

FAKULTÄT FÜR INFORMATIK

Garbage Collection & Reference Counting

Clemens Ruck & Alex Egger

Summer Term 2017

Overview

Methods of Memory Management

- Shortcomings of Manual Memory Management
- Garbage Collection

Memory Management in Rust

- Rust's approach
 - Stack Allocation
 - Heap Allocation with Box<T>
- Comparison of Stack and Heap allocations

Reference Counting

- Concept
- Problems

Common shortcomings of manual memory management

Garbage Collection

Example - Mark & Sweep

Figure: A graph-represenation of alive objects.

Example - Mark & Sweep

Figure: The 'Mark' stage of the algorithm.

Example - Mark & Sweep

Figure: The 'Sweep' stage of the algorithm.

Memory management in Rust

Stack Allocation

Local Variables

Return Address

Parameters

:

Workings of the Stack

Advantages & Limitations

Heap Allocation

Workings of the Heap

Box<T> in Rust

Use cases

Comparison: Heap vs. Stack

Reference Counting - Example

Reference Counting - Example

Reference Counting - Example

Limitations

Rc<T> (and Weak<T>) in Rust

Example

Limitations of Rc<T>

Example

The 'unsafe' keyword

Use cases