REGRESSION

DR. ZARA NASAR

DEPARTMENT OF INFORMATION TECHNOLOGY

INTRODUCTION

- To make future predictions based on historic data
- Relationship between various variables
- Requires training dataset
- Results in continuous values
- Multiple forms of regression
 - Simple linear regression
 - Multi-linear regression

TERMINOLOGY

- Input Variables (covariates, Independent Variables, Predictors, Features)
- Output Variable (Response, Target, Criterion, Outcome)
- Base function: $y = f(x) + \epsilon$
- All parameters will be denoted with w_0 followed by their subscript id. E.g. w_0 represents $0^{\rm th}$ parameter of equation
- ^ sign shows predicted/modeled variables and parameters

TERMINOLOGY

- ϵ is irreducible error and part of actual function
 - It is not estimated using regression
- Residual error
 - $e = actual predicted = y \circ$
- ϵ is part of residual error and tends to deal with chaos/ unpredictability of nature

SIMPLE LINEAR REGRESSION

- Also known as Simple regression
- It provides the basics to understand and extend the concept to various other forms of regression
- Applied to find out the impact of one variable to another
- Dependent Variable (y)
- Independent Variable (x)
- Simple linear Equation: $y = f(x) + \epsilon$
 - $f(x) = w_0 + w_1 \cdot x$

SIMPLE LINEAR REGRESSION

- $e = actual predicted = y \hat{y}$
 - $e = (w_0 + w_1 \cdot x + \epsilon) (\hat{w}_0 + \hat{w}_1 \cdot x)$
 - $e = (w_0 \hat{w}_0) + (w_1 \hat{w}_1).x + \epsilon$
- For any sample i:
 - $e_i = actual predicted = y_i \hat{y}_i$
- Goal: To minimize this error against all samples
 - Mean Squared Error = Sum of Squared Residuals (SSR) = $\sum_{i=1}^{n} e_i^2$

SIMPLE LINEAR REGRESSION

- Steps
 - Model the regression function
 - Derive the error expression
 - Take its derivative with respect to parameters
 - Set gradient of error function to zero in order to get the optimal value
 - Linear regression is a Convex problem
 - One solution/global minima exists

- Goal: Find parameter values that minimize the error.
 - Goal: $argmin_{w_0,w_1} \sum_{i=1}^n e_i^2$
 - $argmin_{w_0,w_1} \sum_{i=1}^n (y_i \hat{y}_i)^2 = argmin_{w_0,w_1} \sum_{i=1}^n (y_i (\hat{w}_0 + \hat{w}_1.x_i))^2$
 - $argmin_{w_0,w_1} \sum_{i=1}^n (y_i \hat{w}_0 \hat{w}_1.x_i)^2$ -----(1)
- By differentiating eq. 1 w.r.t \hat{w}_0 :

•
$$\frac{\partial E}{\partial \hat{\mathbf{w}}_0} = \frac{\partial}{\partial \hat{\mathbf{w}}_0} \sum_{i=1}^n (y_i - \hat{\mathbf{w}}_0 - \hat{\mathbf{w}}_1 \cdot x_i)^2 = 2 \sum_{i=1}^n (y_i - \hat{\mathbf{w}}_0 - \hat{\mathbf{w}}_1 \cdot x_i) (-1)$$

To find global minima:

$$\frac{\partial E}{\partial \hat{w}_0} = 0 \Rightarrow 2 \sum_{i=1}^n (y_i - \hat{w}_0 - \hat{w}_1.x_i) \ (-1) = 0$$

$$\Rightarrow \sum_{i=1}^n (y_i - \hat{w}_0 - \hat{w}_1.x_i) = 0 \qquad \text{#Dropping 2 and -1}$$

$$\Rightarrow \sum_{i=1}^n (y_i - \hat{w}_1.x_i) = \sum_{i=1}^n (\hat{w}_0)$$

$$\Rightarrow \sum_{i=1}^n (y_i - \hat{w}_1.x_i) = n\hat{w}_0 \qquad \text{#} \sum_{i=1}^n (\hat{w}_0) = \hat{w}_0 + \dots + \hat{w}_0 = n * \hat{w}_0$$

$$\Rightarrow \hat{w}_0 = \frac{\sum_{i=1}^n (y_i - \hat{w}_1.x_i)}{n} = \frac{\sum_{i=1}^n (y_i)}{n} - \frac{\sum_{i=1}^n (\hat{w}_1.x_i)}{n}$$

•
$$\Rightarrow \hat{\mathbf{w}}_0 = \frac{\sum_{i=1}^n (y_i)}{n} - \hat{\mathbf{w}}_1 \frac{\sum_{i=1}^n (x_i)}{n}$$

- \Rightarrow $\hat{\mathbf{w}}_0 = Average(y) \hat{\mathbf{w}}_1 Average(x)$
- $\Rightarrow \hat{\mathbf{w}}_0 = \overline{\mathbf{y}} \hat{\mathbf{w}}_1 \overline{\mathbf{x}}$
- By differentiating eq. I w.r.t \hat{w}_1 :

•
$$\frac{\partial E}{\partial \hat{\mathbf{w}}_1} = \frac{\partial}{\partial \hat{\mathbf{w}}_1} \sum_{i=1}^n (y_i - \hat{\mathbf{w}}_0 - \hat{\mathbf{w}}_1 \cdot x_i)^2 = 2 \sum_{i=1}^n (y_i - \hat{\mathbf{w}}_0 - \hat{\mathbf{w}}_1 \cdot x_i) (-x_i)$$

By solving gradient and equating it to zero:

•
$$\hat{\mathbf{w}}_1 = \frac{\sum_{i=1}^n x_i y_i - \frac{1}{n} \sum_{i=1}^n y_i \sum_{i=1}^n x_i}{\sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2}$$

•
$$\hat{\mathbf{w}}_0 = \overline{\mathbf{y}} - \hat{\mathbf{w}}_1 \overline{\mathbf{x}}$$
, $\hat{\mathbf{w}}_1 = \frac{\sum_{i=1}^n x_i y_i - n \overline{\mathbf{y}} \overline{\mathbf{x}}}{\sum_{i=1}^n x_i^2 - n \overline{\mathbf{x}^2}}$

 Using these two equations, one can estimate parameter values for any simple linear regression example.

SIMPLE LINEAR REGRESSION EXAMPLE

- x presents the house area and
- y presents house price in millions
- Using analytical solution
 - Both parameters can be found
 - Assuming no irreducible error (ϵ)
- Final Equation:

•
$$y = -8.098 + 0.19 x$$

• For x = 64

•
$$y = -8.098 + 0.19$$
 (64)

• y = 4.062

	X	у	xy	\mathbf{x}^{2}
n = 5	60	3.1	186	3600
	61	3.6	219.6	3721
	62	3.8	235.6	3844
	63	4	252	3969
	65	4.1	266.5	4225
Sum	311	18.6	1159.7	19359
Average	62.2	3.72	231.94	3868.84
Slope(\hat{w}_1)	0.187837	0.19		
Intercept(\hat{w}_{0})	-7.96351	-8.098		

MULTIPLE LINEAR REGRESSION MOTIVATION

- Simple linear regression
 - Only applicable when there is only one input variable
- Real life problems
 - Carry multiple input factors
- Solution
 - Generalization of simple linear regression

- A single training instance will form a vector
- Thus, represent complete input in form of matrix
- Transform parameters in vector
- Example
 - Age, Experience, Salary as input variable
 - Salary Bonus as output variable
 - Salary Bonus = $\hat{w}_0 + \hat{w}_1 * Age + \hat{w}_2 * Experience + \hat{w}_3 * Salary + \epsilon$

- Resulting Vectors
- N: total data points M: total input dimensions

```
• \vec{\hat{y}} (predicted output vector) size: N * 1
```

```
• \overrightarrow{\hat{w}} (parameter vector) size: (M+1) * 1
```

- \tilde{X} (Input Matrix) size: N * (M + 1)
- \vec{y} (actual output vector) size: N * 1
- $\vec{\epsilon}$ (*irreducible error vector*) size: N * 1

to incorporate \hat{w}_0

to incorporate \hat{w}_0

Resulting Vectors

X			Υ
Age	Exp.	Salary(K)	Bonus
25	I	40	2000
30	2	50	2250
35	10	65	2600
33	4	55	2350
23	0	35	1850

• In input matrix; 1st column containing 1's is added to incorporate bias effect

• By performing $\widetilde{X}\overrightarrow{\hat{w}}$: we get

$$\hat{w}_0 + \hat{w}_1 * 25 + \hat{w}_2 * 1 + \hat{w}_3 * 40 + \epsilon_1$$

$$\hat{w}_0 + \hat{w}_1 * 30 + \hat{w}_2 * 2 + \hat{w}_3 * 50 + \epsilon_2$$
• $\hat{y} = \hat{w}_0 + \hat{w}_1 * 35 + \hat{w}_2 * 10 + \hat{w}_3 * 65 + \epsilon_3$

$$\hat{w}_0 + \hat{w}_1 * 33 + \hat{w}_2 * 4 + \hat{w}_3 * 55 + \epsilon_4$$

$$\hat{w}_0 + \hat{w}_1 * 23 + \hat{w}_2 * 0 + \hat{w}_3 * 35 + \epsilon_5$$

- Error can then be expressed as:
 - error = $\vec{y} \vec{\hat{y}} = \vec{y} \tilde{X}\vec{\hat{w}}$
 - Sum of residual error $\sum_{i=1}^{n} e_i^2$ can the be expressed as: e'e

•
$$(\vec{y} - \tilde{X}\vec{\hat{w}})^2 = (\vec{y} - \tilde{X}\vec{\hat{w}})'(\vec{y} - \tilde{X}\vec{\hat{w}})$$

' represents transpose

• Error function (E) =
$$(\vec{y}' - \vec{\hat{w}}'\tilde{X}')(\vec{y} - \tilde{X}\vec{\hat{w}})$$

$$\# (AB)' = B'A'$$

•
$$\mathbf{E} = \vec{y}'^{\vec{y}} - \vec{y}' \tilde{X} \overrightarrow{\hat{w}} - \overrightarrow{\hat{w}}' \tilde{X}' \vec{y} + \overrightarrow{\hat{w}}' \tilde{X}' \tilde{X} \overrightarrow{\hat{w}}$$

- Compute gradient of Error function with respect to parameters
- Set it equal to zero to get solution

•
$$\frac{\partial E}{\partial \vec{\hat{w}}} = \frac{\partial}{\partial \vec{\hat{w}}} (\vec{y}' \vec{y} - \vec{y}' \tilde{X} \vec{\hat{w}} - \vec{\hat{w}}' \tilde{X}' \vec{y} + \vec{\hat{w}}' \tilde{X}' \tilde{X} \vec{\hat{w}}) = \vec{0}$$

•
$$\Rightarrow$$
 $(0 - (\vec{y}'\tilde{X})' - \tilde{X}'\vec{y} + 2\tilde{X}'\tilde{X}\hat{w}) = \vec{0}$

Solving it generates solution for

$$\bullet \overrightarrow{\hat{\mathbf{w}}} = (\widetilde{X}'\widetilde{X})^{-1} \widetilde{X}' \overrightarrow{y}$$

ORDINARY LEAST SQUARES

- Ordinary least squares (OLS)
 - Provides analytical solution
 - Both methods described are OLS
- Issues with OLS
 - Requires invertible matrix
 - For huge data set, matrix inversion gets very time-consuming

GRADIENT DESCENT

- Alternate way to train various ML models
- Regression problems
 - One global minima
- Required
 - Learning rate/step size
 - Gradient function
- After every step:
 - $weight_{new} = weight_{old} learning step * gradient$

GRADIENT DESCENT EXAMPLE

For Simple Linear regression, gradients are:

$$\frac{\partial E}{\partial \hat{w}_0} = \frac{\partial}{\partial \hat{w}_0} \sum_{i=1}^n (y_i - \hat{w}_0 - \hat{w}_1 \cdot x_i)^2 = 2 \sum_{i=1}^n (y_i - \hat{y}) (-1)$$

$$\frac{\partial E}{\partial \hat{\mathbf{w}}_1} = \frac{\partial}{\partial \hat{\mathbf{w}}_1} \sum_{i=1}^n (y_i - \hat{\mathbf{w}}_0 - \hat{\mathbf{w}}_1 \cdot x_i)^2 = 2 \sum_{i=1}^n (y_i - \hat{\mathbf{y}}) (-x_i)$$

First, assign random values to both parameters say $\hat{w}_0 = 0.5$, $\hat{w}_1 = 0.25$ with learning rate = 0.25

Compute
$$\hat{y} = 0.25 * 60 + 0.5 = 15.5 \Rightarrow \frac{\partial E}{\partial \hat{w}_0} = 2 * (3.1 - 15.5) (-1) = 24.8$$

$$\frac{\partial E}{\partial \hat{\mathbf{w}}_1} = 2 * (3.1 - 15.5) (-1)(60) = 1448$$

Hence
$$\hat{w}_0 = 0.5 - (0.25) *24.8 = -5.7$$
, $\hat{w}_1 = 0.25 - (0.25) *1448 = -361.75$

X	y
60	3.1
61	3.6
62	3.8
63	4
65	4.1

GRADIENT DESCENT EXAMPLE

For Multiple Linear regression, we can use general notation:

$$Error = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
Where $\hat{y}_i = \overrightarrow{\hat{w}}' \widetilde{X}_i$

$$\frac{\partial E}{\partial \hat{w}_i} = 2 \sum_{i=1}^{n} (y_i - \hat{y}_i) (-x_i) \qquad \# x_0 = 1$$

For whole input matrix: $\vec{\hat{y}} = \vec{\hat{w}}' \vec{X}$

$$\begin{aligned} &Gradient = \frac{\partial E}{\partial \overrightarrow{\hat{w}}} = \widetilde{X_i}' * (\overrightarrow{y} - \overrightarrow{\hat{w}}' \widetilde{X}) \\ &\overrightarrow{\hat{w}_{new}} = \overrightarrow{\hat{w}_{old}} - learning \ step/N * \ gradient \end{aligned}$$

VARIOUS TYPES OF GRADIENT DESCENTS

- Simple Gradient Descent
 - It refers to gradient descent after whole dataset iteration
- Stochastic
 - It computes gradient descent after every example; as show in previous example
- Batch
 - In this mode, batches are made, and weights are updated using whole batch as input
- Normally, stochastic batch gradient descent is used.

LINEAR REGRESSION OVERFITTING

- Dataset division
 - Training set
 - Validation set
- Aim is to reduce training error as well as validation error
- If $train_{error} \ll valid_{error}$
 - Overfitting occurred
- If train_{error} and valid_{error}, both are high
 - Continue training

LINEAR REGRESSION OVERFITTING

- M refers to the no. of input dimensions
- Various models having various powers
- Increase in dimensions
 - More power in model
 - More parameters to tune
 - Result in overfitting (last figure with M=9)
- Solution: Regularization

LINEAR REGRESSION REGULARIZATION

- Regularization
 - Penalizes on the basis of parameter's magnitude
 - Helps in generalization
 - Avoids overfitting
- Two widely used schemes:
 - L2-norm/ Ridge Regression (Squared Norm)
 - L1-norm (Absolute Value)

REGULARIZATION HOW TO DO IT?

- In order to perform Regularization : error function gets updated
 - $SSR = \sum_{i=1}^{n} e^2$ (without regularization),
 - $SSR = \sum_{i=1}^{n} e^2 + \frac{\lambda}{2} ||\hat{\mathbf{w}}||^2$ (with regularization)
 - $\frac{\partial E}{\partial \hat{w}_i} = 2 \sum_{i=1}^n e_i * x_i + \frac{\partial E}{\partial \hat{w}_i} \left(\frac{\lambda}{2} \left(w_0^2 + \dots + w_i^2 + \dots + w_n^2 \right) \right)$
 - $\frac{\partial E}{\partial \hat{\mathbf{w}}_i} = 2 \sum_{i=1}^n e_i * x_i + \frac{\lambda}{2} * \frac{\partial E}{\partial \hat{\mathbf{w}}_i} ((w_0^2 + \dots + w_i^2 + \dots + w_n^2))$
 - $\frac{\partial E}{\partial \hat{w}_i} = 2\sum_{i=1}^n e_i * x_i + \frac{\lambda}{2} * ((0 + \dots + 2 * w_i + \dots + 0))$
 - $\frac{\partial E}{\partial \hat{w}_i} = 2 \sum_{i=1}^n e_i * x_i + \frac{\lambda}{2} * (2 * w_i)$
 - $\frac{\partial E}{\partial \hat{\mathbf{w}}_i} = 2 \sum_{i=1}^n e_i * x_i + \lambda w_i$

REGULARIZATION REVISED ERROR FUNCTION

In case of Simple linear Ridge regression, optimal solution becomes

•
$$\hat{\mathbf{W}}_{i} = 2\sum_{i=1}^{n} e_{i} * x_{i} + \lambda w_{i}$$
 -----(2)

In case of multiple linear Ridge regression, optimal solution becomes

•
$$\overrightarrow{\hat{\mathbf{w}}} = (\widetilde{X}'\widetilde{X} + \lambda \mathbf{I})^{-1}\widetilde{X}'\overrightarrow{y}$$
 (3) # I is identity matrix

- Highlighted segment in red is known as L2-norm
- Particular case of L2-norm presented in Eq. 2 is called Ridge regression

LINEAR REGRESSION CONCLUSION

- So far, regression studied results into continuous variable and is only applicable if function is linear in terms of input variables
- If input parameters are non-linear, then kernel trick can be used to transform input space into a linear space
- Kernel trick refers to transformation of data from one space to another.
 - E.g. I have input having 10 parameters, by applying PCA, I can transform it in 3 parameters space
 - This transformation from one space to another using some transformation function, is regarded as kernel trick

WHY NOT USE LINEAR REGRESSION FOR CLASSIFICATION

- Linear regression finds out the linear model that best fits the data
- It results in continuous values
- Threshold can be used for classification

WHY NOT USE LINEAR REGRESSION FOR CLASSIFICATION

- Generalization is challenging
- Boundary between classes can get confused
- Level of certainty on results can't be acquired
- Solution: Logistic Regression

LOGISTIC REGRESSION

- Logistic regression is used for classification
 - Binary classification (Exactly two classes)
 - Multi-class classification (More than two classes)
- There are many phenomenon that require binary decision
 - Fraud detection
 - Gender prediction
 - Tumor classification