Assignment 5

sai prasad desineni

4/17/2022

```
#loading all the required libraries
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.1.3
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dendextend)
## Warning: package 'dendextend' was built under R version 4.1.3
##
## ----
## Welcome to dendextend version 1.15.2
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags:
##
    https://stackoverflow.com/questions/tagged/dendextend
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
       cutree
library(cluster)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
```

```
## -- Attaching packages ------ tidyverse 1.3.1 --
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(knitr)
#importing the data
cereals = read_csv("C:/Users/desineni/Downloads/Cereals.csv")
## Rows: 77 Columns: 16
## -- Column specification -----
## Delimiter: ","
## chr (3): name, mfr, type
## dbl (13): calories, protein, fat, sodium, fiber, carbo, sugars, potass, vita...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
numericaldata = data.frame(cereals[,4:16])
#omitting all the missing values present in the data
OmitMissing = na.omit(numericaldata)
#normalizing and scaling the data
Normalise = scale(OmitMissing)
#measuring the distance using the euclidian distance and computing the dissimilarity matrix
distance = dist(Normalise, method = "euclidian")
#performing hierarchial clustering using complete linkage and representing in plot
hierarchial_clustering = hclust(distance,method = "complete")
plot(hierarchial_clustering)
```

Cluster Dendrogram

distance hclust (*, "complete")

```
#rounding off the decimals
round(hierarchial_clustering$height, 3)
##
   [1]
        0.143 0.196 0.575
                              0.698
                                     0.828
                                            0.904
                                                   1.003
                                                           1.004
                                                                  1.201
                                                                         1.203
  [11]
        1.254
               1.378
                       1.408
                              1.421
                                     1.454
                                            1.463
                                                   1.474
                                                           1.517
                                                                  1.608
                                                                         1.611
  [21]
         1.616
               1.625
                       1.650
                              1.687
                                     1.692
                                            1.720
                                                           1.795
                                                                  1.839
                                                                         1.897
                                                   1.730
                       2.015
   [31]
        1.919
               1.982
                              2.046
                                     2.203
                                            2.224
                                                   2.339
                                                           2.381
                                                                  2.394
                                                                         2.522
                                                                         3.236
  [41]
        2.563
               2.574
                       2.579
                              2.668
                                     2.682
                                            2.734
                                                   2.776
                                                           2.787
                                                                  3.229
  [51]
         3.385
               3.451
                       3.510
                              3.535
                                     3.717
                                            3.866
                                                   3.957
                                                           4.005
                                                                  4.031
                                                                         4.168
## [61]
         4.456
               4.779
                       4.839
                              5.342 5.488 5.920
                                                   6.169
                                                          6.669
                                                                  6.731 7.650
## [71]
        7.964 9.979 10.984
#determining the optimla clusters and highlighting with colours
plot(hierarchial_clustering)
```

rect.hclust(hierarchial_clustering,k = 4, border = "red")

Cluster Dendrogram

distance hclust (*, "complete")

```
#performing clustering using AGNES
HCsingle = agnes(Normalise, method = "single")
HCcomplete = agnes(Normalise, method = "complete")
HCaverage = agnes(Normalise, method = "average")
HCward = agnes(Normalise, method = "ward")
```

#comparing the agglomerative cosfficients of single , complete, average, ward
print(HCsingle\$ac)

[1] 0.6067859

print(HCcomplete\$ac)

[1] 0.8353712

print(HCaverage\$ac)

[1] 0.7766075

print(HCward\$ac)

[1] 0.9046042

Dendrogram of agnes-Ward

Normalise agnes (*, "ward")

```
#using the ward method for hierarchial clustering
HC1 <- hclust(distance, method = "ward.D2" )
subgrp <- cutree(HC1, k = 4)
table(subgrp)

## subgrp
## 1 2 3 4
## 3 20 21 30

cereals <- as.data.frame(cbind(Normalise, subgrp))

#visualising the results on scatterplot
fviz_cluster(list(data = Normalise, cluster = subgrp))</pre>
```



```
#selecting the best breakfast cereal cluster with high protein, fibre and low in sugar and sodium.
#choosing the healthy cereal cluster
Newdatacereals = numericaldata
Newdatacereals_omit = na.omit(Newdatacereals)
Clust = cbind(Newdatacereals_omit, subgrp)
Clust[Clust$subgrp==1,]
```

```
##
     calories protein fat sodium fiber carbo sugars potass vitamins shelf weight
## 1
           70
                     4
                         1
                              130
                                     10
                                             5
                                                    6
                                                         280
                                                                    25
                                                                           3
                                                                                   1
## 3
           70
                         1
                              260
                                      9
                                             7
                                                    5
                                                         320
                                                                    25
                                                                            3
                                                                                   1
## 4
           50
                         0
                              140
                                     14
                                             8
                                                         330
                                                                    25
                                                                           3
                                                                                   1
           rating subgrp
     cups
## 1 0.33 68.40297
## 3 0.33 59.42551
## 4 0.50 93.70491
```

Clust[Clust\$subgrp==2,]

##		calories	protein	fat	${\tt sodium}$	fiber	carbo	sugars	potass	vitamins	shelf	weight
##	2	120	3	5	15	2.0	8.0	8	135	0	3	1.00
##	8	130	3	2	210	2.0	18.0	8	100	25	3	1.33
##	14	110	3	2	140	2.0	13.0	7	105	25	3	1.00
##	20	110	3	3	140	4.0	10.0	7	160	25	3	1.00
##	23	100	2	1	140	2.0	11.0	10	120	25	3	1.00
##	28	120	3	2	160	5.0	12.0	10	200	25	3	1.25

##	29	120	3	0	240	5.0	14.0	12	190	25	3	1.33
##	35	120	3	3	75	3.0	13.0	4	100	25	3	1.00
##	40	140	3	1	170	2.0	20.0	9	95	100	3	1.30
##	42	100	4	2	150	2.0	12.0	6	95	25	2	1.00
##	45	150	4	3	95	3.0	16.0	11	170	25	3	1.00
##	46	150	4	3	150	3.0	16.0	11	170	25	3	1.00
##	47	160	3	2	150	3.0	17.0	13	160	25	3	1.50
##	50	140	3	2	220	3.0	21.0	7	130	25	3	1.33
##	52	130	3	2	170	1.5	13.5	10	120	25	3	1.25
##	53	120	3	1	200	6.0	11.0	14	260	25	3	1.33
##	57	100	4	1	135	2.0	14.0	6	110	25	3	1.00
##	59	120	3	1	210	5.0	14.0	12	240	25	2	1.33
##	60	100	3	2	140	2.5	10.5	8	140	25	3	1.00
##	71	140	3	1	190	4.0	15.0	14	230	100	3	1.50
##	cup	s rating	subgr	rр								
##	2 1.0	0 33.98368	3	2								
##		75 37.03856		2								
		0 40.40021		2								
##	20 0.5	0 40.44877	•	2								
		75 36.17620		2								
		7 40.91705		2								
		7 41.01549		2								
##	35 0.3	33 45.81172	?	2								
		75 36.47151		2								
		7 45.32807		2								
		0 37.13686		2								
		0 34.13976		2								
		30.31335		2								
		7 40.69232		2								
		30.45084		2								
		37.84059		2								
		0 49.51187		2								
		75 39.25920		2								
		39.70340		2								
##	71 1.0	0 28.59278	3	2								

Clust[Clust\$subgrp==3,]

##		calories	protein	fat	sodium	fiber	carbo	sugars	potass	${\tt vitamins}$	shelf	weight
##	6	110	2	2	180	1.5	10.5	10	70	25	1	1
##	7	110	2	0	125	1.0	11.0	14	30	25	2	1
##	11	120	1	2	220	0.0	12.0	12	35	25	2	1
##	13	120	1	3	210	0.0	13.0	9	45	25	2	1
##	15	110	1	1	180	0.0	12.0	13	55	25	2	1
##	18	110	1	0	90	1.0	13.0	12	20	25	2	1
##	19	110	1	1	180	0.0	12.0	13	65	25	2	1
##	25	110	2	1	125	1.0	11.0	13	30	25	2	1
##	26	110	1	0	200	1.0	14.0	11	25	25	1	1
##	30	110	1	1	135	0.0	13.0	12	25	25	2	1
##	31	100	2	0	45	0.0	11.0	15	40	25	1	1
##	32	110	1	1	280	0.0	15.0	9	45	25	2	1
##	36	120	1	2	220	1.0	12.0	11	45	25	2	1
##	37	110	3	1	250	1.5	11.5	10	90	25	1	1
##	38	110	1	0	180	0.0	14.0	11	35	25	1	1

```
## 43
           110
                    2 1
                              180
                                    0.0 12.0
                                                  12
                                                         55
                                                                  25
                                                                                1
## 48
                              220
                                    2.0 15.0
                                                  6
                                                         90
                                                                  25
           100
                    2 1
                                                                         1
                                                                                1
                                    0.0 15.0
                                                                         2
## 49
                     2 1
                              190
                                                  9
                                                         40
                                                                  25
           120
## 67
           110
                     2 1
                              70
                                    1.0
                                         9.0
                                                  15
                                                         40
                                                                  25
                                                                         2
                                                                                1
                                                                         2
## 74
                        1
                                    0.0 13.0
                                                  12
                                                                  25
           110
                     1
                              140
                                                         25
                                                                                1
## 77
           110
                     2
                        1
                              200
                                    1.0 16.0
                                                  8
                                                         60
                                                                  25
                                                                         1
                                                                                1
      cups rating subgrp
## 6 0.75 29.50954
                         3
## 7 1.00 33.17409
                        3
## 11 0.75 18.04285
                        3
## 13 0.75 19.82357
                        3
## 15 1.00 22.73645
                        3
## 18 1.00 35.78279
                        3
                        3
## 19 1.00 22.39651
## 25 1.00 32.20758
                        3
## 26 0.75 31.43597
                        3
## 30 0.75 28.02576
                        3
                        3
## 31 0.88 35.25244
## 32 0.75 23.80404
                        3
## 36 1.00 21.87129
                        3
## 37 0.75 31.07222
                        3
## 38 1.33 28.74241
                        3
## 43 1.00 26.73451
                        3
                        3
## 48 1.00 40.10596
## 49 0.67 29.92429
                        3
## 67 0.75 31.23005
                        3
## 74 1.00 27.75330
                        3
## 77 0.75 36.18756
```

Clust[Clust\$subgrp==4,]

##		calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight
##	9	90	2	1	200	4	15	6	125	25	1	1.00
##	10	90	3	0	210	5	13	5	190	25	3	1.00
##	12	110	6	2	290	2	17	1	105	25	1	1.00
##	16	110	2	0	280	0	22	3	25	25	1	1.00
##	17	100	2	0	290	1	21	2	35	25	1	1.00
##	22	110	2	0	220	1	21	3	30	25	3	1.00
##	24	100	2	0	190	1	18	5	80	25	3	1.00
##	27	100	3	0	0	3	14	7	100	25	2	1.00
##	33	100	3	1	140	3	15	5	85	25	3	1.00
##	34	110	3	0	170	3	17	3	90	25	3	1.00
##	39	110	2	1	170	1	17	6	60	100	3	1.00
##	41	110	2	1	260	0	21	3	40	25	2	1.00
##	44	100	4	1	0	0	16	3	95	25	2	1.00
##	51	90	3	0	170	3	18	2	90	25	3	1.00
##	54	100	3	0	320	1	20	3	45	100	3	1.00
##	55	50	1	0	0	0	13	0	15	0	3	0.50
##	56	50	2	0	0	1	10	0	50	0	3	0.50
##	61	90	2	0	0	2	15	6	110	25	3	1.00
##	62	110	1	0	240	0	23	2	30	25	1	1.00
##	63	110	2	0	290	0	22	3	35	25	1	1.00
##	64	80	2	0	0	3	16	0	95	0	1	0.83
##	65	90	3	0	0	4	19	0	140	0	1	1.00

```
## 66
            90
                     3 0
                                0
                                      3
                                           20
                                                         120
                                                                              1.00
## 68
           110
                     6 0
                              230
                                            16
                                                    3
                                                          55
                                                                   25
                                                                              1.00
                                      1
                                                                          1
## 69
           90
                     2 0
                               15
                                            15
                                                          90
                                                                   25
                                                                              1.00
## 70
                     2 1
                              200
                                                                              1.00
           110
                                      0
                                           21
                                                    3
                                                         35
                                                                  100
                                                                          3
## 72
           100
                     3
                              200
                                      3
                                           16
                                                    3
                                                        110
                                                                  100
                                                                          3
                                                                              1.00
## 73
           110
                     2 1
                              250
                                           21
                                                    3
                                                         60
                                                                   25
                                                                          3
                                                                              1.00
                                      0
## 75
           100
                     3
                              230
                                      3
                                           17
                                                    3
                                                                   25
                                                                          1
                                                                              1.00
                                                        115
           100
                              200
                                           17
                                                    3
## 76
                     3
                         1
                                      3
                                                         110
                                                                   25
                                                                          1
                                                                              1.00
##
      cups rating subgrp
## 9 0.67 49.12025
## 10 0.67 53.31381
## 12 1.25 50.76500
                         4
## 16 1.00 41.44502
                         4
## 17 1.00 45.86332
## 22 1.00 46.89564
## 24 0.75 44.33086
                         4
## 27 0.80 58.34514
                         4
## 33 0.88 52.07690
## 34 0.25 53.37101
                         4
## 39 1.00 36.52368
                         4
## 41 1.50 39.24111
                         4
## 44 1.00 54.85092
## 51 1.00 59.64284
## 54 1.00 41.50354
## 55 1.00 60.75611
## 56 1.00 63.00565
## 61 0.50 55.33314
                         4
## 62 1.13 41.99893
                         4
## 63 1.00 40.56016
## 64 1.00 68.23588
## 65 0.67 74.47295
                         4
## 66 0.67 72.80179
                         4
## 68 1.00 53.13132
## 69 1.00 59.36399
                         4
## 70 1.00 38.83975
                         4
## 72 1.00 46.65884
                         4
## 73 0.75 39.10617
## 75 0.67 49.78744
                         4
## 76 1.00 51.59219
                         4
#here we calculate the mean rating in order determine the healthy cluster cereals
mean(Clust[Clust$subgrp==1,"rating"])
## [1] 73.84446
mean(Clust[Clust$subgrp==2,"rating"])
## [1] 38.26161
mean(Clust[Clust$subgrp==3,"rating"])
```

[1] 28.84825

mean(Clust[Clust\$subgrp==4,"rating"])

[1] 51.43111

#From the above results it is clearly evident that mean rating is highest for subgroup 1. #so, it is recommended to choose subgrp 1 as the healthy diet cluster.