We Claim:

1

2

3

4

1

2

3

3.

1	1. A method for controlling a gap in an electrically conducting solid
2	state structure, comprising the steps of:
3	providing an electrically conducting solid state structure including a
4	gap in the structure;
5	exposing the structure to a fabrication process environment conditions
6	of which are selected to alter an extent of the gap in the structure;
7	applying a voltage bias across the gap in the structure during process
8	environment exposure of the structure;
9	measuring electron tunneling current across the gap during process
10	environment exposure of the structure; and
11	controlling the process environment during process environment
12	exposure of the structure based on tunneling current measurement.
1	2. The method of claim 1 wherein controlling the process
2	environment comprises halting process environment exposure of the
3	structure based on tunneling current measurement.

4. The method of claim 1 wherein the conditions of the fabrication process environment are selected to increase an extent of the gap in the structure.

The method of claim 1 wherein controlling the process

environment comprises comparing tunneling current measurement with a

threshold tunneling current corresponding to a prespecified gap extent and

controlling the process environment based on the comparison.

1 5. The method of claim 1 wherein the conditions of the fabrication 2 process environment are selected to decrease an extent of the gap in the 3 structure. 1 6. The method of claim 1 wherein the fabrication process 2 environment comprises ion beam exposure of the structure. 1 7. The method of claim 6 wherein the ion beam exposure comprises 2 blanket ion beam exposure of the structure. 1 8. The method of claim 6 wherein the ion beam exposure comprises 2 rastering of the structure by a focused ion beam. 9. The method of claim 1 wherein the structure comprises two 1 2 electrically conducting electrodes having a gap between the electrodes. 1 10. The method of claim 9 wherein the electrically conducting electrodes are disposed on an electrically insulating membrane including an 2 3 aperture aligned with the gap between the electrodes. 1 The method of claim 9 wherein the electrically conducting 11. 2 electrodes are disposed on an electrically insulating surface of a substrate. A method for controlling a gap between electrically conducting 1 12. electrodes, comprising the steps of: 2 3 providing at least two electrodes on a support structure, each electrode 4 having an electrode tip that is separated from other electrode tips by a gap;

5

and

6	exposing the electrodes to a flux of ions causing transport of material of
7	the electrodes to corresponding electrode tips, locally adding material of the
8	electrodes to electrode tips in the gap.
1	13. The method of claim 12 wherein the support structure comprises
2	a substrate
1	14. The method of claim 13 wherein the substrate comprises an
2	electrically insulating surface on which the electrodes are disposed.
1	15. The method of claim 12 wherein the support structure comprises
2	a membrane including an aperture aligned with the electrode gap.
1	16. The method of claim 12 wherein the support structure comprises
2	a substrate including a trench aligned with the electrode gap.
1	17. The method of claim 12 wherein the electrodes comprise metal
2	electrodes.
1	18. The method of claim 12 wherein the ion flux exposure of the
2	electrodes comprises blanket ion beam exposure of the electrodes.
1	19. The method of claim 12 wherein the ion beam exposure of the
2	electrodes comprises rastering of the electrodes by a focused ion beam.
1	20. The method of claim 12 further comprising:
2	applying a voltage bias across the gap between electrodes during ion
3	flux exposure of the electrodes;

4	measuring an electron tunneling current across the gap, between
5	electrodes, during ion flux exposure of the electrodes; and
6	controlling the ion flux exposure of the electrodes during ion flux
7	exposure of the electrodes based on tunneling current measurement.

1

2

21. The method of claim 20 wherein control of the ion flux exposure of the electrodes comprises halting of the ion flux exposure.