Building regression models Mapping multiple QTL

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org
github.com/kbroman
@kwbroman
Course web: kbroman.org/AdvData

LOD curves

Example

Sugiyama et al. Genomics 71:70-77, 2001

- ▶ 250 male mice from the backcross $(A \times B) \times B$
- ▶ Blood pressure after two weeks drinking water with 1% NaCl

Blood pressure

Genotype data

Goals

- ► Identify quantitative trait loci (QTL) (and interactions among QTL)
- ► Interval estimates of QTL location
- ► Estimated QTL effects

LOD curves

Estimated effects

Modeling multiple QTL

- ► Reduce residual variation → increased power
- Separate linked QTL
- ► Identify interactions among QTL (epistasis)

Epistasis in BC

Epistasis in F₂

Estimated effects

Model selection (or variable selection)

- ► Subset selection
- ► L₁-penalized regression (the LASSO)
- ► regression forests
- Bayes
- ▶ ..

Model selection

► Class of models

- Additive models
- + pairwise interactions
- + higher-order interactions
- Regression trees

▶ Model fit

- Maximum likelihood
- Haley-Knott regression
- extended Haley-Knott
- Multiple imputation
- MCMC

► Model comparison

- Estimated prediction error
- AIC, BIC, penalized likelihood
- Bayes

► Model search

- Forward selection
- Backward elimination
- Stepwise selection
- Randomized algorithms

Target

- Selection of a model includes two types of errors:
 - Miss important terms (QTLs or interactions)
 - Include extraneous terms
- ▶ Unlike in hypothesis testing, we can make both errors at the same time.
- Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms.

What is special here?

- ▶ Goal: identify the major players
 - not prediction
- ► A continuum of ordinal-valued covariates (the genetic loci)
- Association among the covariates
 - Loci on different chromosomes are independent
 - Along chromosome, a very simple (and known) correlation structure

Exploratory methods

- Condition on a large-effect QTL
 - Reduce residual variation
 - Conditional LOD score:

$$LOD(q_2 \mid q_1) = log_{10} \left\{ \frac{Pr(data \mid q_1, q_2)}{Pr(data \mid q_1)} \right\}$$

- ➤ Two-dimensional, two-QTL scan to investigate linked loci or interactions.
- ▶ Piece together the putative QTL from the 1d and 2d scans
 - Omit loci that no longer look interesting (drop-one-at-a-time analysis)
 - Study potential interactions among the identified loci
 - Scan for additional loci (perhaps allowing interactions), conditional on these

Controlling for chr 4

Drop-one-QTL table

	df	LOD	%var
1068.3	1	6.30	11.0
4@30.0	1	12.21	20.1
6@61.0	2	7.93	13.6
15@17.5	2	7.14	12.3
6@61.0 : 15@17.5	1	5.68	9.9

Automation

- ► Assistance to non-specialists
- ► Understanding performance
- Many phenotypes

Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

$$y = \mu + \sum \beta_j q_j + \epsilon$$
 which $\beta_j \neq 0$?

$$\mathsf{pLOD}(\gamma) = \mathsf{LOD}(\gamma) - \mathsf{T}\,|\gamma|$$

Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

$$\mathbf{y} = \mu + \sum \beta_{\mathbf{j}} \, \mathbf{q}_{\mathbf{j}} + \epsilon$$

which $\beta_j \neq 0$?

$$\mathsf{pLOD}(\gamma) = \mathsf{LOD}(\gamma) - \mathsf{T}\,|\gamma|$$

0 vs 1 QTL:

$$\begin{aligned} \text{pLOD}(\emptyset) &= 0 \\ \text{pLOD}(\{\lambda\}) &= \text{LOD}(\lambda) - \mathsf{T} \end{aligned}$$

Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

$$\mathbf{y} = \mu + \sum \beta_{\mathbf{j}} \, \mathbf{q}_{\mathbf{j}} + \epsilon$$

which $\beta_j \neq 0$?

$$\mathsf{pLOD}(\gamma) = \mathsf{LOD}(\gamma) - \mathsf{T} \, |\gamma|$$

For the mouse genome:

$$T = 2.69 (BC) \text{ or } 3.52 (F_2)$$

Experience

- ► Controls rate of inclusion of extraneous terms
- ► Forward selection over-selects
- ► Forward selection followed by backward elimination works as well as MCMC
- Need to define performance criteria
- ▶ Need large-scale simulations

Epistasis

$$\mathbf{y} = \mu + \sum eta_{\mathbf{j}} \, \mathbf{q}_{\mathbf{j}} + \sum \gamma_{\mathbf{j}\mathbf{k}} \, \mathbf{q}_{\mathbf{j}} \, \mathbf{q}_{\mathbf{k}} + \epsilon$$

$$\mathsf{pLOD}(\gamma) = \mathsf{LOD}(\gamma) - \mathsf{T_m}\,|\gamma|_\mathsf{m} - \mathsf{T_i}\,|\gamma|_\mathsf{i}$$

 T_m = as chosen previously

$$T_i = ?$$

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

 $T_{i} = 95 th \ percentile \ of \ the \ distribution \ of$ $max \ LOD_{f}(s,t) - max \ LOD_{a}(s,t)$

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

$$T_{i} = 95 th \ percentile \ of \ the \ distribution \ of$$

$$max \ LOD_{f}(s,t) - max \ LOD_{a}(s,t)$$

For the mouse genome:

$$T_m = 2.69 (BC) \text{ or } 3.52 (F_2)$$

$$T_i^H = 2.62$$
 (BC) or 4.28 (F₂)

Imagine there is one QTL and consider a 2d, 2-QTL scan.

$$T_m + T_i$$
 = 95th percentile of the distribution of
$$max \, LOD_f(s,t) - max \, LOD_1(s)$$

Imagine there is one QTL and consider a 2d, 2-QTL scan.

$$T_m + T_i$$
 = 95th percentile of the distribution of
$$max \, LOD_f(s,t) - max \, LOD_1(s)$$

For the mouse genome:

$$T_m = 2.69 (BC) \text{ or } 3.52 (F_2)$$

$$T_i^H = 2.62$$
 (BC) or 4.28 (F₂)

$$T_i^L = 1.19$$
 (BC) or 2.69 (F₂)

Models as graphs

Results

LOD = 23.1

Results

$$T_{m} = 2.69$$
 $T_{i}^{H} = 2.62$ $T_{i}^{L} = 1.19$ $T_{m} + T_{i}^{H} = 5.31$ $T_{m} + T_{i}^{L} = 3.88$ $2T_{m} = 5.38$

Results

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

Profile LOD curves

Drop-one-QTL table

	df	LOD	%var
1068.3	1	6.30	11.0
4@30.0	1	12.21	20.1
6@61.0	2	7.93	13.6
15@17.5	2	7.14	12.3
6@61.0 : 15@17.5	1	5.68	9.9

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_{m} = 2.69$$
 $T_{i}^{H} = 2.62$ $T_{i}^{L} = 1.19$ $T_{m} + T_{i}^{H} = 5.31$ $T_{m} + T_{i}^{L} = 3.88$ $2T_{m} = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$T_m = 2.69$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

Summary

- ► QTL mapping is a model selection problem
- ► The problem is finding the major players, not minimizing prediction error
- ► The criterion for comparing models is most important
- ▶ We're focusing on a penalized likelihood method, with penalties derived from permutation tests with 1d and 2d scans
- ► Manichaikul et al., Genetics 181:1077–1086, 2009 doi:10.1534/genetics.108.094565