Technische Informatik 1

Arbeitsblatt 2 für Leistungsnachweis Übungsveranstaltung Rolf Betz, 14.12.2020, Version 1.1

Aufgabe 1

a) Erzeugen Sie eine disjunktive Minimalform für die Funktion

a¬b¬c¬d v ab¬c¬d v ab¬cd v a¬b¬cd v abc¬d v abc¬d v abc¬d mit Hilfe eines KV-Diagramms.

- b) Wieviele Felder eines KV-Diagramms deckt ein Implikant ab, wenn in ihm 2 Variablen fehlen?
- c) Was ist ein Primimplikant?

Aufgabe 2

Minimieren Sie die folgende Funktion y mit einem KV-Diagramm und bestimmen Sie damit eine **konjunktive Minimalform** (ein ´-´ entspricht einem don´t care).

	dcba	у	
0	0000	0	
1	0001	1	
2	0010	1	
3	0011	1	
4	0100	0	
5	0101	1	
6	0110	0	
7	0111	1	
8	1000	0	
9	1001	0	
10	1010	-	
11	1011	-	
12	1100	-	
13	1101	-	
14	1110	-	
15	1111	-	

a) Ermitteln Sie aus dem nachstehenden KV-Diagramm die **disjunktive Normalform**. Tragen Sie die benutzten Blöcke (und nur diese) in das Diagramm ein.

		<u>'</u>	а	ł	
	0	1	0	0	
b	1	1	1	0	
	0	1	0	0	T ,
	0	0	0	0	$\int d$
				c	

b) Ermitteln Sie aus dem nachstehenden KV-Diagramm die **konjunktive Normalform**. Tragen Sie die benutzten Blöcke (und nur diese) in das Diagramm ein.

		<u> </u>	a	ł	
	0	1	0	0	
b	1	1	1	0	
	0	1	0	0	T ,
	0	0	0	0	$\int \int d$
				c	

Aufgabe 4

Gegeben sei das folgende Schaltnetz:

- a) Beschreiben Sie diese Schaltung mit einer booleschen Funktion, die Sie direkt aus der Schaltung entnehmen können.
- b) Minimieren Sie dieses Schaltnetz (z.B. über eine Wertetabelle und KV-Diagramm) und zeichnen Sie eine neue Schaltung für die minimierte Funktion.

a) Füllen Sie für die abgebildete Schaltung ein KV-Diagramm aus und tragen Sie die Funktionswerte sowie die durch die UND-Glieder repräsentierten Blöcke ein:

- b) Bestimmen Sie eine disjunktive Minimalform für die realisierte boolesche Funktion.
- c) Übersetzen Sie die eben bestimmte Minimalform zurück in eine Schaltung.

Aufgabe 6

Gegeben sei das folgende Schaltnetz:

- a) Erstellen Sie eine Wahrheitstafel für den Fall, dass der Eingang x1 permanent auf 1 liegt.
- b) Wie viele Dateneingänge kann ein Multiplexer maximal haben, wenn er über n Steuerleitungen verfügt?
- c) Wie viele Eingänge besitzt ein Demultiplexer mit n Ausgängen?

Gegeben sei das folgende Schaltnetz:

- a) Erstellen Sie eine Wahrheitstafel
- b) Welche Standardschaltung haben wir hier vor uns?
- c) Könnte man die gleiche Schaltung auch ausschließlich mit NOR-Gattern aufbauen? Begründen Sie Ihre Antwort.

Aufgabe 8

Betrachten Sie die dargestellte arithmetisch-logische Einheit (ALU). Die ALU nimmt als Eingabe 2 Zweierkomplementzahlen x und y entgegen $(x_0,...,x_3, y_0, ...,y_3)$. Die Leitungen so bis s3 sind Steuersignale und $z_0,...,z_4$ sind die Ausgangsleitungen. Was berechnet die ALU für den Fall $s_0 = 0,s_1 = 1,s_2 = 1,s_3 = 0$? Beschreiben Sie Ihren Lösungsweg nachvollziehbar.

Gegeben sei die folgende arithmetisch-logische Einheit (ALU). Die ALU nimmt als Eingabe 2 Zahlen $x = x_3x_2x_1x_0$ und $y = y_3y_2y_1y_0$ entgegen und berechnet hieraus in Abhängigkeit der Steuersignale s_0 , s_1 , s_2 und s_3 die Zahl $z = z_4z_3z_2z_1z_0$. Nehmen Sie an, dass alle Zahlen im **Einerkomplement** dargestellt werden und der Addierer intern so aufgebaut ist, dass er korrekt mit Einerkomplementzahlen umgehen kann.

Analysieren Sie die Schaltung, indem Sie die folgende Tabelle ergänzen (was wird jeweils für z berechnet):

	<i>s</i> ₃	s_2	s_1	s_0
0	0	0	0	0
3	0	0	1	1
6	0	1	1	0
12	1	1	0	0
7	0	1	1	1