Number Theory 1

November 10, 2019

1 Congruency

Let $n \in \mathbb{N} \setminus \{0\}$. For all $a, b \in \mathbb{Z}$, define

$$a \equiv b \pmod{n}$$
 if and only if $n|a-b|$

The relation $\cdots \equiv \cdots \pmod{n}$ is an equivalence relation on \mathbb{Z} , and so, for all $a \in \mathbb{Z}$, we use $[a]_n$ to denote the equivalence class of a. Define

$$\mathbb{Z}/n\mathbb{Z} = \{ [a]_n | a \in \mathbb{Z} \}$$

and define $\bigoplus_n : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ by: for all $a, b \in \mathbb{Z}$,

$$[a]_n \oplus_n [b]_n = [a+b]_n$$

Define $\otimes_n : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$ by: for all $a, b \in \mathbb{Z}$,

$$[a]_n \otimes_n [b]_n = [ab]_n$$

If $n \in \mathbb{N} \setminus \{0\}$, then $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ is group.

Cayley Table.

1.1 Congruency and Group

If $n \in \mathbb{N} \setminus \{0\}$, then $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ is abelian with order n. Moreover, $(\mathbb{Z}/n\mathbb{Z}, \oplus_n) = C_n$. $((\mathbb{Z}/n\mathbb{Z}, \oplus_n) = \langle [1]_n \rangle)$

Is $(\mathbb{Z}/n\mathbb{Z}, \otimes_n)$ a group? No.

Let $G_n = \mathbb{Z}/n\mathbb{Z}\setminus\{[0]_n\}$. Is (G_n, \otimes_n) a group? No.

For all $n \in \mathbb{N}$ with $n \geqslant 2$, define

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ [k]_n \in \mathbb{Z}/n\mathbb{Z} | (\exists x \in \mathbb{Z}) (kx \equiv 1 \pmod{n}) \}$$

Let $n \in \mathbb{N}$ with $n \ge 2$. Then $((\mathbb{Z}/n\mathbb{Z})^*, \otimes_n)$ is a group. Proof.

- 1. \otimes_n is a function from $(\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$ to $(\mathbb{Z}/n\mathbb{Z})^*$
- 2. $[1]_n$ is the identity element.

3. Since $kx \equiv 1 \pmod{n}$, then the inverse of $[x]_n$ is $[k]_n$.

List the Cayley Table of $((\mathbb{Z}/6\mathbb{Z})^*, \otimes_6)$.

Let $n \in \mathbb{N}$ with $n \ge 2$. If $1 < m \le n$ is such that there exists $1 < d \le m$ with d|m and d|n, then $[m]_n \notin (\mathbb{Z}/n\mathbb{Z})^*$.

2 Greatest Common Divisor

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. We say that $d \in \mathbb{N}$ is the greatest common divisor of a and b, and write this element gcd(a, b), if

- (i) d|a and d|b,
- (ii) and for all $c \in \mathbb{Z}$, if c|a and c|b, then c|d.

2.1 Linear Diophantine Equations

A linear Diophantine equation in two variables is an equation in the form

$$ax + by = c$$
 where $a, b, c \in \mathbb{Z}$ are constants with $|a| + |b| \neq 0$

A solution is a pair $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ with $ax_0 + by_0 = c$.

2.2 Bezout's Lemma

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. Then there exists $x, y \in Z$ such that gcd(a, b) = ax + by. Proof. Consider

$$S = \{ n \in \mathbb{N} \setminus \{0\} | (\exists x, y \in \mathbb{Z}) (n = ax + by) \}$$

Let $d \in S$ be the \leq -least element of S. gcd(a, b) = d.

Let $n \in \mathbb{N}$ with $n \geq 2$. For all $m \in \mathbb{Z}$,

$$[m]_n \in (\mathbb{Z}/n\mathbb{Z})^*$$
 if and only if $gcd(m,n) = 1$

2.3 A More General Form of Bezout's Lemma

Let $a_1, a_2, \dots a_n \in \mathbb{Z}$. Let $d = \gcd(a_1, a_2, \dots a_n)$. Then there exists x_1, x_2, \dots, x_n with $|x_1| + |x_2| + \dots + |x_n| \neq 0$ such that

$$x_1a_1 + x_2a_2 + \dots + x_na_n = d$$

2.4 Multiplicative Inverses

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$. If $q, r \in \mathbb{Z}$ with a = qb + r, then gcd(a, b) = gcd(b, r).

Let
$$n \in \mathbb{N}$$
 with $n \ge 2$. $(\mathbb{Z}/n\mathbb{Z})^* = \{ [m]_n | (m < n) \land (\gcd(m, n) = 1) \}$

2.5 Relatively Prime

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. We say that a and b are relatively prime if gcd(a, b) = 1.

3 Eulers Totient Function

Eulers Totient Function, denoted φ , is the function defined on all $n \in \mathbb{N}$ with $n \ge 2$ by

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$$

In other words, $\varphi(n)$ is the number of 0 < m < n such that m and n are relatively prime.

If $p \in \mathbb{N}$ is prime, then $\varphi(p) = p - 1$.

3.1 Eulers Theorem

Let $a, n \in \mathbb{N}$ with $n \ge 2$ and gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

3.2 Fermats Little Theorem

If $a, p \in \mathbb{N}$, p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$

3.3 Eulers Product Formula

$$\varphi(n) = n \cdot \prod_{p \in A} (1 - \frac{1}{p})$$

where A is the set of distinct primes that divide n.

4 Corollary of Bezout's Lemma

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. Then gcd(a, b) = 1 if and only if there exists a solution to the Diophantine equation ax + by = 1.

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. If gcd(a, b) = d, then

$$\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$$

 $\sqrt{2}$ is irrational.

Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. If a|c and b|c, then ab|c.

(Euclids Lemma)Let $a, b, c\mathbb{Z}$ with gcd(a, b) = 1. If a|bc, then a|c.

Let $p \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If p is prime and p|ab, then p|a or p|b.

5 Fundamental Theorem of Arithmetic

Let $p \in \mathbb{N}$ be prime. If a_1, \dots, a_n Z and $p|a_1 \dots a_n$, then there exists 1 k n such that $p|a_k$.

Let $p, q_1, ..., q_n \in \mathbb{N}$ be primes. If $p|q_1 \cdots q_n$, then there exists $1 \leqslant k \leqslant n$ such that $p = q_k$.

(Fundamental Theorem of Arithmetic) If $n \in \mathbb{N}$ with $n \geq 2$, then n can be uniquely factored into a product of primes.

6 Exercise

- 1. Let $a,b,p,m\in\mathbb{Z}^+$. If $p^a\equiv 1(\mod m),\ p^b\equiv 1(\mod m),\ d=\gcd(a,b),$ show that $p^d\equiv 1(\mod m).$ (Hint. Bezouts Lemma.)
- 2. Let $p, m \in \mathbb{Z}^+$. If a is the least positive integer such that $p^a \equiv 1 \pmod{m}$, then for any $b \in \mathbb{Z}^+$, if $p^b \equiv 1 \pmod{m}$, then a|b. (Hint. Use the conclusion of problem 1.)
- 3. Here is a proof of Fermats Little Theorem. Consider the set $S = \{a, 2a, \dots, (p-1)a\}$. For any ma, na in S, there doesn't exist $ma \equiv na$. (Why?) Therefore

$$S \mod p = \{0 \le k \le p - 1 | ma \equiv k \pmod p, ma \in S\} = \{1, 2, \dots, p - 1\}$$

Then,

$$a \cdot 2a \cdots (p-1)a \equiv (p-1)! \pmod{p}$$

which implies $a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$. Since $\gcd((p-1)!,p)=1$, then $a^{p-1} \equiv 1 \pmod{p}$.

Use the same method to prove Eulers Theorem. (Consider $S = \{ka | \gcd(k, n) = 1, 1 \le k \le n\}$).

4. Let $S_n = 1^n + 2^n + \cdots + (n-1)^n$. Find all $n \ge 2$, such that $n|S_n$. (Answer. n is odd.)

5. Show that there exists infinite pairs of positive integers (a, b, c) (a, b, c > 2019) such that

$$a|bc-1, b|ac+1, c|ab+1.$$

(Hint. Let
$$c = ab + 1$$
. $(a, b, c) = (k, k + 1, k^2 + k + 1)$)

- 6. Let $k \in \mathbb{Z}^+$ and $k \geqslant 2$. Let $a, b \in \mathbb{Z}$ and $ab \neq 0$, a+b is odd. If there exists $x, y \in \mathbb{Z}$, $0 < |x-y| \leqslant 2$ such that $a^k x b^k y = a b$. Show that $|a-b| = d^k$, where $d = \gcd(a, b)$.
- 7. We define a sequence $\{a_n\}$:
 - 1. $a_i \in \mathbb{Z}^+$
 - 2. a_{n+1} is the least number such that a_{n+1} and $\sum_{i=1}^{n} a_i$ are relatively prime, and $a_{n+1} \notin \{a_1, a_2, \dots, a_n\}$

Show that every $a \in \mathbb{Z}^+$ can be found in this sequence $\{a_n\}$.