Compito di Laboratorio di Fisica I 1 Febbraio 2016

(1.5) 1. Per misurare l'accelerazione di gravità *g* si studia il moto periodico di un pendolo semplice. Nel limite delle piccole oscillazioni e nell'ipotesi di poter trascurare gli effetti di attrito dell'aria il periodo del moto *T* è collegato al modulo dell'accelerazione di gravità *g* ed alla lunghezza del pendolo *l* dalla relazione:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Il periodo T viene misurato con un sistema elettronico (fotocellula), con un errore di sensibilità di $10 \, ms$. La lunghezza del pendolo l viene invece misurata con una riga graduata, con errore di sensibilità di $1 \, mm$. Supponendo che la lunghezza del pendolo sia $l \sim 250 \, cm$, con che errore relativo ci si aspetta di poter misurare g?

(3.0) 2. Due grandezze fisiche y e x sono legate tra di loro dalla relazione: $y = A + B \cdot x^2$

I risultati di alcune misure delle grandezze y e x sono i seguenti (l'incertezza relativa sulla misura di x è $1 \cdot 10^{-5}$):

x(g)	1	3	4	5	8	9	
y (N)	55	76	$8 \cdot 10^{1}$	120	198	256	
$\Delta y(N)$	12	16	$3 \cdot 10^{1}$	12	19	10	

Determinare graficamente A e B, dando anche una stima della loro incertezza.

(0.5) 3. Riportare in maniera corretta, nella forma $z \pm \Delta z$, i risultati e i corrispondenti errori delle seguenti misure della grandezza fisica z (Δz indica l'incertezza di misura), indicando anche il numero di cifre significative:

z	$134 \cdot 10^{-3}$	$276702 \cdot 10^4$	0.640459	0.0000149002
Δz	0.0256	$910 \cdot 10^6$	$55.12 \cdot 10^{-6}$	$87.22 \cdot 10^{-7}$

4. Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di 10⁻²:

(1.5) $3 \cdot \sin(\sqrt{x}) \text{ in } x = 4.0 \cdot 10^{-2} \ rad \qquad \frac{1}{1 + \sqrt[2]{x}} \text{ in } x = 9.03 \cdot 10^{-4}$

(0.5) 5. Il diametro d di un cilindro viene misurato più volte con un compasso di Palmer, che ha errore di sensibilità di 0.01 mm. I risultati ottenuti, espressi in mm, sono i seguenti:

23.31 23.34 23.30 23.33 23.31 23.33

In seguito si è misurato l'offset dello strumento, ottenendo i seguenti valori (espressi in mm):

0.02 0.03 0.02 0.02

Si determini la migliore stima del valore vero e dell'incertezza di misura del diametro d.

(1.0) 6. Determinare il risultato finale ottenibile dalle 4 misure riportate, sia nel caso in cui le incertezze corrispondono agli scarti massimi delle misure, sia in quello di deviazioni standard:

$$3.28\pm0.07$$
; 3.29 ± 0.01 ; 3.92 ± 0.09 ; 3.3 ± 0.1

(2.0) 7. La gittata di un proiettile viene misurata più volte con un metro a nastro, che ha un errore di sensibilità di 1 cm, ottenendo le seguenti misure (espresse in m, e già ordinate in ordine crescente).

78.00	78.05	78.07	78.08	78.09	78.09	78.09	78.10	78.11	78.11
78.14	78.16	78.16	78.17	78.17	78.18	78.18	78.19	78.20	78.20
78.20	78.20	78.22	78.22	78.23	78.24	78.24	78.27	78.29	78.30
78.30	78.30	78.34	78.36	78.37	78.39	78.39			

- a. Utilizzando un opportuno numero di classi si disegni su carta millimetrata l'istogramma ad intervalli della distribuzione delle misure, riportando sull'asse delle ordinate il numero di misure nell'intervallo n_k ;
- b. Si determini la miglior stima del valore centrale della distribuzione di Gauss che meglio approssima i dati sperimentali.

Tempo a disposizione: 2 ore