

Disciplina: Mecânica do Voo **Professor: William Reis Silva** e-mail: reis.william@unb.br

Lista de exercícios 3 – Completando o modelo não linear

- 1. Defina as seguintes características de uma asa.
- Envergadura
- Diedro
- Enflechamento
- Alongamento
- 2. Explique os trade-offs (ou seja, o que se perde e o que se ganha) ao se alterar as seguintes características de uma asa:
- Diedro
- Enflechamento
- Alongamento
- 3. Considerando o modelo não linear da aeronave com aproximação de Terra plana, descreva quais são os elementos do vetor de estados x e do vetor de entrada u. Veja que existe mais de uma possibilidade de modelo não-linear, e o aluno é livre para escolher qualquer um.
- 4. Explique como as superfícies de controle (aileron, leme e profundor) afetam o modelo não-linear. Utilize uma das superfícies, e seu efeito, como exemplo.
- 5. Como a propulsão afeta o modelo não linear?
- 6. O que é, e que relação descreve o coeficiente $C_l(\beta)$? Quais características do avião afetam essa relação? Explique cada uma delas, incluindo ilustrações se necessário.
- 7. Liste dois coeficientes adimensionais afetados pelo leme (rudder) de uma aeronave. Explique como, fisicamente, o leme afeta cada um deles.
- 8. Ao pilotar um aeromodelo, você percebe que a resposta em arfagem está instável, ou seja, ao fornecer um comando de profundor (elevator), mesmo que pequeno e de curta duração, lpha aumenta até que o avião entre em stall. Explique uma possível razão para a instabilidade. O que poderia ser feito para estabilizar? Informações extras: o aeromodelo, em si, possui fuselagem oca, na qual foram instalados diversos equipamentos: baterias, rádio transmissores, sensores, computador de bordo. Esses equipamentos não possuem lugar fixo (ou seja, podem ser instalados em qualquer lugar da fuselagem), e foram instalados de forma arbitrária.
- 9. Encontre as derivadas adimensionais do movimento longitudinal e látero-direcional com apresentado nas tabelas abaixo:

TABLE 2.5-3. Longitudinal Dimensional Versus

Dimensionless Derivatives	
$X_{\nu}=-\frac{\overline{q}S}{mV_{\tau}}(2C_{D}+C_{D\nu}),$	$C_{D_{\nu}} = V_{T} \frac{\partial C_{D}}{\partial V_{T}}$
$X_{\alpha} = \frac{\bar{q}S}{m} (C_L - C_{D_{\alpha}}),$	$C_{D_a} \equiv \frac{\partial C_D}{\partial \alpha}$
$X_{\delta\sigma} = -\frac{\bar{q}S}{m}C_{D_{\delta\sigma}},$	$C_{D_{4r}} = \frac{\partial C_D}{\partial el}$
$Z_{\nu}=-\frac{\tilde{q}S}{mV_{T}}(2C_{L}+C_{L_{\nu}}),$	$C_{L_{\nu}} \equiv V_{T} \frac{\partial C_{L}}{\partial V_{T}}$
$Z_{a}=-\frac{\overline{q}S}{m}(C_{D}+C_{L_{q}}),$	$C_{L_{\alpha}} = \frac{\partial C_{L}}{\partial \alpha}$
$Z_{\theta} = -\frac{\bar{q}S\bar{c}}{2mV_T}C_{L_{\theta}},$	$C_{L_{\alpha}} = \frac{2V_{T}}{\bar{c}} \frac{\partial C_{L}}{\partial \dot{\alpha}}$
$Z_q = -\frac{\bar{q} S \bar{c}}{2 m V_T} C_{L_q},$	$C_{Lq} = \frac{2V_T}{\bar{c}} \frac{\partial C_L}{\partial Q}$
$Z_{3e} = -\frac{\bar{q}S}{m}C_{L_{3e}},$	$C_{L_{k\nu}} = \frac{\partial C_L}{\partial el}$
$M_r = \frac{\bar{q}S\bar{c}}{I_{\gamma}V_T}(2C_M + C_{m_{\gamma}}),$	$C_{m_{\nu}} \equiv V_{T} \frac{\partial C_{M}}{\partial V_{T}}$
$M_{\alpha} = \frac{\overline{q}S\overline{c}}{J_{\gamma}}C_{m_{\alpha}},$	$C_{m_{\bullet}} = \frac{\partial C_M}{\partial \alpha}$
$M_{d} = \frac{\bar{q}S\bar{c}}{J_{Y}} \frac{\bar{c}}{2V_{T}} C_{m_{+}},$	$C_{m_4} \equiv \frac{2V_T}{\bar{c}} \frac{\partial C_h}{\partial \dot{\alpha}}$
$M_q = \frac{\bar{q}S\bar{c}}{J_y} \frac{\bar{c}}{2V_T} C_{m_q},$	$C_{m_a} = \frac{2V_T}{\bar{c}} \frac{\partial C_h}{\partial Q}$
$M_{\delta e} = \frac{\overline{q}S\overline{c}}{J_{V}}C_{m_{\delta e}},$	$C_{m_{\delta a}} = \frac{\partial C_M}{\partial cl}$

TABLE 2.5-4. Lateral-Directional Dimensional Versus Dimensionless Derivatives

Dimensionless Derivatives	
$Y_{\mu} = \frac{\bar{a}S}{m}C_{Y_{\mu}}$	$C_{Y_{\beta}} = \frac{\delta C_{Y}}{\partial \beta}$
$Y_{\mu} = \frac{\bar{q} S b}{2 m V_{\tau}} C_{Y_{\mu}} , \label{eq:Ymu}$	$C_{\gamma_{\sigma}} = \frac{2V_{T}}{b} \frac{\partial C_{Y}}{\partial P}$
$Y_r = \frac{\vec{q}Sb}{2mV_T}C_{Y_r},$	$C_{\gamma_r} = \frac{2V_T}{b} \frac{\partial C_Y}{\partial R}$
$Y_{\delta r} = \frac{\bar{q}S}{m} C_{Y_{\delta r}} ,$	$C_{V_{kr}} = \frac{\partial C_{\gamma}}{\partial \mathrm{rdr}}$
$Y_{\delta u} = \frac{\bar{q}S}{m} C_{Y_{\delta u}} ,$	$C_{\gamma_{h_{\theta}}} = \frac{\partial C_{\gamma}}{\partial \operatorname{ail}}$
$L_{\mu} = \frac{\bar{q}Sb}{J_X^i} C_{i_{\mu}} ,$	$C_{\ell_{\theta}} \equiv \frac{\partial C_{\ell}}{\partial \beta}$
$L_{\rho} = \frac{\overline{q}Sb}{J_{X}'} \frac{b}{2V_{T}} C_{l_{p}},$	$C_{l_{\mu}} = \frac{2V_{T}}{b} \frac{\partial C_{I}}{\partial P}$
$L_r = \frac{\overline{q}Sb}{J_X^r} \frac{b}{2V_T} C_{l_r},$	$C_{l_r} = \frac{2V_T}{b} \frac{\partial C_\ell}{\partial R}$
$L_{\delta a} = \frac{\bar{q}Sb}{J'_{X}}C_{i_{\delta a}}$,	$C_{l_{k_{\theta}}} = \frac{\partial C_{l}}{\partial \text{ail}}$
$L_{\delta r} = \frac{\bar{q}Sb}{J_X'}C_{i_{\delta r}},$	$C_{i_{g_r}} = \frac{\partial C_1}{\partial r dr}$
$N_{\mu} = \frac{\overline{q}Sb}{J_Z^*}C_{n_{\mu}},$	$C_{n_{\beta}} = \frac{\partial C_n}{\partial \beta}$
$N_{\mu} = \frac{\bar{q}Sb}{J_Z'} \frac{b}{2V_T} C_{n_{\mu}},$	$C_{n_{\mu}} = \frac{2V_{T}}{b} \frac{\partial C_{n}}{\partial P}$
$N_r = \frac{\bar{q}Sb}{J_Z'} \frac{b}{2V_T} C_{\kappa_r},$	$C_{n_r} = \frac{2V_T}{b} \frac{\partial C_n}{\partial R}$
$N_{\delta x} = \frac{\bar{q}Sb}{J_Z'}C_{n_{\delta x}},$	$C_{n_{4v}} = \frac{\partial C_v}{\partial \text{ail}}$
$N_{\delta r} = \frac{\overline{q}Sb}{J_Z^r}C_{n_{\delta r}},$	$C_{n_{dr}} = \frac{\partial C_n}{\partial r dr}$