Graphs

Terminology

V- vertices (nodes)

E - edges

a - graph = (V, E)

Undirected graph: edges are bidirectional

-> Degree! number of edges touching

a node

Dinected graph: edges are unidirectional

-> In-degree: number of edges to a node

-> Out-degree' number of edges from a node

Representation

(does not need to be symmetric for directed graphs)

Adjacency lists (using array or lieued list design)

(also doesn't need to be symmetric)

Note: vertices can store other info (i.e., attributes - name, It addr, etc) + helper into for graph algs

Good! petern operations

- > Checking for edge membership > querying for vode neighbors

Tradeofts!

	Adj. Wat.	
Edge numbership	٥(١)	O(IVI) ← O(deg(x)) for a note x
Neifabor quez	D(111)	O(1) (deg(x)) if ned to iterate
Space pequireners	0(111,5)	O(111+1E1)

Depth-First Search (DFS)

Generic algorithm for graph traversal.

Idea: explone graph wil "string and chalk"

Example

Pseudoco de

Algorithm DFS (v)

V. visited = True

do something with v - generalizable!

for W in V. neighbons:

if ! v. visited!

DFS (W)

note: can also do this iteratively with a struck (wore efficient for larger data)

Rustine

-> visit every vertex once, doing O(1) work at out step

-> loop over neighbors and check whitel in O(i): O (deg (v))

 Σ (O(deg(ν)) + O(i) = O(ν) + ν = O(ν) = O(ν) = O(ν) = O(ν)

Brendth- First Search (DFS)

Explore graphs in order of steps to reach each node Main application; finding shortest paths.

Pseudocode

Runtime

For finding shortest path, D(IEI)