

# Chapter 2 – Relational models and relational algebra

**Databases lectures** 

Dr Kai Höfig



# Discussion/revision

- What is a database and what is the motivation to use it?
- What are the advantages of data storage in relations?
- What is meant by the schema architecture?
- What are the architectural patterns for databases and what are they good for?
- What is meant by a data model?



- 2.1 Relational data model
- 2.2 Integrity constraints
- 2.3 Relational algebra



# The relational data model

- Structure of the data:
   Data is stored in relations (tables)
- Operations on the data: 2 alternatives
  - Relational algebra: practically implemented in SQL language (Structured Query Language)
  - 2. Relational calculus: practically implemented in QBE (Query by Example) / QBC (Query by Criteria) language
- Integrity constraints: lots and lots! The most important:
  - 1. Key constraints
  - 2. Referential integrity = foreign key constraints
  - 3. Domain constraints (restrictions on values allowed for an attribute)
  - Integrity constraints can be formulated as conditions in relational algebra, relational calculus or SQL



# Relational algebra, calculus and languages

Theory



In the 1960s and 1970s, Codd created the relational model that forms the basis for relational databases, which are still a standard of database technology today. <u>Practical</u> requirements

Sorting
Grouping
Recursion
etc.

Relational algebra Tuple relational calculus

Domain relational calculus

Logical foundation

Without understanding the logical foundation, we interact with an unknown communication partner using the database languages

Practicable database languages

SQL

QBE

**Practice** 





# Relational algebra, calculus and languages - script

- Without a logical foundation, it is not possible to design good languages for practice.
- Why do we need the relational algebra and two forms of calculus?
  - Tuple relational calculus is the basis of SQL → important for understanding SQL
  - Domain relational calculus is the basis of QBE (and also QBC) → important for understanding QBE
  - Calculuses are declarative, i.e. the calculation sequence is not visible, i.e.
    - Easier to use than procedural instructions user does not need to know <u>how</u> the DBMS calculates the result.
    - DBMS has freedom with processing, so it can choose one that is as efficient as possible.
  - Algebra is procedural, i.e. it specifies the processing sequence ("from inside to outside").
    - There are laws for the transformation of algebra expressions.
    - DBMS translates the SQL query (=tuple relational calculus) into an algebra expression, optimises it (query optimiser) and executes it.
    - This "execution plan" is used by the DB administrator to optimise the DB (e.g. by means of index structures).

### WINES

| WineID | Name             | Colour | Vintage | Vineyard        |
|--------|------------------|--------|---------|-----------------|
| 1042   | La Rose GrandCru | Red    | 1998    | Chateau La Rose |
| 2168   | Creek Shiraz     | Red    | 2003    | Creek           |
| 3456   | Zinfandel        | Red    | 2004    | Helena          |
| 2171   | Pinot Noir       | Red    | 2001    | Creek           |
| 3478   | Pinot Noir       | Red    | 1999    | Helena          |
| 4711   | Riesling Reserve | White  | 1999    | Müller          |
| 4961   | Chardonnay       | White  | 2002    | Bighorn         |

### PRODUCER

| Vineyard          | Growing_area   | Region          |
|-------------------|----------------|-----------------|
| Creek             | Barossa Valley | South Australia |
| Helena            | Napa Valley    | California      |
| Chateau La Rose   | Saint-Emilion  | Bordeaux        |
| Chateau La Pointe | Pomerol        | Bordeaux        |
| Müller            | Rheingau       | Hesse           |
| Bighorn           | Napa Valley    | California      |

### RECOMMENDATION Wine

| MILLE             |
|-------------------|
| La Rose Grand Cru |
| Riesling Reserve  |
| Merlot Selection  |
| Sauvignon Blanc   |

### WINE\_LIST

| Name      |      |     |      |    |    |   |
|-----------|------|-----|------|----|----|---|
| La        | Ros  | e G | ranc | l  | Cr | u |
| Cre       | ek : | Shi | raz  |    |    |   |
| Zinfandel |      |     |      |    |    |   |
| Pin       | ot 1 | Noi | r    |    |    |   |
| Rie       | sli  | ng  | Rese | er | ve |   |
|           |      |     |      |    |    |   |



# Representation of relations and terms

### Representation

First row: relation schema

Other entries in the table: relation

One row of the table: tuple

A column heading: attribute

One entry: attribute value





# Definition of the relational data model (1)

- In the relational data model, we only have the relational schema for structural modelling.
- $R = \{A_1, ..., A_k\}$  is a **relational schema** with the identifier R via the attributes  $A_1, ..., A_k$  to the value ranges  $D_1, ..., D_s$  with  $dom: \{A_1, ..., A_k\} \rightarrow \{D_1, ..., D_s\}, s \ge 1$ , the value range function.
  - Example:

```
PRODUCER = { Vineyard, Growing_area, Region } with dom(Vineyard) = string, dom(Growing_area) = string, <math>dom(Region) = string
```

- A relational database schema is a finite non-empty set  $S = \{R_1(\alpha_1),...,R_m(\alpha_m)\}$  of relational schemas via subsets of a common attribute set  $\alpha = \alpha_1,...,\alpha_m$
- Thereby, all identifiers of relations are different in pairs and different from all attribute identifiers.



# Definition of the relational data model (2)

- A relation r via a relational schema  $R = \{A_1, ..., A_k\}$  in short r(R) is a finite set of tuples that map each attribute  $A_i$  to a value from  $dom(A_i)$ .
  - Example: a potential relation r via the relational schema PRODUCER is with

```
t_2(Vineyard)='Helena' t_2(Growing_area)='Napa Valley' t_2(Region)='California' t_3(Vineyard)='Müller' t_3(Growing_area)='Rheingau' t_3(Region)='Hesse'
```

- A database via a database schema  $S = R_1(\alpha_1),..., R_m(\alpha_m)$  is a set of relations  $d:=\{r_1,...,r_p\}$  where each relation  $r_i$  is defined via the relational schema  $R_i: R_i(R_i)$
- A relation  $r \in d$  is referred to as a base relation
  - Example: Our database schema WineDB contains 4 base relations, which we formally refer to as r1(WINES), r2(PRODUCER), r3(RECOMMENDATION), r4(WINE\_LIST)



# Attendance exercise 1

### WINES

| WineID | Name             | Colour | Vintage | Vineyard →  | PRODUCER |                |
|--------|------------------|--------|---------|-------------|----------|----------------|
| 1042   | La Rose GrandCru | Red    | 1998    | Chateau 📭 R | ose      |                |
| 2168   | Creek Shiraz     | Red    | 2003    | Creek       | Vinor    | yard <b>in</b> |
| 3456   | Zinfandel        | Red    | 2004    | Helena      | -        | uses ->        |
| 2171   | Pinot Noir       | Red    | 2001    | Creek       | foreig   | n keys         |
| 3478   | Pinot Noir       | Red    | 10      | Helena      |          |                |
| 4711   | Riesling Reserve | Whit   | 999     | Müller      |          |                |
| 4961   | Chardonnay       | i      | 2002    | Bi orn      |          |                |

### **PRODUCER**

Vineyard is key in PRODUCER

| <u>Vineyard</u>   | _owing_a  | rea   | Region                       |
|-------------------|-----------|-------|------------------------------|
| Creek             | Barossa V | alley | South Australia              |
| Helena            | Napa Vall | еу    | California                   |
| Chateau La Rose   | Saint-Emi | lion  | Bordeaux                     |
| Chateau La Pointe | Pomerol   | Key   | constraint: There are        |
| Müller            | Rheingau  | no 2  | tuples in PRODUCER           |
| Bighorn           |           | Wit   | h the same value of Vineyard |

### **Referential integrity:**

Every value of
Vineyard in WINES
is available in PRODUCER



# But how do I get to views?

### WINES

| WineID | Name             | Colour | Vintage | extstyle 	ext |
|--------|------------------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1042   | La Rose GrandCru | Red    | 1998    | Chateau La Rose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2168   | Creek Shiraz     | Red    | 2003    | Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# "I can generally recommend wines from California, no matter which region they are from

| RECOMMENDATION | Wine       | Colour | Vintage | Region      |
|----------------|------------|--------|---------|-------------|
|                | Zinfandel  | Red    | 2004    | Napa Valley |
|                | Chardonnay | White  | 2002    | Napa Valley |
|                | Pinot Noir | Red    | 1999    | Napa Valley |

| !                 | 1-10-1-01     |            |
|-------------------|---------------|------------|
| Chateau La Rose   | Saint-Emilion | Bordeaux   |
| Chateau La Pointe | Pomerol       | Bordeaux   |
| Müller            | Rheingau      | Hesse      |
| Bighorn           | Napa Valley   | California |



# Query operations on tables

- Relational algebra: set of basic operations on relations to compute new (result) relations
  - can be combined in any way
  - thereby create an algebra for "calculating with tables"
- Revision from mathematics:
   algebra = value range + operations defined on these
- Here
  - value range = contents of the database = tables
  - operations = functions for calculating new tables



# Relational algebra: overview

Three main operations: Selection, Projection, Join







Projection

Selection

Join



Semantics

$$\pi_X(r) := \{ t(X) \mid t \in r \}$$

for r(R) and  $X \subseteq R$  attribute set in R

• Property for  $Y \subseteq X \subseteq R$ :  $\pi_Y(\pi_X(r)) = \pi_Y(r)$ 



Note: π removes duplicates (set semantics)



# Projection: further examples

### Relation

### **PRODUCER**

| Vineyard          | Growing_area   | Region          |
|-------------------|----------------|-----------------|
| Creek             | Barossa Valley | South Australia |
| Helena            | Napa Valley    | California      |
| Chateau La Rose   | Saint-Emilion  | Bordeaux        |
| Chateau La Pointe | Pomerol        | Bordeaux        |
| Müller            | Rheingau       | Hesse           |
| Bighorn           | Napa Valley    | California      |

# • $\pi_{\text{Region}}$ (PRODUCER)

# Region South Australia California Bordeaux Hesse

# $\pi_{\texttt{Growing\_area,Region}}(\texttt{PRODUCER})$

| Growing_area   | Region          |
|----------------|-----------------|
| Barossa Valley | South Australia |
| Napa Valley    | California      |
| Saint-Emilion  | Bordeaux        |
| Pomerol        | Bordeaux        |
| Rheingau       | Hesse           |



# Selection of definition

- <u>Selection</u> σ (<u>Sigma</u>): selection of rows of a table based on a selection predicate
- Syntax:  $\sigma_{\text{<Constraint>}}(\text{<Relation>}) \text{ or <Relation>}[\text{<Constraint>}]$
- Semantics (for A ∈ R)

$$\sigma_{A=a}(r) := \{ t \in r \mid t(A) = a \}$$

Example:

$$\sigma_{A=1}(R)$$
 or R[A=1]



# Selection conditions

### Constant selection

Attribute  $\theta$  Constant

Boolean predicate  $\theta$  is = or  $\neq$ , for linear value ranges also  $\leq$ , <,  $\geq$  or >

Attribute selection

Attribute<sub>1</sub> 
$$\theta$$
 Attribute<sub>2</sub>

Logical linking of multiple constant selections or attribute selections with ∧,
 ∨ or ¬.



# Selection: Laws for transformation - commutativity

### Commutativity

$$\sigma_{A=a}(\sigma_{B=b}(r)) = \sigma_{B=b}(\sigma_{A=a}(r))$$





# Selection: Laws for transformation - transposition

• If  $A \in X$ ,  $X \subseteq R$ 

$$\pi_X(\sigma_{A=a}(r)) = \sigma_{A=a}(\pi_X(r))$$





# Cross product ×

- Cross product × (Cartesian product, cross join): links two tables by combining each tuple of the first with each tuple of the second.
  - Be careful: result for tables with n or m tuples has n\*m tuples!
- Syntax: <Relation1> × <Relation2>
- Semantics:  $R \times S := \{ x_1...x_n...x_{n+m} \mid R(x_1,...,x_n) \land S(x_{n+1},...,x_{n+m}) \}$
- Example:

\* Attributes with the same name are renamed



# Cross product $\times$ example

# Example:

### WINES × BOTTLE

### BOTTLE

| Type   | Contents |
|--------|----------|
| Normal | 700      |
| Small  | 375      |

| WineID | Name             | Colour | Vintage | Vineyard        | Type   | Contents |
|--------|------------------|--------|---------|-----------------|--------|----------|
| 1042   | La Rose GrandCru | Red    | 1998    | Chateau La Rose | Normal | 700      |
| 1042   | La Rose GrandCru | Red    | 1998    | Chateau La Rose | Small  | 375      |
| 2168   | Creek Shiraz     | Red    | 2003    | Creek           | Normal | 700      |
| 2168   | Creek Shiraz     | Red    | 2003    | Creek           | Small  | 375      |
| 3456   | Zinfandel        | Red    | 2004    | Helena          | Normal | 700      |
| 3456   | Zinfandel        | Red    | 2004    | Helena          | Small  | 375      |
|        |                  |        |         |                 |        |          |



- Natural join: >links tables via columns of the same name, by merging two tuples if they have the same values there
  - Tuples that do not find a partner (dangling tuples) are eliminated.
- Syntax: <Relation1> ▷
- Semantics for A attributes of R, C attributes of S and B attributes with intersection

$$R \triangleright \triangleleft S := {}_{\pi A1,..,Am,R.B1,..,R.Bk,S1,..,Sn}(\sigma_{R.B1=S.B1}, \dots, \sigma_{R.Bk=S.Bk}(R \times S))$$

Example:







# Natural join example ⊳⊲

## Example:

### WINES ⊳⊲ PRODUCER

| WineID | Name             |   | Vineyard        | Growing_area   | Region          |
|--------|------------------|---|-----------------|----------------|-----------------|
| 1042   | La Rose GrandCru |   | Chateau La Rose | Saint-Emilion  | Bordeaux        |
| 2168   | Creek Shiraz     |   | Creek           | Barossa Valley | South Australia |
| 3456   | Zinfandel        |   | Helena          | Napa Valley    | California      |
| 2171   | Pinot Noir       |   | Creek           | Barossa Valley | South Australia |
| 3478   | Pinot Noir       |   | Helena          | Napa Valley    | California      |
| 4711   | Riesling Reserve |   | Müller          | Rheingau       | Hesse           |
| 4961   | Chardonnay       | ļ | Bighorn         | Napa Valley    | California      |

The "Château La Pointe" vineyard has disappeared from the result



# Join: Laws for transformation

$$R \triangleright \triangleleft S := {}_{\pi A1,..,Am,R.B1,..,R.Bk,S1,..,Sn}(\sigma_{R.B1=S.B1}, \dots, \sigma_{R.Bk=S.Bk}(R \times S))$$

- From  $R_1 \cap R_2 = \{\}$  follows  $r_1 \triangleright \triangleleft r_2 = r_1 \times r_2$ . If there are no attributes with intersection, the condition  $\sigma$  of the definition of the natural join is removed.
- Commutativity:  $R_1 \triangleright \triangleleft r_2 = r_2 \triangleright \triangleleft r_1$ The conditions and projections in the definition are commutative.
- Associativity:  $(r_1 \triangleright \triangleleft r_2) \triangleright \triangleleft r_3 = r_1 \triangleright \triangleleft (r_2 \triangleright \triangleleft r_3)$

therefore allowed:  $\triangleright \triangleleft p_{i=1} r_i$ 



# Renaming $\beta$

- Renaming β (Beta): adjusting and renaming attributes
- Syntax:

$$\beta_{\text{Carget attribute}} \leftarrow \text{Cource attribute} (\text{Relation})$$
 or  $\text{Relation} = \text{Source attribute} \rightarrow \text{Target attribute}$ 

Semantics

$$\beta_{B \leftarrow A}(r) := \{ t' \mid \exists t \in r : t'(R-A) = t(R-A) \land t'(B) = t(A) \}$$

Example:

| ₹: | Α | В | C | D |
|----|---|---|---|---|
|    | 1 | 2 | 3 | 4 |
|    | 6 | 7 | 8 | 9 |

| $R[A \rightarrow X]$ : | X | В | C   | D |
|------------------------|---|---|-----|---|
|                        | 1 | 2 | 3 8 | 4 |
|                        | 6 | 7 | 8   | 9 |

- Now possible by renaming
  - joins, where Cartesian products were previously carried out (different attributes are named the same),
  - Cartesian products, where previously joins were carried out (same attributes are named differently),
  - set operations



# Renaming example

How can the operations presented so far be used to create a table with the people, their children and their grandchildren?

| R: | Person            | Kind              |
|----|-------------------|-------------------|
|    | Karl der Große    | Ludwig der Fromme |
|    | Ludwig der Fromme | Lothar der I      |
|    | Ludwig der Fromme | Karl II der Kahle |
|    | Lothar der I      | Ludwig der II     |

| R': | Person            | Kind              | Enkel             |
|-----|-------------------|-------------------|-------------------|
|     | Karl der Große    | Ludwig der Fromme | Lothar der I      |
|     | Karl der Große    | Ludwig der Fromme | Karl II der Kahle |
|     | Ludwig der Fromme | Lothar der I      | Ludwig der II     |

• R  $\triangleright \triangleleft$  ( $\beta_{Child \leftarrow Person}(\beta_{Grandchild \leftarrow Child}(R))$ ) or R  $\triangleright \triangleleft$  ((R[Child  $\rightarrow$  Grandchild])[Person  $\rightarrow$  Child])



# Calculation of the cross product from natural join

- Natural join degenerates to a cross product if no common attributes exist
- Forcing by renaming:  $R_1(A, B, C)$  and  $R_2(C, D)$

$$R_1 \times R_2 \equiv R_1 \triangleright \triangleleft \quad \beta_{E \leftarrow C}(R_2)$$

Cross product + selection simulates natural join

$$R_1 \triangleright \triangleleft \qquad R_2 \equiv \sigma_{R_1.C=R_2.C}(R_1 \times R_2)$$



- Which structural elements of the relational data model are we familiar with?
- What relational algebra operations are there?



# Combination of operations

- Combinations of operations are possible
- Example

$$\pi_{\text{Name,Colour,Vineyard}}(\sigma_{\text{Vintage}>2000}(\text{WINES})) \supset \sigma_{\text{Region="California"}}(\text{PRODUCER}))$$

(WINES[Vintage>2000]

▷ □ PRODUCER[Region="California"])[Name, Colour, Vineyard]

### results in

| Name       | Colour | Vineyard |
|------------|--------|----------|
| Zinfandel  | Red    | Helena   |
| Chardonnay | White  | Bighorn  |



# Combination of operations

- Using brackets for the expression is important!
- Example

$$\pi_{\text{Name,Colour,Vineyard}}(\sigma_{\text{Vintage}>2000}(\text{WINES})) \triangleright \lhd \sigma_{\text{Region="California"}}(\text{PRODUCER})$$

(WINES[Vintage>2000])[Name,Colour,Vineyard] ▷< PRODUCER[Region= "California"]

### results in

| Name       | Colour | Vineyard | Growing_area | Region     |
|------------|--------|----------|--------------|------------|
| Zinfandel  | Red    | Helena   | Napa Valley  | California |
| Chardonnay | White  | Bighorn  | Napa Valley  | California |



# Set operations: union

- Union  $r_1 \cup r_2$  of two relations  $r_1$  and  $r_2$ : collects the tuple sets of two relations under a common schema
- Attribute sets of both relations must be identical
- Semantics: for  $r_1(R)$  and  $r_2(R)$

$$r_1 \cup r_2 := \{ t \mid t \in r_1 \lor t \in r_2 \}$$

Example:

|    |   |   | 1 | İ  |   |   |   |   | _  |   |   |   |
|----|---|---|---|----|---|---|---|---|----|---|---|---|
| R: | A | В | C | S: | Α |   |   | U | S: | Α | В | O |
|    | 1 | 2 | 3 |    | 4 | 5 | 6 |   |    | 1 | 2 | 3 |
|    | 4 | 5 | 6 |    | 7 | 8 | 9 |   |    | 4 | 5 | 6 |
|    |   |   |   |    |   |   |   |   |    | 7 | 8 | 9 |



WINE LIST

### Name

La Rose Grand Cru
Creek Shiraz
Zinfandel
Pinot Noir
Riesling Reserve

### RECOMMENDA TION

### Wine

La Rose Grand Cru
Riesling Reserve
Merlot Selection
Sauvignon Blanc

• WINE\_LIST  $\cup \beta_{Name \leftarrow Wine}$  (RECOMMENDATION)

### Name

Creek Shiraz
Zinfandel
Pinot Noir
Riesling Reserve
Merlot Selection
Sauvignon Blanc

La Rose Grand Cru



# Set operations: difference

- Difference r<sub>1</sub> r<sub>2</sub> eliminates the tuples from the first relation that also occur in the second relation
- Semantics: for  $r_1(R)$  and  $r_2(R)$

$$r_1 - r_2 := \{ t \mid t \in r_1 \land t \notin r_2 \}$$

Example:



# Example of difference

• WINE\_LIST -  $\beta_{Name \leftarrow Wine}$  (RECOMMENDATION) results in

### Name

Creek Shiraz

Zinfandel

Pinot Noir



# Set operations: intersection

- Intersection  $r_1 \cap r_2$ : returns the tuples that are common to both relations
- Semantics: for  $r_1(R)$  and  $r_2(R)$

$$r_1 \cap r_2 := \{ t \mid t \in r_1 \land t \in r_2 \}$$

Example:

• Intersection  $\cap$  due to  $r_1 \cap r_2 = r_1 - (r_1 - r_2)$  is superfluous



# **Example intersection**

• WINE\_LIST  $\cap \beta_{Name \leftarrow Wine}$  (RECOMMENDATION) results in

### Name

La Rose Grand Cru Riesling Reserve



Datenbanken

# Set operations: Laws for transformation

$$\sigma_{A=a}(r \cup s) = \sigma_{A=a}(r) \cup \sigma_{A=a}(s)$$





# Relational algebra

- Hide columns: Projection π
- Search for rows: Selection σ
- ◆ Link tables: Join ▷
  and cross product ×
- ◆ Unify tables: Union ∪
- Subtract tables from each other: Difference and intersection \( \cap \)
- Rename columns: Rename  $\beta$  (important for  $\triangleright \triangleleft$  and  $\cup$ , -)



# Application example

All bicycles that are produced in Germany and 22" in size.

### Bike (B)

| BName        | BManufacturer | BSize |
|--------------|---------------|-------|
| Stereo 150   | Cube          | 22    |
| Balance bike | Puky          | 8     |

### Manufacturer (M)

| MName          | MCountry |
|----------------|----------|
| Bicicomp       | 49       |
| Puky           | 49       |
| Yeti<br>Cycles | 1        |

### Country (C)

| CCode | CName |
|-------|-------|
| 49    | DE    |
| 1     | USA   |
|       |       |

### With cross product:

$$\pi_{FName}(\sigma \underset{\land CName=DE}{\underset{\land CName=DE}{\underset{\land BManufacturer=MName}{\land MCountry=CCode}}} (B \times M \times C))$$

### With natural join:

$$\pi_{FName}(\sigma_{\begin{subarray}{c}BSize=22\\ \land \cite{CName}=DE\end{subarray}}(\beta_{MName\leftarrow BManufacturer}(B)\bowtie\beta_{CCode\leftarrow MCounty}(M)\bowtie C))$$

40



# Independence and completeness

- A query language is called relationally complete if every relational algebra operation in the language can be executed by (one or more) commands
- There is a minimal set of operations within the relational algebra from which all other operations can be composed:  $\Omega = \pi$ ,  $\sigma$ ,  $\triangleright \triangleleft$ ,  $\beta$ ,  $\cup$  and -
  - $\Omega$  is independent: no operator can be omitted without losing completeness
  - Other independent, complete sets: replace  $\triangleright \lhd$  and  $\beta$  with  $\times$
- Thus: it is sufficient to show that all operations from Ω can be expressed in a
  query language to show that this is relationally complete
- SQL is relationally complete!



- Which structural elements of the relational data model are we familiar with?
- What relational algebra operations are there?
- Which set of relational algebra operations is relationally complete and independent? Why is this important?
- Which integrity constraints do we know from the relational data model?