Heurísticas e Metaheurísticas

Prof. Guilherme de Castro Pena guilherme.pena@ufsj.edu.br Sala: DCOMP 3.11

Departamento de Ciência da Computação Universidade Federal de São João del-Rei

 $Material\ adaptado\ do\ Prof.\ Andr\'e\ (UFV)$

Agenda

- Heurísticas e Metaheurísticas Introdução
 - Introdução
 - Objetivos
 - Otimização
- Heurísticas X Metaheurísticas
 - Heurísticas
 - Metaheurísticas
- Classes de Problemas
 - Classes de Problemas

Introdução

Visão geral:

▶ Heurísticas e Metaheurísticas são métodos que visam encontrar soluções viáveis para problemas, em sua maioria chamados de problemas de otimização, e de uma forma que a busca por essas soluções seja realizada de forma eficiente a nível dos recursos computacionais utilizados.

Objetivos

Objetivos gerais da disciplina:

- Apresentar técnicas básicas e avançadas para construção de heurísticas e metaheurísticas eficientes para problemas de otimização.
- Propor, implementar e analisar a eficiência desses métodos aplicados a problemas de otimização específicos.

Otimização

Visão geral:

- Campo de conhecimentos cujas técnicas visam determinar os extremos (máximos ou mínimos) de funções, em domínios (espaços de solução) determinados.
 - Função: representa algum fator de mérito relacionado com o problema que se deseja analisar.
 - Se for um problema de rotas e transporte de objetos que envolve o uso de caminhões por exemplo, a função pode representar o custo de cada rota, o lucro alcançado com tais objetos transportados, etc.
 - Extremo (máximo ou mínimo): representa a melhor maneira possível de se planejar tais rotas. Maximizar o lucro, minimizar o custo (uso de combustível por exemplo).
 - **Domínio:** corresponde ao conjunto das alternativas diferentes disponíveis para planejar o problema em questão.

Agenda

- Heurísticas e Metaheurísticas Introdução
 - Introdução
 - Objetivos
 - Otimização
- 2 Heurísticas X Metaheurísticas
 - Heurísticas
 - Metaheurísticas
- Classes de Problemas
 - Classes de Problemas

- ▶ Heurísticas são algoritmos com uma sequência finita de instruções não ambíguas que podem ser executadas por um computador para resolver um problema.
- Elas nem sempre retornam a (melhor) solução de um problema e nem quão perto se pode chegar dela.
- A ideia é garantir uma solução "boa", melhor que a maioria, num tempo razoável.

- Um detalhe é que heurísticas são específicas para o problema abordado.
- ▶ Por exemplo, qual o menor caminho para ir do ponto A ou D?

- Uma heurística chamada **gulosa**, diz que, partindo-se do início (A), a cada nó, vá para o mais próximo (menor distância).
- ▶ Dessa forma, conseguimos uma solução: (A C D) e podemos dizer que essa solução tem custo 100 (soma das distâncias).

- (A C D) é uma solução viável, resolve o problema, mas é a solução ótima?
- Essa heurística, não permite mais alterar a solução, deixando-a assim "presa".
- Da para notar que não é a melhor solução, mas então como encontrar tal solução?
- Nesse caso podemos usar alguma Metaheurística!

- (A C D) é uma solução viável, resolve o problema, mas é a solução ótima?
- Essa heurística, não permite mais alterar a solução, deixando-a assim "presa".
- Da para notar que não é a melhor solução, mas então como encontrar tal solução?
- Nesse caso podemos usar alguma Metaheurística!

- Metaheurísticas também são algoritmos com uma sequência finita de instruções não ambíguas que podem ser executadas por um computador para resolver um problema.
- Elas também nem sempre retornam a (melhor) solução de um problema.
- ▶ No entanto, uma grande diferença é de que elas tem a capacidade de fugir de **ótimos locais**, conseguindo alterar a solução atual e buscar por soluções melhores no espaço.

- ► Como dito, as heurísticas são específicas para o problema abordado.
- ▶ No caso das **metaheurísticas**, elas são procedimentos predefinidos que independem do problema abordado, mas elas tem esse grau de flexibilidade que podemos adaptá-las para o nosso foco.
- Então, vamos seguir o nosso mesmo problema de qual o menor caminho para ir do ponto A ou D?

- Em geral, as metaheurísticas partem de uma solução viável, e a partir desta, faz modificações na busca por melhores soluções.
- Podemos usar a heurística gulosa anterior para dar a nossa solução viável de partida.
- ► Assim, temos a solução viável (A C D) com custo 100.

- Nesse momento, para alterarmos a solução em questão, a metaheurística poderia fazer uma troca entre um ponto do grafo não usado, com algum que está presente na solução.
- Nesse caso, o ponto B ainda não foi usado, logo, podemos trocá-lo com os presentes na solução (A - C - D), verificar a viabilidade e posteriormente o custo.
- Aplicando essa ideia, geramos 3 novas soluções:
 (B C D), (A B D) e (A C B).

- Ao verificar a viabilidade, (B C D) é uma solução inviável, pois não parte do nó A, e nem existe caminho de B para C.
- ▶ A solução (A B D) é viável, satisfaz as restrições de começar em A e terminar em D, e ainda tem custo menor que a atual, cujo valor é 25 (encontramos uma solução melhor!).
- ► A outra possibilidade, (A C B), também é uma solução inviável.

- ► Então nossa solução atual agora é (A B D) com custo 25.
- ► A metaheurística poderia tentar continuar, mas chegaríamos a soluções piores ou inviáveis.
- Para evitar isso, geralmente é estipulado um critério de parada para finalizar a busca por novas soluções.

Agenda

- Heurísticas e Metaheurísticas Introdução
 - Introdução
 - Objetivos
 - Otimização
- Meurísticas X Metaheurísticas
 - Heurísticas
 - Metaheurísticas
- 3 Classes de Problemas
 - Classes de Problemas

Visão Geral:

- Conforme visto em PAA, os problemas da computação são incluídos em algumas classes de problemas:
 - Problemas Tratáveis
 - Problemas Intratáveis ou Difíceis
 - Problemas de Decisão
 - Problemas de Otimização

Problemas Tratáveis:

▶ Problemas que podem ser resolvidos em tempo polinomial:

$$T(n) = O(n^k)$$

- \triangleright onde n é o tamanho da entrada e k uma constante.
- ▶ Obs: como trabalhamos com a complexidade assintótica, então algoritmos com complexidade logarítmica podem ser considerados polinomiais.

Exemplos:

- Ordenação
- ► Caminho mínimo
- Árvore geradora mínima
- Fluxo máximo

Problemas Intratáveis ou Difíceis:

problemas para os quais não se conhece um algoritmo de tempo polinomial que o resolva. O melhor algoritmo conhecido é de tempo exponencial.

Exemplos:

- Torres de hanoi
- ► Caixeiro viajante
- ► Cobertura mínima de vértices
- Clique máxima, etc.

Problemas de Decisão (sim ou não):

São problemas que questionam a existência de uma solução. A resposta (saída) destes problemas é SIM ou NÃO.

Exemplo:

- Dado um **grafo** valorado e um número k. Deseja-se saber se existe ou não um **Ciclo Hamiltoniano** com custo $\leq k$.
- ▶ Um Ciclo Hamiltoniano em um grafo G = (V, A) é um ciclo simples que passa por todos os vértices do grafo uma única vez.

Problemas de Otimização:

Estes problemas consistem em encontrar uma solução que **minimize** ou **maximize** uma **função objetivo**.

Exemplo:

Determinar o *Ciclo Hamiltoniano* de **menor custo** de um grafo valorado (**problema do Caixeiro Viajante**).

Concluindo

Podemos concluir que..

- Exitem alguns problemas especiais para os quais são conhecidos procedimentos exatos e eficiente.
- Mas para que cada situação seja representada adequadamente adaptações devem ser realizadas.
- les les gera um grande conjunto de problemas que não se sabe resolver de maneira exata.

Para que desenvolver uma heurística?

As heurísticas e metaheurísticas são os algoritmos que buscam encontrar soluções viáveis para tais problemas de forma mais eficiente.

Exercícios

Grafos são muito úteis para representar problemas de otimização. Cada entrada do problema denominamos instância. Por exemplo, o seguinte grafo geraria a seguinte instância:

6 9		
1 2 4		
152		
163		
2 3 1		
3 4 1		
3 5 6		
3 6 2		
464		
4 5 3		
561		

Onde temos 6 vértices, 9 arestas, e uma lista com a ligação de cada aresta com seus custos.

Como exercício, crie em C++ um programa capaz de ler essa instancia a partir de um txt, de forma genérica, independente do número de vértices ou arestas. Guarde a informação em uma matriz e uma lista de adjacência, e por fim imprima para verificar se foi feito de forma correta.

Bibliografias

Bibliografia Básica

- MICHLEWICZ, Zbigniew; FOGEL, David B. How to solve it: modern heuristics. 2nd. ed. Berlin: Springer c2010 554 p. ISBN 9783642061349.
- Talbi, El-Ghazali; Metaheuristics: From Design to Implementation, Wiley Publishing, 2009.
- GENDREAU, Michel. Handbook of metaheuristics. 2.ed. New York: Springer 2010 648 p. (International series in operations research & management science; 146).
- T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 3rd edition, 2009 (Pergamum).

Bibliografias

Bibliografia Complementar

- GLOVER, Fred; KOCHENBERGER, Gary A. (ed.). Handbook of metaheuristics. Boston: Kluwer, 2003. 556 p. (International series in operations research & management science; 57).
- BLUM, Christian Et Al. Hybrid metaheuristics: an emerging approach to optimization. Berlin: Springer 2008 289 p. (Studies in Computational intelligence; 114).
- DOERNER, Karl F. (ed.) Et Al. Metaheuristics: progress in complex systems optimization. New York: Springer 2007 408 p. (Operations research / computer science interfaces series).
- GLOVER, Fred; LAGUNA, Manuel. Tabu search. Boston: Kluwer Academic, 1997. 382 p.
- AARTS, Emile. Local search in combinatorial optimization. Princeton: Princeton University Press, 2003 512 p.
- Gaspar-Cunha, A.; Takahashi, R.; Antunes, C.H.; Manual de Computação Evolutiva e Metaheurística; Belo Horizonte: Editora UFMG; Coimbra: Imprensa da Universidade de Coimbra; 2013.