Logică computațională Curs 2

Lector dr. Pop Andreea-Diana

"Pagina informativă"

- Sport
- Traseu comun autobuse
- Lucruri uitate
- Moodle
- Atribuțiile șefului de an
- Anunț Orchestra Simfonică UBB
- Curs de escaladă?

• • •

Reprezentarea binară a nr.

• într-o locație de memorie – k octeți = n biți (8, 16, 32, 64)

Reprezentarea nr. întregi fără semn

$$x_{(10)} \rightarrow y_{(2)}$$

○ ←				
n-1 $n-2$	 2	1	0	7

Intervale de reprezentare

0	0	•••	0	0	0	= 0
<i>n</i> -1	<i>n</i> -2	•••	2	1	0	- 0

1	1	•••	1	1	1	-2^{n}
<i>n</i> -1	<i>n</i> -2	•••	2	1	0	

$$n = 8$$
 [0, 255]

$$n = 16$$
 [0, 65535]

$$n = 32$$
 [0, 4294 967 295]

$$n = 64$$
 [0, 18 446 824 753 389 551 615]

Aritmetica nr. binare întregi fără semn

în rezultat

• împărțirea

Algoritmul de înmulțire a întregilor fără semn

DATE deînmulțitul M și înmulțitorul Q

CA ←0	M	$ \mathbf{C} $	A	Q
PENTRU i $\leftarrow 1$, n EXECUTĂ				
DACĂ $\mathbf{Q_0}$ =1 ATUNCI				
$CA \leftarrow A + M$				
SF. DACĂ				
CAQ se deplasează spre dreapta cu 1 poziție				
SE PENTRU				

REZULTATE AQ

1011*1101=?

Algoritmul de împărțire a întregilor fără semn

DATE deîmpărțitul AQ și împărțitorul M

PENTRU i \leftarrow 1, n EXECUTĂ

CAQ se deplasează spre stânga cu 1 poziție

DACĂ **CA** ≥ **M** ATUNCI

 $\mathbf{Q_0} \leftarrow 1$

 $CA \leftarrow CA-M$

ALTFEL

$$\mathbf{Q_0} \leftarrow 0$$

SF. DACĂ

SF. PENTRU

REZULTATE câtul Q și restul A

10010011/1011=?

M	C	A	Q

Coduri de reprezentare a întregilor cu semn

- scopul: simplificarea operațiilor (-)
- convenție întreagă (supraunitară)

bitul de semn

Codul direct

$$x \in \mathbb{Z}, |x| < 2^{n-1}$$

$$[x]_{dir} = \begin{cases} x & , dacă \ x \ge 0 \\ 2^{n-1} + |x|, dacă \ x \le 0 \end{cases}$$

dezavantaj: $[+0]_{dir}$: |0|0...0| şi $[-0]_{dir}$: |1|0...0|

Codul invers

$$x \in \mathbb{Z}, |x| < 2^{n-1}$$

$$[x]_{inv} = \begin{cases} x & , \operatorname{dacă} x \ge 0 \\ 2^{n}-1-|x|, \operatorname{dacă} x \le 0 \end{cases}$$

dezavantaj: $[+0]_{inv}$: |0|0...0| şi $[-0]_{inv}$: |1|1...1|

Codul complementar

$$x \in \mathbb{Z}, |x| < 2^{n-1}$$

$$x, \operatorname{dacă} x \ge 0$$

$$[x]_{\operatorname{compl}} = \begin{cases} x, \operatorname{dacă} x \ge 0 \\ 2^{n} - |x|, \operatorname{dacă} x < 0 \end{cases}$$

Obs.: dacă
$$x \le 0$$
, $[x]_{compl} = [x]_{inv} + 1$
dacă $x \ge 0$, $[x]_{compl} = [x]_{inv} = [x]_{dir}$

avantaj: $[+0]_{compl}$: |0|0...0|

nu e nr.: |1|0...0|

Intervale de reprezentare

```
n = 8 [-127, 127]

n = 16 [-32767, 32767]

n = 32 [-2 147 483 647, 2 147 483 647]

n = 64 [-9 223 412 376 694 775 807, +9 223 412 376 694 775 807]
```


$$\forall a,b \in [0,2^n), a \oplus b = \begin{cases} a+b & \text{, dacă } a+b < 2^n \\ a+b-2^n & \text{, dacă } a+b \geq 2^n \end{cases}$$

Reguli: dacă a și b au același semn \neq semnul $a \oplus b - \text{depășire}_{\mathbb{R}}$ $t_{n-1} \text{ se pierde (nu se păstrează în rezultat)} \times$

$$[x+y]_{\text{compl}} = [x]_{\text{compl}} \oplus [y]_{\text{compl}} \forall x, y \in \mathbb{Z}, \text{ a. î. } |x|, |y|, |x+y| < 2^{n-1}$$
$$[x]_{\text{compl}} \ominus [y]_{\text{compl}} = [x]_{\text{compl}} \oplus [-y]_{\text{compl}}$$

Convenția subunitară

 $n \in \{8,16,32,64\}$

bitul de semn

Coduri

$$x \in |\mathbf{R}, |x| < 1$$
 cu max. $n-1$ cifre după ","
$$x , \operatorname{dacă} x \ge 0 \qquad x , \operatorname{dacă} x \ge 0$$

$$[x]_{\operatorname{dir}} = \begin{cases} x , \operatorname{dacă} x \ge 0 \\ 1 + |x|, \operatorname{dacă} x \le 0 \end{cases}$$

$$2-2^{-n+1} - |x|, \operatorname{dacă} x \le 0$$

$$[x]_{\text{compl}} = \begin{cases} x, \text{ dacă } x \ge 0 \\ 2-|x|, \text{ dacă } x \le 0 \end{cases}$$
 Obs.: dacă $x \le 0$,
$$[x]_{\text{compl}} = [x]_{\text{inv}} + 2^{-n+1}$$
 dacă $x \ge 0$,
$$[x]_{\text{compl}} = [x]_{\text{inv}} = [x]_{\text{dir}}$$

Operații

$$\forall a,b\in[0,1), a\oplus b=$$

$$\begin{vmatrix} a+b & , \operatorname{dacă} a+b \leq 2 \\ a+b-2 & , \operatorname{dacă} a+b \geq 2 \end{vmatrix}$$

Reguli: dacă a și b au același semn \neq semnul $a \oplus b -$ depășire \bigcirc t_{n-1} se pierde (nu se păstrează în rezultat)

$$[x+y]_{\text{compl}} = [x]_{\text{compl}} \oplus [y]_{\text{compl}}$$

$$\forall x,y \in |\mathbf{R}, \text{ a. î. } |x|, |y|, |x+y| < 1 \text{ cu max. } n\text{-}1 \text{ cifre după ","}$$

$$[x]_{\text{compl}} \oplus [y]_{\text{compl}} = [x]_{\text{compl}} \oplus [-y]_{\text{compl}}$$

Reprezentări ale nr. reale

• se aproximează la nr. raționale

• pe k octeți (biți: 8, 16, 32 – cuvânt, 64 – dublu cuvânt)

Reprezentarea în virgulă fixă

- n biți
- $-2^{I} + 2^{-F} \le |x| \le 2^{I} 2^{-F}$
- Dezavantaj: pierderea cifrelor cele mai semnificative

bitul de semn

Reprezentarea în virgulă mobilă (flotantă)

• precizie mai mare (pt. nr. f. mari / f. mici)

- 0 0
- la depășire se pierd cifrele cele mai puțin semnificative
- $\forall x \in |\mathbf{R}, x = \pm 0, m * b^e$
 - *m* mantisa numărului
 - b bază de numerație
 - e exponent
- ! *b*=2

Mantisă subunitară

- <u>Def 1</u>: Un număr real x se scrie cu *mantisă subunitară* și exponent al unei baze b, dacă $x = \pm 0$, $m * b^e$
- <u>Def 2</u>: Un număr real x, $x \ne 0$, se scrie cu *mantisa subunitară normalizată*, dacă x este scris cu mantisă subunitară și exponent al bazei b și dacă are $loc: \frac{1}{b} \le m < 1$.

Ex: $0,12345678 * 10^4$ - este scris normalizat $0,004371 * 10^{-4}$ - nu este scris normalizat

Mantisa "supraunitară"

• Def 3: Un număr real $x, x \ne 0$, este scris cu *mantisa între 1* şi 2, dacă x se scrie în baza 2 sub forma : $x = \pm 1, m * 2^e$

• <u>Def 4</u>: Un număr real *x* este reprezentat în calculator în *virgulă mobilă* dacă pentru reprezentarea internă se utilizează scrierea lui *x* în baza 2 cu exponent și cu *mantisă subunitară* sau cu *mantisă între 1 și 2*.

Reprezentarea în virgulă mobilă

 $n \in \{32,64\}$ IEEE P754 Simplă precizie / Dublă precizie C pe 8/11 biți; M pe 23/52 Q – deplasament $\in \{127,1023\}$

Valori speciale

Valoare	S (semn)	C (caracteristica)	M (mantisa)
0_{+}	0	00	00
0-	1	00	00
-inf	1	11	00
+inf	0	11	00
NaN (not a	1 sau 0	11	valoare
number)			nenulă

Intervale de reprezentare

Precizie	Binar	Zecimal
	Valoare absolută	Valoare absolută
Simplă	$minim = 2^{-126}$	minim $\approx 10^{-38}$
	$maxim = (2-2^{-23})*2^{127}$	maxim $\approx 10^{38}$
Dublă	minim = 2^{-1022}	minim $\approx 10^{-308}$
	$\mathbf{maxim} = (2 - 2^{-52}) * 2^{1023}$	$maxim \approx 10^{308}$