Unit EU

Mensuration is a system to quantify measurements in real life. Measures like perimeter, area, surface area and volume help us solve optimisation problems involving 2D or 3D spaces.

Unit EQs

- What is perimeter?
- What is area?
- What is volume?
- What is surface area?

Unit Objectives

- Calculate perimeter and area of composite plane figures, including parallelogram and trapezium
- Calculate volume and surface area of composite solids, including cube, cuboid, prism, cylinder, pyramid, cone and sphere
- Convert between cm2 and m2, and between cm3 and m3

GCE O-Level Syllabus

G5	Mensuration	 area of parallelogram and trapezium problems involving perimeter and area of composite plane figures volume and surface area of cube, cuboid, prism, cylinder, pyramid, cone and sphere conversion between cm² and m², and between cm³ and m³ problems involving volume and surface area of composite solids
		 arc length, sector area and area of a segment of a circle use of radian measure of angle (including conversion between radians and degrees) Will be covered in Sec 3 and 4.

Plane figures are two-dimensional (2-D).

Each of these plane surfaces is called a **face** of the solid.

The face of a solid on its sides, that is, any face that is not the end faces, is known as the **lateral face**.

The \mathbf{edge} is the line where 2 faces meet.

The **vertex** is the point where edges meet.

The **cross-section** is obtained by the intersection of that solid with a plane.

The amount of space a solid occupies is its volume.

The total area of the net of a solid is the solid's total surface area.

The net of a solid is a two-dimensional figure that can be cut out and folded up to form a solid.

A solid is said to have **uniform cross-section** if the cross-section is identical to its two parallel ends.

Parts of a pyramid

- 1. **Base:** Its shape defines the name of the pyramid.
- Lateral face: The triangular faces between the base and the vertex.
 In a right pyramid, the lateral face is an isosceles triangle.
- 3. Vertex (Apex): Point where all the lateral faces meet.
- 4. **Height:** Perpendicular distance between the base and the vertex.
- 5. **Slant edge:** The common edge between two adjacent lateral faces.
- 6. **Slant height:** The distance between the vertex and the mid-point of an edge of the base.

A tetrahedron has the following properties:

- it is a special pyramid with a triangle base (also called triangular pyramid)
- the net consists of all triangles only
- a regular tetrahedron has all sides as equilateral triangles

Volume and surface area is calculated in the same way as a pyramid.

For a regular tetrahedron, the surface area can be easily obtained by find the area of 1 side (triangle) and multiplying by 4.

Examples of tetrahedrons:

5 stones

4-sided die

A cone has the following properties:

- it is a special pyramid with a circle base (also called circular pyramid)
- it has 2 sides (base and curved side)

Volume is calculated using the formula: ______(Derived from volume of pyramid)

Real Life Applications

Ice-cream cone

Traffic cone

Wheelock Place

A sphere has the following properties:

• equal radius /diameter throughout

Let's find the formula for the volume of a sphere by conducting an experiment.

- 3. Get a sphere with radius, r units, and an open cylinder (no lid) with base radius, r units, and a height of 2r units
- 4. Fill the cylinder with water.
- 5. Place the sphere into the cylinder; observing that there is a displacement of water.
- 6. Remove the sphere. Observe that the height of the water in the cylinder is only one-third left.

Volume of a sphere =
$$\frac{2}{3}$$
 × (Volume of a cylinder)
= $\frac{2}{3}$ × Base area × Height
= $\frac{2}{3}$ × πr^2 × $2r$
= $\frac{4}{3}$ πr^3 units³