# Notes - AC Part 1

Slides from Dr. Barsanti

## Power in Single Phase AC Circuits

- Instantaneous Power
- Average Power and RMS Quantities
- Examples

## Instantaneous Power P(t)

- Power =  $\frac{d}{dt}$  (Energy)
- Units = joules/sec = watts

## P(t) for AC resistive load

$$P(t) = v(t)i(t) = V \cos(\omega t + \Phi_v) I \cos(\omega t + \Phi_v)$$
$$= V I \cos^2(\omega t + \Phi_v)$$

Using  $\cos^2(A) = \frac{1}{2} (1 + \cos 2A)$ 

$$P(t) = \frac{1}{2} V I \{1 + \cos 2(\omega t + \Phi_v)\}$$

An average value = ½ VI, plus a double frequency term

## P(t) for AC Inductive load

P(t) = v(t)i(t) = V cos(
$$\omega$$
t + $\Phi_v$ ) I cos ( $\omega$ t + $\Phi_v$  -90)  
= V I cos( $\omega$ t + $\Phi_v$ ) cos ( $\omega$ t + $\Phi_v$  -90)  
where I = V/ $\omega$ L

Using 
$$cos(A) cos(B) = \frac{1}{2} (cos(A+B) + cos(A-B))$$

Double frequency term with an average value = 0.

## P(t) for AC Capacitive load

$$P(t) = v(t)i(t) = V \cos(\omega t + \Phi_v) I \cos(\omega t + \Phi_v + 90)$$

$$= V I \cos(\omega t + \Phi_v) \cos(\omega t + \Phi_v + 90)$$
where  $I = \omega C V$ 

Using 
$$cos(A) cos(B) = \frac{1}{2} (cos(A+B) + cos(A-B))$$

Double frequency term with an average value = 0.

## P(t) for general RLC Load

$$P(t) = v(t)i(t) = V \cos(\omega t + \Phi_v) I \cos(\omega t + \Phi_l)$$

$$= V I \cos(\omega t + \Phi_v) \cos(\omega t + \Phi_l)$$
where  $I = V/Z$  and  $\Phi_l = \Phi_v - \langle Z \rangle$ 

Using  $cos(A) cos(B) = \frac{1}{2} (cos(A+B) + cos(A-B))$ 

$$P(t) = \frac{1}{2} V I \left\{ \cos(\Phi_{v} - \Phi_{l}) + \cos(2 \omega t + \Phi_{v} + \Phi_{l}) \right\}$$

Double frequency term with an average value =  $\frac{1}{2}$  V I cos( $\Phi_v$  -  $\Phi_l$ ).

## Average Power

- $P_{avg} = \frac{1}{T} \int_0^T P(t) dt$
- T = period of all forcing functions
- · Resistive case

• 
$$P_{avg} = \frac{1}{T} \int_0^T \frac{1}{2} V I \{1 + \cos 2(\omega t + \Phi_v)\} dt = \frac{1}{T} \frac{VI}{2} T$$
  
=  $\frac{VI}{2}$ 

### Average Power

- · General RLC case
- $P_{avg}$  =  $\frac{1}{T} \int_{0}^{T} \frac{1}{2} \nabla I \{ \cos(\Phi_{v} \Phi_{l}) + \cos(2 \omega t + \Phi_{v} + \Phi_{l}) \} dt$  =  $\frac{1}{T} \frac{VI}{2} \cos(\Phi_{v} \Phi_{l}) T$  =  $\frac{VI}{2} \cos(\Phi_{v} \Phi_{l})$

 RMS Value: The RMS value of a periodic current is equal to the value of a dc current which flowing through a resistance R delivers the <u>same average power</u> to R as the periodic current does.



Setting the expressions equal and solving for Irms

• For a sinusoid  $I_{per} = I \cos (\omega t + \Phi_I)$ 

$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T (|\cos(\omega t + \Phi_1)|)^2 dt}$$

• Using  $\cos^2(A) = \frac{1}{2} (1 + \cos 2A)$ 

$$I_{rms} = \frac{1}{\sqrt{2}}I = 0.707 I$$

• It follows for  $V_{per} = V \cos (\omega t + \Phi_V)$ 

$$V_{rms} = \frac{1}{\sqrt{2}}V = 0.707 \text{ V}$$

Note for a sinusoid in the General RLC case

$$P_{avg} = \frac{VI}{2} cos(\Phi_{v} - \Phi_{l})$$
$$= V_{rms} I_{rms} cos(\Phi_{v} - \Phi_{l})$$

A general periodic function

$$I_{per} = I_1 \cos(\omega_1 t) + I_2 \cos(\omega_2 t) + I_3 \cos(\omega_3 t) + \dots$$

· Has average power

$$P_{avg} = \frac{1}{2} (I_1^2 + I_2^2 + I_3^2 + ...) R = I_{rms}^2 R$$

So

$$I_{rms} = \sqrt{\frac{1}{2}(I_1^2 + I_2^2 + I_3^2 + ...)}$$

Given that i(t) =  $\sqrt{2}$  5 A Cos(377t + 45°) flows through a 2 $\Omega$  resistor, Calculate the average power.

$$P_{ave} = (I_{rms})^2 R = (5)^2 (2) = 50 W$$

Or

$$P_{ave} = \frac{1}{2} (I_{peak})^2 R = \frac{1}{2} (5 \sqrt{2})^2 (2) = 50 W$$

Given i(t) =  $\sqrt{2}$  5 A Cos(377t + 45°) +  $\sqrt{2}$  3 A Cos(754t + 60°) flows through a 2 $\Omega$  resistor. Calculate the average power.

$$I_{rms} = \sqrt{5^2 + 3^2} = \sqrt{34} \text{ A}$$
  
 $P_{ave} = (I_{rms})^2 \text{ R} = (\sqrt{34})^2 (2) = 68 \text{ W}$ 

Or

$$P_{\text{ave}} = \frac{1}{2} \left( I_{1\text{peak}} \right)^2 R + \frac{1}{2} \left( I_{2\text{peak}} \right)^2 R$$
$$= \frac{1}{2} \left( 5 \sqrt{2} \right)^2 (2) + \frac{1}{2} \left( 3 \sqrt{2} \right)^2 (2) = 68 \text{ W}$$

Given i(t) =  $\sqrt{2}$  5 A Cos(377t + 45°) +  $\sqrt{2}$  3 A Cos(377t + 60°) flows through a 2 $\Omega$  resistor. Calculate the average power.

$$\tilde{I} = \sqrt{2} \, 5 < 45^{\circ} + \sqrt{2} \, 3 < 60^{\circ}$$
  
= 11.23 < 50.6° =  $\sqrt{2} \, 7.94 < 50.6^{\circ}$   
 $P_{ave} = (I_{rms})^2 \, R = (7.94)^2 \, (2) = 126 \, W$ 

Note:

$$P_{\text{ave}} \neq (I_{1\text{rms}})^2 R + (I_{2\text{rms}})^2 R = (5)^2 (2) + (3)^2 (2) = 68 \text{ W}$$

ex.4. Determine the everage power consumed by a SIR
sesister when the following periodic voltage is applied
across it:



$$I_{rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} i \rho r dt$$

$$I_{rms} = \sqrt{\frac{1}{5}} \int_{0}^{2} (4)^{2} dt + \frac{1}{5} \int_{0}^{5} 0^{2} dt$$

$$\Rightarrow t \qquad I_{rms} = \sqrt{\frac{1}{5}} I(t | t|_{0}^{2}) = \sqrt{\frac{32}{5}}$$

## Example 5 and 6

ex. S. Find the average power

ex 6. Find the average power

watch what you are given



Find the average power absorbed by each component.

Step 1. Write the mesh equations

Mesh 1: 
$$-\widetilde{V}_{S,1} + \widetilde{I}_{r,j}^{2} + (\widetilde{I}_{r,-}\widetilde{I}_{z}^{2}) = 0$$

MashZ: 
$$(\widetilde{I}_z - \widetilde{I}_z)$$
Z -  $\widetilde{I}_z$ ; Z +  $\widetilde{V}_{SZ}$  = 0

## Example 7 cont...

Step Z. Place into matrix form and solve with MATLAS

$$\begin{bmatrix} 2+j^2 & -2 \\ -2 & 2-j^2 \end{bmatrix} \begin{bmatrix} \tilde{I}_{i} \\ \tilde{I}_{z} \end{bmatrix} = \begin{bmatrix} \tilde{V}_{s,i} \\ \tilde{V}_{s,z} \end{bmatrix}$$

$$\begin{bmatrix} \tilde{I}_1 \\ \tilde{I}_2 \end{bmatrix} = \begin{bmatrix} 11.184 \ 2-63.45^{\circ} \\ 7.07 \ 2-45^{\circ} \end{bmatrix}$$

# Example 7 cont...

Step 3. Identify the required currents

Current into the + side of 
$$\tilde{V}_{S1}$$
:  $-\tilde{I}_1=11.18A$  [+116. Current into the + side of  $\tilde{V}_{S2}$ :  $\tilde{I}_2=7.07A$  [-450 Current into  $ZR$ :  $\tilde{I}_1-\tilde{I}_2=5A$  [-400

Step 4. Establish the average powers