

A Gentle Introduction to Machine Learning

Dr. Rodrigue Rizk

Rodrigue.Rizk@usd.edu

Learning Objectives

- Understand what is machine learning and its applications
- Understand the key concepts of machine learning
- Learn how solving problems with machine learning is different from traditional approaches
- □ Understand the different types of learning and the most used machine learning algorithms

When Do We Use Machine Learning?

□ A classic example of a task that requires machine learning: It is very hard to say what makes a 2

When Do We Use Machine Learning?

- Some more examples of tasks that are best solved by using a learning algorithm:
- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Artificial Intelligence, Machine Learning, and Deep Learning

"Learning is any process by which a system improves performance from experience."

"Machine Learning is concerned with computer programs that automatically improve their performance through experience."

Herbert Simon
Turing Award 1975
Nobel Prize 1978

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Lee Samuel (1959)

Traditional Programming

Machine Learning

□ Study of *Algorithms* that *improve* their *performance* at some *task* with *experience*.

Cat Classification Example

Weather Prediction Example

Suppose a Mesonet station monitors the weather conditions for the past several years, then based on this information, a computer program can learn and predict the weather conditions in the next several days.

Weather Prediction Example

Suppose a Mesonet station monitors the weather conditions for the past several years, then based on this information, a computer program can learn and predict the weather conditions in the next several days.

Machine Learning ~ Training Framework

Machine Learning ~ Testing Framework

Machine Learning ~ Testing Framework

Machine Learning ~ Testing Framework

Machine Learning ~ Looking for a Function South DAKOTA

- □ So far, you can see finding a suitable function is the core of machine learning
 - Cat Classification (Image recognition)

Weather Prediction

("Observed Weather Conditions") — Future weather condition

Machine Learning ~ Looking for a Function South Dakota

Types of Learning

Supervised Learning

- Supervised learning
 - ☐ Given: training data + desired outputs (labels)

Unsupervised Learning

- Unsupervised learning
 - □ Given: training data (without desired outputs)

Reinforcement Learning

- Reinforcement learning
 - Rewards from sequence of actions

Examples of Machine Learning Algorithms

Linear Regression

Finding a equation that best fit the curve

Logistic Regression

Equation is used to define the boundary line

Supported Vector Machine (SVM)

The boundary curves are non-linear.

Decision Tree

Decision tree with height = 1

Random Forest

number of trees = 10, tree height = 2

Hands-On Example

- □ In order to design a Machine Learning algorithm, we need:
 - Input, also known as features: X
 - Output, also known as labels: y
 - □ Target Function: f: X → y (unknown to us)

Example:

X		у
0	1	а
1	2	а
2	1	b
2	3	b
1	3	а
2	2	b

Hands-On Example

- Python provides a set of libraries including different ML packets
- Standard libraries provide the ready-to-use implementation of algorithm
- □ The **scikit-learn** is the one we will use in this lecture

Hands-On Example


```
from sklearn import svm
X = [[0, 1], [1, 2], [2, 1], [2, 3], [1, 3], [2, 2]]
y = ['a', 'a', 'b', 'b', 'a', 'b']
clf = svm.SVC()
clf.fit(X, y)
result1 = clf.predict([[3, 1]])
print (result1)
result2 = clf.predict([[0, 2]])
print (result2)
['b']
['a']
```


The only stupid question is the one you were afraid to ask but never did.

-Rich Sutton