Probabilità Elementare

2022-11-16

EVENTI CASUALI

Sono dei fenomeni con diversi valori possibili il cui esito è dettato dal caso

SPAZIO FONDAMENTALE

 $\Omega=$ insieme di tutti i possibili risultati di un esperimento aleatorio

• DISCRETO: insieme Ω finito o numerabile

$$-\Omega = [1, 2, 3, ...] = N^+$$

• CONTINUO: insieme infinito o con valori che possono assumere infiniti valori all'interno del Range di valori

$$-\Omega = R^+$$

EVENTI ELEMENTARI

$$\omega_i \in \Omega, i \in [1, 2^{|\Omega|}]$$

Si tratta di tutti i possibii sottoinsiemi dello spazio fondamentale.

Nell'algebra degli insiemi corrisponde alle parti di un insieme, e Omega rappresenta l'insieme delle parti

La lunghezza dell'insieme delle parti è per definizione 2^n , con n = lunghezza dell'insieme

INSIEMISTICA

Dati due eventi $A, B \subseteq \Omega$

NOTAZIONI

COMPLEMENTARE

• A^c indica l'evento complementare, e contiene tutti gli eventi che non appartengono ad A

UNIONE

• $A \cup B$ indica l'evento unione

INTERSECAZIONE

• $A \cap B$ indica l'evento intersecazione, cioè gli eventi comuni tra A e B

$$-\exists a \in (A \cap B) \implies (a \in A) \land (a \in B)$$

DIFFERENZA

- $A \setminus B$ evento differenza, come per il complementare

CERTEZZA

• Ω rappresenta l'evento certo

TRASCURABILITÀ

 \bullet Ø rappresentra l'evento improbabile, non impossibile

PROPRIETÀ

• $A \subseteq B \implies (A \implies B)$

Se A è contenuto in B, allora al verificarsi di A si verifica anche una parte di B Non è detto il contrario, in quanto potrebbero esistere degli elementi di B non appartenenti ad A

• $A \cap B = \emptyset$

Gli eventi A e B si dicono disgiunti e perciò non possono realizzarsi contemporaneamente

ASSIOMI DI KOLMOGOROV

PROBABILITÀ : quantifica con un numero reale la possibilità di realizzazione di un evento

1) NON NEGATIVITÀ

$$P(A) \ge 0$$

2) NORMALIZZAZIONE

$$P(\Omega) = 1$$

3) σ ADDITTIVITÀ

$$\forall A_i, i \in I \subseteq N | A_i \cap A_j = \emptyset, i \neq j \implies P(U_{i \in I} A_i) = \sum_{i \in I} P(A_i)$$

Dato un insieme di eventi tutti **disgiunti** l'un l'altro, la probabilità di successo dell'insieme è data dalla somma delle probabilità di successo dei singoli eventi Ai

ADDITTIVITÀ SEMPLICE

$$A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$$

EVENTI SEMPLICI

$$\omega_i \in \Omega$$

Ad ogni evento elementare è associato un peso pi, che quantifica la probabilità di successo dell'evento stesso

$$pi = P(\omega_i)$$

$$A = [\omega_i], i \in I \subset N$$

$$P(A) = P([\omega_1 \cup, ..., \cup \omega_I])$$

Siccome gli eventi elementari sono tutti disgiunti tra loro, dall'assioma 3 si ottiene che

$$P(A) = \sum_{i \in I} P(\omega_i) \sum_{i \in I} p_i$$

CONSEGUENZE

Gli assiomi precedenti hanno le seguenti conseguenze logiche

1)

$$P(\emptyset) = 0$$

$$1 = P(\Omega) = P(\Omega \cup \emptyset) = P(\Omega) + P(\emptyset) = 1 + P(\emptyset)$$

2)

$$P(A^c) = 1 - P(A)$$

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$$

3)

$$A \subseteq B \implies P(A) \le P(B)P(B \setminus A) = P(B) - P(A)$$

$$P(B) = P((B \setminus A) \cup A) = P(B \setminus A) + P(A)$$

4)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$(A \cup B) = (A \cap B) \cup [B \setminus (A \cap B)] \cup [A \setminus (A \cap B)]$$

$$P(A \cup B) = P(B) + P(A) - P(A \cap B)$$

5)

Dato un evento B e una partizione di Ω , chiamata $A=\{Ai\}$

$$P(B) = \sum_{i \in I} P(B \cap A_i)$$

PROBABILITÀ CONDIZIONATA

Dati due eventi $A, B \subseteq \Omega$

 $\grave{\rm e}$ possibile trovare la probabilità di successo di un evento data una particolare condizione verificata nell'altro

$$P(B|A) = \frac{P(B\cap A)}{P(A)}, P(A) > 0$$

Quando A si realizza, l'unica parte di B che può ancora realizzarsi è quella in comune con A

COMPOSTA

$$P(B \cap A) = P(B|A) * P(A), P(A) > 0$$

TOTALE

Dato un evento B, e una partizione di Ω A_i , $i \in I \subseteq N$ con $P(A_i) > 0$

$$P(B) = \sum_{i \in I} P(A_i) * P(B|A_i)$$

INDIPENDENZA

Due eventi A,B si dicono indipendenti quando il verificarsi di uno non influenza il verificarsi dell'altro

$$P(A \cap B) = P(A) * P(B)$$

Secondo la regola della probabilità composta $P(B \cap A) = P(B|A) * P(A), P(A) > 0$

perciò se A e B sono indipendenti P(B|A)=P(B) in quanto la probabilità del verificarsi di B dato A è sempre la stessa,non subendo influenza da parte di A

DIPENDENZA

$$P(A \cap B) \neq P(A) * P(B)$$

PROPRIETÀ

- L'indipendenza tra due eventi A,B non trascurabili è verificabile dalle seguenti uguaglianze, spiegate in precedenza
 - -P(A|B) = P(A)
 - -P(B|A) = P(B)
- A, B indipendenti implica che sono indipendenti anche le seguenti coppie
 - A e B^c
 - $-A^c \in B$
 - $-A^c \in B^c$
- Ω e \emptyset sono indipendenti da qualsiasi evento

TEOREMA DI BAYES

Usato nella situazione in cui è noto il risultato di una certa probabilità di un evento A, si vuole determinare la probabilità che esso sia dovuto dal verificarsi di una certa causa

Dato un evento B non trascurabile e una partizione $A_i, i \in I \subseteq N$ costituita da tutti eventi non trascurabili, quindi $P(A_i) > 0$

$$P(A_i|B) = \frac{P(A_i) * P(B|A_i)}{P(B)} = \frac{P(A_i) * P(B|A_i)}{\sum_{j \in I} P(A_j) * P(B|A_j)}$$

Usando la formula delle probabilità composta $P(B \cap A_i) = P(A_i) * P(B|A_i)$

$$P(A_i|B) = \frac{P(B \cap A_i)}{P(B)}$$

CONSIDERAZIONI

- $P(A_i)$ sono dette **probabilità a priori**, cioè sono note dall'inizio in quanto A_i e $A_j, i \neq j$ sono indipendenti
- $P(A_i|B)$ sono dette **probabilità a posteriori**, e tengono conto della realizzazione dell'evento B
- $P(B|A_i)$ verosimiglianza