## БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

| Протокол № | от | Председатель |
|------------|----|--------------|
| Протокол № | от | Председатель |

#### Дисциплина

## «Теория вероятностей и математическая статистика»

## Задания для проведения практической работы №2

**НАИМЕНОВАНИЕ РАБОТЫ:** Вычисление вероятностей событий с использованием геометрического и статистического определений вероятности.

**ЦЕЛЬ РАБОТЫ:** сформировать умения и навыки по вычислению вероятностей событий, используя, геометрическое и статистическое определения вероятности.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

## ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

## 1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1. Статистическое определение вероятности.
- 2. Геометрическое определение вероятности.

#### 2. Работа в аудитории

## 2.1. Решение типовых заданий

**Задание №1.** Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг квадрата.

#### Решение:

Известно, площадь круга  $S_{\kappa pyza}=\pi R^2$ . Сторона вписанного квадрата через радиус описанной окружности выражается формулой  $a=\sqrt{2}R$ , поэтому площадь квадрата  $S_{\kappa badpama}=2R^2$ .

Следовательно, 
$$P(A) = \frac{S_{\kappa ea\partial pama}}{S_{max}} = \frac{2R^2}{\pi R^2} = \frac{2}{\pi} \approx 0,6367.$$

Ответ: 0,6367.

**Задача** №2. Среди тысячи новорожденных оказалось 516 мальчиков. Найдите относительную частоту рождения девочек.

#### Решение:

Относительная частота рождения девочек равна отношению числа девочек ко всем новорожденным, т.е.

$$\frac{1000 - 516}{1000} = \frac{484}{1000} = 0,484.$$

Ответ: 0,484.

**Задание №3**. В квадрат с вершинами в точках O(0, 0), A(0, 1), B(1. 1) и C(1,0) наудачу брошена точка M. Найти вероятность того, что координаты этой точки удовлетворяют неравенству  $y < \frac{x}{2}$ .



## Решение:

Событие A – «координаты точки M, брошенной в квадрат, удовлетворяют неравенству  $y < \frac{x}{2}$ ».

$$P(A) = \frac{S_{\text{треугольника}}}{S_{\text{квадрата}}} = \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot 1}{1 \cdot 1} = 0,25.$$

Ответ: 0,25.

# 2.2. Выполните задания, используя геометрическое и статистическое определения вероятностей событий

## Уровень 1

**Задание №1.** На отрезке длиной L см помещен меньший отрезок длиной l см. Найти вероятность того, что точка, наудачу поставленная на больший отрезок, попадет также и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.

| № варианта | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| L          | 50 | 42 | 20 | 30 | 45 | 60 | 55 | 60 | 50 | 40 | 30 | 56 | 80 | 40 | 56 |
| l          | 20 | 14 | 5  | 16 | 15 | 15 | 11 | 15 | 25 | 10 | 4  | 7  | 20 | 5  | 8  |

**Задание №2.** Отдел технического контроля обнаружил m нестандартных изделий в партии из n изделий. Найдите частоту изготовления бракованных изделий.

| № варианта | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| m          | 20   | 15   | 15   | 25   | 25   | 35   | 25   | 20   | 15   | 20   | 25   | 25   | 25   | 25   | 15   |
| n          | 1600 | 1200 | 1100 | 1500 | 1200 | 1100 | 1500 | 1600 | 1800 | 1100 | 1300 | 1600 | 1800 | 1500 | 1600 |

## Уровень II

**Задание №3.** В круг радиуса R помещен меньший круг радиуса г. Найти вероятность того, что точка, наудачу брошенная в большой круг, попадет также и в малый круг. Предполагается, что вероятность попадания точки в круг пропорциональна площади круга и не зависит от его расположения.

| № варианта | 1 | 2  | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|------------|---|----|---|---|---|----|---|---|---|----|----|----|----|----|----|
| R          | 8 | 10 | 6 | 7 | 9 | 12 | 8 | 7 | 6 | 9  | 7  | 8  | 10 | 12 | 9  |
| Γ          | 3 | 7  | 4 | 5 | 5 | 7  | 4 | 4 | 3 | 8  | 3  | 5  | 6  | 10 | 3  |

Задание №4. Найдите частоту появления простых чисел в отрезках натурального ряда от n<sub>1</sub> до n<sub>2</sub>.

| эидиппе в на п | тинди | to laci | 019 110 | y nombilemin npoethix intest b ofpeskax narypathinore pr |    |    |    |    |    |    |    | рида | <del>л п</del> рду | <u>5 117.</u> |    |
|----------------|-------|---------|---------|----------------------------------------------------------|----|----|----|----|----|----|----|------|--------------------|---------------|----|
| № варианта     | 1     | 2       | 3       | 4                                                        | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12   | 13                 | 14            | 15 |
| $n_1$          | 20    | 40      | 60      | 80                                                       | 10 | 30 | 50 | 70 | 5  | 15 | 25 | 35   | 45                 | 55            | 65 |
| $n_2$          | 40    | 60      | 80      | 100                                                      | 30 | 50 | 70 | 90 | 25 | 35 | 45 | 55   | 65                 | 75            | 85 |

#### Уровень III

**Задание №5.** На плоскости начерчены две концентрические окружности, радиусы которых R<sub>1</sub>и R<sub>2</sub> см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения.

| № варианта | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|------------|----|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| $R_1$      | 12 | 8 | 7 | 6 | 9 | 7 | 8 | 10 | 12 | 9  | 8  | 10 | 6  | 7  | 9  |
| $R_2$      | 7  | 4 | 4 | 3 | 8 | 3 | 5 | 6  | 10 | 3  | 3  | 7  | 4  | 5  | 5  |

**Задание №6.** Двое друзей условились встретиться в определенном месте между временем T<sub>1</sub> и T<sub>2</sub>. Каждый из пришедших к месту встречи будет ждать другого не более t мин. Найти вероятность встречи.

| ' ' 1      | , ,   |       |      | L     | J ' ' | , , , | 1 2  |       |       |       |      | 1     |       | 1     |       |
|------------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|-------|
| № варианта | 1     | 2     | 3    | 4     | 5     | 6     | 7    | 8     | 9     | 10    | 11   | 12    | 13    | 14    | 15    |
| $T_1$      | 12.00 | 8.00  | 7.00 | 16.00 | 9.00  | 7.00  | 8.00 | 10.00 | 12.00 | 9.00  | 8.00 | 10.00 | 9.00  | 17.00 | 18.00 |
| $T_2$      | 13.00 | 10.00 | 9.00 | 17.00 | 10.00 | 8.00  | 9.00 | 11.00 | 14.00 | 10.00 | 9.00 | 12.00 | 11.00 | 18.00 | 19.00 |
| t          | 15    | 20    | 25   | 15    | 20    | 25    | 10   | 12    | 30    | 12    | 20   | 30    | 24    | 20    | 15    |

## Уровень IV

Задание №7. Составьте и решите задачу, в которой находится геометрическая вероятность события.

Задание №8. Составьте и решите задачу, в которой находится относительная частота.

#### Контрольные вопросы:

- 1. Какую вероятность называют геометрической? Приведите пример.
- 2. Чем отличается относительная частота от вероятности?

#### Литература

Гмурман, В. Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/В. Е. Гмурман. — 9-е изд., стер. — М.: Высш. шк., 2003. — c.24 – 43.

Преподаватель В.П. Кошелева