Data Modeling with Graphs

In previous chapters we've described the substantial benefits of the graph database when compared both with document, column family, and key-value NOSQL stores, and with traditional relational databases. But having chosen to adopt a graph database, the question arises: how do we model the world in graph terms?

This chapter focuses on graph modeling. Starting with a recap of the property graph model—the most widely adopted graph data model—we then provide an overview of the graph query language used for most of the code examples in this book: Cypher. Cypher is one of several languages for describing and querying property graphs. There is, as of today, no agreed-upon standard for graph query languages, as exists in the relational database management systems (RDBMS) world with SQL. Cypher was chosen in part because of the authors' fluency with the language, but also because it is easy to learn and understand, and is widely used. With these fundamentals in place, we dive into a couple of examples of graph modeling. With our first example, that of a systems management domain, we compare relational and graph modeling techniques. With the second example, the production and consumption of Shakespearean literature, we use a graph to connect and query several disparate domains. We end the chapter by looking at some common pitfalls when modeling with graphs, and highlight some good practices.

Models and Goals

Before we dig deeper into modeling with graphs, a word on models in general. Modeling is an abstracting activity motivated by a particular need or goal. We model in order to bring specific facets of an unruly domain into a space where they can be structured and manipulated. There are no natural representations of the world the way it "really is," just many purposeful selections, abstractions, and simplifications, some of which are more useful than others for satisfying a particular goal.

25

Graph representations are no different in this respect. What perhaps differentiates them from many other data modeling techniques, however, is the close affinity between the logical and physical models. Relational data management techniques require us to deviate from our natural language representation of the domain: first by cajoling our representation into a logical model, and then by forcing it into a physical model. These transformations introduce semantic dissonance between our conceptualization of the world and the database's instantiation of that model. With graph databases, this gap shrinks considerably.

We Already Communicate in Graphs

Graph modeling naturally fits with the way we tend to abstract the salient details from a domain using circles and boxes, and then describe the connections between these things by joining them with arrows. Today's graph databases, more than any other database technologies, are "whiteboard friendly." The typical whiteboard view of a problem is a graph. What we sketch in our creative and analytical modes maps closely to the data model we implement inside the database. In terms of expressivity, graph databases reduce the impedance mismatch between analysis and implementation that has plagued relational database implementations for many years. What is particularly interesting about such graph models is the fact that they not only communicate how we think things are related, but they also clearly communicate the kinds of questions we want to ask of our domain. As we'll see throughout this chapter, graph models and graph queries are really just two sides of the same coin.

The Property Graph Model

We introduced the property graph model in Chapter 1. To recap, these are its salient features:

- A property graph is made up of nodes, relationships, and properties.
- Nodes contain properties. Think of nodes as documents that store properties in the form of arbitrary key-value pairs. The keys are strings and the values are arbitrary data types.
- Relationships connect and structure nodes. A relationship always has a direction, a label, and a start node and an end node—there are no dangling relationships. Together, a relationship's direction and label add semantic clarity to the structuring of nodes.
- Like nodes, relationships can also have properties. The ability to add properties to relationships is particularly useful for providing additional metadata for graph

Chapter 3: Data Modeling with Graphs

algorithms, adding additional semantics to relationships (including quality and weight), and for constraining queries at runtime.

These simple primitives are all we need to create sophisticated and semantically rich models. So far, all our models have been in the form of diagrams. Diagrams are great for describing graphs outside of any technology context, but when it comes to using a database, we need some other mechanism for creating, manipulating, and querying data. We need a query language.

Querying Graphs: An Introduction to Cypher

Cypher is an expressive (yet compact) graph database query language. Although specific to Neo4i, its close affinity with our habit of representing graphs using diagrams makes it ideal for programatically describing graphs in a precise fashion. For this reason, we use Cypher throughout the rest of this book to illustrate graph queries and graph constructions. Cypher is arguably the easiest graph query language to learn, and is a great basis for learning about graphs. Once you understand Cypher, it becomes very easy to branch out and learn other graph query languages.1

In the following sections we'll take a brief tour through Cypher. This isn't a reference document for Cypher, however—merely a friendly introduction so that we can explore more interesting graph query scenarios later on.²

Other Query Languages

Other graph databases have other means of querying data. Many, including Neo4j, support the RDF query language SPARQL and the imperative, path-based query language Gremlin. Our interest, however, is in the expressive power of a property graph combined with a declarative query language, and so in this book we focus almost exclusively on Cypher.

Cypher Philosophy

Cypher is designed to be easily read and understood by developers, database professionals, and business stakeholders. Its ease of use derives from the fact it accords with the way we intuitively describe graphs using diagrams.

- 1. The Cypher examples in the book were written using Neo4j 2.0. Most of the examples will work with versions 1.8 and 1.9 of Neo4i. Where a particular language feature requires the latest version, we'll point it out.
- 2. For reference documentation see http://bit.ly/15Fjjo1 and http://bit.ly/17l69Mv.

Querying Graphs: An Introduction to Cypher | 27

Cypher enables a user (or an application acting on behalf of a user) to ask the database to find data that matches a specific pattern. Colloquially, we ask the database to "find things like this." And the way we describe what "things like this" look like is to draw them, using ASCII art. Figure 3-1 shows an example of a simple pattern.

Figure 3-1. A simple graph pattern, expressed using a diagram

This pattern describes three mutual friends. Here's the equivalent ASCII art representation in Cypher:

```
(a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
```

This pattern describes a *path*, which connects a to b, b to c, and a to c. We have to employ a few tricks to get around the fact that a query language has only one dimension (text proceeding from left to right), whereas a graph diagram can be laid out in two dimensions. Here we've had to separate the pattern into two comma-separated subpatterns. But the intent remains clear. On the whole, Cypher patterns follow very naturally from the way we draw graphs on the whiteboard.

Specification By Example

The interesting thing about graph diagrams is that they tend to contain specific instances of nodes and relationships, rather than classes or archetypes. Even very large graphs are typically illustrated using smaller subgraphs made from real nodes and relationships. In other words, we tend to describe graphs using *specification by example*.

ASCII art graph patterns are fundamental to Cypher. A Cypher query anchors one or more parts of a pattern to specific starting locations in a graph, and then flexes the unanchored parts around to find local matches.

The starting locations—the anchor points in the real graph, to which some parts of the pattern are bound—are discovered in one of two ways. The most common method is to use an index. Neo4j uses indexes as naming services; that is, as ways of finding starting locations based on one or more indexed property values.

Like most query languages, Cypher is composed of clauses. The simplest queries consist of a START clause followed by a MATCH and a RETURN clause (we'll describe the other clauses you can use in a Cypher query later in this chapter). Here's an example of a Cypher query that uses these three clauses to find the mutual friends of user named Michael:

```
START a=node:user(name='Michael')
MATCH (a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
RETURN b, c
```

Let's look at each clause in more detail.

START

START specifies one or more starting points—nodes or relationships—in the graph. These starting points are obtained via index lookups or, more rarely, accessed directly based on node or relationship IDs.

In the example query, we're looking up a start node in an index called user. We ask the index to find a node with a name property whose value is Michael. The return value from this lookup is bound to an identifier, which we've here called a. This identifier allows us to refer to this starting node throughout the rest of the query.

MATCH

This is the *specification by example* part. Using ASCII characters to represent nodes and relationships, we *draw* the data we're interested in. We use parentheses to draw nodes, and pairs of dashes and greater-than and less-than signs to draw relationships (--> and <--). The < and > signs indicate relationship direction. Between the dashes, set off by square brackets and prefixed by a colon, we put the relationship name.

At the heart of our example query is the simple pattern (a) - [:KNOWS] - > (b) - [:KNOWS] ->(c), (a)-[:KNOWS]->(c). This pattern describes a path comprising three nodes, one of which we've bound to the identifier a, the others to b and c. These nodes are connected by way of several KNOWS relationships, as per Figure 3-1.

This pattern could, in theory, occur many times throughout our graph data; with a large user set, there may be many mutual relationships corresponding to this pattern. To localize the query, we need to anchor some part of it to one or more places in the graph.

Querying Graphs: An Introduction to Cypher | 29

What we've done with the START clause is look up a real node in the graph—the node representing Michael. We bind this Michael node to the a identifier; a then carries over to the MATCH clause. This has the effect of anchoring our pattern to a specific point in the graph. Cypher then matches the remainder of the pattern to the graph immediately surrounding the anchor point. As it does so, it discovers nodes to bind to the other identifiers. While a will always be anchored to Michael, b and c will be bound to a sequence of nodes as the query executes.

RETURN

This clause specifies which nodes, relationships, and properties in the matched data should be returned to the client. In our example query, we're interested in returning the nodes bound to the b and c identifiers. Each matching node is lazily bound to its identifier as the client iterates the results.

Other Cypher Clauses

The other clauses we can use in a Cypher query include:

WHERE

Provides criteria for filtering pattern matching results.

CREATE and CREATE UNIQUE

Create nodes and relationships.

DELETE

Removes nodes, relationships, and properties.

SET

Sets property values.

FOREACH

Performs an updating action for each element in a list.

UNION

Merges results from two or more queries (introduced in Neo4j 2.0).

WITH

Chains subsequent query parts and forward results from one to the next. Similar to piping commands in Unix.

If these clauses look familiar—especially if you're a SQL developer—that's great! Cypher is intended to be familiar enough to help you move rapidly along the learning curve. At the same time, it's different enough to emphasize that we're dealing with graphs, not relational sets.

Chapter 3: Data Modeling with Graphs

EBSCO Publishing: eBook Collection (EBSCOhost) - printed on 11/10/2013 12:29 AM via CARNEGIE MELLON UNIV AN: 611703; Robinson, Ian, Efrem, Emil, Webber, James.; Graph Databases

Account: s8368349

We'll see some examples of these clauses later in the chapter. Where they occur, we'll describe in more detail how they work.

Now that we've seen how we can describe and query a graph using Cypher, we can look at some examples of graph modeling.

A Comparison of Relational and Graph Modeling

To introduce graph modeling, we're going to look at how we model a domain using both relational- and graph-based techniques. Most developers and data professionals are familiar with RDBMS systems and the associated data modeling techniques; as a result, the comparison will highlight a few similarities, and many differences. In particular, we'll see how easy it is to move from a conceptual graph model to a physical graph model, and how little the graph model distorts what we're trying to represent versus the relational model.

To facilitate this comparison, we'll examine a simple data center management domain. In this domain, several data centers support many applications on behalf of many customers using different pieces of infrastructure, from virtual machines to physical load balancers. An example of this domain is shown in Figure 3-2.

In Figure 3-2 we see a somewhat simplified view of several applications and the data center infrastructure necessary to support them. The applications, represented by nodes App 1, App 2, and App 3, depend on a cluster of databases labeled Database Server 1, 2, 3. While users logically depend on the availability of an application and its data, there is additional physical infrastructure between the users and the application; this infrastructure includes virtual machines (Virtual Machine 10, 11, 20, 30, 31), real servers (Server 1, 2, 3), racks for the servers (Rack 1, 2), and load balancers (Load Balancer 1, 2), which front the apps. In between each of the components there are, of course, many networking elements: cables, switches, patch panels, NICs, power supplies, air conditioning, and so on—all of which can fail at inconvenient times. To complete the picture we have a straw-man single user of application 3, represented by User 3.

A Comparison of Relational and Graph Modeling

Figure 3-2. Simplified snapshot of application deployment within a data center

As the operators of such a system, we have two primary concerns:

- Ongoing provision of functionality to meet (or exceed) a service-level agreement, including the ability to perform forward-looking analyses to determine single points of failure, and retrospective analyses to rapidly determine the cause of any customer complaints regarding the availability of service.
- Billing for resources consumed, including the cost of hardware, virtualization, network provision, and even the costs of software development and operations (since these are a simply logical extension of the system we see here).

If we are building a data center management solution, we'll want to ensure that the underlying data model allows us to store and query data in a way that efficiently addresses these primary concerns. We'll also want to be able to update the underlying model as the application portfolio changes, the physical layout of the data center evolves, and virtual machine instances migrate. Given these needs and constraints, let's see how the relational and graph models compare.

Relational Modeling in a Systems Management Domain

The initial stage of modeling in the relational world is similar to the first stage of many other data modeling techniques: that is, we seek to understand and agree on the entities in the domain, how they interrelate, and the rules that govern their state transitions. Most of this tends to be done informally, often through whiteboard sketches and discussions between subject matter experts and systems and data architects. To express our common understanding and agreement, we typically create a diagram such as the one in Figure 3-2, which is a graph.

The next stage captures this agreement in a more rigorous form such as an entity-relationship (E-R) diagram—another graph. This transformation of the conceptual model into a logical model using a more strict notation provides us with a second chance to refine our domain vocabulary so that it can be shared with relational database specialists. (Such approaches aren't always necessary: adept relational users often move directly to table design and normalization without first describing an intermediate E-R diagram.) In our example, we've captured the domain in the E-R diagram shown in Figure 3-3.

Despite being graphs, E-R diagrams immediately demonstrate the shortcomings of the relational model for capturing a rich domain. Although they allow relationships to be named (something that graph databases fully embrace, but which relational stores do not), E-R diagrams allow only *single*, *undirected*, named relationships between entities. In this respect, the relational model is a poor fit for real-world domains where relationships between entities are both numerous and semantically rich and diverse.

Having arrived at a suitable logical model, we map it into tables and relations, which are normalized to eliminate data redundancy. In many cases this step can be as simple as transcribing the E-R diagram into a tabular form and then loading those tables via SQL commands into the database. But even the simplest case serves to highlight the idiosyncrasies of the relational model. For example, in Figure 3-4 we see that a great deal of accidental complexity has crept into the model in the form of foreign key constraints (everything annotated [FK]), which support one-to-many relationships, and join tables (e.g., AppDatabase), which support many-to-many relationships—and all this before we've added a single row of real user data. These constraints are model-level metadata that exist simply so that we can make concrete the relations between tables at

query time. Yet the presence of this structural data is keenly felt, because it clutters and obscures the domain data with data that serves the database, not the user.

Figure 3-3. An entity-relationship diagram for the data center domain

We now have a normalized model that is relatively faithful to the domain. This model, though imbued with substantial accidental complexity in the form of foreign keys and join tables, contains no duplicate data. But our design work is not yet complete. One of the challenges of the relational paradigm is that normalized models generally aren't fast enough for real-world needs. For many production systems, a normalized schema, which in theory is fit for answering any kind of ad hoc question we may wish to pose to the domain, must in practice be further adapted and specialized for specific access patterns. In other words, to make relational stores perform well enough for regular application needs, we have to abandon any vestiges of true domain affinity and accept that we have to change the user's data model to *suit the database engine, not the user*. This technique is called *denormalization*.

Denormalization involves duplicating data (substantially in some cases) in order to gain query performance. Take as an example users and their contact details. A typical user often has several email addresses, which, in a fully normalized model, we would store in a separate EMAIL table. To reduce joins and the performance penalty imposed by joining between two tables, however, it is quite common to inline this data in the USER table, adding one or more columns to store a user's most important email addresses.

Figure 3-4. Tables and relationships for the data center domain

Although denormalization may be a safe thing to do (assuming developers understand the denormalized model and how it maps to their domain-centric code, *and* have robust transactional support from the database), it is usually not a trivial task. For the best results, we usually turn to a true RDBMS expert to munge our normalized model into a denormalized one aligned with the characteristics of the underlying RDBMS and physical storage tier. In doing this, we accept that there may be substantial data redundancy.

We might be tempted to think that all this design-normalize-denormalize effort is acceptable because it is a one-off task. This school of thought suggests that the cost of the work is amortized across the entire lifetime of the system (which includes both development and production) such that the effort of producing a performant relational model is comparatively small compared to the overall cost of the project. This is an appealing

notion, but in many cases it doesn't match reality, because systems change not only during development, but also during their production lifetimes.

The amortized view of data model change, in which costly changes during development are eclipsed by the long-term benefits of a stable model in production, assumes that systems spend the majority of their time in production environments, and that these production environments are stable. Though it may be the case that most systems spend most of their time in production environments, these environments are rarely stable. As business requirements change or regulatory requirements evolve, so must our systems and the data structures on which they are built.

Data models invariably undergo substantial revision during the design and development phases of a project, and in almost every case, these revisions are intended to accommodate the model to the needs of the applications that will consume it once it is in production. These initial design influences are so powerful that it becomes nearly impossible to modify the application and the model once they're in production to accommodate things they were not originally designed to do.

The technical mechanism by which we introduce structural change into a database is called *migration*, as popularized by application development frameworks such as Rails. Migrations provide a structured, step-wise approach to applying a set of database refactorings to a database so that it can be responsibly evolved to meet the changing needs of the applications that use it. Unlike code refactorings, however, which we typically accomplish in a matter of seconds or minutes, database refactorings can take weeks or months to complete, with downtime for schema changes. Database refactoring is slow, risky, and expensive.

The problem, then, with the denormalized model is its resistance to the kind of rapid evolution the business demands of its systems. As we've seen with the data center example, the changes imposed on the whiteboard model over the course of implementing a relational solution create a gulf between the conceptual world and the way the data is physically laid out; this conceptual-relational dissonance all but prevents business stakeholders from actively collaborating in the further evolution of a system. Stakeholder participation stops at the threshold of the relational edifice. On the development side, the difficulties in translating changed business requirements into the underlying and entrenched relational structure cause the evolution of the system to lag behind the evolution of the business. Without expert assistance and rigorous planning, migrating a denormalized database poses several risks. If the migrations fail to maintain storage-affinity, performance can suffer. Just as serious, if deliberately duplicated data is left orphaned after a migration, we risk compromising the integrity of the data as a whole.

Graph Modeling in a Systems Management Domain

We've seen how relational modeling and its attendant implementation activities take us down a path that divorces an application's underlying storage model from the conceptual

Chapter 3: Data Modeling with Graphs

worldview of its stakeholders. Relational databases—with their rigid schemas and complex modeling characteristics—are not an especially good tool for supporting rapid change. What we need is a model that is closely aligned with the domain, but which doesn't sacrifice performance, and which supports evolution while maintaining the integrity of the data as it undergoes rapid change and growth. That model is the graph model. How, then, does this process differ when realized with a graph data model?

In the early stages of analysis, the work required of us is similar to the relational approach: using lo-fi methods such as whiteboard sketches, we describe and agree upon the domain. After that, however, the methodologies diverge. Instead of transforming a domain model's graph-like representation into tables, we enrich it, with the aim of producing an accurate representation of the salient aspects of the domain relevant to what we are trying to achieve in that domain. That is, for each entity in our domain, we ensure that we've captured both the properties and the connections to neighboring entities necessary to support our application goals.

Remember, the domain model is not a transparent, context-free window onto reality: rather, it is a purposeful abstraction of those aspects of our domain relevant to our application goals. There's always some motivation for creating a model. By enriching our first-cut domain graph with additional properties and relationships, we effectively produce a graph model attuned to our application's data needs; that is, we provide for answering the kinds of questions our application will ask of its data.

Helpfully, domain modeling is completely isomorphic to graph modeling. By ensuring the correctness of the domain model we're implicitly improving the graph model, because in a graph database what you sketch on the whiteboard is typically what you store in the database.

In graph terms what we're doing is ensuring each node has the appropriate properties so that it can fulfil its specific data-centric domain responsibilities. But we're also ensuring that every node is in the correct semantic context; we do this by creating named and directed (and often attributed) relationships between the nodes to capture the structural aspects of the domain. For our data center scenario, the resulting graph model looks like Figure 3-5.

Figure 3-5. Example graph for the data center deployment scenario

And logically, that's *all* we need to do. No tables, no normalization, no denormalization. Once we have an accurate representation of our domain model, moving it into the database is, as we shall see shortly, trivial.

Testing the Model

Once we've refined our domain model, the next step is to test how suitable it is for answering realistic queries. Although graphs are great for supporting a continuously evolving structure (and therefore for correcting any erroneous earlier design decisions), there are a number of design decisions which, once they are baked into our application, can hamper us further down the line. By reviewing the domain model and the resulting graph model at this early stage, we can avoid these pitfalls. Subsequent changes to the graph structure will then be driven solely by changes in the business, rather than by the need to mitigate poor design decisions.

In practice there are two techniques that we can apply here. The first, and simplest, is just to check that the graph reads well. We pick a start node, and then follow relationships to other nodes, reading each node's role and each relationship's name as we go. Doing

so should create sensible sentences. For our data center example, we can read off sentences like "Load balancer 1 fronts the App, which consists of App Instance 1, 2, and 3, and the Database, which resides on Database Machine 1 and Database Machine 2," and "Blade 3 runs VM 3, which hosts App Instance 3." If reading the graph in this way makes sense, we can be reasonably confident it is faithful to the domain.

To further increase our confidence, we also need to consider the queries we'll run on the graph. Here we adopt a *design for queryability* mindset. To validate that the graph supports the kinds of queries we expect to run on it, we must describe those queries. This requires us to understand our end users' goals; that is, the use cases to which the graph is to be applied. In our data center scenario, for example, one of our use cases involves end users reporting that an application or service is unresponsive. To help these users, we must identify the cause of the unresponsiveness and then resolve it. To determine what might have gone wrong we need to identify what's on the path between the user and the application, and also what the application depends on to deliver functionality to the user. Given a particular graph representation of the data center domain, if we can craft a Cypher query that addresses this use case, we can be even more certain that the graph meets the needs of our domain.

Continuing with our example use case, let's assume that we can update the graph from our regular network monitoring tools, thereby providing us with a near real-time view of the state of the network. With a large physical network, we might use Complex Event Processing (CEP) to process streams of low-level network events, updating the graph only when the CEP solution raises a significant domain event. When a user reports a problem, we can limit the physical fault-finding to problematic network elements between the user and the application and the application and its dependencies. In our graph we can find the faulty equipment with the following query:

```
START user=node:users(name = 'User 3')
MATCH (user)-[*1..5]-(asset)
WHERE asset.status! = 'down'
RETURN DISTINCT asset
```

The MATCH clause here describes a *variable length path* between one and five relationships long. The relationships are unnamed and undirected (there's no colon and label between the square brackets, and no greater-than or less-than sign to indicate direction). This allows us to match paths such as:

```
(user)-[:USER_OF]->(app)
(user)-[:USER_OF]->(app)-[:USES]->(database)
(user)-[:USER_OF]->(app)-[:USES]->(database)-[:SLAVE_OF]->(another-database)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)-[:HOSTED_BY]->(server)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)-[:HOSTED_BY]->(server)-[:IN]->(rack)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)-[:HOSTED_BY]->(server)-[:IN]->(rack)
<-[:IN]-(load-balancer)</pre>
```

A Comparison of Relational and Graph Modeling

That is, starting from the user who reported the problem, we MATCH against all assets in the graph along an undirected path of length 1 to 5. We store asset nodes with a status property whose value is 'down' in our results. The exclamation mark in asset.status! ensures that assets that lack a status property are not included in the results. RETURN DISTINCT asset ensures that unique assets are returned in the results, no matter how many times they are matched.

Given that such a query is readily supported by our graph, we gain confidence that the design is fit for purpose.

Cross-Domain Models

Business insight often depends on us understanding the hidden network effects at play in a complex value chain. To generate this understanding, we need to join domains together without distorting or sacrificing the details particular to each domain. Property graphs provide a solution here. Using a property graph, we can model a value chain as a graph of graphs in which specific relationships connect and distinguish constituent subdomains.

In Figure 3-6 we see a graph representation of the value chain surrounding the production and consumption of Shakespearean literature. Here we have high-quality information about Shakespeare and some of his plays, together with details of one of the companies that has recently performed the plays, plus a theatrical venue, and some geospatial data. We've even added a review. In all, the graph describes and connects three different domains. In the diagram we've distinguished these three domains with differently formatted relationships: dotted for the literary domain, solid for the theatrical domain, and dashed for the geospatial domain.

Figure 3-6. Three domains in one graph

Looking first at the literary domain, we have a node that represents Shakespeare himself, with properties firstname: 'William' and lastname: 'Shakespeare'. This node is connected to a pair of nodes representing the plays *Julius Caesar* (title: 'Julius

Caesar') and *The Tempest* (title: 'The Tempest') via relationships labeled WROTE_PLAY.

Reading this subgraph left-to-right, following the direction of the relationship arrows, conveys the fact that *William Shakespeare wrote Julius Caesar and The Tempest*. If we're interested in provenance, each WROTE_PLAY relationship has a date property, which tells us that *Julius Caesar* was written in 1599 and *The Tempest* in 1610. It's a trivial matter to see how we could add the rest of Shakespeare's works—the plays and the poems—into the graph simply by adding more nodes to represent each work, and joining them to the Shakespeare node via WROTE_PLAY and WROTE_POEM relationships.

By tracing the WROTE_PLAY relationship arrows with our finger, we're effectively doing the kind of work that a graph database performs, albeit at human speed rather than computer speed. As we'll see later, this simple *traversal* operation is the building block for arbitrarily sophisticated graph queries.

Turning next to the theatrical domain, you can see that we've added some information about the Royal Shakespeare Company (often known simply as the *RSC*) in the form of a node with the key company and value RSC. The theatrical domain is, unsurprisingly, connected to the literary domain: in our graph, this is reflected by the fact that the RSC has PRODUCED versions of *Julius Caesar* and *The Tempest*; these theatrical productions are in turn connected to their literary source, the plays in the literary domain using PRODUCTION_OF relationships. The graph also captures details of specific performances: the RSC's production of *Julius Caesar*, for example, was performed on 29 July 2012 as part of the RSC's summer touring season. If we're interested in the performance venue, we simply follow the outgoing VENUE relationship from the performance node to find that the play was performed at the Theatre Royal.

The graph also allows us to capture reviews of specific performances. In our sample graph we've included just one review, for the 29 July performance, written by the user Billy. We can see this in the interplay of the performance, rating, and user nodes. In this case we have a node representing Billy (name: 'Billy') whose outgoing WROTE_RE VIEW relationship connects to a node representing his review. The review node contains a numeric rating property and a free-text review property. The review is linked to a specific performance through an outgoing REVIEW_OF relationship. To scale this up to many users, many reviews, and many performances, we simply add more nodes and more identically named relationships to the graph.

The third domain, that of geospatial data, comprises a simple hierarchical tree of places. This geospatial domain is connected to the other two domains at several points in the graph. The town of Stratford upon Avon (with property name: 'Stratford upon

Avon') is connected to the literary domain as a result of its being Shakespeare's birthplace (Shakespeare was BORN_IN Stratford). It is connected to the theatrical domain insofar as it is home to the RSC (the RSC is BASED_IN Stratford). To learn more about Stratford upon Avon's geography, we can follow its outgoing COUNTRY relationship to discover it is in England.

Note how the graph reduces instances of duplicated data across domains. *Stratford upon Avon*, for example, participates in all three domains.

The property graph makes it possible to capture more complex geospatial data. Looking at the Theatre Royal, for example, we see that it is located on Grey Street, which is in the CITY of Newcastle, which is in the COUNTY of Tyne and Wear, which ultimately is in the COUNTRY of England—just like Stratford upon Avon.

Relationships help both partition a graph into separate domains *and* connect those domains. As we can see from this relatively simple example, the property graph model makes it easy to unite different domains—each with its own particular entities, properties, and relationships—in a way that not only makes each domain accessible, but also generates insight from the connections between domains.

Labeling Nodes

We've used relationships here to structure the graph and establish the semantic context for each node. By following an outgoing WROTE_REVIEW relationship, for example, we understand that the node at the end of that relationship represents a review. But this is a rather weak method for indicating what kind of domain abstraction a node represents. How might we improve it?

Today, to satisfy this need, many users of Neo4j add type or label properties to their nodes. This is an ad hoc solution to the problem, with no direct support at the level of the query languages and APIs. Forthcoming releases of Neo4j, however, will present users with an enhanced property graph that incorporates labels as first-class citizens of the data model. Labelling allows us to attach one or more labels to a node; using these labels we can then determine which roles or functions a node fulfills. On top of that, we'll be able to ask the graph to find nodes labeled User, or Customer, or even nodes labeled both User and Customer. Subsequent releases will allow us to associate constraints with labels, further enhancing our ability to represent and reason about our domain. The first release of the enhanced data model is scheduled to occur around the time this book goes to press.

Cross-Domain Models

Creating the Shakespeare Graph

To create the Shakespeare graph shown in Figure 3-6, we use CREATE to build the overall structure. This statement is executed by the Cypher runtime within a single transaction such that once the statement has executed, we can be confident the graph is present in its entirety in the database. If the transaction fails, no part of the graph will be present in the database. As we might expect, Cypher has a humane and visual way of building graphs:

```
CREATE (shakespeare { firstname: 'William', lastname: 'Shakespeare' }),
       (juliusCaesar { title: 'Julius Caesar' }),
       (shakespeare)-[:WROTE_PLAY { year: 1599 }]->(juliusCaesar),
       (theTempest { title: 'The Tempest' }),
       (shakespeare)-[:WROTE_PLAY { year: 1610}]->(theTempest),
       (rsc { name: 'RSC' }),
       (production1 { name: 'Julius Caesar' }),
       (rsc)-[:PRODUCED]->(production1),
       (production1)-[:PRODUCTION_OF]->(juliusCaesar),
       (performance1 { date: 20120729 }),
       (performance1)-[:PERFORMANCE_OF]->(production1),
       (production2 { name: 'The Tempest' }),
       (rsc)-[:PRODUCED]->(production2),
       (production2)-[:PRODUCTION_OF]->(theTempest),
       (performance2 { date: 20061121 }),
       (performance2)-[:PERFORMANCE_OF]->(production2),
       (performance3 { date: 20120730 }),
       (performance3)-[:PERFORMANCE_OF]->(production1),
       (billy { name: 'Billy' }),
       (review { rating: 5, review: 'This was awesome!' }),
       (billy)-[:WROTE_REVIEW]->(review),
       (review)-[:RATED]->(performance1),
       (theatreRoyal { name: 'Theatre Royal' }),
       (performance1)-[:VENUE]->(theatreRoyal),
       (performance2)-[:VENUE]->(theatreRoyal),
       (performance3)-[:VENUE]->(theatreRoyal),
       (greyStreet { name: 'Grey Street' }),
       (theatreRoyal)-[:STREET]->(greyStreet),
       (newcastle { name: 'Newcastle' }),
       (greyStreet)-[:CITY]->(newcastle),
       (tyneAndWear { name: 'Tyne and Wear' }),
       (newcastle)-[:COUNTY]->(tyneAndWear),
       (england { name: 'England' }),
       (tyneAndWear)-[:COUNTRY]->(england),
       (stratford { name: 'Stratford upon Avon' }),
       (stratford)-[:COUNTRY]->(england),
       (rsc)-[:BASED_IN]->(stratford),
       (shakespeare)-[:BORN IN]->stratford
```

The preceding Cypher code does two different things: it creates nodes (and their properties), and relates nodes (with relationship properties where necessary). For example, CREATE (shakespeare { firstname: 'William', lastname: 'Shakespeare', _la

Copyright © 2013. O'Reil applicable copyright law.

bel: 'author' }) creates a node representing William Shakespeare. The newly created node is assigned to the identifier shakespeare. Identifiers remain available for the duration of the current scope, but no longer; should we wish to give long-lived names to nodes (or relationships), we simply add them to an index. This shakespeare identifier is used later in the code to attach relationships to the underlying node. For example, (shakespeare)-[:WROTE_PLAY { year: 1599 }]->(juliusCaesar) creates a WROTE relationship from Shakespeare to the play Julius Caesar. This relationship has a year property with value 1599.

Unlike the relational model, these commands don't introduce any accidental complexity into the graph. The information meta-model—that is, the structuring of nodes through relationships—is kept separate from the business data, which lives exclusively as properties. We no longer have to worry about foreign key and cardinality constraints polluting our real data, because both are explicit in the graph model in the form of nodes and the semantically rich relationships that interconnect them.

We can modify the graph at a later point in time in two different ways. We can, of course, continue using CREATE statements to simply add to the graph. But we can also use CREATE UNIQUE, which has the semantics of *ensuring* that a particular subgraph structure—some of which may already exist, some of which may be missing—is in place once the command has executed. In practice, we tend to use CREATE when we're adding to the graph and don't mind duplication, and CREATE UNIQUE when duplication is not permitted by the domain.

Beginning a Query

Now that we have a graph, we can start to query it. In Cypher we always begin our queries from one or more well-known starting points in the graph—what are called bound nodes. (We can also start a query by binding to one or more relationships, but this happens far less frequently than binding to nodes.) This is the purpose of the START clause: to give us some starting points, usually drawn from underlying indexes, for exploring the rest of the graph.

For instance, if we wanted to discover more about performances at the Theatre Royal, we'd use the Theatre Royal node as our starting point. However, if we were more interested in a person's reviews, we'd use that person's node as a starting point instead.

Let's assume we want to find out about all the Shakespeare events that have taken place in the Theatre Royal in Newcastle. These three things—Shakespeare, Theatre Royal, and Newcastle—provide the starting points for our new query:

Cross-Domain Models

```
START theater=node:venue(name='Theatre Royal'),
    newcastle=node:city(name='Newcastle'),
    bard=node:author(lastname='Shakespeare')
```

This START clause identifies all nodes with a property key name and property value Theatre Royal in a node index called venues. The results of this index lookup are bound to the identifier theater. (What if there are many Theatre Royal nodes in this index? We'll deal with that shortly.) In a second index lookup, we find the node representing the city of Newcastle; we bind this node to the identifier newcastle. Finally, as with our earlier Shakespeare query, to find the Shakespeare node itself, we look in the authors index for a node with a lastname property whose value is Shakespeare. We bind the result of this lookup to bard.

From now on in our query, wherever we use the identifiers theater, newcastle, and bard in a pattern, that pattern will be anchored to the real nodes associated with these identifiers. In effect, the START clause localizes the query, giving us starting points from which to match patterns in the surrounding nodes and relationships.

Declaring Information Patterns to Find

The MATCH clause in Cypher is where the magic happens. Much as the CREATE clause tries to convey intent using ASCII art to describe the desired state of the graph, so the MATCH clause uses the same syntax to describe patterns to discover in the database. We've already looked at a very simple MATCH clause; now we'll look at a more complex pattern that finds all the Shakespeare performances at Newcastle's Theatre Royal:

This MATCH pattern uses several syntactic elements we've not yet come across. As well as including bound nodes based on index lookups (discussed earlier), it uses pattern nodes, arbitrary depth paths, and anonymous nodes. Let's take a look at these in turn:

- The identifiers newcastle, theater, and bard carry over from the START clause, where they were bound to nodes in the graph using index lookups, as described previously.
- If there are several Theatre Royals in our database (the cities of Plymouth, Bath, Winchester, and Norwich all have a Theatre Royal, for example), then theater will be bound to all these nodes. To restrict our pattern to the Theatre Royal in Newcastle, we use the syntax <-[:STREET|CITY*1..2]-, which means the theater node can be no more than two outgoing STREET and/or CITY relationships away from the node representing the city of Newcastle. By providing a variable depth path, we allow for relatively fine-grained address hierarchies (comprising, for example, street, district or borough, and city).

- The syntax (theater)<-[:VENUE]-() uses the anonymous node, hence the empty parentheses. Knowing the data as we do, we expect the anonymous node to match performances, but because we're not interested in using the details of individual performances elsewhere in the query or in the results, we don't name the node or bind it to an identifier.
- We use the anonymous node again to link the performance to the production (()-[:PERFORMANCE_OF]->()). If we were interested in returning details of performances and productions, we would replace these occurrences of the anonymous node with identifiers: (performance)-[:PERFORMANCE_OF]->(production).
- The remainder of the MATCH is a straightforward (play)<-[:WROTE_PLAY]- (bard) node-to-relationship-to-node pattern match. This pattern ensures we only return plays written by Shakespeare. Because (play) is joined to the anonymous production node, and by way of that to the performance node, we can safely infer that it has been performed in Newcastle's Theatre Royal. In naming the play node we bring it into scope so that we can use it later in the query.

At this point our query looks like this:

```
START theater=node:venue(name='Theatre Royal'),
      newcastle=node:city(name='Newcastle'),
      bard=node:author(lastname='Shakespeare')
MATCH (newcastle)<-[:STREET|CITY*1..2]-(theater)
      <-[:VENUE]-()-[:PERFORMANCE OF]->()-[:PRODUCTION OF]->
      (play)<-[:WROTE_PLAY]-(bard)
RETURN DISTINCT play.title AS play
```

Running this query yields all the Shakespeare plays that have been performed at the Theatre Royal in Newcastle:

```
+----+
| play
| "Julius Caesar" |
| "The Tempest" |
2 rows
```

That's great if we're interested in the entire history of Shakespeare at the Theatre Royal, but if we're interested only in specific plays, productions, or performances, we need somehow to constrain the set of results.

Constraining Matches

We constrain graph matches using the WHERE clause. WHERE allows us to eliminate matched subgraphs from the results, by stipulating one or more of the following:

• That certain paths must be present (or absent) in the matched subgraphs.

Cross-Domain Models | 47

- That specific properties on matched nodes and relationships must be present (or absent), irrespective of their values.
- That certain properties on matched nodes and relationships must have specific values.
- That other arbitrarily complex expression predicates must be met.

Compared to the MATCH clause, which describes structural relationships and assigns identifiers to parts of the pattern, WHERE is more of a tuning exercise to filter down the current pattern match. Let's imagine, for example, that we want to restrict the range of plays in our results to those from Shakespeare's *final period*, which is generally accepted to have begun around 1608. We do this by filtering on the year property of matched WROTE_PLAY relationships. To enable this filtering, we adjust the MATCH clause, binding the WROTE_PLAY relationship to an identifier, which we'll call w. Relationship identifiers come before the colon that prefixes a relationship's name. We then add a WHERE clause that filters on this relationship's year property:

```
START theater=node:venue(name='Theatre Royal'),
    newcastle=node:city(name='Newcastle'),
    bard=node:author(lastname='Shakespeare')

MATCH (newcastle)<-[:STREET|CITY*1..2]-(theater)
    <-[:VENUE]-()-[:PERFORMANCE_OF]->()-[:PRODUCTION_OF]->
        (play)<-[w:WROTE_PLAY]-(bard)

WHERE w.year > 1608
RETURN DISTINCT play.title AS play
```

Adding this WHERE clause means that for each successful match, the Cypher execution engine checks that the WROTE_PLAY relationship between the Shakespeare node and the matched play has a year property with a value greater than 1608. Matches with a WROTE_PLAY relationship whose year value is greater than 1608 will pass the test; these plays will then be included in the results. Matches that fail the test will not be included in the results. By adding this clause, we ensure that only plays from Shakespeare's late period are returned:

Processing Results

Cypher's RETURN clause allows us to perform some processing on the matched graph data before returning it to the user (or the application) that executed the query.

As we've seen in the previous queries, the simplest thing we can do is return the plays we've found:

```
RETURN DISTINCT play.title AS play
```

DISTINCT ensures we return unique results. Because each play can be performed multiple times in the same theater, sometimes in different productions, we can end up with duplicate play titles. DISTINCT filters these out.

We can enrich this result in several ways, including aggregating, ordering, filtering, and limiting the returned data. For example, if we're only interested in the *number* of plays that match our criteria, we apply the count function:

```
RETURN count(play)
```

If we want to rank the plays by the number of performances, we'll need first to bind the PERFORMANCE_OF relationship in the MATCH clause to an identifier, called p, which we can then count and order:

```
START theater=node:venue(name='Theatre Royal'),
      newcastle=node:city(name='Newcastle'),
      bard=node:author(lastname='Shakespeare')
MATCH (newcastle)<-[:STREET|CITY*1..2]-(theater)</pre>
      <-[:VENUE]-()-[p:PERFORMANCE_OF]->()-[:PRODUCTION_OF]->
      (play)<-[:WROTE PLAY]-(bard)</pre>
         play.title AS play, count(p) AS performance_count
ORDER BY performance count DESC
```

The RETURN clause here counts the number of PERFORMANCE_OF relationships using the identifier p (which is bound to the PERFORMANCE_OF relationships in the MATCH clause) and aliases the result as performance count. It then orders the results based on per formance_count, with the most frequently performed play listed first:

```
+-----
| play | performance_count |
+----+
2 rows
```

Query Chaining

Before we leave our brief tour of Cypher, there is one more feature that it is useful to know about—the WITH clause. Sometimes it's just not practical (or possible) to do everything you want in a single MATCH. The WITH clause allows us to chain together several matches, with the results of the previous query part being piped into the next. In the following example we find the plays written by Shakespeare, and order them based on

Cross-Domain Models | 49

the year in which they were written, latest first. Using WITH, we then pipe the results to the collect function, which produces a comma-delimited list of play titles:

```
START bard=node:author(lastname='Shakespeare')
MATCH (bard)-[w:WROTE_PLAY]->(play)
WITH play
ORDER BY w.year DESC
RETURN collect(play.title) AS plays
```

Executing this query against our sample graph produces the following result:

As queries become more complex, WITH instills a sense of discipline, in large part because it insists on separating read-only clauses from write-centric SET operations.

Common Modeling Pitfalls

Although graph modeling is a very expressive way of mastering the complexity in a problem domain, expressivity in and of itself is no guarantee that a particular graph is fit for purpose. In fact, there have been occasions where even those of us who work with graphs all the time make mistakes. In this section we'll take a look at a model that went wrong. In so doing, we'll learn how to identify problems early in the modeling effort, and how to fix them.

Email Provenance Problem Domain

This example involves the analysis of email communications. Communication pattern analysis is a classic graph problem. Normally, we'd interrogate the graph to discover subject matter experts, key influencers, and the communication chains through which information is propagated. On this occasion, however, instead of looking for positive role models (in the form of experts), we were searching for rogues: that is, suspicious patterns of email communication that fall foul of corporate governance—or even break the law.

A Sensible First Iteration?

In analyzing the domain we learned about all the clever patterns that potential wrong-doers adopt to cover their tracks: using blind-copying (BCC), using aliases—even conducting conversations with those aliases to mimic legitimate interactions between real business stakeholders. Based on this analysis we produced a representative graph model that seemed to capture all the relevant entities and their activities.

Chapter 3: Data Modeling with Graphs

To illustrate this early model, we'll use Cypher's CREATE clause to generate some nodes representing users and aliases. We'll also generate a relationship that shows that Alice is one of Bob's known aliases. (We'll assume that the underlying graph database is indexing these nodes so that we can later look them up and use them as starting points in our queries.) Here's the Cypher query to create our first graph:

```
CREATE (alice {username: 'Alice'}),
       (bob {username: 'Bob'}),
       (charlie {username: 'Charlie'}),
       (davina {username: 'Davina'}),
       (edward {username: 'Edward'}),
       (alice)-[:ALIAS_OF]->(bob)
```

The resulting graph model makes it easy to observe that *Alice is an alias of Bob*, as we see in Figure 3-7.

Figure 3-7. Users and aliases

Now we join the users together through the emails they've exchanged:

```
bob=node:user(username='Bob'),
       charlie=node:user(username='Charlie'),
       davina=node:user(username='Davina'),
       edward=node:user(username='Edward')
CREATE (bob)-[:EMAILED]->(charlie),
       (bob)-[:CC]->(davina),
       (bob)-[:BCC]->(edward)
```

At first sight this looks like a reasonably faithful representation of the domain. Each clause lends itself to being read comfortably left to right, thereby passing one of our informal tests for correctness. For example, it's deceptively easy to read the sentence "Bob emailed Charlie." The limitations of this model only emerge when it becomes necessary to determine exactly what was exchanged by the potential miscreant Bob (and his alter-ego Alice). We can see that Bob CC'd or BCC'd some people, but we can't see the most important thing of all: the email itself.

This first modeling attempt results in a star-shaped graph. Bob is represented by a central node; his actions of emailing, copying, and blind-copying are represented by relationships that extend from Bob to the nodes representing the recipients of his mail. As we see in Figure 3-8, however, the most critical element of the data, the actual *email*, is missing.

Figure 3-8. Missing email node leads to lost information

That such a structure is lossy becomes evident when we pose the following query:

This query returns the EMAILED relationships between Bob and Charlie (there will be one for each email that Bob has sent to Charlie). This tells us that emails have been exchanged, but it tells us nothing about the emails themselves:

52 | Chapter 3: Data Modeling with Graphs

We might think we can remedy the situation by adding properties to the EMAILED relationship to represent an email's attributes, but that's just playing for time. Even with properties attached to each EMAILED relationship, we would still be unable to correlate between the EMAILED, CC, and BCC relationships; that is, we would be unable to say which emails were copied versus which were blind-copied, and to whom.

The fact is we've unwittingly made a simple modeling mistake, caused mostly by a lax use of English rather than any shortcomings of graph theory. Our everyday use of language has lead us to focus on the verb "emailed" rather than the email itself, and as a result we've produced a model lacking domain insight.

In English, it's easy and convenient to shorten the phrase "Bob sent an email to Charlie" to "Bob emailed Charlie". In most cases that loss of a noun (the actual email) doesn't matter because the intent is still clear. But when it comes to our forensics scenario, these elided statements are problematic. The intent remains the same, but the details of the number, contents, and recipients of the emails that Bob sent have been lost through having been folded into a relationship EMAILED, rather than being modeled explicitly as nodes in their own right.

Second Time's the Charm

To fix our lossy model, we need to insert email nodes to represent the real emails exchanged within the business, and expand our set of relationship names to encompass the full set of addressing fields that email supports. Now instead of creating lossy structures like this:

```
CREATE (bob)-[:EMAILED]->(charlie)
```

we'll instead create more detailed structures, like this:

```
CREATE (email_1 {id: '1', content: 'Hi Charlie, ... Kind regards, Bob'}),
       (bob)-[:SENT]->(email_1),
       (email_1)-[:T0]->(charlie),
       (email 1)-[:CC]->(davina),
       (email_1)-[:CC]->(alice),
       (email_1)-[:BCC]->(edward)
```

This results in the kind of graph structure we see in Figure 3-9.

Figure 3-9. Introducing an email node produces a star graph

Of course, in a real system there will be many more of these emails, each with its intricate web of interactions for us to explore. It's quite easy to imagine that over time many more CREATE statements are executed as the email server logs the interactions, like so (we've omitted the START clauses for brevity):

```
CREATE (email_1 {id: '1', content: 'email contents'}),
       (bob)-[:SENT]->(email_1),
       (email_1)-[:T0]->(charlie),
       (email_1)-[:CC]->(davina),
       (email_1)-[:CC]->(alice),
       (email_1)-[:BCC]->(edward);
CREATE (email_2 {id: '2', content: 'email contents'}),
       (bob)-[:SENT]->(email_2),
       (email_2)-[:T0]->(davina),
       (email_2)-[:BCC]->(edward);
CREATE (email_3 {id: '3', content: 'email contents'}),
       (davina)-[:SENT]->(email_3),
       (email_3)-[:T0]->(bob),
       (email_3)-[:CC]->(edward);
CREATE (email_4 {id: '4', content: 'email contents'}),
       (charlie)-[:SENT]->(email_4),
       (email_4)-[:T0]->(bob),
```

```
(email_4)-[:T0]->(davina),
       (email_4)-[:T0]->(edward);
CREATE (email_5 {id: '5', content: 'email contents'}),
       (davina)-[:SENT]->(email_5),
       (email_5)-[:T0]->(alice),
       (email_5)-[:BCC]->(bob),
       (email_5)-[:BCC]->(edward);
```

This leads to the more complex, and interesting, graph we see in Figure 3-10.

Figure 3-10. A graph of email interactions

We can now query this graph to identify potentially suspect behavior:

```
START bob=node:user(username='Bob')
MATCH (bob)-[:SENT]->(email)-[:CC]->(alias),
      (alias)-[:ALIAS_OF]->(bob)
RETURN email
```

Here we retrieve all the emails that Bob has sent where he's CC'd one of his own aliases. Any emails that match this pattern are indicative of rogue behavior. And because both Cypher and the underlying graph database have graph affinity, these queries—even over large datasets—run very quickly. This query returns the following results:

Evolving the Domain

As with any database, our graph serves a system that is likely to evolve over time. So what should we do when the graph evolves? How do we know what breaks, or indeed, how do we even tell that something has broken? The fact is, we can't avoid *migrations* in a graph database: they're a fact of life, just as with any data store. But in a graph database they're often simpler.

In a graph, to add new facts or compositions, we tend to add new nodes and relationships rather than changing the model in place. Adding to the graph using *new* kinds of relationships will not affect any existing queries, and is completely safe. Changing the graph using *existing* relationship types, and changing the properties (not just the property values) of existing nodes *might* be safe, but we need to run a representative set of queries to maintain confidence that the graph is still fit for purpose after the the structural changes. However, these activities are precisely the same kinds of actions we perform during normal database operation, so in a graph world a migration really is just business as normal.

At this point we have a graph that describes who sent and received emails, as well as the content of the emails themselves. But of course, one of the joys of email is that recipients can forward or reply to an email they've received. This increases interaction and knowledge sharing, but in some cases leaks critical business information. Given we're looking for suspicious communication patterns, it makes sense for us to also take into account forwarding and replies.

At first glance, there would appear to be no need to use database migrations to update our graph to support our new use case. The simplest additions we can make involve adding FORWARDED and REPLIED_TO relationships to the graph, as shown in Figure 3-11. Doing so won't affect any preexisting queries because they aren't coded to recognize the new relationships.

Figure 3-11. A naive, lossy approach fails to appreciate that forwarded and replied-to emails are first-class entities

However, this approach quickly proves inadequate. Adding FORWARDED or REPLIED relationships is naive and lossy in much the same way as our original use of an EMAILED relationship. To illustrate this, consider the following CREATE statements:

```
START email = node:emails(id='1234');
CREATE (alice)-[:REPLIED_TO]->(email);
CREATE (davina)-[:FORWARDED]->(email)-[:TO]->(charlie);
```

In the first CREATE statement we're trying to record the fact that Alice replied to a particular email. The statement makes logical sense when read from left to right, but the sentiment is lossy—we can't tell whether Alice replied to all the recipients of email or directly to the author. All we know is that some reply was sent. The second statement also reads well from left to right: Davina forwarded email to Charlie. But we already use the TO relationship to indicate that a given email has a TO header identifying the primary recipients. Reusing TO here makes it impossible to tell who was a recipient and who received a forwarded version of an email.

To resolve this problem, we have to consider the fundamentals of the domain. A reply to an email is itself a new email, albeit with some relationship to a previous message. Whether the reply is to the original sender, all recipients, or a subset can be easily modeled using the same familiar TO, CC, and BCC relationships, while the original email itself can be referenced via a REPLY_TO relationship. Here's a revised series of writes resulting from several email actions (again, we've omitted the necessary START clauses):

```
CREATE (reply_1 {id: '7', content: 'response'}),
       (reply_1)-[:REPLY_T0]->(email_6),
       (davina)-[:SENT]->(reply_1),
       (reply_1)-[:T0]->(bob),
       (reply_1)-[:T0]->(charlie);
CREATE (reply_2 {id: '8', content: 'response'}),
       (reply_2)-[:REPLY_T0]->(email_6),
       (bob)-[:SENT]->(reply_2),
       (reply_2)-[:T0]->(davina),
       (reply_2)-[:T0]->(charlie),
       (reply_2)-[:CC]->(alice);
CREATE (reply_3 {id: '9', content: 'response'}),
       (reply 3)-[:REPLY TO]->(reply 1),
       (charlie)-[:SENT]->(reply_3),
       (reply_3)-[:T0]->(bob),
       (reply_3)-[:T0]->(davina);
CREATE (reply_4 {id: '10', content: 'response'}),
       (reply_4)-[:REPLY_TO]->(reply_3),
       (bob)-[:SENT]->(reply_4),
       (reply 4)-[:T0]->(charlie),
       (reply_4)-[:T0]->(davina);
```

This creates the graph in Figure 3-12, which shows numerous replies and replies-to-replies.

Now it is easy to see who replied to Bob's original email. First locate the email of interest, then match against all incoming REPLY_TO relationships (there may be multiple replies), and from there match against incoming SENT relationships: this reveals the sender(s). In Cypher this is simple to express. In fact, Cypher makes it easy to look for replies-to-replies-to-replies, and so on to an arbitrary depth (though we limit it to depth four here):

```
START email = node:email(id = '6')
MATCH p=(email)<-[:REPLY_TO*1..4]-()<-[:SENT]-(replier)
RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth</pre>
```


Figure 3-12. Explicitly modeling replies in high-fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT relationship), and return the replier's name and the depth at which he or she replied. This query returns the following results:

+ -				+
I	replier		depth	
+-				+
	"Davina"		1	
	"Bob"		1	1
Ι	"Charlie"	1	2	I
ĺ	"Bob"	ĺ	3	ĺ
+-				+
4	rows			

We see that both Davina and Bob replied directly to Bob's original email; that Charlie replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It's a similar pattern for a forwarded email: a forwarded email is simply a new email that happens to contain some of the text of the original email. In that case we should model the new email explicitly, just as in the reply case. But from an application point of view

we should also be able to reference the original email from the forwarded mail so that we always have detailed and accurate provenance data. And the same applies if the forwarded mail is itself forwarded, and so on. For example, if Alice (Bob's alter-ego) emails Bob to try to establish separate concrete identities, and then Bob (wishing to perform some subterfuge) forwards that email onto Charlie, who then forwards it onto Davina, we actually have three emails to consider. Assuming the users (and their aliases) are already in the database, in Cypher we'd write that audit information into the database as follows:

On completion of these writes, our database will contain the subgraph shown in Figure 3-13.

Figure 3-13. Explicitly modeling email forwarding

Using this graph, we can determine the length of an email chain.

```
START email = node:email(id = '11')
MATCH (email)<-[f:FORWARD OF*]-()
RETURN count(f)
```

This query starts at the given email and then matches against all incoming FOR WARD_OF relationships to any depth. These relationships are bound to an identifier f. To calculate the length of the email chain, we count the number of FORWARD_OF relationships bound to f using Cypher's count function. In this example, we see the original email has been forwarded twice:

```
+----+
| count(f) |
+-----
1 row
```

Avoiding Anti-Patterns

It's also important to realize that graphs are a naturally additive structure. It's quite natural to add facts in terms of domain entities and how they interrelate using new nodes and new relationships, even if it feels like we're flooding the database with a great deal of painstaking data. In general, it's bad practice to try to conflate data elements at write time to preserve query-time efficiency. If we model in accordance with the questions we want to ask of our data, an accurate representation of the domain will emerge. With this data model in place, we can trust the graph database to do the right thing.

Graph databases maintain fast query times even when storing vast amounts of data. Learning to trust our graph database is important when learning to structure our graphs without denormalizing them.

Summary

Graph databases give software professionals the power to represent a problem domain using a graph, and then persist and query that graph at runtime. We can use graphs to clearly describe a problem domain; graph databases then allow us to store this representation in a way that maintains high affinity between the domain and the data. Further, graph modeling removes the need to normalize and denormalize data using complex data management code.

Avoiding Anti-Patterns | 61

Many of us, however, will be new to modeling with graphs. The graphs we create should read well for queries, while avoiding conflating entities and actions—bad practices that can lose useful domain knowledge. Although there are no absolute rights or wrongs to graph modeling, the guidance in this chapter will help you create graph data that can serve your systems' needs over many iterations, all the while keeping pace with code evolution.

Armed with an understanding of graph data modeling, you may now be considering undertaking a graph database project. In the next chapter we'll look at what's involved in planning and delivering a graph database solution.

Account: s8368349

Building a Graph Database Application

In this chapter we discuss some of the practical issues of working with a graph database. In previous chapters we've looked at graph data; in this chapter, we'll apply that knowledge in the context of developing a graph database application. We'll look at some of the data modeling questions that may arise, and at some of the application architecture choices available to us.

In our experience, graph database applications are highly amenable to being developed using the evolutionary, incremental, and iterative software development practices in widespread use today. A key feature of these practices is the prevalence of testing throughout the software development life cycle. Here we'll show how we develop our data model and our application in a test-driven fashion.

At the end of the chapter, we'll look at some of the issues we'll need to consider when planning for production.

Data Modeling

We covered modeling and working with graph data in detail in Chapter 3. Here we summarize some of the more important modeling guidelines, and discuss how implementing a graph data model fits with iterative and incremental software development techniques.

Describe the Model in Terms of the Application's Needs

The *questions* we need to ask of the data help identify entities and relationships. Agile user stories provide a concise means for expressing an outside-in, user-centered view

63

of an application's needs, and the questions that arise in the course of satisfying this need. Here's an example of a user story for a book review web application:

AS A reader who likes a book, **I WANT** to know which books other readers who like the same book have liked, **SO THAT** I can find other books to read.

This story expresses a user need, which motivates the shape and content of our data model. From a data modeling point of view, the AS A clause establishes a context comprising two entities—a reader and a book—plus the LIKES relationship that connects them. The I WANT clause then poses a question: which books have the readers who like the book I'm currently reading also liked? This question exposes more LIKES relationships, and more entities: other readers and other books.

The entities and relationships that we've surfaced in analyzing the user story quickly translate into a simple data model, as shown in Figure 4-1.

Figure 4-1. Data model for the book reviews user story

Because this data model directly encodes the question presented by the user story, it lends itself to being queried in a way that similarly reflects the structure of the question we want to ask of the data:

Nodes for Things, Relationships for Structure

Though not applicable in every situation, these general guidelines will help us choose when to use nodes, and when to use relationships:

1. For agile user stories, see Mike Cohn, User Stories Applied (Addison-Wesley, 2004).

- Use nodes to represent entities—that is, the things that are of interest to us in our domain.
- Use relationships both to express the *connections* between entities and to establish semantic context for each entity, thereby structuring the domain.
- Use relationship direction to further clarify relationship semantics. Many relationships are asymmetrical, which is why relationships in a property graph are always directed. For bidirectional relationships, we should make our queries ignore direction.
- Use node properties to represent entity attributes, plus any necessary entity metadata, such as timestamps, version numbers, etc.
- Use relationship properties to express the strength, weight, or quality of a relationship, plus any necessary relationship metadata, such as timestamps, version numbers, etc.

It pays to be diligent about discovering and capturing domain entities. As we saw in Chapter 3, it's relatively easy to model things that really ought to be represented as nodes using sloppily named relationships instead. If we're tempted to use a relationship to model an entity—an email, or a review, for example—we must make certain that this entity cannot be related to more than two other entities. Remember, a relationship must have a start node and an end node—nothing more, nothing less. If we find later that we need to connect something we've modeled as a relationship to more than two other entities, we'll have to refactor the entity inside the relationship out into a separate node. This is a breaking change to the data model, and will likely require us to make changes to any queries and application code that produce or consume the data.

Fine-Grained versus Generic Relationships

When designing relationship types we should be mindful of the trade-offs between using fine-grained relationship labels versus generic relationships qualified with properties. It's the difference between using DELIVERY_ADDRESS and HOME_ADDRESS versus ADDRESS {type: 'delivery'} and ADDRESS {type: 'home'}.

Relationships are the royal road into the graph. Differentiating by relationship type is the best way of eliminating large swathes of the graph from a traversal. Using one or more property values to decide whether or not to follow a relationship incurs extra IO the first time those properties are accessed because the properties reside in a separate store file from the relationships (after that, however, they're cached).

We use fine-grained relationships whenever we have a closed set of relationship types. In contrast, weightings—as required by a shortest-weighted-path algorithm—rarely comprise a closed set, and these are usually best represented as properties on relationships.

Data Modeling | 65