

🖈 Analiza teoretyczna zadania — Multi-label classification

1. Definicja problemu

Multi-label classification (MLC) to problem uczenia maszynowego, w którym:

- Dla jednego przykładu \boldsymbol{x} chcemy przewidzieć więcej niż jedną etykietę.
- Każda etykieta Y_k przyjmuje wartość binarną: $Y_k \in \{0,1\}.$
- Przykład: dla obrazu przyrody x etykiety mogą być: "mountain", "trees", "sea", itp.

Porównanie:

- Binary classification: przewidujemy jedną etykietę binarną.
- Multi-class classification: przewidujemy jedną etykietę wieloklasową spośród K klas.
- Multi-label classification: przewidujemy jednocześnie K etykiet binarnych.

2. Metody uczenia

🖈 (a) Binary Relevance (BR)

• Idea: Dla każdego Y_k trenujemy niezależny klasyfikator:

$$P(Y_k = 1|X)$$

- Każdy model ignoruje zależności między etykietami.
- Proste, ale nie uwzględnia współzależności między etykietami.

★ (b) Classifier Chain (CC)

- Idea: Modeluje zależności między etykietami w sekwencji:
 - Model 1: $Y_1 \leftarrow X$
 - Model 2: $Y_2 \leftarrow X, Y_1$
 - $\bullet \quad \mathsf{Model} \ \mathsf{3:} \ Y_3 \leftarrow X, Y_1, Y_2$
 - ..
 - ullet Model K: $Y_K \leftarrow X, Y_1, \dots, Y_{K-1}$
- Każdy model wykorzystuje predykcje wcześniejszych modeli jako dodatkowe cechy.

Uwaga: Kolejność etykiet w łańcuchu ma wpływ na wyniki — niektóre etykiety mogą być lepszymi predyktorami innych.

★ (c) Ensemble of Classifier Chains (ECC)

- Idea: Trenujemy kilka CC z różnymi permutacjami etykiet i uśredniamy ich predykcje.
- Zmniejsza wariancję i wrażliwość na kolejność etykiet.

• 3. Metryki oceny jakości

★ (a) Subset Accuracy

Czy wszystkie etykiety w danej próbce są poprawnie przewidziane:

$$\text{Subset Accuracy} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\{y_i = \hat{y}_i\}$$

• Bardzo restrykcyjna metryka — wymaga pełnej zgodności.

⋆ (b) Hamming Score

• Średnia dokładność etykiety:

$$\text{Hamming Score} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{1} \{ y_{ik} = \hat{y}_{ik} \} \right)$$

• Bardziej tolerancyjna metryka — uwzględnia częściowo poprawne przewidywania.

4. Dane: emotions (OpenML)

- Zawiera:
 - ullet X cechy numeryczne opisujące utwory muzyczne.
 - Y 6 binarnych etykiet emocji.
- Dane wczytywane przy użyciu:

• Etykiety binarne przekształcamy z "TRUE"/"FALSE" na 1/0.

• 5. Implementacja

★ Binary Relevance (BR)

• 6 niezależnych klasyfikatorów, np. Logistic Regression.

★ Classifier Chain (CC)

- Jeden łańcuch klasyfikatorów:
 - model 1 → model 2 (na wejściu ma też predykcje modelu 1) → model 3 → itd.

★ ECC

• 5 permutacji CC, uśrednianie predykcji:

$$\hat{Y} = \text{\'srednia} \neq n \text{ CC} \geq 0.5$$