XJTLU Entrepreneur College (Taicang) Cover Sheet

Module code and Title	Database Development and Design (CPT201TC)				
School Title	School of AI and Advanced Computing				
Assignment Title	Assignment Title 001: Assessment Task 1 (CW)				
Submission Deadline	17:00, 10th Dec (Friday)				
Final Word Count NA					
If you agree to let the university use your work anonymously for teaching and learning purposes, please type "yes" here.					

I certify that I have read and understood the University's Policy for dealing with Plagiarism, Collusion and the Fabrication of Data (available on Learning Mall Online). With reference to this policy I certify that:

My work does not contain any instances of plagiarism and/or collusion.
 My work does not contain any fabricated data.

By uploading my assignment onto Learning Mall Online, I formally declare that all of the above information is true to the best of my knowledge and belief.

Scoring – For Tutor Use					
Student ID	1930080				

Stage of		Marker	Learning Outcor	/P/M/D)	Final	
Marking		Code	(please m	odify as appropri	ate)	Score
			A	A B C		
1st Marker –	- red					
pen						
Moderation			The original mark has	been accepted by	the moderator	Y / N
		IM	(please o	ircle as appropriate	e):	
– green per	1	Initials				
			Data entry and score calculation have been checked by			Y
			another tutor (please circle):			
2 nd Marker i	f					
needed – gi	reen					
pen						
For Acade	mic Offi	ice Use	Possible Academic Infringement (please tick as ap			propriate)
Date	Days	Late	☐ Catego			
				Total Academic Infringement Penalty		
			☐ Category B		(A,B, C, D, E, Please modify where	
		☐ Category C		necessary)		
			☐ Catego	ry D		

□ Category E	

Students

The assignment must be submitted in a single pdf document via Learning Mall Online to the correct drop box. Only electronic submission is accepted and no hard copy submission.

All students must download their file and check that it is viewable after submission. Documents may become corrupted during the uploading process (e.g. due to slow internet connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

```
1. Advanced SQL, Triggers, and Indexing
    Q1(a)
        i.
            Query statement
            Result
        ii.
            Query statement
            Result
        iii.
            Query statement
            Result
    Q1(b)
            Trigger
            Test SQL
            Result
    Q1(c)
2. Transaction Management
    Q2(a)
    Q2(b)
    Q2(c)
    Q2(d)
3. Querying XML Data
        i.
            Query Expression
            Result
        ii.
            Query Expression
            Result
        iii.
            Query Expression
            Result
        iv.
            Query Expression
            Result
        v.
            Query Expression
            Result
4. Object-Relational Database
    Q4(a)
```

Q4(b)

```
Code
            Screenshot
                course_instructor table
                course table
                user table
    Q4(c)
        i.
            Code
            Result
        ii.
            Code
            Result
        iii.
            Code
            Result
        iv.
            Code
            Result
        v.
            Code
            Result
5. Data Warehousing and OLAP
    i.
        Query Code
        Result
    ii.
        Query Code
        Result
    iii.
        Query Code
        Result
    iv.
        Query Code
        Result
    v.
        CUBE/GROUP BY
```

1. Advanced SQL, Triggers, and Indexing

Q1(a)

i.

Query statement

```
1 select distinct sname,major
2 from student inner join apply
3 on student.sid=apply.sid
4 order by sname asc
```

SNAME	MAJOR
Amy	CS
Amy	EE
Bob	biology
Craig	CS
Craig	EE
Craig	bioengineering
Fay	history
Helen	CS
Irene	CS
Irene	biology
Irene	marine biology
Jay	history
Jay	psychology

Query statement

```
1 select sname,gpa,decision
2 from student inner join apply
3 on student.sid=apply.sid
4 where sizehs<1000
5 and apply.cname='Stanford'
6 and apply.major='CS'</pre>
```

SNAME	GPA	DECISION
Helen	3.7	Υ
Irene	3.9	N

Query statement

```
1 select abs(a.non_cs-b.cs_gpa) gpa
2 from (select avg(gpa) cs_gpa
3 from (select distinct student.sid,gpa
4 from student inner join apply
5 on student.sid=apply.sid
6 where student.sid=apply.sid
7 and apply.major = 'CS') b , (select avg(a.gpa) non_cs
8 from student a left join (select distinct student.sid,gpa
9 from student inner join apply
10 on student.sid=apply.sid
11 where student.sid=apply.sid
12 and apply.major = 'CS') b
13 on a.sid=b.sid
14 where b.sid is null) a;
```

Result

GPA .19428571428571428571428571428571 Download CSV

Q1(b)

Trigger

Test SQL

```
1 select * from student;
2 select * from apply;
3 insert into Student values ('111', 'Kevin', 3.5, 1000);
4 insert into Student values ('222', 'Lori', 3.8, 1000);
5 select * from student;
6 select * from apply;
```

SID	SNAME	GPA	SIZEHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Јау	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

SID	CNAME	MAJOR	DECISION
123	Stanford	CS	Y
123	Stanford	EE	N
123	Berkeley	CS	Y
123	Cornell	EE	Y
234	Berkeley	biology	N
345	MIT	bioengineering	Y
345	Cornell	bioengineering	N
345	Cornell	CS	Y
345	Cornell	EE	N
678	Stanford	history	Y
987	Stanford	CS	Y
987	Berkeley	CS	Υ
876	Stanford	CS	N
876	MIT	biology	Υ
876	MIT	marine biology	N
765	Stanford	history	Υ
765	Cornell	history	N
765	Cornell	psychology	Υ
543	MIT	CS	N

SID	SNAME	GPA	SIZEHS
111	Kevin	3.5	1000
222	Lori	3.8	1000
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

SID	CNAME	MAJOR	DECISION
111	Stanford	geology	-
111	MIT	biology	-
123	Stanford	CS	Υ
123	Stanford	EE	N
123	Berkeley	CS	Υ
123	Cornell	EE	Υ
234	Berkeley	biology	N
345	MIT	bioengineering	Υ
345	Cornell	bioengineering	N
345	Cornell	CS	Υ
345	Cornell	EE	N
678	Stanford	history	Υ
987	Stanford	CS	Υ
987	Berkeley	CS	Υ
876	Stanford	CS	N
876	MIT	biology	Υ
876	MIT	marine biology	N
765	Stanford	history	Υ
765	Cornell	history	N
765	Cornell	psychology	Υ
543	MIT	CS	N

Q1(c)

• Student.sID, College.cName

This indexing method causes College to effectively scan cornell backward from the beginning, but Apply needs to be used in conjunction with nested loops. College.cName can be used as an index in order so that we are using the college name in the query then we can access the record quickly.

Index for college.cname can provide a list of college which appear before Cornell in the list. sid will help us to list out records.

student.sID and college.cname not only apply to where clause, but also can be applyed in college.cnamecornell

And using creat index analysis block size of the first index:

I	i	Ī	Operation	1	Name	Ī	E-Rows	1	OMem	1Mem	Used-Mem
				-		-					
1	0	I	SELECT STATEMENT	I		I		I	1	1	1
1	1	I	NESTED LOOPS	I		I	1	I	I	- 1	1
1	2	I	NESTED LOOPS	I		Ī	1	I	1	- 1	1
1*	3	I	HASH JOIN	I		Ī	1	Ī	1506K	1506K	804K (0)
1*	4	I	TABLE ACCESS FULL	I	COLLEGE	I	1	I	I	- 1	1
*	5	Ī	TABLE ACCESS FULL	I	APPLY	Ī	4	Ī	I	- 1	1
1*	6	I	INDEX RANGE SCAN	I	IDX_SID	Ī	1	Ī	I	- 1	1
*	7	I	TABLE ACCESS BY INDEX ROWII	ŊΙ	STUDENT	I	1	I	I	1	1

The index will use fewer rows in searching and run time is 0.035 seconds

• Student.sID, Student.GPA

If it is two separate indexes, student.sID will be useless. Apply and College require a large number of connections. and evaluate will GPA will be useful to retrieve rows with lesser number of data blocks access or not.

Apply.cName, College.cName

This may allow you to merge the two columns, but Student requires a big join.

Apply.sID, Student.GPA

Student can be effectively scanned from 1.5, and Apply can also be searched, but College requires a large connection.

So choosing these two pairs:

- Student.sID, College.cName
- Apply.sID, Student.GPA

of indexes will speed up the query time and you can see from the pictures that they use less disk space.

2. Transaction Management

Q2(a)

Q2(b)

In addition, there are two possible scenarios for this question.

The table $R(A) \{(1),(2)\}$. only value 1 applyed T1 update. so the result is:

{2}

Or only value 2 applyed T1 update. so the result is:

{2.5}

Thus, results are {3},{1.5},{2},{2.5}

Q2(c)

< ₾

Dag 10

T, update → T, msert → T, commit → T, select → T, select → T, commit

Result:

If T, execute and commit before Tz; Tz select will read the data are updated.

Avy = (1+2) ×2 +6) 13 = 4.

T_select — T. npdute — T. msert — T_select — T. commit — T_comit

Result 3:

If 7. update don't read by 72, but 7, mert do. so 72 selecte?

Avy= (1+2+6) /3 = 3

Q2(d)

The S1 is not recoverable, T2made a dirty read and committed before T1. When T1 execute rollback,T1 A gets its different to T2 value. Thus, DB in an inconsistent state. The final data B is different because the value of DB is submitted based on T1. T2 and T3 has already utlized this wrong value and committed to the DB

The S2 is recoverable, S2's transaction3 need to be rolled back. None of the transaction has yet committed so the S2is recoverable. T2 does not include the B value, but T3 does, so T3rollback is required when T1 fails.

3. Querying XML Data

i.

Query Expression

```
<?xml version="1.0" encoding="UTF-8"?>
<projects>
  <project>1</project>
  <project>2</project>
  <project>3</project>
  <project>10</project>
  <project>20</project>
  <project>30</project>
  <project>30</project>
  <project>61</project>
  <project>62</project>
  <project>63</project>
  <project>63</project>
  <project>91</project>
  <project>92</project>
  <project>92</project>
  <project>92</project>
  <project>92</project>
  </projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects></projects>
```

Query Expression

```
<department_manager>
   {let $d:=doc("C:/XML/company.xml")
   for $r in $d/companyDB/departments/department,
    $e in $d/companyDB/employees/employee
   where $e/@ssn=$r/manager/@mssn
6
   return
7
   <department>{$r/dname}
   <manager>{$e/lname}{$e/fname}</manager>
   <salary>{$e/salary}</salary>
   </department>
10
11
   }
   </department_manager>
```

```
<?xml version="1.0" encoding="UTF-8"?>
                                             <department>
<department manager>
                                                 -
<dname>Hardware</dname>
   -
<department>
                                                <manager>
      <dname>Headquarters</dname>
                                                  <lname>Freed</lname>
      <manager>
                                                  <fname>Alex</fname>
       <lname>Borg</lname>
<fname>James</fname>
                                                </manager>
                                                <salarv>
     </manager>
                                                  <salary>89000</salary>
     <salary>
                                                </salary>
        <salary>55000</salary>
                                             </department>
     </salary>
                                             <department>
   </department>
                                                <dname>Sales</dname>
   <department>
                                                <manager>
      <dname>Administration</dname>
                                                   <lname>James
                                                  <fname>John</fname>
        <lname>Wallace
                                                </manager>
        <fname>Jennifer</fname>
                                                <salary>
      </manager>
                                                  <salary>81000</salary>
     <salary>
                                                </salary>
        <salary>43000</salary>
                                             </department>
     </salary>
                                          </department_manager>
   </department>
   <department>
      <dname>Research</dname>
      <manager>
        <lname>Wong</lname>
        <fname>Franklin</fname>
     </manager>
     <salary>
        <salary>40000</salary>
     </salary>
   </department>
   <department>
      <dname>Software</dname>
      <manager>
        <lname>James
        <fname>Jared</fname>
     </manager>
     <salary>
        <salary>85000</salary>
     </salary>
```

Query Expression

```
1 let $d:=doc("C:/XML/company.xml")
2 let $r:=$d/companyDB/departments/department[dname="Research"]
3 for $e in $d/companyDB/employees/employee,
4 $s in $d/companyDB/employees/employee
5 where $e/@worksFor=$r/@dno
6 and $e/@supervisor=$s/@ssn
7 return
8 <ResearchEmp>{$e/lname}{$e/fname}
9 <EmpSalary>{$e/salary}</EmpSalary>
10 <super>{$s/lname}{$s/fname}</super>
11 </ResearchEmp>
```

iv.

Query Expression

```
1 let $d:=doc("C:/XML/company.xml")
2 for $p in $d/companyDB/projects/project,
3 $x in $d/companyDB/departments/department
4 where $x/@dno = $p/@controllingDepartment
5 return
6 <Project>
7 {$p/pname}
8 {$x/dname}
9 <numEmps>
10 {count($p/workers/worker)}
11 </numEmps>
12 <totalHour>{sum($p/workers/worker)}
/Project>
```

```
| Project | Proj
```

Query Expression

```
1 let $d:=doc("C:/XML/company.xml")
2 for $p in $d/companyDB/projects/project,
3 $x in $d/companyDB/departments/department
4 where $x/@dno = $p/@controllingDepartment
5 and count($p/workers/worker)>1
6 return
7 <Project>
8 {$p/pname}
9 {$x/dname}
10 <numEmps>
11 {count($p/workers/worker)}
12 </numEmps>
13 <totalHour>{sum($p/workers/worker)}

1 {correct></project>
```

```
{?xml version="1.0" encoding="UTF-8"?>
{Project>
{Project}
{cname>Product Xx/pname>
{cnameps>2x/numEmps>}
{cnameps>2x/numEmps>}
{cname>Product Yx/pname>
{cnameps>2x/numEmps>}
{cotalHour>52.5</totalHour>
{cname>Product Yx/pname>
{cnameps>2x/numEmps>}
{cotalHour>52.5</totalHour>
{cname>Project>
{cname>Product Yx/pname>
{cnameps>3x/numEmps>}
{cotalHour>37.5</totalHour>
{cname>Project>
{cname>Product Yx/pname>
{cnameps>3x/numEmps>}
{cotalHour>37.5</totalHour>
{cname>Product Zx/pname>
{cnameps>2x/numEmps>}
{cotalHour>506/totalHour>
{cname>Product Zx/pname>
{cnameps>2x/numEmps>}
{cotalHour>506/totalHour>
{cnameps>2x/numEmps>}
{cotalHour>506/totalHour>
{cnameps>2x/numEmps>}
{cotalHour>506/totalHour>
{cnameps>3x/numEmps>}
{cotalHour>506/totalHour>
{cnameps>3x/numEmps>}
{cotalHour>506/totalHour>
{cnameps>3x/numEmps>}
{cotalHour>256/totalHour>
{cnameps>3x/numEmps>}
{cotalHour>246/totalHour>
{cotalHour>256/totalHour>
{cotalHour>246/totalHour>
{cota
```

4. Object-Relational Database

Q4(a)

```
class Course(models.Model):
    name =
    models.CharField(null=False,max_length=100,default='online
    course')

description = models.CharField(max_length=500)
    instructors = models.ManyToManyField(Instructor)
    learners =
    models.ManyToManyField(Learner,through='enrollment')

def __str__(self):
    return "Name: "+self.name+", "+\
    "Description: "+self.description
```

Q4(b)

Code

```
def write_course_instructor_relationships():
       # Get related instructors
 2
       instructor_yan = Instructor.objects.get(first_name='Yan')
       instructor_joy = Instructor.objects.get(first_name='Joy')
       instructor_peter =
   Instructor.objects.get(first_name='Peter')
       # Get related courses
       course_cloud_app =
   Course.objects.get(name__contains='Cloud')
       course_python = Course.objects.get(name__contains='Python')
10
11
       # Add instructors to courses
12
       course_cloud_app.instructors.add(instructor_yan)
13
       course_cloud_app.instructors.add(instructor_joy)
14
       course_python.instructors.add(instructor_peter)
15
       print("Course-instructor relationships saved... ")
16
```

Screenshot

course_instructor table

長	₹(T): ☐ CRUD_course_instructors ∨							
	id	course_id	instructor_id					
	• • •	过滤	过滤					
1	1	1	3					
2	2	1	4					
3	3	2	5					

course table

user table

	id	first_name	last_name	dob
		过滤	过滤	过滤
1	1	John	Doe	1962-07-16
2	2	John	Doe	NULL
3	3	Yan	Luo	1962-07-16
4	4	Joy	Li	1992-01-02
5	5	Peter	Chen	1982-05-02
6	6	James	Smith	1982-07-16
7	7	Mary	Smith	1991-06-12
8	8	Robert	Lee	1999-01-02
9	9	David	Smith	1983-07-16
10	10	John	Smith	1986-03-16

Q4(c)

i.

Code

```
# Find students with last name "Smith"
learners_smith = Learner.objects.filter(last_name='Smith')
print("1. Find learners with last name `Smith`")
for learner in learners_smith:
    print(learner)
print("\n")
```

Result

1. Find learners with last name `Smith`

First name: James, Last name: Smith, Date of Birth: 1982-07-16, Occupation: data_scientist, Social Link: https://www.linkedin.com/james/
First name: Mary, Last name: Smith, Date of Birth: 1991-06-12, Occupation: dba, Social Link: https://www.facebook.com/mary/
First name: David, Last name: Smith, Date of Birth: 1983-07-16, Occupation: developer, Social Link: https://www.linkedin.com/david/
First name: John, Last name: Smith, Date of Birth: 1986-03-16, Occupation: developer, Social Link: https://www.linkedin.com/john/

ii.

Code

```
# Order by dob descending, and select the first two objects
learners = Learner.objects.order_by("-dob" )[0:2]
print("2. Find top two youngest learners")
for learner in learners:
    print(learner)
print("\n")
```

Result

2. Find top two youngest learners
First name: Robert, Last name: Lee, Date of Birth: 1999-01-02, Occupation: student, Social Link: https://www.facebook.com/robert/
First name: Mary, Last name: Smith, Date of Birth: 1991-06-12, Occupation: dba, Social Link: https://www.facebook.com/mary/

iii.

Code

```
course=Course.objects.get(name='Cloud Application Development
with Database')
learners_db=course.learners.all()
print("iii. Retrieve all learners for the Cloud Application
Development with Database course.")
for learner in learners_db:
    print(learner)
print("\n")
```

```
iii. Retrieve all learners for the Cloud Application Development with Database course.
First name: James, Last name: Smith, Date of Birth: 1982-07-16, Occupation: data_scientist, Social Link: https://www.linkedin.com/james/
First name: Mary, Last name: Smith, Date of Birth: 1991-06-12, Occupation: dba, Social Link: https://www.facebook.com/mary/
First name: David, Last name: Smith, Date of Birth: 1983-07-16, Occupation: developer, Social Link: https://www.linkedin.com/david/
First name: John, Last name: Smith, Date of Birth: 1986-03-16, Occupation: developer, Social Link: https://www.linkedin.com/john/
```

iv.

Code

```
instructors=Instructor.objects.filter(course__name="Introduction
to Python")
print("iv. Retrieve instructors for "introduction to python"
course.")
for instructor in instructors:
    print(instructor)
print("\n")
```

```
iv. Retrieve instructors for "introduction to python" course.
First name: Peter, Last name: Chen, Is full time: True, Total Learners: 2002
```

Code

```
courses=Course.objects.filter(instructors__first_name='Peter')
ccupation_list=set()
for course in courses:
    for learner in course.learners.all():
        occupation_list.add(learner.occupation)
print("v.Retrieve occupation list of learners for the courses taught by instructor "Peter".")
for occupation in occupation_list:
    print(occupation)
```

Result

v.Retrieve occupation list of learners for the courses taught by instructor "Peter". student

5. Data Warehousing and OLAP

i.

Query Code

```
SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales,
MIN(SalesDollar) AS MinSales, COUNT(salesdollar) AS
ROWCount

FROM SSSales, SSStore, SSTimeDim
WHERE SSSales.StoreId = SSStore.StoreId
AND SSSales.TimeNo = SSTimeDim.TimeNo
AND (StoreNation = 'USA' OR StoreNation = 'Canada')
AND TimeYear = 2016
GROUP BY (StoreZip, TimeMonth)
ORDER BY StoreZip, TimeMonth;
```

STOREZIP	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
80111-0033	2	10390	5195	2
80111-0033	5	12420	6210	2
80111-0033	7	9630	4815	2
80111-0033	10	10616	5308	2
80129-5543	2	21460	5215	4
80129-5543	5	24460	6015	4
80129-5543	7	23660	5915	4
80129-5543	10	23180	5745	4
98104-2211	2	20640	5115	4
98104-2211	5	24840	6115	4
98104-2211	7	23596	5844	4
98104-2211	10	26040	6245	4

ii.

Query Code

```
SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales,
MIN(SalesDollar) AS MinSales, COUNT(salesdollar) AS
ROWCount

FROM SSSales, SSStore, SSTimeDim
WHERE SSSales.StoreId = SSStore.StoreId
AND SSSales.TimeNo = SSTimeDim.TimeNo
AND (StoreNation = 'USA' OR StoreNation = 'Canada')
AND TimeYear = 2016
GROUP BY CUBE(StoreZip, TimeMonth)
ORDER BY StoreZip, TimeMonth;
```

STOREZIP	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
80111-0033	2	10390	5195	2
80111-0033	5	12420	6210	2
80111-0033	7	9630	4815	2
80111-0033	10	10616	5308	2
80111-0033	-	43056	4815	8
80129-5543	2	21460	5215	4
80129-5543	5	24460	6015	4
80129-5543	7	23660	5915	4
80129-5543	10	23180	5745	4
80129-5543	-	92760	5215	16
98104-2211	2	20640	5115	4
98104-2211	5	24840	6115	4
98104-2211	7	23596	5844	4
98104-2211	10	26040	6245	4
98104-2211	-	95116	5115	16
-	2	52490	5115	10
-	5	61720	6015	10
-	7	56886	4815	10
-	10	59836	5308	10
-	-	230932	4815	40

iii.

Query Code

```
SELECT TimeYear, TimeMonth, SUM(SalesDollar) AS SumSales,
MIN(SalesDollar) AS MinSales, COUNT(salesdollar) AS
ROWCount

FROM SSSales, SSStore, SSTimeDim
WHERE SSSales.StoreId = SSStore.StoreId
AND SSSales.TimeNo = SSTimeDim.TimeNo
AND (StoreNation = 'USA' OR StoreNation = 'Canada')
AND TimeYear between 2016 and 2017
GROUP BY rollup(timeyear, TimeMonth)
ORDER BY timeyear, TimeMonth;
```

TIMEYEAR	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
2016	2	52490	5115	10
2016	5	61720	6015	10
2016	7	56886	4815	10
2016	10	59836	5308	10
2016	-	230932	4815	40
2017	2	74910	5055	14
2017	5	89110	6005	14
2017	7	75086	4605	14
2017	10	81288	5448	14
2017	-	320394	4605	56
-	-	551326	4605	96

iv.

Query Code

```
SELECT TimeYear,Timequarter, TimeMonth, SUM(SalesDollar) AS
SumSales,

MIN(SalesDollar) AS MinSales, COUNT(salesdollar) AS
ROWCount

FROM SSSales, SSStore, SSTimeDim

WHERE SSSales.StoreId = SSStore.StoreId

AND SSSales.TimeNo = SSTimeDim.TimeNo

AND (StoreNation = 'USA' OR StoreNation = 'Canada')

AND TimeYear between 2016 and 2017

GROUP BY rollup(timeyear,timequarter,TimeMonth)

ORDER BY timeyear,timequarter, TimeMonth;
```

TIMEYEAR	TIMEQUARTER	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
2016	1	2	26245	5115	5
2016	1	-	26245	5115	5
2016	2	5	30860	6015	5
2016	2	-	30860	6015	5
2016	3	7	28443	4815	5
2016	3	-	28443	4815	5
2016	4	10	29918	5308	5
2016	4	-	29918	5308	5
2016	-	-	115466	4815	20
2017	1	2	37455	5055	7
2017	1	-	37455	5055	7
2017	2	5	44555	6005	7
2017	2	-	44555	6005	7
2017	3	7	37543	4605	7
2017	3	-	37543	4605	7
2017	4	10	40644	5448	7
2017	4	-	40644	5448	7
2017	-	-	160197	4605	28
-	-	-	275663	4605	48

CUBE/GROUP BY

STOREZIP	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
80111-0033	2	10390	5195	2
80111-0033	5	12420	6210	2
80111-0033	7	9630	4815	2
80111-0033	10	10616	5308	2
80129-5543	2	21460	5215	4
80129-5543	5	24460	6015	4
80129-5543	7	23660	5915	4
80129-5543	10	23180	5745	4
98104-2211	2	20640	5115	4
98104-2211	5	24840	6115	4
98104-2211	7	23596	5844	4
98104-2211	10	26040	6245	4

STOREZIP	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
80111-0033	2	10390	5195	2
80111-0033	5	12420	6210	2
80111-0033	7	9630	4815	2
80111-0033	10	10616	5308	2
80111-0033	-	43056	4815	8
80129-5543	2	21460	5215	4
80129-5543	5	24460	6015	4
80129-5543	7	23660	5915	4
80129-5543	10	23180	5745	4
80129-5543	-	92760	5215	16
98104-2211	2	20640	5115	4
98104-2211	5	24840	6115	4
98104-2211	7	23596	5844	4
98104-2211	10	26040	6245	4
98104-2211	-	95116	5115	16
-	2	52490	5115	10
-	5	61720	6015	10
-	7	56886	4815	10
-	10	59836	5308	10
-	-	230932	4815	40

The cube operator produce all possible subtotal combinations in addition to the normal totals shown in a group by clause

Groupby simply groups storezip and timemonth. This may not meet the demand in the business.

But cube carries out total for each type of data, sum for each type of storezip, and sum for each type of timemonth. Also sum all the data.

This is of great benefit to the business, for example, you can view the results of a given quarter or the sum of business requirements. A number of new tuples will be generated.

TIMEYEAR	TIMEMONTH	SUMSALES	MINSALES	ROWCOUNT
2016	2	52490	5115	10
2016	5	61720	6015	10
2016	7	56886	4815	10
2016	10	59836	5308	10
2016	-	230932	4815	40
2017	2	74910	5055	14
2017	5	89110	6005	14
2017	7	75086	4605	14
2017	10	81288	5448	14
2017	-	320394	4605	56
-	-	551326	4605	96

ROLLUP operator is partial set of subtotals, and appropriate for hierarchical dimensions.

ROLLUP only subtotal for timeyear instead of all possible subtotals for (timeyear, timemonth). However, this type operator can view some specific results of sum for business requirements.