Write your name here				
Surname	Othe	er names		
Edexcel GCE	Centre Number	Candidate Number		
Chemistry Advanced Unit 4: General Principles of Chemistry I – Rates, Equilibria and Further Organic Chemistry (including synoptic assessment)				
Equilibria an	d Further Organ	nic Chemistry		
Equilibria an	d Further Organ noptic assessm	nic Chemistry ent) Paper Reference		
Equilibria an (including sy	d Further Organ noptic assessm – Afternoon	nic Chemistry ent)		
Equilibria an (including sy Wednesday 12 June 2013	d Further Organ noptic assessm – Afternoon	nic Chemistry ent) Paper Reference		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 8 4 A 0 1 2 4

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 An important step in the production of sulfuric acid is the oxidation of sulfur dioxide.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H = -196 \text{ kJ mol}^{-1}$$

Which of the conditions below is best suited to produce a high yield of sulfur trioxide, SO₃?

- A 1 atm pressure and 800 °C.
- **B** 2 atm pressure and 800 °C.
- ☑ C 1 atm pressure and 400 °C.
- **D** 2 atm pressure and 400 °C.

(Total for Question 1 = 1 mark)

- **2** Which of the following statements is true about **all** substances that form acidic solutions in water?
 - **A** They are corrosive.
 - **B** They are liquids.
 - ☑ C They contain hydrogen atoms.
 - \square **D** They form H⁺(aq) ions.

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

- **3** Select the correct pH for each of the following solutions.
 - (a) Nitric acid, HNO₃, of concentration 2 mol dm⁻³, assuming it is fully dissociated.

(1)

- **B** 0.0
- **◯ C** 0.3
- **D** 2.0
- (b) Sodium hydroxide, NaOH, of concentration 2 mol dm⁻³, using $K_{\rm w}=1.0\times10^{-14}~{\rm mol^2~dm^{-6}}$

(1)

- **A** -13.7
- **B** 13.7
- **C** 14.0
- **D** 14.3
- (c) Ethanoic acid, CH₃COOH, of concentration 2 mol dm⁻³, making the usual assumptions.

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm CH_3COO}^-]}{[{\rm CH_3COOH}]} = 1.7 \times 10^{-5} \,{\rm mol}\,{\rm dm}^{-3}$$

(1)

- **■ B** 2.4
- **C** 4.5
- **D** 4.8
- (d) The mixture formed when 25 cm³ of 2 mol dm⁻³ sodium hydroxide solution is added to 50 cm³ of 2 mol dm⁻³ ethanoic acid, for which $K_a = 1.7 \times 10^{-5}$ mol dm⁻³.

(1)

- **■ B** 2.5
- **∠ C** 4.5

(Total for Question 3 = 4 marks)

4			tion of 2,4-dinitrophenylhydrazine (Brady's reagent) is used as a test for organic onal groups.	
	(a)	Th	e positive result of the test is the formation of	(1)
	X	A	a yellow solution.	
	×	В	an orange precipitate.	
	×	C	a red solution.	
	×	D	a green precipitate.	
	(b)		nich of the following gives a positive result with a solution of all-dinitrophenylhydrazine?	(1)
	×	A	Only aldehydes	(1)
	×	В	Only ketones	
	×	C	Only aldehydes and ketones	
	×	D	Any compound containing the C=O group	
	(c)	Th	e initial attack by 2,4-dinitrophenylhydrazine, when it reacts, is by	(1)
	×	A	a free radical.	
	X	В	an electrophile.	
	×	C	a nucleophile.	
	×	D	a negative ion.	
	(d)		e product of a positive test, a 2,4-dinitrophenylhydrazone, contains which of e following bonds?	
			NI NI	(1)
			N=N	
			C=N	
			C=C C=0	
		U		ulaa)
			(Total for Question 4 = 4 ma	rks)

Turn over for Question 5

5		is question is about the following isomeric compounds with the molecular formula $H_8\mathrm{O}$ and molar mass 72 g mol ⁻¹ .	
	A	CH ₃ CH ₂ CH ₂ CHO	
	В	(CH ₃) ₂ CHCHO	
	C	CH ₃ CH ₂ COCH ₃	
	D	CH ₃ CH=CHCH ₂ OH	
	(a)	Which compound would you expect to give a peak at $m/e = 41$ in its mass spectrum?	(4)
	X	A	(1)
	×	В	
	X	C	
	X	D	
	(b)	Which compound would NOT react with an acidified solution of potassium dichromate(VI)?	(1)
	X	A	(1)
	X	В	
	X	C	
	X	D	
	(c)	Which compound would give a pale yellow precipitate when reacted with iodine in alkaline solution?	(1)
	X	A	(1)
	X	В	
	X	C	
	X	D	
	(d)	Which compound can be reduced to give a chiral product?	(1)
	X	A	
	X	В	
	X	C	
	X	D	

		nich compound would NOT react with hydrogen cyanide under suitable nditions to form a hydroxynitrile? (1)
	⊠ A	
	⊠ B	
	⊠ C	
	⊠ D	
		(Total for Question 5 = 5 marks)
6	Transe	sterification involves the conversion of
	⊠ A	esters into different esters.
	⊠ B	esters into carboxylic acids.
	⊠ C	cis carbon-carbon double bonds to the trans arrangement.
	⊠ D	trans carbon-carbon double bonds to the cis arrangement.
		(Total for Question 6 = 1 mark)
7		sel is formed by transesterification. It is used as a fuel in preference to ted vegetable oils because
	⊠ A	
		on combustion, biodiesel produces less carbon dioxide than vegetable oils.
	⋈ B	on combustion, biodiesel produces less carbon dioxide than vegetable oils. on combustion, biodiesel produces more energy than vegetable oils.
	⊠ B	on combustion, biodiesel produces more energy than vegetable oils.
	☑ B☑ C	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils.
8	⊠ B ⊠ C ⊠ D	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils. biodiesel is less volatile than vegetable oils. (Total for Question 7 = 1 mark)
8	⊠ B ⊠ C ⊠ D	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils. biodiesel is less volatile than vegetable oils. (Total for Question 7 = 1 mark) ain reason for hardening vegetable oils when producing low-fat spreads is to
8	BCD	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils. biodiesel is less volatile than vegetable oils. (Total for Question 7 = 1 mark)
8	BCD The m A	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils. biodiesel is less volatile than vegetable oils. (Total for Question 7 = 1 mark) ain reason for hardening vegetable oils when producing low-fat spreads is to prevent oxidation.
8	BCD The m AB	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils. biodiesel is less volatile than vegetable oils. (Total for Question 7 = 1 mark) ain reason for hardening vegetable oils when producing low-fat spreads is to prevent oxidation. make the oil less viscous.
8	BCD The m ABC	on combustion, biodiesel produces more energy than vegetable oils. biodiesel vaporises more easily than vegetable oils. biodiesel is less volatile than vegetable oils. (Total for Question 7 = 1 mark) ain reason for hardening vegetable oils when producing low-fat spreads is to prevent oxidation. make the oil less viscous. increase the melting temperature.

9			atoms are not detected by X-rays but are detected by nuclear magnetic ance imaging which also shows their environments?
	X	A	Carbon
	X	В	Hydrogen
	X	C	Nitrogen
	X	D	Oxygen
_			(Total for Question 9 = 1 mark)
10	is r	non vel	type of high-performance liquid chromatography (HPLC), the stationary phase -polar and a polar solvent is used as the eluent. Which of the following would through the chromatography column most quickly?
	X	Α	Tetrachloromethane
	X	В	Chloromethane
	X	C	lodomethane
	X	D	Hexane
_			(Total for Question 10 = 1 mark)
			TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

11 This question is about the equilibrium reaction below.

$$Fe^{2+}(aq) + Ag^{+}(aq) \rightleftharpoons Fe^{3+}(aq) + Ag(s)$$

The equilibrium is reached slowly.

*(a) Describe the changes you would see if aqueous solutions of iron(II) sulfate and silver nitrate were mixed and allowed to stand for a few hours.

(2)

(b) The concentration of silver ions in the equilibrium mixture can be found by titration with potassium thiocyanate. Silver thiocyanate precipitates.

$$Ag^{+}(aq) + CNS^{-}(aq) \rightleftharpoons AgCNS(s)$$

When all the silver ions have reacted, a deep red complex ion of iron(III) thiocyanate forms.

In an experiment, 25.0 cm³ of 0.100 mol dm⁻³ silver nitrate solution was added to 25.0 cm³ of 0.100 mol dm⁻³ of iron(II) sulfate solution, mixed thoroughly, and allowed to stand overnight in an air-tight container.

10.0 cm³ samples of the reaction mixture were then titrated with 0.0200 mol dm⁻³ potassium thiocyanate solution. The average titre was 5.60 cm³.

(i) The initial concentrations of silver ions and iron(II) ions in the reaction mixture are the same.

Calculate this initial concentration in mol dm⁻³.

(1)

(ii)	Calculate the number of moles of silver ions in the 10.0 cm ³ sample at
	equilibrium and hence calculate the equilibrium concentration of silver ions in
	the mixture.

(2)

(iii) Deduce the equilibrium concentration of iron(II) ions.

(1)

(iv) Hence calculate the equilibrium concentration of iron(III) ions.

(1)

(v) Write the expression for the equilibrium constant, $K_{\rm c}$, for the reaction

$$Fe^{2+}(aq) + Ag^{+}(aq) \rightleftharpoons Fe^{3+}(aq) + Ag(s)$$

Calculate its value and give your answer, with appropriate units, to **three** significant figures.

(4)

(c) (i) The relationship between the total entropy change for a reaction and the equilibrium constant is

$$\Delta S_{\text{total}}^{\ominus} = R \ln K$$

Calculate the total entropy change for this reaction, giving a sign and appropriate units.

$$[R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}]$$

(2)

(ii) $Fe^{2+}(aq) + Ag^{+}(aq) \rightleftharpoons Fe^{3+}(aq) + Ag(s)$

 $\Delta S^{\ominus}_{\text{system}}$ for this reaction is –208.3 J mol $^{-1}$ K $^{-1}$

Use ideas about entropy to explain why this value is negative.

(2)

(iii) Calculate the entropy change of the surroundings, $\Delta S_{\text{surroundings}}^{\ominus}$.

(1)

	this reaction at 298 K.	
	Hence state and explain the effect of increasing temperature on the value of $\Delta \textit{S}_{\text{total}}$	
	total	(3)
rei co	ter the samples from the original mixture for the titration are taken, the mainder was filtered and then allowed to stand overnight, in an air-tight ntainer at the same temperature. Another 10.0 cm ³ sample was taken and	
cic	rated. How, if at all, would you expect the titre to change?	
		(2)
	rated. How, if at all, would you expect the titre to change?	(2)
	rated. How, if at all, would you expect the titre to change?	(2)
	rated. How, if at all, would you expect the titre to change?	(2)
	rated. How, if at all, would you expect the titre to change?	(2)
	rated. How, if at all, would you expect the titre to change?	(2)
	rated. How, if at all, would you expect the titre to change?	(2)
	rated. How, if at all, would you expect the titre to change?	
	rated. How, if at all, would you expect the titre to change? stify your answer. A calculation is not required.	

12 This question is about the reactions of butanoic acid, CH ₃ CH ₂ CH ₂ COOH. It has smell and behaves like a typical carboxylic acid.	a foul
 (a) (i) The addition of sodium carbonate solution is often used as a chemical distinguish carboxylic acids, like butanoic acid, from other compounds as aldehydes. 	
Explain why old stocks of aldehydes often react with sodium carbonate solution.	2
	(1)
(ii) How would the result of this test distinguish between a carboxylic acid old stock of an aldehyde?	l and an
(iii) Write the balanced chemical equation, including state symbols, for the reaction of sodium carbonate solution with butanoic acid.	(2)
*(iv) Infrared spectroscopy is a good physical method to distinguish carboxy acids from other organic compounds. Give the wavenumbers of two characteristic absorptions for a carboxylic acid. Indicate the bond resp	
for each absorption. Suggest why one of the absorptions is broad.	(3)

(v) High resolution nuclear magnetic resonance spectroscopy is a suitable physical method to use alongside infrared spectroscopy to identify butanoic acid. State the total number of peaks and suggest the splitting pattern for each peak that you would expect for butanoic acid, CH₃CH₂CH₂COOH.

(3)

(b) Sketch the titration curve obtained when 50 cm³ of 0.10 mol dm⁻³ sodium hydroxide solution is added to 25 cm³ of 0.10 mol dm⁻³ butanoic acid.

(4)

(c)	(i)	What would you see when phosphorus pentachloride, PCI _s , reacts with butanoic acid?	(1)
	(ii)	Give the structural formula and name of the organic product of this reaction. Structural formula	(2)
(d)	(i)	Name Give the name or formula of the organic product of the reaction between butanoic acid and lithium tetrahydridoaluminate (lithium aluminium hydride).	(1)
	(ii)	Water cannot be used as the solvent in this reaction because it reacts with lithium tetrahydridoaluminate. Suggest a suitable solvent.	(1)
Type		State the type of reaction that takes place between butanoic acid and lithium tetrahydridoaluminate. Justify your classification.	(2)
Justific	atic	on	

(e) (i) Butanoic acid can be reacted with methanol to make methyl butanoate. State two conditions that help to speed up this reaction.	(2)
(ii) Draw the displayed formula of methyl butanoate.	(1)
(iii) Identify another chemical, by name or formula, which could be added to methanol to make methyl butanoate.	(1)
*(iv) Give two advantages and one disadvantage of using the reaction occurring in (e)(iii), compared to the reaction in (e)(i), when making methyl butanoate. dvantages	(3)
isadvantage (Total for Question 12 = 28 ma	rks)
TOTAL FOR SECTION B = 49 MAR	

BLANK PAGE

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

13 This question is about the elimination of hydrogen bromide from bromoalkanes by reaction with alcoholic potassium hydroxide.

$$C_4H_9Br + KOH \rightarrow C_4H_8 + KBr + H_2O$$

To investigate the kinetics of this reaction the following apparatus was used:

A solution of concentrated potassium hydroxide in ethanol was refluxed and the gas syringe connected as shown.

0.6 cm³ of 1-bromobutane was added to the solution with a hypodermic syringe through a rubber seal.

A stop clock was started and the volume of gas, V_t , measured at 2 minute intervals, for 12 minutes. When there was no further evolution of gas the volume of gas, V_{final} , was 76.5 cm³.

(a) (i) Calculate the number of moles of 1-bromobutane used. You will need the values of the density and molar mass of 1-bromobutane from your Data booklet.

(2)

(ii)	Calculate the maximum volume of gaseous but-1-ene, in cm ³ , that could form.
	[Molar volume of a gas 24 000 cm³ under reaction conditions]
	Suggest two reasons why this volume is unlikely to form.

(3)

(b) The results obtained are shown in the table below.

Time t/min	Volume of but-1-ene V _t /cm ³	$(V_{final} - V_{t})/cm^{3}$
0	0	76.5
2	31.5	45.0
4	51.0	25.5
6	62.5	14.0
8	68.5	8.0
10	72.0	4.5
12	74.0	2.5

(i) Explain why a large excess of potassium hydroxide is used in this	s experiment. (1)

(ii) Plot a graph of $(V_{final} - V_t)/cm^3$ against t/min.

(3)

/:::\	Cugaest why	م سادید مط	sf (\/	1/1,4426	plattad	00 1/01/18	aranh
(1111)	Suggest why	the value t	וכ (v _{final} –	· v ₊) was	piotteu	on your	grapn

(1)

	(iv) Measure two successiv	re half lives from your o	graph.	(2)
First ha	alf life		min	
Second	d half life		min	
Second	(v) Deduce the order of re			
	Justify your answer.	action with respect to	i biomobatane.	
	Justily your answer.			(2)
(c)	In another experiment, an concentrations of hydroxic shown in the table below.			
	Experiment Number	[C ₄ H ₉ Br] /10 ⁻² mol dm ⁻³	[OH ⁻] /10 ⁻³ mol dm ⁻³	Initial rate /10 ⁻⁵ mol dm ⁻³ min ⁻¹
	1	2.50	2.50	5.00
	2	2.50	1.25	2.50
	3	2.50	0.50	1.00
	(i) Deduce the order of re answer using the data		hydroxide ions. Just	ify your (2)
	(ii) Write the rate equation	o for the reaction using	a vour answers to na	rts (h)(v) and
	(c)(i).	The traction dame	g your arrowers to par	
				(1)

(iii) Give the units of the rate constant.

(1)

*(iv) It is suggested that the reaction begins with the slow attack by a hydroxide ion on a hydrogen atom in the 1-bromobutane, as shown below.

Complete the electron pair movement for this reaction using curly arrows and explain why this step is consistent with the rate equation for the reaction you have given in (c)(ii).

(3)

HO⁻:

(Total for Question 13 = 21 marks)

TOTAL FOR SECTION C = 21 MARKS TOTAL FOR PAPER = 90 MARKS

V	,
ŧ	-
d	5
ne	
7	;
_	,
ш	1
4	-
Ç)
a.)
Fahle	1
÷	ŧ
Table	-
٠,	1
۲.	-
ਧ	3
riodic	2
_	-
ď)
ц	-
hp)
ع.	=
\vdash	-

					_								_	1		
0 (8)	(18) 4.0 He hetium 2	20.2 Ne	39.9	Ar argon 18	83.8	ᅐ	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86	ted		
7	(17)	19.0 F	9	CI chlorine 17	79.9	Br	bromine 35	126.9	-	iodine 53	[210]	At	astatine 85	seen repor		-
9	(16)	16.0 O oxygen	8	S sulfur 16	79.0	Se	selenium 34	127.6	<u>P</u>	tellurium 52	[509]	8	polonium 84	116 have b	iticated	
2	(15)	14.0 N	31.0	P phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83	nbers 112-	but not fully authenticated	5
4	(14)	12.0 C	28.1	-	72.6	ge	germanium 32	118.7	Sn	tin 20	207.2	Ъ	lead 82	Elements with atomic numbers 112-116 have been reported	but not fi	
٣	(13)	10.8 B boron	5	AI aluminium 13	7.69	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81	ents with		
	,			(12)	65.4	Zu	zinc 30	112.4	В	cadmium 48	200.6	H	mercury 80	Elem		
				(11)	63.5	ŋ	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272] Rg	oentgenium 111	
				(10)	58.7	ź	nickel 28	106.4	Pd	palladium 46	195.1	7	platinum 78	[271] Ds	Ē	
				6)	58.9	ပိ	cobalt 27	102.9	윤	rhodium 45	192.2	<u>-</u>	iridium 77	[268] Mt	Ē	
	1.0 hydrogen			(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	S	osmium 76	[277] Hs	F	
				0	54.9	Wn	manganese 25	[86]	٦ ک	technetium 43	186.2	Re	rhenium 75	[264]	bohrium 107	
		mass ool	umper	(9)	52.0	ხ	vanadium chromium manganese 23 24 25	95.9	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[266] Sg	seaborgium 106	
	Key	relative atomic mass atomic symbol	atomic (proton) number	(5)	50.9	>	vanadium 23	92.9	å	niobium 41	180.9	Тa	tantalum 73	[262] Db	_	
		relativ ato i	atomic	4	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261] Rf	nutherfordium 104	
				(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227] AC*	Ε	
2	(2)	9.0 Be beryllium	24.3	Mg magnesium 12	40.1	Ca	F	97.6	S	strontium 38	137.3		barium la 56	[226] Ra	_	
-	(1)	6.9 Li	3	_	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	S	caesium 55	[223] Fr	francium 87	
							а								-	

^{*} Lanthanide series * Actinide series

Pr							2		5	100	,)
seodymium	D _Z	Pm	Sm	Eu	PS	ТЬ	Dy	유	ᆸ	T	ХÞ	Ľ
	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	Ĕ	erbium	thulium	ytterbium	lutetium
26	09	61	62	63	64	65	99	77	89	69	70	71
[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
Pa	_	S	Pu	Am	5	æ	ซ	E	Fm	PW	2	۲
otactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
91	92	93	94	95	96	26	86	66	100	101	102	103
	Pa Pa otactinium 91	_ =	_ 5	U uranium ne	U Np Diamonth Diam	U NP Pu Am americium plutonium pluto	U NP Pu Am americium plutonium pluto	238 [237] [242] [243] [247]	Language L237] [242] [243] [243] [245] [245] [245] Included a proportion of the perfection of the perfect of the perfection of the perfect	238 [237] [242] [243] [247] [245] [251]	Language Log Lunium reptunium 92 Pu Putonium plutonium plutonium 92 Am Putonium plutonium pl	U Np Pu Am Cm Bk Cf Es Fm Md um uranium pp 93 94 95 95 97 98 99 100 101