

Perturbation Theory for the Landau-Lifshits-Gilbert Equation

by Frank Crowne

ARL-TR-6114 September 2012

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-TR-6114 September 2012

Perturbation Theory for the Landau-Lifshits-Gilbert Equation

Frank Crowne Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

]	REPORT DO	CUMENTATI	ON PAGE		Form Approved OMB No. 0704-0188
data needed, and completi burden, to Department of Respondents should be av valid OMB control numbe	ing and reviewing the collect Defense, Washington Headoware that notwithstanding arer.	tion information. Send commen quarters Services, Directorate for	nts regarding this burden esti or Information Operations an erson shall be subject to any	imate or any other aspend Reports (0704-0188)	nstructions, searching existing data sources, gathering and maintaining the cct of this collection of information, including suggestions for reducing the), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. comply with a collection of information if it does not display a currently
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
September 2012	2	Final			
4. TITLE AND SUBT	FITLE				5a. CONTRACT NUMBER
Perturbation Th	eory For The Lar	ndau-Lifshits-Gilbe	rt Equation		
					5b. GRANT NUMBER
					5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)					5d. PROJECT NUMBER
Frank Crowne					
					5e. TASK NUMBER
					5f. WORK UNIT NUMBER
7. PERFORMING O	RGANIZATION NAM	E(S) AND ADDRESS(ES	<u> </u>		8. PERFORMING ORGANIZATION
U.S. Army Rese	earch Laboratory				REPORT NUMBER
ATTN: RDRL-					ARL-TR-6114
2800 Powder M	lill Road				ARL-1R-0114
Adelphi, MD 20)783-1197				
9. SPONSORING/M	ONITORING AGENC	Y NAME(S) AND ADDRE	ESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/	AVAILABILITY STAT	ГЕМЕНТ			
		tribution unlimited.			
13. SUPPLEMENTA	RY NOTES				
14. ABSTRACT		_			
Excitation of a l	Magnetic Microv	wire" and contains a	ncillary calculati	ions for the re	sponse of a magnetic system to an external on expansion in powers of the external field.
15. SUBJECT TERM			4:		
Ferromagnetic i	resonance, nonlin	near response, magn	17. LIMITATION	40 NUMBER	
16. SECURITY CLASSIFICATION OF:			OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Frank J. Crowne
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	UU	50	19b. TELEPHONE NUMBER (<i>Include area code</i>) (301) 394-5759

Contents

1.	Introduction	1
2.	The Landau-Lifshits and Landau-Lifshits-Gilbert Equations	1
3.	First-order Solution	7
4.	Second-order Solution	11
5.	Third-order Solution	15
6.	Grouping Third-order Magnetization Terms	17
7.	Conclusion	41
8.	References	42
Dis	stribution List	43

INTENTIONALLY LEFT BLANK.

1. Introduction

Although the literature on nonlinear magnetic effects is extensive, there is little quantitative information available on multi-frequency excitation of ferromagnetic systems, even at the level of perturbation theory. The calculations presented in this technical report constitute an attempt to remedy this situation. Because it is in the nature of remote sensing to involve small probe fields, the analysis needed is an ideal use of perturbation theory, cumbersome though it may be. It is hoped that their derivation will help to lay the groundwork for evaluating the usefulness of ferromagnetic resonance (FMR)-based detection of the nonlinear excitation of magnetic objects in a true remote-sensing environment, i.e., where large magnetic fields of the sort used in laboratories or medical equipment are unavailable.

2. The Landau-Lifshits and Landau-Lifshits-Gilbert Equations

In order to estimate the power radiated by FMR excitation of a finite magnetized body, it is necessary first to describe the dynamics of the magnetic dipole moment per unit volume \vec{M} (i.e., the magnetization) within the body in the presence of an external time-dependent magnetic field. This dynamic problem is governed by the Landau-Lifshits equation (1):

$$\frac{\partial \vec{M}}{\partial t} = \gamma \vec{M} \times \vec{H}_{eff} - \frac{\alpha}{\left|\vec{M}_{st}\right|} \vec{M} \times \frac{\partial \vec{M}}{\partial t}$$
(1)

where \vec{M}_{St} is the static magnetization of the material, γ is the gyromagnetic ratio, α is the damping constant, and \vec{H}_{eff} is an effective magnetic field consisting of the DC anisotropy field \vec{H}_a that fixes the direction of \vec{M}_{St} in the material, the depolarization field due to the body's shape, and the external time-dependent applied field. Note that in the absence of an AC magnetic field there is no depolarization field, and so $\vec{M}_{St} \times \vec{H}_a = 0$ under DC conditions, i.e., there is no DC torque. The first term is the torque exerted by the effective magnetic field \vec{H}_{eff} , while the second term gives rise to damping via eddy currents. The form of this equation implies that $\vec{M} \cdot \frac{\partial \vec{M}}{\partial t} = 0 \Rightarrow \left| \vec{M} \right|^2$ is constant in time.

Let us solve this problem approximately using perturbation theory. It is more convenient to first put this equation in Landau-Lifshits-Gilbert (LLG) form (2): if we define the torque vector

 $\vec{\Omega} = \gamma \vec{M} \times \vec{H}_{eff}$ and a dimensionless vector damping rate $\vec{Q} = \frac{\alpha}{\left|\vec{M}_{st}\right|}\vec{M}$, equation 1 can be

rewritten as follows:

$$\frac{\partial \vec{M}}{\partial t} = \left(1 + \alpha^2\right)^{-1} \left(\vec{\Omega} - \vec{Q} \times \vec{\Omega}\right) \tag{2}$$

Assume a coordinate system with the z-axis along the wire axis. We start by defining a small perturbing radio frequency (RF) magnetic field \vec{h} , which generates an RF magnetization \vec{m} that is small compared to \vec{M}_{st} . The decay dynamics of this magnetization is strongly affected by the conservation of length of the total magnetization vector, whose endpoint is constrained to lie on a spherical surface at all times. Let us further specify the perturbed magnetization and effective magnetic field in the LLG equation as follows:

$$\vec{M} = \vec{M}_{st} + \vec{m} \tag{3}$$

and

$$\vec{H}_{eff} = \vec{H}_a + \vec{h} - N\vec{m} , \qquad (4)$$

where $\vec{M}_{st} \times \vec{H}_a = 0$ and

$$N = \begin{pmatrix} \tilde{N} & 0 & 0 \\ 0 & \tilde{N} & 0 \\ 0 & 0 & N_z \end{pmatrix}$$
 (5)

is the depolarization tensor. In this report, we consider a long wire parallel to the z-axis, for which $\tilde{N}=1/2$ and $N_Z\approx 0$. Following Antonenko et al. (3), we define a static susceptibility

 $\chi_{st} = \frac{\left| \vec{M}_{st} \right|}{\left| \vec{H}_{a} \right|}$. Then in rectangular coordinates with \vec{M}_{st} and \vec{H}_{a} along the positive z – axis, i.e.,

$$\vec{M}_{St} = \left| \vec{M}_{St} \right| \hat{z}$$
 and $\vec{H}_a = H_a \hat{z}$, we obtain

$$\vec{H}_{a} = \chi_{st}^{-1} \left| \vec{M}_{st} \right| \hat{z} \Rightarrow \begin{cases} H_{eff,x} = h_{x} - \tilde{N} m_{x} \\ H_{eff,y} = h_{y} - \tilde{N} m_{y} \\ H_{eff,z} = h_{z} + \chi_{st}^{-1} \left| \vec{M}_{st} \right| \end{cases}$$
(6)

$$\Rightarrow \vec{\Omega} = \gamma \left(\vec{M}_{st} + \vec{m} \right) \times \vec{H}_{eff} = \gamma \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ m_{x} & m_{y} & |\vec{M}_{st}| + m_{z} \\ h_{x} - \tilde{N}m_{x} & h_{y} - \tilde{N}m_{y} & h_{z} + \chi_{st}^{-1} |\vec{M}_{st}| \end{vmatrix}$$

$$= \gamma \begin{cases} \hat{x} \left[-|\vec{M}_{st}| h_{y} + \left(\chi_{st}^{-1} + \tilde{N} \right) |\vec{M}_{st}| m_{y} + m_{y} h_{z} - m_{z} h_{y} + \tilde{N}m_{z} m_{y} \right] \\ + \hat{y} \left[|\vec{M}_{st}| h_{x} - \left(\chi_{st}^{-1} + \tilde{N} \right) |\vec{M}_{st}| m_{x} + m_{z} h_{x} - m_{x} h_{z} - \tilde{N}m_{z} m_{x} \right] \\ + \hat{z} \left[m_{x} h_{y} - m_{y} h_{x} \right] \end{cases}$$

$$(7)$$

Introduce a scaled dimensionless magnetization $\vec{\mathbf{g}}$ such that $\vec{\mathbf{m}} = \left| \vec{M}_{st} \right| \vec{\mathbf{g}}$. Since $\vec{M}_{st} = \left| \vec{M}_{st} \right| \hat{z}$, the length constraint on \vec{M} becomes

$$\begin{aligned} \left| \vec{M} \right|^2 &= \left| \vec{M}_{st} + \vec{m} \right|^2 = \left| \vec{M}_{st} \right|^2 \Rightarrow \left| \hat{z} + \vec{g} \right|^2 = (1 + g_z)^2 + g_x^2 + g_y^2 = 1 \\ &\Rightarrow g_z = -1 + \sqrt{1 - g_x^2 - g_y^2} \end{aligned}$$
(8)

Let $\vec{Q} = \alpha(\hat{z} + \vec{g})$. Then

$$\left| \vec{M}_{st} \right| \frac{\partial \vec{g}}{\partial t} = \left(1 + \alpha^2 \right)^{-1} \left(\vec{\Omega} - \vec{Q} \times \vec{\Omega} \right) \tag{9}$$

and

$$\vec{\Omega} = \gamma \left| \vec{M}_{st} \right| \begin{cases} \hat{x} \left[-h_{y} + \left(\chi_{st}^{-1} + \tilde{N} \right) \middle| \vec{M}_{st} \middle| g_{y} + g_{y} h_{z} - g_{z} h_{y} + \tilde{N} \middle| \vec{M}_{st} \middle| g_{z} g_{y} \right] \\ + \hat{y} \left[h_{x} - \left(\chi_{st}^{-1} + \tilde{N} \right) \middle| \vec{M}_{st} \middle| g_{x} + g_{z} h_{x} - g_{x} h_{z} - \tilde{N} \middle| \vec{M}_{st} \middle| g_{z} g_{x} \right] \\ + \hat{z} \left[g_{x} h_{y} - g_{y} h_{x} \right] \end{cases}$$
(10)

Defining the constants $\Lambda = \left(\chi_{St}^{-1} + \tilde{N}\right) \left| \vec{M}_{S} \right|$, $\Theta = \left| \vec{M}_{S} \right| \tilde{N}$ lets us write the torque vector as

$$|\vec{\Omega} = \gamma |\vec{M}_{st}| \begin{cases} \hat{x} \left[-h_y + \Lambda g_y + g_y h_z - g_z h_y + \Theta g_z g_y \right] \\ + \hat{y} \left[h_x - \Lambda g_x + g_z h_x - g_x h_z - \Theta g_z g_x \right] \\ + \hat{z} \left[g_x h_y - g_y h_x \right] \end{cases}$$

$$(11)$$

The right side of the dynamic equation 2 can be treated as a "source" \vec{S} :

$$\vec{Q} \times \vec{\Omega} = \alpha \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ g_{x} & g_{y} & 1 + g_{z} \\ \Omega_{x} & \Omega_{y} & \Omega_{z} \end{vmatrix} \Rightarrow \begin{cases} S_{x} = (\vec{\Omega} - \vec{Q} \times \vec{\Omega})_{x} = \Omega_{x} - \alpha (g_{y}\Omega_{z} - [1 + g_{z}]\Omega_{y}) \equiv |\vec{M}_{st}| \hat{S}_{x} \\ S_{y} = (\vec{\Omega} - \vec{Q} \times \vec{\Omega})_{y} = \Omega_{y} - \alpha ([1 + g_{z}]\Omega_{x} - g_{x}\Omega_{z}) \equiv |\vec{M}_{st}| \hat{S}_{y}$$
(12)
$$S_{z} = (\vec{\Omega} - \vec{Q} \times \vec{\Omega})_{z} = \Omega_{z} - \alpha (g_{x}\Omega_{y} - g_{y}\Omega_{x}) \equiv |\vec{M}_{st}| \hat{S}_{z}$$

where

$$\hat{S}_{x} = \gamma \begin{cases}
-h_{y} + \Lambda g_{y} + g_{y}h_{z} - g_{z}h_{y} + \Theta g_{z}g_{y} \\
-\alpha g_{y} (g_{x}h_{y} - g_{y}h_{x}) \\
+\alpha [1 + g_{z}] (h_{x} - \Lambda g_{x} + g_{z}h_{x} - g_{x}h_{z} - \Theta g_{z}g_{x})
\end{cases}$$

$$\hat{S}_{y} = \gamma \begin{cases}
h_{x} - \Lambda g_{x} + g_{z}h_{x} - g_{x}h_{z} - \Theta g_{z}g_{x} \\
-\alpha [1 + g_{z}] (-h_{y} + \Lambda g_{y} + g_{y}h_{z} - g_{z}h_{y} + \Theta g_{z}g_{y}) \\
+\alpha g_{x} (g_{x}h_{y} - g_{y}h_{x})
\end{cases}$$

$$\hat{S}_{z} = \gamma \begin{cases}
g_{x}h_{y} - g_{y}h_{x} \\
-\alpha g_{x} (h_{x} - \Lambda g_{x} + g_{z}h_{x} - g_{x}h_{z} - \Theta g_{z}g_{x}) \\
+\alpha g_{y} (-h_{y} + \Lambda g_{y} + g_{y}h_{z} - g_{z}h_{y} + \Theta g_{z}g_{y})
\end{cases}$$
(13)

Note that the vector $\hat{\vec{S}}$ has the dimensions of frequency.

It is advantageous to write the transverse system variables in vector form:

$$\vec{G} = \begin{pmatrix} g_X \\ g_y \end{pmatrix} \qquad \vec{H} = \begin{pmatrix} h_X \\ h_y \end{pmatrix} \tag{14}$$

Then, the equation for the transverse components of the source vector can be written as

$$\frac{\partial \vec{G}}{\partial t} = \left(1 + \alpha^2\right)^{-1} \hat{\vec{S}} \tag{15}$$

where

$$\hat{\vec{S}} = \begin{pmatrix} \hat{S}_{x} \\ \hat{S}_{y} \end{pmatrix} = \gamma \begin{pmatrix} \alpha[1+g_{z}]^{2} & -[1+g_{z}] \\ [1+g_{z}] & \alpha[1+g_{z}]^{2} \end{pmatrix} \vec{H} - \gamma \begin{pmatrix} \alpha[1+g_{z}][\Lambda+h_{z}+\Theta g_{z}] & -[\Lambda+h_{z}+\Theta g_{z}-\alpha G\otimes H] \\ \Lambda+h_{z}+\Theta g_{z}-\alpha G\otimes H & \alpha[1+g_{z}][\Lambda+h_{z}+\Theta g_{z}] \end{pmatrix} \vec{G}$$

$$= \gamma \begin{pmatrix} \alpha[1-G^{2}] & -\sqrt{1-G^{2}} \\ \sqrt{1-G^{2}} & \alpha[1-G^{2}] \end{pmatrix} \vec{H} - \gamma \begin{pmatrix} \alpha\sqrt{1-G^{2}}[\Lambda-\Theta+h_{z}+\Theta\sqrt{1-G^{2}}] & -[\Lambda-\Theta+h_{z}+\Theta\sqrt{1-G^{2}}-\alpha G\otimes H] \\ \Lambda-\Theta+h_{z}+\Theta\sqrt{1-G^{2}} & \alphaG\otimes H & \alpha\sqrt{1-G^{2}}[\Lambda-\Theta+h_{z}+\Theta\sqrt{1-G^{2}}] \end{pmatrix} \vec{G}$$

$$\Box \gamma \tilde{Z} \vec{H} - \gamma \tilde{R} \vec{G}$$

Here $g_x^2 + g_y^2 \square G^2$ and $G \otimes H \square \hat{z} \cdot \vec{G} \times \vec{H} = g_x h_y - g_y h_x$. There is also an equation for the longitudinal part (*z*-component):

$$\left(1+\alpha^{2}\right)\frac{\partial}{\partial t}\mathbf{g}_{z}+\gamma\alpha\left(\vec{\mathbf{G}}\cdot\vec{\mathbf{H}}-\Theta\mathbf{G}^{2}\right)\mathbf{g}_{z}=\gamma\left\{\mathbf{G}\otimes\mathbf{H}-\alpha\vec{\mathbf{G}}\cdot\vec{\mathbf{H}}+\alpha\left[\Lambda+\mathbf{h}_{z}\right]\mathbf{G}^{2}\right\} \tag{17}$$

where $\vec{G} \cdot \vec{H} \Box g_x h_x + g_y h_y$, but the algebraic constraint on the length of the vector \vec{g} makes it redundant.

Up to now, all the dynamic variables g_x , g_y , g_z and h_x , h_y , h_z have been real. In the spirit of the Holstein-Primakoff transformation (4), let us define the following (complex) "circular" basis for the transverse variables using the matrix

$$\tilde{\mathbf{C}} = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \Rightarrow \begin{cases}
\vec{G} = \tilde{\mathbf{C}}\vec{\mathbf{G}} = \begin{pmatrix} g_{x} + ig_{y} \\ g_{x} - ig_{y} \end{pmatrix} = \begin{pmatrix} G \\ G^{*} \end{pmatrix} \\
\vec{H} = \tilde{\mathbf{C}}\vec{\mathbf{H}} = \begin{pmatrix} h_{x} + ih_{y} \\ h_{x} - ih_{y} \end{pmatrix} = \begin{pmatrix} H_{c} \\ H_{c}^{*} \end{pmatrix}$$
(18)

In this notation,

$$G \otimes H = g_{x}h_{y} - g_{y}h_{x} = \frac{1}{4i} (G + G^{*}) (H_{c} - H_{c}^{*}) - \frac{1}{4i} (G - G^{*}) (H_{c} + H_{c}^{*})$$

$$= \frac{1}{2i} (G^{*}H_{c} - GH_{c}^{*}) = Im(G^{*}H_{c})$$
(19)

The matrices \tilde{Z} and \tilde{R} in equation 3 are both of the form $\tilde{T}[A,B] = \begin{pmatrix} A\alpha & -B \\ B & A\alpha \end{pmatrix}$, which can be diagonalized by the similarity transformation defined by \tilde{C} :

$$\tilde{C}\tilde{T}[A,B]\tilde{C}^{-1} = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} A\alpha & -B \\ B & A\alpha \end{pmatrix} \frac{1}{2i} \begin{pmatrix} i & i \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \alpha A + iB & 0 \\ 0 & \alpha A - iB \end{pmatrix}$$
(20)

leading to the following expression for the source vector in the circular basis:

$$\begin{pmatrix} \hat{\mathbf{S}}_{+} \\ \hat{\mathbf{S}}_{-} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{S}}_{x} + i\hat{\mathbf{S}}_{y} \\ \hat{\mathbf{S}}_{x} - i\hat{\mathbf{S}}_{y} \end{pmatrix} = \gamma \tilde{\Xi} \vec{H} - \gamma \tilde{\Pi} \vec{G}$$
 (21)

where the matrices

$$\tilde{\Xi} = \begin{pmatrix} \sqrt{1 - |G|^2} \left[\alpha \sqrt{1 - |G|^2} + i \right] & 0 \\ 0 & \sqrt{1 - |G|^2} \left[\alpha \sqrt{1 - |G|^2} - i \right] \end{pmatrix}$$
(22)

and

and
$$\tilde{\Pi} = \begin{pmatrix}
\alpha\sqrt{1-|\mathcal{G}|^2} \left[\Lambda - \Theta + \mathbf{h}_z + \Theta\sqrt{1-|\mathcal{G}|^2} \right] & 0 \\
+i \left[\Lambda - \Theta + \mathbf{h}_z + \Theta\sqrt{1-|\mathcal{G}|^2} - \alpha \operatorname{Im}(\mathcal{G}^* H_c) \right] & \alpha\sqrt{1-|\mathcal{G}|^2} \left[\Lambda - \Theta + \mathbf{h}_z + \Theta\sqrt{1-|\mathcal{G}|^2} \right] \\
0 & -i \left[\Lambda - \Theta + \mathbf{h}_z + \Theta\sqrt{1-|\mathcal{G}|^2} - \alpha \operatorname{Im}(\mathcal{G}^* H_c) \right]
\end{pmatrix} (23)$$

are both diagonal. Since the nonzero elements of these matrices are complex conjugates of one another, the system reduces to a single complex-valued equation

$$\left(1+\alpha^{2}\right)\frac{\partial}{\partial t}G + \gamma \left(\alpha\sqrt{1-|G|^{2}}\left[\Lambda-\Theta+h_{z}+\Theta\sqrt{1-|G|^{2}}\right] + i\left[\Lambda-\Theta+h_{z}+\Theta\sqrt{1-|G|^{2}}-\alpha\operatorname{Im}\left(G^{*}H_{c}\right)\right]\right)G = \gamma\sqrt{1-|G|^{2}}\left(\alpha\sqrt{1-|G|^{2}}+i\right)H_{c}(24)$$

where G and G^* are "magnon" variables (5). Note that the quantities $\sqrt{1-|G|^2}$ and $\operatorname{Im}(G^*H_c)$ are real.

A straightforward power-series expansion of this equation up to third order in G leads to the following perturbation equations:

$$(\alpha - i)\frac{\partial}{\partial t}G_{1} + \gamma\Lambda G_{1} = \gamma H_{c}$$

$$(\alpha - i)\frac{\partial}{\partial t}G_{2} + \gamma\Lambda G_{2} = -\gamma h_{z}G_{1}$$

$$(\alpha - i)\frac{\partial}{\partial t}G_{3} + \gamma\Lambda G_{3} = \frac{\gamma}{\alpha + i}\left\{-(\alpha + i)h_{z}G_{2} - \frac{1}{2}(3\alpha + i)|G_{1}|^{2}H_{c} + \alpha\frac{1}{2}G_{1}^{2}H_{c}^{*}\right\}$$

$$+\frac{1}{2}(\alpha\Lambda + [\alpha + i]\Theta)|G_{1}|^{2}G_{1}$$

$$(25)$$

The corresponding z-component equations are

$$g_{z} = -1 + \sqrt{1 - |G|^{2}} = -1 + \sqrt{1 - G^{*}G} \approx -\frac{1}{2}G_{1}^{*}G_{1} - \frac{1}{2}(G_{1}^{*}G_{2} + G_{2}^{*}G_{1}) + \cdots$$

$$\Rightarrow \begin{cases} g_{z1} = 0 \\ g_{z2} = -\frac{1}{2}G_{1}^{*}G_{1} \\ g_{z3} = -\frac{1}{2}(G_{1}^{*}G_{2} + G_{2}^{*}G_{1}) \end{cases}$$
(26)

Note that according to these expressions an incident field with only h_Z nonzero, i.e., polarized along the direction of static magnetization, cannot generate a *linear* response. This is in keeping with elementary considerations.

3. First-order Solution

To solve the equation

$$(\alpha - i)\frac{\partial}{\partial t}G_1 + \gamma \Lambda G_1 = \gamma H_C \tag{27}$$

we make the following decomposition: let

$$\tilde{M} = \begin{pmatrix} \alpha & -1 \\ 1 & \alpha \end{pmatrix}$$

Then

$$\begin{split} & \left(1+\alpha^{2}\right)\partial_{t}\begin{pmatrix}g_{x}\\g_{y}\end{pmatrix}+\omega_{B}\tilde{M}\begin{pmatrix}g_{x}\\g_{y}\end{pmatrix}=\gamma\tilde{M}\begin{pmatrix}S_{x}\\S_{y}\end{pmatrix}\Rightarrow\left(1+\alpha^{2}\right)\partial_{t}\vec{g}+\omega_{B}\tilde{M}\vec{g}=\gamma\tilde{M}\vec{S} \\ & \tilde{C}=\begin{pmatrix}1&i\\1&-i\end{pmatrix}\Rightarrow\tilde{C}\begin{pmatrix}g_{x}\\g_{y}\end{pmatrix}\Box\begin{pmatrix}g_{c+}\\g_{c-}\end{pmatrix}\Rightarrow\begin{cases} \begin{pmatrix}g_{x}\\g_{y}\end{pmatrix}=\tilde{C}^{-1}\begin{pmatrix}g_{c+}\\g_{c-}\end{pmatrix}=\frac{1}{2i}\begin{pmatrix}i&i\\1&-1\end{pmatrix}\begin{pmatrix}g_{c+}\\g_{c-}\end{pmatrix}\\ & \begin{pmatrix}S_{x}\\S_{y}\end{pmatrix}=\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\frac{1}{2i}\begin{pmatrix}i&i\\1&-1\end{pmatrix}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}\\ & \Rightarrow \begin{pmatrix}1+\alpha^{2}\\g_{c-}\end{pmatrix}+\omega_{B}\tilde{M}\tilde{C}^{-1}\begin{pmatrix}g_{c+}\\g_{c-}\end{pmatrix}=\gamma\tilde{M}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}\\ & \Rightarrow \tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}\\ & \Rightarrow \begin{pmatrix}1+\alpha^{2}\\g_{c-}\end{pmatrix}+\omega_{B}\tilde{C}\tilde{M}\tilde{C}^{-1}\begin{pmatrix}g_{c+}\\g_{c-}\end{pmatrix}=\tilde{C}\tilde{M}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}\\ & \Rightarrow \tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}\\ & \Rightarrow \tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}\tilde{M}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}\\ & \Rightarrow \tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C}^{-1}\tilde{C}^{-1}\begin{pmatrix}S_{c+}\\S_{c-}\end{pmatrix}=\tilde{C}^{-1}\tilde{C$$

$$\tilde{C}\tilde{M}\tilde{C}^{-1} = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} \alpha & -1 \\ 1 & \alpha \end{pmatrix} \frac{1}{2i} \begin{pmatrix} i & i \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \alpha+i & -1+i\alpha \\ \alpha-i & -1-i\alpha \end{pmatrix} \frac{1}{2i} \begin{pmatrix} i & i \\ 1 & -1 \end{pmatrix}$$

$$= \frac{1}{2i} \begin{pmatrix} i\alpha-1-1+i\alpha & i\alpha-1+1-i\alpha \\ i\alpha+1-1-i\alpha & i\alpha+1+1+i\alpha \end{pmatrix} = \frac{1}{2i} \begin{pmatrix} 2i\alpha-2 & 0 \\ 0 & 2i\alpha+2 \end{pmatrix} = \begin{pmatrix} \alpha+i & 0 \\ 0 & \alpha-i \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1+\alpha^2 \\ \partial_t \begin{pmatrix} g_{c+} \\ g_{c-} \end{pmatrix} + \omega_B \begin{pmatrix} [\alpha+i]g_{c+} \\ [\alpha-i]g_{c-} \end{pmatrix} = \gamma \begin{pmatrix} [\alpha+i]S_{c+} \\ [\alpha-i]S_{c-} \end{pmatrix}$$

$$\Rightarrow \begin{cases} \partial_t + \frac{\omega_B}{\alpha-i} \\ g_{c+} = \frac{\gamma}{\alpha-i}S_{c+} \\ \partial_t + \frac{\omega_B}{\alpha+i} \end{pmatrix} g_{c-} = \frac{\gamma}{\alpha+i}S_{c-}$$

$$(29)$$

The following is complex notation for non-Hermitian quantities:

$$\begin{pmatrix}
S_{x} \\
S_{y}
\end{pmatrix} = \begin{pmatrix}
S_{xc} \\
S_{yc}
\end{pmatrix} \cos \omega t + \begin{pmatrix}
S_{xs} \\
S_{ys}
\end{pmatrix} \sin \omega t = \begin{pmatrix}
S_{xc} \\
S_{yc}
\end{pmatrix} \frac{1}{2} \left[e^{i\omega t} + e^{-i\omega t}\right] + \begin{pmatrix}
S_{xs} \\
S_{ys}
\end{pmatrix} \frac{1}{2} \left[e^{i\omega t} - e^{-i\omega t}\right]$$

$$= \frac{1}{2} \begin{pmatrix}
S_{xc} + iS_{xs} \\
S_{yc} + iS_{ys}
\end{pmatrix} e^{-i\omega t} + \begin{pmatrix}
S_{xc} - iS_{xs} \\
S_{yc} - iS_{ys}
\end{pmatrix} e^{i\omega t} \square \begin{pmatrix}
S_{x+} \\
S_{y+}
\end{pmatrix} e^{-i\omega t} + \begin{pmatrix}
S_{x-} + iS_{y-} \\
S_{x-} - iS_{y-}
\end{pmatrix} e^{i\omega t}$$

$$\Rightarrow \begin{pmatrix}
S_{c+} \\
S_{c-}
\end{pmatrix} \square \begin{pmatrix}
S_{x+} + iS_{y+} \\
S_{x+} - iS_{y+}
\end{pmatrix} e^{-i\omega t} + \begin{pmatrix}
S_{x-} + iS_{y-} \\
S_{x-} - iS_{y-}
\end{pmatrix} e^{i\omega t} = \begin{pmatrix}
S_{xc} + iS_{xs} + iS_{yc} - S_{ys} \\
S_{xc} + iS_{xs} - iS_{yc} - S_{ys}
\end{pmatrix} e^{-i\omega t} + \begin{pmatrix}
S_{xc} - iS_{xs} + iS_{yc} + S_{ys} \\
S_{xc} - iS_{xs} - iS_{yc} - S_{ys}
\end{pmatrix} e^{i\omega t}$$

$$= \begin{pmatrix}
S_{xc} - S_{ys} + i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} + S_{ys} + i \begin{bmatrix}
S_{xs} - S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} - S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} - S_{ys} - i \begin{bmatrix}
S_{xs} + S_{yc}
\end{bmatrix} \\
S_{xc} - i\omega t + \begin{pmatrix}
S_{x} + i\omega t \\
S_{x} - i\omega t \\
S_{x$$

The following is the transient solution:

$$p_{\pm} = \frac{\omega_{B}}{\alpha \mp i} \Rightarrow \begin{cases} g_{c+}(t) = A_{+}e^{-p_{+}t} + B_{+}e^{-i\omega t} + C_{+}e^{i\omega t} \\ g_{c-}(t) = A_{-}e^{-p_{-}t} + B_{-}e^{-i\omega t} + C_{-}e^{i\omega t} \end{cases}$$

$$\left(\hat{\sigma}_{t} + p_{+}\right)g_{c+} = \left(p_{+} - i\omega\right)B_{+}e^{-i\omega t} + \left(p_{+} + i\omega\right)C_{+}e^{i\omega t} = \frac{\gamma}{\alpha - i}\left(S_{+}e^{-i\omega t} + S_{-}^{*}e^{i\omega t}\right)$$

$$\Rightarrow \begin{cases} B_{+} = \frac{\gamma}{\alpha - i}\frac{S_{+}}{p_{+} - i\omega} = \frac{\gamma S_{+}}{\omega_{B} - i\omega(\alpha - i)} = \frac{\gamma S_{+}}{\omega_{B} - \omega - i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{+} = \frac{\gamma}{\alpha - i}\frac{S_{-}^{*}}{p_{+} + i\omega} = \frac{\gamma S_{-}^{*}}{\omega_{B} + i\omega(\alpha - i)} = \frac{\gamma S_{-}^{*}}{\omega_{B} + \omega + i\alpha\omega} \end{cases}$$

$$\left(\hat{\sigma}_{t} + p_{-}\right)g_{c-} = \left(p_{-} - i\omega\right)B_{-}e^{-i\omega t} + \left(p_{-} + i\omega\right)C_{-}e^{i\omega t} = \frac{\gamma}{\alpha + i}\left(S_{-}e^{-i\omega t} + S_{+}^{*}e^{i\omega t}\right) \right\}$$

$$\Rightarrow \begin{cases} B_{-} = \frac{\gamma}{\alpha + i}\frac{S_{-}}{p_{-} - i\omega} = \frac{\gamma S_{-}}{\omega_{B} - i\omega(\alpha + i)} = \frac{\gamma S_{-}}{\omega_{B} + \omega - i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{-} = \frac{\gamma}{\alpha + i}\frac{S_{+}^{*}}{p_{-} + i\omega} = \frac{\gamma S_{+}^{*}}{\omega_{B} + i\omega(\alpha + i)} = \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{-} = \frac{\gamma}{\alpha + i}\frac{S_{+}^{*}}{p_{-} + i\omega} = \frac{\gamma S_{+}^{*}}{\omega_{B} + i\omega(\alpha + i)} = \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{-} = \frac{\gamma}{\alpha + i}\frac{S_{+}^{*}}{p_{-} + i\omega} = \frac{\gamma S_{+}^{*}}{\omega_{B} + i\omega(\alpha + i)} = \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{-} = \frac{\gamma}{\alpha + i}\frac{S_{+}^{*}}{p_{-} + i\omega} = \frac{\gamma S_{+}^{*}}{\omega_{B} + i\omega(\alpha + i)} = \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{-} = \frac{\gamma}{\alpha + i}\frac{S_{+}^{*}}{p_{-} + i\omega} = \frac{\gamma S_{+}^{*}}{\omega_{B} + i\omega(\alpha + i)} = \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \end{cases}$$

$$\Rightarrow \begin{cases} C_{-} = \frac{\gamma}{\alpha + i}\frac{S_{+}^{*}}{p_{-} + i\omega} = \frac{\gamma S_{+}^{*}}{\omega_{B} + i\omega(\alpha + i)} = \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \end{cases}$$

For the boundary condition at t = 0,

$$g_{c\pm}(0) \equiv g_{c\pm0} = A_{\pm} + B_{\pm} + C_{\pm} \Rightarrow A_{\pm} = g_{c\pm0} - B_{\pm} - C_{\pm}$$

$$\Rightarrow \begin{cases} g_{c+}(t) = g_{c+0}e^{-p_{+}t} + \frac{\gamma S_{+}}{\omega_{B} - \omega - i\alpha\omega} \left(e^{-i\omega t} - e^{-p_{+}t}\right) + \frac{\gamma S_{-}^{*}}{\omega_{B} + \omega + i\alpha\omega} \left(e^{i\omega t} - e^{-p_{+}t}\right) \\ g_{c-}(t) = g_{c-0}e^{-p_{-}t} + \frac{\gamma S_{-}}{\omega_{B} + \omega - i\alpha\omega} \left(e^{-i\omega t} - e^{-p_{-}t}\right) + \frac{\gamma S_{+}^{*}}{\omega_{B} - \omega + i\alpha\omega} \left(e^{i\omega t} - e^{-p_{-}t}\right) \end{cases}$$
(32)

$$\begin{pmatrix} g_{X} \\ g_{y} \end{pmatrix} = \begin{cases}
\frac{1}{2} \left[g_{c+} + g_{c-} \right] \\
\frac{1}{2i} \left[g_{c+} - g_{c-} \right]
\end{cases}$$

$$p_{-} = p_{+}^{*} \Rightarrow g_{c-} = g_{c-0}e^{-p_{-}t} + \frac{\gamma}{\alpha + i} \frac{S_{-}}{p_{-} - i\omega} \left(e^{-i\omega t} - e^{-p_{-}t} \right) + \frac{\gamma}{\alpha + i} \frac{S_{+}^{*}}{p_{-} + i\omega} \left(e^{i\omega t} - e^{-p_{-}t} \right)$$

$$= g_{c-0}e^{-p_{+}^{*}t} + \left(\frac{\gamma}{\alpha - i} \right)^{*} \frac{S_{-}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) + \left(\frac{\gamma}{\alpha - i} \right)^{*} \frac{S_{+}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right)$$

$$= g_{c-0}e^{-p_{+}^{*}t} + \left(\frac{\gamma}{\alpha - i} \right)^{*} \frac{S_{-}}{p_{+}^{*} - i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \left(\frac{\gamma}{\alpha - i} \right)^{*} \frac{S_{+}^{*}}{p_{+}^{*} + i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right)$$

$$= g_{c-0}\left\{ e^{-p_{+}^{*}t} \right\}^{*} + \left(\frac{\gamma}{\alpha - i} \right)^{*} \left\{ \frac{S_{-}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \frac{S_{+}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) \right\}^{*}$$

$$= g_{c-0}\left\{ e^{-p_{+}^{*}t} \right\}^{*} + \left(\frac{\gamma}{\alpha - i} \right)^{*} \left\{ \frac{S_{-}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \frac{S_{+}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) \right\}^{*}$$

$$= g_{c-0}\left\{ e^{-p_{+}^{*}t} \right\}^{*} + \left(\frac{\gamma}{\alpha - i} \right)^{*} \left\{ \frac{S_{-}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \frac{S_{+}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) \right\}^{*}$$

$$= g_{c-0}\left\{ e^{-p_{+}^{*}t} \right\}^{*} + \left(\frac{\gamma}{\alpha - i} \right)^{*} \left\{ \frac{S_{-}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \frac{S_{+}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) \right\}^{*}$$

$$\Rightarrow g_{c-0} = g_{x0} - ig_{y0} = g_{c+0}^{*}$$

$$\Rightarrow g_{c}\left\{ g_{x} \right\} = \left[Re \left[\left(g_{x0} + ig_{y0} \right) e^{-p_{+}^{*}t} + \frac{\gamma}{\alpha - i} \frac{S_{-}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \frac{\gamma}{\alpha - i} \frac{S_{+}^{*}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) \right]$$

$$\Rightarrow \left[g_{x} \right\} = \left[Re \left[\left(g_{x0} + ig_{y0} \right) e^{-p_{+}^{*}t} + \frac{\gamma}{\alpha - i} \frac{S_{-}^{*}}{p_{+}^{*} + i\omega} \left(e^{i\omega t} - e^{-p_{+}^{*}t} \right) + \frac{\gamma}{\alpha - i} \frac{S_{+}^{*}}{p_{+}^{*} - i\omega} \left(e^{-i\omega t} - e^{-p_{+}^{*}t} \right) \right]$$

$$\Rightarrow \left[g_{x} \right\} = \left[Re \left[\left(g_{x0} + ig_{y0} \right) e^{-p_{+}^{*}t} + \frac{\gamma}{\alpha - i} \frac{S_{-}^{$$

The linear source terms are

$$\begin{pmatrix} S_{X} \\ S_{Y} \end{pmatrix} = \begin{pmatrix} h_{X} \\ h_{Y} \end{pmatrix} = \begin{pmatrix} h_{XC} \\ h_{YC} \end{pmatrix} \cos \omega t + \begin{pmatrix} h_{XS} \\ h_{YS} \end{pmatrix} \sin \omega t = \frac{1}{2} \left\{ \begin{pmatrix} h_{XC} + ih_{XS} \\ h_{YC} + ih_{YS} \end{pmatrix} e^{-i\omega t} + \begin{pmatrix} h_{XC} - ih_{XS} \\ h_{YC} - ih_{YS} \end{pmatrix} e^{i\omega t} \right\}$$

$$\Box \begin{pmatrix} h_{X} \\ h_{Y} \end{pmatrix} e^{-i\omega t} + \begin{pmatrix} h_{X}^{*} \\ h_{Y}^{*} \end{pmatrix} e^{i\omega t} \Rightarrow \begin{pmatrix} S_{C+} \\ S_{C-} \end{pmatrix} = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \left[\begin{pmatrix} h_{X} \\ h_{Y} \end{pmatrix} e^{-i\omega t} + \begin{pmatrix} h_{X}^{*} \\ h_{Y}^{*} \end{pmatrix} e^{i\omega t} \right]$$

$$= \begin{pmatrix} h_{X} + ih_{Y} \\ h_{X} - ih_{Y} \end{pmatrix} e^{-i\omega t} + \begin{pmatrix} h_{X}^{*} + ih_{Y}^{*} \\ h_{X}^{*} - ih_{Y}^{*} \end{pmatrix} e^{i\omega t} \Box \begin{pmatrix} H_{+} \\ H_{-} \end{pmatrix} e^{-i\omega t} + \begin{pmatrix} H_{-}^{*} \\ H_{+}^{*} \end{pmatrix} e^{i\omega t}$$

$$\mathcal{H}_{X} = \sqrt{h_{XC}^{2} + h_{XS}^{2}}, \, \mathcal{H}_{Y} = \sqrt{h_{YC}^{2} + h_{YS}^{2}} \Rightarrow \begin{cases} h_{X} = \mathcal{H}_{X} e^{-i\theta_{X}} \\ h_{Y} = \mathcal{H}_{Y} e^{-i\theta_{Y}} \end{cases}$$

$$(36)$$

The two-frequency solution is

$$\begin{pmatrix}
g_{x} + ig_{y} \\
g_{x} - ig_{y}
\end{pmatrix} = \begin{pmatrix}
G_{1} \\
G_{1}^{*}
\end{pmatrix}$$

$$\Rightarrow \begin{cases}
\left(\partial_{t} + \frac{\omega_{B}}{\alpha - i}\right)G_{1s} = \frac{\gamma}{\alpha - i}\left(H_{+}e^{-i\omega_{S}t} + H_{-}^{*}e^{i\omega_{S}t}\right)
\\
\left(\partial_{t} + \frac{\omega_{B}}{\alpha - i}\right)G_{1p} = \frac{\gamma}{\alpha - i}\left(H_{+}e^{-i\omega_{p}t} + H_{-}^{*}e^{i\omega_{p}t}\right)
\end{cases}$$

$$\Rightarrow \begin{cases}
G_{1s} = \frac{\gamma(h_{sx} + ih_{sy})}{\omega_{B} - \omega_{s} - i\alpha\omega_{s}}e^{-i\omega_{s}t} + \frac{\gamma(h_{sx} - ih_{sy})^{*}}{\omega_{B} + \omega_{s} + i\alpha\omega_{s}}e^{i\omega_{s}t}
\end{cases}$$

$$\Rightarrow \begin{cases}
G_{1p} = \frac{\gamma(h_{px} + ih_{py})_{+}}{\omega_{B} - \omega_{p} - i\alpha\omega_{p}}e^{-i\omega_{p}t} + \frac{\gamma(h_{px} - ih_{py})^{*}}{\omega_{B} + \omega_{p} + i\alpha\omega_{p}}e^{i\omega_{p}t}
\end{cases}$$
(37)

4. Second-order Solution

The solutions to

$$(\alpha - i)\frac{\partial}{\partial t}G_2 + \gamma \Lambda G_2 = -\gamma h_z G_1$$
(38)

require the first-order solutions in the forms

$$G_{1a,b} = \Gamma_{a,b+} H_{a,b+} e^{-i\omega_{a,b}t} + \Gamma_{a,b-} H_{a,b-} e^{+i\omega_{a,b}t}$$

$$G_{1a,b} = \Gamma_{a,b-} H_{a,b-} e^{-i\omega_{a,b}t} + \Gamma_{a,b+} H_{a,b+} e^{+i\omega_{a,b}t}$$
(39)

which gives the following expressions for the source terms:

$$\begin{split} &-\gamma h_z G_1 = \left\{ \operatorname{Re} \left(h_{az} e^{-i\omega_a t} \right) + \operatorname{Re} \left(h_{bz} e^{-i\omega_b t} \right) \right\} \cdot \left\{ G_{1a} + G_{1b} \right\} \\ &= -\frac{\gamma}{2} \left\{ h_{az} e^{-i\omega_a t} + h_{bz} e^{-i\omega_b t} + h_{az} e^{i\omega_a t} + h_{bz} e^{-i\omega_b t} \right\} \left\{ \begin{array}{l} \Gamma_{a+} H_{a+} e^{-i\omega_a t} + \Gamma_{a-} H_{a-} e^{+i\omega_a t} \\ + \Gamma_{b+} H_{b+} e^{-i\omega_b t} + \Gamma_{b-} H_{b-} e^{-i\omega_b t} \right\} \\ &= -\frac{\gamma}{2} \left\{ \begin{array}{l} h_{az} \Gamma_{a+} H_{a+} e^{-2i\omega_a t} + h_{az} \Gamma_{a-} H_{a-} e^{+h_a} + h_{az} \Gamma_{b+} H_{b+} e^{-i\omega_s umt} + h_{az} \Gamma_{b-} H_{b-} e^{-i\omega_b t} \\ + h_{bz} \Gamma_{a+} H_{a+} e^{-i\omega_s umt} + h_{bz} \Gamma_{a-} H_{a-} e^{+i\omega_b t} e^{-i\omega_s umt} + h_{bz} \Gamma_{b-} H_{b-} e^{-i\omega_b t} \\ + h_{az} \Gamma_{a+} H_{a+} + h_{az} \Gamma_{a-} H_{a-} e^{+2i\omega_a t} + h_{az} \Gamma_{b+} H_{b+} e^{-2i\omega_b t} + h_{bz} \Gamma_{b-} H_{b-} e^{+i\omega_s umt} \\ + h_{bz} \Gamma_{a+} H_{a+} + h_{az} \Gamma_{a-} H_{a-} e^{+2i\omega_a t} + h_{az} \Gamma_{b+} H_{b+} e^{-i\omega_b t} \\ + h_{bz} \Gamma_{a-} H_{a-} e^{-i\omega_b t} + h_{bz} \Gamma_{a-} H_{a-} e^{+2i\omega_b t} \\ + h_{bz} \Gamma_{a-} H_{a-} e^{-i\omega_b t} + h_{bz} \Gamma_{b-} H_{b-} e^{+2i\omega_b t} \\ + h_{az} \Gamma_{a-} H_{a-} e^{-i\omega_b t} + \left(h_{az} \Gamma_{a-} H_{a-} e^{+2i\omega_b t} + h_{bz} \Gamma_{b-} H_{b-} e^{+2i\omega_b t} \right) \\ = -\frac{\gamma}{2} \left\{ \left(h_{az} \Gamma_{a-} H_{a-} + h_{a-} e^{-2i\omega_a t} + \left(h_{az} \Gamma_{a-} H_{a-} e^{+2i\omega_a t} + h_{bz} \Gamma_{b-} H_{b-} e^{+2i\omega_b t} \right) \right\} \\ + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} + h_{az} \Gamma_{a-} H_{a-} + h_{bz} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{b-} H_{b-} \\ + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} \right) e^{-i\omega_b t} + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} \right) e^{+i\omega_b t} \\ + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} \right) e^{-i\omega_b t} + \left(h_{bz} \Gamma_{a-} H_{a-} + h_{az} \Gamma_{b-} H_{b-} \right) e^{+i\omega_b t} \\ + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} \right) e^{-i\omega_b t} + \left(h_{bz} \Gamma_{a-} H_{a-} + h_{az} \Gamma_{b-} H_{b-} \right) e^{+i\omega_b t} \\ + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} \right) e^{-i\omega_b t} + \left(h_{bz} \Gamma_{a-} H_{a-} + h_{az} \Gamma_{b-} H_{b-} \right) e^{-i\omega_b t} \\ + \left(h_{az} \Gamma_{b-} H_{b-} + h_{bz} \Gamma_{a-} H_{a-} \right) e^{-i\omega_b t} + \left(h_{az} \Gamma_{b-} H_{b-} + h_{az} \Gamma_{b-} H_{b-} \right) e^{-i\omega_b t} \\ + \left(h_{az} \Gamma_{b-} H_$$

where $\omega_{sum} = \omega_a + \omega_b$ and $\omega_{dif} = \omega_a - \omega_b$ are the sum and difference frequencies. The basic equation for the second-order perturbation G_2 is

$$(\alpha - i)\frac{\partial}{\partial t}G_{2} + \omega_{B}G_{2} = -\frac{\gamma}{2} \begin{cases} \left(h_{az}\Gamma_{a} + H_{a} + \right)e^{-2i\omega_{a}t} + \left(h_{az}\Gamma_{a}^{-} + H_{a}^{-} + h_{b}^{-} \Gamma_{a}^{-} + H_{a}^{-} + h_{b}^{-} \Gamma_{b}^{-} + H_{b}^{-} + h_{b}^{-} \Gamma_{a}^{-} + H_{a}^{-} + h_{b}^{-} \Gamma_{a}^{-} + h_{a}^{-} \Gamma_{a}^{-} + h_{b}^{-} \Gamma_{a}^{-}$$

where

$$\Gamma_{0} = \frac{\gamma}{2} \frac{1}{\omega_{B}}$$

$$\Gamma_{2a \pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp 2\omega_{a} - i\alpha(2\omega_{a})}$$

$$\Gamma_{2b \pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp 2\omega_{b} - i\alpha(2\omega_{b})}$$

$$\Gamma_{s \pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp \omega_{sum} - i\alpha(\omega_{sum})}$$

$$\Gamma_{d \pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp \omega_{dif} - i\alpha(\omega_{dif})}$$

$$\Gamma_{d \pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp \omega_{dif} - i\alpha(\omega_{dif})}$$

are new resonances associated with the various mixing products. For the z-component, we have

$$\begin{split} &-\frac{1}{2}|\mathcal{G}_{1}|^{2} = -\frac{1}{2}|\mathcal{G}_{1a} + \mathcal{G}_{1b}|^{2} = -\frac{1}{2}\left\{|\mathcal{G}_{1a}|^{2} + |\mathcal{G}_{1b}|^{2} + 2\operatorname{Re}\left(\mathcal{G}_{1a}^{*}\mathcal{G}_{1b}\right)\right\} \\ &= -\frac{1}{2}\left\{|\Gamma_{a+}H_{a+e}e^{-i\omega_{a}t} + \Gamma_{a-}H_{a-e}e^{+i\omega_{a}t}|^{2} + |\Gamma_{b+}H_{b+e}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}|^{2} + 2\operatorname{Re}\left(\left[\Gamma_{a+}H_{a+e}e^{-i\omega_{a}t} + \Gamma_{a-}H_{a-e}e^{+i\omega_{a}t}\right]^{2} + |\Gamma_{b+}H_{b+e}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}|^{2} + 2\operatorname{Re}\left(\left[\Gamma_{a+}H_{a+e}e^{-i\omega_{a}t} + \Gamma_{a-}H_{a-e}e^{+i\omega_{a}t}\right]^{2} + |\Gamma_{b+}H_{b+e}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}|^{2} + 2\operatorname{Re}\left(\left[\Gamma_{a-}H_{a-e}e^{-i\omega_{a}t} + \Gamma_{a-}H_{a-e}e^{+i\omega_{a}t}\right]^{2} + |\Gamma_{b+}H_{b+e}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}|^{2} + 2\operatorname{Re}\left(\left[\Gamma_{a-}H_{a-e}e^{-i\omega_{a}t} + \Gamma_{a-}H_{a-e}e^{+i\omega_{a}t}\right]^{2} + 2\operatorname{Re}\left(\Gamma_{a-}H_{a-e}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}\right) \right] \right\} \\ &= -\frac{1}{2}\left\{|\Gamma_{a+}H_{a+}|^{2} + |\Gamma_{a-}H_{a-}e^{-i\omega_{a}t} + \Gamma_{a+}H_{a+e}e^{+i\omega_{a}t}\right|^{2} + 2\operatorname{Re}\left(\Gamma_{a-}H_{a-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}\right) \right\} \\ &= -\frac{1}{2}\left\{|\Gamma_{a+}H_{a+}|^{2} + |\Gamma_{a-}H_{a-}e^{-i\omega_{a}t} + \Gamma_{a+}H_{a+e}e^{-i\omega_{a}t}\right|^{2} + 2\operatorname{Re}\left(\Gamma_{a-}H_{a-}G_{b-}H_{b-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-e}e^{+i\omega_{b}t}\right) \right\} \\ &= -\frac{1}{2}\left\{|\Gamma_{a+}H_{a+}|^{2} + |\Gamma_{b-}H_{b-}e^{-i\omega_{a}t} + \Gamma_{a+}H_{a+e}e^{-i\omega_{a}t}\right|^{2} + 2\operatorname{Re}\left(\Gamma_{a-}H_{a-}G_{b-}H_{b-}e^{-i\omega_{a}t}\right) + 2\operatorname{Re}\left(\Gamma_{a-}H_{a-}G_{b-}H_{b-}G_{b-}H_{b-}G_{b-}H_{b-}e^{-i\omega_{a}t}\right) + 2\operatorname{Re}\left(\Gamma_{a-}H_{a-}G_{b-}H_{b-}G_{b-}H_{b-}G_{b-}G_{b-}H_{b-}G_{b-$$

Two frequencies of special interest to remote sensing are the sum and difference frequencies. The magnetization amplitudes at these frequencies are given by

$$G_{2sum} = -\left[\Gamma_{sum+}\left(h_{az}\Gamma_{b+}H_{b+} + h_{bz}\Gamma_{a+}H_{a+}\right)e^{-i\omega_{sum}t} + \Gamma_{sum-}\left(h_{az}\Gamma_{b-}H_{b-} + h_{bz}\Gamma_{a-}H_{a-}\right)^{*}e^{+i\omega_{sum}t}\right]$$

$$g_{2sum,x} = \operatorname{Re}G_{2sum}$$

$$g_{2sum,y} = \operatorname{Im}G_{2sum}$$

$$g_{2sum,z} = -\operatorname{Re}\left(\left[\Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+} + \Gamma_{a+}H_{a+}\Gamma_{b-}H_{b-}\right]e^{-i\omega_{sum}t}\right)$$

$$(45)$$

and

$$G_{2dif} = -\left[\Gamma_{dif} + \left(h_{az}\Gamma_{b-}^{*}H_{b-}^{*} + h_{bz}^{*}\Gamma_{a+}H_{a+}\right)e^{-i\omega_{dif}t} + \Gamma_{dif} - \left(h_{bz}\Gamma_{a-}^{*}H_{a-}^{*} + h_{az}^{*}\Gamma_{b+}H_{b+}\right)e^{+i\omega_{dif}t}\right]$$

$$g_{2dif,x} = \operatorname{Re}G_{2dif}$$

$$g_{2dif,y} = \operatorname{Im}G_{2dif}$$

$$g_{2dif,z} = -\operatorname{Re}\left(\left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right]e^{-i\omega_{dif}t}\right)$$

$$(46)$$

5. Third-order Solution

The time-domain equation of the third-order system has a complicated source term:

$$(\alpha - i)\frac{\partial}{\partial t}G_{3} + \omega_{B}G_{3} = \frac{\gamma}{\alpha + i} \begin{cases} -\frac{1}{2}(3\alpha + i)|G_{1}|^{2} \mathcal{H} + \alpha \frac{1}{2}G_{1}^{2}\mathcal{H}^{*} \\ +\frac{1}{2}(\alpha\Lambda + [\alpha + i]\Theta)|G_{1}|^{2} G_{1} - (\alpha + i)h_{z}G_{2} \end{cases}$$

$$\Box \frac{\gamma}{2} \left\{ -\left(1 + \frac{2\alpha}{\alpha + i}\right)\mathbb{S}_{1} + \frac{\alpha}{\alpha + i}\mathbb{S}_{2} + \left(\frac{\alpha}{\alpha + i}\Lambda + \Theta\right)\mathbb{S}_{3} - 2\mathbb{S}_{4} \right\}$$

$$(47)$$

To evaluate G_3 , we must first express the various products in multi-frequency form. This leads to the following linear inhomogeneous equation:

$$(\alpha - i)\frac{\partial}{\partial t}G_{3} + \omega_{B}G_{3} = \frac{\gamma}{2} \begin{pmatrix} S_{3,a+}e^{-i\omega_{a}t} + S_{3,a-}e^{+i\omega_{a}t} + S_{3,b+}e^{-i\omega_{b}t} + S_{3,b-}e^{+i\omega_{b}t} \\ + S_{3,3a+}e^{-3i\omega_{a}t} + S_{3,3a-}e^{+3i\omega_{a}t} + S_{3,3b+}e^{-3i\omega_{b}t} + S_{3,3b-}e^{+3i\omega_{b}t} \\ + S_{3,2b+a,+}e^{-i\left(2\omega_{b}+\omega_{a}\right)t} + S_{3,2b+a,-}e^{+i\left(2\omega_{b}+\omega_{a}\right)t} \\ + S_{3,2a+b,+}e^{-i\left(2\omega_{a}+\omega_{b}\right)t} + S_{3,2a+b,-}e^{+i\left(2\omega_{a}+\omega_{b}\right)t} \\ + S_{3,2a-b,+}e^{-i\left(2\omega_{b}-\omega_{a}\right)t} + S_{3,2b-a,-}e^{+i\left(2\omega_{b}-\omega_{a}\right)t} \\ + S_{3,2a-b,+}e^{-i\left(2\omega_{a}-\omega_{b}\right)t} + S_{3,2a-b,-}e^{+i\left(2\omega_{a}-\omega_{b}\right)t} \end{pmatrix}$$

$$(48)$$

which is easily solved:

$$G_{3} = \begin{pmatrix} \Gamma_{a+}S_{3,a+}e^{-i\omega_{a}t} + \Gamma_{a-}S_{3,a-}e^{+i\omega_{a}t} + \Gamma_{b+}S_{3,b+}e^{-i\omega_{b}t} + \Gamma_{b-}S_{3,b-}e^{+i\omega_{b}t} \\ + \Gamma_{3a+}S_{3,3a+}e^{-3i\omega_{a}t} + \Gamma_{3a-}S_{3,3a-}e^{+3i\omega_{a}t} + \Gamma_{3b+}S_{3,3b+}e^{-3i\omega_{b}t} + \Gamma_{3b-}S_{3,3b-}e^{+3i\omega_{b}t} \\ + \Gamma_{2b+a+}S_{3,2b+a,+}e^{-i\left(2\omega_{b}+\omega_{a}\right)t} + \Gamma_{2b+a,-}S_{3,2b+a,-}e^{+i\left(2\omega_{b}+\omega_{a}\right)t} \\ + \Gamma_{2a+b+}S_{3,2a+b,+}e^{-i\left(2\omega_{a}+\omega_{b}\right)t} + \Gamma_{2a+b,-}S_{3,2a+b,-}e^{+i\left(2\omega_{a}+\omega_{b}\right)t} \\ + \Gamma_{2b-a+}S_{3,2b-a,+}e^{-i\left(2\omega_{b}-\omega_{a}\right)t} + \Gamma_{2b-a,-}S_{3,2b-a,-}e^{+i\left(2\omega_{b}-\omega_{a}\right)t} \\ + \Gamma_{2amb+}S_{3,2a-b,+}e^{-i\left(2\omega_{a}-\omega_{b}\right)t} + \Gamma_{2a-b,-}S_{3,2a-b,-}e^{+i\left(2\omega_{a}-\omega_{b}\right)t} \end{pmatrix}$$

$$(49)$$

where

$$\Gamma_{a\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp \omega_{a} - i\alpha\omega_{a}} \qquad \Gamma_{b\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp \omega_{b} - i\alpha\omega_{b}} \\
\Gamma_{3a\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp 3\omega_{a} - i\alpha(3\omega_{a})} \qquad \Gamma_{3b\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp 3\omega_{b} - i\alpha(3\omega_{b})} \\
\Gamma_{2b+a,\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp (2\omega_{b} + \omega_{a}) - i\alpha(2\omega_{b} + \omega_{a})} \qquad \Gamma_{2a-b,\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp (2\omega_{a} - \omega_{b}) - i\alpha(2\omega_{a} - \omega_{b})} \\
\Gamma_{2a+b,\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp (2\omega_{a} + \omega_{b}) - i\alpha(2\omega_{a} + \omega_{b})} \qquad \Gamma_{2a-b,\pm} = \frac{\gamma}{2} \frac{1}{\omega_{B} \mp (2\omega_{a} - \omega_{b}) - i\alpha(2\omega_{a} - \omega_{b})}$$
(50)

Note that the third-order source terms give rise to three distinct effects: frequency tripling, amplitude-dependence of the response functions at the drive frequencies, and intermodulation products.

6. Grouping Third-order Magnetization Terms

The only terms of interest here are the intermod terms, which are color-coded to make the algebra easier to follow.

$$\begin{split} &\mathbb{S}_{1} = \left| \mathcal{G}_{1} \right|^{2} \mathcal{H} \\ &= \begin{cases} \left| \Gamma_{a+} H_{a+} \right|^{2} + \left| \Gamma_{a-}^{*} H_{a-}^{*} \right|^{2} + 2 \operatorname{Re} \left(\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a+} H_{a+} e^{-2i\omega_{a}t} \right) \\ + \left| \Gamma_{b+} H_{b+} \right|^{2} + \left| \Gamma_{b-}^{*} H_{b-}^{*} \right|^{2} + 2 \operatorname{Re} \left(\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{b+} H_{b+} e^{-2i\omega_{b}t} \right) \\ + 2 \operatorname{Re} \left(\left[\Gamma_{a-} H_{a-} \Gamma_{b+}^{*} H_{b+} + \Gamma_{a+} H_{a+} \Gamma_{b-}^{*} H_{b-} \right] e^{-i\omega_{s}t} \right) \\ + 2 \operatorname{Re} \left(\left[\Gamma_{a-} H_{a-} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+} \Gamma_{b+}^{*} H_{b+}^{*} \right] e^{-i\omega_{d}t} \right) \end{aligned} \\ \Box \frac{1}{2} \sum_{m=1}^{5} X_{m} \\ X_{1} = \left\{ \left| \Gamma_{a+} H_{a+} \right|^{2} + \left| \Gamma_{a-}^{*} H_{a-}^{*} \right|^{2} + \left| \Gamma_{b+}^{*} H_{b+} \right|^{2} + \left| \Gamma_{b-}^{*} H_{b-}^{*} \right|^{2} \right\} \left\{ H_{a+} e^{-i\omega_{a}t} + H_{a-}^{*} e^{+i\omega_{a}t} + H_{b+} e^{-i\omega_{b}t} + H_{b-}^{*} e^{+i\omega_{b}t} \right\} \end{aligned} (52)$$

$$\begin{split} & X_{4} = 2\operatorname{Re}\left[\left[\Gamma_{a} - H_{a} - \Gamma_{b_{+}} H_{b_{+}} + \Gamma_{a_{+}} H_{a_{+}} \Gamma_{b_{-}} H_{b_{-}}\right] e^{-i\omega_{a}t}\right] \left\{H_{a_{+}} e^{-i\omega_{a}t} + H_{a_{-}}^{*} e^{+i\omega_{a}t} + H_{b_{+}} e^{-i\omega_{b}t}\right\} - \left[\left[\Gamma_{a} - H_{a} - \Gamma_{b_{+}} H_{b_{+}} + \Gamma_{a_{+}} H_{a_{+}} \Gamma_{b_{-}} H_{b_{-}}\right] e^{-i\omega_{a}t} e^{-i\omega_{b}t}\right] \left\{H_{a_{+}} e^{-i\omega_{a}t} + H_{a_{+}}^{*} e^{+i\omega_{a}t} + H_{b_{+}} e^{-i\omega_{b}t}\right\} - \left[\left[\Gamma_{a} - H_{a} - \Gamma_{b_{+}} H_{b_{+}} + \Gamma_{a_{+}} H_{a_{+}} \Gamma_{b_{-}} H_{b_{-}}\right] e^{-i\omega_{a}t} e^{-i\omega_{b}t}\right] \left\{H_{a_{+}} e^{-i\omega_{a}t} + H_{a_{-}}^{*} e^{+i\omega_{a}t} + H_{b_{+}} e^{-i\omega_{b}t} + H_{b_{-}}^{*} e^{+i\omega_{b}t}\right\} - \left[\Gamma_{a} - H_{a} - \Gamma_{b_{+}} H_{b_{+}} + \Gamma_{a_{+}} H_{a_{+}} \Gamma_{b_{-}} H_{b_{-}}\right] e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a_{-}}^{*} e^{+i\omega_{a}t} + H_{a_{-}}^{*} e^{+i\omega_{a}t} + H_{b_{+}}^{*} e^{-i\omega_{b}t}\right\} - \left[\Gamma_{a} - H_{a} - \Gamma_{b_{+}} H_{b_{+}} + \Gamma_{a_{+}} H_{a_{+}} \Gamma_{b_{-}} H_{b_{-}}\right] e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{b_{+}}^{*} e^{+i\omega_{a}t} + H_{a_{-}}^{*} e^{+i\omega_{a}t} + H_{b_{+}}^{*} e^{-i\omega_{b}t}\right\} - \left[\Gamma_{a} - H_{a} - \Gamma_{b_{+}} H_{b_{+}} + \Gamma_{a_{+}} H_{a_{+}} \Gamma_{b_{-}} H_{b_{-}}\right] e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{b_{+}}^{*} e^{+i\omega_{a}t} + e^{-i\omega_{a}t} + e^{-i\omega_{a$$

$$\begin{split} \mathbf{X}_{5} &= 2\operatorname{Re}\left[\left[\Gamma_{a} - H_{a} - \Gamma_{b}^{\ *} + H_{b}^{\ *} + \Gamma_{a} + H_{a} + \Gamma_{b}^{\ *} + H_{b}^{\ *}\right] e^{-i\omega_{0}t} + H_{a}^{\ *} e^{-i\omega_{0}t} + H_{a}^{\ *} e^{-i\omega_{0}t} + H_{b}^{\ *} e^{-i\omega_{0}t} +$$

$$\begin{split} &\mathbb{S}_{2} = G_{1}^{2} \mathcal{H}^{*} = \begin{cases} \Gamma_{a} + H_{a} + e^{-i\omega_{a}t} + \Gamma_{a}^{*} + H_{a}^{*} + e^{+i\omega_{a}t} \\ + \Gamma_{b} + H_{b} + e^{-i\omega_{b}t} + \Gamma_{b}^{*} + H_{b}^{*} + e^{+i\omega_{b}t} \end{cases} \\ &= \frac{1}{2} \begin{cases} \Gamma_{a} + H_{a} + e^{-i\omega_{a}t} + \Gamma_{a}^{*} + H_{a}^{*} + e^{+i\omega_{a}t} \\ + \Gamma_{b} + H_{b}^{*} + e^{-i\omega_{b}t} + \Gamma_{b}^{*} + H_{b}^{*} + e^{+i\omega_{b}t} \end{cases} \end{cases}^{2} \begin{cases} H_{a} - e^{-i\omega_{a}t} + H_{a}^{*} + e^{+i\omega_{a}t} \\ + H_{b} - e^{-i\omega_{b}t} + H_{b}^{*} + e^{+i\omega_{b}t} \end{cases} \end{cases}^{*} \\ &= \frac{1}{2} \begin{cases} \Gamma_{a} + H_{a} + e^{-i\omega_{b}t} + \Gamma_{a}^{*} + H_{a}^{*} + e^{+i\omega_{b}t} \\ + \Gamma_{b} + H_{b}^{*} + e^{-i\omega_{b}t} + \Gamma_{b}^{*} + H_{b}^{*} + e^{+i\omega_{b}t} \end{cases} \end{cases} \end{cases}^{2} \begin{cases} H_{a} - e^{-i\omega_{a}t} + H_{a}^{*} + e^{+i\omega_{a}t} \\ + H_{b} - e^{-i\omega_{b}t} + H_{a}^{*} + e^{+i\omega_{b}t} \end{cases} \end{cases}^{*} \end{cases}^{2} \end{cases}$$

 $\left| +\Gamma_{b+}^{2}H_{b+}^{2}e^{-2i\omega_{b}t} + 2\Gamma_{b-}^{*}H_{b-}^{*}\Gamma_{b+}H_{b+} + \Gamma_{b-}^{*2}H_{b-}^{*2}e^{+2i\omega_{b}t} \right| + 2\Gamma_{b-}^{*}H_{b-}^{*}$

$$\begin{split} &\Upsilon_{2} = \Gamma_{a+}^{2} H_{a+}^{2} e^{-2i\omega_{a}t} \bigg[H_{a-}e^{-i\omega_{a}t} + H_{a+}^{*} e^{*i\omega_{a}t} + H_{b-}e^{-i\omega_{b}t} + H_{b+}^{*} e^{*i\omega_{b}t} \bigg] \\ &= \Gamma_{a+}^{2} H_{a+}^{2} e^{-2i\omega_{a}t} H_{a-}e^{-i\omega_{a}t} + \Gamma_{a+}^{2} H_{a+}^{2} e^{-2i\omega_{a}t} H_{a+}^{*} e^{*i\omega_{b}t} \\ &+ \Gamma_{a+}^{2} H_{a+}^{2} e^{-2i\omega_{a}t} H_{b-}e^{-i\omega_{b}t} + \Gamma_{a+}^{2} H_{a+}^{2} e^{-2i\omega_{a}t} H_{b+}^{*} e^{*i\omega_{b}t} \\ &= \Gamma_{a+}^{2} H_{a+}^{2} H_{a-}e^{-3i\omega_{a}t} + \Gamma_{a+}^{2} H_{a+}^{2} H_{a+}^{2} e^{-i\omega_{a}t} \\ &+ \Gamma_{a+}^{2} H_{a+}^{2} H_{b-}e^{-i(2\omega_{a} + \omega_{b})t} + \Gamma_{a+}^{2} H_{a+}^{2} H_{b+}^{*} e^{-i(2\omega_{a} - \omega_{b})t} \\ &\Upsilon_{3} = \Gamma_{a-}^{*2} H_{a-}^{*2} e^{+2i\omega_{a}t} \bigg[H_{a-}e^{-i\omega_{a}t} + H_{a+}^{*} e^{+i\omega_{a}t} + H_{b-}e^{-i\omega_{b}t} + H_{b+}^{*} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a-}^{*2} H_{a-}^{*2} H_{a-}e^{+i\omega_{a}t} + \Gamma_{a-}^{*2} H_{a-}^{*2} H_{a-}^{*2} H_{a+}^{*} e^{+i\omega_{a}t} + H_{b-}e^{-i\omega_{b}t} + H_{b+}^{*} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a-}^{*2} H_{a-}^{*2} H_{a-}e^{+i\omega_{a}t} + \Gamma_{a-}^{*2} H_{a-}^{*2} H_{a-}^{*2} H_{a-}^{*2} H_{b+}^{*} e^{+i\omega_{a}t} + H_{b-}e^{-i\omega_{b}t} + H_{b+}^{*} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a-}^{*2} H_{a-}^{*2} H_{b-}e^{-i\omega_{a}t} e^{-i\omega_{a}t} + H_{a+}^{*2} e^{+i\omega_{a}t} + H_{b-}e^{-i\omega_{b}t} + H_{b+}^{*2} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+} e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a-}e^{-i\omega_{a}t} + \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+}e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a+}^{*2} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+} e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a-}e^{-i\omega_{a}t} + \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+}e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a+}^{*2} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+} H_{b-} e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a-}e^{-i\omega_{a}t} + \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+} H_{a+}^{*2} e^{-i\omega_{b}t} H_{b+}^{*2} e^{+i\omega_{b}t} \bigg] \\ &= \Gamma_{a+} H_{a+} \Gamma_{b+} H_{b+} H_{b-} e^{-i\omega_{a}t} e^{-i\omega_{b}t} H_{a-} e^{-i\omega_{a}t} + H_{a+} \Gamma_{b-} H_{b+} e^{-i\omega_{a}t} e^{+i\omega_{b}t} H_{a+}^{*2} e^{-i\omega_{a}t} \bigg] \\ &= \Gamma_{a+} H_{a+} \Gamma_{b-} H_{b-} e^{-i\omega_{a}t} e^{+i\omega_{b}t} H_{a-} e^{-i\omega_{a}t} + \Gamma_{a+} H_{a+} \Gamma_{b-} H_{b-} e^{-i\omega_{a}t} e^{+i\omega_{b}t} H_{a+}^{*2} e^{-i\omega_{a}t} \bigg] \\ &= \Gamma_{a+$$

$$\begin{split} & \Upsilon_{6} = \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}{}^{*}e^{+i\omega}d^{t} \bigg[H_{a-}e^{-i\omega}a^{t} + H_{a+}{}^{*}e^{+i\omega}a^{t} + H_{b-}e^{-i\omega}b^{t} + H_{b+}{}^{*}e^{+i\omega}b^{t} \bigg] \\ & = \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}{}^{*}e^{+i\omega}a^{t}e^{-i\omega}b^{t} H_{a-}e^{-i\omega}a^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}e^{+i\omega}a^{t}e^{-i\omega}b^{t} H_{a+}{}^{*}e^{+i\omega}a^{t} \\ & + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}e^{+i\omega}a^{t}e^{-i\omega}b^{t} H_{b-}e^{-i\omega}b^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}e^{+i\omega}a^{t}e^{-i\omega}b^{t} H_{b+}{}^{*}e^{+i\omega}b^{t} \\ & = \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}H_{a-}e^{-i\omega}b^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}H_{a+}{}^{*}e^{+i\omega}a^{t} \\ & + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}H_{b-}e^{-i\omega}b^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b+}H_{b+}H_{a+}{}^{*}e^{+i\omega}a^{t} \\ & + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t} \Big[H_{a-}e^{-i\omega}a^{t} + H_{a-}{}^{*}\Gamma_{b-}H_{b-}H_{b-}e^{-i\omega}b^{t} + H_{b+}{}^{*}e^{+i\omega}a^{t} \\ & + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t}e^{+i\omega}b^{t} H_{a-}e^{-i\omega}a^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t}e^{+i\omega}b^{t} \\ & = \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t}e^{+i\omega}b^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t}e^{+i\omega}b^{t} \\ & = \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t} + \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}e^{+i\omega}a^{t}e^{+i\omega}b^{t} \\ & = \Gamma_{a-}{}^{*}H_{a-}{}^{*}\Gamma_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^{*}H_{b-}{}^$$

$$\begin{split} & \Gamma_{8} = \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} \left[H_{a-} e^{-i\omega_{a}t} + H_{a+}^{*} e^{+i\omega_{a}t} + H_{b-} e^{-i\omega_{b}t} + H_{b+}^{*} e^{+i\omega_{b}t} \right] \\ & = \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} H_{a-} e^{-i\omega_{a}t} + \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} H_{a+}^{*} e^{+i\omega_{a}t} \\ & + \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} H_{b-} e^{-i\omega_{b}t} + \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} H_{b+}^{*} e^{+i\omega_{b}t} \\ & = \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} H_{b-} e^{-i\omega_{b}t} + \Gamma_{b+}^{2} H_{b+}^{2} e^{-2i\omega_{b}t} H_{b+}^{*} e^{+i\omega_{b}t} \\ & = \Gamma_{b+}^{2} H_{b+}^{2} H_{a-} e^{-i\left(2\omega_{b} + \omega_{a}\right)t} + \Gamma_{b+}^{2} H_{b+}^{2} e^{+2i\omega_{b}t} H_{b+}^{*} e^{+i\omega_{b}t} \\ & + \Gamma_{b+}^{2} H_{b+}^{2} H_{b-} e^{-3i\omega_{b}t} + \Gamma_{b+}^{2} H_{b+}^{2} H_{b+}^{*} e^{+i\omega_{b}t} \\ & + \Gamma_{b-}^{2} H_{b-}^{*} e^{+2i\omega_{b}t} H_{a-} e^{-i\omega_{a}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{a+}^{*} e^{+i\omega_{a}t} \\ & + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-} e^{-i\omega_{a}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{a+}^{*} e^{+i\omega_{a}t} \\ & + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-} e^{-i\omega_{b}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b+}^{*} e^{+i\omega_{b}t} \\ & = \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-}^{*} e^{-i\omega_{b}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b+}^{*} e^{+i\omega_{a}t} \\ & + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-}^{*} e^{+i\omega_{b}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b+}^{*} e^{+i\omega_{a}t} \\ & + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-}^{*} e^{+i\omega_{b}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b+}^{*} e^{+2i\omega_{b}t} \\ & + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-}^{*} e^{+i\omega_{b}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b+}^{*} e^{-2i\omega_{a}t} \\ & + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} H_{b-}^{*} e^{+i\omega_{b}t} + \Gamma_{b-}^{*} e^{+2i\omega_{b}t} \\ & + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{b}t} + \Gamma_{a-}^{*} H_{a-}^{*} e^{-i\omega_{a}t} \\ & + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{b}t} + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{a}t} \\ & + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{b}t} + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{a}t} \\ & + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{a}t} + \Gamma_{a-}^{*} H_{a-}^{*} e^{-i\omega_{a}t} \\ & + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{a}t} + \Gamma_{a-}^{*} H_{a-}^{*} e^{-i\omega_{a}t} \\ & + \Gamma_{b-}^{*} H_{b-}^{*} e^{-i\omega_{a}t} + \Gamma_{a-}^{*} e^{-i\omega_{a}t} \\ & + \Gamma_{b-}^{*} H_{b-$$

$$\begin{split} & M_{2} = 2\operatorname{Re}\left(\Gamma_{a^{-}}^{*}H_{a^{-}}\Gamma_{a^{+}}H_{a^{+}e}^{-2i0a^{l}}\right) \left\{\Gamma_{a^{+}}H_{a^{+}e}^{-i0a^{l}} + \Gamma_{a^{-}}^{*}H_{a^{-}e}^{+ivad^{l}} + \Gamma_{b^{-}}^{*}H_{b^{-}e}^{-ivbb^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}\Gamma_{a^{+}}H_{a^{+}e}^{-2i0a^{l}} + \Gamma_{a^{-}}H_{a^{-}e}^{-ivad^{l}} + \Gamma_{b^{-}}^{*}H_{b^{-}e}^{+ivab^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}\Gamma_{a^{+}}H_{a^{+}e}^{-2i0a^{l}} + \Gamma_{a^{-}}H_{a^{-}e}^{-ivab^{l}} + \Gamma_{b^{-}}^{*}H_{b^{-}e}^{-ivab^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}e^{-2i0a^{l}}\Gamma_{a^{-}}H_{a^{+}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}e^{-2i0a^{l}}\Gamma_{a^{-}}H_{a^{+}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{+}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\right\} - \left\{\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e^{-2i0a^{l}}\Gamma_{a^{-}}^{*}H_{a^{-}e}^{*}e$$

$$\begin{split} & \mathbf{M}_{4} = 2\operatorname{Re}\left(\left[\Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+} + \Gamma_{a+}H_{a+}\Gamma_{b-}H_{b-}\right]e^{-i\omega_{0}t}\right) \left\{ \begin{array}{l} \Gamma_{a+}H_{a+}e^{-i\omega_{0}t} + \Gamma_{a-}H_{a-}e^{+i\omega_{0}t} \\ + \Gamma_{b-}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{b-}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{b-}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{b-}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+} + \Gamma_{a+}H_{a+}\Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+} + \Gamma_{a+}H_{a+}\Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}F_{b+}H_{b+}e^{-i\omega_{b}t} + \Gamma_{a-}H_{a-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}F_{b+}H_{b+}e^{-i\omega_{b}t} + \Gamma_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}F_{b+}H_{b+}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}F_{b-}H_{b-}e^{-i\omega_{b}t} \\ + \Gamma_{a-}H_{a-}F_{b-}H_{b-}e^{-i$$

$$\begin{split} & M_{5} = 2\operatorname{Re}\left(\left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t}\right) \left[\Gamma_{a+}H_{a+}e^{-i\omega}d^{t} + \Gamma_{a-}^{*}H_{a-}^{*} e^{+i\omega}d^{t}\right] \\ & = \left[\left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \right] \left[\Gamma_{a+}H_{a+}e^{-i\omega}d^{t} + \Gamma_{a-}^{*}H_{a-}^{*} e^{+i\omega}b^{t}}\right] \\ & = \left[\left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \right] \left[\Gamma_{a+}H_{a+}e^{-i\omega}d^{t} + \Gamma_{b-}^{*}H_{b-}^{*} e^{+i\omega}b^{t}}\right] \\ & = \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \right] \left[\Gamma_{a+}H_{a+}e^{-i\omega}d^{t} + \Gamma_{b-}^{*}H_{b-}^{*} e^{+i\omega}b^{t}}\right] \\ & = \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \right] \left[\Gamma_{a+}H_{a+}e^{-i\omega}d^{t} + \Gamma_{b-}^{*}H_{a-}^{*} e^{+i\omega}b^{t}}\right] \\ & = \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \right] \left[\Gamma_{a+}H_{a+}e^{-i\omega}b^{t} + \Gamma_{b-}^{*}H_{a-}^{*} e^{+i\omega}b^{t}}\right] \\ & = \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \right] \left[\Gamma_{a+}H_{a+}e^{-i\omega}b^{t} + \Gamma_{b-}^{*}H_{b-}^{*} e^{+i\omega}b^{t}}\right] \\ & = \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \Gamma_{a+}H_{a+}e^{-i\omega}b^{t}} \\ & + \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{-i\omega}d^{t} e^{+i\omega}b^{t}} \Gamma_{b+}H_{b+}e^{-i\omega}b^{t}} \\ & + \left[\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{+i\omega}d^{t} e^{-i\omega}b^{t}} \Gamma_{a-}^{*}H_{a-}e^{-i\omega}b^{t}} \\ & + \left[\Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*} + \Gamma_{a+}^{*}H_{a+}^{*}\Gamma_{b+}^{*}H_{b+}^{*}\right] e^{+i\omega}d^{t} e^{-i\omega}b^{t} \Gamma_{b-}^{*}H_{b-}^{*}e^{-i\omega}b^{t}} \\ & + \left[\Gamma_{a-}$$

$$\mathbb{S}_{4} = h_{z} \mathcal{G}_{2} = \operatorname{Re} \left\{ h_{az} e^{-i\omega} a^{l} + h_{bz} e^{-i\omega} b^{l} \right\} \cdot \mathcal{G}_{2}$$

$$= \frac{1}{2} \left(h_{az} e^{-i\omega} a^{l} + h_{bz} e^{-i\omega} b^{l} \right) \left[\Gamma_{2a} + S_{2a} e^{-2i\omega} a^{l} + \Gamma_{2a} - S_{2a} e^{+2i\omega} a^{l} + \Gamma_{0} \delta_{0} + \Gamma_{2b} + S_{2b} e^{-2i\omega} b^{l} + \Gamma_{2b} - S_{2b} e^{+2i\omega} b^{l} \right] \left[\Gamma_{2a} + S_{2a} e^{-2i\omega} a^{l} + \Gamma_{5a} - S_{5a} e^{+i\omega} s^{l} + \Gamma_{4a} + S_{4a} e^{-i\omega} d^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} \right] \left[\Gamma_{2a} + S_{2a} e^{-2i\omega} a^{l} + \Gamma_{5a} - S_{5a} e^{+i\omega} s^{l} + \Gamma_{5a} - S_{5a} e^{+i\omega} s^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} \right] \left[\Gamma_{2a} + S_{2a} e^{-2i\omega} a^{l} + \Gamma_{2a} - S_{2a} e^{+2i\omega} a^{l} + \Gamma_{5a} - S_{5a} e^{+i\omega} s^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} \right] \left[\Gamma_{2a} + S_{2a} e^{-2i\omega} a^{l} + \Gamma_{2a} - S_{2a} e^{+2i\omega} a^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} \right] \left[\Gamma_{2a} + S_{2a} e^{-2i\omega} a^{l} + \Gamma_{5a} - S_{5a} e^{+i\omega} s^{l} + \Gamma_{4a} + S_{4a} e^{-i\omega} d^{l} + \Gamma_{4a} - S_{4a} e^{-2i\omega} b^{l} + \Gamma_{4a} - S_{4a} e^{-i\omega} d^{l} + \Gamma_{4a} - S_{4a} e^{-2i\omega} b^{l} + \Gamma_{4a} - S_{4a} e$$

$$\begin{bmatrix} \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-3i\omega_{at}t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{+i\omega_{at}t} + \Gamma_{\delta} \cdot \delta \cdot \delta_{ac} e^{-i\omega_{at}t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} + \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{a} + \omega_{b})t} + \Gamma_{3c} \cdot S_{ac} e^{+i\omega_{at}t} + \Gamma_{4c} \cdot S_{4} \cdot h_{ac} e^{-i(2\omega_{a} - \omega_{b})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{a} + \omega_{b})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{+i\omega_{at}t} + \Gamma_{4c} \cdot S_{4} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} + \omega_{a})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{+i\omega_{at}t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i\omega_{b}t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i\omega_{b}t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i\omega_{b}t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} + \omega_{a})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{b})t} + \Gamma_{4c} \cdot S_{4} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} + \omega_{b})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} + \omega_{b})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{b})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{b})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{a} - \omega_{b})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{a} - \omega_{b})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{a} - \omega_{b})t} + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{a} - \omega_{b})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} + \Gamma_{2b} \cdot S_{2b} \cdot h_{ac} e^{-i(2\omega_{b} - \omega_{a})t} \\ + \Gamma_{2a} \cdot S_{2a} \cdot h_{ac} e^{-i(2\omega_$$

$$\begin{bmatrix}
\Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{a+}H_{a+}H_{b+}e^{-i(2\omega_{a}+\omega_{b})t} + \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{a+}H_{a+}H_{b-}^{*}e^{-i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{a+}H_{a+}^{*}H_{b+}e^{+i(2\omega_{a}-\omega_{b})t} + \Gamma_{a-}H_{a-}^{*}\Gamma_{a+}H_{a+}H_{b-}^{*}e^{-i(2\omega_{a}+\omega_{b})t} \\
+\Gamma_{b-}^{*}H_{b-}^{*}\Gamma_{b+}H_{b+}H_{a+}e^{-i(2\omega_{b}+\omega_{a})t} + \Gamma_{b-}^{*}H_{b-}^{*}\Gamma_{b+}H_{b+}H_{a-}^{*}e^{-i(2\omega_{b}-\omega_{a})t} \\
+\Gamma_{b-}H_{b-}^{*}\Gamma_{b+}H_{b+}^{*}H_{a+}e^{+i(2\omega_{b}-\omega_{a})t} + \Gamma_{b-}H_{b-}^{*}\Gamma_{b+}H_{b+}H_{a-}^{*}e^{+i(2\omega_{b}+\omega_{a})t} \\
+\Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+}^{*}+\Gamma_{a+}H_{a+}\Gamma_{b-}H_{b-}H_{a+}e^{-i(2\omega_{a}+\omega_{b})t} \\
+\Gamma_{a-}H_{a-}\Gamma_{b+}H_{b+}^{*}+\Gamma_{a+}H_{a+}\Gamma_{b-}H_{b-}H_{b-}^{*}H_{a-}^{*}e^{+i(2\omega_{a}+\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b+}H_{b+}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b-}H_{b-}^{*}H_{a-}^{*}e^{+i(2\omega_{a}+\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b+}H_{b+}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b-}H_{b-}^{*}H_{a-}^{*}e^{+i(2\omega_{a}+\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b+}H_{b+}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b-}H_{b-}^{*}H_{b-}^{*}e^{+i(2\omega_{a}+\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b+}H_{b+}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b-}H_{b-}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*}+\Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}H_{b+}^{*}H_{a-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}\Gamma_{b-}^{*}H_{b-}^{*}+\Gamma_{a+}H_{a+}\Gamma_{b+}^{*}H_{b+}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{+i(2\omega_{a}-\omega_{b})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{-i(2\omega_{b}-\omega_{a})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_{a+}^{*}\Gamma_{b+}H_{b+}^{*}H_{b-}^{*}e^{-i(2\omega_{b}-\omega_{a})t} \\
+\Gamma_{a-}H_{a-}^{*}\Gamma_{b-}H_{b-}^{*}+\Gamma_{a+}H_$$

$$= \frac{1}{2} \begin{cases} \left(\Gamma_{a}^{*} H_{a-}^{*} \Gamma_{a+} H_{a+} H_{b+} + \left[\Gamma_{a-} H_{a-} \Gamma_{b+} H_{b+} + \Gamma_{a+} H_{a+} \Gamma_{b-} H_{b-} \right] H_{a+} \right) e^{-i \left(2 \omega_{a} + \omega_{b} \right) t} \\ + \left(\Gamma_{a-} H_{a-} \Gamma_{a+}^{*} H_{a+}^{*} H_{b-}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] H_{a-}^{*} \right) e^{+i \left(2 \omega_{a} + \omega_{b} \right) t} \\ + \left(\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a+} H_{a+}^{*} H_{b-}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+} \Gamma_{b+}^{*} H_{b+}^{*} \right] H_{a-}^{*} \right) e^{+i \left(2 \omega_{a} + \omega_{b} \right) t} \\ + \left(\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a+}^{*} H_{a+}^{*} H_{b+}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+} \Gamma_{b+}^{*} H_{b+} \right] H_{a-}^{*} \right) e^{+i \left(2 \omega_{a} - \omega_{b} \right) t} \\ + \left(\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} + H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b+}^{*} H_{b+} \right) H_{a-}^{*} \right) e^{+i \left(2 \omega_{a} - \omega_{b} \right) t} \\ + \left(\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} H_{a+}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-} \right] H_{b+}^{*} \right) e^{-i \left(2 \omega_{b} + \omega_{a} \right) t} \\ + \left(\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} H_{a-}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b+}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b+}^{*} H_{b+} \right] H_{b+}^{*} \right) e^{-i \left(2 \omega_{b} + \omega_{a} \right) t} \\ + \left(\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} H_{a+}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] H_{b-}^{*} \right) e^{+i \left(2 \omega_{b} + \omega_{a} \right) t} \\ + \left(\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} H_{a+}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] H_{b-}^{*} \right) e^{+i \left(2 \omega_{b} + \omega_{a} \right) t} \\ + \left(\Gamma_{a-}^{*} H_{b-}^{*} H_{b+}^{*} H_{a+}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] e^{-i \left(2 \omega_{b} - \omega_{a} \right) t} \\ + \left(\Gamma_{a-}^{*} H_{b-}^{*} H_{b+}^{*} H_{a+}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^$$

 $\left| + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} H_{a-}^{*} e^{+i \left(2 \omega_a + \omega_b \right) t} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} H_{b-}^{*} e^{+i \left(2 \omega_b + \omega_a \right) t} \right|$

(81)

 $\Big|_{+\Gamma_{b+}^{2}H_{b+}^{2}H_{a+}e^{-i\left(2\omega_{b}+\omega_{a}\right)t}+\Gamma_{b+}^{2}H_{b+}^{2}H_{a-}^{*}e^{-i\left(2\omega_{b}-\omega_{a}\right)t}}$

 $+\Gamma_{b_{-}}^{*2}H_{b_{-}}^{*2}H_{a+}^{+i(2\omega_{b}-\omega_{a})t}+\Gamma_{b_{-}}^{*2}H_{b_{-}}^{*2}H_{a-}^{*e}e^{+i(2\omega_{b}+\omega_{a})t}$

$$\begin{bmatrix}
\Gamma_{a+}^{2}H_{a+}^{2}H_{b+} + \Gamma_{a+}H_{a+}\Gamma_{b+}H_{b+}H_{a+} \\
+ \Gamma_{a+}^{2}H_{a+}^{2}H_{b-}^{*} + \Gamma_{a+}H_{a+}\Gamma_{b-}^{*}H_{b-}^{*}H_{a+} \\
+ \Gamma_{a-}^{*2}H_{a-}^{*2}H_{b+} + \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b+}^{*}H_{b+}^{*}H_{a-}^{*} \\
+ \Gamma_{a-}^{*2}H_{a-}^{*2}H_{b+}^{*} + \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b+}^{*}H_{a-}^{*} \\
+ \Gamma_{a-}^{*2}H_{a-}^{*2}H_{b-}^{*} + \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{a-}^{*} \\
+ \Gamma_{a+}^{*}H_{a+}^{*}\Gamma_{b+}^{*}H_{b+}^{*}H_{b+}^{*} + \Gamma_{b+}^{*}H_{b+}^{*}H_{a+} \\
+ \Gamma_{a+}^{*}H_{a+}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*} + \Gamma_{b-}^{*2}H_{b-}^{*2}H_{a+} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b+}^{*}H_{b+}^{*}H_{b+}^{*} + \Gamma_{b-}^{*2}H_{b-}^{*2}H_{a-}^{*} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b+}^{*}H_{b+}^{*}H_{b+}^{*} + \Gamma_{b-}^{*2}H_{b-}^{*2}H_{a-}^{*} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*} + \Gamma_{b-}^{*2}H_{b-}^{*2}H_{a-}^{*} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*} + \Gamma_{b-}^{*2}H_{b-}^{*2}H_{a-}^{*} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*} + \Gamma_{b-}^{*2}H_{b-}^{*2}H_{a-}^{*} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*2}H_{a-}^{*2}H_{a-}^{*} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*2}H_{a-}^{*2}H_{a-}^{*2}H_{a-}^{*2} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*2}H_{a-}^{*2}H_{a-}^{*2} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*2}H_{a-}^{*2}H_{a-}^{*2}H_{a-}^{*2} \\
+ \Gamma_{a-}^{*}H_{a-}^{*}\Gamma_{b-}^{*}H_{b-}^{*}H_{b-}^{*}H_{b-}^{*2}H_{b-}^{*2}H_{a-}^{*2}H_{$$

$$\begin{split} & \mathbb{S}_{3} \Big|_{\mathbf{IM}} = \Gamma_{a}^{*} H_{a}^{*} \Gamma_{a} + H_{a} + \Gamma_{b} + H_{b} + e^{-i\left(2\omega_{a} + \omega_{b}\right)t} + \Gamma_{a}^{*} H_{a}^{*} \Gamma_{a} + H_{a} + \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} - \omega_{b}\right)t} \\ & + \Gamma_{a} - H_{a} - \Gamma_{a}^{*} H_{a}^{*} \Gamma_{b} + H_{b} + e^{-i\left(2\omega_{a} - \omega_{b}\right)t} + \Gamma_{a} - H_{a} - \Gamma_{a}^{*} H_{a}^{*} \Gamma_{b} + H_{b}^{*} e^{-i\left(2\omega_{a} - \omega_{b}\right)t} \\ & + \Gamma_{b}^{*} H_{b}^{*} \Gamma_{b} + H_{b} + \Gamma_{a} + H_{a} + e^{-i\left(2\omega_{b} + \omega_{a}\right)t} + \Gamma_{b}^{*} H_{b}^{*} \Gamma_{b} + H_{b}^{*} \Gamma_{a}^{*} + H_{a}^{*} e^{-i\left(2\omega_{b} - \omega_{a}\right)t} \\ & + \Gamma_{b} - H_{b}^{*} \Gamma_{b}^{*} + H_{b}^{*} \Gamma_{a} + H_{a} + e^{-i\left(2\omega_{b} - \omega_{a}\right)t} + \Gamma_{b}^{*} - H_{b}^{*} \Gamma_{b}^{*} + H_{b}^{*} \Gamma_{a}^{*} + H_{a}^{*} e^{-i\left(2\omega_{b} + \omega_{a}\right)t} \\ & + \left[\Gamma_{a} - H_{a} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a} + H_{a} + \Gamma_{b}^{*} - H_{b}^{*}\right] \Gamma_{a} + H_{a} + e^{-i\left(2\omega_{a} + \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} - H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} + \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} - H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} + \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a}^{*} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} + H_{a}^{*} + \Gamma_{b}^{*} - H_{b}^{*}\right] \Gamma_{a}^{*} + H_{a}^{*} e^{-i\left(2\omega_{a} + \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a}^{*} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} + H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} - \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a}^{*} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} + H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} - \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a}^{*} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} + H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} - \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a}^{*} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} + H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left(2\omega_{a} - \omega_{b}\right)t} \\ & + \left[\Gamma_{a} - H_{a}^{*} - \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{a}^{*} + H_{a}^{*} + \Gamma_{b}^{*} + H_{b}^{*} + \Gamma_{b}^{*} + H_{b}^{*}\right] \Gamma_{b}^{*} + H_{b}^{*} e^{-i\left$$

$$\begin{split} &= \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b+} H_{b+} + \Gamma_{a-} H_{a-} \Gamma_{b+} H_{b+} + \Gamma_{a+} H_{a+} \Gamma_{b-} H_{b-} \right] \Gamma_{a+} H_{a+} e^{-i \left(2\omega_{a} + \omega_{b} \right) t} \\ &+ \left[\Gamma_{a-} H_{a-} \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b+}^{*} H_{b+}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] \Gamma_{a-}^{*} H_{a-}^{*} \right] e^{+i \left(2\omega_{a} + \omega_{b} \right) t} \\ &+ \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a-} H_{a-} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+} H_{a+} \Gamma_{b+}^{*} H_{b+} \right] \Gamma_{a+}^{*} H_{a+} e^{-i \left(2\omega_{a} - \omega_{b} \right) t} \\ &+ \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a-} H_{a-} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+} H_{a+} \Gamma_{b+}^{*} H_{b+} \right] \Gamma_{a-}^{*} H_{a-}^{*} \right] e^{+i \left(2\omega_{a} - \omega_{b} \right) t} \\ &+ \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a+}^{*} H_{a+} + \Gamma_{a-} H_{a-} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b+}^{*} H_{b+} \right] \Gamma_{a-}^{*} H_{a-}^{*} \right] e^{+i \left(2\omega_{a} - \omega_{b} \right) t} \\ &+ \left[\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{a+}^{*} H_{a+} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b+}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b+}^{*} H_{b+} \right] \Gamma_{b+}^{*} H_{b+}^{*} \\ &+ \left[\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] \Gamma_{b-}^{*} H_{b-}^{*} \\ &+ \left[\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] \Gamma_{b+}^{*} H_{b+}^{*} \\ &+ \left[\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b-}^{*} H_{b-}^{*} \right] \Gamma_{b+}^{*} H_{b+}^{*} \\ &+ \left[\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b+}^{*} H_{b+}^{*} \right] \Gamma_{b-}^{*} H_{b-}^{*} \\ &+ \left[\Gamma_{b-}^{*} H_{b-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{b-}^{*} H_{b-}^{*} + \Gamma_{a+}^{*} H_{a+}^{*} \Gamma_{b+}^{*} H_{b+}^{*} \right] \Gamma_{b-}^{*} H_{b-}^{*} \\ &+ \left[\Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} + \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a-}^{*} H_{a-}^{*} \Gamma_{a-$$

$$\begin{bmatrix} S_{2a} + e^{-2i\omega_{a}t} + S_{2a} - e^{+2i\omega_{a}t} + S_{0} + S_{2b} + e^{-2i\omega_{b}t} + S_{2b} - e^{+2i\omega_{b}t} \\ + S_{sum+} e^{-i\omega_{sum}t} + S_{sum-} e^{+i\omega_{sum}t} + S_{dif} + e^{-i\omega_{dif}t} + S_{dif} - e^{-i\omega_{dif}t} \end{bmatrix}$$

$$\begin{bmatrix} \left(h_{az} \Gamma_{a} + H_{a} +\right) e^{-2i\omega_{b}t} + \left(h_{az}^{*} \Gamma_{a}^{*} + H_{a}^{*}\right) e^{+2i\omega_{a}t} \\ + h_{az} \Gamma_{a}^{*} + H_{a}^{*} + h_{bz}^{*} \Gamma_{b}^{*} + H_{b}^{*} + h_{az}^{*} \Gamma_{a} + H_{a}^{*} + h_{bz}^{*} \Gamma_{b}^{*} + H_{b}^{*} \\ + h_{bz} \Gamma_{b} + H_{b+} e^{-2i\omega_{b}t} + h_{bz}^{*} \Gamma_{b}^{*} + H_{b}^{*} e^{+2i\omega_{b}t} \\ + \left(h_{az} \Gamma_{b} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{-i\omega_{sum}t} + \left(h_{az}^{*} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{+i\omega_{sum}t} \\ + \left(h_{az} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{-i\omega_{sum}t} + \left(h_{bz} \Gamma_{a}^{*} + H_{a}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{+i\omega_{sum}t} \\ + \left(h_{az} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{-i\omega_{sum}t} + \left(h_{az} \Gamma_{a}^{*} + H_{a}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{+i\omega_{sum}t} \\ + \left(h_{az} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{-i\omega_{sum}t} + \left(h_{az} \Gamma_{a}^{*} + H_{a}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{+i\omega_{sum}t} \\ + \left(h_{az} \Gamma_{a}^{*} + H_{a}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} +\right) e^{-i\omega_{sum}t} + \left(h_{az} \Gamma_{a}^{*} + H_{a}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} + h_{bz}^{*} \Gamma_{b}^{*} + H_{b}^{*} +\right) e^{+i\omega_{sum}t} \\ + \left(h_{az} \Gamma_{a}^{*} + H_{a}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} + h_{bz}^{*} \Gamma_{b}^{*} + H_{b}^{*} + h_{bz}^{*} \Gamma_{b}^{*} + H_{b}$$

$$\left[\left[\Gamma_{sum+} \left(h_{bz} \Gamma_{a} + H_{a} + h_{az} \Gamma_{b} + H_{b+} + \right) h_{bz} + \Gamma_{2b+} \left(h_{bz} \Gamma_{b} + H_{b+} \right) h_{az} \right] e^{-i \left(2\omega_{b} + \omega_{a} \right) t} \right]$$

$$+ \left[\Gamma_{sum-} \left(h_{bz}^{*} \Gamma_{a}^{*} + H_{a}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b-}^{*} \right) h_{bz}^{*} + \Gamma_{2b-} \left(h_{bz}^{*} \Gamma_{b}^{*} + H_{b-}^{*} \right) h_{az}^{*} \right] e^{+i \left(2\omega_{b} + \omega_{a} \right) t}$$

$$+ \left[\Gamma_{sum+} \left(h_{az} \Gamma_{b} + H_{b+} + h_{bz} \Gamma_{a} + H_{a+} \right) h_{az} + \Gamma_{2a+} \left(h_{az} \Gamma_{a} + H_{a+} \right) h_{bz} \right] e^{-i \left(2\omega_{a} + \omega_{b} \right) t}$$

$$+ \left[\Gamma_{sum-} \left(h_{az}^{*} \Gamma_{b}^{*} + H_{b-}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a-}^{*} \right) h_{az}^{*} + \Gamma_{2a-} \left(h_{az}^{*} \Gamma_{a}^{*} + H_{a-}^{*} \right) h_{bz}^{*} \right] e^{-i \left(2\omega_{a} + \omega_{b} \right) t}$$

$$+ \left[\Gamma_{dif} + \left(h_{az} \Gamma_{b}^{*} + H_{b-}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{az} + \Gamma_{2a+} \left(h_{az} \Gamma_{a}^{*} + H_{a+} \right) h_{bz}^{*} \right] e^{-i \left(2\omega_{a} - \omega_{b} \right) t}$$

$$+ \left[\Gamma_{dif} - \left(h_{az}^{*} \Gamma_{b}^{*} + H_{b+}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{az}^{*} + \Gamma_{2a-} \left(h_{az}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{bz} \right] e^{-i \left(2\omega_{a} - \omega_{b} \right) t}$$

$$+ \left[\Gamma_{dif} - \left(h_{az}^{*} \Gamma_{b}^{*} + H_{b+}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{bz}^{*} + \Gamma_{2a-} \left(h_{az}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{bz} \right] e^{-i \left(2\omega_{a} - \omega_{b} \right) t}$$

$$+ \left[\Gamma_{dif} - \left(h_{az}^{*} \Gamma_{b}^{*} + H_{b+}^{*} + h_{bz}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{bz}^{*} + \Gamma_{2a-} \left(h_{az}^{*} \Gamma_{a}^{*} + H_{a+} \right) h_{bz} \right] e^{-i \left(2\omega_{a} - \omega_{b} \right) t}$$

$$+ \left[\Gamma_{dif} - \left(h_{bz}^{*} \Gamma_{a}^{*} + H_{a+}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b+} \right) h_{bz}^{*} + \Gamma_{2b} + \left(h_{bz}^{*} \Gamma_{b}^{*} + H_{b+} \right) h_{bz} \right] e^{-i \left(2\omega_{b}^{*} - \omega_{a} \right) t}$$

$$+ \left[\Gamma_{dif} - \left(h_{bz}^{*} \Gamma_{a}^{*} + H_{a+}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b+} \right) h_{bz}^{*} + \Gamma_{2b} + \left(h_{bz}^{*} \Gamma_{b}^{*} + H_{b+} \right) h_{bz} \right] e^{-i \left(2\omega_{b}^{*} - \omega_{a} \right) t}$$

$$+ \left[\Gamma_{dif} - \left(h_{bz}^{*} \Gamma_{a}^{*} + H_{a+}^{*} + h_{az}^{*} \Gamma_{b}^{*} + H_{b+} \right) h_{bz}^{*} + \Gamma_{2b} + \left(h_{bz}^{*} \Gamma_{b}^{*} + H_{b+} \right) h_{bz}^{*} \right] e^{-i \left(2\omega_{b}^{*} - \omega_{a} \right) t} \right]$$

$$+$$

For the z-component, we have

$$g_{z3} = -\frac{1}{2} \left(G_1^* G_2 + G_1 G_2^* \right) = -\text{Re} \left(G_1^* G_2 \right)$$

$$= +\text{Re} \left\{ \begin{cases} \Gamma_{a+} H_{a+} e^{-i\omega_{a}t} + \Gamma_{a-}^* H_{a-}^* e^{+i\omega_{a}t} \\ +\Gamma_{b+} H_{b+} e^{-i\omega_{b}t} + \Gamma_{b-}^* H_{b-}^* e^{+i\omega_{b}t} \end{cases} \right\}^* G_2$$

$$= +\text{Re} \left(\frac{\Gamma_{a+}^* H_{a+}^* e^{+i\omega_{a}t} G_2 + \Gamma_{a-} H_{a-} e^{-i\omega_{a}t} G_2}{\Gamma_{a-}^* H_{a-}^* e^{-i\omega_{b}t} G_2} \right) (87)$$

$$= +\text{Re} \left(\frac{\Gamma_{a+}^* H_{a+}^* e^{+i\omega_{a}t} G_2 + \Gamma_{a-}^* H_{a-}^* e^{-i\omega_{b}t} G_2}{\Gamma_{b-}^* H_{b-}^* e^{-i\omega_{b}t} G_2} \right) (87)$$

$$= +\text{Re} \left(\frac{\Gamma_{a+}^* H_{a+}^* e^{+i\omega_{a}t} G_2 + \Gamma_{a-}^* H_{a-}^* e^{-i\omega_{a}t} G_2}{\Gamma_{b-}^* H_{b-}^* e^{-i\omega_{b}t} G_2} \right) (87)$$

$$= +\text{Re} \left(\frac{\Gamma_{a+}^* H_{a+}^* e^{+i\omega_{a}t} G_2 + \Gamma_{a-}^* H_{a-}^* e^{-i\omega_{a}t} G_2}{\Gamma_{b-}^* H_{b-}^* e^{-i\omega_{b}t} G_2} \right) (87)$$

$$= +\text{Re} \left(\frac{\Gamma_{a+}^* H_{a+}^* e^{-i\omega_{a}t} G_2 + \Gamma_{a-}^* H_{a-}^* e^{-i\omega_{a}t} G_2}{\Gamma_{a+}^* H_{b+}^* e^{-i\omega_{b}t} G_2} \right) (87)$$

$$= +\text{Re} \left(\frac{\Gamma_{a+}^* H_{a+}^* e^{-i\omega_{a}t} G_2 + \Gamma_{a-}^* H_{a-}^* e^{-i\omega_{a}t} G_2}{\Gamma_{a+}^* H_{b-}^* e^{-i\omega_{b}t} G_2} \right) (87)$$

$$\begin{split} \Xi_1 &= \Gamma_{a+}{}^*H_{a+}{}^*e^{+i\omega_at} \\ &+ h_{az}\Gamma_{a-}{}^*H_{a-}{}^*h_{a-}{}^*h_{bz}\Gamma_{b-}{}^*H_{b-}{}^*h_{az}{}^*\Gamma_{a-}{}^*H_{a-}{}^*h_{bz}\Gamma_{b+}{}^*H_{b+} \\ &+ h_{bz}\Gamma_{a-}{}^*H_{a-}{}^*h_{b-}{}^*h_{bz}\Gamma_{b-}{}^*H_{b-}{}^*h_{az}{}^*\Gamma_{a+}{}^*H_{a+}{}^*h_{bz}\Gamma_{b+}{}^*H_{b+} \\ &+ (h_{az}\Gamma_{b-}{}^*H_{b-}{}^*h_{b-}{}^*h_{bz}\Gamma_{a+}{}^*H_{a+})e^{-i\omega_st} + (h_{az}\Gamma_{b-}{}^*H_{b-}{}^*h_{b-}{}^$$

$$\begin{split} &\Xi_{2} = \Gamma_{a} - H_{a} - e^{-i\omega_{a}t} \left[\left(h_{az} \Gamma_{a} + H_{a} + \right) e^{-2i\omega_{a}t} + \left(h_{az} \Gamma_{a}^{-} + H_{a}^{-} \right) e^{+2i\omega_{a}t} \right. \\ &\quad + h_{az} \Gamma_{a}^{-} + H_{a}^{-} + h_{bz} \Gamma_{b}^{-} + h_{b}^{-} + h_{az}^{-} \Gamma_{a} + H_{a} + h_{bz}^{-} \Gamma_{b} + H_{b} + h_{bz}^{-} \Gamma_{a} + H_{a}^{-} + h_{bz}^{-} \Gamma_{b} - H_{b}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + H_{b}^{-} + h_{bz}^{-} \Gamma_{a}^{-} + H_{a}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + H_{b}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + H_{b}^{-} + h_{bz}^{-} \Gamma_{b}^{-} + h_{bz}^{-}$$

$$\begin{split} \Xi_{4} &= \Gamma_{b} - H_{b} - e^{-i\omega_{b}t} \\ &+ h_{az} \Gamma_{a} - H_{a} + h_{bz} \Gamma_{b} - H_{b} - h$$

7. Conclusion

This report was written with the intention of archiving the results of lengthy calculations needed in order to evaluate the feasibility of remote detection of magnetic systems by FMR. More specifically, these calculations make it possible to calculate the induced magnetization within a ferromagnetic body illuminated by electromagnetic waves at levels of excitation high enough to give rise to a nonlinear response in the body and induce it to radiate at new frequencies that are detected at a remote receiving antenna. The results tabulated here contribute to the study of nonlinear radar and target signatures in general.

8. References

- 1. Crowne, F. J. Multifrequency Excitation of a Ferromagnetic Microwire. *IEEE Trans. Magnetics*, to be published.
- 2. Landau, L. D.; Lifshits, E. M. Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. *Phys. Z. Sowietunion* **1935**, *8*, 153.
- 3. Gilbert, T. L. A Phenomenological Theory of Damping in Ferromagnetic Materials. *IEEE Trans. Mag.* **2004**, *40*, 3443.
- 4. Antonenko, A. N.; Sorkine, E.; Rubshtein, A.; Larin, V. S.; Manov, V. High Frequency Properties of Glass-coated Microwire. J. Appl. Phys. **1998**, *83*, 6587.
- 5. Holstein, T.; Primakoff, H. Phys. Rev. 1940, 58, 1098.

NO. OF		NO. OF	
	ORGANIZATION		ORGANIZATION
1 ELEC	ADMNSTR DEFNS TECHL INFO CTR ATTN DTIC OCP 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	22	US ARMY RSRCH LAB ATTN IMAL HRA MAIL & RECORDS MGMT ATTN RDRL CI J PELLEGRINO ATTN RDRL CIO LL TECHL LIB ATTN RDRL CIO LT TECHL PUB
1	US ARMY RSRCH DEV AND ENGRG CMND ARMAMENT RSRCH DEV & ENGRG CTR ARMAMENT ENGRG & TECHNLGY CTR ATTN AMSRD AAR AEF T J MATTS BLDG 305 ABERDEEN PROVING GROUND MD 21005-5001		ATTN RDRL SEE I S SVENSSON ATTN RDRL SEE O W M GOLDING ATTN RDRL SER E B HUEBSCHMAN ATTN RDRL SER E E VIVEIROS ATTN RDRL SER E G BIRDWELL ATTN RDRL SER E R DEL ROSARIO ATTN RDRL SER E T IVANOV ATTN RDRL SER E P SHAH ATTN RDRL SER E T O'REGAN
1	US ARMY ARDEC ATTN AMSRD AAR AEE P C HAINES BLDG 25 PICATINNY ARSENAL NJ 07806-5000		ATTN RDRL SER J MAIT ATTN RDRL SER L J PULSKAMP ATTN RDRL SER L L CURRANO ATTN RDRL SER L M CHIN ATTN RDRL SER L M ERVIN ATTN RDRL SER L R POLCAWICH ATTN RDRL SER P AMIRTHARAJ
1	US ARMY ARDEC ATTN AMSRD AAR AEM C A MARSTON BLDG 61S PICATINNY ARSENAL NJ 07806-5000		ATTN RDRL SER U C FAZI ATTN RDRL-SER-E F CROWNE ADELPHI MD 20783-1197
3	US ARMY ARDEC ATTN AMSRD AAR AEM L S GILMAN ATTN AMSRD AAR AEP F O NGUYEN ATTN AMSRD AAR AEP F S SHRI BLDG 65S PICATINNY ARSENAL NJ 07806-5000		
1	US ARMY INFO SYS ENGRG CMND		

ATTN AMSEL IE TD A RIVERA FT HUACHUCA AZ 85613-5300

US GOVERNMENT PRINT OFF DEPOSITORY RECEIVING SECTION ATTN MAIL STOP IDAD J TATE 732 NORTH CAPITOL ST NW WASHINGTON DC 20402

1

INTENTIONALLY LEFT BLANK.