MATH240 – Lecture 4

Enlai Li

January 14, 2023

1 Negating a sentence

Ex:

p= you can access the internet on campus <u>only if</u> you are a student <u>or</u> an employee

I = you can access the internet on campus

S = you are a student

E = you are an employee

$$p = I \Rightarrow (S \vee E)$$

Let's find a sentence for \overline{p}

$$\neg p = \neg (I \Rightarrow (S \lor E))
= \neg (\neg I \lor (S \lor E)) \text{ (Def of } \Rightarrow)
= \neg \neg I \land \neg (S \lor E) \text{ (De Morgan)}
= I \land (\neg S \land \neg E) \text{ (De Morgan + Double negation)}$$

 $\neg p = \text{You can access the internet on camput and you are not a student and you are not an employee}$

2 Four types of logical formulas

A logical formula is:

- satisfiable if its truth table contains at least one T
- a <u>contradiction</u> if not satisfiable (always false)
- <u>falsifiable</u> if its truth table contains at least one F
- a tautology if not falsifiable (always true)

ex1: $p \land \neg p$: contradiction

p	$\neg p$	$p \land \neg p$
\overline{T}	F	F
\mathbf{F}	Τ	F

contradictions are always falsifiable

ex2: $p \vee \neg p$: tautology

р	$\neg p$	$p \lor \neg p$
Т	F	Т
F	Т	T

tautology are always satisfiable

ex3: $p \iff q$: satisfiable and falsifiable

	р	q	$p \iff q$
Γ	Τ	Т	Т
1	Τ	F	F
	\mathbf{F}	Т	m T
	\mathbf{F}	F	${ m T}$