Первая лабораторная: задания 1-6.

1. Работа с изображениями.

Выбрать язык программирования и библиотеку для записи изображений в файл.

Создать матрицу размера H*W, заполнить её элементы нулевыми значениями, сохранить в виде полутонового (одноканального) 8-битового изображения высотой H и шириной W, убедиться, что полученное изображение открывается средствами операционной системы и полностью чёрное.

Создать матрицу размера H*W, заполнить её элементы значениями, равными 255, сохранить в виде полутонового (одноканального) 8-битового изображения высотой H и шириной W, убедиться, что полученное изображение открывается средствами операционной системы и полностью белое.

Создать матрицу размера H*W*3, заполнить её элементы значениями, равными (255, 0, 0), сохранить в виде цветного (трёхканального) 8-битового изображения высотой H и шириной W, убедиться, что полученное изображение открывается средствами операционной системы и полностью красное.

Создать матрицу размера H*W*3, заполнить её элементы произвольными значениями по выбранной схеме (например, значение элемента равно сумме его координат по модулю 256), сохранить в виде 8-битового изображения высотой H и шириной W, убедиться, что полученное изображение открывается средствами операционной системы (в предложенном примере должен получиться плавный градиент от чёрного цвета в верхнем левом углу изображения).

2. Отрисовка прямых линий

Реализовать все описанные в лекциях алгоритмы отрисовки прямых (до алгоритма Брезенхема включительно).

Для каждого алгоритма сохранить в файл изображение размера 200x200 с нарисованной на нём «звездой» (см. лекции).

Подсказка:

начальная координата (100,100)

конечная координата (100 + 95 $cos(\alpha)$, 100 + 95 $sin(\alpha)$, $\alpha = \frac{2\pi i}{13}$, i = 0,1,...,12.

3. Работа с трёхмерной моделью (вершины)

Считать из приложенного файла obj строки, содержащие информацию о вершинах модели:

v X1 Y1 Z1

v X2 Y2 Z2

<...>

4. Отрисовка вершин трёхмерной модели

Нарисовать вершины модели (игнорируя координату Z) на изображении размером (1000, 1000).

Для того, чтобы модель была видна на изображении (и не была слишком большой), поэкспериментируйте с масштабированием и смещением координат точек, например:

[50 * X + 500, 50 * Y + 500].

5. Работа с трёхмерной моделью (полигоны)

Считать из приложенного файла строки, содержащие информацию о полигонах модели.

Сведения о полигонах в файле хранятся в формате:

f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3

В рамках лабораторной загрузить в память необходимо только первые значения в каждой тройке – номера вершин, загруженных ранее.

Обратите внимание, что вершины нумеруются, начиная с единицы.

6. Отрисовка рёбер трёхмерной модели

Отрисовать все рёбра всех полигонов модели с помощью алгоритма Брезенхема (координаты вершин округляем до ближайшего целого).