

Composite Structures

Loris Jautakas

September 10, 2023

1 Composite Structures

Definition 1: [L_structure]/ product_structure

Let

1. $\{\mathcal{M}_i\}_{i\in I}$ be a collection of \mathcal{L} structures

Then define: $\prod_{i \in I} \mathcal{M}_i$ to be the \mathcal{L} structure with

1. universe:

$$\prod_{i \in I} \operatorname{dom} \mathcal{M}_i \tag{1}$$

2. function symbols:

$$f^{\prod_{i \in I} \mathcal{M}_i} = \prod_{i \in I} f^{\mathcal{M}_i} = (f^{\mathcal{M}_i}(\vec{a}))_{i \in I}$$
 (2)

3. relation symbols:

$$R^{\prod_{i \in I} \mathcal{M}_i} = \prod_{i \in I} R^{\mathcal{M}_i} = \{ (a_i)_{i \in I} \mid \forall_i^I a_i \in R^{\mathcal{M}_i} \}$$
 (3)

Result 1: [universal_horn_formula, product_structure]/ universal_horn_formulas_preserved_under_products

Let \mathcal{M}_i be a collection of \mathcal{L} structures, and let ϕ be a universal Horn formula. Then:

$$\prod_{i \in I} \mathcal{M}_i \models \phi \iff \forall_i^I \ \mathcal{M}_i \models \phi$$
 (4)

Proof.

finish