ECE355 Cheatsheet

Hanhee Lee

September 11, 2024

Contents

1	Tips		3
2	Mat	thematical Review	3
	2.1	Sets	3
		2.1.1 Set notation	3
		2.1.2 Important sets	4
	2.2	Ordered n-tuples	4
		2.2.1 How are two tuples equal?	4
			4
	2.3		5
		2.3.1 Range/Image	5
		2.3.2 Inverse Image	5
	2.4		5
			5
		·	6
		·	6
	2.5		7
	2.6		7
			7
	2.7		
	2.8		8
	2.9		8
			8
			8
			9
			9
			9
	2.10		9
			9
			9
			.0
			.0
		2.10.5 Logical disjunction (logical OR)	.0
		2.10.6 De Morgan's Laws	. 1
		2.10.7 Logical implication	.1
		2.10.8 Converse, inverse, contrapositive	. 1
		2.10.9 Biconditional	.2
		2.10.10 Rules of inference	2
	2.11	Predicate logic	2
		2.11.1 Quantifiers	2
		2.11.2 De Morgan's Law	.3
9	Com	timuous and disputs time signals (Ch. 1.1)	ก
3		atinuous and discrete-time signals (Ch. 1.1)	
	3.1	4 main classes of signals	
		Support	
	0.0	DIMING CHOIM WHICH DOWEL	. 4

	3.4	3.4.1 Examples of CT zero energy signals	
4	Tim	Time dilation, shifting (Ch. 1.2)	1
		Complex exponential signals (Ch. 1.3)	1
		tep and impulse functions (Ch. 1.4)	1
		General systems and basic properties (Ch. 1.5-6)	1
		mpulse response (Ch. 2.1)	1
9	Con	Convolution in discrete time (Ch. 2.1)	1
		Convolution in continuous time (Ch. 2.2)	1
11	Proj	Properties of LTI systems (Ch. 2.3)	1
12	Peri	Periodic signals and Fourier series	1
13	Proj	Properties of Fourier series	1
14	Res	Response of LTI systems to periodic signals	1
15	Ape	Aperiodic signals and Fourier transform	1
16	Fou	ourier transform properties; time-frequency duality	1
17	Ban	Bandlimited signals	1
18	The	The sampling theorem (Ch. 7.1)	1
19	Rec	Reconstruction (Ch. 7.2)	1
20	$\mathbf{Am}_{\mathbf{j}}$	amplitude modulation systems	1
21	Env	Envelope detection, coherent detection	1
22	Sing	ingle-sideband modulation	1
23	Ang	angle modulation	1
24	Con	Concepts of digital communication	1
Li	st o	t of Figures	
	1 2 3 4 5 6 7 8	Injective function. Surjective function. Bijective function. Composition example Illustration of bijective function Complex plane in general with radius r. Truth table for negation.	

9	Truth table of OR, where truth value F only when both p and q are F and truth value T when either of p
	or q or both are true
10	Truth table of logical implication, where truth value F only when p is true and q is false $\dots \dots \dots$
11	Truth table
12	Truth table of biconditional, where having truth value "true" whenever p and q have the same truth value,
	and "false" whenever p and q have different truth values
13	Support of a nonzero signal
14	Zero
15	Rectangular
16	Impulse
17	Cosine
18	Cosine
19	Impulse function with zero energy. (Top): Showing the extreme case. Bottom: Showing the delta case as
	it goes to 0
20	Finite number of locations will have zero energy
21	Countable number of locations will have zero energy

List of Tables

1 Tips

Intuition:

- May diverge from textbook, but only responsible for lecture content.
- Tutorials: Review of last week's topics and assigned problems.
- Piazza for asking questions.
- ISM: Investigate topic of interest that uses signals or systems with 10 pages that are reference, explain concepts in your own way.
- Quiz every week except for term tests.
- 30 minutes, appears Tuesday morning and ends Tuesday night.
- Easier than usual questions that tests understanding.
- Open book with MC, numerical answer.

2 Mathematical Review

2.1 Sets

Definition: An unordered collection of objects (i.e. elements or members)

ullet A set contains its elements or elements of a set are contained in that set.

2.1.1 Set notation

Terminology:

- ... mean "and so on"
- : mean "such that"
- \in mean "contained"
- \notin mean "not contained"
- \emptyset mean "empty set (i.e. a set contains no elements")
- $A \subseteq B$ mean "Only if every element of A is also an element of B"
- $B \supseteq A$ mean "B is a superset of A to mean A is a subset of B"
- Normally, elements of a set are listed just once.

Example:

Sets:

- $E = \{0, 2, 4, 6, 8\}$, where $2 \in E$ and $1 \notin E$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $P = \{0, 1, ..., 255\}$
- $O = \{x \in \mathbb{Z} : x = 2k + 1 \text{ for some } k \in \mathbb{Z}\}\$
- $\{\emptyset, \{\emptyset\}\}\$ (i.e. A set that has other sets as elements).

Subset:

• $E \subseteq \mathbb{Z}$

Theorem: A = B means $A \subseteq B$ and $B \subseteq A$.

• **Note:** Have to prove in both directions.

Example: $\{1, 2, 3\} = \{3, 2, 1, 1, 2\}$

2.1.2 Important sets

Definition:

- 1. Natural: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$:
- 2. Integers: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$: 3. Rational: $\mathbb{Q} = \left\{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\right\}$:
- 5. Complex: $\mathbb{C} = \{a + bj : a, b \in \mathbb{R}\}$
 - j: imaginary unit, where $j^2 = -1$ and $j = \sqrt{-1}$
- Note: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

2.2Ordered n-tuples

Definition: An ordered collection of n elements, where n is a positive integer, denoted as (a_1, a_2, \ldots, a_n) , where a_1 is the first element, and so on, up to a_n .

2.2.1How are two tuples equal?

Definition: Unlike sets, both the order of elements and the repetition of values are significant. Therefore, two ordered n-tuples are considered equal (i.e. $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$) iff:

$$a_1 = b_1, a_2 = b_2, \dots, a_n = b_n.$$

2.2.2Cartesian product

Definition: Two sets: The Cartesian product of two sets A and B (in that order), denoted as $A \times B$, is the set of all ordered pairs or ordered 2-tuples (a,b) where $a \in A$ and $b \in B$. Thus

$$A \times B = \{(a,b) : a \in A, b \in B\}. \tag{1}$$

- General: $B \times A \neq A \times B$
- 2-fold Cartesian product: $A \times A$ is denoted as A^2

More than two sets: The Cartesian product of sets A_1, A_2, \ldots, A_n , denoted as $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$. Thus

$$A_1 \times A_2 \times \dots \times A_n = \{ (a_1, a_2, \dots, a_n) : a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n \}.$$
 (2)

• n-fold Cartesian product: $A \times A \times \cdots \times A$ is denoted as A^n

2.3 Functions

Definition: A function $f: A \to B$ from a set A (the domain of f) to a set B (the codomain of f) assigns to each element $a \in A$ exactly one element $b \in B$, usually denoted as b = f(a).

2.3.1 Range/Image

Definition: The range or image of f is the subset of the codomain B given as

$$\operatorname{Im}_f(A) = \{ b \in B : \exists a \in A(f(a) = b) \}.$$

• English: Set of values "hit" by f as its argument ranges over the set A.

2.3.2 Inverse Image

Definition: The inverse image or pre-image of any element $b \in B$ under the mapping by f is the set

$$f^{-1}(b) = \{ a \in A : f(a) = b \}.$$

- English: Set of elements of the domain that map to b under transformation by f.
- **Key:** If b is an element of the codomain that is not in the range of f, then $f^{-1}(b) = \emptyset$

Example:

- Domain of $g: A = \{1, 2, 3, 4\}$
- Codomain of $g: B = \{w, x, y, z\}$
- Image of A: $\operatorname{Im}_g(A) = \{w, x, z\} \subseteq B$
- Inverse Image

$$g^{-1}(w) = \{1\}$$
$$g^{-1}(x) = \{2, 4\}$$
$$g^{-1}(y) = \emptyset$$
$$g^{-1}(z) = \{3\}$$

2.4 Classes of functions

2.4.1 Injective

Definition: A function $f: A \to B$ is called injective (or an injection or one-to-one) if $\forall a_1 \forall a_2$

$$a_1 \neq a_2 \to f(a_1) \neq f(a_2).$$

$$(f(a_1) = f(a_2) \rightarrow a_1 = a_2)$$

• English: Maps distinct elements of the domain to distinct elements of the codomain.

Figure 1: Injective function.

Process: Show a function is injective:

- 1. Set $f(x_1) = f(x_2)$
- 2. Prove $x_1 = x_2$ from step 1.

Show a function is not injective:

1. Find a counterexample where $f(a_1) = f(a_2)$.

2.4.2 Surjective

Definition: A function $f: A \to B$ is called surjective (or a surjection or onto) if

$$\forall b(f^{-1}(b) \neq \emptyset), \text{ or } \forall b \exists a(f(a) = b),$$

• English: Every element in the codomain has a mapping back to the domain.

Figure 2: Surjective function.

Process: Show a function is surjective:

- 1. Find the inverse of f(x) = y by writing x in terms of y denoted f^{-1}
- 2. See if the inverse satisfies the codomain, and there is no empty set.

Show a function is not surjective:

1. Find a counterexample, where you get the empty set for $b \in B$

Warning: Any nonsurjective function is a surjective function obtained from the original function by having the codomain match the range.

2.4.3 Bijective

Definition: A function $f: A \to B$ that is both injective and surjective is called bijective (or a bijection or a one-to-one correspondence).

• Correspondence: Inverse exists

Figure 3: Bijective function.

2.5 Composition of g with f

Definition: If $f:A\to B$ and $g:B\to C$, then $g\circ f:A\to C$ s.t. $a\to g(f(a))$ (i.e. first apply f, then apply g)

Figure 4: Composition example

• Order is important: $f(g(a)) \neq g(f(a))$

2.6 Identity map

Definition:

$$id_A: A \to A \quad id(a) = a \ \forall a \in A$$

2.7 Bijective property

Definition: Let $f: A \to B$, then iff f is bijective, \exists a function $f^{-1}: B \to A$ s.t. $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

Figure 5: Illustration of bijective function

2.8 Set of all functions with domain and codomain

Definition: The set of all fcns with domain A and codomain B is itself a set denoted B^A .

Example: If $A = \{1, 2\}$ and $B = \{x, y, z\}$, then B^A has $3^2 = 9$ elements (i.e., B^A).

$$f = \left(\begin{array}{cc} 1 & 2\\ f(1) & f(2) \end{array}\right)$$

The set B^A is:

$$B^A = \left\{ \left(\begin{array}{cc} 1 & 2 \\ x & x \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ x & y \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ x & z \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ y & x \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ y & y \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ z & z \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ z & z \end{array} \right) \right\}$$

2.9 Complex math

2.9.1 Complex number basics

Definition:

• z = a + bj, where $a, b \in \mathbb{R}$ - $\operatorname{Re}(z) = a$

 $-\operatorname{Im}(z) = b$

• Complex conjugate: If z = a + bj, then $z^* = a - bj$.

• Magnitude: $|z| = \sqrt{z \cdot z^*} = \sqrt{a^2 + b^2}$.

Example: Expand the following function:

$$(a+bj)(c+dj) = ac + (bc+ad)j + bdj^2$$
$$= ac + (bc+ad)j - bd \quad \text{since } j^2 = -1.$$

2.9.2 Complex exponential function

Definition:

$$\exp : \mathbb{C} \to \mathbb{C} \text{ via } \exp(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 (3)

• Entire function: Convergent no matter the values of z.

Let $\theta \in \mathbb{R}$, the expansion of $\exp(j\theta)$ is:

$$\exp(j\theta) = \cos\theta + j\sin\theta \tag{4}$$

2.9.3 Complex plane with radius r

Intuition:

Figure 6: Complex plane in general with radius r.

• Bounds: $r \ge 0$ and $-\pi < \theta \le \pi$

Polar: MultiplicationRectangular: Additive

2.9.4 Complex conjugate

Definition:

$$z^* = re^{-j\theta} \tag{5}$$

2.9.5 Converting between polar and rectangular form

Process:

Polar to rectangular: $e^{j\theta}$

- 1. Find r and θ from $re^{j\theta}$
- 2. Write in rectangular form: $z = r\cos\theta + jr\sin\theta$

Rectangular to polar: a + bj

- 1. Find r using Pythagorean theorem: $r = \sqrt{a^2 + b^2}$
- 2. Find θ using trigonometry: $\theta = \tan^{-1}\left(\frac{b}{a}\right)$, where b is the opposite and a is adjacent.
- 3. Write in polar form: $z = re^{j\theta}$
- Note: Both forms can be found intuitively through a drawing of the complex plane.

2.10 Propositional logic

2.10.1 Proposition

Definition: A declarative statement that can be either *true* or *false*, denoted by a symbol (e.g. p or q).

2.10.2 Compound proposition

Definition: Formed from existing propositions via negation and logical connectives.

2.10.3 Logical negation (logical not)

Definition: An operation that takes a proposition p to another proposition "not p", denoted $\neg p$ or p.

Figure 7: Truth table for negation.

Example: What is the truth value of the double negation?

It is not the case that it is not the case that p is the same as that of p.

• i.e. $\neg \neg p$ and p to be logically equivalent.

2.10.4 Logical conjunction (logical AND)

Definition: Two propositions p and q can be connected with a logical conjunction, denoted \wedge .

p	q	$p \wedge q$
F	F	F
F	$\mid \mathrm{T} \mid$	\mathbf{F}
$\mid T \mid$	F	\mathbf{F}
T	T	${ m T}$

Figure 8: Truth table of AND, where truth value T only when p and q are truth.

2.10.5 Logical disjunction (logical OR)

Definition: Two propositions p and q can be connected with a logical disjunction, denoted \vee .

p	q	$p \lor q$
F	F	\mathbf{F}
F	T	${ m T}$
$\mid T \mid$	F	${ m T}$
T	T	${ m T}$

Figure 9: Truth table of OR, where truth value F only when both p and q are F and truth value T when either of p or q or both are true.

2.10.6 De Morgan's Laws

Definition:

$$\neg (p \land q) \equiv (\neg p) \lor (\neg q) \quad \text{and} \quad \neg (p \lor q) \equiv (\neg p) \land (\neg q)$$
 (6)

2.10.7 Logical implication

Definition: Two propositions p and q can be connected with a logical *implication* denoted \rightarrow or "implies," to form the logical proposition $p \rightarrow q$.

- Antecedent: p.
- \bullet Consequent: q.
- English: The proposition $p \to q$ can be translated into English as "if p then q," or "q if p."
- Logically equivalent: $p \to q$ and $\neg p \lor q$

p	q	$p \rightarrow q$
F	F	T
F	\mathbf{T}	T
Γ	\mathbf{F}	F
T	T	Γ

Figure 10: Truth table of logical implication, where truth value F only when p is true and q is false

Warning: The following all mean the same thing:

- $\bullet p \rightarrow q$
- \bullet p implies q
- if p, then q
- *q* if *p*
- \bullet p is a sufficient condition for q
- p only if q (i.e. $p \to q \equiv \neg q \to \neg p$ i.e. implication is logically equivalent to its contrapositive)
- q is a necessary condition for p

2.10.8 Converse, inverse, contrapositive

Definition: Let $p \to q$ be a proposition. The following are the related forms of this proposition:

- The converse of $p \to q$ is the proposition $q \to p$.
- The *inverse* of $p \to q$ is the proposition $\neg p \to \neg q$.
- The contrapositive of $p \to q$ is the proposition $\neg q \to \neg p$.

antecedent	consequent	implication	converse	inverse	contrapositive
p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \to \neg q$	$\neg q \rightarrow \neg p$
F	F	T	Т	T	T
F	T	T	F	F	T
T	F	F	Т	T	F
T	T	T	T	T	T
	$\begin{array}{c} \text{antecedent} \\ \hline p \\ \hline F \\ F \\ T \\ T \end{array}$	$\begin{array}{c c} \text{antecedent} & \text{consequent} \\ \hline p & q \\ \hline F & F \\ F & T \\ T & F \\ T & T \\ \end{array}$	$\begin{array}{c ccc} \text{antecedent} & \text{consequent} & \text{implication} \\ \hline p & q & p \rightarrow q \\ \hline F & F & T \\ F & T & T \\ T & F & F \\ T & T & T \\ \end{array}$		

Figure 11: Truth table

Warning: The converse of an implication is *not* logically equivalent to the implication.

2.10.9 Biconditional

Definition: Two propositions p and q can be connected with a logical *biconditional*, denoted \leftrightarrow or "iff' to form the logical proposition $p \leftrightarrow q$.

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
F	F	T	T	Τ
F	$^{\rm T}$	T	F	F
T	F	F	T	\mathbf{F}
T	Т	T	T	${f T}$

Figure 12: Truth table of biconditional, where having truth value "true" whenever p and q have the same truth value, and "false" whenever p and q have different truth values.

• Logically equivalent: The biconditional is logically equivalent to the conjunction $(p \to q) \land (q \to p)$ of an implication and its converse.

2.10.10 Rules of inference

Logic is used to deduce truth of certain propositions from the truth of other propositions.

Definition:

1. Modus ponens (MP):

$$\frac{p \to q, \ p}{\therefore q}$$

(If $p \to q$ and p are both true, then q.)

2. Modus tollens (MT):

$$\frac{p \to q, \ \neg q}{\therefore \neg p}$$

(If $p \to q$ and $\neg q$ are both true, then $\neg p$.)

3. Modus tellendo ponens (MTP):

$$\frac{p \vee q, \ \neg p}{\therefore q}$$

(If $p \vee q$ and $\neg p$ are both true, then q.)

4. Modus ponendo tollens (MPT):

$$\frac{\neg (p \land q), \ p}{\neg q}$$

(If $\neg (p \land q)$ and p are both true, then $\neg q$.)

2.11 Predicate logic

Definition: Defined via *predicates*, which are prototypes for propositions involving *predicate variables* (i.e. placeholder variables), each associated with a specific set (i.e. *domain of discourse* for that variable)

• **Key:** When specific values from the domains of discourse are substituted for each of the predicate variables in a predicate, a specific proposition with a truth value is obtained.

2.11.1 Quantifiers

Definition:

- 1. Universal quantifier, denoted \forall . When applied to a predicate P(x), it asserts that the proposition P(x) is true for every x in the domain of discourse. Formally, it is written as $\forall x (P(x))$.
 - Effects the conjunction (AND)
- 2. Existential quantifier, denoted \exists . When applied to a predicate P(x), it asserts that the proposition P(x) is true for at least one x in the domain of discourse. Formally, it is written as $\exists x(P(x))$.

- Effects the disjunction (OR)
- $\exists x \in A(P(x)) \equiv \exists x (x \in A \land P(x))$

2.11.2 De Morgan's Law

Definition:

$$\neg(\forall x(P(x))) \equiv \exists x(\neg P(x)) \tag{7}$$

• English: Failure of P to hold universally is equivalent to the existence of at least one element in the domain of discourse for which P fails to hold.

$$\neg(\exists x (P(x))) \equiv \forall x (\neg P(x)) \tag{8}$$

• English: Failure of the existence of an element for which P holds is equivalent to P failing to hold for all elements in the domain of discourse

Signals and General Systems

3 Continuous and discrete-time signals (Ch. 1.1)

3.1 4 main classes of signals

Definition:

- 1. $\mathbb{R}^{\mathbb{Z}}$ (i.e. real-valued, discrete time) 2. $\mathbb{C}^{\mathbb{Z}}$ (i.e. complex-valued, discrete time) 3. $\mathbb{R}^{\mathbb{R}}$ (i.e. real-valued, continuous time)
- 4. $\mathbb{C}^{\mathbb{R}}$ (i.e. complex-valued, continuous time)
- Assumption: Complex unless told otherwise.

Intuition:

- () is continuous time.
- [] is discrete time.

3.2 Support

Definition: The support of a CT signal $x \in \mathbb{C}^{\mathbb{R}}$, $x(t) \neq \text{zero}$ is the smallest interval [a, b] s.t.:

$$x(t) = 0$$
 for $t \notin [a, b]$

Figure 13: Support of a nonzero signal.

The support of a DT signal $x \in \mathbb{C}^{\mathbb{Z}}$, $x[n] \neq \text{zero}$ is the smallest interval $\{a, a+1, \ldots, b\}$ s.t.:

$$x[n] = 0 \text{ for } n \notin \{a, a + 1, \dots, b\}$$

Example:

$$\delta[n] = \begin{cases} 1 & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

has support $\{0\}$.

Process: DT:

- 1. Understand the support of the original signal: Support of $x[n] = n_1, \ldots, n_k$
- 2. Time shift by k:
 - (a) Right shift: Support of $x[n-k] = \{n_1 + k, \dots, n_k + k\}$
 - (b) Left shift: Support of $x[n+k] = \{n_1 k, \dots, n_k k\}$
- 3. Time reversal: Reflects the signal across the vertical axis s.t. Support of $x[-n] = \{-n_1, \ldots, -n_k\}$ 4. Time scaling: Scaling by a (keep only integers) s.t. Support of $x[an] = \left\{\frac{n_1}{a}, \ldots, \frac{n_k}{a}\right\}$
 - (a) If a > 1, then compression
 - (b) If 0 < a < 1, then expanded

CT:

- 1. Understand the support of the original signal:
 - Identify the range of t for which the signal $x(t) \neq 0$. This range is known as the support of the signal.
- 2. Set the argument (e.g. if x(1-t), then the argument is 1-t) as an inequality to the support.
- 3. Solve for t.
- 4. If it is a product or a sum, then you must use logic to see which function will take priority to include all cases.
 - (a) Product: The lowest bound should take priority b/c the product will be zero as soon as either signal is zero (i.e. only non-zero when both signals are non-zero)
 - (b) Sum: The highest bound should take priority b/c a sum will be zero when both signals are zero.

Warning: You might look for the values s.t. it is guaranteed to be 0.

Signal energy and power 3.3

3.3.1Energy

Definition: Energy of a signal (if it exists) as

1. CT:
$$E_x = \int_{-\infty}^{+\infty} |x(t)|^2 dt \in \mathbb{R} \ge 0$$

2. **DT:**
$$E_x = \sum_{n=-\infty}^{+\infty} |x[n]|^2 \in \mathbb{R} \ge 0$$

- Energy signal: A signal of finite energy (i.e. zero average power) is called an energy signal.
- Negative: No negative energies.

3.3.2 Power

Definition: The average power is defined (if it exists) as:

1. CT:
$$x \in \mathbb{C}^{\mathbb{R}}$$
 then $P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt$

2. **DT:**
$$x \in \mathbb{C}^{\mathbb{Z}}$$
 then $P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$

• Power signal: A signal of finite average power is called a power signal.

Warning:

- **Zero average power:** Every energy signal has zero average power. This is because the energy is finite and spread out over an infinite time, causing the power to approach zero.
- Infinite energy: Power signal only when there is infinite energy.

3.3.3 Examples of energy and power signals

Example:

Figure 14: Zero

Figure 15: Rectangular

$$S[n] = \begin{cases} 1 & \text{if } n=0 \\ 0 & \text{otherwise} \end{cases}$$

$$E_{S} = \underbrace{\frac{2}{2}}_{n=-\infty} |S[n]|^{2} = 1$$

Figure 16: Impulse

Figure 17: Cosine

Let $x(t)=A\cos\left(\frac{2\pi t}{T_0}\right)$ for some $T_0>0$ and some A>0. (Here I've replaced the T from class with T_0 .) Let's compute the power of x.

We have
$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T |x(t)|^2 \, \mathrm{d}t$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T A^2 \cos^2\left(\frac{2\pi t}{T_0}\right) \, \mathrm{d}t$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \frac{A^2}{2} \left(1 + \cos\left(\frac{4\pi t}{T_0}\right)\right) \, \mathrm{d}t$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \frac{A^2}{2} \, \mathrm{d}t + \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \frac{A^2}{2} \cos\left(\frac{4\pi t}{T_0}\right) \, \mathrm{d}t$$

$$= \lim_{T \to \infty} \frac{1}{2T} \cdot \frac{2TA^2}{2} + \lim_{T \to \infty} \frac{1}{2T} \frac{T_0}{4\pi} \sin\left(\frac{4\pi t}{T_0}\right) \Big|_{-T}^T$$

$$= \frac{A^2}{2} + \lim_{T \to \infty} \frac{1}{2T} \frac{2T_0}{4\pi} \sin\left(\frac{4\pi T}{T_0}\right)$$

$$= \frac{A^2}{2}$$

The final limit in the last expression converges to zero since the function $\sin()$ is bounded between -1 and 1 and T_0 is a constant.

In conclusion, a cosine wave of amplitude A has power $\frac{A^2}{2}$. The period T_0 doesn't play a role, i.e., this result is true for any period $T_0>0$

Figure 18: Cosine

Intuition: Sketch the signal whenever possible.

3.4 Zero-energy signals

Definition:

DT: zero[n] has zero energy.

• Are there others? No, if $x[i] \neq 0$ for some i. $E_x \geq |x[i]|^2 > 0$

CT: zero(t) has zero energy.

• Are there others? Yes, examples are below.

3.4.1 Examples of CT zero energy signals

Example:

Figure 19: Impulse function with zero energy. (Top): Showing the extreme case. Bottom: Showing the delta case as it goes to 0.

Figure 20: Finite number of locations will have zero energy.

Figure 21: Countable number of locations will have zero energy.

3.4.2 Almost everywhere

Definition: If x(t) has zero energy, we will say x(t) = zero(t) almost everywhere.

$$x \stackrel{\text{a.e.}}{=} zero$$
 (9)

x(t) = y(t) almost everywhere (i.e. $x \stackrel{\text{a.e.}}{=} y$) if $x - y \stackrel{\text{a.e.}}{=}$ zero

- English: Physically indistinguishable, where signals that are equal almost everywhere are treated as equivalent because discrepancies occur in regions.
- Implication: On exams, if they are equal almost everywhere, then it be given leeway in marking to be the same.

3.5 Signal spaces are vector spaces

This holders for all 4 main classes of signals.

3.5.1 Signal addition

Definition: Given two signals $x, y \in \mathbb{R}^{\mathbb{R}}$, we can form a new signal x + y

$$(x+y)(t) = x(t) + y(t)$$
 by superposition (10)

 $\mathbb{R}^{\mathbb{R}}$ is closed under VA. $\forall x, y, z \in \mathbb{R}^{\mathbb{R}}$:

- 1. Commutative: x + y = y + x
- 2. **Associative:** x + (y + z) = (x + y) + z
- 3. Additive identity: zero(t) is the identity fcn.
- 4. Additive inverse: Every signal x has an additive inverse -x, s.t. x + (-x) = zero

3.5.2 Scalar multiplication

Definition: Given any scalar $a \in \mathbb{R}$, and any signal $x \in \mathbb{R}^{\mathbb{R}}$ we can form a new signal $ax \in \mathbb{R}^{\mathbb{R}}$

$$(ax)(t) = ax(t) \tag{11}$$

• Amplify: |a| > 1

• Attentuate: |a| < 1

 $\mathbb{R}^{\mathbb{R}}$ is closed under SM. $\forall a, b \in \mathbb{R}, \forall x, y \in \mathbb{R}^{\mathbb{R}}$:

- 1. Distributivity of signals: a(x+y) = (ax) + (ay)
- 2. Associativity: a(bx) = (ab)x
- 3. Scalar identity: 1x = x
- 4. Distributivity of scalars: (a + b)x = ax + bx

- 4 Time dilation, shifting (Ch. 1.2)
- 5 Complex exponential signals (Ch. 1.3)
- 6 Step and impulse functions (Ch. 1.4)
- 7 General systems and basic properties (Ch. 1.5-6)

Linear Time-Invariant Systems

- 8 Impulse response (Ch. 2.1)
- 9 Convolution in discrete time (Ch. 2.1)
- 10 Convolution in continuous time (Ch. 2.2)
- 11 Properties of LTI systems (Ch. 2.3)

Fourier Series and Fourier Transform Representations

- 12 Periodic signals and Fourier series
- 13 Properties of Fourier series
- 14 Response of LTI systems to periodic signals
- 15 Aperiodic signals and Fourier transform
- 16 Fourier transform properties; time-frequency duality

Sampling

- 17 Bandlimited signals
- 18 The sampling theorem (Ch. 7.1)
- 19 Reconstruction (Ch. 7.2)

Communication Systems

- 20 Amplitude modulation systems
- 21 Envelope detection, coherent detection
- 22 Single-sideband modulation
- 23 Angle modulation
- 24 Concepts of digital communication