5.250 maximum

DESCRIPTION LINKS GRAPH AUTOMATON

Origin **CHIP**

Constraint maximum(MAX, VARIABLES)

Synonym max.

Arguments MAX : dvar

: collection(var-dvar)

Restrictions |VARIABLES| > 0

required(VARIABLES, var)

Purpose MAX is the maximum value of the collection of domain variables VARIABLES.

Example $(7,\langle 3,2,7,2,6\rangle)$ $(1,\langle 0,0,1,0,1\rangle)$

> The first maximum constraint holds since its first argument MAX = 7 is fixed to the maximum value of the collection (3, 2, 7, 2, 6).

Typical |VARIABLES| > 1

range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

- All occurrences of two distinct values of VARIABLES.var can be swapped.
- One and the same constant can be added to MAX as well as to the var attribute of all items of VARIABLES.

Arg. properties

- Functional dependency: MAX determined by VARIABLES.
- Aggregate: MAX(max), VARIABLES(union).

Usage In some project scheduling problems one has to introduce dummy activities that correspond for instance to the completion time of a given set of activities. In this context one can use

the maximum constraint to get the maximum completion time of a set of tasks.

Note that maximum is a constraint and not just a function that computes the maximum value of a collection of variables: potential values of MAX influence the variables of VARIABLES, and reciprocally potential values that can be assigned to variables of VARIABLES influence

MAX.

The maximum constraint is called max in JaCoP (http://www.jacop.eu/).

Remark

Algorithm

A filtering algorithm for the maximum constraint is described in [27].

The maximum constraint is entailed if all the following conditions hold:

- 1. MAX is fixed.
- 2. At least one variable of VARIABLES is assigned value MAX.
- All variables of VARIABLES have their maximum value less than or equal to value MAX

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for maximum: domains 0..n

Solution density for maximum

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	1	1	1	1	1	1	1
	1	3	7	15	31	63	127	255
	2	5	19	65	211	665	2059	6305
	3	-	37	175	781	3367	14197	58975
	4	-	-	369	2101	11529	61741	325089
	5	-	-	-	4651	31031	201811	1288991
	6	-	-	-	-	70993	543607	4085185
	7	-	-	-	-	-	1273609	11012415
	8	-	-	-	-	-	-	26269505

Solution count for maximum: domains 0..n

Solution density for maximum

Parameter value as fraction of length

Solution density for maximum

Parameter value as fraction of length

Systems

max in Choco, max in Gecode, max in JaCoP, maximum in MiniZinc, maximum in SICStus.

See also common keyword: minimum (order constraint).

comparison swapped: minimum.

generalisation: maximum_modulo (variable replaced by variable mod constant).

implied by: or.

implies: between_min_max, in.

soft variant: open_maximum(open constraint).

specialisation: max_n (maximum or order n replaced by absolute maximum).

uses in its reformulation: tree_range.

Keywords characteristic of a constraint: maximum, automaton, automaton without counters,

reified automaton constraint.

constraint arguments: reverse of a constraint, pure functional dependency. **constraint network structure:** centered cyclic(1) constraint network(1).

constraint type: order constraint.

filtering: glue matrix, arc-consistency, entailment.

modelling: balanced assignment, functional dependency.

Cond. implications maximum(MAX, VARIABLES)

with first(VARIABLES.var) < MAX and last(VARIABLES.var) < MAX implies highest_peak(HEIGHT, VARIABLES).

```
Arc input(s) VARIABLES

Arc generator CLIQUE→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) V ( variables1.key = variables2.key, variables1.var > variables2.var )

Graph property(ies) ORDER(0, MININT, var) = MAX
```

Graph model

We use a similar definition that the one that was utilised for the minimum constraint. Within the arc constraint, we replace the comparison operator < by >.

Parts (A) and (B) of Figure 5.539 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **ORDER** graph property, the vertex of rank 0 (without considering the loops) of the final graph is outlined with a thick circle.

Figure 5.539: Initial and final graph of the ${\tt maximum}$ constraint

Automaton

Figure 5.540 depicts the automaton associated with the maximum constraint. Let VAR_i be the i^{th} variable of the VARIABLES collection. To each pair (MAX, VAR_i) corresponds a signature variable S_i as well as the following signature constraint: (MAX $> VAR_i \Leftrightarrow S_i = 0$) \land (MAX $= VAR_i \Leftrightarrow S_i = 1$) \land (MAX $< VAR_i \Leftrightarrow S_i = 2$).

Figure 5.540: Counter free automaton of the maximum constraint

Figure 5.541: Hypergraph of the reformulation corresponding to the automaton of the maximum constraint

Figure 5.541 depicts a second counter free non deterministic automaton associated with the maximum constraint, where the argument MAX is also part of the sequence passed to the automaton.

Figure 5.544 depicts a third deterministic automaton with one counter associated with the maximum constraint, where the argument MAX is unified to the final value of the counter.

Figure 5.542: Counter free non deterministic automaton of the $\max \max(\text{MAX}, \text{VARIABLES})$ constraint assuming that the union of the domain of the variables is the set $\{1,2,3,4\}$ and that the elements of VARIABLES are first passed to the automaton followed by MAX (state s_i means that no value strictly greater than value i was found and that value i was already encountered at least once)

Figure 5.543: Hypergraph of the reformulation corresponding to the counter free non deterministic automaton of the maximum constraint

Figure 5.544: Automaton (with one counter) of the maximum constraint and its glue constraint

Figure 5.545: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the maximum constraint: since all states variables Q_0,Q_1,\ldots,Q_n are fixed to the unique state s of the automaton, the transitions constraints share only the counter variable C and the constraint network is Berge-acyclic