Отчёт по лабораторной работе №5

Дисциплна: Научное программирование

Живцова Анна, 1132249547

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
	4.1 Подгонка полиномиальной кривой	9
	4.2 Матричные преобразования	11
	4.2.1 Исходное изображение	11
	4.2.2 Вращение	12
	4.2.3 Отражение	12
	4.2.4 Дилатация	13
5	Выводы	14
6	Список литературы	15

Список иллюстраций

4.1	Реализация полиномиальной регрессии	10
4.2	Изображение полиномиальной регрессии	11
4.3	Исходное изображение фигуры	12
4.4	Вращения на углы 90 и 225 градусов	12
4.5	Вращение фигуры	13
4.6	Дилатация фигуры	13

Список таблиц

1 Цель работы

- Изучить и реализовать в Octave метод построения полиномиальной регрессии
- Изучить и реализовать в Octave методы преобразования изображений

2 Задание

- Изучить и реализовать метод построения полиномиальной регрессии второго порядка
- Реализовать построение полиномиальной регрессии второго порядка с помощью встроенной функции Octave
- Изобразить результат регрессии
- Построиь изобрабражение замкнутой линии
- Изучить и реализовать с помощью матричных преобразований операции
 - вращения
 - отражения
 - сжатия
- Изобразить результаты применения данных операций

3 Теоретическое введение

В статистике часто рассматривается проблема подгонки прямой линии к набору данных. Рассмотрим более общую проблему подгонки полинома к множеству точек. Пусть нам нужно найти параболу по методу наименьших квадратов для набора из n точек, заданных координатами $x_i,\ i=1,\ldots,n$ и $y_i,\ i=1,\ldots,n$. Пусть A – матрица размерности $n\times 3$, в которой первый столбец состоит из значений x_i^2 , второй столбец состоит из значений x_i и третий столбец состоит из единиц. Решение по методу наименьших квадратов получается из решения уравнения $A^TA(a;b;c)=A^T(y_1;\ldots;y_n)$.

Матрицы и матричные преобразования играют ключевую роль в компьютерной графике. Они позволяют осуществлять операции вращения, отражения и сжатия. Например для поворота точки с координатами (x, y) на угол θ , координаты следует умножить на матрицу

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Для отражения относительно прямй, проходящей через начало координат под углом θ , следует умножить координаты точки на матрицу

$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

Для масштабирования фигуры в k раз, координаты каждой ее точки следует

умножить на матрицу

$$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$

Octave позволяет быстро и эффективно реализовать как метод полиномиальной регрессии, так и матричные операции над точками. Также Octave позволяет изобразить графически полученные результаты [1].

4 Выполнение лабораторной работы

4.1 Подгонка полиномиальной кривой

Сначала самостоятельно найдем коэффициенты подгоночой параболы, далее сверим их с теми, что дает встроенная функция = polyfit и изобразим исходе данны и подобранную параболу (см рис. 4.1 и 4.2).

```
>> D = [ 1 1; 2 2; 3 5; 4 4; 5 2; 6 -3];
>> xdata = D(:,1);
>> ydata = D(:,2);
>> A = ones(6,3);
>> A(:,1) = xdata .^2;
>> A(:,2) = xdata;
>> A
A =
       1 1
   1
   4
       2 1
   9
       3
            1
  16 4 1
   25 5 1
   36 6 1
>> B = A' * A;
>> B (:,4) = A' * ydata;
>> B_res = rref(B)
B res =
   1.0000 0 0 -0.8929
0 1.0000 0 5.6500
              0 1.0000 -4.4000
>> P = polyfit (xdata, ydata, 2)
P =
 -0.8929 5.6500 -4.4000
>> y = polyval (P,xdata);
>> plot(xdata, ydata, 'o-', xdata, y, '+-')
>> grid on;
>> legend('original data' , 'polyfit data' );
```

Рис. 4.1: Реализация полиномиальной регрессии

Рис. 4.2: Изображение полиномиальной регрессии

4.2 Матричные преобразования

4.2.1 Исходное изображение

Будем работать с замкнутой ломанной, заданной своими вершинами. Изобразим исходный рисунок, с которым далее будем производить операции (см рис. 4.3).

Рис. 4.3: Исходное изображение фигуры

4.2.2 Вращение

Реализуем два вращения на углы 90 и 225 градусов (см рис. 4.4).

```
>> plot(x,y)

>> thetal = 90*pi/180;

>> R1 = [cos(thetal) -sin(thetal); sin(thetal) cos(thetal)];

>> R1 = R1*D;

>> R2 = [cos(theta2) -sin(theta2); sin(theta2) cos(theta2)];

>> R2 = [cos(theta2) -sin(theta2); sin(theta2) cos(theta2)];

>> R2 = R2*D;

>> plot(x,y,'bo-', RD1(1,:), RD1(2,:), 'ro-', RD2(1,:), RD2(2,:), 'go-')

>> axis([-4 4 -4 4], 'equal');

>> grid on;

>> legend('original', 'rotated 90 deg', 'rotated 225 deg');

>> |
```

Рис. 4.4: Вращения на углы 90 и 225 градусов

4.2.3 Отражение

Отразим изображение относительно прямой y = x, т.е. прямой, пересекающей начало координат под углом 45 градусов к оси абсцисс (см рис. 4.5).

Рис. 4.5: Вращение фигуры

4.2.4 Дилатация

Увеличим изображение в два раза (см рис. 4.6).

Рис. 4.6: Дилатация фигуры

5 Выводы

В данной работе я познакомилась с методом построения полиномиальной регресси. Изучила и реализовала метод построения полиномиальной регрессии второго порядка с помощью наименьших квадратов. Сравнила результаты с результатами встроенной функции Octave. Изобразила результат регрессии.

Также я изучила и реализовала в Octave матричные операции для преобразования плоской фигуры. Конкретно, я выполнила операци вращения, отражения и сжатия, а также изобразила результаты применения данных операций.

6 Список литературы

1. GNU Octave documentation. The Octave Project Developers, 2024.