明細書

電子ビーム記録装置

技術分野

本発明は、原盤にサーボパターン等のパターンを露光によって書き込む電子ビーム記録装置に関する。

背景技術

ハードディスク装置 (HDD) では、磁気ヘッドと磁気ディスク上のトラック との相対位置を検出するための位置情報が、サーボパターンとして磁気ディスク に記録されている。磁気ディスクにおいては、図1に示すように、サーボパターンを記録したサーボゾーンとデータの記録再生を行うデータゾーンが周方向のトラックに沿って一定した角度間隔で交互に並んでおり、磁気ヘッドはデータ記録 又は再生中に一定時間毎にその記録又は再生位置を検出することができる。

しかしながら、従来のハードディスク装置を製造する際には、サーボトラックライターと呼ばれる装置により、サーボパターンを個々の磁気ディスク毎に記録し、その後、装置内に組込む作業を行っていた。サーボパターンを20GB(ギガバイト)/枚クラスの磁気ディスクに記録するためには10分程度の時間を要するので、ハードディスク装置の製造効率が悪いという問題があった。

それに対処するために、サーボパターンに対応する磁性膜パターンをリソグラフ技術によって形成したマスタディスクを磁気転写によって磁気ディスクに一括面記録する方法が知られている(富士時報 第75巻 第3号 平成14年3月10日発行参照)。この方法を用いることにより、磁気ディスクへのサーボパタ

ーンの記録時間を短縮させることができる。

かかる磁気転写によって磁気ディスクに記録する方法の場合には、磁気ディスク毎に記録するプロセスが複雑化するという別の問題点があった。

そこで、ハードディスク装置の製造効率を向上させるために、サーボパターン を原盤記録の段階で高精度で形成することが望まれている。しかしながら、ハー ドディスク装置用の磁気ディスクのサーボパターンはディスク半径方向に複数ト ラックに亘る長手のパターンを含んでおり、従来の電子ビーム記録装置をそのま ま用いることができないという問題がある。

発明の開示

本発明の目的は、磁気ディスク用のサーボパターンを高精度で原盤記録することができる電子ビーム記録装置及び方法を提供することである。

本発明の電子ビーム記録装置は、表面にレジスト層が形成された原盤を回転駆動する回転駆動部と、露光用の電子ビームを偏向自在に前記レジスト層の表面に照射する電子ビーム照射部と、前記回転駆動部の1回転毎に前記電子ビームの照射位置を前記原盤の半径方向に所定量だけ移動させて電子ビームの照射位置を進行させる移動駆動部と、前記回転駆動部による前記原盤の回転角度、前記移動駆動部による移動位置及び所定のパターンを示す記録データに応じて前記電子ビーム照射部による前記レジスト層の表面上の照射位置を制御して所定のパターンに対応した潜像を前記レジスト層に形成させる制御手段と、を備えた電子ビーム記録装置であって、前記電子ビーム照射部は、前記制御手段による照射位置制御に応じてトラックを横切る方向にかつ複数のトラックを跨ぐように前記電子ビームを照射させるビーム調整手段を有することを特徴としている。

本発明の電子ビーム記録方法は、表面にレジスト層が形成された原盤を回転駆動する回転駆動ステップと、露光用の電子ビームを偏向自在に前記レジスト層の表面に照射する照射ステップと、前記原盤の1回転毎に前記電子ビームの照射位置を前記原盤の半径方向に所定量だけ移動させて電子ビームの照射位置を進行させる移動駆動ステップと、前記原盤の回転角度、前記電子ビームの照射位置の前記原盤の半径方向における移動位置及び所定のパターンを示す記録データに応じて前記電子ビームによる前記レジスト層の表面上の照射位置を制御して所定のパターンに対応した潜像を前記レジスト層に形成させる制御ステップとを備えた電子ビーム記録方法であって、前記照射ステップは前記制御ステップによる照射位置制御に応じてトラックを横切る方向にかつ複数のトラックを跨ぐように前記電子ビームを照射することを特徴としている。

図面の簡単な説明

図1はサーボゾーンとデータゾーンとを繰り返し有する構造の磁気ディスクを 示す図である。

- 図2は本発明による電子ビーム記録装置を示す図である。
- 図3は偏向コントローラの動作を示すフローチャートである。
- 図4はサーボゾーン及びデータゾーン各々のパターンを示す図である。
- 図5は図4のサーボゾーン及びデータゾーン各々のパターンの形成方法を示す 図である。
 - 図6はサーボゾーン及びデータゾーン各々の他のパターンを示す図である。
- 図7は図6のサーボゾーン及びデータゾーン各々のパターンの形成方法を示す 図である。

WO 2005/093722 PCT/JP2005/005650

図8は本発明による電子ビーム記録装置を示す図である。

図9は図8の装置中のアパーチャプレートの各アパーチャの形状を示す図である。

- 図10は図8の装置中のビーム変調器の動作を示すフローチャートである。
- 図11は図8の装置を用いた場合の図4のサーボゾーン及びデータゾーン各々のパターンの形成方法を示す図である。
- 図12は図8の装置を用いた場合の図6のサーボゾーン及びデータゾーン各々のパターンの形成方法を示す図である。
 - 図13は本発明による電子ビーム記録装置を示す図である。
- 図14は図13の装置中の偏向コントローラの動作を示すフローチャートである。
 - 図15はスタンパの製造工程を示す図である。
 - 図16は基板の製造工程を示す図である。

発明を実施するための形態

以下、本発明の実施例を図面を参照しつつ詳細に説明する。

図2は本発明による電子ビーム記録装置を示している。この記録装置は、電子カラム1、真空チャンバ2及び記録制御系を備えている。図2では電子カラム1 及び真空チャンバ2の内部構造が示されている。

電子カラム1は電子ビームを生成してそれを真空チャンバ2内の後述の原盤4 に照射するための光学系を内部に備えた円柱状の部材である。電子カラム1内の 光学系は、電子放出部11、コンデンサレンズ12、ブランキングプレート13、 アパーチャプレート14、偏向コイル15、アライメントコイル16、高速デフ WO 2005/093722 PCT/JP2005/005650

レクタ17、フォーカスレンズ18及び対物レンズ19を備えている。

電子放出部11は後述の加速高圧電源30及び図示しない引き出し電極に高電圧が印加されると電子ビームを生成する。コンデンサレンズ12は電子放出部11によって生成された電子ビームを集束させてブランキングプレート13の中央部にクロスオーバを形成させる。ブランキングプレート13は後述のビーム変調器31の出力信号に応じて電子ビームをオンオフさせるための例えば、静電偏向型の電極である。アパーチャプレート14は電子ビームの光束を制限する円形の開口を備えている。偏向コイル15は図示しない偏向回路の出力信号に応じて電子ビームの進行方向を変化させる。アライメントコイル16はビーム位置補正器32の出力信号に応じて電子ビームを偏向させて光軸と一致させる。高速デフレクタ17は偏向コントローラ37の出力信号に応じて電子ビームを任意の方向に偏向させる。フォーカスレンズ18はフォーカスコントローラ33の出力信号に応じて電子ビーム光を対物レンズ19を介して原盤4上に合焦させる。

真空チャンバ2内には、高さ検出器21、スピンドルモータ22、ミラー23、ターンテーブル24、ステージ25及びステージ移動機構26が備えられている。スピンドルモータ22及びミラー23はステージ25上に配置されている。スピンドルモータ22はターンテーブル24を回転させる。ターンテーブル24上にディスク原盤4がセットされる。原盤4は例えば、シリコン基板上に電子線レジスト層が形成されたものである。ステージ25はステージ移動機構26によってディスク原盤4のディスク半径方向(X方向)に移動可能とされている。ステージ移動機構26は真空チャンバ2の外側に取り付けられたモータ27を動力源としてステージ25を移動させる。ミラー23はステージ25のディスク半径方向

の移動距離を測定するために設けられている。高さ検出器 2 1 は真空チャンバ 2 内の上部に設けられ、ディスク原盤 4 の記録位置の高さを光学的に検出する。

記録制御系は、加速高圧電源30、ビーム変調器31、ビーム位置補正器32、フォーカスコントローラ33、位置コントローラ34、レーザ測長器35、回転コントローラ36、偏向コントローラ37及びメインコントローラ38を備えている。

加速高圧電源30はメインコントローラ38の指令に応じて電子放出部11に 対して高電圧を印加する。

ビーム変調器31はメインコントローラ38から供給される記録データに応じてブランキングプレート13に対してビーム変調信号を供給する。

フォーカスコントローラ33は高さ検出器21によって検出された記録位置の 高さ情報に応じてフォーカスレンズ18の集光位置を移動させる。

レーザ測長器35はミラー23に対してレーザビームを照射してその反射光を受光してミラー23の位置、すなわちステージ25の移動距離情報rを検出する。移動距離情報rはディスク原盤4の半径方向の記録位置を示すことになる。レーザ測長器35によって測定された移動距離情報rは位置コントローラ34に供給される。位置コントローラ34は移動距離情報rと基準距離情報REFとを比較してその比較結果の位置誤差信号に応じて図示しないモータ駆動手段を介してモータ27を駆動する。また、その位置誤差信号はビーム位置補正器32に供給される。ビーム位置補正器32は位置コントローラ34からの位置誤差信号に応じてアライメントコイル16を励磁させ、それによって電子ビームを偏向させる。

回転コントローラ36はメインコントローラ38の指令に応じてスピンドルモ

ータ22を回転駆動する。偏向コントローラ37は、メインコントローラ38から供給される記録データと、回転コントローラ36から得られるスピンドルモータ22を回転角度情報θと、レーザ測長器35によって測定された移動距離情報 r とに応じて高速デフレクタ17による電子ビームの偏向を制御する。回転角度情報θはディスク原盤4の記録位置の角度を示すことになる。

加速高圧電源30、ビーム変調器31、フォーカスコントローラ33、位置コントローラ34、回転コントローラ36及び偏向コントローラ37はメインコントローラ38の指令に応じて各々制御される。

かかる構成の電子ビーム記録装置を用いてディスク原盤4へのパターン記録に ついて次に説明する。

メインコントローラ38は、サーボゾーンデータとデータゾーンデータとを記録するに当たって、位置コントローラ34に対して所定のトラックピッチとなるようにステージ移動を上記の基準距離情報REFとして指令し、回転コントローラ36に対してスピンドルモータ22が回転線速度一定の回転数となるように指令する。

位置コントローラ34はレーザ測長器35から出力されるステージ25の移動 距離情報 r と基準距離情報 R E F とを比較してその比較結果の位置誤差信号に応 じて図示しないモータ駆動手段を介してモータ27を駆動する。

これらの指令及び動作によって原盤4がスピンドルモータ22によって1回転される毎に原盤半径方向にトラックピッチ分だけステージ移動機構26によってステージ25が移動される。

また、メインコントローラ38は、加速高圧電源30に対して高電圧の電子放

出部11への印加を指令し、これによって電子ビームが電子放出部11から発射 される。更に、フォーカスコントローラ33に対して電子ビームの原盤4上への フォーカシングを指令する。

ビーム位置補正器32は位置コントローラ34からの位置誤差信号に応じてア ライメントコイル16を励磁させ、それによって電子ビームを偏向させる。

メインコントローラ38からビーム変調器31には記録データが一定のクロッ クタイミングで供給される。そのクロックタイミングは位置コントローラ34及 び回転コントローラ36に対する指令に同期している。記録データは1ディスク 分のサーボゾーンデータとデータゾーンデータとを記録順に示すデータである。 記録データに応じてビーム変調器31が変調信号を生成し、その変調信号に応じ てブランキングプレート13は電子放出部11から発射された電子ビームを偏向 させる。これにより電子ビームはアパーチャプレート14のアパーチャを通過す る場合と、アパーチャを通過しない場合とのいずれかとなる。アパーチャを通過 する場合にはその通過した電子ビームは偏向コイル15、アライメントコイル1 6、高速デフレクタ17、フォーカスレンズ18及び対物レンズ19を介して原 盤4の記録面にスポットとして照射される。電子ビームの原盤4への照射によっ て照射された部分のレジスト層が除去される。レジスト層が除去された部分が凹 部となり、パターンを形成する。一方、アパーチャを通過しない場合には、電子 ビームはアパーチャプレート14以降に進まず、原盤4へ照射されることがない。 メインコントローラ38は、偏向コントローラ37に対して上記の記録データ を供給する。偏向コントローラ37は、図3に示すように、回転コントローラ3 6から得られる回転角度情報θとレーザ測長器35からの移動距離情報γとに応

じて現在の記録位置を得て (ステップS1)、その現在の記録位置がディスク半径方向において2トラック以上に亘る記録部分であることを記録データから検出すると (ステップS2)、高速デフレクタ17に対して所定の偏向信号を供給する (ステップS3)。高速デフレクタ17は所定の偏向信号が供給されると、電子ビームをディスク半径方向において2トラック分だけ高速に偏向する。

この結果、原盤4には図4に示す如きサーボゾーンとデータゾーンとかなるパターンが形成される。サーボゾーンでは、更に、クロック信号を生成するためのサーボクロック部、トラック上のアドレス情報を示すためのアドレスマーク部及びトラック上の位置を検出するための位置検出マーク部がパターンとして形成される。なお、サーボゾーンに、これらサーボクロック部、アドレスマーク部及び位置検出マーク部が全て形成されるのではなく、クロック信号、アドレス信号及び位置検出信号のうち少なくとも1つを含むマーク部が形成されても構わない。

 として記録される。

サーボゾーンにおける長手マークは、図5に示すように、原盤4の内周側から 順に形成される。図5では6トラックn~n+5を示しており、6トラックを跨 ぐ長さの長手マーク41は、5トラックn~n+4各々の同一の回転角度 θ i 位 置で高速デフレクタ17によって電子ビームがディスク半径方向において2トラ ック分だけ高速に偏向照射され、それら2トラック偏向分が重複部分で連続的に 結合することによって形成される。すなわち、トラックn+1~n+4各々にお いて2トラック分の偏向終了部分と次の2トラック分の偏向開始部分とが重複す る。4トラックを跨ぐ長さの長手マーク42は、3トラックn+1~n+3各々 の同一の回転角度 θ i+1位置で高速デフレクタ17によって電子ビームがディ スク半径方向において2トラック分だけ高速に偏向照射され、それら2トラック 偏向分が重複部分で連続的に結合することによって形成される。3トラックを跨 ぐ長さの長手マーク43は、2トラックn, n+1各々の同一の回転角度 θ i+ 2位置で高速デフレクタ17によって電子ビームがディスク半径方向において2 トラック分だけ高速に偏向照射され、それら2トラック偏向分が重複部分で連続 的に結合することによって形成される。2トラックを跨ぐ長さの長手マーク44 は、トラックn+4の回転角度 θ i+2位置で高速デフレクタ17によって電子 ビームがディスク半径方向において2トラック分だけ高速に偏向照射されること によって形成される。図5においてマーク内の矢印で示す方向が高速デフレクタ 17による電子ビームの1回の偏向方向である。

データゾーンの円形マーク45は、図5に示すように、トラック $n\sim n+5$ のトラック順に所定の単位角度 Δ 0間隔で電子ビームが高速デフレクタ17で偏向

されることなく照射されることによって形成される。

図6はかかる電子ビーム記録装置を用いて原盤4への他のパターン形成例を示している。図6のサーボゾーンのパターンは図4のサーボゾーンと同一であるが、データゾーンについてはグルーブ記録パターン形状であり、トラック毎にトラック方向に連続したマークが形成されている。図7は図6のサーボゾーン及びデータゾーンの各マークの形成方法を示しており、サーボゾーンは図5と同様である。データゾーンの連続マーク46は、トラックn~n+5のトラック順に電子ビームが高速デフレクタ17で偏向されることなく連続的に照射されることによって形成される。

上記の実施例によれば、データゾーンのパターンとサーボゾーンのパターンを 1度のプロセスで形成することができるので、各パターンの記録位置の精度が高 くなる。

なお、メインコントローラ 3 8 から偏向コントローラ 3 7 にその時点の回転角 度情報 θ と移動距離情報 r とに対応して記録データが供給されるならば、偏向コントローラ 3 7 には回転角度情報 θ 及び移動距離情報 r が直接供給される必要は ない。すなわち、偏向コントローラ 3 7 は記録データだけに応じて高速デフレク θ 1 7 に偏向信号を供給すれば良い。

図8は本発明の他の実施例を示している。この図8の電子ビーム記録装置において、図2に示した部分と同一部分は同一符号で示されている。電子カラム1内のブランキングプレート13と偏向コイル15との間にはアパーチャプレート51が設けられている。アパーチャプレート51は電子ビームの光束を制限する複数の開口を備えている。アパーチャプレート51は上記した複数のアパーチャと

して図9に示すように、円形の1トラック用アパーチャ51aと、長手形状の2 トラック用アパーチャ51b及び3トラック用アパーチャ51cとを有する平板 である。アパーチャプレート51はアパーチャ51b及び51cの長手方向がディスク原盤4の半径方向と一致するように配置されている。

ビーム変調器31はメインコントローラ38からクロックタイミングに同期して記録データを受け入れ、その記録データに応じた変調信号をブランキングプレート13に出力する。ビーム変調器31が出力する変調信号はアパーチャプレート51のアパーチャ51a~51cのいずれかの選択或いはアパーチャの非選択を示す信号である。変調信号に応じてブランキングプレート13は電子放出部11から発射された電子ビームを偏向する。

ビーム変調器31は、図10に示すように、記録データがオン(記録)を示し (ステップS11)、かつステップS12の判別結果が1トラック記録を示すと きには、アパーチャ51aを選択するための変調信号をブランキングプレート1 3に供給する(ステップS14)。その変調信号に応じてブランキングプレート 13は電子放出部11から発射された電子ビームを偏向させ、これにより電子ビームはアパーチャプレート51のアパーチャ51aを通過する。

ビーム変調器 3 1 は、ステップ S 1 3 の判別結果が 2 トラック記録を示すときには、アパーチャ 5 1 b を選択するための変調信号をブランキングプレート 1 3 に供給する(ステップ S 1 5)。その変調信号に応じてブランキングプレート 1 3 は電子放出部 1 1 から発射された電子ビームを偏向させ、これにより電子ビームはアパーチャプレート 5 1 のアパーチャ 5 1 b を通過する。

ビーム変調器31は、ステップS13の判別結果が3トラック記録を示すとき

には、アパーチャ51cを選択するための変調信号をブランキングプレート13 に供給する(ステップS16)。その変調信号に応じてブランキングプレート1 3は電子放出部11から発射された電子ビームを偏向させ、これにより電子ビームはアパーチャプレート51のアパーチャ51cを通過する。

ビーム変調器 3 1 は、記録データがオフ(非記録)を示すときには(ステップ S 1 1)、アパーチャ 5 1 a \sim 5 1 c の非選択のための変調信号をブランキング プレート 1 3 に供給する(ステップ S 1 7)。その変調信号に応じてブランキングプレート 1 3 は電子放出部 1 1 から発射された電子ビームを偏向させ、これに より電子ビームはアパーチャプレート 5 1 で遮断される。

アパーチャ51a~51cのいずれかを通過した電子ビームは偏向コイル15、アライメントコイル16、フォーカスレンズ18及び対物レンズ19を介して原盤4の記録面にスポットとして照射される。電子ビームの原盤4への照射によって照射された部分のレジスト層が除去される。レジスト層が除去された部分が凹部となり、パターンを形成する。一方、電子ビームがアパーチャ51a~51cのいずれも通過しない場合には、電子ビームはアパーチャプレート51以降に進まず、原盤4へ照射されることがない。

この結果、上記したように、原盤4には図4に示した如きサーボゾーンとデータゾーンとかなるパターンが形成される。

サーボゾーンにおける長手マークは、例えば、図11に示すように、原盤4の 内周側から順に形成される。図11では上記の図5と同様に、6トラックn~n+5を示しており、6トラックを跨ぐ長さの長手マーク61については、先ず、 アパーチャ51cを通過した電子ビームがトラックnの回転角度 θ i位置でディ

スク半径方向において3トラック分に亘って照射され、次に、アパーチャ51b を通過した電子ビームがトラックn+2の回転角度 θ i 位置でディスク半径方向 において2トラック分に亘って照射され、更に、アパーチャ51cを通過した電 子ビームがトラックn+3の回転角度 θ i位置でディスク半径方向において3ト ラック分に亘って照射され、それらが重複部分で連続的に結合することによって 形成される。4トラックを跨ぐ長さの長手マーク62については、先ず、アパー チャ51bを通過した電子ビームがトラックn+1の回転角度θi+1位置でデ ィスク半径方向において2トラック分に亘って照射され、次に、アパーチャ51 cを通過した電子ビームがトラックn+2の回転角度 θ i+1位置でディスク半 径方向において3トラック分に亘って照射され、それらが重複部分で連続的に結 合することによって形成される。3トラックを跨ぐ長さの長手マーク63は、ア パーチャ51cを通過した電子ビームがトラックnの回転角度 θ i+2位置でデ ィスク半径方向において3トラック分に亘って照射されることによって形成され る。2トラックを跨ぐ長さの長手マーク64は、アパーチャ51bを通過した電 子ビームがトラックn+4の回転角度 θ i+2位置でディスク半径方向において 2トラック分に亘って照射されることによって形成される。

データゾーンの円形マーク65は、図11に示すように、アパーチャ51aを 通過した電子ビームがトラック $n\sim n+5$ のトラック順に所定の単位角度 Δ 0間 隔で照射されることによって形成される。

図12は図6に示した如きサーボゾーンとデータゾーンとからなるパターンが 形成される場合の各マークの形成方法を示しており、サーボゾーンは図11と同様である。データゾーンの連続マーク66は、トラックn~n+5のトラック順 にアパーチャ51aを通過した電子ビームが連続的に照射されることによって形成される。

なお、上記した実施例においてアパーチャプレート51は3つのアパーチャ5 1 a ~ 51 c を備えているが、少なくとも1トラック用及び2トラック用のアパ ーチャを備えれば良い。

図13は本発明の他の実施例を更に示している。この図13の電子ビーム記録装置において、図8に示した部分と同一部分は同一符号で示されている。電子カラム1内のブランキングプレート13と偏向コイル15との間には高速デフレクタ50及びアパーチャプレート51が順に設けられている。高速デフレクタ50は偏向コントローラ39の出力信号に応じて電子ビームを偏向させる。アパーチャプレート51は図8及び図9に示したものと同一である。

ビーム変調器 3 1 はメインコントローラ 3 8 からクロックタイミングに同期して記録データを受け入れ、その記録データに応じた変調信号をブランキングプレート 1 3 に出力する。記録データがオン(記録)を示すときには変調信号に応じてブランキングプレート 1 3 は電子ビームを偏向することなく高速デフレクタ 5 0 に通過させる。一方、記録データがオフ(非記録)を示すときには変調信号に応じてブランキングプレート 1 3 は電子ビームを偏向する。

偏向コントローラ39はメインコントローラ38から供給される記録データに 応じて高速デフレクタ50に偏向信号を供給する。その偏向信号はアパーチャプ レート51のアパーチャ51a~51cのいずれかの1の選択を示す信号であ る。

偏向コントローラ39は、図14に示すように、記録データが1トラック記録

を示すときには(ステップS22)、アパーチャ51 a を選択するための偏向信号を高速デフレクタ50に供給する(ステップS24)。その偏向信号に応じて高速デフレクタ50は電子放出部11から発射された電子ビームを偏向させ、これにより電子ビームはアパーチャプレート51のアパーチャ51 a を通過する。

偏向コントローラ39は、記録データが2トラック記録を示すときには(ステップS23)、アパーチャ51bを選択するための偏向信号を高速デフレクタ50に供給する(ステップS25)。その偏向信号に応じて高速デフレクタ50は電子放出部11から発射された電子ビームを偏向させ、これにより電子ビームはアパーチャプレート51のアパーチャ51bを通過する。

偏向コントローラ39は、記録データが3トラック記録を示すときには(ステップS23)、アパーチャ51cを選択するための偏向信号を高速デフレクタ50に供給する(ステップS26)。その偏向信号に応じて高速デフレクタ50は電子放出部11から発射された電子ビームを偏向させ、これにより電子ビームはアパーチャプレート51のアパーチャ51cを通過する。

アパーチャ51a~51cのいずれかを通過した電子ビームの原盤4への照射によって原盤4上に形成されるパターンについては、図8の電子ビーム記録装置の場合と同様であるので、ここでの説明は省略する。

図15に示すように、上記した各実施例における原盤4への電子ビーム照射によってサーボゾーン及びデータゾーン各々のマーク部分(電子ビームによる露光部分)を含むパターンが原盤4のレジスト層6に潜像7として形成される(露光工程)。そのような原盤4は電子ビーム記録装置から取り出された後、原盤4に対して現像処理が施される(現像工程)。この結果、電子ビームによって露光さ

れたマーク部分が溶けて原盤4には、サーボゾーン及びデータゾーン各々が凹凸パターンとして形成される。凹凸パターンが形成された原盤4から転写工程でスタンパ5が作製される。

なお、上記した各実施例においては、 $X-\theta$ 又は $\theta-X$ ステージの電子ビーム 記録装置を用いたが、X-Y型の電子ビーム記録装置を用いても同様に原盤にパ ターン形成を行うことができる。

次に、スタンパ5に基づいて磁気ディスクを製造する方法について説明する。

先ず、図16に示すように、先ず、基板材料71の表面上にはレジスト等の転写層72が形成され、その基板材料71がスタンパ5に対してセットされる(基板セット)。基板材料71はガラス等の非磁性体からなる。転写層72にスタンパ5によって圧力を加えて転写が行われる(転写工程)。この転写にはナノインプリント法が適用される。転写工程後の基板材料71に対してエッチングが施される(エッチング工程)。エッチング工程によって残った転写層72は剥離される(剥離工程)。これによってサーボゾーン及びデータゾーン各々が凹凸パターンとして表面に形成された基板73が作製される。

次に、基板 7 3 の凹凸面上に磁性体膜 7 4 が形成される(磁性体形成工程)。 磁性体膜 7 4 がポリッシング処理されて基板 7 3 の表面の凹部にのみ磁性体膜 7 4 が残る(ポリッシング工程)。すなわち、サーボゾーン及びデータゾーン各々のパターンが磁性体によって形成される。そして、基板 7 3 の表面に潤滑層 7 5 が形成され(潤滑層形成工程)、この結果、磁気ディスクが得られる。

以上のように、本発明によれば、回転駆動部による原盤の回転角度、移動駆動 部による移動位置及び所定のパターンを示す記録データに応じて電子ビーム照射 部によるレジスト層の表面上の照射位置を制御して所定のパターンに対応した潜像をレジスト層に形成させる制御手段を備え、制御手段による照射位置制御に応じてトラックを横切る方向にかつ複数のトラックを跨ぐように電子ビームを照射させるビーム調整手段を有するので、サーボパターンを高精度で原盤に形成することができる。また、予めサーボパターンをディスク基板上に形成することができるので、磁気ディスクに対するサーボトラックライターを用いた磁気転写プロセスが不要となるという利点がある。

請求の範囲

1. 表面にレジスト層が形成された原盤を回転駆動する回転駆動部と、

露光用の電子ビームを偏向自在に前記レジスト層の表面に照射する電子ビーム 照射部と、

前記回転駆動部の1回転毎に前記電子ビームの照射位置を前記原盤の半径方向 に所定量だけ移動させて電子ビームの照射位置を進行させる移動駆動部と、

前記回転駆動部による前記原盤の回転角度、前記移動駆動部による移動位置及 び所定のパターンを示す記録データに応じて前記電子ビーム照射部による前記レ ジスト層の表面上の照射位置を制御して所定のパターンに対応した潜像を前記レ ジスト層に形成させる制御手段と、を備えた電子ビーム記録装置であって、

前記電子ビーム照射部は、前記制御手段による照射位置制御に応じてトラック を横切る方向にかつ複数のトラックを跨ぐように前記電子ビームを照射させるビーム調整手段を有することを特徴とする電子ビーム記録装置。

- 2. 前記ビーム調整手段は、前記電子ビームを前記原盤の半径方向に高速に偏向させる高速偏向器であることを特徴とする請求項1記載の電子ビーム記録装置。
- 3. 前記ビーム調整手段は、1トラック用アパーチャと前記原盤の半径方向に 少なくとも2トラック分だけ長手の複数トラック用アパーチャとを有するアパー チャプレートと、前記電子ビームを偏向して前記1トラック用アパーチャと複数 トラック用アパーチャとを選択的に通過させる偏向手段とからなることを特徴と する請求項1記載の電子ビーム記録装置。
- 4. 前記偏向手段は、ブランキングプレートであることを特徴とする請求項3

記載の電子ビーム記録装置。

- 5. 前記偏向手段は、ブランキングプレートとアパーチャプレートとの間に備 えられた高速偏向器であることを特徴とする請求項3記載の電子ビーム記録装 置。
- 6. 前記ビーム調整手段は、前記電子ビームの照射位置が第1所定トラックに あって前記原盤の回転角度が所定の回転角度にあるとき前記第1所定トラックよ り前記原盤の外周側の前記原盤の半径方向に前記第1所定複数分のトラックに亘 って連続的に電子ビームを照射させ、その後、前記電子ビームの照射位置が前記 第1所定トラックより前記原盤の外周側に少なくとも前記第1所定複数分のトラ ックだけ離れた第2所定トラックにあって前記原盤の回転角度が前記所定の回転 角度にあるとき前記第2所定トラックより前記原盤の外周側の前記原盤の半径方 向に第2所定複数分のトラックに亘って連続的に電子ビームを照射させ、前記原 盤の前記所定の回転角度において前記第1所定複数分のトラック間距離より長手 の連続パターンを潜像として形成させることを特徴とする請求項1の電子ビーム 記録装置。
- 7. 前記所定のパターンはサーボゾーンとデータゾーンとが所定の角度毎に繰り返すパターンであり、前記サーボゾーンに前駆複数のトラックに亘るパターンを含むことを特徴とする請求項1記載の電子ビーム記録装置。
- 8. 前記サーボゾーンは、クロック信号、トラック上のアドレス情報を示すためのアドレス信号及びトラック上の位置を検出するための位置検出信号のうち少なくとも1つを含むマーク部からなることを特徴とする請求項7記載の電子ビーム記録装置。

- 9. 前記クロック信号はサーボクロック部に、前記アドレス信号はアドレスマーク部に、前記位置検出信号は位置検出マーク部に各々形成されていることを特徴とする請求項8記載の電子ビーム記録装置。
- 10. 表面にレジスト層が形成された原盤を回転駆動する回転駆動ステップと、 露光用の電子ビームを偏向自在に前記レジスト層の表面に照射する照射ステップと、

前記原盤の1回転毎に前記電子ビームの照射位置を前記原盤の半径方向に所定量だけ移動させて電子ビームの照射位置を進行させる移動駆動ステップと、

前記原盤の回転角度、前記電子ビームの照射位置の前記原盤の半径方向に移動位置及び所定のパターンを示す記録データに応じて前記電子ビームによる前記レジスト層の表面上の照射位置を制御して所定のパターンに対応した潜像を前記レジスト層に形成させる制御ステップとを備えた電子ビーム記録方法であって、

前記照射ステップは前記制御ステップによる照射位置制御に応じてトラックを 横切る方向にかつ複数のトラックを跨ぐように前記電子ビームを照射することを 特徴とする電子ビーム記録方法。 1/13

図 1

2/13.

図2

図3

4 図 5/13

図 5

図7

<u>図</u>

図8

図10

図11

図12

図13

図14

図 1 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/005650

Α.	CLASSIFICA	ATION OF	SUBJECT	MATTER
	Int.Cl7	G11B5	6/84	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ G11B5/84, 7/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005

Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y A	JP 2000-207738 A (Matsushita Electric Industrial Co., Ltd.), 28 July, 2000 (28.07.00), Par. No. [0076]; Fig. 11 (Family: none)	1,2,7-10 3-5 6
Y A	JP 11-288532 A (Sony Corp.), 19 October, 1999 (19.10.99), Figs. 4 to 6 (Family: none)	3-5 6
P,A	JP 2004-158287 A (FUJI PHOTO FILM CO., LTD.), 03 June, 2004 (03.06.04), Full text; all drawings & EP 1418576 A2	1-10

×	Further documents are listed in the continuation of Box C.		See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"D"	cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	-Y-	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
	of the actual completion of the international search 19 April, 2005 (19.04.05)	Date	of mailing of the international search report 17 May, 2005 (17.05.05)
	e and mailing address of the ISA/ Japanese Patent Office	Autl	norized officer
Facsi	mile No.	Tele	phone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/005650

		B.1
'ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 7-65363 A (Hitachi, Ltd.), 10 March, 1995 (10.03.95), Full text; all drawings (Family: none)	1-10
Α	JP 9-204654 A (Sony Corp.), 05 August, 1997 (05.08.97), Full text; all drawings & US 5828536 A	1-10
A	US 2004/57158 Al (FUJI PHOTO FILM CO., LTD.), 25 March, 2004 (25.03.04), Full text; all drawings & JP 2004-110949 A	1-10
A	JP 8-180350 A (Hitachi, Ltd.), 12 July, 1996 (12.07.96), Full text; all drawings (Family: none)	1-10
A	JP 2002-324312 A (Matsushita Electric Industrial Co., Ltd.), 08 November, 2002 (08.11.02), Full text; all drawings (Family: none)	1-10
А	JP 11-224422 A (Nippon Telegraph And Telephone Corp.), 17 August, 1999 (17.08.99), Full text; all drawings (Family: none)	1-10
A	JP 2001-67736 A (Matsushita Electric Industrial Co., Ltd.), 16 March, 2001 (16.03.01), Full text; all drawings (Family: none)	1-10
	·	

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.⁷ G11B5/84

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ G11B5/84, 7/26

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の	コロケギタ エバ かの体示が即告ナアトキル アの即告ナア体でのまこ	関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号		
·X .	JP 2000-207738 A (松下電器産業株式会社)	1, 2, 7–10		
Y	2000.07.28, [0076],図11 (ファミリーなし)	3-5		
A	·	6		
Υ .	JP 11-288532 A (ソニー株式会社)	3–5		
A	1999.10.19, 図 4-6(ファミリーなし)	6		
		·		
P, A	JP 2004-158287 A (富士写真フイルム株式会社)	1–10		
	2004.06.03,全文、全図 & EP 1418576 A2			

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 **17.** 05.2005 19.04.2005 国際調査機関の名称及びあて先 5 D 3045 特許庁審査官(権限のある職員) 日本国特許庁(ISA/JP) 橘 均縣 郵便番号100-8915 電話番号 03-3581-1101 内線 東京都千代田区霞が関三丁目4番3号 3551

国際調査報告

· · · · · · · · · · · · · · · · · · ·		
C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Å	JP 7-65363 A (株式会社日立製作所)	1-10
	1995.03.10, 全文、全図(ファミリーなし)	
		,
A	JP 9-204654 A (ソニー株式会社)	1-10
	1997.08.05, 全文、全図 & US 5828536 A	. 0
	UC 0004/57150 A1 (BUIL BUOTO BILW CO. LTD.)	1-10
A	US 2004/57158 A1 (FUJI PHOTO FILM CO., LTD.) 2004.03.25,全文、全図 & JP 2004-110949 A	1 10
	2004.03.23, 主义、主因 & J1 2004 110343 11	
A	 JP 8-180350 A (株式会社日立製作所)	1-10
	1996.07.12, 全文、全図 (ファミリーなし)	
A	JP 2002-324312 A (松下電器産業株式会社)	1–10
	2002.11.08,全文、全図(ファミリーなし)	
_		1 10
A	JP 11-224422 A (日本電信電話株式会社)	1-10
	1999.08.17, 全文、全図 (ファミリーなし)	1 0
A	JP, 2001-67736 A (松下電器産業株式会社)	1-10
A	2001.03.16, 全文、全図 (ファミリーなし)	
		1
		. 9
	·	V
•		
	· ·	