السلسلة رقم 1 مدعمة بالتصحيح تحضيرا لبكالوريا 2011 (إعداد الأستاذ بواب نورالدين)

التمرين الأول: (بكالوريا المغرب 2010 علوم تجريبية)

. $z^2-6z+10=0$: المعادلة والمركبة الأعداد المركبة المعادلة المعادلة والمجموعة الأعداد المركبة

في المستوي المنسوب إلى المعلم المتعامد والمتجانس ($O; \overrightarrow{u}, \overrightarrow{v}$) ، نعتبر النقطتين A و B اللتين لاحقتاهما $z_A=3-i$ و $z_A=3-i$

وليكن r الدوران الذي مركزه A وزاويته $rac{\pi}{2}$.

. z'=iz+2-4i . بيّن أن الكتابة المركبة للدوران r هي . z'=iz+2-4i . D النقطة التي لاحقتها $z_C=7-3i$ و $z_C=7-3i$

. $z_D = 5 + 3i$: هي النقطة النقطة D

. BCD بيّن أن : $\frac{z_D-z_B}{z_C-z_B}=rac{1}{2}i$ ثم استنتج طبيعة المثلث $\mathbf{\Phi}$

(Bac Pondichéry Avril 2010): التمرين الثاني:

الفضاء مزود بمعلم متعامد ومتجانس ($O; \vec{i}, \vec{j}, \vec{k}$). أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

x=t+2 يوازي المستوي y=-2t ($t\in\mathbb{R}$) المستقيم الذي تمثيل وسيطي له:

x + 2y + z - 3 = 0: الذي معادلة له

المستويات (P') ، (P') و (P'') التي معادلاتها على الترتيب : (P')4x - y + 4z = 12 (2x + 3y - 2z = 6) (x - 2y + z = 3)ليس لها أي نقطة مشتركة

المستقيمان اللذان تمثيلا هما الوسيح

. فقاطعان متقاطعان متقاطعان $\begin{cases} x = 2t' + 7 \\ y = 2t' + 2 \end{cases}$ هما مستقیمان متقاطعان $\begin{cases} x = -3t + 2 \\ y = t + 1 \end{cases}$ هما مستقیمان متقاطعان z = -t' - 6

. C(3;-4;-2) و B(1;4;0)، A(-1;0;2) : فعتبر النقط $oldsymbol{4}$ - 1 -

معادلة للمستوي (ABC) هي x+z=1

. C(4;-1;5) و B(2;1;0) ، A(-1;1;3) و $\mathbf{6}$. B نعتبر النقطة B كمر جح للنقطتين B و B .

(Bac Centres Etrangers Juin 2010 S): التمرين الثالث:

 $f(x)=6-\frac{5}{x+1}$: بالدالة العددية المعرفة على $[0;+\infty[$ على الدالة العددية المعرفة على الدالة العددية الع

. $[0;+\infty[$ المجال على المجال الجاه تغيّر الدالة f

. α بنرمز إلى الحل بالرمز α . α بنرمز إلى الحل بالرمز α . α بنرمز إلى الحل بالرمز α . α فإن α . α فإن α فإن أنه إذا كان α

. $f(x) \in [\alpha; +\infty[$ فإن $x \in [\alpha; +\infty[$ كان أيضا أنه إذا كان

: متتالیة عددیة معرفة ب (u_n)

. $u_{n+1} = f(u_n) = 6 - \frac{5}{u_n + 1}$ ، n عدد طبيعي $u_0 = 0$

أ- ارسم في معلم متعامد ومتجانس $(o\,;\overline{i}\,,\overline{j}\,)$ ، المستقيم (Δ) الذي معادلته y=x و المنحني (c) الممثل للدالة y=x

- باستعمال الرسم السابق ، مثل على حامل محور الفواصل وبدون حساب الحدود . u_4 و u_3 ، u_2 ، u_1 ، u_0

ب- ضع تخمينا حول اتجاه تغير المتتالية (u_n) وتقاربها .

. $0 \le u_n \le u_{n+1} \le \alpha$ ، n عدد طبیعي عدد $u_n \le u_{n+1} \le \alpha$. $0 \le u_n \le u_n \le u_n$. $0 \le u_n \le u_n$

التمرين الرابع: (علوم تجريبية 2010)

: كما يلي \mathbb{R}^* كما يلي المعرفة على \mathbb{R}^* كما يلي

نرمز ب (C_f) لتمثيلها البياني في المستوي المنسوب ، $f(x)=x-\frac{1}{e^x-1}$ المعلم المتعامد المتجانس ، $(O;\overline{i},\overline{j})$.

 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$

ب- احسب $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$ و النتیجة .

- ادر س اتجاه تغیّر الدالة f علی کل مجال من مجالی تعریفها ثم شکل جدول \mathbf{Q}
- تغیّر اتها . (Δ') و (Δ') یقبل مستقیمین مقاربین مائلین (Δ) و (Δ') معادلتیهما f 3
 - . y=x+1 و y=x : على الترتيب y=x . ب- ادرس وضعية y=x+1 بالنسبة إلى كل من y=x+1 .
 - . (C_f) هي مركز تناظر للمنحني $\omega(0;rac{1}{2})$ هي مركز الفطة $\Phi(0;rac{1}{2})$
 - $\ln 2 < \alpha < 1$: و β حيث f(x) = 0 تقبل حلين β و β حيث أن المعادلة $1.4 < \beta < -1.3$
 - (Δ) بو ازي المستقيم بيد (C_f) بو ازي المستقيم (Δ)
 - (C_f) جـ ارسم (Δ') و (Δ') ثم المنحني
 - د- ناقش بيانيا حسب قيم الوسيط الحقيقي س عدد وإشارة حلول المعادلة: $(m-1)e^{-x} = m$

تصحيح السلسلة رقم 1

التمرين الأول:

 $z^2 - 6z + 10 = 0$ حل المعادلة **0**

تذكير : إذا كان $\Delta < 0$ فإن المعادلة تقبل حلين مركبين متر افقين هما :

$$z_2 = \frac{-b + i\sqrt{-\Delta}}{2a} \quad \text{if} \quad z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$

 $\Delta = -4 = 4i^2 = (2i)^2$: هو المعادلة هو •

. $z_2=3+i$ و $z_1=3-i$ و المعادلة تقبل حلين مركبين مترافقين هما

: z'=iz+2-4i هي الكتابة المركبة للدوران عن الكتابة المركبة للدوران عن الكتابة المركبة المركبة الدوران عن الكتابة المركبة المركبة الدوران عن الكتابة المركبة المركب

تذكير : الكتابة المركبة للدوران الذي مركزه $M_0(z_0)$ وزاويته θ والذي يرفق بكل

$$z'-z_0=e^{i heta}(z-z_0)$$
 : هي $M'(z')$ النقطة $M(z)$

 $e^{i\frac{\pi}{2}}=i$ و عليه فإن : $z_A'=3-i$ و نعلم أن : $z'-z_A=e^{i\frac{\pi}{2}}(z-z_A)$: وعليه فإن : z'=iz+2-4i ومنه : z'=iz+2-4i ومنه : z'=iz+2-4i

: $z_D = 5 + 3i$ هي التحقق أن لاحقة النقطة D

 $z_D = iz_C + 2 - 4i = i(7 - 3i) + 2 - 4i = 5 + 3i$ ومنه r(C) = D : لدينا

:
$$\frac{z_D - z_B}{z_C - z_B} = \frac{1}{2}i$$
 تبيان أن **4**

$$\frac{z_D - z_B}{z_C - z_B} = \frac{5 + 3i - 3 - i}{7 - 3i - 3 - i} = \frac{2 + 2i}{4 - 4i} \times \frac{4 + 4i}{4 + 4i} = \frac{8 + 8i + 8i - 8}{32} = \frac{1}{2}i$$

• استنتاج طبيعة المثلث BCD

$$\operatorname{arg}\left(\frac{1}{2}i\right) = \frac{\pi}{2}$$
 دينا : $\left|\frac{1}{2}i\right| = \frac{1}{2}$: لدينا

.
$$\arg\left(\frac{z_D-z_B}{z_C-z_B}\right)=\frac{\pi}{2}$$
 و بالتالي: $\left|\frac{z_D-z_B}{z_C-z_B}\right|=\frac{1}{2}$

.
$$(\overrightarrow{BC}; \overrightarrow{BD}) = \frac{\pi}{2} [2\pi]$$
 و هذا يعني أن $BC = 2BD$ و هذا

. $\stackrel{-}{B}$ نستنتج أن المثلث $\stackrel{-}{B}$ قائم في النقطة

التمرين الثاني:

 $oldsymbol{0}$ أـ دراسة اتجاه تغيّر الدالة f على المجال $\infty+\infty$

 $f'(x) = \frac{5}{(x+1)^2} > 0$, $[0; +\infty[$ when] and $[0; +\infty[$ and]

. $[0\,;+\infty[$ المجال f متز ايدة تماما على المجال f

f(x) = x المعادلة f(x) = x المعادلة المجال المجال

$$x^2 - 5x - 1 = 0$$
 : ومنه $6 - \frac{5}{x+1} = x$ يكافئ $f(x) = x$

مميّز هذه المعادلة هو $\Delta=29$ وبالتالي فإن المعادلة تقبل حلين متمايزين هما :

وعليه فإن الحل $x \in [0; +\infty[$ كن $x_2 = \frac{5 + \sqrt{29}}{2}$ وعليه فإن الحل $x_1 = \frac{5 - \sqrt{29}}{2}$

. $\alpha = \frac{5 + \sqrt{29}}{2}$ هو f(x) = x الوحيد للمعادلة

 $f(x) \in [0; \alpha]$ فإن $x \in [0; \alpha]$ خان أنه إذا كان $x \in [0; \alpha]$

إذا كان $f(x) \in [f(0); f(lpha)]$ فإن $x \in [0; lpha]$ لأن الدالة $x \in [0; lpha]$

 $f(\alpha) = \alpha$ و نعلم أن : $(0) = 6 - \frac{5}{0+1} = 1$ و نعلم أن : $(0; +\infty)$

 $f(x) \in [0; \alpha]$ و بالتالي : $f(x) \in [0; \alpha]$ ، لكن : $f(x) \in [1; \alpha]$ و عليه : $f(x) \in [0; \alpha]$. $f(x) \in [0; \alpha]$ فإن $f(x) \in [0; \alpha]$ فإن $f(x) \in [0; \alpha]$

 $f(x) \in [\alpha; +\infty[$ فإن $x \in [\alpha; +\infty[$ كان $\alpha; +\infty[$ نبيان أنه إذا كان α

إذا كان $f(x) = \alpha$ أي $x \ge \alpha$ فإن $x \ge \alpha$ فإن الدالة α متزايدة $f(x) \ge \alpha$ أي $x \ge \alpha$. ونعلم أن $x \ge \alpha$ وبالتالي $f(x) \ge \alpha$ وبالتالي $f(x) \ge \alpha$. ونعلم أن $f(x) \ge \alpha$ وبالتالي $f(x) \ge \alpha$. $f(x) \in [\alpha; +\infty[$

. $f(x) \in [\alpha; +\infty[$ فإن $x \in [\alpha; +\infty[$ فان $\alpha; +\infty[$ فان المان ألمان أ

. $u_{n+1} = f(u_n) = 6 - \frac{5}{u_n + 1}$ ، n عدد طبیعي $u_0 = 0$ ومن أجل كل عدد طبيعي $u_0 = 0$

أ- رسم (c) ، (a_1) و تمثيل الحدود u_2 ، u_1 ، u_2 ، u_3 ، u_4 . أنظر الشكل

ب- وضع تخمین حول اتجاه تغیر المتتالیة (u_n) و تقاربها :

lpha من الشكل يمكن أن نخمّن أن المتتالية (u_n) متزايدة تماما ومتقاربة نحو العدد (c) مع المنحني (Δ) مع فاصلة نقطة تقاطع المستقيم (Δ) مع المنحني (Δ)

: $0 \le u_n \le u_{n+1} \le \alpha$, n عدد طبیعي α , n عدد طبیعی " $0 \le u_n \le u_{n+1} \le \alpha$, n عدد طبیعی n عدد n الخاصیة " من أجل كل عدد طبیعی n : n التحقق من صحة n

. دينا $\alpha: u_0 \le u_1 \le \alpha$ وهي محققة الدينا $\alpha: u_0 \le u_1 \le \alpha$

. محیحة p_0 صحیحة

 $0 \le u_n \le u_{n+1} \le \alpha:$ نفرض أن p_n صحيحة أي $\alpha: 0 \le u_{n+1} \le u_{n+2} \le \alpha$. $0 \le u_{n+1} \le u_{n+2} \le \alpha:$

من فرضية التراجع ، لدينا : $\alpha \leq u_n \leq u_{n+1} \leq \alpha$ وبما أن الدالة f متزايدة تماما على المجال $f(0) \leq f(u_n) \leq f(u_{n+1}) \leq f(\alpha)$ فإن : $f(0) \leq f(u_n) \leq f(u_n)$

 $0 \le 1 \le u_{n+1} \le u_{n+2} \le \alpha$: وبالتالي

 $(u_{n+2} = f(u_{n+1}) \circ u_{n+1} = f(u_n) \cdot f(\alpha) = \alpha \cdot f(0) = 1)$

ومنه: p_{n+1} صحيحة.

. $0 \le u_n \le u_{n+1} \le \alpha$ ، n عدد طبيعي عدد طبيعي .

ب- استنتاج أن المتتالية (u_n) متقاربة :

تذكير : كل متتالية ومحدودة من الأعلى هي متتالية متقاربة .

 $0 \le u_n \le u_{n+1} \le \alpha$ ، من أجل كل عدد طبيعي α ، من أجل كل عدد طبيعي

و هذا يعنى أن المتتالية (u_n) متزايدة ومحدودة من الأعلى ، نستنتج أنها متقاربة .

L حساب نهایة المتتالیة (u_n) : نفرض أن (u_n) متقاربة نحو عدد حقیقی \bullet

 $u_{n+1} = 6 - \frac{5}{u_{-} + 1}$: نحصل على : $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} = L$: ومنه

f(L)=L : أي $L=6-\frac{5}{L+1}$ وبالتالي

. $L\!=\!lpha$: نستنتج أن $oldsymbol{0}$ - ب

(هذا يؤكد صحة التخمين السابق) $\lim_{n\to+\infty} u_n = \alpha$: إذن

التمرين الثالث:

0 صحیح

 $\begin{cases} x = t + 2 \\ y = -2t & (t \in \mathbb{R}) :$ نسمي له تقيم الذي تمثيل وسيطي له (D) المستقيم الذي تمثيل وسيطي اله

. هو شعاع توجیه لهذا المستقیم $\overline{u}^{\bullet}(1;-2;3)$

x+2y+z-3=0 : ونسمي (P) المستوي الذي معادلة له

لدينا : \overline{u} هو شعاع ناظمي لهذا المستوي . \overline{u} هو شعاع ناظمي لهذا المستوي . \overline{u} $\pm \overline{v}$ ومنه : \overline{u} ومنه : \overline{v} (P) يوازى المستقيم (D) يوازى المستوى

طربقة أخرى: لنبحث عن نقط تقاطع (D) و (P) وذلك بحل الجملة :

1=3: عند حل المعادلة 2(-2t)+(3t-1)=3 عند حل المعادلة 3 و هذا مستحيل . نستنتج أن المستقيم (D) و المستوى (P) ليس لهما نقطا مشتركة . (P) يوازي المستقيم (D) يوازي المستوي

البحث عن نقط تقاطع المستويات (P') ، (P') و (P'') نقوم بحل الجملة :

$$\begin{cases} x = 2y - z + 3 \\ 2(2y - z + 3) + 3y - 2z = 6 \\ 4(2y - z + 3) - y + 4z = 12 \end{cases} = \begin{cases} x - 2y + z = 3 \\ 2x + 3y - 2z = 6 \\ 4x - y + 4z = 12 \end{cases}$$

$$\begin{cases} x-2y+z=3 \\ 7y-4z=0 \end{cases}$$
: وبالتالي : $\begin{cases} x=2y-z+3 \\ 7y-4z=0 \\ 7y+4z=0 \end{cases}$

تمثل هذه الجملة الأخيرة تقاطع مستويين في الفضاء (المستقيم في الفضاء معرّف بجملة معادلتين ديكار تيتين لمستويين متقاطعين) .

إذن : للمستويات (P') ، (P') و (P'') مستقيم مشترك .

🛭 صحیح

$$\begin{cases} x = -3t + 2 \\ y = t + 1 & (t \in \mathbb{R}) \end{cases}$$
: ليكن (D) المستقيم الذي تمثيله الوسيطي : $z = 2t - 3$

$$z=2t'-5$$
 $x=2t'+7$ $y=2t'+2$ $(t'\in \mathbb{R})$: وليكن (D') المستقيم الذي تمثيله الوسيطي $z=-t'-6$: نقو م بحل الجملة : للبحث عن نقط تقاطع المستقيمين (D') و (D') و (D')

للبحث عن نقط تقاطع المستقيمين (D) و (D') ، نقوم بحل الجملة :

: من المعادلتين الأولى والثانية لهذه الجملة نجد .
$$\begin{cases} -3t + 2 = 2t' + 7 \\ t + 1 &= 2t' + 2 \\ 2t - 3 &= -t' - 6 \end{cases}$$

وبتعويض هاتين القيمتين في المعادلة الثالثة نحصل على t'=-1D'=5 وهي محققة دوما . نستنتج أن المستقيمين D' و D' متقاطعان D'A(5;0;-5) ونقطة تقاطعهما هي

إذن : المستقيمان (D') و (D') متقاطعان .

 $\overrightarrow{AC}(4;-4;-4)$ و $\overrightarrow{AB}(2;4;-2)$: لدينا

k عير مرتبطين خطيا لأنه لا يوجد عدد حقيقى $A\overline{C}$ و اضح أن الشعاعين بحيث $\overrightarrow{AC} = k \overrightarrow{AB}$ وهذا يعني أن النقط \overrightarrow{A} ، \overrightarrow{A} و ك ليست في استقامية ، فهي (ABC) تعيّن مستويا من جهة أخرى: $A \in (ABC)$ لأن A = 1 + 2 = 1 ، $A \in (ABC)$ ، $A \in (ABC)$ ، $A \in (ABC)$ أي $A \in (ABC)$ لأن $A \in (ABC)$. $A \in (ABC)$. $A \in (ABC)$ ، $A \in (ABC)$. $A \in (ABC)$. $A \in (ABC)$.

5 خاطئ

تذكير: C مرجح النقطتين A و B معناه: النقط C و C في استقامية . لدينا: CB (-2;2;-5) و CA (-3;2;-2) دينا: CA (-3;2;-2) و CA (-3;2;-2) عير مرتبطين خطيا لأنه لا يوجد عدد حقيقي CA (-3;2;-2) بحيث CA (-3;2;-2) و هذا يعني أن النقط CA (-3;2;-2) ليست في استقامية . بحيث CA (-3;2;-2) و هذا يعني أن النقط CA (-3;2;-2) ليست في استقامية . نستنتج أنه لا يمكن اعتبار النقطة CA (-3;2;-2)

التمرين الرابع:

 $: \lim_{x \to -\infty} f(x) \text{ lim } \mathbf{0}$

 $\lim_{x \to -\infty} f(x) = -\infty : \frac{1}{e^x - 1} = -1$ ومنه $\lim_{x \to -\infty} \frac{1}{e^x - 1} = -1$ ومنه $\lim_{x \to -\infty} e^x = 0$ نعلم أن

 $: \lim_{x \to +\infty} f(x) \longrightarrow \bullet$

 $\lim_{x\to +\infty} f(x) = +\infty$: باذن $\lim_{x\to +\infty} \frac{1}{e^x-1} = 0$ ومنه $\lim_{x\to +\infty} e^x = +\infty$ ومنه $\lim_{x\to +\infty} f(x) = +\infty$

- $\chi = 0$ هندسيا : المستقيم الذي معادلته $\chi = 0$ هو مستقيم مقارب للمنحني lacksquare
 - : f در اسة اتجاه تغيّر الدالة f
- ، $]0\;;+\infty[$ و $]-\infty\;;\,0[$ الدالة f قابلة للاشتقاق على كل من المجالين

. $f'(x)=1+\frac{e^x}{(e^x-1)^2}>0$ ، \mathbb{R}^* من أجل كل x من

 $]0\;;+\infty[$ و بالتالي فإن الدالة f متزايدة تماما على كل من المجالين f

: f جدول تغيّرات

X	_∞ () +∞
f'(x)	+	+
f(x)	+∞ ▼ -∞	+∞

: (Δ') و (Δ) و (Δ) يقبل مستقيمين مقاربين مائلين (C_f) و كانت تذكير : إذا كانت الدالة f معرفة كما يلي : $f(x)=ax+b+\phi(x)$ وكانت $\lim_{x\to +\infty}\phi(x)=0$ فإن المستقيم الذي معادلته y=ax+b هو مستقيم مقارب مائل للمنحنى الممثل للدالة f عند f عند f

 (Δ) لدينا : $\lim_{x\to +\infty}\frac{-1}{e^x-1}=0$ و بما أن : $f(x)=x-\frac{1}{e^x-1}$ فإن المستقيم (e^x-1) لدينا : y=x هو مستقيم مقارب مائل للمنحني y=x هو مستقيم مقارب مائل للمنحني

 $f(x)-x=-rac{1}{e^x-1}$: من أجل كل x من $f(x)=x-rac{1}{e^x-1}$ ، \mathbb{R}^* من أجل كل x من أجل كل x من أجل ألآية بيل المنافع الفرق f(x)-x هي إشارة $-(e^x-1)$ هي إشارة الفرق f(x)-x هي إشارة $-(e^x-1)$ هي إشارة الفرق $x\in]-\infty$; 0 يكون $x\in]-\infty$; 0 ومنه $-(C_f)$ يقع تحت $-(C_f)$ يقع تحت $-(C_f)$ يقع تحت $-(C_f)$ يقع تحت $-(C_f)$ بالنسبة إلى $-(C_f)$ بالنسبة إلى $-(C_f)$

. (Δ') يقع تحت f(x)-x<0 ومنه f(x)-x<0 يكون $x\in]0\,;+\infty[$

$$: \left(C_f
ight)$$
 اثبات أن النقطة $\omega\left(0\,;rac{1}{2}
ight)$ هي مركز تناظر المنحني $oldsymbol{\Phi}$

: الدينا ، D_f من x من أجل كان من الدينا

$$\begin{cases} (2a-x) \in D_f \\ f(x) + f(2a-x) = 2b \end{cases}$$

. f هي مركز تناظر للمنحنى الممثل للدالة $\Omega(a;b)$

 $f(x)+f(-x)=\dots=1$ و $-x\in\mathbb{R}^*$ فإن \mathbb{R}^* فإن x من x فإن النقطة $\omega(0;\frac{1}{2})$ هي مركز تناظر للمنحني وبالتالي فإن النقطة ويالتالي فإن النقطة ويالتالي

 $: \beta \in \alpha$ تقبل حلين f(x) = 0 و f(x) = 0

تذكير بمبر هنة القيم المتوسطة . إذا كان :

- [a;b] مستمرة على المجال f
- [a;b] رتيبة تماما على المجال f
 - $. f(a) \times f(b) < 0 \quad \bullet$

.]a;b[من المجادلة α من تقبل حلا وحيدا α من المجال f(x)=0

 $[\ln 2;1]$ اللحظ أنها مستمرة ومتزايدة تماما على f نلاحظ أنها مستمرة ومتزايدة الما على

$$(e^{\ln 2} = 2)$$
 $f(1) \approx 0.42$ و $f(\ln 2) \approx -0.30$: زیادة علی ذلك $f(1, 2) \approx -0.30$

. $f(\ln 2) \times f(1) < 0$ ومنه:

lpha نستنتج حسب مبر هنة القيم المتوسطة أن المعادلة f(x)=0 تقبل حلا وحيدا ديث : $\ln 2 < \alpha < 1$: حيث

[-1.4; -1.3] من جدول تغیرات f نلاحظ أنها مستمرة ومتزایدة تماما علی $f(-1.3) \approx 0.071$ و $f(-1.4) \approx -0.075$: زیادة علی ذلك : $f(-1.4) \approx -0.075$

. $f(-1.4) \times f(-1.3) < 0$: ومنه

 β نستنتج حسب مبر هنة القيم المتوسطة أن المعادلة f(x) = 0 تقبل حلا وحيدا حيث : $-1.4 < \beta < -1.3$

: حيث و α حيث خلاصة : المعادلة f(x)=0 تقبل حلين

. $-1.4 < \beta < -1.3$ e $\ln 2 < \alpha < 1$

 (Δ) بوجود مماسات للمنحني (C_f) توازي المستقيم

تذكير: يتوازى مستقيمان إذا و فقط إذا كان معاملا توجيههما متساويين. البحث عن المماسات التي توازي المستقيم f'(x)=1

.
$$\frac{e^x}{(e^x-1)^2}=0$$
 : ومنه $1+\frac{e^x}{(e^x-1)^2}=1$

وبما أنه ، من أجل كل x من $(e^x-1)^2>0$ و $e^x>0$ ، \mathbb{R}^* من غإن هذه المعادلة

.
$$\mathbb{R}^*$$
 ليس لها حل في $\frac{e^x}{(e^x - 1)^2} = 0$

. (Δ) المستقيم المنحني المنحني المستقيم (C_f) المستقيم المستقيم

. أنظر الشكل (C_f) و (Δ') ، (Δ)

د- المناقشة البيانية:

$$(m-1)e^{-x} \times e^{x} = m \times e^{x}$$
 : ومنه $(m-1)e^{-x} = m$: لدينا

$$(m-1)-m = m \times e^{x}-m$$
 : وبالتالي $(m-1)=m \times e^{x}$ و بالتالي

$$\frac{-1}{e^x-1} = m$$
 : وعليه $-1 = m(e^x-1)$: ومنه $-1 = m \times e^x - m$:

$$(E)$$
 ... $f(x) = x + m$: إذن $x - \frac{1}{e^x - 1} = x + m$: وأخيرا

البحث عن عدد حلول المعادلة f(x)=x+m يؤول إلى البحث عن عدد نقط تقاطع المنحني y=x+m مع المستقيم Δ_m الذي معادلته

(المستقيمات (Δ') ، (Δ') و (Δ_m) متوازية لأن لها نفس معامل التوجيه (Δ')

- $\left(C_f\right)$ وبالتالي فإن $\left(\Delta_m\right)$ لا يقطع $\left(\Delta_m\right)$ ينطبق على $\left(\Delta\right)$ وبالتالي فإن $\left(\Delta_m\right)$ لا يقطع نستنتج أن المعادلة $\left(E\right)$ لا تقبل حلو لا .
- $\left(C_f\right)$ وبالتالي فإن $\left(\Delta_m\right)$ لا يقطع $\left(\Delta_m\right)$ ينطبق على $\left(\Delta'\right)$ وبالتالي فإن m=1 فإن m=1 نستنتج أن المعادلة $\left(E\right)$ لا تقبل حلو لا .
- وموازي لهما وبالتالي فإن (Δ') و (Δ') و (Δ') و أو $M\in]0;1[$ و النالي فإن موازي لهما وبالتالي فإن المعادلة (Δ_m) لا يقطع (Δ_m) ، نستنتج أن المعادلة (Δ_m)
- ا فإن (C_f) يقطع (C_f) في نقطة واحدة فاصلتها موجبة $m \in]-\infty$; 0 في نقطة واحدة فاصلتها موجبة نستنتج أن المعادلة (E) تقبل حلا واحدا موجبا .
 - واحدة فاصلتها سالبة ليا كان $m\in]1;+\infty[$ في نقطة واحدة فاصلتها سالبة الإنا كان ا

. نستنتج أن المعادلة (E) تقبل حلا و احدا سالبا

