2025 Troy Integration Bee Mock Qualifying Exam

Aditya Peddi, Srikar Papineni, Tanav Changal

March 14, 2025

You have 15 minutes to complete as many of the following integrals as possible. The only allowed materials are a pencil, eraser, and scratch paper—no calculators. For indefinite integrals, the +C term need not be included. Both ln(x) and log(x) will be, by default, interpreted as being in base e. \Re denotes the real part of a complex number. The denominators of fractions need not be rationalized, but otherwise, answers must be in simplest form. Scratch work will not be considered and there is no partial credit; only your boxed final answer on this sheet matters.

1.
$$\int \left(\frac{x^{-\frac{19}{4}}}{\sqrt[8]{x^2}\sqrt{x^8}}\right)^{\frac{1}{10}} dx$$
2.
$$\int \frac{\ln x}{x\ln(x) + x} dx$$
3.
$$\int (\sin^2(x) + \cos^2(x) + \tan^2(x) + \cot^2(x)) dx$$
4.
$$\int \begin{vmatrix} -1 & 1 \\ 1 & \log(x) \end{vmatrix} dx$$
5.
$$\int e^x \sin(x) \cos(x) dx$$
6.
$$\int_1^{16} \left\{\sqrt{x}\right\} dx$$
7.
$$\int_0^9 \lfloor x \rfloor \lceil x \rceil \{x\} dx$$
8.
$$\int_{-1}^1 \frac{\arctan(x) \cos(x)}{1 + x^2} dx$$
9.
$$\int x \sqrt{x} \sqrt{x} \sqrt{x} \frac{1}{x} dx$$
10.
$$\int \frac{2x^3 - 1}{x^4 + x} dx$$

11.
$$\int_{\pi/2}^{\pi} \sqrt{1 - \cos(x)} \, dx$$
12.
$$\int_{0}^{1} x \, d(x^{p})$$
13.
$$\Re \left(\int \frac{1}{1 + e^{i\pi} + e^{ix}} \, dx \right)$$
14.
$$\int_{-\infty}^{\infty} \frac{16}{x^{4} + 4} \, dx$$
15.
$$\int_{0}^{\pi} \frac{256}{(5 + 3\cos(x))^{2}} \, dx$$