

LoRA Low-Rank Adaptation of Large Language Models

강동규

DeepSync, South Korea

- Downstream task에 대해 적용하는 방식
- Transfer Learning, Fine Tuning 방식 활용

Problem State

Background

- (x, y): 훈련 데이터. (입력, 출력)
- Φ:전체 파라미터
- Fully Fine-Tuning: x가 주어졌을 때 y를 출력하는 모든 파라미터를 조정한다.
- Problem → 너무나 많은 시간, 비용 발생 (GPT-3의 경우 |ΔΦ| ≈ 175 Billion)
- Parameter-Efficient Approach : 전체보다 훨씬 작은 특정 파라미터 0를 업데이트 시킨다.
- LoRA의 핵심 \rightarrow $\Delta\Phi(\Theta)$ 를 Pretrained 파라미터에 더해준다. ($|\Theta| \ll |\Phi_0|$, 0.01% 정도로 매우 작다)

$$\max_{\Phi} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi}(y_t|x,y_{< t}) \right) \quad \max_{\Theta} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(p_{\Phi_0 + \Delta\Phi(\Theta)}(y_t|x,y_{< t}) \right)$$

Fully Fine Tuning

Parameter-efficient approach

Background

- Fine Tuning : Pre-Trained, Foundation 모델을 다양한 downstream task(요약, Seq2SQL 등)에 adaptation하는 방식
- 해당 논문 → Fine Tuning: 모든 파라미터를 업데이트 시키는 것
- Adaptor Tuning : 일부를 추가해 adaptor만 학습시키는 방식
- Prompting(in-context learning): 자연어로 된 instruction과 예시를 input에 덧붙이는 방식
- Prefix Tuning: Prefix라 불리는 vector 를 input에 덧붙여 prefix만을 학습하는 방식

Figure 1: Illustration of the transformer architecture and several state-of-the-art parameter-efficient tuning methods. We use blocks with dashed borderlines to represent the added modules by those methods.

Background

- Adaptor Tuning → Layer를 추가하는 방식 → Inference Latency 발생
- Large neural network → 병렬 처리를 통해 latency를 낮추지만, adapter는 순차적으로 연결되어 있어 작은 병목 현상이더라도 latency를 증가시킨다.
- + 병렬 연산 시 모델의 분할로 인해 중복된 파라미터 저장, 동기화로 인한 latency가 발생한다

Batch Size 32		16	1		
Sequence Length	512	256	128		
$ \Theta $	0.5M	11 M	11 M		
Fine-Tune/LoRA	1449.4±0.8	338.0 ± 0.6	19.8±2.7		
Adapter ^L	1482.0±1.0 (+2.2%)	354.8±0.5 (+5.0%)	23.9±2.1 (+20.7%)		
Adapter ^H	1492.2±1.0 (+3.0%)	366.3±0.5 (+8.4%)	25.8±2.2 (+30.3%)		

rig4-Adapid

Fig5-GPT-2 Model

Fig6-Prefix Tuning

- Prefix Tuning
- Prefix를 input에 붙여 사용하기 때문에 sequence length에 제한이 더 발생한다.
- 최적화하기 어렵고 성능이 non-monotonically하게 파라미터가 변화한다.

Terminology

- d_{model} : input/output dimension size
- W_q , W_k , W_v , W_o : query/key/value/output projection matrices in self-attention module
- W or W_0 : pre-trained weight matrix
- ΔW : accumulated gradient update during adaptation
- r: rank of a LoRA module

Idea

- LoRA: Low-Rank Adaptation
- 기존 연구 → 학습된 over-parameterized model이 실제로는 낮은 low intrinsic dimension에 있다는 점에서 착안하여 low-rank matrices를 통해 adaptation을 충분히 할 수 있다!
- Measuring the Intrinsic Dimension of Objective Landscapes Li et al., 2018a
- Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning Aghajanyan et al., 2020
- LoRA 방식
- 1. Pre-trained weight를 고정된 상태로 유지
- 2. Adaptation 중 dense layer의 변화에 대한 rank decomposition matrices를 최적화

Figure 1: The following figures show the evaluation accuracy on two datasets and four models across a range of dimensions d for the DID method. The horizontal lines in each figure represent the 90% solution of the respective full model.

- LoRA → 모든 dense layer에 적용 가능
- Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning Aghajanyan et al.,
 2020에서는 RoBERTa의 경우 오직 200 trainable parameter만을 가지고도 본래의 90%의 성능을 달성했다고 주장한다.

Fig7

Low-Rank Parameterized Update Matrices

- Adaptor와 비슷한 형태
- low rank, r로 down projection, 본래 차원으로 up projection을 한다.

$$B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k} \ r \ll \min(d, k)$$

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

Low-Rank Parameterized Update Matrices

```
:lass Linear(nn.Linear, LoRALayer):
                                                                          def reset parameters(self):
  # LoRA implemented in a dense layer
                                                                               nn.Linear.reset parameters(self)
  def __init__(
                                                                               if hasattr(self, 'lora A'):
      self,
                                                                                   # initialize B the same way as the default for nn.Linear and A to zero
      in_features: int,
      out features: int,
                                                                                    # this is different than what is described in the paper but should not affect performance
      r: int = 0.
                                                                                   nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
      lora_alpha: int = 1,
                                                                                   nn.init.zeros (self.lora B)
      lora dropout: float = 0.,
     fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)

    A → Random Gaussian initialization

      merge_weights: bool = True,
      **kwargs

    B → Zero initialization

     nn.Linear.__init__(self, in_features, out_features, **kwargs)
      Loral Loral Loral (self, r=r, lora alpha=lora alpha, lora dropout=lora dropout,
                      merge weights=merge weights)
                                                                               if r > 0:
      self.fan in fan out = fan in fan out
                                                                                    self.lora A = nn.Parameter(self.weight.new zeros((r, in features)))
     # Actual trainable parameters
     if r > 0:
                                                                                    self.lora B = nn.Parameter(self.weight.new_zeros((out_features, r)))
         self.lora A = nn.Parameter(self.weight.new zeros((r, in features)))
                                                                                    self.scaling = self.lora alpha / self.r
         self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
         self.scaling = self.lora_alpha / self.r
                                                                                    # Freezing the pre-trained weight matrix
         # Freezing the pre-trained weight matrix
                                                                                    self.weight.requires grad = False
         self.weight.requires grad = False
      self.reset_parameters()
      if fan in fan out:
         self.weight.data = self.weight.data.transpose(0, 1)
```


Low-Rank Parameterized Update Matrices

```
def forward(self, x: torch.Tensor):
    def T(w):
        return w.transpose(0, 1) if self.fan_in_fan_out else w
    if self.r > 0 and not self.merged:
        result = F.linear(x, T(self.weight), bias=self.bias)
        result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
        return result
    else:
        return F.linear(x, T(self.weight), bias=self.bias)
```

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Contribution

- A Generalization of Full Fine-tuning
- No Additional Inference Latency
- 명시적으로 W를 계산, 저장하고 추론을 할 수 있다.
- Downstream task의 파라미터를 언제든 더하고 뺄 수 있다. (활용성이 높다.)

```
def train(self, mode: bool = True):
   def T(w):
       return w.transpose(0, 1) if self.fan in fan out else w
   nn.Linear.train(self, mode)
   if mode:
       if self.merge_weights and self.merged:
            # Make sure that the weights are not merged
           if self.r > 0:
               self.weight.data -= T(self.lora B @ self.lora A) * self.scaling
            self.merged = False
       if self.merge weights and not self.merged:
            # Merge the weights and mark it
           if self.r > 0:
                self.weight.data += T(self.lora B @ self.lora A) * self.scaling
            self.merged = True
```

https://github.com/microsoft/LoRA/blob/main/loralib/layers.py

Result

Model & Method										
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})^*$	0.3M	$87.1_{\pm .0}$	$94.2_{\pm .1}$	$88.5_{\pm 1.1}$	$60.8_{\pm .4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})^*$	0.9M	$87.3_{\pm .1}$	$94.7_{\pm .3}$	$88.4_{\pm .1}$	$62.6_{\pm.9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB_{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$95.1_{\pm.2}$	$89.7_{\pm .7}$	$63.4_{\pm 1.2}$	$93.3_{\pm .3}$	$90.8_{\pm.1}$	$\pmb{86.6} \scriptstyle{\pm .7}$	$91.5_{\pm.2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB_{large} (LoRA)	0.8M	$90.6_{\pm .2}$	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	94.9 $_{\pm .3}$	$91.6 \scriptstyle{\pm .1}$	$\textbf{87.4}_{\pm 2.5}$	92.6 $_{\pm .2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2±.3	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	$90.5_{\pm .3}$	$\textbf{96.6}_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm.3}$	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
$RoB_{large} (Adpt^{H})^{\dagger}$	6.0M	$89.9_{\pm .5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm .1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H)†	0.8M	$90.3_{\pm .3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5{\scriptstyle \pm .1}$	$72.9_{\pm 2.9}$	$91.5_{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	$90.6_{\pm .2}$	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2{\scriptstyle\pm1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6 \scriptstyle{\pm .2}$	$\textbf{85.2}_{\pm 1.1}$	92.3 $_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB_{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

Result

Model & Method	# Trainable	E2E NLG Challenge				
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm .07}$	$46.0_{\pm .2}$	$70.7_{\pm .2}$	$2.44_{\pm .01}$
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49
GPT-2 M (LoRA)	0.35M	$\textbf{70.4}_{\pm.1}$	$\pmb{8.85}_{\pm.02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm .1}$	$8.68_{\pm .03}$	$46.3_{\pm .0}$	$71.4_{\pm .2}$	$2.49_{\pm .0}$
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm .3}$	$8.70_{\pm .04}$	$46.1_{\pm .1}$	$71.3_{\pm .2}$	$2.45_{\pm .02}$
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47
GPT-2 L (LoRA)	0.77M	$\textbf{70.4}_{\pm.1}$	$\pmb{8.89}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{72.0}_{\pm.2}$	$2.47_{\pm .02}$

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

Fig11

Reference

- Fig1 https://blogs.nvidia.co.kr/2023/04/04/what-are-foundation-models/
- Fig2 This Artificial Intelligence Survey Research Provides A Comprehensive Overview Of Large Language Models
 Applied To The Healthcare Domain
- Fig3 Towards A Unified View of Parameter-Efficient Transfer Learning
- Fig4 Parameter-Efficient Transfer Learning for NLP
- Fig5, 8, 9, 10, 11 <u>LoRA: Low-Rank Adaptation of Large Language Models</u>
- Fig6 <u>Prefix-Tuning: Optimizing Continuous Prompts for Generation</u>
- Fig7 Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning

Thank you for your time