(d) If T(1)' $\phi_O = \phi_O$ for some $\phi_O \in E'_+$ then there exists $\phi \in D(A^*)_+$ with $\{f \in E : < |f|, \phi> = 0\} \subseteq \{f \in E : < |f|, \phi_O^> = 0\}$ such that $A^*\phi = 0$.

The fact that s(A) is always an eigenvalue of the adjoint (cf. B-III Thm.1.6) is characteristic for spaces C(K), K compact, as can be seen considering the Laplacian on $L^p(\mathbb{R}^n)$ where $1 or on <math>C_0(\mathbb{R}^n)$ (see B-III,Ex.1.7). Another result which cannot be extended to arbitrary Banach lattices is that spectral bound and growth bound coincide (cf. B-IV,Thm.1.4); an example is given in A-III,Ex.1.3. Despite of this the resolvent $R(\lambda,A)$ of a positive semigroup is given as the Laplace transform of the semigroup in the half-plane $\{z \in \mathbb{C} : \text{Re } z > s(A)\}$ (even in case that $\omega(A) > s(A)$). Note however that the integral exists only as an improper Riemann integral. By Datko's Theorem (A-IV,Thm.1.11) the function $t + e^{-\lambda t} \cdot T(t)$ cannot be Bochner integrable for all $f \in E$ in case $Re \lambda \leq \omega(A)$.

Theorem 1.2. Suppose A is the generator of a positive semigroup $(T(t))_{t\geq 0}$. For Re λ > s(A) we have:

(1.1)
$$R(\lambda, A) f = \lim_{t \to \infty} \int_0^t e^{-\lambda s} T(s) f ds$$
 for all $f \in E$.

Moreover, the operators $\int_0^t e^{-\lambda s} T(s) ds$ tend to $R(\lambda,A)$ with respect to the operator norm as $t \to \infty$.

<u>Proof.</u> We fix $\lambda_0 > \omega(A)$. Then by A-I, Prop.1.11

(1.2)
$$R(\lambda_0, A)^{n+1}f = \frac{1}{n!} \int_0^\infty s^n \exp(-\lambda_0 s) T(s) f ds$$
 ($n \in \mathbb{N}_0$, $f \in E$)

Given μ such that s(A) < μ < $\lambda_{_{\mbox{\scriptsize O}}}$, f \in E_{+} , ϕ \in E_{+}^{*} then

$$(1.3) < R(\mu, A) f, \phi > = \sum_{n=0}^{\infty} (\lambda_{O} - \mu)^{n} < R(\lambda_{O}, A)^{n+1} f, \phi > =$$

$$= \sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{1}{n!} ((\lambda_{O} - \mu) s)^{n} \exp(-\lambda_{O} s) < T(s) f, \phi > ds =$$

$$= \int_{0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{n!} ((\lambda_{O} - \mu) s)^{n} \exp(-\lambda_{O} s) < T(s) f, \phi > ds =$$

$$= \int_{0}^{\infty} \exp((\lambda_{O} - \mu) s) \exp(-\lambda_{O} s) < T(s) f, \phi > ds =$$

$$= \int_{0}^{\infty} \exp(-\mu s) < T(s) f, \phi > ds = \lim_{t \to \infty} < \int_{0}^{t} \exp(-\mu s) T(s) f ds, \phi > ds =$$

Note that one can interchange summation and integration because all the integrands are positive functions.

It follows from (1.3) that the net $(\int_0^r \exp(-\mu s)T(s) f ds)_{r\geq 0}$ converges weakly to $R(\mu,A)f$ for $r \rightarrow \infty$. Because it is monotone increasing $(f \geq 0)$, we have strong convergence (see the corollary to II.Thm.5.9 in Schaefer (1974)).