

Seminario3 Grafos

Estructura de Datos 2023-2024

Floyd-Warshall

- Algoritmo que calcula todos los caminos de coste mínimo entre cualquier par de nodos del grafo
- Características del grafo
 - Ponderado
 - Conexo
 - Dirigido

Encontrar el camino de coste mínimo para ir de B a C

	Α	В	С	D	E
Α	8	5	1	8	8
В	8	8	8	3	8
C	8	8	8	8	2
D	6	8	8	8	4
Ε	8	8	8	8	8

Encontrar el camino de coste mínimo para ir de B a C

Matriz A A B C D E A 0 5 1 ∞ ∞ B ∞ 0 ∞ 3 ∞ C ∞ ∞ 0 ∞ 2 D 6 ∞ ∞ 0 4 E ∞ ∞ ∞ ∞ 0

Camino a partir de la matriz P

Encontrar el camino de coste mínimo para ir de B a C

A B C D E

A D D D

C A A A

Ε

Matriz P

A partir de la matriz P vamos a obtener el camino con el método recursivo

Encontrar el camino de coste mínimo para ir de B a C

B Path(B,C)

Matriz P
A B C D E

	,,		•		_
Α				В	С
В	۵		۵		D
С					
D		Α	Α		
Ε					

A B C D E

A D D D

C A A A E

A B C D E

A D D D

C A A A E

A B C D E

A D D D

C A A A B

E

	А	В	C	D	E	<u> </u>	G	Н
Α	8	8	3	3	8	8	8	8
В	8	8	2	5	8	8	8	8
C	6	8	8	8	8	8	2	8
D	8	8	8	8	8	9	8	1
Ε	8	8	4	8	8	8	2	8
F	8	8	8	1	8	8	8	9
G	8	8	8	8	8	8	8	8
Н	8	8	8	∞	8	3	8	∞

	Α	В	С	D	E	F	G	Н
Α	8	1	8	8	7	8	8	8
В	9	8	3	8	8	9	8	∞
С	8	8	8	8	8	8	3	∞
D	8	8	8	8	8	4	8	9
Ε	8	8	8	8	8	8	6	9
F	8	8	8	8	8	8	8	∞
G	8	8	8	8	8	4	8	8
н	∞	8	8	∞	8	8	∞	∞

Prim – Ejercicio4

Obtener el árbol libre abarcador de coste mínimo a partir de E

	Α	В	С	D	E	F	G	Н
Α	8	∞	8	4	8	8	8	8
В	7	∞	2	8	8	8	4	∞
С	8	8	8	8	2	8	8	8
D	8	∞	8	8	8	3	8	∞
Ε	8	∞	7	8	8	8	5	4
F	8	∞	8	6	8	8	4	8
G	8	∞	8	8	9	8	8	2
Н	∞	∞	∞	∞	∞	2	∞	∞