Zusammenfassung von Neumann Algebren

Sebastian Bechtel

29. März 2017

1 Erster Kontakt

Eine *-Algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ heißt *Operatoralgebra*. Ist \mathcal{M} stop-abgeschlossen, so heißt \mathcal{M} von Neumann Algebra (vNA). Durch GNS-Darstellung lässt sich jede C*-Algebra als Operatoralgebra darstellen. Sei $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$, da der Schnitt von vNAen wieder vNA ist, existiert kleinste vNA vN(\mathcal{S}), die \mathcal{S} enthält. Ist \mathcal{S} Operatoralgebra, so gilt vN(\mathcal{S}) = $\overline{\mathcal{S}}^{stop}$, dies ist aber nicht offensichtlich, da Involution nicht stop-stetig ist!

Für $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ ist die Kommutante gegeben durch $\mathcal{M}' \coloneqq \{x \in \mathcal{B}(\mathcal{H}) : xy = yx \text{ für all } y \in \mathcal{M}\}$. Es gilt immer \mathcal{M}' stop-abgeschlossen und ist \mathcal{M} Operatoralgebra, so auch \mathcal{M}' , somit \mathcal{M}' vNA. Ferner gilt $1_{\mathcal{H}} \in \mathcal{M}'$ und $\mathcal{M}' = \mathcal{M}'''$ (wegen $\mathcal{M} \subset \mathcal{M}''$), also gilt für \mathcal{M} Operatoralgebra auch nach Bikommutantensatz (vgl. später) \mathcal{M}' vNA! Aus $\mathcal{M} \subset \mathcal{M}''$ folgt für \mathcal{M} Operatoralgebra, dass vN(\mathcal{M}) $\subset \mathcal{M}''$. Ist $1_{\mathcal{H}} \in \mathcal{M}$, so folgt mit Bikommutantensatz $\mathcal{M}'' \subset \text{vN}(\mathcal{M})'' = \text{vN}(\mathcal{M})$, also $\mathcal{M}'' = \text{vN}(\mathcal{M})$. Ist \mathcal{M} nicht s.a., geht alles schief: Die Matrizen $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ haben als Kommutante $\begin{pmatrix} b & c \\ 0 & b \end{pmatrix}$, also ist jene nicht s.a., somit folgt wegen $\mathcal{M}' = \mathcal{M}'''$, dass Bikommutantenbildung keine Selbstadjungiertheit herbeiführt.

1.1 Beispiel: L^{∞} ist vNA

Durch $L^{\infty}\ni g\mapsto M_g\in\mathcal{B}(L^2)$ wird L^{∞} als Operatoralgebra dargestellt, vgl. Borel-FK. Ist (Ω,Σ,μ) lokalisierbar, so zerlege $L^2(\Omega)$ in direkte Summe $\oplus_i L^2(\Omega_i)$ mit $\mu(\Omega_i)<\infty$. Zeige dann für einen solchen Summanden, dass er seine eigene Kommutante ist, somit vNA: Sei $T\in L^{\infty}(\Omega)'$ und setze $f\coloneqq T(1)\in L^2(\Omega)$. Es gilt für $g\in L^{\infty}$ nun $T(g)=TM_g(1)=M_gT(1)=gf=M_f(g)$, also $T|_{L^{\infty}}=M_f|_{L^{\infty}}$, somit $M_f:L^{\infty}\subset L^2\to L^2$ beschränkt. Wäre $f\not\in L^{\infty}$, würde es für $n\in\mathbb{N}$ messbare Mengen $\Omega_n\subset\Omega$ geben mit $|f(\omega)|\geq n$ f.ü. auf Ω_n und $g_n:=\chi_{\Omega_n}/\mu(\Omega_n)^{1/2}$ würde Beschränktheit auf L^{∞} widersprechen, also $f\in L^{\infty}$ und $M_f=T$ auf dichter Teilmenge, also $T\in L^{\infty}$.

2 Tensorprodukte

2.1 algebraische Theorie

Seien E, F Vektorräume, E^*, F^* ihre algebraischen Duale. Bezeichne mit $\operatorname{Bil}(E^*, F^*)$ die bilinearen Funktionale auf $E^* \times F^*$. Für $e \in E, f \in F$ definiere $e \otimes f \in \operatorname{Bil}(E^*, F^*)$ via $e \otimes f(e', f') := e'(e)f'(f)$. Es heißt $e \otimes f$ elementarer Tensor und $E \otimes F := \operatorname{LH}\{e \otimes f : e \in E, f \in F\}$ heißt das Tensorprodukt von E mit F. Die Zuordnung $i : E \times F \ni (e, f) \mapsto e \otimes f \in E \otimes F$ ist bilinear und aus $0 \neq e \in E, 0 \neq f \in F$ folgt $e \otimes f \neq 0$, jedoch ist i nicht injektiv. Ist (e_i) Basis von E, (f_j) Basis von F, dann $\{e_i \otimes f_j : i \in I, j \in J\}$ Basis von $E \otimes F$. Für einen weiteren Vektorraum W gilt die Isomorphie $\operatorname{Bil}(E \times F, W) \cong \operatorname{Lin}(E \otimes F, W)$.

Darstellung eines Tensors ist nicht eindeutig, aber für eine minimale Darstellung (d.h. Anzahl der Summanden ist minimal) $x = \sum_{i=1}^{n} e_i \otimes f_i$ gilt $\{e_1, \dots, e_n\}$ sowie $\{f_1, \dots, f_n\}$ l.u. (und umgekehrt, vgl. endlich-Rang Operatoren!) und ist $0 = \sum_{i=1}^{n} e_i \otimes f_i$ und $\{e_1, \dots, e_n\}$ l.u., so folgt $f_i = 0$ für alle i.

2.1.1 Tensorprodukt von linearen Abbildungen

Für $A \in \text{Lin}(E, E_1), B \in \text{Lin}(F, F_1)$ gibt es eindeutige (universelle Eigenschaft!) lineare Abbildung $A \boxtimes B : E \otimes F \ni (e, f) \mapsto Ae \otimes Bf \in E_1 \otimes F_1$. Wir wollen gerne $A \otimes B$ für $A \boxtimes B$ schreiben. Dazu identifizieren wir $\text{Lin}(E, E_1) \otimes \text{Lin}(F, F_1)$ mit einem Unterraum von $\text{Lin}(E \otimes F, E_1 \otimes F_1)$. Wegen $\text{Lin}(E, E_1) \times \text{Lin}(F, F_1) \ni (A, B) \mapsto A \boxtimes B \in \text{Lin}(E \otimes F, E_1 \otimes F_1)$ bilinear gibt es $\beta : \text{Lin}(E, E_1) \otimes \text{Lin}(F, F_1) \to \text{Lin}(E \otimes F, E_1 \otimes F_1)$ mit $\beta(A \otimes B) = A \boxtimes B$. Man zeigt, dass β injektiv ist und kann dann wie gewünscht $A \otimes B$ mit $A \boxtimes B$ identizifieren.

2.1.2 Tensorprodukt von Algebren

Sind \mathcal{A}, \mathcal{B} Algebren, so gibt es eindeutige Multiplikation auf $\mathcal{A} \otimes \mathcal{B}$ mit $x \otimes y \cdot x' \otimes y' = xx' \otimes yy'$.

2.1.3 n-faches Tensorprodukt über Linearformen

Erhalte Einbettung $E_1 \otimes \cdots \otimes E_n \hookrightarrow \text{Mult}(E_1^* \times \cdots \times E_n^*, \mathbb{K})$ via $m(e_1 \otimes \cdots \otimes e_n) := ((e'_1, \dots, e'_n) \mapsto e'_1(e_1) \cdot \cdots \cdot e'_n(e_n)$. Dann $E_1 \otimes \cdots \otimes E_n \cong m(E_1 \otimes \cdots \otimes E_n)$.

2.1.4 Operatoren endlichen Ranges als Tensorprodukt

Für $e \in E, f \in F$ definiere $t_{e,f} : E^* \ni e' \mapsto \langle e, e' \rangle f$, also $t_{e,f} \in \text{Lin}(E^*, F)$. Es ist $E \times F \ni (e, f) \mapsto t_{e,f}$ bilinear, also gibt es $\beta : E \otimes F \to \text{Lin}(E^*, F)$ mit $\beta(e \otimes f) = t_{e,f}$, welches injektiv ist, also $E \otimes F \hookrightarrow \text{Lin}(E^*, F)$.

Ist $E \neq E^{**}$, so ist β sicher nicht surjektiv!

Der Rang eines Tensors $x \in E \otimes F$ ist gegeben durch Rang $(\beta(x))$ und stimmt mit der Länge einer minimalen Darstellung überein.

Betrachte nun $\beta: E^* \otimes F \to \mathcal{F}(E^{**}, F)$. Diese ist nach wie vor injektiv, aber i.A. nicht surjektiv. Wenn wir jedoch $\beta(e' \otimes f)|_{E \subset E^{**}}$ betrachten, so bleibt die Zuordnung injektiv und wird sogar surjektiv, also $E^* \otimes F \cong \mathcal{F}(E, F)$. Wir können also die endlich-Rang Operatoren als Tensorprodukt verstehen! Dies gilt ferner für die topologischen Dualräume.

2.1.5 Beispiel: Matrizen als TP und ihre Spur

Betrachte $(\mathbb{K}^n)^* \otimes \mathbb{K}^m$. Es ist $\mathbf{t}_{e'_j,e_i} = e_{ij}$, also $m \times n$ Matrizen sind Tensorprodukt. Ist A eine $m \times n$ -Matrix mit Zeilen $a_1, \ldots, a_m \in (\mathbb{K}^n)^*$, so ist $A = \sum_{j=1}^m a_j \otimes e_j$, analog: sind $b_1, \ldots, b_n \in \mathbb{K}^m$ die Spalten von A, so gilt $A = \sum_{i=1}^n e_i \otimes b_i$. Definiere $(\mathbb{K}^n)^* \times \mathbb{K}^n \ni (x', y) \mapsto \langle y, x' \rangle$ bilinear, diese besitzt Fortsetzung $\tau : (\mathbb{K}^n)^* \otimes \mathbb{K}^n = M_n \to \mathbb{K}$ mit $\tau(A) = \operatorname{Spur}(A)$. Nutze dies später, um den Begriff der Spur zu verallgemeinern!

2.2 topologische Tensorprodukte

2.2.1 Tensorprodukte von Hilberträumen

Bezeichne mit \odot das algebraische Tensorprodukt. Sind \mathcal{H}, \mathcal{K} Hilberträume, so gibt es auf $\mathcal{H} \odot \mathcal{K}$ ein eindeutiges Skalarprodukt $\langle \cdot, \cdot \rangle_{HS}$ mit $\langle x \otimes y, x' \otimes y' \rangle_{HS} = \langle x, x' \rangle_{\mathcal{H}} \langle y, y' \rangle_{\mathcal{K}}$. Also ist $(\mathcal{H} \otimes \mathcal{K}, \langle \cdot, \cdot \rangle_{HS})$ Prähilbertraum. Dessen Vervollständigung heißt Hilbertraum tensorprodukt von \mathcal{H} und \mathcal{K} , schreibe $\mathcal{H} \otimes_{HS} \mathcal{K}$ bzw. $\mathcal{H} \otimes \mathcal{K}$. Die induzierte Norm $\| \cdot \|_{HS}$ ist eine Kreuznorn, d.h. $\| x \otimes y \|_{HS} = \| x \|_{\mathcal{H}} \| y \|_{\mathcal{K}}$ (somit ist $B: \mathcal{H} \times \mathcal{K} \to W$ bilinear genau dann beschränkt, wenn es $T_B: \mathcal{H} \odot \mathcal{K} \to W$ ist, also erhalten wir eine topologische Version der universellen Eigenschaft für $\mathcal{H} \otimes \mathcal{K}$). Außerdem folgt aus $x_i \to x, y_j \to y$, dass $x_i \otimes y_j \to x \otimes y$ und sind $(e_i), (f_j)$ ONBs von \mathcal{H} bzw. \mathcal{K} , so ist $\{e_i \otimes f_j: i \in I, j \in J\}$ ONB von $\mathcal{H} \otimes \mathcal{K}$.

Beispiele: 1) Es gilt $\ell^2(I) \otimes \ell^2(J) = \ell^2(I \times J)$ (Dimensionsvergleich!) 2) Sind $(\Omega_1, \Sigma_1, \mu_1), (\Omega_2, \Sigma_2, \mu_2)$ σ -endliche Maßräume, dann gilt $L^2(\Omega_1 \times \Omega_2) \cong L^2(\Omega_1) \otimes L^2(\Omega_2)$ und der unitäre Operator ist eindeutig mit $U(f_1 \otimes f_2) = f_1(\omega_1) f_2(\omega_2)$ (nutze topologische universelle Eigenschaft!) Sind $A \in \mathcal{B}(\mathcal{H}), B \in \mathcal{B}(\mathcal{K})$, denn gibt es eindeutigen Operator $A \otimes B \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ mit $A \otimes B(x \otimes y) = Ax \otimes By$ und es gilt $||A \otimes B|| = ||A|| ||B||$. Eindeutigkeit folgt aus der Eindeutigkeit auf dem dichten algebraischen Tensorprodukt. Zeige $||A \otimes B|| = ||A|| ||B||$ auf $\mathcal{H} \odot \mathcal{K}$, dann stetige Fortsetzung. Nutze $A \otimes B = (A \otimes 1_{\mathcal{K}})(1_{\mathcal{H}} \otimes B)$ (denn $((A \otimes 1_{\mathcal{K}})(1_{\mathcal{H}} \otimes B))(x \otimes y) = A \otimes 1_{\mathcal{K}}(x \otimes By) = Ax \otimes By$) und $||A \otimes 1_{\mathcal{K}}|| \leq ||A||$. Außerdem gilt $(A \otimes B)^* = A^* \otimes B^*$.

2.3 Tensorprodukte auf Banachräumen

Seien E, F Banachräume. Auf $E \odot F$ wird durch $\|z\|_{\pi} \coloneqq \inf\{\sum_i \|x_i\|_E \|y_i\|_F : z = \sum_i x_i \otimes y_i\}$ eine Kreuznorm definiert, welche *projektive Norm* oder *maximale Norm* heißt. Motivation: Für eine Kreuznorm $\|\cdot\|$ gilt $\|z\| \le \sum_i \|x_i\| \|y_i\|$ wegen Dreiecksungleichung und Kreuznormeigenschaft. Beachte, dass Supremum keinen Sinn machen würde, da wegen $0 = x \otimes y + (-x) \otimes y$ für $x, y \ne 0$ bereits die Definitheit verletzt wäre.

Wiederum auf $E \odot F$ definieren wir eine weiter Norm, genannt injektive Norm oder ε -Tensornorm, durch $||z||_{\varepsilon} := \sup\{|e' \otimes f'(z)| : e' \in E_1^*, f' \in F_1^*\}$. Die Kreuznormeigenschaft folgt aus Hahn-Banach: zu $x \in E, y \in F$ gibt es $e' \in E_1^*, f' \in F_1^*$ mit $e'(x) = ||x||_E, f'(y) = ||y||_F$, also $||x \otimes y||_{\varepsilon} \ge |e' \otimes f'(x \otimes y)| = ||x||_E ||y||_F$.

3 Die vNA $\mathcal{B}(\mathcal{H})$

3.1 Projektionen

Ein $p \in \mathcal{B}(\mathcal{H})$ heißt Projektion, falls $p^2 = p$ gilt und $orthogonale\ Projektion$, falls p Projektion und $p^* = p$. Man nennt $v \in \mathcal{B}(\mathcal{H})$ eine $partielle\ Isometrie$, falls v^*v eine orthogonale Projektion ist (automatisch s.a., Projektion ist zu prüfen). Ist v partielle Isometrie so ist $\mathcal{N}(v)^{\perp}$ der Anfangsraum von v und $\overline{\mathcal{R}(v)}$ der Zielraum von v. Es ist v^*v orthogonale Projektion auf den Anfangsraum, genannt $initiale\ Projektion$, und vv^* ist orthogonale Projektion auf den Zielraum, genannt $finale\ Projektion$. Zwischen Anfangsraum und Zielraum ist eine partielle Isometrie eine Isometrie.

Für $x \in \mathcal{B}(\mathcal{H})$ definieren wir Anfangsraum und Zielraum wie oben und bezeichnen die initiale Projektion als *Rechtsträger* $s_r(x)$ und die finale Projektion als *Linksträger* $s_l(x)$. Für x s.a. definiere den Träger $s(x) := s_l(x) = s_r(x)$ (wegen $\mathcal{N}(x)^{\perp} = \overline{\mathcal{R}(x^*)} = \overline{\mathcal{R}(x)}$). Es gilt (analog zu den partiellen Isometrien!) $s_l(x) = s(xx^*)$ und $s_r(x) = s(x^*x)$.

3.1.1 polare Zerlegung

Eine komplexe Zahl z lässt sich schreiben als $z = e^{i\varphi}|z|$, also $|z| \ge 0$ und

3.2 Die Spur auf $\mathcal{B}(\mathcal{H})$ (vgl. Ü.A. 34, 37)

Sei (e_i) ONB von \mathbb{C}^n und $T \in \mathcal{B}(\mathbb{C}^n)$ mit Darstellungsmatrix A. Dann definiert man Spur $(A) = \sum_i a_{ii}$. Nun gilt aber $\sum_i a_{ii} = \sum_i \langle Te_i, e_i \rangle$. Diese Formel wollen wir auf beliebige Hilberträume verallgemeinern!

Nun sei also \mathcal{H} wieder beliebiger Hilbertraum und (e_i) ONB von \mathcal{H} . Ist $0 \leq x \in \mathcal{B}(\mathcal{H})$, so ist $\operatorname{tr}(x) := \sum_i \langle xe_i, e_i \rangle \in [0, \infty]$ definiert. Ist $x \in \mathcal{B}(\mathcal{H})$, so gilt $\operatorname{tr}(x^*x) = \operatorname{tr}(xx^*)$ wegen $\langle x^*xe_i, e_i \rangle = \langle e_i, xx^*e_i \rangle = \overline{\langle xx^*e_i, e_i \rangle} = \langle xx^*e_i, e_i \rangle$, also für $0 \leq x$ und u unitär: $\operatorname{tr}(u^*xu) = \operatorname{tr}(u^*x^{1/2}x^{1/2}u) = \operatorname{tr}((x^{1/2}u)^*x^{1/2}u) = \operatorname{tr}(x^{1/2}uu^*x^{1/2}) = \operatorname{tr}(x)$, somit ist tr für positive Operatoren basisunabhängig!

Ist nun $x \in \mathcal{F}(\mathcal{H})$, so können wir x als Linearkombination positiver Endlichrangoperatoren schreiben (Re $x = 1/2(x + x^*) \in \mathcal{F}(\mathcal{H})$ und dann durch Einteilung der Eigenwerte in positive und negative). Existenz der Reihe ist dann klar und wegen Basisunabhängigkeit entspricht tr der Summe der endlich vielen Eigenwerte, also $\operatorname{tr}(x) < \infty$.

Die Basisunabhängigkeit überträgt sich ebenso auf den Fall von Endlichrangoperatoren. Ist $x \in \mathcal{F}(\mathcal{H})$ und $y \in \mathcal{B}(\mathcal{H})$ (oBdA unitär), so gilt $\operatorname{tr}(xy) = \operatorname{tr}(yx)$, denn $yx \in \mathcal{F}(\mathcal{H})$ und $\operatorname{tr}(xy) = \operatorname{tr}(y^*yxy) = \operatorname{tr}(yx)$.

3.2.1 Bezug zu reinen Zuständen auf M_n (vgl. Ü.A. 58 Spektraltheorie)

Es ist $M_n \times M_n \ni (x,y) \mapsto \operatorname{tr}(y^*x)$ ein Skalarprodukt auf M_n , aus Riesz-Frechet folgt, dass ein Funktional φ auf M_n durch eine Dichtematrix Φ via $\varphi(x) = \operatorname{tr}(\Phi x)$ dargestellt werden kann. Ist $\Phi \geq 0$ und $\operatorname{tr}(\Phi) = 1$, so ist φ ein Zustand. Dieser ist genau dann rein, wenn Φ eine eindimensionale orthogonale Projektion ist.

Man rechnet leicht nach, dass $\operatorname{tr}(xt_{\xi,\eta}) = \operatorname{tr}(t_{\xi,x\eta}) = \langle x\eta, \xi \rangle$ gilt. Ist also $\Phi = t_{\xi,\xi}$ eindimensionale orthogonale Projektion und $x \in M_n$, so gilt $\varphi(x) = \operatorname{tr}(\Phi x) = \operatorname{tr}(x\Phi) = \langle x\xi, \xi \rangle$, also ist φ Vektorzustand!

4 Wichtige Operatorklassen und deren Konstruktion über Tensorprodukte

Wir hatten gesehen, dass $E^* \odot E \cong \mathcal{F}(E)$ gilt. Ist $E = \mathcal{H}$ ein Hilbertraum, so würden wir gerne statt \odot auch \otimes_{HS} bilden können (dies wird auf die Klasse der Hilbert-Schmidt-Operatoren führen). Allerdings ist \mathcal{H}^* kein Hilbertraum, wenn man durch die Riesz-Frechet-Identifikation das Skalarprodukt von \mathcal{H} zurückziehen will. Wir statten deshalb \mathcal{H}^* mit einer neuen Skalarmultiplikation und einem geeigneten Skalarprodukt aus, um so \mathcal{H}^* zu einem Hilbertraum zu machen, mit dem $\mathcal{H}^* \times \mathcal{H} \ni (\xi, \eta) \mapsto t_{\xi, \eta}$ bilinear ist.

4.1 Operatoren endlichen Ranges

Ein Operator $x \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ ist genau dann ein Operator endlichen Ranges, $x \in \mathcal{F}(\mathcal{H}, \mathcal{K})$, wenn es ONSe $\{e_1, \ldots, e_n\}$ in \mathcal{H} , $\{f_1, \ldots, f_n\}$ von \mathcal{K} gibt mit $x = \sum_i \lambda_i t_{e_i, f_i}$. Nutze dazu die polare Zerlegung x = v|x|, dann ist |x| ebenso Endlichrangoperator und kann nach dem Spektralsatz der linearen Algebra als $|x| = \sum_i \lambda_i t_{e_i, e_i}$ geschrieben werden. Dann erhält man die gewünschte Darstellung, wenn man das zweite ONS via $f_i \coloneqq ve_i$ definiert. Aus dieser Äquivalenz ist wegen $t_{\xi,\eta}^* = t_{\eta,\xi}$ auch klar, dass $x \in \mathcal{F}(\mathcal{H},\mathcal{K})$ genau dann, wenn $x^* \in \mathcal{F}(\mathcal{K},\mathcal{H})$.

Daraus folgt auch die sogenannte *Hilbert-Schmidt-Darstellung* eines Tensors: Ist $x = \sum_i \xi_i \otimes \eta_i \in \mathcal{H} \odot \mathcal{K}$, so gibt es ONSe $\{e_1, \ldots, e_n\}$ von \mathcal{H} , $\{f_1, \ldots, f_n\}$ von \mathcal{K} sowie $\lambda_1, \ldots, \lambda_n > 0$ mit $x = \sum_i \lambda_i e_i \otimes f_i$.

4.2 kompakte Operatoren

Für $\xi \in \mathcal{H} \odot \mathcal{K}$ gilt $\|\xi\|_{\varepsilon} = \|\beta(\xi)\|_{\text{op}}$. Somit folgt $\mathcal{H} \otimes_{\varepsilon} \mathcal{H} \cong K(\mathcal{H})$.

4.3 Hilbert-Schmidt-Operatoren

Sind $\xi, \eta \in \mathcal{H}^* \odot \mathcal{H}$ und seien $x \coloneqq \beta(\xi), y \coloneqq \beta(\eta)$, so gilt $\langle \xi, \eta \rangle_{HS} = \operatorname{tr}(y^*x)$. Definiere daher via $||x||_2 \coloneqq \operatorname{tr}(x^*x)^{1/2}$ eine Norm auf $\mathcal{F}(\mathcal{H})$, genannt *Hilbert-Schmidt-Norm*.

Für eine Darstellung $x = \sum_i \lambda_i t_{e_i, f_i}$, wobei $(e_i), (f_i)$ ONSe, ist die Hilbert-Schmidt-Norm gegeben durch $\|x\|_2 = \left(\sum_i |\lambda_i|^2\right)^{1/2}$. Daraus folgt auch, dass $\|\beta(\xi)\|_{\text{op}} \leq \|\beta(\xi)\|_2 = \|\xi\|_{\text{HS}}$: Es gilt $x^*x = \sum_i |\lambda_i|^2 t_{e_i, e_i}$. Sei k so gewählt, dass λ_k maximaler Eigenwert von x^*x ist. Dann folgt mit C*-Eigenschaft: $\|x\|_{\text{op}}^2 = \|x^*x\|_{\text{op}} = |\lambda_k|^2 \leq \sum_i |\lambda_i|^2 = \|x\|_2^2$.

Nun können wir die *Hilbert-Schmidt-Operatoren* definieren. Sei $\beta: \mathcal{H}^* \otimes_{\mathrm{HS}} \mathcal{H} \to (K(H), \|\cdot\|_{\mathrm{op}})$ die stetige Fortsetzung von β . Dann sind die Hilbert-Schmidt-Operatoren gegeben durch $\mathrm{HS}(\mathcal{H}) \coloneqq \beta(\mathcal{H}^* \otimes_{\mathrm{HS}} \mathcal{H}) \subset K(\mathcal{H})$.

Es ist $x \in HS(\mathcal{H})$ genau dann, wenn $\operatorname{tr}(x^*x) < \infty$ (vgl. ℓ^2 !) und dann gibt es eine Darstellung $x = \sum_i \lambda_i \operatorname{t}_{e_i, f_i} \operatorname{mit} \lambda_i > 0$, $\sum_i |\lambda_i|^2 < \infty$ und $(e_i)_i, (f_i)_i$ ONSe.

Beispiel: Sei $K \in L^2(\Omega \times \Omega)$ Integralkern, dann ist $T_K : L^2(\Omega) \ni f \mapsto \int_{\Omega} K(\omega, \omega') f(\omega') d\omega' \in L^2(\Omega)$ in $HS(\mathcal{H})$.

4.4 Spurklasseoperatoren

Für $\xi \in \mathcal{H}^* \odot \mathcal{H}$ in Hilbert-Schmidt-Darstellung $\xi = \sum_{i=1}^n \lambda_i e_i \otimes f_i$ gilt $\|\xi\|_{\pi} = \sum_{i=1}^n \lambda_i$ (also entspricht die π -Norm der l^1 -Norm!) und es lässt sich damit $\|\xi\|_{\pi} = \operatorname{tr}(|x|)$ zeigen (sieht ebenfalls aus wie l^1 -Norm). Also ist $x \mapsto \operatorname{tr}(|x|)$ Norm auf $\mathcal{F}(\mathcal{H})$.

Da $\|\beta(\xi)\|_{\text{op}} = \|\xi\|_{\varepsilon} \leq \|\xi\|_{\pi}$, gibt es stetige Fortsetzung $\beta : \mathcal{H}^* \otimes_{\pi} \mathcal{H} \to (K(\mathcal{H}), \|\cdot\|_{\text{op}})$ und wir definieren die *Spurklasseoperatoren* via $\mathcal{T}(\mathcal{H}) := \beta(\mathcal{H}^* \otimes_{\pi} \mathcal{H})$.

Es ist $x \in \mathcal{T}(\mathcal{H})$ genau dann, wenn $\operatorname{tr}(|x|) < \infty$ und in diesem Fall gibt es eine Darstellung $x = \sum_i \lambda_i \operatorname{t}_{e_i, f_i}$ wobei $\lambda_i > 0$, $(\lambda_i)_{i \in I} \in l^1(I)$ und $(e_i)_i, (f_i)_i$ ONSe.

Es ist $\mathcal{T}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ ein zweiseitiges *-Ideal (gleich wichtig für die Dualitätstheorie!).

4.5 Dualitätstheorie

Wir haben gesehen, dass es eine Analogie zwischen Folgenräumen und Operatorenräumen gibt, und zwar entsprechen die endlichen Folgen c_{00} den Operatoren endlichen Ranges $\mathcal{F}(\mathcal{H})$, die Nullfolgen c_0 entsprechen den kompakten Operatoren $K(\mathcal{H})$, die summierbaren Folgen l^1 den Spurklasseoperatoren $\mathcal{T}(\mathcal{H})$, die quadratintegrierbaren Folgen ℓ^2 den Hilbert-Schmidt-Operatoren $HS(\mathcal{H})$ und die beschränkten Folgen ℓ^∞ den beschränkten Operatoren $\mathcal{B}(\mathcal{H})$.

Die Folgenräume c_0 , l^1 und l^{∞} bilden eine Dualitätskette. Diese überträgt sich auf die Operatorklassen, es sind also die Spurklasseoperatoren der Dual von den kompakten Operatoren und die beschränkten Operatoren der Dual der Spurklasseoperatoren.

4.5.1 Der Dual von $K(\mathcal{H})$

Für $\Phi \in \mathcal{T}(\mathcal{H})$ und $x \in K(\mathcal{H})$ gilt $\Phi x \in \mathcal{T}(\mathcal{H})$ (Ideal), also ist $K(\mathcal{H}) \ni x \mapsto \operatorname{tr}(\Phi x)$ wohldefiniert und stetig. Ist umgekehrt $\varphi \in K(\mathcal{H})^*$, so gibt es $\Phi \in \mathcal{T}(\mathcal{H})$ mit $\varphi(x) = \operatorname{tr}(\Phi x)$. Idee: Betrachte $\varphi|_{HS}$. Nach Riesz-Frechet gibt es $\Phi \in HS(\mathcal{H})$ mit $\varphi(x) = \langle x, \Phi \rangle_{HS} = \operatorname{tr}(\Phi^* x)$. Zeige dann: $\Phi^* \in \mathcal{T}(\mathcal{H})$.

Die Zuordnung ist isometrisch, also $K(\mathcal{H})^* \cong \mathcal{T}(\mathcal{H})$.

Außerdem lässt sich φ schreiben als $\varphi(x) = \sum_i \lambda_i \langle x f_i, e_i \rangle$ mit $\lambda_i > 0$, $\sum_i \lambda_i < \infty$ und $(e_i), (f_i)$ ONSe.

4.5.2 Der Dual von $\mathcal{T}(\mathcal{H})$

Wie oben ist für $x \in \mathcal{B}(\mathcal{H})$ ein stetiges Funktional gegeben durch $\mathcal{T}(\mathcal{H}) \ni \Phi \mapsto \operatorname{tr}(\Phi x)$ (wohldefiniert wie oben und Konvergenz in $\|\cdot\|_1$ impliziert insbesondere Konvergenz in $\|\cdot\|_{\operatorname{op}}$). Umgekehrt gibt es zu $\varphi \in \mathcal{T}(\mathcal{H})^*$ ein $x \in \mathcal{B}(\mathcal{H})$ mit $\varphi(\Phi) = \operatorname{tr}(\Phi x)$. Beweisidee: Ziehe Funktional auf $\mathcal{H}^* \otimes_{\pi} \mathcal{H}$ zurück, diese liefert eine beschränkte Bilinearform auf $\mathcal{H}^* \times \mathcal{H}$, welche wiederum einer Sesquilinearform auf $\mathcal{H} \times \mathcal{H}$ entspricht. Diese wird durch einen beschränkten Operator eindeutig dargestellt.

Die Zuordnung ist wieder eindeutig und isometrisch, also $\mathcal{T}(\mathcal{H})^* \cong \mathcal{B}(\mathcal{H})$.

4.6 normale Linearformen

Ein Funktional $\varphi : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ heißt normal, falls es schwach-*-stetig ist, also: Ist x_i Netz in $\mathcal{B}(\mathcal{H})$ mit $\operatorname{tr}((x_i - x)\Phi) \to 0$ für ein $x \in \mathcal{B}(\mathcal{H})$ und alle $\Phi \in \mathcal{T}(\mathcal{H})$, so folgt $\varphi(x_i) \to \varphi(x)$. Dies ist genau dann der Fall, wenn es $\Phi \in \mathcal{T}(\mathcal{H})$ gibt mit $\varphi(x) = \operatorname{tr}(\Phi x)$.

5 Topologien auf $\mathcal{B}(\mathcal{H})$

Bisher kennen wir die Normtopologie, starke Operatortopologie (stop) und schwache Operatortopologie (swop) auf $\mathcal{B}(\mathcal{H})$. Im Folgenden werden wir weitere Topologien kennenlernen und zeigen, dass diese in gewissen Fällen übereinstimmen bzw. deren Dualräume übereinstimmen.

5.1 swop =
$$\sigma(\mathcal{B}(\mathcal{H}), \mathcal{F}(\mathcal{H}))$$

Sei x_i in $\mathcal{B}(\mathcal{H})$. Gilt swop $-\lim_i x_i = 0$, so auch $|\operatorname{tr}(\sum_{j=1}^n \operatorname{t}_{\xi_j,\eta_j} x_i)| \leq \sum_{j=1}^n |\langle x_i \eta_j, \xi_j \rangle| \to 0$. Umgekehrt zeigt $\operatorname{tr}(\operatorname{t}_{\eta,\xi} x) = \langle x\xi, \eta \rangle$ die swop-Konvergenz.

5.2 stop-stetige Funktionale sind swop-stetig

Für $\varphi \in \mathcal{B}(\mathcal{H})^*$ sind stop- und swop-Stetigkeit äquivalent und es gibt eine Darstellung $\varphi(x) = \operatorname{tr}(\Phi x)$ für $\Phi \in \mathcal{F}(\mathcal{H})$, also $(\mathcal{B}(\mathcal{H}), \operatorname{stop})^* = \mathcal{F}(\mathcal{H}) = (\mathcal{B}(\mathcal{H}), \operatorname{swop})^*$.

Das aus swop-Stetigkeit auch stop-Stetigkeit folgt, sowie Funktionale dieser Form swop-stetig sind, ist klar. Wir zeigen, dass ein stop-stetiges Funktional eine solche Darstellung besitzt. Dazu nutzen wir einen Amplifikationstrick!

Aus der stop-Stetigkeit von φ folgt, dass φ durch endlich viele stop-Halbnormen dominiert wird, also $|\varphi(x)| \leq \left(\sum_{i=1}^n \|x\xi_i\|\right)^{1/2}$. Zu $\hat{\mathcal{H}} := \bigoplus_{i=1}^n \mathcal{H}$ betrachten wir den Teilraum $\tilde{\mathcal{H}} := \{\tilde{x}\tilde{\xi} = x\xi_1 \oplus \cdots \oplus x\xi_n : x \in \mathcal{B}(\mathcal{H})\}$. Es gilt wegen oben $|\varphi(x)| \leq \|\tilde{x}\tilde{\xi}\|$ und daraus folgt außerdem die Wohldefiniertheit von $\tilde{x}\tilde{\xi} \mapsto \varphi(x)$. Also ist $\varphi : \tilde{\mathcal{H}} \to \mathbb{C}$ ein stetiges Funktional, nach Riesz-Frechet gibt es $\tilde{\eta}$ mit $\varphi(x) = \langle \tilde{x}\tilde{\xi}, \tilde{\eta} \rangle = \sum_{i=1}^n \langle x\xi_i, \eta_i \rangle$.

5.3 σ – swop-Topolgie und σ – stop-Topologie

Sind $(\xi_i)_{i=1,\dots,n}, (\eta_i)_{i=1,\dots,n}$ endliche Folgen in \mathcal{H} , so definiert die Familie der Halbnormen $x \mapsto |\sum_{i=1}^n \langle x \xi_i, \eta_i \rangle|$ die stop-Topologie auf $\mathcal{B}(\mathcal{H})$. Ersetzen wir die endlichen Folgen durch Folgen $(\xi_n), (\eta_n)$ mit $\sum_n \|\xi_n\|^2 < \infty, \sum_n \|\eta_n\|^2 < \infty$, erhalten wir die σ – swop-Topologie, welche offensichtlich feiner als die stop-Topologie ist.

Die σ – swop-Topologie stimmt mit $\sigma(\mathcal{B}(\mathcal{H}), \mathcal{T}(\mathcal{H})$ überein, wird also von den normalen Linearformen induziert (es reichen sogar die normalen Zustände, da normale Linearformen positive

Linearkombination von normalen Zuständen sind).

Ebenso definiert man die σ – stop Halbnormen über eine Folge (ξ_n) mit $\sum_n \|\xi\|^2 < \infty$ und diese Topologie wir auch durch die Halbnormen $x \mapsto \varphi(x^*x)^{1/2}$ erzeugt, wobei φ normaler Zustand. Für die Dualräume gilt $(\mathcal{B}(\mathcal{H}), \sigma - \text{stop})^* = \mathcal{T}(\mathcal{H}) = (\mathcal{B}(\mathcal{H}), \sigma - \text{swop})^*$, der Beweis geht wie im Fall von stop- und swop-Topologie mit Amplifikationstrick.

5.4 Vergleich der Topologien

Auf $\mathcal{B}(\mathcal{H})_1$ stimmen swop und σ – swop überein: Die Einheitskugel ist σ – swop = σ^* kompakt (Banach-Alaoglu), swop ist Hausdorff und id : $(\mathcal{B}(\mathcal{H})_1, \sigma - \text{swop}) \to (\mathcal{B}(\mathcal{H})_1, \text{swop})$ ist stetig, also Homöomorphismus.

Außerdem stimmen stop und σ – stop auf $\mathcal{B}(\mathcal{H})_1$ überein, nutze dazu stop – $\lim_i x_i = 0$ gdw. swap – $\lim_i x^*x = 0$ (ebenso mit σ -Versionen).

6 Eigenschaften von vNAen

6.1 Bikommutantensatz

Sei $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ Operatoralgebra mit $1_{\mathcal{H}} \in \mathcal{M}$. Dann sind für $x \in \mathcal{B}(\mathcal{H})$ äquivalent: 1) $x \in \overline{\mathcal{M}}^{\text{swop}}$ 2) $x \in \overline{\mathcal{M}}^{\text{stop}}$ 3) $x \in \mathcal{M}''$. Beweis: Die Äquivalenz von 1) und 2) ist klar, da \mathcal{M} konvex ist und beide Topologien die selben Duale erzeugen. Da $\mathcal{M} \subseteq \mathcal{M}''$ und \mathcal{M}'' automatisch stop-abg. ist, folgt aus 2) auch 3). Für 3) nach 2) zeigt man zuerst für $x'' \in \mathcal{M}''$ und $\xi \in \mathcal{H}$, dass man $x \in \mathcal{M}$ mit $\|(x-x'')\xi\| < \varepsilon$ findet. Durch Amplifikation zeigt man dann, dass auch der Schnitt mit einer Basis der lokalkonvexen Topologie nicht leer ist.

Insbesondere folgt daraus: Eine Operatoralgebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ mit $1_{\mathcal{H}} \in \mathcal{M}$ sind äquivalent: 1) \mathcal{M} vNA 2) \mathcal{M} ist swop-abgeschlossen 3) $\mathcal{M} = \mathcal{M}''$.

6.2 Operatormatrizen und Amplifikation

Ist \mathcal{M} Operatoralgebra mit $1_{\mathcal{H}} \in \mathcal{M}$, so ist $vN(\mathcal{M}) := \mathcal{M}''$ erzeugte vNA. Ist \mathcal{N} weitere Operatoralgebra, so ist $vN(\mathcal{M}, \mathcal{N}) := vN(\mathcal{M} \cup \mathcal{N})$.

Sind \mathcal{M}, \mathcal{N} vNAen, dann definiere $\mathcal{M} \odot \mathcal{N} := LH\{x \otimes y \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) : x \in \mathcal{M}, y \in \mathcal{N}\}$. Das von Neumann Tensorprodukt ist dann $\mathcal{M} \otimes \mathcal{N} := vN(\mathcal{M} \odot \mathcal{N})$.

Für
$$\mathcal{K} = \ell^2(I)$$
 und $\mathcal{N} = 1_{\mathcal{K}} := \mathbb{C}1_{\mathcal{K}}$ ist $\mathcal{M} \odot 1_{\mathcal{K}} = \{x \otimes 1_{\mathcal{K}} \in \mathcal{B}(\oplus_i \mathcal{H}) : x \in \mathcal{M}\} = \{\begin{pmatrix} \ddots & & \\ & x & \\ & & \ddots \end{pmatrix}\}.$

Dies ist stop-abgeschlossen, da $x \mapsto x \otimes 1_{\mathcal{K}}$ normaler Isomorphismus ist, also ist das von Neumann Tensorprodukt $\mathcal{M} \otimes 1_{\mathcal{K}}$ gegeben durch die Diagonalmatrizen mit konstanter Diagonale.

Es gilt $(\mathcal{M} \otimes 1_{\mathcal{K}})' = M_I(\mathcal{M}')$. Außerdem gilt $\mathcal{M} \otimes \mathcal{B}(\mathcal{K}) = M_I(\mathcal{M})$, somit auch $(M \otimes 1_{\mathcal{K}}) = \mathcal{M}' \otimes \mathcal{B}(\mathcal{K})$.

6.3 Spektraltheorie in vNAen

Ist \mathcal{M} vNA mit $1_{\mathcal{H}} \in \mathcal{M}$ und $x \in \mathcal{M}$, so besitzt x polare Zerlegung x = v|x| mit $v, x, s_l(x), s_r(x) \in \mathcal{M}$ (nutze Bikommutantensatz). Aus $|x| = v^*x$ folgt dann, dass zweiseitige Ideale bereits *-Ideale sind $(x^* = |x|v^*)$ und $|x| = v^*x$ im Ideal, da x im Ideal).

Außerdem liegen alle Spektralprojektionen eines $x = x^* \in \mathcal{M}$ wieder in \mathcal{M} (denn $\chi_{(-\infty,\lambda]}(x) = s((x-\lambda)_-)$ liegt in \mathcal{M} , da $C^*(1_{\mathcal{H}}, x) \subset \mathcal{M}$ und Träger enthalten sind), ebenso monotone Limiten (da diese stop-konvergieren und \mathcal{M} diesbezüglich abgeschlossen ist).

6.4 Einselement

Ist \mathcal{M} vNA auf \mathcal{H} , so besitzt \mathcal{M} ein Einselement e (stop-Limes einer approximativen Eins, die per Konstruktion monoton und beschränkt ist!). Ist \mathcal{M} nicht degeneriert, also $[\mathcal{M}\mathcal{H}] = \mathcal{H}$, dann $e = 1_{\mathcal{H}}$, sonst $\mathcal{M} = \mathcal{M}|_{[\mathcal{M}\mathcal{H}]} \oplus \mathbb{C}(1_{\mathcal{H}} - e)$.

6.5 Abgeschlossenheit einer vNA

Eine vNA \mathcal{M} ist stop—, swop—, σ — swop— und σ — stop-abgeschlossen: Die erste und letzte Implikation gilt, weil die Topologien die gleichen Duale erzeugen und \mathcal{M} konvex ist, die mittlere, weil swop gröber als σ — swop ist.

6.6 Prädual einer vNA

Jede vNA \mathcal{M} hat einen Prädual und dieser ist gegen durch $\mathcal{T}(\mathcal{H})/\{\Phi \in \mathcal{T}(\mathcal{H}) : \operatorname{tr}(\Phi x)|_{\mathcal{M}} = 0\}.$

6.7 Stetigkeit von Funktionalen

Mit einem Resultat aus der FA kann man zeigen, dass $\varphi \in \mathcal{M}^*$ genau dann σ – swop-stetig (also $\varphi \in \mathcal{M}_*$) ist, wenn $\varphi|_{\mathcal{M}_1}$ bzgl. swop stetig ist (es gilt die analoge Aussage mit stop).

6.8 Dichtesatz von Kaplansky

Ist \mathcal{M} vNA und \mathcal{A} eine stop- bzw. swop-dichte Operatoralgebra, so gilt 1) \mathcal{A}_h ist stop-dicht in \mathcal{M}_h 2) \mathcal{A}_1^h ist stop-dicht in \mathcal{M}_1^h 3) \mathcal{A}_1^+ ist stop-dicht in \mathcal{M}_1^+ 4) \mathcal{A}_1 ist stop-dicht in \mathcal{M}_1 .

Beweis: TODO!!!

Dieser Satz ist nützlich, da auf Schnitten mit der Einheitskugel z.B. stop und σ – stop übereinstimmen, es ist also Spiel mit den Topologien möglich!

Anwendung: Operatoralgebra \mathcal{M} ist vNA gdw. \mathcal{M} bzgl. σ – swop abgeschlossen ist gdw. \mathcal{M}_1 bzgl. σ – swop kompakt ist! Die erste Implikation ist bekannt, die Zweite ist Banach-Alaoglu, die Dritte nutzt Kaplansky und das übereinstimmen von stop und σ – swop auf \mathcal{M}_1 !

6.9 topologische Charakterisierung von vNAen

Eine Operatoralgebra \mathcal{M} ist vNA gdw. \mathcal{M} bzgl. σ – swop abgeschlossen ist gdw. \mathcal{M}_1 schwach*-kompakt ist.

Erste Implikation ist bekannt, $\mathcal{M}_1 = \mathcal{M} \cap \mathcal{B}(\mathcal{H})_1$ ist σ – swop abgeschlossen und damit kompakt (Banach-Alaoglu) und aus der Abgeschlossenheit folgt mit Kaplansky insbesondere, dass σ – swop Grenzwerte aus der Einheitskugel im stop-Abschluss liegen, da auf der Einheitskugel die Topologien übereinstimmen.

6.10 Morphismen

Die "richtigen" Morphismen sind schwach-*-stetige *-Homomorphismen. Es gilt folgendes Stetigkeitsdiagramm:

d.h. σ – swop ist der allgemeinste Stetigkeitsbegriff. Das Bild einer vNA unter einem stetigen *-Homomorphismus ist wieder eine vNA (nutze $\pi(\mathcal{M}_1) = \pi(\mathcal{M})_1$ ist schwach-*-kompakt)!