Seminar 7 ML and Bayesian estimation, multiple unknowns

DEDP

1. A robot travels a linear road with a constant but unknown speed v cm/s, starting from position $x_0 = 0$ at time 0.

Every second the robot measures its position using an imprecise sensor, which provides values affected by Gaussian noise $\mathcal{N}(0, \sigma^2 = 0.1)$.

The measured values at time moments $t_i = [1, 2, 3, 4, 5]$ are $r_i = [4.9, 9.8, 14.3, 21.2, 25.7]$.

a. Estimate the speed v using ML estimation.

Hint: If the speed is constant, the travelled distance is $x = v \cdot t$.

- b. Predict the robot position at time 6.
- c. Assuming the starting position x_0 is unknown, $x_0 \neq 0$, estimate the pair of parameters [v, x_0] using ML estimation. Predict the robot's position at time 6.
- d. Assuming the movement law is $x(t) = a \cdot t^2 + v_0 \cdot t + x_0$, write the equation system for finding the unknown parameters [a, v_0 , x_0]. (constant acceleration a, initial speed v_0 , initial position x_0).
- 2. A robot travels a linear road with a constant speed V = 10 cm/s.

The robot measures its position every second with with a sensor affected by gaussian noise $\mathcal{N}(0, \sigma^2 = 0.5)$.

At time $t_0 = 0$, the robot's position is around $x_0 = 20$, being a random variable with the distribution:

$$w(x_0) = \mathcal{N}(\mu = 20, \sigma = 0.5)$$

- a. Find the distribution $w(x_1)$ of the robot's position at time $t_1 = 1$, and predict the actual value with the MAP and MMSE estimators.
- b. Suppose at this time $t_1 = 1$ we have a new measurement of the position, with value r = 29.5.
 - Take this into account with Bayesian estimation and find the new position using MAP and MMSE estimators, considering the predicted distribution in a) as the prior distribution.
- c. What happens if the speed is not known precisely. Suppose V is a random variable $\mathcal{N}(\mu = 10 \text{ cm/s}, \sigma^2 = 0.3)$?