

3.3. Методология Бокса-Дженкинса

Родионова Л.А. 2019

Методология Бокса-Дженкинса

- 1. Идентификация модели
- 2. Оценивание
- 3. Тестирование и диагностика
- 4. Прогнозирование.

George Edward Pelhan Box (18 October 1919 – 28 Marcl 2013)

- Бокс и Дженкинс применили данную методологию ко всем временным рядам (финансовым, так и к микроэкономическим) в 70-е, как к.
- Было установлено, что практически все экономические процессы описываются моделями **ARIMA** с параметрами **р и q** не превышающими 2.
- Точность прогнозирования по моделям **ARIMA** оказалась выше.

2019

Gwilym Meirion Jenkins (1933 – 10 July 1982) was a Welsh statistician

Методология Бокса-Дженкинса

Этап 1. Идентификация модели

- 1. Определить: является ли ряд стационарным.
- 2. Если ряд не является стационарным, необходимо установить *порядок интегрируемости d*, добиться стационарности ряда, взяв достаточное количество последовательных разностей (либо выделить детерминированный тренд для ряда).
- 3. Определение общих характеристик модели: ACF и PACF, на основе которых определяются параметры **р** и **q** модели **ARIMA(p, d, q)**.

Замечание. При равных условиях всегда следует отдавать предпочтение более простой модели.

ARIMA: Идентификация модели

Исходный ряд

нулевая гипотеза единичного корня: a=1 тест с константой модель: $(1-L)y=b0+(a-1)*y(-1)+\ldots+e$ коэф. автокорреляции 1-го порядка для e:-0,397 лаг для разностей: F(3, 16)=13,295 [0,0001] оценка для (a-1):0,0165501 тестовая статистика: $tau_c(1)=0,38765$ асимпт. p-значение 0,9825

Первая разность

d=?

```
нулевая гипотеза единичного корня: a=1 тест с константой модель: (1-L)y = b0 + (a-1)*y(-1) + \dots + e коэф. автокорреляции 1-го порядка для e: -0,412 оценка для (a-1): -0,689064 тестовая статистика: tau_c(1) = -4,00376 асимпт. p-значение 0,001393

с константой и трендом модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + \dots + e коэф. автокорреляции 1-го порядка для e: -0,412 оценка для (a-1): -0,753258 тестовая статистика: tau_ct(1) = -4,03014 асимпт. p-значение 0,007887
```


ARIMA: Идентификация модели

AR(p)
$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + ... + \alpha_p y_{t-p} + \varepsilon_t$$

1. MHK.

- $\varepsilon_{\rm t}$ белый шум, то корреляция регрессоров со случайным возмущением отсутствует.
- Если $\varepsilon_{\rm t}$ *гауссовский*, то у_t распределены нормально, а МНК оценки коэффициентов *состоятельны и асимптотически нормальны*.

2. **MMII** AR(1) $y_t = c + \alpha y_{t-1} + \varepsilon_t$

- в-р неизвестных параметров:

$$\theta = \theta(c, \alpha, \sigma^2) = \theta(0, \alpha, 1)$$

- -Задаем α=-0.9 до 0.9
- Вычисляем $L(\theta)$ =
- Выбираем max $L(\theta)$

процедура нелинейной оптимизации: grid search

2. **ММП**

$$\mathbf{AR}(\mathbf{1}) \quad \mathbf{y}_t = \mathbf{c} + \alpha \mathbf{y}_{t-1} + \varepsilon_t$$

- в-р неизвестных параметров: $\theta = \theta(c, \alpha, \sigma^2) = \theta(0, \alpha, 1)$
- -Задаем α=-0.9 до 0.9
- Вычисляем $L(\theta)$ =
- Выбираем max $L(\theta)$

Задание. Дано

$$y_1$$
 y_2 y_3 y_4 y_5

- Изменяя α =-0.9 до 0.9 (шаг 0.1), определите max L(θ)

Процедуры численной оптимизации позволяют найти оценки ММП, обладающие свойствами состоятельности и асимптотической нормальности.

- -Поиск на сетке (grid search)
- метод наискорейшего подъема (steepest ascent)
- Метод Newton-Raphson
- Метод Davidon-Fletcher-Powell

(См. Hamilton (1994), Chapter 5.8)

MA(q): применение МНК затруднительно из-за ненаблюдаемости $\varepsilon_{\rm e}$ \rightarrow

- 1. Использование метода максимального правдоподобия
- 2. Использование процедур нелинейной оптимизации

Оценивание коэффициентов модели в стат.пакетах

ARMA(p,q)

$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}$$

ARIMA

Этап 3. Тестирование и диагностика модели

- Выполнение предпосылок ARMA моделей:
- 1. Проверка стационарности и обратимости ARMA модели.
- 2. Проверка гипотез о значимости коэффициентов модели.
- Диагностика остатков модели:

некоррелированность остатков (первоначальное предположение, что случайное возмущение является белым шумом)

нормальность остатков

- Качество модели → **информационные критерии AIC и BIC**

Диагностика модели

информационные критерии отбора моделей

Информационный критерий Акаике (AIC) для ARMA(p,q) [Akaike (1973)]. $AIC = \ln \hat{\sigma}^2 + \frac{2(p+q)}{T}$

Информационный критерий Шварца (BIC) для ARMA(p,q)

[Schwarz (1978)]:
$$BIC = \ln \hat{\sigma}^2 + \ln T \frac{(p+q)}{T}$$

 $\ln \hat{\sigma}^2$ - логарифм остаточной дисперсии, T – число наблюдений

! Лучшая модель соответствует минимальным значениям критериев Акаике и Шварца.

SBIC - Schwarz's Bayesian information criterion, AIC - Akaike's information criterion estat ic

Model			11(model)		1380.104	1201 624
	/4	-695.7129	-093.0319	5	1380.104	1391.024

Диагностика модели

информационные критерии отбора моделей

критерий Хеннана – Куинна [Hannan, Quinn (1979)]

$$HQIC = \ln \hat{\sigma}^2 + \frac{2\ln(\ln T)}{T}(p+q)$$

Некоррелированность остатков

- -Q-статистика Бокса Пирса, Льюнга Бокса
- Анализ автокорреляции на основании ACF, PACF (выявление у процесса свойств белого шума)
- -Статистика Дарбина-Уотсона
 - недостатки теста
- Тест Бройша-Годфри

Тест Бройша-Годфри

Тест Бройша-Годфри (Breusch-Godfrey) (тест множителей Лагранжа)

$$H_0: \rho_1 = ... = \rho_m = 0$$

$$e_{t} = a_{0} + \sum_{i=1}^{k} a_{i} y_{t-i} + \sum_{s=1}^{m} \rho_{s} e_{t-s} + \mathcal{E}_{t}$$
 (*)

где e_i - остатки, полученные при оценивании основной модели наблюдений.

$$LM=nR^2 \sim \chi^2 (m)$$

где n – количество наблюдений, R² для (*)

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	9.600	1	0.0019

HO: no serial correlation

. . estat bgodfrey, lags(5)

Breusch-Godfrey LM test for autocorrelation

lags (<i>p</i>)	chi2	df	Prob > chi2
5	9.444	5	0.0926

HO: no serial correlation

- Устранение автокорреляции – наращивание лаговой структуры

Свойство нормальности

Тест Ха́рке-Бе́ра (Jarque-Bera test):

H0: S=0, K=3

H1: $S \neq 0$, $K \neq 3$

где S - коэффициент асимметрии (Skewness),

K- коэффициент эксцесса (Kurtosis)

$$JB = n\left(\frac{S^2}{6} + \frac{(K-3)^2}{24}\right)$$
, rge $S = \frac{\sum e_i^3}{n\hat{\sigma}^3}$, $K = \frac{\sum e_i^4}{n\hat{\sigma}^4}$, $\sim \chi^2$ (2)

Jarque, Carlos M.; Bera, Anil K. (1987). "A test for normality of observations and regression residuals". International Statistical Review 55 (2): 163–172.

Тест Шапиро-Уилкса

ARIMA: пример оценивания

Устранение автокорреляции – наращивание лаговой структуры

ARIMA: пример оценивания

Ожидаемая продолжительность жизни мужчин в Москве

Устранение автокорреляции – наращивание лаговой структуры

Порядок AR:	3	<u>^</u>	V	или отдельные лаги	13	
Разность:	1	*		_		
Порядок МА:	0	* *		или отдельные лаги		

	Коэффициент	Ст. ошибка	Z	Р-значение	
const	0,488032	0,139626	3,495	0,0005	***
phi_1	0,458775	0,116365	3,943	8,06e-05	***
phi 3	-0,674663	0,110950	-6,081	1,20e-09	***

1,375260 Среднее зав. перемен 0,332083 Ст. откл. зав. перемен Среднее инноваций 0,793458 -0,161711 Ст. откл. инноваций Лог. правдоподобие -29,97271 Крит. Акаике 67,94542 69,19557 Крит. Шварца 72,65764 Крит. Хеннана-Куинна

Tect на наличие автокорреляции до порядка 4
Ljung-Box Q' = 4,40567,
p-значение = P(Xи-квадрат(2) > 4,40567) = 0,1105

Этап 4. Прогнозирование

Существует два источника ошибок:

- Неопределенность будущих значений случайной величины $\varepsilon_{\rm t}$
- Отсутствие точных значений коэффициентов модели
- Значение переменной прогнозируется для некоторого будущего момента времени, при этом лаговые значения переменной можно рассматривать фиксированными или случайными.
- Первая возможность приводит к условному *прогнозу* (как в модели множественной регрессии), а вторая к *безусловному*.

Из ТВиМС: условная дисперсия СВ не превышает ее безусловную дисперсию → *точность* условного прогноза *выше*.

Этап 4. Прогнозирование

Прогноз y_{T+h}

 I_T – информационное множество

$$I_T = \{y_{-\infty}, y_1 \dots y_{T-1}, y_T\}$$

Критерий выбора прогнозирующей функции:

$$E((y_{T+h} - \hat{y}_{T+h})^2 \mid_{I_T}) \rightarrow \min$$

Наилучший прогноз

при

минимальной

среднеквадратической ошибке:

$$E\{y_{T+h} \mid y_1....y_T\}$$

Точность прогнозирования:

- ошибка прогноза
- дисперсия ошибки

Качество прогноза

$$ME = \frac{1}{N} \sum_{i=1}^{N} (y_{t+s} - f_{t,s})$$

$$MAA = \frac{1}{N} \sum_{i=1}^{N} |y_{t+s} - f_{t,s}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_{t+s} - f_{t,s})^{2}$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_{t+s} - f_{t,s})^2}$$

$$MPE = \frac{1}{N} \sum_{i=1}^{N} \frac{y_{t+s} - f_{t,s}}{y_{t+s}} 100\%$$

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_{t+s} - f_{t,s}}{y_{t+s}} \right| 100\%$$

Table 6.2 Forecast error aggregation

	Steps ahead	Forecast	Actual	Squared error	Absolute error
	1	0.20	-0.40	$(0.200.40)^2 = 0.360$	0.200.40 = 0.600
ı	2	0.15	0.20	$(0.15-0.20)^2 = 0.002$	0.15 - 0.20 = 0.050
	3	0.10	0.10	$(0.10-0.10)^2 = 0.000$	0.10 - 0.10 = 0.000
	4	0.06	-0.10	$(0.060.10)^2 = 0.026$	0.060.10 = 0.160
	5	0.04	-0.05	$(0.040.05)^2 = 0.008$	0.040.05 = 0.090

Theil's *U*-statistic (1966)

$$U = \frac{\sqrt{\sum_{t=T_1}^{T} \left(\frac{y_{t+s} - f_{t,s}}{y_{t+s}}\right)^2}}{\sqrt{\sum_{t=T_1}^{T} \left(\frac{y_{t+s} - f_{t,s}}{y_{t+s}}\right)^2}}$$

Mean Error (ME),
Mean Squared Error (MSE),
Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE),
Mean Percentage Error (MPE)
Mean Absolute Percentage Error (MAPE).

Качество прогноза: пример

Статистика для оценки прогноза

Средняя ошибка (МЕ)	-0,16171
Средняя квадратичная ошибка (MSE)	0,8921
Корень из средней квадратичной ошибки (RMSE)	0,94451
Средняя абсолютная ошибка (МАЕ)	0,68664
Средняя процентная ошибка (МРЕ)	-0,28416
Средняя абсолютная процентная ошибка (МАРЕ)	1,0642
U-статистика Тейла (Theil's U)	0,65651

3.4. Обобщение: ARFIMA дробноинтегрированный процесс

Обобщение:

дробноинтегрированный процесс

$$ARIMA(p,d,q) \qquad \alpha_{p}(L)\Delta^{d} y_{t} = \theta_{q}(L)\varepsilon_{t} \to d \in \{0,1,2\}$$

$$\alpha_{p}(L)(1-L)^{d} y_{t} = \theta_{q}(L)\varepsilon_{t}$$

Дробноинтегрированный процесс: d- действительное число.

Пример:

$$(1-L)^d y_t = \mathcal{E}_t(*)$$

$$d = 0$$

$$d = 1$$

$$(1-L)^{-d} = \sum_{j=0}^{\infty} \frac{(-d)\dots(-d-j+1)}{j!} (-L)^j = \sum_{j=0}^{\infty} h_j L^j,$$

$$h_j = \frac{\Gamma(j+d)}{\Gamma(d)\Gamma(j+1)}$$
 и $\Gamma(\cdot)$ – гамма-функция Эйлера.

$$d-\partial e reve{u} c m e$$
.число $\to y_t = \sum_{j=0}^{\infty} h_j \mathcal{E}_{t-j}(**)$

Пример: Каким будет разложение при **d=0.3,0.5**? (показать)

Разностный оператор: преобразования рядов

Дробноинтегрированный процесс

(fractionally-integrated)

ARFIMA: Autoregressive fractionally integrated moving-average models

$$ARFIMA: \alpha_p(L)\Delta^d y_t = \theta_q(L)\varepsilon_t \to d - \partial e \ddot{u} c m.$$
число

$$\alpha_p(L)(1-L)^d y_t = \theta_q(L)\varepsilon_t \qquad (1-L)^d y_t = \varepsilon_t \to y_t = \sum_{j=0}^{\infty} h_j \varepsilon_{t-j} \ (**)$$

Теорема (основные свойства I(d)-процесса), Hosking (1981).

- (a) Если d < 0.5, то y_t стационарный процесс;
- (б) Если d > -0.5, то разложение (**) обратимо.
- (в) Если -0.5 < d < 0.5, то ковариационная функция y_t : $\gamma_k = \frac{\Gamma(1-2d)\Gamma(k+d)}{\Gamma(d)\Gamma(1-d)\Gamma(k+1-d)}\sigma_\epsilon^2$

корреляционная функция ведет себя при $k\to\infty$ как $\rho_k \sim \frac{\Gamma(1-d)}{\Gamma(d)} k^{2d-1}$ (г) d>0,5 - процесс нестационарен.

Условия -0.5 < d < 0.5 всегда можно добиться, применив необходимое количество обычных дифференцирований.

Процессы с длинной памятью

Стационарный процесс является **процессом с длинной памятью** (Longmemory processes), если существуют α , с (0< α <1, c>0) и для ACF выполняется соотношение:

 $\lim_{k\to\infty}\frac{\rho_k}{ck^{-\alpha}}=1$

Обнаружение «длинной памяти»

- Тесты Дики-Фуллера и Филипса-Перрона имеют малую мощность, плохо отличают I(1) процессы от I(d) процессов $c\ d < 1$.
- -Тест KPSS, имеющий H_0 о стационарности, состоятелен при стационарных процессах с длинной памятью (I(d)-процессах с |d| < 0.5), но необходимо большое количество наблюдений (не менее 1000).
- использование R/S статистики (rescaled range).

Дробноинтегрированный процесс

(fractionally-integrated)

ARFIMA: Autoregressive fractionally integrated moving-average models

$$\begin{split} ARFIMA: &\alpha_p(L)\Delta^d \, y_t = \theta_q(L) \mathcal{E}_t, \quad d - \partial e \breve{u} c m. \textit{число} \\ y_t &= \underline{(1-L)^{-d} \left(\alpha_p(L)\right)^{-1} \theta_q(L)} \mathcal{E}_t \\ \text{long-run effects} \qquad \text{short-run effects} \end{split}$$

- 1. Оценивание d.
- 2. Оценивание р и q, полагая d=0.

Практическое использование ARFIMA:

Hurst (1951), Hosking (1981) – в гидрологии (разливы Нила)

Granger and Joyeux (1980) – в экономике для макроагрегированных данных

Baillie (1996): обзор работ

Дробноинтегрированный процесс: пример

Пример: Mount Campito tree ring data (Stata)

Baillie (1996): measurements of the widths of the annual rings of a Mount Campito Bristlecone pine. Данные: from 3436 BC to 1969 AD.

Granger and Joyeux (1980) показали, что для ARFIMA процесса ACF убывает с более медленной гиперболической скоростью (по сравнению с ARMA)

R/S анализ (Rescaled range statistics)

- -Ввел Хёрст (1951): исследования разливов Нила
- Мандельброт (1972) применил к финансовым временным рядам
- -- **R/S-статистика** это отношение размаха частичных сумм центрированных значений к стандартному отклонению.
 - Рассмотрим ряд $y_1, y_2, ... y_T$
 - -Делим ряд на несколько интервалов n=T, n=T/2, n=T/4, n=T/8 и т.д.
 - Рассчитываем и сравниваем частичные суммы

$$\left(\frac{R}{S}\right)_{t} = \frac{1}{\hat{\sigma}_{t}} \left(\max_{1 < j < T} \sum_{j=1}^{t} (y_{j} - \overline{y}) - \min_{1 < j < T} \sum_{j=1}^{t} (y_{j} - \overline{y}) \right)$$

$$\hat{\sigma}^2 = \frac{1}{T} \sum_{i=1}^{T} (y_i - \overline{y})^2, \ \overline{y} = \frac{1}{T} \sum_{i=1}^{T} y_i$$

Hurst H. E. Long term Storage Capacity of Reservoirs // Transactions of the American Society of Civil Engineers. 1951. N 116. P. 770–799.

Mandelbrot B. Statistical Methodology for Non-Periodic Cycles:From the Covariance to R/S Analysis // Annals of Economic and Social Measurement. 1972. N 1. P. 259–290;

Показатель Херста

-На основе **R/S-статистики** рассчитывается показатель Херста **H**

Экспонента Хёрста - мера, используемая для анализа процессов с длинной памятью.

H>0.5 процесс персистентен (следующие друг за другом приращения процесса имеют тенденцию сохранять знак) и имеют положительную автокорреляцию.

Н=0.5 - тенденции не выражено (например, белый шум),

Н<0.5 процесс характеризуется антиперсистентностью и отрицательной автокорреляцией — любая тенденция стремится смениться противоположной.

Показатель Херста

$$\frac{R}{S} \approx \frac{\sum_{i=1}^{t} R_i}{\sum_{i=1}^{t} S_i} = E\left(\frac{R}{S}\right)_t \approx (cn)^H, n \to \infty$$

$$H=d+0.5$$

2019

Rescaled range figures for d_realgdp (логарифмы имеют основание 2)

Размер	RS(avg)	log(Размер)	log(RS)
203	40,056	7,6653	5,3240
101	18,430	6,6582	4,2040
50	11,352	5,6439	3,5048
25	6,5677	4,6439	2,7154
12	4,0570	3,5850	2,0204

Результаты регрессии (n = 5)

	коэфф.	Ст. ошибка
Константа	-0,93040	0,26810
Угл. коэф.	0,79516	0,046066

Оценка модели экспонента Хёрста = 0,795165

Подход Lo

Недостатки R/S-статистики - чувствительность к краткосрочным зависимостям и гетероскедастичности.

Э. Ло (1988, 1991) модифицировал статистику, преобразовал о

$$Q_{n} = \left(\frac{R}{S}\right)_{n} = \frac{1}{\hat{\sigma}_{n}} \left(\max_{1 < j < T} \sum_{j=1}^{n} (y_{j} - \bar{y}) - \min_{1 < j < T} \sum_{j=1}^{n} (y_{j} - \bar{y}) \right)$$

$$\hat{\sigma}_{n}^{2}(Q) = \frac{1}{n} \sum_{j=1}^{n} (y_{j} - \bar{y})^{2} + \frac{2}{n} \sum_{j=1}^{q} \hat{\sigma}_{j}(q) \gamma_{j}$$

$$\hat{\sigma}_{i}(q) = 1 - \frac{j}{q+1}, q < n$$

Подход Lo

Н₀: наличие краткосрочной зависимости

Н₁: наличие долгосрочной зависимости

Э. Ло (1988, 1991) вывел таблицу критических значений - интервалы, при попадании в которые статистики, нулевая гипотеза не отвергается.

Критические значения модифицированного R/S теста

1%	(0.721; 2.098)
5%	(0.809; 1.862)
10%	(0.861;1.747)

ARFIMA: приложения

Таблица 1: ARFIMA-модели для японских цен (переменная p)

AR n MA	$10^3 \times \hat{\sigma}_T^2$	SIC	â
	3,715	-2,4226	0,461
MA(1)	3,700	-2,4169	0,546
AR(1)	3,700	-2,4169	0,531
AR(2)	3,709	-2,4159	0,444
MA(2)	3,710	-2,4158	0,448
AR(1), AR(2)	3,700	-2,4096	0,551

Таблица 3: ARFIMA-модели для обменного курса (переменна:

AR II MA	$10 \times \hat{\sigma}_T^2$	SIC	d
MA(1)	2,384	-0,6078	0,0056
AR(1), MA(1)	2,383	-0,6007	0,0406
AR(1), MA(2)	2,383	-0.6007	-0.0962
MA(1), MA(2)	2,383	-0.6006	0,0306
AR(2), MA(1)	2,383	-0.6006	-0.0413
AR(1)	2,425	-0,6006	-0.0914

Таблица 2: ARFIMA-модели для цен США (переменная p^*)

AR II MA	$10^3 \times \hat{\sigma}_T^2$	SIC	\hat{d}
IIIS0	1,995	-2,6926	0,465
MA(1)	1,976	-2,6894	0,382
AR(1)	1,979	-2,6888	0,377
MA(2)	1.980	-2.6885	0.495

Таблица 4: Оптимальные модели

Ряд	Описание	Модель	\hat{d}
P	Японская инфляция	ARFIMA(0, d, 0)	0,461 (0,043)
p^*	Инфляция США	ARFIMA(0, d, 0)	0,465
$p - p^*$	Инфляционный спрэд Япония-США	AR(2)+FI(d)	(0,051)
e	Номинальный обменный курс	ARFIMA(0,d,1)	0,006
$p-e-p^*$	Реальный обменный курс	ARFIMA(0,d,1)	-0,009 (0,054)

Литература

- 1. О. Обрезков. Долгосрочная связь временных рядов и паритет покупательной способности.// Квантиль, No2, март 2007 г. 131-140 сс. http://quantile.ru/02/02-OO.pdf
- 2. П. В. Конюховский, О. А. Подкорытова. «ДЛИННАЯ ПАМЯТЬ» В ОБМЕННЫХ КУРСАХ// Вестник СПбГУ. Сер. 5. 2007. Вып. 3. 102-108 сс. http://pi.314159.ru/konjuhovsky1.pdf
- 3. Перцовский О.Е. Моделирование валютных рынков на основе процессов с длинной памятью: Препринт WP2/2004/03 М.: ГУ ВШЭ, 2003. 52 с. https://www.hse.ru/data/2010/05/04/1216407546/WP2_2004_03.pdf
- 4. Baillie, R.T., 1996, Long memory processes and fractional integration in econometrics, Journal of Econometrics, 73(1), 1996, 5-59. http://www.long-memory.com/volatility/Baillie1996.pdf
- 5. Jason Voss, CFA. Rescaled Range Analysis: A Method for Detecting Persistence, Randomness, or Mean Reversion in Financial Markets//CFA Institute Enterprising Investor. Practical analysis for investment professionals. 30 January 2013. https://blogs.cfainstitute.org/investor/2013/01/30/rescaled-range-analysis-a-method-for-detecting-persistence-randomness-or-mean-reversion-in-financial-markets/
- 6. Handong Li, Xunyu Ye. Forecasting High-Frequency Long Memory Series with Long Periods Using the SARFIMA Model http://www.scirp.org/journal/PaperDownload.aspx?paperID=54179
- 7. Leila Sakhabakhsh, Hamidreza Mostafaei. Department of Statistics, North Tehran Using SARFIMA Model to Study and Predict the Iran's Oil Supply http://www.econjournals.com/index.php/ijeep/article/download/107/69

84