

StarGAN

Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

CVPR 2018

Guide: Prof. Ahlad Kumar

Motivation

Image editing

- Low complexity
- No comprehension of scene or object
- Common operations filtering

Image to Image translation

- High complexity (challenging modification)
- Learn the mapping between input image and output image
- Common operation style transfer

Solution for non trivial tasks - Generative models!

Role
Ol

SUMMARIZER (Introduction)

Niharika Dalsania - 201701438

Prior Work

DiscoGAN

Discover relations between different domains and successfully transfer style from one domain to another

Source: https://arxiv.org/pdf/1703.05192v2.pdf

CycleGAN

Translate an image from a source domain X to a target domain Y in the absence of paired examples

Source: https://arxiv.org/pdf/1703.10593.pdf

IcGAN

Identify the latent representation of image using encoder, and modify any attribute to get desired results

Source: https://arxiv.org/pdf/1611.06355.pdf

DIAT

Generate a facial image that owns the reference attribute and keeps similar identity to the input image

Source: https://arxiv.org/pdf/1610.05586.pdf

Major issues...

- Addresses only translation within two domains
- Very inefficient and cumbersome training for multi domain translation
- Low visual quality results blurred and distorted
- Some **major amendments needed!** not just in the model architecture, but in the underlying training process itself

A fresh approach... StarGAN

- Intuition behind the new approach
 - Robustness in learning through a multi-task learning framework from very big and different feature datasets
 - Train model to flexibly translate images according to the labels of the target domain
- Rationale? Why will this address the flaws?
 - Will help improve sharpness of features and reduce efforts of training for each source target pair
 - Not prone to overfitting, as opposed to training a model to perform a fixed translation

The core idea

How will it work?

Looking inside the network - Generator

Downsampling

2 convolutional layers with the stride size of 2

- 6 residual blocks
- Upsampling

2 transposed convolutional layers with the stride size of 2

Looking inside the network - Discriminator

- Input Layer
- 5 hidden layers

convolutional layers with the stride size of 2

2 Output layers

Domain Classification & Real/Fake Identification

Role
O2

ADVOCATE

Zeel Patel - 201701443

Losses

Adversarial Loss (GAN Loss)

at Discriminator D	at Generator G
D (x) \rightarrow should be maximized D (G(z)) \rightarrow should be minimized	D (G(z)) \rightarrow should be maximized

$$\mathcal{L}_{adv} = \mathbb{E}_x \left[\log D_{src}(x) \right] + \\ \mathbb{E}_{x,c} \left[\log \left(1 - D_{src}(G(x,c)) \right) \right],$$

<u>Dsrc</u> → Probability distribution of being real or fake <u>Dcls</u> → Probability distribution over domain labels Fake image \rightarrow G(x,c) x → real image c → target domain

Losses (contd.)

Domain Classification Loss

- Task of Generate → generate an image which is classified in the target domain.
- Hence, error in classifying fake \rightarrow to train generator
- Task of discriminator → Detect fake image
- Hence, error in classifying real → to train discriminator

$$\mathcal{L}_{cls}^{r} = \mathbb{E}_{x,c'}[-\log D_{cls}(c'|x)],$$

$$\mathcal{L}_{cls}^f = \mathbb{E}_{x,c}[-\log D_{cls}(c|G(x,c))].$$

Losses (contd.)

Reconstruction Loss

- Just like cycle GAN,(cycle consistency loss)
- Li Norm

$$\mathcal{L}_{rec} = \mathbb{E}_{x,c,c'}[||x - G(G(x,c),c')||_1],$$

Final Objective

$$\mathcal{L}_D = -\mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^r,$$

$$\mathcal{L}_G = \mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^f + \lambda_{rec} \, \mathcal{L}_{rec},$$

Why Gradient Penalty? (Long Story)

- $p \rightarrow original data distribution , q \rightarrow generated$
- Discriminator is trained first.
- Minimizing the GAN objective function with an optimal discriminator is equivalent to minimizing the JS-divergence.
- If the generated image has distribution q far away from the ground truth p, the generator barely learns anything because of vanishing Gradient.

Source: https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Wasserstein Distance

- Alternative cost function to address this gradient vanishing problem is reverse JS divergence and adding noise.
- But it has some limits as well.
- Wasserstein distance: minimum cost of transporting mass in converting the data distribution q to the data distribution p. (We look at horizontal distance)
- Discriminator → Critic
- Hence → No sigmoid layer at last
- Weights → Clipped
- Critic → G,D functionality of original GAN is not there

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

$$\nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$$

Now What?

- Weight Clipping is a terrible solution.
- Slow convergence after weight clipping (when clipping window is too large), and vanishing gradients (when clipping window is too small).
- Solved by Gradient Penalty.
- Points interpolated between the real and generated data should have a gradient norm of 1 for D.

$$\mathcal{L}_{adv} = \mathbb{E}_x[D_{src}(x)] - \mathbb{E}_{x,c}[D_{src}(G(x,c))] - \lambda_{gp} \,\mathbb{E}_{\hat{x}}[(||\nabla_{\hat{x}}D_{src}(\hat{x})||_2 - 1)^2],$$

Role O3

ADVOCATE

Darshan Patel - 201701436

Multi Domain Translation

```
1 # Core Algorithm
2 Shuffle Data
3 Divide into batches
4 for every epoch
5 for every iteration
6 fetch respective batch
7 choose a random target label
8 train G & D on batch for converting to target label
```

- Multi Domain Image to Image translation becomes possible
- Robust and Effective Implementation

Qualitative Analysis - CelebA

- The Regularization effect of StarGAN through a multi-task learning framework.
- Compared to IcGAN, starGAN shows an advantage in preserving the facial identity feature of any input

Qualitative Analysis - RaFD

- DIAT and CycleGAN mostly preserve the identity, but blurry results.
- starGAN shows sharp results while preserving the identity, because of Implicit data augmentation effect from a multi-task learning setting
- $X_i = 500$, n = 8, X = 4000

Multiple Dataset Training

- Able to simultaneously incorporate multiple datasets
- Proposing the "Mask Vector" denoted as "m"

Importance of Joint Training

• Improvement in shared low-level tasks such as facial keypoint detection and segmentation

Importance of mask vector

Proper mask vector

Wrong mask vector

Role O4.

DEVIL'S ADVOCATE

Ruchit Shah - 201701435

A look at the Results...

- Results generated from the code
 - o Images stored directly in drive folder

- Results from the pre-trained model
 - Images stored directly in local machine

Drawbacks of StarGAN

- StarGAN tends to make unnecessary changes during cross-domain translation.
 - Alters the face colour
 - Unnecessarily changes the background

- StarGAN fails to competently handle same-domain translation
 - Adds a moustache to the face
 - Adds extra hair

Image source: Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization, Md Mahfuzur Rahman Siddiquee et al.

Rectifications

StarGAN Loss Equations

$$\mathcal{L}_{adv} = \mathbb{E}_{x} \left[\log D_{src}(x) \right] + \\ \mathbb{E}_{x,c} \left[\log \left(1 - D_{src}(G(x,c)) \right) \right],$$

$$\mathcal{L}_{cls}^{r} = \mathbb{E}_{x,c'} \left[-\log D_{cls}(c'|x) \right],$$

$$\mathcal{L}_{cls}^{f} = \mathbb{E}_{x,c} \left[-\log D_{cls}(c|G(x,c)) \right].$$

$$\mathcal{L}_{rec} = \mathbb{E}_{x,c,c'} \left[\left| \left| x - G(G(x,c),c') \right| \right|_{1} \right],$$

$$\mathcal{L}_D = -\mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^r,$$
 $\mathcal{L}_G = \mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^f + \lambda_{rec} \, \mathcal{L}_{rec},$

Rectified Loss Equations

$$\mathcal{L}_{adv} = \sum_{c \in \{c_x, c_y\}} \mathbb{E}_{x,c} \left[\log \left(1 - D_{r/f} (G(x, c)) \right) \right] + \mathbb{E}_x \left[\log D_{r/f}(x) \right]$$

$$\mathcal{L}_{domain}^r = \mathbb{E}_{x,c_x} \left[-\log D_{domain}(c_x | x) \right]$$

$$\mathcal{L}_{domain}^f = \sum_{c \in \{c_x, c_y\}} \mathbb{E}_{x,c} \left[-\log D_{domain}(c | G(x, c)) \right]$$

$$\mathcal{L}_{cyc} = \sum_{c \in \{c_x, c_y\}} \mathbb{E}_{x,c_x,c} \left[\| G(G(x, c), c_x) - x \|_1 \right]$$

$$\mathcal{L}_{id} = \mathbb{E}_{x,c} \left[\| G(x, c) - x \|_1 \right] \text{ if } c = c_x; \text{ 0 otherwise}$$

$$\mathcal{L}_{D} = -\mathcal{L}_{adv} + \lambda_{domain} \mathcal{L}_{domain}^{r}$$

$$\mathcal{L}_{G} = \mathcal{L}_{adv} + \lambda_{domain} \mathcal{L}_{domain}^{f} + \lambda_{cyc} \mathcal{L}_{cyc} + \lambda_{id} \mathcal{L}_{id}$$

Improvement in Results

StarGAN

Rectified version

Yet another Drawback...

- Methods used in StarGAN assume binary-valued attributes and thus cannot yield satisfactory results for fine-grained control.
- These methods require specifying the entire set of target attributes, even if most of the attributes would not be changed.

Image Source: RelGAN: Multi-Domain Image-to-Image Translation via Relative Attributes

Quantitative Support

Image Source: STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing

Role
Ol

SUMMARIZER (Conclusion)

Niharika Dalsania - 201701438

Major Takeaways...

- Existing methods of image to image translation
 - Two domain translation
 - Inefficient training
 - Blurry, distorted results
- A novel approach StarGAN
 - Multi domain translation
 - Joint training over multiple datasets (mask vector!)
 - Visually superior results compared to previous results
 - Not yet perfect! fails for same domain translation

The plus points...

The minus points...

Image Source : Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization , Md Mahfuzur Rahman Siddiquee et al.

StarGAN in a nutshell...

- An extremely scalable model with high visual quality generated image owing to the generalization capability behind the multi-task learning setting.
- Yet, there are some flaws addressing which researchers can develop superior image translation applications across multiple domains.

Thank you!

Group 7

Ruchit(201701435), Darshan(201701436), Niharika(201701438), Zeel(201701443)