

# Sensor Orientation Extended Kalman Filter

Jan SKALOUD

 École polytechnique fédérale de Lausanne

EPFL, spring semester 2024

## Sensor orientation – main topics





This translates into three rough big areas

#### 1. Fundamentals

- · How to characterize sensor noise
- How to transform from the sensed signals to navigation frame?

### 2. Position, velocity, attitude (navigation)

- How to formulate navigation equation in different frames?
- How to resolve them numerically?

#### Sensor fusion

- How to formulate models for sensor fusion?
- How to implement it in optimization and use it for mapping?



You need the navigation quantities and the noise properties



### Cockpit view of SO course's topics

How to reach *integrated* sensor orientation?



# Sensor fusion – agenda

Kalman filter – base (Week 9)

- Intuitive approach
- Discrete KF components, steps, implementation (Lab 5)

### Kalman filter – extension (Week 10)

- Computation of transition and process noise matrices  $oldsymbol{\Phi}_k, \, oldsymbol{\mathbf{Q}}_k$
- Linearized & Extended Kalman filter
- Some other 'motion model' examples

### INS/GPS integration (Week 11)

- Theory of a differential filter
- Practice derivation & implementation (Lab 6)

### Sensor orientation (Week 12)

Direct & integrated orientation of optical sensors



# Numerical evaluation of $\Phi_{t_0,t}$ $\mathbf{Q}_{t_0,t}$

Preamble - only for information (can be "safely" skipped):

- Derivation & proof of :
- 1) Why?

$$\mathbf{F}(t) = \frac{\partial \mathbf{\Phi}(t_0, t)}{\partial t}$$

2) Why?

$$\Phi_{t_0,t} = e^{\mathbf{F}(t-t_0)}$$

Process model is expressed as a linear system of homogenous differential equation (continuous form): (1)

(1) 
$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t)$$

Its general solution is:

(2)

$$\mathbf{x}(t) = \mathbf{\Phi}(t_0, t)\mathbf{x}(t_0)$$

### Relation:

I. Take the derivative of the solution:

$$\frac{\partial \mathbf{x}(t)}{\partial t} = \frac{\partial \mathbf{\Phi}(t_0, t)}{\partial t} \mathbf{x}(t_0)$$

II. Substitute it to Eq. (1) on its <u>left-side</u>, & on the <u>right-side</u> for  $\mathbf{x}(t) \to \text{Eq.}(2)$ :

$$\underbrace{\frac{\partial \mathbf{\Phi}(t_0, t)}{\partial t} \mathbf{x}(t_0)}_{\dot{\mathbf{x}}(t)} = \mathbf{F}(t) \underbrace{\mathbf{\Phi}(t_0, t) \mathbf{x}(t_0)}_{\mathbf{x}(t)}$$

$$\vdots \Longrightarrow \mathbf{F}(t) = \frac{\partial \mathbf{\Phi}(t_0, t)}{\partial t}$$

Notation:  $\Phi(t_0,t) = \Phi_{t_0,t}$ 

Note: in a stationary system this matrix is time invariant!

J, Skaloud, ESO

# (2) Proof $\Phi_{t_0,t} = e^{\mathbf{F}(t-t_0)}$

Taylor expansion for  $\mathbf{x}(t)$ :

$$\mathbf{x}(t) = \mathbf{x}(t_0) + \dot{\mathbf{x}}(t_0)(t - t_0) + \ddot{\mathbf{x}}(t_0)\frac{(t - t_0)^2}{2!} + \ddot{\mathbf{x}}(t_0)\frac{(t - t_0)^3}{3!} + \dots$$

Considering that:  $\dot{\mathbf{x}}(t_0) = \mathbf{F}\mathbf{x}(t_0)$  $\ddot{\mathbf{x}}(t_0) = \mathbf{F}\dot{\mathbf{x}}(t_0) = \mathbf{FF}\mathbf{x}(t_0) = \mathbf{F}^2\mathbf{x}(t_0)$  $\ddot{\mathbf{x}}(t_0) = \mathbf{F}\ddot{\mathbf{x}}(t_0) = \mathbf{F}^3\mathbf{x}(t_0)$ 

Substituting for derivatives in the Taylor expansion above:

$$\mathbf{x}(t) = \mathbf{x}(t_0) + \mathbf{F}\mathbf{x}(t_0)(t - t_0) + \mathbf{F}^2\mathbf{x}(t_0)\frac{(t - t_0)^2}{2!} + \mathbf{F}^3\mathbf{x}(t_0)\frac{(t - t_0)^3}{3!} + \dots$$

$$= \mathbf{x}(t_0) \left( \mathbf{I} + \mathbf{F}(t - t_0) + \mathbf{F}^2\frac{(t - t_0)^2}{2!} + \mathbf{F}^3\frac{(t - t_0)^3}{3!} + \dots \right)$$

$$\vdots \Longrightarrow \left(\mathbf{x}(t) = \underbrace{e^{\mathbf{F}(t-t_0)}}_{\Phi_{t_0,t}} \mathbf{x}(t_0)\right) \qquad \text{Note (for a squared matrix) :} \\ \left[e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \mathbf{A$$

$$e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \frac{1}{2!}\mathbf{A}^2 + \frac{1}{3!}\mathbf{A}^3 + \dots$$



# Numerical evaluation of $\Phi_k$

Step 1: form and auxiliary matrix A

$$\mathbf{A} = \left[ egin{array}{ccccc} -\mathbf{F} & \mathbf{G}\mathbf{W}\mathbf{G}^T \ \mathbf{0} & \mathbf{F}^T \end{array} 
ight] \cdot (t_k - t_{k-1})$$
 are either zeros or variances of the process (white) noise  $\mathbf{Q}$ 

Note 1: on the diagonal of W

Step 2: using Matlab / Python form  $e^{\mathbf{A}}$ , call it **B** 

$$\mathbf{B} = \mathrm{expm}(\mathbf{A}) = \left[ egin{array}{ccc} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{array} 
ight] = \left[ egin{array}{ccc} \dots & \mathbf{\Phi}_k^{-1} \mathbf{Q}_k \\ \mathbf{0} & \mathbf{\Phi_k}^T \end{array} 
ight]$$

Step 3: Obtain  $\Phi_k$ ,  $\mathbf{Q}_k$  from the components of **B**:

$$egin{pmatrix} oldsymbol{\Phi}_k = \left( \mathbf{B}_{22} 
ight)^T \ oldsymbol{\mathbf{Q}}_k = oldsymbol{\Phi}_k \cdot \left( oldsymbol{\Phi}_k^{-1} \mathbf{Q}_k 
ight) = oldsymbol{\Phi}_k \cdot \mathbf{B}_{12} \ \end{pmatrix}$$

Note 2: for const. time interval and invariant F, this operation is needed only once!

### Sensor fusion – agenda

Kalman filter – base (Week 9)

- Intuitive approach
- Discrete KF components, steps, implementation (Lab 5)

### Kalman filter – extension (Week 10)

- Computation of transition and process noise matrix
- Linearized & Extended Kalman filter
- Some other 'motion model' examples

### INS/GPS integration (Week 11)

- Theory of a differential filter
- Practice derivation & implementation (Lab 6)

### Sensor orientation (Week 12)

Direct & integrated orientation of optical sensors

# Discrete Kalman Filter models



# Linearized Kalman Filter (1)

11

, Skaloud, ESO

### "Raison d'être"

• Either the process model and/or measurement model are non-linear functions

| Linear (last time)                                                       | Non-linear (general) deterministic forcing input                                          |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Process $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{w}$ | $\dot{\mathbf{x}} = f\left(\mathbf{x},t,\mathbf{u}_d\right) + \mathbf{u}(t)$ random noise |
| Measurement $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{v}$             | $\mathbf{z} = h\left(\mathbf{x}, t\right) + \mathbf{v}(t)$                                |



# Linearized Kalman Filter (2)

### Approach

 With an approximate\* knowledge of states, we can re-formulate the problem as a "linear in a difference"

$$\mathbf{x}(t) = \mathbf{x}^*(t) + \Delta \mathbf{x}(t)$$
 \* approximate (nominal) state state correction

$$\dot{\mathbf{x}}^*(t) + \Delta \dot{\mathbf{x}}(t) = f(\mathbf{x}^* + \Delta \mathbf{x}, t, \mathbf{u}_d) + \mathbf{u}(t)$$

$$\mathbf{z} = h\left(\mathbf{x}^* + \Delta\mathbf{x}, t\right) + \mathbf{v}(t)$$

### Assumption

Avalibility of x\* - nominal state (e.g. trajectory),
 "close enough" in a sense that the correction is linear!



# Linearized Kalman Filter (3)

### Non-linear process model

$$\dot{\mathbf{x}}^*(t) + \Delta \dot{\mathbf{x}}(t) = f(\mathbf{x}^* + \Delta \mathbf{x}, t, \mathbf{u}_d) + \mathbf{u}(t)$$

$$\dot{\mathbf{x}}^* + \Delta \dot{\mathbf{x}} \approx f(\mathbf{x}^*, t, \mathbf{u}_d) + \left[\frac{\partial f(t)}{\partial \mathbf{x}}\right]_{\mathbf{x} = \mathbf{x}^*} \Delta \mathbf{x} + \mathbf{u}(t)$$

Needed - existence of nominal states

e.g. trajectory "close enough", for example INS:

$$\dot{\mathbf{x}}^* = f(\mathbf{x}^*, t, \mathbf{u}_d) \Longrightarrow \mathbf{x}^*$$

### Linearized filter

Estimates only the corrections of states :

$$\Delta \dot{\mathbf{x}} = \underbrace{\left[\frac{\partial f()}{\partial \mathbf{x}}\right]_{\mathbf{x} = \mathbf{x}^*}^{\Delta \mathbf{x}} + \mathbf{u}(t)}$$

 ${f F}$  - perturbation of nominal differential eq. f ( )



Sensor orientation

# Linearized Kalman Filter (4)

#### Non-linear measurement model

$$\mathbf{z} = h(\mathbf{x}, t) + \mathbf{v}(t)$$

$$\mathbf{z} \approx h(\mathbf{x}^*, t) + \left[\frac{\partial h(t)}{\partial \mathbf{x}}\right] \Delta \mathbf{x} + \mathbf{v}(t)$$

From the real measurement subtract the "predicted":

To obtain a differential measurement

$$\Delta \mathbf{z} = \mathbf{z} - h\left(\mathbf{x}^*, t\right) = \underbrace{\left[\frac{\partial f()}{\partial \mathbf{x}}\right]_{\mathbf{x} = \mathbf{x}^*}^{\Delta \mathbf{x}} + \mathbf{v}(t)}_{\text{used instead of } \mathbf{z} \text{ in the KF}}$$

$$\mathbf{H} - \text{Jacobian}$$

$$\mathbf{Use as } \mathbf{H} \text{ in the KF}$$

In case of non-linear process model, we need

"close enough param.", for example via INS:

$$\dot{\mathbf{x}}^* = f(\mathbf{x}^*, t, \mathbf{u}_d) \Longrightarrow \mathbf{x}^* \approx \mathbf{x}$$



 In the approximation replace the nominal state with the <u>predicted/filtered</u> state:

$$\mathbf{x}^*(t) \longrightarrow \mathbf{\tilde{x}}(t)/\mathbf{\hat{x}}(t)$$

### **Implications**

- 1. Nominal state is predicted via a non-linear equation
- 2. The filter estimates only differential quantities (errors)
- After measurement update the nominal state (1) is corrected with the estimated values (errors/corrections)
- 4. After (3), the differential states in the filter are set to 0! [corrections are considered in prediction via (1)+(3)]



15

### **Extended Kalman Filter**



# EKF in INS/GPS(GNSS) integration

- GPS coordinates
- **– –** Reference trajectory
  - Strapdown inertial navigation
  - Updated coordinates







Important details are in the implementation of (last) Lab 6

Preparation – at home (before next lecture!)

read 4 pages in Lab 6 help (8-11): Lab 6(10) - help (filter setup) on Moodle in Week 13-19 May!

 $\mathbf{x}^*(t) \longrightarrow \tilde{\mathbf{x}}(t)/\hat{\mathbf{x}}(t)$ 



### Sensor fusion – agenda

Kalman filter – base (Week 9)

- Intuitive approach
- Discrete KF components, steps, implementation (Lab 5)

### Kalman filter – extension (Week 10)

- Computation of transition and process noise matrix
- Linearized & Extended Kalman filter
- Some other 'motion model' examples

### INS/GPS integration (Week 11)

- Theory of a differential filter
- Practice derivation & implementation (Lab 6)

### Sensor orientation (Week 12)

Direct & integrated orientation of optical sensors

### **EPFL** Discrete Kalman Filter Process. model – const. velocity (Lab 5)

Transition model,  $\Phi$ 

$$\mathbf{p}_k = \mathbf{p}_{k-1} + \mathbf{v}_k \Delta t$$

$$\mathbf{v}_k = \mathbf{v}_{k-1} + [\mathbf{w}_v]$$

Dynamic model, F

$$\dot{p}_n = v_n$$
 $\dot{p}_e = v_e$   $\downarrow$  zero mean
 $\dot{v}_n = 0 + [w_{\dot{v}_n}]$  white noise
 $\dot{v}_e = 0 + [w_{\dot{v}_e}]$ 

4.  $\Phi = e^{\mathbf{F}\Delta t} = \mathbf{I} + \mathbf{F}\Delta t + \mathbf{F}^2 \frac{\Delta t^2}{2!} + \dots$ 

$$\begin{bmatrix} p_n \\ p_e \\ v_n \\ v_e \end{bmatrix}_k = \begin{bmatrix} 1 & \cdot & \Delta t & \cdot \\ \cdot & 1 & \cdot & \Delta t \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix} \begin{bmatrix} p_n \\ p_e \\ v_n \\ v_e \end{bmatrix}_{k-1}$$

3. Form  $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{w}$ 

$$\begin{bmatrix} p_n \\ p_e \\ v_n \\ v_e \end{bmatrix}_k = \begin{bmatrix} 1 & \cdot & \Delta t & \cdot \\ \cdot & 1 & \cdot & \Delta t \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} \begin{bmatrix} p_n \\ p_e \\ v_n \\ v_e \end{bmatrix}_{k-1} \begin{bmatrix} \dot{p}_n \\ \dot{p}_e \\ \dot{v}_n \\ \dot{v}_e \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} p_n \\ p_e \\ v_n \\ v_e \end{bmatrix} + \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \\ 1 & \cdot \\ \cdot & 1 \end{bmatrix} \begin{bmatrix} w_{\dot{v}_n} \\ w_{\dot{v}_e} \end{bmatrix}$$

### EPFL |

# Lab 5 / KF Process. model — const. velocity demo

# Discrete Kalman Filter Process. model – const. acceleration

Transition  $\Phi$ 

Dynamic F

1

2.

4. 
$$\Phi = e^{\mathbf{F}\Delta t} = \mathbf{I} + \mathbf{F}\Delta t + \mathbf{F}^2 \frac{\Delta t^2}{2!} + \dots$$

3. Form  $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{w}$ 

### Discrete Kalman Filter Process. model – const. acceleration

### Transition $\Phi$

$$\mathbf{\Phi} = \begin{bmatrix} 1 & 0 & \Delta t & 0 & \frac{1}{2}\Delta t^2 & 0 \\ \cdot & 1 & 0 & \Delta t & 0 & \frac{1}{2}\Delta t^2 \\ \cdot & \cdot & 1 & 0 & \Delta t & 0 \\ \cdot & \cdot & \cdot & 1 & 0 & \Delta t \\ \cdot & \cdot & \cdot & \cdot & 1 & 0 \\ \cdot & \cdot & \cdot & \cdot & 1 & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & \cdot \\ \cdot & 1 \end{bmatrix}$$

### Noise shaping G

$$\mathbf{G} = \left[ egin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & 1 \end{array} 
ight]$$

### Continuous noise Q(t)

$$Q(t) = \left[ \begin{array}{cc} q_{\dot{a}}^2 & \cdot \\ \cdot & q_{\dot{a}}^2 \end{array} \right]$$

where  $q_{\dot{a}}$  is noise PSD

Discrete noise  $\mathbf{Q}_k$ 

$$\mathbf{Q}_k = \int \mathbf{\Phi} \mathbf{G} Q(t) \mathbf{G}^T \mathbf{\Phi}^T d\tau$$

Evaluated numerically, see slide #8

# Discrete Kalman Filter Process. model – case Lab 5

Which model is better?



Const. velocity?

Const. acceleration?

**Approaches** 

Try and see?



# Lab 5 / KF

Process. model – const. acceleration demos

# Discrete Kalman Filter Process. model – case Lab 5

#### Which model is better?



### Approaches

- Try and see? not conclusive
- Reason? may not be optimal …
- Why?



# EPFL Disc

# Discrete Kalman Filter Process. model – case Lab 5



### Approaches

- Try and see? not conclusive
- Reason? certainly not optimal!
- How to improve? model the reality!
   uniform circular motion



# Discrete Kalman Filter Process. model – case Lab 5

#### How to model

uniform circular motion?



### Hints

- 1. How circle is defined?
- 2. How uniform motion is defined?
- 3. How to express these conditions in "dynamic" (differential) form?

# Discrete Kalman Filter Process. model – uniform circular motion



### How many states?

- something for the position
- something for the velocity
- not less or more than is needed

 $\mathbf{x} =$ 

Where to add uncertainity?

# Discrete Kalman Filter Process. model – uniform circular motion

### Grouping it all

Uniform circular motion



Process model in a form  $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{w}$ 

$$\mathbf{\Phi} = e^{\mathbf{F}\Delta t} = \mathbf{I} + \mathbf{F}\Delta t + \mathbf{F}^{2\Delta t^{2}} + \dots$$

$$\mathbf{\Phi} = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \Delta t \\ \cdot & \cdot & 1 \end{bmatrix} \qquad Q(t) = \begin{bmatrix} q_{\dot{r}}^2 & \cdot \\ \cdot & q_{\ddot{\psi}}^2 \end{bmatrix}$$

## Lab 5 / KF Process. model – circular motion demo

# Discrete Kalman Filter Process. model – uniform circular motion

Implementation challenges



I. GPS position updates are in cartesian coordinates!

What to do?

after update

### **EPFL**

### Discrete Kalman Filter Process, model – uniform circular motion

Implementation challenges



GPS position updates are in cartesian coordinates!

Solution A - use the non-linear o. model

$$\mathbf{z} = h\left(\mathbf{x}\right) + \mathbf{v} \qquad h(1): \ p_n = r\cos\psi$$

$$\mathbf{z}_k = h\left(\tilde{\mathbf{x}}_k\right) + \underbrace{\begin{bmatrix}\frac{\partial h}{\partial \mathbf{x}}\end{bmatrix}}_{\mathbf{x} = \tilde{\mathbf{x}}_k} \qquad h(2): \ p_e = r\sin\psi$$

$$\mathbf{H} = \begin{bmatrix}\frac{\frac{\partial h(1)}{\partial r} & \frac{\partial h(1)}{\partial \psi} & \frac{\partial h(1)}{\partial \dot{\psi}} \\ \frac{\partial h(2)}{\partial r} & \frac{\partial h(2)}{\partial \psi} & \frac{\partial h(2)}{\partial \dot{\psi}}\end{bmatrix} = \begin{bmatrix}\cos\psi & -r\sin\psi & 0 \\ \sin\psi & r\cos\psi & 0\end{bmatrix}$$

$$\hat{\mathbf{x}}_k = \tilde{\mathbf{x}}_k + \mathbf{K}(\mathbf{z}_k - h(\tilde{\mathbf{x}}_k) - \mathbf{H}\Delta\mathbf{x})$$

### Discrete Kalman Filter Process. model – uniform circular motion

Implementation challenges



GPS position updates are in cartesian coordinates!

Solution B - use "pseudo" observations

$$z_r,\,z_\psi$$
 :  $r=\sqrt{p_n^2+p_e^2}$   $\tan\psi=rac{p_e}{p_n}$  - linear update:

$$\left[ egin{array}{c} z_r \ z_\psi \end{array} 
ight] = \left[ egin{array}{ccc} 1 & \cdot & \cdot \ \cdot & 1 & \cdot \ \cdot & \cdot & \cdot \end{array} 
ight] \left[ egin{array}{c} r \ \psi \ \dot{\psi} \end{array} 
ight]$$

-requires transforming:

$$\begin{bmatrix} \sigma_{p_n}, \, \sigma_{p_e}, \, \sigma_{v_n}, \, \sigma_{v_e} \end{bmatrix} \longrightarrow \begin{bmatrix} \sigma_r, \, \sigma_{\psi}, \, \sigma_{\dot{\psi}} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_r^2 & \sigma_{r\psi} \\ \sigma_{r\psi} & \sigma_{\psi}^2 \end{bmatrix} = \mathbf{M} \begin{bmatrix} \sigma_{p_n}^2 & \cdot \\ \cdot & \sigma_{p_e}^2 \end{bmatrix} \mathbf{M}^T$$

$$\mathbf{M} = \begin{bmatrix} \frac{\partial r()}{\partial p_n} & \frac{\partial r()}{\partial p_e} \\ \frac{\partial \psi()}{\partial p_n} & \frac{\partial \psi()}{\partial p_e} \end{bmatrix} \quad \text{law of covariance propagation }!$$

# Discrete Kalman Filter Process. model – uniform circular motion

Implementation challenges



II. Comparison with previous results

$$\begin{bmatrix} r, \psi, \dot{\psi} \end{bmatrix} \longrightarrow [p_n, p_e, v_n, v_e]$$
$$\begin{bmatrix} \sigma_r, \sigma_{\psi}, \sigma_{\dot{\psi}} \end{bmatrix} \longrightarrow [\sigma_{p_n}, \sigma_{p_e}, \sigma_{v_n}, \sigma_{v_e}]$$

#### How?

- Define equations for transformation of north & east positions & velocities
- Apply the law of covariance propagation on these equations

# Discrete Kalman Filter Process. model – uniform circular motion

Implementation challenges



II. Transforming to cartesian position

$$p_n = r \cos \psi$$

$$p_e = r \sin \psi$$

$$d_{p_n} = \cos \psi d_r - r \sin \psi d_{\psi}$$

$$d_{p_e} = \sin \psi d_r + r \cos \psi d_{\psi}$$

... and velocity

$$\dot{p}_n = \dot{r}\cos\psi - r\dot{\psi}\sin\psi$$

$$\dot{p}_e = \dot{r}\sin\psi + r\dot{\psi}\cos\psi$$

$$d_{\dot{p}_n} = -\dot{\psi}\sin\psi d_r - r\dot{\psi}\cos\psi d_\psi - r\sin\psi d_{\dot{\psi}}$$
  
$$d_{\dot{p}_e} = +\dot{\psi}\cos\psi d_r - r\dot{\psi}\sin\psi d_\psi + r\cos\psi d_{\dot{\psi}}$$

- apply the law of covariance propagation with F

$$\begin{array}{|c|c|c|c|c|} \hline \mathbf{x}_{2}^{m} & \begin{bmatrix} d_{p_{n}} \\ d_{p_{e}} \\ d_{v_{n}} \\ d_{v_{e}} \end{bmatrix} = \begin{bmatrix} \cos \psi & -r \sin \psi & \cdot \\ \sin \psi & r \cos \psi & \cdot \\ -\dot{\psi} \sin \psi & -r\dot{\psi} \cos \psi & -r \sin \psi \\ \dot{\psi} \cos \psi & r\dot{\psi} \sin \psi & r \cos \psi \end{bmatrix} \begin{bmatrix} d_{r} \\ d_{\psi} \\ d_{\dot{\psi}} \end{bmatrix}$$