BÀI 1. GIỚI HAN CỦA DÃY SỐ

A. LÝ THUYẾT

I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

1. Định nghĩa

Định nghĩa 1

Ta nói dãy số (u_n) có giới hạn là 0 khi n dần tới dương vô cực, nếu $|u_n|$ có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

Kí hiệu:
$$\lim_{n\to +\infty} u_n = 0$$
 hay $u_n\to 0$ khi $n\to +\infty$.

Ví dụ 1. Cho dãy số
$$(u_n)$$
 với $u_n = \frac{-1}{n^2}$. Tìm giới hạn dãy số

Giải

$$X\acute{e}t \left| u_n \right| = \left| \frac{1}{n^2} \right| = \frac{1}{n^2}$$

Với
$$n > 10 \implies n^2 > 10^2 = 100$$

$$\Rightarrow \left| \mathbf{u}_{\mathbf{n}} \right| = \left| \frac{1}{\mathbf{n}^2} \right| = \frac{1}{\mathbf{n}^2} < \frac{1}{100}$$

$$\Rightarrow \lim_{n\to\infty} u_n = 0.$$

Định nghĩa 2

Ta nói dãy số (v_n) có giới hạn là a (hay v_n dần tới a) khi n $\rightarrow +\infty$ nếu $\lim_{n \rightarrow +\infty} \ v_n - a = 0$

Kí hiệu:
$$\lim_{n \to +\infty} v_n = a \text{ hay } v_n \to a \text{ khi } n \to +\infty.$$

Ví dụ 2. Cho dãy số
$$v_n = \frac{-n-1}{3+2n}$$
. Chứng minh rằng $\lim_{n\to\infty} v_n = \frac{-1}{2}$.

Giải

Ta có
$$\lim_{n \to \infty} \left(v_n + \frac{1}{2} \right) = \lim_{n \to \infty} \left(\frac{-n-1}{3+2n} + \frac{1}{2} \right) = \lim_{n \to \infty} = \frac{1}{2 + 2n} = 0$$

Do đó:
$$\lim_{n\to\infty} v_n = \frac{-1}{2}$$
.

2. Một vài giới hạn đặc biệt

a)
$$\lim_{n\to+\infty} \frac{1}{n} = 0$$
, $\lim_{n\to+\infty} \frac{1}{n^k} = 0$ với k nguyên dương;

b)
$$\lim_{n\to+\infty} q^n$$
 nếu $|q| < 1$;

c) Nếu
$$u_n$$
 = c (c là hằng số) thì $\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} c = c$.

\textit{Chú ý: Từ nay về sau thay cho } \lim_{n \to +\infty} u_n = a \ ta viết tắt là lim $u_n = a.$

II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN

Định lí 1

a) Nếu lim $u_n = a$ và lim $v_n = b$ thì

$$\lim (u_n + v_n) = a + b$$

$$lim (u_n - v_n) = a - b$$

$$\lim (u_n.v_n) = a.b$$

$$\lim \frac{\mathbf{u}_{\mathbf{n}}}{\mathbf{v}_{\mathbf{n}}} = \frac{a}{b} \ (\text{n\'eu} \ b \neq 0)$$

Nếu $u_n \ge 0$ với mọi n và lim $u_n = a$ thì:

$$lim\sqrt{u_{_{n}}}=\sqrt{a}\ v\grave{a}\ a\geq0.$$

Ví dụ 3. Tính
$$\lim \left(n^2 - \frac{2}{n+1}\right)$$

Giải

$$\lim \left(n^2 - \frac{2}{n+1}\right) = \lim \frac{n^3 + n^2 - 2}{n+1} = \lim \frac{1 + \frac{1}{n} - \frac{2}{n^3}}{\frac{1}{n^2} + \frac{1}{n^3}} = \lim \left(1 + \frac{1}{n} - \frac{2}{n^3}\right) : \lim \left(\frac{1}{n^2} + \frac{1}{n^3}\right)$$

$$= \left(\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n} - \lim_{n \to \infty} \frac{2}{n^3}\right) : \left(\lim_{n \to \infty} \frac{1}{n^2} + \lim_{n \to \infty} \frac{1}{n^3}\right)$$

$$= +\infty$$

Ví dụ 4. Tìm
$$\lim \frac{\sqrt{2+9n^2}}{1+4n}$$

Giải

$$\lim \frac{\sqrt{2+9n^2}}{1+4n} = \lim \frac{\sqrt{n^2\left(\frac{2}{n^2}+9\right)}}{n\left(\frac{1}{n}+4\right)} = \lim \frac{n\sqrt{\left(\frac{2}{n^2}+9\right)}}{n\left(\frac{1}{n}+4\right)} = \lim \frac{\sqrt{\left(\frac{2}{n^2}+9\right)}}{\frac{1}{n}+4} = \frac{3}{4}.$$

III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

Cấp số nhân vô hạn (u_n) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn. Tổng của cấp số nhân lùi vô hạn:

$$S = u_1 + u_2 + u_3 + ... + u_n + ... = \frac{u_1}{1 - q} |q| < 1$$
.

Ví dụ 5. Tính tổng của cấp số nhân lùi vô hạn $1; -\frac{1}{2}; \frac{1}{4}; -\frac{1}{8}; ...; \left(-\frac{1}{2}\right)^{n-1}; ...$

Giải

Ta có dãy số 1; $-\frac{1}{2}$; $\frac{1}{4}$; $-\frac{1}{8}$;...; $\left(-\frac{1}{2}\right)^{n-1}$;... là một số cấp số nhân lùi vô hạn với công bội $q = -\frac{1}{2}$.

Khi đó ta có:
$$S_n = \lim_{n \to \infty} \left[1 + \left(-\frac{1}{2} \right) + \frac{1}{4} + \left(-\frac{1}{8} \right) + \dots + \left(-\frac{1}{2} \right)^{n-1} + \dots \right] = \frac{1}{1 - \left(-\frac{1}{2} \right)} = \frac{2}{3}.$$

IV. GIỚI HẠN VÔ CỰC

1. Định nghĩa

- Ta nói dãy số (u_n) có giới hạn là $+\infty$ khi n $\to +\infty$, nếu u_n có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: $\lim u_n = +\infty$ hay $u_n \to +\infty$ khi $n \to +\infty$.

- Dãy số (u_n) có giới hạn là $-\infty$ khi $n \to +\infty$, nếu lim $(-u_n) = +\infty$.

Kí hiệu: $\lim u_n = -\infty$ hay $u_n \to -\infty$ khi $n \to +\infty$.

Nhận xét: $u_n = +\infty \Leftrightarrow \lim(-u_n) = -\infty$

2. Một vài giới hạn đặc biệt

Ta thừa nhận các kết quả sau

- a) $\lim n^k = +\infty$ với k nguyên dương;
- b) $\lim q^n = +\infty \text{ n\'eu } q > 1.$

3. Định lí 2

- a) Nếu lim $u_n=a$ và lim $v_n=\pm\infty$ thì $lim\frac{u_n}{v_n}=0$
- b) Nếu lim $u_n=a>0,$ lim $v_n=0$ và $v_n>0,$ V n>0 thì $lim \frac{u_n}{v_n}=+\infty$
- c) Nếu lim $u_n = +\infty$ và lim $v_n = a > 0$ thì $\lim u_n . v_n = +\infty$.

Ví dụ 6. Tính $\lim \left(2^n + \frac{1}{n}\right)$.

Giải

$$\lim \left(2^n + \frac{1}{n}\right) = \lim 2^n + \lim \frac{1}{n}$$

Vì
$$\lim_{n \to +\infty} \sin \frac{1}{n} = 0$$

$$\Rightarrow \lim \left(2^n + \frac{1}{n}\right) = +\infty$$

B. BÀI TẬP

Bài 1. Tính các giới hạn sau:

a)
$$\lim \frac{2n+8}{n-9}$$
;

b)
$$\lim \frac{4-n^3-12n^2}{1+2n^3}$$
;

c)
$$\lim \frac{3^n - 4^n + 1}{2 \cdot 4^n + 2^n}$$
.

Lời giải

a)
$$\lim \frac{2n+8}{n-9} = \lim \frac{2+\frac{8}{n}}{1-\frac{9}{n}} = 2.$$

b)
$$\lim \frac{4-n^3-12n^2}{1+2n^3} = \lim \frac{\frac{4}{n^3}-1-\frac{12}{n}}{\frac{1}{n^3}+2} = -\frac{1}{2}.$$

c)
$$\lim \frac{3^{n} - 4^{n} + 1}{2 \cdot 4^{n} + 2^{n}} = \lim \frac{\left(\frac{3}{4}\right)^{n} - 1 + \left(\frac{1}{4}\right)^{n}}{2 + \left(\frac{1}{2}\right)^{n}} = -\frac{1}{2}.$$

Bài 2. Tìm số hạng tổng quát của cấp số nhân lùi vô hạn có công bội là $\frac{2}{3}$ và tính tổng của cấp số nhân lùi vô hạn.

Lời giải

Số hạng tổng quát của cấp số nhân lùi vô hạn là: $u_n = \left(\frac{2}{3}\right)^n$.

Suy ra số hạng đầu tiên của dãy là: $\mathbf{u}_1 = 1$

Khi đó tổng cấp số nhân lùi vô hạn là: $S = \frac{u_1}{1 - q} = \frac{1}{1 - \frac{2}{3}} = \frac{1}{\frac{1}{3}} = 3$.

Vậy số hạng tổng quát của cấp số nhân lùi vô hạn là: $u_n = \left(\frac{2}{3}\right)^n$ và tổng của cấp số nhân lùi vô hạn là 3.

Bài 3. Biết dãy số (u_n) thỏa mãn $|u_n - 1| < \frac{1}{n^3}$ với mọi n. Chứng minh rằng $\lim u_n = 1$.

Lời giải

$$\mbox{\bf D}\mbox{\Bar{\'a}} t\ v_n = u_n$$
 - 1

Chọn số dương bé tùy ý d, tồn tại $n_0 = \sqrt[3]{\frac{1}{d}} + 1$ với mọi $n \ge n_0$ sao cho:

$$v_n < \frac{1}{n^3} < \frac{1}{n_0^3} = \frac{1}{\left(\sqrt[3]{\frac{1}{d}} + 1\right)^3} < \frac{1}{\left(\sqrt[3]{\frac{1}{d}}\right)^3} = d$$

Theo định nghĩa ta có: $limv_n = 0$.

Do đó $\lim (u_n - 1) = 0$

 $\Rightarrow \lim_{n} u_{n} = 1.$

Bài 4. Tính các giới hạn sau:

a)
$$\lim \sqrt{n^2 + n} - \sqrt{n^2 - 1}$$
;

b) $\lim(n^3 + 2n^2 - n + 1)$.

Lời giải

a)
$$\lim \sqrt{n^2 + n} - \sqrt{n^2 - 1} = \lim \frac{\sqrt{n^2 + n} - \sqrt{n^2 - 1}}{\sqrt{n^2 + n} + \sqrt{n^2 - 1}} = \lim \frac{\sqrt{n^2 + n} - \sqrt{n^2 - 1}}{\sqrt{n^2 + n} + \sqrt{n^2 - 1}}$$

$$= \lim \frac{n+1}{\sqrt{n^2+n} + \sqrt{n^2-1}} = \lim \frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}} + \sqrt{1-\frac{1}{n^2}}} = \frac{1}{1+1} = \frac{1}{2}.$$

b)
$$\lim(n^3 + 2n^2 - n + 1) = \lim n^3 \left(1 + \frac{2}{n} - \frac{1}{n^2} + \frac{1}{n^3}\right) = \lim n^3 \cdot \lim \left(1 + \frac{2}{n} - \frac{1}{n^2} + \frac{1}{n^3}\right) = \infty$$

(Vì
$$\lim_{n \to \infty} \lim_{n \to \infty} \left(1 + \frac{2}{n} - \frac{1}{n^2} + \frac{1}{n^3}\right) = 1$$
).