**{2}**%。".format("2025-4-3","PYTHON",10)

'PYTHON:计算机2025-4-3的CPU占用率为10%。

4.3 字符串及其操作【操作】5. 字符串对象函数(16个)

format()方法的基本使用

(2)槽的内部样式如下: {<参数序号>:<格式控制标记>}

•	<填充>	<对齐>	<宽度>	< ,>	<精度>	<类型>
引导符号	用于填充 的单个 字符	< 左对齐 > 右对齐 ^ 居中对齐	槽的设定 输出宽度	数字的干位 分隔符,适 用于整数 和浮点数	浮点数小数部 分的精度或字 符串的最大输 出长度	b,c,d,o,x,X

>>> s="python"

>>> n=123456.6789

>>> "{1:*>10}:{0:-^20,.2f}".format(n,s)

输出: '****python:-----123,456.68-----'

第1章 python语言编程入门

主要内容

- > python简介
- > python的基本语法
- > 类与对象
- > 基本数据类型及操作
- > python的类库及使用

5.1 基本概念

【模块】具有相对完整功能的代码集合python文件,解决代码

复用问题。

【包】管理 Python 模块命名空间的方式

```
# math_utils.py 模块定义
def sqrtz(x):
"""计算 x 的开方"""
return x **0.5
```



```
# main.py
import math_utils # 引用模块
print(math_utils.sqrtz(5)) # 输出 2.236
```

from data_processing.text_processing import text_utils from data_processing.image processing import image_utils

5.1 基本概念

【库】成套的工具集合。pandas 为数据分析的库,包括(Series 和 DataFrame 等模块)。

import pandas as pd

```
ser1 = pd.Series(data=[120, 2, 3, 4], index=['一季度', '二季度', '三季度', '四季度'])
print(response.json())
```

【例题1-4】利用math库函数判断一个4位整数是否为回文数.

```
from math import *
n = int(input("達檢) — 介4位東
```

```
n = int(input("请输入一个4位整数:"))
```

```
m = n//1000 + n//100\%10*10 + n//10\%10*100 + n\%10*pow(10,3)
```

print("数{}判断是否为回文数的结果为: {}".format(n, n == m))

5.2 python类库的使用

【math库】用于数学计算的标准函数库,提供4个数学常数和 44个函数。

import math math.factorial(10) #求阶乘 math.gamma(10) #?

技巧

 $\int_0^\infty \mathbf{x}^t e^{-x} dx$ 伽玛函数(欧拉第二积分函数),伽玛函数的推广:

- (1) x为任意数, $\Gamma(x+1) = x\Gamma(x)$
- (2) 当x为整数时, $\Gamma(x+1) = x\Gamma(x) = x(x-1)\Gamma(x-1) = \cdots = x!$
- (3) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

5.2 python类库的使用

【turtle库】内置的绘图标准库,通过一组函数控制画笔的行进动作,完成绘制。

import turtle turtle.pensize(2) #画笔粗2个像素 turtle.circle(10) #半径10个像素点 turtle.circle(40) turtle.circle(80) turtle.circle(160)

小海龟在图的正中(0,0), 头向右,尾向左。Circle参数为10, 小海龟身体左侧10为原点,为-40负右侧40为原点。

5.2 python类库的使用

证turtle库绘制图形有一个基本框架:一个小海龟在坐标系中爬行,其爬行轨迹形成了绘制图形。对于小海龟来说,有"前进"、"后退"、"旋转"等爬行行为,对坐标系的探索也通过"前进方向"、"后退方向"、"左侧方向"和"右侧方向"等小海龟自身角度方位来完成。

seth(-40) #角度 for i in range(4): circle(40,80)# 半径, 角度 circle(-40, 80)

5.2 python类库的使用

【例题1-5】利用turtle库画一条大python。

```
from turtle import *
setup(650,350,200,200) #主窗体大小及位置
penup() #指笔
fd(-250) #倒退
pendown() #落笔
pensize(10) #笔线粗25
pencolor("purple") #颜色紫色
seth(-40) #角度
for i in range(4):
  circle(40,80)# 半径, 角度
  circle(-40, 80)
circle(40,80/2)
fd(40)
circle(16,180)
fd(40*2/3)
```


本章小结

- python的学习内容与计划
- python的基本概念
- python的基本语法