

SPLASH! AT CORNELL

MUSICAL GROUPS

Chirag Bharadwaj

"Mathematics is a foreign language."

-Chirag Bharadwaj, et. al.

コーネル大学でスプラッシュ

おんがくりろん音楽の理論のグループ

坂本ひかる

BRIDGING THE GAP

- How can we overcome an overwhelming sea of symbols and extract meaning from first principles?
- How can we use these abstract notions to model reallife phenomena and make meaningful connections?
- How can we learn to think beyond our boundaries and create original work?

COLOR SCHEME

- In this presentation...
 - *Green text* refers to things I think you should know already given your past experiences
 - *Blue text* refers to things you may know or be able to reason about given enough time
 - *Red text* refers to things that you most likely do not know yet and will hopefully learn sometime soon!
 - Magenta text mostly refers to definitions/emphasis

ABOUT ME

- From Flushing, NY
- Went to high school in Princeton, NJ
- Senior at Cornell University
 - B.Sc., Computer Science
- Currently applying to graduate schools for CS
- Mathematics and music are my side interests!
- Other than that, just like you (except maybe a little older):
 - 19 years old
 - Interested in self-learning and teaching others

ABOUT ME

- From Flushing, NY
- Went to high school in Princeton, NJ
- Relevant math classes I took in high school:
 - AP Calculus-AB, BC
 - Multivariable calculus, linear algebra
 - Differential equations, complex analysis
 - Real analysis (two semesters)
- I've been playing the piano since April 2005 (~11-12 years)
- What we will cover today is related to basic algebra

ABOUT ME

- From Flushing, NY
- Went to high school in Princeton, NJ
- Things I've taught at Splash before:
 - Spring 2015: Modern Complex Analysis
 - Fall 2015: Introduction to Japanese Linguistics
 - Spring 2016: Special Polynomials in Differential Equations
 - Fall 2016: Mathematical Groups in Music
- Pattern in my teaching?
 - *Spring* = more technical material; *fall* = more accessible material

OVERVIEW

- 120 minutes to get a quick introduction to some interesting applications of modern mathematics
- Focus: Applications of some intermediate-level math to music and music theory
- Pace: reasonably fast
 - Then again, 120 minutes is a *lot* of time...
- Holism vs reductionism: age-old question/answer

BACKGROUND

- I will assume *complete* familiarity with a few things:
 - Algebra at the level of a second high-school class
 - How to read music written on 2 clefs (e.g. for the piano)
 - How to think using your brain (it must be yours!)
- Things I do *not* expect you to have seen before:
 - Group theory and sets
 - Music theory and musical counterpoint
 - Paying attention to one guy for two straight hours

BACKGROUND

- Don't worry if you don't understand everything!
 - The idea is to gain exposure to unfamiliar concepts
- Not everything you see here will be immediately useful in your high school mathematics
 - But it will teach you a little bit about how to think for yourself and teach yourself new things from old
- This is a **challenge**—get ready to be **splashed!**

STRUCTURE

- First third: Mathematical toolbox
 - "The boring stuff"
 - Interesting new things you can do with what you already know from high school!
- Second third: Musical toolbox
 - The other side of boring
 - Some of you probably know this already...
- Last third: Applications of what we just learned
 - Fun ways to apply newfound knowledge

STRUCTURE

- We need to develop the right kind of *framework* to study music in proper theoretical detail
 - I suspect many of you are not used to going into this much depth with any topic... that's okay!
- We will start with basic ideas from math and build up the notion of groups
 - Slowly the connections to other fields will become apparent over time!

PRELUDE

SETS

- What is a *set* in mathematics?
 - Colloquial definitions? "Primary school" definition?
 - How I always thought about it:

heterogeneous collection of certain kinds of objects

SETS

- Let us now be a bit more formal...
 - A set is an unordered collection of objects
 - These objects are called *members* (or *elements*)
 - What does it mean for it to be unordered?

SETS

- Let us now be a bit more formal...
 - A set is an unordered collection of objects
 - These objects are called *members* (or *elements*)
 - What does it mean for it to be unordered?

SET CONSTRAINTS

- What kinds of objects are valid members of sets?
 - Do they all have to be unique?
 - Do they all have to be the same "kind" of object?
- Let's think about it...
 - Real life: No two objects are physically equal
 - Real applications use homogeneous collections
- Leads to two important rules (axioms):
 - (Uniqueness.) All elements are necessarily unique.
 - (Homotypicity.) All elements have the same type.

SET CONSTRAINTS

- What kinds of objects are valid members of sets?
 - Since sets are themselves objects, we can entertain the idea of a set of sets (i.e. *higher-order sets*)
 - A *class* is a set of sets that all share a property
 - Classes are also not ordered!
 - What does this even look like?
 - high school classes
 - set of units of study
 - unit of study = set of topics

SET CONSTRAINTS

The universal set \$\mathcal{U}\$

- Two sets *A* and *B* are *equal* if and only if they contain the exact same elements
 - That is, *A* contains every element of *B* and *B* contains every element of *A*
- This is sometimes known as structural equality
 - The two sets are still not physically equal!
 - Recall: No two objects are equal

- A set *A* is a *subset* of a set *B* if *B* contains all of the elements of *A*
 - Note that this definition is non-restrictive!
 - In particular, it could be the case that *A* and *B* are equal sets
 - If *A* is a subset of *B* but *A* and *B* are not equal, then we say that *A* is a *proper subset* of *B*

- A set *A* is a *subset* of a set *B* if *B* contains all of the elements of *A*
 - Our intuition tells us that this is a weaker condition than that of set equality
- Formally, what does it mean for one condition to be *stronger* or *weaker* than another?
 - We need the notion of a property
 - This, in turn, helps us to know other things...

PROPERTIES

• A *property P* of a set *A* is a subset of *A* wherein all elements of the subset satisfy some condition *c*

PROPERTY STRENGTH

- Consider a set X and two properties of X: P_1 and P_2
- We measure the strength of a property by how tight of a *filter* it is on a set
 - P_1 is strictly weaker than P_2 if P_2 is proper subset of P_1
 - P_1 is no stronger than P_2 if P_2 is a subset of P_1
 - P_1 and P_2 are equipotent if P_1 and P_2 are equal
 - P_1 is no weaker than P_2 if P_1 is a subset of P_2
 - P_1 is strictly stronger than P_2 if P_1 is proper subset of P_2

- Consider a set X and two properties of X: P_1 and P_2
- We measure the strength of a property by how tight of a *filter* it is on a set
 - The *weakest property* of a set X is "the element is in X"
 - The *strongest property* of a set *X* is "the element is not in *X*"

- Back to subset and equality of sets:
 - Recall: Two sets *A* and *B* are equal if and only if *A* is a subset of *B* and *B* is a subset of *A*
 - Thus, equality is at least as tight of a filter as subset
 - This tells us that subset is no stronger than set equality

PRODUCTS

- The *Cartesian product* of two sets is a set containing all possible ordered pairs of elements from both sets
 - The first element in the pair is from the first set
 - The second one in the pair is from the second set

PRODUCTS

- The *Cartesian product* of two sets is a set containing all possible ordered pairs of elements from both sets
 - The first element in the pair is from the first set
 - The second one in the pair is from the second set

PRODUCTS

- The *Cartesian product* of two sets is a set containing all possible ordered pairs of elements from both sets
 - The first element in the pair is from the first set
 - The second one in the pair is from the second set
- These pairs are ordered:
 - The Cartesian product is not commutative
 - If we swap the order of the first and second set, then the ordered pairs change (as we saw!)
 - But both Cartesian products have the same size

RELATIONS

- A (binary) *relation R* from a set *A* to a set *B* is a subset of the Cartesian product of *A* and *B*
 - Elements are either in the relation or not
- If a pair (*a*, *b*) is in the relation *R*, then we say that *a* is related to *b* by *R*

RELATIONS

- A (binary) *relation R* from a set *A* to a set *B* is a subset of the Cartesian product of *A* and *B*
- Consider a set X and a relation R from X to X
 - If for all elements *a* in *X*, it holds that (*a*, *a*) is in *R*, then we say that *R* is *reflexive*
 - If for all *a* and *b* in *X*, it holds that (*a*, *b*) is in *R* and (*b*, *a*) is in *R*, then we say that *R* is *symmetric*
 - If for all a and b in X, it holds that the joint membership of (a, b) and (b, a) in R implies that a = b, then we say that R is antisymmetric
 - If for all elements *a*, *b*, and *c* in *X*, it holds that the joint membership of (*a*, *b*) and (*b*, *c*) in *R* implies the membership of (*a*, *c*) in *R*, then we say that *R* is *transitive*

- Time for shorthand!
- Too cumbersome to write everything out in English... we need a standard way of denoting these concepts
- We introduce the *canonical set notation*
- This notation is standard in the literature

S is a set

$$S = \{1, 2, 3\}$$

S contains 1, 2, and 3

S is a member of S

A is a proper subset of B

A and B are equal

P = c(x)

Property P: element *x* satisfies condition *c*

Property P: shorthand notation

$$S = \left\{ x \middle| P(x) \right\}$$

Set builder: *S* is the set of all *x* that satisfy property *P*

A X B

The *Cartesian product* of *A* and *B*

$$\left\{ (a,b) \middle| a \in A, b \in B \right\}$$
The Cartesian product of A and B

RBD

a is related to b by R

$$(a,b) \in R$$

(a,b) is in the relation R

 $\exists x, P(x)$

there exists an x that satisfies property P

• P_1 is strictly weaker than P_2 :

$$P_1 \prec P_2$$

• P_1 is no stronger than P_2 :

$$P_1 \leq P_2$$

• P_1 and P_2 are equipotent:

$$P_1 = P_2$$

• P_1 is no weaker than P_2 :

$$P_1 \succeq P_2$$

• P_1 is strictly stronger than P_2 : $P_1 > P_2$

$$\forall P; \bot \preceq P \qquad \forall P; P \preceq \top$$
Boundedness of top/bottom

$$\not\exists P; \top \prec P \qquad \not\exists P; P \prec \bot$$

$$\exists P; P \prec \bot$$

Another way to say the same thing

SUPPLEMENTS

- Some additional definitions:
 - A *partial order* on a set *X* is a relation *R* from *X* to *X* that is *reflexive*, *antisymmetric*, and *transitive*
 - A *total order* is a partial order R that is also *total*, i.e. for all $x \in X$ and $y \in X$, either x R y or y R x
 - An *equivalence relation* on a set *X* is a relation *R* from *X* to *X* that is *reflexive*, *symmetric*, and *transitive*
 - Typical symbols:
 - partial order: ≤, total order: ≤+, eq. relation: =

CANTUS FIRMUS

Introduction to the Melody

- A (finitary) *operation* is an operation that takes in some number of inputs and produces an output
 - A binary operation takes in two inputs and produces some output
 - You have certainly seen binary operations before...

- A (finitary) *operation* is an operation that takes in some number of inputs and produces an output
 - For example: + is an operation and so is ·
 - What are the *types* of those operations above?
 - (+) takes in two reals and returns a real
 - (·) takes in two reals and returns a real

- A (finitary) *operation* is an operation that takes in some number of inputs and produces an output
 - For example: + is an operation and so is ·
 - What are the *types* of those operations above?
 - (+) takes in *a pair of* reals and returns a real
 - (·) takes in *a pair of* reals and returns a real
 - Mathematically: op:t means "op has type t"
 - Types: $A \rightarrow B$ means "takes in something of type A and returns something of type B"

$$(+): \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R} \qquad (\cdot): \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$$

- A (finitary) *operation* is an operation that takes in some number of inputs and produces an output
 - For example: + is an operation and so is ·
 - What are the *types* of those operations above?
 - (+) takes in *a pair of* reals and returns a real
 - (·) takes in *a pair of* reals and returns a real
 - Mathematically: *op* : *t* means "*op* has type *t*"
 - Types: $A \rightarrow B$ means "takes in an element of set A and returns an element of set B"

$$(+): \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R} \qquad (\cdot): \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$$

- A (finitary) *operation* is an operation that takes in some number of inputs and produces an output
 - For example: the negation operator (e.g. *unary op.*)
 - What is the *type* of this operator?
 - – takes in a real number and returns its opposite
 - Note: 0 is the fixpoint of the negation operator
 - *In other words,* –0 *is still* 0
 - The negation of a real number is also real

$$(-):\mathfrak{R}\to\mathfrak{R}$$

- A (finitary) *operation* is an operation that takes in some number of inputs and produces an output
 - A binary operation takes in two inputs and produces some output
 - A binary operation *op* is *closed* on a set *X* if it has the type $op : X \times X \to X$
 - That is, it takes in two elements of *X* and the result it returns is also an element of *X* (so the operation is closed... it never produces anything outside of *X*)

- An *algebraic structure* is a set with one or more operations defined over it
 - Each operation must satisfy a list of axioms
- There are many, many algebraic structures
 - We will limit our study to group-like structures
 - Groupoids
 - Semigroups
 - Monoids
 - Groups

- An *algebraic structure* is a set with one or more operations defined over it
 - Each operation must satisfy some properties
- There are many, many algebraic structures
 - We will limit our study to group-like structures
 - i.e. fancy terms for structural building blocks

EARLY GROUPS

- A *groupoid* $M = (S, \bullet)$ is an algebraic structure
 - *Note:* is a binary operator that is closed over set *S*
 - Mathematically speaking, the definition implies that $\forall a,b \in S; a \bullet b \in S$
- In some sense, this is a very weak definition:
 - No properties are asserted about the nature of
 - Formally: $st(\bullet) = \bot$, where st is the relative strength
 - In general: $a \cdot b \neq b \cdot a$ and $(a \cdot b) \cdot c \neq a \cdot (b \cdot c)$
- Sometimes a groupoid is also called a magma

- A *semigroup* SG is a groupoid $M = (S, \bullet)$ whose binary operator \bullet is also associative
 - In this case, it is true that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - Note that we retain all the properties of a groupoid (all zero of them) and then add associativity also
- Unlike with groupoids, there are actually some interesting examples of semigroups that we can take a look at to get a better understanding of the structure

- Some examples of semigroups:
 - The empty semigroup
 - Semigroups with one element
 - Semigroups with two elements
 - (N,+), where N is the set of natural numbers $\{1,2,\ldots\}$
 - I won't show *why*, but in a few minutes you will already understand how to prove this one, too
- Let us now look at each of these in more detail!

- The *empty semigroup* $SG_{\varnothing} = (\varnothing, empty)$
 - The *empty function* has type

```
empty : \varnothing \to \varnothing or empty : \varnothing \times \varnothing \to \varnothing
```

and takes no inputs and produces no outputs.

- Some theorists claim that this is an invalid semigroup
- ...but does **empty** satisfy the properties required of •?
 - Closed: empty produces no output, so all outputs are in Ø
 - Associative: **empty** takes no input, so it behaves the same on all inputs: it does nothing (so it is associative, as any operation gives the same answer: nothing)
- This semigroup is not very interesting...

- The *trivial semigroup* $SG_{id} = (\{e\}, id)$
 - All other one-element semigroups are equivalent (*isomorphic*) to this one since *e* is just some element
 - The *identity function* has type

$$id: \{e\} \times \{e\} \rightarrow \{e\}$$

- and is defined as id(e, e) = e
- Does id satisfy the properties required of •?
- Closed: Always takes in e (a pair of e's) and returns e
- Associative: id(id(e, e), e) = id(e, e) = id(e, id(e, e))

- The trivial semigroup $SG_{id} = (\{e\}, id)$
 - All other one-element semigroups are equivalent (*isomorphic*) to this one since *e* is just some element
 - The *identity function* has type

$$id: \{e\} \times \{e\} \rightarrow \{e\}$$

- and is defined as id(e, e) = e
- Does id satisfy the properties required of •?
- This one is also not particularly interesting, since there is only one possible trivial (order-1) semigroup

- Semigroups of two elements:
 - An interesting case to consider, as there is a lot more variety here that we must account for!
 - It turns out that there are 5 distinct such semigroups:
 - The null semigroup
 - The left-zero and the right-zero semigroups
 - The classical two-element boolean algebra
 - A fancy special-case semigroup (more later)
 - We won't prove it, but these are the ONLY five
 - Other *order-two semigroups* are isomorphic to these

- Absorbing elements of an operation:
 - Consider some absorber abs and a binary operation •
 - Then, for all s it holds that abs s = s abs = abs
 - Nomenclature: Absorbs the other value into itself
- A *left-absorber* has a weaker property: for all s, it holds that abs s = abs
- A *right-absorber* has a similar weaker property: for all s, it holds that s **abs** = **abs**
- Clearly, an element is an absorber if and only if it is both a left-absorber and a right-absorber

- Null semigroup
 - SG whose set contains an absorber
- Left-zero semigroup
 - SG whose set contains a left-absorber
- Right-zero semigroup
 - SG whose set contains a right-absorber
- Absorbers are generalizations of the notion of 0 for sets
- The absorbing element of a semigroup is unique! (Why?)
- We will now take a look at null, left-zero, and right-zero semigroups of order-2

- The *null semigroup* of order-2: $O_2 = (\{0,1\}, zero)$
 - All other null semigroups of order-2 are isomorphic
 - Here, 0 is the absorber and zero has the type

zero :
$$\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

and is defined as follows:

$$zero(_{-},_{-})=0$$

- Here, the underscore (_) notation means "any input"
- So the full definition is technically the following:

$$zero(0,0) = zero(0,1) = zero(1,0) = zero(1,1) = 0$$

- The *null semigroup* of order-2: $O_2 = (\{0,1\}, zero)$
 - Does zero satisfy the properties required of •?
 - Closed: zero always outputs 0, which is in {0,1}
 - Associative:

```
zero(zero(a,b), c)
= zero(0,c)
= 0
= zero(a,0)
= zero(a, zero(b,c))
```

- The *left-zero semigroup* of order-2: $LO_2 = (\{0,1\}, left)$
 - All other such semigroups of order-2 are isomorphic
 - Here, 0 is the left-absorber and left has the type

left:
$$\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

and is defined as follows:

left
$$(0, _) = 0$$
 and **left** $(1, _) = 1$

- Recall the use of the underscore as a *wildcard*
- **left** is quite the eponymous function:
 - Output is the same as the left argument

- The *left-zero semigroup* of order-2: $LO_2 = (\{0,1\}, left)$
 - Does **left** satisfy the properties required of •?
 - *Closed*: **left** always outputs 0 or 1, which is in {0,1}
 - Associative:

```
left(left(a,b), c)
= left(0,c)
= 0
= left(0, left(<math>b,c))
= left(1,c)
= 1
= left(0, left(<math>b,c))
= left(a, left(<math>b,c))
= left(a, left(<math>b,c))

Case 1: a = 0

Case 2: a = 1
```

- The *right-zero semigroup* of order-2: $RO_2 = (\{0,1\}, \text{ right})$
 - All other such semigroups of order-2 are isomorphic
 - Here, 0 is the right-absorber and right has the type

right :
$$\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

and is defined as follows:

$$right(_{-}, 0) = 0 \text{ and } right(_{-}, 1) = 1$$

- Recall the use of the underscore as a *wildcard*
- right is quite the eponymous function:
 - Output is the same as the right argument

- The *right-zero semigroup* of order-2: $RO_2 = (\{0,1\}, \text{ right})$
 - Does **right** satisfy the properties required of •?
 - *Closed*: **right** always outputs 0 or 1, which is in {0,1}
 - Associative:

```
right(right(a,b), c)
= right(a,b), c)
```

- The boolean semigroup: $B_2 = (\{\bot, \top\}, \land)$
 - All other such semigroups of order-2 are isomorphic
 - Here, ∧ has the type

$$\wedge: \{\bot, \top\} \times \{\bot, \top\} \rightarrow \{\bot, \top\}$$

and is defined as follows:

$$\bot \land _ = _ \land \bot = \bot \text{ and } \top \land \top = \top$$

- Recall the use of the underscore as a *wildcard*
- A is sometimes called **and**:
 - Output is T only if *both* inputs are T

- The boolean semigroup: $B_2 = (\{\bot, \top\}, \land)$
 - Does A satisfy the properties required of •?
 - *Closed*: \land always outputs \bot or \top , which is in $\{\bot, \top\}$
 - Associative: A more interesting proof...

$$(a \wedge b) \wedge c$$

$$= (\bot \wedge b) \wedge c$$

$$= \bot \wedge c = \bot$$

$$= \bot \wedge (b \wedge c)$$

$$= a \wedge (b \wedge c)$$

- The *unit semigroup*: $U_2 = (\{-1,1\}, \cdot)$
 - All other such semigroups of order-2 are isomorphic
 - Here, \cdot has the type (subset of \times over \Re)

$$\cdot : \{-1,1\} \times \{-1,1\} \rightarrow \{-1,1\}$$

and behaves the same as the standard integer multiplication operator (over real numbers)

- The *unit semigroup*: $B_2 = (\{-1,1\}, \cdot)$
 - Does · satisfy the properties required of •?
 - *Closed*: · always outputs –1 or 1, which is in {–1,1}
 - Associative: Proof by perfect induction:

$$a = -1$$
, $b = -1$, $c = -1$: $(a \cdot b) \cdot c = 1 \cdot -1 = -1 \cdot 1 = a \cdot (b \cdot c)$
 $a = -1$, $b = -1$, $c = 1$: $(a \cdot b) \cdot c = 1 \cdot 1 = 1 = -1 \cdot -1 = a \cdot (b \cdot c)$
 $a = -1$, $b = 1$, $c = -1$: $(a \cdot b) \cdot c = -1 \cdot -1 = 1 = -1 \cdot -1 = a \cdot (b \cdot c)$
 $a = -1$, $b = 1$, $c = 1$: $(a \cdot b) \cdot c = -1 \cdot 1 = -1 = -1 \cdot 1 = a \cdot (b \cdot c)$

- The *unit semigroup*: $B_2 = (\{-1,1\}, \cdot)$
 - Does · satisfy the properties required of •?
 - *Closed*: · always outputs –1 or 1, which is in {1,1}
 - Associative: Proof by perfect induction:

$$a = 1, b = -1, c = -1$$
: $(a \cdot b) \cdot c = -1 \cdot -1 = 1 = 1 \cdot 1 = a \cdot (b \cdot c)$
 $a = 1, b = -1, c = 1$: $(a \cdot b) \cdot c = -1 \cdot 1 = -1 = 1 \cdot -1 = a \cdot (b \cdot c)$
 $a = 1, b = 1, c = -1$: $(a \cdot b) \cdot c = 1 \cdot -1 = -1 = 1 \cdot -1 = a \cdot (b \cdot c)$
 $a = 1, b = 1, c = 1$: $(a \cdot b) \cdot c = 1 \cdot 1 = 1 = 1 \cdot 1 = a \cdot (b \cdot c)$

MONOIDS

- A *monoid* N is a semigroup $SG = (S, \bullet)$ whose set S also contains an identity element **id**:
 - \exists id \in S such that $\forall s \in S$, id \bullet $s = s \bullet$ id = s
 - Note that we retain all the properties of a semigroup (i.e. associativity) and then add the identity element
- The identity element of a monoid MUST be unique
- There are literally TONS of uses for (free) monoids:
 - Finite-state machines
 - Process calculus/concurrent computing
 - Transition table for a linear system

MONOIDS

- A *monoid* N is a semigroup $SG = (S, \bullet)$ whose set S also contains an identity element **id**:
 - \exists id \in S such that $\forall s \in S$, id \bullet $s = s \bullet$ id = s
 - Note that we retain all the properties of a semigroup (i.e. associativity) and then add the identity element
- Going through examples of monoids would take us WAY too long...
 - Exponential blow-up in properties and interesting applications when compared to just semigroups

MONOIDS

- A *monoid* N is a semigroup $SG = (S, \bullet)$ whose set S also contains an identity element **id**:
 - \exists id \in S such that $\forall s \in S$, id \bullet $s = s \bullet$ id = s
 - Note that we retain all the properties of a semigroup (i.e. associativity) and then add the identity element
- Were some of the semigroups we saw also monoids?
 - Trivial semigroup (id = the only element e)
 - Boolean semigroup (id = T)
 - Unit semigroup (id = 1)

GROUPS

- A *group* G is a monoid $N = (S, \bullet, id)$ whose set S is also complete under invertibility
 - That is, for all elements s in S, there exists an *inverse element* s^{-1} in S such that $s \cdot s^{-1} = s^{-1} \cdot s = id$
 - Note that we retain all the properties of a monoid (i.e. identity and associativity) and then add invertibility on top
- Each element has a unique inverse in *S*
- If is also commutative, then *G* is called an *abelian group*
- There are even more uses for groups than for monoids:
 - Music theory and musical counterpoint
 - Geometries in crystallization of solids in chemistry
 - Quantum mechanics and wave physics

GROUPS

- A *group* G is a monoid $N = (S, \bullet, id)$ whose set S is also complete under invertibility
 - That is, for all elements s in S, there exists an *inverse element* s^{-1} in S such that $s \cdot s^{-1} = s^{-1} \cdot s = id$
 - Note that we retain all the properties of a monoid (i.e. identity and associativity) and then add invertibility on top
- Each element has a unique inverse in *S*
- If is also commutative, then *G* is called an *abelian group*
- Were some of the semigroups we saw also groups?
 - Trivial semigroup $(e = e^{-1})$
 - Unit semigroup (1's inverse is 1 and –1's inverse is –1)

GROUPS

- A *group* G is a monoid $N = (S, \bullet, id)$ whose set S is also complete under invertibility
 - That is, for all elements s in S, there exists an *inverse element* s^{-1} in S such that $s \cdot s^{-1} = s^{-1} \cdot s = id$
 - Note that we retain all the properties of a monoid (i.e. identity and associativity) and then add invertibility on top
- Each element has a unique inverse in S
- If is also commutative, then *G* is called an *abelian group*
- Were some of the semigroups we saw also abelian groups?
 - Trivial semigroup $(e \bullet e = e \bullet e = e)$
 - Unit semigroup (· is commutative by default)

COUNTERPOINT

Presentation of the Main Melody

THEORY

- To begin understanding the applications, we need to prepare ourselves musically
 - Just as we prepared ourselves mathematically
- We will begin with a general discussion of the canonical music theory:
 - Interval spelling
 - Chord spelling
- Then we can delve into the details of cyclical properties and other aspects of musical literature

Basis note of scale

Whole step up from C

E

Whole step up from *F*

A

B

C⁸va

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances:

- Standard interval terminology:
 - Two notes can be various distances apart
 - There are essentially only 13 possible distances
 - All other distances are *isomorphic by translation* or by *modulo* 12
 - What do we call these intervals?
 - Each one has a certain distance apart in *half*-steps
 - Does each have a unique name?
 - Yes!

- Perfect interval: More hollow / consonant sound
- At a distance of 12 half-steps apart:
 - Same note, one octave higher
 - e.g. F and F^{8va}
 - (Perfect) octave
- At a distance of 0 half-steps apart:
 - Same name
 - e.g. G and G
 - (Perfect) unison

- Perfect interval: More hollow / consonant sound
- At a distance of 12 half-steps apart:
 - Same note, one octave higher
 - e.g. F and F^{8va}
 - (Perfect) octave

- Same name
 - e.g. G and G
- (Perfect) unison

- Other perfect intervals:
- At a distance of 5 half-steps apart:
 - Four "notes" apart (usually)
 - e.g. G and C
 - Perfect fourth
- At a distance of 7 half-steps apart:
 - Five "notes" apart (usually)
 - e.g. D and A
 - Perfect fifth

- Other perfect intervals:
- At a distance of 5 half-steps apart:
 - Four "notes" apart (usually)
 - e.g. G and C
 - Perfect fourth
- At a distance of 7 half-steps apart:
 - Five "notes" apart (usually)
 - e.g. D and A
 - Perfect fifth

- Need to be careful! Even in C major, need accidentals:
- At a distance of 5 half-steps apart:
 - Four "notes" apart (usually)
 - e.g. F and B
 - NOT a perfect fourth!
- At a distance of 7 half-steps apart:
 - Five "notes" apart (usually)
 - e.g. B and F
 - NOT a perfect fifth!

- Need to be careful! Even in C major, need accidentals:
- At a distance of 5 half-steps apart:
 - Four "notes" apart (usually)
 - e.g. F and B
 - NOT a perfect fourth!

- Five "notes" apart (usually)
 - e.g. B and F
- NOT a perfect fifth!

- Need to be careful! Even in C major, need accidentals:
- At a distance of 5 half-steps apart:
 - Four "notes" apart (usually)
 - e.g. F and B^{\flat}
 - IS a perfect fourth!
- At a distance of 7 half-steps apart:
 - Five "notes" apart (usually)
 - e.g. B and $F^{\#}$
 - IS a perfect fifth!

- Imperfect interval: Dissonant or somewhat-consonant
- At a distance of 4 half-steps apart:
 - Three notes apart
 - e.g. G and B
 - Major third
- At a distance of 3 half-steps apart:
 - Almost three notes apart
 - e.g. A and C
 - Minor third

- Imperfect interval: Dissonant or somewhat-consonant
- At a distance of 4 half-steps apart:
 - Three notes apart
 - e.g. G and B
 - Major third
- At a distance of 3 half-steps apart:
 - Almost three notes apart
 - e.g. A and C
 - Minor third

- Imperfect interval: Dissonant or somewhat-consonant
- At a distance of 2 half-steps apart:
 - Two notes apart
 - e.g. A and B
 - Major second
- At a distance of 1 half-step apart:
 - Almost two notes apart
 - e.g. E and F
 - Minor second

- Imperfect interval: Dissonant or somewhat-consonant
- At a distance of 2 half-steps apart:
 - Two notes apart
 - e.g. A and B
 - Major second
- At a distance of 1 half-step apart:
 - Almost two notes apart
 - e.g. E and F
 - Minor second

- At a distance of 11 half-steps apart:
 - Six notes apart
 - Major seventh
- At a distance of 10 half-steps apart:
 - Almost six notes apart
 - Minor seventh
- At a distance of 9 half-steps apart:
 - Six notes apart
 - Major sixth
- At a distance of 8 half-steps apart:
 - Almost six notes apart
 - Minor sixth

PRINCIPLE OF INVERSION

PRINCIPLE OF INVERSION

PRINCIPLE OF INVERSION

- The *principle of inversion* tells us a few things:
 - Intervals are read from the bottom-up
 - We only need to know the names of some of the intervals, as the rest follow logically:

SIX HALF-STEPS?

- What about the interval of six half-steps?
 - We hinted at this earlier...
 - This is a raised perfect fourth (by a half-step)
 - ...or a lowered perfect fifth (by a half-step)
 - Thus, this is often called one of the following:
 - Augmented fourth
 - Diminished fifth
 - to augment = to lengthen, to diminish = to shorten
 - Another common name for this is a *tritone*
 - Three whole steps = three *tones* (cf. *semitones*)

SIX HALF-STEPS?

- The principle of inversion tells us intuitively that the inverse of a tritone is... a tritone!
- Mathematically:

```
n = 9 - n if 2n = 9, i.e. n = 4.5
```

where *n* measures whole steps (i.e. tones)

- So n = 4.5 is the fixpoint of the principle of inversion
- But 4.5 is in between 4 and 5
 - So the tone in between a 4th and a 5th
 - i.e. augmented 4th or diminished 5th
- Tritone also has a diminished sound, so often called d5

CONNOTATIONS

- Minor chords: Sad, empty, hanging sounds
- Major chords: Full, harmonious, definite sounds
- Are there other types of sounds?
 - Those that don't conform strictly to what we've mentioned so far
 - Require at least another note so we can form a three-note basis
 - Triangle of sound changes in these other types
 - Forms *triads* / chords for more interesting stuff

- Let's stack together the intervals we've seen earlier:
 - Major 3rd on top of a Minor 3rd
 - 4 + 3 = 7 half-steps from base to top
 - Minor 3rd on top of a Major 3rd
 - 3 + 4 = 7 half-steps from base to top
 - Minor 3rd on top of a Minor 3rd
 - 3 + 3 = 6 half-steps from base to top
 - Major 3rd on top of a Major 3rd
 - 4 + 4 = 8 half-steps from base to top

- Let's stack together the intervals we've seen earlier:
 - Major 3rd on top of a Minor 3rd
 - Perfect fifth with a major basis
 - Minor 3rd on top of a Major 3rd
 - Perfect fifth with a minor basis
 - Minor 3rd on top of a Minor 3rd
 - Diminished fifth with a minor basis
 - Major 3rd on top of a Major 3rd
 - Minor sixth with a major basis

- Let's stack together the intervals we've seen earlier:
 - Major 3rd on top of a Minor 3rd
 - Perfect fifth with a major basis
 - Minor 3rd on top of a Major 3rd
 - Perfect fifth with a minor basis
 - Minor 3rd on top of a Minor 3rd
 - Diminished fifth with a minor basis
 - Major 3rd on top of a Major 3rd
 - Augmented fifth with a major basis

- Let's stack together the intervals we've seen earlier:
 - Major 3rd on top of a Minor 3rd
 - Major triad
 - Minor 3rd on top of a Major 3rd
 - Minor triad
 - Minor 3rd on top of a Minor 3rd
 - Diminished triad
 - Major 3rd on top of a Major 3rd
 - Augmented triad

- Triads are known as *tertian chords*, as they use thirds to create sound instead of any other interval (n.b. below)
 - 1st inversion: Move basis note above the top note from root position of chord
 - 2nd inversion: Move basis note above the top note from 1st inversion of chord
 - Implication: tertian = 3rds or 6ths
- Non-tertian chords use 2nds/4ths as well
 - Not as widely used, but still exist (obviously)

SEVENTH CHORDS

- (Tertian) *seventh chords* can be created by sticking major or minor thirds on top of (tertian) triads
- Since there are four possible tertian triads, there are $4 \times 2 = 8$ possible tertian seventh chords (since we could put either a major or a minor third above each)
- Let's take a closer look at all of the possible sevenths
 - Preview: There will actually only be 7 possible tertian seventh chords, very interestingly

SEVENTH CHORDS

- major triad + major 3rd = *major seventh*
- major triad + minor 3rd = *dominant seventh*
- minor triad + major 3rd = minor-major seventh
- minor triad + minor 3rd = minor seventh
- diminished triad + major 3rd = half-diminished seventh
- diminished triad + minor 3rd = diminished seventh
- augmented triad + major 3rd = doubly-augmented seventh*
- augmented triad + minor 3rd = augmented seventh
- *the 7th above the root here is an octave, so it is effectively just an augmented triad... so it is not widely called this

SEVENTH CHORDS

FUGUE

CYCLICAL STRUCTURES

• Let us now consider the following set:

ch = {
$$C$$
, $C^{\#}$, D , $D^{\#}$, E , F , $F^{\#}$, G , $G^{\#}$, A , B^{\flat} , B }

- As we know from our musical lessons, these are the twelve notes in any scale
 - Notice that this is a *set*, so we don't include the top *C* that completes the chromatic scale

CYCLICAL STRUCTURES

• Let us now consider the following set:

ch = {
$$C$$
, $C^{\#}$, D , $D^{\#}$, E , F , $F^{\#}$, G , $G^{\#}$, A , B^{\flat} , B }

- As we know from our musical lessons, these are the twelve notes in any scale
 - Notice that this is a *set*, so we don't include the top *C* that completes the chromatic scale
- Another way to write this set might be:
 ch = {P1, m2, M2, m3, M3, P4, d5, P5, m6, M6, m7, M7}
 where P = perfect, m = minor, M = major, d = diminished

CYCLICAL STRUCTURES

- Start on middle-C and ascend chromatically
 - Eventually, the notes generated will be part of the same sequence as one that occurred before
 - The notes on a piano are thus cyclical
 - They are a *modular system*, much like the decimal one
- Can we define an operation on this chromatic set so we can make it a group?
 - Does such an operation exist? If so, is it unique?
 - If yes to both, can we prove that the set and operation together actually *do* form a group?

MUSICAL GROUPS

- Let's consider the following binary operation on **ch**: $a \cdot b :=$ the note that is an interval of b above a
- For example, let us suppose that a = P4 and b = m3
 - Then, a b = P4 m3 = m6
- Another way to think of this is via an *isomorphism* to the addition operation in Z_{12} (i.e. the integers from 0 to 11 only):

```
ch = {P1, m2, M2, m3, M3, P4, d5, P5, m6, M6, m7, M7} ~ {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 }
```

- Then, our example above is quite nice, as is simply + modulo 12: P4 m3 ~ $5 +_{12} 3 = (5 + 3) \mod 12 = 8 \mod 12 \sim m6$
- Why does the isomorphism work? *Hint: half-step counts in* **ch**

MUSICAL GROUPS

- So what would the identity element be?
 - Addition, so a good idea seems to be 0 ~ P1 for id
- Is (**ch**, •, P1) a valid group definition? Alternatively, is $(Z_{12}, +_{12}, 0)$ a valid group definition?
 - Yes!
 - Let's prove it...

MUSICAL GROUPS

- Have you learned? Help fill in the formal details:
- Closure:
 - Intuition: No matter what we do, we end up somewhere on the keyboard, which is still in **ch**
- Associativity:
 - Intuition: We can stack in any order to get to an interval
- Identity:
 - Intuition: Every note on the keyboard (ch) is its own P1
- Inverse:
 - Intuition: Maybe we can extend the principle of inv. ...

MUSICAL GROUPS

- It turns out that is also commutative over **ch**, so **ch** is actually an abelian group
 - Intuition: Both paths will still lead to the same sum
- Well, we have a musical group!
 - What now?
 - Some interesting properties:
 - $P1 = P1^{-1}$ and $d5 = d5^{-1}$
 - Cyclical property
 - Permutation property

- A *cyclical group* is a group $G = (S, \bullet, id)$ that contains a *generating element g* for which if is applied to it in succession, the resulting sequence enumerates all of the elements of the group at least once before cycling
 - What does this mean?
 - In other words, $((g \bullet g) \bullet g) \cdots) \bullet g = s_g$, where for all e in S, e is enumerated by the sequence s_g
- If $G = (S, \bullet, id)$ is cyclical with generating element g, then we write $G = \langle g \rangle$ over •
- Applications: g is an enumeration machine of G under •

- For example, $G = (Z_3, +_3, 0)$, where $Z_3 = \{0, 1, 2\}$
 - There are actually two generating elements of *G*:
 - $G = \langle 1 \rangle$ over $+_3$: $1 +_3 1 = 2 +_3 1 = 0 +_3 1 = 1 \dots$
 - $G = \langle 2 \rangle$ over $+_3$: $2 +_3 2 = 1 +_3 2 = 0 +_3 2 = 2 \dots$
 - Notice that $G \neq \langle 0 \rangle$ over $+_3$: $0 +_3 0 = 0 +_3 0 = 0 +_3 0 = 0 \dots$
- Intuition: In general, $g_G \neq id$ unless $S = \{id\}$ (Why?)

- As it turns out, **ch** is cyclic with these generators:
 - **ch** = $\langle 1 \rangle$ over •: $s_1 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, ...$
 - **ch** = $\langle 5 \rangle$ over •: $s_5 = 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0, 5, ...$
 - **ch** = $\langle 7 \rangle$ over •: $s_7 = 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7 ...$
 - **ch** = $\langle 11 \rangle$ over •: $s_{11} = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11 ...$
- Interestingly, they all end on 0 (our id) before cycling

Removing the isomorphism abstraction, we see that

$$\textbf{ch} = \langle m2 \rangle = \langle P4 \rangle = \langle P5 \rangle = \langle M7 \rangle$$

- Interesting properties:
 - The m2 generates an increasing chromatic scale
 - The M7 generates a decreasing chromatic scale
 - The P5 generates the circle of fifths
 - $C \rightarrow G \rightarrow D \rightarrow A \rightarrow E \rightarrow B \rightarrow F^{\#} \rightarrow C^{\#} \rightarrow G^{\#} \rightarrow D^{\#} \rightarrow A^{\#} \rightarrow F \rightarrow C$
 - The P4 generates the circle of fourths
 - $\bullet \quad C \to F \to B^{\flat} \to E^{\flat} \to A^{\flat} \to D^{\flat} \to G^{\flat} \to B \to E \to A \to D \to G \to C$
- These generators directly hint at the invertibility of ch

- The circles also both generate each other!
 - Reveals a deep connection in the underlying group

Pachelbel's Canon in D is a popular work that employs what is essentially a circle of fifths to drive its foundation.

Bass clef: $D \rightarrow A$ $B \rightarrow F^{\#}$ $G \rightarrow D$

Treble clef: $F \rightarrow C$ $D \rightarrow A$ $B \rightarrow F^{\#}$

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

Cauchy notation:

$$\mathbf{id} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \qquad \alpha = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix} \qquad \alpha^2 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\alpha^2 = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

- A permutation is a rearrangement of elements in a group
- Clearly, those were rotation permutations
- What about *reflection* permutations?
 - One number stays the same, the other swap places
 - That number is the *reflection axis*

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

Cauchy notation:

$$\beta = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \qquad \beta \alpha = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix} \qquad \beta \alpha^2 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$$

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z_3 again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

- A permutation is a rearrangement of elements in a group
- For example, let's look at Z₃ again:

- A permutation is a rearrangement of elements in a group
- Those were a combination of reflection and rotation
 - i.e. a permutation
 - No translations in our model (doesn't make sense)
 - Thus, permutation groups are a subset of *symmetry groups* (which offer translation + reflection + rotation)

• Using m2 as a generator, we can create a cyclic group that is representable as a regular dodecagon:

• We can then overlay regular triangles to obtain chords in identity form:

• Permutations of this triangle via the process described earlier lead to very interesting results:

id = augmented triad
 in root position

 $\alpha = 1$ st inversion

 α^2 = 2nd inversion

• If we allow *dilations* in the permutation group, the triangle can cover all of the chords!

id = augmented triad
 in root position

 $\alpha = 1$ st inversion

 $\alpha^2 = 2$ nd inversion

CLOSING REMARKS

CLOSING REMARKS

- These notes are merely an *introduction* to the subject
 - We could easily talk more... but we only had 2 hours!
- The material discussed here could easily be the content of a masters' thesis or even of a small academic paper
 - More mathematical flavor
 - More in-depth analysis
 - Greater variety of applications
 - Structural analysis based on mathematical precepts

CLOSING REMARKS

- If you have any further questions, feel free to reach out!
- My email address is cb625@cornell.edu
 - May take some time to reply though
 - We are all busy students! (Especially potential grad students...)
 - Check out my website: chiragbharadwaj.com
- I wish you the best of luck with future studies!
 - *Did this class interest you?* Consider a math major or music major at university! Talk to people and join a research group.
 - Take a related class at high school through local colleges
 - Think ahead, plan for a little while, even if you're still young

