

planetmath.org

Math for the people, by the people.

σ -algebra generated by a random variable

 ${\bf Canonical\ name} \quad {\bf sigmaalgebra Generated By AR and om Variable}$

Date of creation 2013-03-22 15:48:19 Last modified on 2013-03-22 15:48:19 Owner PrimeFan (13766) Last modified by PrimeFan (13766)

Numerical id 19

Author PrimeFan (13766)

Entry type Definition
Classification msc 60A99
Classification msc 60A10
Related topic SigmaAlgebra

Given the probability space (Ω, \mathcal{F}, P) , any random variable $X \colon \Omega \to \mathbb{R}$ is \mathcal{F} -http://planetmath.org/MeasurableFunctionsmeasurable, in the following sense:

$$X^{-1}(U) = \{ \omega \in \Omega \colon X(\omega) \in U \} \in \mathcal{F}$$

for any open sets $U \subseteq \mathbb{R}$, or equivalently any Borel sets $U \subset \mathbb{R}$.

We now define \mathcal{F}_X as follows:

$$\mathcal{F}_X = X^{-1}(\mathcal{B}) := \{ X^{-1}(B) : B \in \mathcal{B} \},$$

where \mathcal{B} is the Borel σ -algebra on \mathbb{R} . \mathcal{F}_X is sometimes denoted as $\sigma(X)$. \mathcal{F}_X is a sigma algebra since it satisfies the following:

- $\varnothing = X^{-1}(\varnothing) \in \mathcal{F}_X$,
- $\Omega X^{-1}(B) = X^{-1}(\mathbb{R} B) \in \mathcal{F}_X$, and
- $\bigcup X^{-1}(B_i) = X^{-1}(\bigcup B_i) \in \mathcal{F}_X.$

It is also clear that \mathcal{F}_X is the smallest σ -algebra containing all sets of the form $X^{-1}(B)$, $B \in \mathcal{B}$. \mathcal{F}_X as defined above is called the σ -algebra X.