Метод распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей

Студент: Миронов Григорий, ИУ7-83Б Научный руководитель: Тассов Кирилл Леонидович

Москва, 2023 г.

Актуальность метода

Существующие методы

Цель и задачи

Цель — разработка метода распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей. Задачи:

- Описать термины предметной области.
- Проанализировать нейросетевые методы распознавания объектов.
- Разработать соотвествующий метод распознавания.
- Разработать программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом.
- Оценить результаты работы метода в зависимости от различных параметров системы.

Постановка задачи

- ullet Фотоснимок с размером от 640×640 до 1280×1280
- Снимок с большой высоты
- Надводные объекты четко различимы

Метод распознавания надводных объектов с аэрофотоснимоков (1/2)

Сравнение типов нейронных сетей

Тип	Возможность	Устойчивость к				
нейронной	параллельного	искажениям	смещениям	высоким		
сети	обучения			шумам		
Персептрон	+	_	_	+		
Рекуррентная	+	+	+	+		
Сверточная	+	+	+	+		
Капсульная	+	+	+	_		

Свертка и макс-пулинг

$$k_x = (n_x - m_x + 2 * p_x)/s_x + 1$$

$$k_y = (n_y - m_y + 2 * p_y)/s_y + 1$$

$$C_{i,i} = \sum_{v=0}^{m_x - 1} \sum_{v=0}^{m_y - 1} A_{i*s_v + u, i*s_v + y} B_{u,v}$$

$$k_{x} = (n_{x} - m_{x})/s_{x} + 1$$

 $k_{y} = (n_{y} - m_{y})/s_{y} + 1$
 $C_{i,j} = max_{u=0}^{m_{x}-1} max_{v=0}^{m_{y}-1} A_{i*s_{x}+u,j*s_{y}+v}$

Методы распознавания объектов

CNN	mAP _{IoU}		Параметры,	FLOPs,	FPS
	$mAP_{0.5}$	$mAP_{0.5:0.95}$	млн. шт.	млрд.	
Faster R-CNN	62.5	_	53	888	< 20
YOLOv5n	45.7	28.0	1.9	4.5	934
YOLOv5x	50.7	68.9	86.7	205.7	252
YOLOv8n	37.3	50.4	3.2	8.7	1163
YOLOv8x	53.9	_	68.2	257.8	236

YOLOv8n (1/2)

YOLOv8n (2/2)

Структура программного обеспечения

Исследование

Технические характеристики:

- CPU: Intel Core™ i7-4790 CPU @ 3.60ΓΓц;
- GPU: NVIDIA GeForce RTX 2060 6144M6;
- RAM: 16 Γ6;
- операционная система:
 Ubuntu 22.04 via WSL 2 on Windows 10.

Заключение

Был разработан метод распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей. В ходе выполнения работы были выполнены следующие задачи:

- Описаны термины предметной области.
- Проанализированы нейросетевые методы распознавания объектов.
- Разработан соотвествующий метод распознавания.
- Разработан программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом.
- Проведена оценика результатов работы метода в зависимости от различных параметров системы.

Дальнейшее развитие

- Распознавание надводных объектов с фотоснимков с БПЛА с различных ракурсов.
- Улучшение качества распознавания надводных объектов на снимках различного размера.
- Расширение списка распозноваемых объектов.