QUAST

Chiara Coscarelli Marco Santoriello

Table of contents

01 Assemblaggio

02QUAST

O3 Analisi del codice

Galaxy workflow

04

Assemblaggio

L'assemblaggio del genoma è il processo di unione di frammenti di

DNA (reads) per creare sequenze più lunghe (contig).

È essenziale per analizzare la struttura e la funzionalità del genoma, ma la sua qualità è difficile da misurare.

Metriche di Valutazione

- **♦ Contiguità**: lunghezza e numero di contig. Un buon assemblaggio ha pochi contig molto lunghi.
- Completezza: misura quanto l'assemblaggio copra il genoma di riferimento.
- Correttezza: verifica l'ordine e la posizione dei contig rispetto al genoma reale.

Metodi esistenti per il confronto

Plantagora

Piattaforma che aiuta i ricercatori a confrontare diverse strategie di sequenziamento e assemblaggio del genoma delle piante.

LIMITI:

- -Dipendenza da un genoma di riferimento noto.
- -Non adatto per specie mai sequenziate.

GAGE

Utilizzato per confrontare diversi assemblatori di genomi su 4 dataset, valutando metriche come errori di assemblaggio.

LIMITI:

- -Dipendenza da un genoma di riferimento noto.
- -Analizza un solo datatset alla volta.

QUAST

QUAST: un nuovo approccio alla valutazione

è uno strumento avanzato per la valutazione degli assemblaggi genomici. Si distingue per le seguenti caratteristiche innovative:

Ampia gamma di metriche

Include tutte le metriche rilevanti, bilanciando completezza e chiarezza.

Facilità d'uso

Interfaccia intuitiva e visualizzazioni immediate.

Valutazione senza riferimento

Ideale per specie nuove o non ancora sequenziate.

Efficienza elevata

Utilizza elaborazione parallela per analisi rapide su grandi dataset

Metriche valutate da QUAST

Metriche usate da QUAST per valutare la qualità degli assemblaggi

01 Metriche legate al numero di contigs

03

Errori di misassemblaggio e variazioni strutturali

04

Rappresentazione genomica ed elementi funzionali

Metriche basate su N50

- Numero di Contigs: totale dei contigs nell'assemblaggio.
- Contig più lungo: lunghezza del contig più grande ricostruito.
- Lunghezza totale: numero totale di basi nell'assemblaggio.
- Nx: lunghezza del contig più corto, che sommato ad altri più lunghi, copre almeno l'x% della lunghezza totale dell'assemblaggio.
- **NGx:** simile a Nx, ma riferito alla lunghezza del genoma di riferimento.

Errori di misasseblaggio e variazioni strutturali

- Numero di misassebliaggi: indica quanti errori sono stati trovati nell'asseblaggio confrontandolo con il genoma di riferimento.
- Numero di contigs misasseblati: indica quanti contigs contengono almeno un errore di misassemblaggio.
- Lunghezza dei contigs misassemblati: rappresenta il numero totale di basi presenti nei contig che contengono errori.
- **Numero dei contigs non allineati:** numero dei contigs che non riescono a trovare alcuna corrispondenza nel genoma di riferimento.
- Numero di contigs mappati ambiguamente: contigs che si allineano bene a più punti nel genoma di riferimento.

Rappresentazione genomica ed elementi funzionali

- Frazione del genoma coperta dall'assemblaggio: indica quanto dell'intero genoma di riferimento è stato ricostruito nell'assemblaggio.
- Rapporto di duplicazione: verifica la presenza di sequenze ridondanti o errori.

Metriche basate sull'N50

N50 non riflette accuratamente la qualità di un assemblaggio:

- Non tiene conto della lunghezza reale del genoma: N50 si basa solo sulla distribuzione dei contig, ma se l'assemblaggio è più corto o più lungo del genoma vero non se ne accorge.
- Non verifica se i contig sono corretti: anche un assemblaggio con errori strutturali può avere un N50.
- Non considera l'accuratezza del posizionamento dei contig: un assemblaggio può avere contig lunghi ma posizionati nel punto sbagliato.
 - NAx: corregge il primo problema→ usa la lunghezza del genoma di riferimento invece della lunghezza dell'assemblaggio per cacolare le soglie.
 - NGAx: corregge il secondo e il terzo problema → considera solo i contig che si allinenao correttamente al genoma di riferimento.

Flusso Operativo

- 1 Import e configurazione
- 2 Processamento genoma di riferimento
- 3 Processamento dei contigs
 - 4 Allineamento e Analisi

Fase di Import e Configurazione

- Importazione librerie esterne e native
- Controllo della versione di Python
- Processing degli argomenti e conversione in comandi

Processamento del genoma di riferimento

- Opzionale
- Correzione del genoma di riferimento
 - Rimozione di sequenze più corte di una certa **soglia** (specificata) e di sequenze che contengono caratteri diversi da A, C, G, T (**basi azotate** del DNA) ed N (rappresenta aree incerte nella sequenza)
- Generazione dell'assemblaggio ottimale (UBA)
 - Opzionale
 - Simulazione di come sarebbe un assemblaggio perfetto
- Aggiornamento della lista dei Contigs
 - Viene aggiunto il percorso all'assemblaggio ottimale

Processamento dei Contigs

Elaborazioni in parallelo

Possibilità di specificare il numero di **threads** da utilizzare per il processing, **ottimizzando** e **velocizzando** il processo

Correzione dei contigs

- Rimozione caratteri speciali, come + o -, dai nomi dei contigs che possono causare errori durante l'elaborazione (es. con Nucmer)
- Rimuove contigs corrotti o problematici

Calcolo statistiche di copertura delle reads

• **Allinea** le reads ai contigs e **calcola** le statistiche di copertura (es. Numero di basi coperte nel genoma di riferimento, numero di inserzioni e delezioni, ecc.)

Allineamento e Analisi

- Allineamento contigs al genoma di riferimento (opzionale)
 - Controlla se il **genoma** è ciclico
 - Effettua l'allineamento
 - Itera sui contigs per determinare per ciascuno se l'allineamento è andato a buon fine o meno: se nessun contig è stato allineato con successo, l'analisi termina
- Calcolo delle metriche, tra cui Nx, NGx, NAx
- Predizione genica (se specificata)
 - Usa strumenti come Glimmer o GeneMark per **identificare** i **geni** nei contigs, Barnnap per trovare **rRNA**, BUSCO per verificare la presenza di **geni altamente conservati**.

- Rappresenta la lunghezza del contig più corto che, sommato ai contigs di lunghezza maggiore o uguale,
 copre almeno il 50% della lunghezza del genoma di riferimento
- **numlist**: lista delle lunghezze dei contigs (ordine decrescente)
- **s**: lunghezza totale del genoma di riferimento
- **limit**: lunghezza necessaria per coprire almeno il 50% della lunghezza del genoma di riferimento
- **Ig50**: numero di contigs necessari per raggiungere NG50
- I: la lunghezza del contig corrente
- Quando la lunghezza del genoma da coprire raggiunge/supera la soglia termina e restituisce ng50 e lg50
- Se non si è raggiunta la soglia, restituisce None, None

```
for 1 in numlist:
    s -= 1
    lg50 += 1
    if s <= limit:
        ng50 = 1
        return ng50, lg50

return None, None</pre>
```


Esempio di Esecuzione

Esempio di esecuzione di QUAST utilizzando i dati di test offerti dagli sviluppatori

```
• (myDefaultVenv) marcus@DESKTOP-G5UGO3L:~/Workspace/quast$ quast.py test_data/contigs_1.fasta test_data/contigs_2.fasta -r test_data/reference.fasta.gz -o results/

Path genoma

File contigs

File contigs

File contigs
```

```
Main parameters:
 MODE: default, threads: 3, min contig length: 500, min alignment length: 65, min alignment IDY: 95.0, \
 ambiguity: one, min local misassembly length: 200, min extensive misassembly length: 1000
Reference:
 /home/marcus/Workspace/quast/test data/reference.fasta.gz ==> reference
Contigs:
 Pre-processing.
 1 test data/contigs 1.fasta ==> contigs 1
 2 test data/contigs 2.fasta ==> contigs 2
2025-03-05 19:25:35
Running Basic statistics processor...
 Reference genome:
   reference.fasta, length = 10000, num fragments = 1, GC % = 52.07
 Contig files:
  1 contigs 1
   2 contigs 2
 Calculating N50 and L50
  1 contigs 1, N50 = 3980, L50 = 1, auN = 2934.0, Total length = 6710, GC % = 51.28, # N's per 100 kbp = 0.00
   2 contigs_2, N50 = 3360, L50 = 1, auN = 2875.4, Total length = 5460, GC % = 52.44, # N's per 100 kbp = 0.00
 Drawing Nx plot...
   saved to /home/marcus/Workspace/quast/results/basic stats/Nx plot.pdf
 Drawing NGx plot...
   saved to /home/marcus/Workspace/quast/results/basic stats/NGx plot.pdf
 Drawing cumulative plot...
   saved to /home/marcus/Workspace/quast/results/basic_stats/cumulative_plot.pdf
 Drawing GC content plot...
   saved to /home/marcus/Workspace/quast/results/basic_stats/GC_content_plot.pdf
 Drawing contigs_1 GC content plot...
   saved to /home/marcus/Workspace/quast/results/basic stats/contigs 1 GC content plot.pdf
 Drawing contigs 2 GC content plot...
   saved to /home/marcus/Workspace/guast/results/basic stats/contigs 2 GC content plot.pdf
```

Processing del genoma di riferimento

risultati

Calcolo delle metriche N50 e L50

Esempio di Esecuzione

- Analisi dei contigs
- Allineamento
- Calcolo delle metriche NA-NGA

```
Running Contig analyzer...
 1 contigs 1
 2 contigs_2
 2 Logging to files /home/marcus/Workspace/quast/results/contigs_reports/contigs_report_contigs_2.stdout and contigs_report_contigs_2.stdout...
 1 Logging to files /home/marcus/Workspace/quast/results/contigs_reports/contigs_report_contigs_1.stdout and contigs_report_contigs_1.stdout
 1 Aligning contigs to the reference
 2 Aligning contigs to the reference
 2 Analysis is finished.
 1 Analysis is finished.
 Creating total report...
  saved to /home/marcus/Workspace/quast/results/contigs reports/misassemblies report.txt, misassemblies report.txv, and misassemblies report.tex
 Transposed version of total report...
   saved to /home/marcus/Workspace/quast/results/contigs_reports/transposed_report_misassemblies.txt, transposed_report_misassemblies.tsv, and transposed report misassemblies.tex
 Creating total report...
   saved to /home/marcus/Workspace/quast/results/contigs reports/unaligned report.txt, unaligned report.tsv, and unaligned report.tex
 Drawing misassemblies by types plot...
   saved to /home/marcus/Workspace/quast/results/contigs reports/misassemblies plot.pdf
 Drawing misassemblies FRCurve plot...
   saved to /home/marcus/Workspace/quast/results/contigs reports/misassemblies frcurve plot.pdf
Done.
2025-03-05 19:25:36
Running NA-NGA calculation...
 1 contigs_1, Largest alignment = 2030, NA50 = 1950, NGA50 = 1610, LA50 = 2, LGA50 = 3
 2 contigs 2, Largest alignment = 2100, NA50 = 1471, NGA50 = 700, LA50 = 2, LGA50 = 4
 Drawing cumulative plot...
  saved to /home/marcus/Workspace/quast/results/aligned stats/cumulative plot.pdf
 Drawing NAx plot...
   saved to /home/marcus/Workspace/quast/results/aligned_stats/NAx_plot.pdf
 Drawing NGAx plot...
   saved to /home/marcus/Workspace/quast/results/aligned_stats/NGAx_plot.pdf
```

Esempio di Esecuzione

Visualizzazione dei risultati

Per base quality

O4 Galaxy workflow

Metriche legate al numero di contig

- Numero totale di contig
 - **SPAdes:** 190 contigs
 - Velvet: 318 contigs
- Contig più lungo
 - **SPAdes**: 313.898 bp
 - Velvet: 289.097 bp
- Lunghezza totale
 - **SPAdes**: 5.293.223 bp
 - **-/Velvet:** 5.445.933 bp
 - **N50**
 - **SPAdes**: 124.687 bp
 - Velvet: 59.880 bp
- NG50
- **SPAdes**: 127.550 bp **Velvet**: 64.016 bp

Statistics without reference # contias 190 # contigs (>= 0 bp) 1113 # contigs (>= 1000 bp) 134 Largest contig 313898 Total length 5 293 223 Total length (>= 0 bp) 5414009 Total length (>= 1000 bp) 5 253 566 N50 124 687 N90 28 229

SPAdes

Statistics without reference

N90

	_	
# contigs	318	
# contigs (>= 0 bp)	747	
# contigs (>= 1000 bp)	258	
Largest contig	289 097	
Total length	5 445 933	
Total length (>= 0 bp)	5 553 552	
Total length (>= 1000 bp)	5 402 552	
N50	59 880	

Velvet

9283

Errori di misassemblaggio

Numero di misasseblaggi

- SPAdes: 133 errori

- Velvet: 150 errori

Numero di contig misassemblati

- SPAdes: 41 contigs con errori

- Velvet: 74 contigs con errori

Numero dei contigs non allineati

- SPAdes: 12 contigs non allineati

- Velvet: 22 contigs non allineati

• Lunghezza dei contigs misasseblati

- **SPAdes:** 4 055 419

- **Velvet**: 3 759 719

relocations 133
translocations 0
inversions 0

133

misassembled contigs 41

Misassembled contigs length 4 055 419 # local misassemblies 79

scaffold gap ext. mis. 0 # scaffold gap loc. mis. 0

unaligned mis. contigs 12

SPAdes

Misassemblies

# misassemblies	150
# relocations	143
# translocations	0
# inversions	7
# misassembled contigs	74
Misassembled contigs length	3 759 719
# local misassemblies	73
# scaffold gap ext. mis.	0
# scaffold gap loc. mis.	0
# unaligned mis. contigs	22

Velvet

Rappresentazione genomica

Percentuale genoma ricostruito (Genome Fraction %)

- SPAdes: 77,06%

- Velvet: 76,73%

Rapporto di duplicazione

- SPAdes: 1.003

- **Velvet:** 1.005

-	
Genome fraction (%)	77.062
Duplication ratio	1.003

SPAdes

Genome fraction (%)	76.734
Duplication ratio	1.005

Velvet

Metriche basate su N50

- NA50
 - **SPAdes:** 21 734
 - Velvet: 14 711

- NGA50
 - **SPAdes:** 23 925
 - **Velvet:** 16 119

NA50		21 734
NA90 auNA		- 26 496
NGA50		23 925
SPAdes		

NA50		14711
NA90		-
auNA		20820
NGA50		16 119
	N. F	

FINE

Si ringrazia per l'attenzione