AD CLICK PREDICTION USING CLOUD-BASED MACHINE LEARNING

PROBLEM STATEMENT & BUSINESS CONTEXT

PROBLEM STATEMENT

- Advertisers face low CTRs and inefficient targeting
- Cross-channel data is complex to integrate in real-time
- High-dimensional data needs significant preprocessing
- Hard for business teams to act on technical insights

BUSINESS CONTEXT

- Ad engagement = revenue in media & entertainment
- Need to optimize ad spend with better predictions
- Model goal: predict who will click, in real-time

BENEFITS

ROI via precise targeting
 Personalized ad experiences
 Actionable insights for business users

CLOUD STRATEGY OVERVIEW

HOME

SERVICE

ABOUT US

CONTACT US

COMPONENT		DESCRIPTION/TOOL	PURPOSE
GOAL		Real-time ad click prediction	Maximize campaign ROI
DEPLOYMENT	MODEL	Fully Cloud-Native	No hybrid / on-perm components
SERVICE MC	DELS	PaaS: Azure ML, Stream Analytics, Data Factory SaaS: Power Bl	Fast deployment + analytics
SECURITY		Azure RBAC, encryption, compliance	Safe & compliant data handling
TRADE-OI	FFS	Latency-cost balance, interpretability	Focus on business-friendly insights

<ARCHITECTURE FLOW>

User Data (Web / App / Email)

Azure Data Factory: Data Ingestion & orchestration

Azure Stream Analytics: Extracts real-time features

Azure ML Designer: Train & deploy classifier

Power BI: Live dashboards (A/B testing, reports)

HOME

SERVICE

ABOUT US

CONTACT US

<FEATURES & BENEFITS>

- Real-time insights (e.g., time since last click)
- Predictive model as web service
- A/B testing support
- Dashboards for non-technical users
- Better targeting = better ROI

Solution Summary

- 1 Real-time decisioning
- 2 Adaptive learning
- Scalable architecture
- Data-driven optimization
- 5 Enterprise reliability

ARCHITECTURE DIAGRAM

Why Public Cloud on Azure?

Existing components

High Security

Availability

Scalability (pay as you go)

Easy Integration

End-to-End Flow & Features

Phase 1 - Data Ingestion & Preprocessing

- Multi-channel data collection: Web logs, mobile events, email engagement data
- Feature engineering: Historical aggregates, temporal features, behavioral patterns, contextual data (device, location, referral source)

Phase 2 - Model Training & Deployment

- Development: Azure ML Designer workflows, multiple algorithm testing (Logistic Regression, Random Forest, Gradient Boosting)
- Optimization: Hyperparameter tuning, cross-validation, performance benchmarking
- Deployment: Azure Web Endpoints, A/B testing, versioning/rollback, monitoring

Phase 3 - Real-Time Prediction

- Inference pipeline: Real-time feature collection, edge preprocessing, RESTful API calls, sub-100ms response times
- Feedback loop: Click outcome tracking, data quality monitoring, automated retraining triggers, incremental learning

Deployment Strategy & Cloud Service Models

Cloud Service Architecture

- PaaS Foundation: Azure ML Designer, SQL Database, and Web Endpoints for fully managed infrastructure with auto-scaling
- SaaS Integration: Power BI for business intelligence and stakeholder collaboration

Strategic Deployment Pillars

Scalability & Performance

- Horizontal scaling for inference, vertical scaling for training workloads
- Auto-scaling policies for cost-optimized resource allocation

Security & Compliance

- Role-based access control (RBAC) across all services
- End-to-end encryption with Azure Key Vault integration

Business Continuity

- Multi-region deployment for high availability
- Automated backup and defined RTO/RPO objectives
- Staff re-training

Cost Optimization Approach

- Reserved instances for predictable workloads, spot instances for training
- Comprehensive monitoring with Azure Monitor and automated alerting

BOTTLENECKS & LIMITATIONS

HIGH DATA PREPROCESSING COST

Data comes from different sources with inconsistent formats. The cleaning and transformation process is complex, time-consuming, and error-prone before the data can be used for training.

INEFFECTIVE FEEDBACK MECHANISM AND LACK OF ADAPTABILITY

The system only updates the model on a fixed schedule, like once a day.

That means it doesn't quickly learn from user actions and can't respond when user interests change suddenly.

Eg. If a user stops clicking on travel ads in the morning, they might still keep seeing them all day—because the model won't retrain until the next day.

AD CLICK PREDICTION USING CLOUD-BASED MACHINE LEARNING

Scalability

→ Automatically adjusts resources based on traffic and workload.

Real-time Inference

→ Delivers instant ad predictions through Azure Web Endpoints.

Automation

→ Enables end-to-end automation of training, deployment, and data workflows.

Simplified Operations

→ Built-in monitoring, security, and backup reduce operational effort.

HOME SERVICE ABOUT US CONTACT US

