Yang-Mills Replacement

Yakov Berchenko-Kogan

Massachusetts Institute of Technology

14 November, 2015

Schwarz Alternating Method

Example

Let $f: [0,1] \to \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

- ► By locally replacing *f* with a harmonic function, we get a global harmonic function in the limit.
- ► Colding and Minicozzi (2008) locally replace maps $u \colon \Sigma^2 \to M$ with harmonic maps, with bounds.
- ▶ I showed that one can similarly locally replace connections on 4-manifolds with Yang-Mills connections, with bounds.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - ► They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
 - ► Taubes, Stable Topology (1989).
 - Donaldson invariants.
 - Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.
- Yang-Mills replacement has parallels with Yang-Mills gradient flow.
 - Ability to choose balls gives more control.

Harmonic Maps and Yang-Mills Connections

Harmonic maps

$$u \colon \Sigma \to M \subseteq \mathbb{R}^N$$

u is an \mathbb{R}^N -valued 0-form on Σ .

du is an \mathbb{R}^N -valued 1-form.

Energy =
$$\frac{1}{2} \int_{\Sigma} |du|^2$$

Invariant under conformal change of metric if dim $\Sigma=2$

$$(\Delta u)^{\top} = (d^*du)^{\top} = 0.$$

Yang-Mills connections

Connection A on a principal G-bundle $P \rightarrow X$

Locally, A = d + a, a is a g-valued 1-form on X.

$$F_A = da + \frac{1}{2}[a \wedge a]$$
 is a \mathfrak{g} -valued 2-form.

Energy =
$$\frac{1}{2} \int_X |F_A|^2$$

Invariant under conformal change of metric if $\dim X = 4$

$$d_A^*F_A=0.$$

The Dirichlet Problem

- ➤ To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- ▶ On B^4 , for "small" boundary data A_{∂} on ∂B^4 , we must solve:

$$d_A^* F_A = 0$$
 on B^4
 $i^* A = A_\partial$ on ∂B^4

Solved by Marini (1992) for smooth boundary values.

▶ Our boundary values are $L^2_{1/2}(\partial B^4)$, and solutions are $L^2_1(B^4)$.

Local Yang-Mills Replacement

Theorem (YBK)

- For any $L_1^2(B^4)$ low-energy connection A, there exists a low-energy $L_1^2(B^4)$ Yang-Mills connection B, unique up to gauge, such that $i^*A = i^*B$.
- ▶ There are \tilde{A} and \tilde{B} , gauge equivalent by an $L_2^2(B^4)$ gauge transformation to A and B, respectively, such that

$$\left\| \tilde{A} - \tilde{B} \right\|_{L_1^2(B^4)}^2 \le C \left(\|F_A\|_{L^2(B^4)}^2 - \|F_B\|_{L^2(B^4)}^2 \right).$$

- ► The linear interpolation between A and B has monotone decreasing energy.
 - Equality if and only if A is already Yang-Mills.

Linearization

To solve the Dirichlet problem, we want to invert the map $A\mapsto (d_A^*F_A,i^*A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u \colon B^2 \to M \subseteq \mathbb{R}^N$	Connection $A=d+a$ on a principal G -bundle $P o B^4$
u is an \mathbb{R}^N -valued 0-form.	a is a \mathfrak{g} -valued 1-form.
$(d^*du)^\top$	$d_A^*F_A$
Linearize near $u = constant$.	Linearize near $a = 0$.
$ extstyle d^*d\phi=\Delta\phi$	$d^*d\alpha \neq \Delta\alpha = d^*d\alpha + dd^*\alpha$
$\phi\mapsto (d^*d\phi,i^*\phi)$ is invertible.	$\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is not invertible.
	Solution: Can get $d^*\alpha = 0$ by choosing a good gauge.

Gauge Fixing

Gauge transformations, that is, automorphisms of $P \to B^4$, act on connections on B^4 .

Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK)

Any low-energy $L_1^2(B^4)$ connection A is gauge equivalent to an $L_1^2(B^4)$ connection $\tilde{A}=d+\tilde{a}$ such that:

- Ã is in Dirichlet Coulomb gauge, that is,
 - $ightharpoonup d^* \tilde{a} = 0$ on B^4 , and
 - $d_{\partial B^4}^* i^* \tilde{a} = 0$ on ∂B^4 .
- $\| \tilde{a} \|_{L^2_1(B^4)} \le C \| F_A \|_{L^2(B^4)}.$

The boundary condition $d_{\partial B^4}^*i^*\tilde{a}=0$ is preserved under gauge transformations satisfying Dirichlet boundary conditions.

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

- ▶ The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.
- Gauge fixing lets us assume d*α = 0.
 The linearization is now equal to α → (Δα, i*α).
- In the linearization is now equal to $\alpha \mapsto (\Delta \alpha, I^* \alpha)$
- α → (Δα, i*α) is still not invertible on 1-forms.
 Dirichlet boundary conditions for the Hodge Laplacian require
 - specifying $i^*\alpha$ and $i^*d^*\alpha$.
 - $\qquad \qquad \alpha \mapsto (\Delta \alpha, i^* \alpha, i^* d^* \alpha)$ is invertible, but only for $\alpha \in L^2_2(B^4)$.
- ▶ Restricting to ker d^* gives an isomorphism

$$(d^*d,i^*)\colon L^2_2(B^4)\cap\ker d^* o L^2(B^4)\cap\operatorname{range}(d^*) imes L^2_{3/2}(\partial B^4).$$

But in the regularity we want,

$$(d^*d, i^*)$$
: $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4) \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4)$

is **not** injective.

▶ Solution: Use a target space slightly larger than $L_{-1}^2(B^4)$.

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

▶ The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

$$L_{1}^{2}(B^{4})^{0} = \{\alpha \in L_{1}^{2}(B^{4}) \mid \alpha|_{\partial B^{4}} = 0\}$$

$$\downarrow \qquad \qquad \qquad \downarrow^{2}$$

$$L_{1}^{2}(B^{4})^{\mathrm{rel}} = \{\alpha \in L_{1}^{2}(B^{4}) \mid i^{*}\alpha = 0\}$$

$$L_{-1}^{2}(B^{4})^{\mathrm{rel}}$$

$$L_{-1}^{2}(B^{4})^{\mathrm{rel}}$$

- ▶ d^*d is bounded as an operator $d^*d: L_1^2(B^4) \to L_{-1}^2(B^4)$.
- ▶ d^*d is still bounded as d^*d : $L_1^2(B^4) \to L_{-1}^2(B^4)^{\mathrm{rel}}$.
- $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

$$(d^*d,i^*)\colon L^2_1(B^4)\cap\ker d^*\to L^2_{-1}(B^4)^{\mathrm{rel}}\cap\mathrm{range}(d^*)\times L^2_{1/2}(\partial B^4).$$

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_{\Delta}^* F_{\Delta}, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

▶ The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

$$(d^*d,i^*)\colon L^2_1(B^4)\cap\ker d^*\to L^2_{-1}(B^4)^{\mathrm{rel}}\cap\mathrm{range}(d^*)\times L^2_{1/2}(\partial B^4).$$

- ▶ Problem: $d_A^*F_A$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).

 - ▶ Let π_{d^*} be the $L^2(B^4)$ -projection to range (d^*) . ▶ π_{d^*} extends to a bounded operator $L^2_{-1}(B^4)^{\mathrm{rel}} \to L^2_{-1}(B^4)^{\mathrm{rel}}$.
 - ▶ The linearization of $A \mapsto (\pi_{d^*} d_A^* F_A, i^* A)$ at the trivial connection is $(\pi_{d^*} d^* d\alpha, i^*\alpha) = (d^* d\alpha, i^*\alpha)$.
- ▶ Given A_{∂} small in the $L^2_{1/2}(\partial B^4)$ norm, we can solve

$$\pi_{d^*} d_A^* F_A = 0$$
 on B^4
 $i^* A = A_\partial$ on ∂B^4

▶ We also have $d^*a = 0$ and that a is small in $L_1^2(B^4)$.

Concluding that the connection minimizes energy

- ▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.
- We want to conclude that $d_B^* F_B = 0$.
- ▶ In higher regularity $b \in L_2^2(B^4)$, given $\pi_{d^*}d_B^*F_B = 0$, we can prove an inequality of the form

$$\|d_B^*F_B\|_{L^2(B^4)} \le C \|b\|_{L^4(B^4)} \|d_B^*F_B\|_{L^2(B^4)}.$$

- ▶ Conclude that $d_B^*F_B = 0$ as long as $||b||_{L^4(B^4)}$ is small.
- ▶ This argument fails at $b \in L_1^2(B^4)$ regularity.
- ► Instead, we directly show that *B* locally minimizes energy and is thus Yang-Mills, using the inequality

$$||A - B||_{L_1^2(B^4)}^2 \le C \left(||F_A||_{L^2(B^4)}^2 - ||F_B||_{L^2(B^4)}^2 \right).$$

▶ The inequality holds even if B only satisfies $\pi_{d^*}d_B^*F_B = 0$, along with assumptions of small energy, matching on the boundary, and Dirichlet Coulomb gauge.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold \boldsymbol{X} to obtain a global Yang-Mills connection in the limit.

Bubbling

- ► Yang-Mills replacement requires small energy on each ball.
- ▶ We can guarantee this initially by choosing small enough balls.
- ➤ Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Potential solution: Moving energy costs energy.

$$\left\| \tilde{A} - \tilde{B} \right\|_{L^{2}_{1}(B^{4})}^{2} \leq C \left(\|F_{A}\|_{L^{2}(B^{4})}^{2} - \|F_{B}\|_{L^{2}(B^{4})}^{2} \right).$$

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold \boldsymbol{X} to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

Differences must go to zero by

$$\left\| \tilde{A} - \tilde{B} \right\|_{L^{2}_{t}(B^{4})}^{2} \leq C \left(\|F_{A}\|_{L^{2}(B^{4})}^{2} - \|F_{B}\|_{L^{2}(B^{4})}^{2} \right).$$

- Not strong enough to guarantee convergence.
- ► Can still use weak subsequence convergence.
 - ► The limiting global Yang-Mills connection will not depend continuously on the initial connection.
- Łojasiewicz inequality.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- ▶ Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

- ► Global Yang-Mills replacement cannot be continuous in the initial data.
 - Might be continuous if the initial data is below all non-minimal critical points.

Thank You

Acknowledgments

- ► Tom Mrowka
- National Science Foundation
- Department of Defense, NDSEG

Selected References

- Tobias H. Colding and William P. Minicozzi, II, *Width and finite extinction time of Ricci flow*, Geom. Topol. **12** (2008), no. 5, 2537–2586. MR 2460871 (2009k:53166)
- Antonella Marini, *Dirichlet and Neumann boundary value problems for Yang-Mills connections*, Comm. Pure Appl. Math. **45** (1992), no. 8, 1015–1050. MR 1168118 (93k:58059)
- Karen K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42. MR 648356 (83e:53035)

Towards Global Yang-Mills Replacement Bonus Slide

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Discontinuous normal components

- ▶ Only the tangential components of the replacement match the original connection on ∂B^4 .
- ▶ The normal derivative of the normal component of the new connection is not $L^2(X)$ across ∂B^4 .
- After local Yang-Mills replacement, the global connection is no longer $L_1^2(X)$.
- ▶ Solution: With a different choice of gauge on a slightly larger ball, the connection becomes $L_1^2(X)$.