學號: R08922A20

姓名:洪筱慈

Problem 5

(1)

(a) False.

當
$$n = k\pi$$
, for $k = 0, 1, 2...$, $sin n = 0$, $n^{sin n} = 1$ 但是 $\sqrt{n} = \sqrt{k\pi} > 1$, for $k = 1, 2,...$ 所以 $g(n) = n^{sin n}$ 不能是 \sqrt{n} 的 upper bound。

(b) True.

1.證明 if f(n) = O(g(n)), than log(f(n)) = O(log(g(n)))

已知找得到 n_0 , 使得 $0 \le f(n) \le c g(n)$, for all $n \ge n_0$.

兩邊同取 \log : $log(f(n)) \le log(cg(n))$

展開: $log(f(n)) \le log(c) + log(g(n))$

欲證 $log(c) + log(g(n)) \le c_1 log(g(n))$, for all $n \ge n_1$ and $n_1 \ge n_0$

把 log(g(n)) 項整理在同一邊:

$$log(c) \leq (c_1-1)log(g(n))$$

$$\frac{\log(c)}{\log(g(n))} \le (c_1 - 1)$$

$$\frac{\log(c)}{\log(g(n))} + 1 \le c_1$$

因為g(n)為正且遞增, $\log(g(n))$ 增加的趨勢比 $\log(c)$ 快,因此必能夠找到一個 c_1 ,對所有 $n \ge n_1$ and $n_1 \ge n_0$,使得此式成立。

2. 證明 if $f(n) = \Omega(g(n))$, than $log(f(n)) = \Omega(log(g(n)))$

已知找得到 n_2 , 使得 $0 \le c_2 g(n) \le f(n)$, for all $n \ge n_2$

與 1. 步驟相同,先兩邊同取 \log 後再展開,可得欲證可以找到一組 c_3 , n_3 ,使得

$$c_3log(g(n)) \leq log(c_2) + log(g(n))$$
, for all $n \geq n_3, n_3 \geq n_2$

把 log(g(n)) 項整理在同一邊:

$$c_3 \le \frac{\log(c_2)}{\log(g(n_3))} + 1$$

當 n_3 趨近於無限大,則 $\frac{log(c_2)}{log(g(n_3))}$ 趨近於零,此時是右邊最小的時候,故選取 c_3 =1 , 對所有 $n \ge n_3$ and $n_3 \ge n_2$, 使得此式成立。

由1. 和 2. 可知, if $f(n) = \Theta(g(n))$, than $log(f(n)) = \Theta(log(g(n)))$ 成立。

Reference:

https://www3.cs.stonybrook.edu/~rob/teaching/cse373-fa15/sol2.pdf

(c) False.

根據 big O 的定義, $f_1(n) \leq c_1 g_1(n)$, $f_2(n) \leq c_2 g_2(n)$ 可推得式一: $f_1(f_2(n)) \leq c_1 g_1(c_2 g_2(n))$ 若 $f_1 \circ f_2(n) = O(g_1 \circ g_2(n))$ 要成立,代表式二 $f_1 \circ f_2(n) \leq c_3 g_1(g_2(n))$ 要成立。 然而式一的 c_2 不能提出來,因此式二不成立。

- (d) True.
 - 1. 證明 $(n+a)^b = O(n^b)$

欲證存在 c, n_0 , $(n+a)^b \le cn^b$, for all $n \ge n_0$

將 $(n+a)^b$ 用二項式展開:

$$n^{b} + bn^{b-1}a + \dots + bna^{b-1} + a^{b} \le cn^{b}$$

$$bn^{b-1}a + \dots + bna^{b-1} + a^{b} \le (c-1)n^{b}$$

$$\frac{bn^{b-1}a + \dots + bna^{b-1} + a^{b}}{n^{b}} \le (c-1)$$

$$\frac{bn^{b-1}a + \dots + bna^{b-1} + a^{b}}{n^{b}} + 1 \le c$$

由於分母的次方數比分子最大項還要大,因此分母的增長速度比分子快,隨著n越來越大,左邊項只會越來越小。

選取 $n_0 = 1$, $c = ba + ... + ba^{b-1} + a^b + 1$, 則 $(n+a)^b \le cn^b$ holds for all $n \ge n_0$.

2. 證明 $(n+a)^b = \Omega(n^b)$

欲證存在 c_2 , n_2 , $c_2 n^b \le (n+a)^b$, for all $n \ge n_2$

同樣二項式展開

$$cn^b \le n^b + bn^{b-1}a + \dots + bna^{b-1} + a^b$$

經過類似的整理過程後可得

$$c_2 \le \frac{bn^{b-1}a + \dots + bna^{b-1} + a^b}{n^b} + 1$$

右邊最小的情況是當 n 趨近於無限大,則 $\frac{bn^{b-1}a+...+bna^{b-1}+a^b}{n^b}$ 趨近於零,

則選 $n_2=1$, $c_2=1$, 則 $c_2n^b \le (n+a)^b$, holds for all $n \ge n_2$.

由 1.2. 可知, $(n+a)^b = \Theta(n^b)$ 。

(2)

(a) ANS: $\Theta(\frac{n}{logn})$

1. 證明下界:

考慮
$$T_1(n) = T_1(n-1) + \frac{1}{logn}$$
 的情況, $T_1(n-1)$ 和 $T_1(n)$ 相差 $\frac{1}{logn}$, $T_1(1)$ 要累加到 $T_1(n)$ 需要 n 次, 故 $T_1(n) = O(\frac{n}{logn})$

此為下界:
$$T(n) = T(n-127) + \frac{127}{logn}$$
, $T(n) = \Omega(\frac{n}{logn})$ 。

2. 證明上界:

令 c = 127,並假設 n 可被 127 整除。

$$T(n) = T(n-c) + \frac{c}{logn}$$
$$= \frac{c}{logn} + \frac{c}{log(n-c)} + \dots + \frac{c}{logc}$$

因為 c 是常數, 先令 c=1, 簡化問題, 則上式會變成

$$\frac{1}{\log n} + \frac{1}{\log(n-1)} + \dots + \frac{1}{\log 2} = \sum_{i=2}^{n} \frac{1}{\log i} \le \int_{2}^{n} \frac{dx}{\log x}$$

設
$$\log x = t$$
, $x = e^t$, $\frac{1}{x} = dt$, $dx = xdt$, 帶入上式, 可得 $\int_{1}^{\log n} \frac{e^t dt}{t}$

而
$$\int_{1}^{\log n} \frac{e^t dt}{t} = O(\frac{n}{\log n})$$
,故上界為 $O(\frac{n}{\log n})$ 。

根據 1.2., 故
$$T(n) = \Theta(\frac{n}{logn})$$

Reference:

 $\frac{\text{https://stackoverflow.com/questions/64376765/solving-recursive-time-function-tn-tn-127127-log}{\underline{n}}$

(b) ANS: $\Theta(nlogn)$

猜測 T(n) = O(nlogn),則期望找到 c, n_0 使得 $T(n) \le cnlogn$ holds for all $n \ge n_0$ 則原式 $T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{8}) + nlogn$ $\le c\frac{n}{2}log\frac{n}{2} + c\frac{n}{4}log\frac{n}{4} + c\frac{n}{8}log\frac{n}{8} + nlogn$ $\le \frac{cn}{8}(7logn - 11) + nlogn$ $= \frac{7c}{8}nlogn - \frac{11cn}{8} + nlogn$ $= cnlogn - (\frac{c}{8}nlogn + \frac{11cn}{8} - nlogn)$

為了使 $T(n) \le cnlogn$ 成立,則需選取 c 使得 $\frac{c}{8}nlogn + \frac{11cn}{8} - nlogn \ge 0$ 若 $n \ge 2$,則 $\frac{c}{8}logn + \frac{11c}{8} - logn \ge 0$ $\frac{c}{8}(logn + 11) \ge logn$ $c \ge \frac{8logn}{logn + 11}$

選取 c=8,因為右邊分母 logn+11 成長速度必定比 logn 快,隨著 n 變大,右邊只會越來越小。而最大值為 8。

選取 c = 8, $n_0 = 2$, 使得 $T(n) \le cnlogn$ holds for all $n \ge n_0$.

(c) ANS: $\Theta(n^2)$

根據 master theorem, 先看 $n^{\log_b^a}=n^2$, 成長趨勢比 $f(n)=n\log n$ 還快, 因此屬於 case 1,則 $T(n)=\Theta(n^{\log_b^a})=\Theta(n^2)$ 。

- (d) ANS: $\Theta(nloglogn)$
 - 1. 兩邊同除以 n:

$$\frac{T(n)}{n} = \frac{1}{\sqrt{n}}T(\sqrt{n}) + 1$$

$$rac{1}{2} = 2^{2^k}, \quad \sqrt{n} = 2^{2^{k-1}}$$

代入原式:

$$\frac{T(2^{2^k})}{2^{2^k}} = \frac{T(2^{2^{k-1}})}{2^{2^{k-1}}} + 1$$

再令 $a_k = \frac{T(2^{2^k})}{2^{2^k}}$, 則上式會替換成 $a_k = a_{k-1} + 1$, 則 $a_k = \Theta(k)$

$$\overline{\mathbf{m}} \ T(2^{2^k}) = a_k \times 2^{2^k}$$

故
$$T(n) = na_k = \Theta(nk)$$

因為 $n = 2^{2^k}$, 所以 k = loglogn, 故 $T(n) = \Theta(nloglogn)$ 。

Reference

大碩 林立宇 演算法 課本

討論夥伴: 余政倫, 李建德, 洪嘉敏, 王致傑, Ruby Cheng, Tommy Chiang

Problem 6

(1)

a. 先算出每一橫列的 prefix sum P, P[i][j]表示第 i 橫列的 prefix sum,由左往右第 j 個位置的值。再算出每一個 column 的 prefix sum Q, Q[j][i]表示第 j 個 column 的 prefix sum,由上往下第 i 個位置的值。

					A
	1	-1	0	4	5
D	-1	0	1	2	C ³
	-5	2	0	1	0
	-5	10	1	4	Вз
	4	2	6	7	-9

b. 每個 rectangle 都可以拆成四個小橫列,以例圖來說,可以切成 A, B, C, D 四塊根據題目所 給的 a, b, 設 a 的座標是 (a_i, a_j) 代表 a 位在第 i 列橫排,第 j 欄; 而 b 的座標是 (b_i, b j),則:

```
A 的 weight = P[a_i][b_j] - P[a_i][a_j - 1]
```

B 的 weight =
$$P[b_i][b_j] - P[b_i][a_j - 1]$$

C 的 weight =
$$Q[b_j][b_i - 1] - Q[b_j][a_i]$$

D 的 weight =
$$Q[a_j][b_i - 1] - Q[a_j][a_i]$$

則這一個以 a, b 構成的 rectangle 的 weight = A + B + C + D.

Time Complexity Analysis:

- (1) $\not\equiv P \cap Q : O(n^2 + n^2)$
- (2) 計算每一個 k 的 weight: O(1)
- (3) 共有 k 個 rectangle 要計算: O(k)

故整體時間複雜度 = $O(n^2 + k)$ 。

(2)

一個由 a, b 構成的 rectangle, 它的 perimeter:

$$L = (b_i - a_i + 1) \times 2 + (b_j - a_j - 1) \times 2$$

根據這個目標, 窮舉所有 a 和 b 的可能配對, 並算出這些可能配對的 weight, 找出最大值。

Time Complexity Analysis:

任選出 a : n^2 ,任選出 b: n^2 ,則窮舉出所有可能 a 和 b 的可能配對的時間複雜度= O($n^2 \times n^2$) = O(n^4)

算出所有的 weight: $O(n^2 + k)$

故整體時間複雜度 = $O(n^4 + n^2 + k) = O(n^4)$ 。

(3)

1. 窮舉選取上界與下界,如下圖所示:

在上下界所夾的區域中,從最左邊開始,尋找最佳的左界與右界,使得形成的 rectangle 有最大的 weight。

尋找最佳左界與右界的方法:

- 1. 用兩個 index i right, i left, 分別代表右界跟左界。
- 2. 只要有右界跟左界, 就可以用(1)中的方法得到此個 rectangle 的 weight 總和。
- 3. 另一個參數: max 紀錄目前能夠得到的最大 weight, 以及該 rectangle 的 i_right, i left。

Reference:

討論夥伴: 余政倫, 李建德, 洪嘉敏, 王致傑, Ruby Cheng, Tommy Chiang

4. 一開始 i_right, i_left 都在最左邊,當 i_right 往右移動一格到 i_right',確認此時形成的 rectangle weight 是否大於 max weight,如果有,更新 max weight。

- 5. 確認 i_left:目前的 i_left 會是當前的最佳左界,而當 i_right 往右一格到 i_right'的 時候,原本 i_right 的位置就成了 i_left 的新選擇。因此,比較 i_left 跳到 i_right 會 不會比目前的 weight 大,如果有,就跳,並且更新 max weight。
- 6. 直到 i_right 走到最右邊到底結束。選出所有上下界中得到的最大 max weight, 即 為所求。

Time Complexity Analysis:

窮舉上下界: $O(n^2)$

每一個上下界組合都需要掃過一次: O(n)

故整體複雜度: $O(n^3)$ 。

(4)

延續 (3) 的作法,但同時紀錄目前 rectangle 的 perimeter ,在每次 i_right 往右一格,並且形成的 rectangle weight 會更大時,先確認會不會超過 L。若沒超過,一切照舊。如果有超過,就比較移動左界使 L 縮小(跳到原本的 i right)的情況是否有更大的 weight。

Time Complexity Analysis:

窮舉上下界: $O(n^2)$

每一個上下界組合都需要掃過一次: O(n)

故整體複雜度: $O(n^3)$ 。