wantP (set actions are coactions) process P wantQ (set actions are coactions) process q WP = is_wantp_false.WP + set_wantp_true.WP1 WQ = is_wantq_false.WQ + set_wantq_true.WQ1 P = nonCritP.P + is_wantq_false.P1 Q = nonCritQ.Q + is_wantp_false.Q1 P1 = set_wantp_true.P2 Q1 = set_wantq_true.Q2 WP1 = is_wantp_true.WP1 + set_wantp_false.WP WQ1 = is_wantq_true.WQ1 + set_wantq_false.WQ P2 = critical.P3 Q2 = critical.Q3 P3 = set_wantp_false.P Q3 = set_wantq_false.Q system: (P || WP || WQ || Q) (set_wantp_false) (set_wantp_false) nonCritP $\sqrt{}$ nonCritQ P || WP || WQ || Q (is_wantq_false) (is_wantp_false) nonCritP nonCritQ P1 || WP || WQ || Q P || WP || WQ || Q1 (is_wantp_false) (is_wantq_false) (set_wantq_true) (set_wantp_true) P1 || WP || WQ || Q1 (set_wantq_true) (set_wantp_true) nonCritQ nonCritP√ P2 || WP1 || WQ || Q -P || WP || WQ1 || Q2 P2 || WP1 || WQ || Q1 P1 || WP || WQ1 || Q2 critical critical nonCritQ nonCritP√ P3 || WP1 || WQ || Q (set_wantq_true) (set_wantp_true) -P || WP || WQ1 || Q3 critical critical P2 || WP1 || WQ1 || Q2 P3 || WP1 || WQ || Q1 P1 || WP || WQ1 || Q3 critical critical (set_wantq_true) (set_wantp_true) (set_wantq_false) (set_wantp_false) P3 || WP1 || WQ1 || Q2 P2 || WP1 || WQ1 || Q3 critical (set_wantq_false) critical (set_wantp_false) P3 || WP1 || WQ1 || Q3 legend (set_wantp_false) correct states (set_wantq_false) states reachable, wich do not respect all constraints (Warning: tau symbol is not rendered correctly on the output pdf. All silen actions are surrounded by "(" and ")"