

R3.08 - Probabilités TD 1c - Calcul probabiliste

A. Ridard

Exercice 2.

Un joueur est en présence de deux urnes A et B:

- l'urne A contient une boule blanche et trois boules rouges
- l'urne *B* contient trois boules blanches et une boule rouge

Ce joueur dispose de deux dés non pipés qu'il lance une fois :

- si la somme des points obtenus est inférieure ou égale à 7, il choisit l'urne A
- sinon, il choisit l'urne B

Il tire alors, dans l'urne choisie, deux boules successivement avec remise.

On notera:

- A (respectivement B) l'événement « choisir l'urne A (respectivement B) »
- R_2 (respectivement R_0) l'événement « tirer deux boules rouges (respectivement blanches) »
- 1. Lors du lancer des deux dés, onze sommes sont possibles, la probabilité que ce soit 8 vaut-elle alors $\frac{1}{11}$?

Les onze sommes possibles ne sont évidemment pas équiprobables. En considérant $\Omega = \{1, ..., 6\}^2$, on a :

$$P(\text{``la somme vaut 8''}) = \frac{Card(\text{``la somme vaut 8''})}{Card(\Omega)} = \frac{Card\Big(\big\{(2,6),(3,5),(4,4),(5,3),(6,2)\big\}\Big)}{Card(\Omega)} = \frac{5}{36}$$

2. Déterminer la probabilité de choisir l'urne B.

On peut construire le tableau des différentes sommes :

+	1	2	3	4	5	6
1	2	3	4	5	6 7 8 9 10 11	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Et en déduire :

$$P(B) = \frac{Card(B)}{Card(\Omega)} = \frac{15}{36} = \frac{5}{12}$$

Remarque. En considérant l'événement contraire, on a : $P(A) = 1 - P(B) = \frac{7}{12}$

3. Déterminer la probabilité de tirer deux boules rouges.

La formule des probabilités totales fournit :

$$P(R_2) = P(R_2|A)P(A) + P(R_2|B)P(B) = \left(\frac{3}{4}\right)^2 \times \frac{7}{12} + \left(\frac{1}{4}\right)^2 \times \frac{5}{12} = \frac{68}{192} = \frac{17}{48}$$

4. Ayant tiré deux boules rouges, déterminer la probabilité que les tirages aient été effectués dans l'urne A.

La formule de Bayes fournit :

$$P(A|R_2) = \frac{P(R_2|A)P(A)}{1 \quad P(R_2)} = \frac{63}{68}$$

5. Ayant tiré deux boules rouges, déterminer la probabilité que les tirages aient été effectués dans l'urne *B*.

En considérant l'événement contraire, on en déduit :

$$P(B|R_2) = 1 - P(A|R_2) = \frac{5}{68}$$

6. Ayant tiré deux boules blanches, déterminer la probabilité que les tirages aient été effectués dans l'urne B.

La formule de Bayes fournit :

$$P(B|R_0) = \frac{P(R_0|B)P(B)}{P(R_0|A)P(A) + P(R_0|B)P(B)} = \frac{\left(\frac{3}{4}\right)^2 \times \frac{5}{12}}{\left(\frac{1}{4}\right)^2 \times \frac{7}{12} + \left(\frac{3}{4}\right)^2 \times \frac{5}{12}} = \frac{45}{52}$$