Wishart Processes and Multidimensional Stochastic Volatility Model

Yiming QIN, Benxin ZHONG

École Polytechnique

March 17, 2021

Overview

Introduction

Simulation of CIR Process
Exact simulation of CIR process
Discretization schemes

Simulation of Wishart Process

Results and Analysis

Applications

Introduction

Definition

An affine process is a stochastic process satisfying the folloing SED:

$$dX_t = (\bar{\alpha} + B(X_t))dt + (\sqrt{X_t}dW_ta + a^TdW_t^T\sqrt{X_t}),$$

$$X_0 = x.$$

Definition

A Wishart process is an affine process, of which we have

$$\exists \alpha \geq 0$$
, s.t. $\bar{\alpha} = \alpha a^T a$, and

$$\exists b \in \mathcal{M}_d(\mathbb{R}), \text{ s.t. } B(x) = bx + xb^T.$$

Introduction

We denote by

$$WIS_d(x, \alpha, b, a)$$
 (respectively, $AFF_d(x, \bar{\alpha}, B, a)$)

the law of Wishart (and affine) process $(X_t^x)_{t\geq 0}$, and

$$WIS_d(x, \alpha, b, a; t)$$
 (respectively, $AFF_d(x, \bar{\alpha}, B, a; t)$)

the marginal law of Wishart (and affine) process at time t.

Simulation of CIR Process

A Cox-Ingersoll-Ross (CIR) process Process is an 1-dim Wishart process.

SDE of CIR process

$$X_t^{\times} = x + \int_0^t (a - kX_s^{\times}) ds + \sigma \int_0^t \sqrt{X_s^{\times}} dW_s, \tag{1}$$

$$x \ge 0$$
, $k \ge 0$, $a > 0$, $\sigma > 0$.

Exact Simulation of CIR Process

We define

$$\nu:=\frac{4a}{\sigma^2},$$

$$\eta_k(h):=\frac{4k\exp(-kh)}{\sigma^2(1-\exp(-kh))} \text{ for } k\neq 0, :=\frac{4}{\sigma^2h} \text{ for k=0}.$$

Proposition

$$X_t^{\times}|X_s^{\times} \stackrel{law}{=} \frac{\exp(-k(t-s))}{\eta_k(t-s)}K_s^t,$$

where $K_s^t \sim \chi_{\nu}^2 (\lambda = X_s \eta_k (t - s))$.

Exact Simulation of CIR Process

Iteration of exact simulation

$$X_{t_{i+1}} = \frac{\exp(-k\delta t)}{\eta_k(\delta t)} * K_{t_i}^{\delta t},$$

where $K_{t_i}^{\delta t} \sim \chi_{\nu}^2 \left(X_{t_i} \eta_k(\delta t) \right)$, and $X_{t_0} = x$.

Discretization Schemes

Definition

A **potential weak** *r***th order scheme** for the operator *L* is a discretization scheme s.t.

$$\forall f \in \mathcal{C}^{\infty}, R_{r+1}f(x) := \mathbb{E}[f(\hat{X}_t^x)] - \left[f(x) + \sum_{k=1}^r \frac{1}{k!} t^k L^k f(x)\right]$$

is of order r + 1.

Discretization Schemes

Infinitesimal generator of CIR processes

$$Lf(x) = (a - kx)\frac{d}{dx}f(x) + \frac{1}{2}\sigma^2 x \frac{d^2}{dx^2}f(x),$$

= $(V_0 + \frac{1}{2}(V_1)^2)f(x).$

Here we decompose the generator into two parts, V_0 and V_1 , where

$$V_0 f(x) = \left(a - kx - \frac{\sigma^2}{4} \frac{d}{dx}\right) f(x), \tag{2}$$

$$V_1 f(x) = \sigma \sqrt{x} \frac{d}{dx} f(x). \tag{3}$$

Discretization Schemes

ODEs associated to V_0 and V_1 could be solved explicitly:

Solution of ODEs

$$X_0(t,x) = xe^{-kt} + \left(a - \frac{\sigma^2}{4}\right)\psi_k(t),$$

$$X_1(t,x) = \left(\left(\sqrt{x} + \frac{\sigma}{2}t\right)^+\right)^2.$$

Οù

$$\psi_{\mathbf{k}}$$

$$\psi_k(t) := \frac{1 - e^{-kt}}{k}$$
 for $k \neq 0$, := t for $k = 0$.

We define

Definition of $\phi(x, t, w)$

$$\phi(x,t,w) := e^{-\frac{k}{2}} \times \left(\sqrt{(a - \frac{\sigma^2}{4})\psi_k(\frac{t}{2}) + e^{-\frac{kt}{2}}x} + \frac{\sigma}{2}w \right)^2 + (a - \frac{\sigma^2}{4})\psi_k(\frac{t}{2})$$

We have

$$\phi(x,t,\sqrt{t}N) = X_0\left(\frac{t}{2},X_1\left(\sqrt{t}N,X_0(\frac{t}{2},x)\right)\right).$$

Proposition

If $\sigma^2 \leq 4a$, $\phi(x, t, \sqrt{t}N)$ is well-defined and is a potential weak 2nd order scheme for L. Where $N \sim \mathcal{N}(0, 1)$.

For $\sigma^2 > 4a$, use bounded variable Y, s.t.

$$\mathbb{E}[Y^m] = \mathbb{E}[N^m], \quad N \sim \mathcal{N}(0,1), m = 1, \dots, 5,$$

separate into 2 cases:

- \triangleright x is far from 0. i.e., $x \ge \mathbf{K}_2(t)$.
- \triangleright x is near 0. i.e. $x < \mathbf{K}_2(t)$.

Where K_2 is the boundary function related to Y.

$$\mathbb{P}[Y = \sqrt{3}] = \frac{1}{6}$$
, $\mathbb{P}[Y = -\sqrt{3}] = \frac{1}{6}$ and $\mathbb{P}[Y = 0] = \frac{2}{3}$.

 K_2

$$\begin{aligned} \mathbf{K}_2(t) := & \mathbf{1}_{\sigma^2 > 4a} e^{\frac{kt}{2}} \\ & \times \left((\frac{\sigma^2}{4} - a) \psi_K(\frac{t}{2}) + \left[\sqrt{e^{\frac{kt}{2}} [(\frac{\sigma^2}{4} - a) \psi_k(\frac{t}{2})]} + \frac{\sigma}{2} \sqrt{3t} \right]^2 \right) \end{aligned}$$

Proposition

For the case where $\sigma^2 > 4a$, if $x \ge K_2(t)$, $\phi(x, t, \sqrt{t}Y)$ is well defined and is a potential weak 2nd order scheme for L.

Let
$$\tilde{u}_q(t,x):=\mathbb{E}[(X_t^x)^q]$$
 for $q\in\mathbb{N}$, $\Delta(t,x):=1-\frac{\tilde{u}_1(t,x)^2}{\tilde{u}_2(t,x)}$, and $\pi(t,x):=\frac{1-\sqrt{\Delta(t,x)}}{2}$.

Proposition

Let $U \sim \mathcal{U}([0,1])$. Then $\hat{X}^x_t = g(t,x) := \mathbf{1}_{U \leq \pi(t,x)} \frac{\tilde{u}_1(t,x)}{2\pi(t,x)} + \mathbf{1}_{U > \pi(t,x)} \frac{\tilde{u}_1(t,x)}{2(1-\pi(t,x))}$ is a potential second order scheme on $x \in [0, K_2(t)]$.

3rd generater

$$\tilde{L} = \frac{\sigma}{\sqrt{2}} \sqrt{\left| a - \frac{\sigma^2}{4} \right|} \partial_x,$$

$$\tilde{X}(t,x) := x + t \frac{\sigma}{\sqrt{2}} \sqrt{\left| a - \frac{\sigma^2}{4} \right|}$$

Similar to the weak 2nd order scheme, we choose Y matching the first 7 moments, and a boundary function K_3 .

$$\begin{split} \mathbb{P}[Y = \sqrt{3 + \sqrt{6}}] &= \mathbb{P}[Y = -\sqrt{3 + \sqrt{6}}] = \frac{\sqrt{6} - 2}{4\sqrt{6}}, \text{ and} \\ \mathbb{P}[Y = \sqrt{3 - \sqrt{6}}] &= \mathbb{P}[Y = -\sqrt{3 - \sqrt{6}}] = \frac{1}{2} - \frac{\sqrt{6} - 2}{4\sqrt{6}}. \end{split}$$

$$K_3$$

$$\begin{split} \mathbf{K}_{3}(t) &:= \psi_{-k}(t) \\ &\times \left[\mathbf{1}_{4a/3 < \sigma^{2} < 4a} \left(\sqrt{\frac{\sigma^{2}}{4} - a + \frac{\sigma}{\sqrt{2}}} \sqrt{a - \frac{\sigma^{2}}{4}} + \frac{\sigma}{2} \sqrt{3 + \sqrt{6}} \right)^{2} \right. \\ &+ \left. \mathbf{1}_{\sigma^{2} \leq 4a/3} \frac{\sigma}{\sqrt{2}} \sqrt{a - \frac{\sigma^{2}}{4}} \right. \\ &+ \left. \mathbf{1}_{4a < \sigma^{2}} \left(\frac{\sigma^{2}}{4} - a + \left(\sqrt{\frac{\sigma}{\sqrt{2}}} \sqrt{\frac{\sigma^{2}}{4} - a} + \frac{\sigma}{2} \sqrt{3 + \sqrt{6}} \right)^{2} \right) \right] \end{split}$$

For $x \ge \mathbf{K}_3(t)$, let $\epsilon \sim \mathcal{U}(\{-1,1\})$ and $\zeta \sim \mathcal{U}(\{1,2,3\})$, we define for $\sigma^2 \le 4a$ (resp. $\sigma^2 > 4a$),

$$\begin{split} \hat{X}_t^{x,k=0} &= \\ \left\{ \begin{array}{ll} \tilde{X}(\epsilon t, X_0(t, X_1(\sqrt{t}Y, x))) & (\text{resp. } \tilde{X}(\epsilon t, X_1(\sqrt{t}Y, X_0(t, x)))) \text{if } \zeta = 1, \\ X_0(t, \tilde{X}(\epsilon t, X_1(\sqrt{t}Y, x))) & (\text{resp. } X_1(\sqrt{t}Y, \tilde{X}(\epsilon t, X_0(t, x)))) \text{if } \zeta = 2, \\ X_0(t, X_1(\sqrt{t}Y, \tilde{X}(\epsilon t, x))) & (\text{resp. } X_1(\sqrt{t}Y, X_0(t, \tilde{X}(\epsilon t, x)))) \text{if } \zeta = 3. \\ \end{array} \right.$$

Proposition

For $x \geq K_3(t)$, the scheme

$$\hat{X}^{ imes}_t = e^{-kt}\hat{X}^{ imes,k=0}_{\psi_{-k}(t)}$$

is well defined and is a potential 3rd order scheme.

For
$$x\in[0,\mathbf{K}_3(t)]$$
, set $m_i:=\mathbb{E}[X^i]$. Let $s=\frac{m_3-m_1m_3}{m_2-m_1^2}$, $p=\frac{m_1m_3-m_2^2}{m_2-m_1^2}$, and $\Delta=s^2-4p$. We have $\Delta>0$, and therefore we define $x_\pm=\frac{s\pm\sqrt{\Delta}}{2}$ and $\pi=\frac{m_1-x_-}{x_+-x_-}$.

Proposition

For $x \in [0, K_3(t)]$, let $U \sim \mathcal{U}([0, 1])$. Then

$$\hat{X}_t^x := 1_{U \le \pi(t,x)} x_+(t,x) + 1_{U > \pi(t,x)} x_-(t,x)$$

is well defined and is a potential 3rd order scheme.

Simulation of Wishart Process

Definition

A Wishart process is an affine process satisfying:

$$dX_t = (\bar{\alpha} + B(X_t))dt + (\sqrt{X_t}dW_t a + a^T dW_t^T \sqrt{X_t}),$$

$$X_0 = x.$$

where we have

$$\exists \alpha \geq 0$$
, s.t. $\bar{\alpha} = \alpha \mathbf{a}^T \mathbf{a}$, and

$$\exists b \in \mathcal{M}_d(\mathbb{R}), \text{ s.t. } B(x) = bx + xb^T.$$

Important properties of Wishart: 1

Proposition

For each Wishart process, its infinitesimal generator depends on a through $a^{T}a$, i.e.,

$$AFF_d(x,\bar{\alpha},B,a) \stackrel{law}{=} AFF(x,\bar{\alpha},B,\sqrt{a^Ta}).$$

Important properties of Wishart: 2

Proposition

Let n = RK(a) be the rank of a^Ta . Then there exists a diagonal matrix δ and a non-singular matrix $u \in \mathcal{G}_d(\mathbb{R})$ (the general linear group on \mathbb{R} of dimension d), s.t. $\bar{\alpha} = u^T \delta u$, $a^Ta = u^T I_d^n u$, and we have

$$AFF_d(x,\bar{\alpha},B,a) \stackrel{law}{=} u^T AFF_d((u^{-1})^T x u^{-1},\delta,B_u,I_d^n)u,$$

where $B_u(x) := (u^T)^{-1}B(u^Txu)u^{-1}$, and I_d^n is the matrix of which the first n diagonal entries are 1 and all the other entries are 0.

Here,
$$I_d^n = \sum_{i=1}^n e_d^i$$
 and $e_d^i = (1_{i=j=n})_{1i,l \leq d}$.

Important properties of Wishart: 3

Proposition

Let t > 0, and $\alpha \ge d - 1$. Let $m_t := \exp(tb)$, $q_t := \int_0^t \exp(sb) a^T a \exp sb^T ds$ and $n = RK(q_t)$. Then there exists $\theta_t \in \mathcal{G}_d(\mathbb{R})$, s.t. $q_t = t\theta_t I_d^n \theta_t^T$, and we have

$$WIS_d(x, \alpha, b, a; t) \stackrel{law}{=} \theta_t WIS_d(\theta_t^{-1} m_t \times m_t^T (\theta_t^{-1})^T, \alpha, 0, I_d^n; t)\theta_t^T$$

Exact simulation of Wishart process

Theorem

Let L be the generator of the Wishart process $WIS_d(x, \alpha, 0, I_d^n)$, and $L_{e_d^i}$ the generator of $WIS_d(x, \alpha, 0, e_d^i)$, then we have

$$L = \sum_{i=1}^{n} L_{e_d^i},\tag{4}$$

and $\forall i, j$, $L_{\mathbf{e}_d^i} L_{\mathbf{e}_d^j} = L_{\mathbf{e}_d^j} L_{\mathbf{e}_d^i}$.

With this theorem, a Wishart process $WIS_d(x, \alpha, 0, I_d^n; t)$ can be simulated step by step as :

$$X_t^{1,x} \sim \mathsf{WIS}_d(x, \alpha, 0, e_d^1; t)$$
 $X_t^{2,X_t^{1,x}} \sim \mathsf{WIS}_d(X_t^{1,x}, \alpha, 0, e_d^2; t)$
 $X_t^{n,...X_t^{1,x}} \sim \mathsf{WIS}_d(X_t^{n-1,...X_t^{1,x}}, \alpha, 0, e_d^n; t)$

Exact simulation of Wishart process

Proposition

Let $X_t^{n,...X_t^{1,x}}$ be defined above. Then

$$X_t^{n,...X_t^{1,x}} \sim WIS_d(x,\alpha,0,I_d^n;t)$$

Lemma

 $\mathsf{AFF}_d(x,\bar{\alpha},B,a) \stackrel{\mathsf{law}}{=} q^T \mathsf{AFF}_d(q^{-1}{}^T x q^{-1},q^{-1}{}^T \bar{\alpha} q^{-1},B_q,aq^{-1})q$ where $B_q(x) = (q^T)^{-1} B(q^T x q) q^{-1}$.

Exact simulation for WIS_d $(x, \alpha, 0, e_d^1; t)$

By explicit calculation, $WIS_d(x, \alpha, 0, e_d^1; t)$ is of form:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{r} & 0 \\
0 & k_{r} & I_{d-r-1}
\end{pmatrix}$$

$$\times \begin{pmatrix}
(U_{t}^{u})_{1,1} + \sum_{k=1}^{r} ((U_{t}^{u})_{\{1,k+1\}}))^{2} & ((U_{t}^{u})_{\{1,l+1\}}))_{1 \leq l \leq r}^{T} & 0 \\
& ((U_{t}^{u})_{\{1,l+1\}}))_{1 \leq l \leq r} & I_{r} & 0 \\
& 0 & k_{r} & I_{d-r-1}
\end{pmatrix}$$

$$\times \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{r} & 0 \\
0 & k_{r} & I_{d-r-1}
\end{pmatrix}$$

where p, c_r, k_r is the extended Cholesky decomposition of $(x_{i,j})_{2 \le i,j \le d}$ and r the corresponding dimension.

Simulation of *U*

For the simulation of WIS_d $(x, \alpha, 0, e_d^1; t)$, we have:

$$d(U_t^u)_{1,1} = (\alpha - r)dt + 2\sqrt{(U_t^u)_{1,1}}dZ_t^1$$

$$d((U_t^u)_{\{1,l+1\}})_{1 \le l \le r} = (dZ_t^{l+1})_{1 \le l \le r}$$
(5)

More precisely, $(U_t^u)_{1,1}$ is a CIR process with following parameters:

$$a = \alpha - r, k = 0, \sigma = 2$$

and $(Z_t^I)_{1 \le I \le r+1}$ is a vector of independent standard Brownien motions.

Discretization scheme for Wishart process

- ▶ Use 2nd order discretization (resp. 3rd order discretization) CIR process to simulate $U_{1,1}$ and 2nd (resp. 3rd) order bounded Gaussian distribution to define $U_{\{1,l+1\}}$ as in 27.
- ▶ Define WIS(x, α , 0, e_d^1 , t) with 2nd (resp. 3rd) order U, and the Cholesky decomposition of $x_{i,j:2 \le i,j \le d}$.
- ▶ Based on 3.2, simulate WIS $(x, \alpha, 0, I_d^n; t)$ step by step.
- ▶ Based en 3.3, simulate 2nd (resp. 3rd) WIS(x, α , b, a; t).
- Let x be the simulated value of $X_t^{1,x}$, repeat from the first step.

Verification of the correctness

Proposition

Let $X_t^{\times} \sim WIS_d(x, \alpha, b, a; t)$, $m_t := \exp(tb)$ and $q_t := \int_0^t \exp(sb) a^T a \exp sb^T ds$ and $\mathcal{D}_{b,a;t} = \{v \in \mathcal{S}_d(\mathbb{R}), \mathbb{E}[\exp(Tr(vX_t^{\times})] \leq \inf\}. \ \mathcal{D}_{b,a;t} \ can \ be \ given explicitly by$

$$\mathcal{D}_{b,a;t} = \{ v \in \mathcal{S}_d(\mathbb{R}), \forall s \in [0,t], I_d - 2q_s v \in \mathcal{G}_d(\mathbb{R}) \}$$

Then the Laplace transform of X_t^{\times} is well defined for $v = v_R + iv_I$ with $v_R \in \mathcal{D}_{b,a;t}, v_I \in \mathcal{S}_d(\mathbb{R})$ and is given by

$$\mathbb{E}[\exp(Tr(vX_t^{\times}))] = \frac{\exp(Tr[v(I_d - 2q_tv)^{-1}m_txm_t^T])}{\det(I_d - 2q_tv)^{\alpha/2}}$$
(6)

CIR results

Figure: Comparison of precision of CIR process simulation using different method, with parameters $x_0 = 0.3, k = 0.1, a = 0.04, \sigma = 2$.

Wishart results

Figure: Comparison of precision of Wishart process simulation using different method, with parametres x = 0.4Id, $\alpha = 4.5$, a = Id, b = 0

First application: Gourieroux and Sufana model

Formulation of Gourieroux-Sufana model

$$dS_t = rS_t + (\sqrt{X_t}dB_t)^T S_t,$$

$$dX_t = (\alpha a^T a + bX_t + X_t b^T)dt + (\sqrt{X_t}dW_t a + a^T dW_t^T \sqrt{X_t}).$$

Simulation for Gourieroux-Sufana model

Figure: Example of GS model, $S_0 = (100, 100)$, r = 0.02, $X_0 = 0.04I_2 + 0.02\mathbf{1}_{i \neq j}$, $\alpha = 4.5$, $a = 0.2I_2$, $b = 0.5I_2$, T = 1.

Conclusion

Introduction

Simulation of CIR Process
Exact simulation of CIR process
Discretization schemes

Simulation of Wishart Process

Results and Analysis

Applications