for all $f \in E^*$ and all $v \in E$. Recall that given a subset V of E (respectively a subset U of E^*), the orthogonal V^0 of V is the subspace of E^* defined such that

$$V^0 = \{ f \in E^* \mid \langle f, v \rangle = 0, \text{ for every } v \in V \},$$

and that the orthogonal U^0 of U is the subspace of E defined such that

$$U^0 = \{ v \in E \mid \langle f, v \rangle = 0, \text{ for every } f \in U \} = \bigcap_{f \in U} \operatorname{Ker} f.$$

Then, by Theorem 11.4 (since E and E^* have the same finite dimension n+1), $U=U^{00}$, $V=V^{00}$, and the maps

$$V \mapsto V^0$$
 and $U \mapsto U^0$

are inverse bijections, where V is a subspace of E, and U is a subspace of E^* .

These maps set up a duality between subspaces of E and subspaces of E^* . Furthermore, we know that U has dimension k iff U^0 has dimension n+1-k, and similarly for V and V^0 .

Since a linear system $P = \mathbf{P}(U)$ of hyperplanes in $\mathcal{H}(E)$ corresponds to a subspace U of E^* , and since

$$U^0 = \bigcap_{f \in U} \operatorname{Ker} f$$

is the intersection of all the hyperplanes defined by nonnull linear forms in U, we can view a linear system $P = \mathbf{P}(U) = \mathbf{P}(U^{00})$ in $\mathcal{H}(E)$ as the family of hyperplanes in $\mathbf{P}(E)$ containing $\mathbf{P}(U^0)$.

In view of the identification of $\mathbf{P}(E^*)$ with the set $\mathcal{H}(E)$ of hyperplanes in $\mathbf{P}(E)$, by passing to projective spaces, the above bijection between the set of subspaces of E and the set of subspaces of E^* yields a bijection between the set of projective subspaces of $\mathbf{P}(E)$ and the set of linear systems in $\mathcal{H}(E)$ (or equivalently, the set of projective subspaces of $\mathbf{P}(E^*)$) called *duality*. Recall that a point of $\mathcal{H}(E)$ is a hyperplane in $\mathbf{P}(E)$.

More specifically, assuming that E has dimension n + 1, so that $\mathbf{P}(E)$ has dimension n, if $Q = \mathbf{P}(V)$ is any projective subspace of $\mathbf{P}(E)$ (where V is any subspace of E) and if $P = \mathbf{P}(U)$ is any linear system in $\mathcal{H}(E)$ (where U is any subspace of E^*), we get a subspace Q^0 of $\mathcal{H}(E)$ defined by

$$Q^0 = \{ \mathbf{P}(H) \mid Q \subseteq \mathbf{P}(H), \ \mathbf{P}(H) \text{ a hyperplane in } \mathcal{H}(E) \},$$

and a subspace P^0 of $\mathbf{P}(E)$ defined by

$$P^0 = \bigcap \{ \mathbf{P}(H) \mid \mathbf{P}(H) \in P, \ \mathbf{P}(H) \text{ a hyperplane in } \mathcal{H}(E) \}.$$

We have $P = P^{00}$ and $Q = Q^{00}$. Since Q^0 is determined by $\mathbf{P}(V^0)$, if $Q = \mathbf{P}(V)$ has dimension k (i.e., if V has dimension k+1), then Q^0 has dimension n-k-1 (since V has dimension k+1 and $\dim(E) = n+1$, then V^0 has dimension n+1-(k+1)=n-k). Thus,

$$\dim(Q) + \dim(Q^0) = n - 1,$$