GENERACIÓN DISTRIBUIDA RENOVABLE

DEDICATORIA

"A todos aquellos que quieran aprender parte de la energía renovable distribuida en un país joven como Argentina donde está todo por hacerse"

"La naturaleza sobrevivió usando la energía del sol. La raza humana por no saber usarla la destruyó."

"Conocer las leyes de la generación de electricidad, es también conocer las leyes de la génesis de los seres vivos"

INDICE GENERAL	Pag
Capítulo 1. Evolución de la generación distribuida en Cba	7
Capítulo 2. Fuentes renovables y sustentables de energías	
2.1. La radiación solar	17
2.2. Coordenadas polares y celestes	20
2.3. Efecto fotovoltaico	28
2.4. Parámetros de Paneles Fotovoltaicos	40
2.5. Impacto ambiental utilizando energía solar	55
2.6. Física de la atmósfera, el viento	57
2.7. Principios de generación de eoloelectricidad	63
2.8. Impacto ambiental utilizando energía eólica	66
2.9. Generación de energía hidroeléctrica	67
2.10. Impacto ambiental utilizando energía hidráulica	75
2.11. Biomasa	75
2.12. Introducción a la valorización energética de los residuos	79
2.13. Impacto ambiental generando energía de la biomasa	87
Actividades	91
Capítulo 3. Análisis de las redes en baja tensión y sus parámetros	
3.1. Red de distribución en baja tensión	92
3.2. Transformadores de distribución	95
3.2.1. Características constructivas	95
3.2.2. Características técnicas	96
3.3. Efectos de la polución eléctrica sobre los transformadores	98
3.4. Normas de calidad de energía en el servicio público	102

3.5. Ensayos de transformadores	104
3.6. Reconectadores automáticos de Media Tensión	110
3.7. Celdas compactas de Media Tensión	112
Actividades	114
Capítulo 4. Inversores para energía renovable	
4.1. Clasificación de inversores	115
4.2. Arquitectura de inversores	117
4.2.1. Push-Pull	117
4.2.2. Inversor en medio puente	117
4.2.3. Inversor en puente completo	118
4.2.4. Inversor de puente trifásico	119
4.3. Inversor Off-Grid	120
4.4. PWM	121
4.5. Reguladores y controladores	125
4.5.1. Regulador de tensión	125
4.5.2. Controlador MPPT	126
4.6. Inversor Grid Tied	127
4.7. Sistemas de control	129
4.7.1. Sistema de control y sincronismo de la intensidad de corrier	nte 130
4.7.2. Sistema de detección de aislamiento	131
4.7.3. EI MPPT	132
4.7.4. Tipo de aislamiento galvánico	134
4.8. Paralelismo con la red de BT en inversores grid tied	135
4.9. Tipología de inversores	135
4.9.1. Inversor centralizado	135
4.9.2. Inversor en cadena	136
4.9.3 Cadenas múltiples de inversor	136

4.9.4. Micro inversores	137
4.9.5. Inversor hibrido	137
4.9.6. Estrategia de control de impedancia	137
4.9.7. Impacto de los inversores conectados a red	138
4.10. Ciclo de histèresis en continua de inversores	138
4.11. Convertidor Interface e Inversor eólico	139
4.12. Algoritmo del punto de máxima potencia MPP	140
4.13. Thévenin y Norton -Respuesta en frecuencia	144
Actividades	152
Capitulo 5. Máquinas a turbina para energia renovable	
5.1. Mini Turbinas eólicas	153
5.1.1 Rotor	153
5.1.2 Torre	159
5.1.3 Alternador	161
5.1.4. Protección contra descargas atmosféricas	164
5.2. Micro Turbinas hidrāulicas	167
5.2.1. Turbinas de corriente de río	167
5.2.2. Turbinas para pequeñas cascadas	168
5.2.3. Turbina de ducto o cañería	170
5.3. Instalación para una picocentral hidráulica	172
Actividades	175
Capitulo 6. Distintas energias renovables disponibles	
6.1. Contexto geográfico y climático de Córdoba	176
6.2. Energia de Biomasa	178
6.3. Energía Eólica	181
6.4 Energia Hidrica	184

6.5. Energia Solar	185
6.5.1. Características de Radiación en Córdoba	185
6.5.2. Hora Solar Pico (H.S.P.)	186
6.5.3. Sombras sobre los paneles	190
6.6. Distribución de Media Tensión en Córdoba	195
6.7. Installaciones existentes fotovoltalicas	199
Actividades	201
Capitulo 7. Tecnologia y seguridad en las instalaciones	
7.1. Paneles fotovoltalcos estándar	202
7.2. Paneles fotovoltalcos para alta temperatura	203
7.3. Modelos especiales	207
7.3.1. Paneles autorregulados	207
7.3.2. Paneles con microinversor	208
7.3.3. Módulo laminado	208
7.4. Paneles fotovoltalcos para Isla flotante	209
7.5. Paneles fotovoltalcos bifaciales	210
7.6. Controladores de flujo de potencia	214
7.6.1. Controlador de flujo de potencia en alterna	214
7.6.2. Controlador de flujo de potencia en continua	215
7.7. Efectos negativos de los potenciales en paneles fotovoltaicos	218
7.7.1. A.P.I.D.	218
7.7.2. T.C.O.	220
7.7.3. Corrientes de derivación capacitiva	221
7.7.4. Resistencia de alsiación RISO	222
7.7.5. AFCI	223
7.8. Cajas de conexión y dispositivos de conexión	227
7.9 Inversores	228

7.10. Reguladores PWM y Controladores MPPT	231
7.11. Orientación Este – Oeste de los paneles fotovoltalcos	232
7.12. Cables para uso solar y su cálculo	235
7.13. Fusibles de CC	237
7.14. Interruptor Automático	238
7.15. Interruptor y Relé Diferencial	240
7.16. Dispositivos de desconexión automática	243
7.17. Puesta a tierra (Pat)	244
7.18. Protecciones contra sobretensiones y descargas atmosféricas	250
7.19. Tecnologila de las baterias	253
7.20. Monitor y balanceador de baterias solares	266
7.21. Soportes, accesorios y seguidores	268
7.22. Centrales eléctricas en base a energia renovable	274
7.23. Bombeo solar de agua	277
7.24. Relê de pêrdida de red	290
7.25. Firmware y software	292
7.26. Medidas de seguridad personal y colectiva	293
Actividades	294
Capitulo 8. Sistemas de medición y facturación	
8.1 Medidores de energía eléctrica	295
8.2. NET METERING	303
8.3. NET BILLING	303
8.4. Feed In Tariff	304
8.5. Formas de conexión a la red de distribución	305
8.6. Análisis de energias y sus costos	307
8.7. Análisis medio ambiental y eficiencia energética	312

8.8. Factibilidad Técnica y Económica	314
8.9. Calculador solar de ahorro de energía	317
8.10. Ley nº 27.424 de Generación Renovable Distribulda	326
8.11. Tramites a la Nación	328
Capitulo 9. Diseño de instalaciones y mediciones	
9.1. Diseño de una instalación fotovoltalca en Isla	346
9.2. Diseño de una instalación fotovoltalca conectada a redipública	358
9.3. Diseño de instalaciones eólicas	387
9.4. Diseño de una instalación minihidráulica	394
BIBLIOGRAFÍA	396

En la contratapa dice lo siguiente:

Dante Javier Pedraza es profesor Magister en Energías Renovables y Medio Ambiente. Miembro de distintos organismos normativos desde hace años y de otras entidades nacionales e internacionales. Trabaja en pos de la seguridad eléctrica y la eficiencia energética de acuerdo a la reglamentación de la Asociación Electrotécnica Argentina (A.E.A.) y ley nacional Régimen de Fomento a la Generación Distribuida de Energía Renovable Integrada a la Red Pública.

Docente en distintos niveles educativos, y coautor de ley de seguridad eléctrica.

El autor presenta en este libro un estudio completo de las energías renovables integradas a la red de distribución eléctrica de acuerdo a la ley nacional n° 27.424 en potencia hasta 2 MW.

Se describe y analiza el principio de funcionamiento de las cuatro energías más importante, su eficiencia y menor impacto ambiental. Se desarrolla los métodos de construcción y cálculo de los sistemas de generación de energías limpias.

Se muestran diversas instalaciones realizadas de generación de energía eléctrica con mediciones y gráficos mediante analizadores de energía. Se explican todos los "trámites a distancia" técnicos legales entre la secretaria de Energía Renovable del Ministerio de Desarrollo Productivo de la Nación y las distintas distribuidoras de las provincias.

Este libro constituye un gran aporte a la bibliografía de las materias referidas al tema de la generación distribuida, en las carreras, capacitaciones y otras que ofrecen y empiezan a ofrecer las distintas entidades educativas nacionales y provinciales.

Diseño gráfico - Pedraza Oriana