RIEPILOGO - TEOREMA DI RICORSIONE Se T: Pa > Pa e considua allona: 1) I= U Ti(Ø) e un punto fisso di T 2) Dato JEPA tale de J=T(J) allona ICS (ossia I e il minino punto fisse) -s (EMMA (per dimostrare il teorere) Sia T: TPA > TPa continua. Allera,

Hizo vale Ti(\$\phi\$) \subsete Time (\$\phi\$) L'abbiano dimostrato usando le principio D1 12007:04E : -o Par dimostrare de una proprieta- P vale per Tutti i valor di IN e sufficiente dinostrare che: (P(O) vea) 1) P vele per O 2) Se ρ vale per n, allow ρ vale onche per ρ ρ ρ ρ ρ (P(m) =) P(m + n)

venerdì 17 novembre 2017 09:20
DIMOSTRAZIONE DEL TEGREMA DI RICORSIONE
Partiamo del punto 1)
· T continua =) I = U T'(\$\psi\$) e punto fisso
Dimostratione
I punto fisso vuol dire I=T(I)
(e-quello de dobbiano ottenee)
T(I)
= { per def. di I}
$T\left(\bigcup_{i\geq 0}T^{i}\left(\phi\right)\right)$
$=$ $\langle peril Cemme T^{\circ}(\phi) \subseteq T^{1}(\phi) \subseteq T^{2}(\phi) \subseteq$
quindi i Ti costituiscono una sequenza nom decnescente di insiemi
quindi posso usane la Continullat di T)
$\bigcup T \left(T^{i}(\phi)\right)$
= { per sef. Ti3
$() - i + \lambda (cb)$

	1 30
=	poide ØUA = A per queline A}
	du UTi(p) izi (pe def - si Ti)
	$+\circ(\phi)\cup\cup\uparrow^{i}(\phi)$ \downarrow set. \circ i \cup 3
	def. of I3
	quimoli $T(I) = I$ ossi = I e purio fisio di T

70(0		
	l per def. di T'abbiamo e contenuto in quelunque	
	quindi $\phi \leq 5$	
caso inour	77V0	
T~((p) C 2 => T ~ + ^ (p) C 3	?
l fo Te	ESI ADUTTIVA	
	ASSUM SIA DEVO DIMOTTAN VERYO QUESTO CLIE VACE Q	
T mta	(ϕ)	
	sef. si Ti3	CIA DI CUSTAGIO
	$- \sim (\phi)$	
	To de Te Continua e an	
ði ————————————————————————————————————		X = 4 =>T (x) = 7 (4)
	e purts fisso)	

venerdì 17 novembre 2017 09:52 - ESEMPIO DI APPLICAZIONE DEL TEOREMA (avevamo gic visto l'applicatione a X=(0)ux) Consideriamo quella eq. niconsiva X = {0} v {m | m ∈ /N n m - 2 e x } applichiamo, l'Teorene per calcolare la solutione di questa equatione $T(x) = \{0\} \cup \{m \mid m \in IN \land m - 2 \in x\}$ e cerchiano el minimo ponto Fisso per poter applicare il Teorena dossiano assicuraci T continua Verifichiemolo: $\bigcup_{i \geq 0} \left(T(x_i) \right) = T\left(\bigcup_{i \geq 0} X_i \right)$ \times o \subseteq \times $_{1}$ \subseteq \times $_{2}$ \subseteq U (T(x;)) = { Sef. S; T } = { raop. di U}

{0} ∪ ∪ ({ ~ | ~ ∈ W ~ ~ ~ - 2 ∈ X; }) = { prop. di U } (0) 0 { m | m ∈ IW n m - 2 ∈ U ×; } = { def. si T } $T\left(\bigcup_{i^2B}X_i\right)$ quindi Te Continus

venerd) 17 novembre 2017 10:01	
71510	cle T et continue posso calcolar
	I = U Ti(Ø) core minino 130 ports fills
i=D	$T^{\circ}(\phi) = \phi$
ί = Λ	$T^{\wedge}(\phi) = T(\phi) = \{0\} \cup \{m \mid m \in IN \land m - 2 \in \emptyset\}$
	$= \langle 0 \rangle \cup \emptyset = \langle 0 \rangle$
i = 2	$T^{2}(\phi) = T(T^{\prime}(\phi)) = T(3)$
	= {0}0{~\re\n^-2e{0}}
	$= \langle 0 \rangle \cup \langle 2 \rangle = \langle 0, 2 \rangle$
1 = 3	$T^{3}(\phi) = T(T^{2}(\phi)) = T(\zeta_{0}, \zeta_{3})$
	= {0}0 /m m ∈ W n m-2 ∈ {0,2}}
	= 2030 12,43 = 10,2,43
	OCNI VOLTA ACCIUNCO IL SUCCESSIVO NUMERO PARI, QUINOI:
<u> </u>	OTi(Ø) = Prinsième oi
	Tum I Lumeri
	T MINIMO PUNTO FISTO
	DI TE QUINDI

venerdì 17 novembre 2017 10:0

PER ESERCIZIO:

USARE IL TEOREMA DI RICORSIONE PER TROVARE LE SULUZIONI DELLE SEGUENT EQUAZIONI RICORSIVE:

$$\rightarrow \times = \{130 \} \cup \{100 \} \cap \{100$$

$$-\infty \times = \{130 \mid m \mid m \in \mathbb{N} \mid m = 2k \mid k \in \times \}$$

$$\rightarrow$$
 $\times = \{ m \mid m \in \mathbb{N} \mid m \in \times \}$

$$-\infty \times = \{0\} \cup \{m\} \mid m \in \mathbb{N} \quad \land \land \neg \land \in \times \}$$

NOTA: ASSICURARSI CHE LE TRASFORMAZIONI SIANO CONTINUE!!!

APPLICHIAMOIL TEOREMA (douremne veificae de la Trasformatione e continue me la sacro) F= { (0,1) } U { < m, m. k) | mell n m>0 n < m-1, k) & F} qui-di DOBAIANO COLCOLARE I = UT'(Ø) i=0 T° (\$) = \$ i=1 $T^{1}(\phi)=T(\phi)=\{\langle 0,1\rangle\}\cup\{\langle m,m,k\rangle\},...,\langle m-1,k\rangle\in\phi\}$ = { < 0,1>} U Ø = { < 0,1>} $T^{2}(\emptyset) = T(T^{1}(\emptyset)) = T(\{(0,1)\}) =$ = $\{(0,1)\}\cup\{(m,m.k)\}....(m.k)\in\{(0,1)\}$ = {<0,1>}0 {<1,1.1>}= = { (0,13, < 1,13} $T^{3}(\varphi) = T(T^{2}(\varphi)) = T(\langle\langle 0, n \rangle, \langle n, n \rangle) =$ = { < 0,0) } u { < m, m. k > 1 - ... < m-1, k) } { (0,0), < 1,0) }

```
= {(0,1)}0 {<1,1.1>, <2,2.1> }
           = {(0,1), (1,1), (2,2)}
i=4 T^4(\phi)=\cdots
            = { < 0,1)} 0 { < m, m, k} ( ... < m, k) ∈ { (0,1)}, (2,2)}
            = \{ \langle 0, 1 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 6 \rangle \}
             0 fact (0) ---- 3 fact (3)
     IL JEUNEMA DI MICONSIONE MI CONSENTE DI
       "ESEGUIRE" LE FUNZIONI RICORSIVE.
     INOLTRE MI CONSENTE DI CALCOLARE IL
       GRAFICO, CHE CONTIENE TUTTE 1
       RISULTATI POSSIBILI DELLA FUNZIONE
      NEC CASO DI fact posso OSSERVARE
      CHE IL GRATICO CONTIENE UNA COPPIA
      PER OGNI JALONE DI MEIN
         => PER GGNI INPUT fect mi
             DA UN RISULTATO!
         => Quiroi fact & UNA FUNCIONE
              SCRITTA CORRETTAMENTE! mi
              DARA SEMPRE UN RISULTATO
                   (TERMINA PER OGNI ME M)
      VOCTE LE FUNZIONI RICORSIVE NON
```

TERMIMAMO	(S€	SONO P	PROSETTATE	MACE)
	_			
AO E).				
	0 ()) 0	se m=	1
	f(m)=	11+11/	se m= n+1) se	m 1-1
		, , , (,	() 5	. 7
S€ CA	LCOLIAMO	ic qu	AFICO OTTE	EwiAmo
	,			
F =	3 (1,0	> , < @	0,1)}	
	(,	/		
			1+ f(0+1)	
			14 8(1) =	
			= 1+0=1	
			Col IL	
			E Che CA	
TERMIN	id Solo	PER	m=0 e	m=1 //
	\\\\ \\ \\ \= \	BEN PR	OCETATA 1	•
	10/	, , , , , ,		