# **Prediction of Covid-19 (Morroco)**

### Database:

We worked on a database, updated at 6 p.m. according to the news from the Minister of Health.

|    | А          | В                   | С                   | D        | E     | F          | G          | Н            | I              |
|----|------------|---------------------|---------------------|----------|-------|------------|------------|--------------|----------------|
| 1  | Jour       | Cas testés négatifs | Cas testés positifs | Rétablis | Morts | Cas testés | % Patients | Cumul testes | Cumul Patients |
| 2  | 07/02/2020 | 9                   | 0                   | 0        | 0     | 9          | 0,00%      | 9            | 0              |
| 3  | 15/02/2020 | 1                   | 0                   | 0        | 0     | 1          | 0,00%      | 10           | 0              |
| 4  | 26/02/2020 | 7                   | 0                   | 0        | 0     | 7          | 0,00%      | 17           | 0              |
| 5  | 02/03/2020 | 11                  | 1                   | 0        | 0     | 12         | 8,33%      | 29           | 1              |
| 6  | 03/03/2020 | 4                   | 0                   | 0        | 0     | 4          | 0,00%      | 33           | 1              |
| 7  | 04/03/2020 | 2                   | 0                   | 0        | 0     | 2          | 0,00%      | 35           | 1              |
| 8  | 05/03/2020 | 6                   | 1                   | 0        | 0     | 7          | 14,29%     | 42           | 2              |
| 9  | 06/03/2020 | 10                  | 0                   | 0        | 0     | 10         | 0,00%      | 52           | 2              |
| 10 | 07/03/2020 | 5                   | 0                   | 0        | 0     | 5          | 0,00%      | 57           | 2              |
| 11 | 09/03/2020 | 5                   | 0                   | 0        | 0     | 5          | 0,00%      | 62           | 2              |
| 12 | 10/03/2020 | 3                   | 1                   | 0        | 0     | 4          | 25,00%     | 66           | 3              |
| 13 | 11/03/2020 | 15                  | 3                   | 0        | 1     | 18         | 16,67%     | 84           | 6              |
| 14 | 12/03/2020 | 13                  | 0                   | 0        | 0     | 13         | 0,00%      | 97           | 6              |
| 15 | 13/03/2020 | 15                  | 2                   | 0        | 0     | 17         | 11,76%     | 114          | 8              |
| 16 | 14/03/2020 | 6                   | 10                  | 0        | 0     | 16         | 62,50%     | 130          | 18             |
| 17 | 15/03/2020 | 23                  | 11                  | 1        | 0     | 34         | 32,35%     | 164          | 29             |
| 18 | 16/03/2020 | 17                  | 8                   | 0        | 0     | 25         | 32,00%     | 189          | 37             |

### **Visualization:**

Confirmation vs Recoverey vs Death





#### **Prediction:**

#### **Simple Linear Regression**

Simple linear regression is an approach for predicting a response using a single feature. It is assumed that the two variables are linearly related. Hence, we try to find a linear function that predicts the response value(Cas testés positifs) as accurately as possible as a function of the feature or independent variable(Cas testés).



As we see in the graph, if we add the tested cases then the positive cases also increases. According to the equation : y = 0.16611057 \* x + 3.96449102

#### **Support Vector Machine:**

An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. In addition to performing linear classification, SVMs can efficiently perform a non-linear classification, implicitly mapping their inputs into high-dimensional feature spaces.

⇒ We use this method here to predict positive test cases for the next 5 days.



From the given data, it looks like the death rate of the virus might reduce by 31st March which might not be a real estimation but If we have more data points then we can predict a bit better.

#### **ARIMA:**

After having executed the command auto\_arima to have the parameters of the model.

| Out[31]: | ARIMA  | Model   | Res  | ults   |        |      |       |           |          |         |     |
|----------|--------|---------|------|--------|--------|------|-------|-----------|----------|---------|-----|
|          | Dep. \ | /ariabl | e:   |        |        | D2   | .y N  | o. Obse   | rvation: | s:      | 29  |
|          |        | Mode    | el:  | AF     | RIMA(O | , 2, | 4)    | Log L     | ikelihoo | od -95. | 609 |
|          |        | Metho   | d:   |        | С      | ss-m | le S. | D. of inc | novation | ns 5.   | 576 |
|          |        | Dat     | e: ' | Tue, 3 | 31 Ma  | 202  | 20    |           | A        | IC 203. | 217 |
|          |        | Tim     | e:   |        | 15     | 08:5 | 54    |           | В        | IC 211. | 421 |
|          |        | Sampl   | e:   |        |        |      | 2     |           | HQ       | IC 205. | 787 |
|          |        |         |      |        |        |      |       |           |          |         |     |
|          |        |         |      | coef   | std e  | гг   | z     | P≻ z      | [0.025   | 0.975]  |     |
|          |        | const   | 2.5  | 120    | 1.48   | 3 .  | 1.694 | 0.090     | -0.394   | 5.418   |     |
|          | ma.L1  | .D2.y   | -0.8 | 384    | na     | ın   | nan   | nan       | nan      | nan     |     |
|          | ma.L2  | .D2.y   | 1.1  | 1977   | na     | ın   | nan   | nan       | nan      | nan     |     |
|          | ma.L3  | .D2.y   | -0.8 | 384    | na     | ın   | nan   | nan       | nan      | nan     |     |
|          | ma.L4  | .D2.y   | 1.0  | 0000   | na     | ın   | nan   | nan       | nan      | nan     |     |
|          | D t .  |         |      |        |        |      |       |           |          |         |     |
|          | Roots  |         |      |        |        |      |       |           |          |         |     |
|          |        |         |      | Imag   | inary  | Мо   | dulus | Frequ     | ency     |         |     |
|          | MA.1   | -0.28   | 49   | -0.9   | 9586j  | 1    | .0000 | -0.2      | 2960     |         |     |
|          | MA.2   | -0.28   | 49   | +0.9   | 9586j  | 1    | .0000 | 0.2       | 2960     |         |     |
|          | ма.з   | 0.70    | 41   | -0.7   | ′101j  | 1    | .0000 | -0.1      | 1257     |         |     |
|          | MA.4   | 0.70    | 41   | +0.7   | 101j   | 1    | .0000 | 0.1       | 1257     |         |     |

⇒ The results show that the cumulative total for March 31st would be 641, which means an addition of 84 cases tested positive today

```
Entrée [33]:
                   forcast = fit model.forecast(steps=7)
                   pred_y = forcast[0].tolist()
                   pd.DataFrame(pred_y)
    Out[33]:
                           0
               0
                   641.979765
                   727.653330
               1
                   805.367129
               2
               3
                   892.194288
                   981.533433
                 1073.384562
                 1167.747677
```

#### LSTM:

LSTMs can be used to model problems in forecasting univariate time series.

These are problems composed of a single series of observations and a model is needed to learn from the series of past observations in order to predict the next value in the sequence.

And here, we are going to try to Predict the cumulation of positive cases in Morocco.

```
Entrée [44]:
                scaler = MinMaxScaler()
                scaler.fit(train_data)
                scaled train data = scaler.transform(train data)
                scaled_test_data = scaler.transform(test_data)
                n_input =5
                n_features =1
                generator = TimeseriesGenerator(scaled_train_data,scaled_train_data, length=n_input, batch_size=1)
             10 | lstm model = Sequential()
                lstm_model.add(LSTM(units
                                         = 50, return_sequences = True, input_shape = (n_input, n_features)))
               lstm_model.add(Dropout(0.2))
                lstm_model.add(LSTM(units
                                         50, return_sequences = True))
             14 | lstm_model.add(Dropout(0.2))
               lstm model.add(LSTM(units = 50))
            16 lstm_model.add(Dropout(0.2))
               lstm_model.add(Dense(units = 1))
lstm_model.compile(optimizer = 'adam', loss = 'mean_squared_error')
             19  lstm_model.fit_generator( generator,epochs = 30)
           Epoch 1/30
           16/16 [=========================== ] - 6s 379ms/step - loss: 0.1401
           Epoch 2/30
           16/16 [===:
                                ==========] - 0s 18ms/step - loss: 0.0730
           Epoch 3/30
           16/16 [=====
                          ========= l - 0s 19ms/step - loss: 0.0663
           Epoch 4/30
           16/16 [====
                               Epoch 5/30
           16/16 [====
                                 =========] - ETA: 0s - loss: 0.048 - 0s 19ms/step - loss: 0.0431
           Epoch 6/30
           16/16 [===:
Epoch 7/30
                                  ========= 1 - 0s 19ms/step - loss: 0.0109
           16/16 [===:
                                Epoch 8/30
           16/16 [===
                                   ========] - 0s 18ms/step - loss: 0.0032
           Epoch 9/30
           16/16 [====
                               Epoch 10/30
```

The photo below gives us the predictions of the 4 days that follow for example March 31, 2020, the cumulative number of positive cases will be 302. Which is not fair because of the number of observations.

```
Entrée [48]: 1 prediction = pd.DataFrame(scaler.inverse_transform(lstm_predictions_scaled))

Out[48]: 0
0 247.182697
1 301.829502
2 364.602821
3 428.321316
4 493.388039
```

#### **Prophet Algorithm:**

What is Prophet? Prophet is a facebooks' open source time series prediction. Prophet decomposes time series into trend, seasonality and holiday. It has intuitive hyper parameters which are easy to tune.

For this method we proceed as follows:

- Prediction of positive test cases
- Prediction of the dead
- Predicted recoveries

This automatic library gives us the following results for March 31:

Positive cases: 35The restored: 1The dead: 3

For the results it is as follows, we will show the prediction of the positive tested cases .



## Results:

|                | SLR    | SVM | ARIMA | LSTM | Prophet |
|----------------|--------|-----|-------|------|---------|
| Positive cases | Y=ax+b | -   | 84    | -    | 35      |
| recoveries     |        | -   | 2     | -    | 1       |
| dead           |        | -   | 3     | -    | 3       |

## **Conculsion:**

We will update the data in the database at 6 p.m. as usual and we will test our predictions.