Trabajo de laboratorio ${\bf N}^{\rm o}1$

Federico Verstraeten Ezequiel Ignacio Pepe

20 de Marzo de 2017

Índice

A) Amplificador de tensión o multiplicador por una constante 1. Obtener el valor de la tensión pico de salida del circuito y su forma de variación temporal para una entrada senoidal de 1 kHz y V_{i1} =
$0.2 \mathrm{V}$, con los siguientes valores de $R_1,R_2: \mathrm{y}R_L = 1\mathrm{k}\Omega$
a) $R_1 = 1 \mathrm{k}\Omega \mathrm{y} R_2 = 10 \mathrm{k}\Omega \ldots 2$
b) $R_1 = 1 \mathrm{M}\Omega \mathrm{y} R_2 = 10 \mathrm{M}\Omega \ldots 4$
c) $R_1 = 1 \text{ k}\Omega \text{ y } R_2 = 1 \text{ M}\Omega \dots 6$
2. Respuesta en frecuencia
Simulación:
Medición
B) Circuito Integrador 7 Simulación
Medición
F) Circuitos Rectificadores 7
Objetivo: Presentar a través de mediciones en laboratorio, la utilización de circuitos integrados analógicos y componentes asociados para la realización de distintas funciones. Observar las limitaciones que presenta el uso de los modelos representativos del funcionamiento de dichos circuitos integrados para predecir
su comportamiento, como así también la influencia de las características del instrumental utilizado en la medición, en los valores obtenidos.

A) Amplificador de tensión o multiplicador por una constante

Se comienza el trabajo con la medición de un amplificador en configuración de multiplicador por una constante. Según el caso ideal se espera que $v_o = \frac{-R_2}{R_1} v_i$.

1. Obtener el valor de la tensión pico de salida del circuito y su forma de variación temporal para una entrada senoidal de 1 kHz y $V_{i1}=0.2\,\mathrm{V}$, con los siguientes valores de $R_1,\ R_2$: y $R_L=1\,\mathrm{k}\Omega$.

a)
$$R_1 = 1 \,\mathrm{k}\Omega$$
 y $R_2 = 10 \,\mathrm{k}\Omega$

El calculo teórico nos da que $\frac{v_o}{v_i} = -10$

Simulación

Figura 1: Circuito a simular

En la simulación se ve una salida similar a lo previsto por el modelo ideal. Con una señal de salida 10 veces mayor a la señal de entrada.

Medición

con

$$\hat{V}_i = 0.2 \, \mathrm{V}$$

medimos

$$\hat{V}_o = 2 \, \text{V}$$

Figura 2: Resultado de la simulación A.1a

Figura 3: Medición A.1a

que es consistente con los simulado.

Reemplazar R_L por una resistencia de $10\,\Omega$

Figura 4: Resultado de la simulación

En este caso se ve que la señal se recorta. Viendo la simulación de corriente por la resistencia de carga se ve que circulan por ella $25\,\mathrm{mA}$ lo cual coincide con I_CS . Se aleja del modelo ideal por no poder entregar más corriente que la de cortocircuito.

b)
$$R_1 = 1 \,\mathrm{M}\Omega \,\, \mathbf{y} \,\, R_2 = 10 \,\mathrm{M}\Omega$$

El calculo teórico nos da que $\frac{v_o}{v_i} = -2$

Al simular esta señal el software reportó errores de convergencia.

Medición

$$\hat{V}_o = 2 \, \text{V}$$

Se vio que la señal medida tiene mucho ruido, incluyendo una gran señal de ruido de 50 Hz. Se especula que esto se debe a que al haber resistencias tan altas a la entrada(comparables con los $2\,\mathrm{M}\Omega$ de entrada) cualquier fuente de ruido electromagnético se ve amplificada.

Figura 5: Medición A1b

Figura 6: Medición de la señal de ruido

c) $R_1 = 1 \,\mathrm{k}\Omega$ y $R_2 = 1 \,\mathrm{M}\Omega$

Figura 7: Resultado de la simulación A1c

Se ve en este caso que la señal recorta por amplitud dado que las fuentes entregan sólo hasta $\pm 12\,\mathrm{V}.$

$$\hat{V}_o = 10.55\,\mathrm{V}$$

2. Respuesta en frecuencia

Simulación:

Medición

Valor de tensión pico en vacío: 52 mV ($R_1=1\,\mathrm{k}\Omega,\,R_2=10\,\mathrm{k}\Omega$ y punta 10X).

f	\hat{V}_O
$\overline{1\mathrm{Hz}}$	$520\mathrm{mV}$
$10\mathrm{Hz}$	$520\mathrm{mV}$
$100\mathrm{Hz}$	$520\mathrm{mV}$
$1\mathrm{kHz}$	$520\mathrm{mV}$
$10\mathrm{kHz}$	$520\mathrm{mV}$
$20\mathrm{kHz}$	$520\mathrm{mV}$
$50\mathrm{kHz}$	$500\mathrm{mV}$
$94\mathrm{kHz}$	$368\mathrm{mV}(V_c)$

f	\hat{V}_O
$100\mathrm{kHz}$	$348\mathrm{mV}$
$200\mathrm{kHz}$	$188\mathrm{mV}$
$500\mathrm{kHz}$	$80\mathrm{mV}$
$1\mathrm{MHz}$	$48\mathrm{mV}$
$2\mathrm{MHz}$	$20\mathrm{mV}$
$5\mathrm{MHz}$	$4\mathrm{mV}$
$10\mathrm{MHz}$	$1\mathrm{mV}$

Donde se ve que $f_c = 94\,\mathrm{kHz}$

Luego se pide ver qué pasa con $V_i = 0.4\,\mathrm{V}$ a $10\,\mathrm{kHz}$.

La explicación que encontramos a la distorción que observamos es que la velocidad de respuesta del amplificador es menor a la velocidad de cambio de la señal. En la hoja de datos se ve el parámetro **Slew Rate:** $0.5 \frac{\rm V}{\rm \mu s}$

B) Circuito Integrador

Trabajamos con una señal de entrada cuadrada de $f=\frac{1}{10RC}=1\,\mathrm{kHz}$ de A=0.2 V, con $R_1=1\,\mathrm{k}\Omega$ y $C_1=100\,\mathrm{nF}$

Simulación

Medición

 $Medici\'{o}n$ B

F) Circuitos Rectificadores

 $\{sacar foto de v_o(t)\}$

$$\hat{V}_o =$$

$$\bar{V}_o =$$

Con un capacitor de 47 µF en paralelo y una señal de $f=50\,\mathrm{Hz}$ y A=5 V

$$\frac{\overline{R_L(\Omega) \quad V_{ripple(ef)} \quad \bar{V}_o \quad \$z \% \$}}{10K}$$

$R_L(\Omega)$	$V_{ripple(ef)}$	\bar{V}_o	\$z % \$
4,7K			
1K			

Figura 8: Medición A1c

Figura 9: Simulación de la respuesta en frecuencia

Figura 10: Amplificación de tensión en función de la frecuencia

Figura 11: Simulación de la forma de onda distorcionada

Figura 12: Medición de la forma de onda distorcionada

Figura 13: Simulación sin R2

Figura 14: Simulación con R2