Esercizi tutorato

Dinamica

5 Aprile 2023

1 Tensione di una fune

Due masse m_1 e m_2 sono disposte come in figura (figura nelle soluzioni). Il coefficiente di attrito dinamico tra il piano e m_2 vale $\mu_D=0.2$ e quello di attrito statico $\mu_S=0.3$.

Supponiamo che le masse si muovano:

- calcolare l'accelerazione a del sistema delle due masse e la tensione T del filo:
- discutere il comportamento dell'accelerazione e della tensione nel caso $m_1 \gg m_2$;
- calcolare i valori di a e T nel caso $m_1 = 1kg$, $m_2 = 3kg$.
- Se la tensione massima che il filo puo' sopportare e' $T_{max} = 20N$, quanto vale la massa m_{max} che si puo' collegare alla carrucola senza che il filo si spezzi? $(m_2 = 3kg)$

Le due masse si muovono in ogni caso? Se si', spiegare perche'. Se no, determinare la condizione che deve essere soddisfatta affinche' le due masse non si muovano.

2 Tensione di una fune e piano inclinato

Considerare la situazione rappresentata in figura (vedi soluzioni), in cui la fune e' inestensibile e di massa trascurabile, cosi' come la carrucola.

Il piano presenta un'inclinazione $\theta=30^\circ$, la massa $m_1=10kg$ e la massa $m_2=6kg$. Determinare l'accelerazione del sistema se il coefficiente di attrito dinamico tra m_1 e il piano e' $\mu_D=0.1$.

3 Piano inclinato e forza elastica

Considerare la situazione in figura (vedi soluzioni). Il corpo di massa M=10kg e' in equilibrio sul piano inclinato (angolo $\theta=30^\circ$) in presenza di un

coefficiente di attrito statico $\mu_s=0.3$. Si misura un allungamento della molla di costante k=300N/m rispetto alla sua posizione di equilibrio pari a $\Delta x=10cm$. Determinare la forza di attrito statico \vec{F}_s .

Cosa succede se il piano viene successivamente inclinato di un nuovo angolo $\beta=45^{\circ}$? Determinare l'accelerazione iniziale della massa M se il coefficiente di attrito dinamico e' $\mu_d=0.2$.

4 Tensione di una fune, forza elastica e vincolo

Due punti materiali di massa $m_1=2kg$ e $m_2=5kg$ sono collegati tramite un filo inestensibile di massa trascurabile e una carrucola di massa trascurabile. Ciascuno dei due corpi e' appoggiato (vedi figura nelle soluzioni) su un piano liscio inclinato con l'orizzontale di $\theta_1=45^\circ$ e $\theta_2=30^\circ$ rispettivamente. Inoltre il corpo di massa m_1 e' collegato a un'estremita' di una molla ideale di massa trascurabile e costante elastica k=300N/m allungata di $\Delta l=30cm$, mentre un fermo che blocca m_2 tiene in quiete il sistema. Calcolare:

- il modulo della reazione vincolare agente su m_2 ;
- l'accelerazione dei corpi immediatamente dopo che il fermo viene rimosso.