A Simple Beamer Template for WP Carey School Affiliated Researchers

Harish Guda¹ X² Y²

¹W.P. Carey School of Business, Arizona State University.

> ²School, University.

An Important Field Conference, July 5, 2022

A Brief Summary

00

► A new idea: Idea 1.

A Brief Summary

► A new idea: Idea 1.

► We show surprising result.

Results

Model

Results

Managerial Implication

Implications

Introduction

•0

Introduction

► Customers buy bundles of resources in combination.

Introduction

Introduction

- ► Customers buy bundles of resources in combination.
 - Example: Airline itinerary.

Results

Model

Introductio

Model

Introduction

Result

Managerial Implication

Implications

► Nature chooses $\omega \sim p(\cdot)$.

► Nature chooses $\omega \sim p(\cdot)$.

Model ○● Results 00 Implications 00

Model

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω :

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

 $\blacktriangleright \ \, \text{Key parameter of agent } K \colon \ \, \kappa \sim f_{\varpi}(\cdot).$

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- $\blacktriangleright \ \, \text{Key parameter of agent K: } \, \kappa \sim f_{\varpi}(\cdot).$
- $\blacktriangleright \ \mbox{Key parameter of agent } D \colon \ \delta \sim g_{\varpi}(\cdot).$

Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- Key parameter of agent K: $\kappa \sim f_{\omega}(\cdot)$.
- $\blacktriangleright \ \mbox{Key parameter of agent } D \colon \ \delta \sim g_{\varpi}(\cdot).$

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω:

- Key parameter of agent K: $\kappa \sim f_{\omega}(\cdot)$.
- ► Key parameter of agent D: $\delta \sim g_{\omega}(\cdot)$.

Market Clears at all ω : $\mathbf{K} f_{\omega}(\kappa) = \mathbf{D} g_{\omega}(\delta)$.

•0

Results

Results

Introduction

00

Implications

Results ○● Implications

A Result

A Result

Key Non-Existence Result

Suppose $\gamma>0$. There does not exist an outcome where $\delta>0$ and $\Delta>0$. That is,

$$\gamma>0\implies\delta\cdot\Delta<0.$$

A Result

Key Non-Existence Result

Suppose $\gamma>0.$ There does not exist an outcome where $\delta>0$ and $\Delta>0.$ That is,

$$\gamma>0\implies\delta\cdot\Delta<0.$$

Possible Misinterpretation

This is not to be misunderstood with $\delta < 0 \implies \Delta > 0$.

Results 00

Implications

Agenda

Introduction

Model

Results

Managerial Implications

Thank You.

Paper available at harishguda.me/research.

