DERWENT-ACC-NO: 2002-076138

DERWENT-WEEK: 200342

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Reducing the trichloroanisole content of corks to remove

the cork taste in red or white wine, comprising using

electron irradiation

PATENT-ASSIGNEE: RISTELHUEBER GMBH & CO KG AUGUST[RISTN],

RISTELHUEBER

PAPIER & ZELLSTOFF GMBH[RISTN]

PRIORITY-DATA: 2000DE-1022535 (May 9, 2000)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC DE 10022535 A1 November 29, 2001 N/A 003 B67B 001/03 DE 10022535 C2 March 6, 2003 N/A 000 B67B 001/03

APPLICATION-DATA:

 PUB-NO
 APPL-DESCRIPTOR
 APPL-NO
 APPL-DATE

 DE 10022535A1
 N/A
 2000DE-1022535
 May 9, 2000

 DE 10022535C2
 N/A
 2000DE-1022535
 May 9, 2000

INT-CL (IPC): B01J019/08, B67B001/03

ABSTRACTED-PUB-NO: DE 10022535A

BASIC-ABSTRACT:

NOVELTY - Reducing the trichcloroanisole content of corks, comprising using electron ray treatment, is new.

USE - Ridding wine of the 'cork taste'.

ADVANTAGE - The <u>TCA</u> content can be reduced below the critical values of 30 nano-g/l for red wine and 3 nano-g/l for white wine, the process being more effective than prior-art enzyme treatment or the Delfin process which uses 3-stage microwave heating. Further, the effect is achieved without structural change in the <u>corks</u> at doses up to ca.100kGy.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: REDUCE CONTENT CORK REMOVE CORK TASTE RED WHITE WINE COMPRISE

ELECTRON IRRADIATE

DERWENT-CLASS: D16 Q39

CPI-CODES: D05-J;

UNLINKED-DERWENT-REGISTRY-NUMBERS: 0245U

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C2002-022958 Non-CPI Secondary Accession Numbers: N2002-056077

(9) BUNDESREPUBLIK DEUTSCHLAND

(5) Int. Cl.⁷: **B 67 B 1/03** B 01 J 19/08

DEUTSCHES
PATENT- UND
MARKENAMT

(1) Aktenzeichen: 100 22 535.7
 (2) Anmeldetag: 9. 5. 2000
 (3) Offenlegungstag: 29. 11. 2001

(7) Anmelder:

August Ristelhueber GmbH & Co. KG, 22395 Hamburg, DE

Vertreter:

Schwemer und Kollegen, 20095 Hamburg

(72) Erfinder:

Antrag auf Nichtnennung

56 Entgegenhaltungen:

MAZZOLENI, V., MOLTENI, R., FUMI, M.D., MUSCI, M.:

Effetto dellCrradiamento con elettroni accelerati sul sughero utilizzato per la produzione di tappi . In: Undustrie delle Bevande-XXIX(2000), ISSN: 0390-5041, S. 247-257, Bericht vom 31.03.2000 Verona;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Werfahren zur Reduzierung von Korkgeschmack in Getränken, insbesondere Weinen
- Die vorliegende Erfindung stellt ein Verfahren zur Reduzierung von Trichloranisol (TCA) in Korken (1) bereit, bei dem der Korken (1) mit Elektronenstrahlen behandelt wird.

DE 100 22 535 A 1

· Beschreibung

- [0001] Die Erfindung betrifft ein Verfahren zur Reduzierung von Korkgeschmack in Getränken, insbesondere in Weinen. Insbesondere betrifft die Erfindung ein Verfahren zur Reduktion von Trichloranisol (TCA) in Korken.
- [0002] Durch Korkgeschmack in Weinen werden Jahr für Jahr große Teile von Weinen ungenießbar. Der Rohstofflieferant – die Korkeiche (quercus suber) – ist begrenzt und wächst ausschießlich am westlichen Mittelmeer. Da die Eiche nur alle 9 bis 14 Jahre von ihrer Rinde befreit werden darf, läßt sich die Produktion nicht kurzfristig steigern. Aus einer Tonne Rohstoff lassen sich ca. 200 Kilogramm hochwertige Korken herstellen.
- [0003] Der Korkgeschmack wird Mikroorganismen zugeschrieben, die als Endprodukt Trichloranisol (TCA) im Korken zurücklassen. Eine Konzentration von 30 Nanogramm pro Liter wird in Rotweinen als störend bemerkt, in Weißweinen beträgt die kritische Konzentration bereits 3 Nanogramm pro Liter.
 - [0004] Es ist bekannt, die im Kork enthaltenen Phenole mit Hilfe von Enzymen zu reduzieren. Hierbei werden die Phenole in einem etwa einstündigen Schwallbad oxidiert.
- [0005] Nach dem sogenannten Delfin-Verfahren werden Korken in drei Arbeitsgängen in einer Mikrowellenanlage erbitzt. Hierdurch soll das Trichloranisol (TCA) thermisch ausgetrieben werden und die Mikroorganismen abgetötet werden
 - [0006] Beide Verfahren erreichen jedoch nicht die erforderliche Reduktion von TCA, um den Korkgeschmack im Wein zu vermeiden.
- [0007] Eine weitere Möglichkeit besteht darin, Korken durch Kunststoff zu ersetzen und auf den Rohstoff ganz zu verzichten. Diese Kunststoffe sind jedoch aufgund fehlender Dichigkeit für Weine mit einem erforderlichen Reifungspotential nicht einsetzbar.
 - [0008] Aufgabe der vorliegenden Erfindung ist es daher ein Verfahren zur Reduzierung von Korkgeschmack in Getränken, insbesondere in Weinen, bereitzustellen, das zuverläßig insbesondere die Konzentration von TCA unter die wahrnehmbaren Grenzen absenken kann.
- 25 [0009] Diese Aufgabe wird durch das Verfahren und die Vorrichtung nach den unabhängigen Ansprüchen gelöst. Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.
 - [0010] Insbesondere wird die Aufgabe gelöst durch ein Verfahren zur Reduzierung von Trichloranisol (TCA) in Korken (1), bei dem der Korken (1) mit Elektronenstrahlen behandelt wird. Als Korken kommt sowohl Naturkorken als auch industriell hergestellter Korken in Betracht. Dabei kann der unbehandelte Korken bestrahlt werden genauso wie behandelte, insbesondere gebleichte Korken. Auch kolmatierte Korken und auch mit Gleitmitteln versehene Korken, insbesondere aus Lebensmitteln, echten Paraphinen oder Silikonen können bestrahlt werden. Als Elektronenstrahlen kommt insbesondere hochbeschleunigte Teilchenstrahlung in Betracht.
 - [0011] Bei einem weiteren bevorzugten Verfahren der vorliegenden Erfindung beträgt die Dosis der Elektronenstrahlung mindestens 25 kGy, bevorzugt mindestens 50 kGy, insbesondere bevorzugt mindestens 100 kGy. Durch die verschiedenen Dosen kann die Konzentration an TCA verringert werden. Um so höher die Dosis ist, um so geringer ist der verbleibende Anteil von Trichloranisol (TCA). Eine Schädigung des Korks tritt durch die entsprechende Bestrahlung selbst bei 100 kGy nicht ein.
- [0012] Bei einem weiteren bevorzugten Verfahren der vorliegenden Erfindung wird die Dosis der Elektronenstrahlen so gewählt, daß die Konzentration von Trichloranisol (TCA) in der mit dem Korken zu verschließenden Flüßigkeit weniger als 30 Nanogramm pro Liter, bevorzugt weniger als 3 Nanogramm pro Liter betragen kann. Durch diese Abstimmung der Dosis auf die gewünschte Endkonzentration von TCA in der zu verschließenden Flüssigkeit können in Abhängigkeit von diesen zu verschließenden Flüssigkeiten individuelle TCA-Konzentrationen vorgewählt werden. So wird ein Korkton im roten Wein oft erst bei 30 Nanogramm TCA je Liter und darüber bemerkt, im Weißwein wird ein entsprechender Korkgeschmack jedoch bei 3 Nanogramm pro Liter wahrgenommen. Besonders leichte Weißweine werden von
- besonders empfindlichen Menschen schon mit 1 Nanogramm TCA als ungenießbar bezeichnet. Durch das erfindungsgemäße Verfahren ist es somit möglich, je nach Abhängigkeit des zu verschließenden Weines eine tolerierbare TCA-Konzentration zu erreichen.
 - [0013] Weitere vorteilhafte Ausgestaltungen werden nun anhand von Beispielen erläutert.

Versuch 1

- [0014] In einem ersten Versuch wurden Korken mit einer Dosis von 10, 25, 50 und 100 kGy bestrahlt. Diese Korken wurden anschließenden einer mikroskopischen Sichtprüfung unterzogen, um die Auswirkung der Behandlung auf die Korkstruktur zu überprüfen.
- 55 [0015] Bei den mikroskopischen Untersuchungen konnten keine Veränderungen der Korkstruktur festgestellt werden (auch nicht bei der höchsten Dosis von 100 kGy). Die Lentizellen der Korken waren gegenüber der Nullkontrolle unauffällig. Auch Versuche mit einer Farblösung zum Saugverhalten zeigten keine Veränderungen der Eigenschaften des bestrahlten Korks gegenüber unbestrahlten Korken.

60

65

DE 100 22 535 A 1

Versuch 2

[0016] Die Substanz TCA (Trichloranisol in Ethanol) wurde mit Dosen von 10, 25, 50 und 100 kGy bestrahlt. [0017] Die Substanz TCA wurde durch die Bestrahlung Dosis abhängig abgebaut und somit reduziert werden. Dabei wurde folgende Reduktion festgestellt:

 Dosis
 TCA-Konzentration

 0 kGy
 100%

 10 kGy
 73,3%

 25 kGy
 42,7%

 50 kGy
 13,3%

 100 kGy
 2,7%

[0018] Es wurden die Kontrolle und unterschiedlich bestrahlte TCA-Lösungen untersucht.

GC-MS in Sim-Modus (Massen 195, 197, 210, 212) 2,4,6-Trichloranisol

Variante	Elachenwert	Konzentration	Eichung	Flachenwert
	(lul)	(LECL)	(mg/L)	?(Luġ/Þ)
Nullprobe	6463896	750	1	9477623
10kGy	4004518	550	0.5	3497902
25 kGy	2164312	320	0,1	1175044
50 kGy	1179634	100	0.05	537446
100 kGy 11	319702	20		

[0019] Damit wurde ein Verfahren bereitgestellt, mit dessen Hilfe Korkgeschmack in Getränken signifikant reduziert werden kann, ohne daß dabei die Nachteile des Standes der Technik in Kauf genommen werden müßten.

Bezugszeichenliste

1 Korken TCA Trichloranisol (TCA)

Patentansprüche

- 1. Verfahren zur Reduzierung von Trichloranisol (TCA) in Korken (1) dadurch gekennzeichnet, daß der Korken (1) mit Elektronenstrahlen behandelt wird.
- 2. Verfahren nach dem vorhergenden Anspruch dadurch gekennzeichnet, daß die Dosis der Elektronenstrahlung mindestens 25 kGy, bevorzugt mindestens 50 kGy, insbesondere bevorzugt mindestens 100 kGy beträgt.
- 3. Verfahren nach einem der vorhergenden Ansprüche dadurch gekennzeichnet, daß die Dosis der Elektronenstrahlen so gewählt wird, daß die Konzentration von Trichloranisol (TCA) in der mit dem Korken zu verschließenden Flüßigkeit weniger als 30 Nanogramm pro Liter, bevorzugt weniger als 3 Nanogramm pro Liter betragen kann.

60

55

5

10

15

20

25

35

40

45

50

65