Chapter 3 – Sampling The Imaginary

3.1 Sampling from a grid-approximate posterior

• R Code 3.2:

• 3.5:
dens(samples)

Let's try more samples:

```
par(mfrow=c(2, 2))
dens(sample(p_grid, prob=posterior, size=1e3, replace=T))
dens(sample(p_grid, prob=posterior, size=1e4, replace=T))
dens(sample(p_grid, prob=posterior, size=1e5, replace=T))
dens(sample(p_grid, prob=posterior, size=1e6, replace=T))
```


3.2 Sampling to Summarize

3.2.1. Intervals of defined boundaries.

The posterior probability that the proportion of water is less than 0.5:

• 3.6:

p_grid < 0.5

| ## | [1] | TRUE |
|----|-------|------|------|------|------|------|------|------|------|------|------|------|
| ## | [12] | TRUE |
| ## | [23] | TRUE |
| ## | [34] | TRUE |
| ## | [45] | TRUE |
| ## | [56] | TRUE |
| ## | [67] | TRUE |
| ## | [78] | TRUE |
| ## | [89] | TRUE |
| ## | [100] | TRUE |
| ## | [111] | TRUE |
| ## | [122] | TRUE |
| ## | [133] | TRUE |
| ## | [144] | TRUE |
| ## | [155] | TRUE |
| ## | [166] | TRUE |

[177] TRUE ## [188] TRUE ## [199] TRUE [210] ## TRUE ## [221] TRUE ## [232] TRUE [243] TRUE TRUE ## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [254] TRUE TRUE TRUE TRUE TRUE ## TRUE TRUE TRUE TRUE TRUE TRUE ## [265] TRUE ## [276] TRUE ## [287] TRUE ## [298] TRUE ## [309] TRUE ## [320] TRUE ## [331] TRUE ## [342] TRUE ## [353] TRUE ## [364] TRUE [375] TRUE ## ## [386] TRUE ## [397] TRUE ## [408]TRUE TRUE ## [419]TRUE TRUE [430] TRUE ## TRUE TRUE TRUE TRUE ## [441]TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [452]TRUE TRUE ## [463]TRUE TRUE ## [474]TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [485]TRUE TRUE ## [496] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE ## [507] FALSE ## [518] FALSE ## [529] FALSE ## [540] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [551] FALSE ## [562] FALSE ## [573] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [584] FALSE ## [595] FALSE ## [606] FALSE [617] FALSE ## [628] FALSE ## [639] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ## [650] FALSE [661] FALSE ## [672] FALSE ## [683] FALSE [694] FALSE ## ## [705] FALSE ## [716] FALSE ## [727] FALSE ## [738] FALSE ## [749] FALSE ## [760] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

```
[771] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [782] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [804] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
   [815] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [826] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [837] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [848] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
   [859] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [870] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [881] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [892] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [903] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [914] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [936] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [947] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [958] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [969] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [980] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [991] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
sum(posterior[p_grid < 0.5])</pre>
```

[1] 0.1718746

Samples array:

```
head(samples, 100)
```

```
[1] 0.4544545 0.6036036 0.5455455 0.6586587 0.5775776 0.6306306 0.5505506
##
##
     [8] 0.8088088 0.4304304 0.7107107 0.6316316 0.4494494 0.6296296 0.8068068
##
    [15] 0.7477477 0.6886887 0.6286286 0.6196196 0.4574575 0.5325325 0.4744745
##
    [22] 0.7287287 0.3363363 0.5795796 0.7457457 0.5995996 0.7027027 0.6616617
    [29] 0.6846847 0.5075075 0.2712713 0.6946947 0.6356356 0.6006006 0.6376376
   [36] 0.7717718 0.7957958 0.4814815 0.4214214 0.3663664 0.4224224 0.5775776
##
    [43] 0.6466466 0.6556557 0.6716717 0.7217217 0.3163163 0.7057057 0.5235235
##
   [50] 0.7807808 0.5595596 0.7137137 0.5365365 0.5375375 0.5915916 0.5185185
   [57] 0.8628629 0.5255255 0.8668669 0.4804805 0.5085085 0.7487487 0.5995996
    [64] 0.6146146 0.3873874 0.6996997 0.8748749 0.6076076 0.5455455 0.7427427
##
    [71] 0.4944945 0.5205205 0.5165165 0.6166166 0.5305305 0.5925926 0.4484484
   [78] 0.5235235 0.5425425 0.4704705 0.5915916 0.4254254 0.7237237 0.6336336
   [85] 0.8268268 0.3963964 0.5065065 0.5885886 0.8018018 0.8238238 0.6146146
    [92] 0.5645646 0.6046046 0.4804805 0.7787788 0.6896897 0.6696697 0.6206206
##
    [99] 0.6136136 0.5765766
```

The same calculation using samples. Add up all samples that lie in the grid < 0.5, and divide by the total number of samples to get the frequency \sim probability:

```
• 3.7:
```

```
n = 1e4
samples = sample(p_grid, prob=posterior, size=n, replace=T)
sum(samples < 0.5) / n</pre>
```

[1] 0.1705

How much probability lies between 0.5 and 0.75: * 3.8:

```
sample_points = sum(samples > 0.5 & samples < 0.75)
sample_points
## [1] 6044
sample_points / n
## [1] 0.6044</pre>
```

3.2.2. Intervals of defined mass.

Boundaries of the lower 80% posterior probability lies:

• 3.9:

```
quantile(samples, probs = .8)

## 80%
## 0.7607608

Middle 80%, i.e. lying between 10% and 90%:

# 3.10
quantile(samples, probs = c(0.1, 0.9))

## 10% 90%
## 0.4484484 0.8128128
```

The above are PERCENTILE INTERVALS. Percentiles can be misleading if the distribution is highly skewed.

```
# 3.11
n <- 10000
p_grid <- seq(0, 1, length.out = n)
prior <- rep(1, n)
likelihood <- dbinom(3, size=3, prob=p_grid)
posterior_notnorm <- likelihood * prior
posterior <- posterior_notnorm / sum(posterior_notnorm)
samples <- sample(p_grid, size=1e5, replace=T, prob=posterior)
plot(posterior, type='l')</pre>
```



```
# 3.12
PI(samples, prob=0.5)
```

25% 75% ## 0.7099710 0.9314931

Highest Posterior Density Interval described the distribution better. It's the narrowest interval containing the specified probability mass, e.g. 50%.

```
# 3.13
HPDI(samples, prob=0.5)
```

|0.5 0.5| ## 0.8427843 1.0000000

3.2.3. Point Estimates

A parameter with the highest posterior probability is called a maximum a posteriori estimate, or MAP.

```
# 3.14
which.max(posterior)
```

```
## [1] 10000
p_grid[which.max(posterior)]
```

[1] 1

Use samples to get the same (or similar) result:

```
# 3.15
chainmode(samples, adj=0.01)
## [1] 0.9894167
# 3.16
mean(samples)
## [1] 0.801751
median(samples)
## [1] 0.8427843
If the loss function is the absolute difference, then the posterior loss for p = 0.5 is
# 3.17
sum(posterior * abs(0.5 - p_grid))
## [1] 0.3125375
# 3.18
loss <- sapply(p_grid, function(d) sum(posterior * abs(d - p_grid)))</pre>
# 3.19
which.min(loss)
## [1] 8410
p_grid[which.min(loss)]
## [1] 0.8409841
The posterior median minimizes the abs loss function. Let's test the quadratic loss function:
loss2 <- sapply(p_grid, function(d) sum(posterior * (d - p_grid)^2))</pre>
which.min(loss2)
## [1] 8001
p_grid[which.min(loss2)]
## [1] 0.80008
This is a mean.
3.3. Sampling to Simulate Prediction
3.3.1. Dummy Data
# 3.20
```

```
# 3.20
dbinom(0:2, size=2, prob=0.7)

## [1] 0.09 0.42 0.49

We can sample from this distribution:
# 3.22
rbinom(10, size=2, prob=0.7)

## [1] 1 1 2 1 1 0 1 2 2 1
```

Let's generate 100,000 dummy observations to verify that each values 0, 1, and 2 appear in proportion to its likelihood:

```
# 3.23
dummy_w <- rbinom(1e5, size=2, prob=0.7)
table(dummy_w) / 1e5

## dummy_w
## 0 1 2
## 0.08912 0.42157 0.48931
Let's simulate the sample with 9 tosses:
# 3.24
dummy_w <- rbinom(1e5, size=9, prob=0.7)
plot(table(dummy_w), xlab="Dummy Water Count")</pre>
```



```
table(dummy_w)
## dummy_w
##
             1
                   2
                         3
                                     5
                                           6
                                                  7
                      2100 7378 17085 26733 26855 15567
##
            40
                 367
dummy_w[1:100]
##
      [ 36 ] \ 8 \ 9 \ 6 \ 7 \ 4 \ 6 \ 6 \ 8 \ 9 \ 8 \ 5 \ 4 \ 7 \ 5 \ 5 \ 4 \ 7 \ 4 \ 6 \ 8 \ 5 \ 5 \ 6 \ 7 \ 6 \ 6 \ 7 \ 7 \ 5 \ 5 \ 7 \ 8 \ 6 \ 7 \ 7 
   [71] 7 5 9 6 6 5 6 6 8 7 8 2 6 7 6 6 3 6 5 7 4 7 7 7 6 9 5 7 8 7
```

3.2. Model Checking

Below is a misleading distribution plot. While p = 0.6 is the likeliest estimate, if we simply use it as a point estimate we will obtain a much more narrow, "overly confident" predictions:

```
# 3.25
w <- rbinom(1e4, size=9, prob=0.6)
plot(table(w), xlab="Dummy Water Count")</pre>
```


The correct way to generate predictions is to incorporate our uncertainty about p. We can do it by using sampled values of p, and averaging over all of them. The sampled values will appear with the right frequency, described by our posterior. Samples from the *posterior* distribution of p:

```
samples[1:20]
    [1] 0.9022902 0.2151215 0.7202720 0.9247925 0.9942994 0.7457746 0.8035804
    [8] 0.8390839 0.8042804 0.6967697 0.8024802 0.7568757 0.9796980 0.6420642
## [15] 0.9236924 0.8105811 0.6538654 0.7180718 0.4230423 0.6872687
w2 <- rbinom(1e4, size=9, prob=samples_orig)</pre>
table(w2)
## w2
##
                                                     9
      0
                2
                     3
                                5
                                     6
                                               8
           1
                           4
                                          7
        113 371
                   768 1324 1797 2061 1912 1161
par(mfrow=c(1, 2))
plot(table(w), xlab ="Overly confident")
plot(table(w2), xlab="Correct")
```


