1 Introduction

2 Preliminaries

Let $\mathbb{N} = \{1, 2, \ldots\}$, $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$ and $[n] = \{1, \cdots, n\}$ for $n \in \mathbb{N}$. For a set A, let $\mathscr{P}(A)$ be the power set of A, A^* and A^{ω} be the sets of finite and infinite words over A, and we denote $A^{\infty} = A^* \cup A^{\omega}$. For a word $\alpha \in A^{\infty}$ over a set A, let $\alpha(i) \in A$ be the i-th element of α $(i \geq 0)$, $\alpha(i : j) = \alpha(i)\alpha(i+1)\cdots\alpha(j-1)\alpha(j)$ for $i \geq j$ and $\alpha(i :) = \alpha(i)\cdots$ for $i \geq 0$. Let $\langle u, w \rangle = u(0)w(0)u(1)w(1)\cdots \in A^{\infty}$ for words $u, w \in A^{\infty}$ and $\langle B, C \rangle = \{\langle u, w \rangle \mid u \in B, w \in C\}$ for sets $B, C \subseteq A^{\infty}$. By $|\beta|$, we mean the cardinality of β if β is a set and the length of β if β is a finite sequence.

In this paper, disjoint sets $\Sigma_{\hat{i}}$, Σ_{o} and Γ denote a (finite) input alphabet, an output alphabet and a stack alphabet, respectively, and $\Sigma = \Sigma_{\hat{i}} \cup \Sigma_{o}$. For a set Γ , let $Com(\Gamma) = \{pop, skip\} \cup \{push(z) \mid z \in \Gamma\}$ be the set of stack commands over Γ .

2.1 Transition Systems

Definition 1. A transition system (TS) is $S = (S, s_0, A, E, \rightarrow_S, c)$ where

- S is a (finite or infinite) set of states,
- $-s_0 \in S$ is the initial state,
- -A, E is (finite or infinite) alphabets such that $A \cap E = \emptyset$,
- $\to_{\mathcal{S}} \subseteq S \times (A \cup E) \times S$ is a set of transition relation, written as $s \to^a s'$ if $(s, a, s') \in \to_{\mathcal{S}}$ and
- $-c: S \to [n]$ is a coloring function where $n \in \mathbb{N}$.

A run of TS $\mathcal{S}=(S,s_0,A,E,\to_{\mathcal{S}},c)$ is a pair $(\rho,w)\in S^\omega\times (A\cup E)^\omega$ that satisfies $\rho(0)=s_0$ and $\rho(i)\to^{w(i)}\rho(i+1)$ for $i\geq 0$. Let $C:S^\omega\to [n]$ be a minimal coloring function such that $C(\rho)=\min\{m\mid \text{there exist infinite numbers of }i\geq 0 \text{ such that }c(\rho(i))=m\}$. We call \mathcal{S} deterministic if $s\to^a s_1$ and $s\to^a s_2$ implies $s_1=s_2$ for all $s,s_1,s_2\in S$ and $s\in A\cup\{\varepsilon\}$.

For $w \in (A \cup E)^{\omega}$, let $ef(w) = a_0 a_1 \cdots \in A^{\infty}$ be an epsilon free sequence of w which is obtained by removing all symbols belong to E. Note that ef(w) is not always an infinite sequence even if w is an infinite sequence. We define the language of S as $L(S) = \{ef(w) \in A^{\omega} \mid \text{there exists a run } (\rho, w) \text{ such that } C(\rho) \text{ is even}\}.$

3 Pushdown Transducers, Automata and Games

3.1 Pushdown Transducers

Definition 2. A pushdown transducer (PDT) over finite alphabets $\Sigma_{\mathbb{I}}$, $\Sigma_{\mathbb{O}}$ and Γ is $\mathcal{T} = (P, p_0, z_0, \Delta)$ where P is a finite set of states, $p_0 \in P$ is the initial state, $z_0 \in \Gamma$ is the initial stack symbol and $\Delta : P \times \Sigma_{\mathbb{I}} \times \Gamma \to P \times \Sigma_{\mathbb{O}} \times Com(\Gamma)$ is a finite set of deterministic transition rules having one of the following forms:

```
\begin{array}{lll} - & (p,a,z) \rightarrow (q,b,pop) & (pop\ rule) \\ - & (p,a,z) \rightarrow (q,b,skip) & (skip\ rule) \\ - & (p,a,z) \rightarrow (q,b,push(z)) & (push\ rule) \end{array}
```

where $p, q \in P$, $a \in \Sigma_{i}$, $b \in \Sigma_{o}$ and $z \in \Gamma$.

For a state $p \in P$ and a stack $u \in \Gamma^*$, (p,u) is called a configuration or instantaneous description (abbreviated as ID) of PDT \mathcal{T} . Let $ID_{\mathcal{T}}$ denote the set of all IDs of \mathcal{T} . Let $\Rightarrow_{\mathcal{T}} \subseteq ID_{\mathcal{T}} \times \Sigma_{\mathbb{I}} \cdot \Sigma_{\mathbb{O}} \times ID_{\mathcal{T}}$ be the transition relation of \mathcal{T} that satisfies follows: For two IDs $(p,u), (q,u') \in ID_{\mathcal{T}}$ and $ab \in \Sigma_{\mathbb{I}} \cdot \Sigma_{\mathbb{O}}$, $((p,u),ab,(q,u')) \in \Rightarrow_{\mathcal{T}}$, written as $(p,u) \Rightarrow_{\mathcal{T}}^{ab} (q,u')$, if there exist a rule $r = (p,a,z) \to (q,b,com) \in \Delta$ such that z = u(0) and u' = u(1:) if com = pop, u' = u if com = skip and u' = z'u if com = push(z'). If \mathcal{T} is clear from the context, we abbreviate $\Rightarrow_{\mathcal{T}}^{ab}$ as \Rightarrow^{ab} . By definition, any ID $(p,\varepsilon) \in ID_{\mathcal{T}}$ has no successor. That is, there is no transition from an ID with empty stack. We define a run and language of PDT \mathcal{T} as those of deterministic TS $(ID_{\mathcal{T}}, (q_0, z_0), \Sigma_{\mathbb{I}} \cdot \Sigma_{\mathbb{O}}, \emptyset, \Rightarrow_{\mathcal{T}}, c)$ where c(s) = 2 for all $s \in ID_{\mathcal{T}}$. Let **PDT** be the class of PDT.

3.2 Pushdown Automata

Definition 3. A nondeterministic pushdown automata (NPDA) over finite alphabets $\Sigma_{\mathbb{I}}$, $\Sigma_{\mathbb{O}}$ and Γ is $\mathcal{A} = (Q, Q_{\mathbb{I}}, Q_{\mathbb{O}}, q_0, z_0, c, \delta)$ where $Q, Q_{\mathbb{I}}, Q_{\mathbb{O}}$ are finite sets of states that satisfy $Q = Q_{\mathbb{I}} \cup Q_{\mathbb{O}}$ and $Q_{\mathbb{I}} \cap Q_{\mathbb{O}} = \emptyset$, $q_0 \in Q_{\mathbb{I}}$ is the initial state, $z_0 \in \Gamma$ is the initial stack symbol, $c: Q \to [n]$ is a coloring function where $n \in \mathbb{N}$ is the number of priorities and $\delta: Q \times \Sigma \times \Gamma \to \mathcal{P}(Q \times Com(\Gamma))$ is a finite set of transition rules, having one of the following forms:

```
- (q_{\varkappa}, a_{\varkappa}, z) \to (q_{\overline{\varkappa}}, com) \ (input/output \ rules)- (q_{\varkappa}, \tau, z) \to (q'_{\varkappa}, com) \ (\tau \ rules)
```

where $(\mathbf{z}, \overline{\mathbf{z}}) \in \{(\mathbf{\hat{i}}, \mathbf{0}), (\mathbf{0}, \mathbf{\hat{i}})\}, \ q_{\mathbf{z}}, q_{\mathbf{z}}' \in Q_{\mathbf{z}}, q_{\overline{\mathbf{z}}} \in Q_{\overline{\mathbf{z}}}, a_{\mathbf{z}} \in \Sigma_{\mathbf{z}}, \ z \in \Gamma \ and \ com \in Com(\Gamma).$

We define $ID_{\mathcal{A}} = Q \times \Gamma^*$ and a transition relation $\vdash_{\mathcal{A}} \subseteq ID_{\mathcal{A}} \times (\Sigma \cup \{\tau\}) \times ID_{\mathcal{A}}$ as $((q, u), a, (q', u')) \in \vdash_{\mathcal{A}}$ iff there exist a rule $(p, a, z) \to (q, com) \in \delta$ and a sequence $u \in \Gamma^*$ such that z = u(0) and u' = u(1:) if com = pop, u' = u if com = skip and u' = z'u if com = push(z'). We write $(q, u) \vdash_{\mathcal{A}}^{a} (q', u')$ iff $((q, u), a, (q', u')) \in \vdash_{\mathcal{A}}$. We write $\vdash_{\mathcal{A}}^{a}$ as \vdash^{a} if \mathcal{A} is clear from comtext.

We call \mathcal{A} ε -free if \mathcal{A} has no τ rule. We define a run and language as those of TS $\mathcal{S}_{\mathcal{A}} = (ID_{\mathcal{A}}, (q_0, z_0, \Sigma, \{\tau\}, \vdash_{\mathcal{A}}, c'))$ of \mathcal{A} where c'((q, u)) = c(q) for every $(q, u) \in ID_{\mathcal{A}}$. We call a PDA \mathcal{A} deterministic if $\mathcal{S}_{\mathcal{A}}$ is deterministic, and then we write \mathcal{A} is DPDA. Let **DPDA** and **NPDA** be the class of ε -free DPDA and ε -free NPDA, respectively.

3.3 Pushdown Games

Definition 4. A Pushdown Games (PDG) of PDA $\mathcal{A} = (Q, Q_{\mathbb{I}}, Q_{\mathbb{O}}, q_0, z_0, \delta, c)$ is $\mathcal{G}_{\mathcal{A}} = (V, V_{\mathbb{I}}, V_{\mathbb{O}}, E, C)$ where $V = Q \times \Gamma^*$ is the set of vertices with $V_{\mathbb{I}} = Q_{\mathbb{I}} \times \Gamma^*, V_{\mathbb{O}} = Q_{\mathbb{O}} \times \Gamma^*, E \subseteq V \times V$ is the set of edges defined as $E = \{(v, v') \mid v \vdash^a v' \text{ for some } a \in \Sigma\}$ and $C : V \to [n]$ is the coloring function such that C((q, u)) = c(q) for all $(q, u) \in V$.

The game starts with some $(q_0, z_0) \in V_{\bar{i}}$. When the current vertex is $v \in V_{\bar{i}}$, Player I chooses a successor $v' \in V_{\bar{o}}$ of v as the next vertice. When the current vertex is $v \in V_{\bar{o}}$, Player II chooses a successor $v' \in V_{\bar{i}}$ of v. A finite or infinite sequence $\rho \in V^{\infty}$ is valid if $\rho(0) = (q_0, z_0)$ and satisfy $(\rho(i-1), \rho(i)) \in E$ for every $i \geq 1$. A play of $\mathcal{G}_{\mathcal{A}}$ is an infinite and valid sequence $\rho \in V^{\omega}$. A play ρ is winning for Player I iff $state(\rho)$ is even.

By the definition of $\mathcal{G}_{\mathcal{A}}$, every choice of a successor by players can be also expressed as a choice of a pair $(q, com) \in Q \times Com(\Gamma)$. Furthermore, a choice of a successor can be expressed as a choice of $a \in \Sigma$ if \mathcal{A} is deterministic. Thus, every valid sequence $\rho \in V^{\infty}$ corresponds one-to-one with a sequence $\tau \in (Q \times Com(\Gamma))^{\infty}$. In detail, for every $\rho(i) = (q, zu)$ and $\tau(i) = (q', com)$, $\rho(i+1) = (q', Zu)$ hold where $Z = \varepsilon, z, z'z$ if com = pop, skip, push(z'), respectively. We call τ valid if the corresponding ρ is valid.

Theorem 5. [Walukiewucz, 2001] If player I has a winning strategy of $\mathcal{G}_{\mathcal{A}}$, we can construct a PDT \mathcal{T} over $Q_{\mathbb{I}} \times Com(\Gamma)$, $Q_{\mathbb{O}} \times Com(\Gamma)$ and an stack alphabet Γ' that gives a winning strategy of $\mathcal{G}_{\mathcal{A}}$. That is, for every $\tau \in L(\mathcal{T})$, the corresponding play $\rho \in V^{\infty}$ is winning for Player I.

When \mathcal{A} is deterministic, there is also a one-to-one correspondence between a valid sequence $\rho \in V^{\infty}$ and a sequence of input and output alphabets $u \in \Sigma^{\infty}$. In detail, for every $\rho(i) = (q, zu)$ and $\rho(i+1) = (q', Zu)$, $(q, u(i), z) \to (q', com) \in \delta$ hold where $Z = \varepsilon, z, z'z$ if com = pop, skip, push(z'), respectively.

By the correspondence, the following lemma holds.

Lemma 6. A play ρ is winning for Player I iff the corresponding sequence $w \in \Sigma^{\omega}$ of ρ satisfies $w \in L(A)$.

In a similar way to Theorem 5, we can obtain the following lemma.

Lemma 7. If \mathcal{A} is deterministic and player I has a winning strategy of $\mathcal{G}_{\mathcal{A}}$, we can construct a PDT \mathcal{T} over Σ_{i} , Σ_{o} and Γ' that gives a winning strategy of $\mathcal{G}_{\mathcal{A}}$. That is, for every $w \in L(\mathcal{T})$, the corresponding play $\rho \in V^{\infty}$ is winning for Player I.

4 Realizability problems for PDA and PDT

For a specification S and an implementation I, we write $I \models S$ if $L(I) \subseteq L(S)$.

Definition 8. Realizability problem REAL(S, I) for a class of specifications S and of implementations I: For a specification $S \in S$, is there an implementation $I \in I$ such that $I \models S$?

Theorem 9. Real(DPDA, PDT) is decidable.

Proof. Let \mathcal{A} be a given DPDA. By Lemmas 6 and 7, we can construct a PDT \mathcal{T} such that $\mathcal{T} \models \mathcal{A}$ if player I has a winning strategy for the game $\mathcal{G}_{\mathcal{A}}$. Because there is an algorithm for constructing \mathcal{T} [Walukiewucz, 2001], REAL(**DPDA**, **PDT**) is decidable.

Theorem 10. Real(NPDA, PDT) is undecidable.

Proof. For NPDA, we reduce the problem from the universality problem of NPDA, which is undecidable. For a given NPDA $\mathcal{A} = (Q, q_0, z_0, \delta, c)$ over Σ and Γ , we can construct an NPDA $\mathcal{A}' = (Q \cup Q', Q, Q', q_0, z_0, \delta', c')$ over Σ, Σ_0 and Γ that satisfies $L(\mathcal{A}) = \Sigma^{\omega}$ iff there exists \mathcal{T} such that $\mathcal{T} \models \mathcal{A}$. Σ_0 is an arbitrary alphabet, $Q' = \{q'_i \mid i \in [n], q_i \in Q\}$ where $Q = \{q_1, \dots, q_n\}$, $c'(q_i) = c'(q'_i) = c(q_i)$ for all $i \in [n]$ and δ' satisfies that $(q_i, a, z) \to (q_j, com) \in \delta$ iff $(q_i, a, z) \to (q'_j, com) \in \delta'$, and $(q'_j, b, z) \to (q_j, skip) \in \delta'$ for all $b \in \Sigma_0$. By the construction of \mathcal{A}' , $L(\mathcal{A}') = \langle L(\mathcal{A}), \Sigma_0^{\omega} \rangle$ holds. If $L(\mathcal{A}) = \Sigma^{\omega}$, then $L(\mathcal{A}') = \langle \Sigma^{\omega}, \Sigma_0^{\omega} \rangle$ and thus $\mathcal{T} \models \mathcal{A}$ holds for every \mathcal{T} . If $L(\mathcal{A}) \neq \Sigma^{\omega}$, there exists a word $w \in \Sigma^{\omega}$ such that $w \notin L(\mathcal{A})$. Every language of PDT contains a word $\langle u, v \rangle$ for every $u \in \Sigma^{\omega}$ and some $v \in \Sigma_0^{\omega}$, but $\langle w, v \rangle \notin L(\mathcal{A}')$ for any $v \in \Sigma_0^{\omega}$. Hence, $\mathcal{T} \not\models \mathcal{A}'$ holds for any PDT \mathcal{T} . In conclusion, this reduction holds and the realizability problem for PDT and NPDA is undecidable.

5 Register Pushdown Transducers and Register Pushdown Automata

5.1 Data words and registers

We assume a countable set D of data values. For finite alphabets $\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}$ and a countable set D, an infinite sequence $(a_1^{\mathbb{I}}, d_1)(a^{\mathbb{O}}, d_1') \cdots \in ((\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{O}} \times D))^{\omega}$ is called a data word. We write $DW(\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}, D) = ((\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{O}} \times D))^{\omega}$.

For $k \in \mathbb{N}_0$, a mapping $\theta : [k] \to D$ is called an assignment (of data values to k registers). Let Θ_k denote the collection of assignments to k registers. We specify $\bot \in D$ as the initial data value and $\theta_\bot \in \Theta_k$ be the initial assignment such that $\theta_\bot(i) = \bot$ for all $i \in [k]$.

We denote $Tst_k = \mathscr{P}([k] \cup \{top\})$ and $Asgn_k = \mathscr{P}([k])$ where $top \notin \mathbb{N}$ is the unique symbol that represents a stack top value. Tst_k is the set of guard conditions. For $tst \in Tst_k$, $\theta \in \Theta_k$ and $d, e \in D$, we denote $\theta, d, e \models tst$ if $\theta(i) = d \Leftrightarrow i \in tst$ and $e = d \Leftrightarrow top \in tst$ hold. (In definitions of register pushdown transducer (automaton) in the next section, the data values d and e represent an input data value and a stack top data value, respectively.) $Asgn_k$ is the set of assignment conditions. For $asgn \in Asgn_k$, $\theta, \theta' \in \Theta_k$ and $d \in D$, let $\theta[asgn \leftarrow d]$ be the assignment θ' such that $\theta'(i) = d$ for $i \in asgn$ and $\theta'(i) = \theta(i)$ for $i \notin asgn$.

5.2 Register pushdown transducers

Definition 11. A k-register pushdown transducer (k-RPDT) over finite alphabets $\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}$ and an infinite set D of data values is $\mathcal{T} = (P, p_0, \Delta)$ where P is a finite set of states, $p_0 \in P$ is the initial state, $\Delta : P \times \Sigma_{\mathbb{I}} \times Tst_k \to P \times \Sigma_{\mathbb{O}} \times Asgn_k \times [k] \times Com([k])$ is a finite set of deterministic transition rules.

D is used as a stack alphabet. Let $ID_{\mathcal{T}} = P \times \Theta_k \times D^*$ and $\Rightarrow_{\mathcal{T}} \subseteq ID_{\mathcal{T}} \times ((\Sigma_{\S} \times D) \cdot (\Sigma_{\circ} \times D)) \times ID_{\mathcal{T}}$ be a transition relation of \mathcal{T} such that $((p, \theta, u), (a, d^{\S})(b, d^{\circ}), (q, \theta', u')) \in \Rightarrow_{\mathcal{T}}$ iff there exist a rule $(p, a, tst) \to (q, b, asgn, j, com) \in \Delta$ that satisfy the follows: $d^{\S}, u(0), \theta \models tst, \theta' = \theta[asgn \leftarrow d^{\S}], \theta'(j) = d^{\circ}$ and $u' = u(1:), u, \theta'(j')u$ if com = pop, skip, push(j'), respectively, and then we write $(p, \theta, u) \Rightarrow_{\mathcal{T}}^{(a, d^{\S})(b, d^{\circ})} (q, \theta', u')$. If \mathcal{T} is clear from the context, we abbreviate $\Rightarrow_{\mathcal{T}}^{(a, d^{\S})(b, d^{\circ})}$ as $\Rightarrow^{(a, d^{\S})(b, d^{\circ})}$.

The run and languages of \mathcal{T} is those of TS $(ID_{\mathcal{T}}, (q_0, \theta_{\perp}, \perp), (\Sigma_{\mathbb{i}} \times D) \cdot (\Sigma_{\mathbb{o}} \times D), \emptyset, \Rightarrow_{\mathcal{T}}, c)$ where c(s) = 2 for all $s \in ID_{\mathcal{T}}$. Let **RPDT**[k] be the class of k-RPDT and **RPDT** $=\bigcup_{k \in \mathbb{N}_0} \mathbf{RPDT}[k]$.

5.3 Register pushdown automata

Definition 12. A nondeterministic k-register pushdown automaton (k-NRPDA) over $\Sigma_{\hat{i}}$, Σ_{\circ} and D is $\mathcal{A} = (Q, Q_{\hat{i}}, Q_{\circ}, q_{0}, \delta, c)$, where

- Q is a finite set of states,
- $-Q_{\parallel} \cup Q_{\square} = Q, Q_{\parallel} \cap Q_{\square} = \emptyset,$
- $-q_0 \in Q$ is the initial state, and
- $-\ \delta: Q\times (\Sigma\cup \{\tau\})\times Tst_k \to \mathscr{P}(Q\times Asgn_k\times Com([k])) \ is \ a \ transition \ function \ having \ one \ of \ the \ forms:$
 - $(q_{\mathbb{z}}, a_{\mathbb{z}}, tst) \rightarrow (q_{\overline{\mathbb{z}}}, asgn, com) \ (input \ rule)$
 - $(q_{\mathbb{x}}, \tau, tst) \rightarrow (q'_{\mathbb{x}}, asgn, com) \ (\tau \ rule)$

where $(\mathbf{z}, \overline{\mathbf{z}}) \in \{(\mathbf{l}, \mathbf{0}), (\mathbf{0}, \mathbf{l})\}, q_{\mathbf{z}}, q'_{\mathbf{z}} \in Q_{\mathbf{z}}, q_{\overline{\mathbf{z}}} \in Q_{\overline{\mathbf{z}}}, a_{\mathbf{z}} \in \Sigma_{\mathbf{z}}, tst \in Tst_k, asgn \in Asgn_k \ and \ com \in Com([k]).$

 $-c: Q \to [n]$ where $n \in \mathbb{N}$ is the number of priorities.

Let $ID_{\mathcal{A}} = Q \times \Theta_k \times D^*$. We define a set of transition relation $\vdash_{\mathcal{A}} \subseteq ID_{\mathcal{A}} \times ((\Sigma \cup \{\tau\}) \times D) \times ID_{\mathcal{A}}$ as satisfying $((q, \theta, u), (a, d), (q', \theta', u')) \in \vdash_{\mathcal{A}}$, written as $(q, \theta, u) \vdash^{(a,d)} (q', \theta', u')$, iff there exist a rule $(p, a, tst) \to (q, asgn, com) \in \delta$ that satisfy the follows: $d, u(0), \theta \models tst, \theta' = \theta[asgn \leftarrow d]$ and $u' = u(1:), u, \theta'(j')u$ if com = pop, skip, push(j'), respectively. We write $\vdash_{\mathcal{A}}^{(a,d)}$ as $\vdash^{(a,d)}$ if \mathcal{A} is clear from comtext. For sequence $s, s' \in ID_{\mathcal{A}}$ and $w \in ((\Sigma_{\mathbb{I}}^* \times D) \cdot (\Sigma_{\mathbb{Q}} \times D))^n$, we write $s \vdash^w s'$ if there exists a sequence $\rho \in ID_{\mathcal{A}}^m$ and $w' \in ((\Sigma_{\mathbb{I}}^* \times D) \cdot (\Sigma_{\mathbb{Q}} \times D))^{m-1}$ such that $\rho(0) = s, \rho(m) = s', w = ef(w')$ and $\rho(0) \vdash^{w(0)} \cdots \vdash^{w(n-1)} \rho(n)$.

The run and language of k-DRPDA \mathcal{A} is those of TS $\mathcal{S}_{\mathcal{A}} = (ID_{\mathcal{A}}, (q_0, \theta_{\perp}, \perp), \Sigma \times D, \{\tau\} \times D, \Rightarrow_{\mathcal{A}}, c')$ where $c'((q, \theta, u)) = c(q)$ for all $(q, \theta, u) \in ID_{\mathcal{A}}$. We call \mathcal{A} deterministic, or k-DRPDA, if $\mathcal{S}_{\mathcal{A}}$ is deterministic.

5.4 Classes of RPDA

An ε -free k-RPDA is an RPDA not having any τ rules. Let **DRPDA** and **NR-PDA** be the class of ε -free k-DRPDA and k-NRPDA for all $k \in \mathbb{N}_0$, respectively. Let $Com_v = \{pop, skip, push\}$ and $v : Com([k]) \to Com$ be a function such that v(push(j)) = push for $j \in [k]$ and v(com) = com otherwise. We call k-RPDA \mathcal{A} visibly if whose input and output alphabets forms $\Sigma_{\mathbb{I}} \times Com_v$ and $\Sigma_{\mathbb{O}} \times Com_v$, respectively, and every rule of \mathcal{A} has the form $(q, (a, v(com))) \to (q', asgn, com)$. Let **DRPDAv** be the class of visibly ε -free k-DRPDA for all $k \in \mathbb{N}_0$, respectively.

6 Realizability problems for RPDA and RPDT

6.1 Finite actions

For $k \in \mathbb{N}_0$, we define the set of visibly finite input actions as $A_k^{\S} = \Sigma_{\S} \times \{skip\} \times Tst_k$ and the set of visibly output actions as $A_k^{\circ} = \{(\sigma_o, v(com), asgn, j, com) \in \Sigma_{\circ} \times Com_v \times Asgn_k \times [k] \times Com([k])\}$ for k-RPDT. A sequence $w = ((a_0^{\S}, skip), d_0^{\S})((a_0^{\circ}, v(com_0)), d_0^{\circ}) \cdots \in DW(\Sigma_{\S}, \Sigma_{\circ}, D)$ is compatible with a sequence $\overline{a} = (a_0^{\S}, skip, tst_0)(a_0^{\circ}, v(com_0), asgn_0, j_0, com_0) \cdots \in (A_k^{\S} \cdot A_k^{\circ})^{\omega}$ iff there exists a sequence $(\theta_0, u_0)(\theta_1, u_1) \cdots \in (\Theta_k \times D^*)^{\omega}$, called witness, such that $\theta_0 = \theta_{\perp}, \ u_0 = \bot, \ \theta_i, d_i^{\S}, u_i(0) \models tst_i, \theta_{i+1} = \theta_i[asgn_i \leftarrow d_i^{\S}], \theta_{i+1}(j_i) = d_i^{\circ}$ and $u_{i+1} = u_i(1:), u_i, \theta_{i+1}(j')u_i$ if $com_i = pop, skip, push(j')$, respectively. Let $Comp(\overline{a}) = \{w \in DW(\Sigma_{\S}, \Sigma_{\circ}, D) \mid w \text{ is compatible with } \overline{a} \}$. For specification $S \subseteq DW(\Sigma_{\S} \times Com_v, \Sigma_{\circ} \times Com_v, D)$, we define $W_{S,k} = \{\overline{a} \mid Comp(\overline{a}) \subseteq S\}$.

For a data word $w \in DW(\Sigma_{\mathbb{I}}, \Sigma_{\mathbb{O}}, D)$ and a sequence $\overline{a} \in (A_k^{\mathbb{I}} \cdot A_k^{\mathbb{O}})^{\omega}$ such that w(i) = (a, d) and $\overline{a}(i) = (a, \cdot)$ for all $i \geq 0$, we define $w \otimes \overline{a} \in DW(A_k^{\mathbb{I}}, A_k^{\mathbb{O}}, D)$ as satisfying $w \otimes \overline{a}(i) = (\overline{a}(i), d)$ where w(i) = (a, d).

Theorem 13. For a specification $S \subseteq DW(\Sigma_{\mathbb{i}} \times Com_v, \Sigma_{\mathbb{o}} \times Com_v, D))$, the following statements are equivalent.

- There exists a k-RPDT \mathcal{T} such that $L(\mathcal{T}) \subseteq S$.
- There exists a PDT \mathcal{T}' such that $L(\mathcal{T}') \subseteq W_{S,k}$.

6.2 Decidability and undecidability of realizability problems

Lemma 14. $L_k = \{w \otimes \overline{a} \mid w \in Comp(\overline{a})\}$ is definable as a language of (k+2)-DRPDA.

Proof. Let (k+2)-DRPDA $A_k = (\{p,q\} \cup (Asgn_k \times [k] \times Com([k])) \cup [k], \{p\}, \{q\} \cup (Asgn_k \times [k] \times Com([k])) \cup [k], p, \delta_k, c_k)$ over $A_k^{\sharp}, A_k^{\circ}$ and D where $c_k(s) = 2$ for all state s and δ_k consists of rules of the form

$$(p, (a_{\mathring{\mathfrak{g}}}, skip, tst), tst \cup tst') \to (q, \{k+1\}, skip) \tag{1}$$

$$(q, (a_{\circ}, v(com), asgn, j, com), tst'') \rightarrow ((asgn, j, com), \{k+2\}, skip)$$
 (2)

$$((asgn, j, com), \tau, \{k+1\} \cup tst'') \to (j, asgn, com)$$
(3)

$$(j, \tau, \{j, k+2\} \cup tst'') \to (p, \emptyset, skip)$$
 (4)

for all $(a_{\mathbb{i}}, tst) \in A_k^{\mathbb{i}}$, $(a_{\mathbb{o}}, asgn, j, com) \in A_k^{\mathbb{o}}$, $tst' \subseteq \{k+1, k+2\}$ and $tst'' \in Tst_{k+2}$.

We show $L(\mathcal{A}_k) = L_k$. For this proof, we redefine compatibility for finite sequences $w \in ((\Sigma_{\mathbb{I}} \times D) \cdot (\Sigma_{\mathbb{O}} \times D))^*$ and $\overline{a} \in (A_k^{\mathbb{I}} \cdot A_k^{\mathbb{O}})^*$. We show the following claim.

Claim. Assume $n \in \mathbb{N}_0$ and let $w \otimes \overline{a} = ((a_0^{\sharp}, skip, tst_0), d_0^{\sharp})((a_0^{\circ}, v(com_0), asgn_0, j_0, com_0), d_0^{\circ}) \cdots \in ((A_k^{\sharp} \times D) \cdot (A_k^{\circ} \times D))^*$ whose length is 2n and $\rho = (\theta_0, u_0)(\theta_1, u_1) \cdots \in (\Theta_k \times D^*)^*$ whose length is n+1 and $(\theta_0, u_0) = (\theta_{\perp}, \perp)$. Then, ρ is a witness of the compatibility between w and \overline{a} iff $(p, \theta'_0, u_0) \vdash^{w \otimes \overline{a}(0:1)(\tau, d_0^{\sharp})(\tau, d_0^{\circ})} (\theta'_1, u_1) \vdash^{w \otimes \overline{a}(2:3)(\tau, d_1^{\sharp})(\tau, d_1^{\circ})} \cdots \vdash^{w \otimes \overline{a}(2n-2:2n-1)(\tau, d_{n-1}^{\sharp})(\tau, d_{n-1}^{\circ})} (p, \theta'_n, u_n)$ where $\theta'_i \in \Theta_{k+2}$ $(i \in [n])$ satisfies $\theta'_i(j) = \theta_i(j)$ for $j \in [k]$.

(Proof of the claim) We show the claim by induction on n. The case of n = 0 is obvious. We show the claim for arbitrary n > 0 with the induction hypothesis.

first show left to right. By the induction $-w\otimes\overline{a}(0:1)(\tau,d_0^{\emptyset})(\tau,d_0^{\circ})\cdots w\otimes\overline{a}(2n-4:2n-3)(\tau,d_{n-2}^{\emptyset})(\tau,d_{n-2}^{\circ})$ (p,θ_0',u_0) $(p, \theta'_{n-1}, u_{n-1})$ holds. By the assumption, because ρ is the witness, (a) $\theta_{n-1}, d_{n-1}^{\dagger}, u_{n-1}(0) \models$ tst_{n-1} , (b) $\theta_n = \theta_{n-1}[asgn_{n-1} \leftarrow d_{n-1}^{\sharp}]$, (c) $\theta_n(j_{n-1}) = d_{n-1}^{\sharp}$ and (d) $u_n = d_{n-1}^{\sharp}$ $u_{n-1}(1:), u_{n-1}, \theta_n(j')u_{n-1}$ if $com_{n-1} = pop, skip, push(j')$, respectively. By the condition (a), \mathcal{A}_k can do a transition $(p, \theta'_{n-1}, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-2)} (q, \theta^1_{n-1}, u_{n-1})$ for unique $\theta_{n-1}^1 \in \Theta_{k+2}$ by the rule $(p, (a_{n-1}^{\tilde{i}}, skip, tst_{n-1}), tst_{n-1} \cup tst') \to 0$ $(q, \{k+1\}, skip)$ of the form (1). We can also say $(q, \theta_{n-1}^1, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-1)}$ $((asgn_{n-1}, j_{n-1}, com_{n-1}), \theta_{n-1}^2, u_{n-1})$ by the rule of the form (2). Note that $\theta_{n-1}^2(j) = \theta_{n-1}(j) \text{ if } j \in [k], \ \theta_{n-1}^2(k+1) = d_{n-1}^{\emptyset} \text{ and } \theta_{n-1}^2(k+2) = d_{n-1}^{\emptyset}.$ $((asgn_{n-1},j_{n-1},com_{n-1}),\theta_{n-1}^2,u_{n-1}) \;\; \vdash^{(\tau,d_{n-1}^{\sharp})} \;\; (j_{n-1},\theta_{n-1}^3,u_n) \;\; \text{is also valid}$ transition of A_k of the form (3) by the conditions (b) and (d) where $\theta_3^{n-1}(j) = \theta_n(j)$ for $j \in [k]$ and $\theta_{n-1}^3(k+2) = d_{n-1}^{\circ}$. By the condition (c), $\theta_3^{n-1}(j_{n-1}) = \theta_3^{n-1}(k+1) = d_{n-1}^{\circ}$ holds. Thus, a transition $(j_{n-1}, \theta_{n-1}^3, u_n) \vdash^{(\tau, d_{n-1}^{\circ})} (p, \theta_n', u_n)$ is valid with the rule of the form (4). In conclusion, $(p, \theta'_{n-1}, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-2:2n-1)(\tau, d^{\sharp}_{n-1})(\tau, d^{\circ}_{n-1})} (p, \theta'_n, u_n)$ holds, and with the induction hypothesis, we obtain the left to right of the claim.

Next, we prove right to left. By the assumption, $(p, \theta'_{n-1}, u_{n-1}) \vdash^{w \otimes \overline{a}(2n-2:2n-1)(\tau, d^{\sharp}_{n-1})(\tau, d^{\circ}_{n-1})} (p, \theta'_{n}, u_{n})$ holds. By checking four transition rules that realize the above transition relation, we can obtain that $\rho(n-1), \rho(n), w \otimes \overline{a}(2n-2)$ and $w \otimes \overline{a}(2n-1)$ satisfies the conditions (a) to (d) described in the previous paragraph. Thus, by the induction hypothesis, we obtain ρ is a witness of the compatibility between w and \overline{a} .

(end of the proof of the claim)

By the claim, $w \otimes \overline{a} \in L_k \Leftrightarrow \text{there exists a witness } (\theta_0, u_0)(\theta_1, u_1) \cdots \in (\Theta_k \times D^*)^{\omega} \text{ of } w \text{ and } \overline{a} \Leftrightarrow \text{there exists a run } (p, \theta'_0, u_0) \vdash^{w \otimes \overline{a}(0:1)(\tau, d_0^{\sharp})(\tau, d_0^{\bullet})} (\theta'_1, u_1) \vdash^{w \otimes \overline{a}(2:3)(\tau, d_1^{\sharp})(\tau, d_1^{\bullet})} \cdots \text{ of } A \Leftrightarrow w \otimes \overline{a} \in L(A_k) \text{ holds.}$

Lemma 15. For specification S definable by some visibly ε -free k'-DRPDA. $L_{k,\overline{S}} = \{w \otimes \overline{a} \mid w \in Comp(\overline{a}) \cap \overline{S}\}$ is definable as a language of visibly (k+k'+4)-DRPDA.

Proof. Let $L_{\overline{S}} = \{w \otimes \overline{a} \mid w \in \overline{S}\}$, $\mathcal{A}_{\overline{S}}$ be a visibly ε -free k'-DRPDA such that $L(\mathcal{A}_{\overline{S}}) = L_{\overline{S}}$ and \mathcal{A}_k be a (k+2)-DRPDA defined in Lemma 14. Because $L_{k,\overline{S}} = L_k \cap L_{\overline{S}}$ and both L_k and $L_{\overline{S}}$ are visibly DRPDA, it is enough to show we can construct visibly (k+k'+4)-DRPDA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{A}_{\overline{S}}) \cap L(\mathcal{A}_k)$.

For simplicity, we rewrite \mathcal{A}_k as k_1 -DRPDA $\mathcal{A}_1 = (Q_1, Q_1^{\natural}, Q_1^{\circ}, q_1^{\circ}, \delta_1, c_1)$ and $\mathcal{A}_{\overline{S}}$ as k_2 -DRPDA $\mathcal{A}_2 = (Q_2, Q_2^{\natural}, Q_2^{\circ}, Q_2^{\circ}, \delta_2, c_2)$, but they satisfy that $c_1(q)$ is even for all $q \in Q_1$ and every rules in δ_1 forms triple sequencial rules

$$(q_1, (a, v(com_1)), tst_1) \rightarrow (q_2, asgn_1, skip)$$

$$(2')$$

$$(q_2, \tau, tst_2) \to (q_3, asgn_2, com_1) \tag{3'}$$

$$(q_3, \tau, tst_3) \rightarrow (q_4, asgn_3, skip)$$
 (4')

Note that (2'), (3') and (4') correspond to (2), (3) and (4), respectively, and (1) can be devided in three rules of the form (2'), (3') and (4').

We construct $(k_1 + k_2 + 2)$ -DRPDA $\mathcal{A} = (Q_1 \times Q_2 \times [5], Q_1^{\sharp} \times Q_2^{\sharp} \times [5], Q_1^{\mathfrak{o}} \times Q_2^{\mathfrak{o}} \times [5], (q_0^1, q_0^2, 1), \delta, c)$ where $c((q_1, q_2, i)) = c_2(q_2)$ for all $(q_1, q_2, i) \in Q$. For all rules

- $-(q_1, (a, v(com_1)), tst_1) \rightarrow (q_2, asgn_1, skip),$
- $-(q_2, \tau, tst_2) \rightarrow (q_3, asgn_2, com_1),$
- $-(q_3, \tau, tst_3) \rightarrow (q_4, asgn_3, skip) \in \delta_1$ and
- $-(q,(a,v(com)),tst) \rightarrow (q',asgn,com) \in \delta_2$

 $(v(com_1) = v(com))$ for $a \in \Sigma$, let $tst^{+k_1} = \{i + k_1 \mid i \in tst\} \cup \{top \mid top \in tst \setminus [k_1]\}$, $asgn^{+k_1} = \{i + k_1 \mid i \in asgn\}$ and $com^{+k_1} = push(j + k_1)$ if com = push(j) and $com^{+k_1} = com$ otherwise, then δ consists of the rules

- $-((q_1, q, 1), \tau, tst' \cup \{top\}) \rightarrow ((q_1, q, 2), \{k_1 + k_2 + 1\}, pop)$
- $-((q_1,q,2),\tau,tst'\cup\{top\})\to((q_1,q,3),\{k_1+k_2+2\},push(k_1+k_2+1))$
- $((q_1, q, 3), (a, v(com_1)), (tst_1 \cup tst^{+k_1}) \setminus top \cup \{k_1 + k_2 + t \mid t = 1 \text{ if } top \in tst_1 \text{ and } t = 2 \text{ if } top \in tst \}) \rightarrow ((q_2, q', 4), asgn_1 \cup asgn^{+k_1}, com^{+k_1})$
- $-((q_2, q', 4), \tau, tst_2 \cup tst') \rightarrow ((q_3, q', 5), asgn_2, com_1)$
- $-((q_3, q', 5), \tau, tst_3 \cup tst') \rightarrow ((q_4, q', 0), asgn_3, skip)$

for all $tst' \in Tst_{k_1+k_2+2}$. Then, $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$.

Lemma 16. $W_{S,k} = \overline{Lab(L_{\overline{S},k})}$.

Proof. For every $\overline{a} \in (A_k^{\mathfrak{g}} A_k^{\mathfrak{g}})^{\omega}$, $\overline{a} \notin W_{S,k} \Leftrightarrow Comp(\overline{a}) \not\subseteq S \Leftrightarrow \exists w.w \in Comp(\overline{a}) \cap \overline{S} \Leftrightarrow \exists w.w \otimes \overline{a} \in L_{\overline{S},k} \Leftrightarrow \overline{a} \in Lab(L_{\overline{S},k})$. Thus, $W_{S,k} = \overline{Lab(L_{\overline{S},k})}$ holds.

Theorem 17. For all $k \geq 0$, REAL(**DRPDAv**, **RPDT**[k]) is decidable.

Proof. By Lemma 15, $L_{\overline{S},k}$ is definable by some visibly DRPDA. Because every language recognized by some visibly DRPDA can be converted to the language of visibly DPDA by taking a projection on its label, $W_{S,k}$ is definable by some visibly DPDA by Lemma 16. By Theorem 13, we can check Real(**DPDA**, **PDT**) for $W_{S,k}$, which is shown to be decidable in Theorem 9, instead of checking Real(**DRPDAv**, **RPDT**[k]).

Theorem 18. For all $k \geq 0$, REAL(NRPDA, RPDT[k]) is undecidable.

Proof. We can easily reduce the problem from Real(NPDA, PDT), whose undecidability is proved in Theorem 10.

7 Conclusion

References