Risolvi le seguenti disequazioni: **a.** $\log_3(2x+3) < \log_3(x-4);$ **b.** $\log_{\frac{1}{2}}(3x) - \log_{\frac{1}{2}}(x+2) > 1.$ a) (2x+3>0 (x - 4 > 0 2×+3 < ×-4 IMPOSSIBILE L-) 3× >0 X >0 x > 0 × > - Z x+2>0 $\frac{3 \times \left(\frac{1}{2}\right)}{\times + 2} = \frac{1}{2}$ $\text{feache } \frac{1}{2} < 1$ (ni inverte) $6 \times < \times + 2$ 0 < x < 2 5 =>

La funzione f(x) in figura ha equazione $f(x) = |\log_a x + b|$, con $\bar{a} > 0$ e b < 0.

- **a.** Sapendo che la retta s è parallela all'asse x, ricava i valori dei parametri a e b.
- **b.** Sia $h(x) = (f \circ g)(x)$. Scrivi l'espressione analitica di h e risolvi h(x) > 1.

[a) $a = 2, b = -1; b) \frac{5}{2} < x < 4 \lor x > \frac{17}{2}$]

a)
$$y = |2g_0 \times + l_r|$$
 $1 = |2g_0 + l_r|$
 $1 = |2l_0| \implies l_r = -1$ enough $l_r \neq 0$
 $A(x, 1)$ appartiene $a = y = \frac{2}{3} \times -\frac{5}{3} \implies 1 = \frac{2}{3} \times -\frac{5}{3}$
 $A(x, 1)$ appartiene $a = y = \frac{2}{3} \times -\frac{5}{3} \implies 1 = \frac{2}{3} \times -\frac{5}{3}$
 $A(x, 1)$ appartiene $a = y = \frac{2}{3} \times -\frac{5}{3} \implies 1 = \frac{2}{3} \times -\frac{5}{3}$
 $A(x, 1)$ appartiene $a = y = \frac{2}{3} \times -\frac{5}{3} \implies 1 = \frac{2}{3} \times -\frac{5}{3}$
 $A(x, 1)$ appartiene $a = y = \frac{2}{3} \times -\frac{5}{3} \implies 1 =$