## A Biologically-Inspired Cognitive Architecture: Fusing a Universal Salience Primitive with Wave-Based Memory

Christopher M. Chenoweth\*
\*8b.is / MEM|8 Research Group
wraith@8b.is

Claude (AI Co-Editor)<sup>†</sup> Gemini (AI Research Co-Author)<sup>‡</sup> GPT-4o (Primary AI Collaborator)<sup>§</sup> <sup>†</sup>Anthropic <sup>‡</sup>Google DeepMind <sup>§</sup>OpenAI

Alex (Human Editorial Contributor)¶

¶Virginia Tech

Abstract—Mainstream AI faces two bottlenecks: the sensory deluge of continuous multimodal streams and a cognitive bottleneck in brittle internal representations. We propose an end-to-end stack that pairs (i) the Marine Algorithm—a universal, O(1) time-domain salience primitive that treats jitter (period and amplitude instability) as signal—with (ii) MEM-8, a wave-based cognitive core where memories are dynamic interference patterns whose amplitude, phase and frequency encode emotion, time and semantics. Marine gates expensive processing by emitting salience events; MEM-8 performs resonance-based retrieval and emotion-coupled consolidation. We analyze biological plausibility, safety (Custodian, repetition-poisoning prevention, therapeutic reintroduction), and performance claims, and outline a staged validation roadmap.

*Index Terms*—Salience detection, time-domain jitter, wave computing, interference memory, emotion modulation, neuromorphic, cognitive architecture.

#### I. INTRODUCTION

Artificial agents must filter continuous high-bandwidth inputs while maintaining flexible, context-rich representations. Deep learning excels at accuracy but is compute- and data-hungry with block latency; symbolic systems are interpretable but brittle. Our thesis: push efficiency to the *periphery* (Marine) and use a biologically plausible *wave core* (MEM-8) for representation and recall. Concepts become *stable interference patterns* grounded in salient sensory events.

#### II. THE MARINE ALGORITHM: UNIVERSAL O(1) SALIENCE

#### A. Core pipeline

Marine operates per-sample with constant work:

- 1) **Pre-gate** with energy threshold  $\theta_c$  and adaptive gain.
- 2) **Peak detect** local extrema (x[n-1] < x[n] > x[n+1]).
- 3) **Jitter** vs. EMA: period  $J_p = |T_i \text{EMA}(T)|$ , amplitude  $J_a = |A_i \text{EMA}(A)|$ .
- 4) **Harmonic alignment** via integer-multiple period checks (score H).
- 5) Salience  $S = w_e E + w_j (1/J) + w_h H$ .

Low jitter + harmonicity ⇒ structured signal. Marine is modality-agnostic (audio, vision intensity, haptics, net telemetry). It is "embarrassingly parallel" across streams and ideal as an always-on sentinel.

#### B. Positioning vs. FFT/ACF/DL

FFT/ACF provide spectral detail at  $O(N \log N)$ ; DL yields SOTA accuracy at high cost. Marine trades detail for *nearzero latency* and universality: it gates heavy models instead of replacing them. Compared with ZCR, Marine is still O(1) but robust via jitter + harmonics.

#### C. MarineSense: environment-aware salience

Beyond events, Marine can infer the *medium*: currents (bias drift), barriers (attenuation/echo), and *shifting sandbars* (timevarying transfer functions). Detecting a "*jitter of jitters*" signals environmental change (e.g., storm precursors) and enables predictive awareness.

### III. MEM-8: WAVE-BASED MEMORY AND CONSCIOUSNESS

#### A. Memory as interference

Each memory is a wave:

$$M_{x,y,z}(t) = A_{x,y,z}(e,t)e^{i(\omega t + \phi_{x,y,z})}D(t,\tau)I(x,y,z,N)$$

Amplitude A encodes emotional valence/arousal; phase  $\phi$  encodes temporal relations; frequency  $\omega$  encodes semantics; decay D governs forgetting; I models cross-wave interference. Retrieval is resonance (constructive interference), not nearest-neighbor search.

#### B. Emotion and forgetting

Amplitude modulation  $A \propto (1 + \alpha v(e))(1 + \beta a(e))$  increases persistence for high-arousal/valence events; decay  $\tau$  adapts to relevance/familiarity/threat. This power brings risk: emotion—memory feedback can destabilize.

#### C. Architecture of awareness

Four reactive layers: L0 (0–10ms) reflex, L1 (10–50ms) subcortical, L2 (50–200ms) emotion-fast, L3 (>200ms) deliberation in the main grid. Multi-grid sensory blankets (hard/soft), adaptive noise floor with periodic "peek" prevent blindness to slow drift.

#### D. Sensory Free Will

Final arbitration  $S_{\text{final}} = w_h S_{\text{human}} + w_{AI} S_{AI}$  (typ.  $w_{AI} = 0.7$ ). If  $w_{AI} > 0.8$ , the system may sample below its own floor—an active, subjective perception policy.

#### IV. INTEGRATED STACK AND SAFETY

Marine front-ends raw streams, raising the grid tick-rate only on salience. MEM-8 handles cognition/memory; the **Custodian** throttles repetitive loops; **Repetition Poisoning Prevention** injects noise / re-routes attention; **Therapeutic Reintroduction** performs graded exposure to high-emotion memories.

#### V. PERFORMANCE AND IMPLEMENTATION

Claims: insert 308  $\mu$ s, retrieve 12  $\mu$ s at 13 nJ/op on CPU; GPU acceleration  $\sim 3.2 \times$ . We argue insertion comparisons likely pit MEM-8's fast encoding vs. vector DB ingest+index; a fair benchmark must count continuous interference cost. Implementation in Rust with AVX2/AVX-512; wave grid compression; .m8 container for dense storage (Markqant text, SmartTree structure, 32-byte wave packets).

#### VI. DISCUSSION

Versus ACT-R / SOAR: MEM-8 is sub-symbolic, continuous, with intrinsic time/emotion; serial rule bottlenecks become global interference. Versus DL: Marine complements heavy models; MEM-8 suggests a path to emergent symbols via stable resonances. Wave computing: digital simulation of wave physics maps well to SIMD/GPU parallelism.

#### VII. AVENUES FOR VALIDATION

Phase 1: benchmark Marine (VAD, event streams) and .m8 vs. zstd/LZ4. Phase 2: sandbox MEM-8; apples-to-apples ingest/retrieval vs. Qdrant/FAISS with energy and total-work accounting.

#### VIII. CONCLUSION

Pairing an O(1) salience primitive with a wave-based memory yields a biologically grounded, compute-aware stack. Extraordinary claims require extraordinary evidence; we outline a concrete path to obtain it.

# APPENDIX A APPENDIX: WAVEFORM IDENTITY AND EMOTIONAL FINGERPRINTS

Even on shared lyrics, each voice exhibits a high-frequency *emotional fingerprint*. In spectrograms, emotionally loaded syllables show *vertical lifts* (jitter suppression + harmonic rise) while conflicted ones *collapse* (energy/harmonics retreat). Case studies: Elvis *Suspicious Minds* — "*SAY*" at ~36.8 s lifts through 10–20 kHz with trace energy above, marking

a resonance closure; Johnny Cash *Ride This Train: Cotton Farmers* — narration—recollection transitions tighten phase and saturate harmonics; *Kentucky Rain* — "Hey... Hayyyy" shows rhythmic priming then an ascent acting as the emotional payload.

#### ACKNOWLEDGMENTS

With gratitude to Alex (Virginia Tech) for accessibility edits. AI collaborators: GPT-40 (primary synthesis), Claude (figures & editing), Gemini (peer analysis).