Lecture 15 The Real Business Cycle Model Part 2: Firm

Hui-Jun Chen

The Ohio State University

May 6, 2022

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - Lecture 14: consumer
 - Lecture 15: firm
 - Lecture 16: competitive equilibrium
 - Lecture 17: formal example
 - Lecture 18: application to bring RBC to data

Hui-Jun Chen (OSU) Lecture 15 May 6, 2022 2/13

Demand for Consumption Goods

Ultimately, 3 markets will have to clear in the current period (date 0):

- labor (like static model)
- credit (like dynamic model)
- consumption goods (implied in each case by Walras' Law)

Recall our insights from last classes. Primary determinants of consumption:

- over lifetime: permanent income / lifetime wealth
- across periods: interest rate, current vs future income

Based on this, we'll construct a demand curve for current consumption goods that depends on lifetime wealth and the interest rate

Lecture 15 May 6, 2022 3/13

Current Goods Demand and Current Income

Figure 11.4 Consumer's Current Demand for Consumption Goods Increases with Income

Assumption C1: demands for goods

- ↑ in income
 - Recall pure income effect
 - Slope of tangent line is marginal propensity to consumer (MPC)
 - what fraction of Y ↑ goes to C?
 - $MPC = dC_D/dY$
 - normal goods: both C and $C' \uparrow$, so saving $S \uparrow$
 - usually MPC < 1, i.e., not all $Y \uparrow$ goes to C.

Hui-Jun Chen (OSU)

Lecture 15

May 6, 2022

Current Goods Demand and Real Interest Rate

Figure 11.5 Real Interest Rate \uparrow Shifts the Demand for Consumption Goods Down

Assumption C2: demands for goods

- ↓ in real interest rate
 - Recall both income and substitution effect (from dynamic model)
 - Income effect: ambiguous for saver
 - Substitution effect: always negative
 - C2 assumes substitution effect dominates

5/13

ıi-Jun Chen (OSU) Lecture 15 May 6, 2022

6/13

Current Goods Demand and Lifetime Wealth

Figure 11.6 An Increase in Lifetime Wealth Shifts the Demand for Consumption Goods Up

Assumption C3: demands for goods

 $C^d(r) \uparrow$ in lifetime wealth

■ similar to pure income effect

Note: consumer's demand is only one part of the GDP:

$$Y = C + I + G.$$

We'll discuss I and G in next lecture

-Jun Chen (OSU) Lecture 15 May 6, 2022

Overview: Firm Decision

- **production**: needs both capital K and labor N, Y = zF(K, N)
- **endowment**: firm is endowed with initial capital K
- firm decision:
 - both dates: labor (N), profit (π) , and output (Y) by production Y = zF(K, N) and Y' = z'F(K', N')
 - date 0 (today): **investment** (I) determines future capital K' given initial capital K and depreciation rate $\delta \in [0, 1]$,

$$K' = (1 - \delta)K + I$$

- Assumptions:
 - investment made in consumption goods
 - 2 remaining capital $(1 \delta)K'$ liquidates tomorrow (: model ends)

Lecture 15 May 6, 2022 7/13

Firm's Optimization Problem

Firm maximizes the discounted present value of profits:

$$\max_{N_D,N_D',K',I} \quad V = \pi + \frac{\pi'}{1+r} \quad \text{subject to} \quad K' = (1-\delta)K + I,$$

where
$$\pi = Y - wN - I$$
, and $\pi' = Y' - w'N' + \underbrace{(1 - \delta)K'}_{\text{liquidate}}$.

Notice: since we assume that consumer owns the firm, so firm calculates present value using real interest rate r, i.e., how consumer discounts.

By substituting π , π' , Y, Y' and I into above problem, we get

$$\max_{N_D, N'_D, K'} zF(K, N_D) - wN_D - [K' - (1 - \delta)K] + \frac{z'F(K', N'_D) - w'N'_D + (1 - \delta)K'}{1 + r}$$
(1)

Lecture 15 May 6, 2022 8/13

Firm's Optimality Conditions

$$[N_D]: zD_N F(K, N_D) = w$$

$$[N'_D]: z'D_N F(K', N'_D) = w'$$

$$[K']: -1 + \frac{z'D_K F(K', N'_D) + (1 - \delta)}{1 + r} = 0$$

- FOCs on current and future labor are the same as static model!
 - Why? Since labor choice is static: choose labor for current production
- FOC on future capital equalize the marginal cost and benefit of investment
 - cost: loss in current consumption (incurred today)
 - benefit: \uparrow in marginal production + liquidating K' (incurred tomorrow)

Lecture 15 May 6, 2022 9/13

10 / 13

Optimal Investment Schedule: Derivation

Solve for [K'], we get

$$z'D_K F(K', N_D') + 1 - \delta = 1 + r \Rightarrow r = MPK' - \delta$$

For consumer, there are 2 assets to undertake intertemporal substitution:

- saving in credit market (supply in credit mkt; demand in bond mkt)
- capital held by the firm for production Investing in capital means giving up (net) return r for (net) return $MPK' - \delta$: optimal investment rule means both must offset, WHY?
 - if $r > MPK' \delta$: consumer will save more for bond \Rightarrow supply in credit market \uparrow , $r \downarrow$
 - if $r < MPK' \delta$: consumer asks firm to invest more capital \Rightarrow $MPK' \downarrow$

To sum up, $r = MPK' - \delta$ in equilibrium: "optimal" investment rule!

Lecture 15 May 6, 2022

Figure 11.7 The Demand Curve for N Is the Firm's MPI Schedule

Figure 11.8 The Current Demand Curve for Labor Shifts Due to Changes in z and K

Lecture 15 May 6, 2022 11 / 13

Figure 11.9 Optimal Investment Schedule for the Representative Firm

Put capital accumulation process into MPK and get

$$z'D_K F((1-\delta)K + I_D, N_D') = r + \delta$$

- \blacksquare as $r \uparrow$, need less K' for optimal investment schedule to hold.
 - why? diminishing MPK
- \blacksquare $K' \uparrow$ in I, so $r \uparrow$ also means less investment \Rightarrow downward slope
- i.e., higher opportunity cost of investing

Lecture 15 May 6, 2022 12/13

Figure 11.10 The Optimal Investment Schedule Shifts to the Right if $K \downarrow$ or expecting $z' \uparrow$

Demand for investment goods I_D

The optimal investment schedule shifts to the right, i.e., demand for investment rises if

■ current capital *K* decreases:

$$\frac{dI_D}{dK} < 0$$

- Intuition: need to invest more for less endowment
- (expected) future TFP increases: $\frac{dI_D}{dz'} > 0$
 - Intuition: investment is more productive