Example 10 — Signing a Message with RSA

Scenario: Alice's public RSA cryptosystem uses $n = 43 \times 59 = 2537$ and e = 13. Her private key is d = 937, as computed in Example 9. She wishes to send the message "MEET AT NOON" to her friends so that they are *certain* it came from her.

Goal: Learn how RSA can be used to sign a message—proving authenticity, not just secrecy.

Step 1 — Translate the message into numbers

Using the standard letter-number system (A=00, B=01, ..., Z=25):

$$M = \text{MEET AT NOON} \Rightarrow 1204\ 0419\ 0019\ 1314\ 1413$$

(Verify this translation carefully! It's essential to the encryption and decryption process.)

Step 2 — Apply Alice's private key to each block

Alice uses her private key d = 937 to compute:

$$x^{937} \pmod{2537}$$

for each message block x. This operation produces a "digital signature" that can only be generated with Alice's private key.

Step 3 — Compute the results (with modular exponentiation)

Using fast modular exponentiation (as in Example 9):

$$1204^{937} \equiv 817 \pmod{2537}$$

 $0419^{937} \equiv 555 \pmod{2537}$
 $0019^{937} \equiv 1310 \pmod{2537}$
 $1314^{937} \equiv 2173 \pmod{2537}$
 $1413^{937} \equiv 1026 \pmod{2537}$

So, the message Alice sends (in blocks) is:

0817 0555 1310 2173 1026

Step 4 — Verification by the recipient

When her friends receive the message, they apply Alice's public key e = 13 to each block:

$$E_{(2537,13)}(c) = c^{13} \pmod{2537}$$

This reverses Alice's signature and recovers the plaintext. If the recovered message reads "MEET AT NOON," they know it truly came from Alice.

Key takeaway

Digital signatures use the *private key to sign* and the *public key to verify*. This is the opposite direction from encryption (where public encrypts and private decrypts). It guarantees message authenticity and integrity — no one else could have produced this result.

Practice — Your Turn!

Problem A (Warm-up): Alice's key is n = 77, e = 13, and d = 37. She wants to sign the message "HI," represented as 0708. Compute the signature block $c = m^d \pmod{77}$. Then,

verify that $c^e \pmod{77}$ returns 0708.

Problem B (Moderate): Bob uses the same RSA parameters as Example 10: n = 2537, e = 13, d = 937. He signs the message "HELP" (encoded as 0704 1115). Compute m^d

(mod 2537) for each block, and verify correctness.

Problem C (Challenge): Suppose Eve intercepts Alice's public key (2537, 13) and one of her signed messages. Why can't Eve "fake" Alice's signature without knowing d = 937? Use your understanding of modular arithmetic and factorization to explain the barrier to

Reflection: Describe in your own words how digital signatures strengthen security compared to regular RSA encryption.

Quick Tips:

- \bullet Public key (n,e) used to verify or encrypt.
- \bullet Private key d used to sign or decrypt.
- Large primes p, q make n = pq hard to factor, ensuring security.
- Modular arithmetic is your shield: it keeps numbers within manageable limits.