Dimension reduction

WASHA, Takwimu, UKZN, 25 August 2023

Till Bärnighausen, Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University

Quantitative analysis serve many important functions in health systems research

4 FUNCTIONS

- 1. Description
- 2. Discovery unsupervised machine learning
 - Dimension reduction
 - Cluster analysis
- 3. Prediction
- 4. Causation

Did the Family Medicine Reform in Turkey boost patient satisfaction?

DIFFERENCE-IN-DIFFERENCES DESIGN, TURKEY

Sparks, Atun & Bärnighausen PLOS ONE 2019

Family medicine reform boosted patient satisfaction **RESULTS**

66,028 primary care patients

2 principal components

- 1. Clinical behavior
- **1.99** (95% CI 1.37-2.37)
- 2. Organization of care
- **1.18** (95% CI 1.05-1.13)

P-value

0.271

0.105

0.127

0.052

0.052

0.036

0.012

0.022

0.004

0.005

0.003

0.001

0.003

0.002

0.001

0.001

0.002

< 0.001

0.001

0.001

< 0.0001

< 0.0001

< 0.0001

Dimension reduction serves fundamental and technical purposes in data science

PURPOSES OF DIMENSION REDUCTION

Insight:

Identifying latent constructs

Data preprocessing:

- Less storage
- Faster computation
- Avoiding algorithmic problems
- Higher accuracy
- More insightful visualization

Dimension reduction serves fundamental and technical purposes in data science

EXAMPLES

Insight:

- Psychological constructs
- Economic constructs (e.g., wealth index)

Data preprocessing:

- Reducing multicollinearity in regression
- Avoiding the 'curse of dimensionality' in clustering analysis

The two-dimensional visual intuition for dimension reduction can be generalized to many dimensions

PICTURE ON WHITEBOARD

Principal component analysis is the most common unsupervised dimension reduction approach

EXAMPLES DIMENSION REDUCTION APPROACHES

Unsupervised:

- PCA, kernel PCA, FAMD
- Low variance filter
- Missing value ratio

Supervised:

- Backward, forward, sequential selection
- Lasso regression
- Random forests

Principal component analysis uses several foundations of statistics

STATISTICAL INGREDIENTS TO PCA

- Variance and covariance
- Covariance matrix
- Eigenvectors and eigenvalues
- Eigen decomposition
- Singular value decomposition

PCA is easy to program and easy to implement and artful to interpret

TECHNICALITIES

- Meaning of eigenvalues
- Explained variance ratio
- Scree plot
- Kaiser's criterion
- Factor loadings

Variables	Factor loadings	
	PC1	PC2
Income	0.75	0.23
Eduction	-0.83	-0.15
Risk aversion	0.12	0.89
Future optimism	-0.01	0.78

Principal component analysis uses several foundations of statistics

ASSUMPTIONS

- 1. Linearity
- 2. Mean and variance sufficient statistics
- 3. Large variance mean important dynamics (high SNR)
- 4. Principal components are orthogonal

