§1. Definice limity

A) Vlastní limita v vlastním bodě

Def: Řekneme, že funkce f má v bodě $x_0 \in \mathbb{R}$ limitu $A \in \mathbb{R}$, jestliže ke každému $\epsilon \in \mathbb{R}^+$ existuje $\sigma \in \mathbb{R}^+$ takové, že pro všechna $x \in (x_0 - \sigma, x_0 + \sigma) - \{x\}$, platí $f(x) \in (A - \epsilon, A + \epsilon)$. Píšeme:

$$\lim_{x \to x_0} f(x) = A$$

B) Nevlastní limita v nevlastním bodě

Def: Řekneme, že funkce f má v bodě $x_0 \in \mathbb{R}$ limit $u + \infty$, jestliže ke každému $M \in \mathbb{R}^+$ existuje $\sigma \in \mathbb{R}^+$ takové, že pro všechna $x \in (x_0 - \sigma, x_0 + \sigma) - \{x\}$, platí f(x) > M. Píšeme:

$$\lim_{x \to x_0} f(x) = +\infty$$

C) Vlastní limita v nevlastním bodě

Def: Řekneme, že funkce f má $v+\infty$ (nebo podrobněji pro x jdoucí do $+\infty$ limitu $A\in\mathbb{R}$, jestliže ke každému $\epsilon\in\mathbb{R}^+$ existuje $K\in\mathbb{R}$ takové, že pro všechna x>K, platí $f(x)\in(A-\epsilon,A+\epsilon)$. Píšeme:

$$\lim_{x \to +\infty} f(x) = A$$

D) Nevlastní limita v nevlastním bodě

Def: Řekneme, že funkce f má $v+\infty$ (nebo podrobněji pro x jdoucí do $+\infty$ limitu $+\infty$, jestliže ke každému $M\in\mathbb{R}$ existuje $K\in\mathbb{R}$ takové, že pro všechna x>K, platí f(x)>M. Píšeme:

$$\lim_{x \to +\infty} f(x) = +\infty$$

E) Souhrná definice limity

Def: 1. Okolnímu bodu $x_0 \in \mathbb{R}$ rozumíme otevřený interval $(x_0 - \sigma; x_0 + \sigma)$, kde σ je kladné reálné číslo. Značíme je $O(x_0)$.

2. Okolím bodu + ∞ rozumíme každý interval $(k; +\infty)$, kde $k \in \mathbb{R}$. Značíme je $O(+\infty)$.

3. Okolím bodu $-\infty$ rozumíme každý interval $(-\infty;k),$ kde $k\in\mathbb{R}.$ Značíme je $O(-\infty).$

4. prstencovým okolím bodu $x_0 \in \mathbb{R}$ rozumíme množinu $O(x_0) - \{x_0\}$. Značíme je $P(x_0)$.

Def: Řekneme, že funkce f má v bodě $x_0 \in \mathbb{R}^*$ limitu $A \in \mathbb{R}^*$, jestliže ke každému okolí O(A) bodu A existuje prstencové okolí $P(x_0)$ bodu x_0 takové, že pro všechna $x \in P(x_0)$ platí $f(x) \in O(A)$. Píšeme:

$$\lim_{x \to x_0} f(x) = A$$

F) Jednosměrné limity

Def: 1. Levým prstencovým okolím bodu $x_0 \in \mathbb{R}$ rozumíme interval $(x_0 - \sigma, x_0)$, kde σ je kladné reálné číslo. Značíme je $P^-(x_0)$.

2. Pravým prstencovým okolím bodu $x_0 \in \mathbb{R}$ rozumíme interval $(x_0, x_0 + \sigma)$, kde σ je kladné reálné číslo. Značíme je $P^+(x_0)$.

Def: 1. Řekneme, že funkce f má v bodě $x_0 \in \mathbb{R}^*$ limitu zleva rovnu $A \in \mathbb{R}^*$, jestliže ke každému okolí O(A) bodu A existuje levé prstencové okolí $P^-(x_0)$ bodu x_0 takové, že pro všechna $x \in P^-(x_0)$ platí $f(x) \in O(A)$. Píšeme:

$$\lim_{x \to x_0^-} f(x) = A$$

2. Řekneme, že funkce f má v bodě $x_0 \in \mathbb{R}^*$ limitu zprava rovnu $A \in \mathbb{R}^*$, jestliže ke každému okolí O(A) bodu A existuje pravé prstencové okolí $P^+(x_0)$ bodu x_0 takové, že pro všechna $x \in P^+(x_0)$ platí $f(x) \in O(A)$. Píšeme:

$$\lim_{x \to x_0^+} f(x) = A$$