

Why sequence models?

Examples of sequence data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

Yesterday, Harry Potter met Hermione Granger. "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger.

2/40

Notation

Motivating example

x: Harry Potter and Hermione Granger invented a new spell.

Representing words

x: Harry Potter and Hermione Granger invented a new spell.

$$\chi$$
<1> χ <2> χ <3> ... χ <9>

Recurrent Neural Network Model

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

He said, "Teddy Roosevelt was a great President."

He said, "Teddy bears are on sale!"

Forward Propagation

Simplified RNN notation

$$a^{} = g(W_{aa}a^{} + W_{ax}x^{} + b_a)$$

$$\hat{y}^{} = g(W_{ya}a^{} + b_y)$$

Backpropagation through time

Forward propagation and backpropagation

Forward propagation and backpropagation

$$\mathcal{L}^{< t>}(\hat{y}^{< t>}, y^{< t>}) =$$

Backpropagation through time

Different types of RNNs

Examples of sequence data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

Yesterday, Harry Potter met Hermione Granger.

"The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger.

15/40

Examples of RNN architectures

Examples of RNN architectures

Summary of RNN types

18/40

Language model and sequence generation

What is language modelling?

Speech recognition

The apple and pair salad.

The apple and pear salad.

P(The apple and pair salad) =

P(The apple and pear salad) =

Language modelling with an RNN

Training set: large corpus of english text.

Cats average 15 hours of sleep a day.

The Egyptian Mau is a bread of cat. <EOS>

RNN model

Cats average 15 hours of sleep a day. <EOS>

$$\mathcal{L}(\hat{y}^{}, y^{}) = -\sum_{i} y_{i}^{} \log \hat{y}_{i}^{}$$

$$\mathcal{L} = \sum_{t} \mathcal{L}^{}(\hat{y}^{}, y^{})$$

Sampling novel sequences

Sampling a sequence from a trained RNN

Character-level language model

Vocabulary = [a, aaron, ..., zulu, <UNK>]

Sequence generation

News

President enrique peña nieto, announced sench's sulk former coming football langston paring.

"I was not at all surprised," said hich langston.

"Concussion epidemic", to be examined.

The gray football the told some and this has on the uefa icon, should money as.

Shakespeare

The mortal moon hath her eclipse in love.

And subject of this thou art another this fold.

When besser be my love to me see sabl's.

For whose are ruse of mine eyes heaves.

Vanishing gradients with RNNs

Vanishing gradients with RNNs

Exploding gradients.

Gated Recurrent Unit (GRU)

RNN unit

$$a^{} = g(W_a[a^{}, x^{}] + b_a)$$

GRU (simplified)

The cat, which already ate ..., was full.

[Cho et al., 2014. On the properties of neural machine translation: Encoder-decoder approaches]
[Chung et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling]

Full GRU

$$\tilde{c}^{< t>} = \tanh(W_c[c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) + c^{}$$

The cat, which ate already, was full.

LSTM (long short term memory) unit

GRU and LSTM

GRU

LSTM

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

LSTM in pictures

Bidirectional RNN

Getting information from the future

He said, "Teddy bears are on sale!"

He said, "Teddy Roosevelt was a great President!"

Bidirectional RNN (BRNN)

Recurrent Neural Networks

Deep RNNs

Deep RNN example

Word representation

Word representation

V = [a, aaron, ..., zulu, <UNK>]

1-hot representation

Man	Woman	_			Orange
(5391)	(9853)	(4914)	(7157)	(456)	(6257)
[0]	[0]	[0]	[0]	[0]	[0]
0	0	0	0		0
0	0	0	0	1	0
0	0		0		0
:	0	1	0	0	0
1	:		:	0	
:	1	0	11	0	1
0		0		0	
$\lceil 0 \rceil$	$L_{0}J$	$\lceil 0 \rceil$	$\lceil 0 \rceil$	$\lceil 0 \rceil$	$\lceil 0 \rceil$

I want a glass of orange _____.

I want a glass of apple_____.

Featurized representation: word embedding

Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
		-0.95	0.97	0.00	0.01
		0.93	0.95	-0.01	0.00
		0.7	0.69	0.03	-0.02
		0.02	0.01	0.95	0.97
			I want	a glass of c	orange
			I want	a glass of a	apple

3/36

Visualizing word embeddings

Using word embeddings

Named entity recognition example

Transfer learning and word embeddings

- Learn word embeddings from large text corpus. (1-100B words)
 (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set. (say, 100k words)
- 3. Optional: Continue to finetune the word embeddings with new data.

Relation to face encoding

Properties of word embeddings

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97

Analogies using word vectors

$$e_{man} - e_{woman} \approx e_{king} - e_?$$

Cosine similarity

$$sim(e_w, e_{king} - e_{man} + e_{woman})$$

Man:Woman as Boy:Girl

Ottawa:Canada as Nairobi:Kenya

Big:Bigger as Tall:Taller

Yen:Japan as Ruble:Russia

Embedding matrix

Embedding matrix

In practice, use specialized function to look up an embedding.

Learning word embeddings

Neural language model

I	want		a	gla	lSS	of	orange	•
4343	9665		1	385	52	6163	6257	
Ι		04343			E		• e ₄₃₄₃	
wan	\mathbf{t}	0 ₉₆₆₅			E	——	► e ₉₆₆₅	
a		o_1			E		$ ightharpoonup e_1$	
glas	SS	03852			E		• e ₃₈₅₂	
of		o ₆₁₆₃			E		• e ₆₁₆₃	
orar	nge	o ₆₂₅₇			E		• e_{6257}	

16/36

Other context/target pairs

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

Last 1 word

Nearby 1 word

Word2Vec

Skip-grams

I want a glass of orange juice to go along with my cereal.

Model

Vocab size = 10,000k

Problems with softmax classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

How to sample the context c?

Negative sampling

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.

Model

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

Selecting negative examples

$\underline{\text{context}}$	<u>word</u>	target?
orange	juice	1
orange	king	0
orange	book	0
orange	the	0
orange	of	0

GloVe word vectors

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

Model

A note on the featurization view of word embeddings

,		Woman	\mathbf{C}	•
	(5391)	(9853)	(4914)	(7157)
Gender	-1	1	-0.95	0.97
Royal	0.01	0.02	0.93	0.95
Age	0.03	0.02	0.70	0.69
Food	0.09	0.01	0.02	0.01

minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$$

Sentiment classification

Sentiment classification problem

 $\boldsymbol{\chi}$

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

y

Simple sentiment classification model

"Completely lacking in good taste, good service, and good ambience."

RNN for sentiment classification softmax $a^{<4>}$ $a^{<2>|}$ $a^{<0>}$ $a^{<3>}$ <10> e_{1852} e_{4966} e_{4427} e_{3882} e_{330} Completely lacking ambience in good

NLP and Word Embeddings

Debiasing word embeddings

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker

Father:Doctor as Mother: Nurse

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.

Addressing bias in word embeddings

1. Identify bias direction.

- 2. Neutralize: For every word that is not definitional, project to get rid of bias.
- 3. Equalize pairs.

Sequence to sequence models

Basic models

Sequence to sequence model

$$\chi$$
<1> χ <2> χ <3> χ <4> χ <5>

Jane visite l'Afrique en septembre

→ Jane is visiting Africa in September.

$$y^{<1}$$
 $y^{<2}$ $y^{<3}$ $y^{<4}$ $y^{<5}$ $y^{<6}$

Image captioning

$y^{<1>}y^{<2>}$ $y^{<3>}$ $y^{<4>}$ $y^{<5>}$ $y^{<6>}$ A cat sitting on a chair

[Mao et. al., 2014. Deep captioning with multimodal recurrent neural networks] [Vinyals et. al., 2014. Show and tell: Neural image caption generator] [Karpathy and Li, 2015. Deep visual-semantic alignments for generating image descriptions]

Sequence to sequence models

Picking the most likely sentence

Machine translation as building a conditional language model

Language model: Machine translation:

Finding the most likely translation

Jane visite l'Afrique en septembre.

$$P(y^{<1>}, ..., y^{} | x)$$

- → Jane is visiting Africa in September.
- → Jane is going to be visiting Africa in September.
- → In September, Jane will visit Africa.
- Her African friend welcomed Jane in September.

$$\underset{y<1>,...,y}{\text{arg max}} P(y^{<1>},...,y^{} | x)$$

Why not a greedy search?

- → Jane is visiting Africa in September.
- → Jane is going to be visiting Africa in September.

Sequence to sequence models

Beam search

Beam search algorithm

Step 1 in 10000 jane september zulu

Beam search algorithm

Beam search (B = 3)

in september

jane is

jane visits

visits

$$P(y^{<1>}, y^{<2>} | x)$$

jane visits africa in september. <EOS>

september

Sequence to sequence models

Refinements to beam search

Length normalization

$$\arg\max_{y} \prod_{t=1}^{T_y} P(y^{< t>} | x, y^{< 1>}, ..., y^{< t-1>})$$

$$\arg\max_{y} \sum_{t=1}^{T_y} \log P(y^{< t>} | x, y^{< 1>}, ..., y^{< t-1>})$$

$$\sum_{t=1}^{T_y} \log P(y^{< t>} | x, y^{< 1>}, ..., y^{< t-1>})$$

Beam search discussion

Beam width B?

Unlike exact search algorithms like BFS (Breadth First Search) or DFS (Depth First Search), Beam Search runs faster but is not guaranteed to find exact maximum for arg max P(y|x).

y

Sequence to sequence models

Error analysis on beam search

Example

Jane visite l'Afrique en septembre.

Human: Jane visits Africa in September.

Algorithm: Jane visited Africa last September.

Error analysis on beam search

Human: Jane visits Africa in September. (y^*)

Algorithm: Jane visited Africa last September. (\hat{y})

Case 1:

Beam search chose \hat{y} . But y^* attains higher P(y|x).

Conclusion: Beam search is at fault.

Case 2:

 y^* is a better translation than \hat{y} . But RNN predicted $P(y^*|x) < P(\hat{y}|x)$.

Conclusion: RNN model is at fault.

Error analysis process

Human	Algorithm	$P(y^* x)$	$P(\hat{y} x)$	At fault?
Jane visits Africa in September.	Jane visited Africa last September.			

Figures out what faction of errors are "due to" beam search vs. RNN model

Sequence to sequence models

Bleu score (optional)

Evaluating machine translation

French: Le chat est sur le tapis.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

MT output: the the the the the the.

Precision: Modified precision:

Bleu score on bigrams

Example: Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

MT output: The cat the cat on the mat.

the cat

cat the

cat on

on the

the mat

Bleu score on unigrams

Example: Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

MT output: The cat the cat on the mat.

$$p_1 = rac{\displaystyle\sum_{\substack{unigram \in \hat{\mathcal{Y}} \ unigram \in \hat{\mathcal{Y}}}} count_{clip} \ (unigram)}{\displaystyle\sum_{\substack{unigram \in \hat{\mathcal{Y}} \ unigram \in \hat{\mathcal{Y}}}} count \ (unigram)} \qquad p_n = rac{\displaystyle\sum_{\substack{ngram \in \hat{\mathcal{Y}} \ ngram \in \hat{\mathcal{Y}}}} count}{\displaystyle\sum_{\substack{ngram \in \hat{\mathcal{Y}} \ ngram \in \hat{\mathcal{Y}}}} count}$$

$$p_{n} = \frac{\sum_{\substack{ngram \in \hat{y} \\ ngram \in \hat{y}}} count_{clip} (ngram)}{\sum_{\substack{ngram \in \hat{y} \\ }} count (ngram)}$$

Bleu details

 p_n = Bleu score on n-grams only

Combined Bleu score:

$$BP = \begin{cases} 1 & \text{if MT_output_length} > \text{reference_output_length} \\ & \text{exp}(1 - \text{MT_output_length}/\text{reference_output_length}) & \text{otherwise} \end{cases}$$

Sequence to sequence models

Attention model intuition

The problem of long sequences

Jane s'est rendue en Afrique en septembre dernier, a apprécié la culture et a rencontré beaucoup de gens merveilleux; elle est revenue en parlant comment son voyage était merveilleux, et elle me tente d'y aller aussi.

Jane went to Africa last September, and enjoyed the culture and met many wonderful people; she came back raving about how wonderful her trip was, and is tempting me to go too.

Attention model intuition

Sequence to sequence models

Attention model

Attention model

28/41

Computing attention $\alpha^{\langle t,t'\rangle}$

 $\alpha^{< t,t'>}$ = amount of attention $y^{< t>}$ should pay to $\alpha^{< t'>}$

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_x} \exp(e^{})}$$

Attention examples

July 20th 1969 \longrightarrow 1969 - 07 - 20

23 April, 1564
$$\longrightarrow$$
 1564 $- 04 - 23$

Visualization of $\alpha^{\langle t,t'\rangle}$:

Audio data

Speech recognition

Speech recognition problem

y transcript

"the quick brown fox"

Attention model for speech recognition

CTC cost for speech recognition

(Connectionist temporal classification)

"the quick brown fox"

Basic rule: collapse repeated characters not separated by "blank"

Audio data

Trigger word detection

What is trigger word detection?

Amazon Echo (Alexa)

Baidu DuerOS (xiaodunihao)

Apple Siri (Hey Siri)

Google Home (Okay Google)

Trigger word detection algorithm

Conclusion

Summary and thank you

Specialization outline

- 1. Neural Networks and Deep Learning
- 2. Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
- 3. Structuring Machine Learning Projects
- 4. Convolutional Neural Networks
- 5. Sequence Models

Deep learning is a super power

Please buy this from shutterstock and replace in final video.

www.shutterstock.com · 331201091

Thank you.

- Andrew Ng