Rank-73737 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 73737

General information

Number of lines	3
Number of points	7
Number of singular points	2
Number of Eckardt points	0
Number of double points	2
Number of single points	5
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$2^2, 1^5$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0)$$
$$1: P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_3 = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{13}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_7$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{28}$$

Rank of lines: (3, 33, 22)

Rank of points on Klein quadric: (13, 7, 28)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 2 Double points:

The double points on the surface are:

$$P_{14} = (0, 1, 1, 1) = \ell_0 \cap \ell_1$$

$$P_7 = (0, 1, 1, 0) = \ell_1 \cap \ell_2$$

Single Points

The surface has 5 single points:

The single points on the surface are:

 $0: P_0 = (1,0,0,0)$ lies on line ℓ_0

1: $P_3 = (0,0,0,1)$ lies on line ℓ_1

2: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_0

The single points on the surface are:

 $3: P_{11} = (1, 1, 0, 1)$ lies on line ℓ_2

4: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_2

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 1 & 0
\end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_{14}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{14}	P_7

 ${\bf Line~2~intersects}$

Line	ℓ_1
in point	P_7

The surface has 7 points:

The points on the surface are:

$$0: P_0 = (1,0,0,0)$$

$$3: P_7 = (0, 1, 1, 0)$$

$$6: P_{14} = (0, 1, 1, 1)$$

$$0: P_0 = (1,0,0,0) 1: P_3 = (0,0,0,1) 2: P_4 = (1,1,1,1)$$

$$3: P_7 = (0, 1, 1, 0)$$

 $4: P_{11} = (1, 1, 0, 1)$
 $5: P_{13} = (1, 0, 1, 1)$

$$2: P_4 = (1, 1, 1, 1)$$

$$5: P_{12} = (1, 0, 1, 1)$$