Dr. I. Gleason SS 2024

Dr. J. Anschütz

Algebraic Geometry II

8. Exercise sheet

Exercise 1 (4 points):

Let \mathcal{A} be an abelian category, and let $\mathcal{B} := \operatorname{Fun}(\bullet \to \bullet, \mathcal{A})$ be the category of arrows in \mathcal{A} . Set

$$F: \mathcal{B} \to \mathcal{A}, (f: X \to Y) \mapsto \ker(f).$$

Use the snake lemma to find a universal δ -functor for F, and show that $R^1F(f\colon X\to Y)\cong\operatorname{coker}(f)$ while $R^iF=0$ for $i\geq 2$.

Exercise 2 (4 points):

Prove the horseshoe lemma as presented in class.

Exercise 3 (4 points):

Let (X, \mathcal{O}_X) be a ringed space, let $V \subseteq X$ be an open subset and set $\mathcal{O}_V := \mathcal{O}_{X|V}$. Let $j: (V, \mathcal{O}_V) \to (X, \mathcal{O}_X)$ be the canonical morphism of ringed spaces.

i) Let \mathcal{F} be an \mathcal{O}_V -module and set $j_!$ as the sheafification of the presheaf

$$U \subseteq X \mapsto \begin{cases} \mathcal{F}(U) & \text{if } U \subseteq V \\ 0 & \text{otherwise.} \end{cases}$$

Prove that the functor $j_!$ from \mathcal{O}_V -modules to \mathcal{O}_X -modules is left adjoint to the restriction functor j^* .

- ii) Let \mathcal{F} be an injective \mathcal{O}_X -module. Prove that the restriction $\mathcal{F}_{|V}$ is an injective \mathcal{O}_V -module.
- iii) If (X, \mathcal{O}_X) is a scheme, show that in general $j_!\mathcal{O}_V$ is not quasi-coherent.

Exercise 4 (4 points):

- 1) Let $\iota \colon \operatorname{Mod}_{\mathbb{Z}/2} \to \operatorname{Mod}_{\mathbb{Z}}$ be the natural forgetful functor and set $F \colon \operatorname{Mod}_{\mathbb{Z}} \to \operatorname{Mod}_{\mathbb{Z}}$, $A \mapsto \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2, A)$. Show that in general $R^i(F \circ \iota) \ncong R^iF \circ \iota$.
- 2) Let (X, \mathcal{O}_X) be a ringed space. Use exercise 3 to show that each injective \mathcal{O}_X -module is a flasque abelian sheaf. Let $|-|: \operatorname{Mod}_{\mathcal{O}_X} \to \operatorname{Sh}_{\operatorname{Ab}}(X)$ be the forgetful functor to abelian sheaves. Conclude that for $\mathcal{M} \in \operatorname{Mod}_{\mathcal{O}_X}$ we have $H^i(X, \mathcal{M}) \cong H^i(X, |\mathcal{M}|)$ for $i \geq 0$.

To be handed in on: Thursday, 13.06.2024 (during the lecture or via eCampus).