

Nintendo 64

Uma breve introdução

Sumário

1. Arquitetura do Hardware

- Visão geral da arquitetura
- CPU
- RCP
- Memória

2. Como funcionavam:

- Os Gráficos
- Os Game Paks
- Os periféricos
- Saída de dados

A Arquitetura

- CPU
- RCP
- RAM
- Interface Game Pak
- Periféricos
- Entrada e saída de áudio e video

CPU

- NEC MIPS R4300i
- RISC
- 5 estágios de pipeline
- Frequência de 93.75MHz
- 24KB de cache L1
- Opera em 32 e 64 bits
- Translation Lookaside Buffer (TLB)
- End. de Memória em 32 bits
- Não faz acesso direto à memória

RCP

- Reality CoProcessor
- Processador paralelo à CPU e controlador de memória
- Gerencia entrada e saída
- Controlador universal do console
- Dividido em duas unidades:
 - Reality Display Processor
 - Reality Signal Processor

RSP

- Reality Signal Processor
- Realiza cálculos 3D
 - Anti-Aliasing;
 - Texture Mapping;
 - Cálculos de profundidade;
 - Iluminação;
 - Culling;
 - Transforms;
 - Posicionamento de triângulos.
- 4KB disponível para microcódigo.

RDP

- Reality Display Processor
- Operações à nível de pixel
 - Renderizar geometria;
 - Processar sombras;
 - Aplicar Anti-Aliasing sobre as texturas;
 - Aplicar texturas;
 - Calcular transparência de pixels.
- 4KB de memória para texturas
 - Até menos, se usando mipmapping.

Memória

- 4MB RDRAM Rambus
- Barramento de 9 bits
- 500MHz
- Taxa de transferência de 562.5MB/s
- Prejudicada por não haver acesso direto à memória
- Simples e mais barata.
- Arquitetura de memória unificada (UMA)
- Expansível até 8MB

Gráficos

- 1. CPU
 - a. Gerar Display List
 - b. Enviar ao RSP
- 2. RSP
 - a. Processamento das listas
- 3. RDP
 - a. Rasterização

A simple three dimensional scene

Z-buffer representation

Game Paks

- Mídia física dos jogos
 - Cartucho de ROM
- Tamanho entre 4 e 64MB
- Progresso podia ser salvo em:
 - EEPROM
 - Memória Flash
 - RAM com backup de bateria
 - Controller Pak
- Transmissão de dados muito rápida
 - Por vezes usado como extensão da RAM

Game Paks x CD-ROM

- Capacidade de armazenamento muito inferior
- Mais duráveis
- Taxa de transferência muito maior (~1000x mais rápido)
 - Tempo de carregamento menor
- Latência menor

Periféricos

- Controller Pak
 - Memory card
- Expansion Pak
 - +4MB RAM
- Rumble Pak
 - o Bzzt
- Transfer Pak
 - Integração com Game Boy
- Jumper Pak
 - Terminar o barramento da memória principal na ausência do Expansion Pak

Agendamento de Áudio e Vídeo

- RSP realiza processamento gráfico e de áudio
- Processamento gráfico pode levar mais de uma frame, deixando o RSP ocupado
- Áudio não pode parar, pois geraria ruídos e música não fluida
- Scheduler
- Processo de alta prioridade que pode tomar controle da CPU,
 RDP e RSP a qualquer momento

Dúvidas?