I KOLOKVIJUM

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Odrediti $\lim_{n\to\infty} a_n$, ako je $a_n = \frac{1}{\sqrt[3]{8n^9+1}} + \frac{1}{\sqrt[3]{8n^9+2}} + \frac{1}{\sqrt[3]{8n^9+3}} + \dots + \frac{1}{\sqrt[3]{8n^9+4n^3}}$;
 - b) U zavisnosti od realnih parametara a, b i $c, a \geq 0$ odrediti kada će za niz $\{d_n\}$ sa opštim članom

$$d_n = n - 3 - \sqrt{an^2 + bn + c}$$

važiti da je

- 1) $\lim_{n \to \infty} d_n = \infty$, 2) $\lim_{n \to \infty} d_n = -\infty$, 3) $\lim_{n \to \infty} d_n = 0$, 4) $\lim_{n \to \infty} d_n = k$, $k \neq 0$.
- 2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = |x + 1|e^{-\frac{1}{x}}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti lokalne ekstremne vrednosti za funkciju $z = \ln((x+y)(3x^2+3y^2-2))$.

II KOLOKVIJUM

- 1. (15 poena) INTEGRALI
 - a) Izračunati $\int (\frac{3x^2 + 2x + 3}{x^3 + x^2 + x + 1} + \frac{\sin 2x}{\sqrt{-\sin^2 x + 2\sin x}}) dx$.
 - b) Odrediti površinu ravnog lika ograničenog krivom $y=\frac{x^2}{\sqrt[3]{x^3-4}}$ i pravama $y=0,\,x=-1$ i x=0.
- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Odrediti opšte rešenje diferencijalne jednačine $dx = \frac{x+y^3}{y}dy$.
 - b) Odrediti opšte rešenje jednačine

$$x^3y''' + 3x^2y'' + 2xy' = x + \ln x.$$