Supersingular Isogeny Diffie-Hellman

Valeriia Kulynych

Université de Toulon

May 25th, 2018

Outline

- 1 Supersingular Elliptic Curves
- 2 Isogeny Graphs
- 3 Diffie-Hellman Key Exchange Protocol
 - Classic Diffie-Hellman
 - Elliptic Curve Diffie-Hellman
 - Supersingular Isogeny Diffie-Hellman

Elliptic curves

Definition

An elliptic curve is a pair (E, O), where E is a curve of genus 1 and $O \in E$.

- We consider curves defined over field K with characteristic p > 0.
- Composition law is defined as follows: Let $P, Q \in E$, L be the line connecting P and Q (tangent line to E if P = Q), and R be the third point of intersection of L with E. Let L' be the line connecting R and Q. Then $P \oplus Q$ is the point such that L' intersects E at R, Q and $P \oplus Q$.

Figure: An elliptic curve defined over \mathbb{R} , and the geometric representation of its group law.

Supersingular Elliptic Curves

Definition

For every n, we have a multiplication map

$$[n]: E \to E$$

$$P \mapsto \underbrace{P \oplus \cdots \oplus P}_{n \text{ times}}.$$

Its kernel is denoted by E[n] and is called the n-torsion subgroup of E. Then one can show that for any $r \ge 1$:

$$E[p^r](ar{K})\simeq egin{cases} 0 \ \mathbb{Z}/p^r\mathbb{Z} \end{cases}$$

In the first case, *E* is called supersingular. Otherwise, it is called ordinary.

Isogenies

Definition

Let E_1 and E_2 be elliptic curves defined over a finite field \mathbb{F}_q of characteristic p. An isogeny $\phi: E_1 \to E_2$ defined over \mathbb{F}_q is a non-constant morphism that maps the identity into the identity (and this a is group homomorphism).

Theorem (Sato-Tate)

Two elliptic curves E_1 and E_2 are isogenous over \mathbb{F}_q if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$.

Isogenies

- Curves in the same isogeny class are either all supersingular or all ordinary.
- The degree of an isogeny ϕ is the degree of ϕ as a morphism. An isogeny of degree ℓ is called ℓ -isogeny.
- An isogeny could be identified with its kernel. Given a subgroup G of E, we can use Velu's formulas to compute an isogeny $\phi: E_1 \to E_2$ with kernel G and such that $E_2 \simeq E_1/G$.

Isogeny graphs

Definition

Let E be an elliptic curve over a field K. Let $S \subseteq \mathbb{N}$ be a finite set of primes. Define

$$X_{E,K,S}$$

to be the graph with vertex set being the K-isogeny class of E. Vertices are typically labelled by j(E). There is an edge $(j(E_1),j(E_2))$ labelled by ℓ for each equivalence class of ℓ -isogenies from E_1 to E_2 defined over K for some $\ell \in S$. This graph is called isogeny graph.

Supersingular isogeny graph is always

- conncted;
- $\ell + 1$ -regular, where ℓ is isogeny degree.

Figure: Supersingular Isogeny Graph $X_{\overline{\mathbb{F}}_{83},2}$

Classic Diffie-Hellman

Public parameters	A prime p , $p-1$ has large prime cofactor.		
·	A multiplicative generator $g \in \mathbb{Z}/p\mathbb{Z}$.		
	Alice	Bob	
Pick random secret	0 < a < p - 1	0 < b < p - 1	
Compute public data	$A = g^a$	$B=g^b$	
Exchange data	$A \longrightarrow$	$\leftarrow\!$	
Compute shared secret	$S = B^a$	$S = A^b$	

■ The protocol can be generalized by replacing the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$ with anny other cyclic group $G = \langle g \rangle$.

Security of DH

Definition (Discrete logarithm problem)

Let G be a cyclic group generated by an element g. For any element $A \in G$, find the dicrete logarithm of A in base g, denoted $\log_g(A)$, as the unique integer in the interval [0,#G[such that

$$g^{\log_g(A)} = A.$$

We know several algorithms to compute discrete logarithms:

- in *generic* group G that require $O(\sqrt(q))$ computational steps, where q is the largest prime divisor of $\#G \implies G$ is usually chosen such that $\log_2 q \simeq 256$;
- in group $G = (\mathbb{Z}/p\mathbb{Z})^*$ of complexity better than $O(\sqrt{\#G})$.

Elliptic Curve Diffie-Hellman

Public parameters	Finite field \mathbb{F}_p , with $\log_2 p \simeq 256$,	
	Elliptic curve E/\mathbb{F}_p , $\#E(\mathbb{F}_p)$ is prime,	
	A generator P of $E(\mathbb{F}_p)$.	
	Alice	Bob
Pick random secret	$0 < a < \#E(\mathbb{F}_p)$	$0 < b < \#E(\mathbb{F}_p)$
Compute public data	A = [a]P	B = [b]P
Exchange data	$A \longrightarrow$	\leftarrow B

Security of ECDH

Background

Let G = (E, V) be an undirected graph, where $V = \{v_i | i \in I\}$ is the set of vertices, and E is the set of edges. A random walk of length i is a path $v_1 \to \cdots v_i$, defined by the random process that selects v_i uniformly at random among the neighbors of v_{i-1} . Why do we use supersingular isogenies?

- One isogeny degree is sufficient to obtain an expander graph ~ graph with short diameter and rapidly mixing walks ⇒ we can construct more efficient protocols.
- There is no action of an abelian group on them ⇒ harder to use quantum computers to speed up the supersingular isogeny path problem.

Idea of SIDH

- Secrets: Alice and Bob take secret random walks in two distinct isogeny graphs on the same vertex set. Alice's walk has length ε_A and Bob's has length ε_B .
 - On practice, we choose a large prime p and small primes ℓ_A and ℓ_B . The vertex set is elliptic curves j-invariant over \mathbb{F}_{p^2} . Alice's graph consists of ℓ_A -isogenies, Bob's of ℓ_B -isogenies.
- Key idea: A walk of length ε_A in the ℓ_A -isogeny graph corresponds to a kernel of a size $\ell_A^{\varepsilon_A}$, and this kernel is cyclic \iff the walk does not backtrack.
 - On practice, choosing a secret walk of length ε_A is equivalent to choosing a secret cyclic subgroup $\langle A \rangle \subset E[\ell_A^{\varepsilon_A}]$.
- Shared secret: A subgroup $\langle A \rangle + \langle B \rangle = \langle A, B \rangle$ defines an isogeny to $E/\langle A, B \rangle$. Since we choose $\ell_A \neq \ell_B$, the group $\langle A, B \rangle$ is cyclic of order $\ell_A^{\varepsilon_A} \ell_B^{\varepsilon_B}$.

Supersingular Isogeny Diffie-Hellman

Figure: Supersingular isogeny graphs of degree 2 (left, blue) and 3 (right, red) on \mathbb{F}_{97^2} .

Illustration of SIDH

$$\ker \alpha = \langle A \rangle \subset E[\ell_A^{e_A}] \qquad \qquad E \xrightarrow{\alpha} E/\langle A \rangle$$

$$\ker \beta = \langle B \rangle \subset E[\ell_B^{e_B}] \qquad \qquad \beta \qquad \qquad \beta'$$

$$\ker \alpha' = \langle \beta(A) \rangle \qquad \qquad \downarrow \beta'$$

$$\ker \beta' = \langle \alpha(B) \rangle \qquad \qquad E/\langle B \rangle \xrightarrow{\alpha'} E/\langle A, B \rangle$$

Figure: Commutative isogeny diagram constructed from Alice's and Bob's secrets. Quantities known to Alice are drawn in blue, those known to Bob are drawn in red

The problems we face

- **1** The points of $\langle A \rangle$ (or $\langle B \rangle$) may not be rational.
- **2** The diagram on previous slide shows no way how Alice and Bob could compute shared secret $E/\langle A,B\rangle$ without revealing their secrets.

Solutions

■ In case of supersingular curves, we can control the group structure. It turns out that as we are dealing with the field \mathbb{F}_p^2 then

$$E(\mathbb{F}_q)\simeq (\mathbb{Z}/(p\pm 1)\mathbb{Z})^2$$

.