

Álgebra Elementar

Lista de Exercícios: P2

1 - Técnicas de Demonstração.2 - Conjuntos.

Profa. Karla Lima FACET/UFGD

Técnicas de Demonstração

- 1. Escreva a recíproca e a contraposição para cada uma das sentenças abaixo:
 - a) O crescimento sadio das plantas é consequência de quantidade suficiente de água.
 - b) O crescimento da oferta de computadores é uma condição necessária para o desenvolvimento científico.
 - c) Haverá novos erros apenas se o programa for alterado.
- 2. Prove que se o produto de dois inteiros não é divisível por um inteiro n, então nenhum dos inteiros é divisível por n.
- 3. Prove que para qualquer inteiro positivo n:

(a)
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

(b)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

(c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$
.

- (d) $n^2(n^2-1)$ é divisível por 12.
- (e) $2^{2n} 1$ é divisível por 3.
- 4. (a) Tente usar indução para provar que

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} < 2,$$

para $n \ge 1$.

O que deu errado?

(b) Mostre que, para $n \geq 1$,

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}.$$

- (c) Agora você consegue concluir o item a)?
- 5. Prove os itens abaixo:
 - (a) A soma de três números inteiros e consecutivos é divisível por 3.
 - (b) Se n é um número inteiro, então $n^2 > n$.
 - (c) O produto de dois números inteiros pares é par.
 - (d) Se um inteiro é divisível por 6, então duas vezes esse inteiro é divisível por 4.
 - (e) Se 3n + 2 é impar, no qual n é um número inteiro, então n é impar.
 - (f) Se um número somado a ele mesmo é ele mesmo, então esse número é 0.
 - (g) Seja $n \in \mathbb{N}$. Mostre que se $n \leq 5$, então $n^2 \leq 5n + 10$.
 - (h) Se P é o conjunto dos números primos, então P é infinito.
 - (i) Se n = ab, com $a \in b$ inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}$.
 - (j) O número $\sqrt{2}$ é irracional.
- 6. Mostre que todo inteiro par maior do que 2 pode ser escrito como a soma de 2 números primos.
- 7. Demonstre por absurdo que não existe raiz racional para a equação $x^3+x+1=0$.

2