Ehrhart Polynomials

Day I: Appetizers

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

"Science is what we understand well enough to explain to a computer, art is all the rest."

Donald Knuth

Ehrhart Polynomials () Matthias Beck

Themes

Discrete-geometric polynomials

Computation (complexity)

Generating functions

Combinatorial structures

Polyhedra

A Sample Problem: Birkhoff-von Neumann Polytope

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)

Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume ² A037302 is v(n), then $a(n) = ((n-1)^2)! * v(n) / n^{(n-1)}$.

1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000 (list; graph; refs; listen; history;

text; internal format) OFFSET

COMMENTS The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices.

Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002

$$B_n = \left\{ \left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array} \right) \in \mathbb{R}^{n^2}_{\geq 0} : \quad \sum_{k} x_{jk} = 1 \text{ for all } 1 \leq k \leq n \\ \sum_{k} x_{jk} = 1 \text{ for all } 1 \leq j \leq n \end{array} \right\}$$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$lacksquare$$
 (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$

$$ightharpoonup$$
 (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

- ightharpoonup (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$
- \blacktriangleright (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Ehrhart function
$$L_{\mathcal{P}}(t) := \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right| = \left| t \mathcal{P} \cap \mathbb{Z}^d \right| \text{ for } t \in \mathbb{Z}_{>0}$$

▶ Linear systems are everywhere, and so polyhedra are everywhere.

Ehrhart Polynomials

Matthias Beck

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- ▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

Ehrhart Polynomials

Matthias Beck

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

Ehrhart Polynomials

Matthias Beck

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.
- ▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.
- ► Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Also, polytopes are cool.

Today's Menu: Get Our Hands Dirty

The Unit Cube

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right)$

The unit cube in \mathbb{R}^d is $\mathcal{P} = [0,1]^d = \{ \boldsymbol{x} \in \mathbb{R}^d : 0 \le x_j \le 1 \}$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

The Unit Cube

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right)$

The unit cube in \mathbb{R}^d is $\mathcal{P} = [0,1]^d = \{ \boldsymbol{x} \in \mathbb{R}^d : 0 \leq x_i \leq 1 \}$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

$$L_{\mathcal{P}^{\circ}}(t) = (t-1)^d$$

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

$$\Delta = \{ \boldsymbol{x} \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1 \}$$

$$L_{\Delta}(t) = \# \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq t \}$$

$$= \# \{ (x_1, x_2, \dots, x_d, x_{d+1}) \in \mathbb{Z}_{\geq 0}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = t \}$$

$$= \binom{d+t}{d}$$

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

$$\Delta = \{ \boldsymbol{x} \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1 \}$$

$$L_{\Delta}(t) = \# \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq t \}$$

$$= \# \{ (x_1, x_2, \dots, x_d, x_{d+1}) \in \mathbb{Z}_{\geq 0}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = t \}$$

$$= \begin{pmatrix} d+t \\ d \end{pmatrix}$$

$$L_{\Delta^{\circ}}(t) = \begin{pmatrix} t - 1 \\ d \end{pmatrix}$$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Ehrhart Polynomials 💮 Matthias Beck 10

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

- Triangulation
- Disjoint triangulation
- Interpolation
- Generating function

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Triangulation

Dissect \diamondsuit into 8 (standard) tetrahedra and use inclusion—exclusion to compute $L_\diamondsuit(t)$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Disjoint triangulation

Dissect ♦ into 8 half-open tetrahedra

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Interpolation

```
sage: L(1)
7
sage: L(2)
25
sage: L(3)
63
sage: L(4)
129
```


The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

12

Generating function

$$\operatorname{Ehr}_{\diamondsuit}(z) := 1 + \sum_{t \ge 1} L_{\diamondsuit}(t) z^{t}$$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Generating function

Ehr
$$_{\diamondsuit}(z) := 1 + \sum_{t \ge 1} L_{\diamondsuit}(t) z^{t} = \frac{(1+z)^{3}}{(1-z)^{4}}$$

Exercise:
$$\operatorname{Ehr}_{\operatorname{BiPyr}(\mathcal{P})}(z) = \frac{1+z}{1-z} \operatorname{Ehr}_{\mathcal{P}}(z)$$

 \ldots for unit cubes \longrightarrow Eulerian polynomials

Ehrhart Polynomials

Matthias Beck

Zonotopes

Line segment $[\boldsymbol{a}, \boldsymbol{b}] := \{(1 - \lambda) \, \boldsymbol{a} + \lambda \, \boldsymbol{b} : 0 \le \lambda \le 1\}$

Minkowski sum $\mathcal{K}_1 + \mathcal{K}_2 := \{ \boldsymbol{p} + \boldsymbol{q} : \boldsymbol{p} \in \mathcal{K}_1, \ \boldsymbol{q} \in \mathcal{K}_2 \}$

Zonotope $\mathcal{Z} := [\boldsymbol{a}_1, \boldsymbol{b}_1] + [\boldsymbol{a}_2, \boldsymbol{b}_2] + \cdots + [\boldsymbol{a}_m, \boldsymbol{b}_m]$

Zonotopes

Line segment $[\boldsymbol{a}, \boldsymbol{b}] := \{(1 - \lambda) \, \boldsymbol{a} + \lambda \, \boldsymbol{b} : 0 \le \lambda \le 1\}$

Minkowski sum $\mathcal{K}_1 + \mathcal{K}_2 := \{ \boldsymbol{p} + \boldsymbol{q} : \boldsymbol{p} \in \mathcal{K}_1, \ \boldsymbol{q} \in \mathcal{K}_2 \}$

Zonotope
$$\mathcal{Z}:=[oldsymbol{a}_1,oldsymbol{b}_1]+[oldsymbol{a}_2,oldsymbol{b}_2]+\cdots+[oldsymbol{a}_m,oldsymbol{b}_m]$$

Every zonotope admits a tiling into parallelepipeds

 \mathcal{P} — half-open d-parallelepiped

$$\longrightarrow L_{\mathcal{P}}(t) = t^d$$

Birkhoff-von Neumann Revisited

For more about roots of (Ehrhart) polynomials, see Braun (2008) and Pfeifle (2010).

Recap Day I

- Volume computations \longrightarrow don't agonize, discretize
- Integer-point counting in dilated polytopes \longrightarrow polynomials
- Interpolation
- Generating functions
- Dissections: triangulations, tilings
- Tomorrow: enough practice, how does this work in theory?

Ehrhart Polynomials

Day II: Generating Functions & Complexity

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

Any questions about yesterday?

Today's Menu: Theory and Complexity

- Partition function magic
- Lots of generating functions
- Rational cones
- Triangulations
- Ehrhart theory

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{\lambda} q^{\lambda_1 + \dots + \lambda_n}$ over your favorite partition family

Example $P_{\leq 3}$ — family of partitions into at most 3 parts

$$\sum_{\lambda \in P_{\leq 3}} q^{\lambda_1 + \lambda_2 + \lambda_3} = \frac{1}{(1 - q)(1 - q^2)(1 - q^3)}$$

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{n} q^{\lambda_1 + \dots + \lambda_n}$ over your favorite partition family

Example $P_{\leq 3}$ — family of partitions into at most 3 parts

$$\sum_{\lambda \in P_{<3}} q^{\lambda_1 + \lambda_2 + \lambda_3} = \frac{1}{(1 - q)(1 - q^2)(1 - q^3)}$$

Idea
$$P_{\leq 3} = \left\{\lambda \in \mathbb{Z}^3 : 0 \leq \lambda_1 \leq \lambda_2 \leq \lambda_3\right\} = \mathcal{K} \cap \mathbb{Z}^3$$

$$\mathcal{K} = \left\{\boldsymbol{x} \in \mathbb{R}^3 : 0 \leq x_1 \leq x_2 \leq x_3\right\} \longleftarrow \text{ polyhedral cone } \heartsuit$$

$$\mathcal{K} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 \le x_1 \le x_2 \le x_3 \right\} = \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

is a rational, simplicial, unimodular cone

$$\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = -1$$

$$\mathcal{K} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 \le x_1 \le x_2 \le x_3 \right\} = \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

is a rational, simplicial, unimodular cone

$$\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = -1$$

Integer-point transform

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) = \sum_{\mathbf{m} \in \mathcal{K} \cap \mathbb{Z}^3} z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

$$= \frac{1}{(1 - z_3)(1 - z_2 z_3)(1 - z_1 z_2 z_3)}$$

Warm-Up: Partition Generating Functions

$$\mathcal{K} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 \le x_1 \le x_2 \le x_3 \right\} = \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

is a rational, simplicial, unimodular cone

$$\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = -1$$

Integer-point transform

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) = \sum_{\mathbf{m} \in \mathcal{K} \cap \mathbb{Z}^3} z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

$$= \frac{1}{(1 - z_3)(1 - z_2 z_3)(1 - z_1 z_2 z_3)}$$

$$\sum_{\lambda \in P_{\leq 3}} q^{\lambda_1 + \lambda_2 + \lambda_3} = \sigma_{\mathcal{K}}(q, q, q) = \frac{1}{(1 - q)(1 - q^2)(1 - q^3)}$$

Variations on a Theme

 P_3 — family of partitions into exactly 3 parts

$$P_3 = \{\lambda \in \mathbb{Z}^3 : 0 < \lambda_1 \le \lambda_2 \le \lambda_3\} = \widetilde{\mathcal{K}} \cap \mathbb{Z}^3$$

$$\widetilde{\mathcal{K}} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 < x_1 \le x_2 \le x_3 \right\} = \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{>0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Variations on a Theme

 P_3 — family of partitions into exactly 3 parts

$$P_3 = \{\lambda \in \mathbb{Z}^3 : 0 < \lambda_1 \le \lambda_2 \le \lambda_3\} = \widetilde{\mathcal{K}} \cap \mathbb{Z}^3$$

$$\widetilde{\mathcal{K}} = \left\{ \boldsymbol{x} \in \mathbb{R}^3 : 0 < x_1 \le x_2 \le x_3 \right\} = \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\ge 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{>0} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\sigma_{\widetilde{\mathcal{K}}}(z_1, z_2, z_3) = \sum_{\mathbf{m} \in \widetilde{\mathcal{K}} \cap \mathbb{Z}^3} z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

$$= \frac{z_1 z_2 z_3}{(1 - z_3)(1 - z_2 z_3)(1 - z_1 z_2 z_3)}$$

$$\sum_{\lambda \in P_3} q^{\lambda_1 + \lambda_2 + \lambda_3} = \sigma_{\widetilde{\mathcal{K}}}(q, q, q) = \frac{q^3}{(1 - q)(1 - q^2)(1 - q^3)}$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geq 0} \mathbf{w}_1 + \mathbb{R}_{\geq 0} \mathbf{w}_2 + \mathbb{R}_{\geq 0} \mathbf{w}_3$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geq 0} \, \mathbf{w}_1 + \mathbb{R}_{\geq 0} \, \mathbf{w}_2 + \mathbb{R}_{\geq 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \, \mathbf{w}_1 + [0,1) \, \mathbf{w}_2 + [0,1) \, \mathbf{w}_3$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geq 0} \, \mathbf{w}_1 + \mathbb{R}_{\geq 0} \, \mathbf{w}_2 + \mathbb{R}_{\geq 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \mathbf{w}_1 + [0,1) \mathbf{w}_2 + [0,1) \mathbf{w}_3$

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) =$$

$$\frac{\sigma_{\Pi}(z_1, z_2, z_3)}{(1 - \mathbf{z}^{\mathbf{w}_1})(1 - \mathbf{z}^{\mathbf{w}_2})(1 - \mathbf{z}^{\mathbf{w}_3})}$$

where
$$\mathbf{z^m} = z_1^{m_1} z_2^{m_2} z_3^{m_3}$$

What if K is (still simplicial and rational but) not unimodular? Say $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \in \mathbb{Z}^3$ are linearly independent, $\det[\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3] = D > 1$

$$\mathcal{K} = \mathbb{R}_{\geq 0} \, \mathbf{w}_1 + \mathbb{R}_{\geq 0} \, \mathbf{w}_2 + \mathbb{R}_{\geq 0} \, \mathbf{w}_3$$

Idea Tile \mathcal{K} with the half-open parallelepiped $\Pi = [0,1) \mathbf{w}_1 + [0,1) \mathbf{w}_2 + [0,1) \mathbf{w}_3$

$$\sigma_{\mathcal{K}}(z_1, z_2, z_3) =$$

$$\frac{\sigma_{\Pi}(z_1, z_2, z_3)}{(1 - \mathbf{z}^{\mathbf{w}_1})(1 - \mathbf{z}^{\mathbf{w}_2})(1 - \mathbf{z}^{\mathbf{w}_3})}$$

Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$\operatorname{cone}(\mathcal{P}) := \mathbb{R}_{\geq 0} \left(\mathcal{P} \times \{1\} \right) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

$$cone(\mathcal{P}) \cap \{ \boldsymbol{x} \in \mathbb{R}^{d+1} : x_{d+1} = t \}$$

contains a copy of $t\mathcal{P}$

Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$cone(\mathcal{P}) := \mathbb{R}_{\geq 0} (\mathcal{P} \times \{1\}) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

contains a copy of $t\mathcal{P} \longrightarrow$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z)$$

Homogenizing Polytopes

Given a polytope $\mathcal{P} \subset \mathbb{R}^d$ let

$$cone(\mathcal{P}) := \mathbb{R}_{>0} (\mathcal{P} \times \{1\}) \subset \mathbb{R}^{d+1}$$

$$= \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_2 \\ 1 \end{bmatrix} + \dots + \mathbb{R}_{\geq 0} \begin{bmatrix} \mathbf{v}_n \\ 1 \end{bmatrix}$$

contains a copy of $t\mathcal{P} \longrightarrow$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z)$$

If \mathcal{P} is a simplex,

$$\sigma_{\operatorname{cone}(\mathcal{P})}(\mathbf{z}) = \frac{\sigma_{\Pi}(\mathbf{z})}{\prod_{\mathbf{v} \text{ vertex}} (1 - \mathbf{z}^{\mathbf{v}})} \longrightarrow \operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1 - z)^{d+1}}$$

Trials & Triangulations

Subdivision of a polyhedron \mathcal{P} — finite collection S of polyhedra such that

- ightharpoonup if \mathcal{F} is a face of $\mathcal{G} \in S$ then $\mathcal{F} \in S$
- ightharpoonup if $\mathcal{F},\mathcal{G}\in S$ then $\mathcal{F}\cap\mathcal{G}$ is a face of both
- $ightharpoonup \mathcal{P} = \bigcup_{\mathcal{F} \in S} \mathcal{F}$

If each \mathcal{F} is a simplex \longrightarrow triangulation of a polytope

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) \, z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) \, z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Computational bottlenecks:

- triangulation
- determinants of resulting simplicial cones

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

We saw instances yesterday: $\mathcal{P} = [0, 1]^d$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

 $h_{\mathcal{D}}^*(z)$ — Eulerian polynomial

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently,
$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) z^t$$
 is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and $h^*_{\mathcal{P}}(1)=(\dim \mathcal{P})!\operatorname{vol}(\mathcal{P}).$

$$\Delta = \{ \boldsymbol{x} \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1 \}$$

$$L_{\Delta}(t) = \begin{pmatrix} d+t \\ d \end{pmatrix} \qquad h_{\mathcal{P}}^{*}(z) = 1$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) \, z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P})$.

 \mathcal{P} — half-open d-parallelepiped

$$\longrightarrow L_{\mathcal{P}}(t) = t^d$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t=1}^{t} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Seeming dichotomy: $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^{\dim \mathcal{P}}} L_{\mathcal{P}}(t)$ can be computed discretely via a finite amount of data.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

Open Problem Classify Ehrhart polynomials.

Ehrhart Polynomials in Dimension 2

P — lattice polygon

$$\longrightarrow L_{\mathcal{P}}(t) = c_2 t^2 + c_1 t + 1$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}}(t) = h_0^* {t+d \choose d} + h_1^* {t+d-1 \choose d} + \dots + h_d^* {t \choose d}$$

Theorem (Macdonald 1971) $(-1)^d L_{\mathcal{P}}(-t)$ enumerates the interior lattice points in $t\mathcal{P}$. Equivalently,

$$L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Corollary If $h_{d+1-k}^* > 0$ then $k\mathcal{P}^{\circ}$ contains an integer point.

Positivity Among Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Betke-McMullen 1985, Stapledon 2009) If $h_d^* > 0$ then

$$h(z) = a(z) + z b(z)$$

where $a(z) = z^d a(\frac{1}{z})$ and $b(z) = z^{d-1} b(\frac{1}{z})$ with nonnegative coefficients.

Positivity Among Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Betke–McMullen 1985, Stapledon 2009) If $h_d^* > 0$ then

$$h(z) = a(z) + z b(z)$$

where $a(z) = z^d a(\frac{1}{z})$ and $b(z) = z^{d-1} b(\frac{1}{z})$ with nonnegative coefficients.

Open Problem Try to prove the analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

Ehrhart Quasipolynomials

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t:

$$L_{\mathcal{P}}(t) = c_d(t) t^d + c_{d-1}(t) t^{d-1} + \dots + c_0(t)$$

where $c_0(t), \ldots, c_d(t)$ are periodic functions.

Ehrhart Quasipolynomials

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t:

$$L_{\mathcal{P}}(t) = c_d(t) t^d + c_{d-1}(t) t^{d-1} + \dots + c_0(t)$$

where $c_0(t), \ldots, c_d(t)$ are periodic functions. Equivalently,

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \frac{h(z)}{(1 - z^{p})^{\dim \mathcal{P} + 1}}$$

for some (minimal) $p \in \mathbb{Z}_{>0}$ (the period of $L_{\mathcal{P}}(t)$).

Open Problem Study periods of Ehrhart quasipolynomials.

Recap Day II

- Generating functions son chevere
- lacktriangle Integer-point transforms of rational polyhedra \longrightarrow rational functions
- ► Complexity of a simplicial cone: determinant of its generators
- Homogenize polytopes
- Triangulations
- Polynomial data
- Thursday: structural results about Ehrhart polynomials

