APPENDIX I:

CLAIM AMENDMENTS:

Enter new Claims 19 to 21 as indicated in the following listing of the claims:

1. (previously presented) Phenethylacrylamides of the formula I

$$\mathbb{R}^1$$
 $\stackrel{\mathsf{O}}{\underset{\mathsf{Het}}{\bigvee}}$ $\stackrel{\mathsf{O}-\mathbb{R}^3}{\underset{\mathsf{O}-\mathbb{R}^4}{\bigvee}}$

in which the substituents R^1 , R^2 , R^3 and R^4 have the following meanings:

- R^1 is halogen, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl;
- R2 is hydrogen;
- R^3 is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, propargyl, C_3-C_4 -alkenyl or $-B_2C-C\equiv C-C(R^a,R^b)-R^c$, where R^a , R^b independently of one another are hydrogen or methyl and R^c is hydrogen or C_1-C_4 -alkyl;
- R4 is methyl or C1-haloalkyl; and
- Het is a 5- or 6-membered heteroaromatic ring which may contain a fused 5- or 6-membered carbocycle and which is selected from heteroaromatic rings containing 1, 2, 3 or 4 nitrogen atoms as ring members, heteroaromatic rings which contain 1 or 2 nitrogen atoms and 1 or 2 further heteroatoms selected from oxygen or sulfur as ring members, and heteroaromatic rings which have 1 or 2 heteroatoms selected from oxygen and sulfur as ring members, Het being unsubstituted or it being possible for Het to contain 1, 2 or 3 substituents S selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkyl and C_1 - C_4 -alkoxy.
- 2. (previously presented) A phenethylacrylamide of the formula I as claimed in claim 1, wherein R^1 is $C_1-C_4-alkyl$ or $C_3-C_6-cycloalkyl.$
- (previously presented) A phenethylacrylamide of the formula I as claimed in claim 1, wherein Het is selected from pyridyl, pyrimidinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl and isothiazolyl.

070409 - 9 -

- 4. (previously presented) A phenethylacrylamide of the formula I as claimed in claim 1, wherein Het contains one or two substituents S which are bonded to those ring atoms which are not adjacent to the linkage site forming the double bond.
- 5. (previously presented) The phenethylacrylamide defined in claim 1 which is of the formula I.1, I.2 or I.3

in which the substituents S, R^1 , R^2 , R^3 and R^4 are as defined in claim 1, n is 1 or 2, and S is not bonded in the ortho position relative to the linkage site.

- 6. (previously presented) A process for the preparation of a phenethylacrylamide of the formula I as claimed in claim 1, wherein \mathbb{R}^2 is hydrogen and \mathbb{R}^1 is halogen, $C_1-C_4-\text{alkyl}$, $C_3-C_8-\text{cycloalkyl}$ or $C_1-C_4-\text{haloalkyl}$, and Het, \mathbb{R}^3 and \mathbb{R}^4 are as defined in claim 1, comprising the following steps:
 - a) reaction of a phenethylamide of the formula II,

with a trialkylstannane $(R^a)_3 SnH, \ wherein \ R^a$ is alkyl resulting in a compound of the formula III

070409 - 10 -

and

reaction of the compound III obtained in step a) with a compound Het-Hal, wherein Hal is bromine or iodine and Het has
the meaning given in claim 1, in the presence of catalytically active amounts of a transition metal compound of a
group VIII metal;

or

a') reaction of a compound of the formula II with at least stoichiometric amounts of iodine, resulting in a compound of the formula IV

and

- b') reaction of the compound IV obtained in step a') with a stannane of the formula (R^a)₃Sn-Het, wherein Het has the meaning stated in claim 1, in the presence of catalytically active amounts of a transition metal compound of a group VIII metal.
- 7. (previously presented) A process as claimed in claim 6, additionally comprising the preparation of the phenethylamide of the formula II, wherein a propiolic acid compound of the formula V

wherein R^1 is hydrogen, C_1-C_4 -alkyl, C_3-C_8 -cycloalkyl or C_1-C_4 -haloalkyl, and Z is halogen or OH, is reacted with a phenethylamine of the general formula VI

$$\begin{array}{c} O-R^3 \\ \\ H_2N \end{array} \hspace{1cm} O-R^4 \end{array} \hspace{1cm} (VI).$$

070409 - 11 -

 (previously presented) A process for the preparation of a phenethylacrylamide as claimed in claim 1 of the formula I, wherein a phenethylacrylamide of the formula

is reacted with a compound of the formula $R^3-\Upsilon$, wherein Υ is a nucleophilically displaceable leaving group.

9. (previously presented) A phenethylamide of the formula II'

wherein

- R^1 is halogen, $C_1-C_4-alkyl,\ C_1-C_4-alkoxy,\ C_3-C_{10}-cycloalkyl,$ or $C_1-C_4-haloalkyl;$
- R4 is methyl or C1-haloalkyl; and
- $R^{3\prime}$ is $C_{1}-C_{4}-alkyl$, $C_{1}-C_{4}-haloalkyl$, propargyl, $C_{3}-C_{4}-alkenyl$ or $-I_{2}C-C\equiv C-C(R^{a},R^{b})-R^{c}, \text{ where } R^{a}, \ R^{b} \text{ independently of one}$ another are hydrogen or methyl and R^{c} is hydrogen or $C_{1}-C_{4}-alkyl$; or $R^{3\prime}$ is hydrogen or an OH protecting group.
- 10. (previously presented) A phenethylacrylamide of the formula I':

wherein

- R^1 is halogen, $C_1-C_4-alkyl,\ C_1-C_4-alkoxy,\ C_3-C_{10}-cycloalkyl,$ or $C_1-C_4-haloalkyl;$
- R2 is hydrogen;
- R4 is methyl or C1-haloalkyl;
- Het is a 5- or 6-membered heteroaromatic ring which may contain a fused 5- or 6-membered carbocycle and which is selected from heteroaromatic rings containing 1, 2, 3 or 4 nitrogen atoms as ring members, heteroaromatic rings which contain 1 or 2

nitrogen atoms and 1 or 2 further heteroatoms selected from oxygen or sulfur as ring members, and heteroaromatic rings which have 1 or 2 heteroatoms selected from oxygen and sulfur as ring members, Het being unsubstituted or it being possible for Het to contain 1, 2 or 3 substituents S selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkyl and C_1 - C_4 -alkoxy; and

- R3' is hydrogen or an OH protecting group.
- (previously presented) A composition for controlling phytopathogenic harmful fungi comprising a solid or liquid carrier and a compound of the formula I as claimed in claim 1.
- 12. (previously presented) A method of controlling phytopathogenic harmful fungi, which comprises treating the fungi or materials, plants, soil or seed to be protected from fungal infection with an effective amount of a compound of the formula I as claimed in claim 1.
- 13. (previously presented) The phenethylacrylamide of the formula I as claimed in claim 1, wherein R^1 is C_1-C_4 -alkyl, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl.
- 14. (previously presented) A phenethylacrylamide as claimed in claim 2, wherein R¹ is ethyl, isopropyl, tert-butyl or cyclopropyl.
- 15. (previously presented) The process of claim 6, wherein R^1 is C_1-C_4 -alkyl, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl.
- 16. (previously presented) The process of claim 7, wherein R^1 is C_1-C_4 -alkyl, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl.
- 17. (previously presented) The phenethylamide of the formula II' as claimed in claim 9, wherein
 - R1 is halogen; or
 - R4 is C1-haloalkyl; or
 - R3' is C3-C4-alkenyl or an OH protecting group.
- 18. (previously presented) The phenethylacrylamide of the formula I' as claimed in claim 10, wherein R^1 is C_1-C_4 -alkyl, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl.
- 19. (new) The phenethylacrylamide of the formula I as claimed in claim 1, wherein R^1 is halogen, C_1-C_4 -alkyl, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl.

- 20. (new) The phenethylacrylamide of the formula I as claimed in claim 1, wherein the moiety Het carries 1 or 2 substituents S selected from a group consisting of: methyl, ethyl, isopropyl, methoxy, trifluoromethyl, difluoromethyl, fluorine, chlorine, bromine and difluoromethoxy.
- 21. (new) The phenethylacrylamide of the formula I as claimed in claim 20, wherein
 - R^1 is halogen, C_1-C_4 -alkyl, C_3-C_{10} -cycloalkyl, or C_1-C_4 -haloalkyl; and the 1 or 2 substituents S are bonded to ring atoms of Het which are not adjacent to the linkage site forming the double bond.

070409 - 14 -