CUBIC RECIPROCITY

Question: Does $X^3 \equiv p \pmod{q}$ have a solution?

Recall a similar question, $x^2 \equiv a \pmod{b}$, being the basis of quadratic reciprocity.

We used the Legendre symbol to determine whether $x^2 \equiv a \pmod{b}$ has a solution, assuming b is an odd prime.

History of cubic reciprocity

- Euler was the fist known mathematician to work on this idea.
 - The earliest proofs and theorems about cubic reciprocity were found dating back to around 1814, but it is unclear whether they were done by Gauss or Eisenstein.
- The first ever official proofs were published in 1844 by Eisenstein.

The Eisenstein Integer Ring

- The Eisenstein integer ring is often denoted as $\mathbb{Z}[\omega]$.
 - The ring is defined as

$$\mathbb{Z}[\omega] = \{ a + b\omega : a, b \in \mathbb{Z} \}.$$

The Eisenstein Integer Ring Cont.

The ω symbol is equal to $\frac{-1+\mathrm{i}\sqrt{3}}{2}$, which is equivalent to $e^{\frac{2\pi}{3}}$ as well. Also note that $\omega^3=1$.

Units of the Eisenstein integer ring

The units of the ring are $\pm 1, \pm \omega$, and $\pm \omega^2$

Primary in Eisenstein Ring

A number p is prime in $\mathbb{Z}[\omega]$ if gcd(p,3) = 1 and $p \equiv b \in \mathbb{Z}$ (mod 1 $-\omega^2$). In other words, $p \equiv \pm 2$ (mod 3) if gcd(N(a), 3) = 1, where N is the norm, then a times some unit is primary.

Norm Function

The norm function is defined as $N(a+b\omega)=a^2-ab+b^2$. This will always be congruent to 0 or 1 (mod 3).

Cubic residues

 $x^3 \equiv a \pmod{p}$: if this equation has an integer solution for a, then a is a cubic residue. Conversely, if it does not it is a cubic non-residue.

Sets of Residues

- (mod 7):0,1,2,3,4,5,6
- quadratic residues:0,1,4,2,2,4,1
 - cubic residues:0,1,1,6,1,6,6
 - quartic residues:0,1,2,4,4,2,1

Similarly to the Legendre symbol, $\left[\frac{m}{n}\right]_3 = 1$ if m is a cubic residue, and -1 if m is not a cubic residue. This is used under \pmod{n} and m and n are integers.

The Jacobi Symbol is a generalization of the Legendre Symbol, a is an integer and n is an odd integer then $(\frac{a}{n})$ is equal to the Legendre's of the prime factorization.

Cubic residues

Determining the cubic symbol can be difficult. Euler created some rules to apply when working with a prime $p \equiv 1 \pmod{3}$. p would also follow the form $p = a^2 + 3b^2$.

The Rules

•
$$\left[\frac{2}{p}\right]_3 = 1 \leftrightarrow 3|b|$$

•
$$\left[\frac{3}{a}\right]_3 = 1 \leftrightarrow 9|b \text{ or } 9|(a \pm b)$$

- $\left[\frac{5}{p}\right]_3 = 1 \leftrightarrow 15|b$, or 3|b and 5|a, or $15|(a\pm b)$, or $15|(2a\pm b)$
 - $[\frac{6}{n}]_3 = 1 \leftrightarrow 9|b \text{ or } 9|(a \pm 2b)$
- $[\frac{7}{p}]_3 = 1 \leftrightarrow 3|b$ and 7|a, or $21|(b\pm a)$, or $7|(4b\pm a)$, or 21|b, or $7|b(b\pm 2a)$

Let $h = a + b\omega$ be primary, a = 3m + 1 and b = 3n. Then

$$\left[\frac{\omega}{h}\right]_{3} = \omega^{-m-n}$$

$$\left[\frac{1-\omega}{h}\right]_{3} = \omega^{m}$$

$$\left[\frac{3}{h}\right]_{3} = \omega^{n}$$

If $a \equiv b \pmod{p}$, where p is prime, then

$$[\frac{a}{p}]_3 = [\frac{b}{p}]_3$$
$$[\frac{ab}{p}]_3 = [\frac{a}{p}]_3[\frac{b}{p}]_3$$
$$[\frac{\overline{a}}{\overline{p}}]_3 = [\frac{\overline{a}}{\overline{p}}]_3$$

$x^3 = a \pmod{p}$ has a solution in the Eisenstein Integers if and only if

 $[\frac{a}{b}]_3 = 1$.

Given c and d are integers and gcd(c,d) = gcd(d,3) = 1, then $\left[\frac{c}{d}\right]_3 = 1$.

Theorem: p and q are primary numbers in the Eisenstein Ring and $x^3 \equiv p \pmod{q}$ has a solution if and only if $x^3 \equiv q \pmod{p}$ has a solution.

The Law of Cubic Reciprocity (restatement of previous slide:)

Let a and b be relatively prime and primary in Eisenstein's integers. Then $\left[\frac{a}{b}\right]_3 = \left[\frac{b}{a}\right]_3$.

BY: KYLE AND MOOSE