Ultimate Problem Set

Jack Krebsbach

Dec 11th

Question 1

Suppose that x > -1 and that $x \neq 0$. Prove that

$$(1+x)^n > 1 + nx$$

for each integer n > 1. This result is know as Bernoulli's inequality.

Proof: We will show that this inequality holds for x > -1 and $x \ne 0$ by induction. First, we see when n = 2 that

$$(1+x)^2 = 1 + 2x + x^2 > 1 + 2x.$$

Thus, our base case holds. Now we assume that

$$(1+x)^n > 1 + nx$$

is true. We want to show that $(1 + x)^{n+1} > 1 + (n+1)x$ is also true. We have that

$$(1+x)(1+x)^n > (1+nx)(1+x)$$

$$\implies (1+x)^{n+1} > 1 + x + nx + nx^2 \ge 1 + nx + x = 1 + (n+1)x.$$

⊜

Question 2

Show that e is irrational by supposing that $e = \frac{m}{n}$ and deriving a contradiction. Use the fact that $e = \sum_{j=0}^{\infty} \frac{1}{j!}$. Let $s_k = \sum_{j=0}^k \frac{1}{j!}$.

(a) Prove that

$$e - s_k < \frac{1}{(k+1)!} \left\{ 1 + \frac{1}{k+1} + \left(\frac{1}{k+1} \right)^2 + \cdots \right\}.$$

$$e - s_k = \sum_{j=0}^{\infty} \frac{1}{j!} - \sum_{j=0}^{k} \frac{1}{j!} = \sum_{j=k+1}^{\infty} \frac{1}{j!} = \frac{1}{(k+1)!} + \frac{1}{(k+2)!} + \frac{1}{(k+3)!} + \cdots$$

$$= \frac{1}{(k+1)!} \left[1 + \frac{1}{(k+2)} + \frac{1}{(k+2)(k+3)} + \cdots \right]$$

$$< \frac{1}{(k+1)!} \left[1 + \frac{1}{(k+1)} + \frac{1}{(k+1)^2} + \cdots \right]$$

(b) Prove that $e - s_k < \frac{1}{k(k!)}$ for all $k \in \mathbb{N}$.

Proof: Let

$$y_n = \sum_{n=0}^{m} \frac{1}{(k+1)^n}$$

. Then

$$y_n - \frac{1}{(k+1)^n} y_n = \sum_{n=0}^m \frac{1}{(k+1)^n} - \sum_{n=1}^{m+1} \frac{1}{(k+1)^n}$$

$$\implies y_n \left(1 - \frac{1}{k+1} \right) = \frac{1}{k+1} - \frac{1}{(k+1)^{m+1}}$$

$$\implies y_n \left(1 - \frac{1}{k+1} \right) = \frac{1}{k+1} - \frac{1}{(k+1)^{m+1}}$$

$$\implies y_n = \frac{\frac{1}{k+1} - \frac{1}{(k+1)^{m+1}}}{\left(1 - \frac{1}{k+1} \right)}.$$

Now let

$$\lim_{m \to \infty} y_n = \lim_{m \to \infty} \frac{\frac{1}{k+1} - \frac{1}{(k+1)^{m+1}}}{\left(1 - \frac{1}{k+1}\right)}$$

$$\implies \lim_{m \to \infty} y_n = \frac{1}{k+1} \frac{1}{\left(1 - \frac{1}{k+1}\right)}$$

$$= \frac{1}{k+1} \frac{k+1}{k+1-1}$$

$$= \frac{1}{k+1} \frac{k+1}{k} = 1.$$

(2)

(c) If $e = \frac{m}{n}$, prove that n!e and $n!s_n$ are integers.

Proof: We have

$$n!e = n!\frac{m}{n} = (n-1)!m.$$

Since the integers are closed under multiplication then n!e must be an integer.

☺

(2)

Proof:

$$n!s_n = n!s_k = \sum_{j=0}^k \frac{1}{j!}(n-1)! = n!\left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right).$$
$$= n! + \frac{n!}{2!} + \frac{n!}{3!} + \dots + 1.$$

This is just a sum of integers, so it must be that $n!s_n$ is also an integer.

(d) If $e = \frac{m}{n}$, prove that $n!(e - s_n)$ is an integer between 0 and 1, which is absurd.

Proof: Consider that

$$n!(e - s_n) < n! \frac{1}{n!n} = 1/n$$

Since $n \in \mathbb{N}$ and $e - s_n$ is an integer we have encountered a contradiction, 1/n < 1. Thus, e can not be a rational number.

(2)

Question 3

Let f be a function defined on all of \mathbb{R} , and assume there is a constant c such that 0 < c < 1 and

$$|f(x) - f(y)| \le c|x - y|$$

for all $x, y \in \mathbb{R}$.

- (a) Show that *f* is continuous.
- (b) Pick some $y_1 \in \mathbb{R}$ and construct the sequence

$$(y_1, f(y_1), f(f(y_1)), \ldots)$$
.

In general, if $y_{n+1} = f(y_n)$, show that the resulting sequence (y_n) is a Cauchy sequence. Hence we may let $y = \lim_{n \to \infty} y_n$.

- (c) Prove that y is a fixed point of f (i.e. f(y) = y) and that it is unique in this regard.
- (d) Finally, prove that if x is any arbitrary point in \mathbb{R} , then the sequence $(x, f(x), f(f(x)), \ldots)$ converges to y (as defined in (b)).

Question 4

Let $\{r_n\}$ be a listing of all the rational numbers. Define a function f by f(x) = 0 if x is irrational and $f(r_n) = 1/n$ for all n. Show that f is continuous everywhere except for the set of rational numbers.

Question 5

Using the $\delta - \epsilon$ definition of a limit, show

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3.$$