CAMBRIDGE
INTERNATIONAL EXAMINATIONS

Roers.com

NOVEMBER 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9702/2

PHYSICS (STRUCTURED QUESTIONS (AS))

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9702	2

1 ((a) (i) (ii)	mass / volume (ratio must be clear)		[2]
,	(b)	v has unit of m s ⁻¹	M1 A1	[3]
2-	(a)	1.6 ± 0.2 cm	B 1	[1]
ı	(b)	1.6 / 50 = 0.032(ignore any uncertainties)	B1	[1]
ı	(c)	idea of adding fractional uncertainties	C 1	
		= 0.127 OR 12.7%(-2 marks if uncertainties not added) actual uncertainty = (±) 0.004 (do not allow more than 2 sig. fig)		[3]
3	(a)	$v^2 = u^2 + 2as$ OR use of triangle etc $4.0^2 = 2 \times 9.8 \times s$ OR $s = \frac{1}{2} \times 4.0 \times 0.4$ s = 0.82 m OR 0.80 m		[2]
1	(b)	$\Delta p = m(v - u)$ OR $p = mv$	C1 C1	[4]
((c)	any time between 0.14 s and 0.17 s force = $\Delta p / \Delta t = 0.35 / 0.14$ (allow e.c.f.) = 2.5 N		[2]
4 ((a)	force × distance moved	M1 A1	[2]
((b)	weight / force = mg		[2]

Page 2 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9702	2

5	(a)	displacement & direction of energy travel normal to one another	B1	[1]
	(b) (i)	phase angle of 60° correct (need to see $1\frac{1}{2}$ wavelengths) lags behind T_1		[2]
	(ii)	waves must be in same place (at same time)		[2]
-	(iii) 1. 2. 3.	- ½A (allow e.c.f.)	B1	[3]
6	(a) (i)	arrow in upward direction, foot near P	B1	
	(ii)	curved path consistent with (i) between plates then straight (with no kink at change-over)	B1 B1	[3]
	(b)	E = V/d = $400/(0.8 \times 10^{-2})$ = $5.0 \times 10^4 \text{ V m}^{-1}$ (allow 1 sig fig)	C1 A1	[2]
	(c) (i)	$F = Eq$ = $5.0 \times 10^4 \times 1.6 \times 10^{-19}$		
	(ii)	a = F/m	C1	
	(d)	= $8.8 \times 10^{15} \mathrm{m \ s^{-2}}$ (allow 1 sig fig and e.c.f.) because $F_{\rm E}$ is normal to <u>horizontal</u> motion no effect	Al Ml Al	[4] [2]

Page 3 of 3	Mark Scheme	Syllabus	Paper	1
	AS Level Examinations – November 2002	9702	2	1

7 (a) (i)	e.m.f. = energy / charge		
	= 8.9 V	A 1	
(ii)	current = $\Delta Q / \Delta t$	C 1	
	$= (1.80 \times 10^4) / (1.3 \times 10^5)$ = 0.14 A	A 1	[4]
(b) (i)	energy $\propto R$ (or formula)	C 1	
	energy = $(15/45) \times 1.14 \times 10^5$		
	$= 3.7 \times 10^4 \mathrm{J}$	A1	
(ii)	energy dissipated in internal resistance (of battery)	B 1	[4]
8 (a)	shows nucleon number as 220	B1	
o (a)	shows proton number as 87		[2]
(b)	shows products as ⁴ ₂ He OR ⁴ ₂ α	B 1	
	and 216 At(allow e.c.f. from (a))	B 1	[2]
9 (a) (i)	stress = F / A	C1	
9 (a) (i)	stress = F / A = 25 / (1.7 × 10 ⁻⁶) = 1.47 × 10 ⁷ Pa(do not allow 1 sig fig)		
9 (a) (i) (ii)	= $25 / (1.7 \times 10^{-6})$ = $1.47 \times 10^{7} \text{Pa}$ (do not allow 1 sig fig)		
	$= 25 / (1.7 \times 10^{-6})$ $= 1.47 \times 10^{7} \text{ Pa} (do not allow 1 sig fig)} $	A1 C1	
	= $25 / (1.7 \times 10^{-6})$ = $1.47 \times 10^{7} \text{Pa}$ (do not allow 1 sig fig)	A 1	[4]
(ii)	$= 25 / (1.7 \times 10^{-6})$ $= 1.47 \times 10^{7} \text{ Pa} \qquad \text{ (do not allow 1 sig fig)} \qquad$ $\text{stress} = E \times \text{strain} \qquad$ $1.47 \times 10^{7} = 7.1 \times 10^{10} \times (\Delta I / 1.8)$ $\Delta I = 0.37 \text{ mm} \qquad$	A1 C1 A1	
	= 25 / (1.7 × 10 ⁻⁶) = 1.47 × 10 ⁷ Pa(do not allow 1 sig fig)	A1 C1 C1 C1	
(ii)	= 25 / (1.7 × 10 ⁻⁶) = 1.47 × 10 ⁷ Pa(do not allow 1 sig fig)	A1 C1 A1 C1 C1 C1	
(ii)	= 25 / (1.7 × 10 ⁻⁶) = 1.47 × 10 ⁷ Pa(do not allow 1 sig fig)	A1 C1 A1 C1 C1 C1	[4]
(ii)	= 25 / (1.7 × 10 ⁻⁶) = 1.47 × 10 ⁷ Pa(do not allow 1 sig fig)	A1 C1 A1 C1 C1 C1	[4]
(ii)	= 25 / (1.7 × 10 ⁻⁶) = 1.47 × 10 ⁷ Pa(do not allow 1 sig fig)	A1 C1 A1 C1 C1 C1	[4]