

Akinori Hosoyamada

Researcher
NTT Secure Platform Laboratories

Cryptanalysis against Symmetric-Key Schemes with Online Classical Queries and Offline Quantum Computations

Akinori Hosoyamada Yu Sasaki

NTT Secure Platform Laboratories

- Backgrounds
- Classical Online-Offline MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

- Backgrounds
- Classical Online-Offline MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

Quantum attacks on Symmetric Key Schemes

 Some Symmetric key schemes are also broken in poly-time by quantum computers in some specific situations

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Quantum attacks on Symmet

Depends on attack models

• Some Symmetric key schemes are a proken in pory-time by quantum computers in some specific situations

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Poly-time attacks are in Q2 model (quantum superposition query attack)

Class $_{\text{Poly}}^{\mathbb{Q}^2}$: O(n) quantum queries

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Poly-time attacks are in Q2 model (quantum superposition query attack)

Class $_{\text{Poly}}^{\mathbb{Q}^2}$: O(n) quantum queries

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

- Poly-time attacks can be realized in Q2 model
- Q2 model is theoretically interesting
- However, Q1 is more realistic model than Q2
- Q1 should receive much more attention...

We focus on Q1 model

Chosen Plaintext Attack Q1 model, classical query Enc. Oracle Message Ciphertext Quantum Computer Adversary

Quantum Hardware Models

- If hardware becomes large, architecture significantly affects running time of algorithms
- a. <u>free communication model</u> [Ber09,BB17] any qubit can interact with any qubit
- **b.** <u>realistic communication model</u> [Ber09,BB17] a qubit can interact with only near qubits
- c. independent small processors without communication

- Backgrounds
- Classical Online-Offline MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

- Backgrounds
- Classical Online-Offline MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

Pattern 1

Pattern 2

Conditions to Apply On-Off MITM

- 1. f_s can be calculated only by making *online* queries $(f_s$ has some secret information)
- 2. f_p can be calculated *offline*
- 3. If we find x, x' **s.t.** $f_s(x) = f_p(x')$, then we can get some secret information on a crypto scheme

Pattern 1

Pattern 2

Attack Procedure

Goal: To find x, x' s.t. $f_s(x) = f_p(x')$ (then we can get some information)

- 1. Online phase: Collect *D* pairs $(x_1, f_s(x_1)), ..., (x_D, f_s(x_D))$
- 2. Offline phase: Find x' s.t. $f_p(x') = f_s(x_i)$ for some $1 \le i \le D$ (*D*-multi-target preimage search on f_p)

Step 2 requires time $T = 2^n/D$ (tradeoff: $T \cdot D = 2^n$)

Attack Procedure

Goal: To find x, x' s.t. $f_s(x) = f_p(x')$ (then we can get some information)

- 1. Online phase: Collect *D* pairs $(x_1, f_s(x_1)), ..., (x_D, f_s(x_D))$
- 2. Offline phase: Find x' s.t. $f_p(x') = f_s(x_i)$ for some $1 \le i \le D$ (*D*-multi-target preimage search on f_p)

Step 2 requires time $T = 2^n/D$ (tradeoff: $T \cdot D = 2^n$)

Attack Procedure

Some schemes claim security up to $T \approx 2^{2n/3}$ (BBB security) by limiting D to be $< 2^{n/3}$

- Backgrounds
- Classical Online-Offline MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

- Backgrounds
- Classical Online-Offline MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

MITM attacks: Online Classical Queries and Offline Quantum Computations

Pattern 1

Pattern 2

Attack Procedure

Goal: To find x, x' s.t. $f_s(x) = f_p(x')$ (then we can get some information)

- 1. Online phase: Collect *D* pairs $(x_1, f_s(x_1)), ..., (x_D, f_s(x_D))$
- 2. Offline phase: Find x' s.t. $f_p(x') = f_s(x_i)$ for some $1 \le i \le D$ (D-multi-target preimage search on f_p)

Step 2 requires time $T = 2^n/D$ (tradeoff: $T \cdot D = 2^n$)

MITM attacks: Online Classical Queries and Offline Quantum Computations

Pattern 1

Pattern 2

Attack Procedure

Goal: To find x, x' s.t. $f_s(x) = f_p(x')$ (then we can get some information)

- 1. Online phase: Collect *D* pairs $(x_1, f_s(x_1)), ..., (x_D, f_s(x_D))$
- 2. Offline phase: Find x' s.t. $f_p(x') = f_s(x_i)$ for some $1 \le i \le D$ (D-multi-target preimage search on f_p)

Step 2 can be accelerated!! (we obtain new tradeoff!!)

MITM attacks : Online Classical Queries and Offline Quantum Computations

Step 2 can be accelerated!! (we obtain new tradeoff!!)

MITM attacks : Online Classical Queries and Offline Quantum Computations

x'

ute $2^n/D$

Some schemes claim security up to $T \approx 2^{2n/3}$ (BBB security) by limiting D to be $< 2^{n/3}$

But

Those claims are broken in the quantum settings due to new tradeoffs

 $\underline{\mathbb{D}}$ -multi-target preimage search on f_p

Step 2 can be accelerated!! (we obtain new tradeoff!!)

MITM attacks in the quantum settings: 4 new tradeoffs between T and D

Free communication model,

 $D^2 \cdot T^2 = N \quad [BB17]$

Realistic communication model, $D^{3/2} \cdot T^2 = N$ [BB17]

Any (independent small processors), $D^4 \cdot T^6 = N^3$ [CNPS17]

Poly-qubits, $D \cdot T^6 = N^3$ [CNPS17]

(Classical, $D \cdot T = N$)

Offline phase of MITM attack is accelerated by quantum multi-target preimage search

- Backgrounds
- Classical MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

- Backgrounds
- Classical MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

Attack on Chaskey

Chaskey[Mou15] is a lightweight MAC

Classical online-offline MITM attack can be applied to Chaskey (Classical tradeoff: $T \cdot D = 2^{128}$ if n=128)

Attack on Chaskey

Chaskey[Mou15] is a lightweight MAC

Chaskey claims 80-bit security by restricting D to be $< 2^{48}$ It claims security up to $T \approx 2^{80}$ (n is set as n=128)

Classical online-offline MITM attack can be applied to Chaskey (Classical tradeoff: $T \cdot D = 2^{128}$ if n=128)

Attack on Chaskey

• If $D < 2^{48}$ queries are allowed, then attack complexity becomes...

	T	D	Q	M
Classical	2 ⁸⁰	2^{48}	_	2^{48}
Case 1a (Exp. qubits, free communication)	2 ³²	2^{32}	2^{32}	2^{32}
Case 1b (Exp. qubits, realistic communication)	2^{37}	2^{37}	2^{37}	2^{37}
Case 1c (Exp. qubits, any communication)	2 ³⁹	2^{39}	2 ³⁹	2 ³⁹
Case 2 (Poly. qubits)	2^{56}	2^{48}	(2^7)	2^{16}

T is overwhelmingly smaller than 2^{80} of classical attack

Class $_{\text{Poly}}^{\text{Q2}}$: O(n) quantum queries

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Class $_{\text{Poly}}^{\text{Q2}}$: O(n) quantum queries

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Class^{Q1}_{Exp}: below $O(2^{n/2})$ classical queries

Class $_{\text{Poly}}^{\text{Q2}}$: O(n) quantum queries

- TDR
- McOE-X
- H²MAC, LPMAC
- Keyed sponge
- KMAC

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Class^{Q1}_{Exp}: below $O(2^{n/2})$ classical queries

Class $_{\text{Poly}}^{\text{Q2}}$: O(n) quantum queries

- TDR
- McOE-X
- H²MAC, LPMAC
- Keyed sponge
- KMAC

- Even-Mansour
- Chaskey
- Minalpher-MAC
- Full-state keyed sponge

- CBC-like MAC
- PMAC-like MAC
- LightMAC
- 3R-Feistel
- LRW, XEX, XE
- Chaskey-B

Class^{Q1}_{Exp}: below $O(2^{n/2})$ classical queries

Others

FX-constructions

Outline

- Backgrounds
- Classical MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

Outline

- Backgrounds
- Classical MITM attacks
- MITM attacks with Online Classical Queries and Offline Quantum Computations
- Applications
- Summary

Summary

- MITM attack with Online Classical and Offline quantum computations (quantum attack in Q1 model)
- New tradeoffs between D and T in 4 models
- Some existing schemes claim BBB security on T by limiting the maximum number of D following the classical tradeoff DT=N, but such claims are broken by our attacks

Thank you!!

Guillaume Endignoux

Software Engineer Google

Improving Stateless Hash-Based Signatures

CT-RSA 2018

Jean-Philippe Aumasson¹, Guillaume Endignoux²

Wednesday 18th April, 2018

¹Kudelski Security

²Work done while at Kudelski Security and EPFL

What are hash-based signatures?

- Good hash functions are hard to invert = *preimage-resistance*.
- We can use this property to create signature schemes¹.

¹Whitfield Diffie and Martin E. Hellman. New directions in cryptography. 1976

What are hash-based signatures?

- Good hash functions are hard to invert = preimage-resistance.
- We can use this property to create signature schemes¹.

First step: scheme to sign 1-bit message.

- Key generation: commit to 2 secrets with H
- Sign bit **b**: reveal $\sigma = S_b$
- Verify signature σ : compare $H(\sigma)$ with P_b

¹Whitfield Diffie and Martin E. Hellman. New directions in cryptography. 1976

Second step: sign *n*-bit message \Rightarrow *n* copies of the previous scheme.

Figure 1: Lamport signatures.

Second step: sign *n*-bit message \Rightarrow *n* copies of the previous scheme.

Figure 1: Lamport signatures.

However, this is a **one-time** signature scheme.

More constructions:

- **WOTS** (Winternitz one-time signatures) = compact version of the *n*-bit message scheme.
- Merkle trees = stateful multiple-time signatures.
- HORS = stateless few-time signatures.
- **HORST** = HORS with Merkle tree.

SPHINCS = stateless many-time signatures (up to 2^{50} messages).

- ullet Hyper-tree of WOTS signatures pprox certificate chain
- Hyper-tree of height H=60, divided in 12 layers of {Merkle tree + WOTS}

Sign message M:

- Select index $0 \le i < 2^{60}$
- Sign *M* with *i*-th HORST instance
- Chain of WOTS signatures.

Figure 2: SPHINCS.

Hash-based signatures in a nutshell:

- Post-quantum security well understood \Rightarrow **Grover's algorithm**: preimage-search in $O(2^{n/2})$ instead of $O(2^n)$ for n-bit hash function.
- Signature size is quite large: 41 KB for SPHINCS (stateless), 8 KB for XMSS (stateful).

Contributions

We propose improvements to reduce signature size of SPHINCS:

- PRNG to obtain a random subset (PORS)
- Octopus: optimized multi-authentication in Merkle trees
- Secret key caching
- Non-masked hashing

PRNG to obtain a random subset

Sign a message M with HORS:

- Hash the message H(M) = 28c5c...
- Split the hash to obtain indices $\{2, 8, \boldsymbol{c}, 5, \boldsymbol{c}, \ldots\}$ and reveal values S_2, S_8, \ldots

i → SPHINCS leaf

Sign a message M with HORS:

- Hash the message H(M) = 28c5c...
- Split the hash to obtain indices $\{2, 8, c, 5, c, \ldots\}$ and reveal values S_2, S_8, \ldots

Problems:

- Some indices may be the same \Rightarrow fewer values revealed \Rightarrow lower security...
- Attacker is free to choose the hyper-tree index $i \Rightarrow$ larger attack surface.

PORS = PRNG to obtain a random subset.

- Seed a PRNG from the message.
- Generate the hyper-tree index.
- Ignore duplicated indices.

Significant security improvement for the same parameters!

Advantages of PORS:

- Significant security improvement for the same parameters!
- Smaller hyper-tree than SPHINCS for same security level \Rightarrow Signatures are **4616** bytes smaller.
- Performance impact of PRNG vs. hash function is negligible ⇒ For SPHINCS, generate only 32 distinct values.

Octopus: multi-authentication in

Merkle trees

Merkle tree of height h = compact way to authenticate any of 2^h values.

- Small public value = root
- Small proofs of membership = h authentication nodes

How to authenticate k values?

- Use k independent proofs = kh nodes.
- This is suboptimal! Many redundant values...

How to authenticate *k* values?

• Optimal solution: compute smallest set of authentication nodes.

How many bytes does it save?

- It depends on the shape of the "octopus"!
- Examples for h = 4 and k = 4: between 2 and 8 authentication nodes.

Theorem

Given a Merkle tree of height h and k leaves to authenticate, the minimal number of authentication nodes n verifies:

$$h - \lceil \log_2 k \rceil \le n \le k(h - \lfloor \log_2 k \rfloor)$$

 \Rightarrow For k > 1, this is always better than the kh nodes for k independent proofs!

In the case of SPHINCS, k = 32 uniformly distributed leaves, tree of height h = 16. In our paper, recurrence relation to compute average number of authentication nodes.

Method	Number of auth. nodes
Independent proofs	512
SPHINCS ²	384
Octopus (worst case)	352
Octopus (average)	324

 \Rightarrow Octopus authentication saves **1909 bytes** for SPHINCS signatures on average.

²SPHINCS has a basic optimization to avoid redundant nodes close to the root.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

- Bottom-up algorithm to compute the optimal authentication nodes.
- Formal specification in the paper, let's see an example.

Conclusion

Take-aways

- Octopus + PORS = great improvement over HORST.
- \bullet These modifications are simple to understand \Rightarrow low risk of implementation bugs.
- More improvements in the paper.

Implementation

Two open-source implementations:

- Reference C implementation, proposed for NIST pqcrypto standardization https://github.com/gravity-postquantum/gravity-sphincs
- Rust implementation with focus on clarity and testing https://github.com/gendx/gravity-rs

Conclusion

Thank you for your attention!

Secret key caching

WOTS signatures to "connect" Merkle trees are large (\approx 2144 bytes per WOTS).

Figure 3: SPHINCS.

Secret key caching

⇒ We use a larger root
Merkle tree, and cache more values in private key.

Figure 4: Secret key caching.

Non-masked hashing

- In SPHINCS, Merkle trees have a **XOR-and-hash** construction, to use a 2nd-preimage-resistant hash function *H*.
- Various masks, depending on location in hyper-tree; all stored in the public key.
- Post-quantum preimage search is faster with Grover's algorithm \Rightarrow We remove the masks and rely on **collision-resistant** H.

(a) Masked hashing in SPHINCS.

(b) Mask off.