<u>תרגיל מחשב 1 – אלגברה לינארית חישובית</u> מגישים : מיכאל לייב 3163895832, רון מילוטין 316389584

<u>: רקע לתרגיל</u>

M מתארת את מדידות פוטנציאל אלקטרוסטטי מאוסף מקורות נקודתיים. במערכת ישנם A המטריצה A מטענים (M=18, והפוטנציאל M=18 (מדד ב M=18) והפוטנציאל M=18 (בתרגיל שלנו M=18) והפוטנציאל ענסה את הבעיה כממ"ל בהצגה הבאה: נבחן שיטות לחישוב המטענים מתוך המדידות. ננסח את הבעיה כממ"ל בהצגה הבאה:

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1M} \\
a_{21} & a_{22} & & a_{2M} \\
\vdots & & \ddots & \vdots \\
a_{M1} & a_{M2} & \cdots & a_{MM}
\end{pmatrix}
\begin{pmatrix}
q_1 \\
q_2 \\
\vdots \\
q_M
\end{pmatrix} = \begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_M
\end{pmatrix}$$

בתרגיל זה, הוקטור q נבנה מתעודות הזהות שלנו, המגישים:

$$q = (3,1,9,0,9,5,8,3,2,3,1,6,3,8,9,5,8,4)^{\mathrm{T}}$$

פתרון לתרגיל: ייילה 1

א. נניח $h=\frac{\pi \rho}{m}$ ונניח $\rho=1$. כתבנו קוד לבניית המטריצה A לפי הנוחה בתרגיל לכל רכיב . $\rho=1$ ונניח $h=\frac{\pi \rho}{m}$ א. קיבלנו את המטריצה הבאה באמצעות פונקציית . a_{mn}

קיבלנו גם את המטריצה בהצגה הנומרית להלן:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.4559	1.7477	0.4128	0.2169	0.1474	0.1122	0.0911	0.0772	0.0674	0.0602	0.0548	0.0506	0.0474	0.0448	0.0429	0.0413	0.0402	0.0395
2	0.2301	0.4559	1.0539	0.3707	0.2052	0.1417	0.1087	0.0886	0.0753	0.0659	0.0590	0.0537	0.0497	0.0465	0.0441	0.0422	0.0407	0.0396
3	0.1546	0.2337	0.4559	0.7586	0.3298	0.1926	0.1355	0.1049	0.0860	0.0733	0.0643	0.0577	0.0526	0.0487	0.0457	0.0433	0.0415	0.0401
4	0.1171	0.1573	0.2392	0.4559	0.5961	0.2942	0.1803	0.1293	0.1010	0.0834	0.0714	0.0628	0.0564	0.0516	0.0479	0.0449	0.0427	0.0409
5	0.0948	0.1191	0.1611	0.2469	0.4559	0.4940	0.2646	0.1689	0.1233	0.0973	0.0808	0.0695	0.0613	0.0553	0.0506	0.0470	0.0442	0.0420
6	0.0801	0.0964	0.1219	0.1663	0.2572	0.4559	0.4246	0.2404	0.1586	0.1177	0.0938	0.0784	0.0677	0.0600	0.0542	0.0497	0.0463	0.0436
7	0.0699	0.0815	0.0986	0.1255	0.1730	0.2705	0.4559	0.3747	0.2207	0.1497	0.1127	0.0907	0.0762	0.0661	0.0587	0.0532	0.0489	0.0456
8	0.0623	0.0710	0.0832	0.1012	0.1300	0.1814	0.2875	0.4559	0.3377	0.2047	0.1420	0.1083	0.0878	0.0742	0.0646	0.0576	0.0523	0.0482
9	0.0567	0.0634	0.0725	0.0853	0.1045	0.1354	0.1918	0.3094	0.4559	0.3094	0.1918	0.1354	0.1045	0.0853	0.0725	0.0634	0.0567	0.0516
10	0.0523	0.0576	0.0646	0.0742	0.0878	0.1083	0.1420	0.2047	0.3377	0.4559	0.2875	0.1814	0.1300	0.1012	0.0832	0.0710	0.0623	0.0559
11	0.0489	0.0532	0.0587	0.0661	0.0762	0.0907	0.1127	0.1497	0.2207	0.3747	0.4559	0.2705	0.1730	0.1255	0.0986	0.0815	0.0699	0.0615
12	0.0463	0.0497	0.0542	0.0600	0.0677	0.0784	0.0938	0.1177	0.1586	0.2404	0.4246	0.4559	0.2572	0.1663	0.1219	0.0964	0.0801	0.0689
13	0.0442	0.0470	0.0506	0.0553	0.0613	0.0695	0.0808	0.0973	0.1233	0.1689	0.2646	0.4940	0.4559	0.2469	0.1611	0.1191	0.0948	0.0791
14	0.0427	0.0449	0.0479	0.0516	0.0564	0.0628	0.0714	0.0834	0.1010	0.1293	0.1803	0.2942	0.5961	0.4559	0.2392	0.1573	0.1171	0.0936
15	0.0415	0.0433	0.0457	0.0487	0.0526	0.0577	0.0643	0.0733	0.0860	0.1049	0.1355	0.1926	0.3298	0.7586	0.4559	0.2337	0.1546	0.1157
16	0.0407	0.0422	0.0441	0.0465	0.0497	0.0537	0.0590	0.0659	0.0753	0.0886	0.1087	0.1417	0.2052	0.3707	1.0539	0.4559	0.2301	0.1530
17	0.0402	0.0413	0.0429	0.0448	0.0474	0.0506	0.0548	0.0602	0.0674	0.0772	0.0911	0.1122	0.1474	0.2169	0.4128	1.7477	0.4559	0.2283
18	0.0401	0.0409	0.0420	0.0436	0.0456	0.0482	0.0515	0.0558	0.0614	0.0688	0.0789	0.0933	0.1152	0.1520	0.2261	0.4470	5.2292	0.4559

מתוך המשוואה $\overline{v}=Aq$ חילצנו את \overline{v} ועשינו טרנספוז לתוצאה על מנת להציג בקלות יותר בקובץ ה

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	11.9252	16.6646	12.6023	13.9704	13.9256	13.3440	12.5314	11.1717	10.4360	10.3235	10.4847	11.5775	12.9184	14.4682	17.8840	21.1201	22.1679	52.2261

בנוסף, חישבנו פירוק LU עם Pivoting באמצעות פונקציית lu וקיבלנו את מטריצות LU, L, P מטריצה בנוסף, חישבנו פירוק באמצעות פונקציית imagesc:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0.5120	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0.2678	0.7020	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0.3489	0.8533	0.8810	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0.1496	0.4237	0.7195	-0.7160	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0.1880	0.5202	0.8479	-0.7048	0.8875	1	0	0	0	0	0	0	0	0	0	0	0	0
7	0.1016	0.2994	0.5367	-0.6212	0.8937	-0.3468	1	0	0	0	0	0	0	0	0	0	0	0
8	0.2197	0.5956	0.9301	-0.5727	0.4962	0.9538	0.8106	1	0	0	0	0	0	0	0	0	0	0
9	0.1374	0.3920	0.6734	-0.6966	0.9847	-0.1392	0.4776	0.0827	1	0	0	0	0	0	0	0	0	0
10	0.1280	0.3673	0.6365	-0.6763	0.9620	-0.2106	0.6928	0.0335	0.7935	1	0	0	0	0	0	0	0	0
11	0.1149	0.3329	0.5841	-0.6424	0.9196	-0.2761	0.8574	0.0052	0.2510	0.5220	1	0	0	0	0	0	0	0
12	0.1105	0.3212	0.5663	-0.6304	0.9038	-0.2930	0.8928	0.0020	0.1544	0.2919	0.5224	1	0	0	0	0	0	0
13	0.1071	0.3124	0.5529	-0.6217	0.8924	-0.3056	0.9173	6.8670e	0.0972	0.1719	0.2749	0.4747	1	0	0	0	0	0
14	0.1046	0.3060	0.5436	-0.6164	0.8856	-0.3162	0.9373	1.4091e	0.0601	0.1015	0.1503	0.2102	0.4395	1	0	0	0	0
15	0.1029	0.3018	0.5378	-0.6145	0.8834	-0.3260	0.9563	-4.7021e	0.0343	0.0559	0.0786	0.0949	0.1751	0.3517	1	0	0	0
16	0.1019	0.2996	0.5356	-0.6161	0.8860	-0.3360	0.9767	-6.5110e	0.0151	0.0240	0.0325	0.0354	0.0613	0.1000	0.2232	1	0	0
17	0.1658	0.4651	0.7771	-0.7265	0.9880	0.3073	-0.8589	-0.9924	-0.1620	0.0390	-0.0048	0.0048	-0.0028	8.3925e	-1.7904e	-7.0534e	1	0
18	0.1206	0.3480	0.6072	-0.6578	0.9394	-0.2511	0.7993	0.0130	0.4332	0.9669	0.8257	-0.7716	0.4342	-0.1385	0.0208	-9.1991e	0.0118	1

:imagesc באמצעות פונקציית U מטריצה

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.4629	1.7546	0.4197	0.2238	0.1543	0.1191	0.0980	0.0841	0.0743	0.0671	0.0617	0.0575	0.0543	0.0517	0.0498	0.0483	0.0472	0.0464
2	0	-0.4355	0.8459	0.2630	0.1331	0.0876	0.0654	0.0525	0.0442	0.0384	0.0343	0.0312	0.0288	0.0269	0.0255	0.0244	0.0235	0.0228
3	0	0	-0.4602	0.2183	0.4682	0.2077	0.1151	0.0768	0.0571	0.0453	0.0377	0.0324	0.0286	0.0257	0.0235	0.0218	0.0205	0.0194
4	0	0	0	0.2707	-0.2432	-0.0998	-0.0490	-0.0300	-0.0209	-0.0159	-0.0127	-0.0106	-0.0092	-0.0081	-0.0072	-0.0066	-0.0061	-0.0057
5	0	0	0	0	-0.4536	-0.0876	0.1342	0.3513	0.2587	0.1413	0.0889	0.0625	0.0473	0.0377	0.0312	0.0266	0.0231	0.0205
6	0	0	0	0	0	0.2262	0.1278	-0.1939	-0.1641	-0.0830	-0.0485	-0.0321	-0.0232	-0.0178	-0.0143	-0.0118	-0.0101	-0.0087
7	0	0	0	0	0	0	-0.1389	-0.4026	-0.2842	-0.1319	-0.0552	-0.0060	0.0366	0.0870	0.1704	0.3981	5.1853	0.4160
8	0	0	0	0	0	0	0	0.3743	0.2810	0.1313	0.0583	0.0135	-0.0237	-0.0660	-0.1346	-0.3198	-4.2006	-0.3352
9	0	0	0	0	0	0	0	0	0.2173	0.1519	0.0698	0.0288	0.0017	-0.0240	-0.0613	-0.1567	-2.1237	-0.1662
10	0	0	0	0	0	0	0	0	0	0.2136	0.1265	0.0556	0.0187	-0.0092	-0.0434	-0.1243	-1.7535	-0.1343
11	0	0	0	0	0	0	0	0	0	0	0.2511	0.3226	0.1343	0.0351	-0.0438	-0.1905	-2.9419	-0.2164
12	0	0	0	0	0	0	0	0	0	0	0	0.2098	0.2676	0.0911	-0.0028	-0.1259	-2.1945	-0.1549
13	0	0	0	0	0	0	0	0	0	0	0	0	0.3165	0.2619	0.0537	-0.1083	-2.3225	-0.1559
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4753	0.2325	-0.0635	-2.5188	-0.1568
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7529	0.1072	-2.8694	-0.1571
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.3153	-3.3699	-0.1391
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.0018	-1.3234e
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.1404e

:imagesc באמצעות פונקציית P מטריצה

	1	2	3	4	5	6	7		0	10	11	12	12	14	15	16	17	10
	1	2	5	4	5	ь	/	8	9	10	11	12	13	14	15	16	17	18
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
17	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

בדרישה הבאה, התבקשנו לחשב את מספר המצב של A והומלץ לנו להשתמש בפונקציה norm וכך עשינו. חישבנו לפי המשוואה הבאה וקיבלנו:

$$k(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = 3.0262e^{-7}$$

באמצעות אותה פונקצייה חישבנו גם את הנורמות הבאות כנדרש:

$$||q||_2 = 24.0624$$
 $||\overline{v}||_2 = 79.0460$ $||A||_F = 6.9121$

בשיטת עx=y , Ly=b :בשיטת המערכות לפתירת פונקציות לפתירת פונקציות ע"י הגדרת פונקציות לפתירת המערכות הבאות: $A\overline{q}=\overline{v}$ הצבה קדמית ואחורית בהתאמה. כך מצאנו את הפתרון

- $ar{q}$ וקטור

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	3.0000	1.0000	9.0000	2.9538e	9.0000	5.0000	8.0000	3.0000	2.0000	3.0000	1.0000	6.0000	3.0000	8.0000	9.0000	5.0000	8.0000	4.0000

ולאחר מכן חישבנו את השגיאה היחסית של \overline{q} ביחס לq לפי נורמה 2 וקיבלנו את השגיאה הבאה:

$$\varepsilon_q = \frac{\|\overline{q} - q\|_2}{\|q\|_2} = 8.547e^{-10}$$

ישנה שגיאה יחסית קטנה מכיוון ייצוג המספרים במחשב, אחרת היינו מצפים לקבל שגיאה יחסית שווה לאפס. לאפס.

 $\delta v_m=10^{-3}*\|\overline{v}\|_2$ באופן הבא δv באופן שגיאת מדידה של שוב את סעיף ב׳ אך נוסיף לווקטור אווקטור $A\overline{q}=ar{v}+\delta\overline{v}$ באופן ונפתור את המשוואה

 $-\, \overline{q}$ וקטור

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	3.0581	1.0053	9.0189	0.0244	9.0276	5.0299	8.0313	3.0320	2.0321	3.0315	1.0301	6.0279	3.0247	8.0199	9.0125	5.0013	7.9920	4.2013

ולאחר מכן חישבנו את השגיאה היחסית של \overline{q} ביחס לq לפי נורמה 2 וקיבלנו את השגיאה הבאה:

$$\varepsilon_q = \frac{\|\overline{q} - q\|_2}{\|q\|_2} = 0.0096$$

קיבלנו שגיאה גדולה יותר מכיוון שחסם השגיאה העליון נתון ע״יי $K(A) \frac{\|\Delta\overline{v}\|_2}{\|\overline{v}\|_2}$ למעשה הגדלנו את הביטוי $\|\Delta\overline{v}\|_2$ ולכן אכן הגדלנו את החסם שלנו ולכן גם הגדלנו את השגיאה היחסית שלנו כמצופה.

ד. בסעיף זה נוסיף את השגיאה למטריצה A באופן הבא $\delta A_{mn}=10^{-3}*\|A\|_F$ ונפתור את המשוואה למטריצה בסעיף זה באותה השיטה ונקבל ($A+A\delta)ar{q}=ar{v}$

 $-\bar{q}$ וקטור

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	2.5801	0.9614	8.8636	-0.1762	8.8002	4.7842	7.7738	2.7684	1.7680	2.7725	0.7825	5.7984	2.8217	7.8559	8.9100	4.9908	8.0575	2.5452

ולאחר מכן חישבנו את השגיאה היחסית של \overline{q} ביחס לq לפי נורמה 2 וקיבלנו את השגיאה הבאה:

$$\varepsilon_q = \frac{\|\overline{q} - q\|_2}{\|q\|_2} = 0.0694$$

קיבלנו שגיאה גדולה יותר מכיוון שחסם השגיאה העליון נתון ע"י $K(A) \frac{\|\overline{\nu}\|_2}{\|\overline{\nu}\|_2}$ למעשה הגדלנו את החסם שלנו ולכן גם הגדלנו את השגיאה היחסית $K(A) = \|A\|_\infty \|A^{-1}\|_\infty$ ולכן אכן הגדלנו את החסם שלנו ולכן גם הגדלנו את השגיאה היחסית שלנו כמצופה.

ה. חזרנו על סעיפים א'-ד' עם ערכי h שונים $\frac{\pi \rho}{M} * \frac{\pi \rho}{M}$ ונציג את תוצאות השגיאה h היחסית של כל סעיף ואת מס' המצב של המטריצה בגרף באמצעות פקודת loglog ונקבל שתי גרפים שונים אחד עבור השגיאות ואחד עבור מס' מצב:

ראינו שהשגיאות היחסיות גדלות כאשר אנחנו מוסיפים שגיאות מדידות למטריצה ולווקטור ולכן נקבל כי הגרפים שלהם מעל הגרף של השגיאה לפני הוספת שגיאת מדידה. בנוסף ניתן לראות כאשר משנים את h מס׳ מצב גדל ולכן גם כל השגיאות היחסיות גדלות כי הן תלויות במס׳ המצב ולכן על הגרפים אכן עולים כתלות ב-h.

שאלה 2

בשאלה זו נפתור שאלות דומות לשאלה 1 אך כעת בשיטות האיטרטיביות שלמדנו: שיטת יעקובי ושיטת גאוס זיידל.

h=א. התבקשנו לחשב את מטריצה A (אותה חישבתי לפי הקוד משאלה קודמת), לפי ההנחה ש $\frac{\pi\rho}{5M}$. קיבלנו את המטריצה הבאה באמצעות פונקציית

ובהצגה נומרית:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	2.2797	0.5648	0.2529	0.1637	0.1217	0.0974	0.0817	0.0709	0.0630	0.0571	0.0525	0.0490	0.0463	0.0441	0.0425	0.0413	0.0404	0.0399
2	0.3822	2.2797	0.5548	0.2506	0.1626	0.1210	0.0969	0.0814	0.0706	0.0627	0.0568	0.0523	0.0488	0.0461	0.0440	0.0423	0.0411	0.0403
3	0.2093	0.3854	2.2797	0.5410	0.2476	0.1612	0.1202	0.0964	0.0810	0.0702	0.0625	0.0566	0.0521	0.0487	0.0459	0.0438	0.0422	0.0410
4	0.1448	0.2106	0.3903	2.2797	0.5247	0.2441	0.1597	0.1193	0.0958	0.0805	0.0699	0.0622	0.0564	0.0519	0.0485	0.0458	0.0437	0.0421
5	0.1114	0.1456	0.2124	0.3969	2.2797	0.5071	0.2403	0.1579	0.1183	0.0951	0.0800	0.0695	0.0619	0.0561	0.0517	0.0483	0.0456	0.0435
6	0.0910	0.1119	0.1466	0.2147	0.4051	2.2797	0.4892	0.2362	0.1561	0.1172	0.0944	0.0795	0.0692	0.0616	0.0559	0.0515	0.0481	0.0455
7	0.0775	0.0914	0.1126	0.1478	0.2174	0.4151	2.2797	0.4718	0.2320	0.1543	0.1162	0.0937	0.0791	0.0688	0.0613	0.0557	0.0513	0.0480
8	0.0679	0.0778	0.0919	0.1133	0.1492	0.2206	0.4269	2.2797	0.4553	0.2280	0.1525	0.1152	0.0931	0.0786	0.0685	0.0611	0.0555	0.0512
9	0.0608	0.0682	0.0782	0.0925	0.1142	0.1508	0.2241	0.4403	2.2797	0.4403	0.2241	0.1508	0.1142	0.0925	0.0782	0.0682	0.0608	0.0553
10	0.0555	0.0611	0.0685	0.0786	0.0931	0.1152	0.1525	0.2280	0.4553	2.2797	0.4269	0.2206	0.1492	0.1133	0.0919	0.0778	0.0679	0.0606
11	0.0513	0.0557	0.0613	0.0688	0.0791	0.0937	0.1162	0.1543	0.2320	0.4718	2.2797	0.4151	0.2174	0.1478	0.1126	0.0914	0.0775	0.0677
12	0.0481	0.0515	0.0559	0.0616	0.0692	0.0795	0.0944	0.1172	0.1561	0.2362	0.4892	2.2797	0.4051	0.2147	0.1466	0.1119	0.0910	0.0772
13	0.0456	0.0483	0.0517	0.0561	0.0619	0.0695	0.0800	0.0951	0.1183	0.1579	0.2403	0.5071	2.2797	0.3969	0.2124	0.1456	0.1114	0.0907
14	0.0437	0.0458	0.0485	0.0519	0.0564	0.0622	0.0699	0.0805	0.0958	0.1193	0.1597	0.2441	0.5247	2.2797	0.3903	0.2106	0.1448	0.1110
15	0.0422	0.0438	0.0459	0.0487	0.0521	0.0566	0.0625	0.0702	0.0810	0.0964	0.1202	0.1612	0.2476	0.5410	2.2797	0.3854	0.2093	0.1443
16	0.0411	0.0423	0.0440	0.0461	0.0488	0.0523	0.0568	0.0627	0.0706	0.0814	0.0969	0.1210	0.1626	0.2506	0.5548	2.2797	0.3822	0.2085
17	0.0404	0.0413	0.0425	0.0441	0.0463	0.0490	0.0525	0.0571	0.0630	0.0709	0.0817	0.0974	0.1217	0.1637	0.2529	0.5648	2.2797	0.3806
18	0.0400	0.0405	0.0414	0.0426	0.0443	0.0464	0.0492	0.0527	0.0573	0.0632	0.0711	0.0820	0.0978	0.1222	0.1644	0.2543	0.5702	2.2797

: וקיבלנו $\overline{v}=Aq$ מתוך המשוואה \overline{v} את לחשב את

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
14.334	9 13.8202	28.2707	14.3793	30.7398	24.6346	28.8484	18.7249	15.6940	17.0177	14.1793	23.8630	20.3812	30.3857	33.3521	25.8894	29.3365	20.2842

חישבנו את הפתרון של המערכת לפי שיטת גאוס זיידל בדרך שלמדנו בכיתה באופן הבא:

$$x_{n+1} = Gx_n + C$$
; $G = -(L+D)^{-1}U$; $C = (L+D)^{-1}b$

נשים לב כמובן לבדוק טרם ביצוע השיטה תנאי התכנסות המטריצה (אלכסון דומיננטי כפי שלמדנו). נחשב את השגיאה היחסית בסיבולת שגיאה הבאה : $\|\mathbf{q}-\overline{q}\|_\infty < 10^{-3}$. כאשר \overline{q} , קיבלנו את הוקטור \overline{q} הבא:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	3.0004	1.0002	9.0000	-6.0582e	8.9999	4.9999	7.9999	2.9999	1.9999	3.0000	1.0000	6.0000	3.0000	8.0000	9.0000	5.0000	8.0000	4.0000

את תנאי העצירה קיבלנו לאחר 7 איטרציות, וקיבלנו את המרחק היחסי לפי איטרציה הבא:

	1	2	3	4	5	6	7
1	0.4686	0.2762	0.0751	0.0162	0.0012	4.5959e	2.1299e

קיבלנו בנוסף את השגיאה היחסית לפי איטרציה:

	1	2	3	4	5	6	7
1	0.2186	0.0619	0.0149	0.0013	3.4051e	1.7070e	4.2291e

. $4.2291e^{-5}$ נשאלנו מה השגיאה היחסית הסופית שמצאנו ונשים לב שהיא נשאלנו מה השגיאה היחסית לפי איטרציה, כנדרש נציג על גרף את המרחק היחסי והשגיאה היחסית לפי איטרציה, כנדרש

 $h=rac{\pi_{
ho}}{M}$, $h=rac{\pi_{
ho}}{2M}$ ב. בסעיף זה חזרנו על סעיף א' אך הפעם

:Imagesc נתחיל עם $h=rac{\pi
ho}{2M}$ עבורו קיבלנו את מטריצה A נתחיל עם . $h=rac{\pi
ho}{2M}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.9119	0.8574	0.2981	0.1808	0.1304	0.1026	0.0851	0.0732	0.0646	0.0583	0.0534	0.0496	0.0467	0.0444	0.0426	0.0413	0.0404	0.0398
2	0.3066	0.9119	0.7793	0.2892	0.1773	0.1284	0.1012	0.0841	0.0724	0.0640	0.0577	0.0529	0.0492	0.0463	0.0440	0.0423	0.0410	0.0401
3	0.1849	0.3108	0.9119	0.6958	0.2782	0.1730	0.1260	0.0997	0.0829	0.0715	0.0632	0.0571	0.0524	0.0487	0.0459	0.0437	0.0420	0.0407
4	0.1331	0.1872	0.3172	0.9119	0.6197	0.2663	0.1682	0.1234	0.0980	0.0817	0.0706	0.0625	0.0565	0.0519	0.0483	0.0455	0.0433	0.0416
5	0.1046	0.1346	0.1904	0.3262	0.9119	0.5551	0.2543	0.1633	0.1207	0.0962	0.0805	0.0696	0.0618	0.0559	0.0514	0.0479	0.0451	0.0430
6	0.0867	0.1057	0.1366	0.1946	0.3379	0.9119	0.5019	0.2427	0.1585	0.1180	0.0945	0.0793	0.0687	0.0610	0.0553	0.0509	0.0475	0.0448
7	0.0745	0.0875	0.1071	0.1391	0.1999	0.3529	0.9119	0.4585	0.2319	0.1538	0.1154	0.0928	0.0781	0.0679	0.0604	0.0548	0.0504	0.0471
8	0.0657	0.0752	0.0886	0.1088	0.1421	0.2062	0.3715	0.9119	0.4233	0.2222	0.1495	0.1130	0.0913	0.0770	0.0671	0.0598	0.0543	0.0501
9	0.0592	0.0664	0.0761	0.0899	0.1107	0.1455	0.2136	0.3947	0.9119	0.3947	0.2136	0.1455	0.1107	0.0899	0.0761	0.0664	0.0592	0.0539
10	0.0543	0.0598	0.0671	0.0770	0.0913	0.1130	0.1495	0.2222	0.4233	0.9119	0.3715	0.2062	0.1421	0.1088	0.0886	0.0752	0.0657	0.0588
11	0.0504	0.0548	0.0604	0.0679	0.0781	0.0928	0.1154	0.1538	0.2319	0.4585	0.9119	0.3529	0.1999	0.1391	0.1071	0.0875	0.0745	0.0652
12	0.0475	0.0509	0.0553	0.0610	0.0687	0.0793	0.0945	0.1180	0.1585	0.2427	0.5019	0.9119	0.3379	0.1946	0.1366	0.1057	0.0867	0.0739
13	0.0451	0.0479	0.0514	0.0559	0.0618	0.0696	0.0805	0.0962	0.1207	0.1633	0.2543	0.5551	0.9119	0.3262	0.1904	0.1346	0.1046	0.0860
14	0.0433	0.0455	0.0483	0.0519	0.0565	0.0625	0.0706	0.0817	0.0980	0.1234	0.1682	0.2663	0.6197	0.9119	0.3172	0.1872	0.1331	0.1038
15	0.0420	0.0437	0.0459	0.0487	0.0524	0.0571	0.0632	0.0715	0.0829	0.0997	0.1260	0.1730	0.2782	0.6958	0.9119	0.3108	0.1849	0.1321
16	0.0410	0.0423	0.0440	0.0463	0.0492	0.0529	0.0577	0.0640	0.0724	0.0841	0.1012	0.1284	0.1773	0.2892	0.7793	0.9119	0.3066	0.1836
17	0.0404	0.0413	0.0426	0.0444	0.0467	0.0496	0.0534	0.0583	0.0646	0.0732	0.0851	0.1026	0.1304	0.1808	0.2981	0.8574	0.9119	0.3045
18	0.0401	0.0407	0.0416	0.0430	0.0448	0.0471	0.0501	0.0539	0.0588	0.0652	0.0739	0.0860	0.1037	0.1320	0.1834	0.3040	0.9073	0.9119

: $\overline{v}=Aq$ מתוך המשוואה \overline{v}

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	11.0864	14.4703	16.2114	14.7132	18.5639	17.1852	17.2923	13.8548	12.3974	12.4966	12.1402	15.1515	15.7111	18.9983	21.8584	20.7957	20.1871	18.0827
						ם:	י קוד	בסעין	ארנו	נה תי	ל אור	ס זייד	גאו ז	שיטו	נו לפי	וקיבל	บ	קטור

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	2.9992	1.0001	9.0003	1.0462e	9.0001	5.0000	8.0000	3.0000	2.0000	3.0000	1.0000	6.0000	3.0000	8.0000	9.0000	5.0000	7.9999	4.0000

מרחק יחסי לפי איטרציה:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	L	1.8967	1.5451	0.5514	0.2377	0.2340	0.0733	0.0051	0.0047	0.0038	0.0032	0.0031	0.0011	3.1651e	2.2606e

השגיאה היחסית לפי איטרציה:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.5446	0.3485	0.3115	0.3112	0.0756	0.0110	0.0102	0.0080	0.0063	0.0037	6.6212e	4.4823e	1.3172e	. 9.4351e

נשים לב שבמקרה זה לוקחות 14 איטרציות (לעומת סעיף קודם בו לקחו 7 איטרציות) עד התכנסות הפתרון והשגיאה היחסית הסופית היא $9.4351e^{-5}$. הדבר מסתדר כי בסעיף זה הגדלנו את h מה שיגרום לכך שהכח בין זוג מטענים יקטן, וככל שהכל קטן יותר השפעת השגיאה תיהיה משמעותית יותר.

כעת את הפתרונות: , $h=rac{\pi
ho}{M}$ מטריצה, cimagesc ,A מטריצה

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.4559	1.7477	0.4128	0.2169	0.1474	0.1122	0.0911	0.0772	0.0674	0.0602	0.0548	0.0506	0.0474	0.0448	0.0429	0.0413	0.0402	0.0395
2	0.2301	0.4559	1.0539	0.3707	0.2052	0.1417	0.1087	0.0886	0.0753	0.0659	0.0590	0.0537	0.0497	0.0465	0.0441	0.0422	0.0407	0.0396
3	0.1546	0.2337	0.4559	0.7586	0.3298	0.1926	0.1355	0.1049	0.0860	0.0733	0.0643	0.0577	0.0526	0.0487	0.0457	0.0433	0.0415	0.0401
4	0.1171	0.1573	0.2392	0.4559	0.5961	0.2942	0.1803	0.1293	0.1010	0.0834	0.0714	0.0628	0.0564	0.0516	0.0479	0.0449	0.0427	0.0409
5	0.0948	0.1191	0.1611	0.2469	0.4559	0.4940	0.2646	0.1689	0.1233	0.0973	0.0808	0.0695	0.0613	0.0553	0.0506	0.0470	0.0442	0.0420
6	0.0801	0.0964	0.1219	0.1663	0.2572	0.4559	0.4246	0.2404	0.1586	0.1177	0.0938	0.0784	0.0677	0.0600	0.0542	0.0497	0.0463	0.0436
7	0.0699	0.0815	0.0986	0.1255	0.1730	0.2705	0.4559	0.3747	0.2207	0.1497	0.1127	0.0907	0.0762	0.0661	0.0587	0.0532	0.0489	0.0456
8	0.0623	0.0710	0.0832	0.1012	0.1300	0.1814	0.2875	0.4559	0.3377	0.2047	0.1420	0.1083	0.0878	0.0742	0.0646	0.0576	0.0523	0.0482
9	0.0567	0.0634	0.0725	0.0853	0.1045	0.1354	0.1918	0.3094	0.4559	0.3094	0.1918	0.1354	0.1045	0.0853	0.0725	0.0634	0.0567	0.0516
10	0.0523	0.0576	0.0646	0.0742	0.0878	0.1083	0.1420	0.2047	0.3377	0.4559	0.2875	0.1814	0.1300	0.1012	0.0832	0.0710	0.0623	0.0559
11	0.0489	0.0532	0.0587	0.0661	0.0762	0.0907	0.1127	0.1497	0.2207	0.3747	0.4559	0.2705	0.1730	0.1255	0.0986	0.0815	0.0699	0.0615
12	0.0463	0.0497	0.0542	0.0600	0.0677	0.0784	0.0938	0.1177	0.1586	0.2404	0.4246	0.4559	0.2572	0.1663	0.1219	0.0964	0.0801	0.0689
13	0.0442	0.0470	0.0506	0.0553	0.0613	0.0695	0.0808	0.0973	0.1233	0.1689	0.2646	0.4940	0.4559	0.2469	0.1611	0.1191	0.0948	0.0791
14	0.0427	0.0449	0.0479	0.0516	0.0564	0.0628	0.0714	0.0834	0.1010	0.1293	0.1803	0.2942	0.5961	0.4559	0.2392	0.1573	0.1171	0.0936
15	0.0415	0.0433	0.0457	0.0487	0.0526	0.0577	0.0643	0.0733	0.0860	0.1049	0.1355	0.1926	0.3298	0.7586	0.4559	0.2337	0.1546	0.1157
16	0.0407	0.0422	0.0441	0.0465	0.0497	0.0537	0.0590	0.0659	0.0753	0.0886	0.1087	0.1417	0.2052	0.3707	1.0539	0.4559	0.2301	0.1530
17	0.0402	0.0413	0.0429	0.0448	0.0474	0.0506	0.0548	0.0602	0.0674	0.0772	0.0911	0.1122	0.1474	0.2169	0.4128	1.7477	0.4559	0.2283
18	0.0401	0.0409	0.0420	0.0436	0.0456	0.0482	0.0515	0.0558	0.0614	0.0688	0.0789	0.0933	0.1152	0.1520	0.2261	0.4470	5.2292	0.4559

$: \overline{v} = Aq$ מתוך המשוואה \overline{v}

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	11.9252	16.6646	12.6023	13.9704	13.9256	13.3440	12.5314	11.1717	10.4360	10.3235	10.4847	11.5775	12.9184	14.4682	17.8840	21.1201	22.1679	52.2261

נשים לב שכאן תנאי האלכסון הדומיננטי להתכנסות לא מתקיים (קל לראות משורה 18) ולכן אין התכנסות במקרה זה. אכן, לא התקבל תנאי העצירה גם לאחר 400 איטרציות וקיבלנו את הגרף הבא: קל לראות שהשגיאה מתבדרת.

ג. בסעיף זה נחשב את החישובים מסעיף א, אך הפעם עבור שיטת יעקובי. ראשית נשים לב בסעיף זה נחשב את החישובים מסעיף א, אך הפעם עבור שיטת יעקובי. ראשית נשים לב שהמטריצה A והוקטור \overline{v} מתוך המשוואה לסעיף א).

: באיטרציה ה ${\mathsf n}$ לפי שיטת יעקובי היא ${\overline q}$

$$x_n = Gx_{n-1} + C$$
; $G = I - (D)^{-1}A$; $C = (D)^{-1}b$

תנאי העצירה ותנאי ההתחלה זהים לאלו מסעיפים א'.

תנאי התכנסות לפי שיטה זו היא גם שיטת האלכסון הדומיננטי (כמו בשיטת גאוס זיידל) ובנוסף תנאי התכנסות לפי שיטה זו היא גם שיטת האלכסון מתקיים אזי הפתרון מתכנס לכל תנאי התחלה. $\|G\|_{\infty} = \|I - (D)^{-1}A\|_{\infty} < 1$ נשים לב שאצלנו $\|G\|_{\infty} > 1$.

לכן, בניגוד לשיטת גאוס זיידל, הפתרון לא התכנס גם לאחר 400 איטרציות:

ד. נחזור על סעיף ג' לפי הנתונים החדשים על המטריצה A. נשרטט אותה לפי פונקציית Imagesc:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	65.3094	4.0093	0.8034	0.3366	0.1860	0.1193	0.0840	0.0631	0.0499	0.0409	0.0347	0.0302	0.0269	0.0245	0.0227	0.0214	0.0205	0.0200
2	1.8354	65.3094	3.8679	0.7892	0.3322	0.1840	0.1181	0.0832	0.0626	0.0495	0.0406	0.0344	0.0300	0.0267	0.0243	0.0225	0.0212	0.0204
3	0.5503	1.8666	65.3094	3.6783	0.7707	0.3267	0.1815	0.1167	0.0824	0.0620	0.0490	0.0403	0.0342	0.0297	0.0265	0.0241	0.0224	0.0211
4	0.2636	0.5571	1.9142	65.3094	3.4602	0.7490	0.3203	0.1787	0.1152	0.0814	0.0614	0.0486	0.0399	0.0339	0.0295	0.0263	0.0240	0.0222
5	0.1559	0.2664	0.5668	1.9791	65.3094	3.2318	0.7253	0.3134	0.1757	0.1136	0.0805	0.0607	0.0481	0.0396	0.0336	0.0293	0.0262	0.0238
6	0.1042	0.1574	0.2700	0.5791	2.0625	65.3094	3.0075	0.7009	0.3063	0.1727	0.1120	0.0795	0.0601	0.0477	0.0393	0.0334	0.0291	0.0260
7	0.0755	0.1051	0.1592	0.2745	0.5941	2.1656	65.3094	2.7968	0.6765	0.2991	0.1696	0.1104	0.0785	0.0595	0.0472	0.0390	0.0331	0.0289
8	0.0579	0.0761	0.1062	0.1614	0.2798	0.6115	2.2898	65.3094	2.6055	0.6532	0.2922	0.1667	0.1089	0.0776	0.0589	0.0468	0.0387	0.0329
9	0.0465	0.0584	0.0768	0.1075	0.1639	0.2857	0.6313	2.4363	65.3094	2.4363	0.6313	0.2857	0.1639	0.1075	0.0768	0.0584	0.0465	0.0384
10	0.0387	0.0468	0.0589	0.0776	0.1089	0.1667	0.2922	0.6532	2.6055	65.3094	2.2898	0.6115	0.2798	0.1614	0.1062	0.0761	0.0579	0.0462
11	0.0331	0.0390	0.0472	0.0595	0.0785	0.1104	0.1696	0.2991	0.6765	2.7968	65.3094	2.1656	0.5941	0.2745	0.1592	0.1051	0.0755	0.0575
12	0.0291	0.0334	0.0393	0.0477	0.0601	0.0795	0.1120	0.1727	0.3063	0.7009	3.0075	65.3094	2.0625	0.5791	0.2700	0.1574	0.1042	0.0750
13	0.0262	0.0293	0.0336	0.0396	0.0481	0.0607	0.0805	0.1136	0.1757	0.3134	0.7253	3.2318	65.3094	1.9791	0.5668	0.2664	0.1559	0.1035
14	0.0240	0.0263	0.0295	0.0339	0.0399	0.0486	0.0614	0.0814	0.1152	0.1787	0.3203	0.7490	3.4602	65.3094	1.9142	0.5571	0.2636	0.1548
15	0.0224	0.0241	0.0265	0.0297	0.0342	0.0403	0.0490	0.0620	0.0824	0.1167	0.1815	0.3267	0.7707	3.6783	65.3094	1.8666	0.5503	0.2617
16	0.0212	0.0225	0.0243	0.0267	0.0300	0.0344	0.0406	0.0495	0.0626	0.0832	0.1181	0.1840	0.3322	0.7892	3.8679	65.3094	1.8354	0.5461
17	0.0205	0.0214	0.0227	0.0245	0.0269	0.0302	0.0347	0.0409	0.0499	0.0631	0.0840	0.1193	0.1860	0.3366	0.8034	4.0093	65.3094	1.8199
18	0.0201	0.0206	0.0215	0.0228	0.0246	0.0271	0.0304	0.0349	0.0412	0.0502	0.0636	0.0846	0.1202	0.1876	0.3397	0.8124	4.0851	65.3094

: $\overline{v}=Aq$ מתוך המשוואה \overline{v}

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	211.5691	112.1372	603.2776	58.4577	618.8733	377.3097	553.5987	231.6436	159.2859	218.0164	98.8934	415.5754	243.3945	562.8795	638.3775	388.3520	562.4509	304.6816

:וקטור שקיבלנו לפי שיטת יעקובי אותה תיארנו בסעיף קודם

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3.0001	1.0001	9.0001	1.1670e	9.0001	5.0001	8.0001	3.0001	2.0001	3.0001	1.0001	6.0001	3.0001	8.0001	9.0001	5.0001	8.0001	4.0001

המרחק היחסי לפי איטרציה:

	1	2	3	4
1	0.1055	0.0117	0.0013	1.4143e

השגיאה היחסית לפי איטרציה:

	1	2	3	4
1	0.0106	0.0011	1.2676e	1.4752e

השגיאה היחסית הסופית היא $1.4752e^{-4}$. קיבלנו את הגרף הבא: נשים לב שכעת עקב שינוי h השתנתה המטריצה A , קיבלנו את התנאים להתכנסות בשיטת יעקובי ואכן כעת יש התכנסות לאחר 4 איטרציות לעומת סעיף קודם בו לא הייתה התכנסות כלל.

שאלה 3

.ho=1 , $h=rac{10\pi
ho}{m}$ א. בסעיף זה נניח קיבלנו את המטריצה הבאה באמצעות פונקציית :imagesc

בהצגה נומרית:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0.0456	0.0504	0.0559	0.0615	0.0662	0.0686	0.0679	0.0643	0.0591	0.0535	0.0483	0.0437	0.0399	0.0367	0.0341	0.0320	0.0302	0.0288
0.0416	0.0456	0.0501	0.0547	0.0588	0.0613	0.0615	0.0593	0.0554	0.0508	0.0463	0.0422	0.0386	0.0356	0.0331	0.0310	0.0293	0.0279
0.0383	0.0418	0.0456	0.0496	0.0532	0.0558	0.0566	0.0553	0.0525	0.0487	0.0447	0.0410	0.0377	0.0348	0.0324	0.0303	0.0286	0.0273
0.0358	0.0388	0.0421	0.0456	0.0489	0.0515	0.0527	0.0522	0.0502	0.0471	0.0436	0.0402	0.0370	0.0343	0.0319	0.0299	0.0282	0.0268
0.0337	0.0363	0.0393	0.0425	0.0456	0.0482	0.0497	0.0498	0.0485	0.0460	0.0429	0.0397	0.0367	0.0340	0.0316	0.0296	0.0279	0.0265
0.0320	0.0344	0.0371	0.0401	0.0430	0.0456	0.0474	0.0480	0.0472	0.0452	0.0425	0.0396	0.0367	0.0340	0.0316	0.0296	0.0279	0.0264
0.0307	0.0329	0.0354	0.0382	0.0410	0.0436	0.0456	0.0466	0.0463	0.0448	0.0425	0.0397	0.0369	0.0342	0.0319	0.0298	0.0280	0.0265
0.0297	0.0317	0.0341	0.0367	0.0394	0.0420	0.0443	0.0456	0.0458	0.0447	0.0427	0.0401	0.0374	0.0348	0.0323	0.0302	0.0284	0.0268
0.0289	0.0308	0.0331	0.0356	0.0382	0.0409	0.0433	0.0450	0.0456	0.0450	0.0433	0.0409	0.0382	0.0356	0.0331	0.0308	0.0289	0.0272
0.0284	0.0302	0.0323	0.0348	0.0374	0.0401	0.0427	0.0447	0.0458	0.0456	0.0443	0.0420	0.0394	0.0367	0.0341	0.0317	0.0297	0.0279
0.0280	0.0298	0.0319	0.0342	0.0369	0.0397	0.0425	0.0448	0.0463	0.0466	0.0456	0.0436	0.0410	0.0382	0.0354	0.0329	0.0307	0.0288
0.0279	0.0296	0.0316	0.0340	0.0367	0.0396	0.0425	0.0452	0.0472	0.0480	0.0474	0.0456	0.0430	0.0401	0.0371	0.0344	0.0320	0.0299
0.0279	0.0296	0.0316	0.0340	0.0367	0.0397	0.0429	0.0460	0.0485	0.0498	0.0497	0.0482	0.0456	0.0425	0.0393	0.0363	0.0337	0.0314
0.0282	0.0299	0.0319	0.0343	0.0370	0.0402	0.0436	0.0471	0.0502	0.0522	0.0527	0.0515	0.0489	0.0456	0.0421	0.0388	0.0358	0.0332
0.0286	0.0303	0.0324	0.0348	0.0377	0.0410	0.0447	0.0487	0.0525	0.0553	0.0566	0.0558	0.0532	0.0496	0.0456	0.0418	0.0383	0.0354
0.0293	0.0310	0.0331	0.0356	0.0386	0.0422	0.0463	0.0508	0.0554	0.0593	0.0615	0.0613	0.0588	0.0547	0.0501	0.0456	0.0416	0.0381
0.0302	0.0320	0.0341	0.0367	0.0399	0.0437	0.0483	0.0535	0.0591	0.0643	0.0679	0.0686	0.0662	0.0615	0.0559	0.0504	0.0456	0.0415
0.0314	0.0332	0.0355	0.0382	0.0416	0.0458	0.0508	0.0569	0.0638	0.0709	0.0765	0.0787	0.0763	0.0706	0.0635	0.0567	0.0506	0.0456

:כעת נחשב את הדטרמיננטה של המטריצה A ונקבל

$$\det(A) = 8.0926 e^{-146}$$

 $:\overline{v}$ חילצנו את $\overline{v}=Aq$ מתוך המשוואה

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
4.1923	3.8884	3.6574	3.4819	3.3507	3.2561	3.1931	3.1588	3.1513	3.1704	3.2168	3.2924	3.4010	3.5478	3.7411	3.9928	4.3209	4.7526

:בשיטת least squares הפתרון הממזער את השארית ווארית המארית least squares בשיטת

$$\bar{q} = (A^T A)^{-1} A^T \bar{v}$$

 $-ar{q}$ לאחר חישוב המשוואה קיבלנו את וקטור

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
-194.8325	-701.8807	-184.1265	-148.0845	-0.1696	-172.8878	157.5742	-170.6987	24.5200	122.3583	-71.7366	490.1361	-125.3273	669.0647	-50.4591	-37.2449	-156.6602	114.8315

השגיאה היחסית המתקבלת בפתרון לפי שיטה זו הוא:

$$\varepsilon_q = \frac{\|\overline{q} - q\|_2}{\|q\|_2} = 49.6847$$

נו: for בעזרת לולאת א' עם ערכי h שונים $h=\left\{\frac{1}{5},\frac{1}{2},2,5,\frac{1}{2},2,5,10\right\}$ שונים h ב. חזרנו על סעיף א' עם ערכי h שונים h את הנתונים הבאים עבור ערכי

5	4	3	2	1
1.7453	0.8727	0.3491	0.0873	0.0349
5	4	3	2	1
8.0926e-146	2.5207e-89	3.4450e-36	0.0019	1.2392e+06
5	4	3	2	1
49.6847	149.9494	1.7675	5.6540e-15	4.7417e-16
	5 8.0926e-146 5	0.8727 1.7453 4 5 2.5207e-89 8.0926e-146 4 5	0.3491 0.8727 1.7453 3 4 5 3.4450e-36 2.5207e-89 8.0926e-146 3 4 5	0.0873 0.3491 0.8727 1.7453 2 3 4 5 0.0019 3.4450e-36 2.5207e-89 8.0926e-146 2 3 4 5

h
det(A)
$arepsilon_q$

loglog ונציג את תוצאות השגיאה היחסית ואת דטרמיננטה של המטריצה A בגרף באמצעות פקודת ונקבל שתי גרפים שונים :

נשים לב כי ככל שערכי h גדלים כך הדטרמיננטה של A קטנה (ערכי h שונים משנים את ערכי המטריצה ולכן הדטרמיננטה משתנה בהתאם) ואז המטריצה מתקרבת להיות סינגולרית ולכן השיטה הופכת להיות פחות יעילה ומדויקת.

נשים לב כמו קודם כי מבחינה פיזיקלית h שונים מסמנים מרחקים שונים בין המטענים ולכן הגדלת h גורר הקטנת הכוחות (הקטנת ערכי A) גורר שגיאות בתהליכי החישוב

```
%---Q1----%
M = 18;
p = 1;
h_{val} = [1,2,5,10,20,50];
h_list = h_val.*((pi * p) ./ M);
Rel_Error_b = zeros(1,6)';
                                                        % Rel Error b
Rel_Error_c = zeros(1,6)';
                                                        % Rel Error c
Rel_Error_d = zeros(1,6)';
                                                        % Rel Error d
                                                        % Condition number vector
K_A = zeros(1,6)';
q = [3,1,9,0,9,5,8,3,2,3,1,6,3,8,9,5,8,4]';
                                                        % vector of id's
for k = 1:6
    %---%
    h = h_{list(k)};
    A = build_matrix(h,M);
                                                        % potational vector v
    v = A * q;
    [L,U,P] = lu(A);
    K_A(k) = norm(A, inf).* norm(inv(A), inf);
                                                        % A condition number k(A)
    q_norm = norm(q,2);
                                                        % q norm_2
                                                        % v norm_2
    v norm = norm(v,2);
    A_norm_fro = norm(A, 'fro');
                                                        % x norm frobenious
    %----8
                                                        % y from Ly=b
    y_{vec} = Ly_b(L,P*v);
    x_{vec} = Ux_y(U, y_{vec});
                                                        % x from Ux=v
    q_b = x_{vec};
    Rel_Error_b(k) = norm(q_b-q',2)./ q_norm;
                                                        % Rel error of q'
    %---C---%
    delta_v = v_norm * 10.^{(-3)};
    v_c = v + delta_v;
    y_{vec} = Ly_b(L,P*v_c);
    x_{vec} = Ux_y(U,y_{vec});
    q_c = x_vec;
    Rel_Error_c(k) = norm(q_c-q',2)./ q_norm;
    %----%
    delta_A = A_norm_fro * 10^(-3);
    A_d = delta_A + A;
    [L,U,P] = lu(A_d);
    y_{vec} = Ly_b(L,P*v);
    x_{vec} = Ux_y(U, y_{vec});
    q_d = x_vec;
    Rel_Error_d(k) = norm(q_d-q',2)./ q_norm;
end
%---Plots---%
figure(1);
subplot(2,1,1);
lg = loglog(h_list,Rel_Error_b,"-",h_list,Rel_Error_c,"-",h_list,Rel_Error_d,"-");
lg(1).LineWidth = 1.5;
lg(2).LineWidth = 1.5;
lg(3).LineWidth = 1.5;
title('Relative calc error function of h');
ylabel('Relative Error');
xlabel('h(k)');
legend('Relative Error', 'Relative Error_v', 'Relative Error_A', 'Location', 'northwest');
grid on
subplot(2,1,2);
lg = loglog(h_list,K_A,"-");
lg.LineWidth = 1.5;
title("Condition Number function of h");
ylabel('Cond Num');
xlabel('h(k)');
```

```
legend('k(A)[h]');
grid on
movegui(figure(1),"northeast")
%---Functions---%
function A = build_matrix(h,M)
p = 1;
A = zeros(M,M);
for m = 1:M
    for n = 1:M
        a_mn = sqrt((h+p*sin(((m*pi)/M))-p*sin(((n*pi)/M))).^2+(p*cos((m*pi)/M)-p*cos \checkmark)
((n*pi)/M)).^2;
        A(m,n) = 1./(4*pi*a_mn);
    end
end
end
function y = Ly_b(L,b)
M = length(L);
y = zeros(1,M);
y(1) = b(1) / L(1,1);
sum = 0;
for j=2:M
    for i=1:j-1
        sum = sum + L(j,i) \cdot * y(i);
    y(j) = (b(j) - sum) ./ L(j,j);
    sum = 0;
end
end
function x = Ux_y(U,y)
M = length(U);
x = zeros(1,M);
x(M) = y(M) / U(M,M);
sum = 0;
for i=M-1:-1:1
    for j=M:-1:i+1
        sum = sum + U(i,j).*x(j);
    x(i) = (y(i) - sum) \cdot / U(i,i);
    sum = 0;
end
end
```

```
%---%
M = 18;
p = 1;
h_{val} = [5,2,1];
q = [3,1,9,0,9,5,8,3,2,3,1,6,3,8,9,5,8,4]';
for t = 1:3
    %---A+B---%
    h = (pi * p)./(h_val(t).*M);
    A = build_matrix(h,M);
    v = A * q;
    if t == 1
        [Rel_dist_A,Rel_err_A,iter_A] = Gauss_Seidel(A,v,q); %h=pi/5M
        [Rel_dist_Jac,Rel_err_Jac,iter_Jac] = Jacobi(A,v,q); %h=pi/5M
        %----B----%
        A_d = build_matrix_d(h,M);
        v_d = A_d * q;
        [Rel_dist_D,Rel_err_D,iter_D] = Jacobi(A_d,v_d,q); %h=pi/5M
    end
    if t == 2
        [Rel dist B,Rel err B,iter B] = Gauss Seidel(A,v,q); %h=pi/2M
    end
    if t == 3
        [Rel_dist_C,Rel_err_C,iter_C] = Gauss_Seidel(A,v,q); %h=pi/M
    end
end
%---Plots---%
figure(2);
subplot(4,2,[1,2])
plot_A = semilogy(iter_A,Rel_dist_A,iter_A,Rel_err_A,'-*');
plot_A(1).LineWidth = 1.5;
plot_A(2).LineWidth = 1.5;
msg2 = sprintf('Took %d iterations',length(iter_A));
msg2_1 = sprintf('Final Rel error of q^k and q is %d',Rel_err_A(end));
text(2,10^-4,msg2,'Color','green','FontSize',12);
text(2,10^-4.5,msg2_1,'Color','green','FontSize',12);
title(' Gauss-Seidel For h=pi/5M');
xlabel('Iterations');
legend('Rel Destination of q^k and q^k-1', 'Rel Real Error of q^k and q^k-1');
subplot(4,2,[3,4])
plot_B = semilogy(iter_B,Rel_dist_B,iter_B,Rel_err_B,'-*');
plot_B(1).LineWidth = 1.5;
plot_B(2).LineWidth = 1.5;
msg3 = sprintf('Took %d iterations',length(iter_B));
msq3 1 = sprintf('Final Rel error of q^k and q is %d',Rel err B(end));
text(2,10^-4,msg3,'Color','green','FontSize',12);
text(2,10^-4.5,msg3_1,'Color','green','FontSize',12);
title('Gauss-Seidel For h=pi/2M');
legend('Rel Destination of q^k and q^k-1', 'Rel Real Error of q^k and q^k-1');
subplot(4,2,[5,6])
plot_C = semilogy(iter_C,Rel_dist_C,iter_C,Rel_err_C,'-*');
plot_C(1).LineWidth = 1.5;
plot_C(2).LineWidth = 1.5;
msg4 = sprintf('Solution Does not Converge');
text(2,10^-4,msg4,'Color','green','FontSize',12);
title('Gauss-Seidel For h=pi/M');
legend('Rel Destination of q^k and q^k-1', 'Rel Real Error of q^k and q^k-1');
subplot(4,2,7)
plot_Jac = semilogy(iter_Jac,Rel_dist_Jac,iter_Jac,Rel_err_Jac,'-*');
plot_Jac(1).LineWidth = 1.5;
plot_Jac(2).LineWidth = 1.5;
```

```
msq5 = sprintf('Solution Does not Converge');
text(10,10^6,msg5,'Color','green','FontSize',12);
title('Jacobi for h=pi/5M');
legend('Rel Destination of q^k and q^k-1', 'Rel Real Error of q^k and q^k-1');
subplot(4,2,8)
plot_D = semilogy(iter_D,Rel_dist_D,iter_D,Rel_err_D,'-*');
plot_D(1).LineWidth = 1.5;
plot_D(2).LineWidth = 1.5;
msg6 = sprintf('Took %d Iterations',length(iter_D));
msg6_1 = sprintf('Final Relative error of q^k and q is %d',Rel_err_D(end));
text(1.5,10^-4.5,msg6,'Color','green','FontSize',12);
text(1.5,10^-4.7,msg6_1,'Color','green','FontSize',12);
title('Jacobi for h=pi/5M with new matrix A');
legend('Rel Destination of q^k and q^k-1', 'Rel Real Error of q^k and q^k-1');
movegui(figure(2),"northwest")
%---Functions---%
function A = build_matrix(h,M)
p = 1;
A = zeros(M,M);
for m = 1:M
    for n = 1:M
        a_m = sqrt((h+p*sin((m*pi)/M)-p*sin((n*pi)/M)).^2+(p*cos((m*pi)/M)-p*cos \checkmark
((n*pi)/M)).^2);
        A(m,n) = 1 . / (4*pi*a_mn);
    end
end
end
function A = build_matrix_d(h,M)
p = 1;
A = zeros(M,M);
for m = 1:M
    for n = 1:M
        a_m = (h+p*sin((m*pi)/M)-p*sin((n*pi)/M)).^2+(p*cos((m*pi)/M)-p*cos((n*pi) \checkmark
/M)).^2;
        A(m,n) = 1 . / (4*pi*a_mn) ;
    end
end
end
function [Rel_dist,Rel_err,iter_plot,q_k] = Gauss_Seidel(A,v,q)
    L = tril(A, -1);
    D = diag(diag(A));
    Q = L + D ;
    neg u = 0 - A;
    inv 0 = inv(0):
    G = inv_Q * neg_u ;
                                 % -u * (L+D)^{(-1)}
                                  % (L+D)^{(-1)} * v
    C = inv Q * v;
    Err Endurance = 10 ^ (-3);
    q_k = C;
                                  % for q^{(1)}, k=1
    Rel_dist = zeros;
    Rel_err = zeros;
    iter = 1;
    iter_plot = zeros;
    err = max(abs(q-q_k));
                                  %Limit Iterations
    max_iter = 500;
    while abs(err) > Err_Endurance && iter <=max_iter</pre>
       q_k_minus_1 = q_k;
       q_k = G*(q_k_minus_1) + C; % q^(k)=-u*(L+D)^(-1) * q^(k-1) + (L+D)^(-1)*v
       err = norm(q-q_k,'inf');
       Rel_dist(iter) = norm(q_k - q_k_minus_1, 'inf') / norm(q_k_minus_1, 'inf');
       Rel_err(iter) = norm(q_k - q,'inf') / norm(q,'inf');
       iter_plot(iter) = iter;
       iter = iter + 1;
```

```
end
end
```

```
function [Rel_dist,Rel_err_real,iter_plot,q_k] = Jacobi(A,v,q)
   D = diag(diag(A));
   Q = D;
   I = eye(18);
   inv_Q = inv(Q);
   G = I - (inv_Q * A);
   C = inv_Q * v;
   Err_Endurance = 10 ^ (-3);
   q_k = C;
                             %for q^{(1)}, k=1
   Rel_dist = zeros;
   Rel_err_real = zeros;
   iter = 1;
   iter_plot = zeros;
   err = max(abs(q-q_k));
   max_iter = 400;
                             %Limit Iterations
   while abs(err) > Err_Endurance && iter <=max_iter</pre>
      q_k_minus_1 = q_k;
      q_k = G*(q_k_minus_1) + C; % q^(k)=-u*(L+D)^(-1) * q^(k-1) + (L+D)^(-1)*v
      err = norm(q-q_k, 'inf');
      iter_plot(iter) = iter;
      iter = iter + 1;
   end
end
```

```
%---03---%
M = 18;
p = 1;
h_{val} = [1/5, 1/2, 2, 5, 10];
h_list = h_val.*((pi * p) ./ M);
q = [3,1,9,0,9,5,8,3,2,3,1,6,3,8,9,5,8,4]'; %charges vector of id's
det_A = zeros(5,1);
Rel_err_q = zeros(5,1);
for t=1:5
    %---A+B---%
     h = h_val(t).*((pi * p) ./ M);
     A = build_matrix(h,M);
     det_A(t) = abs(det(A));
     v = A * q;
     trans_A = transpose(A);
     approx_q = inv(trans_A * A) * trans_A * v;
     Rel_err_q(t) = (norm(approx_q - q)) / norm(q);
end
%----Plots----%
figure(3);
subplot(2,1,1);
lg = loglog(h_list,det_A,"*-");
lg.LineWidth = 1.5;
title('Least Squares Solution');
xlabel('h');
ylabel('det(A)')
legend('det(A)','Location','southwest');
grid on;
subplot(2,1,2);
lg = loglog(h_list,Rel_err_q,"*-");
lg(1).LineWidth = 1.5;
title('Least Squares Solution');
xlabel('h');
ylabel('rel error')
legend('Rel error of approx q and q', 'Location', 'northwest');
grid on;
movegui(figure(3), "southeast")
%---Functions---%
function A = build_matrix(h,M)
p = 1;
A = zeros(M,M);
for m = 1:M
    for n = 1:M
        r mn = sqrt((h+p*sin((m*pi)/M)-p*sin((n*pi)/M)).^2+(p*cos((m*pi)/M)-p*cos \checkmark
((n*pi)/M)).^2);
        A(m,n) = 1 . / (4*pi*r_mn);
    end
end
end
```