Métodos Numéricos Interpolação polinomial

Ana Maria A. C. Rocha

Departamento de Produção e Sistemas

Universidade do Minho

arocha@dps.uminho.pt

Objetivo da aproximação de funções

Objetivo: dada a função f(x), encontrar uma aproximação (por exemplo, um polinómio) com o menor erro possível.

Dado um conjunto discreto de valores

$$(x_i, f_i), i = 0, 1, ..., n (n+1 pontos)$$

pretende-se encontrar uma relação funcional (expressão) entre as variáveis x e f para prever o comportamento entre as variáveis e poder estimar valores,

 $\triangleright x$ é variável independente,

 $\triangleright f$ é variável dependente.

② Dada uma função complicada (expressão) f(x), pretende-se conhecer uma expressão mais simples que descreva o melhor possível o comportamento de f como função de x.

Erro da aproximação $e(x) = f(x) - p_n(x)$

Teorema de Weirstrass: Dadas a função f(x), contínua num intervalo [a,b], e uma quantidade $\varepsilon>0$, existe sempre um polinómio $p_n(x)$, de grau $\leq n$, tal que o **erro** da aproximação $\|f(x)-p_n(x)\|<\varepsilon$.

1. Podemos assegurar que o erro seja igual a zero para um conjunto de n+1 pontos selecionados do intervalo [a,b], isto é, o polinómio passa por esses n+1 pontos da função,

$$f_i \equiv f(x_i) = p_n(x_i)$$
, para $i = 0, 1, \dots, n$.

ightharpoonup interpolação polinomial (polinómio de colocação) - é único e é de grau $\leq n$.

Exemplo: polinómio interpolador de Newton baseado nas *diferenças divididas* (adequado quando *n* é pequeno)

Erro da aproximação $e(x) = f(x) - p_n(x)$

▶ interpolação segmentada (ou 'spline')

Exemplos: 'spline' linear (função formada por polinómios de grau 1) e 'spline' cúbica (função formada por polinómios de grau 3).

2. Podemos assegurar que a soma dos quadrados dos erros seja mínima no intervalo [a, b].

Exemplo: polinómio dos mínimos quadrados

Aproximação de funções

função dada por 11 pontos

função dada por uma expressão

Polinómio interpolador

polinómio de colocação de grau $10 - p_{10}(x)$

função dada por 11 pontos

função dada por uma expressão

Mínimos quadrados

modelo polinomial, por exemplo, de grau 3 $--p_3(x)$

função dada por 11 pontos

função dada por uma expressão

Qual o método mais adequado?

- Se os dados são precisos, isto é, não contêm erros de observação, é mais vantajoso usar uma função que passe pelos pontos dados:

 - ▷ 'spline';
- se os dados possuem erros de observação, é mais conveniente encontrar uma função que descreva o comportamento dos dados, sem ter a preocupação de passar a curva pelos pontos:
 - > aproximação dos mínimos quadrados.

Polinómio de colocação baseado nas diferenças divididas

Tabela das diferenças divididas da função dada f:

Diferenças divididas (dd)

• dd de 1^a ordem (dd1)

$$[x_0, x_1] = \frac{f_0 - f_1}{x_0 - x_1} = \frac{f_1 - f_0}{x_1 - x_0}$$
$$[x_1, x_2] = \frac{f_1 - f_2}{x_1 - x_2} = \frac{f_2 - f_1}{x_2 - x_1}$$
...

• dd de 2^a ordem (dd2)

$$[x_0, x_1, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2} = \frac{[x_1, x_2] - [x_0, x_1]}{x_2 - x_0}$$

Diferenças divididas (dd)

$$[x_1, x_2, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3} = \frac{[x_2, x_3] - [x_1, x_2]}{x_3 - x_1}$$

• dd de 3^a ordem (dd3)

$$[x_0, x_1, x_2, x_3] = \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_3} = \frac{[x_1, x_2, x_3] - [x_0, x_1, x_2]}{x_3 - x_0}$$

• dd de 4^a ordem (dd4)

$$[x_0, x_1, x_2, x_3, x_4] = \frac{[x_0, x_1, x_2, x_3] - [x_1, x_2, x_3, x_4]}{x_0 - x_4} = \cdots$$

. . .

Propriedades das diferenças divididas

- Podem ser calculadas para **qualquer** espaçamento (não constante) entre os pontos $x_0, x_1, \dots, x_{n-1}, x_n$.
- As diferenças divididas são funções simétricas dos seus argumentos:

$$[x_0, x_1] = [x_1, x_0]$$

 $[x_0, x_1, x_2] = [x_2, x_1, x_0]$

• •

3 As diferenças divididas de ordem n, de uma função que é um polinómio de grau n, são iguais entre si e diferentes de zero \Rightarrow as de ordem n+1 são nulas.

Polinómio interpolador de Newton baseado em diferenças divididas

Sejam os (n+1) pontos:

$$x_0$$
 x_1 x_2 x_3 x_4 \cdots x_{n-2} x_{n-1} x_n
 $f_0 \equiv f(x_0)$ f_1 f_2 f_3 f_4 \cdots f_{n-2} f_{n-1} f_n

o polinómio de grau $\leq n$:

$$p_{n}(x) = f_{0} + (x - x_{0})[x_{0}, x_{1}] + (x - x_{0})(x - x_{1})[x_{0}, x_{1}, x_{2}]$$

$$+ (x - x_{0})(x - x_{1})(x - x_{2})[x_{0}, x_{1}, x_{2}, x_{3}] + \cdots$$

$$+ (x - x_{0})(x - x_{1})(x - x_{2}) \cdots (x - x_{n-1})$$

$$[x_{0}, x_{1}, x_{2}, \dots, x_{n-1}, x_{n}]$$

em que x_0 é o primeiro ponto da lista de pontos que vai usar-se para construir o polinómio.

Interpolação direta

Para estimar o valor de $f(\bar{x})$, para um dado ponto \bar{x} que não está na tabela:

- e se selecionar interpolação polinomial polinómio de colocação escolher o grau do polinómio n

o polinómio de colocação $p_n(x)$, construído com base nos n+1 pontos, é único

- 3 os pontos devem ser escolhidos de modo a:
 - garantir, pelo menos um ponto à direita e um à esquerda de \bar{x} ,
 - escolher os restantes pontos da tabela que estejam mais próximos de \bar{x} .

Exemplo de polinómio de grau 1

Escolher 2 pontos. O ponto interpolador é x:

$$f(x) \approx p_1(x) = f_0 + (x - x_0)[x_0, x_1]$$

Exemplo de polinómio de grau 2

Escolher 3 pontos. O ponto interpolador é x:

$$f(\mathbf{x}) \approx p_2(\mathbf{x}) = f_0 + (\mathbf{x} - x_0)[x_0, x_1] + (\mathbf{x} - x_0)(\mathbf{x} - x_1)[x_0, x_1, x_2]$$

Exemplo de polinómio de grau 3

Escolher 4 pontos. O ponto interpolador é x:

$$f(\mathbf{x}) \approx p_3(\mathbf{x}) = f_0 + (\mathbf{x} - x_0)[x_0, x_1] + (\mathbf{x} - x_0)(\mathbf{x} - x_1)[x_0, x_1, x_2] + (\mathbf{x} - x_0)(\mathbf{x} - x_1)(\mathbf{x} - x_2)[x_0, x_1, x_2, x_3]$$

Exemplo de outro polinómio de grau 3 - outros pontos

Escolher 4 pontos. O ponto interpolador é x:

$$f(\mathbf{x}) \approx p_3(\mathbf{x}) = f_0 + (\mathbf{x} - x_0)[x_0, x_1] + (\mathbf{x} - x_0)(\mathbf{x} - x_1)[x_0, x_1, x_2] + (\mathbf{x} - x_0)(\mathbf{x} - x_1)(\mathbf{x} - x_2)[x_0, x_1, x_2, x_3]$$

Erro de truncatura

$$R_n(x) = (x - x_0)(x - x_1) \cdots (x - x_{n-1})(x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

com $\xi \in [a, b]$.

O erro de truncatura cometido com a aproximação, para um certo x do intervalo [a,b], que contém $x_0, x_1, x_2, \ldots, x_{n-1}, x_n$ - pontos usados para construir o polinómio de grau n - é estimado:

• CASO 1: se f(x) for dada por uma expressão, então

$$|R_n(x)| \leq |(x-x_0)(x-x_1)\cdots(x-x_{n-1})(x-x_n)| \frac{1}{(n+1)!} M_{n+1}$$

Erro de truncatura

em que

$$\left| \left[f^{(n+1)}(x) \right]_{[a,b]} \right| \leq M_{n+1}.$$

ullet CASO 2: senão - f(x) é dada por uma tabela de valores

$$|R_n(x)| \le |(x-x_0)\cdots(x-x_{n-1})(x-x_n)| |(dd de ordem n+1)|$$

em que

$$(dd \ de \ ordem \ n+1) = [x_0, x_1, \dots, x_{n-1}, x_n, x_z]$$

se só existir uma, ou a maior delas em valor absoluto se existirem mais que uma.

Exercício 1

Os registos efetuados numa linha de montagem são os seguintes:

- Tendo sido recebidos pedidos para a montagem de 8 unidades, use interpolação cúbica para estimar o tempo (em horas) necessário para satisfazer esse pedido.
- 2 Estime o erro de truncatura cometido na alínea anterior com o pedido de 8 unidades.

Resolução do Exercício 1

- Se se pretende interpolação cúbica, então
 - o polinómio é de grau 3 (n = 3)
 - são necessários 4(n+1) pontos.

Usa-se o polinómio interpolador de Newton.

$$p_3(x) = f_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] +$$

$$(x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3]$$

Para a montagem de 8 unidades:

1) Escolher/selecionar os pontos que estão mais próximos de 8, incluindo o que está à sua esquerda e à direita.

Por isso, os pontos selecionados são: 4, 6, 7, 10.

Resolução do Exercício 1 (cont.)

2) Construir a tabela das diferenças divididas baseada nesses pontos

2) Construir à tabéla das diferenças divididas basel										
i	Xi	f_i	dd1	dd2	dd3					
0	4	4								
			0.500000							
1	6	5		0.166667						
			1.000000		-0.013889					
2	7	6		0.083333						
			1.333333							
3	10	10								

3) Construir o polinómio

$$p_3(x) = 4 + (x-4) * 0.500000 + (x-4)(x-6) * 0.166667 + (x-4)(x-6)(x-7) * (-0.013889)$$

4) Estimar o tempo de montagem de 8 unidades.

$$p_3(8) = 7.2222$$

Resolução do Exercício 1 (cont.)

Para calcular o erro de truncatura, utiliza-se a expressão

$$|R_3(x)| \le |(x-x_0)(x-x_1)(x-x_2)(x-x_3)||dd4|$$

Acrescentar um ponto à tabela das diferenças divididas construída anteriormente, para poder calcular a *dd*4.

i	Xi	f_i	dd1	dd2	dd3	dd4		
0	4	4						
			0.500000					
1	6	5		0.166667				
			1.000000		-0.013889			
2	7	6		0.083333		-0.013889		
			1.333333		0.000000			
3	10	10		0.083333				
			1.000000					
z	3	3						
$ R_3(x) \le (x-4)(x-6)(x-7)(x-10) * -0.013889 $								

Substituindo para x = 8, $|R_3(8)| = 0.222224$.

Exercício 2

Considere a seguinte tabela de uma função polinomial

Sem recorrer à expressão analítica de p(x):

- Mostre que p(x) é um polinómio interpolador de grau 2.
- ② Determine p(10).

Escreva a expressão de $p_2(x)$.

Resolução do Exercício 2

Construir a tabela das diferenças divididas

Xi	f_i	dd1	dd2	dd3
-1	-1			
		-2		
0	-3		2	
		2		0
1	-1		2	
		6		0
2	5		2	
		10		0
3	15		2	
		14		
4	29			

Como as dd2 são todas iguais entre si (e diferentes de zero), consequentemente as dd3 são iguais a zero, e conclui-se que p(x) é um polinómio interpolador de grau 2.

Resolução do Exercício 2 (cont.)

② Para determinar p(10), sem calcular a expressão de p(x), incluir o ponto interpolador (10) no final da tabela e determinar as diferenças divididas de ordem 1, dd1, sabendo que a dd2 = 2.

x _i	f_i	dd1	dd2	dd3	14-A
-1	-1	-2			$\frac{14}{3-10} = 2$
0	-3	2	2	0	A = 28
1	-1	6	2	0	20 8
2	5	6	2		$\frac{29 - B}{4 - 10} = 28$
3	15	10	2	0	4 – 10
4	29	14	2		B = 197
	В	Α	_		Logo, $p(10) = 197$.
10	D				==0=1 P(=0) =011

$$p_2(x) = -1 + (x+1) * (-2) + (x+1) * x * (2)$$

Exercício 3

Pretende-se construir um desvio entre duas linhas de caminho de ferro paralelas. O desvio deve corresponder a um polinómio de grau três que une os pontos $(x_0, f_0) = (0, 0)$ e (x_4, f_4) , como mostra a figura

Com base nos dados da tabela

Xi	0	1	1.5	2	<i>X</i> 4
$f_i = p_3(x_i)$	0	0.3125	0.6328125	1	f_4

verifique se o ponto $(x_4, f_4) = (4, 2)$ pertence ao polinómio. Use 7 casas decimais nos cálculos.

Resolução do Exercício 3

Para sabermos se o ponto $(x_4, f_4) = (4, 2)$ pertence ao polinómio de grau 3, podemos começar por calcular as diferenças divididas com base em todos os pontos da tabela, incluindo o ponto $(x_4, f_4) = (4, 2)$.

x _i	f_i	dd1	dd2	dd3	dd4
0	0				
		0.3125			
1	0.3125		0.21875		
		0.640625		-0.0625	
1.5	0.6328125		0.09375		0
		0.734375		-0.0625	
2	1		-0.09375		
		0.5			
4	2				

Uma vez que as dd3 são iguais e a dd4 é zero, conclui-se que f é um polinómio de grau 3 e o ponto (4,2) pertence a esse polinómio.