ASM Brake Hydraulics

Reference

For ASM Brake Hydraulics Blockset 2.1.5 and ASM Brake Hydraulics Operator Blockset 2.1.5

Release 2021-A - May 2021

How to Contact dSPACE

Mail: dSPACE GmbH

Rathenaustraße 26 33102 Paderborn

Germany

Tel.: +49 5251 1638-0
Fax: +49 5251 16198-0
E-mail: info@dspace.de
Web: http://www.dspace.com

How to Contact dSPACE Support

If you encounter a problem when using dSPACE products, contact your local dSPACE representative:

- Local dSPACE companies and distributors: http://www.dspace.com/go/locations
- For countries not listed, contact dSPACE GmbH in Paderborn, Germany.
 Tel.: +49 5251 1638-941 or e-mail: support@dspace.de

You can also use the support request form: http://www.dspace.com/go/supportrequest. If you are logged on to mydSPACE, you are automatically identified and do not need to add your contact details manually.

If possible, always provide the relevant dSPACE License ID or the serial number of the CmContainer in your support request.

Software Updates and Patches

dSPACE strongly recommends that you download and install the most recent patches for your current dSPACE installation. Visit http://www.dspace.com/go/patches for software updates and patches.

Important Notice

This publication contains proprietary information that is protected by copyright. All rights are reserved. The publication may be printed for personal or internal use provided all the proprietary markings are retained on all printed copies. In all other cases, the publication must not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of dSPACE GmbH.

© 2006 - 2021 by: dSPACE GmbH Rathenaustraße 26 33102 Paderborn Germany

This publication and the contents hereof are subject to change without notice.

AUTERA, ConfigurationDesk, ControlDesk, MicroAutoBox, MicroLabBox, SCALEXIO, SIMPHERA, SYNECT, SystemDesk, TargetLink and VEOS are registered trademarks of dSPACE GmbH in the United States or other countries, or both. Other brand names or product names are trademarks or registered trademarks of their respective companies or organizations.

Contents

About This Reference	7
Overview of the Brake Hydraulics Library	9
Brake Hydraulics Library	9
Brake Hydraulics	11
Valves	12
Precharge Valve	12
Change-over Valve	14
Non-Return Valve (at Reservoir)	17
Inlet Valve	19
Outlet Valve	
Continuous Valve Control	
Table-Based Valves	25
Chambers	27
Damper Chamber	27
Connection Chamber	29
Reservoir	30
Brake Cylinders	33
Master Brake Cylinder	33
Wheel Brake Cylinder	36
Pumps	39
Pump	
•	
Braking Circuit Basic	
Braking Circuit Basic Controlled Braking Circuit Basic	
Braking Circuit basic	44
Miscellaneous	
Continuous Valve Control	46
Switches and Parameters	48
Common Fluid Parameters	48
Brake Hydraulics Variant Switches	49
Valve Control Switches	49

Soft ECU	53
Soft ECU Brake Basic Desired Brake Pressure	
Soft ECU ESP	56
Soft ECU ESP	56
Expected Vehicle Behavior	58
Current Slip	61
Slip Controller	63
Pump Controller	67
Torque Request ESP	69
Map Inputs	72
Map Inputs	72
Models	75
Overview of the Models	76
How to Replace a Model	
Brake Hydraulics Basic Model	
Brake Hydraulics (Advanced) Model	
Braking Circuit and Wheel Units Subsystem of the Advanced Brake	
Hydraulics	82
Braking Circuit Basic Model of the Advanced Brake Hydraulics	
Soft ECU Brake Basic	85
Soft ECU Brake (Advanced) Model	87
Blocks from Former Versions	91
Pressure Intervention Soft ECU	91
New Features/Migration History of the ASM Brake	
Hydraulics Blockset	93
General Changes to the ASM Brake Hydraulics Blockset	96
History of the BRAKE_CYLINDER Block	
History of the BRAKE_HYDRAULICS_SWITCHES_VALVE_CONTROL_x	
Block	98
History of the BRAKE_HYDRAULICS_VARIANT_SWITCHES Block	98
History of the BRAKING_CIRCUIT_BASIC Block	99
History of the BRAKING_CIRCUIT_BASIC_CTRL Block	99
History of the CHANGE_OVER_VALVE_x Block	99

Hist	ory of the CHANGE_OVER_VALVE_x_TABLE Block	100
Hist	ory of the COMMON_FLUID_PARAMETERS Block	101
Hist	ory of the CONNECTION_CHAMBER Block	101
Hist	ory of the CONTINUOUS_CTRL_INLET_VALVE_x Block	101
Hist	ory of the CONTINUOUS_CTRL_OUTLET_VALVE_x Block	. 102
Hist	ory of the CONTINUOUS_CTRL_PRE_CHARGE_VALVE_x Block	. 102
Hist	ory of the DAMPER_CHAMBER Block	103
Hist	ory of the DESIRED_BRAKE_PRESSURE Block	103
Hist	ory of the EXPECTED_VEHICLE_BEHAVIOR Block	104
Hist	ory of the INLET_VALVE_x Block	104
Hist	ory of the INLET_VALVE_x_TABLE Block	104
Hist	ory of the MASTER_BRAKE_CYLINDER Block	105
Hist	ory of the NON_RETURN_VALVE_RES_x Block	106
Hist	ory of the NON_RETURN_VALVE_x Block	106
Hist	ory of the OUTLET_VALVE_x Block	106
Hist	ory of the OUTLET_VALVE_x_TABLE Block	107
Hist	ory of the PRE_CHARGE_VALVE_x Block	107
Hist	ory of the PRE_CHARGE_VALVE_x_TABLE Block	108
Hist	ory of the PRESSURE_INTERVENTION_SOFT_ECU Block	108
Hist	ory of the PUMP_CONTROLLER Block	109
Hist	ory of the RESERVOIR Block	109
Hist	ory of the SLIP_CONTROLLER Block	110
Hist	ory of the SLIP_CURRENT Block	110
Hist	ory of the SOFT_ECU_BRAKE Block	110
Hist	ory of the TORQUE_REQUEST_ESP Block	111
Hist	ory of the Brake Hydraulics Demo Model	111
Append	liv	113
Bibl	iography	113
Index		115

About This Reference

Content

This reference introduces you to the features provided by the dSPACE ASM Brake Hydraulics Model. It describes the model structure and parts of the model, its physical background, and the data required for parameterization.

Symbols

dSPACE user documentation uses the following symbols:

Symbol	Description
▲ DANGER	Indicates a hazardous situation that, if not avoided, will result in death or serious injury.
▲ WARNING	Indicates a hazardous situation that, if not avoided, could result in death or serious injury.
▲ CAUTION	Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.
NOTICE	Indicates a hazard that, if not avoided, could result in property damage.
Note Indicates important information that you should into account to avoid malfunctions.	
Tip	Indicates tips that can make your work easier.
2	Indicates a link that refers to a definition in the glossary, which you can find at the end of the document unless stated otherwise.
Precedes the document title in a link that refers another document.	

Naming conventions

dSPACE user documentation uses the following naming conventions:

%name% Names enclosed in percent signs refer to environment variables for file and path names.

< > Angle brackets contain wildcard characters or placeholders for variable file and path names, etc.

Special folders

Some software products use the following special folders:

Common Program Data folder A standard folder for application-specific configuration data that is used by all users.

%PROGRAMDATA%\dSPACE\<InstallationGUID>\<ProductName>
or

%PROGRAMDATA%\dSPACE\<ProductName>\<VersionNumber>

Documents folder A standard folder for user-specific documents.

%USERPROFILE%\Documents\dSPACE\<ProductName>\
<VersionNumber>

Local Program Data folder A standard folder for application-specific configuration data that is used by the current, non-roaming user.

%USERPROFILE%\AppData\Local\dSPACE\<InstallationGUID>\
<ProductName>

Accessing dSPACE Help and PDF Files

After you install and decrypt dSPACE software, the documentation for the installed products is available in dSPACE Help and as PDF files.

dSPACE Help (local) You can open your local installation of dSPACE Help:

- On its home page via Windows Start Menu
- On specific content using context-sensitive help via F1

dSPACE Help (Web) You can access the Web version of dSPACE Help at www.dspace.com/go/help.

To access the Web version, you must have a *mydSPACE* account.

PDF files You can access PDF files via the icon in dSPACE Help. The PDF opens on the first page.

Overview of the Brake Hydraulics Library

Brake Hydraulics Library

Introduction	This topic gives you an overview of the ASM Brake Hydraulics Library.
Opening the library	You can open the library in MATLAB/Simulink. Refer to How to Open an ASM Library (ASM Vehicle Dynamics Model Description (12)).

Contents

The following illustration shows the first level of the library.

The library has three main subsystems.

Brake Hydraulics The Brake Hydraulics subsystem contains all the Simulink blocks necessary to model a brake hydraulics system. Refer to Brake Hydraulics on page 11.

Soft ECU The Soft ECU subsystem contains all the subsystems that allows you to use the model offline or if a real ECU is not available. Refer to Soft ECU on page 53.

Models The ASM Brake Hydraulics Library contains two brake hydraulics models (basic and advanced) and two soft ECU brake models (basic and advanced). Refer to Models on page 75.

Related topics	Basics
	Brake Hydraulics
	References
	Soft ECU

Brake Hydraulics

Where to go from here

Information in this section

Valves	12
Chambers	27
Brake Cylinders	33
Pumps	39
Braking Circuit Basic	42
Miscellaneous	46
Switches and Parameters	48

Valves

Where to go from here

Information in this section

Precharge Valve	<u>)</u>
Change-over Valve	ļ
Non-Return Valve (at Reservoir)	7
Inlet Valve	}
Outlet Valve	I
Continuous Valve Control	}
Table-Based Valves	5

Precharge Valve

Description

The precharge valve delivers brake fluid from the master brake cylinder to the pump intake. This is necessary if the braking pressure must be increased without brake pedal actuation (for example, during ESP or ASR intervention). Therefore, the valve is normally closed and only opened during ECU interventions. The flow is possible in only one direction in the open state [Bos98]. The following illustration shows a schematic of the valve.

For a low flow resistance, the orifice should be as large as possible. However, a large orifice area needs a high force to open the valve, if there is a high pressure difference between the inlet and outlet pipes. Therefore, the opening path of the valve is designed as a two-stage aperture with a large cross section if the intake pressure is low (for example, during an ASR intervention) and a small cross section for high intake pressure (for example, when the driver performs partial braking during an ESP intervention) [Zan04].

The valve is modeled as an orifice with a continuously controllable cross section. The flow depends on the orifice cross section A, the flow coefficient α , the fluid density ρ , and the pressure difference Δp between the inlet and outlet areas of the valve. The equation (Bernoulli equation) to calculate the valve flow can be written as [Bea99]

$$q = A(Ctrl_Valve)\alpha\sqrt{\frac{2}{\rho}(p_{in} - p_{out})}$$

The following illustration shows the characteristic curve of the precharge valve:

Note

The effect of temperature on the hydraulic fluid is ignored.

The following illustration shows the Simulink representation of the precharge valve. It calculates the flow rate as a function of the control signal and the inlet and outlet pressures.

PRE_CHARGE_VALVE_1

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_Valve	[0_1]	Control signal, range 0 1 (0 fully closed, 1 fully open)
p_in	[bar]	Inlet pressure
p_out	[bar]	Outlet pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
q	[cm ³ /s]	Flow rate

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_diam_max_LowPressure	[mm]	Maximum effective flow diameter at low pressure difference
Const_diam_max_HighPressure	[mm]	Maximum effective flow diameter at high pressure difference
Const_FlowCoeff	[]	Flow coefficient
Const_p_threshold	[bar]	Pressure threshold to switch between the two diameters
Sw_FlowDirection	[0 1]	Flow direction O: One-way 1: Two-way
Sw_nom_state	[0 1]	Nominal open state 0: Normally closed 1: Normally opened

Processing information

The flow coefficient α depends on the orifice dimension and the Reynolds number. For standard dynamic procedures, a flow coefficient of $\alpha \approx 0.7$ can be assumed [Bea99].

Related topics

References

Change-over Valve

Description

The change-over valve delivers brake fluid from the master brake cylinder to the inlet valves. The valve is normally open to enable the standard braking procedure. Flow is possible in both directions in the open state. When the pump

is switched on to increase the braking pressure without driver brake intervention (for example, during ESP or ASR intervention), the change-over valve is closed. In the closed state, the valve functions as a pressure relieve valve. Thus, it normally prevents the brake fluid from being pumped back to the master brake cylinder. However, if the pump delivers more fluid than required, the pressure relief function allows the brake fluid to return to the master brake cylinder [Bos98].

The valve is modeled as an orifice with a continuously controllable cross section. The flow depends on the orifice cross section A, the flow coefficient α , the fluid density ρ , and the pressure difference $\Delta p = p_{in} - p_{out}$ between the inlet and outlet of the valve. The equation (Bernoulli equation) to calculate the valve flow can be written as [Bea99]

$$q = A(Ctrl_Valve)\alpha\sqrt{\frac{2}{\rho}(p_{in} - p_{out})}$$

The following illustration shows the characteristic curve of the change-over valve in the open state:

The following illustration shows the characteristic curve of the pressure relief function (close state):

Note

The effect of temperature on the hydraulic fluid is ignored.

The following illustration shows the Simulink representation of the change-over valve. It calculates the flow rate as a function of the control signal and the inlet and outlet pressures.

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_Valve	[0_1]	Control signal, range 0 1 (0 fully open, 1 fully closed)
p_in	[bar]	Inlet pressure
p_out	[bar]	Outlet pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
q	[cm ³ /s]	Flow rate

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_diam_max	[mm]	Maximum effective flow diameter
Const_diam_max_pLimit	[mm]	Maximum effective flow diameter, pressure limiter
Const_FlowCoeff	[]	Flow coefficient
Const_FlowCoeff_pLimit	[]	Flow coefficient pressure limiter
Const_p_crack_pLimt	[bar]	Crack pressure of pressure limiter
Sw_FlowDirection	[0 1]	Flow direction
		0: One-way1: Two-way
Sw_nom_state	[0 1]	Nominal open state O: Normally closed I: Normally opened

Processing information

The flow coefficient α depends on the orifice dimension and the Reynolds number. For standard dynamic procedures, a flow coefficient of $\alpha \approx 0.7$ can be assumed [Bea99].

Related topics

References

Braking Circuit 1 (ModelDesk Parameterizing □)
Braking Circuit 2 (ModelDesk Parameterizing □)
History of the CHANGE_OVER_VALVE_x Block......

Non-Return Valve (at Reservoir)

Description

The non-return valve allows a flow in one direction only. The valve is closed with a prestressed spring. If the pressure difference across the valve is greater than the force of the prestressed spring, the valve opens. In the open state, the valve behaves like a flow valve.

The valve is modeled as an orifice with a fixed cross-section. The flow depends on the orifice cross-section A, the flow coefficient α , the fluid density ρ , and the pressure difference $\Delta p = p_{in} - p_{out}$ between the inlet and outlet areas of the valve. The flow is zero if the pressure difference across the valve is lower than the crack pressure. The equation (Bernoulli equation) to calculate the valve flow can be written as [Bea99].

$$q = A\alpha \sqrt{\frac{2}{\rho}(p_{in} - p_{out})}$$

The following illustration shows the characteristic curve of the non-return valve.

Note

The effect of temperature on the hydraulic fluid is not considered.

The following illustration shows the Simulink representation of the non-return valve. It calculates the flow rate as a function of the inlet and outlet pressures.

NON_RETURN_VALVE_FL

NON_RETURN_VALVE_RES_1

Inports

The following table shows the inports:

Name	Unit	Description
p_in	[bar]	Inlet pressure
p_out	[bar]	Outlet pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
q	[cm ³ /s]	Flow rate

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_diam_max	[mm]	Maximum effective flow diameter
Const_FlowCoeff	[]	Flow coefficient
Const_p_crack	[bar]	Crack pressure

Processing information

The flow coefficient α depends on the orifice dimension and the Reynolds number. For standard dynamic procedures, a flow coefficient of $\alpha \approx 0.7$ can be assumed [Bea99].

Related topics

References

Inlet Valve

Description

The inlet valve delivers brake fluid to the wheel brake cylinder. The valve is normally open to perform the standard braking procedure. In the open state, flow is possible in both directions. During an ABS (anti-lock braking system), ESP (electronic stability program), or TCS (traction control system) intervention, the valve can be closed to hold or decrease the braking pressure in the wheel brake cylinder.

The valve is modeled as an orifice with a continuously controllable cross-section. The flow rate depends on the orifice cross-section A, the flow coefficient α , the fluid density ρ and the pressure difference $\Delta p = p_{in} - p_{out}$ between the inlet and outlet areas of the valve. The equation (Bernoulli equation) to calculate the valve flow can be written as [Bea99]

$$q = A(Ctrl_Valve)\alpha\sqrt{\frac{2}{\rho}(p_{in} - p_{out})}$$

The following illustration shows the characteristic curve of the change-over valve in the open state:

Note

The effect of temperature on the hydraulic fluid is ignored.

The following illustration shows the Simulink representation of the inlet valve. It calculates the flow rate as a function of the control signal and the inlet and outlet pressures.

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_Valve	[0_1]	Control signal, range 0 1 (0 fully open, 1 fully closed)
p_in	[bar]	Inlet pressure
p_out	[bar]	Outlet pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
q	[cm ³ /s]	Flow rate

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_diam_max	[mm]	Maximum effective flow diameter
Const_FlowCoeff	[]	Flow coefficient
Sw_FlowDirection	[0 1]	Flow direction O: One-way 1: Two-way
Sw_nom_state	[0 1]	Nominal open state 0: Normally closed 1: Normally opened

Processing information

The flow coefficient α depends on the orifice dimension and the Reynolds number. For standard dynamic procedures, a flow coefficient of $\alpha \approx 0.7$ can be assumed [Bea99].

Related topics

References

Outlet Valve

Description

The outlet valve delivers brake fluid from the wheel brake cylinder to the reservoir. The valve is normally closed to perform the standard braking procedure. Flow is possible in only one direction in the open state. During an ABS, ESP, or ASR intervention, the valve can be opened to decrease the braking pressure in the wheel brake cylinder.

The valve is modeled as an orifice with a continuously controllable cross-section. The flow depends on the orifice cross-section A, the flow coefficient α , the fluid density ρ and the pressure difference $\Delta p = p_{in} - p_{out}$ between the inlet and outlet areas of the valve. The equation (Bernoulli equation) to calculate the valve flow rate can be written as [Bea99]

$$q = A(\mathit{Ctrl_Valve}) \alpha \sqrt{\frac{2}{\rho}(p_{in} - p_{out})}$$

The following illustration shows the characteristic curve of the change-over valve in the open state:

Note

The effect of temperature on the hydraulic fluid is not considered.

The following illustration shows the Simulink representation of the outlet valve. It calculates the flow rate as a function of the control signal and the inlet and outlet pressures.

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_Valve	[0_1]	Control signal, range 0 1 (0 fully closed, 1 fully open)
p_in	[bar]	Inlet pressure
p_out	[bar]	Outlet pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
q	[cm ³ /s]	Flow rate

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_diam_max	[mm]	Maximum effective flow diameter
Const_FlowCoeff	[]	Flow coefficient
Sw_FlowDirection	[0 1]	Flow direction
		• 0: One-way
		■ 1: Two-way
Sw_nom_state	[0 1]	Nominal open state
		0: Normally closed
		1: Normally opened

Processing information

The flow coefficient α depends on the orifice dimension and the Reynolds number. For standard dynamic procedures, a flow coefficient of $\alpha \approx 0.7$ can be assumed [Bea99].

Related topics

References

Continuous Valve Control

Description

In some cases, valves are continuously controlled by an ECU via a control current. The flow area of these valves depends on the valve control current and the pressure difference. The modeled system is based on a look-up-table that calculates the valve control signal from the valve control current and the pressure difference.

The continuous valve control function is available for the inlet, outlet, precharge, and change-over valves. Whether these valves are calculated as digitally or continuously controlled valves is defined via the valve control switches model block. For details, refer to Valve Control Switches on page 49.

The following illustration shows the Simulink representation of the continuous valve control for the inlet valve front left:

Inports

The following table shows the inports.

Name	Unit	Description
Ctrl_I_ECU	[A]	Valve control current
p_delta	[bar]	Pressure difference between valve inport and outport

Outports

The following table shows the outports:

Name	Unit	Description	
Ctrl_Valve	[0_1]	Control signal, range 0 1	

Parameters

The following table shows the parameters:

Name	Unit	Description
Map_ContinuousValveControl	_	Valve control signal = f(p_delta, Ctrl_I_ECU)

Processing information

The following illustration shows an example of a valve control look-up table:

Related topics

References

History of the CONTINUOUS_CTRL_INLET_VALVE_x Block	101
Valve Control Switches	49

Table-Based Valves

Description

The modeled valve is based on a look-up-table that calculates the valve flow from a control signal, for example, the valve control current, and the pressure difference. This model approach can be useful if the fluid flow was measured with a test bench or if it is available from a data sheet.

Table-based valve models are available for the inlet, outlet, precharge, and change-over valves.

The following illustration shows the Simulink representation of the table-based inlet valve front left:

Inports

The following table shows the inports:

Name	Unit	Description	
Ctrl_Valve	[]	Valve control signal, for example, valve control current	
p_ln	[bar]	Valve input pressure	
p_Out	[bar]	Valve output pressure	

Outports

The following table shows the outports:

Name	Unit	Description	
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).	
q	[cm ³ /s]	Fluid quantity	

Parameters

The following table shows the parameters:

Name	Unit	Description
Map_Flow	[cm ³ /s]	Valve flow[cm 3 /s] = f(p_delta, Ctrl_Valve)
Sw_FlowDirection_TableValve	[0 1]	 Flow direction O: One-way, flow values for negative delta pressure are set to zero 1: Two-way, flow values for positive and negative delta pressure are taken from table data

Name	Unit	Description
Sw_Mirror_TableValve	[0 1]	 Mirror look-up table O: Off, flow values for positive and negative delta pressure are taken from table data 1: On, flow values for negative delta pressure are mirrored from table data of the positive delta pressure

Processing information

The following illustration shows an example of a valve look-up table that describes the valve fluid flow:

Related topics

References

Braking Circuit 1 (ModelDesk Parameterizing 🕮) Braking Circuit 2 (ModelDesk Parameterizing 🕮) History of the INLET_VALVE_x_TABLE Block.

Chambers

Where to go from here

Information in this section

Damper Chamber The damper chamber levels the pressure pulses generated by the hydraulic pump. It also decreases the noise during an ABS, ESP, or ASR intervention.	27
Connection Chamber The connection chamber is required as a connecting element between the precharge valve, the non-return valve, and the pump. The physical representation of this chamber is the volume of the hydraulic pipe.	29
Reservoir	30

Damper Chamber

Description

The damper chamber levels the pressure pulses generated by the hydraulic pump. It also decreases the noise during an ABS, ESP, or ASR intervention [Bos98].

The chamber is simulated as a fixed volume that is filled with a compressible fluid. It describes the pressure state as a function of the flow quantity into and out of the chamber. Based on the continuity law, the differential equation for the chamber pressure p of this system can be written as [Bor03]

$$\dot{p} = \frac{E}{V_0} \sum_i q_i$$

where E is the bulk module, V_0 the volume of the chamber, and q the flow into and out of the chamber. The factor $\frac{E}{V_0}$ is also known as the inverse of the hydraulic capacity.

The following illustration shows the Simulink representation of the damper chamber. It calculates the pressure as a function of the fluid quantity that flows into and out of the damper chamber:

DAMPER_CHAMBER_1

Inports

The following table shows the inports:

Name	Unit	Description	
q	[cm ³ /s]	Flow quantity	
Reset	[]	Resets all integrators in the block to their initial conditions	

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
р	[bar]	Chamber pressure

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_p_Init	[bar]	Initial pressure
Const_V	[cm ³]	Chamber volume

Processing information

The bulk module E of the hydraulic fluid is parameterized in the common fluid parameter block. Refer to Common Fluid Parameters on page 48.

Note

The hydraulic fluid bulk module E has a relatively high value. The inverse hydraulic capacity E / V_0 is therefore very large for low chamber volumes, which leads to a stiff differential equation that might become a numerically instable system if the sampling rate is too low. To avoid numerical instability, it is recommended to use a value for the volume parameter that is 10-20 times greater than the actual chamber size. Increasing the volume to this extent has only a minimal effect on the accuracy of the simulation result.

Related topics

References

Connection Chamber

Description

The connection chamber is required as a connecting element between the precharge valve, the non-return valve, and the pump. The physical representation of this chamber is the volume of the hydraulic pipe.

The chamber is simulated as a fixed volume that is filled with a compressible fluid. It describes the pressure state as a function of the flow quantity into and out of the chamber. Based on the continuity law, the differential equation for the chamber pressure p of this system can be written as [Bor03]

$$\dot{p} = \frac{E}{V_0} \sum_i q_i$$

where E is the bulk module, V_0 the volume, and q the flow into respectively out of the chamber. The factor $\frac{E}{V_0}$ is also known as the inverse of the hydraulic capacity.

The following illustration shows the Simulink representation of the damper chamber. It calculates the pressure as a function of the fluid quantity that flows into and out of the damper chamber:

Inports

The following table shows the inports:

Name	Unit	Description	
q	[cm ³ /s]	Flow quantity	
Reset	[]	Resets all integrators in the block to their initial conditions	

Outports

The following table shows the outports:

Name	Unit	Description	
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).	
р	[bar]	Chamber pressure	

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_p_Init	[bar]	Initial pressure
Const_V	[cm ³]	Chamber volume

Processing information

The bulk module E of the hydraulic fluid is parameterized in the common fluid parameter block. Refer to Common Fluid Parameters on page 48.

Note

The hydraulic fluid bulk module E has a relatively high value. The inverse hydraulic capacity E / V_0 is therefore very large for low chamber volumes, which leads to a stiff differential equation which might become a numerically instable system if the sampling rate is too low. To avoid numerical instability, it is recommended to use a value for the volume parameter that is 10-20 times greater than the actual chamber size. Increasing the volume to this extent has only a minimal effect on the accuracy of the simulation result.

Related topics

References

Braking Circuit 1 (ModelDesk Parameterizing (12))
Braking Circuit 2 (ModelDesk Parameterizing (12))
History of the CONNECTION_CHAMBER Block......

... 101

Reservoir

Description

The reservoir takes the exhaust brake fluid from the outlet valve during an ABS, ESP, or ASR intervention. The hydraulic pump ensures that the fluid is returned from the reservoir to the main brake cylinder [Bos98].

The reservoir is simulated as a hydropneumatic accumulator, for example, a bubble accumulator or membrane accumulator. The accumulator contains a gas bubble that has greater compressibility than the hydraulic fluid. The accumulator is therefore able to absorb and deliver a relatively high quantity of hydraulic fluid. The capacity of the accumulator depends on the charging pressure (gas pressure of the empty accumulator).

Based on the Poisson equation, the nonlinear differential equation for the accumulator pressure p of this system can be written as [Bac94]

$$\dot{p} = \frac{q\chi p}{V_0} \left(\frac{p}{p_0}\right)^{\frac{1}{\chi}}$$

where χ is the polytropic gas index, V_0 the volume of the reservoir, p_0 the charging pressure and q the flow rate into and out of the accumulator.

The following illustration shows the Simulink representation of the reservoir. It calculates the pressure depending on the fuel quantity that flows into and out of the accumulator.

RESERVOIR_1

Inports

The following table shows the inports:

Name	Unit	Description	
q	[cm ³ /s]	Flow quantity	
Reset	[]	Resets all integrators in the block to their initial conditions	

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
р	[bar]	Accumulator pressure

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_GasIndex	[]	Polytropic gas index
Const_p_Init	[bar]	Initial charging pressure
Const_V_Init	[cm ³]	Initial volume

Processing information

The polytropic gas index for oxygen, air, and azote is 1.4 [Her92].

Related topics

References

Braking Circuit 1 (ModelDesk Parameterizing 🕮) Braking Circuit 2 (ModelDesk Parameterizing 🕮)

History of the RESERVOIR Block.....

Brake Cylinders

Where to go from here

Information in this section

Master Brake Cylinder The master brake cylinder is modeled with different approaches.	33
Wheel Brake Cylinder The wheel brake cylinder consists of a cylinder with a piston. If the brake pedal is pressed, hydraulic fluid flows into the cylinder, increases the pressure, and pushes the piston with the friction pads onto the brake disc.	36

Master Brake Cylinder

Description

The master brake cylinder is modeled with the following different approaches:

- Linear type
- Physical, nonlinear type, with or without brake booster support
- Brake-by-wire type

With the Sw_MasterBrakeCylinderType inport you can switch between the model types.

In some vehicle configurations, you must be able to decelerate the vehicle without a driver brake pedal action. This brake intervention is controlled by a real or soft ECU (refer to Desired Brake Pressure on page 54), for example an ACC ECU. If the enable inport flag Enable_p_Brake_Desired is set, the block outputs the master brake cylinder pressure or the desired external pressure, whichever is greater. If the enable flag is not set, the block outport pressure is the master brake cylinder pressure. An exception is the brake-by-wire mode, where the master brake cylinder pressure is zero if the enable flag is not set.

The following illustration shows the Simulink representation of the master brake cylinder. It calculates the pressure as a function of the brake pedal position.

Linear type

The linear master brake cylinder simulation converts only the brake pedal position to cylinder pressure between zero and a given maximum pressure in a linear way.

$$P_{MasterCylinder} = \frac{Pos_{BrakePedal} P_{max}}{100\%}$$

For example, this linear model type can be used if a brake pedal position of 70% must produce exactly 70% of the maximum braking pressure.

Physical type

The brake cylinder is simulated as a massless piston that can move in longitudinal direction in the cylinder body. Losses and leakage are neglected. The following illustration shows the simulated system.

The equations of the system can be written as

$$x = \frac{Pos_{BrakePedal} X_{Max}}{100}$$

$$F_{Piston} = f(x)$$

$$p_{MasterCylinder} = \frac{F_{Piston}}{\pi r_{Piston}^2}$$

For example, this physical model type can be used to obtain a more realistic behavior if measured data on the brake pedal position is to be fed to the simulation. If the brake booster support is used, the piston force is taken from the F PushRod inport.

Brake-by-wire type

For battery electric and hybrid applications, you must be able to decouple the mechanical connection between brake pedal and master brake cylinder. In this applications, the brake intervention is controlled by a real or soft ECU (refer to Desired Brake Pressure on page 54), for example.

If the enable inport flag is set, the block outport pressure is set to the value of the desired external pressure.

If the enable flag is not set, the block outport pressure is set to zero. The brake pedal position inport value then has no effect on the brake pressure outport value.

Inports

The following table shows the inports:

Name	Unit	Description
Enable_p_Brake_Desired	[0 1]	Enable the desired brake pressure as block output pressure:0: Disable1: Enable
F_PushRod	[N]	Push rod (piston) force, used for brake booster support
p_ambient	[bar]	Ambient pressure
Pos_BrakePedal	[%]	Brake pedal position
p_Brake_Desired	[bar]	Desired brake pressure that is set as block output pressure if the enable flag is set
Sw_MasterBrakeCylinderType	[1 2 3 4]	Switch to select the master brake cylinder type: 1: Linear 2: Physical 3: Physical with brake booster 4: Brake-by-wire

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide \square).
A_Piston	$[m^2]$	Piston area of physical brake cylinder
р	[bar]	Pressure in master brake cylinder
p_max	[bar]	Maximum pressure in master brake cylinder

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_displ_max_piston	[mm]	Maximum piston displacement
Const_p_ambient	[bar]	Ambient pressure
Const_p_max	[bar]	Maximum master cylinder pressure
Const_r_piston	[mm]	Piston radius
Map_BrakeForce	[N]	Brake pedal force = f(piston displacement)

Processing information

The <code>Const_p_max</code> parameter parameterizes the linear model. All the other parameters parameterize the physical model. This means if the linear model type is used, only the <code>Const_p_max</code> parameter must have a correct value, and for the physical model type, all the other parameters must be set.

Related topics

References

Wheel Brake Cylinder

Description

The wheel brake cylinder consists of a cylinder with a piston. If the brake pedal is pressed, hydraulic fluid flows into the cylinder, increases the pressure, and pushes the piston with the friction pads onto the brake disc.

Note

The friction pad and brake disc model is not part of the brake hydraulics library.

36

The modeled system is based on a look-up table that calculates the cylinder pressure from the cylinder volume. The brake fluid quantity that flows into and out of the cylinder is integrated into the current fluid volume in the cylinder. The pressure can be calculated from the volume by means of the look-up table [See97].

$$V = \int q \, dt$$

$$p = f(V)$$

The following illustration shows the Simulink representation of the wheel brake cylinder. It calculates the pressure depending on the fluid quantity that flows into and out of the brake cylinder.

Inports

The following table shows the inports:

Name	Unit	Description
q	[cm ³ /s]	Flow quantity
Reset	[]	Resets all integrators in the block to their initial conditions

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
р	[bar]	Wheel brake cylinder pressure

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_V_Init	[cm ³]	Initial volume
Map_BrakePressure	[bar]	Cylinder pressure = f(cylinder volume)

Processing information

The initial volume should be set so that the pressure look-up table delivers a pressure value near the ambient pressure, for example, 1 bar.

The brake cylinder pressure [bar] is calculated from a look-up table with the fluid volume in the cylinder [cm³] input. The following illustration shows an example [See97]:

Related topics

References

```
Braking Circuit 1 (ModelDesk Parameterizing 🕮)
Braking Circuit 2 (ModelDesk Parameterizing 🕮)
History of the BRAKE_CYLINDER Block.
```

Pumps

Pump

Description

The hydraulic pump transports brake fluid back from the accumulator to the master brake cylinder. Its second function is to deliver brake fluid to the inlet valves during active braking without driver intervention. This is necessary for ESP and ASR functionalities [Bos98].

The modeled system is based on a look-up table that calculates the delivered fluid quantity from the pressure difference between the inlet and outlet areas $(\Delta p = p_{in} - p_{out})$ [Bor03].

Note

The sinusoidal pulsation of the delivered flow quantity is neglected.

The flow rate calculated from the look-up table is delivered only if the intake pressure of the pump is greater than a defined pressure. Below this minimum input pressure p_{min} the flow is decreased linearly to zero. This anticipates that the pump assumes no mass flow if the input pressure is too low.

The equation of the system can be written as

$$q = \begin{cases} f(p_{in} - p_{out}) & p_{in} \ge p_{min} \\ f(p_{in} - p_{out}) \frac{p_{in}}{p_{min}} & p_{in} < p_{min} \end{cases}$$

The following illustration shows the Simulink representation of the wheel brake cylinder. It calculates the flow quantity as a function of the pump intake and outlet pressures.

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_HydPump	[0_1]	Control signal in the range 0 1 (0 completely deactivated, 1 completely activated)
p_in	[bar]	Intake pressure
p_out	[bar]	Outlet pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
q	[cm ³ /s]	Fluid quantity

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_p_in_Min	[bar]	Minimum pump input pressure
Map_FluidQuantity	[cm ³ /s]	Fluid quantity = f(pressure difference)

Processing information

The delivered flow rate [cm³/s] is calculated from a look-up table with the pressure difference [bar] ($\Delta p = p_{in} - p_{out}$) input. The following illustration shows an example:

Related topics

References

Braking Circuit 1 (ModelDesk Parameterizing (11))
Braking Circuit 2 (ModelDesk Parameterizing (11))

Braking Circuit Basic

Where to go from here

Information in this section

Braking Circuit Basic Controlled

Description

The BRAKING_CIRCUIT_BASIC_CTRL block simulates the wheel brake cylinder pressure of each wheel depending on the inlet and outlet valve control signals, and the master brake cylinder pressure. The brake pressure dynamics are based on a first-order time delay model approach.

Depending on the ECU mode, different input pressures are used for the wheel brake cylinders:

- For the ECU modes ESP and ASR, the hydraulic pump pressure
 Const_p_Pump parameter of the BRAKING_CIRCUIT_BASIC_CTRL block is used.
- For the ECU modes *None* and *ABS*, the master brake cylinder pressure of the p_MasterBrakeCyl[bar] inport is used.

As output pressure of the wheel brake cylinders the ambient pressure is set.

The following illustration shows the Simulink representation of the model.

ASM Brake Hydraulics Reference

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_IntletValve	[0_1]	Control signal for the inlet valve (normally open) of each wheel. The signal value must be between 0 and 1. O: Inlet valve fully open I: Inlet valve fully closed
Ctrl_OutletValve	[0_1]	Control signal for the outlet valve (normally closed) of each wheel. The signal value must be between 0 and 1. O: Outlet valve fully open 1: Outlet valve fully closed
ECU_Mode	[0 1 2 3]	ECU mode that indicates if an ECU intervention is active: O: None 1: ABS 2: ESP 3: ASR
p_Ambient	[bar]	Ambient pressure
p_MasterBrakeCyl	[bar]	Master brake cylinder pressure
Reset	[]	Reset

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
p_BrakeCylinder	[bar]	Wheel brake cylinder pressure of each wheel

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_p_init	[bar]	Initial wheel brake cylinder pressure
Const_p_Pump	[bar]	Hydraulic pump pressure
Const_TimeConst_In_Front	[s]	Time constant of inlet pressure at front
Const_TimeConst_In_Rear	[s]	Time constant of inlet pressure at rear
Const_TimeConst_Out_Front	[s]	Time constant of outlet pressure at front
Const_TimeConst_Out_Rear	[s]	Time constant of outlet pressure at rear
Step size	[s]	Simulation step size

Related topics

References

Braking Circuit Basic

Description

The BRAKING_CIRCUIT_BASIC block simulates the dynamics of the brake hydraulics via a first-order time delay function.

The illustration shows the Simulink representation of the braking circuit. It delays the pressure signal via a first-order time delay function and distributes the pressure of each wheel brake cylinder.

The inlet and outlet valve control signal inputs from the vehicle stability control system have no function in the BRAKING_CIRCUIT_BASIC model. They are used for interface compatibility with the BRAKING_CIRCUIT_BASIC_CTRL block that simulates the wheel brake cylinder pressure of each wheel depending on the inlet and outlet valve control signals. Refer to Braking Circuit Basic Controlled on page 42.

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_InletValve[FL;FR;RL;RR]	[]	Dummy inport for interface compatibility with the BRAKING_CIRCUIT_BASIC_CTRL block
Ctrl_OutletValve[FL;FR;RL;RR]	[]	Dummy inport for interface compatibility with the BRAKING_CIRCUIT_BASIC_CTRL block
ECU_Mode	[]	Dummy inport for interface compatibility with the BRAKING_CIRCUIT_BASIC_CTRL block
p_Ambient	[bar]	Dummy inport for interface compatibility with the BRAKING_CIRCUIT_BASIC_CTRL block
P_MasterBrakeCylinder	[bar]	Pressure master brake cylinder

Name	Unit	Description
Reset	[]	Resets all integrators in the block to their initial conditions

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
p_Brake[FL,FR,RL,RR]	[bar]	Vector with wheel cylinder braking pressure front left, front right, rear left, and rear right

Parameters

The following table shows the parameters:

Name	Unit	Description	
Const_TimeConst	[s]	Time constant of first-order time delay function	

Related topics

References

Miscellaneous

Continuous Valve Control

Description

In some cases, valves are continuously controlled by an ECU via a control current. The flow area of these valves depends on the valve control current and the pressure difference. The modeled system is based on a look-up-table that calculates the valve control signal from the valve control current and the pressure difference.

The continuous valve control function is available for the inlet, outlet, precharge, and change-over valves. Whether these valves are calculated as digitally or continuously controlled valves is defined via the valve control switches model block. Refer to Valve Control Switches on page 49.

The following illustration shows the Simulink representation of the continuous valve control.

Inports

The following table shows the inports.

Name	Unit	Description	
Ctrl_I_ECU	[A]	Valve control current	
p_delta	[bar]	Pressure difference between valve inport and outport	

Outports

The following table shows the outports:

Name	Unit	Description
Ctrl_Valve	[0_1]	Control signal, range 0 1

Parameters

The following table shows the parameters:

Name	Unit	Description
Map_ContinuousValveControl		Valve control signal = f(p_delta, Ctrl_I_ECU)

46

Processing information

The following illustration shows an example of a valve control look-up table:

Related topics

References

Switches and Parameters

Where to go from here

Information in this section

Common Fluid Parameters	3
Brake Hydraulics Variant Switches	}
Valve Control Switches)

Common Fluid Parameters

Description

There is a central subsystem that provides all parameters that are used several times in the model. The subsystem is a central access point to the parameters for online access. Any modification to a parameter affects all the parts of the model that use it for real-time simulation and Simulink simulation.

Outports

The following table shows the outports:

Name	Unit	Description
Const_Bulk_Module_Fluid	[bar]	Bulk module of the hydraulic fluid
Const_Dens_Fluid	[kg/m ³]	Density of the hydraulic fluid
Const_Sqrt_2_div_Dens_Fluid	[sqrt(m ³ /kg)]	Square root of two divided by the fluid density

Parameters

The following table shows all the common fluid parameters:

Name	Unit	Description
Const_BulkModule	[bar]	Bulk module of the hydraulic fluid
Const_dens	[kg/m ³]	Density of the hydraulic fluid

48

Processing information

For example, the fluid parameters for the brake fluid DOT4/19 are density 1005 kg/m³ and bulk module 19505 bar [See97].

Related topics

References

Brake Hydraulics Variant Switches

Description

The BRAKE_HYDRAULICS_VARIANT_SWITCHES block lets you switch between the model types of the master brake cylinder. Refer to Master Brake Cylinder on page 33.

Parameters

The following table shows the parameters:

Name	Unit	Description
Sw_MasterBrakeCylinderType	[1 2 3 4]	Switch to select the master brake cylinder type: 1: Linear 2: Physical 3: Physical with brake booster 4: Brake-by-wire

Valve Control Switches

Description

Hydraulic valves can be controlled linearily or nonlinearily. If the valve is controlled nonlinearily, the flow area depends on the control current and the pressure difference. In this case, the valve control signal represents the valve control current. The factor defining the flow area is calculated from this signal and the pressure difference via a look-up table. If the valve is controlled linearly, the valve control signal directly represents the factor defining the flow area.

The valve control switches model makes it possible to define linear or nonlinear control for each valve.

Parameters

The following table shows the parameters:

Name	Unit	Description
Sw_Ctrl_ChangeOverValve_1	[0 1]	Switch change over valve 1 control 0: Linear 1: Nonlinear
Sw_Ctrl_ChangeOverValve_2	[0 1]	Switch change over valve 2 control O: Linear 1: Nonlinear
Sw_Ctrl_InletValve_FL	[0 1]	Switch inlet valve front left control O: Linear 1: Nonlinear
Sw_Ctrl_InletValve_FR	[0 1]	Switch inlet valve front right control 0: Linear 1: Nonlinear
Sw_Ctrl_InletValve_RL	[0 1]	Switch inlet valve rear left control 0: Linear 1: Nonlinear
Sw_Ctrl_InletValve_RR	[0 1]	Switch inlet valve rear right control 0: Linear 1: Nonlinear
Sw_Ctrl_OutletValve_FL	[0 1]	Switch outlet valve front left control 0: Linear 1: Nonlinear
Sw_Ctrl_OutletValve_FR	[0 1]	Switch outlet valve front right control 0: Linear 1: Nonlinear
Sw_Ctrl_OutletValve_RL	[0 1]	Switch outlet valve rear left control 0: Linear 1: Nonlinear
Sw_Ctrl_OutletValve_RR	[0 1]	Switch outlet valve rear right control 0: Linear 1: Nonlinear
Sw_Ctrl_PreChargeValve_1	[0 1]	Switch pre charge valve 1 control 0: Linear 1: Nonlinear
Sw_Ctrl_PreChargeValve_2	[0 1]	Switch pre charge valve 2 control O: Linear

Name	Unit	Description
		1: Nonlinear

Related topics

References

Soft ECU

Where to go from here

Information in this section

Soft ECU Brake Basic Provides information on the blocks of the Soft ECU Brake Basic.	54
Soft ECU ESP	56
Map Inputs The Map_Inputs subsystem provides the user signals for the soft ECU brake subsystem.	72

Soft ECU Brake Basic

Desired Brake Pressure

Description

The DESIRED_BRAKE_PRESSURE block calculates a desired braking pressure from the requested braking torque. The desired brake pressure is used in the brake hydraulics subsystem to perform a soft ECU-controlled deceleration of the vehicle.

To calculate the adequate braking pressure, the model includes an inverse brake disc model (see Brake Disc (ASM Vehicle Dynamics Reference (1)). The brake request must be activated with an enable flag.

$$p_{Brake} = \frac{T_{Request}}{k_{BrakeDisc}}$$

$$k_{BrakeDisc} = 2\mu rA$$

The brake disc factor k is calculated from the geometrical parameters of the brake disc and is available via a model signal from the brake disc model.

The following illustration shows the Simulink representation of the DESIRED_BRAKE_PRESSURE model.

The DESIRED_BRAKE_PRESSURE block is placed in the Soft_ECU_Brake_Basic and the Soft_ECU_Brake (Advanced) models.

Inports

The following table shows the inports:

Name	Unit	Description
Const_BrakeDiscFactor	[m ³]	Brake disc factor k
Enable_Trq_Extern	[0 1]	Enable brake torque request0: Disable1: Enable
Trq_Request_Extern	[Nm]	Brake torque request for deceleration

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
Enable_p_Brake_Desired	[0 1]	Enable flag for desired brake pressure0: Disable1: Enable
p_Brake_Desired	[bar]	Desired brake pressure

Parameters

The following table shows the parameters:

Name	Unit	Description
Step size	[s]	Simulation step size

Related topics

References

Soft ECU ESP

Where to go from here

Information in this section

Soft ECU ESP	
Expected Vehicle Behavior	
Current Slip	
Slip Controller	
Pump Controller	
Torque Request ESP	

Soft ECU ESP

Description

Braking under critical conditions, such as on slippery road surfaces and because of a driver's panic reaction can lead to locking wheels. This usually results in a loss of vehicle steering response, because the vehicle loses traction and/or slides off the road. To manage these situations, the anti-lock braking system (ABS) recognizes in time if one or more wheels begin to lock and reacts by modulating the brake pressure in such a way that vehicle steerability is retained while maximum possible braking efficiency is ensured. ABS normally comes into play when the driver brakes hard. At this point, the brake-slip (also known as tire-slip) is required to ensure maximum longitudinal (braking) force.

The electronic stability program (ESP) relies on the vehicle's braking system as a tool for keeping the vehicle stable and on course under critical conditions.

Specific braking interventions are directed to individual wheels to counter understeer and oversteer. ESP can also intervene at the engine side decelerating the vehicle to maintain stability. In addition, anti-slip regulation (ASR) is activated when throttle position and engine torque are not suitable for the road surface conditions.

The following illustration provides an overview of the Soft ECU ESP model.

The slip controller (refer to Slip Controller on page 63) determines if an ABS, ESP, or ASR function must be active and controls the inlet and outlet valves of each wheel brake cylinder.

The current slip (refer to Current Slip on page 61), which is calculated from the vehicle velocity $v_{Vehicle}$ and wheel speed ω_{Wheels} , is observed to check if a wheel blocked and the ABS must be active. In addition, the current slip value is used to detect if the wheels have lost traction on the road and to activate ASR.

In addition, the expected yaw rate (refer to Expected Vehicle Behavior on page 58) is calculated using a bicycle model and compared to the current yaw rate to evaluate the vehicle's stability and activate an ESP intervention, if necessary.

Depending on the slip controller state of an active ABS, ESP, or ASR, the pump controller (refer to Pump Controller on page 67) activates the hydraulic pump and controls the pre-charge and change-over valves.

The torque request component determines if the engine torque must be increased and sends a torque request to the engine ECU.

The input signals of the Soft ECU ESP model differ from those of a real ESP ECU. In a real vehicle, not all required signals can be measured. For example, the vehicle velocity cannot be measured directly and is calculated by the real ECU (e.g., via Kalman filter). This is not implemented in the Soft ECU ESP model because the vehicle velocity can be taken from the vehicle dynamics simulation model.

The output signals are the control signals of the inlet-, outlet-, precharge- and change-over valves, and the hydraulic precharge pump. The output signals are coordinated to the ASM Brake Hydraulics Model, which is required for a correct function of the SoftECU ESP model.

The control strategy and algorithms of a real ESP system are very complex and comprehensive. Compared to a real ECU functionality, the Soft ECU ESP model is a relatively simplified model approach. Therefore, the Soft ECU ESP model will not control the stability of the vehicle dynamics for all test maneuvers such as a real ECU.

Subsystems

- Expected Vehicle Behavior on page 58
- Current Slip on page 61
- Slip Controller on page 63
- Pump Controller on page 67
- Torque Request ESP on page 69

Related topics

References

Current Slip	61
Expected Vehicle Behavior.	
Pump Controller	67
Slip Controller	
The property of the contract o	

Expected Vehicle Behavior

Description

To evaluate the vehicle's stability, the expected yaw rate depending on the steering wheel angle and the vehicle velocity is required. For this, the driver input signal steering wheel angle and the vehicle velocity are used as part of an extended linear bicycle model to determine the expected yaw behavior of the vehicle.

The following illustration displays how the nominal (expected) yaw rate is calculated.

Through the linear bicycle model and the formula for yaw velocity gain $(\dot{\psi}/\delta_{Wheel})$, the yaw rate can be calculated as follows:

$$\dot{\psi} = \delta_{Wheel} \cdot \frac{v_{x_{CoG}}}{\left(l_F + l_R\right) \cdot \left(1 + \frac{{v_{x_{CoG}}}^2}{{v_{ch}}^2}\right)}$$

where:

 $\dot{\psi}$ is the yaw rate

 $V_{x_{CoG}}$ is the vehicle velocity at the center of gravity

 $egin{array}{ll} V_{ch} & ext{is the characteristic velocity} \ l_F + l_R & ext{is the wheelbase of the vehicle} \ \end{array}$

 δ_{Wheel} is the steering angle at the front wheels

 $\delta_{Steering}$ is the steering wheel angle

The characteristic velocity is the point where the yaw rate has its maximum. This point is the same for all steering wheel angles. The following graphic shows the expected yaw rate under different driver inputs.

Because the friction coefficient of the road is not known, the output of the linear bicycle model is limited with the commonly supposed physical limits $(a_y/V_{X_{COG}})$.

The following illustration shows the Simulink representation of the expected vehicle behavior.

Inports

The following table shows the inports:

Name	Unit	Description
a_y_Vehicle_CoG	[m/s ²]	Lateral vehicle acceleration in center of gravity (CoG)
Angle_SteeringWheel	[deg]	Steering wheel angle
i_Steering_Mean	[]	Mean steering ratio
v_x_Vehicle_CoG	[km/h]	Longitudinal vehicle velocity (CoG)
WheelBase	[m]	Vehicle wheelbase

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
YawRate_Expected	[rad/s]	Expected yaw rate

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_v_ch	[km/h]	Characteristic vehicle velocity

Processing information

The following formula describes how the characteristic velocity can be calculated [Mit04].

$$V_{ch}^2 = \frac{c_{\alpha F} c_{\alpha R} l^2}{m(c_{\alpha R} l_R - c_{\alpha F} l_V)}$$

where:

 V_{ch} is the characteristic velocity $c_{\alpha F}$ is the front cornering stiffness $c_{\alpha R}$ is the rear cornering stiffness

m is the vehicle mass

l is the wheelbase of the vehicle

 l_F is the length of the CoG to the front wheel l_R is the length of the CoG to the rear wheel

Typical values of the characteristic velocity are 70-120 km/h. If the characteristic velocity cannot be calculated (e.g., if the cornering stiffness is unknown), the value can be determined via simulation. For this, the vehicle dynamics simulation must be parameterized with a moderate driving maneuver so that the vehicle drives in a stable working point. Then, the characteristic velocity parameter can be changed so that the current and expected yaw rate have the same value.

Related topics

References

Expected Vehicle Behavior (ModelDesk Parameterizing 🚇)
History of the EXPECTED_VEHICLE_BEHAVIOR Block.....

.... 104

Current Slip

Description

The current slip is required to observe if a wheel is blocked and ABS must be active, or to detect if the wheels have lost traction on the road to activate ASR.

The current longitudinal slip of each tire is calculated from the vehicle velocity and the wheel speed. The sign for decelerating (brake) slip values is negative and positive for accelerating slip.

$$\lambda_{\chi} = \frac{\omega r_W - v_{W\chi}}{v_{W\chi}}$$

where:

 λ_{χ} is the longitudinal slip

 v_{Wx} is the vehicle longitudinal velocity at the wheel center

 ω is the rotational wheel speed

 r_W is the tire radius

The following illustration shows the Simulink representation of the current slip.

Inports

The following table shows the inports:

Name	Unit	Description
Angle_SteeringWheel	[deg]	Steering wheel angle
i_Steering_Mean	[]	Mean steering ratio
r_Tire	[m]	Tire radius
TrackWidth	[m]	Vehicle track width
v_y_Vehicle_CoG	[km/h]	Lateral vehicle velocity (CoG)
v_x_Vehicle_CoG	[km/h]	Longitudinal vehicle velocity (CoG)
WheelSpeed	[rad/s]	Wheel speed for each wheel
YawRate_Vehicle_CoG	[deg/s]	Vehicle yaw rate in center of gravity (CoG)

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
Slip_x_Current	[]	Longitudinal slip for each wheel
v_circum_Whee	[m/s]	Circumference velocity of each wheel
v_x_Wheel	[m/s]	Longitudinal translational wheel velocity for each wheel

Related topics

References

History of the SLIP_CURRENT Block.....

Slip Controller

Description

The slip controller determines if an ABS, ESP, or ASR function must be active and controls the inlet and outlet valves of each wheel brake cylinder.

The following illustration displays the structure of the Slip Controller model.

Vehicle stability evaluation

The slip controller evaluates the stability of the vehicle and determines if a control mode must be activated.

ABS ABS is activated if the vehicle velocity is positive and the absolute current slip of at least one wheel is greater than the ideal ABS/ESP slip, which is a parameter of the slip controller.

ESP ESP is activated if the vehicle velocity is positive and the yaw rate error (difference between current yaw rate and expected yaw rate) is greater than the yaw rate threshold, which is a parameter of the slip controller.

ASR ASR is activated if the accelerator pedal position is greater than the accelerator pedal threshold (parameter of the slip controller) and the absolute current slip is greater than the ideal ASR slip, which is a parameter of the slip controller.

Each switch point is implemented with a relay functionality with dynamic threshold to hide toggling effects.

Reference slip determination

Depending on the controller mode ABS, ESP, or ASR, the individual reference slip value for each wheel is determined.

For ABS and ASR, the ideal ABS/ESP and ASR slip values (parameter of the slip controller) are set as slip reference values.

For ESP, the control function has to determine which wheels to brake in which driving conditions.

The following table shows which wheel is braked under which driving condition.

Turn direction	Positive yaw rate error	Negative yaw rate error
Right turn	Oversteer	Understeer
	Wheel to brake : front left	Wheel to brake : rear right

Turn direction	Positive yaw rate error	Negative yaw rate error
Left turn	Understeer	Oversteer
	Wheel to brake : rear left	Wheel to brake : front right

For the braked wheels, the ideal ABS/ESP slip value (parameter of the slip controller) is set. For the unbraked wheels, a slip value of zero is set as reference slip. In extreme driving situations, for example, situations with high yaw rate error or high yaw rate acceleration, additional wheels are braked and the reference slip value is increased.

If the ESP is active during a driver brake intervention, the ideal ABS/ESP slip value is set as reference value for all wheels. For the wheel that has to be braked more strongly to stabilize the vehicle, the value is increased.

Slip control

The reference and current slip are used for the slip control algorithm to calculate the in- and outlet valve actuation. The ABS and ESP control rate parameters determine the valve control dynamics. A low value results in a slow valve and therefore slow wheel speed control and a high value results in a fast control. The control rate parameter must have a value between zero and one.

In the ABS control mode, the wheel deceleration for high current slip values is considered by the slip control algorithm. The maximum wheel deceleration parameter defines at which wheel deceleration the inlet valve is to be closed completely. This affects how fast the valve is closed. A high deceleration value results in a slow and small deceleration value in a fast valve and therefore wheel speed control.

The following illustration shows the Simulink representation of the slip controller.

Inports

The following table shows the inports:

Name	Unit	Description
Angle_SteeringWheel	[deg]	Steering wheel angle
Enable_p_Brake_Desired	[0 1]	Flag that indicates if braking pressure is required from an external ECU (e.g., ACC ECU)
Pos_AccPedal	[%]	Position of accelerator pedal
Pos_BrakePedal	[%]	Position of brake pedal
Reset	[]	Reset
Slip_x_Current	[]	Current longitudinal slip
Sw_ASR	[0 1]	Switch for ASR functionality (to activate ASR, Sw_ESP must be set to ABS or ESP) • 0: Off • 1: On
Sw_ESP	[0 1 2]	Switch for ESP functionality: • 0: Off

Name	Unit	Description	
		■ 1: ABS	
		■ 2: ESP	
v_circum_Whee	[m/s]	Circumference wheel velocity for each wheel	
v_x_Vehicle_CoG	[km/h]	Longitudinal vehicle velocity (CoG)	
v_x_Wheel	[m/s]	Longitudinal translational wheel velocity for each wheel	
YawRate_Expected	[rad/s]	Expected yaw rate	
YawRate_Vehicle_CoG	[deg/s]	Vehicle yaw rate in center of gravity (CoG)	
WheelSpeed	[rad/s]	Wheel speed of each wheel	

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
Ctrl_IntletValve		 Control signal of inlet valves (normally open) of each wheel O: Valve fully open Const_Ctrl_Max (e.g. 1): Valve fully closed
Ctrl_OutletValve		Control signal of outlet valves (normally closed) of each wheel O: Valve fully closed Const_Ctrl_Max (e.g. 1): Valve fully open
ECU_Mode	[0 1 2 3]	 ECU mode that indicates if an ECU intervention is active: 0: None 1: ABS 2: ESP 3: ASR
Slip_Set	[]	Absolute reference slip set value

Parameters

The following table shows the parameters:

Name	Unit	Description	
Const_CtrlRate_ABS	[0_1]	Valve control rate ABS	
Const_CtrlRate_ESP	[0_1]	Valve control rate ESP	
Const_a_Max_Wheel	[m/s ²]	Maximum wheel deceleration to close inlet valve completely	
Const_AccPosThresh_ASR	[%]	Accelerator pedal position threshold to activate ASR	
Const_Ctrl_Max	[]	Maximum value of valve control signal to open/close the valve cross section completely	
Const_SlipIdeal	[]	Ideal absolute slip for ABS and ESP	
Const_SlipIdeal_ASR	[]	Ideal absolute slip for ASR	

Name	Unit	Description	
Map_YawRateThresh_ESP		Yaw rate threshold (difference between current and expected yaw rate) to activate ESP $[m/s^2]=f(v)$	
Step size	[s]	Simulation step size	

Related topics

References

Slip Controller (ModelDesk Parameterizing 🕮)

Pump Controller

Description

Depending on the slip controller state (see Slip Controller on page 63), the pump controller determines if the hydraulic pump and the pre-charge and change-over valves must be activated.

The hydraulic pump (see Pump on page 39) is used to pump the hydraulic fluid back from the braking circuit reservoir (see Reservoir on page 30) to the fluid reservoir of the master brake cylinder or to build up braking pressure without brake intervention by the driver. Therefore, the hydraulic pump is switched on if the ABS, ESP, or ASR are active. If ABS, ESP or ASR mode is set from active to inactive, the pump is switched off with a short time delay.

The pre-charge valve is switched on if the hydraulic pump is active and the brake pedal is not pressed. This ensures that the pump can force braking fluid from the fluid reservoir of the master brake cylinder to the braking circuit.

The change-over valve is switched on if the ESP or ASR is active to ensure that pressure is built up in the hydraulic pump.

The following illustration shows the Simulink representation of the pump controller.

Inports

The following table shows the inports:

Name	Unit	Description
ECU_Mode	[0 1 2 3]	ECU mode that indicates if an ECU intervention is active: O: None 1: ABS 2: ESP 3: ASR
p_MasterBrakeCyl	[bar]	Master brake cylinder pressure
Reset	[]	Reset

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide (12)).
Ctrl_ChangeOverValve	[]	Control signal for change-over valves 1 and 2 (normally open) 0: Valve fully open 1: Valve fully closed
Ctrl_HydPump	[0_1]	Control signal for hydraulic pump
Ctrl_PreChargeValve	[]	Control signal for pre-charge valves 1 and 2 (normally closed) • 0: Valve fully closed • 1: Valve fully open

Parameters

The following table shows the parameters:

Name	Unit	Description
Step size	[s]	Simulation step size

Related topics

References

History of the PUMP_CONTROLLER Block	109
Pump	39
Reservoir	30
Slip Controller	63

Torque Request ESP

Description

During an ESP or ASR intervention the Soft ECU ESP sends a torque request to the combustion engine ECU to decrease the engine torque.

If the ASR or ESP is activated, a percentage value of the current effective engine torque, at this point in time, is set as torque request value. The percentages are defined as parameters for an ASR and ESP intervention.

If ASR mode is set from active to inactive, the torque request is deactivated with a short time delay to hide toggling effects.

Alternatively, during an ESP intervention the value of the torque request can be defined to be steering wheel-dependent. If the ESP is switched to active, the torque request value is calculated from a linear relation of torque request and the steering wheel angle. The steering wheel angle where the torque request value should be zero is defined as parameter. The following illustration displays this behavior.

The following illustration shows the Simulink representation of the torque request ESP model.

Inports

The following table shows the inports:

Name	Unit	Description
Angle_SteeringWheel	[deg]	Steering wheel angle
ECU_Mode	[0 1 2 3]	ECU mode that indicates if an ECU intervention is active: O: None
		■ 1: ABS
		■ 2: ESP ■ 3: ASR
p_MasterBrakeCyl	[bar]	Master brake cylinder pressure
Trq_Eff_Engine	[Nm]	Effective engine torque

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 112).
Enable_TrqRequest	[0 1]	Enable flag for torque requestO: Disable1: Enable
Trq_Request	[Nm]	Torque request value

Parameters

The following table shows the parameters:

Name	Unit	Description
Const_Angle_ZeroTrq	[deg]	Steering wheel angle with zero torque request
Const_TrqRequest_ASR	[%]	Torque request of ASR in % of current engine torque at ASR activation
Const_TrqRequest_ESP	[%]	Torque request of ESP in % of current engine torque at ESP activation
Sw_TrqRequest	[0 1]	Switch for torque request: 0: Off 1: On
Sw_TrqRequestSet_ESP	[0 1]	Switch for torque request to set ESP: O: Constant % of engine torque 1: Steering wheel angle-dependent
Step size	[s]	Simulation step size

Related topics

References

Map Inputs

Map Inputs

Description

The Map_Inputs subsystem provides the user signals for the soft ECU brake subsystem.

The Switches_ESP_User input signal bus includes the ESP user switch signals from the UserInterface subsystem. The Sw_ESP_Control_Mode signal is included in the signal bus and defines if the soft ECU user signals are set via constant blocks of the UserInterface or via user signals of the maneuver scheduler which are defined within the Scenario Editor.

The following illustration shows the Simulink representation of the model.

Inports

The following table shows the inports:

Name	Unit	Description
ECU_Commands		ECU command from the maneuver scheduler, where the numerical value of this signal has the following meaning: 2010: ECU functionality Off 2011: ECU functionality ABS 2012: ECU functionality ESP 2020: ASR On 2021: ASR Off
Reset	[0 1]	Reset
Switches_ESP_User	[]	Signal bus with ESP user switch signals from MDLUserInterface subsystem

Outports

The following table shows the outports:

Name	Unit	Description
Sw_ASR	[0 1]	Switch for ASR functionality: 0: Off 1: On

Name	Unit	Description
Sw_ESP	[0 1 2]	Switch for ESP functionality:
		• 0: Off
		■ 1: ABS
		■ 2: ESP

Related topics

References

Maneuver Scheduler (ASM Environment Reference 🕮)

Models

Where to go from here

Information in this section

Overview of the Models The library contains basic and advanced models for brake hydraulics and soft ECU.	
How to Replace a Model	76
Brake Hydraulics Basic Model	
Brake Hydraulics (Advanced) Model	
Braking Circuit and Wheel Units Subsystem of the Advanced Brake Hydraulics	
Braking Circuit Basic Model of the Advanced Brake Hydraulics The Braking Circuit Basic model simulates a simplified braking circuit system based on a first-order time delay approach where the wheel brake cylinder pressure is controlled by the inlet and outlet valve control signal.	
Soft ECU Brake Basic The block is a basic soft ECU brake model.	85
Soft ECU Brake (Advanced) Model	87

Overview of the Models

Introduction

The library contains basic and advanced models for brake hydraulics and soft ECU.

Brake hydraulics model

The ASM Brake Hydraulics Library contains the master brake cylinder and two brake hydraulics demos.

Master Brake Cylinder Refer to Master Brake Cylinder on page 33.

Brake Hydraulics Basic The basic demo includes a simple simulation of the braking circuit dynamics. Refer to Brake Hydraulics Basic Model on page 77.

Brake Hydraulics (Advanced) The advanced demo is for simulating a complete standard ESP brake hydraulics system, including wheel brake cylinder, different types of valves, accumulators, chambers, and pumps. Refer to Brake Hydraulics (Advanced) Model on page 79.

Soft ECU model

The ASM Brake Hydraulics Library contains two soft ECU brake demo models.

Soft ECU Brake Basic The basic demo model includes only the DESIRED_BRAKE_PRESSURE block to calculate the desired master brake cylinder pressure from a braking torque request. A brake torque request is sent from ACC or hybrid ECUs, for example. Refer to Soft ECU Brake Basic on page 85.

Soft ECU Brake (Advanced) The advanced demo model can be used for simulating an ESP ECU system that improves the vehicle's stability with an electronic stability program (ESP) including an anti-lock braking system (ABS) and an anti-slip regulation (ASR) functionality. The DESIRED_BRAKE_PRESSURE block to calculate a desired master brake cylinder pressure from a braking torque request is also included in this model. Refer to Soft ECU Brake (Advanced) Model on page 87.

How to Replace a Model

Subject

You can use either the basic or the advanced demo for simulation.

Method

To replace a model

1 To replace one Soft ECU Brake model or one brake hydraulics with another, drag it from the library and drop it to the model.

A confirmation prompt opens.

2 Click Yes to delete the old demo.

Result

The old model is deleted and replaced by the new one. The new demo is connected automatically.

Brake Hydraulics Basic Model

Overview

The BRAKE_HYDRAULICS_BASIC model simulates the braking system for a passenger car without an Electronic Stability Program (ESP). The braking circuit system calculates the pressure in the brake cylinder for each wheel.

Note

The friction pad and brake disc model is not part of the brake hydraulics library.

The following illustration shows the hydraulics schematic of the system:

The following illustration shows the first-level model structure with the braking circuit subsystem. The control signal inputs from the vehicle stability control system have no function in the basic brake hydraulics model. They are used for interface compatibility with the advanced brake hydraulics model.

p_MasterBrakeCylinder[bar] ECU_Mode[0None|1ABS|2ESP|3ASR] p_Brake[FL,FR,RL,RR][bar p_Brake[FL,FR,RL,RR][bar] Ctrl_InletValve_FL[] Ctrl_InletValve_FR[] Ctrl_InletValve_RL[] Ctrl_InletValve_RR[] Ctrl_OutletValve_FL[] Ctrl_HydPump[0_1] Ctrl_OutletValve_RL[] Ctrl_ChangeOverValve_2[]

For detailed descriptions of the subsystems, refer to the relevant chapters.

Inports

16 Ctrl_OutletValve_RR[]

The following table shows the inports:

Ctrl_ChangeOverValve_1[]

Name	Unit	Description
Ctrl_ChangeOverValve_1	[]	Dummy input
Ctrl_ChangeOverValve_2	[]	Dummy input
Ctrl_HydPump	[]	Dummy input
Ctrl_InletValve_FL	[]	Dummy input
Ctrl_InletValve_FR	[]	Dummy input
Ctrl_InletValve_RL	[]	Dummy input
Ctrl_InletValve_RR	[]	Dummy input
Ctrl_OutletValve_FL	[]	Dummy input
Ctrl_OutletValve_FR	[]	Dummy input
Ctrl_OutletValve_RL	[]	Dummy input
Ctrl_OutletValve_RR	[]	Dummy input
Ctrl_PreChargeValve_1	[]	Dummy input
Ctrl_PreChargeValve_2	[]	Dummy input
ECU_Mode	[]	Dummy input
ECU_Mode	[0 1 2 3]	Dummy input

Name	Unit	Description
p_Ambient	[bar]	Dummy input
p_MasterBrakeCylinder	[bar]	Master brake cylinder pressure
Reset	[]	Resets all integrators in the block to their initial conditions
Sw_DistributionPattern	[1 2]	Dummy input

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide \square).
p_Brake[FL,FR,RL,RR]	[bar]	Vector with wheel cylinder braking pressure front left, front right, rear left, and rear right

Subsystems

Braking Circuit Basic on page 44

Brake Hydraulics (Advanced) Model

Overview

The BRAKE_HYDRAULICS model simulates the brake hydraulics of a standard Electronic Stability Program (ESP) braking system for passenger cars. It consists of a dual-circuit transmission system with a diagonal distribution pattern (X distribution) in which each circuit brakes a front wheel and the diagonally opposite rear wheel or a II distribution pattern to simulate a system with a front-axle/rear-axle split.

The model contains all components that are necessary to simulate a state-of-theart ESP braking system (for example, Bosch 8.0 and 9.0, Continental Teves MK25 and MK60, TRW), such as valves, chambers, accumulators, and braking cylinders.

The following illustration depicts the hydraulics schematic diagram of the modeled system for an X distribution pattern:

Detailed descriptions of the subsystems can be found in the corresponding chapters.

Differential equations that describe hydraulic systems often lead to stiff terms, because of the low compressibility of the hydraulic fluid. This effect occurs in a high gear if the system contains components with a low volume. The simulation of these stiff differential equations leads to numerical problems if the simulation step size is not small enough [Bor03]. To avoid this numerical instability, the brake hydraulics system is calculated n-times during one large sampling step using a For-Iterator. For more information on the For-Iterator subsystem, refer to Local Subsystem Oversampling (ASM User Guide). The valves are modeled as an orifice with a continuously controllable cross-section. The control signal can represent a linear regulation of the valve flow area or a valve control current value for a nonlinear behavior where the flow area depends on this control current and the pressure difference. The control signal type used is set in the Valve Control Switches component.

Inports

The following table shows the inports:

Name	Unit	Description
Ctrl_ChangeOverValve_1	[0_1]	Control signal change-over valve braking circuit 1
Ctrl_ChangeOverValve_2	[0_1]	Control signal change-over valve braking circuit 2
Ctrl_HydPump	[0_1]	Control signal hydraulics pump
Ctrl_InletValve_FL	[0_1]	Control signal inlet valve front left, braking circuit 1
Ctrl_InletValve_FR	[0_1]	Control signal inlet valve front right, braking circuit 2
Ctrl_InletValve_RR	[0_1]	Control signal inlet valve rear right, braking circuit 1
Ctrl_InletValve_RL	[0_1]	Control signal inlet valve rear left, braking circuit 2
Ctrl_OutletValve_FL	[0_1]	Control signal outlet valve front left, braking circuit 1
Ctrl_OutletValve_FR	[0_1]	Control signal outlet valve front right, braking circuit 2
Ctrl_OutletValve_RL	[0_1]	Control signal outlet valve rear left, braking circuit 2
Ctrl_OutletValve_RR	[0_1]	Control signal outlet valve rear right, braking circuit 1
Ctrl_PreChargeValve_1	[0_1]	Control signal precharge valve braking circuit 1
Ctrl_PreChargeValve_2	[0_1]	Control signal precharge valve braking circuit 2
ECU_Mode	[0 1 2 3]	ECU mode that indicates which ECU intervention is active:
		• 0: None
		■ 1: ABS
		2: ESP
		■ 3: ASR

Name	Unit	Description
p_Ambient	[bar]	Ambient pressure
p_MasterBrakeCylinder	[bar]	Master brake cylinder pressure
Reset	[]	Resets all the integrators in the block to their initial conditions.
Sw_DistributionPattern	[1 2]	Switch to select the distribution pattern 1: X distribution 2: Il distribution

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide \blacksquare).
p_Brake[FL,FR,RL,RR]	[bar]	Vector with wheel cylinder braking pressure front left, front right, rear left, and rear right

Subsystems

- Common Fluid Parameters on page 48
- Braking Circuit and Wheel Units Subsystem of the Advanced Brake Hydraulics on page 82

Related topics

Basics

Local Subsystem Oversampling (ASM User Guide 1111)

Braking Circuit and Wheel Units Subsystem of the Advanced Brake Hydraulics

Overview

BrakingCircuit_1 simulates the hydraulic system of the front left and rear right wheels for an X distribution pattern or the front left and front right wheel for a II distribution pattern. BrakingCircuit_2 simulates the hydraulic system of the front right and rear left wheels for an X distribution pattern or the rear left and rear right wheel for a II distribution pattern.

The following illustrations show the components of BrakingCircuit_1 for an X distribution pattern. It consists of the two wheel braking cylinders with their inlet and outlet valves which are placed in the model as Unit subsystem for each wheel, the reservoir with the non-return valve, the hydraulic pump with the damper chamber, and the precharge and change-over valve which are placed in the BrakingCircuit subsystem of the Simulink model. The connection chamber is required as a connecting element between the two valves and the pump. The physical representation of this chamber is the volume of the hydraulic pipe.

The mathematical description of the braking circuit leads to a system of differential equations with five state variables. These are the pressures in the damper chamber, the connection chamber, and the reservoir, and the volume of the two wheel brake cylinders. The equation can be written as

$$\begin{bmatrix} \dot{P}_{Damp} \\ \dot{V}_{WBC, front} \\ \dot{P}_{Res} \\ \dot{P}_{Con} \end{bmatrix} = \begin{bmatrix} \frac{E}{V_{Damp}} \Big[q_{CO} \Big(p_{MBC}, p_{Damp} \Big) - q_{IN, rear} \Big(p_{Damp}, V_{WBC, front} \Big) - q_{IN, front} \Big(p_{Damp}, V_{WBC, front} \Big) + q_{Romp} \Big(p_{Con}, p_{Damp} \Big) + q_{NonRet, rear} \Big(V_{WBC, front}, p_{Damp} \Big) + q_{NonRet, front} \Big(V_{WBC, front}, p_{Damp} \Big) \\ q_{IN, front} \Big(p_{Damp}, V_{WBC, front} \Big) - q_{OUT, front} \Big(V_{WBC, front}, p_{Res} \Big) - q_{NonRet, rear} \Big(V_{WBC, front}, p_{Damp} \Big) \\ q_{IN, front} \Big(p_{Damp}, V_{WBC, front} \Big) - q_{OUT, front} \Big(V_{WBC, front}, p_{Res} \Big) - q_{NonRet, rear} \Big(V_{WBC, front}, p_{Damp} \Big) \\ q_{IN, front} \Big(p_{Damp}, V_{WBC, front} \Big) - q_{OUT, front} \Big(p_{WBC, front}, p_{Res} \Big) - q_{NonRet, front} \Big(p_{WBC, front}, p_{Damp} \Big) \\ q_{IN, front} \Big(p_{Damp}, V_{WBC, front} \Big) - q_{OUT, front} \Big(p_{WBC, front}, p_{Res} \Big) - q_{NonRet, front} \Big(p_{WBC, front}, p_{Damp} \Big) \\ q_{IN, front} \Big(p_{Damp}, V_{WBC, front} \Big) - q_{OUT, front} \Big(p_{WBC, front}, p_{Res} \Big) - q_{NonRet, fres} \Big(p_{Res}, p_{Con} \Big) - q_{NonRet, fres} \Big(p_{Res}, p_{Con} \Big) - q_{Pamp} \Big(p_{Con}, p_{Damp} \Big) \Big]$$

where:

is the pressure $p_{\text{<index>}}$ is the fluid quantity q<index> is the volume

V<index>

E<index> is the bulk module of the brake fluid The indices stand for the components as follows:

Index	Meaning
Damp	Damper chamber
Con	Connection chamber
Res	Reservoir
WBZ,front	Wheel brake cylinder front left
WBZ,rear	Wheel brake cylinder rear right
MBC	Master brake cylinder
СО	Change-over valve
PC	Precharge valve
IN,front	Inlet valve front left
IN,rear	Inlet valve rear right
OUT,front	Outlet valve front left
OUT,rear	Outlet valve rear right
NonRet,front	Non-return valve front left
NonRet,rear	Non-return valve rear right
NonRet,Res	Non-return valve reservoir
Pump	Hydraulic pump

Detailed descriptions of the equations of the individual components can be found in the following chapters.

Subsystems

- Precharge Valve on page 12
- Change-over Valve on page 14
- Inlet Valve on page 19
- Outlet Valve on page 21
- Continuous Valve Control on page 23
- Table-Based Valves on page 25
- Valve Control Switches on page 49
- Non-Return Valve (at Reservoir) on page 17
- Reservoir on page 30
- Damper Chamber on page 27
- Connection Chamber on page 29
- Wheel Brake Cylinder on page 36
- Pump on page 39

Braking Circuit Basic Model of the Advanced Brake Hydraulics

Overview

The Braking Circuit Basic model simulates a simplified braking circuit system based on a first-order time delay approach where the wheel brake cylinder pressure is controlled by the inlet and outlet valve control signal. This system can

be used if the parameters of the advanced braking circuit are not available or if a basic simulation of the braking circuit together with the Soft ECU Brake is sufficient.

There are two Braking Circuit Basic models:

- Braking Circuit Basic on page 44
- Braking Circuit Basic Controlled on page 42

Soft ECU Brake Basic

Description

In applications, such as ACC or hybrid systems, the ECUs send external brake torque requests to the brake ECU. For this, the DESIRED_BRAKE_PRESSURE block is included in the Soft ECU Brake Basic model to calculate a desired master brake cylinder pressure from a braking torque request.

The vehicle stability is not improved by the Soft ECU Brake Basic model. For this, the advanced Soft ECU Brake system with the electronic stability program (ESP) is required, see Soft ECU on page 53.

The following illustration shows the Simulink representation of the Soft ECU Brake Basic model.

Inports

The following table shows the inports:

Name	Unit	Description
a_y_Vehicle_CoG	[m/s ²]	Dummy inport
Angle_SteeringWheel	[deg]	Dummy inport
Const_BrakeDiscFactor	[m ³]	Brake disc factor for each wheel
Enable_Trq_Extern	[0 1]	Enable brake torque request:0: Disable1: Enable
i_Steering_Mean	[]	Dummy inport
p_MasterBrakeCyl	[bar]	Dummy inport
Pos_AccPedal	[%]	Dummy inport
Pos_RL_Wheel	[m]	Dummy inport
Pos_FL_Wheel	[m]	Dummy inport
r_Tire	[m]	Dummy inport
Reset[]	[]	Dummy inport
Sw_ASR	[0 1]	Dummy inport
Sw_ESP	[0 1 2]	Dummy inport
Trq_Eff_Engine	[Nm]	Dummy inport
Trq_Request_Extern	[Nm]	Brake torque request for deceleration
v_x_Vehicle_CoG	[km/h]	Dummy inport
v_y_Vehicle_CoG	[km/h]	Dummy inport
YawRate_Vehicle_CoG	[deg/s]	Dummy inport
WheelSpeed	[rad/s]	Dummy inport

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide (12)).
ECU_Mode	[0 1 2 3]	Dummy outport
Enable_p_Brake_Desired	[0 1]	Enable flag for desired brake pressure:0: Disable1: Enable
p_Brake_Desired	[bar]	Desired brake pressure
Trq_Intervention	[]	Dummy outport
Valves	[]	Dummy outport

Related topics

References

Desired Brake Pressure	1
Soft ECU5	3

Soft ECU Brake (Advanced) Model

Description

The advanced Soft ECU Brake model consists of two components. The Soft ECU ESP that improves the vehicle's stability with an electronic stability program (ESP) including an anti-lock braking system (ABS), and an anti-slip regulation (ASR) functionality (see Soft ECU ESP on page 56).

In addition, external brake torque requests, for example, from an ACC or hybrid ECU, are supported. For this, the DESIRED_BRAKE_PRESSURE block is included in the model to calculate the desired master brake cylinder pressure from a braking torque request (Desired Brake Pressure on page 54).

The following illustration shows the Simulink representation of the Soft ECU Brake model.

Inports

The following table shows the inports:

Name	Unit	Description
a_y_Vehicle_CoG	[m/s ²]	Lateral vehicle acceleration
Angle_SteeringWheel	[deg]	Steering wheel angle
Const_BrakeDiscFactor	$[m^3]$	Brake disc factor for each wheel
Enable_Trq_Extern	[0 1]	Enable brake torque request: O: Disable 1: Enable
i_Steering_Mean	[]	Mean steering ratio
p_MasterBrakeCyl	[bar]	Pressure of master brake cylinder
Pos_AccPedal	[%]	Position of accelerator pedal
Pos_FL_Wheel	[m]	Position vector (x,y,z) to front left wheel
Pos_RL_Wheel	[m]	Position vector (x,y,z) to rear left wheel

Name	Unit	Description	
r_Tire	[m]	Tire radius	
Reset[]	[]	Reset	
Sw_ASR	[0 1]	Switch for ASR functionality (to activate ASR, Sw_ESP must be set to ABS or ESP): 0: Off 1: On	
Sw_ESP	[0 1 2]	Switch for ESP functionality: O: Off 1: ABS 2: ESP	
Trq_Eff_Engine	[Nm]	Effective engine torque	
Trq_Request_Extern	[Nm]	External brake torque request for deceleration	
v_x_Vehicle_CoG	[km/h]	Longitudinal vehicle velocity (CoG)	
v_y_Vehicle_CoG	[km/h]	Lateral vehicle velocity (CoG)	
WheelSpeed	[rad/s]	Wheel speed for each wheel	
YawRate_Vehicle_CoG	[deg/s]	Yaw rate of vehicle in center of gravity (CoG)	

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide (12)).
ECU_Mode	[0 1 2 3]	ECU mode that indicates if an ECU intervention is active:
		■ 0: None
		■ 1: ABS
		■ 2: ESP
		■ 3: ASR
Enable_p_Brake_Desired	[0 1]	Enable flag for desired brake pressure:
		■ 0: Disable
		■ 1: Enable
p_Brake_Desired	[bar]	Desired brake pressure
Trq_Intervention	[]	Structured signal bus with torque request signals
Valves	[]	Structured signal bus with pump and valve control signals

Related topics

References

Blocks from Former Versions

Pressure Intervention Soft ECU

Description

It must be possible to decelerate the vehicle without a driver brake pedal action. This brake intervention is controlled by a real or soft ECU, for example. Refer to Desired Brake Pressure on page 54. If the enable inport flag is set, the block outport pressure is set with the maximum value of the master brake cylinder pressure or the desired external pressure. If the enable flag is not set, the block outport pressure is the master brake cylinder pressure.

The following illustration shows the Simulink representation of the pressure intervention soft ECU model:

PRESSURE_INTERVENTION_SOFT_ECU

Inports

The following table shows the inports:

Name	Unit	Description
Enable_p_Brake_Desired	[0 1]	Enable the desired brake pressure as block output pressure0: Disable1: Enable
p_Ambient	[bar]	Ambient pressure
p_Brake_Desired	[bar]	Desired brake pressure that is set as block output pressure if the enable flag is set
p_MasterBrakeCylinder	[bar]	Master brake cylinder pressure

Outports

The following table shows the outports:

Name	Unit	Description
ASMSignalBus	[]	Signal bus that contains signals of ASM components. Refer to ASMSignalBus (ASM User Guide 🕮).
p_Influenced	[bar]	Influenced output pressure

Parameters

The following table shows the parameters:

Name	Unit	Description
Step size	[s]	Simulation step size

Related topics

References

Desired Brake Pressure	. 54
History of the PRESSURE_INTERVENTION_SOFT_ECU Block	108

New Features/Migration History of the ASM Brake Hydraulics Blockset

Introduction

The following topics provide an overview of the changes to the ASM products in the previous Releases.

For an overview of the new features and migration of the current Release, refer to Automotive Simulation Models (ASM) (New Features and Migration (12)).

Where to go from here

Information in this section

General Changes to the ASM Brake Hydraulics Blockset	
History of the BRAKE_CYLINDER Block	
History of the BRAKE_HYDRAULICS_SWITCHES_VALVE_CONTROL_x Block	
History of the BRAKE_HYDRAULICS_VARIANT_SWITCHES Block	
History of the BRAKING_CIRCUIT_BASIC Block	
History of the BRAKING_CIRCUIT_BASIC_CTRL Block	

History of the CHANGE_OVER_VALVE_x Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	99
History of the CHANGE_OVER_VALVE_x_TABLE Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	100
History of the COMMON_FLUID_PARAMETERS Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	101
History of the CONNECTION_CHAMBER Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	101
History of the CONTINUOUS_CTRL_INLET_VALVE_x Block	101
History of the CONTINUOUS_CTRL_OUTLET_VALVE_x Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	102
History of the CONTINUOUS_CTRL_PRE_CHARGE_VALVE_x Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	·102
History of the DAMPER_CHAMBER Block	103
History of the DESIRED_BRAKE_PRESSURE Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	103
History of the EXPECTED_VEHICLE_BEHAVIOR Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	104
History of the INLET_VALVE_x Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	104
History of the INLET_VALVE_x_TABLE Block	104
History of the MASTER_BRAKE_CYLINDER Block	105
History of the NON_RETURN_VALVE_RES_x Block Provides an overview of all the new features and migration of the ASM block in the previous Releases.	106

History of the NON_RETURN_VALVE_x Block
History of the OUTLET_VALVE_x Block
History of the OUTLET_VALVE_x_TABLE Block
History of the PRE_CHARGE_VALVE_x Block
History of the PRE_CHARGE_VALVE_x_TABLE Block
History of the PRESSURE_INTERVENTION_SOFT_ECU Block
History of the PUMP_CONTROLLER Block
History of the RESERVOIR Block
History of the SLIP_CONTROLLER Block
History of the SLIP_CURRENT Block
History of the SOFT_ECU_BRAKE Block
History of the TORQUE_REQUEST_ESP Block
History of the Brake Hydraulics Demo Model

General Changes to the ASM Brake Hydraulics Blockset

Release 2016-B

Look-up table migration The discontinued Simulink blocks Lookup and Lookup2D in the ASM library blocks were updated to the new standard Simulink Look-up table (n-D) block. Refer to Changes to all ASM Products (ASM User Guide **Q**).

The look-up tables were updated in the following blocks within this library:

- BRAKE_CYLINDER_FL
- BRAKE_CYLINDER_FR
- BRAKE_CYLINDER_RL
- BRAKE_CYLINDER_RR
- CONTINUOUS_CTRL_CHANGE_OVER_VALVE_1
- CONTINUOUS_CTRL_CHANGE_OVER_VALVE_2
- CONTINUOUS_CTRL_INLET_VALVE_FL
- CONTINUOUS_CTRL_INLET_VALVE_FR
- CONTINUOUS_CTRL_INLET_VALVE_RL
- CONTINUOUS_CTRL_INLET_VALVE_RR
- CONTINUOUS_CTRL_OUTLET_VALVE_FL
- CONTINUOUS_CTRL_OUTLET_VALVE_FR
- CONTINUOUS_CTRL_OUTLET_VALVE_RL
- CONTINUOUS_CTRL_OUTLET_VALVE_RR
- CONTINUOUS_CTRL_PRE_CHARGE_VALVE_1
- CONTINUOUS_CTRL_PRE_CHARGE_VALVE_2
- CONTINUOUS_VALVE_CONTROL
- CHANGE_OVER_VALVE_1_TABLE
- CHANGE_OVER_VALVE_2_TABLE
- INLET_VALVE_FL_TABLE
- INLET_VALVE_FR_TABLE
- INLET_VALVE_RL_TABLE
- INLET_VALVE_RR_TABLE
- MASTER_BRAKE_CYLINDER
- OUTLET_VALVE_FL_TABLE
- OUTLET_VALVE_FR_TABLE
- OUTLET_VALVE_RL_TABLE
- OUTLET_VALVE_RR_TABLE
- PRE_CHARGE_VALVE_1_TABLE
- PRE_CHARGE_VALVE_2_TABLE
- PUMP_1
- PUMP_2

License check of ASM Utils blocks The ASM_UTILS license was discontinued. The ASM Utils blocks now check the license of the ASM blockset in which they are used.

The Utils blocks in the following blocks within this library were updated:

- BRAKE_CYLINDER_FL
- BRAKE_CYLINDER_FR
- BRAKE_CYLINDER_RL
- BRAKE_CYLINDER_RR
- CHANGE_OVER_VALVE_1
- CHANGE_OVER_VALVE_2
- CONNECTION_CHAMBER_1
- CONNECTION_CHAMBER_2
- DAMPER_CHAMBER_1
- DAMPER_CHAMBER_2
- INLET_VALVE_FL
- INLET_VALVE_FR
- INLET_VALVE_RL
- INLET_VALVE_RR
- NON_RETURN_VALVE_FL
- NON_RETURN_VALVE_FR
- NON_RETURN_VALVE_RES_1
- NON_RETURN_VALVE_RES_2
- NON_RETURN_VALVE_RL
- NON_RETURN_VALVE_RR
- OUTLET_VALVE_FL
- OUTLET_VALVE_FR
- OUTLET_VALVE_RL
- OUTLET_VALVE_RR
- PRE_CHARGE_VALVE_1
- PRE_CHARGE_VALVE_2
- RESERVOIR_1
- RESERVOIR_2

Release 2013-A

Simulation of X- and II-brake system structures is now possible.

Release 6.2

This blockset is now available in the operator version. It is a model variant specifically designed for offline simulation with Simulink®.

The model offers the same functionality, simulation quality, and parameterization options as the standard simulation package. The operator version is compatible with the standard model (developer version) and can be parameterized in ModelDesk, the parameterization software.

The fundamental difference of this model is the way the library components are implemented: They are encapsulated in separate systems to ensure good performance during Simulink simulation. The systems are accessible from the model so that their input/output behavior can be studied.

History of the BRAKE_CYLINDER Block

Release 6.2

A SIM.Step size parameter has been added to the block. Now all the parameters of a library block are parameterized via the mask.

A MDL.BrkHyd.UpSampleFaktor parameter has been added to the block. The upsample factor for oversampling the brake hydraulics has been added to the masks. Now all the parameters of a library block are parameterized via the mask.

Note

The simulation step size (SIM.Step size parameter) and the upsample factor (MDL.BrkHyd.UpSampleFaktor parameter) are not accessible from ModelDesk. To change these parameters, edit the sim_ini.m function in %PROJECT_ROOT%\Simulation.current\IniFiles.

Related topics

References

Wheel Brake Cylinder.....

36

History of the BRAKE_HYDRAULICS_SWITCHES_VALVE_CONTROL_x Block

Release 2016-B

The valve control mode is renamed from digital to linear and from continuous to nonlinear. The functionality of the control mode is not changed.

Release 7.3

The switch has been moved from

BRAKE_HYDRAULICS_SWITCHES_VALVE_CONTROL_x to support the multi-

instance feature.

History of the BRAKE_HYDRAULICS_VARIANT_SWITCHES Block

Release 7.3

Goto/from tags have been moved out of the library block to support the multi-instance feature.

History of the BRAKING_CIRCUIT_BASIC Block

Release 2017-A	Dummy inports have been added to the block for compatibility with the BRAKING_CIRCUIT_BASIC_CTRL block. The functionality was not changed.		
	BRAKING_CIRCOTI_BASIC_CIRL Block. The functionality was not changed.		
Release 6.2	A SIM Step size parameter has been added to the block. Now all the parameters of a library block are parameterized via the mask.		
Related topics	References		
	Braking Circuit Basic		

History of the BRAKING_CIRCUIT_BASIC_CTRL Block

Release 2017-A	This block is new. It simulates the wheel brake cylinder pressure of each wheel depending on the inlet and outlet valve control signals and the master brake cylinder pressure. The brake pressure dynamics are based on a first-order time delay model approach.	
Related topics	References	
	Braking Circuit Basic Controlled	

History of the CHANGE_OVER_VALVE_x Block

Release 7.3	To be compatible to the operator version, the model structure below the mask has been changed.
Release 6.5	Valves are sometimes continuously controlled by an ECU via a control current. The flow area of these valves depends on the valve control current and the pressure difference. The new blocks are based on a look-up table that calculates the valve control signal from the valve control current and the pressure difference.

The following new blocks are available:

- CHANGE_OVER_VALVE_1
- CHANGE_OVER_VALVE_2

Release 6.2

New Sw_nom_state mask parameter to switch between the nominal valve open states normally closed or normally open.

New Sw_FlowDirection mask parameter to switch the valve flow directions between one-way and two-way.

Related topics

References

nge-over Valve.....

History of the CHANGE_OVER_VALVE_x_TABLE Block

Release 7.1

The new Sw_FlowDirection_TableValve mask parameter was added to switch between the valve flow directions one-way and two-way.

The new Sw_Mirror_TableValve mask parameter was added. This is a switch parameter to enable or disable the mirror of the table for negative pressure difference.

During migration the default values of the new Sw_FlowDirection_TableValve and Sw_Mirror_TableValve parameters are set so that the simulation results match former results. No additional migration steps are therefore required.

Release 6.5

The new blocks are based on a look-up table that calculates the valve flow from a control signal (for example, the valve control current) and the pressure difference. This model approach can be useful if the fluid flow was measured on a test bench or is available from a data sheet.

The following blocks are available:

- CHANGE_OVER_VALVE_1_TABLE
- CHANGE_OVER_VALVE_2_TABLE

History of the COMMON_FLUID_PARAMETERS Block

History of the CONNECTION_CHAMBER Block

Release 6.2

A SIM Step size parameter has been added to the block. Now all the parameters of a library block are parameterized via the mask.

A MDL.BrkHyd.UpSampleFaktor parameter has been added to the block. The upsample factor for oversampling the brake hydraulics has been added to the masks. Now all the parameters of a library block are parameterized via the mask.

Note

The simulation step size (SIM.Step size parameter) and the upsample factor (MDL.BrkHyd.UpSampleFaktor parameter) are not accessible from ModelDesk. To change these parameters, edit thesim_ini.m function in %PROJECT_ROOT%\Simulation.current\IniFiles

Related topics

References

History of the CONTINUOUS_CTRL_INLET_VALVE_x Block

Release 7.3

The MDL.BrkHyd.OutletValve.FR.Map_ContinuousValveControl parameter has been renamed to

 $MDL. Brk Hyd. In let Valve. FR. Map_Continuous Valve Control. \\$

Release 6.5

Valves are sometimes continuously controlled by an ECU via a control current. The flow area of these valves depends on the valve control current and the pressure difference. The new blocks are based on a look-up table that calculates the valve control signal from the valve control current and the pressure difference.

The following new blocks are available:

- CONTINUOUS CTRL INLET VALVE FL
- CONTINUOUS_CTRL_INLET_VALVE_FR
- CONTINUOUS_CTRL_INLET_VALVE_RL
- CONTINUOUS_CTRL_INLET_VALVE_RR

Related topics

References

Continuous Valve Control.....

. 23

History of the CONTINUOUS_CTRL_OUTLET_VALVE_x Block

Release 6.5

Valves are sometimes continuously controlled by an ECU via a control current. The flow area of these valves depends on the valve control current and the pressure difference. The new blocks are based on a look-up table that calculates the valve control signal from the valve control current and the pressure difference.

The following blocks are new:

- CONTINUOUS_CTRL_OUTLET_VALVE_FL
- CONTINUOUS_CTRL_OUTLET_VALVE_FR
- CONTINUOUS_CTRL_OUTLET_VALVE_RL
- CONTINUOUS_CTRL_OUTLET_VALVE_RR

History of the CONTINUOUS_CTRL_PRE_CHARGE_VALVE_x Block

Release 6.5

Valves are sometimes continuously controlled by an ECU via a control current. The flow area of these valves depends on the valve control current and the pressure difference. The new blocks are based on a look-up table that calculates the valve control signal from the valve control current and the pressure difference.

The following new blocks are available:

- CONTINUOUS_CTRL_PRE_CHARGE_VALVE_1
- CONTINUOUS_CTRL_PRE_CHARGE_VALVE_2

History of the DAMPER_CHAMBER Block

Release 6.2

A SIM Step size parameter has been added to the block. Now all the parameters of a library block are parameterized via the mask.

A MDL.BrkHyd.UpSampleFaktor parameter has been added to the block. The upsample factor for oversampling the brake hydraulics has been added to the masks. Now all the parameters of a library block are parameterized via the mask.

Note

The simulation step size (SIM.Step size parameter) and the upsample factor (MDL.BrkHyd.UpSampleFaktor parameter) are not accessible from ModelDesk. To change these parameters, edit thesim_ini.m function in %PROJECT_ROOT%\Simulation.current\IniFiles.

Related topics

References

amper Chamber......27

History of the DESIRED_BRAKE_PRESSURE Block

Release 2017-B

Memory was added to the DESIRED_BRAKE_PRESSURE block to avoid an algebraic loop in the ASM Operator mode.

Related topics

References

Desired Brake Pressure....

. 54

History of the EXPECTED_VEHICLE_BEHAVIOR Block

Release 2017-A	This block is new in the Soft ECU ESP subsystem. It simulates a vehicle bicycle model to calculate the expected yaw rate.
Related topics	References
	Expected Vehicle Behavior

History of the INLET_VALVE_x Block

Release 7.3	To be compatible to the operator version, the model structure below the mask has been changed.
Release 6.2	New Sw_nom_state mask parameter to switch between the nominal valve open states normally closed or normally open.
	New Sw_FlowDirection mask parameter to switch the valve flow directions between one-way and two-way.
Related topics	References
	Inlet Valve19

History of the INLET_VALVE_x_TABLE Block

Release 7.1

The new Sw_FlowDirection_TableValve mask parameter was added to switch between the valve flow directions one-way and two-way.

The new Sw_Mirror_TableValve mask parameter was added. This is a switch parameter to enable or disable the mirror of the table for negative pressure difference.

During migration the default values of the new Sw_FlowDirection_TableValve and Sw_Mirror_TableValve parameters are set so that the simulation results match former results. No additional migration steps are therefore required.

104

Release 6.5

The new blocks are based on a look-up table that calculates the valve flow from a control signal (for example, the valve control current) and the pressure difference. This model approach can be useful if the fluid flow was measured on a test bench or is available from a data sheet.

The following blocks are available:

- INLET_VALVE_FL_TABLE
- INLET_VALVE_FR_TABLE
- INLET_VALVE_RL_TABLE
- INLET_VALVE_RR_TABLE

Related topics

References

Table-Based Valves..

.. 25

History of the MASTER_BRAKE_CYLINDER Block

Release 2019-A

In brake-by-wire mode, the MASTER_BRAKE_CYLINDER block uses the ambient pressure as the output pressure if no brake pressure is specified via the Enable_p_Brake_Desired[0|1] inport.

Release 2018-B

Two new inports were added to the MASTER_BRAKE_CYLINDER block:

- p Brake Desired
- Enable_p_Brake_Desired

In addition, a new brake-by-wire brake cylinder model was added to the block to set an externally requested brake pressure.

Release 6.5

The MASTER_BRAKE_CYLINDER block supports the connection to the brake booster model from the ASM Vehicle Dynamics Blockset.

The MASTER_BRAKE_CYLINDER block has the new F_PushRod[N] inport and the new A_Piston[m2] outport. During migration, the new outport is automatically connected to a terminator block and the inport is connected to a constant block of value 0.

Release 6.2

A new p_Ambient input port was added for the ambient pressure. The p_Ambient mask parameter was removed.

Related topics	References
	Master Brake Cylinder33

History of the NON_RETURN_VALVE_RES_x Block

Release 2019-B	The block had internal adaptations. These have no effect on the simulation result and its functionality.
Release 7.3	To be compatible to the operator version, the model structure below the mask has been changed.

History of the NON_RETURN_VALVE_x Block

Release 7.3	To be compatible to the operator version, the model structure below the mask has been changed.
Related topics	References
	Non-Return Valve (at Reservoir)17

History of the OUTLET_VALVE_x Block

Release 7.3	To be compatible to the operator version, the model structure below the mask has been changed.
Release 6.2	New Sw_nom_state mask parameter to switch between the nominal valve open states normally closed or normally open.
	New Sw_FlowDirection mask parameter to switch the valve flow directions between one-way and two-way.

106

History of the OUTLET_VALVE_x_TABLE Block

Release 7.1

The new Sw_FlowDirection_TableValve mask parameter was added to switch between the valve flow directions one-way and two-way.

The new Sw_Mirror_TableValve mask parameter was added. This is a switch parameter to enable or disable the mirror of the table for negative pressure difference

During migration the default values of the new Sw_FlowDirection_TableValve and Sw_Mirror_TableValve parameters are set so that the simulation results match former results. No additional migration steps are therefore required.

Release 6.5

The new blocks are based on a look-up table that calculates the valve flow from a control signal (for example, the valve control current) and the pressure difference. This model approach can be useful if the fluid flow was measured on a test bench or is available from a data sheet.

The following blocks are available:

- OUTLET_VALVE_FL_TABLE
- OUTLET_VALVE_FR_TABLE
- OUTLET_VALVE_RL_TABLE
- OUTLET_VALVE_RR_TABLE

History of the PRE_CHARGE_VALVE_x Block

Release 2019-B	The block had internal adaptations. These have no effect on the simulation result and its functionality.
Release 7.3	To be compatible with the operator version, the model structure below the mask has been changed.

Release 6.2

New Sw_nom_state mask parameter to switch between the nominal valve open states normally closed or normally open.

New Sw_FlowDirection mask parameter to switch the valve flow directions between one-way and two-way.

Related topics

References

History of the PRE_CHARGE_VALVE_x_TABLE Block

Release 7.1

The new Sw_FlowDirection_TableValve mask parameter was added to switch between the valve flow directions one-way and two-way.

The new Sw_Mirror_TableValve mask parameter was added. This is a switch parameter to enable or disable the mirror of the table for negative pressure difference.

During migration the default values of the new Sw_FlowDirection_TableValve and Sw_Mirror_TableValve parameters are set so that the simulation results match former results. No additional migration steps are therefore required.

Release 6.5

The new blocks are based on a look-up table that calculates the valve flow from a control signal (for example, the valve control current) and the pressure difference. This model approach can be useful if the fluid flow was measured on a test bench or is available from a data sheet.

The following new blocks are available:

- PRE_CHARGE_VALVE_1_TABLE
- PRE_CHARGE_VALVE_2_TABLE

History of the PRESSURE_INTERVENTION_SOFT_ECU Block

Release 7.2

The model gets the brake pressure request from the soft ECU brake and the master brake cylinder, and provides the pressure value to the braking circuit.

Related topics	References
	Pressure Intervention Soft ECU

History of the PUMP_CONTROLLER Block

Release 2019-B	The block had internal adaptations. These have no effect on the simulation result and its functionality.
Release 2017-A	This block is new in the Soft ECU ESP subsystem. It controls the hydraulic pump and the precharge and change-over valves of the brake hydraulics.
Related topics	References
	Pump Controller67

History of the RESERVOIR Block

Release 6.2

A SIM Step size parameter has been added to the block.

A MDL.BrkHyd.UpSampleFaktor parameter has been added to the block. The upsample factor for oversampling the brake hydraulics has been added to the mask.

Now all the parameters of a library block are parameterized via the mask.

Note

The simulation step size (SIM.Step size parameter) and the upsample factor (MDL.BrkHyd.UpSampleFaktor parameter) are not accessible from ModelDesk. To change these parameters, edit the sim_ini.m function in %PROJECT_ROOT%\Simulation.current\IniFiles.

History of the SLIP_CONTROLLER Block

Release 2017-A

This block is new in the Soft ECU ESP subsystem. It determines the reference slip for each wheel. These values and the current slip are used to control the inlet and outlet valves of the brake hydraulics. The controller supports ABS, ESP, and ASR interventions.

History of the SLIP_CURRENT Block

Release 2017-A	This block is new in the Soft ECU ESP subsystem. It calculates the current slip and velocities of each wheel.
Related topics	References
	Current Slip61

History of the SOFT_ECU_BRAKE Block

Release 2017-A	The SOFT_ECU_BRAKE block was renamed DESIRED_BRAKE_PRESSURE. The functionality did not changed.
Release 7.2	The Soft ECU Brake calculates a brake pressure from the requested braking torque. The brake pressure is used in the brake hydraulics subsystem to perform soft-ECU-controlled deceleration of the vehicle.

110

History of the TORQUE_REQUEST_ESP Block

Release 2019-B	The block had internal adaptations. These have no effect on the simulation result and its functionality.
Release 2017-A	This block is new in the Soft ECU ESP subsystem. It sets a torque request for the engine ECU during an ESP or ASR intervention.
Related topics	References
	Torque Request ESP

History of the Brake Hydraulics Demo Model

Release 2018-B

To adapt the structure of the brake hydraulics model to a battery electric and hybrid vehicle brake system (brake-by-wire), the master brake cylinder was moved outside the hydraulic demo model.

The PRESSURE_INTERVENTION_SOFT_ECU subsystem was deleted. Its functionality was integrated in the MASTER_BRAKE_CYLINDER block.

The general functionality of the demo model was not changed.

This applies to the following blocks:

- BRAKE_HYDRAULICS block
- BRAKE_HYDRAULICS_BASIC block

Release 2017-A

The dSPACE ASM Brake Hydraulics Library contains two new Soft ECU Brake demo models.

The *basic* demo includes only the Desired Brake Pressure model to calculate a desired master brake cylinder pressure from a braking torque request. A brake torque request is sent from ACC or hybrid ECUs, for example.

The advanced demo can be used for simulating an ESP ECU system that improves the vehicle's stability with an electronic stability program (ESP) including an anti-lock braking (ABS) and an anti-slip (ASR) functionality. The Desired Brake Pressure component to calculate a desired master brake cylinder pressure from a braking torque request is also included.

Appendix

Bibliography

List of literature

The following literature provides more details:

[Bac94] Backé W., Murrenhoff H.: Grundlagen der Ölhydraulic, Umdruck zur Vorlesung, Institut für fluidtechnische Antriebe und Steuerungen der RWTH Aachen, 10th edition, 1994.

[Bea99] Beater P.: Entwurf hydraulischer Maschinen. Berlin: Springer, 1999.

[Bor03] Borchsenius F.: Simulation ölhydraulischer Systeme, Fortschritt-Berichte VDI Reihe 8 Nr. 1005, Düsseldorf: VDI-Verlag, 2003.

[Bos98] Robert Bosch GmbH: Fahrsicherheitssysteme. 2nd edition, Braunschweig: Vieweg, 1998.

[Her92] Hering E., Martin R., Stohrer M.: Physik für Ingenieure.4th edition, Düsseldorf: VDI Verlag, 1992.

[Mit04] Mitschke M., Wallentowitz H.: Dynamik der Kraftfahrzeuge, 4th edition, Berlin: Springer, 2004.

[See97] Seewald D.: Erstellung eines realitätsgetreuen, physikalischen Ersatzmodells der Mechanik und Hydraulic eines Anti-Blockiersystems als Basis für ein mechatronisches Gesamtmodell. Thesis, MLaP, Paderborn, 1997.

[Yam01] Yamada T., Sawada M.: Development and Implementation of Simulation Tool for Vehicle Brake System. SAE Technical Paper Series 200101-0034, SAE 2001 World Congress, Detroit, 2001.

[Zan04] van Zanten A.: Fahrdynamik & Fahrdynamikregelsysteme. Seminarunterlagen IIR Intensiv-Seminar Automobil, 2004.

```
В
                                           Ρ
basic braking circuit 44
                                           PRE_CHARGE_VALVE_x block 12
bibliography 113
brake hydraulics
                                           precharge valve 12
                                           PRESSURE_INTERVENTION_SOFT_ECU block 91
  model overview 76
BRAKE_CYLINDER_xx block 36
                                           pump 39
BRAKE_HYDRAULICS_VARIANT_SWITCHES
                                           PUMP_x block 39
block 49
BRAKING_CIRCUIT_BASIC block 44
                                           reservoir 30
C
                                           RESERVOIR_xx block 30
chamber
  connection 29
                                           S
  damper 27
                                           Soft ECU Brake Basic 54
CHANGE_OVER_VALVE_<n> block 14
                                           switches
change-over valve 14
                                             valve control 49
common fluid parameters 48
Common Program Data folder 8
connection chamber 29
CONNECTION_CHAMBER_x block 29
                                           table-based valves 25
continuous valve control 23, 46
CONTINUOUS_CTRL_CHANGE_OVER_VALVE_n
block 23
                                           valve
CONTINUOUS_CTRL_INLET_VALVE_n block 23
                                             inlet 19
CONTINUOUS_CTRL_OUTLET_VALVE_xy
                                             non-return 17
block 23
                                             non-return (at reservoir) 17
CONTINUOUS_CTRL_PRE_CHARGE_VALVE_n
                                             outlet 21
block 23
                                             precharge 12
                                           valve control
D
                                             continuously 23, 46
damper chamber 27
                                             table-based 25
DAMPER_CHAMBER_x block 27
                                           valve control switches 49
DESIRED_BRAKE_PRESSURE block 54
Documents folder 8
                                           W
                                           wheel brake cylinder 36
inlet valve 19
INLET_VALVE_xx block 19
L
Local Program Data folder 8
M
master brake cylinder 33
MASTER_BRAKE_CYLINDER block 33
model overview 76
NON_RETURN_VALVE_RES_x block 17
NON_RETURN_VALVE_xx block 17
non-return valve 17
non-return valve at reservoir 17
0
```

OUTLET_VALVE_xx block 21

outlet valve 21