Matrices Operaciones con matrices Tipos de matrices

PhD. Henry R Moncada

UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

September 1, 2024

Outline

- Definición de Matriz
- Igualdad de Matrices
- 3 Operaciones con Matrices
- Propiedades de las Operaciones con Matrices
- Tipos de Matrices
- 6 Ejemplos de Aplicación Práctica
- Matriz Transpuesta
- Matriz Simétrica
- Matriz Antisimétrica
- Matriz Idempotentes
- Matriz Involutivas
- Matrices Ortogonales
- Matriz Inversa
- Sistemas de Ecuaciones Lineales
- Ejemplos de Aplicación Práctica
- Conclusión

Definición de Matriz

- Una matriz es un arreglo bidimensional de números dispuestos en filas y columnas.
- Se denota generalmente como $\mathbf{A} = [a_{ij}]$, donde i indica la fila y j la columna, donde a_{ij} representa el elemento en la fila i y columna j.
- Ejemplo de una matriz :

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{3\times 3} \qquad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}_{3\times 2}$$

Notación v Orden de una Matriz:

• El **orden de una matriz** se expresa como $m \times n$ donde m es el número de filas y n es el número de columnas.

Notación

Una matriz de m filas y n columnas se denota como una $(m \times n)$ matriz.

- Notación común:
 - Matriz fila: 1 × n
 - Matriz columna: $m \times 1$
 - Matriz cuadrada: n × n

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \end{bmatrix}_{1 \times 6}^{\mathbf{B}} = \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \\ b_{52} \\ b_{61} \end{bmatrix}_{6 \times 1}^{\mathbf{C}} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}_{2 \times 2}^{\mathbf{C}}$$

Ejemplos de Matrices

• Matriz 2×2 :

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

• Matriz 3×1 (una columna):

$$B = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$$

• Matriz 1×4 (una fila):

$$C = \begin{bmatrix} 8 & 9 & 10 & 11 \end{bmatrix}$$

• Orden de una Matriz: Para determinar el orden de una matriz, contamos el número de filas y el número de columnas. Por ejemplo, si tenemos la matriz:

$$D = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

El orden de la matriz D es 2×3 (2 filas y 3 columnas).

¿Qué es la Igualdad de Matrices?

- Dos matrices son iguales si tienen las mismas dimensiones y todos sus elementos correspondientes son iguales.
- Es una propiedad fundamental utilizada en diversas áreas de las matemáticas y la ingeniería.

Problema 1: Considera las matrices:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Solución: Como A = B, todos los elementos correspondientes son iguales.

Entonces,
$$A = B$$
.

Problema 2: Verificar si dos transformaciones lineales representadas por matrices son iguales.

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$

Solución:

- \bullet Comparar cada elemento de las matrices A y B.
- Si todos los elementos correspondientes son iguales, entonces A = B.
- En este caso, todas las entradas de A y B coinciden, por lo tanto, A = B.

Problema 3: Sea una matriz de transformación T:

$$T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Solución: La matriz T es igual a la matriz identidad I.

 $T=I \implies$ Ambas matrices representan la misma transformación: la identidad.

Problema 4: Considera dos matrices X y Y tales que:

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad Y = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Solución: X = Y si y solo si a = a, b = b, c = c, d = d.

Por lo tanto,
$$X = Y$$
.

Problema 5: Dados dos grafos dirigidos representados por sus matrices de adyacencia, determinar si los grafos son iguales.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Solución:

- Comparar las matrices de adyacencia A y B.
- Si todas las entradas correspondientes son iguales, entonces los grafos son iguales.
- En este caso, A=B, por lo tanto, los grafos son idénticos.

Adición y Sustracción de Matrices

- Adición: La suma de dos matrices A y B de igual dimensión se realiza sumando sus elementos correspondientes.
- \bullet Sustracción: La resta de dos matrices A y B de igual dimensión se realiza restando sus elementos correspondientes.

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

$$A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix},$$

$$A - B = \begin{bmatrix} 1 - 5 & 2 - 6 \\ 3 - 7 & 4 - 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}.$$

Adición y Sustracción de Matrices

- Adición: La suma de dos matrices A y B de igual dimensión se realiza sumando sus elementos correspondientes.
- \bullet Sustracción: La resta de dos matrices A y B de igual dimensión se realiza restando sus elementos correspondientes.

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

$$A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix},$$

$$A - B = \begin{bmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}.$$

Multiplicación de Matrices

• La multiplicación de un escalar k por una matriz A consiste en multiplicar cada elemento de A por k.

Sea
$$k = 3$$
 y $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Multiplicación de Matrices

• La multiplicación de un escalar k por una matriz A consiste en multiplicar cada elemento de A por k.

Ejemplo

Sea
$$k = 3$$
 y $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

$$kA = 3 \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}.$$

- La multiplicación de matrices A y B es posible si el número de columnas de A es igual al número de filas de B.
- El elemento en la posición (i, j) del producto es la suma del producto de los elementos correspondientes de la fila i de A y la columna j de B.

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

Multiplicación de Matrices

• La multiplicación de un escalar k por una matriz A consiste en multiplicar cada elemento de A por k.

Ejemplo

Sea
$$k = 3$$
 y $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

$$kA = 3 \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}.$$

- La multiplicación de matrices A y B es posible si el número de columnas de A es igual al número de filas de B.
- El elemento en la posición (i, j) del producto es la suma del producto de los elementos correspondientes de la fila i de A y la columna j de B.

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

$$AB = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.$$

• Propiedad conmutativa de la adición: La suma de matrices es una operación que combina dos matrices de la misma dimensión.

$$A + B = B + A$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

 Propiedad conmutativa de la adición: La suma de matrices es una operación que combina dos matrices de la misma dimensión.

$$A + B = B + A$$

Ejemplo

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
$$A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}, \quad B + A = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

• Propiedad distributiva de la multiplicación escalar: Multiplicar una matriz por un escalar multiplica cada entrada de la matriz por ese escalar.

$$c \cdot (A+B) = c \cdot A + c \cdot B$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad c = 3$$

 Propiedad conmutativa de la adición: La suma de matrices es una operación que combina dos matrices de la misma dimensión.

$$A + B = B + A$$

Ejemplo

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}, \quad B + A = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

• Propiedad distributiva de la multiplicación escalar: Multiplicar una matriz por un escalar multiplica cada entrada de la matriz por ese escalar.

$$c \cdot (A+B) = c \cdot A + c \cdot B$$

$$\begin{split} A &= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad c = 3 \\ \\ 3 \cdot (A+B) &= \begin{bmatrix} 3 & 9 \\ 12 & 12 \end{bmatrix}, \quad 3 \cdot A + 3 \cdot B = \begin{bmatrix} 3 & 9 \\ 12 & 12 \end{bmatrix} \end{split}$$

 Propiedad asociativa de la multiplicación de matrices: La multiplicación de matrices combina dos matrices para formar una nueva matriz.

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

 $_{\rm Ejemplo}$

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$(A \cdot B) \cdot C = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = A \cdot (B \cdot C)$$

• Propiedad de identidad de la multiplicación: AI = A, donde I es la matriz identidad.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(A \cdot I) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = (I \cdot A)$$

Tipos de Matrices

• Una matriz fila tiene solo una fila.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

• Una matriz columna tiene solo una columna.

$$\mathbf{A} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

• Una matriz rectangular tiene un número diferente de filas y columnas.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

• Una matriz cuadrada tiene el mismo número de filas y columnas.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

• Una matriz nula tiene todos sus elementos iguales a cero.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Triangular

 Una matriz triangular superior tiene todos los elementos debajo de la diagonal principal iguales a cero.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 9 \end{bmatrix}$$

• Una matriz triangular inferior tiene todos los elementos por encima de la diagonal principal iguales a cero.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 5 & 0 \\ 7 & 8 & 9 \end{bmatrix}$$

Matriz Diagonal, escalar, identidad

 Una matriz diagonal tiene todos los elementos fuera de la diagonal principal iguales a cero.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

 Una matriz escalar es una matriz diagonal cuyos elementos en la diagonal principal son iguales.

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

• La matriz identidad es una matriz diagonal con unos en la diagonal principal.

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ejemplo 1: Transformaciones Lineales

- Aplicación de matrices en transformaciones lineales en geometría.
- Ejemplo: Rotación de un punto en el plano.

Ejemplo

Rotación de 90° de un punto (x,y) alrededor del origen:

$$\text{Matriz de rotación} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \text{Punto} = \begin{bmatrix} x \\ y \end{bmatrix}.$$

Nueva posición:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}.$$

Ejemplo 2: Redes Neuronales

- Uso de matrices en el cálculo de los pesos de una red neuronal.
- Ejemplo: Producto matricial para calcular las activaciones de una capa.

Si
$$W=\begin{bmatrix}0.2&0.4\\0.3&0.1\end{bmatrix}$$
 es la matriz de pesos y $x=\begin{bmatrix}0.5\\0.9\end{bmatrix}$ es el vector de entradas:

$$Wx = \begin{bmatrix} 0.2 & 0.4 \\ 0.3 & 0.1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.9 \end{bmatrix} = \begin{bmatrix} 0.2 \cdot 0.5 + 0.4 \cdot 0.9 \\ 0.3 \cdot 0.5 + 0.1 \cdot 0.9 \end{bmatrix} = \begin{bmatrix} 0.46 \\ 0.24 \end{bmatrix}.$$

Matriz Transpuesta

- \bullet Definición: La matriz transpuesta de una matriz A es una nueva matriz A^T obtenida cambiando las filas por columnas.
- Notación: Si $A = [a_{ij}]$, entonces $A^T = [a_{ii}]$.
- Propiedades:

 - (a) $(A + B)^T = A^T + B^T$ (a) $(AB)^T = B^T A^T$

Ejemplos: Matriz Transpuesta

• La transposición de una matriz es una operación que invierte sus filas y columnas.

Ejemplo

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

$$A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

- La fila 1 de A se convierte en la columna 1 de A^T .
- La fila 2 de A se convierte en la columna 2 de A^T .
 - Propiedad:

$$(A+B)^T = A^T + B^T$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
$$(A+B)^T = \begin{bmatrix} 6 & 10 \\ 8 & 12 \end{bmatrix}^T = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}, \quad A^T + B^T = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Ejemplos: Matriz Transpuesta

• Propiedad:

$$(A^T)^T = A$$

Ejemplo

Sea $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

$$(A^T)^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

• Propiedad:

$$(AB)^T = B^T A^T$$

Ejemplo

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
$$(AB)^{T} = \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \end{pmatrix}^{T} = \begin{bmatrix} 19 & 22 \\ 8 & 12 \end{bmatrix}^{T} = \begin{bmatrix} 19 & 43 \\ 22 & 60 \end{bmatrix}$$
$$B^{T}A^{T} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}^{T} \quad \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 19 & 43 \\ 22 & 60 \end{bmatrix}$$

18 / 54

Matriz Simétrica

- **Definición:** Una matriz A es simétrica si $A = A^T$.
- Propiedades:
 - 1 Todos los elementos fuera de la diagonal son simétricos.
 - ${f 2}$ Si A y B son matrices simétricas, entonces A+B es simétrica.
 - $oldsymbol{3}$ Si A es simétrica y λ es un escalar, entonces λA es simétrica.

Ejemplo

Sea
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
.

$$A^T = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} = A$$

• Como $A = A^T$, la matriz A es simétrica.

Ejemplo 1:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$

Ejemplo 1:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} = A$$

Ejemplo 2:

$$B = \begin{pmatrix} 0 & 7 & 4 \\ 7 & 1 & 8 \\ 4 & 8 & 9 \end{pmatrix}$$

Ejemplo 1:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} = A$$

Ejemplo 2:

$$B = \begin{pmatrix} 0 & 7 & 4 \\ 7 & 1 & 8 \\ 4 & 8 & 9 \end{pmatrix}$$
$$B^{T} = \begin{pmatrix} 0 & 7 & 4 \\ 7 & 1 & 8 \\ 4 & 8 & 9 \end{pmatrix} = B$$

Ejemplo 3:

$$C = \begin{pmatrix} 5 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 6 \end{pmatrix}$$

Ejemplo 1:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} = A$$

Ejemplo 2:

$$B = \begin{pmatrix} 0 & 7 & 4 \\ 7 & 1 & 8 \\ 4 & 8 & 9 \end{pmatrix}$$
$$B^{T} = \begin{pmatrix} 0 & 7 & 4 \\ 7 & 1 & 8 \\ 4 & 8 & 9 \end{pmatrix} = B$$

Ejemplo 3:

$$C = \begin{pmatrix} 5 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 6 \end{pmatrix}$$
$$C^{T} = \begin{pmatrix} 5 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 6 \end{pmatrix} = C$$

Matriz Antisimétrica (o skew-symmetric)

- **Definición:** Una matriz A es antisimétrica si $A^T = -A$.
- Propiedades:
 - ① Las entradas de la diagonal principal de una matriz antisimétrica deben ser cero (Todos los elementos de la diagonal son cero).
 - ${\color{red} f 2}$ Si A es antisimétrica, entonces λA es antisimétrica si λ es un escalar.
 - La suma de dos matrices antisimétricas es antisimétrica.
 - La multiplicación de una matriz antisimétrica por una matriz escalar (excepto cero) no necesariamente resulta en una matriz antisimétrica

Ejemplo

Sea
$$A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$
.

$$A^T = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} = -A$$

 \bullet Como $A^T = -A$, la matriz A es antisimétrica.

$\ \, \textbf{Ejemplo 1:}$

$$A = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix}$$

Ejemplo 1:

$$A = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix} = -A$$

Ejemplo 2:

$$B = \begin{pmatrix} 0 & 5 & -4 \\ -5 & 0 & 2 \\ 4 & -2 & 0 \end{pmatrix}$$

Ejemplo 1:

$$A = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix} = -A$$

Ejemplo 2:

$$B = \begin{pmatrix} 0 & 5 & -4 \\ -5 & 0 & 2 \\ 4 & -2 & 0 \end{pmatrix}$$
$$B^{T} = \begin{pmatrix} 0 & -5 & 4 \\ 5 & 0 & -2 \\ -4 & 2 & 0 \end{pmatrix} = -B$$

Ejemplo 3:

$$C = \begin{pmatrix} 0 & -3 & 7 \\ 3 & 0 & -1 \\ -7 & 1 & 0 \end{pmatrix}$$

Ejemplo 1:

$$A = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix}$$
$$A^{T} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix} = -A$$

Ejemplo 2:

$$B = \begin{pmatrix} 0 & 5 & -4 \\ -5 & 0 & 2 \\ 4 & -2 & 0 \end{pmatrix}$$

$$B^T = \begin{pmatrix} 0 & -5 & 4 \\ 5 & 0 & -2 \\ -4 & 2 & 0 \end{pmatrix} = -B$$

Ejemplo 3:

$$C = \begin{pmatrix} 0 & -3 & 7 \\ 3 & 0 & -1 \\ -7 & 1 & 0 \end{pmatrix}$$

$$C^{T} = \begin{pmatrix} 0 & 3 & -7 \\ -3 & 0 & 1 \\ 7 & 1 & 0 \end{pmatrix} = -C$$

Matrices Idempotentes

Una matriz A es idempotente si cumple que $A^2 = A$.

 $_{\rm Ejemplo}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Verificación:

Matrices Idempotentes

Una matriz A es idempotente si cumple que $A^2 = A$.

Ejemplo

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Verificación:

$$A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A$$

Ejemplo

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Verificación:

Matrices Idempotentes

Una matriz A es idempotente si cumple que $A^2 = A$.

 $_{\rm Ejemplo}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Verificación:

$$A^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A$$

Ejemplo

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Verificación:

$$B^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq B$$

Nota: En realidad, este ejemplo no es idempotente. Para un ejemplo verdadero, usa matrices diferentes.

Ejemplo

$$C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Verificación:

Matrices Idempotentes

Una matriz A es idempotente si cumple que $A^2 = A$.

Ejemplo

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Verificación:

$$A^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A$$

Eiemplo

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Verificación:

$$B^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq B$$

Nota: En realidad, este ejemplo no es idempotente. Para un ejemplo verdadero, usa matrices diferentes.

Ejemplo

$$C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Verificación:

 $C^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = I$ PhD. Henry R Moncada (UNIVERSIDA)

Matrices

Una matriz A es involutiva si cumple que $A^2 = I$, donde I es la matriz identidad.

Ejemplo

$$D = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Una matriz A es involutiva si cumple que $A^2 = I$, donde I es la matriz identidad.

 $_{\rm Ejemplo}$

$$D = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Verificación:

$$D^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Ejemplo

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Una matriz A es involutiva si cumple que $A^2 = I$, donde I es la matriz identidad.

 $_{\rm Ejemplo}$

$$D = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Verificación:

$$D^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Ejemplo

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Verificación:

$$E^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Ejemplo

$$F = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Una matriz A es involutiva si cumple que $A^2 = I$, donde I es la matriz identidad.

Ejemplo

$$D = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Verificación:

$$D^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Ejemplo

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Verificación:

$$E^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Ejemplo

$$F = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$F^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Definición de Matrices Nilpotentes

Una matriz A es nilpotente si existe un entero positivo k tal que $A^k=0$, donde 0 es la matriz nula.

Ejemplo

Consideremos la matriz A dada por:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Desarrollamos A^2 y A^3 :

$$A^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A^3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$

Por lo tanto, A es nilpotente.

Ejemplo: Matriz Nilpotente

Ejemplo

Consideremos la matriz B dada por:

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Hemos visto que:

$$B^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$B^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$

Así que B también es nilpotente.

Ejemplo: Matriz Nilpotente

Ejemplo

Consideremos la matriz ${\cal C}$ dada por:

$$C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Desarrollamos C^2 :

$$C^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$

Así que ${\cal C}$ también es nilpotente.

Definición de Matrices Ortogonales

Una matriz Q es ortogonal si cumple que $Q^TQ = I$, donde Q^T es la transpuesta de Q e I es la matriz identidad.

Ejemplo

Consideremos la matriz D dada por:

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Verificamos que $D^T D = I$:

$$D^T = D$$

$$D^TD = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Entonces, D es ortogonal.

Ejemplo: Matriz Ortogonal

Ejemplo

Consideremos la matriz E dada por:

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Verificamos que $E^T E = I$:

$$E^T = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E^TE = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Entonces, E es ortogonal.

Ejemplo: Matriz Ortogonal

Ejemplo

Consideremos la matriz F dada por:

$$F = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0\\ 1 & -1 & 0\\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

Verificamos que $F^T F = I$:

$$F^{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

$$F^TF = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

Entonces, F es ortogonal.

Propiedades de la Matriz Inversa

Una matriz cuadrada A de tamaño $n \times n$ tiene una matriz inversa A^{-1} si y solo si:

- A es invertible (es decir, su determinante es no nulo: $det(A) \neq 0$).
- $A \cdot A^{-1} = A^{-1} \cdot A = I_n$, donde I_n es la matriz identidad de tamaño $n \times n$.
- La matriz inversa es única.

Para encontrar su inversa, usamos la fórmula:

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

Para una matrix de 2×2

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Ejemplo

Considera la matriz:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Donde:

$$\det(A) = 1 \cdot 4 - 2 \cdot 3 = -2$$

y la matriz adjunta adj(A) es:

$$adj(A) = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$

Por lo tanto:

$$A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1.5 & -0.5 \end{pmatrix}$$

 $_{\rm Ejemplo}$

Considera la matriz:

$$B = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

Para encontrar su inversa:

$$\begin{split} \det(B) &= 2 \cdot 4 - 3 \cdot 1 = 5 \\ \mathrm{adj}(B) &= \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} \\ B^{-1} &= \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0.8 & -0.6 \\ -0.2 & 0.4 \end{pmatrix} \end{split}$$

Ejemplo

Considera la matriz:

$$C = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

Para encontrar su inversa:

$$\det(C) = 5 \cdot 8 - 6 \cdot 7 = -2$$

$$\operatorname{adj}(C) = \begin{pmatrix} 8 & -6 \\ -7 & 5 \end{pmatrix}$$

$$C^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -6 \\ -7 & 5 \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix}$$

Matriz Adjunta

Consideremos la matriz A definida por:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

La matriz adjunta de A, denotada por $\operatorname{adj}(A)$, se obtiene a partir de la matriz de cofactores C de A.

Para cada elemento a_{ij} de A, calculamos el cofactor C_{ij} :

$$C_{ij} = (-1)^{i+j} \det(M_{ij})$$

donde M_{ij} es la submatriz obtenida al eliminar la fila i y la columna j de A.

Ejemplo de Cálculo

Ejemplo

Consideremos la siguiente matriz A:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

Para encontrar la matriz adjunta, primero calculamos los cofactores.

Cofactor C_{11} :

$$M_{11} = \begin{pmatrix} 1 & 4 \\ 6 & 0 \end{pmatrix}$$

$$\det(M_{11}) = (1 \cdot 0) - (4 \cdot 6) = -24$$

$$C_{11} = (-1)^{1+1} \cdot (-24) = -24$$

$$C_{11} = (-1)$$
 $(-24) = -2$

Cofactor C_{12} :

$$M_{12} = \begin{pmatrix} 0 & 4 \\ 5 & 0 \end{pmatrix}$$

$$\det(M_{12}) = (0\cdot 0) - (4\cdot 5) = -20$$

$$C_{12} = (-1)^{1+2} \cdot (-20) = 20$$

Cofactor C_{13} :

$$M_{13} = \begin{pmatrix} 0 & 1 \\ 5 & 6 \end{pmatrix}$$

$$\det(M_{13}) = (0 \cdot 6) - (1 \cdot 5) = -5$$

Cofactor C_{21} :

$$M_{21} = \begin{pmatrix} 2 & 3 \\ 6 & 0 \end{pmatrix}$$

$$\det(M_{21}) = (2\cdot 0) - (3\cdot 6) = -18$$

$$C_{21} = (-1)^{2+1} \cdot (-18) = 18$$

Cofactor C_{22} :

$$M_{22} = \begin{pmatrix} 1 & 3 \\ 5 & 0 \end{pmatrix}$$

$$\det(M_{22}) = (1 \cdot 0) - (3 \cdot 5) = -15$$

$$C_{22} = (-1)^{2+2} \cdot (-15) = -15$$

Cofactor C_{23} :

$$M_{23} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}$$

$$\det(M_{23}) = (1\cdot 6) - (2\cdot 5) = -4$$

Cofactores (continuación)

Cofactor C₃₁:

$$M_{31} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

$$\det(M_{31}) = (2 \cdot 4) - (3 \cdot 1) = 5$$

$$C_{31} = (-1)^{3+1} \cdot 5 = 5$$

Cofactor C32:

$$M_{32} = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}$$

$$\det(M_{32}) = (1\cdot 4) - (3\cdot 0) = 4$$

$$C_{32} = (-1)^{3+2} \cdot 4 = -4$$

Cofactor C_{33} :

$$M_{33} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$\det(M_{33}) = (1 \cdot 1) - (2 \cdot 0) = 1$$

$$C_{33} = (-1)^{3+3} \cdot 1 = 1$$

La matriz de cofactores C es:

$$C = \begin{pmatrix} -24 & 20 & -5\\ 18 & -15 & 4\\ 5 & -4 & 1 \end{pmatrix}$$

La matriz adjunta de A es la transpuesta de la matriz de cofactores:

$$adj(A) = C^T = \begin{pmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{pmatrix}$$

Determinante de una Matriz

Vamos a calcular el determinante de la siguiente matriz:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

Para calcular el determinante de una matriz 3×3 , usamos la fórmula:

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

donde los a_{ij} son los elementos de la matriz A.

Para la matriz dada, el determinante se calcula de la Sustituyendo en la fórmula del determinante: siguiente manera:

$$\det(A) = 1 \cdot \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix}$$

$$\det(A) = 1 \cdot (-24) - 2 \cdot (-20) + 3 \cdot (-5)$$

$$\det(A) = -24 + 40 - 15 = 1$$

Ahora calculamos los menores:

$$\begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} = (1 \cdot 0) - (4 \cdot 6) = -24$$

$$\begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} = (1 \cdot 0) - (4 \cdot 6) = -24$$

$$\begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} = (0 \cdot 0) - (4 \cdot 5) = -20$$

$$\begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix} = (0 \cdot 6) - (1 \cdot 5) = -5$$

Por lo tanto, el determinante de la matriz
$$A$$
 es $\boxed{1}$.
Encontremos la matriz inversa de A , A^{-1}

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

$$A^{-1} = \frac{1}{1} \begin{pmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{pmatrix}$$

Considera la matriz A:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$

La matriz inversa A^{-1} se calcula como:

$$A^{-1} = \begin{pmatrix} 1 & -2 & -5 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & -5 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Considera la matriz B:

$$B = \begin{pmatrix} 4 & 7 & 2 \\ 3 & 6 & 1 \\ 2 & 5 & 3 \end{pmatrix}$$

La matriz inversa B^{-1} se calcula como:

$$B^{-1} = \frac{1}{1} \begin{pmatrix} 15 & -7 & -5 \\ -12 & 4 & 3 \\ -4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 15 & -7 & -5 \\ -12 & 4 & 3 \\ -4 & 1 & 2 \end{pmatrix}$$

$$B \cdot B^{-1} = \begin{pmatrix} 4 & 7 & 2 \\ 3 & 6 & 1 \\ 2 & 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 15 & -7 & -5 \\ -12 & 4 & 3 \\ -4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Considera la matriz C:

$$C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

La matriz inversa C^{-1} se calcula como:

$$C^{-1} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$C \cdot C^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Proceso para Obtener la Adjugada de una Matriz 3x3

Sea
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
.

La adjunta de A, denotada como adj(A), es la traspuesta de la matriz de cofactores de A.

$$\operatorname{adj}(\mathbf{A}) = \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}^{T}$$

Donde cada C_{ij} es el cofactor de a_{ij} .

Ejemplo de Cálculo de la Adjugada

Sea
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$$
.

Calculamos los cofactores:

$$C_{11} = (4)(6) - (5)(0) = 24, \quad C_{12} = -(0)(6) - (5)(1) = -5, \quad \dots$$

Luego, la matriz de cofactores es:

$$\begin{bmatrix} 24 & -5 & -4 \\ 5 & 3 & -2 \\ 0 & -5 & 4 \end{bmatrix}.$$

Finalmente, la adjunta es:

$$adj(\mathbf{A}) = \begin{bmatrix} 24 & 5 & 0 \\ -5 & 3 & -5 \\ -4 & -2 & 4 \end{bmatrix}.$$

Definición de Sistemas de Ecuaciones Lineales

- Un sistema de ecuaciones lineales es un conjunto de ecuaciones que comparten las mismas variables.
- Forma general:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

reescribiendo nuestro sistema de ecuaciones lineales en forma matricial

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A_{m \times n}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{X_{n \times 1}} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{b_{m \times 1}}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1} \quad \mathbf{b}$$

$$\mathbf{x} = \mathbf{A}^{-1} \quad \mathbf{b}$$

Ejemplo 1: Economía

Problema: Calcular el equilibrio de mercado donde la oferta y la demanda están dadas por las siguientes ecuaciones:

$$\begin{cases} 2x + 3y = 6\\ 3x - 2y = -3 \end{cases}$$

Solución:

 Multiplicamos la primera ecuación por 3 y la segunda por 2:

$$\begin{cases} 6x + 9y = 18 \\ 6x - 4y = -6 \end{cases}$$

Restamos la segunda ecuación de la primera:

$$13y = 24 \implies y = \frac{24}{13}$$

lacktriangle Sustituimos y en la primera ecuación:

$$2x + 3\left(\frac{24}{13}\right) = 6 \implies x = \frac{6 - \frac{72}{13}}{2} = \frac{3}{13}$$

• Por lo tanto, la solución es $x = \frac{3}{13}$, $y = \frac{24}{13}$.

• Reescribien el sistema lineal en forma matricial

$$\begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

Resoviendo el sistema lineal

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

Por lo tanto, la solución es

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-4-9} \begin{bmatrix} -2 & -3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{13} \begin{bmatrix} -12 + 9 \\ -18 - 6 \end{bmatrix} = \begin{bmatrix} \frac{3}{13} \\ \frac{24}{12} \end{bmatrix}$$

Ejemplo 2: Sistemas de Ecuaciones Lineales

Resolver el sistema de ecuaciones:

$$\begin{cases} 2x + 3y = 5\\ 4x - y = 1 \end{cases}$$

• Uso de matrices para representar y resolver sistemas de ecuaciones lineales.

Solución:

• Multiplicamos la segunda ecuación por 3

$$\begin{cases} 2x + 3y = 5\\ 12x - 3y = 3 \end{cases}$$

• Sumando la primera y segunda ecuación :

$$14x = 8 \implies x = \frac{8}{14}$$

Sustituimos x en la primera ecuación:

$$2\left(\frac{8}{14}\right) + 3y = 5 \implies y = \frac{5 - \frac{8}{7}}{3} = -\frac{27}{21}$$

• Por lo tanto, la solución es $x = \frac{4}{7}, y = -\frac{9}{7}$.

• Reescribien el sistema lineal en forma matricial: Ax = b

$$\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Resoviendo el sistema lineal

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

O Por lo tanto, la solución es

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-2-12} \begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{14} \begin{bmatrix} -8 \\ 18 \end{bmatrix} = \begin{bmatrix} \frac{8}{14} \\ -\frac{18}{14} \end{bmatrix} = \begin{bmatrix} \frac{4}{7} \\ -\frac{9}{7} \end{bmatrix}$$

Problema: Considera el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x + 2y = 5 \\ 3x - y = 4 \end{cases}$$

Representa este sistema como una ecuación de matrices y resuelve para x e y. Solución:

Paso 1: Representar el sistema como una matriz:

$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Paso 2: Encontrar la inversa de la matriz de coeficientes:

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A^{-1} = \frac{1}{(1)(-1) - (2)(3)} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$$

Paso 3: Multiplicar por la matriz inversa para obtener $x \in y$:

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -15 \\ 11 \end{bmatrix} = \begin{bmatrix} \frac{15}{7} \\ \frac{11}{7} \end{bmatrix}$$

Ejemplo 3: Sistemas de Ecuaciones Lineales

- Uso de matrices para resolver sistemas de ecuaciones lineales.
- Ejemplo: Resolver Ax = b usando la matriz inversa A^{-1} .

Ejemplo

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $b = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$. Calculamos A^{-1} y luego $x = A^{-1}b$.

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A^{-1} = \frac{1}{1 \cdot 4 - 2 \cdot 3} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}.$$

Entonces,

$$x = A^{-1}b = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \begin{bmatrix} 5 \\ 11 \end{bmatrix} = \begin{bmatrix} -2(5) + 1(11) \\ 1.5(5) - 0.5(11) \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}.$$

Ejemplos en quimica y economía

Problema 1: Balancear una reacción química con las siguientes ecuaciones:

$$\begin{cases} x + 2y = 3\\ 3x + y = 5 \end{cases}$$

Resolvemos para x y y.

Solución:

• La solución aproximada es: x = , y = .

Problema 2: En economía, los sistemas de ecuaciones lineales se utilizan para optimizar la producción en empresas. Por ejemplo, si una empresa produce dos productos x_1 y x_2 y tiene restricciones de recursos:

$$\begin{cases} 2x_1 + 3x_2 = 600 \\ 4x_1 + x_2 = 300 \end{cases}$$

Resolvemos para x_1 y x_2 .

Solución:

La solución aproximada es:

$$x_1 = 50, \quad x_2 = 100.$$

Esto significa que la producción óptima para los productos 1 y 2 es de 50 y 100 unidades, respectivamente.

Ejemplo en Análisis de Circuitos y Preparación de Soluciones

Problema 3: En ingeniería eléctrica, los sistemas de ecuaciones se utilizan para calcular corrientes y tensiones en circuitos. Considera un circuito con dos mallas:

$$\begin{cases} 5i_1 + 3i_2 = 10\\ 2i_1 + 4i_2 = 5 \end{cases}$$

Donde i_1 y i_2 son las corrientes en cada malla.

Solución:

• Resolviendo el sistema para i_1 y i_2 , tenemos:

$$i_1 = 1 A, \quad i_2 = 1 A.$$

Las corrientes en ambas mallas son de 1 amperio.

Problema 4: En química, los sistemas de ecuaciones lineales se utilizan para preparar soluciones con concentraciones específicas. Supongamos que tenemos dos soluciones:

$$\begin{cases} 0.1x + 0.2y = 10\\ 0.3x + 0.4y = 20 \end{cases}$$

Resolviendo para x y y encontramos las cantidades necesarias de cada solución. Solución:

• Al resolver el sistema, obtenemos:

$$x = 40, \quad y = -10.$$

En este caso, el valor negativo indica que no es posible mezclar con las concentraciones dadas, lo que requiere un ajuste en los parámetros de mezcla.

Ejemplo en Intersección de Dos Líneas

Problema 5: En geometría analítica, para encontrar la intersección de dos líneas:

$$\begin{cases} y = 2x + 3 \\ y = -x + 1 \end{cases}$$

Sustituyendo y resolviendo el sistema para x y y. Solución:

• Las soluciones son:

$$x = -2/3, \quad y = 5/3.$$

Las líneas se intersectan en el punto (-2/3, 5/3).

Ejemplo en Ingeniería y Física

Problema 6: Resolver un circuito de resistencias con las siguientes ecuaciones:

$$\begin{cases} x + y + z = 10 \\ 2x - y + 3z = 20 \\ -x + 4y - z = 5 \end{cases}$$

Solución:

• La solución aproximada es: x = 3, y = 2, z = 5.

Problema 7: Determinar las fuerzas en equilibrio en un sistema estático con las siguientes ecuaciones:

$$\begin{cases} 3x - y + 2z = 7 \\ -x + 2y + z = 4 \\ 5x - 2y + 3z = 10 \end{cases}$$

Solución:

• La solución aproximada es: x = 1, y = 2, z = 1.

Ejemplo en Planificación de Proyectos

Problema 8: En gestión de proyectos, los sistemas de ecuaciones se utilizan para asignar recursos de manera eficiente. Supongamos que tenemos:

$$\begin{cases} x + 2y + 3z = 30 \\ 2x + y + z = 20 \\ x + y + z = 10 \end{cases}$$

Resolvemos para x, y, y z.

Solución:

Las soluciones son:

$$x = 5, \quad y = 2, \quad z = 3.$$

Esto indica que asignamos 5 unidades al recurso x, 2 a y y 3 a z.

Conclusión

Matriz: Definición, Notación y Orden

- Las matrices son herramientas poderosas en matemáticas y tienen numerosas aplicaciones prácticas en distintas disciplinas.
- Comprender la notación, el orden y las operaciones básicas con matrices es fundamental para aprovechar su potencial.

¿Qué es la Igualdad de Matrices?

- La igualdad de matrices es una herramienta esencial en matemáticas aplicadas, especialmente en la solución de sistemas de ecuaciones, transformaciones lineales y análisis de grafos.
- A través de estos ejemplos, hemos demostrado cómo aplicar la igualdad de matrices en diferentes contextos prácticos.

Operaciones con Matrices

- Hemos explorado las operaciones fundamentales con matrices y sus propiedades.
- Aplicar estas propiedades es esencial en álgebra lineal y en muchas aplicaciones prácticas.

Matriz Transpuesta

- Las matrices transpuestas, simétricas, y antisimétricas tienen propiedades únicas que son útiles en varias áreas de matemáticas y física.
- Entender estas propiedades permite simplificar cálculos y entender mejor las transformaciones lineales.