课程6: 集成学习

监督学习

- 目的: 学习预测器h(x)
 - 高精度(低误差)
 - 使用训练数据 $\{(x_1, y_1), ..., (x_n, y_n)\}$

举例: 判断身高是否大于145cm

Person	Age	Male?	Height > 145cm	
小张	14	0	1	✓
小刘	10	1	1	✓
小王	13	0	1	\
小李	8	1	0	\
小明	11	0	0	X
小赵	9	1	1	×
小钱	8	0	0	

$$x = \hat{\theta} \quad age \quad \dot{\mathbf{U}} \\ \hat{\theta} \quad \mathbf{1}_{[gender=male]} \quad \dot{\mathbf{U}} \qquad y = \begin{cases} 1 & height > 145 \\ 0 & height \le 145 \end{cases}$$

分类器

- 性能
 - 各个分类器均有优缺点,没有完美的分类器
 - 具有互补性
 - 一个分类器没有正确分类的例子可能会被其他分类器正确分类
- 如何改进这些分类器?
 - 利用互补的特性

将分类器集成

- •目的
 - 结合分类器以提高性能
- 分类器的集合体
 - 将不同分类器的分类结果结合起来,产生最终的输出
 - 非加权投票
 - 加权投票

举例:天气预测

投票得到最终预测结果

主要内容

- 偏差/方差的权衡
- 使方差最小化的算法
 - Bagging
 - Random Forests
- 减少偏差的算法
 - Functional Gradient Descent
 - Boosting
 - Ensemble Selection

泛化误差

- 真实的分布: P(x,y)
 - 一般未知
- 训练分类器: h(x) = y
 - 使用训练数据 $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - 从P(x,y)取样
- 泛化误差:
 - $l(h) = E_{(x,y)\sim P(x,y)}[f(h(x),y)]$
 - E.g. $f(a,b) = (a-b)^2$

Person	Age	Male?	Height > 145cm
小冯	11	1	1
小陈	14	0	1
小张	14	0	1
小楚	12	0	1
小刘	10	1	1
小魏	9	1	0
张三	9	0	1
小王	13	0	1
李四	13	1	0
王五	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
小李	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Margaret	10	0	1
小明	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
小钱	5	1	1

	Person	Age	Male?	Height>145cm	
	小张	14	0	1	~
	小刘	10	1	1	~
	小王	13	0	1	~
	小李	8	1	0	~
	小明	11	0	0	×
7	小赵	9	1	1	×
	小钱	8	0	0	~
					-
				y	h(x)

Generalization Error:

$$l(h) = E_{(x,y)\sim P(x,y)}[f(h(x),y)]$$

偏差/方差的权衡

- 对 h(x|S) 有一个随机函数
 - 该随机函数取决于训练数据集S
- $L = E_S[E_{(x,y)\sim P(x,y)}[f(h(x),y)]]$
 - 预期的泛化误差

偏差/方差的权衡

- 损失函数: $f(a,b) = (a-b)^2$
- 考虑一个数据点(x, y)
- 符号表示:
 - $\bullet \ \ Z = h(x|S) y$
 - $\hat{z} = E_S[Z]$
 - $Z \hat{z} = h(x|S) E_S[h(x|S)]$

$$E_S[(Z-\hat{z})^2] = E_S[Z^2] - \hat{z}^2$$

所有(x, y)的偏差/方差是P(x, y)的期望值 也可以将其归为噪声

Expected Error

h(x|S)

h(x|S)

h(x|S)

主要内容

- 偏差/方差的权衡
- 使方差最小化的算法
 - Bagging
 - Random Forests
- 减少偏差的集成算法
 - Functional Gradient Descent
 - Boosting
 - Ensemble Selection

Bagging

•目的:减小方差

独立采样

- 理想的条件:许多训练集 S'
 - 使用每个S'来训练模型
 - 平均预测结果

方差线性减少, 偏差不变

$$E_{S}[f(h(x|S),y)] = E_{S}[(Z-\hat{z})^{2}] + \hat{z}^{2}$$
Expected Error Variance Bias

$$Z = h(x|S) - y$$
$$\hat{z} = E_S[Z]$$

Bagging

- 目的: 减小方差
- 在实际中:用替换法重新取样S'
 - 使用每个S'来训练模型
 - 平均预测结果

方差以Sublinear方式 减少(因为S'是相关的) 偏差通常会略有增加

$$E_{S}[f(h(x|S),y)]=E_{S}[(Z-\hat{z})^{2}]+\hat{z}^{2}$$

$$E_{S}[f(h(x|S),y)]=E_{S}[(Z-\hat{z})^{2}]+\hat{z}^{2}$$

$$Variance$$
Bias

$$Z = h(x|S) - y$$
$$\hat{z} = E_S[Z]$$

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999)

Random Forests

- •目的:减小方差
 - 重新取样训练数据的渐近线

- Random Forests:样本数据和特征
 - 样品S'
 - 训练 DT (decision tree)
 - 在每个节点上,采样特征(sqrt)

进一步消除关联性

• 平均预测结果

多个数据集的平均性能 其中随机森林的表现最好

"An Empirical Evaluation of Supervised Learning in High Dimensions" Caruana, Karampatziakis & Yessenalina, ICML 2008

Structured Random Forests

- DTs通常在二分类任务上训练(标签为一元的 0/1)
- 如果是结构化的标签呢?
 - 必须定义结构化标签的信息增益
- 边缘检测:
 - E. g. 结构化标签是一个16x16的图像
 - 将结构化标签映射到另一个空间

主要内容

- 偏差/方差的权衡
- 使方差最小化的算法
 - Bagging
 - Random Forests
- 减少偏差的算法
 - Functional Gradient Descent
 - Boosting
 - Ensemble Selection

Functional Gradient Descent

$$h(x) = h_1(x) + h_2(x) + ... + h_n(x)$$

- 学习w, 使 $h(x) = w^T x$
- Coordinate descent
 - 初始化 w = 0
 - 选择具有最高增益的维度
 - 设置w的分量
 - 重复进行上述步骤

- 学习w, 使 $h(x) = w^T x$
- Coordinate descent
 - 初始化 w = 0
 - 选择具有最高增益的维度
 - 设置w的分量
 - 重复进行上述步骤

- 学习w, 使 $h(x) = w^T x$
- Coordinate descent
 - 初始化 w = 0
 - 选择具有最高增益的维度
 - 设置w的分量
 - 重复进行上述步骤

- 学习w, 使 $h(x) = w^T x$
- Coordinate descent
 - 初始化 w = 0
 - 选择具有最高增益的维度
 - 设置w的分量
 - 重复进行上述步骤

- 学习w, 使 $h(x) = w^T x$
- Coordinate descent
 - 初始化 w = 0
 - 选择具有最高增益的维度
 - 设置w的分量
 - 重复进行上述步骤

- 学习w, 使 $h(x) = w^T x$
- Coordinate descent
 - 初始化 w = 0
 - 选择具有最高增益的维度
 - 设置w的分量
 - 重复进行上述步骤

Functional Gradient Descent

$$h(x) = h_1(x) + h_2(x) + ... + h_n(x)$$

函数空间中的坐标下降法 权重限制为0,1,2,...

"Function Space" (All possible DTs)

Boosting (AdaBoost)

$$h(x) = a_1h_1(x) + a_2h_2(x) + ... + a_3h_n(x)$$

u –对数据点进行加权 a –线性组合的权重

当验证性能趋于平稳时 停止 (后面)2;#(云)+;

(后面将进行讨论)

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize $D_1(i) = 1/m$ for i = 1, ..., m. 权重初始化 For t = 1, ..., T: Train weak learner using distribution D_t . 训练模型 Get weak hypothesis $h_t : \mathcal{X} \to \{-1, +1\}$. Aim: select h_t with low weighted error: $\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$ Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$ 模型的系数 Update, for $i = 1, \dots, m$: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ 更新前权重分布 where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution). Output the final hypothesis: $H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

训练误差呈指数级快速下降

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999)

Ensemble Selection

Maintain ensemble model as combination of H:

$$h(x) = h_1(x) + h_2(x) + ... + h_n(x) + h_{n+1}(x)$$

记为h_{n+1}

从H中添加在V'上性能最优的模型

方法	减小偏差	减小方差	评价
Bagging	复杂模型类 (deep DTs)	Bootstrap aggregation (重新取样训练数据)	对简单的模型不起作用。
Random Forests	复杂模型类 (Deep DTs)	Bootstrap aggregation + bootstrapping features	只适用于决策树。
Gradient Boosting (AdaBoost)	优化训练性能	简单的模型类 (Shallow DTs)	决定在运行时添加哪个 模型
Ensemble Selection	优化验证性能	优化验证性能	在训练集上学习的预先 指定的模型

- State-of-the-art prediction performance
 - Won Netflix Challenge
 - -Won numerous KDD Cups
 - Industry standard

参考文献:

- 1. E. Bauer, R. kohavi. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants[J]. Machine Learning, 1999(36):105-139.
- 2. T. D. Dietterich, F. Roli. Ensemble Methods in Machine Learning[J]. Multiple Classifier Systems, 2000:1-15
- R. Caruana, A. Niculescu-Mizil, G. Crew and et al. Ensemble selection from libraries of models[C]. Proceedings of the International Conference on Machine Learning (ICML), 2014.
- 4. R. Caruana, A. Munson, A. Niculescu-Mizil. Getting the Most Out of Ensemble Selection[C]. Proceedings of the 6th IEEE international Conference on Data Mining(ICDM), 2006:828-833.
- 5. P. Dollar, C. L. Zitnick. Structured Forests for Fast Edge Detection[C]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2013:1841-1848.

相关论文会放到课程网页中,如有需要请自行下载。