Полиэдральный конус доминирования как функция интервалов неопределенности весовых коэффициентов компонентов векторного показателя эффективности.

Предполагаем, что бинарное отношение строгого предпочтения задается

в виде интервала неопределенности вектора весовых коэффициентов:

$$\mathbf{0}_{m} \leq \boldsymbol{\mu}_{L} \leq \boldsymbol{\mu} \leq \boldsymbol{\mu}_{H} \leq \mathbf{1}_{m} \quad (1)$$

$$\sum_{i=1}^{m} \mu_i = 1 \tag{2}$$

Полиэдральный конус доминирования как функции интервалов неопределенности весовых коэффициентов компонентов векторного показателя эффективности

Предполагаем. что

$$\mathbf{0}_{m} \leq \mathbf{\mu}_{L} \leq \mathbf{\mu} \leq \mathbf{\mu}_{H} \leq \mathbf{1}_{m} , \qquad (1)$$

$$\sum_{i=1}^{m} \mu_i = 1 \quad . \tag{2}$$

Матрица конуса доминирования Ω :

$$\mathbf{B} = \mathbf{B} \big(\boldsymbol{\mu}_{L}, \, \boldsymbol{\mu}_{H} \big)$$

Алгоритм построения конуса доминирования

Шаг 1. В пространстве весовых коэффициентов построим гиперпараллелепипед Π , все точки которого удовлетворяют условиям (1), (2). Пронумеруем все вершины $\pi \in \Pi$ с помощью бинарного кода Грея (БКГ). Все БКГ представим в виде строк \mathbf{t}^i , $i = 0, 2^{m-1}$, таблицы $\mathbf{T}_{\mathbf{u}}$. Будем считать, что если в какой-либо строке $\mathbf{t}^i \in \mathbf{T}_{\mathbf{u}}$ j-й разряд справа $t_{j}=0$, то j-я координата i-ой вершины π^i гиперпараллелепипеда Π равна μ_{iL} . Если $t_i = 1$, то j-я координата i-ой вершины Π равна μ_{iH} .

Далее полагаем i = 0 и переходим к шагу 2.

Соответствие между таблицами $\mathbf{T}_{\mathbf{\Pi}}$ и $\mathbf{\Pi}$ для m=3.

$$\mathbf{T}_{\Pi} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \iff \mathbf{\Pi} = \begin{bmatrix} \mu_{3L} & \mu_{2L} & \mu_{1L} \\ \mu_{3L} & \mu_{2L} & \mu_{1H} \\ \mu_{3L} & \mu_{2H} & \mu_{1H} \\ \mu_{3H} & \mu_{2H} & \mu_{1L} \\ \mu_{3H} & \mu_{2H} & \mu_{1H} \\ \mu_{3H} & \mu_{2L} & \mu_{1L} \end{bmatrix} \iff \begin{bmatrix} \pi^{0}\left(\mu_{1L}, \mu_{2L}, \mu_{3L}\right) \\ \pi^{1}\left(\mu_{1L}, \mu_{2L}, \mu_{3L}\right) \\ \pi^{3}\left(\mu_{1L}, \mu_{2H}, \mu_{3L}\right) \\ \pi^{4}\left(\mu_{1L}, \mu_{2H}, \mu_{3H}\right) \\ \pi^{5}\left(\mu_{1H}, \mu_{2H}, \mu_{3H}\right) \\ \pi^{6}\left(\mu_{1H}, \mu_{2L}, \mu_{3H}\right) \\ \pi^{6}\left(\mu_{1H}, \mu_{2L}, \mu_{3H}\right) \\ \pi^{1}\left(\mu_{1L}, \mu_{2L}, \mu_{3H}\right) \end{bmatrix}$$

Шаг°2. Осуществляем попарное сравнение строк $\mathbf{t} \in \mathbf{T}_{\Pi}$. Если выявлены строки $\mathbf{t}^k \cdots \mathbf{u} \cdots \mathbf{t}^l$, отличающиеся другото от друга одним разрядом, то данной паре $(\mathbf{t}^k, \mathbf{t}^l)$ соответствует пара вершин в таблице $\mathbf{\Pi}$, образующая ребро $\mathbf{g} \cdot \mathbf{\Pi}$. Переходим к шагу 3. Иначе переходим к шагу°5. \P

Шаг $^{\circ}$ 3. Осуществляем · анализ · положения · вершин · \mathbf{t}^{k} · и · \mathbf{t}^{l} · относительно · гиперплоскости¶

$$L(\mathbf{\mu}) = \sum_{i=1}^{n} \mu_i - 1 = 0, \P$$

определяющей· условие· нормировки· компонентов· вектора· весовых коэффициентов.¶

Если· $L(\mathbf{t}^k)L(\mathbf{t}^l) \leq 0$, то это означает, что гиперплоскость $L(\mathbf{\mu}) = 0$ пересекает ребро· $(\mathbf{t}^k, \mathbf{t}^l) \in \mathbf{\Pi}$. Полагаем i = i + 1 и переходим $k \in \mathbf{H}$

Иначе, \cdot если $\cdot \cdot L(\mathbf{t}^k)L(\mathbf{t}^l) > 0$, $\cdot \cdot \cdot$ то \cdot гиперплоскость $\cdot \cdot L(\mathbf{\mu}) = 0$ $\cdot \cdot$ не \cdot пересекает \cdot ребро $\cdot \cdot (\mathbf{t}^k, \mathbf{t}^l)$. $\cdot \cdot \cdot \Pi$ ереходим $\cdot \kappa \cdot$ шагу $\cdot 5$. \P

Шаг°4.:Вычисляем точку пересечения $\mathbf{b}^{(i)}$ ребра $(\mathbf{t}^k, \mathbf{t}^l)$ с гиперплоскостью $L(\mathbf{\mu}) = 0$ изаписываем ее координаты в виде строки с номером \mathbf{a} изв матрицу \mathbf{B} .

Шаг $^{\circ}5$.·Проверяем, все ли пары строк $(\mathbf{t}^k, \mathbf{t}^l)$ таблицы

 T_{Π} просмотрены.

Если· да, · то · полагаем · p = i, · заканчиваем · формирование · матрицы · **В** · размером · $[p \times m]$ · и · переходим · к · шагу · 6 . · Иначе, · переходим · к · шагу · 2 . ¶

Шаг°б.·Построим ·конус ·доминирования ·в ·виде: ¶

$$\mathbf{\Omega} = \left\{ \mathbf{z} \in \mathbf{E}^m \middle| \mathbf{B} \mathbf{z} \leq \mathbf{0}_p \right\} . \P$$

 Ω "является полярным к выпуклому конусу σ :

$$\mathbf{o} = \left\{ \mathbf{z} \in \mathbf{E}^n \middle| \mathbf{z} = \sum_{i=1}^p \alpha_i \mathbf{b}^i, \ \alpha_i \ge 0, \ i = \overline{1, p} \right\}, \P$$

где·система·векторов·· $\left\{\mathbf{b}^{i},i=\overline{1,p}\right\}$ ··образует·строки \P матрицы· \mathbf{B} . \P

Геометрическая интерпретация описанного алгоритма для случая m=2

Теорема.°Пусть в многокритериальной аналитической задаче:¶

- 1) → множество $\mathbf{Q} \cdot \mathbf{v} \cdot \mathbf{u} \cdot \mathbf{k}$ момпоненты векторного показателя $\mathbf{J}(\mathbf{q}) \in \mathbf{E}^m \cdot \mathbf{h} \mathbf{a} \cdot \mathbf{Q} \cdot \mathbf{v}$ выпуклые; ¶
 - 2) → вектор µ удовлетворяет условиям (1); ¶
- 3) → Ω°-°полиэдральный конус, построенный при помощи вышеописанного алгоритма и определяемый в виде¶

$$\mathbf{\Omega} = \left\{ \mathbf{z} \in \mathbf{E}^m \,\middle|\, \mathbf{B} \mathbf{z} \leq \mathbf{0}_p \right\} \, . \P$$

Для· того, чтобы· решение· $\tilde{\mathbf{q}} \in \mathbf{Q}$ · было· слабо· оптимальным · по· конусу · $\mathbf{\Omega}$, · необходимо · и · достаточно, чтобы · существовал · такой · вектор · $\mathbf{\mu}^*$, · удовлетворяющий · условиям · (1), · (2), · для · которого : ¶

$$\boldsymbol{\mu}^{*T} \mathbf{J}(\tilde{\mathbf{u}}) = \min_{\mathbf{u} \in \mathbf{U}} \left\{ \boldsymbol{\mu}^{*T} \mathbf{J}(\mathbf{u}) \right\} . \P$$

Пример

Рассмотрим многокритериальную аналитическую задачу

$$\Gamma = \langle \mathbf{U}, \mathbf{F}(\mathbf{u}), \mathbf{\Omega} \rangle$$

где компоненты векторного критерия $\mathbf{F}(\mathbf{x})$ заданы в виде:

$$f_1(\mathbf{u}) = 0.2(u_1 - 70)^2 + 0.8(u_2 - 20)^2$$
,
 $f_2(\mathbf{u}) = 0.2(u_1 - 10)^2 + 0.8(u - 70)^2$.

Множество допустимых решений U, задано в виде системы интервальных ограничений-неравенств:

U:
$$0 \le u_1 \le 79 \\ 0 \le u_2 \le 79$$
.

Полиэдральный конус доминирования формализует требование минимизации компонент векторного критерия на множестве допустимых решений \mathbf{U} , и задан в виде интервалов неопределенности весовых компонент векторного критерия:

$$\Omega: \begin{cases} 0.3 \le \mu_1 \le 0.7, \\ 0.3 \le \mu_2 \le 0.6. \end{cases}$$

Требуется на множестве достижимых векторных оценок $\mathbf{F}(\mathbf{U})$ построить:

- множество решений, оптимальных по Парето;
- ullet множество Ω -оптимальных решений.

Решение.

Этап 1. Построение матрицы полиэдрального конуса доминирования.

Шаг 1. Построим таблицы $\mathbf{T}_{\mathbf{\Pi}}$ и $\mathbf{\Pi}$ <u>и</u> координаты вершин $\pi^0,\dots,\,\pi^3\in\mathbf{\Pi}$:

$$\mathbf{T}_{\Pi} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \Leftrightarrow \mathbf{\Pi} = \begin{bmatrix} \mu_{2L} & \mu_{1L} \\ \mu_{2L} & \mu_{1H} \\ \mu_{2H} & \mu_{1H} \\ \mu_{2H} & \mu_{1L} \end{bmatrix} = \begin{bmatrix} 0.3 & 0.3 \\ 0.3 & 0.7 \\ 0.6 & 0.7 \\ 0.6 & 0.3 \end{bmatrix} \Leftrightarrow \begin{cases} \pi^{0} (0.3, 0.3) \\ \pi^{1} (0.7, 0.3) \\ \pi^{2} (0.7, 0.6) \\ \pi^{3} (0.3, 0.6) \end{cases}$$

- **Шаг 2**. Осуществляем попарное сравнение строк в таблице $\mathbf{T}_{\mathbf{\Pi}}$ и находим пары вершин, образующие ребра \mathbf{r}^{kl} , соединяющие вершины π^k и π^l гиперпараллелепипеда $\mathbf{\Pi}$. В данном примере ребрами являются: \mathbf{r}^{01} , \mathbf{r}^{12} , \mathbf{r}^{23} , \mathbf{r}^{30} .
- **Шаг 3**. Определяем расположение вершин $\pi^0, ..., \pi^3 \in \Pi$ относительно прямой $L(\pmb{\mu}) = 0$:

$$L(\pi^{0}) = 0.3 + 0.3 - 1 = -0.4;$$

$$L(\pi^{1}) = 0.7 + 0.3 - 1 = 0;$$

$$L(\pi^{2}) = 0.7 + 0.6 - 1 = 0.3;$$

$$L(\pi^{3}) = 0.3 + 0.6 - 1 = -0.1.$$

Шаг 4. Определяем координаты точек пересечения ребер ${f r}^{01},\,{f r}^{12},\,{f r}^{23},\,{f r}^{30}\in {f \Pi}$ с прямой $L({f \mu})\!=\!0$:

 $Lig(\pi^0ig)Lig(\pi^1ig)=0 \implies$ ребро ${f r}^{01}$ пересекает прямую $Lig(m{\mu}ig)=0$. Координаты вектора ${f b}^1=ig[0.7,\ 0.3ig]^T$, записываем в виде строки в матрицу конуса доминирования ${f B}$.

 $Lig(\pi^1ig)Lig(\pi^2ig)=0 \implies$ ребро ${f r}^{12}$ пересекает прямую $Lig(m{\mu}ig)=0$. Координаты вектора ${f b}^2=ig[0.7,\ 0.3ig]^T$, записываем в виде строки в матрицу конуса доминирования ${f B}$.

 $L\left(\pi^{2}\right)L\left(\pi^{3}\right)=-0.03<0$ \Rightarrow ребро \mathbf{r}^{23} пересекает прямую $L\left(\mathbf{\mu}\right)=0$. Координаты вектора $\mathbf{b}^{3}=\begin{bmatrix}0.4,\,0.6\end{bmatrix}^{T}$ записываем в виде строки в матрицу конуса доминирования \mathbf{B} $L\left(\pi^{3}\right)L\left(\pi^{0}\right)=0.04>0$ \Rightarrow ребро \mathbf{r}^{30} не пересекает прямую $L\left(\mathbf{\mu}\right)=0$.

Шаг 5. Т.к. $\mathbf{b}^1 = \mathbf{b}^2$, то в матрице \mathbf{B} , не изменяя ее ранга, можно удалить, например, строку, соответствующую вектору \mathbf{b}^1 . Получаем матрицу полиэдрального конуса доминирования в виде:

$$\mathbf{B} = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}. \tag{6}$$

Геометрическая интерпретация

Этап 2. Построение дискретной аппроксимации $\hat{\mathbf{F}}_{\Omega}\left(\mathbf{U}\right)$ множества Ω -оптимальных решений задачи (4), (5).

Шаг 1. Сгенерируем конечное множество точек $\mathbf{U} \subset \mathbf{U}$, которое будем рассматривать, как дискретную аппроксимацию множества \mathbf{U} вида (5).

Дискретная аппроксимация множества достижимых векторных оценок $\mathbf{F}(\hat{\mathbf{U}}) \subset \mathbf{F}(\mathbf{U}), \left| \mathbf{F}(\hat{\mathbf{U}}) \right| = 100$

Шаг 2. Построим дискретную аппроксимацию множества Парето-оптимальных решений $\mathbf{F}_{\!\scriptscriptstyle P}\!\left(\hat{\mathbf{U}}\right)\!\subset\!\mathbf{F}\!\left(\hat{\mathbf{U}}\right)$, используя алгоритм исключения заведомо неэффективных решений.

Дискретная аппроксимация множества парето-оптимальных решений: $\left| \mathbf{F}_{\!\scriptscriptstyle P} \left(\hat{\mathbf{U}} \right) \right| = 29$

Шаг 3. Построим дискретную аппроксимацию множества Ω -оптимальных решений $\mathbf{F}_{\Omega}\left(\hat{\mathbf{U}}\right) \subset \mathbf{F}\left(\hat{\mathbf{U}}\right)$. Используем алгоритм исключения заведомо не эффективных решений, $\left|\mathbf{F}_{\Omega}\left(\hat{\mathbf{U}}\right)\right| = 7$). В качестве условия исключения точки $\mathbf{F}^{j}, j = \overline{1, N}, i \neq j$ рассматриваем выполнение системы неравенств

$$\mathbf{B}(\mathbf{F}^{j} - \mathbf{F}^{i}) \geq \mathbf{0}_{*} \tag{7}$$

где матрица **B** конуса доминирования Ω задана в виде (3.18), что равносильно удовлетворению требования

$$\left(\mathbf{F}^{j} - \mathbf{F}^{i}\right) \in -\mathbf{\Omega}.\tag{8}$$

Дискретная аппроксимация множества Ω -оптимальных решений: $\left|\mathbf{F}_{\Omega}\left(\hat{\mathbf{U}}\right)\right|=7$

Дискретная аппроксимация множества Ω -оптимальных решений:

$$\left| \mathbf{F} \left(\hat{\mathbf{U}} \right) \right| = 10000; \left| \mathbf{F}_{\mathbf{P}} \left(\hat{\mathbf{U}} \right) \right| = 2934; \left| \mathbf{F}_{\Omega} \left(\hat{\mathbf{U}} \right) \right| = 707.$$

