第四章 第一次作业

- 4.1
- 4.3
- 4.5

参考答案:

4.1 为文法构造递归调用分析程序,要求文法满足预测分析方法的要求,即: (1) 文法中不能含有左递归; (2) 针对有 2 个以上候选式的产生式,要求任何两个候选式的 First 集合 互不相交。

首先,bexpr 和 bterm 的产生式表明该文法中含有直接左递归,首先要消除左递归。消除左递归之后,得到如下文法 G':

bexpr \rightarrow bterm E' E' \rightarrow or bterm E' | ϵ bterm \rightarrow bfactor T T' \rightarrow and bfactor T' | ϵ bfactor \rightarrow not bfactor | (bexpr) | true | false

可以确认, 文法 G'满足预测分析的要求。

为构造递归调用预测分析程序,需要为每一个非终结符号构造一张对应的状态转换图,针对文法 G',构造的一组状态转换图如图 1 所示,用代入法进行化简,得到如图 2 所示的一组状态还换图。

图 1 文法 G'的预测分析程序状态转换图

图 2 化简后的预测分析程序状态转换图

然后,根据图 2 所示的状态转换图可以构造出递归调用预测分析程序,每个非终结符号 对应一个递归函数,代码主体结构描述如下,其中变量 *char* 中保存的是下一个输入符号。

```
bfactor 的过程:
bexpr 的函数:
void proc_expr(void) {
                                                           void proc_factor(void) {
                                                                   if (char=='not'){
        proc_term();
        if (char=='or') {
                                                                       forward pointer;
           forward pointer;
                                                                       proc_factor();
           proc_expr();
                                                                      }
                                                                    else if (char=='(') {
     }
                                                                        forward pointer;
                                                                        proc_expr();
bterm 的过程:
                                                                        if (char==')')
                                                                            forward pointer;
void proc_term(void) {
                                                                         else error();
        proc_factor();
                                                                      };
        if (char=='and') {
                                                                      else if (char=='true')||(char=='false')
           forward pointer;
                                                                               forward pointer;
           proc_term();
                                                                            else error();
        }
                                                                 }
     }
```

4.3

(1) 根据产生式 $A \rightarrow (A)A$ 可知,'(' \in First(A),根据 $A \rightarrow \varepsilon$ 可知, $\varepsilon \in$ First(A),因此有: FIRST(A)={(, ε }。 对于文法开始符号 A,\$ \in Follow(A),根据产生式 $A \rightarrow (A)A$,有')' \in Follow(A),因此有: FOLLOW(A)={\$,}}

(2) 该文法的产生式只有 $A \rightarrow (A)A \mid \varepsilon$, 显然满足 LL(1)文法的要求, 即:

FIRST((A)A) \cap FIRST(ϵ)= ϕ 并且 FIRST((A)A) \cap FOLLOW(A)= ϕ 所以,文法 G 是 LL(1)文法。

4.5

(1) 该文法中仅产生式 $L \rightarrow LE \mid E$ 含有直接左递归,消除左递归后得到文法 G':

 $E \rightarrow A \mid B$

 $A \rightarrow \text{num} \mid \text{id}$

 $B \rightarrow (L)$

 $L\rightarrow EL'$

 $L' \rightarrow EL' \mid \varepsilon$

(2) 为文法 G'中的非终结符号构造 FIRST 和 FOLLOW 集合,如表 1 所示。

表 1 文法 G'各非终结符号的 FIRST 集合和 FOLLOW 集合

	FIRST	FOLLOW
Ε	(, num, id	\$, (,), num, id
A	num, id	\$, (,), num, id
В	(\$, (,), num, id
L	(, num, id)
L'	(, num, id, ε)

(3) 改写后的文法 G'是 LL(1)文法, 因为:

对于产生式:

 $E \rightarrow A \mid B$ FIRST(A) \cap FIRST(B)= ϕ

 $A \rightarrow \text{num} \mid \text{id}$ FIRST(num) \cap FIRST(id)= ϕ

 $B \rightarrow (L)$

 $L\rightarrow EL'$

 $L' \rightarrow EL' \mid \varepsilon$ FIRST $(EL') \cap FOLLOW(L') = \phi$

构造 G'的 LL(1)分析表,如表 2 所示。

表 2 文法 G'的 LL(1)分析表

	()	num	id	\$
E	$E \rightarrow B$		$E \rightarrow A$	$E \rightarrow A$	
A			A→num	A→id	
В	$B \rightarrow (L)$				
L	L→EL'		$L{\rightarrow}EL'$	L→EL′	
L'	$L' \rightarrow EL'$	<i>L'</i> →ε	L'→EL'	$L' \rightarrow EL'$	

(4) 对于输入符号串(a(b(2))(c))的预测分析过程如表 3 所示。

表 3 对符号串(a(b(2))(c))的分析过程

步骤	栈	输入	输出	
(1)	\$ <i>E</i>	(a(b(2))(c))\$	$E \rightarrow B$	
(2)	\$ <i>B</i>	(a(b(2))(c))\$	$B \rightarrow (L)$	
(3)	\$) <i>L</i> ((a(b(2))(c))\$		
(4)	\$) <i>L</i>	a(b(2))(c))\$	$L{\rightarrow}EL'$	
(5)	\$) <i>L'E</i>	a(b(2))(c))\$	$E \rightarrow A$	
(6)	\$) <i>L'A</i>	a(b(2))(c))\$		
(7)	\$) <i>L'</i> id	a(b(2))(c))\$		

			1
(8)	\$) <i>L'</i>	(b(2))(c)\$	$L' \rightarrow EL'$
(9)	\$) <i>L'E</i>	(<i>b</i> (2))(<i>c</i>))\$	$E \rightarrow B$
(10)	\$) <i>L'B</i>	(<i>b</i> (2))(<i>c</i>))\$	$B \rightarrow (L)$
(11)	\$)L')L((<i>b</i> (2))(<i>c</i>))\$	
(12)	\$)L')L	b(2))(c))\$	$L \rightarrow EL'$
(13)	\$)L')L'E	b(2))(c))\$	$E \rightarrow A$
(14)	\$)L')L'A	b(2))(c))\$	<i>A</i> →id
(15)	\$) <i>L'</i>) <i>L'</i> id	b(2))(c))\$	
(16)	\$) <i>L'</i>) <i>L'</i>	(2))(c))\$	$L' \rightarrow EL'$
(17)	\$)L')L'E	(2))(c))\$	$E \rightarrow B$
(18)	\$) <i>L'</i>) <i>L'B</i>	(2))(c))\$	$B \rightarrow (L)$
(19)	\$)L')L')L((2))(c))\$	
(20)	\$)L')L')L	2))(c))\$	$L \rightarrow EL'$
(21)	\$)L')L')L'E	2))(c))\$	
(22)	\$)L')L')L'A	2))(c))\$	A→num
(23)	\$) <i>L'</i>) <i>L'</i>) <i>L'</i> num	2))(c))\$	
(24)	\$) <i>L'</i>) <i>L'</i>) <i>L'</i>))(c))\$	<i>L'</i> →ε
(25)	\$) <i>L'</i>) <i>L'</i>)))(c))\$	
(26)	\$) <i>L'</i>) <i>L'</i>)(c))\$	<i>L'</i> →ε
(27)	\$) <i>L'</i>))(c))\$	
(28)	\$) <i>L'</i>	(c))\$	$L' \rightarrow EL'$
(29)	\$) <i>L'E</i>	(c))\$	$E \rightarrow B$
(30)	\$) <i>L'B</i>	(c))\$	$B \rightarrow (L)$
(31)	\$)L')L((c))\$	
(32)	\$) <i>L'</i>) <i>L</i>	c))\$	$L \rightarrow EL'$
(33)	\$)L')L'E	c))\$	$E \rightarrow A$
(34)	\$)L')L'A	c))\$	$A \rightarrow id$
(35)	\$) <i>L'</i>) <i>L'</i> id	c))\$	
(36)	\$) <i>L'</i>) <i>L'</i>))\$	<i>L'</i> →ε
(37)	\$) <i>L'</i>)))\$	
(38)	\$) <i>L</i> ′)\$	<i>L'</i> →ε
(39)	\$))\$	
(40)	\$	\$	接受