

Markov Decision Processes

- \otimes A Markov decision process is an MRP with decisions: $\langle S, A, P, R, \gamma \rangle$
 - ► A set of states $S = \{s_1, s_2, ..., s_n\}$
 - ightharpoonup A set of actions $A = \{a_1, a_2, ..., a_m\}$
 - ► Transition function $P: S \times A \to S$, $P_{SS'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - ▶ Reward function $R: S \times A \to \mathbb{R}$, $R_S^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - ▶ Discount factor $\gamma \in [0,1]$

Markov Decision Processes

\otimes A policy π is a distribution over actions given states

$$\pi(a|s) = P[A_t = a|S_t = s]$$

- ► MDP policies depend on the current state (not the history)
- ▶ Policies are stationary (time-independent) $A_t \sim \pi(\cdot | S_t)$, $\forall t > 0$

Value Functions

@ The state-value function $V_{\pi}(s)$ is the expected return starting from state s, under a policy π

$$V_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s \right]$$

The action-value function $Q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, under a policy π

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

\otimes Random policy with $\gamma=1$

 $V_{\pi}(s) \text{ for } \pi(a|s) = 0.5$

MEMO	

Bellman Expectation Equation for MDPs

The value function can be decomposed into two parts:

- ightharpoonup Immediate reward R_{t+1}
- ▶ Discounted value of successor state $\gamma V(s_{t+1})$

The state-value function can be decomposed

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|s_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots | s_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | s_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | s_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(s_{t+1}) | s_{t} = s]$$

- The value function can be decomposed into two parts:
 - ▶ Immediate reward R_{t+1}
 - ▶ Discounted value of successor state $\gamma V(s_{t+1})$
- The state-value function can be decomposed

$$V_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) | S_t = s \right]$$

The action-value function can be decomposed

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Bellman Equation for V_{π} and Q_{π}

\otimes Bellman expectation equation for V_{π}

$$V_{\pi}(s) = \sum_{a \in A} \pi(a|s)Q_{\pi}(s,a)$$

Bellman expectation equation for Q_{π}

$$Q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V_{\pi}(s') \qquad Q_{\pi}(s,a) \leftarrow s, a$$

$$Q_{\pi}(s,a) \leftarrow s,a$$

$$r$$

$$V_{\pi}(s') \leftarrow s'$$

Bellman Equation for V_{π} and Q_{π}

\otimes Bellman expectation equation for V_{π} (2)

$$V_{\pi}(s)$$

$$= \sum_{a \in A} \pi(a|s)(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V_{\pi}(s'))$$

$$V_{\pi}(s) \leftarrow s$$

$$V_{\pi}(s') \leftarrow s'$$

$$V_{\pi}(s') \leftarrow s'$$

 \otimes Bellman expectation equation for Q_{π} (2)

$$Q_{\pi}(s,a) \qquad Q_{\pi}(s,a) \leftarrow s,a$$

$$= R_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} \left(\sum_{a' \in A} \pi(a'|s') Q_{\pi}(s',a') \right) \qquad r$$

$$Q_{\pi}(s',a') \leftarrow a'$$

$$Q_{\pi}(s',a') \leftarrow a'$$

Bellman Equation in Student MDP

$$V_{\pi}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V_{\pi}(s'))$$

$$V_{\pi}(s) = 0.5 * (1 + 0.2 * (-1.3) + 0.4 * 2.7 + 0.4 * 7.4) + 0.5 * 10 = 7.4$$

Bellman Expectation Equation (Matrix Form)

© Can be expressed concisely in a matrix form

$$V_{\pi} = R^{\pi} + \gamma P^{\pi} V_{\pi}$$

$$\begin{bmatrix} V_{\pi}(s_1) \\ \dots \\ V_{\pi}(s_n) \end{bmatrix} = \begin{bmatrix} R_1^{\pi} \\ \dots \\ R_n^{\pi} \end{bmatrix} + \gamma \begin{bmatrix} P_{11}^{\pi} & \dots & P_{1n}^{\pi} \\ \dots & \dots \\ P_{n1}^{\pi} & \dots & P_{nn}^{\pi} \end{bmatrix} \begin{bmatrix} V_{\pi}(s_1) \\ \dots \\ V_{\pi}(s_n) \end{bmatrix}$$

It is a linear equation, so solved by

$$V_{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

- ▶ Computational complexity is $O(n^3)$ for n states
- ► Other approach? Dynamic programming, Monte-Carlo evaluation, Temporal-Difference learning

Optimal Value Functions

 \otimes The optimal state value function $V_*(s)$ is the max value function over all policies

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$

@ The optimal action-value function $Q_*(s,a)$ is the maximum action-value function over all policies

$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

- Theorems: For any MDP
 - ▶ There exists an optimal policy $\pi_* \ge \pi$, $\forall \pi$
 - ► All optimal policies achieve the optimal state-value, $V_{\pi_*}(s) = V_*(s)$
 - ► All optimal policies achieve the optimal action-value, $Q_{\pi_*}(s,a) = Q_*(s,a)$

Finding an Optimal Policy

 \otimes An optimal policy can be found by maximizing over $Q_*(s,a)$

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max Q_*(s, a) \\ & a \in A \\ 0 & \text{otherwise} \end{cases}$$

▶ If we know $Q_*(s,a)$, we immediately have the optimal policy

서울대학교 SEOUL NATIONAL UNIVERSITY

Optimal Policy for Student MDP

$$\pi_*(a|s)$$
 for $\gamma=1$

Dynamic Programming

A very general solution method for problems which have two properties

1. Optimal substructure

► Optimal solution can be decomposed into subproblems

2. Overlapping subproblems

- ► Subproblems recur many times
- ► Solutions can be cached and reused

Markov decision processes satisfy both properties

- ► Bellman equation gives recursive decomposition
- ► Value function stores and reuses solutions

Prediction and Control

Prediction: evaluate the future

- ► Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π
- ▶ Output: a value function V_{π}

Iterative policy evaluation!

© Control: optimize the future

- ► Given an MDP $\langle S, A, P, R, \gamma \rangle$
- ▶ Output: optimal policy π_* (and optimal value function V_*)

MEMO		

Iterative Policy Evaluation

- \otimes Problem: evaluate a given policy π
- Solution: iteratively apply Bellman expectation backup
 - ► Converge to a real V_{π} $(V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_{\pi})$
 - ► At each iteration k + 1, for all states $s \in S$, update $V_{k+1}(s)$ from $V_k(s')$ where s' is a successor state of s
- Iteratively compute until convergence

$$V^{k+1} = R^{\pi} + \gamma P^{\pi} V^k$$

► Matrix form of Bellman expectation equation

$$V_{\pi}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V_{\pi}(s'))$$

Evaluating Random Policy in Small Gridworld

Problem setup

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- ▶ Undiscounted episodic MDP ($\gamma = 1$)
- ► Terminal state: two shaded squares
- ► Actions leading out of the grid leave state unchanged
- ightharpoonup Reward is -1 until the terminal state is reached
- ► Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

서울대학교 SEOUL NATIONAL UNIVERSITY

Iterative Policy Estimation in Small Gridworld

Problem setup

 V^k for the random policy

Greedy policy w.r.t. V^k

Converged optimal policy

$$k = 1 \begin{bmatrix} 0.0 & -1.0 & -1.0 & -1.0 \\ -1.0 & -1.0 & -1.0 & -1.0 \\ -1.0 & -1.0 & -1.0 & -1.0 \\ -1.0 & -1.0 & -1.0 & 0.0 \end{bmatrix}$$

	0.0	-6.1	-8.4	-9.0
<i>l</i> 10	-6.1	-7.7	-8.4	-8.4
k = 10	-8.4	-8.4	-7.7	-6.1
	-9.0	-8.4	-6.1	0.0

	↓	↓	↓
↑	Ţ	Ţ	+
↑	1	↑	+
↑	→	→	

$$k = 2 \begin{bmatrix} 0.0 & -1.7 & -2.0 & -2.0 \\ -1.7 & -2.0 & -2.0 & -2.0 \\ -2.0 & -2.0 & -2.0 & -1.7 \\ -2.0 & -2.0 & -1.7 & 0.0 \end{bmatrix}$$

- @ Now we know how to evaluate V_{π} for a given policy π
- How to improve a policy?
 - ▶ Initialize a policy π
 - ▶ Evaluate the policy π to compute V_{π}
 - ightharpoonup Improve the policy by acting greedily with respect to V_{π}

$$\pi' = \operatorname{greedy}(V_{\pi})$$

$$\pi'(s) = \operatorname{argmax} Q_{\pi}(s, a)$$

▶ This process of policy iteration always converges to π_*

MEMO			
	┙		

Policy Iteration

- \otimes Policy evaluation: estimate V_{π}
 - ► Iterative policy evaluation
- \otimes Policy improvement: generate $\pi' \geq \pi$
 - ▶ Greedy policy improvement

MEMO

DP Algorithms

Problem	Bellman equation	Algorithm
Prediction	Bellman expectation equation	Iterative policy evaluation
Control	Bellman expectation equation + Greedy policy improvement	Policy iteration

- ► Algorithms are based on state-value function $V_{\pi}(s)$ or $V_{*}(s)$
- ► Complexity $O(mn^2)$ per iteration, for m actions and n states
- ► Could also apply to action-value function $Q_{\pi}(s,a)$ or $Q_{*}(s,a)$
- ► Complexity $O(m^2n^2)$ per iteration