#### Matteo Misurati

University of Ferrara

ItaCa 2024, Padova, December 20th Based on a joint work with Daniel Bulacu<sup>1</sup>

# Summary

- We proved that all 6-dimensional quasi-Hopf algebras are semisimple, by classifying 3-dimensional bialgebras in the Yetter-Drinfeld module category.
- We then obtained an explicit list of 6-dimensional quasi-Hopf algebras, thanks to a classification result of fusion categories<sup>2</sup>.
- We start by recalling some basic facts and results on quasi-Hopf algebras (qHas) and fusion categories.
- Unless otherwise specified, we denote by k the base field of characteristic 0 and algebraically closed.

<sup>&</sup>lt;sup>2</sup>P. Etingof, S. Gelaki, V. Ostrik, *Classification of fusion categories of dimension pq*, Int Math Res Notices **57** (2004), 3041–3056.

# Ingredients: Quasi-bialgebra

A quasi-bialgebra B is an associative unital algebra endowed with extra structure by a coproduct (an algebra morphism)  $\Delta: B \to B \otimes B$ , a counit  $\epsilon: B \to k$  and a reassociator  $\Phi \in \mathcal{U}(B \otimes B \otimes B)$  satisfying

$$(Id_B \otimes \Delta)(\Delta(b)) = \Phi(\Delta \otimes Id_B)(\Delta(b))\Phi^{-1},$$
  
 $(Id_B \otimes \epsilon)(\Delta(b)) = b \text{ and } (\epsilon \otimes Id_B)(\Delta(b)) = b.$ 

for any  $b \in B$ . The reassociator  $\Phi$  is a 3-cocycle, in the sense that

$$(1 \otimes \Phi)(Id_B \otimes \Delta \otimes Id_B)(\Phi)(\Phi \otimes 1)$$

$$= (Id_B \otimes Id_B \otimes \Delta)(\Phi)(\Delta \otimes Id_B \otimes Id_B)(\Phi),$$

$$(Id_B \otimes \epsilon \otimes Id_B)(\Phi) = 1 \otimes 1.$$

$$\Phi =: \sum_{i \in I} X_i^1 \otimes X_i^2 \otimes X_i^3 = Y^1 \otimes Y^2 \otimes Y^3 = Z^1 \otimes Z^2 \otimes Z^3,$$

$$\Phi^{-1} =: \sum_{i \in I} x_i^1 \otimes x_i^2 \otimes x_i^3 = y^1 \otimes y^2 \otimes y^3, \quad \Delta(b) = \sum_{j \in J} (b_1)_j \otimes (b_2)_j.$$

## Ingredients: Quasi-Hopf algebra

• A quasi-bialgebra H is a quasi-Hopf algebra if there exists an algebra antimorphism  $S: H \to H$  and distinguished elements  $\alpha, \beta \in H$  such that, for all  $h \in H$ , the following conditions hold:

$$S(h_1)\alpha h_2 = \epsilon(h)\alpha,$$
  $h_1\beta S(h_2) = \epsilon(h)\beta,$   $X^1\beta S(X^2)\alpha X^3 = 1,$   $S(x^1)\alpha x^2\beta S(x^3) = 1.$ 

- If  $\Phi = 1 \otimes 1 \otimes 1$ , H is a (usual) Hopf algebra, otherwise H is a genuine quasi-Hopf algebra.
- If it exists, an antipode  $(S, \alpha, \beta)$  of a quasi-bialgebra H is unique up to conjugation by an element in H. Being "Hopf" is more a property than an additional structure.
- $H' \subseteq H$  is a sub-quasi-Hopf algebra of H if it is a quasi-Hopf algebra with the same reassociator and distinguished elements of H, and has structure maps induced by those of H.

# Quasi-Hopf algebras: categorical interpretation

Let A be a unital associative algebra and let  ${}_{A}\mathcal{M}$  be its category of left modules. By reconstruction theory, we have the following bijection of structures:

| Α                                     |                       | $_{A}\mathcal{M}$     |                             |
|---------------------------------------|-----------------------|-----------------------|-----------------------------|
| bialgebra                             | $\longleftrightarrow$ |                       | strict monoidal             |
| Hopf algebra                          | $\longleftrightarrow$ | left r                | igid strict monoidal        |
| Hopf algebra with $S$ bijective       | $\longleftrightarrow$ | rigid strict monoidal |                             |
| <b>\}</b>                             |                       |                       |                             |
| A                                     |                       |                       | $_{\mathcal{A}}\mathcal{M}$ |
| quasi-bialgebra                       |                       | $\longleftrightarrow$ | monoidal                    |
| quasi-Hopf algebra                    |                       | $\longleftrightarrow$ | left rigid monoidal         |
| quasi-Hopf algebra with $S$ bijective |                       | $\longleftrightarrow$ | rigid monoidal              |

# Ingredients: Fusion categories

### **Definition**

#### A tensor category

- is rigid monoidal with semisimple unit object
- is abelian
- all objects have finite length

An abelian category C is said to be finite if

- has finitely many simple objects (up to isomorphism)
- objects have finite length
- all simple objects admit a projective cover

#### **Definition**

A fusion category is a semisimple finite tensor category.

#### Frobenius-Perron dimension

The Grothendieck ring  $Gr(\mathcal{C})$  of a tensor category is the ring with  $\mathbb{Z}$ -basis given by the isomorphism classes of simple objects, with multiplication

$$X \cdot Y = \sum_{S \text{ simple}} [X \otimes Y : S] S,$$

where  $[X \otimes Y : S]$  denotes the number of occurrences of S in  $X \otimes Y$ .

Let  $\mathcal{C}$  be a finite tensor category with simple objects  $X_1, \ldots, X_n$ . For any  $X \in Obj(\mathcal{C})$ , there exits a square matrix with non-negative entries  $M_X$  such that, in  $Gr(\mathcal{C})$ ,

$$X \cdot X_i = \sum_{j=1}^n (M_X)_{ij} X_j$$

The FP dimension of X is the largest non-negative real eigenvalue  $\lambda(X)$  of  $M_X$ . The FP dimension of  $\mathcal{C}$  is  $\sum_i \lambda(X_i)\lambda(P_i)$ , where  $P_i$  is the projective cover of  $X_i$ .

# Example: fusion categories

G finite group,  $\omega \in Z^3(G, k^{\times})$  normalized 3-cocycle.  $H = Fun_{\omega}(G)$  denotes the quasi-Hopf algebra which is  $k^G$  as an algebra and has structure maps determined as follows, where  $P_g \in k^G$  denotes the element dual to  $g \in G$ .

$$\Delta(P_g) = \sum_{x \in G} P_x \otimes P_{x^{-1}g}, \quad \epsilon(P_g) = P_g(e_G), \quad S(P_g) = P_{g^{-1}},$$

$$\Phi_{\omega} = \sum_{x,y,z \in G} \omega(x,y,z) \ P_x \otimes P_y \otimes P_z,$$

 $_H\mathcal{M}$  is a fusion category with the evaluation modules  $\{V_g\}_{g\in G}$  as simple objects. Since  $V_g\otimes V_h=V_{gh},\ Gr(_H\mathcal{M}^{fd})=\mathbb{Z}\left[G\right]$ .

As a monoidal category, its associativity isomorphism  $\Psi$  is determined by

$$\Psi_{V_g,V_h,V_l} = \omega(g,h,l)Id$$

If G is an abelian group, we can identify  $Fun_{\omega}(G)$  with  $k_{\Phi_{\omega}}[G]$ , the Hopf algebra k[G] seen as "quasi" with reassociator induced by  $\omega$ .

# Fusion categories and the classification of qHas

### Theorem (P. Etingof, V. Ostrik, '04)

Let  $\mathcal C$  be a finite tensor category.  $\mathcal C\cong Rep(H)$  as a tensor category for a finite dimensional quasi-Hopf algebra H if and only if every object X of  $\mathcal C$  has an integer Frobenius-Perron dimension.

Moreover, C has FP dimension n if and only if H has linear dimension n.

The following result describe classes of semisimple quasi-Hopf algebras.

### Corollary (P. Etingof, D. Nikshych, V. Ostrik, '05)

Let  $\mathcal C$  be a fusion category with FP dimension p, where p is prime. Then  $\mathcal C$  is equivalent to the category of representations of  $C_p$ , with associativity determined by a cohomology class in  $H^3(C_p,k^\times)$ .

# Other classification results for quasi-Hopf algebras

# Theorem (P. Etingof, S. Gelaki, V. Ostrik, '04)

Let p < q be primes. Any fusion category of FP dimension pq, with integer dimension of simple objects is equivalent to one of the following:

- A category with 1-dimensional simple objects.
- The category of representations of  $C_p \ltimes C_q$ .
- If p=2, a category of bimodules in graded vector spaces with associativity controlled by  $\omega \in H^3(C_2 \ltimes C_q, k^\times)$ . This is a category of left modules over a genuine quasi-Hopf algebra.
- P. Etingof and S. Gelaki classified<sup>3</sup> all quasi-Hopf algebras with two 1-dimensional simple modules.
- As a byproduct, they obtained the classification of quasi-Hopf algebras in dimension 4 (they are all semisimple or twist equivalent to  $H_4$ ).

<sup>&</sup>lt;sup>3</sup>P. Etingof, S. Gelaki, *Finite dimensional quasi-Hopf algebras with radical of codimension* 2, Math. Res. Lett. **11** (2004), 685–696.

## Ingredients: Yetter-Drinfeld modules

Let H be a quasi-Hopf algebra. The (left) Yetter-Drinfeld module category  ${}^H_H\mathcal{Y}\mathcal{D}$  over H is a subcategory of  ${}^H_H\mathcal{Y}\mathcal{D}$  such that each module in  ${}^H_H\mathcal{Y}\mathcal{D}$  is equipped with a "coassociative" left coaction  $\lambda_M(m)=m_{(-1)}\otimes m_{(0)}$  for which the Yetter-Drinfeld compatibility holds:

$$h_1 m_{(-1)} \otimes h_2 \cdot m_{(0)} = (h_1 \cdot m)_{(-1)} h_2 \otimes (h_1 \cdot m)_{(0)}$$

The category  ${}^H_H\mathcal{YD}$  is monoidal in such a way that the forgetful functor  ${}^H_H\mathcal{YD} \to {}_H\mathcal{M}$  is strong monoidal. Moreover, it is braided with braiding

$$m \otimes n \mapsto m_{(-1)} \cdot n \otimes m_{(0)}$$
.

In a braided monoidal category  $\mathcal{C}$ , we can define bialgebras (and Hopf algebras) by taking objects in the category  $\mathcal{C}$  and structure maps from morphisms in  $\mathcal{C}$  such that they satisfy axioms analogous to those of usual bialgebras. They are called braided bialgebras and braided Hopf algebras.

# Left Yetter-Drinfeld modules, projections and "four corners"

Let H be a quasi-Hopf algebra. We do note by  ${}^H_H\mathcal{M}^H_H$  the category of H-bicomodules in  ${}^H_H\mathcal{M}_H$ .

The (braided) monoidal equivalence between  ${}^H_H\mathcal{M}^H_H$  and  ${}^H_H\mathcal{YD}$  was proven by P. Schauenburg for Hopf algebras in 1994, ad by D. Bulacu in 2009 for quasi-Hopf algebras<sup>4</sup>.

In the same work, he proved the isomorphism between quasi-bialgebras with a projection  $A \stackrel{\pi}{\underset{i}{\longleftarrow}} H$  and bialgebras in  ${}^H_H \mathcal{M}^H_H$ .



<sup>&</sup>lt;sup>4</sup>D. Bulacu, *Quasi-quantum groups obtained from tensor braided Hopf algebras*, Math. Res. Lett. **11** (2004), 685–696.

# Biproduct quasi-Hopf algebras

A quasi-Hopf algebra A with a projection  $A \overset{\stackrel{\wedge}{\longleftarrow}}{\underset{i}{\longleftarrow}} H$  is obtained, through the biproduct construction, from a Hopf algebra B in  ${}^H_H\mathcal{YD}$ . The structure of the biproduct  $B \times H$  is as follows<sup>5</sup>:

$$B\times H=B\otimes H \text{ (as a vector space)},$$
 
$$(b\times h)(b'\times h')=(x^1\cdot b)(x^2h_1\cdot b')\times x^3h_2h',$$
 
$$\Delta(b\times h)=y^1X^1\cdot b_1\times y^2Y^1(x^1X^2\cdot b_2)_{-1}x^2X_1^3h_1$$
 
$$\otimes y_1^3Y^2\cdot (x^1X^2\cdot b_2)_0\times y_2^3Y^3x^3X_2^3h_2 \text{ '}$$
 
$$\epsilon(h\times b)=\epsilon_B(h)\epsilon_H(h),\quad \Phi_{B\times H}=1\times X^1\otimes 1\times X^2\otimes 1\times X^3,$$
 
$$S(b\times h)=(1\times S_H(X^1x_1^1b_{-1}h)\alpha_H)(X^2x_2^1\cdot S_B(b_0)\times X^3x^2\beta_HS_H(x^3)),$$
 with distinguished elements:  $\alpha_{B\times H}=1\times \alpha_H,\quad \beta_{B\times H}=1\times \beta_H.$ 

<sup>&</sup>lt;sup>5</sup>D. Bulacu, E. Nauwelaerts, *Radford's biproduct for quasi-Hopf algebras and bosonization*, J. Pure Appl. Algebra **174** (2002), 1–42.

# 2-dimensional braided Hopf algebras in ${}^H_H\mathcal{YD}$

### Theorem (D. Bulacu, MM)

Let H be a quasi-Hopf algebra with bijective antipode. If B is a braided Hopf algebra in  ${}^H_H\mathcal{YD}$  of dimension 2 then B is isomorphic to a braided Hopf algebra of type  $B_{\sigma,v}$  or to the group Hopf algebra  $k[C_2]$  considered in  ${}^H_H\mathcal{YD}$  via the trivial module structure.

In particular, the couple  $(\sigma, v)$ , composed by  $\sigma \in Alg(H, k)$  and  $v \in H$ , which determines each bialgebra  $B_{\sigma,v}$  has to satisfy the following properties:

$$\begin{split} & \Delta(v) = \sigma(x^3 X^2 y^1) x^1 X^1 v y^2 \otimes x^2 v X^3 y^3, \\ & h u = \sigma(h_1) u h_2, \ \sigma(h_2) h_1 v = \sigma(h_1) v h_2, \ \forall \ h \in H, \end{split}$$

which determine a 1-dimensional YD module structure on a vector space ku by  $h \cdot u = \sigma(h)u$  and  $\lambda(u) = v \otimes u$ , and  $\sigma(v) = -1$ 

# 2-dimensional braided Hopf algebras in ${}^{H}_{H}\mathcal{YD}$

The structure of the braided Hopf algebras  $B_{\sigma,v}$  in  ${}_H^H \mathcal{YD}$  is as follows:

- As a unital associative algebra, it is generated by the unit 1 and the nilpotent element n of degree 2.
- Its coalgebra structure is determined by

$$\Delta(n) = 1 \otimes n + n \otimes 1,$$
  $\Delta(1) = 1 \otimes 1,$   $\epsilon(n) = 0,$   $\epsilon(1) = 1_k.$ 

- The antipode is determined by S(n) = -n and S(1) = 1.
- The Yetter-Drinfeld H-module structure is determined by

$$h \cdot n = \sigma(h)n,$$
  $\rho(n) = v \otimes n,$   
 $h \cdot 1 = \epsilon(h)1,$   $\rho(1) = 1 \otimes 1.$ 

Note that, by what was said in the previous slide, kn has the 1-dimensional Yetter-Drinfeld module structure associated to the couple  $(\sigma, v)$ .

# Biproduct quasi-Hopf algebras of rank 2

By the biproduct construction, we obtain that all quasi-Hopf algebras with a projection of rank 2 as a free *H*-module are isomorphic to one of the following:

•  $H_g := k[C_2] \otimes H$ , generated as an algebra by H and the grouplike element g, with relations

$$g^2 = 1$$
 and  $gh = hg$ 

for all  $h \in H$ , such that it has H as a sub-quasi-Hopf algebra.

•  $H(\theta)_{\sigma,v}$ , the algebra generated by H and  $\theta$  with relations

$$\theta^2 = 0$$
,  $h\theta = \sigma(h_1)\theta h_2$ ,

for all  $h \in H$ . Its quasi-Hopf algebra structure is determined by H being its sub-quasi-Hopf algebra and

$$\Delta(\theta) = \sigma(X^2x^1)vX^1x^2 \otimes \theta X^3x^3 + \sigma(x^1)\theta x^2 \otimes x^3,$$
  

$$S(\theta) = -\sigma(X^2x_2^1)S(X^1x_1^1v)\sigma\theta X^3x^2\beta S(x^3).$$

# Classification of quasi-Hopf algebras of dimension 6

- The main motivation for the previous result was gaining a tool to construct examples of non-commutative, non-cocommutative genuine quasi-Hopf algebras of arbitrary (even) dimension.
- We were able to apply the classification result on biproduct quasi-Hopf algebras of rank 2 to the classification of general quasi-Hopf algebras of dimension 6.
- Indeed, to classify such quasi-Hopf algebras, we started by characterizing all 6-dimensional biproducts.

## Biproduct quasi-Hopf algebras in dimension 6

### 6-dimensional biproducts are of 2 types:

- The product of a 2-dimensional braided Hopf in  ${}^H_H\mathcal{YD}$  and a 3-dimensional quasi-Hopf algebra H (that is,  $H = k_{\Phi}[C_3]$ )
  - Through the previous classification, we found that all of these biproducts are of the trivial type, and therefore semisimple.
- The product between a 3-dimensional braided Hopf in  ${}^H_H\mathcal{YD}$  and a 2-dimensional quasi-Hopf algebra H. There are two cases:
  - ▶  $H = k[C_2]$ , then the biproduct are all Hopf algebras of dimension 6. By the classification of regular Hopf algebras, we know that they are all semisimple.  $(\Delta(g) = g \otimes g \text{ and } \epsilon(g) = 1, \langle g \rangle = C_2)$
  - ▶ H = H(2), that is the genuine quasi-Hopf algebra with maps and algebra structure of  $k[C_2]$ , but seen as a quasi-Hopf algebra with reassociator  $1 \otimes 1 \otimes 1 2p_- \otimes p_- \otimes p_-$ , where  $p_{\pm} := \frac{1}{2}(1 \pm g)$ , with g generator of  $C_2$ .

To prove that all biproducts in dimension 6 are semisimple, we worked on the last case, by classifying 3-dimensional bialgebras in  $\frac{H(2)}{H(2)}\mathcal{YD}$ .

# 3-dimensional modules in $\frac{H(2)}{H(2)}\mathcal{YD}$

Let q be a primitive 3rd root of the unit. By the isomorphism of categories  $_{H(2)}^{H(2)}\mathcal{YD}\cong _{H(2)}\mathcal{YD}^{H(2)}\cong _{D(H(2))}\mathcal{M}$  and  $D(H(2))\cong k[C_4]$  as algebras<sup>6</sup>, we were able to prove the following.

### Proposition

 $_{H(2)}^{H(2)}\mathcal{YD}$  is a semisimple monoidal category, with 4 simple objects,  $M_i$ ,  $0 \leq i \leq 3$ . Each  $M_i$  is one dimensional and if  $m_i$  is a generator of  $M_i$ ,  $M_i$  is a module in  $_H^H\mathcal{YD}$  with structure given by

$$g \cdot m_i = (-1)^i m_i$$
 and  $\lambda(m_i) = (p_+ + \mathfrak{q}^i p_-) \otimes m_i$ .

#### Lemma

Let B be a 3-dimensional bialgebra in  $^{H(2)}_{H(2)}\mathcal{YD}$ . B is not isomorphic as a Yetter-Drinfeld module to  $M_0 \oplus M_{2i+1} \oplus M_{2j+1}$ ,  $i,j \in \{0,1\}$ .

<sup>&</sup>lt;sup>6</sup>D. Bulacu, S. Caenepeel, B. Torrecillas, *Involutory Quasi-Hopf Algebras*, Algebr. Represent. Theory **12** (2019), 257–285.

# 3-dimensional bialgebras in $\frac{H(2)}{H(2)}\mathcal{YD}$

#### Lemma

Let B be a 3-dimensional Hopf algebra in  $_{H(2)}^{H(2)}\mathcal{YD}$  such that  $B\cong M_0\oplus M_{2i}\oplus M_{2j}$  as a Yetter-Drinfeld module. Then B is isomorphic as a braided Hopf algebra to one of the following:

- $B_{C_6}$ , the group Hopf algebra  $k[C_3]$  viewed as an object of  ${}_H^H \mathcal{YD}$  via trivial H-action and H-coaction.
- $B_*$ , the group Hopf algebra  $k[C_3]$  regarded as an object of  ${}^H_H\mathcal{YD}$  via the trivial H-action and H-coaction determined by

$$\lambda(x^i) = p_+ \otimes x^i + p_- \otimes x^{(2i)'},$$

where x is the generator of  $C_3$  and (2i)' is the remainder of the division of 2i by 3,  $i \in \{0,1,2\}$ .

We have that  $B_{C_6} \times H(2) \cong k_{\Phi}[C_6]$  and  $B_* \times H(2) \cong Fun_{\omega}(S_3)$  as quasi-Hopf algebras, both semisimple.

# 3-dimensional bialgebras in $\frac{H(2)}{H(2)}\mathcal{YD}$

### Proposition

Let B be a 3-dimensional bialgebra in  $^{H(2)}_{H(2)}\mathcal{YD}$ . If  $B \cong M_0 \oplus M_{2i} \oplus M_{2j+1}$  then B is isomorphic to one of the following braided bialgebras:

- $B_{0o}^{10}$ , generated by 1, x, y with relations  $x^2 = x$ ,  $y^2 = 0$ , xy = y, yx = 0
- $B_{0o}^{10}$ , generated by 1, x, y with relations  $x^2 = x$ ,  $y^2 = 0$ , xy = 0, yx = y
- $B_{0o}^{10c}$ , generated by 1, x, y with relations  $x^2 = x$ ,  $y^2 = 0$ , xy = 0, yx = 0

for all 3, the other structure maps are determined by:

$$\Delta(x) = x \otimes x, \ \epsilon(x) = 1, \ \Delta(y) = x \otimes y + y \otimes x, \ \epsilon(y) = 0.$$

All 3 braided bialgebras are not braided Hopf algebras. Therefore, all biproducts in dimension 6 are semisimple.

### Theorem (D. Bulacu, MM, '24)

Any 6-dimensional quasi-Hopf algebra is semisimple.

**Sketch of the proof.** We considered case by case the dimension of the Jacobson radical of a qHa H.

- We show that all non-semisimple 6-dimensional quasi-Hopf algebras H
  have to be basic (all simple H-modules are 1-dimensional).
- We prove that all non-semisimple basic 6-dimensional quasi-Hopf algebras have to be biproducts.
- Since all biproducts in dimension 6 are semisimple, there cannot be a non-semisimple 6-dimensional quasi-Hopf algebra.

### Corollary

Let  $\mathcal C$  be a finite tensor category of Frobenius-Perron dimension 6 such that every object of  $\mathcal C$  has integer Frobenius-Perron dimension. Then  $\mathcal C$  is a fusion category.

Since semisimple quasi-Hopf algebras of dimension pq were characterized at the categorical level in  $^7$  and 3-cocycles of  $S_3$  were computed in  $^8$ , we are able to give a complete list of 6-dimensional quasi-Hopf algebras.

### Theorem (D. Bulacu, MM, '24. Pt.1)

Any 6 dimensional quasi-Hopf algebra is twist equivalent to either:

•  $(k[C_6], \Phi_a)$ , the group Hopf algebra  $k[C_6]$ , with reassociator

$$\Phi_{\mathsf{a}} = \sum_{i,j,l=0}^{5} \xi^{\mathsf{a}i\left\lfloor\frac{j+l}{6}\right\rfloor} 1_{i} \otimes 1_{j} \otimes 1_{l}.$$

There are 6 quasi-Hopf algebras of this type, given by  $0 \le a \le 5$ . [...]

<sup>&</sup>lt;sup>7</sup>P. Etingof, S. Gelaki, V. Ostrik, Classification of fusion categories of dimension pq, Int Math Res Notices 57 (2004), 3041–3056

<sup>&</sup>lt;sup>8</sup>W. Propitius, Topological Interactions in Broken Gauge Theories, PhD Thesis, University of Amsterdam; arXiv:hep-th/9511195v1 27 Nov 1995.

### Theorem (D. Bulacu, MM, '24. Pt.2)

•  $(k^{S_3}, \Phi_p)$ , the function algebra  $Fun(S_3)$  endowed with the reassociator

$$\Phi_p = \sum_{I,J,L=0}^1 \sum_{i,j,l=0}^2 \mathfrak{q}^{p(-1)^{J+L}i\lfloor \frac{(-1)^Lj+l}{3} \rfloor} (-1)^{pIJL} P_{\tau^I\sigma^i} \otimes P_{\tau^J\sigma^j} \otimes P_{\tau^L\sigma^l}.$$

There are 6 quasi-Hopf algebras of this type, given by  $0 \le p \le 5$ .

- The group Hopf algebra  $k[S_3]$ .
- $(k[S_3], \Psi_a)$ , the group Hopf algebra  $k[S_3]$  with reassociator  $\Psi_a$  obtained from a non-trivial 3-cocycle of  $C_3 = \langle \sigma \rangle$  which commutes with  $\tau \otimes \tau \otimes \tau$ :

$$\Psi_{\mathsf{a}} = \sum_{i,j,l=0}^2 \mathfrak{q}^{\mathsf{a}i\left\lfloor\frac{j+l}{3}\right\rfloor + \mathsf{a}i\left(\left\lfloor\frac{(j+l)'}{2}\right\rfloor - \left\lfloor\frac{j}{2}\right\rfloor - \left\lfloor\frac{j}{2}\right\rfloor\right)} \ 1_i \otimes 1_j \otimes 1_l,$$

There are 2 quasi-Hopf algebras of this type, determined by  $a \in \{1, 2\}$ .

Thank you for your attention!