# Разнообразие в рекомендательных системах.

## Введение



## Разнообразие

- Важный аспект качества рекомендаций, который характеризует степень различия между предлагаемыми пользователю объектами.
- Обычно противопоставляется точности рекомендаций и служит дополнительным критерием оценки эффективности рекомендаций.

## Почему разнообразие важно?

not boosted for diversity

NBA highlights video 1 NBA highlights video 1 NBA highlights video 2 Peppa Pig video Stanford course lecture NBA highlights video 3 video A single slate of recs but A single slate of recs with more

Fig 1: Example of diversity

diversity of topics

## Почему разнообразие важно?

• Современные рекомендательные системы, стремясь максимизировать точность предсказаний, часто создают "пузыри фильтрации", ограничивая спектр контента, с которым взаимодействует пользователь.

## Почему разнообразие важно?

- Способствует открытию нового контента пользователями, расширяя их кругозор и предотвращая когнитивные искажения
- Разнообразие помогает избежать эффекта "популярности", когда популярные элементы становятся еще популярнее, а менее известные остаются незамеченными.
- Способствует справедливому представлению различных категорий контента и создателей, что особенно актуально в музыкальных сервисах, новостных платформах и социальных сетях.

### Типы разнообразия в рекомендательных системах

- Индивидуальное
- Агрегированное

### Типы разнообразия в рекомендательных системах

- Индивидуальное Мера разнообразия элементов, рекомендуемых конкретному пользователю. Отражает, насколько различаются между собой предложения в персональном списке рекомендаций по характеристикам, тематикам и атрибутам.
- Агрегированное

### Типы разнообразия в рекомендательных системах

- Индивидуальное
- Агрегированное Мера распределения рекомендаций по всей базе элементов для всех пользователей системы.
  - Показывает, насколько широко используется каталог объектов в рекомендациях, предотвращая концентрацию только на популярных элементах и обеспечивая видимость для элементов "длинного хвоста", что способствует более справедливому распределению внимания пользователей

## Метрики индивидуального разнообразия

## Intra-list diversity

• Относится к разнообразию элементов внутри одного списка рекомендаций для конкретного пользователя. Например, вместо рекомендации десяти боевиков, система может предложить фильмы разных жанров.

$$ILD(L) = \frac{2}{|L| \cdot (|L| - 1)} \sum_{i=1}^{|L|-1} \sum_{j=i+1}^{|L|} d(i,j)$$

где:

- L— список рекомендаций
- |L| размер списка
- d(i,j) функция расстояния (или несходства) между элементами i и j
- Суммы  $\sum_{i=1}^{|L|-1} \sum_{j=i+1}^{|L|}$  обеспечивают учет всех уникальных пар элементов в списке
- Множитель  $\frac{2}{|L|\cdot(|L|-1)}$  нормализует сумму, чтобы получить среднее значение расстояния для всех возможных пар в списке. Общее количество таких пар равно  $C_{|L|}^2 = \frac{|L|\cdot(|L|-1)}{2}$

## Временное разнообразие

• Рассматривает изменение рекомендаций со временем, предотвращая повторение одних и тех же типов контента день за днем.

## Временное разнообразие

- Рассматривает изменение рекомендаций со временем, предотвращая повторение одних и тех же типов контента день за днем.
- Можно использовать меру Жаккара между списками рекомендаций за разные дни

### Новизна

### • На основе популярности

1. Будем рассматривать собственную информацию item-а как меру его новизны для пользователей.

$$selfInformation(i) = -\log_2 \frac{|u_i|}{N},$$

где i - объект (item), N - число пользователей в обучающей выборке,  $|u_i|$  - число пользователей, взаимодействовавших с объектом i в обучающей выборке.

2. Собственная информация определяется для item-a, а значение метрики мы хотим считать для пользователя и k - количества рекомендаций. Для подсчета Surprisal пользователя усредним значения собственной информации в топ-k рекомендациях этого пользователя.

Чтобы получить значения от 0 до 1, разделим значение метрики для пользователя на максимально возможно значение метрики равное  $log_2N$ .

$$Novelty(u, k) = \frac{1}{klog_2 N} \sum_{i}^{k} selfInformation(i)$$

3. Результат усредним по пользователям.

### Новизна

• На основе истории пользователя 
$$Novelty(L,H) = 1 - \frac{|L \cap H|}{|L|}$$

где:

L — список рекомендаций

H— история предыдущих взаимодействий пользователя

## Неожиданность

- Неожиданность (Unexpectedness) измеряет степень отклонения рекомендаций от ожидаемых пользователем или известных ему элементов.

Базовая формула неожиданности 
$$Serendipity(L) = \frac{1}{|L|} \sum_{i \in L} rel(i) \cdot unexp(i)$$

где:

L— список рекомендаций rel(i)— релевантность элемента iдля пользователя unexp(i)— неожиданность элемента i для пользователя

## Метрики агрегированного разнообразия

## Покрытие каталога

• Покрытие каталога (Catalog Coverage) измеряет долю всех доступных элементов, которые когда-либо рекомендуются пользователям, что особенно важно для борьбы с предвзятостью в сторону популярного контента.

## Покрытие каталога

- Покрытие каталога (Catalog Coverage) измеряет долю всех доступных элементов, которые когда-либо рекомендуются пользователям, что особенно важно для борьбы с предвзятостью в сторону популярного контента.
- Индекс Джини и коэффициент энтропии Шеннона используются для оценки равномерности распределения рекомендаций между элементами каталога.

$$H = -\sum_{i \in I} p(i)log_2 p(i), \quad p(i) = \frac{|\{u \in \mathcal{U} | i \in \mathcal{R}_u\}|}{\sum_{j \in I} |\{u \in \mathcal{U} | j \in \mathcal{R}_u\}|}$$

## Высокое индивидуальное разнообразие != высокое агрегированное разнообразие

### Компромисс между точностью и разнообразием

Фундаментальный вызов в разработке рекомендательных систем — поиск баланса между точностью предсказаний и разнообразием рекомендаций. Точность, традиционно измеряемая такими метриками как RMSE, Precision@k и Recall@k, отражает способность системы предсказывать предпочтения пользователя и рекомендовать релевантные элементы.

### Компромисс между точностью и разнообразием

• Однако стремление к максимальной точности часто приводит к однородным рекомендациям, сконцентрированным вокруг явных интересов пользователя.

### Компромисс между точностью и разнообразием

- Бюджет разнообразия количество разнообразия, которое можно ввести без значительной потери точности.
- При этом оптимальная точка этого компромисса индивидуальна для каждого пользователя и зависит от контекста использования системы. Например, в новостных рекомендациях пользователи обычно ценят разнообразие выше, чем в специализированных технических рекомендациях.
- Современные подходы направлены на персонализацию этого компромисса, где система адаптивно определяет оптимальный баланс для каждого пользователя на основе его поведения и явных предпочтений.



## Ручные правила

• Не ставить объекты одного кластера ближе чем k позиций

## Квотирование

- Распределить N мест среди всех кластеров объектов
- Кластеры
  - Обучаемые
  - Категории/жанры/etc
- Выбор размера квоты для кластеры
  - Одна квота на все кластеры
  - Распределение интересов пользователя по кластерам

## Maximum marginal Relevance

### **Algorithm 1:** Greedy Algorithm for Diversity Enhancement

**Input:** Recommendation number top K, coefficient  $\lambda$ 

- 1 **return** Recommendation list  $\mathcal{R}_u$
- 2 Init recommendation list  $\mathcal{R}_u = \{\}$
- 3 for  $|\mathcal{R}_u| < K$  do
- $i^* = argmax_{i \in I \setminus \mathcal{R}_u} s(\mathcal{R}_u \cup \{i\}, \lambda)$   $\mathcal{R}_u = \mathcal{R}_u \cup \{i^*\}$
- 6 return  $\mathcal{R}_u$ ;

$$s(\mathcal{R}_u, \lambda) = \frac{1 - \lambda}{|\mathcal{R}_u|} \sum_{i \in \mathcal{R}_u} f_{\text{rec}}(i) + \lambda f_{\text{div}}(\mathcal{R}_u)$$

• Математическая модель, которая изначально использовалась в квантовой физике для описания отталкивания заряженных частиц. В контексте рекомендательных систем она помогает моделировать "отталкивание" между похожими элементами.

• Ключевая особенность DPP в том, что вероятность выбора подмножества элементов пропорциональна определителю матрицы, элементы которой отражают как качество отдельных элементов, так и их сходство между собой.

- Матрица ядра (L-matrix) центральный элемент DPP. Для каждой пары элементов і и ј матрица содержит значение L(i,j), которое отражает их сходство. Диагональные элементы L(i,i) представляют релевантность элемента i.
- Хотим набрать такую матрицу из N элементов, определитель которой будет максимален
- Точное решение NP-сложное, поэтому будем пользоваться жадным

- Точное решение NP-сложное, поэтому будем пользоваться жадным
- Даже в жадном нам надо считать определитель матрицы от N элементов,
   что имеет кубическую сложность относительно N
- В статье предлагается использовать разложение Холецкого для ускорения вычислений

Статья <a href="https://lsrs2017.wordpress.com/wp-content/uploads/2017/08/lsrs\_2017\_lamingchen.pdf">https://lsrs2017.wordpress.com/wp-content/uploads/2017/08/lsrs\_2017\_lamingchen.pdf</a>

## MULTISLOT RERANKER: A GENERIC MODEL-BASED RE-RANKING FRAMEWORK IN RECOMMENDATION SYSTEMS

#### Algorithm 1 Sequential Greedy Algorithm

```
Require: i \ge 0 and i < N
                                                            ▶ i is slot or position index, N is total number items.
Select item with top SPR score and place it to slot 0
i \leftarrow 1

  The slot 0 does not have previous slot

C \leftarrow \{0 \dots K-1\}
                                                   ▶ Initialize top K candidate set by second pass ranking scores
while i < N do
   reranking\_score\_max \leftarrow -\infty

  Select item k from Candidates

   k \leftarrow 0
   for a \in C do
       Extract features from item a
       Extract interaction features between item a and the previous slot i-1
       Calculate score by equation 1
       if score > reranking\_score\_max then
          reranking\_score\_max \leftarrow score
          k \leftarrow a
                                                        ▶ Pick the item with largest re-ranking score, i.e., greedy
       end if
   end for
   Remove item k from Candidate set C and place it to slot i
   Pick the next top item in remaining list and add it to top K Candidate set C
   i \leftarrow i + 1
end while
```

• Статья <a href="https://arxiv.org/pdf/2401.06293">https://arxiv.org/pdf/2401.06293</a>

## MULTISLOT RERANKER: A GENERIC MODEL-BASED RE-RANKING FRAMEWORK IN RECOMMENDATION SYSTEMS

Table 1: A List of Features for Sequential Greedy Algorithm

| Feature Category           | Features                                                                                   |
|----------------------------|--------------------------------------------------------------------------------------------|
| Second Pass                | p(Click)                                                                                   |
| Ranking                    | Contribution responses such as p(Like), p(Comment), p(Share), p(Skip)                      |
| Scores                     | p(Contributions) whose label is positive if any of Like, Comment, Share, Skip is positive. |
| Current Slot's<br>Features | Slot index i                                                                               |
|                            | Embeddings of item at slot $i$                                                             |
|                            | Type of item at slot $i$ such as Video, Image, Job, Company, Article, etc.                 |
| Interaction<br>Features    | Type of items in previous slots                                                            |
|                            | Count of each type of items in previous slots                                              |
|                            | Cross feature with item type among slot $i$ and previous slots                             |
|                            | Embeddings dot product of items among current slot $i$ and previous slots                  |
|                            | Whether items at current slot $i$ and previous slots are created by the same user          |

• Статья <a href="https://arxiv.org/pdf/2401.06293">https://arxiv.org/pdf/2401.06293</a>

## Многоуровневая система

retrieval filtering ranking re-ranking

## Многоуровневая система



## Вопросы