Your Diffusion Model is Secretly a Zero-Shot Classifier

Dmitry Bylinkin

MIPT

2024

Introduction

- Diffusion models are state-of-the-art for sampling from unknown distribution.
- Proposed paper demonstrates their ability to perform zero-shot classification.
- Key approach: leveraging density estimates from diffusion models.

Methodology

Diffusion models use a noising-denoising process:

$$p_{\theta}(x_0|c) = \int p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t,c) dx_{1:T},$$

where $p(x_T) \in \mathcal{N}(0,1)$.

Noising:

$$x_t = \sqrt{\alpha_{t_i}} x + \sqrt{1 - \alpha_{t_i}} \epsilon_i.$$

ELBO approximation

$$-\mathbb{E}_{\epsilon}\left[\sum_{t=1}^{T} w_{t} \|\epsilon - \epsilon_{\theta}(x_{t}, c)\|^{2} - \log p_{\theta}(x_{0} \mid x_{1}, c)\right] + C.$$

Methodology

Classification with Bayes' theorem:

$$p_{\theta}(c_i \mid \mathbf{x}) = \frac{p(c_i)p_{\theta}(\mathbf{x} \mid c_i)}{\sum_j p(c_j)p_{\theta}(\mathbf{x} \mid c_j)}.$$

Monte Carlo estimation for prediction error:

$$\mathbb{E}_{t,\epsilon}[\|\epsilon - \epsilon_{\theta}(x_t, c)\|^2] \approx \frac{1}{N} \sum_{i=1}^{N} \left\| \epsilon_i - \epsilon_{\theta} \left(\sqrt{\alpha_{t_i}} \mathbf{x} + \sqrt{1 - \alpha_{t_i}} \epsilon_i, c_j \right) \right\|^2.$$

• Final result:

$$p_{\theta}(c_i|x) = \frac{1}{\sum_j \exp\{\mathbb{E}_{t,\epsilon}[\|\epsilon - \epsilon_{\theta}(x_t, c_i)\|^2 - \|\epsilon - \epsilon_{\theta}(x_t, c_j)\|^2]\}}.$$

Diffusion Classifier Overview

- Uses pre-trained diffusion models like Stable Diffusion.
- Estimates conditional densities p(x|c) for each class c.
- Key steps:
 - Add noise to the input image.
 - Predict noise for each class.
 - Ompare prediction errors to identify the best class.
- No additional training required.

Practical Insights

Experiments

	Zero-shot?	Food	CIFAR10	Aircraft	Pets	Flowers	STL10	ImageNet	ObjectNet
Synthetic SD Data	✓	12.6	35.3	9.4	31.3	22.1	38.0	18.9	5.2
SD Features	X	73.0	84.0	35.2	75.9	70.0	87.2	56.6	10.2
Diffusion Classifier (ours)	\checkmark	77.9	87.1	24.3	86.2	59.4	95.3	58.9	38.3
CLIP ResNet-50	✓	81.1	75.6	19.3	85.4	65.9	94.3	58.2	40.0
OpenCLIP ViT-H/14	✓	92.7	97.3	42.3	94.6	79.9	98.3	76.8	69.2

Experiments

Method	ID	OOD					
Withou	IN	IN-v2	IN-A	ObjectNet			
ResNet-18	70.6	58.3	0.3	26.6			
ResNet-34	73.1	61.3	0.4	31.6			
ResNet-50	77.6	63.2	0.0	35.6			
ResNet-101	77.6	66.8	1.6	38.2			
ViT-L/32	78.0	65.6	5.2	29.9			
ViT-L/16	80.3	68.7	7.5	36.7			
ViT-B/16	81.5	69.7	9.4	37.8			
Diffusion Classifier	77.3	64.5	19.6	32.3			

Conclusion

- Generative models like diffusion models can perform discriminative tasks.
- Diffusion Classifier achieves competitive results in zero-shot and supervised classification.
- Future directions:
 - Reducing inference time.
 - Optimizing models for classification tasks.

Questions?