that for the matrix A one of the conditions (a), (b) fails; we will show that ts a matrix $B \in R_m$ which is not similar to A and such that Ann(B) = Ann(A), $ext{0} \in R[x]$ be a monic absolutely irreducible polynomial, $ext{deg } G(x) = ext{g}, x_A(x) = 0$. Denote by $ext{N}_k(G)$ the $ext{g} k \times ext{g} k$ matrix of the form

$$N_k(G) = \begin{pmatrix} S(G) & E & 0 & \dots & 0 \\ 0 & S(G) & E & \dots & E \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & \dots & & S(G) \end{pmatrix}, E = E_{g \times g},$$

a generalized Jordan block. Then there exist n_1, \ldots, n_t such that

$$\bar{A} \approx \text{Diag}(N_{n_1}(\bar{G}), ..., N_{n_t}(\bar{G})),$$

s of generality we may assume that

$$\overline{A} = \operatorname{Diag}(N_{n_1}(\overline{G}), \ldots, N_{n_t}(\overline{G})), \text{ where } n_1 \leqslant n_2 \leqslant \ldots \leqslant n_t.$$
(26)

$$N = \operatorname{Diag}(N_{n_1}(G), \ldots, N_{n_t}(G)) \in R_m.$$
 (27)

have

$$A = N + V$$
, where $V \in I_m$. (28)

matrix C with elements from the ideal (0:J) and put

$$D = \text{Diag}(C, 0, ..., 0)_{m \times m}, B = A + D.$$
 (29)

sume that $F(x) \in R[x]$ is a monic polynomial such that $\overline{F}(x) = \overline{G}(x)q$, $q > n_1$, F(B) = 0.

e polynomial F(x) is of the form F(x) = G(x)q + H(x), where $H(x) \in J[x]$, there equations H(B) = H(A) and F(B) = G(B)q + H(A). It remains to show that

definition of the matrix D and Eqs. (27)-(29) it is easy to show that for every

$$B^{i} = (A+D)^{i} = A^{i} + \sum_{s=0}^{i-1} A^{s} D A^{i-1-s} = A^{i} + \sum_{s=0}^{i-1} N^{s} D N^{i-1-s} = A^{i} + D_{i}.$$
 (30)

the entries on the intersection of the first g rows with the first n_1g to the ideal (0:J), and the remaining entries are zero. On the other hand see that in the matrix G(B) the entries in the first g columns lie in the ideal have $G(B)(A + D)^{i} = G(B)A^{i}$ for $i \ge 1$. It is clear, therefore, that

$$G(B)^{q} = G(B)G(A)^{q-1}.$$
 (31)

 $\geq n_1$ all elements in the first n_1g columns of the matrix $G(A)^{q-1}$ lie in the 1) and by the above mentioned properties of the matrices D_i it follows that $(A)^{q-1}$ for $i \geq 1$. Therefore $G(B)G(A)^{q-1} = G(A)^q$ and it now follows from (31) A/q. This concludes the proof of the Lemma.

ose the matrix C in (29) so that B is not similar to A. For example, we might with nonzero trace. Then the trace of B is different from the trace of A is clear that we still have $\overline{B} \approx \overline{A}$.

to show that Ann(B) = Ann(A). Since $\text{Ann}(B) \cap J[x] = \text{Ann}(A) \cap J[x]$ it suffact if (24) holds then F(B) = 0. This follows from the preceding Lemma. Insert from (23) that if $\chi_{\overline{A}}(x) = \overline{G}(x)^n$ the minimal polynomial F(x) of A satisfies resone $q \in N$. If A does not satisfy condition (a) the degree of F(x) is reger than the degree of a minimal polynomial of the matrix A, and thus by (26) where the satisfy condition (b) then $n_1 < n_t$ and again $q > n_1$ since $\overline{F}(x)$ is a minimal polynomial of A which equals $\overline{G}(x)^n t$. Thus the conditions of the field for F(x), and F(B) = 0. This concludes the proof of Theorem 8.

t in the introduction we called a polynomial $F(x) \in R[x]$ a strong invariant matrices A, B in the class $\mathcal{V}(F, R_m)$ of all matrices $A \in R_m$ satisfying $F(A) = A \approx B$ is equivalent to $A \approx B$.