Eύρηκα 以二刻尺作圖法 解方程式

SOLVING EQUATIONS BY NEUSIS CONSTRUCTION

作者 邱巖盛 指導老師 姚志鴻

報告大綱

Εύρηκα

二刻尺作圖

解析幾何探討 二刻尺作圖

探討以二刻尺作圖 解方程式

結論與未來展望

Εύρηκα

二刻尺作圖

二刻尺作圖

Εύρηκα

二刻尺是自古希臘即存在的一種作圖工具。

和一般尺規作圖相比,尺上多了兩個刻度。

以二刻尺和圓規作圖的過程,即稱為「二刻尺作圖」。

軌跡曲線的 種類、用途及方程式

軌跡曲線與任一條線的交點即為 「二刻尺作圖法」欲求的目標點。

設極座標中有一曲線方程式為:

$$f(r,\theta) = 0$$

則其軌跡曲線方程式:

$$f(r \pm b, \theta) = 0$$

圓與直線的軌跡曲線

在二刻尺作圖中,我們探討圓與直線的軌跡曲線。

種類	方程式	軌跡曲線
直線	$r = r_0 \sec(\theta - \phi)$	$r \pm b = r_0 \sec(\theta - \phi)$
圓	$r^2 - 2r_0r\cos(\theta - \phi) + r_0^2 - s^2 = 0$	$(r \pm b)^2 - 2r_0(r \pm b)\cos(\theta - \phi) + r_0^2 - s^2 = 0$

EVPYKX 以解析幾何 探討二刻尺作圖

三等分角作圖及立方根作圖

以極座標系統探討三等分角作圖

以極座標系統探討立方根作圖

$$\begin{cases} r = \sqrt{1 - a^2} \sec \theta \\ r = \cos \left(\tan^{-1} \frac{\sqrt{1 - a^2}}{3a} - \sin^{-1} a \right) \sec \left(\theta - \tan^{-1} \frac{\sqrt{1 - a^2}}{3a} \right) + 1 \text{ (in this problem)} \end{cases}$$

$$(r+1)$$
 $\left[r^3-3r^2+3r+(-8a^2-1)\right]=0$

觀察

上述兩作圖中,「二刻尺作圖法步驟」在解析幾何中實際上是對應求解一個三次方程式。

作圖	目標	構成方程式的係數
三等分角	$\phi \rightarrow \frac{\phi}{3}$	$\tan^2 \phi$
立方根	$a \rightarrow \sqrt[3]{a}$	a^2

Εύρηκα

探討以二刻尺作圖法解討以一刻尺作圖法

猜測一

Εύρηκα

解三次方程式-爆툟與作圖參數的關係

(直線的軌跡曲線) $\varepsilon_1, \varepsilon_2, \varepsilon_3, ... = \pm 1$)

(直線)
$$\begin{cases} r = a \sec \theta + \varepsilon_1 \end{cases}$$

$$r = r_0 \sec(\theta - \phi)$$

(和係數有關的作圖參數)

$$r^{4} + 2\varepsilon_{1}r^{3} + \left(1 - \frac{a^{2} - 2a\cos\phi r_{0} + r_{0}^{2}}{\sin^{2}\phi}\right)r^{2} + \frac{-2\varepsilon_{1}r_{0}^{2} + 2\varepsilon_{1}a\cos\phi r_{0}}{\sin^{2}\phi}r + \frac{-r_{0}^{2}}{\sin^{2}\phi} = 0$$

r的四次方程式

解三次方程式-係數與作圖參數的關係

$$x^{4} + \left(2\varepsilon_{1}x^{3}\right) + \left(1 - \frac{a^{2} - 2a\cos\phi r_{0} + r_{0}^{2}}{\sin^{2}\phi}\right)x^{2} + \frac{-2\varepsilon_{1}r_{0}^{2} + 2\varepsilon_{1}a\cos\phi r_{0}}{\sin^{2}\phi}x + \frac{-r_{0}^{2}}{\sin^{2}\phi} = 0$$

已經固定的三次項係數

$$(x^{3} + b_{2}x^{2} + b_{1}x + b_{0})[x + (2\varepsilon_{1} - b_{2})]$$

$$= x^{4} + 2\varepsilon_{1}x^{3} + [b_{2}(2\varepsilon_{1} - b_{2}) + b_{1}]x^{2} + [b_{1}(2\varepsilon_{1} - b_{2}) + b_{0}]x + b_{0}(2\varepsilon_{1} - b_{2}) = 0$$

解三次方程式-係數與作圖參數的關係

Εύρηκα

$$\begin{cases} b_{2}(2\varepsilon_{1} - b_{2}) + b_{1} = 1 - (a^{2} - 2a\cos\phi r_{0} + r_{0}^{2})\csc^{2}\phi \\ b_{1}(2\varepsilon_{1} - b_{2}) + b_{0} = (-2\varepsilon_{1}r_{0}^{2} + 2\varepsilon_{1}a\cos\phi r_{0})\csc^{2}\phi \\ b_{0}(2\varepsilon_{1} - b_{2}) = -r_{0}^{2}\csc^{2}\phi \end{cases}$$

解三次方程式-係數與作圖參數的關係

EUPNKO

引理一-以係數表達作圖參數

Evonka

可以三次方程式的係數表達作圖參數。

$$r_0 = \sqrt{\frac{4l \cdot n - m^2}{4n}}, a = \varepsilon_4 \sqrt{\frac{4l \cdot n - m^2}{4l}}, \cos \phi = \varepsilon_3 \sqrt{\frac{m^2}{4l \cdot n}}$$

$$l = b_0 (b_2 - 2\varepsilon_1), m = -\varepsilon_1 b_0 - (2b_0 - \varepsilon_1 b_1)(b_2 - 2\varepsilon_1), n = (b_2 - \varepsilon_1)(b_2 - \varepsilon_1 b_1 + b_0 - \varepsilon_1)$$

引理二-限制條件

Ευρηκα

茲列出方程式可以二刻尺作圖法解出的限制條件。

三角函數性質

$$\left|\cos\phi\right| = \left|\varepsilon_3\sqrt{\frac{m^2}{4l\cdot n}}\right| \le 1, 4l\cdot n \ge m^2$$
 $l > 0, n > 0$

根號的性質

$$4l \cdot n - m^2 > 0, l > 0, n > 0$$

引理三-ε的討論

$\boldsymbol{\varepsilon}$	意義	是否影響解方程式	原因
$arepsilon_1$	蚌線的內外兩支	是,可自由選擇	出現在引理一的式子中
$arepsilon_2$	heta的象限	否	推導過程中會被消去
ε_3	φ 的象限	是	出現在引理一的式子中
\mathcal{E}_4	a 的正負	是	出現在引理一的式子中

EUPNKO

引理三-ε的討論

$$2a\cos\phi = r_0 \cdot \frac{2a_0 - \varepsilon_1 a_1}{a_0}$$

$$\downarrow (r, a, \cos\phi)$$

$$\varepsilon_3 \varepsilon_4 |m| = \varepsilon_3 \varepsilon_4 \sqrt{m^2} = -m$$

$$+1, m < 0$$

引理四-三次方程式的負根

$$x = -\alpha \ (\alpha > 0)$$
 是 $x^3 + b_2 x^2 + b_1 x + b_0 = 0$ 的解
$$\downarrow (代人)$$

$$x = \alpha$$
 是 $x^3 - b_2 x^2 + b_1 x - b_0 = 0$ 的解

如果將 ε_1 調為 $-\varepsilon_1$,此方程式的作圖參數會和原方程式相等。

因此,可以從軌跡曲線的另外一支找到三次方程式的負根。

定理一

如果係數在限制條件之內,給定一個三次方程式

$$x^3 + b_2 x^2 + b_1 x + b_0 = 0$$

可以透過設計一個「二刻尺作圖法步驟」解出。

猜測二

Εύρηκα

能解幾次方程式?

r的六次方程式

$$r^{6} + 2\varepsilon_{1}br^{5} + (b^{2} - 4f + 2g - 4h^{2})r^{4} + (-4\varepsilon_{1}b)(f - g + 2h^{2})r^{3}$$

$$+ (4i^{2} + 2b^{2}g - 4b^{2}h^{2} - 4fg + g^{2})r^{2} + (-2\varepsilon_{1}b)(2fg - g^{2})r + b^{2}g^{2} = 0$$

$$\sharp r + f = r_{0}a\cos\phi, \ g = r_{0}^{2} - s^{2}, \ h = r_{0}\sin\phi, i = r_{0}a$$

$$x^{6} + 2\varepsilon_{1}bx^{5} + (b^{2} - 4f + 2g - 4h^{2})x^{4} + (-4\varepsilon_{1}b)(f - g + 2h^{2})x^{3} + (4i^{2} + 2b^{2}g - 4b^{2}h^{2} - 4fg + g^{2})x^{2} + (-2\varepsilon_{1}b)(2fg - g^{2})x + b^{2}g^{2} = 0$$
幾乎已經固定的五次項係數
$$(x^{3} + b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0})[x + (2\varepsilon_{1}b - b_{4})]$$

$$= x^{6} + 2\varepsilon_{1}x^{5} + [2\varepsilon_{1}b - 2\varepsilon_{1}b + 2\varepsilon_{1}b - 2\varepsilon_{1}b + 2\varepsilon_{1}b - 2\varepsilon_{1}b + 2\varepsilon_{1}b - 2\varepsilon_{1}b + 2\varepsilon_{1}b - 2\varepsilon_{1}b$$

EUDNKO

解五次方程式-係數與作圖參數的關係

$$\begin{cases} b_4 (2\varepsilon_1 b - b_4) + b_3 = b^2 - 4f + 2g - 4h^2 \\ b_3 (2\varepsilon_1 b - b_4) + b_2 = (-4\varepsilon_1 b) (f - g + 2h^2) \\ b_2 (2\varepsilon_1 b - b_4) + b_1 = 4i^2 + 2b^2 g - 4b^2 h^2 - 4fg + g^2 \\ b_1 (2\varepsilon_1 b - b_4) + b_0 = (-2\varepsilon_1 b) (2fg - g^2) \\ (2\varepsilon_1 b - b_4) b_0 = b^2 g^2 \end{cases}$$

EVONKO

$$b_{0}(-\varepsilon_{1}b_{3}b_{4} + \varepsilon_{1}b_{2} - 4\varepsilon_{1}b_{4}b^{2} + 2b_{4}^{2}b + 2b^{3})^{2}(2\varepsilon_{1}b - b_{4}) = (-2b_{1}b^{2} + 3\varepsilon_{1}b_{0}b - 2b_{0}b_{4} + \varepsilon_{1}b_{1}b_{4}b)^{2}$$

$$b \mapsto \pm \frac{1}{2}$$

解五次方程式-係數與作圖參數的關係

假設 $b = b_k$

EUPNKO

引理五-以係數表達作圖參數

Evonka

如果b存在合理且二刻尺可作的解 b_k ,則作圖參數的解如下:

$$a = \frac{\varepsilon_3 i}{h} \sqrt{\frac{i^2 - f^2}{i^2}}, b = b_k, r_0 = \varepsilon_3 h \sqrt{\frac{i^2}{i^2 - f^2}}, \cos \phi = \frac{f}{i}, s = \sqrt{\frac{h^2 i^2 - g i^2 + g f^2}{i^2 - f^2}}$$

引理五-以係數表達作圖參數

IUDNKO

其中

$$\begin{split} b &= b_{\mathbf{k}}, \\ f &= \frac{-\varepsilon_{\mathbf{l}}b_{\mathbf{3}}b_{\mathbf{4}} + \varepsilon_{\mathbf{l}}b_{\mathbf{2}} - 4\varepsilon_{\mathbf{l}}b_{\mathbf{4}}b_{\mathbf{k}}^2 + 2b_{\mathbf{4}}^2b_{\mathbf{k}} + 2b_{\mathbf{k}}^3}{4b_{\mathbf{k}}}, \\ g &= \frac{-2b_{\mathbf{l}}b_{\mathbf{k}}^2 + 3\varepsilon_{\mathbf{l}}b_{\mathbf{0}}b_{\mathbf{k}} - 2b_{\mathbf{0}}b_{\mathbf{4}} + \varepsilon_{\mathbf{l}}b_{\mathbf{l}}b_{\mathbf{4}}b_{\mathbf{k}}}{-\varepsilon_{\mathbf{l}}b_{\mathbf{3}}b_{\mathbf{4}}b_{\mathbf{k}} + \varepsilon_{\mathbf{l}}b_{\mathbf{2}}b_{\mathbf{k}} - 4\varepsilon_{\mathbf{l}}b_{\mathbf{4}}b_{\mathbf{k}}^3 + 2b_{\mathbf{4}}^2b_{\mathbf{k}}^2 + 2b_{\mathbf{k}}^4}, \\ h &= \varepsilon_{\mathbf{3}}\sqrt{\frac{-b_{\mathbf{3}}b_{\mathbf{k}} + \varepsilon_{\mathbf{l}}b_{\mathbf{3}}b_{\mathbf{4}} - \varepsilon_{\mathbf{l}}b_{\mathbf{2}} + 2\varepsilon_{\mathbf{l}}b_{\mathbf{4}}b_{\mathbf{k}}^2 - b_{\mathbf{4}}^2b_{\mathbf{k}} - b_{\mathbf{k}}^3}{4b_{\mathbf{k}}} + \frac{-2b_{\mathbf{l}}b_{\mathbf{k}}^2 + 3\varepsilon_{\mathbf{l}}b_{\mathbf{0}}b_{\mathbf{k}} - 2b_{\mathbf{0}}b_{\mathbf{4}} + \varepsilon_{\mathbf{l}}b_{\mathbf{l}}b_{\mathbf{4}}b_{\mathbf{k}}}{-2\varepsilon_{\mathbf{l}}b_{\mathbf{3}}b_{\mathbf{k}} + 2\varepsilon_{\mathbf{l}}b_{\mathbf{3}}b_{\mathbf{k}} + 2\varepsilon_{\mathbf{l}}b_{\mathbf{2}}b_{\mathbf{k}} - 8\varepsilon_{\mathbf{l}}b_{\mathbf{4}}b_{\mathbf{k}}^3 + 4b_{\mathbf{4}}^2b_{\mathbf{k}}^2 + 4b_{\mathbf{k}}^4, \\ i &= \varepsilon_{\mathbf{4}}\sqrt{2\varepsilon_{\mathbf{l}}b_{\mathbf{2}}b_{\mathbf{k}} - b_{\mathbf{2}}b_{\mathbf{4}} + b_{\mathbf{l}} - 2b_{\mathbf{k}}^2g + 4b_{\mathbf{k}}^2h^2 + 4fg + g^2} \end{split}$$

引理六-限制條件

Εύρηκα

同樣利用三角函數與根號的性質,可以二刻尺作圖法解出的保守限制條件。

$$g < \frac{h^{2}i^{2}}{i^{2} - f^{2}}, i^{2} - f^{2} > 0, 2\varepsilon_{1}b_{2}b_{k} - b_{2}b_{4} + b_{1} - 2b_{k}^{2}g + 4b_{k}^{2}h^{2} + 4fg + g^{2} > 0$$

$$\frac{-b_{3}b_{k} + \varepsilon_{1}b_{3}b_{4} - \varepsilon_{1}b_{2} + 2\varepsilon_{1}b_{4}b_{k}^{2} - b_{4}^{2}b_{k} - b_{k}^{3}}{4b_{k}} + \frac{-2b_{1}b_{k}^{2} + 3\varepsilon_{1}b_{0}b_{k} - 2b_{0}b_{4} + \varepsilon_{1}b_{1}b_{4}b_{k}}{-2\varepsilon_{1}b_{2}b_{k} - 8\varepsilon_{1}b_{4}b_{k}^{3} + 4b_{4}^{2}b_{k}^{2} + 4b_{k}^{4}} \ge 0$$

引理七-ε的討論

ε	意義	是否影響解方程式	原因
ε_1	蚌線的內外兩支	是,但可自由選擇	出現在引理一的式子中
$arepsilon_2$	θ 的象限	否	推導過程中會被消去
ϵ_3	φ 的象限	否	推導過程中會被消去
$arepsilon_4$	a 的正負	否	對稱性

EUPNKO

引理八-五次方程式的負根

$$x = -\alpha \ (\alpha > 0)$$
 $\not= x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 = 0$ 的解

$$x = \alpha$$
 是 $x^5 - b_4 x^4 + b_3 x^3 - b_2 x^2 + b_1 x - b_0 = 0$ 的解

如果將 ε_1 調為 $-\varepsilon_1$,此方程式的作圖參數會和原方程式相等。

因此,可以從軌跡曲線的另外一支找到五次方程式的負根。

定理二

給定一個五次方程式

$$x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 = 0$$

無法用二刻尺解出。除非解出作圖參數的七次方程有合理的解,且係數亦在限制條件之內,方可用二刻尺解出。

Εύρηκα

結論與未來展望

結論

- 係數如果在限制條件內,可以透過設計「二刻尺作圖法步驟」, 解出三次方程式。
- 解出作圖參數的七次方程有合理的解,且係數亦在限制條件之內, 五次方程式方可用二刻尺解出。

未來展望

Εύρηκα

- 一、可以找出更多的途徑求解方程式。
- 二、將此對應應用在證明正多邊形的二刻尺可作。
- 三、學習更多的代數幾何、抽象代數,給出更完整的解釋與整理。

感謝

Εύρηκα

- 指導老師:姚志鴻老師、施翔仁老師
- 一起在數專奮鬥的同學們
- 數資班的同學們
- 父母與親友們
- 一路相挺的專題好夥伴
- 攝影機前的所有觀眾們

Εύρηκα

報告到此結束。

以二刻尺作圖解方程式

邱巖盛

指導老師: 姚志鴻老師

