To show the linearized ADMM

$$x_{k+1} = \text{prox}_{\sigma f}(x_k - \tau \sigma A^T (Ax_k - y_k + u_k))$$

$$y_{k+1} = \text{prox}_{\frac{1}{\tau}g}(Ax_{k+1} + u_k)$$

$$u_{k+1} = u_k + Ax_{k+1} - y_{k+1}$$

is equivalent to PDHG applied to the dual problem,

$$z_{k+1} = \operatorname{prox}_{\tau g^*}(z_k + \tau A \tilde{x}_k)$$

$$\tilde{x}_{k+1} = \operatorname{prox}_{\sigma f}(\tilde{x}_k - \sigma A^T (2z_{k+1} - z_k)),$$

first we eliminate the variable y in linearized ADMM by $u_{k+1} = u_k + Ax_{k+1} - \text{prox}_{\frac{1}{\tau}g}(Ax_{k+1} + u_k)$. Using Moreau decomposition on $\frac{1}{\tau}g$, we can reformulate linearized ADMM as

$$x_{k+1} = \operatorname{prox}_{\sigma f}(x_k - \tau \sigma A^T (Ax_k - y_k + u_k))$$

$$u_{k+1} = \frac{1}{\tau} \operatorname{prox}_{\tau g^*}(\tau (Ax_{k+1} + u_k)).$$

From here consider $z_k = \tau u_k$, $\tilde{x}_k = x_k$ and start the iteration at *u*-update and renumber the iterates, we get PDHG applied on dual problem.