Data Structures and Algorithms ¹

A Study Guide for Students of Sorsogon State University - Bulan Campus 2

Jarrian Vince G. Gojar³

September 1, 2024

¹A course in the Bachelor of Science in Computer Science

 $^{^2}$ This book is a study guide for students of Sorsogon State University - Bulan Campus taking up the course Data Structures and Algorithms.

³https://github.com/godkingjay

Contents

C	onter	nts	ii
1	Intr	roduction to Data Structures and Algorithms	2
	1.1	What are Data Structures?	2
	1.2	What are Algorithms?	2
	1.3	Why Study Data Structures and Algorithms?	2
	1.4	Basic Terminologies	2
		1.4.1 Data	2
		1.4.2 Data Object	2
		1.4.3 Data Structure	2
		1.4.4 Data Type	2
		1.4.4.1 Primitive Data Types	2
		1.4.4.2 Non-primitive Data Types	2
		1.4.5 Abstract Data Type	2
		1.4.6 Algorithm	2
		1.4.7 Complexity of an Algorithm	2
		1.4.7.1 Time Complexity	2
		1.4.7.2 Space Complexity	2
	1.5	Asymptotic Notations	2
		1.5.1 Big-O Notation	2
		1.5.2 Omega Notation	2
		1.5.3 Theta Notation	$\overline{2}$
	1.6	Summary	$\overline{2}$
2		rays and Linked Lists	3
	2.1	Arrays	3
		2.1.1 Types of Arrays	3
		2.1.1.1 One-dimensional Array	3
		2.1.1.2 Multi-dimensional Array	3
		2.1.2 Array Operations	3
		2.1.2.1 Insertion	3
		2.1.2.2 Deletion	3
		2.1.2.3 Searching	3
		2.1.3 Complexity Analysis of Arrays	3
	2.2	Linked Lists	3
		2.2.1 Types of Linked Lists	3
		2.2.1.1 Singly Linked List	3
		2.2.1.2 Doubly Linked List	3
		2.2.1.3 Circular Linked List	3

CONTENTS iii

		2.2.2	Operation	ns on Linke	ed Lists					 	 					3
				Insertion												3
				Deletion .												3
				Searching												3
		2.2.3		ity Analysis												3
	2.3		_	Arrays and 1												3
	$\frac{2.0}{2.4}$	_														3
	2.4	Dullilli	ary						• •	 • •	 	• •	•	 •	•	9
3	Stac	cks and	l Queues													4
	3.1		-							 	 					5
		3.1.1		ns on Stack												5
			-	Push												5
				Pop												5
				Peek												5
				isEmpty .												5
																5
		3.1.2		ity Analysis												5
		3.1.3		ntation of S												5
		3.1.4		ntation of S												5 5
	3.2		_			_										
	3.2	•														5
		3.2.1		Queues .												5
				Linear Que												5
				Circular Q												5
				Priority Qu												5
				Double-end												5
		3.2.2	-	ns on Queu												5
				Enqueue												5
				Dequeue												5
				Front												5
				Rear												5
		3.2.3		ity Analysis	•											5
		3.2.4		ntation of C												5
		3.2.5	Implemen	ntation of C	Jueues U	Jsing 1	Linke	d Lis	ts.	 	 					5
	3.3	Compa	arison of S	tacks and (Queues					 	 					5
	3.4	Summa	ary							 	 					5
4	Tree															6
	4.1			ees												7
		4.1.1		de												7
		4.1.2		ode												7
		4.1.3		de												7
		4.1.4	Leaf Nod	le						 	 					7
		4.1.5	Ancestors	5						 	 					7
		4.1.6	Siblings							 	 					7
		4.1.7	Descenda	nts						 	 					7
		4.1.8	Height of	a Tree .						 	 					7
		4.1.9		a Node .												7
		4.1.10	•	f a Node .												7
		4.1.11		a Node												7
																7
	4.2															7
			Binary T													7

CONTENTS iv

			4.2.1.1 Types of Binary Trees
			Left-skewed Binary Tree
			Right-skewed Binary Tree
			Complete Binary Tree
		4.2.2	Ternary Tree
		4.2.3	N-ary Tree
		4.2.4	Binary Search Tree
		4.2.5	AVL Tree
		4.2.6	Red-Black Tree
		4.2.7	B-Tree
		4.2.8	B+ Tree
		4.2.9	Trie
	4.3		Operations on Trees
	4.0	4.3.1	Creation of a Tree
		4.3.1 $4.3.2$	
			Insertion
		4.3.3	Deletion
		4.3.4	Searching
		4.3.5	Traversal
			4.3.5.1 Preorder Traversal
			4.3.5.2 Inorder Traversal
			4.3.5.3 Postorder Traversal
			4.3.5.4 Level-order Traversal
	4.4	Compl	exity Analysis of Trees
	4.5	Summ	ary
5	Gra	_	8
	5.1		ties of Graphs
		5.1.1	Vertex
		5.1.2	Edge
		5.1.3	Degree of a Vertex
		5.1.4	Path
	5.2	· -	of Graphs
		5.2.1	Finite Graph
		5.2.2	Infinite Graph
		5.2.3	Trivial Graph
		5.2.4	Simple Graph
		5.2.5	Multi Graph
		5.2.6	Null Graph
		5.2.7	Complete Graph
		5.2.8	Pseudo Graph
		5.2.9	Regular Graph
		5.2.10	Bipartite Graph
			Labelled Graph
			Weighted Graph
			Directed Graph
			Undirected Graph
			Connected Graph
			Disconnected Graph
			Cyclic Graph
			Acyclic Graph
		0.2.19	Directed Acyclic Graph (DAG)

CONTENTS v

		5.2.20 Digraph	9
		5.2.21 Subgraph	9
	5.3	Operations on Graphs	9
		5.3.1 Creation of a Graph	9
		5.3.2 Insertion	9
		5.3.2.1 Insertion of a Vertex	9
		5.3.2.2 Insertion of an Edge	9
		5.3.3 Deletion	9
		5.3.3.1 Deletion of a Vertex	9
		5.3.3.2 Deletion of an Edge	9
		5.3.4 Traversal	9
		5.3.4.1 Depth First Search (DFS)	9
		5.3.4.2 Breadth First Search (BFS)	9
		5.3.5 Shortest Path	9
		5.3.6 Minimum Spanning Tree	9
	5.4	Complexity Analysis of Graphs	9
	5.5	Summary	9
6	Sort	ing and Searching	10
	6.1	Sorting	11
		6.1.1 Types of Sorting Algorithms	11
		6.1.1.1 Bubble Sort	11
		6.1.1.2 Selection Sort	11
		6.1.1.3 Insertion Sort	11
		6.1.1.4 Merge Sort	11
		6.1.1.5 Quick Sort	11
		6.1.1.6 Heap Sort	11
		6.1.1.7 Radix Sort	11
		6.1.1.8 Counting Sort	11
		6.1.1.9 Bucket Sort	11
		6.1.2 Comparison of Sorting Algorithms	11
	6.2	Searching	11
		6.2.1 Types of Searching Algorithms	
		6.2.1.1 Linear Search	11
		6.2.1.2 Binary Search	11
		6.2.1.3 Jump Search	
		6.2.1.4 Interpolation Search	11
		6.2.1.5 Exponential Search	11
		6.2.1.6 Fibonacci Search	11
		6.2.1.7 Ternary Search	11
		6.2.2 Comparison of Searching Algorithms	11
	6.3	Summary	11
7	Has	ning	12
	7.1	Hash Table	12
	7.2	Hash Function	12
	7.3	Collision Resolution Techniques	12
		7.3.1 Separate Chaining	12
		7.3.2 Open Addressing	12
		7.3.2.1 Linear Probing	12
		7.3.2.2 Quadratic Probing	12
		7.3.2.3 Double Hashing	

CONTENTS vi

	7.4	Compl	lexity Analysis of Hashing)
	7.5	Summ	ary	2
8	Adv	anced	Data Structures and Algorithms 13	}
Ŭ	8.1		ced Data Structures	
	0.1	8.1.1	Segment Tree 14	
		8.1.2	Fenwick Tree	
		8.1.3	Suffix Tree	
		8.1.4	Suffix Array	
		8.1.5	Trie	
		8.1.6	Heap	
		8.1.7	Disjoint Set	
		8.1.8	Skip List	
			1	
		8.1.9	1 0	
		8.1.10	Trie	
		8.1.11	Bloom Filter	
			KD Tree	
			Quad Tree	
			Octree	
			B-Tree	
			B+ Tree	
			R-Tree	
			X-Tree	
			Y-Tree	
			Z-Tree	
	8.2	Advan	ced Algorithms	
		8.2.1	Dynamic Programming	Į
		8.2.2	Greedy Algorithms	Į
		8.2.3	Backtracking	Į.
		8.2.4	Divide and Conquer	1
		8.2.5	Branch and Bound	1
		8.2.6	Randomized Algorithms	1
		8.2.7	Approximation Algorithms	1
		8.2.8	String Matching Algorithms	1
		8.2.9	Pattern Searching Algorithms	1
		8.2.10		1
		8.2.11		1
		8.2.12		1
		8.2.13	Network Flow Algorithms	1
			Game Theory Algorithms	
			Quantum Algorithms	
	8.3		ary	
			·	
9			ons of Data Structures and Algorithms 15	
	9.1		rations in Computer Science	
		9.1.1	Operating Systems	
		9.1.2	Database Management Systems	
		9.1.3	Compiler Design	
		9.1.4	Networking	
		9.1.5	Artificial Intelligence	
		9.1.6	Machine Learning	
		9.1.7	Computer Graphics	;

	9.1.8	Computer Vision	16
	9.1.9	Robotics	16
	9.1.10	Web Development	16
	9.1.11	Mobile Development	16
	9.1.12	Game Development	16
	9.1.13	Cybersecurity	16
	9.1.14	Quantum Computing	16
9.2		ations in Real Life	16
	9.2.1	Social Media	16
	9.2.2	E-commerce	16
	9.2.3	Healthcare	16
	9.2.4	Finance	16
	9.2.5	Transportation	16
	9.2.6	Education	16
	9.2.7	Agriculture	16
	9.2.8	Manufacturing	16
	9.2.9	Entertainment	16
	9.2.10	Sports	16
	9.2.11	Travel	16
	9.2.12	Telecommunications	16
	9.2.13	Energy	16
	9.2.14	Environment	16
	9.2.15	Politics	16
	9.2.16	Military	16
9.3	Summ	ary	16
10 Refe	erences	5	17

Preface

"Bad programmers worry about the code. Good programmers worry about data structures and their relationships."

– Linus Torvalds

Jarrian Vince G. Gojar https://github.com/godkingjay

Introduction to Data Structures and Algorithms

- 1.1 What are Data Structures?
- 1.2 What are Algorithms?
- 1.3 Why Study Data Structures and Algorithms?
- 1.4 Basic Terminologies
- 1.4.1 Data
- 1.4.2 Data Object
- 1.4.3 Data Structure
- 1.4.4 Data Type
- 1.4.4.1 Primitive Data Types
- 1.4.4.2 Non-primitive Data Types
- 1.4.5 Abstract Data Type
- 1.4.6 Algorithm
- 1.4.7 Complexity of an Algorithm
- 1.4.7.1 Time Complexity
- 1.4.7.2 Space Complexity
- 1.5 Asymptotic Notations
- 1.5.1 Big-O Notation
- 1.5.2 Omega Notation
- 1.5.3 Theta Notation
- 1.6 Summary

Arrays and Linked Lists

2.1	Arrays
4 • 1	Allays

- 2.1.1 Types of Arrays
- 2.1.1.1 One-dimensional Array
- 2.1.1.2 Multi-dimensional Array
- 2.1.2 Array Operations
- **2.1.2.1** Insertion
- 2.1.2.2 Deletion
- 2.1.2.3 Searching
- 2.1.3 Complexity Analysis of Arrays
- 2.2 Linked Lists
- 2.2.1 Types of Linked Lists
- 2.2.1.1 Singly Linked List
- 2.2.1.2 Doubly Linked List
- 2.2.1.3 Circular Linked List
- 2.2.2 Operations on Linked Lists
- **2.2.2.1** Insertion
- 2.2.2.2 Deletion
- 2.2.2.3 Searching
- 2.2.3 Complexity Analysis of Linked Lists
- 2.3 Comparison of Arrays and Linked Lists
- 2.4 Summary

3.1. STACKS 5

3

3.3

Stacks and Queues

3.1 Stacks
3.1.1 Operations on Stacks
3.1.1.1 Push
3.1.1.2 Pop
3.1.1.3 Peek
3.1.1.4 isEmpty
3.1.1.5 is Full
3.1.2 Complexity Analysis of Stacks
3.1.3 Implementation of Stacks Using Arrays
3.1.4 Implementation of Stacks Using Linked Lists
3.2 Queues
3.2.1 Types of Queues
3.2.1.1 Linear Queue
3.2.1.2 Circular Queue
3.2.1.3 Priority Queue
3.2.1.4 Double-ended Queue (Deque)
3.2.2 Operations on Queues
3.2.2.1 Enqueue
3.2.2.2 Dequeue
3.2.2.3 Front
3.2.2.4 Rear
3.2.3 Complexity Analysis of Queues
3.2.4 Implementation of Queues Using Arrays
3.2.5 Implementation of Queues Using Linked Lists

Comparison of Stacks and Queues

Trees

ees

- 4.1.1 Root Node
- 4.1.2 Parent Node
- 4.1.3 Child Node
- 4.1.4 Leaf Node
- 4.1.5 Ancestors
- 4.1.6 Siblings
- 4.1.7 Descendants
- 4.1.8 Height of a Tree
- 4.1.9 Depth of a Node
- 4.1.10 Degree of a Node
- 4.1.11 Level of a Node
- **4.1.12** Subtree

4.2 Types of Trees

- 4.2.1 Binary Tree
- 4.2.1.1 Types of Binary Trees

Left-skewed Binary Tree

Right-skewed Binary Tree

Complete Binary Tree

- 4.2.2 Ternary Tree
- 4.2.3 N-ary Tree
- 4.2.4 Binary Search Tree
- **4.2.5** AVL Tree
- 4.2.6 Red-Black Tree
- 4.2.7 B-Tree
- 4.2.8 B+ Tree

Graphs

5.1	Properties of Graphs
5.1.1	Vertex
5.1.2	Edge
5.1.3	Degree of a Vertex
5.1.4	Path
5.2	Types of Graphs
5.2.1	Finite Graph
5.2.2	Infinite Graph
5.2.3	Trivial Graph
5.2.4	Simple Graph
5.2.5	Multi Graph
5.2.6	Null Graph
5.2.7	Complete Graph
5.2.8	Pseudo Graph
5.2.9	Regular Graph
5.2.10	Bipartite Graph
5.2.11	Labelled Graph
5.2.12	Weighted Graph
5.2.13	Directed Graph
5.2.14	Undirected Graph
5.2.15	Connected Graph
5.2.16	Disconnected Graph
5.2.17	Cyclic Graph

5.2.18 Acyclic Graph

Digraph

Directed Acyclic Graph (DAG)

5.2.19

5.2.20

6.1. SORTING 11

6

Sorting and Searching

6.1	Sorting
-----	---------

- 6.1.1 Types of Sorting Algorithms
- 6.1.1.1 Bubble Sort
- 6.1.1.2 Selection Sort
- 6.1.1.3 Insertion Sort
- 6.1.1.4 Merge Sort
- **6.1.1.5** Quick Sort
- **6.1.1.6** Heap Sort
- 6.1.1.7 Radix Sort
- 6.1.1.8 Counting Sort
- 6.1.1.9 Bucket Sort
- 6.1.2 Comparison of Sorting Algorithms

6.2 Searching

- 6.2.1 Types of Searching Algorithms
- 6.2.1.1 Linear Search
- 6.2.1.2 Binary Search
- 6.2.1.3 Jump Search
- 6.2.1.4 Interpolation Search
- 6.2.1.5 Exponential Search
- 6.2.1.6 Fibonacci Search
- 6.2.1.7 Ternary Search
- 6.2.2 Comparison of Searching Algorithms

6.3 Summary

Hashing

- 7.1 Hash Table
- 7.2 Hash Function
- 7.3 Collision Resolution Techniques
- 7.3.1 Separate Chaining
- 7.3.2 Open Addressing
- 7.3.2.1 Linear Probing
- 7.3.2.2 Quadratic Probing
- 7.3.2.3 Double Hashing
- 7.4 Complexity Analysis of Hashing
- 7.5 Summary

Advanced Data Structures and Algorithms

8.1	Advanced	Data	Structure

- 8.1.1 Segment Tree
- 8.1.2 Fenwick Tree
- 8.1.3 Suffix Tree
- 8.1.4 Suffix Array
- 8.1.5 Trie
- 8.1.6 Heap
- 8.1.7 Disjoint Set
- 8.1.8 Skip List
- 8.1.9 Splay Tree
- 8.1.10 Trie
- 8.1.11 Bloom Filter
- 8.1.12 KD Tree
- 8.1.13 Quad Tree
- 8.1.14 Octree
- 8.1.15 B-Tree
- 8.1.16 B+ Tree
- 8.1.17 R-Tree
- 8.1.18 X-Tree
- 8.1.19 Y-Tree
- 8.1.20 **Z-Tree**

8.2 Advanced Algorithms

- 8.2.1 Dynamic Programming
- 8.2.2 Greedy Algorithms
- 222 Backtracking

Applications of Data Structures and Algorithms

9.1	Applications	in	Computer	Science
9.1	Applications	111	Computer	Science

- 9.1.1 Operating Systems
- 9.1.2 Database Management Systems
- 9.1.3 Compiler Design
- 9.1.4 Networking
- 9.1.5 Artificial Intelligence
- 9.1.6 Machine Learning
- 9.1.7 Computer Graphics
- 9.1.8 Computer Vision
- 9.1.9 Robotics
- 9.1.10 Web Development
- 9.1.11 Mobile Development
- 9.1.12 Game Development
- 9.1.13 Cybersecurity
- 9.1.14 Quantum Computing

9.2 Applications in Real Life

- 9.2.1 Social Media
- 9.2.2 E-commerce
- 9.2.3 Healthcare
- **9.2.4** Finance
- 9.2.5 Transportation
- 9.2.6 Education
- 9.2.7 Agriculture
- 9.2.8 Manufacturing
- 0.2.0 Entertainment

References

A. Books

- Vishwas R. (2023). Data Structure Handbook. Dr. Vishwas Raval. ISBN: 978-9359063591
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT press. ISBN: 978-0262046305
- Erickson, J. (2019). Algorithms. ISBN: 978-1792644832

B. Other Sources

- Tutorialspoint. (n.d.). Data Structures Basics. Data Structure Basics. https://www.tutorialspoint.com/data_structures_algorithms/data_structures_basics.htm
- Algorithm Archive · Arcane Algorithm Archive. (n.d.). https://www.algorithm-archive.org/