

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ <u>Фундаментальные науки</u> КАФЕДРА <u>Прикладная математика</u> Домашнее задание по курсу "Программные средства математического моделирования Оптимизация в МАТLAB Студент <u>ФН2-11М</u> (Подпись, дата) <u>Г. Э. Сербин</u> (И. О. Фамилия)			,	,	
A Домашнее задание по курсу "Программные средства математического моделирования $Onmumusauus\ s\ MATLAB$	ФАКУЛЬТЕ	Т	Фундаментальные на	уки	
"Программные средства математического моделирования $Onmu$ мизация в $MATLAB$ Студент Φ H2-11М					
Студент <u>ФН2-11М</u> (Группа) (Подпись, дата) <u>Г. Э. Сербин</u> (И. О. Фамилия)	"Програ	, ,			
(Группа) (Подпись, дата) (И.О. Фамилия)		$Onmu$ м \cdot	изация в МАТ	LAB	
(Группа) (Подпись, дата) (И.О. Фамилия)					
(Группа) (Подпись, дата) (И.О. Фамилия)					
	Студент	ФН2-11М	(Поличес доле)		
A R Karmor		(1 pynna)	(подпись, дата)	(и. О. Фамилия)	
Преподаватель (Подпись, дата) (И. О. Фамилия)	Преподаватель		(Полинет пода)	А.В. Кавинов	

1. Постановка задачи

Попробуем построить зависимость между средней заработной платой и количеством разводов. Для анализа возьмем данные 2017 года по 85 субъектам РФ:

- 1. Средняя заработная плата в субъектах [1];
- 2. Число зарегистрированных разводов в расчете на 1000 человек в субъектах [2]. Распределению по размерам заработной платы подлежат работники, состоящие в списочном составе организаций и отработавшие все рабочие дни апреля в соответствии с принятым режимом работы в организациях, включая работавших неполное рабочее время. Не включаются в обследование работники, принятые и выбывшие в отчетном месяце; имевшие листки временной нетрудоспособности; находившиеся в отпуске по беременности и родам, отпуске по уходу за ребенком; а также внешние совместители и работники несписочного состава.

2. Программа

Данные имеют вид data = [salary';divorce']. Аппроксимируем данные линейной функцией polycoeffs1 = polyfit(data(1,:),data(2,:),1). Выведем на экран среднее отклонение

```
error = sum((data(2,:) - polyval(polycoeffs1,data(1,:))).^2);
error = sqrt(error/length(data));
fprintf('y=%fx+%f, error = %f\n',polycoeffs1(1),polycoeffs1(2),error);
```

Получаем $y \approx 0.031845x + 3.056852$. Ошибка составила 0.797020.

Теперь, аналогичным образом, аппроксимируем данные полиномом третьей степени polycoeffs3 = polyfit(data(1,:),data(2,:),3). Получаем $y \approx 0.000050x^3 - 0.008623x^2 + 0.481332x - 3.821161$. Ошибка составила 0.702743.

Наконец, аппроксимируем данные с помощью модели $y=p_1-\frac{p_2}{x+p_3}$: model = @(params,x) params(1)- params(2)*1./(x+params(3));

где p_1, p_2, p_3 — параметры, которые нужно найти из задачи минимизации функционала ошибок:

```
errorFunc = @(params,data) sum((data(2,:)-model(params,data(1,:))).^ 2); options = optimset('TolX',10^(-6),'TolFun',10^(-6),'MaxFunEvals',10000); [params,error] = fminsearch(@(p) errorFunc(p,data), [5 10 10], options); Получаем y \approx 4.984233 - \frac{7.434033}{x-18.520040}. Среднее отклонение sqrt(error/length(data)) равно 0.636257.
```

3. Визуализация

```
plot(salary,divorce,'*');
hold on;
grid on;
a = min(data(1,:));
b = max(data(1,:));
x=linspace(a,b,100);
plot(x,polyval(polycoeffs1,x),x,polyval(polycoeffs3,x),x,model(params,x))
t = title({'Зависимость количества разводов','от размера зарплаты'});
t.FontSize = 12;
xlabel({'Средняя зарплата', 'тыс. руб.'},'FontSize',12);
ylabel('Число разводов на 1000 человек','FontSize',12);
legend('Данные по субъектам РФ (2017)','Линейная аппроксимация',...
'Полином 3-го порядка','$p_1 -\frac{p_2}{x+p_3}$',...
'Interpreter','latex','Location','southeast','FontSize',12);
```

На рисунке 1 представлены исходные данные и все варианты аппроксимаций.

Литература

- 1. Средняя зарплата, статистика по России. [Электронный ресурс]. URL: https://russia.duck.consulting/maps/184/2017 (дата обращения: 04.12.2022).
- 2. Количество разводов, статистика по России. [Электронный ресурс]. URL: https://russia.duck.consulting/maps/8/2017 (дата обращения: 04.12.2022).

Рис. 1. Визуализация