## **C07** – Symbolic execution

Program Verification

FMI · Denisa Diaconescu · Spring 2025

## Symbolic execution

#### Symbolic execution

- Symbolic execution is widely used in practice.
- Tools based on symbolic execution have found serious errors and security vulnerabilities in various systems:
  - Networks servers
  - File systems
  - Device drivers
  - Unix utilities
  - Computer vision code
  - ...

#### **Control Flow Graph**

```
int f(int x) {
  int a = x * 2;
  a = a - 4;
  if (a == 0)
    error("Div by zero!");
  return 42 / a;
}
```



#### **Path Feasibility**

A path is feasible if there exists an input  $\mathcal{I}$  to the program that covers the path (when program is executed with  $\mathcal{I}$  as input, the path is taken).

```
int f(int x) {
  int a = x * 2;
  a = a - 4;
  if (a == 0)
    error("Div by zero!");
  return 42 / a;
}
```



#### Infeasible path

A path is infeasible if there exists no input  ${\mathcal I}$  that covers the path.

```
int f(int x) {
  int a = x * x;
  if (a < 0)
    error("Too small!");
  return 42 / a;
}</pre>
```



## **Symbols**

```
int f(int x) {
  int a = x * 2;
  a = a - 4;
  if (a == 0)
    error("Div by zero!");
  return 42 / a;
}
```



## Symbolic execution

At any point during program execution, symbolic execution keeps two formulas:

- symbolic store and
- path constraint

Therefore, at any point in time the symbolic state is described as the conjunction of these two formulas.

## Symbolic store

The value of variables at any moment in time are given by a function

$$\sigma_s: Var \rightarrow Sym$$

- Var is the set of variables
- Sym is a set of symbolic values
- $\sigma_s$  is called a symbolic store

#### **Example**

$$\sigma_s$$
 : x  $\mapsto$  x0, y  $\mapsto$  y0

7

#### **Semantics**

Arithmetic expression evaluation simply manipulates the symbolic values.

#### **Example**

Suppose the symbolic store is  $\sigma_s$ :  $x \mapsto x0$ ,  $y \mapsto y0$ .

Then z = x + y will produce the new symbolic store

$$\sigma_s'$$
 : x  $\mapsto$  x0, y  $\mapsto$  y0, z  $\mapsto$  x0 + y0

We literally keep the symbolic expression x0 + y0.

8

#### Path constraint

- Path constraint is a condition on the input symbols such that if a path is feasible its path-constraint is satisfiable.
- The analysis keeps a path constraint (pct) which records the history of all branches taken so far.
- The path constraint is simply a formula.
- The formula is typically in a decidable logical fragment without quantifiers.
- At the start of the analysis, the path constraint is true.
- Evaluation of conditionals affects the path constraint, but not the symbolic store.

#### Path constraint

#### Example

Suppose the symbolic store is  $\sigma_s$ :  $x \mapsto x0$ ,  $y \mapsto y0$ .

Suppose the path constraint is pct = x0 > 10.

Let us evaluate if (x > y + 1) {5: ...}

At label 5, we will get the symbolic store  $\sigma_s$ . It does not change!

But, at label 5, we will get an updated path constraint:

$$pct = x0 > 10 \land x0 > y0 + 1$$

#### Constraint solver

A constraint solver is a tool that finds satisfying assignments for a *constraint*, if it is satisfiable.

A solution of the constraint is a set of assignments, one for each free variable that makes the constraint satisfiable.

```
int twice(int v) {
 return 2 * v:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  y = read();
  test(x,y);
```

Can you find the inputs that make the program reach the ERROR?

Lets execute this example with classic symbolic execution

```
int twice(int v) {
  return 2 * v:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  y = read();
  test(x,y);
```

The read() functions read a value from the input and because we don't know what those read values are, we set the values of  ${\bf x}$  and  ${\bf y}$  to fresh symbolic values called  ${\bf x}0$  and  ${\bf y}0$ 

pct is true because so far we have not executed any conditionals

```
int twice(int v) {
 return 2 * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
   if (x > y + 10)
     ERROR:
int main() {
 x = read();
  y = read();
  test(x,y);
```

```
\sigma_s: x \mapsto x0, pct : true y \mapsto y0 z \mapsto 2^*y0
```

Here, we simply executed the function twice() and added the new symbolic value for z.

```
We forked the analysis into 2 paths: the true
int twice(int v) {
                                    and the false path. So we duplicate the state of
  return 2 * v;
                                    the analysis.
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
                                           This is the result if x = z:
     if (x > y + 10)
                                                                pct : x0 = 2*y0
                                           \sigma_s: x \mapsto x0,
      ERROR:
                                               y → y0
                                                z \mapsto 2*v0
int main() {
                                          This is the result if x = z:
  x = read();
                                                             pct : x0 \neq 2*v0
  y = read();
                                          \sigma_{\rm s}: {\rm x} \mapsto {\rm x}0,
                                                y \mapsto y0
  test(x,y);
                                                z \mapsto 2*v0
```

```
int twice(int v) {
  return 2 * v:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  v = read();
  test(x,y);
```

We can avoid further exploring a path if we know the constraint pct is **unsatisfiable**. In this example, both pct's are satisfiable so we need to keep exploring both paths.

```
This is the result if x = z:
\sigma_{\rm s}: {\rm x} \mapsto {\rm x}0,
                          pct : x0 = 2*y0
     y \mapsto y0
       z \mapsto 2*v0
This is the result if x != z:
\sigma_s: x \mapsto x0,
                          pct : x0 \neq 2*y0
      y \mapsto y0
      z \mapsto 2*v0
```

```
int twice(int v) {
  return 2 * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
  x = read();
  v = read();
  test(x,y);
```

Lets explore the path when x == z is true. Once again we get 2 more paths.

#### This is the result if x > y + 10:

$$\sigma_{s}: x \mapsto x0,$$

$$y \mapsto y0$$

$$z \mapsto 2*y0$$

pct : 
$$x0 = 2*y0$$
  
 $\land$   
 $x0 > y0+10$ 

#### This is the result if $x \le y + 10$ :

$$\sigma_{s}: x \mapsto x0,$$
 $y \mapsto y0$ 
 $z \mapsto 2*y0$ 

pct : 
$$x0 = 2*y0$$
  
 $\land$   
 $x0 \le y0+10$ 

```
int twice(int v) {
  return 2 * v:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  y = read();
  test(x,y);
```

So the following path reaches "ERROR".

#### This is the result if x > y + 10:

We can now ask the SMT solver for a satisfying assignment to the pct formula.

For instance, x0 = 40, y0 = 20 is a satisfying assignment. That is, running the program with those concrete inputs triggers the error.

#### **Test generation**

- We can use symbolic execution to generate tests for each feasible path
- For example, a symbolic execution tool Klee

## Test generation - example

```
#include <climits>
                                              #include <climits>
#include "stdlib.h"
                                              #include "stdlib.h"
int f(int x) {
                                              #include "klee/klee.h"
 int a = x * 2;
                                              int f(int x) {
 a = a - 4;
                                                int a = x * 2;
 if (a == 0)
                                                a = a - 4:
  exit(-1):
                                                if (a == 0)
 return 42 / a;
                                                  exit(-1):
                                                return 42 / a:
int main(int argc, char** argv) {
  int x = atoi(argv[1]);
                                              int main(int argc, char** argv) {
 return f(x):
                                                int x:
                                                klee_make_symbolic(&x, sizeof(x), "x");
                                                return f(x);
```

Klee will generate two tests for x = 0 and for x = 2.

#### Path explosion

Path explosion refers to the fact that the number of control-flow paths in a program grows exponentially with an increase in program size and can even be infinite in the case of programs with unbounded loop iterations.

```
int a = 0;
for (int i = 10; i >= 0; i--) {
  a += 42 / i;
                            a := 0
                            i := 10
                            i >= 0
                                                a += 42 / i
```

### **Handling Loops - a limitation**

```
int F(unsigned int k) {
  int sum = 0;
  int i = 0;
  for (; i < k; i++)
    sum += i;
  return sum;
}</pre>
```

- A serious limitation of symbolic execution is handling unbounded loops.
- Symbolic execution runs the program for a finite number of paths.
- But what happens if we do not know the bound on a loop?
- The symbolic execution will keep running forever!

## **Handling Loops - bound loops**

```
int F(unsigned int k) {
  int sum = 0;
  int i = 0;
  for (; i < 2; i++)
     sum += i;
  return sum;
}</pre>
```

- A common solution in practice is to provide some loop bound.
  - In the above example, we can bound k to say 2.
  - This is an example of an under-approximation
- Practical symbolic analyzers usually under-approximate as most programs have unknown loop bounds.

### **Handling Loops - loop invariants**

```
int F(unsigned int k) {
  int sum = 0;
  int i = 0;
  for (; i < k; i++)
     sum += i;
  return sum;
}</pre>
```

- Another solution is to provide a loop invariant.
- This technique is rarely used for large programs because it is difficult to provide such invariants manually.
- It can also lead to over-approximation.

### **Constraint solving - challenges**

- Constraint solving is fundamental to symbolic execution.
- An SMT solver is continuously invoked during analysis.
- Often, the main roadblock to performance of symbolic execution engines is the time spent in constraint solving.
- Important features:
  - The SMT solver supports as many decidable logical fragments as possible.
    - Some tools use more than one SMT solver.
  - The SMT solver can solve large formulas quickly.
  - The symbolic execution engines tries to reduce the burden in calling the SMT solver by exploring domain specific insights.

### **Key optimization - caching**

- The analyzer will invoke the SMT solver with similar formulas.
- The symbolic execution engine can keep a map (cache) of formulas to a satisfying assignment for the formulas.
- When the engine builds a new formula and would like to find a satisfying assignment for that formula, it can first access the cache, before calling the SMT solver.

## **Key optimization - caching**

#### Example

Suppose the cache contains the mapping:

Formula Solution 
$$(x + y < 10) \land (x > 5) \rightarrow \{x = 6, y = 3\}$$

If we get a weaker formula as a query, say (x+y<10), then we can immediately reuse the solution already found in the cache, without calling the SMT solver.

If we get a stronger formula as a query, say  $(x+y<10) \land (x>5) \land (y\geq 0)$ , then we can quickly try the solution in the cache and see if it works, without calling the solver (in this example, it works).

#### When constraint solving fails

Despite best efforts, the program may be using constraints in a fragment which the SMT solver does not handle (well).

For example, the SMT solver does not handle non-linear constraints well.

#### When constraint solving fails - example

```
int twice(int v) {
  return v * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  v = read();
  test(x,y);
```

Here, we changed the twice() function to contain a non-linear result.

Let us see what happens when we symbolically execute the program now...

## When constraint solving fails - example

```
int twice(int v) {
  return v * v:
void test(int x, int y)
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
  x = read();
  y = read();
  test(x,y);
```

#### This is the result if x = z:

```
\sigma_s: x \mapsto x0, pct: x0 = y0*y0

y \mapsto y0

z \mapsto y0*y0
```

Now, if we are to invoke the SMT solver with the pct formula, it would be unable to compute satisfying assignments, precluding us from knowing whether the path is feasible or not.

# Concolic execution

#### Concolic execution

$$concolic = concrete + symbolic$$

- Combines both symbolic execution and concrete (normal) execution.
- The basic idea is to have the concrete execution drive the symbolic execution.
- The programs run as usual (it needs to be given some input), but in addition it also maintains the usual symbolic information.

#### **Concolic execution - Example**

```
int twice(int v) {
  return 2 * v:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
     ERROR:
int main() {
 x = read();
  y = read();
 test (x, y);
```

The read() functions read a value from the input. Suppose we read x = 22 and y = 7.

We will keep both the concrete store and the symbolic store and path constraint.

```
\sigma: x \mapsto 22,
y \mapsto 7
\sigma_s: x \mapsto x0,
y \mapsto y0
pct: true
```

### **Concolic execution - Example**

```
int twice(int v) {
 return 2 * v;
                                            \sigma: x \mapsto 22
                                               y \mapsto 7
                                              z → 14
void test(int x, int y) {
  z = twice(y);
  if (x == z)
                                            \sigma_{\rm s}: {\rm x} \mapsto {\rm x}0,
                                                                 pct : true
                                                 y \mapsto y0
    if (x > y + 10)
                                                  z \mapsto 2*y0
      ERROR;
                                     The concrete execution will now take
int main() {
                                     the 'else' branch of z == x.
  x = read();
  v = read();
  test(x,y);
```

```
Hence, we get:
int twice(int v) {
 return 2 * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
                                              \sigma: x \mapsto 22
      ERROR:
                                                  y \mapsto 7
                                                 z \mapsto 14
                                                                   pct : x0 \neq 2*y0
                                              \sigma_{\rm s}: {\rm x} \mapsto {\rm x}0,
int main() {
                                                  y \mapsto y0
  x = read();
                                                   z \mapsto 2*y0
  y = read();
  test(x,y);
```

```
int twice(int v) {
 return 2 * v:
void test(int x, int y) {
 z = twice(y);
 if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  y = read();
  test(x,y);
```

At this point, concolic execution decides that it would like the explore the "true" branch of x == z and hence it needs to generate concrete inputs in order to explore it. Towards such inputs, it negates the pct constraint, obtaining:

```
pct : x0 = 2*y0
```

It then calls the SMT solver to find a satisfying assignment of that constraint. Let us suppose the SMT solver returns:

$$x0 \rightarrow 2$$
,  $y0 \rightarrow 1$ 

The concolic execution then runs the program with this input.

```
With the input x \mapsto 2, y \mapsto 1 we reach
int twice(int v) {
                                     this program point with the following
  return 2 * v:
                                     information:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
                                         \Rightarrow \sigma: x \mapsto 2
     if (x > y + 10)
                                               y \mapsto 1,
       ERROR:
                                                  z \mapsto 2
                                                                   pct : x0 = 2*y0
                                              \sigma_{\rm s}: {\rm x} \mapsto {\rm x}0,
                                                y \mapsto y0
int main() {
                                                   z \mapsto 2*y0
  x = read();
  v = read();
                                     Continuing further we get:
  test(x,y);
```

```
int twice(int v) {
 return 2 * v:
void test(int x, int y) {
  z = twice(y);
 if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
 v = read();
 test(x,y);
```

We reach the "else" branch of x > y + 10

```
\sigma: x \mapsto 2,
y \mapsto 1,
z \mapsto 2
```

pct : 
$$x0 = 2*y0$$
  
 $\wedge$   
 $x0 \le y0+10$ 

Again, concolic execution may want to explore the 'true' branch of x > y + 10.

```
int twice(int v) {
 return 2 * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
 v = read();
 test(x,y);
```

We reach the "else" branch of x > y + 10

$$\sigma: x \mapsto 2,$$

$$y \mapsto 1,$$

$$z \mapsto 2$$

$$\sigma_s: x \mapsto x0,$$
 $y \mapsto y0$ 
 $z \mapsto 2*y0$ 

$$pct : x0 = 2*y0$$

$$\wedge$$

$$x0 \le y0+10$$

Concolic execution now negates the conjunct  $x0 \le y0+10$  obtaining:

A satisfying assignment is:  $x0 \mapsto 30$ ,  $y0 \mapsto 15$ 

```
int twice(int v) {
 return 2 * v:
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR;
int main() {
 x = read();
  v = read();
 test(x,y);
```

If we run the program with the input:

$$x0 \rightarrow 30$$
,  $y0 \rightarrow 15$ 

we will now reach the **ERROR** state.

As we can see from this example, by keeping the symbolic information, the concrete execution can use that information in order to obtain new inputs.

```
int twice(int v) {
  return v * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  y = read();
  test(x,y);
```

Let us again consider our example and see what concolic execution would do with non-linear constraints.

```
int twice(int v) {
  return v * v;
                                     The read() functions read a value from
                                     the input. Suppose we read x = 22 and y = 7.
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
                                      \sigma: x \mapsto 22
int main() {
                                          v \mapsto 7
  x = read();
  y = read();
                                      \sigma_s: x \mapsto x0,
                                                           pct : true
  test(x,y);
                                           y \mapsto y0
```

```
int twice(int v) {
 return v * v;
                                            \sigma: x \mapsto 22
                                              y \mapsto 7,
                                              z → 49
void test(int x, int y) {
  z = twice(y);
  if (x == z)
                                            \sigma_{\rm s}: {\rm x} \mapsto {\rm x}0,
                                                                pct : true
                                                 y \mapsto y0
    if (x > y + 10)
                                                  z \mapsto y0*y0
      ERROR;
                                     The concrete execution will now take
int main() {
                                     the 'else' branch of x == z.
  x = read();
  v = read();
  test(x,y);
```

```
Hence, we get:
int twice(int v) {
 return v * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
                                              \sigma: x \mapsto 22
       ERROR:
                                                 y \mapsto 7
                                                 z \mapsto 49
                                             \sigma_{\rm s}: {\rm x} \mapsto {\rm x}0
                                                                   pct : x0 \neq y0*y0
int main() {
                                                  y \mapsto y0
  x = read();
                                                   z \mapsto y0*y0
  y = read();
  test(x,y);
```

```
int twice(int v) {
 return v * v;
void test(int x, int y) {
  z = twice(y);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
  x = read():
  v = read();
  test(x,y);
```

However, here we have a non-linear constraint  $x0 \neq y0*y0$ . If we would like to explore the true branch we negate the constraint, obtaining x0 = y0\*y0 but again we have a non-linear constraint!

In this case, concolic execution simplifies the constraint by plugging in the concrete values for y0 in this case, 7, obtaining the simplified constraint:

$$x0 = 49$$

Hence, it now runs the program with the input

$$x \mapsto 49$$
,  $y \mapsto 7$ 

```
int twice(int v) {
  return v * v:
void test(int x, int y) {
 z = twice(v);
  if (x == z) {
    if (x > y + 10)
      ERROR:
int main() {
 x = read();
  v = read();
  test(x,y);
```

Running with the input

$$x \mapsto 49, \quad y \mapsto 7$$

will reach the error state.

However, notice that with these inputs, if we try to simplify non-linear constraints by plugging in concrete values (as concolic execution does), then concolic execution we will never reach the else branch of the if(x > y + 10) statement.

### Symbolic execution

- Is a popular technique for analyzing programs.
  - Completely automated
  - Relies on SMT solvers
- To terminate, may need to bound loops.
  - Leads to under-approximation
- To handle non-linear constraints and external environment, mixes concrete and symbolic execution (concolic execution).

#### References

- Lecture Notes on "Program Analysis", ETH Zurich, Martin Vechev.
- Lecture Notes on "Techniques for Program Analysis and Verification", Stanford, Clark Barrett.
- Lecture Notes on "Program verification", ETH Zurich, Alexander Summers.
- Lecture Notes on "Computer-Aided Reasoning for Software Engineering", University of Washington, Emina Torlak.
- "Program Analysis Crash Course", Yegor Bugayenko