3 niveles de verdad 1. Pes satisfacible si existe una L-estructura A y una valuación y de A tal que A = f[v] z. l'es verdadera o válida en una I-estructura A (A = 1) si A = f[r] para cualquier valuación v de A. Decimos que A es un modelo de P. 3. l'es universalmente válida (=1) si A=1[v] para toda L-estructura A y toda valuación v de A. Propiedades · Si l'es una sentencia (no tiene variables libres), A = 1 sii A = P[v] para walquier valuación v de A. · P es universalmente válida sii 11 es insatisfacible. · Se preserva Modus Ponens en todos los niveles de vendad. · Clausura universal: A=P sii A=(Yx)P ⊨ 1 sii ⊨ (4x) 1

Lei	quajes con iqualdad	
Fij	emos un lenguaje 2 con igualdad y con ningún otro si	mbolo
	camos PEFORM(X) tal que {A: A=P} sea la clas	
	lelos:	
•	con exactamente 1 elemento:	
	Y = X(YY)(XE) = 1	
•	con exactamente z elementos:	
	$((Y=S \lor X=S)(SY) \land Y \neq X)(YE)(XE) = P$	
•	con al menos 3 elementos:	
	$f = (3x)(3y)(3z)(x \neq y \wedge y \neq z \wedge z \neq x)$	