1 Einleitung

2 Vorbereitungsaufgaben

3 Theorie

4 Durchführung

5 Auswertung

Im Folgenden sind die aufgenommenen Messwerte und die aus diesen berechneten Größen vorwiegend tabellarisch aufgetragen. An entsprechender Stelle sind Erklärungen zu den Werten und Rechnungen gegeben.

5.1 Bestimmung eines Widerstandes mit der Wheatstonebrücke

Bei dieser Messung wurde der unbekannte Widerstand Wert 10 vermessen. Der am Potentiometer eingestellte Widerstand R_3 , der Quotient aus diesen und den nach ?? berechneten Widerständen R_4 , die jeweiligen Abgleichwiderstände R_2 und die mit Hilfe von ?? aus diesen berechneten Werte für R_x sind in ?? zu finden.

Widerstand	Widerstand	Widerstand	Widerstand
$R_2\left[\Omega\right]$	$R_3 [\Omega]$	$\frac{R_3}{R_4} \left[\Omega\right]$	$R_x\left[\Omega\right]$
332,000	421,000	0.723 ± 0.004	240 ± 1
664,000	266,000	0.361 ± 0.002	240 ± 1
1000,000	195,000	0.241 ± 0.001	241 ± 1

Tabelle 1: Werte der Messung an der Wheatstonebrücke

Der Mittelwert der errechneten Werte für R_x ergibt sich aus den Messwerten zu:

$$\langle R_x \rangle = (240.4 \pm 0.7) \Omega$$

5.2 Bestimmung von Kapazitäten mit einer Kapazitätsmessbrücke

In den zwei nachfolgenden Abschnitten werden die Kapazitäten einer idealen und einer realen Kapazität mit Hilfe einer Kapazitätsmessbrücke bestimmt.

5.2.1 Bestimmung einer idealen Kapazität

Aus den in Tabelle 2 gelisteten Messwerten für die Abgleichkapazitäten C_2 , den am Potentiometer eingestellten Widerständen R_3 und den mit ?? aus diesen bestimmten R_4

wurden die ebenfalls in Tabelle 2 dargestellten unbekannten Kapazitäten C_x (Wert 3) unter Verwendung von ?? bestimmt.

Kapazität	Widerstand	Widerstand	Kapazität
$C_2 [\mathrm{nF}]$	$R_3 [\Omega]$	$\frac{R_3}{R_4} \left[\Omega\right]$	$C_x [nF]$
994	705	$2,37 \pm 0,01$	420 ± 2
750	640	$1,763 \pm 0,009$	425 ± 2
597	589	$1,423 \pm 0,007$	420 ± 2

Tabelle 2: Werte der Messung einer idealen Kapazität an der Kapazitätsmessbrücke

Als Mittelwert der unbekannten Kapazität C_x erhält man hieraus:

$$\langle C_x \rangle = (242 \pm 1) \,\mathrm{nF}$$

5.2.2 Bestimmung einer realen Kapazität

Für die Bestimmung einer realen Kapazität (Wert 9) wird, anderes als bei der einer idealen Kapazität, ein Stellglied $R_2 = (500 \pm 15) \Omega$ benötigt. Die anderen bekannten Größen sind analog zu Abschnitt 5.2.1 zusammen mit den aus diesen berechneten unbekannten Größen, die Kapazität C_x bestimmt durch ?? und deren Wirkwiderstand R_x bestimmt durch ?? in Tabelle 3 eingetragen.

Kapazität	Widerstand	Widerstand	Kapazität	Widerstand
$C_2 [nF]$	$R_3 [\Omega]$	$\frac{R_3}{R_4} \left[\Omega\right]$	$C_x [nF]$	$R_x\left[\Omega\right]$
994,000	632,000	$1,704 \pm 0,009$	584 ± 3	852 ± 4
750,000	586,000	$1,405 \pm 0,007$	534 ± 3	703 ± 4
597,000	561,000	$1,269 \pm 0,006$	470 ± 2	635 ± 3

Tabelle 3: Werte der Messung einer idealen Kapazitätan der Kapazitätsmessbrücke

Die Mittelwerte der unbekannten Größen C_x und R_x ergeben sich somit zu:

$$\langle C_x \rangle = (529 \pm 2) \,\text{nF} \quad \text{und} \quad \langle R_x \rangle = (730 \pm 2) \,\Omega$$

5.3 Bestimmung von Induktivitäten

Nachfolgend wird eine reale Induktivität (Wert 16) zunächst mit Hilfe einer Induktivitätsmessbrücke und anschließend mit einer Maxwellbrücke vermessen. Bei beiden Untersuchungen wird ein Stellglied $R_2 = 1000 \,\Omega$ verwendet.

5.3.1 Bestimmung Mittels einer Induktivitätsmessbrücke

Die verwendeten Abgleichinduktivitäten L_2 , der am Potentiometer eingestellten Widerstand R_3 sowie die Quotienten aus diesen und den nach ?? berechneten Widerständen R_4

und die mit Hilfe von ?? und ?? berechneten unbekannten L_x und R_x sind in Tabelle 4 zu finden.

Induktivität	Widerstand	Widerstan	Induktivitä	Widersta
$L_2 [\mathrm{mH}]$	$R_3\left[\Omega\right]$	$\frac{R_3}{R_4} \left[\Omega \right]$	$L_x [\mathrm{mH}]$	$R_x\left[\Omega\right]$
20,1	305	0.437 ± 0.002	$8,78 \pm 0,04$	436 ± 13
27,5	321	$0,471 \pm 0,002$	$12,94 \pm 0,06$	471 ± 14

Tabelle 4: Werte der Messung einer realen Induktivität mit einer Induktivitätsmessbrücke

Die aus diesen Werten bestimmten Mittelwerte der Unbekannten Größen sind:

$$\langle L_x \rangle = (10,86 \pm 0,04) \,\text{mH} \quad \text{und} \quad \langle R_x \rangle = (454 \pm 14) \,\Omega$$

5.3.2 Bestimmung Mittels einer Maxwellbrücke

Bei der Bestimmung der Induktivität L_x und deren Wirkwiderstand R_x werden nur der am Potentiometer eingestellte Widerstand $R_3 = 210\,\Omega$, der mit ?? daraus bestimmte Widerstand $R_4 = 793\,\Omega$ und die verwendete Kapazität $C_4 = 994\,\mathrm{nF}$ benötigt. Mit ?? und ?? und dem Stellglied R_2 erhält man:

$$L_x = (0.209 \pm 0.006) \,\mathrm{H} \quad \text{und} \quad R_x = (265 \pm 11) \,\Omega$$

5.4 Bestimmung der Nullfrequenz einer frequenzabhängigen Messbrücke

5.4.1 Bestimmung des Klirrfaktors eins Frequenzgenerators

5.5 Fehlerrechnung

6 Diskussion