间断有限元第一次作业报告

九所 韩若愚

2022.3.4

1 题目

Consider the following ODE problem:

$$\begin{cases} u_x = 2\pi \cos(2\pi x), & x \in [0, 1] \\ u(0) = 0. \end{cases}$$
 (1)

The exact solution is $u(x) = \sin(2\pi x)$. Code up the first DG method for k = 1 and k = 2 with uniform meshes. Show error tables for the numerical erro in L_2 norm.

2 算法

首先对单元 [0,1] 进行均匀剖分。假设将区间均匀剖分为 n 份, 令:

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{n-\frac{1}{2}} < x_{n+\frac{1}{2}} = 1$$
 (2)

则第 j 个区间为: $I_j = [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$,每个区间的长度都为 $h = \frac{1}{n}$ 。记 $x_{j+1/2}^- = \lim_{x \in I_j, \, x \to x_{j+1/2}} x$, $x_{j+1/2}^+ = \lim_{x \in I_{j+1}, \, x \to x_{j+1/2}} x$ 。

假设所求数值解 u_h 存在的空间为: $V_h^k:=\{v:\ v|_{I_j}\in P^k(I_j), j=1,\ldots,n\}$,其中 k 为给定常数, $P^k(I_j)$ 为定义在 I_j 上的最高次项不超过 k 次的多项式空间,并假设检验函数 $v\in V_h^k$,用 v 乘以方程两端并在 I_j 上积

2 算法 2

分,并保证 k=0 时算法退化为一阶有限差分格式,于是得到:

$$-\int_{I_{j}} u_{h} v' dx + u_{h}(x_{j+1/2}^{-})v(x_{j+1/2}^{-})$$

$$= u_{h}(x_{j-1/2}^{-})v(x_{j-1/2}^{+}) + \int_{I_{j}} f v dx, \quad j = 1, \dots, n$$
(3)

在 I_j 上取定一组 $P^k(I_j)$ 的基底 $\{\phi_j^l\}_{l=0}^k$, 则数值解 u_h 在 I_j 上为: $u_h|_{I_j}(x) = \sum_{j=1}^n \sum_{l=0}^k u_j^l \phi_j^l(x)$, 求解 u_h 即求解系数 u_j^l , $j=1,\ldots,n$, $l=0,\ldots,k$ 。令检验函数 $v=\phi_j^m$, $m=0,\ldots,k$,则方程 (3) 变为:

$$\sum_{l=0}^{k} u_{j}^{l} \left[-\int_{I_{j}} \phi_{j}^{l} (\phi_{j}^{m})' dx + \phi_{j}^{l} (x_{j+1/2}) \phi_{j}^{m} (x_{j+1/2}) \right]$$

$$= u_{h}(x_{j-1/2}^{-}) \phi_{j}^{m} (x_{j-1/2}) + \int_{I_{j}} f \phi_{j}^{m} dx, \quad j = 1, \dots, n$$

$$(4)$$

这是一个在 I_i 上的线性方程组。

为便于求解(4),假设对固定的 l,每个 I_j 上的基底 ϕ_j^l , $j=0,\ldots,n$ 的自由度的定义形式都相同。现在假设参考单元 I=[0,1], $\Phi_j:I_j\to I$ 是从 I_j 到 I 的仿射变换, $\xi:=\Phi_j(x)=(x-x_{j-1/2})/h$, $x\in I_j$ 。显然 Φ_j 是 I_j 到 I 的微分同胚, $\Phi_j^{-1}(\xi)=\xi\cdot h+x_{j-1/2}$, $\Phi_j(I_j)=I$ 。令 $\phi^l(\xi)=\phi_j^l\circ\Phi_j^{-1}(\xi)=\phi_j^l(x(\xi))$,因为每个区间 I_j 上 ϕ_j^l 的自由度定义都相同,可以发现 ϕ^l 的取法是和 j 无关的,同时 $\{\phi^l\}_{l=0}^k$ 也是 $P^k(I)$ 的一组基底。考虑方程(4)中各项:

$$\frac{d}{dx}(\phi_j^m(x)) = \frac{d}{d\xi}(\phi^m(\xi)) \cdot \frac{d\xi}{dx} = (\phi^m)'(\xi) \cdot \frac{d\xi}{dx}$$

$$\int_{I_j} \phi_j^l(x)(\phi_j^m)'(x) dx = \int_{I_j} \phi_j^l(x) \frac{d}{dx}(\phi_j^m(x)) dx$$

$$= \int_{I} \phi^l(\xi)(\phi^m)'(\xi) \frac{d\xi}{dx} d\xi \cdot \frac{dx}{d\xi}$$

$$= \int_{I} \phi^l(\xi)(\phi^m)'(\xi) d\xi$$
(5)

$$\phi_j^l(x_{j+1/2})\phi_j^m(x_{j+1/2}) = \phi^l(1)\phi^l(1)$$
(6)

2 算法 3

$$u_h(x_{j-1/2}^-)\phi_j^m(x_{j-1/2}) = u_h(x_{j-1/2}^-)\phi^m(0)$$

$$u_h(x_{j-1/2}^-) = \begin{cases} u(0), & j = 1\\ \sum_l u_{j-1}^l \phi_{j-1}^l(x_{j-1/2}^-) = \sum_l u_{j-1}^l \phi^l(1), & j \ge 1 \end{cases}$$
(7)

$$\int_{I_j} f(x)\phi_j^m(x) \, dx = \int_I f(x(\xi))\phi^m(\xi) \, d\xi \cdot \frac{dx}{d\xi} = h \cdot \int_I f(x(\xi))\phi^m(\xi) \, d\xi$$

$$x(\xi) = \xi \cdot h + x_{j-1/2}$$
(8)

于是所有 I_i 上的运算可以转换为 I 上的运算,方程组 (4) 变为:

$$\sum_{l=0}^{n} u_{j}^{l} \left[-\int_{I} \phi^{l}(\phi^{m})' d\xi + \phi^{l}(1)\phi^{m}(1) \right]$$

$$= u_{h}(x_{j-1/2}^{-})\phi^{m}(0) + h \int_{I} f(\xi h + x_{j-1/2})\phi^{m}(\xi) d\xi,$$

$$j = 1, \dots, k$$
(9)

其中 $u_h(x_{j-1/2}^-)$ 由 (7) 给出。方程组 (9) 可写为矩阵形式: $A\mathbf{u}_j = B_j$,其中 A 为 $(k+1) \times (k+1)$ 维方阵,其第 (m,l) 个元素为 $a_{ml} = -\int_I \phi^l(\phi^m)' d\xi + \phi^l(1)\phi^m(1)$, $\mathbf{u}_j = (u_j^0, \ldots, u_j^n)^T$ 为需要求解的列向量, B_j 为 k+1 维列向量,第 m 个元素为 $B_j^m = u_h(x_{j-1/2}^-)\phi^m(0) + h\int_I f(\xi h + x_{j-1/2})\phi^m(\xi) d\xi$ 。

最后在每个 I_j 上令: $\phi_j^0(x) = 1$, $\phi_j^1(x) = (x - x_{j-1/2})/(x_{j+1/2} - x_{j-1/2})$, $\phi_j^2(x) = (x - x_{j-1/2})^2/(x_{j+1/2} - x_{j-1/2})^2$, $x \in I_j$, 则参考单元 I 上相应的基底为: $\phi^0(\xi) = 1$, $\phi^1(\xi) = \xi$, $\phi^2(\xi) = \xi^2$, $\xi \in I$ 。通过简单计算能直接得到 A 的值如下:

k=1 HJ:
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1/2 \end{bmatrix}$$
 $A^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix}$ (10)

k=2 时:
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1/2 & 2/3 \\ 0 & 1/3 & 1/2 \end{bmatrix}$$
 $A^{-1} = \begin{bmatrix} 1 & -6 & 6 \\ 0 & 18 & -24 \\ 0 & -12 & 18 \end{bmatrix}$ (11)

对于 B_i 中的积分项用复化梯形公式计算。

3 计算结果 4

3 计算结果

将 I_j 上的基底 ϕ_j^l 延拓到整个区间: 令

$$\varphi_j^l(x) = \begin{cases} & \phi_j^l(x), \quad x \in I_j \\ & 0, \quad else \end{cases}$$

则数值解 $u_h(x) = \sum_{j=0}^n \sum_{l=0}^k u_j^l \varphi_j^l(x)$ 。假设真解为 u,则 L^2 误差为:

$$e = \left(\int_{0}^{1} |u - u_{h}|^{2} dx\right)^{1/2} = \left(\sum_{j=0}^{n} \int_{I_{j}} |u(x) - \sum_{j=0}^{k} u_{j}^{l} \varphi_{j}^{l}(x)|^{2} dx\right)^{1/2}$$

$$= \left(\sum_{j=0}^{n} \int_{I_{j}} |u(x) - \sum_{l=0}^{k} u_{j}^{l} \varphi_{j}^{l}(x)|^{2} dx\right)^{1/2}$$

$$= \left(\sum_{j=0}^{n} \int_{I_{j}} |u(x) - \sum_{l=0}^{k} u_{j}^{l} \varphi^{l}(\xi(x))|^{2} dx\right)^{1/2}$$
(12)

在计算积分时使用梯形公式数值计算,将每个 I_j 上的积分 $\int_{I_j} |u(x)-\sum_{l=0}^k u_j^l \phi^l(\xi(x))|^2 dx$ 近似为

$$(|u(x_{j+1/2}) - \sum_{l} u_{j}^{l} \phi^{l}(1)|^{2} + |u(x_{j-1/2}) - \sum_{l} u_{j}^{l} \phi^{l}(0)|^{2}) \cdot h/2$$

于是得到误差表如下(保留三位小数):

-	-1	7		-1
土	١.	\sim	_	
1	Ι.	n.	_	
~~				_

n	L^2 error	order
10	3.306e-2	
20	8.327e-3	1.989
40	2.086e-3	1.997
80	5.217e-4	1.999
160	1.304e-4	2.000
320	3.261e-5	2.000

5 4 分析

表 $2: k = 2$				
n	L^2 error	order		
10	2.051e-3			
20	2.573e-4	2.995		
40	3.197e-5	3.009		
80	3.880e-6	3.043		
160	4.261e-7	3.187		
320	2.381e-8	4.162		

4 分析

通过误差表可以看到当 k=1 时收敛阶稳定在二阶, k=2 时收敛阶在 三阶附近。而且步长相同时,k=2得到的误差比 k=1得到的误差小了几 个数量级, k=2 时得到的结果更为精确。

对真解 $u(x) = \sin(2\pi x)$ 在 $x = x_{j-1/2}$ 处 Taylor 展开:

$$u(x) = \sin(2\pi x_{j-1/2}) + 2\pi \cos(2\pi x_{j-1/2})(x - x_{j-1/2}) - 2\pi^2 \sin(2\pi x_{j-1/2})(x - x_{j-1/2})^2 + O((x - x_{j-1/2})^3)$$
(13)

注意到 I_j 上基底 $\{\phi_i^l\}_{l=0}^2$ 的定义形式, (13) 变为:

$$u(x) = \sin(2\pi x_{j-1/2})\phi_j^0(x) + 2\pi \cos(2\pi x_{j-1/2})h\phi_j^1(x) - 2\pi^2 \sin(2\pi x_{j-1/2})h^2\phi_j^2(x) + O((x - x_{j-1/2})^3)$$
(14)

u 显然满足方程 (3),由于 v 的任意性,忽略 u 的无穷小量,应有:

$$u_h(x) = \sin(2\pi x_{j-1/2})\phi_j^0(x) + 2\pi \cos(2\pi x_{j-1/2})h\phi_j^1(x) - 2\pi^2 \sin(2\pi x_{j-1/2})h^2\phi_j^2(x) \quad a.e.$$

所以 k=1, k=2 时收敛阶分别应该是 2,3。计算结果是符合理论的。 但是在数值求解 k=2 情况的时候可以看到阶数在不断变大,最后变 成了 4。实际上在计算 k=2 的情况时我发现,方程组 $A\mathbf{u}_i=B_i$ 中右端 项 B_i 的一个小扰动在步长比较小 ($h \le 0.0125$) 时对误差阶数会产生比较 大的影响, 我认为这是机器误差导致的, 因为实际上当右端项扰动在 1e-4 4 分析

左右时,对 L^2 范数误差的影响只在 1e-7 左右。虽然从结果上看对真解的逼近仍然非常好,但是误差的收敛阶却受到了比较大的影响。但是在 k=1 的情况下却不会出现这样的问题。