Aula 2 Técnicas Digitais

CONCEITOS BÁSICOS

Complexas operações de um computador digital
 = combinações de simples operações aritméticas
 e lógicas:

- Somar bits
- Complementar bits
- Comparar bits
- Mover bits

OPERADORES LÓGICOS

Os OPERADORES LÓGICOS são:

- E (ou AND) uma sentença é verdadeira SE e somente se todos os termos forem verdadeiros.
- OU (ou OR) uma sentença resulta verdadeira se QUALQUER UM dos termos for verdadeiro.
- NÃO (ou NOT) este operador INVERTE um termo.

Os operadores lógicos são representados por:

NOT --> (uma barra horizontal sobre o termo a ser invertido ou negado).

E -----> . (um ponto, como se fosse uma multiplicação)

OU ----> + (o sinal de soma)

TABELA VERDADE

 São tabelas que representam todas as possíveis combinações das variáveis de entrada de uma função, e os seus respectivos valores de saída.

PORTAS LÓGICAS

- Diversos tipos, cada uma com operação ou função lógica bem definida.
- Operação lógica assume somente dois valores: verdadeiro ou falso, ou em binário, 1 ou 0.
- São dispositivos ou circuitos lógicos que operam um ou mais sinais lógicos de entrada para produzir uma (e somente uma) saída, a qual é dependente da função implementada no circuito.

Adição Lógica (OU, OR)

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Componente: porta OU (OR gate)

Multiplicação Lógica (E, AND)

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Componente: porta E (AND gate)

Complementação (NOT)

X	X'
0	1
1	0

Componente: inversor ou porta NOT (inverter)

Portas com mais de uma entrada

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Portas NOR

Portas NAND

		AND	NAND
Α	В	AB	ĀB
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

(c)

PORTA XOR (OU EXCLUSIVO)

A porta XOR compara os bits; ela produz saída 0 quando todos os bits de entrada são iguais e saída 1 quando pelo menos um dos bits de entrada é diferente dos demais.

Porta XOR (2 entradas)

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

- ou exclusivo
- função "não iguais"

Porta XOR (mais de 2 entradas)

Α	В	С	(A ⊕ B ⊕ C)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- função "ímpar": Numero impar de '1s' na entrada

Portas mais complexas (2)

Porta XNOR (2 entradas)

Α	В	(A ⊕ B)'
0	0	1
0	1	0
1	0	0
1	1	1

- não ou exclusivo
- função "iguais"

Porta XNOR (mais de 2 entradas)

Α	В	С	(A ⊕ B ⊕ C)'
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

função "par": Numero par de
'1s' na entrada

Resumo Xor e Xnor

★XOR (Exclusive-OR)

$$x \oplus y$$
 $\bar{x} y + x \bar{y}$

X	y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

★ XNOR (Exclusive-NOR) (Equivalence)

$$x \oplus y$$
 $x \oplus y$
 $x \oplus y$
 $x \oplus y$
 $x \oplus y$
 $x \oplus y$

X	у	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

CIRCUITOS LÓGICOS

- Um computador é constituído de uma infinidade de circuitos lógicos, formados a partir das portas lógicas, que executam as seguintes funções básicas:
 - nealizam operações matemáticas
 - **Occupation** controlam o fluxo dos sinais
 - **armazenam dados**

CIRCUITOS LÓGICOS

- COMBINACIONAL a saída é função dos valores de entrada correntes; esses circuitos não tem capacidade de armazenamento.
- SEQUENCIAL a saída é função dos valores de entrada correntes e dos valores de entrada no instante anterior; é usada para a construção de circuitos de memória (chamados "flip-flops").

Exemplo do uso de uma porta OR em um sistema de alarme

Expressão Booleana

Expressão Booleana

Saida para uma determinada entrada

Escreva a Expressão Booleana para a figura abaixo

Exemplo

EXEMPLOS

Diagrama de tempo -exemplo

Teoremas da Álgebra de Boole

Teoremas com 2 variáveis

9	A + B = B + A	
10	$A \cdot B = B \cdot A$	
11	A + (B + C) = (A+B) + C	
12	A.(B.C) = (A.B).C = A.B.C	
13	$A \cdot (B + C) = A \cdot B + A \cdot C$	
14	$A + A \cdot B = A$	
15	$\mathbf{A} + \overline{A} \cdot \mathbf{B} = \mathbf{A} + \mathbf{B}$	Prove teorema 15 apos Demorgan
16	$A.(\overline{A} + B) = A.B$	
17	$A \cdot (A + B) = A$	
18	$A + B \cdot C = (A + B) \cdot (A + C)$	D 4 21
20	$A \cdot B + A \cdot \overline{B} = A$	Prove teorema 21
21	$(A + B) \cdot (A + \overline{B}) = A$	
. D 14		

Leis De Morgan

$$\overline{(X+Y)} = \overline{X}.\overline{Y}$$

$$\overline{(X.Y)} = \overline{X} + \overline{Y}$$

Circuitos Lógicos Combinacionais

- Forma de Soma de Produto (lógica positiva)
 - Termos AND's conectados por portas OR

$$z = \overline{A}B\overline{C} + AB\overline{C} + B\overline{C}D$$

- Forma de Produto de Somas (lógica negativa)
 - Termos OR's conectados por portas AND

$$y = (A + B + C)(A + \overline{B})$$

Numeração Mintermos

- Associa-se o digito "1" para cada variável não complementada e "0" para cada variável complementada. Cada termo é associado um numero.
 - Cada termo AND é denominado Mintermo(sendo que todas as variáveis da função devem aparecer.)

Exemplos

• 1)
$$f(A,B) = AB + AB$$

• 2)
$$f(A,B) = AB + A$$

• 3)
$$f(A,B,C) = A(\overline{B} + C)$$

• 4)
$$f(A,B,C,D) = (\overline{A} + BC)(B + \overline{C}D)$$

Mintermo

• Expressão a partir das tabelas verdades.

A	В	С	Minterm	Designation
0	0	0	ĀĒĒ	m_0
0	0	1	ĀĒC	m_1
0	1	0	ĀBĒ	m_2
0	1	1	ĀBC	m_3
1	0	0	ΑĒĈ	m_4
1	0	1	Α̈́ВС	m_5
1	1	0	ABC	m ₆
1	1	1	ABC	m_7

Maxtermo

Tabela Verdade com os maxtermos para funções de 3 variáveis.

А	В	С	Maxterm	Designation
0	0	0	A + B + C	M_0
0	0	1	A + B + \(\overline{C}	M_1
0	1	0	$A + \overline{B} + C$	M_2
0	1	1	$A + \overline{B} + \overline{C}$	M_3
1	0	0	$\overline{A} + B + C$	M_4
1	0	1	$\overline{A} + B + \overline{C}$	M_5
1	1	0	$\overline{A} + \overline{B} + C$	M_6
1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M_7

Mintermo/Maxtermo

- Conversão de uma forma para a outra
 - Cada Maxtermo é o complemento do seu correspondente mintermo e vice-versa

A	В	С	Minterm	Designation
0	0	0	ĀĒĒ	m_0
0	0	1	ĀΒ̄C	m_1
0	1	0	ĀВĒ	m ₂
0	1	1	ĀBC	m_3
1	0	0	ΑĒĒ	m_4
1	0	1	ABC	m ₅
1	1	0	ABĈ	m_6
1	1	1	ABC	\mathbf{m}_7

Tabela Verdade com os maxtermos para funções de 3 variáveis.

A	В	С	Maxterm	Designation
0	0	0	A + B + C	M_0
0	0	1	A + B + C	M_1
0	1	0	$A + \overline{B} + C$	M_2
0	1	1	$A + \overline{B} + \overline{C}$	M_3
1	0	0	$\overline{A} + B + C$	M_4
1	0	1	Ā+B+Շ	M_5
1	1	0	$\overline{A} + \overline{B} + C$	M ₆
1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M_7

Exemplo 1.

Prove que
$$\overline{M_1} = m_1$$

Exemplo 02.

Prove que
$$\overline{m_6} = M_6$$
.

Expresse as funções D e B por soma de Mintermos

Tabela Verdade

Inputs			Outputs	
X	Y	Z	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Expresse as funções D e B por soma de Mintermos

Tabela Verdade

Inputs			Outputs	
X	Y	Z	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D = \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XYZ = m_1 + m_2 + m_4 + m_7 = \Sigma(1, 2, 4, 7)$$

$$\mathbf{B} = \overline{\mathbf{X}}\overline{\mathbf{Y}}\mathbf{Z} + \overline{\mathbf{X}}\mathbf{Y}\overline{\mathbf{Z}} + \overline{\mathbf{X}}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z} = \mathbf{m}_1 + \mathbf{m}_2 + \mathbf{m}_3 + \mathbf{m}_7 = \Sigma(1, 2, 3, 7)$$

Expresse as funções D e B por soma de Maxtermos

Tabela Verdade

Inputs			Outputs	
X	Y	Z	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Expresse as funções D e B por soma de Maxtermos

Tabela Verdade

Inputs			Outputs	
X	Y	Z	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\begin{split} \mathbf{D} &= (\mathbf{X} + \mathbf{Y} + \mathbf{Z})(\mathbf{X} + \overline{\mathbf{Y}} + \overline{\mathbf{Z}})(\overline{\mathbf{X}} + \mathbf{Y} + \overline{\mathbf{Z}})(\overline{\mathbf{X}} + \overline{\mathbf{Y}} + \mathbf{Z}) \\ &= (\mathbf{M}_0 \cdot \mathbf{M}_3 \cdot \mathbf{M}_5 \cdot \mathbf{M}_6) = \Pi(0, 3, 5, 6) \end{split}$$

$$\begin{split} \mathbf{B} &= (\mathbf{X} + \mathbf{Y} + Z)(\overline{\mathbf{X}} + \mathbf{Y} + Z)(\overline{\mathbf{X}} + \mathbf{Y} + \overline{Z})(\overline{\mathbf{X}} + \overline{\mathbf{Y}} + Z) \\ &= (\mathbf{M}_0 \cdot \mathbf{M}_4 \cdot \mathbf{M}_5 \cdot \mathbf{M}_6) = \Pi(0, 4, 5, 6) \end{split}$$

Numeração Maxtermos

- Associa-se o digito "0" para cada variável não complementada e "1" para cada variável complementada. Cada termo é associado um numero.
 - Representa a função como um produto de soma, porem cada soma contem todas as variáveis da função. Cada termo OR é denominado Maxtermo(sendo que todas as variáveis da função devem aparecer.)

Exemplos

• 1)
$$f(A,B) = AB + AB$$

$$f(A,B) = AB + A$$

$$f(A,B,C) = A(\overline{B} + C)$$

Simplificação

 Circuitos que implementam a mesma lógica com um menor numero de portas é desejável por questões econômicas e de confiabilidade.

- Formas de simplificação:
- 1) Álgebra Booleana
 - A expressão é colocada sobre a forma de soma de produtos e verifica a simplificação
- 2) Mapas de Karnaugh
- Exercicios

Simplifique

$$y1 = A\overline{B}D + A\overline{B}\overline{D}$$

$$y2 = (\overline{A} + B)(A + B)$$

$$y3 = ACD + \overline{A}BCD$$

$$y4 = \overline{A + B}C$$

$$y5 = \overline{(A + BC).(D + EF)}$$

$$y6 = ABC + A\overline{B}(\overline{A}\overline{C})$$

$$y7 = (\overline{A} + B)(A + B + D)\overline{D}$$