Lecture 19: Drift-Diffusion

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Final exam. (Presentation)

- Date: December 12th, 2016 (Tentative)
 - Depending on the situation, December 14th can be also used.
- Present your own work:
 - Non-equilibrium Green's function simulator
 - Mobility calculator
 - Graphene simulator
 - Drift-diffusion simulator
 - And so on...
 - Please discuss with me, before your final presentation.
- Your grade
 - Homework
 - Final presentation

Calendar

- Plan for remaining lectures
 - IEDM business trip
 - Four make-up sessions will be made.

Mon	Tue	Wed	Thu	Fri	Sat	Sun
		16 (L18)	17	18	19	20
21 (L19)	22	23 (L20)	24	25 (L21)	26	27
28 (No lecture)	29	30 (L22)	Dec.1	2 (L23)	3	4
5 (No lecture)	6	7 (No lecture)	8	9	10	11
12 (L24)	13	14 (L25)	15	16 (Final)	17	18

How to derive the DD eqs.

- Starting from the Boltzmann equation,
 - Let's derive the first two equations!
 - Boltzmann equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_r f + \frac{1}{\hbar} \mathbf{F} \cdot \nabla_k f = \hat{S}$$

Continuity equation (1)

- Integrating the Boltzmann equation,
 - We have (neglecting the spin degeneracy)

$$\frac{\partial}{\partial t} \frac{1}{(2\pi)^3} \int_{BZ} f d\mathbf{k} + \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} \cdot \nabla_r f d\mathbf{k} + \frac{1}{(2\pi)^3} \int_{BZ} \frac{1}{\hbar} \mathbf{F} \cdot \nabla_k f d\mathbf{k}$$
$$= \frac{1}{(2\pi)^3} \int_{BZ} \hat{S} d\mathbf{k}$$

In terms of the electron density,

$$n = \frac{1}{(2\pi)^3} \int_{BZ} f d\mathbf{k}$$

It is now written as

$$\frac{\partial}{\partial t}n + \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} \cdot \nabla_r f d\mathbf{k} + \frac{1}{(2\pi)^3} \int_{BZ} \frac{1}{\hbar} \mathbf{F} \cdot \nabla_k f d\mathbf{k} = 0$$

Continuity equation (2)

- Moreover, for a position-independent band structure,
 - It is now written as

$$\frac{\partial}{\partial t}n + \nabla_r \cdot \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} f d\mathbf{k} + \frac{1}{\hbar} \mathbf{F} \cdot \frac{1}{(2\pi)^3} \int_{BZ} \nabla_k f d\mathbf{k} = 0$$

With the electron flux,

$$\mathbf{F}_n = \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} f d\mathbf{k}$$

– The continuity equation is obtained:

$$\frac{\partial}{\partial t}n + \nabla_{r} \cdot \mathbf{F}_{n} = 0$$

Current density equation (1)

- Now, instead of just integrating the Boltzmann equation,
 - The velocity is multiplied.

$$\mathbf{v} \frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{v} \cdot \nabla_r f) + \mathbf{v} \left(\frac{1}{\hbar} \mathbf{F} \cdot \nabla_k f \right) = \mathbf{v} \hat{S}$$

Then, it is integrated.

$$\frac{\partial}{\partial t} \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} f d\mathbf{k} + \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} (\mathbf{v} \cdot \nabla_r f) d\mathbf{k} + \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} \left(\frac{1}{\hbar} \mathbf{F} \cdot \nabla_k f\right) d\mathbf{k}$$

$$= \frac{1}{(2\pi)^3} \int_{BZ} \mathbf{v} \hat{S} d\mathbf{k}$$

It is readily found that

$$\frac{\partial}{\partial t} \mathbf{F}_{n} + \frac{1}{(2\pi)^{3}} \int_{BZ} \mathbf{v} (\mathbf{v} \cdot \nabla_{r} f) d\mathbf{k} + \frac{1}{(2\pi)^{3}} \int_{BZ} \mathbf{v} \left(\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{k} f \right) d\mathbf{k}$$

$$= \frac{1}{(2\pi)^{3}} \int \mathbf{v} \hat{S} d\mathbf{k}$$
GIST Legature on November 21, 2016 (Internal use only)

Current density equation (2)

- Consider the third term.
 - For a given direction, x_i ,

$$\frac{1}{(2\pi)^3} \int_{BZ} v_i \left(\frac{1}{\hbar} \mathbf{F} \cdot \nabla_k f\right) d\mathbf{k} = -\mathbf{F} \cdot \frac{1}{(2\pi)^3} \int_{BZ} \frac{1}{\hbar} (\nabla_k v_i) f d\mathbf{k}$$

From the definition of the inverse mass, it is now noted that

$$-\sum_{j} F_{j} \frac{1}{(2\pi)^{3}} \int_{BZ} m_{ij}^{-1} f d\mathbf{k}$$

Using the effective mass,

$$-F_i \frac{1}{m^*} n$$
 Which approximation?

Therefore, in a vector form, the third term becomes

$$-\mathbf{F}\frac{1}{m^*}n$$

Current density equation (3)

- Consider the second term.
 - For a given direction, x_i , it is

$$\sum_{j} \frac{1}{(2\pi)^3} \int_{BZ} v_i v_j \frac{\partial f}{\partial x_j} d\mathbf{k} = \sum_{j} \frac{1}{(2\pi)^3} \frac{\partial}{\partial x_j} \int_{BZ} v_i v_j f d\mathbf{k}$$

- Collecting the above discussion,
 - The equation looks like

$$\frac{\partial}{\partial t}F_{n,i} + \sum_{j} \frac{1}{(2\pi)^3} \frac{\partial}{\partial x_j} \int_{BZ} v_i v_j f d\mathbf{k} - F_i \frac{1}{m^*} n = \frac{1}{(2\pi)^3} \int_{BZ} v_i \hat{S} d\mathbf{k}$$

With the momentum relaxation time,

$$\frac{\partial}{\partial t} F_{n,i} + \sum_{j} \frac{1}{(2\pi)^3} \frac{\partial}{\partial x_j} \int_{BZ} v_i v_j f d\mathbf{k} - F_i \frac{1}{m^*} n = -\frac{F_{n,i}}{\tau_j}$$

- We have to calculate a complicated quantity, $v_i v_j$. How?