南京林业大学试卷(A卷)

课程 线性代数 B

2019~2020 学年第 1 学期

题号	1	11	111	四	五	总	分
得分							

-、填空题(每题 3 分,共 15 分)

1. 若三阶行列式
$$\begin{vmatrix} a_{11} & 3a_{12} & 0 \\ a_{21} & 3a_{22} & 0 \\ 0 & 6 & 1 \end{vmatrix} = 3$$
,则 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \underline{\qquad \qquad 1 \qquad }$

2. 设
$$A$$
 为 3 阶 可 逆 阵,且 其 伴 随 矩 阵 $A^* = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix}$,则 $A^{-1} = \pm \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix}$.

- 3. 设A为三阶矩阵,满足|A+2E|=0, |A-E|=0, |2A-3E|=0, 则行列式 |A|= -3 .
- 4. 设齐次线性方程组 AX=0 中的系数矩阵 A 为 8×6 矩阵,且 A 的秩 R(A)=4 ,则其基础解 系中所含解向量的个数为

5. 若矩阵
$$A = \begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
 与矩阵 $\Lambda = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{pmatrix}$ 的特征多项式相同,则 $x = \underline{\quad 0 \quad}$.

二. 选择题(每题3分,共15分)

1. 设 A 为三阶方阵, A^* 为 A 的伴随矩阵,且 |2A|=2 ,则 $|(4A)^{-1}-3A^*|=(D)$ 。

(A)
$$\frac{16}{27}$$

(B)
$$-\frac{16}{27}$$
 (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$

(C)
$$\frac{1}{2}$$

(D)
$$-\frac{1}{2}$$

2. 设n阶方阵A,B和C,则下列说法正确的是(B)。

(A) AB = AC, 则B = C

(B)
$$AB = 0$$
, $|A| = 0$ $|B| = 0$

(C)
$$(AB)^{-1} = A^{-1}B^{-1}$$

(D)
$$(A+B)^2 = A^2 + 2AB + B^2$$

3. 向量组 $\vec{\alpha_1} = (1,0,t)^T$, $\vec{\alpha_2} = (5,t,t)^T$, $\vec{\alpha_3} = (3,1,t)^T$ 的秩为 3,则(D)。

(A)
$$t = 0$$
或 $t = 2$

(B)
$$t \neq 1 \perp t \neq -2$$

(C)
$$t = 1$$
或 $t = -2$

(D)
$$t \neq 0 \perp t \neq 2$$

4. 设 $A \neq m \times n$ 矩阵, AX = 0 是非齐次线性方程组 AX = b 所对应的齐次线性方程组,则下列

结论正确的是(D)

- (B). 若 AX = 0 有非零解,则 AX = b 有无穷多个解
- (C). 若 AX = b 有无穷多个解,则 AX = 0 仅有零解
- (D). 若AX = b有无穷多个解,则AX = 0有非零解
- 5. 设 2 是非奇异矩阵 A 的一个特征值,则矩阵 $(\frac{1}{3}A^2)^{-1}$ 有一个特征值等于(B) (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$

(A)
$$\frac{4}{3}$$

(B)
$$\frac{3}{4}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{4}$$

三、计算题(每小题9分,共27分)

1. 设行列式
$$D = \begin{vmatrix} 1 & -1 & 2 & 1 \\ 2 & 5 & 3 & 2 \\ 2 & -2 & -2 & -1 \\ -1 & -4 & -7 & 4 \end{vmatrix}$$
, 记 A_{ij} 为 D 中元素 a_{ij} 的代数余子式,

计算 $A_{21} - A_{22} + 4A_{23} + 2A_{24}$ 。

解:
$$A_{21} - A_{22} + 4A_{23} + 2A_{24} = \begin{vmatrix} 1 & -1 & 2 & 1 \\ 1 & -1 & 4 & 2 \\ 2 & -2 & -2 & -1 \\ -1 & -4 & -7 & 4 \end{vmatrix}$$
 --3 分

$$= \begin{vmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -6 & -3 \\ 0 & -5 & -5 & 5 \end{vmatrix} = 0 \qquad ---9 \, \%$$

2、设
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$
且 $AX = A + 2X$,求矩阵 X 。

解: 由于
$$|A-2E| \neq 0$$
,所以 $(A-2E)$ 可逆,故 $X = (A-2E)^{-1}A$ ---3 分

$$(A-2E|A) = \begin{pmatrix} 1 & 0 & 1 & 3 & 0 & 1 \\ 1 & -1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 5 & -2 & -2 \\ 0 & 1 & 0 & -4 & 3 & 2 \\ 0 & 0 & 1 & -2 & 2 & 3 \end{pmatrix} ---6$$

所以
$$X = \begin{pmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{pmatrix}$$
 ---9 分

$$3$$
、求矩阵 $A = \begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$ 的列向量组的秩及一个最大无关组,并将其余向量用此最大无关组

线性表出。

$$\widetilde{R}: \ (\vec{a}, \vec{b}, \vec{c}, \vec{d}) = \begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

行向量组的秩为 2,它的一个最大无关组: \vec{a}, \vec{b}

且
$$\vec{c} = \frac{1}{2}\vec{a} + \vec{b}$$
 ; $\vec{d} = \vec{a} + \vec{b}$ 。 ———9 分

四、计算、讨论题 (每小题 12 分, 共 36 分)

1. 已知线性方程组
$$\begin{cases} x_1 + x_2 + \lambda x_3 = \lambda^2 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ \lambda x_1 + x_2 + x_3 = 1 \end{cases}$$

讨论λ取何值时,方程组无解?有唯一解?有无穷多解?无穷多解时,请求解。

解:系数行列式
$$A = \begin{vmatrix} 1 & 1 & \lambda \\ 1 & \lambda & 1 \\ \lambda & 1 & 1 \end{vmatrix} = (\lambda + 2) \begin{vmatrix} 1 & 1 & \lambda \\ 1 & \lambda & 1 \\ 1 & 1 & 1 \end{vmatrix} = (\lambda + 2) \begin{vmatrix} 1 & 1 & \lambda \\ 0 & \lambda - 1 & 1 - \lambda \\ 0 & 0 & 1 - \lambda \end{vmatrix}$$

$$= -(\lambda + 2)(\lambda - 1)^2 = 0$$

(1) 当 λ ≠ -2且 λ ≠1时,原方程组有唯一解。

(2)
$$\stackrel{\text{\tiny \pm}}{=} \lambda = -2 \, \text{\tiny \mathbb{H}}, \quad \overline{A} = \left(A \middle| b \right) = \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 1 & -2 & 1 & | & -2 \\ -2 & 1 & 1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & -3 & 3 & | & -6 \\ 0 & 0 & 0 & | & 3 \end{pmatrix}$$

$$R(A) = 2, R(\overline{A}) = 3$$
, 原方程组无解。 ------7 分

(3)
$$\stackrel{\text{def}}{=} \lambda = 1 \text{ pr}, \quad \overline{A} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以导出组的基础解系为 $\overrightarrow{\varepsilon_1} = (-1,1,0)^T$, $\overrightarrow{\varepsilon_2} = (-1,0,1)^T$

原方程组的一个特解 $\vec{\eta} = (1,0,0)^T$,则原方程组的通解为

$$\overrightarrow{X} = c_1 \overrightarrow{\varepsilon_1} + c_2 \overrightarrow{\varepsilon_2} + \overrightarrow{\eta} = c_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad (c_1, c_2)$$
 为任意常数) ----12 分

2、求矩阵
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix}$$
的特征值和特征向量。

解: (1)由题意

$$\begin{vmatrix} -1 - \lambda & 1 & 1 \\ 0 & 3 - \lambda & 0 \\ -4 & 1 & 4 - \lambda \end{vmatrix} = -\lambda(\lambda - 3)^2 = 0,$$

特征值为
$$\lambda_1 = 0, \lambda_2 = \lambda_3 = 3$$
; (6分)

 $\lambda_1 = 0$ 时,

 $(A+0\cdot E)x=0$ 基础解系为 $p_1=(1,0,1)^T$;

属于
$$\lambda = 0$$
的特征向量为 $kp_1 = k(1,0,1)^T$, $k \neq 0$ (9分)

 $\lambda_2 = \lambda_3 = 3$ 时,

3. 已知三阶方阵
$$A = \begin{pmatrix} 2 & 4t & 2 \\ 2t & 1 & 1 \\ 2t+1 & 2 & 2t+1 \end{pmatrix}$$
, 就 t 的值讨论矩阵 A 的秩 $R(A)$

解: 对矩阵 A 进行初等行变换有

$$A = \begin{pmatrix} 2 & 4t & 2 \\ 2t & 1 & 1 \\ 2t+1 & 2 & 2t+1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2t & 1 \\ 2t & 1 & 1 \\ 1 & 1 & 2t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2t \\ 0 & 1-2t & 1-4t^2 \\ 0 & 0 & 2(1-2t)(1+t) \end{pmatrix} ----6$$

五、证明题(共7分)

设 A 为 3 阶 方阵, $\overrightarrow{\alpha_1}$, $\overrightarrow{\alpha_2}$ 为 A 的属于特征值 1,-1 的特征向量,向量 $\overrightarrow{\alpha_3}$ 满足 $A\overrightarrow{\alpha_3} = \overrightarrow{\alpha_1} + \overrightarrow{\alpha_2} + \overrightarrow{\alpha_3}$,证明: $\overrightarrow{\alpha_1}$, $\overrightarrow{\alpha_2}$, $\overrightarrow{\alpha_3}$ 。 线性无关。 证明:

设存在一组数 k_1, k_2, k_3 使得等式 $k_1 \overset{\rightarrow}{\alpha_1} + k_2 \overset{\rightarrow}{\alpha_2} + k_3 \overset{\rightarrow}{\alpha_3} = \overset{\rightarrow}{0} - - - - - (1)$ 成立,

所以
$$A\left(k_1 \overset{\rightarrow}{\alpha_1} + k_2 \overset{\rightarrow}{\alpha_2} + k_3 \overset{\rightarrow}{\alpha_3}\right) = \overset{\rightarrow}{0}$$

又因为 α_1, α_2 为 A 的属于特征值1,—1的特征向量,所以 α_1, α_2 线性无关

联立 (1) (2) 整理得
$$k_3 \overset{\rightarrow}{\alpha_1} + (-2k_2 + k_3) \overset{\rightarrow}{\alpha_2} = \overset{\rightarrow}{0}$$

所以 $k_2=0,k_3=0$,回代(1)式因 $\overrightarrow{\alpha_1}$ 是非零列向量,所以 $k_1=0$

$$\stackrel{\rightarrow}{\text{to}} \stackrel{\rightarrow}{\alpha_1, \alpha_2, \alpha_3}
 \stackrel{\rightarrow}{\text{step}}
 \stackrel{\rightarrow}$$