

Learning to see after sight restoration from congenital cataracts

Irene Senna

The role of vision

To build **perceptual knowledge** about the world

Alone or in combination with other senses

To guide actions

- For navigating and interacting with the environment
- It provides feedback information for online control and sensorimotor learning
- It is used to generate predictions for feed-forward control of actions

Bilateral Cataracts

Cataracts cause ~ 51% of all cases of blindness

Congenital cataracts (at birth or within the first weeks of life): 1-4 cases per 10,000 live births

Heterogeneous causes:

- -Mutations in genes coding for proteins involved in lens structure/clarity (familiar, new mutations)
- -In ~2/3 of the cases they are associated with other diseases (e.g., metabolic), or intrauterine infections (e.g., rubella, toxoplasmosis, herpes simplex,...)

Scientific question

- Does the lack of early visual experience prevent from developing perceptual and visuomotor abilities following surgery?
- Can late visual and sensorimotor experience contribute to development?

Application

Can we facilitate post surgical development with training procedures?

Project Prakash (2003, Pawan Sinha, MIT): first project in late cataract-treated individuals (operated 8-18y aftert birth)

CSF (contrast sensitivity function)

Poorer performance than sighted controls also in:

- Global motion perception
- Global form perception
- Holistic face processing
- Audio-visual speech perception

- ...

Multisensory Integration

Action control and sensorimotor recalibration

Predictions for feed-forward action control

Navigation and space representation

Multisensory integration

Multisensory integration

Senna et al., 2021, Current Biology

Multisensory integration: Optimal integration

Maximum likelihood estimation (MLE)

Reliability
$$r_i = \frac{1}{\sigma_i^2}$$

$$C_{12} = w_1 C_1 + w_2 C_2$$
 $w_i = 0$

$$w_i = \frac{r_i}{\sum r_i}$$

$$\sigma_{VH}^2 = \frac{\sigma_V^2 \sigma_H^2}{\sigma_V^2 + \sigma_H^2}$$

Haptics (H)

Visual (V)

Visual-haptics (VH)

Senna et al., 2021, Current Biology

Just Noticeable Difference (JND): the difference in size that is perceivable above chance

Senna et al., 2021, Current Biology

Multisensory Integration

Action control and sensorimotor recalibration

Predictions for feed-forward action control

Navigation and space representation

Vision for action: Sensorimotor recalibration

Multisensory Integration

Action control and sensorimotor recalibration

Predictions for feed-forward action control

Navigation and space representation

Predictions for grasping

Hand Aperture

Piller et al., 2023, Current Biology

Size-weight illusion

Which one of equal-weight objects feels heavier?

Visuo-haptics		Haptics
Sighted	93%	48%
Blind		53%
Cataract 73% 60% 91% (<6m) (>6m)		

Multisensory Integration

Action control and sensorimotor recalibration

Predictions for feed-forward action control

Navigation and space representation

Auditory space representation in the blind

Understanding spatial relationships among sounds, and spatial cognition in general are impaired in the blind

Auditory space representation in the blind

Vision is crucial in building spatial representations, and in **calibrating** the other senses to process spatial information

Space representation and Navigation

Auditory bisection

Localization

Auditory tasks & visual acuity

Senna et al., 2022, Proc. R. Soc. B

Mobility & Navigation

Space representation and Navigation

Sensory-motor training

ABBI (Audio Bracelet for Blind Interaction) with M. Gori, IIT, Italy

Senna et al., unded review, iScience

Space representation and Navigation

Auditory bisection

Localization

Mobility & Navigation

Senna et al., unded review, iScience

Conclusions

Perceptual abilities (multisensory integration, space perception) start improving quickly after surgery

Greater improvements with longer time since surgery and higher post-op visual acuity

Vision for action develops more slowly (if at all)

A short training reinforcing audio-visuo-motor associations improves mobility and spatial cognition

Conclusions

Research impact: the demonstrable contribution that research makes to society and the economy (Economic and Social Research Council, UK)

Knowledge transfer to promote independency

- Surgery training at the Hawassa Referral Hospital (Dr Itay Ben-Zion, pediatric ophthalmologist)
- Sensorimotor training to improve space perception and mobility in the Shashemene School for the Blind

Thank you for the attention

