Exercise sheet for Algebraic Topology II Week 8

Lennart Meier

May 9, 2019

Exercise 1. Compute $\mathbb{Z}/k \otimes \mathbb{Z}/m$ and $\text{Tor}(\mathbb{Z}/k,\mathbb{Z}/m)$ for all natural numbers k, m.

Exercise 2 (Homework). In Theorem 11.6 we proved that $\pi_n X \cong H_n X$ for any (n-1)-connected space and $n \geq 2$. On the other hand, we claimed in the previous statement Theorem 8.7 that a *specific* homomorphism (called the *Hurewicz map* h_X) between these groups is an isomorphism. We will rectify the situation by the technique of *universal example*.

- 1. Show without recourse to a Hurewicz theorem that $h_{S^n} : \pi_n S^n \to H_n S^n$ is a surjection.
- 2. Convince yourself that the proof of Theorem 11.6 provides a *natural* isomorphism $g_X \colon \pi_n X \cong H_n X$ on the category of (n-1)-connected pointed topological spaces. (You are allowed to use without proof that the Serre spectral sequence is natural in a suitable sense.)
- 3. Show that h_{S^n} and g_{S^n} agree up to sign and deduce the analogous statement for h_X and g_X for every (n-1)-connected space X. Deduce the statement of Theorem 8.7 from Theorem 11.6.

Exercise 3 (Homework). Let $n \ge 2$ and X be the space obtain from S^n by attaching an (n+1)-cell along a degree-k map $S^n \to S^n$ for a nonzero integer k. Compute $\pi_*X \otimes \mathbb{Q}$.