Линейные функции на плоскости

Теория

Мы будем рассматривать функции, которые каждой точке плоскости сопоставляют действительное число. Назовём такую функцию f линейной, если существуют система координат и действительные числа $a,\,b,\,c$ такие, что для любой точки P(x,y) выполнено равенство f(P)=ax+by+c. Далее мы также будем использовать для функции f обозначение f(x,y).

Утверждение 1. Множество решений уравнения f(x,y) = 0 для линейной функции f - 9то либо пустое множество, либо прямая, либо вся плоскость.

Доказательство. Пусть f(x,y) = ax + by + c.

- Если хотя бы одно из чисел a и b не равно 0, то уравнение f(x,y)=0 задаёт прямую.
- Если a=b=0 и $c\neq 0$, то уравнение f(x,y)=0 не имеет решений.
- ullet Если a=b=c=0, то уравнение f(x,y)=0 задаёт плоскость.

Пусть прямая ℓ разбивает плоскость на полуплоскости L_1 и L_2 . Положим значение функции в точке P равным расстоянию от P до ℓ , взятому со знаком «+», если $P \in L_1$, и со знаком «-», если $P \in L_2$. Обозначим полученную функцию через $\rho(P,\ell)$ и назовём ориентированным расстоянием до прямой.

Утверждение 2. $\rho(P,\ell)$ — линейная функция.

Доказательство. Пусть прямая ℓ в некоторой системе координат задана уравнением ax+by+c=0. Если домножить уравнение на ненулевое действительное число, оно по-прежнему будет задавать прямую ℓ , поэтому можно считать, что $a^2+b^2=1$.

Несложно видеть, что любая непостоянная линейная функция g в одной полуплоскости относительно прямой g=0 принимает положительные значения, а в другой — отрицательные. Введём линейную функцию f(x,y)=ax+by+c. Уравнение f=0

задаёт прямую ℓ . Будем считать, что $\rho(P,\ell)$ и f(P) принимают в полуплоскостях значения одинаковых знаков (если это не так, то заменим f на -f).

Расстояние (не ориентированное) от точки $P(x_p,y_p)$ до ℓ можно вычислить по формуле

$$\frac{|ax_p + by_p + c|}{\sqrt{a^2 + b^2}} = |ax_p + by_p + c| = |f(P)|.$$

Таким образом, $|\rho(P,\ell)| = |f(P)|$. Поскольку в каждой точке знаки функций $\rho(P,\ell)$ и f(P) одинаковы, то из этого следует, что $\rho(P,\ell) = f(P)$, то есть $\rho(P,\ell)$ — линейная функция.

Следствие. Пусть f — непостоянная линейная функция, прямая ℓ задана уравнением f=0. Тогда $f(P)=\alpha\cdot \rho(P,\ell)$ для некоторой константы α .

Доказательство. Пусть f(x,y)=ax+by+c. Из доказательства утверждения 2 следует, что если $a^2+b^2=1$, то $f(P)=\rho(P,\ell)$. Если же $a^2+b^2\ne 1$, то, поделив f на $\sqrt{a^2+b^2}$, получим функцию f' нужного вида, то есть

$$f = \sqrt{a^2 + b^2} \cdot f' = \sqrt{a^2 + b^2} \cdot \rho(P, \ell).$$

Отметим, что определение ориентированного расстояния до прямой не зависит от выбора системы координат, поэтому линейная функция f в любой системе координат имеет вид f(x,y)=ax+by+c для некоторых $a,\ b,\ c$ (в разных системах координат они будут разными).

Помимо ориентированного расстояния до прямой, нам будут полезны ещё две линейных функции.

- *Константа*. Функция f, принимающая одинаковое значение во всех точках плоскости.
- Ориентированная площадь треугольника с фиксированным расстоянием.. Пусть на прямой ℓ фиксированы точки A и B. Рассмотрим линейную функцию $S(P,AB)=\frac{AB}{2}\cdot \rho(P,\ell)$. Она равна площади треугольника PAB, взятой со знаком «+», если P лежит в одной полуплоскости относительно ℓ , и со знаком «-», если в другой.

Научимся по известным значениям линейной функции в точках A и B восстанавливать значение функции в каждой точке прямой AB.

Как известно, следующие два условия равносильны:

- точка C лежит на прямой AB и \overrightarrow{AC} : \overrightarrow{CB} = $(1-\alpha)$: α ;
- для любой точки O выполнено равенство $\overrightarrow{OC} = \alpha \overrightarrow{OA} + (1-\alpha) \overrightarrow{OB}$.

Поскольку равенство из второго условия верно для любой точки O, то в дальнейшем будем записывать его сокращённо: $\vec{C} = \alpha \vec{A} + (1 - \alpha) \vec{B}$.

Утверждение 3. Дана линейная функция f, точки A, B и $\alpha \in \mathbb{R}$. Определим точку C равенством $\vec{C} = \alpha \vec{A} + (1 - \alpha) \vec{B}$. Тогда

$$f(C) = \alpha f(A) + (1 - \alpha)f(B).$$

Доказательство. Пусть f(x,y)=ax+by+c. Будем обозначать координаты точки A через (x_a,y_a) , аналогично для других точек. Пусть O — начало координат. Тогда по определению точки C

$$\overrightarrow{OC} = \alpha \overrightarrow{OA} + (1 - \alpha) \overrightarrow{OB} \iff (x_c, y_c) = \alpha \cdot (x_a, y_a) + (1 - \alpha) \cdot (x_b, y_b) \iff \begin{cases} x_c = \alpha x_a + (1 - \alpha) x_b, \\ y_c = \alpha y_a + (1 - \alpha) y_b. \end{cases}$$

Домножив первое уравнение на a, второе — на b, сложив и добавив к обеим частям c, получим требуемое равенство $f(C) = \alpha f(A) + (1-\alpha)f(B)$.

Упражнение. Докажите обратное утверждение: если для любых точек A, B и для любого $\alpha \in \mathbb{R}$ для точки C, заданной равенством $\vec{C} = \alpha \vec{A} + (1 - \alpha) \vec{B}$, выполнено

$$f(C) = \alpha f(A) + (1 - \alpha)f(B),$$

то f — линейная функция.

Yказание. Рассмотрим систему координат с началом в точке O и единичными векторами \overrightarrow{OX} и \overrightarrow{OY} . Обозначим значения функции в этих точках через

$$f(O)=c, \quad f(X)=a+c, \quad f(Y)=b+c.$$

Сначала докажите, что значения функции f совпадает со значениями функции ax + by + c на осях, а затем и на всей плоскости.

Отметим ещё два очевидных утверждения, которые будут полезны при решении задач.

- Сумма линейных функций линейная функция.
- Если f(A)=f(B), то f(C)=f(A)=f(B) для любой точки C на прямой AB.

Практика

Пример 1. В треугольнике ABC проведены биссектрисы BB_1 и CC_1 и биссектриса внешнего угла AA_1 .

- (a) Докажите, что для любой точки на отрезке B_1C_1 расстояние от неё до прямой BC равно сумме расстояний от неё до прямых AB и AC.
- (б) Докажите, что точки A_1 , B_1 , C_1 лежат на одной прямой.

Решение. Рассмотрим функцию

$$f(P) = \rho(P, AB) + \rho(P, AC) - \rho(P, BC),$$

где каждое ориентированное расстояние считается с плюсом внутри треугольника. Функция f — линейная, как сумма линейных функций. Поскольку $\rho(B_1,AC)=0$ и $\rho(B_1,AB)=\rho(B_1,BC)$, то $f(B_1)=0$. Аналогично $f(C_1)=0$. Тогда для любой точки X прямой B_1C_1 выполнено равенство f(X)=0, то есть

$$f(X) = 0 \Leftrightarrow \rho(X, AB) + \rho(X, AC) = \rho(X, BC).$$

Если X лежит внутри треугольника, то все расстояния считаются с плюсом, что доказывает утверждение.

Перейдём к пункту (б). Поскольку $\rho(A_1,BC)=0$ а $\rho(P,AB)$ и $\rho(P,AC)$ равны по модулю и имеют противоположные знаки, то $f(A_1)=0$. Чтобы сделать вывод, что точки $A_1,\ B_1,\ C_1$ лежат на одной прямой, нужно доказать, что функция f отлична от константы. Для этого подставим в функцию f вершину треугольника и проверим, что значение в ней не равно 0:

$$f(A) = \rho(A, AB) + \rho(A, AC) - \rho(A, BC) = \rho(A, BC) \neq 0,$$

что и требовалось.

Пример 2 (теорема о трёх колпаках). Даны три окружности, ни одна из которых не лежит целиком внутри другой. Тогда точки пересечения общих внешних касательных к каждой паре окружностей лежат на одной прямой.

Решение. Обозначим центры окружностей через A, B, C, а их радиусы — через r_a , r_b , r_c соответственно. Если точки A, B, C лежат на одной прямой, утверждение очевидно. Далее будем считать, что они не лежат на одной прямой.

Пусть f_a — линейная функция такая, что

$$f_a(A) = 1, \quad f_a(B) = f_a(C) = 0,$$

аналогично определим функции f_b и f_c . Наконец определим линейную функцию g:

$$g = r_a \cdot f_a + r_b \cdot f_b + r_c \cdot f_c.$$

Докажем, что в точках пересечения внешних касательных значение g равно 0.

Пусть X — точка пересечения внешних касательных к окружностям с центрами B и C. Так как X лежит на прямой BC, то $f_a(X)=0$. Так как X лежит вне отрезка BC и $BX:XC=r_b:r_c$, то

$$\vec{X} = \frac{r_c}{r_c - r_b} \cdot \vec{B} + \frac{-r_b}{r_c - r_b} \cdot \vec{C}.$$

Тогда

$$g(X) = r_a \cdot f_a(X) + r_b \cdot f_b(X) + r_c \cdot f_c(X) =$$

$$= r_b \cdot \left(\frac{r_c}{r_c - r_b} \cdot f_b(B) + \frac{-r_b}{r_c - r_b} \cdot f_b(C)\right) + r_c \cdot \left(\frac{r_c}{r_c - r_b} \cdot f_c(B) + \frac{-r_b}{r_c - r_b} \cdot f_c(C)\right) = 0.$$

Функция g отлична от константы:

$$g(A) = r_a \cdot f_a(A) + r_b \cdot f_b(A) + r_c \cdot f_c(A) = r_a \cdot f_a(A) = r_a \neq 0.$$

Аналогично доказывается, что значение функции g в точках пересечения других пар касательных равно 0. Следовательно, они лежат на одной прямой. \square

Пример 3 (прямая Гаусса). В четырёхугольнике ABCD лучи AB и DC пересекаются в точке E, а лучи AD и BC — в точке F. Докажите, что середины отрезков AC, BD, EF лежат на одной прямой.

Peшение. Пусть $X,\,Y,\,Z$ — середины отрезков $AC,\,BD,\,EF$ соответственно. Рассмотрим функцию

$$f(P) = S(P, AB) - S(P, BC) + S(P, CD) - S(P, AD),$$

где каждая ориентированная площадь считается с плюсом внутри четырёхугольника. Если P=X, то

$$S(X, AB) = S(X, BC), \quad S(X, CD) = S(X, AD),$$

поэтому f(X) = 0. Аналогично f(Y) = 0.

Так как Z — середина отрезка EF, то $f(Z)=\frac{1}{2}\big(f(E)+f(F)\big)$. Поскольку E и A лежат по разные стороны относительно прямой BC, то S(P,BC) отрицательно. Тогда

$$f(E) = -S(E, BC) - S(E, AD) = S_{BCE} - S_{ADE} = -S_{ABCD}.$$

Аналогично

$$f(F) = S(F, AB) + S(F, CD) = S_{ABF} - S_{CDF} = S_{ABCD}.$$

Таким образом, f(E)+f(F)=0, то есть f(Z)=0. Функция f отлична от константы, поскольку $f(E)\neq f(X)$, поэтому точки X,Y,Z лежат на одной прямой.

Упражнение (теорема Ньютона). Докажите, что если четырёхугольник ABCD описанный, то центр вписанной в него окружности лежит на прямой Γ аусса.

Π ро прямую OI

Линейные функции — один из способов работать с прямой, соединяющей центры вписанной и описанной окружностей I и O соответственно в треугольнике ABC.

Утверждение 4. Рассмотрим уравнение

$$\rho(P, AB) + \rho(P, AC) + \rho(P, BC) = \text{const},$$

где каждое ориентированное расстояние считается с плюсом внутри треугольника. Оно задаёт прямую, перпендикулярную OI.

Доказательство. Обозначим через ℓ_a, ℓ_b, ℓ_c серединные перпендикуляры к сторонам BC, AC, AB соответственно. Рассмотрим функцию

$$f(P) = \rho(P, \ell_a) + \rho(P, \ell_b) + \rho(P, \ell_c),$$

знаки выбраны так, что $\rho(C,\ell_a),\, \rho(A,\ell_b),\, \rho(B,\ell_c)$ положительны.

Пусть A_0 — середина стороны $BC,\,A_1$ — точка касания вписанной окружности со стороной BC. Тогда

$$\rho(I, \ell_a) = CA_0 - CA_1 = \frac{a}{2} - (p - c).$$

Выразив аналогично $\rho(I, \ell_b), \, \rho(I, \ell_c)$ и сложив, получим

$$f(I) = \rho(I, \ell_a) + \rho(I, \ell_b) + \rho(I, \ell_c) = \left(\frac{a}{2} - (p - c)\right) + \left(\frac{b}{2} - (p - a)\right) + \left(\frac{c}{2} - (p - b)\right) = 0.$$

Так как f(O) = 0 и функция f непостоянна (так как треугольник не равносторонний), то уравнение f(P) = 0 задаёт прямую OI, а, следовательно, уравнение f(P) = const задаёт прямую, параллельную OI.

Повернём прямые ℓ_a , ℓ_b , ℓ_c относительно O на 90° против часовой стрелки и рассмотрим линейную функцию f', равную сумме ориентированных расстояний до полученных прямых ℓ'_a , ℓ'_b , ℓ'_c соответственно.

Уравнение g=0 задаёт прямую, полученную из OI поворотом на 90° . Осталось заметить, что сумма ориентированных расстояний до сторон треугольника отличается от g на константу.

Упражнение. Рассмотрим уравнение

$$\rho(P, AB) + \rho(P, AC) - \rho(P, BC) = \text{const},$$

где каждое ориентированное расстояние считается с плюсом внутри треугольника. Докажите, что оно задаёт прямую, перпендикулярную OI_a , где I_a — центр вневписанной окружности, касающейся стороны BC.

Задачи

- 1. Дан выпуклый четырёхугольник ABCD. Лучи AB и DC пересекаются в точке P, лучи AD и BC в точке Q. Биссектрисы углов BAD и BCD пересекаются в точке X, биссектрисы углов ABC и ADC в точке Y, внешние биссектрисы углов APC и AQC пересекаются в точке Z. Докажите, что точки X, Y, Z лежат на одной прямой.
- **2.** (a) Внутри треугольника нашлись три точки, не лежащие на одной прямой, такие, что сумма расстояний от точки до сторон одинакова для каждой из них. Что можно сказать про треугольник?
 - (6) Внутри выпуклого четырёхугольника нашлись три точки, не лежащие на одной прямой, такие, что сумма расстояний от точки до сторон одинакова для каждой из них. Что можно сказать про четырёхугольник?
- 3. На плоскости расположены несколько различных прямых. Всегда ли можно часть прямых покрасить в красный цвет, а часть — в синий так, чтобы нашлась точка, сумма расстояний от которой до красных прямых равна сумме расстояний до синих прямых?
- **4.** Дан треугольник ABC и произвольная точка X. В треугольнике проведены медианы AA_1 , BB_1 , CC_1 . Докажите, что площадь одного из треугольников XAA_1 , XBB_1 , XCC_1 равна сумме двух других.
- **5.** В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . С центром в точке B построена окружность ω_b радиуса $BB_1/2$; с центром в точке C построена окружность ω_c радиуса $CC_1/2$. Прямая ℓ общая внешняя касательная к окружностям ω_b и ω_c , не пересекающая треугольник ABC. Докажите, что центр вписанной окружности треугольника, образованного прямыми AB, AC и ℓ , лежит на отрезке BC.
- **6.** Пусть O и I центры описанной и вписанной окружностей соответственно, I_a центр вневписанной окружности, касающейся стороны BC.
 - (a) Докажите, что основания внешних биссектрис лежат на прямой, перпендикулярной OI.
 - (б) Пусть I_a центр вневписанной окружности, касающейся стороны BC. Докажите, что прямая OI_a перпендикулярна прямой B_1C_1 .
- 7. На сторонах AB и AC треугольника ABC нашлись точки X и Y соответственно такие, что BX = BC = CY. Докажите, что XY перпендикулярно прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.
- 8. В треугольнике ABC точки I и O центры вписанной и описанной окружностей соответственно. Прямая, проходящая через I перпендикулярно OI, пересекает BC в точке X, а внешнюю биссектрису угла A в точке Y. В каком отношении I делит отрезок XY?
- **9.** В неравностороннем треугольнике ABC точка I центр вписанной окружности, а точка O центр описанной окружности. Прямая s проходит через I

- и перпендикулярна прямой IO. Прямая ℓ , симметричная прямой BC относительно s, пересекает отрезки AB и AC в точках K и L соответственно (K и L отличны от A). Докажите, что центр описанной окружности треугольника AKL лежит на прямой IO.
- 10. Треугольники ABC и A'B'C' имеют общую описанную и вписанную окружности. Докажите, что для любой точки P, лежащей внутри обоих треугольников, сумма расстояний от P до сторон треугольника ABC равна сумме расстояний от P до сторон треугольника A'B'C'.
- 11. Внутри правильного n-угольника взята точка X, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Покрасим эти отрезки в шахматном порядке в красный и синий цвета.
 - (а) Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.
 - (б) Докажите, что сумма площадей треугольников с вершиной в точке X и основанием в красных отрезках равна сумме площадей аналогичных синих треугольников.

 Подсказка: в пункте (б) нужно ввести не линейную функцию.
- 12. Докажите, что площадь выпуклого пятиугольника *ABCDE* меньше суммы

площадей треугольников АВС, ВСД, СДЕ, ДЕА, ЕАВ.

сторонам P, не меньше удвоенной площади многоугольника P.

- 13. Каждой стороне b выпуклого многоугольника P поставим в соответствие наибольшую из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем
- **14.** У тетраэдра ABCD сумма площадей двух граней с общим ребром AB равна сумме площадей граней с общим ребром CD. Докажите, что середины ребер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.
- 15. Даны три треугольника: $A_1A_2A_3$, $B_1B_2B_3$, $C_1C_2C_3$. Известно, что их точки пересечения медиан лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида $A_iB_jC_k$, где i,j,k независимо пробегают значения 1,2,3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.