Wohldefiniertheit der Signatur

Jendrik Stelzner

29. Juni 2017

Es sei V ein n-dimensionaler \mathbb{R} -Vektorraum und $\beta: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. In der Vorlesung wurde gezeigt, dass es eine geordnete Basis $\mathscr{B} = (\nu_1, \dots, \nu_n)$ von V gibt, so dass die darstellende Matrix $M(\beta, \mathscr{B})$ von der Form

$$M(\beta, \mathcal{B}) = \begin{pmatrix} I_p & & \\ & -I_q & \\ & & 0_r \end{pmatrix} \tag{1}$$

ist, wobei I_p und I_q die Einheitsmatrizen der Größe $p \times p$ und $q \times q$ bezeichnen, und 0_r die Nullmatrix der Größe $r \times r$. Man bemerke, dass n = p + q + r gilt.

Wir zeigen im Folgenden, dass die Zahlen (p, q, r) eindeutig sind. Hierfür zeigen wir, dass

 $p = \max\{\dim U \mid U \subseteq V \text{ ist ein Untervektorraum, so dass } \beta|_{U \times U} \text{ positiv definit ist}\}$

und $r = \dim \operatorname{rad} \beta$ gelten. Dann sind p und r eindeutig durch β bestimmt, und somit auch q = n - p - r. Im Folgenden seien

$$V_+ \coloneqq \langle v_1, \dots, v_p \rangle, \quad V_- \coloneqq \langle v_{p+1}, \dots, v_{p+q} \rangle, \quad V_0 \coloneqq \langle v_{p+q+1}, \dots, v_n \rangle.$$

• Die Gleichheit (1) äquivalent zu den Gleichheiten.

$$\beta(\nu_i,\nu_j)=0 \text{ für alle } i\neq j \quad \text{und} \quad \beta(\nu_i,\nu_i)= \begin{cases} 1 & \text{falls } i=1,\ldots,p,\\ -1 & \text{falls } i=p+1,\ldots,p+q,\\ 0 & \text{falls } i=p+q+1,\ldots,p+q+r. \end{cases}$$

• Es folgt, dass rad $\beta = V_0$ gilt: Jedes Element $v \in V_0$ ist von der Form $v = \sum_{i=p+q+1}^n \lambda_i v_i$, und jedes $w \in V$ ist von der Form $w = \sum_{i=1}^n \mu_j v_j$. Es gilt $\beta(v_i, v_j) = 0$ für alle $i = p+q+1, \ldots, n$ und $j = 1, \ldots, n$, und somit

$$\beta(v, w) = \beta\left(\sum_{i=p+q+1}^{n} \lambda_{i} v_{i}, \sum_{i=1}^{n} \mu_{j} v_{j}\right) = \sum_{i=p+q+1}^{n} \sum_{j=1}^{n} \lambda_{i} \mu_{j} \beta(v_{i}, v_{j}) = 0.$$

Also gilt $\beta(v, w) = 0$ für alle $v \in V_0$ und $w \in V$, und somit $V_0 \subseteq \operatorname{rad} \beta$.

Ist andererseits $v \in V$ mit $v \notin V_0$, so gibt es in der Darstellung $v = \sum_{i=1}^n \lambda_i v_i$ einen Index $1 \le j \le p + q$ mit $\lambda_j \ne 0$. Dann gilt

$$\beta(v, v_j) = \beta\left(\sum_{i=1}^n \lambda_i v_i, v_j\right) = \sum_{i=1}^n \lambda_i \underbrace{\beta(v_i, v_j)}_{=\pm \delta_{i,i}} = \pm \lambda_j \neq 0$$

und somit $v \notin \operatorname{rad} \beta$. Das zeigt, dass auch $\operatorname{rad} \beta \subseteq V_0$ gilt.

- Aus rad $\beta = V_0$ folgt, dass dim rad $\beta = \dim V_0 = r$. Dabei nutzen wir für die Bestimmung von dim V_0 , dass $(v_{p+q+1}, \dots, v_{p+q+r})$ eine Basis von V_0 ist.
- Die Einschränkung $\beta|_{V_+ \times V_+}$ ist positiv definit: Für $v \in V_+$ mit $v \neq 0$ gibt es in der Darstellung $v = \sum_{i=1}^p \lambda_i v_i$ einen Index $1 \leq k \leq p$ mit $\lambda_k \neq 0$, weshalb

$$\beta(v,v) = \beta\left(\sum_{i=1}^{p} \lambda_i v_i, \sum_{j=1}^{n} \lambda_j v_j\right) = \sum_{i,j=1}^{p} \lambda_i \lambda_j \underbrace{\beta(v_i, v_j)}_{=2\delta_{i,i}} = \sum_{i=1}^{p} \lambda_i^2 \ge \lambda_k^2 > 0$$

gilt

Analog erhalten wir für $W = \langle v_{p+1}, \dots, v_n \rangle = V_- \oplus V_0$, dass die Einschränkung $\beta|_{W \times W}$ negativ semidefinit ist.

• Ist $U \subseteq V$ ein Untervektorraum, so dass $\beta|_{U \times U}$ positiv definit ist, so gilt $U \cap W = 0$. Ist nämlich $v \in U \cap W$, so gilt $\beta(v, v) = \beta|_{W \times W}(v, v) \le 0$, da $\beta|_{W \times W}$ negativ semidefinit ist. Wäre $v \ne 0$, so würde aber auch $\beta(v, v) = \beta|_{V_+ \times V_+}(v, v) > 0$ gelten, da $\beta|_{V_+ \times V_+}$ positiv definit ist.

Es folgt daraus, dass

$$\dim U = \dim(U+W) + \underbrace{\dim(U\cap W)}_{=0} - \dim W \leq \dim V - \dim W = n - (q+r) = p$$

gilt. Hierbei haben wir genutzt, dass $(v_{p+1}, \dots, v_{p+q+r})$ eine Basis von W ist.

• Wir erhalten also, dass der p-dimensionale Untervektorraum $V_+ \subseteq V$ unter all den Untervektorräumen $U \subseteq V$, für welche die Einschränkung $\beta|_{U \times U}$ positiv definit ist, von maximaler Dimension ist. Wir erhalten somit, dass

 $\max\{\dim U\,|\,U\subseteq V\text{ ist ein Untervektorraum, so dass }\beta|_{U\times U}\text{ positiv definit ist}\}=p$ gilt.

Analog zu der positiven Definitheit von $\beta|_{V_+ \times V_+}$ und der negativen Semidefinitheit von $\beta|_{(V_- \oplus V_0) \times (V_- \oplus V_0)}$ ergibt sich, dass $\beta|_{V_- \times V_-}$ negativ definit ist, und dass $\beta|_{(V_+ \oplus V_0) \times (V_+ \oplus V_0)}$ positiv semidefinit ist. Dabei sind $V_- \oplus V_0$, V_- und $V_+ \oplus V_0$ unter all den Untervektorräumen, auf denen β die jeweils entsprechende (Semi)definitheit hat, von maximaler Dimension.