NUAA

第1页 (共6页)

Matrix Theory, Final, Test Date: 2015年12月								年12月28日
矩阵论班号:		学号			姓名			
必做题(70 分))	o // \	77 V
题号	1	2	3	4	5	- 选做题(3	0分)	总分
得分								

Part I (必做题, 共 5 题, 70 分)

第1题(15分) 得分

Let $\mathbf{P}_{[-1,1]}$ denote the set of all real polynomials of degree less than 3 with <u>domain</u> (定义域) [-1,1]. The addition and scalar multiplication are defined in the usual way. Define an inner product on $\mathbf{P}_{[-1,1]}$ by $\langle p,q \rangle = \int_{-1}^{1} p(t)q(t)dt$.

- (1) Construct an orthonormal basis for $\mathbf{P}_{[-1,1]}$ from the basis 1, x, x^2 by using the Gram-Schmidt orthogonalization process.
- (2) Let $f(x) = x^2 1 \in \mathbf{P}_{[-1,1]}$. Find the orthogonal projection of f onto the subspace spanned by $\{1, x\}$.

Solution:

第2题(15分) 得分

Let σ be the linear transformation on P_3 (the vector space of real polynomials of degree less than 3) defined by

$$\sigma(p(x)) = xp'(x) + p''(x).$$

- (1) Find the matrix A representing σ with respect to the ordered basis $[1, x, x^2]$ for \mathbf{P}_3 .
- (2) Find a basis for P_3 such that with respect to this basis, the matrix B representing σ is diagonal.
- (3) Find the $\underline{\text{kernel}}$ (核) and $\underline{\text{range}}$ (值域) of this transformation. Solution:

第3题(20分) 得分

Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$
.

- (1) Find all determinant divisors and elementary divisors of A.
- (2) Find a Jordan canonical form of A.
- (3) Compute e^{At} . (Give the details of your computations.)

Solution:

第 4 题(10 分) 得分

Suppose that $A \in \mathbb{R}^{3\times3}$ and $A^2 - 5A - 6I = O$.

- (1) What are the possible minimal polynomials of A? Explain.
- (2) In each case of part (1), what are the possible characteristic polynomials of A? Explain. Solution:

第5题(10分) 得分

Let $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Find the Moore-Penrose inverse A^+ of A.

Solution:

Part II (选做题, 每题 10 分)

请在以下题目中(第6至第9题)选择三题解答.如果你做了四题,请在题号上画圈标明需要批改的三题.否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.

第6题 Let \mathbf{P}_4 be the vector space consisting of all real polynomials of degree less than 4 with usual addition and scalar multiplication. Let x_1, x_2, x_3 be three distinct real numbers. For each pair of polynomials f and g in \mathbf{P}_4 , define

$$\langle f, g \rangle = \sum_{i=1}^{3} f(x_i) g(x_i).$$

Determine whether $\langle f, g \rangle$ defines an inner product on P_4 or not. Explain.

第7题 Let $A \in \mathbb{R}^{n \times n}$. Show that if $\sigma(\mathbf{x}) = A\mathbf{x}$ is the orthogonal projection from \mathbb{R}^n to R(A), then A is symmetric and the eigenvalues of A are all 1's and 0's.

第 8 题 Let $A \in \mathbb{C}^{n \times n}$. Show that $\mathbf{x}^H A \mathbf{x}$ is real-valued for all $\mathbf{x} \in \mathbb{C}^n$ if and only if A is Hermitian. 第 9 题 Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian matrices, and A be positive definite. Show that AB is

第9题 Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian matrices, and A be positive definite. Show that AB is similar to BA, and is similar to a real diagonal matrix.

选做题得分 若正面不够书写,请写在反面.

选做题解答: