Contents

1	Groups	2
	1.1 Notation	
	1.2 Groups	
	1.3 Symmetric Groups	
	1.4 Cayley Tables	
	Subgroups	
	2.1 Subgroups	
	2.2 Alternating Groups	
	2.3 Orders of Elements	

Contents 1

1 Groups

1.1 Notation

- 1. $\mathbb{N} = \{1, 2, ...\}$
- 2. $\mathbb{Z} = \{..., -1, 0, 1, ...\}$
- 3. $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \right\}$
- 4. \mathbb{R} = real numbers
- 5. $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$

For $n\in\mathbb{N}$, $\mathbb{Z}_n=$ integers modulo $n=\{[0],...,[n-1]\}$ where $[r]=\{z\in\mathbb{Z}:Z\equiv r \ \mathrm{mod}\ n\}$ We note that the set $S=\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z}_n$ has 2 operations $+,\cdot$.

For $n \in \mathbb{N}$, an $n \times n$ matrix over \mathbb{R} (or \mathbb{Q} or \mathbb{C}) is an $n \times n$ array

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

with $a_{ij} \in \mathbb{R}$.

Note we can also do $+, \cdot$. For $A, B \in M_n(\mathbb{R})$

$$A + B := \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix} \quad A \cdot B := \begin{bmatrix} \sum_{k=1}^{n} a_{ik} b_{kj} \end{bmatrix}$$

1.2 Groups

Definition 1.2.1

Let G be a set and $*: G \times G \to G$. We say G is a group if the following are satisfied:

- 1. Associativity: if $a, b, c \in G$, then a * (b * c) = (a * b) * c
- 2. Identity: there is $e \in G$ such that a * e = e * a = a for all $a \in G$
- 3. Inverses: for all $a \in G$, there is $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition 1.2.2

A group is called *abelian* if a * b = b * a for all $a, b \in G$

Exercise 1.2.1

Prove in the definition of a group, 1-sided identity and inverses are enough to have 2-sided identity and inverses

Proposition 1.2.1

previous exercise

Suppose G is a set, $*: G \times G \to G$ is associative. Suppose there is $e \in G$ such that e * a = a for all $a \in G$. Further suppose that for every $a \in G$, there is $a^{-1} \in G$ such that $a^{-1} * a = e$. Then for all $a \in G$,

- 1. a * e = a
- 2. $a * a^{-1} = e$

Proof of 1: Let $a \in G$, then

$$a^{-1} * a * e = e * e = e = a^{-1} * a$$

Multiplying on the left by a^{-1} gives

$$a^{-1^{-1}} * a^{-1} * a * e = a^{-1^{-1}} * a^{-1} * a$$

$$\implies e * a * e = e * a$$

$$\implies a * e = a$$

Proof of 2: Let $a \in G$, then

$$a^{-1}*a*a^{-1} = e*a^{-1} = a^{-1}$$

Again multiplying on the left by a^{-1} gives

$$a*a^{-1} = e$$

Proposition 1.2.2

Let G be a group, let $a \in G$. Then

- 1. The group identity is unique
- 2. The inverse of a is unique

Proof of 1: Suppose e_1, e_2 are both identities. Then

$$e_1 = e_1 \ast e_2 = e_2$$

Proof of 2: Suppose b_1, b_2 are inverses of a. Then

$$b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$$

Example 1.2.1

 $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ are all abelian groups

Example 1.2.2

 $(\mathbb{Z},\cdot),(\mathbb{Q},\cdot),(\mathbb{R},\cdot),(\mathbb{C},\cdot)$ are not groups as 0 has no inverse

Example 1.2.3

but $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$ are abelian groups

Definition 1.2.3

For a set (S, \cdot) let $S^* \subseteq S$ denote the set of all elements with inverses.

Exercise 1.2.2

what is \mathbb{Z}_n^* ?

Example 1.2.4

 $(M_n(\mathbb{R}),+)$ is an abelian group.

Example 1.2.5

 $\begin{array}{l} \text{Consider } \left(M_{n(\mathbb{R})},\cdot\right) \text{ The identity matrix is } \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \in M_n(\mathbb{R}) \\ \text{However, since not all } \\ M \in M_n(\mathbb{R}) \text{ have multiplicative inverses, } \left(M_n(\mathbb{R}),\cdot\right) \text{ is not a group.} \end{array}$

Notation

$$\operatorname{GL}_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) : \det(M) \neq 0 \}$$

Note

If $A,B\in \mathrm{GL}_n(\mathbb{R})$, then $\det(AB)=\det(A)\det(B)\neq 0$ Thus $AB\in \mathrm{GL}_n(\mathbb{R})$. The associativity of $\mathrm{GL}_n(\mathbb{R})$ inherits from $M_n(\mathbb{R})$. Also the identity matrix satisfies $\det(I)=1\neq 0$ and thus $I\in \mathrm{GL}_n(\mathbb{R})$. Finally, for $M\in \mathrm{GL}_n(\mathbb{R})$, there exists $M^{-1}\in M_n(\mathbb{R})$ such that $MM^{-1}=I=M^{-1}M$ since $\det(M^{-1})=\frac{1}{\det(M)}\neq 0$, we have $M^{-1}\in \mathrm{GL}_n(\mathbb{R})$. Thus $(\mathrm{GL}_n(\mathbb{R}),\cdot)$ is a group, called the *general linear group of degree n over* \mathbb{R}

Note

if $n \geq 2$, then $\operatorname{GL}_n(\mathbb{R})$ is not abelian.

Exercise 1.2.3

What is $(GL_1(\mathbb{R}), \cdot)$?

Example 1.2.6

Let G, H be groups. The *direct product* is the set $G \times H$ with the component wise operation defined by

$$(g_1,h_1)*(g_2,h_2)=(g_1*_Gg_2,h_1*_Hh_2)$$

One can check that $G \times H$ is a group with identity (e_G, e_H) and the inverse of (g, h) is (g^{-1}, h^{-1})

Note

One can show by induction that if $G_1, ..., G_n$ are groups, then $G_1 \times \cdots \times G_n$ is also a group.

Notation

Given a group G and $g_1, g_2 \in G$, we often denote $g_1 * g_2$ by g_1g_2 and its identity by 1. Also the unique inverse of an element $g \in G$ is denoted by g^{-1} . Also for $n \in \mathbb{N}$, we define $g^n = g * g * \cdots * g$ (n-times) and $g^{-n} = (g^{-1})^n$. Finally, we denote $g^0 = 1$.

Proposition 1.2.3

Let G be a group and $g, h \in G$ we have

1.
$$q^{-1-1} = q$$

2.
$$(qh)^{-1} = h^{-1}q^{-1}$$

1.
$$g^{-1-1} = g$$

2. $(gh)^{-1} = h^{-1}g^{-1}$
3. $g^ng^m = g^{n+m}$ for all $n, m \in \mathbb{Z}$

4.
$$(g^n)^m = g^{nm}$$
 for all $n, m \in \mathbb{Z}$

Proof of 1: Since

$$g^{-1}g = 1 = gg^{-1}$$

so $g^{-1^{-1}} = g$

Proof of 2:

$$(gh)\big(h^{-1}g^{-1}\big)=g\big(hh^{-1}\big)g^{-1}=g1g^{-1}=1$$

Similarly,

$$\left(h^{-1}g^{-1}\right)(gh)=1$$

Thus $(gh)^{-1} = h^{-1}g^{-1}$

Proof of 3: We proceed by considering cases:

1. if n = 0 then

$$q^n q^m = q^0 q^m = 1q^m = q^m = q^{0+m} = q^{n+m}$$

2. if n > 0, we will proceed by induction on n. Case 1 establishes the base case. Let $m \in \mathbb{Z}$, $n \in \mathbb{Z}_{>0}$. Suppose that $g^n g^m = g^{n+m}$ Then

$$g^{n+1}g^m = gg^ng^m = gg^{n+m} = g^{n+m+1}$$

3. if n < 0, then n = -k for some $k \in \mathbb{N}$. We have

$$g^k g^n g^m = g^{k+n} g^m = g^0 g^m = g^m$$

also

$$g^k g^{n+m} = g^{k+m+n} = g^m$$

Thus

$$g^k g^n g^m = g^k g^{n+m}$$

So

$$g^n g^m = g^{n+m}$$

as desired.

Proof of 4: We proceed by considering cases:

- 1. if m = 0, then $(g^n)^m = (g^n)^0 = 1 = g^0 = g^{n0} = g^{nm}$
- 2. if m > 0, then

$$(g^n)^m = \underbrace{g^n g^n \cdots g^n}_{m \text{ times}} = g^{nm}$$

3. if m < 0, then m = -k for some $k \in \mathbb{N}$. We will induct on k. For k = 1 we see that $(g^n)^{-1} = g^{-n}$ since

$$g^n g^{-n} = g^{n-n} = g^0 = 1$$

Suppose $(g^n)^{-\ell} = g^{-n\ell}$ for all $1 \le \ell \le k$ Then

$$\left(g^{n}\right)^{-k-1}=\left(g^{n}\right)^{-k}\!\left(g^{n}\right)^{-1}=g^{-nk}g^{-n}=g^{-nk-n}=g^{-n(k+1)}$$

Exercise 1.2.4

prove 3,4

Warning

In general, it is not the case that if $g,h\in G$ then $(gh)^n=g^nh^n$, this is not true unless G is abelian

Proposition 1.2.4

Let G be a group and $g, h, f \in G$ Then

1. They satisfy the left and right cancellation. More precisely,

a. if
$$gh = gf$$
 then $h = f$

b. if
$$hg = fg$$
 then $h = f$

2. Given $a, b \in G$ the equations ax = b and ya = b have unique solutions for $x, y \in G$

Proof of 1-a: By left-multiplying by g^{-1} , we have

$$gh = gf \iff g^{-1}gh = g^{-1}gf \iff h = f$$

Proof of 1-b: similar to 1-a **Proof of 2:** Let $x = a^{-1}b$ then

$$ax = aa^{-1}b = b$$

If u is another solution, then au=b=ax. By 1-a, u=x. Similarly, $y=ba^{-1}$ is the unique solution of ya=b

1.3 Symmetric Groups

Definition 1.3.1

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by S_L

Example 1.3.1

Consider the set $L = \{1, 2, 3\}$ which has the following different permutations

$$\binom{123}{123}, \binom{123}{132}, \binom{123}{213}, \binom{123}{231}, \binom{123}{312}, \binom{123}{321}$$

Where $\binom{123}{123}$ denotes the bijection

$$\sigma:\{1,2,3\}\longrightarrow\{1,2,3\}$$

$$\sigma(1)=1, \sigma(2)=2, \sigma(3)=3$$

Notation

For $n\in\mathbb{N}$ we denote by $S_n=S_{\{1,2,\dots,n\}}$ the set of all permutations of $\{1,2,\dots,n\}$. We have seen that the order of $S_3=3!=6$. To consider the general S_n , we note that for a permutation $\sigma\in S_n$, there are n choices for $\sigma(1),\,n-1$ choices for $\sigma(2),\dots$, 1 choice for $\sigma(n)$ Thus

Proposition 1.3.1

$$|S_n| = n!$$

Symmetric Groups 7

Note

For Möbius quizzes, use "9 dots" for permutations.

Remark

Given $\sigma, \tau \in S_n$ we can compose them to get a new element $\sigma\tau$, where $\sigma\tau = \{1,2,...,n\} \to \{1,2,...,n\}$ given by $x \mapsto \sigma(\tau(x))$ Since both σ,τ are bijections, $\sigma\tau \in S_n$

Example 1.3.2

Compute $\sigma \tau$ and $\tau \sigma$ if

$$\sigma = \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1234 \\ 2431 \end{pmatrix}$$

Then $\sigma \tau(1)=\sigma(2)=4,...$ Then $\sigma \tau=\binom{1234}{4213},$ and $\tau \sigma=\binom{1234}{3124}$ We note that $\sigma \tau \neq \tau \sigma$

Note

For any $\sigma, \tau \in S_n$ we have that $\tau\sigma, \sigma\tau \in S_n$ but $\sigma\tau \neq \tau\sigma$ in general on the other hand, for any σ, τ, μ we have $\sigma(\tau\mu) = (\sigma\tau)\mu$. Also note the *identity permutation* $\varepsilon \in S_n$ is defined as

$$\varepsilon = \begin{pmatrix} 12 \cdots n \\ 12 \cdots n \end{pmatrix}$$

Thus for any $\sigma \in S_n$, we have $\sigma \varepsilon = \varepsilon \sigma = \sigma$

Finally, for $\sigma \in S_n$, since it is a bijection, there is a unique bijection $\sigma^{-1} \in S_n$ called the *inverse permutation* of σ such that for all $x, y \in \{1, 2, ..., n\}$

$$\sigma^{-1}(x) = y \Longleftrightarrow \sigma(y) = x$$

It follows that

$$\sigma(\sigma^{-1}(x)) = \sigma(y) = x$$

and

$$\sigma^{-1}(\sigma(y)) = y$$

i.e we have

$$\sigma\sigma^{-1}=\sigma^{-1}\sigma=\varepsilon$$

Symmetric Groups 8

Example 1.3.3

$$\sigma = \binom{12345}{45123}$$

Then

$$\sigma^{-1} = \binom{12345}{34512}$$

From the above we have

Proposition 1.3.2

 (S_n, \circ) is a group, called the symmetric group of degree n

Exercise 1.3.1

Write down all rotations and reflections that fix an equilateral triangle. Then check why it is the "same" as S_3

Example 1.3.4

Consider

$$\sigma = \begin{pmatrix} 123456789(10) \\ 317694258(10) \end{pmatrix} \in S_{10}$$

We note that $1 \to 3 \to 7 \to 2 \to 1$ and $4 \to 6 \to 4$ and $5 \to 9 \to 8$ and $10 \to 10$ Thus σ can be *decomposed* into one 4-cycle (1372), one 2-cycle (46), and one 3-cycle (598) and one 1-cycle (10) (we usually do not write 1-cycles) Note that these cycles are *pairwise disjoint* and we have

$$\sigma = (1372)(46)(598)$$

We can also write $\sigma = (46)(598)(1372)$, or $\sigma = (64)(985)(7213)$

Theorem 1.3.3

Cycle Decomposition

If Given $\sigma \in S_n$ with $\sigma \neq \varepsilon$, then σ is a product of (one or more) disjoint cycles of length at least 2. This factorization is unique up to the order of the factors.

Proof: See bonus 1.

Convention

Every permutation of S_n can be regarded as a permutation in S_{n+1} by fixing the number n+1, thus

$$S_1 \subseteq S_2 \subseteq \dots \subseteq S_n \subseteq S_{n+1}$$

Symmetric Groups 9

1.4 Cayley Tables

Definition 1.4.1

For a finite group G, defining its operation by means of a table is sometimes convenient. Given $x, y \in G$, the product xy is the entry of the table in the row corresponding to x and the column corresponding to y, such a table is a *Cayley table*.

Remark

By cancellation, the entries in each row or column of a Cayley table are all distinct

Example 1.4.1

Consider $(\mathbb{Z}_2, +)$ its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}_2 & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \\ \end{array}$$

Example 1.4.2

Consider the group $\mathbb{Z}^* = \{1, -1\}$. Its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}^* & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Note

If we replace 1 by [0] and -1 by [1] the Cayley tables of \mathbb{Z}^* and \mathbb{Z}_2 become the same. In this case, we say \mathbb{Z}^* and \mathbb{Z}_2 are *isomorphic* denoted by

$$\mathbb{Z}^* \cong \mathbb{Z}_2$$

Cayley Tables 10

Example 1.4.3

For $n \in \mathbb{N}$, the *cyclic group of order* n is defined by

$$C_n = \left\{1, a, a^2, ..., a^{n-1}\right\}$$
 with $a^n = 1$ and $1, a, ..., a^{n-1}$ are distinct

The Cayley table of C_n is as follows

C_n	1	a	a^2		a^{n-2}	a^{n-1}
1	1	a	a^2	•••	a^{n-2}	a^{n-1}
\overline{a}	a	a^2	a^3		a^{n-1}	1
a^2	a^2	a^3	a^4		1	a
:	:	:	:	٠.	:	:
	a^{n-2}				a^{n-4}	
a^{n-1}	a^{n-1}	1	a		a^{n-3}	a^{n-2}

Proposition 1.4.1

Let G be a group. Up to isomorphism, we have

- 1. If |G| = 1, then $G \cong \{1\}$
- 2. If |G| = 2, then $G \cong C_2$
- 3. If |G| = 3, then $G \cong C_3$
- 4. If |G|=4, then $G\cong C_4$ or $G\cong K_4\cong C_2\times C_2$

Proof of 1: obviously

Proof of 2: If |G|=2 then $G=\{1,g\}$ with $g\neq 1$ Then $g^2=g$ or $g^2=1$. We note that if $g^2=g$, then g=1 contradiction.thus $g^2=1$. Thus the Cayley table is as follows

$$\begin{array}{c|ccccc}
G & 1 & g \\
\hline
1 & 1 & g \\
\hline
g & g & 1
\end{array}$$

which is the same as C_2

Proof of 3: If |G|=3, then $G=\{1,g,h\}$ with $g\neq 1, h\neq 1, g\neq h$ By cancellation, we have $gh\neq g, gh\neq h$, thus gh=1. Similarly, we have hg=1. Also, on the row for g, we have g1=g, gh=1. Since all entries in this row are distinct, we have $g^2=h$. Similarly, we have $h^2=g$. Thus we obtain the following Cayley table

G	1	g	h
1	1	g	h
g	g	h	1
\overline{h}	h	1	g

Which is the same as C_3 .

Proof of 4: See assignment 1

Cayley Tables 11

Exercise 1.4.1

Consider the symmetry group of a non-square rectangle. How is it related to K_4 ?

2 Subgroups

2.1 Subgroups

Definition 2.1.1

Let G be a group and $H \subseteq G$. If H itself is a group, then we say H is a *subgroup* of G.

Note

We note that since G is a group, for $h_1, h_2, h_3 \in H \subseteq G$, we have

$$h_1(h_2h_3) = (h_1h_2)h_3$$

Thus

Proposition 2.1.1

Subgroup Test

Let G be a group, $H \subseteq G$. Then H is a subgroup of G if

- 1. If $h_1, h_2 \in H$, then $h_1 h_2 \in H$
- 2. $1_H \in H$
- 3. If $h \in H$, then $h^{-1} \in H$

Exercise 2.1.1

Prove that $1_H = 1_G$

Example 2.1.1

Given a group G, then $\{1\}$, G are subgroups of G

Example 2.1.2

We have a chain of groups

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Subgroups 12

Example 2.1.3

Define

$$\operatorname{SL}_n(\mathbb{R}) = (\operatorname{SL}_n(\mathbb{R}), \cdot) \coloneqq \{M \in M_n(\mathbb{R}), \det(M) = 1\} \subseteq \operatorname{GL}_n(\mathbb{R})$$

Note that the identity matrix $I \in \mathrm{SL}_n(\mathbb{R})$. Let $A, B \in \mathrm{SL}_n(\mathbb{R})$, then

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

and

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{1} = 1$$

i.e. $AB, A^{-1} \in \mathrm{SL}_n(\mathbb{R})$. By the subgroup test (Proposition 2.1.1), $\mathrm{SL}_n(\mathbb{R})$ is a subgroup of $\mathrm{GL}_n(\mathbb{R})$. We call $\mathrm{SL}_n(\mathbb{R})$ the special linear group of order n over \mathbb{R}

Definition 2.1.2

Given a group G, we define the *center of* G to be

$$Z(G) \coloneqq \{z \in G \,|\, zg = gz \,\,\forall g \in G\}$$

Remark

Z(G) = G iff G is abelian.

Proposition 2.1.2

Z(G) is an abelian subgroup of G.

Proof: Note that $1 \in Z(G)$. Let $y, z \in Z(G)$ Then for all $g \in G$, we have

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Thus $yz \in Z(G)$. Also, for $z \in Z(G)$, $g \in G$ we have

$$zg = gz \iff z^{-1}(zg)z^{-1} = z^{-1}(gz)z^{-1}$$
$$\iff gz^{-1} = z^{-1}g$$

Thus $z^{-1} \in Z(G)$. By the subgroup test (Proposition 2.1.1), Z(G) is a subgroup of G. Also, by the definition of Z(G), we see that it is abelian.

Proposition 2.1.3

Let H, K be subgroups of a group G. Then $H \cap G$ is also a subgroup.

Proof: Exercise

Subgroups 13

Proposition 2.1.4

Finite Subgroup Test

If $H \neq \emptyset$ is a finite subset of a group G, then H is a subgroup of G iff H is closed under its operation.

Proof:

 (\Longrightarrow) obvious

(\Leftarrow) For $H \neq \emptyset$, let $h \in H$. Since H is closed under its operation, we have $h, h^2, h^3, ... \in H$. Since H is finite, these elements are not all distinct. Thus $h^n = h^{n+m}$ for some $n, m \in \mathbb{N}$. By cancellation, $h^m = 1$ and thus $1 \in H$. Also, $1 = h^{m-1}h$ implies that $h^{-1} = h^{m-1}$ and thus $h^{-1} \in H$. By the subgroup test, H is a subgroup of G.

2.2 Alternating Groups

Definition 2.2.1

A transposition $\sigma \in S_n$ is a cycle of length 2. i.e. $\sigma = (ab)$ with $a, b \in \{1, 2, ..., n\}$ and $a \neq b$.

Example 2.2.1

Consider $(1245) \in S_5$. Also the composition (12)(24)(45) can be computed as

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 5 & 4 \\
1 & 4 & 3 & 5 & 2 \\
2 & 4 & 3 & 5 & 1
\end{pmatrix}$$

Thus we have (1245) = (12)(24)(45) Also we can show that

$$(1245) = (23)(12)(25)(13)(24)$$

We see from this example that the factorization into transpositions are NOT unique. However, one can prove (see Bonus 2)

Theorem 2.2.1 Parity Theorem

If a permutation σ has two factorizations

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r = \mu_1 \mu_2 \cdots \mu_s$$

Where each γ_i and μ_j is a transposition, then $r \equiv s \pmod{2}$

Definition 2.2.2

A permutation σ is *even* (or *odd*) if it can be written as a product of an even (or odd) number of transpositions. By the previous theorem, a permutation is either even or odd, but not both.

Alternating Groups 14

Theorem 2.2.2

For $n \geq 2$, let A_n denote the set of all even permutations in S_n

- 1. $\varepsilon\in A_n$ 2. If $\sigma,\tau\in A_n$, then $\sigma\tau\in A_n$ and $\sigma^{-1}\in A_n$ 3. $|A_n|=\frac{1}{2}n!$

From (1) and (2), we see (A_n) is a subgroup of S_n called the alternating group of degree n.

Proof of 1: We can write $\varepsilon = (12)(12)$. Thus ε is even.

Proof of 2: if $\sigma, \tau \in A_n$ we can write $\sigma = \sigma_1 \cdots \sigma_r$ and $\tau = \tau_1 \cdots \tau_s$ where σ_i, τ_j are transpositions and r, s are even integers. Then

$$\sigma \tau = \sigma_1 \cdots \sigma_r \tau_1 \cdots \tau_s$$

is a product of (r+s) transpositions and thus $\sigma \tau \in A_n$. Also, we note that σ_i is a transposition, we have $\sigma_i^2 = \varepsilon$ and thus $\sigma_i^{-1} = \sigma_i$. It follows that

$$\sigma^{-1} = \left(\sigma_1 \cdots \sigma_r\right)^{-1} = \sigma_r^{-1} \cdots \sigma_1^{-1} = \sigma_r \cdots \sigma_1$$

which is an even permutation.

Proof of 3: Let O_n denote the set of odd permutations in S_n . Thus $S_n = A_n \cup O_n$ and the parity theorem implies that $A_n \cap O_n = \emptyset$. Since $|S_n| = n!$, to prove $|A_n| = \frac{1}{2}n!$, it suffices to show that $|A_n|=|O_n|$. Let $\gamma=(12)$ and let $f:A_n\to O_n$ be defined by $f(\sigma)=\gamma\sigma$. Since σ is even, we have $\gamma\sigma$ is odd. Thus the map is well-defined. Also, if we have $\gamma \sigma_1 = \gamma \sigma_2$, then by cancellation, we get $\sigma_1 = \sigma_2$, thus f is injective. Finally, if $\tau \in O_n$, then $\sigma = \gamma \tau \in A_n$ and $f(\sigma) = \gamma \sigma = \gamma(\gamma \tau) = \gamma^2 \tau = \tau$. Thus f is surjective. It follows that f is a bijection, thus $|A_n| = |O_n|$. It follows that $|A_n| = \frac{1}{2}n! = |O_n|$

2.3 Orders of Elements

Notation

If G is a group and $g \in G$, we denote

$$\langle g \rangle = \left\{ g^k \,\middle|\, k \in \mathbb{Z} \right\} = \left\{ ..., g^{-1}, g^0 = 1, g, g^2, ... \right\}$$

Note that $1 = g^0 \in \langle g \rangle$. Also, if $x = g^m, y = g^n \in \langle g \rangle$ With $m, n \in \mathbb{Z}$, then $xy = g^n g^m = g^{n+m} \in \langle g \rangle$ and $x^{-1} = g^{-m} \in \langle g \rangle$. By the subgroup test, we have

Proposition 2.3.1

If *G* is a group and $g \in G$, then $\langle g \rangle$ is a subgroup of *G*.

Definition 2.3.1

Let G be a group with $g \in G$. We call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say G is cyclic and g a generator of G.

Orders of Elements 15

Example 2.3.1

Consider $(\mathbb{Z}, +)$ Note that for all $k \in \mathbb{Z}$, we can write $k = k \cdot 1$. Thus we can see $(\mathbb{Z}, +) = \langle 1 \rangle$. Similarly, $(\mathbb{Z}, +) = \langle -1 \rangle$. We observe, for any integer $n \in \mathbb{Z}$ with $n \neq \pm 1$ there exist no $k \in \mathbb{Z}$ such that $k \cdot n = 1$. Thus ± 1 are the only generators of $(\mathbb{Z}, +)$.

Remark

Let G be a group and $g \in G$. Suppose there is $k \in \mathbb{Z}$ $k \neq 0$ such that $g^k = 1$ then $g^{-k} = (g^k)^{-1} = 1$. Thus we can assume $k \ge 1$. Then by the well-ordering principle, there exists the smallest positive integer n such that $g^n = 1$

Definition 2.3.2

Let G be a group and $g \in G$. If n is the smallest positive integer such that $g^n = 1$, then we say the order of g is n, denoted o(g) = n. If no such n exists, we say g has infinite order and write $o(g) = \infty$

Proposition 2.3.2

Let G be a group and $g \in G$ with $o(g) = n \in \mathbb{N}$. For $k \in \mathbb{Z}$ we have

- 2. $g^k=g^m$ iff $k\equiv m\pmod n$ 3. $\langle g\rangle=\left\{1,g,g^2,...,g^{n-1}\right\}$ where $1,g,...,g^{n-1}$ are all distinct. In particular, we have

Proof of 1:

 (\Leftarrow) if $n \mid k$, then k = nq for some $q \in \mathbb{Z}$. Thus

$$g^k = g^{nq} = (g^n)^q = 1^q = 1$$

 (\Longrightarrow) By the division algorithm, we can write k = nq + r with $q, r \in \mathbb{Z}$ and $0 \le r < n$. Since $g^k = 1$ and $q^n = 1$, we have

$$g^r = g^{k-nq} = g^k(g^n)^{-q} = 1 \cdot 1^{-q} = 1$$

Since $0 \le r < n$ and o(g) = n, we have r = 0 and hence $n \mid k$.

Proof of 2: Note that $q^k = q^m$ iff $q^{km} = 1$. By (1), we have $n \mid (km)$ i.e. $k \equiv m \pmod{n}$

Proof of 3: It follows from (2) that $1, g, ..., g^{n-1}$ are all distinct. Clearly, we have $\{1, g, ..., g^{n-1}\} \subseteq \langle g \rangle$. To prove the other inclusion, let $g^k \in \langle g \rangle$ for some $k \in \mathbb{Z}$. Write k = nq + r with $n, r \in \mathbb{Z}$ and $0 \le r < n$. Then

$$g^k = g^{nq+r} = g^{nq}g^r = (g^n)^q g^r = 1^q g^r = g^r \in \{1, g, ..., g^{n-1}\}$$

Thus
$$\langle g \rangle = \{1, g, ..., g^{n-1}\}$$

Orders of Elements 16

Proposition 2.3.3

Let G be a group and $g \in G$ with $o(g) = \infty$. For $k \in \mathbb{Z}$ we have

- 1. $g^k=1$ iff k=02. $g^k=g^m$ iff k=m3. $\langle g\rangle=\left\{...,g^{-1},g^0=1,g,...\right\}$ where g^i are all distinct

Proposition 2.3.4

Let G be a group and $g \in G$ with $o(g) = n \in \mathbb{N}$. If $d \in \mathbb{N}$, then $o\left(g^d\right) = \frac{n}{\gcd(n,d)}$. In particular, if $d \mid n$, then gcd(n, d) = d and $o(g^d) = \frac{n}{d}$

Proof: Let $n_1 = \frac{n}{\gcd(n,d)}$ and $d_1 = \frac{d}{\gcd(n,d)}$. By a result from Math 135, we have $\gcd(n_1,d_1) = 1$. Note that

$$\left(g^d
ight)_1^n=\left(g^d
ight)^{rac{n}{\gcd(n,d)}}=\left(g^n
ight)^{rac{d}{\gcd(n,d)}}=1$$

Thus it remains to show that n_1 is the smallest such positive integer. Suppose $\left(g^d\right)^r=1$ with $r\in\mathbb{N}$. Since o(g) = n, by prop, we have $n \mid dr$. Thus there is $q \in \mathbb{Z}$ such that dr = nq. Dividing both sides by gcd(n, d) we get

$$d_1r = \frac{d}{\gcd(n,d)}r = \frac{n}{\gcd(n,d)}q = n_1q$$

Since $n_1 \mid d_1 r$ and $\gcd(n_1, d_1) = 1$, by a result from Math 135, we get $n_1 \mid r$ i.e. $r = n_1 \ell$ for some $\ell \in \mathbb{Z}$. Since $r_1, n_1 \in \mathbb{N}$, it follows that $\ell \in \mathbb{N}$. Since $\ell \geq 1$, we get $r \geq n_1$

Orders of Elements 17