## Homework3 Report

Professor Pei-Yuan Wu EE5184 - Machine Learning

姓名: 盧庭偉 學號: B05602022

1. (1%) 請說明你實作的 CNN model,其模型架構、訓練過程和準確率為何?

| Conv2D(64)         | kernel_size=(3, 3)<br>activation=relu     | Dense(1024)        | activation=relu      |
|--------------------|-------------------------------------------|--------------------|----------------------|
| BatchNormalization |                                           | BatchNormalization |                      |
| MaxPooling2D       | pool_size = (2, 2)                        | Dropout            | 0.5                  |
| Dropout            | 0.25                                      | Dense(1024)        | activation = relu    |
| Conv2D(64)         | kernel_size = (7, 7)<br>activation = relu | BatchNormalization |                      |
| BatchNormalization |                                           | Dropout            | 0.5                  |
| MaxPooling2D       | pool_size = (2, 2)                        | Dense(512)         | activation = relu    |
| Dropout            | 0.3                                       | BatchNormalization |                      |
| Conv2D(128)        | kernel_size = (5, 5)<br>activation = relu | Dropout            |                      |
| BatchNormalization |                                           | Dense(256)         | activation = relu    |
| MaxPooling2D       | pool_size = (2, 2)                        | BatchNormalization |                      |
| Dropout            | 0.35                                      | Dropout            | 0.5                  |
| Conv2D(128)        | kernel_size = (3, 3)<br>activation = relu | Dense(128)         | activation = relu    |
| BatchNormalization |                                           | BatchNormalization |                      |
| MaxPooling2D       | pool_size=(2, 2)                          | Dropout            | 0.5                  |
| Dropout            | 0.4                                       | Dense(7)           | activation = softmax |
| Flatten            |                                           |                    |                      |

(順序為左邊欄→右邊欄)



| Total params    | 2,906,055                      |
|-----------------|--------------------------------|
| Epoch           | 24 (stopped by early stopping) |
| Early stopping: | Yes (Patience = 3)             |
| Training data   | First 23000 data set           |
| Validating data | Remaining 5709 data set        |
| Loss function   | Cross Entropy                  |
| Optimizer       | Adam                           |
| public score    | 0.67679                        |
| private score   | 0.68682                        |

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model,其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

| Dense(512)         | activation = relu | Dense(512)         | activation = relu |
|--------------------|-------------------|--------------------|-------------------|
| BatchNormalization |                   | BatchNormalization |                   |
| Dropout            | 0.5               | Dropout            | 0.5               |
| Dense(512)         | activation = relu | Dense(512)         | activation = relu |
| BatchNormalization |                   | BatchNormalization |                   |
| Dropout            | 0.5               | Dropout            | 0.5               |
| Dense(512)         | activation = relu | Dense(256)         | activation = relu |
| BatchNormalization |                   | BatchNormalization |                   |
| Dropout            |                   | Dropout            |                   |
| Dense(512)         | activation = relu | Dense(128)         | activation = relu |
| BatchNormalization |                   | BatchNormalization |                   |
| Dropout            | 0.5               | Dropout            | 0.5               |
| Dense(512)         | activation = relu | Dense(7)           | activation = relu |
| BatchNormalization |                   |                    |                   |
| Dropout            | 0.5               |                    |                   |

(順序為左邊欄→右邊欄)



| Total params    | 2,845,895               |
|-----------------|-------------------------|
| Epoch           | 200                     |
| Early stopping: | No                      |
| Training data   | First 23000 data set    |
| Validating data | Remaining 5709 data set |
| Loss function   | Cross Entropy           |
| Optimizer       | Adam                    |
| public score    | 0.32432                 |
| private score   | 0.34243                 |

- 1. DNN的 performance 明顯比 CNN 差
- 2. 由於 CNN 較容易收斂,為了避免 overfitting,因此我有設了 early stopping。而 DNN 則是不太會收斂,因此並沒有設 early stopping 而是讓他跑完 200 個 epoch。
- 3. 在 training 時可以發現,DNN 了 training 速度比 CNN 快很多,推測是因為 CNN 在做 convolution 的時候, filter 參數是共用的,所以 gradient 是取其對所有 pixel 做 convolution 後的平均。因此在同樣數量級的參數下,CNN 的運算次數是比 DNN 多很多的。

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混? 並說明你觀察到了什麼? [繪出 confusion matrix 分析]



由 confusion matrix 可以發現,Disgust 比要容易搞混成 Angry,而 Fear 比較容易搞混成 Sad。 於是我們實際拿一些搞混的例子來看(Label / Predict):

## Disgust / Angry:



可以觀察到,導致這兩種狀態判斷困難的相似特稱可能為鼻子皺起來、嘴角向下......

## Fear / Sad:



可以觀察到,導致這兩種狀態判斷困難的相似特稱可能為眼角向下、皺眉......

```
(9) Layer A: (2x215+1) x6=126 #
     Layer B: (2+2+6+1) +4 = 100 #
     A: addition. [(2x2x5)-1]x(3x3)x6 = 1026 #
(b)
         multiplication: [(2x2x5)] x (3x3) x 6 = 1080
     D: addition [(2x2x6)-1]x((x1)x4:92 #
         multiplication [(2x2x6)] x (|x1) x4 = 96 #
(C) Nin = (ni-ki+>Pi) + 1 = output length = # of kernel colculation
                    length, depth of kernel
      for layer is [Kiz. Ci.]. NATI Ci
                    one kernel by # of kernel calculation
      : total = [ (Ki2 Ci-1) nin Ci]
        where Tho = input length
            Co = input depth
      =) time complexity: O(\(\frac{2}{6}\)[(\kappa_i \nathered{n_{i+1}})^2 \(\alpha_i \cappa_{i-1}\)]
```