Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc

Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy

GENERÁTOR S 10555

Číslo úlohy

101-3R

Zadání

1. Pomocí IO555 navrhněte generátor obdélníkového napětí s těmito parametry:

 $f=5~kHz,\,\mathrm{DCL}$ (střída) = 60 %, $U_{MIN_{ustalena}}=0~V,\,U_{MAX_{ustalena}}=6~V$

- 2. Jmenovité hodnoty použitých součástek změřte a vypočítejte absolutní a procentní chyby měření.
- 3. Generátor sestavte pomocí přípravku a změřte tyto parametry výstupního napětí:

periodu, frekvenci (pomocí $4\frac{1}{2}DMM$), dobu úrovně H a dobu úrovně L, DCL, střídu, dobu náběžné hrany, dobu sestupné hrany, maximální a minimální ustálenou hodnotu, celkový rozkmit, překmit úrovně H, střední hodnotu, efektivní hodnoru

- 4. Změřte dobu nabíjení a vybíjení kondenzátoru, minimální a maximální hodnotu napětí na časovacím kondenzátoru.
- 5. Na PC zakreslete časový průběh výstupního napětí generátoru, napětí na časovacím kondenzátoru.

Poř. č.	PŘÍJM	ÍJMENÍ a Jméno			Třída	Skupina	Školní rok	
26		VYKYDAL Jan		3A	3	2013/2014		
Datum 1	atum měření Datum odevzdání Počet listů		Klasifikace					
					příprava	meření	protokol	obhajoba
17.3.		24.3.	8					
Protokol o měření obsahuje:								
		Teoretický úvod		Tabu	oulky naměřených a vypočtených hodnot			
		Schéma		Vzor	Vzor výpočtu			
		Tabulka použitých přístrojů		Grafy	7			

Závěr

Postup měření

1 Teoretický úvod

IO555 je masově vyráběný integrovaný obvod navržený v roce 1970 švýcarským inženýrem Hansem R. Camenzindem, který se nejčastej používá jako generátor nebo časovač. Na trh byl přivedn americkou firmou Signetics.

1.1 Vnitřní zapojení

Uvnitř obvodu je pět rezistorů o hodnotě 5 $k\Omega$, dva komparátory, klopný obdov RS, Invertor a bipolární tranzistor NPN a rezistor omezující prodou do báze tohoto tranzistoru.

Schéma č. 1: Vnitřní zapojení IO555

1.2 Princim činnosti IO555

Obvod ke své funkci vyžaduje napětí mezi piny 8 a 3 a to v rozmezí 4,5-16~V pokud se jedná o typ NE555, SA555, SE555C, typ SE555 pracuje s napetím v zozsahu 4,5-18~V. Protože je napětí přivedeno na dělič, který se skládá s pěti totožných rezistorů, tak se zizdělí na tři torožné úbytky. Mezi piny 8 a 1 je napětí rovno $\frac{3}{3}U_{CC}$, mezi piny 5 a 1 je rovno $\frac{2}{3}U_{CC}$ a meti neinvertujícím vstupem komparítoru IO2 a pinem 1 je rovno $\frac{1}{3}U_{CC}$. Bistabilní klopný obvod RS vydohnocuje výstupy komparátorů, pokud není na pinu 4 úroveň L, která by bistabilní klopný obvad RS držela v resetu. Podmínky pro výstupy komparátorů v úrovních H:

Pro komparátor IO1:

$$U_{P6} - \frac{2}{3} \cdot U_{CC} > 0$$

$$U_{P6} > \frac{2}{3} \cdot U_{CC}$$
(1)

kde:

 U_{CC}napětí mezi piny 8 a 1
 U_{P6}napětí mezi piny 6 a 1

Pro komparátor IO2:

$$\frac{1}{3} \cdot U_{CC} - U_{P2} > 0
U_{P2} < \frac{1}{3} \cdot U_{CC}$$
(2)

kde:

 U_{CC}napětí mezi piny 8 a 1
 U_{P2}napětí mezi piny 2 a 1

Pokud bude výstup komparátoru IO1 v úrovni H, tak se otevře tranzistor T_1 a na pinu 3 bude úrověň L. Pokud bude výsup komparátoru IO2 v úrovni H, tak se tranzisto T_1 zavře a na pinu 3 bude úroveň H.

2 Schéma

Schéma č. 2: Zapojení měřícího obvodu

3 Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Тур	Evidenční číslo	Poznámka
M1	osciloskop	HP 54600A	0162	_
M2	DMM	MASTECH MY-64	0654	_
_	meřič RLC	RLCG BM 959	0143	_
_	čítač	U2000	0179	_
Z1	zdroj s.s napětí	TESLA BK-127	0138	_
R1	odporová dekáda	_	0025	_
R2	odporová dekáda	_	0929	_

Tabulka č. 1: Tabulka použitých přístrojů

4 Postup měření

4.1 Měření rezistorů R_1 a R_2

- Zapneme DMM a nastavíme vhodný rozsah.
- Vezmeme rizistor R₁ a vložíme jej do svorek DMM, dáváme pozor, abychom se nedotýkali přívodních vodičů rezistoru, čímžbychom zkreslovali výsledky měření.
- Poznamenáme si naměřenou hodnotu.
- Celí proces zopakujeme i pro rezistor R₂.

4.2 Měření kapacity kondenzátoru C₁

- Zapneme meřící prístroj RLCG BM 959 a nastavíme měřič na měření kapacity.
- Pomocí krokodýlků (chcete-li krokosvorek) propojíme kondenzátor s meřícím přístrojem.
- Chvíli počkáme než tento krásný muzejní kousek zobrazí korektní výsledek.
- Poznamenáme si naměřenou hodnotu.
- Vypneme měřící přístroj RLCG BM 959.

4.3 Měření periody

- ullet Zapneme zdroj Z_1 a pomocí voltmetru V_1 nastavíme zadané napětí.
- Zapneme osciloskop a vhodně jej nastavíme.
- Připojíme osciloskop k pinu 3 a 1 IO555.
- Doladíme nastavení osciloskopu tak, aby perioda zabrala celou obrazovku a aby její krajní hodnoty byly v mřížce.
 - Spočítáme si všechny čtverečky v ose \boldsymbol{x} které zabírá perioda a vynásobíme je časem který máme nastavený na jeden dílek.
 - Spočítáme si všechny čtverečky v ose x které zabírá část periody v úrovni H a vynásobíme je časem který máme nastavený na jeden dílek.

~ , , ,		. ~	
Jméno PŘÍJMENÍ: Jan VYKYDAL	Třída: 3A	Císlo protokolu: 101-3R	List: 4/8

- Spočítáme si všechny čtverečky v ose x které zabírá část periody v úrovni L a vynásobíme je časem který máme nastavený na jeden dílek.

4.4 Měření dob hran

- \bullet Nastavíme si osu x (časovou osu) tak, abychom vyděli přechod z úrovně L na úrověň H.
- Posuneme si průběh tak aby byl zarovnaný s čtverečkovým rastrem.
- Spočítáme si čtverečky osi x, které jsou v prostoru nástupné hrany a vynásobýme je časem, který máme nastavený ne jeden dílek.
- Vypočítanou hodnotu si poznačíme.
- Celí proces zopakujeme i pro sestuponu hranu.

4.5 Měření celkového rozkmitu (napětí špička špička)

- Na osciloskopu nastavíme mód auto a poté nastavíme měření U_{PP} (Peak to Peak špička špička).
- Počkáme dokud osciloskop nezabrazí naměřenou hodnotu.
- Naměřenou hodnotu si zaznamenáme.

4.6 Měření efektivní hodnoty

- $\bullet\,$ Na osciloskopu nastavíme mód auto a poté nastavíme měření U_{AVG} (Average průmer).
- Počkáme dokud osciloskop nezabrazí naměřenou hodnotu.
- Naměřenou hodnotu si zaznamenáme.

4.7 Měření střední hodnoty

- $\bullet\,$ Na osciloskopu nastavíme mód auto a poté nastavíme měření U_{RMS} (Root Mean Square).
- Počkáme dokud osciloskop nezabrazí naměřenou hodnotu.
- Naměřenou hodnotu si zaznamenáme.

4.8 Měření maximální a minimální ustálené hodnoty

- Na osciloskopu nastavíme mód auto.
- Počkáme dokud osciloskop nezabrazí průběh napětí.
- Z vykresleného průběhu zjistíme minumální a maximální ustálené napětí $(U_{MIN_{ustalena}}, U_{MAX_{ustalena}})$
- Zaznamenáme si naměřené hodnoty.

4.9 Měření časovacího kondenzátoru

- Přepneme osciloskop nakanál B, který je připojen na pin 2 IO555.
- Nastavíme mód auto.
- Počkáme dokud osciloskop nevykreslí charakteristiku.
- Z vykreslené charakteristiky zjistíme niminální a maximální hodnotu napětí, a čas nabíjení a
 vybíjení kondenzátoru, přičemž postupujeme obdobně jako u měření obdélníhového výstupu na
 pinu 3.
- Naměření hodnoty si zaznamenáme.
- Vypneme osciloskop.

4.10 Měření frekvence

- Zapneme čítač a nastavíme si vhodný rozsah.
- Připojíme čítač k pinu 3 a 1 IO555.
- Chvíli počkáme a zaznačíme si nameřenou hodnotu.
- Vypneme čítač.
- Vypneme napájecí zdroj Z_1 .
- Ukončíme měření.

5 Tabulky naměřených a vypočítaných hodnot

součástka	naměřená hodnota	% chyba	Δ chyba
R_1	$16,973 \ k\Omega$	0,859~%	$145,784~\Omega$
R_2	$8,486 \ k\Omega$	0,918 %	$77,888 \Omega$
C_1	$6,989 \ nF$	0,175~%	$11,989 \ nF$

Tabulka č. 2: Tabulka změřených hodnot a chyb (součástky ze schématu č. 2)

veličina	naměřená hodnota
$U_{MIN_{ustalena}}$	0 V
$U_{MAX_{ustalena}}$	6 V
$U_{prekmit}$	4,6 V
U_{PP}	10,6 V
f	4,8151~kHz
T	$200~\mu s$
T_H	$120~\mu s$
T_L	$80~\mu s$
DCL	3:2

Tabulka č. 3: Tabulka ostatních naměřených hodnot (zapojení dle schématu č. 2)

6 Vzory výpočtů

Výpočet relativní procentuální chyby digitu:

$$\delta_{digit\%} = \frac{\pm digit}{MH} \cdot 100 = \frac{\pm 0,01}{16,973} \cdot 100 \doteq \underbrace{\pm 0,059~\%}_{=======}$$

Celková procentuální chyba:

$$\delta_{\%} = \pm \delta_{MH\%} \pm \delta_{digit\%} = \pm 0, 8 \pm 0, 059 \doteq \underline{\pm 0, 859 \%}$$

Celková absolutní chyba:

$$\Delta R = \frac{\delta_{\%}}{100} \cdot MH = \frac{0,859}{100} \cdot 16,973 = \underbrace{\pm 145,784 \ \Omega}_{}$$

Výpočet periody

$$T = \frac{1}{f} = \frac{1}{5 \cdot 10^3} = \underline{200 \ \mu s}$$

Výpočet periody v úrovni H

$$T_H = \frac{3}{5} \cdot T = 200 \cdot \frac{3}{5} = \underbrace{\frac{120 \ \mu s}{100}}_{}$$

Výpočet periody v úrovni L

$$T_L = \frac{2}{5} \cdot T = 200 \cdot \frac{2}{5} = 80 \ \mu s$$

Výpočet rezistoru R₂

$$R_2 = \frac{T_L}{C \cdot \ln 2} = \frac{80 \cdot 10^{-6}}{6.8 \cdot 10^{-9} \cdot \ln 2} \doteq \underbrace{\frac{16,973 \ k\Omega}{16.973 \ k\Omega}}$$

Výpočet rezistoru R₁

$$R_1 = \frac{T_H}{C \cdot \ln 2} - R_2 = \frac{120 \cdot 10^{-6}}{6.8 \cdot 10^{-9} \cdot \ln 2} - 16,973 \cdot 10^3 \doteq \underbrace{8,486 \ k\Omega}_{\bullet \bullet \bullet \bullet \bullet \bullet \bullet}$$

7 Grafy

Graf č. 1: Část průběhu napětí na pinu 3 IO555 zapojeného dle schématu č. 2

Graf č. 2: Část průběhu napětí na pinu 2 IO555 zapojeného dle schématu č. 2

8 Závěr

8.1 Chyby měřících přístrojů

Procnruální chyba použitých měřících přístrojů nepřekrožila 1 % a tudíž by jse změřené hodnoty dali považovat za relativně správné.

8.2 Zhodnocení

- 1. Úspěšně jsem navrhnul generátor obdélníkových napětí s IO555, na jeho výstupu sice nejsou ideální obdélníky, ale to není mou chybou, to je důkazem že žijeme v nedokonalém světě, kde se věci pohybují skokově jen na mikroskopické úrovni.
- 2. Změřil jsem hodnoty použitých součástek a spočítal jejich procentuální a absolutní chyby. nejpčesněj měřil přístroj RLCG BM 959 s procentuální chybou rovnou 0,175~%.
- 3. Pomocí přípravku jsem sestavil generátor a změřil veličiny dle zadání. Výsledky jsou shrnuty v tabulce č. 2. Dobu sestupné hrany nebylo možné změřit, protože osciloskop ukazoval zápozný čas, což je absurdní. Námežná hrana byla zmeřena na $4~\mu s$.
- 4. Změřil jsem dobu nabíjení a vybíjení kondenzátoru a došel jsem k závětu že doba nabíjení je téměř totožná s úrovní H na pinu 3 a doba vybíjení je téměř identická z dobou úrovně L na pinu 3. Minimální hodnota napětí byla změřena na 2 V což odpovídá $\frac{1}{3}U_{CC}$ a maximální hodnota napětí byla se rovná 4 V což odpovídá $\frac{2}{3}U_{CC}$.
- 5. Na PC jsem vytvořil grafy napěťových průběhé na pinu 2 a 3 IO555.