

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Теоретическая информатика и компьютерные технологии»

Лабораторная работа №1 по курсу «Численные методы»

«Приближение функции кубическими сплайнами»

Студент: Шемякин В.А.

Группа: ИУ9-62Б

Преподаватель: Домрачева А.Б.

1 Постановка задачи

Дано: функция y = f(x) задана конечным набором точек

$$y_i=f(x_i),\quad i=\overline{0,n}$$
 на отрезке $[a,b],\ a=x_0,\quad b=x_n,\quad x_i=a+ih,\ h=\dfrac{(b-a)}{n}$

Найти: интерполяционную функцию y=g(x): $g(x_i)=f(x_i), \quad i=\overline{0,n}$ (т.е. функцию, совпадающую со значениями $y_i=f(x_i), \quad i=\overline{0,n}$ в узлах интерполяции $x_i, \quad i=\overline{0,n}$):

- 1. Протабулировать функцию f(x) на отрезке [a,b] с шагом $h=\frac{(b-a)}{n}$, где n=32 и распечатать таблицу $(x_i,y_i),\,i=\overline{0,n}$.
- 2. Для заданных узлов (x_i, y_i) построить кубический сплайн (распечатать массивы a, b, c, d).
- 3. Вычислить значения f(x) в точках $x_i' = a + \left(i \frac{1}{2}\right)h$
- 4. Вычислить значения изначальной функции и сплайна в точке, задаваемой с экрана.

Индивидуальный вариант (№5): y=f(x) задана функцией: $y=x*\sqrt{x+1}$ на отрезке [0,3].

2 Основные теоретические сведения

2.1 Метод Гаусса

Метод Гаусса используется для решения систем линейных уравнений. Этот метод преобразует систему в верхнетреугольный вид, что позволяет последовательно находить решения для каждой переменной.

Прямой ход: на первом этапе метод Гаусса преобразует систему к верхнетреугольному виду. Это достигается путем последовательного приведения

матрицы коэффициентов к ступенчатому виду, где все элементы ниже главной диагонали равны нулю.

Обратный ход: после приведения матрицы к верхнетреугольному виду, производится обратный ход, на котором находятся неизвестные. Начинают с последнего уравнения и поднимаются вверх, подставляя найденные значения в предыдущие уравнения.

Условия применимости: метод Гаусса применим, если все ведущие элементы (элементы на главной диагонали) не равны нулю.

2.2 Сплайн-интерполяция

Интерполяционной функцией называется функция y=g(x), проходящая через заданные точки, называемые узлами интерполяции:

$$g(x_i) = f(x_i), \quad i = \overline{0, n}.$$

При этом в промежуточных точках равенство выполняется с некоторой погрешностью

$$g(x_i^*) \approx f(x_i^*).$$

Задача интерполяции заключается в поиске такой функции y=g(x).

Приближение функции кубическим сплайном — пример задачи интерполяции.

Сплайн k-го порядка — функция, проходящая через все узлы (x_i,y_i) , $i=\overline{0,n}$, являющаяся многочленом k-ой степени на каждом частичном отрезке разбиения $[x_i,x_{i+1}],\ x_i=a+ih,\ h=\frac{(b-a)}{n},\ x_i\in[a,b]$ и имеющая первые p непрерывных на [a,b] производных. d=k-p — дефект сплайна.

Наиболее употребительны сплайны третьего порядка с дефектом d=1 (кубические сплайны).

На каждом частичном отрезке разбиения кубический сплайн описывается

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
$$x \in [x_i, x_{i+1}], \quad i = \overline{0, n-1}$$

На частные многочлены накладываются условия:

1. Сплайн проходит через все узлы

$$S_i(x_i) = y_i, \quad i = \overline{0, n-1}; \quad S_{n-1}(x_n) = y_n$$

2. Условие гладкости на краях

$$S_0''(x_0) = 0; \quad S_{n-1}''(x_n) = 0$$

3. Непрерывность сплайна и его первых двух производных в промежуточных узлах

$$S'_{i-1}(x_i) = S'_i(x_i);$$

 $S''_{i-1}(x_i) = S''_i(x_i);$
 $i = \overline{0, n-1}$

Эти условия позволяют выразить коэффициенты a_i, b_i, d_i и приводят к трехдиагональной СЛАУ относительно коэффициента c_i :

$$a_{i} = y_{i}, \quad i = \overline{0, n - 1};$$

$$b_{i} = \frac{y_{i+1} - y_{i}}{h} - \frac{h}{3}(c_{i+1} + 2c_{i}), \quad i = \overline{0, n - 2};$$

$$b_{n-1} = \frac{y_{n-1} - y_{n-1}}{h} - \frac{2h}{3}c_{n-1};$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h}, \quad i = \overline{0, n - 2};$$

$$d_{n-1} = -\frac{c_{n}}{3h}$$

СЛАУ с трехдиагональной матрицей относительно коэффициента c_i :

$$c_{i-1} + 4c_i + c_{i+1} = \frac{3(y_{i+1} - 2y_i + y_{i-1})}{h^2}, \quad i = \overline{1, n-1};$$

$$c_0 = c_n = 0,$$

где $h=x_{i+1}-x_i,\,i=\overline{0,n-1}$ - постоянный шаг интерполяции.

3 Реализация

```
1 import copy
  def solve (A, B):
      n = len(A)
       for i in range(n):
           \max \text{ row } = \text{ i}
           for k in range(i + 1, n):
                if abs(A[k][i]) > abs(A[max_row][i]):
                     \max \ row \, = \, k
12
           A[i], A[max\_row] = A[max\_row], A[i]
13
           B[i], B[max row] = B[max row], B[i]
14
15
           for k in range (i + 1, n):
16
                c = -A[k][i] / A[i][i]
                for j in range(i, n):
18
                     if i = j:
                         A[k][j] = 0
20
                     else:
                         A[k][j] += c * A[i][j]
22
                B[k] += c * B[i]
24
      X = [0 \text{ for } \_ \text{ in } range(n)]
25
      for i in range (n - 1, -1, -1):
26
           X[i] = B[i] / A[i][i]
27
           for k in range(i - 1, -1, -1):
                B[k] -= A[k][i] * X[i]
29
      return X
31
```

Листинг 1: Метод Гаусса

```
import csv
from math import sqrt

def count_f(x):
    return x * sqrt(x + 1)

def count_spline(x, A, B, C, D, X, i):
    return A[i] + B[i] * (x - X[i]) + C[i] * (x - X[i]) ** 2 + D[i] * (x - X[i])
    ** 3

def solve(A, B):
```

```
n = len(A)
11
       for i in range(n):
13
           \max \text{ row } = \text{ i}
14
           for k in range (i + 1, n):
15
                if abs(A[k][i]) > abs(A[max_row][i]):
16
                     \max \text{ row } = \text{ k}
17
18
           A[i], A[max\_row] = A[max\_row], A[i]
19
           B[i], B[max\_row] = B[max\_row], B[i]
20
           for k in range (i + 1, n):
22
                c = -A[k][i] / A[i][i]
23
                for j in range(i, n):
24
                     if i == j:
                         A[k][j] = 0
26
                     else:
27
                         A[k][j] += c * A[i][j]
28
                B[k] \leftarrow c * B[i]
29
30
      X = [0 \text{ for } \_ \text{ in } range(n)]
31
       for i in range (n - 1, -1, -1):
32
           X[i] = B[i] / A[i][i]
33
           for k in range (i - 1, -1, -1):
                B[k] -= A[k][i] * X[i]
35
36
       return X
37
  def count_c(A, B, C, D):
39
       n = len(D)
40
       matrix = [[0.0] * n for _ in range(n)]
41
       for i in range(n):
42
           if i > 0:
43
                matrix[i][i - 1] = A[i - 1]
44
           matrix[i][i] = B[i]
45
           if i < n - 1:
46
                matrix[i][i + 1] = C[i]
47
       return solve (matrix, D)
48
49
  def write_to_csv(filename, headers, data):
50
       with open (filename, 'w', newline='') as file:
           writer = csv.writer(file)
52
           writer.writerow(headers)
           writer.writerows(data)
54
  def main():
```

```
a, b = 0, 3
57
       n = 32
58
       h = (b - a) / n
59
       X = [a + i * h for i in range(n)]
       Y = list(map(count_f, X))
61
       coef_a = [0] * (n-1)
       coef b = [0] * n
63
       coef c = [0] * (n-1)
64
       coef d = [0] * n
65
       coef b[0] = 1.0
66
       coef b[n-1] = 1.0
       for i in range (1, n-1):
68
            coef_a[i - 1] = h
            coef b[i] = 4 * h
70
            coef c[i] = h
71
            coef_d[i] = 3 * ((Y[i+1] - Y[i]) / h - (Y[i] - Y[i-1]) / h)
       C = count \ c(coef \ a, coef \ b, coef \ c, coef \ d)
73
74
       A = [Y[i] \text{ for } i \text{ in } range(n)]
75
       B = [((Y[i + 1] - Y[i]) / h) - h / 3 * (C[i + 1] + 2 * C[i])
76
             for i in range (n - 1)
77
       B.\,append\,(\,(\,(\,Y[\,n\,\text{-}\,1\,]\ -\ Y[\,n\,\text{-}\,2\,]\,)\ /\ h\,)\ -\ (\,2\ *\ h\ *\ C[\,n\,\text{-}\,2\,]\ /\ 3)\,)
78
       D = [(C[i + 1] - C[i]) / (3 * h) for i in range(n - 1)]
79
       D. append (C[n-1] / (3 * h))
80
       headers = ["i", "X", "A", "B", "C", "D"]
81
       data = []
82
       for i in range(n):
83
            row = [i, X[i], A[i], B[i], C[i], D[i]]
            data.append(row)
85
       write_to_csv('output.csv', headers, data)
87
88
       x = float (input ("Координаты точки: "))
89
       print("Значение функции:", count f(x))
90
       if x == 3:
91
            k = n - 1
92
       else:
93
            k = 0
94
            while True:
                 if k < n - 1:
96
                      if X[k] \le x \le X[k+1]:
98
                 else:
100
                 k += 1
101
       c_s = count_spline(x, A, B, C, D, X, k)
102
```

```
print(f"Интерполированное значение: {c s}")
103
      print(f"Погрешность: {abs(c_s - count_f(x))}")
105
      x_vals = [a + (i - 0.5) * h for i in range(n)]
106
      y_vals = [count_f(x) for x in x_vals]
107
      spline\_vals = [count\_spline(x\_vals[i], A, B, C, D, X, i)]
108
                       for i in range(len(x vals))]
109
      p = [abs(spline\_vals[i] - y\_vals[i]) for i in range(len(x\_vals))]
110
      additional\_headers = ["i", "x_i", "f(x_i)", "S(x_i)", "inaccuracy"]
      additional_data = []
113
      for i in range(len(x vals)):
114
           row = [i, x\_vals[i], y\_vals[i], spline\_vals[i], p[i]]
115
           additional data.append(row)
116
      write_to_csv('additional_output.csv', additional_headers, additional_data)
118
     __name__ == "__main__":
120
      main()
```

Листинг 2: Сплайн-интерполяция

4 Результаты

Для заданных узлов интерполяции (x_i, y_i) построен кубический сплайн с коэффициентами, представленными на рисунке 1.

X	A	В	Ç	Q
0.0	0.0	1.027035644942393	0.0	2.137814838067372
1 0.09375	0.09804609685946197	1.0834038096179974	0.6012604232064483	-0.6994529497155418
2 0.1875	0.2043233879784691	1.1776975318966287	0.4045392810989522	0.07928781158838147
3 0.28125	0.31835338376264355	1.2556392436972978	0.4268389781081845	-0.11480915888832202
4 0.375	0.4397264774834465	1.3326443574734568	0.39454890217084393	-0.05111524750117072
5 0.46875	0.5680874832909761	1.4052745113155176	0.38017273881113967	-0.058655556206838905
6 0.5625	0.703125	1.4750103177941838	0.3636758636279662	-0.04876022279744675
7 0.65625	0.8445634100028399	1.5419138722873855	0.3499620509661843	-0.04482203542498967
8 0.75	0.9921567416492215	1.6063499258313627	0.337355853502906	-0.04030336061216606
9 0.84375	1.1456838799312727	1.6685414620970165	0.3260205333307343	-0.03675393387647949
10 0.9375	1.3049447725382863	1.7287012142306455	0.3156834894279744	-0.03360464514011537
11 1.03125	1.4697573839168574	1.7870058085191103	0.30623218298231697	-0.03088910232990136
12 1.125	1.6399552204252408	1.8436098840754556	0.2975446229520322	-0.0285052378465021
13 1.21875	1.8153852977527594	1.8986478979279307	0.2895275248077035	-0.026406687969804093
14 1.3125	1.9959064552541033	1.9522380387364213	0.2821006438161961	-0.024546862091465133
15 1.40625	2.1813879455843304	2.004484677736656	0.2751968388529715	-0.022890526144722954
16 1.5	2.3717082451262845	2.0554805262267566	0.2687588783747682	-0.02140821396275842
17 1.59375	2.5667540432147713	2.1053083415304292	0.2627378181977424	-0.020075738266699023
18 1.6875	2.7664193774399064	2.154042341687427	0.2570915168102333	-0.018873281120001195
19 1.78125	2.970604889278129	2.2017493657473146	0.25178340649523295	-0.017783100295980167
20 1.875	3.1792171795899695	2.248489864125335	0.24678190953698853	-0.01679468475042572
21 1.96875	3.392168247584703	2.2943186435617027	0.2420584044509313	-0.01588260588744392
22 2.0625	3.609375	2.3392858147488296	0.2375914215450877	-0.015086968261135722
23 2.15625	3.8307588197073468	2.3834364053675854	0.23334821172164327	-0.014211397440414133
24 2.25	4.056245184896988	2.4268144804844454	0.2293512561915268	-0.013948762557893643
25 2.34375	4.285763331541346	2.4694500513825997	0.2254281667221192	-0.011678795700815413
26 2.4375	4.51924595307392	2.5114098956469793	0.22214350543126488	-0.017150679541300957
27 2.53125	4.756628932219553	2.5526095877321233	0.21731987681027398	0.006045907138725721
28 2.625	4.9978511007231905	2.593516478201184	0.2190202881930406	-0.0779516363278365
29 2.71875	5.242854023387155	2.6325274168263917	0.19709639047583657	0.2379225774555737
30 2.8125	5.491581803371866	2.6757563392508654	0.2640121153852167	-0.9387097435918815
31 2.90625	5.74398090616522	2.6757563392508654	0.0	0.0

Рисунок 1: Коэффициенты кубического сплайна

Значения функции и результаты интерполяции в точках x_i' представлены на рисунке 2.

Рисунок 2 : Значения функции и сплайна в точках \mathbf{x}_i'

5 Вывод

В ходе лабораторной работы был изучен метод аппроксимации функции при помощи кубической сплайн-интерполяции. На основе заданной функции и узлов интерполяции был построен сплайн третьего порядка. По итогам тестирования было определено, что значения заданной функции и сплайна практически не отличаются, что подтверждает корректность работы данного метода. Таким образом, кубическая сплайн-интерполяция показывает высокую точность в узлах, однако следует учитывать некоторые погрешности в промежуточных точках между узлами.