Dérivées usuelles

Fonction		Dérivée	Dérivabilité
x^n	$n \in \mathbb{Z}$	nx^{n-1}	\mathbb{R}^*
x^{α}	$\alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$	\mathbb{R}_+^*
$e^{\alpha x}$	$\alpha\in\mathbb{C}$	$\alpha e^{\alpha x}$	\mathbb{R}
a^x	$a \in \mathbb{R}_+^*$	$a^x \ln a$	\mathbb{R}
$\ln x $		$\frac{1}{x}$	\mathbb{R}^*
$\log_a x$	$a \in \mathbb{R}_+^* \setminus \{1\}$	$\frac{1}{x \ln a}$	\mathbb{R}^*
$\cos x$		$-\sin x$	\mathbb{R}
$\sin x$		$\cos x$	\mathbb{R}
$\tan x$		$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\mathbb{R} \setminus \left\{ \left. \frac{\pi}{2} + k\pi \right k \in \mathbb{Z} \right\}$
$\cot x$		$-1 - \cot^2 x = \frac{-1}{\sin^2 x}$	$\mathbb{R} \setminus \pi \mathbb{Z}$
$\operatorname{ch} x$		$\operatorname{sh} x$	\mathbb{R}
$\operatorname{sh} x$		$\operatorname{ch} x$	\mathbb{R}
th x		$1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$	\mathbb{R}
$\coth x$		$1 - \coth^2 x = \frac{-1}{\sinh^2 x}$	\mathbb{R}^*
Arcsin x		$\frac{1}{\sqrt{1-x^2}}$]-1;1[
Arccos x		$\frac{-1}{\sqrt{1-x^2}}$] -1;1[
$Arctan \ x$		$\frac{1}{1+x^2}$	${\mathbb R}$
$\operatorname{Argsh}x$		$\frac{1}{\sqrt{x^2+1}}$	\mathbb{R}
${\rm Argch}\ x$		$\frac{1}{\sqrt{x^2 - 1}}$	$]1;+\infty[$
Argth x		$\frac{1}{1-x^2}$] -1;1[