3. Пробирку заполняют жидкостью, плотность которой в n раз больше плотности воды. Найдите зависимость скорости пробирки от степени ее наполнения этой жидкостью. Постройте график этой зависимости.

Задание 3. «Платформа»

Горизонтальная платформа начинает подниматься с поверхности земли с постоянным ускорением a. Через время τ после начала движения с платформы вертикально вверх с начальной скоростью v_0 относительно платформы подбрасывают небольшой шарик.

1. Запишите законы движения платформы и шарика в системе отсчета, связанной с землей. Постройте примерные графики этих зависимостей.

Начало отсчета вертикальной оси и начало отсчета времени можете выбрать самостоятельно. Законом движения называется зависимость координат тела от времени.

2. Найдите путь и перемещение шарика за время свободного полета в системе отсчета, связанной с землей.

Рассмотрите возможные варианты движения шарика при различных значениях параметров задачи. Сопротивлением воздуха пренебречь.

Задание 4. «Тепловой нож»

Для промышленной «распилки» ледяного бруса используется тепловой нож, представляющий собой подвижный стальной вертикальный стержень AB радиуса $r=1,0\,\mathrm{Mm}$, подключенный к источнику постоянного напряжения $U=5\,\mathrm{B}$. Стержень в процессе работы достаточно медленно перемещают

перпендикулярно длинной стороне бруса.

- 1) за какое время t_1 нож «перепилит» неподвижный ледяной брус прямоугольного сечения $a \times b = 1,0 \, \text{м} \times 0,50 \, \text{м}$. С какой скоростью υ при этом необходимо двигать нож?
- 2) для разрезания бруса «под углом» одновременно с движением ножа брус продвигают в перпендикулярном направлении со скоростью $u=3,0\,\frac{\rm MM}{\rm c}$. Найдите время t_2 разреза в этом случае и угол α при вершине бруса выходе с конвейера.

Считайте, что длина стержня равна высоте бруса, и все количество теплоты, выделяемое в системе, идет только на плавление льда. Лед находится при температуре плавления. Удельная теплота плавления льда $\lambda = 3,3\cdot 10^5\, \frac{\text{Дж}}{\text{кг}}$, плотность

льда $\rho = 9.2 \cdot 10^2 \, \frac{\text{K}\Gamma}{\text{M}^3}$, удельное сопротивление стали $\rho^* = 9.8 \cdot 10^{-8} \, \text{Ом} \cdot \text{M}$.