Реферат на тему

Коллаборация JEDI: В поиске электрического дипольного момента частиц

Аспирант	А.Е. Аксентьев		
	группа А15-202		
Научный руководитель: Доц., к.фм.н.	С.М. Полозов		

Содержание

1	Пог	иск ЭД	IM в накопительном кольце	2
2	Нав	копите	ельные кольца для поиска дейтронного ЭДМ	2
	2.1	FS KO	льцо	4
		2.1.1	Концепция эксперимента	4
		2.1.2	Структура ускорителя	4
		2.1.3	Декогеренция спина	4
		2.1.4	Систематические ошибки	4
	2.2	QFS 1	кольцо	4
		2.2.1	Концепция эксперимента	4
		2.2.2	Структура ускорителя	4
		2.2.3	Калибровка	4

Введение

Зачем искать ЭДМ.

- Барионная асимметрия вселенной;
- Условия Сахарова;
- Связь ЭДМ с нарушениями Р-,Т-симметрий
- Предсказания Стандартной Модели о величине ЭДМ;
- Если действительно найдём ЭДМ больше, чем предсказывает СМ, то значит нашли физику за её пределами.

Поиск ЭДМ — это мегазадача, над которой работает множество исселдовательских групп по всему миру. В частности, в JEDI коллаборации участвуют, среди прочих, исследователи из: CERN, Петербургского Института Ядерной Физики (Гатчина, Россия), Brookhaven National Laboratory (Аптон, Нью-Йорк, США), IKP Forschungszentrum Jülich (Юлих, Германия), LPSC (Гренобль Франция), Istituto Nazionale di Fisica Nucleare (Феррара, Италия). [1]

1 Поиск ЭДМ в накопительном кольце

Мегазадача требует мегаустановку, для своего решения. Как искать ЭДМ с помощью накопительного кольца.

- Что такое накопительное кольцо;
- Уравнение Т-ВМТ;

short: Условие заморозки спина => концепция Frozen Spin (BNL proposal [2]);

short: Незначительное ослабление полезного сигнала при релаксации FS условия => концепция Quasi-frozen Spin (Сеничев [3]);

summary: Четыре фундаментальные концепции поиска ЭДМ в неидеальном накопительном кольце.

2 Накопительные кольца для поиска дейтронного ЭДМ

2.1 FS кольцо

2.1.1 Концепция эксперимента

Измеряем рост вертикальной компоненты поляризации за 1000 секунд.

Рис. 1: Четыре концепции.

2.1.2 Структура ускорителя

2.1.3 Декогеренция спина

Ограничивает врямя измерения => нужно достичь 1000 секунд. Методы борьбы.

2.1.4 Систематические ошибки

2.2 QFS кольцо

2.2.1 Концепция эксперимента

Фитируем сигнал, оцениваем частоту.

2.2.2 Структура ускорителя

Два варианта структуры.

2.2.3 Калибровка

Не подавляем МДМ прецессию спина => сравнение CW/CCW частот => калибровка. Как производится калибровка магнитного поля.

Заключение

На данный момент, в исследовательской программе CERN планируется пауза на десять лет [в связи с анализом данных по Хиггсу?]. В связи с этим рассматривается список задач фундаментальной физики, которыми можно было бы заняться в это время. Среди приоритетных задач этого списка поиск ЭДМ.

Поскольку протонное кольцо можно сделать полностью электростатическим (позволяет величина G), в то время как дейтронное принципиально требует магнитные элементы, если ЦЕРН решит заняться поиском ЭДМ, вероятнее всего будет построено протонное кольцо.

Список литературы

- [1] JEDI Collaboration. http://collaborations.fz-juelich.de/ikp/jedi/index.shtml
- [2] D. Anastassopoulos, V. Anastassopoulos, D. Babusci. AGS Proposal: Search for a permanent electric dipole moment of the deuteron nucleus at the $10^{-29}e \cdot cm$ level. [Internet]. BNL; 2008 [cited 2016 Nov 25]. Available from: https://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf

[3] Yurij Senichev. Search for the Charged Particle Electric Dipole Moments in Storage Rings. In: 25th Russian Particle Accelerator Conf(RuPAC'16), St Petersburg, Russia, November 21-25, 2016 [Internet]. JACOW, Geneva, Switzerland; 2017 [cited 2017 Apr 5]. p. 6-10. Available from: http://accelconf.web.cern.ch/AccelConf/rupac2016/papers/mozmh03.pdf