Fundamentals of Deep Learning

Jeff Prosise

jeffpro@wintellect.com

@jprosise

The Big Picture

Neural Networks

- Contain layers of neurons connected by paths assigned weights
- Data propagates forward by summing the products of values and weights and using activation functions to add non-linearity

How Neural Networks Work

Deep-Learning Libraries

Library	Language(s)	GitHub URL
TensorFlow	Python, C++, JavaScript	https://github.com/tensorflow/tensorflow
Microsoft Cognitive Toolkit (CNTK)	Python, C++, C#	https://github.com/Microsoft/CNTK
Theano	Python	http://deeplearning.net/software/theano/
Keras	Python	https://github.com/keras-team/keras
Caffe / Caffe2	Python, C++	https://github.com/caffe2/caffe2
PyTorch	Python	https://github.com/pytorch/pytorch
Apache MXNet	Python, C++, JavaScript, R, Julia, Scala, Perl	https://github.com/apache/incubator- mxnet
DeepLearning4J (DL4J)	Java, Scala, and other JVM languages	https://github.com/deeplearning4j/deeplearning4j
Core ML (iOS)	Swift, Objective-C	N/A

Building a Neural Network with Keras

```
from keras.layers import Dense
from keras.models import Sequential

model = Sequential()
model.add(Dense(16, activation='relu', input_dim=2)) # Each input contains 2 values
model.add(Dense(16, activation='relu'))
model.add(Dense(1)) # Single numeric output
model.compile(loss='mae', optimizer='adam', metrics=['mae'])
```

Training a Neural Network

```
# Train without validation
model.fit(x, y, epochs=10, batch size=128)
# Train with 80% of the input data and validate with 20%
model.fit(x, y, validation_split=0.2, epochs=10, batch_size=128)
# Train using provided test data for validation
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10, batch_size=128)
# Evaluate the model's accuracy separately
scores = model.evaluate(x test, y test, verbose=0)
```

Backpropagation

Making a Prediction

```
import numpy as np
model.predict(np.array([[1.0, 2.0]])) # Assumes network expects two values in each input
```

Demo Your First Neural Network

Classification

- Determine to which class (category) an input belongs
 - Which character of the alphabet does a hand-written character represent?
 - Is a credit-card transaction fraudulent or not fraudulent?
 - Is an e-mail spam or not spam?
- Binary classification
 - Sigmoid activation on output, binary_crossentropy loss function
- Multiclass classification
 - Softmax activation on output, categorical_crossentropy loss function

Building and Training a Binary Classifier

```
from keras.layers import Dense

from keras.models import Sequential

model = Sequential()

model.add(Dense(16, activation='relu', input_dim=(...)))

model.add(Dense(16, activation='relu'))

model.add(Dense(1, activation='relu'))

model.add(Dense(1, activation='sigmoid')) # Probability from 0.0 to 1.0

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

model.fit(x, y, validation_split=0.2, epochs=10, batch_size=128)
```

Building and Training a Multiclass Classifier

```
from keras.layers import Dense
from keras.models import Sequential

model = Sequential()
model.add(Dense(16, activation='relu', input_dim=(...)))
model.add(Dense(16, activation='relu'))
model.add(Dense(10, activation='softmax')) # 10 possible classes
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x, y, validation_split=0.2, epochs=10, batch_size=128)
```

Making a Prediction with a Classifier

```
import numpy as np

# Get the probabilities for each class
model.predict(np.array([[...]]))

# Get the predicted class
model.predict_classes(np.array([...]))[0]
```

Demo Multiclass Classification

Working with Text

- How do you build machine-learning models that classify text?
 - Classify e-mails as spam or not spam
 - Score text for sentiment (sentiment analysis)
- Raw text must be prepared for use in machine learning
 - Remove numbers, symbols, punctuation characters, and stop words
 - Stem the words (e.g., turn "cats" into "cat") and convert to lowercase
- Processed text must then be vectorized
 - Use Keras's Tokenizer class to do the vectorizing

Vectorizing Text

```
documents = [
    'Quick brown fox', # Stop words removed
    'Jumps over lazy dog'
                                                                               Vocabulary
tokenizer = Tokenizer()
                                                                            quick
tokenizer.fit_on_texts(documents)
                                                                            brown
vectors = tokenizer.texts_to_matrix(documents)
                                                                            fox
                                                                                        3
                                                                                        4
                                                                            jumps
                                                                                        5
                                                                            over
        quick
               brown
                       fox
                                             lazy
                                                    dog
                             jumps
                                     over
                                                                                        6
                                                                            lazy
   0
                                       0
                                                                            dog
   0
          0
                 0
                        0
```

Turning Text into Sequences

```
documents = [
    'Quick brown fox', # Stop words removed
    'Jumps over lazy dog'
                                                                             Vocabulary
tokenizer = Tokenizer()
                                                                          quick
tokenizer.fit_on_texts(documents)
                                                                          brown
sequences = tokenizer.texts_to_sequences(documents)
                                                                          fox
padded_sequences = pad_sequences(sequences, 5)
                                                                                      4
                                                                          jumps
                                                                          over
                                                                                      6
                                                                          lazy
                0
                                                                          dog
                0
```

Word Embeddings

- Neural networks use word-embedding layers to turn text sequences containing word indexes into dense vectors of a specified size
- Keras makes this easy with its Emdedding class

Classifying Text Using Word Embeddings

```
model = Sequential()
model.add(Embedding(10000, 32, input_length=500))

model.add(Flatten())

model.add(Dense(16, activation='relu'))

model.add(Dense(16, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])

model.fit(x, y, validation_split=0.2, epochs=5, batch_size=32)
```

Demo Binary Classification

Convolutional Neural Networks

- Excel at tasks involving computer vision and sequence processing
- Use convolution layers and convolution kernels to create feature maps
- Use pooling layers to subsample feature maps and generalize features

Source: https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/

Feature Mapping with Convolution Kernels

Building and Training a CNN

```
model = Sequential()
model.add(Conv2D(10, (5, 5), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(20, (5, 5), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten()) # Reshape output from previous layer for input to next layer
model.add(Dropout(0.25)) # Regularize by randomly dropping 25% of the inputs in each epoch
model.add(Dense(100, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x, y, validation_split=0.2, epochs=10, batch_size=128)
```

Demo Image Classification

Transfer Learning

- Leverages pretrained CNNs to achieve acceptable accuracy with exponentially less data, compute power, and training time
 - Replaces fully connected classification layers in pretrained model with new layers, reusing pretrained model's convolutional base for feature extraction
 - Allows image-classification models to be trained with as few as 50-100 images
 - Eliminates need for GPU-equipped HPC clusters (train on a laptop)
- Pretrained CNNs available from Microsoft, Google, and others
 - Frequently made available through GitHub
- Keras includes popular pretrained CNNs

How Transfer Learning Works

Pretrained CNNs Included with Keras

Model	Accuracy	Versions
DenseNet	Up to 93.6%	DenseNet121, DenseNet169, and DenseNet201
EfficientNet	N/A	EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, and EfficientNetB7
Inception	Up to 95.3%	InceptionV3 and InceptionResNetV2
MobileNet	Up to 90.1%	MobileNet and MobileNetV2
NASNet	Up to 96.0%	NASNetMobile and NASNetLarge
ResNet	Up to 94.2%	ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152, and ResNet152V2
VGG	Up to 90.1%	VGG16 and VGG19
Xception	94.5%	Xception

https://keras.io/api/applications/

Using a Pretrained CNN to Classify Images

```
# Instantiate the model
model = ResNet50V2(weights='imagenet', input shape=(224, 224, 3))
# Load and preprocess the image to be classified
x = image.load_img('IMAGE_PATH', target size=(224, 224))
x = image.img to array(x)
x = np.expand dims(x, axis=0) # Converts (224, 224, 3) to (1, 224, 224, 3)
x = preprocess input(x)/255 # Unique to each pretrained CNN
# Use the model to classify the image
predictions = model.predict(x)
print(decode predictions(predictions, top=5)[0])
```

"Retraining" a Pretrained CNN (Transfer Learning)

```
# Instantiate the model (minus the classification layers) and freeze the layers
base_model = ResNet50V2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
for layer in base model.layers:
    layer.trainable = False
# Add and train new classification layers
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
model.fit(x, y, validation_split=0.2, epochs=10, batch_size=8)
```

Fast Transfer Learning

```
# Instantiate the model (minus the classification layers)
base_model = ResNet50V2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# Run the images through the base model
x = base model.predict(x)
# Build a network for classification and train it with the output
model = Sequential()
model.add(Flatten(input_shape.x.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
model.fit(x, y, validation split=0.2, epochs=10, batch size=8)
```

Demo Transfer Learning

