Und wenn Klassen nicht linear separierbar sind?

Support-Vektor-Maschinen (SVM) ...

- ... transformieren die Eingaben (Lernbeispiele, "Vektoren") in einen Parameterraum, in dem sie linear separierbar *sind*! (das ist nicht trivial ...)
- ... verwenden dafür 2 Ideen:
 - (1) die Transformation ("Kernel Trick") und
 - (2) Finden einer optimal separierenden Hyperebene im transformierten Parameterraum

Beide Ideen nachfolgend nur angedeutet!

SVM: Der Kernel Trick (Prinzip)

- Der **Kernel** ist eine Funktion, die den originalen n-dimensionalen Merkmalsraum in einen anderen, höherdimensionalen transformiert (in Abhängigkeit der Klassenzuordnung der Trainingsbeispiele), in dem die Trainingsbeispiele linear separierbar sind.
- Das geht immer f
 ür widerspruchsfreie Daten, aber guter Kernel ist i.a. nicht leicht zu konstruieren

SVM: Bestimme Support-Vektoren

Support-Vektoren sind diejenigen Eingabebeispiele (Vektoren), die im transformierten Parameterraum den minimalen Abstand zur optimal separierenden Hyperebene haben.

Kernel & Support-Vektoren hängen voneinander ab.

Bestimmung von Kernel & Support-Vektoren ist nicht trivial, daher hier (und bei Ertel) nicht vertieft!

Nearest-Neighbor-Verfahren

Methode

- Auswendiglernen mit lokaler Generalisierung bei Anwendung
- Definiere Ähnlichkeitsmaß auf Lernbeispielen
- Beispiel:
 - Arzt merkt sich Krankheitsbilder und Diagnosen
 - Bei neuem Patienten: Erinnert sich an "ähnliche" Fälle
 - Stelle gleiche Diagnose für ähnliche Fälle

Problem:

- Definition des Ähnlichkeitsmaßes
- Wie ähnlich ist ähnlich genug?: Wann ist der ähnlichste Fall so verschieden, dass alte Diagnose nicht passt?
- Verschiebe Generalisierung von der Lernphase in die Anwendungsphase! (*lazy learning* vs. *eager learning*)

Ähnlichkeit als Abstand im Merkmalsraum

Voraussetzung

Auf Merkmalsraum $\langle x_1, \dots, x_n \rangle$ ist Maß definiert

Zwei Datensätze sind umso ähnlicher, je kleiner ihr Abstand im Merkmalsraum ist

Beispiel

Falls Ähnlichkeitsmaß **Euklidischer Abstand**:

ist ein ⊖, da
ähnlichster
(= euklidisch nächster)
Nachbar auch ⊖ ist.

NEARESTNEIGHBOR

function NEARESTNEIGHBOR (M+,M-,s) **returns + or – inputs**: M+,M-: positive bzw negative Trainingsbeispiele s: zu klassifizierender Datensatz

```
t \leftarrow \operatorname{argmin}_{x \in M + \cup M -} \{d(s,x)\}
if t \in M + then return +
else return –
```

- Funktioniert entsprechend auf mehreren diskreten Klassen
- Speicher: O(|M|)
- Zeit: O(|M|) · Laufzeit von d (cleverer: $O(\log |M|)$ · ...)

Separierung durch Nearest-Neighbor

Voronoi-Linien einer Punktmenge im \mathbb{R}^2 : Linien gleichen Abstands zu den beiden nächstgelegenen

Nachbarpunkten.

Verallgemeinerbar auf \mathcal{R}^n

Nearest-Neighbor separiert Punktmengen im \mathbb{R}^n entlang Voronoi-Linien.

Beispiel

im \mathcal{R}^2 für die eingezeichnete Punkt-Klassifikation

Joachim Hertzberg Einführung in die KI SS 2012

5. Maschinelles Lernen5.1 Überwachte Lernverfahren

Überanpassung (overfitting)

- ... ist potenziell ein Problem für alle Lernverfahren:
- Wenn Messfehler/"Ausreißer" in der Trainingsmenge!
- Wüsste man die Messfehler, würde man sie löschen!

Beispiel

Punkt ● wird als ♣ klassifiziert. Aber ist das (intuitiv) richtig?

Robustheit durch größere Nachbarschaft

```
function k-NEARESTNEIGHBOR (M+,M-,s) returns + or — inputs: M+,M-: positive bzw negative Trainingsbeispiele s: zu klassifizierender Datensatz

V \leftarrow \text{die } k nächsten Nachbarn von s in M+\cup M- if |M+\cap V|>|M-\cap V| then return + else if |M+\cap V|<|M-\cap V| then return — else return Random(+,-)
```

- Klassifiziert nach "Mehrheitsmeinung" der k Nachbarn (sinnvoll bis k≈10)
- Entsprechend auf mehreren diskreten Klassen
- Selber Aufwand wie "einfacher" Nearest-Neighbor:
 - Speicher: O(|M|)
 - Zeit: $O(\log |M|)$ · Laufzeit von d

Gewichteter k-Nearest-Neighbor

Statt einfacher Mehrheitsmeinung unter den k Nachbarn gewichte ihre "Stimmen" durch Abstand zum zu klassifizierenden Datensatz, also mit dem Gewicht:

$$w_i = \frac{1}{d(\mathbf{s}, \mathbf{x_i})^2}$$

Hier quadratischer Abstand – kann man auch anders machen.

Von Klassifikation zu Regression 1/3

Folie 233: Klassifikation mit kontinuierlichen "Klassen" heißt Regression

Beispiel

Roboter soll lernen, einer Lichtquelle auszuweichen

- Richtung zum Licht miss durch Verhältnis der Helligkeit an zwei Sensoren s_l, s_r
- Motorspannung U_l , U_r setze je proportional zu s_l , s_r

- Fahrtrichtung des Roboters ergibt sich daraus als Differenz der beiden Motorspannungen $U_r U_l$
 - Differenz negativ: Rechtskurve; positiv: Linkskurve

Von Klassifikation zu Regression 2/3

Liegen Trainingsdaten für die Verhältnisse 0, 0.2, 0.5, 0.8, 1 vor, lernt Nearest-Neighbor die folgende Abbildung:

Von Klassifikation zu Regression 3/3

Abhilfe: Regression durch Mittelwert der k nächsten Nachbarn

(möglicherweise gewichtet):

$$\bar{f}(\mathbf{s}) = \frac{1}{k} \sum_{i=1}^{k} f(\mathbf{x}_i)$$

Joachim Hertzberg Einführung in die KI SS 2012

5. Maschinelles Lernen

5.1 Überwachte Lernverfahren

Ausblick: Fallbasiertes Schließen 1/2

case-based reasoning, CBR

- Übertragung von Nearest-Neighbor auf Problemlösung textuell/symbolisch gegebener Probleme
- Einsätze z.B. Diagnosen, Telefon-Hotlines

Beispiel:

Merkmal	Anfrage	Fall aus Fallbasis						
Defektes Teil:	Rücklicht	Vorderlicht						
Fahrrad Modell:	Marin Pine Mountai	nVSF T400						
Baujahr:	1993	2001						
Stromquelle:	Batterie	Dynamo						
Zustand der Birner	n:ok	ok						
Lichtkabelzustand:	?	ok						
Lösung								
Diagnose:	?	Massekontakt vorne fehlt						
Reparatur:	?	Stelle Massekontakt vorne her						

Fallbasiertes Schließen 2/2

Probleme

- Ähnlichkeitsmaß auf Fällen (wie bei Nearest-Neighbor, nur intuitiv noch schwieriger)
- Definition der Rücktransformation

Entscheidungsbäume

... repräsentieren diskrete endliche Fkt.en über Attributen. Für Boolesche Funktionen: Syntaktische Variante von Wahrheitstabellen

- Für jede konsistente Menge von deterministischen Lernbeispielen gibt es mindestens einen Entscheidungsbaum
- Dem Lernsystem wird eine kleine Menge (verglichen mit allen Möglichkeiten) von Lernbeispielen gegeben
- Gesucht ist ein möglichst "kompakter" Entscheidungsbaum (Analogie zu "niedrigem" Polynom für numerische Funktion)

Beispiel: Warten als Entscheidungsbaum

Die Lernbeispiele

Bei- spiel	Attribute								Ziel				
spici	Alt	Bar	Frei	Hung	Gäste	Preis	Regen	Reser	Тур	Wart	Warte	en?	
$\overline{X_1}$	Ja	Nein	Nein	Ja	Einige	€€€	Nein	Ja	Franz.	0-10	Ja		
X_2	Ja	Nein	Nein	Ja	Voll	€	Nein	Nein	Thai	30-60	Nein	Die	
X_3	Nein	J a	Nein	Nein	Einige	€	Nein	Nein	Burger	0-10	Ja	Ziel	
X_4	J a	Nein	Ja	J a	Voll	€	Ja	Nein	Thai	10-30	Ja	här	
X_5	J a	Nein	Ja	Nein	Voll	€€€	Nein	J a	Franz.	>60	Nein		
X_6	Nein	J a	Nein	J a	Einige	€€	Ja	Ja	Ital.	0-10	Ja	not	
X_7	Nein	Ja	Nein	Nein	Keine	€	Ja	Nein	Burger	0-10	Nein	VO	
X_8	Nein	Nein	Nein	J a	Einige	€€	Ja	Ja	Thai	0-10	Ja	bel	
X_9	Nein	Ja	J a	Nein	Voll	€	J a	Nein	Burger	>60	Nein	Att	
X_{10}	J a	Ja	Ja	J a	Voll	€€€	Nein	Ja	Ital.	10-30	Nein		
X_{11}	Nein	Nein	Nein	Nein	Keine	€	Nein	Nein	Thai	0-10	Nein		
<i>X</i> ₁₂	Ja	Ja	Ja	Ja	Voll	€	Nein	Nein	Burger	30-60	Ja	_	

Die "wahre"
Zielfunktion
hängt nicht
notwendig
von allen
bekannten
Attributen
ab!

Lernen von Entscheidungsbäumen

- Wähle Attribut *a*, das die Lernbeispiele "gut" separiert
- Für die n Werte von a generiere n rekursive Aufrufe des Lerners jeweils mit den Lernbeispielen, wo a Wert v_i hat
- Bau die Ergebnisse zu einem Baum in Wurzel a mit den n Ästen zusammen

(Gegen-)Beispiel

Separierung nach Attribut "Typ"

(schlechte Separierung, da die Unter-Lernprobleme keine Separierung in "Ja" und "Nein" erreichen)

Ja

Decision Tree Learning (DTL)

```
function DTL(examples, attributes, default) returns a decision tree
  if examples is empty then return default
   else if all examples have the same classification then return the classification
   else if attributes is empty then return MODE examples)
                                                                      wie im R/N:
   else
                                                              MAJORITY-VALUE
       best \leftarrow Choose-Attributes, examples)
                                                                MOST-COMMON-
       tree \leftarrow a new decision tree with root test best
                                                                           VALUE
       for each value v_i of best do
            examples_i \leftarrow \{elements of examples with best = v_i\}
            subtree \leftarrow DTL(examples_i, attributes - best(Mode(examples_i)))
            add a branch to tree with label v_i and subtree subtree
       return tree
```

MAJORITY-VALUE (abs. Mehrheit) bei binärer Entscheidung!

Eigenschaften von DTL

Für

- E Trainingsbeispiele,
- A Attribute,
- W Maximalzahl unterschiedlicher Werte eines Attributs

ergibt sich:

- Speicher: $O(W^A)$ (praktisch deutlich weniger, da bei guter Attributauswahl nur ganz wenige Bereiche des E-Baums tief sind!)
- Zeit: *O*(*E*·*A*·*W*)
- Gelernter E-Baum nicht notwendig "korrekt" bzw. "optimal" (bei Lernproblemen problematische Begriffe!)

Gelernter Entscheidungsbaum

Bleibt die Frage:

Wie wählt man Attribute geschickt, damit Baum kompakt wird?

