Munkres Chapter 2.18 exercises

Cherie Li

06/07/2018

Exercise 2.18.5: Show that the subspace (a, b) of \mathbb{R} is homeomorphic with (0, 1) and the subspace [a, b] of \mathbb{R} is homeomorphic with [0, 1].

Solution: Let (a, b) be a subspace of \mathbb{R} . Consider the function $f(x) = \frac{x-a}{b-a}$, where $x \in (a, b)$. Notice that 0 < f(x) < 1 and that it is bijective. Since b > a, b - a > 0, so the function is continuous, since it is just a linear function x - a over some nonzero constant. Also, we have that the inverse is also continuous: f(y) = y(b-a) + a, as this is just the equation of a line with slope (b-a) and intercept a as well as bijective.

Now consider the same function for $0 \le f(x) \le 1$. Notice when x = a, the function evaluates to 0 which is in the interval [0,1]. Also when x = b, we have that the function evaluates to 1. Also the function is continuous and bijective still.

Since function and its inverse are both continuous, then f is a homeomorphism and (0,1) homeomorphic to (a,b) and [0,1] homeomorphic to [a,b].

Exercise 2.18.10: Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous.

- (a) Show that the set $\{x|f(x) \leq g(x)\}$ is closed in X.
- (b) Let $h: X \to Y$ be the function $h(x) = min\{f(x), g(x)\}$. Show that h is continuous. [Hint: Use the pasting lemma.]

Solution:

- (a) Let Y be an ordered set in the order topology and let $f, g: X \to Y$ be continuous. To show that the set $A := \{x | f(x) \le g(x)\}$ is closed it suffices to show that $A^c := \{x | f(x) > g(x)\}$ is open in X. Assume A^c is nonempty and let $a \in A^c$ be arbitrary. Let $y_1, y_2, y_3 \in Y$ such that $y_1 \le g(a) < y_2 < f(a) \le y_3$. Notice that (y_1, y_2) and (y_2, y_3) open in Y, since if f(a) is the maximal element or g(a) is the minimal element, we have $[g(a), y_2), (y_2, f(a)]$ instead. These are open intervals in order topology, so their intersection $(y_1, y_2) \cap (y_2, y_1)$ is also open. Since f is continuous, by definition we have that $f^{-1}((y_1, y_2) \cap (y_2, y_1))$ is also open in X where $a \in f^{-1}((y_1, y_2) \cap (y_2, y_1)) \subset A^c$. So A^c is open in X and A is closed.
- (b) Notice from the previous part that the set $A := \{x | f(x) \leq g(x)\}$ and symmetrically $B := \{x | g(x) \leq f(x)\}$ are both closed in X. Also, notice that $X = A \cup B$ since all x must have g(x) > f(x), g(x) = f(x) or g(x) < f(x) and that their intersection is when g(x) = f(x). By Theorem 18.3 (the pasting lemma), f and g give the continuous function $h: X \to Y$, where h(x) = f(x) if $x \in A$. So if $x \in A$, then f(x) < g(x). Similarly, if $x \in B$, then g(x) > f(x). This is the same as the function min, defined in the statement.