Classification d'images: **Dataset MNIST** avec Réseaux de neurones

Ordre du jour

Introduction

Grandes Familles de L'Intelligence Artificielle

Réseaux de neurones

Architecture

Démonstration

Bright Assana Assetina LEMBO

- Data scientist
- Chef Comité lot & Science de données Oozons
- Responsable technique TOOTLE

Intelligence artificielle

- Mathématiques, données, capacité de calcul, Algorithmique
- Simuler l'intelligence humaine

Grandes familles de L'IA

Neurone

Un neurone est une unité fonctionnelle du cerveau humain responsable d'une tâche spécifique:

- Elle reçoit une information qui l'active.
- Elle la traite via des opérations.
- Elle renvoie la sortie à un autre neurone qui s'active à son tour si l'information lui est sensible.

Prendre des données en entrée

Les faire traiter par le réseau de neurones

Appliquer une fonction d'activation à chaque couche

Réseaux de neurones

Réseau de neurones simple

Réseau de neurones profond

Extraction de caractéristiques de façon locale

Pooling, pour réduire la dimension

Connection à un réseau entièrement connecté pour la classification

Réseaux de neurones convolutifs

Feature Extraction

Classification

Démonstration

Architecture du réseau

Convolution 3 3

Pooling 2 2

Convolution 3 3

Pooling 2 2

Flatten

Fully connected: 64

SOFTMAX

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d (MaxPooling2D)	(None, 13, 13, 32)	0
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18,496
max_pooling2d_1 (MaxPooling2D)	(None, 5, 5, 64)	0
flatten (Flatten)	(None, 1600)	0
dense (Dense)	(None, 64)	102,464
dropout (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 10)	650

Total params: 365,792 (1.40 MB)

Trainable params: 121,930 (476.29 KB)
Non-trainable params: 0 (0.00 B)

Optimizer params: 243,862 (952.59 KB)

Conclusion

Les réseaux de neurones offrent à la fois un potentiel énorme mais soulèvent également plusieurs questions auxquelles la communauté de la data science essaie de donner des pistes de solution.