Multivariable logistic regression

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Model formula

$$logit(y) = \beta_0 + \beta_1 \mathbf{x_1}$$

Model formula

$$logit(y) = \beta_0 + \beta_1 x_1$$

Model formula

$$logit(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p$$

Model formula

$$logit(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

In Python

Example - well switching

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	0.0027	0.079	0.035	0.972	-0.153	0.158
distance100	-0.8966	0.104	-8.593	0.000	-1.101	-0.692
arsenic	0.4608	0.041	11.134	0.000	0.380	0.542

Example - well switching

	coef	std err	z 	P> z	[0.025	0.975]
Intercept	0.0027	0.079	0.035	0.972	-0.153	0.158
distance100	-0.8966	0.104	-8.593	0.000	-1.101	-0.692
arsenic	0.4608	0.041	11.134	0.000	0.380	0.542

- Both coefficients are statistically significant
- Sign of coefficients logical
- A unit-change in distance100 corresponds to a negative difference of 0.89 in the logit
- A unit-change in arsenic corresponds to a positive difference of 0.46 in the logit

Impact of adding a variable

- Impact of arsenic variable
- distance100 changes from -0.62 to -0.89
- Further away from the safe well
 - More likely to have higher arsenic levels

	coef	std err	
Intercept distance100	0.0027 -0.8966	0.079 0.104	
arsenic	0.4608	0.041	

	coef	std err
Intercept	0.6060	0.060
distance100	-0.6291	0.097

Multicollinearity

Variables that are correlated with other model variables

- Increase in standard errors of coefficients
 - Coefficients may not be statistically significant

¹ https://en.wikipedia.org/wiki/Correlation_and_dependence

Presence of multicollinearity?

What to look for?

- ullet Coefficient is not significant, but variable is highly correlated with y
- Adding/removing a variable significantly changes coefficients
- Not logical sign of the coefficient
- Variables have high pairwise correlation

Variance inflation factor (VIF)

- Most widely used diagnostic for multicollinearity
 - Computed for each explanatory variable
 - How inflated the variance of the coefficient is
- Suggested threshold VIF > 2.5
- In Python

from statsmodels.stats.outliers_influence import variance_inflation_factor

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Comparing models

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Deviance

Formula

$$D = -2LL(\beta)$$

- Measure of error
- Lower deviance → better model fit
- Benchmark for comparison is the **null deviance** \rightarrow intercept-only model
- Evaluate
 - Adding a random noise variable would, on average, decrease deviance by 1
 - \circ Adding p predictors to the model deviance should decrease by more than p

Deviance in Python

Generalized Linear Model Regression Results

Dep. Variable:		switch	No. 0	servations:		3020
Model:		GLM	Df Re	siduals:		3018
Model Family:		Binomial	Df Mod	del:		1
Link Function:		logit	Scale	:		1.0000
Method:		IRLS	Log-L:	ikelihood:		-2038.1
Date:	Mon,	08 Apr 2019	Devia	nce:		4076.2
Time:		10:24:56	Pears	on chi2:		3.02e+03
No. Iterations	:	4	Covar	iance Type:		nonrobust
==========						
	coef	std err	Z	P> z	[0.025	0.975]
Intercept	0.6060	0.060	10.047	0.000	0.488	0.724
distance100	-0.6219	0.097	-6.383	0.000	-0.813	-0.431
=========						

Compute deviance

Extract null-deviance and deviance

```
# Extract null deviance
print(model.null_deviance)
```

4118.0992

```
# Extract model deviance
print(model.deviance)
```

4076.2378

Compute deviance using log likelihood

```
print(-2*model.llf)
```

4076.2378

- Reduction in deviance by 41.86
- Including distance100 improved the fit

Model complexity

- ullet model_1 and model_2 ,where ullet L1 > L2
 - Number of parameters higher in model_2
- model_2 is overfitting

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Model formula

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Model matrix

- Model matrix: $y \sim \mathbf{X}$
- Model formula

```
'y \sim x1 + x2'
```

Check model matrix structure

```
from patsy import dmatrix
dmatrix('x1 + x2')
```

Variable transformation

```
import numpy as np
'y \sim x1 + np.log(x2)'
dmatrix('x1 + np.log(x2)')
DesignMatrix with shape (3, 3)
 Intercept x1 np.log(x2)
         1 1 1.38629
         1 2 1.60944
         1 3 1.79176
```

Centering and standardization

Stateful transforms

```
'y ~ center(x1) + standardize(x2)'
dmatrix('center(x1) + standardize(x2)')
DesignMatrix with shape (3, 3)
 Intercept center(x1) standardize(x2)
                  -1.22474
           0.00000
                            1.22474
```

Build your own transformation

```
def my_transformation(x):
  return 4 * x
dmatrix('x1 + x2 + my_transformation(x2)')
DesignMatrix with shape (3, 4)
 Intercept x1 x2 my_transformation(x2)
                                        16
                                        20
                                        24
```


Arithmetic operations

```
x1 = np.array([1, 2, 3])
x2 = np.array([4,5,6])

dmatrix('I(x1 + x2'))
```

```
x1 = [1, 2, 3]

x2 = [4,5,6]

dmatrix('I(x1 + x2)')
```

```
DesignMatrix with shape (3, 2)
Intercept I(x1 + x2)

1 5

1 7

1 9
```

Coding the categorical data

Color

Red

Green

Blue

Coding the categorical data

Coding the categorical data

Patsy coding

- Strings and booleans are automatically coded
- Numerical \rightarrow categorical
 - o C() function
- Reference group
 - Default: first group
 - Treatment
 - o levels

The C() function

• Numeric variable

```
dmatrix('color', data = crab)
```

```
DesignMatrix with shape (173, 2)
Intercept color
1 2
1 3
1 1
[... rows omitted]
```

How many levels?

```
crab['color'].value_counts()
```

```
2 95
3 44
4 22
1 12
```

The C() function

Categorical variable

```
dmatrix('C(color)', data = crab)
```

Changing the reference group

```
dmatrix('C(color, Treatment(4))', data = crab)
```

Changing the reference group

```
l = [1, 2, 3,4]
dmatrix('C(color, levels = 1)', data = crab)
```

Multiple intercepts

```
'y ~ C(color)-1'
dmatrix('C(color)-1', data = crab)
```

```
DesignMatrix with shape (173, 4)

C(color)[1] C(color)[2] C(color)[3] C(color)[4]

0 1 0 0

0 0 1 0

1 0 0

1 0 0

[... rows omitted]
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Categorical and interaction terms

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Categorical variables

- Simple binary variable
 - o Yes, No
- Nominal variables
 - Color: red, green, blue
- Ordinal variables
 - Levels of education: Education1, Education2,..., Education4

- Explanatory variables
 - \circ x_1 : categorical (binary)
 - \circ x_2 : continuous
- Logistic model

$$logit(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Explanatory variables
 - \circ x_1 : categorical (binary)
 - \circ x_2 : continuous
- Logistic model

$$logit(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Explanatory variables
 - \circ x_1 : categorical (binary)
 - \circ x_2 : continuous
- Logistic model

$$logit(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

• If $x_1 = 0$ then

$$logit(y = 1 | \mathbf{x_1} = \mathbf{0}, x_2) = \beta_0 + \mathbf{0} + \beta_2 x_2$$

- Explanatory variables
 - \circ x_1 : categorical (binary)
 - \circ x_2 : continuous
- Logistic model

$$logit(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

• If $x_1 = 0$ then

$$\operatorname{logit}(y = 1 | x_1 = 0, x_2) = \beta_0 + 0 + \beta_2 x_2$$

• If $x_1 = 1$ then

$$logit(y = 1 | \mathbf{x_1} = \mathbf{1}, x_2) = \beta_0 + \beta_1 + \beta_2 x_2$$

$$logit(y = 1 | \mathbf{x_1} = \mathbf{1}, x_2) = (\beta_0 + \beta_1) + \beta_2 x_2$$

Assumptions

No interaction

Assumptions

No interaction

Assumptions

No interaction

- Not equal slopes → presence of interaction
- The effect of x_1 on y depends on the level of x_2 and vice versa
- Logistic model allowing for interactions

$$logit(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

- Not equal slopes \rightarrow presence of **interaction**
- The effect of x_1 on y depends on the level of x_2 and vice versa
- Logistic model allowing for interactions

$$\text{logit}(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

• If $x_1 = 0$ then

$$logit(y = 1 | x_1 = 0, x_2) = \beta_0 + 0 + \beta_2 x_2 + 0$$

- Not equal slopes \rightarrow presence of interaction
- The effect of x_1 on y depends on the level of x_2 and vice versa
- Logistic model allowing for interactions

$$\text{logit}(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

• If $x_1 = 0$ then

$$\text{logit}(y = 1 | x_1 = 0, x_2) = \beta_0 + \beta_2 x_2$$

• If $x_1 = 1$ then

$$logit(y = 1 | x_1 = 1, x_2) = \beta_0 + \beta_1 + \beta_2 x_2 + \beta_3 x_2$$

$$logit(y = 1 | x_1 = 1, x_2) = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)x_2$$

- Not equal slopes \rightarrow presence of **interaction**
- The effect of x_1 on y depends on the level of x_2 and vice versa
- Logistic model allowing for interactions

$$\text{logit}(y = 1|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

• If $x_1 = 0$ then

$$logit(y = 1 | x_1 = 0, x_2) = \beta_0 + \beta_2 x_2$$

• If $x_1 = 1$ then

$$logit(y = 1 | x_1 = 1, x_2) = \beta_0 + \beta_1 + \beta_2 x_2 + \beta_3 x_2$$

$$logit(y = 1 | x_1 = 1, x_2) = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)x_2$$

Visualizing interactions

Interaction

Interactions allow for:

- intercept and slope different for x_1
- β_1 : difference between the two intercepts
- β_3 : difference between the two slopes

Interaction types

- binary × binary
- binary × categorical
- binary × continuous
- continuous × categorical
- continuous × continuous
- categorical × categorical
- more than 2 variable interactions

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Congratulations!

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

MODEL

- Data \rightarrow
- Link function \rightarrow
- ullet Model o
- 1-unit increase in x o

LINEAR MODEL

- Continuous
- Identity
- $y = \beta_0 + \beta_1 x_1$
- increases y by β_1

LOGISTIC REGRESSION

- Binary
- Logit
- $logit(y) = \beta_0 + \beta_1 x_1$
- increases $\log \operatorname{odds}$ by β_1

POISSON REGRESSION

- Count
- Logarithm
- $log(\lambda) = \beta_0 + \beta_1 x_1$
- multiplies λ by $exp(\beta_1)$

MAIN PYTHON FUNCTIONS

• Fit the model

```
statmodels 
ightarrow
```

LOGISTIC REGRESSION

```
glm('y ~ x', data,
  family = sm.families.Binomial())
```

LINEAR MODEL

```
glm('y ~ x', data)

glm('y ~ x', data,
    family = sm.families.Gaussian())
```

POISSON REGRESSION

```
glm('y ~ x', data,
    family = sm.families.Poisson())
```

Next steps...

- DataCamp courses
- Excellent reference books
 - Regression Modeling Strategies by Frank E. Harrell, Jr.
 - An Introduction to Categorical Data Analysis by Alan Agresti
 - Applied Predictive Modeling by Max Kuhn and Kjell Johnson

Happy modeling!

GENERALIZED LINEAR MODELS IN PYTHON

