

Détermination d'enthalpie de réaction

Complexes en solution aqueuse

Exercice XII: Complexes en solution aqueuse

On considère une solution aqueuse contenant :

- du phénol que l'on notera ROH;
- un sel mercurique (nitrate de mercure II)

On donne les constantes d'équilibre suivantes :

- pKa $(ROH/RO^{-}) = 9.9$
- $pKs(Hg(RO)_2) = 20,1$

La solution (C) considérée est obtenue comme suit : un volume de 100 mL d'une solution de phénol (noté R-OH) de concentration $0.02 \text{ mol} \cdot L^{-1}$ est additionné à un volume de 100 mL d'une solution de nitrate de mercure II de concentration $0.01 \text{ mol} \cdot L^{-1}$ à T=298 K.

1- La réaction ayant lieu en solution est la suivante :

$$2R - OH_{(aq)} + Hg^{2+} \rightarrow Hg(OR)_{2 \text{ (solide)}} + 2H_{(aq)}^{+}$$

Calculer sa constante d'équilibre et son enthalpie libre standard de réaction.

En considérant la réaction ci-dessus comme prépondérante, établir l'équation donnant de façon implicite la composition à l'équilibre et la résoudre dans le cas particulier des valeurs numériques de l'énoncé.

On utilisera les indications suivantes :

$$log_{10}(2) = 0.3$$
; $ln 2 = 0.69$; $RT = 2500 \text{ J} \cdot mol^{-1} à T = 298 \text{ K}.$
 $(a - x)^3 - 2x^2 = 0$ (a pour racine positive : $x = 0.233 \cdot 10^{-3}$ pour $a = 5 \cdot 10^{-3}$

- 2- Lors de la réaction, on observe une augmentation de la température du mélange de 0.047° C. La capacité calorifique massique de la solution est : Cp = $4.2~\mathrm{J\cdot g^{-1}\cdot K^{-1}}$ et sa masse volumique : ρ = $1000~\mathrm{kg\cdot m^{-3}}$.
 - a- Evaluer l'enthalpie de la réaction considérée
 - **b-** A partir de l'état d'équilibre précédent, on augmente la température, dans quel sens se déplacera-t-il ?

Détermination d'enthalpie de réaction

Complexes en solution aqueuse

Correction

1- La constante d'équilibre vaut :

$$K = \frac{K_a^2}{K_s} = 10^{+0.3} = 2$$

Le bilan de matière en $mol \cdot L^{-1}$ conduit :

$$2ROH + Hg^{2+} \stackrel{\rightarrow}{\leftarrow} Hg(OR)_2(s) + 2H^+$$
 état initial 0,01 $5 \cdot 10^{-3}$ état final 0,01 $- 2 \cdot x + 5 \cdot 10^{-3} - x$ 2x

De la constante d'équilibre, on a :

$$K = \frac{(2 \cdot x)^2}{(10^{-2} - 2 \cdot x)^2 \cdot (5 \cdot 10^{-3} - x)} = \frac{x^2}{(5 \cdot 10^{-3} - x)^3} = 2$$

Même s'il ne s'agit pas de l'équation donnée, on prend comme solution :

$$x = 0.233 \cdot 10^{-3} \text{ mol} \cdot L^{-1}$$

- 2- La transformation s'effectue à pression constante et est adiabatique soit $\Delta H = 0$. On imagine le chemin suivant car l'enthalpie est une fonction d'état dont les variations ne dépendent que de l'état initial et final, indépendantes donc du chemin suivi :
 - réaction totale, rapide et isotherme dont la variation d'enthalpie est :

$$\Delta H^{réaction} = \xi \times \Delta_r H^{\circ}$$

avec ξ avancement chimique de réaction, $\xi = 4.7 \cdot 10^{-5} \,$ mol

• échauffement de la solution obtenue :

$$\Delta H^{\text{\'e}chauffement} = 200 \times 4.18 \times 0.047$$

On en déduit : $\Delta_r H^{\circ} = -840 \text{ kJ} \cdot \text{mol}^{-1}$

D'après la loi de Van't Hoff, une augmentation de température provoque un déplacement de l'équilibre dans le sens endothermique soit de la droite vers la gauche (solubilisation du précipité $Hg(OR)_2(s)$).