2-D Cylindrical Finite Difference Time Dependent Heat Equation for Non-Constant Thermal Conductivity with Constant Spacing

Emily Cranwell and Daniel Huantes

February 16, 2021

1 Introduction

2 The Problem

3 Derivation

$$\rho c \frac{d\mathbf{T}}{dt} = \vec{\nabla} \cdot \kappa \vec{\nabla} \mathbf{T} + A \tag{1}$$

$$\rho c \frac{d\mathbf{T}}{dt} = \vec{\nabla} \cdot \kappa \left[\frac{\partial \mathbf{T}}{\partial r} \hat{r} + \frac{\partial \mathbf{T}}{\partial z} \hat{z} \right]$$
 (2)

$$\rho c \frac{d\mathbf{T}}{dt} = \vec{\nabla} \cdot \left[\frac{\partial \mathbf{T}}{\partial r} \kappa(r, z) \hat{r} + \frac{\partial \mathbf{T}}{\partial z} \kappa(r, z) \hat{z} \right]$$
(3)

$$\rho c \frac{d\mathbf{T}}{dt} = \frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial \mathbf{T}}{\partial r} \kappa(r, z) \right] + \frac{\partial}{\partial z} \left[\frac{\partial \mathbf{T}}{\partial z} \kappa(r, z) \right]$$
(4)

$$\rho c \frac{d\mathbf{T}}{dt} = \frac{1}{r} \left[\frac{\partial \mathbf{T}}{\partial r} \kappa(r, z) + r \frac{\partial^2 \mathbf{T}}{\partial r^2} \kappa(r, z) + r \frac{\partial \mathbf{T}}{\partial r} \frac{\partial \kappa}{\partial r} \right] + \frac{\partial^2 \mathbf{T}}{\partial z^2} \kappa(r, z) + \frac{\partial \mathbf{T}}{\partial z} \frac{\partial \kappa}{\partial z}$$
 (5)

$$\rho c \frac{d\mathbf{T}}{dt} = \frac{1}{r} \frac{\partial \mathbf{T}}{\partial r} \kappa(r, z) + \frac{\partial^2 \mathbf{T}}{\partial r^2} \kappa(r, z) + \frac{\partial \mathbf{T}}{\partial r} \frac{\partial \kappa}{\partial r} + \frac{\partial^2 \mathbf{T}}{\partial z^2} \kappa(r, z) + \frac{\partial \mathbf{T}}{\partial z} \frac{\partial \kappa}{\partial z}$$
(6)

$$\rho c \frac{d\mathbf{T}}{dt} = \frac{1}{r} \left[\frac{\mathbf{T}_{r+1,z}^{n} - \mathbf{T}_{r-1,z}^{n}}{2\Delta r} \right] \kappa_{r,z}^{n} + \left[\frac{\mathbf{T}_{r+1,z}^{n} - 2\mathbf{T}_{r,z}^{n} + \mathbf{T}_{r-1,z}^{n}}{(\Delta r)^{2}} \right] \kappa_{r,z}^{n} + \left(\frac{\mathbf{T}_{r+1,z}^{n} - \mathbf{T}_{r-1,z}^{n}}{2\Delta r} \right) \left(\frac{\kappa_{r+1,z}^{n} - \kappa_{r-1,z}^{n}}{2\Delta r} \right) + \left[\frac{\mathbf{T}_{r,z+1}^{n} - 2\mathbf{T}_{r,z}^{n} + \mathbf{T}_{r,z-1}^{n}}{(\Delta z)^{2}} \right] \kappa_{r,z}^{n} + \left(\frac{\mathbf{T}_{r,z+1}^{n} - \mathbf{T}_{r,z-1}^{n}}{2\Delta z} \right) \left(\frac{\kappa_{r,z+1}^{n} - \kappa_{r,z-1}^{n}}{2\Delta z} \right)$$

$$(7)$$

$$\rho c \frac{d\mathbf{T}}{dt} = \frac{1}{r} \left[\frac{\mathbf{T}_{r+1,z}^{n} - \mathbf{T}_{r-1,z}^{n}}{2\Delta r} \right] \kappa_{r,z}^{n} + \left[\frac{\mathbf{T}_{r+1,z}^{n} - 2\mathbf{T}_{r,z}^{n} + \mathbf{T}_{r-1,z}^{n}}{(\Delta r)^{2}} \right] \kappa_{r,z}^{n} + \left(\frac{\mathbf{T}_{r+1,z}^{n} - \mathbf{T}_{r-1,z}^{n}}{2\Delta r} \right) (\frac{\Delta \kappa}{\Delta r})_{r,z}^{n} + \left[\frac{\mathbf{T}_{r,z+1}^{n} - 2\mathbf{T}_{r,z}^{n} + \mathbf{T}_{r,z-1}^{n}}{(\Delta z)^{2}} \right] \kappa_{r,z}^{n} + \left(\frac{\mathbf{T}_{r,z+1}^{n} - \mathbf{T}_{r,z-1}^{n}}{2\Delta r} \right) (\frac{\Delta \kappa}{\Delta z})_{r,z}^{n}$$

$$(8)$$

$$\rho c \frac{\mathbf{T}_{r,z}^{n+1} - \mathbf{T}_{r,z}^{n}}{\Delta t} = \frac{1}{r} \left[\frac{\mathbf{T}_{r+1,z}^{n} - \mathbf{T}_{r-1,z}^{n}}{2\Delta r} \right] \kappa_{r,z}^{n} + \left[\frac{\mathbf{T}_{r+1,z}^{n} - 2\mathbf{T}_{r,z}^{n} + \mathbf{T}_{r-1,z}^{n}}{(\Delta r)^{2}} \right] \kappa_{r,z}^{n} + \left(\frac{\mathbf{T}_{r+1,z}^{n} - \mathbf{T}_{r-1,z}^{n}}{2\Delta r} \right) \left(\frac{\Delta \kappa}{\Delta r} \right)_{r,z}^{n} + \left[\frac{\mathbf{T}_{r,z+1}^{n} - 2\mathbf{T}_{r,z}^{n} + \mathbf{T}_{r,z-1}^{n}}{(\Delta z)^{2}} \right] \kappa_{r,z}^{n} + \left(\frac{\mathbf{T}_{r,z+1}^{n} - \mathbf{T}_{r,z-1}^{n}}{2\Delta r} \right) \left(\frac{\Delta \kappa}{\Delta z} \right)_{r,z}^{n}$$

$$(9)$$

$$T_{r,z}^{n+1} - T_{r,z}^{n} = \frac{\Delta t}{\rho c} \left(T_{r,z}^{n} \left[\frac{-2\kappa_{r,z}^{n}}{(\Delta r)^{2}} - \frac{2\kappa_{r,z}^{n}}{(\Delta z)^{2}} \right] + T_{r+1,z}^{n} \left[\frac{\kappa_{r,z}^{n}}{2r\Delta r} + \frac{\kappa_{r,z}^{n}}{(\Delta r)^{2}} + \frac{1}{2\Delta r} \left(\frac{\Delta \kappa}{\Delta r} \right)_{r,z}^{n} \right]$$

$$+ T_{r-1,z}^{n} \left[\frac{-\kappa_{r,z}^{n}}{2r\Delta r} + \frac{\kappa_{r,z}^{n}}{(\Delta r)^{2}} - \frac{1}{2\Delta r} \left(\frac{\Delta \kappa}{\Delta r} \right)_{r,z}^{n} \right] + T_{r,z-1}^{n} \left[\frac{\kappa_{r,z}^{n}}{(\Delta z)^{2}} - \frac{1}{2\Delta z} \left(\frac{\Delta \kappa}{\Delta z} \right)_{r,z}^{n} \right]$$

$$+ T_{r,z+1}^{n} \left[\frac{\kappa_{r,z}^{n}}{(\Delta z)^{2}} + \frac{1}{2\Delta z} \left(\frac{\Delta \kappa}{\Delta z} \right)_{r,z}^{n} \right]$$

$$(10)$$

$$A = \left[\frac{-2\kappa_{r,z}^n}{(\Delta r)^2} - \frac{2\kappa_{r,z}^n}{(\Delta z)^2} \right] \tag{11}$$

$$B = \left[\frac{\kappa_{r,z}^n}{2r\Delta r} + \frac{\kappa_{r,z}^n}{(\Delta r)^2} + \frac{1}{2\Delta r} \left(\frac{\Delta \kappa}{\Delta r} \right)_{r,z}^n \right]$$
(12)

$$C = \left[\frac{-\kappa_{r,z}^n}{2r\Delta r} + \frac{\kappa_{r,z}^n}{(\Delta r)^2} - \frac{1}{2\Delta r} (\frac{\Delta \kappa}{\Delta r})_{r,z}^n \right]$$
(13)

$$D = \left[\frac{\kappa_{r,z}^n}{(\Delta z)^2} - \frac{1}{2\Delta z} (\frac{\Delta \kappa}{\Delta z})_{r,z}^n \right]$$
 (14)

$$E = \left[\frac{\kappa_{r,z}^n}{(\Delta z)^2} + \frac{1}{2\Delta z} \left(\frac{\Delta \kappa}{\Delta z} \right)_{r,z}^n \right]$$
 (15)

3.1 Case for r = 0

$$\rho c \frac{d\mathbf{T}}{dt} = \frac{1}{r} \frac{\partial \mathbf{T}}{\partial r} \kappa(r, z) + \frac{\partial^2 \mathbf{T}}{\partial r^2} \kappa(r, z) + \frac{\partial \mathbf{T}}{\partial r} \frac{\partial \kappa}{\partial r} + \frac{\partial^2 \mathbf{T}}{\partial z^2} \kappa(r, z) + \frac{\partial \mathbf{T}}{\partial z} \frac{\partial \kappa}{\partial z}$$
(16)

$$\lim_{r \to 0} \left[\frac{\frac{\partial \mathbf{T}}{\partial r} \kappa(r, z)}{r} \right] = \frac{0}{0}$$

$$\lim_{r \to 0} \left[\frac{\frac{\partial \mathbf{T}}{\partial r} \kappa(r, z)}{r} \right] \stackrel{\text{!}}{=} \lim_{r \to 0} \left[\frac{\frac{\partial}{\partial r} \left[\frac{\partial \mathbf{T}}{\partial r} \kappa(r, z) \right]}{\frac{\partial}{\partial r} [r]} \right]$$

$$= \lim_{r \to 0} \left[\frac{\partial^2 \mathbf{T}}{\partial r^2} \kappa(r, z) + \frac{\partial \mathbf{T}}{\partial r} \frac{\partial \kappa(r, z)}{\partial r} \right]$$
(17)

$$\frac{\partial^{2} \mathbf{T}}{\partial r^{2}} \kappa(r, z) = \left[\frac{\mathbf{T}_{r+1, z}^{n} - 2\mathbf{T}_{r, z}^{n} + \mathbf{T}_{r-1, z}^{n}}{(\Delta r)^{2}} \right] \kappa_{r, z}^{n}$$

$$= \left[\frac{\mathbf{T}_{r+1, z}^{n} - 2\mathbf{T}_{r, z}^{n} + \mathbf{T}_{r-1, z}^{n}}{(\Delta r)^{2}} \right] \kappa_{r, z}^{n}$$
(18)

$$\frac{\partial \mathbf{T}}{\partial r} \frac{\partial \kappa(r, z)}{\partial r} = \left[\frac{\mathbf{T}_{r+1, z}^{n} - \mathbf{T}_{r-1, z}^{n}}{2\Delta r} \right] \left(\frac{\Delta \kappa}{\Delta r} \right)_{r, z}^{n} \\
= \left[\frac{\mathbf{T}_{r+1, z}^{n} - \mathbf{T}_{r-1, z}^{n}}{2\Delta r} \right] \left(\frac{\Delta \kappa}{\Delta r} \right)_{r, z}^{n} \tag{19}$$