CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BBCAMRRIDGE

www.PapaCambridge.com

Page 2	Mark Scheme	Syllabus	.0
	IGCSE – May/June 2013	0620	No.

1 (a) (i) element

cannot be broken into anything simpler by chemical means **OR** made up of one type of atom only

(ii) compound

two **or** more different elements [1] chemically bonded together [1]

(iii) mixture

two **or** more substances not chemically joined together [1]

(b) (i) mixture [1]

(ii) compound [1]

(iii) element [1]

(c) conductivity (of heat or electricity) [1]

[Total: 9]

2 (a) (i) large / high surface area

[1]

high collision rate / collide more / many collisions (between oxygen molecules and aluminium atoms) **NOT** faster collisions

[1]

[1]

(ii) concentration of reactants decreases

[1]

allow one mark **ONLY** for: for reactants used up **or** amount of reactant decreases

(iii) any three of four from one strand:

M1	increase in temperature		
M2	molecules move faster or	particles have more energy	
М3	higher collision rate		
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a	

[3]

(b) (i) flour or wood dust or coal dust or carbon or sugar

[1]

			V .	
Page 3	Mark Scheme	Syllabus	· 2	
	IGCSE – May/June 2013	0620	100	
			A 40	_

Pa	ge 3	Mark Scheme	Syllabus	V
		IGCSE – May/June 2013	0620	
	(ii)	any three from: powder and larger pieces / different sized particle suitable named solid, e.g. magnesium suitable named solution, e.g. named acid or copp result – powder reacts faster than larger pieces NOT Cu (with acid); K / Na with anything		ambridge.co
(a)	(i)	cars, ships, bridges, construction, white goods, s	crews, nails, roofing, fencing, etc.	[1]
	(ii)	e.g. stainless steel cooking utensils, surgical equipment, sinks or ma	ain use	[1] [1]
(b)		v in oxygen NO on dioxide and sulfur dioxide (escape as gases)	T air	[1] [1]
	CO	ND on reaction with air / oxygen calcium oxide / quicklime		[1]
	ALI	. OW calcium carbonate, limestone sphorus oxide or silicon oxide (are acidic)		
	read	rts (with calcium oxide / CaCO ₃) orm slag / calcium silicate		[1] [1]
(a)	(i)	any ambiguous formula, e.g. GeH ₃ -GeH ₂ -GeH ₃		[1]
	(ii)	Ge _n H _{2n+2} NOT C instead of Ge		[1]
(b)		ect formula ND 4bps around germanium atom		[11
		ND 3nbps and 1bp around each chlorine atom		[1] [1]
(c)		oxygen atoms around each germanium atom		[1]
		germanium atoms around each oxygen atom hedral		[1] [1]
(d)	oxic	ation		[1]
. ,	CO	ND increase in oxidation number CEPT: electron loss		[1]

Page 4	Mark Scheme	Syllabus	1
	IGCSE – May/June 2013	0620	5-
<u>.</u>	-		C

- 5 (a) (i) any Group 1 metal ACCEPT: lithium
 - (ii) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ PbO [1]COND balancing [1]
 - (iii) the metal in a (i) is more reactive than lead more reactive metals have more stable compounds

 OR has stronger (ionic) bonding [1]
 - (b) (i) speed / rate of forward reaction = speed / rate of back reaction
 OR macroscopic properties do not change / constant (with time)
 - (ii) goes darker **OR** goes brown [1] **COND** lower pressure favours side with more moles [1] **COND** this is NO₂ side **OR** reactant side **OR** goes left [1]
 - (iii) exothermic [1]
 - low temperatures favour the exothermic reaction or low temperatures moves equilibrium to right / product side / towards N_2O_4 [1]
 - (iv) forward reaction is bond forming [1]
- 6 (a) (i) measure melting point NOT just heating pure sample would melt at 135 °C [1]
 OR impure would melt lower than 135 °C
 - (ii) $C_3H_4O_4$ [1]
 - (iii) C₂H₄O₂ **OR** CH₃COOH [1] ethanoic **OR** acetic acid [1] both marks are independent of each other
 - (iv) ester NOT organic, covalent [1]
 - (b) (i) malonic is a weaker acid/less dissociated

 OR sulfuric acid is a stronger acid/more dissociated

 NOT sulfuric acid is a strong acid

 [1]

		2.
Page 5	Mark Scheme	Syllabus
	IGCSE – May/June 2013	0620
		S

(ii) add piece of suitable metal, e.g. Mg ALLOW Al, Ca NOT K, Na, Cu sulfuric acid reacts faster OR malonic reacts slower

OR

as above add a piece of CaCO₃, if soluble carbonate then [1] only

NOT sulfuric acid is a good conductor

(ii)
$$CuSO_4$$

 H_2O [2]

(iii)
$$CH_2(COO)_2 Mg$$

 H_2 [2]

(iv)
$$K_2SO_4$$
 CO_2 and H_2O NOT H_2CO_3 [2]

7 (a) (i) a compound which contains carbon and hydrogen only [1]

alkenes contain at least one C=C double bond
or they are unsaturated (hydrocarbons)
or have the general formula
$$C_nH_{2n}$$
 [1]

(b)
$$C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$$
 [1]

(iii) (CH₃-CH₂-CH=CH₂) + H₂O [1]
$$\rightarrow$$
 CH₃-CH₂-CH₂-CH₂OH [1] ALLOW CH₃-CHOH-CH₂-CH₃ butene reacts with water/steam (to form butanol) ONLY [1]

(iv)
$$C_6H_{12} + H_2 \rightarrow C_6H_{14}$$
 [2] alkenes react with **hydrogen** [1] **ONLY**

(d) volume of oxygen used =
$$150 \, \text{cm}^3$$
 [1]

[Total: 16]

Page 6	Mark Scheme	Syllabus	.0	V
	IGCSE – May/June 2013	0620	100	
				•

volume of carbon dioxide formed = $100\,\mathrm{cm}^3$ any equation of the combustion of an alkene e.g. $2C_5H_{10}$ + $15O_2$ \rightarrow $10CO_2$ + $10H_2O$ formulae **COND** balancing

[1] COM