TD3 Topo

Matthieu Boyer

2 octobre 2023

Table des matières

1	Exercice 1 : Echauffement			
	1.1	Question 1	2	
		1.1.1 Question a	2	
		1.1.2 Question b	2	
	1.2	Question 2	2	
	1.3	Question 3	2	
	1.4	Question 4	2	
		1.4.1 Question a	2	
		1.4.2 Question b	2	
		1.4.3 Question c	2	
	1.5	Question 5	2	
		1.5.1 Question a	2	
		1.5.2 Question b	2	
		•		
2	\mathbf{Exe}	rcice 2 : Topologie Induite	2	
	2.1	Question 1	2	
	2.2	Question 2	2	
		2.2.1 Question a	2	
		2.2.2 Question b	3	
		2.2.3 Question c	3	
3		rcice 3 : Séparation et espaces quotients	3	
	3.1	Question 1	3	
	3.2	Question 2	3	
	3.3	Question 3	3	
		3.3.1 Question a	3	
		3.3.2 Question b	3	
	_		_	
4		ercice 4 : Lemme d'Urysohn	3	
	4.1	Question 1	3	
	4.2	Question 2	3	
	4.3	Question 3	4	
		4.3.1 Question a	4	
		4.3.2 Question b	4	
_	TD		1	
5		crcice 5 : Quelques propriétés des espaces produits Question 1	4	
	$5.1 \\ 5.2$	Question 2		
		·	4	
	5.3	Question 3	4	

1 Exercice 1 : Echauffement

1.1 Question 1

1.1.1 Question a.

Plus ou moins vrai, $f|_A$ est continue pour la topologie induite/trace

1.1.2 Question b.

Faux, il suffit de prendre la fonction sign qui n'est pas continue sur \mathbb{R} mais qui l'est sur \mathbb{R}^{+*}

1.2 Question 2

Vrai, les singletons sont ouverts

1.3 Question 3

Faux, les singletons ne sont pas ouverts.

1.4 Question 4

1.4.1 Question a.

On a $\pi([0,1[) = [0,1[$. Mais $[\cdot]^{-1}([0,1[) =]-1,1[$ qui est ouvert.

1.4.2 Question b.

On a $\pi(1) = 1$ et $\pi([0,1]) = [0,1]$. Or, ce segment contient un voisinage de 1 : 1. Donc c'est bien un voisinage de 1

1.4.3 Question c.

On ne peut pas séparer -1 et 1.

1.5 Question 5

1.5.1 Question a.

Faux : 0, -1 n'est pas ouvert.

1.5.2 Question b.

Faux: 0 est ouvert.

2 Exercice 2 : Topologie Induite

2.1 Question 1

Oui bon ça va hein

2.2 Question 2

2.2.1 Question a.

La fonction j étant croissante de réciproque croissante pour \subset , c'est bien un homéomorphisme.

2.2.2 Question b.

 $\overline{\{\omega\}} = Y$ et donc : $\{\{\omega\}\}$ est une base finie de Y.

2.2.3 Question c.

On a $\omega \in U \cap V$

3 Exercice 3 : Séparation et espaces quotients

3.1 Question 1

Si $(x,y) \in (X \times X)/\mathcal{R}$, on a U,V ouverts de X/\mathcal{R} tels que :

$$x \in U, y \in V$$
$$U \cap V = \varnothing$$

Alors, $\{[t] \mid t \in U\}$ (de même pour V) est ouvert. Donc en particulier, \mathcal{R} est fermé.

3.2 Question 2

Si \mathcal{R} est fermée, alors si, $(x,y) \in (\mathbb{R} \times \mathbb{R})/\mathcal{R}$ il existe des voisinages disjoints de x et y. Par ouverture de π on obtient bien la séparation de X/\mathcal{R} .

3.3 Question 3

3.3.1 Question a.

- $(i. \Rightarrow ii.)$ On considère : $\|\cdot\|$: $S \mapsto \sup_{x \in S} d(x, F)$. Il est clair que cette application est positive et est nulle si et seulement si $\forall x \in S, x \in \overline{F} = F$ i.e. $S \subset F$. Par les propriétés de d, cette fonction définit bien une norme sur E/F en passant au quotient.
- $(ii. \Rightarrow iii.)$ En particulier, E/F est métrisable donc est séparé.
- $(iii. \Rightarrow i.)$ Ceci est une conséquence de la question 1.

3.3.2 Question b.

- (\Leftarrow) Si $F = \ker f$ est fermé. En particulier si $U \subset \Im f$ est ouvert, en quotientant par F, puisque E/F est normable, f est continue.
- (\Rightarrow) Si f est continue, il est clair que ker f est fermé.

4 Exercice 4 : Lemme d'Urysohn

4.1 Question 1

En prenant pour ouverts dans la définition d'un espace normal $f^{-1}([0,1/3[)$ et $f^{-1}([2/3,1[),$ on a bien le résultat.

4.2 Question 2

Si (X,d) est métrique, si F_0, F_1 sont fermés disjoints dans X. En particulier, en prenant un recouvrement d'ouverts le plus petit possible de F_0 et un de F_1 , on a bien le résultat.

4.3 Question 3

4.3.1Question a.

Déjà, il existe une bijection r de $\mathbb N$ dans $\mathcal D$. Ensuite, on peut définir par récurrence la famille G. On suppose que les r_k pour k < n sont déjà définis.

On pose alors
$$U_n = F_0 \cup \bigcup_{k < n, r_k < r_n} \overline{G_{r_k}}$$
. C'est un fermé, inclus dans l'ouvert : $V_n = F_1^{\complement} \cap G$

$$\bigcap_{k < n, r_k > r_n} G_{r_k}.$$

Puisquee X est normal, il existe donc un ouvert G_{r_n} tel que : $U_n \subset G_{r_n}$ et $\overline{G_{r_n}} \subset V_n$. On a bien défini une famille de fermés $(G_x)_{x\in\mathcal{D}}$ qui convient.

4.3.2Question b.

Il est clair que f est bien définie, à valeurs dans 0,1. De plus, il est aussi clair que : $f(F_0) = 0$ puisque $\forall x \in F_0, x \in G_1$ et $x \in F_0$. Ensuite, si $x \in F_1, x \notin G_1 \subset F_1^{\complement}$. Donc $f(F_1) = 1$.

Enfin, par densité des nombres dyadiques, il est clair que f est continue.

Exercice 5 : Quelques propriétés des espaces produits 5

Question 1 5.1

Bah oui. 'fin, c'est trivial quoi.

5.2Question 2

Faites un effort svp.

5.3 Question 3

- (\Leftarrow) Si I est dénombrable, le résultat est direct en prenant pour métrique l'infimum des métriques
- (\Rightarrow) Sinon, si I n'est pas dénombrable, supposons qu'il y ait une métrique d qui induit la topologie produit sur X. En particulier, si on pose se donne une famille croissante C de parties finies de I, $O_{i,n} = \prod_{k \in C_i} B_{X_k}(x_k, 1/n)$, les $O_{i,n}$ sont ouverts donc sont des ouverts pour d. Mais alors, en faisant tendre i vers l'infini, on n'obtient plus des ouverts, ce qui contredit l'existence de d.