Introducción a las Memorias

Fundamentos de Computadores Escuela Politécnica Superior. U.A.M

Índice de la Unidad 5

U5. Componentes de memorización

- **U5.1.** Dispositivos de almacenamiento.
- U5.2. Memorias de acceso aleatorio (RAM)
 - **U5.2.1.** Estructura de una RAM semiconductora. Tamaño.
 - **U5.2.2.** Volatilidad de las memorias.
 - U5.2.3. Organización de la memoria interna en una y dos dimensiones.
 - U5.2.4. Memorias RAM dinámicas. Refresco.
- **U5.3.** Memorias de sólo lectura (ROM).
 - **U5.3.1.** ROM programables (PROM) y borrables (EPROM)
 - **U5.3.2.** Utilización de las ROM como generadoras de funciones.
- **U5.4.** Ampliación de memorias

Dispositivos de almacenamiento del ordenador

- Memoria central o principal
 - Rápida, de pequeña capacidad y alto precio
 - Para contener datos y programas en ejecución
 - Objeto de esta unidad
- Memoria secundaria, auxiliar o de almacenamiento masivo
 - Más barata, con mayor capacidad pero más lenta
 - Para contener datos y programas en espera de ejecución o que no caben en memoria principal
 - No se trata en esta unidad

Características de las memorias (I)

- La memoria se caracteriza por:
 - Volatilidad:
 - Tiempo durante el que la memoria es capaz de retener datos de forma legible en ausencia de la alimentación eléctrica
 - Volátil: La información se pierde
 - No volátil: La información se mantiene
 - Tamaño (capacidad):
 - Cantidad de información que puede almacenar (en bytes)
 - Tiempo de acceso:
 - Tiempo necesario para localizar y acceder en la memoria al dato deseado
 - Tiempo de transferencia:
 - La suma del tiempo de acceso más el necesario para mover la palabra entre la CPU y la memoria

Características de las memorias (II)

Tipo de acceso:

- Secuencial: El tiempo de acceso depende del lugar de almacenamiento (≈ cinta magnética)
- Aleatorio: El tiempo de acceso es independiente del lugar de almacenamiento (≈ memoria RAM)

Coste:

Se mide en \$ por bit

El concepto de palabra y su tamaño en procesadores:

- Byte: cantidad de información almacenada en una celda o posición de memoria
- Cada byte se identifica por una dirección
- Palabra: cantidad de información que puede manejar la ALU en una sola operación. Suele coincidir con la cantidad de bytes que se pueden transferir entre la CPU y la memoria en una sola operación.

Características de los dispositivos de almacenamiento

Tipo de memoria	Ventajas	Inconvenientes		
Memoria principal	Rápida Pequeña Acceso directo	Cara Volátil (en general)		
Memoria secundaria	Barata No volátil Alta capacidad	Voluminosas Lentas		

- Memorias RAM: Ramdom Access Memory
 - Memorias semiconductoras de acceso aleatorio
 - Memorias volátiles
 - Posible lectura y escritura

CELDA BÁSICA

Politécnia

Superior

UNIDAD DE MEMORIA RAM

Descripción lógica de memoria RAM

Ai	Bit i de dirección
Di	Bit i de datos
	(entrada o salida)
WE	Activa escritura
CS	Selección de chip
	(activación)

• Funcionamiento:

Escritura:

- Colocar la dirección de memoria en el bus de direcciones
- Colocar los datos en el bus de datos
- Seleccionar el chip activando CS
- Activar el comando de escritura (WE) (control de escritura)

Lectura:

- Colocar la dirección de memoria en el bus de direcciones
- Seleccionar el chip activando CS
- Leer los datos del bus de datos
- No es necesario activar ninguna señal de control (lectura no controlada)

RAM de 8 Palabras x 8 bits

- Memorias RAM estáticas (SRAM)
 - La celda básica es un biestable
 - Con alimentación la información no se degrada
- Memorias RAM dinámicas (DRAM)
 - La celda básica es un condensador
 - Con alimentación la información se degrada
 - Necesidad de refrescar
 - Utilizadas por alta densidad de almacenamiento

SRAM (Static RAM)

- Más rápida
- Más cara
- Menos densa

BIT BIT WORD WORD

DRAM (**D**ynamic **RAM**)

- Más densa
- Más barata
- Menos rápida
- Necesita reescritura de forma periódica (refresco)

- MEMORIAS ROM (Read Only Memory)
 - Memorias semiconductoras de solo lectura
 - Acceso aleatorio
 - No volátiles

CELDA BÁSICA

➤ La información se almacena físicamente durante el proceso de fabricación. Por ejemplo, utilizando fusibles o matrices de diodos

a. Si hay fusible: valor 1

Eicuela Politécnia Superior b. Si no hay fusible: valor 0

ROM ⇒ La matriz de fusibles se define en fábrica.

PROM (Programable-ROM) ⇒ La matriz de fusibles la define el usuario una sola vez. **EPROM** (Erasable-Programable-ROM) ⇒ La matriz de fusibles la define el usuario varias veces.

UVPROM ⇒Se restauran los fusibles con luz UV y se destruyen eléctricamente

EEPROM ⇒ Se restauran/destruyen los fusibles electricamente

FLASH ⇒ Es un tipo especial de EEPROM configuran los actuales *pendrives*

UNIDAD DE MEMORIA ROM

Utilización de una EPROM para generar señales lógicas complejas

Look L	Jp 7	Table	e (L	UT	")
--------	------	-------	------	----	----

Eicuela

Superior

Dirección	A_4	A_3	A_2	A ₁	A_0	D_0
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	1
3	0	0	0	1	1	0
4	0	0	1	0	0	0
5	0	0	1	0	1	0
6	0	0	1	1	0	1
7	0	0	1	1	1	0
8	0	1	0	0	0	1
9	0	1	0	0	1	0
10	0	1	0	1	0	0
11	0	1	0	1	1	1
12	0	1	1	0	0	1
13	0	1	1	0	1	1
14	0	1	1	1	0	1
15	0	1	1	1	1	1

Dirección	A ₄	A ₃	A ₂	A ₁	A_0	D ₀
16	1	0	0	0	0	0
17	1	0	0	0	1	1
18	1	0	0	1	0	1
19	1	0	0	1	1	0
20	1	0	1	0	0	0
21	1	0	1	0	1	1
22	1	0	1	1	0	1
23	1	0	1	1	1	1
24	1	1	0	0	0	0
25	1	1	0	0	1	1
26	1	1	0	1	0	0
27	1	1	0	1	1	0
28	1	1	1	0	0	1
29	1	1	1	0	1	1
30	1	1	1	1	0	1
31	1	1	1	1	1	0

Utilización de una EPROM para diseñar FSM. 1

	Estado Anterior			Entrada	Estado Siguiente			Salida
Dirección	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	E	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1	1
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	1	0	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	1	1
8	1	0	0	0	0	1	1	0
9	1	0	0	1	0	1	1	1
10	1	0	1	0	1	0	0	1
11	1	0	1	1	0	1	1	1
12	1	1	0	0	1	0	0	0
13	1	1	0	1	0	0	1	0
14	1	1	1	0	0	0	0	0
15	1	1	1	1	1	0	1	0

Tabla de Transición y Tabla de Salida

Utilización de una EPROM para diseñar FSM.

Capacidad de memoria Longitud de palabra

- Capacidad de memoria
 - Relacionada con los pins de dirección y con la longitud de palabra: long. palabra x 2^{pins de dirección}
- Tamaño del dato
 - Número de pins de entrada/salida
- Ejemplo figura:

Ercuela

- 8 pines entrada/salida (D₇:D₀)
 - =>Tamaño del dato: 8 bits = 1 byte
- 10 entradas dirección (A₉:A₀)
 - =>Tamaño de memoria:

 $8x2^{10} = 1024 \text{ bytes} = 1 \text{ kB} = 8 \text{ kbits}$

¿Cómo se pueden combinar los chips de memoria para obtener sistemas de memoria con mayor longitud de palabra o con mayor capacidad?

- Utilizando las entradas de selección de chip (CS)
 - 1. Ampliando la longitud del dato a transferir
 - 2. Ampliación de la capacidad total de memoria

1. Ampliación de la longitud del dato a transferir

Partiendo de memorias de un tamaño de dato, conseguir una con un tamaño de dato mayor

- Ejemplo: Dos pastillas de 8 kBytes:

- 1. Ampliación de la longitud del dato a transferir
 - Se quiere obtener una memoria de 16 bits:

2. Ampliación de la capacidad total de memoria

Partiendo de memorias de un tamaño de dato y de una capacidad, conseguir una con la misma longitud de dato pero con mayor capacidad

 Ejemplo: Con dos pastillas de 8 kbytes de memoria se quiere obtener una memoria de 16 kbytes

2. Ampliación de la capacidad total de memoria

- Ejemplo:

- Se amplían direcciones (A_{13}) .
- A₁₃=0 se activa la pastilla de la derecha
- A₁₃=1 se activa la pastilla de la izquierda

