Contents

1	\mathbf{Sec}	uencias de números
	1.1	El espacio vectorial de las secuencias infinitas $(\mathbb{R}^{\mathbb{Z}},+,\cdot)$
		1.1.1 Notación mediante funciones generatrices
		1.1.2 Características de algunas secuencias
		1.1.3 Algunos subespacios de $(\mathbb{R}^{\mathbb{Z}}, +, \cdot)$
	1.2	Producto convolución
	1.3	Anillos conmutativos y cuerpos
		1.3.1 Anillos conmutativos
		1.3.2 Cuerpos
	1.4	Clasificación de algunos subconjuntos de sucesiones
	1.5	Inversas
		1.5.1 Inversas de secuencias con principio
		1.5.2 Inversas de secuencias con final
		1.5.3 Inversas de polinomios
		1.5.4 Cuerpo de fracciones de polinomios
	1.6	Operador retardo B y suma de los elementos de una secuencia
		1.6.1 Polinomios y secuencias en el operador retardo $a(B)$ actuando sobre secuencias 8
		1.6.2 El operador retardo y el producto convolución de una secuencia $m{x}$ por z 9
	1.7	El producto elemento a elemento de dos secuencias
	1.8	Convolución de una serie formal con el "reverso" de otra

Econometría Aplicada. Lección 4

Marcos Bujosa

September 16, 2024

En esta lección veremos conceptos algebraicos usados en la modelización de series temporales.

1 Secuencias de números

1.1 El espacio vectorial de las secuencias infinitas $\left(\mathbb{R}^{\mathbb{Z}},+,\cdot\right)$

Consideremos el conjunto $\mathbb{R}^{\mathbb{Z}}$ de secuencias infinitas de números reales

$$x = (\ldots, x_{-2}, x_{-1}, x_0, x_1, x_2, \ldots) = (x_t \mid t \in \mathbb{Z})$$

Las secuencias se pueden sumar y también se pueden multiplicar por escalares. Si $x, y \in \mathbb{R}^{\mathbb{Z}}$ y $a \in \mathbb{R}$, entonces

$$\boldsymbol{x} + \boldsymbol{y} = (x_t + y_t \mid t \in \mathbb{Z})$$

У

$$a \cdot \boldsymbol{x} = (a \cdot x_t \mid t \in \mathbb{Z}).$$

El conjunto $\mathbb{R}^{\mathbb{Z}}$ junto con la suma elemento a elemento y el producto por escalares constituyen un espacio vectorial.

1.1.1 Notación mediante funciones generatrices

En la expresión $\boldsymbol{x}=(\ldots,\,x_{-2},\,x_{-1},\,x_0,\,x_1,\,x_2,\ldots)$ separamos los elementos por comas, e indicamos la posición con un subíndice. Pero en

$$a = (\ldots, 0, 1, 4, 9, 2, 0, \ldots)$$

¿qué posición ocupan estos números en la secuencia?

Las funciones generatrices resuelven este problema. En ellas los elementos se separan con el símbolo "+" y la posición es indicada con la potencia del símbolo "z"

$$a = \cdots + 0z^{-2} + 1z^{-1} + 4z^{0} + 9z + 0z^{2} + \cdots$$

Así podemos denotar la secuencia \boldsymbol{x} de manera muy compacta del siguiente modo

$$x = \sum_{t=-\infty}^{\infty} x_t z^t \equiv x(z)$$

¡Pero esta expresión no es una suma! es solo un modo de expresar una secuencia. Dicha expresión se denomina función generatriz.

1.1.2 Características de algunas secuencias

La sucesión $\mathbf{0} = \sum_{t=-\infty}^{\infty} 0z^t$ se denomina sucesión nula. En una sucesión \boldsymbol{a} no nula llamamos

Grado al menor índice entero que verifica la propiedad:

$$j > grado(\boldsymbol{a}) \Rightarrow a_i = 0$$

Para la sucesión, $\mathbf{0}$, diremos que su grado es menos infinito $(grado(\mathbf{0}) = -\infty)$.

Cogrado al mayor índice entero que verifica la propiedad:

$$j < grado(\boldsymbol{a}) \Rightarrow a_i = 0$$

Para la sucesión, $\mathbf{0}$, diremos que su cogrado es infinito $(cogrado(\mathbf{0}) = \infty)$.

Una sucesión \boldsymbol{a} es

Absolutamente sumable (ℓ^1) si $\sum_{t=-\infty}^{\infty} |a_t| < \infty$

De cuadrado sumable (ℓ^2) si $\sum_{t=-\infty}^{\infty} a_t^2 < \infty$

Una sucesión absolutamente sumable siempre es de cuadrado sumable, $\ell^1 \subset \ell^2$.

1.1.3 Algunos subespacios de $(\mathbb{R}^{\mathbb{Z}}, +, \cdot)$

Secuencias con final si tienen grado (a partir de cierto índice son cero).

$$\mathbf{a}(z) = (\dots, a_{p-3}, a_{p-2}, a_{p-1}, a_p, 0, 0, 0, \dots) = \sum_{t=-\infty}^{p} a_t z^t$$

Secuencias con principio si tienen cogrado (antes de cierto índice son cero).

$$\mathbf{a}(z) = (\dots, 0, 0, 0, a_k, a_{k+1}, a_{k+2}, a_{k+3}, \dots) = \sum_{t=k}^{\infty} a_t z^t \qquad k \in \mathbb{Z}$$

Series formales si su cogrado ≥ 0 .

$$\mathbf{a}(z) = (\dots, 0, 0, 0, a_0, a_1, a_2, a_3, \dots) = \sum_{t=k}^{\infty} a_t z^t \qquad k \ge 0$$

Polinomios son series formales con grado

$$\mathbf{a}(z) = (\dots, 0, 0, 0, a_0, a_1, \dots, a_p, 0, 0, 0, \dots) = \sum_{t=k}^{p} a_t z^t \qquad k \ge 0$$

(p.e. $a_0 + a_1 z + a_2 z^2$ es un polinomio de grado 2).

1.2 Producto convolución

Sean a y b sucesiones con principio (con cogrado). Su producto convolución es la sucesión:

$$(\boldsymbol{a} * \boldsymbol{b})_t = \sum_{r+s=t} a_r b_s; \quad r, s, t \in \mathbb{Z}$$

El cogrado de a * b es la suma de los respectivos cogrados.

La convolución también está definida entre sucesiones:

- con final (con grado). El grado del producto es la suma de los respectivos grados.
- absolutamente sumables (ℓ^1) .

TODO Incluir las demos en los apuntes :@EctrApl:

1.3 Anillos conmutativos y cuerpos

1.3.1 Anillos conmutativos

Un anillo conmutativo es un conjunto S equipado con dos operaciones binarias, la suma + y el producto * que satisfacen tres conjuntos de axiomas.

En cuanto a la suma

- (a+b)+c=a+(b+c) para todo a,b,c en S (i.e. + es asociativa).
- a + b = b + a para todo a, b en S (i.e. + es conmutativa).
- Existe un elemento $\mathbf{0}$ tal que $\mathbf{a} + \mathbf{0} = \mathbf{a}$ para todo $\mathbf{a} \in \mathsf{S}$.
- Para cada $a \in S$ existe $-a \in S$ tal que a + (a) = 0.

En cuanto al producto

- (a*b)*c = a*(b*c) para todo a,b,c en S (i.e. * es asociativo).
- a * b = b * a para todo a, b en S (i.e. * es conmutativo).
- Existe un elemento 1 tal que a * 1 = a para todo $a \in S$.

El elemento 1 es la secuencia cuyos elementos son cero excepto un 1 en la posición cero:

$$1 = 1z^0 = (\dots, 0, 0, \boxed{1}, 0, 0, \dots)$$

El producto es distributivo respecto de la suma: Para todo a, b, c en S

- a*(b+c) = (a*b) + (a*c)
- (b+c)*a = (b*a) + (c*a)

1.3.2 Cuerpos

Un cuerpo es un anillo conmutativo que adicionalmente satisface:

Para cada a ∈ S no nulo (a ≠ 0), existe b ∈ S tal que a * b = 1.
 (Todo elemento no nulo del conjunto tiene una inversa en dicho conjunto)

1.4 Clasificación de algunos subconjuntos de sucesiones

Son anillos el conjunto de series formales (cogrado ≥ 0), polinomios y ℓ^1 .

Para algunas sucesiones (no nulas) de estos subconjuntos o no existe inversa o, cuando existe, es una sucesión de otro tipo (p.e. las inversas de un polinomio no son polinomios en general).

Son cuerpos el conjunto de secuencias con principio, secuencias con final (y el Cuerpo de fracciones de polinomios)

1.5 Inversas

1.5.1 Inversas de secuencias con principio

Supongamos que $a \neq 0$ y que k = cogrado(a). Definimos **b** del siguiente modo:

$$b_{j} = \begin{cases} 0 & \text{si } j < -k \\ \frac{1}{a_{k}} & \text{si } j = -k \\ \frac{-1}{a_{k}} \sum_{r=-k}^{j-1} b_{r} a_{j+k-r} & \text{si } j > -k \end{cases}$$

Por construcción, $cogrado(\mathbf{b}) = -k$ y en consecuencia $(\mathbf{a} * \mathbf{b})_j = 0$ si j < 0. Obviamente, $(\mathbf{a} * \mathbf{b})_0 = 1$; y además $(\mathbf{a} * \mathbf{b})_j = 0$ si j > 0.

Es así ya que

$$(\mathbf{a} * \mathbf{b})_{j} = \sum_{r+s=j} a_{r} b_{s} = \sum_{r=-k}^{j-k} a_{j-r} b_{r}$$

$$= \sum_{r=-k}^{j-k-1} a_{j-r} b_{r} + a_{k} b_{j-k}$$

$$= \sum_{r=-k}^{j-k-1} a_{j-r} b_{r} + a_{k} \left(\frac{-1}{a_{k}} \sum_{r=-k}^{j-k-1} b_{r} a_{j-k+k-r}\right)$$

$$= \sum_{r=-k}^{j-k-1} a_{j-r} b_{r} - \sum_{r=-k}^{j-k-1} b_{r} a_{j-r} = 0$$

Ejemplo: Para el polinomio 1 - az

$$(1-az)^{-\triangleright} = \text{inversa con principio de } (1-az) = \begin{cases} 0 & \text{si } j < 0 \\ 1 & \text{si } j = 0 \\ a^{-1} & \text{si } j > 0 \end{cases}$$

es decir $(..., 0, [1], a, a^2, a^3, ...) = \sum_{j=0}^{\infty} a^j z^j$

Comprobación:

$$(1 - az) \sum_{j=0}^{\infty} a^j z^j = \sum_{j=0}^{\infty} a^j z^j - az \sum_{j=0}^{\infty} a^j z^j$$
$$= \sum_{j=0}^{\infty} a^j z^j - \sum_{j=1}^{\infty} a^j z^j$$
$$= a^0 z^0 + \sum_{j=1}^{\infty} (a^j - a^j) z^j$$
$$= 1z^0 + \sum_{j=1}^{\infty} 0z^j = 1$$

1.5.2 Inversas de secuencias con final

Supongamos que $a \neq 0$ y que p = grado(a). Definimos **b** del siguiente modo:

$$b_{j} = \begin{cases} 0 & \text{si } j > -p \\ \frac{1}{a_{p}} & \text{si } j = -p \\ \frac{-1}{a_{p}} \sum_{r=j-1}^{-p} b_{r} a_{j+p-r} & \text{si } j < -p \end{cases}$$

Por construcción, $grado(\mathbf{b}) = -p$.

Ejemplo: Para el polinomio 1 - az

$$(1-az)^{\blacktriangleleft -} = \text{inversa con final de } (1-az) = \begin{cases} 0 & \text{si } j > -1 \\ \frac{-1}{a} & \text{si } j = -1 \\ \frac{-1}{a^j} & \text{si } j < -1 \end{cases}$$

es decir $(\ldots, \frac{-1}{a^3}, \frac{-1}{a^2}, \frac{-1}{a}, \boxed{0}, \ldots) = \sum_{j=-\infty}^{-1} -a^j z^j$

Comprobación:

$$(1 - az) \sum_{j = -\infty}^{-1} -a^{j} z^{j} = \sum_{j = -\infty}^{-1} -a^{j} z^{j} + (-az) \sum_{j = -\infty}^{-1} -a^{j} z^{j}$$

$$= \sum_{j = -\infty}^{-1} -a^{j} z^{j} + \sum_{j = -\infty}^{0} a^{j} z^{j}$$

$$= \sum_{j = -\infty}^{-1} -a^{j} z^{j} + \sum_{j = -\infty}^{-1} a^{j} z^{j} + a^{0} z^{0}$$

$$= \sum_{j = -\infty}^{-1} (a^{j} - a^{j}) z^{j} + 1z^{0} = 1$$

Si definimos la función entre secuencias $R: \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$ tal que $R(a_j) = a_{-j}$, es decir, la función reverso

$$R(\boldsymbol{a}(z)) = \boldsymbol{a}(z^{-1})$$

se puede demostrar que para toda secuencia con final a

$$a^{\blacktriangleleft -} = R\left(\left(R(a)\right)^{-\triangleright}\right).$$

1.5.3 Inversas de polinomios

Ahora sabemos que todo polinomio

por tener cogrado tiene una inversa con cogrado (con principio)

por tener grado tiene una inversa con grado (con final)

y que dichas inversas no son de la forma $\sum_{t=k}^{p} a_t z^t$ con $k \ge 0$ (i.e., no son polinomios).

Por el ejemplo anterior sabemos que para 1-az ambas inversas son

•
$$(1-az)^{-\triangleright} = \sum_{j=0}^{\infty} a^j z^j = (\dots, 0, \boxed{1}, a, a^2, a^3, \dots)$$

•
$$(1-az)^{\blacktriangleleft -} = \sum_{j=-\infty}^{-1} -a^j z^j = (\dots, \frac{-1}{a^3}, \frac{-1}{a^2}, \frac{-1}{a}, \boxed{0}, \dots)$$

Es evidente que si $|a| \neq 1$ una de las inversas está en ℓ^1 y la otra no.

Pero si |a| = 1 ninguna de las inversas pertenece a ℓ^1

Además, por el Teorema fundamental del Álgebra también sabemos que:

Todo polinomio univariante no nulo con coeficientes reales puede factorizarse como

$$c \cdot \boldsymbol{p}_1 * \cdots * \boldsymbol{p}_k,$$

donde c es un número real y cada \mathbf{p}_i es un polinomio mónico (i.e., el coeficiente de z^0 es 1) de grado a lo sumo dos con coeficientes reales. Más aún, se puede suponer que los factores de grado dos no tienen ninguna raíz real.

Podemos factorizar un polinomio a sin raíces de módulo 1 como

$$a = b * c$$

- donde b es un polinomio con las raíces de módulo menor que 1 y
- donde c es un polinomio con las raíces de módulo mayor que 1

Como tanto los polinomios a, b y c como las inversas $b^{\blacktriangleleft -}$ y $c^{-\triangleright}$ pertenecen al anillo ℓ^1 ,

$$\boldsymbol{a}*(\boldsymbol{b}^{\blacktriangleleft-}*\boldsymbol{c}^{-\triangleright}) = (\boldsymbol{b}*\boldsymbol{c})*(\boldsymbol{b}^{\blacktriangleleft-}*\boldsymbol{c}^{-\triangleright}) = \boldsymbol{b}*\boldsymbol{b}^{\blacktriangleleft-}*\boldsymbol{c}*\boldsymbol{c}^{-\triangleright} = 1*1 = 1.$$

La secuencia $(\boldsymbol{b}^{\blacktriangleleft -} * \boldsymbol{c}^{-\triangleright})$ es "la" inversa de \boldsymbol{a} en ℓ^1 .

En general, dicha inversa no tiene grado ni cogrado y se denota con $a^{-1} = \frac{1}{a}$. (es la inversa que aparece en los libros de series temporales)

Evidentemente dicha inversa no existe si a tiene alguna raíz de módulo 1.

En los manuales de series temporales se dice que un polinomio a es invertible si

(la inversa con principio) $a^{-\triangleright} = a^{-1}$ (la inversa absolutamente sumable).

(si sus raíces están fuera del círculo unidad.)

Hay infinitas inversas. Si una secuencia tiene dos inversas, entonces tiene infinitas.

Sean \boldsymbol{a} , \boldsymbol{b} y \boldsymbol{d} secuencias tales que $\boldsymbol{a}*\boldsymbol{b}=1$ y $\boldsymbol{a}*\boldsymbol{d}=1$; y sean β y δ dos escalares tales que $\beta+\delta=1$. Entonces

$$\mathbf{a} * (\beta \mathbf{b} + \delta \mathbf{d}) = \beta (\mathbf{a} * \mathbf{b}) + \delta (\mathbf{a} * \mathbf{d}) = \beta 1 + \delta 1 = (\beta + \delta)1 = 1$$

Así, para β y δ tales que $\beta + \delta = 1$, sabemos que $(\beta b + \delta d)$ es otra inversa de a.

1.5.4 Cuerpo de fracciones de polinomios

El cuerpo más importante en la modelización ARIMA es el cuerpo de fracciones de polinomios

$$\{p * q^{-\triangleright} \mid p \text{ y } q \text{ son polinomios y } q \neq 0\};$$

es un subcuerpo del cuerpo de las sucesiones con principio (con cogrado)

Toda fracción de sucesiones con grado y cogrado (con principio y final) pertenece al cuerpo de fracciones de polinomios.

El razonamiento es simple: Toda sucesión con grado k y cogrado es de la forma $p*(z^k)^{-\triangleright}$, donde p es un polinomio.

Cuando las raíces del polinomio q están fuera del circulo unidad (i.e., $q^{-\triangleright} = q^{-1}$) es habitual denotar la secuencia $p * q^{-\triangleright}$ así $\frac{p}{q}$

$$(\boldsymbol{p}*\boldsymbol{q}^{- riangle})(z) = rac{\boldsymbol{p}(z)}{\boldsymbol{q}(z)}$$

1.6 Operador retardo B y suma de los elementos de una secuencia.

Por conveniencia se usa el operador retardo B en la notación:

$$Bx_t = x_{t1}$$
, para $t \in \mathbb{Z}$.

Aplicando el operador B repetidamente tenemos

$$\mathsf{B}^k x_t = x_{tk}, \quad \text{para } t, z \in \mathbb{Z}$$

Así, si la secuencia $\boldsymbol{x}(z) = \sum_{t=-\infty}^{\infty} x_t z^t$ es sumable, entonces la expresión

$$\mathbf{x}(\mathsf{B}) = \sum_{t=-\infty}^{\infty} x_t \mathsf{B}^t = \dots + x_{-2} + x_{-1} + x_0 + x_1 + \dots$$

tiene sentido como suma.

1.6.1 Polinomios y secuencias en el operador retardo a(B) actuando sobre secuencias

Así, para el polinomio $a(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3$, y la secuencia y, tenemos

$$\mathbf{a}(\mathsf{B})y_t = (a_0 + a_1\mathsf{B} + a_2\mathsf{B}^2 + a_3\mathsf{B}^3)y_t$$

$$= a_0y_t + a_1\mathsf{B}^1y_t + a_2\mathsf{B}^2y_t + a_3\mathsf{B}^3y_t$$

$$= a_0y_t + a_1y_{t-1} + a_2y_{t-2} + a_3y_{t-3}$$

$$= \sum_{r=0}^{3} a_ry_{t-r}$$

$$= (\mathbf{a} * \mathbf{y})_t$$

Y en general, si a e y son secuencias sumables, entonces

$$\mathbf{a}(\mathsf{B})y_t = (\dots + a_{-2}\mathsf{B}^{-2}, a_{-1}\mathsf{B}^{-1}, a_0 + a_1\mathsf{B} + a_2\mathsf{B}^2 + \dots)y_t$$

= \dots + a_{-2}y_{t+2} + a_{-1}y_{t+1} + a_0y_t + a_1y_{t-1} + a_2y_{t-2} + \dots
= (\mathbf{a} * \mathbf{y})_t

1.6.2 El operador retardo y el producto convolución de una secuencia x por z

Del mismo modo que denotamos con 1 la secuencia

$$1 = (\dots, 0, 0, 1, 0, 0, \dots) = 1z^0$$

denotamos con z la secuencia

$$z = (\dots, 0, 0, 0, 1, 0, \dots) = 1z^{1};$$

y con z^{-1} la secuencia

$$z^{-1} = (\dots, 0, 1, 0, 0, 0, \dots) = 1z^{-1}.$$

Evidentemente

$$z^2 = z * z = (\dots, 0, 0, 0, 0, 1, \dots) = 1z^2.$$

De ese modo

$$\boldsymbol{x} * z^k = \sum_{t \in \mathbb{Z}} x_t z^{t+k} = (\mathsf{B}^k x_t \mid t \in \mathbb{Z}).$$

1.7 El producto elemento a elemento de dos secuencias

El producto elemento a elemento (o producto Hadamard) de a y b es la secuencia

$$\boldsymbol{a} \odot \boldsymbol{b} = (a_t b_t \mid t \in \mathbb{Z}) = \sum_{t \in \mathbb{Z}} a_t b_t z^t.$$

Por tanto

$$\boldsymbol{x} \odot (\boldsymbol{y} * z^k) = (x_t y_{t-k} \mid t \in \mathbb{Z}) = \sum_{t \in \mathbb{Z}} x_t y_{t-k} z^t;$$

y si ϕ es el polinomio $1 - \phi_1 z^1 - \dots - \phi_p z^p$,

$$(\boldsymbol{\phi} * \boldsymbol{x}) \odot (\boldsymbol{y} * z^k) = \left((\boldsymbol{\phi}(\mathsf{B}) x_t) y_{t-k} \mid t \in \mathbb{Z} \right) = \sum_{t \in \mathbb{Z}} (\boldsymbol{\phi}(\mathsf{B}) x_t) y_{t-k} z^t,$$

donde

$$(\phi(\mathsf{B})x_t)y_{t-k} = (x_t - \phi_1 x_{t-1} - \dots - \phi_p x_{t-p})y_{t-k}$$

= $x_t y_{t-k} - \phi_1 x_{t-1} y_{t-k} - \dots - \phi_p x_{t-p} y_{t-k}.$

1.8 Convolución de una serie formal con el "reverso" de otra

Por último, si tenemos dos series formales a y b, entonces

$$\mathbf{a}(z) * \mathbf{b}(z^{-1}) = (a_0 z^0 + a_1 z^1 + a_2 z^2 + \cdots)(\cdots + b_2 z^{-2} + b_1 z^{-1} + b_0 z^0)$$

$$= \Big(\dots, \sum_{j \in \mathbb{Z}} a_{j+2} b_j, \sum_{j \in \mathbb{Z}} a_{j-1} b_j, \sum_{j \in \mathbb{Z}} a_j b_j, \sum_{j \in \mathbb{Z}} a_{j+1} b_j, \sum_{j \in \mathbb{Z}} a_{j+2} b_j, \dots \Big)$$

$$= \Big(\sum_{j \in \mathbb{Z}} a_{j+k} b_j \mid k \in \mathbb{Z} \Big)$$

es decir,

$$\left(\boldsymbol{a}(z) * \boldsymbol{b}(z^{-1})\right)_k = \sum_{j \in \mathbb{Z}} a_{j+k} b_j. \tag{1}$$