National University of Computer and Emerging Sciences, Lahore Campus Course: Discrete Structures CS1005 Course Code: Program: **BS- Computer Science** Semester: Fall 21 Duration: 180 mins Total Marks: 70 10-01-2022 Paper Date: Weightage 50 Section: All Sections Page(s): Exam: Final Roll No: Instruction/Notes:

Attempt All the Questions

Q.1. (6 marks)

- (a) What is the number of 5-element subsets of a 50-element set?
- (b) What is the number of functions from the set $\{1, 2, ..., 100\}$ to the set $\{a, b\}$?
- (c) What is the number of 5-letter upper-case words that contain the letter A?
- Q.2. (4 marks) Find the coefficient of x^{10} in the expansion of $\left(2x + \frac{1}{x}\right)^{100}$?
- Q.3. (5 marks) How many different ways are there to choose a dozen candies from the 21 varieties at a candy shop?
- Q.4. (5 marks) Let m be an integer with m > 1. Define the congruence relation $R = \{(a, b) \mid a \equiv b \pmod{m}\}$ on the set of integers. Is the relation R equivalence relation?
- Q.5. (5 marks) show that (0, 1) and [0, 1] have the same cardinality.
- Q.6. (4 marks) Find each of these values.
 - (a) $(177 \mod 31 + 270 \mod 31) \mod 31$
 - (b) (177 mod 31 · 270 mod 31) mod 31
- Q.7. (8 marks) Determine the smallest positive integer that gives a remainder of 2 upon division by 3, a remainder of 1 upon division by 5; and a remainder of 6 upon division by 7.
- Q.S. (8 marks) Let P(n) be the statement that $n! < n^n$, where n is an integer greater than 1.
 - (a) What is the statement P(2)?
 - (b) Show that P(2) is true, completing the basis step of the proof.
 - (c) What is the inductive hypothesis?
 - (d) What do you need to prove in the inductive step?
 - (e) Complete the inductive step.
 - (f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.
- Q.9. (10 marks) How many different messages can be transmitted in n microseconds using three different signals if one signal requires 1 microsecond for transmittal, the other two signals require 2 microseconds each for transmittal, and a signal in a message is followed immediately by the next signal?
- Q.10. (5 marks) Are the simple graphs with the following adjacency matrices isomorphic? justify you answer.

0	1	0	1	1	0	1	1	1	
1	0	0	1		1	0	0	1	
0	0	0	1		1	Û	0	1	
0 1 0 1	1	1	0_		_1]	1	0_	

- Q.11. (5 marks) Let T(x, y) mean that student x likes cuisine y, where the domain for x consists of all students at your school and the domain for y consists of all cuisines. Express each of these statements by a simple English sentence.
 - (a) ¬T (Abdullah, Chinese)
 - (b) ∃x T (x, Korean) ∧ ∀x T (x, Mexican)
 - (c) $\exists y (T (Ali, y) \lor T (Usman, y))$
 - (d) $\forall x \forall z \exists y ((x \neq z) \rightarrow \neg (T(x, y) \land T(z, y)))$
 - (e) $\exists x \exists z \forall y (T(x, y) \leftrightarrow T(z, y))$

Q.12. (5 marks)

- (a) What rules of inference are used in this argument? 'No man is an island. Manhattan is an island. Therefore. Manhattan is not a man."
- (b) What is the negation of the proposition? Sobia has an MP3 player.
- (c) What is the truth value of the proposition "There is no pollution in Lahore".
- (d) Find the domain of the function that assigns to each bit string the number of ones in the string minus the number of zeros in the string
- (e) Find the range of the function that assigns to each bit string the number of ones in the string minus the number of zeros in the string