Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

AYUDANTÍA 5

27 de Octubre, 2021

PROBLEMAS

 $\boxed{\mathbf{P1}}$ Suponga que X_1, \ldots, X_m es una muestra aleatoria IID, y Y_1, \ldots, Y_n otra muestra IID que a su vez es independiente con la primera, si es que se tiene que

$$X_i \sim \text{Exp}(\lambda) \ \forall i \in \{1, \dots, m\}$$

 $Y_i \sim \text{Exp}(\lambda \theta) \ \forall j \in \{1, \dots, n\}$

Encuentre entonces el estimador máximo verosímil de θ y λ

P2 Suponga que un particular gen tiene como variantes 2 alelos A y a, donde el alelo A tiene una frecuencia θ en la población, o en otras palabras, que una muestra aleatoria de un gen presenta la variación A con probabilidad θ y a con probabilidad $1 - \theta$. Suponga que observa de una muestra aleatoria la siguiente proporción de un genotipo (conjunto de genes) de 2 genes.

Genotipo	AA	Aa	aa
Proporción	k_1	k_2	k_3

Encuentre entonces el estimador de máxima verosimilitud de θ

 $[\mathbf{P3}]$ Suponga que $\mathbf{X_1}, \dots, \mathbf{X_n}$ es una muestra aleatoria desde una población $\mathcal{N}_p(\mu, I_p)$. Si μ está definida sobre la esfera unitaria, demuestre que el estimador de máxima verosimilitud de μ viene dado por

$$\mu = \frac{\bar{X}}{\sqrt{\bar{X}^T \bar{X}}}$$

 $[\mathbf{P4}]$ Suponga que X_1, \ldots, X_n es una muestra aleatoria proveniente de una variable aleatoria $X \sim \operatorname{Exp}(\lambda)$, suponga además que X_i no es observable y en cambio, se observan otras variables aleatorias Y_1, \ldots, Y_n donde

$$Y_i = k\delta$$
 si $k\delta \le X_i < (k+1)\delta$

Donde $\delta > 0$ es conocido. Encuentre entonces el estimador de máxima verosimilitud de λ basado en Y_1, \ldots, Y_n

P5 Sea $\{X_i\}_{i=1}^n$ una muestra aleatoria IID con función de densidad asociada dada por

$$f(x) := \begin{cases} e^{\theta - x} & x \ge \theta \\ 0 & \text{en otro caso} \end{cases}$$

Encuentre entonces el estimador máximo verosímil de θ .

Demostración Notemos que si se procede de manera descuidada, se podría llegar a la siguiente conclusión errónea.

Definiendo la "función de Log-verosimilitud"

$$L(\theta; X) = \prod_{i=1}^{n} e^{\theta - x_i} = \exp\left\{\sum_{i=1}^{n} (\theta - x_i)\right\} = \exp\left\{n\theta - \sum_{i=1}^{n} x_i\right\}$$

$$\implies l(\theta, X) = n\theta - \sum_{i=1}^{n} x_i$$

$$\implies \frac{\mathrm{d}l(\theta, X)}{\mathrm{d}\theta} = n \implies \frac{\mathrm{d}l(\theta, X)}{\mathrm{d}\theta} = 0 \iff n = 0 \quad ?$$

Donde el problema radica en el hecho de que el soporte depende del parámetro de interés y por ende no es indiferente a la maximización mediante Teorema de Fermat (derivar e igualar a 0).

El procedimiento correcto por lo tanto sería definir correctamente la función de verosimilitud mediante una función $\mathbbm{1}$ indicatriz, es decir:

$$L(\theta; X) = \prod_{i=1}^{n} e^{\theta - x_i} \mathbb{1}_{[\theta, \infty)}(x_i)$$

que utilizando el hecho de que

$$\prod_{i=1}^{n} \mathbb{1}_{[\theta,\infty)}(x_i) = \mathbb{1}_{[\theta,\infty)}(x_{(i)})$$

donde $x_{(i)}$ es el menor valor de la muestra, entonces esta se simplifica a

$$L(\theta; X) = \exp\{n\theta\} \exp\left\{-\sum_{i=1}^{n} x_i\right\} \mathbb{1}_{[\theta, \infty)}(x_{(i)})$$

Luego como el término $\exp\{n\theta\}$ es creciente en θ , se sigue que la función alcanza su máximo en el mayor θ posible tal que

$$\mathbb{1}_{[\theta,\infty)}(x_{(i)})$$

sea distinta de 0, o en otras palabras $\theta \leq x_{(i)}$ y por lo tanto el mayor θ posible que cumple con esta restricción es

$$\theta_{MV} = x_{(i)}$$

que es el estimador máximo verosímil buscado