CZ/CE4045 Natural Language Processing

Part-of-speech Tagging and HMM (Chapter 6)

HMM for Ice Cream

- You are a climatologist in the year 2799 studying global warming
- You can't find any records of the weather in Singapore for summer of 2018
- But you find your grandma's diary which lists how many ice-creams she ate every date that summer
- Your job: figure out whether each day was cold/hot

Example of sequence prediction

- Can the number of ice cream eaten be used to predict the weather?
 - Ice cream observation sequence: 2,1,3,2,2...
 - Weather Sequence: H,C,H,H,C...

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)
 - Transition Probabilities
 - Observation Likelihoods
- Formalizing HMM: A weighted finite-state automaton where each arc is associated with a probability
 - The probability indicates how likely a path is to be taken

Transition Probabilities

- The sum of the probabilities leaving any arc must sum to one
 - For example, a01+a02+a03 =1

Observation Likelihoods

Hidden Markov Model

- In part-of-speech tagging
 - The input symbols are words
 - But the hidden states are part-of-speech tags

- It has many other applications
 - Named entity recognition, gene prediction, etc

Hidden Markov Models

- States $Q = q_1, q_2 \dots q_N$; and the start and end states q_0, q_F
- Observations $O = o_1, o_2 \dots o_T$;
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, ... v_V\}$
 - $-s_i$: the state of the *i*-th observation;
 - $-q_0$, q_F are not associated with observations
- Transition probabilities: Transition probability matrix $A = \{a_{ij}\}$;

$$-a_{ij} = P(s_t = j | s_{t-1} = i) \quad 1 \le i, j \le N$$

- Observation likelihoods: Output probability matrix $B = \{b_i(k)\};$
 - $-b_i(k) = P(X_t = o_k | s_t = i)$
- Special initial probability vector π ;

$$-\pi_i = P(s_1 = i) \ 1 \le i \le N$$

Exercise: Hidden Markov Model for the ice cream task

- State the following elements of the HMM for weather prediction based on ice cream and depict an example HMM:
 - States
 - Vocabulary
 - Observations
 - Transition probabilities
 - Observation likelihoods

Hidden Markov Model

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$


```
p(Secretariat|NNP) * p(NNP|Start)

* p(is|VBZ) * p(VBZ|NNP)

* p(expected|VBN) * p(VBN|VBZ)

* p(to|TO) * p(TO|VBN)

* p(race|VB) * p(VB|TO)

* p(tomorrow|NR) * p(NR|VB)
```

Decoding

Ok, now we have a complete model that can give us what we need.
 Recall that we need to get

$$\hat{t}_1^n = \arg \max_{t_1^n} P(t_1^n | w_1^n)$$

- Determine sequences of variables, given sequence of observations
- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea. 1 2 -- HH, HC,CC,CH
 - $-N^T: N$ (number of states) T (size of sequence)
 - Luckily dynamic programming helps us here

Example sentence

Enumerate all paths

- VBN TO RB DT VB
- VBN TO RB DT NN
- VBN TO RB NNP VB
- VBN TO RB NNP NN
- VBN TO NN DT VB
- VBN TO NN DT NN
- VBN TO NN NNP VB
- VBN TO NN NNP NN
- VBN TO JJ DT VB
- VBN TO JJ DT NN
- VBN TO JJ NNP VB
- VBN TO JJ NNP NN
- VBN TO VB DT VB
- VBN TO VB DT NN
- VBN TO VB NNP VB
- VBN TO VB NNP NN

- VBD TO RB DT VB
- VBD TO RB DT NN
- VBD TO RB NNP VB
- VBD TO RB NNP NN
- VBD TO NN DT VB
- VBD TO NN DT NN
- VBD TO NN NNP VB
- VBD TO NN NNP NN
- VBD TO JJ DT VB
- VBD TO JJ DT NN
- VBD TO JJ NNP VB
- VBD TO JJ NNP NN
- VBD TO VB DT VB
- VBD TO VB DT NN
- VBD TO VB NNP VB
- VBD TO VB NNP NN

Estimate the probabilities of all paths

- p(VBN| < s >) * p(promised|VBN) * p(TO|VBN) * p(to|TO) * p(RB|TO) * p(back|RB) * p(DT|RB) * p(the|DT) *p(VB|DT) * p(bill|VB)
- p(VBN| < s >) * p(promised|VBN) * p(TO|VBN) * p(to|TO) * p(RB|TO) * p(back|RB) * p(DT|RB) * p(the|DT) *p(NN|DT) * p(bill|NN)
- p(VBN| < s >) * p(promised|VBN) * p(TO|VBN) * p(to|TO) * p(RB|TO) * p(back|RB) * p(NNP|RB) * p(the|NNP) *p(VB|NNP) * p(bill|VB)
- p(VBN| < s >) * p(promised|VBN) * p(TO|VBN) * p(to|TO) * p(RB|TO) * p(back|RB) * p(NNP|RB) * p(the|NNP) *p(NN|NNP) * p(bill|NN)

• ..

- p(VBD| < s >) * p(promised|VBD) * p(TO|VBD) * p(to|TO) * p(RB|TO) * p(back|RB) * p(DT|RB) * p(the|DT) *p(VB|DT) * p(bill|VB)
- p(VBD| < s >) * p(promised|VBD) * p(TO|VBD) * p(to|TO) * p(RB|TO) * p(back|RB) * p(DT|RB) * p(the|DT) *p(NN|DT) * p(bill|NN)
- p(VBD| < s >) * p(promised|VBD) * p(TO|VBD) * p(to|TO) * p(RB|TO) * p(back|RB) * p(NNP|RB) * p(the|NNP) *p(VB|NNP) * p(bill|VB)
- p(VBD| < s >) * p(promised|VBD) * p(TO|VBD) * p(to|TO) * p(RB|TO) * p(back|RB) * p(NNP|RB) * p(the|NNP) *p(NN|NNP) * p(bill|NN)

• ...

The best choice?

Intuition

- You're interested in the shortest distance from NTU to Woodland
- Consider a possible location on the way to Woodland, say Jurong.
 - We can work out the shortest distance among all the possible ways from Jurong to Woodland
 - Jurong → Woodland
 - Then we only need to work out shortest path from NTU to Jurong
 - NTU → Jurong

Back to our example

Intuition

- Consider a state sequence (tag sequence) that ends at time t with a particular tag i.
- The probability of that tag sequence can be broken into two parts
 - The probability of the BEST tag sequence up through t-1
 - Multiplied by the transition probability from the tag at the end of the t-1 sequence to i.
 - And the observation probability of the word given tag i.
- Let j be the tag at the end of the t-1 sequence, and W be the word at time t

$$Viterbi[i,t] = Viterbi[j,t-1] \times p(i|j) \times p(W|i)$$

$$v_t[i]$$

$$a_{j,i} \quad b_i(W)$$

Consider paths ending with bill:NN

From S4, we have two paths P1, P2 to reach NN


```
• p_1 = v_4[DT] * p(NN|DT) * p(bill|NN)
```

•
$$p_2 = v_4[NNP] * p(NN|NNP) * p(bill|NN)$$

```
• v_5[NN] = \max(p_1, p_2)
```

```
• v_4[DT] = \max(v_3[RB] * p(DT|RB) * p(the|DT),

v_3[NN] * p(DT|NN) * p(the|DT),

v_3[JJ] * p(DT|JJ) * p(the|DT),

v_3[VB] * p(DT|VB) * p(the|DT))

= \max(v_3[RB] * p(DT|RB), v_3[NN] * p(DT|NN), v_3[JJ] * p(DT|JJ), v_3[VB] * p(DT|VB)) * p(the|DT)
```

Main Idea

- We also have a matrix.
 - Each column— a time 't' (observation)
 - Each row a state 'i'
 - For each cell $v_t[i]$, we compute the probability of the **best** path to the cell
- the Viterbi path probability at time t for state i
 - there are |Q| number of paths from t-1 to $v_t[i]$
 - if we know the best path to each cell in t-1 ($v_{t-1}[j]$)

$$\arg\max_{i} v_{t-1}[j] \times P(i|j) \times P(s_t|i)$$

Viterbi Example: Variable $v_t[i]$ the Viterbi path probability at time t for state i

Viterbi algorithm: Example

- $v_2[NN] = \max(v_1[NN] * p(NN|NN), v_1[TO] * p(NN|TO), v_1[VB] * p(NN|VB), v_1[PPSS] * p(NN|PPSS)) * p(want|NN)$
- $= \max(0 * 0.087, 0 * 0.00047, 0 * 0.047, 0.025 * 0.0012) * 0.000054$

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) **returns** best-path create a path probability matrix viterbi[N+2,T]for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$ $backpointer[s,t] \leftarrow \underset{s'.s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s'.s}$ $viterbi[q_F,T] \leftarrow \max^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}$; termination step

return the backtrace path by following backpointers to states back in time from $backpointer[q_F, T]$

Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

Summary

- HMM
 - Transition Probabilities
 - Observation Likelihoods
- Decoding
 - Viterbi
- Next
 - Evaluation
 - Assigning probabilities to inputs
 - Forward
 - Finding optimal parameters for a model

Evaluation

- So once you have your POS tagger running, how do you evaluate it?
- Overall error rate with respect to a gold-standard test set.
- Error rates on particular tags
- Error rates on particular words
- Tag confusions...

Error Analysis

Look at a confusion matrix

Returned by tagger

Correct tags

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	_	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

3 Problems

- Given this framework there are 3 problems that we can pose to an HMM
 - Given an observation sequence and a model, what is the most likely state sequence?
 - Given an observation sequence, what is the probability of that sequence given a model?
 - Given an observation sequence, infer the best parameters for model (Skip; Section 6.5-6.8)

Problem

Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A,B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1q_2q_3...q_T$.

- Typically used in tagging problems, where the tags correspond to hidden states
- Viterbi solves problem

Problem

• The probability of a sequence given a model.. P(seq|model).

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

Forward algorithm

Forward

- Efficiently computes the probability of an observed sequence given a model
 - -P(sequence|model)
- Nearly identical to Viterbi;
 - replace the MAX with a SUM

Ice Cream Example

Variable a_t[i] the forward path probability at time t for state i

Forward algorithm: SUM

Forward

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do

; initialization step

 $forward[s,1] \leftarrow a_{0,s} * b_s(o_1)$

for each time step t from 2 to T do

; recursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

$$forward[q_F,T] \leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F}$$
; termination step

return $forward[q_F, T]$

Summary

- HMM model- two probabilities
- Viterbi algorithm
- Evaluation
- Three problems in HMM model