1 Ableitung Elementar Funktionen

Function $f(x)$		Ableitung $f'(x)$
Konstante Funktion	c = const.	0
Potenz Funktion	$x^n (n \in \mathbb{R})$	$n \cdot x^{n-1}$
Wuzelfunktion	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
Trigonometrische Funktionen	$\sin x$	$\cos x$
	$\cos x$	$-\sin x$
	$\tan x$	$\frac{1}{\cos^2 x}$
	$\cot x$	$-\frac{1}{\sin^2 x}$
Arkusfunktionen	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
	$\arccos x$	$\begin{vmatrix} \frac{1}{\sqrt{1-x^2}} \\ -\frac{1}{\sqrt{1-x^2}} \end{vmatrix}$
	$\arctan x$	$\frac{1}{1+x^2}$
	$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
Exponentialfunktionen	e^x	e^x
	a^x	$\ln a \cdot a^x$
Logarithmusfunktionen	$\ln x$	$\frac{1}{x}$
	$\log_a x$	$\frac{1}{(\ln a)\cdot x}$
Hyperbelfunktionen	$\sinh x$	$\cosh x$
	$\cosh x$	$\sinh x$
	$\tanh x$	$\frac{1}{\cosh^2 x}$
	$\coth x$	$-\frac{1}{\sinh^2 x}$

Areafunktionen	$\operatorname{arsinh} x$	$\frac{1}{\sqrt{x^2+1}}$
	$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$
	$\operatorname{artanh} x$	$\frac{1}{1-x^2}$
	$\operatorname{arcoth} x$	$\frac{1}{1-x^2}$

2 Grund- oder Stammintegrale

$\int 0dx = C$	$\int 1dx = C + 1$		
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int \frac{1}{x} dx = \ln x + C$		
$\int e^x dx = e^x + C$	$\int a^x dx = \frac{a^x}{\ln a} + C$		
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$		
$\int \frac{1}{\cos^2 x} dx = \tan x + C$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$		
$\int \frac{1}{\sqrt{1+x^2}} dx = \begin{cases} \arcsin x + C_1 \\ -\arccos x + C_2 \end{cases}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} \arctan x + C_1 \\ -\operatorname{arccot} x + C_2 \end{cases}$		
$\int \sinh x dx = \cosh x + C$	$\int \cosh x dx = \sinh x + C$		
$\int \frac{1}{\cosh^2 x} dx = \tanh x + C$	$\int \frac{1}{\sinh^2 x} dx = -\coth x + C$		
$\int \frac{1}{\sqrt{x^2 + 1}} dx = \operatorname{arsinh} x + C = \ln x + \sqrt{x^2 + 1} + C$			
$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{sgn} x * \operatorname{arcosh} x + C = \ln x + \sqrt{x^2 - 1} + C \qquad (x > 1)$			
$\int \frac{1}{1-x^2} dx = \begin{cases} \operatorname{artanh} x + C_1 = \frac{1}{2} \ln \frac{1+x}{1-x} + C_1 & x < 1\\ \operatorname{arcoth} x + C_2 = \frac{1}{2} \ln \frac{x-1}{x-1} + C_2 & x > 1 \end{cases}$			