Custom T_EX commands

Size-adaptive math

 (x)	parantheses

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

\absv{..} |x| absolute value

 $|x|^2$ absolute value squared

 $\begin{array}{lll} \texttt{\comm}\{\ldots\}\{\ldots\} & [x,y] & \text{commutator} \\ \texttt{\mbox{\comm}}\{\ldots\} & \langle x \rangle & \text{mean value} \\ \end{array}$

Braket Notation

 $\langle x $	bra
 $ x\rangle$	ket

\smallbraketop(3 arguments) $\langle x|y|z\rangle$ small matrix element

Special functions

 $\verb| deltaf{..}| \qquad \qquad \delta(x) \qquad \qquad \text{delta function}$

\thetaf{..} $\theta(x)$ theta function

 $\expf{...}$ $\exp(x)$ exponential function $\ensuremath{ef\{...\}}$ $\ensuremath{e^x}$ exponential function

 $\Re\{..\}$ Re(x) real part

 $\operatorname{Im}(x)$ imaginary part

Named states

\ketPsi $|\Psi
angle$

\ketpsi	$ \psi angle$	
\ketphi	arphi angle	
\ketup	$ \!\!\uparrow\rangle$	spin up
\ketdo	$ \!\downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	g angle	ground state
\kete	$ e\rangle$	excited state
\vac	$ { m vac}\rangle$	vacuum
Vestava		
Vectors		
\vecr	\mathbf{r}	
\vecrone	\mathbf{r}_1	
\vecrtwo	$\mathbf{r_2}$	
\vecrn	$\mathbf{r_N}$	
\vecri	$\mathbf{r_i}$	
\vecrj	$\mathbf{r_{j}}$	
\vecx	X	
\vecy	\mathbf{y}	
\vecz	${f z}$	
\vecxi	$\mathbf{x_i}$	
\vecxj	$\mathbf{x_j}$	
\veck	k	
\vecq	\mathbf{q}	
\vecp	p	
Differentiation		
	$\frac{\partial}{\partial x}$	partial differentiation

\laplace	$ abla^2$	laplace operator
Integration		
	$\int dx$	integral
\integralb(3 arguments)	$\int_{x}^{y} dz$	integral with boundaries
{}	$\int \frac{\mathrm{d}x}{y}$	integral with fraction
\intvol	$\int \! \mathrm{d}^3 r$	integral over r space
\intvolp	$\int \! \mathrm{d}^3 r'$	integral over r' space
\intvold	$\int\!\mathrm{d}^3r\int\!\mathrm{d}^3r'$	double integral over space
\intk	$\int \! \mathrm{d}^3 k$	integral over k space
\intkp	$\int \! \mathrm{d}^3 k'$	integral over k' space
\intkn	$\int \frac{\mathrm{d}^3 k}{(2\pi)^3}$	normalized integral over k space
\intkpn	$\int \frac{\mathrm{d}^3 k'}{(2\pi)^3}$	normalized integral over k' space
Special symbols		
\hc	h.c.	hermitian conjugate
\hamil	Ĥ	Hamilton operator
\hastobe	<u>!</u>	has to be
\eqhat	â	corresponds to, is equivalent
\id	1	identity matrix
Second quantization		
\aop	a	annihilation operator
\aopd	a^{\dagger}	creation operator
\bop	b	annihilation operator
\bopd	b^{\dagger}	creation operator
\cop	c	annihilation operator
\copd	c^{\dagger}	creation operator

\nop $n \qquad \text{number operator} \\ \text{\psiop} \qquad \hat{\psi} \qquad \text{field operator} \\ \text{\psiopd} \qquad \hat{\psi}^{\dagger} \\ \text{\psiOpd} \qquad \hat{\Psi} \\ \text{\psiOpd} \qquad \hat{\Psi}^{\dagger}$

Differences

\Dx Δx \Dy Δy \Dt Δt

Figures

\igopt{..}{..}
\ig{..}{..}
\figopt(4 arguments)
\fig(3 arguments)
\doublefigopt(8 arguments)
\doublefig(7 arguments)
\figref{..}