Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next	item	\rightarrow	

1.	Identify the correct order of the gates that information flows through in an LSTM unit.	1/1 point
	O Input gate, forget gate, output gate.	
	Forget gate, input gate, output gate.	
	Output gate, forget gate, input gate.	
	O Forget gate, output gate, input gate	
2.	Which are some applications of LSTMs?	1/1 point
	✓ Image captioning	
	Chatbots	
	Speech recognition	
	✓ Music composition	
	Next character prediction	

3.	The tanh layer ensures the values in your network stay numerically stable, by squeezing all values between -1 and 1. This prevents any of the values from the current inputs from becoming so large that they make the other values insignificant.	1/1 point
	TrueFalse	
4.	What type of architecture is a named entity recognition using?	1/1 point
	Many to one	
	Many to many	
	One to many	
5.	Extract the named entities from the following sentence:	1/1 point
	Younes, a Moroccan artificial intelligence engineer, travelled to France for a conference.	
	Younes, Moroccan, engineer.	
	Younes, Moroccan, conference.	
	Younes, Moroccan, France.	
	Younes, Moroccan engineer, France.	

6.	T	ectorized representation of your data, equal sequence length allows more efficient batch processing. irue. ialse	1/1 point
	\odot	Correct Correct	
7.	Why i	s it important to mask padded tokens when computing the loss?	1/1 point
	-	We add the loss of the padded tokens independently.	, ,
	P	radded tokens are not part of the data and are just used to help us keep the same sequence length for more efficient batch processing. We should not include their loss.	
	0	Correct.	
8.	In wh	ich of the following orders should we train an Named Entity Recognition with an LSTM?	1/1 point
	O	Create a tensor for each input and its corresponding number	
		2. Put them in a batch => 64, 128, 256, 512	
		3. Run the output through a dense layer 4. Prodict using a log of trace over K classes.	
		Predict using a log softmax over K classes Feed it into an LSTM unit	
		Create a tensor for each input and its corresponding number	
		2. Put them in a batch => 64, 128, 256, 512	
		Feed it into an LSTM unit Run the output through a dense layer	
		Predict using a log softmax over K classes	
	_		
	0	Create a tensor for each input and its corresponding number	
		2. Put them in a batch => 64, 128, 256, 512	
		Run the output through a dense layer Feed it into an LSTM unit	
		Predict using a log softmax over K classes	
	\odot	Correct.	

9.	LSTMS solve vanishing/exploding gradient problems when compared to basic RNNs.	1/1 point
	True	
	○ False	
	Correct.	
10.	Which of the following are true about LSTMs and vanilla RNNs?	1/1 point
	LSTMs are typically trained faster than vanilla RNNs.	
	LSTMs can better retain information from earlier parts of the sentence.	
	LSTMs suffer from vanishing gradients, but RNNs don't.	
	LSTMs suffer from exploding gradients, but RNNs don't.	
	A single LSTM cell is more complex than a single cell in vanilla RNN.	
	Correct Correct. LSTMs use input, output and forget gates to propagate information in a more sophisticated way than vanilla RNNs.	