META-CATEGORIZATION OF DISTINCT P-ADIC PERIOD CONCEPTS IN ALGEBRAIC NUMBER THEORY

PU JUSTIN SCARFY YANG

ABSTRACT. From a meta-mathematical and ontological perspective, the notion of p-adic periods in algebraic number theory exhibits a rich taxonomy of conceptually and formally distinct frameworks. This paper outlines a comprehensive classification, categorizing at least seventeen (17) distinct types of p-adic periods, each rooted in a different mathematical paradigm, including Fontaine's theory, motives, p-adic geometry, higher category theory, and topos-theoretic extensions.

Contents

1.	Introduction	1
2.	Fontaine-Type Period Rings	1
3.	Geometric and Modular Origins	2
4.	Motivic and Comparison Isomorphism Periods	2
5.	Meta-Theoretic and Structural Periods	2
6.	Summary Table of Categories	2
7.	Conclusion and Future Work	2

1. Introduction

The concept of p-adic periods extends the classical idea of periods in transcendental number theory into the realm of p-adic Hodge theory, arithmetic geometry, and motive theory. From a meta-perspective, we seek to classify all mathematically distinct notions of p-adic periods based on their formal origins, algebraic structures, and semantic roles.

2. Fontaine-Type Period Rings

These arise in p-adic Hodge theory and are fundamental to understanding the correspondence between p-adic Galois representations and filtered φ -modules.

- B_{HT} : Hodge–Tate periods.
- B_{dR} : de Rham periods.
- B_{cris} : Crystalline periods.
- $-B_{\rm st}$: Semi-stable periods.
- B_{max} , B_{inf} , B_{rig} : Variants for finer distinctions.

Date: May 22, 2025.

3. Geometric and Modular Origins

- Coleman *p*-adic integrals as periods.
- Periods from elliptic curves and their formal group laws.
- p-adic multiple zeta values (MZVs).
- Modular symbols with p-adic coefficients.

4. Motivic and Comparison Isomorphism Periods

- Periods arising as comparison isomorphisms between étale and de Rham realizations of motives.
- Relative p-adic periods of families of motives (e.g., over Shimura varieties).

5. Meta-Theoretic and Structural Periods

- Non-abelian periods: Defined via non-abelian Galois or Iwasawa cohomology.
- Topos-theoretic periods: Interpreted as global sections over a classifying topos.
- **Higher categorical periods**: Via ∞ -categories and derived stacks.
- Computational periods: Formally approximated through algorithmic or precision-based techniques.
- Perfectoid-Langlands periods: Emanating from perfectoid uniformizations.
- Stack-theoretic periods: Periods of moduli stacks like \mathcal{M}_{ell} , \mathcal{A}_g , or Shimura stacks.

6. Summary Table of Categories

Category	Essence	Examples
Fontaine-type	Galois filtered modules	$B_{ m cris}, B_{ m dR}$
Geometric-integral	Path integrals/formal group	Coleman, elliptic formal logs
Modular/MZV	Symbolic-modular expansions	MZVs, p-adic L-values
Motivic	Realization comparisons	Motives over number fields
Topos-theoretic	Sheaf-theoretic abstraction	Classifying topos sections
Higher category	Derived algebraic geometry	∞ -categorical periods
Computational	Precision-based periods	Explicit numerical approximations
Perfectoid	Tilted geometry structures	Perfectoid Shimura period maps
Stack-theoretic	Cohomology over stacks	$\mathcal{M}_{ell},\mathcal{A}_{g}$

7. CONCLUSION AND FUTURE WORK

The notion of p-adic periods transcends a single definition and enters the realm of meta-structures. Each type is rooted in a distinct algebraic or geometric formalism. Further meta-categorization may involve developing a unified topos-theoretic or categorical semantics that accommodates all existing and potential p-adic period types.