Vježbe 1: Uvod u kvantitativnu ekologiju i programski jezik R

1.1 Uvod

Ove vježbe osmišljene su za studente koji prvi put koriste programski jezik R. Ne očekujemo nikakvo prethodno programersko iskustvo. Vježbe su organizirane kronološki – svaka vježba gradi na prethodnoj, pa je važno da ih radite redom.

Kako koristiti ove vježbe

- 1. **Pročitajte pažljivo objašnjenja** ne preskaćite tekst
- 2. Pišite kod vlastoručno nemojte samo kopirati-zalijepiti
- 3. Eksperimentirajte promijenite brojeve, isprobajte nove stvari
- 4. Ako nešto ne radi pročitajte poruku o grešci, provjerite tipfeler
- 5. Koristite znak # za komentare objašnjavajte sami sebi što radite

Što trebate prije početka

- Instaliran R (https://www.r-project.org/)
- Instaliran RStudio (https://posit.co/downloads/)
- Kreiran projektni direktorij (prema uputama u poglavlju)

1.2 Vježba 1: Prvi koraci u R-u

1.2.1 Cilj vježbe

Upoznati se s osnovnim konceptima: varijable, tipovi podataka, i kako R evaluira izraze.

1.2.2 Teorijska podloga

R možete koristiti kao kalkulator, ali njegova prava snaga je u **spremanju vrijednosti u varijable**. Varijabla je kao kutija u koju stavljamo vrijednost i dajemo joj ime kako bismo tu vrijednost mogli kasnije koristiti.

Operatori dodjele

U R-u postoje dva glavna načina dodjele vrijednosti varijabli:

- <- (preporučeno u R zajednici)
- = (također funkcionira)

Primjer:

Osnovni tipovi podataka

Tip	Primjer	Opis
numeric	42, 3.14	Brojevi
character	"hrast", "Risnjak"	Tekst (u navodnicima)
logical	TRUE, FALSE	Logičke vrijednosti
integer	42L	Cijeli broj (rijetko potreban)

Tablica 1.1: Osnovni tipovi podataka u R-u

1.2.3 Zadaci

Zadatak 1.1: Jednostavne matematičke operacije

Otvorite RStudio i u **Console**-u (donji lijevi panel) upišite sljedeće izraze, pritiskom Enter nakon svakog. R će odmah izračunati i prikazati rezultat.

```
# Zbrajanje
    5 + 3
3
    # Oduzimanje
4
     10 - 7
     # Množenje
    4 * 6
9
     # Dijeljenje
     20 / 4
11
    # Potenciranje
    2^3
14
     # Ostatak pri dijeljenju (modulo)
16
     17 %% 5
17
     # Cjelobrojno dijeljenje
     17 %/% 5
20
```

Pitanje za razmišljanje: Što vraća 17 %% 5? Zašto bi ova operacija mogla biti korisna?

Zadatak 1.2: Stvaranje varijabli

Sada ćemo spremiti vrijednosti u varijable.

```
# Broj vrsta na lokalitetu 1
broj_vrsta_lokalitet1 <- 45

# Broj vrsta na lokalitetu 2
broj_vrsta_lokalitet2 <- 38

# Izračunajte ukupan broj vrsta
ukupno_vrsta <- broj_vrsta_lokalitet1 + broj_vrsta_lokalitet2

# Prikažite rezultat
ukupno_vrsta
# Provjerite što je u radnom okruženju
```

```
14 ls()
```

Napomena: Funkcija ls() prikazuje sve varijable koje ste stvorili. Također ih možete vidjeti u Environment panelu (gornji desni panel u RStudio).

Zadatak 1.3: Rad s različitim tipovima podataka

```
# Numerički podaci
    temperatura <- 22.5
2
    vlaznost <- 68
    # Tekstualni podaci (character)
    vrsta <- "Canis lupus"
6
    lokalitet <- "Nacionalni park Risnjak"
7
    # Logički podaci (logical)
9
    zatvoreno_podrucje <- TRUE
10
    invazivna_vrsta <- FALSE
11
12
    # Provjerite tipove podataka
    class(temperatura)
14
    class(vrsta)
    class(zatvoreno_podrucje)
16
    # Prikažite sve varijable
18
    ls()
19
20
    # Prikažite vrijednosti
21
    temperatura
22
    vrsta
23
    zatvoreno_podrucje
```

Važno: Imena varijabli u R-u su *case-sensitive*, što znači da Temperatura i temperatura su različite varijable!

Zadatak 1.4: Pravila imenovanja varijabli

```
# DOBRI primjeri imena:
    broj_jedinki <- 150
2
    brojJedinki <- 150
                             # camelCase stil
    broj.jedinki <- 150
                            # točka je dozvoljena
    gustoca_m2 <- 12.5</pre>
    # LOŠI primjeri (neće raditi ili nisu preporučeni):
7
    # 1broj <- 100
                            # ne može početi brojem
    \# broj-jedinki < -50
                            # crtice su zabranjene
9
    # broj jedinki <- 30
                             # razmaci su zabranjeni
10
    # TRUE <- 10
                             # ne možete prepisati rezervirane rije
11
       či
12
    # Pokušajte sami:
    # Stvorite varijablu za prosječnu duljinu tijela (u cm)
    prosjecna_duljina_cm <- 85.3
16
    # Stvorite varijablu za ime istraživača
17
    istrazivac <- "Marko Horvat"
18
19
```

```
20 # Stvorite varijablu za broj opažanja
21 broj_opazanja <- 247
```

Zadatak 1.5: Jednostavni ekološki izračuni

```
# Podatci sa terena
    povrsina_hektara <-
    broj_stabala_hrasta <- 156
    broj_stabala_bukve <- 203
    # Izračunajte gustoću stabala po hektaru
    ukupno_stabala <- broj_stabala_hrasta + broj_stabala_bukve
    gustoca_stabala_ha <- ukupno_stabala / povrsina_hektara
    # Prikažite rezultat
    gustoca_stabala_ha
    # Izračunajte postotak hrasta u sastojini
    postotak_hrasta <- (broj_stabala_hrasta / ukupno_stabala) *</pre>
14
       100
    postotak_hrasta
    # Zaokružite na 2 decimale
17
    round(postotak_hrasta, 2)
```

Za razmišljanje: Koliko stabala ima na svakom hektaru? Koji je omjer hrasta i bukve?

1.2.4 Provjera razumijevanja

Bez gledanja u rješenja, pokušajte:

- 1. Stvoriti varijable s brojem opaženih jelena (12), divljih svinja (8) i srna (15)
- 2. Izračunati ukupan broj opaženih životinja
- 3. Izračunati postotak jelena u ukupnom uzorku
- 4. Stvoriti varijablu tekstualnog tipa s imenom parka gdje je provedeno opažanje
- 5. Stvoriti logičku varijablu koja označava je li bilo kiše tijekom opažanja

1.2.5 Česte greške i njihova rješenja

Greška	\mathbf{Uzrok}	Rješenje
Error: object 'x' not	Varijabla nije definirana ili ima	Provjerite pravopis
found	tipfelr	
Error: unexpected	Zaboravljen operator ili navod-	Provjerite sintaksu
symbol	nick	
+ u novom redu konzole	R čeka nastavak naredbe	Pritisnite ESC i počnite
		iznova

Tablica 1.2: Najčešće greške početnika

1.3 Vježba 2: Vektori – temelj R-a

1.3.1 Cilj vježbe

Naučiti raditi s vektorima – osnovnom strukturom podataka u R-u koja omogućava rad s više vrijednosti istovremeno.

1.3.2 Teorijska podloga

Vektor je slijed vrijednosti istog tipa. Možete ga zamisliti kao niz kutija postavljenih jednu za drugom, gdje svaka kutija sadrži vrijednost.

Zašto su vektori važni?

U ekologiji rijetko radimo s jednom vrijednošću. Obično imamo:

- Mjerenja s više lokacija
- Opažanja kroz više vremenskih točaka
- Brojeve jedinki različitih vrsta
- Okolišne varijable s različitih mjernih postaja

Vektori omogućavaju rad sa svim tim podacima odjednom!

Stvaranje vektora

Koristimo funkciju c() (od "combine" ili "concatenate"):

```
temperature <- c(18, 22, 19, 24, 21)
```

1.3.3 Zadaci

Zadatak 2.1: Stvaranje i pregled vektora

```
# Brojnosti ptica na 5 lokacija
    brojnost_sjenice <- c(12, 8, 15, 10, 14)
2
    # Pogledajte vektor
    brojnost_sjenice
5
    # Provjerite duljinu vektora
    length(brojnost_sjenice)
    # Provjerite tip podataka
10
    class(brojnost_sjenice)
11
12
    # Struktura objekta
    str(brojnost_sjenice)
14
    # Osnovne statistike
    summary(brojnost_sjenice)
```

Zadatak 2.2: Operacije na vektorima

Jedna od najmoćnijih osobina R-a je **vektorizacija** – operacije se primjenjuju na sve elemente odjednom.

```
# Temperature u Celzijusima
temp_C <- c(15, 18, 22, 19, 16)

# Pretvorite u Fahrenheite
temp_F <- (temp_C * 9/5) + 32
temp_F</pre>
```

```
7
    # Dodajte konstantu svim vrijednostima
8
    temp_C_plus5 <- temp_C + 5
9
    temp_C_plus5
10
    # Brojnosti vrapčeva na istim lokacijama
    brojnost_vrapac <- c(25, 30, 28, 22, 26)
13
14
    # Izračunajte ukupne brojnosti
    ukupno_ptica <- brojnost_sjenice + brojnost_vrapac
    ukupno_ptica
17
18
    # Izračunajte omjer sjenica i vrapčeva
19
    omjer <- brojnost_sjenice / brojnost_vrapac</pre>
20
    omjer
22
    # Zaokružite na 2 decimale
    round(omjer, 2)
24
```

Zadatak 2.3: Indeksiranje vektora

Indeksiranje omogućava pristup određenim elementima vektora.

```
# Kreirajte vektor s pH vrijednostima tla
    pH_tla <- c(6.5, 7.2, 5.8, 6.9, 7.5, 6.1,
2
3
    # Prvi element
    pH_tla[1]
6
    # Treći element
    pH_tla[3]
8
9
    # Zadnji element (dva načina)
    pH_tla[7]
11
    pH_tla[length(pH_tla)]
12
    # Više elemenata odjednom
    pH_tla[c(1, 3, 5)]
16
    # Raspon elemenata
17
    pH_tla[2:5]
18
    # Svi elementi osim prvog
20
    pH_tla[-1]
21
22
    # Svi elementi osim prvog i zadnjeg
23
    pH_tla[-c(1, 7)]
24
25
    # Elementi koji zadovoljavaju uvjet
    pH_tla[pH_tla > 7]
                           # svi elementi veći od 7
27
    pH_tla[pH_tla < 6]</pre>
                           # svi elementi manji od 6
```

Važno: R koristi 1-bazirano indeksiranje (za razliku od Python-a koji koristi 0-bazirano).

Zadatak 2.4: Statističke funkcije

```
# Težine ženki jelena (kg)
    tezina_jelena <- c(85, 92, 88, 78, 95, 87, 91, 84)
2
3
    # Osnovne statističke mjere
4
    mean(tezina_jelena)
                                # aritmetička sredina
5
    median(tezina_jelena)
                                # medijan
    sd(tezina_jelena)
                                # standardna devijacija
    var(tezina_jelena)
                                # varijanca
                                # minimum
    min(tezina_jelena)
10
    max(tezina_jelena)
                                # maksimum
    range(tezina_jelena)
                                # raspon (min i max)
11
    quantile(tezina_jelena)
                                # kvartili
    # IQR - interkvartilni raspon
14
    IQR(tezina_jelena)
16
    # Suma
17
    sum(tezina_jelena)
19
    # Broj elemenata
    length(tezina_jelena)
21
    # Provjerite ima li nedostajućih vrijednosti
    any(is.na(tezina_jelena))
```

Zadatak 2.5: Rad s nedostajućim vrijednostima

U ekologiji često imamo nepotpune podatke. R označava nedostajuće vrijednosti s NA.

```
# Brojnosti organizama, s nekim nedostajućim podacima
    brojnost \leftarrow c(12, 8, NA, 15, 10, NA, 14, 9)
2
3
    # Pokušajte izračunati sredinu
    mean(brojnost)
                                # Rezultat: NA
5
    # Ispravno: ignorirajte NA vrijednosti
    mean(brojnost, na.rm = TRUE)
    sum(brojnost, na.rm = TRUE)
    sd(brojnost, na.rm = TRUE)
10
11
    # Provjerite koji su elementi NA
    is.na(brojnost)
13
14
    # Broj NA vrijednosti
    sum(is.na(brojnost))
17
    # Elementi koji NISU NA
18
    brojnost[!is.na(brojnost)]
19
20
    # Uklonite NA iz vektora
    brojnost_cist <- na.omit(brojnost)</pre>
22
    brojnost_cist
```

Zadatak 2.6: Sekvence i ponavljanja

```
1 # Kreirajte sekvence - korisno za godine, transekte, parcele
```

```
godine <- 2015:2024
2
    godine
3
4
    # Sekvenca s korakom
5
    c(0, 5, 10, 15, 20)
                                   # ručno
    seq(from = 0, to = 20, by = 5) # funkcija seq()
    # 10 brojeva između 0 i 100
    seq(from = 0, to = 100, length.out = 10)
10
    # Ponavljanje vrijednosti
                                   # broj 5, 10 puta
    rep(5, times = 10)
                                 # vektor [1,2,3] tri puta
    rep(c(1, 2, 3), times = 3)
14
    rep(c("kontrola", "tretman"), each = 5) # svaki element 5
       puta
16
    # Kombinacija - korisno za eksperimentalni dizajn
17
    tretman \leftarrow rep(c("A", "B", "C"), each = 4)
18
    tretman
19
```

Zadatak 2.7: Praktični ekološki primjer

```
# Simulirajmo podatke s terenskog istraživanja
2
    # 10 transekta, brojanje biljnih vrsta
3
    transekt <- 1:10
4
    brojnost_vrsta <- c(23, 28, 19, 31, 25, 22, 27, 24, 29, 26)
    # Osnovna analiza
    mean(brojnost_vrsta)
    sd(brojnost_vrsta)
9
    # Koji transekt ima najviše vrsta?
11
    max(brojnost vrsta)
12
    which.max(brojnost_vrsta)
                               # vraća POZICIJU
    transekt[which.max(brojnost_vrsta)] # vraća BROJ transekta
14
    # Koji transekt ima najmanje vrsta?
16
    transekt[which.min(brojnost_vrsta)]
17
18
    # Transekti s više od 25 vrsta
19
    transekt[brojnost_vrsta > 25]
20
    brojnost_vrsta[brojnost_vrsta > 25]
21
    # Postotak transekta s više od 25 vrsta
23
    sum(brojnost_vrsta > 25) / length(brojnost_vrsta) * 100
```

1.3.4 Provjera razumijevanja

- 1. Kreirajte vektor s temperaturama izm
jerenima tijekom tjedna: 18, 22, 25, 23, 19, 21, 24 °C
- 2. Izračunajte prosječnu temperaturu
- 3. Koje su bile temperature iznad prosjeka?
- 4. Koliki je bio raspon temperatura (razlika između max i min)?

5. Dodajte jednu nedostajuću vrijednost (NA) na kraj vektora i ponovno izračunajte prosjek

1.3.5 Napredni izazov

```
# Za one koji žele dodatni izazov:
    # Shannomov indeks raznolikosti za zajednicu s 5 vrsta
2
    brojnost <- c(45, 32, 18, 8, 3)
    # Izračunajte proporcije
    ukupno <- sum(brojnost)</pre>
    proporcije <- brojnost / ukupno</pre>
    # Shannomov\ indeks:\ H = -sum(p * log(p))
    H <- -sum(proporcije * log(proporcije))</pre>
11
12
13
    # Usporedite s funkcijom iz paketa vegan (ako je instaliran):
14
    # library(vegan)
    # diversity(brojnost, index = "shannon")
```

1.4 Vježba 3: Data frame – rad s tablicama

1.4.1 Cilj vježbe

Naučiti raditi s data.frame objektima – primarnom strukturom za ekološke podatke u R-u.

1.4.2 Teorijska podloga

Data frame je tablica podataka – ima redove (obično opažanja) i stupce (obično varijable). Možete ga zamisliti kao Excel tablicu unutar R-a, ali s mnogo većim mogućnostima.

Karakteristike data frame-a:

- Svaki stupac je vektor
- Svi vektori moraju biti iste duljine
- Različiti stupci mogu imati različite tipove podataka
- Svaki stupac i redak može imati ime

1.4.3 Zadaci

Zadatak 3.1: Kreiranje data frame-a

```
# Kreirajmo jednostavan dataset s monitoring podatcima
2
    # Prvo kreiramo vektore
    lokalitet <- c("Risnjak", "Plitvice", "Velebit",</pre>
    "Kopački rit", "Medvednica")
    broj_vrsta <- c(45, 52, 38, 41, 35)
    povrsina_ha <- c(6400, 29600, 20000, 17700, 3900)
    god_zastite <- c(1953, 1949, 1981, 1967, 1981)
    # Kombiniramo u data frame
    nacionalni_parkovi <- data.frame(
    lokalitet = lokalitet,
12
    broj_vrsta = broj_vrsta,
    povrsina_ha = povrsina_ha,
14
    god_zastite = god_zastite
16
17
    # Pogledajte što smo stvorili
    nacionalni_parkovi
19
    # Alternativno, možemo pisati direktno:
21
    nacionalni_parkovi <- data.frame(</pre>
22
    lokalitet = c("Risnjak", "Plitvice", "Velebit",
23
    "Kopački rit", "Medvednica"),
2.4
    broj_vrsta = c(45, 52, 38, 41, 35),
    povrsina_ha = c(6400, 29600, 20000, 17700, 3900),
26
    god_zastite = c(1953, 1949, 1981, 1967, 1981)
27
28
```

Zadatak 3.2: Pregled data frame-a

```
# Osnovno o strukturi
dim(nacionalni_parkovi) # dimenzije (redovi, stupci)
nrow(nacionalni_parkovi) # broj redova
ncol(nacionalni_parkovi) # broj stupaca
names(nacionalni_parkovi) # nazivi stupaca
colnames(nacionalni_parkovi) # isto što i names()
```

```
rownames (nacionalni_parkovi) # nazivi redaka
8
    # Prikaz prvih i zadnjih redaka
                                  # prvih 6 redaka (default)
    head(nacionalni_parkovi)
10
    head(nacionalni_parkovi, 3) # prvih 3 retka
    tail(nacionalni_parkovi, 2) # zadnja 2 retka
13
    # Struktura podataka
14
    str(nacionalni_parkovi)
    # Statistički sažetak
17
    summary(nacionalni_parkovi)
18
19
    # Provjera tipova stupaca
20
    class(nacionalni_parkovi$lokalitet)
    class(nacionalni_parkovi$broj_vrsta)
```

Zadatak 3.3: Pristup podacima

Postoji nekoliko načina pristupanja podacima u data frame-u:

```
# 1. Znak $ - pristup cijelom stupcu
    nacionalni_parkovi$broj_vrsta
    nacionalni_parkovi$lokalitet
3
4
    # 2. Uglate zagrade [redak, stupac]
    nacionalni_parkovi[1, ]
                                 # prvi redak, svi stupci
    nacionalni_parkovi[, 2]
                                 # svi redci, drugi stupac
    nacionalni_parkovi[1, 2]
                                # prvi redak, drugi stupac
    nacionalni_parkovi[1:3,]
                                # prva tri retka
9
10
    # 3. Pristup po imenu
11
    nacionalni_parkovi[, "broj_vrsta"]
    nacionalni_parkovi[, c("lokalitet", "broj_vrsta")]
13
14
    # 4. Pristup s uvjetima (logičko indeksiranje)
    nacionalni_parkovi[nacionalni_parkovi$broj_vrsta > 40, ]
16
17
    # 5. Kombinacija
18
    nacionalni_parkovi[nacionalni_parkovi$povrsina_ha > 10000,
    c("lokalitet", "povrsina_ha")]
```

Zadatak 3.4: Dodavanje novih stupaca

```
# Dodajte novi stupac - qustoća vrsta po hektaru
    nacionalni_parkovi$gustoca_vrsta <-
2
    nacionalni_parkovi$broj_vrsta / nacionalni_parkovi$povrsina_ha
3
    # Dodajte kategorijalni stupac - veličina parka
5
    nacionalni_parkovi$velicina <- ifelse(</pre>
    nacionalni_parkovi$povrsina_ha > 15000,
7
    "Velik",
    "Mali"
10
11
    # Pogledajte rezultat
12
    nacionalni_parkovi
```

```
14
15 # Dodajte stupac - broj godina zaštite
16 trenutna_godina <- 2024
17 nacionalni_parkovi$godine_zastite <-
18 trenutna_godina - nacionalni_parkovi$god_zastite
19
20 # Provjera
21 nacionalni_parkovi
```

Zadatak 3.5: Sortiranje podataka

```
# Sortirajte po broju vrsta (uzlazno)
    nacionalni_parkovi[order(nacionalni_parkovi$broj_vrsta), ]
    # Sortirajte po broju vrsta (silazno)
    nacionalni_parkovi[order(nacionalni_parkovi$broj_vrsta,
    decreasing = TRUE), ]
    # Sortirajte po površini
    nacionalni_parkovi[order(nacionalni_parkovi$povrsina_ha,
Q
    decreasing = TRUE), ]
10
    # Spremite sortiranu verziju
    parkovi_sortirani <- nacionalni_parkovi[</pre>
13
    order(nacionalni_parkovi$broj_vrsta, decreasing = TRUE),
14
16
17
    parkovi_sortirani
```

Zadatak 3.6: Filtriranje podataka

```
# Parkovi s više od 40 vrsta
    veliki_diverzitet <- nacionalni_parkovi[
    nacionalni_parkovi$broj_vrsta > 40,
    veliki_diverzitet
6
    # Parkovi zaštićeni prije 1970.
    stari_parkovi <- nacionalni_parkovi[
    nacionalni_parkovi$god_zastite < 1970,
9
    stari_parkovi
11
    # Kombinacija uvjeta - veliki parkovi s puno vrsta
    veliki_i_raznolik <- nacionalni_parkovi[</pre>
14
    nacionalni_parkovi$povrsina_ha > 10000 &
    nacionalni_parkovi$broj_vrsta > 40,
16
17
    veliki_i_raznolik
    # Parkovi koji su zaštićeni 1981. ILI imaju više od 50 vrsta
20
    subset(nacionalni_parkovi,
21
    god_zastite == 1981 | broj_vrsta > 50)
```

Logički operatori:

- == jednako
- != različito od
- >, <, >=, <= usporedbe
- & logičko I (AND)
- | logičko ILI (OR)
- ! logička negacija (NOT)

Zadatak 3.7: Agregatne funkcije

```
# Prosječan broj vrsta
    mean(nacionalni_parkovi$broj_vrsta)
2
    # Ukupna površina svih parkova
    sum(nacionalni_parkovi$povrsina_ha)
6
    # Park s najvećom površinom
7
    nacionalni_parkovi[which.max(nacionalni_parkovi$povrsina_ha),
    "lokalitet"]
    # Najstariji park
11
    nacionalni_parkovi[which.min(nacionalni_parkovi$god_zastite),
12
    "lokalitet"]
13
14
    # Agregacija po kategorijama
    aggregate(broj_vrsta ~ velicina,
16
    data = nacionalni_parkovi,
17
    FUN = mean)
18
```

Zadatak 3.8: Rad s realističnijim podacima

```
# Kreirajmo dataset koji simulira monitoring ptica kroz godine
2
    monitoring <- data.frame(</pre>
    godina = rep(2020:2024, each = 3),
    lokalitet = rep(c("Risnjak", "Plitvice", "Velebit"), times =
5
       5),
    brojnost_sjenica = c(12, 15, 8, 14, 17, 10, 15, 18, 11,
6
    16, 19, 13, 17, 20, 14),
    brojnost_zeba = c(25, 28, 22, 27, 30, 24, 29, 32, 26,
    31, 34, 28, 33, 36, 30),
9
    temperatura_C = c(8.5, 9.2, 7.8, 8.8, 9.5, 8.1, 9.1, 9.8, 8.4,
    9.3, 10.0, 8.7, 9.6, 10.3, 9.0)
11
12
13
    # Pogledajte podatke
14
    head(monitoring, 10)
15
    str(monitoring)
16
17
    # Analize:
19
    # 1. Prosječna brojnost sjenica po lokalitetu
    aggregate(brojnost_sjenica ~ lokalitet,
21
    data = monitoring,
22
    FUN = mean)
23
24
    # 2. Prosječna temperatura po godini
```

```
aggregate (temperatura_C ~ godina,
26
    data = monitoring,
27
    FUN = mean)
28
29
    # 3. Filtrirajte podatke za Plitvice
    plitvice_podaci <- monitoring[monitoring$lokalitet == "</pre>
31
       Plitvice", ]
    plitvice_podaci
    # 4. Podaci iz 2024. godine s temperaturom iznad 9°C
    monitoring 2024 <- monitoring[
35
    monitoring$godina == 2024 & monitoring$temperatura_C > 9,
36
37
    monitoring_2024
38
    # 5. Dodajte novi stupac - ukupan broj ptica
40
    monitoring$ukupno_ptica <- monitoring$brojnost_sjenica +
41
    monitoring$brojnost_zeba
42
43
    # 6. Dodajte stupac - omjer sjenica i zeba
    monitoring$omjer_sjenice_zebe <-
45
    monitoring$brojnost_sjenica / monitoring$brojnost_zeba
47
    # Prikaz
    head(monitoring)
```

1.4.4 Provjera razumijevanja

Koristeći gornji monitoring dataset, odgovorite:

- 1. Koliko ukupno opažanja (redaka) ima dataset?
- 2. Koji lokalitet ima najviši prosječan ukupan broj ptica?
- 3. Koliki je raspon temperatura kroz sve godine i lokalitete?
- 4. Koliko opažanja ima brojnost sjenica veću od 15?
- 5. Koji je prosječan omjer sjenica i zeba?

1.4.5 Napredni zadatak

```
# Za dodatni izazov:
    # 1. Izračunajte godišnje promjene brojnosti za svaki
       lokalitet
    # 2. Identifi cijte lokalitet i godinu s najvećom ukupnom
       brojnošću
    # 3. Istražite postoji li korelacija između temperature i
       brojnosti
    # Primjer za korelaciju:
6
    cor(monitoring$temperatura_C, monitoring$brojnost_sjenica)
    cor(monitoring$temperatura_C, monitoring$brojnost_zeba)
    # Vizualizacija
    plot(monitoring$temperatura_C, monitoring$brojnost_sjenica,
    xlab = "Temperatura (°C)",
    ylab = "Brojnost sjenica",
    main = "Odnos temperature i brojnosti")
14
```

1.5 Vježba 4: Vizualizacija podataka

1.5.1 Cilj vježbe

Naučiti osnovne metode grafičkog prikaza ekoloških podataka koristeći base R grafiku i uvod u ggplot2.

1.5.2 Teorijska podloga

"A picture is worth a thousand words" – i u ekologiji, dobra vizualizacija često otkriva obrasce koje brojke ne mogu.

Vizualizacija podataka služi za:

- Eksploratornu analizu (razumijevanje podataka)
- Detekciju outliera i grešaka
- Komunikaciju rezultata
- Testiranje pretpostavki statističkih modela

1.5.3 Zadaci

Zadatak 4.1: Osnovna grafika - histogram

```
# Koristimo monitoring dataset iz prethodne vježbe
    # Ako ga nemate, ponovno ga kreirajte
2
    monitoring <- data.frame(
    godina = rep(2020:2024, each = 3),
    lokalitet = rep(c("Risnjak", "Plitvice", "Velebit"), times =
       5),
    brojnost_sjenica = c(12, 15, 8, 14, 17, 10, 15, 18, 11,
    16, 19, 13, 17, 20, 14),
    brojnost_zeba = c(25, 28, 22, 27, 30, 24, 29, 32, 26,
9
    31, 34, 28, 33, 36, 30),
    temperatura_C = c(8.5, 9.2, 7.8, 8.8, 9.5, 8.1, 9.1, 9.8, 8.4,
11
    9.3, 10.0, 8.7, 9.6, 10.3, 9.0)
13
14
    # Jednostavan histogram
    hist(monitoring$brojnost_sjenica)
16
    # Poboljšana verzija
18
    hist(monitoring$brojnost_sjenica,
19
    main = "Distribucija brojnosti sjenica",
    xlab = "Brojnost sjenica",
21
    ylab = "Frekvencija",
    col = "lightblue",
23
    border = "darkblue",
24
    breaks = 10)
25
26
    # Dodajte vertikalnu liniju za prosjek
    abline(v = mean(monitoring$brojnost_sjenica),
28
    col = "red",
    lwd = 2,
30
    lty = 2)
31
32
    # Dodajte legendu
33
    legend("topright",
```

```
15    legend = "Prosjek",
16    col = "red",
17    lty = 2,
18    lwd = 2)
```

Zadatak 4.2: Scatter plot (dijagram raspršenja)

```
# Odnos temperature i brojnosti
    plot(monitoring$temperatura_C,
2
    monitoring$brojnost_sjenica)
3
4
    # Poboljšana verzija
    plot(monitoring$temperatura_C,
6
    monitoring$brojnost_sjenica,
    main = "Odnos temperature i brojnosti sjenica",
    xlab = "Temperatura (°C)",
9
    ylab = "Brojnost sjenica",
    pch = 19,
                          # tip točke
11
    col = "darkgreen", # boja
12
    cex = 1.5)
                          # veličina točke
14
    # Dodajte liniju trenda
    abline(lm(brojnost_sjenica ~ temperatura_C, data = monitoring)
16
    col = "red",
17
    lwd = 2)
18
19
    # Alternativno: različite boje po lokalitetu
20
    plot(monitoring$temperatura_C,
    monitoring$brojnost_sjenica,
22
    main = "Brojnost sjenica po temperaturi i lokalitetu",
23
    xlab = "Temperatura (°C)",
24
    ylab = "Brojnost sjenica",
25
    pch = 19,
    col = as.factor(monitoring$lokalitet),
    cex = 1.5)
28
29
    # Legenda
30
    legend("topleft",
31
    legend = levels(as.factor(monitoring$lokalitet)),
32
    col = 1:3,
    pch = 19
```

Zadatak 4.3: Box plot (kutijasti dijagram)

Box plot pokazuje distribuciju podataka kroz kvartile.

```
# Jednostavan boxplot
boxplot(brojnost_sjenica ~ lokalitet,
data = monitoring)

# Poboljšana verzija
boxplot(brojnost_sjenica ~ lokalitet,
data = monitoring,
main = "Brojnost sjenica po lokalitetima",
xlab = "Lokalitet",
ylab = "Brojnost sjenica",
```

```
col = c("lightblue", "lightgreen", "lightyellow"),
11
    border = "darkblue",
12
    notch = TRUE)
                   # notch pokazuje interval pouzdanosti medijana
13
14
    # Dodajte točke za individualna opažanja
    points(jitter(as.numeric(as.factor(monitoring$lokalitet))),
16
    monitoring$brojnost_sjenica,
17
    pch = 19,
    col = "red",
19
    cex = 0.8)
```

Tumačenje box plota:

- Crta u kutiji = medijan
- Kutija = interkvartilni raspon (IQR, 25-75 percentil)
- Brkovi = $1.5 \times IQR$
- Točke izvan brkova = potencijalni outlieri

Zadatak 4.4: Linijski grafikon

Korisno za vremenske serije.

```
# Izračunajte prosječnu brojnost po godini
    prosjek_godina <- aggregate(brojnost_sjenica ~ godina,</pre>
2
    data = monitoring,
3
    FUN = mean)
    # Linijski grafikon
    plot(prosjek_godina$godina,
    prosjek_godina$brojnost_sjenica,
    type = "1", # "l" za liniju
    main = "Trend brojnosti sjenica kroz godine",
10
    xlab = "Godina",
11
    ylab = "Prosječna brojnost",
12
    col = "blue",
    lwd = 2)
14
    # Dodajte točke
    points(prosjek_godina$godina,
17
    prosjek_godina$brojnost_sjenica,
    pch = 19,
19
    col = "blue",
20
    cex = 1.5)
21
22
    # Dodajte grid
23
    grid()
24
25
    # Alternativno: sve lokalitete na jednom grafikonu
26
    risnjak <- monitoring[monitoring$lokalitet == "Risnjak", ]
27
    plitvice <- monitoring[monitoring$lokalitet == "Plitvice", ]</pre>
    velebit <- monitoring[monitoring$lokalitet == "Velebit", ]</pre>
29
    plot(risnjak$godina, risnjak$brojnost_sjenica,
31
    type = "b",  # "b" za both (i linija i točke)
32
    main = "Trend brojnosti po lokalitetima",
33
    xlab = "Godina",
34
    ylab = "Brojnost sjenica",
```

```
col = "red",
36
    pch = 19,
37
    ylim = c(5, 25)) # fiksni y-raspon za sve linije
38
39
    lines(plitvice$godina, plitvice$brojnost_sjenica,
40
    type = "b", col = "blue", pch = 19)
41
42
    lines(velebit$godina, velebit$brojnost_sjenica,
43
    type = "b", col = "green", pch = 19)
44
45
    legend("topleft",
46
    legend = c("Risnjak", "Plitvice", "Velebit"),
47
    col = c("red", "blue", "green"),
48
    lty = 1,
49
    pch = 19)
```

Zadatak 4.5: Barplot (stupčasti dijagram)

```
# Prosječna brojnost po lokalitetu
    prosjek_lokalitet <- aggregate(brojnost_sjenica ~ lokalitet,</pre>
    data = monitoring,
    FUN = mean)
5
    # Jednostavan barplot
    barplot(prosjek_lokalitet$brojnost_sjenica,
    names.arg = prosjek_lokalitet$lokalitet)
    # Poboljšana verzija
10
    barplot(prosjek_lokalitet$brojnost_sjenica,
    names.arg = prosjek_lokalitet$lokalitet,
    main = "Prosječna brojnost sjenica po lokalitetima",
    ylab = "Brojnost",
14
    col = c("lightblue", "lightgreen", "lightyellow"),
    border = "darkblue",
    ylim = c(0, 20))
17
18
    # Dodajte numeričke vrijednosti iznad stupaca
    text(x = 1:3 * 1.2 - 0.5, # pozicija x
20
    y = prosjek_lokalitet$brojnost_sjenica + 1,
                                                    # pozicija y
    labels = round(prosjek_lokalitet$brojnost_sjenica, 1),
22
    cex = 1.2)
23
24
    # Dodajte standardne devijacije kao error bars
25
    sd_lokalitet <- aggregate(brojnost_sjenica ~ lokalitet,</pre>
    data = monitoring,
27
    FUN = sd)
28
29
    bp <- barplot(prosjek_lokalitet$brojnost_sjenica,</pre>
30
    names.arg = prosjek_lokalitet$lokalitet,
    main = "Brojnost sjenica (prosjek ± SD)",
32
    ylab = "Brojnost",
    col = "lightblue",
34
    ylim = c(0, 22))
35
36
    # Dodajte error bars
37
    arrows(x0 = bp,
38
```

Zadatak 4.6: Spremanje grafikona

```
# Spremanje kao PNG
    png("output/figures/brojnost_sjenica_trend.png",
2
    width = 800, height = 600)
3
    plot(prosjek_godina$godina,
    prosjek_godina$brojnost_sjenica,
    type = "b",
    main = "Trend brojnosti sjenica kroz godine",
8
    xlab = "Godina",
9
    ylab = "Prosječna brojnost",
10
    col = "blue",
11
    lwd = 2,
    pch = 19,
    cex = 1.5)
14
    grid()
    dev.off() # Važno! Zatvara grafički uređaj
17
18
    # Spremanje kao PDF (vektorski format, bolji za publikacije)
19
    pdf("output/figures/brojnost_lokaliteti.pdf",
20
    width = 8, height = 6)
22
    boxplot(brojnost_sjenica ~ lokalitet,
23
    data = monitoring,
24
    main = "Distribucija brojnosti po lokalitetima",
25
    xlab = "Lokalitet",
    ylab = "Brojnost sjenica",
27
    col = "lightblue")
29
    dev.off()
30
31
    # Spremanje kao SVG (također vektorski)
32
    svg("output/figures/scatter_temp_brojnost.svg",
    width = 8, height = 6)
34
    plot(monitoring$temperatura_C,
36
    monitoring$brojnost_sjenica,
37
    main = "Odnos temperature i brojnosti",
    xlab = "Temperatura (°C)",
39
    ylab = "Brojnost sjenica",
    pch = 19,
    col = "darkgreen")
42
43
    dev.off()
44
```

Zadatak 4.7: Uvod u ggplot2

ggplot2 je moćniji i fleksibilniji sistem za grafiku, ali ima strmiju krivulju učenja.

```
# Instalirajte i učitajte paket (samo prvi put)
    # install.packages("qqplot2")
    library(ggplot2)
    # Osnovni scatter plot
    ggplot(data = monitoring,
6
    aes(x = temperatura_C, y = brojnost_sjenica)) +
    geom_point()
    # Poboljšana verzija
    ggplot(data = monitoring,
11
    aes(x = temperatura_C, y = brojnost_sjenica,
12
    color = lokalitet)) +
    geom_point(size = 3) +
14
    geom_smooth(method = "lm", se = TRUE) +
    labs(title = "Odnos temperature i brojnosti sjenica",
16
    x = "Temperatura (°C)",
    y = "Brojnost sjenica",
18
    color = "Lokalitet") +
    theme_minimal()
20
21
    # Box plot s ggplot2
22
    ggplot(monitoring, aes(x = lokalitet, y = brojnost_sjenica,
23
    fill = lokalitet)) +
    geom_boxplot() +
25
    geom_jitter(width = 0.1, alpha = 0.5) +
26
    labs(title = "Distribucija brojnosti po lokalitetima",
27
    x = "Lokalitet",
28
    y = "Brojnost sjenica") +
    theme classic() +
30
    theme(legend.position = "none")
31
32
    # Linijski grafikon s ggplot2
33
    # Prvo izračunajte prosječne vrijednosti
    library(dplyr) # korisno za manipulaciju podataka
35
    prosjeci <- monitoring %>%
37
    group_by(godina, lokalitet) %>%
38
    summarise(prosjek = mean(brojnost_sjenica),
39
    sd = sd(brojnost_sjenica))
40
41
    ggplot(prosjeci, aes(x = godina, y = prosjek,
42
    color = lokalitet)) +
43
    geom_line(linewidth = 1) +
44
    geom_point(size = 3) +
45
    geom_errorbar(aes(ymin = prosjek - sd, ymax = prosjek + sd),
    width = 0.2) +
47
    labs(title = "Trend brojnosti sjenica po lokalitetima",
    x = "Godina",
49
    y = "Brojnost (prosjek ± SD)",
50
    color = "Lokalitet") +
51
    theme minimal() +
    scale_x_continuous(breaks = 2020:2024)
53
```

```
54
55 # Spremanje ggplot grafikona
56 ggsave("output/figures/ggplot_trend.png",
57 width = 10, height = 6, dpi = 300)
```

1.5.4 Provjera razumijevanja

Koristeći monitoring dataset:

- 1. Napravite histogram distribucije temperatura
- 2. Napravite scatter plot odnosa temperature i brojnosti zeba
- 3. Napravite box plot brojnosti zeba po godinama
- 4. Napravite barplot ukupnog broja vrsta (sjenice + zebi) po lokalitetima
- 5. Spremite najmanje jedan grafikon kao PNG datoteku

1.5.5 Napredni zadatak

```
# Za dodatni izazov - kombinirani grafikon:
    # Četiri panela u jednoj slici (2x2)
    par(mfrow = c(2, 2))
                           # 2 retka, 2 stupca
    # Panel 1: Histogram
    hist(monitoring$brojnost_sjenica,
7
    main = "Distribucija brojnosti",
    xlab = "Brojnost sjenica",
9
    col = "lightblue")
10
    # Panel 2: Scatter plot
    plot(monitoring$temperatura_C, monitoring$brojnost_sjenica,
13
    main = "Temperatura vs. brojnost",
14
    xlab = "Temperatura (°C)",
    ylab = "Brojnost",
16
    pch = 19,
    col = "darkgreen")
19
    # Panel 3: Box plot
    boxplot(brojnost_sjenica ~ lokalitet,
21
    data = monitoring,
    main = "Brojnost po lokalitetima",
23
    col = "lightyellow")
24
25
    # Panel 4: Linijski grafikon
26
    prosjek_god <- aggregate(brojnost_sjenica ~ godina,</pre>
27
    data = monitoring,
28
    FUN = mean)
29
    plot(prosjek_god$godina, prosjek_god$brojnost_sjenica,
    type = "b",
31
    main = "Trend kroz godine",
    xlab = "Godina",
33
    ylab = "Prosjek",
    pch = 19,
35
    col = "red")
36
37
    # Vratite postavke natrag
38
    par(mfrow = c(1, 1))
```

```
# Spremite kompletan grafikon
png("output/figures/kombinir ani_grafikon.png",
width = 1000, height = 1000)
# ... ponovite gornji kod ...
dev.off()
```

1.6 Vježba 5: Učitavanje i čišćenje pravih podataka

1.6.1 Cilj vježbe

Naučiti raditi s pravim ekološkim podacima – učitavanje iz različitih formata, identifikacija problema, čišćenje podataka.

1.6.2 Teorijska podloga

U pravom istraživačkom radu rijetko dobivate savršeno pripremljene podatke. Obično morate:

- Učitati podatke iz različitih formata (CSV, Excel, TXT)
- Provjeriti kvalitetu podataka
- Riješiti probleme s nedostajućim vrijednostima
- Ispraviti greške u unosu
- Standardizirati formate
- Transformirati podatke u potreban oblik

1.6.3 Zadaci

Zadatak 5.1: Učitavanje CSV datoteka

CSV (Comma-Separated Values) je najčešći format za ekološke podatke.

```
# Osnovno učitavanje
    podaci <- read.csv("data/raw/monitoring_ptice.csv")</pre>
2
3
    # S dodatnim parametrima
    podaci <- read.csv("data/raw/monitoring_ptice.csv",</pre>
    header = TRUE,
                           # prvi red su nazivi stupaca
    sep = ",",
                           # separator je zarez
    dec = ".",
                           # decimalna točka
    stringsAsFactors = FALSE)
                                # ne pretvori tekst u faktore
    # Učitavanje s hrvatskim postavkama (točka-zarez separator)
    # Ako su podaci iz Excel-a sa hrvatskim postavkama
    podaci <- read.csv2("data/raw/monitoring_ptice.csv")</pre>
13
        ", "
14
    # Alternativa s readr paketom (brže i bolje)
    # install.packages("readr")
16
    library(readr)
17
18
    podaci <- read_csv("data/raw/monitoring_ptice.csv")</pre>
19
    # Pregled učitanih podataka
21
    head (podaci)
    str(podaci)
23
    summary(podaci)
```

Zadatak 5.2: Učitavanje Excel datoteka

```
# Instalirajte paket za Excel (samo prvi put)
# install.packages("readxl")

library(readxl)

# Učitajte prvi sheet
podaci_excel <- read_excel("data/raw/monitoring.xlsx")
```

```
# Učitajte specifičan sheet po imenu
8
    podaci_excel <- read_excel("data/raw/monitoring.xlsx",</pre>
9
    sheet = "Plitvice")
10
    # Učitajte specifičan sheet po broju
    podaci_excel <- read_excel("data/raw/monitoring.xlsx",</pre>
    sheet = 2)
14
    # Preskočite prvih n redaka (ako ima zaglavlja)
    podaci_excel <- read_excel("data/raw/monitoring.xlsx",</pre>
17
    skip = 3)
18
19
20
    # Učitajte samo određeni raspon ćelija
    podaci_excel <- read_excel("data/raw/monitoring.xlsx",</pre>
    range = "A1:E100")
```

Zadatak 5.3: Identifikacija problema u podacima

```
# Kreirajmo dataset s problemima
    messy_data <- data.frame(</pre>
    lokacija = c("Risnjak", "Plitvice", "Velebit", NA, "Risnjak",
3
    "plitvice", "VELEBIT"),
    brojnost = c(12, 15, NA, 10, "N/A", 18, 20),
    datum = c("2024-01-15", "2024-02-20", "2024-01-", "2024-03-10")
6
    "01.04.2024", "2024-05-15", "2024-06-20"),
    temperatura = c(8.5, 12.3, 7.8, NA, 25.0, 9.1, 10.5),
    observer = c("A.M.", "A.M.", "B.K.", "B.K.", "am", "A.M.", "b.
       k.")
    )
11
    # Problema:
    # 1. NA vrijednosti
    sum(is.na(messy_data))
14
    colSums(is.na(messy_data))
16
    # 2. Nekonzistentna velika/mala slova
    table (messy_data$lokacija)
18
19
    # 3. brojnost je character, ne numeric!
    str(messy_data)
21
    # 4. Različiti formati datuma
23
24
    # 5. Temperatura od 25°C u siječnju - sumnjivo
25
26
    # 6. Nekonzistentni kodovi opažača
```

Zadatak 5.4: Čišćenje podataka

```
# 1. Riješite problem s velika/mala slova
messy_data$lokacija <- tolower(messy_data$lokacija) # sve
malo
messy_data$lokacija <- tools::toTitleCase(messy_data$lokacija)
# prvo veliko
```

```
# 2. Standardizirajte lokacije
5
    messy_data$lokacija <- gsub("plitvice", "Plitvice",</pre>
    messy_data$lokacija,
    ignore.case = TRUE)
    messy_data$lokacija <- gsub("velebit", "Velebit",</pre>
    messy_data$lokacija,
    ignore.case = TRUE)
12
    # 3. Riješite problem s brojnošću
13
    # "N/A" treba biti NA
14
    messy_data$brojnost[messy_data$brojnost == "N/A"] <- NA
16
    # Pretvorite u numeric
17
    messy_data$brojnost <- as.numeric(messy_data$brojnost)</pre>
19
    # 4. Standardizirajte datum
20
    # install.packages("lubridate")
21
    library(lubridate)
23
    # Pokušajte parsirati različite formate
24
    messy_data$datum_clean <- ymd(messy_data$datum)</pre>
26
    # 5. Provjerite outliere u temperaturi
27
    # Temperatura od 25°C u siječnju je sumnjiva
28
    boxplot(messy_data$temperatura)
29
    # Identifi cijte sumnjivu vrijednost
31
    sumnjivo <- messy_data[messy_data$temperatura > 20 &
32
    !is.na(messy_data$temperatura), ]
33
34
    sumnjivo
    # Možda je trebalo biti 2.5 umjesto 25.0?
36
    # Ili postavite na NA i kontaktirajte terenske istraživače
    # 6. Standardizirajte kodove opažača
39
    messy_data$observer <- toupper(messy_data$observer)</pre>
    messy_data$observer <- gsub("\\.", "", messy_data$observer)</pre>
41
         ukloni točke
42
    # Konačan pregled
43
    str(messy_data)
44
    summary(messy_data)
```

Zadatak 5.5: Rad s nedostajućim vrijednostima

```
# Identificirajte stupce s NA
colSums(is.na(messy_data))

# Postotak nedostajućih po stupcu
colMeans(is.na(messy_data)) * 100

# Vizualizacija nedostajućih vrijednosti
# install.packages("naniar")
library(naniar)
```

```
# Grafički prikaz nedostajućih
11
    gg_miss_var(messy_data)
12
    # Opcije za rješavanje:
14
    # 1. Uklonite redove s bilo kojim NA (rigorozno)
16
    clean_complete <- na.omit(messy_data)</pre>
17
    nrow(messy_data)
    nrow(clean_complete)
19
20
    # 2. Uklonite samo redove gdje je brojnost NA
21
    clean_brojnost <- messy_data[!is.na(messy_data$brojnost), ]</pre>
22
23
    # 3. Imputacija - zamijenite NA s prosječnom vrijednošću
24
    # (pazite - ovo može biti problematično!)
    messy_data$temperatura_imputed <- messy_data$temperatura
26
    messy_data$temperatura_imputed[is.na(
27
       messy_data$temperatura_imputed)] <-</pre>
    mean(messy_data$temperatura, na.rm = TRUE)
28
29
    # 4. Zamijenite NA s medijanom (robusnije)
30
    median_temp <- median(messy_data$temperatura, na.rm = TRUE)
    messy_data$temperatura_imputed2 <- messy_data$temperatura
32
    messy_data$temperatura_imputed2[is.na(
33
       messy_data$temperatura_imputed2)] <-</pre>
    median_temp
34
    # VAŽNO: Uvijek dokumentirajte što ste učinili s NA
36
       vrijednostima!
```

Zadatak 5.6: Provjera i validacija podataka

```
# Osnovne provjere
    # 1. Provjerite raspone vrijednosti
    range(messy_data$brojnost, na.rm = TRUE)
    range(messy_data$temperatura, na.rm = TRUE)
    # 2. Provjerite kategoričke varijable
    table(messy_data$lokacija)
    table(messy_data$observer)
    # 3. Provjera logičkih uvjeta
11
    # Npr. brojnost ne može biti negativna
12
    any(messy_data$brojnost < 0, na.rm = TRUE)</pre>
14
    # 4. Provjera duplikata
    # Postoje li dupli unosi?
16
    duplicated(messy_data)
    sum(duplicated(messy_data))
18
    # Uklonite duplikate
20
    clean_data <- messy_data[!duplicated(messy_data), ]</pre>
21
22
    # 5. Detaljnija provjera duplikata po ključnim varijablama
23
    duplicated(messy_data[, c("lokacija", "datum")])
24
```

```
# 6. Vizualna provjera outliera
26
    par(mfrow = c(1, 2))
27
    boxplot(messy_data$brojnost, main = "Brojnost")
28
    boxplot(messy_data$temperatura, main = "Temperatura")
    par(mfrow = c(1, 1))
30
31
    # 7. Kreirajte funkciju za validaciju
    validate_data <- function(data) {</pre>
33
       cat("=== VALIDACIJA PODATAKA ===\n\n")
34
       cat("Dimenzije:", nrow(data), "redaka,", ncol(data), "
          stupaca\n\n")
37
       cat("Nedostajuće vrijednosti:\n")
       print(colSums(is.na(data)))
39
       cat("\n")
40
41
       cat("Duplikati:", sum(duplicated(data)), "\n\n")
42
       cat("Numeričke varijable - rasponi:\n")
44
       num_cols <- sapply(data, is.numeric)</pre>
       print(sapply(data[, num_cols], range, na.rm = TRUE))
47
       invisible (data)
48
49
    # Koristite funkciju
51
    validate_data(messy_data)
```

Zadatak 5.7: Spremanje čistih podataka

```
# Spremite očišćene podatke
    # 1. Selektirajte samo potrebne stupce
    final_data <- messy_data[, c("lokacija", "datum_clean",</pre>
    "brojnost", "temperatura",
    "observer")]
6
    # Preimenujte stupce
    names(final_data) <- c("lokalitet", "datum", "brojnost",</pre>
    "temperatura_C", "opazac")
11
    # 2. Spremite kao CSV
12
    write.csv(final_data,
13
    "data/processed/monitoring_clean.csv",
14
    row.names = FALSE)
16
    # 3. Spremite kao RDS (R-ov format, očuva tipove)
    saveRDS(final_data,
18
    "data/processed/monitoring_clean.rds")
20
    # 4. Spremite metapodatke
21
    sink("data/processed/README.txt")
22
    cat("Očišćeni monitoring podaci\n")
23
    cat("Datum obrade:", as.character(Sys.Date()), "\n")
```

```
cat("Izvorni podaci: data/raw/monitoring_ptice.csv\n")
cat("\nObrada:\n")
cat("- Standardizirane lokacije\n")
cat("- Pretvoren format datuma\n")
cat("- Identificirana i uklonjena sumnjiva mjerenja\n")
cat("- Standarize irani kodovi opažača\n")
sink()

# 5. Učitavanje RDS datoteke
podaci_ucitani <- readRDS("data/processed/monitoring_clean.rds
")</pre>
```

1.6.4 Provjera razumijevanja

- 1. Koja je razlika između read.csv i read.csv2?
- 2. Zašto je važno provjeriti str() nakon učitavanja podataka?
- 3. Kada biste koristili imputaciju za nedostajuće vrijednosti, a kada biste uklonili redove?
- 4. Zašto je RDS format ponekad bolji od CSV-a?
- 5. Kako provjeriti postoje li dupli unosi u podacima?

1.6.5 Napredni zadatak

```
# Za dodatni izazov:
    # Kreirajte potpuni pipeline za obradu podataka
    clean_ecological_data <- function(input_file, output_file) {</pre>
       # Učitajte podatke
       data <- read.csv(input_file, stringsAsFactors = FALSE)
6
       # Broj redaka na početku
      n_start <- nrow(data)</pre>
       # Uklonite duplikate
       data <- data[!duplicated(data), ]</pre>
       n_after_duplicates <- nrow(data)</pre>
13
       # Identifi cijte outliere (3 SD od prosjeka)
       for(col in names(data)) {
         if(is.numeric(data[[col]])) {
           m <- mean(data[[col]], na.rm = TRUE)</pre>
           s <- sd(data[[col]], na.rm = TRUE)
           outliers <- abs(data[[col]] - m) > 3 *
20
           data[[col]][outliers & !is.na(outliers)] <- NA
         }
       }
23
24
       # Uklonite redove s previše NA (>50%)
25
       na_prop <- rowMeans(is.na(data))</pre>
       data <- data[na_prop < 0.5, ]
27
       n_after_na <- nrow(data)
       # Spremite rezultat
30
       write.csv(data, output_file, row.names = FALSE)
31
32
       # Izvještaj
33
```

```
cat("=== PIPELINE ZA ČIŠĆENJE PODATAKA ===\n")
      cat("Ulazna datoteka:", input_file, "\n")
35
      cat("Početni broj redaka:", n_start, "\n")
      cat("Nakon uklanjanja duplikata:", n_after_duplicates, "\n")
37
      cat("Nakon uklanjanja redaka s previše NA:", n_after_na, "\n
      cat("Uklonjeno redaka:", n_start - n_after_na, "\n")
39
      cat("Procenat zadržanih redaka:",
      round(n_after_na/n_start * 100, 2), "%\n")
41
      return(data)
43
    }
44
45
    # Koristite funkciju
46
    # clean_data <- clean_ecological_data(
        "data/raw/monitoring.csv",
48
        "data/processed/monitoring_clean.csv"
49
    # )
```

1.7 Vježba 6: Integrativna vježba - Analiza bioraznolikosti

1.7.1 Cilj vježbe

Kombinirati sve naučene vještine u jednu sveobuhvatnu analizu - od učitavanja podataka do vizualizacije i interpretacije.

1.7.2 Scenarij

Provodite istraživanje bioraznolikosti u tri hrvatska nacionalna parka kroz pet godina. Trebate analizirati trendove, usporediti lokalitete, i vizualizirati rezultate za izvještaj upravi parka.

1.7.3 Zadatak

Korak 1: Priprema podataka

```
# Kreirajte kompleksniji dataset
    # (U stvarnosti biste učitali iz datoteke)
2
    set.seed(123) # Za reproducibilnost
    # Osnovni podaci
6
    n_{loc} <-3
    n_{god} < -5
    n_vrsta <- 8
    lokaliteti <- c("Risnjak", "Plitvice", "Velebit")</pre>
    godine <- 2020:2024
    vrste <- c("Canis lupus", "Lynx lynx", "Ursus arctos",</pre>
    "Tetrao urogallus", "Aquila chrysaetos",
14
    "Bombina variegata", "Salamandra salamandra",
    "Rosalia alpina")
17
    # Generirajte realističnije podatke
18
    monitoring <- expand.grid(
19
    godina = godine,
20
    lokalitet = lokaliteti,
    vrsta = vrste
22
24
    # Dodajte brojnost s realističnim varijacijama
25
    monitoring$brojnost <- rpois(nrow(monitoring), lambda = 15)
26
27
    # Dodajte trend (povećanje brojnosti kroz godine)
    monitoring$brojnost <- monitoring$brojnost +</pre>
29
    (monitoring\$godina - 2020) * sample(c(-1, 0, 1, 2),
30
    nrow(monitoring),
31
    replace = TRUE)
32
    # Dodajte okolišne varijable
34
    monitoring$temperatura_C <- rnorm(nrow(monitoring), mean = 10,
         sd = 3)
    monitoring $oborina_mm <- rnorm (nrow (monitoring), mean = 1200,
36
       sd = 200)
    monitoring$pokrov_suma_pct <- runif(nrow(monitoring), min =</pre>
37
       40, max = 95)
```

```
# Dodajte neke NA vrijednosti za realizam
39
    monitoring$brojnost[sample(1:nrow(monitoring), 5)] <- NA
40
    monitoring$temperatura_C[sample(1:nrow(monitoring), 3)] <- NA
41
    # Dodajte metapodatke
43
    monitoring$metoda <- sample(c("transekt", "kamera", "akustika"
44
    nrow(monitoring),
45
    replace = TRUE)
    monitoring$istrazivac <- sample(c("I.H.", "M.K.", "A.P."),</pre>
47
    nrow (monitoring),
48
    replace = TRUE)
49
    # Pregledajte dataset
    head(monitoring, 10)
52
    str(monitoring)
53
    summary(monitoring)
```

Korak 2: Eksplorativna analiza

```
# 1. Osnovne statističke mjere
    cat("=== DESKRIPTIVNA STATISTIKA ===\n\n")
2
3
    # Po lokalitetu
    cat("Prosječna brojnost po lokalitetu:\n")
    aggregate(brojnost ~ lokalitet, data = monitoring,
    FUN = function(x) c(mean = mean(x, na.rm = TRUE),
    sd = sd(x, na.rm = TRUE),
    n = sum(!is.na(x)))
    # Po vrsti
    cat("\nProsječna brojnost po vrsti:\n")
12
    vrsta_stat <- aggregate(brojnost ~ vrsta, data = monitoring,</pre>
13
    FUN = function(x) {
14
       c(mean = mean(x, na.rm = TRUE),
      sd = sd(x, na.rm = TRUE),
      min = min(x, na.rm = TRUE),
17
      max = max(x, na.rm = TRUE))
    })
19
    print(vrsta_stat)
20
    # 2. Vremenski trendovi
22
    cat("\n=== VREMENSKI TRENDOVI ===\n\n")
23
24
    trend_godina <- aggregate(brojnost ~ godina, data = monitoring</pre>
    FUN = mean, na.rm = TRUE)
26
    print(trend_godina)
28
    # Test linearn og trenda
    model_trend <- lm(brojnost ~ godina,
30
    data = monitoring[!is.na(monitoring$brojnost), ])
31
    summary(model_trend)
32
33
    # 3. Korelacija s okolišnim varijablama
```

```
cat("\n=== KORELACIJE ===\n\n")

cor_mat <- cor(monitoring[, c("brojnost", "temperatura_C",
    "oborina_mm", "pokrov_suma_pct")],

use = "complete.obs")
print(round(cor_mat, 3))</pre>
```

Korak 3: Vizualizacija

```
# Kompleksna višepanelna vizualizacija
    png("output/figures/bioraznolikost_analiza.png",
    width = 1400, height = 1000, res = 120)
    par(mfrow = c(2, 3), mar = c(4, 4, 3, 2))
    # Panel 1: Distribucija brojnosti
    hist(monitoring$brojnost,
    main = "Distribucija brojnosti",
9
    xlab = "Brojnost",
10
    col = "lightblue",
    breaks = 20)
12
    # Panel 2: Brojnost po lokalitetima
14
    boxplot(brojnost ~ lokalitet, data = monitoring,
    main = "Brojnost po lokalitetima",
    ylab = "Brojnost",
17
    col = c("lightgreen", "lightblue", "lightyellow"))
10
    # Panel 3: Trend kroz godine
20
    trend_god <- aggregate(brojnost ~ godina, data = monitoring,
21
    FUN = mean, na.rm = TRUE)
22
    plot(trend_god$godina, trend_god$brojnost,
    type = "b", pch = 19, col = "darkblue", lwd = 2,
24
    main = "Trend brojnosti kroz godine",
    xlab = "Godina", ylab = "Prosječna brojnost")
26
    abline(lm(brojnost ~ godina, data = trend_god),
27
    col = "red", lty = 2)
29
    # Panel 4: Temperatura vs brojnost
    plot(monitoring$temperatura_C, monitoring$brojnost,
31
    pch = 19, col = rgb(0, 0, 1, 0.3),
32
    main = "Brojnost vs temperatura",
    xlab = "Temperatura (°C)", ylab = "Brojnost")
34
    abline(lm(brojnost ~ temperatura_C, data = monitoring),
    col = "red", lwd = 2)
36
    # Panel 5: Brojnost po vrstama (top 5)
38
    vrsta_suma <- aggregate(brojnost ~ vrsta, data = monitoring,</pre>
39
    FUN = sum, na.rm = TRUE)
    vrsta_suma <- vrsta_suma[order(-vrsta_suma$brojnost), ][1:5, ]</pre>
41
42
    barplot(vrsta_suma$brojnost,
43
    names.arg = substr(vrsta_suma$vrsta, 1, 10),
44
    las = 2, col = "steelblue",
45
    main = "Top 5 vrsta (ukupna brojnost)",
46
    ylab = "Ukupna brojnost")
47
```

```
# Panel 6: Pokrov šume vs brojnost
49
    plot(monitoring$pokrov_suma_pct, monitoring$brojnost,
50
    pch = 19, col = as.factor(monitoring$lokalitet),
51
    main = "Brojnost vs pokrov šume",
    xlab = "Pokrov šume (%)", ylab = "Brojnost")
53
    legend("topright", legend = unique(monitoring$lokalitet),
54
    col = 1:3, pch = 19, cex = 0.8
56
    par(mfrow = c(1, 1))
57
    dev.off()
58
    cat("\nGrafikon spremljen: output/figures/
       bioraznolikost_analiza.png\n")
```

Korak 4: Napredna analiza s ggplot2

```
library(ggplot2)
    library(dplyr)
2
3
    # 1. Trend po lokalitetima s error bars
    trend_lok <- monitoring %>%
    group_by(godina, lokalitet) %>%
6
    summarise(
    prosjek = mean(brojnost, na.rm = TRUE),
    sd = sd(brojnost, na.rm = TRUE),
9
    n = sum(!is.na(brojnost)),
    se = sd / sqrt(n)
    p1 <- ggplot(trend_lok, aes(x = godina, y = prosjek,
14
    color = lokalitet)) +
    geom_line(linewidth = 1) +
16
    geom_point(size = 3) +
17
    geom_errorbar(aes(ymin = prosjek - se, ymax = prosjek + se),
    width = 0.2) +
19
    labs(title = "Trend brojnosti po lokalitetima",
    subtitle = "Prikazano: prosjek ± SE",
21
    x = "Godina",
    y = "Brojnost",
23
    color = "Lokalitet") +
24
    theme_minimal() +
25
    theme(legend.position = "bottom")
26
27
    ggsave("output/figures/trend_lokaliteti.png", p1,
28
    width = 10, height = 6, dpi = 300)
29
30
    # 2. Faceted plot po vrstama
31
    # Odaberite 6 najčešćih vrsta
    top_vrste <- monitoring %>%
33
    group_by(vrsta) %>%
34
    summarise(ukupno = sum(brojnost, na.rm = TRUE)) %>%
35
    arrange(desc(ukupno)) %>%
36
    head(6) %>%
37
    pull(vrsta)
38
39
```

```
monitoring_top <- monitoring %>%
40
    filter(vrsta %in% top_vrste)
41
42
    p2 <- ggplot(monitoring_top,</pre>
43
    aes(x = godina, y = brojnost, color = lokalitet)) +
    geom_point(alpha = 0.6) +
45
    geom_smooth(method = "lm", se = FALSE) +
46
    facet_wrap(~ vrsta, scales = "free_y", ncol = 3) +
    labs(title = "Trendovi po vrstama i lokalitetima",
48
    x = "Godina",
    y = "Brojnost",
    color = "Lokalitet") +
    theme_bw() +
    theme(legend.position = "bottom",
53
    strip.background = element_rect(fill = "lightblue"))
    ggsave("output/figures/trend_vrste_facet.png", p2,
56
    width = 12, height = 8, dpi = 300)
57
58
    # 3. Heatmap brojnosti
    vrsta_lok <- monitoring %>%
60
    group_by(vrsta, lokalitet) %>%
    summarise(prosjek_brojnost = mean(brojnost, na.rm = TRUE))
62
63
    p3 <- ggplot(vrsta_lok, aes(x = lokalitet, y = vrsta,
64
    fill = prosjek_brojnost)) +
    geom_tile(color = "white") +
    scale_fill_gradient(low = "lightyellow", high = "darkred") +
67
    labs(title = "Prosječna brojnost po vrsti i lokalitetu",
68
    fill = "Prosječna\nbrojnost") +
70
    theme_minimal() +
    theme(axis.text.x = element_angle(45, hjust = 1))
72
    ggsave("output/figures/heatmap_brojnosti.png", p3,
    width = 10, height = 8, dpi = 300)
74
```

Korak 5: Generiranje izvještaja

```
# Generirajte tekstualni izvještaj
2
    sink("output/izvjestaj_bioraznolikost.txt")
3
    cat("="rep("=", 60), "\n")
5
                   IZVJEŠTAJ O MONITORINGU BIORAZNOLIKOSTI\n")
    cat("="rep("=", 60), "\n\n")
    cat("Datum izvještaja:", as.character(Sys.Date()), "\n")
9
    cat("Autor: Ekološki tim\n\n")
    cat("1. OSNOVNI PODACI\n")
    cat(strrep("-", 60), "\n")
    cat("Lokaliteti:", paste(unique(monitoring$lokalitet),
14
    collapse = ", "), "\n")
    cat("Period:", min(monitoring$godina), "-",
16
    max(monitoring$godina), "\n")
17
    cat("Broj vrsta:", length(unique(monitoring$vrsta)), "\n")
18
```

```
cat("Ukupno opažanja:", nrow(monitoring), "\n")
    cat("Opažanja s podacima:", sum(!is.na(monitoring$brojnost)),
20
        "\n\n")
21
    cat("2. OPĆA BROJNOST\n")
    cat(strrep("-", 60), "\n")
23
    cat("Prosječna brojnost:",
24
    round(mean(monitoring$brojnost, na.rm = TRUE), 2), "\n")
    cat("Medijan brojnosti:",
26
    median(monitoring$brojnost, na.rm = TRUE), "\n")
27
    cat("Standardna devijacija:",
28
    round(sd(monitoring$brojnost, na.rm = TRUE), 2), "\n")
29
    cat("Raspon:", min(monitoring$brojnost, na.rm = TRUE), "-",
30
    \max(\text{monitoring} \text{brojnost}, \text{na.rm} = \text{TRUE}), "\n'")
31
    cat("3. BROJNOST PO LOKALITETIMA\n")
33
    cat(strrep("-", 60), "\n")
34
    lok_sum <- aggregate(brojnost ~ lokalitet, data = monitoring,</pre>
35
    FUN = function(x) {
36
       c(n = sum(!is.na(x)),
      mean = mean(x, na.rm = TRUE),
38
      sd = sd(x, na.rm = TRUE))
    })
40
    print(lok_sum)
41
    cat("\n")
42
43
    cat("4. VREMENSKI TREND\n")
    cat(strrep("-", 60), "\n")
45
    model <- lm(brojnost ~ godina,
46
    data = monitoring[!is.na(monitoring$brojnost), ])
47
    cat("Linearni model: brojnost ~ godina\n")
48
    cat("Nagib:", round(coef(model)[2], 3), "\n")
    cat("P-vrijednost:", format.pval(summary(model) $coefficients
50
        [2, 4]), "\n")
    if(summary(model)$coefficients[2, 4] < 0.05) {</pre>
       if(coef(model)[2] > 0) {
         cat ("Interpretacija: Statistički značajan PORAST brojnosti
53
             kroz godine.\n")
       } else {
         cat ("Interpretacija: Statistički značajan PAD brojnosti
            kroz godine.\n")
      }
56
    } else {
57
       cat ("Interpretacija: Nema statistički značajnog trenda.\n")
59
    cat("\n")
61
    cat("5. TOP 5 NAJČEŠĆIH VRSTA\n")
62
    cat(strrep("-", 60), "\n")
    top5 <- aggregate(brojnost ~ vrsta, data = monitoring,</pre>
64
    FUN = sum, na.rm = TRUE)
65
    top5 <- top5[order(-top5$brojnost), ][1:5, ]</pre>
66
    for(i in 1:nrow(top5)) {
67
       cat(i, ". ", top5$vrsta[i], ": ", top5$brojnost[i], "\n",
68
          sep = "")
    }
69
```

```
cat("\n")
70
71
     cat("6. KORELACIJE S OKOLIŠNIM VARIJABLAMA\n")
72
     cat(strrep("-", 60), "\n")
73
     cor_temp <- cor.test(monitoring$brojnost,</pre>
     monitoring$temperatura_C,
75
     use = "complete.obs")
76
     cat("Brojnost vs Temperatura:\n")
           r =", round(cor_temp$estimate, 3), "\n")
78
     cat(" p =", format.pval(cor_temp$p.value), "\n\n")
80
     cor_oborine <- cor.test(monitoring$brojnost,</pre>
81
     monitoring$oborina_mm,
82
     use = "complete.obs")
83
     cat("Brojnost vs Oborine:\n")
           r =", round(cor_oborine$estimate, 3), "\n")
85
     cat(" p =", format.pval(cor_oborine$p.value), "\n\n")
86
     cat("7. ZAKLJUČCI I PREPORUKE\n")
88
     cat(strrep("-", 60), "\n")
     cat("- Analiza obuhvaća", length(unique(monitoring$lokalitet))
90
     "lokaliteta kroz", length(unique(monitoring$godina)), "godina\
91
       n")
     cat("- Praćeno je", length(unique(monitoring$vrsta)),
92
     "različitih vrsta\n")
93
     if(summary(model)$coefficients[2, 4] < 0.05) {</pre>
95
       cat("- Utvrđen je statistički značajan trend brojnosti\n")
96
     } else {
97
       cat("- Brojnost je relativno stabilna kroz promatrano
98
          razdoblje\n")
99
     cat("- Preporučuje se nastavak monitoringa\n")
     cat("- Potrebna je dodatna analiza utjecaja klimatskih
        varijabli\n")
103
     cat("\n", strrep("=", 60), "\n")
     cat("KRAJ IZVJEŠTAJA\n")
     cat(strrep("=", 60), "\n")
106
107
     sink()
108
     cat("\nIzvještaj spremljen: output/izvjestaj_bioraznolikost.
        txt\n")
```

1.7.4 Završni zadatak

Sada samostalno analizirajte podatke i odgovorite:

- 1. Koji lokalitet pokazuje najveći porast brojnosti kroz godine?
- 2. Koja vrsta ima najveću varijabilnost u brojnosti?
- 3. Postoji li sezonski obrazac (ako dodamo informaciju o mjesecu)?
- 4. Kako biste poboljšali ovaj monitoring program?

5. Koje dodatne varijable biste mjerili?

1.7.5 Proširenje vježbe

Za dodatni izazov:

```
# 1. Dodajte analizu raznolikosti
    # install.packages("vegan")
    library(vegan)
    # Transformirajte podatke u matricu za vegan
    zajednica <- monitoring %>%
7
    group_by(lokalitet, vrsta) %>%
    summarise(brojnost_ukupno = sum(brojnost, na.rm = TRUE)) %>%
    tidyr::pivot_wider(names_from = vrsta,
9
    values_from = brojnost_ukupno,
10
    values_fill = 0)
11
12
    zajednica_mat <- as.matrix(zajednica[, -1])</pre>
13
    rownames(zajednica_mat) <- zajednica$lokalitet
14
    # Shannomov indeks raznolikosti
16
    shannon <- diversity(zajednica_mat, index = "shannon")</pre>
17
    simpson <- diversity(zajednica_mat, index = "simpson")</pre>
18
19
    cat("\nIndeksi raznolikosti po lokalitetima:\n")
    print(data.frame(
2.1
    Lokalitet = names(shannon),
    Shannon = round(shannon, 3),
23
    Simpson = round(simpson, 3)
24
    ))
25
26
    # 2. NMDS ordinacija
    nmds <- metaMDS(zajednica_mat, distance = "bray")</pre>
28
29
    plot (nmds$points,
30
    pch = 19,
31
    cex = 2,
    col = 1:3,
    main = "NMDS ordinacija lokaliteta")
    text(nmds$points,
35
    labels = rownames(zajednica_mat),
36
    pos = 3)
37
38
    # 3. Rarefaction krivulje
    rarecurve(zajednica_mat,
40
    col = 1:3,
41
    main = "Rarefaction krivulje")
    legend("bottomright",
43
    legend = rownames(zajednica_mat),
    col = 1:3,
45
    lty = 1)
```

1.8 Zaključak i daljnji koraci

1.8.1 Što ste naučili

Kroz ovih šest vježbi savladali ste:

- 1. Osnove R-a: varijable, tipovi podataka, operatori
- 2. Vektore: rad s nizovima podataka, statističke funkcije
- 3. Data frame-ove: tablice podataka, filtriranje, sortiranje
- 4. Vizualizaciju: histogrami, scatter plotovi, box plotovi, ggplot2
- 5. Učitavanje i čišćenje podataka: CSV, Excel, rad s NA vrijednostima
- 6. Integrativnu analizu: kompletan workflow od podataka do izvještaja

1.8.2 Vježbovne navike

Za uspješno učenje R-a:

- Vježbajte redovno 30 minuta dnevno bolje je od 5 sati jednom tjedno
- Pišite kod vlastoručno ne samo kopirajte-zalijepite
- Eksperimentirajte mijenjajte brojeve, probajte nove funkcije
- Čitajte dokumentaciju ?function name je vaš prijatelj
- Koristite Google/Stack Overflow gotovo sigurno netko je imao istu grešku
- Radite s pravim podacima vaši vlastiti projekti najbolje motiviraju

1.8.3 Korisni resursi

Online tečajevi

- DataCamp: Introduction to R (besplatni uvodni tečaj)
- Coursera: R Programming (Johns Hopkins University)
- edX: Data Science: R Basics (Harvard)

Knjige (besplatne online)

- R for Data Science Hadley Wickham (https://r4ds.had.co.nz/)
- Advanced R Hadley Wickham (https://adv-r.hadley.nz/)
- Hands-On Programming with R Garrett Grolemund

Ekološki specifični resursi

- Numerical Ecology with R Borcard et al.
- Mixed Effects Models and Extensions in Ecology with R Zuur et al.
- Ecological Models and Data in R Bolker
- CRAN Task View: Environmetrics (https://cran.r-project.org/web/views/Environmetrics.html)

Pomoć i zajednica

- Stack Overflow: https://stackoverflow.com/questions/tagged/r
- RStudio Community: https://community.rstudio.com/
- R-bloggers: https://www.r-bloggers.com/
- Twitter #rstats: aktivna zajednica R korisnika

1.8.4 Sljedeći koraci

Nakon ovih vježbi, spremni ste za:

- 1. Naprednije statističke metode:
 - Linearna i višestruka regresija
 - ANOVA i post-hoc testovi

- Generalizirani linearni modeli (GLM)
- Modeli miješanih efekata (GLMM)

2. Specijalizirane ekološke analize:

- Multivarijatne analize (PCA, NMDS, RDA)
- Analiza raznolikosti
- Prostorne analize
- Modeli distribucije vrsta (SDM)

3. Naprednije programiranje:

- Pisanje vlastitih funkcija
- Automatizacija workflow-a
- Pakiranje koda u R pakete
- Shiny aplikacije za interaktivne analize

1.8.5 Zadnje riječi

Učenje R-a (ili bilo kojeg programskog jezika) je maraton, ne sprint. Bit će frustrirajućih trenutaka kada kod ne radi, greške nemaju smisla, i čini vam se da nikad nećete razumjeti. To je normalno i prođe kroz to svi, čak i iskusni programeri.

Ključ je u ustrajnosti. Svaki put kada riješite problem, naučite nešto novo. Svaki greška koju ispravite učvršćuje vaše razumijevanje. S vremenom, ono što je bilo teško postaje lako, a ono što je bilo nemoguće postaje rutina.

R je moćan alat koji će vam omogućiti da radite analizu koje prije niste mogli, da postavite pitanja koja prije nisu bila moguća, i da doprinesete ekološkoj znanosti na način koji nije bio dostupan prethodnim generacijama ekologa.

Sretno na vašem putovanju kroz kvantitativnu ekologiju!

Povratne informacije: Ako imate pitanja, komentare ili prijedloge za poboljšanje ovih vježbi, kontaktirajte nastavnika ili pošaljite email na info@sciom.hr s naznačenim subjektom "Kvantitativna biologija".