Report

學號: B05902002 系級: 資工二 姓名: 李栢淵

(1%) 請說明你實作的 CNN model, 其模型架構、訓練參數和準確率為何?

Layer (type)	Output Shape	Connected to		
input_1 (InputLayer)	(None, 1, 48, 48)			
conv2d_1 (Conv2D)	(None, 64, 24, 24)	input_1		
conv2d_2 (Conv2D)	(None, 16, 24, 24)	conv2d_1		
conv2d_3 (Conv2D)	(None, 16, 24, 24)	conv2d_2		
conv2d_4 (Conv2D)	(None, 64, 24, 24)	conv2d_3		
add_1 (Add)	(None, 64, 24, 24)	conv2d_4 conv2d_1		
activation_1 (ReLu)	(None, 64, 24, 24)	add_1		
conv2d_5 (Conv2D)	(None, 128, 12, 12)	activation_1		
conv2d_6 (Conv2D)	(None, 128, 12, 12)	activation_1		
conv2d_7 (Conv2D)	(None, 128, 12, 12)	conv2d_6		
add_2 (Add)	(None, 128, 12, 12)	conv2d_5 conv2d_7		
conv2d_8 (Conv2D)	(None, 32, 12, 12)	add_2		
conv2d_9 (Conv2D)	(None, 32, 12, 12)	conv2d_8		
conv2d_10 (Conv2D)	(None, 128, 12, 12)	conv2d_9		
add_3 (Add)	(None, 128, 12, 12)	add_2 conv2d_10		
activation_2 (ReLu)	(None, 128, 12, 12)	add_3		
conv2d_12 (Conv2D)	(None, 256, 6, 6)	activation_2		
conv2d_13 (Conv2D)	(None, 256, 6, 6)	conv2d_12		
conv2d_11 (Conv2D)	(None, 256, 6, 6)	activation_2		
add_4 (Add)	(None, 256, 6, 6)	conv2d_11 conv2d_13		
conv2d_14 (Conv2D)	(None, 64, 6, 6)	add_4		
conv2d_15 (Conv2D)	(None, 64, 6, 6)	conv2d_14		
conv2d_16 (Conv2D)	(None, 256, 6, 6)	conv2d_15		
add_5 (Add)	(None, 256, 6, 6)	add_4 conv2d_16		
activation_3 (ReLu)	(None, 256, 6, 6)	add_5		
average_pooling2d_1 (AveragePool)	(None, 256, 5, 5)	activation_3		
flatten_1 (Flatten)	(None, 6400)	average_pooling2d_1		
dense_1 (Dense)	(None, 1024)	flatten_1		
dropout_1 (Dropout) (0.3)	(None, 1024)	dense_1		
dense_2 (Dense)	(None, 256)	dropout_1		
dense_3 (Dense)	(None, 7)	dense_2		
activation_4 (softmax)	(None, 7)	dense_3		

我實作 Residual neural network,過程中將某幾層Add 在一層。架構如上圖,optimizer 用 adam,learning rate 為 10^{-4} 。結果的 Public accuracy 為 0.66843,Private accuracy 為 0.65617。最後我相同的參數 train 四次再 ensemble ,結果的 Public accuracy 為 0.69155,Private accuracy 為 0.68069。

(1%) 請嘗試 data normalization, data augmentation,說明實行方法並且說明對準確率有什麼樣的影響? data normalization:

在讀資料進來的時候,直接對每一張圖片(array)減去平均(array.mean())除以標準差 (array.std())。

test_gen.csv a minute ago by Bai-Yuan Lee	0.65617	0.66843	
add submission details test_gen_normal.csv a few seconds ago by Bai-Yuan Lee add submission details	0.66007	0.67316	

有 normalization 的結果稍微好一點,只是個人覺得這一點大概是初始值誤差,另外在 training 的時候收斂的速度有快一點點。

data augmentation:

使用 Keras 的 ImageDataGenerator ,主要設定為: rotation_range=30, width_shift_range=0.3, height_shift_range=0.3, shear_range=0.3, zoom_range=0.3, horizontal_flip=True。

test_nogen.csv 2 minutes ago by Bai-Yuan Lee add submission details	0.52020	0.52047	
test_gen.csv a minute ago by Bai-Yuan Lee	0.65617	0.66843	
add submission details			

沒有做 data augmentation (no generator) 很容易 overfit , 使得最後準確率很低。

(1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析

如圖,感覺「生氣」跟「厭惡」 很容易弄混,其他相比之下還好。 (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

模型主要應該是觀察到他的臉型輪廓,以及較明顯的五官,如:嘴巴、鼻子等。

(1%) 承(4) 利用上課所提到的 gradient ascent 方法,觀察特定層的filter最容易被哪種圖片 activate 與觀察filter的output。

我觀察第一次 Rest 結束的混合層:層數為64,每一層都觀察到一些線條或是他的臉型。

特定層的filter最容易被哪種圖片 activate

filter 的 output