

"Predictive analysis on Obesity Levels based on Lifestyle Factors: A Machine Learning Classification Analysis"

Instructor: Sun Makosso-Kallyth

Project by: Sweta

Index

- Introduction
- Objective and Business problem
- About the dataset
- Data Wrangling
- Exploratory data analysis
- Statistical analysis
- Feature Selection, engineering and preprocessing
- Model Selection and Evaluation
- Conclusion

Introduction

Obesity is a growing concern worldwide and is associated with various health risks such as heart disease, diabetes, and high blood pressure. By understanding the key determinants of obesity, we can develop targeted interventions to prevent and manage this condition.

Our dataset includes information on gender, age, height, weight, family history of obesity, high caloric food consumption, vegetable intake, frequency of main meals, snacking habits, smoking habits, water intake, monitoring of calories, physical activity level, screen time, alcohol consumption, mode of transportation used, and obesity level.

Through the analysis, we hope to gain valuable insights into the factors that contribute to obesity and provide recommendations for lifestyle changes and interventions to promote healthier outcomes

Objective and Business Problem

- Predictive model to assess obesity levels based on demographic, lifestyle, and health factors.
- Targeted interventions and personalized health plans to prevent and manage obesity.
- Healthcare providers can use the model to assess obesity risk in patients and provide personalized recommendations.
- Insurance companies can identify high-risk individuals and offer preventive care programs to reduce healthcare costs.
- Public health organizations can develop targeted campaigns to promote healthy lifestyle choices and prevent obesity.
- Individuals can receive personalized recommendations to improve their health and reduce obesity risk.

Overall, stakeholders in the healthcare industry can benefit from insights into factors influencing obesity and enable targeted interventions effectively.

Questions for this analysis

- 1.Can we predict the likelihood of obesity based on variables such as family history with overweight, high caloric food consumption and physical activity level?
- 2. How does gender impact obesity levels in individuals?
- 3. Are there any relationships between eating habits (such as main meals daily, vegetable consumption, and snacking between meals) and obesity levels?
- 4. Can we classify individuals into different obesity levels based on their demographic and lifestyle factors?
- 5. How do factors like smoking, daily water intake, and use of tech devices impact obesity levels?
- 6.Can we predict the risk of obesity based on a combination of variables such as transportation mode used, monitor calories, and physical activity level?

Exploring the Dataset

Observation-2111

No	Variables	Renamed-Variables	Categories/Variable Type	Explanation Of Variables
1	Gender	Gender	Male, Female	indicating the gender of the individual.
2	2 Age	Age	numeric	representing the age of the individual.
3	Height	Height	numeric	indicating the height of the individual.
4	1 Weight	Weight	numeric	representing the weight of the individual.
Ę	family_history_with_overweight	Family_History	no, yes	indicating whether there is a family history of any health conditions.
6		High_Caloric_Food	no, yes	indicating whether the individual consumes high-caloric foods.
7		Eat_Vegetables	numeric	representing the frequency of vegetable consumption by the individual.
8	NCP	Main_Meals_Daily	numeric	indicating the number of main meals consumed daily by the individual.
9	CAEC	Eat_Between_Meals	Always, Frequently, sometimes, no	indicating whether the individual eats between meals.
10	SMOKE	SMOKE	no, yes	indicating whether the individual smokes.
11	CH2O	Water_Daily	numeric	representing the amount of water consumed daily by the individual.
12	SCC 2	Monitor_Calories	no, yes	indicating whether the individual monitors their calorie intake.
13	FAF	Physical_Activity	numeric	representing the level of physical activity of the individual.
14	TUE 1	Tech_Device_Time	numeric	indicating the amount of time spent on tech devices by the individual.
15	CALC	Drink_Alcohol	Always, Frequently, sometimes, no	indicating whether the individual drinks alcohol.
16	MTRANS	Transportation_Used	Automobile,Bike,Motorbike,Public_Transportation,Walking	indicating the mode of transportation used by the individual.
	NObeyesdad		Insufficient_Weight, Normal_Weight, Obesity_Type_I, Obesity_Type_II, Obesity_Type_III, Overweight_Level_I,	

representing the level of obesity of the individual.

Overweight_Level_II

Obesity_Level

Dataset: UCI repository

17

Data Transformation

The FREQ Procedure

Drink_Alcohol	Frequency	Percent		Cumulative Percent
Always	1	0.05	1	0.05
Frequently	70	3.32	71	3.36
Sometimes	1401	66.37	1472	69.73
no	639	30.27	2111	100.00

Eat_Between_Meals	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Always	53	2.51	53	2.51
Frequently	242	11.48	295	13.97
Sometimes	1765	83.61	2080	97.58
no	51	2.42	2111	100.00

Obesity_Level	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Insufficient_Weight	272	12.88	272	12.88
Normal_Weight	287	13.60	559	26.48
Obesity_Type_I	351	16.63	910	43.11
Obesity_Type_II	297	14.07	1207	57.18
Obesity_Type_III	324	15.35	1531	72.52
Overweight_Level_I	290	13.74	1821	86.26
Overweight_Level_II	290	13.74	2111	100.00

Transportation_Used	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Automobile	457	21.65	457	21.65
Bike	7	0.33	484	21.98
Motorbike	11	0.52	475	22.50
Public_Transportation	1580	74.85	2055	97.35
Walking	56	2.65	2111	100.00

	Drink_Alcohol	Fre	equency	Pe	rcent		mulative equency	Cu	mulative Percent	
	Always		71		3.38		71		3.36	
	Sometimes		1401	(86.37	1472		69.73		
	no		639		30.27		2111		100.00	
Е	at_Between_Mea	ıls	Frequenc	Э	Perce		Cumulativ Frequence	_	Cumulativ Percer	
A	lways		25	95	13.9	97	2	95	13.9	
S	ometimes		181	16	88.0	88.03 21		11	100.0	
Obesity_Level Fr			Frequency		ercent	_	Cumulative Frequency		Cumulative Percent	
	Normal_Weight	559			26.48		559		26.48	
	Obese		1552		73.52		2111		100.00	
Γr	ansportation_Use	d	Frequen	су	Perce	ent			Cumulati	
٩u	tomobile		4	57	21.	.65	4	157	21.	
VIc	otorbike			18	0.	.85	4	175	22.	
o _U	blic_Transportat	ion	15	80	74	.85	20)55	97.	
N	alking			58	2	.65	21	111	100.	
	Obesity_Level	Fr	equency	Pe	ercent		umulative requency	a	umulative Percent	
	Normal_Weight		559		26.48		559		26.48	
		1552 73.5			2111		100.00			

Reducing the categories with less frequencies to nearby related category to reduce quasi gap in data modelling.

Target Variable: Obesity level was reduced to 2 (binary) from multiclass classification to predict obesity and normal weight.

Descriptive Statistics and missing values

The MEANS Procedure										
N	Mean	Std Dev	Minimum	Maximum						
2111	24.3125999	6.3459683	14.0000000	61.0000000						
2111	1.7016774	0.0933048	1.4500000	1.9800000						
2111	86.5860581	26.1911717	39.0000000	173.0000000						
2111	2.4190431	0.5339266	1.0000000	3.0000000						
2111	2.6856280	0.7780386	1.0000000	4.0000000						
2111	2.0080114	0.6129535	1.0000000	3.0000000						
2111	1.0102977	0.8505924	0	3.0000000						
2111	0.6578659	0.6089273	0	2.0000000						
	2111 2111 2111 2111 2111 2111 2111	N Mean 2111 24.3125999 2111 1.7016774 2111 86.5860581 2111 2.4190431 2111 2.6856280 2111 2.0080114 2111 1.0102977	N Mean Std Dev 2111 24.3125999 6.3459683 2111 1.7016774 0.0933048 2111 86.5860581 26.1911717 2111 2.4190431 0.5339266 2111 2.6856280 0.7780386 2111 2.0080114 0.6129535 2111 1.0102977 0.8505924	N Mean Std Dev Minimum 2111 24.3125999 6.3459683 14.0000000 2111 1.7016774 0.0933048 1.4500000 2111 86.5860581 26.1911717 39.0000000 2111 2.4190431 0.5339266 1.0000000 2111 2.6856280 0.7780386 1.0000000 2111 2.0080114 0.6129535 1.0000000 2111 1.0102977 0.8505924 0						

The mean values and confidence intervals for the variables suggest that the sample population is relatively young, moderately active, and has a balanced diet.

- There are no missing values in the dataset
- Categories are reduced of those which had less frequencies

Variable

Age

Height Weight

Eat Vegetables

Water Daily

Main Meals Daily

Physical Activity

N Miss

											Te	ch_	Devi	ce_Tin
	Obe	esity_Lev	el	Fre	eque	псу	Per	roent		ımula reque		Cu	mulat Perc	
	Nor	mal_Wei	ght		559		26.48			559			26.48	
	Obese			1	552	73.52			2111			100.00		
	SMOKE Frequ		que	ency	Percent				nulative Cur			ative cent		
		no		:	2067 9		97.90	2	2087			97.92		
		yes			44	2.08		3	2111			100.00		
Tra	nab	ortation_	Used	i	Freq	luen	су	Perce	ent		ulati quen			ulative ercent
Aut	om	obile				4	57	21.	65		457			21.65
Mot	torb	ike					18	0.	85		4	75		22.50
Put	olic	_Transpo	rtatio	on		15	80	74	85		20	55		97.35
Wa	lkin	ng					56	2	65		21	11	1 100.	

Outliers

I have capped the outliers as age had upper-level extreme outliers and main meals daily had lowerlevel extreme outliers

Variable	N	Mean	Std Dev	Minimum	Maximum
Age	2111	24.3125999	6.3459683	14.0000000	61.0000000
Eat_Vegetables	2111	2.4190431	0.5339266	1.0000000	3.0000000
Main_Meals_Daily	2111	2.6856280	0.7780386	1.0000000	4.0000000
Water_Daily	2111	2.0080114	0.6129535	1.0000000	3.0000000
Physical_Activity	2111	1.0102977	0.8505924	0	3.0000000
Tech_Device_Time	2111	0.6578659	0.6089273	0	2.0000000
Height	2111	1.7016774	0.0933048	1.4500000	1.9800000
Weight	2111	86.5860581	26.1911717	39.0000000	173.0000000

Variable	N	Mean	Std Dev	Minimum	Maximum
Age	2111	23.9103906	5.2776732	14.0000000	35.0806340
Eat_Vegetables	2111	2.4190431	0.5339266	1.0000000	3.0000000
Main_Meals_Daily	2111	2.8354847	0.4010020	2.1465975	3.5120415
Water_Daily	2111	2.0080114	0.6129535	1.0000000	3.0000000
Physical_Activity	2111	1.0102977	0.8505924	0	3.0000000
Tech_Device_Time	2111	0.6578659	0.6089273	0	2.0000000
Height	2111	1.7016756	0.0932995	1.4500000	1.9762325
Weight	2111	86.5849074	26.1874263	39.0000000	170.5707420

Gender and Family history of obesity

- Individuals having obesity have a family history of obesity
- Male had more obesity compared to female and female had more normal weight than male

"Eating between meals and having high caloric food? Are you monitoring your calorie intake?"

- Those eating between meals does not monitor calories
- Those having high caloric food does not monitor calories

Correlation Matrix

- Age has weak positive correlations with weight, daily water intake, and physical activity, but a moderate negative correlation with tech device time.
- Height has moderate positive correlations with weight, main meals daily, water intake, and physical activity.
- Weight has moderate positive correlations with main meals daily and weak positive correlations with water intake, eating vegetables, and physical activity.
- Eating vegetables has a weak positive correlation with main meals daily and a weak negative correlation with age.
- Main meals daily has weak positive correlations with water intake and physical activity.
- Water intake has weak positive correlations with physical activity and age.
- Physical activity has a weak positive correlation with tech device time.

			F	Pearson Correlati	on Coefficients, N =	2111		
				Prob > r	under H0: Rho=0			
	Age	Height	Weight	Eat_Vegetables	Main_Meals_Daily	Water_Daily	Physical_Activity	Tech_Device_Time
Age	1	-0.00234	0.24996	0.03087	-0.09647	-0.04161	-0.15838	-0.29483
Height	-0.00234	1	0.46312	-0.03811	0.20865	0.21336	0.29473	0.0519
Weight	0.24996	0.46312	1	0.21611	0.0548	0.2006	-0.05149	-0.0716
Eat_Vegetables	0.03087	-0.03811	0.21611	1	0.04045	0.06846	0.01994	-0.10113
Main_Meals_Daily	-0.09647	0.20865	0.0548	0.04045	1	0.05864	0.12937	0.03794
Water_Daily	-0.04161	0.21336	0.2006	0.06846	0.05864	1	0.16724	0.01197
Physical_Activity	-0.15838	0.29473	-0.05149	0.01994	0.12937	0.16724	1	0.05856
Tech_Device_Time	-0.29483	0.0519	-0.0716	-0.10113	0.03794	0.01197	0.05856	1

Univariate Analysis

Histogram of height, weight and age

- Age has a mean of 24.31 years and a standard deviation of 6.35, with positive skewness (1.53) and high kurtosis (2.83).
- Weight has a mean of 86.59 units and a standard deviation of 26.19, with slightly positively skewed data (0.26) and negative kurtosis (-0.70).
- Height has a mean of 1.70 units and a standard deviation of 0.09, with nearly normally distributed data (skewness: -0.01, kurtosis: -0.56).

Bivariate analysis

Individuals having high caloric food and monitor calories or not?

(H0)Both variables are independent (Ha)There is an association between the two variables

- There is a significant association between Monitor_Calories and High_Caloric_Food (Chi-Square = 76.7361, p < 0.0001).
- The Cramer's V value of -0.1907 indicates a weak negative association between these two variables.

Those who do not monitor their calories are more likely to consume high-caloric foods compared to those who do monitor their calories.

So we reject the null hypothesis

D .	Table of High_Caloric	Foo	od by I	Monit	or_C	alories
Percent Row Pct			Mon	itor_(Calor	ies
Col Pct	High_Caloric_Food		no	ye	es	Total
	no		207 9.81 84.49 10.27	1.8 15.8		245 11.61
	yes		1808 85.65 96.89 89.73	2.7 3.7 60.4	11	1866 88.39
	Total		2015 95.45	4.	96 55	2111 100.00
	r Table of High_Caloric					
Statist	ic	DF	Val	ue	Prol)
Statist Chi-So	ic Juare	DF 1	Val	ue 861 <	Prot	1
Statist Chi-Sc Likelil	ic quare nood Ratio Chi-Square	DF 1	Val 76.73 52.71	ue 861 <	Prot :.000°	1
Statist Chi-Sc Likelil	ic Juare	DF 1	Val	ue 861 <	Prot	1
Statist Chi-So Likelil Contin	ic quare nood Ratio Chi-Square	DF 1	Val 76.73 52.71	ue 861 < 845 <	Prot :.000°	1
Statist Chi-So Likelil Contin	ic quare nood Ratio Chi-Square nuity Adj. Chi-Square	DF 1 1	Val 76.73 52.71 73.90	ue 361 < 45 < 956 <	Prot <.000°	1
Statist Chi-So Likelil Contin Mante Phi Co	ic quare nood Ratio Chi-Square nuity Adj. Chi-Square I-Haenszel Chi-Square	DF 1 1	Val 76.73 52.71 73.90 76.69	ue 861 < 145 < 956 < 997 <	Prot <.000°	1

Is there a significant difference in weight between individuals with and without a family history of obesity?

H0: no different in weight between individuals with or without family history

Ha: there is a significant difference in weight between individuals with

or without family history

 mean weight for individuals without a family history of obesity is 59.04,

- mean weight for individuals with a family history is 92.73.
- The t-test results show a significant difference in weight between the two groups
- Therefore, we reject the null hypothesis and conclude that there is a significant difference in weight between individuals with and without a family history of obesity.

Does the mode of transportation used (Automobile, Public Transportation, Walking) have a significant effect on an individual's weight?

H0: no relationship between the mode of transportation used and weight Ha: There is a significant relationship between the mode of transportation used and weight.

The ANOVA test shows a significant F value of 11.92 with a p-value less than 0.0001. This indicates that there is a significant difference in weight based on the mode of transportation used.

We reject the null hypothesis and accept the alternative hypothesis that there is a significant relationship between the mode of transportation used and weight.

Does eat between meals affect obesity level?

- (H0) that Obesity_Level and Eat_Between_Meals are independent.
- (Ha)There is an association between the two variables

- There is no significant association between
 Obesity_Level and Eat_Between_Meals (Chi-Square = 0.0263, p = 0.8711).
- The Cramer's V value of -0.0035 indicates a very weak negative association between these two variables.
- The Fisher's Exact Test does not show a significant pvalue, suggesting that there is no relationship between these variables
- Both normal weight individuals and obese individuals are equally likely to consume between meals.
- We accept null that they are independent

Multivariate analysis

Is there a difference in the number of main meals consumed daily between individuals with normal weight and

obese individuals?

H0: There is no difference in the number of main meals consumed daily between individuals with normal weight and obese individuals.

The parameter estimate of -0.3388 suggests that for every additional main meal consumed daily, the log odds of being obese decreases by 0.3388.

This result was statistically significant (p < 0.0001), indicating that a higher frequency of main meals may be associated with a lower likelihood of obesity.

So we reject the null.

How does eating vegetables affect the obesity level?

H0: There is no relationship between vegetable consumption and obesity.

Ha: There is a significant relationship between vegetable consumption and obesity.

The parameter estimate of 0.0636 indicates that for every unit increase in vegetable consumption, the log odds of being obese increases by 0.0636. However, this variable was not found to be statistically significant (p = 0.4900), suggesting that vegetable consumption may not be significantly related to obesity in this model.

This means that there is not enough evidence to suggest that vegetable consumption is significantly related to obesity in this model. So we accept null

How does drinking adequate daily water affect obesity level?

H0: there is no association between daily water consumption and obesity

Ha: there is a significant association between daily water

consumption and obesity

- The parameter estimate of 0.5400 suggests that for every additional unit of daily water consumption, the log odds of being obese increases by 0.5400.
- This result was statistically significant (p < 0.0001), indicating that higher water intake may be associated with a higher likelihood of obesity.
- So null hypothesis can be rejected, as there is a statistically significant association between the two variables.

Is there a relation with amount of time spent on tech device and weight?

H0: There is no relationship between the amount of time spent on a tech device and an individual's weight

Ha: There is a significant relationship between these two variables.

The negative parameter estimate of -3.08 indicated that as the amount of time spent on a tech device increases, the weight of an individual tends to decrease.

There is a statistically significant negative relationship between time spent on tech devices and weight. This suggests that individuals who spend more time on tech devices are likely to have lower weight.

Normalization and handling imbalanced data

Variable	Mean	Std Dev
Age	-0.00	1.00
Eat_Vegetables	-0.00	1.00
Main_Meals_Daily	-0.00	1.00
Water_Daily	-0.00	1.00
Physical_Activity	-0.00	1.00
Tech_Device_Time	-0.00	1.00
Height	0.00	1.00
Weight	0.00	1.00

Normalized the numeric data

After balancing the data, there were 7760 individuals classified as obese, representing 69.82% of the sample. The number of individuals classified as having a normal weight increased to 3354, accounting for 30.18% of the sample.

Logistic regression

```
/*train-test split*/
data train test;
set WORK.BALANCED_OBESITY;
if ranuni(0) < 0.8 then output train;
else output test;
run;</pre>
```

```
/*model training logistic regression*/
proc logistic data=train descending;
   class Gender Family History High Caloric Food Eat Between Meals smoke(ref='yes'
 Monitor Calories Drink Alcohol Transportation Used Obesity Level;
 model Obesity Level = Gender Family History High Caloric Food
Eat Between Meals smoke Monitor Calories Drink Alcohol
  Transportation Used weight Age Eat Vegetables Main Meals Daily water daily
Physical Activity Tech Device Time/aggregate=none
 link=logit selection=backward;
score data=train out=predicted train;
/*predictions on train set*/
data predicted train;
set predicted train;
if P normal<P obese then predicted obesity level = "Obese";
else predicted obesity level = "Normal Weight";
/* Calculate accuracy fopr training set*/
data scored train;
set predicted train;
true obesity level = obesity level;
predict obesity level = predicted obesity level;
data scored train;
 set scored train;
 if true obesity level = predict obesity level then correct prediction = 1;
 else correct prediction = 0;
proc means data=scored train mean;
 var correct prediction;
/*plor ROC curve on training set*/
ods graphics on;
proc logistic data=predicted train plots(only)=(roc);
model obesity level = Age Eat Vegetables Main Meals Daily water daily
Physical Activity Tech Device Time weight;
ods graphics off;
```

Results for Training set

- Logistic regression model used to predict likelihood of being in "Obese" category
- Backward elimination procedure used to remove nonsignificant predictor variables
- Final model included significant predictors such as Gender, Family History, Eat Between Meals, Smoking status, Monitoring Calories, etc.
- Odds ratio estimates provided information on impact of predictors on likelihood of being Obese
- Model showed good predictive performance with high percent concordant (99.1%) and high Somers' D statistic (0.981)

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-21.5818	0.9832	481.8718	<.0001
Gender	Female	1	1.8192	0.0946	369.8542	<.0001
Family_History	no	1	-0.1347	0.0681	3.9153	0.0478
Eat_Between_Meals	No	1	0.9402	0.1272	54.6168	<.0001
SMOKE	no	1	0.9220	0.1881	24.0226	<.0001
Monitor_Calories	no	1	-0.4343	0.0927	21.9341	<.0001
Drink_Alcohol	no	1	-0.2466	0.0664	13.7972	0.0002
Transportation_Used	Automobile	1	0.3039	0.1398	4.7240	0.0297
Transportation_Used	Public_Transportation	1	1.0254	0.1189	74.3471	<.0001
Weight		1	0.3453	0.0118	861.6731	<.0001
Age		1	0.0817	0.0150	29.4874	<.0001
Eat_Vegetables		1	-0.6592	0.1190	30.6937	<.0001
Main_Meals_Daily		1	-1.0615	0.1529	48.2075	<.0001
Water_Daily		1	0.2558	0.1070	5.7128	0.0168
Physical_Activity		1	-0.6386	0.0721	78.3493	<.0001
Tech_Device_Time		1	0.3827	0.0934	16.7771	<.0001

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
Gender Female vs Male	38.028	26.246	55.098		
Family_History no vs yes	0.764	0.585	0.997		
Eat_Between_Meals No vs Yes	6.556	3.982	10.796		
SMOKE no vs yes	6.322	3.024	13.215		
Monitor_Calories no vs yes	0.420	0.292	0.603		
Drink_Alcohol no vs yes	0.611	0.471	0.792		
Transportation_Used Automobile vs Walking	5.120	2.831	9.260		
Transportation_Used Public_Transportation vs Walking	10.535	6.156	18.030		
Weight	1.412	1.380	1.445		
Age	1.085	1.054	1.118		
Eat_Vegetables	0.517	0.410	0.653		
Main_Meals_Daily	0.346	0.256	0.467		
Water_Daily	1.291	1.047	1.593		
Physical_Activity	0.528	0.458	0.608		
Tech_Device_Time	1.466	1.221	1.761		

ROC Curve and Accuracy for train set

- The model has an accuracy of 69.98%
- The AUC of the ROC curve is 0.9823, indicating very good predictive power
- A higher AUC value closer to 1 suggests a betterperforming model
- The AUC of 0.9823 suggests high discriminatory power in predicting obesity levels
- The model is able to accurately predict obesity levels based on input variables

Results on test set

- Logistic regression analysis on testing data to predict likelihood of being in "Obese" category
- Backward elimination procedure used to identify significant predictors of obesity
- Significant predictors in final model:
- Gender, Eat_Between_Meals, Monitor_Calories,
 Transportation_Used, Weight, Age, Eat_Vegetables,
 Main_Meals_Daily, Physical_Activity, Tech_Device_Time
- Model had good predictive ability with high percent concordant and high Somers' D value
- Age, Eat_Vegetables, Main_Meals_Daily,
 Physical_Activity, and Tech_Device_Time were significant predictors of being in "Normal_Weight" category
- Findings provide insights for potential interventions and strategies to reduce obesity risk

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-23.5630	2.0479	132.3921	<.0001
Gender	Female	1	1.7886	0.1823	96.2945	<.0001
Eat_Between_Meals	No	1	1.1342	0.2519	20.2736	<.0001
Monitor_Calories	no	1	-0.8780	0.2056	18.2361	<.0001
Transportation_Used	Automobile	1	0.0982	0.3195	0.0944	0.7586
Transportation_Used	Public_Transportation	1	1.3545	0.2626	26.6032	<.0001
Weight		1	0.3708	0.0246	226.7498	<.0001
Age		1	0.1196	0.0334	12.8554	0.0003
Eat_Vegetables		1	-0.7309	0.2181	11.2277	0.0008
Main_Meals_Daily		1	-0.6194	0.2884	4.6129	0.0317
Physical_Activity		1	-0.5779	0.1440	16.0964	<.0001
Tech_Device_Time		1	0.3969	0.1852	4.5955	0.0321

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
Gender Female vs Male	35.771	17.508	73.083		
Eat_Between_Meals No vs Yes	9.664	3.600	25.942		
Monitor_Calories no vs yes	0.173	0.077	0.387		
Transportation_Used Automobile vs Walking	4.716	1.267	17.551		
Transportation_Used Public_Transportation vs Walking	16.563	5.193	52.832		
Weight	1.449	1.381	1.521		
Age	1.127	1.056	1.203		
Eat_Vegetables	0.481	0.314	0.738		
Main_Meals_Daily	0.538	0.306	0.947		
Physical_Activity	0.561	0.423	0.744		
Tech_Device_Time	1.487	1.035	2.138		

ROC Curve and Accuracy for train set

The accuracy of the model is 0.6917, which means that the model correctly predicts the Obesity level (Normal Weight or Obese) around 69.17% of the time.

Analysis Variable ROC Curve for Model : correct prediction Area Under the Curve = 0.9812 Mean 1.00 0.6917192 0.75 Sensitivity 0.50 0.25 0.00 0.75 0.00 0.25 0.50 1.00 1 - Specificity

The AUC value of 0.9812 indicates that the model has a high discriminatory power, as it is able to distinguish between the two classes (Normal Weight and Obese) very well.

Conclusion

- Female gender was a strong predictor of obesity levels
- Older age was associated with a higher likelihood of obesity
- Higher weight was a significant predictor of obesity
- Eating fewer vegetables and having fewer main meals daily increased the risk of obesity
- Less physical activity and more time spent on tech devices were linked to obesity
- Not monitoring calories and using public transportation were also risk factors for obesity
- Drinking alcohol was also found to be a significant predictor of obesity levels.

Recommendation

- PROMOTE HEALTHY EATING HABITS

- INCREASE PHYSICAL ACTIVITY

- MONITOR WEIGHT AND CALORIE INTAKE

- PROMOTE ACTIVE TRANSPORTATION

- RAISE AWARENESS THROUGH PUBLIC HEALTH CAMPAIGNS AND EDUCATION PROGRAMS

- IMPLEMENT
PERSONALIZED
INTERVENTIONS BASED
ON INDIVIDUAL
LIFESTYLE FACTORS

- TARGET INTERVENTIONS TOWARDS INDIVIDUALS AT RISK OF OBESITY TO PREVENT AND TREAT THE CONDITION

