STAT 630 Fall 2014 Homework 3 Solution

2.4.2

- (a) Since W is defined on interval [1, 4], thus $P(W \ge 5) = 0$.
- (b) $P(W \ge 2) = \frac{4-2}{4-1} = \frac{2}{3}$.
- (c) $P(W^2 < 9) = P(W < 3) = \frac{3-1}{4-1} = \frac{2}{3}$.

2.4.4

In this question, we apply the fact that the integral of density function over its definition interval equals to 1.

- (a) Let $\int_0^1 cx = \frac{c}{2}x^2|_0^1 = \frac{c}{2}$ equal to one, thus c = 2. So $f(x) = 2x I_{\{0 \le x \le 1\}}$
- (b) Let $\int_0^1 cx^n = \frac{c}{n+1}x^{n+1}|_0^1 = \frac{c}{n+1}$ equal to one, thus c = n+1. So $f(x) = (n+1)x^n I_{\{0 \le x \le 1\}}$
- (c) Let $\int_0^2 cx^{\frac{1}{2}} = \frac{2}{3}cx^{\frac{3}{2}}|_0^2 = \frac{2}{3}c \cdot 2\sqrt{2}$ equal to one, thus $c = \frac{3}{4\sqrt{2}}$. So $f(x) = \frac{3}{4\sqrt{2}}x^{1/2}I_{\{0 \le x \le 2\}}$

2.4.6

(b)
$$P(0 < X < 3) = \int_0^3 3exp(-3x) = -exp(-3x)|_0^3 = 1 - e^{-9}.$$

(e) $P(2 < X < 10) = \int_2^{10} 3exp(-3x) = -exp(-3x)|_2^{10} = e^{-6} - e^{-30}.$

(e)
$$P(2 < X < 10) = \int_2^{10} 3exp(-3x) = -exp(-3x)|_2^{10} = e^{-6} - e^{-30}$$
.

2.4.19

First we can see $f(x) \ge 0$, then we need to prove its integral over definition interval equals to 1.

$$\int_0^\infty \alpha x^{\alpha - 1} e^{-x^{\alpha}} dx = -\int_0^\infty d(e^{-x^{\alpha}}) = -e^{-x^{\alpha}}|_0^\infty$$

Because $\alpha > 0$, thus this integral equals to 1. Here f is a density.

2.4.22

First, it is easy to see $f(x) \ge 0$. Then

$$\int_{-\infty}^{\infty} \frac{1}{2} e^{-|x|} dx = \int_{-\infty}^{0} \frac{1}{2} e^{x} dx + \int_{0}^{\infty} \frac{1}{2} e^{-x} dx = \frac{1}{2} (e^{x}|_{-\infty}^{0}) + \frac{1}{2} = 1$$

Hence, f is a valid density function.

2.5.3

- (a). We can see F(x) can be negative or greater than 1, thus it is not a valid cumulative distribution function.
- (c). First $0 \le F(x) \le 1$ and also it is nondecreasing over its definition interval, thus it is a valid cdf.
- (d). F(x) can be greater than 1 when $1 < x \le 3$, thus it is not a valid cdf.
- (f). You can easily verify $0 \le F(x) \le 1$ and it is nondecreasing. Thus it is a valid cdf.
- (g). It does not satisfy the property (b). For example, let $x_1 = -0.5, x_2 = 0.3$, we can see F(-0.5) > F(0.3), therefore it is not nondecreasing.

2.5.5

In this question, we should transform value of Y into z-score in order to find the value in z-table.

(a)
$$P(Y \le -5) = P(z \le \frac{-5 - (-8)}{2}) = P(z \le \frac{3}{2}) = \Phi(\frac{3}{2}) = 0.9331928.$$

(b)
$$P(-2 \le Y \le 7) = P(Y \le 7) - P(Y \le -2) = P(z \le \frac{15}{2}) - P(z \le 3) = 0.001349898.$$

(c)
$$P(Y \ge 3) = 1 - P(Y \le 3) = 1 - \Phi(\frac{11}{2}) = 1.898956 \times 10^{-8}$$
.

(d) Use function qnorm in R to find the percentiles. 35th percentile is -8.7706 and 84th percentile is -6.0111.

2.5.7

Since F(x) is a continous function, then P(X = x) = 0 and $P(X < x) = P(X \le x) - P(X = x) = F(x) - 0 = F(x)$

- (a) $P(X < 1/3) = F(1/3) = (1/3)^2 = 1/9$
- (b) $P(1/4 < X < 1/2) = P(X < 1/2) P(X \le 1/4) = F(1/2) F(1/4) = (1/2)^2 (1/4)^2 = 3/16 = 0.1875$
- (f) Since $0 \le P(X < -1) \le P(X \le 0) = F(0) = 0$, then P(X < -1) = 0
- (g) Since $1 \ge P(X < 3) \ge P(X \le 1) = F(1) = 1$, then P(X < 3) = 1
- (h) $P(X = 3/7) = P(X \le 3/7) P(X = 3/7) = F(3/7) F(3/7) = 0$
- (i) Suppose q is the sth percentile of the distribution of X, then $q^2 = s/100$, i.e $q = \sqrt{\frac{s}{100}}$. Hence, the 40th percentile is $\sqrt{.40} = 0.6324555$ and the 72th percentile is $\sqrt{.72} = 0.8485$.

2.5.8

- (a) $P(1/3 < Y < 3/4) = F_Y(3/4) F_Y(1/3) = 1 (1 3/4)^3 (1/3)^3 = \frac{1637}{1728} = 0.947338.$
- (b) P(Y = 1/3) = 0 since F_Y is continuous at 1/3.
- (c) $P(Y = 1/2) = P(Y \le 2) P(Y < 1/2) = F_Y(1/2) F_Y(1/2 -) = 1 (1 1/2)^3 (1/2)^3 = \frac{3}{4}$

2.5.21

(a) First the density function of Weibull distribution is $\alpha t^{\alpha-1}e^{-t^{\alpha}}$, then if x>0

$$F(x) = \int_0^x \alpha t^{\alpha - 1} e^{-t^{\alpha}} dt = -de^{-t^{\alpha}} \Big|_0^x = 1 - e^{-x^{\alpha}}$$

When $x \to \infty$, this integral intends to be 1.

(b) Let q be a certain percentile. Then let the cumulative distribution function of Weibull distribution F(x) = q, that is:

$$1 - e^{-x^{\alpha}} = q$$

we can solve it for x, which is $\{-\log(1-q)\}^{\frac{1}{\alpha}}$.

2.5.24

We will discuss the cdf for two cases. If $x \leq 0$, then $F(x) = \int_{-\infty}^{x} \frac{1}{2} e^{t} dt = \frac{1}{2} e^{t}|_{-\infty}^{x} = \frac{1}{2} e^{x}$. If x > 0, $F(x) = \int_{-\infty}^{0} \frac{1}{2} e^{t} dt + \int_{0}^{x} \frac{1}{2} e^{-t} dt = \frac{1}{2} - \frac{1}{2} e^{-t}|_{0}^{x} = 1 - \frac{1}{2} e^{-x}$. So, $F(x) = \begin{cases} \frac{1}{2} e^{x} & x \leq 0 \\ 1 - \frac{1}{2} e^{-x} & x > 0 \end{cases}$

2.6.1

Since $x \in [L, R]$, thus $Y \in [cL + d, cR + d]$. Apply theorem 2.6.2, we know $f_Y(y) = \frac{1}{R-L} \cdot \frac{1}{c} = \frac{1}{c(R-L)}$. This is just the density for the uniform distribution on [cL + d, cR + d].

2.6.5

Let $h(x) = x^3$. Then Y = h(X) and h os strictly increasing, and $h^{-1}(y) = y^{\frac{1}{3}}$. Hence, $f_Y(y) = f_X(h^{-1}(y))/|h'(h^{-1}(y))| = f_X(y^{\frac{1}{3}})/3(y^{\frac{1}{3}})^2$, which equals $\lambda e^{-\lambda y^{\frac{1}{3}}}/3y^{\frac{2}{3}} = \frac{\lambda}{3}y^{-\frac{2}{3}}e^{-\lambda y^{\frac{1}{3}}}$ for y > 0, otherwise equals 0.

2.6.9

- (a) Since $X = \sqrt{Y}$, $Y = h(X) = X^2$, h'(X) = 2X, then the density of Y is $(\sqrt{y})^3/(4\cdot 2\cdot \sqrt{y}) = \frac{y}{8}$ for 0 < Y < 4, $f_y(y) = 0$ for otherwise.
- (b) Since $X = Z^2, Z = h(X) = \sqrt{X}, h'(X) = \frac{1}{2}X^{-1/2}$. Thus the density of Z is $\frac{(z^2)^3}{4}/(\frac{1}{2}\cdot(z^2)^{-1/2}) = \frac{z^7}{2}, Z \in (0, \sqrt{2})$.

2.6.12

Since $Y(x)=x^{\frac{1}{3}}$ is increasing, Y is also 1-1. The inverse is $Y^{-1}(y)=y^3$ and the derivative is $Y'(Y^{-1}(y))=\frac{1}{3}(y^3)^{-\frac{2}{3}}$. By applying theorem 2.6.2, we get $f_Y(y)=f_X(y^3)/|\frac{1}{3}(y^3)^{-\frac{2}{3}}|=3y^{-4}$.

2.6.18

For X, its density is $\alpha x^{\alpha-1}e^{-x^{\alpha}}$ and we also know $X=Y^{\frac{1}{\beta}},h'(X)=\beta X^{\beta-1}$. Then Apply theorem 2.6.2, we can obtain:

$$f_Y(y) = \alpha \cdot y^{\frac{\alpha - 1}{\beta}} e^{-y^{\frac{\alpha}{\beta}}} / (\beta(y^{\frac{1}{\beta}})^{\beta - 1}) = \frac{\alpha}{\beta} y^{\frac{\alpha}{\beta} - 1} \cdot e^{-y^{\frac{\alpha}{\beta}}} \text{ for } y > 0.$$

 $f_Y(y) = \alpha \cdot y^{\frac{\alpha-1}{\beta}} e^{-y^{\frac{\alpha}{\beta}}} / (\beta(y^{\frac{1}{\beta}})^{\beta-1}) = \frac{\alpha}{\beta} y^{\frac{\alpha}{\beta}-1} \cdot e^{-y^{\frac{\alpha}{\beta}}} \text{ for } y > 0.$ You can see it is the density function of Weibull distribution with parameter $\frac{\alpha}{\beta}$.