$$\ddot{x}(t) + 2\dot{x}(t) + 2x(t) = 4$$
 , $x(0) = 0$, $\dot{x}(0) = 0$

Solution:

The particular solution is a constant, $x_p = 2$. The general form of the homogeneous solution is:

$$\lambda^2 + 2\lambda + 2 = 0$$
 \Rightarrow $\lambda_{1,2} = -1 \pm i$ \Rightarrow $x_h(t) = Ae^{-t}sin(t + \phi)$

Now apply the initial conditions to determine A, ϕ :

$$\begin{split} x(0) &= 0 = Asin\phi + 2 & Asin\phi = -2 \\ \dot{x}(0) &= 0 = -Asin\phi + Acos\phi & Acos\phi = -2 \\ \Rightarrow \phi &= \pi/4 \;,\; A = -2.83 \end{split}$$

The complete solution is thus

$$x(t) = -2.83e^{-t}sin(t + \pi/4) + 2$$

The settling time is 4 seconds, so we plot out to 8 seconds. The solution begins at x=0 with $\dot{x}=0$, then settles at x=2. Since the homogeneous solution is underdamped, we have some overshoot. The first crossing of x=2 occurs at $sin(t+\pi/4)=0$, i.e., $t=3\pi/4$. The period of oscillation is 2π , which is much longer than the settling time, and the damping ratio is relatively high, $\zeta=0.707$, so the solution settles to x=2 with little oscillation. The following graph was generated by MATLAB, so your sketch may not match exactly, but it should be reasonably close.

$$\ddot{x}(t) + 4\dot{x}(t) + 8x(t) = 8$$
 , $x(0) = 0$, $\dot{x}(0) = 0$

Solution:

The particular solution is a constant, $x_p = 1$. The general form of the homogeneous solution is:

$$\lambda^2 + 4\lambda + 8 = 0$$
 \Rightarrow $\lambda_{1,2} = -2 \pm 2i$ \Rightarrow $x_h(t) = Ae^{-2t}sin(2t + \phi)$

Now apply the initial conditions to determine A, ϕ :

$$\begin{split} x(0) &= 0 = Asin\phi + 1 & Asin\phi = -1 \\ \dot{x}(0) &= 0 = -2Asin\phi + 2Acos\phi & Acos\phi = -1 \\ \Rightarrow \phi &= \pi/4 \ , \ A = -1.414 \end{split}$$

The complete solution is thus

$$x(t) = -1.414e^{-2t}sin(2t + \pi/4) + 1$$

The settling time is 2 seconds, so we plot out to 4 seconds. The solution begins at x=0 with $\dot{x}=0$, then settles at x=1. Since the homogeneous solution is underdamped, we have some overshoot. The first crossing of x=1 occurs at $sin(2t+\pi/4)=0$, i.e., $t=3\pi/8$. The period of oscillation is π , which is much longer than the settling time, and the damping ratio is relatively high, $\zeta=0.707$, so the solution settles to x=1 with little oscillation. The following graph was generated by MATLAB, so your sketch may not match exactly, but it should be reasonably close.

$$\ddot{x}(t) + 2\dot{x}(t) + 2x(t) = 8$$
 , $x(0) = 4$, $\dot{x}(0) = 0$

Solution:

The particular solution is a constant, $x_p=4$. The general form of the homogeneous solution is:

$$\lambda^2 + 2\lambda + 2 = 0$$
 \Rightarrow $\lambda_{1,2} = -1 \pm i$ \Rightarrow $x_h(t) = Ae^{-t}sin(t + \phi)$

Now apply the initial conditions to determine A, ϕ :

$$x(0) = 4 = Asin\phi + 4$$
 $Asin\phi = 0$
 $\dot{x}(0) = 0 = -Asin\phi + Acos\phi$ $Acos\phi = 0$
 $\Rightarrow A = 0$

The complete solution is thus

$$x(t) = 4$$

The settling time is 4 seconds, so we plot out to 8 seconds. The solution is a straight line at x=4

$$\ddot{x}(t) + 4\dot{x}(t) + 8x(t) = 8$$
 , $x(0) = 2$, $\dot{x}(0) = 0$

Solution:

The particular solution is a constant, $x_p = 1$. The general form of the homogeneous solution is:

$$\lambda^2 + 4\lambda + 8 = 0$$
 \Rightarrow $\lambda_{1,2} = -2 \pm 2i$ \Rightarrow $x_h(t) = Ae^{-2t}sin(2t + \phi)$

Now apply the initial conditions to determine A, ϕ :

$$\begin{aligned} x(0) &= 2 = Asin\phi + 1 & Asin\phi = 1 \\ \dot{x}(0) &= 0 = -2Asin\phi + 2Acos\phi & Acos\phi = 1 \\ &\Rightarrow \phi = \pi/4 \;,\; A = 1.414 \end{aligned}$$

The complete solution is thus

$$x(t) = 1.414e^{-2t}sin(2t + \pi/4) + 1$$

The settling time is 2 seconds, so we plot out to 4 seconds. The solution begins at x=0 with $\dot{x}=0$, then settles at x=1. Since the homogeneous solution is underdamped, we have some overshoot. The first crossing of x=1 occurs at $sin(2t+\pi/4)=0$, i.e., $t=3\pi/8$. The period of oscillation is π , which is much longer than the settling time, and the damping ratio is relatively high, $\zeta=0.707$, so the solution settles to x=1 with little oscillation. The following graph was generated by MATLAB, so your sketch may not match exactly, but it should be reasonably close.

