Automata is a Plural of Automaton (i.e. Automatic)

self-controlled machine

- ✓ It's an other method for defining languages
- ✓ It's a Graphical Method
- ✓ Finite Automata (FA) is also called <u>Finite Automata Machine (FAM)</u>

Direction

Token changes Position on the input of certain number by Dice

State

Initial State

Tokens

Transition

Tokens

Final State

Normal State

Lecture 13: Finite Automata – What is it and what are its types?

alisoomro666@gmail.com

Limited

محدود

(Jis chez ki koi had ho)

Q: Number of States

Qo: Initial State

F: Final State

∑: Letters in Alphabet

d: Transitions / Movements

$$L1 = {aa}$$

Initial State

Final State

$$L2 = {aba}$$

Lecture 13: Finite Automata – What is it and what are its types?

alisoomro666@gmail.com

- ✓ Finite Automata is a method for defining languages.
- ✓ It is kind of Graphical Method that consists of following 5 parts;

FA: {Q, Q₀, F, ∑, ∂}

FA / FAM

What are types?

Q: Number of States

Qo: Initial State

F: Final State

∑: Letters in Alphabet

d: Transitions / Movements

Deterministic Finite
Automata (DFA)

Finite Automata (NFA)

Non-Deterministic

 ✓ Finite Automata is also named as Finite Automata Machine (FAM) Only one output

/ Output is not determined

q_i a q_j q_k NFA

What is it named as Finite Automata?

Automata: Plural of Automaton (i.e. automatic, self controlled machine)

Finite: Finite number of states / letters/ transitions

Lecture 14: Deterministic Finite Automata - What is DFA and how to draw DFA?

alisoomro666@gmail.com

Next state is known

(Has only one next

state) Finite number of states,

> letters and transitions

Number of States

Initial State

Final State

DFA

Letters in Alphabet

Transitions / Movements

 q_1

a

Symbols:

Initial State

Plural of Automaton (i.e. automatic, self controlled machine)

Initial State

Final State

Initial State

Final State

Lecture 14: Deterministic Finite Automata - What is DFA and how to draw DFA?

alisoomro666@gmail.com

a* → **q**₀

Contains any no of a's

Contains a or b

a

a+b

Starts with a and contains any number of b's in end

Contains any number of a's or b's

Stars with a

$$R = a(a+b)*$$

Definition:

- ✓ It's a type of Finite Automata that used to define languages in which next state is already known
- ✓ It consists of following 5 Parts;

FA: $\{Q, Q_0, F, \Sigma, \partial\}$

Q: Number of States

Qo: Initial State

F: Final State

∑: Letters in Alphabet

d: Transitions / Movements

How to draw Deterministic finite automata

DFA for a language that starts with aa

$$R = aa(a+b)*$$

- Circle/Ovals for Initial State, Normal State and Final State
- Arrow for Transition with letters above
- Loop and OR
- Only one output; single letter can not go to multiple state from one state

What is it named as Deterministic Finite Automata?

Automata: Plural of Automaton (i.e. automatic, self controlled machine)

Finite: Finite number of states / letters/ transitions

Deterministic: Output is already known (has only one next state)

Starts with a

$$R = a(a+b)*$$

qo: Initial State

q1: final State

q2: Dead State (Dead End State)

Initial State

It is the state that the machine naturally starts in before it reads any input. It is called as **Entry Point**.

Final State

It is the state where the machine halts when it has no input left. It is also called **Accepting State**

Dead State / Dead End State

It is also called as **Rejecting State** and **Trap State**. Once the machine enters a dead state, there is no way for it to reach an accepting state Construct an FA which recognizes the set of all strings defined over $S = \{x, y\}$ starting with the prefix 'xy'.

 $R = xy(x+y)^*$

xyxx

хуууу

xyxxyy

yх

XX

qo: Initial State

q3: Final State (Accepting State)

q2: Dead State (Dead End State/Trap State/Rejecting State)

Starts with a

$$R = a(a+b)*$$

Ends with a

$$R = (a+b)*a$$

a

aa

aaa

ba

baa

bbaa

aba

abba

babbaa

DFA:

One letter can not go to many state from one state. (i.e., Only one output)

Lecture 16: DFA & RE for Even Even Language

alisoomro666@gmail.com

EVEN-EVEN

Even number of a's and Even number of b's

∑={a,b}

aabb

bbaa

Even Numbers

0,2,4,6,8,..

Odd Numbers

1,3,5,7,9,...

RE: Regular Expression

abaaab

ab**bb**ab

DFA: Deterministic Finite Automata

Q: Draw fa that accept exactly a

qo: Initial State

q1: final State

q2: Dead State (Dead End State)

Q: Draw fa that accepts all words starting with a

$$R = a(a+b)*$$

qo: Initial State

q1: final State

q2: Dead State (Dead End State)

Q: Draw fa that accepts exactly a or b

R = a+b

qo: Initial State

q1: final State (accepting state)

q2: Dead State (Dead End State / trap / rejecting)

Comma, = OR

qo: Initial State

Q: Draw fa for the language that have b as a second letter over $\Sigma = \{a, b\}$

$$R = (a+b)b(a+b)*$$

a**b**

b**b**

a**b**aa

b**b**aa

a**b**aababa

qo: Initial State

q2: final State (accepting state)

Q: Draw fa for the language that have exactly 4 ones in every string over $\Sigma = \{0, 1\}$

$$R = 0*1 0*1 0*1 0*1 0*$$

Q: Draw fa for the language that only accept L = $\{01, 011, 100\}$ over $\Sigma = \{0, 1\}$

$$R = 01 + 011 + 100$$

qo: Initial State

q2, q3, q7: final State

Draw fa for the language $L = \{ w.n_a = 1 w \epsilon (a,b)^* \}$

R= b* a b*

a

ab

b**a**

b**a**b

bbbabbb

qo: Initial State

q1: final State

q2: Dead State (Dead End State)

Q: L = { $w \in \{0, 1\}^*$ | w contains 00 as a substring }

00

100

1001

101**00**1

010001

111**00**111

10001

qo: Initial State

q2: final State (Accepting State)

Q: Draw fa that accept all strings with double as in somewhere over $\Sigma = \{a, b\}$

R= (0+1)* 00 (0+1)*

aa baa baab babaab abaaab bbbaabbb baaab

qo: Initial State

q2: final State (Accepting State)

Q: Draw fa that contains exactly baa

R = baa

Q: Draw fa that accept exactly baa and ab

$$R = baa + ab$$

Q: Draw fa that accept exactly baa and ab

$$R = baa + ab$$

Q: Draw fa starting with a and contains any number of b's in end

$$R = ab*$$

qo: Initial State

q1: final State (Accepting State)

q2: Dead State (Dead End State/Trap/Rejecting)

Q: Draw fa accept all words ending with a

$$R = (a+b)*a$$

qo: Initial State

q1: final State (Accepting State)

a aa aaa ba baa bbaa aba abba babbaa

Q: Draw fa that accept all words starting and ending with a over ∑= {a, b}

$$R = a(a+b)*a$$

qo: Initial State

q2: final State

q3: Dead End State

Q: Construct an FA which recognizes the set of all strings defined over S = {x, y} starting with the prefix 'xy'.

$$R = xy(x+y)*$$

qo: Initial State

q3: Final State (Accepting State)

q2: Dead State (Dead End State/Trap State/Rejecting State)

xyxx **xy**yyy **xy**xxyy

yх

XX

Q: Draw fa that accept all strings with even length over $\Sigma = \{a, b\}$

$$R = (aa + ab + ba + bb)^*$$

qo: Initial State

Q: Draw fa that accept all strings with even no of b's over $\Sigma = \{a, b\}$

$$R = a^* + (a^* ba^* ba^*)^*$$

bb aaaa baba bbaa

qo: Initial State

q1: Final State (Accepting State)

Q: Draw fa that accept all strings with odd no of 1's over $\Sigma = \{0, 1\}$

$$R = 0*10* (10*10*)*$$

qo: Initial State

q1: Final State (Accepting State)

