صفحه

فهرست مطالب

1	١ فصل اول مقدمه
۲	١-١- هدف پروژه
	٢-١- تاريخچه
	- ۳-۱- ساختار یک کوادکوپتر
	۴-I- کاربردها
	۵-۱- چالشها و پیشنهادهای موجود برای حل مساله
	١-٥-١ مدلسازي
٩	7-۵-۲ موقعیت یابی
1 •	۲–۵–۱ موقعیت یابی
	۲ فصل دوم مدلسازی دینامیکی
	١-٢- مدل كوادكوپتر
	۲-۲– ماتریسهای دوران
١٨	۳-۲– مدل دینامیکی چرخش سیستم
	۴-۲- مدل دینامیکی جابه جایی سیستم
	۵–۲– مدل نهایی
۲۳	ع-۲- خطیسازی و معادلات حالت
	٧-٢- تابع تبديل سيستم
۲۵	۸-۲- پارامتر های روبات
	٣ فصل سوم حسگرها
	١-٣- سنجش زاويه
٣٠	٣-٢ سامانه موقعيت ياب جهاني (GPS) [11]
٣١	٣-٣- فاصله يابها [13]
٣١	١-٣-٣- فاصله ياب نوري[14]
٣٢	٣-٣-٢ فاصله ياب صوتى[16]
٣٢	۴–۳– پردازش تصویر
٣٣	۱-۴-۳ دوربین دو بعدی
٣٣	۳-۱-۱-۴ دوربین USB
٣۴	٣-۴-١-٢- دوربين رزبري پاي
۳۵	٣-٢-٢ دوربين كينكت [21]
٣۶	۳-۴-۳ ليزر اسكنر
٣٧	No. 1

٣٨	۴ فصل چهارم پردازش تصویر
۴٠	١-۴- انواع الگو
۴٠	١-١-۴ علامت گذار نقطهای [24]
۴٠	۴-۱-۲ علامت گذار منحنی [24]
	[25] QR Code -۴-۱-۳
۴۲	۴-۱-۴ الگوی رنگی
۴۲	۱-۵ -۴-۱ ماتریس داده [26]
۴۳	۴-۱-۶ الگوهای واقعیت افزوده [27]
۴۴	٢-۴- الگوريتمهاي پردازش تصوير
۴۴	۴-۲-۱ فیلتر سازی و Thresholding [28]
	۴-۲-۲ بخش بندی و برچسب زدن محتویات وابسته [22]
۴۵	٣-۴- نتيجه گيرى
49	۵ فصل پنجم موقعیت یابی و فرود
۴۸	۱-۵– کنترل موقعیت [8]
۴٩	٢–۵– كنترل زاويه[8]
۵١	۵-۲-۱ کنترل ارتفاع
۵۳	٣-٢-٢ نتيجه گيرى
۵۵	۶ فصل ششم شبیهسازی
۵٧	۱–۶– پارامترهای روبات
۵٧	٢–۶– شبيهسازي پرواز
۶۱	٣-۶- شبيهسازي فرود
	۴-۶- خروجی شبیهسازی
	۱-۴-۶ مدل دینامیکی خطی بدون نویز
	- ۳-۲-۶ مدل دینامیکی غیر خطی بدون نویز
99	۳-۴-۳ مدل دینامیکی غیر خطی نویزی
۶۸	۵-۶– نتیجه گیری
۶۹	٧ فصل هفتم سخت افزار
٧٠	۱-۷- مکانیک
	١-١-٧- انتخاب جنس بدنه
	7-Y- الكترونيك
	رر
	۲-۲-۲ رزبری پای
٧۶	d.i•"-V-Y-W

ΥΥ	۴-۲-۷- موتورها و کنترل کنندههای سرعت
ΥΥ	٧-٢-٢-١ موتورها
۸٣	یا ECS-۲-۴-۲-۷ ها
٨۴	۵-۲-۷ حسگرها
٨۵	۶–۲–۷ سیستم مخابراتی برای ارتباط بی سیم روبات با کامپیوتر کنترلکننده
٨۶	٣-٧- نتيجه گيرى
۸٧	۸ فصل هشتم پیادهسازی عملی۸
۸۸	۱ –۸– نرم افزار
۸۸	١-١-٨- پردازش تصویر
٨٩	۸-۱-۲ کتابخانهی OpenCV
٩٠	٨-١-٢-١ تشخيص لبههاي تصوير
٩٠	٨-١-٢-٢ تشخيص دواير قرمز رنگ [39]
97	٨-١-٢-٣- جست و جو و تشخيص يک عکس، در تصوير اصلي
٩٣	
۹۵	۹ فصل نهم جمعبندی، نتیجهگیری و پیشنهادات
٩٧	١-١-٩ افزودن كنترل كننده ياو
٩٧	۲-۱-۹ استفاده از پردازش گرهای مجزا برای پردازش تصویر و کنترل
٩٨	٣-١-٣- شبيهسازي مدل ديناميكي زمين[40]
٩٨	۴-۱-۴ انتقال به محیط فضای باز و استفاده از سنسور باد
٩٨٨	۵-۱-۹ کنترل و شناسایی فازی
99	۱۰ منابع و مراجع
1.4	۱۱ پیوستها

صفحه

فهرست اشكال

۴	شكل ١-١ روبات STARMAC II [2]
۵	شكل ٢-١ تصوير روبات OS4 [3]
۶	شکل ۱-۳ نحوهی اعمال نیرو به موتورها برای تغییر ارتفاع
۶	شکل ۱-۴ نحوهی اعمال نیرو به موتورها برای چرخش به طرفین
٧	شکل ۱-۵ نحوهی اعمال نیرو به موتورها برای حرکت به طرفین
	شكل ١-۶ كوادروتور تصويربردار[4]
۱۵	شکل ۲-۱ ورودیهای کنترلی کوادروتور [7]
۱۶	شکل ۲-۲ گشتاورهای یاو، پیچ و رول [7]
	شكل ٣-١ ماژول GY9250 [10]
٣٠	شكل ٣-٢ سنسور GPS مورد استفاده در اين پروژه [12]
٣٢	شكل ٣-٣ ماژول SRF02 [17]
	شكل ٣-٣ يك مدل دوربين USB ساخت شركت Logitech [18]
	شکل ۳-۵ دوربین رزبری پای [20]
٣۶	شكل ٣-۶ دوربين كينكت[21]
٣۶	شکل ۳-۷ یک لیزر اسکنر کوچک با برد ۵ متر [23]
۴٠	شكل ۴-۱ محل فرود به شكل H [24]
۴۱	شكل ۴-۲ محل فرود به شكل سه مثلث تو در تو [24]
۴۱	شكل ۴-٣ نمونه يك الگوى QR Code [25]
۴۲	شكل ۴-۴ نمونه يك الگوى ماتريس داده [26]
	شكل ۴-۵ نمونه يك الگوى واقعيت افزوده [27]
۴۳	شكل ۴-۶ استفاده از يك الگو براى اضافه كردن شخصيت مجازى به تصوير [27]
۴٧	شکل ۵-۱ نمای کلی کنترل کنندهی موقعیت
۵۲	شکل ۵-۲ محل فرود با ابعاد ۱ در ۱ متر و تصویر ۹۶۰ در ۹۶۰ پیکسل
۵۴	شکل ۵-۳ بلوک دیاگرام فرود روبات
۵۶	شکل ۶-۱ نمایی از محیط گرافیکی نمایش کنترل کوادروتور در نرم افزار SolidWorks
۵۸	شکل ۶-۲ شبیهسازی پرواز روبات در نرم افزار متلب
۵۹	شکل ۶-۳ پاسخ پله و پارامترهای کنترلر PID محور x
۵۹	شکل ۶-۴ پاسخ پله و پارامترهای کنترلر PID محور yسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسسس
۵۹	شکل ۶-۵ پاسخ پله و پارامترهای کنترلر PID محور z
۶٠	شکل ۶-۶ پاسخ پله و پارامترهای کنترلر PID محور رول

۶٠	شکل ۶-۷ پاسخ پله و پارامترهای کنترلر PID محور پیچ
۶٠	شکل ۶-۸ پاسخ پله و پارامترهای کنترلر PID محور یاو
۶۲	شکل ۹-۶ شبیهسازی فرود روبات در نرم افزار متلب
۶۳	شکل ۶-۱۰ حرکت مطلوب مدل خطی بدون نویز از ابتدا تا انتها
۶۳	شکل ۱۱-۶ حرکت واقعی مدل خطی بدون نویز از ابتدا تا انتها
۶۴	شکل ۶-۱۲ مسیر حرکت روبات خطی بدون نویز در صفحه xy
۶۵	شکل ۶-۱۳ حرکت مطلوب مدل غیر خطی بدون نویز از ابتدا تا انتها
۶۵	شکل ۶-۱۴حرکت واقعی مدل غیر خطی بدون نویز از ابتدا تا انتها
99	شکل ۶-۱۵ مسیر حرکت روبات غیر خطی بدون نویز در صفحه xy
۶٧	شکل ۶-۱۶ حرکت مطلوب مدل غیر خطی نویزی از ابتدا تا انتها
۶٧	شکل ۶-۱۷ حرکت واقعی مدل غیر خطی نویزی از ابتدا تا انتها
۶۸	شکل ۶-۱۸ مسیر حرکت نویزی غیر خطی
٧٢	شكل ١-٧ بلوك دياگرام الكترونيك روبات [29]
٧۴	شكل ٢-٧ تصويرى از Erle-Brain 3 و مشخصات آن [12]
٧۵	شکل Raspberry Pi 3 ۳-۷ [32] شکل ۳-۷
٧۶	شكل ۴-۲ ماژول تغذيه APM Power Module]
٧٧	شکل ۵-۷ بلوک دیاگرام اتصال موتور و ESC
۸٠	شكل N-2 12216 و كاربرد آن در كوادروتور [34]
۸١	شکل ۷-۷ نمودار نیروی بالابرنده و توان خروجی پره نسبت به سرعت چرخش [34]
۸١	شکل ۷-۸ نمودار راندمان، توان خروجی و سرعت چرخش موتور نسبت به جریان مصرفی [34]
۸۲	شکل ۹-۷ رابطه میان موتور،مدار راهانداز و پره برای ایجاد نیروی بالابرندم
۸۳	شكل ۱۰-۷ تصوير ESC مورد انتخاب[35]
۸۵	شکل ۱۱-۷ کنترل موتور به وسیلهی مدولاسیون عرض پالس
۹٠	شکل ۱-۸ یافتن لبههای تصویر با استفاده از فیلتر Canny Edge Detector
۹١	شکل ۲-۸ تشخیص دوایر قرمز رنگ
۹١	شکل ۸-۳ یافتن دوایر قرمز رنگ در تصویر نویزی
۹۲	شکل ۴-۸ علامت فرود
۹۳	شکل ۵-۸ تشخیص نقاط کلیدی تصویر مرجع در تصویر دوربین
	شکل ۸-۶ نمونه یک صفحه کالیبره کننده دوربین [7]

صفحه

فهرست جداول

۲۵	9-وول ٢-٢ پارامتر های اندازهگیری شده مدل واقعی
	. رول ۱-۵ تعداد پیکسل نمایش هر بارکد در ارتفاعهای متفاوت و تعداد بارکدهای مورد مشاهده
٧١	جدول ۱-۷ این جدول خواص مختلف ماده را با امتیاز دهی از ۱۰ مقایسه مینماید
٧٣	جدول ٢-٧ جدول امكانات Erle-brain 3 [30] [12] [31]
٧۶	جدول ۳-۷ جدول ویژگیهای الکترونیک ماژول APM Power Module
٧٨	بعدول ۴-۷ مقایسهی موتورهای بدون جاروبک DC با موتور DC معمولی
۸۴	عدول ۵-۷ اتصالات Raspberry Pi

فهرست علائم

فهرست علائم

ϕ	زاویه رول
heta	زاویه پیچ
ψ	زاویه یاو
x	x مکان در راستای محور
у	y مکان در راستای محور
Z	z مکان در راستای محور
p	x سرعت زاویهای حول محور
q	y سرعت زاویهای حول محور
r	سرعت زاویهای حول محور ۲
$ au_{roll}$	x گشتاور ورودی حول محور
$ au_{pitch}$	y گشتاور ورودی حول محور
$ au_{yaw}$	گشتاور ورودی حول محور Z
$ au_{thrust}$	نیروی حاصل از مجموع چهار موتور
I_{xx}	x ممان اینرسی حول محور
I_{yy}	y ممان اینرسی حول محور
I_{zz}	z ممان اینرسی حول محور
M_i	گشتاور موتور i ام
F_i	i نیروی موتور
k_{M}	ضريب گشتاور
k_F	ضريب نيرو

فهرست علائم

سرعت زاویهای موتور i ام	$arOmega_i$
ممان اینرسی ملخها	J_r
شتاب گرانش	g
انرژی پتانسیل	T
انرژی جنبشی	V
ضریب انتگرال گیر	K_i
ضریب تناسبی	K_p
ضریب مشتق گیر	K_d
ضریب پیش خورد	K_{ff}