

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №3

По курсу: «Моделирование»

Тема: «Марковские цепи»

Студентка ИУ7-75Б Оберган Т.М

Преподаватель Рудаков И.В.

Оглавление

Георетическая часть	3
Пример	
Результаты	
Пример 1	
Пример 2	
Пример 3: случайное заполнение	

Теоретическая часть

Случайный процесс, протекающий в системе S, называется марковским, если он обладает следующим свойством: для каждого момента времени t0 вероятность любого состояния системы в будущем (при t>t0) зависит только от ее состояния в настоящем (при t=t0) и не зависит от того, когда и каким образом система пришла в это состояние. Вероятностью i-го состояния называется вероятность pi(t) того, что в момент t система будет находиться в состоянии Si. Для любого момента t сумма вероятностей всех состояний равна единице.

Для решения поставленной задачи, необходимо составить систему уравнений Колмогорова по следующим принципам: в левой части каждого из уравнений стоит производная вероятности і-го состояния; в правой части — сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние), умноженная на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (і-го состояния).

Пример

Система имеет 3 состояния с матрицей интенсивностей, описанной в табл. 1.

Таблица 1 – матрица интенсивностей

0	λ_{01}	λ_{02}
λ ₁₀	0	λ ₁₂
λ ₂₀	λ ₂₁	0

$$\begin{cases} p'_0 = -(\lambda_{01} + \lambda_{02})p_0 + \lambda_{10}p_1 + \lambda_{20}p_2 \\ p'_1 = -(\lambda_{10} + \lambda_{12})p_1 + \lambda_{01}p_0 + \lambda_{21}p_2 \\ p'_2 = -(\lambda_{20} + \lambda_{21})p_2 + \lambda_{02}p_0 + \lambda_{12}p_1 \end{cases}$$
(1)

Для получения предельных вероятностей, то есть вероятностей в стационарном режиме работы при $t \to \infty$, необходимо приравнять левые части уравнений к нулю. Таким образом получается система линейных уравнений. Для решения полученной системы необходимо добавить условие нормировки (p0+p1+p2=1).

После того, как предельные вероятности будут найдены, необходимо найти время. Для этого необходимо с интервалом Δt находить каждую вероятность в момент времени $\Delta t + t$. Когда найденная вероятность будет равна соответствующей финальной с точностью до заданной погрешности, тогда можно завершить вычисления. На каждом шаге необходимо вычислять приращения для каждой вероятности (как функции):

$$dp_0 = \frac{-(\lambda_{01} + \lambda_{02})p_0 + \lambda_{10}p_1 + \lambda_{20}p_2}{\Delta t}.$$

Начальные значения для dp задаются. Можно взять, например, $\frac{1}{n}$, где n- количество состояний системы.

Результаты

Пример 1

Рис 1 – граф связей и интенсивностей системы примера 1

Предельные вероятности:

р0	p1	p2	р3	p4
0.53933	0.13483	0.08989	0.16854	0.06742

Время стабилизации:

t0	t1	t2	t3	t4
1.935	2.67	0.896	3.707	1.603

Рис 2 – графики вероятностей состояний как функции времени

Рис 3 — графики вероятностей состояний как функции времени, при начальных $\label{eq:ycnobusy} \text{условияx} = 1/5$

Пример 2

Рис 4 – граф связей и интенсивностей системы примера 2

Предельные вероятности:

р0	p1	p2	p3
0.33333	0.22222	0.22222	0.22222

Время стабилизации:

t0	t1	t2	t3
1.855	1.235	1.79	1.179

Рис 5 – графики вероятностей состояний как функции времени Пример 3: случайное заполнение

Рис 6 – граф связей и интенсивностей системы примера 3

Предельные вероятности:

р0	p1	p2	р3	p4	p5
0.19123	0.20632	0.13148	0.12037	0.1459	0.20471

Время стабилизации:

t0	t1	t2	t3	t4	t5
0.643	1.056	0.644	1.141	1.074	0.867

Рис 7 — графики вероятностей состояний как функции времени, при начальных $\mbox{условияx} = 1/6$