## EFFICIENT SUPERNODAL SPARSE CHOLESKY FACTORIZATION

By

ADRIAN MASCARENHAS

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2002

Copyright 2002

by

Adrian Mascarenhas



## **ACKNOWLEDGMENTS**

I wish to thank Dr. Timothy A. Davis for giving me an opportunity to work under him as a research assistant, which has eventually led to this thesis. He has been very supportive and helpful, and this thesis would not be possible without his supervision, guidance and encouragement. I would also like to thank Dr. William Hager and Dr. Baba Vemuri for serving on my thesis committee. Most importantly, I would like to thank God for always being there for me.

# TABLE OF CONTENTS

|                                               | page |
|-----------------------------------------------|------|
| ACKNOWLEDGMENTS                               | iv   |
| LIST OF TABLES                                | viii |
| LIST OF FIGURES                               | ix   |
| ABSTRACT                                      | xi   |
| CHAPTER                                       |      |
| 1 INTRODUCTION                                | 1    |
| Overview of Sparse Cholesky Factorization     |      |
| Thesis Objectives Organization of Thesis      |      |
| 2 BACKGROUND                                  | 5    |
| Cholesky Factorization                        | 5    |
| Dense LL <sup>T</sup> Cholesky Factorization  | 5    |
| Dense LDL <sup>T</sup> Cholesky Factorization | 7    |
| Graph Theory                                  | 7    |
| Pattern of L.                                 | 8    |
| Pattern of A                                  |      |
| Parent Map                                    |      |
| Children Multifunction                        |      |
| Ancestors Elimination Tree                    |      |
| 3 SYMBOLIC FACTORIZATION                      | 12   |
| 5 STWIBOLIC TACTORIZATION                     | 12   |
| Algorithm for Symbolic Factorization          |      |
| Data Structures for Symbolic Factorization    |      |
| Data Structure for Storing Matrices L and A   |      |
| Data Structure for Storing Elimination Tree   | 14   |

| 4 COLUMN-COLUMN CHOLESKY FACTORIZATION                    | 15               |
|-----------------------------------------------------------|------------------|
| Algorithm                                                 | 15               |
| Implementation Details                                    |                  |
| First                                                     | 17               |
| List (j)                                                  |                  |
| Cmod (j,k)                                                | 18               |
| Cdiv (j)                                                  |                  |
| Analysis of Column-Column Factorization                   |                  |
| Implementation of Column-Column Numerical Factorization   | 20               |
| 5 SUPERNODAL THEORY                                       | 21               |
| Supernode Definition                                      | 21               |
| Size-Limit of Supernode                                   | 23               |
| Supernodal Elimination Tree                               | 23               |
| 6 SUPERNODE-COLUMN CHOLESKY FACTORIZATION                 | 27               |
| Algorithm                                                 |                  |
| Implementation Details                                    |                  |
| First                                                     |                  |
| List (j)                                                  |                  |
| Cmod (j,K)                                                |                  |
| Cmod (j,J)                                                |                  |
| Cdiv (j)                                                  |                  |
| BLAS                                                      |                  |
| Analysis of Supernode-Column Cholesky Factorization       |                  |
| 7 SUPERNODE-SUPERNODE CHOLESKY FACTORIZATIO               | ON34             |
| Algorithm                                                 |                  |
| Implementation Details                                    |                  |
| Wx                                                        |                  |
| First                                                     |                  |
| Col_to_Supernode_Map                                      |                  |
| List (J)                                                  |                  |
| Map                                                       |                  |
| Cmod (J,K)                                                |                  |
| Intersection set                                          |                  |
| Block matrix computation of cmod (J,K)                    |                  |
| Cdiv (J)                                                  | 45               |
| Special Case of Singleton Supernodes                      |                  |
| Analysis of Supernode-Supernode Cholesky Factorization    |                  |
| Implementation of Supernode-Supernode Numerical Factoriza | tion $4\epsilon$ |

| 8 EXPERIMENTAL RESULTS                                   | 47       |
|----------------------------------------------------------|----------|
| Test Design Test Results                                 | 47<br>48 |
| 9 CONCLUSION AND FUTURE WORK                             | 61       |
| APPENDIX                                                 |          |
| A MATLAB SOURCE CODE FOR SYMBOLIC FACTORIZATION          | 62       |
| B SOURCE CODE FOR COLUMN-COLUMN FACTORIZATION IN C       | 63       |
| C SOURCE CODE FOR SUPERNODE-SUPERNODE FACTORIZATION IN C | 67       |
| LIST OF REFERENCES                                       | 82       |
| BIOGRAPHICAL SKETCH                                      | 84       |

# LIST OF TABLES

| <u>Tab</u> | <u>ole</u>                                                             | page |
|------------|------------------------------------------------------------------------|------|
| 2-1        | Nonzero pattern and parent for each column of L                        | 10   |
| 8-1        | Test results for LPNetlibMat collection of sparse matrices             | 50   |
| 8-2        | Test results for University of Florida's collection of sparse matrices | 53   |

# LIST OF FIGURES

| <u>Figu</u> | <u>ire</u>                                                             | <u>page</u> |
|-------------|------------------------------------------------------------------------|-------------|
| 2-1         | Algorithm for computing dense LL <sup>T</sup> Cholesky factorization   | 6           |
| 2-2         | Algorithm for computing <b>LDL</b> <sup>T</sup> Cholesky factorization | 7           |
| 2-3         | Sample matrix L and its elimination tree                               | 10          |
| 3-1         | Algorithm for symbolic factorization                                   | 12          |
| 3-2         | Example of data structures (Lx,Li,Lp) for storing L                    | 14          |
| 4-1         | Algorithm1 column-column Cholesky factorization                        | 16          |
| 4-2         | Algorithm2 column-column Cholesky factorization                        | 16          |
| 4-3         | Algorithm for creating and accessing List (j)                          | 18          |
| 4-4         | Scattering for cmod (j,k) into W                                       | 19          |
| 4-5         | Gathering W into Lx                                                    | 19          |
| 5-1         | Algorithm to find supernodal elimination tree.                         | 24          |
| 5-2         | Example of Cholesky factor L and its supernodal elimination tree       | 25          |
| 5-3         | Example of <b>Slist</b> and <b>Sp</b>                                  | 26          |
| 5-4         | Accessing columns within supernode J                                   | 26          |
| 6-1         | Algorithm1 supernode-column Cholesky factorization                     | 28          |
| 6-2         | Algorithm2 supernode-column Cholesky factorization                     | 28          |
| 6-3         | Algorithm for creating and accessing List (j)                          | 30          |
| 6-4         | Algorithm for cmod (j,K)                                               | 32          |
| 6-5         | Algorithm for cmod (j, J)                                              | 32          |
| 6-6         | Algorithm for cdiv(j)                                                  | 33          |

| 7-1  | Algorithm1 supernode-supernode Cholesky factorization | 35                   |
|------|-------------------------------------------------------|----------------------|
| 7-2  | Algorithm2 supernode-supernode Cholesky factorization | 35                   |
| 7-3  | Algorithm3 supernode-supernode Cholesky factorization | 36                   |
| 7-4  | Algorithm to construct Col_to_Supernode_Map           | 37                   |
| 7-5  | Algorithm to create and access List (J)               | 39                   |
| 7-6  | Algorithm to construct Map.                           | 39                   |
| 7-7  | Algorithm to construct Intersection set               | 37<br>39<br>39<br>40 |
| 7-8  | Algorithm for block matrix computation of cmod (J,K)  | 42                   |
| 7-9  | Implementation of <b>mMKN</b> method                  | 42                   |
| 7-10 | Implementation of <b>m4KN</b> method                  | 43                   |
| 7-11 | Implementation of <b>m4K4</b> method                  | 44                   |
| 7-12 | Implementation of <b>m424</b> method                  | 44                   |

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science

## EFFICIENT SUPERNODAL SPARSE CHOLESKY FACTORIZATION

By

#### Adrian Mascarenhas

May 2002

Chair: Dr. Timothy A. Davis

Department: Computer and Information Science of Engineering

Many scientific and engineering applications today make use of large sparse symmetric positive definite systems. Cholesky factorization is commonly used to solve such systems. A major factor that limits performance of the Cholesky factorization is the cost associated with moving data between memory and the processor. An algorithm that uses supernodes to reduce this cost is presented. A supernode is a collection of interspersed columns (within the Cholesky factor) that have similar sparsity structure. This block matrix computation improves performance by reducing the amount of indirect addressing and memory traffic.

xi

## CHAPTER 1 INTRODUCTION

Sparse Cholesky factorization followed by forward and backward triangular solutions is commonly used to solve large sparse symmetric positive definite systems of linear equations. It is the bottleneck in a wide range of computations, from domains such as structural analysis, computational fluid dynamics, device and process simulation and electric network problems. The goal is to minimize the time required for sparse Cholesky factorization.

## **Overview of Sparse Cholesky Factorization**

For any  $n \times n$  symmetric positive definite matrix A, its Cholesky factor L is the lower triangular matrix with positive diagonal such that  $A = LL^T$  or  $A = LDL^T$  where D is a diagonal matrix. When A is sparse, it will generally suffer some fill during the computation of L; that is, some of the zero elements in A will become nonzero elements in L. To reduce time and storage requirements, only the nonzero positions of L are stored and operated on during sparse Cholesky factorization. Determination of the nonzero positions of L is often called *symbolic factorization* (terminology introduced by George and Liu [5]) while the actual computation of L is referred to as *numerical factorization*. The major bottleneck in sparse factorization is not the number of floating-point operations, but rather the cost of fetching data from the main memory. The goal is to decrease the number of memory-to-register transfers executed and to improve the program's cache behavior to decrease the cost of each transfer. An algorithm that uses *supernodes* to reduce this cost is discussed in this thesis. A supernode is a collection of

interspersed columns (within the Cholesky factor) that have similar sparsity structure. Block matrix computation using supernodes improves performance by reducing the amount of indirect addressing and memory traffic.

## **Thesis Objectives**

A supernodal approach to solving sparse Cholesky factorization of the matrix  $\mathbf{A}\mathbf{A}^{T}$  is presented, where  $\mathbf{A}$  is m-by-n. The matrix  $\mathbf{A}\mathbf{A}^{T}$  must be symmetric and positive definite. The technique developed for the matrix  $\mathbf{A}\mathbf{A}^{T}$  can be extended to any symmetric positive definite matrix  $\mathbf{A}$ . This particular form of Cholesky factorization ( $\mathbf{A}\mathbf{A}^{T} = \mathbf{L}\mathbf{D}\mathbf{L}^{T}$ ) arises in the LP Dual Active Set Algorithm (LPDASA) [7] for solving linear programming problems. The algorithms presented here were developed for use by the LPDASA method. The sparse Cholesky factorization consists of the following two major stages:

- **Symbolic factorization.** The pattern of the nonzeros in the Cholesky factor **L** is computed. There is no numerical computation.
- **Numerical factorization.** The Cholesky factor **L** is numerically computed. There are three different methods for the numerical factorization. These are as follows:
  - Column-column numerical factorization
  - Supernode-column numerical factorization
  - Supernode-supernode numerical factorization

The supernodal approach for solving sparse Cholesky factorization was discussed by several researchers [1,9–12]. They defined supernodes as a set of contiguous columns that have the same sparsity structure. Having the columns of a supernode be contiguous can be a bottleneck for various applications where Matrix **A** is continuously being modified. An example of such an application is the Linear Program Dual Active Set Algorithm (LPDASA) [7], where Matrix **A** corresponds to the basic variables in the

current basis of the linear program. In successive iterations, variables are brought in and out of the basis, leading to changes of the form  $\mathbf{A}\mathbf{A}^T + \sigma \mathbf{w}\mathbf{w}^T$ . On an update,  $\mathbf{A}\mathbf{A}^T + \mathbf{w}\mathbf{w}^T$ , new entries are added causing supernodes to merge (2 columns now have the same pattern) or split (2 columns had the same pattern, but one gets updated and the other does not). The same occurs during a downdate,  $\mathbf{A}\mathbf{A}^T - \mathbf{w}\mathbf{w}^T$ . This results in columns that are no longer contiguous but have the same sparsity structure. The main objective of this thesis is to show that supernodal methods for solving the Cholesky factorization, where a supernode contains columns that need not be contiguous but have the same sparsity structure, have a much better performance than the simplicial column-column factorization method.

## **Organization of Thesis**

The remainder of this thesis is organized as follows:

- Chapter 2 contains the mathematical background of the Cholesky factorization and also explains the notation used in this thesis.
- Chapter 3 describes the algorithm for the *symbolic factorization* and its implementation.
- Chapter 4 describes the algorithm and the implementation of the *column-column numerical factorization*.
- Chapter 5 contains the definition of a supernode and an algorithm for constructing the supernodal elimination tree.
- Chapter 6 describes the algorithm and the implementation of *supernode-column numerical factorization*.
- Chapter 7 describes the algorithm and the implementation of *supernode-supernode numerical factorization*.
- Chapter 8 presents performance results for all three 3 methods of *numerical factorization*.
- Chapter 9 gives a conclusion of the results with a discussion of future work.

- Appendix A contains the source code for *symbolic factorization* in MATLAB.
- Appendix B contains the source code for *column-column numerical factorization* in C.
- Appendix C contains the source code for *supernode-column numerical factorization* in C.

## CHAPTER 2 BACKGROUND

This chapter explains the theory behind the dense Cholesky factorization and some related graph theory concepts.

## **Cholesky Factorization**

Golub and Loan [6] gave the algorithms for the dense Cholesky factorization in their book. They describe the theory behind  $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$  and  $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$  Cholesky factorization. Although the implementation of the algorithms was done for the  $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$  Cholesky factorization, the reader is presented with the algorithm for  $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$  Cholesky factorization for a better understanding of the left-looking Cholesky algorithm. The techniques described in this thesis are applicable to both forms of the Cholesky factorization. These algorithms are discussed in this section.

# Dense LL<sup>T</sup> Cholesky Factorization

The Cholesky factor  $\mathbf{L}$  of a positive symmetric definite matrix  $\mathbf{A}$  is a lower triangular matrix such that  $\mathbf{A} = \mathbf{L}\mathbf{L}^{T}$ . Using MATLAB notation, let  $\mathbf{A}(:,j)$  represent entire column j of  $\mathbf{A}$ . Similarly, let  $\mathbf{L}(:,j)$  represent the entire column j of  $\mathbf{L}$ . The equation

$$A(:,j) = \sum_{k=1}^{j} L(j,k) L(:,k)$$

holds true for every column j of **A**. Using this equation the column j of **L** can be computed as

$$L(j,j) L(:,j) = A (:,j) - \sum_{k=1}^{j-1} L(j,k) L(:,k) = v.$$

If the first j-1 columns of L are known, then v is computable. It follows by the above equation that  $L(j:n, j) = v(j:n) / \sqrt{v(j)}$ . This is a scaled gaxpy<sup>1</sup> operation. A gaxpy-based method for computing the Cholesky factorization in MATLAB notation is shown in Figure 2-1.

```
for j = 1:n

v(j:n) = A(j:n, j)

for k = 1:j-1

v(j:n) = v(j:n) - L(j,k) * L(j:n,k)

end

L(j:n,j) = v(j:n) / \sqrt{v(j)}

end
```

Figure 2-1 Algorithm for computing dense LL<sup>T</sup> Cholesky factorization

In Figure 2-1, it can be seen that the computation of the column j of L looks at all (j-1) columns to the left of it, and so this approach is called the Left Looking approach.

There are other approaches to solving the Cholesky factorization such as the Right

Looking and the Multifrontal method, but this thesis focuses on just the improving the performance of the Left Looking method.

Note that when computing a column j of L one need not look at all the columns to the left of j in L, but only those columns to the left of j that have L(j,k) as nonzero, that is, only those columns that have a nonzero value in the row j. So when computing j, a link list of all the columns that have nonzeros in row j is used.

Ng and Peyton [11] identified two regions in this algorithm where performance can be improved:

• **cmod** (j,k). This is the modification of column j by a multiple of column k. In Figure 2-1, this corresponds to the operation of v(j:n)=v(j:n)-L(j,k)\*L(j:n,k) inside the inner loop.

<sup>&</sup>lt;sup>1</sup> Gaxpy: It is a mnemonic for "general A x plus y, that is, z = y + Ax  $x \in R^n$ ,  $y \in R^n$ ,  $A \in R^{n \times n}$ .

• **cdiv (j)**. This is the scaling of column j. In Figure 2-1, this corresponds to the operation of  $L(j:n,j) = v(j:n) / \sqrt{v(j)}$  inside the outer loop.

# **Dense LDL**<sup>T</sup> Cholesky Factorization

This is a variation of the **A=LL**<sup>T</sup> Cholesky factorization where the diagonal is stored in **D**. Golub and Loan [6] described the algorithm in MATLAB notation as in Figure 2-2.

```
for j = 1:n

for i = 1:j-1

v(i) = L(j,i) * d(i)

end

v(j) = A(j,j) - L(j,1:j-1) * v(1:j-1)

d(j) = v(j)

L(j+1:n,j) = (A(j+1:n,j) - L(j+1:n,1:j-1) * v(1:j-1)) / d(j)

end
```

Figure 2-2 Algorithm for computing LDL<sup>T</sup> Cholesky factorization

In Figure 2-2, the scalars are computed and stored in the array  $\mathbf{v}$ . For each column  $\mathbf{k}$  where  $\mathbf{k}=1$ : $\mathbf{j}$ -1, the scalar is  $L(\mathbf{j},\mathbf{k})*d(\mathbf{k})$ . This scalar is also referred to as  $1_{\mathbf{j}}\mathbf{k}_{\mathbf{t}}$  imes\_d\_k in the remainder of this thesis.

Here too, only those columns to the left of j that have a nonzero value in row j will be used to compute column j. There are two regions in this algorithm where one can improve the performance:

- **cmod** (j,k). This is the modification of column j by a multiple of column k. In Figure 2-2, this corresponds to the operation of A(j+1:n,j)-L(j+1,1:j-1)\*v(1:j-1) where k lies in the range of 1: j-1.
- **cdiv (j)**. This is the scaling of column j. In Figure 2-2, this corresponds to the operation of cmod(j,k)/d(j), that is, the division of the result of cmod(j,k) by d(j).

## **Graph Theory**

Davis and Hager [4] discuss the graph theory concepts. The notations used by them are used for the remainder of this thesis. The concepts of parent and elimination tree are discussed in this section.

#### Pattern of L

The pattern of L is denoted by  $\mathcal{L}$  where  $\mathcal{L}$  is a collection of patterns:

$$L = \{L_1, L_2, \dots, L_m\},\$$

where the nonzero pattern of column j of L is denoted,

$$\mathcal{L}_{\mathbf{i}} = \{i : l_{ij} \neq 0\}.$$

Some of these predicted nonzeros may be zero due to the numerical cancellation during the factorization process. The statement " $l_{ij} \neq 0$ " means that  $l_{ij}$  is *symbolically* nonzero.  $|\mathcal{L}|$  denotes the sum of the sizes of the sets it contains. Also, the notation  $\mathcal{L}_{j,k}$  is used to refer to the pattern of the  $\mathbf{L}_{j,k}$  entry.

#### Pattern of A

The pattern of A is denoted by A where A is the collection of patterns:

$$A = \{A_1, A_2, \dots, A_m\},\$$

where the nonzero pattern of column j of A is denoted

$$A_i = \{i : a_{ii} \neq 0\}.$$

|A| denotes the sum of the sizes of the sets it contains.

## **Parent Map**

Parent map  $\Pi$  [8] is used to define the *elimination tree*. For any node j,  $\Pi$  (j) is the row index of the first nonzero element in column j of L beneath the diagonal element:

$$\Pi(j) = \min \mathcal{L}_i \setminus \{j\},\$$

where "min X" denotes the smallest element of X:

$$\min X = \min_{i \in X} i.$$

The min of the empty set is zero. Note that  $j < \Pi$  (j) except in the case where the diagonal element in column j is the only nonzero element.

#### **Children Multifunction**

Children multifunction is the inverse  $\Pi^{-1}$  of the parent map. That is, the children of node k are the set defined by

$$\Pi^{-1}(k) = \{j: \Pi(j)=k\}.$$

#### Ancestors

The *ancestors* of a node j, denoted  $\mathcal{P}(j)$ , are the set of successive parents:

$$P(j) = \{j, \Pi(j), \Pi(\Pi(j)),...\} = \{\Pi^{0}(j), \Pi^{1}(j), \Pi^{2}(j),....\}$$

#### **Elimination Tree**

The sequence of nodes  $j,\Pi(j),\Pi(\Pi(j)),...$  forming  $\mathcal{P}(k)$  is called the *path* from j to the associated tree *root*. An *elimination tree* is the collection of all such paths leading to a root. An *elimination forest* is the set of all such trees. If column j of L has only one nonzero element, the diagonal element, then j will be the root of a separate tree. In most cases, there is a single tree having root m and so in the remainder of the thesis, the term *elimination tree* is used even if there is more than one tree forming a *forest*.

An example that explains the concepts of parent, child and elimination tree is shown in Figure 2-3. In this example, one can see that the pattern of nonzeros for column 1 is  $\mathcal{L}_1$ ={1,3}, and so the parent of the node for column 1 is  $\Pi$  (1) = 3. For this example, the pattern of nonzeros and parent of each column is shown in Table 2-1. The pattern for column 8 is  $\mathcal{L}_8$ ={8}, so the parent for column 8 is  $\Pi$  (8) = 0, which means that node 8 has no parent and so is the root of the tree.

The *elimination tree* shows the column dependencies and the order in which the columns must be computed during the computation of **L**. For instance in order to compute any node, all of its children nodes must be computed first. This order has to be

strictly maintained. The column representing a child node will always lie to the left of the column representing its parent node and is thus consistent with the *left-looking* approach described above in the previous section. The elimination tree is used to obtain the pattern or set of nonzeros of all the columns within **L**. This process of finding the nonzero pattern of the Cholesky factor **L** is called as *symbolic factorization* which is discussed in Chapter 3.



Figure 2-3 Sample matrix L and its elimination tree

Table 2-1. Nonzero pattern and parent for each column of sample matrix L

| j | $\mathcal{L}_{\mathrm{j}}$ | П (ј)    |
|---|----------------------------|----------|
| 1 | {1,3}                      | 3        |
| 2 | {2,4}                      | 4        |
| 3 | {3,4,7}                    | 4        |
| 4 | {4,7}                      | 7        |
| 5 | {5,6}                      | 6        |
| 6 | {6,7,8}                    | 7        |
| 7 | {7,8}                      | 8        |
| 8 | {8}                        | 0 (root) |

Note that the nodes in the elimination tree are ordered in a non-decreasing order, that is, the parent node has a higher index than any of its children. This ensures the left-looking computation of the method, by making sure that before any parent is evaluated, all of its children, that is, all columns to the left of it, are evaluated first.

## CHAPTER 3 SYMBOLIC FACTORIZATION

It is often desirable to determine the structure of **L** before computing it numerically, since the information allows a data structure to be set up prior to the numerical factorization. Then numerical factorization can proceed with a fixed storage structure. The determination of the structure or pattern of nonzeros of the Cholesky factor **L** is called as the *symbolic factorization* of **A** [5]. Numerical computation is done only on the nonzeros contained in the symbolic factor. This symbolic factor is denoted as **L**.

#### **Algorithm for Symbolic Factorization**

The algorithm for the symbolic factorization of a matrix of the form  $\mathbf{A}\mathbf{A}^{\mathrm{T}}$  as discussed by Davis and Hager [4] is shown in Figure 3-1.

$$\begin{split} &\pi(\textbf{j}) = 0 \text{ for each } \textbf{j} \\ &\text{for } \textbf{j} = 1 \text{ to m do} \\ & \mathcal{L}_{\textbf{j}} = \{\textbf{j}\} \cup \left( \begin{array}{c} Y \\ \textbf{c} & \Rightarrow \pi^{-1}(\textbf{j}) \end{array} \right) \cup \left( \begin{array}{c} Y \\ \text{min } \mathcal{A}_{\textbf{k}} = \textbf{j} \end{array} \right) \mathcal{A}_{\textbf{k}} \\ & \pi(\textbf{j}) = \text{min } \mathcal{L}_{\textbf{j}} \setminus \{\textbf{j}\} \\ &\text{end for} \end{split}$$

Figure 3-1 Algorithm for symbolic factorization

In Figure 3-1, it can be seen that the pattern of column j of  $\mathbf{L}$  is the union of the pattern of column j of  $\mathbf{A}\mathbf{A}^{T}$  and the patterns of the child nodes of node j. The pattern of column j of  $\mathbf{A}\mathbf{A}^{T}$  is computed by taking the union of the patterns of the columns of  $\mathbf{A}$  whose first nonzero element is j. The *elimination tree*, connecting each child to its parent, is easily formed during the symbolic factorization. This complete algorithm can be done

in  $O(|\mathcal{L}| + |\mathcal{A}|)$  time<sup>1</sup>. Observe that the pattern of the parent of node j contains all the entries in the pattern of column j except j itself. See Appendix A for the implementation of the above algorithm in MATLAB.

## **Data Structures for Symbolic Factorization**

There are two main data structures used during the symbolic factorization. These are for storing the matrices **A** and **L**, and for storing the elimination tree.

## Data Structure for Storing Matrices L and A

Both the matrix **A** and its Cholesky factor **L** are sparse, that is, they have a large number of zero entries. So rather than storing these matrices as two-dimensional arrays, only the nonzero entries and their locations are stored using a packed data structure. Also, since the Cholesky factorization described in this thesis uses a left-looking column approach, these matrices are stored by columns rather than by rows. The Cholesky factor **L** is represented by the following data structure:

- In. The number of columns in L, which is equal to m of the m-by-n matrix A.
- Li. An array of length  $|\mathcal{L}|$  for storing the row indices of nonzero entries in each column.
- Lx. An array of length  $|\mathcal{L}|$  for storing the actual nonzero values within each column.
- Lp. An array of length ln, which contains the indices within the other two arrays (Li and Lx) where each column begins.
- Lnz. An array of length ln containing the number of nonzeros in each column.

An example is shown in Figure 3-2. In this Figure, **Lp** stores the indices within **Li** and **Lp** where each column begins. **Li** and **Lp** have a one-to-one correspondence. **Li** 

<sup>&</sup>lt;sup>1</sup> Asymptotic complexity notation O is defined in [9]. We write f(n) = O(g(n)) if there exist positive constants c and  $n_0$  such that to the right of  $n_0$ , the value of f(n) always lies on or below cg(n), that is,  $0 \le f(n) \le cg(n)$  for all  $n > n_0$ .



Figure 3-2 Example of data structures (Lx,Li,Lp) for storing L

contains the row indices of all nonzeros in each column of L and Lx contains the actual values for the nonzeros. For example, column 3 starts at index 3 (Lp [3] = 3) in arrays Ai and Ax.

Note that the diagonal is not stored in L, but in a separate array D of length ln. The data structures used for storing matrix A is similar to that of L, and it contains the diagonal. These are Ai, Ax, Ap, and Anz. Although  $AA^T$  is factorized, storage space can be saved by just storing A instead of  $AA^T$ .

## **Data Structure for Storing Elimination Tree**

The elimination tree is stored in a data structure called **Parent** which is a single dimensional array of length **In**. Each entry in the **Parent** array contains the parent node for that particular node.

The **Parent** map for the elimination tree shown in Figure 2-3 is shown below:

| 3   4   4   /   6   /   8   0 |
|-------------------------------|
|-------------------------------|

The parent of node 1 is Parent [1] = 3, the parent of node 2 is Parent [2] = 4 and so on. Node 8 has no parent and so is the root of the elimination tree.

# CHAPTER 4 COLUMN-COLUMN CHOLESKY FACTORIZATION

This is the simplicial form of *numerical factorization* and is the base on which further improvement in performance can be achieved. The column-column Cholesky factorization is an implementation of the algorithm for **A=LDL**<sup>T</sup> factorization described in Chapter 2. The main kernel of the factorization, that is, the cmod (j,k) and cdiv (k) operations are column-based. The algorithm and implementation are discussed in the next sections.

## Algorithm

George and Liu [5] discuss this algorithm in their book, in the SPARSPAK code for sparse Cholesky factorization. The algorithm can be expressed in terms of the following two major subtasks:

- **cmod** (j,k). modification of column j by a multiple of column k, k < j. In algorithm shown in Figure 2-2, the cmod (j,k) corresponds to the operation of A(j+1:n,j) L (j+1:n,1:j-1) v(1:j-1) where k is in the range 1:j-1.
- **cdiv (j)**. division of column j by a scalar. In Figure 2-2, this corresponds to the operation of cmod (j,k)/d(j), that is, the division of the result of cmod (j,k) by d(j).

A high level description of the left-looking column-column algorithm is shown in Figure 4-1. In this figure, it can be seen that cmod (j,k) is used to update target column j with all those columns to the left of j that have a nonzero value in row j. So for each target column j, a list of all columns k called **List** is maintained such  $\mathcal{L}_{j,k} \neq 0$ , rather than checking each column during the numerical computation. To construct the **List**, symbolic factor  $\mathcal{L}$  is used, that is, the pattern of  $\mathbf{L}$  stored in  $\mathbf{L}\mathbf{i}$  is used.

```
for each col j in L do for k such that \mathcal{L}_{j,k} \neq 0 do Cmod (j,k) end for Cdiv (j) end for
```

Figure 4-1 Algorithm1 column-column Cholesky factorization

The algorithm is now modified to accommodate the **List** as shown in Figure 4-2.

```
for each coljin L do
for each k in List (j) do
Cmod (j,k)
add k to List (next (j,k))
end for
Cdiv (j)
add j to List (∏(j))
end for
```

Figure 4-2 Algorithm2 column-column Cholesky factorization

The algorithm in Figure 4-2, contains two new data structures. These are as follows:

- List (j).  $\{ k : \mathcal{L}_{j,k} \neq 0 \}$
- **next** (j,k). min {i: i  $\in \mathcal{L}_k \land i > j$ }, that is, row index in column k that is immediately greater than j. This is used to place the column k in the list of the next column that it is going to update.

Also, now that the pattern of  $\mathbf{L}$  is known from the symbolic factorization, the computation can be restricted to only the predicted nonzero locations of  $\mathbf{L}$ . This reduces the number of floating point of operations as computation for the predicted zero locations is eliminated. Maintaining the  $\mathbf{List}$  takes O ( $|\mathcal{L}|$ ) time. Also, the entire algorithm can be done in O ( $\Sigma |\mathcal{L}_j|^2$ ) time. This is clear from the algorithm in Chapter 2, where it can be seen that for each column of  $\mathbf{L}$ , every nonzero entry is multiplied by every other nonzero entry in that column so as to update all the other columns of  $\mathbf{L}$  that correspond to the nonzero row indices within the updating column.

## **Implementation Details**

There are two data structures **First** and **List**, and two methods **cmod** and **cdiv** to be discussed.

#### First

First is an array of size equal to the number of columns of **L**, that is, **In**. For each column k, First [k] contains the index within **Li** of the first entry in column k that can be used to update target columns; that is, if j is the target column to be updated then Li [First [k]] should be equal to j. After updating a target column, First [k] is incremented by 1 to point to the next nonzero entry in column k, that is, the next column that column k is going to update.

## List (j)

Two arrays are used to implement this list, **Link** and the **First** arrays. **Link** holds the list of all the columns that are to affect the target column j, that is, all those columns that have a nonzero in row j. **Link** is an array of size equal to the number of columns in **L**. All entries of **Link** are initially set to EMPTY. Link [j] contains the head of the list for column j. Since a left-looking approach is used, each column j is updated by columns k where k < j. In terms of **Link** data structure, this means that when column j is to be computed, only the entries in **Link** following Link [j] will be used to store the heads of the lists. The columns before j will already have been computed and so no longer require to stop their lists. So the entries before Link [j] are then used to store the remainder of the lists for the columns after j. Thus a single data structure can be used to store lists for all columns of **L**, thereby conserving space. The rest of the list is stored by having each entry in **Link** contain the next element of the list. For example, if the list for column j

was a set of columns  $\{k_1, k_2, k_3\}$  where  $k_1$  is the head of the list, then the entire list would be stored in **Link** as,

```
Link [j] = k_1,

Link [k_1] = k_2,

Link [k_2] = k_3, and

Link [k_3] = EMPTY.
```

Note that  $k_1 \le j$ ,  $k_2 \le j$ , and  $k_3 \le j$ .

Each column within the list of column j, after updating column j, is then stored in the list of the next column that it is going to update. The algorithm for creating and accessing the list in C-style notation is shown in Figure 4-3.

```
for ( k = Link [j]; k!= EMPTY; k = nextk)
{
    nextk = Link [k];

    update j with k;
    First [k] ++;

    /* put k on the list of next j */
    nextj = Li [First [k]];
    Link [k] = Link [nextj];
    Link [nextj] = k;
}
```

Figure 4-3 Algorithm for creating and accessing List (j)

## Cmod (j,k)

This is the innermost kernel of the factorization where a multiple of column k is used to update target column j. A work vector  $\mathbf{W}$  of size equal to the number of columns in  $\mathbf{L}$ , that is,  $\mathbf{ln}$ , is used to accumulate the updates of all the columns k that update target column j. The updates scattered in  $\mathbf{W}$  are then gathered into  $\mathbf{Lx}$  at the appropriate location for column j. As seen in the algorithm shown in Figure 2-2, each entry in column k is first multiplied by a scalar  $\mathbf{v}$  where  $\mathbf{v} = \mathbf{L}$   $(\mathbf{j}, \mathbf{k})$  \*  $\mathbf{D}$   $(\mathbf{k}) = 1_{\mathbf{j}}\mathbf{k}_{\mathbf{t}}$  times\_d\_k. The

result is then accumulated into the **W** at the location corresponding to the row index of that nonzero entry. The **cmod** operation in C-style notation is shown in Figure 4-4.

```
p = First [k];
p2 = Lp [k] + Lnz [k];

for (; p < p2; p + +)
{
    W [Li [p]] = W [Li [p]] - Lx [p] * l_jk_times_d_k;
}</pre>
```

Figure 4-4 Scattering for cmod (j,k) into W

## Cdiv (j)

As shown in the algorithm in Figure 2-2, the updates scattered into **W** are divided by the diagonal entry of column j which is stored in **D**. The results are then gathered into **Lx** as shown in Figure 4-5 which is in C-style notation.

```
p = First [j];
p2 = p + Lnz [j];
for (; p < p2; p + +)
{
   i = Li [p];
   Lx [p] = W [i] / D [j];
   W[i] = 0.0;
}</pre>
```

Figure 4-5 Gathering W into Lx

As seen in Figure 4-5, the row index of each nonzero in column j is used to index into **W**. The corresponding value in **W** is then stored into **Lx** at the appropriate location for column j. Also by resetting the corresponding entry in **W** to zero, only used locations are reinitialized. Entire **W** does not have to be reinitialized to zero.

#### **Analysis of Column-Column Factorization**

This is the simplicial algorithm where a single column updates another column. Thus indirect referencing has to be done for every such update. Also once a column is loaded into the cache, it is used to update only a single column. However there may be

other columns which it can update. In such cases, it will have to be reloaded again into the cache. This can affect performance.

## Implementation of Column-Column Numerical Factorization

See Appendix B for the implementation of the column-column Numerical factorization. This method has been implemented in C and was run in MATLAB using mexfunction interfaces.

## CHAPTER 5 SUPERNODAL THEORY

This chapter contains the definition of a supernode and an algorithm for finding the supernodal elimination tree, which is used to compute the Cholesky factor **L** in supernode-column and supernode-supernode factorization methods described in Chapter 6 and Chapter 7 respectively.

## **Supernode Definition**

In this thesis, a supernode is defined as a set of columns that have a similar sparsity structure and that may or may not be contiguous. The supernodal approach for solving sparse Cholesky factorization was discussed by several researchers [1,9–12]. They defined supernodes to be a set of contiguous columns that have the same sparsity structure. The condition that the columns of a supernode be contiguous can be a bottleneck for various applications where the matrix **A** is continuously being modified. An example of such an application is the Linear Program Dual Active Set Algorithm (LP DASA) [7]. So in this thesis, a supernode is given the flexibility to contain noncontiguous columns.

Liu, Ng and Peyton [9] define a supernode as a contiguous block of columns of L,  $\{p,p+1,\ldots,p+q-1\}$ , such that, Struct  $(L_{*,p})=$  Struct  $(L_{*,p+q-1})\cup\{p+1,\ldots,p+q-1\}$  where Struct basically means the nonzero pattern of column p. In the notation used in this thesis,  $\mathcal{L}_{j}=$  Struct  $(L_{*,j})$ . It is easy to show that for  $p\leq i\leq p+q-2$ , by induction. Thus, the columns of the supernode have a dense diagonal block and have identical structure below the row

p+q-1. This definition is extended in this thesis to allow columns within the supernode to be non-contiguous.

An equivalent definition for a supernode is a collection of columns within L, where for every parent-child relationship between the column-nodes the following relation holds:

$$|\mathcal{L}_{parent}| = |\mathcal{L}_{child}| - 1$$
 or  $\mathcal{L}_{c} \setminus \{c\} = \mathcal{L}_{p}$ 

This relation says that a child column-node will have one extra non-nonzero entry than its parent, the extra entry being the diagonal entry of that child column-node. Thus a supernode contains a subtree, wherein every parent-child pair of nodes hold the above relation. Also, the above relation is made obvious from the symbolic factorization where the pattern of a parent node is obtained by taking a union of the patterns corresponding to its children nodes. Thus the pattern of every descendant of a particular node is a subset of the pattern of that node. So if follows that for every parent-child pair in a supernode, the relation  $\mathcal{L}_c \setminus \{c\} \subseteq \mathcal{L}_p$  would hold.

The main advantage of supernodes is that since the supernodal columns have a similar sparsity structure, indirect referencing is greatly reduced when updating the target column j. Note that if any one column within a supernode affects column j, then all the columns within that supernode will also affect j. So, rather than doing indirect referencing for every column within the supernode that affects j, the updates for the entire supernode can be accumulated into a single dense work vector and then a single indirect reference can be done for that supernode to the target column j. This brings about a significant performance gain as compared to the simplicial column-column numerical factorization method.

## **Size-Limit of Supernode**

A supernode that is too large in size might not fit into cache causing cache misses. This can affect performance. To avoid this, supernode size is limited to a certain maximum number of columns. In this thesis, this maximum limit is set to 32 columns. If a supernode contains more than 32 columns, then it is further split into supernodes each containing no more than 32 columns.

## **Supernodal Elimination Tree**

Supernodal elimination tree is a tree that determines the order in which the supernodes must be computed. If the *elimination tree* shows the column dependencies, then the *supernodal elimination tree* determines the supernodal dependencies.

Every parent-child pair within a supernode holds the relation  $|\mathcal{L}_{parent}| = |\mathcal{L}_{child}| - 1$ . Now a parent may have more than one child that satisfies this relationship. Only one of such children can be chosen to be a part of the supernode containing the parent. Adding more than one child means including siblings which will obviously violate the required parent-child condition of the columns within the supernode.

The elimination tree is now modified by combining the parent-child nodes that hold the supernodal relation into a single node. By doing so, the elimination tree is transformed into the supernodal elimination tree where every node is now a supernode consisting of one or more nodes. A supernode consisting of just one node is a called singleton supernode. The order of elimination of the nodes within the elimination tree must be maintained and not disturbed within the newly created supernodal elimination tree. That is before computing a supernode, all the children of all the nodes within that supernode must be computed first. It is for this reason, that when two or more children satisfy the supernodal criteria, the higher numbered child-node is chosen to be a part of

the supernode that contains the parent-node. This preserves the order of elimination within the supernodal elimination tree.

The algorithm for finding the supernodal elimination tree is shown in Figure 5-1.

```
for c = 1 to n
  j = \Pi(c);
  if (|L_C| - 1 = |L_i|) then
     Schild (j) = c;
  end if
end for
mark(1..n) = false;
for j = n downto 1
  if j is unmarked then
     no of supernodes ++;
     add j to supernode;
     while Schild (j) is unmarked and SupernodeSize < maxSize
         j = Schild (j);
         mark (j) = true;
         add j to supernode;
     end while
  end if
end for
```

Figure 5-1 Algorithm to find supernodal elimination tree.

In Figure 5-1, in first loop iteration, a node's largest numbered child that has a supernodal relationship with it is determined. This is to maintain the correct order for elimination as discussed above. In the second loop iteration, the list of nodes is traversed from top to down, iteratively adding a node and its superchild to the collection, till it no longer has a superchild. The collection then forms a complete supernode. Initially all nodes are unmarked and get marked when added to a supernode. This algorithm takes O(ln) time where **ln** is the number of columns of **L**. Note that, the number of supernodes can never be greater than **ln**.

An example of Cholesky factor **L** and its supernodes is shown in Figure 5-2. In this figure, supernode 1 is a singleton supernode. Note that both children of node 10, that

is node 8 and 9, satisfy the supernodal relation. But the larger child, that is, node 9, is chosen to be a part of the supernode.



Figure 5-2 Example of Cholesky factor L and its supernodal elimination tree

Two arrays, **Slist** and **Sp** are used to store the supernodal elimination tree . Both are single dimensional arrays of size equal to the number of columns in Cholesky factor **L**, that is, **ln**. **Slist** stores supernodes sequentially in the non-decreasing order. **Sp** is the supernode pointer list which contains indices within **Slist** where each supernode begins. It would contain entries equal to the number of supernodes.

The supernodal elimination tree shown in Figure 5-2 is stored in **Slist** and **Sp** as shown in Figure 5-3. The size of a supernode **J** is equal to (Sp [J+1] - Sp [J]). The columns within supernode **J** can be accessed as shown in Figure 5-4.



Figure 5-3 Example of **Slist** and **Sp** 

The first column within a supernode is called the representative column of that supernode as it is the largest column within that supernode. The pattern of a supernode is given by the pattern of the representative column. The representative column of supernode **J** is Slist [Sp [J]] and is also called **Head\_of\_J**. Similarly, the representative column of supernode **K** is called **Head\_of\_K**.

$$\label{eq:continuous} \begin{array}{l} \text{for (j = Sp [J]; j < Sp [J+1]; j++)} \\ \text{Slist [j];} \\ \text{end for} \end{array}$$

Figure 5-4 Accessing columns within supernode J

# CHAPTER 6 SUPERNODE-COLUMN CHOLESKY FACTORIZATION

This chapter contains the algorithm and implementation details of the supernode-column numerical Cholesky factorization. This method uses supernodes which are discussed in Chapter 5. Supernodes reduce the amount of indirect referencing and improve performance. The main kernel of the factorization, that is, the **cmod** operation is supernode-column based where a supernode updates the target column. The algorithm and implementation are discussed in the next sections.

### Algorithm

The notation for supernodes are bold capital letters S,J and K, which represent the set of columns contained in the supernode. Let j be any column in supernode J and k be any column in supernode K. The algorithm can be expressed in terms of the following major subtasks:

- cmod (j,K). modification of column j by a multiple of all columns k within supernode K. Note that, k < j. In algorithm shown in Figure 2-2, the cmod (j,K) corresponds to the operation of A(j+1:n,j) L (j+1:n,1:j-1) v(1:j-1). Here,</li>
   L(j+1:n,1:j-1) is replaced with L (j+1:n, 1: J-1). K is in the range 1:J-1.
- cmod (j,J). modification of column j by a multiple of all of the columns to the left of j in supernode J. In the algorithm shown in Figure 2-2, the cmod (j, J) corresponds to the operation of A(j+1:n,j) L (j+1:n,1:j-1) v(1:j-1). Here, L(j+1:n,1:j-1) is replaced with L (j+1:n, J (1:j-1)).
- **cdiv (j)**. division of column j by a scalar. In Figure 2-2, this corresponds to the operation of cmod (j,k)/d(j), that is, the division of the result of cmod(j,k) by d(j).

A high level description of the left-looking supernode-column algorithm is shown in Figure 6-1.

```
for j = 1 to N do for j \in J do for K such that \mathcal{L}_{j,K} \neq 0 do cmod (j,K) end for cmod (j,J) cdiv (j) end for end for
```

Figure 6-1 Algorithm1 supernode-column Cholesky factorization

In Figure 6-1, it can be seen that cmod (j, K) is used to update target column j with all those supernodes to the left of j that have a nonzero value in row j. So for each target column j, a list of all supernodes called **List** is maintained such  $\mathcal{L}_{j,K} \neq 0$ . To construct the **List**, the symbolic factor  $\mathcal{L}$  is used, that is, the pattern of **L** stored in **Li** is used. This **List** is created and maintained in linear time. The algorithm is now modified to accommodate the **List** as shown in Figure 6-2:

```
for J = 1 to N do
    for j ∈ J do
        for K ∈ List (j) do
            cmod (j,K)
            add K to List (next (j,K))
        end for
        cmod (j,J)
        cdiv (j)
    end for
    add J to List (next (jlast,J))
end for
```

Figure 6-2 Algorithm2 supernode-column Cholesky factorization

The algorithm shown in Figure 6-2, contains two new data structures. These are as follows:

- List (j). { K:  $\mathcal{L}_{i,K} \neq 0$  }, it is a list of supernodes.
- next (j,K). min  $\{i: i \in \mathcal{L}_K \land i > j\}$ , that is, row index in pattern of supernode K that is immediately greater than j. This is used to place the supernode K in the list of the next column that it is going to update. Note that  $j \mid ast$  is the last column within supernode J.

Also, now that the pattern of  $\mathbf{L}$  is known from the symbolic factorization, the computation is restricted to only the predicted nonzero locations of  $\mathbf{L}$ , thus reducing the number of floating point of operations. Maintaining the  $\mathbf{List}$  takes  $O(|\mathcal{L}|)$  time. The entire algorithm can be done in  $O(\Sigma |\mathcal{L}_{\mathbf{i}}|^2)$  time.

### **Implementation Details**

There are two data structures **First** and **List**, and two methods **cmod** and **cdiv** to be discussed.

#### First

First is an array of size equal to the number of supernodes of **L**. For each supernode **K**, First [K] contains the index within **Li** of the first entry in the representative column of **K** (**Head\_of\_K**) that can be used to update target columns; that is, if j is the target column to be updated then Li [First [K]] should be equal to j. After updating a target column, First [K] is incremented by 1 to point to the next nonzero entry in column **Head\_of\_K**, that is, the next column that the supernode **K** is going to update.

### List (j)

Three arrays are used to implement this list, **Link**, **Lnext** and the **First** arrays. **Link** contains the heads of lists of all the supernodes that are to affect the target column j, that is, lists of all those supernodes that have a nonzero in row j. Only the heads are stored in **Link**. The remainder of the list is stored in **Lnext**. **Link** is an array of size equal to the number of columns in **L**, while **Lnext** is of size equal to the number of supernodes in **L**. All entries of **Link** and **Lnext** are initially set to EMPTY. Link [j] contains the head of the list for column j. The rest of the list is stored by having each entry in **Lnext** contain the next element of the list. For example, if the list for column j was a set of

supernodes  $\{K_1, K_2, K_3\}$  where  $K_1$  is the head of the list, then the entire list would be stored in **Link** and **Lnext** as,

```
Link [j] = K_1,

Lnext [K_1] = K_2,

Lnext [K_2] = K_3, and

Lnext [K_3] = EMPTY.
```

Each supernode within the list of column j, after updating column j, is then stored in the list of the next column that it is going to update. The algorithm for creating and accessing the list in C-style notation is shown in Figure 6-3.

```
for ( K = Link [j]; K != EMPTY; K = nextK)
{
    nextK = Lnext [K];

    update j with K;
    First [K] ++;

    /* put K on the list of next j */
    nextj = Li [First [K]];
    Lnext [K] = Link [nextj];
    Link [nextj] = K;
}
```

Figure 6-3 Algorithm for creating and accessing List (j)

Note that two arrays are used to store the **List**, that is, **Link** and **Lnext**, compared to a single array **Link** for the column-column Cholesky factorization. The reason is that a supernode contains a collection of columns which may or may not be contiguous. The elimination is by the sequential order of supernodes, compared to the sequential elimination of columns as in the column-column method. So in the supernode-column method, it is unlikely that when column j is the target column, all columns before j would have been computed, leaving the entries in **Link** before Link [j] reusable for storing the remainder of lists. For this purpose, only the heads of lists are stored in **Link** and the

remainder of the lists in the **Lnext**. This is an overhead that is not present in the column-column numerical factorization method.

### Cmod (j,K)

This is the innermost kernel of the factorization where multiples of the columns k within supernode **K** is used to update target column j. A dense work vector **W**x of size equal to the length of the supernode, is used to accumulate the updates of all the columns with the supernode **K**. This dense operation exploits the similarity of the sparsity structure of the columns within the supernode. The results from **W**x are then scattered into work vector **W** of size equal to the number of columns in **L**, that is, **ln**. **W** is used to accumulate the updates of all the supernodes that update target column j. The updates scattered in **W** are then gathered into **L**x at the appropriate locations for column j. Thus the amount of indirect referencing to column j is reduced to just one for each supernode. This improves performance by eliminating the time required to do indirect referencing for each column within the supernode. As seen in the algorithm shown in Figure 2-2, each entry in column k within supernode **K** is first multiplied by a scalar **v** where

$$V = L (j,k) * D (k) = l_jk_times_d_k$$

The **cmod** operation in C-style notation is shown in Figure 6-4.

If the size of the supernode  $\mathbf{K}$  is one, that is, if it is a singleton supernode, then the overhead of using dense work vector  $\mathbf{W}\mathbf{x}$  is avoided and the updates are directly stored into the work vector  $\mathbf{W}$ . This is nothing but a column-column update. This is a special case of the supernode–column method when the size of the supernode is one.

### Cmod (j,J)

The target column j within supernode J is updated by the columns within the supernode J itself that are to the left of column j. Since the diagonal block of a supernode

is always dense, all columns to the left of j within supernode **J** will update column j. Now since all columns share the same sparsity structure, so no indirect referencing is required.

```
for k \in K do
     Wx = Wx + Lx_{L} * 1_{jk\_times \_d\_k};
end for
/* scatter Wx into W */
p = First [K];
p2 = p + Lnz [Head of K];
for (i = 0; p < p2; p + +, i + +)
      W [Li [p]] = W [Li [p]] - Wx [i];
end for
/* gather W into Lx */
p = Lp [j];
p2 = p + Lnz [j];
for (; p < p2; p + +)
    i = Li [p];
    Lx[p] = W[i];
    W[i] = 0.0;
end for
```

Figure 6-4 Algorithm for cmod (j, K)

So, rather than using the work vector  $\mathbf{W}$ , all updates are done directly on  $\mathbf{L}\mathbf{x}$  at the appropriate locations for column j. For this, current results from the work vector  $\mathbf{W}$  need to be gathered into  $\mathbf{L}\mathbf{x}$  first and this is done at the end of the cmod (j,K) stage.

The algorithm for cmod (j, J) in C-style notation is shown in Figure 6-5.

for 
$$j1 \in J$$
 and  $j1 \langle j$ 

$$Lx_j = Lx_j - Lx_{j1} * l_jk_times_d_k;$$
 end for

Figure 6-5 Algorithm for cmod (j, J)

#### Cdiv (j)

As shown in the algorithm in Figure 2-2, the updates for column j that are gathered into Lx are divided by the diagonal entry of column j which is stored in **D**.

The algorithm for cdiv (j) in C-style notation is shown in Figure 6-6.

Figure 6-6 Algorithm for cdiv(j)

### **BLAS**

BLAS stands for Basic Linear Algebra Subroutines. BLAS2 are used for doing matrix-vector operations and scaling operations over a block of contiguous columns. Since the supernodes contain non-contiguous columns, the BLAS cannot be used to do matrix-vector operations. BLAS1 for vector operations can be used such as the **daxpy\_** and the **dscal\_**.

# **Analysis of Supernode-Column Cholesky Factorization**

This method reduces the amount of indirect referencing significantly by exploiting the similarity of the sparsity structure of the columns within each supernode. This is clear by the usage of **W**x to accumulate the updates of all columns within the supernode **K** and then updating the target column j. However, there is more room for improvement in the area of cache reusability. When supernode **K** is loaded into cache, it is used to update only a single column j within supernode **J** and after that it may be removed from the cache. However it may also update some other columns within the supernode **J** and would have to be reloaded into cache again. This is an area where further improvement in performance can be achieved.

## CHAPTER 7 SUPERNODE-SUPERNODE CHOLESKY FACTORIZATION

This chapter contains the algorithm and implementation details of the supernode-supernode numerical Cholesky factorization. This method uses supernodes which are discussed in Chapter 5. Supernodes reduce the amount of indirect referencing and improve cache behavior. The main kernel of the factorization, that is, the **cmod** operation is supernode-supernode based where a supernode updates the target supernode. The algorithm and implementation are discussed in the next sections.

### Algorithm

The notation for supernodes are capital letters **S**,**J** and **K**. Let j be any column in supernode **J** and k be any column in supernode **K**. Also, note that the columns within the supernode may be non-contiguous. The algorithm can be expressed in terms of the following major subtasks:

- **cmod** (**J**,**K**). modification of a collection of columns within supernode **J** by a multiple of all the columns within supernode **K**. Note that **K** < **J**. The intersection set containing the columns in supernode **J** to be updated by supernode **K** must be determined. This set is obtained by taking an intersection of the row indices of supernode **K** with the columns of supernode **J**. Also, performance can be improved by using block matrix methods to do the computation of cmod (**J**,**K**).
- **cdiv** (**J**). Each column within supernode **J** has to be updated by the columns to the left of it and then it has to be scaled. This is nothing but a Cholesky factorization of the diagonal block of supernode **J**. Also, since the diagonal block is dense, the algorithm shown in Figure 2-2 for the dense **A=LDL**<sup>T</sup> Cholesky factorization can be used.

A high level description of the left-looking supernode-supernode numerical factorization algorithm is shown in Figure 7-1.

```
for J=1 to N do
for K such that \mathcal{L}_{J,K} \neq 0 do
cmod (J,K)
end for
cdiv (J)
end for
```

Figure 7-1 Algorithm1 supernode-supernode Cholesky factorization

In Figure 7-1, it can be seen that cmod (J,K) is used to update target supernode J with all those supernodes to the left of J that have a nonzero value in any of the rows corresponding to columns of J. So for each target supernode J, a list of all supernodes called L is maintained such  $\mathcal{L}_{J,K} \neq 0$ . To construct the L ist, the symbolic factor  $\mathcal{L}$  is used, that is, the pattern of L stored in L is used. The algorithm is now modified to accommodate the L ist as shown in Figure 7-2.

```
for J = 1 to N do
    for K ∈ List (J) do
        cmod (J,K)
        add K to List (next (jlast,K))
    end for
    cdiv (J)
    add J to List (next (jlast,J))
end for
```

Figure 7-2 Algorithm2 supernode-supernode Cholesky factorization

The algorithm in Figure 7-2, contains two new structures. These are as follows:

- List (J). { K :  $\mathcal{L}_{J,K} \neq 0$  }, it is a list of supernodes for supernode J. It is a union of the supernode lists of all the columns within the supernode J.
- **next** (j,K). J'  $\ni$  (min {i: i  $\in \mathcal{L}_K \land i > j$ }  $\in$  J'). This returns the supernode that contains the column corresponding to the row index in supernode K that is immediately greater than j. For this, a mapping between the columns and the supernodes is required. This map is called the Col\_to\_Supernode\_Map. next(j,K) uses the Col\_to\_Supernode\_Map for getting the supernode that contains the next target column to be updated by supernode K. Note that jlast is the last column within supernode J.

Also, now that the pattern of L is known from the symbolic factorization, the computation can be restricted to only the predicted nonzero locations of L, thus reducing

the number of floating point of operations. Maintaining the **List** takes  $O(|\mathcal{L}|)$  time. The entire algorithm can be done in  $O(\Sigma |\mathcal{L}_j|^2)$  time.

The work storage used for the cmod  $(\mathfrak{I}, \mathsf{K})$  is different from the work vector used in the earlier two methods of numerical factorization. The work storage is no longer a single dimensional array, but a two dimensional work array  $\mathbf{W}\mathbf{x}$  of size m-by-n, where m is the maximum length of a column in the Cholesky factor  $\mathbf{L}$  and n is the maximum width of the supernode. Now for cmod  $(\mathfrak{I}, \mathsf{K})$ ,  $\mathbf{W}\mathbf{x}$  is used as a dense two dimensional work array. Only a portion of  $\mathbf{W}\mathbf{x}$  of size mm-by-nn will be used for each supernode  $\mathbf{J}$  where mm is the length of the representative column of supernode  $\mathbf{J}$  and nn is the width of the supernode  $\mathbf{J}$ . Supernode  $\mathbf{J}$  and  $\mathbf{K}$  need to be mapped to  $\mathbf{W}\mathbf{x}$ . For this, a data structure called  $\mathbf{M}\mathbf{a}\mathbf{p}$  is used.

The algorithm is further modified as shown in Figure 7.3.

```
Wx [max_column_length, max_supernode_size] = 0
for J = 1 to N do
    scatter J's relative indices into Map
    for K ∈ List (J) do
        compute intersection set of columns of J to be updated by K;
        Wx = cmod (J,K); (uses Map to assemble into Wx)
        add K to List (next (jlast,K))
    end for
    cdiv (J)
    add J to List (next (jlast,J))
end for
```

Figure 7-3 Algorithm3 supernode-supernode Cholesky factorization

### **Implementation Details**

There are four data structures that are used. These are First, Col\_to\_Snode\_Map,
List and Map. There are two methods that are implemented. These are cmod and cdiv.

The implementation details of each of these data structures and the methods are discussed in detail in this section.

#### Wx

This is the dense work array for storing the updates to supernode **J**. It is two-dimensional, but is stored linearly by rows. The entry at wx [i] [j] can be accessed using wx [i \* wxcol + j] where wxcol is the width of the supernode **J**.

#### First

First is an array of size equal to the number of supernodes of **L**. For each supernode **K**, First [K] contains the index within **Li** of the first entry in the representative column of **K** (**Head\_of\_K**) that can be used to update target columns; that is, if j is the target column to be updated then Li [First [K]] should be equal to j.

After updating a target column, First [K] is incremented by 1 to point to the next nonzero entry in column **Head\_of\_K**, that is, the entry corresponding to the next column that the supernode **K** is going to update.

# Col\_to\_Supernode\_Map

This is an integer array of size equal to number of columns in **L**. It maps columns to the supernodes that contain them. The mapping algorithm is shown in Figure 7-4.

Figure 7-4 Algorithm to construct Col\_to\_Supernode\_Map

### List (J)

Two arrays are used to implement this list, **Link** and the **First** arrays. **Link** holds the list of all the supernodes that are to affect the target supernode **J**, that is, all those supernodes that have a nonzero in any of the rows corresponding to the columns of supernode **J**. **Link** is an array of maximum size equal to the number of columns in **L**. All

entries of **Link** are initially set to EMPTY. Link [J] contains the head of the list for supernode **J**. Since a left-looking approach is used, each supernode **J** is updated by supernodes **K** where **K**< **J**. In terms of **Link** data structure, this means that when supernode **J** is to be computed, only the entries in **Link** following Link [J] will be used to store the heads of the lists. The supernodes before **J** will already have been computed and so no longer require storing their lists. So the entries before Link [J] are then used to store remainder of the lists for the supernodes after **J**. Thus a single data structure can be used to store lists for all supernodes of **L**, thereby conserving space. The rest of the list is stored by having each entry in **Link** contain the next element of the list. For example, if the list for supernode **J** was a set of supernodes {K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub>} where K<sub>1</sub> is the head of the list, then the entire list would be stored in **Link** as,

Link 
$$[J] = K_1$$
,  
Link  $[K_1] = K_2$ ,  
Link  $[K_2] = K_3$ , and  
Link  $[K_3] = EMPTY$ .

Note that  $K_1 < j$ ,  $K_2 < j$ , and  $K_3 < j$ .

Each supernode within the list of supernode **J**, after updating supernode **J**, is then stored in the list of the supernode that contains the next column that it is going to update. The mapping of the column to the supernode is done using the **Col\_to\_Supernode\_Map**. The algorithm for creating and accessing the list in C-style notation is shown in Figure 7-5. In this figure, nextj is the next column (within Cholesky factor **L**) to be updated by supernode **K** and nextJ is the supernode that contains nextJ. The supernode **K** after updating supernode **J** is then placed in the list for supernode nextJ. In this manner the list of supernodes for each target supernode is constructed dynamically.

```
for ( K = Link [J]; K != EMPTY; K = nextK)
{
    nextK = Link [K];

    update J with K;
    First [K]++;

    /* put K on the list of nextJ */
    nextj = Li [First [K]];
    nextJ = Col_to_Supernode_Map [nextj];
    Link [K] = Link [nextJ];
    Link [nextJ] = K;
}
```

Figure 7-5 Algorithm to create and access List (J)

### Map

This is used to map supernode **J** and supernode **K** to the dense work array **Wx**. Map is a single dimensional integer array that maps the nonzero row indices of the representative column of supernode **J** (**Head\_of\_J**) to the first *mm* rows of **Wx**, where *mm* is the number of nonzeros in **Head\_of\_J**. It also maps the columns of supernode **J** to the first *nn* columns of **Wx**, where *nn* is the width of supernode **J**. As the pattern of supernode **K** is a subset of the pattern for supernode **J**, **Map** can be used to map supernode **K** to the work vector **Wx**. The algorithm for computing **Map** in C-style notation is shown in Figure 7-6.

```
p = Lp [Head_of_J];
p2 = p + Lnz [Head_of_J];

Map [Head_of_J] = 0;
for (i = 1; p < p2; p + +, i + +)
    Map [Li [p]] = i * WxCol;
end for</pre>
```

Figure 7-6 Algorithm to construct **Map** 

In Figure 7-6, wxCol is the width of supernode  $\bf J$  and is used to traverse through the rows as  $\bf Wx$  is linearly stored by rows. The boundaries for the nonzero pattern of a column are represented by p and p2.

### Cmod (J,K)

This is the outermost kernel of the supernode-supernode numerical Cholesky factorization. A two dimensional work vector  $\mathbf{W}\mathbf{x}$  of size p—by-q, where p is the maximum length of a column in the Cholesky factor  $\mathbf{L}$  and q is the maximum width of a supernode. Only a portion of  $\mathbf{W}\mathbf{x}$  of size pp-by-qq will be used for any given  $\mathbf{cmod}$  ( $\mathbf{J}$ , $\mathbf{K}$ ) where pp is the length of the representative column of supernode  $\mathbf{J}$  ( $\mathbf{Head\_of\_J}$ ) and qq is the width of the supernode  $\mathbf{J}$ . The supernodes  $\mathbf{J}$  and  $\mathbf{K}$  are mapped to  $\mathbf{W}\mathbf{x}$  by the  $\mathbf{Map}$ . The work vector  $\mathbf{W}\mathbf{x}$  is used to accumulate the updates of all the supernodes  $\mathbf{K}$  that update target supernode  $\mathbf{J}$ . The results from  $\mathbf{W}\mathbf{x}$  are eventually gathered into  $\mathbf{L}\mathbf{x}$  into the appropriate locations for all the columns  $\mathbf{j}$  within the supernode  $\mathbf{J}$ .

#### Intersection set

This set contains the columns within supernode **J** that are to be updated by supernode **K**. It is the intersection between the row indices of supernode **K** with the columns within supernode **J**. The algorithm for finding the intersection set in C-style notation is shown in Figure 7-7.

```
jlast = Slist [Spp [J+1] -1];
p = First [k];
p2 = p + Lnz [Head_of_K];
for (i = 0; p < p2 && Li [p] <= jlast; p++,i++)
{
    Intersect [i] = Li [p];
}</pre>
```

Figure 7-7 Algorithm to construct Intersection set

In Figure 7-7, it can be seen that it is not required to check the entire row indices of supernode **K** for intersection. This is because as the row indices of supernode **K** are in ascending order, there would be no intersection for row indices that are greater than jlast.

### Block matrix computation of cmod (J,K)

Both supernode **J** and supernode **K** are blocks containing more than one column. So block matrix computation is employed to improve performance by better cache reusability. The benefit of using block matrix computation is a better ratio of the cache misses to floating point operations. The supernode **J** is trapezoidal in shape. So for the diagonal part, the computation is done as in the supernode-column method. For the remaining rectangular block of supernode **J**, the block matrix method is used.

The method **mMKN** is called to do the block matrix computation. The arguments passed to this method are as follows:

- **M**. Lp [Head\_of\_K] + Lnz [Head\_of\_K] First [K]. This is the length of the block of supernode **K** that is used to modify the rectangular block of supernode **J**
- K. Sp [K+1] Sp [K]. This is the width of supernode K.
- N. This is the length of the intersection set.
- **pk**. An array of double pointers that point to the columns within supernode **K**. The array size is equal to the width of supernode **K**. The pointers are used to reduce the amount of indirect referencing for the columns of supernode **K**, which may or may not be contiguous.
- **ik**. A pointer to the row indices of supernode **K**. It initially points to Li [First [K]].
- **B**. B is of size 32-by-32, where 32 is the maximum width of a supernode. This contains the scalar values (1\_jk\_times\_d\_k) that are used to create the multiples of the columns of supernode **K** which are then used to update supernode **J**. First, a copy is made into **B** of the real values of supernode **K** in **Lx** corresponding to the columns in the intersection set. These are then multiplied with the appropriate diagonal entries to form the 1\_jk\_times\_d\_k entries.
- Wx. The dense work vector which stores the updates to supernode J.
- IntersectMap. This is the map for the intersection set. It maps the columns within the intersection set to the columns of Wx. It is computed using both Map and the Intersection set.
- Map. see description for Map in above section.

The high level description of the entire block matrix algorithm is shown in Figure 7-8:

```
for i = 1:4:M; steps of 4

for j = 1:4:N; steps of 4

C[4][4] = 0;

for k = 1:2:K; steps of 2

C_{ij} = C_{ij} + A_{ik} + B_{kj};

end for

Wx = C[4][4] using Map;

end for

end for
```

Figure 7-8 Algorithm for block matrix computation of cmod (J,K)

In Figure 7-8, it can be seen that the innermost kernel is of size 4-by-4 and is stored in the array **C**. For ease of understanding, the block of supernode **K** is referred to as an array **A** of size **M**-by-**K**. The product of a 4-by-2 block of **A** and a 2-by-4 block of **B** is computed and stored in **C** in the innermost kernel. Thus the supernode **J** is updated in chunks of 4-by-4 and stored in **Wx**.

The implementation of the **mMKN** method in C-style notation is shown in Figure 7-9.

Figure 7-9 Implementation of **mMKN** method

In Figure 7-9, it can be seen that the iteration at the outermost loop is in the direction of **M**, that is, along the length of the block of supernode **K** in steps of 4. In each

iteration, a call to the method **m4KN** is made and the same arguments are passed to it.

Special cases when the step size is less than 4 are handled by the methods **m1KN**, **m2KN**, **m3KN**. These methods are similar to **m4KN**, the only difference is that **M** < 4.

The implementation of the **m4KN** method in C-style notation is shown in Figure 7-10.

Figure 7-10 Implementation of **m4KN** method

In Figure 7-10, it can be seen that the iteration at the loop is in the direction of **N**, that is, along the width of **B**, in steps of 4. In each iteration, a call to the method **m4K4** is made and the arguments are passed to it along with work array **C** and the column-index of the current **B** block. Special cases when the step size is less than 4 are handled by the methods **m1K1**, **m2K2**, **m3K3**. These methods are similar to **m4K4**, the only difference is that **N** < 4. The result from **C** is stored into **Wx** using the **Map** and **IntersectMap**.

The implementation of the **m4K4** method in C-style notation is shown in Figure 7-11. In this figure, it can be seen that the iteration at the loop is in the direction of **K**, that is, along the width of supernode **K**, in steps of 2. In each iteration, a call to the method **m424** is made and the arguments are passed to it along with work array **C** and the

row and column indices of the current **B** block. The special case when the step size is less than 2 is handled by the method **m414**. This method is similar to **m4K4**, the only difference is that **K<1**.

Figure 7-11 Implementation of m4K4 method

The implementation of the **m424** method in C-style notation is shown in Figure 7-

```
12.
```

```
m424 (pk0,pk1,ik, B,C,Bn,Bk)
{
    for (i = 0; i < 4; i++)
    {
        for (j = 0; j < 4; j++)
        {
                  C[i][j] = C[i][j]+(*pk0) * B [Bk][Bn+j] + (*pk1)* B [Bk+1][Bn+j];
            }
            pk0++;
            pk1++;
        }
}</pre>
```

Figure 7-12 Implementation of m424 method

In Figure 7-12, the product is computed using the **pk** pointers and indices into **B**. This kernel is further optimized by loop unrolling thereby reducing the pipeline stalls. This is the innermost kernel of the entire block matrix computation of the supernode-supernode method.

### Cdiv (J)

Each column within **J** has to be updated by the columns to the left of it and then it has to be scaled. This is nothing but a Cholesky factorization of the diagonal block of **J**.

Also, since the diagonal block is dense, the algorithm shown in Figure 2-2 for the dense **A=LDL**<sup>T</sup> Cholesky factorization is used. **Wx** now serves as the matrix **A** to be factored.

Also, instead of just scaling the diagonal block, the scaling is done for the entire block of **Wx**.

# **Special Case of Singleton Supernodes**

When the target supernode **J** is of width 1, that is, it is a singleton supernode, the block computation results in an overhead and can adversely affect performance. So in this special case, the supernode-column method of numerical factorization is employed. The description of this method is given in Chapter 6.

# **Analysis of Supernode-Supernode Cholesky Factorization**

This method reduces the amount of indirect referencing significantly by exploiting the similarity of the sparsity structure of the columns within each supernode. It also improves the cache behavior by improving cache reusability as each supernode is now updating more than one column within the target supernode. However the overhead in the case of singleton target supernodes must be taken care of by appropriately switching over to the supernode-column method for this special case. There is an overhead of function calls to do the block computation, but this overhead is not significant in comparison to the performance gain achieved by better cache reusability.

The number of floating point operations for the block computation is 2\*M\*K\*N where the factor of 2 is due to the addition and multiplication in the innermost loop. The total number of load-store operations is the sum of M\*K (to load A), K\*N (to load B)

and M\*N\*2 (to load and store Wx). The ratio of floating point operations to memory accesses for the supernode-supernode method is

$$\frac{2MKN}{MK+ KN + MN2}$$

When K = 32 and N = 32, this ratio is approximately 20, that is, for every memory access, 20 floating point of operations can be performed. Compare this with a column oriented method, where K = 1 and N = 1. The ratio then is approximately 0.66. For the supernode-column method, where K = 32 and N = 1, the ratio is approximately 1.88. Thus block computation gives better performance.

# Implementation of Supernode-Supernode Numerical Factorization

See Appendix C for the implementation of the supernode-supernode numerical factorization. This method has been implemented in C and was run in MATLAB using mexfunction interfaces.

# CHAPTER 8 EXPERIMENTAL RESULTS

This chapter compares the performance of the supernodal methods with the simplicial column-column method of numerical factorization. The three methods compared are as follows:

- **Column-column**. This is the simplicial column-column numerical Cholesky factorization. The complete description of this method is given in Chapter 4.
- **Supernode-column**. This is the supernode-column numerical Cholesky factorization. The complete description of this method is given in Chapter 6.
- **Supernode-supernode**. This is the supernode-supernode numerical Cholesky factorization method. The complete description of this method is given in Chapter 7. This method is further optimized by reducing the overhead of block computation when the target supernode **J** is of size 1, that is, it is a singleton supernode. In this special case, the supernode-column method is used. The main goal is to show that this supernodal method has better performance than the other two methods.

#### **Test Design**

The tests were performed on **shine.cise.ufl.edu** at the **CISE** department, **University of Florida**. This is a **Sun Ultra 80** workstation with the following configuration:

• Machine Hardware: sun4u

• OS version: SunOS 5.8

• Processor type: sparc

• Hardware: SUNW, Ultra-80

• Main Memory: 4 GB

• Processors: Four 450 MHz UltraSparc II with 4 MB L2 cache (only one processor was used).

Two sets of test matrices were used. These are as follows:

- **LPNetlibMat** collection of sparse matrices collected by Dr. Tim Davis, CISE, University of Florida.
- University of Florida's Sparse Matrix Collection. This is accessible to anyone from the URL <a href="http://www.cise.ufl.edu/research/sparse/mat/">http://www.cise.ufl.edu/research/sparse/mat/</a>.

All the test cases were run in MATLAB using mexfunction interfaces. Each test matrix  $\mathbf{A}$  is first reordered using the COLAMD column approximate minimum degree ordering algorithm [3] so that the Cholesky factorization of  $(\mathbf{A}(:,\mathbf{P}))^*(\mathbf{A}(:,\mathbf{P}))^T$  is sparser than that of  $\mathbf{A}^*\mathbf{A}^T$ .  $\mathbf{P}$  is the permutation vector computed by the COLAMD algorithm. Each of the sparse Cholesky factorization methods first computes  $\mathbf{A}\mathbf{A}^T$  and then computes its Cholesky factor  $\mathbf{L}$ .

#### **Test Results**

The test results for the two collections of sparse matrices are presented in Table 8-1 and Table 8-2. The following notations are used:

- **m**. number of rows in A.
- **n**. number of columns in A.
- **nnz** (A). number of nonzeros in A. This is equal to |A|.
- **nnz** (L). number of nonzeros in L. This is equal to  $|\mathcal{L}|$ .
- **Flop count**. Floating point operation count. This is approximately equal to  $\sum_{j} |\mathcal{L}_{j}|^{2}$
- Wall time. Wall clock time in seconds.
- **MFLOPS**. Million Floating Point Operations Per Second. This is computed by dividing the flop count by wall time, and then dividing by 10<sup>6</sup>.
- ColCol/SupCol. Ratio of the wall time of the column-column method to the wall time of the supernode-column method.
- **ColCol/SupSup**. Ratio of the wall time of the column-column method to the wall time of the supernode-supernode method.

All tables are sorted in the increasing order of **Flop count**. Table 8-1 contains the results for the LPNetlibMat collection of sparse matrices. From this table, it can be seen that there is very little performance gain for small matrices and that the column-column method performs as well, if not better, than the supernodal methods. The reason for this is that for small matrices, the supernodes are small and also the computation of supernodes is an overhead. However, as the flop count increases, the performance improvement becomes more prominent. For larger matrices, that is, matrices having flop counts greater than 10<sup>9</sup>, more and more columns combine to form supernodes. The amount of indirect referencing is reduced and cache reusability is improved. This is evident from problem 33 onwards. Problem 35, qap12, runs roughly 2.7 times faster. Problem 38, qap15, runs 3.38 times faster. Thus the objective of this thesis is satisfied for large matrices.

Table 8-1. Test results for LPNetlibMat collection of sparse matrices

| No  | Problem  | m     | n      | nnz(A)  | nnz(L) | flop     |       | - Col  | Sup   | -Col   | Sup   | -Sup   | ColCol/<br>SupCol | ColCol/<br>SupSup |
|-----|----------|-------|--------|---------|--------|----------|-------|--------|-------|--------|-------|--------|-------------------|-------------------|
|     |          |       |        |         |        |          | wall  | MFLOPS | wall  | MFLOPS | wall  | MFLOPS | •                 |                   |
| 1.  | perold   | 625   | 1506   | 6148    | 26425  | 1842527  | 0.030 | 61.99  | 0.025 | 74.00  | 0.027 | 67.67  | 1.19              | 1.09              |
| 2.  | pds_02   | 2953  | 7716   | 16571   | 44486  | 2252018  | 0.038 | 59.22  | 0.035 | 63.76  | 0.042 | 53.16  | 1.08              | 0.90              |
| 3.  | 80bau3b  | 2262  | 12061  | 23264   | 44263  | 2564535  | 0.045 | 56.51  | 0.043 | 60.20  | 0.051 | 50.24  | 1.07              | 0.89              |
| 4.  | woodw    | 1098  | 8418   | 37487   | 45438  | 2576792  | 0.046 | 55.42  | 0.045 | 57.54  | 0.054 | 47.37  | 1.04              | 0.85              |
| 5.  | 25fv47   | 821   | 1876   | 10705   | 39498  | 3043644  | 0.048 | 63.63  | 0.042 | 71.91  | 0.045 | 67.83  | 1.13              | 1.07              |
| 6.  | truss    | 1000  | 8806   | 27836   | 51082  | 3046918  | 0.047 | 64.40  | 0.044 | 68.61  | 0.055 | 55.47  | 1.07              | 0.86              |
| 7.  | woodlp   | 244   | 2595   | 70216   | 24266  | 3185980  | 0.081 | 39.26  | 0.074 | 43.13  | 0.069 | 46.43  | 1.10              | 1.18              |
| 8.  | osa_07   | 1118  | 25067  | 144812  | 59306  | 3758202  | 0.103 | 36.53  | 0.112 | 33.45  | 0.147 | 25.52  | 0.92              | 0.70              |
| 9.  | ken_11   | 14694 | 21349  | 49058   | 133221 | 4080983  | 0.098 | 41.55  | 0.114 | 35.80  | 0.138 | 29.54  | 0.86              | 0.71              |
| 10. | stocfor3 | 16675 | 23541  | 72721   | 234325 | 4532223  | 0.098 | 46.07  | 0.102 | 44.23  | 0.180 | 25.13  | 0.96              | 0.55              |
| 11. | greenbea | 2392  | 5598   | 31070   | 79425  | 4558593  | 0.078 | 58.17  | 0.073 | 62.75  | 0.092 | 49.29  | 1.08              | 0.85              |
| 12. | greenbeb | 2392  | 5598   | 31070   | 79425  | 4558593  | 0.085 | 53.74  | 0.074 | 61.53  | 0.095 | 47.86  | 1.15              | 0.89              |
| 13. | pilot_ja | 940   | 2267   | 14977   | 54544  | 5871290  | 0.088 | 66.76  | 0.082 | 71.70  | 0.081 | 72.20  | 1.07              | 1.08              |
| 14. | pilotnov | 975   | 2446   | 13331   | 55648  | 5935500  | 0.093 | 64.04  | 0.082 | 72.77  | 0.081 | 73.02  | 1.14              | 1.14              |
| 15. | osa_14   | 2337  | 54797  | 317097  | 121898 | 7246262  | 0.293 | 24.76  | 0.312 | 23.21  | 0.340 | 21.31  | 0.94              | 0.86              |
| 16. | cycle    | 1903  | 3371   | 21234   | 92074  | 8404256  | 0.134 | 62.57  | 0.117 | 71.69  | 0.120 | 69.86  | 1.15              | 1.12              |
| 17. | d6cube   | 415   | 6184   | 37704   | 52449  | 9358881  | 0.143 | 65.63  | 0.137 | 68.44  | 0.123 | 76.15  | 1.04              | 1.16              |
| 18. | bnl2     | 2324  | 4486   | 14996   | 81139  | 11292209 | 0.174 | 64.79  | 0.151 | 74.64  | 0.142 | 79.61  | 1.15              | 1.23              |
| 19. | osa_30   | 4350  | 104374 | 604488  | 226104 | 13080274 | 0.684 | 19.11  | 0.713 | 18.34  | 0.771 | 16.97  | 0.96              | 0.89              |
| 20. | degen3   | 1503  | 2604   | 25432   | 123379 | 16403831 | 0.308 | 53.30  | 0.247 | 66.53  | 0.244 | 67.14  | 1.25              | 1.26              |
| 21. | ken_13   | 28632 | 42659  | 97246   | 353474 | 16827776 | 0.376 | 44.75  | 0.372 | 45.26  | 0.417 | 40.38  | 1.01              | 0.90              |
| 22. | osa_60   | 10280 | 243246 | 1408073 | 519037 | 28780915 | 1.995 | 14.43  | 1.943 | 14.81  | 1.869 | 15.40  | 1.03              | 1.07              |
| 23. | d2q06c   | 2171  | 5831   | 33081   | 175037 | 34972257 | 0.580 | 60.31  | 0.465 | 75.19  | 0.406 | 86.07  | 1.25              | 1.43              |
| 24. | pilot    | 1441  | 4860   | 44375   | 180658 | 37737090 | 0.611 | 61.79  | 0.559 | 67.50  | 0.537 | 70.30  | 1.09              | 1.14              |
| 25. | qap8     | 912   | 1632   | 7296    | 204290 | 74089806 | 1.219 | 60.79  | 0.978 | 75.77  | 0.824 | 89.89  | 1.25              | 1.48              |
| 26. | fit1p    | 627   | 1677   | 9868    | 196878 | 82360630 | 1.244 | 66.20  | 1.114 | 73.95  | 0.882 | 93.40  | 1.12              | 1.41              |

Table 8-1 continued.

| No  | Problem  | m      | n      | nnz(A) | nnz(L)  | flop       | Col ·   | · Col  | Sup     | -Col   | Sup-    | -Sup   | ColCol/ | ColCol/ |
|-----|----------|--------|--------|--------|---------|------------|---------|--------|---------|--------|---------|--------|---------|---------|
| 110 |          |        |        |        |         |            | wall    | MFLOPS | wall    | MFLOPS | wall    | MFLOPS | SupCol  | SupSup  |
| 27. | pilot87  | 2030   | 6680   | 74949  | 422518  | 168779430  | 2.571   | 65.64  | 2.281   | 73.99  | 2.063   | 81.80  | 1.13    | 1.25    |
| 28. | pds_06   | 9881   | 29351  | 63220  | 593816  | 208033998  | 3.298   | 63.08  | 2.882   | 72.19  | 2.474   | 84.08  | 1.14    | 1.33    |
| 29. | cre_b    | 9648   | 77137  | 260785 | 775319  | 220519635  | 3.855   | 57.20  | 3.232   | 68.24  | 2.690   | 81.97  | 1.19    | 1.43    |
| 30. | cre_d    | 8926   | 73948  | 246614 | 763531  | 221294227  | 4.204   | 52.64  | 3.210   | 68.94  | 2.719   | 81.40  | 1.31    | 1.55    |
| 31. | maros_r7 | 3136   | 9408   | 144848 | 853785  | 240685851  | 3.711   | 64.86  | 4.205   | 57.23  | 4.628   | 52.01  | 0.88    | 0.80    |
| 32. | ken_18   | 105127 | 154699 | 358171 | 2229341 | 248618965  | 7.060   | 35.22  | 6.451   | 38.54  | 4.918   | 50.55  | 1.09    | 1.44    |
| 33. | pds_10   | 16558  | 49932  | 107605 | 1633555 | 948647731  | 21.882  | 43.35  | 15.530  | 61.09  | 11.174  | 84.90  | 1.41    | 1.96    |
| 34. | df1001   | 6071   | 12230  | 35632  | 1544399 | 1254493929 | 28.080  | 44.68  | 21.021  | 59.68  | 13.602  | 92.23  | 1.34    | 2.06    |
| 35. | qap12    | 3192   | 8856   | 38304  | 2407591 | 3.09E+09   | 89.219  | 34.61  | 61.525  | 50.19  | 32.700  | 94.43  | 1.45    | 2.73    |
| 36. | pds_20   | 33874  | 108175 | 232647 | 6827078 | 8.60E+09   | 268.143 | 32.06  | 195.422 | 44.00  | 97.281  | 88.38  | 1.37    | 2.76    |
| 37. | fit2p    | 3000   | 13525  | 50284  | 4501500 | 9.00E+09   | 291.288 | 30.91  | 210.501 | 42.78  | 91.907  | 97.97  | 1.38    | 3.17    |
| 38. | qap15    | 6330   | 22275  | 94950  | 9342597 | 2.40E+10   | 851.630 | 28.20  | 606.610 | 39.60  | 251.903 | 95.35  | 1.40    | 3.38    |

52

Table 8-2 contains the results for the University of Florida's collection of sparse matrices. Column 2 lists the matrices in the form of Group Name/Problem Name.

The results from this table conclusively prove that the supernodal method performs better than the simplicial column-column method. All the matrices listed are flop counts greater than 10<sup>8</sup>. The largest gain is seen in problem number 160, *HB/psmigr\_1*, where the supernode-supernode method runs 3.61 times faster taking just 118 seconds while the column-column method takes 427 seconds. The average gain is found to be in the range of 2 to 3.5 times faster.

Also, in most of the cases, the supernode-supernode method has better performance than the supernode-column method. This is due to the block computation that improves performance by better cache reusability.

Table 8-2. Test results for University of Florida's collection of sparse matrices

| No  | Problem            | m     | n     | nnz(A)  | nnz(L)  | flop      | Col   | - Col  | Sup   | -Col   | Sup   | o-Sup  | ColCol/<br>SupCol | ColCol/<br>SupSup |
|-----|--------------------|-------|-------|---------|---------|-----------|-------|--------|-------|--------|-------|--------|-------------------|-------------------|
|     |                    |       |       |         |         |           | wall  | MFLOPS | wall  | MFLOPS | wall  | MFLOPS |                   | - Серген          |
| 1.  | Gset/G10           | 800   | 800   | 38352   | 319787  | 170109669 | 3.253 | 52.295 | 2.304 | 73.840 | 1.781 | 95.520 | 1.41              | 1.83              |
| 2.  | Gset/G6            | 800   | 800   | 38352   | 320063  | 170494375 | 2.588 | 65.879 | 2.330 | 73.166 | 1.812 | 94.092 | 1.11              | 1.43              |
| 3.  | Gset/G9            | 800   | 800   | 38352   | 320059  | 170494653 | 2.583 | 66.007 | 2.276 | 74.918 | 1.815 | 93.942 | 1.13              | 1.42              |
| 4.  | Gset/G7            | 800   | 800   | 38352   | 320063  | 170496207 | 3.430 | 49.712 | 2.318 | 73.540 | 1.786 | 95.477 | 1.48              | 1.92              |
| 5.  | Gset/G8            | 800   | 800   | 38352   | 320106  | 170560116 | 3.041 | 56.093 | 2.294 | 74.361 | 1.793 | 95.125 | 1.33              | 1.70              |
| 6.  | Gset/G5            | 800   | 800   | 38352   | 320247  | 170751731 | 2.603 | 65.605 | 2.299 | 74.281 | 1.778 | 96.014 | 1.13              | 1.46              |
| 7.  | Gset/G1            | 800   | 800   | 38352   | 320280  | 170801062 | 2.943 | 58.040 | 2.308 | 74.001 | 1.777 | 96.097 | 1.28              | 1.66              |
| 8.  | Gset/G2            | 800   | 800   | 38352   | 320285  | 170808797 | 3.292 | 51.881 | 2.263 | 75.486 | 1.811 | 94.339 | 1.45              | 1.82              |
| 9.  | Gset/G4            | 800   | 800   | 38352   | 320303  | 170835833 | 2.556 | 66.846 | 2.320 | 73.631 | 1.776 | 96.189 | 1.10              | 1.44              |
| 10. | Gset/G3            | 800   | 800   | 38352   | 320308  | 170843792 | 2.931 | 58.282 | 2.285 | 74.752 | 1.799 | 94.983 | 1.28              | 1.63              |
| 11. | FIDAP/ex31         | 3909  | 3909  | 91223   | 741347  | 176685509 | 2.623 | 67.360 | 2.567 | 68.821 | 2.142 | 82.474 | 1.02              | 1.22              |
| 12. | Nemeth/nemeth21    | 9506  | 9506  | 1173746 | 1297263 | 177936811 | 5.182 | 34.337 | 5.125 | 34.717 | 5.345 | 33.293 | 1.01              | 0.97              |
| 13. | Wang/wang1         | 2903  | 2903  | 19093   | 590936  | 189525380 | 3.545 | 53.463 | 2.648 | 71.581 | 2.036 | 93.086 | 1.34              | 1.74              |
| 14. | Wang/wang2         | 2903  | 2903  | 19093   | 590936  | 189525380 | 3.407 | 55.632 | 2.635 | 71.932 | 2.119 | 89.421 | 1.29              | 1.61              |
| 15. | FIDAP/ex14         | 3251  | 3251  | 65875   | 723046  | 200078644 | 3.448 | 58.019 | 2.685 | 74.506 | 2.281 | 87.719 | 1.28              | 1.51              |
| 16. | Mallya/lhr04c      | 4101  | 4101  | 82682   | 758440  | 201947790 | 3.664 | 55.111 | 3.346 | 60.362 | 2.983 | 67.694 | 1.10              | 1.23              |
| 17. | LPnetlib/lp_pds_06 | 9881  | 29351 | 63220   | 593816  | 208033998 | 3.468 | 59.987 | 2.945 | 70.632 | 2.456 | 84.707 | 1.18              | 1.41              |
| 18. | FIDAP/ex26         | 2163  | 2163  | 74464   | 630748  | 209531094 | 3.149 | 66.530 | 2.839 | 73.807 | 2.325 | 90.109 | 1.11              | 1.35              |
| 19. | LPnetlib/lp_cre_b  | 9648  | 77137 | 260785  | 775319  | 220519635 | 4.448 | 49.578 | 3.207 | 68.761 | 2.671 | 82.564 | 1.39              | 1.67              |
| 20. | LPnetlib/lp_cre_d  | 8926  | 73948 | 246614  | 763531  | 221294227 | 4.506 | 49.115 | 3.260 | 67.881 | 2.731 | 81.028 | 1.38              | 1.65              |
| 21. | Okunbor/aft01      | 8205  | 8205  | 125567  | 1234184 | 227699204 | 3.816 | 59.664 | 3.229 | 70.522 | 3.257 | 69.901 | 1.18              | 1.17              |
| 22. | ATandT/onetone2    | 36057 | 36057 | 222596  | 1376334 | 229340616 | 4.047 | 56.667 | 3.234 | 70.916 | 2.872 | 79.852 | 1.25              | 1.41              |
| 23. | Simon/raefsky5     | 6316  | 6316  | 167178  | 943697  | 229940327 | 3.873 | 59.370 | 3.097 | 74.258 | 2.606 | 88.245 | 1.25              | 1.49              |
| 24. | Gset/G53           | 1000  | 1000  | 11828   | 407151  | 231247217 | 3.955 | 58.473 | 3.058 | 75.627 | 2.429 | 95.202 | 1.29              | 1.63              |
| 25. | Gset/G54           | 1000  | 1000  | 11832   | 411578  | 235878096 | 4.585 | 51.445 | 3.139 | 75.139 | 2.543 | 92.769 | 1.46              | 1.80              |
| 26. | DRIVCAV/cavity17   | 4562  | 4562  | 131735  | 943772  | 236532566 | 3.696 | 63.996 | 3.242 | 72.962 | 2.785 | 84.924 | 1.14              | 1.33              |

Table 8-2. continued

| No  | Problem              | m      | n      | nnz(A)  | nnz(L)  | flop      | Col   | - Col  | Sup   | -Col   | Sup   | o-Sup  | ColCol/<br>SupCol | ColCol/<br>SupSup |
|-----|----------------------|--------|--------|---------|---------|-----------|-------|--------|-------|--------|-------|--------|-------------------|-------------------|
| 110 |                      |        |        |         |         |           | wall  | MFLOPS | wall  | MFLOPS | wall  | MFLOPS | Бирсог            | Бироир            |
| 27. | DRIVCAV/cavity19     | 4562   | 4562   | 131735  | 943772  | 236532566 | 4.245 | 55.719 | 3.262 | 72.516 | 2.765 | 85.542 | 1.30              | 1.54              |
| 28. | DRIVCAV/cavity21     | 4562   | 4562   | 131735  | 943772  | 236532566 | 4.235 | 55.852 | 3.274 | 72.253 | 2.759 | 85.738 | 1.29              | 1.54              |
| 29. | DRIVCAV/cavity23     | 4562   | 4562   | 131735  | 943772  | 236532566 | 3.636 | 65.049 | 3.255 | 72.671 | 2.762 | 85.635 | 1.12              | 1.32              |
| 30. | DRIVCAV/cavity25     | 4562   | 4562   | 131735  | 943772  | 236532566 | 3.777 | 62.620 | 3.265 | 72.453 | 2.775 | 85.249 | 1.16              | 1.36              |
| 31. | Simon/raefsky6       | 3402   | 3402   | 130371  | 730376  | 236723568 | 4.890 | 48.407 | 3.673 | 64.447 | 2.611 | 90.677 | 1.33              | 1.87              |
| 32. | Gset/G52             | 1000   | 1000   | 11832   | 412074  | 237068622 | 4.119 | 57.556 | 3.076 | 77.082 | 2.483 | 95.472 | 1.34              | 1.66              |
| 33. | Gset/G51             | 1000   | 1000   | 11818   | 415051  | 239259885 | 4.230 | 56.566 | 3.217 | 74.370 | 2.595 | 92.206 | 1.31              | 1.63              |
| 34. | LPnetlib/lp_maros_r7 | 3136   | 9408   | 144848  | 853785  | 240685851 | 3.812 | 63.136 | 4.296 | 56.023 | 4.633 | 51.954 | 0.89              | 0.82              |
| 35. | TOKAMAK/utm5940      | 5940   | 5940   | 83842   | 1004940 | 242156356 | 4.471 | 54.157 | 3.347 | 72.358 | 2.815 | 86.024 | 1.34              | 1.59              |
| 36. | LPnetlib/lp_ken_18   | 105127 | 154699 | 358171  | 2229341 | 248618965 | 7.326 | 33.935 | 6.502 | 38.237 | 4.894 | 50.802 | 1.13              | 1.50              |
| 37. | Nemeth/nemeth22      | 9506   | 9506   | 1358832 | 1538058 | 250327160 | 7.733 | 32.372 | 7.283 | 34.373 | 8.023 | 31.203 | 1.06              | 0.96              |
| 38. | Okunbor/aft02        | 8184   | 8184   | 127762  | 1326827 | 265748075 | 4.658 | 57.051 | 3.741 | 71.036 | 3.709 | 71.651 | 1.25              | 1.26              |
| 39. | DRIVCAV/cavity18     | 4562   | 4562   | 138040  | 1054903 | 274463825 | 4.288 | 64.009 | 3.813 | 71.989 | 3.202 | 85.720 | 1.12              | 1.34              |
| 40. | DRIVCAV/cavity20     | 4562   | 4562   | 138040  | 1054903 | 274463825 | 4.307 | 63.731 | 3.836 | 71.548 | 3.189 | 86.062 | 1.12              | 1.35              |
| 41. | DRIVCAV/cavity22     | 4562   | 4562   | 138040  | 1054903 | 274463825 | 4.245 | 64.649 | 3.838 | 71.506 | 3.176 | 86.414 | 1.11              | 1.34              |
| 42. | DRIVCAV/cavity24     | 4562   | 4562   | 138040  | 1054903 | 274463825 | 4.902 | 55.985 | 3.823 | 71.791 | 3.178 | 86.351 | 1.28              | 1.54              |
| 43. | DRIVCAV/cavity26     | 4562   | 4562   | 138040  | 1054903 | 274463825 | 4.962 | 55.314 | 3.834 | 71.596 | 3.175 | 86.447 | 1.29              | 1.56              |
| 44. | DRIVCAV/cavity16     | 4562   | 4562   | 137887  | 1066633 | 280896845 | 4.849 | 57.926 | 3.785 | 74.216 | 3.239 | 86.727 | 1.28              | 1.50              |
| 45. | Grund/meg1           | 2904   | 2904   | 58142   | 649377  | 283105887 | 4.785 | 59.161 | 3.943 | 71.806 | 3.132 | 90.388 | 1.21              | 1.53              |
| 46. | Gset/G44             | 1000   | 1000   | 19980   | 475029  | 301694341 | 5.675 | 53.160 | 3.965 | 76.084 | 3.166 | 95.304 | 1.43              | 1.79              |
| 47. | Gset/G47             | 1000   | 1000   | 19980   | 475563  | 302000165 | 5.665 | 53.311 | 4.033 | 74.879 | 3.139 | 96.223 | 1.40              | 1.80              |
| 48. | Gset/G45             | 1000   | 1000   | 19980   | 476028  | 302723998 | 5.521 | 54.833 | 4.077 | 74.247 | 3.154 | 95.970 | 1.35              | 1.75              |
| 49. | Gset/G43             | 1000   | 1000   | 19980   | 477342  | 304185672 | 5.504 | 55.270 | 4.023 | 75.618 | 3.184 | 95.527 | 1.37              | 1.73              |
| 50. | Gset/G46             | 1000   | 1000   | 19980   | 477516  | 304273252 | 5.484 | 55.480 | 4.011 | 75.857 | 3.158 | 96.358 | 1.37              | 1.74              |
| 51. | Bai/qc2534           | 2534   | 2534   | 463360  | 858144  | 305227088 | 6.968 | 43.805 | 6.618 | 46.120 | 6.456 | 47.277 | 1.05              | 1.08              |
| 52. | Nasa/skirt           | 12598  | 12598  | 196520  | 1523961 | 311701613 | 4.989 | 62.479 | 4.339 | 71.843 | 4.189 | 74.417 | 1.15              | 1.19              |
| 53. | Nemeth/nemeth23      | 9506   | 9506   | 1506810 | 1725881 | 315479391 | 9.730 | 32.423 | 8.873 | 35.556 | 8.716 | 36.194 | 1.10              | 1.12              |
| 54. | Nemeth/nemeth24      | 9506   | 9506   | 1506550 | 1749670 | 324244980 | 8.786 | 36.904 | 8.567 | 37.847 | 8.601 | 37.697 | 1.03              | 1.02              |
| 55. | Nemeth/nemeth25      | 9506   | 9506   | 1511758 | 1749823 | 324304803 | 8.769 | 36.981 | 8.575 | 37.822 | 8.531 | 38.017 | 1.02              | 1.03              |

Table 8-2. continued

| No  | Problem              | m     | n     | nnz(A)  | nnz(L)  | flop       | Col    | - Col  | Sup    | -Col   | Sup    | -Sup   | ColCol/<br>SupCol | ColCol/<br>SupSup |
|-----|----------------------|-------|-------|---------|---------|------------|--------|--------|--------|--------|--------|--------|-------------------|-------------------|
| 110 |                      |       |       |         |         |            | wall   | MFLOPS | wall   | MFLOPS | wall   | MFLOPS | Supcor            | Бирбир            |
| 56. | Nemeth/nemeth26      | 9506  | 9506  | 1511760 | 1749823 | 324304803  | 8.786  | 36.910 | 9.898  | 32.764 | 8.944  | 36.258 | 0.89              | 0.98              |
| 57. | Averous/epb1         | 14734 | 14734 | 95053   | 1624166 | 332499130  | 5.011  | 66.348 | 4.390  | 75.748 | 3.731  | 89.123 | 1.14              | 1.34              |
| 58. | Mallya/lhr07         | 7337  | 7337  | 154660  | 1488879 | 399877411  | 6.708  | 59.615 | 5.799  | 68.960 | 5.063  | 78.985 | 1.16              | 1.32              |
| 59. | Boeing/nasa2910      | 2910  | 2910  | 174296  | 1048038 | 426161336  | 7.686  | 55.448 | 6.385  | 66.742 | 4.958  | 85.957 | 1.20              | 1.55              |
| 60. | Nasa/nasa2910        | 2910  | 2910  | 174296  | 1098730 | 458755010  | 8.932  | 51.361 | 6.434  | 71.299 | 5.039  | 91.046 | 1.39              | 1.77              |
| 61. | HB/bcsstk13          | 2003  | 2003  | 83883   | 848609  | 464061305  | 9.689  | 47.897 | 6.588  | 70.439 | 5.140  | 90.284 | 1.47              | 1.88              |
| 62. | HB/bcsstk28          | 4410  | 4410  | 219024  | 1297720 | 473030614  | 11.251 | 42.045 | 8.297  | 57.013 | 7.093  | 66.689 | 1.36              | 1.59              |
| 63. | Mallya/lhr07c        | 7337  | 7337  | 156508  | 1625798 | 487049380  | 9.775  | 49.826 | 7.765  | 62.724 | 7.309  | 66.639 | 1.26              | 1.34              |
| 64. | FIDAP/ex8            | 3096  | 3096  | 90841   | 1151433 | 549048309  | 10.953 | 50.127 | 7.845  | 69.987 | 6.013  | 91.306 | 1.40              | 1.82              |
| 65. | Boeing/nasa4704      | 4704  | 4704  | 104756  | 1306234 | 549561684  | 10.979 | 50.055 | 8.145  | 67.470 | 6.452  | 85.180 | 1.35              | 1.70              |
| 66. | Mallya/lhr10         | 10672 | 10672 | 228395  | 2171771 | 556076329  | 10.184 | 54.601 | 7.937  | 70.065 | 7.341  | 75.748 | 1.28              | 1.39              |
| 67. | Nasa/nasa4704        | 4704  | 4704  | 104756  | 1320652 | 560924686  | 10.245 | 54.751 | 8.136  | 68.947 | 6.465  | 86.762 | 1.26              | 1.58              |
| 68. | Mallya/lhr10c        | 10672 | 10672 | 232633  | 2230723 | 607887597  | 11.147 | 54.533 | 9.966  | 60.997 | 8.697  | 69.895 | 1.12              | 1.28              |
| 69. | Hollinger/g7jac020   | 5850  | 5850  | 42568   | 1210411 | 610432605  | 11.420 | 53.451 | 8.728  | 69.943 | 6.364  | 95.924 | 1.31              | 1.79              |
| 70. | Hollinger/g7jac020sc | 5850  | 5850  | 42568   | 1210413 | 610432931  | 11.174 | 54.631 | 8.653  | 70.544 | 6.434  | 94.876 | 1.29              | 1.74              |
| 71. | HB/bcsstk15          | 3948  | 3948  | 117816  | 1449877 | 624715699  | 12.420 | 50.300 | 9.134  | 68.396 | 7.596  | 82.247 | 1.36              | 1.64              |
| 72. | Averous/epb3         | 84617 | 84617 | 463625  | 4868600 | 635672400  | 9.918  | 64.092 | 8.584  | 74.051 | 7.770  | 81.810 | 1.16              | 1.28              |
| 73. | Mallya/lhr11         | 10964 | 10964 | 231806  | 2610715 | 838488207  | 17.395 | 48.202 | 13.419 | 62.484 | 11.731 | 71.478 | 1.30              | 1.48              |
| 74. | Mallya/lhr11c        | 10964 | 10964 | 233741  | 2708223 | 908962325  | 18.268 | 49.756 | 14.330 | 63.433 | 11.859 | 76.651 | 1.27              | 1.54              |
| 75. | LPnetlib/lp_pds_10   | 16558 | 49932 | 107605  | 1633555 | 948647731  | 21.615 | 43.889 | 15.601 | 60.806 | 11.262 | 84.231 | 1.39              | 1.92              |
| 76. | HB/bcsstk16          | 4884  | 4884  | 290378  | 2019675 | 961598107  | 16.539 | 58.142 | 14.981 | 64.189 | 13.580 | 70.812 | 1.10              | 1.22              |
| 77. | Boeing/crystk01      | 4875  | 4875  | 315891  | 2148267 | 1035304495 | 19.980 | 51.816 | 15.626 | 66.255 | 14.039 | 73.744 | 1.28              | 1.42              |
| 78. | Mallya/lhr14c        | 14270 | 14270 | 307858  | 3394088 | 1054889610 | 21.161 | 49.851 | 18.233 | 57.856 | 15.944 | 66.162 | 1.16              | 1.33              |
| 79. | HB/bcsstk17          | 10974 | 10974 | 428650  | 3095965 | 1101809421 | 19.752 | 55.783 | 15.849 | 69.520 | 13.924 | 79.131 | 1.25              | 1.42              |
| 80. | LPnetlib/lpi_cplex1  | 3005  | 5224  | 10947   | 1139265 | 1135195805 | 25.341 | 44.798 | 18.149 | 62.549 | 11.387 | 99.691 | 1.40              | 2.23              |
| 81. | Mallya/lhr14         | 14270 | 14270 | 305750  | 3617331 | 1252808831 | 31.719 | 39.497 | 24.969 | 50.174 | 22.263 | 56.274 | 1.27              | 1.42              |
| 82. | LPnetlib/lp_dfl001   | 6071  | 12230 | 35632   | 1544399 | 1254493929 | 28.214 | 44.464 | 21.106 | 59.437 | 13.596 | 92.266 | 1.34              | 2.08              |
| 83. | Nasa/pwt             | 36519 | 36519 | 326107  | 4999500 | 1262399344 | 23.138 | 54.560 | 17.201 | 73.392 | 14.027 | 89.998 | 1.35              | 1.65              |

Table 8-2. continued

| No   | Problem                 | m      | n      | nnz(A) | nnz(L)  | flop       | Col    | - Col  | Sup    | -Col   | Sup    | -Sup   | ColCol/<br>SupCol | ColCol/<br>SupSup |
|------|-------------------------|--------|--------|--------|---------|------------|--------|--------|--------|--------|--------|--------|-------------------|-------------------|
| 110  |                         |        |        |        |         |            | wall   | MFLOPS | wall   | MFLOPS | wall   | MFLOPS | Supcor            | Бирбир            |
| 84.  | FIDAP/ex40              | 7740   | 7740   | 456188 | 3107372 | 1283261286 | 23.970 | 53.535 | 19.189 | 66.875 | 17.754 | 72.279 | 1.25              | 1.35              |
| 85.  | Averous/epb2            | 25228  | 25228  | 175027 | 3711441 | 1294790649 | 24.386 | 53.096 | 18.888 | 68.550 | 13.705 | 94.476 | 1.29              | 1.78              |
| 86.  | Grund/meg4              | 5860   | 5860   | 25258  | 1500034 | 1350252050 | 32.528 | 41.510 | 22.298 | 60.555 | 14.167 | 95.307 | 1.46              | 2.30              |
| 87.  | Bomhof/circuit_2        | 4510   | 4510   | 21199  | 1652270 | 1383486656 | 31.682 | 43.668 | 20.931 | 66.096 | 13.918 | 99.400 | 1.51              | 2.28              |
| 88.  | HB/orani678             | 2529   | 2529   | 90158  | 1540627 | 1417599413 | 43.535 | 32.562 | 32.844 | 43.161 | 22.913 | 61.868 | 1.33              | 1.90              |
| 89.  | Mallya/lhr17c           | 17576  | 17576  | 381975 | 4385695 | 1447817515 | 31.436 | 46.056 | 26.640 | 54.348 | 23.050 | 62.811 | 1.18              | 1.36              |
| 90.  | Hamm/scircuit           | 170998 | 170998 | 958936 | 8418483 | 1487398273 | 24.585 | 60.501 | 20.820 | 71.442 | 17.889 | 83.147 | 1.18              | 1.37              |
| 91.  | Boeing/bcsstk38         | 8032   | 8032   | 355460 | 3072775 | 1533240723 | 31.879 | 48.095 | 22.753 | 67.386 | 17.625 | 86.992 | 1.40              | 1.81              |
| 92.  | Mallya/lhr17            | 17576  | 17576  | 379761 | 4477627 | 1538108643 | 35.828 | 42.931 | 31.620 | 48.644 | 28.513 | 53.944 | 1.13              | 1.26              |
| 93.  | Hollinger/jan99jac020   | 6774   | 6774   | 33744  | 2039668 | 1558251222 | 34.655 | 44.965 | 25.450 | 61.228 | 16.568 | 94.050 | 1.36              | 2.09              |
| 94.  | Hollinger/jan99jac020sc | 6774   | 6774   | 33744  | 2039735 | 1558308261 | 37.775 | 41.253 | 25.686 | 60.668 | 16.371 | 95.187 | 1.47              | 2.31              |
| 95.  | LPnetlib/lpi_ceria3d    | 3576   | 4400   | 21178  | 1590872 | 1561353042 | 39.223 | 39.807 | 29.752 | 52.478 | 21.077 | 74.080 | 1.32              | 1.86              |
| 96.  | HB/bcsstk18             | 11948  | 11948  | 149090 | 3082230 | 1574762140 | 31.001 | 50.797 | 23.781 | 66.219 | 16.916 | 93.095 | 1.30              | 1.83              |
| 97.  | Garon/garon2            | 13535  | 13535  | 373235 | 4324300 | 1672354266 | 34.173 | 48.937 | 25.193 | 66.383 | 19.829 | 84.337 | 1.36              | 1.72              |
| 98.  | Gset/G40                | 2000   | 2000   | 23532  | 1599906 | 1838023916 | 50.527 | 36.377 | 33.455 | 54.940 | 19.271 | 95.380 | 1.51              | 2.62              |
| 99.  | Gset/G36                | 2000   | 2000   | 23532  | 1605105 | 1844233063 | 47.477 | 38.845 | 33.468 | 55.105 | 19.215 | 95.979 | 1.42              | 2.47              |
| 100. | Gset/G42                | 2000   | 2000   | 23558  | 1609297 | 1853136197 | 50.247 | 36.881 | 33.687 | 55.011 | 19.528 | 94.896 | 1.49              | 2.57              |
| 101. | Gset/G41                | 2000   | 2000   | 23570  | 1606373 | 1853367465 | 44.957 | 41.225 | 33.715 | 54.971 | 19.376 | 95.653 | 1.33              | 2.32              |
| 102. | Gset/G39                | 2000   | 2000   | 23556  | 1608712 | 1854078664 | 51.052 | 36.317 | 33.917 | 54.665 | 19.619 | 94.503 | 1.51              | 2.60              |
| 103. | Gset/G37                | 2000   | 2000   | 23570  | 1612649 | 1859738409 | 51.160 | 36.351 | 33.732 | 55.133 | 19.522 | 95.262 | 1.52              | 2.62              |
| 104. | Gset/G38                | 2000   | 2000   | 23558  | 1615872 | 1860311384 | 50.763 | 36.647 | 34.440 | 54.015 | 19.515 | 95.328 | 1.47              | 2.60              |
| 105. | Gset/G35                | 2000   | 2000   | 23556  | 1614921 | 1861710845 | 50.412 | 36.930 | 33.715 | 55.219 | 19.644 | 94.774 | 1.50              | 2.57              |
| 106. | Boeing/bcsstm36         | 23052  | 23052  | 320606 | 4004046 | 1907288086 | 37.816 | 50.435 | 29.426 | 64.816 | 21.866 | 87.226 | 1.29              | 1.73              |
| 107. | Shyy/shyy161            | 76480  | 76480  | 329762 | 6570517 | 1912358951 | 50.137 | 38.143 | 39.184 | 48.804 | 32.678 | 58.522 | 1.28              | 1.53              |
| 108. | Goodwin/goodwin         | 7320   | 7320   | 324772 | 3695060 | 2180890000 | 43.796 | 49.797 | 33.438 | 65.222 | 23.203 | 93.991 | 1.31              | 1.89              |
| 109. | Brethour/coater2        | 9540   | 9540   | 207308 | 4140284 | 2287428000 | 45.637 | 50.122 | 34.634 | 66.046 | 24.803 | 92.225 | 1.32              | 1.84              |
| 110. | HB/bcsstk25             | 15439  | 15439  | 252241 | 5231323 | 2319027000 | 53.125 | 43.653 | 38.641 | 60.014 | 30.205 | 76.775 | 1.37              | 1.76              |
| 111. | Gset/G31                | 2000   | 2000   | 39980  | 1874295 | 2376445000 | 63.961 | 37.155 | 45.815 | 51.871 | 24.895 | 95.460 | 1.40              | 2.57              |

Table 8-2. continued

|      | Problem               | m     | n     | nnz(A)  | nnz(L)   | flop       | Col - Col |        | Sup-Col  |        | Sup-Sup  |        | ColCol/ | ColCol/ |
|------|-----------------------|-------|-------|---------|----------|------------|-----------|--------|----------|--------|----------|--------|---------|---------|
| No   |                       |       |       | ( )     | ( )      | 1          | wall      | MFLOPS | wall     | MFLOPS | wall     | MFLOPS | SupCol  | SupSup  |
| 112. | Gset/G26              | 2000  | 2000  | 39980   | 1875211  | 2377664000 | 67.386    | 35.284 | 45.545   | 52.205 | 24.754   | 96.052 | 1.48    | 2.72    |
| 113. | Gset/G27              | 2000  | 2000  | 39980   | 1876405  | 2379489000 | 66.650    | 35.701 | 45.644   | 52.131 | 24.646   | 96.546 | 1.46    | 2.70    |
| 114. | Gset/G22              | 2000  | 2000  | 39980   | 1877908  | 2381447000 | 61.996    | 38.413 | 45.520   | 52.316 | 24.697   | 96.427 | 1.36    | 2.51    |
| 115. | Gset/G29              | 2000  | 2000  | 39980   | 1879194  | 2384794000 | 62.426    | 38.202 | 45.485   | 52.431 | 24.720   | 96.471 | 1.37    | 2.53    |
| 116. | Gset/G28              | 2000  | 2000  | 39980   | 1879207  | 2385058000 | 64.490    | 36.984 | 46.119   | 51.716 | 24.957   | 95.568 | 1.40    | 2.58    |
| 117. | Gset/G24              | 2000  | 2000  | 39980   | 1880150  | 2386298000 | 67.208    | 35.506 | 45.868   | 52.025 | 24.738   | 96.464 | 1.47    | 2.72    |
| 118. | Gset/G23              | 2000  | 2000  | 39980   | 1880542  | 2387103000 | 64.595    | 36.955 | 45.548   | 52.408 | 24.935   | 95.734 | 1.42    | 2.59    |
| 119. | Gset/G30              | 2000  | 2000  | 39980   | 1883275  | 2396120000 | 63.192    | 37.918 | 45.546   | 52.608 | 24.904   | 96.213 | 1.39    | 2.54    |
| 120. | Gset/G25              | 2000  | 2000  | 39980   | 1884011  | 2397097000 | 68.206    | 35.145 | 45.921   | 52.200 | 24.973   | 95.987 | 1.49    | 2.73    |
| 121. | Graham/graham1        | 9035  | 9035  | 335472  | 4144723  | 2469852000 | 58.567    | 42.171 | 40.371   | 61.178 | 26.489   | 93.241 | 1.45    | 2.21    |
| 122. | Mallya/lhr34c         | 35152 | 35152 | 764014  | 8716749  | 2872392000 | 654.847   | 4.386  | 639.996  | 4.488  | 654.688  | 4.387  | 1.02    | 1.00    |
| 123. | Boeing/crystm02       | 13965 | 13965 | 322905  | 5438616  | 2874462000 | 115.264   | 24.938 | 100.896  | 28.489 | 92.635   | 31.030 | 1.14    | 1.24    |
| 124. | Mallya/lhr34          | 35152 | 35152 | 746972  | 8242179  | 3058159000 | 56.643    | 53.990 | 45.996   | 66.488 | 35.975   | 85.007 | 1.23    | 1.57    |
| 125. | LPnetlib/lp_qap12     | 3192  | 8856  | 38304   | 2407591  | 3087899000 | 79.632    | 38.777 | 61.432   | 50.265 | 32.322   | 95.535 | 1.30    | 2.46    |
| 126. | Rothberg/struct4      | 4350  | 4350  | 237798  | 3321077  | 3096405000 | 83.181    | 37.225 | 60.163   | 51.467 | 35.387   | 87.502 | 1.38    | 2.35    |
| 127. | HB/bcsstk29           | 13992 | 13992 | 619488  | 6143522  | 3701704000 | 93.482    | 39.598 | 73.840   | 50.132 | 52.193   | 70.923 | 1.27    | 1.79    |
| 128. | ATandT/onetone1       | 36057 | 36057 | 335552  | 5017027  | 3754836000 | 96.019    | 39.105 | 70.801   | 53.033 | 41.074   | 91.415 | 1.36    | 2.34    |
| 129. | Hollinger/mark3jac020 | 9129  | 9129  | 52883   | 3681913  | 3777894000 | 106.487   | 35.477 | 72.399   | 52.182 | 39.022   | 96.815 | 1.47    | 2.73    |
| 130. | Qaplib/lp_nug12       | 3192  | 8856  | 38304   | 2713965  | 3897213000 | 112.026   | 34.788 | 79.715   | 48.889 | 40.393   | 96.483 | 1.41    | 2.77    |
| 131. | Simon/olafu           | 16146 | 16146 | 1015156 | 7347770  | 4303513000 | 84.724    | 50.795 | 70.721   | 60.852 | 56.331   | 76.397 | 1.20    | 1.50    |
| 132. | Simon/raefsky1        | 3242  | 3242  | 293409  | 3422969  | 4310133000 | 122.783   | 35.104 | 90.204   | 47.782 | 55.344   | 77.879 | 1.36    | 2.22    |
| 133. | Simon/raefsky2        | 3242  | 3242  | 293551  | 3424313  | 4311574000 | 123.463   | 34.922 | 90.999   | 47.381 | 54.986   | 78.413 | 1.36    | 2.25    |
| 134. | Hollinger/g7jac040    | 11790 | 11790 | 107383  | 4544093  | 4481829000 | 115.122   | 38.931 | 88.527   | 50.627 | 46.728   | 95.913 | 1.30    | 2.46    |
| 135. | Hollinger/g7jac040sc  | 11790 | 11790 | 107383  | 4544097  | 4481831000 | 130.517   | 34.339 | 88.068   | 50.891 | 46.641   | 96.092 | 1.48    | 2.80    |
| 136. | Mulvey/pfinan512      | 74752 | 74752 | 596992  | 15377219 | 5195197000 | 85.829    | 60.529 | 72.168   | 71.988 | 58.314   | 89.090 | 1.19    | 1.47    |
| 137. | Mulvey/finan512       | 74752 | 74752 | 596992  | 15382253 | 5195893000 | 85.426    | 60.824 | 71.075   | 73.104 | 58.506   | 88.809 | 1.20    | 1.46    |
| 138. | Cote/mplate           | 5962  | 5962  | 142190  | 4640465  | 5244537000 | 153.641   | 34.135 | 106.799  | 49.107 | 55.689   | 94.175 | 1.44    | 2.76    |
| 139. | Mallya/lhr71c         | 70304 | 70304 | 1528092 | 17506866 | 5791794000 | 1274.009  | 4.546  | 1244.647 | 4.653  | 1274.651 | 4.544  | 1.02    | 1.00    |

Table 8-2. continued

| No   | Problem                 | m      | n      | nnz(A)  | nnz(L)   | flop        | Col     | - Col  | Sup     | -Col   | Sup     | -Sup   | ColCol/<br>SupCol | ColCol/<br>SupSup |
|------|-------------------------|--------|--------|---------|----------|-------------|---------|--------|---------|--------|---------|--------|-------------------|-------------------|
| 1,0  |                         |        |        |         |          |             | wall    | MFLOPS | wall    | MFLOPS | wall    | MFLOPS | Superi            | зироир            |
| 140. | Bomhof/circuit_1        | 2624   | 2624   | 35823   | 3371039  | 5834597000  | 171.487 | 34.024 | 129.136 | 45.182 | 59.314  | 98.368 | 1.33              | 2.89              |
| 141. | Mallya/lhr71            | 70304  | 70304  | 1494006 | 16426629 | 6074660000  | 125.157 | 48.536 | 91.430  | 66.440 | 71.807  | 84.597 | 1.37              | 1.74              |
| 142. | Bai/af23560             | 23560  | 23560  | 460598  | 11113062 | 6725722000  | 137.914 | 48.767 | 106.059 | 63.415 | 76.416  | 88.015 | 1.30              | 1.80              |
| 143. | HB/bcsstk33             | 8738   | 8738   | 591904  | 7063307  | 7191355000  | 225.907 | 31.833 | 180.477 | 39.846 | 115.526 | 62.249 | 1.25              | 1.96              |
| 144. | Goodwin/rim             | 22560  | 22560  | 1014951 | 12539614 | 7899598000  | 168.447 | 46.897 | 125.288 | 63.052 | 84.048  | 93.989 | 1.34              | 2.00              |
| 145. | Boeing/crystm03         | 24696  | 24696  | 583770  | 12126954 | 7959582000  | 757.712 | 10.505 | 730.646 | 10.894 | 697.881 | 11.405 | 1.04              | 1.09              |
| 146. | Simon/venkat01          | 62424  | 62424  | 1717792 | 20928396 | 8368295000  | 161.096 | 51.946 | 137.175 | 61.005 | 110.032 | 76.053 | 1.17              | 1.46              |
| 147. | Simon/venkat50          | 62424  | 62424  | 1717777 | 20938444 | 8375653000  | 158.082 | 52.983 | 135.781 | 61.685 | 110.151 | 76.038 | 1.16              | 1.44              |
| 148. | Simon/venkat25          | 62424  | 62424  | 1717763 | 20986556 | 8434109000  | 178.687 | 47.200 | 136.769 | 61.667 | 110.786 | 76.130 | 1.31              | 1.61              |
| 149. | Boeing/pcrystk02        | 13965  | 13965  | 968583  | 10581232 | 8448026000  | 195.257 | 43.266 | 147.950 | 57.101 | 125.779 | 67.166 | 1.32              | 1.55              |
| 150. | Hamm/hcircuit           | 105676 | 105676 | 513072  | 10042070 | 8504487000  | 257.074 | 33.082 | 175.713 | 48.400 | 88.737  | 95.839 | 1.46              | 2.90              |
| 151. | LPnetlib/lp_pds_20      | 33874  | 108175 | 232647  | 6827078  | 8597795000  | 266.394 | 32.275 | 193.859 | 44.351 | 97.914  | 87.810 | 1.37              | 2.72              |
| 152. | Boeing/crystk02         | 13965  | 13965  | 968583  | 10693425 | 8618372000  | 175.604 | 49.078 | 148.227 | 58.143 | 126.029 | 68.384 | 1.18              | 1.39              |
| 153. | Rothberg/struct3        | 53570  | 53570  | 1173694 | 18310916 | 8647195000  | 197.803 | 43.716 | 146.910 | 58.860 | 114.173 | 75.738 | 1.35              | 1.73              |
| 154. | Bova/rma10              | 46835  | 46835  | 2329092 | 16984768 | 8731659000  | 180.274 | 48.436 | 140.912 | 61.966 | 106.258 | 82.174 | 1.28              | 1.70              |
| 155. | LPnetlib/lp_fit2p       | 3000   | 13525  | 50284   | 4501500  | 9004500000  | 292.896 | 30.743 | 208.224 | 43.244 | 91.946  | 97.932 | 1.41              | 3.19              |
| 156. | Hollinger/g7jac050sc    | 14760  | 14760  | 145157  | 7140185  | 9330335000  | 285.102 | 32.726 | 204.642 | 45.593 | 97.036  | 96.154 | 1.39              | 2.94              |
| 157. | Gset/G56                | 5000   | 5000   | 24996   | 4732117  | 9381531000  | 292.330 | 32.092 | 221.523 | 42.350 | 97.896  | 95.832 | 1.32              | 2.99              |
| 158. | Gset/G55                | 5000   | 5000   | 24996   | 4732160  | 9381574000  | 276.865 | 33.885 | 223.153 | 42.041 | 97.451  | 96.270 | 1.24              | 2.84              |
| 159. | HB/psmigr_2             | 3140   | 3140   | 540022  | 4919808  | 10273540000 | 350.835 | 29.283 | 268.154 | 38.312 | 117.952 | 87.099 | 1.31              | 2.97              |
| 160. | HB/psmigr_1             | 3140   | 3140   | 543160  | 4919818  | 10273580000 | 427.466 | 24.034 | 267.662 | 38.383 | 118.558 | 86.655 | 1.60              | 3.61              |
| 161. | HB/psmigr_3             | 3140   | 3140   | 543160  | 4919818  | 10273580000 | 351.945 | 29.191 | 269.261 | 38.155 | 118.117 | 86.978 | 1.31              | 2.98              |
| 162. | Hollinger/mark3jac040   | 18289  | 18289  | 106803  | 9066438  | 11060620000 | 328.624 | 33.657 | 229.932 | 48.104 | 114.393 | 96.689 | 1.43              | 2.87              |
| 163. | Hollinger/jan99jac040   | 13694  | 13694  | 72734   | 8622550  | 13940050000 | 449.697 | 30.999 | 321.030 | 43.423 | 144.772 | 96.290 | 1.40              | 3.11              |
| 164. | Hollinger/jan99jac040sc | 13694  | 13694  | 72734   | 8622567  | 13940060000 | 446.690 | 31.207 | 326.138 | 42.743 | 146.535 | 95.131 | 1.37              | 3.05              |
| 165. | Boeing/msc10848         | 10848  | 10848  | 1229776 | 12305436 | 15149390000 | 444.361 | 34.092 | 313.221 | 48.366 | 163.239 | 92.805 | 1.42              | 2.72              |
| 166. | Hamm/memplus            | 17758  | 17758  | 99147   | 8425062  | 15490000000 | 529.188 | 29.271 | 379.717 | 40.794 | 160.856 | 96.297 | 1.39              | 3.29              |
| 167. | Simon/raefsky3          | 21200  | 21200  | 1488768 | 17243112 | 15892560000 | 399.429 | 39.788 | 288.577 | 55.072 | 192.717 | 82.466 | 1.38              | 2.07              |

Table 8-2. continued

| No   | Problem                 | m     | n     | nnz(A)  | nnz(L)   | flop        | Col      | - Col  | Sup      | -Col   | Sup     | -Sup   | ColCol/<br>SupCol | ColCol/<br>SupSup |
|------|-------------------------|-------|-------|---------|----------|-------------|----------|--------|----------|--------|---------|--------|-------------------|-------------------|
| 110  |                         |       |       |         |          |             | wall     | MFLOPS | wall     | MFLOPS | wall    | MFLOPS | Supcor            | опропр            |
| 168. | Hollinger/mark3jac060   | 27449 | 27449 | 160723  | 14166500 | 16904030000 | 490.097  | 34.491 | 348.329  | 48.529 | 174.843 | 96.681 | 1.41              | 2.80              |
| 169. | Vavasis/av41092         | 41092 | 41092 | 1683902 | 18270558 | 18366600000 | 565.145  | 32.499 | 398.189  | 46.125 | 204.424 | 89.845 | 1.42              | 2.76              |
| 170. | Hollinger/g7jac060      | 17730 | 17730 | 183325  | 10861304 | 18446460000 | 567.243  | 32.519 | 429.857  | 42.913 | 190.564 | 96.799 | 1.32              | 2.98              |
| 171. | Hollinger/g7jac060sc    | 17730 | 17730 | 183325  | 10861308 | 18446470000 | 565.457  | 32.622 | 427.197  | 43.180 | 190.587 | 96.788 | 1.32              | 2.97              |
| 172. | Zhao/Zhao1              | 33861 | 33861 | 166453  | 17495241 | 19950720000 | 602.258  | 33.127 | 423.641  | 47.093 | 207.343 | 96.221 | 1.42              | 2.90              |
| 173. | HB/bcsstk30             | 28924 | 28924 | 2043492 | 22445143 | 21049860000 | 724.263  | 29.064 | 529.288  | 39.770 | 292.793 | 71.893 | 1.37              | 2.47              |
| 174. | Boeing/pcrystk03        | 24696 | 24696 | 1751178 | 23086574 | 22805530000 | 548.315  | 41.592 | 459.979  | 49.580 | 349.848 | 65.187 | 1.19              | 1.57              |
| 175. | Boeing/crystk03         | 24696 | 24696 | 1751178 | 23259357 | 23099770000 | 550.409  | 41.968 | 460.847  | 50.125 | 350.200 | 65.962 | 1.19              | 1.57              |
| 176. | LPnetlib/lp_qap15       | 6330  | 22275 | 94950   | 9342597  | 24019620000 | 729.420  | 32.930 | 600.900  | 39.973 | 252.201 | 95.240 | 1.21              | 2.89              |
| 177. | Gset/G61                | 7000  | 7000  | 34296   | 8979461  | 24681460000 | 875.049  | 28.206 | 633.231  | 38.977 | 256.636 | 96.173 | 1.38              | 3.41              |
| 178. | Gset/G60                | 7000  | 7000  | 34296   | 8979541  | 24681680000 | 875.450  | 28.193 | 633.397  | 38.967 | 256.934 | 96.062 | 1.38              | 3.41              |
| 179. | Hollinger/mark3jac080   | 36609 | 36609 | 214643  | 20613574 | 27314350000 | 757.383  | 36.064 | 583.054  | 46.847 | 287.324 | 95.065 | 1.30              | 2.64              |
| 180. | Hollinger/g7jac080      | 23670 | 23670 | 259648  | 15669651 | 28794400000 | 948.473  | 30.359 | 685.252  | 42.020 | 297.416 | 96.815 | 1.38              | 3.19              |
| 181. | Hollinger/g7jac080sc    | 23670 | 23670 | 259648  | 15669656 | 28794400000 | 905.237  | 31.809 | 686.944  | 41.917 | 299.107 | 96.268 | 1.32              | 3.03              |
| 182. | Gset/G59                | 5000  | 5000  | 59140   | 9981679  | 29024400000 | 1021.634 | 28.410 | 790.764  | 36.704 | 303.843 | 95.524 | 1.29              | 3.36              |
| 183. | Gset/G58                | 5000  | 5000  | 59140   | 10002737 | 29084430000 | 1053.358 | 27.611 | 756.885  | 38.426 | 303.596 | 95.800 | 1.39              | 3.47              |
| 184. | HB/bcsstk31             | 35588 | 35588 | 1181416 | 24451314 | 29490740000 | 1247.392 | 23.642 | 910.942  | 32.374 | 406.700 | 72.512 | 1.37              | 3.07              |
| 185. | Qaplib/lp_nug15         | 6330  | 22275 | 94950   | 10732658 | 31052350000 | 1096.489 | 28.320 | 786.917  | 39.461 | 323.385 | 96.023 | 1.39              | 3.39              |
| 186. | Hollinger/mark3jac100   | 45769 | 45769 | 268563  | 26806307 | 36822480000 | 1128.636 | 32.626 | 802.982  | 45.857 | 382.885 | 96.171 | 1.41              | 2.95              |
| 187. | Wang/wang3              | 26064 | 26064 | 177168  | 21574595 | 38715380000 | 1209.351 | 32.013 | 918.913  | 42.132 | 405.571 | 95.459 | 1.32              | 2.98              |
| 188. | Hollinger/mark3jac120   | 54929 | 54929 | 322483  | 31137276 | 40519030000 | 1174.421 | 34.501 | 859.876  | 47.122 | 419.129 | 96.674 | 1.37              | 2.80              |
| 189. | Hollinger/jan99jac060   | 20614 | 20614 | 111903  | 18336070 | 41533620000 | 1454.943 | 28.547 | 1017.623 | 40.814 | 429.375 | 96.730 | 1.43              | 3.39              |
| 190. | Hollinger/jan99jac060sc | 20614 | 20614 | 111903  | 18336126 | 41533690000 | 1436.237 | 28.918 | 1017.520 | 40.819 | 429.977 | 96.595 | 1.41              | 3.34              |
| 191. | Wang/wang4              | 26068 | 26068 | 177196  | 22732723 | 45355570000 | 1518.457 | 29.870 | 1099.338 | 41.257 | 473.740 | 95.739 | 1.38              | 3.21              |
| 192. | Nasa/nasasrb            | 54870 | 54870 | 2677324 | 48435319 | 52334471145 | 1921.888 | 27.231 | 1280.019 | 40.886 | 734.449 | 71.257 | 1.50              | 2.62              |
| 193. | Hollinger/g7jac100      | 29610 | 29610 | 335972  | 24015227 | 54977160000 | 1684.484 | 32.637 | 1375.645 | 39.965 | 571.634 | 96.176 | 1.22              | 2.95              |
| 194. | Hollinger/g7jac100sc    | 29610 | 29610 | 335972  | 24015230 | 54977170000 | 1795.315 | 30.623 | 1364.166 | 40.301 | 570.660 | 96.340 | 1.32              | 3.15              |
| 195. | Hollinger/mark3jac140   | 64089 | 64089 | 376395  | 39399002 | 57531669512 | 1849.425 | 31.108 | 1283.443 | 44.826 | 596.607 | 96.431 | 1.44              | 3.10              |

Table 8-2, continued

| No   | Problem                 | m      | n      | nnz(A)  | nnz(L)   | flop        | Col -     | - Col  | Sup       | -Col   | Sup      | o-Sup  | ColCol/<br>SupCol | ColCol/<br>SupSup |
|------|-------------------------|--------|--------|---------|----------|-------------|-----------|--------|-----------|--------|----------|--------|-------------------|-------------------|
| 110  |                         |        |        |         |          |             | wall      | MFLOPS | wall      | MFLOPS | wall     | MFLOPS | Supcor            | Бирбир            |
| 196. | Bomhof/circuit_3        | 12127  | 12127  | 48137   | 16410265 | 61347520000 | 2204.868  | 27.824 | 1607.291  | 38.168 | 620.787  | 98.822 | 1.37              | 3.55              |
| 197. | Hollinger/jan99jac080   | 27534  | 27534  | 151063  | 26665966 | 63467570000 | 1947.108  | 32.596 | 1571.188  | 40.395 | 655.117  | 96.880 | 1.24              | 2.97              |
| 198. | Hollinger/jan99jac080sc | 27534  | 27534  | 151063  | 26666077 | 63467810000 | 2211.139  | 28.704 | 1569.065  | 40.449 | 657.747  | 96.493 | 1.41              | 3.36              |
| 199. | Gset/G64                | 7000   | 7000   | 82918   | 19509120 | 79735630000 | 2956.030  | 26.974 | 2235.549  | 35.667 | 832.551  | 95.773 | 1.32              | 3.55              |
| 200. | Gset/G63                | 7000   | 7000   | 82918   | 19546685 | 79879530000 | 2762.487  | 28.916 | 2161.287  | 36.959 | 836.140  | 95.534 | 1.28              | 3.30              |
| 201. | Simon/bbmat             | 38744  | 38744  | 1771722 | 48340616 | 81102354486 | 2672.973  | 30.342 | 1989.278  | 40.770 | 899.042  | 90.210 | 1.34              | 2.97              |
| 202. | Hollinger/g7jac120      | 35550  | 35550  | 412306  | 31923992 | 82034936754 | 2886.934  | 28.416 | 2080.726  | 39.426 | 852.448  | 96.235 | 1.39              | 3.39              |
| 203. | Hollinger/g7jac120sc    | 35550  | 35550  | 412306  | 31923992 | 82034936754 | 2888.288  | 28.403 | 2081.670  | 39.408 | 852.228  | 96.259 | 1.39              | 3.39              |
| 204. | Hollinger/g7jac140      | 41490  | 41490  | 488633  | 39338350 | 1.01059E+11 | 3590.847  | 28.143 | 2561.638  | 39.451 | 1060.150 | 95.325 | 1.40              | 3.39              |
| 205. | Hollinger/g7jac140sc    | 41490  | 41490  | 488633  | 39338350 | 1.01059E+11 | 3588.180  | 28.164 | 2563.804  | 39.418 | 1061.272 | 95.224 | 1.40              | 3.38              |
| 206. | Hollinger/jan99jac100   | 34454  | 34454  | 190224  | 37744175 | 1.02127E+11 | 3416.191  | 29.895 | 2584.148  | 39.521 | 1072.911 | 95.187 | 1.32              | 3.18              |
| 207. | Hollinger/jan99jac100sc | 34454  | 34454  | 190224  | 37744175 | 1.02127E+11 | 3198.297  | 31.932 | 2582.730  | 39.542 | 1065.001 | 95.894 | 1.24              | 3.00              |
| 208. | Hollinger/jan99jac120   | 41374  | 41374  | 229385  | 48385209 | 1.3588E+11  | 4836.205  | 28.096 | 3460.230  | 39.269 | 1417.700 | 95.846 | 1.40              | 3.41              |
| 209. | Hollinger/jan99jac120sc | 41374  | 41374  | 229385  | 48385209 | 1.3588E+11  | 4850.367  | 28.014 | 3456.805  | 39.308 | 1417.664 | 95.848 | 1.40              | 3.42              |
| 210. | Ronis/xenon1            | 48600  | 48600  | 1181120 | 57274787 | 1.36106E+11 | 4908.634  | 27.728 | 3456.457  | 39.377 | 1411.972 | 96.394 | 1.42              | 3.48              |
| 211. | Hollinger/g7jac160      | 47430  | 47430  | 564952  | 50057053 | 1.4722E+11  | 5317.605  | 27.685 | 3845.311  | 38.286 | 1551.527 | 94.887 | 1.38              | 3.43              |
| 212. | Hollinger/g7jac160sc    | 47430  | 47430  | 564952  | 50057053 | 1.4722E+11  | 5304.352  | 27.755 | 3830.373  | 38.435 | 1547.406 | 95.140 | 1.38              | 3.43              |
| 213. | ATandT/twotone          | 120750 | 120750 | 1206265 | 54135558 | 1.4964E+11  | 5067.283  | 29.531 | 3959.697  | 37.791 | 1535.921 | 97.427 | 1.28              | 3.30              |
| 214. | Li/pli                  | 22695  | 22695  | 1350309 | 49861690 | 1.58264E+11 | 5093.441  | 31.072 | 4178.776  | 37.873 | 1775.458 | 89.140 | 1.22              | 2.87              |
| 215. | Hollinger/g7jac180sc    | 53370  | 53370  | 641290  | 56321164 | 1.63043E+11 | 5523.093  | 29.520 | 4208.354  | 38.743 | 1707.456 | 95.489 | 1.31              | 3.23              |
| 216. | Hollinger/g7jac200sc    | 59310  | 59310  | 717620  | 63537939 | 1.83407E+11 | 6168.445  | 29.733 | 4716.108  | 38.890 | 1912.268 | 95.911 | 1.31              | 3.23              |
| 217. | Qaplib/lp_nug20         | 15240  | 72600  | 304800  | 63193703 | 4.49828E+11 | 16554.380 | 27.173 | 12261.373 | 36.687 | 5592.126 | 80.440 | 1.35              | 2.96              |

# CHAPTER 9 CONCLUSION AND FUTURE WORK

The experimental results conclusively show that the supernode-supernode numerical Cholesky factorization gives a much better performance then the simplicial column-column numerical factorization even when the supernodal columns are interspersed. The performance improvement is approximately 2 to 3.5 times for large matrices. Thus supernodes can be used to exploit the similarity within the sparsity structure to reduce indirect referencing and to improve cache reusability. This technique can be used in a variety of applications where the time requirement is critical.

There are several other implementations of the supernodal method such as SPOOLES. A performance comparison with these other implementations is left for future work. Supernodal updates and downdates to the sparse Cholesky factor is an area of further study. Better heuristics for determining the supernodal elimination tree can be researched.

# APPENDIX A MATLAB SOURCE CODE FOR SYMBOLIC FACTORIZATION

function [L,Parent] = symfact4(A) %symfact4 is a function that returns the pattern for the Cholesky factor of AA' %input parameters: A: m \* n sparse matrix. AA' is to be factorized symbolically. %output parameters : L: m \* m sparse matrix having pattern for Cholesky factor L of AA'. % %get dimensions of A [m,n] = size(A);Parent = zeros (1,m); %% store parents of each column of L %% row vector for storing min nz row index of %% each col of A AC = zeros (1,n); for j = 1:nAC(j) = min(find(A(:,j)));%% set L to an identity matrix of size m \* m L = speye(m);for j = 1:m%% Lj = Lj U (min Ak) for k = find (AC == j) L(j+1:m,j) = L(j+1:m,j) | A(j+1:m,k); %% Lj = Lj U Lc
for c = find (Parent == j)
 L(j+1:m,j) = L(j+1:m,j) | L(j+1:m,c); %% store parent of j in Parent p = min (find (L (j+1:m,j))); if ~isempty (p) Parent (j) = p + j ;

end

## APPENDIX B SOURCE CODE FOR COLUMN-COLUMN FACTORIZATION IN C

```
/*
     Numerical LDL' factorization.
     Matlab calling syntax is:
        [Lx, D] = ldlcc (A, Basis, sigma, Lp, Li, Lnz);
     Author: Dr. Tim Davis (davis@cise.ufl.edu), University of Florida.
     The factorization is:
        Af = A (:, basis)
B = sigma*I + Af*Af'
LDL' = B
     The matrix_L is stored in O-based column_form.
     A is a Matlab sparse matrix, which is held in O-based column form.
     A must be in packed form, with sorted columns.
     The pattern of L has already been computed, and is in Lp, Li, and Lnz.
     This routine just computes Lx and D. All the other arguments are not modified. L->m is not used. The columns of L must be sorted.
     The diagonal of L is not stored (L is unit diagonal).
     Returns TRUE if the factorization was successful, FALSE otherwise.
     This routine performs a number of flops exactly equal to:
        sum (for each column j of Af) of (Anz (j)^2 + Anz (j)), to form B
        sum (for each column j of L ) of (Lnz (j)^2 + 3*Lnz (j), to factorize B
     where Anz (j) is the number of nonzeros in column j of Af, and Lnz (j) is the number of nonzero in column j of L below the diagonal.
#include "sparse.h"
PUBLIC int ldlcc
                                 /* in packed form, with sorted columns */
/* with sorted columns */
/* basis set, uses Basis->list [0..Basis->size-1]*/
/* normally 1e-12 for LPDASA */
     Sparse_Matrix *A,
     Sparse_Matrix *L,
     Set *Basis,
     double sigma,
     double D [],
                                  /* D: diagonal of the matrix D */
    double W [],
int Link [],
int First [],
                                  /* W [0..n-1] */
/* Link [0..n-1] */
/* First [0..n-1] */
     /* for walking through Af transpose: */
int Ahead [], /* Ahead [0..L->r
                                 /* Ahead [0..L->ncol-1], Ahead [j] is head of */
     int
```

```
/* link list of cols of A that apply to col j */
                       /* of L */
/* Anext [0..A->ncol-1], remainder of */
/* link list */
         Anext [],
   int
                       /* TINK TISE */
/* Aleft [0..A->ncol-1], Aleft [j] points to */
/* remainder of col j */
/* Aleft [j] is EMPTY if j is not in Basis */
   int
         Aleft []
)
   /* ==== local variables =========== */
   Ax = A->x
   Ap = A -> p
   Li = L->i
   Lx = L->x
   Lp = L->p;
   Lnz = L->nz;
   ln = L->ncol;
   List = Basis->list;
   size = Basis->size :
   /* ==== initializations =========== */
   for (j = 0 ; j < ln ; j++)
     Ahead [j] = EMPTY ;
Link [j] = EMPTY ;
W [j] = 0.0 ;
   /st place each column of the basis set on the link list corresponding to st/
   /* the smallest row index in that column */
   for (i = 0 ; i < size ; i++)
     k = List [i] ;
p = Ap [k] ;
Aleft [k] = p ;
j = Ai [p] ;
Anext [k] = Ahead [j] ;
Ahead [j] = k ;
   /* ============= */
   for (j = 0 ; j < ln ; j++)
        === compute jth column of sigma*I + Af*Af' =========== */
     W[j] = sigma;
      /* for each nonzero A (j,k) in row j of A do */ for (k = Ahead [j] ; k != EMPTY ; k = nextk)
         /* determine next column of A that modifies column j of B */
         nextk = Anext [k] ;
```

```
/* find the A (j,k) entry in column k of A */
    p = Aleft [k];
    /* compute w (j) += A (j,k) * A (j,k) */
    a_jk = Ax [p] ;
W [j] += a_jk * a_jk ;
    /* compute with the remainder of A (j+1,k) */
    p2 = Ap [k+1];
    if (p < p2)
       /* place column k on link list of next row of A */
       nextj = Ai [p];
Anext [k] = Ahead [nextj];
Ahead [nextj] = k;
       /st advance for the next row of A st/
       Aleft [k] = p;
       /* compute W (j+1:ln) += A (j+1:ln,k) * A (j,k) */
       for (; p < p2^-; p++)
           W [Ai [p]] += Ax [p] * a_jk ;
    }
}
   === compute jth column of L (unscaled) ========== */
/* ================== */
/* for each nonzero L (j,k) in row j of L (:,1:j-1) do */
for (k = Link [j] ; k != EMPTY ; k = nextk)
    /* determine next column of L that modifies column j of L ^*/
    nextk = Link [k];
    /* find the L (j,k) entry in column k of L */
    p = First [k];
    /* compute w (j) -= L (j,k) * L (j,k) * D (k) */ l_jk = Lx [p]; l_jk_times_d_k = l_jk * D [k]; w [j] -= l_jk * l_jk_times_d_k;
    /* compute with the remainder of L (j+1:n,k) */
    p2 = Lp [k] + Lnz [k] ;
if (p < p2)
       /* place column k on link list of next column of L */
       nextj = Li [p] ;
Link [k] = Link [nextj] ;
Link [nextj] = k ;
       /st advance for the next column of L st/
       First [k] = p;
       /* compute W (j+1:ln) -= L (j+1:ln,k) * L (j,k) * D (k) */
       /* non-pointer version: */
       for (; p < p2; p++)
           W [Li [p]] -= Lx [p] * 1_jk_times_d_k ;
    }
}
/* === gather the results and scale ============== */
```

```
/* ----- */
        p = Lp [j];
p2 = p + Lnz [j];
if (w [j] <= 0)
{</pre>
             /* matrix is not symmetric positive definite */
             return (FALSE);
        /* compute the diagonal, D (j,j) */
        d_j = W [j] ;
D [j] = d_j ;
W [j] = 0.0 ;
        /* gather and scale L (j+1:n,j) */ if (p < p2) {
             /* prepare column j to modify its parent */
nextj = Li [p] ;
Link [j] = Link [nextj] ;
Link [nextj] = j ;
             /* advance to the first offdiagonal entry in column j of L */
             First [j] = p;
             /* gather column j of L, and divide by D (j,j) */ for ( ; p < p2 ; p++) { . . . . .
                i = Li [p];
Lx [p] = W [i] / d_j;
W [i] = 0.0;
        }
     }
     return (TRUE);
}
```

### APPENDIX C SOURCE CODE FOR SUPERNODE-SUPERNODE FACTORIZATION IN C

```
*/----*
   ldlSupSup : Numerical LDL' factorization using sup-sup .
    Matlab calling syntax is:
       [Lx, D] = ldlSupSup (A, Basis, sigma, Lp, Li, Lnz, Parent, tt);
    Authors :
       The authors of the code are Adrian Mascarenhas and Dr. Tim Davis (davis@cise.ufl.edu),University of Florida.
       March 17, 2002
    The factorization is:
    Af = A (:, basis)
B = sigma*I + Af*Af'
LDL' = B
    The matrix L is stored in 0-based column form. A is a Matlab sparse matrix, which is held in 0-based column form. A must be in packed form, with sorted columns.
    The pattern of L has already been computed, and is in Lp, Li, and Lnz.
    This routine just computes Lx and D. All the other arguments are not modified. L->m is not used. The columns of L must be sorted.
    The diagonal of L is not stored (L is unit diagonal).
    Returns TRUE if the factorization was successful. FALSE otherwise.
    This routine performs a number of flops exactly equal to:
    sum (for each column j of Af) of (Anz (j)^2 + Anz (j)), to form B
    sum (for each column j of L ) of (Lnz (j)^2 + 3*Lnz (j)), to factorize B
    where Anz (j) is the number of nonzeros in column j of Af, and Lnz (j) is the number of nonzero in column j of L below the diagonal.
*/
#include "sparse.h"
#include "mkn.h"
#include "mKn.h"
#include "mKN.h"
```

```
==== mMKN ROUTINE=========== */
              This routine is used to do the block computation of \mathsf{cmod}(\mathsf{J},\mathsf{K}). This is highest level routine of the block computation.
*/
PRIVATE void mMKN
                                   /* length of the updating block of supernode K */
/* width of supernode K */
/* width of the intersection set */
/* pk [32]; arrange of pointers to the columns of
     int M,
     int K,
     int N.
     double *pk [],
                                       the supernode K*/
                                   /* pointer to row indices of supernode K */
/* B[32][32],copy of l_jk_times_d_k entries stored
by row in 32-by-32 array */
/* Wx [(maxColLength + 1) * SnodeSizeLimit],
initialized to 0.0 */
/* IntersectMap [32]; mapping of columns of Supernode
     int *ik,
     double B [][],
     double wx [],
     int IntersectMap [].
                                      J to Wx ; */
                                   /* Map [0..L->ncol-1]; mapping of row indices of supernode K to Wx */
     int Map []
)
     int i = 0;
                                   /* loop variable */
     /*======= ITERATE ALONG M IN STEPS OF 4
                                                                      =======*/
     if (M >= 4)
          for (i = 0 ; (i+4) \ll M ; i += 4)
               m_4KN (K,N,pk,&ik,B,Wx,IntersectMap,Map) ;
          }
     }
     /* special cases when M < 4 */
     switch (M % 4)
          case 0:
               break ;
          case 1:
                /* M == 1 */
                m_1KN (K,N,pk,&ik,B,Wx,IntersectMap,Map);
                break ;
          case 2:
/* M == 2 */
                m_2KN (K,N,pk,&ik,B,Wx,IntersectMap,Map);
               break ;
          case 3:
/* M == 3 */
                m_3KN (K,N,pk,&ik,B,Wx,IntersectMap,Map);
     }
}
```

```
/* ------ */
    This is the main routine that does the sparse Cholesky factorization.
PUBLIC int ldlSupSup
    Sparse_Matrix *A,
                                       /* in packed form, with sorted columns */
                                       /* with sorted columns */
    Sparse_Matrix *L,
                                       /* the basis set, uses
Basis->list [0..Basis->size-1]*/
    Set *Basis,
                                        /* normally 1e-\overline{1}2 for LPDASA */
    double sigma,
    double D [].
                                       /* D diagonal of the matrix D */
    double w [],
                                       /* W [0..L->ncol-1] */
                                       /* Slist [0..L->ncol-1];contains supernodes in order_*/
    int
             Slist [],
                                           Schild [0..L->ncol-1], contains maximum
    int
             Schild [].
                                            superchild */
                                           Sp [0..L->ncol], contains boundary pointers
for supernodes in Slist*/
    int
             Sp [],
                                       /* Link [0..L->ncol-1] */
/* First [0..L->ncol-1] */
            Link [], First [],
    int
    int
    int
             Ahead [],
                                        /* Ahead [0..L->ncol-1], Ahead [j] is head
                                           of link list of cols of A that apply to col j of L */
                                          Anext [0..A->ncol-1], remainder of link list */
    int
             Anext [],
                                       /* Aleft [0..A->ncol-1], Aleft [j] points to remainder of col j */
/* Aleft [j] is EMPTY if j is not in Basis */
/* Col_to_Snode_Map [0..L->ncol-1], maps columns to supernodes */
/* Map [0..->ncol-1] */
    int
             Aleft [],
    int Col_to_Snode_Map [],
                                        /* Map [0..L->ncol-1] */
    int Map [],
    int R [],
double v [],
                                        /* R [0..L->ncol-1] */
/* v [0..L->ncol-1] */
                                        /* maximum width of supernode. set to 32 */
    int SnodeSizeLimit,
                                           wx [(maxColLength + 1) * SnodeSizeLimit],
initialized to 0.0 */
    double Wx []
)
{
    int i,j;
                                        /* loop variables */
    int p,p1,p2;
int k;
                                           index pointers within Li,Lx,Ai or Ax */
                                        /* next column k */
    int nextk;
     int nextK;
                                           next supernode K */
                                        /*
                                           next column j */
    int nextj;
                                           next supernode J */
    int nextJ;
                                           A -> i */
    int *Ai;
    int *Ap;
                                           A -> p */
    int ln;
                                           L -> ncol */
    int *Li;
                                        .
/*
                                           L -> i */
    int *Lp;
                                           L -> p */
                                       /*
    int *Lnz:
                                           L -> nz */
    int *List;
                                           Basis-> list */
                                          Basis-> size */
offset_for_relative index R */
    int size;
    int roffset:
                                       /* Spp [J] */
/* Spp [J+1] */
/* RR = &R [roffset] */
    int SppJ;
    int SppJ_plus_1;
int *RR;
                                       /* offset for First for columns within a
    int FirstOffset;
```

```
supernode */
int m;
int n;
                                                  /* p2 - p1 or p2 - p */
/* col index within Wx */
int kk ;
int col;
int Slist_ctr;
int no_of_snodes;
                                                  /* counter for Slist */
                                                  /* number of supernodes */
                                                  /* counter for Sp */
int sp_ctr;
                                                 /* Counter for Sp */
/* first column of supernode K */
/* first column of supernode J */
/* scalar for L (j,k) */
/* scalar for 1/D(j) */
/* scalar for A(j,k) */
/* scalar for L(j,k) * D(k) */
/* * * * * */
int Head_of_K;
int Head_of_J ;
double 1_jk;
double inv_d_j;
double a_jk;
double l_jk_times_d_k;
double *Ax;
                                                  /* A -> X */
double *Lx;
double *Lxx;
                                                      L -> X */
Lxx = &Lx [] */
                                                  /*
                                                 /* column within superode */
/* scalar for D [scol] */
/* index within Slist */
int scol;
double D_scol ;
int jindex,jindex1,jindex2;
int jlast;
                                                  /* last column within supernode J */
/* supernodes */
int J,K;
int *Spp;
int one = 1;
                                                      Spp = &Sp [] */
                                                 /* kk - 1 */
/* size of supernode */
/* - l_jk_times_d_k */
/* width of supernode ; Spp [J-1] - Spp [J] */
/* Widel - Park [] */
int kk_minus_1;
int CurrSnodeSize;
double neg_l_jk_times_d_k ;
int WxCol ;
                                                 /* width of supernode; Spp [J-I] - Spp [J] */
/* Wcol = &wx [] */
/* BB = & B [] */
/* scalar for D (j) in dense LDL */
/* scalar for L*v in dense LDL */
/* array for storing l_jk_times_d_k scalars */
/* columns in J to be updated by K */
/* mapping of intersection columns into Wx */
/* arguments for mMKN M-MM K-Kk N-Nn */
double *Wcol;
double *BB;
double dj;
double L_times_v ;
double B [32] [32] ;
int Intersect [32] ;
int IntersectMap [32] ;
                                                  /* arguments for mMKN, M=Mm,K=Kk,N=Nn */
/* pointers within Lx for columns of supernode
int Mm,Kk,Nn;
double * pk [32] ;
                                                       K */
                                                  /* pointer within Li for Head_of_K */
/* size of the Intersection set */
int * ik;
int nintersect;
Ai = A->i
Ax = A->x
Ap = A -> p
Li = L->i
Lx = L->x
Lp = L -> p;
Lnz = L->nz
ln = L->ncol;
List = Basis->list ;
size = Basis->size ;
                  SUPERNODAL ELIMINATION TREE CONSTRUCTION
/*======== CREATING Schild LIST =============================
for (i = 0 ; i < ln ; i++)
      Schild [i] = EMPTY;
for (i = 0 ; i < ln ; i++)
      j = L->parent[i];
```

```
if(j>0)
          if ((Lnz[i] - Lnz[j]) == 1) Schild[j] = i;
   }
   /*========== CREATING Slist =============*/
   Slist_ctr = ln-1 ;
no_of_snodes = 0 ;
                      /* decrementing counter for Slist */
                     /* decrementing counter for Sp */
   sp\_ctr = ln ;
#define MARKED (-100)
   for (i = ln - 1; i >= 0; i--)
      if (Schild [i] != MARKED) /* If i is unmarked */
          no_of_snodes++ ;
          CurrSnodeSize = 1 :
          Slist [Slist_ctr] = i ;
          Sp [sp_ctr] = Slist_ctr + 1 ;
Slist_ctr-- ;
          sp_ctr--
          i = Schild [i] ;
          Schild [i] = MARKED;
          while (j > 0 && CurrSnodeSize < SnodeSizeLimit)
             Slist [Slist_ctr] = j ;
             CurrSnodeSize ++ ;
             Slist_ctr--
             k = Schild [j];
             Schild [j] = MARKED ;
             j = k;
          }
      }
   }
   Sp [sp_ctr] = Slist_ctr + 1 ;
   Spp = &Sp [sp_ctr] ; /* Make Spp pointer to point to the first
                       NON-EMPTY value of Sp */
   for (i = 0 ; i < no_of_snodes ; i++)
      k = Spp [i+1];
      for (j = Spp [i] ; j < k ; j++)
          Col_to_Snode_Map [Slist [j]] = i ;
      }
   }
   for (j = 0 ; j < ln ; j++)
      Ahead [j] = EMPTY;
Link [j] = EMPTY;
W [j] = 0.0;
```

/st place each column of the basis set on the link list corresponding to the smallest row index in that column st/

```
for (i = 0 ; i < size ; i++) {
    k = List_{\underline{i}}[i];
    A = List[];
p = Ap [k];
Aleft [k] = p;
j = Ai [p];
Anext [k] = Ahead [j];
Ahead [j] = k;
}
        for (J = 0 ; J < no_of_snodes ; J++)
    SppJ = Spp [J];
    SppJ_plus_1 = Spp [J+1] ;
    WxCol = SppJ_plus_1 - SppJ ; /* width of supernode J */
    Head_of_J = Slist [SppJ] ; /* First node of Supernode J */
    p = Lp [Head_of_J]
    p2 = p + Lnz [Head_of_J];
    /* WxCol == 1 do Supernode-Column
        WxCol > 1 do Supernode-Supernode */
    if (wxcol == 1)
         //* === SUPERNODE COLUMN (supcol) FACTORIZATION ============= */
          j = Head\_of\_J;
         /* ======SUP-COL: COMPUTE jth COLUMN OF sigma*I + Af*Af'===== */
        W[j] = sigma;
         /* for each nonzero A (j,k) in row j of A do */
for (k = Ahead [j] ; k != EMPTY ; k = nextk)
              /* determine next column of A that modifies column j of B ^*/
             nextk = Anext [k] ;
             /* find the A (j,k) entry in column k of A */
             p = Aleft [k];
             /* compute w_{j}(j) += A(j,k) * A(j,k) */
             a_jk = Ax [p] ;
W [j] += a_jk * a_jk ;
              /* compute with the remainder of A (j+1,k) */
             p++;
p2 = Ap [k+1];
if (p < p2)
                  /* place column k on link list of next row of A */
                 nextj = Ai [p] ;
Anext [k] = Ahead [nextj] ;
Ahead [nextj] = k ;
                  /* advance for the next row of A */
```

```
Aleft [k] = p;
         /* compute W (j+1:ln) += A (j+1:ln,k) * A (j,k) */
         for (; p < p2; p++)
             W [Ai [p]] += Ax [p] * a_jk ;
         }
    }
}
/* ======SUP-COL: COMPUTE jth COLUMN OF L (UNSCALED)======= */
for (K = Link [J] ; K != EMPTY ; K = nextK)
    /* determine next supernode that modifies column j of L */
    nextK = Link [K] ;
     /* calculate offset for the first col in the supernode K */
    Head_of_K = Slist [Spp [K]] ;
FirstOffset = First [K] - Lp [Head_of_K] ;
    p1 = First [K] ;
p2 = Lp [Head_of_K] + Lnz [Head_of_K] ;
    kk = p2 - p1;
    jindex1 = Spp [K]
    jindex2 = Spp [K+1];
      '* check if supernode K has more than one column */
    if ((jindex2 - jindex1) > 1 \& kk > 0)
         scol = Slist [jindex1] ;
         /* compute p1 for scol within K using FirstOffset */
         p1 = Lp [scol] + FirstOffset--;
         /* compute scalar */
         Lxx = &Lx [p1];
l_jk = Lxx [0];
l_jk_times_d_k = l_jk * D [scol];
         /* initialize Wx */
         for (k = 0 ; k < kk ; k++)
             Wx [k] = Lxx [k] * l_jk_times_d_k ;
         jindex1++ ;
         /* compute Wx for remaining columns in supernode K */
         for ( ; jindex1 < jindex2 ; jindex1++)</pre>
             scol = Slist [jindex1] ;
             /* compute p1 for scol within K using FirstOffset */
p1 = Lp [scol] + FirstOffset--;
              /* compute scalar */
             Lxx = &Lx [p1];
l_jk = Lxx [0];
l_jk_times_d_k = l_jk * D [scol];
```

#

```
/* accumulate updates into dense vector Wx */
                                   for (k = 0 ; k < kk ; k++)
                                               Wx [k] += Lxx [k] * l_jk_times_d_k ;
                                   }
                          }
                        /* scatter_Wx [] into W */
                       p = First [K];
for (i = 0; i < kk; i++, p++)
                                   W [Li [p]] -= Wx [i];
            }
else
                      supernode K has only one column */
                       if (kk > 0)
                                   /* compute scalar */
l_jk = Lx [p1] ;
                                   l_j = 1, l_j = 1,
                                   /* scatter into W [...] */
                                   p = First [K];
for (i = 0; i < kk; i++, p++)
                                              W [Li [p]] -= Lx [p] * 1_jk_times_d_k ;
                                   }
                       }
            }
            /st advance for the next column of L st/
            First [K]++;
            /*place supernode K on link list of next singleton supernode
              of L */
            nextj = Li [First [K]] ;
           nextJ = Col_to_Snode_Map [nextj] ;
Link [K] = Link [nextJ] ;
Link [nextJ] = K ;
/* ======= SUP-COL: GATHER RESULTS SO FAR ========= */
p = Lp [j];
p2 = p + Lnz [j];
D [j] = W [j] ;
W [j] = 0.0 ;
for (; p < p2; p++)
            i = Li [p]
           1 = L1 [p];
Lx [p] = W [i];
W [i] = 0.0;
}
/* ======== SUP-COL : SCALING ============ */
p = Lp [j];
p2 = p + Lnz [j] ;
if (D [j] <= 0)
            /* matrix is not symmetric positive definite */
            return (FALSE);
/* scale L (j+1:n,j) */
```

```
if (p < p2)
           /* the diagonal, D (j,j) */ inv_d_j = 1.0 / D [j] ;
           /* advance to the first offdiagonal entry in column j of L */
           First [J] = Lp [j];
           /* divide col j of L by D (j,j) */
           for (; p < p2; p++)
               Lx [p] *= inv_d_j ;
       }
   /*======SUP-COL: PREPARE SUPERNODE J TO MODIFY ITS PARENT===== */
   p = First [J] ;
   p2 = p + Lnz [Head_of_J];
   if (p < p2)
       nextj = Li [p] ;
nextJ = Col_to_Snode_Map [nextj] ;
       Link [J] = Link [nextJ];
       Link [nextJ] = J;
   }
}
else
{
    /* WxCol > 1 */
           /* ========= SUP-SUP: CREATE Map FOR J ======== */
   Head_of_J = Slist [SppJ] ; /* First node of Supernode J */
   p = Lp [Head_of_J] ;
   p2 = p + Lnz [Head_of_J];
   Map [Head_of_J] = 0;
for (i = 1; p < p2; p++, i++)
       Map [Li [p]] = i * WxCol;
   }
   /* ====== SUP-SUP: COMPUTE sigma*I + Af*Af' FOR SUPERNODE J ====== */
   for (jindex = SppJ ; jindex < SppJ_plus_1 ; jindex++)</pre>
       j = Slist [jindex] ;
       W[j] = sigma;
       /* for each nonzero A (j,k) in row j of A do */
for (k = Ahead [j] ; k != EMPTY ; k = nextk)
           /* determine next column of A that modifies column j of B */
           nextk = Anext [k] ;
```

/\* find the A (j,k) entry in column k of A \*/

```
p = Aleft [k];
        /* compute W (j) += A (j,k) * A (j,k) */ a_jk = Ax [p] ; W [j] += a_jk * a_jk ;
         /* compute with the remainder of A (j+1,k) */
        p++;
p2 = Ap [k+1];
if (p < p2)
             /* place column k on link list of next row of A */
             nextj = Ai [p] ;
Anext [k] = Ahead [nextj] ;
             Ahead [nextj] = k;
             /* advance for the next row of A */
             Aleft [k] = p;
             /* compute W (j+1:ln) += A (j+1:ln,k) * A (j,k) */
             for (; p < p2; p++)
                  W [Ai [p]] += Ax [p] * a_jk ;
             }
         }
    }
    /*========SUP-SUP: GATHER W INTO WX =========*/
    p = Lp [j];
    p2 = p + Lnz [j];
    col = Map [j] / WxCol ;
    Wcol = Wx + col;
for (; p < p2; p++)
        i = Li [p];
wcol [Map [i]] = W [i];
w [i] = 0.0;
    /* gather the diagonal */
    wcol [Map [j]] = w [j] ;
w [j] = 0.0 ;
/* ====== SUP-SUP : COMPUTE SUPERNODE J OF L (UNSCALED) ======= */
for (K = Link [J] ; K != EMPTY ; K = nextK)
    /* determine next supernode of L that modifies column j of L */
    nextK = Link [K] ;
    Head_of_K = Slist [Spp [K]] ; /* first node in supernode K */
    p = First [K]
    p2 = Lp [Head\_of_K] + Lnz [Head\_of_K] ;
```

}

```
/*===== SUP-SUP: CALCULATE THE INTERSECTION SET OF J With K == */
j[ast = Slist[SppJ_plus_1 - 1];
nintersect = 0
for (p = First [K], k = 0; p < p2 && Li [p] <= jlast; p++, k++ )
    nintersect++ ;
    i = Li [p]_
    Intersect [k] = i ;
    /* create the mapping for the intersection set to columns
    IntersectMap [k] = Map [i] / WxCol ;
    /* create Relative index R for supernode K */
    R[k] = Map[i];
}
/*==== SUP-SUP: COPY Jj PART OF K INTO B AND CREATE pk,ik ======*/
/*==== POINTERS
jindex1 = Spp [K];
jindex2 = Spp [K+1];
/* calculate offset for First for cols in supernode K */
FirstOffset = First [K] - Lp [Head_of_K];
ik = &Li [First [K] + nintersect];
for (k=0 ; jindex1 < jindex2 ; jindex1++, k++)</pre>
    scol = Slist [jindex1] ;
    p1 = Lp [scol] + FirstOffset-- ;
Lxx = &Lx [p1] ;
    /* copying into B */
BB = & B [k][0];
D_scol = D [scol];
    for (i=0; i < nintersect; i++)
         BB [i] = Lxx [i] * D_scol;
    /* setting pk, ik pointers */
    p2 = p1 + nintersect;
pk [k] = &Lx [p2];
}
/*==SUP-SUP: COMPUTATION OF DIAGONAL PART OF J using SUP-COL)====*/
roffset = 0:
for (jindex = 0 ; jindex < nintersect ; jindex++)</pre>
    j = Intersect [jindex] ;
    col = Map [j] / WxCol;
     /* calculate offset for First for cols in supernode K */
    FirstOffset = First [K] - Lp [Head_of_K] ;
    p1 = First [K]
    p2 = Lp [Head\_of_K] + Lnz [Head\_of_K] ;
```

```
/*length of diagonal part */
kk = nintersect - jindex ;
jindex1 = Spp [K];
jindex2 = Spp [K+1];
/* check if supernode K has more than one column */
if ((jindex2 - jindex1) > 1 && kk > 0 )
{
    scol = Slist [jindex1] ;
    /* compute p1 for scol within K using FirstOffset */
    p1 = Lp [scol] + FirstOffset--;
     /* compute scalar */
    Lxx = &Lx [p1] ;
l_jk = Lxx [0] ;
l_jk_times_d_k = l_jk * D [scol] ;
    /* initialize W */
for (k = 0 ; k < kk ; k++)
         W[k] = Lxx[k] * 1_jk_times_d_k ;
    jindex1++ ;
     /* compute W for remaining columns in supernode K */
    for ( ; jindex1 < jindex2 ; jindex1++)</pre>
         scol = Slist [jindex1] ; /*col within curr supernode*/
         /* compute p1 for scol within K using FirstOffset */
         p1 = Lp [scol] + FirstOffset--;
         /* compute scalar */
         Lxx = &Lx [p1];
l_jk = Lxx [0];
l_jk_times_d_k = l_jk * D [scol];
         /* accumulate the updates into a dense vector w */
         for (k = 0 ; k < kk ; k++)
             W[k] += Lxx[k] * l_jk_times_d_k ;
         }
    }
    /* gather W into Wx */
    RR = &R [roffset];
Wcol = Wx + col;
for (i = 0; i < kk; i++)
         Wcol [RR [i]] -= W [i] ;
         W[i] = 0.0;
    }
}
else
{
     /* supernode K has only one column */
    if (kk > 0)
         /* compute scalar */
         l_jk = Lx [p1];
         l_jk_{mes_d_k} = l_jk * D [Head_of_K] ;
```

/\* gather into Wx [...] \*/

```
p = First [K];
                  RR = &R [roffset]
                  wcol = wx + col;
for (i = 0; i < kk; i++, p++)
                       wcol [RR [i]] -= Lx [p] * l_jk_times_d_k;
                  }
              }
         }
         /* advance for the next supernodal column of L */
         p = First [K];
p2 = Lp [Head_of_K] + Lnz [Head_of_K];
         if (p < p2)
              First [K]++;
             roffset ++ ;
         }
    }
     /*====PLACE SUPERNODE K ON Link LIST OF NEXT SUPERNODE OF L ====*/
    p = First [K];
    p2 = Lp [Head_of_K] + Lnz [Head_of_K] ; if (p < p2)
         nextj = Li [First [K]] ;
         nextJ = Col_to_Snode_Map [nextj] ;
Link [K] = Link [nextJ] ;
Link [nextJ] = K ;
    }
    /*===== SUP-SUP: BLOCK COMPUTATION of Cmod (J,K) =======*/
    Mm = Lp [Head_of_K] + Lnz [Head_of_K] - First [K] ;
    KK = Spp [K+1] - Spp [K] ;
    Nn = nintersect ;
     /* call to the routine mMKN, see definition before the ldlSupSup*/
    mMKN (Mm,Kk,Nn,pk,ik,B,Wx,IntersectMap,Map) ;
}
/* ===== SUP-SUP: DENSE A=LDL' CHOLESKY FACTORIZATION OF WX ====== */
/* [m,n] = size (A) where A = Wx */ m = Lnz [Head_of_J] + 1 ; /* including the diagonal */ n = SppJ_plus_1 - SppJ ;
/* n == 1 -> A has only one column
    n > 1 -> A has more than one columns */
if (n == 1)
    Wcol = &Wx [WxCol];
    for (i = 1; i < m; i++)
         Wcol [0] /= Wx [0] ;
         Wcol += WxCol ;
élse
    for (j = 0 ; j < n ; j++)
```

wcol = &wx [j \* wxcol];

```
for (i=0; i < j; i++)
              /* v(i) = L(j,i) d(i) */v [i] = Wcol [i] * Wx [i * WxCol + i] ;
         /* d(j) = A (j,j) - L (j,1:j-1) * v(1:j-1) */
         L_times_v = 0.0;
for (i = 0; i < j; i++)
               L_times_v += Wcol [i] * v [i] ;
         wcol [j] -= L_times_v ;
         dj = Wcol [j];
         /* L(j+1:n,j) = (A(j+1:n,j) - L(j+1:n,1:j-1) * v(1:j-1))/d(j)*/
         wcol += wxcol ;
for (i = j+1 ; i < m ; i++)</pre>
              L_times_v = 0.0;
for (k = 0 ; k < j ; k++)
                   L_{times_v += wcol[k] * v[k];}
              Wcol [j] = (Wcol [j] - L_times_v) / dj;
              Wcol += WxCol ;
         }
}
/* ====== SUP-SUP: SCATTER WX INTO Lx,D ================ */
for (jindex = SppJ, col = 0; jindex < SppJ_plus_1; jindex++,col++)</pre>
     j = Slist [jindex] ;
     /* store D <u>*</u>/
    wcol = &wx [col * wxcol];
D [j] = wcol [col];
wcol [col] = 0.0;
    if (D [j] <= 0)
          /* matrix is not symmetric positive definite */
         return (FALSE);
    }
    p = Lp [j] ;

p2 = p + Lnz [j] ;
     /* scatter into Lx*/
    wcol += wxcol;
for (i=1; p < p2; p++,i++)</pre>
         Lx [p] = \underline{W}col [col];
         wcol [col] = 0.0;
wcol += wxCol;
    }
}
/*====== SUP-SUP: PREPARE SUPERNODE J TO MODIFY ITS PARENT ==== */
```

#### LIST OF REFERENCES

- [1] C. ASHCRAFT AND R. GRIMES, *The influence of relaxed supernode partitions on the multifrontal method*, ACM Trans. of Math. Software, 15(1989), pp. 291-309.
- [2] T. H. CORMEN, C. E. LEISERSON AND R. L. RIVEST, *Introduction to algorithms*, MIT press, Cambridge, MA, 1990.
- [3] T. A. DAVIS, J. R. GILBERT, S. I. LARIMORE AND E. G. NG, *A column approximate minimum degree ordering algorithm*, Technical Report TR-00-005, Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 2000.
- [4] T. A. DAVIS AND W. W. HAGER, *Modifying a sparse Cholesky factorization*, SIAM J. Matrix Anal. Appl., 20(1999), pp. 606-627.
- [5] A. GEORGE AND J. LIU, Computer solution of large sparse positive definite systems, Prentice-Hall, 1981.
- [6] G. H. GOLUB AND C. V. LOAN, *Matrix computations*, John Hopkins University Press, 1996.
- [7] W. W. HAGER, *The LP dual active set algorithm*, in High Performance Algorithms and Software in Nonlinear Optimization, R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds., Kluwer, Dordrecht, 1998, pp. 243-254.
- [8] J. W. H. LIU, *The role of elimination trees in sparse factorization*, SIAM J. Matrix Anal. Appl., 11(1990), pp. 134-172.
- [9] J. W. H. LIU, E. G. NG AND B. W. PEYTON, *On finding supernodes for sparse matrix computations*, SIAM J. Matrix Anal. Appl., 14(1993), pp. 242-252.
- [10] E. G. NG, Supernodal symbolic Cholesky factorization on a local-memory multiprocessor, Parallel Computing, 19(1993), pp. 153-162.
- [11] E. G. NG AND B. W. PEYTON, *Block sparse Cholesky algorithms on advanced uniprocessor computers*, SIAM J. Sci. Comput., 14(1993), pp. 1034-1056.
- [12] E. G. NG AND B. W. PEYTON, *A supernodal Cholesky factorization algorithm for shared-memory multiprocessor*, SIAM J. Sci. and Stat. Comput., 14(1993), pp. 761-769.

- [13] E. ROTHBERG AND A. GUPTA, *Efficient sparse matrix factorization on highperformance workstations – Exploiting the memory hierarchy*, ACM Transactions on Mathematical Software, 17 (1991), pp. 313-334.
- [14] E. ROTHBERG AND A. GUPTA, *Techniques for improving the performance of sparse matrix factorization on multiprocessor workstations*, In proceedings of Supercomputing, 1990, pp. 232-243.

### BIOGRAPHICAL SKETCH

Adrian Mascarenhas was born in Mumbai, India, in November 1977. He received his Bachelor of Engineering degree in Computer Engineering from the University of Mumbai (V.J.T.I.) in August 1999. He received his Master of Science degree in Computer Engineering from the University of Florida in May 2002.