

Deep Learning Workshop

with

Daniel L. Silver, Ph.D.

Andy McIntyre, Ph.D.

Harrison McCain

June 24, 2022

My thanks to the following for funding ...

FOUNDATION

Alliance de recherche numérique du Canada

Who am I?

- Danny Silver, Acadia University
- Nova Scotia, Canada
- PhD, Univ. Western Ontario
- 2014-pres: Director, Acadia Institute for Data Analytics
- 2005-pres: PI, Lifelong Machine Learning and Reasoning Lab
- 2007-2013: Director, School of Computer Science
- 2007-2009: President, Canadian Al Association (CAIAC)
- 2013-2018: Hon. Colonel, RCAF, 415 S, 14 Wing Greenwood

Our TAs for this session ...

- Sahil Chhabra
- Aaron Mishkin

HOW TO GET STARTED:

- Moodle/Session Materials/ Deep Learning
- https://www.hpc-training.org/xsede/moodle/mod/page/view.php?id=4428

Agenda

- 9:00 Welcome, Logistics, Overview
- 9:10 Review of Colaboratory
- 9:20 Basic BP ANNs & Intro to Tensorflow/Keras
- 10:00 Building Deep Networks
- 10:45 Break
- 10:50 Convolution neural networks (CNNs) for classifying images
- 11:30 Recurrent neural networks (LSTMs) for learning sequences
- 12:10 Summary and Farewell

 Traditionally (until 2012), statistical modeling and machine learning used manually created features as inputs

Artificial neural network models were shallow (just a couple of layers)

• A deep learning network can learn multiple levels of features from unlabeled data

• Simulating human sensory modalities

Unsupervised Feature Learning and Deep Learning – Andrew Ng, Stanford University

object models

- Multiple layers work to build an improved feature space
 - Lowest hidden layer learns 1st order features (e.g. edges...)
 - Upper hidden layers learn higher order features (comb. of lower features)
 - Some models learn hidden node representations in an unsupervised manner and discover general features of the input space (DBN)
 - Some models learn features in a supervised manner based on architected networks (CNN)
 - Final layer of transformed features flow into final supervised layer(s) and trained as one large network

Why Deep Learning

- Biological Plausibility e.g. Visual Cortex
- Hastad proof Problems which can be represented with a polynomial number of nodes with k layers, may require an exponential number of nodes with k-1 layers (e.g. parity)
- Highly varying functions can be efficiently represented with deep architectures - less weights to update than a less efficient shallow representation
- Sub-features created in deep architecture can potentially be shared between multiple tasks – transfer and lifelong machine learning

History of Deep Learning Networks

- 1980 Fukushima Neo-Cognitron
- 1986 Rumelhart et al. backpropagation networks
- 1989 LeCun Convolutional Neural Nets for images (but hard to train)
- 1990s Interest subsides as other models are introduced SVMs, Graphical models, etc. each their turn...
- 2006 Deep Belief Networks (Hinton) and Stacked Autoencoders (Bengio) Unsupervised pre-training followed by supervised learning
- 2012 Initial successes with supervised approaches which overcome vanishing gradient and are more general applicable
- 2013 Schmidhuber Deep recurrent neural networks (LSTMs, GRUs)
- 2014 Deep CNNs become better than humans for object recog in images

Google's Colaboratory

What is Colaboratory?

- A free Jupyter notebook environment
- Requires no setup and runs entirely in the cloud
- You can write and execute code
- Save and share your analyses
- Access powerful computing resources
- All for free from your browser
- Overview of Colaboratory

References:

The Major Research Groups (two of which are Canadian):

- https://www.deeplearning.ai/
- https://www.cs.toronto.edu/~hinton/
- https://mila.quebec/en/person/bengio-yoshua/
- http://yann.lecun.com/
- http://people.idsia.ch/~juergen/

Other Links:

- https://www.coursera.org/courses?languages=en&query=machine+learning+andrew+ng
- http://www.deeplearningbook.org/
- http://neuralnetworksanddeeplearning.com/