Feuille d'exercices 2 : Etudes et réduction d'endomorphismes

1. Entrainement.

Exercice 1. On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \left(\begin{array}{ccc} 3 & 2 & -4 \\ 1 & 2 & -2 \\ 2 & 2 & -3 \end{array}\right)$$

- 1. Déterminer la nature de f et ses éléments caractéristiques.
- 2. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de f a une écriture plus simple.

Exercice 2. Soit $A = \begin{pmatrix} 5 & 4 & 2 \\ -6 & -5 & -2 \\ 0 & 0 & -1 \end{pmatrix}$

- 1. Montrer qu'il existe une matrice D diagonale telle que $A = PDP^{-1}$ ou $P = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -3 & -1 \\ 0 & 0 & -1 \end{pmatrix}$
- 2. En déduire l'expression de A^n lorsque $n \in \mathbb{N}$
- 3. Quelle est la nature de l'endomorphisme associé à A?

Exercice 3. Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et f un endomorphisme de \mathbb{R}^3 tel que

$$f(e_1) = e_1 + e_3$$
, $f(e_1 + e_2) = e_1 + e_2 + e_3$ et $f(e_1 + e_2 + 2e_3) = e_1 + e_2 + e_3$.

- 1. Justifiez pourquoi un tel endormorphisme existe. Est-il unique?
- 2. Placer les vecteurs de \mathcal{B} et leur image sur un dessin. Pouvez-vous deviner la nature de f?
- 3. Donner les images par f des vecteurs de la base $\mathcal B$ à l'aide du dessin. Déduisez-en sa matrice dans la base $\mathcal B$.
- 4. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de f soit diagonale et caractériser f.

Exercice 4. Soit (e_1, e_2, e_3) une base de \mathbb{R}^3 ,

1. Montrer qu'il existe une unique $f \in L(\mathbb{R}^3)$ qui fixe e_2 et qui envoie e_1 sur f_1 et e_3 sur f_3 comme l'indique la figure ci-contre.

Pourquoi f est-elle bijective?

- 2. On note $e'_1 = \frac{1}{2}(e_1 e_3)$ Placer ce vecteur sur le schéma puis calculer son image.
- 3. Montrer que l'ensemble des vecteurs fixes de f est un plan vectoriel noté \mathcal{P} . Préciser sa base. Que peut-on en déduire sur les valeurs propres de f?
- 4. Déterminer l'image de $e_3' = \frac{1}{2}(e_1 + e_3)$. En déduire que $f^2 = id$ $(f^2 = f \circ f)$.
- 5. Montrer que f est diagonalisable et donner dans une base qu'on choisira la matrice A associée à f.

Exercice 5. Montrer que l'application f de \mathbb{R}^2 dans lui-même qui à (x,y) associe (2x-2y,x-y) est une projection. Faire une figure et préciser ses éléments caractéristiques (sur quel espace projette-t-on, parallèlement à quoi?).

Exercice 6. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme défini par

$$f(x, y, z) = (7x - 4y - 4z, 6x - 3y - 4z, 6x - 4y - 3z).$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

1. On pose $P = X^2 - 1$. Calculer $P(f)(e_i)$ pour tout $1 \le i \le 3$. En déduire que $f \circ f = id_{\mathbb{R}^3}$.

- 2. En déduire que les valeurs propres de f sont dans $\{1, -1\}$.
- 3. Soit $A = M_{\mathcal{B}}(f)$. Calculer P(A) et retrouver le résultat de la question.

Exercice 7. Parmi les matrices suivantes, lesquelles sont semblables? (Préciser dans quel ensemble.)

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad E = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$F = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 0 & i \\ 0 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Exercice 8. Décrire une méthode qui permettrait de décider si les matrices

$$A = \begin{pmatrix} -2 & -3 & -4 \\ -1 & 0 & 0 \\ 2 & 2 & 3 \end{pmatrix} \text{ et } B = \begin{pmatrix} -9 & 72 & 52 \\ 1 & -5 & -4 \\ -3 & 20 & 15 \end{pmatrix}$$

sont semblables dans $M_3(\mathbb{R})$. La mettre en œuvre dans cet exemple.

Exercice 9. Soit
$$A \in M_4(\mathbb{R})$$
 définie par $A = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ -1 & 2 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$.

- 1. Calculer A^2 .
- 2. Déterminer la forme réduite de Jordan J de A et une matrice inversible P telle que $A = PJP^{-1}$.

Exercice 10. Soit $f \in L(\mathbb{R}^5)$ nilpotent tel que dimKerf = 2 et $dimKerf^2 = 4$.

- 1. Démontrer que l'indice de nilpotence de f vaut 3.
- 2. Dessiner le tableau de Young associé à f
- 3. En déduire la forme de Jordan associée à f en précisant dans quelle base on se place.

Exercice 11. On considère $f \in L(\mathbb{R}^n)$ un endomorphisme nilpotent associé à chacun des tableaux de Young suivants.

Donner dans chaque cas:

- 1. La valeur de n et l'indice de nilpotence de f.
- 2. La matrice de Jordan associée à f.
- 3. Le rang de f et la dimension de $Imf \cap Kerf$.

Exercice 12. Soit
$$A \in M_n(\mathbb{R})$$
 définie par $A = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$.

- 1. Déterminer le rang de cette matrice.
- 2. En déduire l'ensemble de ses valeurs propres (son spectre).
- 3. Montrer que A est diagonalisable.
- 4. Montrer que $A^2 tr(A)A = 0$ sans calculer A^2 .

Exercice 13. Pour quelles valeurs de θ les endomorphismes canoniquement associés aux matrices

$$A_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \text{ et } B_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

admettent-ils des sous-espaces stables? Commenter.

2. Approfondissement

Exercice 14. Soit $f \in L(E)$ et E un \mathbb{R} -espace vectoriel de dimension $n \geq 2$.

- 1. Montrer que f admet toujours des plans stables.
- 2. Montrer que si n est impair, alors f admet au moins une direction stable.
- 3. Si E un \mathbb{C} -espace vectoriel , que peut-on dire de plus?

Exercice 15. Soit $n \in \mathbb{N}^*$, et f l'endomorphisme de \mathbb{R}^n associé à la matrice

$$J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \\ & & 0 & & \\ \vdots & & & \ddots & 1 \\ 0 & \dots & & & 0 \end{pmatrix}.$$

- 1. Calculer J^k pour $k \in \mathbb{N}^*$.
- 2. (\star) Déterminer tous les sous-espaces vectoriels stables par f.

Exercice 16. Soit $A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$

- 1. Vérifier que P = (X 1)(X 3) est un polynôme annulateur pour A (c'est à dire P(A) = 0).
- 2. Soit $R_n = a_n X + b_n$ le reste de la division euclidienne de X^n par P. Déterminer a_n et b_n .
- 3. En déduire une expression de A^n .

Exercice 17. (Polynômes)

- 1. Effectuer la division euclidienne de $P = X^4 + 2X^3 X + 6$ par $Q = X^3 6X^2 + X + 4$ dans $\mathbb{R}[X]$.
- 2. Effectuer la division euclidienne de $P = iX^3 X^2 + (1-i)$ par $Q = (1+i)X^2 iX + 3$ dans $\mathbb{C}[X]$.
- 3. (*) Trouver deux polynômes U et V de $\mathbb{R}[X]$ tels que AU + BV = 1, où $A = X^7 X 1$ et $B = X^5 1$.

Exercice 18. (*) On considère l'espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} et soit $T:\mathcal{F}(\mathbb{R},\mathbb{R}) \to \mathcal{F}(\mathbb{R},\mathbb{R})$ l'application définie par : si $f \in \mathcal{F}(\mathbb{R},\mathbb{R})$, alors $T(f) \in \mathcal{F}(\mathbb{R},\mathbb{R})$ est la fonction définie par

$$\forall x \in \mathbb{R}, \quad T(f)(x) = f(-x).$$

Montrer que T est une symétrie de $\mathcal{F}(\mathbb{R},\mathbb{R})$ et donner ses éléments caractéristiques.

3. Propriétés générales

Exercice 19. Soit f un endomorphisme de E. Montrer que les sous-espaces propres de f associés à des valeurs propres distinctes sont en somme directe.

Exercice 20. (Cours) Montrer que λ est valeur propre de f si et seulement si λ est racine du polynôme caractéristique de f.

Exercice 21. (Cours) Existe-t-il des endomorphismes nilpotents vérifiant $Imf \bigoplus Kerf = E$?

Exercice 22. Soit E un espace vectoriel de dimension n. Quelle est la dimension de L(E)? Montrer que pour tout endomorphisme f de E il existe un polynôme P tel que tel que P(f) = 0 (sans le théorème de Cayley Hamilton). Montrer que son degré est toujours inférieur à n^2 .

Exercice 23. Soit A, B des matrices de $\mathcal{M}(\mathbb{R})$. Montrer qu'elles sont semblables sur \mathbb{R} si et seulement si elles sont semblables sur \mathbb{C} .

Exercice 24. (Cours) Soient p et q deux projections équivalentes. Sont-elles nécessairement semblables?

Exercice 25. (Cours) Montrer qu'une application linéaire est une homothétie si et seulement si sa matrice dans une base est de la forme λI_n .

Exercice 26. Montrer qu'une application linéaire du plan qui préserve 3 directions 2 à 2 distinctes est une homothétie .

Exercice 27. Donner un exemple de deux matrices A et B telles que AB = 0 mais BA est non nulle. Que pouvez-vous dire des noyaux et images des endomorphismes associés?

Exercice 28. Étant donnée une matrice $A \in M_n(\mathbb{R})$, on veut définir l'exponentielle

$$e^A = \lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{k!} A^k.$$

1. Montrer que si
$$A = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
 est diagonale, alors $e^A = \begin{pmatrix} e^{\lambda_1} & 0 & \dots & 0 \\ 0 & e^{\lambda_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & e^{\lambda_n} \end{pmatrix}$. En

déduire l'existence de e^A lorsque A est diagonalisable

- 2. Montrer que si A = N est nilpotente, alors il existe un polynôme $P = \mathbb{R}[X]$ tel que $e^A = P(A)$.
- 3. On suppose que A=D+N avec DN=ND. Prouvez que dans ce cas e^A est bien définie et que l'on a $e^A=e^De^N=e^Ne^D$.
- 4. En déduire l'expression de e^A dans le cas général.

4. Pour réfléchir un peu plus...

Exercice 29. (Cours) Soient $f, g \in L(E)$ deux endomorphismes d'un espace vectoriel de dimension finie. Montrer que si f et g commutent et si ils sont tous deux diagonalisables, alors ils admettent une base codiagonalisante (c'est à dire une base dans laquelle leurs matrices sont toutes deux diagonales).

Exercice 30. Montrer que si un endomorphisme f est diagonalisable, alors f^k est aussi diagonalisable. Que pensez-vous de la réciproque?

Exercice 31. (\star) Montrer que l'ensemble H(E) des homothéties non nulles est un sous-groupe commutatif de GL(E) pour la composition. Montrer qu'il est le centre de GL(E), c'est à dire l'ensemble des endomorphismes qui commutent avec toutes les éléments de GL(E).

Exercice 32. $(\star\star)$ Soit $f \in L(E)$ un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie tel que $f^2 = -\operatorname{Id}$. Montrer qu'il existe une base dans laquelle la matrice de f s'écrit par blocs

$$\begin{pmatrix} R & 0 & \dots & 0 \\ 0 & R & & & \\ & & \ddots & 0 \\ 0 & \dots & 0 & R \end{pmatrix} \text{ avec } R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R}).$$

(Indication: on pourra d'abord montrer que la dimension de E est paire).

Exercice 33. $(\star\star)$ Polynôme compagnon. Soit $P \in \mathbb{R}[X]$ un polynôme unitaire de la forme $P(X) = X^n + \sum_{i=0}^{n-1} a_i X^i$. On appelle matrice compagnon associée à P la matrice

$$C = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

- 1. Montrer que l'application linéaire associée à C dans la base canonique est déterminée par $f(e_i) = e_{i+1}$ pour i < n et $f(e_n) = -\sum_{i=0}^{n-1} a_i e_{i+1}$.
- 2. Montrer que $(-1)^n P$ est le polynôme caractéristique associé à f.
- 3. Déterminer le polynôme minimal associé à f. En déduire que f est diagonalisable si et seulement si P n'a que des racines simples.
- 4. Soit λ une racine de P. Montrer que $|\lambda| \leq R$ où $R = \max\{|a_0|, |a_1| + \ldots + |a_{n-1}| + 1\}$ (indication : on pourra considérer un vecteur propre associé à λ).

Exercice 34. $(\star\star)$ Soit $f\in L(E)$ un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie dont le polynôme minimal est $\mu_f(X)=\prod_{i=1}^s(X-\lambda_i)^{m_i}$. Étant donné un polynôme $P\in\mathbb{R}[X]$, on cherche à montrer que l'endomorphisme P(f) est diagonalisable si et seulement si

$$\forall i \in \{1, \dots s\}, \forall k \in \{1, \dots m_i - 1\}, P^{(k)}(\lambda_i) = 0.$$

- 1. Montrer cette équivalence pour un endomorphisme f nilpotent d'indice m (indication : on pourra d'abord montrer que la famille f, f^2, \ldots, f^{m-1} est libre).
- 2. En déduire le résultat dans le cas où $f \lambda \operatorname{Id}$ est nilpotent.
- 3. Conclure dans le cas général (indication : on pourra utiliser le théorème des noyaux).