

SPECIALIST MATHEMATICS Units 3 & 4

Written examination 2 Solutions

SECTION 1

Question	Answer	Solution
1	C	$f(x) = \frac{x}{x^2 - 4x + 3}$ $= \frac{x}{(x - 1)(x - 3)}$
2	D	Let $u = \sqrt{x-1}$ $\Rightarrow x-1=u^2$ $x = u^2 + 1$ dx = 2udu The terminals of the integral become: When $x = 2$, $u = 1$. When $x = 3$, $u = \sqrt{2}$.
3	В	$V = \rho \int_{0}^{1} \left(x \sqrt{x} \right)^{2} dx$ $= \frac{\rho}{4}$
4	C	The three forces are in equilibrium, $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = 0$. $\overrightarrow{F_2} = 12 \text{ N}$ Use the converse of Pythagoras theorem to show that the triangle formed by the three forces is a right-angled triangle. $ \overrightarrow{F_1} ^2 + \overrightarrow{F_2} ^2 = \overrightarrow{F_3} ^2$ $5^2 + 12^2 = 13^2$ $25 + 144 = 169$

2016 SPECIALIST MATHEMA	TICS 3&4 EXAM 2 SOLUTIONS	2
	169 = 169 \triangleright The angle between \overrightarrow{F}_1 and \overrightarrow{F}_2 is 90°.	
	Use the cosine rule to calculate angle a° . $\cos(a^{\circ}) = \frac{ \vec{F}_1 ^2 + \vec{F}_3 ^2 - \vec{F}_2 ^2}{2 \vec{F}_1 \vec{F}_3 }$ $= \frac{25 + 169 - 144}{2 \cdot 5 \cdot 13}$ $= \frac{5}{13}$ $a^{\circ} = \cos^{-1}\left(\frac{5}{13}\right)$	
	= 67.4°	
5 E	$\frac{dy}{dx} = \frac{x}{y}$ $xdx = ydy$ $0 x dx = 0 y dy$ $\frac{x^2}{2} + c_1 = \frac{y^2}{2} + c_2$ $x^2 = y^2 + c, \text{ where } c = 2(c_2 - c_1)$ When $x = 0$, $y = 0 \Rightarrow c = 0$ and $y^2 = x^2$. $\Rightarrow \text{ first statement is true}$ There are no restrictions on the domain, therefore x can take negative values a \Rightarrow second statement is false There are no asymptotes for $y = x $. $\Rightarrow \text{ third statement is false}$ To have a stationary point at $x = 0$, $\frac{dy}{dx} = \frac{x}{y} = 0$. However, when $x = 0$, $y = 0$, therefore the derivative function is undefined at $x = 0$. $\Rightarrow \text{ fourth statement is false}$ $\frac{d^2y}{dx^2} = \frac{y - y'x}{y^2}$ $= \frac{y - \frac{x^2}{y}}{y^2}$ $= \frac{y - \frac{x^2}{y}}{y^3}$ $= 0 " x ^1 0 \text{ since } y^2 = x^2$ The second derivative is undefined at $x = 0$.	lso.

 \Rightarrow the fifth statement is false

6	A .	Two yeaters are linearly dependent if they have the same direction
U	A	Two vectors are linearly dependent if they have the same direction.
		$a = kb, k \in R$
		$m\mathbf{i} + n\mathbf{j} = kp\mathbf{i} + kq\mathbf{j}$
		m = kp and $n = kq$
		$\frac{m}{n} - \frac{n}{n} - k$
		$\frac{m}{p} = \frac{n}{q} = k$
7	В	E(3Y - 2X) = 25 becomes $3E(Y) - 2E(X) = 25$
		E(4X - Y) = 18 becomes $4E(X) - E(Y) = 18$
		Solve the system of two simultaneous equations for $E(X)$ and $E(Y)$.
		E(X) = 7.9, E(Y) = 13.6
		Substitute the values for $E(X)$ and $E(Y)$ into $E(-5X + Y)$.
		E(-5X+Y) = -5E(X) + E(Y)
		$= -5 \cdot 7.9 + 13.6$
		= -25.9
	_	
8	D	The maximal domain of $f(x)$ is determined by the intersection between the domains
		of the two terms of the function.
		$\frac{x}{1-x} \ge 0 \text{ when } x \in [0,1)$
		$4x \in \left(-\frac{p}{2}, \frac{p}{2}\right)$
		$4x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$
		$x \in \left(-\frac{\rho}{8}, \frac{\rho}{8}\right)$
		(8 8)
		The intersection of the two intervals is $\left[0, \frac{p}{8}\right]$.
		The intersection of the two intervals is $\left[0, \frac{8}{8}\right]$.
9	С	$\cos(x) + \sin(x) = a, x \in [0, 2\pi]$
		$\sqrt{2}$
		Multiply the equation by $\frac{\sqrt{2}}{2}$.
		$\frac{1}{\sqrt{2}}\cos(x) + \frac{1}{\sqrt{2}}\sin(x) = \frac{1}{\sqrt{2}}a$
		'- '- '-
		$\sin\left(x + \frac{\rho}{4}\right) = \frac{a}{\sqrt{2}} \in \left[-1, 1\right]$
		·
		$-1 \le \frac{a}{\sqrt{2}} \le 1$ multiply the equation by $\sqrt{2}$
		\ 2
		$-\sqrt{2} \le a \le \sqrt{2}$ $a \in \left[-\sqrt{2}, \sqrt{2}\right]$
		$a \in [-\sqrt{2}, \sqrt{2}]$

10	TC	400 7 400 0
10	E	$\overline{x} = \frac{103.5 + 108.3}{2} = 105.9$
		The z score for the 95% confidence interval is $z = 1.96$.
		$\overline{x} + z \stackrel{s}{\sim} \frac{s}{\sqrt{n}} = 105.9 + 1.96 \stackrel{s}{\sim} \frac{s}{\sqrt{80}}$
		$\Rightarrow 105.9 + 1.96 \stackrel{s}{\sqrt{80}} = 108.3$
		s = 10.95217
		s = 11.0 mm
11	С	Let $u = \frac{1}{5}x^2 + \frac{4}{5}x$
		$\frac{du}{dx} = \frac{2}{5}x + \frac{4}{5} \implies du = \left(\frac{2}{5}x + \frac{4}{5}\right)dx$
		$du = \frac{2}{5}(x+2)dx$
		$\frac{5}{2}du = (x+2)dx$
		When $x = 0$, $u = 0$.
		When $x = 1$, $u = 1$.
		$\int_{0}^{1} f\left(\frac{1}{5}x^{2} + \frac{4}{5}x\right) (x+2) dx = \int_{0}^{1} f(u) \frac{5}{2} du$
		$=\frac{5}{2}\int_{0}^{1}f(u)du$
		$=\frac{5}{2}A$
10		2
12	С	The period of the product function is a multiple of the periods of the two functions. $Period_{f(x)} = \frac{2p}{a}$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$Period_{g(x)} = \frac{p}{c}$
		Option A
		ac cannot be a multiple of the period of $f(x)$ because $ac = \frac{2p}{a} = \frac{a^2c}{2p}$.
		$\frac{ac^2}{2\rho}$ cannot be an integer regardless of the values of a and c.
		Option B
		Similarly, $2ac$ cannot be a multiple of the period of $f(x)$ because $2ac ext{ } \frac{2p}{a} = \frac{a^2c}{p}$ is
		not an integer.

4

		Option C
		$ 2\rho \cdot \frac{2\rho}{a} = a $ $ 2\rho \cdot \frac{\rho}{c} = 2c $ $ \Rightarrow 2\rho \text{ could be the period of } h(x) \Rightarrow 2\pi \text{ could be the period of } h(x) $
		Option D
		$\frac{2p}{ac}$ cannot be a multiple of the period of $f(x)$ because $2ac \cdot \frac{2p}{ac} = \frac{a^2c^2}{p}$ is not an integer.
		Option E
		$\frac{\rho}{ac}$ cannot be a multiple of the period of $f(x)$ because $2ac \cdot \frac{\rho}{ac} = \frac{2a^2c^2}{\rho}$ is not an integer.
13	E	Determine the coordinates of the point of intersection between the two functions, to the right of the y – axis. $f(x) = g(x)$ $e^x - x = 3$
		The volume generated by the rotation about the x – axis is given by the formula $V = \rho \int_{a}^{b} \left[g(x) - f(x) \right]^{2} dx$ $= \rho \int_{0}^{1.505} (3 - e^{x} + x)^{2} dx$ $= 11.14$
14	A	If the particle is in equilibrium, the $F_1 + F_2 + F_3 = 0$ $2i + 3j - i - 4j + F_3 = 0$ $F_3 = -i + j$ $ F_3 = \sqrt{2}$
15	В	A confidence interval is given by $ \left(\overline{x} - z \frac{s}{\sqrt{n}}, \ \overline{x} + z \frac{s}{\sqrt{n}}\right) $ $ \frac{z}{\sqrt{200}} = 0.1386 $ $ z = 0.1386 \ \sqrt{200} $ $ = 1.96 $ $ z = 1.96 \text{ corresponds to a 95\% confidence interval} $

6

18	E	Option A $z = \operatorname{cis}(\theta) = \cos(\theta) + i\sin(\theta)$ $\overline{z} = \cos(q) - i\sin(q)$ $= \cos(-q) + i\sin(-q)$ $= \operatorname{cis}(-q) \dots \text{ true}$ Option B $z^2 = [\operatorname{cis}(\theta)]^2$ $= \operatorname{cis}(2\theta) \dots \text{ true}$ Option C $ \overline{z} = \sqrt{\cos^2(q) + \sin^2(q)}$ $= 1 \dots \text{ true}$ Option D $\frac{z}{\overline{z}} = \frac{\operatorname{cis}(q)}{\operatorname{cis}(-q)}$ $= \operatorname{cis}(q + q)$ $= \operatorname{cis}(2q) \dots \text{ true}$ Option E $z\overline{z} = \operatorname{cis}(q)\operatorname{cis}(-q)$ $= \operatorname{cis}(q - q) \qquad \text{ or } z\overline{z} = \left(z \right)^2 \dots \text{ false}$ $= \operatorname{cis}(0) \qquad = 1$
19	В	$a = 2v^{2} - v, \text{ where } a = \frac{dv}{dt} = 2v^{2} - v$ $\frac{dv}{2v^{2} - v} = dt$ $\int_{1}^{v} \left(\frac{2}{2v - 1} - \frac{1}{v}\right) dv = \int_{0}^{t} dt$ $\left[\log_{e}\left(2v - 1\right) - \log_{e}\left(v\right)\right]_{1}^{v} = t$ $\log_{e}\left(\frac{2v - 1}{v}\right) = t$ $2v - 1 = ve^{t}$ $2v - ve^{t} = 1$ $v = \frac{1}{2 - e^{t}}$ Using partial fractions, $\frac{1}{2v^{2} - v} = \frac{1}{v\left(2v - 1\right)}$ $= \frac{2}{2v - 1} - \frac{1}{v}$

20	C	$F = ma \Rightarrow a = \frac{16}{m} \text{ m/s}^2$ $s = \frac{1}{2}(u+v)$ $12 = \frac{1}{2}(u+20)$ $paragraphic u = 4 \text{ m/s}$ $v = u + at$ $20 = 4 + \frac{16}{m} \cdot 4$ $paragraphic m = 4 \text{ kg}$
21	C	The new random variable is $(100\% + 30\%)$ of <i>X</i> plus an extra \$2. $(100 + 30)\% = 130\% = 1.3$
		Therefore, the random variable for the new charges is $1.3X + 2$.
		Therefore, the fallacian variable for the Wellanges is Tion 1.2.
22	В	$z_{1} = 1 \implies 1 - a + b = 0$ $\implies a = 1 + b \dots [1]$ $z_{2} = 1 - i \implies (1 - i)^{4} - a(1 - i) + b = 0$ $\implies -4 - a + ai + b = 0 \dots [2]$ Substitute [1] into [2]. $-4 - (1 + b) + (1 + b)i + b = 0$ $-4 - 1 - b + i + bi + b = 0$ $-5 + i + bi = 0$ $bi = 5 - i$ $b = 5i + 1$ $a = 1 + b$ $= 2 + 5i$

SECTION 2

Question 1 (12 marks)

a.

$$a = \frac{1}{6}, \ b = \frac{1}{3}$$

b.

$$E(x) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{2}$$

$$E(x) = \frac{7}{3}$$

c.

$$Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = 1^{1} \times \frac{1}{6} + 2^{2} \times \frac{1}{3} + 3^{2} \times \frac{1}{2} - \left(\frac{7}{3}\right)^{2}$$

$$= \frac{36}{6} - \frac{49}{9}$$

$$= \frac{5}{9}$$
1A

d.

у	2	3	4	5	6
Pr(Y = y)	<u>1</u> 36	<u>1</u> 9	<u>5</u> 18	$\frac{1}{3}$	$\frac{1}{4}$

1A

$$Pr(Y = 2) = \frac{1}{6} \cdot \frac{1}{6}$$

$$= \frac{1}{36}$$

$$Pr(Y = 4) = \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{6}$$

$$= \frac{5}{18}$$
1M

e.

$$E(Y) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{1}{9} + 4 \cdot \frac{5}{18} + 5 \cdot \frac{1}{3} + 6 \cdot \frac{1}{4}$$

$$= \frac{14}{3}$$
1A

$$E(Y^{2}) = 4 \cdot \frac{1}{36} + 9 \cdot \frac{1}{9} + 16 \cdot \frac{5}{18} + 25 \cdot \frac{1}{3} + 36 \cdot \frac{1}{4}$$

$$= \frac{1}{9} + 1 + \frac{40}{9} + \frac{25}{3} + 9$$

$$= \frac{206}{9}$$
1A

$$E(Y)^{2} + E(Y) - \frac{E(Y^{2})}{2} = \left(\frac{14}{3}\right)^{2} + \frac{14}{3} - \frac{1}{2} \times \frac{206}{9}$$

$$= \frac{196}{9} + \frac{14}{3} - \frac{103}{9}$$

$$= \frac{93}{9} + \frac{42}{9}$$

$$= \frac{135}{9}$$

$$= 15 \dots \text{ as required}$$

1A

f.

Median occurs at 0.5.

1M

$$\frac{1}{4} = 0.25$$

$$\frac{1}{3} + \frac{1}{4} = \frac{7}{12} = 0.58$$

The median is 5.

1A

Alternatively,
$$\frac{1}{36} + \frac{1}{9} + \frac{5}{18} = 0.42$$
 and $\frac{1}{36} + \frac{1}{9} + \frac{5}{18} + \frac{1}{3} = 0.75$.

Question 2 (12 marks)

a.

1A

The x and y intercepts are both at (0, 0).

Two vertical asymptotes:
$$x = -\frac{\rho}{2}$$
 and $x = \frac{\rho}{2}$

1A

b.

$$f(x) = \tan(x)e^{2x}$$

$$f(x) = \frac{1}{\cos^2(x)}e^{2x} + \tan(x) \times 2e^{2x}$$

$$= \frac{1}{\cos^2(x)}e^{2x} + 2\tan(x)e^{2x}$$

$$= \frac{1}{\cos^2(x)}e^{2x} + 2f(x)$$

$$f(x) = -2\cos^{-3}(x)(-\sin(x))e^{2x} + \frac{1}{\cos^{2}(x)} \times 2e^{2x} + 2f(x)$$
1A

$$f''(x) = 2\tan(x)\sec^2(x)e^{2x} + 2\sec^2(x)e^{2x} + 2f'(x)$$

$$f''(x) = 2f'(x) + 2\sec^2(x)[f(x) + e^{2x}] \dots \text{ as required}$$

1A

c.

Points of inflection occur when
$$\frac{d^2y}{dx^2} = 0$$
.

1A

The point of inflection has coordinates (-0.785, -0.208).

To one decimal place, (-0.8, -0.2).

1A

d.

When
$$x = \frac{\rho}{4}$$
, $y = f\left(\frac{\rho}{4}\right)$

$$= \tan\left(\frac{\rho}{4}\right)e^{2\times\frac{\rho}{4}}$$

$$= e^{\frac{\rho}{2}}$$

$$\frac{dy}{dx}\Big|_{x=\frac{D}{4}} = 4e^{\frac{D}{2}}$$

e.

The equation of the tangent at $x = \frac{\rho}{4}$ is

$$y - e^{\frac{\rho}{2}} = 4e^{\frac{\rho}{2}} \left(x - \frac{\rho}{4} \right)$$

$$y = e^{\frac{\rho}{2}} + 4e^{\frac{\rho}{2}}x - \frac{\rho}{4}4e^{\frac{\rho}{2}}$$

$$y = 4e^{\frac{\rho}{2}}x + e^{\frac{\rho}{2}} \left(1 - \rho \right)$$

$$m = 4e^{\frac{\rho}{2}}, c = e^{\frac{\rho}{2}} \left(1 - \rho \right)$$
2A

Question 3 (12 marks)

9

$$|z + 4i - 1| = |x + iy + 4i - 1|$$

$$= \sqrt{(x - 1)^2 + (y + 4)^2}$$

$$\sqrt{(x - 1)^2 + (y + 4)^2} = 3 \text{ ... square both sides of the equation}$$

$$(x - 1)^2 + (y + 4)^2 = 9$$

The set of complex numbers P represents a circle with radius 3 and centre (1, -4).

b.

1A + 1A

The shaded region satisfies the conditions given including the boundary of the circle.

c.

The solutions of the equation |z + 2 + 4i| = |z - 4 + 4i| represent the locus of points at the same distance from -2 - 4i and 4 - 4i.

The locus of points is the median bisector of the line segment passing through (-2, -4) and (4, -4) with equation x = 1.

1A

The points needed are in fact the solutions of the system of equations

$$\begin{cases} x = 1 \\ (x - 1)^2 + (y + 4)^2 = 9 \end{cases} \Rightarrow \begin{cases} x = 1, \ y = -7 \\ x = 1, \ y = -1 \end{cases}$$

$$z_1 = 1 - 7i$$

$$z_2 = 1 - i$$

1A

d.

e. i.

Solve the system of simultaneous equations

$$\begin{cases} (x-1)^2 + (y+4)^2 = 9 \dots [1] \\ (x-0)^2 + (y+4)^2 = c \dots [2] \end{cases} \dots \text{ subtract equation } [2] \text{ from } [1]$$

$$(x-1)^2 - x^2 = 9 - c$$

$$x^2 - 2x + 1 - x^2 = 9 - c$$

$$-2x = 8 - c$$

$$x = \frac{c}{2} - 4$$

$$1A$$

Substitute the value of *x* into equation [2].

$$\left(\frac{c}{2} - 4\right)^2 + (y + 4)^2 = c$$

$$(y + 4)^2 = c - \frac{c^2}{4} + 4c - 16$$

$$(y + 4)^2 = 5c - \frac{c^2}{4} - 16$$

$$y + 4 = \pm \sqrt{5c - \frac{c^2}{4} - 16}$$

$$y = -4 \pm \sqrt{5c - \frac{c^2}{4} - 16}$$

The second circle has to be inside the first circle. Therefore, $y = -4 + \sqrt{5c - \frac{c^2}{4}} - 16$ is the expression that satisfies this condition.

e. ii.

For the largest value of c, the two circles must only have one point in common. The centre of the inside circle is (0, -4), therefore its maximum radius is 2.

 $c = 2^2 = 4.$

e. iii.

Question 4 (9 marks)

ล.

The object moves under constant acceleration.

$$v = u + at$$
, where $u = 0$, $t = 10$ s and $a = 3$ m/s².

$$v = 0 + 3 \times 10 = 30 \text{ m/s}$$

b.

$$s = \frac{1}{2}(u+v)t$$
$$= \frac{1}{2} 30 10$$
$$= 150 \text{ m}$$

1A

c.

2A

d.

The object is moving under constant deceleration (negative acceleration) to come to a stop.

 $u = 30\cos(12^\circ)$ is the velocity at the end of the horizontal surface and the horizontal component at the beginning of the inclined plane.

v = 0 (at the end of the motion on the inclined plane)

$$v^2 = u^2 + 2as$$

$$0 = [30\cos(12^\circ)]^2 + 2a \times 25$$

$$a = -17.22 \text{ ms}^{-2}$$
 1M + 1A

e.

The horizontal components:
$$2a = F\cos(12^\circ) + 2g\cos(78^\circ) - F_{fr}$$

1A

The vertical components: $N + F \sin(12^\circ) = 2g \cos(12^\circ)$

1A

$$\begin{cases} 2a = F\cos(12^\circ) + 2g\cos(78^\circ) - F_{fr} \\ N + F\sin(12^\circ) = 2g\cos(12^\circ) \end{cases}$$

$$\begin{cases} 2 \times (-17.22) = 6\cos(12^\circ) + 2g\cos(78^\circ) - m(2g\cos(12^\circ) - 6\sin(12^\circ)) \\ N = 2g\cos(12^\circ) - 6\sin(12^\circ) \\ -2 \cdot (-17.22) + 6\cos(12^\circ) + 2g\cos(78^\circ) \end{cases}$$

$$m = \frac{-2 \left(-17.22\right) + 6\cos(12^{\circ}) + 2g\cos(78^{\circ})}{2g\cos(12^{\circ}) - 6\sin(12^{\circ})}$$
1A

= 2.48

Question 5 (13 marks)

a.

At
$$t = 0$$
, $r(0) = 0$.

$$\begin{cases}
3\sin(0) - \sqrt{3}\cos(0) + a = 0 \\
-\sqrt{3}\sin(0) - 3\cos(0) + b = 0
\end{cases}$$

$$\begin{cases}
-\sqrt{3} + a = 0 \\
-3 + b = 0
\end{cases}$$

$$a = \sqrt{3} \text{ and } b = 3$$

1M

1A

b.

$$\left| \mathbf{r}(t) \right| = \left[\left[3\sin(t) - \sqrt{3}\cos(t) + \sqrt{3} \right] \mathbf{i} + \left[-\sqrt{3}\sin(t) - 3\cos(t) + 3 \right] \mathbf{j} \right]$$

$$= \sqrt{\left[3\sin(t) - \sqrt{3}\cos(t) + \sqrt{3} \right]^2 + \left[-\sqrt{3}\sin(t) - 3\cos(t) + 3 \right]^2}$$

$$= \sqrt{-24\cos(t) + 14}$$

1M

$$\sqrt{-24\cos(t)+14}=6$$

$$-24\cos(t) + 14 = 36$$

$$-24\cos(t) = 12$$

$$\cos(t) = -\frac{1}{2} \Rightarrow t = \left\{ \frac{2\rho}{3}, \frac{4\rho}{3} \right\}$$

$$t_1 = 2.09 \text{ s} \text{ and } t_2 = 4.19 \text{ s}$$

1A

C.

$$\mathbf{r}(t) = \left[3\sin(t) - \sqrt{3}\cos(t) + \sqrt{3}\right]\mathbf{i} + \left[-\sqrt{3}\sin(t) - 3\cos(t) + 3\right]\mathbf{j}$$

$$\dot{\mathbf{r}}(t) = \left[3\cos(t) + \sqrt{3}\sin(t)\right]\mathbf{i} + \left[-\sqrt{3}\cos(t) + 3\sin(t)\right]\mathbf{j}$$

$$\ddot{\mathbf{r}}(t) = \left[-3\sin(t) + \sqrt{3}\cos(t)\right]\mathbf{i} + \left[\sqrt{3}\sin(t) + 3\cos(t)\right]\mathbf{j}$$

1A

$$\left| \ddot{r}(t) \right| = \sqrt{\left[-3\sin(t) + \sqrt{3}\cos(t) \right]^2 + \left[\sqrt{3}\sin(t) + 3\cos(t) \right]^2}$$

$$= \sqrt{12\sin^2(t) + 12\cos^2(t)}$$

$$= \sqrt{12} \text{ ... as required}$$

1A

d.

$$\dot{\mathbf{r}}(t) = \left[3\cos(t) + \sqrt{3}\sin(t)\right]\mathbf{i} + \left[-\sqrt{3}\cos(t) + 3\sin(t)\right]\mathbf{j}$$

$$m = \sqrt{3^2 + \sqrt{3}^2}$$

$$= \sqrt{12}$$

$$= 2\sqrt{3}$$

$$a = \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) \text{ and } b = \tan^{-1}\left(-\frac{3}{\sqrt{3}}\right)$$

$$= 0.52 \qquad = -1.05$$

$$\dot{\boldsymbol{r}}(t) = \left[2\sqrt{3}\cos(t + 0.52) \right] \boldsymbol{i} - \left[2\sqrt{3}\cos(t - 1.05) \right] \boldsymbol{j}$$

e.

$$\begin{cases} x = 3\sin(t) - \sqrt{3}\cos(t) + \sqrt{3} \\ y = -\sqrt{3}\sin(t) - 3\cos(t) + 3 \end{cases}$$

$$\begin{cases} x - \sqrt{3} = 3\sin(t) - \sqrt{3}\cos(t) \text{ ... multiply by } \sqrt{3} \\ y - 3 = -\sqrt{3}\sin(t) - 3\cos(t) \end{cases}$$

$$\begin{cases} \sqrt{3}x - 3 = 3\sqrt{3}\sin(t) - 3\cos(t) \text{ ... [1]} \\ y - 3 = -\sqrt{3}\sin(t) - 3\cos(t) \text{ ... [2]} \end{cases}$$

$$\sqrt{3}x - 3 - y + 3 = 3\sqrt{3}\sin(t) + \sqrt{3}\sin(t)$$

$$\sin(t) = \frac{\sqrt{3}x - y}{4\sqrt{3}} \text{ ... rationalise the denominator}$$

$$\sin(t) = \frac{3x - \sqrt{3}y}{12} \dots [3]$$

Substitute [3] in [2].

$$y - 3 = -\sqrt{3} \cdot \frac{3x - \sqrt{3}y}{12} - 3\cos(t)$$

$$3\cos(t) = 3 - y - \sqrt{3} \cdot \frac{3x - \sqrt{3}y}{12}$$

$$\cos(t) = 1 - \frac{y}{3} - \frac{\sqrt{3}x - y}{12}$$

$$\cos(t) = \frac{12 - 4y - \sqrt{3}x + y}{12}$$

$$\cos(t) = \frac{12 - 3y - \sqrt{3}x}{12} \dots [4]$$

$$\sin^2(t) + \cos^2(t) = 1$$

$$\left(\frac{3x - \sqrt{3}y}{12}\right)^2 + \left(\frac{12 - 3y - \sqrt{3}x}{12}\right)^2 = 1$$

$$12x^2 + 12y^2 - 12\sqrt{3}xy - 72y - 24\sqrt{3}x = 0$$

$$x^2 + y^2 - \sqrt{3}xy - 6y - 2\sqrt{3}x = 0$$