*a) Consider a point charge q located at position \vec{r}_0 . State the electric field $\vec{E}(\vec{r})$ which is generated by this point charge.
b) Consider now N point charges q_i , each of them located at a discrete position $(i = 1,, N)$, respectively. State the electric field $\vec{E}(\vec{r})$ generated by these N point charges.
*c) What is the fundamental principle the result in b) is based on?
${f Q2}$ (1 point) What is the mathematical relation between electrostatic field $ec E(ec r)$ and the corresponding
electric potential $\Phi(\vec{r})$?

Q1 (3 points)

Q3 (8 points)

A plate capacitor with area A and plate distance 3d consists of three equally-sized regions of thickness d with different permittivities ε_2 , ε_0 , and ε_1 , where $\varepsilon_1 > \varepsilon_2 > \varepsilon_0$. The capacitor is biased with a positive voltage $U_0 > 0$. Stray fields may be neglected.

- *a) Sketch the variation of the magnitude of the displacement field $|\vec{D}(y)|$ and the electrostatic field $|\vec{E}(y)|$ along the y-axis.
 - Use the diagrams given below and consider which of the two fields is continuous at the interfaces of adjacent regions.

b) Sketch the variation of the electric potential $\Phi(y)$ along the y-direction. Use the diagram given below.

*c) Calculate the electrostatic energy $W_{\rm el}$ which is stored in the interior of the plate capacitor.

(Hint: Describe the given configuration by an equivalent circuit of three single plate capacitors.)

Q4 (3 points)

Calculate the total capacitance C_{tot} of the following capacitor circuit:

$$\frac{2C}{3} + \frac{C}{3} + C = 4C$$

Q1 (3 points)

*a)

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r} - \vec{r_0}|^3} (\vec{r} - \vec{r_0})$$

b)

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i}{|\vec{r} - \vec{r_i}|^3} (\vec{r} - \vec{r_i})$$

*c) superposition principle

Q2 (1 point)

$$\vec{E}(\vec{r}) = -\operatorname{grad}\Phi(\vec{r});$$
 or: $\Phi(\vec{r}) = \Phi(\vec{r_0}) - \int_{P_0}^{P} \vec{E}(\vec{r}') d\vec{r}'$

Q3 (8 points)

*a) Das D-Feld is constant; E-Feld: $|\vec{E}| = \frac{1}{\epsilon} |\vec{D}|$.

For the slopes of the single sections the following relation applies: $m_1 < m_3 < m_2$.

*c)

$$\begin{split} W_{\rm el} &= \frac{1}{2} C_{\rm tot} U_0^2 \\ \frac{1}{C_{\rm tot}} &= \frac{1}{C_1} + \frac{1}{C_0} + \frac{1}{C_2} \\ &= \frac{d}{\epsilon_1 A} + \frac{d}{\epsilon_0 A} + \frac{d}{\epsilon_2 A} = \frac{d}{A} \left(\frac{1}{\epsilon_1} + \frac{1}{\epsilon_0} + \frac{1}{\epsilon_2} \right) \\ W_{\rm el} &= \frac{1}{2} \frac{A}{d} \frac{1}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_0} + \frac{1}{\epsilon_2}} U_0^2 \end{split}$$

Q4 (3 points)

$$\frac{1}{C_1} = \frac{1}{2C} + \frac{1}{C} = \frac{3}{2C}$$

$$C_1 = \frac{2}{3}C$$

$$\frac{1}{C_2} = \frac{2}{C} + \frac{1}{C} = \frac{3}{C}$$

$$C_2 = \frac{1}{3}C$$

$$C_{tot} = \frac{2}{3}C + \frac{1}{3}C = 2C$$