

Facultatea de Matematică și Informatică

Differential Evolution with Adaptive Mutation and Crossover Strategy

for solving Nonlinear Regression problems

Ivanof Elena-Tamara

2nd year bachelor student in Artificial intelligence Faculty of Mathematics and Informatics, UBB Cluj-Napoca

What are regression problems?

Regression

- Fitting a mathematical equation to a set of observed data
- Minimizing the error between the predicted values (according to the function) and the actual observed values

Solving a regression problem

General equation:

$$y = f(\vec{x}; \vec{\beta}) + \epsilon$$

Method of least squares:

$$RSS = \sum_{i=1}^{n} [y_i - f(\vec{x_i}, \hat{\vec{\beta}})]^2$$

Finding optimal parameters = Minimizing RSS

Linear vs Nonlinear regression

Linear regression

- linear relationship between independent and dependent variables
- Analytic solutions
- Example: relationship between house size (x) and price (y)

$$y = \beta_0 + \beta_1 x + \epsilon$$

Nonlinear regression

- nonlinear relationships between independent and dependent variables
- Iterative optimization
- Example: temperature forecasting

$$y(t) = \beta_0 + \beta_1 \sin\left(\frac{2\pi t}{T}\right) + \beta_2 \cos\left(\frac{2\pi t}{T}\right) + \epsilon$$

NIST models for nonlinear regression

- The National Institute of Standards and Technology (NIST) proposed 27 datasets used for validating the accuracy and robustness of a certain minimization algorithm for nonlinear regression.
- It includes both generated and "real-world" nonlinear least squares problems of varying levels of difficulty.

What is Differential Evolution?

Differential Evolution (DE) is a population-based stochastic optimization algorithm introduced by Storn and Price in 1997.

Designed for continuous optimization problems, DE is particularly effective for nonlinear, non-differentiable, and multimodal objective functions.

DE belongs to the family of Genetic Algorithms, and has three main operations: **mutation**, **crossover**, and **selection**.

Differential Evolution - steps

1. Start with a random population of vectors

$$x_i = [x_{ij}], i = 1, 2, 3, ..., NP; j = 1, 2, 3, ..., D$$

2. Mutate vectors

$$xm = x_{r1} + F(x_{r2} - x_{r3})$$

3. Apply crossover

$$xc_j = \begin{cases} xm_j & \text{if}(rand_j \le CR)\text{or}(j = j_{\text{rand}}) \\ x_{i,j} & \text{otherwise} \end{cases}$$

4. Update vectors with better values (if found)

$$f(xc) < f(x_i)$$

Differential Evolution - pseudocode

Differential Evolution - benefits and costs

The DE algorithm is a powerful tool for functional optimization.

It can handle:

- High-dimensional problems
- Multimodal optimization
- Constrained optimization
- Noisy & dynamic optimization

DE also has some disadvantages:

- Not ideal for purely combinatorial problems unless hybridized
- Slower convergence than gradient-based methods for smooth, convex problems

Why improve differential evolution?

The classical DE algorithm has a few **limitations**:

- Fixed mutation and crossover strategies
 - Poor exploration vs. exploitation trade-off
- Static values for scaling factor (F) and crossover rate (CR)
 - Requires manual tuning for each problem.
- Premature Convergence
 - May stagnate in local optima for complex, multimodal functions.

Differential Evolution with Adaptive Mutation and Crossover strategies

Proposed by Watchara Wongsa, Pikul Puphasuk and Jeerayut Wetweerapong from Khon Kaen University, Thailand, in the article:

Differential evolution with adaptive mutation and crossover strategies for nonlinear regression problems

Date published: Mar 6, 2024

The **DEAMC algorithm** improves classical DE in the following ways:

Adaptive Mutation:

- Dynamically switches between Classic Mutation (CM) and Sorting Mutation (SM) based on success rates.

$$xm_i = x_{r_1} + F \cdot (x_{r_2} - x_{r_3})$$

$$xm = x_{r_1}^* + F \cdot (x_{r_2}^* - x_{r_3}^*)$$

2. Dynamic Crossover:

- Alternates between low (CR \in [0, 0.1]) and high (CR \in [0.9, 1]) ranges.

3. Self-Tuning Probabilities:

- Automatically adjusts strategy probabilities (pm1, pc1) using success histories.

Differential **Evolution** with Adaptive **Mutation** and Crossover pseudocode

```
1. Initialize:
  - Population P = \{x_1, x_2, ..., x_NP\} within bounds (NP = 10D)
  - Probabilities: pm1 = pm2 = 0.5 (CM/SM), pc1 = pc2 = 0.5 (low/high CR)
  - Counters: nm1 = nm2 = 0 (CM/SM successes), nc1 = nc2 = 0 (CR successes)
2. While stopping criterion not met (log(fw/fb) < eps or nf >= maxnf):
  3. For each target vector x i in P:
    4. Mutation:
      - Generate F \sim U[0.5, 0.7]
      - With probability pm1:
       V = x r 1 + F * (x r 2 - x r 3)
      - Else:
        Sort \{x_r_1, x_{r_2}, x_{r_3}\} by fitness (ascending) -> \{x^*_1, x^*_2, x^*_{r_3}\}
       V = x*_r_1 + F * (x*_r_2 - x*_r_3)
    5. Crossover:
      - With probability pc1: CR ~ U[0, 0.1] (low range)
        Else: CR \sim U[0.9, 1] (high range)
      - Generate trial vector u via binomial crossover:
       u j = v j if (rand < CR or j = j rand) else x i j
    6. Selection:
      - If f(u) < f(x_i):
        Replace x i with u
       Update success counters (nm1/nm2 or nc1/nc2)
       If f(u) < f(x best): x best = u
7. Adaptation (every 100 successes):
  - Update pm1 = 0.9*pm1 + 0.1*(nm1/(nm1 + nm2))
  - Update pc1 = 0.9*pc1 + 0.1*(nc1/(nc1 + nc2))
  - Reset counters nm1, nm2, nc1, nc2 = 0
8. Return x best
```

Applying DEAMC to nonlinear regression problems

Preliminary results - Lower difficulty models

Preliminary results - Average difficulty models

Preliminary results - Higher difficulty models

Performance analysis

fb - best value obtained from the algorithm

c - certified value for a problem

 λ - number of decimal places that fb matches the certified value

NS - number of successful runs, calculated as the number of runs where the algorithm reaches early convergence and $\lambda > 4$

nf - number of evaluations before the algorithm stops

Performance analysis - Lower difficulty models

Problem	NS	Mean nf	Mean λ
Misra1a	4	1550.0	3.0128800100578625
Chwirut1	10	3420.0	6.060057889293306
Lanczos3	5	58308.0	3.537158354598259
Gauss1	4	26936.0	2.9226720302463045
DanWood	6	1494.0	4.804842280430851

Problem	NS	Mean nf	Mean λ
Misra1a	100	2,892	10.4
Chwirut1	100	5,328	11.0
Lanczos3	100	68,101	10.8
Gauss1	100	28,562	10.7
Danwood	100	2,062	11.0

My results (10 experiments)

Paper results (100 experiments)

Performance analysis - Average difficulty models

Problem	NS	Mean nf	Mean λ
Kirby2	10	10985.0	6.536159829516862
MGH17	10	14820.0	6.243980396984648
Lanczos1	0	29640.0	0.09366064699010357
Misra1c	3	1546.0	2.498285873480339
Roszman1	10	6756.0	6.461049863373413

Problem	NS	Mean nf	Mean λ
Kirby2	100	15,537	11.0
Mgh17	100	18,260	11.0
Lanczos1	0	240,000	0.0
Misra1c	100	3,571	11.0
Roszman1	100	6,734	11.0

My results (10 experiments)

Paper results (100 experiments)

Performance analysis - Higher difficulty models

Problem	NS	Mean nf	Mean λ
Thurber	9	23317.0	6.452229711197411
Rat42	10	4062.0	7.399562335683347
MGH10	10	17709.0	8.189990606719089
Eckerle4	8	3093.0	7.381809585085401
Bennett5	1	73551.0	1.2764681933464765

Problem	NS	nf	λ
Thurber	100	25,751	10.9
Rat42	100	4,002	11.0
Mgh10	100	39,696	11.0
Eckerle4	100	2,995	10.7
Bennett5	100	81,797	11.0

Mean

My results (10 experiments)

Paper results (100 experiments)

Conclusions + Possible adjustments

- The algorithm generally performs well, yielding maximum successful runs for 6 out of 15 experiments.
- The algorithm handles complex data very well, perhaps even better than simple data. This indicates that it is more suitable for complex regression problems.
- Possible adjustments for improving performance include:
 - modifying the rate of adaptation for balancing exploration and exploitation;
 - adjusting the bounds for the initial values of vectors.

References

- R. Storn and K. Price, *Differential Evolution—A simple and efficient heuristic for global optimization over continuous spaces*, Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997, doi: 10.1023/A:1008202821328.
- Wongsa, Watchara & Puphasuk, Pikul & Wetweerapong, Jeerayut. (2024). Differential evolution with adaptive mutation and crossover strategies for nonlinear regression problems. Bulletin of Electrical Engineering and Informatics. 13. 3503-3514. 10.11591/eei.v13i5.6417.
- National Institute of Standards and Technology (NIST). (n.d.). Nonlinear Least Squares Regression. Retrieved May 10, 2025, from https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
- National Institute of Standards and Technology (NIST). (n.d.). Nonlinear Least Squares Regression Background Information. Retrieved May 10, 2025, from https://www.itl.nist.gov/div898/strd/nls/nls_info.shtml
- National Institute of Standards and Technology (NIST). (n.d.). *Statistical Reference Datasets (STRD*). Retrieved May 10, 2025, from https://www.itl.nist.gov/div898/strd/frames.html

Do you have any questions?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>