Latency

Konstantin Knauf, Solutions Architect

Defining Latency

- Latency = Processing Time (of Stage) Event Time (= Event-Time Lag)
- Meaning of "Event Time" depends on logic of the application
 - timestamp of the event
 - end time of an event time-window
 - O ...

Latency: Processing Time (Publish) - Event Time

Running Example

- Kafka Consumer
- Keyed Event Time Window
- Exactly-Once Kafka Producer

Latency: Processing Time (Publish) - Event Time

- Latency accumulated before Flink application
 - time between event creation and storage of event in queue
 - o time between storage in queue and consumption by application

Latency: Processing Time (Publish) - Event Time

- Latency accumulated inside Flink application
 - latency due to event time processing
 - latency due to network (incl. network buffers)
 - latency due to processing delays
 - latency due to transactional sinks
 - latency due to checkpointing

Latency due to Event Time Processing

- Applies to anything based on (event time) timers:
 - windows
 - process functions
- Watermark progresses with min(all input watermarks)
 - influenced by any upstream operator
 - allowed out-of-orderness adds to latency
 - watermarking interval matters
- Window / timer fires when watermark exceeds window end / timer

Latency due to Network Delays

- Every transfer over the network (repartition/rebalance) adds latency
- Flink assembles (serialized) records in buffers for network/local transfer
- Buffers are sent once full or after buffer timeout
- Trade-off between throughput & latency
- StreamExecutionEnvironment#setBufferTimeout(int)

Latency due to Processing Delays

- Execution of user & framework code adds latency
- try to mitigate load spikes due to windowing,
 e.g. by pre-aggregating as much as possible
- garbage collections will cause temporary backpressure & small latency spikes

Latency due Transactional Sinks

Lifecycle of a typical Transactional Sink

Phase	Actions
onElement	asynchronously sent to sink system
onSnapshot	 flush all records & wait for acknowledgement create new transaction for next checkpointing epoch store transaction metadata in Flink state
onCheckpointComplete	commit pending transactions & publish data

Transactional sink adds latency up to the checkpoint interval

Latency due to Checkpointing

- Checkpointing consists of three phases
 - Checkpoint Alignment (synchronous)
 - Synchronous Part (synchronous)
 - Asynchronous Part
- Checkpoint Alignment

backpressure on blocked channels

Exercises

Troubleshooting Watermarks & Latency Tuning

Note: If you have not completed the previous exercise, please check out ffsf-19-solution-1 to proceed.

Exercise 2

After the first exercise the job running stable, but there is no output. Investigate the issue and fix it.

Note: If you have not completed the previous exercise, please check out ffsf-19-solution-2 to proceed.

Exercise 3

Reduce the 99th percentile of the event time lag of the WindowedAggregationPerLocation operator. The eventTimeLag metric will show the current value.

konstantin@ververica.com

www.ververica.com

@VervericaData