S2POR_EL1, Stage 2 Permission Overlay Register (EL1)

The S2POR EL1 characteristics are:

Purpose

Stage 2 Permission Overlay Register for EL1&0 translation regime.

Configuration

This register is present only when FEAT_S2POE is implemented. Otherwise, direct accesses to S2POR EL1 are undefined.

Attributes

S2POR EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

	Perm15	Perm14	Perm13	Perm12	Perm11	Perm10	Perm9	Perr	m8	
	Perm7	Perm6	Perm5	Perm4	Perm3	Perm2	Perm1	Perr	m0	Ì
,	31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2	1 0	

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Configures stage 2 Overlay Permissions.

Perm <m></m>	Meaning
000000	No Access.
0b0001	Reserved - treated as No
	Access.
0b0010	MRO.
0b0011	MRO-TL1.
0b0100	WO.
0b0101	Reserved - treated as No
	Access.
0b0110	MRO-TL0.
0b0111	MRO-TL01.
0b1000	RO.
0b1001	RO+uX.
0b1010	RO+pX.

0b1011	RO+puX.	
0b1100	RW.	
0b1101	RW+uX.	
0b1110	RW+pX.	
0b1111	RW+puX.	

When VMSAv9-128 is not in use, fields Perm[8] to Perm[15] are not used.

This field is not permitted to be cached in a TLB.

When stage 2 Permission Overlay mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing S2POR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, S2POR_EL1

op0	op1	CRn	CRm	op2	
0b11	0b000	0b1010	0b0010	0b101	

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.PIEn == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HFGRTR EL2.nS2POR EL1 ==
'0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
```

```
X[t, 64] = NVMem[0x2B8];
    else
        X[t, 64] = S2POR\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.PIEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = S2POR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = S2POR\_EL1;
```

MSR S2POR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0010	0b101

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.PIEn == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nS2POR_EL1 ==
'0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        NVMem[0x2B8] = X[t, 64];
    else
        S2POR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.PIEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.