Algebra a diskrétna matematika Prehľad z 2. týždňa

Matice, operácie s maticami, inverzná matica

Matica je usporiadaná obdĺžniková tabuľka čísel.

Ak matica pozostáva z m riadkov a n stĺpcov, hovoríme, že je **typu** $m \times n$. Všeobecný zápis matice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \quad \text{alebo} \quad A = (a_{ij})_{m \times n}$$

Štvorcová matica rádu n je matica s n riadkami a n stĺpcami.

Hlavná diagonála štvorcovej matice pozostáva z prvkov $a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$. Súčet prvkov na hlavnej diagonále je **stopa** matice a značujeme ju tr(A).

Diagonálna matica je štvorcová matica, ktorej všetky prvky nachádzajúce sa mimo hlavnej diagonály sú nulové.

Dve matice sa **rovnajú**, ak sú rovnakého typu a majú rovnaké prvky na všetkých príslušných miestach.

Súčtom matíc rovnakého typu je matica toho istého typu s prvkami získanými sčítaním prvkov daných matíc na príslušných pozíciách, t. j.

ak
$$A = (a_{ij})_{m \times n}$$
 a $B = (b_{ij})_{m \times n}$, tak $A + B = (a_{ij} + b_{ij})_{m \times n}$.

Rozdielom matíc $A = (a_{ij})_{m \times n}$ a $B = (b_{ij})_{m \times n}$ je matica

$$C = A - B = (a_{ij} - b_{ij})_{m \times n} = (c_{ij})_{m \times n}.$$

Nie je možné sčítať ani odčítať matice rôznych typov!

Sčítanie matíc je komutatívne aj asociatívne.

Nulová matica O je matica pozostávajúca zo samých núl.

Pre každú maticu platí: $A_{m\times n} + O_{m\times n} = O_{m\times n} + A_{m\times n} = A_{m\times n}$

Násobenie matice konštantou c znamená vynásobenie každého prvku danej matice číslom c, t. j. $c \cdot A = (c \cdot a_{ij})_{m \times n}$.

Súčin matíc $A = (a_{ik})_{m \times s}$ a $B = (b_{kj})_{s \times n}$ v poradí $A \cdot B$ je matica $C = (c_{ij})_{m \times n}$, kde $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \cdots + a_{is}b_{sj}$.

Vo výslednej matici súčinu je prvok v i-tom riadku a j-tom stĺpci skalárnym súčinom vektora tvoreného i-tym riadkom l'avej matice s vektorom tvoreným j-tym stĺpcom pravej matice.

$$A \cdot B = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1s} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2s} \\ \vdots & \vdots & & \vdots & & \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{is} \\ \vdots & \vdots & & & \vdots & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{ms} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ b_{31} & b_{32} & \dots & b_{3j} & \dots & b_{3n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{s1} & b_{s2} & \dots & b_{sj} & \dots & b_{sn} \end{pmatrix}$$

Násobenie matíc **nie je komutatívne**. $AB \neq BA$ (vo všeobecnosti) Násobenie matíc **je asociatívne**. (AB)C = A(BC)

Jednotková matica *I* je štvorcová matica, ktorá má jednotky na hlavnej diagonále a inde nuly.

Pre každú maticu $A_{m\times n}$ platí: $A_{m\times n}\cdot I_{n\times n}=A_{m\times n}$ $I_{m\times m}\cdot A_{m\times n}=A_{m\times n}$ Transponovaná matica A^T sa získa z matice A výmenou riadkov so stĺpcami, t. j. ak $A=(a_{ij})_{m\times n}$, potom $A^T=(a_{ji})_{n\times m}$.

Inverzná matica k štvorcovej matici Aje matica A^{-1} (rovnakého typu), ktorá vyhovuje rovniciam

$$A \cdot A^{-1} = I \quad \text{a} \quad A^{-1} \cdot A = I.$$

Ak inverzná matica k štvorcovej matici A existuje, je jednoznačne určená. Inverzná matica existuje iba k štvorcovej matici, ktorá po úprave na redukovaný tvar (pomocou ERO 1 - 3) nemá nulové riadky.

Inverznú maticu k matici A hľadáme pomocou Gaussovej eliminačnej metódy aplikovanej na maticu A rozšírenú o jednotkovú maticu.

$$(A \mid I) \sim (\text{ERO 1} - 3) \sim (I \mid A^{-1})$$

Sústavu lineárnych rovníc môžme riešiť aj pomocou inverznej matice.

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n$$

Sústavu prepíšeme do maticovej formy

$$A \cdot X = B$$

Riešenie má potom tvar

$$X = A^{-1} \cdot B$$