# SDS 383D: Exercises 4 – Hierarchical Models

April 5, 2017

Professor Scott

**Spencer Woody** 

## Problem 1

#### **Math Tests**

We have a model where  $y_{ij}$  is the test score of the jth student in school i, with indices  $i=1,2,\ldots,I$  and  $j=1,2,\ldots,N_i$ , so  $N_i$  is the sample size for school i and there are  $N=\sum_{i=1}^I$  total test scores. Let  $\lambda=1/\sigma^2$  and  $\gamma=1/\tau^2$  be the precision parameters. Further, let  $y_i=[y_{i1},y_{i2},\ldots,y_{iN_i}]^T$  and  $y=[y_1^T,y_2^T,\ldots,y_I^T]^T$  and  $\theta=[\theta_1,\theta_2,\ldots,\theta_I]^T$ . As we can see in Figure 1, schools with smaller sample sizes tend to have more extreme average test scores.



Figure 1: Scatter plot of sample size and average test scores

The hierarchical model for these data is

$$(y_{ij}|\theta_i,\lambda) \sim \mathcal{N}\left(\theta_i,\lambda^{-1}\right)$$
$$(\theta_i|\mu,\lambda,\gamma) \sim \mathcal{N}\left(\mu,(\lambda\gamma)^{-1}\right).$$

We set the priors

$$\pi(\mu) \propto 1, -\infty < \mu < \infty$$
  
 $\pi(\lambda) \propto \lambda^{-1}, \ \lambda > 0$   
 $\pi(\gamma) \propto 1, \ \gamma > 0,$ 

that is to say, . . . . In order to implement the Gibbs sampler, we need the posterior full conditionals for each  $\theta_i$ ,  $\mu$ ,  $\lambda$ , and  $\gamma$ .

• For each  $\theta_i$ ,

$$f(\theta_i|y_i,\mu,\lambda,\gamma) \propto f(y_i|\theta_i,\lambda) \cdot f(\theta_i|\mu,\lambda,\gamma)$$
$$\sim \mathcal{N}\left( (N_i\lambda + \lambda\gamma)^{-1} \cdot (N_i\lambda\bar{y}_i + \lambda\gamma\mu), (N_i\lambda + \lambda\gamma)^{-1} \right),$$

which we know from the normal-normal conjugacy derived in Exercises 1.

• For *μ*,

$$\begin{split} \pi(\mu|y,\theta,\lambda,\gamma) &\propto f(\theta|\lambda,\gamma,\mu) \cdot \pi(\mu) \\ &\propto \left( \prod_{i=1}^{I} \exp\left[ -\frac{1}{2} \lambda \gamma (\theta_i - \mu)^2 \right] \right) \cdot 1 \\ &= \exp\left[ -\frac{1}{2} \lambda \gamma \sum_{i=1}^{I} (\theta_i - \mu)^2 \right] \\ &= \exp\left[ -\frac{1}{2} \lambda \gamma \sum_{i=1}^{I} \left( \theta_i^2 - 2\theta_i \mu + \mu^2 \right) \right] \\ &\propto \exp\left[ -\frac{1}{2} \lambda \gamma \left( I \mu^2 - 2I\bar{\theta}\mu \right) \right] \\ &\sim \mathcal{N}\left( \bar{\theta}, (I\lambda\gamma)^{-1} \right). \end{split}$$

• For  $\lambda$ ,

$$\pi(\lambda|y,\mu,\gamma,\theta) \propto f(y|\lambda,\theta) \cdot f(\theta|\lambda,\gamma,\mu) \cdot \pi(\lambda)$$

$$\propto \left( \prod_{i=1}^{I} \prod_{j=1}^{N_i} \lambda^{1/2} \exp\left[ -\frac{1}{2} (y_{ij} - \theta_i)^2 \right] \right) \cdot \left( \prod_{i=1}^{I} \lambda^{1/2} \exp\left[ -\frac{1}{2} \lambda \gamma (\theta_i - \mu)^2 \right] \right) \cdot \lambda^{-1}$$

$$= \lambda^{(N+I)/2-1} \exp\left[ -\frac{1}{2} \left( \sum_{i=1}^{I} \sum_{j=1}^{N_i} (y_{ij} - \theta_i)^2 + \gamma \sum_{i=1}^{I} (\theta_i - \mu)^2 \right) \lambda \right]$$

$$\sim \operatorname{Gamma}\left( \frac{N+I}{2}, \frac{1}{2} \left[ \sum_{i=1}^{I} \sum_{j=1}^{N_i} (y_{ij} - \theta_i)^2 + \gamma \sum_{i=1}^{I} (\theta_i - \mu)^2 \right] \right).$$

• For  $\gamma$ ,

$$\begin{split} \pi(\gamma|y,\mu,\lambda,\theta) &\propto f(\theta|\lambda,\gamma,\mu) \cdot \pi(\gamma) \\ &\propto \left( \prod_{i=1}^{I} \gamma^{1/2} \exp\left[ -\frac{1}{2} \lambda \gamma (\theta_i - \mu)^2 \right] \right) \cdot 1 \\ &= \gamma^{I/2} \exp\left[ -\frac{1}{2} \lambda \sum_{i=1}^{I} (\theta_i - \mu)^2 \cdot \gamma \right] \\ &\sim \operatorname{Gamma}\left( \frac{I}{2} + 1, \frac{1}{2} \lambda \sum_{i=1}^{I} (\theta_i - \mu)^2 \right). \end{split}$$

Table 1: 95% posterior credible intervals

|           | 2.5%   | 50%    | 97.5%  |
|-----------|--------|--------|--------|
| μ         | 47.03  | 48.10  | 49.18  |
| $\lambda$ | 0.0111 | 0.0118 | 0.0126 |
| $\gamma$  | 2.43   | 3.49   | 5.03   |
|           |        |        |        |

Given the posterior mean  $\hat{\theta}_i$  as an estimate of  $\theta_i$ , define the shrinkage coefficient

$$\kappa_i = \frac{\bar{y}_i - \hat{\theta}_i}{\bar{y}_i},$$

which is a measure incomplete pooling. Figure 2 shows the absolute shrinkage coefficient for each school as a function of sample size. As sample size increases, the shrinkage decreases because we are gaining precision in estimating the school-level mean  $\theta_i$ .



Figure 2: Absolute shrinkage coefficient as a function of sample size

# Problem 2

## Price elasticity of demand

Here we model the demand curve for cheese, which is given by

$$Q = \alpha P^{\beta}$$
,

where Q is the quantity of cheese demanded, P is price,  $\beta$  is a parameter for the *price elasticity of demand* and  $\alpha$  is a (rather unremarkable) scaling parameter. The hierarchical linear model for the quantity of cheese sold for the tth observation at store i is

$$y_{it} = \alpha_i + \beta_i x_{it} + \gamma_i z_{it} + \theta_i z_{it} x_{it} + \epsilon_{it},$$

where  $x_{it}$  is the log-price of cheese and  $z_{it}$  is an indicator variable taking on a value of 1 when the display is shown, and 0 otherwise. Using REML,



Figure 3: Scatterplot for data from all stores



Figure 4: Residual plot using HLM and REML method

### Full Bayesian

### Model specification

Let  $y_i$  be a  $n_i$ -length vector representing the the responses of group i. There are  $N = \sum_i^I n_i$  total responses.  $X_i$  is the  $n_i \times p$  design matrix for the observations in group i, and  $Z_i$  is a  $n_i \times q$ ,  $q \le p$  matrix whose columns are a subset of the columns of  $X_i$ , and this represents the subject-level effects. Then the responses  $y_i$  are distributed as:

$$y_i|\beta, b_i, \lambda \sim \mathcal{N}_{n_i}(X_i\beta + Z_ib_i, \lambda^{-1}\mathcal{I}_{n_i})$$
  
 $b_i|D \stackrel{\text{iid}}{\sim} \mathcal{N}_q(0, D)$ 

Note that the responses  $y_{it}$  for subject i are therefore assumed to iid, and also note two results of this model,

$$E(y_i|b_i) = X_i\beta + Z_ib_i$$
  
$$E(y_i) = E(E(y_i|b_i)) = X_i\beta$$

The priors are

$$\pi(\lambda) \propto \lambda^{-1}$$
  
 $\pi(\beta) \propto 1$   
 $\pi(D) \sim IW(\nu, \Psi).$ 

To implement a Gibbs sampler, we need the full conditional posterior distributions for  $b_i$ ,  $\lambda$ ,  $\beta$ , and D.

• For each  $b_i$ , first define  $v_i := y_i - X_i \beta$ ,

$$\begin{split} p(b_{i}|y_{i},\lambda,\beta,D) &\propto p(y_{i}|\beta,b_{i},\lambda)p(b_{i}|D) \\ &\propto \exp\left[-\frac{1}{2}\lambda\left(y_{i}-X_{i}\beta-Z_{i}b_{i}\right)^{T}\left(y_{i}-X_{i}\beta-Z_{i}b_{i}\right)\right] \cdot \exp\left[-\frac{1}{2}b_{i}^{T}D^{-1}b_{i}\right] \\ &= \exp\left[-\frac{1}{2}\lambda\left(Z_{i}b_{i}-v_{i}\right)^{T}\left(Z_{i}b_{i}-v_{i}\right)\right] \cdot \exp\left[-\frac{1}{2}b_{i}^{T}D^{-1}b_{i}\right] \\ &\propto \exp\left[-\frac{1}{2}b_{i}^{T}\left(\lambda Z_{i}^{T}Z_{i}+D^{-1}\right)b_{i}-2b_{i}^{T}\lambda Z_{i}^{T}v_{i}\right] \\ &\propto \exp\left[-\frac{1}{2}\left(b_{i}-\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}v_{i}\right)^{T}\left(\lambda Z_{i}^{T}Z_{i}+D^{-1}\right)\left(b_{i}-\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}v_{i}\right)\right] \\ &\sim \mathcal{N}\left(\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}v_{i},\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\right). \\ &\sim \mathcal{N}\left(\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}(y_{i}-X_{i}\beta),\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\right). \end{split}$$

• For  $\lambda$ ,

$$\pi(\lambda|y,\beta,b) \propto p(y|\lambda,\beta,\underline{)} \cdot \pi(\lambda)$$

$$= \left(\prod_{i=1}^{I} \lambda^{n_i/2} \exp\left[-\frac{1}{2}\lambda(y_i - X_i\beta - Z_ib_i)^T(y_i - X_i\beta - Z_ib_i)\right]\right) \cdot \lambda^{-1}$$

$$\sim \operatorname{Gamma}\left(\frac{N}{2}, \frac{1}{2} \sum_{i=1}^{I} \|y_i - X_i\beta - Z_ib_i\|_2^2\right)$$

• For  $\beta$ , define  $w_i := y_i - Z_i b_i$ .

$$\begin{split} \pi(\beta|y,\lambda,b) &\propto p(y|\lambda,\beta,\underline{)} \cdot \pi(\beta) \\ &\propto \left( \prod_{i=1}^{I} \exp\left[ -\frac{1}{2}\lambda(y_i - X_i\beta - Z_ib_i)^T(y_i - X_i\beta - Z_ib_i) \right] \right) \cdot 1 \\ &= \prod_{i=1}^{I} \exp\left[ -\frac{1}{2}\lambda(X_i\beta - w_i)^T(X_i\beta - w_i) \right] \\ &\propto \prod_{i=1}^{I} \exp\left[ -\frac{1}{2}\lambda\left(\beta^T X_i^T X_i\beta - 2\beta^T X_i^T w_i\right) \right] \\ &= \exp\left( -\frac{1}{2}\lambda\left[\beta^T \left(\sum_{i=1}^{I} X_i^T X_i\right)\beta - 2\beta^T \sum_{i=1}^{I} X_i^T w_i \right] \right) \\ &= \exp\left( -\frac{1}{2}\lambda\left[\beta^T \left(\sum_{i=1}^{I} X_i^T X_i\right)\beta - 2\beta^T \sum_{i=1}^{I} X_i^T (y_i - Z_ib_i) \right] \right) \\ &\sim \mathcal{N}\left( \left[\sum_{i=1}^{I} X_i^T X_i\right]^{-1} \sum_{i=1}^{I} X_i^T (y_i - Z_ib_i), \left[\lambda \sum_{i=1}^{I} X_i^T X_i\right]^{-1} \right). \end{split}$$

• For *D*,

$$\begin{split} \pi(D|b) &\propto p(b|D) \cdot \pi(D) \\ &\propto \left( \prod_{i=1}^{I} [\det(D)]^{-1/2} \exp\left[-\frac{1}{2}b_i^T D^{-1}b_i\right] \right) \cdot [\det(D)]^{-\frac{\nu+q+1}{2}} \exp\left[-\frac{1}{2} \mathrm{tr}(\Psi D^{-1})\right] \\ &\sim \mathrm{IW}\left(I + \nu, \Psi + \sum_{i=1}^{I} b_i b_i^T\right) \end{split}$$