ÍNTEGRALE CURBILINII DE SPEȚA II

- Problema găsirii lucruluifortei
- * Integrale curbilinii de speța II. Definiții. Proprietăți
- ❖ Calcularea integralei curbilinii de speța II
- * Formula lui Green. Aplicații
- * Condițiile de independență a integralei curbilinii de drumul de integrare
- ❖ Găsirea funcției după diferențiala ei totală

Problema găsirii lucrului forței

Fie că un punct material M ce se mișcă de-a lungul unui arc plan L de la punctul A la punctul B, i se aplică forța F, care variază ca mărime și ca direcție. Deci, că F este o funcție ce depinde de M(x,y), adică $\vec{F} = \vec{F}(M) = \vec{F}(x,y)$. Să se determine lucrul L al forței la deplasarea punctului M de la punctul A la punctul B.

Divizăm curba AB cu ajutorul punctelor $M_0 = A$, M_1 , M_2 , ..., $M_n = B$, în direcția de la A la B. Notăm vectorul $\overline{M_i M_{i+1}}$ cu $\overline{\Delta l_i}$. Fie $\overline{F_i} = \overline{F} (M_i)$ mărimea forței în punctul M_i . Se cunoaște că în cazul cînd AB este un segment de dreapta, atunci lucrul poate fi găsit astfel $L = \overline{F} (M) \cdot \overline{AB}$ Produsul scalar $\overline{F_i} \cdot \overline{\Delta l_i}$ poate fi considerat lucrul aproximativ pe arcul $M_i M_{i+1}$. Deci, $L_i \approx \overline{F_i} \cdot \overline{\Delta l_i}$. Punem $\Delta x_i = x_{i+1} - x_i$,

$$\Delta y_i = y_{i+1} - y_i$$
. Atunci $\overline{\Delta l_i} = \Delta x_i \overline{i} + \Delta y_i \overline{j}$.
Fie că $\overrightarrow{F}(x, y) = P(x_i, y_i) \overline{i} + Q(x_i, y_i) \overline{i}$. Atunci $L_i \approx P(x_i, y_i) \triangle x_i + Q(x_i, y_i) \overline{i}$

Fie că
$$\vec{F}(x, y) = P(x_i, y_i)\vec{i} + Q(x_i, y_i)\vec{j}$$
. Atunci $L_i \approx P(x_i, y_i) \triangle x_i + Q(x_i, y_i) \triangle y_i$ și

$$L \approx \sum_{i=0}^{n} L_i \Rightarrow L \approx \sum_{i=0}^{n-1} (P(x_i, y_i) \triangle x_i + Q(x_i, y_i) \triangle y_i)$$
. Eroarea va fi mai mică cu cât în mai

mici părți va fi divizat arcul AB, adică $\Delta x_i, \Delta y_i \rightarrow 0$. Deci,

$$L = \lim_{\Delta x_i \to 0 \atop \Delta y_i \to 0} \sum_{i=0}^{n-1} \left(P(x_i, y_i) \Delta x_i + Q(x_i, y_i) \Delta y_i \right)$$

Integrale curbilinii de speța II. Definiții. Proprietăți

La definirea integralei curbilinii de speța II se folosesc raționamentele de mai sus. Nu vom intra în amănunte.

ÍNTEGRALE CURBILINII DE SPEȚA II

Fie dat un arc L de curbă neîntrerupt, mărginit de punctele A și B și funcțiile P(x, y) și Q(x, y) continui pe L. Divizăm arcul L în direcția de la A spre B în modul indicat mai sus și formăm suma: $\sigma_n = \sum_{i=0}^{n-1} \left[P(x_i, y_i) \Delta x_i + Q(x_i, y_i) \Delta y_i \right]$.

Dacă limita acestei sume, când $\Delta x_i, \Delta y_i \to 0$, există, este finită și nu depinde de modul de divizare a arcului L, valoarea ei se numește **integrală curbilinie de speța II.** Se notează, $\int_{(AB)} P(x,y)dx + Q(x,y)dy$. Deci,

$$\int_{(AB)} P(x,y)dx + Q(x,y)dy = \lim_{\Delta x_i, \Delta y_i \to 0} \sum_{i=0}^{n-1} \left(P(x_i, y_i) \Delta x_i + Q(x_i, y_i) \Delta y_i \right)$$

Notă: 1. Dacă L este un arc de curbă spațial, analog poate fi introdusă noțiunea de integrală curbilinie a funcțiilor P(x, y, z), Q(x, y, z), R(x, y, z)

$$\int_{AB} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

2. Menționăm că în cazul când curba L de integrare este un contur închis, integrala se notează: $\oint Pdx + Qdy$.

Proprietăți ale integralei curbilinii de speța II

- 1. Dacă drumul de integrare va fi de la B la A, atunci integrala curbilinie îşi va schimba semnul, adică: $\int_{(AB)} P(x,y) dx + Q(x,y) dy = -\int_{(BA)} P(x,y) dx + Q(x,y) dy$
- 2. Dacă drumul de integrare L este divizat în porțiunile $L_1, L_2, ..., L_n$, atunci $\int_{L} = \int_{L} + ... + \int_{L} .$

Calcularea integralei curbilinii de speța II

Calcularea integralei curbilinii de speța II poate fi redusă la calcularea integralei definite în următoarele cazuri:

- 1. Dacă L este definit de funcția y = y(x), $x \in [a,b]$, continuă împreună cu derivata sa pe [a,b], atunci: $\int_{L} Pdx + Qdy = \int_{a}^{b} P(x,y(x)) + Q(x,y(x))y'(x)dx$
- 2. Dacă arcul de curbă L este dat de ecuațiile parametrice x = x(t), y = y(t), $t \in [t_1, t_2]$, atunci avem:

$$\int_{t} Pdx + Qdy = \int_{t_1}^{t_2} P(x(t), y(t)) \cdot x'(t) + Q(x(t), y(t)) \cdot y'(t) dt$$

INTEGRALE CURBILINII DE SPEȚA II

Exemple:

1. $I = \int x^2 dx + \frac{1}{v^2} dy$, L - arcul de curbă $x = \frac{1}{v}$ de la punctul A(1,1) la punctul B(4,1/4).

Soluție: Avem $y = \frac{1}{x}$, $dy = -\frac{1}{x^2}dx$, $x \in [1,4]$. Obținem că

Avem
$$I = \int_{1}^{4} \left(x^{2} + x^{2} \cdot \left(-\frac{1}{x^{2}} \right) \right) dx = \left(\frac{x^{3}}{3} - x \right) \Big|_{1}^{4} = \frac{64}{3} - 4 - \frac{1}{3} + 1 = 18.$$

2. $I = \int y dx + x dy$, unde L este arcul astroidei $x = a \cos^3 t$, $y = a \sin^3 t$ de la punctul

 $M_1(t_1)$ la $M_2(t_2)$ pentru care $t_1 = 0$, $t_2 = \frac{\pi}{4}$. Avem $dx = -3a\cos^2 t \sin t dt$, $dy = 3a\sin^2 t \cos t dt$. Deci,

$$I = \int_0^{\frac{\pi}{4}} \left(-a\sin^3 t \cdot 3a\cos^2 t \sin t + a\cos^3 t \cdot 3a\sin^2 t \cos t \right) d = t$$

$$3a^{2} \int_{0}^{\frac{\pi}{4}} \sin^{2} t \cos^{2} t \left(\cos^{2} t - \sin^{2} t\right) dt = \frac{3a^{2}}{4} \int_{0}^{\frac{\pi}{4}} \sin^{2} 2t \cos 2t dt = \frac{3a^{2}}{8} \cdot \frac{\sin^{3} 2t}{3} \Big|_{0}^{\frac{\pi}{4}} = \frac{a^{2}}{8}$$

3.
$$I = \int_{L} (4xy + 5y^3) dx + (2x^2 + 15xy^2) dy$$
.

- a) L este arcul parabolei $y = x^2$ de la O(0,0) la B(1,1)
- b) L este arcul parabolei $y^2 = x$ de la O(0,0) la B(1,1)

$$I = \int_0^1 \left[4x^3 + 5x^6 + \left(2x^2 + 15x^5 \right) 2x \right] dx = \int_0^1 \left(8x^3 + 35x^6 \right) dx =$$

$$\left(2x^4 + 5x^7 \right) \Big|_0^1 = 7$$

b)
$$\int_0^1 ((4y^3 + 5y^3)2y + 2y^4 + 15y^4) dy = \int_0^1 35y^4 dy = 7$$

Obținem același rezultat – nu este întâmplător.

4.
$$\int_{L} (3x^2y - 7x^3) dx + (6x + 11x^2y^2) dy$$

- a) L este segment de dreaptă y = x de la O(0,0) la B(1,1);
- b) L este dat de ecuația $y = x^4$ de la O(0,0) la B(1,1).

a)
$$I = \int_0^1 (3x^3 - 7x^3 + 6x + 11x^4) d = \left(x^4 + 3x^2 + \frac{11}{5}x^5 \right) \Big|_0^1 = \frac{21}{5}$$

ÎNTEGRALE CURBILINII DE SPEȚA II

b)
$$I = \int_0^1 (3x^6 - 7x^3 + (6x + 11x^{10})4x^3) dx = \int_0^1 (3x^6 - 7x^3 + 24x^4 + 44x^{13}) dx =$$

$$= \left(\frac{3}{7}x^7 - \frac{7}{4}x^4 + \frac{24}{5}x^5 + \frac{44}{4}x^4\right)\Big|_0^1 = \frac{927}{140}$$

Deci, valoarea integralei depinde de drumul de integrare. În viitor vom stabili condiții când valoarea integralei de la punctul A la punctul B nu depinde de drumul de integrare.

Formula lui Green. Aplicații

În cele ce urmează vom stabili legătura dintre integrala dublă pe un domeniu plan D și integrala curbilinie pe frontiera L a acestui domeniu.

Cazul când domeniul D este mărginit de liniile $y = f_1(x)$, $y = f_2(x)$, $f_1(x) \le f_2(x)$, $a \le x \le b$. Conturul L constă din liniile AB și BC și două segmente: AD și $BC \parallel OY$ Presupunem că pe domeniul D este definită funcția P(x,y), continuă împreună cu derivata parțială a sa $\frac{\partial P}{\partial y}$. Vom calcula acum $\iint_D \frac{\partial P}{\partial y} dxdy$. Presupunem că pe domeniul D este definită funcția

$$\iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} dx \int_{f_{1}(x)}^{f_{2}(x)} \frac{\partial P}{\partial y} \partial y = \int_{a}^{b} P(x, y) \Big|_{f_{1}(x)}^{f_{2}(x)} dx = \int_{a}^{b} P(x, f_{2}(x)) dx - \int_{a}^{b} P(x, f_{1}(x)) dx = \int_{a}^{b} P(x, y) dx - \int_{(AB)}^{b} P(x, y) dx = \int_{(DC)} P(x, y) dx + \int_{(BA)} P(x, y) dx = \int_{(ADCB)} P(x, y) dx + \int_{(ADCB)} P(x, y) dx + \int_{(ADCD)} P(x, y) dx + \int_{(ADCB)} P(x, y) dx = \int_{(ADCB)} P(x, y) dx = \int_{(ADCD)} P(x, y) dx$$

când domeniul D este mărginit de liniile $x = g_1(x)$, $x = g_2(y)$, $g_1(y) \le g_2(y), c \le y \le d$.

Fie în domeniul D este definită funcția Q(x,y), continuă împreună cu derivata sa $\frac{\partial Q}{\partial x}$. Analog se demonstrează:

$$\iint_{D} \frac{\partial Q}{\partial x} dx dy = \int_{(ABCD)} Q(x, y) dx$$

ÍNTEGRALE CURBILINII DE SPEȚA II

Teoremă: Dacă domeniul D, închis și mărginit, poate fi descompus într-un număr finit de domenii de tipuri indicate și P(x,y), Q(x,y), $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ sunt continui pe acest domeniu, atunci este justă **formula lui Green**

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{L} P(x, y) dx + Q(x, y) dy,$$

L este frontiera lui D parcursă în sens pozitiv.

Formula de mai sus se obține scăzând ultimele egalități.

Cu ajutorul formulei lui Green poate fi calculată aria domeniului D.

Fie
$$P(x,y) = -y$$
, $Q(x,y) = 0$, atunci $A_D = \iint_D dx dy = -\oint_V y dx$.

Fie
$$P(x, y) = 0$$
, $Q(x, y) = x$, atunci $A_D = \iint_D dx dy = \oint_L x dy$.

Sau
$$A_D = \iint_D dxdy = \frac{1}{2} \oint_L xdy - ydx$$

Condițiile de independență a integralei curbilinii de drumul de integrare

Definiție: Domeniul D se numește simplu conex, dacă orice porțiune finită a planului, mărginită de un contur închis, ce se include în întregime în D, de asemenea se închide în D.

Teoremă: Fie D un domeniu închis, mărginit și simplu conex, și fie că funcțiile P(x,y), Q(x,y), $\partial P/\partial y$, $\partial Q/\partial x$ sunt continui în acest domeniu. Atunci următoarele conditii sunt echivalente:

- 1. $\oint_L P(x,y)dx + Q(x,y)dy = 0$, unde L este un contur închis ce se include în D;
- 2. $\int_{AB} (x, y) dx + Q(x, y) dy$ nu depinde de drumul de integrare (arcul AB), dar numai

de punctul inițial și cel final;

3. există o astfel de funcție U(x, y), astfel încât du = P(x, y)dx + Q(x, y)dy;

4.
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
.

ÍNTEGRALE CURBILINII DE SPEȚA II

Demonstrație: Vom arată că $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$.

 $1 \rightarrow 2$

În domeniul D considerăm două arcuri arbitrare AMB și ANB cu capetele în A și B. Trebuie de demonstrat că $\int_{AMB} P(x,y) dx + Q(x,y) dy = \int_{ANB} P(x,y) dx + Q(x,y) dy.$

Din condiția 1 avem: $\oint_{AMBNA} P(x,y)dx + Q(x,y)dy = 0$, de unde

$$\int_{AMB} P(x,y)dx + Q(x,y)dy + \int_{BNA} P(x,y)dx + Q(x,y)dy = 0 \Rightarrow$$

$$\int_{AMB} P(x,y)dx + Q(x,y)dy = -\int_{BNA} P(x,y)dx + Q(x,y)dy \Rightarrow$$

$$\int_{AMB} P(x,y)dx + Q(x,y)dy = \int_{ANB} P(x,y)dx + Q(x,y)dy$$

$$2 \rightarrow 3$$

Să se arate că există funcția U(x,y), astfel încât du = P(x,y)dx + Q(x,y)dy.

Fixăm punctul $A(x_0, y_0) \in D$ și fie B(x, y) un punct variabil din domeniul D.

Considerăm integrala $\int_{AB} P(x,y)dx + Q(x,y)dy$, care depinde numai de punctul B, adică de coordonatele lui B. Notăm această integrală cu U(x,y) și vom arăta că această funcție este funcția căutată, adică $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$. Deaceea

este suficient de demonstrat că $\frac{\partial u}{\partial x} = P(x, y)$ și $\frac{\partial u}{\partial y} = Q(x, y)$.

Demonstrăm prima egalitate:

$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\int_{AB'} P(x, y) dx + Q(x, y) dy - \int_{AB} P(x, y) dx + Q(x, y) dy \right] = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{BB'} P(x, y) dx + Q(x, y) dy = \{dy = 0\} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{BB'} P(x, y) dx = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x} P(x, y) dx = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x} P(x, y) dx = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x} P(x, y) dx = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x} P(x, y) dx = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x} P(x, y) dx = P(x, y)$$

ÍNTEGRALE CURBILINII DE SPEȚA II

unde c este punctul din teorema despre valoarea medie a integrale $\left(\int_a^b f(x)dx = f(c)(b-a),\right)$. Deci, $\frac{\partial u}{\partial x} = P(x,y)$. Analog $\frac{\partial u}{\partial y} = Q(x,y)$. $3 \to 4$.

Fie
$$du = P(x, y)dx + Q(x, y)dy$$
. Să arătăm că $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Avem $\frac{\partial u}{\partial x} = P(x, y)$,

 $\frac{\partial u}{\partial y} = Q(x, y)$. Derivând prima ecuație după y, iar a doua după x, avem:

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial P}{\partial y} \text{ si } \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial Q}{\partial y}. \text{ Decarece } \frac{\partial P}{\partial y} \text{ si } \frac{\partial Q}{\partial x} \text{ sunt continui, atunci si } \frac{\partial^2 u}{\partial x \partial y}, \frac{\partial^2 u}{\partial y \partial x}$$

sunt continui și care, ca derivate parțiale mixte, sunt egale. De unde $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

$$4 \rightarrow 1$$
.

Fie
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 și L un contur închis în D . Să arătăm că $\oint_L P(x,y) dx + Q(x,y) dy = 0$.

Fie D, domeniul mărginit de L. Folosind formula lui Green avem

$$\oint_{L} P(x,y)dx + Q(x,y)dy = \iint_{D_{1}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy = 0$$

Găsirea funcției după diferențiala ei totală

Considerăm integrala $\int_L P(x,y)dx + Q(x,y)dy$ și fie că funcțiile P și Q sunt continui împreună cu derivatele sale parțiale $\frac{\partial P}{\partial y}$ și $\frac{\partial Q}{\partial x}$ cu $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Atunci P(x,y)dx + Q(x,y)dy este diferențiala totală a căreiva funcții și **valoarea integralei depinde numai de punctele inițial și cel final al liniei de integrale.** În acest caz integrala se scrie simplu: $\int_{(x_0,y_0)}^{(x_1,y_1)} P(x,y)dx + Q(x,y)dy$, unde (x_0,y_0) sunt coordonatele punctului inițial, iar (x_1,y_1) - coordonatele punctului final. Cel mai simplu să alegem drumul de integrare pe linia frântă $M_0M_2M_1$, cu $M_2(x_1,y_0)$ sau pe linia frântă $M_0M_3M_1$ cu $M_3(x_0,y_1)$. Considerăm linia frântă $M_0M_2M_1$. Atunci,

ÍNTEGRALE CURBILINII DE SPEȚA II

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{M_{0}M_{2}} P(x,y)dx + Q(x,y)dy + \int_{M_{2}M_{1}} P(x,y)dx + Q(x,y)dy = \int_{M_{0}M_{2}} P(x,y_{0})dx + Q(x,y_{0}) \cdot 0 + \int_{M_{2}M_{1}} P(x,y) \cdot 0 + Q(x,y)dy$$

$$\sup_{M_{0}M_{2}} \int_{(x_{0},y_{0})} P(x,y)dx + Q(x,y)dy = \int_{x_{0}}^{x} P(x,y_{0})dx + \int_{y_{0}}^{y} Q(x,y)dy.$$

Exemplu: Să se verifice că expresiile de sub semnul integralei este diferențiala totală a căreia funcții, apoi să se calculeze integrala: $\int_{(0,2)}^{(1,3)} (4xy - 15x^2y) dx + (2x^2 - 5x^3 + 7) dy$

Rezolvare: Avem
$$P(x, y) = 4xy - 15x^2y$$
, $Q(x, y) = 2x^2 - 5x^3 + 7$ şi $\frac{\partial P}{\partial y} = 4x - 15x^2$,

$$\frac{\partial Q}{\partial x} = 4x - 15x^2$$
. Deci, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Astfel, expresia $(4xy - 15x^2y)dx + (2x^2 - 5x^3 + 7)dy$

reprezintă diferențiala unei funcții U(x,y), care poate fi găsită după formula $U(x,y) = \int_{x_0}^x P(x,y_0) dx + \int_{y_0}^y Q(x,y) dy. \text{ Deci,}$

$$U(x,y) = \int_0^x P(x,0)dx + \int_0^y Q(x,y)dy = \int_0^x 0dx + \int_0^y (2x^2 - 5x^3 + 7)dy = 2x^2y - 5x^3y + 7y$$

iar valoarea integralei este $U(1,3) - U(0,2) = 22 - 14 = 8$.