Bias and Variance

High Bias (Underfitting):

- Mô hình đơn giản không học tốt từ dữ liệu huấn luyện.
- Chỉ số lỗi trên tập huấn luyện (J_train) cao.
- Chỉ số lỗi trên tập kiểm tra (J_cv) cũng cao.

High Variance (Overfitting):

- Mô hình quá phức tạp học quá kỹ tập huấn luyện.
- J_train thấp (hiệu suất tốt trên dữ liệu đã học).
- J_cv cao (hiệu suất kém trên dữ liệu chưa từng thấy).

Trường hợp đặc biệt: High Bias + High Variance cùng lúc

- Dù hiếm, một số mô hình (như mạng nơ-ron) có thể vừa underfit ở một phần input và overfit ở phần khác.
- Biểu hiện: J_train cao, J_cv còn cao hơn nhiều.

Regularization

- Regularization giúp kiểm soát việc học quá mức (overfitting) bằng cách thêm một phần phạt vào hàm mất mát để giữ cho các tham số w nhỏ. Tham số điều chỉnh mức độ regularization gọi là Lambda (λ).
- Lambda rất lớn (ví dụ: 10,000):
 - Mô hình gần như là hằng số.
 - Tham số w gần như bằng 0.
 - \circ **Bias cao**, **underfitting**, cả lỗi huấn luyện $J_{
 m train}$ và lỗi kiểm tra chéo $J_{
 m cv}$ đều cao.

Lambda rất nhỏ (ví dụ: 0 hoặc gần 0):

- Mô hình khớp sát dữ liệu huấn luyện (đường cong lượn sóng).
- Variance cao, overfitting.
- $\circ~~J_{
 m train}$ thấp nhưng $J_{
 m cv}$ cao.

Bias and Variance

• Lambda trung bình:

- Cân bằng giữa bias và variance.
- $\circ~J_{
 m train}$ và $J_{
 m cv}$ đều thấp.
- Đây là mục tiêu hướng tới.

Baseline

Không nên chỉ nhìn J_train cao là kết luận có bias. Thay vào đó:

- So sánh J_train với lỗi chuẩn (baseline) như:
 - Human-level error (trong bài toán với dữ liệu không cấu trúc như ảnh, âm thanh, văn bản)
 - Mô hình trước đó hoặc kinh nghiệm từ các bài toán tương tự.

Hai khoảng cách quan trọng để đánh giá mô hình:

- Bias:
 - Nhìn khoảng cách giữa J_train và baseline.
 - Nếu lớn → High Bias (mô hình không học tốt trên training data).

Variance:

- Nhìn khoảng cách giữa J_cv và J_train.
- Nếu lớn → High Variance (mô hình overfit training data, kém tổng quát).

Ví dụ:

Trường hợp	Baseline	J_train	J_cv	Phân tích
1	10.6%	10.8%	14.8%	Bias thấp (gần baseline), Variance cao (J_cv >> J_train)
2	6.2%	10.6%	11.0%	Bias cao (J_train xa baseline), Variance thấp

Bias and Variance 2

3	6.2%	10.6%	15.3%	Bias cao và Variance cao
---	------	-------	-------	------------------------------------

Learning curves

Learning curves (đường học tập) là công cụ giúp đánh giá hiệu suất của thuật toán học máy **theo số lượng dữ liệu huấn luyện** mà nó được cung cấp. Hai đại lượng chính được vẽ là:

• **J_train**: lỗi trên tập huấn luyện

• **J_cv**: lỗi trên tập kiểm tra chéo (cross-validation)

Trục hoành: số lượng ví dụ huấn luyện (m_train)

Trục tung: lỗi (error)

Khi số lượng dữ liệu huấn luyện tăng:

• J_cv giảm: mô hình tổng quát tốt hơn.

• **J_train tăng**: mô hình khó khớp hoàn hảo với dữ liệu huấn luyện.

Vì sao J_train tăng?

Với dữ liệu ít, mô hình dễ khớp hoàn hảo → J_train thấp.

Dữ liệu nhiều → khó khớp hết → J_train tăng dần.

Cách cải thiện mô hình dựa trên lỗi

Hành động	Hiệu quả chính	Sửa lỗi gì?
Thêm dữ liệu huấn luyện	Giảm J_cv	High variance
Giảm số lượng đặc trưng	Giảm overfitting	High variance
Tăng số lượng đặc trưng	Mô hình mạnh hơn	High bias
Thêm đặc trưng đa thức	Mô hình phức tạp	High bias
Giảm regularization (λ)	Giảm ràng buộc	High bias
Tăng regularization (λ)	Làm trơn mô hình	High variance

Lưu ý: Giảm kích thước tập huấn luyện không giúp giảm bias, thậm chí có thể làm tệ hơn.

Bias and Variance 3