SUBHODIP SAHA

5485317

$$+ \frac{1}{2} ||w||^{\frac{1}{2}}$$
 $+ \frac{1}{2} ||w||^{\frac{1}{2}}$

Let's define $||x_{0}(x)|| = \frac{1}{1+e^{-wtx_{0}}}$

Let's define $||x_{0}(x)|| = \frac{1}{1+e^{-wtx_{0}}}$

Let's affinest prove,

 $||y'|| wtx_{0} + log(||x+exp(|wtx_{0}||)) = -y^{i}log(||x_{0}||x_{0}||)$

then it would be cashed to explan calculate grandicut.

 $||y'|| log(||x_{0}||) + (||-y'|| log(||x_{0}||x_{0}||))$
 $||y'|| log(||x_{0}||) + (||-y'|| log(||x_{0}||x_{0}||))$
 $||y'|| log(||x_{0}||) + log(||x_{0}||x_{0}||)$
 $||y'|| log(||x_{0}||) + log(||x_{0}||x_{0}||)$
 $||y'|| log(||x_{0}||x_{0}||) + log(||x_{0}||x_{0}||x_{0}||)$
 $||y'|| log(||x_{0}||x_{0}||) + log(||x_{0}||x_$

| 2+ = 1 [Rw(ni) (1-Rw(ni)) ni, nik + 1 Sik nhe 2nd deminative of objective fun'. for strong convexity we need to show $\nabla^2 + (\omega) > \alpha 1$ for some $\alpha > 0$. Let'x take n is 1 dim, we can generalize to multiden ension. $\frac{\partial^2 f}{\partial w^2} = \frac{1}{r^2} \sum_{i} R_{iN}(n_i) ((-R_{iN}(n_i)) n_i^2 + 1$ 21 200 (ni) &> 0 (ni) >> 0 (ni) >> 0 (ni) >> 0 $\frac{\partial^2 f}{\partial w^2} = \frac{1}{r} \sum_{i} \frac{\mathcal{E}_{w}(ni)(1 - \mathcal{E}_{w}(ni))}{\gamma_{i,0}} \frac{1}{\gamma_{i,0}} \frac{1}{\gamma_{i,0}} \frac{1}{\gamma_{i,0}}$ So, of your partial you (an be smittenas $\nabla^2 f(w) / \alpha$ It it is trove for 1-dim, it should be trove for multidim. So, the fun' is strongly convex 77(W) - X 11 >, 0

Tam proving the strong convexity of LR vering or rother method (for any dim)-general case) or rother method (for any dim)-general case)

$$f(w) = \frac{1}{2} + \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(1-\beta_{0}(\pi)) + \frac{1}{2} \|w\|_{2}^{2}$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(1-\beta_{0}(\pi)) + \frac{1}{2} \|w\|_{2}^{2}$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(1-\beta_{0}(\pi)) + \frac{1}{2} \|w\|_{2}^{2}$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(1-\beta_{0}(\pi)) + \frac{1}{2} \|w\|_{2}^{2}$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(1-\beta_{0}(\pi)) + \frac{1}{2} \log \beta_{0}(1-\beta_{0}(\pi))$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} - \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi) + \frac{1}{2} \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{0}(\pi) - (1-\frac{1}{2}) \log \beta_{0}(\pi)$$

$$= \frac{1}{2} \log \beta_{$$

Since from fit (signoid) is convex fund, 27 ty2 g(y) 2 = 2 TAT Ty2 (Ay+b) AZ = (AZ) T Vn2 f (Ay+b)(AZ) 70 So, & Tyzg(y) is also positive semi definite If the glow is the something worker.

I storagely worker. It two g(w) is the semi-definite , i.e. Two g(w) / x then f(w) is strongly convey.

1 The 2nd derivative of objective fund Dwgdwx = 1] Rw(ni) (1-Rw(ni)) nij nik + 18jk To establish smoothness we need to THE FOR Some B As. Rw(ni) < 1Then, Rw(ni) (1-Rw(ni)) < 0.25 (for Rw(ni)=0.5) Let'x prove for 1 dim. $\frac{\partial^2 f}{\partial w^2} = \frac{1}{r} \sum_{i} R_w(n_i) \left((-R_w(n_i)) n_i^2 + \lambda \right).$ max Rw(ni) (1- Gw(ni)) = 0.25 ni (as booksass) ni is finite) 1 La (1 is also finite) So, DWZ 321 200 Me con always o, DW2

Nomite

De de trove for multidim.

So tre for is smooth. B11-72+(W)>0

d for Smooth, Etmorgly con vex fun.

a smooth fur postering a consist star. f(w) > f(v) + (w-v) T v + (v) + x 2 11 w - v112 P S trongly convex fun' Satisfy, Initial point No. X++1=X4-N \ of (N+)

Bos Smooth, Strongly convex for M= Z+B $f(n+) - f(n*) < \frac{p}{2} exp(-\frac{yT}{x+1})||n_0 - n*||^2$ This is the bound fixed Step Size My dis substantially fasters, exponential. on difference.

ZEM algorithm for learning browssion mixture model: EM is a type of clustering algorithm similars to k-means. Rathers than Rowing Round assignment into Justens like k-means we have soft assignment. Asa pesult each Gaussian Listmibution has some nesponsibility for generality por perticulars data point. EM algo in Righ level. $ln \neq (x|0) = ln \{ \frac{1}{t} \neq (x, \frac{1}{t}|0) \}$ Our goal is to maximite MLE of X given papameters O. (X is observed, to is aidden) Estep: Estimate posterior distribution of pesponsibilities of each gaussion

p(Ga[Ni) depending on weight (TT), mean(u) € covariance (Z). i.e. estimate p (Galni) = f (T, M,Z) M step: Use P (Ga/ni) to maximize likelihood w.p.t the parameters O i.e. maximite ln p(x/m, I, Ti) Repeat EM Step until con verge.

b M step. (calculate mcan, covariance, prior) Wet of we define in the = I p(Ga(ni) Men = I De (Galni) Xi I new = 1 p(ha/ni) (ni - haew) (ni-haew) T The = the for all component,

Where, $n_{E} = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{n_{E}(n_{i})}{n_{E}(n_{E}(n_{i}))} \right)$ Where, $n_{E} = \sum_{n=1}^{\infty} \frac{1}{n_{E}(n_{E}(n_{i}))}$ The Normal mean considered to the considere mean In. 数 1 Ti N (nilys, 2) TR | IR | ZR | -1/2 exp [-1/2 (ni-1/2)] ZR (ni-1/2) 7-1 Til [] = xp[-1/2 (ni-Ma) [[] (ni-Ma)]

Problem 3

1. Error rates for $myLogisticReg2\ with\ Boston\ 50$

F1	F2	F3	F4	F5	Mean	SD
0.17	0.22	0.24	0.22	0.16	0.20	0.03

2. Error rates for myLogisticReg2 with Boston 75

F1	F2	F3	F4	F5	Mean	SD
0.18	0.27	0.24	0.22	0.24	0.23	0.02

3. Error rates for Logistic Regression with Boston $50\,$

F1	F2	F3	F4	F5	Mean	SD
0.12	0.20	0.25	0.25	0.17	0.20	0.04

4. Error rates for Logistic Regression with Boston $75\,$

F1	F2	F3	F4	F5	Mean	SD
0.11	0.11	0.09	0.08	0.09	0.14	0.01