PhD in Energy and Mineral Engineering at PSU

Nicolás's Research - Reports

Nicolás Bueno¹ Advisor: Dr. Ayala¹

¹Department of Energy and Mineral Engineering Penn State University

Table of Contents

- Rising droplet
 - Considerations
 - \bullet Initial setup
 - Results

Table of Contents

- Rising droplet
 - Considerations
 - \bullet Initial setup
 - Results

Considerations

Considerations

Test the pseudopotential approach for multicomponent partially miscible mixtures, under the action of a second force, as gravity.

The partition scheme can be proven to work for different Reynolds and Bond (Eotvos) numbers, depicting particular bubble shapes as found by Flit R, Grace JR, Weber M. Bubbles, drops, and particles. New York: Academic Press; 1978.

$$R_e = \frac{\rho_l u_b d_0}{\mu_l} = \frac{u_b d_0}{\nu_l}$$

$$B_o = \frac{g \Delta \rho d_o^2}{\sigma}$$

If we fix thermodynamic conditions, $\rho, \Delta \rho, \sigma$ will be fixed. Redifining R_e :

$$Re = \frac{\sqrt{gd_0}d_0}{\nu_l} = \frac{\sqrt{gd_0^3}}{\nu_l}$$

We can sweep the spectrum by fixing g (fixes B_o), and moving ν_l (fixes R_e), as:

$$\nu_l = c_s^2 (\tau_l - \frac{\Delta t}{2})$$

$$g = \frac{B_o \sigma}{\Delta \rho d_o^2}$$

$$\nu_l = \frac{\sqrt{g d_o^3}}{R_e}$$

$$\tau_l = \frac{\nu_l}{c_s^2} + \frac{\Delta t}{2}$$

Initial setup

Domain: 300x300 mesh (2D) Fluid: Water at 485.33 K ($T_r = 0.75$), and $P_r = 0.092$. $\rho_l^0 = 7.679$, $\rho_v^0 = 0.109$. Initial condition: Spherical droplet with $d_o = 30$, and $w_o = 8$.

Boundary conditions: The top and bottom boundaries are PERIODIC. On the left and right boundaries a no-slip condition is imposed. At the corners, where there is a PDF that may belong to two boundaries, the enumeration and assignation of conditions is as follows:

- Corner 1 (SW): No-slip (Left)
- Corner 2 (NW): No-slip (Left)
- Corner 3 (SE): No-slip (Right)
- Corner 4 (NE): No-slip (Right)

Parameters: Shan-Chen G=-1.0. Beta = 0.2076 Time = 100000

Single static simulation: $\Delta \rho = 7.59285, d_s = 29.45, \Delta P = 0.00378 (P_l < 0). \sigma = 0.1112.$

Spherical regime

First case (150×300)

•
$$g = |\mathbf{g}| = -1\text{e-}6$$
. $B_o = 0.0592$. $\tau_l = 2.0$, $\nu = 0.5$. $u_b = 0.0121$.

- $R_e^{\text{org}} = 0.713$. $R_e^{\text{mod}} = 0.320$.
- This is spherical regime, and far away from the other regimes according to the Grace's plot.

Ellipsoidal case

Ellipsoid case (150 x 300)

- $g = |\mathbf{g}| = -1\text{e-5}$. $B_o = 0.592$. $\tau_l = 0.51$, $\nu = 0.0033$. $u_b \approx 0.35$.
- $R_e^{\text{org}} = 3092$. $R_e^{\text{mod}} = 151.61$
- This simulation is approaching to the Mach velocity limit and a perturbation is moving the bubble from the axis. I decided to open the channel more to avoid the interaction with the wall. I have reasons to believe that the movement beyond the axis is due to whom the corner was assigned to (number of boundary).

Ellipsoid case (300×300)

- $g = |\mathbf{g}| = -1\text{e-}5$. $B_o = 0.592$. $\tau_l = 0.51$, $\nu = 0.0033$. $u_b \approx 0.35$.
- $R_e^{\text{org}} = 3092$. $R_e^{\text{mod}} = 151.61$
- The ellipse shape of the bubble was better seen in this case, although eventually it
 moves away from the center. For the most part of the simulation, the ellipsoid
 maintains, although it is important to understand if the viscosity of the gas phase plays
 any role in the deformation ("plasticity" of the bubble).
- Apr 15/22. The ellipse is not moving anymore from the center.

Dimples

Dimples case (300×300)

- $g = |\mathbf{g}| = -2\text{e-}3$. $B_o = 118 \ \tau_l = 0.72, \ \nu = 0.07348$. $u_b \approx -10.0734$.
- $\bullet~R_e^{\rm org} =$. $R_e^{\rm mod} = 100$
- The gravity value is too high and the method is diverging too soon. Not even with G =
 -0.1 or g = 1e-4.

Dimples case (3000×3000)

- $d_o = 300$. $g = |\mathbf{g}| = -1\text{e-5}$. $B_o = 61$. $\tau_l = 0.993$, $\nu = 0.164$ $u_b \approx = .$
- $\bullet \ R_e^{\rm org} = . \ R_e^{\rm mod} = 100$
- Did not run

Dimples case (3000×3000)

- $d_o = 300$. $g = |\mathbf{g}| = -1\text{e-}5$. $B_o = 61$. $\tau_l = 5.43$, $\nu = 1.64$ $u_b \approx = .$
- $\bullet \ R_e^{\rm org} = . \ R_e^{\rm mod} = 10$
- Did not run

Discussion

Report XXX XX - 202X

Main discussion points:

- Topic 1
 - Topic 2

This is a text in second frame. For the sake of showing an example.

• Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- ullet Text visible on slide 2
- Text visible on slides 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

In this slide

In this slide the text will be partially visible

In this slide the text will be partially visible And finally everything will be there

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

Two-column slide

This is a text in first column.

$$E=mc^2$$

- First item
- Second item

This text will be in the second column and on a second tought this is a nice looking layout in some cases.