Extra Exercises for Derivations/Proofs

(a)	1. <i>p</i>	$\vdash q$	premise
	2. <i>p</i>	$\vdash \ q \wedge r$	1,\lambda
(b)	1. $p \wedge p$	$\vdash r$	premise
	2. <i>p</i>	$\vdash r$	1,^E
(c)	1. $p \wedge p$	$\vdash r$	premise
	2. <i>p</i>	⊢ <i>r</i>	1
(d)	1. Γ	⊢ e∨t	premise
(u)	2. Γ	$\vdash s$	1,∨E
(e)	1. <i>s</i>	$\vdash p \supset q$	premise
	2. $s \lor t$	$\vdash p \supset q$	1,∨I

(t)	1. Γ, p	$\vdash q$	premise
	2. Δ, p	$\vdash r$	premise
	3. Γ, Δ	$\vdash \neg p$	
(g)	1. Γ, p	$\vdash q$	premise
	2. $\Delta, \neg p$	$\vdash q$	premise
	3. Γ, Δ	$\vdash \neg q$	
(h)	1. Δ	$\vdash n \supset a$	premise
(11)	2. Δ, p		
	Δ . Δ , p	$\vdash q$	םכ,ו
(i)	1. Δ	$\vdash p \supset q$	premise
	2. Γ	$\vdash q$	premise
	3. Δ, Γ	$\vdash p$	⊃E
(j)	1. Δ, s	$\vdash t$	premise
	2. Δ	$\vdash t \supset s$	•

2. Here is a proof of Excluded Middle that's different from the one given in the readings. Add any missing datums:

1	$\vdash p \land \neg p$
2	$\vdash p \qquad \dots \dots$
3	$\vdash \neg p$
4	$\vdash \neg (p \land \neg p)$
5	$\vdash \neg (p \lor \neg p)$
6	$\vdash p$
7	$\vdash p \lor \neg p \qquad \qquad \dots \dots$
8	$\vdash \neg (p \lor \neg p)$ 5
9	$\vdash \neg p \qquad \dots \dots$
10	$\vdash \neg p$
11	$\vdash p \lor \neg p \qquad \qquad \dots 10, \lor \mathbf{I}$
12	$\vdash \neg (p \lor \neg p)$ 5
13	$\vdash \neg \neg p \qquad \dots \dots 11,12,\neg \mathbf{I}$
14	$\vdash p$ 13,¬E
15	$\vdash p \land \neg p \qquad \qquad \dots \qquad \qquad 9,14, \land \mathbf{I}$
16	$\vdash \neg (p \land \neg p)$ 4
17	$\vdash \neg \neg (p \lor \neg p)$
18	$\vdash p \lor \neg p$ 17, $\neg E$

3. Add missing annotations:

1.	Γ	$\vdash \ P \lor Q$	premise
2.	Δ	$\vdash \ P \supset R$	premise
3.	Θ	$\vdash \ Q \supset S$	premise
4.	P	$\vdash P$	
5.	Δ, P	$\vdash R$	
6.	Δ, P	$\vdash \ R \lor S$	<u> </u>
7.	Q	$\vdash Q$	
8.	Θ, Q	$\vdash S$	
9.	Θ, Q	$\vdash \ R \lor S$	<u> </u>
10.	Γ, Δ, Θ	$\vdash \ R \lor S$	·····

4. Fill in the missing items.

1.	Γ	$\vdash P \lor (Q \lor R)$ premise
2.	P	$\vdash P$
3.		⊢
4.	R	$\vdash (P \lor Q) \lor R$
5.		⊢
6.		⊢
7.	Q	⊢
8.		⊢
9.	$Q\vee R$	$\vdash \ Q \lor R \qquad \qquad$
10.		$\vdash (P \lor Q) \lor R$
11.		⊢
12.	Γ	$\vdash (P \lor Q) \lor R$

5. The following contains one illegal move. Where is it?

1. Γ	$\vdash W \lor S \qquad \qquad \dots \\ \text{premise}$
2. Δ	$\vdash \neg W$ premise
3. S	$\vdash S$
4. $S, \neg W$	⊢ <i>S</i> 3
5. S	$\vdash \neg W \supset S$
6. Δ, S	⊢ <i>S</i>
7. <i>W</i>	$\vdash W$
8. ¬ <i>W</i>	$\vdash \neg W$
9. $W, \neg S$	$\vdash W$
10. $\neg W, \neg S$	⊢ ¬W8
11. $W, \neg W$	$\vdash \neg \neg S$ 9,10, $\neg I$
12. W	$\vdash \neg W \supset \neg \neg S$
13. W	$\vdash \neg W \supset S$
14. Δ, W	⊢ <i>S</i> 2,13,⊃E
15. Γ, Δ	$\vdash S$

6. Fill in the missing items.

1. Γ	$\vdash W \lor (S \supset \neg T)$	premise
2. Δ	$\vdash \neg W$	premise
3	⊢ <u> </u>	A
4	⊢ <u> </u>	2
5	⊢ <u> </u>	3
6	⊢ <u> </u>	4,5,¬I
7	⊢ <u> </u>	6,¬E
8	⊢ <u> </u>	A
9. Γ, Δ	$\vdash S \supset \neg T$	

7.	Here is yet another	proof of Excluded Middle.	Fill in a	ny missing items
----	---------------------	---------------------------	-----------	------------------

1. $\neg(p \lor \neg p)$	$\vdash \neg (p \lor \neg p)$
2. ¬ <i>p</i>	⊢ ¬p
3	⊢2,∨I
4	⊢1
5	⊢ 3,4,¬I
6. <i>p</i>	⊢ <i>p</i>
7	⊢6,∨I
8	⊢1
9	⊢
10	⊢
11.	$\vdash p \lor \neg p$

- 8. Prove the following sequents (keep in mind what it means to prove a sequent). Each of these require only three lines:
 - (a) $p, q \vdash p \lor q$
 - (b) $\neg p, q \vdash p \lor q$
 - (c) $p, \neg q \vdash p \lor q$
 -

9. Fill in the missing items of the following proof of $\neg p, \neg q \vdash \neg (p \lor q)$:

$\vdash \neg p$. A
$\vdash \neg q$. A
$\vdash p \lor q$. A
⊢ <i>p</i>	. A
<u> </u>	1
+ <u> </u>	4
$\vdash \neg (p \lor q)$	ó,¬I
⊢ <i>q</i>	A
+ <u> </u>	8
+ <u> </u>	2
$\vdash \neg (p \lor q)$ 9,10),¬I
$\vdash \neg (p \lor q)$	
$\vdash \neg (p \lor q)$	•

10.	Prove Implication: $\vdash (p \supset q) \supset (\neg p \lor q)$. Hint: you can adapt one of the derivations we have done earlier in our exercises.

11.	Prove Contraposition. Hint: you can adapt one of the derivations in the earlier exercises.

12.	Derive from $\Gamma \vdash \neg(\neg P \lor \neg Q)$ to $\Gamma \vdash P \land Q$. Hint: you can adapt one of our earlier exercises.

13.	Prove $\vdash \neg(p \land q) \supset (\neg p \lor \neg q)$. Hint: the overall proof is a proof by contradiction (assume the negation of the consequent of the conditional), and the previous question shows how to do most of the needed work.

14.	Construct a derivation from $\Gamma \vdash P \lor Q$ and $\Delta \vdash Q \supset R$ to $\Gamma, \Delta \vdash P \lor R$. (Here is an example of this in plain English: Joe is eating Chinese place or Italian. If he is eating Italian, he is eating eggplant parmigiana. So Joe is eating Chinese or he is eating eggplant parmigiana.) Hint: $\lor E$ is your friend.

15.	Prove Double Negation Introduction. Hint: use ¬I.
16.	In a single proof, prove $p, q \vdash p \supset q$ and $\neg p, q \vdash p \supset q$ (recall that a proof proves each sequent; apart from Assumption Introduction, you only need \supset I and sequent rewrites).
17.	Prove $p, \neg q \vdash \neg (p \supset q)$. Hint: assume $p \supset q, p$, and $\neg q$.

٥.	Prove $\Gamma \vdash \neg I$										to
9.	Derive	from	$p, q \vdash$	r to	⊢ (<i>p</i>	∧ <i>q</i>)	⊃ <i>r</i> .	 	 	 	
).	Derive	from	$p, q \vdash$	r to	⊢ (<i>p</i>	∧ <i>q</i>)	> r.	 	 	 	
).	Derive	from	$p,q \vdash$	<i>r</i> to	⊢ (<i>p</i>			 	 	 	
Э.								 	 	 	
Э.								 	 	 	
Э.								 	 	 	
Э.								 	 	 	
Э.								 	 	 	
9.								 	 	 	