Title

2024年3月13日

Problem 0.1-课上思考题

P 是完备集
$$\Rightarrow \overline{\overline{P}} = c$$
 (1)

Sol. $\forall p_i \in P$, 同时因为 P 是完备集同时是 \mathbb{R}^1 的子集, 因此我们可知: 应存在一区间 $[\alpha,\beta] \subset P$, 同时 $\alpha,\beta \in P$. 由于 P=P' 所以 p_i,α,β 的任意的任意邻域均包含 P 中的无穷点, 不妨令 $x_1 \in P$ 满足

$$\left\{ x_1; \min_{x \in P} ||x - \alpha| - |x - \beta|| \right\} \tag{2}$$

记 $\delta = \frac{1}{2^n}$ $n \to \infty$ 因此可以将区间 $[\alpha, \beta]$ 分成 3 段

$$[\alpha, x_1 - \delta], [x_1 - \delta, x_1 + \delta], [x_1 + \delta, \beta]$$

去掉 $x_1 - \delta, x_1 + \delta$ 将 $[\alpha, x_1 - \delta]$ 继续分为三段: 记 $x_2 \in P$ 满足

$$\left\{ x_2; \min_{x \in P} ||x - \alpha| - |x - x_1 + \delta|| \right\} \tag{3}$$

则 $[\alpha, x_1 - \delta]$ 分为三段

$$[\alpha, x_2 - \delta], [x_2 - \delta, x_2 + \delta], [x_2 + \delta, x_1 - \delta]$$

将 $x_2 - \delta, x_2 + \delta$ 去掉. 对 $[x_1 + \delta, \beta]$ 进行如上操作并不断进行如上操作,直到得到一只有 $x \in P$ 组成的集合 A, 显然 $\overline{\overline{A}} \geq c$ 根据 Bernstein 定理可得

$$\overline{\overline{P}} = c$$