UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2023/1 Prova da área IIB

1 - 3	4	5	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- $\bullet\,$ Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$							
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$						
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$						
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$						
3.	Deslocamento no eixo w	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$						
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$						
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$						
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$						
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$						
		$(F * G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$						
8.	Conjugação	$\overline{F(w)} = F(-w)$						
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$						
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$						
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a }F\left(\frac{w}{a}\right), \qquad a \neq 0$						
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$						
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$						

Séries e transformadas de Fourier:						
	Forma trigonométrica	Forma exponencial				
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(w_n t) + b_n \sin(w_n t)]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$				
	onde $w_n = \frac{2\pi n}{T}, T$ é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$				
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$					
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$					
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$					
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$				
33 - 3 33-101	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$				

Integrais definidas

	tegrais definidas		
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2.	$\int_0^\infty e^{-ax} \operatorname{sen}(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{- m a} \qquad (a > 0)$	4.	$\int_0^\infty \frac{x \operatorname{sen}(mx)}{a^2 + x^2} dx = \begin{cases} \frac{\pi}{2} e^{- m a}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2} e^{- m a}, & m < 0 \end{cases}$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases}$	6.	$\int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases}$
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8.	$\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10.	$\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
			$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12.	$\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14.	$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16.	$\int_0^\infty \frac{\operatorname{sen}(mx)\operatorname{sen}(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases}$
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18.	$\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20.	$\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} (a > 0, m \ge 0)$	22.	$\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int x^2 \cos(\lambda x) dx = \frac{2\lambda x \cos(\lambda x) + (\lambda^2 x^2 - 2) \sin(\lambda x)}{\lambda^3} + C$$

$$\int x^2 \sin(\lambda x) dx = \frac{2\lambda x \sin(\lambda x) + (2 - \lambda^2 x^2) \cos(\lambda x)}{\lambda^3} + C$$

- Questão 1 (0.5 ponto por item) Sejam f(t) e g(t) duas funções periódicas cujas séries de Fourier são dadas por $f(t) = \sum_{n=-\infty}^{\infty} C_n e^{iw_n t}$ e
- $g(t) = \sum_{n=0}^{\infty} D_n e^{iw_n t}$ onde w_1 é a fundamental. Seguem abaixo os diagramas de espectro de amplitudes e fase da duas séries de Fourier:

Quais são as notas musicais que representam os sinais f(t) e g(t), respectivamente?

- () Sol da escala 3 e Sol da escala 2
- () Sol da escala 4 e Sol da escala 3
- () Sol da escala 5 e Sol da escala 4
- () Sol da escala 3 e Sol da escala 3
- (x) Sol da escala 2 e Sol da escala 2

- A(s) nota(s) representada(s) pelo sinal f(3t) + g(2t) soam um:
 - (x) Uma única nota Sol da escala 2
 - () Uma única nota Sol da escala 3
 - () Duas notas Sol da escala 3 e Ré da escala 4.
 - () Uma única nota Ré da escala 4
 - () Duas notas Sol da escala 2 e Ré da escala 3.

Escrevendo $f(t) = \sum_{n=1}^{\infty} a_n \cos(w_n t) + b_n \sin(w_n t)$, temos:

(x)
$$a_1 = -\frac{2\sqrt{2}}{5} e b_1 = -\frac{2\sqrt{2}}{5}$$

()
$$a_1 = \frac{2\sqrt{2}}{5} e b_1 = -\frac{2\sqrt{2}}{5}$$

()
$$a_1 = -\frac{\sqrt{2}}{5} e b_1 = \frac{\sqrt{2}}{5}$$

()
$$a_1 = \frac{\sqrt{2}}{5} e b_1 = -\frac{\sqrt{2}}{5}$$

()
$$a_1 = \frac{2}{5} e b_1 = 0$$

Período e coeficientes da série exponencial de g(t) (T e D_n):

()
$$T = \frac{1}{196\pi}$$
, $D_1 = 0$ e $D_2 = \frac{3i}{10}$.

()
$$T = \frac{1}{196\pi}$$
, $D_1 = \frac{3i}{10}$ e $D_2 = -\frac{2i}{10}$.

()
$$T = \frac{1}{98}$$
, $D_1 = 0$ e $D_2 = -\frac{2i}{10}$.

()
$$T = \frac{1}{98}$$
, $D_1 = \frac{3i}{10}$ e $D_2 = -\frac{2i}{10}$.

(x)
$$T = \frac{1}{98}$$
, $D_1 = 0$ e $D_2 = \frac{3i}{10}$.

Potência média do sinal f(t) dada por $\frac{1}{T} \int_0^T |f(t)|^2 dt$

- () 2, 2.
- () 1,1.
- (x) 0,62.
- () 0,31.
- () 0,11.

- O valor médio do sinal g(t) dado por $\frac{1}{T} \int_{0}^{T} g(t)dt$
 - () 0, 1
 - (x) -0, 1
 - () 0, 2
 - () -0, 2
 - () -0.05

• Questão 2 (0.5 ponto por item) Sejam os números complexos $Z_1 = \frac{1+7i}{3-4i}$ e $Z_2 = (1-i)^{50}$. Assinale as alternativas que indicam Z_1 e Z_2 :

() 2 () 1+i() 1-i() 1-i $(\)\ 1+i$ (x) -1 + i $(x) -2^{25}i$ $(\)\ -1-i$ $() 2^{25}i$ (1-i)/12 $(\)\ (-i)/12$ $() 2^{50}i$ () N.D.A. () N.D.A.

$$Z_1 = \frac{(1+7i)}{(3-4i)} \frac{(3+4i)}{(3+4i)} = \frac{-25+25i}{25} = -1+i$$

Para calcular Z_2 , escrevemos 1-i na forma complexa:

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \right) = \sqrt{2}e^{-\pi/4}$$

Assim:

$$Z_2 = 2^{25}e^{-25\pi/2} = 2^{25}e^{-\pi/2} = 2^{25}\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) = -2^{25}i$$

• Questão 3 (0.5 ponto por item - total de 1.0 pontos) Considere três funções f(t), g(t) e h(t) e suas respectivas transformadas de Fourier F(w), G(w) e H(w). Abaixo estão apresentados os diagramas de espectro de magnitudes das três funções.

Assinale em cada coluna o item que é compatível com os gráficos.

() h(t) = f(2t)() f(t) = 2h(2t)

 $(\mathbf{x}) \ f(t) = g'(t)$

(x) f(t) = 4h(2t)

(x) h(t) = g'(t)

 $() h(t) = 2f\left(\frac{t}{2}\right)$

() h(t) = f'(t)

() f(t) = g'(t)

 $() f(t) = 4h\left(\frac{t}{2}\right)$

() h(t) = g'(2t)

• Questão 4 (3.0 pontos) Considere a função periódica f(t) dada no gráfico abaixo.

Considere a Série de Fourier da função f(t) dada por

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(w_n t) + b_n \sin(w_n t) = \sum_{n=-\infty}^{\infty} C_n e^{iw_n t}$$

- a) (0.5 ponto) Calcule o período fundamental e a frequência fundamental, w_1 .
- b) (0.5 ponto) Calcule a potência média \bar{P}_f
- c) (1.0 ponto) Calcule os coeficientes a_n e b_n
- d) (1.0 ponto) Seja $f_4(t)$ a série truncada de f(t) dada por:

$$f_4(t) = \sum_{n=-4}^{4} C_n e^{iw_n t}$$

Calule a potência média de $f_4(t)$.

Vemos do gráfico que o período fundamental é $T_f=4$, logo a frequência fundamental é $f_f=\frac{1}{4}$ ou $w_f=\frac{\pi}{2}$. A função é par.

A potência média é mais facilmente obtida da definição:

$$\begin{split} \bar{P}_f &= \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt = \frac{2}{T} \int_{0}^{T/2} |f(t)|^2 dt = \frac{1}{2} \int_{0}^{2} |f(t)|^2 dt \\ &= \frac{1}{2} \left[2^2 + 1^2 \right] = \frac{5}{2}. \end{split}$$

Aqui se usou que |f(t)| é uma função par.

Como f(t) é par, temos que $b_n = 0$ para todo n. Calculamos a_0 :

$$a_0 = \frac{2}{T} \int_{-2}^{2} f(t)dt$$

= $\int_{0}^{2} f(t)dt = 2 + 1 = 3$

Para calcular a_n para $n \ge 1$, vemos que:

$$a_n = \frac{2}{T} \int_{-2}^{2} f(t) \cos(w_n t) dt$$

$$= \int_{0}^{2} f(t) \cos(w_n t) dt$$

$$= 2 \int_{0}^{1} \cos(w_n t) dt + \int_{1}^{2} \cos(w_n t) dt$$

$$= \frac{1}{|w|_{0}} \left[2 \sin(w_n) |_{0}^{1} + \sin(w_n) |_{1}^{2} \right]$$

Como $w_n = \frac{2\pi n}{4} = \frac{\pi n}{2}$, temos:

$$a_n = \frac{2}{\pi n} \left[2 \operatorname{sen} \left(\frac{n\pi t}{2} \right) \Big|_0^1 + \operatorname{sen} \left(\frac{n\pi t}{2} \right) \Big|_1^2 \right]$$
$$= \frac{2}{\pi n} \left[2 \operatorname{sen} \left(\frac{n\pi}{2} \right) + \operatorname{sen} (n\pi) - \operatorname{sen} \left(\frac{n\pi}{2} \right) \right]$$
$$= \frac{2}{\pi n} \operatorname{sen} \left(\frac{n\pi}{2} \right)$$

Portanto:

$$a_0 = 3$$

$$a_1 = \frac{2}{\pi}$$

$$a_2 = 0$$

$$a_3 = \frac{2}{3\pi}$$

$$a_4 = 0$$

A potência média de $f_4(t)$ é dada por:

$$\bar{P}_{f_4} = \sum_{n=-4}^{4} |C_n|^2 = \sum_{n=-4}^{4} \left| \frac{a_n - ib_n}{2} \right|^2$$
$$= \frac{1}{4} \left[a_0^2 + 2a_1^2 + 2a_3^2 \right] = \frac{9}{4} + \frac{20}{9\pi^2}$$

• Questão 5 (2.0 pontos) Considere a funçao f(t) dada abaixo.

$$f(t) = \frac{1}{\pi} \frac{t}{4 + t^2}$$

- a) (1.0 ponto) Calcule, a partir da definição, a transformada de Fourier da função f(t).
- b) (0.5 ponto) Escreva a a função F(w) na forma $F(w) = |F(w)|e^{i\phi(w)}$.
- c) (0.5 ponto) Calcule a energia total da função.

Solução:

$$F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$$

$$= \int_{-\infty}^{\infty} f(t) \left[\cos(wt) - i\sin(wt)\right] dt$$

$$= -2i\int_{0}^{\infty} f(t)\sin(wt)dt$$

$$= -\frac{2i}{\pi}\int_{0}^{\infty} \frac{t}{4+t^2}\sin(wt)dt$$

Da tabela de integrais, vemos que:

$$\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \begin{cases} \frac{\pi}{2} e^{-ma}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2} e^{-ma}, & m < 0 \end{cases}$$

Substituímos $x \leftarrow t$, $a \leftarrow 2$ e $m \leftarrow w$, temos:

$$F(w) = \begin{cases} -ie^{-2|w|}, & w > 0, \\ 0, & w = 0, \\ ie^{-2|w|} & w < 0. \end{cases}$$

Logo:

$$|F(w)| = e^{-2|w|}.$$

e

$$\phi(w) = \left\{ \begin{array}{ll} -\pi/2, & w < 0, \\ \pi/2, & w > 0. \end{array} \right.$$

A energia pode ser calculada via Teorema de Parseval:

$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-4|w|} dw$$
$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-4w} dw$$
$$= \frac{1}{4\pi}$$