Introduction

Ceci est l'introduction de la thèse.

Table des matières

Introduction								
1	Mod	dèle de	e Lieb-Liniger et approche Bethe Ansatz	1				
	1.1	Descri	ption du modèle de Lieb-Liniger	1				
		1.1.1	Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle	1				
		1.1.2	Opérateurs nombre de particules et moment dans la formulation quantique du gaz de Lieb-Liniger	7				
		1.1.3	Fonction d'onde et Hamiltonien et moment à 2 corps	8				
	1.2	Équat	ion de Bethe et distribution de rapidité	11				
		1.2.1	Fonction d'onde dans le secteur ordonné et représentation de Gaudin	11				
		1.2.2	Conditions aux bords périodiques	11				
		1.2.3	Équations de Bethe exponentielles	11				
		1.2.4	Équations de Bethe logarithmiques	12				
		1.2.5	Interprétation physique	12				
		1.2.6	Thermodynamique du gaz de Lieb-Liniger à température nulle	12				
		1.2.7	Excitations élémentaires à température nulle	13				
2	Relaxation et Équilibre dans les Systèmes Quantiques Intégrables : Une Approche par la Ther-							
	modynamique de Bethe							
		2.0.1	Notion d'état d'équilibre généralisé (GGE)	15				
		2.0.2	Rôle des charges conservées extensives et quasi-locales	18				
	2.1	Therm	nodynamique de Bethe et relaxation	19				
		2.1.1	Limite thermodynamique	19				
		2.1.2	Statistique des macro-états : entropie de Yang-Yang	21				
		2.1.3	Équations intégrales de la TBA	23				
C	onclu	sion		27				
A	Anr	ieves		29				

ii Table des matières

Chapitre 1

Modèle de Lieb-Liniger et approche Bethe Ansatz

Introduction

Dans ce chapitre, nous introduisons progressivement le modèle de Lieb-Liniger et l'Ansatz de Bethe, outils fondamentaux pour décrire un gaz de bosons unidimensionnel avec interactions delta. L'objectif est d'accompagner pas à pas le lecteur depuis la formulation du problème quantique en champ de bosons jusqu'aux solutions exactes obtenues par l'Ansatz de Bethe.

Nous commençons par écrire l'équation du champ de bosons, exprimée à l'aide des opérateurs de création et d'annihilation en représentation de position. Pour des raisons pédagogiques, nous abordons d'abord le cas d'une seule particule, sans interaction. Cela permet d'introduire naturellement les états de position et leur évolution sous l'action du Hamiltonien libre.

Ensuite, nous étudions le cas de deux particules, cette fois en tenant compte de l'interaction locale. Cela nous amène à considérer les états de position dans le cas général, y compris lorsque les deux particules peuvent occuper la même position. Cette situation, bien plus subtile qu'il n'y paraît, met en évidence la complexité introduite par l'interaction, et justifie que l'on commence par analyser les configurations où les particules sont à des positions distinctes.

Dans le référentiel du centre de masse, le problème à deux corps avec interaction devient équivalent à un problème à une seule particule en interaction avec une barrière delta au centre. Cette reformulation permet d'interpréter l'effet de l'interaction comme une condition de raccord sur la fonction d'onde, tout en respectant la symétrie bosonique.

Nous revenons ensuite aux coordonnées du laboratoire afin d'introduire naturellement la forme des solutions imposée par l'Ansatz de Bethe. Cela nous conduit aux équations dites de Bethe, qui relient les quasimoments des particules à travers des conditions de périodicité modifiées par l'interaction.

Une fois les notations bien établies, nous généralisons le raisonnement au cas de N particules, pour obtenir l'Hamiltonien de Lieb-Liniger complet ainsi que la forme générale de l'Ansatz de Bethe. Les solutions ainsi construites permettent non seulement de déterminer le spectre de l'Hamiltonien, mais aussi de calculer des observables physiques importantes, telles que l'impulsion totale ou le nombre de particules.

Enfin, nous introduisons la notion de distribution de rapidité, outil essentiel dans l'étude des états d'énergie minimale (états fondamentaux) et dans la description thermodynamique du système. Ce cadre servira de base aux développements ultérieurs sur les gaz intégrables à température finie et les états stationnaires après quench quantique.

1.1 Description du modèle de Lieb-Liniger

1.1.1 Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle

De la première à la seconde quantification

Introduction. La mécanique quantique se développe historiquement en deux grandes étapes : la *première quantification*, aussi appelée quantification canonique, et la *seconde quantification*. Comprendre ces deux cadres est essentiel pour aborder les systèmes quantiques complexes, en particulier ceux où le nombre de particules peut varier.

Première quantification (quantification canonique, particule unique). La première quantification est la mécanique quantique standard, celle que vous avez rencontrée dès vos premiers cours. Elle consiste à quantifier un

système classique décrit par des variables dynamiques telles que la position x et la quantité de mouvement p. On procède en remplaçant ces variables par des **opérateurs hermitiens** \hat{x} et

$$\hat{\boldsymbol{p}} \doteq -i\hbar\hat{\boldsymbol{\partial}}_x,\tag{1.1}$$

où \hbar est la constante de Planck réduite, satisfaisant la **relation de commutation canonique** fondamentale $[\hat{x}, \hat{p}] = i\hbar$. L'état du système est alors décrit par une **fonction d'onde** $\psi(x,t)$, solution de **l'équation de Schrödinger** indépendante du nombre de particules :

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{\mathcal{H}}\psi,$$
 (1.2)

avec $\hat{\mathcal{H}}$ l'opérateur hamiltonien.

Exemple: particule libre en une boite à une dimension.

Dans le cas d'une particule libre de masse m se déplaçant en une dimension, l'Hamiltonien est constitué uniquement du terme cinétique $\hat{\mathcal{H}} = \hat{p}^2/2m$. En représentation position, où l'opérateur quantité de mouvement s'écrit comme dans l'équation (1.1), l'Hamiltonien prend alors la forme différentielle :

$$\hat{\mathcal{H}} = -\frac{\hbar^2}{2m}\partial_x^2. \tag{1.3}$$

Les états propres stationnaires de (1.2) dépendant du temps sont de la forme $\psi_k(x,t) = \varphi_k(x) e^{-i\varepsilon(k)t/\hbar}$ où $\varphi_k(x)$ est une fonction propre de l'hamiltonien, soit de l'équation stationnaire $\hat{\mathcal{H}}\varphi_k = \varepsilon(k)\varphi_k$ i.e. pour une particule libre :

$$\frac{\hbar^2}{2m}\partial_x^2 \varphi_k = \varepsilon(k)\varphi_k,\tag{1.4}$$

avec $\varepsilon(k)$ l'énergie associée à une onde plane de nombre d'onde k

$$\varepsilon(k) = \frac{\hbar^2 k^2}{2m}.\tag{1.5}$$

Les fonctions propres spatiales $\varphi_k(x)$ de l'hamiltonien libre s'écrivent comme des combinaisons linéaires d'ondes planes

$$\varphi_k(x) = ae^{-ikx} + be^{ikx}, \text{ avec } (a,b) \in \mathbb{C}^2.$$
 (1.6)

Périodisité. Si la particule est confinée dans une boîte de longueur L avec des conditions aux limites périodiques (ie $\varphi_k(x+L)=\varphi_k(x)$), alors le spectre de k est quantifié :

$$e^{kL} = 1$$
 ou encore $kL \in 2\pi\mathbb{Z}$. (1.7)

Le problème est équivalent à celui d'une particule libre sur un cercle de périmètre L.

La particule est délocalisée sur tout l'espace (le cercle), sans structure particulière i.e. le solutions (1.6) correspondent à des états non liés (ou états de diffusion).

Pour $k \neq 0$ (respectivement pour k = 0), la fonction propre $\varphi_k(x)$ de l'équation (1.6) appartient à un sous-espace propre associé à k de dimension 2 (respectivement de dimension 1) engendré par $x \mapsto e^{-ikx}$ et $x \mapsto e^{ikx}$ (respectivement par $x \mapsto 1$). L'espace engendré par l'ensemble des sous-espaces propres forme un **espace de Hilbert**, muni du **produit scalaire** défini par :

$$(\varphi_{k'}, \varphi_k) = \int_0^L \varphi_{k'}^*(x) \varphi_k(x) dx. \tag{1.8}$$

Les sous-espaces propres sont orthogonaux entre eux i.e. en utilisant les conséquences de la condition de périodicité (1.8), $(\varphi_{k'}, \varphi_k) = 0$ pour $|k'| \neq |k|$. Pour chaque sous-espace propre on impose que les états propres forment une base orthonormale i.e. en utilisant (1.8), les fonctions propres φ_k écrit sous la forme (1.6), sont orthogonaux avec $\varphi_{\overline{k}} \colon x \mapsto \pm (b^* e^{-ikx} - a^* e^{ikx})$ soit $(\varphi_{\overline{k}}, \varphi_k) = 0$, et on impose que $|a|^2 + |b|^2 = L^{-1}$ pour assuré la normalité de φ_k et de $\varphi_{\overline{k}}$ soit $(\varphi_k, \varphi_k) = (\varphi_{\overline{k}}, \varphi_{\overline{k}}) = 1$.

Les solutions générales de l'équation de Schrödinger s'écrivent alors comme une superposition d'états propres $\psi = c_0 \psi_0 + \sum_{|k|>0} (c_k \psi_k + c_{\overline{k}} \psi_{\overline{k}}).$

Il y a deux base de vecteur propre particulier :

i) Base de chiralité / impulsion :

$$\varphi_{\pm} = \frac{1}{\sqrt{L}} e^{\pm ikx} \tag{1.9}$$

Ces derniers de plus d'être états propres de l'opérateur énergie $\hat{\mathcal{H}}$, sont des états propres de l'opérateur impulsion \hat{p} , avec valeurs propres opposées $\pm \hbar k$.

ii) Base symétrique / antisymétrique : En appliquant la matrice de passage unitaire $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ -i & +i \end{pmatrix}$ à la base $\{\varphi_+, \varphi_-\}$, on passer dans las base

$$\begin{cases} \varphi_S = \sqrt{\frac{2}{L}}\cos(kx) & \text{type Neumann} : \varphi_S'(0) = \varphi_S'(L) = 0\\ \varphi_A = \sqrt{\frac{2}{L}}\sin(kx) & \text{type Dirichlet} : \varphi_A(0) = \varphi_A(L) = 0 \end{cases}$$
(1.10)

Cette condition d'orthonormalité est imposée afin de garantir l'indépendance linéaire des états quantiques, et d'assurer que toute fonction d'onde de l'espace de Hilbert puisse être développée de manière unique sur cette base.

Avec le formalisme de Dirac, la fonction d'onde φ_k est représentée par le ket $|k\rangle$ normé $(i.e.\ \langle k'|k\rangle = \delta_{k',k})$, où $\delta_{p,q}$ est le symbole de Kronecker), et l'équation de Schrödinger s'écrit : $\hat{\mathcal{H}}|k\rangle = \varepsilon(k)|k\rangle$. En appliquant le bra $\langle x|$ de part et d'autre, on obtient : $\langle x|\hat{\mathcal{H}}|k\rangle = \varepsilon(k)\langle x|k\rangle$, où $|x\rangle$ est normé $(i.e.\ \langle x'|x\rangle = \delta(x'-x)$ avec $\delta(y-x)$ une distribution de Dirac) et $\varphi_k(x) = \langle x|k\rangle$ est la représentation positionnelle de l'état $|k\rangle$.

La base $\{|x\rangle\}$ étant continue, et les états $\{|k\rangle\}$ quantifiés (par exemple dans une boîte de taille finie avec conditions aux limites périodiques), les relations de changement de base s'écrivent :

$$|k\rangle = \int_0^L dx \, \varphi_k(x) |x\rangle, \qquad |x\rangle = \sum_k \varphi_k^*(x) |k\rangle,$$
 (1.11)

avec $\varphi_k^*(x) = \langle k|x\rangle$. L'état $|x\rangle$ est relié aux états $|k\rangle$ par une transformation de Fourier discrète. Ces formules montrent que les états $|k\rangle$ sont les composantes de Fourier de l'état $|x\rangle$.

De la particule unique aux systèmes à N particules. Pour un système composé de N particules identiques, une approche naturelle consiste à introduire une fonction d'onde $\varphi(x_1,\ldots,x_N)$ dépendant de N variables, symétrique pour des bosons ou antisymétrique pour des fermions sous l'échange de deux coordonnées $x_i \leftrightarrow x_j$, solution de l'équation de Schrödinger à N corps. Toutefois, cette description devient rapidement inextricable lorsque le nombre de particules augmente, ou lorsque le système permet la création et l'annihilation de particules, comme dans un milieu ouvert ou en contact avec un bain thermique.

Seconde quantification

Pour dépasser ces limitations, on adopte le **formalisme de la seconde quantification**, dans lequel l'état du système est décrit non plus par une fonction d'onde mais par un vecteur dans un espace de Fock. Les opérateurs de création et d'annihilation remplacent alors les variables dynamiques classiques et permettent une description unifiée et élégante des systèmes à nombre variable de particules.

Structure de l'espace des états de Fock. Dans ce formalisme, l'espace des états est une somme directe d'espaces à N particules, et chaque état est décrit par l'occupation des différents modes quantiques. Les opérateurs \hat{a}_k^{\dagger} et \hat{a}_k créent et annihilent une particule dans l'état d'onde plane de moment k:

$$|k\rangle = \hat{a}_k^{\dagger} |\emptyset\rangle, \qquad (1.12)$$

état avec une particule dans le mode k, où $|\emptyset\rangle$ désigne le vide quantique de Fock, défini par :

$$\forall k \in \mathbb{R}: \qquad \hat{\boldsymbol{a}}_k |\emptyset\rangle = 0, \quad \langle \emptyset |\emptyset\rangle = 1.$$
 (1.13)

Le symbole \hat{a}_{λ} représente ici de manière générique soit l'opérateur \hat{b}_{λ} pour les bosons, soit \hat{c}_{λ} pour les fermions, et satisfait respectivement les relations de commutation (pour les bosons) ou d'anticommutation (pour les fermions). Dans ce qui suit, nous nous restreignons au cas bosonique.

Relations de commutation bosoniques. Les relations de commutation fondamentales pour les bosons sont :

$$[\hat{\boldsymbol{b}}_{k}, \hat{\boldsymbol{b}}_{k'}] = [\hat{\boldsymbol{b}}_{k}^{\dagger}, \hat{\boldsymbol{b}}_{k'}^{\dagger}] = 0, \qquad [\hat{\boldsymbol{b}}_{k}, \hat{\boldsymbol{b}}_{k'}^{\dagger}] = \hat{\boldsymbol{\delta}}_{k,k'},$$
 (1.14)

où $\hat{\delta}_{k,k'}$ est le symbole de Kronecker, valant 1 si k=k' et 0 sinon.

Nature du champ quantique. La seconde quantification généralise ce cadre en permettant de traiter des systèmes où le nombre de particules n'est pas fixé, ce qui est fréquent en physique des particules, des champs quantiques, ou des gaz quantiques.

L'idée principale est de ne plus quantifier directement les particules, mais le *champ quantique* associé. Les états d'une particule unique deviennent alors des états d'occupation dans un espace de Fock, qui décrit l'ensemble des configurations possibles avec zéro, une, ou plusieurs particules.

Champs de Bose. Le gaz de Bose unidimensionnel est décrit dans le cadre de la théorie quantique des champs par un champ bosonique canonique $\hat{\Psi}(x)$, qui agit sur l'espace de Fock des états du système. Ce champ quantique encode l'annihilation d'une particule en x, et son adjoint $\hat{\Psi}^{\dagger}(x)$ correspond à la création d'une particule en ce point.

$$|x\rangle = \hat{\Psi}^{\dagger}(x) |\emptyset\rangle, \qquad (1.15)$$

état avec une particule en x et $|\emptyset\rangle$ est le vide quantique de Fock défini par :

$$\forall x \in \mathbb{R}, \qquad \hat{\Psi}(x) |\emptyset\rangle = 0. \tag{1.16}$$

 $Relations\ de\ commutation\ bosoniques.$ Ces champs satisfont les relations de commutation canoniques à temps égal :

$$[\hat{\Psi}(x), \hat{\Psi}(y)] = [\hat{\Psi}^{\dagger}(x), \hat{\Psi}^{\dagger}(y)] = 0, \qquad [\hat{\Psi}(x), \hat{\Psi}^{\dagger}(y)] = \hat{\delta}(x - y),$$
 (1.17)

où $\hat{\delta}(x-y)$ est la fonction delta de Dirac. Ces relations expriment le caractère bosonique des excitations du champ.

État à N particules. Soient N bosons dans les états $\{k_1, \dots, k_N\}$ (un boson dans l'état k_1 , un autre dans k_2 , etc.) et aux positions $\{x_1, \dots, x_N\}$ (un boson en x_1 , un autre en x_2 , etc.). Leurs états s'écrivent alors :

$$|\{k_1,\cdots,k_N\}\rangle = \frac{1}{\sqrt{N!}}\hat{\boldsymbol{b}}_{k_1}^{\dagger}\cdots\hat{\boldsymbol{b}}_{k_N}^{\dagger}|\emptyset\rangle, \quad |\{x_1,\cdots,x_N\}\rangle = \frac{1}{\sqrt{N!}}\hat{\boldsymbol{\Psi}}^{\dagger}(x_1)\cdots\hat{\boldsymbol{\Psi}}^{\dagger}(x_N)|\emptyset\rangle, \tag{1.18}$$

où le facteur $1/\sqrt{N!}$ traduit le caractère d'indiscernabilité des bosons et garantit la symétrisation correcte de l'état.

 $Changement\ de\ base.$ On peut relier les opérateurs de création/annihilation dans la base des ondes planes aux opérateurs de champ via :

$$\hat{\boldsymbol{b}}_{k}^{\dagger} = \int dx \, \varphi_{k}(x) \hat{\boldsymbol{\Psi}}^{\dagger}(x), \qquad \hat{\boldsymbol{\Psi}}^{\dagger}(x) = \sum_{k} \varphi_{k}^{*}(x) \hat{\boldsymbol{b}}_{k}^{\dagger}. \tag{1.19}$$

Le champ quantique $\hat{\Psi}(x)$ est relié aux opérateurs de moment \hat{b}_k par une transformation de Fourier. Ces formules montrent que les opérateurs \hat{b}_k sont les composantes de Fourier du champ $\hat{\Psi}(x)$.

Ainsi, un état à N bosons dans la base $|k\rangle^{\otimes N}$ peut s'écrire :

$$|\{k_1, \cdots, k_N\}\rangle = \frac{1}{\sqrt{N!}} \int dx_1 \cdots dx_N \, \varphi_{\{k_a\}}(x_1, \cdots, x_N) \, \hat{\mathbf{\Psi}}^{\dagger}(x_1) \cdots \hat{\mathbf{\Psi}}^{\dagger}(x_N) \, |\emptyset\rangle \,, \tag{1.20}$$

où on note $\{k_a\} \equiv \{k_1, \dots, k_N\}$, et la fonction d'onde symétrisée s'écrit : $\varphi_{\{k_a\}}(x_1, \dots, x_N) = \frac{1}{\sqrt{N!}} \sum_{\sigma \in \hat{\mathbf{S}}_N} \prod_{i=1}^N \varphi_{k_{\sigma(i)}}(x_i)$, avec $\hat{\mathbf{S}}_N$ le groupe symétrique d'ordre N mais aussi :

$$\varphi_{\{k_a\}}(x_1,\dots,x_N) = \frac{1}{\sqrt{N!}} \langle \emptyset | \hat{\mathbf{\Psi}}(x_1) \dots \hat{\mathbf{\Psi}}(x_N) | \{k_1,\dots,k_N\} \rangle.$$
(1.21)

Operateur.

Opérateur à un corps.

Dans la base discrètes des modes $\{|k\rangle\}$. Soit \hat{f} un opérateur à une particule, dont les éléments de matrice dans une base orthonormée $\{|k\rangle\}$ sont donnés par $f_{\lambda\nu}=\langle\lambda|\hat{f}|\nu\rangle$. Un opérateur symétrique à N particules correspondant à la somme des actions de \hat{f} sur chacune des particules s'écrit en première configuration : $\hat{F}=\sum_{i=1}^N\hat{f}^{(i)}$, où $\hat{f}^{(i)}$ désigne l'action de \hat{f} sur la i^e particule uniquement. En base de Dirac, cela donne : $\hat{f}^{(i)}=\sum_{\lambda,\nu}f_{\lambda\nu}\;|i:\lambda\rangle\;\langle i:\nu|$, où $|i:\lambda\rangle$ représente un état où seule la i^e particule est dans l'état λ . On peut montrer que la somme des projecteurs agissant sur chaque particule s'identifie à une combinaison d'opérateurs de création et d'annihilation : $\sum_{i=1}^N|i:\lambda\rangle\;\langle i:\nu|=\hat{a}^\dagger_\lambda\hat{a}_\nu$, (où \hat{a}_λ est une notation générique désignant \hat{b}_λ pour les bosons, ou \hat{c}_λ pour les fermions).

On en déduit que l'opérateur à un corps \hat{F} peut se réécrire dans le formalisme de la seconde quantification comme :

$$\hat{F} = \sum_{\lambda,\nu} \langle \lambda | \, \hat{f} \, | \nu \rangle \, \hat{a}_{\lambda}^{\dagger} \hat{a}_{\nu}. \tag{1.22}$$

L'opérateur $\hat{a}_{\lambda}^{\dagger}\hat{a}_{\nu}$ fais la transition d'une particule de l'état ν à vers l'état λ . Si $\lambda = \nu$ cette opérateur est l'opérateur nombre de particule dans le mode λ .

Exemples : Énergie cinétique totale. Si l'on sait diagonaliser l'opérateur \hat{f} , c'est-à-dire si l'on peut écrire : $\hat{f} = \sum_k f_k |k\rangle \langle k|$, alors l'opérateur à N corps associé s'écrit : $\hat{F} = \sum_k \langle k| \hat{f} |k\rangle \hat{a}_k^{\dagger} \hat{a}_k$. On obtient ainsi une forme diagonale de \hat{F} en seconde quantification. Un exemple immédiat est l'énergie des particules libres ; on rappelle que pour une : $\hat{\mathcal{H}} |k\rangle = \varepsilon(k) |k\rangle$, avec $\varepsilon(k)$ l'énergie du mode k (1.5). Alors en injectant $\hat{f} = \hat{\mathcal{H}} (= \frac{\hbar^2 \hat{p}^2}{2m})$ dans (1.22) on obtient l'énergie cinétique totale du système :

$$\hat{K} = \sum_{k} \varepsilon(k) \, \hat{a}_{k}^{\dagger} \hat{a}_{k}. \tag{1.23}$$

Et pour N particules, en écrivant l'état sous la forme (1.18), en utilisant les relations de commutation (1.14) et la définition de l'état de Fock (1.13), on trouve que $|\{k_1, \dots, k_N\}\rangle$ est un état propre de \hat{K} associé à l'énergie $\left(\sum_{i=1}^N \varepsilon(k_i)\right)$, c'est-à-dire :

$$\hat{K} |\{k_1, \cdots, k_N\}\rangle = \left(\sum_{i=1}^{N} \varepsilon(k_i)\right) |\{k_1, \cdots, k_N\}\rangle.$$
(1.24)

Dans la base continue des positions $\{|x\rangle\}$. En injectant les relation des changement de base d'état (1.11) et de chanp (1.19), dans (1.25) on obtient :

$$\hat{\mathbf{F}} = \int dx \, dx' \, \hat{\mathbf{\Psi}}^{\dagger}(x) \, \langle x | \, \hat{\mathbf{f}} \, | x' \rangle \, \hat{\mathbf{\Psi}}(x'). \tag{1.25}$$

Exemples : Énergie cinétique totale. Reprenons l'exemple de l'énergie cinétique totale avec $\hat{f} = \frac{\hbar^2 \hat{p}^2}{2m}$. À l'échelle du champ quantique, l'énergie cinétique totale prend la forme opératorielle :

$$\hat{K} = -\frac{\hbar^2}{2m} \int dx \, \hat{\Psi}^{\dagger}(x) \, \hat{\partial}_x^2 \hat{\Psi}(x) = \frac{\hbar^2}{2m} \int dx \, \hat{\partial}_x \hat{\Psi}^{\dagger}(x) \cdot \hat{\partial}_x \hat{\Psi}(x). \tag{1.26}$$

Le champ quantique $\hat{\Psi}(x)$ est relié aux opérateurs de moment $\hat{\boldsymbol{b}}_k$ par une transformation de Fourier. En injectant l'expression (1.19) dans (1.26), on retrouve la forme discrète (1.23), cette fois exprimée en termes des opérateurs $\hat{\boldsymbol{b}}_k$. Lorsque cet Hamiltonien agit sur l'état de Fock à N particules $|\{k_1, \dots, k_N\}\rangle$, les règles de commutation (1.17) ainsi que la définition des états de Fock (1.16) impliquent (cf. Annexe ??):

$$\hat{\boldsymbol{K}}|k_1,\cdots,k_N\rangle = \int d^N z \,\hat{\boldsymbol{\mathcal{K}}}_N \,\varphi_{\{k_a\}}(z_1,\cdots,z_N)\hat{\boldsymbol{\Psi}}(z_1)\cdots\hat{\boldsymbol{\Psi}}^{\dagger}(z_N)\,|\emptyset\rangle \tag{1.27}$$

avec:

$$\hat{\mathcal{K}}_N = \sum_{i=1}^N \frac{\hat{\boldsymbol{p}}_i^2}{2m},$$

où \hat{p}_i désigne l'opérateur impulsion de la $i^{\text{ème}}$ particule.

Opérateurs à deux corps Nous considérons à présent les termes d'interaction impliquant deux particules , $\hat{\boldsymbol{v}}$, dont les éléments de matrices sont donnés par $v_{\alpha\beta\gamma\delta} = \langle 1:\alpha;2:\beta|\,\hat{\boldsymbol{v}}\,|1:\gamma;2:\delta\rangle$, où $|i:\gamma;j:\delta\rangle$ représente l'état où la $i^{\rm e}$ particules est dans l'état γ et la $j^{\rm e}$ dans l'état δ . Ceux-ci correspondent à des opérateurs de la forme : $\hat{\boldsymbol{V}} = \sum_{j< i} \hat{\boldsymbol{v}}^{(i,j)} = \frac{1}{2} \sum_{i,j\neq i} \hat{\boldsymbol{v}}^{(i,j)}$. avec $\hat{\boldsymbol{v}}^{(i,j)}$ désigne l'interaction à deux corps entre les $i^{\rm e}$ et $j^{\rm e}$ particules , exprimés dans la base à deux états : $\hat{\boldsymbol{v}}^{(i,j)} = \sum_{\alpha,\beta,\delta,\gamma} |i:\alpha;j:\beta\rangle \, v_{\alpha\beta\gamma\delta} \, \langle i:\gamma;j:\delta|$. On peut réécrire l'opérateur $\hat{\boldsymbol{V}}$ en termes d'opérateurs de création et d'annihilation comme suit :

$$\hat{\mathbf{V}} = \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} v_{\alpha\beta\gamma\delta} \,\hat{\mathbf{a}}_{\alpha}^{\dagger} \hat{\mathbf{a}}_{\beta}^{\dagger} \hat{\mathbf{a}}_{\delta} \hat{\mathbf{a}}_{\gamma}. \tag{1.28}$$

Cette forme est particulièrement utile pour le traitement des interactions dans l'espace de Fock, notamment en théorie des champs et en physique des gaz quantiques.

Expression générale d'un terme à deux corps. Un terme d'interaction à deux corps général peut s'écrire :

$$\hat{\mathbf{V}} = \frac{1}{2} \int dx_1 \, dx_2 \, dx_1' \, dx_2' \, \langle 1 : x_1, 2 : x_2 | \, \hat{\mathbf{v}} \, | 1 : x_1', 2 : x_2' \rangle \, \, \hat{\mathbf{\Psi}}^{\dagger}(x_1) \, \hat{\mathbf{\Psi}}^{\dagger}(x_2) \, \hat{\mathbf{\Psi}}(x_2') \, \hat{\mathbf{\Psi}}(x_1')$$
(1.29)

Interactions ponctuelles. Dans le cas d'une interaction ne dépendant que de la distance relative entre deux particules, cette expression se simplifie : $\hat{\pmb{V}} = \frac{1}{2} \sum_{i,j \neq i} \hat{\pmb{v}}(x_i - x_j) = \frac{1}{2} \int dx_1 \, dx_2 \, v(x_1 - x_2) \, \hat{\pmb{\Psi}}^\dagger(x_1) \, \hat{\pmb{\Psi}}^\dagger(x_2) \, \hat{\pmb{\Psi}}(x_2) \, \hat{\pmb{\Psi}}(x_1)$ soit pour des interactions ponctuelles :

$$\hat{\mathbf{V}} = \frac{g}{2} \int dx \, \hat{\mathbf{\Psi}}^{\dagger}(x) \, \hat{\mathbf{\Psi}}^{\dagger}(x) \, \hat{\mathbf{\Psi}}(x) \, \hat{\mathbf{\Psi}}(x)$$
 (1.30)

et quand on l'applique à l'état $|\{k_1, \dots, k_N\}\rangle$, les règles de commutations (1.17) et la définition d'état de Fock (1.16) impliquent que (cf Annex ??)

$$\hat{\mathbf{V}}|\{k_1,\cdots,k_N\}\rangle = \int d^N z \,\hat{\mathbf{V}}_N \varphi_{\{k_a\}}(z_1,\cdots,z_N) \hat{\mathbf{\Psi}}(z_1) \cdots \hat{\mathbf{\Psi}}^{\dagger}(z_N) |\emptyset\rangle \tag{1.31}$$

avec $\hat{\mathcal{V}}_N = g \sum_{1 \le i \le j \le N} \hat{\delta}(x_i - x_j)$ où g est la constante de couplage.

Expression de l'Hamiltonien. L'hamiltonien dans ce formalisme s'écrit en termes des opérateurs de champ, par exemple pour l'énergie cinétique et les interactions ponctuelles avec $\hbar = m = 1$:

$$\hat{\boldsymbol{H}} = \int dx \,\hat{\boldsymbol{\Psi}}^{\dagger}(x) \left[-\frac{1}{2} \hat{\boldsymbol{\partial}}_x^2 + \frac{g}{2} \hat{\boldsymbol{\Psi}}^{\dagger}(x) \hat{\boldsymbol{\Psi}}(x) \right] \,\hat{\boldsymbol{\Psi}}(x). \tag{1.32}$$

Quand on l'applique à l'état $|\{\theta_1,\cdots,\theta_N\}\rangle$, avec θ_i homogène à des nombres d'onde ou à des vitesse, il vient que

$$\hat{\boldsymbol{H}} | \{ \theta_1, \cdots, \theta_N \} \rangle = \int d^N z \, \hat{\boldsymbol{\mathcal{H}}}_N \varphi_{\{\theta_a\}}(z_1, \cdots, z_N) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(z_N) | \emptyset \rangle$$
(1.33)

avec $\hat{\mathcal{H}}_N = \hat{\mathcal{K}}_N + \hat{\mathcal{V}}_N$.

Ce formalisme est ainsi adapté pour décrire des condensats de Bose, des gaz quantiques, ou la création/annihilation de particules dans les champs quantiques.

Equation du mouvement associée. L'équation du mouvement du champ $\Psi(x)$ est obtenue à partir de l'équation de Heisenberg :

$$i\hat{\partial}_t \hat{\Psi} = [\hat{\Psi}, \hat{H}] \tag{1.34}$$

ce qui, après évaluation explicite du commutateur (1.17), conduit à :

$$i\hat{\partial}_t \hat{\Psi} = -\frac{1}{2}\hat{\partial}_x^2 \hat{\Psi} + g\hat{\Psi}^{\dagger} \hat{\Psi} \hat{\Psi}$$
 (1.35)

est appelée l'équation de Schrödinger non linéaire (NS).

Pour g > 0, l'état fondamental à température nulle est une sphère de Fermi. Seul ce cas sera considéré par la suite.

Conclusion

La première quantification est la base indispensable qui permet de comprendre le comportement quantique d'un nombre fixé de particules. La seconde quantification en est une extension naturelle, nécessaire pour décrire des systèmes plus complexes où le nombre de particules peut varier. Elle repose sur la quantification des champs, et l'introduction d'opérateurs créant ou détruisant ces particules, ouvrant ainsi la voie à la physique quantique des champs et à de nombreuses applications modernes.

1.1.2 Opérateurs nombre de particules et moment dans la formulation quantique du gaz de Lieb-Liniger

Dans cette section, nous nous intéressons aux opérateurs fondamentaux que sont le nombre total de particules \hat{Q} et le moment total \hat{P} , dans le cadre du gaz de bosons unidimensionnel décrit par l'Hamiltonien de Lieb-Liniger. Après avoir introduit ces opérateurs dans le langage de la seconde quantification, nous montrons qu'ils sont conservés par la dynamique, et qu'ils admettent les mêmes états propres que l'Hamiltonien. Nous donnons ensuite leur expression dans la représentation à N particules, ainsi que la forme explicite de leurs valeurs propres en fonction des rapidités θ_a , illustrant la structure polynomiale typique des intégrales du mouvement dans les systèmes intégrables.

Définition en seconde quantification

Les opérateurs du nombre total de particules \hat{Q} et du moment total \hat{P} s'écrivent en seconde quantification comme suit :

$$\hat{\mathbf{Q}} = \int \hat{\mathbf{\Psi}}^{\dagger}(x)\hat{\mathbf{\Psi}}(x) dx, \quad \hat{\mathbf{P}} = -\frac{i}{2} \int \left\{ \hat{\mathbf{\Psi}}^{\dagger}(x)\hat{\boldsymbol{\partial}}_{x}\hat{\mathbf{\Psi}}(x) - \left[\hat{\boldsymbol{\partial}}_{x}\hat{\mathbf{\Psi}}^{\dagger}(x) \right] \hat{\mathbf{\Psi}}(x) \right\} dx \tag{1.36}$$

Ces deux opérateurs sont *hermitiens*, et représentent des observables physiques fondamentales : le nombre de particules et la quantité de mouvement du système.

Conservation et commutation

Ces opérateurs commutent avec l'Hamiltonien \hat{H} du modèle de Lieb-Liniger :

$$[\hat{H}, \hat{Q}] = 0, \quad [\hat{H}, \hat{P}] = 0.$$
 (1.37)

Ils constituent ainsi des intégrales du mouvement. Cette propriété est une manifestation de la symétrie translationnelle du système (pour \hat{P}) et de la conservation du nombre total de particules (pour \hat{Q}).

Nous verrons au chapitre 2 que cette situation s'étend à une *infinité d'intégrales du mouvement* dans les systèmes intégrables, ce qui permettra de construire l'ensemble de Gibbs généralisé (GGE).

États propres et valeurs propres

Les états propres $|\{\theta_a\}\rangle$, construits dans le cadre de la seconde quantification à partir de la solution du modèle de Lieb-Liniger, sont simultanément fonctions propres des opérateurs \hat{Q} , \hat{P} et \hat{H} :

$$\hat{\boldsymbol{Q}}|\{\theta_a\}\rangle = N|\{\theta_a\}\rangle, \quad \hat{\boldsymbol{P}}|\{\theta_a\}\rangle = \left(\sum_{a=1}^N \theta_a\right)|\{\theta_a\}\rangle, \quad \hat{\boldsymbol{H}}|\{\theta_a\}\rangle = \left(\frac{1}{2}\sum_{a=1}^N \theta_a^2\right)|\{\theta_a\}\rangle. \tag{1.38}$$

Autrement dit, les valeurs propres associées à ces trois opérateurs sont données par :

$$N = \sum_{a=1}^{N} \theta_a^0, \quad p = \sum_{a=1}^{N} \theta_a, \quad e = \frac{1}{2} \sum_{a=1}^{N} \theta_a^2.$$
 (1.39)

Cela illustre que les trois premières intégrales du mouvement du système — nombre, moment, énergie — peuvent être exprimées comme des *moments successifs* des rapidités.

Forme en première quantification

En utilisant la représentation en espace de configuration $\{z_a\} \equiv \{z_1, \dots, z_N\}$, les opérateurs \hat{Q} et \hat{P} agissent comme suit sur les fonctions d'onde $\varphi_{\{\theta_a\}}(\{z_a\})$:

$$\hat{\boldsymbol{Q}}|\{\theta_a\}\rangle = \sqrt{N!} \int d^N z \,\hat{\boldsymbol{\mathcal{N}}} \varphi_{\{\theta_a\}}(\{z_a\}) \,|\{z_a\}\rangle \,,\,\, \hat{\boldsymbol{P}}|\{\theta_a\}\rangle = \sqrt{N!} \int d^N z \,\hat{\boldsymbol{\mathcal{P}}}_N \varphi_{\{\theta_a\}}(\{z_a\}) \,|\{z_a\}\rangle \tag{1.40}$$

où les opérateurs associés agissant sur les fonctions d'onde à N particules sont :

$$\hat{\mathcal{N}} = \sum_{k=1}^{N} 1 = N, \ \hat{\mathcal{P}}_N = -i \sum_{k=1}^{N} k = -i \sum_{k=1}^{N} \hat{\partial}_{z_k}$$
 (1.41)

Ces formes découlent directement des règles de commutation canonique (1.17) et de la définition des opérateurs en seconde quantification (1.16) (cf. annexes ??).

Conclusion

Ainsi, les opérateurs \hat{Q} , \hat{P} et \hat{H} possèdent une structure diagonale commune dans la base des états propres $|\{\theta_a\}\rangle$, révélant la nature intégrable du modèle de Lieb-Liniger. Leurs valeurs propres sont respectivement les 0e, 1er et 2e moments des rapidités. Cette structure permet de généraliser la construction à une hiérarchie complète d'observables conservées, qui seront présentées au chapitre suivant.

1.1.3 Fonction d'onde et Hamiltonien et moment à 2 corps

Introduction au système de deux bosons avec interaction de contact. Considérons maintenant un système de deux bosons quantiques confinés dans une boîte unidimensionnelle de longueur L, avec des conditions aux limites périodiques. Contrairement au cas à une seule particule, une interaction de contact intervient ici dans la dynamique. L'Hamiltonien à deux particules s'écrit :

$$\hat{\mathcal{H}}_2 = \hat{\mathcal{K}}_2 + \hat{\mathcal{V}}_2$$
, avec $\hat{\mathcal{K}}_2 = -\frac{1}{2}\partial_{z_1}^2 - \frac{1}{2}\partial_{z_2}^2$, et $\hat{\mathcal{V}}_2 = g\,\delta(z_1 - z_2)$. (1.42)

On rappelle que, pour des particules de masse unitaire (i.e., $\hbar=m=1$), les énergies propres de l'opérateur cinétique $\hat{\mathcal{K}}_2$, associées aux fonctions d'onde symétrisées $\varphi_{\{\theta_1,\theta_2\}}$, sont données par :

$$\varepsilon(\theta_1) + \varepsilon(\theta_2) = \frac{\theta_1^2}{2} + \frac{\theta_2^2}{2}.\tag{1.43}$$

Afin de simplifier le problème, nous nous plaçons dans le référentiel du centre de masse.

Changement de variables : coordonnées du centre de masse et relative. En première quantification, on introduit les nouvelles variables : $Z=\frac{z_1+z_2}{2}$ (centre de masse), $Y=z_1-z_2$ (coordonnée relative). Dans ce changement de variables, l'opérateur laplacien total devient : $\partial_{z_1}^2+\partial_{z_2}^2=\frac{1}{2}\partial_Z^2+2\,\partial_Y^2$. L'Hamiltonien (1.42) se décompose alors en la somme de deux Hamiltoniens agissant respectivement sur Z et Y:

$$\hat{\mathcal{H}}_2 = -\frac{1}{4}\partial_Z^2 + \hat{\mathcal{H}}_{rel}, \quad \text{avec} \quad \hat{\mathcal{H}}_{rel} = -\partial_Y^2 + g\,\delta(Y).$$
 (1.44)

Résolution du problème du centre de masse et de la coordonnée relative. L'Hamiltonien du centre de masse, $-\frac{1}{4}\partial_Z^2$, décrit une particule de masse totale $\bar{m}=2$. Ses états propres sont des ondes planes associées à une énergie $\bar{\theta}^2$, avec : $\bar{\theta}=\frac{\theta_1+\theta_2}{2}$, jouant ici un rôle analogue à celui d'un pseudo-moment associé dans le référentielle de laboratoire. Le Hamiltonien relatif, $\hat{\mathcal{H}}_{\rm rel}$, correspond quant à lui à une particule de masse réduite $\tilde{m}=\frac{1}{2}$ soumise à un potentiel delta centré en Y=0. Son équation propre s'écrit :

$$-\partial_Y^2 \,\tilde{\varphi}(Y) + g \,\delta(Y) \,\tilde{\varphi}(Y) = \tilde{\varepsilon} \,\tilde{\varphi}(Y), \tag{1.45}$$

où $\tilde{\varepsilon}$ désigne l'énergie associée au mouvement relatif.

Forme symétrique de la fonction d'onde pour bosons. Dans le référentiel du centre de masse. Le système est le même que que celuis d'un particules de masse $\tilde{m} = \frac{1}{2}$. Le système étant composé de particules bosoniques, on cherche une solution symétrique que l'on écrit sous la forme :

$$\tilde{\varphi}(Y) = a e^{i\frac{1}{2}\tilde{\theta}|Y|} + b e^{-i\frac{1}{2}\tilde{\theta}|Y|} \propto \sin\left(\frac{1}{2}(\tilde{\theta}|Y| + \Phi)\right). \tag{1.46}$$

Le paramètre $\tilde{\theta} = \theta_1 - \theta_2$ joue ici un rôle analogue à celui d'un pseudo-moment associé à la coordonnée relative, est la phase s'écrit

$$\Phi(\tilde{\theta}) = 2 \arctan\left(\frac{1}{i}\frac{a+b}{a-b}\right), \tag{1.47}$$

car $a \exp(ix) + b \exp(-ix) = 2\sqrt{ab} \sin\left(x + \arctan\left(-i\frac{a+b}{a-b}\right)\right)$. Pour $\tilde{\theta} < 0$, les termes exponentiels $\exp(i\tilde{\theta}|Y|/2)$ et $\exp(-i\tilde{\theta}|Y|/2)$ correspondent aux paires de particules entrantes et sortantes d'un processus de diffusion à deux corps.

En réinjectant l'ansatz (1.46) dans l'équation relative (1.45), on obtient l'énergie propre $\tilde{\varepsilon}$ du problème réduit. Elle prend la forme cinétique usuelle $\frac{1}{2} \times \text{masse} \times \text{vitesse}^2$. La masse réduite vaut ici $\tilde{m} = \frac{1}{2}$ et le paramètre $\tilde{\theta}$ joue le rôle d'une impulsion; ainsi

$$\tilde{\varepsilon}(\tilde{\theta}) = \frac{1}{2}\tilde{m}\tilde{\theta}^2 = \frac{1}{2} \times \frac{1}{2}\tilde{\theta}^2 = \frac{\tilde{\theta}^2}{4}. \tag{1.48}$$

Cette énergie gouverne la décroissance exponentielle de la fonction d'onde dans la coordonnée relative : plus $\tilde{\theta}$ est grand, plus l'état est localisé autour de Y=0, signe d'une interaction attractive plus forte entre les deux bosons.

L'énergie totale se décompose enfin en la somme du mouvement du centre de masse et du mouvement relatif : $\overline{\theta}^2 + \tilde{\varepsilon}(\tilde{\theta}) = \varepsilon(\theta_1) + \varepsilon(\theta_2)$, où $\overline{\theta} = \frac{\theta_1 + \theta_2}{2}$ et $\varepsilon(\theta) = \theta^2/2$.

Condition de discontinuité à cause du potentiel delta. En raison de la présence du potentiel delta centré en Y=0, la dérivée première de la fonction d'onde $\tilde{\varphi}(Y)$ présente une discontinuité en ce point. En effet, le potentiel étant infini en Y=0, la phase Φ du régime symétrique est déterminée en intégrant l'équation du mouvement autour de la singularité. En intégrant entre $-\epsilon$ et $+\epsilon$ et en faisant tendre $\epsilon \to 0$, on obtient la condition de saut de la dérivée :

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} -\partial_Y^2 \tilde{\varphi}(Y) + g\delta(Y)\tilde{\varphi}(Y) dY = \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} \tilde{\varepsilon}(\tilde{\theta}) dY,$$
$$\tilde{\varphi}'(0^+) - \tilde{\varphi}'(0^-) - g\tilde{\varphi}(0) = 0.$$

Détermination de la phase Φ . Et en évaluant la discontinuité de sa dérivée au point Y = 0, on trouve que la phase Φ satisfait la condition :

$$\Phi(\tilde{\theta}) = 2\arctan(\tilde{\theta}/g) \in [-\pi, +\pi]. \tag{1.49}$$

Cette relation exprime l'impact de l'interaction de type delta sur le déphasage de la fonction d'onde liée. On en déduit que plus le couplage g est fort $(g \to \infty)$, plus la phase Φ se rapproche de zéro. Cela correspond à une fonction d'onde qui s'annule en Y = 0, caractéristique d'un régime d'imperméabilité totale.

À l'inverse, dans la limite d'une interaction faible $(g \to 0)$, la phase Φ tend vers π (ou $-\pi$, selon le signe de $\tilde{\theta}$). Dans ce cas, la discontinuité de la dérivée de la fonction d'onde au point Y=0 devient négligeable, ce qui traduit une interaction presque absente entre les deux particules.

Phase de diffusion à deux corps. En combinant les équations (1.47) et (1.49) avec l'identité analytique valable pour tout $z \in \mathbb{C} \setminus \{\pm i\}$, $2\arctan(z) = i\ln\left(\frac{1-iz}{1+iz}\right) \Leftrightarrow e^{2i\arctan(z)} = \frac{1+iz}{1-iz}$, on obtient que le rapport des amplitudes a et b de la fonction d'onde relative (1.46) définit la phase de diffusion $\Phi(\tilde{\theta}) = i\ln\left(-\frac{b}{a}\right)$. On introduit alors la matrice de diffusion (ou facteur de diffusion)

$$S(\tilde{\theta}) \doteq e^{i\Phi(\tilde{\theta})} = -\frac{a}{b} = \frac{1+i\,\tilde{\theta}/g}{1-i\,\tilde{\theta}/g}.$$
(1.50)

Cette expression, unitaire et analytique, caractérise entièrement la diffusion élastique à deux corps dans le modèle considéré.

Lien entre phase de diffusion et décalage temporel : interprétation semi-classique. (à revoir) Il a été souligné par Eisenbud (1948) et Wigner (1955) que la phase de diffusion peut être interprétée, de manière semi-classique, comme un décalage temporel. Esquissons brièvement l'argument de Wigner (1955). Tout d'abord, notons que, pour une particule unique, une approximation simple d'un paquet d'ondes peut être obtenue en superposant deux ondes planes avec des moments $\tilde{\theta}/2$ et $\tilde{\theta}/2 + \delta\tilde{\theta}$, respectivement :

$$\tilde{\varphi}_{\rm inc}(Y) \propto e^{i\frac{1}{2}\tilde{\theta}|Y|} + e^{i\frac{1}{2}(\tilde{\theta}+2\delta\tilde{\theta})|Y|}.$$
(1.51)

Cette superposition évolue dans le temps comme :

$$\tilde{\varphi}_{\text{inc}}(Y,t) \propto e^{i\left(\frac{1}{2}\tilde{\theta}|Y|-t\,\tilde{\varepsilon}(\tilde{\theta})\right)} + e^{i\left(\frac{1}{2}(\tilde{\theta}+2\delta\tilde{\theta})|Y|-t\,\tilde{\varepsilon}(\tilde{\theta}+2\delta\tilde{\theta})\right)}.$$
(1.52)

Le centre de ce 'paquet d'ondes' se situe à la position où les phases des deux termes coïncident, c'est-à-dire au point où $|Y|\delta\tilde{\theta}-t[\tilde{\varepsilon}(\tilde{\theta}+2\delta\tilde{\theta})-\tilde{\varepsilon}(\tilde{\theta})]=0$, ce qui donne $|Y|\simeq\tilde{\theta}$ t avec la vitesse réduite $\tilde{\theta}=1/2\varepsilon'(\tilde{\theta})$. Selon les équations (1.46) et (??), l'état sortant de la diffusion correspondant serait :

$$\tilde{\varphi}_{outc}(Y,t) \propto -e^{i\Phi(\tilde{\theta})}e^{-i\frac{1}{2}\tilde{\theta}|Y|} - e^{i\Phi(\tilde{\theta}+2\delta\tilde{\theta})}e^{-i\frac{1}{2}(\tilde{\theta}+2\delta\tilde{\theta})|Y|}. \tag{1.53}$$

En répétant l'argument précédent de la stationnarité de phase, on trouve que la coordonnée relative est à la position $|Y| \simeq \tilde{\theta}t - 2\Phi'(\tilde{\theta})$ au moment t.

$$|Y| \simeq \tilde{\theta}t - 2\Delta(\tilde{\theta}) \tag{1.54}$$

où le déplacement de diffusion $\Delta(\theta)$ est donné par la dérivée de la phase de diffusion,

$$\Delta(\theta) \doteq \frac{d\Phi}{d\theta}(\theta) = \frac{2g}{g^2 + \theta^2}.$$
 (1.55)

Retour aux coordonnées du laboratoire. En revenant aux coordonnées du laboratoire, la fonction d'onde à deux corps s'écrit $\varphi_{\{\theta_1,\theta_2\}}(z_1,z_2)=\langle\emptyset|\hat{\Psi}(z_1)\hat{\Psi}(z_2)|\{\theta_1,\theta_2\}\rangle/\sqrt{2}$, dans le cas $z_1< z_2$, c'est-à-dire pour une séparation relative $Y=z_1-z_2<0$ (on pourra symétriser ultérieurement). Dans le référentiel du laboratoire, le centre de masse évolue selon $Z=\frac{z_1+z_2}{2}=\overline{\theta}\,t$. Ainsi, la position semi-classique des deux particules après la collision s'écrit

$$z_1 = Z + \frac{Y}{2} \simeq \theta_1 t - \Delta(\theta_1 - \theta_2), \quad z_2 = Z - \frac{Y}{2} \simeq \theta_2 t + \Delta(\theta_1 - \theta_2),$$
 (1.56)

On peut vérifier les identités utiles suivantes :

$$z_1\theta_1 + z_2\theta_2 = 2Z\overline{\theta} + \frac{1}{2}Y\widetilde{\theta}, \quad z_1\theta_2 + z_2\theta_1 = 2Z\overline{\theta} - \frac{1}{2}Y\widetilde{\theta},$$

ce qui est en accord avec les masses associées : masse totale $\overline{m}=2$, masse réduite $\tilde{m}=\frac{1}{2}$.

Cela nous motive à multiplier l'ansatz dans le référentiel du centre de masse (équation (1.46)) par un facteur de phase globale $\exp(2iZ\overline{\theta})$ pour revenir à la représentation dans le laboratoire. On obtient alors l'expression de la fonction d'onde :

$$\varphi_{\{\theta_1,\theta_2\}}(z_1, z_2) \propto \begin{cases} (\theta_2 - \theta_1 - ig)e^{iz_1\theta_1 + iz_2\theta_2} - (\theta_1 - \theta_2 - ig)e^{iz_1\theta_2 + iz_2\theta_1} & \text{si } z_1 < z_2 \\ (z_1 \leftrightarrow z_2) & \text{si } z_1 > z_2 \end{cases}$$
(1.57)

Pour $\theta_1 > \theta_2$, les deux termes exponentiels $e^{iz_1\theta_1 + iz_2\theta_2}$ et $e^{iz_1\theta_2 + iz_2\theta_1}$ correspondent respectivement aux ondes entrantes et sortantes dans le canal de diffusion à deux corps. Le rapport de leurs amplitudes définit la phase de diffusion / matrice diffusion $e^{i\Phi(\hat{\theta})}$ à deux corps (??), reste inchangé:

$$S(\theta_1 - \theta_2) \doteq e^{i\Phi(\theta_1 - \theta_2)} = \frac{\theta_1 - \theta_2 - ig}{\theta_2 - \theta_1 - ig}.$$
(1.58)

Cette phase caractérise entièrement le processus de diffusion dans le modèle de Lieb-Liniger à deux particules.

Conditions périodiques et équations de Bethe pour deux bosons (à révoir).

 $P\'{e}riodicit\'{e}$ en z_2 . On impose une condition de p\'{e}riodicit\'{e} sur la fonction d'onde obtenue par ansatz de Bethe (voir équation (1.57)) : $\varphi_{\{\theta_1,\theta_2\}}(z_1,z_2=L)=\varphi_{\{\theta_1,\theta_2\}}(z_1,z_2=0)$, avec $0< z_1< z_2=L$. Au point $z_2=L$, la configuration reste dans le secteur $z_1< z_2$, tandis qu'à $z_2=0$, on entre dans le secteur $z_2< z_1$. La continuité de la fonction d'onde impose alors d'échanger les coordonnées $z_1\leftrightarrow z_2: \varphi_{\{\theta_1,\theta_2\}}(z_1,L)=\varphi_{\{\theta_1,\theta_2\}}(0,z_1)$. En utilisant l'expression explicite de l'ansatz dans les deux secteurs, on obtient l'égalité suivante :

$$a e^{i\theta_1 z_1 + i\theta_2 L} + b e^{i\theta_2 z_1 + i\theta_1 L} = a e^{i\theta_2 z_1} + b e^{i\theta_1 z_1}.$$

Cette relation, valable pour tout $z_1 \in (0, L)$, fixe une contrainte sur le rapport b/a. En utilisant l'expression de la phase de diffusion introduite en (1.58) pour $z_1 < z_2$:

$$-\frac{b}{a} = e^{i\Phi(\theta_1 - \theta_2)},$$

on obtient une condition quantique sur les phases θ_1 et θ_2 , cœur de la quantification imposée par le formalisme de Bethe.

En identifiant les coefficients de $e^{i\theta_1 z_1}$ et $e^{i\theta_2 z_1}$ indépendamment, on obtient $e^{i\theta_2 L}$ a=b, $e^{i\theta_1 L}$ b=a, c'est-à-dire l'équations de Bethe

$$e^{i\theta_1 L} e^{i\Phi(\theta_1 - \theta_2)} = -1, \qquad e^{i\theta_2 L} e^{i\Phi(\theta_2 - \theta_1)} = -1.$$

En prenant le logarithme on obtient les équations de Bethe à deux particules :

$$\theta_1 L + \Phi(\theta_1 - \theta_2) = 2\pi I_1, \qquad \theta_2 L + \Phi(\theta_2 - \theta_1) = 2\pi I_2,$$
(1.59)

où $I_1, I_2 \in \mathbb{Z}$ sont les nombres quantiques entiers (caractère bosonique).

Périodicité sur z_1 . Le raisonnement symétrique conduit exactement aux mêmes égalités (1.59). Les équations

(1.59) constituent la quantification complète du gaz de Lieb-Liniger à deux bosons sur un cercle de longueur L et seront le point de départ pour l'étude de l'état fondamental et des excitations.

1.2 Équation de Bethe et distribution de rapidité

1.2.1 Fonction d'onde dans le secteur ordonné et représentation de Gaudin

Dans le domaine $z_1 < z_2 < \cdots < z_N$, la fonction d'onde pour un état de Bethe à N particules s'écrit (Gaudin 2014, Korepin et al. 1997, Lieb et Liniger 1963) :

$$\varphi_{\{\theta_a\}}(z_1, \dots, z_N) = \frac{1}{\sqrt{N!}} \langle \emptyset | \hat{\Psi}(z_1) \dots \hat{\Psi}(z_N) | \{\theta_a\} \rangle$$

$$\propto \sum_{\sigma} (-1)^{|\sigma|} \left(\prod_{1 \le a < b \le N} (\theta_{\sigma(b)} - \theta_{\sigma(a)} - ig) \right) e^{i \sum_{j=1}^{N} z_j \theta_{\sigma(j)}}, \tag{1.60}$$

où la somme s'étend sur toutes les permutations σ de $\{1,\ldots,N\}$. Le facteur $(-1)^{|\sigma|}$ est la signature de la permutation, et les amplitudes dépendent des différences de quasi-moments θ_j ainsi que du couplage c. Cette fonction d'onde est ensuite étendue par symétrie aux autres domaines du type $z_{\pi(1)} < z_{\pi(2)} < \cdots < z_{\pi(N)}$ via des propriétés d'échange symétriques.

1.2.2 Conditions aux bords périodiques

Les équations précédentes ont été établies pour un système défini sur la droite réelle. Cependant, dans une perspective thermodynamique, il est essentiel de considérer une densité finie N/L. Cela peut être obtenu en compactifiant l'espace sur un cercle de longueur L, i.e. en imposant les conditions aux bords périodiques.

Concrètement, cela consiste à identifier x=0 et x=L et à exiger que la fonction d'onde soit périodique lorsqu'une particule fait le tour du système :

$$\varphi_{\{\theta_a\}}(x_1, \dots, x_{N-1}, L) = \varphi_{\{\theta_a\}}(0, x_1, \dots, x_{N-1}). \tag{1.61}$$

Cette condition doit être satisfaite pour chaque particule. Or, déplacer la j-ième particule de x_j à $x_j + L$ revient à la faire passer devant toutes les autres : cela introduit un facteur de diffusion à chaque croisement.

1.2.3 Équations de Bethe exponentielles

En imposant les conditions de périodicité sur la fonction d'onde de type Bethe (1.60), on obtient que chaque moment θ_a doit satisfaire l'équation :

$$e^{i\theta_a L} \prod_{b \neq a} S(\theta_a - \theta_b) = (-1)^{N-1}, \quad a = 1, \dots, N,$$
 (1.62)

où la matrice diffusion $S(\theta) = \frac{\theta - ig}{-\theta - ig} = e^{i\Phi(\theta)}$ est l'amplitude de diffusion à deux corps, et $\Phi(\theta) = 2 \arctan\left(\frac{\theta}{c}\right)$ est la phase associée (??). Le signe $(-1)^{N-1}$ vient du fait que chaque permutation change la signature du déterminant dans la représentation de Gaudin.

1.2.4 Équations de Bethe logarithmiques

En prenant le logarithme du membre gauche et du membre droit de l'équation (1.62), on obtient :

$$L\theta_a + \sum_{b=1}^{N} \Phi(\theta_a - \theta_b) = 2\pi I_a, \qquad a = 1, \dots, N,$$
 (1.63)

où les $I_a \in \mathbb{Z}$ (ou $\mathbb{Z} + \frac{1}{2}$) sont des nombres quantiques entiers (ou demis entiers). Dans la configuration d'état fondamental (ou de type "mer de Fermi"), ces nombres sont pris de manière symétrique autour de zéro :

$$I_a = a - \frac{N+1}{2}$$
, pour $a \in [1, N]$.

Ce choix garantit une distribution uniforme des θ_a à l'état fondamental.

1.2.5 Interprétation physique

Les équations de Bethe (1.63) représentent une quantification des pseudo-impulsions θ_a des particules en interaction, résultant d'un interféromètre multi-corps sur le cercle : chaque particule accumule une phase $e^{i\theta_a L}$ due au mouvement libre, ainsi que des phases de diffusion lorsqu'elle croise les autres.

Ce système d'équations détermine les états propres du système de Lieb-Liniger en volume fini, et joue un rôle fondamental dans la description exacte de ses propriétés thermodynamiques et dynamiques.

1.2.6 Thermodynamique du gaz de Lieb-Liniger à température nulle

Dans la limite thermodynamique, le nombre de particules N et la longueur L du système tendent vers l'infini de telle sorte que leur rapport reste fini :

$$\lim_{N, L \to \infty} \frac{N}{L} = D < \infty,$$

où D désigne la densité linéique de particules.

Considérons désormais le système à température nulle. L'état fondamental dans le secteur à nombre de particules fixé correspond à la configuration d'énergie minimale parmi les solutions des équations de Bethe (1.63).

Dans la limite thermodynamique, les valeurs de θ_a deviennent quasi-continues, avec un espacement $\theta_{a+1} - \theta_a = \mathcal{O}(1/L)$, et se condensent dans un intervalle symétrique autour de zéro :

$$\theta_a \in [-K, K],$$

où K est le paramètre de Fermi (ou rapidité maximale), défini par $K = \theta_N$. En supposant l'ordre $I_a \ge I_b \Rightarrow \theta_a \ge \theta_b$, cet intervalle constitue ce qu'on appelle la mer de Dirac (ou sphère de Fermi en dimension un).

Nous introduisons la densité d'états $\rho_s(\theta)$, définie par

$$2\pi \rho_s(\theta_a) = \frac{2\pi}{L} \lim_{\text{therm}} \frac{|I_{a+1} - I_a|}{|\theta_{a+1} - \theta_a|} = \frac{2\pi}{L} \frac{\partial I}{\partial \theta}(\theta_a),$$

où $I(\theta_a) = I_a$. L'application des équations de Bethe sous forme logarithmique conduit alors à

$$2\pi\rho_s(\theta_a) = 1 + \frac{1}{L} \sum_{b=1}^{N} \Delta(\theta_a - \theta_b),$$

ce qui relie ρ_s à la fonction d'interaction Δ entre les rapidités.

Intéressons-nous maintenant à la densité de particules dans l'espace des moments, notée $\rho(\theta)$, définie par

$$\rho(\theta_a) = \lim_{L \to \infty} \frac{1}{L} \cdot \frac{1}{\theta_{a+1} - \theta_a} > 0.$$

Dans l'état fondamental, toutes les positions disponibles dans l'intervalle [-K, K] sont occupées. On a donc :

$$\rho(\theta) = \rho_s(\theta). \tag{1.64}$$

La quantité $L\rho(\theta)d\theta$ représente le nombre de rapidités dans la cellule infinitésimale $[\theta,\theta+d\theta]$, tandis que $N=L\int_{-K}^{K}\rho(\theta)\,d\theta$ donne le nombre total de particules dans le système. Le passage de la somme discrète à l'intégrale dans le second membre de l'équation de Bethe permet d'écrire :

$$\frac{1}{L} \sum_{b=1}^{N} \Delta(\theta_a - \theta_b) \longrightarrow \int_{-K}^{K} \Delta(\theta_a - \theta) \, \rho(\theta) \, d\theta.$$

Ainsi, l'équation pour la densité d'états devient :

$$2\pi \rho_s(\theta) = 1 + \int_{-K}^K \Delta(\theta - \theta') \, \rho(\theta') \, d\theta', \tag{1.65}$$

et, comme $\rho=\rho_s$, on obtient l'équation linéaire intégrale satisfaite par la densité de rapidités :

$$\rho(\theta) - \int_{-K}^{K} \frac{\Delta(\theta - \theta')}{2\pi} \rho(\theta') d\theta' = \frac{1}{2\pi}.$$
 (1.66)

1.2.7 Excitations élémentaires à température nulle

Chapitre 2

Relaxation et Équilibre dans les Systèmes Quantiques Intégrables : Une Approche par la Thermodynamique de Bethe

Contents
COLLECTION

1.1	Descr	iption du modèle de Lieb-Liniger	1
	1.1.1	Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle	1
	1.1.2	Opérateurs nombre de particules et moment dans la formulation quantique du gaz de Lieb-Liniger	7
	1.1.3	Fonction d'onde et Hamiltonien et moment à 2 corps	8
1.2	Équat	ion de Bethe et distribution de rapidité	11
	1.2.1	Fonction d'onde dans le secteur ordonné et représentation de Gaudin	11
	1.2.2	Conditions aux bords périodiques	11
	1.2.3	Équations de Bethe exponentielles	11
	1.2.4	Équations de Bethe logarithmiques	12
	1.2.5	Interprétation physique	12
	1.2.6	Thermodynamique du gaz de Lieb-Liniger à température nulle	12
	1.2.7	Excitations élémentaires à température nulle	13

Introduction générale

Dans les modèles quantiques intégrables, l'évolution vers l'équilibre, à partir d'un état initial arbitraire (et typiquement hors d'équilibre), ne conduit pas à une thermique de Gibbs classique. En effet, du fait de l'existence d'une infinité de charges conservées en involution, les systèmes intégrables n'explorent qu'une sous-partie contrainte de l'espace des états accessibles. Ils relaxent alors vers un état stationnaire décrit par une *Ensemble Thermodynamique Généralisé* (GGE), qui encode la conservation de toutes ces quantités.

Cette section pose les fondations nécessaires à la description de ces états stationnaires dans le cadre de la **thermodynamique de Bethe** (TBA), qui généralise l'analyse au-delà de l'état fondamental. Nous considérons ici un régime macroscopique à température (ou entropie) finie, correspondant à des états hautement excités du spectre, mais toujours décrits dans le formalisme intégrable exact.

Notre point de départ est la relation constitutive entre la densité de quasi-particules (ou rapidités) $\rho(\theta)$ et la densité d'états disponibles $\rho_s(\theta)$, qui encode le spectre accessible en présence d'interactions. Nous introduisons ensuite une opération clé de la TBA, appelée habillage (dressing), qui intervient systématiquement dans le calcul des observables physiques et permet de prendre en compte de manière non perturbative les effets des interactions. Cette construction sera illustrée dans le cadre du modèle intégrable de Lieb-Liniger, qui décrit un gaz unidimensionnel de bosons avec interaction delta répulsive.

Les outils développés ici seront fondamentaux pour formuler dans la section suivante le concept d'ensemble généralisé (GGE), et pour décrire la dynamique de relaxation des systèmes intégrables.

2.0.1 Notion d'état d'équilibre généralisé (GGE)

Introduction.

Configuration des états. On désigne par $\{\theta_a\} \equiv \{\theta_1, \cdots, \theta_N\}$ la configuration de rapidités caractérisant un état propre à $N = N(\{\theta_a\})$ particules – le nombre de particules n'est donc pas fixé a priori mais dépend de la configuration. L'état propre correspondant est noté $|\{\theta_a\}\rangle = |\{\theta_1, \dots, \theta_N\}\rangle$.

Observables diagonales dans la base des états propres. Dans le chapitre précédent (??), on a vu que l'état $|\{\theta_a\}\rangle$ associé à cette configuration est une fonction propre des observables nombre et moment et énergie (??). Ces observables sont diagonales dans la base des états propres :

$$\hat{\boldsymbol{Q}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^{N_a} 1 \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \, \hat{\boldsymbol{P}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^{N_a} \theta_a \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \, \hat{\boldsymbol{H}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^{N_a} \frac{\theta_a^2}{2} \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|.$$
 (2.1)

avec $\sum_{\{\theta_a\}}$ une somme sur tous les configurations.

Contexte et GGE dans les systèmes intégrables. Dans un système quantique intégrable, il existe une infinité de charges conservées locales \hat{Q}_i commutant entre elles et avec l'Hamiltonien \hat{H} ([Rigol et al. 2007]) [?]. Concrètement, chaque charge se présente sous la forme $\hat{Q}_i = \int dx \, \hat{q}_i(x)$, où $\hat{q}_i(x)$ est une densité d'observable locale à support borné. L'intégrabilité implique ainsi une caractérisation complète des états propres par un ensemble de paramètres (rapidités $\{\theta_j\}$ dans le modèle de Lieb-Liniger) [?]. En particulier, contrairement aux systèmes génériques, un système intégrable ne thermalise pas au sens canonique classique, car la présence de toutes ces contraintes empêche l'oubli complet des conditions initiales. Les points clés sont alors :

- Charges conservées : infinité de locales \hat{Q}_i satisfaisant et $[\hat{Q}_i, \hat{H}] = 0$ et $[\hat{Q}_i, \hat{Q}_j] = 0$.
- Densités locales : chaque \hat{Q}_i s'écrit $\hat{Q}_i = \int_{\mathbb{R}} dx \, \hat{q}_i(x)$ avec $\hat{q}_i(x)$ à support fini.
- Relaxation non canonique : après un *quench* (changement brutal de paramètre), le système évolue vers un état stationnaire qui n'est pas décrit par l'ensemble canonique habituel.

Pour décrire cet état, on introduit l'ensemble de Gibbs généralisé (GGE). Rigol et al. ont montré qu'une « extension naturelle de l'ensemble de Gibbs aux systèmes intégrables » prédit correctement les valeurs moyennes des observables après relaxation [?]. Formellement, pour une région finie du système $\mathcal{S} \subset \mathbb{R}$, on définit la matrice densité locale :

$$\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})} = \frac{1}{Z^{(\mathcal{S})}} \exp\left(-\sum_{i} \beta_{i} \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})}\right), \quad \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} = \int_{\mathcal{S}} dx \, \hat{\boldsymbol{q}}_{i}(x), \tag{2.2}$$

où $\beta_i \in \mathbb{R}$ sont les multiplicateurs de Lagrange (ou « températures généralisées ») associés aux charges locales conservées $\{\hat{Q}_i\}$. La fonction de partition $Z^{(S)} = \mathbf{Tr}[\exp(-\sum_i \beta_i \hat{Q}_i^{(S)})]$ assure la normalisation. L'état **GGE** ainsi défini est le seul permettant de prédire de manière cohérente les observables locales de S à long temps [?]. Autrement dit, l'équilibre local après quench est un état stationnaire faisant perdurer la mémoire de chaque charge conservée, ce qui conduit à un nombre macroscopique de paramètres β_i thermodynamiques (une « température » par charge) [?].

Interprétation des multiplicateurs de Lagrange. Les multiplicateurs de Lagranges β_i apparaissent naturellement lors de l'optimisation sous contraintes, par exemple dans le formalisme de l'ensemble de Gibbs généralisé (GGE), oû il imposent la conservation des valeurs moyennes des charges $\langle \hat{Q}_i^{(S)} \rangle_{\hat{\rho}_{GGE}^{(S)}} = \text{Tr}[\hat{\rho}_{GGE}^{(S)}\hat{Q}_i^{(S)}]$.

En résumé, la GGE généralise les ensembles canoniques standard : au lieu de retenir uniquement l'énergie, on impose la conservation de l'ensemble complet $\{\hat{Q}_i\}$. Cette construction rend compte du fait que, dans un système intégrable, les observables locaux convergent vers les valeurs moyennes de $\hat{\rho}_{\text{GGE}}^{(S)}$, et non vers celles d'un Gibbs thermique ordinaire [?][?]. On comprend ainsi pourquoi la thermalisation habituelle (canonique ou microcanonique) échoue : seul l'ensemble de Gibbs généralisé peut intégrer toutes les contraintes locales.

Rappel sur le modèle de Lieb-Liniger et distribution de rapidités. Comme rappelé au chapitre précédent, le modèle de Lieb-Liniger (gaz bosonique 1D à interactions de contact) est un exemple paradigmatique d'un système intégrable [?]. Ses états propres sont caractérisés par un ensemble de N rapidités $\{\theta_a\}$, qui jouent le rôle de quasimomenta (Bethe ansatz). Dans ce contexte, l'état macroscopique du gaz après relaxation unitaire est entièrement déterminé par la distribution des rapidités. Formellement, on définit $\rho(\theta)$ la distribution intensive des rapidités telle que $\rho(\theta)d\theta$ donne la fraction de particules par unité de longueur ayant une rapidité dans la cellule $[\theta, \theta + d\theta]$.

Cette « distribution de rapidités » est d'autant plus pertinente qu'elle est accessible expérimentalement. En effet, lorsque le gaz bosonique 1D est libéré et laissé s'étendre, la distribution asymptotique des vitesses des atomes coïncide

avec la distribution initiale des rapidités [?] . Autrement dit, la GGE prédit un profil de vitesses observables en laboratoire. Léa Dubois souligne dans sa thèse que " la distribution de rapidités est la distribution asymptotique des vitesses des atomes après une expansion dans le guide 1D ", et qu'elle peut être extraite par l'hydrodynamique généralisée [?].

Dans la GGE, cette distribution macroscopique $\rho(\theta)$ est fixée par l'ensemble des charges conservées. Par exemple, on ajuste les β_i de sorte que les valeurs moyennes $\langle \hat{Q}_i \rangle_{\hat{\rho}_{\rm GGE}^{(S)}}$ correspondent aux valeurs initiales. Ce processus détermine donc la fonction $\rho(\theta)$ décrivant l'état d'équilibre local. Les observables locaux du gaz (densité, corrélations, etc.) en découlent alors via les équations de Bethe ansatz.

Charges conservées locales diagonales dans la base des états propres. Les charges conservées locales $\hat{Q}_i^{(S)}$ est diagonale dans la base des états propres $|\{\theta_a\}\rangle$, avec pour valeurs propres $\langle \hat{Q}_i^{(S)}\rangle_{\{\theta_a\}} = \text{Tr}[|\{\theta_a\}\rangle\langle\{\theta_a\}|\,\hat{Q}_i^{(S)}] = \langle \{\theta_a\}|\,\hat{Q}_i^{(S)}|\{\theta_a\}\rangle$:

$$\hat{\mathbf{Q}}_{i}^{(\mathcal{S})} | \{ \theta_{a} \} \rangle = \langle \hat{\mathbf{Q}}_{i}^{(\mathcal{S})} \rangle_{\{ \theta_{a} \}} | \{ \theta_{a} \} \rangle. \tag{2.3}$$

Probabilité d'un état à rapidités fixées. On peut alors définir la probabilité d'occurrence d'un état $|\{\theta_a\}\rangle$:

$$\mathbb{P}_{\{\theta_a\}}^{(\mathcal{S})} = \mathbf{Tr} \left[\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})} | \{\theta_a\} \rangle \langle \{\theta_a\} | \right] = \langle \{\theta_a\} | \hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})} | \{\theta_a\} \rangle = \frac{1}{Z^{(\mathcal{S})}} \exp \left(-\sum_i \beta_i \langle \hat{\boldsymbol{Q}}_i^{(\mathcal{S})} \rangle_{\{\theta_a\}} \right). \tag{2.4}$$

Moyenne d'un charges conservées locales et dérivées de $Z^{(S)}$. On peut écrire la moyenne d'une observable comme une somme pondérée par cette probabilité, ou encore comme une dérivée de la fonction de partition :

$$\langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = \sum_{\{\theta_{a}\}} \langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\{\theta_{a}\}} \mathbb{P}_{\{\theta_{a}\}}^{(\mathcal{S})} = -\frac{1}{Z^{(\mathcal{S})}} \frac{\partial Z^{(\mathcal{S})}}{\partial \beta_{i}} \Big)_{\beta_{j \neq i}} = -\frac{\partial \ln Z^{(\mathcal{S})}}{\partial \beta_{i}} \Big)_{\beta_{j \neq i}}$$
(2.5)

Par le même raisonnement la moyenne de $(\hat{Q}_i^{(S)})^n$ s'écrit :

$$\langle (\hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})})^{n} \rangle = \sum_{\{\theta_{a}\}} (\langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\{\theta_{a}\}})^{n} \mathbb{P}_{\{\theta_{a}\}}^{(\mathcal{S})} = (-1)^{n} \frac{1}{Z^{(\mathcal{S})}} \frac{\partial^{n} Z^{(\mathcal{S})}}{(\partial \beta_{i})^{n}} \Big)_{\beta_{j \neq i}}. \tag{2.6}$$

Moments d'ordre supérieur et fluctuations. Le premier et second moments permettent d'accéder à la variance de l'observable :

$$\Delta_{\hat{\boldsymbol{Q}}_{i}^{(S)}}^{2} = \left\langle \left(\hat{\boldsymbol{Q}}_{i}^{(S)} - \langle \hat{\boldsymbol{Q}}_{i}^{(S)} \rangle_{\hat{\boldsymbol{\rho}}_{GGE}}^{(S)} \right)^{2} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}} = \left\langle \left(\hat{\boldsymbol{Q}}_{i}^{(S)} \right)^{2} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}} - \left\langle \hat{\boldsymbol{Q}}_{i}^{(S)} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}}^{2} \\
= \frac{1}{Z^{(S)}} \frac{\partial^{2} Z^{(S)}}{\partial \beta_{i}^{2}} \right)_{\beta_{j \neq i}} - \left(\frac{1}{Z} \frac{\partial Z^{(S)}}{\partial \beta_{i}} \right)_{\beta_{j \neq i}} \right)^{2} \\
= \frac{\partial}{\partial \beta_{i}} \left(\frac{1}{Z^{(S)}} \frac{\partial Z^{(S)}}{\partial \beta_{i}} \right)_{\beta_{j \neq i}} \right)_{\beta_{j \neq i}} \\
= \frac{\partial^{2} \ln Z^{(S)}}{\partial \beta_{i}^{2}} \right)_{\beta_{j \neq i}} = - \frac{\partial \left\langle \hat{\boldsymbol{Q}}_{i}^{(S)} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}}}{\partial \beta_{i}} \right)_{\beta_{i \neq i}}. \tag{2.7}$$

Cas particulier de l'équilibre thermique. Dans le cas particulier de l'équilibre thermique standard (i.e. Gibbsien), le système est décrit par une seule contrainte d'énergie (ou d'énergie et de particule, dans le cas d'un grand canonique). Les multiplicateurs de Lagrange associés aux charges conservées peuvent alors être identifiés à des grandeurs thermodynamiques classiques.

- Si la seule charge conservée est le nombre de particules $\hat{Q}_0^{(S)} = \hat{Q}$, le multiplicateur associé est $\beta_0 = -\beta \mu$, où μ est le potentiel chimique et $\beta = T^{-1}$ l'inverse de la température (avec $k_B = 1$).
- Si la charge conservée est $\hat{Q}_{2}^{(S)} \mu \hat{Q}_{0}^{(S)} = \hat{H} \mu \hat{Q}$ (ensemble grand canonique), alors le multiplicateur est simplement β .

Dans ce cadre, les moyennes et les fluctuations thermodynamiques usuelles s'expriment naturellement comme dérivées du logarithme de la fonction de partition $Z^{(S)}$:

$$\langle \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = \frac{1}{\beta} \frac{\partial \ln Z^{(\mathcal{S})}}{\partial \mu} \Big)_{T,\dots}, \qquad \Delta_{\hat{\boldsymbol{Q}}}^2 = \frac{1}{\beta^2} \frac{\partial^2 \ln Z^{(\mathcal{S})}}{\partial \mu^2} \Big)_{T,\dots} = \frac{1}{\beta} \frac{\partial \langle \boldsymbol{Q} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}}}{\partial \mu} \Big)_{T,\dots}$$
(2.8)

$$\langle \hat{\boldsymbol{H}} - \mu \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = -\frac{\partial \ln Z^{(\mathcal{S})}}{\partial \beta} \Big)_{\mu,\dots}, \qquad \Delta_{\hat{\boldsymbol{H}} - \mu \hat{\boldsymbol{Q}}}^2 = \frac{\partial^2 \ln Z^{(\mathcal{S})}}{\partial \beta^2} \Big)_{\mu,\dots} = -\frac{\partial \langle \hat{\boldsymbol{H}} - \mu \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}}}{\partial \beta} \Big)_{\mu,\dots}$$
(2.9)

En combinant ces relations, on peut également exprimer l'énergie moyenne et ses fluctuations comme :

$$\langle \hat{\boldsymbol{H}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T,\dots} - \frac{\partial}{\partial \beta} \Big|_{\mu,\dots} \right] \ln Z^{(\mathcal{S})}, \quad \Delta_{\hat{\boldsymbol{H}}}^2 = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T,\dots} - \frac{\partial}{\partial \beta} \Big|_{\mu,\dots} \right]^2 \ln Z^{(\mathcal{S})}. \tag{2.10}$$

2.0.2 Rôle des charges conservées extensives et quasi-locales

Écriture des observables thermodynamiques comme sommes sur les rapidités. Dans un système à N particules caractérisé par des rapidités $\theta_{aa=1}^N$, les charges conservées classiques — telles que le nombre de particules, l'impulsion ou l'énergie — s'écrivent comme des sommes de puissances des rapidités : $\langle \hat{\boldsymbol{Q}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^0$, $\langle \hat{\boldsymbol{P}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^0$, (cf. équations (2.1)) Dans ce paragraphe précédent, nous avons sous-entendu — sans l'expliciter — qu'il est montré que l'ensemble des charges locales conservées forme une famille donnée par :

$$\hat{Q}_{i}^{(S)} |\{\theta_{a}\}\rangle \propto \sum_{a} \theta_{a}^{i} |\{\theta_{a}\}\rangle.$$
 (2.11)

Ces charges agissent donc de manière diagonale sur les états de Bethe, avec des valeurs propres correspondant aux moments des rapidités.

Charges conservées généralisées. À toute fonction régulière $w : \mathbb{R} \to \mathbb{R}$ — dorénavant appelée poids spectral, ou énergie généralisée — on associe un opérateur-charge généralisé :

$$\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w] |\{\theta_a\}\rangle = \sum_{a=1}^{N} w(\theta_a) |\{\theta_a\}\rangle.$$
(2.12)

Les choix particuliers $w(\theta) = 1$, $w(\theta) = \theta$ et $w(\theta) = \theta^2/2$ redonnent respectivement le nombre $\hat{Q} = \hat{Q}_0^{(S)} = \hat{Q}_0^{(S)}$ l'impulsion $\hat{P} = \hat{Q}_1^{(S)} = \hat{Q}_1^{(S)} = \hat{Q}_1^{(S)}$ et l'Hamiltonien $\hat{H} = \hat{Q}_0^{(S)} = \hat{Q}_0^{(S)} = \hat{Q}_0^{(S)}$

Ces charges sont extensives : leur densité locale $\hat{q}^{(S)}[w]$ permet d'écrire $\hat{\mathcal{Q}}^{(S)}[w] = \int_0^L dx \, \hat{q}^{(S)}[w](x)$.

Expression de la matrice densité généralisée. La matrice densité généralisée s'écrit sous la forme :

$$\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}[w] = \frac{e^{-\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]}}{Z^{(\mathcal{S})}[w]}, \text{ avec} \quad e^{-\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]} = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N w(\theta_a)} |\{\theta_a\}\rangle \langle \{\theta_a\}|, \tag{2.13}$$

et la fonction de partition $Z^{(S)}[w]$ est définie par : $Z^{(S)}[w] = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N w(\theta_a)}$.

Probabilité associée à une configuration de rapidités. La probabilité d'occuper l'état $|\{\theta\}\rangle$ est donc

$$\mathbb{P}_{\{\theta_a\}}^{(\mathcal{S})} = \operatorname{Tr}\left[\hat{\boldsymbol{\rho}}_{\mathrm{GGE}}^{(\mathcal{S})}[w]|\{\theta_a\}\rangle\langle\{\theta_a\}|\right] = \langle\{\theta_a\}|\hat{\boldsymbol{\rho}}_{\mathrm{GGE}}^{(\mathcal{S})}[w]|\{\theta_a\}\rangle = Z^{(\mathcal{S})}[w]^{-1}e^{-\sum_{a=1}^{N}w(\theta_a)}. \tag{2.14}$$

On voit ainsi que le poids statistique factorise naturellement sur les pseudo-moments, chaque particule étant pondérée par $w(\theta_a)$.

Moyennes d'observables dans le GGE. Pour tout opérateur local $\hat{\mathcal{O}}$ diagonal dans la base de Bethe, la moyenne généralisée vaut

$$\langle \hat{\mathcal{O}} \rangle_{GGE} \doteq \operatorname{Tr}(\hat{\mathcal{O}}\hat{\boldsymbol{\rho}}_{GGE}^{(\mathcal{S})}[w]) = \frac{\operatorname{Tr}(\hat{\mathcal{O}}e^{-\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]})}{\operatorname{Tr}(e^{-\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]})} = \frac{\sum_{\{\theta_a\}} \langle \{\theta_a\} | \hat{\mathcal{O}} | \{\theta_a\} \rangle e^{-\sum_{a=1}^{N} w(\theta_a)}}{\sum_{\{\theta_a\}} e^{-\sum_{a=1}^{N} w(\theta_a)}}$$
(2.15)

Ainsi, la connaissance de la fonction $w(\theta)$ suffit à déterminer les propriétés statistiques de toute observable diagonale, y compris les charges conservées elles-mêmes.

Conclusion de la section : vers la thermodynamique de Bethe. Nous avons vu que, dans un système intégrable, la description correcte de l'équilibre stationnaire requiert l'introduction d'une famille infinie de charges conservées, comprenant à la fois des charges strictement locales et des charges quasi-locales. Toutes ces charges se réunissent dans l'opérateur fonctionnel $\hat{Q}^{(S)}[w]$, défini par un poids spectral $w(\theta)$ (cf. équations (2.12)). Cette construction conduit naturellement à la matrice densité généralisée $\hat{\rho}_{\text{GGE}}^{(S)}[w] \propto e^{-\hat{Q}^{(S)}[w]}$ (cf. équations (2.13)), et à la moyenne d'un opérateur local \hat{O} donnée par $\langle \hat{O} \rangle_{GGE} \doteq \text{Tr}(\hat{O}\hat{\rho}_{\text{GGE}}^{(S)}[w])$ (cf. équations (2.15)). La connaissance de $w(\theta)$ suffit donc pour prédire les valeurs moyennes de toutes les observables diagonales, y compris celles des charges elles-mêmes ; c'est le cœur du Ensemble de Gibbs Généralisé (GGE pour Generalized Gibbs Ensemble).

Cette base est désormais posée : dans la section suivante, nous passerons au thermodynamique de Bethe. Nous verrons comment, dans la limite thermodynamique, les sommes sur les configurations de rapidités se transforment en intégrales sur des densités continues, comment apparaît l'entropie de Yang-Yang, et comment les moyennes de l'ensemble généralisé se réexpriment à l'aide de ces densités macroscopiques. C'est ce formalisme qui permettra d'analyser finement la relaxation post-quench et de relier microscopie intégrable et hydrodynamique généralisée.

2.1 Thermodynamique de Bethe et relaxation

2.1.1 Limite thermodynamique

Observables locales dans la limite thermodynamique. Si l'observable \mathcal{O} est suffisamment locale, sa valeur d'attente dans un état propre ne dépend pas des détails microscopiques, mais uniquement de la distribution de rapidité. On écrit alors :

$$\lim_{n \to \infty} \langle \{\theta_a\} | \hat{\mathcal{O}} | \{\theta_a\} \rangle = \langle \hat{\mathcal{O}} \rangle_{[\rho]}, \tag{2.16}$$

où lim est la limite thermodinamique $(N, L \to \infty \text{ avec } N/L \to \text{const})$.

Dans un ensemble général (GGE), la valeur moyenne de l'observable (2.15) devient alors :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{GGE} = \frac{\sum_{\rho} \langle \hat{\mathcal{O}} \rangle_{[\rho]} \Omega[\rho] e^{-\sum_{a=1}^{N} w(\theta_a)}}{\sum_{\rho} \Omega[\rho] e^{-\sum_{a=1}^{N} w(\theta_a)}}, \tag{2.17}$$

où $\Omega[\rho]$ désigne le nombre de micro-états compatibles avec la distribution de rapidité ρ .

Avant d'étudier la fonction $\Omega[\rho]$, examinons d'abord la transformation des équations de Bethe dans cette limite.

Équation de Bethe continue. À température non nulle (hors de l'état fondamental), il n'y a plus de mer de Fermi définie, et les équations (1.64) et (1.66) ne sont plus valides (en particulier $\rho \neq \rho_s$). Les équations discrètes de Bethe (1.65) se condensent alors en une équation intégrale pour les densités de rapidité :

$$2\pi\rho_s = 1 + \Delta \star \rho, \tag{2.18}$$

où le symbole \star désigne la convolution : $[\Delta \star \rho](\theta) = \int_{-\infty}^{\infty} d\theta' \, \Delta(\theta - \theta') \, \rho(\theta')$.

Opération de dressing.

 $D\'{e}finition$. À toute fonction $f(\theta)$ on associe sa version $habill\'{e}e$ (ou dressed) $f^{dr}(\theta)$, définie comme la solution de l'équation intégrale suivante :

$$f^{\mathrm{dr}} = f + \left[\frac{\Delta}{2\pi} \star \left(\nu f^{\mathrm{dr}}\right)\right]$$
 (2.19)

où $\nu = \rho/\rho_s$ est le facteur d'occupation, et $\Delta/2\pi$ est le noyau de diffusion du modèle.

Interprétation physique Le dressing incorpore à tous ordres les effets de rétrodiffusion entre quasi-particules. Il encode ainsi les corrections d'interaction aux grandeurs physiques initiales $f(\theta)$. Dans le modèle de Lieb-Liniger, cette opération permet de déterminer : l'énergie habillée $\varepsilon^{\text{dr}}(\theta)$, l'impulsion habillée $p^{\text{dr}}(\theta)$, les susceptibilités thermodynamiques (cf. section ??).

Susceptibilités thermodynamiques. Les susceptibilités thermodynamiques décrivent la réponse linéaire du système à une variation infinitésimale de paramètres thermodynamiques conjugués aux charges conservées. Pour un système intégrable, elles mesurent la sensibilité des valeurs moyennes $\langle Q_i \rangle$ des charges conservées Q_i par rapport aux potentiels thermodynamiques μ_j associés à ces charges :

$$\chi_{ij} = \frac{\partial \langle Q_i \rangle}{\partial \mu_j}.\tag{2.20}$$

Dans le cadre de la thermodynamique de Bethe, ces susceptibilités s'expriment à l'aide des fonctions habillées. Si $q_i(\theta)$ est la densité de charge Q_i portée par une quasi-particule de rapidité θ , alors la densité totale de charge est donnée par :

$$\langle Q_i \rangle = \int d\theta \, \rho(\theta) \, q_i^{\text{dr}}(\theta),$$
 (2.21)

où $q_i^{\mathrm{dr}}(\theta)$ est la charge habillée, solution de l'équation de dressing :

$$q_i^{\rm dr}(\theta) = q_i(\theta) + \int \frac{d\theta'}{2\pi} \,\Delta(\theta - \theta') \,\nu(\theta') \,q_i^{\rm dr}(\theta'). \tag{2.22}$$

Par différentiation par rapport aux μ_j , on obtient :

$$\chi_{ij} = \int d\theta \, \rho_s(\theta) \, \nu(\theta) \, q_i^{\text{dr}}(\theta) \, q_j^{\text{dr}}(\theta), \qquad (2.23)$$

où $\rho_s(\theta)$ est la densité de sites disponibles, $\nu(\theta) = \rho(\theta)/\rho_s(\theta)$ est le facteur d'occupation, et $\Delta(\theta)$ est le noyau issu de la phase de diffusion du modèle considéré.

Ces susceptibilités interviennent dans la théorie hydrodynamique généralisée (GHD) comme coefficients de la métrique thermodynamique et des corrélations à longue distance. Elles permettent également d'exprimer les fluctuations thermiques et les coefficients de transport linéaire (formules de Kubo généralisées).

Dans le modèle de Lieb-Liniger à couplage g > 0, les quasi-particules sont caractérisées par leur rapidité θ (proportionnelle à l'impulsion).

Phase de diffusion et noyau : la phase de diffusion entre deux particules de rapidité θ et θ' est :

$$\phi(\theta - \theta') = 2 \arctan\left(\frac{\theta - \theta'}{g}\right),$$

ce qui donne, par dérivation, le noyau de Bethe :

$$\Delta(\theta) = \frac{2g}{\theta^2 + g^2}.$$

Charge de nombre de particules : la densité de charge associée au nombre total de particules est $q(\theta) = 1$. Sa version habillée $q^{dr} = 1^{dr}$ satisfait :

$$1^{\mathrm{dr}}(\theta) = 1 + \int \frac{d\theta'}{2\pi} \, \Delta(\theta - \theta') \, \nu(\theta') \, 1^{\mathrm{dr}}(\theta').$$

Susceptibilité de compressibilité : La susceptibilité associée à cette charge, notée χ_{NN} (compressibilité isotherme), est alors donnée par :

$$\chi_{NN} = \int d\theta \, \rho_s(\theta) \, \nu(\theta) \, [1^{\mathrm{dr}}(\theta)]^2.$$

Cette quantité mesure la variation du nombre de particules à l'équilibre lorsqu'on change le potentiel chimique, et encode les effets d'interactions à tous les ordres dans la phase d'équilibre.

Pour la charge énergie, la densité associée est $q(\theta) = \epsilon(\theta)$, avec :

$$\epsilon(\theta) = \theta^2$$
.

dans le modèle de Lieb-Liniger (masse m=1/2). Sa version habillée est $\epsilon^{\mathrm{dr}}(\theta)$, solution de :

$$\epsilon^{\mathrm{dr}}(\theta) = \epsilon(\theta) + \int \frac{d\theta'}{2\pi} \, \Delta(\theta - \theta') \, \nu(\theta') \, \epsilon^{\mathrm{dr}}(\theta').$$

La capacité thermique (susceptibilité χ_{EE}) s'écrit :

$$\chi_{EE} = \int d\theta \, \rho_s(\theta) \, \nu(\theta) \, [\epsilon^{\mathrm{dr}}(\theta)]^2.$$

Cela mesure la variation de l'énergie en réponse à un changement de température — incluant les effets d'interaction via le dressing.

La densité d'impulsion est $q(\theta) = p(\theta)$, avec :

$$p(\theta) = \theta$$
,

(à masse m=1/2 dans le Lieb–Liniger). Le dressing p^{dr} obéit à :

$$p^{\mathrm{dr}}(\theta) = p(\theta) + \int \frac{d\theta'}{2\pi} \, \Delta(\theta - \theta') \, \nu(\theta') \, p^{\mathrm{dr}}(\theta').$$

La susceptibilité χ_{PP} (fluctuation de l'impulsion totale) vaut :

$$\chi_{PP} = \int d\theta \, \rho_s(\theta) \, \nu(\theta) \, [p^{\mathrm{dr}}(\theta)]^2.$$

Cette quantité intervient dans la description hydrodynamique et les corrélations à grande échelle des systèmes intégrables.

Exemple : densité de sites En prenant $f(\theta)=1$ dans l'équation (2.19), on obtient : $1^{\mathrm{dr}}=1+\frac{\Delta}{2\pi}\star\left(\nu\,1^{\mathrm{dr}}\right)$ soit directement :

$$2\pi\rho_s = 1^{\mathrm{dr}},\tag{2.24}$$

ce qui n'est autre que la relation constitutive (2.18).

Cette formalisation constitue la brique de base de la **hydrodynamique généralisée** et, dans la section suivante, permet de définir rigoureusement l'**entropie de Yang–Yang**, indispensable pour décrire la relaxation hors d'équilibre des systèmes intégrables.

2.1.2 Statistique des macro-états : entropie de Yang-Yang

Motivation. Dans la limite thermodynamique, une observable locale dans un Generalized Gibbs Ensemble (GGE) dépend uniquement de deux objets continus : (i) la distribution de rapidité $\rho(\theta)$, (ii) le poids spectral $w(\theta)$, c.-à-d. la " température généralisée " assignée à chaque quasi-particule. Cette reformulation est puissante car elle fait disparaître les détails d'un état propre individuel.

Cependant, pour décrire un vrai équilibre à température finie, il faut la distribution à l'équilibre :

$$\rho_{\rm eq} \doteq \langle \rho \rangle$$
 et son lien fonctionnel avec w .

La réponse fut donnée dans les travaux pionniers de Yang & Yang (1969). Leur approche repose sur l'analyse de la structure statistique des états propres partageant la même distribution $\rho(\theta)$.

Distribution de rapidité comme macro-état. Chaque distribution de rapidité $\rho(\theta)$ ne correspond pas à un état propre unique, mais à un grand ensemble de micro-états : différents choix des ensembles de quasi-moments $(\{\theta_a\}_{a\in [\![1,N]\!]})_{N\in\mathbb{Z}}$ peuvent conduire à la même densité de distribution à l'échelle macroscopique. Ainsi, $\rho(\theta)$ doit être interprétée comme un macro-état, qui agrège un très grand nombre d'états propres microscopiques.

La question thermodynamique devient alors : Combien de micro-états microscopiquement distincts sont compatibles avec un même macro-état $\rho(\theta)$?

Plus précisément, dans l'expression de moyenne des operateurs locaux (2.17), apparaît le facteur $\Omega[\rho]$, qui compte ces états propres. La détermination de $\Omega[\rho]$ (ou équivalemment de l'entropie de Yang-Yang $\mathcal{S}_{YY}[\rho]$ car $\Omega[\rho] = e^{L\mathcal{S}_{YY}[\rho]}$ avec L la taille du système) est donc la clé pour relier (i) le poids spectral $w(\theta)$ imposé dans le GGE et (ii) la distribution de rapidité moyenne $\rho_{eq}(\theta)$ observée à l'équilibre.

Dénombrement local des configurations microcanoniques. Pour répondre à cette question, on subdivise l'axe des rapidités en petites tranches ou cellules de largeur $\delta\theta$, chacune centrée en un point θ_a . Dans une tranche $[\theta_a, \theta_a + \delta\theta]$, on suppose que la densité $\rho(\theta)$ est à peu près constante. Le nombre de quasi-particules dans cette tranche est alors approximativement :

$$N_a = L\rho(\theta_a)\delta\theta$$
,

et le nombre total d'états disponibles (i.e., le nombre d'états possibles si toutes les positions en moment étaient disponibles) est donné par la densité totale de niveaux

$$M_a = L\rho_s(\theta_a)\delta\theta.$$

La densité de niveaux $\rho_s(\theta)$ tient compte du fait que les moments sont quantifiés de manière discrète, en raison des équations de Bethe (voir équation (??)).

Les particules occupent ces niveaux de manière analogue à des fermions libres (principe d'exclusion de Pauli), le nombre de manières différentes de choisir N_a niveaux parmi M_a est donné par :

$$\Omega(\theta_a) \approx \binom{M_a}{N_a} = \frac{[L\rho_s(\theta)\delta\theta]!}{[L\rho(\theta)\delta\theta]![(L\rho_s(\theta) - L\rho(\theta))\delta\theta]!}.$$
(2.25)

Estimation asymptotique à l'aide de Stirling. En utilisant la formule de Stirling :

$$n! \sim n^n e^{-n} \sqrt{2\pi n}.,$$
 (2.26)

composé du fonction logarithmique, il vient cette équivalence :

$$\ln n! \underset{n \to \infty}{\longrightarrow} n \ln n \underbrace{-n + \ln \sqrt{2\pi n}}_{o(n \ln n)}, \tag{2.27}$$

$$\underset{n \to \infty}{\sim} n \ln n \tag{2.28}$$

#conf. est jamais null donc on peut approximer, pour de grandes valeurs de L et de $\delta\theta$:

$$\ln \Omega(\theta) \underset{\rho(\theta) < \rho_s(\theta)}{\sim} L[\rho_s \ln \rho_s - \rho \ln \rho - (\rho_s - \rho) \ln(\rho_s - \rho)](\theta) \delta\theta. \tag{2.29}$$

Cette expression donne la contribution par unité de θ à l'entropie associée à la cellule autour de θ_a .

Entropie de Yang-Yang : définition . Le nombre total de micro-états compatibles avec une distribution macro-scopique donnée $\rho(\theta)$ est obtenu en prenant le produit des nombres de configurations pour chaque cellule de rapidité $[\theta_a, \theta_a + \delta \theta] : \Omega(\theta_a)$. En prenant le logarithme de ce produit, on accède à l'entropie totale. Pour alléger la notation, cette somme sur les cellules est notée $\sum_a^{\theta-\text{cellules}}$ où chaque a indexe une cellule de rapidité $[\theta_a, \theta_a + \delta \theta]$. On écrit alors :

$$\ln \Omega[\rho] = \sum_{a}^{\theta - \text{cellules}} \ln \Omega(\theta_a), \qquad (2.30)$$

$$\approx LS_{YY}[\rho],$$
 (2.31)

où l'on définit l'entropie de Yang-Yang par la formule discrétisée :

$$S_{YY}[\rho] \doteq \sum_{a}^{\theta - \text{cellules}} [\rho_s \ln \rho_s - \rho \ln \rho - (\rho_s - \rho) \ln(\rho_s - \rho)](\theta_a) \delta\theta.$$
 (2.32)

Énergie généralisée par unité de longueur : définition. Dans le cadre du Generalized Gibbs Ensemble (GGE), l'énergie généralisée associée à une distribution de rapidité $\rho(\theta)$ et à un poids spectral $w(\theta)$ est définie comme la somme des poids assignés à chaque quasi-particule. Dans la limite thermodynamique, en supposant que $w(\theta)$ varie lentement sur chaque tranche $[\theta_a, \theta_a + \delta\theta]$, cette somme soit l'énergie généralisée par unité de longueur \mathcal{W} se se définit par :

$$LW(\{\theta_a\}) \doteq \sum_{a=1}^{N} w(\theta_a) \underset{\text{therm.}}{\sim} LW[\rho] \doteq L \sum_{a}^{\theta \text{-cellules}} w(\theta_a) \rho(\theta_a) \, \delta\theta. \tag{2.33}$$

Moyenne des Observables locales dans la limite thermodynamique. Dans un ensemble général (GGE), la valeur moyenne de l'observable (2.17) devient :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{GGE} \approx \frac{\sum_{\rho} \langle \hat{\mathcal{O}} \rangle_{[\rho]} e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}{\sum_{\rho} e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}, \tag{2.34}$$

où la somme $\sum \rho$ porte sur toutes les distributions possibles de rapidité ρ

Passage à la limite continue. En faisant tendre $\delta\theta \to 0$, les sommes deviennent des intégrales et l'entropie de Yang-Yang ainsi que l'énergie généralisée par unité de longueur prennent la forme :

$$S_{YY}[\rho] = \int d\theta \left[\rho_s \ln \rho_s - \rho \ln \rho - (\rho_s - \rho) \ln(\rho_s - \rho) \right](\theta), \qquad (2.35)$$

$$W[\rho] = \int w(\theta)\rho(\theta) d\theta \tag{2.36}$$

Formule fonctionnelle pour les moyennes. Dans la limite thermodynamique $L \to \infty$, la somme sur les distributions de rapidité ρ admissibles peut être approximée par une intégrale fonctionnelle sur l'espace des densités de rapidité continues, munie d'une mesure fonctionnelle $\mathcal{D}\rho: \sum_{\rho} \sim \int \mathcal{D}\rho$. Cette correspondance repose sur l'idée que les macro-états admissibles deviennent denses dans l'espace fonctionnel, et que le poids statistique associé à chaque configuration est donné par l'entropie de Yang-Yang. La mesure fonctionnelle $\mathcal{D}\rho$ parcourt l'espace des densités $\rho(\theta)$ continues, chaque configuration étant pondérée par le facteur exponentiel $e^{L(\mathcal{S}_{YY}[\rho]-\mathcal{W}[\rho])}$. Finalement, la moyenne d'une observable dans le GGE (2.34) s'écrit comme une intégrale fonctionnelle/de chemin :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{GGE} = \frac{\int \mathcal{D}\rho \ e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])} \langle \hat{\mathcal{O}} \rangle_{[\rho]}}{\int \mathcal{D}\rho \ e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}. \tag{2.37}$$

Interprétation thermodynamique.

- $S_{YY}[\rho]$ compte le logarithme du nombre de micro-états réalisant la distribution $\rho(\theta)$: c'est l'entropie combinatoire.
- $W[\rho]$ mesure le coût énergétique généralisé associé à cette distribution, dicté par le poids spectral $w(\theta)$. Leur différence

$$(S_{YY} - W)[\rho]$$

joue donc le rôle d'une fonction thermodynamique effective (analogue à une entropie libre). L'exposant $e^{L(S_{YY}-W)[\rho]}$ fixe la **probabilité relative** d'un macro-état $\rho(\theta)$ dans le GGE : le terme entropique favorise la multiplicité des états, tandis que le terme énergétique pénalise les configurations coûteuses — d'où la compétition caractéristique de l'équilibre statistique.

2.1.3 Équations intégrales de la TBA

Moyenne des observables dans l'ensemble généralisé de Gibbs.

Approximation au point selle (« méthode de la selle statique ») Dans la limite thermodynamique $L \to \infty$, cette intégrale est dominée par la configuration ρ_{eq} qui maximise le poids exponentiel $e^{L(S_{YY}-W)[\rho]}$ dans l'expression (2.37). Il s'agit de la densité de rapidité la plus probable, solution d'un problème de maximisation. On obtient à l'ordre principal

$$\lim_{\text{therm}} \langle \hat{\mathcal{O}} \rangle_{GGE} \approx \langle \hat{\mathcal{O}} \rangle_{[\rho_{eq}]}. \tag{2.38}$$

Cette approximation correspond à une méthode de selle statique, où l'on développe la fonction thermodynamique effective, $S_{YY} - W$ au voisinage de la distribution dominante.

Développement fonctionnel au premier ordre. Écrivons $\rho = \rho_{eq} + \delta \rho$ et développons $(S_{YY} - W)[\rho]$ à l'ordre linéaire :

$$\mathcal{S}_{YY}[
ho] - \mathcal{W}[
ho] \;\; pprox \;\; \mathcal{S}_{YY}[
ho_{eq}] - \mathcal{W}[
ho_{eq}] + \left. rac{\delta(\mathcal{S}_{YY}[
ho] - \mathcal{W}[
ho])}{\delta
ho} \right|_{
ho=
ho_{eq}} (\delta
ho) + \mathcal{O}(\delta
ho^2),$$

La condition de stationnarité au point selle impose : $\frac{\delta(S_{YY}[\rho]-\mathcal{W}[\rho])}{\delta\rho}\Big|_{\rho=\rho_{eq}}=0$ soit

$$\left. \frac{\delta \mathcal{S}_{YY}}{\delta \rho} \right|_{\rho = \rho_{eq}} = \left. \frac{\delta \mathcal{W}}{\delta \rho} \right|_{\rho = \rho_{eq}}. \tag{2.39}$$

Équation intégrale de la TBA. La condition de stationnarité au point selle $\rho = \rho_{eq}$ (2.39) implique :

$$\frac{\delta S_{YY}}{\delta \rho(\theta)} \bigg|_{\theta = 0} = \frac{\delta W}{\delta \rho(\theta)} \bigg|_{\theta = 0} \doteq w(\theta), \tag{2.40}$$

En utilisant l'expression explicite de l'entropie de Yang-Yang (2.35), on obtient l'identité fonctionnelle

$$w = \ln(\nu_{eq}^{-1} - 1) - \frac{\Delta}{2\pi} \star \ln(1 - \nu_{eq}). \tag{2.41}$$

où $\nu_{eq} = \rho_{eq}/\rho_{seq}$ est le facteur d'occupation à l'équilibre.

Forme pseudo-énergie. La pseudo-énergie ϵ se donne alors par la statistique de type Fermi-Dirac

$$\beta \epsilon = \ln(\nu_{eq}^{-1} - 1), \qquad \nu_{eq} = \frac{1}{1 + e^{\beta \epsilon}}.$$
(2.42)

En réinjectant (2.42) dans (2.41) on obtient l'équation intégrale canonique de la thermodynamique de Bethe :

$$\beta \epsilon = w - \frac{\Delta}{2\pi} \star \ln(1 + e^{-\beta \epsilon}). \tag{2.43}$$

Les relations (2.42)–(2.43) déterminent de façon univoque la distribution de rapidité d'équilibre ρ_{eq} à partir du poids spectral w, caractéristique du GGE.

Ainsi, la méthode du point selle relie explicitement le poids spectral, w (caractéristique du GGE) au macro-état le plus probable, ρ_{eq} , et permet d'évaluer les observables par la formule d'ensemble (2.38).

Résolution numérique de l'équation TBA. On se place à l'équilibre canonique, caractérisé par la température T et le potentiel chimique μ . Dans ce cadre, le poids spectral vaut

$$w(\theta) = \beta \left[\varepsilon(\theta) - \mu \right], \qquad \beta = \frac{1}{T} \left(k_B = 1 \right), \quad \varepsilon(\theta) = \frac{\theta^2}{2} \left(m = 1 \right).$$
 (2.44)

En injectant (2.44) dans l'équation intégrale pour lapseudo-énergie (2.43), on obtient l'équation non linéaire :

$$\beta \epsilon = \beta(\varepsilon - \mu) - \frac{\Delta}{2\pi} \star \ln(1 + e^{-\beta \epsilon}),$$

Cette équation définit un opérateur contractant sur l'espace des fonctions $\varepsilon(\theta)$; son Jacobien a une norme strictement inférieure à 1, garantissant la convergence de l'itération de Picard.

Algorithme d'itération. La structure contractante de l'équation garantit l'absence de cycles ou de points fixes multiples, assurant la convergence de l'itération vers l'unique solution admissible. L'équation (2.45) est non linéaire; pour la résoudre numériquement, on utilise une méthode itérative de type Picard. On initialise $\epsilon_0 = \varepsilon - \mu$, puis on construit une suite de fonctions ε_n définie par

$$\beta \epsilon_{n+1} = \beta \epsilon_0 - \frac{\Delta}{2\pi} \star \ln \left(1 + e^{-\beta \epsilon_n} \right), \quad n \ge 0$$

L'itération est poursuivie jusqu'à convergence, que l'on peut tester via le critère numérique $\beta \|\varepsilon_{n+1} - \varepsilon_n\|_{\infty} < 10^{-12}$, où $\|\cdot\|_{\infty}$ désigne la norme L^{∞} (ou un maximum discret après discrétisation).

Facteur d'occupation et densités. Une fois la pseudo-énergie $\epsilon(\theta)$ convergée, le facteur d'occupation à l'équilibre est obtenu en injectant ϵ dans l'équation (2.42), ce qui donne ν_{eq} .

On en déduit ensuite la densité d'état à l'équilibre $\rho_{s,eq}$ via le **dressing** de la fonction constante $f(\theta) = 1$, selon (2.24), rappelée ici pour mémoire : $2\pi\rho_{s,eq} = 1^{\text{dr}}_{[\nu_{eq}]}$.

L'opérateur de dressing (2.19) étant linéaire, il se résout numériquement sous la forme :

$$\left\{ \operatorname{id} - \frac{\Delta}{2\pi} \star (\nu * \cdot) \right\} f_{[\nu]}^{\mathrm{dr}} = f,$$

où id: $f\mapsto f$ est l'identité fonctionnelle, et * désigne la multiplication. Après discrétisation de la variable θ , cette équation devient un système linéaire de type Ax=b, facilement résoluble numériquement.

La distribution de rapidité est alors obtenue par $\rho_{eq} = \nu_{eq} * \rho_{s,eq}$.

Ainsi, pour tout couple (T, μ) , l'algorithme fournit la pseudo-énergie ϵ , le facteur d'occupation $\nu_{\rm eq}$ et la distribution de rapidité $\rho_{\rm eq}$ à l'équilibre thermique, prêts à être utilisés pour le calcul des observables.

Pour w quelconque , l'algorythme est identique.

Conclusion

Conclusion de la thèse.

Annexe A

Annexes

Informations complémentaires.

30 Annexes

Bibliographie