2022 届高三第一次联考

化学参考答案

一、选择题:本题共 10 个小题,每小题 3 分,共 30 分。在每小题给出的四个选项中,只有一项是 符合题目要求的。

1. C

2. A 【解析】乙烯中碳原子之间以双键形式存在,故乙烯的球棍模型为 ,A 正确;Cl-

核素为²H,D错误。

- 3. D 4. C
- 5. C 【解析】溶液体积未知,盐酸中 HCl 完全电离,不存在 HCl 分子,A 错误;NO₂与 H₂O 反 应的化学方程式为 $3NO_0 + H_0O = 2HNO_0 + NO_0$ 该条件不一定是标准状况,产生的 0.1mol 气体对应体积不一定是2. 24 L,B 错误;一个 S_8 (\bigcirc)分子中含有的 S-S 键数为 $8,6.4 g S_8$ 的物质的量为 0.025 mol,则含有的 S-S 键数为 $0.2N_A$, C 正确;酸性 $K_2Cr_2O_7$ 溶 液中存在:Cr₂O²→H₂O ➡ 2CrO²→+2H⁺,含 Cr 微粒有 Cr₂O²→和 CrO²→则 1 L pH=4 的 0.1 mol·L⁻¹ K₂Cr₂O₇ 溶液中所含 Cr₂O₇² 数应小于 0.1N_A,D 错误。
- 6. D
- 【解析】由题干信息可知, Z 原子最外层电子数是电子层数的 3 倍, 故 Z 为 ○:根据多孔储 7. D 氢材料前驱体结构图可知 Y 周围形成了 4 个单键, 再结合信息 M、W、X、Y、Z 五种元素原子 序数依次增大,故Y为N:M只形成一个单键,M为H,X为C,则W为B,据此分析解题。Z 的氢化物有 H₂O和 H₂O₂, H₂O₂ 存在非极性键, A 错误:根据同一周期从左往右主族元素的 原子半径依次减小,同一主族从上往下依次增大,故原子半径:W>X>Y>Z>M,B错误:X 为 C, 烃类都属碳的氢化物, 某些烃类物质沸点比 Z 的氢化物 $(H_{2}O$ 和 $H_{2}O_{2})$ 沸点高, C 错 误;由 $H_3WO_3+H_2O \Longrightarrow H^++W(OH)_4^-, K_a=5.81\times 10^{-10}$,可判断 H_3WO_3 是一元弱酸,D 正确。
- 8. A 9. C 10. C
- 二、选择题:本题共4个小题,每小题4分,共16分。在每小题给出的四个选项中,有一项或两 项符合题目要求。全部选对的得 4 分,选对但不全的得 2 分,有选错的得 0 分。
- 11. D
- 【解析】Mg 在 CO₂ 中点燃反应生成 MgO 和 C, Ca 比 Mg 活泼,则 Ca 在 CO₂ 中点燃反 应生成 CaO 和 C,A 合理; Ca(ClO)。溶液与少量 CO。反应生成 CaCO。和 HClO,B 不合理; Na₃N与盐酸反应生成 NaCl 和 NH₄Cl: Na₃N+4HCl ——3NaCl+NH₄Cl, Mg₃N₂与盐酸 反应生成 $MgCl_2$ 和 $NH_4Cl_1Mg_3N_2 + 8HCl = 3MgCl_2 + 2NH_4Cl_1C$ 合理; 氨水与少量 $AgNO_3$ 反应生成 $[Ag(NH_3)_2]^+$: $Ag^+ + 2NH_3 \cdot H_2O = [Ag(NH_3)_2]^+ + 2H_2O$, D 不 合理。

14. AD 【解析】用 0.100 0 mol·L⁻¹ 盐酸滴定 20.00 mL Na₂ A 溶液,pH 较大时 A²⁻的分布分数 δ 较大,随着 pH 的减小,A²⁻的分布分数 δ 逐渐减小,HA⁻的分布分数 δ 逐渐减小,HA⁻的分布分数 δ 逐渐增大,恰好生成 NaHA 之后,HA⁻的分布分数 δ 逐渐减小,H₂ A 的分布分数 δ 逐渐增大,表示 H₂ A、HA⁻、A²⁻的分布分数 δ 的曲线如图所示,据此分析解题。

 H_2A 的 $K_{al} = \frac{c(H^+) \cdot c(HA^-)}{c(H_2A)}$,根据上图交点 1 计算可知 $K_{al} = 10^{-6.38}$, A 正确;根据图像

可知 c 点中 c (HA⁻)>c (H₂A)>c (A²⁻),B 错误;根据图像可知第一次 pH 突变时溶液呈碱性,所以可以选择酚酞作指示剂,C 错误;根据图像 e 点可知,当加入盐酸 40 mL 时,全部生成 H₂A,根据 Na₂A+2HCl=2NaCl+H₂A 计算可知 c (Na₂A)=0. 100 0 mol·L⁻¹,D 正确。

三、非选择题:本题共 5 小题,共 54 分。其中 $15\sim17$ 小题为必做题,18、19 小题为选做题,从中任选一题作答.如果多做则按第 18 题计分。

- 15. (13分,除注明外,每空2分)
 - (1)因为 R-O 键比 R-Cl 键牢固,所以氯化物熔点低,生产成本低
 - (2)坩埚 60.0%
 - (3)NH₄Cl 受热分解产生 HCl, HCl 会抑制 RCl₃ 水解生成 ROCl

$$ROCl+2NH_4Cl = \frac{200\sim300^{\circ}C}{RCl_3+H_2O} \uparrow +2NH_3 \uparrow (也可写为 NH_4Cl = NH_$$

- (4)阳(1分) ROCl+C+2Cl⁻-2e⁻ = RCl₃+CO \uparrow (或 2ROCl+C+4Cl⁻-4e⁻ = 2RCl₃+CO₂ \uparrow)
- 16. (13分,除注明外,每空2分)
 - (1) $Fe_3O_4(1 \, \mathcal{G})$ 有利于磁选将 Fe_3O_4 分离,有利于提高固相还原和酸浸浸出的速率
 - (2) $TiOSO_4 + 2H_2O$ H_2TiO_3 ↓ $+H_2SO_4$ 钛液浓度过低,获得的产物粒子直径较大,煅烧得到的钛白粉品质不高;钛液浓度过高,水解转化率低,原料利用效率低
 - (3) $TiO_2+2C+2Cl_2 = \frac{\overline{a}}{2} TiCl_4+2CO 136(1分) 181(1分)$
 - (4) $TiC_{0.5}O_{0.5}-2e^{-}$ $Ti^{2+}+\frac{1}{2}CO$

- 17. (13分,除注明外,每空2分)
 - (1)(1)-663.5 B ②3 ③72%(或 0.72)
 - (2)温度(1分) 该反应为放热反应,降低温度,平衡向正反应方向移动, φ (CH₃OH)增大
 - $(3)2N_2O_5+O_2+4e^{-}=4NO_3^{-}$
- 18. (15分,除注明外,每空2分)
 - $(1) \begin{array}{|c|c|c|c|} \hline \uparrow & \uparrow & \uparrow & \uparrow \\ \hline & 3d & 4s \\ \hline \end{array}$
 - (2):C::O:(1分) 21:20

$$(3) \begin{bmatrix} H_{2}O & H_{2}O & H_{2}O \\ H_{2}O & O & O \\ H_{2}O & H_{2}O & H_{2}O \\ H_{2}O & H_{2}O & H_{2}O \end{bmatrix}^{4+}$$

- (4) $sp^2, sp^3 N>0>C$
- (5)MgAl₂O₄ $\frac{8\times142}{N_{\rm A}\times a^3\times10^{-30}}$
- 19. (15分,除注明外,每空2分)
- (1)3-甲基丁醛

(3)加成反应

(4)
$$COOH + CO(NH_2)_2 \xrightarrow{\triangle} NH + CO_2 \uparrow + NH_3 \uparrow + H_2O_2 \uparrow + NH_3 \uparrow + N$$

- (5)2(1分) 氨基、羧基
- (6)8
- (7)