Computer Networks and Technologies Final Notlari

Bu yazı MIT lisanslıdır. Lisanslar hakkında bilgi almak için buraya bakmanda fayda var.

 $\sim Yunus\ Emre\ AK$ ©

 $Sefa\ Yal$ çındağ ile çalışılmıştır.

Döküman Renklendirme Yapısı

PDF Başlığı

Ana Başlıklar

Alt Başlıklar

İç Başlıklar

En İç Başlıklar

Tablo Başlığı

Bağlantılar

Değişmez ifadeler

Formüller

Önemli notlar

Terimsel ifadeler

Yorum satırları

Website Github 1 / 14 LinkedIn İletişim

İçerikler

- Network Layer
 - Forward & Route
 - Network Layer Service Models
 - Router Mimarisi
 - Import Port Function
 - Switching Fabric
 - Input & Output Queuing
 - The Internet Network Layer
 - IP Protocol
 - IP Adressing
 - Subnet (Alt ağlar)
 - CIDR (Classless InterDomain Routing)
 - DHCP (Dynamic Host Configuration Protocol)
 - DHCP Client-Server Senaryasu
 - ISP Adresleme
 - ISP Adressleme Hiyerarşisi
 - NAT (Network Adress Translation)
- Hauwei Dersi
 - Temel Kavramlar
 - SubnetMask Host ve Bit Hesaplamaları
 - IPv4 Classes
 - Layer Özellikleri
 - MAC varken Neden IP Adresi Var
 - Static Route
 - RIP Routing Information Protocol
 - RIP-2 Özellikleri
 - RIP-2 Örneği
 - OSPF Open Shortest Part First
 - OSPF Package Types
 - BGP
 - Comparing Protocol
 - Collision & Broadcast Domain
 - TCP / IP Model
 - TCP Transmission Types
 - Virtual LAN (VLAN)
 - VLAN Avantajları
 - Spanning Tree Protocol (STP)
 - STP Port State

Website Github 2 / 14 LinkedIn İletişim

Network Layer

- Veriler segment
- Application data
- Network katmanına geçerken bilgi datagram olarak devam ediyor
- Router'larda network katmanından sonrakiler var network dahil
- Transport katmanında TCP / UDP, ağ katmanında IP protokolleri uygulanır

Forward & Route

- Routung, 2 route arası aktarma
- Routing, kaynaktan asıl hedefe iletişim algoritması. Bir sürü forward
- Tablonun genel adı control plane'dir
- Forward işlemlerindeki router'lardaki control pane kullanılır, her bir route'un control pane'i bitlere karşılık hedef bilgisi taşır
- Remote Controller ile tablolar manuel olarak dolduruluyor (?)

Network Layer Service Models

- İnternet hız sunuyor, güvenlik değil. Güvenlik işlemlerini application katmanında yapıyor (Best efford)
- ATM güvenilik sağlayabilyor (4-9 sayfa 5)

Website Github 3 / 14 LinkedIn İletişim

Router Mimarisi

Yönlendircinin 2 görevi vardır:

- Yönlendirme algoritmaları ve protocol'lerin (RIP, OSPF, BGP) çalıştırılması
- Datagram'ları gelen porttan giden port'a yönlendirilmesi
- Datagram'lar hedefe Control Panel tablosuyla yönlendirilir

Import Port Function

Import Port Function	Açıklama
Destination-Based Forwarding	7
Longest Prefix Mathcing	8

Switching Fabric

Switching Fabric Açıklama

Memory	Eski düzen, yavaş
Bus	Paket kaybı olabiliyor, kurumsal ağlar için uygundur
Crossbar	Datagramlar parçalanıyor, parçalar işlemciler üzerinde birleştiriliyor, en hızlı yöntemdir

Input & Output Queuing

- Queue delay ve buffer'ın dolu olmasından dolayı kayıp olur (Output)
 - \blacksquare $(RTT.C)/\sqrt{N}$
- Gecikme ve giriş buffer'ında yer kalmaz ise kayıp oluşabilir (Input)
 - Head of the Line (HOL)
- Scheduling mechanisims
 - FIFO first in first out
 - Priority schedulung, en az bekleyeceği yere yönlendirir
 - Round Rubin (RR), boyutu az olanı önce işleme sokma
 - Weighted Fair Queuing (WFQ), RR'ın genelleştirilmiş hali
 - Büyük paketleri parçalasyarak adil miktarda alır ve gönderir

Website Github 4 / 14 LinkedIn İletişim

The Internet Network Layer

- Segment (TCP; UDP)
- Datagram (IP, ROUTE vs)
- Frame (link layer)

IP Protocol

- IPv4 = 4byte (32 bit)
- IPv6 = 16byte (128 bit)
- Büyük IP datagramları ağ içlerinde parçalanıp (*fragmentation*) yollanır, son hedefte (*final destination*) da işlemcide birleştirilir (*reassambled*)
 - lacktriangle Üst bilgi uzunluğu Head=20bit
 - lacksquare Bölünme varsa fragflag=1
 - Offset = (length Head)/8

IP Adressing

- IP Adresleri kablonun (switch, router) adresidir, PC'nin değil
- Her bir bağlantı *interface* olarak tanımalanır (253.1.1.1)
- IPv4 32 bittir, uzun olduğunda 4x8bit olarak parçalanır (x.x.x.x)

Subnet (Alt ağlar)

- IP'lerin ortak kısmı yazılır, değişken kısmı 0 olarak gösterilir
- 223.1.1.1, 223.1.1.4 vs. için 223.1.1.0 subnet'i kullanılır
 - IP'in sol kısmı 223.1.1 **subnet**, sağ kısmı **host** bölümüdür
 - 223.1.3.0 / 24 değerinden 24 kısmı subnet için ayrılan biti (subnet mask) temsil eder
 - Sadece host arası değil router arasında da subnet olur
- Subnet'ler birbiri ile iletişimde değildir (isolated)

CIDR (Classless InterDomain Routing)

- Özel bir class yapısı yoktur
- Kendimize ait subnet ve host adresimiz vardır
- Belirli class verilerine uygun olarak maske kullanılırsa classful olur

Website Github 5 / 14 LinkedIn İletişim

DHCP (Dynamic Host Configuration Protocol)

- Bu protokol sayesinde IP adresleri otomatik olarak atanır
- Dinamik olarak IP ataması yapılır, boş IP adresleri hemen başkalarına verilir

DHCP Mesaj Tipi	Açıklama	İsteğe Bağlı
discover	Broadcast (yayınlama) bulunma işlemi	Evet
offer	Sunucunun verdiği cevap	Evet
request	Sunucudan IP isteme	Hayır
ack	Sunucunun IP adresini göndermesi	Hayır

DHCP Client-Server Senaryasu

- Bilgisayar ağa bağlanır
- DHCP Discover mesajını gönderir
 - IP adresi almak için DHCP server'ını bulmaya çaışıyor
 - Kendi IP'sine 0.0.0.0 dest IP'ye 255.255.255.255
- DHCP offer mesajı alır
 - DHCP, IP adresi sunuyor, istiyor musun diyor
- DHCP request mesajı gönderir
 - Host verilen IP'yi kabul ettiği bilgisini gönderiyor
- DHCP ack mesajı alır
 - IP adresini atanıyor
 - Subnet bilgisi atanıyor
 - DNS server'ın IP adresi bilgisi veriliyor
 - Gateway, Diğer ağalara çıkısı sağlayan adresi
- ilerleme hiyerarşisi: DHCP -> UDP -> IP -> Ethernet -> Physical
 - App Transport Network Link Physical
 - Sistemdeki tüm bilgisayarları geziyor

Default Gateway, internete erişim yaptığımız IP adresimizdir, *local network* üzerinden olan IP adresi ile internete erişmeyiz. Her *local network*'ün çıkış IP'si aynıdır

Website Github 6 / 14 LinkedIn İletişim

ISP Adresleme

ISP adres bloğu ICANN (Internet Corporation for Assigned Names and Numbers)

- IP adresi
- DNS
- Domaint

ISP Adressleme Hiyerarşisi

Yeni bir ISP'ye geçildiğinde yeni olandaki IP adresinin subnet mask değeri daha fazladır, bu sebeple

- İlk arama yenisinde yapılır yenide yoksa eski IP'ye bakılır
- Aktarımlarda sorun oluşturulması engellenir
- Örn: Turkcell'ten TTNet'e taşındığı zaman, TTNeT'deki IP verisinde olan subnet mask değeri (x.x.x.x / 23) değeri fazladır

Subnet mask, subnet için ayrılan bit sayısı

NAT (Network Adress Translation)

Local network'ler internet ile etkileşime geçerken tek bir IP kullanırlar

- ISP'lerde IP uzunluğu önemsizdir, tek IP kullanılır
- Local network (yerel ağ) üzerindeki değişikler ISP'yi etkilemez (tam tersi de geçerli)
- Local network içindeki kullanıcılar internet üzerinde gözükmez (güvenlik amaçlı)
- Giden datagram verilerinde IP adresi yerine NAT IP adresi konulur, gelenlerde de NAT IP yerine IP adresine çevrilir
- LAN = Local area network (IP)
- WAN = World area network (NAT IP)
- NAT 16bit port-number alanı sayesinde 60.000 LAN-side adress destekler

Website Github 7 / 14 LinkedIn İletişim

Hauwei Dersi

eNSP, Hauwei'nin sunduğu network similasyın uygulaması

Notlar tam değildir, katıldığım (ve dinlediğim 📦) kısımlar yazılmıştır.

Temel Kavramlar

Kavram	Açıklama
IP Adresi	İnternete bağlanma adresimiz
SubnetMask	Kimlik ve grupları ayırmak için kullanılır
Default Gateway	İki farklı network'ün iletişimini sağlar, local networkten çıkış IP'si aynıdır
Subnet ID	Last IP & (logic and) SubnetMask

SubnetMask Host ve Bit Hesaplamaları

255.255.b.a olan subnetmask için:

- host = (256 b)(256 a) 2
 - 0 ve 255 kullanılamaz, ondan 2
- $bit = 32 log_2(host + 2)$
 - Subnet içina ayrılan bit (subnet mask)

Subnet splitting:

- $lacksquare m \geq log_2(subnet)$
 - *subnet*: istenen subnet sayısı
 - m kadar host kısmına 1 yazılır (x.x.x.x / 21 ise 22 olacak)
- $host = 2^n 2$
 - n: Bir subnetteki host sayısı
- 2^n kadar arttırılacak şekilde IP'ler gruplanır
- Başlangıç ve bitiş dahil olmaz

IPv4 Classes

IP.0.0.0 için temel formül:

- $\blacksquare \ IP_{class} = IP_{class-1} + 2^{8-harf}$
 - *harf* A -> 0 olmak üzere alfabetik sıra
 - $IP_0 = 0$

Class	IP Karşılığı	Artış
Α	0.0.0.0	0
В	128.0.0.0	128
С	192.0.0.0	64
D	224.0.0.0	32
Е	240.0.0.0	16

Layer Özellikleri

Layer2	Layer3
Aynı <i>network</i> 'teki haberleşme (local)	Farklı <i>network</i> 'teki haberlerşme
Modemlerdeki <i>LAN</i> portlarının katmanı	Modemdeki ADSL portunun katmanı
Switch ile gerçekleşir	Router ile gerçekleşir
MAC adresleri ile haberleşilir	Asıl hedefe <i>IP</i> adresi ile gidilir, <i>MAC</i> adresleri hedefe gidiş sırasında kullanılır
Gateway olmaz	Gateway olur

- Router, switchlerin haberleşmesini sağlar
- switch, aynı ağdaki bilgisayarların haberleşmesini sağlar
- *Gateway*, asıl hedefini belirtir ve hedefe giderken başka yerlere gitmesiyle ilgilnemez bilgisi olmaz. (kargo şirkerlerine paket vermek gibi)

Website Github 9 / 14 LinkedIn İletişim

MAC varken Neden IP Adresi Var

- Paket alışverisi *IP* adresi ile yapılmaktadır (layer3)
- Router arasında aktarım yapılırken, Source MAC adresi sabit kalarak, Destination MAC adresleri değişmektedir
 - Source MAC, kaynağın kimliğini tutar
 - Destination MAC, paketin gönderileceği kaynağın adresini tutar.
 - IP, asıl kaynağın sanal adresini tutar
- Her kaynak bildiği hedefe paketi yollar (gateway yapısı)
 - Bildiği adres olarak ifade edilen MAC adresidir

Static Route

Her iki router için de bu komutlardan biri tanımlanırsa bağlantı mümkün olur.

- ip route-static [dest_ip] [subnet] [dest_port]
- ip route-static [dest_ip] [subnet] Serial [port_number]
- ip route-static [dest_ip] [subnetmask] Serial [port_number]

RIP - Routing Information Protocol

- Interior Gateway Protocol (IGP)
- Distance vector algorithm
- Ufak çaplı network'lerde kullanılır

Rip - 1	Rip - 2
Classful routing protocol	Classless routuing protocol
Broadcast route updates	Multicast route updates 224.0.0.9
UDP 520 port send and recieve packet	UDP 520 port send and recieve packet
Metric (Hop count)	Metric (Hop count)
	Support external route tag, route summarization
	Specified next hop and authentication (MD5)
	Classless inter-domain routing (CIDR)

Website Github 10 / 14 LinkedIn İletişim

RIP-2 Özellikleri

- Timer
- Split Horizon
- Poison Reverse
- Trigger Update
 - Route bilgisi değişirse hemen güncelleme paketini komşusuna gönderir

RIP-2 Örneği

Temel sistem:

- rip
- version 2
- network <network id>
 - Kaç network'e bağlıysa o kadar network ... komutu yazılır
 - <network_id> sonu .0 olan IP adresidir
- quit

RIP-Example

•[RouterA] rip

•[RouterA] version 2

•[RouterA-rip-1] network 192.168.1.0

•[RouterA-rip-1] quit

∘[RouterB] rip

•[RouterB] version 2

[RouterB-rip-1] network 192.168.1.0

•[RouterB-rip-1] network 172.16.0.0

»[RouterB-rip-1] network 10.0.0.0

•[RouterB-rip-1] quit

display rip 1 route

Website Github 11 / 14 LinkedIn İletişim

OSPF Open Shortest Part First

- Link State interior gateway protocol (IGP)
- SPF Algorith
- Kurumsal *network*'lerde kullanılır

OSPF Package Types

Genel olarak Link State (LS) olanları barındırır.

- Hello
- Database Description (DD)
- Link State Request (LSR)
- Link State Update (LSU)
- Link State Acknowledgement (LSAck)

BGP

- BGP, **TCP 179** portunu kullanır
- Büyük çaplı network'lerde kullanılır
- BGP neighbor reletionship yapısı: Idle Connect Opensent OenConnect Estanblished

Comparing Protocol

RIP - 2	OSPF	IS - IS	BGP
Interior Gateway Protocol (IGP)	Link State interior gateway protocol (IGP)	Link State Interior Gateway Protocol (IGP)	Exterior Gateway Protocol (EGP)
Distance vector algorithm	SPF Algorith	SPF algorithm	Optimal route between ASs
Ufak çaplı <i>network</i> 'lerde kullanılır	Kurumsal <i>network</i> 'lerde kullanılır	Büyük çaplı <i>network</i> 'lerde kullanılır	Büyük çaplı <i>network</i> 'lerde kullanılır

Collision & Broadcast Domain

Metod	Hub	Repeater	Switch	Bridge	Router
Collision Domain	Geçirir	Geçirir	Geçirmez	Geçirmez	Geçirmez
Broadcast Domain	Geçirir	Geçirir	Seçici geçirgen	Geçirir	Geçirmez

Website Github 12 / 14 LinkedIn İletişim

TCP / IP Model

ТСР	UDP
Connection-Oriented	Connection-less
Windowing	No Windowing
Error Recovery	No Error Recovery
Ordered Data	No Ordered Data

UDP hız odaklıdır.

TCP Transmission Types

- Connection 3-Way Handshake
- Connection Termination
- Normal Data Transmission
- Error Recovery
- Windowing

Website Github 13 / 14 LinkedIn İletişim

Virtual LAN (VLAN)

Switch içerisinde switch yapısı oluştururak, sanal bir ağ yapısı sunar

- VLAN içerisindeki kendi aralarında haberleşebilir, diğer LAN üyeleri mesaj gönderemez
 - VLAN'ı switch, LAN'ı da router'a bağlı host'lar olarak düşünebiliriz.
 - VLAN, little switch olarak da tanımlanır
- Güvenlik amaçlı yapılmıştır, fiziksel olarak Router ve Switch almak pahalıya gelmektedir
- Access ve Trunk Port olarak 2 port'u vardır
- Trunk port, switchler arası portlar

VLAN Avantajları

- Geliştirilmiş güvenlik
- Düşük maalyet
- Verimli performans
- Yönetim kolaylığı

Spanning Tree Protocol (STP)

- Root bridge'ın tüm portları elden atanır (designated port)
- Root bridge'e giden en kısa yol root port olarak seçilir

STP Port State

- Listening
- Learning
- Forwarding
- Disabled

Website Github 14 / 14 LinkedIn İletişim