DUALE HOCHSCHULE BADEN-WÜRTTEMBERG

ADVANCED SOFTWARE ENGINEERING 2

DOKUMENTATION

PIC-Simulator

David Eymann, Tom Wagner

Dozent
Daniel LINDNER

Inhaltsverzeichnis

1	Projektbeschreibung				
	1.1	Einrichtung	2		
2		icklung	9		
	2.1	Clean Architecture	4		
	2.2	Refactoring	4		
	2.3	Unit Tests	4		
		2.3.1 Einsatz von Mocks	4		
		2.3.2 ATRIP-Regeln	4		
	2.4	Programming Principles	4		
		2.4.1 SOLID	4		
		2.4.2 GRASP	4		
		2.4.3 DRY – Don't Repeat Yourself	4		

Abbildungsverzeichnis

Listings

Kapitel 1

Projektbeschreibung

Als Basis für diese Arbeit dient ein PIC-Simulator, PIC steht hierbei für ein Mikrocontroller von Microchip Technology¹. Der Simulator ist in C-# geschrieben und mit Windows Forms Erhält er seine Grafische Oberfläche. **Das für diese Abgabe relevante Repository befindet sich unter:**

https://github.com/tomwgnr/ASE-PIC_Simulator

1.1 Einrichtung

¹https://en.wikipedia.org/wiki/Microchip_Technology

Kapitel 2

Entwicklung

2.1	Clean	Architecture
4 •1	Cicaii	

- Refactoring 2.2
- Unit Tests 2.3
- 2.3.1 Einsatz von Mocks
- ATRIP-Regeln 2.3.2

Automatic

Thorough

Repeatable

Independent

Professional

2.4 **Programming Principles**

2.4.1 SOLID

Single responsibility principle

Open/Closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

2.4.2 **GRASP**

High Cohesion

4