Intercept a moving ball (Problem 2) Giorgi Jorjikia 07/01/2025

Problem Formulation

Task Description

Develop a system that tracks a moving ball from video input and calculates an interception trajectory, accounting for physical forces like gravity and air resistance.

Components

- Input: Partial video of a moving ball
- Output: Animation showing the ball trajectory hitting the balls predicted location
- Task: Determining balls future location and shooting the ball at it

Mathematical Model

Ball Motion Equations

$$egin{array}{l} rac{dx}{dt} = v_x \ rac{dy}{dt} = v_y \ rac{dv_x}{dt} = -rac{k}{m}v_x\sqrt{v_x^2 + v_y^2} \ rac{dv_y}{dt} = -g - rac{k}{m}v_y\sqrt{v_x^2 + v_y^2} \end{array}$$

Numerical Methods

1. Shooting Method

- Uses Newton's method for finding correct initial velocity and angle
- o Iteratively adjusts parameters to hit target coordinates
- $\circ~$ Convergence criterion: error < 0.1

2. Video Processing

- o Frame extraction
- o Gaussian blur for noise reduction
- o Canny edge detection for ball identification
- Contour detection for position tracking

3. Velocity Calculation

Central difference method for velocity estimation: $v_x=rac{x_{i+1}-x_{i-1}}{2\Delta t}~v_y=rac{y_{i+1}-y_{i-1}}{2\Delta t}$

4. Parameter Estimation

- \circ Uses consecutive velocity measurements to estimate k/m and g
- Applies averaging to reduce measurement noise
- Accounts for frame rate in temporal calculations

5. Equation for initial and boundary condition

To simplify things we will combine some equations:

$$\circ \frac{dl}{dt} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$

$$\circ \frac{dv}{dt} = \begin{pmatrix} -\frac{k}{m}v_x\sqrt{v_x^2 + v_y^2} \\ -g - \frac{k}{m}v_y\sqrt{v_x^2 + v_y^2} \end{pmatrix}$$

Now boundary conditions are
$$l(t_0)=egin{pmatrix}0\\0\end{pmatrix}$$
 and $l(t_f)=egin{pmatrix}x_t\\y_t\end{pmatrix}=l_t$, where l_t is the targets location

So now we have unknown vector $v(t_0) = s$ and we can find s by finding roots of a function $F(s) = l(t_f) - l_t$, we can do this by solving system of linear equations $J_F(x_n)(x_{n+1}-x_n) = -F(x_n)$ and we get $(x_{n+1}-x_n)$, in other words we find the delta by with we have to change our initial guess (J_F is the jacobian of the function and F is the vector-valued function).

6. Trajectory Integration

- \circ Implicit Euler (Error of $O(h^2)$) & RK
- \circ Time step: dt=0.001s
- $\verb| Integration continues until y \le 0 or max_time reached \\$
- o Both methods give similar results, but IE was chosen because it's A-Stable

Algorithm

1. Video Processing

- Load input video
- Apply Canny edge detection
- Contour detection for position tracking

2. Trajectory Calculation

- o Simulate the balls position in the future with implicit euelers method
- Use shooting method to find the velocity so that the ball hits the targets future position

Comparing Implicit Euler & Classic RK

As we can see in this figure both methods give use almost identical results (with dt=0.001), the only difference is the time for calculation.

RK: 0.07445549999829382 Euler (Implicit): 0.45609730000433046

A-Stability of Implicit Euler's method

The Implicit Euler's method is A-Stable, we can verify this by finding h such that when $t o \infty$ the equation y' = ky, y(0) = 1 approaches zero when Re(k) < 0. ($k \in \mathbb{C}$)

As we can see with h=0.001 the equation approaches 0, therefore Implicit Eulers method with h=0.001 is truly A-Stable.

Implementation Details

Numerical Parameters

- $\bullet \ \ {\rm Time\ step:}\ dt=0.001s$
- ullet Flight time: 0.4s
- $\bullet \;\;$ Shooting method tolerance: 0.1m
- Maximum iterations: 100

Test Cases

References

- https://www.youtube.com/watch?v=qlfxydBEdzg
- $\bullet \ \ https://en.wikipedia.org/wiki/Shooting_method\#Mathematical_description$
- http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/lecture13.pdf
- $\bullet \ \ https://en.wikipedia.org/wiki/Newton's_method\#Multidimensional_formulations$
- https://en.wikipedia.org/wiki/Runge–Kutta_methods
- https://en.wikipedia.org/wiki/Stiff_equation#A-stability
- https://en.wikipedia.org/wiki/Backward_Euler_method