

Data Models and Mathematical Foundations

Pooja T S

Computer Applications

Data Models and Mathematical Foundations

Data Models

Pooja T S

Computer Applications

Data Models in Databases

- Data models define how data is structured, stored, and manipulated.
- They provide a conceptual framework that determines:
 - How relationships among data are represented
 - How operations can be performed on data
 - How constraints and rules are applied
- ► We will explore five classical models: Network, Hierarchical, Hybrid, Object-Oriented, and Document.

PES

Introduction

- Definition: A data model is a conceptual framework that determines how data is organized and accessed.
- Purpose:
 - Provides abstraction from physical storage
 - Defines consistency and constraints
 - Enables communication between developers, DBAs, and end-users
- Evolution:
 - Early models focused on rigid structures (hierarchical, network).
 - Later models introduced flexibility (document, object-oriented).
 - Today, hybrid and multi-model databases combine strengths.

PES

Network Model

- Organizes data into records connected by explicit links.
- Each record may have multiple parent and child relationships (many-to-many).
- Based on pointers to establish connections.
- Advantages:
 - Efficient traversal of complex relationships
 - Suited for applications with interconnected data

Database and its Applications Network Model- Example

- Data is organised as records (nodes) connected by links (edges).
- ► Entities can have many-to-many relationships.
- Structure:
 - Store is linked to Customer, Manager, Salesman.
 - Customer, Manager, Salesman connect to Order.
 - Order further links to Items.
- Implications:
 - A customer can place many orders.
 - A salesman can handle many orders/items.
 - Orders can include multiple items.

Hierarchical Model

- lacktriangle Organizes data into a tree-like structure (parent ightarrow child).
- Each child has exactly one parent; supports one-to-many relationships.
- Advantages:
 - Simple, intuitive model
 - Fast navigation along hierarchy
- ► Limitations:
 - Difficult to model many-to-many relationships
 - Rigid schema makes evolution hard
- Example: Company database (Company → Departments → Employees).

Database and its Applications Hierarchical Model-Example

Database and its Applications Hierarchical Model - Example

- Data is organised in a tree structure (parent-child).
- ► Each child has only one parent, but a parent can have multiple children.
- Structure:
 - Store is the root node.
 - Store connects to Customer and Manager.
 - Customer connects to Order.
 - Manager connects to Salesman.
- ► Implications:
 - A store can have many customers and managers.
 - Each customer can place multiple orders.
 - · Each manager supervises multiple salesmen.
 - Data must be accessed by navigating parent → child links.

Database and its Applications Hybrid Model

- Combines features of network and hierarchical models (sometimes also relational).
- Supports both tree-like navigation and graph-like cross-links.
- Provides flexibility for enterprise applications with diverse data types.
- Example: Telecom billing systems (customers, accounts, call records, services).
- Used in early ERP systems and remains relevant in modern multi-model databases.

Database and its Applications Hybrid Model-Example

Database and its Applications Object-Oriented Model

- Extends the idea of data storage by integrating concepts of object-oriented programming.
- Data represented as objects containing attributes (data) and methods (behavior).
- Key Features:
 - Inheritance reuse properties across classes
 - Encapsulation hide implementation details
 - Polymorphism methods operate differently based on objects
- Example: CAD/CAM, multimedia databases, scientific research repositories.

Database and its Applications Object Oriented Model- Example

- Stores information as documents, typically JSON, XML, or BSON.
- Schema-less design records in the same collection may differ in fields.
- Advantages:
 - Flexibility easy to evolve structure

Document Model

- Natural representation of nested or complex data
- Optimized for modern web/mobile applications
- Example: MongoDB, CouchDB used in e-commerce catalogs, social media feeds.

Database and its Applications Document Model- Example


```
db.createCollection("stores", {
 validator: {
   $isonSchema: {
     bsonType: "object",
     required: [" id", "name", "address", "customers", "staff"],
     properties: {
       id: { bsonType: "string" },
       name: { bsonType: "string" },
       address: {
         bsonType: "object",
         required: ["city", "pin"],
         properties: {
           city: { bsonType: "string" },
           pin: { bsonType: "string" }
```


Database and its Applications Comparison Table- Example

Model	Structure	Schema	Best For
Network	Graph of records	Fixed	Complex
			many-to-many
Hierarchical	Tree	Fixed	One-to-many
			navigation
Hybrid	Mixed (Tree + Graph)	Mixed	Enterprise +
			telecom
Object-	Objects with	Flexible	Multimedia,
Oriented	attributes/methods	(class-based)	CAD, scientific
			apps
Document	JSON/XML documents	Flexible	Web apps,
		(schema-less)	NoSQL

Figure: Comparision of Models

Database and its Applications Summary

- ► Each data model emerged to solve specific storage and representation needs.
- Early models (network, hierarchical) laid foundation for consistency and efficiency.
- Object-oriented and document models provide flexibility for modern applications.
- No single "best" model selection depends on data type, complexity, and use case.

Database and its Applications Interactive Activity

- Identify and Match the real-world scenario to the data model:
 - Airline booking
 - Organization chart
 - Telecom billing
 - Multimedia database
 - E-commerce catalog
- ▶ Justify your answers in 1–2 lines.

Thank You

Pooja T S
Assistant Professor
Department of Computer Applications
poojats@pes.edu

080-26721983 Extn: 233