Loss Functions for Regression and Classification

David Rosenberg

New York University

February 4, 2015

Loss Functions for Regression

In general, loss function may take the form

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y)$$

Regression losses usually only depend on the residual:

$$r = y - \hat{y}$$

$$(\hat{\mathbf{y}}, \mathbf{y}) \mapsto \ell(\mathbf{r}) = \ell(\mathbf{y} - \hat{\mathbf{y}})$$

- When would you not want a translation-invariant loss?
 - Can you transform your response y so that the loss you want is translation-invariant?

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \le \delta$ and linear for $|r| > \delta$ (robust and differentiable)

The Classification Problem

- Action space $\mathcal{A} = \{-1, 1\}$ Output space $\mathcal{Y} = \{-1, 1\}$
- **0-1 loss** for $f: \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(f(x) \neq y)$$

• But let's allow real-valued predictions $f: \mathcal{X} \to \mathbf{R}$:

$$f > 0 \implies \text{Predict } 1$$

 $f < 0 \implies \text{Predict } -1$

The Classification Problem: Real-Valued Predictions

- Action space A = R Output space $y = \{-1, 1\}$
- Prediction function $f: \mathfrak{X} \to \mathbf{R}$

Definition

The value f(x) is called the **score** for the input x. Generally, the magnitude of the score represents the **confidence of our prediction**.

Definition

The **margin** on an example (x, y) is yf(x). The margin is a measure of how **correct** we are.

- We want to maximize the margin.
- Most classification losses depend only on the margin.

The Classification Problem: Real-Valued Predictions

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Minimizing empirical 0-1 risk not computationally feasible

 $\hat{R}_n(f)$ is non-convex, not differentiable (in fact, discontinuous!). Optimization is **NP-Hard**.

Classification Losses

Zero-One loss: $\ell_{0-1} = \max\{1 - m, 0\}$

Classification Losses

SVM/Hinge loss:
$$\ell_{\text{Hinge}} = \max\{1-m,0\} = (1-m)_+$$

Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at 1. We have a "margin error" when m < 1.

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize w = 0
- repeat
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$
 - $w \leftarrow w \eta$ $\nabla_{w} \ell(f_{w}(x_{i}), y_{i})$

Grad(Loss on i'th example)

until stopping criteria met

SGD for Hinge Loss and Linear Predictors

- Consider linear hypothesis space: $f_w(x) = w^T x$.
- Gradient of hinge loss (x, y):

$$\nabla_{w} \ell_{\mathsf{Hinge}}(yw^{\mathsf{T}}x) = \begin{cases} -yx & \text{if } yf_{w}(x) < 1\\ 0 & \text{if } yf_{w}(x) > 1\\ \text{undefined} & \text{if } yf_{w}(x) = 1 \end{cases}$$

- A point with margin $m = yf_w(x) = 1$ is correctly classified.
 - We can skip SGD update for these points.
 - Rigorous approach: subgradient descent (lab topic)

SGD for Hinge Loss and Linear Predictors

• For step t+1 of SGD, we select a random training point (x,y) and set

$$w^{(t+1)} = \begin{cases} w^{(t)} + \eta^{(t)} yx & \text{if } yf_w(x) < 1 \\ w^{(t)} & \text{otherwise} \end{cases}$$

- $w^{(T)}$ is a linear combination of x_i 's with margin error when selected.
- Any x_i in the expansion of $w^{(T)}$ is called a **support vector**.
- We can write:

$$\hat{w} = \sum_{i=1}^{s} a_i x^{(i)},$$

where $x^{(1)}, \dots, x^{(s)}$ are the support vectors.

• Having 0 gradient for m > 1 allows sparse support vectors.

Classification Losses

 $\label{eq:logistic} \mbox{Logistic/Log loss: } \ell_{\mbox{Logistic}} = \log{(1 + e^{-m})}$

Logistic loss is differentiable. Never enough margin for logistic loss. How many support vectors?

(Soft Margin) Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x \mid w \in \mathbb{R}^d \}.$
- Loss $\ell(m) = (1 m)_+$
- ℓ_2 regularization

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (1 - y_i f_w(x_i))_+ + \lambda ||w||_2^2$$

- Next time
 - We'll apply duality theory SVM.
 - Introduce kernels and kernelization.