Fonctions trigonométriques réciproques

Autour de $arccos(\cdot)$, $arcsin(\cdot)$ et $arctan(\cdot)$

QCOP TRGREC.1

- **1.** Définir les fonctions $arccos(\cdot)$ et $arcsin(\cdot)$.
- **2.** Soient $A, B, \omega \in \mathbb{R}$. On définit $y: t \longmapsto A\cos(\omega t) + B\sin(\omega t)$.
 - a) Calculer, pour $t \in \mathbb{R}$, $y''(t) + \omega^2 y(t)$.
 - **b)** Déterminer $K, \varphi \in \mathbb{R}$ tels que $\forall t \in \mathbb{R}, \quad y(t) = K \cos(\omega t + \varphi).$

QCOP TRGREC.2 ★

- 1. Donner les graphes des fonctions $arcsin(\cdot)$ et $arccos(\cdot)$.
- 2. Soit $x \in [-1, 1]$. Montrer que $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$, sans utiliser la dérivation.
- **3.** Montrer que $arcsin(\cdot)$ est impaire.
- **4.** Soit $x \in [-1, 1]$. Montrer que $\arccos(x) + \arccos(-x) = \pi$.

QCOP TRGREC.3 *

- 1. Définir les fonctions $tan(\cdot)$ et $arctan(\cdot)$ et donner leur courbe représentative.
- **2.** Soit $z \in \mathbb{C}$ que l'on écrit z = a + ib, avec $a, b \in \mathbb{R}$.

On note θ l'argument principal de z.

- a) Déterminer θ lorsque a=0.
- **b)** Montrer que, si a > 0,

$$\theta = \arctan\left(\frac{b}{a}\right).$$

c) Montrer que, si a < 0,

$$heta = \left\{ egin{array}{ll} {
m arctan} \left(rac{b}{a}
ight) + \pi & {
m si} & b > 0 \ {
m arctan} \left(rac{b}{a}
ight) - \pi & {
m si} & b \leqslant 0 \end{array}
ight.$$

QCOP TRGREC.4

1. Soient $x, \theta \in \mathbb{R}$. Compléter :

$$\theta = \arctan(x) \iff \begin{cases} \theta \in \dots \\ x = \dots \end{cases}$$

- 2. Donner le domaine de définition de la fonction tan(·).
- **3.** Rappeler l'expression de tan(a + b) pour $a, b \in \mathbb{R}$.
- **4.** Soit $x \in \mathbb{R}^*$.
 - a) Montrer que $\arctan(x) + \arctan\left(\frac{1}{x}\right)$ n'admet pas de tangente.
 - **b)** En déduire que

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \operatorname{signe}(x)\frac{\pi}{2}.$$

Utilisation de la dérivée de la réciproque

QCOP TRGREC.5

- **1.** Soient I et J deux intervalles de \mathbb{R} . Soit $f:I\longrightarrow J$ une bijection dérivable. Soit $y\in J$.
 - a) Donner une condition nécessaire et suffisante pour que f^{-1} soit dérivable en y.
 - **b)** Donner, dans ce cas, l'expression de $(f^{-1})'(y)$.
- 2. Montrer que

$$\forall x \in [-1, 1], \quad \cos(\arcsin(x)) = \sqrt{1 - x^2}.$$

3. Montrer que $arcsin(\cdot)$ est dérivable sur]-1,1[et que

$$\forall x \in]-1,1[, \quad \arcsin'(x) = \frac{1}{\sqrt{1-x^2}},$$

à l'aide de la formule de la dérivée de la bijection réciproque.

QCOP TRGREC.6

- 1. Définir la fonction $arctan(\cdot)$.
- **2.** Soient I et J deux intervalles de \mathbb{R} . Soit $f:I\longrightarrow J$ une bijection dérivable. Soit $y\in J$. Montrer que

$$f^{-1}$$
 est dérivable en y \Longrightarrow $\begin{cases} f'\Big(f^{-1}(y)\Big) \neq 0 \\ \Big(f^{-1}\Big)'(y) = \frac{1}{f'\Big(f^{-1}(y)\Big)}. \end{cases}$

3. Montrer que $\mathsf{arctan}(\cdot)$ est dérivable sur $\mathbb R$ et que

$$\forall x \in \mathbb{R}, \quad \operatorname{arctan}'(x) = \frac{1}{1+x^2}.$$