Expectation and Moments Statistical Methods in Political Research I

Yuki Shiraito

University of Michigan

Fall 2019

Expectation

- BH, Ch. 4 and p. 200; DS, Ch. 4; W, Ch. 3; CB, 2.2
- Summary of r.v. X:
 - What is the gain you expect from a lottery?
 - What is the number of Dems you expect in a sample?
 - What is the lifetime income you expect from an academic job?
- Expectation or expected value of X: Weighted average of X where the weights are the probability measure of events X = x
- For a discrete r.v. X,

$$\mathbb{E}[X] = \sum_{x} x f_X(x)$$

• For a continuous r.v. X,

$$\mathbb{E}[X] = \int_{X} x f_X(x) dx$$

- $X \sim \text{Bern}(p) \Rightarrow \mathbb{E}[X] = p$
- $X \sim \text{Unif}(0,1) \Rightarrow \mathbb{E}[X] = 1/2$

Existence of Expectation

- Expectation does not always exist
- Existence of expectation: $\mathbb{E}[X]$ exists if and only if $\mathbb{E}[X_{-}] < \infty$ or $\mathbb{E}[X_{+}] < \infty$, where $X_{-} \equiv -\min\{X, 0\}$ and $X_{+} \equiv \max\{X, 0\}$.
 - $\mathbb{E}[X_-] < \infty$ and $\mathbb{E}[X_+] < \infty$: $-\infty < \mathbb{E}[X] < \infty$
 - 2 $\mathbb{E}[X_-] < \infty$ and $\mathbb{E}[X_-] = \infty$: $\mathbb{E}[X] = -\infty$

 - **④** $\mathbb{E}[X_+] = \infty$ and $\mathbb{E}[X_-] = \infty$: $\mathbb{E}[X]$ does not exist
- Expectation can be infinity, but its sign should be well defined
- X follows the standard Cauchy distribution:

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$
 for $-\infty < x < \infty$

- Valid p.d.f: $\int_{-\infty}^{\infty} f(x) dx = [\tan^{-1}(x)/\pi]_{-\infty}^{\infty} = {\pi/2 (-\pi/2)}/{\pi} = 1$
- $\int_0^\infty x f(x) dx = [\log(1+x^2)/2]_0^\infty = \infty$
- Similarly, $\int_{-\infty}^{0} -xf(x)dx = [\log(1+x^2)/2]_{-\infty}^{0} = \infty$
- Expectation does not exist for the Cauchy distribution

Indicator and Linearity

- Expectation of Indicator: For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let A be an event and define r.v. $1_A \equiv 1\{\omega \in A\}$. Then, $\mathbb{E}[1_A] = \mathbb{P}(A)$
- Corollary: Let $C \subset \mathbb{R}$. For r.v. X, define $1_C(X) \equiv 1\{X \in C\}$. Then, $\mathbb{E}[1_C(X)] = \mathbb{P}(X \in C)$
- Dice roll: X is the number on the face
 - Let $C \equiv \{2, 3, 4, 5\}$
 - $\mathbb{P}(X \in C) = 2/3$
 - $\mathbb{E}[1_C(X)] = 1 \times (4 \times 1/6) + 0 \times (2 \times 1/6) = 2/3$
- Linearity: Let X_1, X_2 be r.v.s. Then, $\mathbb{E}[aX_1 + bX_2 + c] = a\mathbb{E}[X_1] + b\mathbb{E}[X_2] + c$
- Binomial expectation:
 - By definition of expactation,

$$\mathbb{E}[X] = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} = np \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x-1} (1-p)^{n-x} = np$$
• Binom (n,p) is the distribution of $\sum_{i=1}^{n} X_{i}$ where $X_{i} \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(p)$

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = np$$

Random Vectors

• Expectation of random vector: For a random vector X, its expectation is defined as

$$\mathbb{E}[X] \equiv (\mathbb{E}[X_1], \dots, \mathbb{E}[X_n])$$

where the expectation of X_i is over its marginal distribution

- Multinomial distribution $X \sim Multi(n, p)$:
 - Marginal distribution of X_1 is Binomial:

$$\mathbb{P}(X_1 = x_1) = \sum_{x_2 \dots x_K} \frac{n!}{x_1! \dots x_K!} p_1^{x_1} \dots p_K^{x_K}$$

$$= \frac{n!}{x_1! (n - x_1)!} p_1^{x_1} \sum_{x_2 \dots x_K} \frac{(n - x_1)!}{x_2! \dots x_K!} p_2^{x_2} \dots p_K^{x_K}$$

$$= \frac{n!}{x_1! (n - x_1)!} p_1^{x_1} (1 - p_1)^{n - x_1}$$

$$\mathbb{E}[X] = (np_1, \dots, np_K)$$

Functions and Product

• Expectation of functions of r.v.: Let X be a r.v. and $g : \mathbb{R} \to \mathbb{R}$. Then,

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x} g(x) f_X(x) & (X \text{ discrete}) \\ \int_{x} g(x) f_X(x) dx & (X \text{ continuous}) \end{cases}$$

Proof. Directly follows from the fact that for any $C \subset \mathbb{R}$, $\mathbb{P}(g(X) \in C) = \mathbb{P}(X \in \{x \in \mathbb{R} \mid g(x) \in C\})$

- X follows a Geometric distribution, $X \sim \text{Geom}(p)$:
 - $f_X(x) = (1-p)^{x-1}p$, for x = 1, 2, ...
 - St. Petersburg paradox: $g(x) \equiv 2^x \Rightarrow \mathbb{E}[g(X)] = \infty$ if p = 1/2
 - 2 $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ in general: $\mathbb{E}[X] = 2$
- Lemma: Let X be a discrete r.v. whose support is the non-negative integers. Then, $\mathbb{E}[X] = \sum_{x=1}^{\infty} \mathbb{P}(X \ge x)$
- Product of independent r.v.s: Let X_i , i = 1, ..., n are independent. Then, $\mathbb{E}[\prod_{i=1}^n X_n] = \prod_{i=1}^n \mathbb{E}[X_i]$
- $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(p) \Rightarrow \mathbb{P}(X_1 = 1, \dots, X_n = 1) = p^n$

Inequalities of Expectation

- If $X_1 \le X_2$ with probability 1, i.e., $X_1(\omega) \le X_2(\omega)$ for all $\omega \in \Omega$, then $\mathbb{E}[X_1] \le \mathbb{E}[X_2]$
- If $a \le X \le b$ with probability 1, i.e., $a \le X(\omega) \le b$ for all $\omega \in \Omega$, then $a \le \mathbb{E}[X] \le b$
- Jensen's inequality: Let $g : \mathbb{R} \to \mathbb{R}$ be a concave (convex) function. Then, for a random vector X, $\mathbb{E}[g(X)] \leq (\geq)g(\mathbb{E}[X])$
- Concave function: A function $g: \mathbb{R}^n \to \mathbb{R}$ is concave if and only if for every $a \in (0,1)$, $g\big(a\mathbf{x} + (1-a)\mathbf{y}\big) \geq ag(\mathbf{x}) + (1-a)g(\mathbf{y})$

for any $x, y \in \mathbb{R}^n$

• Logarithm is common in statistics: $\mathbb{E}[\log(X)] < \log(\mathbb{E}[X])$

Moments and Variance

- Moments of an r.v.: For an r.v. X and a positive integer k, $\mathbb{E}[X^k]$ is called the kth moment of X
- Existence of moments: If $\mathbb{E}[X^k]$ exists, $\mathbb{E}[X^l]$ exists for any l < k
- Central moments: $\mathbb{E}[(X \mathbb{E}[X])^k]$ is called the kth central moment or the kth moment of X about the mean
- If the kth moment exists, the lth central moment exists for $l \le k$
- Variance: The second centeral moment of X is called the variance of X, denoted by $\mathbb{V}(X) \equiv \mathbb{E}[(X \mathbb{E}[X])^2]$
- Variance and moments: $\mathbb{V}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- $\mathbb{V}(X) \geq 0$, with equality if and only if $\mathbb{P}(X = c) = 1$ for some c
- $Y = aX + b \Rightarrow \mathbb{V}(Y) = a^2 \mathbb{V}(X)$
- Variance of Bern(p): $\mathbb{E}[X^2] (\mathbb{E}[X])^2 = p p^2 = p(1-p)$

• Covariance: For r.v.s X_1 and X_2 , the covariance of X_1 and X_2 , denoted by $Cov(X_1, X_2)$, is defined as:

$$Cov(X_1, X_2) \equiv \mathbb{E}[(X_1 - \mathbb{E}[X_1])(X_2 - \mathbb{E}[X_2])]$$

- Analogously to the variance, $Cov(X_1, X_2) = \mathbb{E}[X_1 X_2] \mathbb{E}[X_1] \mathbb{E}[X_2]$
- Correlation: The correlation of X_1 and X_2 , denoted by $\rho(X_1, X_2)$, is defined as:

$$\rho(X_1, X_2) \equiv \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\mathbb{V}(X_1)\mathbb{V}(X_2)}}$$

- $\rho(X_1, X_2) = \text{Cov}\left((X_1 \mathbb{E}[X_1]) / \sqrt{\mathbb{V}(X_1)}, (X_2 \mathbb{E}[X_2]) / \sqrt{\mathbb{V}(X_2)}\right)$
- Covariance depends on the scale of r.v.s, but $|\rho(X_1, X_2)| \leq 1$
- X_1 and X_2 are uncorrelated if and only if $Cov(X_1, X_2) = 0$
- X_1 and X_2 are independent $\Rightarrow X_1$ and X_2 are uncorrelated
- The converse does not necessarily hold:
 - $U \sim \text{Unif}(0, 1), X_1 = \cos 2\pi U \text{ and } X_2 = \sin 2\pi U$
 - Clearly, X_1 and X_2 are not independent, but $Cov(X_1, X_2) = 0$
- Covariance and correlation indicate *linear* relationship b/w r.v.s

Variance-Covariance Matrix

- Trivially, $\mathbb{V}(X) = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])] = \mathsf{Cov}(X, X)$
- Variance-covariance Matrix: For r.v.s X_1, \ldots, X_n , we define the (variance-)covariance matrix, denoted by $\mathbb{V}(X)$ or Σ_X , as

$$\Sigma_{\mathsf{X}} \equiv \left(\begin{array}{cccc} \mathbb{V}(X_1) & \mathsf{Cov}(X_1, X_2) & \cdots & \mathsf{Cov}(X_1, X_n) \\ \mathsf{Cov}(X_2, X_1) & \mathbb{V}(X_2) & \cdots & \mathsf{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(X_n, X_1) & \mathsf{Cov}(X_n, X_2) & \cdots & \mathbb{V}(X_n) \end{array} \right)$$

- In vector notation, $\Sigma_X = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^{\top}]$
- Σ_X is positive semi-definite
- Σ_X is positive definite unless some r.v.s are constant \Rightarrow invertible
- If X_1, \ldots, X_n are i.i.d., Σ_X is diagonal
- $\mathbb{V}\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 \mathbb{V}(X_i) + 2 \sum_{i < i} a_i a_i \operatorname{Cov}(X_i, X_i)$
- X_i s are uncorrelated, $\mathbb{V}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{V}(X_i)$
- If X_1, \ldots, X_n are i.i.d., $\mathbb{V}\left(\sum_{i=1}^n X_i\right) = \operatorname{tr}(\Sigma_X)$

Conditional Expectation

- Summarizing prediction of *Y* using *X*:
 - Given X = x, Y is predicted by its conditional distribution
 - Conditional expectation is used to summarize the prediction
- Conditional expectation: The conditional expectation of Y given X, denoted by $\mathbb{E}[Y \mid X]$, is the expectation of the conditional distribution of Y given X
- Conditional moments are defined with expectation replaced by conditional expectation, e.g. $\mathbb{V}(Y \mid X) \equiv \mathbb{E}[(Y \mathbb{E}[Y \mid X])^2 \mid X]$
- Conditional expectation is an r.v.:
 - $\mathbb{E}[Y \mid X]$ is a function of X
 - $\mathbb{E}[Y \mid X]$ has a distribution defined by F_X
- Conditional expectation is expectation:
 - For any fixed x_1 , $\mathbb{E}[Y \mid X = x_1]$ is expectation
 - All the properties of expectation hold for $\mathbb{E}[Y \mid X = x_1]$
- Uniform-Binomial example:

$$\mathbb{E}[X_1 \mid X_2] = \int_0^1 x_1 \frac{x_1^{X_2} (1 - x_1)^{n - X_2}}{B(X_2 + 1, n - X_2 + 1)} dx_1 = \frac{X_2 + 1}{n + 2}$$

Properties of Conditional Expectation

- Law of iterated expectations: Let X and Y be r.v.s. Then, $\mathbb{E}\left[\mathbb{E}[g(X,Y)\mid X]\right] = \mathbb{E}[g(X,Y)]$ for any function g.
- Law of total variance: Let X and Y be r.v.s. Then, $\mathbb{E}\left[\mathbb{V}(Y\mid X)\right] + \mathbb{V}\left(\mathbb{E}[Y\mid X]\right) = \mathbb{V}(Y)$
- Uniform-Binomial example:

$$\mathbb{E}[X_2] = \mathbb{E}[nX_1] = \frac{n}{2}$$

$$\mathbb{V}[X_2] = \mathbb{E}[nX_1(1 - X_1)] + \mathbb{V}(nX_1) = \frac{n}{6} + \frac{n^2}{12}$$

• Minimization of expected squared distance (regression): Conditional expectation is the "best" predictor in the sense that $\operatorname*{argmin} \mathbb{E}\left[(Y-c)^2 \mid X \right] = \mathbb{E}[Y \mid X]$

Proof.
$$\mathbb{E}\left[(Y-c)^2 \mid X\right] = \mathbb{E}\left[(Y-\mathbb{E}[Y \mid X])^2 \mid X\right] + \underbrace{(\mathbb{E}[Y \mid X]-c)^2}_{=0 \text{ iff } c = \mathbb{E}[Y \mid X]}$$

Standard Gaussian Distribution

- X follows the standard multivariate Gaussian distribution:
 - Joint p.d.f.: For a vector of real numbers $x \equiv x_1 \dots, x_K$,

$$f_{X}(x) = \frac{1}{(2\pi)^{K/2}} e^{-\frac{1}{2}x^{T}x} = \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{k}^{2}}{2}}$$

- Denoted by: $X \sim \mathcal{N}(0, \mathbf{I}_K)$
- X_1, \ldots, X_K are independent
- K = 1: The standard Gaussian (Normal) distribution $\mathcal{N}(0, 1)$
- Box-Muller Transfromation: Let U_1 and U_2 be independent uniform r.v.s. Define

$$X_1 = \sqrt{-2\log U_1} \cos(2\pi U_2),$$

$$X_2 = \sqrt{-2\log U_1} \sin(2\pi U_2).$$

Then,

$$X \sim \mathcal{N}(0, \mathbf{I}_2)$$

• Random number generator for the Gaussian distributions

Change of Variables

- **BH**, 8.1; **DS**, p. 172-3, 182-6
- Change of variables: Let X be a continuous random vector of length K and Y $\equiv g(X)$ where $g: \mathbb{R}^K \to \mathbb{R}^K$ is one-to-one and differentiable. Then, the p.d.f. of Y is

$$f_Y(y) = f_X\left(g^{-1}(y)\right)\left|\det\left(\mathbf{J}(y)\right)\right|$$

where $g^{-1}: \mathbb{R}^K \to \mathbb{R}^K$ is the inverse function of g.

 $\mathbf{J}(\cdot)$ is the Jacobian (matrix) of g^{-1} defined as:

$$\mathbf{J}(y) = \begin{pmatrix} \frac{\partial g_1^{-1}}{\partial y_1}(y) & \cdots & \frac{\partial g_1^{-1}}{\partial y_K}(y) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_K^{-1}}{\partial y_1}(y) & \cdots & \frac{\partial g_K^{-1}}{\partial y_K}(y) \end{pmatrix}$$

where $g_i^{-1}(y)$ is the *i*th element of $g^{-1}(y)$.

Univariate Change of Variables

• Univariate change of variables: Let X be a continuous r.v. and $Y \equiv g(X)$ where $g: \mathbb{R} \to \mathbb{R}$ is one-to-one and differentiable. Then, the p.d.f. of Y is

$$f_Y(y) = f_X\left(g^{-1}(y)\right) \left| \frac{dg^{-1}}{dy}(y) \right|$$

- Proof.
 - If g(x) is one-to-one and differentiable, it is either strictly increasing or decreasing.
 - 2 First, we assume that it is strictly increasing. Then, the c.d.f. of Y is

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}\left(X \le g^{-1}(y)\right) = F_X\left(g^{-1}(y)\right)$$

3 So the p.d.f. of Y is

$$\begin{split} f_Y(y) &= \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X\left(g^{-1}(y)\right) \\ &= f_X\left(g^{-1}(y)\right) \frac{dg^{-1}}{dy}(y) \quad (\because \text{ chain rule}) \end{split}$$

Proof, cont.

- **4** Because g is strictly increasing, we have $\frac{dg^{-1}}{dy}(y) > 0$ so that $\frac{dg^{-1}}{dy}(y) = \left| \frac{dg^{-1}}{dy}(y) \right|$.
- Second, we consider the case in which *g* is strictly decreasing. Then, the c.d.f. of *Y* is

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \ge g^{-1}(y))$$

= 1 - \mathbb{P}(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y))

Note that the inequality is flipped because g is strictly decreasing.

So the p.d.f. of Y is

$$f_{Y}(y) = \frac{d}{dy} F_{Y}(y) = \frac{d}{dy} \left(1 - F_{X} \left(g^{-1}(y) \right) \right)$$
$$= -f_{X} \left(g^{-1}(y) \right) \frac{dg^{-1}}{dy}(y) = f_{X} \left(g^{-1}(y) \right) \left(-\frac{dg^{-1}}{dy}(y) \right)$$

9 Because g is strictly decreasing, we have $\frac{dg^{-1}}{dy}(y) < 0$ so that $-\frac{dg^{-1}}{dy}(y) = \left|\frac{dg^{-1}}{dy}(y)\right|$.

Box-Muller Transformation

• Inverse of the Box-Muller transformation:

The determinant of the Jacobian is:

$$\det (\mathbf{J}(\mathsf{X})) = \det \begin{pmatrix} \frac{\partial U_1}{\partial X_1} & \frac{\partial U_1}{\partial X_2} \\ \frac{\partial U_2}{\partial X_1} & \frac{\partial U_2}{\partial X_2} \end{pmatrix}$$

$$= \det \begin{pmatrix} -X_1 e^{-(X_1^2 + X_2^2)/2} & -X_2 e^{-(X_1^2 + X_2^2)/2} \\ \frac{-X_2/X_1^2}{2\pi (1 + (X_2/X_1)^2)} & \frac{1/X_1}{2\pi (1 + (X_2/X_1)^2)} \end{pmatrix}$$

$$= \frac{-1 - X_2^2/X_1^2}{2\pi (1 + (X_2/X_1)^2)} e^{-(X_1^2 + X_2^2)/2}$$

$$= -\frac{1}{\sqrt{2\pi}} e^{-X_1^2/2} \times \frac{1}{\sqrt{2\pi}} e^{-X_2^2/2}$$

Linear Transformation of Gaussian

Linear transformation: Let X be a K-dimensional random vector.
 A linear transformation of X is

$$Y = a + AX$$

where A is a matrix with K columns

• Multivariate Gaussian: Let X follow the standard multivariate Gaussian distribution. Then, for a full rank $K \times K$ matrix A and an K dimensional vector μ , $Y = \mu + AX$ has a p.d.f.:

$$f_{Y}(y) = \frac{1}{(2\pi)^{K/2} \det(\Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$$

where $\Sigma = \mathbf{A}\mathbf{A}^{\top}$

Proof.

$$X = \mathbf{A}^{-1}(Y - \mu)$$
$$I = \mathbf{A}^{-1}$$

- $\mathbb{E}[Y] = \mu$ and $\mathbb{V}(Y) = \Sigma$
- Uncorrelated ⇔ (pairwise) independent

Conditional and Marginal of Gaussian

• Let $(X_1, X_2)^{\top} \sim \mathcal{N}(\mu, \Sigma)$. The joint p.d.f. is:

$$f_{(X_{1},X_{2})}(x_{1},x_{2}) = \frac{e^{-\frac{1}{2(1-\rho^{2})}\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} - 2\rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right) + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}$$

$$= \frac{e^{-\frac{1}{2(1-\rho^{2})\sigma_{2}^{2}}\left(x_{2}-\mu_{2}-\rho\sigma_{2}\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}}}{\sqrt{2\pi}\sigma_{2}\sqrt{1-\rho^{2}}}\underbrace{e^{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}}}_{f_{X_{2}|X_{1}}(x_{2}|X_{1})}\underbrace{e^{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}}}_{f_{X_{1}}(x_{1})}$$

- $X_1 \sim \mathcal{N}\left(\mu_1, \sigma_1^2\right)$, $X_2 \mid X_1 \sim \mathcal{N}\left(\mu_2 + \frac{\rho\sigma_2}{\sigma_1}(X_1 \mu_1), (1 \rho^2)\sigma_2^2\right)$
- Both marginal and conditional distributions are Gaussian
- Regression $\mathbb{E}[X_2 \mid X_1] = \mu_2 + \frac{\rho \sigma_2}{\sigma_1} (X_1 \mu_1)$ is linear in $X_1 \rightsquigarrow$ linear regression

Moment Generating Function

• Moment generating function: Let X be an r.v. The moment generating function (m.g.f.) of X, denoted by $M_X(t)$, is defined as $M_X(t) = \mathbb{E}[e^{tX}]$ if $\mathbb{E}[e^{tX}]$ exists for all $t \in (-s, s)$ for some s > 0.

• If m.g.f. is given, higher order moments can be easily computed:

$$\left. \frac{d^k}{dt^k} M_X(t) \right|_{t=0} = \mathbb{E}[X^k e^{0X}] = \mathbb{E}[X^k], \text{ for } k = 1, 2, \dots$$

• If
$$X_1, \ldots, X_n$$
 are independent, the m.g.f. of $Y \equiv \sum_{i=1}^n X_i$ is
$$M_Y(t) = \mathbb{E}[e^{t\sum_{i=1}^n X_i}] = \mathbb{E}[\prod_{i=1}^n e^{tX_i}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] = \prod_{i=1}^n M_{X_i}(t)$$

• M.g.f. uniquely determines the distribution: If r.v.s X_1 and X_2 have m.g.f.s and $M_{X_1}(t) = M_{X_2}(t)$ for all $t \in (-a,a)$ for some a > 0, then c.d.f.s $F_{X_1}(x) = F_{X_2}(x)$ for all x

M.g.f. of Gamma Distributions

- Square of a Gaussian r.v. follows a Gamma distribution (PS9, Q4)
- *X* follows a Gamma distribution:
 - P.d.f.:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 for $x > 0$

- Parameters: Shape a > 0 and rate $\beta > 0$
- Alternative parameterization: Shape a>0 and scale $\theta=1/\beta$
- Gamma function: $\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$
- Denoted by: $X \sim Ga(\alpha, \beta)$
- M.g.f. of the Gamma distribution:

$$\mathbb{E}[e^{tX}] = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_0^{\infty} x^{\alpha - 1} e^{-(\beta - t)x} dx = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha)}{(\beta - t)^{\alpha}} = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$

- Expectation and variance: $\mathbb{E}[X] = \alpha/\beta$, $\mathbb{V}[X] = \alpha/\beta^2$
- Sum of independent Gamma r.v.s $X_i \sim Ga(\alpha_i, \beta), i = 1, ..., n$:

$$M_{\sum_{i=1}^{n} X_{i}}(t) = \prod_{i=1}^{n} M_{X_{i}}(t) = \prod_{i=1}^{n} \left(\frac{\beta}{\beta - t}\right)^{\alpha_{i}} = \left(\frac{\beta}{\beta - t}\right)^{\sum_{i=1}^{n} \alpha_{i}}$$

$$\Rightarrow \sum_{i=1}^{n} X_{i} \sim \operatorname{Ga}(\sum_{i=1}^{n} \alpha_{i}, \beta)$$

Sample Moments

- Let $X_1, ..., X_n$ is a random sample from a distribution F_X
- In other words, X_1, \ldots, X_n are data
- Sample moments: Let X_1, \ldots, X_n be i.i.d. r.v.s. The kth sample moment, denoted by M_k , is defined as

$$M_k \equiv \frac{1}{n} \sum_{i=1}^n X_i^k$$

- Why this is important: We never observe F_X , hence neither $\mathbb{E}[X^k]$
- We use M_k as an estimator—a function of r.v.s, therefore r.v.
- Mean and variance of M_k for any F_X :

$$\mathbb{E}[M_k] = \mathbb{E}[X^k], \quad \mathbb{V}(M_k) = \frac{\mathbb{V}(X^k)}{n}$$

• In particular, for sample mean $\overline{X} \equiv \sum_{i=1}^{n} X_i/n$,

$$\mathbb{E}[\overline{X}] = \mathbb{E}[X], \quad \mathbb{V}(\overline{X}) = \frac{\mathbb{V}(X)}{n}$$

• If we specify F_{X_i} we can derive the distribution of M_k

Sample Mean of Gaussian R.v.

- We want to find the distribution of the sum of independent r.v.s
 → use m.g.f.!
- M.g.f. of the Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$:

$$\begin{split} \mathbb{E}[e^{tX}] &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2 + tx} dx \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2} \left\{ x - (\mu + \sigma^2 t) \right\}^2 + \mu t + \frac{1}{2}\sigma^2 t^2} dx \\ &= e^{\mu t + \frac{1}{2}\sigma^2 t^2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2} \left\{ x - (\mu + \sigma^2 t) \right\}^2} dx = e^{\mu t + \frac{1}{2}\sigma^2 t^2} \end{split}$$

• M.g.f. of the sample mean:

$$\begin{split} \mathbb{E}[e^{t\overline{X}}] &= \prod_{i=1}^n \mathbb{E}[e^{\frac{t}{n}X}] = e^{n\left\{\mu \frac{t}{n} + \frac{1}{2}\sigma^2 \left(\frac{t}{n}\right)^2\right\}} = e^{\mu t + \frac{1}{2}\left(\frac{\sigma^2}{n}\right)t^2} \\ \Rightarrow \overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \end{split}$$