Distribution Estimation

Goal: Obtain the Best Distribution of λ

Regular Bayes insufficient, Hierarchical model required. Bayesian Context:

Data Consistent: Use data to construct observed distribution.

Example

Consider an exponential decay problem with uncertain decay rate: $u(t) = u_0 \exp(-\lambda t), \ u_0 = 0.5, \ t = 2$

Regular Bayes	$\pi_{\text{prior}} \sim U[0, 1] , \pi_{\text{L}}(\boldsymbol{d} \mid \lambda) \sim N(Q(\lambda), \sigma^2)$ $\pi_{\text{post}}(\lambda \mid \boldsymbol{d}) \propto \pi_{\text{prior}}(\lambda) \pi_{\text{L}}(\boldsymbol{d} \mid \lambda)$
Hierarchical Bayes	$\begin{vmatrix} \pi_{\text{prior}}(\alpha, \beta) \sim \chi_1^2, & \alpha, \beta \in \Omega := [0, \infty) \times [0, \infty) \\ \pi_{\text{prior}}(\lambda \mid \alpha, \beta) s \sim \text{Beta}(\alpha, \beta), & \pi_{\text{L}}(\mathbf{d} \mid \lambda) \sim N(Q(\lambda), \sigma^2) \\ \pi_{\text{post}}(\lambda \mid \mathbf{d}) \propto \int_{\Omega} \pi_{\text{prior}}(\lambda, \alpha, \beta) \pi_{\text{L}}(\mathbf{d} \mid \lambda, \alpha, \beta) d\Omega \end{vmatrix}$
Data Consistent	$\pi_{\text{up}}(\lambda) = \pi_{\text{in}}(\lambda) \frac{\pi_{\text{obs}}(Q(\lambda))}{\pi_{\text{pre}}(Q(\lambda))}$

Plots of Concepts and Results

Takeaways

 \mathcal{D} Data Space

Non-parametric method with less sampling

Data Consistent vs. Hierarchical Bayes

Intro to Data Consistent Inversion

Solving Stochastic Inverse Problems

Data Consistent Inversion is a novel framework that uses pushforward and pullback measures to ensure solutions are consistent with the observed distribution of data.

The Data Consistent Approach

$$\pi_{\mathrm{up}}(\lambda) = \pi_{\mathrm{in}}(\lambda) \frac{\pi_{\mathrm{obs}}(\mathrm{Q}(\lambda))}{\pi_{\mathrm{pre}}(\mathrm{Q}(\lambda))}$$

Which Stochastic Inverse Problem?

Solve for a single parameter value, or for a parameter distribution?

Notation

 $\lambda \in \Lambda, \ \xi \in \Xi$ Parameter Space, Noise Space $ullet d \in \mathcal{D}$ Observables $Q: \Lambda \to \mathcal{D}$ Quantity of Interest Map Prior, Likelihood $lacktriangledown \pi_{
m prior}, \ \pi_{
m L}$ Initial, Observed, Predicted (pushforward) \bullet $\pi_{\mathrm{in}}, \ \pi_{\mathrm{obs}}, \ \pi_{\mathrm{pre}}$

Posterior, Update (pullback) \bullet $\pi_{\mathrm{post}}, \ \pi_{\mathrm{up}}$

References & Attribution

Advisor: Dr. Troy Butler University of Colorado: Denver

Left to Right: Theory, Stability, BET, Poster, Website. Funding: NSF DMS-1818941.

Parameter Identification

Goal: Obtain the Best Value of λ

Bayesian Context: Model uses assumed likelihood function of data given λ .

Data Consistent: Construct predicted distribution of residuals given λ .

Example

Consider an exponential decay problem with uncertain decay rate: $u(t) = u_0 \exp(-\lambda t), \ u_0 = 0.5, \ t \in [0, 3]$

Convergence of Data Consistent Inversion

How do solutions change with more data?

 λ^{\dagger} and π_{up} for D=1,10,50,100 for N=1000

Comparison to Regular Bayes

How do solutions on conditionals of Ξ compare?

100 realizations of data for D=10,100 for Data Consistent Inversion (left) and Regular Bayes (right).