Elements of Information Theory

Elements of Information Theory
Thomas M. Cover, Joy A. Thomas
Copyright © 1991 John Wiley & Sons, Inc.
Print ISBN 0-471-06259-6 Online ISBN 0-471-20061-1

WILEY SERIES IN TELECOMMUNICATIONS

Donald L. Schilling, Editor City College of New York

Digital Telephony, 2nd Edition John Bellamy

Elements of Information Theory
Thomas M. Cover and Joy A. Thomas

Telecommunication System Engineering, 2nd Edition Roger L. Freeman

Telecommunication Transmission Handbook, 3rd Edition Roger L. Freeman

Introduction to Communications Engineering, 2nd Edition Robert M. Gagliardi

Expert System Applications to Telecommunications Jay Liebowitz

Synchronization in Digital Communications, Volume 1 Heinrich Meyr and Gerd Ascheid

Synchronization in Digital Communications, Volume 2 Heinrich Meyr and Gerd Ascheid (in preparation)

Computational Methods of Signal Recovery and Recognition Richard J. Mammone (in preparation)

Business Earth Stations for Telecommunications Walter L. Morgan and Denis Rouffet

Satellite Communications: The First Quarter Century of Service David W. E. Rees

Worldwide Telecommunications Guide for the Business Manager Walter L. Vignault

Elements of Information Theory

THOMAS M. COVER

Stanford University Stanford, California

JOY A. THOMAS

IBM T. J. Watson Research Center Yorktown Heights, New York

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

New York / Chichester / Brisbane / Toronto / Singapore

Copyright © 1991 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

ISBN 0-471-20061-1.

This title is also available in print as ISBN 0-471-06259-6

For more information about Wiley products, visit our web site at www.Wiley.com.

Library of Congress Cataloging in Publication Data:

```
Cover, T. M., 1938 —
Elements of Information theory / Thomas M. Cover, Joy A. Thomas.
p. cm. — (Wiley series in telecommunications)
"A Wiley-Interscience publication."
Includes bibliographical references and index.
ISBN 0-471-06259-6
1. Information theory. I. Thomas, Joy A. II. Title.
III. Series.
Q360.C68 1991
003'.54 — dc20
90-45484
CIP
```

Printed in the United States of America

20 19 18 17 16 15 14 13

To my father Tom Cover

To my parents
Joy Thomas

Preface

This is intended to be a simple and accessible book on information theory. As Einstein said, "Everything should be made as simple as possible, but no simpler." Although we have not verified the quote (first found in a fortune cookie), this point of view drives our development throughout the book. There are a few key ideas and techniques that, when mastered, make the subject appear simple and provide great intuition on new questions.

This book has arisen from over ten years of lectures in a two-quarter sequence of a senior and first-year graduate level course in information theory, and is intended as an introduction to information theory for students of communication theory, computer science and statistics.

There are two points to be made about the simplicities inherent in information theory. First, certain quantities like entropy and mutual information arise as the answers to fundamental questions. For example, entropy is the minimum descriptive complexity of a random variable, and mutual information is the communication rate in the presence of noise. Also, as we shall point out, mutual information corresponds to the increase in the doubling rate of wealth given side information. Second. the answers to information theoretic questions have a natural algebraic structure. For example, there is a chain rule for entropies, and entropy and mutual information are related. Thus the answers to problems in data compression and communication admit extensive interpretation. We all know the feeling that follows when one investigates a problem, goes through a large amount of algebra and finally investigates the answer to find that the entire problem is illuminated. not by the analysis, but by the inspection of the answer. Perhaps the outstanding examples of this in physics are Newton's laws and **viii** PREFACE

Schrodinger's wave equation. Who could have foreseen the awesome philosophical interpretations of Schrödinger's wave equation?

In the text we often investigate properties of the answer before we look at the question. For example, in Chapter 2, we define entropy, relative entropy and mutual information and study the relationships and a few interpretations of them, showing how the answers fit together in various ways. Along the way we speculate on the meaning of the second law of thermodynamics. Does entropy always increase? The answer is yes and no. This is the sort of result that should please experts in the area but might be overlooked as standard by the novice.

In fact, that brings up a point that often occurs in teaching. It is fun to find new proofs or slightly new results that no one else knows. When one presents these ideas along with the established material in class, the response is "sure, sure, sure." But the excitement of teaching the material is greatly enhanced. Thus we have derived great pleasure from investigating a number of new ideas in this text book.

Examples of some of the new material in this text include the chapter on the relationship of information theory to gambling, the work on the universality of the second law of thermodynamics in the context of Markov chains, the joint typicality proofs of the channel capacity theorem, the competitive optimality of Huffman codes and the proof of Burg's theorem on maximum entropy spectral density estimation. Also the chapter on Kolmogorov complexity has no counterpart in other information theory texts. We have also taken delight in relating Fisher information, mutual information, and the Brunn-Minkowski and entropy power inequalities. To our surprise, many of the classical results on determinant inequalities are most easily proved using information theory.

Even though the field of information theory has grown considerably since Shannon's original paper, we have strived to emphasize its coherence. While it is clear that Shannon was motivated by problems in communication theory when he developed information theory, we treat information theory as a field of its own with applications to communication theory and statistics.

We were drawn to the field of information theory from backgrounds in communication theory, probability theory and statistics, because of the apparent impossibility of capturing the intangible concept of information.

Since most of the results in the book are given as theorems and proofs, we expect the elegance of the results to speak for themselves. In many cases we actually describe the properties of the solutions before introducing the problems. Again, the properties are interesting in themselves and provide a natural rhythm for the proofs that follow.

One innovation in the presentation is our use of long chains of inequalities, with no intervening text, followed immediately by the

PREFACE ix

explanations. By the time the reader comes to many of these proofs, we expect that he or she will be able to follow most of these steps without any explanation and will be able to pick out the needed explanations. These chains of inequalities serve as pop quizzes in which the reader can be reassured of having the knowledge needed to prove some important theorems. The natural flow of these proofs is so compelling that it prompted us to flout one of the cardinal rules of technical writing. And the absence of verbiage makes the logical necessity of the ideas evident and the key ideas perspicuous. We hope that by the end of the book the reader will share our appreciation of the elegance, simplicity and naturalness of information theory.

Throughout the book we use the method of weakly typical sequences, which has its origins in Shannon's original 1948 work but was formally developed in the early 1970s. The key idea here is the so-called asymptotic equipartition property, which can be roughly paraphrased as "Almost everything is almost equally probable."

Chapter 2, which is the true first chapter of the subject, includes the basic algebraic relationships of entropy, relative entropy and mutual information as well as a discussion of the second law of thermodynamics and sufficient statistics. The asymptotic equipartition property (AEP) is given central prominence in Chapter 3. This leads us to discuss the entropy rates of stochastic processes and data compression in Chapters 4 and 5. A gambling sojourn is taken in Chapter 6, where the duality of data compression and the growth rate of wealth is developed.

The fundamental idea of Kolmogorov complexity as an intellectual foundation for information theory is explored in Chapter 7. Here we replace the goal of finding a description that is good on the average with the goal of finding the universally shortest description. There is indeed a universal notion of the descriptive complexity of an object. Here also the wonderful number Ω is investigated. This number, which is the binary expansion of the probability that a Turing machine will halt, reveals many of the secrets of mathematics.

Channel capacity, which is the fundamental theorem in information theory, is established in Chapter 8. The necessary material on differential entropy is developed in Chapter 9, laying the groundwork for the extension of previous capacity theorems to continuous noise channels. The capacity of the fundamental Gaussian channel is investigated in Chapter 10.

The relationship between information theory and statistics, first studied by Kullback in the early 1950s, and relatively neglected since, is developed in Chapter 12. Rate distortion theory requires a little more background than its noiseless data compression counterpart, which accounts for its placement as late as Chapter 13 in the text.

The huge subject of network information theory, which is the study of the simultaneously achievable flows of information in the presence of x PREFACE

noise and interference, is developed in Chapter 14. Many new ideas come into play in network information theory. The primary new ingredients are interference and feedback. Chapter 15 considers the stock market, which is the generalization of the gambling processes considered in Chapter 6, and shows again the close correspondence of information theory and gambling.

Chapter 16, on inequalities in information theory, gives us a chance to recapitulate the interesting inequalities strewn throughout the book, put them in a new framework and then add some interesting new inequalities on the entropy rates of randomly drawn subsets. The beautiful relationship of the Brunn-Minkowski inequality for volumes of set sums, the entropy power inequality for the effective variance of the sum of independent random variables and the Fisher information inequalities are made explicit here.

We have made an attempt to keep the theory at a consistent level. The mathematical level is a reasonably high one, probably senior year or first-year graduate level, with a background of at least one good semester course in probability and a solid background in mathematics. We have, however, been able to avoid the use of measure theory. Measure theory comes up only briefly in the proof of the AEP for ergodic processes in Chapter 15. This fits in with our belief that the fundamentals of information theory are orthogonal to the techniques required to bring them to their full generalization.

Each chapter ends with a brief telegraphic summary of the key results. These summaries, in equation form, do not include the qualifying conditions. At the end of each we have included a variety of problems followed by brief historical notes describing the origins of the main results. The bibliography at the end of the book includes many of the key papers in the area and pointers to other books and survey papers on the subject.

The essential vitamins are contained in Chapters 2, 3, 4, 5, 8, 9, 10, 12, 13 and 14. This subset of chapters can be read without reference to the others and makes a good core of understanding. In our opinion, Chapter 7 on Kolmogorov complexity is also essential for a deep understanding of information theory. The rest, ranging from gambling to inequalities, is part of the terrain illuminated by this coherent and beautiful subject.

Every course has its first lecture, in which a sneak preview and overview of ideas is presented. Chapter 1 plays this role.

Tom Cover Joy Thomas

Acknowledgments

We wish to thank everyone who helped make this book what it is. In particular, Toby Berger, Masoud Salehi, Alon Orlitsky, Jim Mazo and Andrew Barron have made detailed comments on various drafts of the book which guided us in our final choice of content. We would like to thank Bob Gallager for an initial reading of the manuscript and his encouragement to publish it. We were pleased to use twelve of his problems in the text. Aaron Wyner donated his new proof with Ziv on the convergence of the Lempel-Ziv algorithm. We would also like to thank Norman Abramson, Ed van der Meulen, Jack Salz and Raymond Yeung for their suggestions.

Certain key visitors and research associates contributed as well, including Amir Dembo, Paul Algoet, Hirosuke Yamamoto, Ben Kawabata, Makoto Shimizu and Yoichiro Watanabe. We benefited from the advice of John Gill when he used this text in his class. Abbas El Gamal made invaluable contributions and helped begin this book years ago when we planned to write a research monograph on multiple user information theory. We would also like to thank the Ph.D. students in information theory as the book was being written: Laura Ekroot, Will Equitz, Don Kimber, Mitchell Trott, Andrew Nobel, Jim Roche, Erik Ordentlich, Elza Erkip and Vittorio Castelli, Also Mitchell Oslick, Chien-Wen Tseng and Michael Morrell were among the most active students in contributing questions and suggestions to the text. Marc Goldberg and Anil Kaul helped us produce some of the figures. Finally we would like to thank Kirsten Goodell and Kathy Adams for their support and help in some of the aspects of the preparation of the manuscript.

xii ACKNOWLEDGMENTS

Joy Thomas would also like to thank Peter Franaszek, Steve Lavenberg, Fred Jelinek, David Nahamoo and Lalit Bahl for their encouragement and support during the final stages of production of this book.

Tom Cover Joy Thomas

Contents

Lis	t of F	Figures	xix
1	Intr	oduction and Preview	1
	1.1	Preview of the book / 5	
2	Entr	ropy, Relative Entropy and Mutual Information	12
	2.1	Entropy / 12	
	2.2	Joint entropy and conditional entropy / 15	
	2.3	Relative entropy and mutual information / 18	
	2.4	Relationship between entropy and mutual information /	19
	2.5	Chain rules for entropy, relative entropy and mutual information / 21	
	2.6	Jensen's inequality and its consequences / 23	
	2.7	The log sum inequality and its applications / 29	
	2.8	Data processing inequality / 32	
	2.9	The second law of thermodynamics / 33	
	2.10	Sufficient statistics / 36	
	2.11	Fano's inequality / 38	
		Summary of Chapter 2 / 40	
		Problems for Chapter 2 / 42	
		Historical notes / 49	
3	The	Asymptotic Equipartition Property	50
	3.1	The AEP / 51	

xiv CONTENTS

		High probability sets and the typical set / 55 Summary of Chapter 3 / 56 Problems for Chapter 3 / 57	
	<u> </u>	Historical notes / 59	
4	Entr	ropy Rates of a Stochastic Process	60
	4.1	Markov chains / 60	
		Entropy rate / 63	
	4.3	Example: Entropy rate of a random walk on a weighted graph / 66	
	4.4	Hidden Markov models / 69	
		Summary of Chapter 4 / 71	
		Problems for Chapter 4 / 72	
		Historical notes / 77	
5	Data	a Compression	78
	5.1	Examples of codes / 79	
	5.2	Kraft inequality / 82	
	5.3	Optimal codes / 84	
	5.4	Bounds on the optimal codelength / 87	
	5.5	Kraft inequality for uniquely decodable codes / 90	
	5.6	Huffman codes / 92	
	5.7	Some comments on Huffman codes / 94	
	5.8	Optimality of Huffman codes / 97	
	5.9	Shannon-Fano-Elias coding / 101	
	5.10	Arithmetic coding / 104	
	5.11	Competitive optimality of the Shannon code / 107	
	5.12	Generation of discrete distributions from fair coins / 110	
		Summary of Chapter 5 / 117	
		Problems for Chapter 5 / 118	
		Historical notes / 124	
6	Gan	abling and Data Compression	125
	6.1	The horse race / 125	
	6.2	Gambling and side information / 130	
	6.3	Dependent horse races and entropy rate / 131	
	6.4	The entropy of English / 133	
	6.5	Data compression and gambling / 136	

CONTENTS

6.6 Gambling estimate of the entropy of English / 138

Summary of Chapter 6 / 140

		Problems for Chapter 6 / 141	
		Historical notes / 143	
7	Koln	nogorov Complexity	144
	7.1	Models of computation / 146	
	7.2	Kolmogorov complexity: definitions and examples / 147	
	7.3	Kolmogorov complexity and entropy / 153	
	7.4	Kolmogorov complexity of integers / 155	
	7.5	Algorithmically random and incompressible sequences / 156	
	7.6	Universal probability / 160	
	7.7	The halting problem and the non-computability of Kolmogorov complexity / 162	
	7.8	Ω / 164	
	7.9	Universal gambling / 166	
	7.10	Occam's razor / 168	
	7.11	Kolmogorov complexity and universal probability / 169	
	7.12	5	
		Summary of Chapter 7 / 178	
		Problems for Chapter 7 / 180	
		Historical notes / 182	
8	Chai	nnel Capacity	183
	8.1	Examples of channel capacity / 184	
	8.2	Symmetric channels / 189	
	8.3	Properties of channel capacity / 190	
	8.4	Preview of the channel coding theorem / 191	
	8.5	Definitions / 192	
	8.6	Jointly typical sequences / 194	
	8.7	The channel coding theorem / 198	
	8.8	Zero-error codes / 203	
	8.9	Fano's inequality and the converse to the coding theorem / 204	
	8.10	Equality in the converse to the channel coding theorem / 207	
	8.11	Hamming codes / 209	
	8.12	Feedback capacity / 212	

xvi CONTENTS

8.13 The joint source channel coding theorem / 215

Summary of Chapter 8 / 218

		Problems for Chapter 8 / 220	
		Historical notes / 222	
9	Diff	erential Entropy	224
	9.1	Definitions / 224	
	9.2	The AEP for continuous random variables / 225	
	9.3	Relation of differential entropy to discrete entropy / 228	}
	9.4	Joint and conditional differential entropy / 229	
	9.5	Relative entropy and mutual information / 231	
	9.6	Properties of differential entropy, relative entropy and mutual information / 232	
	9.7	Differential entropy bound on discrete entropy / 234	
		Summary of Chapter 9 / 236	
		Problems for Chapter 9 / 237	
		Historical notes / 238	
10	The	Gaussian Channel	239
	10.1	The Gaussian channel: definitions / 241	
	10.2	Converse to the coding theorem for Gaussian channels / 245	
	10.3	Band-limited channels / 247	
	10.4	Parallel Gaussian channels / 250	
	10.5	Channels with colored Gaussian noise / 253	
	10.6	Gaussian channels with feedback / 256	
		Summary of Chapter 10 / 262	
		Problems for Chapter 10 / 263	
		Historical notes / 264	
11	Max	timum Entropy and Spectral Estimation	266
	11.1	Maximum entropy distributions / 266	
	11.2	Examples / 268	
	11.3	An anomalous maximum entropy problem / 270	
	11.4	Spectrum estimation / 272	
	11.5	1	
	11.6		
		Summary of Chapter 11 / 277	
		Problems for Chapter 11 / 277	
		Historical notes / 278	

CONTENTS xvii

12	Infor	mation Theory and Statistics	279
	12.1	The method of types / 279	
	12.2	The law of large numbers / 286	
	12.3	Universal source coding / 288	
	12.4	Large deviation theory / 291	
	12.5	Examples of Sanov's theorem / 294	
	12.6	The conditional limit theorem / 297	
	12.7	Hypothesis testing / 304	
	12.8	Stein's lemma / 309	
	12.9	Chernoff bound / 312	
	12.10	Lempel-Ziv coding / 319	
	12.11	Fisher information and the Cramér-Rao inequality / 326	
		Summary of Chapter 12 / 331	
		Problems for Chapter 12 / 333	
		Historical notes / 335	
13	Rate	Distortion Theory	336
	13.1	Quantization / 337	
	13.2	Definitions / 338	
	13.3	Calculation of the rate distortion function / 342	
	13.4	Converse to the rate distortion theorem / 349	
	13.5	Achievability of the rate distortion function / 351	
	13.6	Strongly typical sequences and rate distortion / 358	
	13.7	Characterization of the rate distortion function $\ /\ 362$	
	13.8	Computation of channel capacity and the rate distortion function / 364	
		Summary of Chapter 13 / 367	
		Problems for Chapter 13 / 368	
		Historical notes / 372	
14	Netw	ork Information Theory	374
	14.1	Gaussian multiple user channels / 377	
	14.2	Jointly typical sequences / 384	
	14.3	The multiple access channel / 388	
	14.4	Encoding of correlated sources / 407	
	14.5	Duality between Slepian-Wolf encoding and multiple access channels / 416	
	14.6	The broadcast channel / 418	
	14.7	The relay channel / 428	

xviii CONTENTS

Source coding with side information / 432

14.8

	14.9 14.10	Rate distortion with side information / 438 General multiterminal networks / 444	
	14.10	Summary of Chapter 14 / 450	
		Problems for Chapter 14 / 452	
		Historical notes / 457	
15	Infor	mation Theory and the Stock Market 4	59
	15.1	The stock market: some definitions / 459	
	15.2	Kuhn-Tucker characterization of the log-optimal portfolio / 462	
	15.3	Asymptotic optimality of the log-optimal portfolio / 465	
	15.4	Side information and the doubling rate / 467	
	15.5	Investment in stationary markets / 469	
	15.6	Competitive optimality of the log-optimal portfolio $/$ 471	
	15.7	The Shannon-McMillan-Breiman theorem / 474	
		Summary of Chapter 15 / 479	
		Problems for Chapter 15 / 480	
		Historical notes / 481	
16	Inequ	ualities in Information Theory 4	82
	16.1	Basic inequalities of information theory / 482	
	16.2	Differential entropy / 485	
	16.3	Bounds on entropy and relative entropy / 488	
	16.4	Inequalities for types / 490	
	16.5	Entropy rates of subsets / 490	
	16.6		
	16.7	The entropy power inequality and the Brunn-Minkowski inequality / 497	
	16.8	Inequalities for determinants / 501	
	16.9	Inequalities for ratios of determinants / 505	
		Overall Summary / 508	
		Problems for Chapter 16 / 509	
		Historical notes / 509	
Bib	liogra	phy 5	10
Lis	t of S	ymbols 5	26
Ind	lex	5	29

List of Figures

1.1	The relationship of information theory with other fields	2	
1.2	Information theoretic extreme points of communication	0	
	theory	$\frac{2}{7}$	
1.3	Noiseless binary channel.		
1.4	A noisy channel	7	
1.5	Binary symmetric channel	8	
2.1	H(p) versus p	15	
2.2	Relationship between entropy and mutual information	20	
2.3	Examples of convex and concave functions	24	
3.1	Typical sets and source coding	53	
3.2	Source code using the typical set	54	
4.1	Two-state Markov chain	62	
4.2	Random walk on a graph	66	
5.1	Classes of codes	81	
5.2	Code tree for the Kraft inequality	83	
5.3	Properties of optimal codes	98	
5.4	Induction step for Huffman coding	100	
5.5	Cumulative distribution function and Shannon-Fano-		
	Elias coding	101	
5.6	Tree of strings for arithmetic coding	105	
5.7	The sgn function and a bound	109	
5.8	Tree for generation of the distribution $(\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$	111	
5.9	Tree to generate a $(\frac{2}{3}, \frac{1}{3})$ distribution	114	
7.1	A Turing machine	147	

xix

LIST OF FIGURES

7.2	$H_0(p)$ versus p	158
7.3	Assignment of nodes	173
7.4	Kolmogorov sufficient statistic	177
7.5	Kolmogorov sufficient statistic for a Bernoulli sequence	177
7.6	Mona Lisa	178
8.1	A communication system	184
8.2	Noiseless binary channel.	185
8.3	Noisy channel with nonoverlapping outputs.	185
8.4	Noisy typewriter.	186
8.5	Binary symmetric channel.	187
8.6	Binary erasure channel	188
8.7	Channels after n uses	192
8.8	A communication channel	192
8.9	Jointly typical sequences	197
8.10	Lower bound on the probability of error	207
8.11	Discrete memoryless channel with feedback	213
8.12	Joint source and channel coding	216
9.1	Quantization of a continuous random variable	228
9.2	Distribution of \widetilde{X}	235
10.1	The Gaussian channel	240
10.2	Sphere packing for the Gaussian channel	243
10.3	Parallel Gaussian channels	251
10.4	Water-filling for parallel channels	253
10.5	Water-filling in the spectral domain	256
10.6	Gaussian channel with feedback	257
12.1	Universal code and the probability simplex	290
12.2	Error exponent for the universal code	291
12.3	The probability simplex and Sanov's theorem	293
12.4	Pythagorean theorem for relative entropy	297
12.5	Triangle inequality for distance squared	299
12.6	The conditional limit theorem	302
12.7	Testing between two Gaussian distributions	307
12.8	The likelihood ratio test on the probability simplex	308
12.9	The probability simplex and Chernoff's bound	313
12.10	Relative entropy $D(P_{\lambda} P_1)$ and $D(P_{\lambda} P_2)$ as a function of λ	314
12.11	Distribution of yards gained in a run or a pass play	317
12.12	Probability simplex for a football game	318
13.1	One bit quantization of a Gaussian random variable	337

LIST OF FIGURES	2000
-----------------	------

13.2	Rate distortion encoder and decoder	339
13.3	Joint distribution for binary source	343
13.4	Rate distortion function for a binary source	344
13.5	Joint distribution for Gaussian source	345
13.6	Rate distortion function for a Gaussian source	346
13.7	Reverse water-filling for independent Gaussian	
	random variables	349
13.8	Classes of source sequences in rate distortion theorem	361
13.9	Distance between convex sets	365
13.10	Joint distribution for upper bound on rate distortion function	370
14.1	A multiple access channel	375
14.2	A broadcast channel	375
14.3	A communication network	376
14.4	Network of water pipes	376
14.5	The Gaussian interference channel	382
14.6	The two-way channel	383
14.7	The multiple access channel	388
14.8	Capacity region for a multiple access channel	389
14.9	Independent binary symmetric channels	390
14.10	Capacity region for independent BSC's	391
14.11	Capacity region for binary multiplier channel	391
14.12	Equivalent single user channel for user 2 of a binary	
	erasure multiple access channel	392
14.13	Capacity region for binary erasure multiple access channel	392
14.14	Achievable region of multiple access channel for a fixed	352
	input distribution	395
14.15	m-user multiple access channel	403
14.16	Gaussian multiple access channel	403
14.17	Gaussian multiple access channel capacity	406
14.18	Slepian-Wolf coding	408
14.19	Slepian-Wolf encoding: the jointly typical pairs are	
	isolated by the product bins	412
14.20	Rate region for Slepian-Wolf encoding	414
14.21	Jointly typical fans	416
14.22	Multiple access channels	417
14.23	Correlated source encoding	417
14.24	Broadcast channel	418
14.25	Capacity region for two orthogonal broadcast channels	419

zzii LIST OF FIGURES

14.26	Binary symmetric broadcast channel	426
14.27	Physically degraded binary symmetric broadcast channel	426
14.28	Capacity region of binary symmetric broadcast channel	427
14.29	Gaussian broadcast channel	428
14.30	The relay channel	428
14.31	Encoding with side information	433
14.32	Rate distortion with side information	438
14.33	Rate distortion for two correlated sources	443
14.34	A general multiterminal network	444
14.35	The relay channel	448
14.36	Transmission of correlated sources over a multiple	
	access channel	449
14.37	Multiple access channel with cooperating senders	452
14.38	Capacity region of a broadcast channel	456
14.39	Broadcast channel—BSC and erasure channel	456
15.1	Sharpe-Markowitz theory: Set of achievable mean-	
	variance pairs	46 0
16.1	The function $f(t) = -t \log t$	489

Elements of Information Theory

Index

Page numbers set in **boldface** indicate the primary references.

Abramson, N. M., xi, 510 Levinson, 275 Acceptance region, 305, 306, 309-311 universal data compression, 107, 288-291. Achievable rate, 195, 404, 406, 454 Achievable rate distortion pair, 341 Algorithmically random, 156, 157, 166, 179, Achievable rate region, 389, 408, 421 181~182 Aczél, J., 511 Algorithmic complexity, 1, 3, 144, 146, 147, Adams, K., xi 162, 182 Adaptive source coding, 107 Alphabet: continuous, 224, 239 Additive channel, 220, 221 Additive white Gaussian noise (AWGN) discrete, 13 channel, see Gaussian channel effective size, 46, 237 Adler, R. L., 124, 510 input, 184 AEP (asymptotic equipartition property), ix, output, 184 x, 6, 11, **51**. See also Alphabetic code, 96 Shannon-McMillan-Breiman theorem Amari, S., 49, 510 continuous random variables, 226, 227 Approximation, Stirling's, 151, 181, 269, 282, discrete random variables, 51, 50-59, 65, 133, 216-218 Approximations to English, 133-135 joint, 195, 201-204, 384 Arimoto, S., 191, 223, 366, 367, 373, 510, 511. stationary ergodic processes, 474-480 See also Blahut-Arimoto algorithm stock market, 471 Arithmetic coding, 104-107, 124, 136-138 Ahlswede, R., 10, 457, 458, 510 Arithmetic mean geometric mean inequality, Algoet, P., xi, 59, 481, 510 492 ASCII, 147, 326 Algorithm: arithmetic coding, 104-107, 124, 136-138 Ash, R. B., 511 Blahut-Arimoto, 191, 223, 366, 367, 373 Asymmetric distortion, 368 Durbin, 276 Asymptotic equipartition property (AEP), Frank-Wolfe, 191 see AEP generation of random variables, 110-117 Asymptotic optimality of log-optimal Huffman coding, 92-110 portfolio, 466 Lempel-Ziv, 319-326 Atmosphere, 270

Atom, 114-116, 238	Birkhoff's ergodic theorem, 474
Autocorrelation, 272, 276, 277	Bit, 13, 14
Autoregressive process, 273	Blachman, N., 497, 509, 512
Auxiliary random variable, 422, 426	Blackwell, D., 512
Average codeword length, 85	Blahut, R. E., 191, 223, 367, 373, 512
Average distortion, 340, 356, 358, 361	Blahut-Arimoto algorithm, 191, 223, 366,
Average power, 239, 246	367, 373
Average probability of error, 194	Block code:
AWGN (additive white Gaussian noise), see	channel coding, 193, 209, 211, 221
Gaussian channel	source coding, 53-55, 288
Axiomatic definition of entropy, 13, 14, 42, 43	Block length, 8, 104, 211, 212, 221, 222, 291,
	356, 399, 445
Bahl, L. R., xi, 523	Boltzmann, L., 49. See also
Band, 248, 349, 407	Maxwell-Boltzmann distribution
Band-limited channel, 247–250, 262, 407	Bookie, 128
Bandpass filter, 247	Borel-Cantelli lemma, 287, 467, 478
Bandwidth, 249, 250, 262, 379, 406	Bose, R. C., 212, 512
	Bottleneck, 47
Barron, A., xi, 59, 276, 496, 511 Baseball, 316	Bounded convergence theorem, 329, 477, 496
	Bounded distortion, 342, 354
Base of logarithm, 13	
Bayesian hypothesis testing, 314–316, 332	Brain, 146
BCH (Bose-Chaudhuri-Hocquenghem)	Brascamp, H. J., 512
codes, 212	Breiman, L., 59, 512. See also
Beckner, W., 511	Shannon-McMillan-Breiman theorem
Bell, R., 143, 481, 511	Brillouin, L., 49, 512
Bell, T. C., 320, 335, 517	Broadcast channel, 10, 374, 377, 379, 382,
Bellman, R., 511	396, 420 , 418–428, 449, 451, 454–458
Bennett, C. H., 49, 511	common information, 421
Benzel, R., 458, 511	definitions, 420–422
Berger, T., xi, 358, 371, 373, 457, 458, 511, 525	degraded:
Bergmans, P., 457, 512	achievability, 422-424
Berlekamp, E. R., 512, 523	capacity region, 422
Bernoulli, J., 143	converse, 455
Bernoulli random variable, 14, 43, 56, 106,	physically degraded, 422
154, 157, 159, 164, 166, 175, 177, 236,	stochastically degraded, 422
291, 392, 454	examples, 418–420, 425–427
entropy, 14	Gaussian, 379-380, 427-428
rate distortion function, 342, 367-369	Brunn-Minkowski inequality, viii, x, 482, 497,
Berry's paradox, 163	498 , 500, 501, 509
Betting, 126-133, 137-138, 166, 474	BSC (binary symmetric channel), 186, 208,
Bias, 326 , 334, 335	220
Biased, 305, 334	Burg, J. P., 273, 278, 512
Bierbaum, M., 454, 512	Burg's theorem, viii, 274, 278
Binary entropy function, 14, 44, 150	Burst error correcting code, 212
graph of, 15	Buzo, A., 519
Binary erasure channel, 187-189, 218	
with feedback, 189, 214	Calculus, 78, 85, 86, 191, 267
multiple access, 391	Capacity, ix, 2, 7-10, 184-223, 239-265,
Binary multiplying channel, 457	377-458, 508
Binary random variable, see Bernoulli	channel, see Channel, capacity
random variable	Capacity region, 10, 374, 379, 380, 384, 389 ,
Binary rate distortion function, 342	390–458
Binary symmetric channel (BSC), 8, 186,	broadcast channel, 421 , 422
209, 212, 218, 220, 240, 343, 425-427, 456 Binning, 410, 411, 442, 457	multiple access channel, 389 , 396 Capital assets pricing model, 460
Difficulty, 410, 411, 442, 457	Capital assets dricing model, 460

Constitution 200	Chamalia thania 140
Carathéodory, 398	Church's thesis, 146
Cardinality, 226, 397, 398, 402, 422, 426	Cipher, 136
Cards, 36, 132, 133, 141	Cleary, J. G., 124, 320, 335, 511, 524
Carleial, A. B., 458, 512	Closed system, 10
Cascade of channels, 221, 377, 425	Cloud of codewords, 422, 423
Castelli, V., xi	Cocktail party, 379
Cauchy distribution, 486	Code, 3, 6, 8, 10, 18, 53–55, 78–124, 136–137,
Cauchy-Schwarz inequality, 327, 329	194–222, 242–258, 337–358, 374–458
Causal, 257, 258, 380	alphabetic, 96
portfolio strategy, 465, 466	arithmetic, 104–107, 136–137
Central limit theorem, 240, 291	block, see Block code
Central processing unit (CPU), 146	channel, see Channel code
Centroid, 338, 346	convolutional, 212
Cesáro mean, 64, 470, 505	distributed source, see Distributed source
Chain rule, 16, 21-24, 28, 32, 34, 39, 47, 65,	code
70, 204–206, 232, 275, 351, 400, 401, 414,	error correcting, see Error correcting code
435, 441, 447, 469, 470, 480, 483, 485,	Hamming, see Hamming code
490, 491, 493	Huffman, see Huffman code
differential entropy, 232	Morse, 78, 80
entropy, 21	rate distortion, 341
growth rate, 469	Reed-Solomon, 212
mutual information, 22	Shannon, see Shannon code
relative entropy, 23	source, see Source code
Chaitin, G. J., 3, 4, 182, 512, 513	Codebook:
Channel, ix, 3, 7-10, 183, 184, 185-223, 237,	channel coding, 193
239-265, 374-458, 508. See also Binary	rate distortion, 341
symmetric channel; Broadcast channel;	Codelength, 86–89, 94, 96, 107, 119
Gaussian channel; Interference channel;	Codepoints, 337
Multiple access channel; Relay channel;	Codeword, 8, 10, 54, 57, 78-124, 193-222,
Two-way channel	239-256, 355-362, 378-456
capacity:	Coding, random, see Random coding
computation, 191, 367	Coin tosses, 13, 110
examples, 7, 8, 184–190	Coin weighing, 45
information capacity, 184	Common information, 421
operational definition, 194	Communication channel, 1, 6, 7, 183, 186,
zero-error, 222, 223	215, 219, 239, 488
cascade, 221, 377, 425	Communication system, 8, 49, 184, 193, 215
discrete memoryless:	Communication theory, vii, viii, 1, 4, 145
capacity theorem, 198-206	Compact discs, 3, 212
converse, 206-212	Compact set, 398
definitions, 192	Competitive optimality:
feedback, 212-214	log-optimal portfolio, 471-474
symmetric, 189	Shannon code, 107-110
Channel code, 194, 215-217	Compression, see Data compression
Channel coding theorem, 198	Computable, 147, 161, 163, 164, 170, 179
Channels with memory, 220, 253, 256, 449	Computable probability distribution, 161
Channel transition matrix, 184, 189, 374	Computable statistical tests, 159
Chebyshev's inequality, 57	Computation:
Chernoff, H., 312, 318, 513	channel capacity, 191, 367
Chernoff bound, 309, 312-316, 318	halting, 147
Chernoff information, 312, 314, 315, 332	models of, 146
Chessboard, 68, 75	rate distortion function, 366–367
χ^2 (Chi-squared) distribution, 333, 486	Computers, 4-6, 144-181, 374
Choi, B. S., 278, 513, 514	Computer science, vii, 1, 3, 145, 162
Chung, K. L., 59, 513	Concatenation, 80, 90
G/	: ,,

Correlated random variables, 38, 238, 256, Concavity, 14, 23, 24-27, 29, 31, 40, 155, 191, 264 219, 237, 247, 267, 323, 369, 461-463, 479, 483, 488, 501, 505, 506. See also encoding of, see Slepian-Wolf coding Correlation, 38, 46, 449 Convexity Concavity of entropy, 14, 31 Costa, M. H. M., 449, 513, 517 Costello, D. J., 519 Conditional differential entropy, 230 Covariance matrix, 230, 254-256, 501-505 Conditional entropy, 16 Cover, T. M., x, 59, 124, 143, 182, 222, 265, Conditional limit theorem, 297-304, 316, 317, 278, 432, 449, 450, 457, 458, 481, 509, 332 510, 511, 513-515, 523 Conditionally typical set, 359, 370, 371 Conditional mutual information, 22, 44, 48, CPU (central processing unit), 146 Cramér, H., 514 Cramér-Rao bound, 325-329, 332, 335, 494 Conditional relative entropy, 23 Crosstalk, 250, 375 Conditional type, 371 Conditioning reduces entropy, 28, 483 Cryptography, 136 Consistent estimation, 3, 161, 165, 167, 327 Csiszár, I., 42, 49, 279, 288, 335, 358, Constrained sequences, 76, 77 364-367, 371, 454, 458, 514, 518 Continuous random variable, 224, 226, 229, Cumulative distribution function, 101, 102, 235, 237, 273, 336, 337, 370. See also 104, 106, 224 Differential entropy; Quantization; Rate distortion theory D-adic, 87 AEP, 226 Daróczy, Z., 511 Converse: Data compression, vii, ix 1, 3-5, 9, 53, 60, 78, broadcast channel, 355 117, 129, 136, 137, 215-217, 319, 331, 336, discrete memoryless channel, 206-212 374, 377, 407, 454, 459, 508 with feedback, 212-214 universal, 287, 319 Gaussian channel, 245-247 Davisson, L. D., 515 general multiterminal network, 445-447 de Bruijn's identity, 494 multiple access channel, 399-402 Decision theory, see Hypothesis testing rate distortion with side information, Decoder, 104, 137, 138, 184, 192, 203-220, 440-442 288, 291, 339, 354, 405-451, 488 rate distortion theorem, 349-351 Decoding delay, 121 Slepian-Wolf coding, 413-415 Decoding function, 193 source coding with side information, Decryption, 136 433-436 Degradation, 430 Convex hull, 389, 393, 395, 396, 403, 448, Degraded, see Broadcast channel, degraded; 450 Relay channel, degraded Convexification, 454 Dembo, A., xi, 498, 509, 514 Convexity, 23, 24-26, 29-31, 41, 49, 72, 309, Demodulation, 3 Dempster, A. P., 514 353, 362, 364, 396-398, 440-442, 454, 461, 462, 479, **482–484**, See also Density, xii, 224, 225-231, 267-271, 486-507 Concavity Determinant, 230, 233, 237, 238, 255, 260 capacity region: inequalities, 501-508 broadcast channel, 454 Deterministic, 32, 137, 138, 193, 202, 375, 432, multiple access channel, 396 457 conditional rate distortion function, 439 Deterministic function, 370, 454 entropy and relative entropy, 30-32 entropy, 43 rate distortion function, 349 Dice, 268, 269, 282, 295, 304, 305 Convex sets, 191, 267, 297, 299, 330, 362, Differential entropy, ix, 224, 225-238, 416, 454 485-497 distance between, 464 table of, 486-487 Convolution, 498 Digital, 146, 215 Convolutional code, 212 Digitized, 215 Coppersmith, D., 124, 510 Dimension, 45, 210

Dirichlet region, 338	Economics, 4
Discrete channel, 184	Effectively computable, 146
Discrete entropy, see Entropy	Efficient estimator, 327, 330
Discrete memoryless channel, see Channel,	Efficient frontier, 460
discrete memoryless	Eggleston, H. G., 398, 515
Discrete random variable, 13	Eigenvalue, 77, 255, 258, 262, 273, 349, 367
Discrete time, 249, 378	Einstein, A., vii
Discrimination, 49	Ekroot, L., xi
Distance:	El Gamal, A., xi, 432, 449, 457, 458, 513,
Euclidean, 296-298, 364, 368, 379	515
Hamming, 339, 369	Elias, P., 124, 515, 518. See also
\mathcal{L}_1 , 299	Shannon-Fano-Elias code
variational, 300	Empirical, 49, 133, 151, 279
Distortion, ix, 9, 279, 336-372, 376, 377,	Empirical distribution, 49, 106, 208, 266, 279,
439-444, 452, 458, 508. See also Rate	296, 402, 443, 485
distortion theory	Empirical entropy, 195
Distortion function, 339	Empirical frequency, 139, 155
Distortion measure, 336, 337, 339, 340-342,	Encoder, 104, 137, 184, 192
349, 351, 352, 367-369, 373	Encoding, 79, 193
bounded, 342, 354	Encoding function, 193
Hamming, 339	Encrypt, 136
Itakura-Saito, 340	Energy, 239, 243, 249, 266, 270
squared error, 339	England, 34
Distortion rate function, 341	English, 80, 125, 133-136, 138, 139, 143, 151,
Distortion typical, 352 , 352-356, 361	215, 291
Distributed source code, 408	entropy rate, 138, 139
Distributed source coding, 374, 377, 407.	models of, 133–136
See also Slepian-Wolf coding	Entropy, vii-x, 1, 3-6, 5, 9-13, 13, 14.
Divergence, 49	See also Conditional entropy;
DMC (discrete memoryless channel), 193,	Differential entropy; Joint entropy;
208	Relative entropy
Dobrushin, R. L., 515	and Fisher information, 494–496
Dog, 75	and mutual information, 19, 20
Doubling rate, 9, 10, 126, 126-131, 139, 460,	and relative entropy, 27, 30
462-474	Renyi, 499
Doubly stochastic matrix, 35, 72	Entropy of English, 133, 135, 138, 139, 143
Duality, x, 4, 5	Entropy power, 499
data compression and data transmission, 184	Entropy power inequality, viii, x, 263, 482, 494, 496, 496–501, 505, 509
gambling and data compression, 125, 128,	Entropy rate, 63 , 64-78, 88-89, 104, 131-139,
137	215-218
growth rate and entropy rate, 459, 470	differential, 273
multiple access channel and Slepian-Wolf	Gaussian process, 273–276
coding, 416–418	hidden Markov models, 69
rate distortion and channel capacity, 357	Markov chain, 66
source coding and generation of random	subsets, 490-493
variables, 110	Epimenides liar paradox, 162
Dueck, G., 457, 458, 515	Epitaph, 49
Durbin algorithm, 276	Equitz, W., xi
Dutch, 419	Erasure, 187-189, 214, 370, 391, 392, 449, 450,
Dutch book, 129	452
Dyadic, 103, 108 , 110, 113–116, 123	Ergodic, x, 10, 59, 65–67, 133, 215–217, 319–326, 332, 457, 471, 473, 474 , 475–478
Ebert, P. M., 265, 515	Erkip, E., xi

Erlang distribution, 486	empirical, 133-135, 282
Error correcting codes, 3, 211	Frequency division multiplexing, 406
Error exponent, 4, 291, 305-316, 332	Fulkerson, D. R., 376, 377, 516
Estimation, 1, 326, 506	Functional, 4, 13, 127, 252, 266, 294, 347, 362
spectrum, see Spectrum estimation	
Estimator, 326 , 326–329, 332, 334, 335, 488,	Gaarder, T., 450, 457, 516
494, 506	Gadsby, 133
efficient, 330	Gallager, R. G., xi, 222, 232, 457, 516, 523
Euclidean distance, 296-298, 364, 368, 379	Galois fields, 212
Expectation, 13, 16, 25	Gambling, viii-x, 11, 12, 125-132, 136-138,
Exponential distribution, 270, 304, 486	141, 143, 473
Extension of channel, 193	universal, 166, 167
Extension of code, 80	Game:
,	baseball, 316, 317
Face vase illusion, 182	football, 317, 318
Factorial, 282, 284	Hi-lo, 120, 121
function, 486	mutual information, 263
Fair odds, 129, 131, 132, 139-141, 166, 167,	red and black, 132
473	St. Petersburg, 142, 143
Fair randomization, 472, 473	Shannon guessing, 138
Fan, Ky, 237, 501, 509	stock market, 473
Fano, R. M., 49, 87, 124, 223, 455, 515. See	twenty questions, 6, 94, 95
also Shannon-Fano-Elias code	Game, theoretic optimality, 107, 108, 465
Fano code, 97, 124	Gamma distribution, 486
Fano's inequality, 38-40, 39 , 42, 48, 49,	Gas, 31, 266, 268, 270
204–206, 213, 223, 246, 400–402, 413–415,	Gaussian channel, 239–265. See also
435, 446, 447, 455	Broadcast channel; Interference channel;
F distribution, 486	Multiple access channel; Relay channel
Feedback:	additive white Gaussian noise (AWGN),
discrete memoryless channels, 189, 193,	239–247, 378
194, 212–214, 219, 223	achievability, 244–245
Gaussian channels, 256-264	capacity, 242
networks, 374, 383, 432, 448, 450, 457, 458	converse, 245-247
Feinstein, A., 222, 515, 516	definitions, 241
Feller, W., 143, 516	power constraint, 239
Fermat's last theorem, 165	band-limited, 247–250
Finite alphabet, 59, 154, 319	capacity, 250
Finitely often, 479	colored noise, 253–256
Finitely refutable, 164, 165	feedback, 256-262
First order in the exponent, 55, 281, 285	parallel Gaussian channels, 250–253
Fisher, R. A., 49, 516	Gaussian distribution, see Normal
Fisher information, x, 228, 279, 327, 328-332,	distribution
482, 494, 496, 497	Gaussian source:
Fixed rate block code, 288	quantization, 337, 338
Flag, 53	rate distortion function, 344-346
Flow of information, 445, 446, 448	Gauss-Markov process, 274-277
Flow of time, 72	Generalized normal distribution, 487
Flow of water, 377	General multiterminal network, 445
Football, 317, 318	Generation of random variables, 110-117
Ford, L. R., 376, 377, 516	Geodesic, 309
Forney, G. D., 516	Geometric distribution, 322
Fourier transform, 248, 272	Geometry:
Fractal, 152	Euclidean, 297, 357
Franaszek, P. A., xi, 124, 516	
	relative entropy, 9, 297, 308
Freque cy, 247, 248, 250, 256, 349, 406	relative entropy, 9, 297, 308 Geophysical applications, 273

Gilbert, E. W., 124, 516	i.i.d. (independent and identically
Gill, J. T., xi	distributed), 6
Goldbach's conjecture, 165	i.i.d. source, 106, 288, 342, 373, 474
Goldberg, M., xi	Images, 106
Goldman, S., 516	distortion measure, 339
Gödel's incompleteness theorem, 162-164	entropy of, 136
Goodell, K., xi	Kolmogorov complexity, 152, 178, 180, 181
Gopinath, B., 514	Incompressible sequences, 110, 157 ,
Gotham, 151, 409	156–158, 165, 179
Gradient search, 191	Independence bound on entropy, 28
Grammar, 136	Indicator function, 49, 165, 176, 193, 216
Graph:	Induction, 25, 26, 77, 97, 100, 497
binary entropy function, 15	Inequalities, 482–509
cumulative distribution function, 101	arithmetic mean geometric mean, 492
Kolmogorov structure function, 177	Brunn-Minkowski, viii, x, 482, 497, 498,
random walk on, 66–69	500, 501, 509
state transition, 62, 76	Cauchy-Schwarz, 327, 329
Gravestone, 49	Chebyshev's, 57
Gravitation, 169	determinant, 501-508
Gray, R. M., 182, 458, 514, 516, 519	entropy power, viii, x, 263, 482, 494, 496,
Grenander, U., 516	496–501, 505, 509
Grouping rule, 43	Fano's, 38-40, 39 , 42, 48, 49, 204-206, 213,
Growth rate optimal, 459	223, 246, 400-402, 413-415, 435, 446, 447,
Guiasu, S., 516	4 55, 516
	Hadamard, 233, 502
Hadamard inequality, 233, 502	information, 26 , 267, 484, 508
Halting problem, 162-163	Jensen's, 24, 25 , 26, 27, 29, 41, 47, 155,
Hamming, R. V., 209, 516	232, 247, 323, 351, 441, 464, 468, 482
Hamming code, 209-212	Kraft, 78, 82 , 83–92, 110–124, 153, 154, 163,
Hamming distance, 209-212, 339	171, 519
Hamming distortion, 339, 342, 368, 369	log sum, 29 , 30, 31, 41, 483
Han, T. S., 449, 457, 458, 509, 510, 517	Markov's, 47, 57 , 318, 466, 471, 478
Hartley, R. V., 49, 517	Minkowski, 505
Hash functions, 410	subset, 490–493, 509
Hassner, M., 124, 510	triangle, 18, 299
HDTV, 419	Young's, 498 , 499
Hekstra, A. P., 457, 524	Ziv's, 323
Hidden Markov models, 69–71	Inference, 1, 4, 6, 10, 145, 163
High probability sets, 55, 56	Infinitely often (i.o.), 467
Histogram, 139	Information, see Fisher information; Mutual
Historical notes, 49, 59, 77, 124, 143, 182,	information; Self information
222, 238, 265, 278, 335, 372, 457, 481, 509	Information capacity, 7, 184, 185-190, 204,
Hocquenghem, P. A., 212, 517	206, 218
Holsinger, J. L., 265, 517	Gaussian channel, 241 , 251, 253
Hopcroft, J. E., 517	Information channel capacity, see Information
Horibe, Y., 517	capacity
Horse race, 5, 125-132, 140, 141, 473	Information inequality, 27, 267, 484, 508
Huffman, D. A., 92, 124, 517	Information rate distortion function, 341,
Huffman code, 78, 87, 92-110, 114, 119,	342, 346, 349, 362
121–124, 171, 288, 291	Innovations, 258
Hypothesis testing, 1, 4, 10, 287, 304-315	Input alphabet, 184
Bayesian, 312-315	Input distribution, 187, 188
optimal, see Neyman–Pearson lemma	Instantaneous code, 78, 81, 82, 85, 90-92,
	96, 97, 107, 119-123. See also Prefix code
iff (if and only if), 86	Integrability, 229

Interference, ix, 10, 76, 250, 374, 388, 390, 11, 147, 144-182, 203, 276, 508 406, 444, 458 of integers, 155 Interference channel, 376, 382, 383, 458 and universal probability, 169-175 Gaussian, 382-383 Kolmogorov minimal sufficient statistic, 176 Kolmogorov structure function, 175 Intersymbol interference, 76 Kolmogorov sufficient statistic, 175-179, 182 Intrinsic complexity, 144, 145 Körner, J., 42, 279, 288, 335, 358, 371, 454, Investment, 4, 9, 11 457, 458, 510, 514, 515, 518 horse race, 125-132 stock market, 459-474 Kotel'nikov, V. A., 518 Investor, 465, 466, 468, 471-473 Kraft, L. G., 124, 518 Irreducible Markov chain, 61, 62, 66, 216 Kraft inequality, 78, 82, 83-92, 110-124, 153, ISDN, 215 154, 163, 173 Itakura-Saito distance, 340 Kuhn-Tucker conditions, 141, 191, 252, 255, 348, 349, 364, **462–466**, 468, 470–472 Jacobs, I. M., 524 Kullback, S., ix, 49, 335, 518, 519 Jaynes, E. T., 49, 273, 278, 517 Kullback Leibler distance, 18, 49, 231, 484 Jefferson, the Virginian, 140 Jelinek, F., xi, 124, 517 Lagrange multipliers, 85, 127, 252, 277, 294, Jensen's inequality, 24, 25, 26, 27, 29, 41, 308, 347, 362, 366, 367 47, 155, 232, 247, 323, 351, 441, 464, 468, Landau, H. J., 249, 519 482 Landauer, R., 49, 511 Johnson, R. W., 523 Langdon, G. G., 107, 124, 519 Joint AEP, 195, 196-202, 217, 218, 245, 297, Language, entropy of, 133-136, 138-140 352, 361, **384-388** Laplace, 168, 169 Laplace distribution, 237, 486 Joint distribution, 15 Joint entropy, 15, 46 Large deviations, 4, 9, 11, 279, 287, 292-318 Jointly typical, 195, 196-202, 217, 218, 297, Lavenberg, S., xi 334, 378, 384-387, 417, 418, 432, 437, 442, Law of large numbers: 443 for incompressible sequences, 157, 158, distortion typical, 352-356 179, 181 Gaussian, 244, 245 method of types, 286-288 strongly, 358-361, 370-372 strong, 288, 310, 359, 436, 442, 461, 474 Joint source channel coding theorem, weak, 50, 51, 57, 126, 178, 180, 195, 198, 215-218, **216** 226, 245, 292, 352, 384, 385 Joint type, 177, 371 Lehmann, E. L., 49, 519 Justesen, J., 212, 517 Leibler, R. A., 49, 519 Lempel, A., 319, 335, 519, 525 Kailath, T., 517 Lempel-Ziv algorithm, 320 Karush, J., 124, 518 Lempel-Ziv coding, xi, 107, 291, 319-326, Kaul, A., xi 332, 335 Kawabata, T., xi Leningrad, 142 Kelly, J., 143, 481, 518 Letter, 7, 80, 122, 133-135, 138, 139 Kemperman, J. H. B., 335, 518 Leung, C. S. K., 450, 457, 458, 514, 520 Kendall, M., 518 Levin, L. A., 182, 519 Keyboard, 160, 162 Levinson algorithm, 276 Khinchin, A. Ya., 518 Levy's martingale convergence theorem, 477 Kieffer, J. C., 59, 518 Lexicographic order, 53, 83, 104-105, Kimber, D., xi 137, 145, 152, 360 King, R., 143, 514 Liao, H., 10, 457, 519 Knuth, D. E., 124, 518 Liar paradox, 162, 163 Kobayashi, K., 458, 517 Lieb, E. J., 512 Kolmogorov, A. N., 3, 144, 147, 179, 181, 182, Likelihood, 18, 161, 182, 295, 306 238, 274, 373, 518 Likelihood ratio test, 161, 306-308, 312, 316 Kolmogorov complexity, viii, ix, 1, 3, 4, 6, 10, Lin, S., 519

Linde, Y., 519	process, 75, 274-278
Linear algebra, 210	property of normal, 234
Linear code, 210, 211	Maximum likelihood, 199, 220
Linear predictive coding, 273	Maximum posteriori decision rule, 314
List decoding, 382, 430–432	Maxwell-Boltzmann distribution, 266, 487
Lloyd, S. P., 338, 519	Maxwell's demon, 182
Logarithm, base of, 13	Mazo, J., xi
Logistic distribution, 486	McDonald, R. A., 373, 520
Log likelihood, 18, 58, 307	McEliece, R. J., 514, 520
Log-normal distribution, 487	McMillan, B., 59, 124, 520. See also
Log optimal, 127, 130, 137, 140, 143, 367,	Shannon-McMillan-Breiman theorem
461-473, 478-481	McMillan's inequality, 90–92, 117, 124
Log sum inequality, 29 , 30, 31, 41, 483	MDL (minimum description length), 182
Longo, G., 511, 514	Measure theory, x
Lovasz, L., 222, 223, 519	Median, 238
Lucky, R. W., 136, 519	Medical testing, 305
Lucky, 1t. W., 150, 519	Memory, channels with, 221, 253
Macroscopic, 49	Memoryless, 57, 75, 184. See also Channel,
Macrostate, 266, 268, 269 Magnetic recording, 76, 80, 124	discrete memoryless
	Mercury, 169
Malone, D., 140	Merges, 122
Mandelbrot set, 152	Merton, R. C., 520
Marcus, B., 124, 519	Message, 6, 10, 184
Marginal distribution, 17, 304	Method of types, 279–286, 490
Markov chain, 32 , 33–38, 41, 47, 49, 61 , 62,	Microprocessor, 148
66–77, 119, 178, 204, 215, 218, 435–437,	Microstates, 34, 35, 266, 268
441, 484	Midpoint, 102
Markov field, 32	Minimal sufficient statistic, 38, 49, 176
Markov lemma, 436, 443	Minimum description length (MDL), 182
Markov process, 36, 61, 120, 274–277. See	Minimum distance, 210–212, 358, 378
also Gauss-Markov process	between convex sets, 364
Markov's inequality, 47, 57, 318, 466, 471, 478	relative entropy, 297
Markowitz, H., 460	Minimum variance, 330
Marshall, A., 519	Minimum weight, 210
Martian, 118	Minkowski, H., 520
Martingale, 477	Minkowski inequality, 505
Marton, K., 457, 458, 518, 520	Mirsky, L., 520
Matrix:	Mixture of probability distributions, 30
channel transition, 7, 184 , 190, 388	Models of computation, 146
covariance, 238, 254-262, 330	Modem, 250
determinant inequalities, 501-508	Modulation, 3, 241
doubly stochastic, 35, 72	Modulo 2 arithmetic, 210, 342, 452, 458
parity check, 210	Molecules, 266, 270
permutation, 72	Moments, 234, 267, 271, 345, 403, 460
probability transition, 35, 61, 62, 66, 72, 77,	Money, 126-142, 166, 167, 471. See also
121	Wealth
state transition, 76	Monkeys, 160-162, 181
Toeplitz, 255, 273, 504, 505	Moore, E. F., 124, 516
Maximal probability of error, 193	Morrell, M., xi
Maximum entropy, viii, 10, 27, 35, 48, 75, 78,	Morse code, 78, 80
258, 262	Moy, S. C., 59, 520
conditional limit theorem, 269	Multiparameter Fisher information, 330
discrete random variable, 27	Multiple access channel, 10, 374, 377, 379,
distribution, 266 -272, 267	382, 387-407, 416-418, 446-454, 457
·	

Multiple access channel (Continued) achievability, 393	entropy of, 225, 230, 487 entropy power inequality, 497
capacity region, 389	generalized, 487
converse, 399	maximum entropy property, 234
with correlated sources, 448	multivariate, 230, 270, 274, 349, 368,
definitions, 388	501-506
duality with Slepian-Wolf coding, 416-418	Nyquist, H., 247, 248, 520
examples, 390-392	Nyquist-Shannon sampling theorem, 247, 248
with feedback, 450	
Gaussian, 378-379, 403-407	Occam's Razor, 1, 4, 6, 145, 161, 168, 169
Multiplexing, 250	Odds, 11, 58, 125 , 126–130, 132, 136, 141,
frequency division, 407	142, 467, 473
time division, 406	Olkin, I., 519
Multiuser information theory, see Network	Ω, 164, 165–167, 179, 181
information theory	Omura, J. K., 520, 524
Multivariate distributions, 229, 268	Oppenheim, A., 520
Multivariate normal, 230	Optimal decoding, 199, 379
Music, 3, 215	Optimal doubling rate, 127
Mutual information, vii, viii, 4-6, 9-12, 18,	Optimal portfolio, 459, 474
19–33, 40–49, 130, 131, 183–222, 231 ,	Oracle, 165
232-265, 341-457, 484-508	Ordentlich, E., xi
chain rule, 22	Orey, S., 59, 520
conditional, 22	Orlitsky, A., xi
Myers, D. L., 524	Ornstein, D. S., 520
	Orthogonal, 419
Nahamoo, D., xi	Orthonormal, 249
Nats, 13	Oscillate, 64
Nearest neighbor, 3, 337	Oslick, M., xi
Neal, R. M., 124, 524	Output alphabet, 184
Neighborhood, 292	Ozarow, L. H., 450, 457, 458, 520
Network, 3, 215, 247, 374, 376–378, 384, 445,	
447, 448, 450, 458	Pagels, H., 182, 520
Network information theory, ix, 3, 10, 374-458	Paradox, 142–143, 162, 163
Newtonian physics, 169	Parallel channels, 253, 264
Neyman, J., 520	Parallel Gaussian channels, 251–253
Neyman-Pearson lemma, 305, 306, 332	Parallel Gaussian source, 347–349
Nobel, A., xi	Pareto distribution, 487
Noise, 1, 10, 183, 215, 220, 238–264, 357, 374,	- · · · · · · · · · · · · · · · · ·
	Parity, 209, 211
376, 378–384, 388, 391, 396, 404–407, 444,	Parity check code, 209
450, 508	Parity check matrix, 210
additive noise channel, 220	Parsing, 81, 319 , 320, 322, 323, 325, 332, 335
Noiseless channel, 7, 416	Pasco, R., 124, 521
Nonlinear optimization, 191	Patterson, G. W., 82, 122, 123, 522
Non-negativity:	Pearson, E. S., 520
discrete entropy, 483	Perez, A., 59, 521
mutual information, 484	Perihelion, 169
relative entropy, 484	Periodic, 248
Nonsense, 162, 181	Periodogram, 272
Non-singular code, 80 , 80–82, 90	Permutation, 36, 189, 190, 235, 236, 369, 370
Norm:	matrix, 72
\mathcal{L}_1 , 299, 488	Perpendicular bisector, 308
\mathcal{L}_r , 498	Perturbation, 497
Normal distribution, 38 , 225, 230, 238–265,	Philosophy of science, 4
487. See also Gaussian channels, Gaussian	Phrase, 135, 319-325, 332
source	Physics, viii, 1, 4, 33, 49, 145, 161, 266

Dimboton I T 260 501	Rank 210
Pinkston, J. T., 369, 521	Rank, 210 Rao, C. R., 330, 334, 521
Pinsker, M. S., 238, 265, 457, 521 Pitfalls, 162	Rate, 1, 3, 4, 7, 9–11
Pixels, 152	achievable, see Achievable rate
Pollak, H. O., 249, 519, 523	channel coding, 194
Polya urn model, 73	entropy, see Entropy rate
Polynomial number of types, 280, 281, 286,	source coding, 55
	Rate distortion code, 340 , 351–370
288, 297, 302 Pombra, S., 265, 514	with side information, 441
Portfolio, 127, 143, 367, 459, 460, 461 ,	Rate distortion function, 341, 342–369
461-473, 478-481	binary source, 342
competitively optimal, 471–474	convexity of, 349
· · · · · · · · · · · · · · · · · · ·	Gaussian source, 344
log optimal, 127 , 130, 137, 139, 143, 367, 461–473, 478–481	parallel Gaussian source, 346
rebalanced, 461	Rate distortion function with side
Positive definite matrices, 255, 260, 501–507	information, 439 , 440–442
Posner, E., 514	Rate distortion region, 341
Power, 239 , 239–264, 272, 353, 357, 378–382,	Rate distortion theory, ix, 10, 287, 336–373
384, 403–407, 453, 458	achievability, 351–358
Power spectral density, 249, 262, 272	converse, 349
Precession, 169	theorem, 342
Prefix, 53, 81, 82, 84, 92, 98, 99, 102–104,	Rate region, 393 , 408, 411, 427, 448, 454,
121–124, 146, 154, 164, 167, 172,	456
319, 320	Rathie, P. N., 485, 524
Prefix code, 81 , 82, 84, 85, 92, 122, 124	Ray-Chaudhuri, D. K., 212, 512
Principal minor, 502	Rayleigh distribution, 487
Prior:	Rebalanced portfolio, 461
Bayesian, 312-316	Receiver, 3,7, 10, 183
universal, 168	Recurrence, 73, 75
Probability density, 224 , 225, 230, 276	Recursion, 73, 77, 97, 106, 147, 150
Probability mass function, 5, 13	Redistribution, 34
Probability of error, 193, 305	Redundancy, 122, 136, 184, 209, 216
average, 194, 199-202, 389	Reed, I. S., 212
maximal, 193, 202	Reed-Solomon codes, 212
Probability transition matrix, 6, 35, 61,	Reinvest, 126, 128, 142, 460
62, 66, 72, 77, 121	Relative entropy, 18, 231
Projection, 249, 333	Relative entropy "distance", 11, 18, 34, 287,
Prolate spheroidal functions, 249	364
Proportional gambling, 127, 129, 130, 137,	Relay channel, 376-378, 380-382, 430-434,
139, 143, 475	448, 451, 458
Punctuation, 133, 138	achievability, 430
Pythagorean theorem, 297, 301, 332	capacity, 430
, , , , , , , , , , , , , , , , , , , ,	converse, 430
Quantization, 241, 294, 336-338, 346, 368	definitions, 428
Quantized random variable, 228	degraded, 428, 430, 432
Quantizer, 337	with feedback, 432
•	Gaussian, 380
Rabiner, L. R., 521	physically degraded, 430
Race, see Horse race	reversely degraded, 432
Radio, 240, 247, 407, 418	Renyi entropy, 499
Radium, 238	Renyi entropy power, 499
Random coding, 3, 198, 203, 222, 357, 416,	Reverse water-filling, 349, 367
432	Reza, F. M., 521
Randomization, 472, 473	Rice, S. O., 521
Random number generator, 134	Rissanen, J. J., 124, 182, 276, 519, 521
- ·	· · · · · · · · · · · · · · · · · · ·

Dealer I of	Chamania thind the annual (note distantion
Roche, J., xi	Shannon's third theorem (rate distortion
Rook, 68, 76	theorem), 342
Run length, 47	Sharpe, W. F., 460, 481, 523
Saddlengint 969	Shimizu, M., xi
Saddlepoint, 263 St. Petershung peredox, 142-143	Shore, J. E., 523
St. Petersburg paradox, 142-143	Shuffles, 36, 48
Salehi, M., xi, 449, 457, 513	Side information, vii, 11
Salz, J., xi	and doubling rate, 125, 130, 131, 467-470,
Sampling theorem, 248	479, 480
Samuelson, P. A., 481, 520–522	and source coding, 377, 433-442, 451, 452,
Sandwich argument, 59, 471, 474, 475, 477,	458 Sigma algabra 474
481 Sancy J.N. 599	Sigma algebra, 474
Sanov, I. N., 522	Signal, 3
Sanov's theorem, 286, 292 , 291–296, 308, 313, 318	Signal to noise ratio, 250, 380, 405
	Simplex, 308, 309, 312, 463
Sardinas, A. A., 122, 522 Satellite, 240, 374, 379, 388, 423	Since function, 248
	Singular code, 81
Sato, H., 458, 522	Sink, 376
Scaling of differential entropy, 238	Slepian, D., 249, 407, 457, 523
Schafer, R. W., 521 Schalkwijk, J. P. M., 457, 517, 522, 525	Slepian-Wolf coding, 10, 377, 407-418, 433,
	444, 449, 451, 454, 457
Schnorr, C. P., 182, 522 Schulthoias P. M. 272, 520	achievability, 410–413
Schultheiss, P. M., 373, 520 Schwarz, G., 522	achievable rate region, 408, 409
	converse, 413-415
Score function, 327, 328	distributed source code, 408
Second law of thermodynamics, vi, viii, 3, 10,	duality with multiple access channels,
12, 23, 33-36, 42, 47, 49, 182. See also	416–418
Statistical mechanics	examples, 409–410, 454
Self-information, 12, 20	interpretation, 415
Self-punctuating, 80, 149	many sources, 415
Self-reference, 162	Slice code, 96
Sender, 10, 189	SNR (signal to noise ratio), 250, 380, 405
Set sum, 498	Software, 149
sgn function, 108–110	Solomon, G., 212
Shakespeare, 162	Solomonoff, R. J., 3, 4, 182, 524
Shannon, C. E., viii, 1, 3, 4, 10, 43, 49, 59, 77,	Source, 2, 9, 10
80, 87, 95, 124, 134, 138–140, 143, 198,	binary, 342
222, 223, 248, 249, 265, 369, 372, 383,	Gaussian, 344
457, 458, 499, 509, 522, 523. See also	Source channel separation, 215-218, 377,
Shannon code; Shannon-Fano-Elias	448, 449
code; Shannon-McMillan-Breiman	Source code, 79
theorem	universal, 288
Shannon code, 89, 95, 96, 107, 108, 113, 117,	Source coding theorem, 88
118, 121, 124, 144, 151, 168, 459	Spanish, 419
Shannon-Fano code, 124. See also Shannon	Spectral representation theorem, 255, 349
code	Spectrum, 248, 255, 272, 274, 275–278, 349
Shannon-Fano-Elias code, 101-104, 124	Spectrum estimation, 272–278
Shannon-McMillan-Breiman theorem, 59,	Speech, 1, 135, 136, 215, 273, 340
474–478	Sphere, 243, 357, 498
Shannon's first theorem (source coding	Sphere packing, 9, 243, 357, 358
theorem), 88	Squared error, 274, 329, 334, 494, 503-505
Shannon's second theorem (channel coding	distortion, 337, 338, 340, 345, 346, 367–369
theorem), 198	Stam, A., 497, 509, 523

State diagram, 76	Synchronization, 76
Stationary:	Systematic code, 211
ergodic process, 59, 319-326, 474-478	Szasz's lemma, 502, 503
Gaussian channels, 255	Szego, G., 516
Markov chain, 35, 36, 41, 47, 61-74, 485	
process, 4, 47, 59, 60-78, 60 , 89	Table of differential entropies, 486, 487
stock market, 469–471	Tallin, 182
Statistic, 36, 36–38, 176, 333	Tanabe, M., 458, 522
Kolmogorov sufficient, 176	Tang, D. L., 523
minimal sufficient, 38	Tangent, 460
sufficient, 37	Telephone, 247, 250
Statistical mechanics, 1, 3, 6, 10, 33, 49, 278	channel capacity, 250
Statistics, viii-x, 1, 4, 11, 12, 18, 36-38, 134,	Temperature, 266, 268
176, 279, 304	Ternary, 93, 118-120, 181, 280, 391
of English, 136	Test channel, 345
Stein's lemma, 279, 286, 305, 309, 310, 312,	Thermodynamics, 1, 3, 13, 34, 35, 49. See
332, 333	also Second law of thermodynamics
Stirling's approximation, 151, 181, 269, 282,	Thomas, J. A., x, xi, 509, 513
284	Thomasian, A. J., 512
Stochastic approximation to English, 133-136	Time, flow of, 72
Stochastic process, 60 , 61-78, 88, 89,	Time division multiplexing, 379, 406, 407
272-277, 469, 471, 476	Time invariant Markov chain, 61
ergodic, see Ergodic	Time reversible, 69
Gaussian, 255, 272-278	Timesharing, 391, 395, 396, 406, 407, 420,
stationary, see Stationary	435, 447, 453
Stock, 9, 459, 460, 465, 466, 471, 473, 480	Toeplitz matrix, 255, 273, 504, 505
Stock market, x, 4, 9, 11, 125, 131, 367,	Tornay, S. C., 524
459 , 459–481, 508	Trace, 254, 255
Strategy, 45	Transmitter, 183
football, 317, 318	Treasury bonds, 460
gambling, 126, 129–131, 166	Tree, 72–74, 82, 84, 93, 96, 97, 98, 104–106,
portfolio, 465–471	
Strong converse, 207, 223	111-116, 124, 171-174 Triangle inequality, 19, 200
	Triangle inequality, 18, 299
Strongly typical, 358, 359, 370–372, 436, 442 Strongly typical set, 287 , 358	Triangular distribution, 487
	Trigram model, 136
Stuart, A., 518 Student t distribution 497	Trott, M., xi
Student-t distribution, 487	Tseng, C. W., xi
Subfair odds, 130, 141	Turing, A., 146, 147
Submatrix, 502	Turing machine, ix, 146, 147, 160
Subset inequalities, 490–493, 509	Tusnády, G., 364–367, 373, 514
Subspace, 210	Tuttle, D. L., 519
Subtree, 105, 106	TV, 374, 418
Sufficient statistic, 37 , 38, 49, 175	Two-way channel, 375, 383, 384, 450, 456,
Suffix, 120, 122, 123	457
Summary, 40, 56, 71, 117, 140, 178, 218, 236,	Type, 155, 169, 178, 279 , 280–318, 490
262, 275, 276, 331, 367, 450, 479, 508	Type class, 154, 280 , 281–286, 490
Superfair odds, 129, 141	Typewriter, 63, 161, 185, 191, 208, 220
Superposition coding, 422, 424, 430–432, 457	Typical, 10, 11, 50 , 51–54, 65, 226
Support set, 224	Typical sequence, 386, 407, 437
Surface, 407	Typical set, 50–56, 51 , 65, 159, 226 , 227, 228
Surface area, 228, 331	jointly typical set, see Jointly typical
Symbol, 7-9, 63	strongly typical set, 370, 371
Symmetric channel, 190, 220	Typical set decoding 200

Ullman, J. D., 517 Unbiased, 326, 326-329, 332, 334, 494 Uncertainty, 5, 6, 10, 12, 14, 18-20, 22, 28, 35, 47, 48, 72, 382, 450 Unfair odds, 141 Uniform distribution: continuous, 229, 487 discrete, 5, 27, 30, 35, 41, 72, 73 Uniform fair odds, 129 Uniquely decodable, 79, 80, 81, 82, 85, 90-92, 101, 108, 117, 118, 120-124 Universal, ix, 3, 9, 144-148, 155, 160-162, 170, 174, 178-182 Universal gambling, 166, 167 Universal probability, 160 Universal source coding, 107, 124, 287-291, **288**, 319, 326 UNIX, 326 Urn, 45, 73

V'yugin, V. V., 182, 524
Van Campenhout, J. M., 523
Van der Meulen, E. C., 457, 458, 515, 523, 524
Variance, **36**, 57, 234–264, 270, 274, 316, 317, 327, 330. See also Covariance matrix
Variational distance, **300**Vase, 181
Venn diagram, 21, 45, 46
Verdugo Lazo, A. C. G., 485, 524
Vitamins, x
Viterbi, A. J., 523
Vocabulary, 419
Volume, 58, 225, **226**, 226–229, 243, 331, 357, 498–501

Wald, A., 523 Wallmeier, H. M., 454, 512

Voronoi region, 338

Watanabe, Y., xi Waterfilling, 264, 349 Waveform, 247, 340, 383 Weakly typical, see Typical Wealth, x, 4, 9, 10, 34, 125-142, 166, 167, 459-480 Wealth relative, 126 Weather, 151, 409 Weaver, W. W., 523 Weibull distribution, 487 Welch, T. A., 320, 523 White noise, 247, 249, 256, 405. See also Gaussian channel Wiener, N., 523 Wilcox, H. J., 524 Willems, F. M. J., 238, 450, 457, 524 William of Occam, 4, 161 Witten, I. H., 124, 320, 335, 511, 524 Wolf, J. K., 407, 450, 457, 516, 523 Wolfowitz, J., 223, 335, 524 Woodward, P. M., 524 World Series, 44 Wozencraft, J. M., 524 Wyner, A. D., xi, 320, 335, 443, 458, 516, 524, 525

Yamamoto, H., xi Yao, A. C., 124, 518 Yeung, R. W., xi, 458, 511 Young's inequality, **498**, 499

Zero-error capacity, 222, 223
Zhang, Z., 457, 525
Ziv, J., xi, 107, 124, 319, 335, 443, 458, 519, 524, 525. See also Lempel–Ziv coding Ziv's inequality, 323
Zurek, W. H., 182, 525
Zvonkin, A. K., 519