Problem statement ¶

Prepare a prediction model for profit of 50_startups data.

Importing the libraries

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
from statsmodels.graphics.regressionplot
s import influence_plot
import statsmodels.formula.api as smf
import numpy as np
from sklearn.preprocessing import Standa
rdScaler, MinMaxScaler
```

We can just peek into few data points by using head function of pandas. By default, head function return top 5 values

Data insights

```
In [4]:
startups.shape
 Out[4]:
(50, 5)
 In [5]:
startups.columns
 Out[5]:
Index(['R&D Spend', 'Administration', 'M
arketing Spend', 'State', 'Profit'], dty
pe='object')
```

Loading dataset

```
In [2]:
startups = pd.read_csv("/kaggle/input/st
artup-logistic-regression/50_Startups.cs
v")
```

In [3]:

startups.head()

Out[3]:

	R&D Spend	Administration	Marketing Spend	State
0	165349.20	136897.80	471784.10	New York
1	162597.70	151377.59	443898.53	California
2	153441.51	101145.55	407934.54	Florida
3	144372.41	118671.85	383199.62	New York
4	142107.34	91391.77	366168.42	Florida

0	R&D Spend	50 non-null	fl
oate	54		
1	Administration	50 non-null	fl
oate	54		
2	Marketing Spend	50 non-null	fl
oate	54		
3	State	50 non-null	ob
jec	t		
4	Profit	50 non-null	fl
oate	54		
dtvr	nes: float64(4) o	hiect(1)	

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

Observations:-

- We can see that R&D spend, Administration,
 Marketing Spend and Profit consists of floating
 point data type values and State has object
 type values.
- We can also see that all 21 observations are non null and hence we don't have any missing values

Observations:-

- The dataset contains data about 50 startups. It has 5 columns: "R&D Spend", "Administration", "Marketing Spend", "State", "Profit".
- The first 3 columns indicate how much each startup spends on Research and Development, how much they spend on Marketing, and how much they spend on Administration cost.
- The state column indicates which state the startup is based in and the last column states the profit made by the startup.

```
In [6]:
startups.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
    # Column Non-Null Count Dt
ype
```

```
sn.boxplot(startups['R&D Spend'])
```

/opt/conda/lib/python3.7/site-packages/s eaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

```
Out[11]:
```

<AxesSubplot:xlabel='R&D Spend'>


```
In [9]:
```

startups['Profit'].unique()

Out[9]:

```
array([192261.83, 191792.06, 191050.39,
182901.99, 166187.94, 156991.12,
       156122.51, 155752.6 , 152211.77,
149759.96, 146121.95, 144259.4 ,
       141585.52, 134307.35, 132602.65,
129917.04, 126992.93, 125370.37,
       124266.9 , 122776.86, 118474.03,
111313.02, 110352.25, 108733.99,
       108552.04, 107404.34, 105733.54,
105008.31, 103282.38, 101004.64,
        99937.59, 97483.56, 97427.84,
96778.92, 96712.8, 96479.51,
        90708.19, 89949.14, 81229.06,
81005.76, 78239.91, 77798.83,
        71498.49, 69758.98, 65200.33,
64926.08, 49490.75, 42559.73,
        35673.41, 14681.4 ])
```

```
In [7]:
startups[startups.duplicated()]
```

Out[7]:

R&D
Spend

Administration

Marketing
Spend

State Profit

We don't have any duplicate values in our dataset. If duplicates values would have been present we would have to delete it. sn.boxplot(startups['Administration'])

/opt/conda/lib/python3.7/site-packages/s eaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[12]:

<AxesSubplot:xlabel='Administration'>

sn.boxplot(startups['Marketing Spend'])

/opt/conda/lib/python3.7/site-packages/s eaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[13]:

<AxesSubplot:xlabel='Marketing Spend'>

sn.boxplot(startups['Profit'])

/opt/conda/lib/python3.7/site-packages/s eaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[14]:

<AxesSubplot:xlabel='Profit'>

25000 50000 75000 100000 125000 150000 175000 200

Sales Dashboard

Sales Dashboard

CUSTOMER REVENUE BY STATE

ORDER REVENUE TREND (2007-2010)

MARKET REVENUE TREND (2007-2010)

CUSTOMER INTAILS

Customer	Inquiry Reserve	Order Resenue	Growth	List Price	Net Price	Order Units	Sales Growth 'S.
inflanchmens	\$101,200,614	BIRTHARIS	8.7%	\$12,799	\$14,000	2,239	20.9%
THE SELLING	girk jobilities	Secondary	425	\$14,455	CHAME	2144	87.8%
Michabline Into	\$18,266,479	E79.082.392	1.65	\$15,649	815.147	2,441	12.2%
Summary	\$416,752,005	\$114,005,000	625	\$43,293	\$41,829	1,111	23.4%

Sales Dashboard

Product inventory overview by organization, with prior year comparative data

