Towards foundations of categorical cybernetics

Matteo Capucci Jules Hedges Bruno Gavranović Eigil Fjeldgren Rischel

MSP group, University of Strathclyde, Écosse Libre

The goal

A monoidal category of processes that:

- Depend on an external parameter
- Propagate back "responses" to the environment
- Also propagate back "responses" to the parameter's controller

The Para construction

Let 6 be a symmetric monoidal category

Para(6) is a symmetric monoidal bicategory where:

- Objects = objects of G
- Morphisms $X \to Y = pairs (M \in \mathcal{C}, f : M \otimes X \to Y)$
- 2-cells (M, f) \rightarrow (N, g) = "reperameterisations" h : M \rightarrow N

(Nb. This generalises from monoidal categories to actegories)

Picturing morphisms of Para

Sequential composition

Parallel composition

Reperameterisation

hom-categories of Para(\mathcal{C}) are fibred over \mathcal{C}

CoPara

CoPara(\mathcal{C})^{op} = Para(\mathcal{C} ^{op})

Optics = CoPara + Para

Optic(6) is a monoidal category where:

- Objects = pairs of objects of C
- Morphisms $(X, X') \rightarrow (Y, Y') =$ equivalence classes of triples

$$v: X \rightarrow M \otimes Y$$

$$u: M \otimes Y' \rightarrow X'$$

Equivalence of optics

 $(M, v, f*u) \sim (N, f*v, u)$

(It's a coend)

Optic composition

Para(Optic)

Para(Optic(6)) is a monoidal bicategory with:

- Objects = pairs of objects of C
- Morphisms $(X, X') \rightarrow (Y, Y') =$ $P \in C, P' \in C, (P, P') \otimes (X, X') \rightarrow (Y, Y')$

Central claim: Para(Optic) is the right setting for "cybernetic" processes

Example: Supervised learning

Gradient descent goes here

Example: Game theory

Choosing strategies goes here

Example: Variational inference

Optimisation of parameters goes here

Example: Reinforcement learning

Policy optimisation goes here

