0.1 K-means

0.2 Hierarchical clustering

0.3 Nonparametric clustering

0.3.1 Dirichlet processes

- DD is a distribution of distributions, each sample from DD is a categorial distribution over K categories
- DD is parameterized by G_0 and α a scale factor
- When α is large, samples from $DD(\alpha \cdot G_0)$ will be close to G_0
- Dirichlet process is used to cluster data without specifying the number of clusters in advance
- nonparametric because its dimensionality is infinite
- exhibits a rich-gets-richer property
- observations are probabilitistically assigned to clusters based on the # of observations in that cluster

$$P(cluster = k) = \frac{n_k}{\alpha + n - 1}$$

$$P(cluster = new) = \frac{\alpha}{\alpha + n - 1}$$

- DP tutorial
- Another DP tutorial

0.3.2 Chinese restaurant process

- Restaurant starts off empty
- First person selects a group
- Second person sits at a new table with probability $\frac{\alpha}{\alpha+1}$ and sits with the first person with probability $\frac{1}{\alpha+1}$

0.3.3 Polya Urn Model

- Same model as CRP
- urn contains αG_0 balls of color x for each x
- at each timestep, draw a ball from the urn and drop it back into the urn plus another ball of the same color
- CRP specifies only a distribution over partitions, but does not assign parameters to each group whereas the Polya Urn Model does both

0.3.4 Stick-breaking construction

- Figure out the proportion of points that fall into a particular group
- Start with a stick of length 1
- Generate a random variable $\beta_1 \sim Beta(1, \alpha)$ and break off the stick at β_1
- Take the stick to the right and repeat
- Stick-breaking is CRP or Polya Urn from a different perspective

0.3.5 Gibbs sampling

0.3.6 Metropolis Hastings

• Bayesian clustering algorithms often rely on the Dirichlet Distribution (DD) to encode prior information about cluster assignments