PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07H 15/12, C12P 21/06, A61K 39/00, C07K 3/00, A61K 37/00

(11) International Publication Number:

WO 94/25476

(43) International Publication Date: 10 November 1994 (10.11.94)

(21) International Application Number:

PCT/US94/04709

A1

(22) International Filing Date:

29 April 1994 (29.04.94)

(74) Agent: WHITE, John, P.; Cooper & Dunham, 30 Rockefeller Plaza, New York, NY 10112 (US).

(30) Priority Data:

08/056,292 08/165,717

30 April 1993 (30.04.93) 10 December 1993 (10.12.93)

US US (81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(60) Parent Applications or Grants

(63) Related by Continuation

US Filed on

US

08/056,292 (CIP)

30 April 1993 (30.04.93) 08/165,717 (CIP)

Filed on

10 December 1993 (10.12.93)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3330 Hillview Avenue, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCOTT, Randal, W. [US/US]; 13140 Sun-Mohr, Mountain View, CA 94040 (US). MARRA, Marian, N. [US/US]; 4106 Beresford Street, San Mateo, CA 94403 (US).

Published

With international search report.

(54) Title: RECOMBINANT BPI-BASED AND LBP-BASED PROTEINS, NUCLEIC ACID MOLECULES ENCODING SAME, METHODS OF PRODUCING SAME. AND USES THEREOF

(57) Abstract

Š

The subject invention provides recombinant nucleic acid molecules which encode a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, and the proteins encoded thereby. The subject invention further provides host vector systems for the production of a BPI variant, LBP variant, LBP-BPI chimera, BPI-IgG chimera, LBP-IgG chimera, or LBP-BPI-IgG chimera, and methods of using same for producing said proteins. The subject invention provides a pharmaceutical composition, which comprises a therapeutically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, and a pharmaceutically acceptable carrier, and the method of using same to treat a subject suffering from an endotoxin-related disorder. Finally, the subject invention provides a method of preventing an endotoxin-related disorder in a subject, which comprises administering to the subject a prophylactically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Assessed				
	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	
BG	Bulgaria	ÍΕ	Ireland		Norway
Bj	Benin	FT	Italy	NZ	New Zealand
BR	Brazil	JP	Japan	PL	Poland
BY	Belarus	KE	Konya	PT	Portugal
CA	Canada	KG	Kyrgystan	RO	Romania
CF	Central African Republic	KP		RU	Russian Federation
CG	Congo		Democratic People's Republic	SD	Sudan .
CH	Switzerland	Zn.	of Korea	SE	Sweden
CI	Côte d'Ivoire	KR	Republic of Korea	SI	Slovenia
СМ	Cameroon	KZ	Kazakhstan	SK	Slovakia
CN	China	LI	Liechtenstein	SN	Senegal
CS		LK	Sri Lanka	TD	Chad
CZ	Czechoslovakia	LU	Luxembourg	TG	Togo
	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Deumark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML.	Mali	UZ	
FR	France	MN	Mongolia	VN	Uzbekistan
GA	Gahon			A 1.4	Vict Nam

RECOMBINANT BPI-BASED AND LBP-BASED PROTEINS, NUCLEIC ACID MOLECULES ENCODING SAME, METHODS OF PRODUCING SAME, AND USES THEREOF

This application is a continuation-in-part of U.S. Serial No. 08/165,717, filed December 10, 1993, which is a 10 continuation-in-part of (a) U.S. Serial No. 08/056,292, filed April 30, 1993, which is a continuation-in-part of U.S. Serial No. 07/567,016, filed August 13, 1990, and of PCT International Application No. PCT/US91/05758, filed August 13, 1991, and (b) PCT International Application No. 15 PCT/US92/08234, filed September 28, 1992. PCT International Application No. PCT/US92/08234 designates the United States of America as a continuation-in-part of U.S. Serial No. 07/766,566, filed September 27, 1991, which continuation-in-part of U.S. Serial No. 07/681,551, filed 20 April 5, 1991. PCT International Application No. PCT/US91/05758 designates the United States of America as a continuation-in-part of U.S. Serial No. 07/567,016, filed August 13, 1990, and 07/681,551, filed April 5, 1991, which is a continuation-in-part of U.S. Serial No. 07/567,016, 25 filed August 13, 1990, which is a continuation-in-part of U.S. Serial No. 07/468,696, filed January 22, 1990, which is a continuation-in-part of U.S. Serial No. 07/310,842, filed February 14, 1989, the contents of all of which are hereby incorporated by reference.

Background of the Invention

5

30

Throughout this application, various publications are cited.
The disclosure of these publications is hereby incorporated

by reference into this application to describe more fully
the state of the art to which this invention pertains.

Gram-negative infections are a major cause of morbidity and

2

mortality, especially in hospitalized and immunocompromised patients. [Duma, R.J., Am. J. of Med., 78 (Suppl. 6A):154-164 (1985); and Kreger, B.E., D.E. Craven and W.R. McCabe, Am. J. Med., 68:344-355 (1980)]. Although available antibiotics are generally effective in containing Gramnegative infections, they do not neutralize the pathophysiological effects associated with heat stable bacterial toxins (called endotoxins or lipopolysaccharides (LPS)) which are released from the outer membrane of Gram-negative bacteria upon lysis [Shenep, J.L. and K.A. Morgan, J. Infect. Dis., 150(3):380-388 (1984)]. Endotoxin is a potent stimulator of the inflammatory response. Endotoxemia occurs when endotoxin enters the bloodstream resulting in a dramatic systemic inflammatory response.

15

Many detrimental effects of LPS in vivo result from soluble mediators released by inflammatory cells. [Morrison, D.C. and R.J. Ulevitch, Am. J. Pathol, 93(2):527-617 (1978)]. Monocytes and neutrophils play a key role in this process. 20 These cells ingest and kill microorganisms intracellularly and also respond to endotoxin in vivo by releasing soluble proteins with microbicidal, proteolytic, opsonic, pyrogenic, complement-activating and tissue-damaging effects. necrosis factor (TNF), a cytokine released by endotoxin-25 stimulated monocytes, mimics some of the toxic effects of endotoxin in vivo. Injecting animals with TNF causes fever, shock, and alterations in glucose metabolism. TNF is also a potent stimulator of neutrophils. Other cytokines such as IL-1, IL-6, and IL-8 also mediate many of the patho-30 physiologic effects of LPS, as well as other pathways involving endothelial cell activation by tissue factor, kininogen, nitric oxide and complement.

The presence of endotoxin and the resulting inflammatory response may result, for example, in disseminated intra-

vascular coaquiation (DIC), adult respiratory distress syndrome (ARDS), cardiac dysfunction, organ failure, liver failure (hepatobiliary dysfunction), brain failure (CNS dysfunction), renal failure, multi-organ failure and shock.

5

10

Diseases associated with endotoxemia include, by way of example, the systemic inflammatory response syndrome (SIRS), sepsis syndrome, septic shock, bacterial meningitis, neonatal sepsis, cystic fibrosis, inflammatory bowel disease and liver cirrhosis, gram-negative pneumonia, gram-negative abdominal abscess, hemorrhagic shock and disseminated intravascular coaquiation. Subjects that are leukopenic or neutropenic, including subjects treated with chemotherapy or immunocompromised subjects (for example with AIDS), are 15 particularly susceptible to bacterial infection and the subsequent effects of endotoxin. Endotoxin-associated disorders can be present whenever there is a gram-negative infection. Endotoxin-associated disorders can also be present (a) when there is ischemia of the gastrointestinal 20 tract, which ischemia may be present following hemorrhagic shock or during certain surgical procedures, or (b) when systemic or local inflammation causes increased permeability of the gut to endotoxin or gram-negative organisms.

25 Current methods for treating Gram-negative infections use antibiotics and supportive care. Despite successful antimicrobial therapy, morbidity and mortality associated with endotoxemia remain high. Antibiotics are not effective in neutralizing the toxic effects of LPS. Therefore, the 30 need arises for a therapy with direct endotoxin-neutralizing activity.

Polymyxin B (PMB) is a basic polypeptide antibiotic which has been shown to bind to, and structurally disrupt, the 35 most toxic and biologically active component of endotoxin--

4

Lipid A. PMB has been shown to inhibit endotoxin activation of neutrophil granule release <u>in vitro</u> and is a potential therapeutic agent for Gram-negative infections. However, because of its systemic toxicity, this antibiotic has limited therapeutic use except as a topical agent.

Combination therapy using antibiotics and high doses of methylprednisolone sodium succinate (MPSS) has been shown to prevent death in an experimental model of Gram-negative sepsis using dogs. However, a study using MPSS with antibiotics in a multi-center, double blind, placebo-controlled clinical study in 223 patients showing clinical signs of systemic sepsis showed that the mortality rates were not significantly different between the treatment and placebo groups [Bone, R.C., et al., N. Engl. J. of Med. 317:653 (1987)].

A relatively new approach to the treatment of endotoxemia is passive immunization with endotoxin-neutralizing antibodies. Hyperimmune human immunoglobulin against $\underline{E.\ coli}\ J5$ has been shown to reduce mortality by 50% in patients with Gramnegative bacteremia and shock. Other groups have proposed

using mouse, chimeric, and human monoclonal antibodies directed to endotoxin. However, these antibodies do not

25 neutralize endotoxin.

20

Another mode of treating endotoxemia involves the use of cytokine blockers, such as IL-1 receptor antagonist and anti-TNF antibodies, as well as the soluble forms of the IL-30 1 and TNF receptors. However, a cytokine blocker can only block the cytokine(s) for which it is specific, and cannot block other cytokines. Furthermore, blocking cytokines may have other deleterious effects.

35 Two soluble endotoxin-binding proteins have now been

identified which play a role in the physiological response to endotoxin. One, lipopolysaccharide binding protein (LBP), is a soluble receptor found in serum which mediates endotoxin activation of cells. The second, bactericidal/permeability-increasing protein (BPI), binds and neutralizes endotoxin, preventing inflammatory cell activation. These two natural binding proteins play opposing roles in determining the fate of endotoxin and how the body responds to a localized or systemic Gram-negative infection.

10

In the 1980's, Ulevitch and coworkers reported the isolation of a protein from rabbit acute phase serum which binds LPS with a high affinity [Tobias, P.S., Soldau, K. and Ulevitch, R.J. (1986) J. Exp. Med. 164:777-793]. They called this protein lipopolysaccharide binding protein (LBP). LBP was subsequently shown to stimulate opsonization of LPS-coated particles by monocytes [Wright, S.D., Tobias, P.S., Ulevitch, R.J. and Ramos, R.A. (1989) J. Exp. Med. 170:1231-1241]. LBP was further shown to bind to the lipid A moiety of endotoxin, which binding accounts for much of the biological activity of endotoxin [Tobias, P.S., Soldau, K. and Ulevitch, R.J. (1989) J. Biol. Chem. 264:10867-10871].

BPI is a neutrophil granule protein first discovered in 1975

[Weiss, J., R.C. Eranson, S. Becherdite, K. Schmeidler, and P. Elsbach, J. Clin. Invest. 55:33 (1975)]. BPI was obtained in highly purified form from human neutrophils in 1978 and was shown to increase membrane permeability and to have bactericidal activity against Gram-negative bacteria when assayed in phosphate buffered saline in vitro [Weiss, J., et al., J. Biol. Chem, 253:2664-2672 (1978)]. Weiss, et al. showed that BPI increases phospholipase A2 activity, suggesting a proinflammatory activity for BPI in addition to its in vitro bactericidal activity [Weiss et al., J. Biol. Chem. 254:11010-11014 (1979)].

PCT/US94/04709 WO 94/25476

6

Rabbit BPI was purified in 1979 [Elsbach et al., J. Biol. Chem. 254:11000-11009] and shown to have bactericidal and permeability increasing properties identical to those of BPI Rabbit BPI was thus shown to be a further from humans. 5 source of material for study. Both rabbit and human BPI were shown to be effective against a variety of Gramnegative bacteria in vitro, including Kl-encapsulated E. coli [Weiss et al., Infection and Immunity 38:1149-1153 (1982)].

10

In 1984, a protein with properties similar to BPI was isolated from human neutrophils and designated cationic antimicrobial protein 57 (CAP 57) [Shafer, W.M., C.E. Martin and J.K. Spitznagel, Infect. Immun. 45:29 (1984)]. 15 1986, Hovde and Gray reported a bactericidal glycoprotein with properties virtually identical to those of BPI [Hovde and Gray, Infection and Immunity 54(1):142-148 (1986)].

A role for lipopolysaccharide in the in vitro bactericidal 20 action of BPI was proposed in 1984 by Weiss et al. [J. Immunol. <u>132</u>(6):3109-3115 (1984)]. Weiss. demonstrated that BPI binds to the outer membrane of Gramnegative bacteria, causes the extracellular release of LPS, and selectively stimulates LPS biosynthesis.

25

35

4

In 1985, Ooi et al. reported that BPI retains its in vitro bactericidal activity after cleavage with neutrophil proteases, suggesting that fragments of the molecule retain activity [Ooi and Elsbach, Clinical Research 33(2):567A 30 (1985)]. All of the in vitro bactericidal and permeability increasing activities of BPI are present in the N-terminal 25 kD fragment of the protein [Ooi, C.E., et al., J. Biol. Chem. 262:14891 (1987)]. BPI binding to Gram-negative bacteria was reported originally to disrupt LPS structure, alter microbial permeability to small hydrophobic molecules

and cause cell death [Weiss, et al. (1978)].

Molecular Structures of BPI and LBP

BPI shares amino acid sequence homology and immuno-5 crossreactivity with LBP [Tobias et al., J. Biol. Chem. 263:13479-13481 (1988)], and the genes encoding both BPI and LBP have been cloned [Gray, P.W., Flaggs, G., Leong, S.R., Gumina, R.J., Weiss, Ooi, C.E. and Elsbach, P. (1989) J. Biol. Chem. 264:9505-9509]. Both genes code for hydrophobic 10 leader sequences and polypeptides having 44% amino acid sequence identity. LBP was reported by Schumann et al. to cysteine residues four and five potential glycosylation sites, whereas BPI contains three cysteine residues and only two glycosylation sites. It should be 15 noted that the cDNA sequence and protein sequence of LBP used herein are distinct from those published by Schumann et al., including significant differences such as the absence of a cysteine and an insertion of four amino acids. As used herein, LBP means a protein having the sequence shown for human LBP in Figure 5. BPI can be described_as having two 20 distinct domains, an N-terminal domain, and a C-terminal domain, which domains are separated by a proline-rich hinge region. The N-terminal domain of the LBP molecule has been shown to contain the bactericidal and LPS-binding domain of 25 BPI [Ooi and Elsbach, Clinical Research 33(2):567A (1985) and Ooi, C.E., et al., J. Biol. Chem. 262:14891 (1987)]. The C-terminal domain of BPI has been reported to have modest LPS-binding activity. The C-terminal domain of LBP is thought to be involved in the binding and activation of 30 monocytes. The N- and C-terminal domains of BPI have a striking charge asymmetry that is not shared by LBP. The Nterminal domain of BPI is extremely rich in positively charged lysine residues, and this charge imparts a predicted pI > 10 to the full-length molecule, whereas the C-terminal domain is slightly negatively charged. The bactericidal

activity of BPI may result from its cationicity. LBP is largely neutral, has no skewed charge distribution, and is not bactericidal [Tobias, P.S., Mathison, J.C. and Ulevitch, R.J. (1988) J. Biol. Chem. 263:13479-13481]. The putative functions of the N- and C-terminal domains of BPI and LBP are illustrated in Figure 2. Table 1 provides a comparison of BPI and LBP structure and function.

Therapeutic Applications of BPI and LBP

10 Therapeutic intervention to block the inflammatory effects of LPS can ameliorate the morbidity and mortality associated with endotoxemia and septic shock. Unfortunately, native BPI has an extremely short half-life in the human bloodstream which limits its use in therapy. Native LBP has a longer half-life but elicits in the presence of endotoxin a brisk monocyte reaction which if excessive can cause the release of deleterious quantities of cytokines. An ideal candidate would have a longer half-life and effective endotoxin binding/inactivation without monocyte stimulation.

Table 1

Comparison of BPI and LBP Structure and Function

5	COMPATISON OF BP.	and LBP Struct	ture and Function
_		BPI	LBP
	Synthesis		
	Site of synthesis	Neutrophil	Liver
10	Blood concentration	1-10 ng/ml	1-10 μ g/ml
	Structure		<i>a</i> .
	Molecular Mass	55 kD	60 kD
	Glycosylation sites	2	5
15	Cysteine	3	4(3)*
	Effects on LPS mediate	<u>d</u> :	
	Neutrophil activation	Inhibits	Stimulates
	Monocyte activation	Inhibits	Stimulates
20	TNF release	Inhibits	Stimulates
	IL-1 release	Inhibits	Stimulates
	IL-6 release	Inhibits	Stimulates

^{25 *}Four cysteines are reported by Schumann et al. [Science 249:1429-1431 (1990)] but the inventors have only found three (see Figure 1).

Summary of the Invention

The subject invention provides a recombinant nucleic acid molecule which encodes a BPI variant. The subject invention also provides the BPI variant encoded by the recombinant nucleic acid molecule of the subject invention.

The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention. The subject invention further provides a host vector system for the production of a BPI variant, which comprises the vector of the subject invention in a suitable host.

The subject invention further provides a method for producing a BPI variant, which comprises growing the host vector system of the subject invention under conditions permitting the production of the BPI variant and recovering the BPI variant produced thereby.

- The subject invention provides a recombinant nucleic acid molecule which encodes an LBP variant. The subject invention also provides the LBP variant encoded by the recombinant nucleic acid molecule of the subject invention.
- The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention. The subject invention further provides a host vector system for the production of an LBP variant, which comprises the vector of the subject invention in a suitable host.

The subject invention further provides a method for producing an LBP variant, which comprises growing the host vector system of the subject invention under conditions permitting the production of the LBP variant and recovering the LBP variant produced thereby.

√′○ 94/25476 PCT/US94/04709

11

The subject invention provides a recombinant nucleic acid molecule which encodes an LBP-BPI chimera. The subject invention also provides the LBP-BPI chimera encoded by the recombinant nucleic acid molecule of the subject invention.

5

15

The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention. The subject invention further provides a host vector system for the production of an LBP-BPI chimera, which comprises the vector of the subject invention in a suitable host.

The subject invention further provides a method for producing an LBP-BPI chimera, which comprises growing the host vector system of the subject invention under conditions permitting the production of the LBP-BPI chimera and recovering the LBP-BPI chimera produced thereby.

The subject invention provides a recombinant nucleic acid molecule which encodes a BPI-IgG chimera. The subject invention also provides the BPI-IgG chimera encoded by the recombinant nucleic acid molecule of the subject invention.

The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention. The subject invention further provides a host vector system for the production of a BPI-IgG chimera, which comprises the vector of the subject invention in a suitable host.

The subject invention further provides a method for producing a BPI-IgG chimera, which comprises growing the host vector system of the subject invention under conditions permitting the production of the BPI-IgG chimera and recovering the BPI-IgG chimera produced thereby.

35 The subject invention provides a recombinant nucleic acid

12

molecule which encodes an LBP-IgG chimera. The subject invention also provides the LBP-IgG chimera encoded by the recombinant nucleic acid molecule of the subject invention.

The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention. The subject invention further provides a host vector system for the production of an LBP-IgG chimera, which comprises the vector of the subject invention in a suitable host.

10

The subject invention further provides a method for producing an LBP-IgG chimera, which comprises growing the host vector system of the subject invention under conditions permitting the production of the LBP-IgG chimera and recovering the LBP-IgG chimera produced thereby.

The subject invention provides a recombinant nucleic acid molecule which encodes an LBP-BPI-IgG chimera. The subject invention also provides the LBP-BPI-IgG chimera encoded by the recombinant nucleic acid molecule of the subject invention.

The subject invention further provides a vector comprising the recombinant nucleic acid molecule of the subject invention. The subject invention further provides a host vector system for the production of an LBP-BPI-IgG chimera, which comprises the vector of the subject invention in a suitable host.

The subject invention further provides a method for producing an LBP-BPI-IgG chimera, which comprises growing the host vector system of the subject invention under conditions permitting the production of the LBP-BPI-IgG chimera and recovering the LBP-BPI-IgG chimera produced thereby.

The subject invention provides a pharmaceutical composition, which comprises a therapeutically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, and a pharmaceutically acceptable carrier.

The subject invention further provides a method of treating a subject suffering from an endotoxin-related disorder, which comprises administering to the subject a dose of the pharmaceutical composition of the subject invention effective to bind to LPS and thereby inhibit LPS-mediated stimulation of neutrophils and mononuclear cells, so as to thereby treat the subject.

Finally, the subject invention provides a method of preventing an endotoxin-related disorder in a subject, which comprises administering to the subject a prophylactically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, so as to thereby prevent the endotoxin-related disorder in the subject.

14

Brief Description of the Figures

Figures 1A and 1B

Differences between LBP sequence as used herein (LBP-b) and LBP sequence as published by Schumann, et al. (LBP-a).

Figure 2 Model for the interaction of BPI and LBP with LPS and monocytes. LBP binds to LPS to form the LPB-LPS complex which then binds CD14 and activates monocytes to produce inflammatory cytokines. BPI binds to LPS but the BPI-LPS complex does not bind CD14 or activate monocytes.

15

Figures 3A and 3B

BPI nucleotide and amino acid sequences.

Figures 4A and 4B

LBP nucleotide and amino acid sequences:

Figures 5A and 5B

Aligned amino acid sequences of BPI and LBP proteins from various species.

25

Figure 6 Amino acid sequence of NCY118 protein.

Figures 7A and 7B

Human IgG-1 amino acid and nucleotide sequences.

Figure 8 Effects of BPI, NCY102, NCY103 and NCY104 on biotinylated BPI binding to LPS.

15

Figure 9 Effects of BPI, NCY102, NCY103, NCY104 and NCY105 protein on LPS activity in the chromogenic LAL assay. FITC-LPS binding to monocytes in the presence Figure 10 of BPI and NCY103. Figure 11 Effects of BPI, NCY102, NCY103 and NCY104, on TNF release by LPS in whole blood. 10 Clearance of BPI, NCY102, NCY103 and NCY104 Figure 12 from mouse serum after intravenous injection. Figure 13 Comparison of the efficacy of BPI and NCY103 15 given before endotoxin challenge. Effects of BPI, Figure 14 NCY103, NCY118, NCY115, and NCY117 on biotinylated BPI binding to LPS. 20 Figure 15 Effects of BPI, LBP, NCY103 and NCY104 on FITC-labeled LPS binding to human peripheral blood monocytes in the presence of autologous serum (panel A) and in the absence of serum and presence of 0.5% human serum albumin (panel B). Figure 16 Comparison of the effects of LBP vs. NCY103, NCY104, NCY117 and PLL (poly-L-lysine) on the stimulation of TNF α release by phorbol esterinduced THP-1 cells in the absence of serum.

25

30

35

Figure 17 LPS-mediated TNF production in THP-1 cells cultured without serum.

1

10

Figures 18A, 18B, 18C, 18D, 18E and 18F

Clearance of: BPI, LBP, NCY103, NCY104 and NCY118 (panel A); BPI, NCY114, NCY115 and NCY139 (panel B); BPI, LBP, NCY117 and NCY118 (panel C); BPI, LBP and NCY144 (assayed for both Fc and BPI) in CD-1 mice (panel D); LBP, NCY116, NCY117, NCY118 (panel E); NCY102, NCY103, NCY115, NCY135, and NCY134 (panel F); NCY102, NCY102, NCY141, NCY142, NCY143, and BPI (panel G); and BPI, NCY115, and NCY114 (panel H).

- Figure 19 Western blot of BPI and NCY118 produced in Pichia pastoris.
- 15 <u>Figure 20</u> Effects of BPI and NCY103 on endotoxin activation of monocytes.

Detailed Description of the Invention

Toward the goal of ameliorating the morbidity and mortality associated with endotoxemia and septic shock, the subject invention provides BPI and LBP variants, BPI-LBP chimeras, and BPI-IgG and LBP-IgG chimeras having biological properties distinct from and advantageous to either native BPI or native LBP. The subject invention also provides therapeutic and prophylactic uses for these molecules.

10

15

Specifically, the subject invention provides a recombinant nucleic acid molecule which encodes a BPI variant. In one embodiment, the recombinant nucleic acid molecule is a DNA molecule. In the preferred embodiment, the DNA molecule is a cDNA molecule.

As used herein, BPI or bactericidal permeability increasing protein means a protein having the amino acid sequence shown for human BPI in Figure 5. The BPI nucleotide and amino acid sequences are shown in Figure 3.

As used herein, a BPI variant means a protein comprising a portion of BPI, which protein is capable of (a) binding to LPS, (b) competing with BPI or LBP for binding to LPS, and (c) inhibiting the LPS-mediated production of TNFα by human monocytes. For example, a BPI variant may comprise a fragment of BPI, a point mutant of BPI, a deletion mutant of BPI, or both a point and deletion mutant of BPI.

30 As used herein, LPS means lipopolysaccharide, which is used synonymously with the word "endotoxin." As used herein, $TNF\alpha$ means tumor necrosis factor alpha.

In one embodiment, the BPI variant has the structure BPI(S351-

18

 $>x_0$, serine residue 351 being substituted for X, an amino acid residue other than serine. In the preferred embodiment, X is alanine.

- In this application, the portion of BPI in BPI variants and chimeras is designated by the letter B, followed by amino acid sequence numbers which correspond to those shown in Figure 5 for human BPI. Figure 5 designates the mature N-terminal amino acid as residue 1. The portion of LBP in LBP variants and chimeras is designated by the letter L, followed by amino acid sequence numbers which correspond to those shown in Figure 5 for human LBP. Figure 5 designates the mature N-terminal amino acid as residue 1.
- For example, $L_{1-197}B_{200-456}$ (NCY118) contains amino acid residues 1-197 of LBP fused at its C-terminus to the N-terminus of BPI amino acid residues 200-456. $L_{1-197}B_{200-456}$ is shown in Figure 6. $L_{1-197}B_{200-456}$ has the N-terminal domain of LBP (having an endotoxin-binding domain) fused to the C-terminal domain of BPI (having a putative LPS-clearing domain).

In this application, single amino acid substitutions are noted in parentheses. The original amino acid residue (using the standard one letter code for amino acids), is followed by an arrow and the substitute amino acid residue. For example, in one BPI variant, original serine residue 351 is substituted with alanine (which removes a glycosylation signal) and is designated BPI_(S351->A). As another example, the LBP-BPI chimera NCY103 is designated L_{1-197(143->V)}B_{200-456(N206->D)}, which means that the original isoleucine residue 43 of the LBP portion is substituted with a valine residue, and the original asparagine residue 206 of BPI is substituted with aspartate. Suitable amino acid substitutions include but are not limited to substitutions of a particular amino acid

ţ

residue in one protein with the residue which resides at the corresponding position in a different protein. For example, BPI(Xn->Y) is a general designation for such a substitution. It means that amino acid residue X at position n in BPI is substituted with residue Y which is found at position n in LBP (or rabbit or bovine LBP). "X" and "Y" denote amino acid positions in a primary amino acid sequence. "Y" as used in this context is not to be confused with the symbol "Y" denoting the amino acid residue tyrosine. LBP(Xn->Y) is another example of such a substitution, wherein amino acid residue X at position n in LBP is substituted with residue Y which is found at position n in BPI (or rabbit or bovine BPI).

Amino acid residue insertions are also indicated in parentheses. First, the amino acid residue after which the insertion occurs and its number are given. After an arrow the amino acid residue before the insertion and the inserted amino acid are given. For example, in B_(DS200->DF), a proline residue is substituted for the serine residue at position 200.

The subject invention also provides the BPI variant encoded by the recombinant nucleic acid molecule of the subject invention.

. 25

The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention. Vectors not comprising the recombinant cDNA molecule of the subject invention are readily available to those skilled in the art, and can readily be used to form the vector of the subject invention.

Numerous vectors for expressing the inventive proteins may

20

be employed. Such vectors, including plasmid vectors, cosmid vectors, bacteriophage vectors and other viruses, are well known in the art. For example, one class of vectors utilizes DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (RSV, MMTV or MoMLV), Semliki Forest virus or SV40 virus. Additionally, cells which have stably integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow for the selection of transfected host cells. The markers may provide, for example, prototrophy to an auxotrophic host, biocide resistance or resistance to heavy metals such as copper. The selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced into the same cell by cotransformation.

Regulatory elements required for expression include promoter sequences to bind RNA polymerase and transcription initiation sequences for ribosome binding. 20 Additional elements may also be needed for optimal synthesis of mRNA. These additional elements may include splice signals, as well as enhancers and termination signals. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG. Similarly, a eukaryotic expression vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, termination codon for detachment of the ribosome. vectors may be obtained commercially or assembled from the sequences described by methods well known in the art, for example the methods described above for constructing vectors in general.

15

21

The subject invention further provides a host vector system for the production of a BPI variant, which comprises the vector of the subject invention in a suitable host. Methods of producing host vector systems are well known to those skilled in the art.

Suitable host 'cells include, but are not limited to, bacterial cells (including gram positive cells), yeast cells, fungal cells, insect cells and animal cells.

10 Suitable animal cells include, but are not limited to, HeLa cells, COS cells (including COS-7 cells), CV1 cells, NIH-3T3 cells, CHO cells, and Ltk cells. Certain animal cells, i.e., mammalian cells, may be transfected by methods well known in the art such as calcium phosphate precipitation, electroporation and microinjection.

In one embodiment, the suitable host is a bacterial cell. Bacterial cells include, for example, gram negative cells (e.g. <u>E. coli</u> cells). In another embodiment, the suitable host is an eucaryotic cell. The eucaryotic cell may be a mammalian cell. Mammalian cells include, for example, Chinese Hamster Ovary cells (CHO). The eucaryotic cell may also be a yeast cell. Yeast cells include, for example, Pichia cells.

25

1

The subject invention further provides a method for producing a BPI variant, which comprises growing the host vector system of the subject invention under conditions permitting the production of the BPI variant and recovering the BPI variant produced thereby.

Conditions permitting the production of the proteins in host vector systems are well known to those skilled in the art.

22

Protein recovery is accomplished by methods well known to those skilled in the art. Such methods include, but are not limited to, gel electrophoresis, ion exchange chromatography, affinity chromatography or combinations thereof.

5

The subject invention provides a recombinant nucleic acid molecule which encodes an LBP variant. In one embodiment, the recombinant nucleic acid molecule is a DNA molecule. In the preferred embodiment, the DNA molecule is a cDNA molecule.

As used herein, LBP or lipopolysaccharide binding protein means a protein having the amino acid sequence shown for human LBP in Figure 5. The amino acid sequence shown for human LBP in Figure 5 is distinct from the amino acid sequence reported by Schumann et al. (Science 249:1429-1431 (1990)). Therefore, the amino acid sequence shown for human LBP in Figure 5 should not be confused with the sequence reported by Schumann et al. Figure 1 shows differences between LBP sequence as used herein and LBP sequence as published by Schumann, et al. The LBP nucleotide and amino acid sequences are shown in Figure 4.

As used herein, an LBP variant means a protein comprising a portion of LBP, which protein is capable of (a) binding to LPS, (b) competing with BPI or LBP for binding to LPS, and (c) inhibiting the production of TNFα by human monocytes. An LBP variant may comprise, by way of example, a fragment of LBP, a point mutant of LBP, a deletion mutant of LBP, or a point and deletion mutant of LBP.

The subject invention provides a recombinant nucleic acid molecule which encodes an LBP-BPI chimera. In one embodiment, the recombinant nucleic acid molecule is a DNA molecule. In the preferred embodiment, the DNA molecule is

a cDNA molecule.

As used herein, a chimera means a protein comprising all or a portion of a first protein fused to all or a portion of a second protein, which resulting fusion protein may in turn be fused to all or a portion of a third protein. Chimeras include but are not limited to (a) a protein comprising a portion of LBP fused to a portion of BPI, (b) a protein comprising an LBP portion fused to a BPI portion which in turn is fused to a portion of an immunoglobulin, and (c) a protein comprising an LBP portion fused to a BPI portion, which in turn is fused to an LBP portion. Each protein portion of the chimera may comprise a fragment of the protein, a point mutant of the protein, a deletion mutant of the protein, or both a point and deletion mutant of the protein.

As used herein, an LBP-BPI chimera means a protein which (i) comprises an LBP portion fused to a BPI portion, and (ii) is capable of (a) binding to LPS, (b) competing with BPI or LBP for binding to LPS, and (c) inhibiting the production of TNFα by human monocytes.

Chimeras of LBP and BPI may share properties of both BPI and
25 LBP. For example, fusing the N-terminal domain of LBP to
the C-terminal domain of BPI results in an LBP-BPI chimera
(e.g., NCY103 or NCY118). The resulting LBP-BPI chimera
differs from LBP in that the chimera neutralizes endotoxin
in whole blood and differs from BPI in that the chimera has
30 a longer half-life in vivo. Such chimeras can be used to
clear endotoxin from the blood of a patient with endotoxemia. A BPI-LBP chimera is a protein wherein all or a
part of the N-terminal domain of BPI is fused to all or a
part of the C-terminal domain of LBP (e.g., NCY104). This
35 chimera competes effectively with BPI binding to endotoxin

but activates monocytes in the presence of endotoxin as does LBP.

For example, one or more of the nonconserved positivelycharged residues in BPI (i.e., those residues not found at
the corresponding positions in LBP) may be substituted with
the corresponding residue or residues in LBP (as in, e.g.,
NCY139). Such substitutions would render BPI less cationic.
As another example, one or more of the nonconserved amino
acid residues in LBP (at a position which corresponds to a
positively-charged residue in BPI) may be substituted with
the corresponding positively-charged residue in BPI (as in,
e.g., NCY141), and thus result in an LBP variant having an
increased positive charge which enhances binding to the
negatively charged phosphate groups in LPS, or facilitates
interaction with the negatively charged surfaces of Gramnegative bacteria. Examples of positively-charged residues
are lysine, arginine, and histidine.

Other BPI and LBP variants and chimeras have one or more cysteine residues deleted or substituted with serine or another amino acid. Such variants and chimeras help prevent the aggregation of BPI or LBP variants or chimeras during their production or use. For example, cysteine residue 132 in BPI (which is not conserved in LBP) is substituted with alanine (the corresponding residue in LBP) or serine.

Other BPI and LBP variants and chimera have one or more nonconserved glycosylation sites deleted (as in, e.g., 30 NCY105) by amino acid substitution or deletion. Alternatively, a glycosylation site is added to other BPI and LBP variants and chimera by amino acid insertion or substitution.

35 Other BPI and LBP variants and chimera have one or more

secondary structure-altering amino acid residues deleted or added. For example, one or more of the nonconserved proline residues in BPI may be substituted with the corresponding non-proline residue in LBP. Alternatively, one or more of the nonconserved amino acid residues in LBP (at a position which corresponds to a proline in BPI) may be substituted with proline, which changes the secondary structure of LBP to become more like that of BPI.

In one embodiment, the LBP-BPI chimera has the structure $LBP_{1-197}BPI_{200-456}$. In still another embodiment, the LBP-BPI chimera has the structure $LBP_{1-197(143->V)}BPI_{200-456(N206->D)}$.

In the preferred embodiment, the LBP-BPI chimera comprises all or a portion of the amino acid sequence of BPI from residue 199 to residue 359. The amino acid sequence of BPI from residue 199 to residue 359 contains a region required for neutralizing LPS, i.e., preventing LPS from stimulating an inflammatory response.

20

The subject invention also provides the recombinant nucleic acid molecule encoding the LBP-BPI chimera, vector and host vector system.

The subject invention provides a BPI-IgG chimera and a recombinant nucleic acid molecule which encodes a BPI-IgG chimera. In one embodiment, the recombinant nucleic acid molecule is a DNA molecule. In the preferred embodiment, the DNA molecule is a cDNA molecule.

30

As used herein, a BPI-IgG chimera means a protein which (i) comprises a BPI portion (at least 10 amino acid residues in length) fused at its C-terminus to the N-terminus of a portion of an IgG molecule; and (ii) is capable of (a)

binding to LPS, (b) competing with BPI or LBP for binding to LPS, and (c) inhibiting the production of $TNF\alpha$ by human monocytes. In the preferred embodiment, the portion of the IgG molecule is an IgG heavy chain Fc domain. The IgG heavy chain Fc domain may be the IgG heavy chain Fc domain whose sequence is shown in Figure 7. An example of a BPI-IgG chimera is $B_{1.199}Fc$.

The subject invention provides an LBP-IgG chimera and a recombinant nucleic acid molecule which encodes an LBP-IgG chimera. In one embodiment, the recombinant nucleic acid molecule is a DNA molecule. In the preferred embodiment, the DNA molecule is a cDNA molecule.

As used herein, an LBP-IgG chimera means a protein which (i) comprises an LBP portion (at least 10 amino acid residues in length) fused at its C-terminus to the N-terminus of a portion of an IgG molecule; and (ii) is capable of (a) binding to LPS, (b) competing with BPI or LBP for binding to LPS, and (c) inhibiting the production of TNFα by human monocytes.

The subject invention also provides the LBP-IgG chimera encoded by the recombinant nucleic acid molecule of the subject invention.

The subject invention further provides a vector comprising the recombinant cDNA molecule of the subject invention.

The subject invention provides an LBP-BPI-IgG chimera and a recombinant nucleic acid molecule which encodes an LBP-BPI-IgG chimera. In one embodiment, the recombinant nucleic acid molecule is a DNA molecule. In the preferred embodiment, the DNA molecule is a cDNA molecule.

27

As used herein, an LBP-BPI-IgG chimera means a protein which
(i) comprises an LBP-BPI chimera fused at its C-terminus to
the N-terminus of a portion of an IgG molecule; and (ii) is
capable of (a) binding to LPS, (b) competing with BPI or LBP
for binding to LPS, and (c) inhibiting the production of
TNFα by human monocytes.

The BPI variant, LBP variant, LBP-BPI chimera, BPI-IgG chimera, LBP-IgG chimera, and LBP-BPI-IgG chimera of the subject invention may be modified with polyethylene glycol to increase the circulating half-life and/or bioavailability of the molecules.

The subject invention provides a pharmaceutical composition,
which comprises a therapeutically effective amount of a BPI
variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG
chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera; and
a pharmaceutically acceptable carrier.

20 Pharmaceutically acceptable carriers are well known to those skilled in the art and include, but are not limited to, 0.01-0.1M and preferably 0.05M succinate buffer or 0.8% saline. Additionally, such pharmaceutically acceptable may be aqueous or non-aqueous solutions, suspensions, and emulsions. Further, pharmaceutically acceptable carriers may include detergents, phospholipids, fatty acids, or other lipid carriers. Examples of nonaqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic 30 esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated 35 Ringer's or fixed oils. A lipid carrier is any lipid-soluble

substance which inhibits protein precipitation and in which the proteins of the subject invention are soluble. carriers may be in the form of sterile solutions or gels. Lipid carriers may be detergents or detergent-containing 5 biological surfactants. Examples of nonionic detergents include polysorbate 80 (also known as TWEEN 80 polyoxyethylenesorbitan monooleate). Examples of ionic detergents include, but are not limited to, alykltrimethylammonium bromide. Additionally, the lipid carrier may be a A liposome is any phospholipid membrane-bound vesicle capable of containing a desired substance, such as BPI or BPI variant, in its hydrophilic interior. venous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's 15 dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, chelating agents, inert gases and the like.

The subject invention further provides a method of treating 20 a subject suffering from an endotoxin-related disorder, which comprises administering to the subject a dose of the pharmaceutical composition of the subject effective to bind to LPS and thereby inhibit LPS biological activity.

25

10

As used herein, an endotoxin-related disorder includes, but is not limited to endotoxin-related shock, endotoxin-related disseminated intravascular coagulation, endotoxin-related anemia, endotoxin-related thrombocytopenia, endotoxin-30 related adult respiratory distress syndrome, endotoxinrelated renal failure, endotoxin-related liver disease or hepatitis, SIRS (systemic immune response syndrome) resulting from Gram-negative infection, Gram-negative neonatal sepsis, Gram-negative meningitis, Gram-negative pneumonia, neutropenia and/or leucopenia resulting from

29

Gram-negative infection, hemodynamic shock and endotoxinrelated pyresis. Endotoxin-related pyresis is associated
with certain surgical procedures, such as trans-urethral
resection of the prostate and gingival surgery. The
presence of endotoxin may result from infection at any site
with a Gram-negative organism, or conditions which may cause
ischemia of the gastrointestinal tract, such as hemorrhage,
or surgical procedures requiring extracorporeal circulation.

As used herein, the administeration may be performed by methods known to those skilled in the art. In one embodiment, the administeration comprises delivery to the lungs via an aerosol delivery system or via direct instillation. The aerosol may be nebulized. Other administeration modes include but are not limited to intravenous, intramuscular, and subcutaneous administration as well as direct delivery into an infected body cavity.

As used herein, the dose of the pharmaceutical composition of the subject invention effective to bind to LPS and thereby inhibit LPS-mediated stimulation of neutrophils and mononuclear cells is an amount sufficient to deliver to the subject an inventive protein at a concentration of between about 0.lmg/kg of body weight and about 100mg/kg of body weight. In one embodiment, the dose is an amount sufficient to deliver to the subject an inventive protein at a concentration of between about 1mg/kg of body weight and about 10mg/kg of body weight. The therapeutically effective amounts of inventive proteins in the pharmaceutical composition may be determined according to known methods based on the effective dosages discussed above.

As used herein, inhibit means to inhibit at a level which is statistically significant and dose dependent. The terms "statistically significant" and "dose dependent" are well

known to those skilled in the art.

The subject invention further provides a method of preventing an endotoxin-related disorder in a subject, which comprises administering to the subject a prophylactically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, so as to thereby prevent the endotoxin-related disorder in the subject.

10

15

As used herein, a prophylactically effective amount is an amount between about 0.1mg/kg of body weight and about 100mg/kg of body weight. In the preferred embodiment, a prophylactically effective amount is an amount between about 1mg/kg of body weight and about 10mg/kg of body weight.

The term "inventive proteins" is used throughout the subject application. As used herein, the term "inventive proteins" means a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-LBP chimera, a BPI-IgG chimera, an LBP-IgG chimera, an LBP-BPI-IgG chimera, a recombinant protein comprising a portion of LBP or BPI, or any combination thereof.

The subject invention provides recombinant nucleic acid molecules which encode L₁₋₁₉₉ (NCY109), L₁₋₃₅₇B₃₆₀₋₄₅₆ (NCY117), LBP (NCY102), L₁₋₁₉₉Fc (NCY111), L₂₀₀₋₄₅₈ (NCY113), LBP_(A132->C) (NCY126), LBP_(C61->F) (NCY127), LBP_(C61->S) (NCY128), LBP_(C135->S) (NCY129), LBP_(A175->S) (NCY130), LBP_{C61->F)}(C135->S)(A175->S)</sub> (NCY131), or LBP_(C51->S)(C135->S)(A175->S)</sub> (NCY132). In one embodiment, the recombinant nucleic acid molecules are DNA molecules. In the preferred embodiment, the DNA molecules are cDNA molecules. The subject invention also provides the proteins encoded by these recombinant nucleic acid molecules. The subject invention further provides vectors comprising these

31

recombinant cDNA molecules. The subject invention further provides host vector systems for the production of these proteins, which comprise these vectors in suitable hosts. In one embodiment, the suitable hosts are bacterial cells. In another embodiment, the suitable hosts are eucaryotic cells. The eucaryotic cells may be mammalian cells. The eucaryotic cells may also be yeast cells. The subject invention further provides methods for producing these proteins, which comprise growing these host vector systems under conditions permitting the production of these proteins and recovering the proteins produced thereby.

The proteins L_{1-199} (NCY109), $L_{1-357}B_{360-456}$ (NCY117), LBP (NCY102), $L_{1-199}Fc$ (NCY111), $L_{200-458}$ (NCY113), $LBP_{(A132->C)}$ (NCY126), $LBP_{(C61->F)}$ (NCY127), $LBP_{(C61->S)}$ (NCY128), $LBP_{(C135->S)}$ (NCY129), $LBP_{(A175->S)}$ (NCY130), $LBP_{C61->F)(C135->S)(A175->S)}$ (NCY131), or $LBP_{(C61->S)(C135->S)(A175->S)}$ (NCY132) are useful for inhibiting the LPS-mediated cellular response both <u>in vitro</u> and <u>in vivo</u>.

20 Finally, the subject invention provides an article of manufacture comprising packaging material pharmaceutical composition contained within said packaging material wherein (a) the packaging material comprises a label which indicates that the pharmaceutical composition 25 can be used for treating a subject suffering from an endotoxin-related disorder and for preventing endotoxininflammation in a subject, and (b) pharmaceutical composition comprises a therapeutically effective amount of a BPI variant, an LBP variant, an LBP-30 BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, and a pharmaceutically acceptable carrier.

These vectors may be introduced into a suitable host cell to

32

form a host vector system for producing the inventive proteins. Methods of making host vector systems are well known to those skilled in the art.

5 This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the subject inventions which follow thereafter.

Experimental Details

Materials and Methods

5

A series of BPI and LBP variants and chimeras are described in Tables 2 and 3. Table 2 describes some general classes of BPI and LBP variants and chimeras which are given by way of example. Specific examples of BPI and LBP variants and thimeras are described in Table 3 and are additionally designated by a product name (e.g., NCY103).

15

Table 2

Examples of BPI and LBP Variants and Chimeras

20	BPI variant (N-terminal frag.)	B_{1-n}
	LBP variant (N-terminal frag.)	L _{1-n}
	BPI variant (C-terminal frag.)	B _{n-456}
	LBP variant (C-terminal frag.)	L _{n-456}
	BPI variant (internal frag.)	B_{n-x}
25	LBP variant (internal frag.)	L _{n-x}
	LBP-BPI chimera	$L_{n-x}B_{(x+1)-y}$
	BPI-LBP chimera	$B_{n-x}L_{(x+1)-y}$
	LBP-BPI chimera	$L_{n-x}B_{(x+1)-456}$
30	BPI-LBP chimera	$B_{n-x}L_{(x+1)-456}$
	LBP-BPI chimera	$\mathbf{L_{1-n}B_{(n+1)-x}}$
	BPI-LBP chimera	$B_{1-n}L_{(n+1)-x}$
	LBP-BPI chimera	$L_{1-n}B_{(n+1)-456}$
	BPI-LBP chimera	$B_{1-n}L_{(n+1)-456}$
35	LBP-BPI-LBP chimera	$L_{1-n}B_{(n+1)-x}L_{(x+1)-456}$
	BPI-LBP-BPI chimera	$B_{1-n}L_{(n+1)-x}B_{(x+1)-456}$

All of the above constructs could also be engineered as IgG chimeras. In such constructs, the Fc, or constant domain, or a human immunoglobulin heavy chain, can be linked to the BPI variant protein.

n represents an amino acid residue position in the mature sequence of BPI or LBP, x represents an amino acid residue in a position which is C-terminal to n in the sequence of BPI or LBP, and y represents an amino acid residue in a position which is C-terminal to x in the sequence of BPI or LBP. The symbols n, x and y denote the amino acid residue positions as they occur in the mature sequence of the native protein, and not necessarily the positions as they occur in the variant protein.

Table 3

20	Examples of	Examples of BPI and LBP Variants and Chimeras		
	Sequence	Product Name	Description	
2 5	BPI	NCY101	Native sequence	
	L _{1-197(143->V)} B _{200-456(N206->D)}	NCY103	LBP-BPI chimera	
	B ₁₋₂₀₀ L ₁₉₉₋₄₅₆	NCY104	BPI-LBP chimera	
	BPI _(\$351->A)	NCY105	Glycosylation site deleted	
30	BPI _(DS200->DP)	NCY106	Acid cleavage site inserted	
	L ₁₋₁₉₇ B _{200-456(\$351->A)}	NCY107	LBP-BPI chimera with glycoslation site deleted	
35	B ₁₋₁₉₉	NCY108	N-terminal domain of BPI	
	B ₁₋₁₉₉ FC	NCY110	N-terminal BPI-IgG chimera	
	B ₂₀₀₋₄₅₆	NCY112	C-terminal fragment of BPI	

35

	•	33	
	$L_{1-59}B_{60-456}$	NCY114	LBP-BPI chimera
	$L_{1-134}B_{136-456}$	NCY115	LBP-BPI chimera
	L ₁₋₂₇₄ B ₂₇₇₋₄₅₆	NCY116	LBP-BPI chimera
	$L_{1-359}B_{360-456}$	NCY117	LBP-BPI chimera
5	$L_{1-197}B_{200-456}$	NCY118	LBP-BPI chimera
	BPI _(F61->C)	NCY119	Cysteine insertion
	BPI _(C132->A)	NCY120	Cysteine deletion
	BPI _(C132->S)	NCY121	Cysteine deletion
	BPI _(Cl35->s)	NCY122	Cysteine deletion
10	BPI _(C-175->S)	NCY123	Cysteine deletion
	BPI _{(C132->A)(C135->S)(C175->S)}	NCY124	Multiple cysteine deletion
	BPI _{(C-132-} >s)(C135->s(C175->s)	NCY125	Multiple cysteine deletion
15	$L_{(1-134)}B_{(136-361)}L_{(360-456)}$	NCY133	LBP-BPI chimera
	$L_{(1-134)}B_{(136-275)}L_{(274-456)}$	NCY134	LBP-BPI chimera
	$L_{(1-197)}B_{(200-275)}L_{(274-456)}$	NCY135	LBP-BPI chimera
	$L_{(1-197)}B_{(200-361)}L_{(360-456)}$	NCY136	LBP-BPI chimera
20	B _{(K27->S)(K30->L)(K33->T)} (K42->R)(K44->P)(K48->R)(A59->H)	NCY137	Cationic Substit. (7)
	$B_{(K77->S)(K86->R)(K90->R)}$ $(K96->S)(K118->L)(K127->R)$	NCY138	Cationic Substit. (6)
25	B _{(K148->G)(K150->D)(K160->N)} (K161->Q)(R167->Q)(K169->V) (K177->M)(K185->D)(K197->E)	NCY139	Cationic Substit. (9)
	B _(K77->s) (K86->r)(K90>r) (K96->s)(K118->L)(K127->r)(K148->G)(K150->D)(K160 (K161->Q)(R167->Q)(K169->V)(K177->M) (K185->D)(K197->E)	NCY140 ->n)	Cationic Substit. (15)
30	L _{(S77->K)(R86->K)} (L118->K)(R126->K)	NCY141	Cationic Repl. (6)
	T ₋₁ (G147->K)(D148->K)(N158->K) (Q159->K)(Q165->R)(V167->K)(M175->K)(D183->K) (E196->K)	NCY142	Cationic Repl.(9)
35	L _(S77->K) (R86->K)(S96->K) (L118->K)(R126->K)(G147->K)(D148->K)(N158->K)(Q15 (Q165->R)(V167->K)(M175->K)(D183->K)	NCY143 69->K)	Cationic Repl. (15)
	(E196->K)		
40	L ₍₁₋₁₉₇₎ B ₍₂₀₀₋₄₅₆₎ FC	NCY144	LBP-BPI-IgG chimera

9

36

Construction of Inventive proteins

The cDNA sequences of BPI and LBP are shown in Figures 3 and 4, respectively, with each nucleotide designated numerically. DNA encoding the inventive proteins was 5 prepared by site-directed mutagenesis using standard techniques well known in the art [Zoller, M.J., et al., Methods Enzymol. 154:329 (1977)]. For example, sequences "ATAGAT₇₂₃" and "ATTGAC₇₀₀" were chosen as a convenient site to insert a ClaI restriction site (ATCGAT) 10 by which to recombine portions of BPI and LBP, respectively. Oligonucleotide primers were designed to overlap this region and to add the ClaI sequence, and were synthesized on an ABI 380B synthesizer (Applied Biosystems Inc., Foster City, CA). Additional primers were designed to bind to the 5' and 3'-15 ends of both molecules and to provide NheI (5') and XhoI (3') restriction sites for insertion into the vector. These primers were used to amplify portions of the cDNA molecules encoding amino acid residues 1-197 (A) and 200-456 (B) of LBP and BPI by cyclic DNA amplification. The resulting DNA 20 fragments were digested with the appropriate restriction enzymes and then purified by gel electrophoresis.

Now that the useful LBP-BPI, BPI-IgG, LBP-IgG, and LBP-BPI-IgG chimeras have been disclosed, DNA molecules encoding these chimeras may be constructed using methods well known to those skilled in the art.

Mammalian Expression

25

In order to produce recombinant BPI, LBP, and the inventive proteins in mammalian cells, the cDNA sequences were inserted into a suitable plasmid vector. One suitable vector for such an application is pSE, which contains early and late promoters of SV40, followed by multiple insert cloning sites, followed by the termination sequences from

37

the hepatitis B surface antigen gene. Also contained within the plasmid are an origin of bacterial DNA replication, and the genes encoding ampicillin resistance and dihydrofolate reductase. Similar vectors have been used to express other 5 foreign genes (McGrogan, et al. Biotechnology 6, 172-177). Another suitable vector, particularly for rapidly obtaining small quantities of inventive proteins was pCEP4 (Invitrogen Corp., San Diego, California). pCEP4 contains a CMV promoter, followed by multiple insert cloning sites, followed by SV40 termination sequences. Also contained within the plasmid are an origin of bacterial replication, and the genes encoding resistance to ampicillin and hygromycin B. With pCEP4 and pSE, the same insert cloning sites as pSE for easy insert shuttling between the 15 vectors were used. Once introduced into mammalian cell hosts, this specialized plasmid replicates as an episome, allowing semistable amplification of introduced sequences. The high gene copy number is maintained through the selective pressure of culture in the presence of 20 hygromycin B.

In both cases, vector DNA was prepared for acceptance of cDNA by digestion with Nhe I and Xho I, and was subsequently dephosphorylated by treatment with alkaline phosphatase.

The prepared cDNA fragments encoding BPI, LBP, or other inventive proteins were ligated into pSE or pCEP4, and the resulting recombinant colonies were screened by agarose gel electrophoresis. Subsequently, the DNA sequences were confirmed by standard enzymatic sequencing methods (e.g., 30 Sanger, 1974).

Expression plasmid DNA purified by either CsCl gradients with Plasmid or Midi Kits (Qiagen, Chatsworth, California) was used to transform Chinese hamster ovary strain DUKXB11 (pSE) and 293-EBNA cells (Invitrogen Corp., San Diego,

35

38

California) (pCEP4). Transfection was performed using lipofectin (Bethesda, Research Labs, Gaithersberg, MD) by standard methods. The resulting transformed cells were selected in GHT minus medium (DUKX11s) or in medium plus hygromycin B (293s). Cells were cultured in REM minus GHT plus 10% dialyzed fetal calf serum (DUKXB11s) or in REM and 10% calf serum (293s). For the DUKXB11s, clones were selected and were passed through sequential rounds of culture in increasing concentrations of methotrexate in order to amplify the DHFR gene and associated heterologous genes. Supernatants from transfected cells, either mixed populations or clones derived from the mixed population, were assayed for BPI, LBP, or inventive proteins by ELISA.

15 Yeast Expression

BPI and NCY118 were successfully expressed in the methylotrophic yeast <u>Pichia pastoris</u>. Pichia was chosen as a suitable expression system for BPI and BPI variants due to its lack of LPS (endotoxin to which BPI binds) and its ability to produce high levels of mammalian proteins.

P. pastoris strain GS115 (Invitrogen, San Diego, California) was transformed with plasmids encoding BPI and NCY118, and transformed colonies were selected for following the 25 procedures outlined by Invitrogen (A Manual of Methods for Expression of Recombinant Proteins in Pichia pastoris, Version 1.5, Invitrogen, San Diego, California). BPI and NCY118, protein was secreted into the medium in a small-scale batch fermentation run. 116 ng/ml were secreted 30 for the one BPI construct assayed, and 14, 11, and 10 ng/ml were secreted for the three NCY118 constructs assayed. Secretion was assayed by enzyme-linked immunosorbant analysis (ELISA). The majority of protein for both constructs was not secreted, as shown by Western blot 35 analysis with a polyclonal anti-BPI antibody mix (INVN 1-2)

and alkaline phosphatase conjugated goat anti-rabbit antibody. The Western blot is shown in Figure 19.

Purified BPI from Chinese Hamster ovary cells (CHOs) was used as a control (lane 12). In lane 1, was a sample from untransformed GS115 cells. The antibodies did not recognize any proteins from such cells subject to the detection limits of the assay. The next three lanes (2-4) were samples from colonies transformed with the construct for BPI and the last 6 lanes (5-10) were samples from colonies transformed with the construct for NCY118. The amount of intracellular BPI or NCY118 expressed in the batch fermentation run, based on the amount of standard BPI loaded, was roughly 100 ug/ml of medium for the BPI and NCY118 colonies.

15

Protein Purification

BPI (NCY101) was purified from conditioned media using the following four-step purification. BPI was captured on CM Sepharose (Pharmacia LKB Biotechnology). The column was 20 washed in 50mM Tris pH 7.4, and protein was eluted with 50mM Tris buffer pH 7.4 + 1M NaCl. The eluate was diluted 10X with 50mM Tris pH 8.5, run over Fast Q Sepharose, and the flow through collected. BPI was re-captured on CM Sepharose, and again eluted as before. Buffer exchange into 10mM Succinate + 110mM NaCl pH 6 was performed using Sepharose CL6B (Pharmacia LKB Biotechnology). Finally, TWEEN 20 was added to the formulated material to a final concentration of 0.05%.

30 LBP (NCY102) was captured from cell culture medium on Fast S Sepharose (Pharmacia). The column was washed with 50mM Tris pH 7.4, and protein was eluted using 50mM Tris pH 7.4 + 1M NaC1. The eluate was diluted 10X in 50mM Tris pH 8.5, and run over HiLoad Q Sepharose (Pharmacia). Protein was eluted with a 0-1M NaC1 gradient in 50mM Tris pH 8.5.

Appropriate fractions were pooled according to migration on SDS PAGE electrophoresis. NCY102 concentration was diluted to 4.0 mg/ml, and the pH adjusted to 7.0 with 100mM HCl.

5 NCY103 was purified from cell culture medium using the same method described for NCY102.

NCY104 and NCY105 were purified using the same protocol as for BPI, except that the size exclusion step was omitted.

10

NCY114, NCY115 and NCY138 were captured on a Poros II HS cation exchange column (PerSeptive Biosystems, Cambridge, MA) at pH 7.4. The column was washed with 20mM HEPES buffer at pH 7.5, and eluted with 20mM HEPES pH 7.5 with 1M NaCl.

The eluate was diluted 5X in 20mM HEPES pH 7.5 and applied to a Poros HQ anion exchange column (PerSeptive) with the flow through applied directly to a POROS II HS column. The POROS II HS column was eluted with 3.3mM acetate, 3.3mM MES and 3.3mM HEPES, pH 6.5 with a 0-1M NaCl gradient.

20

NCY117 and NCY144 were captured from conditioned medium at pH 7.4 on a Poros II HS column. The column was washed with 20mM HEPES buffer at pH 7.5, and eluted with 20mM HEPES pH 7.5 + 1M NaCl. The eluate was diluted 10% with 20mM HEPES pH 7.5, loaded on a second, smaller Poros II HS column, and eluted with 3.3mM acetate, 3.3mM MES and 3.3mM HEPES, pH 6 with a 0-1M NaCl gradient.

Because purification of BPI, LBP and IgG are well known and purification of exemplary chimeras is described above, it is contemplated that those skilled in the art can purify additional BPI-IgG, LBP-IgG, and LBP-BPI-IgG chimeras of the subject invention by using the purification methods described above and/or by modifying these methods in ways familiar to those skilled in the art.

In Vitro and In Vivo Tests of Representative Compounds
In vitro and in vivo tests were performed on representative compounds disclosed herein. In vitro tests included LPS binding competition assay, Limulus amebocyte lysate (LAL) inhibition test, TNF release inhibition test, FITC-labeled LPS binding inhibition, THP-1 cell TNF production and BPI activity against Neisseria. In vivo tests included mouse LPS half-lives, mouse endotoxin challenges and LPS-induced cytokine function and mortality in rats, and LPS activation in bronchial fluids.

S. minnesota Re mutant LPS and FITC-labeled E. coli 055:B5
LPS were obtained from List Biological Laboratories
(Campbell, CA). E. coli 0111:B4 LPS was obtained from
Whitaker Biologicals (Walkersville, MD). S. abortus equi
LPS was obtained from Sigma Chemical Co. (St. Louis, MO).
HBSS without calcium and magnesium and Roswell Park Memorial
Institute (RPMI solution) 1640 was obtained from Gibco BRL
(Grand Island, MD). Fluorescent-activated cell sorting
(FACS) analysis was performed on a FACStar, Becton Dickinson
Immunocytometry Systems (Mountain View, CA).

biotinylatedBPI Binding Competition Assay

Binding to LPS immobilized on microtiter plates was performed using a modified procedure described by Ulevitch et al. (15). Briefly, Immulon 3 microtiter plates (96-well, Dynatech Biotechnology Products, Chantilly, VA) were coated with 1 or 4 μg of S. minnesota R595 Re LPS (LIST Biological Labs, Inc., #304) in 50mM borate, pH 9.5-9.8 + 20-25 mM EDTA overnight at 37°C. Blank, non-LPS coated wells were included on each plate and binding to these walls was used to determine non-specific binding. Absorbance values from wells which were not pre-coated with LPS consistently gave optical density readings of less than 0.05. Plates were

then washed extensively under running distilled deionized water, then dried at 37°C. All the wells were blocked for 60 minutes at 37°C with 1-2% very low endotoxin BSA (Sigma, St. Louis, MO) prepared in pyrogen-free Tris-buffered saline 5 (50mM Tris pH 7.4 +150mM NaCl). The wells were emptied, and biotinylated BPI was incubated in the presence or absence of unlabeled BPI or inventive protein (pyrogen-free TBS + lmg/ml low endotoxin BSA, and 0.05% Tween-20) was incubated in the LPS coated and uncoated wells for 2-3 hours at 37°C 10 in a total volume of 100 μ l/well. After four washes in assay buffer, plates were developed with streptavidin conjugated to alkaline phosphatase (BioRad, Burlingame, California) followed by 100 μ l of PNP substrate solution (Sigma) freshly prepared from two 5 mg tablets dissolved in 10ml substrate buffer. Substrate buffer is prepared with 24.5 mg MgCl₂, 48 ml diethanolamine, brought up to 400 ml, pH adjusted to 9.8 and volume brought up to 500 ml. Absorbances were read at 405 nm on a Vmax kinetic microplate reader (Molecular Devices Inc., Menlo Park, CA).

20

Chromogenic LAL Assay

BPI and inventive proteins (25 μl of 0-200 μg/ml) were preincubated for 1 hour at 37°C with 1EU/ml of E. coli 0111:B4 LPS (25 μl of 2 EU/ml solution) (Whitaker Biologicals, Walkersville, Maryland). Then the mixtures were tested for LAL activity using the chromogenic LAL assay kit (Whitaker Biologicals, Walkersville, MD).

FITC-LPS Binding Assay

30 Blood collected in acid citrate dextrose-containing Vacutainer tubes (Becton Dickinson, Rutherford, NJ) was diluted 1:4 in Hank's balanced salt solution (HBSS) minus calcium and magnesium. Mononuclear cells were isolated using Ficol-Paque (Pharmacia Inc., Piscataway, NJ). Cells

were washed three times in HBSS, then brought up to an appropriate volume of RPMI 1640 with glutamine and antibiotics to give approximately 1 X 106 cells/ml. ml aliquots of cells, FITC-LPS was added to a final 5 concentration of 500 ng/ml. Tubes were closed and incubated at 37°C on a rocking platform. At the end of the incubation, cells were washed twice with PBS with 0.05% Human Serum Albumin (HSA) and 0.02% sodium azide. monocyte portion of the cell population was determined by 10 side scatter versus forward scatter gating and confirmed by staining a separate aliquot of cells with phycoerythrinconjugated anti-DR antibody (Becton Dickinson Immunocytometry Systems, Milpitas, CA). Results are reported as logarithmic scale mean fluorescence intensity.

15

20

LPS-Induced TNF Release In Whole Blood

Peripheral blood from normal human volunteers was collected in heparin-containing Vacutainer tubes (Becton Dickinson, Rutherford, NJ). To one milliliter of whole blood, BPI, an inventive protein, or buffer control was added, followed by lng/ml <u>E. coli</u> 055:B5 refined standard endotoxin (RSE) (Whitaker Bioproducts). Samples were incubated in closed microtubes at 37°C for 4 hours on a rocking platform. At the end of the incubation, samples were centrifuged for 5 minutes at 500xg at 4°C, the plasma collected and frozen on dry ice until assayed for the presence of cytokines. TNF levels were determined by ELISA using human recombinant TNF (Genzyme, Cambridge, MA or Genentech Inc., South San Francisco, CA) as a standard.

30

In later studies it was determined that BPI activity in whole blood is inhibited by heparin, and the anticoagulant was changed to citrate. In these experiments, to 120 μ l of citrated whole blood, 20 μ l or BPI or an inventive protein

(at 0-1 mg/ml) or buffer control, 20 μ l of 100ng/ml of <u>E. coli</u> O55:B5 LPS was added to stimulate cells in whole blood samples. These experiments were performed in polypropylene microtiter plates (Costar, Cambridge, MA), which were centrifuged 15 min at 500 x g at 4°C.

THP-1 Cell TNF Production Assay

THP-1 cells were obtained from the American Tissue Culture Collection (Rockville, MD) and were maintained in REM medium 10 containing 10% fetal bovine serum, 2mM L-glutamine, 100 units penicillin and 100 μ g/ml streptomycin. Cells were passed at 2 x 105 cells/ml every 3 days. Responsiveness of THP-1 cells to LPS was induced by culturing the cells for 48 hours in REM medium containing 10% fetal calf serum, 2mM L-15 glutamine, 100 units penicillin, 100 μ g/ml of streptomycin and 100 nM PMA at 37°C in a humidified atmosphere with 5% Cells were cultured in 96-well flat-bottomed tissue culture plates at 1-2 x 105 cells per well in a final volume of 200 µl. After 48 hours, adherent cells were washed three 20 times with 200 μ l of medium without serum. To 180 μ l of medium without serum but with 0.5% HSA, LPS (10 μ l at 200 ng/ml) and/or BPI, LBP or other inventive proteins were added (10 μ l at 0-2 mg/ml) and the cells were cultured for an additional 4 hours. After 4 hours, supernatants were 25 transferred to a U-bottomed 96 well plate and the plate was centrifuged (500 x g, 12 min.) to pellet any cell debris. Supernatants were then stored in a second plate at -20°C until assayed for TNF by ELISA.

30 Mouse Serum Half-Life Assay

CD-1 mice weighing approximately 20 grams were injected with 0.1 ml of BPI, LBP, or inventive protein (at 1 mg/ml) at time zero. In heparinized (or later EDTA-containing) tubes, blood was collected from the retroorbital plexus from three

30

animals at each time point tested. A typical blood collection schedule was 5, 10, 15, 30, 45, 60, 90, 120, 240, and 360 minutes. The blood was centrifuged for about 10 min at 1000 x g and the supernatant plasma frozen on dry ice 5 until tested. Levels of BPI, LBP, or inventive protein in the plasma samples were determined by ELISA using the appropriate protein as the standard.

Mouse Endotoxin Challenge Assay

10 Female CD-1 mice were injected in the lateral tail vein with a LD₁₀₀ dose (25-35 mg/kg) of Salmonella abortus equi endotoxin, which was followed by an injection of BPI, inventive protein, or vehicle control into the opposite lateral tail vein at the indicated time. Protein injection 15 concentrations varied and provided doses of 0.5, 1 and 5 mg/kg. Use of vehicle control illustrated the effectiveness of the endotoxin challenge in the test animal. Animals were observed for mortality at 24, 48 and 72 hours.

20 BPI Reduction of LPS-Induced Cytokine Function and Mortality <u>in Rats</u>

The potential effect of NCY101 (BPI) against LPS-related cytokine formation and mortality was investigated in rats with either (a) hemorrhagic shock (bled to lower pressure to 25 30-35 mmHg mean arterial pressure for 90 minutes, followed by reinfusion of shed blood and an equal volume of Ringer's solution over 30 minutes), or (b) endotoxin shock (caused by 100µg LPS and 500mg D-galactosamine/kg). Treatment comprised 5mg BPI/kg i.v. for the BPI group, or 1ml saline i.v. for the control group.

BPI Activity Against N. meningitidis and N. gonorrhoeae BPI suppresses TNF release by human inflammatory cells in response to lipopolysaccharide (LPS) derived from a wide

range of Gram-negative bacterial species. In order to test the activity of BPI against Gram-negative lipooligosaccharide (LOS) from the pathogenic bacteria Neisseria meningitidis and N. qonorrhoeae, non-viable bacteria were 5 pre-treated with recombinant BPI and incubated with human whole blood for 4 hours at 37°C. Without BPI, meningitidis at 105 bacteria/ml stimulated the release of 2.93 \pm 0.53 ng/ml of TNF, while N. qonorrhoeae was a more potent stimulator of TNF release; 104 bacteria/ml induced 10 8.23 \pm 0.32 ng/ml of TNF. In both cases, $10\mu g/ml$ BPI completely inhibited TNF release. This indicates that BPI is able to bind and detoxify LOS of these organisms, as well as bind LPS. Thus, BPI may be useful as a therapeutic agent against LOS-mediated tissue damage associated with these 15 pathogenic <u>Neisseria</u> species.

To compare the relative LPS binding affinities of BPI, LBP and inventive proteins, these proteins were tested for their ability to compete with 10ng/ml biotinylated BPI for binding to LPS-20 coated microtiter plates as described supra. experiments, BPI inhibited biotinylated BPI binding to LPS in a concentration-dependent manner (Figure 8). Modest inhibition of biotinylated BPI-binding was observed using NCY102 (LBP) and NCY103, suggesting that BPI has either a higher affinity for LPS bound to a surface or that NCY102 and NCY103 bind to a different site on LPS. NCY104, which contains the N-terminal domain of BPI, competed with biotinylated BPI at similar concentrations as unlabeled BPI, suggesting a similar affinity and binding site.

30

Competition between either NCY118 or NCY103 with biotinylated BPI occurred at similar concentrations, giving overlapping curves (Figure 14, panel A) indicating that the two amino acid differences between these two molecules

[NCY118->NCY103: (I43->V) and (N206->D)] had no effect on affinity for immobilized LPS. NCY144 (an IgG chimera consisting of NCY118 linked to human IgG1 Fc constant region of the immunoglobulin molecule) does not have an altered ability to compete with biotinylated BPI (Figure 14, panel A). NCY114 and NCY115 showed LPS affinity very similar to that observed for BPI, suggesting that the region between amino acid residues 1-59 (or 1-134) probably plays a minimal role in LPS binding (Figure 14, panel B). Together with data showing the NCY104 competes effectively with BPI (Figure 8), these results indicate that amino acid residues 134-197 are important structural components of the high-affinity LPS-binding domain of BPI.

to 197 in LPS affinity was further demonstrated by the markedly reduced affinity of NCY139, a mutant in which all of the cationic amino acids of the BPI molecule are replaced with the corresponding amino acid residues found in LBP.

These changes resulted in a molecule with binding affinity for LPS which was more similar to that of LBP than BPI (Figure 14, panel C, and Figure 8). Amino acid residues 359 to 456 of BPI are not involved in LPS binding as demonstrated by the relative inability of NCY117 to displace biotinylated BPI from LPS (Figure 14, panel C). The apparent binding affinity of NCY117 for LPS is similar to that of LBP and NCY139, which affinity is approximately two orders of magnitude lower than the apparent affinity of BPI for LPS.

30

Thus, the domain of BPI which participates in binding to immobilized LPS is localized in the N-terminal half of the BPI molecule, since NCY104 has the greatest ability to displace native BPI from LPS coated onto microtiter plates. This domain of BPI has been more specifically localized to

48

a region between amino acid residues 134-199.

To test the relative abilities of BPI, LBP and inventive proteins to neutralize LPS <u>in vitro</u>, these proteins were tested for their ability to inhibit LPS in the chromogenic LAL assay (Figure 9 and Table 4). LPS was neutralized by the various proteins tested in the order of NCY105 ≥ BPI > NCY103 > NCY104 > NCY102. Several studies (shown as no. of tests) were carried out with different lots of each protein and the IC₅₀ values were determined. The IC₅₀ values were averaged and given in Table 4.

		Table 4				
LPS	Inhibition	in	the	Chromogenic	т.дт.	Assav

20	Product	I.C. ₅₀ (μg/ml)	No. of tests
25	NCY105	1.5	(n=1)
	BPI	5.2 <u>+</u> 3.3	(n=10)
30	NCY103	28.0 <u>+</u> 20.0	(n=4)
30	NCY104	40.0	(n=1)
_	NCY102	65.0 ± 31.0	(n=4)

35

15

These results demonstrate that BPI neutralizes LPS activity in the LAL assay at lower concentrations than LBP. NCY104, which contains the N-terminal domain of BPI, is a relatively poor inhibitor of LPS in the LAL assay. NCY103 was a more potent inhibitor than NCY102 (LBP) or NCY104. These results indicate that the N-terminal (LPS-binding) domain of BPI

- 1

49

alone does not account for the neutralizing activity of BPI in the LAL assay and that the C-terminal domain of BPI plays a very important role in endotoxin neutralization in the LAL assay.

5

Additional results of LPS neutralizing activity in the chromogenic LAE assay are shown in Table 5. NCY103, NCY114 and NCY115 share the C-terminal half of the BPI molecule, again indicating that this domain plays an important role in LPS-neutralizing activity. Also, these data indicate that the 199-456 region is most important in LPS neutralization since adding BPI amino acid residues between 136-456 or 60-456 did not improve LPS neutralizing activity. Together with the LPS binding data, these results further indicate that the C-terminal half of BPI is important for LPS neutralization, while the N-terminal sequence is more critical for LPS binding.

20

Table 5

LPS Inhibition in the Chromogenic LAL Assay

25				
	Protein	<u>.</u>	<u>IC50</u>	<u>n</u>
30		Lot# 149718 Lot# 149719 Lot# 149722 Lot# 149724	$\begin{array}{c} 1.95 \pm 0.51 \\ 1.57 \pm 1.01 \\ 1.69 \pm 0.35 \\ 1.70 \pm 0.28 \\ 1.41 \pm 0.45 \\ 1.95 \pm 0.92 \end{array}$	54 7 2 45
35	NCY102	Cumulative Lot# 151281 Lot# 151204	55.92 ± 30.53 34.33 ± 7.45 77.50 ± 24.45	8 6 2
40	NCY103	Lot# 151235 Lot# 151242 Lot# 151274	22.86 ± 16.28 25.50 ± 0.71 36.50 ± 2.12 3.46 ± 2.18 8.83 ± 4.91	2 2 38

	NCY104	Lot# 151246 Lot# 152658	$\begin{array}{c} 24.19 \pm 6.42 \\ 12.50 \pm 0.26 \\ 10.70 \\ 40.18 \pm 34.48 \end{array}$	9 3 1 4
5	NCY108	Cumulative Lot# 151285 Lot# 155709 Lot# 155779	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 2 3 2
1.0	NCY114	Lot# 155754	3.64 <u>+</u> 1.64	5
1 =	NCY115 NCY116	Lot# 155756 Lot# 155791	5.02 ± 3.11 14.00 ± 2.65	5 3
15	NCY117	Lot# 155733	>100	4
20	NCY118	Cumulative Lot# 155758 Lot# 159619	12.75 ± 3.54 10.25 ± 30.9 15.25 ± 5.91	12 8 4
	NCY138	Lot# 155785	1.97 ± 0.06	3
2.5	NCY139	Lot# 155762	29.60 ± 23.23	5
25	NCY140	Lot# 155788	7.87 ± 2.80	3
	NCY135	Lot# 159649	>100	3
30	NCY144	Lot# 155760	12.15 <u>+</u> 6.00	4
	NCY109		9.2	1
35	NCY108		10.1 ± 0.92	5
رد	NCY134	Lot# 159643	22.00 ± 15.25	4

NCY139, which contains the entire BPI sequence except for nine cationic residues between positions 148 and 197, showed very poor LPS-neutralizing activity, suggesting that these residues are important in LPS-neutralizing activity.

Similarly, this compound was relatively ineffective at LPS binding. These cationic residues may permit correct structural conformation of the molecule, since both NCY103 and NCY139 contain the C-terminal domain of BPI, yet NCY103

51

has potent neutralizing activity while NCY139 does not.

To determine the relative abilities of BPI and NCY103 to inhibit LPS binding to human peripheral blood monocytes, isolated human peripheral blood mononuclear cells were incubated with 10% human serum containing 500ng/ml FITC-conjugated E. coli 055:B5 LPS in the presence or absence of BPI or NCY103. Binding of FITC-LPS to monocytes could be inhibited by increasing concentrations of both BPI and NCY103 (Figure 10). Thus NCY103 has BPI-like binding activity, despite the fact that NCY103 contains the N-terminal domain of LBP. These data, along with the results of the LPS neutralization studies shown in Figure 9, suggest that the C-terminal domains of BPI and LBP, and not the N-terminal domains, determine whether the proteins inhibit or mediate LPS activation of cells.

Further studies were undertaken to determine the effects of BPI, LBP, NCY103 and NCY104 on FITC-labeled LPS binding to peripheral blood monocytes in the presence and absence of serum. In a serum-free FITC-labeled LPS binding system where no LBP is available, FITC-labeled LPS does not bind to cells. In contrast recombinant LBP facilitated LPS binding to cells at concentrations as low as 100ng/ml. NCY104 also facilitated binding, although to a lesser extent. Neither BPI or NCY103 promoted significant binding of LPS to cells. These data indicate that the C-terminal domain of LBP is active in LPS binding to cells. The N-terminal domain of BPI may exert an inhibitory influence on LPS binding to cells mediated by the C-terminal domain of LBP because NCY104 was less active than LBP.

Normal human serum contains about 1-10 μ g/ml LBP. In the presence of 10% autologous serum, BPI and NCY103 potently inhibited FITC LPS binding to monocytes, with BPI showing

PCT/US94/04709 WO 94/25476

10

52

slightly greater potency. NCY104 had marginal activity, and LBP had no effect (Figure 15, panel A). These data indicate that the C-terminal half of the BPI molecule neutralizing LPS in this test. NCY104, which does not 5 contain the C-terminal domain of BPI, is approximately two orders of magnitude less potent at blocking LPS binding in the presence of serum. LBP, as expected, had no effect. This demonstrated that BPI can intervene in the sepsis cascade by preventing LPS from binding to monocytes and causing release of TNFα.

To further identify the regions of BPI which contribute to LPS-neutralizing activity, and the domains of LBP which are responsible for transducing the LPS signal to cells, the abilities of inventive proteins to replace LBP were compared under serum-free conditions. In these experiments, cells of the promonocytic cell line THP-1 were induced to respond to LPS by culturing for 48 hours with phorbol ester. induction, cells were stimulated with 19ng/ml of LPS in the 20 presence or absence of the recombinant protein. system, no TNF is released without a source of LBP. from these experiments (Figure 16) show that only LBP and NCY117 stimulated TNF release. Thus the domain of LBP responsible for facilitating LPS-induced TNF release is 25 within amino acid residues 199-357. Interestingly, NCY104 did not mediate TNF release in a serum-free system. may indicate that the N-terminal domain of BPI binds too tightly to LPS to allow transfer of LPS to CD14 on the macrophage surface. Figure 17 shows an additional 30 comparison of TNF production. NCY135, containing LBP domain 274-456, shows great activity, narrowing the active domain to 274-357.

To test the effects of BPI, LBP, and inventive proteins on LPS activation of TNF production in whole blood, BPI,

53

NCY102, NCY103, or NCY104 was mixed with heparinized blood, and LPS was added to the resulting mixture. The blood was incubated for four hours at 37°C, and TNF in the plasma was measured as described, <u>supra</u>. Results are shown in Figure 11. NCY103 was the most potent at blocking TNF release, followed by BPI as the next most potent blocker. NCY104 and LBP had essentially no effect. Thus, in whole blood, NCY103 proved to be the most potent inhibitor of LPS-mediated cytokine stimulation.

10

When experiments were performed in citrated rather than heparinized whole blood, endotoxin-neutralizing activity of BPI and NCY103 were equivalent (Table 6). In experiments in which recombinant proteins were preincubated with endotoxin 15 before addition to whole blood, the activities of these compounds fell roughly into two groups. BPI, NCY103, NCY114, NCY115. and NCY118 possess LPS-neutralizing activity, while NCY104, NCY109 and NCY117 were relatively inactive. Results with NCY116, NCY139 and NCY144 were 20 equivocal. When compounds were added to the blood samples immediately prior to LPS, the IC50 values were higher, but the same group of proteins showed activity. further indicate the role of the BPI carboxy terminal, particularly amino acid residues 200-359, in LPS neutralization in a highly physiological environment such as whole blood. Because NCY109 is not a potent endotoxinneutralizing protein (see Tables 9 and 11), it can be concluded that the C-terminal domain of BPI significantly contribute to the endotoxin-neutralizing activity of NCY103 and NCY118. All compounds which contain 30 this sequence (200-359) are active except NCY139, which was also inactive in other assays, possibly because the replaced cationic amino acids help determine the correct structure of the molecule.

_	<u>Table 6</u>						
5		LPS Inhibit	tion_	<u>in Human N</u>	Whole Blood		
10	Protein	IC50 (ug/ml) preincubated	n		<pre>IC50 (ug/ml) not preinc.</pre>	n	
10	NCY118 NCY114	2.90 ± 3.59 $0.28 + 0.25$	12 3	NCY115 NCY103	2.60 ± 1.52 3.7 ± 1.60 7.13 ± 5.92 15 ± 18.58	5 2 4 2	
15	BPI NCY144 NCY104 NCY117	0.43 ± 0.49 18.00 ± 27.73 >100 >100	13 3 · 3	NCY118 NCY117 NCY139 NCY144	26.5 ± 0.71 >100 >100 >100	2 4 2 2 1 2 2	
20	NCY108 NCY109 NCY140 NCY138	$\begin{array}{c} 0.21 \pm 0.26 \\ 0.27 \pm 0.25 \end{array}$	2* 6 2 3 2	NCY104 NCY108 NCY109	ND 4.0 >100	1	
25	NCY134 NCY135	0.73 ± 0.48 2.0 5.27 ± 5.83 38.10 ± 53.64	6 1 3 3				

30 * Two additional values for NCY139 were >100.

A potent anti-endotoxin therapeutic should not only neutralize endotoxin, but should also have the capacity to clear endotoxin from the circulation. The circulating levels of radioactively labeled ¹²⁵I-BPI were measured in the mouse in the presence and absence of endotoxin (Table 7). In the absence of endotoxin, the elimination (alpha) phase for ¹²⁵I-BPI was less than two minutes. In the presence of LPS, the alpha phase was extended to 6.2 minutes. ¹²⁵I-LPS alone has a single phase distribution (beta) with a half-life of about 101 minutes. When ¹²⁵I-LPS and unlabeled BPI were administered, a 6.2 minute elimination (alpha) phase was observed, indicating that elimination was remarkably facilitated by BPI.

5

Table 7

Serum	Half-Life	of	BPI	and	LPS	in	the	Mouse
<u> </u>								

	Test Article	t1/2alpha	t1/2beta
10	¹²⁵ I-BPI ¹²⁵ I-BPI + LPS	1.6 6.3	103.0 72.0
	¹²⁵ I-LPS ¹²⁵ I-LPS + BPI	6.2	101.0 114.0

15

In order to determine whether the very short circulating half-life of BPI could be extended by molecular engineering, 20 the circulating half-lives of BPI, LBP, NCY104 and NCY103 were compared (Figure 12). Using labeled material, it was observed that the circulating half-life of BPI in the mouse This may result from the highly is remarkably short. cationic nature of BPI which gives it a predicted pI of LBP, normally present in the circulation at 25 concentrations of $10\mu g/ml$, has a predicted pI of about 6.8. As expected, NCY103 (LBP-BPI chimera lacking cationic residues) has a markedly longer circulating half-life than NCY104 (BPI-LBP chimera having cationic residues). Figure 30 12 shows that NCY103 indeed has a longer half-life than BPI. NCY104, with the N-terminal domain of BPI, had an even shorter half-life than that of BPI. Thus, the N-terminal domain of BPI appears to play a major role in its short circulating half-life.

35

Further pharmacokinetic studies were performed in which inventive proteins were administered to CD-1 mice at a 5mg/kg bolus dose. Results of these experiments are shown in Figure 18. At 5mg/kg, the circulating half life of NCY104 was similar to that of BPI. NCY103 and NCY118 had

overlapping elimination curves and persisted in circulation significantly longer than BPI or NCY104, but not as long as the serum protein LBP. Comparison of the elimination curves of NCY114, NCY115 and NCY139 revealed 5 that the N-terminus of LBP plays a role in extending circulating half-life. NCY114 circulates slightly longer than BPI and contains the least LBP sequence of any of the recombinant proteins tested (amino acid residues 1-59). NCY115 was cleared somewhat more slowly, indicating that LBP 10 amino acid residues 60-134 impart a longer circulating half-In contrast, the cationic residues of BPI between amino acid residues 134-199 shorten the half-life, since in NCY139, where the cationic residues in this region were replaced with the corresponding residues of LBP, the half-15 life was similar to that of NCY115. Including more LBP residues in the N-terminal domain further extends the half If amino acid residues 199-357 of LBP are added (NCY117) the half-life is longer, but not quite as long as that of LBP. Likewise NCY135 (with LBP domain 1-199 and 20 274-456 has a relatively long T_{ν} . These results indicate that the more "LBP-like" the molecule is, the longer it circulates. In addition, combining an Ig fragment F. with NCY103 gives the longest half life.

The efficacies of BPI, LBP, NCY103, NCY104 and NCY105 against lethal endotoxin challenge in mice were compared (Tables 8-10). The efficacies of NCY103, NCY118, NCY114, NCY115, NCY144, NCY116, NCY117, NCY139, NCY138 and NCY140 against lethal endotoxin challenge in mice were also compared (Table 11). When each protein was given within two minutes after lethal endotoxin challenge, BPI, NCY103 and NCY105 had similar potency, whereas LBP and NCY104 showed modest but incomplete protection and were not as effective as BPI. The partial protective effects of LBP and NCY104

may reflect species differences betweens humans and mice, since these agents do not block the inflammatory signal of LPS acting on human cells <u>in vitro</u> (Figure 11).

Table 8

<u>Mouse Endotoxin Challenge</u> <u>Comparison of BPI, NCY102 and NCY103</u>

10

5

	Drug	Dose of BPI or Variant	<pre>% Survival (n=10)</pre>
15	Control	0	0%
	BPI	5mg/kg 1mg/kg	60% 40%
20	NCY102	5mg/kg 1mg/kg	30% 20%
25	NCY103	5mg/kg 1mg/kg	60% 50%

Table 9

30

Mouse Endotoxin Challenge Comparison of BPI, NCY103 and NCY105

35	Drug	Dose of BPI or Variant	<pre>% Survival (n=10)</pre>
	Control	0	0%
40	BPI	5 mg/kg	80%
	NCY103	5 mg/kg	100%
	NCY105	5 mg/kg	90%
45			

ή

5	Table 10				
			Endotoxin Chal		
		Compari	son of BPI and	NCITO4	
10	Drug	<u>Dose of B</u> or Varian		% Survival (n=10)	
		. 0		40%	
15	BPI	10mg/kg 2 mg/kg 0.4mg/kg		100% 100% 70%	
20	NCY104	10mg/kg 2mg/kg 0.2mg/kg		60% 60% 50%	
~ =					
25					
30		Survival	Table 11	rollowing	
30		<u>Survivar</u> <u>Lethal</u>	Endotoxin Cha	llenge	
35			Panel A	- (
		Survivors/n	% Survival	p (vs. control)	
40	BPI NCY103 NCY118	40/50 17/20 16/20	80.00 85.00 80.00	< 0.001 < 0.001 < 0.001	
40	NCY114	13/20	65.00	< 0.001	
45	NCY115 NCY144 NCY117 NCY139	2/10	65.00 50.00 20.00 10.00	< 0.001 0.002 0.149 0.442	
	NCY116 NCY138 NCY140	0/10 9/10 6/10	0 90.00 60.00	< 0.001 < 0.05	
50	Control	1/30	3.30		

Panel B

5		Dose mg/kg	Survivors (n=20)	% urvival	p (vs. control)*
10	BPI	5 1 0.5	13 9 6	65 45 30	< 0.001 0.001 0.02
10	NCY103	5 1 0.5	18 12 9	90 60 45	<0.001 <0.001 0.001
15	NCY108	5 1 0.5	3 0 1	15 0 5:	ns ns ns

20 * Fisher's Exact Test

NCY103 was markedly more effective than BPI when given more than an hour before or after LPS (Figure 13). These results indicate that the longer circulating half-life of NCY103, or perhaps the increased ability of NCY103 to inhibit endotoxin in whole blood, has a dramatic effect on NCY103 efficacy in vivo.

30

Further experiments were performed to assess the LPS-neutralizing activities of inventive proteins in vivo. In these experiments, a lethal LPS challenge was administered at time zero, followed immediately by a 5mg/kg bolus injection of recombinant protein.

The potential effect of NCY101 (BPI) against LPS related cytokine formation and mortality was investigated in rats with either (a) hemorrhagic shock or (b) endotoxin shock.

40 The important role of endotoxin in hemorrhage (with endogenous LPS translocation from the gut), trauma and sepsis is well known. BPI binds LPS and inhibits LPS-

mediated neutrophil and monocyte stimulation. Similarly, recombinant BPI binds LPS and inhibits TNF formation <u>in</u> vitro.

5 The results of the investigation of BPI efficacy in rats with either (a) hemorrhagic shock or (b) endotoxin shock show that (a) in rats with hemorrhagic shock, the mortality was decreased from 5/10 (50% control group) to 2/10 (20% BPI group) at 48 hours; (b) in rats with endotoxin shock, the 5day mortality was significantly reduced (p = 0.055) by BPI treatment to 43%, as compared to 83% in the control group. Plasma LPS levels were at least partially neutralized at two hours $(5.9 \pm 4.1 \text{ vs } 10.8 \pm 4.1 \text{ng/ml})$. Cytokine formation was concomitantly reduced in the BPI group as measured by 15 plasma TNF levels at two hours (3.9 \pm 2.9 vs 10.3 \pm Liver Transaminases (GOT and GPT, whose elevation indicates hepatic dysfunction) and bilirubin still increased at eight hours; however, the increase was less with BPI. These data demonstrate that BPI might be a useful therapeutic agent against endotoxin-related disorders in 20 hemorrhagic and endotoxin shock.

Anesthetized male CD-1 mice were treated intra-nasally with 1 or 10µg of either BPI or NCY103 in 50µl. Control animals received 50µl of saline for injection. After 20 minutes, animals were re-anesthetized, and challenged with 10ng of E. coli O55:B5 LPS. One hour after endotoxin challenge, mice were re-anesthetized, and 0.7ml of saline containing 1% human serum albumin was added to the lungs via the trachea. The lungs were gently kneaded. A 0.5ml volume of BAL (bronchoalveolar lavage) fluid was aspirated, cells were pelleted by centrifugation, and the BAL sample was stored at -70°C. The TNF-alpha level in the BAL fluid was determined by ELISA (results shown in Figure 20).

PCT/US94/04709

Figure 20 shows that endotoxin-neutralizing proteins such as BPI and NCY103 can also neutralize endotoxin-mediated TNF release in the lung. These results indicate that these proteins are effective when delivered directly into the lung. This supports use in the treatment of pneumonias and other endotoxin-related disorders of the lung, such as ARDS.

10

25

CLAIMS

- A recombinant nucleic acid molecule which encodes a
 BPI variant.
 - The recombinant nucleic acid molecule of claim 1, wherein the BPI variant has the structure BPI_(S351->X), wherein X is alanine or an amino acid residue other than serine.
 - 3. A recombinant nucleic acid molecule which encodes an LBP variant.
- 15 4. A recombinant nucleic acid molecule which encodes an LBP-BPI chimera.
- 5. The recombinant nucleic acid molecule of claim 4, wherein the LBP-BPI chimera has the structure LBP $_{12}$ $_{197}$ BPI $_{200456}$.
 - 6. The recombinant nucleic acid molecule of claim 4, wherein the LBP-BPI chimera has the structure LBP₁.

 197(143->v)BPI_{200456(N206->D)}.
 - 7. A recombinant nucleic acid molecule which encodes a BPI-IgG chimera.
- 8. A recombinant nucleic acid molecule which encodes an LBP-IgG chimera.
 - 9. A recombinant nucleic acid molecule which encodes an LBP-BPI-IgG chimera.

63

10. The recombinant nucleic acid molecule of claims 1 through 9, wherein the nucleic acid molecule is a DNA molecule.

- 5 11. The polypeptide encoded by the recombinant nucleic acid molecule of claims 1 through 9.
 - 12. A vector comprising the recombinant nucleic acid molecule of claims 1 through 9.

10

- 13. A host vector system for the production of a BPI variant, which comprises the vector of claim 12 in a suitable host.
- 15 14. The host vector system of claim 13, wherein the suitable host is a bacterial or mammalian cell.
- 15. A method for producing a variant polypeptide, which comprises growing the host vector system of claim
 20 13 under conditions permitting the production of the variant polypeptide and recovering the variant polypeptide produced thereby.
- 16. A pharmaceutical composition, which comprises a therapeutically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera, and a pharmaceutically acceptable carrier.
- 30 17. A method of treating a subject suffering from an endotoxin-related disorder, which comprises administering to the subject a dose of the pharmaceutical composition of claim 16 effective to bind to LPS and thereby inhibit LPS-mediated stimulation of neutrophils and mononuclear cells,

į

so as to thereby treat the subject.

18. A method of preventing an endotoxin-related disorder in a subject, which comprises administering to the subject a prophylactically effective amount of a BPI variant, an LBP variant, an LBP-BPI chimera, a BPI-IgG chimera, an LBP-IgG chimera, or an LBP-BPI-IgG chimera.

Rabbii Human Human	Human Human	Rabbil			Rabbi		iluman		R.St.	Il uma a	Human	Rabbit			Human	R			il umen	#	liuman	Human	Rahhis	Human		Rathi		- T 131700 FT	Marrie	•	lluman	Human	3,5,7	1417	
137	1 AP .	1.89	1757.20	IAP.	1.88		1,49	- 71	æ	197 }	iar.	LBP		I AP h	- 4IL	481	;	=	- EF	H	1117	====	ij	127 7	117.	Ę				į	7 (B)	1117.	=	List'-a vs	3 ;
>>>				n, in					T		2	5 9				.			'n	-	-	0	*	4	: <	~	;	• >		-				VS =	
z z z	क्राच			. =			<			天	×	,		Ŧ	-	77		=	=	.	3	:	z	-	· *	7 :	=	: 7	2	ζ.				_	•
< < ~	> >			: ::::			7			Z	Z	Z		>	>	>		٤	٤	577	ú	· w	'n	-		₹.	•		, ,	>					
000		_		, ,			70				<			=	=	a	:	_	-	-	-	77	=	=	: =	~	;	: :	: :	:					
~ ~ ~		_		: <			-			~	~	~		_	_	-	:	-	-		=	. 5	=	v		^	:	• •		-					
2 Z =	z z			הי			>			-	-	77		0	9	J		z	z	z	•	: <	=	=	-	-		٠ ،	٠ -	-					
***	~ ~			, ,			=	=	z	>	>			~	~	4		-	-	=	U		~	2	2	*	:	• :	•	4					
< < < 2							-			_	-	_		4	4	•		Ti	Ŧì	-	•	: <	<	-		-	;			•					
		-	·				~	4	~	. и		4		-				=												-					
		- 5	2	٠ <	: <	ž	•	-	• }	# 0	0	a	2	<	<	Ė	25	Z	Z	4	5 0	9	۵	5		=	\$	4	٠.	7 8	;				
	zz			·			z				: ~			;				0								71	:	J :	5 :	5					
			_	4 4		l	x	Z	Ľ	~	: <			>	>	>		-	-	-	•		-	7	9 3	100	;		m :	*					
			2	. 2	: 2		z	z	Z	-		-		•	•	•		#	(T)	ø			-	,		· ;-	,	3	a	2					
	~ ~			< <	: <	:	_	-	_	2	: 7	Z		=	=	=		w	:	>	•		•		- :	-		- :	- :	-					
•			c			,	75	æ	77	_		-		>	>	>		7	=	*	•	• <	<	=	= =	; =	•	9 4	9 :	11)					
	9	7	,	, ,	· >	,	-	_	_	>	· >	>		-	4	4		Ŧī	Ŧ	~	7	2	=	•		• 0		٠	٠ ٠	≺					
	7 . 7)	٥	ø	ø	u	u	•		>	>	>		0	0	*				2	> >			> :	> :	>					•
	2 2	. T				,	۵	a	٥	_		-		٥	0	۵		=	*	æ			٠ <					>	> :	>					
	= =					,	u		-	•	: <	: >		x	K	E				<			-			, ,,			9						
	× ×	7	ĝ.		, ,	¥	<	<	<	¥ -	٠ -	. 4	3		_	-	8	-	_	_	3 (9 6	0	8,	• •	•	3	70	. n	m 8	\$ ·				
	- -			z 2			•					=				0		m						•	< •	-		3	a	a	٠	٠		5	
	> >	. >		4 -	• -)	•		•	5		,	l	<	<	<		w	u	•	:	0 0		•	• •	• •		-	- :	-	٠	•			-
	:0 (1	=				•	>	>	553				,	X	z	E		*	-	#		•	٠	6	3 6	۵		-	- :	_	٠	•			þ
	9 6		;	4 2	1 1	ı	•	•	Ø	•	3 6	0	ì	7	70	73		-	-	-	•					0			> :		•				
	45 4	75	•			•		~	_	-	٠ -	٠ -	!	×	*	Ħ		a	n	O	(0			- ;		3	3			
	• •	•	•	- ب	4 -	•	•	_	<	ŀ		. 1	ŀ	٥	٥	٥		77	(33)	*	(9 6	9						0 4		•	-			
			(9 6	9 6	•	×	Z	z	7	2	Z Z	:	100	.00	(27		I	K	٥			-			4 4			: س		•	•			
		•	. •	7	4 7	•	7	7	_	•	8 7	7	•			-				-									ns 		_	_			
	.		1			•	4	-	•			• •				7				(2)			+ -1			• •			_						
			ŝ	7	7	ď	•	•	-	욢.		-	· ŝ				8				•	< €		8	<u> </u>			_	_	- ; -	, J	_			
	* *	* #	•	•	•	•	٥	0		•	٠.	• -	•			~) -			. u			*					R	
	79 2	·		0 6	9 6	3	7	Z	Z	•	7	7 0	,			0							∢ ⊣ 			3 G		_	-		_				
	< •	¢ –		* ;	* *	•			_			, >				Ξ							- (A			» > » <		_	- -	_	-				
	Ø 4	0		< •	< 1	•			_			K 3				, 78				>															
	!- :			* ;					=			- 1								. =			ה ה			- =			7		_				
	≺ •	< ≺		< •			0					• -								. ~															
	0 (9 0		(4)	3 3 (5		-	•	•	•	•	• >	•	٠	•			~	~			-			- -			4	4	=	_		. <u>-</u>		
				- :		•	4	~	_	•	5 :	7 9	3	_	_	. –		_							Δ.	0.6	,	٥	G	۵	_				
	6	· -	_	7 1	,	,	. E	E	X	ا س			- - N	. =	_		ų	_	_		=	_ :		I	=				_	0	2 -				
						. 5	•		•	8	z :	2 2	- 1	ן ר	_		8	_	_		3	- ·			 	- f 1		_	_	49	٠.			È	
	0	9		6			-	•	_	•			-			_		_	~			_	- -	:	` =	~ ·		,	,	,	-				
				7 :	7		0	9	, 56		* 7							_				-		: 1	•	٠.	e	_	_	_			- -		
		I I					. >	>	>							•						_	 e =		*	, ,		•	-	*					
		7 (1)		0	0 (-	•		_		-	- ·	- •		• •		•	_	`	 			 	;	*	* ;		=	=	=				•	
	9	77		_ :	- (-	-<	. ⋖	. <		-	- ·	-, ·		•			_				I	 E -		•	.	•	<	ě	71	,	, ,			
	75	7 T		T	- TT	-	-		. ~		-									4 -		.	- 10 11	,	TI	- 11 -	π	a	=	=					
	-	 		Z '	z :	z			. –		_		•			, ~				n 🕰		٥	٠	,	73	71 :	-	,	=	,		-			
	T	- C		>	-	<	1	, 4	. •		-	_		-							3	,			*	,		\$	ລ	>			; -		
	.~	<		771	70	.TT				ب	_	_									₹ ¥	_	o -	, =	_		- =	,	*	٥	¥ :		- 1		
	G		ž	-	_	- }	8 "		. "	8	•	•	• 8	3 =	. :	. .	- 8	5 5	•	, ,	#	•	- •	- 5	•		•				_				

FIGURE 1A

FIGURE 1B

INDIVIDUAL SEQUENCE DIFFERENCES (LBP-A vs. LBP-B)

Nucle	ic Acid	Protein								
Alpha	Beta	Alpha	Beta							
A ₄₂	C ₄₂	·								
C ₃₁₈	T ₃₁₈									
G ₄₈₈ (np)	(np) C499	154GYCL157	154VTAS ₁₅₇							
T ₅₄₆	C ₅₄₆									
C ₅₄₈	T ₅₄₈	S ₁₇₄	L ₁₇₄							
(np)	824TCATGAGCCTTC835	A ₂₆₆	266VMSLP270							
C ₁₃₃₃	T ₁₃₃₃	L436	F ₄₃₆							

(np) = not present in the sequence

Figure 2

FIGURE 3A

		-																
BPI	CDNA																	
	1	CAG	GCC	TTG	AGG	TTT	TGG	CAG	CTC	TGG	AGG	ATG <u>Met</u>	AGA PIA	GAG <u>Glu</u>	AAC <u>Asn</u>	ATG <u>Met</u>	GCC <u>Ala</u>	48 6
	49 7	AGG <u>Arg</u>	GGC Gly	CCT Pro	TGC Cys	aac Asn	GCG <u>Ala</u>	CCG Pro	AGA ATG	TGG Trd	GTG <u>Val</u>	TCC <u>Ser</u>	CTG <u>Leu</u>	ATG <u>Met</u>	GTG <u>Val</u>	CTC <u>Leu</u>	GTC <u>Val</u>	96 22
	97 23	GCC Ala	ATA Ile	GGC Gly	ACC Thr	GCC <u>Ala</u>	GTG <u>Val</u>	aca Thr	GCG <u>Ala</u>	GCC Ala	GTC Val	AAC Asn	CCT Pro	GGC Gly	GTC Val	GTG Val	GTC Val	144 38
1	45 39	AGG Arg	ATC Ile	TCC Ser	CAG Gln	AAG Lys	GGC Gly	CTG Leu	GAC Asp	TAC Tyr	GCC Ala	AGC Ser	CAG Gln	CAG Gln	GGG Gly	ACG Thr	GCC Ala	192 54
_	93 55	GCT Ala	CTG Leu	CAG Gln	AAG Lys	GAG Glu	CTG Leu	AAG Lys	AGG Arg	ATC Ile	AAG Lys	ATT Ile	CCT Pro	GAC Asp	TAC Tyr	TCA Ser	GAC Asp	240 70
	241 71	AGC Ser	TTT Phe	AAG Lys	ATC Ile	AAG Lys	CAT His	CTT Leu	GGG	AAG Lys	GGG Gly	CAT His	TAT Tyr	AGC Ser	TTC Phe	TAC Tyr	AGC Ser	288 86
	289 87	ATG Met	GAC Asp	ATC Ile	CGT Arg	GAA Glu	TTC Phe	CAG Gln	CTT Leu	CCC Pro	AGT Ser	TCC Ser	CAG Gln	ATA Ile	AGC Ser	ATG Met	GTG Val	336 102
-	337 L03	CCC Pro	AAT Asn	GTG Val	GGC Gly	CTT Leu	AAG Lys	TTC Phe	TCC Ser	ATC Ile	AGC Ser	AAC Asn	GCC Ala	AAT Asn	ATC Ile	AAG Lys	ATC Ile	384 118
	385 L19	AGC Sei	GGG Gly	AAA Lys	TGG Trp	AAG Lys	GCA Ala	CAA Gln	AAG Lys	AGA Arg	TTC Phe	TTA Leu	AAA Lys	ATG Met	AGC Ser	GGC Gly	TAA Asn	432 134
	133 135	TTT Phe	GAC Asp	CTG Leu	AGC Ser	ATA Ile	G AA Glu	GGC Gly	ATG Met	TCC Ser	ATT Ile	TCG Ser	GCT Ala	GAT Asp	CTG Leu	AAG Lys	CTG Leu	480 150
	81 151	GGC Gly	AGT Ser	AAC Asn	CCC Pro	ACG Thr	TCA Ser	GGC Gly	aag Lys	CCC Pro	ACC Thr	ATC Ile	ACC Thr	TGC Cys	TCC Ser	AGC Ser	TGC Cys	528 166
	529 167	AGC Ser	AGC Ser	CAC His	ATC Ile	AAC Asn	AGT Ser	GTC Val	CAC His	GTG Val	CAC His	ATC Ile	TCA Ser	AAG Lys	AGC Ser	AAA Lys	GTC Val	576 182
	577 183	GGG Gly	TGG Trp	CTG Leu	ATC Ile	CAA Gln	CTC Leu	TTC Phe	CAC His	AAA Lys	aaa Lys	ATT	GAG Glu	TCT Ser	GCG Ala	CTT Leu	CGA Arg	624 198
	625 199	AAC Asn	AAG Lys	ATG Met	AAC	AGC Ser	CAG Gln	GTC Val	TGC Cys	GAG Glu	AAA Lys	GTG Val	ACC Thr	AAT Asn	TCT Ser	GTA Val	TCC Ser	672 214
	673 215	TCC Ser	AAG Lys	CTG	CAA Gln	CCT	TAT Tyr	TTC Phe	CAG Gln	ACT Thr	CTG Leu	CCA Pro	GTA Val	ATG Met	ACC Thr	AAA Lys	ATA Ile	720 230
	721 231	GAT	TCT Ser	GTG Val	GCT Ala	GGA Gly	ATC Ile	AAC Asn	TAT Tyr	GGT Gly	CTG	GTG Val	GCA Ala	CCT Pro	CCA Pro	GCA Ala	ACC Thr	768 246
	769 247	ACG	GCT	GAG Glu	ACC	CTG Leu	GAT Asp	GTA Val	CAG Gln	ATG Met	AAG Lys	GGG Gly	GAG Glu	TTT	TAC Tyr	AGT Ser	GAG Glu	816 262
	817 263	AAC	CAC His	CAC	AAT Asii	CCA PTO	CCT	CCC	TTT	GCT Ala	CCA Pro	CCA Pro	GTG Val	ATG Met	GAG Glu	TTT	CCC Pro	864 278
	865 279	GCT Ala	GCC Ala	CAT	GAC	CGC	ATG Met	GTA Val	TAC	CTG	GCC	CTC	TCA Ser	GAC Asp	TAC	TTC	TTC Phe	912 294
	913 295						CM3	The C	C22	GAG	CCT	ccc	GTC	TTG	λλG	ATG	ACC	960 310
	961 311						2 (747)		336	GAG	TCC	111	TTI	CGA	CTG) ACA	ACC	1008 326
																	AAC	1056

FIGURE 3B

													_		_		
327					Thr												342
1057	ATG	λλG	ATA	CAG	ATC	CAT	GTC	TCA	GCC	TCC	ACC	CCG	CCA	CAC	CTG	TCT	1104 358
343	Met	Lys	Ile	Gln	Ile	Hls	Agt	Ser	Ala	Ser	THE	FIG	PLO	1112			
1105	GTG	CAG	CCC	ACC	GGC Gly	CIT	ACC	TTC	TAC	CCT	GCC	GTG Val	GAT	GTC Val	CAG Gln	GCC	1152 374
359	Val	Gln	Pro	Thr	GIĀ	Leu	THE	PHE	TYT						.		1200
1153	CTT	GCC	GTC	CTC	CCC Pro	AAC	TCC	TCC	CTG	GCT Ala	TCC	Leu	Phe	Leu	Ile	Gly	390
375																	1248
1201	ATG	CAC	ACX	ACT	GGT Gly	TCC	ATG	GAG- Glu	Val	AGC	Ala	Glu	Ser	Asn	Arg	Leu	406
391																	1296
1249	GTT	GGA	GAG	CTC	AAG Lys	CTG	GAT	AGG	Leu	Lou	Leu	Glu	Leu	Lys	His	TCA Ser	422
407																TAC	1344
1297 423	AAT Asd	ATT	GGC	Pro	Phe	Pro	Val	Glu	Leu	Leu	Gln	yeb	Ile	Met	Asn	Tyr	438
1345	አ ጥጥ	GT)	ccc	ATT	CTT	GTG	CTG	CCC	AGG	GTT	AAC	GAG	XXX	CTA	CAG	AAA	1392
439	Ile	Val	Pro	Ile	Leu	Val	Leu	PTO	vid	AST	Amii	GIU	ny -		44	-,-	454
1393	GGC	TTC	CCT	CTC	CCG	ACG	CCG	GÇC	λGλ	GTC	CAG	CTC	TAC	AAC	GTA	GTG Val	1440 470
455	Gly	Phe	Pro	Leu	Pro	Thr	PTO	VTG	Arg	AGI	9411		-1-				
1441	CTT	CAG	CCT	CAC	CAG	AAC	TTC	CIG	CIG	TTC	GGT	GCA	GAC	GTI	GTC Val	TAT	1488 486
471	Leu	Gln	Pro	His	Gin	ASD	rne	Leu	Led	LIIA	GI	~~					
1489	λλλ	TGA	AGG	CAC	CAG	GGG	TGC	CGG	GGG	CTG	TCA	GCC	GCA	CCI	GTT	CCT	488
487		***															1584
1537																CAG	
1585	ATC	TTA	ACC	AAG	AGC	ccc	TTG	CAA	ACT	TCT	TCG	ACT	CAG	ATT	CAG	λλλ	1632
																GTG	
1633	TGA	ICI							. mes	»CC	الم		GCT	· GCJ	GAG	. ATA	1728
1681																ATA	
1729	TTT	CCI	CCA	GGJ	ATC	GTG	TII	CY	TTG	TAA	CCI) AGA	IAK 1	TT	CAT	TTG	
			3.000				TTC	TGG	TT	TI	TC	TGI	. G				1813

FIGURE 4A

Human LBP Expression clone

				•													
1	GCT Nhe		CCA	CTG	CAC	TGG	GAA	TCT	AGG	ATG Met	GGG Gly	GCC Ala	TTG Leu	GCÇ Ala	AGA Arg	GCC Ala	48 7
49 8	CTG Leu	CCG Pro	TCC Ser	ATA Ile	CTG Leu	CTG Leu	GCA Ala	TTG Leu	CTG Leu	CTT Leu	ACG Thr	TCC Ser	ACC Thr	CCA Pro	GAG Glu	GCT Ala	96 23
97 24	CTG Leu	GGT Gly	GCC Ala	AAC Asn	CCC Pro	GGC Gly	TTG Leu	GTC Val	GCC Ala	agg Arg	ATC Ile	ACC Thr	GAC As p	AAG Lys	GGA Gly	CTG Leu	144 39
145 40	CAG Gln	TAT Tyr	GCG Ala	GCC Ala	CAG Gln	G AG Glu	gjå GCG	CTA Leu	TTG Leu	GCT Ala	CTG Leu	CAG Gln	AGT Ser	GAG Glu	CTG Leu	CTC Leu	192 55
193 56	AGG Arg	ATC Ile	ACG Thr	CTG Leu	CCT Pro	GAC Asp	TTC Phe	ACC Thr	gj y GGG	gac Asp	TTG Leu	agg arg	ATC Ile	CCC Pro	CAC His	GTC Val	240 71
241 72	GGC Gly	CGT Arg	GGG Gly	CGC Arg	TAT Tyr	GAG Glu	TTC Phe	CAC His	AGC Ser	CTG Leu	aac asn	ATC Ile	CAC His	AGC Ser	TGT Cys	G A G Glu	288 87
289 88	CTG Leu	CTT Leu	CAC His	TCT Ser	GCG Ala	CTG Leu	AGG Arg	CCT Pro	GTC Val	CCI Pro	GGC Gly	CAG Gln	GGC Gly	CTG Leu	AGT Ser	CTC Leu	336 103
337 104	AGC Ser	ATC Ile	TCC Ser	GAC Asp	TCC Ser	TCC Ser	ATC Ile	CGG Arg	GTC Val	CAG Gln	GGC Gly	AGG Arg	TGG Trp	AAG Lys	GTG Val	CGC Arg	384 119
385 120	AAG Lys	TCA Ser	TTC Phe	TTC Phe	AAA Lys	CTA Leu	CAG Gln	GGC	TCC Ser	TTT Phe	GAT Asp	GTC Val	AGT Ser	GTC Val	AAG Lys	GGC	432 135
433 136	ATC Ile	AGC Ser	ATT Ile	TCG Ser	GTC Val	AAC Asn	CTC Leu	CTG Leu	TTG Leu	GGC Gly	AGC Ser	GAG Glu	TCC Ser	TCC Ser	GJ Y	AGG Arg	480 151
481 152	CCC	ACA Thr	YAI GII	ACI The	occ Na	TCC Ser	AGC Ser	TGC Cys	AGC Ser	AGT Ser	GAC Asp	ATC	GCT Ala	GAC Asp	GTG Val	GAG Glu	528 167
529 168	GTG Val	GAC Asp	ATG Met	TCG Ser	GGA Gly	GA <u>C</u> Asp	TIG Phe	GGG Gly	TGG Trp	CT <u>e</u> Leu	TTG	AAC Asn	CTC	TTC Phe	CAC	AAC Asn	576 183
577 184	CAG Gln	ATT Ile	G AG Glu	TCC Ser	AAG Lys	TTC Phe	CAG Gln	AAA Lys	GTA Val	CTG Leu	GAG Glu	AGC Ser	AGG Arg	ATT	Cys	GAA Glu	624 199
625 200	ATG Met	ATC Ile	CAG Gln	AAA Lys	TC <u>Q</u> Ser	GTG Val	TCC Ser	TCC	GAT Asp	CTA Leu	CAG	Pro	TAT	Leu	Gln	ACT	672 215
673 216	CTG Leu	CCA Pro	GTT Val	ACA Thr	ACA Thr	G A G Glu	ATT Ile	GAC Asp	AGT Ser	TTC	GCC	GAC Asp	ATT	GAT Asp	TAT	AGC Ser	720 231
721 232	Leu	Val	Glu	Ala	Pro	Arg	VTS	Thr	VIG	GTU	- NAC	. Let	. 414			Phe	768 247
	Lys	Gly	Glu	Ile	Phe	H1s	Arg	ASD	HIS	Arg	361	PLC	, ,,,			Leu	816 263
817 264	Ala	YIS	AT	, AC		TARK	Z	GIU	424	***		1-			_	TTT	864 279
865 280	GCC Ala	ATC	TCG Ser	GAT Asp	TAT Tyr	GTC Val	TTC Phe	AAC Asn	ACG Thr	WJ9	AGC Ser	Let	GTT Val	TAT	CAT His	GAG Glu	
913 2 96	GAA Glu	GGA	TAT	CTG	AAC	TTC	TCC	ATC Ile	ACA	GAT Asp	GAC	ATC Met	ATA	Pro	Pr) GAC	960 3 <u>1</u> 1
961 312									-	TT	CGI	CCC	TTC	GT	cci	CGG Arg	1008 127

FIGURE 4B

1009	TTA	GCC	AGG	CTC	TAC	CCC	AAC	ATG	AAC	CTG	GAA	CTC	CAG	GGA	TCA	GTG	1056
328	Leu	Ala	Arg	Leu	Tyr	Pro	Asn	Met	Asn	Leu	Glu	Leu	Gln	Gly	Ser	Val	343
1057 344	Pro	Ser	Ala	Pro	Leu	Leu	Asn	Pne	Ser	Pro	GIY	ASII	CTG Leu	Jer	101	73b	1104 359
1105	CCC	TAT	ATG	GAG	ATA	GAT	GCC	TTT	GTG	CTC	CTG	CCC	AGC	TCC	AGC	AAG	1152
360	Pro	Tyr	Met	Glu	Ile	Asp	Ala	Phe	Val	Leu	Lau	Pro	Ser	Ser	Sei	Lys	375
1153	GAG	CCT	GTC	TTC	CGG	CTC	AGT	GTG	GCC	ACT	aat	GTG	TCC	GCC	ACC	TTG	1200
376	Glu	Pro	Val	Phe	Arg	Leu	Ser	Val	Ala	Thr	asn	Val	Ser	Ala	Thr	Leu	391
1201	ACC	TTC	AAT	ACC	AGC	AAG	ATC	ACT	GGG	TTC	CTG	AAG	CCA	GGA	AAG	GTA	1248
392	Thr	Phe	Asn	Thr	Ser	Lys	Ile	Thr	Gly	Phe	Leu	Lys	Pro	Gly	Lys	Val	407
1249	AAA	GTG	GAA	CTG	AAA	GAA	TCC	AAA	GTT	GGA	CTA	TTC	aat	GCA	GAG	CTG	1296
408	Lys	Val	Glu	Leu	Lys	Glu	Ser	Lys	Val	Gly		Phe	asn	Ala	Glu	Leu	423
1297	TTG	GAA	GCG	CTC	CTC	AAC	TAT	TAC	ATC	CTT	AAC	ACC	TTC	TAC	CCC	AAG	1344
424	Leu	Glu	Ala	Leu	Leu	Asn	Tyr	Tyr	Ile	Leu	Asn	Thr	Phe	Tyr	Pro	Lys	439
1345	TTC	AAT	GAT	AAG	TTG	GCC	GAA	GGC	TTC	CCC	CTT	CCT	CTG	CTG	AAG	CGT	1392
440	Phe	Asn	Asp	Lys	Leu	Ala	Glu	Gly	Phe	Pro	Leu	Pro		Leu	Lys	Arg	455
1393	GTT	CAG	CTC	TAC	GAC	CTT	GGG	CTG	CAG	ATC	CAT	AAG	GAC	TTC	CTG	TTC	1440
456	Val	Gln	Leu	Tyr	Asp	Leu	Gly		Gln	11e	His	Lys	Asp	Phe	Leu	Phe	471
1441 472	TTG Leu	GGT Gly	GCC Ala	aat asn	GTC Val	CAA Gln	TAC Tyr	ATG Not	λGλ λrg	GTT Val	TGA	GGA	CAA	GAA	AGA	TGA	1488 482
1489	AGC	TTG	CTC	GRG OI													1500

```
8 00x=0 g- -- x-
                                ***
                               - 55 2 2 5
                       ***
                                -X--- ---X-
                       < 0 × Z
                       >><<-
                                         • - - - - •
                               • > > > > •
                       3 3 3 3 ·
                                z \circ x =
                       N * * * - 4 O < N N - 8 + 7 7 7 7 7 7
  . 5555. . - - - - .
                               - 6 0 = 0
                       ****
         - 2 C C C Z
                               • 0000.
                                          < 0 0 0 -
                       ≻ o z o
                       < 0 < < -
                                 F < 0 0 -
                    -- 02ZQ
                       5 x x x --
                               ------
                               -- * * * * *
                                          ♡∑∠>
                               • 5556
         • 00000•
                    • 0000•
         • - - - - - - •
                               - 0 0 - <
                    - 00>×
                                 . . . . . .
                               _ _ _ _ _ _ _ _
         -----
         • 0 0 0 0 0 •
                       コンソー
                       2-年5600-2-
           ××000- -
                       F < 00 -
         • < < < < < •
                                 = Z O U
                      8 0 8 8 S --
                               ->><<-
         • 0 0 0 0 0 •
                     - 4 4 4 7 7
                                 → X --
        --->
                                 ->----
                      # > # > #
                                - w w z z -
                                           mooo-
                                 Z 0 0 0 -
                      日外日39-
                    • > > > > •
                                 7 O v O
                      187
187
187
187
187
                                 4 E E
                                           # F F
Rebbit
"uman
Juman
Bovine
           Mouse
Rabbit
Human
Human
Bovine
                      Mouse
Rathit
Uuman
Uuman
Bovine
Mouse
Rabbit
Human
Bovine
```

FIGURE 5A

250 - = = = = . 600 - - - - - - -

£ · ν ν ν ν · β · π π π ν · β · α α α α ·

```
- x x z z -
 - Z Z Z -
         • - - - •
                 . . . . . .
• ×××ו
                -- ∑ ∑ > --
         - Q Q 3 3 →
  0 - 4 -
                 < - × × -
                  ⊞ △ ≻ −
                        -->>----
                 · B > E L . O X L L -
         • ZZZZ•
                  _ s ⊢ a
          \Xi \propto \times \succ
                  m o ⊢ s
- N N F F - - N N O X
                         . 0000.
                 - Z Z v F
                  > -- -- --
                  ⋈ < ₽ ₽ --
          9844
                         -- -- -- s s --
                  Z 2 0 0 -
                         -- X X 111 X
  0 m 0 0 - - I I O O -
⊢ ທ ທ ≩
         - < > > > -
                         ------
                 - 0 0 > -
                         - F F 🖴 >
                 - 8 8 6 6 -
                         -- > > 0 -
                 • ZZZZ•
                 -- Z Z Z &
0 ខ 0 គ
          ∞ < ∪ ∪ −
                         ----
                 . . . . . .
                                 - 8 6 6 6 -
                                          E E E E
                                  18 F
          12 A E E
                  温温度
                                          1111
                                  Rebbt
                          Pabeti
Eman
Evine
  111
```

FIGURE 5B

Figure 6

	10	20	30	40	50	60	
N-	MGALARALPS	ILLALLLTST	PEALGANPGL	VARITDKGLQ	YAAQEGLLAL	QSELLRITLP	
••	70	80	90	100	110	120	
	DFTGDLRIPH	VGRGRYEFHS	LNIHSCELLH	SALRPVPGQG	LSLSISDSSI	RVQGRWKVRK	
	130	140	150	160	170	180	
	SFFKLOGSFD	VSVKGISISV	NLLLGSESSG	RPTVTASSCS	SDIADVEVDM	SGDLGWLLNL	
	190	200	210	220	25/30 230	240	
	FHNOIESKFO	KVLESRICEM	IQKSVSSDLQ	PYLQTLPVTT	EIDSVAGINY	GLVAPPATTA	
	250	260	270	280	290	300	
	ETLDVOMKGE	FYSENHHNPP	PFAPPVMEFP	AAHDRMVYLG	LSDYFFNTAG	LVYQEAGVLK	
	310	320	330	340	350	360	
	MTLRDDMIPK	ESKFRLTTKF	FGTFLPEVAK	KPPNMKIQIH	VSASTPPHLS	VQPTGLTFYP	
	370	380	390	400	410	420	
	AVDVOALAVL	PNSSLASLFL	IGMHTTGSME	VSAESNRLVG	ELKLDRLLLE	LKHSNIGPFP	
	430	440	450	460	470	479	
	VELLODIMNY	IVPILVLPRV	NEKLOKGFPL	PTPARVQLYN	VVLQPHQNFL	LFGADVVYK*	-C

FIGURE 7A

Human IgG1 cDNA CAC AAG ATC ATG AAA CAC CTG TGG TTC CTC CTC TGG TGT CAG CTC His Lys Ile Met Lys His Leu Trp Phe Leu Leu Leu Trp Cys Gln Leu CCA GAT GTG AGG GTC CTG TCC CAG GTG CAG CTA CAG CAG TGG GGC GCA Pro Asp Val Arg Val Leu Ser Gln Val Gln Leu Gln Gln Trp Gly Ala GGA CTG GTG AAG CCT TCG GAG ACC CTG TCC CTC ACC TGC GCT GTC TTT Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Ala Val Phe GGT GGG TCC TTC AGT GGT TAC TAC TGG AGC TGG ATC CGC CAG CCC CCA Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser Trp Ile Arg Gln Pro Pro GGA AGG GGA CTG GAG TGG ATT GGA GAA ATC AAT CAT AGT GGA AGC ACC Gly Arg Gly Leu Glu Trp Ile Gly Glu Ile Asn His Ser Gly Ser Thr AAT TAC AAA ACG TCC CTC AAG AGT CGA GTC ACC ATA TCT TTA GAC ACG ASN Tyr Lys Thr Ser Leu Lys Ser Arg Val Thr Ile Ser Leu Asp Thr TCC AAG AAC CTG TTC TCC CTG AAG CTG AGC TCT GTG ACC GCC GCG GAC Ser Lys Asn Leu Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp ACG GCT GTG TAT TAC TGT GCG AGG GGC CTC CTC CGG GGG GGC TGG AAC Thr Ala Val Tyr Tyr Cys Ala Arg Gly Leu Leu Arg Gly Gly Trp Asn GAC GTG GAC TAC TAT GGT ATG GAC GTC TGG GGC CAA GGG ACC ACG ASP Val Asp Tyr Tyr Tyr Gly Het Asp Val Trp Gly Gln Gly Thr Thr GTC ACC GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG GTC TTC CCC CTG Val Thr Val Ber Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG GGC TGC Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser TTG GGC ACC CAG ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn ACC ANG GTG GAC ANG ANA GCA GAG CCC ANA TCT TGT GAC ANA ACT CAC Thr Lys Val Asp Lys Lys Ala Glu Pro Lys Ser Cys Asp Lys Thr His ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Het Ile Ser Arg Thr CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT GAG Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC AAG Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGG GTG GTC AGC Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser 1009 GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG

FIGURE 7B

337	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	1352
1057 353						AAA Lys											1104 368
1105 3 69						CAG Gln											1152 384
1153 385						CTG Leu											1200 400
1201 401						CCC Pro											1248 416
1249 417						AAC Asn											1296 432
1297 433						CTC Leu											1344 448
1345 449						GTC Val											1392 464
1393 465						CAG Gln											1437 479

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

E

Figure 13

FIGURE 14

FIGURE 15

FIGURE 16

1

FIGURE 17

LPS-Mediated TNF Production in THP-1 Cells Cultured Without Serum

FIGURE 18A

FIGURE 18B

ß

time (min)

4

26/30

U

28/30

FIGURE 18F

Œ

je/m

FIGURE 19

Lane #
1 2 3 4 5 6 7 8 9 10 11 12

30/30

FIGURE 20

4

INTERNATIONAL SEARCE REPORT

International application No. PCT/US94/04709

	ASSIFICATION OF SUBJECT MATTER						
IPC(5)	: CO7H 15/12; C12P 21/06; A61K 39/00; C07F : 536/27; 435/69.1, 69.3; 424/88; 530/350; 514/	3/00; A61K 37/00)				
According	to International Patent Classification (IPC) or to b	'Z oth national classific	cation and IPC				
	LDS SEARCHED						
	documentation searched (classification system follo	wed by classification	a evenhala)				
	536/27; 435/69.1, 69.3; 424/88; 530/350; 514/2	woo by classification	ii symoois)				
Documenta	tion searched other than minimum documentation to	the extent that such	documents are include	d in the fields searched			
	data base consulted during the international search see Extra Sheet.	(name of data base	and, where practicable	e, scarch terms used)			
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT			·			
Category*	Citation of document, with indication, where	appropriate, of the	relevant passages	Relevant to claim No.			
X	Biochemical and Biophysical Follows 179, No.1, issued 30 "Complementary DNA Sequence Lipopolysaccharide Binding Prote Abstract, pages 170 and 171.	August 1991, Larrick et al of Rabbit CAP18A Unique					
Υ	Journal of Experimental Medic September 1991, Ooi et a Properties of the 25 kD N-Term Isolated 30 kD C-Terminal Fragm Bactericidal/Permeability-increasi Neutrophils", pages 649-655, se	in-neutralizing and a Newly	1, 2, 4-9, 16-18				
X Furthe	er documents are listed in the continuation of Box	с П ₆					
	rial categories of cited documents:		atent family annex.				
	uncut defining the general state of the art which is not considered	date and n	ot in conflict with the applicat	national filing date or priority ion but cited to understand the			
to be	of particular relevance		or theory underlying the inver	ł.			
	er document published on or after the international filing date	* considered	l novel or cannot be considere	claimed invention cannot be ad to involve an inventive step			
cited	ment which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other		document is taken alone				
	al reason (as specified) ment referring to an oral disclosure, use, exhibition or other	considered	to involve an inventive a	claimed invention cannot be tep when the document is			
mean		peint opni comprises	with one or more other such one to a person skilled in the	documents, such combination art			
docu the p	ment published prior to the international filing date but later than riority date claimed	*& * document	member of the same patent fa	umily			
ate of the ac	ctual completion of the international search	Date of mailing of	f the international sear	ch report			
02 AUGUS	T 1994		L1 1994	·			
ame and ma	iling address of the ISA/US	Authorized officer					
Commissione Box PCT	r of Patents and Trademarks	i d	Jew Ward	un bon			
Washington, I		H.F. Sidberry		[
esimile No.	(703) 305-3230	Telephone No.	<u>(703) 98-0196</u>				

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/04709

Category*	Citation of document, with indication, where appropriate, of the relevant pas	sages	Relevant to claim No
Y	The Journal of Biological Chemistry, Vol. 264, No. 16, issu June 1989, Gray et al, "Cloning of the cDNA of a Human Neutrophil Bactericidal Protein", pages 9505-9509, see page 9505, 9508, 9509.	1,2, 5-9	
1			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/04709

B FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):	
CAS, MEDLINE, TOXLINE, DIALOG scarch terms: bactericidal/permeability increasing protein, chimera?, variant?	
· · · · · · · · · · · · · · · · · · ·	
	i
·	
	i
•	
·	
4	