

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-10, 02-02-2018

Notice:

Doubt clearance session:

Date: 02-02-2018

Time: 17.10 hrs

Venue: Room No 5106

Notice: Assignment Test-01

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI II Semester, 2017-2018

Course No.: CHEM F111 Course Title: General Chemistry

Seating arrangement for Assignment-01 Test

Date: 08-02-2018 Time: 17.30 hrs.

Tutorial Section	Room No	Invigilator
T-1	3249	Dr. Anil Kumar
T-2	3250	Dr. Paritosh Shukla
T-3	3215	Dr. Shamik Chakraborty
T-4	3156	Dr. Inamur R. Laskar
T-5	3253	Dr. Rajeev Sakhuja
T-6	3158	Dr. Madhushree Sarkar
T-7	3247	Dr. Bibhash R. Sarkar
T-8	3201	Dr. Surojeet Pande
T-9	3248	Dr. Subit K. Saha
T-10	3203	Dr. Saumi Ray
T-11	3160	Dr. Indresh Kumar
T-12	3245	Dr. Ajay K. Sah

Syllabus: L-08 to L-12 of Course Hand out

Summary: Lecture - 09

The sensitive volume of the probe: $4\pi r^2 dr$

Probability:

$$|\psi|^2 \times 4\pi r^2 dr = P(r) dr$$

$$P(r) = 4\pi r^2 |\psi|^2$$

For, H-atom 1s orbital:

$$P(r) = \frac{4Z^3}{a_0^3} r^2 e^{-2Zr/a_0}$$

Summary: Lecture - 09

$$\Psi_{2,1,\pm 1}(r,\theta,\varphi) = \frac{1}{\sqrt{64\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0} \sin\theta e^{\pm i\varphi}$$

What is your idea about p-orbitals?

$$\psi_{p_x} = -\frac{1}{2^{1/2}}(p_{+1} - p_{-1}) = r \sin \theta \cos \phi f(r) = xf(r)$$

$$\psi_{p_y} = \frac{1}{2^{1/2}}(p_{+1} + p_{-1}) = r \sin \theta \sin \phi f(r) = yf(r)$$

Summary: Lecture - 09

$$\int \psi_m^* \, \psi_n \, d\tau = \, \delta_{mn}$$

- **Show** that hydrogenlike atomic wave function $\Psi_{2 \ 1 \ 0}$ is normalized and it is orthogonal to $\Psi_{2 \ 0 \ 0}$.
- Show that the PIB wave functions satisfy the

relation:
$$\int_0^a \psi_n^*(x) \ \psi_m(x) dx = 0 \ for \ m \neq n$$

This concept would be used in bonding

Do we know all about electrons?

Sodium Spectrum ([Ne]3s¹):

Double lines at 588. 9950 and 589.5924 nm

Interference pattern formed by the sodium doublet

Can we explain?

- Energy states.
- Orbital angular momentum states.

State of electrons in an atom is not completely defined yet.

Stern Gerlach experiment

Ag atom \rightarrow 47 electrons \rightarrow ns1

Detection screen

beam

Ag atoms

Space quantization

(2l+1) components 2l+1=2 and l =1/2 l is an integer

Experimental Result

Is there any other magnetic moment?

Electron spin

- Sole source of any magnetic moment is due to the intrinsic spin of the electron.
- Experiment provides a way to measure one component of the spin of the electron determined by the direction of the magnetic field.

$$S_Z = \pm \frac{1}{2} \, \hbar$$

- Spin angular momentum quantum number: $s = \frac{1}{2}$
- Magnitude of spin angular momentum:

$$\sqrt{s(s+1)}\,\hbar = \sqrt{3/4}\,\hbar$$

Electron spin

Spin quantum number:

$$m_s = \frac{1}{2} (\alpha \, state) \, or \, -\frac{1}{2} (\beta \, state)$$

Thus, component of electron spin along any axis in space (Z-axis) is

$$S_Z = \pm m_S \hbar$$

The state of the electron in the hydrogenic atom is fully specified by four quantum numbers: n,l, m_l , and m_s

$$\Psi(r,\theta,\varphi,\sigma) \equiv \Psi(r,\theta,\varphi) \alpha(\sigma) \text{ or } \Psi(r,\theta,\varphi) \beta(\sigma)$$

Ground state of H-Atom

$$\Psi_{1,0,0,\frac{1}{2}}(r,\theta,\varphi) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} \alpha$$

$$\Psi_{1,0,0,-\frac{1}{2}}(r,\theta,\varphi) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} \beta$$

The complete one electron wave function Ψ is called a spin orbital

lpha and eta are the spin eigenfunctions and they are orthonormal

$$\int \alpha^* \alpha \ d\sigma = \int \beta^* \beta \ d\sigma = 1 \ and \ \int \alpha^* \beta \ d\sigma = \int \alpha \beta^* d\sigma = 0$$

Are the spin orbitals orthonormal?

Are the spin orbitals eigen functions of the \widehat{H} for H-atom?

Spin is strictly a non-classical concept

Spin of fundamental particles

- All fundamental particles have characteristic spin values.
- Protons and Neutrons are also spin ½ particles like electrons.
- Photons are spin 1 particles.

S. N. Bose National Centre for Basic Sciences Under Department of Science and Technology, Govt. of India

Spectral Transitions

Observation:

- Not all transitions between all available orbitals do occur.
- 2s → 1s does not happen
- 3d → 1s does not happen

Selection rule??

Selection rule – one electron atom

For the one electron atom, the selection rule is just the statement of the conservation of angular momentum, keeping in mind that a photon carries (spin) angular momentum of magnitude corresponding to spin quantum number s=1.

Selection rule: $\Delta l = \pm 1$ and $\Delta m_l = 0, \pm 1$

Spin – one electron: Summary

- Stern-Garlach experiment: Intrinsic spin of electron
- Spin quantum number: $s = \frac{1}{2}$;
- Spin magnetic quantum number: $m_S = \pm \frac{1}{2}$
- Magnitude of spin angular momentum: $\sqrt{s(s+1)}$ ħ
- Z-component of spin angular momentum: $S_Z = \pm \frac{1}{2} \hbar$
- Possible spin states with $s = \frac{1}{2}$ is two (α, β)
- Spin multiplicity: (2s + 1)

nnovate achieve lead

What about other atoms?

The Periodic Table

H H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 А г
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 K r
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Many-Electron Atoms

Let us discuss He atom:

Form of Hamiltonian Operator??

$$\hat{H} = -\frac{\hbar^2}{2m_e} \nabla_1^2 - \frac{\hbar^2}{2m_e} \nabla_2^2 - \frac{2e^2}{4\pi\epsilon_0 r_1} - \frac{2e^2}{4\pi\epsilon_0 r_2} + \left(\frac{e^2}{4\pi\epsilon_0 r_{12}}\right)$$

$$\Rightarrow \widehat{H} = \widehat{H}_1^{(0)} + \widehat{H}_2^{(0)} + \frac{e^2}{4\pi\varepsilon_0 r_{12}} \quad \text{for the i}^{\text{(0)}} \text{ is the H-atom Hamiltonian} \\ \text{for the i}^{\text{th}} \text{ electron}$$

- We can not solve Schrödinger equation exactly.
- We need to adopt approximations.

Orbital approximation – He atom

Start with H-atom like wave function with an effective nuclear charge:

$$\Phi(1,2) = \Psi_1(1) \Psi_2(2) \Rightarrow \Phi_{He,1s^2} = \Psi_{H,1s}(1) \Psi_{H,1s}(2)$$

Interelectronic repulsion is neglected

$$\psi(1,2) = (8/\pi a_0^3)^{1/2} e^{-2r_1/a_0} (8/\pi a_0^3)^{1/2} e^{-2r_2/a_0}$$

Electronic configuration is 1s²

What about Li?

Can all 3 electrons occupy 1s orbital?

Pauli exclusion principle

- No more than two electrons may occupy a given orbital, and if two
 electrons do occupy one orbital, then their spins must be paired.
- The two electrons with paired spins $(\uparrow\downarrow)$ have zero net spin angular momentum.
- This principle forms the basis of the electronic structure of atoms, chemical periodicity, and molecular structure.

Pauli principle

When the labels of any two identical <u>fermions</u> (½ integer spin) are exchanged, the total wave function (including spin) changes sign. (ANTISYMMETRIC under interchange of any two electrons)

Fermions
$$\psi(2,1) = -\psi(1,2)$$

$$\Psi_{1, 0, 0, \frac{1}{2}}(r, \theta, \varphi) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} \alpha$$
Spin part

Spatial part

What would be the form of He-atom wave function?

Antisymmetric wave function

First consider the spatial part of the wave function.

$$\psi(1,2) = \phi(1) \phi(2) \Rightarrow \text{symmetric}$$

Pauli principle: $\psi(1,2) = -\psi(2,1)$ (MUST FOLLOW!)

Thus, spin part must be antisymmetric

Since each electrons has two possible spin states – four possible spin functions:

$$\alpha(1)\alpha(2)$$
, $\beta(1)\beta(2)$, $\alpha(1)\beta(2)$, $\alpha(2)\beta(1)$

Violate the principle of indistinguishability of identical particles in quantum mechanics

Antisymmetric wave function

We can consider normalized linear combination:

$$\frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) \pm \beta(1)\alpha(2) \right]$$

Spin orbitals:

$$\psi(1,2) = \phi(1)\phi(2) \alpha(1)\alpha(2)$$

$$\psi(1,2) = \phi(1)\phi(2) \beta(1)\beta(2)$$

$$\psi(1,2) = 2^{-1/2}\phi(1)\phi(2) \{ \alpha(1)\beta(2) + \beta(1)\alpha(2) \}$$

$$\psi(1,2) = 2^{-1/2}\phi(1)\phi(2) \{ \alpha(1)\beta(2) - \beta(1)\alpha(2) \}$$
 Antisymmetric

Symmetric

Pauli exclusion principle

Approximate wave function for He ground state:

$$\psi(1,2) = 2^{-1/2}\phi(1)\phi(2) \{ \alpha(1)\beta(2) - \beta(1)\alpha(2) \}$$

Spin orbitals

- Two electrons can not occupy the same spin orbital
- No two electrons in an atom can have the same values for all their quantum number: n, l, m_l, m_s

Distinguishability of identical particles in classical & quantum mechanics

Shielding and penetration

The third electron in Li must enter the n = 2 shell, but the 2s or the 2p?

Shielding:

In a many electron atom, each electron is <u>shielded</u> from the nucleus by the others, and to a first approximation, each electron may be thought of as experiencing an <u>effective nuclear charge</u>.

The effective nuclear charge experienced by an electron will be determined by its probability density distribution, and this in turn by its wave function.

Penetration

Order of occupation

- The greater penetration of an 's' electron compared to a 'p' electron of the same shell implies that it experiences a greater effective nuclear charge. In turn, the effective nuclear charge experienced by the 'p' electron will be greater than that for a 'd' electron in the same shell.
- In general therefore, in the same shell of a many-electron atom, the order of energies of the orbitals is $s . The ground electronic configuration of Li is therefore <math>1s^22s^1$, or [He] $2s^1$
- The individual orbitals of a given subshell remain degenerate because they all have the same radial characteristics and so experience the same effective nuclear charge.

Topics for self study

- Aufbau principle
- Hund's rule
- Periodic table
- Effective nuclear charge
- Atomic radius
- Ionization energy
- Electron affinity