

Report No: EV1301008018-1

FCC REPORT

Applicant: Ambient Devices, Inc.

Address of Applicant: 1 Broadway, 14th Floor Cambridge, MA 02142 USA

Equipment Under Test (EUT)

Product Name: Ambient Energy Joule

Model No.: AMBEJ

Trade mark: Ambient

FCC ID: 2AA9RAMBEJ

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2013

Date of sample receipt: October.08, 2013

Date of Test: October.10~18, 2013

Date of report issued: October.18, 2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jason Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the Volt product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Volt International Electrical Approvals or testing done by Volt International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by Volt International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No: EV1301008018-1

2 Version

Version No.	Date	Description
00	October.18, 2013	Original

Prepared By:	Peter	Date:	October.18, 2013
	Project Engineer		
Check By:	Darren	Date:	October.18, 2013
	Reviewer		

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

3 Contents

		Page
1 C	OVER PAGE	
2 VI	ERSION:	2
3 C	ONTENTS	3
4 TE	EST SUMMARY	4
5 G	ENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T.	5
5.3	TEST ENVIRONMENT AND MODE	6
5.4	TEST FACILITY	
5.5	TEST LOCATION	
5.6		
5.7		
5.8		
5.9 5.10		A
	EST RESULTS AND MEASUREMENT DATA	
6.1	ANTENNA REQUIREMENT:	8
6.2	CONDUCTED EMISSIONS	9
6.3	CONDUCTED PEAK OUTPUT POWER	
6.4	6DB OCCUPY BANDWIDTH	
6.5	Power Spectral Density	
6.6	BAND EDGE	21
	6.1 Conducted Emission	
	6.2 Radiated Emission	
6.7	Spurious Emission	
-	7.1 Conducted Emission	
6.	7.2 Radiated Emission	

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: EV1301008018-1

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious emissions	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Report No: EV1301008018-1

5 General Information

5.1 Client Information

Applicant:	Ambient Devices, Inc.
Address of Applicant:	1 Broadway, 14 th Floor Cambridge, MA 02142 USA
Manufacturer:	Donguan Union Electronic Co., LTD.
Address of Manufacturer:	No.3 Yinyuan street, Jiaoyitang village, Tangxia town, Dongguan city,
	Guangdong province, China.

5.2 General Description of E.U.T.

Product Name:	Ambient Energy Joule
Model No.:	AMBEJ
Operation Frequency:	2405MHz~2475MHz
Channel numbers:	15
Channel separation:	5MHz
Modulation type:	Direct Sequence Spread Spectrum (DSSS)
Antenna Type:	Internal Chip Antenna
Antenna gain:	0.5dBi
Power supply:	DC 3.7V/600mAh by Battery

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz	
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz	
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz	
4	2420MHz	8	2440MHz	12	2460MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2475MHz

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: EV1301008018-1

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in transmitting mode with modulation.		

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 987723

Dongguan Volt Compliance Testing Service Co.,Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 987723, July 08, 2013.

● Industry Canada (IC) —Submission No.: 169466

The 3m Semi-anechoic chamber of Dongguan Volt Compliance Testing Service Co.,Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Submission No.: 169466.

5.5 Test Location

All tests were performed at:

Dongguan Volt Compliance Testing Service Co.,Ltd.

Address: 6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R. China. Tel: +86-769-21663588, Fax: +86-769-21660978

5.6 Description of Support Units

1.	tom	em Test Equipment Manufacturer Model No. Serial N	Sorial No	Last cal date	Cal		
•	item		Manuacturer	wiodel No.	Serial No.	(mm-dd-yy)	Interval
	1	Desktop Computers	HP	Pro 3005 MT	4CV1324FBS	N/A	N/A

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588, Fax: +86-769-21660978

Report No: EV1301008018-1

5.10 Test Instruments list

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last cal date	Cal				
iteiii			Wiodel No.		(mm-dd-yy)	Interval				
1	Test Receiver	Rohde & Schwarz	ESCI	101152	Nov.25,2012	1 year				
2	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Nov.09,2012	1 year				
3	L.I.S.N	Schwarzbeck	NNLK8129	8129-212	Nov.09,2012	1 year				
4	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Nov.09,2012	1 year				
5	Pulse Limiter	MTS-systemtechnik	MTS-IMP-136	261115-010- 0022	Nov.09,2012	1 year				

Radi	Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last cal date	Cal				
пеш	rest Equipment	Wallulacturei	woder No.	Serial No.	(mm-dd-yy)	Interval				
1	Log-periodic Antenna	Schwarzbeck	VULB9162	9162-010	Nov.28,2012	1 year				
	Horn Antenna	COM-Power	AH-118	071078	Nov.28,2012	1 year				
	Horn Antenna	Schwarzbeck	BBHA9170	9170-372	Nov.28,2012	1 year				
2	Power Amplifier	HP	HP 8447D	1145A00203	Nov.09,2012	1 year				
	Pre-Amplifier	Agilent	8449B	3008A02964	Nov.09,2012	1 year				
3	Test Receiver	Rohde & Schwarz	ESCI7	100837	Nov.25,2012	1 year				
	Spectrum Analyzer	Agilent	E4408B	MY41440717	Nov.25,2012	1 year				
4	Cable	Huber + Suhner	CBL2-NN-9M	22390001	Nov.09,2012	1 year				
5	Cable	Huber + Suhner	CIL02	N/A	Nov.09,2012	1 year				
6	Positioning Controller	UC	UC 3000	N/A	N/A	N/A				
7	Single Phase Power Line Filter	SAEMC	PF201A-32	110210	N/A	N/A				
8	3 Phase Power Line Filter	SAEMC	PF401A-200	110318	N/A	N/A				
9	DC Power Filter	SAEMC	PF301A-200	110245	N/A	N/A				
10	Color Monitor	SUNSPO	SP-140A	N/A	N/A	N/A				

Report No: EV1301008018-1

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna port is a Internal Chip Antenna; the best case gain of the antenna is 0.5dBi.

Report No: EV1301008018-1

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,					
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz						
Limit:	Frequency range (MHz)	Ereguency range (MHz) Limit (dBuV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Test procedure	* Decreases with the logarithn The E.U.T and simulators are		4				
	impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.						
Test setup:	Refere	ence Plane					
	Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details	3	_				
Test results:	Passed						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: EV1301008018-1

Live Line:

Report No.: EV1301008018-1

Test Standard: FCC PART 15B_Class B_QP

Test item: Conducted Emission Phase: L1

Applicant: Ambient Temp.()/Hum.(%): 24(C) / 54 %

Product: Ambient Energy Joule Power Rating: AC 120V/60Hz

Model No.: AMBEJ Test Engineer: Peter

Test Mode: Transmitting mode

Remark:

No.	Frequency (MHz)	Factor (dBuV)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1606	10.80	45.17	55.97	65.43	-9.46	QP	Р	
2	0.1606	10.80	23.26	34.06	55.43	-21.37	AVG	Р	
3	0.4979	10.80	39.04	49.84	56.03	-6.19	QP	Р	
4	0.4979	10.80	21.77	32.57	46.03	-13.46	AVG	Р	
5	0.5700	10.80	34.79	45.59	56.00	-10.41	QP	Р	
6	0.5700	10.80	17.39	28.19	46.00	-17.81	AVG	Р	
7	1.2016	10.80	32.73	43.53	56.00	-12.47	QP	Р	
8	1.2016	10.80	12.95	23.75	46.00	-22.25	AVG	Р	
9	5.9378	10.80	32.07	42.87	60.00	-17.13	QP	Р	
10	5.9378	10.80	13.09	23.89	50.00	-26.11	AVG	Р	
11	27.7140	10.80	30.60	41.40	60.00	-18.60	QP	Р	
12	27.7140	10.80	15.14	25.94	50.00	-24.06	AVG	Р	

Notes: Level=Reading+Factor. Margin=Level-Limit.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: EV1301008018-1

Neutral Line:

Report No.: EV1301008018-1

Test Standard: FCC PART 15B_Class B_QP

Test item: Conducted Emission Phase: N

Applicant: Ambient Temp.()/Hum.(%): 24(C) / 54 %

Product: Ambient Energy Joule Power Rating: AC 120V/60Hz

Model No.: AMBEJ Test Engineer: Peter

Test Mode: Transmitting mode

Remark:

No.	Frequency (MHz)	Factor (dBuV)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1539	10.80	46.45	57.25	65.78	-8.53	QP	Р	
2	0.1539	10.80	25.71	36.51	55.78	-19.27	AVG	Р	
3	0.4900	10.80	36.08	46.88	56.17	-9.29	QP	Р	
4	0.4900	10.80	21.15	31.95	46.17	-14.22	AVG	Р	
5	0.5580	10.80	36.55	47.35	56.00	-8.65	QP	Р	
6	0.5580	10.80	19.34	30.14	46.00	-15.86	AVG	Р	
7	1.0740	10.80	32.82	43.62	56.00	-12.38	QP	Р	
8	1.0740	10.80	14.63	25.43	46.00	-20.57	AVG	Р	
9	3.2099	10.80	31.05	41.85	56.00	-14.15	QP	Р	
10	3.2099	10.80	11.76	22.56	46.00	-23.44	AVG	Р	
11	28.7020	10.80	34.58	45.38	60.00	-14.62	QP	Р	
12	28.7020	10.80	16.80	27.60	50.00	-22.40	AVG	Р	

Notes: Level=Reading+Factor. Margin=Level-Limit.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Operating mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	-5.82	30.00	Pass					
Middle	-1.33	30.00	Pass					
Highest	8.12	30.00	Pass					

Test plot as follows:

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: EV1301008018-1

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: EV1301008018-1

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

6.4 6dB Occupy Bandwidth

Measurement Data

Operating mode								
Test channel	6dB Occupy Bandwidth (MHz)	Limit (KHz)	Result					
Lowest	1.7100	>500	Pass					
Middle	1.6200	>500	Pass					
Highest	1.6200	>500	Pass					

Test plot as follows:

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: EV1301008018-1

Test channel: Lowest

Date: 18.OCT.2013 17:14:53

Test channel: Middle

Date: 18.OCT.2013 17:25:17

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

Test channel: Highest

Date: 18.OCT.2013 17:28:52

Dongguan Volt Compliance Testing Service Co.,Ltd.

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

6.5 Power Spectral Density

Measurement Data

Operating mode								
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result					
Lowest	-21.92	8.00	Pass					
Middle	-17.77	8.00	Pass					
Highest	-7.99	8.00	Pass					

Test plot as follows:

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

Date: 18.OCT.2013 17:16:06

Test channel: Middle

Date: 18.OCT.2013 17:26:12

Dongguan Volt Compliance Testing Service Co.,Ltd.

 $6/F,\,Fuwei\,\,Buiding,\,No.88\,\,Hongtu\,\,Road,\,Nancheng\,\,District,\,Dongguan,\,Guangdong,\,P.R.\,\,China$

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

Test channel: Highest

Date: 18.OCT.2013 17:29:52

Report No: EV1301008018-1

6.6 Band Edge

6.6.1 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Report No: EV1301008018-1

Date: 18.OCT.2013 17:16:43

Test mode: Transmitting mode Test channel: Highest

Date: 18.OCT.2013 17:30:34

Dongguan Volt Compliance Testing Service Co.,Ltd.

 $6/F,\,Fuwei\,\,Buiding,\,No.88\,\,Hongtu\,\,Road,\,Nancheng\,\,District,\,Dongguan,\,Guangdong,\,P.R.\,\,China$

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

6.6.2 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	2.3GHz to 2.5G	2.3GHz to 2.5GHz						
Test site:	Measurement D	Distance: 3m (Semi-Anecho	ic Chambe	r)			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value			
Limit:					, worage value			
	Freque	ency	Limit (dBuV/	m @3m)	Remark			
	Above 1	CH-	54.0)	Average Value			
			74.0		Peak Value			
Test Procedure:	the ground rotated 360 radiation. b. The EUT wantenna, who tower. c. The antenn the ground Both horizo make the make the make the maters and degrees to the EUT have 10dB	at a 3 meters degrees to degrees to degrees to degrees to degrees to degrees to degrees a height is value and vertice as a height is value and vertice as a height is value and vertice and vertice and the antenion the rotable to find the maximal ceiver system and width with ion level of the perified, then to would be represented to degree and vould be represented to degree t	semi-anechoice termine the pars away from anted on the toried from one the maximum cal polarization assion, the EUT has was turned able was turned able was turned awas set to Pen Maximum Hole EUT in peal esting could be orted. Otherwill be re-tested	c camber. Toosition of the interferon of a varial meter to for value of the art was arranto heights find from 0 decay and the was estopped a see the emisone by one	he highest ence-receiving able-height antenna ur meters above e field strength. htenna are set to ged to its worst rom 1 meter to 4 egrees to 360			

Report No: EV1301008018-1

Note

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No: EV1301008018-1

Measurement data:

Test channel:		Lowest		Value:		Peak	Peak	
		•		•		•		
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization	
2396.24	34.76	8.08	42.84	74.00	-31.16	Peak	Vertical	
2400.00	38,96	8.09	47.05	74.00	-26.95	Peak	Vertical	
2396.24	33.48	8.06	41.54	74.00	-32.46	Peak	Horizontal	
2400.00	40.17	8.09	48.26	74.00	-25.74	Peak	Horizontal	

	rest channe	est channel: Lowest			value:		Average	Average		
٠	Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization		
	2396.24	22.92	8.08	31.00	54.00	-23.00	Average	Vertical		
	2400.00	25.56	8.09	33.65	54.00	-20.35	Average	Vertical		
	2396.24	23.08	8.06	31.14	54.00	-22.86	Average	Horizontal		
	2400.00	27.23	8.09	35.32	54.00	-18.68	Average	Horizontal		

Notes: Level=Reading+Factor. Margin=Level-Limit.

Test channel:		Highest		Value:		Peak	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
2483.50	37.74	8.36	46.10	74.00	-27.90	Peak	Vertical
2489.18	35,12	8.38	43.50	74.00	-30.50	Peak	Vertical
2483.50	36.98	8.36	45.34	74.00	-28.66	Peak	Horizontal
2486.32	35.10	8.38	43.48	74.00	-30.52	Peak	Horizontal

	Test channel: Hi		Highest		Value:		Average	
			•		•		•	
	Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
•	2483.50	26.18	8.36	34.54	54.00	-19.46	Average	Vertical
	2489.18	22.05	8.38	30.43	54.00	-23.57	Average	Vertical
	2483.50	25.24	8.36	33.60	54.00	-20.40	Average	Horizontal
•	2486.32	22.17	8.38	30.55	54.00	-23.45	Average	Horizontal

Notes: Level=Reading+Factor. Margin=Level-Limit.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: EV1301008018-1

6.7 Spurious Emission

6.7.1 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable					
	loss was compensated from the measured value.					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Report No: EV1301008018-1

Test channel: Lowest

Date: 18.OCT.2013 17:17:00

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

Test channel: Middle

Date: 18.OCT.2013 17:26:42

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

Test channel: Highest

Date: 18.OCT.2013 17:30:59

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

6.7.2 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4: 2003								
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Industrial Distance on (Communication Chamber)								
•	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above IGIIZ	Peak	1MHz	10Hz	Average Value				
Limit:					T				
	Freque		Limit (dBuV	/m @3m)	Remark				
	30MHz-8	8MHz	40.0)	Quasi-peak Value				
	88MHz-21		43.	5	Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0		Quasi-peak Value				
	Above 1	GHz	54.0		Average Value				
			74.0		Peak Value				
Test Procedure:	the ground rotated 360 radiation. h. The EUT wantenna, who tower. i. The antenn the ground Both horizo make the might be and the meters and degrees to k. The test-red Specified B. If the emiss the limit specified B. If the EUT have 10dB.	at a 3 meter sidegrees to de as set 3 meters as set 3 meters as set 3 meters are determined to determine the assurement. It is pected emission the antended the maximal and width with a consideration of the consideration	emi-anechoice termine the pars away from the don the to ried from one the maximum cal polarizations ion, the EU awas turned ble was turned ble was turned was set to Pe Maximum Hole EUT in peasesting could borted. Otherw be re-tested	c camber. Toosition of the interference of a varial meter to for value of the arm of the arm of the arm of the defence of the	he highest ence-receiving able-height antenna ur meters above e field strength. atenna are set to ged to its worst rom 1 meter to 4 egrees to 360				

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: EV1301008018-1

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Tel: +86-769-21663588,

Fax: +86-769-21660978

Report No: EV1301008018-1

Below 1GHz

Worst case:	Middle Channel
-------------	----------------

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
30.48	43.65	-15.83	27.82	40.00	-12.18	QP	Vertical
56.76	47.24	-13.85	33.39	40.00	-6.61	QP	Vertical
83.15	38.45	-18.68	19.77	40.00	-20.23	QP	Vertical
128.82	37.86	-17.94	19.92	43.50	-23.58	QP	Vertical
184.06	42.56	-16.94	25.62	43.50	-17.88	QP	Vertical
228.15	38.68	-15.61	23.07	46.00	-22.93	QP	Vertical
55.27	36.02	-17.85	18.17	40.00	-21.83	QP	Horizontal
134,55	32.35	-15.32	17.03	43.50	-26.47	QP	Horizontal
147.64	35.42	-15.54	19.88	43.50	-23.62	QP	Horizontal
176.23	37.58	-14.47	23.11	43.50	-20.39	QP	Horizontal
220.60	33.96	-12.91	21.05	46.00	-24.95	QP	Horizontal
226.75	35.27	-12.56	22.71	46.00	-23.29	QP	Horizontal

Notes: For radiation emission below 30MHz, The measured value haven't been reported for down 20dB under the limit.

Level=Reading+Factor. Margin=Level-Limit. Level=Reading+Factor. Margin=Level-Limit.

Above 1GHz

Test channel:		Lowest	owest		Remark:		
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
4810.00	46.78	12.66	59.44	74.00	-14.56	Peak	Vertical
7215.00	43.26	16.70	59.96	74.00	-14.04	Peak	Vertical
9620.00	45.04	18.16	63.20	74.00	-10.80	Peak	Vertical
12025.00	42.87	17.63	60.50	74.00	-13.50	Peak	Vertical
4810.00	46.52	12.66	59.18	74.00	-14.82	Peak	Horizontal
7215.00	43.66	16.70	60.36	74.00	-13.64	Peak	Horizontal
9620.00	44.78	18.16	62.94	74.00	-11.06	Peak	Horizontal
12025.00	44.45	17.63	62.08	74.00	-11.92	Peak	Horizontal

Test channel:		Lowest	Lowest Remark:		Average		
				r			1
Frequency	Read Level	Factor (dB)	Level	Limit Line	Over Limit	Detector	Polarization
(MHz)	(dBuV)	. 4010. (42)	(dBuV/m)	(dBuV/m)	(dB)	Dottooloi	1 Glanzation
4810.00	36.45	12.66	49.11	54.00	-4.89	Average	Vertical
7215.00	31.57	16.70	48.27	54.00	-5.73	Average	Vertical
9620.00	32.05	18.16	50.21	54.00	-3.79	Average	Vertical
12025.00	32.84	17.63	50.47	54.00	-3.53	Average	Vertical
4810.00	35.12	12.66	47.78	54.00	-6.22	Average	Horizontal
7215.00	30.43	16.70	47.13	54.00	-6.87	Average	Horizontal
9620.00	31.65	18.16	49.81	54.00	-4.19	Average	Horizontal
12025.00	32.24	17.63	49.87	54.00	-4.13	Average	Horizontal

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: E	:V1301008018-1
--------------	----------------

Test channel:			Remark:		Peak	
Read Level	Factor (dB)	Level	Limit Line	Over Limit	Detector	Polarization
(dBuV)	r actor (db)	(dBuV/m)	(dBuV/m)	(dB)	Detector	Polatization
47.86	12.96	60.82	74.00	-13.18	Peak	Vertical
45.23	16.91	62.14	74.00	-11.86	Peak	Vertical
44.78	18.34	63.12	74.00	-10.88	Peak	Vertical
47.24	17.87	65.11	74.00	-8.89	Peak	Vertical
46.35	12.96	59.31	74.00	-14.69	Peak	Horizontal
44.89	16.91	61.80	74.00	-12.20	Peak	Horizontal
43.65	18.34	61.99	74.00	-12.01	Peak	Horizontal
45.02	17.87	62.89	74.00	-11.11	Peak	Horizontal
	Read Level (dBuV) 47.86 45.23 44.78 47.24 46.35 44.89 43.65	Read Level (dBuV) Factor (dB) 47.86 12.96 45.23 16.91 44.78 18.34 47.24 17.87 46.35 12.96 44.89 16.91 43.65 18.34	Read Level (dBuV) Factor (dB) Level (dBuV/m) 47.86 12.96 60.82 45.23 16.91 62.14 44.78 18.34 63.12 47.24 17.87 65.11 46.35 12.96 59.31 44.89 16.91 61.80 43.65 18.34 61.99	Read Level (dBuV) Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) 47.86 12.96 60.82 74.00 45.23 16.91 62.14 74.00 44.78 18.34 63.12 74.00 47.24 17.87 65.11 74.00 46.35 12.96 59.31 74.00 44.89 16.91 61.80 74.00 43.65 18.34 61.99 74.00	Read Level (dBuV) Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) 47.86 12.96 60.82 74.00 -13.18 45.23 16.91 62.14 74.00 -11.86 44.78 18.34 63.12 74.00 -10.88 47.24 17.87 65.11 74.00 -8.89 46.35 12.96 59.31 74.00 -14.69 44.89 16.91 61.80 74.00 -12.20 43.65 18.34 61.99 74.00 -12.01	Read Level (dBuV) Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) Detector 47.86 12.96 60.82 74.00 -13.18 Peak 45.23 16.91 62.14 74.00 -11.86 Peak 44.78 18.34 63.12 74.00 -10.88 Peak 47.24 17.87 65.11 74.00 -8.89 Peak 46.35 12.96 59.31 74.00 -14.69 Peak 44.89 16.91 61.80 74.00 -12.20 Peak 43.65 18.34 61.99 74.00 -12.01 Peak

Test channel:		Middle		Remark:		Averag	je
		I			I 0 1: ::	· I	1
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
4880.00	35.12	12.96	48.08	54.00	-5.92	Average	Vertical
7320.000	30.76	16.91	47.67	54.00	-6.33	Average	Vertical
9760.000	30.22	18.34	48.56	54.00	-5.44	Average	Vertical
12200.000	31.08	17.87	48.95	54.00	-5.05	Average	Vertical
4880.00	33.45	12.96	46.41	54.00	-7.59	Average	Horizontal
7320.000	30.85	16.91	47.76	54.00	-6.24	Average	Horizontal
9760.000	30.52	18.34	48.86	54.00	-5.14	Average	Horizontal
12200.000	31.18	17.87	49.05	54.00	-4.95	Average	Horizontal

Test channel:		Highest		Remark:		Peak	
	Dood Lovel	Γ	Laval	l insit l in a	Or com Limeia		Γ
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
4950.00	45.36	13.26	58.62	74.00	-15.38	Peak	Vertical
7440.000	44.34	17.16	61.50	74.00	-12.50	Peak	Vertical
9920.000	43.28	18.55	61.83	74.00	-12.17	Peak	Vertical
12400.000	45.05	18.15	63.20	74.00	-10.80	Peak	Vertical
4950.00	44.98	13.26	58.24	74.00	-15.76	Peak	Horizontal
7440.000	45.37	17.16	62.53	74.00	-11.47	Peak	Horizontal
9920.000	44.65	18.55	63.20	74.00	-10.80	Peak	Horizontal
12400.000	45.23	18.15	63.38	74.00	-10.62	Peak	Horizontal

Test channel:		Highest		Remark:		Average	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
4950.00	33.76	13.26	47.02	54.00	-6.98	Average	Vertical
7440.000	31.24	17.16	48.40	54.00	-5.60	Average	Vertical
9920.000	30.47	18.55	49.02	54.00	-4.98	Average	Vertical
12400.000	32.05	18.15	50.20	54.00	-3.80	Average	Vertical
4950.00	33.68	13.26	46.94	54.00	-7.06	Average	Horizontal
7440.000	31.35	17.16	48.51	54.00	-5.49	Average	Horizontal
9920.000	30.69	18.55	49.24	54.00	-4.76	Average	Horizontal
12400.000	32.26	18.15	50.41	54.00	-3.59	Average	Horizontal

Remark:

The emission levels of above 13GHz are very lower than the limit and not show in test report.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F, Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R. China

Report No: EV1301008018-1

*****End of Test Report*****