Table of contents

Welcome to the Complex Disordered Matter Course!

Overview

This course introduces your to the theoretical, computational and experimental aspects of the physics of complex disordered matter.

Complex disordered matter is the study of wide range of systems like **polymers**, **colloids**, **glasses**, **gels**, and **emulsions**, which lack long-range order but exhibit intricate behaviour. Colloids, suspensions of microscopic particles in a fluid, are useful for studying disordered structures due to their observable dynamics. Similarly, polymer systems can form amorphous solids or glasses when densely packed or cooled, showing solid-like rigidity despite their disordered structure. These materials often undergo phase transitions, such as demixing and crystallisation, and near these transitions, they can display critical phenomena with extensive fluctuations and correlations.

These various are examples of **soft matter**. systems In soft matter systems, the interplay between disorder, softness, and phase behavior leads to rich physical phenomena, particularly near critical points where even small changes in external conditions can trigger large-scale reorganizations and universal behaviour. Glasses, for instance, exhibit slow relaxation and memory effects, while colloidal systems may crystallize, phase separate, or become jammed depending on particle interactions and concentration. Understanding such behaviors involves studying how microscopic interactions and thermal fluctuations influence macroscopic properties, especially in non-equilibrium conditions. Through techniques like scattering, microscopy, rheology, and simulation, one can explore how disordered soft materials respond to stress, age, or undergo transitions—insights that are vital for applications in materials design, biotechnology, and beyond.

This course is organized into three interconnected parts, each offering a distinct perspective on the study of complex disordered matter.

 Part 1: Unifying concepts (Nigel Wilding) introduces the theoretical framework for rationalising complex disordered matter which is grounded in statistical mechanics and thermodynamics. We emphasize the theory of phase transitions, thermal fluctuations, critical phenomena, and stochastic dynamics—providing the essential theoretical tools needed to describe and predict the behavior of soft and disordered systems.

- Part 2: Complex disordered matter (Francesco Turci) explores the phenomenology of key examples of complex disordered soft matter systems, including colloids, polymers, liquid crystals, glasses, gels, and active matter. These systems will be analyzed using the theoretical concepts introduced in Part 1, highlighting how disorder, interactions, and fluctuations shape their macroscopic behavior.
- Part 3: Experimental techniques (Adrian Barnes) focuses on the methods of microscopy, and scattering via x-rays, neutrons and light that are used to study complex disordered matter, offering insight into how their properties are measured and understood in real-world contexts.

In addition to theory and experiment, computer simulation plays a central role in soft matter research. This course includes a substantial coursework component consisting of two computational projects. These exercises will allow you to apply state-of-the-art simulation techniques to investigate the complex behavior of disordered systems, bridging theory and observation through hands-on exploration.

Delivery and format

- Detailed e-notes (accessible via Blackboard) can be viewed on a variety of devices. Pdf is also available.
- We will give 'traditional' lectures (Tuesdays, Wednesdays, Fridays) in which we use slides to summarise and explain the lecture content. Questions are welcome (within reason...)
- Try to read ahead in the notes, then come to lectures, listen to the explanations and then reread the notes.
- Rewriting the notes or slides to express your own thoughts and understanding, or annotating a pdf copy can help wire the material into your own way of thinking.
- There are problem classes (Thursdays) where you can try problem sheets and seek help. Lecturers may go over some problems with the class.
- The navigation bar on the left will allow you to access the lecture notes and problem sets.

Intended learning outcomes

The course will

- Introduce you to the qualitative features of a range of complex and disordered systems and the experimental techniques used to study them.
- Introduce you to a range of model systems and theoretical techniques used to elucidate the physics of complex disordered matter.
- Provide you with elementary computational tools to model complex disordered systems numerically and predict their properties.
- Allow you to apply your physics background to understand a variety of systems of interdisciplinary relevance.
- · Connect with the most recent advances in the research on complex disordered matter.

Contact details

The course will be taught by

- Prof Nigel B. Wilding (unit director): nigel.wilding@bristol.ac.uk
- Dr Francesco Turci: F.Turci@bristol.ac.uk
- Dr Adrian Barnes: a.c.barnes@bristol.ac.uk

Questions and comments

If you have any questions about the course, please don't hesitate to contact the relevant lecturer, either by email (see above) or in a problems class.

Finally, this is a new course for 2025/26. If you find any errors or mistakes or something which isn't clear, please let us know by email, or fill in this anonymous form:

Submit an error/mistake/query

Unifying concepts: Problems

Although you should try all of these questions, some of them are deliberately quite challenging. If you don't get very far with some, don't worry. We'll be going over them in problems classes, so you can just regard them as worked examples.

1. Existence of a phase transition in d=2.

In lectures it was argued that no long ranged order occurs at finite-temperatures in a one dimensional system because of the presence of domain walls. Were macroscopic domain walls to exist in two dimensions at finite temperature, they would similarly destroy long ranged order and prevent a phase transition. By calculating the free energy of a 2D domain wall for an Ising lattice, show that domain walls do not in fact exist for sufficiently low T.

(Hint: Model the domain wall as a non-reversing N-step random walk on the lattice and find an expression for its energy and -from the number of random walk configurations- its entropy.)

2. Correlation Length

For a 1D Ising model, show that the correlation between the spins at sites i and j, is

$$\langle s_i s_j \rangle = \sum_m p_m (-1)^m$$

where m is the number of domain walls between i and j and p_m is the probability of finding m domain walls between them.

Hence show that when $R_{ij}=|i-j|a$ is large (with a the lattice spacing) and the temperature is small, that

$$\langle s_i s_j \rangle = \exp(-R_{ij}/\xi)$$

with $\xi=a/2p$ and p the probability of finding a domain wall on a bond.

Hint: In the second part note that p_m is given by a binomial distribution because there is a probability p of each bond containing a domain wall and (1-p) that it doesn't. What special type of distribution does p_m tend to when p is small (as occurs at low T)?