Actionable Saliency Detection: Independent Motion Detection Without Independent Motion Estimation Supplementary Material

Georgios Georgiadis Alper Ayvaci Stefano Soatto University of California, Los Angeles, 90095, USA

> {giorgos,ayvaci,soatto}@cs.ucla.edu http://vision.ucla.edu/

In the supplementary material we show results on several frames for various sequences, Section 1. Furthermore, in Section 2 we show the calculation of $\nabla \psi(V)$ that is required to implement the gradient descent in our algorithm.

1. Further empirical results

In Figures 1, 2, 3, 4 and 5 we show further results. We demonstrate the performance of our algorithm on several frames for each of these sequences.

Figure 1: Four frames from the Cars-3 sequence. Color code follows the convention of the paper.

2. Calculating $\nabla \psi(V)$ for gradient descent

To calculate $\nabla \psi(V) = \left[\frac{\partial \psi(V)}{\partial V}\right]^T$ we use the following conventions. The derivative of a function $f \colon \mathbb{R}^n \to \mathbb{R}^m$ is given by an $m \times n$ matrix of partial derivatives $[Df_{ij}] = \frac{\partial f_i(x)}{\partial x_j}$. For $A \in \mathbb{R}^{n \times m}$ and $f \colon \mathbb{R}^{n \times m} \to \mathbb{R}^{p \times q}$ the derivative is given by $\frac{\partial f(A)}{\partial A} = \frac{\partial \text{vec}(f(A))}{\partial \text{vec}(A)} \in \mathbb{R}^{pq \times mn}$ where the vec operator stacks the columns of a matrix on top of each other. Using these definitions and common rules for chain and product rules we can derive $\left[\frac{\partial \psi(V)}{\partial V}\right]^T$. We can decompose $\frac{\partial \psi(V)}{\partial V}$ as follows:

$$\frac{\partial \psi(V)}{\partial V} = \frac{\partial \psi(\hat{C})}{\partial \text{vec}(\hat{C})} \frac{\partial \text{vec}(\hat{C}(\mathcal{W}C))}{\partial \text{vec}(\mathcal{W}C)} \frac{\partial \text{vec}(\mathcal{W}C)}{\partial \text{vec}(C)} \frac{\partial \text{vec}(C(V))}{\partial V}$$
(1)

Figure 2: Four frames from the Cars-2/06 sequence. Color code follows the convention of the paper.

Figure 3: Four frames from the Cars-4 sequence. Color code follows the convention of the paper.

The four terms are given by the following equations:

$$\frac{\partial \psi(\hat{C})}{\partial \text{vec}(\hat{C})} = (\mathcal{W}x)^T \otimes (\mathcal{W}x)^T \hat{C}$$
(2)

Using the product rule we can get $\frac{\partial \text{vec}(\hat{C}(\mathcal{W}C))}{\partial \text{vec}(\mathcal{W}C)}$. Define $f_1(\mathcal{W}C) = \mathcal{W}C$ and $g_1(\mathcal{W}C) = (C^T\mathcal{W}^T\mathcal{W}C)^{-1}C^T\mathcal{W}^T$. We then have:

$$\frac{\partial \text{vec}(\hat{C}(WC))}{\partial \text{vec}(WC)} = \frac{\partial}{\partial \text{vec}(WC)} \left(I - WC(C^T W^T WC)^{-1} C^T W^T \right)$$
(3)

$$= -\frac{\partial}{\partial \text{vec}(WC)} WC(C^T W^T WC)^{-1} C^T W^T$$
(4)

$$= -\left[\left(g_1(\mathcal{W}C)^T \otimes I_{2N}\right) f_1'(\mathcal{W}C) + \left(I_{2N} \otimes \mathcal{W}C\right) g_1'(\mathcal{W}C)\right]$$
 (5)

Figure 4: Four frames from the Cars-6 sequence. Color code follows the convention of the paper.

Figure 5: Four frames from the People-3 sequence. Color code follows the convention of the paper.

The derivative of $f_1(\mathcal{W}C)$ with respect to $\mathcal{W}C$ is simply $f_1'(\mathcal{W}C) = I_{2N(N+3)}$. For the derivative of $g_1(\mathcal{W}C)$ we need to use the product rule. Define $f_2(\mathcal{W}C) = \left((\mathcal{W}C)^T\mathcal{W}C\right)^{-1}$ and $g_2(\mathcal{W}C) = (\mathcal{W}C)^T$. Then we can calculate the derivative of $g_1(\mathcal{W}C)$ using the following:

$$g_1'(WC) = (g_2(WC)^T \otimes I_{N+3})f_2'(WC) + (I_{2N} \otimes f_2(WC))g_2'(WC)$$
(6)

The derivative of $g_2(\mathcal{W}C)$ is $g_2'(\mathcal{W}C) = T_{2N,N+3}$, where $T_{N,M} \in \mathbb{R}^{MN \times MN}$ is a permutation matrix such that

$$T_{N,M}\operatorname{vec}(A) = \operatorname{vec}(A^T) \tag{7}$$

To calculate the derivative of $f_2(\mathcal{W}C)$ we need to use the chain rule. Define $f_3(X) = X^{-1}$ and $g_3(\mathcal{W}C) = (\mathcal{W}C)^T\mathcal{W}C$. So, $f_3(g_3(\mathcal{W}C)) = f_2(\mathcal{W}C)$. The derivative of $f_2'(\mathcal{W}C)$ is:

$$f_2'(\mathcal{W}C) = f_3'((\mathcal{W}C)^T \mathcal{W}C)g_3'(\mathcal{W}C)$$
(8)

From standard results:

$$f_3'((WC)^TWC) = -(((WC)^TWC)^{-T} \otimes ((WC)^TWC)^{-1})$$

$$g_3'(WC) = (I_{(N+3)^2} + T_{(N+3),(N+3)}) (I_{N+3} \otimes (WC)^T)$$
(9)

Therefore:

$$f'_{2}(WC) = f'_{3}((WC)^{T}WC)g'_{3}(WC)$$

$$= -(((WC)^{T}WC)^{-T} \otimes ((WC)^{T}WC)^{-1})$$

$$(I_{(N+3)^{2}} + T_{(N+3),(N+3)}) (I_{N+3} \otimes (WC)^{T})$$

$$(I_{3})$$

$$g'_{1}(WC) = (g_{2}(WC)^{T} \otimes I_{N+3})f'_{2}(WC) + (I_{2N} \otimes f_{2}(WC))g'_{2}(WC)$$

$$= -(WC \otimes I_{N+3}) \left(((WC)^{T}WC)^{-T} \otimes ((WC)^{T}WC)^{-1} \right)$$

$$\times (I_{(N+3)^{2}} + T_{(N+3),(N+3)}) (I_{N+3} \otimes (WC)^{T})$$

$$+ \left(I_{2N} \otimes ((WC)^{T}(WC))^{-1} \right) T_{2N,N+3}$$

$$(I7)$$

$$\frac{\partial \text{vec}(\hat{C}(WC))}{\partial \text{vec}(WC)} = -\left[(g_{1}(WC)^{T} \otimes I_{2N}) f'_{1}(WC) + (I_{2N} \otimes WC) g'_{1}(WC) \right]$$

$$= -\left[((C^{T}W^{T}WC)^{-1}C^{T}W^{T})^{T} \otimes I_{2N}) I_{2N(N+3)} \right] + (I_{2N} \otimes WC)$$

$$\times (WC \otimes I_{N+3}) \left(((WC)^{T}WC)^{-T} \otimes ((WC)^{T}WC)^{-1} \right)$$

$$\times (I_{(N+3)^{2}} + T_{(N+3),(N+3)}) (I_{N+3} \otimes (WC)^{T})$$

$$+ \left(I_{2N} \otimes ((WC)^{T}WC)^{-1} \right) T_{2N,(N+3)}$$

$$(22)$$

The derivative $\frac{\partial \text{vec}(WC)}{\partial \text{vec}(C)}$ is given by:

$$\frac{\partial \text{vec}(\mathcal{W}C)}{\partial \text{vec}(C)} = I_{N+3} \otimes \mathcal{W}$$
(24)

(23)

In addition $\frac{\partial \text{vec}(C(V))}{\partial V}$ is given by

$$\frac{\partial \text{vec}(C(V))}{\partial V} = \begin{bmatrix} A_1 \\ O_{2N,3} \\ A_2 \\ O_{2N,3} \\ \vdots \\ A_N \\ O_{6N,3} \end{bmatrix}$$

$$(25)$$

which is the final term of the derivative of $\frac{\partial \psi(V)}{\partial V}$. $O_{M,N}$ is an $M \times N$ matrix with all elements equal to 0.