NEURAL NETWORKS

Lecture 14

April 13, 2021

ANNOUNCEMENTS

- Last Lecture Topics
 - Reinforcement Learning
 - Nonlinear dimension reduction (tSNE)
 - NLP (deep learning methods (RNN, LSTM))
- Last Class: April 20
 - Exam 3 Review? Cancel?
- HW 10: Group
- Code 6 is up; Code 7 & 8 this week
- Grade Questions due by Friday April 16

TODAY'S LECTURE

- NN applied to classification
 - Language Model: assigning probabilities to word sequences & predicting upcoming words
- Feedforward network: computation proceeds iteratively from one layer of units to next
- Deep learning: modern networks have many layers (~ deep)

HISTORICALLY SPEAKING

- Fundamental tool for language processing
- Derived from McCulloch-Pitts neuron (1943)
 - Human neuron → propositional logic computing unit
- Modern NN
 - Network of small computing units
 - Input: vector of values → output: one single value

NN VS. LR

- Share similar mathematics with logistic regression
 - More powerful as classifiers
 - Basic NN can learn almost any function
- Different classification approaches
 - LR classifier used on many tasks by developing features based on domain knowledge
 - NN usually take raw words as input & learn features as part of classification process
 - Deep NNs are great for large scale problems with enough training data to automatically learn features

NN UNITS

- NN building block = single computational unit
- Real valued numbers \rightarrow do some computations \rightarrow output
- Computation: weighted sum (z) of input + bias

NN UNITS

- NN building block = single computational unit
- Real valued numbers \rightarrow do some computations \rightarrow output
- Computation: weighted sum (z) of input + bias

$$\begin{array}{c|c} \mathbf{x_1..x_n} \\ \mathbf{w_1..w_n} \end{array} \Rightarrow z = b + \sum_i w_i x_i \Longrightarrow z = w \cdot x + b$$

Usually expressed as vector notation

ACTIVATION

- Instead of using z (linear function of x) NN units apply non-linear function f to z
- Output of this function == activation value for NN unit a
 - If we just model 1 single unit, then the activation for that node/unit is the final output of NN: y = a = f(z)

ACTIVATION

- Instead of using z (linear function of x) NN units apply non-linear function f to z
- Output of this function == activation value for NN unit a
 - If we just model 1 single unit, then the activation for that node/unit is the final output of NN: y = a = f(z)
- 3 popular non-linear (activation) functions f()
 - Sigmoid (again!)
 - tanh
 - Rectified linear (ReLU)

- Maps output into the range [0, 1]
 - Good for handling outliers
- Differentiable
 - Good for learning

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

- Maps output into the range [0, 1]
 - Good for handling outliers
- Differentiable
 - Good for learning

Output of neural unit

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}$$

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

- Input: x_1, x_2, x_3
- Computation
 - Weighted sum $(x_1 w_1 + x_2 w_2 + x_3 w_3)$
 - Adds bias term b
 - Passes sum through sigmoid function
- Output: # between 0..1

ACTIVATION FUNCTIONS

tanh
$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- Very similar to sigmoid, but usually better
- Sigmoid variant
- •Range: [-1, 1]

ACTIVATION FUNCTIONS

tanh
$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- Very similar to sigmoid, but usually better
- Sigmoid variant
- •Range: [-1, 1]

ReLU y = max(x,0)

- Rectified Linear Unit
- Simplest
- Most commonly used
- Avoids saturation problem

WHY NEURAL NETWORKS?

- Combine neural units into larger & larger networks just like biological neurons
- Minsky & Papert (1969): single neural unit cannot compute simple functions of its input (so need layers)

AND			
Xl	X2	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

XOR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

AND		
Xl	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

XOR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

- M & P used perceptron
- Simple neural unit
- Binary output y = 0 or 1
- No non-linear activation function

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

AND			
Xl	X2	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

AND			
Xl	X2	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

XOR		
X1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

AND		
Xl	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

XOR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

- Perceptron for XOR?
- Linear classifier
 - For 2D input $x_1 \& x_2$ $w_1x_1 + w_2x_2 + b = 0$
 - It's a line → decision boundary

AND			
Xl	X2	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

AND		
X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR		
Xl	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1

AND		
Xl	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR			
Xl	X2	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Linearly Separable

XOR			
Xl	X2	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Not Linearly Separable

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

- Calculate XOR with a layered network of units
- Goodfellow et al. solution: use 2 layers of ReLU-based units

FEED FORWARD NEURAL NETWORKS

- Multi-layer network of connected units with no cycles
 - No cycles = unit outputs from each layer are sent to the next higher layer & no output is passed back to lower layers
- Multi-layer feed forward network {=, ≠} multi-layer perceptron (MLP)???

- 3 kinds of nodes
 - Input units
 - Hidden units
 - Output units

- 3 kinds of nodes
 - Input units: scalar values
 - Hidden units
 - Output units

- 3 kinds of nodes
 - Input units: scalar values
 - Hidden units: take weighted sum of inputs & apply activation function (non-linear function)
 - Output units

- 3 kinds of nodes
 - Input units: scalar values
 - Hidden units: take weighted sum of inputs & apply activation function (non-linear function)
 - Output units: answer!

- Hidden layer: core of the NN, composed of hidden units
- Fully-connected
 - Input of each unit in each layer is output from all units in the previous layer
 - Link between every pair of units from 2 adjacent layers

HIDDEN LAYER

- Hidden unit parameters: vector for w & b scalar
- Hidden layer parameters: W matrix & b vector
 - Parameters for entire hidden layer (all hidden units)
 - W combines weight vector w_i for each hidden unit h_i
 - W_{ij} = weight of connection from i^{th} input x_i to j^{th} hidden unit h_j
 - **b** combines bias b_i for each hidden unit h_i
- Advantage of using a single matrix W to represent weights for entire layer?

HIDDEN LAYER

- Efficient hidden layer computation using simple matrix operations
 - 1. Multiply weight matrix W by input vector **x**
 - 2. Add bias vector b
 - 3. Apply activation function g (element-wise)

HIDDEN LAYER

- Efficient hidden layer computation using simple matrix operations
 - 1. Multiply weight matrix W by input vector **x**
 - 2. Add bias vector b
 - 3. Apply activation function g (element-wise)

$$h = \sigma(Wx + b)$$

- Hidden layer forms a representation h of input
- Output layer takes h & computes final output value

- Real valued #
- If classification is NN's goal:
 - Binary task (e.g., sentiment classification)
 - \rightarrow y = probability of positive vs. negative sentiment
 - Multinomial classification (e.g., part-of-speech (POS) tagging)
 - → 1 output node for each POS where value = probability of that POS
 - \rightarrow all values of output nodes must sum to 1
 - → output layer ≈ probability distribution across output nodes

- Output layer has a weight matrix U (bias vector optional)
- Intermediate output z = weight matrix U * input vector h
- At this point, what's wrong with z?

$$z = Uh$$

- z is a vector of real-valued #s
- For classification need a vector of probabilities

- z is a vector of real-valued #s
- For classification need a vector of probabilities
- Normalize!
- Softmax function "normalizes" a vector of real values by converting it into one that encodes a probability distribution (all #s are between 0..1 & sum to 1)

SOFTWAX

• Just plug in real values from z

$$softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^d e^{z_j}} \quad 1 \le i \le d$$

 LR uses to create a probability distribution from sum of weights * features

NN VS. LR

- Think of NN as classifier with 1 hidden layer
 - Build input representation (hidden) vector h
 - Run standard LR on features the NN developed in h

NN VS. LR

- Think of NN as classifier with 1 hidden layer
 - Build input representation (hidden) vector h
 - Run standard LR on features the NN developed in h
- How NN differs from LR
 - Many layers (deep NN ≈ layer on layer of LR classifiers)
 - Instead of using feature templates/engineering use previous layers to induce feature representations

FEEDFORWARD NN

$$h = \sigma(Wx + b)$$

$$z = Uh$$

$$y = softmax(z)$$

FEEDFORWARD NN

$$h = \sigma(Wx + b)$$

$$z = Uh$$

$$y = softmax(z)$$

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

$$\hat{y} = a^{[2]}$$

FEEDFORWARD NN

$$h = \sigma(Wx + b)$$

$$z = Uh$$

$$y = softmax(z)$$

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

$$\hat{y} = a^{[2]}$$

for
$$i$$
 in 1..n
 $z^{[i]} = W^{[i]} a^{[i-1]} + b^{[i]}$
 $a^{[i]} = g^{[i]}(z^{[i]})$
 $\hat{y} = a^{[n]}$

- Feedforward NN is instance of supervised ML
- We know the correct output y for each observation x
- NN produces y^* (prediction; estimate of true y)

- Goal of training: learn parameters
 - Learn $W^{[i]}$ & $b^{[i]}$ for each layer i that makes y^* for each training observation as close as possible to true y

- Goal of training: learn parameters
 - Learn $W^{[i]}$ & $b^{[i]}$ for each layer i that makes y^* for each training observation as close as possible to true y
- Follow same steps as LR
 - Cross-entropy loss: to model distance between y* & y
 - Gradient descent: to find parameters to minimize loss
 - Optimization is tricky now!

- Optimization: GD requires knowing gradient of loss function
 - Vector contains partial derivative of loss function w.r.t. each parameter
- In LR: directly compute derivative
- In NN: how can we compute the partial derivative of some weight in layer 1 when loss is attached to later layer?

- Optimization: GD requires knowing gradient of loss function
 - Vector contains partial derivative of loss function w.r.t. each parameter
- In LR: directly compute derivative
- In NN: how can we compute the partial derivative of some weight in layer 1 when loss is attached to later layer?
 - Error backpropagation or reverse differentiation

Binary classification (with sigmoid on final output layer)== LR loss equation

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

 Binary classification (with sigmoid on final output layer) == LR loss equation

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

• Multinomial classification
$$L_{CE}(\hat{y}, y) = -\sum_{i=1}^{C} y_i \log \hat{y}_i$$

Binary classification (with sigmoid on final output layer) == LR loss equation

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

• Multinomial classification
$$L_{CE}(\hat{y}, y) = -\sum_{i=1}^{C} y_i \log \hat{y}_i$$

Hard classification (only 1 class is correct)

$$L_{CE}(\hat{y}, y) = -\log \hat{y}_i$$

Binary classification (with sigmoid on final output layer) == LR loss equation

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Multinomial classification

$$L_{CE}(\hat{y}, y) = -\sum_{i=1}^{C} y_i \log \hat{y}_i$$

Hard classification (only 1 class is correct)

$$L_{CE}(\hat{y}, y) = -\log \hat{y}_i$$

softmax
$$L_{CE}(\hat{y}, y) = -\log \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

TRAINING NN: COMPUTE GRADIENT

- Gradient = partial derivative of loss function w.r.t. each parameter
- Simple cases
 - 1 weight layer & sigmoid output → derivative of LR loss
 - 1 hidden layer & softmax output → derivative of softmax

TRAINING NN: COMPUTE GRADIENT

- Gradient = partial derivative of loss function w.r.t. each parameter
- Simple cases
 - 1 weight layer & sigmoid output → derivative of LR loss
 - 1 hidden layer & softmax output → derivative of softmax
- Problems
 - Only get correct update for last layer
 - Deep: compute derivative w.r.t. weight parameters that appear in the early layers but loss only computed at end
- Solution: error backpropagation (backprop)

BACKGROUND: COMPUTATION GRAPHS

- Represents process of computing mathematical expression broken down into separate operations
- Each operation is a node in the graph

COMPUTATION GRAPHS

- Example: L(a,b,c) = c(a + 2b)
 - -d = 2 * b
 - e = a + d
 - L = c * e

COMPUTATION GRAPHS

- Example: L(a,b,c) = c(a + 2b)
 - -d = 2 * b
 - e = a + d
 - L = c * e
- Represent steps as graph
 - Nodes = operations
 - Directed edges = show output from operation as input to next
- Forward pass: apply each operation left to right, passing outputs forward to next node

COMPUTATION GRAPHS

- Example: L(a=3,b=1,c=-2) = c(a+2b)
 - -d = 2 * b
 - e = a + d
 - L = c * e

BACKWARD DIFFERENTIATION ON COMPUTATION GRAPHS

- Backward pass: used to compute derivatives for weight update
- Example: compute derivative of output function L w.r.t. each input variable

BACKWARD DIFFERENTIATION ON COMPUTATION GRAPHS

- Backward pass: used to compute derivatives for weight update
- Example: compute derivative of output function L w.r.t. each input variable
 - ullet Derivatives tell how much small change in variable affects L

$$\begin{array}{c|c} \partial L & \partial L & \partial L \\ \hline \partial a & \partial b & \partial c \end{array}$$

- Backward pass: used to compute derivatives for weight update
- Example: compute derivative of output function L w.r.t. each input variable
 - ullet Derivatives tell how much small change in variable affects L

$$\frac{\partial L}{\partial a} \frac{\partial L}{\partial b} \frac{\partial L}{\partial c}$$

• Using L = ce & chain rule: $\frac{\partial L}{\partial c} = e$, $\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$, $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$

- Backward pass: used to compute derivatives for weight update
- Example: compute derivative of output function L w.r.t. each input variable
 - ullet Derivatives tell how much small change in variable affects L

$$\frac{\partial L}{\partial a} \frac{\partial L}{\partial b} \frac{\partial L}{\partial c}$$

• Using
$$L = ce$$
 & chain rule: $\frac{\partial L}{\partial c} = e$, $\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a} \frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$

• Using L = ce & chain rule: $\frac{\partial L}{\partial c} = e$, $\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$, $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$

$$L = ce : \frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$$

$$e = a + d : \frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$$

$$d = 2b : \frac{\partial d}{\partial b} = 2$$

• Using L = ce & chain rule: $\frac{\partial L}{\partial c} = e$, $\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$, $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$

$$L = ce : \frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$$

$$e = a + d : \frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$$

$$d = 2b : \frac{\partial d}{\partial b} = 2$$

- To compute backward pass
 - Compute each partial along each edge of CG from right to left
 - Multiply necessary partials to get final derivative needed

$$L = ce$$
 : $\frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$

$$e = a + d$$
: $\frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$

$$d = 2b$$
: $\frac{\partial d}{\partial b} = 2$

$$L = ce : \frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$$

$$e = a + d : \frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$$

$$d = 2b : \frac{\partial d}{\partial b} = 2$$

- 1. Compute local partial derivate w.r.t. parent
- 2. Multiply it by partial derivative passed down from parent
- 3. Pass value to child

BACKWARD DIFFERENTIATION FOR NN

BACKWARD DIFFERENTIATION FOR NN

Binary classification (sigmoid)

$$z^{[1]} = W^{[1]}\mathbf{x} + b^{[1]}$$

$$a^{[1]} = \text{RELu}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$\hat{y} = a^{[2]}$$

BACKWARD DIFFERENTIATION FOR NN

Activation function derivatives

$$\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$$

$$\frac{d\tanh(z)}{dz} = 1 - \tanh^2(z)$$

$$\frac{d\operatorname{ReLU}(z)}{dz} = \begin{cases} 0 & for \ x < 0 \\ 1 & for \ x \ge 0 \end{cases}$$

NN LEARNING

- NN Optimization is non-convex & more complex than LR
- Initialize weights with small random numbers
- Normalize input values to have 0 mean & unit variance
- Use dropout regularization to help avoid overfitting
 - Randomly drop some units & their connections from the network during training
- Tune hyperparameters on devset
 - NN parameters = W & b learned by GD
 - Learning rate η, mini-batch size, architecture, regularization ...
 - # of layers, # of hidden nodes per layer, activation functions

- Neural Units
 - Biological neuron → artificial neuron
 - Inputs (x, w, b)
 - Activation functions
 - Sigmoid, tanh, ReLU
- XOR Problem
 - Unit \rightarrow networks
- Feed forward NN
 - No cycles
 - Hidden layer & matrix computation
 - Output calculation
- Training NN
 - Cross-entropy loss, gradient descent, back prop

SUMMARY

Units

XOR Problem

Feed Forward Neural Network

Training NN

RIN & ISIM

- RNN: any network that contains a cycle within its network connections
- Cycle: output value of unit/node is in/directly dependent on earlier outputs (as its input)
- Elman (1990) or simple recurrent networks
 - Effective for spoken & written language
 - Base for Encoder-Decoder models & QA models

FEEDFORWARD RECAP

FEEDFORWARD RECAP

- Training
 - Input units represent info
 - Multiply by weights
 - If the sum of weights > threshold (activates) triggers next units

FEEDFORWARD RECAP

Training

- Input units represent info
- Multiply by weights
- If the sum of weights > threshold (activates) triggers next units
- Learning (Backprop)
 - Compare the output network produces (y*) with output should have produced (y)
 - Use difference between them to modify weights (work backwards)

pass through activation function to compute activation value a for h

h calculates output value

pass through activation function to compute activation value a for h

h calculates output value

pass through activation function to compute activation value *a* for *h*

RECURRENT LINK

- Previous timestep's hidden layer ≈ memory, context
- Encodes earlier processing steps
- Helps make future decisions
- Key: doesn't limit length of prior context
 - Context "remembered" in the previous hidden layer includes info all the way back to the beginning of the sequence

- Given
 - Input vector (x_t)
 - Values for h from previous time step
- Still standard feedforward

- Given
 - Input vector (x_t)
 - Values for h from previous time step
- Still standard feedforward
- Key change: new set of weights U
 - Connects previous timestep hidden layer (h_{t-1}) to current hidden layer (h_t)
 - Weights *U* determine how network should use past context to calculate output for current input

- Forward inference: map sequence of inputs to sequence of outputs
- Similar to feedforward network
- Output y_t = input x_t + activation value for hidden layer h_t

- $h_t = g\{(x_t * W) + (h_{t-1} * U)\}$
- $y_t = softmax(h_t * V)$

$$h_t = g\{(x_t * W) + (h_{t-1} * U)\}$$

•
$$y_t = softmax(h_t * V)$$

$$h_0 \leftarrow 0$$

for $i \leftarrow 1$ to Length(x) do
 $h_i \leftarrow g(U \ h_{i-1} + W \ x_i)$
 $y_i \leftarrow f(V \ h_i)$
return y

TRAINING

- Just like feedforward networks
 - Training set
 - Loss function
 - Backprop

TRAINING

- Just like feedforward networks
 - Training set
 - Loss function
 - Backprop
- Weights
 - W: from input layer to hidden layer
 - U: from previous hidden layer to current hidden layer
 - V: from hidden layer to output layer

- 2 new concerns
 - (1) To calculate loss for output at time *t* we need hidden layer from *t-1*

- 2 new concerns
 - (1) To calculate loss for output at time *t* we need hidden layer from *t-1*
 - (2) Hidden layer at time *t* influences output at time *t* & hidden layer at time *t*+*l*

- 2 new concerns
 - (1) To calculate loss for output at time *t* we need hidden layer from *t-1*
 - (2) Hidden layer at time *t* influences output at time *t* & hidden layer at time *t*+*l*
 - So it also influences loss at t+1
 - To calculate error accruing in h_t we need to know influence on current output & those that follow

BACKPROP THROUGH TIME

- •Input/output example pair at t = 2
- •What do we need to compute gradients to update U, V, & W?

- Gradients to update V
- Same as in FFN
- Derivative of loss w.r.t. weights V

- Gradients to update V
- Same as in FFN
- Derivative of loss w.r.t. weights V

$$\left| \frac{\partial L}{\partial V} \right| = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial V}$$

- Gradients to update V
- Same as in FFN
- Derivative of loss w.r.t. weights V

$$\frac{\partial L}{\partial V} = \boxed{\frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial V}}$$

Derivative of loss function w.r.t network output *a*

- Gradients to update V
- Same as in FFN
- Derivative of loss w.r.t. weights V

$$\frac{\partial L}{\partial V} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial V}$$

Derivative of network output *a* w.r.t. intermediate activation *z*

- Gradients to update V
- Same as in FFN
- Derivative of loss w.r.t. weights V

$$\frac{\partial L}{\partial V} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial V}$$

Derivative of intermediate

activation w.r.t weights V

• δ_{out} : error term that represents how much loss is associated with each of the units in output layer

$$\frac{\partial L}{\partial V} = \left(\frac{\partial L}{\partial a} \frac{\partial a}{\partial z}\right) \frac{\partial z}{\partial V}$$

Final gradient needed to update V

$$\frac{\partial L}{\partial V} = \delta_{out} h_t$$

U & W UPDATE

- Difference from FFN: computing W & U
- h_t contributes to output & error at time t & t+1
- So δ_h must include error from both timesteps

$$\delta_h = g'(z)V\delta_{out} + \delta_{next}$$

U & W UPDATE

- Difference from FFN: computing W & U
- h_t contributes to output & error at time t & t+1
- So δ_h must include error from both timesteps

$$\frac{\partial L}{\partial W} = \delta_h x_t$$

$$\frac{\partial L}{\partial U} = \delta_h h_{t-1}$$

U & W UPDATE

- Difference from FFN: computing W & U
- h_t contributes to output & error at time t & t+1
- So δ_h must include error from both timesteps

$$\frac{\partial L}{\partial W} = \delta_h x_t$$

$$\frac{\partial L}{\partial U} = \delta_h h_{t-1}$$

- Compute error: "assign proportional blame"
 - Backprop $\delta_{\rm h}$ to previous h_{t-1}
 - Proportional based on U

$$\delta_{next} = g'(z)U\delta_h$$

TRAINING SUMMARY

- Backpropagation Through Time
- First pass
 - Do forward inference: compute $h_t \& y_t$
 - Accumulate loss at each step
 - Save value of h_t at each step to use in next timestep

TRAINING SUMMARY

- Backpropagation Through Time
- First pass
 - Do forward inference: compute $h_t \& y_t$
 - Accumulate loss at each step in time
 - Save value of h_t at each step to use in next timestep
- Second pass
 - Process sequence in reverse
 - Compute required error term gradients
 - Compute & save error term for use in hidden layer for each backward step in time

RNN APPLICATIONS

- Effective for
 - Language modeling
 - Sequence labeling tasks (e.g., POS tagging)
 - Sequence classification tasks (sentiment analysis, topic classification)
- Basis for sequence-to-sequence approaches
 - Summarization
 - Machine Translation
 - Question Answering

Argmax

Softmax

Words

- To generate a tag sequence for a given input
 - Run forward inference over input sequence
 - Select most likely tag from softmax at each step

NNP MD VΒ DT NN RNN Embdeddings @ · · · · · · ••••••• @ · · · · · · •••••• bill Janet will back the

DEEP NEURAL NETWORK

- Deep NN = simple RNN with feedforward classifier
 - Stacked RNNs
 - Bidirectional RNNs
- End-to-end training: uses loss from downstream apps to adjust weights all the way throughout the network

DEEP NEURAL NETWORK

- No intermediate outputs for words in sequence preceding last element → no loss terms associated with those
- Loss function based entirely on final text classification task
 - Softmax output (from FFN) + cross-entropy loss → training
 - Classification error is backpropagated through all aspects of FFN: weights in FF classifier \rightarrow input \rightarrow RNN 3 matrices (U, V, W)

STACKED RNN

- Up until now:
 - RNN input = word sequences or embeddings (vectors)
 - RNN output = vectors for predicting words, tags, sequence labels
- Why not use entire sequence of outputs from 1 RNN as input sequence to another?

STACKED RNN

- Up until now:
 - RNN input = word sequences or embeddings (vectors)
 - RNN output = vectors for predicting words, tags, sequence labels
- Why not use entire sequence of outputs from 1 RNN as input sequence to another?
- Stacked RNN: multiple networks where output layer of 1 layer serves as input to subsequent layer
 - # of stacks task & training set specific
 - # of stacks rises, training costs rises
 - Induces representations at differing levels of abstractions across layers

BIDIRECTIONAL RNN (BI-RNN)

- In simple RNN hidden state at time *t* represents everything network knows about sequence up to that point
- Think of it as context to the left of the current time

$$h_t^f = RNN_{forward}(x_1^t)$$

BIDIRECTIONAL RNN (BI-RNN)

- In simple RNN hidden state at time *t* represents everything network knows about sequence up to that point
- Think of it as context to the left of the current time

$$h_t^f = RNN_{forward}(x_1^t)$$

- If we have access to entire input sequence at once, use context to the right too
- To grab it, we train an RNN on input sequence in reverse

$$h_t^b = RNN_{backward}(x_t^n)$$

BI-RNN

- Bidirectional RNN = forward information + backward
- 2 independent RNNs
 - Input processed start to end
 - Input processed end to start
- Output combined into single representation that captures left & right contexts of input at each point in time

BI-RNN

- Outputs of forward & backward pass are concatenated
- Output at each time step captures info to the left & right of current input
- Example: use concatenated output as basis for local labeling decision in sequence labeling apps

BI-RNN

- Highly effective for sequence classification
- Final state naturally reflects more info about end of sentence than its beginning
 - Previous attempt: input final RNN's hidden sate to FF classifier
- Bi-RNN solution: combine final forward & backward hidden states & use as input

- Difficult to train RNNs for tasks that need information far away from current position in processing
- Have access to entire preceding sequence
- But info encoded in hidden states is usually *local* i.e., more relevant to most recent parts of input sequence & recent decisions

- Usually though distant information is important for NLP applications
- •LM example: The flights the airline was cancelling were full.
 - P(was | ...airline): makes sense because verb matches
 - P(were | ...airline): trickier because flights further away & singular airline is closer
- Ideally network should be able to retain distant info until needed while processing intermediate parts of sequence correctly

- RNNs have trouble carrying distant information forward
 - Hidden layers (& weights that determine their value) are asked to handle 2 tasks simultaneously
 - Provide useful info for current decision
 - Update & carry forward info for future decisions

- RNNs have trouble carrying distant information forward
 - Hidden layers (& weights that determine their value) are asked to handle 2 tasks simultaneously
 - Provide useful info for current decision
 - Update & carry forward info for future decisions
 - Need to backprop error through time
 - h_t contributes to loss at t+1
 - During backward pass, hidden layers are multiplied repeatedly
 - Result: vanishing gradient problem

- RNNs have trouble carrying distant information forward
 - Hidden layers (& weights that determine their value) are asked to handle 2 tasks simultaneously
 - Provide useful info for current decision
 - Update & carry forward info for future decisions
 - Need to backprop error through time
 - h_t contributes to loss at t+1
 - During backward pass, hidden layers are multiplied repeatedly
 - Result: vanishing gradient problem
- Need a way to forget info we don't need anymore & remember info we'll need in the future

LONG SHORT-TERM MEMORY (LSTM)

- Divide context management problem into 2 subproblems
 - Remove info that's no longer needed
 - Add info likely to be needed for later decision making
- Key to solving both: learn how to manage context instead of hard-coding it into architecture

LONG SHORT-TERM MEMORY (LSTM)

- (1) Add explicit context layer to architecture
- (2) Use specialized neural units with gates to control info flow through the units in layers
 - Implemented through additional weights that operate sequentially on input & previous hidden & context layers

LSTW GATES

- Design
 - Feedforward layer
 - Sigmoid activation function
 - Pointwise multiplication with layer being gated
- Forget gate
- Add gate
- Output gate

LSTM GATES

- Design
 - Feedforward layer
 - Sigmoid activation function
 - Pointwise multiplication with layer being gated
- Forget gate
- Add gate
- Output gate

Sigmoid because it pushes output to 0 or 1

LSTM GATES

- Design
 - Feedforward layer
 - Sigmoid activation function
 - Pointwise multiplication with layer being gated
- Forget gate
- Add gate
- Output gate

Sigmoid + PM ≈ binary mask
Values align near 1 pass; lower erased

- Forget gate: Deletes info from context that's no longer needed
 - Computes weighted sum of h_{t-1} + current input
 - Passes that value through sigmoid → mask
 - Multiply that mask by context vector → removes info
- Computation step
- Add gate
- Output gate

- Forget gate: Deletes info from context that's no longer needed
- Computation step: computes info needed from previous hidden state
 & current inputs using tanh
- Add gate
- Output gate

- Forget gate: Deletes info from context that's no longer needed
- Computation step: computes info needed
- Add gate: selects information to add to current context
 - Computes weighted sum of previous hidden layer & current input
 - Passes that value through sigmoid → mask
 - Adds mask to context vector → new context vector with new info
- Output gate

- Forget gate: Deletes info from context that's no longer needed
- Computation step: computes info needed
- Add gate: selects information to add to current context
- Output gate: decides what info is needed for current hidden state

GATED RECURRENT UNIT (GRU)

- LSTM requires learning 8 weights
 - *U* & *W* for each of the 4 gates within each unit
- GRUs
 - Drop separate context vector
 - Reduce number of gates to 2
 - Reset gate (r)
 - Update gate (z)

GRU GATES

- Like LSTM: uses sigmoid to create binary-like mask
 - Blocks info if values near zero
 - Allows info to pass through unchanged if values near 1

GRU CATES

- Like LSTM: uses sigmoid to create binary-like mask
 - Blocks info if values near zero
 - Allows info to pass through unchanged if values near 1
- Reset gate
 - Decides which aspects of previous hidden state are relevant to current context (or should be ignored)
 - Computes mask to get intermediate new hidden state

GRU GATES

- Like LSTM: uses sigmoid to create binary-like mask
 - Blocks info if values near zero
 - Allows info to pass through unchanged if values near 1
- Reset gate
 - Decides which aspects of previous hidden state are relevant to current context (or should be ignored)
 - Computes mask to get intermediate new hidden state
- Update gate
 - Decides which aspects of new state will be used directly in new hidden state
 - Decides which aspects of previous state are preserved for future use

Feedforward Simple RNN

(a)

Feedforward

Feedforward Simple RNN

- Complexity encapsulated within neural unit
- Modularity allows LSTM & GRU units to be used in other network architectures
- Multi-layer networks using gated units can be unrolled into deep feedforward networks

- Simple RNN
 - Inference
 - Training
- Applications
 - RNLM
 - Sequence labeling
 - POS tagging
 - NER
 - Sequence Classification
- Deep Networks
 - Stacked RNNs
 - Bidirectional RNNs
- Managing Context
 - LSTMs
 - GRUs

SUMMARY