Physics Beyond - Modelling Problems in Mechanics

Nathan Morris July 6, 2020

Contents

1	\mathbf{Mo}	delling Problems in Mechanics	2		
	1.1	Q: Link acceleration and position?	2		
	1.2	$\overline{\mathbf{Q}}$: What are we dealing with mathematically?	3		
	1.3	$\overline{\underline{\mathbf{Q}}}$: How do we go about this?	3		
2	Solv	ving Equations of motion	4		
	2.1	Method: (for N particles)	4		
	2.2	Newton's law of gravity	5		
3	Ordinary Differential Equations(ODE):				
	3.1	First Order Differential Equations	5		
	3.2	ODE from an infinitesimal viewpoint	6		
	3.3	Numerical Euler Method	7		
		3.3.1 Method:	7		
4	1st	Order ODEs from the differential point of view	7		
	4.1	Consider ODE	7		
	4.2	Infinitesimal point of view	8		
	4.3	Theory of integration from the infinitesimal viewpoint	9		
	4.4	Integration axiom	10		
	4.5	Differentiation rules	11		
		4.5.1 Linearity	11		
		4.5.2 Product Rule	11		
		4.5.3 Chain Rule	12		
	4.6	Integration rules	12		
		4.6.1 additivity	12		
		4.6.2 linearity	12		
		4.6.3 partial differentiation	13		
		4.6.4 substitution rule	14		
5	Vec	tor Valued Integration	15		
	5.1	Q: How do we link this back to the integral we just discussed?	15		
	5.2	<u>Definition:</u> (vector valued integral)	16		
	5.3	$\underline{\mathbf{Q}}$: Is that well defined?	16		
	5.4	$\overline{\underline{\mathbf{Q}}}$: What is the problem?	17		
6	Separation of variables 1				
	6.1	Example: 1D	17		
	6.2	Method 1:	18		
	6.3	Q: Does the equation have a solution? Is this solution unique?	18		

	6.4	Method 2:	19
7	2nd	Order ODEs	19
	7.1	Q: How to make it relate to 1st order ODEs?	19
	7.2	\overline{Q} : How to turn this into <u>one</u> 1st order ODE?	19
	7.3	Example: (Free Fall)	20
	7.4	Example: Pendulum	20
	7.5	Q: What have we figured out?	21

1 Modelling Problems in Mechanics

<u>Problem:</u> Knowing the interactions modelled by forces find the motion of a particle.

Analyse:

$$\vec{a} = \frac{\vec{F}}{m}$$

1.1 Q: Link acceleration and position?

$$\vec{a} = \ddot{\vec{x}}$$

$$\ddot{\vec{x}} = \frac{\vec{F}}{m}\vec{x}(t) \leftarrow \text{but } \vec{F} \text{ needs to depend on position!}$$
 $\vec{x}(t) = \ddot{\vec{x}}(t)$

 \leadsto Vector model fails! replace with a vector field \vec{F}

$$\vec{F}$$
: positions \rightarrow vectors $x \rightarrow \vec{F}(x)$

Use reference frame

$$\vec{F}: R^3 \to R^3$$

 $\vec{x} \mapsto \vec{F}(\vec{x})$

Example: Force of gravity (Close to Earth surface)

1)
$$\ddot{\vec{x}} = \frac{m\vec{g}}{m} = \vec{g}$$
2)
$$\ddot{\vec{x}} = \frac{M_{Earth}}{|\vec{x}(t) - \vec{x}_0|^3}$$

$$x_0 = \text{centre of the earth}$$
in case of 1)
$$\vec{g} : R^3 \to R^3, \vec{x} \mapsto \vec{g}(\text{Constant vector field})$$

$$O = \text{centre of the Earth}$$

1.2 Q: What are we dealing with mathematically?

 \rightarrow 2nd order differential equation

$$\vec{v}(t+dt) = \dot{\vec{x}}(t+dt)$$

$$= \dot{\vec{x}}(t) + \ddot{\vec{x}}(t)dt$$

$$= \vec{v}(t) + \dot{\vec{v}}(t)dt$$

$$(=)\vec{v}(t+dt) - \vec{v}(t) = \dot{\vec{v}}(t)dt$$

$$d\vec{v} = \dot{\vec{v}}(t)dt = \frac{\vec{F}(\vec{x}(t))}{m}dt$$

1.3 Q: How do we go about this?

 \rightarrow Suppose we are given an initial position: $\vec{x}(t=0) = \vec{x_0}$

$$\dot{x}(t=0) = \vec{v_0}$$

$$\vec{v}(0+dt) = \vec{v}(0) + \dot{\vec{v}}(0)dt$$

$$= \vec{v_0} + \frac{\vec{F}(\vec{x}(0))}{m}dt$$

$$= \vec{v_0} + \frac{\vec{F}(\vec{x_0})}{m}dt$$

$$\vec{x}(0+dt) = \vec{x_0} + \dot{\vec{x}}(0)dt$$
$$= \vec{x_0} + \vec{v_0}dt$$

$$\vec{x}(0+dt+dt_2) = \vec{x}(0+dt) + \dot{\vec{x}}(dt)dt_2$$

$$= \vec{x_0} + \vec{v_0}dt + \vec{v_0}dt_2 + \frac{\vec{F}(\vec{x_0})}{m}dtdt_2$$

$$= \vec{x_0} + \vec{v_0}(dt + dt_2) + \frac{\vec{F}(\vec{x_0})}{m}dtdt_2$$

2 Solving Equations of motion

2.1 Method: (for N particles)

- 1) Free body diagram of each particle
- 2) Find the resultant forces
- 3) Set up equations of motion
- 4) Solve equations of motion

1)

2) Resultant force:

$$\vec{F_i} = \sum_{f=1, i \neq j}^{N} \vec{F_{ij}} + \vec{F_{ext,i}}$$
 for all particles i

$$m_i \ddot{\vec{x}}_i = \vec{F}_i$$

4) Task: find particles as a function of time $\vec{x_i}(t)$ for all particles based on the knowledge of forces.

 \rightarrow last time: force \vec{F}_{ij} are modelled as vector fields.

$$\vec{F}_{ij}: R^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

 $(\underbrace{\vec{x_i}}_{\text{Position of i-th particle}}, \underbrace{\vec{x_j}}_{\text{Position of i-th particle}}) \mapsto \vec{F_{ij}}(\vec{x_i}, \vec{x_j}) \leftarrow \underset{\text{to j-th particle}}{\text{adding force on i-th particle}}$

$$m_i\ddot{\vec{x}_i} = \vec{F}_i(\vec{x_1}, \cdots, No.\vec{x_i}, \cdots, \vec{x_N})$$

Example:

2.2 Newton's law of gravity

$$\vec{F_{EM}}(\vec{x_E}, \vec{x_M})$$

$$F = G \frac{M_E M_M}{R^2}$$

$$= \frac{G M_E M_M}{|\vec{x_M} - \vec{x_E}|^2} \cdot \frac{(\vec{x_M} - \vec{x_E})}{|\vec{x_M} - \vec{x_E}|}$$

$$= \frac{G M_E M_M}{|\vec{x_M} - \vec{x_E}|^3} \cdot (\vec{x_M} - \vec{x_E})$$

Mathematically, the problem we are facing is to solve a system of 2nd order ordinary differential equation that is coupled.

3 Ordinary Differential Equations(ODE):

3.1 First Order Differential Equations

$$\vec{v}: R^2 \to \mathbb{R}^2$$

Since the leaf follows the flow of the river

$$\dot{\vec{x}}(t) = \vec{v}(\vec{x}(t))$$

First order differential equation

3.2 ODE from an infinitesimal viewpoint

$$\rightsquigarrow \vec{x}(t_0 + dt) = \vec{x_0} + \vec{v}(\vec{x_0})dt$$

 $dt_1, dt_2 \leftarrow D$

$$\vec{x}((t_0 + dt_1) + dt_2) \stackrel{\text{K-L}}{=} \vec{x}(t_0 + dt_1) + \dot{\vec{x}}(t_0 + dt_1)dt_2$$

$$ODE \dot{\vec{x}}(t_0 + dt_1) = \vec{v}(\vec{x}(t_0 + dt_1))$$

$$\vec{x}(t_0 + dt_1 + dt_2) = \vec{x}(t_0 + dt_1) + \vec{v}(\vec{x}(t_0 + dt_1))dt_2$$

 \rightarrow Iterating this method leads to what is called the infinitesimal <u>Euler method</u>.

3.3 Numerical Euler Method

Instead of infinitesimal time steps $dt \leftarrow D$, use finite but small time steps, $\Delta t > 0$.

$$\vec{v}(x_0)$$

$$\vec{x}(t_0 + \Delta t) = \vec{x_0} + \vec{v}(x_0)\Delta t$$

This allows you to find an approximate solution $\vec{x}(t)$ of the 1st order ODE $\dot{\vec{x}} = \vec{v}(x)$

3.3.1 Method:

1)
$$\vec{x}(t_0) = \vec{x_0}$$
 (initial conditions)

2)
$$t_1=t_0+\Delta t$$

$$\vec{x}(t_1)=\vec{x}(t_0+\Delta t)=\vec{x}(t_0)+\vec{v}(\vec{x}(t_0))\Delta t$$

3) after time

$$t_n$$

$$t_{n+1} = t_n + \Delta t$$

$$\vec{x}(t_{n+1}) = \vec{x}(t_n) + \vec{v}(\vec{x}(t_n))\Delta t$$

4 1st Order ODEs from the differential point of view

4.1 Consider ODE

for
$$v: \overbrace{R^n}^{\text{point}} \to \overbrace{R^n}^{\text{Velocity vector at point}}$$

$$\dot{x} = v(x)$$

i.e we are looking for a curve/trajectory $x:R\to R^n, t\mapsto x(t)$

$$\dot{x}(t) = v(x(t))$$

for a solution to be uniquely determined we need an initial value $x(t_0) = x_0$

Infinitesimal point of view 4.2

for an infinitesimal time: dt and dx are both infinitesimal differences. for $dt \leftarrow D$

$$x(t+dt) \stackrel{\text{K-L}}{=} x(t) + \dot{x}(t)dt$$

$$\Rightarrow \underbrace{x(t+dt) - x(t)}_{dx} = \dot{x}(t)dt$$

This is the differential of x (dx), it is the infinitesimal displacement along x(t).

(Reminder from multivariable calculus $dx \leftarrow D(n)$) Using this notation and substituting ODE we find:

$$dx = v(x)dt$$

→ an equation between differentials.

→ strategy to find the <u>finite</u> difference in displacement:

$$\Delta x = x(t) - x(t_0)$$

from the differential equation we have to sum up all the infinitesimal displacements dx = v(x)dt along the curve x(t).

Integration: (Here along the curve!)

Is the idea to sum up all the infinitely many infinitesimal contributions (here along a curve) to get a finite result.

stands for s like
$$\underline{\text{sum}} \to \int_{x_0}^{x(t)} dx = \int_{t_0}^t v(\tau) d\tau$$

need to develop a theory of integration sufficiently strong to integrate vectorvalued infinitesimal contributions.

4.3 Theory of integration from the infinitesimal viewpoint

Basic Probelm:

Area of rectangle 1: dA = f(x)dx

Area of rectangle 2: dA = f(x + dx)dx = (f(x) + f'(x)dx)dx = f(x)dx

Area of trapezium 3: $dA = \frac{1}{2}(f(x) + f(x + dx))dx = \frac{1}{2}(f(x) + f(x) + dx)$

f'(x)dx)dx = f(x)dxQ: How to define

$$A = \int_a^b dA = \int_a^b f(x)dx?$$

 \leadsto problem: are not able to give a <u>direct intuitive</u> definition, as the theory has not been developed so far!

Q: Can you find a way to evaluate $\int_a^b f(x)dx$ and use that as an effective definition?

Observation:

$$F(x + dx) \stackrel{\text{K-L}}{=} F(x) + F'(x)dx$$
$$F(x + dx) - F(x) = F'(x)dx$$

Suppose I can find $F: R \to R$ such that $F'(x) = f(x), vx \leftarrow R$ then I get F(x + dx) - F(x) = F'(x)dx = f(x)dx.

Total Area =
$$dA_1 + dA_2 + dA_3 + dA_4 + ...$$

= $f(a)dx_1 + f(a_1)dx_2 + f(a_2)dx_3 + f(a_3)dx_4 + ...$
= $F(a_1) - F(a) + F(a_2) - F(a_1) + F(a_3) - F(a_2) + F(a_4) - F(a_3)$
= $F(a_4) - F(a)$

<u>Idea:</u> No matter how you would define an infinite sum of infinitesimals this cancellation process when summing up

$$f(x)dx = dF = F(x + dx) - F(x)$$

should only depend on the boundary values. (Fudge)<u>definition:</u>

$$\int_a^b f(x)dx = F(b) - F(a) \text{ for an } \underline{\text{antiderivative}} \ F: R \to R \text{ of } f$$

 $\underline{\mathbf{Q}}$: How do we know an antiderivative exists? \rightarrow we don't, so we postulate it in the theory.

4.4 Integration axiom

- For every $f: R \to R$ there is an antiderivative $F: R \to R$, i.e F' = f
- If F and F are antiderivatives of f then F-F is a constant function

Why difference constant?

We have $F_2' = f$ but $F_2(x) - F_1(x) = \begin{cases} 4, -2 \le x \le 1 \\ -10, 1 \le x \le 2 \end{cases}$ is <u>not</u> constant.

intuition: (has gaps)

On a domain that is 'connected' the antiderivatives do not have to differ by a constant!

4.5 Differentiation rules

4.5.1 Linearity

$$(f+g)' = f' + g'$$
 (pointwise sum)
 $(f+g)'(x) = f'(x) + g'(x)$
 $(\lambda f)' = \lambda f'$
 $(\lambda f)'(x) = \lambda f'(x)$

4.5.2 Product Rule

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$
 (pointwise product)
 $(f \cdot g)(x) = f(x) \cdot g(x)$
 $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

4.5.3 Chain Rule

$$(f \circ g)' = (f' \circ g)'$$
$$(f \circ g)(x) = f(g(x))$$
$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

4.6 Integration rules

4.6.1 additivity

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

Proof:

$$F(x) = \int f(x)dx$$

$$= [F(x)]_a^c + [F(x)]_c^b$$

$$= F(c) - F(a) + F(b) - F(c)$$

$$= F(b) - F(a)$$

$$= \int_a^b f(x)dx$$

4.6.2 linearity

$$\int_{a}^{b} \lambda f(x) + g(x)dx = \lambda \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Proof:

$$\begin{split} \int_a^b \lambda f(x) + g(x) dx &= \\ &= \left[\int \lambda f(x) + g(x) dx \right]_a^b \\ &= \left[\int \lambda f(x) + g(x) dx \right]^b - \left[\int \lambda f(x) + g(x) dx \right]_a \\ &= \left[\int \lambda f(x) dx \right]^b - \left[\int \lambda f(x) dx \right]_a + \left[\int g(x) dx \right]^b - \left[\int g(x) dx \right]_a \\ &= \left[\int \lambda f(x) dx \right]_a^b + \left[\int g(x) dx \right]_a^b \\ &= \lambda \left[\int f(x) dx \right]_a^b + \int_a^b g(x) dx \\ &= \lambda \int_a^b f(x) dx + \int_a^b g(x) dx \end{split}$$

4.6.3 partial differentiation

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

Proof:

Intergrate product rule:
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\int_a^b (f \cdot g)'(x) dx = \int_a^b f'(x) \cdot g(x) dx + \int_a^b f(x) \cdot g'(x) dx$$

$$\left[(f \cdot g)(x) \right]_a^b = \int_a^b f'(x) \cdot g(x) dx + \int_a^b f(x) \cdot g'(x) dx$$

$$\leadsto \int_a^b f'(x) \cdot g(x) dx = \left[(f \cdot g)(x) \right]_a^b - \int_a^b f(x) \cdot g'(x) dx$$

Example:

$$\int_{0}^{1} x \sin(x) dx = \int_{0}^{1} g(x) f'(x) dx$$

$$= [-\cos(x) \cdot x]_{0}^{1} - \int_{0}^{1} -\cos(x) \cdot 1 dx$$

$$= -\cos(1) + 0 + \int_{0}^{1} \cos(x) dx$$

$$= -\cos(1) + \sin(1) - \sin(0)$$

$$= \sin(1) - \cos(1)$$

4.6.4 substitution rule

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

I do the substitution u = g(x)

$$du = g(x + dx) - g(x) = g(x) + g'(x)dx - g(x) = g'(x)dx$$

Example:

$$\int_0^1 \sin(x^2) 2x dx, u = x^2, (x^2)^1 = 2x$$

$$= \int_0^1 \sin(u) du$$

$$= [-\cos(u)]_0^1 = \cos(0) - \cos(1) = 1 - \cos(1)$$

Example: Let F be an antiderivative of f(F' = f) (Exists due to integration axiom)

Consider $(F \circ g)' = F' \circ g \cdot g' = f \circ g \cdot g'$ $\Rightarrow F \circ g$ is the antiderivative of $f \circ g$

$$\rightsquigarrow \int_a^b (f(g(x))g'(x)dx = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(u)du$$
 (by definition)

<u>Remark:</u> Although the proof of integration by substitution is straight forward with the definitions we made, geometrically it is <u>not</u> straight forward.

What if g(x) = g(x + dx)? (i.e. x is a stationary point) $\rightsquigarrow du = 0$, but dx is not probably equal to 0. This is not a problem as:

$$du = g'(x)dx$$
 and $g'(x) = 0$

Note:

$$\int_a^a f(x)dx = F(a) - F(a) = 0$$

$$\int_a^{a+d} f(x)dx = F(a+d) - F(a) = f(a)d \text{ (K-L)}$$

5 Vector Valued Integration

Reminder: For ODEs we had to consider

$$dx = v(x)dt$$

5.1 $\underline{\mathbf{Q}}$: How do we link this back to the integral we just $\underline{\mathbf{discussed}}$?

 \leadsto Introduce coordinates

Assume $x: R \to R^n$ is the solution to our ODE dx = v(x)dt

$$dx = x(t + dt) - x(t) = \dot{x}(t)dt = v(x(t))dt$$
$$x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

$$dx = \begin{pmatrix} x_1(t+dt) - x_1(t) \\ \vdots \\ x_n(t+dt) - x_n(t) \end{pmatrix} = \begin{pmatrix} v_1(x_1(t) & \cdots & x_n(t))dt \\ \vdots & \ddots & \vdots \\ v_n(x_1(t) & \cdots & x_n(t))dt \end{pmatrix}$$

 \rightsquigarrow we can sum up the infinitely many infinitesimal vectors v(x(t))dt in 1D summing over f(x)dx, v(x(t))dt

5.2 <u>Definition</u>: (vector valued integral)

$$\gamma: R \to R^n, t \mapsto \gamma(t) = \begin{pmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{pmatrix} \text{ (a curve)}$$

$$\int_{t_0}^{t_n} \gamma(t) dt = \begin{pmatrix} \int_{t_0}^{t_n} \gamma_1(t) dt \\ \vdots \\ \int_{t_0}^{t_n} \gamma_n(t) dt \end{pmatrix}$$

5.3 Q: Is that well defined?

Let $T_j: R \to R$ be the antiderivative of γ_j for all $1 \le j \le n$

Consider
$$T: R \to R^n$$
, $t \mapsto \begin{pmatrix} T_1(t) \\ \vdots \\ T_n(t) \end{pmatrix}$ (a curve)

$$\dot{T}(t) = \begin{pmatrix} \dot{T}_1(t) \\ \vdots \\ \dot{T}_n(t) \end{pmatrix} = \begin{pmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{pmatrix} = \gamma(t)$$

 $\rightsquigarrow T$ is an antiderivative for γ .

$$\int_{t_0}^{t_1} \gamma(t)dt = T(t_1) - T(t_0) \begin{pmatrix} T_1(t_1) - T_1(t_0) \\ \vdots \\ T_n(t_1) - T_n(t_0) \end{pmatrix} = \begin{pmatrix} \int_{t_0}^{t_1} \gamma_1(t)dt \\ \vdots \\ \int_{t_0}^{t_1} \gamma_2(t)dt \end{pmatrix}$$

Can we apply vector valued integrals to ODEs? Kind of.

5.4 Q: What is the problem?

 \rightarrow We need to integrate v(x(t))dt to get $x(t) \rightarrow$ but we need to know the

curve x in advance to do this. $x(t_0) / x(t_0 + dt)$ (we were constructing the curve x each infinitesimal time step at a time from the intial value $x(t_0)$) Like in 1D what we really get is an equation involving a vector valued inte-

gral. / integral or the RHS.

But now we have a definition of the vector valued

6 Separation of variables

6.1 Example: 1D

 $v: R \to R, x \mapsto x, \dot{x} = x, x(0) = x_0$ (Initial Value Problem - IVP) rewrite this as a differential equation:

$$\dot{x} = \frac{dx}{dt}$$

$$dx = x(t+dt) - x(t) \underbrace{=}_{\text{K-L}} \dot{x} dt \underbrace{=}_{\text{ODE}} x dt \to dx = x dt$$

$$\frac{1}{x}dx = dt \xrightarrow{\sum_{\text{Integrate}}} \int_{x_0}^{x(t)} \frac{1}{x}dx = \int_0^t d\tau$$

$$(=) \quad [\ln x]_{x_0}^{x(t)} = [\tau]_0^t$$

$$(=) \quad \ln \frac{x(t)}{x_0} = t$$

$$(=) \quad \frac{x(t)}{x_0} = e^t$$

$$(=) \quad x(t) = x_0 e^t$$

Check:

$$\dot{x}(t) = x_0 e^t = x(t) \checkmark$$

$$x(0) = x_0 e^0 = x_0 \cdot t = x_0 \checkmark$$

If x(0) = 0 initially, x(t) = 0

6.2 Method 1:

(separation of variables $v: R \to R$, $x \mapsto f(x)$, f(x) = xAssume: For each $x \leftarrow R$ f(x) has a multiplicative inverse.

dx = f(x)dt (differential form of the ODE x = f(x))

1. Separate the variables x and t

$$\frac{1}{f(x)}dx = dt$$

2. Integrate both sides (IVP $\dot{x} = f(x), x(t_0) = x_0$)

$$\int_{x_0}^{x_t} \frac{1}{f(x)} dx = \int_{t_0}^{t} dt = t - t_0$$

3. Solve this equation for x(t).

6.3 Q: Does the equation have a solution? Is this solution unique?

$$G: R \to R, y \mapsto \int_{x_0}^{y} \frac{1}{f(x)} dx$$

 \rightsquigarrow the equation becomes $G(x(t)) = t - t_0$

We notice

$$G(x_0) = \int_{x_0}^{x_0} \frac{1}{f(x)} dx = 0$$
$$t_0 - t_0 = 0$$

We have a solution for $t_0 - t_0 = 0$:

$$G'(y) = \frac{1}{f(y)}$$

This is different for zero \rightsquigarrow No stationary points.

- \rightarrow It is either increasing or decreasing (won't change monotonicity).
- \rightarrow Will always be able to find solution and solution is unique as G is one to one (locally, for t close to t_0).

6.4Method 2:

 $v: R \times R \to R$ (time dependent vector field) $(x,t) \mapsto v(x,t) = f(x)g(t)(g(t) = 1 \text{ in method } 1)$ Assumption: f(x) has a multiplicative inverse in R Consider the IVP $\dot{x} = v(x,t), x(0) = x_0, \dot{x}(t) = v(x(t),t)$

- 1. dx = v(x,t)dt = f(x)g(t)dt
- 2. Separate the variables: $\frac{1}{f(x)}dx = g(t)dt$
- 3. Integrate $\int_{x_0}^{x(t)} \frac{1}{f(x)} dx = \int_{t_0}^{t} g(\tau) d\tau$

Solve for x(t)

7 2nd Order ODEs

$$\ddot{x} = F(x, \dot{x}, t)$$
$$F: R^n x R^n \times R \to R^n$$

Q: How to make it relate to 1st order ODEs? 7.1

is a system of two 1st order ODEs $\begin{cases} \dot{x} = v \leftarrow \text{introduce a 'velocity'}. \\ \dot{v} = \ddot{x} = F(x, v, t) \end{cases}$

Q: How to turn this into one 1st order ODE?

$$\underbrace{\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix}}_{\dot{z}} = \underbrace{\begin{pmatrix} v \\ F(x,v,t) \end{pmatrix}}_{\tilde{F}(z,t)}$$
$$z = \begin{pmatrix} x \\ v \end{pmatrix}, \tilde{F} : R^{2n} \times R \to R^{2n}, (z,t) \mapsto \begin{pmatrix} v \\ F(z,t) \end{pmatrix}$$

A solution: $z: R \to R^{2n}, t \mapsto z(t)$ of $\dot{z} = \tilde{F}(z,t)$ i.e.

7.3 Example: (Free Fall)

$$\ddot{x} = -g, F: R \to R, x \mapsto -g(\text{constant})$$

Systen if 1st order ODEs
$$\begin{pmatrix} \dot{x} \\ v \end{pmatrix} = \begin{pmatrix} v \\ -g \end{pmatrix} \begin{cases} \dot{x} = v(I) \\ \dot{v} = -g(II) \end{cases}$$

Integrate:

$$(I)v(t) - v(0) = -gt \leadsto v(t) = v(0) - gt$$

Substitute in (I):

$$\dot{x} = v(t) = v(0) - gt(w : R \times R \to R, (x, t) \mapsto v(0) - gt, \dot{x} = w(x, t))$$

Integrate:

$$x(t) - x(0) = v(0)t - \frac{1}{2}gt^2$$

$$x(t) = x(0) + v(0)t - \frac{1}{2}gt^2$$

7.4 Example: Pendulum

(We ignore centripetal force due to constraint)

T = tension

 $F_c = \text{centrifugal force}$

W = weight

contraint: rod is rigid

 \rightsquigarrow bob of mass m is going to move on a circle of radius l.

 \rightsquigarrow resulting force:

$$W_{\parallel} = -mgsin\varphi$$

$$m\ddot{x} = W_{\parallel} = -mgsin\varphi$$

(use
$$x=\varphi l$$
)
$$\ddot{x}=\ddot{\varphi}l=-gsin\varphi$$

$$\leadsto \ddot{\varphi}=-\frac{g}{l}sin\varphi$$

Step $1 \rightarrow$ rewrite this as a system of 1st order ODEs:

$$\phi = \nu$$

$$\dot{\nu} = -\frac{g}{l} \sin \varphi$$

Try separation of variables:

$$d\nu = \frac{-g}{l}sin\varphi dt, d\varphi = \nu dt$$

Doesn't work as per method. Try further:

$$dt = \frac{d\varphi}{\nu}$$
 (careful $\nu = 0$ is possible)
 $\rightsquigarrow d\nu = \frac{-g}{l} sin\varphi \frac{d\varphi}{\nu}$

Now we can separate:

$$\nu d\nu = -\frac{g}{l} sin\varphi d\varphi$$

(We have lost the time variable) Integrate:

$$\int_{\nu(\varphi_0)}^{\nu(\varphi)} \nu d\nu = -\frac{g}{l} \int_{\nu(\varphi_0)}^{\nu(\varphi)} \sin\varphi d\varphi$$

 $(\varphi_0$ - pulled up the bob an angle of φ_0 and release from rest $\nu(\varphi_0)=0$

$$\rightsquigarrow \frac{1}{2}\nu(\varphi)^2 = \frac{g}{l}(\cos\varphi - \cos\varphi_0)$$

$$(=)\nu(\varphi) = \sqrt{\frac{2g}{l}(\cos\varphi - \cos\varphi_0)}$$

7.5 Q: What have we figured out?

We found the angular velocity as a function of the angle not the time. This gives us an ODE:

$$\dot{\varphi} = \nu(\varphi) = \sqrt{\frac{2g}{l}(\cos\varphi - \cos\varphi_0)}$$

(Apply separation of variables:)

$$\frac{1}{\sqrt{\frac{2g}{l}(\cos\varphi - \cos\varphi_0)}}d\varphi = dt$$

$$\sqrt{\frac{1}{2g}} \int_{\varphi_0}^{\varphi(t)} \frac{1}{\sqrt{\cos\varphi - \cos\varphi_0}} d\varphi = t$$

Solve for t: (problem: this is an integral that has not got an elementary function as an antiderivative)

$$E(z) = \int_{\varphi_0}^{z} \frac{1}{\sqrt{\cos\varphi - \cos\varphi_0}} d\varphi(\text{eliptic integral})$$