МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ "ЛЭТИ" ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА) (СПБГЭТУ «ЛЭТИ»)

Кафедра теоретических основ электротехники

Отчет

по лабораторной работе №6

по дисциплине "МОЭ"

Тема: "ИССЛЕДОВАНИЕ УСТАНОВИВШЕГОСЯ СИНУСОИДАЛЬНОГО РЕЖИМА В ПРОСТЫХ ЦЕПЯХ.»"

Студент гр.8382	 Мирончик П.Д.
Преподаватель	 Зубарев А.В.

Санкт-Петербург

Протоког измерения Ладора торная работа 26 Исслерование установившегось смустемого роменея в проетия цепен "

Tade. 1. Mechegobanie yemanobulinerock cunyeongennos permena

f, KTG	U., B	I, uA	UR,B	uc,B	Your, o
7,5	2	3,634	1,018	1,721	*53,92
15	2	5,446	1,525	1,289	¥39,89

7 абл. 2. Иселерование установившегосе синустранного режина в RL цени

f, kly	llo,B	I, u.A	UR,B	u _L ,B	Poces, D
7,5	2	4,609	1,291	1,525	+49,36
3,75	2	6,137	1,718	1,015	+30,57

rasis. Il carepolarure y comano bulurerous cuny conpanino co pomuna

f, uty	Uo,B	I, res A	UR,B	Uc,3	щ,в	(sus, -)
14	2	7,119	1,993	4,37	4,398	0
28	2	2,063	0,587	0,663	2,548	+70,51
17	2	2,083	0,583	2,557	0,643	471,814

Tpynna 8382 Pakyusmem KTU Whynowick 17. Fr. Myr4

20 okmespe 20201.

Цель работы

Практическое ознакомление с синусоидальными режимами в простых RL-, RC- и RLC-цепях.

Основные теоретические положения

При анализе электрических цепей в установившемся синусоидальном режиме важно твердо усвоить амплитудные и фазовые соотношения между токами и напряжениями элементов цепи. Необходимо помнить, что ток в резистивном элементе совпадает по фазе с напряжением, ток в индуктивности отстает, а в емкости опережает напряжение на четверть периода.

Следует учитывать, что комплексное сопротивление индуктивности и емкости есть функция частоты:

$$Z_L = j\omega L = \omega L e^{j90^{\circ}}; Z_C = \frac{1}{j\omega C} = \frac{1}{\omega C} e^{-j90^{\circ}}$$

Функцией частоты являются, следовательно, и комплексные сопротивления RL-, RC- и RLC-цепей (изображенные на рис. 1 соответственно). Так, для RLC-цепи, изображенной на рис. 1, в, комплексное сопротивление равно:

$$Z = \frac{\dot{U_0}}{\dot{I}} = R + Z_L + Z_C = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

Реактивная составляющая этого сопротивления равна разности модулей индуктивного и емкостного сопротивлений и поэтому может принимать различные знаки: если она положительна, реакция цепи имеет индуктивный характер, если отрицательна — емкостный, если обращается в нуль (т. е. $\omega L = \frac{1}{\omega C}$), цепь будет находиться в состоянии резонанса.

Puc. 1

Puc. 2

Как модуль и аргумент комплексного сопротивления

$$|Z| = \sqrt{R^2 + [\omega L - 1/(\omega C)]^2}; \ \phi = \operatorname{arctg} \frac{\omega L - 1/(\omega C)}{R},$$

так и определяемые ими по закону Ома действующее значение и начальная фаза тока

$$I = \frac{U_0}{\sqrt{R^2 + \left[\omega L - 1/(\omega C)\right]^2}}; \ \alpha_i = \alpha_u - \varphi$$

существенно зависят от соотношения значений индуктивного и емкостного сопротивлений.

Токи и напряжения цепи в установившемся синусоидальном режиме наглядно представляют с помощью ВД. Такая диаграмма для RLC-цепи приведена на рис. 2, a, где рассматривается случай $\varphi = -45^{\circ}$, т. е. ток \dot{I}

опережает напряжение U_0 на 45°, что соответствует емкостной реакции и временной диаграмме, представленной на рис. 2, б.

Экспериментальные исследования

1. Исследование установившегося синусоидального режима в RC- цепях Соберем схему, показанную на рис. 3. $R_{01}=50~{\rm Om},~U_0=2B$.

Puc. 3

Табл. 1

Устанав	вливают		Измеряют			Вычисляют		
f, кГц	U_0 , B	І, мА	U_R , B	U_C , B	$arphi_{ m ocu}$	R, Om	С, мкФ	$arphi_{ ext{ iny B} ext{ iny I}}$
7.5	2	3.634	1.018	1.721	-58.92	0,28	0.044	-59,39
15	2	5.446	1.525	1.289	-39.89	0,28	0.044	-40,21

Формулы расчетов для колонок вычислений таблицы 1:

$$R = rac{U_R}{I}$$
 $C = rac{I}{2\pi * f * U_C}$ $arphi_{ ext{BA}} = -arctg(rac{U_C}{U_R})$

Векторная диаграмма для RC-цепи представлена на рис. 4 а,б, где а — для 7.5к Γ ц, б — для 15 к Γ ц.

Рис. 4, а, б

Вывод: полученные по осциллограмме $\varphi_{\text{осц}}$ и по ВД $\varphi_{\text{вд}}$ примерно совпадают. Незначительную погрешность можно списать на неточность измерения

2. Исследование установившегося синусоидального режима в RL-цепях

Соберем схему, показанную на рис. 5. $R_{01} = 50~{\rm Om}$, $U_0 = 2B$

Puc. 5

Полученные данные занесены в табл. 2:

Табл. 2

Устанав	вливают		Измеряют			Вычисляют		
f, кГц	U_0 , B	І, мА	U_R , B	U_L , B	$arphi_{ m ocu}$	R, Om	L, мГн	$arphi_{\scriptscriptstyle ext{BД}}$
7.5	2	4.609	1.291	1.525	49,36	0,28	7.02	49,75
3.75	2	6.137	1.718	1.015	30.57	0,28	1.75	30,57

Формулы для колонок с вычислениями в табл.2:

$$R = \frac{U_R}{I}$$

$$L = \frac{U_L}{2\pi * f * I}$$

$$\varphi_{\text{BA}} = -arctg(\frac{U_L}{U_R})$$

$$U_{\text{C}}$$

$$U_{\text{C}}$$

$$V_{\text{T}}$$

$$Puc. 6$$

Вывод: полученные по осциллограмме $\varphi_{\text{осц}}$ и по ВД $\varphi_{\text{вд}}$ примерно совпадают. Незначительную погрешность можно списать на неточность измерения.

Bопрос 1: Почему $U_0 \neq U_R + U_C$?

Потому что U_C отстает по фазе на $\frac{\pi}{2}$ от I, а U_R синфазно c током. Напряжения складываются как вектора, а их модули, соответственно, по теореме Пифагора.

Вопрос 2. Почему с ростом частоты значения I и U_R увеличились, а U_C и $|\varphi|$ уменьшились? Изменились ли R и C?

Ответ: потому что Z_C обратно пропорционально частоте, поэтому при увелечении частоты уменьшается Z_C , что ведёт к уменьшению U_C и увелечению U_R , ток I увеличивается и уменьшается угол $|\phi|$ опережения напряжения. R и C не изменились, т.к. они константны.

Вопрос 3: Почему $U_0 \neq U_R + U_L$?

Потому что U_L обгоняет I по фазе на $\frac{\pi}{2}$, а U_R синфазно с током. Напряжения складываются как вектора, а их модули, соответственно, по теореме Пифагора.

Вопрос 4: Почему с уменьшением частоты значения I и U_R увеличились, а U_L и $|\varphi|$ уменьшились? Изменились ли R и L?

Потому что Z_L прямо пропорционально частоте, поэтому при уменьшении частоты уменьшается Z_L , что ведёт к уменьшению U_L и увелечению U_R , ток I увеличивается и уменьшается угол $|\phi|$ отставания от напряжения. R и L – константы.

3. Исследование установившегося синусоидального режима в RLCцепях.

Соберем схему, показанную на рис. 7. U0 = 2B. Определим точку резонанса $f=10~\mathrm{k}\Gamma$ ц.

Рис. 7
Полученные данные записаны в табл. 3:

Устанан	вливают		Измеряют					
f, кГц	U_0 , B	І, мА	U_R , B	U_C ,B	U_L ,B	$arphi_{ m ocu}$	$arphi_{ ext{ iny BJ}}$	
14	2	7.12	1.99	4.37	4.4	0	0,86	
28	2	2.06	0.59	0.66	2.55	70.51	72,66	
7	2	2.08	0.58	2.56	0.64	-71.81	-73,19	

Формулы для столбца вычислений:

$$\varphi_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}} = arctg(\frac{U_L - U_C}{U_R})$$

Рис. 8, векторная диаграмма при $f=7\kappa\Gamma u$

Puc. 9, векторная диаграмма $npu f=14\kappa \Gamma u$

Рис. 10, векторная диаграмма при $f=28\kappa\Gamma$ ц

Вывод: полученные по осциллограмме $\varphi_{\text{осц}}$ и по ВД $\varphi_{\text{вд}}$ примерно совпадают. Незначительную погрешность можно списать на неточность измерения.

Вопрос 5: Почему
$$U_0 \neq U_R + U_L + U_C$$
?

 $U_0 \neq U_R + U_L + U_C$ из-за того, что U_C отстает по фазе на $\pi/2$ от I, U_L опережает I на $\pi/2$, а U_R синфазно c током. Напряжения складываются как вектора, а их модули, соответственно, по теореме Пифагора, U_L предварительно вычитается из UC.

Вопрос 6: Почему с ростом частоты значения I, U_C , U_L , U_R и R_C уменьшились, а R_L и $|\varphi|$ увеличились?

При увеличении частоты емкостное сопротивление уменьшилось, а индуктивное — увеличилось (при уменьшении частоты наоборот). Общее сопротивление $z = \sqrt{R_2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ в любом случае возросло, потому что раньше частота была резонансной и разность индуктивного и емкостного сопротивлений была равна 0, по этой же причине возрос $|\varphi|$ — появилась реактивная составляющая сопротивления, а, следовательно, и напряжения. Значит, уменьшился ток u, соответственно, напряжение на u, u u.

Вывод

В ходе выполнения работы проведено практическое ознакомление с синусоидальными режимами в простых RL-, RC- и RLC- цепях. Рассмотрено явление резонанса и поведение цепи в этом режиме. В ходе работы получены результаты, которые почти совпадают с теорией.