Project: Foliage Detection

Iuliia Pliushch, Wolfgang Stammer, Dennis Soukup

Outline

- Introduction
- Context model
- Blender realization
- ► Algorithmic pipeline
 - ▶ Ground detection
 - ► Color transformation
 - ► Edge detection
- Results
- Discussion

Introduction

- Project task: foliage detection on single images
- Procedure:
 - Formulating the context model (CM)
 - ► Implementing the CM in Blender
 - Searching for invariants in CM (low entropy)
 - Designing an algorithmic pipeline
 - Evaluating results

Context model 1/6

1. Task: Foliage detection:

- (a) 2D foliage detection: Detection on the basis of only one picture
- (b) 3D reconstruction: Use sequences of 2D images from the flying camera to reconstruct the 3D surface and detect foliage there. Here, camera trajectory is imporant.
- (c) What: Tree and bush foliage
- (d) Where: Detection of fallen leaves on the ground
- (e) When: Real time or not, offline or online
- (f) Success criterions:
 - i. Detection step (our): Percentage of correctly as belonging to foliage classified pixels. Alternatively one can also take the trade-off between performance and processing time.
 - ii. Overall: The ground is cleared from fallen leaves (foliage).

2. Camera:

- (a) Parameters: pixel resolution, type of lens and focus, saturation, zoom factor, motion blur, lighting type, lens staining (e.g., dependent on weather)
- (b) Flying trajectory

Context model 2/6

3. Scene:

- (a) Objects:
 - i. Ground
 - A. Geometric form (if square, its width and breadth; if circle, its radius)
 - B. Surface type (e.g., gras vs. asphalt) and properties (leaf-like color or not)
 - ii. House (we do not consider variation of this object type)
 - iii. Tree
 - A. Object properties: tree height, diameter of the tree trunk, diameter and amount of branches, amount and type of leaves, color (different interpolations of colors, except for blue) etc.
 - B. Object location distributions:
 - single distribution, e.g. Gaussian
 - multiple distribution: e.g. trees near the boundaries of the property and right near the house
 - iv. Foliage (leaves on the ground)
 - A. Object properties: size, geometric form (e.g., curvature of the leaf boundary and curvature of the leaf plane) and structure (leaf skeleton type, symmetry), shadow-rich areas of high contrast [2], randomness of edges, varying color (yellow-brown-red)
 - B. Texture properties: reflection and rough texture
 - C. Object location distributions: e.g. Gaussian
- (b) Conditions:
 - i. Weather: sunny, rainy, foggy, wind
 - ii. Time of the day: day, night, sunset, sunrise
 - iii. Season (time of the year): light intensity, snow

Context model 3/6

Context model 4/6

Context model 5/6

Context model 6/6

Blender realization 1/2

Objects	Geometry	Texture	Color
Ground	Plane	Different textures	Illumination parameters
Tree	Tree trunk diameterTree heightNumber of branchesNumber and color of fallen leaves	No texture	Trunk: brown Leaves: adjusted to ground foliage
Foliage	Gaussian distribution around trees	5 different predefined textures	High amount of yellow and red

Blender realization 2/2

Algorithmic pipeline 1/2

1. scene geometry

- background: *medium entropy*
- ground plane: low entropy
- 2. scene material: medium high entropy
- 3. leaf geometry
 - size: low entropy
 - color: low medium entropy
 - form: low medium entropy
 - texture: medium entropy
- 4. **leaf material**: *medium entropy*

5. environment

- illumination: high entropy
- weather: *high entropy*

6. camera geometry

- position: low medium entropy
- internal parameters: low entropy

7. camera photometry

- noise model: *low entropy*
- transfer function: low entropy

Algorithmic pipeline 2/2

Ground detection 1/4

Destination image

Source image

Ground detection 2/4

Warped image

Subtracted image

Ground detection 3/4

Otsu's threshold (T = 35)

Reference: Destination image

Ground detection 4/4

Destination image

Otsu's threshold (T = 38)

Color transformation 1/3

Color transformation 2/3

Color transformation 3/3

Edge detection 1/2

Edge detection 2/2

Results 1/2

Results 2/2

Texture	Size of sample set	Accuracy	FPR	FNR	TP / # of foliage pixels	# of times not enough matches for GD
dirt.jpg	50	0.95	0.02	0.52	0.48	7
gras_02.jpg	50	0.96	0.02	0.55	0.45	4
gras_04.jpg	49	0.95	0.02	0.55	0.45	7
rocks.jpg	50	0.95	0.02	0.56	0.44	2
sand.jpg	49	0.95	0.02	0.52	0.48	10

dirt.jpg gras_02.jpg

gras_04.jpg

rocks.jpg

sand.jpg

Discussion

- ► Ground detection (GD):
 - ▶ GD after color transformation
 - Imprecise warping
 - ▶ GD on both images and comparing them
- ► Color transformation:
 - Difficulty of fixing threshold
 - ► Handling of uncertainty not implemented yet
- Edge detection:
 - Entropy higher than expected
 - Contour filling not implemented yet

Thank you for your attention!