Vorlesung "Digitale Spiele"

TU Darmstadt, Sommersemester 2008

Klaus P. Jantke

Fraunhofer Institut Digital Medientechnologie (IDMT) Leiter der Projektgruppe Kindermedien

Ehrenbergstr. 31 98693 Ilmenau Hirschlachufer 7 99084 Erfurt

klaus.jantke@idmt.fraunhofer.de

Was soll es bedeuten, an einer Stelle π_{aq} einen "Ability Gain" zu erleben?.

- Kann man einen "Ability Gain" haben, ohne ihn zu "erleben"?
- Kann man nur hinzu gewinnen, was man zuvor nicht besessen hat?
- · ...?!

Was soll es bedeuten, an einer Stelle π_{ag} einen "Ability Gain" zu erleben?.

- Kann man einen "Ability Gain" haben, ohne ihn zu "erleben"?
- Kann man nur hinzu gewinnen, was man zuvor nicht besessen hat?
- ...?! Slide 3

Was soll es bedeuten, an einer Stelle π_{ag} einen "Ability Gain" zu erleben?.

- Kann man einen "Ability Gain" haben, ohne ihn zu "erleben"?
- Kann man nur hinzu gewinnen, was man zuvor nicht besessen hat?
- **.**..?!

elementarer Ansatz:

(
$$\exists \mu \in M$$
) ($\exists \pi \in \Pi(G)$) $\pi_{ag}\mu \leq \pi$

elementarer Ansatz:

(
$$\exists \mu \in M$$
) ($\exists \pi \in \Pi(G)$) $\pi_{ag}\mu \leq \pi$

Die entscheidende Schwachstelle dieser Begriffsbildung ist, dass diese Eigenschaft trivialerweise für alle $\pi_{ag} < \pi$ gilt.

elementarer Ansatz:

(
$$\exists \mu \in M$$
) ($\exists \pi \in \Pi(G)$) $\pi_{ag}\mu \leq \pi$

Die entscheidende Schwachstelle dieser Begriffsbildung ist, dass diese Eigenschaft trivialerweise für alle $\pi_{ag} < \pi$ gilt, weil nicht ausgedrückt wird, in welchem Sinne μ "neu" ist.

Zusatzanforderungen der "Neuheit" von μ:

[i]
$$(\neg \exists \pi' \in M^*) \pi' \mu \leq \pi_{aq}$$

[ii]
$$(\neg \exists \pi_1, \pi_2 \in M^*) \pi_1 \mu \pi_2 = \pi_{aq}$$

[iii]
$$(\neg \exists \pi_1 \in M^*) (\neg \exists \mu_1 \in M) (\neg \exists \pi \in \Pi(G)) \pi_1 \mu_1 = \pi_{ag} \land \pi_1 \mu \leq \pi$$

[iv]
$$(\neg \exists \pi_1 \in M^*) (\neg \exists \pi \in \Pi(G)) \quad \pi_1 \leq \pi_{ag} \land \quad \pi_1 \mu \leq \pi$$

Gerade eben wurde μ nicht gespielt.

Bisher ist μ nicht gespielt worden.

Gerade eben war μ nicht möglich.

Bisher war μ noch nie möglich.

Eine (vielleicht natürlichste) Definition:

[ag 4]
$$(\exists \mu \in M)$$
 ($\exists \pi \in \Pi(G)$) $\pi_{ag} \mu \leq \pi$ \land ($\neg \exists \pi_1 \in M^*$) ($\neg \exists \pi \in \Pi(G)$) $\pi_1 \leq \pi_{ag} \land \pi_1 \mu \leq \pi$

Zusatzanforderungen der "Neuheit" von μ:

[i]
$$(\neg \exists \pi' \in M^*) \pi' \mu \leq \pi_{ag}$$

[ii]
$$(\neg \exists \pi_1, \pi_2 \in M^*) \pi_1 \mu \pi_2 = \pi_{ag}$$

[iii]
$$(\neg \exists \pi_1 \in M^*) (\neg \exists \mu_1 \in M) (\neg \exists \pi \in \Pi(G)) \pi_1 \mu_1 = \pi_{ag} \land \pi_1 \mu \leq \pi$$

[iv]
$$(\neg \exists \pi_1 \in M^*) (\neg \exists \pi \in \Pi(G)) \pi_1 \leq \pi_{ag} \wedge \pi_1 \mu \leq \pi$$

Gerade eben wurde μ nicht gespielt.

Bisher ist μ nicht gespielt worden.

Gerade eben war μ nicht möglich.

Bisher war μ noch nie möglich.

Problem: Wird ein Ability Gain <u>erlebt</u>, wenn zwar eine dieser Eigenschaften vorlag, sich der Spieler dessen aber <u>nicht bewusst</u> war.

