UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 2

Date	26th September 2022
Team ID	PNT2022TMID27839
Student Name	Prem B (311519104047)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

```
In [1]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

	= pd.read_ .head()	csv('Churn	_Modellir	g.csv')									
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.8
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.5
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.5
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.6
4	5	15737888	Mitchell	850	Snain	Female	43	2	125510.82	1	1	1	79084.1

3.)HANDLE MISSING VALUES IN THE DATASET

```
Handle the Missing Values in the Dataset

In [3]: #Removing Unwanted Values df = df.drop(columns=['RowNumber','CustomerId','Surname'])

In [4]: df.isnull().sum()

Out[4]: CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance NumofProducts 0 HascrCard 0 ISActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

In [5]: df.shape

Out[5]: (10000, 11)
```

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

]:			_						
	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max		92.000000		250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000
	s 'pandas.com								
Range Data #	Index: 10000 columns (tota Column	entries, 0 al 11 column Non-Nul	to 9999 s): l Count Dty						
Range Data # 0 1 2	Index: 10000 columns (tota Column CreditScore Geography Gender Age	entries, 0 al 11 column Non-Nul 10000 n 10000 n 10000 n	to 9999 s): l Count Dty on-null inf on-null ob on-null inf on-null inf	t64 ject ject ject					
Range Data # 0 1 2 3 4 5	Index: 10000 columns (tota Column CreditScore Geography Gender	entries, 0 al 11 column Non-Nul 10000 r 10000 r 10000 r 10000 r 10000 r 10000 r	to 9999 s): l Count Dty on-null infon-null obj on-null obj	564 ject ject 664 664 pat64					

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) BI - VARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

X.I	<pre>X = df.drop(columns=['Exited']) X.head()</pre>									
:	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619	0	0	42	2	0.00	1	1	1	101348.88
1	608	2	0	41	1	83807.86	1	0	1	112542.58
2	502	0	0	42	8	159660.80	3	1	0	113931.57
3	699	0	0	39	1	0.00	2	0	0	93826.63
4	850	2	0	43	2	125510.82	1	1	1	79084.10
Y.I : 0 1 2 3 4	= df.Exited head() 1 0 1 0 0 me: Exited,		-1-54							

9.) SCALE THE INDEPENDENT VARIABLES

```
Scale the Independent Variables

In [25]: from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
```

10.) SPLIT THE DATA INTO TRAINING AND TESTING