Γωνίες Euler

- Όλοι σχεδόν οι υπολογισμοί που έχουμε κάνει για την κίνηση ενός στερεού στο σύστημα συντεταγμένων του στερεού σώματος
 - ightharpoonup Για παράδειγμα η γωνιακή ταχύτητα είναι: $\vec{\omega} = \sum_i \omega_i \vec{e}_i$
- Ωστόσο θα θέλαμε να καταλάβουμε/περιγράψουμε την κίνηση του στερεού ως προς αδρανειακό σύστημα συντεταγμένων:
- \square Η σύνδεση μεταξύ του περιστρεφόμενου και αδρανειακού συστήματος γίνεται μέσω: $\vec{e}_i = \sum U_{ij} \vec{e}_j'$
 - Επομένως είναι ιδιαίτερα χρήσιμο να υπάρχει ένας ακριβής τρόπος για να παραμετροποιήσουμε τους πίνακες περιστροφής:
- Ισχυρισμός: Ένας τυχαίος 3×3 ορθογώνιος πίνακας περιστροφής U_{ij} μπορεί να γραφεί σαν το αποτέλεσμα 3 διαδοχικών περιστροφών, ψ , θ , φ γύρω από 3 διαφορετικούς άξονες συντεταγμένων
 - $U(\psi,\theta,\varphi)$ = $U_3(\psi)U_1(\theta)U_3(\varphi)$ όπου U_j περιγράφει περιστροφή ως προς \vec{e}_j

$$ightharpoonup$$
 περιγράφει περιστροφή γύρω σπό τον z-άξονα κατά γωνία ho $U_3(\phi)= egin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Γωνίες Euler

Ανάλογα, ο πίνακας περιστροφής $U_1(\theta)$ θα περιγράφει περιστροφή κατά γωνία θ , ως προς τον x-άξονα

$$U_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

- ightharpoonup Προσοχή: ἀξονας \vec{e}_j ως προς τον οποίο γίνεται η περιστροφή, είναι αυτός όπως έχει προκύψει μετά από κάποια προηγούμενη περιστροφή
- Γράφοντας αναλυτικά τις περιστροφές:

Η διαδικασία αυτή επιτρέπει την γραφή της γωνιακής ταχύτητας στο αδρανειακό σύστημα αναφοράς: \vec{e}'_i

Γωνίες Euler – Γραφικά

Θα μπορούσαμε να δείξουμε τις περιστροφές για τις γωνίες Euler ως εξής:

$$\mathbf{D} = \begin{bmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix}
\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{vmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{B} = \begin{pmatrix}
\mathbf{B} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}
\mathbf{C} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \cos \theta \\
0 & \cos \theta & \cos \theta
\end{pmatrix}$$

 $-\sin\psi$ $\cos\psi$ 0 $\cos\psi\sin\varphi + \cos\theta\cos\varphi\sin\psi$ $\sin \psi \sin \theta$ $\cos \psi \sin \theta$

 $\cos\theta$

$$\mathbf{A} = \begin{bmatrix} \cos\psi\cos\varphi - \cos\theta\sin\varphi\sin\psi \\ -\sin\psi\cos\varphi - \cos\theta\sin\varphi\cos\psi \\ \sin\theta\sin\varphi \end{bmatrix}$$

$$-\sin\psi\sin\varphi + \cos\theta\cos\varphi\cos\psi \quad \cos\phi$$
$$-\sin\theta\cos\varphi$$

Γωνίες Euler - Γωνιακή ταχύτητα

- Οι συνιστώσες της γωνιακής ταχύτητας ωστόσο δεν αποτελούν ορθογώνιο σύστημα. Συγκεκριμένα:
 - $\dot{\phi}$ είναι στην κατεύθυνση του αρχικού z άξονα μετάπτωση
 - $\dot{ heta}$ είναι στην κατεύθυνση του ξ άξονα κλόνηση

 $\dot{\psi}$ είναι στην κατεύθυνση του z'- άξονα - spin

Μπορούμε να γράψουμε την γωνιακή ταχύτητα:

$$\vec{\omega} = \hat{\eta}_z \dot{\varphi} + \hat{\eta}_{\xi'} \dot{\theta} + \hat{\eta}_{z'} \dot{\psi} = \hat{\eta}_{x'} \omega_1 + \hat{\eta}_{y'} \omega_2 + \hat{\eta}_{z'} \omega_3$$

Παίρνουμε τις συνιστώσες των γωνιακών ταχυτήτων ως προς το τελικό σύστημα συντεταγμένων χ'y'z'

Γωνίες Euler - Γωνιακή ταχύτητα

 Χρησιμοποιώντας τις γωνίες Euler, και τον μετασχηματισμό περιστροφής μεταξύ των δυο συστημάτων, $\vec{w}_{loc} = \begin{bmatrix} A \end{bmatrix} \vec{w}_{gl}$, η γωνιακή ταχύτητα μπορεί να γραφεί:

$$\begin{aligned}
\omega_{1} &= \dot{\varphi} \hat{\eta}_{x'} \cdot \hat{\eta}_{z} + \dot{\theta} \hat{\eta}_{x'} \cdot \hat{\eta}_{\xi'} + \dot{\psi} \hat{\eta}_{x'} \cdot \hat{\eta}_{z'} &= \dot{\varphi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \\
\omega_{2} &= \dot{\varphi} \hat{\eta}_{y'} \cdot \hat{\eta}_{z} + \dot{\theta} \hat{\eta}_{y'} \cdot \hat{\eta}_{\xi'} + \dot{\psi} \hat{\eta}_{y'} \cdot \hat{\eta}_{z'} &= \dot{\varphi} \sin \theta \cos \psi - \dot{\theta} \sin \psi \\
\omega_{3} &= \dot{\varphi} \hat{\eta}_{z'} \cdot \hat{\eta}_{z} + \dot{\theta} \hat{\eta}_{z'} \cdot \hat{\eta}_{\xi'} + \dot{\psi} \hat{\eta}_{z'} \cdot \hat{\eta}_{z'} &= \dot{\varphi} \cos \theta + \dot{\psi}
\end{aligned}$$

Τα παραπάνω εσωτερικά γινόμενα υπολογίζονται εύκολα παρατηρώντας ότι:

Το μοναδιαίο διάνυσμα επί της κομβικής γραμμής, $\hat{\eta}_{\xi'}$ $\hat{\eta}_{\xi'} = \cos \psi \hat{\eta}_{x'} - \sin \psi \hat{\eta}_{y'}$

$$\hat{\eta}_{\xi'} = \cos\psi \hat{\eta}_{x'} - \sin\psi \hat{\eta}_{y'}$$

Η γωνία μεταξύ
$$\hat{z} \ll \xi'$$
 είναι 90° - ψ

Η γωνία μεταξύ $\hat{z} \ll z'$ είναι θ

Το μοναδιαίο διάνυσμα επί της
κουβικής γραμμής. $\hat{\sigma}$

$$\hat{z} = \cos\left(90^{\circ} - \psi\right) \sin\theta \hat{\eta}_{x'} + \sin\left(90^{\circ} - \psi\right) \sin\theta \hat{\eta}_{y'} + \cos\theta \hat{\eta}_{z'}$$

Επομένως η γωνιακή ταχύτητα συναρτήσει των γωνιών Euler θα γραφεί ως εξής:

$$\vec{\omega} = \hat{\eta}_z \dot{\phi} + \hat{\eta}_{\xi'} \dot{\theta} + \hat{\eta}_{z'} \dot{\psi} = \begin{pmatrix} \dot{\phi} \sin \psi \sin \theta + \dot{\theta} \cos \psi \\ \dot{\phi} \cos \psi \sin \theta - \dot{\theta} \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{pmatrix}$$

Στο σύστημα αναφοράς του περιστρεφόμενου σώματος

Γωνίες Euler - Γωνιακή ταχύτητα

- \Box Μπορούμε να εκφράσουμε την Lagrangian με την μορφή: $T = \frac{1}{2} M \dot{\vec{R}}_{CM}^2 + \sum_i \frac{1}{2} m_i \dot{\vec{r}}_i^2$
 - > Θεωρώντας ότι το *CM* είναι η αρχή του περιστρεφόμενου συστήματος αναφοράς

$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + T'(\dot{\varphi}, \dot{\theta}, \dot{\psi})$$

Αρκετές φορές μπορούμε να ξεχωρίσουμε και την δυναμική ενέργεια:

$$U = U_1(x,y,z) + U_2(\varphi,\theta,\psi)$$

- ightharpoonup U₁ βαρυτικό πεδίο: $U_1 = -\vec{g} \cdot \vec{r}$
- ightharpoonup U₂ μαγνητικό πεδίο, B, και διπολική ροπή M: $U_2 = -\vec{M} \cdot \vec{B}$
- □ Η Lagrangian μπορεί να γραφεί σαν άθροισμα δυο τμημάτων:

$$L = L_{\text{yout.}}(x, y, z, \varphi, \theta, \psi) + L_{\text{per.}}(\dot{x}, \dot{y}, \dot{z}, \dot{\varphi}, \dot{\theta}, \dot{\psi})$$

Περιστροφή κάτω από εξωτερική ροπή

- □ Συζητήσαμε περιπτώσεις στερεών στα οποία δεν υπήρχε εξωτερική ροπή.
 - > Εισάγωντας εξωτερικές ροπές, η κατάσταση γίνεται πολύπλοκη
 - Εξισώσεις κίνησης γίνονται:

$$I_1\dot{\omega}_1 - \omega_2\omega_3(I_2 - I_3) = \tau_1$$

$$I_2\dot{\omega}_2 - \omega_1\omega_3(I_3 - I_1) = \tau_2$$

$$I_3\dot{\omega}_3 - \omega_1\omega_2(I_1 - I_2) = \tau_3$$

- Θεωρήστε μια περιστρεφόμενη σβούρα:
- Ορίζουμε τις γωνίες Euler:
 - ightharpoonup Έστω: $I_1 = I_2 \neq I_3$
 - ightharpoonup Η κινητική ενέργεια είναι: $T = \frac{1}{2}I_1(\omega_1^2 + \omega_2^2) + \frac{1}{2}I_3\omega_3^2$
 - $\Rightarrow \text{ Aλλά η γωνιακή ταχύτητα γράφεται: } \vec{\omega} = \begin{pmatrix} \dot{\varphi}\sin\psi\sin\theta + \dot{\theta}\cos\psi \\ \dot{\varphi}\cos\psi\sin\theta \dot{\theta}\sin\psi \\ \dot{\varphi}\cos\theta + \dot{\psi} \end{pmatrix}$
 - ightharpoonup Επομένως η κινητική ενέργεια είναι: $T = \frac{I_1}{2} (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_3}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2$

Βαριά Σβούρα

- lacktriangle Η δυναμική ενέργεια προέρχεται από το ύψος του CM : $V = \mathit{Mgl}\cos\theta$
 - και η τελική μορφή της Lagrangian είναι:

$$L = \frac{I_1}{2} (\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta) + \frac{I_3}{2} (\dot{\varphi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta$$

- \square Οι γωνίες φ και ψ είναι κυκλικές:
 - ightarrow Υπάρχουν συζυγείς ορμές οι οποίες διατηρούνται: p_{arphi} και p_{ψ}
- Διατήρηση των δυο ορμών δίνει:

$$p_{\psi} = \frac{\partial L}{\partial \dot{\psi}} = I_{3} (\dot{\phi} \cos \theta + \dot{\psi}) \implies p_{\psi} = I_{3} \omega_{3} = \cot \theta. \equiv I_{1} a$$

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = I_{1} \dot{\phi} \sin^{2} \theta + I_{3} \cos \theta (\dot{\phi} \cos \theta + \dot{\psi}) \implies p_{\theta} = I_{1} \omega_{1} = \cot \theta. \equiv I_{1} b$$

 \Box Λύνουμε για: $\dot{\phi}$ και $\dot{\psi}$

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta} \quad \text{Kal} \quad \dot{\psi} = \frac{I_1 a}{I_3} - \cos\theta \frac{b - a\cos\theta}{\sin^2\theta}$$

lacksquare Χρειάζεται να βρούμε την συνάρτηση $m{ heta}(t)$ για να προσδιοριστούν $m{\phi}(t)$ και $m{\psi}(t)$

Βαριά Σβούρα

Η μηχανική ενέργεια όμως διατηρείται, οπότε μπορούμε να γράψουμε:

$$E = \frac{I_1}{2} (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_3}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 + Mgl \cos \theta$$

- lacksquare Ο 2^{ος} όρος όμως δίνει: $\frac{1}{2}I_3\omega_3^2$
- \Box Και μπορούμε να γράψουμε την ενέργεια με την μορφή: $E' = E \frac{I_3 \omega_3^2}{2}$

$$\Rightarrow E' = \frac{I_1 \dot{\theta}^2}{2} + \frac{I_1}{2} \frac{(b - a \cos \theta)^2}{\sin^2 \theta} + Mgl \cos \theta$$

- Καταλήξαμε σε εξίσωση κίνησης σε 1-διάσταση:
 - ightharpoonup Σώμα με μάζα I_1 σε δυναμικό της μορφής: $V_{\it eff} = {I_1 \over 2} {\left({b a \cos heta \over \sin heta}
 ight)}^2 + Mgl\cos heta$
- lacksquare Απλουστεύουμε την εξίσωση κίνησης, ορίζοντας: $\alpha \equiv \frac{2E-I_3\omega_3^2}{I_1}$ και $\beta \equiv \frac{2Mgl}{I_1}$
 - ightharpoonup Η εξίσωση κίνησης γίνεται: $\alpha = \dot{\theta}^2 + \left(\frac{b a\cos\theta}{\sin\theta}\right)^2 + \beta\cos\theta$
 - ightharpoonup Αλλάζουμε μεταβλητές: $\theta \longrightarrow u = \cos \theta$
 - ightharpoonup Η εξίσωση κίνησης γίνεται: $\dot{u}^2 = (1 u^2)(\alpha \beta u) (b au)^2$

Βαριά Σβούρα - Εξίσωση κίνησης - Ποιοτική μελέτη

- **□** Βρίσκουμε σαν εξίσωση κίνησης: $\dot{u}^2 = (1 u^2)(\alpha \beta u) (b au)^2$
- lacksquare Ολοκλήρωση θα δώσει: $t = \int_{u(0)}^{u(t)} \frac{du}{\sqrt{\left(1-u^2\right)\left(\alpha-\beta u\right)-\left(b-au\right)^2}}$ Ελλειπτικό ολοκλήρωμα
- Μπορούμε να μελετήσουμε την κίνηση ποιοτικά (κίνηση σε κεντρικό δυναμικό)
 - Υπάρχουν όρια στις τιμές του u: $u = \cos \theta \longrightarrow u \in [-1,1]$ $\dot{u}^2 = f(u) = (1 u^2)(\alpha \beta u) (b au)^2$ $= \beta u^3 (\alpha + a^2)u^2 + (2ab \beta)u + (\alpha b^2) \ge 0$
 - ightharpoonup Η f(u) είναι κυβική συνάρτηση του u με $\beta \equiv \frac{2Mgl}{I_1} > 0$
 - ightharpoonup Οι δυο οριακές τιμές: $f(\pm 1) = -(b au) \le 0$
- \square Οι συνθήκες αυτές περιορίζουν την μορφή της συνάρτησης f(u)
- □ Πολυώνυμο 3^{ου} βαθμού, οπότε περιμένουμε 3 ρίζες

f(u)

Βαριά Σβούρα - Ποιοτική Μελέτη Λύσεων - Κλόνηση

- \Box Τρεις ρίζες $-1 \le u_1 \le u_2 \le 1 \le u_3$
 - ightharpoonup Η λύση για $\dot{u}^2 = f(u)$ είναι φραγμένη $u_1 \le u \le u_2$
- \square Η θ ταλαντώνεται μεταξύ των τιμών $\cos^{-1}(u_1)$ και $\cos^{-1}(u_2)$
- \Box Οι γωνίες φ και ψ προσδιορίζονται από τις:

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta} \quad \text{KOI} \quad \dot{\psi} = \frac{I_1 a}{I_3} - \cos\theta \frac{b - a\cos\theta}{\sin^2\theta}$$

- \Box Μελετώντας το πρόσημο της : $\dot{\varphi} = \frac{b a\cos\theta}{\sin^2\theta} = \frac{b au}{1 u^2}$
 - ightharpoonup Η $\dot{\phi}$ αλλάζει πρόσημο στο $b-au=0 \Rightarrow u=u'=b/a$
 - \Leftrightarrow $u' < u_1$ ή $u' > u_2$ φ μονότονη

Βαριά Σβούρα - Αρχικές συνθήκες

- Υποθέστε ότι αρχικά ο άξονας είναι ακίνητος
- Θέτουμε την σβούρα σε περιστροφή και την αφήνουμε ελεύθερη
- Οι αρχικές συνθήκες είναι:

$$\dot{\theta}_{t=0} = 0 \implies f(u_{t=0}) = 0 \implies u_{t=0} = u_1 \dot{\eta} \quad u_2$$

$$\dot{\varphi}_{t=0} = 0 \implies b - au_{t=0} = 0 \implies u_{t=0} = u'$$

- Αρχικά ο άξονας "πέφτει"
- Αρχίζει κατόπιν να μεταπίπτει ως προς φ
- Η διεύθυνση της μετάπτωσης?

Από διατήρηση της στροφορμής

$$p_{\psi} = \frac{\partial L}{\partial \dot{\psi}} = I_3 \omega_3$$
 kai $p_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = I_1 \dot{\varphi} \sin^2 \theta + I_3 \omega_3 \cos \theta$

- ω₃ είναι σταθερή
- ightarrow Καθώς ο άξονας περιστροφής «πέφτει», ω $_3$ ελαττώνεται στην ρ $_{\phi}$
- φ πρέπει να αρχίσει να μεταπίπτει για να εξισορροπήσει την απώλεια
- Η διεύθυνση της μετάπτωσης είναι ίδια με αυτή της περιστροφής της σβούρας

Βαριά Σβούρα - Ομοιόμορφη μετάπτωση

□ Μπορούμε να κάνουμε την σβούρα να μεταπίπτει χωρίς κλόνηση

$$\dot{\theta} = 0$$
 kai $\dot{\phi} = \frac{b - au}{1 - u^2} = \sigma \tau \alpha \theta$.

 \square Χρειάζεται να υπάρχει διπλή ρίζα για f(u)=0

$$f(u_{0}) = (1 - u_{0}^{2})(\alpha - \beta u_{0}) - (b - au_{0})^{2} = 0$$

$$f'(u_{0}) = -2u_{0}(\alpha - \beta u_{0}) - \beta(1 - u_{0}^{2}) + 2\alpha(b - au_{0}) = 0$$

$$I_{1}a = I_{3}\omega_{3}$$

$$\beta = \frac{2Mgl}{I_{1}}$$

$$Mgl = \dot{\varphi}(I_{3}\omega_{3} - I_{1}\dot{\varphi}\cos\theta_{0})$$

- Για οποιαδήποτε δεδομένη τιμή του $ω_3$ και γωνία του άξονα περιστροφής. $\cos \theta_0$, πρέπει να δοθεί ακριβώς η σωστή ώθηση σε φ ώστε να μην υπάρχει κλόνηση
- □ Εξίσωση 2^{ου} βαθμού και επομένως 2 λύσεις Η ίδια σβούρα μπορεί να κάνει είτε γρήγορη είτε αργή μετάπτωση
- \Box Για να υπάρχει λύση θα πρέπει $I_3^2 \omega_3^2 > 4 Mg I I_1 \cos \theta_0 \Rightarrow \omega_3 > \frac{2}{I_3} \sqrt{Mg I I_1 \cos \theta_0}$
- Ομοιόμορφη μετάπτωση επιτυγχάνεται από μια γρήγορα περιστρεφόμενη σβούρα

Μαγνητική διπολική ροπή

- Θεωρήστε ένα στερεό σώμα το οποίο αποτελείται από φορτισμένα σωματίδια
 - \blacktriangleright Επομένως θα έχουμε: μάζα m_i , φορτίο q_i , θέσ η r_i και ταχύτητα v_i
- Υποθέτουμε ότι υπάρχει ομοιόμοργο μαγνητικό πεδίο B
 - ightarrow Σε κάθε φορτισμένο σωματίδιο ασκείται μια δύναμη: $\vec{F}_{\scriptscriptstyle i} = q_{\scriptscriptstyle i} \vec{u}_{\scriptscriptstyle i} imes \vec{B}$
 - ightharpoonup Av το KM είναι ακίνητο και q_i/m_i = σταθ., τότε: $\vec{F}=q_i\vec{u}_i imes\vec{B}=rac{q}{m_i}\vec{u}_i imes\vec{B}=0$
- Η ροπή θα είναι:

$$\Rightarrow \vec{\tau} = \frac{q}{m} m_i (\vec{\omega} \times \vec{r}_i) (\vec{r}_i \cdot \vec{B})$$

Χρησιμοποιώντας πολικές συντεταγμένες

$$(\vec{\omega} \times \vec{r_i})(\vec{r_i} \cdot \vec{B}) = \omega r_i^2 B \sin \theta \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix} (\sin \theta \cos \varphi \sin \Theta + \cos \theta \cos \Theta)$$

Υποθέτοντας γρήγορη περιστροφή \Rightarrow $\vec{\tau} = \frac{q}{2m} m_i (r_i \sin \theta)^2 \vec{\omega} \times \vec{B} = \frac{q}{2m} \vec{L} \times \vec{B}$ παίρνουμε μέση τιμή ως προς χρόνο

Μαγνητική διπολική ροπή

- \Box Η ροπή είναι: $\vec{\tau} = \frac{q}{2m} \vec{L} \times \vec{B}$
- lacksquare Μαγνητικό δίπολο \vec{M} σε πεδίο \vec{B} αισθάνεται ροπή: $\vec{ au} = \vec{M} imes \vec{B}$
- lacktriangle Ένα γρήγορα περιστρεφόμενο φορτισμένο σώμα έχει μαγνητική ροπή: $ec{M} = \gamma ec{L}$
 - ightharpoonup όπου: $\gamma = q/2m$ γυρομαγνητικός λόγος
- lacksquare Η εξίσωση της κίνησης θα γίνει: $\frac{d\vec{L}}{dt} = \gamma \vec{L} \times \vec{B}$
 - □ Κάνει το διάνυσμα της στροφορμής να μεταπίπτει γύρω από το Β
 - Γωνιακή ταχύτητα μετάπτωσης είναι:

$$ω_{μεταπτ.} = -\gamma \vec{B} = -\frac{q}{2m} \vec{B}$$
 συχνότητα Larmor

Μαγνητική διπολική ροπή στοιχειωδών σωματιδίων

- □ Σωματίδια όπως το ηλεκτρόνιο και το πρωτόνιο έχουν
 - σπιν, s
 - μαγνητική ροπή, μ
- **Ι** Η εξίσωση του Dirac για σωματίδια με σπιν ½ προβλέπει ότι: $\vec{\mu} = \frac{q}{m} \vec{s}$
 - Διαφέρει από το κλασικό φορτισμένο στερεό σώμα κατά ένα παράγοντα 2
 - ightarrow Συνηθίζεται να λέμε $\vec{\mu} = \frac{gq}{2m} \vec{s}$ όπου $g = -\frac{1}{2}$ κλασικό στερεό 2 σωματίδιο Dirac
- \square g=2 για τα ηλεκτρόνια, μιόνια Dirac σωματίδια
- = 2.8 για τα πρωτόνια, -1.9 για τα νετρόνια $= \Delta$ εν είναι στοιχειώδη σωματίδια
- **μ** για τα ηλεκτρόνια και μιόνια είναι γνωστή με μεγάλη ακρίβεια

$$\begin{split} g_{\eta\lambda\epsilon\kappa.} &= 2.002319304374 \pm 0.000000000008\\ g_{\mu ioviov} &= 2.002331832 \pm 0.0000000012 \end{split}$$

- Όχι ακριβώς Dirac σωματίδια εξαιτίας ενός νέφους δυνητικών σωματιδίων που τα περιβάλει εξαιτίας κβαντικών διαταραχών
- □ Η πειραματική μέτρηση στηρίζεται σε πολύ καλή γνώση του μαγνητικού πεδίου

Πείραμα μέτρησης g-2 του μιονίου

- □ Η πειραματική μέτρηση στηρίζεται σε πολύ καλή γνώση του μαγνητικού πεδίου
- Χρησιμοποιεί μετάπτωση του σπιν των σωματιδίων
- □ Αποθηκεύει σωματίδια με γνωστό προσανατολισμό spin σε μαγνητικό πεδίο
- lacksquare Μέτρηση του προσανατολισμού του spin μετά από χρόνο t: $\omega_{\mu \varepsilon \tau \alpha \pi \tau} = -rac{gq}{2m} ar{I}$

