Data

Huiping Cao

Outline

■ Types of data

■ Data quality

What is Data?

Tid	Refund	Marital Status	Taxable In-	Cheat
			come	
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Collection of data objects and their attributes
- Attributes: a property or characteristic of an object
- Objects: a collection of attributes
- Attribute values: numbers or symbols assigned to an attribute

Types of Attributes

- Nominal
 - Examples: ID numbers, eye colors, zip codes
- Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in tall, medium, short
- Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
 - Examples: temperature in Kelvin, length, time, counts

operties of Attribute values

The type of an attribute depends on which of the following properties it possesses:

- Distinctness: =, \neq
- Order: <, >
- Addition: +, −
- Multiplication: *, /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness, order
- Interval attribute: distinctness, order, addition
- Ratio attribute: all 4 properties

Discrete and Continuous Attributes

Discrete attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Discrete and Continuous Attributes

Continuous attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Types of Data Sets

- Record
 - Data matrix
 - Document data
 - Transaction data
- Graph
 - World Wide Web
 - Molecular structures
- Ordered
 - Spatial data
 - Temporal data
 - Sequential data
 - Genetic sequence data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable In-	Cheat
		Status	come	
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

■ Data object: point in a multi-dimensional space where each dimension represents a distinct attribute

Represented by an $m \times n$ matrix, where there are m rows, one for each object, and n columns, one for each attribute

×	У	temperature	humidity	soil moisture
10.23	5.27	15.22	27	1.2
12.65	6.25	16.22	22	1.1

■ Each document becomes a 'term' vector,

■ Each term is a component (attribute) of the vector,

■ The value of each component is the number of times the corresponding term occurs in the document.

- A short/long document: The Cable News Network is an American basic cable and satellite television channel that is owned by the Turner Broadcasting System division of Time Warner
- Remove common words (or stopwords). These words are referred to as stopwords. They include
 - Articles (a, an, the, · · ·)
 - Prepositions (in, on, of, · · ·)
 - Conjunctions (and, or, but, if, · · ·)
 - Pronouns (I, you, them, it, · · ·)
 - Possibly some verbs, nouns, adverbs, adjectives (make, thing, similar, etc.)
- After removing stop words: Cable News Network American basic cable satellite television channel owned Turner Broadcasting System division Time Warner

Stemming

- Cable News Network American basic cable satellite television channel owned Turner Broadcasting System division Time Warner
- Stemming: Replace all the variants of a word with the single stem of the word.
- Variants include plurals, gerund forms (ing-form), third person suffixes, past tense suffixes, etc.
- Example: connect, connects, connected, connecting, connection, etc.
- After stemming: cable news network american basic cable satellite television channel own turner broadcast system division time warner

- Form a matrix
- Example documents
 - doc1: cable news network american basic cable satellite television channel own turner broadcast system division time warner
 - doc2: Comcast Corporation, formerly registered as Comcast Holdings, is a U.S.-based multinational mass media company and is the largest broadcasting and largest cable company in the world by revenue
 - . . .
- Form a matrix

term	doc1	doc2	
broadcast	1	0	
cable	1	1	
comcast	0	1	
mass	0	1	
news	1	0	

Transaction Data

- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - Items: individual products that were purchased
 - A transaction: the set of products purchased by a customer during one shopping trip

Tid	Items	
1	Bread, Coke, Milk	
2	Beer, Bread	
3	Beer, Coke , Diaper, Milk	
4	Beer, Bread, Diaper , Milk	
5	Coke, Diaper, Milk	

Graph Data

■ Examples: generic graph and HTML Links

Ordered Data - Genomic Sequence Data

Ordered Data – Spatiotemporal Data

Average monthly temperature of land and ocean

Data Quality

- Impossible to prevent data quality issues
- Data mining focus on
 - (1) Data cleaning: detection and correlation of data quality problems;
 - (2) The use of algorithms that tolerate poor data quality
- Examples of data quality problems (related to data measurement and collection)
 - Noise and outliers
 - Missing values
 - Duplicate data

Noise

- Noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
- Reduce noise
- Robust algorithms to tolerate noise

Outliers

■ Data objects with characteristics that are considerably different than most of the other data objects in the data set

vs. Noise

■ Can be of users' interest

Missing Values

- Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects: a few objects with missing values
 - Estimate missing values (interpolation)
 - Ignore the missing values during analysis

Duplicate Data

- Major issue when merging data from heterogeneous sources
- Examples
 - Same person with multiple email addresses
- Two situations
 - Two objects are intrinsically one
 - Similar objects, but still different objects

References

Chapter 2: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar.

Textbook website: https://www-users.cse.umn.edu/~kumar001/dmbook/ index.php