

Linux capable RISC-V CPU for IOb-SoC

Thesis to obtain the Master of Science Degree in **Electrical and Computer Engineering**

Pedro Nuno de Melo Antunes

Instituto Superior Técnico

13th January 2022

Supervisors: Prof. José Teixeira de Sousa

Presentation Outline

- Introduction
 - Motivation and problem
 - Proposed solution and thesis objectives
- Hardware platform (IOb-SoC)
 - Integrate additional peripherals
 - Profile Tiny YOLOv3 application
- VersatCNN acceleration
 - VersatCNN dataflow configuration
 - Tiny YOLOv3 acceleration strategies
 - CNN inference
 - Pre and post-processing
- Results and Conclusions
 - Comparison with other platforms and works
 - Achievements and future improvements

Motivation

- Object detection is usefull in multiple areas of application (navigation, medical, security)
 - Most accurate methods use CNN inference.
 - Problem: Computationally demanding process.
- Current solutions based on GPU acceleration.
 - Oversized and power-hungry.
- ► Alternative accelerators also have limitations:
 - FPGA: better size/power efficiency than GPU, with configuration overhead and increased development time.
 - ASIC: dedicated accelerators lack hardware programmability.
- ► Proposed solution: CGRA
 - Optimized area and power.
 - ► Faster reconfiguration for FPGA implementation.
 - ▶ Adds hardware programmability for ASIC implementation.

Thesis Goals

Main thesis goals:

- Accelerate a Convolutional Neural Network (CNN) for object detection, using the VersatCNN CGRA
 - Configure CGRA dataflow to efficiently implement the Tiny YOLOv3 application
- ► Target real-time processing (30 FPS)

IOb-SoC Hardware Platform

Open source RISC-V SoC platform by IObundle.

Main components:

- ► PicoRV32 RISC-V CPU
- ► Internal memory
- External memory
 - Single level cache
- UART
- ► Integrated Peripherals:
 - Timer
 - Ethernet
 - VersatCNN

Continuous integration of system and new components. Development of testing environment.

IOb-SoC Profiling Results

Embedded version of Tiny YOLOv3 application:

- Executed exclusively on RISC-V CPU
- ▶ 143 MHz system clock.

Target (30 FPS)	0.033
Total	968.800
Post-CNN	0.014
CNN	967.746
Pre-CNN	1.040
Tiny YOLOv3 Part	Execution Time (s)

Table: Tiny YOLOv3 RISC-V-only performance.

Conclusion: all parts of the application require acceleration.