Chapitre 1 : Courbes planes

I) Courbes

A) Description géométrique

<u>Exemple</u>: "L'ensemble des points à distance r d'un point A" = Cercle de centre A et de rayon r ou "distance aller-retour de A à M vaut 2r"

Exemple: "Etant donné deux points A et B, l'ensemble des points M tels que dist(A, M) + dist(M, B) = d" = ellipse de foyers A et B

Exemple : "Etant donné un point A et une droite (d), l'ensemble des points à égale distance de A et de D" = parabole

(*d*)

B) Courbe représentative d'une fonction

<u>Cadre</u>: I intervalle de \mathbb{R} , f: I → \mathbb{R}

$$\Gamma_f = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \middle| y = f(x) \right\}$$

Exemple : $\Gamma_{\sin_{[0,2\pi]}}$

$$I = [0,2\pi]$$

$$f: I \to \mathbb{R}, x \mapsto \sin(x)$$

 Γ_{sin}

 $I = \mathbb{R}$

 $f: I \to \mathbb{R}, x \mapsto \sin(x)$

C) Courbes paramétrées

1) en coordonnées cartésiennes

 $I \subset \mathbb{R}$ intervalle

$$M{:}\,I\to\mathbb{R}^2$$

$$t\mapsto M(t)=\begin{pmatrix}x(t)\\y(t)\end{pmatrix}$$

Remarque: se donner une fonction $M: I \to \mathbb{R}^2$ revient à se donner deux fonction

$$x: I \to \mathbb{R} \text{ et } y: I \to \mathbb{R}$$

Exemple: on prend $I = \mathbb{R}$ et $x: \mathbb{R} \to \mathbb{R}$, $t \mapsto \cos(t)$ et $y: \mathbb{R} \to \mathbb{R}$, $t \mapsto \sin(t)$

$$\underline{\mathsf{Exemple}}: I = \mathbb{R}, \, x : \mathbb{R} \to \mathbb{R}, \, t \mapsto \frac{1-t^2}{1+t^2} \, \mathsf{et} \, y : \mathbb{R} \to \mathbb{R}, \, t \mapsto \frac{2t}{1+t^2}$$

Quelle courbe obtient-on?

Calculons:
$$dist(0, M(t))$$
 où $O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, et $M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

On observe que:

$$x(t) + y(t) = \frac{1 + 2t - t^2}{1 + t^2}$$

$$x(t)^{2} + y(t)^{2} = \frac{(1-t^{2})^{2} + (2t)^{2}}{(1+t^{2})^{2}} = \frac{1-2t^{2}+t^{4}+4t^{2}}{(1+t^{2})^{2}} = \frac{1+2t^{2}+(t^{2})^{2}}{(1+t^{2})^{2}} = 1$$

D'après le théorème de Pythagore

$$|x(t)|^2 + |y(t)|^2 = d^2$$

Donc
$$d = \sqrt{x(t)^2 + y(t)^2} = 1$$

On est donc sur le cercle de rayon 1 centré à l'origine

La courbe décrit donc une portion du cercle

Calculons les dérivées de x et y

$$x'(t) = \frac{(-2t)(1+t^2) - (1-t^2)(2t)}{(1+t^2)^2} = -\frac{4t}{(1+t^2)^2}$$

$$x'(t) = \frac{2(1+t^2) - (2t)(2t)}{(1+t^2)^2} = \frac{2(1-t^2)}{(1+t^2)^2}$$

t	-∞	-1 ()	1 +∞	
x'(t)	+	+	_	_	
x(t)		>	1		
	1	7	4) , ,	$\lim_{t\to+\infty}x(t)=-1$
	-1		`	\rightarrow -1^2	<i>t</i> →+∞

t	-∞	-1	0	1	+∞	
x'(t)	_	+	+	-	-	
x(t)	0_		. >	1		11(1) 0
	1	1	0		Y L	$\lim_{t\to+\infty}y(t)=0$
	_	-1			- 0	

Dans cet exemple, notons B le point $\binom{-1}{0}$ et calculons la pente de la droite $\left(BM(t)\right)$

$$p(t) = \frac{y_{M(t)} - y_B}{x_{M(t)} - x_B}$$

$$= \frac{y(t) - 0}{x(t) - (-1)}$$

$$= \frac{\frac{2t}{1 + t^2} - 0}{\frac{1 - t^2}{1 + t^2} + 1}$$

$$= \frac{2t}{(1 - t^2)(1 + t^2)}$$

$$= \frac{2t}{2}$$

Donc pour tout $t \in \mathbb{R}$, le point M(t) est l'intersection de la droite de pense t passant par B avec le cercle de rayon 1 centré à l'origine

Le triangle OBM(t) est isocèle donc $2\beta + \gamma = \pi$

O est sur la droite (*AB*) donc $\gamma + \alpha = \pi$

D'où
$$\alpha=2\beta$$

Comme la droite (BM(t)) fait un angle $\beta(t)$ avec l'origine

Comme
$$\beta(t) = \frac{1}{2}\alpha(t)$$

et a une pente p(t), on a :

$$p(t) = \tan\left(\frac{1}{2}\alpha(t)\right)$$

Donc
$$t = \tan\left(\frac{\alpha(t)}{2}\right)$$

Par ailleurs $\begin{cases} x(t) = \cos(\alpha(t)) \\ y(t) = \sin(\alpha(t)) \end{cases}$ puisque M(t) est sur le cercle unité à l'angle $\alpha(t)$. Donc pour tout angle $\alpha \not\equiv \pi[2\pi]$, on a:

$$\begin{cases} \cos(\alpha) = \frac{1 - \left(\tan\left(\frac{\alpha}{2}\right)\right)^2}{1 + \left(\tan\left(\frac{\alpha}{2}\right)\right)^2} \\ \sin(\alpha) = \frac{2\tan\left(\frac{\alpha}{2}\right)}{1 + \left(\tan\left(\frac{\alpha}{2}\right)\right)^2} \end{cases}$$

Exercice: Avec
$$M(t) = \begin{pmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t}{1+t^2} \end{pmatrix}$$

Calculer M(t) pour $t \in \left\{0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, 1, \frac{3}{2}, 2, 3\right\}$

2) en coordonnées polaires

Exemple : On peut étudier la courbe définie par $r(\theta) = \theta$

On peut se ramener au cas des courbes paramétrées en coordonnées cartésiennes. En effet, si M a pour coorodnnées polaires (r,θ) , alors ses coordonnées cartésiennes sont $\binom{r\cos(\theta)}{r\sin(\theta)}$

Exemple: Si
$$r = r(\theta)$$
, on obtient $\binom{r(\theta)\cos(\theta)}{r(\theta)\sin(\theta)}$

On peut avoir des descriptions en polaires paramétrées par l'angle : $M(\theta)$ de coordonnées polaires $(r(\theta),\theta)$ ou plus généralement, à la fois le rayon et l'angle peuvent dépendre d'un autre paramètre : on considère M(t) de coordonnées polaires $\left(r(t),\theta(t)\right)$

D) description implicite de courbes

On donne une relation entre x et y

Exemple:
$$(x-2)^2 + (y-3)^2 = 16$$

Cet exemple décrit un cercle

En effet, l'équation $(x-2)^2 + (y-3)^2 = 16$ peut aussi s'écrire $dist(M,A)^2 = 4^2$

Exemple:
$$x^5 + 3xy^3 + \sin(xy) + 1 = 0$$

La description implicite ne donne pas directement des points de la courbe. Parfois, l'ensemble des solutions n'est pas une courbe

Exemple:
$$x^2 + xy + y^2 + 1 = 0$$
 n'a pas de solutions dans \mathbb{R}^2

On se concentre sur les courbes paramétrées en coordonnées cartésiennes

Chaque valeur de
$$t$$
 donne un point $M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

Avec quelques points, difficile de savoir à quoi ressemble la courbe

- On peut souvent détecter des symétries de la courbe et restreindre l'intervalle d'étude
- On peut étudier la continuité et la différentiabilité de la courbe
- chaque courbe admet un infinité de paramétrages différents, on peut essayer de trouver le "paramétrage préféré"

Exemple : on a vu que
$$t \mapsto \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$
 sur l'intervalle $]-\pi,\pi[$ et $t \mapsto \begin{pmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t^2}{1+t^2} \end{pmatrix}$ sur $\mathbb R$ donnent la même

courbe : le cercle de centre $\binom{0}{0}$ et le rayon 1 privé du point $\binom{-1}{0}$, simplement elle n'est pas parcourue à la même vitesse

II) Tangente à une courbe en un point

Plusieurs difficultés supplémentaires par rapport à la tangente au graphe d'une fonction :

- La courbe peut passer plusieurs fois par le même point

- la courbe peut faire demi-tour

- la courbe peut ralentir, s'arrêter et repartir dans une direction différente

$$M(t) = \begin{pmatrix} t^3 \\ |t^3| \end{pmatrix}$$

x et y sont dérivables en 0, pourtant la courbe fait un angle en M(0)

<u>Définition</u>: on dit que la courbe $t \mapsto M(t)$ admet une tangente au temps t_0 si la droite $(M(t_0), M(t))$ admet une position limite lorsque $t \to t_0$

Cela revient à dire que le vecteur $\frac{1}{\left\|\overrightarrow{M(t_0)M(t)}\right\|} \overrightarrow{M(t_0)M(t)}$

admet une limite lorsque $t
ightarrow t_0$

A) Le vecteur dérivé

On considère une courbe M: $\begin{cases} I \to \mathbb{R}^3 \\ t \mapsto M(t) \end{cases}$ et on considère $t_0 \in I$

- Le vecteur position au temps t est le vecteur $\overrightarrow{OM(t)} = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$
- le vecteur dérivé au temps t_0 est $M'(t_0) = egin{pmatrix} x'(t_0) \\ y'(t_0) \end{pmatrix}$

C'est la limite de
$$\frac{1}{t-t_0} \overline{M(t_0)M(t)} = \frac{1}{t-t_0} (M(t) - M(t_0))$$
 (si cette limite existe)

Si la limite n'existe pas, il n'y a pas de vecteur dérivé en t_0 . Lorsque le vecteur dérivé $M'(t_0)$ existe et est non nul, c'est-à-dire que ce n'est pas le vecteur $\binom{0}{0}$, la courbe admet une tangente au temps t_0 , de vecteur directeur $M'(t_0)$

Si le vecteur dérivé $M'(t_0)$ existe, mais est nul, on peut soir re-paramétrer la courbe pour éliminer le problème de vitesse nulle en t_0 , soit chercher la limite de $\frac{1}{\left\|\overrightarrow{M(t_0)M(t)}\right\|}\overrightarrow{M(t_0)M(t)}$, pour savoir s'il y a une tangente

- Si la limite pour $t \to t_0$ avec $t < t_0$ existe, on a une demi-tangente en t_0^-
- Si la limite pour $t \to t_0$, avec $t > t_0$ existe, on a une dime tangente en t_0^+
- Si les deux coïncident, on a une tangente au temps t_0

<u>Vocabulaire</u>: si $M'(t_0) \neq {0 \choose 0}$, on dit que la courbe est <u>régulière</u> en t_0 ou que le point $M(t_0)$ est

Si $M'(t_0) = \binom{0}{0}$, on dit que la courbe est <u>singulière</u> en t_0 , ou que le point $M(t_0)$ est <u>singulier</u>

On dit que $M = I \to \mathbb{R}^3$ est une courbe régulière si elle est régulière en tout $t \in I$

Remarque : M'(t) s'appelle le vecteur dérivé ou vecteur vitesse

Point régulier ⇔ on est pas à l'arrêt

En un point régulier, la courbe admet une droite tangente : la droite passant par M(t) et de vecteur directeur M'(t)

Un paramétrage de cette droite est $T(u) = M(t_0) + uM'(t_0)$

$$= \begin{pmatrix} x(t_0) + ux'(t_0) \\ y(t_0) + uy'(t_0) \end{pmatrix}$$

Pour $u \in \mathbb{R}$

Une équation de la droite tangente à la courbe au point $M(t_0)$ est

$$-y'(t_0).(X - x(t_0)) + x'(t_0)(Y - y(t_0)) = 0 \quad (*)$$

Dire que N est sur la droite tangente revient à dire que

scalaire nul
$$\binom{-y'(t_0)}{x'(t_0)}$$
. $\overrightarrow{M(t_0)N}=0$ ce qui donne (*)

Exemple:
$$M(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

$$M'(t) = \begin{pmatrix} -\sin(t_0) \\ \cos(t_0) \end{pmatrix}$$

Pour
$$t_0 = \frac{\pi}{6}$$
,

$$M(t_0) = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$M'(t_0) = \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$

$$\frac{1}{2} \xrightarrow{M'(t_0)} M(t_0) = M\left(\frac{\pi}{6}\right)$$

$$\frac{\sqrt{3}}{2}$$

Equation de la tangente :
$$\left(-\frac{\sqrt{3}}{2}\right)\left(X-\frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{2}\right)\left(Y-\frac{1}{2}\right)=0$$

B) norme du vecteur vitesse

C'est la "vitesse au compteur" ("intensité" du vecteur vitesse en oubliant sa direction)

Son intégrale ebtre t=a et t=b donne la longueur parcourue le long de la courbe entre t=a et t=b

Exemple: entre $t = \frac{\pi}{6}$ et $t = \frac{\pi}{3}$, la courbe $M(t) = \binom{\cos(t)}{\sin(t)}$ parcourt une longueur de

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{x'(t)^2 + y'(t)^2} \, dt = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{(-\sin(t))^2 + (\cos(t))^2} \, dt$$

$$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 dt$$

$$= [t]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$$

$$=\frac{\pi}{3}-\frac{\pi}{6}$$

$$=\frac{\pi}{6}$$

Le paramétrage $M(t) = {\cos(t) \choose \sin(t)}$ est "à vitesse 1" donc la longueur parcourue est égale à la durée du parcours

Le paramétrage $\begin{pmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t}{1+t^2} \end{pmatrix}$ n'est pas à vitesse 1 et donne des calculs de longueur plus élaborés. Les

longueurs parcourues entre les mêmes points coïncident

Pour une courbe régulière, c'est-à-dire dont le vecteur vitesse ne s'annule pas), le vecteur vitesse est horizontale quand y'(t)=0 et on a alors une tangente horizontale. De même , x'(t)=0 correspond à un vecteur vitesse vertical et donc une droite tangente verticale

Pour $M: I \to \mathbb{R}^2$ régulière, les points d'abscisses minimale et maximale correspondent soit aux extrémités de l'intervalle I, soit à des points tangente verticale et donc x'(t) = 0

De même , une ordonnée minimale ou maximale peut arriver soit aux extrémités de I , soit lorsquey'(t)=0

Exemple:
$$M(t) = \begin{pmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t}{1+t^2} \end{pmatrix}$$

Pour $t \in]-\infty, +\infty[$

$$\lim_{t \to -\infty} M(t) = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \text{ et } \lim_{t \to +\infty} M(t) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Annulation de x' et de y'

$$-x'(t) = 0 \Leftrightarrow \frac{(2t)(1+t^2)-(1-t^2)(2t)}{(1+t^2)^2} = 0$$

$$\Leftrightarrow -4t = 0$$

$$\Leftrightarrow t = 0$$

On a bien une tangente verticale

$$-y'(t) = 0 \Leftrightarrow \frac{(2t)(1+t^2)-(1-t^2)(2t)}{(1+t^2)^2} = 0$$

$$\Leftrightarrow 2(1-t^{2\circ}=0$$

$$\Leftrightarrow t^2 = 1$$

$$\Leftrightarrow t = 1 \text{ ou } t = -1$$

C) points singuliers (où le vecteur vitesse est nul)

Exemple:
$$\begin{cases} x(t) = 3t^2 \\ y(t) = 2t^3 \end{cases}$$

$$M'(t) = \binom{6t}{6t^2}$$

- x'(t) = 6t s'annule uniquement en t = 0

 $-y'(t) = 6t^2$ s'annule uniquement en t = 0

On a donc $M'(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Donc M(0) est un point singulier

On fait un développement limité de $M(t) = {x(t) \choose y(t)}$ au voisinage de t=0

$$M(t) = \underbrace{M(0)}_{=\binom{0}{0}} + t \underbrace{M'(0)}_{=\binom{0}{0}} + \frac{t^2}{2} M''(0) + \frac{t^3}{6} M'''(0) + \underbrace{o(t^3)}_{=0}$$

$$M''(t) = {6 \choose 12t}, M''(0) = {6 \choose 0}$$

$$M'''(t) = \begin{pmatrix} 0 \\ 12 \end{pmatrix}, M'''(0) = \begin{pmatrix} 0 \\ 12 \end{pmatrix}$$

$$M^{(n)}(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 pour tout $n \ge 4$

Le développement limité s'écrit donc :

$$M(t) = \binom{0}{0} + \frac{t^2}{2} \binom{6}{0} + \frac{t^3}{6} \binom{0}{12}$$

- C'est une demi-tangente car $\frac{t^2}{2}$ est de même signe pour t<0 ou t>0

- La courbe traverse sa demi-tangente car la contribution suivante est $\frac{t^3}{6}\binom{0}{12}$ et t^3 est positif strictement pour t>0 et négatif strictement pour t<0

On a un "point de rebroussement de première espèce"

Exemple:
$$M(t) = {t^2 \choose t^4} = {0 \choose 0} + t^2 {1 \choose 0} + t^4 {0 \choose 1}$$

Exemple : point de rebroussement de deuxième espèce

D) position d'une courbe par rapport à sa tangente

Quand la courbe arrive en $M(t_0)$, le long de sa tangente, plusieurs possibilités :

- La courbe continue dans le même sens, sans traverser sa tangente : point "d'allure ordinaire'
- La courbe continue dans le même sens en traversant sa tangente : point d'inflexion
- La courbe rebrousse chemin, en traversant sa tangente :
- "rebroussement de première espèce"
- La courbe rebrousse chemin sans traverser sa tangente :

Pour savoir dans quel cas on est, on écrit le développement limité des coordonnées de M en $t_{\rm 0}$

En $t_0 = 0$, cela donne :

$$M(t) = M(0) + t^p \vec{v} + t^q \vec{w} + t^q \vec{\varepsilon}(t)$$
, avec $\vec{\varepsilon}(t) \underset{t \to 0}{\longrightarrow} 0$

Si
$$t_0 \neq 0$$

$$M(t) = M(t_0)(t-t_0)^p \vec{v} + (t-t_0)^q \vec{w} + (t-t_0)^q \vec{\varepsilon}(t), \operatorname{avec} \vec{\varepsilon}(t) \underset{t \to 0}{\longrightarrow} 0$$

[&]quot;rebroussement de deuxième espèce"

p et q sont entiers

 \vec{v} et \vec{w} sont des vecteurs non colinéaires

Exemple:

$$M(t) = \begin{pmatrix} 1 + 4t^2 + 4t^3 + 5t^6 + t^7 \\ 2 + 2t^2 + 2t^3 + t^6 + 2t^8 \end{pmatrix}$$

$$M(t) = {1 \choose 2} + (t^2 + t^3) {4 \choose 2} + t^6 {5 \choose 1} + t^6 \vec{\varepsilon}(t)$$

$$(ici \, \vec{\varepsilon}(t) = {t \choose 2t^2})$$

III) Branches infinies

 $M: I \to \mathbb{R}^2$ intervalle

 \mathcal{C} la courbe M(I)

 t_0 une des bornes de $\it I$ non continues dans $\it I$

$$\underline{\mathsf{Exemple}} : I =]-\infty, 1[, t_0 = -\infty$$

$$I = [0,1[, t_0 = 1$$

Exemple:
$$x(t) = t$$
, $y(t) = \frac{1}{t}$

$$I =]0, +\infty[$$

On a des branches infinies aux deux extrémités de $\it I$

Pour chaque branche infinie, on cherche s'il y a une asymptote. On dit qu'une droite D est symptote) \mathcal{C} si $dist(M(t), D) \underset{t \to 0}{\longrightarrow} 0$ et $\left\| \overrightarrow{OM}(t) \right\| \underset{t \to t_0}{\longrightarrow} + \infty$

Cas des droites non verticales : elles ont une équation y = ax + b

D la droit d'équation y = ax + b est asymptote à C quand

pente
$$a$$
 $t \to t_0$ si et seulement si $y(t) - (ax(t) + b) \xrightarrow[t \to t_0]{} 0$ $x(t)$ $ax(t) + b$ En pratique, il faut d'abord trouver a et b

Si \mathcal{C} est asymptote à D, alors

(1)
$$\frac{y(t)}{x(t)} \xrightarrow{t \to t_0} a$$
 (la pente $\overrightarrow{OM}(t)$ tend vers cette de D)

(2)
$$y(t) - ax(t) \xrightarrow[t \to t_0]{} b$$

La condition (1) indique une "direction asymptotique" et la condition (2) une droite asymptote

- Si asymptote, y = ax + b, alors (1) et (2)
- Si (1) et (2), alors asymptote y = ax + b

On peut avoir (1) sans (2)

Exemple:
$$\begin{cases} x(t) = 2 + t^2 \\ y(t) = 3 + t \end{cases}$$

On a une direction asymptotique mais sans droite asymptote

Asymptote verticale:

Conditions : $y(t) \to +\infty$ ou $y(t) \to -\infty$

 $-x(t) \rightarrow \text{constante}$

<u>Bilan</u>: étude d'une courbe paramétrée : $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

- Domaine de définition
- Restreindre le domaine d'étude grâce aux symétries de la courbe
- Vecteur dérivé (vecteur vitesse) = $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$
 - \rightarrow annulations de x' où $y' \neq 0$: tangentes verticales
 - \Rightarrow annulations de y' où $x' \neq 0$: tangente horizontales
 - \rightarrow annulations de x' et y' ensemble : points singuliers
- tableau de variations :

t	-∞	t_0		t_1	+∞
x'	_	Φ	+		+
y'	+		+	Φ-	
x		<i>y</i> —			<i>→</i>
у				> \	<u></u>
М	K	<u> </u>		7 \	\ <u></u>

- → étude des points singuliers
- → étude des branches infinies
- → points multiples
- → tracé

<u>Définitions</u>: On appelle cercle osculateur à une courbe \mathcal{C} en un point M le cercle qui "colle le mieux à la courbe en ce point, c'est-à-dire qu'il a un contact d'ordre 2 (au moins)

On appelle rayon de courbure de \mathcal{C} en M le rayon du cercle osculateur

On appelle courbure l'inverse du rayon de courbure. Quand $\mathcal C$ est très courbée, elle a un très petit rayon de courbure mais une grande courbure. Quand $\mathcal C$ est peu courbée, elle a un très grand rayon de courbure mais une petite courbure.

On appelle "courbure algébrique" la courbure enrichie d'un signe qui dit dans quel sens on tourne

IV) Reparamétrage

A) définition

<u>Définition</u>: Soit α : $]a,b[\to \mathbb{R}^2$ et β : $]a,b[\to \mathbb{R}^2$ deux courbes paramétrées. On dit que β est un reparamétrage de α s'il existe une fonction lisse h: $]c,d[\to]a,b[$ telle que $\beta=\alpha$ o h et $\forall u\in]c,d[,h'(u)\neq 0$

C'est un reparamétrage positif si $\forall u \in]c, d[, h'(u) > 0]$

C'est un reparamétrage négatif si $\forall u \in]c, d[, h'(u) < 0]$

Lien entre les vecteurs vitesses pour une courbe α et un reparamétrage de cette courbe

Lemme : dérivée de fonctions composées pour les courbes

Si α est un reparamétrage de α , on écrit $\beta = \alpha$ o h où h: $]c,d[\to]a,b[$ est lisse. Alors pour $u \leftarrow]c,d[$

$$\beta' = h'(u) \times \alpha'(h(u))$$

Démonstration : voir cela coordonnée par coordonnées

Exemple : - Droite passant par $A = \begin{pmatrix} x_A \\ y_A \end{pmatrix}$ et dirigée par $\vec{u} = \begin{pmatrix} x_u \\ y_u \end{pmatrix}$, $t, s \in \mathbb{R}$

Paramétrage habituel : $\alpha(t) = \begin{pmatrix} x_A + tx_u \\ y_A + ty_u \end{pmatrix}$

Paramétrage à vitesse $1:\beta(s)=\begin{pmatrix} x_A+\frac{sx_u}{\sqrt{x_u^2+y_n^2}}\\ y_A+\frac{sy_u}{\sqrt{x_u^2+y_n^2}} \end{pmatrix}$

- Cercle de rayon
$$r$$
 centré en $P=\begin{pmatrix} \chi_P \\ \gamma_P \end{pmatrix}$, $t\in[0,2\pi]$, $s\in[0,2\pi r]$

Paramétrage habituel :
$$\alpha(t) = \begin{pmatrix} x_p + r\cos(t) \\ y_p + r\sin(t) \end{pmatrix}$$

Paramétrage à vitesse
$$1: \beta(s) = \begin{pmatrix} x_p + r\cos\left(\frac{s}{r}\right) \\ y_p + r\sin\left(\frac{s}{r}\right) \end{pmatrix}$$

B) champ de vecteurs le long d'une courbe

<u>Définition</u>: si α : $]a,b[\to \mathbb{R}^2$ est une courbe, un champ de vecteur le long de α est une application Y: $]a,b[\to \mathbb{R}^3,t\mapsto Y(t)$. On voit Y(t) comme vecteur "barré en $\alpha(t)$ "

Exemple: - le vecteur vitesse:

- Le vecteur accélération :

Les champs de vecteurs peuvent être additionnés, mis à l'échelle, dérivés, ...

On peut aussi multiplier un champ de vecteurs le long d'une courbe (α :]a,b[$\to \mathbb{R}^2$) par une fonction f:]a,b[$\to \mathbb{R}$

On définit pour cela le champ de vecteur

$$f\underline{Y} \operatorname{par} \left(f\underline{Y} \right) (t) = \left(f(t)\underline{Y}(t) \right)$$

On définit la matrice J de rotation d'un quart de tour : $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

On peut multiplier un champ de vecteur \underline{Y} le long d'une courbe α : $]a,b[\to \mathbb{R}^2$ par J: on définit $J\underline{Y}$ par $(J\underline{Y})(t)=J\underline{Y}(t)$

On dérive comme on s'y attend

 $\underline{\mathsf{Lemme}}: \ \underline{X} \ \mathsf{et} \ \underline{Y} \ \mathsf{des} \ \mathsf{champs} \ \mathsf{de} \ \mathsf{vecteurs} \ \mathsf{le} \ \mathsf{long} \ \mathsf{d'une} \ \mathsf{courbe} \ \mathsf{et} \ J \ \mathsf{la} \ \mathsf{matrice} \ \mathsf{de} \ \mathsf{rotation} \ \mathsf{d'un} \ \mathsf{quart} \\ \mathsf{de} \ \mathsf{tour}$

$$-\left(f\underline{Y}\right)'(t) = f'(t)\underline{Y}(t) + f(t)\underline{Y'}(t)$$

$$-\left(\underline{X} + \underline{Y}\right)' = \underline{X'} + \underline{Y'}$$

$$-\left(\underline{X}.\underline{Y}\right)' = \underline{X'}.\underline{Y} + \underline{X}.\underline{Y'}$$

$$-\left(J\underline{Y'}\right) = J\underline{Y'}$$

- La norme d'un champ de vecteur \underline{Y} est le champ scalaire $\mapsto \left\|\underline{Y}(t)\right\|$. On a $\left\|\underline{Y}(t)\right\|^2 = \underline{Y}(t)$. $\underline{Y}(t)$
- Si \underline{Y} est un champ de vecteur de norme constante, alors $\underline{Y'}(t)$ reste orthogonal à $\underline{Y}(t)$

<u>Démonstration</u>: on a $\|\underline{Y}(t)\|^2$ = constante, c'est-à-dire \underline{Y} . \underline{Y} est constant

$$\mathsf{Donc}\left(\underline{Y},\underline{Y}\right)'=0$$

Mais
$$(\underline{Y}, \underline{Y})' = \underline{Y}', \underline{Y} + \underline{Y}, \underline{Y}'$$

$$= 2Y.Y'$$

Or \underline{Y} . \underline{Y}' vaut toujours 0

Donc \underline{Y} et \underline{Y}' restent orthogonaux

Montrons que la longueur d'une courbe ne dépend pas du paramétrage

Rappel: si α : $]a,b[\rightarrow \mathbb{R}^2]$

$$longueur(\underline{\alpha}) = \int_{a}^{b} \|\alpha'(t)\| dt$$

On note parfois $longueur_{]a,b[}(\underline{\alpha})$ pour insister sur l'intervalle

Théorème : la longueur ne dépend pas du paramétrage

<u>Démonstration</u>: pour un reparamétrage positif. Soit $\underline{\beta} = \underline{\alpha} \ o \ h \ où \ h$: $]c,d[\to]a,b[\ où \ h \ est \ lisse et \ \forall u \in]c,d[,h'(u)>0$

Alors
$$\|\beta(u)\| = \|\alpha'(h(u))h'(u)\|$$

$$= h'(u) \|\alpha'(h(u))\|$$

$$\int_{a}^{b} \left\| \underline{\alpha}'(t) \right\| dt = \int_{c}^{d} \left(\left\| \alpha' \left(h(u) \right) \right\| h'(u) \right) du$$

Par changement de variable

$$= \int_{c}^{d} \|\beta'(u)\| \, du$$

Dans ce reparamétrage, $\lim_c h = a$ et $\lim_d h = b$

Cas d'un reparamétrage négatif :

- $-\lim_c h = b$ et $\lim_d h = a$
- $-h'(u) < 0 \text{ donc } \|\alpha'(h(u))h'(u)\| = \|\alpha'(h(u))\|(-h'(u))\|$

$$-\int_{d}^{c} -(...) du = \int_{c}^{d} +(...) du$$

V) Abscisse curviligne

Sauf risque de confusion, on note s pour s_{lpha}

<u>Théorème</u>: Si $\underline{\alpha}$:] $a,b[\to \mathbb{R}^2$ est une courbe régulière (c'est-à-dire dont le vecteur vitesse ne s'annule pas). Alors il existe un reparamétrage de $\underline{\alpha}$ à vitesse 1

<u>Démonstration</u>: toute fonction abscisse curviligne pour $\underline{\alpha}$ vérifie $\frac{ds}{dt}(t) = s'(t) = \|\alpha'(t)\|$

Comme α est régulière, α' ne s'annule jamais. Donc s' reste strictement positive

Il existe donc une bijection réciproque $t : s \mapsto t(s)$

$$\left. \mathsf{Avec} \frac{dt}{ds} \right|_{S(t)} = \frac{1}{\frac{ds}{dt}} \bigg|_{t(s)}$$

$$OU s^{-1}$$

$$(s^{-1})'(v) = \frac{1}{s'(s^{-1}(v))}$$

Définissons
$$\underline{\beta}$$
 par $\underline{\beta}(s) = \underline{\alpha}(t(s))$
$$\underline{\beta'}(s) = \frac{dt}{ds}(s)\alpha'(t(s))$$

$$\left\| \underline{\beta'}(s) \right\| = \frac{dt}{ds}(s) \left\| \underline{\alpha'}(t(s)) \right\|$$

$$=\frac{dt}{dt}(s).\frac{ds}{dt}\big(t(s)\big)$$

$$= 1$$

$$\beta(v) = \underline{\alpha}(s^{-1}(v))$$

$$\underline{\beta'}(v) = (s^{-1})'(v) \cdot \underline{\alpha'}(s^{-1}(v))$$

$$\|\underline{\beta'}(v)\| = (s^{-1})'(v) \|\underline{\alpha'}(s^{-1}(v))\|$$

$$= (s^{-1})'(v) \cdot s'(s^{-1}(v))$$

$$= 1$$

Pour une courbe parcourue à vitesse 1, l'abscisse curviligne et le temps écoulé coïncident

Plus précisément si $\underline{\alpha}$: $]a,b[\to \mathbb{R}^2$ est parcourue à vitesse 1 et s est la fonction abscisse curviligne de β d'origine $c \in]a,b[$. Alors $\forall t \in]a,b[$

$$s(t) = t - c$$

[&]quot;longueur parcourue" = "temps écoulé"