Computational Data Mining

Fatemeh Mansoori

- The eigenvectors of A don't change direction when you multiply them by A
- Ax is on the same line as the input vector x

$$x=$$
 eigenvector of A $\lambda=$ eigenvalue of A $Ax=\lambda x$

$$A^2x = \lambda^2x$$
.

how eigenvalues and eigenvectors are useful

$$A^2 \boldsymbol{x} = \lambda^2 \boldsymbol{x}.$$

$$A^k x = \lambda^k x$$
 for all $k = 1, 2, 3, ...$ And $A^{-1} x = \frac{1}{\lambda} x$ provided $\lambda \neq 0$.

- Most n by n matrices have n independent eigenvectors X_1 to X_n with n different eigenvalues AI to λ_1 to λ_n
- every n-dimensional vector v will be a combination of the eigenvectors

Every
$$oldsymbol{v}=c_1oldsymbol{x}_1+\cdots+c_noldsymbol{x}_n$$

Multiply by $oldsymbol{A}$
 $oldsymbol{Av}=c_1\lambda_1oldsymbol{x}_1+\cdots+c_n\lambda_noldsymbol{x}_n$

Multiply by $oldsymbol{A^k}$
 $oldsymbol{A^kv}=c_1\lambda_1^koldsymbol{x}_1+\cdots+c_n\lambda_n^koldsymbol{x}_n$

how eigenvalues and eigenvectors are useful

Every
$$m{v}$$
 $m{v} = c_1 m{x}_1 + \dots + c_n m{x}_n$

Multiply by $m{A}$ $Am{v} = c_1 \lambda_1 m{x}_1 + \dots + c_n \lambda_n m{x}_n$

Multiply by $m{A}^{m{k}}$ $A^k m{v} = c_1 \lambda_1^k m{x}_1 + \dots + c_n \lambda_n^k m{x}_n$

If $|\lambda_1| > 1$ then the component $c_1 \lambda_1^n x_1$ will grow as n increases If $|\lambda_2| < 1$ then that component $c_2 \lambda_2^n x_2$ will steadily disappear The powers of Q don't grow or decay

Eigenvalues and eigenvectors properties

Example
$$S = \begin{bmatrix} \mathbf{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{2} \end{bmatrix}$$
 has eigenvectors $S \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $S \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(Trace of S) The sum $\lambda_1 + \lambda_2 = 3 + 1$ equals the diagonal sum 2 + 2 = 4

(**Determinant**) The product $\lambda_1 \lambda_2 = (3)(1) = 3$ equals the determinant 4 - 1

(Real eigenvalues) Symmetric matrices $S=S^{\mathrm{T}}$ always have real eigenvalues

(Orthogonal eigenvectors) If $\lambda_1 \neq \lambda_2$ then $x_1 \cdot x_2 = 0$.

Here
$$(1,1) \cdot (1,-1) = 0$$

Computing the Eigenvalues (by hand)

 $Ax = \lambda x$ is the same as $(A - \lambda I)x = 0$

 $A - \lambda I$ is not invertible:

determinant of $A - \lambda I$ must be zero

equation $det(A - \lambda I) = 0$ has n roots

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 has two eigenvalues

Question

Find the eigenvalues and eigenvectors of
$$A = \begin{bmatrix} 8 & 3 \\ 2 & 7 \end{bmatrix}$$

If A is shifted to A + sI, what happens to the x's and λ 's ?

Similar Matrices

- For every invertible matrix B :
 - eigenvalues of BAB⁻¹ are the same as the eigenvalues of A

If
$$A\mathbf{x} = \lambda \mathbf{x}$$
 then $(BAB^{-1})(B\mathbf{x}) = BA\mathbf{x} = B\lambda \mathbf{x} = \lambda(B\mathbf{x})$.

The matrices BAB^{-1} (for every invertible B) are "similar" to A: same eigenvalues.

Question

• Show that the eigenvalue of BAB⁻¹ is equal to the eigenvalue of A

• Show that the eigenvalue of AB equals the eigenvalue of BA

The eigenvalues of any triangular matrix $\left[egin{array}{cc} a & b \\ 0 & d \end{array}
ight]$ are $\lambda_1=a$ and $\lambda_2=d.$

Diagonalizing a Matrix

- A has a full set of n independent eigenvectors
- Put those eigenvectors x_1 , ..., x_n into an invertible matrix X
- Multiply AX column by column

$$A \left[oldsymbol{x}_1 \ \dots \ oldsymbol{x}_n
ight] = \left[egin{align*} A oldsymbol{x}_1 \ \dots \ A oldsymbol{x}_n \end{array}
ight] = \left[egin{align*} \lambda_1 oldsymbol{x}_1 \ \dots \ \lambda_n oldsymbol{x}_n \end{array}
ight] = \left[oldsymbol{x}_1 \ \dots \ oldsymbol{x}_n \end{array}
ight] \left[egin{align*} \lambda_1 \ \dots \ \lambda_n \end{array}
ight].$$

$$oldsymbol{\Lambda} = ext{diagonal eigenvalue matrix} \qquad A = X \Lambda X^{-1} \ X = ext{invertible eigenvector matrix} \qquad A^2 = (X \Lambda X^{-1}) \, (X \Lambda X^{-1}) = X \Lambda^2 X^{-1}$$

$$A = \begin{bmatrix} \mathbf{0.8} & \mathbf{0.3} \\ \mathbf{0.2} & \mathbf{0.7} \end{bmatrix}$$
 $\lambda_1 = 1 \text{ and } \lambda_2 = \frac{1}{2}$

• A is a Markov matrix, with columns adding to 1

$$A^k \boldsymbol{v} = c_1(1)^k \boldsymbol{x}_1 + c_2(\frac{1}{2})^k \boldsymbol{x}_2$$

As k increases, $A^k v$ approaches $c_1 x_1 =$ steady state

 We can follow each eigenvector separately. Its growth or decay depends on the eigenvalue

■ CPT P(X_t | X_{t-1}):

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

What is the probability distribution after one step?

$$P(X_2 = sun) = \sum_{x_1} P(x_1, X_2 = sun) = \sum_{x_1} P(X_2 = sun|x_1)P(x_1)$$

From initial observation of sun

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

From initial observation of rain

From yet another initial distribution $P(X_1)$:

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \cdots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \\ P(X_1) \end{array} \right\rangle$$

Factor these two matrices into $A = X\Lambda X^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}.$$

If
$$A = X\Lambda X^{-1}$$
 then $A^3 = ()()()$ and $A^{-1} = ()()$.