Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (Национальный исследовательский университет)» Физтех-школа аэрокосмических технологий Кафедра теоретической и экспериментальной физики геосистем

Направление подготовки: 03.03.01 Прикладные математика и физика (бакалавриат) **Направленность(профиль) подготовки:** Физика и механика космических и природных систем

Пространственно-временное распределение полного электронного содержания в различных геофизических условиях

(бакалаврская работа)

Студент:				
Скачков Алексей Павлович				
Научный руководитель:				
Ряховский Илья Александрович				

Москва 2020

Аннотация

Цели и задачи

Полученные результаты

Содержание

B	Введение			
1	Teo	ретические сведения	6	
	1.1	Использование GPS в исследовании ионосферы	6	
	1.2	Общие сведения о GPS	6	
	1.3	Интересующие виды измерений в GPS	7	
	1.4	Геометрические положения, используемые для GPS зондирования	8	

Используемые обозначения

Введение

Актуальность темы

Исследование ионосферы является достаточно важным направлением, так как от ее состояния зависит множество факторов, влияющих на нашу повседневную жизнь. Знание о состоянии ионосферы может помогать идентифицировать различные события техногенного и естественного характеров. В современной действительности стало ясно, что различные ионосферные процессы влияют на погодные и климатические условия. Не стоит забывать и о современных средствах связи, навигации и локации, которые напрямую зависят от состояния ионосферы.

Объект исследования

Основные параметры, характеризующие ионосферу: локальная электронная концентрация N_e , температура ионов и электронов и полное электронное содержание.

Объектом исследования данной работы является полное электронное содержание (ПЭС или ТЕС в англоязычной литературе). ПЭС представляет собой количество электронов в столбе единичного сечения. В рамках данной работы предлагается получение пространственно-временного распределения полного электронного содержания во время высокой солнечной активности.

Значимость исследования

1 Теоретические сведения

1.1 Использование GPS в исследовании ионосферы

Существует множество различных методов, применяемых для исследования состояния ионосферы, такие как вертикальное, наклонное, вертикальное, внешнее зондирования, некогерентное рассеяние и многие другие. Появление глобальной навигационной системы и создание огромной сети GPS станций стали началом новой эры дистанционного исследования ионосферы. Большое количество станций и непрерывная доступность спутников позволяют производить своевременный мониторинг ионосферы в различных участках планеты.

1.2 Общие сведения о GPS

GPS (Global Positioning System) представляет из себя спутниковую систему навигации, которая обеспечивает измерение расстояния между спутником и приемником, а так же времени. На основе этих данных определяется местоположение объекта в пространстве.

Систему GPS можно разделить на три основные составляющие:

- Космический сегмент
- Сегмент управления
- Сегмент потребителей

Космический сегмент состоит из 32 спутников (один из которых находится на этапе развертки)¹, которые размещены на шести круговых орбитах. Высота орбит составляет 20200 км. Наклонение орбит также являет общим и равно 55°. Каждая орбита разнесена друг относительно друга на 60° по долготе. Спутники оборудованы специальным устройством, которое хранит системное время аппарата. Временные шкалы всех спутников согласованы между собой и синхронизируются системой единого времени.

Спутники непрерывно передают сигналы на двух частотах: $f_1 = 1575.42 \text{ M}$ Гц и $f_2 = 1227.60 \text{ M}$ Гц. Передаваемые сигналы модулируются псевдослучайными последовательностями (PRN - Pseudorandom Noise) двух типов С/А-код и Р-код.

C/A-код является открытым кодом, который, в основном, используется в гражданских целях. Он имеет длину повторения 1 мс и частоту следования импульсов 1.023 М Γ ц.

Р-код - это защищенный код. Частота следования имеет значение 10.23 МГц и длину в 267 суток. Сигналы, модулированные Р-кодом, передаются на двух частотах f_1 и f_2 , в то время как С/А-код только на f_1 .

Вместе с PRN-кодами также отправляются навигационные сообщения, которые содержат данные о положении спутника, метки времени, частотно-временные поправки, сведения о работоспособности оборудования и др.

Сегмент управления осуществляет слежение за орбитальными аппаратами и управление ими. Главная станция находится в Колорадо-Спрингс, штат Колорадо. Станции слежения выполняют измерения траекторий по сигналам спутников и после корректируют поведение каждого спутника.

Сегмент потребителей состоит из устройств разной степени сложности, от военного оборудования до гражданских мобильных устройств. GPS-приемники производят выбор рабочего созвездия (набора из не

¹на момент Февраля 2019 года

менее 4 видимых спутников), поиск, слежение и декодировку входящего сигнала, обработку измеряемых радионавигационных параметров и служебной информации, расчет координат и скорости потребителя.

1.3 Интересующие виды измерений в GPS

Основная величина, которая измеряется в спутниковых системах позиционирования, является «псевдодальность», через которую определяют координаты GPS-приемника.

$$D' = \sqrt{(x - x_S)^2 + (y - y_S)^2 + (z - z_S)^2} + c\tau_R + \sigma_D, \tag{1}$$

где D' - «псевдодальнось» между приемником и спутником; x_S, y_S, z_S — координаты спутника; x, y, z — координаты приемника; c — скорость света; τ_R - отклонение часов приемника от системного времени GPS; σ_D — погрешность измерения. Псевдодальность отличается от действительного расстояния $D=\sqrt{(x-x_S)^2+(y-y_S)^2+(z-z_S)^2}$ наличием ошибок измерений. Зная значения псевдодальности для 4 спутников, можно вычислить координаты приемника и значение τ_R . Нахождение данных величин возможно в любой момент времени, так как в поле зрения приемника всегда оказывается минимум 5 спутников. В современных устройствах для вычисления положения в пространстве используется метод взвешенных наименьших квадратов. Для определения псевдодальности измеряются такие параметры, как время распространения сигнала и набег фазы несущей радиоволны на трассе «спутник — приемник». В зависимости от выбранного параметра различают кодовые и фазовые измерения псевдодальности.

Кодовые измерения псевдодальности. $D'=c\tau$. В данном случае измеряется время задержки между моментом излучения и момента получения сигнала, т.е. время распространения сигнала. Для измерения задержки, с помощью корреляционного анализа, определяется сдвиг выбранного кода, посланного спутником, относительно кода, генерируемого приемным устройством. Таким образом, двухчастотный приемник имеет возможность измерять псевдодальность тремя способами: с помощью C/A-кода на частоте f_1 и по P-коду на частотах f_1 и f_2^2 . Точность определения псевдодальности по кодовым измерениям составляет 1% от длины кода, что позволяет делать измерение по C/A-коду с погрешностью в 3 метра, а по P-коду с погрешностью 0.3 метра.

Фазовые измерения псевдодальности. $D'=\lambda \Delta \varphi + \lambda N$. Для получения пседодальности в этом случае измеряется разность фаз $\Delta \varphi$ двух несущих радиоволн: принятой приемником и сгенерированной в самом приемнике; $\lambda=c/f$ — длина волны несущей частоты. Для фазовых измерений на частотах f_1 и f_2 приняты обозначения L1 и L2 соответственно. Полное число циклов фазы N остается неизвестной величиной. Этому дали название «фазовой неоднозначностью измерений». Для ее устранения существует ряд способов, одним из которых является комбинирование кодовых и фазовых измерений. Погрешность измеренной разности фаз $\Delta \varphi$ имеет точность до 0.01 периода. Тогда псевдодальность может быть определена с точностью до 1-2 мм.

Погрешности измерений. На точность измерений влияет множество факторов, которые представлены в таблице 1.3.

Наиболее важным фактором для получения хорошей точности является геометрия рабочего созвездия спутников. Для характеристики взаимного расположения приемника и спутника вводится коэффициент PDOP (Position Dilution of Precision)³. На данный коэффициент умножается все другие ошибки.

 $^{^2}$ измерение по $\mathrm{C/A}$ -коду обозначается как C1, а для P -кода соответственно P1 и P2

³Величина PDOP обратно пропорциональна объему фигуры, образованной пересечение лучей «спутник – приемник» со сферой единичного радиуса, центр которой совмещен с приемником.

Источник погрешности	Вносимая погрешность	
Геометрическое расположение НИСЗ	PDOP	
Неточности расчетов орбит НИСЗ и времени	0.5 - 3 M	
Случайные отклонения опбит и часов	0.5 - 3 M	
Шумы приемника	1.5 - 3 M	
Задержка сигнала в ионосфере	2 — 10 м	
Задержка сигнала в тропосфере	1 — 2 м	
Многолучевость распространения		
(в результате отражений от крупных объектов	1 — 2 м	
вблизи приемника)		
Меры по искусственному снижению точности	до 30 м	
(с Мая 2000 года не используется)		
Прочие источники	1 м	

Таблица 1: Составляющие погрешности навигационных определений

Вторым по значимости фактором, снижающим точность, является ионосферная задержка радиосигнала. Именно из-за этого эффекта GPS может использоваться для исследования состояния ионосферы.

Для снижения ионосферной и тропосферной погрешностей измерений используются математические модели, комбинирование данных, сглаживание данных и режим DGPS⁴.

Комбинация кодовых и фазовых измерений и использование их в алгоритмах сглаживания данных позволяют эффективно фильтровать погрешности, связанные с геометрией рабочего созвездия, шумами приемника, случайными отклонениями орбит часов и многолучевостью.

1.4 Геометрические положения, используемые для GPS зондирования

⁴суть метода заключается в том, что измерения производятся двумя приемниками, один из которых неподвижен (для него известно истинное положение). Неподвижный приемник сравнивает свое истинное положение с положением, полученным с GPS, и отправляет поправочные коэффициенты второму приемнику.