

b) Let $\alpha \neq \beta$ be the meights, then $\alpha = 1$ $\beta = 1$ $\beta = 1$ $\beta = 1$	
$ \begin{array}{c} =) \ \alpha + 3\beta = 1 - \alpha + \beta = 2 \\ = 3/4 \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = 2(\alpha + \beta) = 2(-5/4 + 3/4) = -5/4 + 3/2 = -1 \\ S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = 3/4 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -5/4, \ \beta = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S_0, \ K = -1 \ \alpha = -1 \\ \end{array} $ $ \begin{array}{c} S$	
93 a) A matrix is called an elementary matrix if it can be reduced to an identity matrix busing one elementary now	
i) yes, invis (0 + 0 3) ii) yes, in (0 0 0) ii) yes, in (0 0 0) ii) yes in (0 0 0) (0 0 0	(1000) (1000)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pour operations are papered. Fine of them are of the form. R = R, - BRy which has no effection [Al. Now the three
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ophations shown in Red de establish of the Chani between IA(-1/II) $ A = (-1) + A = A $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=-61II =-6

alue of the distribution function In dr · 0695\$27 9(8) = -18) be the distribution function of 2 at 3 then (3) - P(2 = 3) = So F17)= 123-n (x+23-1) --27 +4e $\frac{1-e^{2}}{2} = 28e^{2} = 1 + (1+23)e^{2}$ $\frac{1-e^{2}}{2} = 26e^{2} = 26e^{2} = 436e^{2}$ $\frac{1}{2} = 1 + (1+23)e^{2} = 26e^{2} = 436e^{2}$ $\frac{1}{2} = 1 + (1+23)e^{2} = 26e^{2} = 436e^{2}$ $-\int_{0}^{\infty} (-2)e^{-2} d\xi = 0 - 0 - \int_{0}^{-2} e^{-2} d\xi$ =0-0-0+)=1,

