Thresholding

Let us consider an image I of dimension (x, y).

• Compute histogram and probabilities of each intensity level \rightarrow Let ψ the pixel (the index in the matrix representing the image), and $i(\psi)$ its corresponding intensity, $i \in [0, 256[$ (with $i(\psi)$ the value at the index ψ in the said matrix)

The probability P of finding a pixel intensity $i(\psi)$ is

$$P(i(\psi)) = \frac{ni(\psi)}{xy}$$
, with n the number of occurrences of $i(\psi)$

• Global mean and global variance

$$\mu_G = \sum_{k=0}^{xy-1} i(k). P(i(k))$$

$$\sigma_G^2 = \sum_{k=0}^{xy-1} (i_k - m_G)^2 P(i_k)$$

• Let us suppose we select a threshold T, with a value of t.

Let $C_0=\{\psi\mid \psi\leq t\}$ and $C_1=\{\psi\mid \psi>t\}$ the two classes of pixels. The probabilities $\omega_0(t)$ and $\omega_1(t)$ are such that: $\omega_0(t)=\sum_{k=0}^t P(i_k)$

$$\omega_1(t) = \sum_{k=t+1}^{xy-1} P(i_k) = 1 - \omega_0(t)$$

The class (conditional) means are:

$$\mu_0(t) = \frac{\sum_{k=0}^t i_k P(i_k)}{\omega_0(t)}$$

$$\mu_1(t) = \frac{\sum_{k=t+1}^{xy-1} i_k P(i_k)}{\omega_1(t)}$$

$$\mu_T = \sum_{k=0}^{xy-1} i_k P(i_k)$$

ullet Otsu's criteria: maximize the between-class variance σ_B^2

$$\sigma_B^2 = \omega_0(t)(\mu_0(t) - \mu_T)^2 + \omega_1(t)(\mu_1(t) - \mu_T)^2 = \omega_0(t)\omega_1(t)[\mu_0(t) - \mu_1(t)]^2$$

Remark: To verify the expressions:

$$\frac{\omega_0 \mu_0 + \omega_1 \mu_1 = \mu_T}{\omega_0 + \omega_1 = 1}$$

- Process:
- Go through $t \in [1, \max(i(\psi))]$ Compute σ_B^2 , and get the maximum $maximum_V$ (through each iteration, compare current variance with the previous one)
- The desired threshold is $maximum_V$