- ¹ Chapter 1
- ² The Pella-Tomlinson Model

3 Abstract

into two dimensions.

Stock assessments often assume a two-parameter functional form (e.g., Beverton-Holt or Ricker) for the expected recruitment produced by a given level of spawning output. Mangel et al. (2013) and others have shown that biological reference points such as $\frac{F^*}{M}$ and $\frac{B^*}{\bar{B}(0)}$ are largely determined by a single parameter (steepness) when using two-parameter relationships. These functions introduce strong correlations between reference points that are pre-determined by the functional form, rather than a biological characteristic of the stock. 9 Mangel et al. note that use of a three-parameter stock-recruitment relationship allows for 10 independent estimation of these reference points. This research seeks to understand the 11 nature of biases in reference points resulting from fitting a two-parameter functional form when the true relationship follows a three-parameter stock-recruitment relationship. This 13 work demonstrates the useful limits of misspecified two-parameter models, and suggests the mechanisms of model failure which arise from mapping a three-dimensional parameter space 15

17 Introduction

The most fundamental model in modern fisheries management is the surplus-production model. These models focus on modeling population growth via nonlinear parametric ordi-19 nary differential equations (ODE). Key management quantities called reference points (RPs) are commonly derived from the ODE equilibrium equations and depend upon the parameter-21 ization of biomass production. Two-parameter forms of the production function have been 22 shown to limit the theoretical domain of RPs (Mangel et al., 2013). The limited RP-space of 23 two parameter models are a major source of model misspecification for RPs and thus induce bias in RP estimation. The behavior of RP estimation bias is not well understood and as 25 a result often underappreciated. A metamodeling approach is developed here to describe RP biases and explore mechanisms of model failure under the most common two parameter 27 models. 28 Data for a typical surplus-production model comes in the form of an index of abundance 29

Data for a typical surplus-production model comes in the form of an index of abundance through time which is assumed to be proportional to the reproducing biomass for the population of interest. The index is often observed alongside a variety of other known quantities, but at a minimum, each observed index will be observed in the presence of some known catch for the period. Figure (3.3) shows the classic Namibian Hake dataset exemplifying the form.

Figure 1.1: *left*: Arl Midex of abundance data, catch per unit Miffort (CPUE), for Namibian Hake from 1965 to 1987 (Hilborn & Mangel, 1997). *right*: The associated catch data for Namibian Hake over the same time period.

Indices are assumed to have multiplicative log-normal errors, and thus the following observation model arises naturally,

$$I_t = qB_t e^{\epsilon} \quad \epsilon \sim N(0, \sigma^2). \tag{1.1}$$

Above q is often referred to as the "catchability parameter"; it serves as the proportionality constant mapping between the observed index of abundance and biomass. σ^2 models residual variation. Biologically speaking q and σ^2 are often treated as nuisance parameters with the "biological parameters" entering the model through a process model on biomass.

Biomass is assumed to evolve as an ODE; in this case I focus on the following form

38

$$\frac{dB}{dt} = P(B(t); \boldsymbol{\theta}) - Z(t)B(t). \tag{1.2}$$

the population, P(B), and various sources of biomass removal, Z, from the population. Firstly, the population grows through a production function, P(B). Production in this setting is defined as the net biomass increase due to all reproduction and maturation processes. The production function is assumed to be a parametric (generally non-linear) function relating the current biomass of the population to an aggregate production of biomass.

Here biomass is assumed to change in time by two processes, net production of biomass into

Secondly, the population decreases as biomass is removed by various sources that are assumed to remove biomass linearly with biomass. Above, Z(t), is an aggregate rate of removal. When the fishing rate, F(t), is the only source of removal Z(t) = F(t), however often models will also included other linear terms in Z(t). Commonly the rate of "natural mortality", M, is also included as an additional term so that Z(t) = M + F(t).

From a management perspective a major goal of modeling is to accurately infer a quantity known as maximum sustainable yield (MSY). One could maximize simple yield at a particular moment in time (and only for that moment) by fishing all available biomass in that moment. This strategy is penny-wise but pound-foolish (not to mention ecologically devastating) since it doesn't leave biomass in the population to reproduce in the future. We seek to fish in a way that allows (or even encourages) future productivity in the population. This is accomplished by maximizing the equilibrium level of catch over time. Equilibrium yield is considered by

replacing the steady state biomass (\bar{B}) in the assumed form for catch, so that $\bar{Y} = F\bar{B}(F)$, where $\bar{}$ indicates a value at steady state. MSY is found by maximizing $\bar{Y}(F)$ with respect to 58 F, and F^* is the fishing rate at MSY. Going forward let * decorate any value derived under 59 the condition of MSY. 60 Fisheries are very often managed based upon reference points which serve as simplified 61 heuristic measures of population behavior. The mathematical form of RPs depends upon 62 the model assumptions through the production function. While a number of different RPs 63 exist which describe the population in different (but related) ways, the most common RPs 64 revolve around the concept of MSY (or robust ways of measuring MSY (Hilborn, 2010; Punt 65 et al., 2016)). Here the focus is primarily on the RPs $\frac{B^*}{\bar{B}(0)}$ and F^* ($\frac{F^*}{M}$ when appropriate) for their pervasive use in modern fisheries (Punt & Cope, 2019). 67 F^* is the afore mentioned fishing rate which results in MSY. $\frac{B^*}{\overline{B}(0)}$ is the depletion of the 68 stock at MSY. That is to say $\frac{B^*}{\overline{B}(0)}$ describes the fraction of the unfished population biomass 69 that will remain in the equilibrium at MSY. In general $F^* \in \mathbb{R}^+$ and $\frac{B^*}{B(0)} \in (0,1)$, however 70 under the under the assumption of a two parameter production function production models 71 will be structurally unable to capture the full theoretical range of RPs. 72 Many of the most commonly used production functions depend only on two parameters. 73 For example, the Schaefer model depends only on the biological parameters r and K, and 74 limits RP inference so that under the Schaefer model $\left(F^*, \frac{B^*}{B(0)}\right) \in \left(\mathbb{R}^+, \frac{1}{2}\right)$. The two pa-75 rameter Fox model (Fox Jr., 1970) limits $\left(F^*, \frac{B^*}{\overline{B}(0)}\right) \in \left(\mathbb{R}^+, \frac{1}{e}\right)$. Similarly the two parameter Cushing (Cushing, 1971), Beverton-Holt (Beverton & Holt, 1957, BH) and Ricker (Ricker, 77 1954) production functions do not model the full theoretical space of RPs (Mangel et al., 78 2013; Yeakel & Mangel, 2015). 79 The bias-variance trade-off (Ramasubramanian & Singh, 2017) makes it clear that the 80 addition of a third parameter in the production function will necessarily reduce estimation 81 bias. However the utility of this bias reduction is still under debate because the particular 82 mechanisms and behavior (direction and magnitude) of these biases for key management 83 quantities are not fully understood or described. Lee et al. (2012) provides some evidence 84 that estimation of productivity parameters are dependent on biomass contrast as well as model specification. Conn et al. (2010) comes to similar conclusions via calibration modeling techniques. These studies indicate important factors that contribute to inferential failure.

However they do not offer mechanisms of model failure, nor do their experimental designs allow for the control of different types of model misspecification.

In this study I consider the behavior of inference when index data are simulated from three parameter PT and Schnute production models, but the simulated data are fit using intentionally misspecified two parameter logistic or BH production models. The work begins with a derivation of RPs under the three parameter models. A method is then presented for generating simulation designs based on the parametric form of RPs which serves as a control on the nature of simulated model misspecification. Finally a Gaussian Process (GP) metamodel (Gramacy, 2020) is constructed for exploration and analysis of RP biases.

A key insight of this approach is that bias is considered broadly across RP-space to uncover patterns and correlations between RPs. The GP metamodel is explicit about tradeoffs between RPs so as to inform the full utility of reducing bias, as well as to suggest mechanisms for understanding what causes bias. Further, the effect of contrast on estimation is considered together with model misspecification.

¹⁰² 2 Methods

pprox 2 .1 Pella-Tomlinson Model

The three parameter Pella-Tomlinson (PT) family has a convenient form that includes, among others (Fox Jr., 1970; Rankin & Lemos, 2015), the logistic production function as a special case. PT production function is parameterized so that $\boldsymbol{\theta} = [r, K, \gamma]$ and the family takes the following form,

$$P_p(B; [r, K, \gamma]) = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{(\gamma - 1)} \right). \tag{1.3}$$

 γ is a parameter which breaks PT out of the 104 restrictive symmetry of the logistic curve. In gen-105 eral $\gamma \in (1, \infty)$, with the logistic model appear-106 ing in the special case of $\gamma = 2$, and the Fox model appearing as a limiting case as $\gamma \to 1$. The 108 parameter r controls the maximum reproductive 109 rate of the population in the absence of compe-110 tition for resources (i.e. the slope of production 111 function at the origin). K is the so called "carrying capacity" of the population. In this con-113 text the carrying capacity can be formally stated 114 as steady state biomass in the absence of fishing 115 (i.e. B(0) = K). In Figure (3.4) PT recruitment 116 is shown for a range of parameter values so as to demonstrate the various recruitment shapes that 118 can be achieved by PT recruitment. 119

While the form of the PT curve produces some limitations (Fletcher, 1978), importantly

the introduction of a third parameter allows enough flexibility to fully describe the space of reference points used in management. To see this, the reference points are analytically derived for the PT model below.

125 PT Reference Points

With B(t) representing biomass at time t, under PT production, the dynamics of biomass are defined by the following ODE,

$$\frac{dB}{dt} = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{\gamma - 1} \right) - FB. \tag{1.4}$$

An expression for the equilibrium biomass is attained by setting Eq (3.15) equal to zero, and rearranging the resulting equation to solve for B. Thinking of the result as a function

Figure 1.2: The Pella-Tomlinson production function plotted across a variety of parameter values. The special cases of Logistic production is shown in black, and the left-leaning and right-leaning regimes are shown in blue and red respectively.

of F gives,

$$\bar{B}(F) = K \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{(\gamma - 1)}}.$$
(1.5)

At this point it is convenient to notice that $\bar{B}(0) = K$. The expression for B^* is given by evaluating Eq (3.16) at F^* . To get an expression for F^* , the equilibrium yield is maximized with respect to F,

$$F^* = \operatorname*{argmax}_F F\bar{B}(F). \tag{1.6}$$

In the case of PT production this maximization can be done analytically, by differentiating the equilibrium yield with respect to F as follows,

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{1.7}$$

$$\frac{d\bar{B}}{dF} = -\frac{K}{r} \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{\gamma - 1} - 1}.$$
(1.8)

Setting Eq (3.18) equal to 0, substituting $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$ by Equations (3.16) and (3.19) respectively, and solving for F produces the following expression for the fishing rate required to produce MSY,

$$F^* = \frac{r}{\gamma} \tag{1.9}$$

Plugging the above expression for F^* back into Eq (3.16) gives the following expression for biomass at MSY,

$$B^* = K \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}. (1.10)$$

The above derived expressions for $\bar{B}(0)$, B^* , and F^* can then be used to build a specific analytical form for the biological reference points in terms of only productivity parameters.

$$F^* = \frac{r}{\gamma} \qquad \frac{B^*}{\bar{B}(0)} = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}} \tag{1.11}$$

131 Simulation

Generating simulated indices of abundance from the PT model requires inverting the relationship between $\left(F^*, \frac{B^*}{B(0)}\right)$, and (r, γ) . It is not generally possible to analytically invert this relationship for many three parameter production functions (Punt & Cope, 2019; J. T. Schnute & Richards, 1998). Most three parameter production functions lead to RPs that require expensive numerical methods to invert; more over the numerical inversion procedure can often be unstable. That said, for the case of PT this relationship is analytically invertible, and leads to the following relationship

$$r = \gamma F^* \qquad \qquad \gamma = \frac{W\left(\frac{B^*}{\overline{B}(0)}\log\left(\frac{B^*}{\overline{B}(0)}\right)\right)}{\log\left(\frac{B^*}{\overline{B}(0)}\right)}. \tag{1.12}$$

Above W is the Lambert product logarithm function. More details about this derivation, and the Lambert product logarithm, are given in Appendix (6).

Using Eq. (3.23) to obtain production parameters, a PT production model can be fully defined for any combination of the RPs F^* and $\frac{B^*}{\overline{B}(0)}$. Since K does not enter the RP calculation its value is fixed arbitrarily at 10000.

Indices of abundance are simulated from the three parameter PT production model broadly over the space of F^* and $\frac{B^*}{\overline{B}(0)}$ via a space filling design as described in Section (4.3). A small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and these data are then fit with a Schaefer model, at various degrees of misspecification, so as to observe the effect of productivity model misspecification upon RP inference.

142 PT Design

Letting \mathcal{F} and \mathcal{B} be regular grids, of size n=100, on $F^* \in (0.1, 0.7)$ and $\frac{B^*}{B_0} \in (0.2, 0.6)$ respectively, a LHS design of size 100 is collected among the cells produced by $\mathcal{F} \times \mathcal{B}$.

Each of the sampled LHS design locations represent a unique PT model with the sampled RP values. Since the relationship mapping RPs analytically to productivity parameters can be found for the PT model, LHS designs the PT model are computed directly in RP space and Eq. (3.23) is used to map the sampled RP design locations to PT productivity parameters.

2.2 Gaussian Process Metamodel

150

174

175

176

177

178

At its core, a metamodel is simply a model of some mapping of inputs to outputs (the 151 mapping itself is typically defined by a computer model). By modeling the mapping with a 152 statistical model (that explicitly defines the relevant features of the mapping) a metamodel 153 defines a specific ontology for the mapping. By simulating examples of the mapping, the 154 inferential infrastructure of the statistical model is used to empirically learn an effective 155 emulation of the mapping within the ontology defined by the statistical model. The pre-156 dictive infrastructure of the statistical model is then useful as an approximate abstraction 157 of the system itself to better understand the system through further data collection, cheap 158 approximation of the mapping, and/or study of the mapping itself. 159

In this setting, the aim of metamodeling is to study how well RPs are inferred when typical 160 two parameter models of productivity (Logistic and BH) are misspecified for populations 161 that are actually driven by more complicated dynamics. The simulation design, X, provides 162 a sample of different population dynamics that are driven by three parameter production 163 functions broadly in RP space. By simulating index of abundance data from the three 164 parameter model, and fitting those data with the two parameter production model, we 165 observe particular instances of how well RPs are inferred at the given misspecification of the 166 two parameter model relative to the true three parameter production model. By gathering 167 all of the simulated instances of how RPs are inferred (under the two parameter model), 168 we form a set of example mappings to train a metamodel which represents the mapping 169 of true RPs (under the three parameter model) to estimates of RPs under the misspecified 170 two parameter production model. The metamodel is essentially a surrogate for inference under the misspecified two parameter production model that controls for the specific degree 172 of model misspecification. 173

A flexible GP model is assumed for the structure of the metamodel to describe the mapping of RPs under misspecified two parameter models of productivity. A GP is a stochastic process generalizing the multivariate normal distribution to an infinite dimensional analog. GP models are often specified primarily through the choice of a covariance (or correlation) function which defines the relationship between locations in the input space. Typically corre-

lation functions are specified so that points closely related in space result in correlated effects in the model. In this setting the inputs to the GP metamodel are the space of reference points 180 which define the simulated three parameter production models.

181

187

While index of abundance data are generated from three parameter models, at each design location of the simulation, fitting the restricted two parameter model results in a maximum likelihood estimate (MLE; and associated estimation uncertainty) of each of the productivity parameters (i.e. Schaefer: [log(r), log(K)], BH: $[log(\alpha), log(\beta)]$). To simplify the specification of the metamodel, let y be a vector collecting the fitted MLEs for one of the productivity parameters, and let ω be a vector of estimates of the estimator variances (via the inverted Fisher information) at each y. Each of the fitted productivity parameter estimates are then modeled using independent instances of the following GP metamodel.

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{v} + \boldsymbol{\epsilon}$$

$$\mathbf{v} \sim N_n(\mathbf{0}, \tau^2 \mathbf{R}_{\ell})$$

$$\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \boldsymbol{\omega}' \mathbf{I})$$
(1.13)

X is the $n \times 2$ LHS design matrix of RPs for each simulated three parameter data 182 generating model as described in Section (4.3). ϵ models independent normally distributed 183 error, which provides an ideal mechanism for propagating uncertainty from inference in the 184 simulation step into the metamodel. By matching each y_i with an observed ω_i variance term, 185 ϵ serves to down weight the influence of each y_i in proportion to the inferred production model 186 sampling distribution uncertainty. This has the effect of smoothing the GP model in a way similar to the nugget effect (Gramacy & Lee, 2012), although the application here models 188 this effect heterogeneously. 189

The term, \boldsymbol{v} , contains spatially correlated GP effects. The correlation matrix, \boldsymbol{R}_{ℓ} describes how RPs close together in the simulation design are more correlated than those that are far away. This spatial effect is modeled with a squared exponential correlation function,

$$R(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = \exp\left(\sum_{i=1}^{2} \frac{-(x_i - \tilde{x}_i)^2}{2\ell_j^2}\right). \tag{1.14}$$

R has an anisotropic separable form which allows for differing length scales, ℓ_1 and ℓ_2 , in the different RP axes. The flexibility to model correlations separately in the different RP axes is key due to the differences in the extent of the RP domains marginally. The metamodel parameters β_0 , β , τ^2 , ℓ_1 and ℓ_2 are fit via MLE against the observations \mathbf{y} , \mathbf{X} , and $\boldsymbol{\omega}$ from simulation fits.

Fitting the metamodel allows for a full predictive description of inference under the misspecified restricted models. Predictive estimates are obtained via kriging (Cressie, 2015)

 $\hat{y}(\mathbf{x})$ is the predicted value of the modeled productivity parameter MLE under the two

$$\hat{y}(\mathbf{x}) = \beta_0 + \mathbf{x}\boldsymbol{\beta} + \mathbf{r}(\mathbf{x})' R_{\ell}^{-1} \Big(\mathbf{y} - (\beta_0 + \boldsymbol{X}\boldsymbol{\beta}) \Big)$$
(1.15)

parameter production model, when the index of abundance is generated from the three 198 parameter production model at RP location \mathbf{x} . $\mathbf{r}(\mathbf{x})$ is a vector-valued function of correlation 199 function evaluations for the predictive location \mathbf{x} against all observations in \mathbf{X} (i.e. $\mathbf{r}(\mathbf{x}) =$ 200 $\boldsymbol{R}(\mathbf{x}, \boldsymbol{x}_i) \ \forall \ \boldsymbol{x}_i \in \boldsymbol{X}).$ 201 While metamodeling occurs on the inferred productivity parameters of the restricted 202 production model, the metamodel can also be used to build estimates of major biological 203 RPs. For the BH model the relevant transformations for relating productivity parameters 204 with RPs are given in Eqs. (3.28, 3.31) with γ fixed to -1; for the Schaefer model $\hat{B}^* = \frac{\hat{K}}{2}$ and $\hat{F}^* = \frac{\hat{r}}{2}$. Applying the metamodel predictive surfaces on the scale of RP estimates allows for 206 the quantification of estimation bias that is induced by fitting a misspecified two parameter 207

production model to indices of abundance generated under three parameter productivity.

209 2 .3 Catch

197

208

It is known that contrast in the observed index and catch time series can effect inference on the productivity parameters (Hilborn & Walters, 1992). In this setting contrast refers to changes in the long term trends of index data. Figure (3.9, right) demonstrates an example of biomass that includes contrast induced by catch. It is not well understood how contrast may factor into inferential failure induced by model misspecification. Thus catch is parameterized so as to allow for a spectrum of possible contrast simulation settings.

Catch is parameterized so that F(t) can be controlled with respect to F^* . Recall that 216 catch is assumed to be proportional to biomass, so that C(t) = F(t)B(t). To control F(t)217 with respect to F^* , C(t) is specified by defining the quantity $\frac{F(t)}{F^*}$ as the relative fishing rate. 218 B(t) is defined by the solution of the ODE, and F^* is defined by the biological parameters 219 of the model. By defining $\frac{F(t)}{F^*}$, catch can then be written as $C(t) = F^*\left(\frac{F(t)}{F^*}\right)B(t)$. 220 Intuitively $\frac{F(t)}{F^*}$ describes the fraction of F^* that F(t) is specified to for the current B(t). 221 When $\frac{F(t)}{F^*} = 1$, F(t) will be held at F^* , and the solution of the ODE brings B(t) into 222 equilibrium at B^* . When $\frac{F(t)}{F^*}$ is held constant in time biomass comes to equilibrium as an 223 exponential decay from K approaching B^* . When $\frac{F(t)}{F^*} < 1$, F(t) is lower than F^* and B(t) is 224 pushed toward $\bar{B} > B^*$. Contrarily, when $\frac{F(t)}{F^*} > 1$, F(t) is higher than F^* and B(t) is pushed 225 toward $\bar{B} < B^*$; the precise values of \bar{B} can be calculated from the steady state biomass 226 equations provided above and depend upon the specific form of the production function. 227

For the simulations presented here, a family of fishing behaviors are considered where the fishing rate accelerates as technology and fishing techniques improve rapidly until management practices are applied, which ultimately brings fishing into equilibrium at F^* . This is parameterized as three distinct phases, over a total of 45 units of time, with each phase lasting 15 time units. The specific form is given below.

$$\frac{F(t)}{F^*} = ae^{bt}\mathbf{1}_{0 \le t < 15} + (d - ct)\mathbf{1}_{15 \le t < 30} + \mathbf{1}_{30 \le t \le 45}$$
(1.16)

The first term of Eq(3.40) is an exponential increase in fishing, the second term is a linear decline in relative fishing as initial management practices are applied, and the third term, $\mathbf{1}_{30 \le t \le 45}$, simply holds the fishing rate at F^* there after. These three phases are controlled by the four parameters a, b, c, and d. By enforcing that the interface of the phases meet at χ_{max} and 1 respectively the relative fishing series is reduced to a two parameter family.

$$a = e^{\log(\chi_{max}) - 15b} \qquad b = \frac{1}{t - 15} \log\left(\frac{\chi_{min}}{\chi_{max}}\right) \tag{1.17}$$

$$c = \frac{\chi_{max} - 1}{15 - 1} \qquad d = 15c + \chi_{max} \tag{1.18}$$

By further specifying $\chi_{max}=1.6^{\chi}$ and $\chi_{min}=0.4^{\chi}$ the two parameters χ_{max} , and χ_{min}

can be reduced to the single parameter χ . The tuning parameter χ then singularly controls contrast that appears in time series data.

Figure 1.3: (left) Relative fishing with low, medium, and high contrast. (right) Population biomass and catch at each associated level of contrast.

When $\chi = 0$, the relative fishing rate is a constant at 1 to create a low contrast simulation environment. As χ increases Eq (3.40) induces more and more contrast in the observed index and catch time series until $\chi = 1$ which produces a high contrast simulation environment. Figure (3.9) demonstrates a spectrum of contrast simulation environments as well as the time series data they induce in the solution of the production model ODE.

2.4 Two Parameter Production Model Inference

236

The simulated mapping results from fitting an intentionally misspecified two parameter production model to index of abundance data that are generated from a more complex three parameter model of productivity. Thus, let I_t be an index of abundance simulated from the three parameter PT or Schnute production models at time $t \in \{1, 2, 3, ..., T\}$. However the fitted model is specified to be intentionally misspecified so that the fitted model is driven by a two parameter Schaefer, or BH production model respectively.

The observation model for the fitted model is log-normal such that,

$$I_t|q, \sigma^2, \boldsymbol{\theta} \sim LN(qB_t(\boldsymbol{\theta}), \sigma^2).$$
 (1.19)

 $B_t(\boldsymbol{\theta})$ is defined by the solution of the ODEs defined by the Schaefer, or BH models. For

the Schaefer model $\theta = [r, K]$, and for the BH model $\theta = [\alpha, \beta]$. From the perspective of the fitted model, the observed I_t are assumed independent conditional on q, σ^2 , r, K and the two parameter ODE model for biomass. Thus the log likelihood can be written as

$$\log \mathcal{L}(q, \sigma^2, \boldsymbol{\theta}; I) = -\frac{T}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t} \log\left(\frac{I_t}{qB_t(\boldsymbol{\theta})}\right)^2.$$
 (1.20)

In this setting, q is fixed at the true value of 0.0005 to focus on the inferential effects of model misspecification on biological parameters. σ^2 and θ are reparameterized to the log scale and fit via MLE. Reparameterizing the parameters to the log scale improves the reliability of optimization, in addition to facilitating the use of Hessian information for estimating MLE standard errors.

Given that the biological parameters enter the likelihood via a nonlinear ODE, and further the parameters themselves are related to each other nonlinearly, the likelihood function can often be difficult to optimize. A hybrid optimization scheme is used to maximize the log likelihood to ensure that a global MLE solution is found. The R package GA (Scrucca, 2013, 2017) is used to run a genetic algorithm to explore parameter space globally. Optimization periodically jumps into the L-BFGS-B local optimizer to refine optima within a local mode. The scheme functions by searching globally, with the genetic algorithm, across many initial values for starting the local gradient-based optimizer. The genetic algorithm serves to iteratively improve hot starts for the local gradient-based optimizer. Additionally, optimization is only considered to be converged when the optimum results in an invertible Hessian at the

2.5 Continuous model formulation

found MLE.

An important (and often overlooked) implementation detail is the solution to the ODE which defines the progression of biomass through time. As a statistical model it is of paramount importance that this ODE not only have a solution, but also that the solution be unique. Of primary concern, uniqueness of the ODE solution is necessary for well conditioned inference.

If the form of $\frac{dB}{dt}$ is at least Lipschitz continuous, then the Cauchy-Lipschitz-Picard theorem provides local existence and uniqueness of B(t). Recall from Eq(3.13) that $\frac{dB}{dt}$ is

separated into a term for biomass production, P(B), and a term for removals, Z(t)B(t). For determining Lipschitz continuity of $\frac{dB}{dt}$, the smallest Lipschitz constant of $\frac{dB}{dt}$ will be the sum of the constants for each of the terms P(B) and Z(t)B(t) separately. Typically any choice of P(B) will be continuously differentiable, which implies Lipschitz continuity. At a minimum Z(t) typically contains fishing mortality as a function of time Z(t) to model catch in time as Z(t) = F(t)B(t). Z(t) = F(t)B(t).

In practice C(t) is determined by a series of observed, assumed known, catches. Catch 273 observations are typically observed on a quarterly basis, but in practice may not be complete 274 for every quarter (or year) of the modeled period. It is overwhelmingly common to discretize 275 the ODE in time via Euler's method with integration step sizes to match the observation 276 frequency of the modeled data. This is often computationally convenient when the underlying 277 species dynamics are resonably well behaved, however when the dynamics model is used as a 278 statistical model, with the goal of inferring the behavior of the underlying species dynamics, 279 the regularity of the dynamics are not guaranteed. An implicit assumption of continuity 280 of catch in time provides the necessary regularity for the statistical model. Furthermore 281 a continuous handling of the dynamics provides improved accruacy in evaluating the ODE, 282 particually when inferring productivity parameters which largely control the regularity of 283 the dynamics. 284

While there are many ways to handle catch continuity, here I assume that catches accrue linearly between observed catches. This assumption defines the catch function as a piecewise linear function of time, with the smallest Lipschitz constant for the catch term defined by the steepest time segment of the catch function. This assumption represents one of the simplest ways of handling catch, while retaining Lipschitz continuity overall. Furthermore linearly interpolated catch is adequately parsimonious for the typical handling of catches.

291 Integration and Stiffness

As previously mentioned, the overwhelming majority of implementations of stock assessment models discretized the ODE using Euler's method with the integration step sized fixed so as to match the observation frequency. In this setting we explore model parameterizations that explore the full extent of biologically relevant reference points. This exercise produces some combinations of parameters that result in numerically stiff ODEs.

The concept of stiffness in ODEs is hard to precisely characterize. Wanner and Hairer (1996, p.2) describe stiffness in the following pragmatic sense, "Stiff equations are problems for which explicit methods don't work". It is hard to make this definition more mathematically precise, but this a consistent issue for models of fast growing species in the low contrast simulation. Euler's method, as often implemented, is particularly poorly suited for these stiff regions of parameter space. In these stiff regions it is necessary to integrate the ODE with an implicit integration method.

Several of the most common implicit methods were tried including the Livermore Solver for ODEs (Isode), and the Variable Coefficient ODE Solver (vode) as implemented in the deSolve package of R (Soetaert et al., 2010). The difference between implicit solvers is negligible, while explicit methods result in wildly varying solutions to the ODE in stiff regions of parameter space. Results shown here are computed using the Isode integration since it runs relatively quickly and has a relatively smaller footprint in system memory.

310 Results

$_{311}$ 3.1 PT/Schaefer

An MSY-Optimal Catch History

When F(t) is held constant at F^* , as it is in the "low contrast" simulation setting, B(t) comes to equilibrium as an exponential decay from K to B^* . Understanding model misspecification bias is simplified in this setting due to the relative simplicity that this induces in B(t). However this simplicity is known to poorly inform estimates of r, and thus F^* , due to the limited range of the production function that is observed (Hilborn & Walters, 1992).

Figure (3.10) shows four of the most mis-318 specified example production function fits as 319 compared to the true data generating PT 320 production functions. The rug plots below 321 each set of curves show how the observed 322 biomasses decay exponentially from K to B^* 323 in each case. In particular, notice how ob-324 servations only exist where the PT biomass 325 is greater than B^* . Due to the leaning of 326 the true PT curves, and the symmetry of 327 the logistic parabola, the logistic curve only 328 observes information about its slope at the 329 origin from data observed on the right por-330 tion of the PT curves. The top two panels of 331 Figure (3.10) shows PT data generated such 332 that $\frac{B^*}{\overline{B}(0)} > 0.5$; in these cases PT is steeper 333 to the right of B^* than it is on the left, and so 334 the the logistic curve over-estimates r, and 335 consequently also over-estimates F^* . The 336

Figure 1.4: A comparison of the true PT production function (in black) and the estimated logistic curve (in red) with 95% CI shown. The examples shown represent the four corners of maximum model misspecification in the simulated RP-space. Observed biomasses are plotted in the rug plots below the curves.

bottom two panels of Figure (3.10) show PT data generated with $\frac{B^*}{\overline{B}(0)} < 0.5$ and where the vice versa phenomena occurs. PT is shallower to the right of B^* than it is on the left

and so the logistic parabola estimate tends to under estimate F^* .

340 Metamodeled Trends

Each point in the space of the RPs F^* and $\frac{B^*}{B(0)}$ uniquely identifies a complete PT model 341 with different combinations of parameters values. Recall that when $\gamma = 2$ for the PT model, 342 the PT curve becomes a parabola and is equivalent to the logistic curve of the Schaefer model. Since the logistic curve is symmetric about B^* , the Schaefer model must fix the 344 value of $\frac{B^*}{\bar{B}(0)}$ at the constant 0.5 for any value of F^* . So the line through RP space defined 345 by $\frac{B^*}{B(0)} = 0.5 \ \forall F^*$, defines the subset of RP space where $\gamma = 2$ and where the PT model 346 is equivalent to the Schaefer model. For brevity this subset of RP where $\frac{B^*}{\bar{B}(0)} = 0.5$ will be referred to as the "Schaefer set". Thus simulated data that are generated along the Schaefer 348 set will be the only data that are not misspecified relative to the Schaefer model; as PT data 349 are simulated farther and farther away from this line at $\frac{B^*}{\overline{B}(0)} = 0.5$ model misspecification of 350 the Schaefer model becomes worse and worse. 351

While Figure (3.10) demonstrates a real trend in simulation results, individual simulation 352 runs will at best show jittery trends due to the stochastic nature of statistical inference. The 353 GP process metamodel accounts for this stochasticity to focus analysis on the signal in the 354 simulation results. Recall that metamodeling occurs on the scale of the inferred productivity 355 parameters of the restricted production model, by transforming metamodel predictions via 356 Eq. (3.22), metamodeled predictions are obtained for Schaefer RPs. By further subtracting 357 the true data generating PT RPs from the predicted Schaefer RPs at each point in RP space 358 a pattern of inferential RP bias, induced by model misspecification of the Schaefer model, 359 can be seen. 360

Figure (3.11) shows the pattern of biases the Schaefer model creates when fit to PT data generated at each point of RP space. An equivalent way to think of Figure (3.11) is that since the Schaefer model must estimate RPs in the Schaefer set, the metamodel arrows indicate the mapping that is created by inferring RPs under a misspecified Schaefer model fit to PT data generated at each point over the pictured region.

Since $\frac{B^*}{B_0}$ must be 0.5 under the Schaefer model, biases in the $\frac{B^*}{B_0}$ direction must simply map vertically onto the Schaefer set. Due to this simplified RP geometry under the Schaefer

Figure 1.5: Joint bias direction for $(F^*, \frac{B^*}{B_0})$ estimates under the misspecified Schaefer Model. The intensity of color represents the excess bias relative to the shortest possible mapping. Results in the low contrast setting are shown left, and the high contrast setting is shown right.

model, the degree of bias in $\frac{B^*}{B_0}$ estimation is defined solely by the degree of model misspecification irrespective of F^* . Furthermore, the closest possible point along the Schaefer set that Schaefer model inference could map RPs would be the perfectly vertical mapping. This pattern only contains the strictly necessary bias present in $\frac{B^*}{B_0}$, and zero bias in F^* . Any deviation from this minimal bias pattern is necessarily due to added bias in F^* .

The two simulation settings shown in Figure (3.11) are identical except for the amount of contrast present in the simulated index. The left panel of Figure (3.11) shows RP biases in the low contrast setting, while the right panel shows the high contrast setting. Notice that in the low contrast setting the RP bias pattern is far from the minimum distance mapping, however when contrast is added the mapping becomes much closer to a minimal bias mapping. In the low contrast setting the observed bias is consistent with the pattern and mechanism described in Figure (3.10), where F^* is underestimated for data generated below the Schaefer line and overestimated above the Schaefer set. In the high contrast simulation the mapping is nearly minimal distance with the exception of PT data generated with simultaneously low $\frac{B^*}{B_0}$ and high F^* .

Figure (5.1) demonstrates how bias in F^* estimation decreases as contrast is added to

Bias in Estimated Schaefer FMSY

Figure 1.6: Bias in F^* under the Schaefer model when PT data are generated with increasing contrast so that F^* and $\frac{B^*}{B_0}$ are fixed at 0.699 and 0.201 respectively.

PT data as generated in the low $\frac{B^*}{B_0}$ and high F^* regime. By including additional contrast F^* bias is decreased, however parameterizing contrast so as to fully extinguish F^* bias may require a more complex model of fishing.

³⁸⁷ 4 Discussion

398

399

400

Results presented here generally agree with what is known about estimating growth rate 388 parameters (Lee et al., 2012; Conn et al., 2010; Magnusson & Hilborn, 2007). These study's 389 appreciate the role of contrast for estimating growth rates, however they struggle to make 390 generally extensible conclusions since they focus only on a handful of stocks that fall short 391 of forming a random sample of the greater population of possible stock behaviors. The LHS 392 design methods presented here are designed specifically to simulate a representative sample 393 of stocks broadly across the space of possible RPs. Furthermore, the simulation design, taken together with the GP metamodel of productivity parmater estimates, allows this study to 395 control the degree of model misspecification and generalize conclusions about the behavior 396 of productivity estimation within the production model setting presented. 397

In the presence of contrast, F^* estimation can enjoy very low bias even for a wide range of poorly specified models; conversely in the absence of contrast F^* estimation can suffer very large bias even for slightly misspecified models. This pattern is particularly true for inference

under the Schaefer model where the geometry of the restricted RP set isolates estimation failure of F^* from $\frac{B^*}{B(0)}$. While contrast has a similar impact on F^* estimation under the BH model, the geometry of the BH RP set correlates estimation bias of F^* and $\frac{B^*}{B(0)}$. The GP metamodeling approach reveals a more general pattern that highly informative data sets (high contrast) produces a nearly minimal distance mapping of RPs onto the constrained RP set.

In all cases when model misspecification is removed, even with weakly informative data,
RP estimation is unbiased and well estimated. Thus contrast alone is not the only factor
leading to inferential failure. Model misspecification is a necessary but not sufficient condition for inducing RP estimation bias. The particular RP bias present depends on the RP
geometry of the fitted model and how that geometry is misspecified relative to the data. The
RP mapping is then oriented to the RP geometry of the fitted model.

While the relative fishing rate parameterized in Section (4.5) captures a usefully broad 413 spectrum of relevant fishing behaviors, it is still limiting in the amount of information that it can induce. Improved methods for quantifying contrast in fisheries data, and/or methods 415 of discovering more informative fishing behavior, could improve this analysis. In the absence 416 of a maximally informative dataset simulation methods will not fully describe how inference 417 fails, but the methods presented here tell the most complete picture yet, with explicit control 418 of the degree model misspecification, contrast, and a simulation design that allows for uniform 419 representative data generation across biologically meaningful stocks. The results presented 420 here suggest the conjecture that under a maximally informative dataset, RP inference with 421 a two parameter production function will be biased in the direction a shortest distance map 422 from the true RPs onto restricted set of RPs under the two parameter model. 423

Given the potential for model misspecification of RPs, a minimal distance mapping of RPs represents a best-case scenario where the total bias of RPs, when measured jointly, is minimized. That said, without recognizing the geometry of how two parameter models of productivity limit RP space this may lead to unintuitive implications in RP estimation. For example, due to the shape of the BH RP set a minimal distance mapping ensures that if there is bias in one of $\frac{B^*}{B_0}$ or F^* , there will necessarily be bias in the other RP. However under the Schaefer model, since the RP set is a constant in $\frac{B^*}{B_0}$, bias in F^* is not adulterated in the

same way by bias in $\frac{B^*}{B_0}$ estimation. While models with constant RPs, such as the logistic model $\frac{B^*}{B_0} = \frac{1}{2}$ or the Fox model $\frac{B^*}{B_0} = \frac{1}{e}$, are extremely limited, they can be valuable tools for developing intuition precisely because they isolate RP estimation in their free RPs from the correlated RP biases present in models like the BH or Ricker model.

When one considers the implications of RP bias, overestimation of RPs carries the severe 435 implication of management recommendations potentially leading to overfishing, while un-436 derestimation of RP leads to overly conservative management. In this sense, when the true 437 model is not known, the geometry of the BH set together with the metamodeled bias trends 438 makes the BH model a naturally conservative estimator of RPs for most stocks. For most 439 non-BH populations the BH model is likely to make conservative errors in its estimates of F^* and $\frac{B^*}{B_0}$. The one notable exception to the conservatism of the BH model stands for data 441 generated in the Cushing-like regime of Schnute RPs. In this regime the BH model tends 442 to be fairly unbiased overall, however the bias that is present for these populations tends to 443 be overestimation in both RPs, leading to much more severe management consequences for 444 those populations. 445

The RP bias trends of the Schaefer model demonstrate much less conservatism than the BH overall. For any population with $\frac{B^*}{B_0} < 0.5$, $\frac{B^*}{B_0}$ will be overestimated. When the population comes from the regime where $\frac{B^*}{B_0} > 0.5$, $\frac{B^*}{B_0}$ will be under estimated, but F^* is likely to be overestimated depending on the degree of contrast present in the data. So while the Schaefer model is an intuitive model, it tends to lead to much less conservative RP estimation.

While it is important to recognize these limitations of two parameter models of produc-452 tivity, we should not solely accept conservativism as a rational of choosing a BH model of 453 productivity. Increasing the flexibility of the production function by moving toward three 454 parameter models would release the underlying structural limitations (Mangel et al., 2013) 455 that cause these RP biases in the first place. Punt and Cope (2019) considers a suite of pos-456 sible three parameter curves which could be used instead of current two parameter curves. 457 For all of their benefits, three parameter production functions have their own complicating 458 factors, and the structure present in the Schnute model explored here makes it an intuitive 459 bridge model for developing three parameter models going forward.

• show a schnute fit to data? (Yeakel & Mangel, 2015) Prior

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of M, κ , ω , W_{∞}
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.
- mapping distance as a function of contrast at (3.5, 0.5)
- for LHS grid locations show $\frac{B^*}{B_0}$ and F^* biases for grids in $M \in (0, 0.5)$ For sure in High Contrast, maybe also in Low??.

476 5 Appendix: Inverting $\frac{B^*}{\bar{B}(0)}$ and γ for the PT Model

For brevity let $\zeta = \frac{B^*}{\bar{B}(0)}$.

$$\zeta = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}$$

$$\zeta = \gamma \zeta^{\gamma}$$

$$\zeta = \gamma e^{\gamma \log(\zeta)}$$

$$\zeta \log(\zeta) = \gamma \log(\zeta) e^{\gamma \log(\zeta)}$$

The Lambert product logarithm, W, is defined as the inverse function of $z = xe^x$ such that x = W(z). Applying this definition allows for the isolation of γ .

$$\gamma \log(\zeta) = W(\zeta \log(\zeta))$$

$$\gamma = \frac{W(\zeta \log(\zeta))}{\log(\zeta)}$$
(1.21)

The Lambert product logarithm is a multivalued function with a branch point at $-\frac{1}{e}$. The principal branch, $W_0(z)$, is defined on $z \in \left(-\frac{1}{e}, \infty\right)$, and the lower branch, $W_{-1}(z)$, is defined on $z \in \left(-\frac{1}{e}, 0\right)$. Taken individually, each respective branch is analytic, but cannot be expressed in terms of elementary functions.

When $\zeta \in \left(0, \frac{1}{e}\right)$ the solution of interest in Eq. (3.23) comes from W_0 . When $\zeta \to \frac{1}{e}$, the Fox Model emerges as $\gamma \to 1$. When $\zeta \in \left(\frac{1}{e}, 1\right)$ the solution of interest comes from W_{-1} . For the use case presented here, Eq. (3.23) is to be interpreted as,

$$\gamma = \begin{cases}
\frac{W_0(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in (0, \frac{1}{e}) \\
\frac{W_{-1}(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in (\frac{1}{e}, 1)
\end{cases}$$
(1.22)

Prager 2002, Figure(2).

https://math.stackexchange.com/questions/3004835/is-the-lambert-w-function-analyticif-not-everywhere-then-on-what-set-is-it-ana https://researchportal.bath.ac.uk/en/publications/algebraicproperties-of-the-lambert-w-function-from-a-result-of-r https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf

489 Chapter 2

The Schnute Model

0.1Schnute Model

The Schnute production function is a three parameter generalization of many of the most common two parameter production functions (Deriso, 1980; J. Schnute, 1985). It can be written in the following form, with parameters α , β , and γ ,

$$P_s(B; [\alpha, \beta, \gamma]) = \alpha B (1 - \beta \gamma B)^{\frac{1}{\gamma}}.$$
 (2.1)

The BH and Logistic production func-492 tions arise when γ is fixed to -1 or 1 respec-493 tively. The Ricker model is a limiting case 494 as $\gamma \to 0.$ For $\gamma < -1$ a family of strictly in-495 creasing Cushing-like curves arise, culminat-496 ing in linear production as $\gamma \to -\infty$. These 497 special cases form natural regimes of simi-498 larly behaving production functions as seen 499 in Figure (3.5). 500

The behavior of RP inference under the 501 BH model is of particular interest due to the 502 overwhelming popularity of the BH assump-503 tion in fisheries models. Since Schnute production models can represent a quantifiably 505 wide variety of possible productivity behav-506

507

Figure 2.1: The Schnute production function plotted across a variety of parameter values. Regimes of similarly behaving curves are grouped by color.

iors, they present an ideal simulation environment for inquiry of the reliability of inference under the BH assumption. 508

Under Schnute production, biomass dynamics evolve according to the following ODE,

$$\frac{dB}{dt} = P_s(B;\theta) - (M+F)B. \tag{2.2}$$

This equation largely takes the same form as previously described, except that P_s is the Schnute production function and natural mortality, M, is modeled explicitly here. Natural 510

mortality models the instantaneous rate of mortality from all causes outside of fishing. Explicitly modeling natural mortality is not only a typical assumption of fisheries models, but is also key to the making RPs well defined over the relevant domain of γ .

The derivation of RPs under Eq. (3.25) follows a similar logic as under the PT model. An expression for equilibrium biomass is attained by setting $\frac{dB}{dt} = 0$ and rearranging the resulting expression to solve for B

$$\bar{B}(F) = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M+F}{\alpha} \right)^{\gamma} \right). \tag{2.3}$$

The above expression quickly yields B_0 , B^* by evaluation at F = 0 and F^* respectively,

$$B_0 = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right) \tag{2.4}$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha}\right)^{\gamma}}{1 - \left(\frac{M}{\alpha}\right)^{\gamma}}.$$
 (2.5)

Attaining an expression for F^* requires maximization of equilibrium yield, $\bar{Y} = F\bar{B}(F)$, with respect to F. Analytically maximizing proceeds by differentiating \bar{Y} to produce

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{2.6}$$

$$\frac{d\bar{B}}{dF} = -\frac{1}{\beta} \left(\frac{\left(\frac{M+F}{\alpha} \right)^{\gamma}}{F+M} \right). \tag{2.7}$$

Setting $\frac{d\bar{Y}}{dF} = 0$, filling in the expressions for $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$, then rearranging to solve for F^* is less yielding here than it was in the case of the PT model. This procedure falls short of providing an analytical solution for F^* directly in terms of θ , but rather shows that F^* must respect the following expression,

$$0 = \frac{1}{\gamma} - \left(\frac{1}{\gamma} + \frac{F^*}{F^* + M}\right) \left(\frac{F^* + M}{\alpha}\right)^{\gamma}. \tag{2.8}$$

The lack of an analytical solution here is understood. J. T. Schnute and Richards (1998, pg. 519) specifically points out that F^* cannot be expressed analytically in terms of productivity parameters, but rather gives a partial analytical expression for the inverse relationship.

Although parameterized slightly differently, J. T. Schnute and Richards (1998) derives expressions for α and β as a function of RPs and γ .

Since RPs are left without a closed form expression, computing RPs from productivity parameters amounts to numerically solving the system formed by collecting the expressions (3.31), (3.27), and (3.28).

522 Simulation

For the purposed of simulation, it is not necessary to completely know the precise relationships mapping RPs $\mapsto \theta$ or $\theta \mapsto$ RPs. Simulation only requires enough knowledge of these mappings to gather a list of (α, β, γ) tuples, for data generation under the Schnute model, and the corresponding RPs in some reasonable space-filling design over RP space.

Similarly to J. T. Schnute and Richards (1998), expressions (3.31) and (3.27) are solved for α and β respectively. This leads to the partial mapping $(F^*, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$ in terms of RPs and γ . By further working with Eq. (3.28), to identify γ , the following system is obtained,

$$\alpha = (M + F^*) \left(1 + \frac{\gamma F^*}{M + F^*} \right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right)$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha} \right)^{\gamma}}{1 - \left(\frac{M}{\alpha} \right)^{\gamma}}.$$
(2.9)

For a population experiencing natural mortality M, by fixing F^* , B_0 , and $\frac{B^*}{B_0}$ the above system can fully specify α and β for a given γ . Notice for a given γ a cascade of closed form solutions for α and β can be obtained. First $\alpha(\gamma)$ can be computed, and then $\beta(\alpha(\gamma), \gamma)$ can be computed. If $\alpha(\gamma)$ is filled back into the expression for $\frac{B^*}{B_0}$, the system collapses into a single onerous expression for $\frac{B^*}{B_0}(\alpha(\gamma), \gamma)$. For brevity, define the function $\zeta(\gamma) = \frac{B^*}{B_0}(\alpha(\gamma), \gamma, F^*, M)$ based on Eq. (3.28).

Inverting $\zeta(\gamma)$ for γ , and computing the cascade of $\alpha(\gamma)$, and then $\beta(\alpha(\gamma), \gamma)$, fully defines the Schnute model for a given $(\frac{F^*}{M}, \frac{B^*}{B_0})$. However inverting ζ accurately is extremely difficult. Inverting ζ analytically is not feasible, and numerical methods for inverting ζ are unstable

and can be computationally expensive. Rather than numerically invert precise values of $\zeta(\gamma)$, γ is sampled so that the overall simulation design is space filling as described in Section (4
3).

Each design location defines a complete Schnute production model with the given RP values. Indices of abundance are simulated from the Schnute model at each design location, a small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and the data are then fit with a misspecified BH production model. The design at large captures various degrees of model misspecification relative to the BH model, so as to observe the effect of productivity model misspecification upon RP inference.

545 0.2 Latin Hypercube Sampling

The goal of space filling design in this setting is to extend the notion of the random sample 546 (and its desirable parameter estimation properties) across the simulated RP domain so as 547 to represent the simulated space as well as possible (Gramacy, 2020). The simple random 548 sample is the classical approach to unbiased parameter estimation, however simple random-549 ness is patchy, often sampling some regions of design space quite densely, while leaving other 550 regions of design space empty. Space filling designs aim to preserve (or enhance) parameter 551 estimation properties across the simulated domain (Devon Lin & Tang, 2015; Stein, 1987), 552 while constraining samples to be spaced in some notion of spread over the entire space. 553 Latin hypercube sampling (McKay et al., 2000, LHS) is among the most foundational of space filling designs used in computer experiments. 555

A LHS of size n, in the 2 dimensional 556 space defined by RPs, distributes samples so 557 as to spread points across a design region in 558 a broadly representative way. A LHS design 559 extends the notion of a univariate random 560 uniform sample across multiple dimensions 561 so that each margin of the design space en-562 joys a uniform distribution. 563

LHS designs achieve this notion of uni-

564

565 formity by first partitioning each dimension

of the design space into regular grids of size

n. By intersecting the grids of each dimen-

sion, cells are produced that evenly partition

the design space. In two dimensions n^2 cells

 $_{570}$ are produced, from which a total of n sam-

ples are taken. Crucially only one sample is

taken from a given element of each grid in each dimension so as to reduce clumping of the

n samples across the design space.

574 Schnute Design

Due to the lack of an analytical relationship mapping RPs $\mapsto \theta$, analogous to the PT model's

Eq. (3.23), producing a LHS design over Schnute RPs requires a more tactful approach. The

structured relationship between the RPs and productivity parameters, described in Section

578 (4), allows an approximate LHS to be obtained by a careful navigation of the system of

equations seen in Eq. (3.32).

Under the Schnute model, let \mathcal{F} and \mathcal{B}

 $_{\mbox{\scriptsize 581}}$ $\,$ represent regular grids on $\frac{F^*}{M} \in (0.25,4)$ and

 $\frac{B^*}{B_0} \in (0.15, 0.7)$ respectively which can serve

as the scaffolding for computing an approx-

imate LHS.

Since it is not practical to invert $\zeta(\gamma)$, a uniform sample in $\frac{B^*}{B_0}$ can be obtained by modeling γ as a random variable, with realization γ^* , and thinking of $\zeta(\gamma)$ as its cumulative distribution function (CDF). The aim is to model γ as an easily sampled random

Given B_0 , M, and F^* :

- 1) Draw $\gamma^* \sim \gamma | F^*, M$.
- 2) Compute $\frac{B^*}{B_0} = \zeta(\gamma^*)$
- 3) Compute $\alpha^* = \alpha(\gamma^*, F^*, M)$
- 4) Compute $\beta^* = \beta(\alpha^*, \gamma^*, M, B_0)$

Figure 2.3: An outline of the sampling procedure for γ given B_0 , M, and F^* .

variable with a CDF that closely approximates ζ , so that $\zeta(\gamma^*) \sim U(\zeta_{min}, 1)$ as closely as possible. There may be many good models for the distribution of γ , but in this setting the

following distribution is very effective,

$$\gamma \sim \zeta_{min}\delta(\gamma_{min}) + t(\mu, \sigma, \nu)\mathbf{1}_{\gamma > \gamma_{min}}.$$
 (2.10)

Above, t is the density of the three pa-585 rameter location-scale family Student's t dis-586 tribution with location μ , scale σ , and de-587 grees of freedom ν . $\mathbf{1}_{\gamma > \gamma_{min}}$ is an indica-588 tor function that serves to truncate the Stu-589 dent's t distribution at the lower bound γ_{min} . 590 $\delta(\gamma_{min})$ is the Dirac delta function evaluated 591 at γ_{min} , which is scaled by the known value 592 ζ_{min} ; this places probability mass ζ_{min} at 593 the point γ_{min} . Since sampling from a Student's t distribution is readily doable, sam-595 pling from a truncated Student's t mixture 596 only requires slight modification. 597

Let T be the CDF of the modeled distribution of γ . Since the point $(\gamma_{min}, \zeta_{min})$ is

Figure 2.4: $\zeta(\gamma)$ Plotted for $F^* = 0.1$ and M = 0.2. The point $(\gamma_{min}, \zeta_{min})$ shows the lowest biologically meaningful value of γ ; below which productivity is negative.

known from the dynamics of the Schnute model at a given RP, full specification of Eq. (3.33) only requires determining the values for μ , σ , and ν which make T best approximate $\zeta(\gamma)$. Thus, the values of μ , σ , and ν are chosen by minimizing the L^2 distance between $T(\gamma)$ and $\zeta(\gamma)$.

$$[\hat{\mu}, \hat{\sigma}, \hat{\nu}] = \underset{[\mu, \sigma, \nu]}{\operatorname{arg \, min}} \int_{\Gamma} \left(T(\gamma; \mu, \sigma, \nu) - \zeta(\gamma) \right)^2 d\gamma \tag{2.11}$$

```
The distribution T(\gamma|\hat{\mu}, \hat{\sigma}, \hat{\nu}) is fit for use
                                                                     Algorithm 1 LHS of size n on rectangle R.
598
                                                                       1: procedure LHS_n(R)
     in generating \gamma^* random variates at a spe-
599
                                                                       2:
                                                                               Define n-grids \mathcal{F}, \mathcal{B} \in R
     cific F^* and M. This approximation releases
600
                                                                               for each grid element i do
     the need to invert \zeta w.r.t \gamma by using sam-
                                                                       3:
601
                                                                                    Draw \frac{F^*}{M} \sim Unif(\mathcal{F}_i)
     ples of \gamma^* values to generate approximatly
                                                                       4:
602
                                                                                    Compute [\hat{\mu}, \hat{\sigma}, \hat{\nu}] given F^* \& M
                                                                       5:
     uniform samples of \zeta(\gamma^*). By sampling ap-
603
                                                                                    while \mathcal{B}_j not sampled do
                                                                       6:
     proximatly uniform \zeta(\gamma^*) random variates in
604
                                                                                         Draw \gamma^* \sim T(\gamma | \hat{\mu}, \hat{\sigma}, \hat{\nu})
                                                                       7:
     this way, and making use of the structure in
605
                                                                                         Compute \zeta^* = \zeta(\gamma^*)
                                                                       8:
     Eq. (3.32), an approximate LHS sample can
606
                                                                                         Compute j such that \zeta^* \in \mathcal{B}_i
                                                                       9:
     be collected via Algorithm (2).
607
          \frac{F^*}{M} is drawn uniformly from \mathcal{F}_i. Con-
                                                                                    end while
                                                                     10:
608
                                                                                    Compute \alpha^* = \alpha(\gamma^*, F^*, M)
     ditioning on the sample of F^*, and M,
                                                                      11:
609
                                                                                    Compute \beta^* = \beta(\alpha^*, \gamma^*, M, B_0)
     T(\gamma|\hat{\mu},\hat{\sigma},\hat{\nu}) is fit and \gamma^* is sampled. \zeta^* is
                                                                     12:
610
                                                                                    Save (\frac{F^*}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*) in \mathcal{F}_i \times \mathcal{B}_j
                                                                      13:
     then computed and placed into the appropri-
611
                                                                               end for
                                                                      14:
     ate grid element \mathcal{B}_{j}. Given \gamma^{*}, the cascade
612
                                                                     15: end procedure
     \alpha(\gamma^*), and \beta(\alpha(\gamma^*), \gamma^*), can be computed.
613
     The algorithm continues until all of the de-
614
```

16 Design Refinement

615

625

Since the behavior of RP inference, under misspecified models, will vary in yet-unknown ways, the exact sampling design density may be hard to know a priori. Several factors, including the particular level of observation uncertainty, high variance (i.e. hard to resolve) features of the response surface, or simply "gappy" instantiations of the initial LHS design may necessitate adaptive design refinement, to accurately describe RP biases. Given the temperamental relationship between RPs and productivity parameters in the Schnute model, a recursive refinement algorithm that makes use of the previously described LHS routine, is developed.

sign elements, $(\frac{F^*}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*)$, have been computed for all $i \in [1, ..., n]$.

While LHS ensures uniformity in the design margins, and a certain degree of spread, it

is widely recognized that particular LHS instantiations may leave substantive gaps in the simulation design. To correct this, LHS is often paired with design elements of maximin 627 design (Morris & Mitchell, 1995; Devon Lin & Tang, 2015). Maximin designs sample the 628 design space by maximizing the minimum distance between sampled points. This has the 629 advantage of definitionally filling holes in the design, however because no points are ever drawn outside of the design domain, samples tend to clump around edges (particularly 631 corners) of the design domain. Since LHS ensures uniformity in the margins and maximin 632 designs enjoys a certain sense of optimality in how they define and fill gaps (Johnson et al., 633 1990), the methods are quite complimentary when combined. 634

Making use of this complimentary relationship, holes in the existing LHS design of RPs are identified based on maximin design principles. New design points are collected based on areas of the RP design space which maximizes the minimum distance between all pairs of points in the current design, based on the following distance function

$$d(\boldsymbol{x}, \boldsymbol{x'}) = \sqrt{(\boldsymbol{x} - \boldsymbol{x'})^T \boldsymbol{D}^{-1}(\boldsymbol{x} - \boldsymbol{x'})}$$

$$\boldsymbol{D} = \operatorname{diag} \left[\left(\max(\mathcal{F}) - \min(\mathcal{F}) \right)^2, \left(\max(\mathcal{B}) - \min(\mathcal{B}) \right)^2 \right].$$
(2.12)

Above, d is a scaled distance function that defines the distance between points in the differing scales of $\frac{B^*}{B_0}$ and $\frac{F^*}{M}$. \mathbf{D} is a diagonal matrix that measures the squared size of the domain in each axis of so as to normalize distances to a common scale.

If X_n is the initial design, computed on R_{full} , let x_a be the augmenting point which maximizes the minimum distance between all of the existing design points,

$$x_a = \underset{x'}{\operatorname{argmax}} \min\{d(x_i, x') : i = 1, ..., n\}.$$
 (2.13)

The point x_a is used as an anchor for augmenting X_n . An additional $LHS_{n'}$ (via Algorithm (2)) is collected, adding n' design points, centered around x_a , to the overall design. The augmenting region, $R_{(x_a,d_a)}$, for collecting $LHS_{n'}$ is defined based on the square centered at x_a with side length $2d_a$, where $d_a = \min\{d(x_i, x_a) : i = 1, ..., n\}$, in the space defined by the metric d.

Due to the tendency of maximin sampling to cluster augmenting points on the edges of the design space, $R_{(x_a,d_a)}$ is truncated by the outer most limits of R_{full} so as to focus design augmentation within the specified domain of the simulation. Furthermore, since the design space has a nonlinear constraint at low values of $\frac{B^*}{B_0}$, the calculation of x_a is further truncated based on a convex hull defined by the existing samples in the overall design.

Design refinement then proceeds as follows. An initial design is computed, $X_n = LHS_n(R_{full})$, based on an overall simulated region of RPs R_{full} . The maximin augmenting point, x_a , is computed at a maximin distance of d_a from the existing samples. An augmenting design $X_{n'} = LHS_{n'}(R_{(x_a,d_a)})$ is collected and added to X_n . Design refinement carries on recursively collecting augmenting designs in this way until the maximin distance falls below the desired level.

654 0.3 Gaussian Process Metamodel

At its core, a metamodel is simply a model of some mapping of inputs to outputs (the 655 mapping itself is typically defined by a computer model). By modeling the mapping with a 656 statistical model (that explicitly defines the relevant features of the mapping) a metamodel 657 defines a specific ontology for the mapping. By simulating examples of the mapping, the 658 inferential infrastructure of the statistical model is used to empirically learn an effective 659 emulation of the mapping within the ontology defined by the statistical model. The pre-660 dictive infrastructure of the statistical model is then useful as an approximate abstraction 661 of the system itself to better understand the system through further data collection, cheap 662 approximation of the mapping, and/or study of the mapping itself. 663

In this setting, the aim of metamodeling is to study how well RPs are inferred when typical two parameter models of productivity (Logistic and BH) are misspecified for populations that are actually driven by more complicated dynamics. The simulation design, X, provides a sample of different population dynamics that are driven by three parameter production functions broadly in RP space. By simulating index of abundance data from the three parameter model, and fitting those data with the two parameter production model, we observe particular instances of how well RPs are inferred at the given misspecification of the two parameter model relative to the true three parameter production model. By gathering

all of the simulated instances of how RPs are inferred (under the two parameter model),
we form a set of example mappings to train a metamodel which represents the mapping
of true RPs (under the three parameter model) to estimates of RPs under the misspecified
two parameter production model. The metamodel is essentially a surrogate for inference
under the misspecified two parameter production model that controls for the specific degree
of model misspecification.

A flexible GP model is assumed for the structure of the metamodel to describe the map-678 ping of RPs under misspecified two parameter models of productivity. A GP is a stochastic 679 process generalizing the multivariate normal distribution to an infinite dimensional analog. 680 GP models are often specified primarily through the choice of a covariance (or correlation) 681 function which defines the relationship between locations in the input space. Typically corre-682 lation functions are specified so that points closely related in space result in correlated effects 683 in the model. In this setting the inputs to the GP metamodel are the space of reference points 684 which define the simulated three parameter production models. 685

While index of abundance data are generated from three parameter models, at each design location of the simulation, fitting the restricted two parameter model results in a maximum likelihood estimate (MLE; and associated estimation uncertainty) of each of the productivity parameters (i.e. Schaefer:[log(r), log(K)], BH: $[log(\alpha), log(\beta)]$). To simplify the specification of the metamodel, let \mathbf{y} be a vector collecting the fitted MLEs for one of the productivity parameters, and let $\boldsymbol{\omega}$ be a vector of estimates of the estimator variances (via the inverted Fisher information) at each \mathbf{y} . Each of the fitted productivity parameter estimates are then modeled using independent instances of the following GP metamodel.

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{v} + \boldsymbol{\epsilon}$$

$$\mathbf{v} \sim N_n(\mathbf{0}, \tau^2 \mathbf{R}_{\ell})$$

$$\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \boldsymbol{\omega}' \mathbf{I})$$
(2.14)

X is the $n \ge 2$ LHS design matrix of RPs for each simulated three parameter data generating model as described in Section (4.3). ϵ models independent normally distributed error, which provides an ideal mechanism for propagating uncertainty from inference in the

686

687

688

simulation step into the metamodel. By matching each y_i with an observed ω_i variance term, ϵ serves to down weight the influence of each y_i in proportion to the inferred production model 690 sampling distribution uncertainty. This has the effect of smoothing the GP model in a way similar to the nugget effect (Gramacy & Lee, 2012), although the application here models 692 this effect heterogeneously.

689

691

709

The term, $oldsymbol{v}$, contains spatially correlated GP effects. The correlation matrix, $oldsymbol{R}_{\ell}$ describes how RPs close together in the simulation design are more correlated than those that are far away. This spatial effect is modeled with a squared exponential correlation function,

$$R(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = \exp\left(\sum_{i=1}^{2} \frac{-(x_i - \tilde{x}_i)^2}{2\ell_j^2}\right). \tag{2.15}$$

R has an anisotropic separable form which allows for differing length scales, ℓ_1 and ℓ_2 , 694 in the different RP axes. The flexibility to model correlations separately in the different 695 RP axes is key due to the differences in the extent of the RP domains marginally. The 696 metamodel parameters β_0 , $\boldsymbol{\beta}$, τ^2 , ℓ_1 and ℓ_2 are fit via MLE against the observations \mathbf{y} , \boldsymbol{X} , 697 and ω from simulation fits. 698

Fitting the metamodel allows for a full predictive description of inference under the 699 misspecified restricted models. Predictive estimates are obtained via kriging (Cressie, 2015)

$$\hat{y}(\mathbf{x}) = \beta_0 + \mathbf{x}\boldsymbol{\beta} + \mathbf{r}(\mathbf{x})' \mathbf{R}_{\ell}^{-1} \Big(\mathbf{y} - (\beta_0 + \mathbf{X}\boldsymbol{\beta}) \Big)$$
(2.16)

 $\hat{y}(\mathbf{x})$ is the predicted value of the modeled productivity parameter MLE under the two 701 parameter production model, when the index of abundance is generated from the three 702 parameter production model at RP location \mathbf{x} . $\mathbf{r}(\mathbf{x})$ is a vector-valued function of correlation 703 function evaluations for the predictive location \mathbf{x} against all observations in \mathbf{X} (i.e. $\mathbf{r}(\mathbf{x}) =$ 704 $\boldsymbol{R}(\mathbf{x}, \boldsymbol{x}_i) \ \forall \ \boldsymbol{x}_i \in \boldsymbol{X}).$ 705 While metamodeling occurs on the inferred productivity parameters of the restricted 706 production model, the metamodel can also be used to build estimates of major biological 707 RPs. For the BH model the relevant transformations for relating productivity parameters 708

with RPs are given in Eqs. (3.28, 3.31) with γ fixed to -1; for the Schaefer model $\hat{B}^* = \frac{K}{2}$ and

 $\hat{F}^* = \hat{\frac{\hat{r}}{2}}$. Applying the metamodel predictive surfaces on the scale of RP estimates allows for the quantification of estimation bias that is induced by fitting a misspecified two parameter production model to indices of abundance generated under three parameter productivity.

713 1 Results

1.1 Schnute/BH

715 Design

Algorithm (1) enforces uniform marginals in $\frac{F^*}{M}$ 716 directly, as well as the adherence of the overall 717 design to latin squares. Figure (2.5) shows a uni-718 form Q-Q plot for sampled ζ , using Algorithm (1), against theoretical uniform quantiles. 720 evidence by the excellent coherence to the the-721 oretical uniform quantiles, the approximation in 722 Section (4.3) for sampling γ (and therefore $\zeta(\gamma)$), 723 is very effective. Furthermore since numerical in-724 version of $\zeta(\gamma)$ is costly and unreliable, the rel-725 ative speed and accuracy that this approximate 726

Figure 2.5: Uniform Q-Q plot for ζ plotted for $F^* = 0.1$ and M = 0.2.

LHS sampling method provides is pivotal for the rest of the work presented here.

Similarly to the PT model, the three pa-728 rameter Schnute model is uniquely identified 729 by each point in the space of $\frac{F^*}{M}$ and $\frac{B^*}{B_0}$ RPs. 730 As seen in Figure (2.6), Schnute production 731 has different behaviors in different ranges of 732 RPs space, which are entirely defined by the 733 value of γ (shown in Figure (3.5)). When $\gamma \geq 1$ the Schnute model produces a family 735 of Logistic-like curves that are increasingly 736 right leaning as γ increases. For $1 > \gamma \ge 0$, 737 Schnute production takes a family of left 738 leaning Ricker-like curves that all, at least, 739 approach the x-axis. For $0 > \gamma > -1$ there 740 are a family of BH-like curves that do not 741

Figure 2.6: A Schnute RP design. Colors indicate different regimes of Schnute production.

The black curve shows the BH set.

742 approach the x-axis but still have decreas-

ing productivity for large biomass stocks. When γ is exactly -1 Schnute reduces to BH production which has asymptoting production for large biomass. Finally when $-1 > \gamma$ Schnute produces a family of increasing Cushing-like curves that do not asymptote, and produces linear production as $\gamma \to -\infty$.

Modeling index data that are simulated broadly over the theoretical space of RPs with

misspecified BH production greatly limits the range of possible RPs that can be inferred. Under BH production the full theoretical space of RPs are limited to the curve $\frac{B^*}{B_0} = \frac{1}{F^*/M+2}$.

Define the "BH set" as the set of RPs defined by this limited space, i.e. the curve $\left\{\left(\frac{F^*}{M}, \frac{B^*}{B_0}\right) \middle| \frac{B^*}{B_0} = \frac{1}{F^*/M+2}\right\}$. as seen in the black curve in Figure (2.6). The farther away from this set that Schnute data are simulated, the worse the BH model is misspecified for

754 Metamodeled Trends

those data.

747

753

Unlike the Schaefer model, the BH set is not a constant in $\frac{B^*}{B_0}$. Under the BH model, bias in $\frac{B^*}{B_0}$ is no longer entirely defined by the degree of model misspecification, but rather the structure of BH RPs allows bias in both $\frac{B^*}{B_0}$ and $\frac{F^*}{M}$ to interact as a function of contrast in the data.

High Contrast Figure (2.7) shows metamodeled RP bias surfaces for inference under the BH model in the high contrast setting. The (left) and (bottom) panels focus only on the $\frac{B^*}{B(0)}$ and $\frac{F^*}{M}$ components of bias respectively. In these panels bias is shown as relative bias, similar to a percent error calculation. Where RP represents the true value of the three parameter RP, and \widehat{RP} refers to the metamodel estimate.

Figure (2.7, top-right) combines the components of bias to show the overall mapping of RPs under BH inference in the high contrast simulation setting. Unlike high contrast RP inference under the Schaefer model, the BH model does shows bias in both RPs here. Despite the bias in $\frac{B^*}{B(0)}$ and $\frac{F^*}{M}$ these results are similar to that of the Schaefer model in that the overall mapping of RPs is very nearly a minimal distance mapping onto the constrained set of RPs. The primary difference between Schaefer model and BH RP inference is the geometry of their limited RP spaces. Unlike the Schaefer model the BH set encourages bias

Figure 2.7: Heatplots showing the bias in RP estimation induced by model misspecification of the BH model in the high contrast simulation setting. In all cases the restricted RP-space of the BH set is shown as the black curve. (left) Relative bias in $\frac{B^*}{B(0)}$. (top-right) Bias in RP-space shown directionally. Arrows point from the location where data is generated, toward the location in the BH set where MLE projects estimated RPs. The intensity of color represents the excess bias relative to the shortest possible mapping. (bottom) Relative bias in F^* .

in both RPs for misspecified models even in very well informed setting.

Low Contrast Figure (2.8) shows the mapping of RPs in the low contrast simulation setting. Figures (2.8) and (2.7, top-right) share a common scale for the inten-

sity of color to facilitate comparison. In Figure (2.8) notice that the mildly misspecified 777 area around the BH set produces mappings 778 onto the BH set which resemble the minimal 779 distance mapping seen in the high contrast setting. The primary difference in this low 781 contrast setting, is the break point around 782 $\frac{B^*}{B(0)} = 0.4$ above which $\frac{F^*}{M}$ is sharply under-783 estimated. 784

The region of RPs where the BH model manages to recover the minimal distance mapping may be considered a "safe regime"

of data types that are reasonably well modeled by a BH model. By comparison of Figure (2.8), with Figure (2.6), this safe regime of the BH model occurs for data generated for Cushing-like or BH-like production. While bias of the RPs can still become concerningly large, this region can be considered safe in the sense that even for low contrast data RP estimation under the the BH model recovers the minimal distance mapping.

Outside of this safe regime, RP estima-793 tion breaks from the minimal distance map-794 ping at the interface between BH-Like and 795 Ricker-Like regimes of the Schnute model 796 (again see Figure (2.6)). The Ricker model 797 lies along this regime interface, and repre-798 sents the first model to approach the x-axis for large biomasses as γ increases. 800 markedly unBH-like productivity in the low 801 information simulation setting breaks MLE 802 inference from the minimal distance map-803 ping and instead maps RPs to extremely low 804 values of F^* ; consequently $\frac{B^*}{\overline{B}(0)}$ is estimated

Estimated Yield Curves For Poorly Specified BH

Figure 2.9: Yield curves for data generated with $\frac{F^*}{M} = 3.48$ and $\frac{B^*}{\overline{B}(0)} = 0.48$.

near the limiting value under the BH (i.e.

 $\lim_{F^*\to 0} \frac{1}{F^*/M+2} = 0.5$). Similarly the set of Ricker RPs (as well as the Schaeffer set) include this trivial limiting point in common $(\frac{F^*}{M} = 0, \frac{B^*}{B(0)} = 0.5)$.

Interestingly, in the high contrast setting this trivial mapping for highly misspecified BH 809 models is not present. This suggests that, under a misspecified BH model, the presence of 810 adequate information in the data to produce reasonable estimates of $\frac{F^*}{M}$, drives $\frac{B^*}{B(0)}$ below 0.5 811 in accordance with $\frac{B^*}{\bar{B}(0)} = \frac{1}{F^*/M+2}$, even when the true $\frac{B^*}{\bar{B}(0)} > 0.5$. This phenomena balances 812 RP estimation within the constrained BH set as mediated by the information content of the 813 data and the degree of model misspecification. When the information content in the data 814 is too small to drive a compromised RP estimate, inference completely disregards accurate 815 estimation of F^* in order to better estimate $\frac{B^*}{\overline{B}(0)}$ by exploiting the common limiting behavior 816 of the BH set and that of Ricker-like and Logistic-like models. 817

⁸¹⁸ 2 Discussion

Results presented here generally agree with what is known about estimating growth rate 819 parameters (Lee et al., 2012; Conn et al., 2010; Magnusson & Hilborn, 2007). These study's 820 appreciate the role of contrast for estimating growth rates, however they struggle to make 821 generally extensible conclusions since they focus only on a handful of stocks that fall short 822 of forming a random sample of the greater population of possible stock behaviors. The LHS 823 design methods presented here are designed specifically to simulate a representative sample 824 of stocks broadly across the space of possible RPs. Furthermore, the simulation design, taken 825 together with the GP metamodel of productivity parmater estimates, allows this study to 826 control the degree of model misspecification and generalize conclusions about the behavior 827 of productivity estimation within the production model setting presented. 828

In the presence of contrast, F^* estimation can enjoy very low bias even for a wide range of poorly specified models; conversely in the absence of contrast F^* estimation can suffer very large bias even for slightly misspecified models. This pattern is particularly true for inference under the Schaefer model where the geometry of the restricted RP set isolates estimation failure of F^* from $\frac{B^*}{B(0)}$. While contrast has a similar impact on F^* estimation under the BH model, the geometry of the BH RP set correlates estimation bias of F^* and $\frac{B^*}{B(0)}$. The

GP metamodeling approach reveals a more general pattern that highly informative data sets (high contrast) produces a nearly minimal distance mapping of RPs onto the constrained RP set.

In all cases when model misspecification is removed, even with weakly informative data,
RP estimation is unbiased and well estimated. Thus contrast alone is not the only factor
leading to inferential failure. Model misspecification is a necessary but not sufficient condition for inducing RP estimation bias. The particular RP bias present depends on the RP
geometry of the fitted model and how that geometry is misspecified relative to the data. The
RP mapping is then oriented to the RP geometry of the fitted model.

While the relative fishing rate parameterized in Section (4.5) captures a usefully broad 844 spectrum of relevant fishing behaviors, it is still limiting in the amount of information that 845 it can induce. Improved methods for quantifying contrast in fisheries data, and/or methods 846 of discovering more informative fishing behavior, could improve this analysis. In the absence 847 of a maximally informative dataset simulation methods will not fully describe how inference 848 fails, but the methods presented here tell the most complete picture yet, with explicit control 849 of the degree model misspecification, contrast, and a simulation design that allows for uniform 850 representative data generation across biologically meaningful stocks. The results presented 851 here suggest the conjecture that under a maximally informative dataset, RP inference with 852 a two parameter production function will be biased in the direction a shortest distance map 853 from the true RPs onto restricted set of RPs under the two parameter model. 854

Given the potential for model misspecification of RPs, a minimal distance mapping of 855 RPs represents a best-case scenario where the total bias of RPs, when measured jointly, is 856 minimized. That said, without recognizing the geometry of how two parameter models of 857 productivity limit RP space this may lead to unintuitive implications in RP estimation. For 858 example, due to the shape of the BH RP set a minimal distance mapping ensures that if 859 there is bias in one of $\frac{B^*}{B_0}$ or F^* , there will necessarily be bias in the other RP. However under 860 the Schaefer model, since the RP set is a constant in $\frac{B^*}{B_0}$, bias in F^* is not adulterated in the 861 same way by bias in $\frac{B^*}{B_0}$ estimation. While models with constant RPs, such as the logistic 862 model $\frac{B^*}{B_0} = \frac{1}{2}$ or the Fox model $\frac{B^*}{B_0} = \frac{1}{e}$, are extremely limited, they can be valuable tools for developing intuition precisely because they isolate RP estimation in their free RPs from

the correlated RP biases present in models like the BH or Ricker model.

When one considers the implications of RP bias, overestimation of RPs carries the severe 866 implication of management recommendations potentially leading to overfishing, while un-867 derestimation of RP leads to overly conservative management. In this sense, when the true 868 model is not known, the geometry of the BH set together with the metamodeled bias trends makes the BH model a naturally conservative estimator of RPs for most stocks. For most 870 non-BH populations the BH model is likely to make conservative errors in its estimates of 871 F^* and $\frac{B^*}{B_0}$. The one notable exception to the conservatism of the BH model stands for data 872 generated in the Cushing-like regime of Schnute RPs. In this regime the BH model tends 873 to be fairly unbiased overall, however the bias that is present for these populations tends to 874 be overestimation in both RPs, leading to much more severe management consequences for 875 those populations. 876

The RP bias trends of the Schaefer model demonstrate much less conservatism than the BH overall. For any population with $\frac{B^*}{B_0} < 0.5$, $\frac{B^*}{B_0}$ will be overestimated. When the population comes from the regime where $\frac{B^*}{B_0} > 0.5$, $\frac{B^*}{B_0}$ will be under estimated, but F^* is likely to be overestimated depending on the degree of contrast present in the data. So while the Schaefer model is an intuitive model, it tends to lead to much less conservative RP estimation.

While it is important to recognize these limitations of two parameter models of produc-883 tivity, we should not solely accept conservativism as a rational of choosing a BH model of 884 productivity. Increasing the flexibility of the production function by moving toward three 885 parameter models would release the underlying structural limitations (Mangel et al., 2013) 886 that cause these RP biases in the first place. Punt and Cope (2019) considers a suite of pos-887 sible three parameter curves which could be used instead of current two parameter curves. 888 For all of their benefits, three parameter production functions have their own complicating 889 factors, and the structure present in the Schnute model explored here makes it an intuitive 890 bridge model for developing three parameter models going forward. 891

• show a schnute fit to data? (Yeakel & Mangel, 2015) Prior

892

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of $M, \kappa, \omega, W_{\infty}$
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.
- mapping distance as a function of contrast at (3.5, 0.5)
- for LHS grid locations show $\frac{B^*}{B_0}$ and F^* biases for grids in $M \in (0, 0.5)$ For sure in High Contrast, maybe also in Low??.

907 Chapter 3

A Delay Differential Model

• Introduction

- piggy back intro off of simpleModel
- 911 problem statement and motivation
- introduce reference point and management decision making
- new dynamics of cohorting.

• Methods

- state and decribe model
- Reference Point Derivation
- layout data generation/space filling problem
- how far to get the math for inputting into CAS
- method of CAS.
- describe and plot ζ .
- constrained BH space (method for visualizing)
- appendix for RP CAS calculation
- Results
- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- ?Discussion?

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of $M, \kappa, \omega, W_{\infty}$
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.

943 1 Introduction

- the delay model: J. Schnute (1985) J. Schnute (1987) Fournier and Doonan (1987).
- discrete: Hilborn and Walters (1992, pg. 334)
- Walters (2020)

947

automatic accounting for cohort cycles

948 2 Methods

49 2 .1 Delay Differential Model

Age structured fisheries models typically assume 950 Von Bertalanffy (1938, VB) gorwth in length 951 with age. To model weight the assumption of 952 VB growth in length is composed with a power law relating length to weight, $w = al^b$. Since b954 is usually ~ 3 this composition of assumed func-955 tional forms typically results in a monotonically 956 increasing sigmoidal curve of weight with age. When $b \leq 1$ weight at age takes a VB-like form 958 with b = 1 resulting in an exact correspondence 959 of simulations VB-growth in length and weight. 960

The delay model slightly abridges these relationships by directly assuming VB growth in weight as follows,

$$w(a) = w_{\infty}(1 - e^{-\kappa(a - a_0)}).$$
 (3.1)

Figure 3.1: The typical composition of allometric weight (b=3) with VB growth in length, as approximated by VB growth in weight directly.

 κ is a parameter that controls the instantaneous rate of individual growth (in weight) with age. w_{∞} is the maximum weight of individuals in the population, and w(a) is the average

weight of an individual at age a. The parameter a_0 controls the age at which individuals 963 are assummed to have zero weight; by letting $a_0 < 0$ this allows fish of age zero to have 964 positive weight. Rather than taking a sigmoidally increasing function, VB growth directly in 965 weight results in an monotonically inceasing curve that asymptotes with a strictly decreasing 966 growth rate with age. (only a good approximation for older ages where growth begins to decline) 968

Together with VB growth, the delay model is derived from the assumption that both 969 natural mortality and fishing selectivity are separately proportional to a common heavyside 970 step function with age. That is to say, before a threshold age of selectivity, a_s , the population 971 is assumed not to experience any mortality whatsoever, but all fish older then a_s experience 972 the same rate of natural mortaility. Simulaneously all fish older than a_s are equally vulnerable 973 to fishing (i.e. knife edge selectivity at age a_s), although fishing effort may vary from through 974 time. 975

Walters (2020) shows that within these assumptions the following delay differential system of equations exactly models the population dynamics of the total exploitable biomass B(t) and number of indivuduals N(t) through time.

$$\frac{dB}{dt} = w(a_s)R(B;\theta) + \kappa \left[w_{\infty}N - B\right] - (M+F)B \tag{3.2}$$

$$\frac{dB}{dt} = w(a_s)R(B;\theta) + \kappa \left[w_{\infty}N - B\right] - (M+F)B$$

$$\frac{dN}{dt} = R(B;\theta) - (M+F)N$$
(3.2)

This formulation separates the number of individuals in the population from the biomass 976 of the population. The dynamics of N, as seen in Eq (3.3), are very similar to that of the 977 production models previously presented, however the role of the production function is now 978 filled by a "recruitment" function, R(B), which describes the number of new individuals 979 recruiting into the expoitable population as a function of exploitable biomass. In turn, the 980 biomass dynamics are coupled to the numbers dynamics by the assumption of VB growth 981 with growth parameters appearing in Eq (3.2), converting population numbers into biomass 982 and accounting for the growth of biomass with age. 983

Eq (3.2) of the above model expands the notion of biomass production into the processes of recruitment, individual growth, and maturity. The term $w(a_s)R(B;\theta)$ represents the

984

985

biomass of new recruits; with $w(a_s)$ representing the weight of individuals at the age of 986 maturity, a_s , and $R(B;\theta)$ representing the number of new recruits entering the exploitable 987 population at time t. The negative term, (M+F)B, represents all causes of mortality as 988 it is applied to biomass. Finally, the term $\kappa \left[w_{\infty} N - B \right]$ accounts for the net growth of the 989 existing biomass by discounting the limiting maximal individual growth rate by metabolic weight loss proportional to B(t). This term, together with the delay structure in R, provides 991 the major computational savings of the delay differential setting, as compared with full age 992 structured models, by automatically keeping track of changes in the mean size and growth 993 associated with changes in recruitment as cohorts mature into the population. 994

Often a BH functional form is assumed for the stock recruitment relationship, but any adequatly flexible family of functions may model this relationship. For the sake of evaluating the adequacy of assumed BH recruitment the simulation setting below is derived for the delay model under the assumption of the generalized three parameter Schnute recruitment as follows.

$$R(B; [\alpha, \beta, \gamma]') = \alpha B(t - a_s) (1 - \beta \gamma B(t - a_s))^{\frac{1}{\gamma}}$$
(3.4)

The parameters $\theta' = [\alpha, \beta, \gamma]$ function similarly in this setting as previously described in Section (??). That said, since the delay model explicitly parses out growth in it's dynamics, these parameters only describe the net processes of larval production, and maturation into the population, where as the production model used these parameters to also model the net effects of growth on biomass production. The γ parameter generalizes the family to model varying degrees of decreasing recruitment for large biomasses as γ increases. The Schnute function is exactly equivalent to BH recruitment at the special case when $\gamma = -1$, it passes through the Ricker model as $\gamma \to 0$, and Logistic recruitment occurs when $\gamma = 1$.

Since the delay model assumes knife edge selectivity, at age a_s , the term $B(t-a_s)$ appears in R. That is to say fish recruiting into the exploitable population are the result of larval production of biomass a_s time units in the past. This is because fishing selectivity is only assumed to occur for fish that are at least a_s time units old and thus fish younger than a_s are not exploitable. This waiting period requires that new recruits be the result of spawning

biomass a_s time units in the past. Modeling maturity in this way results in dynamics equations which are a system of delay differential equations as opposed to the simple ODEs that arrise in the production model setting.

- ~ interpretation of recruitment (larval production, recruitment) [growth external] vs. production (larval production, recruitment, growth)
- general structure: Walters (2020) Hilborn and Walters (1992, pg. 334)
- growth: Von Bertalanffy (1938)
- recruitment: J. Schnute (1985); J. T. Schnute and Richards (1998)

1016 2.2 Reference Points

Deriving reference points for the delay model under Schnute recruitment is conceptually similar to the production model setting. The additional nonlinear VB growth assumptions along side Schnute recruitment quickly make the expressions look somewhat unweildy, although analytical solutions can still be derived for most of the same quantities (although complicated by growth parameters).

Starting from Eqs. (3.2) and (3.3), setting both $\frac{dB}{dt}$ and $\frac{dN}{dt}$ simultaneously equal to zero, and solving for B and N as a function of fishing, gives the equilibrium biomass and numbers equations.

$$\bar{B}(F) = \frac{1}{\beta \gamma} \left(1 - \left(\frac{(F+M)(F+M+\kappa)}{\alpha w(a_s)(F+M+\frac{\kappa w_{\infty}}{w(a_s)})} \right)^{\gamma} \right)$$
(3.5)

$$\bar{N}(F) = \frac{\alpha \bar{B}(F)(1 - \beta \gamma \bar{B}(F))^{1/\gamma}}{F + M}$$
(3.6)

Eq. (3.6) is just $\frac{R(B)}{F+M}$, and is coupled to $\bar{B}(F)$ where most of the dynamics appear. Eq. (3.5) resembles Eq (3.26) from the simple production model setting although the growth parameters κ , w_{∞} and $w(a_s)$, make slight adjustments to the balance of the maximum rate of recruitment and mortality rate to give an expression for equilibrium biomass that accounts for the factors of individual growth.

Expressions for B_0 and B^* are attained by evaluating $\bar{B}(F)$ at F=0 and $F=F^*$ respectively. Calculation of F^* typically involves maximization of equilibrium yield, $\bar{Y}=F\bar{B}(F)$.

While it was not possible to analytically maximize \bar{Y} , stable numerical solutions for calculating F^* were obtained by numerically solving for the roots of the analytical derivative of equilibrium yield with respect to F. Below a greatly simplified expression for $\frac{d\bar{Y}}{dF}$ is shown; the substitution Z=F+M (representing total mortality rate) has been made to produce a more compact expression.

$$\frac{d\bar{Y}}{dF} = \frac{1}{\beta\gamma} \left[1 - \left(\frac{Z(Z+\kappa)}{\alpha w(a_s)(Z + \frac{\kappa w_\infty}{w(a_s)})} \right)^{\gamma} - \left(\frac{\gamma F}{\alpha w(a_s)} \right) \left(\frac{Z(Z+\kappa)}{\alpha w(a_s)(Z + \frac{\kappa w_\infty}{w(a_s)})} \right)^{\gamma-1} \left(1 + \frac{\left(\frac{\kappa w_\infty}{w(a_s)} \right) \left(\kappa - \frac{\kappa w_\infty}{w(a_s)} \right)}{(Z + \frac{\kappa w_\infty}{w(a_s)})^2} \right) \right]$$
(3.7)

 F^* is calculated as the numerical root, w.r.t. F, of the above expression. The numerical root is calculated using the base R uniroot function which employs a derivative free search given by Brent (1973).

BH Constraint

1037

In the simple production model the BH con-1038 strained RP is fixed at $\frac{1}{x+2}$; under the BH 1039 delay model the growth parameters a_s and 1040 κ slightly influence this relationship as seen 1041 in Figure (3.2). That said, the influence of a_s 1042 and κ on RPs is still largely limited to a con-1043 fined region of reference point space which 1044 resembles the $\frac{1}{x+2}$ form. In fact the confined 1045 region of RPs is bounded above by $\frac{1}{x+2}$. In 1046 Figure (3.2) notice that for high values of κ 1047 and small values of a_s (red region) the BH 1048 RP space converges to $\frac{1}{x+2}$ as derived in the 1049 simple production model setting. The op-1050 posite limit with low values of κ and high 1051 values a_s (blue region) depresses RPs away 1052 from $\frac{1}{x+2}$. 1053

Space of BH Reference Points

Figure 3.2: The space of BH RPs for the delay model as a function of κ and a_s . The RP space is plotted for 80×80 combinations of $\kappa \in [0.01, 10]$ and $a_s \in [0.01, 10]$. The color drawn is the result of mapping κ and a_s values to the red and blue components of the RGB color model repsectively (with G=0). $\frac{1}{x+2}$ is plotted in black for reference.

¹⁰⁵⁴ 2 .3 Space Filling Design

1055

1056

- constrained BH space (method for visualizing)
 - layout data generation/space filling problem

Similarly as previously described in Section (4) the relationship between RPs $\mapsto \theta$ cannot be fully expressed analytically for the Schnute delay model. However, just as for the simple production model, simulation only requires enough knowledge of these mappings to gather a list of (α, β, γ) tuples and the corresponding RPs in some reasonable space-filling design over RP space.

Just as in the Schnute production model setting the partial mapping for $(F^*, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$ can be derived analytically in terms of RPs and γ . The substituon $Z^* = F^* + M$ is made where F^* and M appear together to produce a more compact expression.

$$\alpha = \left[\left(\frac{Z^*(Z^* + \kappa)}{w(a_s)(Z^* + \frac{\kappa w_{\infty}}{w(a_s)})} \right)^{\gamma} + \left(\frac{\gamma F^*}{w(a_s)} \right) \left(\frac{Z^*(Z^* + \kappa)}{w(a_s)(Z^* + \frac{\kappa w_{\infty}}{w(a_s)})} \right)^{\gamma - 1} \left(1 + \frac{\left(\frac{\kappa w_{\infty}}{w(a_s)} \right) \left(\kappa - \frac{\kappa w_{\infty}}{w(a_s)} \right)}{(Z^* + \frac{\kappa w_{\infty}}{w(a_s)})^2} \right) \right]^{\frac{1}{\gamma}}$$
(3.8)

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M(M + \kappa)}{\alpha w(a_s)(M + \frac{\kappa w_\infty}{w(a_s)})} \right)^{\gamma} \right)$$
(3.9)

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{(F^* + M)(F^* + M + \kappa)}{\alpha w(a_s)(F^* + M + \frac{\kappa w_{\infty}}{w(a_s)})}\right)^{\gamma}}{1 - \left(\frac{M(M + \kappa)}{\alpha w(a_s)(M + \frac{\kappa w_{\infty}}{w(a_s)})}\right)^{\gamma}}$$
(3.10)

For the purposed of simulation, it is not necessary to completely know the precise relationships mapping RPs $\mapsto \theta$ or $\theta \mapsto$ RPs. Simulation only requires enough knowledge of
these mappings to gather a list of (α, β, γ) tuples, for data generation under the Schnute
model, and the corresponding RPs in some reasonable space-filling design over RP space.

Similarly to J. T. Schnute and Richards (1998), expressions (3.31) and (3.27) are solved for α and β respectively. This leads to the partial mapping $(F^*, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$ in terms of RPs and γ . By further working with Eq. (3.28), to identify γ , the following system

is obtained,

1069

1087

1088

1089

$$\alpha = (M + F^*) \left(1 + \frac{\gamma F^*}{M + F^*} \right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right)$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha} \right)^{\gamma}}{1 - \left(\frac{M}{\alpha} \right)^{\gamma}}.$$
(3.11)

system can fully specify α and β for a given γ . Notice for a given γ a cascade of closed 1070 form solutions for α and β can be obtained. First $\alpha(\gamma)$ can be computed, and then 1071 $\beta(\alpha(\gamma), \gamma)$ can be computed. If $\alpha(\gamma)$ is filled back into the expression for $\frac{B^*}{B_0}$, the system 1072 collapses into a single onerous expression for $\frac{B^*}{B_0}(\alpha(\gamma), \gamma)$. For brevity, define the function 1073 $\zeta(\gamma) = \frac{B^*}{B_0}(\alpha(\gamma), \gamma, F^*, M)$ based on Eq. (3.28). 1074 Inverting $\zeta(\gamma)$ for γ , and computing the cascade of $\alpha(\gamma)$, and then $\beta(\alpha(\gamma), \gamma)$, fully defines 1075 the Schnute model for a given $(\frac{F^*}{M}, \frac{B^*}{B_0})$. However inverting ζ accurately is extremely difficult. 1076 Inverting ζ analytically is not feasible, and numerical methods for inverting ζ are unstable 1077 and can be computationally expensive. Rather than numerically invert precise values of $\zeta(\gamma)$, 1078 γ is sampled so that the overall simulation design is space filling as described in Section (4 1079 .3). 1080 Each design location defines a complete Schnute production model with the given RP 1081 values. Indices of abundance are simulated from the Schnute model at each design location, 1082 a small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and the data 1083 are then fit with a misspecified BH production model. The design at large captures various 1084 degrees of model misspecification relative to the BH model, so as to observe the effect of 1085 productivity model misspecification upon RP inference. 1086

For a population experiencing natural mortality M, by fixing F^* , B_0 , and $\frac{B^*}{B_0}$ the above

2.4 Parmeter Estimation

- layout likelihood setup
- mention recreational data numbers likelihood

- point out similarity of B/N solutions
- I use B only here

1092

1093

1105

1106

1107

1108

1109

• quick statement of inference, and reference to previous section

3 Introduction

The most fundamental model in modern fisheries management is the surplus-production 1094 model. These models focus on modeling population growth via nonlinear parametric ordi-1095 nary differential equations (ODE). Key management quantities called reference points (RPs) 1096 are commonly derived from the ODE equilibrium equations and depend upon the parameter-1097 ization of biomass production. Two-parameter forms of the production function have been 1098 shown to limit the theoretical domain of RPs (Mangel et al., 2013). The limited RP-space of 1099 two parameter models are a major source of model misspecification for RPs and thus induce 1100 bias in RP estimation. The behavior of RP estimation bias is not well understood and as 1101 a result often underappreciated. A metamodeling approach is developed here to describe 1102 RP biases and explore mechanisms of model failure under the most common two parameter 1103 models. 1104

Data for a typical surplus-production model comes in the form of an index of abundance through time which is assumed to be proportional to the reproducing biomass for the population of interest. The index is often observed alongside a variety of other known quantities, but at a minimum, each observed index will be observed in the presence of some known catch for the period. Figure (3.3) shows the classic Namibian Hake dataset exemplifying the form.

Indices are assumed to have multiplicative log-normal errors, and thus the following observation model arises naturally,

$$I_t = qB_t e^{\epsilon} \quad \epsilon \sim N(0, \sigma^2). \tag{3.12}$$

Above q is often referred to as the "catchability parameter"; it serves as the proportionality constant mapping between the observed index of abundance and biomass. σ^2 models residual variation. Biologically speaking q and σ^2 are often treated as nuisance parameters with the

Figure 3.3: *left*: Arl fidex of abundance data, catch per unit fiffort (CPUE), for Namibian Hake from 1965 to 1987 (Hilborn & Mangel, 1997). *right*: The associated catch data for Namibian Hake over the same time period.

"biological parameters" entering the model through a process model on biomass.

1114

1117

1118

1119

1120

1121

1122

1123

1124

1126

Biomass is assumed to evolve as an ODE; in this case I focus on the following form

$$\frac{dB}{dt} = P(B(t); \boldsymbol{\theta}) - Z(t)B(t). \tag{3.13}$$

Here biomass is assumed to change in time by two processes, net production of biomass into the population, P(B), and various sources of biomass removal, Z, from the population.

Firstly, the population grows through a production function, P(B). Production in this setting is defined as the net biomass increase due to all reproduction and maturation processes. The production function is assumed to be a parametric (generally non-linear) function relating the current biomass of the population to an aggregate production of biomass.

Secondly, the population decreases as biomass is removed by various sources that are assumed to remove biomass linearly with biomass. Above, Z(t), is an aggregate rate of removal. When the fishing rate, F(t), is the only source of removal Z(t) = F(t), however often models will also included other linear terms in Z(t). Commonly the rate of "natural mortality", M, is also included as an additional term so that Z(t) = M + F(t).

From a management perspective a major goal of modeling is to accurately infer a quantity known as maximum sustainable yield (MSY). One could maximize simple yield at a particular

moment in time (and only for that moment) by fishing all available biomass in that moment. This strategy is penny-wise but pound-foolish (not to mention ecologically devastating) since 1129 it doesn't leave biomass in the population to reproduce in the future. We seek to fish in a way 1130 that allows (or even encourages) future productivity in the population. This is accomplished 1131 by maximizing the equilibrium level of catch over time. Equilibrium yield is considered by 1132 replacing the steady state biomass (\bar{B}) in the assumed form for catch, so that $\bar{Y} = F\bar{B}(F)$, 1133 where \bar{p} indicates a value at steady state. MSY is found by maximizing $\bar{Y}(F)$ with respect to 1134 F, and F^* is the fishing rate at MSY. Going forward let * decorate any value derived under 1135 the condition of MSY. 1136

Fisheries are very often managed based upon reference points which serve as simplified heuristic measures of population behavior. The mathematical form of RPs depends upon the model assumptions through the production function. While a number of different RPs exist which describe the population in different (but related) ways, the most common RPs revolve around the concept of MSY (or robust ways of measuring MSY (Hilborn, 2010; Punt et al., 2016)). Here the focus is primarily on the RPs $\frac{B^*}{B(0)}$ and F^* ($\frac{F^*}{M}$ when appropriate) for their pervasive use in modern fisheries (Punt & Cope, 2019).

1144 F^* is the afore mentioned fishing rate which results in MSY. $\frac{B^*}{\overline{B}(0)}$ is the depletion of the stock at MSY. That is to say $\frac{B^*}{\overline{B}(0)}$ describes the fraction of the unfished population biomass that will remain in the equilibrium at MSY. In general $F^* \in \mathbb{R}^+$ and $\frac{B^*}{\overline{B}(0)} \in (0,1)$, however under the under the assumption of a two parameter production function production models will be structurally unable to capture the full theoretical range of RPs.

Many of the most commonly used production functions depend only on two parameters.

For example, the Schaefer model depends only on the biological parameters r and K, and limits RP inference so that under the Schaefer model $\left(F^*, \frac{B^*}{B(0)}\right) \in \left(\mathbb{R}^+, \frac{1}{2}\right)$. The two parameter Fox model (Fox Jr., 1970) limits $\left(F^*, \frac{B^*}{B(0)}\right) \in \left(\mathbb{R}^+, \frac{1}{e}\right)$. Similarly the two parameter Cushing (Cushing, 1971), Beverton-Holt (Beverton & Holt, 1957, BH) and Ricker (Ricker, 1954) production functions do not model the full theoretical space of RPs (Mangel et al., 2013; Yeakel & Mangel, 2015).

The bias-variance trade-off (Ramasubramanian & Singh, 2017) makes it clear that the addition of a third parameter in the production function will necessarily reduce estimation

bias. However the utility of this bias reduction is still under debate because the particular mechanisms and behavior (direction and magnitude) of these biases for key management quantities are not fully understood or described. Lee et al. (2012) provides some evidence that estimation of productivity parameters are dependent on biomass contrast as well as model specification. Conn et al. (2010) comes to similar conclusions via calibration modeling techniques. These studies indicate important factors that contribute to inferential failure. However they do not offer mechanisms of model failure, nor do their experimental designs allow for the control of different types of model misspecification.

In this study I consider the behavior of inference when index data are simulated from three parameter PT and Schnute production models, but the simulated data are fit using intentionally misspecified two parameter logistic or BH production models. The work begins with a derivation of RPs under the three parameter models. A method is then presented for generating simulation designs based on the parametric form of RPs which serves as a control on the nature of simulated model misspecification. Finally a Gaussian Process (GP) metamodel (Gramacy, 2020) is constructed for exploration and analysis of RP biases.

A key insight of this approach is that bias is considered broadly across RP-space to uncover patterns and correlations between RPs. The GP metamodel is explicit about trade-offs between RPs so as to inform the full utility of reducing bias, as well as to suggest mechanisms for understanding what causes bias. Further, the effect of contrast on estimation is considered together with model misspecification.

1178 4 Methods

4.1 Pella-Tomlinson Model

The three parameter Pella-Tomlinson (PT) family has a convenient form that includes, among others (Fox Jr., 1970; Rankin & Lemos, 2015), the logistic production function as a special case. PT production function is parameterized so that $\theta = [r, K, \gamma]$ and the family takes the following form,

$$P_p(B; [r, K, \gamma]) = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{(\gamma - 1)} \right). \tag{3.14}$$

 γ is a parameter which breaks PT out of the 1180 restrictive symmetry of the logistic curve. In gen-1181 eral $\gamma \in (1, \infty)$, with the logistic model appear-1182 ing in the special case of $\gamma = 2$, and the Fox model appearing as a limiting case as $\gamma \to 1$. The 1184 parameter r controls the maximum reproductive 1185 rate of the population in the absence of compe-1186 tition for resources (i.e. the slope of production 1187 function at the origin). K is the so called "carrying capacity" of the population. In this con-1189 text the carrying capacity can be formally stated 1190 as steady state biomass in the absence of fishing 1191 (i.e. B(0) = K). In Figure (3.4) PT recruitment 1192 is shown for a range of parameter values so as to demonstrate the various recruitment shapes that 1194 can be achieved by PT recruitment. 1195

While the form of the PT curve produces some limitations (Fletcher, 1978), importantly

the introduction of a third parameter allows enough flexibility to fully describe the space of reference points used in management. To see this, the reference points are analytically derived for the PT model below.

PT Reference Points

1196

1197

1201

With B(t) representing biomass at time t, under PT production, the dynamics of biomass are defined by the following ODE,

$$\frac{dB}{dt} = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{\gamma - 1} \right) - FB. \tag{3.15}$$

An expression for the equilibrium biomass is attained by setting Eq (3.15) equal to zero, and rearranging the resulting equation to solve for B. Thinking of the result as a function

Figure 3.4: The Pella-Tomlinson production function plotted across a variety of parameter values. The special cases of Logistic production is shown in black, and the left-leaning and right-leaning regimes are shown in blue and red respectively.

of F gives,

$$\bar{B}(F) = K \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{(\gamma - 1)}}.$$
(3.16)

At this point it is convenient to notice that $\bar{B}(0) = K$. The expression for B^* is given by evaluating Eq (3.16) at F^* . To get an expression for F^* , the equilibrium yield is maximized with respect to F,

$$F^* = \operatorname*{argmax}_F F\bar{B}(F). \tag{3.17}$$

In the case of PT production this maximization can be done analytically, by differentiating the equilibrium yield with respect to F as follows,

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{3.18}$$

$$\frac{d\bar{B}}{dF} = -\frac{K}{r} \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{\gamma - 1} - 1}.$$
(3.19)

Setting Eq (3.18) equal to 0, substituting $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$ by Equations (3.16) and (3.19) respectively, and solving for F produces the following expression for the fishing rate required to produce MSY,

$$F^* = \frac{r}{\gamma} \tag{3.20}$$

Plugging the above expression for F^* back into Eq (3.16) gives the following expression for biomass at MSY,

$$B^* = K \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}. (3.21)$$

The above derived expressions for $\bar{B}(0)$, B^* , and F^* can then be used to build a specific analytical form for the biological reference points in terms of only productivity parameters.

$$F^* = \frac{r}{\gamma} \qquad \frac{B^*}{\bar{B}(0)} = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}} \tag{3.22}$$

Simulation

Generating simulated indices of abundance from the PT model requires inverting the relationship between $\left(F^*, \frac{B^*}{B(0)}\right)$, and (r, γ) . It is not generally possible to analytically invert this relationship for many three parameter production functions (Punt & Cope, 2019; J. T. Schnute & Richards, 1998). Most three parameter production functions lead to RPs that require expensive numerical methods to invert; more over the numerical inversion procedure can often be unstable. That said, for the case of PT this relationship is analytically invertible, and leads to the following relationship

$$r = \gamma F^* \qquad \qquad \gamma = \frac{W\left(\frac{B^*}{\overline{B}(0)}\log\left(\frac{B^*}{\overline{B}(0)}\right)\right)}{\log\left(\frac{B^*}{\overline{B}(0)}\right)}. \tag{3.23}$$

Above W is the Lambert product logarithm function. More details about this derivation, and the Lambert product logarithm, are given in Appendix (6).

Using Eq. (3.23) to obtain production parameters, a PT production model can be fully defined for any combination of the RPs F^* and $\frac{B^*}{\overline{B}(0)}$. Since K does not enter the RP calculation its value is fixed arbitrarily at 10000.

Indices of abundance are simulated from the three parameter PT production model broadly over the space of F^* and $\frac{B^*}{B(0)}$ via a space filling design as described in Section (4.3). A small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and these data are then fit with a Schaefer model, at various degrees of misspecification, so as to observe the effect of productivity model misspecification upon RP inference.

18 4 .2 Schnute Model

The Schnute production function is a three parameter generalization of many of the most common two parameter production functions (Deriso, 1980; J. Schnute, 1985). It can be written in the following form, with parameters α , β , and γ ,

$$P_s(B; [\alpha, \beta, \gamma]) = \alpha B(1 - \beta \gamma B)^{\frac{1}{\gamma}}.$$
(3.24)

The BH and Logistic production func-1219 tions arise when γ is fixed to -1 or 1 respec-1220 tively. The Ricker model is a limiting case 1221 as $\gamma \to 0$. For $\gamma < -1$ a family of strictly in-1222 creasing Cushing-like curves arise, culminating in linear production as $\gamma \to -\infty$. These 1224 special cases form natural regimes of simi-1225 larly behaving production functions as seen 1226 in Figure (3.5). 1227

The behavior of RP inference under the BH model is of particular interest due to the overwhelming popularity of the BH assumption in fisheries models. Since Schnute production models can represent a quantifiably

1228

1229

1230

1231

1232

1233

1235

1236

1237

1238

1239

The Schnute production func-Figure 3.5: tion plotted across a variety of parameter values. Regimes of similarly behaving curves are grouped by color.

wide variety of possible productivity behaviors, they present an ideal simulation environment for inquiry of the reliability of inference under the BH assumption. 1234

Under Schnute production, biomass dynamics evolve according to the following ODE,

$$\frac{dB}{dt} = P_s(B;\theta) - (M+F)B. \tag{3.25}$$

This equation largely takes the same form as previously described, except that P_s is the Schnute production function and natural mortality, M, is modeled explicitly here. Natural mortality models the instantaneous rate of mortality from all causes outside of fishing. Explicitly modeling natural mortality is not only a typical assumption of fisheries models, but is also key to the making RPs well defined over the relevant domain of γ .

The derivation of RPs under Eq. (3.25) follows a similar logic as under the PT model. An expression for equilibrium biomass is attained by setting $\frac{dB}{dt} = 0$ and rearranging the resulting expression to solve for B

$$\bar{B}(F) = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M+F}{\alpha} \right)^{\gamma} \right). \tag{3.26}$$

The above expression quickly yields B_0 , B^* by evaluation at F=0 and F^* respectively,

$$B_0 = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right) \tag{3.27}$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha}\right)^{\gamma}}{1 - \left(\frac{M}{\alpha}\right)^{\gamma}}.$$
(3.28)

Attaining an expression for F^* requires maximization of equilibrium yield, $\bar{Y} = F\bar{B}(F)$, with respect to F. Analytically maximizing proceeds by differentiating \bar{Y} to produce

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{3.29}$$

$$\frac{d\bar{B}}{dF} = -\frac{1}{\beta} \left(\frac{\left(\frac{M+F}{\alpha} \right)^{\gamma}}{F+M} \right). \tag{3.30}$$

Setting $\frac{d\bar{Y}}{dF} = 0$, filling in the expressions for $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$, then rearranging to solve for F^* is less yielding here than it was in the case of the PT model. This procedure falls short of providing an analytical solution for F^* directly in terms of θ , but rather shows that F^* must respect the following expression,

$$0 = \frac{1}{\gamma} - \left(\frac{1}{\gamma} + \frac{F^*}{F^* + M}\right) \left(\frac{F^* + M}{\alpha}\right)^{\gamma}.$$
 (3.31)

The lack of an analytical solution here is understood. J. T. Schnute and Richards (1998, pg. 519) specifically points out that F^* cannot be expressed analytically in terms of productivity parameters, but rather gives a partial analytical expression for the inverse relationship. Although parameterized slightly differently, J. T. Schnute and Richards (1998) derives expressions for α and β as a function of RPs and γ .

Since RPs are left without a closed form expression, computing RPs from productivity parameters amounts to numerically solving the system formed by collecting the expressions

1248 Simulation

1247

(3.31), (3.27), and (3.28).

For the purposed of simulation, it is not necessary to completely know the precise relationships mapping RPs $\mapsto \theta$ or $\theta \mapsto$ RPs. Simulation only requires enough knowledge of these mappings to gather a list of (α, β, γ) tuples, for data generation under the Schnute model, and the corresponding RPs in some reasonable space-filling design over RP space.

Similarly to J. T. Schnute and Richards (1998), expressions (3.31) and (3.27) are solved for α and β respectively. This leads to the partial mapping $(F^*, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$ in terms of RPs and γ . By further working with Eq. (3.28), to identify γ , the following system is obtained,

$$\alpha = (M + F^*) \left(1 + \frac{\gamma F^*}{M + F^*} \right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right)$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha} \right)^{\gamma}}{1 - \left(\frac{M}{\alpha} \right)^{\gamma}}.$$
(3.32)

For a population experiencing natural mortality M, by fixing F^* , B_0 , and $\frac{B^*}{B_0}$ the above 1253 system can fully specify α and β for a given γ . Notice for a given γ a cascade of closed 1254 form solutions for α and β can be obtained. First $\alpha(\gamma)$ can be computed, and then 1255 $\beta(\alpha(\gamma), \gamma)$ can be computed. If $\alpha(\gamma)$ is filled back into the expression for $\frac{B^*}{B_0}$, the system 1256 collapses into a single onerous expression for $\frac{B^*}{B_0}(\alpha(\gamma), \gamma)$. For brevity, define the function 1257 $\zeta(\gamma) = \frac{B^*}{B_0}(\alpha(\gamma), \gamma, F^*, M)$ based on Eq. (3.28). 1258 Inverting $\zeta(\gamma)$ for γ , and computing the cascade of $\alpha(\gamma)$, and then $\beta(\alpha(\gamma), \gamma)$, fully defines 1259 the Schnute model for a given $(\frac{F^*}{M}, \frac{B^*}{B_0})$. However inverting ζ accurately is extremely difficult. 1260 Inverting ζ analytically is not feasible, and numerical methods for inverting ζ are unstable 1261 and can be computationally expensive. Rather than numerically invert precise values of $\zeta(\gamma)$, 1262 γ is sampled so that the overall simulation design is space filling as described in Section (4) 1263 .3). 1264 Each design location defines a complete Schnute production model with the given RP 1265 values. Indices of abundance are simulated from the Schnute model at each design location, 1266 a small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and the data 1267

productivity model misspecification upon RP inference.

are then fit with a misspecified BH production model. The design at large captures various

degrees of model misspecification relative to the BH model, so as to observe the effect of

1268

1269

1271 4.3 Latin Hypercube Sampling

The goal of space filling design in this setting is to extend the notion of the random sample 1272 (and its desirable parameter estimation properties) across the simulated RP domain so as 1273 to represent the simulated space as well as possible (Gramacy, 2020). The simple random 1274 sample is the gold standard of classical unbiased parameter estimation, however simple ran-1275 domness is patchy, often sampling some regions of design space quite densely, while leaving 1276 other regions of design space empty. Space filling designs aim to preserve (or enhance) pa-1277 rameter estimation properties across the simulated domain (Devon Lin & Tang, 2015; Stein, 1278 1987), while constraining samples to be spaced in some notion of spread over the entire 1279 space. Latin hypercube sampling (McKay et al., 2000, LHS) is among the most foundational 1280 of space filling designs used in computer experiments. 1281

A LHS of size n, in the 2 dimensional 1282 space defined by RPs, distributes samples so 1283 as to spread points across a design region in 1284 a broadly representative way. A LHS design 1285 extends the notion of a univariate random 1286 uniform sample across multiple dimensions 1287 so that each margin of the design space en-1288 joys a uniform distribution. 1289

LHS designs achieve this notion of uniformity by first partitioning each dimension of the design space into regular grids of size n. By intersecting the grids of each dimension, cells are produced that evenly partition the design space. In two dimensions n^2 cells are produced, from which a total of n samples are taken. Crucially only one sample is

1290

1291

1293

1294

1295

1296

1297

Figure 3.6: LHS grids. Intersecting \mathcal{F} and \mathcal{B} produces n^2 cells; a particular cell $\mathcal{F}_i \times \mathcal{B}_j$ is shown in grey. Maybe just show points.

taken from a given element of each grid in each dimension so as to reduce clumping of the n samples across the design space.

1300 PT Design

Letting \mathcal{F} and \mathcal{B} be regular grids, of size n=100, on $F^* \in (0.1, 0.7)$ and $\frac{B^*}{B_0} \in (0.2, 0.6)$ respectively, a LHS design of size 100 is collected among the cells produced by $\mathcal{F} \times \mathcal{B}$.

Each of the sampled LHS design locations represent a unique PT model with the sampled RP values. Since the relationship mapping RPs analytically to productivity parameters can be found for the PT model, LHS designs the PT model are computed directly in RP space and Eq. (3.23) is used to map the sampled RP design locations to PT productivity parameters.

1308 Schnute Design

Due to the lack of an analytical relationship mapping RPs $\mapsto \theta$, analogous to the PT model's Eq. (3.23), producing a LHS design over Schnute RPs requires a more tactful approach. The structured relationship between the RPs and productivity parameters, described in Section (4), allows an approximate LHS to be obtained by a careful navigation of the system of equations seen in Eq. (3.32).

Under the Schnute model, let \mathcal{F} and \mathcal{B} represent regular grids on $\frac{F^*}{M} \in (0.25, 4)$ and $\frac{B^*}{B_0} \in (0.15, 0.7)$ respectively which can serve
as the scaffolding for computing an approximate LHS

Since it is not practical to invert $\zeta(\gamma)$, a uniform sample in $\frac{B^*}{B_0}$ can be obtained by modeling γ as a random variable, with realization γ^* , and thinking of $\zeta(\gamma)$ as its cumulative distribution function (CDF). The aim is to model γ as an easily sampled random

Given B_0 , M, and F^* :

- 1) Draw $\gamma^* \sim \gamma | F^*, M$.
- 2) Compute $\frac{B^*}{B_0} = \zeta(\gamma^*)$
- 3) Compute $\alpha^* = \alpha(\gamma^*, F^*, M)$
- 4) Compute $\beta^* = \beta(\alpha^*, \gamma^*, M, B_0)$

Figure 3.7: An outline of the sampling procedure for γ given B_0 , M, and F^* .

variable with a CDF that closely approximates ζ , so that $\zeta(\gamma^*) \sim U(\zeta_{min}, 1)$ as closely as possible. There may be many good models for the distribution of γ , but in this setting the

following distribution is very effective,

$$\gamma \sim \zeta_{min}\delta(\gamma_{min}) + t(\mu, \sigma, \nu)\mathbf{1}_{\gamma > \gamma_{min}}.$$
(3.33)

Above, t is the density of the three pa-1319 rameter location-scale family Student's t dis-1320 tribution with location μ , scale σ , and de-1321 grees of freedom ν . $\mathbf{1}_{\gamma>\gamma_{min}}$ is an indica-1322 tor function that serves to truncate Stu-1323 dent's t distribution at the lower bound γ_{min} . 1324 $\delta(\gamma_{min})$ is the Dirac delta function evaluated 1325 at γ_{min} , which is scaled by the known value 1326 ζ_{min} ; this places probability mass ζ_{min} at 1327 the point γ_{min} . Since sampling from Stu-1328 dent's t distribution is readily doable, sam-1329 pling from a truncated Student's t mixture 1330 only requires slight modification. 1331

Let T be the CDF of the modeled distribution of γ . Since the point $(\gamma_{min}, \zeta_{min})$ is

Figure 3.8: $\zeta(\gamma)$ Plotted for $F^* = 0.1$ and M = 0.2. The point $(\gamma_{min}, \zeta_{min})$ shows the lowest biologically meaningful value of γ ; below which productivity is negative.

known from the dynamics of the Schnute model at a given RP, full specification of Eq. (3.33) only requires determining the values for μ , σ , and ν which make T best approximate $\zeta(\gamma)$. Thus, the values of μ , σ , and ν are chosen by minimizing the L^2 distance between $T(\gamma)$ and $\zeta(\gamma)$.

$$[\hat{\mu}, \hat{\sigma}, \hat{\nu}] = \underset{[\mu, \sigma, \nu]}{\operatorname{arg \, min}} \int_{\Gamma} \left(T(\gamma; \mu, \sigma, \nu) - \zeta(\gamma) \right)^2 d\gamma \tag{3.34}$$

```
Fitting the distribution T(\gamma|\hat{\mu}, \hat{\sigma}, \hat{\nu}) for
1332
                                                                          Algorithm 2 LHS of size n on rectangle R.
                                                                            1: procedure LHS_n(R)
       use generating \gamma^* values at a specific F^* and
1333
                                                                            2:
                                                                                     Define n-grids \mathcal{F}, \mathcal{B} \in R
       M releases the need to invert \zeta. T(\gamma|\hat{\mu}, \hat{\sigma}, \hat{\nu}),
1334
                                                                                     for each grid element i do
                                                                            3:
       together with the structure in Eq. (3.32),
1335
                                                                                          Draw \frac{F^*}{M} \sim Unif(\mathcal{F}_i)
                                                                            4:
       allows for the collection of an approximate
1336
                                                                                          Compute [\hat{\mu}, \hat{\sigma}, \hat{\nu}] given F^* \& M
                                                                            5:
       LHS sample via the algorithm seen in Algo-
1337
                                                                                          while \mathcal{B}_j not sampled do
                                                                            6:
       rithm (2).
1338
                                                                                               Draw \gamma^* \sim T(\gamma | \hat{\mu}, \hat{\sigma}, \hat{\nu})
            \frac{F^*}{M} is drawn uniformly from \mathcal{F}_i. Con-
                                                                            7:
1339
                                                                                               Compute \zeta^* = \zeta(\gamma^*)
       ditioning on the sample of F^*, and M,
                                                                            8:
1340
                                                                                               Compute j such that \zeta^* \in \mathcal{B}_i
      T(\gamma|\hat{\mu},\hat{\sigma},\hat{\nu}) is fit and \gamma^* is sampled. \zeta^* is
                                                                            9:
1341
                                                                                          end while
                                                                           10:
       then computed and placed into the appropri-
1342
                                                                                          Compute \alpha^* = \alpha(\gamma^*, F^*, M)
       ate grid element \mathcal{B}_{i}. Given \gamma^{*}, the cascade
                                                                          11:
1343
                                                                                          Compute \beta^* = \beta(\alpha^*, \gamma^*, M, B_0)
      \alpha(\gamma^*), and \beta(\alpha(\gamma^*), \gamma^*), can be computed.
                                                                          12:
1344
                                                                                          Save (\frac{F^*}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*) in \mathcal{F}_i \times \mathcal{B}_j
                                                                           13:
       The algorithm continues until all of the de-
1345
                                                                                     end for
      sign elements, (\frac{F^*}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*), have
                                                                           14:
1346
                                                                          15: end procedure
       been computed for all i \in [1, ..., n].
1347
```

1348 Design Refinement

Since the behavior of RP inference, under misspecified models, will vary in yet-unknown ways, the exact sampling design density may be hard to know a'priori. Several factors, including the particular level of observation uncertainty, high variance (i.e. hard to resolve) features of the response surface, or simply "gappy" instantiations of the initial LHS design may necessitate adaptive design refinement, to accurately describe RP biases. Given the temperamental relationship between RPs and productivity parameters in the Schnute model, a recursive refinement algorithm, that makes use of the previously described LHS routine, is developed.

While LHS ensures uniformity in the design margins, and a certain degree of spread, it is widely recognized that particular LHS instantiations may leave substantive gaps in the simulation design. To correct this, LHS is often paired with design elements of maximin

design (Morris & Mitchell, 1995; Devon Lin & Tang, 2015). Maximin designs sample the design space by maximizing the minimum distance between sampled points. This has the advantage of definitionally filling holes in the design, however because no points are ever drawn outside of the design domain, samples tend to clump around edges (particularly corners) of the design domain. Since LHS ensures uniformity in the margins and maximin designs enjoys a certain sense of optimality in how they define and fill gaps (Johnson et al., 1990), the methods are quite complimentary when combined.

Making use of this complimentary relationship, holes in the existing LHS design of RPs are identified based on maximin design principles. New design points are collected based on areas of the RP design space which maximizes the minimum distance between all pairs of points in the current design, based on the following distance function

$$d(\boldsymbol{x}, \boldsymbol{x'}) = \sqrt{(\boldsymbol{x} - \boldsymbol{x'})^T \boldsymbol{D}^{-1}(\boldsymbol{x} - \boldsymbol{x'})}$$

$$\boldsymbol{D} = \operatorname{diag} \left[\left(\max(\mathcal{F}) - \min(\mathcal{F}) \right)^2, \left(\max(\mathcal{B}) - \min(\mathcal{B}) \right)^2 \right].$$
(3.35)

Above, d is a scaled distance function that defines the distance between points in the differing scales of $\frac{B^*}{B_0}$ and $\frac{F^*}{M}$. \mathbf{D} is a diagonal matrix that measures the squared size of the domain in each axis of so as to normalize distances to a common scale.

If X_n is the initial design, computed on R_{full} , let x_a be the augmenting point which maximizes the minimum distance between all of the existing design points,

$$\boldsymbol{x_a} = \underset{\boldsymbol{x'}}{\operatorname{argmax}} \min\{d(\boldsymbol{x_i}, \boldsymbol{x'}) : i = 1, ..., n\}.$$
(3.36)

The point x_a is used as an anchor for augmenting X_n . An additional $LHS_{n'}$ (via Algorithm (2)) is collected, adding n' design points, centered around x_a , to the overall design. The augmenting region, $R_{(x_a,d_a)}$, for collecting $LHS_{n'}$ is defined based on the square centered at x_a with side length $2d_a$, where $d_a = \min\{d(x_i, x_a) : i = 1, ..., n\}$, in the space defined by the metric d.

Due to the tendency of maximin sampling to cluster augmenting points on the edges of the design space, $R_{(x_a,d_a)}$ is truncated by the outer most limits of R_{full} so as to focus design augmentation within the specified domain of the simulation. Furthermore, since the design space has a nonlinear constraint at low values of $\frac{B^*}{B_0}$, the calculation of x_a is further truncated based on a convex hull defined by the existing samples in the overall design.

Design refinement then proceeds as follows. An initial design is computed, $X_n = LHS_n(R_{full})$, based on an overall simulated region of RPs R_{full} . The maximin augmenting point, x_a , is computed at a maximin distance of d_a from the existing samples. An augmenting design $X_{n'} = LHS_{n'}(R_{(x_a,d_a)})$ is collected and added to X_n . Design refinement carries on recursively collecting augmenting designs in this way until the maximin distance falls below the desired level.

1386 4.4 Gaussian Process Metamodel

At its core, a metamodel is simply a model of some mapping of inputs to outputs (the 1387 mapping itself is typically defined by a computer model). By modeling the mapping with a 1388 statistical model (that explicitly defines the relevant features of the mapping) a metamodel 1389 defines a specific ontology for the mapping. By simulating examples of the mapping, the 1390 inferential infrastructure of the statistical model is used to empirically learn an effective 1391 emulation of the mapping within the ontology defined by the statistical model. The pre-1392 dictive infrastructure of the statistical model is then useful as an approximate abstraction 1393 of the system itself to better understand the system through further data collection, cheap 1394 approximation of the mapping, and/or study of the mapping itself. 1395

In this setting, the aim of metamodeling is to study how well RPs are inferred when typical 1396 two parameter models of productivity (Logistic and BH) are misspecified for populations 1397 that are actually driven by more complicated dynamics. The simulation design, X, provides 1398 a sample of different population dynamics that are driven by three parameter production 1399 functions broadly in RP space. By simulating index of abundance data from the three 1400 parameter model, and fitting those data with the two parameter production model, we 1401 observe particular instances of how well RPs are inferred at the given misspecification of the 1402 two parameter model relative to the true three parameter production model. By gathering 1403 all of the simulated instances of how RPs are inferred (under the two parameter model), 1404 we form a set of example mappings to train a metamodel which represents the mapping 1405

of true RPs (under the three parameter model) to estimates of RPs under the misspecified two parameter production model. The metamodel is essentially a surrogate for inference under the misspecified two parameter production model that controls for the specific degree of model misspecification.

A flexible GP model is assumed for the structure of the metamodel to describe the map-1410 ping of RPs under misspecified two parameter models of productivity. A GP is a stochastic 1411 process generalizing the multivariate normal distribution to an infinite dimensional analog. 1412 GP models are often specified primarily through the choice of a covariance (or correlation) 1413 function which defines the relationship between locations in the input space. Typically corre-1414 lation functions are specified so that points closely related in space result in correlated effects 1415 in the model. In this setting the inputs to the GP metamodel are the space of reference points 1416 with define the simulated three parameter production models. 1417

While index of abundance data are generated from three parameter models, at each design location of the simulation, fitting the restricted two parameter model results in a maximum likelihood estimate (MLE; and associated estimation uncertainty) of each of the productivity parameters (i.e. Schaefer:[log(r), log(K)], BH: $[log(\alpha), log(\beta)]$). To simplify the specification of the metamodel, let \mathbf{y} be a vector collecting the fitted MLEs for one of the productivity parameters, and let $\boldsymbol{\omega}$ be a vector of estimates of the estimator variances (via the inverted Fisher information) at each \mathbf{y} . Each of the fitted productivity parameter estimates are then modeled using independent instances of the following GP metamodel.

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{v} + \boldsymbol{\epsilon}$$

$$\mathbf{v} \sim N_n(\mathbf{0}, \tau^2 \mathbf{R}_{\ell})$$

$$\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \boldsymbol{\omega}' \mathbf{I})$$
(3.37)

X is the $n \ge 2$ LHS design matrix of RPs for each simulated three parameter data generating model as described in Section (4.3). ϵ models independent normally distributed error, which provides an ideal mechanism for propagating uncertainty from inference in the simulation step into the metamodel. By matching each y_i with an observed ω_i variance term, ϵ serves to down weight the influence of each y_i in proportion to the inferred production model

sampling distribution uncertainty. This has the effect of smoothing the GP model in a way similar to the nugget effect (Gramacy & Lee, 2012), although the application here models this effect heterogeneously.

The term, v, contains spatially correlated GP effects. The correlation matrix, R_{ℓ} describes how RPs close together in the simulation design are more correlated than those that are far away. This spatial effect is modeled with a squared exponential correlation function,

$$R(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = \exp\left(\sum_{i=1}^{2} \frac{-(x_i - \tilde{x}_i)^2}{2\ell_j^2}\right). \tag{3.38}$$

R has an anisotropic separable form which allows for differing length scales, ℓ_1 and ℓ_2 , in the different RP axes. The flexibility to model correlations separately in the different RP axes is key due to the differences in the extent of the RP domains marginally. The metamodel parameters β_0 , β , τ^2 , ℓ_1 and ℓ_2 are fit via MLE against the observations \mathbf{y} , \mathbf{X} , and $\boldsymbol{\omega}$ from simulation fits.

Fitting the metamodel allows for a full predictive description of inference under the misspecified restricted models. Predictive estimates are obtained via kriging (Cressie, 2015)

$$\hat{y}(\mathbf{x}) = \beta_0 + \mathbf{x}\boldsymbol{\beta} + \mathbf{r}(\mathbf{x})' \boldsymbol{R}_{\ell}^{-1} \Big(\mathbf{y} - (\beta_0 + \boldsymbol{X}\boldsymbol{\beta}) \Big)$$
(3.39)

 $\hat{y}(\mathbf{x})$ is the predicted value of the modeled productivity parameter MLE under the two parameter production model, when the index of abundance is generated from the three parameter production model at RP location \mathbf{x} . $\mathbf{r}(\mathbf{x})$ is a vector-valued function of correlation function evaluations for the predictive location \mathbf{x} against all observations in \mathbf{X} (i.e. $\mathbf{r}(\mathbf{x}) = \mathbf{R}(\mathbf{x}, \mathbf{x}_i) \ \forall \ \mathbf{x}_i \in \mathbf{X}$).

While metamodeling occurs on the inferred productivity parameters of the restricted production model, the metamodel can also be used to build estimates of major biological RPs. For the BH model the relevant transformations for relating productivity parameters with RPs are given in Eqs. (3.28, 3.31) with γ fixed to -1; for the Schaefer model $\hat{B}^* = \frac{\hat{K}}{2}$ and $\hat{F}^* = \frac{\hat{r}}{2}$. Applying the metamodel predictive surfaces on the scale of RP estimates allows for the quantification of estimation bias that is induced by fitting a misspecified two parameter

production model to indices of abundance generated under three parameter productivity.

1445 4 .5 Catch

1452

1453

1454

1455

1456

1446 It is known that contrast in the observed index and catch time series can effect inference
1447 on the productivity parameters (Hilborn & Walters, 1992). In this setting contrast refers to
1448 changes in the long term trends of index data. Figure (3.9, right) demonstrates an example of
1449 biomass that includes contrast induced by catch. It is not well understood how contrast may
1450 factor into inferential failure induced by model misspecification. Thus catch is parameterized
1451 so as to allow for a spectrum of possible contrast simulation settings.

Catch is parameterized so that F(t) can be controlled with respect to F^* . Recall that catch is assumed to be proportional to biomass, so that C(t) = F(t)B(t). To control F(t) with respect to F^* , C(t) is specified by defining the quantity $\frac{F(t)}{F^*}$ as the relative fishing rate. B(t) is defined by the solution of the ODE, and F^* is defined by the biological parameters of the model. By defining $\frac{F(t)}{F^*}$, catch can then be written as $C(t) = F^*\left(\frac{F(t)}{F^*}\right)B(t)$.

Intuitively $\frac{F(t)}{F^*}$ describes the fraction of F^* that F(t) is specified to for the current B(t).

When $\frac{F(t)}{F^*} = 1$, F(t) will be held at F^* , and the solution of the ODE brings B(t) into equilibrium at B^* . When $\frac{F(t)}{F^*}$ is held constant in time biomass comes to equilibrium as an exponential decay from K approaching B^* . When $\frac{F(t)}{F^*} < 1$, F(t) is lower than F^* and B(t) is pushed toward $\bar{B} > B^*$. Contrarily, when $\frac{F(t)}{F^*} > 1$, F(t) is higher than F^* and B(t) is pushed toward $\bar{B} < B^*$; the precise values of \bar{B} can be calculated from the steady state biomass equations provided above and depend upon the specific form of the production function.

For the simulations presented here, a family of fishing behaviors are considered where the fishing rate accelerates as technology and fishing techniques improve rapidly until management practices are applied, which ultimately brings fishing into equilibrium at F^* . This is parameterized as three distinct phases, over a total of 45 units of time, with each phase lasting 15 time units. The specific form is given below.

$$\frac{F(t)}{F^*} = ae^{bt} \mathbf{1}_{0 \le t < 15} + (d - ct) \mathbf{1}_{15 \le t < 30} + \mathbf{1}_{30 \le t \le 45}$$
(3.40)

The first term of Eq(3.40) is an exponential increase in fishing, the second term is a linear

decline in relative fishing as initial management practices are applied, and the third term, $\mathbf{1}_{30 < t < 45}$, simply holds the fishing rate at F^* there after. These three phases are controlled by the four parameters a, b, c, and d. By enforcing that the interface of the phases meet at χ_{max} and 1 respectively the relative fishing series is reduced to a two parameter family.

$$a = e^{\log(\chi_{max}) - 15b} \qquad b = \frac{1}{t - 15} \log\left(\frac{\chi_{min}}{\chi_{max}}\right) \tag{3.41}$$

$$c = \frac{\chi_{max} - 1}{15 - 1} \qquad d = 15c + \chi_{max} \tag{3.42}$$

By further specifying $\chi_{max}=1.6^{\chi}$ and $\chi_{min}=0.4^{\chi}$ the two parameters χ_{max} , and χ_{min} 1464 can be reduced to the single parameter χ . The tuning parameter χ then singularly controls 1465 contrast that appears in time series data. 1466

Figure 3.9: (left) Relative fishing with low, medium, and high contrast. (right) Population biomass and catch at each associated level of contrast.

When $\chi = 0$, the relative fishing rate is a constant at 1 to create a low contrast simulation environment. As χ increases Eq (3.40) induces more and more contrast in the observed index and catch time series until $\chi = 1$ which produces a high contrast simulation environment. Figure (3.9) demonstrates a spectrum of contrast simulation environments as well as the 1470 time series data they induce in the solution of the production model ODE.

1467

1468

1469

1471

Two Parameter Production Model Inference

1472

1487

The simulated mapping results from fitting an intentionally misspecified two parameter pro-1473 duction model to index of abundance data that are generated from a more complex three 1474 parameter model of productivity. Thus, let I_t be an index of abundance simulated from the 1475 three parameter PT or Schnute production models at time $t \in \{1, 2, 3, ..., T\}$. However the 1476 fitted model is specified to be intentionally misspecified so that the fitted model is driven by 1477 a two parameter Schaefer, or BH production model respectively.

The observation model for the fitted model is log-normal such that,

$$I_t|q, \sigma^2, \boldsymbol{\theta} \sim LN(qB_t(\boldsymbol{\theta}), \sigma^2).$$
 (3.43)

 $B_t(\boldsymbol{\theta})$ is defined by the solution of the ODEs defined by the Schaefer, or BH models. For the Schaefer model $\boldsymbol{\theta} = [r, K]$, and for the BH model $\boldsymbol{\theta} = [\alpha, \beta]$. From the perspective of the fitted model, the observed I_t are assumed independent conditional on q, σ^2, r, K and the two parameter ODE model for biomass. Thus the log likelihood can be written as

$$\log \mathcal{L}(q, \sigma^2, \boldsymbol{\theta}; I) = -\frac{T}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t} \log\left(\frac{I_t}{qB_t(\boldsymbol{\theta})}\right)^2.$$
 (3.44)

In this setting, q is fixed at the true value of 0.0005 to focus on the inferential effects 1479 of model misspecification on biological parameters. σ^2 and $\boldsymbol{\theta}$ are reparameterized to the 1480 log scale and fit via MLE. Reparameterizing the parameters to the log scale improves the 1481 reliability of optimization, in addition to facilitating the use of Hessian information for 1482 estimating MLE standard errors. 1483

Given that the biological parameters enter the likelihood via a nonlinear ODE, and fur-1484 ther the parameters themselves are related to each other nonlinearly, the likelihood function can often be difficult to optimize. A hybrid optimization scheme is used to maximize the log 1486 likelihood to ensure that a global MLE solution is found. The R package GA (Scrucca, 2013, 2017) is used to run a genetic algorithm to explore parameter space globally. Optimization 1488 periodically jumps into the L-BFGS-B local optimizer to refine optima within a local mode. 1489 The scheme functions by searching globally, with the genetic algorithm, across many initial

values for starting the local gradient-based optimizer. The genetic algorithm serves to iteratively improve hot starts for the local gradient-based optimizer. Additionally, optimization is only considered to be converged when the optimum results in an invertible Hessian at the found MLE.

4.7 Continuous model formulation

1495

1519

An important (and often overlooked) implementation detail is the solution to the ODE which defines the progression of biomass through time. As a statistical model it is of paramount importance that this ODE not only have a solution, but also that the solution be unique.

If the form of $\frac{dB}{dt}$ is at least Lipschitz continuous, then the Cauchy-Lipschitz-Picard 1499 theorem provides local existence and uniqueness of B(t). Recall from Eq(3.13) that $\frac{dB}{dt}$ is 1500 separated into a term for biomass production, P(B), and a term for removals, Z(t)B(t). For 1501 determining Lipschitz continuity of $\frac{dB}{dt}$, the smallest Lipschitz constant of $\frac{dB}{dt}$ will be the sum 1502 of the constants for each of the terms P(B) and Z(t)B(t) separately. Typically any choice of 1503 P(B) will be continuously differentiable, which implies Lipschitz continuity. At a minimum 1504 Z(t) typically contains fishing mortality as a function of time F(t) to model catch in time as 1505 C(t) = F(t)B(t). Z(t) may or may not contain M, but typically M is modeled as stationary 1506 in time and does not pose a continuity issue, unlike some potential assumptions for C(t). 1507

In practice C(t) is determined by a series of observed, assumed known, catches. Catch 1508 observations are typically observed on a quarterly basis, but in practice may not be complete 1509 for every quarter of the modeled period. It is overwhelmingly common to discretized the 1510 ODE via Euler's method with integration step sizes to match the observation frequency of 1511 the modeled data. This is often convenient but can present several issues. This strategy often 1512 pushes the assumption of catch continuity under the rug, but for regularity of the statistical 1513 model an implicit assumption of continuity of the catches is required. While mechanistically 1514 at the finest scale fishers must only catch discrete packets of biomass (i.e. individual fish), it 1515 is sensible to consider catches as accruing in a continuous way. Furthermore any assumption 1516 of continuity will be required to be at least Lipschitz continuous for the required regularity 1517 of the model. 1518

Here I assume catches accrue linearly between observed catches. This assumption defines

the catch function as a piecewise linear function of time, with the smallest Lipschitz constant for the catch term defined by the steepest segment of the catch function. This assumption represents one of the simplest ways of handling catch, while retaining Lipschitz continuity overall. Furthermore linearly interpolated catch is adequately parsimonious for the typical handling of catches.

Integration and Stiffness

As previously mentioned, the overwhelming majority of implementations of population dynamics models discretized the ODE using Euler's method with the integration step sized
fixed so as to match the observation frequency. In this setting we explore model parameterizations that explore the full extent of biologically relevant reference points. This exercise
produces some combinations of parameters that result in numerically stiff ODEs.

The concept of stiffness in ODEs is hard to precisely characterize. Wanner and Hairer (1996, p.2) describe stiffness in the following pragmatic sense, "Stiff equations are problems for which explicit methods don't work". It is hard to make this definition more mathematically precise, but this a consistent issue for models of fast growing species in the low contrast simulation. Euler's method, as often implemented, is particularly poorly suited for these stiff regions of parameter space. In these stiff regions it is necessary to integrate the ODE with an implicate integration method.

Several of the most common implicate methods were tried including the Livermore Solver for ODEs (lsode), and the Variable Coefficient ODE Solver (vode) as implemented in the deSolve package of R (Soetaert et al., 2010). The difference between implicit solvers is negligible, while explicit methods result in wildly varying solutions to the ODE in stiff regions of parameter space. Results shown here are computed using the lsode integration since it runs relatively quickly and has a relatively smaller footprint in system memory.

5 Results

$_{1545}$ 5 .1 PT/Schaefer

1546 An MSY-Optimal Catch History

When F(t) is held constant at F^* , as it is in the "low contrast" simulation setting, B(t) comes to equilibrium as an exponential decay from K to B^* . Understanding model misspecification bias is simplified in this setting due to the relative simplicity that this induces in B(t). However this simplicity is known to poorly inform estimates of r, and thus F^* , due to the limited range of the production function that is observed (Hilborn & Walters, 1992).

Figure (3.10) shows four of the most mis-1552 specified example production function fits as 1553 compared to the true data generating PT 1554 production functions. The rug plots below 1555 each set of curves show how the observed 1556 biomasses decay exponentially from K to B^* 1557 in each case. In particular, notice how ob-1558 servations only exist where the PT biomass 1559 is greater than B^* . Due to the leaning of 1560 the true PT curves, and the symmetry of 1561 the logistic parabola, the logistic curve only 1562 observes information about its slope at the 1563 origin from data observed on the right por-1564 tion of the PT curves. The top two panels of 1565 Figure (3.10) shows PT data generated such 1566 that $\frac{B^*}{B(0)} > 0.5$; in these cases PT is steeper 1567 to the right of B^* than it is on the left, and so 1568 the the logistic curve over-estimates r, and 1569 consequently also over-estimates F^* . The 1570 bottom two panels of Figure (3.10) show PT 1571

Figure 3.10: A comparison of the true PT production function (in black) and the estimated logistic curve (in red) with 95% CI shown. The examples shown represent the four corners of maximum model misspecification in the simulated RP-space. Observed biomasses are plotted in the rug plots below the curves.

data generated with $\frac{B^*}{\overline{B}(0)} < 0.5$ and where the vice versa phenomena occurs. PT is shallower

to the right of B^* than it is on the left and so the logistic parabola estimate tends to under estimate F^* .

1575 Metamodeled Trends

1601

Each point in the space of the RPs F^* and $\frac{B^*}{B(0)}$ uniquely identifies a complete PT model 1576 with different combinations of parameters values. Recall that when $\gamma = 2$ for the PT model, 1577 the PT curve becomes a parabola and is equivalent to the logistic curve of the Schaefer 1578 model. Since the logistic curve is symmetric about B^* , the Schaefer model must fix the 1579 value of $\frac{B^*}{B(0)}$ at the constant 0.5 for any value of F^* . So the line through RP space defined 1580 by $\frac{B^*}{\overline{B}(0)} = 0.5 \ \forall F^*$, defines the subset of RP space where $\gamma = 2$ and where the PT model is equivalent to the Schaefer model. For brevity this subset of RP were $\frac{B^*}{\overline{B}(0)} = 0.5$ will be 1582 referred to as the "Schaefer set". Thus simulated data that are generated along the Schaefer 1583 set will be the only data that are not misspecified relative to the Schaefer model; as PT data 1584 are simulated farther and farther away from this line at $\frac{B^*}{B(0)} = 0.5$ model misspecification of 1585 the Schaefer model becomes worse and worse. 1586

While Figure (3.10) demonstrates a real trend in simulation results, individual simulation 1587 runs will at best show jittery trends due to the stochastic nature of statistical inference. The 1588 GP process metamodel accounts for this stochasticity to focus analysis on the signal in the 1589 simulation results. Recall that metamodeling occurs on the scale of the inferred productivity 1590 parameters of the restricted production model, by transforming metamodel predictions via 1591 Eq. (3.22), metamodeled predictions are obtained for Schaefer RPs. By further subtracting 1592 the true data generating PT RPs from the predicted Schaefer RPs at each point in RP space 1593 a pattern of inferential RP bias, induced by model misspecification of the Schaefer model, 1594 can be seen to be seen. 1595

Figure (3.11) shows the pattern of biases the Schaefer model creates when fit to PT data generated at each point of RP space. An equivalent way to think of Figure (3.11) is that since the Schaefer model must estimate RPs in the Schaefer set, the metamodel arrows indicate the mapping that is created by inferring RPs under a misspecified Schaefer model fit to PT data generated at each point over the pictured region.

Since $\frac{B^*}{B_0}$ must be 0.5 under the Schaefer model, biases in the $\frac{B^*}{B_0}$ direction must simply

Figure 3.11: Joint bias direction for $(F^*, \frac{B^*}{B_0})$ estimates under the misspecified Schaefer Model. The intensity of color represents the excess bias relative to the shortest possible mapping. Results in the low contrast setting are shown left, and the high contrast setting is shown right.

map vertically onto the Schaefer set. Due to this simplified RP geometry under the Schaefer model, the degree of bias in $\frac{B^*}{B_0}$ estimation is entirely defined solely by the degree of model misspecification irrespective of F^* . Furthermore, the closest possible point along the Schaefer set that Schaefer model inference could map RPs would be the perfectly vertical mapping. This pattern only contains the strictly necessary bias present in $\frac{B^*}{B_0}$, and zero bias in F^* . Any deviation from this minimal bias pattern necessarily to be due to added bias in F^* .

The two simulation settings shown in Figure (3.11) are identical except for the amount of contrast present in the simulated index. The left panel of Figure (3.11) shows RP biases in the low contrast setting, while the right panel shows the high contrast setting. Notice that in the low contrast setting the RP bias pattern is far from the minimum distance mapping, however when contrast is added the mapping becomes much closer to a minimal bias mapping. In the low contrast setting the observed bias is consistent with the pattern and mechanism described in Figure (3.10), where F^* is underestimated for data generated below the Schaefer line and overestimated above the Schaefer set. In the high contrast simulation the mapping is nearly minimal distance with the exception of PT data generated with simultaneously low $\frac{B^*}{B_0}$ and high F^* .

Bias in Estimated Schaefer F_{MSY}

Figure 3.12: Bias in F^* under the Schaefer model when PT data are generated with increasing contrast so that F^* and $\frac{B^*}{B_0}$ are fixed at 0.699 and 0.201 respectively.

Figure (5 .1) demonstrates how bias in F^* estimation decreases as contrast is added to PT data as generated in the low $\frac{B^*}{B_0}$ and high F^* regime. By including additional contrast F^* bias is decreased, however parameterizing contrast so as to fully extinguish F^* bias may require a more complex model of fishing.

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of M, κ , ω , W_{∞}
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.
- mapping distance as a function of contrast at (3.5, 0.5)
- for LHS grid locations show $\frac{B^*}{B_0}$ and F^* biases for grids in $M \in (0, 0.5)$ For sure in High Contrast, maybe also in Low??.

Appendix: Inverting $\frac{B^*}{\bar{B}(0)}$ and γ for the PT Model

For brevity let $\zeta = \frac{B^*}{\bar{B}(0)}$.

$$\zeta = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}$$

$$\zeta = \gamma \zeta^{\gamma}$$

$$\zeta = \gamma e^{\gamma \log(\zeta)}$$

$$\zeta \log(\zeta) = \gamma \log(\zeta) e^{\gamma \log(\zeta)}$$

The Lambert product logarithm, W, is defined as the inverse function of $z = xe^x$ such that x = W(z). Applying this definition allows for the isolation of γ .

$$\gamma \log(\zeta) = W(\zeta \log(\zeta))$$

$$\gamma = \frac{W(\zeta \log(\zeta))}{\log(\zeta)}$$
(3.45)

The Lambert product logarithm is a multivalued function with a branch point at $-\frac{1}{e}$. The principal branch, $W_0(z)$, is defined on $z \in \left(-\frac{1}{e}, \infty\right)$, and the lower branch, $W_{-1}(z)$, is defined on $z \in \left(-\frac{1}{e}, 0\right)$. Taken individually, each respective branch is analytic, but cannot be expressed in terms of elementary functions.

When $\zeta \in \left(0, \frac{1}{e}\right)$ the solution of interest in Eq. (3.23) comes from W_0 . When $\zeta \to \frac{1}{e}$, the Fox Model emerges as $\gamma \to 1$. When $\zeta \in \left(\frac{1}{e}, 1\right)$ the solution of interest comes from W_{-1} . For

the use case presented here, Eq. (3.23) is to be interpreted as,

$$\gamma = \begin{cases}
\frac{W_0(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in \left(0, \frac{1}{e}\right) \\
\frac{W_{-1}(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in \left(\frac{1}{e}, 1\right)
\end{cases}$$
(3.46)

1644 Prager 2002, Figure(2).

1643

https://math.stackexchange.com/questions/3004835/is-the-lambert-w-function-analyticif-not-everywhere-then-on-what-set-is-it-ana https://researchportal.bath.ac.uk/en/publications/algebraicproperties-of-the-lambert-w-function-from-a-result-of-r https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf

References

1669

1670

1671

1672

76(3), 515–521.

Beverton, R. J., & Holt, S. J. (1957). On the dynamics of exploited fish populations (Vol. 11). 1650 Springer Science & Business Media. 1651 Brent, R. P. (1973). Chapter 4: An Algorithm with Guaranteed Convergence for Finding 1652 a Zero of a Function. In Algorithms for minimization without derivatives. Courier 1653 Corporation. 1654 Conn, P. B., Williams, E. H., & Shertzer, K. W. (2010). When can we reliably estimate 1655 the productivity of fish stocks? Canadian Journal of Fisheries and Aquatic Sciences, 1656 67(3), 511–523. 1657 Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons. 1658 Cushing, D. H. (1971, May). The Dependence of Recruitment on Parent Stock in Different 1659 Groups of Fishes. ICES Journal of Marine Science, 33(3), 340–362. Retrieved 2023-1660 06-03, from https://doi.org/10.1093/icesjms/33.3.340 doi: 10.1093/icesjms/ 1661 33.3.340 1662 Deriso, R. B. (1980, February). Harvesting Strategies and Parameter Estimation for an Age-Structured Model. Canadian Journal of Fisheries and Aquatic Sciences, 37(2), 1664 268-282. Retrieved 2020-05-13, from https://www.nrcresearchpress.com/doi/abs/ 1665 10.1139/f80-034 doi: 10.1139/f80-034 1666 Devon Lin, C., & Tang, B. (2015). Latin Hypercubes and Space-filling Designs. In Handbook 1667 of Design and Analysis of Experiments. 1668

ing a generalized delay-difference model. Canadian Journal of Fisheries and Aquatic

Fournier, D. A., & Doonan, I. J. (1987). A length-based stock assessment method utiliz-

Fletcher, R. I. (1978). On the restructuring of the Pella-Tomlinson system. Fish. Bull,

- Sciences, 44(2), 422–437. (Publisher: NRC Research Press Ottawa, Canada)
- 1674 Fox Jr., W. W. (1970). An Exponential Surplus-Yield Model for Optimizing
- Exploited Fish Populations. Transactions of the American Fisheries So-
- 1676 ciety, 99(1), 80-88. Retrieved 2022-02-17, from https://onlinelibrary
- .wiley.com/doi/abs/10.1577/1548-8659%281970%2999%3C80%3AAESMF0%3E2
- 1678 .O.CO%3B2 (eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1577/1548-
- 8659%281970%2999%3C80%3AAESMFO%3E2.0.CO%3B2) doi: 10.1577/
- 1548-8659(1970)99<80:AESMFO>2.0.CO;2
- 1681 Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization
- for the applied sciences. Chapman and Hall/CRC.
- Gramacy, R. B., & Lee, H. K. (2012). Cases for the nugget in modeling computer experi-
- ments. Statistics and Computing, 22(3), 713–722. (Publisher: Springer)
- Hilborn, R. (2010). Pretty good yield and exploited fishes. Marine Policy, 34(1), 193–196.
- (Publisher: Elsevier)
- Hilborn, R., & Mangel, M. (1997). The Ecological Detective: Confronting Models with Data.
- Princeton University Press.
- Hilborn, R., & Walters, C. J. (1992). Quantitative Fisheries, Stock Assessment: Choice
- Dynamics, and Uncertainty Chapman and Hall. New York.
- Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance
- designs. Journal of statistical planning and inference, 26(2), 131–148. (Publisher:
- 1693 Elsevier)
- 1694 Lee, H.-H., Maunder, M. N., Piner, K. R., & Methot, R. D. (2012, August). Can
- steepness of the stock-recruitment relationship be estimated in fishery stock as-
- sessment models? Fisheries Research, 125-126, 254-261. Retrieved 2022-01-29,
- from https://linkinghub.elsevier.com/retrieve/pii/S0165783612001099 doi:
- 10.1016/j.fishres.2012.03.001
- Magnusson, A., & Hilborn, R. (2007). What makes fisheries data informative? Fish and
- Fisheries, 8(4), 337–358. (Publisher: Wiley Online Library)
- Mangel, M., MacCall, A. D., Brodziak, J., Dick, E., Forrest, R. E., Pourzand, R., & Ralston,
- S. (2013, April). A perspective on steepness, reference points, and stock assessment.

```
Canadian Journal of Fisheries and Aquatic Sciences, 70(6), 930–940. Retrieved 2019-
1703
          07-03, from https://www.nrcresearchpress.com/doi/10.1139/cjfas-2012-0372
1704
          doi: 10.1139/cjfas-2012-0372
1705
    McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods
1706
          for selecting values of input variables in the analysis of output from a computer code.
1707
          Technometrics, 42(1), 55–61. (Publisher: Taylor & Francis)
1708
    Morris, M. D., & Mitchell, T. J. (1995, February). Exploratory designs for computa-
1709
          tional experiments. Journal of Statistical Planning and Inference, 43(3), 381–402. Re-
1710
          trieved 2023-05-28, from https://www.sciencedirect.com/science/article/pii/
1711
          037837589400035T doi: 10.1016/0378-3758(94)00035-T
1712
    Punt, A. E., Butterworth, D. S., Moor, C. L. d., Oliveira, J. A. A. D., & Haddon, M. (2016).
1713
          Management strategy evaluation: best practices. Fish and Fisheries, 17(2), 303–334.
1714
          Retrieved 2018-12-13, from https://onlinelibrary.wiley.com/doi/abs/10.1111/
1715
          faf.12104 doi: 10.1111/faf.12104
1716
    Punt, A. E., & Cope, J. M. (2019, September). Extending integrated stock assessment mod-
1717
          els to use non-depensatory three-parameter stock-recruitment relationships. Fisheries
1718
          Research, 217, 46-57. Retrieved 2019-07-19, from http://www.sciencedirect.com/
1719
          science/article/pii/S0165783617301819 doi: 10.1016/j.fishres.2017.07.007
1720
    Ramasubramanian, K., & Singh, A. (2017). Machine learning using R (No. 1). Springer.
1721
    Rankin, P. S., & Lemos, R. T. (2015, October). An alternative surplus production
1722
          model. Ecological Modelling, 313, 109–126. Retrieved 2022-02-11, from https://
1723
          www.sciencedirect.com/science/article/pii/S0304380015002732 doi: 10.1016/
1724
          j.ecolmodel.2015.06.024
1725
    Ricker, W. E. (1954). Stock and recruitment. Journal of the Fisheries Board of Canada,
1726
          11(5), 559–623. (Publisher: NRC Research Press Ottawa, Canada)
    Schnute, J. (1985, March). A General Theory for Analysis of Catch and Effort Data.
1728
          Canadian Journal of Fisheries and Aquatic Sciences, 42(3), 414–429. Retrieved 2020-
1729
          05-13, from https://www.nrcresearchpress.com/doi/abs/10.1139/f85-057
1730
```

Schnute, J. (1987). A general fishery model for a size-structured fish population. Canadian

10.1139/f85-057

1731

- Journal of Fisheries and Aquatic Sciences, 44(5), 924–940. (Publisher: NRC Research
- Press Ottawa, Canada)
- Schnute, J. T., & Richards, L. J. (1998, February). Analytical models for fishery reference
- points. Canadian Journal of Fisheries and Aquatic Sciences, 55(2), 515–528. Retrieved
- 2020-01-14, from https://www.nrcresearchpress.com/doi/abs/10.1139/f97-212
- doi: 10.1139/f97-212
- Scrucca, L. (2013, April). GA: A Package for Genetic Algorithms in R. Journal of Sta-
- tistical Software, 53, 1-37. Retrieved 2022-01-17, from https://doi.org/10.18637/
- jss.v053.i04 doi: 10.18637/jss.v053.i04
- Scrucca, L. (2017). On Some Extensions to GA Package: Hybrid Optimisation, Paral-
- lelisation and Islands EvolutionOn some extensions to GA package: hybrid optimi-
- sation, parallelisation and islands evolution. The R Journal, 9(1), 187–206. Re-
- trieved 2022-01-17, from https://journal.r-project.org/archive/2017/RJ-2017
- -008/index.html
- Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010, February). Solving Differential Equations
- in R: Package deSolve. Journal of Statistical Software, 33, 1–25. Retrieved 2023-05-29,
- from https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
- Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling.
- Technometrics, 29(2), 143–151. (Publisher: Taylor & Francis)
- Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth
- laws. II). *Human biology*, 10(2), 181–213. (Publisher: JSTOR)
- Walters, C. J. (2020). The continuous time Schnute-Deriso delay-difference model for
- age-structured population dynamics, with example application to the Peru anchoveta
- stock.
- Wanner, G., & Hairer, E. (1996). Solving ordinary differential equations II (Vol. 375).
- Springer Berlin Heidelberg.
- Yeakel, J. D., & Mangel, M. (2015, February). A generalized perturbation approach for ex-
- ploring stock recruitment relationships. Theoretical Ecology, 8(1), 1–13. Retrieved
- 2023-06-03, from https://doi.org/10.1007/s12080-014-0230-z doi: 10.1007/
- s12080-014-0230-z