

- ❖ 图:基本概念和性质,基本操作
- ❖ 图的遍历: 宽度优先,深度优先
- ❖ 图的表示
- ❖ 生成树问题, DFS 生成树, BFS 生成树
- ❖ 最小生成树问题, Prim 算法, Kruskal 算法
- ❖ 最短路径问题,单源点最短路径和 Dijkstra 算法,所有 顶点之间的最短路径和 Floyd 算法
- ❖ AOV 网,拓扑排序
- ❖ AOE 网,关键路径

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/1/

## 求各对顶点之间的最短路径: Floyd 算法

- 前面说过,可以用Dijkstra算法解决这个问题:
  - □ 依次把图中每个顶点作为起始点
  - □ 用 Dijkstra 方法求出从该顶点到其它顶点的最短路径
- Floyd(Floyd-Warshall)算法采用了完全不同的想法,可以一次直接 计算出各对顶点间的所有最短路径及其长度

Floyd 算法的基本想法来自 Warshall 的强连通子图算法(基于邻接矩阵),实际上是求可达性(有边相邻)的传递闭包

- Floyd 算法的基本思想:
  - □ 设图 G = (V, E) 有 n 个顶点,用邻接矩阵作为存储结构
  - □ 如果有边 (v, v') ∈ E, 那么它就是从顶点 v 到 v' 的路径, 其长度可以直接得到, 即是 A[v][v']。但这一路径未必是从 v 到 v' 的最短路径, 有可能存在从 v 到 v' 途中经过其它顶点的更短路径

问题就是要在 v 到 v' 的可能经过任何顶点的路径中找出最短路径

## Floyd 算法

- 开始:每对 v 到 v' 的途中不经任何结点的路径长度为已知 有 v 到 v' 的边时就是边的权,无边时认为存在长度为 ∞ 的路径
- k = 0: 对每对 v 和 v' ,除已知直接路径外,从v 到 v' 途经顶点的下标不大于 k (此时是不大于 v0)的路径可分为两段:
  - □  $\langle v, v_0 \rangle$ ,  $\langle v_0, v' \rangle$  (如果没有,就认为有长度为  $\infty$  的路径)
  - □ 其长度是两段路径的长度和。比较这一路径和直接路径(是已知最短的),可确定 v 到 v' 的途径顶点下标不大于 0 的最短路径
- k = 1: 对每对 v 和 v',除至此已知路径外(途径顶点下标  $\leq 0$ ),从 v 到 v' 途经顶点下标不大于 k(不大于 1)的新路径可分为两段:
  - □ <V, ..., V<sub>1</sub>>, <V<sub>1</sub>, ..., V'>
  - □ 这两段内部所经过的顶点下标都不大于 **0**,路径及其长度都已在前一步确定。这种新路径的长度是两段路径的长度之和
  - □ 用这样的新路径与从 v 到 v' 的已知最短路径(途径顶点下标 ≤0) 比较,就可确定v 到 v' 的途经顶点下标 ≤1 的最短路径

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/3/

## Floyd 算法

- 一般而言,如果已经考察过从 v 到 v' 的途经顶点的下标 ≤ k-1 的所有路径,而且已经获知了这样的路径中的最短路径及其长度
- 考虑 k: 对每对 v 和 v',除至此已知的路径(途经顶点的下标  $\leq k-1$ )外,途经顶点的下标  $\leq k$  的其他路径必定可分为两段:
  - □ <**v**, ..., **v**<sub>k</sub>>, <**v**<sub>k</sub>, ..., **v**'>
  - □ 这两段路径中途径顶点的下标都 ≤**k-1**,两段的长度也在前一步已 知,这种新路径的长度是两段路径的长度之和
  - □ 用该路径与已知的从 v 到 v' 的最短路径比较,就可确定从v 到 v' 的途经顶点的下标 ≤k 的最短路径
- .....
- 如此继续,直到做完 k = n-1 (途径结点的下标不大于 n-1), 也就对于每对 v 和 v', 确定了从v 到 v' 的所有路径中的最短路径
- 这里假定结点的下标为 0 到 n-1 (对下标为 1 到 n 可类似定义)

## Floyd 算法的实现

- 实现 Floyd 算法,需要迭代式地算出一系列方阵
- 为此要生成一系列  $n \times n$  方阵  $A_k$  ( $0 \le k \le n$ ) ,其中  $A_k$ [i][j] 表示从  $v_i$  到  $v_i$  的途径顶点可为  $v_0$ ,  $v_1$ ,..., $v_{k-1}$  的最短路径的长度:
  - $\Box$   $A_0$  就是图的邻接矩阵 A(由于是计算路径,对角线元素取 D 值),  $A_0[i][j]$  表示从  $V_i$  到  $V_i$  不经过任何顶点的最短路径长度
  - □ A<sub>n</sub>[i][j] 是从 v<sub>i</sub> 到 v<sub>i</sub> 的最短路径长度
- 矩阵序列 A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> 可递推计算(0≤i≤n-1, 0≤j≤n-1):
  - □ A<sub>0</sub>[i][j] = A[i][j] 直接由邻接矩阵得到
  - □  $A_{k+1}[i][j] = min\{A_k[i][j], A_k[i][k] + A_k[k][j]\}$  , $0 \le k \le n-1$  ,这时新考 虑了途径顶点  $v_k$  的路径,因此, $A_{k+1}[i][j]$  为  $v_i$  到  $v_j$  的途经顶点的下标不大于 k 的最短路径的长度
  - □ **A**<sub>n</sub>[i][j] 为 **v**<sub>i</sub> 到 **v**<sub>j</sub> 的最短路径的长度 (注意,这里采用的顶点编号为 **0**, ..., **n-1**)

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/5/

## Floyd 算法

- 实现算法时还需要设法做出所有路径的记录
  - □ 下面考虑另外安排一系列 n 阶方阵 nvertex<sub>k</sub>,其中 nvertex<sub>k</sub>[v][v'] 的值为在从 v 到 v' 的中间允许有顶点  $v_0$ ,  $v_1$ ,..., $v_{k-1}$  的最短路径上,顶点 v 的后继顶点 v" 的下标(与前面  $A_k$  对应)
  - □ 到最后 v" 到 v' 的最短路径也应已知,可以根据后继顶点追溯
- 初始时,如果 A₀[i][j] = ∞ (没有边),则令 nvertex₀ [i][j] =-1,否则 就令 nvertex₀[i][j] = j,表示 vᵢ 是 vᵢ 的后继顶点。
- 在由 A<sub>k</sub> 计算 A<sub>k+1</sub> 时,若 A<sub>k+1</sub>[i][j] 被设置为 A<sub>k</sub>[i][k] + A<sub>k</sub>[k][j],那么就设 nvextex<sub>k+1</sub>[i][j] = nvertex<sub>k</sub>[i][k](在从 v<sub>i</sub> 到 v<sub>j</sub> 的路径上 v<sub>i</sub> 的后继顶点就是原来 v<sub>i</sub> 到 v<sub>k</sub> 的路径上 v<sub>i</sub> 的后继顶点)

这轮计算完成时, $\mathbf{n}\mathbf{v}$   $\mathbf{v}_{i}$   $\mathbf{v}_{i}$   $\mathbf{v}_{i}$  的可以途径顶点  $\mathbf{v}_{0}$ ,  $\mathbf{v}_{1}$ , ...,  $\mathbf{v}_{k}$  的最短路径上,顶点  $\mathbf{v}_{i}$  的后继顶点。

■ 计算完成最后,nvertex<sub>n</sub>[i][j] 就是从v<sub>i</sub> 到 v<sub>j</sub> 的最短路径上 v<sub>i</sub> 的后继结点。追溯这个矩阵,可得到任何一对结点之间的最短路径

## Floyd 算法

■ Floyd 算法从  $A_0$  = A(图的邻接矩阵)开始。递推生成一系列的矩阵  $A_1$ ,  $A_2$ , ...,  $A_n$ 。后一矩阵可能与前一矩阵不同

问题: 是否真需要用一个新的两维表存放下一个矩阵?

■ 假设已经算出了 A<sub>k</sub> 保存在矩阵 A 里, 现考虑 A<sub>k+1</sub> 的计算。公式是:

 $A_{k+1}[i][j] = min\{A_k[i][j], A_k[i][k] + A_k[k][j]\}$ 

■ 注意: 所有新的  $A_{k+1}[i][j]$  或者就是  $A_{k}[i][j]$  (如果它比较小),或者是由下面的一列和一行中的元素求和计算出来的:

 $A_k[0][k], A_k[1][k], ..., A_k[n-1][k]$  $A_k[k][0], A_k[k][1], ..., A_k[k][n-1]$ 

■ 注意: 如果在计算  $A_{k+1}$  过程中可能修改矩阵第 k 行或第 k 列元素,在后面取元素 [i][k] 或 [k][j] 得到的将不是  $A_k$  的元素,就必须保留  $A_k$ 

即,如果计算中修改了后面要用的元素,那就需要另外用一个新矩阵, 否则就不需要另外用一个新矩阵,可以直接在矩阵里修改

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/7/

## Floyd 算法

■ 实际上 A<sub>k+1</sub> 计算中不会修改矩阵第 k 行或者第 k 列的元素,因为:

 $A_{k+1}[i][k] = min\{A_k[i][k], A_k[i][k] + A_k[k][k]\}$ 

 $A_{k+1}[k][j] = min\{A_k[k][j], A_k[k][k] + A_k[k][j]\}$ 

而  $A_{k-1}$  的对角线元素  $A_{k-1}[m, m]$  总是 0 (对所有m),所以

 $A_{k+1}[i][k] = A_k[i][k]$  第 k 行不变

 $A_{k+1}[k][j] = A_{k}[k][j]$  第 k 列不变

- 因此,计算中可以用同一个 A 实现所有的 A<sub>k</sub> ,矩阵的递推计算过程可以通过直接更新 A 里元素的方式实现
  - □ 计算 A<sub>k+1</sub>[i][j] = min{A<sub>k</sub>[i][j], A<sub>k</sub>[i][k]+Ak[k][j]}, 其中新矩阵元素 的生成用赋值 A[i][j] := A[i][k] + A[k][j] 实现
  - □ 计算所有顶点对之间最短路径的长度,只需要一个矩阵
- 算法 all\_shortest\_paths 用了两个 n×n 矩阵成员: a 记录已知最短路 径长度, nvextex 记录已知最短路径上的下一顶点

## Floyd 算法

```
实现 Floyd 算法的 Python 函数:

def all_shortest_paths(graph):
    vnum = graph.vertex_num()
    a = [[graph.get_edge(i, j) for j in range(vnum)]
        for i in range(vnum)] # create a copy the adjacent matrix
    nvertex = [[-1 if a[i][j] == infinity else j for j in range(vnum)]
        for i in range(vnum)]

for k in range(vnum):
    for j in range(vnum):
        if a[i][j] > a[i][k] + a[k][j]:
            a[i][j] = a[i][k] + a[k][j]
            nvertex[i][j] = nvertex[i][k]

return (a, nvertex)
```

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/9/

# Floyd 算法的复杂度

- Floyd 算法的复杂度分析非常简单
- 时间复杂度:
  - □ 算法的初始化部分是一个循环,其外层循环共执行 |V| 次,内层循环也执行 |V| 次,初始化部分的时间复杂度为 O(|V|²)
  - □ 迭代生成矩阵 a 和路径 nvextex 的部分是一个三重循环,时间复杂度为 O(|V|³),这也是 Floyd 算法的时间复杂度
- 空间复杂度:
  - □ 两个结果矩阵,另外用了几个辅助变量
  - □ 存放计算结果需要 O(|V|²) 的空间

### 最短路径

- 两个最短路径算法,其中都蕴涵着有趣的想法
- Dijkstra 算法基于类似于最小生成树的想法,或者说是一种"宽度优先搜索"。其中用到了类似 MST 的性质
  - □ 它逐个找出可以确定最短路径的顶点,同时也找到了到新确定最短路径的顶点的路径
  - □ 做完前一步后更新信息,保证记录的都是至今已知的最短路径
  - □ 这是典型的动态规划方法(在计算中保留一些信息支持动态决策)
- Floyd 算法基于完全不同的考虑,求解所有顶点间的最短路径
  - □ 其基本方法是为最终问题的解决逐步积累信息,根据已有的信息更新包含部分信息的解的雏形,最终得到问题的解
  - □ 这一算法也是一个典型的动态规划方法
  - □ 过程中求子结构(子问题)的最优解,最后得到原问题的最优解
- 两个算法都值得认真学习理解。当然,其中 Floyd 算法不适合人做, 因为其中的操作更缺乏直观

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/11/

### AOV 网

- 考虑有向图的一类应用"方式",用图中的顶点表示某种"工程"里的活动,图中的边表示活动之间的先后顺序关系。这样的有向图称为顶点活动网(Activity On Vertex network),或称 AOV 网
- AOV网中的边常用于表示活动之间的制约关系
  - □ 要解决的一个问题就是根据图中制约关系做出有关活动的安排
  - □ 这样考虑,可以把 AOV 网络用于各种工程计划
- 在一些问题里,AOV 网的顶点或边还可能带有权值。可以考虑例如
  - □ "最优"安排问题
  - □ 最大或最小流问题
- 简单 AOV 网的一个典型实例是大学课程的先修关系
  - □ 课程知识有前后联系,一门课可能以其他课程的知识为基础
  - □ 当学生想选某门课程时,要看看是否已修过所有先修课程

## 拓扑排序

■ 例: 计算机专业学生必须完成规定的基础课和专业课才能毕业,这时的 "工程"就是完成给定课程的学习计划,而活动就是学习课程。假设课程 的名称与代号如表所示

课程之间有先修关系,学习一门课之前必须完成其所有先修课程

| 课程编号 | 课程名    | 先修课程       |
|------|--------|------------|
| C0   | 高等数学   |            |
| C1   | 程序设计   |            |
| C2   | 离散数学   | C0, C1     |
| C3   | 数据结构   | C1, C2     |
| C4   | 程序设计语言 | C1         |
| C5   | 编译技术   | C3, C4     |
| C6   | 操作系统   | C3, C8     |
| C7   | 物理学    | C0         |
| C8   | 计算机原理  | <b>C</b> 7 |

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/13/

## 拓扑排序

- 可以用 AOV 网表示课程之间的关系
  - □ 图中顶点表示课程,有向边表示课程之间的先修关系
  - □ 如果课程  $C_i$  是课程  $C_j$  的先修课,在表示课程关系的 AOV 网中就加入一条有向边  $< C_i$ ,  $C_i >$ 。
- 前面表中各课程的AOV网如下图所示



## 拓扑排序

- 拓扑排序是 AOV 网上的一种操作
- 定义:对给定的 **AOV** 网 **N**,如果 **N** 中的所有顶点能排成一个线性序列 **S** = **v**<sub>i1</sub>, **v**<sub>i2</sub>, ..., **v**<sub>in</sub>, 满足:

如果 N 中存在从顶点  $v_i$  到  $v_j$  的路径,那么 S 里  $v_i$  排在  $v_j$  之前则 S 称为 N 的一个拓扑序列,构造拓扑序列的操作称为拓扑排序

- AOV 网未必有拓扑序列。不难证明,一个 AOV 网存在拓扑序列,当 且仅当它不包含回路(存在回路,意味着某些活动的开始要以其自己的 完成作为先决条件,这种现象称为活动之间的死锁)
- 例如,下图的 AOV 网没有拓扑序列:



数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/15/

## 拓扑排序

- 性质:如果一个 AOV 网有拓扑序列,其拓扑序列未必唯一
- 性质:将 AOV 网 N 的拓扑序列反向得到的序列,都是 N 的逆网(即是把原网的所有边反转得到的 AOV 网)的拓扑序列
- 假设用 AOV 网表示一个工程的安排
  - □ 网中顶点代表工程中的活动(工序),顶点之间的有向边代表活动 之间的制约关系(前一活动完成后,后一活动才能进行)
  - □ 如果在实际条件下各种动作只能串行进行,则那么该 **AOV** 网 的一个拓扑序列就是整个工程得以顺利完成的一种可行方案
- 任何无回路 AOV 网都可以做出拓扑序列,方法很简单:
  - □ 从 AOV 网中选出一个入度为 0 的顶点作为序列的下一顶点
  - □ 从 AOV 网中删除此顶点及其所有的出边

反复执行上面两步操作,直到输出了所有可输出顶点时拓扑排序结束如果剩下入度非 0 顶点就说明该 AOV 网里存在回路,无拓扑序列

# 拓扑排序:示例



# 拓扑排序:示例



### 拓扑排序: 算法

- 现在考虑实现拓扑排序的程序
- 算法中用一个连续表 indegree 记录顶点的入度。由于工作中需要反复 查找入度 0 的顶点,每次扫描数组影响效率,这里用了一种技巧:
  - □ 在 indegree 里维持一个"0 度表"记录入度为 0 的顶点
  - □ 用变量 zerov 记录"第一个"入度 0 的顶点下标,indegree[zerov] 里记录下一入度为 0 的顶点下标,依此类推;如最后的入度为 0 的顶点是 zv,在 ingegree[zv] 存特殊值 –1
  - □ 这个 0 度表就像是在 indegree 里保存了一个栈,zerov 记录栈中第一个顶点的下标,–1 表示栈结束
- topological\_sort 的基本工作过程是:
  - □ 找出所有顶点的入度存入 indegree, 确定其中入度为 0 的顶点
  - □ 反复选择入度为 0 的顶点并维护 0 度表
  - □ 最后返回拓扑序列,失败(无拓扑序列)时返回 False

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/19/

## 拓扑排序: 算法

```
def toposort(graph):
  vnum = graph.vertex num()
  indegree, toposeg, zerov = [0]*vnum, [], -1
  for vi in range(vnum):
    for v, w in graph.out_edges(vi): indegree[v] += 1
  for vi in range(vnum):
    if indegree[vi] == 0:
       indegree[vi] = zerov; zerov = vi
  for n in range(vnum):
    if zerov == -1: return False # Thereis no topo-seq
    toposeq.append(zerov)
    vi = zerov; zerov = indegree[zerov]
    for v, w in graph.out_edges(vi):
       indegree[v] -= 1
       if indegree[v] == 0:
         indegree[v] = zerov; zerov = v
  return toposeq
```

### 拓扑排序: 算法分析

- 时间复杂性:
  - □ 设置 indegree 初值用的两重循环时间复杂度为 O(max(|E|, |V|)), 检查入度为零的顶点需要 O(|V|) 时间
  - □ 工作的主要部分是一个两重循环时间复杂度也是 O(max(|E|, |V|))
  - □ 所以整个算法的时间复杂度为 O(|E| + |V|), 对于连通图就是 O(|E|)
- 空间复杂性:
  - □ indegree 和 toposeq 都是 |V| 大小的数组,O(|V|)
- 如果图用邻接矩阵表示,矩阵里可能有许多非边元素,矩阵很稀疏时会 浪费很多空间,处理它也花费很多时间:
  - □ 在设置顶点入度中检查每条边一次,时间 O(|V|²)
  - □ 主循环的时间复杂度也为 O(|V|²)
  - □ 因此,采用这种表示的算法时间复杂度为 O(|V|²)

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/21/

### AOE 网

- AOE网(Activity On Edge network)是另一类常用带权有向图,这是一种重要 PERT(Program Evaluation and Review Technique)模型
  - □ 最早在美国军方支持下开发出来,用于大型工程的计划和管理
  - □ 其雏形在 1940 年代用于美国原子弹开发的曼哈顿计划
  - □ 有许多实际的工程应用
- 抽象地看,AOE网是一种无环的带权有向图,其中
  - □ 顶点表示事件,有向边表示活动
  - □ 边上的权值通常表示活动的持续时间
  - □ 一个顶点表示的事件,也就是它的入边所表示的活动都已完成,它 的出边所表示的活动可以开始的状态(事件)
- 实际工程或事务里的一批相关活动,可以用一个 **AOE** 网描述(抽象), 然后基于这种网考虑活动的安排问题

### AOE 🕅

- 例:下面 AOE 网包括11项活动,9个事件,事件  $v_0$  表示整个工程可以 开始的状态;事件  $v_4$  表示活动  $a_3$ 、 $a_4$  已经完成,活动  $a_6$ 、 $a_7$  可以开始 的状态,事件  $v_8$  表示整个工程结束
- 图中显示,活动  $a_0$  需要 6 个单位时间完成,活动  $a_1$  需要 4 个单位时间完成,等等。整个工程开始,活动  $a_0$ 、 $a_1$ 、 $a_2$  就可以并行进行,而活动  $a_3$ 、 $a_4$ 、 $a_5$  分别在事件  $v_1$ 、 $v_2$ 、 $v_3$  发生之后才能进行,当活动  $a_9$ 、 $a_{10}$  完成时,整个工程完成



数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/23/

## 关键路径

- AOE 网中的活动可以并行进行
  - □ 只要一项活动(边)的前提事件均已发生(以该边的始点为终点的 所有活动都完成),这项活动就可以开始
  - □ 所以,完成整个工程的最短时间就是从开始顶点到完成顶点的最长 路径长度(路径上各边的权值之和)
- 从开始顶点到完成顶点的最长路径称为关键路径
  - □ 在 AOE 网上最重要的一项计算是找出其中的关键路径



**v**<sub>0</sub>, **v**<sub>1</sub>, **v**<sub>4</sub>, **v**<sub>7</sub>, **v**<sub>8</sub> 是一条 关键路径,长度为**18**, 所以,完成整个工程至 少需要 **18** 个单位时间

## 关键路径

- 现在需要开发一个算法,确定AOE网的关键路径
- 下面总假定 **v**<sub>0</sub> 是开始事件,**v**<sub>n-1</sub> 是结束事件,**w**(<**v**<sub>i</sub>,**v**<sub>i</sub>>)为 <**v**<sub>i</sub>,**v**<sub>i</sub>> 的权
- 首先定义几组变量,用它们记录关键路径计算中确定的信息
- 1、事件  $v_j$ 的<u>最早可能发生时间</u> ee[j],根据它之前的事件和活动确定,不可能更早发生。 ee[j] 可以递推计算:

ee[0] = 0

ee[j] = max{ ee[i] + w(<v<sub>i</sub> ,v<sub>j</sub>>) | <v<sub>i</sub> ,v<sub>j</sub>>∈T } , 1≤j≤n-1 T 是所有以  $v_i$  为终点的入边集

2、事件  $v_i$  的<u>最迟允许发生时间</u> le[i],更晚发生将延误整个工程的进度。可以根据已知的 ee 值反向地递推计算:

le[n-1] = ee[n-1]

 $le[i] = min\{ le[j] - w(<v_i, v_i>) | <v_i, v_i> \in S\}, 0 \le i \le n-2$ 

S 是所有以 v<sub>i</sub> 为开始顶点的出边集

数据结构和算法(Python语言版):图(3)

裘宗燕, 2014-12-4-/25/

## 关键路径

- 3、活动  $a_k$ =<  $v_i$  , $v_j$ > 的<u>最早可能开始时间</u> e[k] = ee[i],<u>最迟允许开始时间</u> l[k] = le[j]  $w(<v_i,v_i>)$  (在保证整个工程不拖延工期的情况下)
- □ 所有 e[k] = l[k] 的活动 a<sub>k</sub> 称为该 AOE 网里的<u>关键活动</u>,因为它们中的任何一个推迟开始,都会延误整个工程的工期
- □ 差 I[k] e[k] 表示完成活动  $a_k$  的<u>时间余量</u>,这是在不延误整体工期的前提下,活动  $a_k$  可以推迟的时间量
- □ 由关键活动构成的从初始点到终点的路径就是关键路径(可能不止一条,可以同时得到)

### 关键路径:示例

### 例:求图中的AOE网的关键路径



工作过程:按前面公式分别求出事件的最早可能发生时间和最迟允许发生时间,活动的最早可能开始时间和最晚允许开始时间

为求事件的最早发生时间,必须知道其所有前驱事件的最早发生时间;求最迟发生时间,必须知道所有后继事件的最迟发生时间。因此需要图结点的一个拓扑排序,按拓扑序列里的事件顺序计算。下面工作中取拓扑序列  $\mathbf{v_0}, \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}, \mathbf{v_5}, \mathbf{v_6}, \mathbf{v_7}, \mathbf{v_8}$ 

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/27/

### 关键路径:示例

#### 向前,计算事件的最早可能发生时间



拓扑序列:  $V_0$ ,  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$ ,  $V_7$ ,  $V_8$ 

## 关键路径:示例

### 向后,计算事件的最迟允许发生时间



拓扑序列:  $V_0$ ,  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$ ,  $V_7$ ,  $V_8$ 

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/29/

## 关键路径:示例

### 计算活动的最早和最迟开始时间



拓扑序列:  $V_0, V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8$ 

### 关键路径:示例

### 关键活动和关键路径



数据结构和算法(Python语言版):图(3)

裘宗燕, 2014-12-4-/31/

## 关键路径: 算法

- 算法的实现直截了当,需要一步步计算出有关的信息
- 算法过程分几步
  - 1. 是生成 AOE 网的一个拓扑序列
  - 2. 生成 ee 数组的值,应该按拓扑序列的顺序计算
  - 3. 生成 le 数组的值,应该按拓扑序列的逆序计算
  - 4. 最后的 e 和 l 数据组可以一起计算(太简单)。如果只需要得到关键路径,也可以不显式表示,而是直接用它们相等求得结果
- 在下面算法里
  - □ 步骤 1 直接调用前面定义的拓扑排序过程
  - □ 步骤 2 和 3 定义为独立的过程
  - □ 最后一步直接计算,收集起确定的关键活动,就能得到 **AOE** 网的 所有关键路径。如前所述,得到的关键路径可能不止一条

### 关键路径: 算法

主函数返回找到的关键活动,可能表示多条关键路径:

```
def critical_path(graph):
   toposeq = toposort(graph)
   if toposeq == False: return False
   vnum = graph.vertex_num()
   ee, le = [0]*vnum, [infinity]*vnum
   crtPath = []
   setEventE(vnum, graph, toposeq, ee)
   setEventL(vnum, graph, toposeq, ee[vnum-1], le)
   for i in range(vnum):
      for j, w in graph.out_edges(i):
        if ee[i] == le[j] - w: # a critical action
            crtPath.append([i, j, ee[i]])
   return crtPath
```

数据结构和算法(Python 语言版):图(3)

裘宗燕, 2014-12-4-/33/

## 关键路径: 算法

建立 ee 数组时其元素都初始化为 0。算法中按照拓扑顺序逐个更新,有路径结束更晚时更新相应的 ee 值(最早可能时间)

```
def setEventE(vnum, graph, toposeq, ee):
    for k in range(vnum-1): # 最后一个顶点不必做
    i = toposeq[k]
    for j, w in graph.out_edges(i):
        if ee[i] + w > ee[j]: ee[j] = ee[i] + w # 事件 j 需更晚结束
```

先把 le 元素都赋为最后顶点的最迟时间,然后按拓扑排序的逆序向前逐个更新最迟允许时间(le 的值)

```
def setEventL(vnum, graph, toposeq, eelast, le):
    for i in range(vnum): le[i] = eelast
    for k in range(vnum-2, -1, -1):# 逆拓扑顺序, 最后顶点不必做
    i = toposeq[k]
    for j, w in graph.out_edges(i):
        if le[i] - w < le[i]: le[i] = le[i] - w # 事件 i 需更早开始
```

## 关键路径: 算法分析

- 算法复杂度: 采用图的邻接表表示
  - □ 拓扑排序时间复杂度为 O(|V|+|E|)
  - □ 求事件的最早可能时间和允许最迟时间,活动的最早开始时间和最晚开始时间,都要对图中所有顶点及每个顶点边表中所有的边结点各检查一次,时间复杂度为 O(|V|+|E|)
  - □ 因此,求关键路径算法的时间复杂度为 O(|V|+|E|) 如果图用邻接矩阵表示,算法至少需要 O(|V|²) 时间
- 空间复杂度:保存拓扑序列和 2 个保存事件时间的数组,O(|V|)
- 总结一下这两个算法:
  - □ 拓扑序列是有向无环图的一个重要概念,拓扑排序算法的思想简单。 但求拓扑序列是许多有向图算法的基础,这个概念很重要
  - □ 关键路径是带权有向无环图的一种重要概念,广泛用于工程规划领域。算法需要按拓扑顺序遍历结点,计算顶点和边的最早最迟时间

数据结构和算法(Python语言版):图(3)

裘宗燕, 2014-12-4-/35/

## 图和图算法: 总结

- 图是一种复杂的非线性结构。本章开始介绍了
  - □ 图的基本概念
  - □ 两种常用的表示方法(相邻矩阵和邻接表)及其 Python 实现
- 图的计算问题和算法
  - □ 宽度优先和深度优先周游
  - □ 最小生成树
  - □ 最短路径(单源点的和任意顶点之间的)
  - □ 拓扑排序及关键路径
- 本章重点是:
  - □ 掌握图的概念,性质和存储表示
  - □ 掌握(除 Floyd 算法之外)各种算法的工作过程