Parametric Model **Hazard Function Survivor Function** Type

Table 17.5. Standard Parametric Models and Their Hazard and Survivor Functions^a

 $\gamma \alpha t^{\alpha-1}$

 $\exp(-\gamma t^{\alpha})$ $\gamma \alpha t^{\alpha-1} S(t)^{-\mu}$ $[1 - \mu \nu t^{\alpha}]^{1/\mu}$

$$\gamma \alpha t^{\alpha - 1} S(t)^{-\mu}
\gamma \exp(\alpha t)
\exp(-(\ln t - \mu)^2 / 2\sigma^2)$$

 $\alpha \gamma^{\alpha} t^{\alpha-1} / \left[(1 + (\gamma t)^{\alpha}) \right]$

^a All the parameters are restricted to be positive, except that $-\infty < \alpha < \infty$ for the Gompertz model.

$$\frac{\varphi \exp(\alpha t)}{\exp(-(\ln t - \mu)^2 / 2\sigma^2)}$$
$$\frac{\exp(-(\ln t - \mu)^2 / 2\sigma^2)}{t\sigma\sqrt{2\pi}[1 - \Phi((\ln t - \mu)/\sigma)]}$$

 $\gamma(\gamma t)^{\alpha-1} \exp[-(\gamma t)]$

 $\Gamma(\alpha)[1-I(\alpha,\nu t)]$

Exponential

Generalized Weibull

Weibull

Gompertz

Log-normal

Log-logistic

Gamma

$$(t-\mu)^2/2\sigma^2$$

$$(t-\mu)^2/2\sigma^2$$

$$\exp(-(\gamma/\alpha)(e^{\alpha t} - 1))$$

$$1 - \Phi((\ln t - \mu)/\sigma)$$

 $1/[1+(\gamma t)^{\alpha}]$

 $1 - I(\alpha, \gamma t)$

 $\exp(-\gamma t)$

PH, AFT

PH. AFT

PH

PH

AFT

AFT

AFT