Variable Compleja I Tema 4: Funciones analíticas

- 1 Series de números complejos
- 2 Sucesiones de funciones
- 3 Series de funciones

Series de números complejos

- Series de potencias
 - Convergencia de una serie de potencias
 - La suma de una serie de potencias
 - Derivadas sucesivas
 - Funciones analíticas

Definiciones

Series de números complejos

•000

Serie de números complejos:

$$\sum_{n\geqslant 0} z_n \stackrel{\text{def}}{=} \left\{ \sum_{k=0}^{n-1} z_k \right\} = \left\{ S_n \right\}$$

Series de funciones

donde $z_n \in \mathbb{C} \ \forall n \in \mathbb{N} \cup \{0\}$

Suma de una serie convergente:

$$\sum_{n=0}^{\infty} z_n \stackrel{\text{def}}{=} \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=0}^{n-1} z_k$$

Término general de una serie convergente:

$$\sum_{n \ge 0} z_n \text{ convergente } \Longrightarrow \{z_n\} \to 0$$

Series de números complejos

0000

Notación formalmente más general

Fijado $m \in \mathbb{N}$, definimos:

$$\sum_{n \geqslant m} z_n \stackrel{\text{def}}{=} \sum_{n \geqslant 0} z_{m+n} = \left\{ \sum_{k=m}^{m+n-1} z_k \right\}$$

Suma de esta serie, cuando es convergente:

$$\sum_{n=m}^{\infty} z_n \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{k=m}^{m+n-1} z_k$$

La convergencia de la serie $\sum_{n\geqslant m}z_n$ equivale a la de $\sum_{n\geqslant 0}z_n\,,$ en cuyo caso:

$$\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{m-1} z_n + \sum_{n=m}^{\infty} z_n$$

Reducción al caso real

Series de números complejos

0000

Reducción al caso real

$$\operatorname{Re} S_n = \operatorname{Re} \sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} \operatorname{Re} z_k$$
 $\operatorname{Im} S_n = \operatorname{Im} \sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} \operatorname{Im} z_k$

La serie de números complejos $\sum z_n$ es convergente si, y sólo si, las series de números reales $\sum_{n\geqslant 0} {\rm Re}\,z_n$ y $\sum_{n\geqslant 0} {\rm Im}\,z_n$ convergen, en cuyo caso se verifica que:

$$\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} \operatorname{Re} z_n + i \sum_{n=0}^{\infty} \operatorname{Im} z_n$$

Convergencia absoluta

Definición

Series de números complejos

000

La serie $\sum_{n\geqslant 0} z_n$ es absolutamente convergente cuando $\sum_{n\geqslant 0} |z_n|$ converge

Relación con la convergencia

Toda serie de números complejos absolutamente convergente es convergente. Además, si la serie $\sum_{n} z_n$ es absolutamente convergente, entonces:

$$\left|\sum_{n=0}^{\infty} z_n\right| \leqslant \sum_{n=0}^{\infty} |z_n|$$

Sucesiones de funciones

Series de números complejos

$$\emptyset \neq A \subset \mathbb{C}$$

Una sucesión de funciones definidas en A es una aplicación $\varphi: \mathbb{N} \to \mathcal{F}(A)$. Escribiendo $f_n = \varphi(n)$ para todo $n \in \mathbb{N}$, la sucesión φ se denota por $\{f_n\}$. En lo que sigue, fijamos una sucesión $\{f_n\}$ de funciones definidas en A y un conjunto no vacío $B \subset A$.

Convergencia puntual

 $\{f_n\}$ converge puntualmente en B cuando, para cada $z \in B$, la sucesión $\{f_n(z)\}\$ es convergente. En tal caso podemos definir $f:B\to\mathbb{C}$ por:

$$f(z) = \lim_{n \to \infty} f_n(z) \quad \forall z \in B$$

Se dice que la función f es el límite puntual de $\{f_n\}$ en B, o que $\{f_n\}$ converge puntualmente a f en B. Se tiene entonces:

$$\forall z \in B \ \forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geqslant m \ \Rightarrow \ |f_n(z) - f(z)| < \varepsilon$$

En principio m depende de ε y del punto $z \in B$ considerado.

Convergencia uniforme

Definición

Series de números complejos

 $\{f_n\}$ converge uniformemente a f en B cuando

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geqslant m \Rightarrow |f_n(z) - f(z)| < \varepsilon \ \forall z \in B$$

Primer criterio

La sucesión $\{f_n\}$ converge uniformemente a f en B si, y sólo si, existe $p \in \mathbb{N}$ tal que, para $n \ge p$ la función $f_n - f$ está acotada en B y

$$\lim_{n\to\infty} \sup \{ |f_n(z) - f(z)| : z \in B \} = 0$$

Segundo criterio

Las siguientes afirmaciones son equivalentes:

- $\{f_n\}$ converge uniformemente a f en B
- Para toda sucesión $\{z_n\}$ de puntos de B, se tiene que

$$\{f_n(z_n)-f(z_n)\}\to 0$$

Ejemplo de convergencia puntual y uniforme

Ejemplo

$$f_n(z) = z^n \ \forall z \in \mathbb{C} , \ \forall n \in \mathbb{N}$$

Convergencia puntual. Para $z\in\mathbb{C}$ se tiene:

$$\bullet$$
 $|z| < 1 \Longrightarrow $\{z^n\} \to 0$$

•
$$|z| > 1 \implies \{z^n\} \to \infty$$

• Cuando
$$|z| = 1$$
, se tiene: $\{z^n\}$ converge $\iff z = 1$

En resumen: $\{f_n(z)\}\$ converge $\iff z \in D(0,1) \cup \{1\}$

Concretamente, $\{f_n\}$ converge puntualmente a f en $D(0,1) \cup \{1\}$, donde

$$f(z) = 0 \quad \forall z \in D(0,1) \quad \text{y} \quad f(1) = 1$$

Convergencia uniforme. Si $\emptyset \neq B \subset D(0,1) \cup \{1\}\,,$ entonces:

$$\{f_n\}$$
 converge uniformemente en $B \iff \sup\{|z| : z \in B \setminus \{1\}\} < 1$

Condición de Cauchy uniforme

 $\emptyset \neq B \subset A \subset \mathbb{C}$, $\{f_n\}$ sucesión de funciones definidas en A

 $\{f_n\}$ es uniformemente de Cauchy en B cuando:

$$\forall \, \epsilon > 0 \ \exists \, m \in \mathbb{N} \ : \ p,q \geqslant m \ \Longrightarrow \ |f_p(z) - f_q(z)| < \epsilon \ \forall \, z \in B$$

Tercer criterio

 $\emptyset \neq B \subset A \subset \mathbb{C}$, $\{f_n\}$ sucesión de funciones definidas en A

 $\{f_n\}$ converge uniformemente en B

 $\{f_n\}\;$ es uniformemente de Cauchy en B

Convergencia uniforme y continuidad

Preservación de la continuidad

$$\emptyset \neq A \subset \mathbb{C} \ , \ f_n \in \mathcal{F}(A) \ \forall n \in \mathbb{N}$$

Supongamos que $\{f_n\}$ converge uniformemente en A a una función $f\in\mathcal{F}(A)$

Si, para todo $n \in \mathbb{N}$, f_n es continua en un punto $z \in A$, entonces f es continua en z

Por tanto: $f_n \in \mathcal{C}(A) \ \forall n \in \mathbb{N} \implies f \in \mathcal{C}(A)$

Series de funciones. Convergencia puntual

Series de funciones

 $\emptyset \neq A \subset \mathbb{C}$. Serie de funciones definidas en A:

$$\sum_{n\geq 0} f_n \stackrel{\text{def}}{=} \left\{ \sum_{k=0}^{n-1} f_k \right\} \quad \text{donde} \quad f_n \in \mathcal{F}(A) \quad \forall n \in \mathbb{N} \cup \{0\}$$

Convergencia puntual

$$\sum_{n\geqslant 0} f_n \text{ converge puntualmente en } B\subset A \iff \sum_{n\geqslant 0} f_n(z) \text{ converge } \forall z\in B$$

Entonces, la suma de la serie $f \in \mathcal{F}(B)$ viene dada por:

$$f(z) = \sum_{n=0}^{\infty} f_n(z) \qquad \forall z \in B$$

$$\sum_{n \ge 0} f_n \text{ converge puntualmente en } B \implies \{f_n(z)\} \to 0 \quad \forall z \in B$$

La sucesión $\{f_n\}$, término general de la serie, converge puntualmente en B a la función idénticamente nula.

Convergencia uniforme de series de funciones

$$\emptyset \neq B \subset A \subset \mathbb{C}$$
, $f_n \in \mathcal{F}(A) \ \forall n \in \mathbb{N} \cup \{0\}$

Series con otra numeración

$$p \in \mathbb{N}$$
 fijo. $\sum_{n \geqslant p} f_n \stackrel{\text{def}}{=} \sum_{n \geqslant 0} f_{p+n} = \left\{ \sum_{k=p}^{p+n-1} f_k \right\}$

Esta serie converge puntualmente en B si, y sólo si, lo hace $\sum_{n\geqslant 0} f_n$, en

cuyo caso: $\sum_{n=0}^{\infty} f_n(z) = \sum_{n=0}^{p-1} f_n(z) + \sum_{n=p}^{\infty} f_n(z) \quad \forall z \in B$

Convergencia uniforme

 $\sum_{n} f_n$ converge uniformemente en B cuando:

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geqslant m \ \Rightarrow \ \left| \sum_{k=n}^{\infty} f_k(z) \right| < \varepsilon \ \forall z \in B$$

 $\implies \{f_n\}$ converge uniformemente en B a la función idénticamente nula.

Fijado $p\in\mathbb{N},$ la convergencia uniforme de $\sum_{n\geqslant p}f_n$ en B equivale a la de $\sum_{n\geqslant 0}f_n$

0000

Convergencia absoluta

Series de números complejos

Convergencia absoluta

$$\emptyset \neq B \subset A \subset \mathbb{C} \ , \ f_n \in \mathcal{F}(A) \ \forall n \in \mathbb{N} \cup \{0\}$$

La serie $\sum f_n$ converge absolutamente en B cuando, para todo $z \in B$, la serie $\sum_{n\geqslant 0}^{n\geqslant 0} |f_n(z)|$ converge.

Entonces $\sum f_n$ converge puntualmente en B y se tiene:

$$\left| \sum_{n=0}^{\infty} f_n(z) \right| \leqslant \sum_{n=0}^{\infty} |f_n(z)| \qquad \forall z \in B$$

Convergencia absoluta y uniforme

Test de Weierstrass

Sea $\sum f_n$ una serie de funciones complejas, definidas en un conjunto

 $A \subset \mathbb{C}$, y sea B un subconjunto no vacío de A.

Supongamos que:

• Para cada $n \in \mathbb{N} \cup \{0\}$, existe una constante $M_n \in \mathbb{R}$ tal que:

$$|f_n(z)| \leqslant M_n \quad \forall z \in B$$

 \bullet La serie de números reales $\sum_{n>0} M_n$ es convergente

Entonces la serie $\sum f_n$ converge absoluta y uniformemente en B.

Series de potencias

Una serie de potencias, centrada en un punto $a \in \mathbb{C}$, es una serie de funciones $\sum f_n$ en la que, para cada $n \in \mathbb{N} \cup \{0\}$, la función $f_n \in \mathcal{F}(\mathbb{C})$

viene dada por

$$f_n(z) = \alpha_n (z-a)^n \quad \forall z \in \mathbb{C}$$

donde $\alpha_n \in \mathbb{C}$ es constante, para todo $n \in \mathbb{N} \cup \{0\}$.

Dicha serie se denota simplemente por

$$\sum_{n\geqslant 0}\alpha_n\left(z-a\right)^n$$

Las sumas parciales son funciones polinómicas:

$$S_n(z) = \sum_{k=0}^{n-1} \alpha_k (z-a)^k \quad \forall z \in \mathbb{C} \quad \forall n \in \mathbb{N}$$

Series de números complejos

Lema de Abel

Sea $\rho \in \mathbb{R}^+$ tal que la sucesión $\{|\alpha_n|\rho^n\}$ esté mayorada.

Entonces la serie de potencias $\sum \alpha_n (z-a)^n$ converge absolutamente en

D(a, p) y uniformemente en cada subconjunto compacto de dicho disco.

Radio de convergencia

Para definir el radio de convergencia R de la serie $\;\;\sum \alpha_n (z-a)^n$, se considera el conjunto

$$\Lambda = \left\{ \, \rho \in \mathbb{R}^+ \ : \ \left\{ |\alpha_n| \rho^n \right\} \ \mathrm{mayorada} \, \right\}$$

y se pueden dar tres casos:

- Si $\Lambda = \emptyset$, entonces R = 0
- Si $\Lambda \neq \emptyset$ y Λ no está mayorado, entonces $R = \infty$
- Si $\Lambda \neq \emptyset$ y Λ está mayorado, entonces $R = \sup \Lambda$

Series de números complejos

Convergencia de la serie, conociendo el radio

Sea R el radio de convergencia de la serie de potencias $\sum_{n \geq 0} \alpha_n (z-a)^n$

- Si $R \in \mathbb{R}^+$, la serie converge absolutamente en D(a,R), converge uniformemente en cada compacto $K \subset D(a,R)$ y no converge en ningún punto de $\mathbb{C}\setminus \overline{D}(a,R)$
- Si $R = \infty$, la serie converge absolutamente en \mathbb{C} y uniformemente en cada compacto $K \subset \mathbb{C}$.
- Si R=0, la serie no converge en ningún punto de $\mathbb{C}\setminus\{a\}$.

Preguntas que quedan sin resolver

- Cuando $R = \infty$; Hay convergencia uniforme en \mathbb{C} ?
- Cuando $R \in \mathbb{R}^+$; Hay convergencia uniforme en D(a,R)?
- Cuando $R \in \mathbb{R}^+$; Qué ocurre en la circunferencia $\{z \in \mathbb{C} \mid |z-a| = R\}$?

Fórmula de Cauchy-Hadamard

Sea R el radio de convergencia de la serie $\sum \alpha_n (z-a)^n$

- Si la sucesión $\{\sqrt[n]{|\alpha_n|}\}$ no está mayorada, entonces R=0
- Si $\{\sqrt[n]{|\alpha_n|}\}\to 0$, entonces $R=\infty$
- En otro caso:

$$R = \frac{1}{\limsup \left\{ \sqrt[n]{|\alpha_n|} \right\}}$$

Corolario

Series de números complejos

Suponiendo $\alpha_n \in \mathbb{C}^* \quad \forall n \in \mathbb{N}$, se tiene:

•
$$\{\alpha_{n+1}/\alpha_n\} \to \infty \implies R = 0$$

•
$$\{\alpha_{n+1}/\alpha_n\} \to 0 \implies R = \infty$$

•
$$\{|\alpha_{n+1}/\alpha_n|\} \rightarrow \lambda \in \mathbb{R}^+ \implies R = 1/\lambda$$

Algunos ejemplos de series de potencias

Ejemplos

• La serie $\sum_{n\geq 1} \frac{z^n}{n^n}$ tiene radio de convergencia ∞ .

No converge uniformemente en $\mathbb C$

- \bullet La serie $\sum_{i} n^n z^n$ tiene radio de convergencia 0
- La serie geométrica, $\sum z^n$ tiene radio de convergencia 1. Su suma es:

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \qquad \forall z \in D(0,1)$$

No converge uniformemente en D(0,1)

No converge en ningún punto de T

• La serie $\sum_{n>1} \frac{z^n}{n^2}$ tiene radio de convergencia 1

Converge uniformemente en $\overline{D}(0,1)$

Dominio de convergencia y suma de la serie

Una serie de potencias es trivial cuando tiene radio de convergencia 0

$$\sum_{n \geq 0} \alpha_n (z-a)^n \;$$
serie de potencias no trivial, con radio de convergencia $R \neq 0$

Su dominio de convergencia, Ω , es:

- $\Omega = D(a,R)$ cuando $R \in \mathbb{R}^+$
- \bullet $\Omega=\mathbb{C}$ cuando $R=\infty$

La serie converge absolutamente en Ω y uniformemente en cada subconjunto compacto de $\Omega.$

La suma de la serie es la función $f:\Omega \to \mathbb{C}$ dada por

$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z-a)^n \quad \forall z \in \Omega$$

Series de funciones

Lema: radio de convergencia de la serie derivada

Las series $\sum_{n\geqslant 0} \alpha_n (z-a)^n$ y $\sum_{n\geqslant 1} n\alpha_n (z-a)^{n-1} = \sum_{n\geqslant 0} (n+1)\alpha_{n+1} (z-a)^n$ tienen el mismo radio de convergencia.

Teorema

Sea f la suma de una serie de potencias no trivial, es decir,

$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z-a)^n \quad \forall z \in \Omega$$

donde Ω es el dominio de convergencia de la serie.

Entonces $f \in \mathcal{H}(\Omega)$ con

$$f'(z) = \sum_{n=0}^{\infty} (n+1) \alpha_{n+1} (z-a)^n = \sum_{n=1}^{\infty} n \alpha_n (z-a)^{n-1} \quad \forall z \in \Omega$$

Definición de las derivadas sucesivas

Derivadas sucesivas de una función

$$\emptyset \neq A \subset \mathbb{C}$$
, $f \in \mathcal{F}(A)$. Convenio habitual $f^{(0)} = f$

Etapa base de la inducción (n = 1), función derivada primera:

$$A_1 = \left\{z \in A \cap A' : f \text{ derivable en } z\right\}, \quad f^{(1)} = f' : A_1 \to \mathbb{C}$$

Para $n \in \mathbb{N}$ suponemos definida la función derivada n-ésima $f^{(n)}: A_n \to \mathbb{C}$.

Si $z \in A_n \cap A'_n$, f es n+1 veces derivable en z cuando $f^{(n)}$ es derivable en z.

Entonces $f^{(n+1)}(z) = (f^{(n)})'(z)$ es la (n+1)-ésima derivada de f en z.

Definimos ahora $A_{n+1} = \{z \in A_n \cap A'_n : f \text{ es } n+1 \text{ veces derivable en } z\}$

Si $A_{n+1} \neq \emptyset$, la función derivada (n+1)-ésima de f es

$$f^{(n+1)} = (f^{(n)})' : A_{n+1} \to \mathbb{C}$$

Suponiendo $A \subset A'$, si f es n veces derivable en todo punto de A, para todo $n \in \mathbb{N}$, decimos que f es indefinidamente derivable en A y tendremos $f^{(n)} \in \mathcal{F}(A)$ para todo $n \in \mathbb{N}$.

Series de funciones

Funciones de variable real

- $A \subset \mathbb{R}$ y $f(A) \subset \mathbb{R}$. Hemos repetido la definición de las derivadas sucesivas de una función real de variable real.
- $A \subset \mathbb{R}$ pero f puede tomar valores complejos cualesquiera. Para todo $n \in \mathbb{N}$, f es n veces derivable en un punto $t \in A$ si, y sólo si, lo son las funciones $\operatorname{Re} f$ y $\operatorname{Im} f$, en cuvo caso:

$$f^{(n)}(t) = \left(\operatorname{Re} f\right)^{(n)}(t) + i\left(\operatorname{Im} f\right)^{(n)}(t)$$

Cuando $A \subset A'$, f es indefinidamente derivable en A si, y sólo si, lo son Re f y Im f, verificándose la igualdad anterior para todo $t \in A$ y para todo $n \in \mathbb{N}$.

Derivadas sucesivas de la suma de una serie de potencias

Teorema (

Sea $\sum_{n \geqslant 0} \alpha_n \, (z-a)^n \,$ una serie de potencias no trivial, Ω su dominio de

convergencia y
$$f$$
 su suma: $f(z) = \sum_{n=0}^{\infty} \alpha_n (z-a)^n \quad \forall z \in \Omega$

Entonces f es indefinidamente derivable en Ω . De hecho, para todo $k\in\mathbb{N}\cup\{0\}$, la serie de potencias

$$\sum_{n \ge k} \frac{n!}{(n-k)!} \alpha_n (z-a)^{n-k} = \sum_{n \ge 0} \frac{(n+k)!}{n!} \alpha_{n+k} (z-a)^n$$

tiene dominio de convergencia Ω y se verifica que:

$$f^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} \alpha_n (z-a)^{n-k} = \sum_{n=0}^{\infty} \frac{(n+k)!}{n!} \alpha_{n+k} (z-a)^n \quad \forall z \in \Omega$$

En particular se tiene: $f^{(k)}(a) = k! \ \alpha_k \ \forall k \in \mathbb{N} \cup \{0\}.$

Por tanto, la serie de partida es la serie de Taylor de f:

$$\sum_{n \ge 0} \alpha_n (z - a)^n = \sum_{n \ge 0} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

Principio de identidad para series de potencias

Sean $\sum_{n\geqslant 0} \alpha_n (z-a)^n$ y $\sum_{n\geqslant 0} \beta_n (z-a)^n$ series de potencias no triviales, con dominios de convergencia Ω_1 y Ω_2 respectivamente.

Supongamos que existe $\rho \in \mathbb{R}^+$ tal que $D(a,\rho) \subset \Omega_1 \cap \Omega_2$ y

$$\sum_{n=0}^{\infty} \alpha_n (z-a)^n = \sum_{n=0}^{\infty} \beta_n (z-a)^n \quad \forall z \in D(a, \rho)$$

Entonces, ambas series son idénticas, es decir,

$$\alpha_n = \beta_n \quad \forall n \in \mathbb{N} \cup \{0\}$$

Concepto de función analítica

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} , \ f \in \mathcal{F}(\Omega)$$

fes analítica en Ω cuando, para cada $a\in \Omega$ se verifica lo siguiente:

Existe $\rho_a \in \mathbb{R}^+$, con $D(a,\rho_a) \subset \Omega$, y una serie de potencias $\sum_{n\geqslant 0} \alpha_n^{(a)} (z-a)^n$, con radio de convergencia mayor o igual que ρ_a , tales que

$$f(z) = \sum_{n=0}^{\infty} \alpha_n^{(a)} (z-a)^n \quad \forall z \in D(a, \rho_a)$$

Holomorfía de las funciones analíticas

Sea f es una función analítica en un abierto Ω del plano. Entonces $f\in\mathcal{H}(\Omega)$ y f' es analítica en Ω .

Por tanto, f es indefinidamente derivable en Ω y todas sus derivadas son funciones analíticas en Ω .

Definición equivalente de función analítica

Otra forma de entender el concepto de función analítica

Si Ω es un abierto no vacío del plano, una función $f \in \mathcal{F}(\Omega)$ es analítica en Ω si, y sólo si, es indefinidamente derivable en Ω y, para cada $a \in \Omega$ existe $\rho_a \in \mathbb{R}^+$ con $D(a, \rho_a) \subset \Omega$ tal que, la serie de Taylor de f centrada en atiene radio de convergencia mayor o igual que ρ_a y se verifica que

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in D(a, \rho_a)$$