Experiment (6)

Decoders / Encoders

8.1 Objectives:

- To study the basic operation and design of both decoder and encoder circuits.
- To describe the concept of active -low and active-high logic signals.
- To learn how to use the n-to-2ⁿ type decoders to implement a given Boolean function.
- To learn how to use 7-segment LED display along with a seven-segment decoder to create decimal digits.

8.2 Background Information:

Decoders:

A decoder is a combinational circuit that converts coded inputs to another coded outputs. The famous examples of decoders are binary n-to-2ⁿ decoders and seven-segment decoders.

A binary decoder has n inputs and a maximum of 2ⁿ outputs. As we know, an n-bit binary number provides 2ⁿ minterms or maxterms. This type of decoder produces one of the 2ⁿ minterms or maxterms at the outputs based on the input combinations.

Lets take the 2-to-4 decoder as an example, the block diagram and the truth table of this decoder is shown in Figure 8.1 and Table 8.1 respectively.

Figure 8.1 Block Diagram of 2-to-4 Decoder

E	х	у	D_0	D_1	D_2	<i>D</i> ₃
0	Χ	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Table 8.1 Truth table of 2-to-4 Decoder

From the truth table, you can observe the basic operation of n-to-2ⁿ decoders, there is only one active output (minterm) for each input combination. The Boolean expression of the output signals are :

$$D_0 = E x' y', D_1 = E x' y, D_2 = E x y'$$
 and $D_3 = E x y$

Now, the logic diagram for the 2-to-4 decoder can obtained as shown in Figure 8.2.

Figure 8.2 Logic Diagram for the 2-to-4 Decoder

In the same way, we can obtained the logic diagram for any n-to-2ⁿ type decoder.

The commercially available decoders are normally built using NAND gates instead of using AND gates because they are easy and less expensive to build. An example of a commercial $n-to-2^n$ line decoder is the 74139 chip. This chip has two 2-to-4 decoders with active low enable for each , They constructed using the NAND gates (see its pinout diagram and Function Table)

Because any Boolean function can be expressed as a sum of products (minterms) or a product of sums (maxterms), we can use a decoder to implement any Boolean function. For example, consider the full-adder circuit illustrated in figure 4.6. The Boolean expressions for the outputs S and C are :

$$S = x' y' z + x' yz' + xy' z' + xyz$$
$$C = x' yz + xy' z + xyz' + xyz$$

The above expressions can be implemented by ORING the appropriate combination of output minterms of a 3-to-8 decoder :

$$S = D_1 + D_2 + D_4 + D_7$$

 $C = D_3 + D_5 + D_6 + D_7$

Seven-Segment Display

Another common type of decoder is the **seven-segment decoder**. This decoder is used along with seven-segment LED display to create a decimal or hexadecimal digits. The Seven-segment LED display is commonly used for numerical display as in multimeters and calculators, it contains seven independent LEDs arranged as shown in Figure 8.3.

Figure 8.3 A Seven-Segment Display

There are two main types of seven-segment LEDs, the common cathode (CC) and the common anode (CA). In the CC type, the cathodes for all segments are joined in a single node. On the other hand in CA type, the anodes are joined together in a single node. (see Figure 8.4)

Figure 8.4 Types of 7-Segment Display

All decimal or hexadecimal numbers can be displayed by controlling the state of the appropriate segments ON or OFF. This can be done using a seven-segment decoder, a seven-segment decoder accepts four binary inputs and provides seven outputs that determines which of the segments on a seven-segment LED display should be on or off to create a decimal or hexadecimal digits.

As an example of the commercial 7-segment decoder is the 7447 chip, This is a BCD to seven-segment decoder which used for displaying the numbers from 0 trough 9 based on the corresponding input BCD number. This chip is design for use with to a common anode seven segment display. It has active-low outputs (see Pin-Out Diagram and Function Table).

The circuit for the BCD to 7-Segment is shown in Figure 8.5

Figure 8.5 BCD to Seven-Segment

Encoders:

The encoder is a combinational circuit that performs the reverse operation of the decoder. The encoder has a maximum of 2ⁿ inputs and n outputs. The block diagram and the truth table of a 4-to-2 encoder are shown in Figure 8.6 and Table 8.2 respectively.

Figure 8.6 Block Diagram of 4-to-2 Encoder

D_0	D_1	D_2	D ₃	х	У
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Table 8.2 truth table For the 4-to-2 encoder

From the truth table, we can expressed the outputs as:

$$x = D_2 + D_3$$

$$y = D_1 + D_3$$

Therefore, the logic diagram for the 4-to-2 Encoder can be obtained as shown in Figure 8.7.

Figure 8.7 Logic Diagram of the 2-to-4 Encoder

8.3 Equipments Required:

Universal Breadboard

Jumper wire kit

2x 7411 TRIPLE 3-INPUT AND

1x 7404 HEX INVERTERS

1x 7447 BCD-TO-SEVEN SEGMENT DECODERS/DRIVERS

1x Common Anode (CA) Seven-Segment LED Display (MAN72A)

4x Toggle Switches

7x Carbon-film Resistors (470 Ω)

4x LEDs

8.4 Procedure:

Step 1:

- 1. Construct the logic circuit of 2-to-4 Decoder that shown in Figure 8.2.
- 2. Try all input combinations and fill in the following truth table:

Е	х	у	D_0	D_1	D_2	D_3
0	Χ	Χ				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Step 2:

- 1. Construct the circuit of BCD to 7-segment LED display.
- 2. Verify the function of the circuit by applying different BCD numbers and monitoring the corresponding decimal digits on the 7-segment LED display,
- 3. Complete the following table by filling in the segments.

A_3	A_2	A_1	Ao	Fill in Seg's
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	

A_3	A_2	A_1	Ao	Fill in Seg's
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	

Questions:

- Design a 3-to-8 decoder with active low enable input E. When E is low, the decoder will function normally, when E is high, all outputs should be high regardless of the inputs.
- 2. Derive the simplified Boolean expressions for the seven outputs (a,b,c,d,e,f & g) of the 7447 decoder. (Remember, the selected outputs are LOW signals in this decoder)
- 3. Implement the following Boolean functions using a decoder and external gates:

$$F_1(A,B,C) = A'B'C' + AB'C + AB'$$

$$F_2(A,B,C) = ABC + ABC'$$

4. Give summary of the points you have learned from the experiment.