Introduction to R Programming Data Wrangling

Pedro Fonseca

20 Abril 2020

Built in datasets

R has many built in datasets. For a complete list see:

```
library(help = "datasets")
```

In this lecture we will use some of these datasets, namely:

- airquality
- USArrests

For information about a specific dataset see, for example:

?airquality

The head() and tails() functions

head() shows the first rows of a dataframe. tail() shows the last rows. Both head() and tails() print six rows by default.

```
nrow(airquality)
```

```
## [1] 153
```

head(airquality)

```
Ozone Solar.R Wind Temp Month Day
##
## 1
       41
              190 7.4
                        67
                               5
                                   1
       36
              118 8.0 72
                               5
                                   2
## 2
       12
              149 12.6 74
                               5
                                   3
## 3
       18
              313 11.5
                        62
                               5
                                   4
## 4
                               5
                                   5
## 5
       NΑ
               NA 14.3
                        56
       28
               NA 14.9
                        66
                               5
                                   6
## 6
```

The head() and tails() functions

```
head(airquality, n = 2)

## Ozone Solar.R Wind Temp Month Day

## 1 41 190 7.4 67 5 1

## 2 36 118 8.0 72 5 2

tail(airquality, n = 3)
```

```
## Ozone Solar.R Wind Temp Month Day
## 151 14 191 14.3 75 9 28
## 152 18 131 8.0 76 9 29
## 153 20 223 11.5 68 9 30
```

Built in constants

R also provides some built in constants and vectors:

```
head(letters)
## [1] "a" "b" "c" "d" "e" "f"
tail(letters)
## [1] "u" "v" "w" "x" "v" "z"
head(LETTERS)
## [1] "A" "B" "C" "D" "E" "F"
tail(LETTERS)
## [1] "U" "V" "W" "X" "Y" "Z"
```

For a complete list of built in constants see ?Constants

subset() is a generic function that can be used to subset data frames using logical condictions.

```
df <- data.frame(
  name = c("Yu","Matt","Jane","Tim", "Dave", "Marie"),
  inc = c(6, 1, 2, NA, 5, 9),
  gender = factor(c("F", "M","F","M", "M", "F")),
  state = factor(c("AZ","KS", NA, "CA","FL", "MA")))

df</pre>
```

```
## name inc gender state
## 1 Yu 6 F AZ
## 2 Matt 1 M KS
## 3 Jane 2 F <NA>
## 4 Tim NA M CA
## 5 Dave 5 M FL
## 6 Marie 9 F MA
```

```
subset(df, inc > 4)
    name inc gender state
##
## 1 Yu 6 F
                   ΑZ
## 5 Dave 5 M FL
## 6 Marie 9 F MA
subset(df, name == "Marie")
## name inc gender state
## 6 Marie 9 F
                    MA
subset(df, inc > 4 & name != "Marie")
##
    name inc gender state
## 1 Yu 6 F
                   ΑZ
## 5 Dave 5 M FL
```

```
subset(df, inc > 4 & name != "Marie" & gender == "F")

## name inc gender state
## 1 Yu 6 F AZ

subset(df, inc >= 2 & state %in% c("MA", "FL", "CA"))

## name inc gender state
## 5 Dave 5 M FL
## 6 Marie 9 F MA
```

You can use the select argument to choose columns:

```
subset(df, inc == 5, select = c(state, name))
## state name
## 5 FI. Dave
subset(df, inc == 5, select = c(1, 4))
## name state
## 5 Dave FL
subset(df, inc == 5, select = inc:state)
##
    inc gender state
## 5 5
             M
                 FI.
```

And also to drop columns:

```
subset(df, inc == 5, select = -c(state, name))
## inc gender
## 5 5 M
subset(df, inc == 5, select = -c(state, name, gender))
## inc
## 5 5
```

6 Marie

You can use subset() to filter out mising data with respect to specific variables:

```
subset(df, !is.na(state), select = c(name, inc))

##     name inc
## 1     Yu      6
## 2     Matt      1
## 4     Tim     NA
## 5     Dave      5
```

```
subset(df, !is.na(inc) & !is.na(state),
    select = c(name, inc, state))
```

```
## name inc state
## 1 Yu 6 AZ
## 2 Matt 1 KS
## 5 Dave 5 FL
## 6 Marie 9 MA
```

subset():

- ▶ Also works with vectors, matrices and lists.
- Doesn't drop dimensions (by default).

In the logical expressions that indicate which rows to keep, missing values are taken as FALSE.

Modifying columns with transform()

transform() can be used to modify the columns of a data frame:

```
transform(df, state = paste0(state, "-US"))
```

```
##
     name inc gender state
      Yıı
## 1
           6
                  F AZ-US
                  M KS-US
## 2
    Matt 1
## 3 Jane 2
                  F NA-US
          NA M CA-US
## 4
    Tim
    Dave 5 M FL-US
## 5
## 6 Marie
                  F MA-US
```

Modifying columns with transform()

Let's change how the levels of the gender factor are displayed:

```
transform(df, gender = factor(
  gender, labels = c("Female", "Male")))
```

```
## name inc gender state
## 1 Yu 6 Female AZ
## 2 Matt 1 Male KS
## 3 Jane 2 Female <NA>
## 4 Tim NA Male CA
## 5 Dave 5 Male FL
## 6 Marie 9 Female MA
```

Modifying columns with transform()

Now let's express inc in euros:

```
##
          inc gender state
     name
## 1
    Yu 6000€
                         AZ
## 2 Matt 1000€
                    M KS
                    F <NA>
## 3 Jane 2000€
## 4
    Tim <NA>
                    M
                        CA
## 5 Dave 5000€
                   M FL
## 6 Marie 9000€
                    F
                         MA
```

Create columns with transform()

Transform() can also be used to create new variables.

Let's create a variable with income in the logarithmic scale:

```
transform(df, logInc = log(inc))
```

```
##
     name inc gender state
                             logInc
## 1
       Y11
            6
                   F
                        AZ 1.7917595
## 2
    Matt 1
                   M
                        KS 0.0000000
                   F
## 3
    Jane 2
                     <NA> 0.6931472
## 4
    Tim
           NΑ
                   M
                        CA
                                  NA
## 5
     Dave
            5
                   M
                        FL 1.6094379
  6 Marie
            9
                   F
                        MA 2.1972246
```

Create columns with transform()

Now lets standardize the income column:

```
standardize <- function(x){
  z <- (x-mean(x, na.rm = TRUE))/sd(x, na.rm = TRUE)
  round(z, 2)
}</pre>
```

```
transform(df, norm_inc = standardize(inc))
```

```
name inc gender state norm_inc
##
## 1
   Yu
         6
              F
                 AZ 0.44
                     -1.12
## 2 Matt 1
             M KS
## 3 Jane 2 F <NA> -0.81
## 4 Tim NA
             M CA
                       NΑ
## 5 Dave 5 M FL 0.12
## 6 Marie 9
             F MA 1.37
```

The USArrests dataset

Now consider the USArrests dataset, with arrests per 100.000 residentes in the US for murder, assault and rape.

head(USArrests)

##		${\tt Murder}$	${\tt Assault}$	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	${\tt California}$	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

The USArrests dataset

```
USArrests_short <- USArrests[1:4, -3]
USArrests_short
```

```
## Murder Assault Rape
## Alabama 13.2 236 21.2
## Alaska 10.0 263 44.5
## Arizona 8.1 294 31.0
## Arkansas 8.8 190 19.5
```

Row and column sums

```
colSums(USArrests_short)
##
   Murder Assault
                     Rape
                    116.2
##
     40.1
            983.0
rowSums(USArrests short)
##
   Alabama
             Alaska Arizona Arkansas
     270.4
           317.5
                       333.1
                                218.3
##
```

Row and column means

```
colMeans(USArrests_short)

## Murder Assault Rape
## 10.025 245.750 29.050
rowMeans(USArrests_short)
```

```
## Alabama Alaska Arizona Arkansas
## 90.13333 105.83333 111.03333 72.76667
```

To collapse data frames across rows or columns using functions other than the sum and the mean we can use apply():

```
apply(X, MARGIN, FUN, ...)
```

- X is a data frame
- ► MARGIN = 1 for rows, MARGIN = 2 for columns
- FUN is a function
- ... are optional arguments to pass to FUN

```
Apply functions over the columns of USArrests short:
apply(USArrests_short, 2, mean)
## Murder Assault
                     Rape
## 10.025 245.750 29.050
apply(USArrests short, 2, median)
## Murder Assault
                     Rape
##
      9.4 249.5 26.1
apply(USArrests_short, 2, sd)
##
     Murder Assault
                           Rape
   2.257395 44.078528 11.479402
##
```

##

```
Apply functions the rows of USArrests short:
apply(USArrests_short, 1, max)
##
   Alabama Alaska Arizona Arkansas
##
       236
               263
                        294
                                 190
apply(USArrests short, 1, min)
##
   Alabama Alaska Arizona Arkansas
##
      13.2 10.0 8.1 8.8
apply(USArrests_short, 1, var)
```

Alabama Alaska Arizona Arkansas

15973.81 18823.58 25238.70 10336.36

apply() vs for loop

Loop over the columns of USArrests_short:

```
res <- vector()

for(i in 1:ncol(USArrests_short)){
   res[i] <- mean(USArrests_short[[i]], na.rm = TRUE)
   names(res)[i] <- names(USArrests_short)[i]
}
res</pre>
```

```
## Murder Assault Rape
## 10.025 245.750 29.050
```

apply() vs for loop

Loop over the rows of USArrests_short:

```
res <- vector()

for(j in 1:nrow(USArrests_short)){
   res[j] <- max(USArrests_short[j, ],na.rm = TRUE)
   names(res)[j] <- rownames(USArrests_short)[j]
}
res</pre>
```

```
## Alabama Alaska Arizona Arkansas
## 236 263 294 190
```

apply() with ...

Now let's see an example that requires using dot-dot-dot (...).

Try to use apply() to compute the means of the first four columns of the airquality dataset:

head(airquality)

##		Ozone	${\tt Solar.R}$	Wind	Temp	${\tt Month}$	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	5	NA	NA	14.3	56	5	5
##	6	28	NA	14.9	66	5	6

apply() with ...

```
apply(airquality[, 1:4], 2, mean)
               Solar.R
##
       Ozone
                             Wind
                                       Temp
##
          NA
                    NA 9.957516 77.882353
We get NA for the first two columns. Why?
sum(is.na(airquality$0zone))
## [1] 37
sum(is.na(airquality$Solar.R))
## [1] 7
```

```
apply() with ...
```

```
Problem: Some columns have NAs.
```

```
Solution: use ... to pass the na.rm argument to mean():
```

```
apply(airquality[, 1:4], 2, mean, na.rm = TRUE)
```

```
## Ozone Solar.R Wind Temp
## 42.129310 185.931507 9.957516 77.882353
```

```
Syntax: lapply(X, FUN, ...)
```

lapply() is similar to apply() but:

- X is a vector (atomic or list)
- ► There is no MARGINS argument
- Always returns a list

lapply() returns a list of the same length as X, each element of which is the result of applying FUN to the corresponding element of X.

```
lapply(c(1:3), log, base = 10)

## [[1]]
## [1] 0
##
## [[2]]
## [1] 0.30103
##
## [[3]]
## [1] 0.4771213
```

```
A <- matrix(1:10, ncol = 5)
B <- matrix(c(1, 5, 7, -1), ncol = 4)
C <- matrix(letters[1:4], ncol = 2)

my_list <- list(A, B, C)</pre>
```

```
my_list
## [[1]]
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6
                    8 10
##
## [[2]]
## [,1] [,2] [,3] [,4]
## [1,] 1 5 7 -1
##
## [[3]]
## [,1] [,2]
## [1,] "a" "c"
## [2,] "b" "d"
```

##

##

[[2]] [1] 12

Every element of my_list, except the last, contain a numerical matrix. Sum the elements of each of those matrices:

```
lapply(my_list[-3], sum)
## [[1]]
## [1] 55
```

Extract the element in position (1, 2) from each matrix:

```
lapply(my_list,"[", 1, 2)

## [[1]]
## [1] 3
##
## [[2]]
## [1] 5
##
## [[3]]
## [1] "c"
```

Extract the first row from each matrix:

```
lapply(my_list,"[", 1 , )

## [[1]]
## [1] 1 3 5 7 9

##
## [[2]]
## [1] 1 5 7 -1

##
## [[3]]
## [1] "a" "c"
```

Extract the 2nd column from each matrix:

```
lapply(my_list,"[", , 2)

## [[1]]
## [1] 3 4
##
## [[2]]
## [1] 5
##
## [[3]]
## [1] "c" "d"
```

lapply() vs for loop

Extract the 2nd column from each matrix:

```
res <- vector(mode = "list")
for(i in seq_along(my_list)){
 res[[i]] <- my_list[[i]][, 2]
res
## [[1]]
## [1] 3 4
##
## [[2]]
## [1] 5
##
## [[3]]
   [1] "c" "d"
```

The sapply() function:

- ► Works like lapply(), but simplifies the output to the most elementary data structure that is possible.
- Returns vectors or matrices.

```
sapply(my_list[-3], sum)
## [1] 55 12
sapply(my_list,"[", 1, 2)
```

```
## [1] "3" "5" "c"
```

\$ z: int [1:3] 9 9 3

```
set.seed(123)
our list <- list(
 w = 1:6.
 x = sample(1:5, 4, replace = TRUE),
 y = matrix(sample(1:100, 9), nrow = 3),
 z = sample(1:10, 3, replace = TRUE)
str(our list)
## List of 4
## $ w: int [1:6] 1 2 3 4 5 6
## $ x: int [1:4] 3 3 2 2
## $ y: int [1:3, 1:3] 43 14 25 90 91 69 96 57 92
```

```
sapply(our list, max)
## w x y z
## 6 3 96 9
sapply(our_list, min)
## w x y z
## 1 2 14 3
sapply(our_list, class)
##
                   X
## "integer" "integer" "matrix" "integer"
```

How many numbers are there inside each element of our_list? sapply(our_list, length)

```
## w x y z
## 6 4 9 3
```

```
set.seed(123)
our list 2 <- list(</pre>
 w = 1:6,
 x = sample(1:5, 4, replace = TRUE),
 y = airquality
sapply(our_list_2, class)
##
      "integer" "integer" "data.frame"
##
dim(airquality)
## [1] 153 6
```

How many numbers are there inside each element of our_list_2?

The length of a data frame is the number of columns, and hence sapply(our_list_2, length) won't do the trick.

```
our_fun <- function(x){
  if(class(x) == "data.frame"){
    nrow(x) * ncol(x)
  }else{
    length(x)
  }
}</pre>
```

```
## w x y
## 6 4 918
```

sapply() vs for loop

The same but with a for loop:

```
res <- vector()

for(i in seq_along(our_list_2)){
   res[i] <- our_fun(our_list_2[[i]])
   names(res)[i] <- names(our_list_2)[i]
}
res</pre>
```

```
## w x y
## 6 4 918
```


mapply() is a generalization of sapply(). It applies a multivariate function over multiple vectors of arguments.

Suppose we want 3 samples of diffrent sizes from a Normal(0,1) distribution:

```
set.seed(123)
rnorm(n = 1)
## [1] -0.5604756
rnorm(n = 2)
## [1] -0.2301775 1.5587083
rnorm(n = 3)
## [1] 0.07050839 0.12928774 1.71506499
```

The same result can be obtained more compactly with mapply():

```
set.seed(123)
sample_size <- 1:3</pre>
mapply(FUN = rnorm, n = sample_size)
## [[1]]
## [1] -0.5604756
##
## [[2]]
## [1] -0.2301775 1.5587083
##
## [[3]]
## [1] 0.07050839 0.12928774 1.71506499
```

Since we only iterated over one vector, we could have used sapply():

```
set.seed(123)
sample_size <- 1:3</pre>
sapply(FUN = rnorm, X = sample_size)
## [[1]]
## [1] -0.5604756
##
## [[2]]
## [1] -0.2301775 1.5587083
##
## [[3]]
   [1] 0.07050839 0.12928774 1.71506499
```

But what if we want to sample from normal distributions with different means, while still having samples of diffrent sizes?

```
set.seed(123)
rnorm(n = 1, mean = 5)
## [1] 4.439524
rnorm(n = 2, mean = 10)
## [1] 9.769823 11.558708
rnorm(n = 3, mean = -3)
## [1] -2.929492 -2.870712 -1.284935
```

In this case we need to iterate over two vectors, one for sample sizes and one for means:

```
set.seed(123)
sample size <- 1:3
mu < -c(5, 10, -3)
mapply(rnorm, n = sample size, mean = mu)
## [[1]]
## [1] 4.439524
##
## [[2]]
## [1] 9.769823 11.558708
##
## [[3]]
   [1] -2.929492 -2.870712 -1.284935
```

Now suppose we also want each sample to have a different standard deviation:

```
set.seed(123)
rnorm(n = 1, mean = 5, sd = 1)
## [1] 4.439524
rnorm(n = 2, mean = 10, sd = 3)
## [1] 9.309468 14.676125
rnorm(n = 3, mean = -3, sd = 5)
## [1] -2.647458 -2.353561 5.575325
```

```
set.seed(123)
sample_size <- 1:3</pre>
mu < -c(5, 10, -3)
sigma < -c(1, 3, 5)
mapply(rnorm, mean = mu, sd = sigma, n = sample_size)
## [[1]]
## [1] 4.439524
##
## [[2]]
## [1] 9.309468 14.676125
##
## [[3]]
## [1] -2.647458 -2.353561 5.575325
```

Now suppose we wanted our results with two decimal places only:

```
set.seed(123)
results <- mapply(rnorm, mean = mu, sd = sigma,
                  n = sample size)
sapply(results, FUN = round, 2)
## [[1]]
## [1] 4.44
##
## [[2]]
## [1] 9.31 14.68
##
## [[3]]
## [1] -2.65 -2.35 5.58
```

mapply() vs for loop

```
set.seed(123)
sample_size <- 1:3</pre>
mu < -c(5, 10, -3)
sigma < -c(1, 3, 5)
res <- vector(mode = "list")
for (i in 1:3) {
 res[[i]] <- round(rnorm(mean = mu[i],
                           sd = sigma[i],
                           n = sample size[i]),
                     2)
```

mapply() vs for loop

res

```
## [[1]]
## [1] 4.44
##
## [[2]]
## [1] 9.31 14.68
##
## [[3]]
## [1] -2.65 -2.35 5.58
```

Relational models

- Sometimes our tables are related to other tables.
- ▶ It is often necesary to complement one table with information from another table, or to cross information between tables.
- We usually join tables by using one or more variables that are present in both tables as a key to match rows from one table to the other.

A simple relational model

```
set.seed(1)
Sales <-data.frame(
  Product = sample(c("Toaster", "Radio", "TV"),
                   size = 7, replace = TRUE),
  CustomerID =c(rep("1_2019", 2),
                paste(2:3, "2019", sep = " "),
                paste(1:3, "2020", sep = " ")))
Sales$Price <- round(ifelse(
  SalesProduct == "TV", rnorm(1, 400, 20),
  ifelse(Sales$Product == "Toaster",
         rnorm(1, 40, 2), rnorm(1, 35, 2)))
```

A simple relational model

A simple relational model

Table 1: Sales

Product	${\sf CustomerID}$	Price
Toaster	1_2019	38
TV	1_2019	407
Toaster	2_2019	38
Radio	3_2019	36
Toaster	1_2020	38
TV	2_2020	407
TV	3_2020	407

Table 2: Clients

Table 2. Clients		
CustomerID	State	
2_2019	CA	
3_2019	MA	
4_2019	IL	
1_2020	CA	
2_2020	AZ	

Joining tables

- CustomerID is present in both tables and uniquely identifies each row of the Clients table. We can therefore use it as a key to match rows from one table to another.
- ▶ In R this can be done with the merge() function.

Inner join

The inner join returns only rows that have matching values in both tables:

```
merge(x = Sales, y = Clients,
  by = "CustomerID")
```

```
CustomerID Product Price State
##
                             CA
## 1
        1 2020 Toaster
                        38
        2 2019 Toaster 38
                             CA
## 2
## 3
       2_2020
                  TV 407 AZ
## 4
        3 2019 Radio
                        36
                             MA
```

Natural join

A natural join is an inner join where the joinning attributes are defined as having equal names, so they need not be stated explicitly:

```
merge(x = Sales, y = Clients)
```

```
##
    CustomerID Product Price State
## 1
        1 2020 Toaster
                        38
                             CA
## 2
        2 2019 Toaster 38
                             CA
                             ΑZ
## 3
       2 2020
                  TV
                       407
## 4
        3 2019 Radio
                        36
                             MA
```

Left join

To includes all the rows of x and only those from y that match use all.x = TRUE:

```
merge(x = Sales, y = Clients,
  by = "CustomerID",
  all.x = TRUE)
```

```
##
    CustomerID Product Price State
## 1
       1 2019 Toaster 38
                          <NA>
## 2
       1 2019
                 TV
                     407 <NA>
       1 2020 Toaster 38
                           CA
## 3
       2_2019 Toaster 38 CA
## 4
                     407 AZ
## 5
       2 2020
                 TV
       3 2019 Radio 36 MA
## 6
## 7
       3 2020
                 TV
                     407 <NA>
```

Right join

To include all the rows of y and only those from x that match use all.y = TRUE:

```
merge(x = Sales, y = Clients,
  by = "CustomerID",
  all.y = TRUE)
```

```
CustomerID Product Price State
##
## 1
       1_2020 Toaster
                     38
                          CA
       2 2019 Toaster 38
                          CA
## 2
                TV 407 AZ
## 3
       2 2020
      3 2019 Radio 36 MA
## 4
## 5
       4 2019 <NA> NA
                          TT.
```

Full outer join

To keep all rows from both tables use all = TRUE.

```
merge(x = Sales, y = Clients,
  by = "CustomerID",
  all = TRUE)
```

```
##
    CustomerID Product Price State
## 1
       1 2019 Toaster 38
                         <NA>
## 2
       1 2019
                 TV 407 <NA>
## 3
       1 2020 Toaster 38 CA
       2 2019 Toaster 38 CA
## 4
                     407 AZ
## 5
       2 2020
                 TV
## 6
       3 2019 Radio 36 MA
       3_2020
                 TV 407 <NA>
## 7
## 8
       4 2019 <NA> NA
                           IL
```

Cross Join

Cartesian product of the two tables. The output has nrow(x) * nrow(y) rows and ncol(x) + ncol(y) columns.

Joining tables

Figure 1: Join operations with Merge()

Joining tables

- ▶ If the merging key is a combination of more than one column, you can provide a vector to by.
- ► If the columns used as key have different names in different tables, we need to use by x and by y instead of by.
- ▶ If no by argument is provided, the tables are merged on the columns with names they both have.
- ▶ all.x, all.y, and all are set to FALSE by default. This is why the default join is the natural join.

The sqldf package

- ▶ You can run SQL queries in R using the sqldf package.
- ➤ SQL queries must be provided to the sqldf() function as strings.

library(sqldf)

Inner join with sqldf

```
sqldf("SELECT CustomerID, Product, Price, State
    FROM Sales
    JOIN Clients
    USING(CustomerID)
    ORDER BY CustomerID")
```

Left join with sqldf

```
sqldf("SELECT CustomerID, Product, Price, State
    FROM Sales
    LEFT JOIN Clients
    USING(CustomerID)
    ORDER BY CustomerID")
```

```
##
    CustomerID Product Price State
## 1
       1 2019 Toaster 38
                         <NA>
## 2
       1 2019
                TV 407 <NA>
## 3
       1 2020 Toaster 38
                          CA
       2 2019 Toaster 38 CA
## 4
                TV 407 AZ
## 5
       2 2020
## 6
       3 2019 Radio 36 MA
       3 2020
## 7
                TV
                    407 <NA>
```

Cross join with sqldf

```
sqldf("SELECT *
    FROM Sales
    CROSS JOIN Clients
    ORDER BY CustomerID")
```


The aggregate() function can be used to compute subgroup summary statistics.

${\tt my_df}$

```
##
     age smoker child income
##
      22
                    no
                           0.8
              no
## 2
     36
                           1.8
             yes
                   yes
## 3
     21
                           1.6
              no
                    no
##
   4
     39
                           1.5
              no
                    no
## 5
     33
                           2.3
             yes
                   yes
     45
## 6
                           1.4
                   yes
              no
## 7 34
             yes
                    no
                           1.8
      59
## 8
                           1.5
             yes
                   yes
```

On average, do people with children earn more than people without children?

```
## child income
## 1 no 1.425
## 2 yes 1.750
```

```
aggregate(
  x = my_df["income"],
  by = list(child = my_df$child),
  FUN = mean)
```

```
## child income
## 1 no 1.425
## 2 yes 1.750
```

On average, do people who smoke earn more than people who don't?

```
aggregate(income ~ smoker, my_df, mean)
```

```
## smoker income
## 1 no 1.325
## 2 yes 1.850
```

```
aggregate(
  my_df["income"],
  list(smoker = my_df$smoker),
  mean)
```

```
## 1 smoker income
## 1 no 1.325
## 2 yes 1.850
```

Is the median income higher for smokers or non-smokers?

```
aggregate(income ~ smoker, my_df, median)
```

```
## smoker income
## 1 no 1.45
## 2 yes 1.80
```

```
aggregate(
  my_df["income"],
  list(smoker = my_df$smoker),
  median)
```

```
## smoker income
## 1 no 1.45
## 2 yes 1.80
```

```
What is the lowest income for someone with children? And without?

aggregate(income ~ child, my_df, min)
```

```
## child income
## 1 no 0.8
## 2 yes 1.4
```

```
aggregate(
  my_df["income"],
  list(child = my_df$child),
  min)
```

```
## child income
## 1 no 0.8
## 2 yes 1.4
```

Is the average age of people with children higher than that of people without children?

```
aggregate(age ~ child, my_df, mean)
```

```
## child age
## 1 no 29.00
## 2 yes 43.25
```

```
aggregate(
  my_df["age"],
  list(child = my_df$child),
  mean)
```

```
## child age
## 1 no 29.00
## 2 yes 43.25
```

Is the median age of smokers higher than that of non-smokers?

```
aggregate(age ~ smoker, my_df, median)
```

```
## smoker age
## 1 no 30.5
## 2 yes 35.0
```

```
aggregate(
  my_df["age"],
  list(smoker = my_df$smoker),
  median)
```

```
## smoker age
## 1 no 30.5
## 2 yes 35.0
```

Compare the age of the younger person with children with the age of the younger person without chilren:

```
aggregate(age ~ child, my_df, min)
## child age
## 1 no 21
## 2 yes 33
```

```
aggregate(
  my_df["age"],
  list(child = my_df$child),
  min)
```

```
## child age
## 1 no 21
## 2 yes 33
```

What is the age of the older smoker?

```
subset(
  aggregate(age ~ smoker, my_df, max),
  smoker == "yes",
  select = "age"
)
```

```
## age
## 2 59
```

```
subset(
  aggregate(
    my_df["age"],
    list(smoker = my_df$smoker),
    max),
  smoker == "yes",
  select = "age")
```

```
## age
## 2 59
```

We can divide our subgroups further into more subgroups:

```
aggregate(income ~ smoker + child, my_df, mean)
```

```
## smoker child income
## 1 no no 1.300000
## 2 yes no 1.800000
## 3 no yes 1.400000
## 4 yes yes 1.866667
```

```
aggregate(
  my_df["income"],
  list(smoker = my_df$smoker,
        child = my_df$child),
  mean)
```

```
## smoker child income
## 1 no no 1.300000
## 2 yes no 1.800000
## 3 no yes 1.400000
## 4 yes yes 1.866667
```

On average, do parents who smoke earn more than parents who don't smoke?

```
subset(
  aggregate(income ~ smoker + child, my_df, mean),
  child == "yes",
  select = c(smoker, income)
)
```

```
## smoker income
## 3 no 1.400000
## 4 yes 1.866667
```

```
subset(
  aggregate(
    my_df["income"],
    list(smoker = my_df$smoker,
        child = my_df$child),
  mean),
  child == "yes",
  select = c(smoker, income)
)
```

```
## smoker income
## 3 no 1.400000
## 4 yes 1.866667
```

Is the median age of parents who smoke higher than that of parents who don't smoke?

```
subset(
  aggregate(age ~ smoker + child, my_df, median),
  child == "yes",
  select = c(smoker, age)
)
```

```
## smoker age
## 3 no 45
## 4 yes 36
```

```
## smoker age
## 3 no 45
## 4 yes 36
```

On average, do people with children earn more than people without children?

```
sqldf(
  "SELECT child, AVG(income) as income
FROM my_df
  GROUP BY child"
)
```

```
## child income
## 1 no 1.425
## 2 yes 1.750
```

On average, do people who smoke earn more than people who don't?

```
sqldf(
  "SELECT smoker, AVG(income) as income
FROM my_df
  GROUP BY smoker"
)
```

```
## smoker income
## 1 no 1.325
## 2 yes 1.850
```

What is the lowest income for someone with children? And without?

```
sqldf(
  "SELECT child, min(income) as income
FROM my_df
  GROUP BY child"
)
```

```
## child income
## 1 no 0.8
## 2 yes 1.4
```

Is the average age of people with children higher than that of people without children?

```
sqldf(
  "SELECT child, AVG(age) as age
FROM my_df
  GROUP BY child"
)
```

```
## child age
## 1 no 29.00
## 2 yes 43.25
```

Compare the age of the younger person with children with the age of the younger person without chilren:

```
sqldf(
  "SELECT child, min(age) as age
FROM my_df
  GROUP BY child"
)
```

```
## child age
## 1 no 21
## 2 yes 33
```

What is the age of the older smoker?

```
sqldf(
  "SELECT max(age) as age
FROM my_df
  GROUP BY smoker
  HAVING smoker = 'yes'
  "
)
```

```
## age
## 1 59
```

We can divide our subgroups further into more subgroups:

```
sqldf(
  "SELECT smoker, AVG(income) as income
FROM my_df
  GROUP BY child, smoker
  "
)
```

```
## smoker income
## 1 no 1.300000
## 2 yes 1.800000
## 3 no 1.400000
## 4 yes 1.866667
```

On average, do parents who smoke earn more than parents who don't smoke?

```
sqldf(
  "SELECT smoker, AVG(income) as income
FROM my_df
  GROUP BY child, smoker
  HAVING child = 'yes'
  "
)
```

```
## smoker income
## 1 no 1.400000
## 2 yes 1.866667
```