1 Robótica

1.1 Filtrado de variables de este contexto

Variables aleatorias Rango/Categorías

- X_1 Velocidad del robot : 0 10 m/s
- X_2 Velocidad angular del robot : -10 rad/s a 10 rad/s
- X_3 Velocidad lineal del robot : 0 100 píxeles por segundo
- X_4 Posición X del robot : 0 1024 ancho del video (píxeles)
- X_5 Posición Y del robot : 0 512 alto del video (píxeles)
- Y_1 Tipo de tarea : Navegación, Manipulación de objetos, Recolección de datos
- Y_2 Entorno del robot : Interior, Exterior, Estructurado, No estructurado
- Y_3 Estado del robot : Activo, Inactivo, En espera, En error
- Y_4 Presencia de obstáculos : Sí, No
- Y_5 Resolución de video : 320x240, 640x480, 1920x1080,

1.2 Ejercicios

- 1. Densidades y masas.
 - (a) Aproximadamente, a la variable X_3 el transformer le ha asociado la densidad $2x/rango(X_3)$ determinar la contante c de normalización para esta variable aleatoria y este modelo de embebimiento.
 - (b) Aproximadamente, al 2 % de los primeros valores de la variable Y_4 el transformer le ha asignado unas probabilidades p(y) = 200(0.2)(0.3), determinar la contante c de normalización para esta variable aleatoria si el modelo de embebimiento le asignado c^2 al resto de valores de Y_4 .
 - (c) Aproximadamente, a la variable X_4 el transformer le ha asociado la densidad $2x/rango(X_4)$ determinar la contante c de normalización para esta variable aleatoria y este modelo de embebimiento.
 - (d) Aproximadamente, al 91 % de los primeros valores de la variable Y_3 el transformer le ha asignado unas probabilidades p(y) = 200(0.91)(0.3), determinar la contante c de normalización para esta variable aleatoria si el modelo de embebimiento le asignado c^2 al resto de valores de Y_3 .
- 2. Probabilidad condicional y Regla de Bayes en el contexto de entrenamiento de Transformers y la base de datos. Calcular P(A|B).
 - (a) Probabilidad previa de A es P(A)=8 %, la probabilidad del evento A: que la Y_5 se encuentre en el valor superior de codificado de la

variable Y_5 .

Probabilidad previa de B es P(B)=57 %, la probabilidad del evento B: que la X_5 se encuentre en el intervao $a \le X_5 \le b$, donde a es el 2 % y b el 90 % del rango de la variable X_3 .

Probabilidad de B dado A es P(B|A)=49 %,

(b) Probabilidad previa de A es P(A)=8 %, la probabilidad del evento A: que la Y_5 se encuentre en el valor superior de codificado de la variable Y_5 .

Probabilidad previa de B es P(B)=57 %, la probabilidad del evento B: que la X_5 se encuentre en el intervao $a \le X_5 \le b$, donde a es el 2 % y b el 90 % del rango de la variable X_5 .

Probabilidad de B dado A es P(B|A)=49 %,

3. Bayes, t-SNE y PCA. Calcular $P(A|B \cap C)$.

- (a) Probabilidad previa de A es P(A)=91 % de 'precision of 0 class', esta es la probabilidad del evento A: que la distancia entre dos puntos embebidos de la variable X_k sea menor que el umbral d es del 8 %. Probabilidad previa de B intersecctado con C es $P(B \cap C)=89$ % de 'recall of class 1', esta es la probabilidad del evento B intersectado con C: que el vector propio asociado al embebimiento de la variable Y_l coincida con una dirección específica sin considerar la varianza explicada, intersectado con el evento de que (este es el evento C) Probabilidad previa de B intersecctado con C dado A es P(B,C|A)=32% de 'accuracy'
- (b) Probabilidad previa de A es P(A)=91 % de 'precision of 0 class', esta es la probabilidad del evento A: que la distancia entre dos puntos embebidos de la variable X_i sea menor que el umbral d es del 57 %. Probabilidad previa de B intersecctado con C es $P(B \cap C)=89$ % de 'recall of class 1', esta es la probabilidad del evento B intersectado con C: que el vector propio asociado al embebimiento de la variable Y_l coincida con una dirección específica sin considerar la varianza explicada, intersectado con el evento de que (este es el evento C) Probabilidad previa de B intersecctado con C dado A es $P(B \cap C|A)$ = 88 % de 'accuracy'

4. Visualizaciones.

(a) Determine aproximadamente la recta vertical sobre el eje X que mejor separa los embebimientos proyectados tanto en la clases del t-SNE y el PCA

(b) Ajuste el ángulo de la visualizació 3D que muestre la mejor perspectiva para el plano separador tanto en las clases del t-SNE y el PCA (o explique si no se visualiza claramente el plano)

2 Agroindustria

2.1 Filtrado de variables de este contexto

Variable aleatoria Rango/Categorías

 $X_1 \text{ Acidez} : 0.0 - 14.0 \text{ (pH)}$

 X_2 Altura de cultivo : 0 - 3000 (metros sobre el nivel del mar)

 X_3 Puntaje de sabor : 0 - 100

 X_4 Temperatura de tostado : 150°C - 230°C X_5 Tiempo de extracción : 20 - 30 segundos Y_1 Método de molienda : Grueso, Medio, Fino

 Y_2 Método de preparación : Espresso, Goteo, Prensa francesa

 Y_3 Cuerpo : Ligero, Medio, Pesado

 Y_4 Aroma : Floral, Frutal, Especiado, Chocolate Y_5 Región de cultivo : África, América, Asia, Oceanía

2.2 Ejercicios

- 1. Densidades y masas.
 - (a) Aproximadamente, a la variable X_1 el transformer le ha asociado la densidad $2x/rango(X_1)$ determinar la contante c de normalización para esta variable aleatoria y este modelo de embebimiento.
 - (b) Aproximadamente, al 42 % de los primeros valores de la variable Y_4 el transformer le ha asignado unas probabilidades p(y) = 200(0.42)(0.3), determinar la contante c de normalización para esta variable aleatoria si el modelo de embebimiento le asignado c^2 al resto de valores de Y_4 .
 - (c) Aproximadamente, a la variable X_4 el transformer le ha asociado la densidad $2x/rango(X_4)$ determinar la contante c de normalización para esta variable aleatoria y este modelo de embebimiento.
 - (d) Aproximadamente, al 1 % de los primeros valores de la variable Y_1 el transformer le ha asignado unas probabilidades p(y) = 200(0.1)(0.3), determinar la contante c de normalización para esta variable aleatoria si el modelo de embebimiento le asignado c^2 al resto de valores de Y_1 .

- 2. Probabilidad condicional y Regla de Bayes en el contexto de entrenamiento de Transformers y la base de datos. Calcular P(A|B).
 - (a) Probabilidad previa de A es P(A)=3 %, la probabilidad del evento A: que la Y_1 se encuentre en el valor superior de codificado de la variable Y_1 .

Probabilidad previa de B es P(B)=79 %, la probabilidad del evento B: que la X_1 se encuentre en el intervao $a \leq X_1 \leq b$, donde a es el 42 % y b el 90 % del rango de la variable X_1 .

Probabilidad de B dado A es P(B|A)=93 %,

(b) Probabilidad previa de A es P(A)=3%, la probabilidad del evento A: que la Y_1 se encuentre en el valor superior de codificado de la variable Y_1 .

Probabilidad previa de B es P(B)=79 %, la probabilidad del evento B: que la X_1 se encuentre en el intervao $a \le X_1 \le b$, donde a es el 42 % y b el 90 % del rango de la variable X_1 .

Probabilidad de B dado A es P(B|A)=93 %,

- 3. Bayes, t-SNE y PCA. Calcular $P(A|B \cap C)$.
 - (a) Probabilidad previa de A es P(A)=1 % de 'precision of 0 class', esta es la probabilidad del evento A: que la distancia entre dos puntos embebidos de la variable X_k sea menor que el umbral d es del 3 %. Probabilidad previa de B intersecctado con C es $P(B \cap C)=87$ % de 'recall of class 1', esta es la probabilidad del evento B intersectado con C: que el vector propio asociado al embebimiento de la variable Y_l coincida con una dirección específica sin considerar la varianza explicada, intersectado con el evento de que (este es el evento C) Probabilidad previa de B intersecctado con C dado A es P(B,C|A)=26 % de 'accuracy'
 - (b) Probabilidad previa de A es P(A)=1 % de 'precision of 0 class', esta es la probabilidad del evento A: que la distancia entre dos puntos embebidos de la variable X_i sea menor que el umbral d es del 79 %. Probabilidad previa de B intersecctado con C es $P(B \cap C)=87$ % de 'recall of class 1', esta es la probabilidad del evento B intersectado con C: que el vector propio asociado al embebimiento de la variable Y_l coincida con una dirección específica sin considerar la varianza explicada, intersectado con el evento de que (este es el evento C) Probabilidad previa de B intersecctado con C dado A es $P(B \cap C|A) = 56$ % de 'accuracy'

4. Visualizaciones.

- (a) Determine aproximadamente la recta vertical sobre el eje X que mejor separa los embebimientos proyectados tanto en la clases del t-SNE y el PCA
- (b) Ajuste el ángulo de la visualizació 3D que muestre la mejor perspectiva para el plano separador tanto en las clases del t-SNE y el PCA (o explique si no se visualiza claramente el plano)

3 Sistemas

3.1 Filtrado de variables de este contexto

Variable aleatoria : Rango/Categorías

 X_1 Longitud del código : 10 - 10000 líneas

 X_2 Complejidad del código : 0 - 100 (% métrica de complejidad)

 X_3 Densidad de comentarios : 0 - 100 (%)

 X_4 Rendimiento del código : 0 - 100 (puntaje sobre tiempo de ejecución y uso de memoria)

 X_5 Número de pruebas unitarias : 0 - 100

 Y_1 Tipo de lenguaje de programación : Python, R, Julia, Java, C++, JavaScript

Y₂ Tipo de tarea de programación : Análisis de datos (statisticlas), Criptography, Desarrollo web, Aprendizaje automático, Deep Learning.

 Y_3 Nivel de abstracción del código : Funciones, Clases (POO), Módulos (High Abstraction)

 Y_4 Presencia de errores : Sí, No

 Y_5 Dependencias : Ninguna, Pocas, Muchas

3.2 Ejercicios

- 1. Densidades y masas.
 - (a) Aproximadamente, a la variable X_3 el transformer le ha asociado la densidad $2x/rango(X_3)$ determinar la contante c de normalización para esta variable aleatoria y este modelo de embebimiento.
 - (b) Aproximadamente, al 17 % de los primeros valores de la variable Y_4 el transformer le ha asignado unas probabilidades p(y) = 200(0.17)(0.3), determinar la contante c de normalización para esta variable aleatoria si el modelo de embebimiento le asignado c^2 al resto de valores de Y_4 .
 - (c) Aproximadamente, a la variable X_4 el transformer le ha asociado la densidad $2x/rango(X_4)$ determinar la contante c de normalización para esta variable aleatoria y este modelo de embebimiento.

- (d) Aproximadamente, al 60 % de los primeros valores de la variable Y_4 el transformer le ha asignado unas probabilidades p(y) = 200(0.60)(0.3), determinar la contante c de normalización para esta variable aleatoria si el modelo de embebimiento le asignado c^2 al resto de valores de Y_4 .
- 2. Probabilidad condicional y Regla de Bayes en el contexto de entrenamiento de Transformers y la base de datos. Calcular P(A|B).
 - (a) Probabilidad previa de A es P(A)=57 %, la probabilidad del evento A: que la Y_3 se encuentre en el valor superior de codificado de la variable Y_3 .

Probabilidad previa de B es P(B)=54 %, la probabilidad del evento B: que la X_2 se encuentre en el intervao $a \leq X_2 \leq b$, donde a es el 17 % y b el 90 % del rango de la variable X_3 .

Probabilidad de B dado A es P(B|A)=90 %,

(b) Probabilidad previa de A es P(A)=57 %, la probabilidad del evento A: que la Y_2 se encuentre en el valor superior de codificado de la variable Y_2 .

Probabilidad previa de B es P(B)=54 %, la probabilidad del evento B: que la X_3 se encuentre en el intervao $a \leq X_3 \leq b$, donde a es el 17 % y b el 90 % del rango de la variable X_3 .

Probabilidad de B dado A es P(B|A)=90 %,

- 3. Bayes, t-SNE y PCA. Calcular $P(A|B \cap C)$.
 - (a) Probabilidad previa de A es P(A) = 60 % de 'precision of 0 class', esta es la probabilidad del evento A: que la distancia entre dos puntos embebidos de la variable X_k sea menor que el umbral d es del 57 %. Probabilidad previa de B intersecctado con C es $P(B \cap C)=72 \%$ de 'recall of class 1', esta es la probabilidad del evento B intersectado con C: que el vector propio asociado al embebimiento de la variable Y_l coincida con una dirección específica sin considerar la varianza explicada, intersectado con el evento de que (este es el evento C) Probabilidad previa de B intersecctado con C dado A es P(B, C|A)=36% de 'accuracy'
 - (b) Probabilidad previa de A es P(A) = 60 % de 'precision of 0 class', esta es la probabilidad del evento A: que la distancia entre dos puntos embebidos de la variable X_i sea menor que el umbral d es del 54 %. Probabilidad previa de B intersecctado con C es $P(B \cap C)=72 \%$ de 'recall of class 1', esta es la probabilidad del evento B intersectado con C: que el vector propio asociado al embebimiento de la variable

 Y_l coincida con una dirección específica sin considerar la varianza explicada, intersectado con el evento de que (este es el evento C) Probabilidad previa de B intersecctado con C dado A es $P(B\cap C|A)$ = 86 % de 'accuracy'

4. Visualizaciones.

- (a) Determine aproximadamente la recta vertical sobre el eje X que mejor separa los embebimientos proyectados tanto en la clases del t-SNE y el PCA
- (b) Ajuste el ángulo de la visualizació 3D que muestre la mejor perspectiva para el plano separador tanto en las clases del t-SNE y el PCA (o explique si no se visualiza claramente el plano)