# Final Project

Ben Chaloupka, Tess Sameshima, and Scott Wallner

10/26/2020

#### **Import Data**

```
fractal_data <- clean_names(import(here("data", "frac_total.csv")))
raw_A <- clean_names(import(here("data", "frac_SA.csv")))
raw_B <- clean_names(import(here("data", "frac_SB.csv")))</pre>
```

#### Clean Data

```
fractal_data <- fractal_data %>%
  pivot_longer(cols = a:p,
               names_to = "participant",
              values to = "dwell time")
fractal_data <- fractal_data %>%
  mutate(direction = factor(direction, labels = c("Decay", "Growth", "Random")),
         participant = factor(participant),
         disp_image = factor(disp_image))
fractal_data <- fractal_data %>%
  mutate(fractal_type = case_when(
    grepl("Fern_A", disp_image, fixed = T) ~ "Fern_A",
    grepl("Fern_B", disp_image, fixed = T) ~ "Fern_B",
    grepl("Fractal_Curves_A", disp_image, fixed = T) ~ "Fractal_Curves_A",
   grepl("Fractal_Curves_B", disp_image, fixed = T) ~ "Fractal_Curves_B",
   grepl("Fractal_Curves_C", disp_image, fixed = T) ~ "Fractal_Curves_C",
    grepl("Fractal_Curves_D", disp_image, fixed = T) ~ "Fractal_Curves_D",
    grepl("Fractal_Curves_E", disp_image, fixed = T) ~ "Fractal_Curves_E",
   grepl("Hilbert", disp_image, fixed = T) ~ "Hilbert",
   grepl("Moore", disp_image, fixed = T) ~ "Moore",
    grepl("Pythagoras_A", disp_image, fixed = T) ~ "Pythagoras_A",
    grepl("Pythagoras_B", disp_image, fixed = T) ~ "Pythagoras_B",
   grepl("Sierpinski_A", disp_image, fixed = T) ~ "Sierpinski_A",
    grep1("Sierpinski_B", disp_image, fixed = T) ~ "Sierpinski_B",
    grepl("Tree_A", disp_image, fixed = T) ~ "Tree_A"
  ))
fractal_data <- fractal_data %>%
  mutate(sequence_position = case_when(
    grepl("A0.png", disp_image, fixed = T) ~ 1,
```

```
grepl("B0.png", disp_image, fixed = T) ~ 1,
grepl("CO.png", disp_image, fixed = T) ~ 1,
grepl("D0.png", disp_image, fixed = T) ~ 1,
grepl("E0.png", disp_image, fixed = T) ~ 1,
grepl("_0.png", disp_image, fixed = T) ~ 1,
grepl("A100.png", disp_image, fixed = T) ~ 2,
grepl("B100.png", disp_image, fixed = T) ~ 2,
grepl("A1.png", disp image, fixed = T) ~ 2,
grepl("B1.png", disp_image, fixed = T) ~ 2,
grepl("C1.png", disp_image, fixed = T) ~ 2,
grepl("D1.png", disp_image, fixed = T) ~ 2,
grepl("E1.png", disp_image, fixed = T) ~ 2,
grepl("_1.png", disp_image, fixed = T) ~ 2,
grepl("A200.png", disp_image, fixed = T) ~ 3,
grepl("B200.png", disp_image, fixed = T) ~ 3,
grepl("A2.png", disp_image, fixed = T) ~ 3,
grepl("B2.png", disp_image, fixed = T) ~ 3,
grepl("C2.png", disp_image, fixed = T) ~ 3,
grepl("D2.png", disp_image, fixed = T) ~ 3,
grepl("E2.png", disp_image, fixed = T) ~ 3,
grepl("_2.png", disp_image, fixed = T) ~ 3,
grepl("A400.png", disp_image, fixed = T) ~ 4,
grepl("B400.png", disp_image, fixed = T) ~ 4,
grepl("A3.png", disp_image, fixed = T) ~ 4,
grepl("B3.png", disp_image, fixed = T) ~ 4,
grepl("C3.png", disp_image, fixed = T) ~ 4,
grepl("D3.png", disp image, fixed = T) ~ 4,
grepl("E3.png", disp_image, fixed = T) ~ 4,
grepl("_3.png", disp_image, fixed = T) ~ 4,
grepl("A800.png", disp_image, fixed = T) ~ 5,
grepl("B800.png", disp_image, fixed = T) ~ 5,
grepl("A4.png", disp_image, fixed = T) ~ 5,
grepl("B4.png", disp_image, fixed = T) ~ 5,
grepl("C4.png", disp_image, fixed = T) ~ 5,
grepl("D4.png", disp_image, fixed = T) ~ 5,
grepl("E4.png", disp_image, fixed = T) ~ 5,
grepl("_4.png", disp_image, fixed = T) ~ 5,
grepl("A1600.png", disp_image, fixed = T) ~ 6,
grepl("B1600.png", disp_image, fixed = T) ~ 6,
grepl("A5.png", disp_image, fixed = T) ~ 6,
grepl("B5.png", disp_image, fixed = T) ~ 6,
grepl("C5.png", disp_image, fixed = T) ~ 6,
grepl("D5.png", disp image, fixed = T) ~ 6,
grepl("E5.png", disp_image, fixed = T) ~ 6,
grepl("_5.png", disp_image, fixed = T) ~ 6,
grepl("A3200.png", disp_image, fixed = T) ~ 7,
grep1("B3200.png", disp_image, fixed = T) ~ 7,
grepl("A6.png", disp_image, fixed = T) ~ 7,
grepl("A6400.png", disp_image, fixed = T) ~ 8,
grepl("B6400.png", disp_image, fixed = T) ~ 8,
grepl("A7.png", disp_image, fixed = T) ~ 8,
grepl("A12800.png", disp_image, fixed = T) ~ 9,
grepl("B12800.png", disp_image, fixed = T) ~ 9
```

```
raw_A_long <- raw_A %>%
pivot_longer(cols = a:f, names_to = "participant", values_to = "dwell_time")
raw_B_long <- raw_B %>%
pivot_longer(cols = g:p, names_to = "participant", values_to = "dwell_time")
```

### Create New Dataset Excluding Outliers

```
cutoff <- mean(fractal_data$dwell_time) + 3 * sd(fractal_data$dwell_time)
filtered_fractal_data <- fractal_data %>%
    filter(dwell_time < cutoff)</pre>
```

# Create Dataset with Difference Between Growth and Decay Dwell Times as its own Variable

## `summarise()` ungrouping output (override with `.groups` argument)

| Participant  | Mean Difference in Dwell Times between Growth and Decay |
|--------------|---------------------------------------------------------|
| a            | 2.0253251                                               |
| b            | 0.4027316                                               |
| $\mathbf{c}$ | 0.0727060                                               |
| d            | 0.0262463                                               |
| e            | 0.0260263                                               |
| f            | 0.0468790                                               |
| g            | 0.0172402                                               |
| h            | 0.0201722                                               |
| i            | 0.0148214                                               |
| j            | 0.0643832                                               |
| k            | 0.0784663                                               |
| 1            | 0.1487259                                               |
| m            | 0.2542457                                               |
| n            | 0.0746982                                               |

| Participant | Mean Difference in Dwell Times between Growth and Decay |
|-------------|---------------------------------------------------------|
| О           | 0.0113360                                               |
| p           | 0.0746982                                               |

### Descriptive Stats by Participant

## `summarise()` ungrouping output (override with `.groups` argument)

| Participant  | Dwell Time Mean | Dwell Time SD |
|--------------|-----------------|---------------|
| a            | 1.955           | 1.599         |
| b            | 1.053           | 0.678         |
| $\mathbf{c}$ | 0.720           | 0.237         |
| d            | 0.481           | 0.161         |
| e            | 0.796           | 0.117         |
| f            | 0.759           | 0.132         |
| g            | 0.667           | 0.149         |
| h            | 0.543           | 0.153         |
| i            | 1.169           | 0.357         |
| j            | 1.087           | 0.362         |
| k            | 1.075           | 0.431         |
| 1            | 0.697           | 0.224         |
| m            | 0.766           | 0.286         |
| n            | 0.624           | 0.181         |
| О            | 0.419           | 0.053         |
| p            | 0.770           | 0.292         |

# Descriptive Statistics by Direction

## `summarise()` ungrouping output (override with `.groups` argument)

| Direction | Dwell Time Mean | Dwell Time SD |
|-----------|-----------------|---------------|
| Decay     | 0.736           | 0.457         |
| Growth    | 0.946           | 0.902         |
| Random    | 0.857           | 0.464         |

# Descriptive Statistics by Fractal

## `summarise()` ungrouping output (override with `.groups` argument)

| Fractal                          | Dwell Time Mean | Dwell Time SD |
|----------------------------------|-----------------|---------------|
| Images/Fern_B800.png             | 0.730           | 0.326         |
| Images/Moore_0.png               | 0.738           | 0.241         |
| Images/Sierpinski_B1.png         | 0.740           | 0.266         |
| Images/Hilbert_0.png             | 0.745           | 0.259         |
| Images/Sierpinski_A0.png         | 0.746           | 0.260         |
| Images/Sierpinski_A2.png         | 0.756           | 0.276         |
| Images/Sierpinski_A1.png         | 0.757           | 0.311         |
| Images/Sierpinski_A3.png         | 0.757           | 0.310         |
| Images/Fern_B200.png             | 0.761           | 0.409         |
| Images/Fern_A0.png               | 0.762           | 0.272         |
| Images/Fractal_Curves_D0.png     | 0.763           | 0.285         |
| Images/Fern_B1600.png            | 0.765           | 0.402         |
| Images/Fern_B400.png             | 0.770           | 0.360         |
| Images/Sierpinski_B4.png         | 0.773           | 0.420         |
| Images/Fern_A800.png             | 0.781           | 0.758         |
| Images/Fern_A1600.png            | 0.782           | 0.653         |
| Images/Fractal_Curves_B0.png     | 0.782           | 0.318         |
| Images/Sierpinski_B2.png         | 0.782           | 0.333         |
| Images/Fern_A3200.png            | 0.785           | 0.564         |
| Images/Moore_2.png               | 0.785           | 0.473         |
| Images/Sierpinski_B0.png         | 0.786           | 0.293         |
| Images/Fern_A400.png             | 0.787           | 0.685         |
| Images/Fern_A200.png             | 0.788           | 0.786         |
| Images/Moore_1.png               | 0.796           | 0.385         |
| Images/Fractal_Curves_E2.png     | 0.797           | 0.564         |
| Images/Fern_B0.png               | 0.799           | 0.265         |
| Images/Sierpinski_B3.png         | 0.799           | 0.367         |
| Images/Hilbert_1.png             | 0.800           | 0.434         |
| Images/Fractal_Curves_D1.png     | 0.803           | 0.413         |
| Images/Fractal_Curves_E5.png     | 0.804           | 0.381         |
| Images/Pythagoras_B0.png         | 0.804           | 0.366         |
| $Images/Fern\_B3200.png$         | 0.806           | 0.460         |
| Images/Moore_4.png               | 0.806           | 0.495         |
| Images/Hilbert_2.png             | 0.807           | 0.615         |
| Images/Fractal_Curves_E0.png     | 0.811           | 0.297         |
| Images/Fractal_Curves_C0.png     | 0.813           | 0.385         |
| Images/Fern_A100.png             | 0.814           | 0.593         |
| $Images/Fractal\_Curves\_E1.png$ | 0.814           | 0.489         |
| Images/Fractal_Curves_D2.png     | 0.815           | 0.465         |
| Images/Fractal_Curves_D3.png     | 0.815           | 0.527         |
| Images/Fractal_Curves_C1.png     | 0.816           | 0.489         |
| $Images/Pythagoras\_B1.png$      | 0.824           | 0.438         |

| Fractal                                         | Dwell Time Mean | Dwell Time SD |
|-------------------------------------------------|-----------------|---------------|
| Images/Pythagoras_A0.png                        | 0.825           | 0.432         |
| Images/Fractal_Curves_A2.png                    | 0.827           | 0.558         |
| Images/Fern_B100.png                            | 0.828           | 0.604         |
| Images/Tree_A3.png                              | 0.828           | 0.632         |
| Images/Hilbert_3.png                            | 0.832           | 0.522         |
| Images/Tree_A0.png                              | 0.832           | 0.397         |
| Images/Fractal_Curves_B1.png                    | 0.835           | 0.610         |
| Images/Fractal_Curves_E4.png                    | 0.835           | 0.636         |
| Images/Tree_A2.png                              | 0.835           | 0.443         |
| Images/Tree_A4.png                              | 0.839           | 0.583         |
| Images/Fractal_Curves_A0.png                    | 0.842           | 0.445         |
| Images/Tree_A1.png                              | 0.859           | 0.436         |
| Images/Fractal_Curves_D4.png                    | 0.861           | 0.598         |
| Images/Moore_5.png                              | 0.863           | 0.509         |
| Images/Fractal_Curves_A1.png                    | 0.867           | 0.663         |
| Images/Pythagoras_A1.png                        | 0.874           | 0.811         |
| Images/Sierpinski_A4.png                        | 0.876           | 0.458         |
| Images/Moore_3.png                              | 0.877           | 0.730         |
| Images/Tree_A5.png                              | 0.884           | 0.586         |
| Images/Fern_B6400.png                           | 0.889           | 0.860         |
| Images/Sierpinski B5.png                        | 0.893           | 0.537         |
| Images/Hilbert_5.png                            | 0.894           | 0.635         |
| Images/Fern_B12800.png                          | 0.897           | 0.468         |
| Images/Fractal_Curves_B2.png                    | 0.904           | 0.786         |
| Images/Hilbert_4.png                            | 0.913           | 0.737         |
| Images/Fractal_Curves_E3.png                    | 0.915           | 1.117         |
| Images/Fractal_Curves_C4.png                    | 0.922           | 0.737         |
| Images/Fractal_Curves_C2.png                    | 0.934           | 0.744         |
| Images/Fern_A6400.png                           | 0.940           | 0.946         |
| Images/Fractal_Curves_D5.png                    | 0.942           | 0.689         |
| Images/Fractal_Curves_B5.png                    | 0.947           | 0.607         |
| Images/Tractal_Curves_B5.png Images/Tree_A7.png | 0.953           | 0.631         |
| Images/Pythagoras_B2.png                        | 0.955           | 0.671         |
| Images/Fractal_Curves_B4.png                    | 0.960           | 1.014         |
| Images/Fractal_Curves_A3.png                    | 0.966           | 0.890         |
|                                                 |                 |               |
| Images/Pythagoras_A2.png                        | 0.966           | 0.718         |
| Images/Pythagoras_A3.png                        | 0.966           | 0.644         |
| Images/Tree_A6.png                              | 0.971           | 0.756         |
| Images/Fractal_Curves_B3.png                    | 0.975           | 1.047         |
| Images/Fractal_Curves_A5.png                    | 0.997           | 0.915         |
| Images/Fractal_Curves_C5.png                    | 0.998           | 0.925         |
| Images/Fern_A12800.png                          | 1.005           | 1.048         |
| Images/Fractal_Curves_A4.png                    | 1.006           | 1.099         |
| Images/Fractal_Curves_C3.png                    | 1.008           | 0.845         |
| Images/Pythagoras_B3.png                        | 1.054           | 0.850         |

# Descriptive Statistics by Participant and Direction

```
fractal_data %>%
  group_by(participant, direction) %>%
  summarise(mean_dwell_time = round(mean(dwell_time), 3),
```

```
sd_dwell_time = round(sd(dwell_time), 3)) %>%
knitr::kable(col.names = c("Participant", "Direction", "Dwell Time Mean", "Dwell Time SD"))
```

## `summarise()` regrouping output by 'participant' (override with `.groups` argument)

| Participant  | Direction | Dwell Time Mean | Dwell Time SD |
|--------------|-----------|-----------------|---------------|
| a            | Decay     | 1.414           | 1.151         |
| a            | Growth    | 3.439           | 1.912         |
| a            | Random    | 1.482           | 1.083         |
| b            | Decay     | 1.156           | 0.503         |
| b            | Growth    | 1.558           | 0.965         |
| b            | Random    | 0.750           | 0.328         |
| $\mathbf{c}$ | Decay     | 0.623           | 0.134         |
| $\mathbf{c}$ | Growth    | 0.696           | 0.228         |
| $\mathbf{c}$ | Random    | 0.781           | 0.263         |
| d            | Decay     | 0.424           | 0.125         |
| d            | Growth    | 0.451           | 0.182         |
| d            | Random    | 0.525           | 0.154         |
| e            | Decay     | 0.756           | 0.125         |
| e            | Growth    | 0.782           | 0.116         |
| e            | Random    | 0.822           | 0.107         |
| f            | Decay     | 0.746           | 0.145         |
| f            | Growth    | 0.793           | 0.141         |
| f            | Random    | 0.748           | 0.117         |
| g            | Decay     | 0.595           | 0.070         |
| g            | Growth    | 0.612           | 0.077         |
| g            | Random    | 0.731           | 0.176         |
| h            | Decay     | 0.454           | 0.108         |
| h            | Growth    | 0.474           | 0.122         |
| h            | Random    | 0.622           | 0.145         |
| i            | Decay     | 1.210           | 0.415         |
| i            | Growth    | 1.225           | 0.307         |
| i            | Random    | 1.121           | 0.344         |
| j            | Decay     | 0.811           | 0.175         |
| j            | Growth    | 0.875           | 0.198         |
| j            | Random    | 1.332           | 0.326         |
| k            | Decay     | 0.841           | 0.134         |
| k            | Growth    | 0.920           | 0.194         |
| k            | Random    | 1.270           | 0.517         |
| 1            | Decay     | 0.591           | 0.169         |
| 1            | Growth    | 0.740           | 0.228         |
| 1            | Random    | 0.728           | 0.230         |
| m            | Decay     | 0.752           | 0.308         |
| m            | Growth    | 1.006           | 0.323         |
| m            | Random    | 0.653           | 0.152         |
| n            | Decay     | 0.494           | 0.114         |
| n            | Growth    | 0.568           | 0.146         |
| n            | Random    | 0.716           | 0.173         |
| O            | Decay     | 0.418           | 0.062         |
| O            | Growth    | 0.429           | 0.070         |
| O            | Random    | 0.414           | 0.036         |
| p            | Decay     | 0.494           | 0.114         |
| p            | Growth    | 0.568           | 0.146         |

| Participant | Direction | Dwell Time Mean | Dwell Time SD |
|-------------|-----------|-----------------|---------------|
| p           | Random    | 1.010           | 0.194         |

### A Couple of Plots

```
new_data_for_now <- fractal_data %>%
  group_by(participant, direction) %>%
  summarise(mean_dwell_time = round(mean(dwell_time), 3),
            sd_dwell_time = round(sd(dwell_time), 3))
## `summarise()` regrouping output by 'participant' (override with `.groups` argument)
new_data_for_later <- fractal_data %>%
  group_by(direction) %>%
  summarise(mean_dwell_time = round(mean(dwell_time), 3),
            sd_dwell_time = round(sd(dwell_time), 3))
## `summarise()` ungrouping output (override with `.groups` argument)
fractal data %>%
  ggplot(aes(x = direction, y = dwell_time, fill = direction)) +
  geom_col(data = new_data_for_later, aes(y = mean_dwell_time)) +
  labs(x = "Direction", y = "Dwell Time (s)", title = "Dwell Times by Condition") +
  theme(legend.position = "none") +
  scale_fill_viridis_d()
```

# **Dwell Times by Condition**



```
fractal_data %>%
  ggplot(aes(x = direction, y = dwell_time, fill = direction)) +
  geom_col(data = new_data_for_now, aes(y = mean_dwell_time)) +
  facet_wrap(~participant, scales = "free") +
  labs(x = "Direction", y = "Dwell Time (s)", title = "Dwell Times by Condition for Each Participant",
  theme(legend.position = "none") +
  scale_fill_viridis_d() +
  theme(axis.text.x = element_text(size = 7))
```

### **Dwell Times by Condition for Each Participant**

(y axis scale varies by participant)



#### Building a Model (and a Plot for that Model)

```
model1 <- lm(data = fractal_data, dwell_time ~ direction)
summary(model1)
##
## Call:</pre>
```

```
## directionGrowth 0.20992
                             0.02285 9.189 < 2e-16 ***
## directionRandom 0.12056
                             0.01978 6.094 1.18e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6027 on 5565 degrees of freedom
## Multiple R-squared: 0.01511,
                                 Adjusted R-squared: 0.01475
## F-statistic: 42.68 on 2 and 5565 DF, p-value: < 2.2e-16
car::Anova(model1)
## Anova Table (Type II tests)
##
## Response: dwell_time
##
             Sum Sq Df F value
                                   Pr(>F)
## direction 31.01
                      2 42.681 < 2.2e-16 ***
## Residuals 2021.54 5565
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
sjPlot::plot_model(model1, type = "pred", terms = c("direction"))
## Registered S3 methods overwritten by 'lme4':
    method
##
##
    cooks.distance.influence.merMod car
    influence.merMod
##
                                   car
##
    dfbeta.influence.merMod
                                   car
    dfbetas.influence.merMod
##
                                   car
```

### Predicted values of dwell time



#### More Models and Plots

```
seq_fractal_data <- fractal_data %>%
  filter(direction != "Random") %>%
  mutate(sequence_position = factor(sequence_position),
         fractal_type = factor(fractal_type))
new_data_forever <- seq_fractal_data %>%
  group_by(sequence_position, fractal_type) %>%
  summarise(mean_dwell_time = round(mean(dwell_time), 3),
            sd_dwell_time = round(sd(dwell_time), 3))
## `summarise()` regrouping output by 'sequence_position' (override with `.groups` argument)
seq_fractal_data %>% # change points to numbers for easy sequence position identification
  ggplot(aes(x = fractal_type, y = dwell_time, color = sequence_position)) +
  geom_point(data = new_data_forever, aes(y = mean_dwell_time)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
  1.1
                                                                        sequence position
                                                                             1
  1.0
                                                                             2
                                                                             3
dwell_time
  0.9
                                                                             5
                                                                             6
                                                                             7
  0.8
                                                                             8
                                                                             9
  0.7
                                            Pythadolas & Right A
           Fractal Curves B
                   Fractal Curves D
               Fractal Curves
                                fractal_type
model2 <- lm(data = seq_fractal_data, dwell_time ~ sequence_position * fractal_type)</pre>
car::Anova(model2)
## Note: model has aliased coefficients
         sums of squares computed by model comparison
## Anova Table (Type II tests)
##
## Response: dwell time
```

```
##
                                      Sum Sq
                                               Df F value
                                                             Pr(>F)
## sequence_position
                                        8.48
                                                  2.0161 0.040992 *
                                       15.70
                                                   2.2965 0.005115 **
## fractal type
## sequence_position:fractal_type
                                                   0.3684 0.999999
                                       12.59
                                               65
## Residuals
                                    1418.18 2697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
seq fractal data %>%
  ggplot(aes(x = sequence_position, y = dwell_time)) +
  facet_wrap(~fractal_type) +
  geom_point(data = new_data_forever, aes(y = mean_dwell_time)) +
  scale_y_continuous(limits = c(0, 1.2)) +
  labs(y = "Dwell Time (s)", x = "Sequence Position")
               Fern A
                                      Fern B
                                                       Fractal_Curves_A
                                                                              Fractal_Curves_B
   1.25
   1.00
   0.75
   0.50
   0.25
   0.00
           Fractal_Curves_C
                                 Fractal_Curves_D
                                                       Fractal_Curves_E
                                                                                  Hilbert
   1.25
   1.00
   0.75
   0.50
   0.25
0.25
0.00
1.25
1.00
0.75
                                   Pythagoras_A
                                                         Pythagoras_B
                                                                                Sierpinski_A
                Moore
   0.50
   0.25
   0.00
                                                     1 2 3 4 5 6 7 8 9
                                                                           1 2 3 4 5 6 7 8 9
             Sierpinski_B
                                      Tree_A
   1.25
```

Sequence Position

#### Dwell Time over Time (yeah, that's right)

1 2 3 4 5 6 7 8 9

1.00 0.75 0.50 0.25 0.00

These plots show how dwell time decreased over time as participants became bored, fatigued, etc. The order of the fractals was counterbalanced such that the A group and the B group saw the fractal types in the reverse order.

1 2 3 4 5 6 7 8 9

```
raw_A_long %>%
  ggplot(aes(x = number, y = dwell_time, color = participant)) +
  geom_point() +
  geom_smooth(method = "lm", se = F)
```

<sup>## `</sup>geom\_smooth()` using formula 'y ~ x'



##  $geom_smooth()$  using formula 'y ~ x'







## `geom\_smooth()` using formula 'y ~ x'



## `geom\_smooth()` using formula 'y ~ x'

