305 Lecture 31 - Probability Revision

Brian Weatherson

July 22, 2020

• This is a short lecture just for revising some of the basic principles about probability.

None - this is just revision

1. All logical truths have probability 1, so $\Pr(A \lor \neg A) = 1$.

- 1. All logical truths have probability 1, so $Pr(A \lor \neg A) = 1$.
- 2. If X and Y are exclusive, then $Pr(X \lor Y) = Pr(X) + Pr(Y)$.

- 1. All logical truths have probability 1, so $Pr(A \lor \neg A) = 1$.
- 2. If X and Y are exclusive, then $Pr(X \lor Y) = Pr(X) + Pr(Y)$.
- 3. A and $\neg A$ are exclusive.

- 1. All logical truths have probability 1, so $Pr(A \lor \neg A) = 1$.
- 2. If X and Y are exclusive, then $Pr(X \lor Y) = Pr(X) + Pr(Y)$.
- 3. A and $\neg A$ are exclusive.
- 4. So, from 1, 2, 3, we get $Pr(A) + Pr(\neg A) = 1$.

- 1. All logical truths have probability 1, so $Pr(A \lor \neg A) = 1$.
- 2. If X and Y are exclusive, then $Pr(X \lor Y) = Pr(X) + Pr(Y)$.
- 3. A and ¬A are exclusive.
- 4. So, from 1, 2, 3, we get $Pr(A) + Pr(\neg A) = 1$.
- 5. So, from 4, we get $Pr(\neg A) = 1 Pr(A)$.

The Multiplication Rule

1. By definition,
$$Pr(A|B) = \frac{Pr(A \land B)}{Pr(B)}$$
.

The Multiplication Rule

- 1. By definition, $Pr(A|B) = \frac{Pr(A \land B)}{Pr(B)}$.
- 2. Multiplying both sides by Pr(B) gives us $Pr(A \land B) = Pr(A|B) Pr(B)$.

1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.

- 1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.
- 2. So, $Pr(B) = Pr((A \land B) \lor (\neg A \land B))$.

- 1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.
- 2. So, $Pr(B) = Pr((A \land B) \lor (\neg A \land B))$.
- 3. $(A \wedge B)$ and $(\neg A \wedge B)$ are exclusive.

- 1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.
- 2. So, $Pr(B) = Pr((A \land B) \lor (\neg A \land B))$.
- 3. $(A \wedge B)$ and $(\neg A \wedge B)$ are exclusive.
- 4. So $Pr((A \land B) \lor (\neg A \land B)) = Pr(A \land B) + Pr(\neg A \land B)$.

- 1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.
- 2. So, $Pr(B) = Pr((A \land B) \lor (\neg A \land B))$.
- 3. $(A \wedge B)$ and $(\neg A \wedge B)$ are exclusive.
- 4. So $Pr((A \land B) \lor (\neg A \land B)) = Pr(A \land B) + Pr(\neg A \land B)$.
- 5. By the multiplication rule, $\Pr(A \land B) = \Pr(B|A) \Pr(A)$.

- 1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.
- 2. So, $Pr(B) = Pr((A \land B) \lor (\neg A \land B))$.
- 3. $(A \wedge B)$ and $(\neg A \wedge B)$ are exclusive.
- 4. So $Pr((A \land B) \lor (\neg A \land B)) = Pr(A \land B) + Pr(\neg A \land B)$.
- 5. By the multiplication rule, $Pr(A \land B) = Pr(B|A) Pr(A)$.
- 6. Also by the multiplication rule, $\Pr(\neg A \land B) = \Pr(B | \neg A) \Pr(\neg A)$.

- 1. B is logically equivalent to $(A \wedge B) \vee (\neg A \wedge B)$.
- 2. So, $Pr(B) = Pr((A \land B) \lor (\neg A \land B))$.
- 3. $(A \land B)$ and $(\neg A \land B)$ are exclusive.
- 4. So $Pr((A \land B) \lor (\neg A \land B)) = Pr(A \land B) + Pr(\neg A \land B)$.
- 5. By the multiplication rule, $Pr(A \land B) = Pr(B|A) Pr(A)$.
- 6. Also by the multiplication rule, $Pr(\neg A \land B) = Pr(B|\neg A) Pr(\neg A)$.
- 7. Putting all these together, we get

$$Pr(B) = Pr(B|A) Pr(A) + Pr(B|\neg A) Pr(\neg A)$$

Another Conditional Probability Rule

Putting that formula for Pr(B) into the definition of conditional probability, we get

$$Pr(A|B) = \frac{Pr(A \land B)}{Pr(B|A) Pr(A) + Pr(B|\neg A) Pr(\neg A)}$$

Yet Another Conditional Probability Rule

$$Pr(B|A) \times \frac{Pr(A)}{Pr(B)} = \frac{Pr(B \land A)}{Pr(A)} \times \frac{Pr(A)}{Pr(B)}$$
$$= \frac{Pr(A \land B)}{Pr(A)} \times \frac{Pr(A)}{Pr(B)}$$
$$= \frac{Pr(A \land B)}{Pr(B)}$$
$$= Pr(A|B)$$

Yet Another Conditional Probability Rule

Or, as it is usually written

$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)}$$

For Next Time
 We will look at a more complicated example of inverting conditional probabilities.