I — Congruence and Similarity

Andres Buritica

December 8, 2021

Congruence

We say that triangles ABC and XYZ are congruent if

$$BC = YZ$$
, $CA = ZX$, $AB = XY$, $\angle BAC = \angle YXZ$, $\angle ABC = \angle XYZ$, $\angle ACB = \angle XZY$.

If all of these conditions are true then we can write

$$\triangle ABC \cong \triangle XYZ$$
.

We also know that |ABC| = |XYZ|.

► A *congruence test* is a set of properties that uniquely specify the triangle

- ► A congruence test is a set of properties that uniquely specify the triangle
- Example: construct triangles with BC = 10, area 20 and $\angle BAC = 60^{\circ}$.

- ► A *congruence test* is a set of properties that uniquely specify the triangle
- Example: construct triangles with BC = 10, area 20 and $\angle BAC = 60^{\circ}$.
- ► Then if two triangles have the same properties, they must be the same i.e. be congruent

- ► A *congruence test* is a set of properties that uniquely specify the triangle
- Example: construct triangles with BC = 10, area 20 and $\angle BAC = 60^{\circ}$.
- ► Then if two triangles have the same properties, they must be the same i.e. be congruent
- ► For instance, we've just shown that if two triangles have the same area, a side of the same length, and the same angle opposite that side then they must be congruent

- ► A *congruence test* is a set of properties that uniquely specify the triangle
- Example: construct triangles with BC = 10, area 20 and $\angle BAC = 60^{\circ}$.
- ► Then if two triangles have the same properties, they must be the same i.e. be congruent
- ► For instance, we've just shown that if two triangles have the same area, a side of the same length, and the same angle opposite that side then they must be congruent
- ► Though I have seen that test used in a problem before, what follows are the canonical congruence tests that are more likely to come up

SSS

If
$$BC = YZ$$
, $CA = ZX$, $AB = XY$ then $\triangle ABC \cong \triangle XYZ$.

SAS

If
$$AB = XY$$
, $\angle ABC = \angle XYZ$, $BC = YZ$ then $\triangle ABC \cong \triangle XYZ$.

AAS

If $\angle ABC = \angle XYZ$, $\angle BCA = \angle YZX$, BC = YZ then $\triangle ABC \cong \triangle XYZ$.

SSA?

If AB = XY, BC = YZ, $\angle BCA = \angle YZX$ then you don't necessarily know $\triangle ABC \cong \triangle XYZ$.

Fixed SSA

If AB = XY, BC = YZ, $\angle BCA = \angle YZX$ and AB > BC then $\triangle ABC \cong \triangle XYZ$.

Fixed SSA

Why does this work? The other intersection is on the wrong side of BC.

RHS

This is a special case of fixed SSA. If AB = XY, BC = YZ, $\angle BCA = \angle YZX = 90^{\circ}$ then $\triangle ABC \cong \triangle XYZ$.

Similarity

We say that triangles ABC and XYZ are similar if

$$\frac{BC}{YZ} = \frac{CA}{ZX} = \frac{AB}{XY} = r,$$

$$\angle ABC = \angle XYZ$$
, $\angle BCA = \angle YZX$, $\angle CAB = \angle ZXY$.

If all of these conditions are true then we can write

$$\triangle ABC \sim \triangle XYZ$$
.

We also know that $\frac{|ABC|}{|XYZ|} = r^2$.

Similarity

Triangles can be directly similar or oppositely similar. For example, $\triangle ABC$ is directly similar to $\triangle XYZ$ and oppositely similar to $\triangle X'YZ$.

We write: $\triangle ABC \stackrel{+}{\sim} \triangle XYZ$, $\triangle ABC \stackrel{-}{\sim} \triangle X'YZ$.

PPP

If
$$\frac{BC}{YZ} = \frac{CA}{ZX} = \frac{AB}{XY}$$
 then $\triangle ABC \sim \triangle XYZ$.

PAP

If
$$\frac{AB}{XY} = \frac{BC}{YZ}$$
, $\angle ABC = \angle XYZ$ then $\triangle ABC \sim \triangle XYZ$.

AA

If $\angle ABC = \angle XYZ$, $\angle BCA = \angle YZX$ then $\triangle ABC \sim \triangle XYZ$.

PPA?

If $\frac{AB}{XY} = \frac{BC}{YZ}$, $\angle BCA = \angle YZX$ then you don't necessarily know $\triangle ABC \sim \triangle XYZ$.

Fixed PPA

If $\frac{AB}{XY} = \frac{BC}{YZ}$, $\angle BCA = \angle YZX$ and AB > BC then $\triangle ABC \sim \triangle XYZ$.

RHS

This is a special case of fixed PPA. If $\frac{AB}{XY} = \frac{BC}{YZ}$, $\angle BCA = \angle YZX = 90^{\circ}$ then $\triangle ABC \sim \triangle XYZ$.

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

$$ightharpoonup AB = AC$$

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

- ightharpoonup AB = AC
- ightharpoonup $\triangle ABC \cong \triangle ACB$ (SSS)

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

- ightharpoonup AB = AC
- ightharpoonup $\triangle ABC \cong \triangle ACB$ (SSS)
- ightharpoonup $\angle ABC = \angle ACB$

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Going forward:

- \triangleright AB = AC
- $ightharpoonup \triangle ABC \cong \triangle ACB (SSS)$
- ightharpoonup $\angle ABC = \angle ACB$

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Going forward:

- ightharpoonup AB = AC
- ightharpoonup $\triangle ABC \cong \triangle ACB$ (SSS)
- ightharpoonup $\angle ABC = \angle ACB$

$$ightharpoonup \angle ABC = \angle ACB$$

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Going forward:

- \triangleright AB = AC
- $ightharpoonup \triangle ABC \cong \triangle ACB (SSS)$
- ► ∠ABC = ∠ACB

- ightharpoonup $\angle ABC = \angle ACB$
- $ightharpoonup \triangle ABC \cong \triangle ACB \text{ (AAS)}$

Let ABC be a triangle. Prove that AB = AC if and only if $\angle ABC = \angle ACB$.

Going forward:

- \triangleright AB = AC
- $ightharpoonup \triangle ABC \cong \triangle ACB (SSS)$
- ightharpoonup $\angle ABC = \angle ACB$

- ightharpoonup $\angle ABC = \angle ACB$
- $ightharpoonup \triangle ABC \cong \triangle ACB \text{ (AAS)}$
- ightharpoonup AB = AC

Power of a point

Let ABCD be a cyclic quadrilateral, and let AC and BD meet at P. Prove that $PA \times PC = PB \times PD$.

- ightharpoonup $\triangle PAB \sim \triangle PDC$ (AA)
- ightharpoonup PA imes PC = PB imes PD

Similar switch

Let ABC and ADE be triangles that are directly similar. Prove that $\triangle ABD$ and $\triangle ACE$ are also directly similar.

Similar switch

Let ABC and ADE be triangles that are directly similar. Prove that $\triangle ABD$ and $\triangle ACE$ are also directly similar.

Similar switch

Let ABC and ADE be triangles that are directly similar. Prove that $\triangle ABD$ and $\triangle ACE$ are also directly similar.

Let PA and PB be tangents to a circle. Prove that PA = PB.

Let PA and PB be tangents to a circle. Prove that PA = PB. Construction: let O be centre of the circle.

Let PA and PB be tangents to a circle. Prove that PA = PB. Construction: let O be centre of the circle.

Let PA and PB be tangents to a circle. Prove that PA = PB. Construction: let O be centre of the circle.

- ightharpoonup $\triangle PAO \cong \triangle PBO$
- \triangleright PA = PB

Let points ABCDWXYZ be such that $\triangle ABC \stackrel{+}{\sim} \triangle WXY$ and $\triangle BCD \stackrel{+}{\sim} \triangle XYZ$. Prove that $\triangle ABD \sim \triangle WXZ$ and $\triangle ACD \sim \triangle WYZ$.

Let points ABCDWXYZ be such that $\triangle ABC \stackrel{+}{\sim} \triangle WXY$ and $\triangle BCD \stackrel{+}{\sim} \triangle XYZ$. Prove that $\triangle ABD \sim \triangle WXZ$ and $\triangle ACD \sim \triangle WYZ$.

Let points ABCDWXYZ be such that $\triangle ABC \stackrel{+}{\sim} \triangle WXY$ and $\triangle BCD \stackrel{+}{\sim} \triangle XYZ$. Prove that $\triangle ABD \sim \triangle WXZ$ and $\triangle ACD \sim \triangle WYZ$.

Let points ABCDWXYZ be such that $\triangle ABC \stackrel{+}{\sim} \triangle WXY$ and $\triangle BCD \stackrel{+}{\sim} \triangle XYZ$. Prove that $\triangle ABD \sim \triangle WXZ$ and $\triangle ACD \sim \triangle WYZ$.

- ightharpoonup $\triangle ABD \sim \triangle WXZ$
- ightharpoonup $\triangle ACD \sim \triangle WYZ$

In this case we say that ABCD and WXYZ are similar figures, written $ABCD \stackrel{+}{\sim} WXYZ$.

Let points ABCDWXYZ be such that $\triangle ABC \stackrel{+}{\sim} \triangle WXY$ and $\triangle BCD \stackrel{+}{\sim} \triangle XYZ$. Prove that $\triangle ABD \sim \triangle WXZ$ and $\triangle ACD \sim \triangle WYZ$.

- ightharpoonup $\triangle ABD \sim \triangle WXZ$
- ightharpoonup $\triangle ACD \sim \triangle WYZ$

In this case we say that ABCD and WXYZ are similar figures, written $ABCD \stackrel{+}{\sim} WXYZ$. All of this still works if the triangles are instead oppositely similar.

Let ABC be a triangle. Let X, Y, Z be collinear points on sides BC, CA, AB respectively.

Prove that

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = -1.$$

Let ABC be a triangle. Let X, Y, Z be collinear points on sides BC, CA, AB respectively.

Prove that

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = -1.$$

Construction: let P, Q, R be the bases of the perpendiculars from A, B, C to XYZ.

Let ABC be a triangle. Let X, Y, Z be collinear points on sides BC, CA, AB respectively.

Prove that

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = -1.$$

Construction: let P, Q, R be the bases of the perpendiculars from A, B, C to XYZ.

Let ABC be a triangle. Let X, Y, Z be collinear points on sides BC, CA, AB respectively.

Prove that

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = -1.$$

Construction: let P, Q, R be the bases of the perpendiculars from A, B, C to XYZ.

Let ABC be a triangle. Let X, Y, Z be collinear points on sides BC, CA, AB respectively.

Prove that

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = -1.$$

Construction: let P, Q, R be the bases of the perpendiculars from A, B, C to XYZ.

$$ightharpoonup \frac{BX}{XC} = \frac{BQ}{CR}$$

$$\blacktriangleright \ \, \frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = 1$$

▶ Why is it -1?

Let ABC and XYZ be two triangles such that BC||YZ, CA||ZX, AB||XY. Prove that AX, BY and CZ are concurrent.

Let ABC and XYZ be two triangles such that BC||YZ, CA||ZX, AB||XY. Prove that AX, BY and CZ are concurrent.

Reverse reconstruction: let P be the intersection of BY and CZ. We prove AX passes through P.

Let ABC and XYZ be two triangles such that BC||YZ, CA||ZX, AB||XY. Prove that AX, BY and CZ are concurrent.

Reverse reconstruction: let P be the intersection of BY and CZ. We prove AX passes through P.

Let ABC and XYZ be two triangles such that BC||YZ, CA||ZX, AB||XY. Prove that AX, BY and CZ are concurrent.

Reverse reconstruction: let P be the intersection of BY and CZ. We prove AX passes through P.

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Construction: let D be the base of the perpendicular from A to BC.

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Construction: let D be the base of the perpendicular from A to BC.

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Construction: let D be the base of the perpendicular from A to BC.

$$ightharpoonup AB^2 = BC \times BD$$

$$AB^2 + AC^2 = BC^2$$

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Construction: let D be the base of the perpendicular from A to BC.

Alternatively:

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Construction: let D be the base of the perpendicular from A to BC.

Alternatively:

$$\blacktriangleright \ \frac{|ABD|}{|ABC|} = \left(\frac{AB}{BC}\right)^2$$

Let ABC be a triangle such that $\angle BAC = 90^{\circ}$. Prove that $AB^2 + AC^2 = BC^2$.

Construction: let D be the base of the perpendicular from A to BC.

Alternatively:

$$|ABD| = \left(\frac{AB}{BC}\right)^2$$

$$AB^2 + AC^2 = BC^2$$

- $ightharpoonup \triangle ABC \cong \triangle CDB$
- $ightharpoonup \triangle ABP \cong \triangle CDP$

- $ightharpoonup \triangle ABC \cong \triangle CDB$
- $ightharpoonup \triangle ABP \cong \triangle CDP$
- ightharpoonup PA = PC, PB = PD

Alternate segment switch

Let A, B, C be collinear points, and let D, E be points such that AD = AE. Prove that if $\angle ADB = \angle ACD$ then $\angle AEB = \angle ACE$.

Alternate segment switch

Let A, B, C be collinear points, and let D, E be points such that AD = AE. Prove that if $\angle ADB = \angle ACD$ then $\angle AEB = \angle ACE$.

Alternate segment switch

Let A, B, C be collinear points, and let D, E be points such that AD = AE. Prove that if $\angle ADB = \angle ACD$ then $\angle AEB = \angle ACE$.

Alternate segment switch

Let A, B, C be collinear points, and let D, E be points such that AD = AE. Prove that if $\angle ADB = \angle ACD$ then $\angle AEB = \angle ACE$.

Let ABCD be points in that order around a circle. Prove that $AB \times CD + BC \times AD = AC \times BD$.

Let ABCD be points in that order around a circle. Prove that $AB \times CD + BC \times AD = AC \times BD$.

Construction: let P be the point on AC such that $AB \times CD = AP \times BD$.

Let ABCD be points in that order around a circle. Prove that $AB \times CD + BC \times AD = AC \times BD$.

Construction: let P be the point on AC such that $AB \times CD = AP \times BD$.

Let ABCD be points in that order around a circle. Prove that $AB \times CD + BC \times AD = AC \times BD$.

Construction: let P be the point on AC such that

 $AB \times CD = AP \times BD$.

Let ABCD be points in that order around a circle. Prove that $AB \times CD + BC \times AD = AC \times BD$.

Construction: let P be the point on AC such that $AB \times CD = AP \times BD$.

- ▶ $\triangle ABP \sim \triangle DBC$
- ▶ $\triangle ABD \sim \triangle PBC$
- $AB \times CD + BC \times AD$ $= AC \times BD$

Let ABC be a triangle with incentre I and A-excentre I_A . Let the incircle touch BC at D and the A-excircle touch BC at E. Let P be the reflection of D over I.

Prove that P is on AE.

Let ABC be a triangle with incentre I and A-excentre I_A . Let the incircle touch BC at D and the A-excircle touch BC at E. Let P be the reflection of D over I.

Prove that P is on AE.

Let ABC be a triangle with incentre I and A-excentre I_A . Let the incircle touch BC at D and the A-excircle touch BC at E. Let P be the reflection of D over I.

Prove that P is on AE.

Let ABC be a triangle with incentre I and A-excentre I_A . Let the incircle touch BC at D and the A-excircle touch BC at E. Let P be the reflection of D over I.

Prove that P is on AE.

Let ABC be a triangle with incentre I and A-excentre I_A . Let the incircle touch BC at D and the A-excircle touch BC at E. Let P be the reflection of D over I.

Prove that P is on AE.

- ightharpoonup AXIP \sim AYI_AE
- \triangleright A, P, E collinear
- Alternatively, triangles PIX and EI_AY are homothetic

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle PAB = \angle MAC$.

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle PAB = \angle MAC$.

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle PAB = \angle MAC$.

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle PAB = \angle MAC$.

- ightharpoonup \triangle OAM \sim \triangle OPA
- $ightharpoonup \angle OAM = \angle DAP$

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle PAB = \angle MAC$.

- ightharpoonup \triangle OAM \sim \triangle OPA
- $ightharpoonup \angle OAM = \angle DAP$
- $ightharpoonup \angle BAD = \angle OAC$

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle PAB = \angle MAC$.

- ightharpoonup \triangle OAM \sim \triangle OPA
- $ightharpoonup \angle OAM = \angle DAP$
- $ightharpoonup \angle BAD = \angle OAC$
- $ightharpoonup \angle BAP = \angle MAC$

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle BAP = \angle MAC$.

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle BAP = \angle MAC$.

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle BAP = \angle MAC$.

Construction: let X be the point such that $\triangle ABX$ is directly similar to $\triangle APC$. Let M' be the intersection of AX and BC.

 $ightharpoonup \angle M'BA = \angle M'XB$

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle BAP = \angle MAC$.

- $ightharpoonup \angle M'BA = \angle M'XB$
- $M'B^2 = M'A \times M'X$

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle BAP = \angle MAC$.

- $ightharpoonup \angle M'BA = \angle M'XB$
- $ightharpoonup M'B^2 = M'A \times M'X$
- $M'C^2 = M'A \times M'X$

Let ABC be a triangle with circumcircle Γ . Let the tangents to Γ at B and C intersect at P, and let the midpoint of BC be M. Prove that $\angle BAP = \angle MAC$.

- $ightharpoonup \angle M'BA = \angle M'XB$
- $M'B^2 = M'A \times M'X$
- $M'C^2 = M'A \times M'X$
- $ightharpoonup \angle BAP = \angle MAC$

- ► $\triangle DQB \sim \triangle CQD$
- \triangleright $\angle BAC + \angle BDC = 180^{\circ}$

- ► $\triangle DQB \sim \triangle CQD$
- \triangleright $\angle BAC + \angle BDC = 180^{\circ}$
- ightharpoonup $AB \times CD = BD \times AC$

Let ABC be a triangle. Let P be the intersection of the tangents from B and C to the circumcircle of ABC. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Prove that A, P, Q are collinear.

Let ABC be a triangle. Let P be the intersection of the tangents from B and C to the circumcircle of ABC. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB.

Prove that A, P, Q are collinear.

Let ABC be a triangle. Let P be the intersection of the tangents from B and C to the circumcircle of ABC. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB.

Prove that A, P, Q are collinear.

Let ABC be a triangle. Let P be the intersection of the tangents from B and C to the circumcircle of ABC. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB.

Prove that A, P, Q are collinear.

- \triangleright $\angle OQA = 90^{\circ}$
- ► BPCOQ cyclic

Let ABC be a triangle. Let P be the intersection of the tangents from B and C to the circumcircle of ABC. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB.

Prove that A, P, Q are collinear.

- \triangleright $\angle OQA = 90^{\circ}$
- ▶ BPCOQ cyclic
- ► A, Q, P collinear

Let ABC be a triangle. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Let M be the midpoint of BC. Prove that $\angle BAQ = \angle MAC$.

Let ABC be a triangle. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Let M be the midpoint of BC. Prove that $\angle BAQ = \angle MAC$.

Construction: let Y be the point such that $\triangle ABY$ is directly similar to $\triangle AQC$.

Let ABC be a triangle. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Let M be the midpoint of BC. Prove that $\angle BAQ = \angle MAC$.

Construction: let Y be the point such that $\triangle ABY$ is directly similar to $\triangle AQC$.

$$ightharpoonup \angle AYB = \angle YAC$$

Symmedian

Let ABC be a triangle. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Let M be the midpoint of BC. Prove that $\angle BAQ = \angle MAC$.

Construction: let Y be the point such that $\triangle ABY$ is directly similar to $\triangle AQC$.

- $ightharpoonup \angle AYB = \angle YAC$
- $ightharpoonup \angle AYC = \angle YAB$

Symmedian

Let ABC be a triangle. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Let M be the midpoint of BC. Prove that $\angle BAQ = \angle MAC$.

Construction: let Y be the point such that $\triangle ABY$ is directly similar to $\triangle AQC$.

- $ightharpoonup \angle AYB = \angle YAC$
- $ightharpoonup \angle AYC = \angle YAB$
- ► *A*, *M*, *Y* collinear

Symmedian

Let ABC be a triangle. Let Q be a point such that the circumcircle of AQB is tangent to AC and the circumcircle of AQC is tangent to AB. Let M be the midpoint of BC. Prove that $\angle BAQ = \angle MAC$.

Construction: let Y be the point such that $\triangle ABY$ is directly similar to $\triangle AQC$.

- $ightharpoonup \angle AYB = \angle YAC$
- $ightharpoonup \angle AYC = \angle YAB$
- ► *A*, *M*, *Y* collinear
- $ightharpoonup \angle BAQ = \angle MAC$

Let ABCD be a cyclic quadrilateral with circumcentre O, and let AC and BD intersect at P. A line through P intersects AB and CD at E and F, such that OP is perpendicular to EF. Prove that P is the midpoint of EF.

Let ABCD be a cyclic quadrilateral with circumcentre O, and let AC and BD intersect at P. A line through P intersects AB and CD at E and F, such that OP is perpendicular to EF.

Prove that P is the midpoint of EF.

Constructions: let M and N be the midpoints of AB and CD respectively.

Let ABCD be a cyclic quadrilateral with circumcentre O, and let AC and BD intersect at P. A line through P intersects AB and CD at E and F, such that OP is perpendicular to EF.

Prove that P is the midpoint of EF.

Constructions: let M and N be the midpoints of AB and CD respectively.

Let ABCD be a cyclic quadrilateral with circumcentre O, and let AC and BD intersect at P. A line through P intersects AB and CD at E and F, such that OP is perpendicular to EF.

Prove that P is the midpoint of EF.

Constructions: let M and N be the midpoints of AB and CD respectively.

Let ABC and PQR be directly similar triangles. If X, Y, Z are points such that triangles APX, BQY, CRZ are directly similar, then prove that $\triangle XYZ$ is also directly similar to triangles ABC and PQR.

Let ABC and PQR be directly similar triangles. If X, Y, Z are points such that triangles APX, BQY, CRZ are directly similar, then prove that $\triangle XYZ$ is also directly similar to triangles ABC and PQR.

Let ABC and PQR be directly similar triangles. If X, Y, Z are points such that triangles APX, BQY, CRZ are directly similar, then prove that $\triangle XYZ$ is also directly similar to triangles ABC and PQR.

Let ABC and PQR be directly similar triangles. If X, Y, Z are points such that triangles APX, BQY, CRZ are directly similar, then prove that $\triangle XYZ$ is also directly similar to triangles ABC and PQR.

Let ABC and PQR be directly similar triangles. If X, Y, Z are points such that triangles APX, BQY, CRZ are directly similar, then prove that $\triangle XYZ$ is also directly similar to triangles ABC and PQR.

- ▶ OABC ~ OPQR
- ightharpoonup OAPX \sim OBQY \sim OCRZ
- ightharpoonup OABC \sim OXYZ \sim OPQR

Let ABC and PQR be directly similar triangles. If X, Y, Z are points such that triangles APX, BQY, CRZ are directly similar, then prove that $\triangle XYZ$ is also directly similar to triangles ABC and PQR.

Construction: let O be a point such that $\triangle OBC \stackrel{+}{\sim} \triangle OQR$.

- ightharpoonup OABC \sim OPQR
- ightharpoonup OAPX \sim OBQY \sim OCRZ
- ► OABC ~ OXYZ ~ OPQR

Note: *O* is the centre of each of the *spiral similarities* sending a coloured triangle to another of the same colour.