

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

September 18, 2014

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Probability and Language

Quick guide to probability theory

Entropy and Information Theory

Assign a probability to an input sequence

Given a URL: choosespain.com. What is this website about?

Assign a probability to an input sequence

Given a URL: choosespain.com. What is this website about?

Input	Scoring function
choose spain	-8.35
chooses pain	-9.88
;	:

Assign a probability to an input sequence

Given a URL: choosespain.com. What is this website about?

Input	Scoring function
choose spain	-8.35
chooses pain	-9.88
:	÷

The Goal

Find a good scoring function for input sequences.

Scoring Hypotheses in Speech Recognition

From acoustic signal to candidate transcriptions

Hypothesis	Score
the station signs are in deep in english	-14732
the stations signs are in deep in english	-14735
the station signs are in deep into english	-14739
the station 's signs are in deep in english	-14740
the station signs are in deep in the english	-14741
the station signs are indeed in english	-14757
the station 's signs are indeed in english	-14760
the station signs are indians in english	-14790
the station signs are indian in english	-14799
the stations signs are indians in english	-14807
the stations signs are indians and english	-14815

Scoring Hypotheses in Machine Translation

From source language to target language candidates

Hypothesis	Score
we must also discuss a vision .	-29.63
we must also discuss on a vision .	-31.58
it is also discuss a vision .	-31.96
we must discuss on greater vision .	-36.09
1	:

Scoring Hypotheses in Decryption

Character substitutions on ciphertext to plaintext candidates

Hypothesis	Score
Heopaj, zk ukq swjp pk gjks w oaynap?	-93
Urbcnw, mx hxd fjwc cx twxf j bnlanc?	-92
Wtdepy, oz jzf hlye ez vyzh I dpncpe?	-91
Mjtufo, ep zpv xbou up lopx b tfdsfu?	-89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv?	-87
Gdnozi, yj tjp rvio oj fijr v nzxmzo?	-86
Czjkve, uf pfl nrek kf befn r jvtivk?	-85
Yvfgra, qb lbh jnag gb xabj n frperg?	-84
Zwghsb, rc mci kobh hc ybck o gsqfsh?	-83
Byijud, te oek mqdj je adem q iushuj?	-77
Jgqrcl, bm wms uylr rm ilmu y qcapcr?	-76
Listen, do you want to know a secret?	-25

The Goal

▶ Write down a **model** over sequences of words or letters.

The Goal

- Write down a model over sequences of words or letters.
- ▶ **Learn** the parameters of the model from data.

The Goal

- Write down a model over sequences of words or letters.
- **Learn** the parameters of the model from data.
- ▶ Use the model to **predict** the probability of new sequences.

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 2: Quick guide to probability theory

Quick guide to probability theory

Entropy and Information Theory

Probability: The Basics

► Sample space

Probability: The Basics

- ► Sample space
- Event space

Probability: The Basics

- Sample space
- Event space
- ► Random variable

Probability distributions

▶ P(X): probability of random variable X having a certain value.

Probability distributions

- ▶ P(X): probability of random variable X having a certain value.
 - ▶ P(X = killer) = 1.05e-05

Probability distributions

- ▶ P(X): probability of random variable X having a certain value.
 - ▶ P(X = killer) = 1.05e-05
 - P(X = app) = 1.19e-05

▶ P(X,Y): probability that X and Y each have a certain value.

- ▶ P(X,Y): probability that X and Y each have a certain value.
 - Let Y stand for choice of a word

- ▶ P(X,Y): probability that X and Y each have a certain value.
 - ▶ Let Y stand for choice of a word
 - Let X stand for the choice of a word that occurs before Y

- ▶ P(X,Y): probability that X and Y each have a certain value.
 - Let Y stand for choice of a word
 - Let X stand for the choice of a word that occurs before Y
 - P(X = killer, Y = app) = 1.24e-10

- ▶ P(X,Y): probability that X and Y each have a certain value.
 - Let Y stand for choice of a word
 - Let X stand for the choice of a word that occurs before Y
 - P(X = killer, Y = app) = 1.24e-10

- P(X,Y): probability that X and Y each have a certain value.
 - Let Y stand for choice of a word
 - Let X stand for the choice of a word that occurs before Y
 - ► P(X = killer, Y = app) = 1.24e-10

Joint Probability: P(X=value AND Y=value)

- Since X=value AND Y=value, the order does not matter
- ▶ $P(X = killer, Y = app) \Leftrightarrow P(Y = app, X = killer)$
- ▶ In both cases it is P(X,Y) = P(Y,X) = P('killer app')
- ▶ In NLP, we often use numerical indices to express this: $P(W_{i-1} = \text{killer}, W_i = \text{app})$

Joint probability table

W_{i-1}	$W_i = app$	$P(W_{i-1}, W_i)$
$\langle S \rangle$	арр	1.16e-19
an	арр	1.76e-08
killer	арр	1.24e-10
the	арр	2.68e-07
this	арр	3.74e-08
your	арр	2.39e-08

There will be a similar table for each choice of W_i .

Get
$$P(W_i)$$
 from $P(W_{i-1}, W_i)$

$$P(W_i = \mathsf{app}) = \sum_{x} P(W_{i-1} = x, W_i = \mathsf{app}) = 1.19e - 05$$

▶ $P(W_i \mid W_{i-1})$: probability that W_i has a certain value after fixing value of W_{i-1} .

- ▶ $P(W_i \mid W_{i-1})$: probability that W_i has a certain value after fixing value of W_{i-1} .
- $P(W_i = \mathsf{app} \mid W_{i-1} = \mathsf{killer})$

- ▶ $P(W_i \mid W_{i-1})$: probability that W_i has a certain value after fixing value of W_{i-1} .
- $P(W_i = \mathsf{app} \mid W_{i-1} = \mathsf{killer})$
- $P(W_i = \mathsf{app} \mid W_{i-1} = \mathsf{the})$

- ▶ $P(W_i \mid W_{i-1})$: probability that W_i has a certain value after fixing value of W_{i-1} .
- $P(W_i = \mathsf{app} \mid W_{i-1} = \mathsf{killer})$
- $P(W_i = \mathsf{app} \mid W_{i-1} = \mathsf{the})$

- ▶ $P(W_i \mid W_{i-1})$: probability that W_i has a certain value after fixing value of W_{i-1} .
- $ightharpoonup P(W_i = app \mid W_{i-1} = killer)$
- ▶ $P(W_i = app | W_{i-1} = the)$

Conditional probability from Joint probability

$$P(W_i \mid W_{i-1}) = \frac{P(W_{i-1}, W_i)}{P(W_{i-1})}$$

- ▶ P(killer) = 1.05e-05
- ► P(killer, app) = 1.24e-10
- ► P(app | killer) = 0.0096
- ► P(the | killer) = 1.82e-05

ightharpoonup P(e) – a priori probability or just prior

- ► P(e) a priori probability or just prior
- ▶ $P(f \mid e)$ conditional probability. The chance of f given e

- ► P(e) a priori probability or just prior
- ▶ $P(f \mid e)$ conditional probability. The chance of f given e
- ▶ P(e, f) *joint* probability. The chance of e and f both happening.

- ► P(e) a priori probability or just prior
- ▶ $P(f \mid e)$ conditional probability. The chance of f given e
- ▶ P(e, f) joint probability. The chance of e and f both happening.
- ▶ If e and f are independent then we can write $P(e, f) = P(e) \times P(f)$

- ► P(e) a priori probability or just prior
- ▶ $P(f \mid e)$ conditional probability. The chance of f given e
- ▶ P(e, f) joint probability. The chance of e and f both happening.
- ▶ If e and f are independent then we can write $P(e, f) = P(e) \times P(f)$
- ▶ If e and f are not independent then we can write $P(e, f) = P(e) \times P(f \mid e)$ $P(e, f) = P(f) \times ?$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Product of integers:

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \ldots \times n$$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Product of integers:

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \ldots \times n$$

Factoring:

$$\sum_{i=1}^{n} i \times k = k + 2k + 3k + \ldots + nk = k \sum_{i=1}^{n} i$$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Product of integers:

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \ldots \times n$$

Factoring:

$$\sum_{i=1}^{n} i \times k = k + 2k + 3k + \ldots + nk = k \sum_{i=1}^{n} i$$

$$\prod_{i=1}^{n} i \times k =$$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Product of integers:

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \ldots \times n$$

Factoring:

$$\sum_{i=1}^{n} i \times k = k + 2k + 3k + \ldots + nk = k \sum_{i=1}^{n} i$$

$$\prod_{i=1}^{n} i \times k =$$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Product of integers:

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \ldots \times n$$

Factoring:

$$\sum_{i=1}^{n} i \times k = k + 2k + 3k + \ldots + nk = k \sum_{i=1}^{n} i$$

$$\prod_{i=1}^{n} i \times k = 1k \times 2k \ldots \times nk =$$

Addition of integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$$

Product of integers:

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \ldots \times n$$

Factoring:

$$\sum_{i=1}^{n} i \times k = k + 2k + 3k + \ldots + nk = k \sum_{i=1}^{n} i$$

$$\prod_{i=1}^{n} i \times k = 1k \times 2k \dots \times nk = k^{n} \times \prod_{i=1}^{n} i$$

▶ P measures total probability of a set of events

- ▶ P measures total probability of a set of events
- $P(\emptyset) = 0$

- ▶ P measures total probability of a set of events
- $P(\emptyset) = 0$
- ightharpoonup P(all events) = 1

- ▶ P measures total probability of a set of events
- $P(\emptyset) = 0$
- ► P(all events) = 1
- ▶ $P(X) \le P(Y)$ for any $X \subseteq Y$

- P measures total probability of a set of events
- $P(\emptyset) = 0$
- ► P(all events) = 1
- ▶ $P(X) \le P(Y)$ for any $X \subseteq Y$
- ▶ $P(X) + P(Y) = P(X \cup Y)$ provided that $X \cap Y = \emptyset$

▶ All events sum to 1:

$$\sum_e P(e) = 1$$

▶ All events sum to 1:

$$\sum_e P(e) = 1$$

▶ Marginal probability P(f):

$$P(f) = \sum_{e} P(e, f)$$

All events sum to 1:

$$\sum_e P(e) = 1$$

▶ Marginal probability P(f):

$$P(f) = \sum_{e} P(e, f)$$

$$\sum_{e} P(e \mid f) =$$

All events sum to 1:

$$\sum_e P(e) = 1$$

▶ Marginal probability P(f):

$$P(f) = \sum_{e} P(e, f)$$

$$\sum_{e} P(e \mid f) =$$

All events sum to 1:

$$\sum_{e} P(e) = 1$$

▶ Marginal probability P(f):

$$P(f) = \sum_{e} P(e, f)$$

$$\sum_{e} P(e \mid f) = \sum_{e} \frac{P(e, f)}{P(f)} =$$

All events sum to 1:

$$\sum_{e} P(e) = 1$$

▶ Marginal probability P(f):

$$P(f) = \sum_{e} P(e, f)$$

$$\sum_{e} P(e \mid f) = \sum_{e} \frac{P(e, f)}{P(f)} = \frac{1}{P(f)} \sum_{e} P(e, f) =$$

All events sum to 1:

$$\sum_{e} P(e) = 1$$

▶ Marginal probability P(f):

$$P(f) = \sum_{e} P(e, f)$$

Conditional probability:

$$\sum_{e} P(e \mid f) = \sum_{e} \frac{P(e, f)}{P(f)} = \frac{1}{P(f)} \sum_{e} P(e, f) = 1$$

▶ Computing P(f) from axioms:

$$P(f) = \sum_{e} P(e) \times P(f \mid e)$$

► *P*(*a*, *b*, *c*, *d* | *e*)

- \triangleright $P(a, b, c, d \mid e)$
- We cannot simply remove items from the left of | (verify that it violates the definitions we have given based on sets)

- ► *P*(*a*, *b*, *c*, *d* | *e*)
- We cannot simply remove items from the left of | (verify that it violates the definitions we have given based on sets)
- In this case we can use the chain rule of probability to rescue us

- \triangleright $P(a, b, c, d \mid e)$
- We cannot simply remove items from the left of | (verify that it violates the definitions we have given based on sets)
- ▶ In this case we can use the chain rule of probability to rescue us
- ► $P(a, b, c, d | e) = P(d | e) \cdot P(c | d, e) \cdot P(b | c, d, e) \cdot P(a | b, c, d, e)$

- ► *P*(*a*, *b*, *c*, *d* | *e*)
- We cannot simply remove items from the left of | (verify that it violates the definitions we have given based on sets)
- ▶ In this case we can use the chain rule of probability to rescue us
- $P(a,b,c,d \mid e) = P(d \mid e) \cdot P(c \mid d,e) \cdot P(b \mid c,d,e) \cdot P(a \mid b,c,d,e)$
- ▶ To see why this is possible, recall that $P(X \mid Y) = \frac{p(X,Y)}{p(Y)}$

- ► *P*(*a*, *b*, *c*, *d* | *e*)
- We cannot simply remove items from the left of | (verify that it violates the definitions we have given based on sets)
- In this case we can use the chain rule of probability to rescue us
- $P(a,b,c,d \mid e) = P(d \mid e) \cdot P(c \mid d,e) \cdot P(b \mid c,d,e) \cdot P(a \mid b,c,d,e)$
- ▶ To see why this is possible, recall that $P(X \mid Y) = \frac{p(X,Y)}{p(Y)}$

- ► *P*(*a*, *b*, *c*, *d* | *e*)
- We cannot simply remove items from the left of | (verify that it violates the definitions we have given based on sets)
- ▶ In this case we can use the chain rule of probability to rescue us
- $P(a,b,c,d \mid e) = P(d \mid e) \cdot P(c \mid d,e) \cdot P(b \mid c,d,e) \cdot P(a \mid b,c,d,e)$
- ▶ To see why this is possible, recall that $P(X \mid Y) = \frac{p(X,Y)}{p(Y)}$

Use chain rule and simplify:

$$P(a, b, c, d \mid e) = P(d \mid e) \cdot P(c \mid d, e) \cdot P(b \mid c, e) \cdot P(a \mid b, e)$$

$$P(e_1, e_2, \dots, e_n) = P(e_1) \times P(e_2 \mid e_1) \times P(e_3 \mid e_1, e_2) \dots$$

$$P(e_1, e_2, \dots, e_n) = \prod_{i=1}^n P(e_i \mid e_{i-1}, e_{i-2}, \dots, e_1)$$

▶ What is y in P(y)?

- ▶ What is y in P(y)?
- ▶ Shorthand for value assigned to a random variable Y, e.g. Y = y

- ▶ What is y in P(y)?
- ▶ Shorthand for value assigned to a random variable Y, e.g. Y = y
- ightharpoonup y is an element of some implicit **event space**: \mathcal{E}

► The marginal probability P(y) can be computed from P(x, y) as follows:

$$P(y) = \sum_{x \in \mathcal{E}} P(x, y)$$

▶ The marginal probability P(y) can be computed from P(x, y) as follows:

$$P(y) = \sum_{x \in \mathcal{E}} P(x, y)$$

► Finding the value that maximizes the probability value:

$$\hat{x} = \arg\max_{x \in \mathcal{E}} P(x)$$

Log Probability Arithmetic

▶ Practical problem with tiny P(e) numbers: underflow

Log Probability Arithmetic

- ▶ Practical problem with tiny P(e) numbers: underflow
- ▶ One solution is to use log probabilities:

$$\log(P(e)) = \log(p_1 \times p_2 \times \ldots \times p_n)$$

=
$$\log(p_1) + \log(p_2) + \ldots + \log(p_n)$$

Log Probability Arithmetic

- ▶ Practical problem with tiny P(e) numbers: underflow
- ▶ One solution is to use log probabilities:

$$\log(P(e)) = \log(p_1 \times p_2 \times \ldots \times p_n)$$

=
$$\log(p_1) + \log(p_2) + \ldots + \log(p_n)$$

► Note that:

$$x = \exp(\log(x))$$

- ▶ Practical problem with tiny P(e) numbers: underflow
- One solution is to use log probabilities:

$$\log(P(e)) = \log(p_1 \times p_2 \times \ldots \times p_n)$$

=
$$\log(p_1) + \log(p_2) + \ldots + \log(p_n)$$

► Note that:

$$x = \exp(\log(x))$$

Also more efficient: addition instead of multiplication

р	$\log(p)$
0.0	$-\infty$
0.1	-3.32
0.2	-2.32
0.3	-1.74
0.4	-1.32
0.5	-1.00
0.6	-0.74
0.7	-0.51
0.8	-0.32
0.9	-0.15
1.0	0.00

So: $(0.5 \times 0.5 \times \dots 0.5) = (0.5)^n$ might get too small but (-1-1-1-1) = -n is manageable

- So: $(0.5 \times 0.5 \times \dots 0.5) = (0.5)^n$ might get too small but (-1-1-1-1) = -n is manageable
- ► Another useful fact when writing code (log₂ is log to the base 2):

$$\log_2(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$$

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 3: Entropy and Information Theory

Probability and Language

Quick guide to probability theory

Entropy and Information Theory

▶ Information theory is the use of probability theory to quantify and measure "information".

- ▶ Information theory is the use of probability theory to quantify and measure "information".
- Consider the task of efficiently sending a message. Sender Alice wants to send several messages to Receiver Bob. Alice wants to do this as efficiently as possible.

- Information theory is the use of probability theory to quantify and measure "information".
- Consider the task of efficiently sending a message. Sender Alice wants to send several messages to Receiver Bob. Alice wants to do this as efficiently as possible.
- ▶ Let's say that Alice is sending a message where the entire message is just one character a, e.g. aaaa.... In this case we can save space by simply sending the length of the message and the single character.

▶ Now let's say that Alice is sending a completely random signal to Bob. If it is random then we cannot exploit anything in the message to compress it any further.

- Now let's say that Alice is sending a completely random signal to Bob. If it is random then we cannot exploit anything in the message to compress it any further.
- ► The *expected* number of bits it takes to transmit some infinite set of messages is what is called entropy.

- Now let's say that Alice is sending a completely random signal to Bob. If it is random then we cannot exploit anything in the message to compress it any further.
- The expected number of bits it takes to transmit some infinite set of messages is what is called entropy.
- This formulation of entropy by Claude Shannon was adapted from thermodynamics, converting information into a quantity that can be measured.

- Now let's say that Alice is sending a completely random signal to Bob. If it is random then we cannot exploit anything in the message to compress it any further.
- ► The expected number of bits it takes to transmit some infinite set of messages is what is called entropy.
- This formulation of entropy by Claude Shannon was adapted from thermodynamics, converting information into a quantity that can be measured.
- Information theory is built around this notion of message compression as a way to evaluate the amount of information.

Expectation

ightharpoonup For a probability distribution p

Expectation

- For a probability distribution p
- **Expectation** with respect to *p* is a weighted average:

$$E_{p}[x] = \frac{x_{1} \cdot p_{1} + x_{2} \cdot p_{2} + \dots + x_{n}p_{n}}{p_{1} + p_{2} + \dots + p_{n}}$$

$$= x_{1} \cdot p_{1} + x_{2} \cdot p_{2} + \dots + x_{n}p_{n}$$

$$= \sum_{x \in \mathcal{E}} x \cdot p(x)$$

Expectation

- For a probability distribution p
- **Expectation** with respect to *p* is a weighted average:

$$E_{p}[x] = \frac{x_{1} \cdot p_{1} + x_{2} \cdot p_{2} + \ldots + x_{n}p_{n}}{p_{1} + p_{2} + \ldots + p_{n}}$$

$$= x_{1} \cdot p_{1} + x_{2} \cdot p_{2} + \ldots + x_{n}p_{n}$$

$$= \sum_{x \in \mathcal{E}} x \cdot p(x)$$

Example: for a six-sided die the expectation is:

$$E_p[x] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$$

ightharpoonup For a probability distribution p

- ▶ For a probability distribution *p*
- ▶ **Entropy** of *p* is:

$$H(p) = -\sum_{x \in \mathcal{E}} p(x) \cdot \log_2 p(x)$$

- For a probability distribution p
- **Entropy** of *p* is:

$$H(p) = -\sum_{x \in \mathcal{E}} p(x) \cdot \log_2 p(x)$$

▶ Any base can be used for the log, but base 2 means that entropy is measured in bits.

- For a probability distribution p
- **Entropy** of *p* is:

$$H(p) = -\sum_{x \in \mathcal{E}} p(x) \cdot \log_2 p(x)$$

- ▶ Any base can be used for the log, but base 2 means that entropy is measured in bits.
- ▶ What is the *expected* number of bits with respect to *p*:

$$-E_p[\log_2 p(x)] = H(p)$$

- For a probability distribution p
- Entropy of p is:

$$H(p) = -\sum_{x \in \mathcal{E}} p(x) \cdot \log_2 p(x)$$

- ▶ Any base can be used for the log, but base 2 means that entropy is measured in bits.
- ▶ What is the *expected* number of bits with respect to *p*:

$$-E_p[\log_2 p(x)] = H(p)$$

▶ Entropy answers the question: What is the expected number of bits needed to transmit messages from event space \mathcal{E} , where p(x) defines the probability of observing x?

► Alice wants to bet on a horse race. She has to send a message to her bookie Bob to tell him which horse to bet on.

- ▶ Alice wants to bet on a horse race. She has to send a message to her bookie Bob to tell him which horse to bet on.
- ▶ There are 8 horses. One encoding scheme for the messages is to use a number for each horse. So in bits this would be 001,010,...
 - (lower bound on message length = 3 bits in this encoding scheme)

- ▶ Alice wants to bet on a horse race. She has to send a message to her bookie Bob to tell him which horse to bet on.
- There are 8 horses. One encoding scheme for the messages is to use a number for each horse. So in bits this would be 001, 010, . . .
 - (lower bound on message length = 3 bits in this encoding scheme)
- Can we do better?

Horse 1	$\frac{1}{2}$	Horse 5	$\frac{1}{64}$
Horse 2	$\frac{1}{4}$	Horse 6	1 64
Horse 3	$\frac{1}{8}$	Horse 7	$\frac{1}{64}$
Horse 4	$\frac{1}{16}$	Horse 8	$\frac{1}{64}$

If we know how likely we are to bet on each horse, say based on the horse's probability of winning, then we can do better.

Horse 1	$\frac{1}{2}$	Horse 5	$\frac{1}{64}$
Horse 2	$\frac{1}{4}$	Horse 6	1 64
Horse 3	$\frac{1}{8}$	Horse 7	$\frac{1}{64}$
Horse 4	$\frac{1}{16}$	Horse 8	$\frac{1}{64}$

- ▶ If we know how likely we are to bet on each horse, say based on the horse's probability of winning, then we can do better.
- Let p be the probability distribution given in the table above. The entropy of p is H(p)

$$H(p) =$$

$$= -\sum_{i=1}^{8} p(i) \log_2 p(i)$$

$$= -\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{8} \log_2 \frac{1}{8} + \frac{1}{16} \log_2 \frac{1}{16} + 4(\frac{1}{64} \log_2 \frac{1}{64})\right)$$

$$= -\left(\frac{1}{2} \times -1 + \frac{1}{4} \times -2 + \frac{1}{8} \times -3 + \frac{1}{16} \times -4 + 4(\frac{1}{64} \times -6)\right)$$

$$= -\left(-\frac{1}{2} - \frac{1}{2} - \frac{3}{8} - \frac{1}{4} - \frac{3}{8}\right)$$

$$= 2 \text{ bits}$$

What is the entropy when the horses are equally likely to win?

$$H(uniform\ distribution) = -8(\frac{1}{8} \times -3) = 3\ bits$$

- ▶ e.g., most likely horse gets code 0, next most likely gets 10, and then 110, 1110, . . .
 - many possible coding schemes, this is a simple code to illustrate number of bits needed for a large number of messages . . .

- e.g., most likely horse gets code 0, next most likely gets 10, and then 110, 1110, . . . many possible coding schemes, this is a simple code to illustrate number of bits needed for a large number of messages . . .
- Assume there are 320 messages (one for each race): code 0 occurs 160 times, code 10 occurs 80 times, code 110 occurs 40 times, code 1110 occurs 20 times, code 11110 occurs 5 times.

- e.g., most likely horse gets code 0, next most likely gets 10, and then 110, 1110,... many possible coding schemes, this is a simple code to illustrate number of bits needed for a large number of messages ...
- Assume there are 320 messages (one for each race): code 0 occurs 160 times, code 10 occurs 80 times, code 110 occurs 40 times, code 1110 occurs 20 times, code 11110 occurs 5 times.
- ► Total number of bits for all messages: 160*len(0) + 80*len(10) + 40*len(110) + 20*len(1110) + 5*len(11110)

- e.g., most likely horse gets code 0, next most likely gets 10, and then 110, 1110, many possible coding schemes, this is a simple code to illustrate number of bits needed for a large number of messages . . .
- Assume there are 320 messages (one for each race): code 0 occurs 160 times, code 10 occurs 80 times, code 110 occurs 40 times, code 1110 occurs 20 times, code 11110 occurs 5 times.
- ▶ Total number of bits for all messages: 160*len(0) + 80*len(10) + 40*len(110) + 20*len(1110) + 5*len(11110)
- Number of bits: 160*1 + 80*2 + 40*3 + 20*4 + 5*5 = 545

- e.g., most likely horse gets code 0, next most likely gets 10, and then 110, 1110,... many possible coding schemes, this is a simple code to illustrate number of bits needed for a large number of messages ...
- Assume there are 320 messages (one for each race): code 0 occurs 160 times, code 10 occurs 80 times, code 110 occurs 40 times, code 1110 occurs 20 times, code 11110 occurs 5 times.
- ▶ Total number of bits for all messages: 160*len(0) + 80*len(10) + 40*len(110) + 20*len(1110) + 5*len(11110)
- Number of bits: 160*1 + 80*2 + 40*3 + 20*4 + 5*5 = 545
- ▶ Total number of bits per message (per race): $\frac{545}{320} \approx 1.7$ bits (always less than 2 bits)

▶ The value $2^{H(p)}$ is called the **perplexity** of a distribution p

- ▶ The value $2^{H(p)}$ is called the **perplexity** of a distribution p
- Perplexity is the weighted average number of choices a random variable has to make.

- ▶ The value $2^{H(p)}$ is called the **perplexity** of a distribution p
- Perplexity is the weighted average number of choices a random variable has to make.
- ▶ Choosing between 8 equally likely horses (H=3) is $2^3 = 8$.

- ▶ The value $2^{H(p)}$ is called the **perplexity** of a distribution p
- Perplexity is the weighted average number of choices a random variable has to make.
- ► Choosing between 8 equally likely horses (H=3) is $2^3 = 8$.
- ► Choosing between the biased horses from before (H=2) is $2^2 = 4$.

▶ In real life, we cannot know for sure the exact winning probability for each horse.

- ▶ In real life, we cannot know for sure the exact winning probability for each horse.
- ► Let's say q is the estimate and p is the true probability (say we got q by observing previous races with these horses)

- In real life, we cannot know for sure the exact winning probability for each horse.
- ▶ Let's say q is the estimate and p is the true probability (say we got q by observing previous races with these horses)
- ▶ We define the *distance* between q and p as the **relative** entropy: written as D(q||p)

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$

- In real life, we cannot know for sure the exact winning probability for each horse.
- ▶ Let's say q is the estimate and p is the true probability (say we got q by observing previous races with these horses)
- ▶ We define the *distance* between q and p as the **relative** entropy: written as D(q||p)

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$

Note that

$$D(q||p) = -E_{q(x)} \left[\log_2 \frac{p(x)}{q(x)} \right]$$

- In real life, we cannot know for sure the exact winning probability for each horse.
- ▶ Let's say q is the estimate and p is the true probability (say we got q by observing previous races with these horses)
- ▶ We define the *distance* between q and p as the **relative** entropy: written as D(q||p)

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$

Note that

$$D(q||p) = -E_{q(x)} \left[\log_2 \frac{p(x)}{q(x)} \right]$$

► The relative entropy is also called the *Kullback-Leibler divergence*.

► The **relative entropy** can be written as the sum of two terms:

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$
$$= -\sum_x q(x) \log_2 p(x) + \sum_x q(x) \log_2 q(x)$$

► The **relative entropy** can be written as the sum of two terms:

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$
$$= -\sum_x q(x) \log_2 p(x) + \sum_x q(x) \log_2 q(x)$$

• We know that $H(q) = -\sum_{x} q(x) \log_2 q(x)$

► The **relative entropy** can be written as the sum of two terms:

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$
$$= -\sum_{x} q(x) \log_2 p(x) + \sum_{x} q(x) \log_2 q(x)$$

- We know that $H(q) = -\sum_{x} q(x) \log_2 q(x)$
- ▶ Similarly define $H_q(p) = -\sum_x q(x) \log_2 p(x)$

$$D(q||p)$$
 = $H_q(p)$ - $H(q)$
relative entropy $(q, p = \text{cross entropy}(q, p - \text{entropy}(q))$

► The **relative entropy** can be written as the sum of two terms:

$$D(q||p) = -\sum_{x \in \mathcal{E}} q(x) \log_2 \frac{p(x)}{q(x)}$$
$$= -\sum_{x} q(x) \log_2 p(x) + \sum_{x} q(x) \log_2 q(x)$$

- We know that $H(q) = -\sum_{x} q(x) \log_2 q(x)$
- ► Similarly define $H_q(p) = -\sum_x q(x) \log_2 p(x)$

$$D(q||p)$$
 = $H_q(p)$ - $H(q)$
relative entropy $(q, p = cross entropy(q, p - entropy(q))$

▶ The term $H_q(p)$ is called the **cross entropy**.

▶ $H_q(p) \ge H(q)$ always.

- ▶ $H_q(p) \ge H(q)$ always.
- ▶ $D(q||p) \ge 0$ always, and D(q||p) = 0 iff q = p

- ▶ $H_q(p) \ge H(q)$ always.
- ▶ $D(q||p) \ge 0$ always, and D(q||p) = 0 iff q = p
- ▶ D(q||p) is not a true distance:

- ▶ $H_q(p) \ge H(q)$ always.
- ▶ $D(q||p) \ge 0$ always, and D(q||p) = 0 iff q = p
- ▶ D(q||p) is not a true distance:
 - ▶ It is asymmetric: $D(q||p) \neq D(p||q)$,

- ▶ $H_q(p) \ge H(q)$ always.
- ▶ $D(q||p) \ge 0$ always, and D(q||p) = 0 iff q = p
- ▶ D(q||p) is not a true distance:
 - ▶ It is asymmetric: $D(q||p) \neq D(p||q)$,
 - ▶ It does not obey the triangle inequality: $D(p||r) \nleq D(p||q) + D(q||r)$

Conditional Entropy and Mutual Information

Entropy of a random variable X:

$$H(X) = -\sum_{x \in \mathcal{E}} p(x) \log_2 p(x)$$

Conditional Entropy and Mutual Information

Entropy of a random variable X:

$$H(X) = -\sum_{x \in \mathcal{E}} p(x) \log_2 p(x)$$

Conditional Entropy between two random variables X and Y:

$$H(X \mid Y) = -\sum_{x,y \in \mathcal{E}} p(x,y) \log_2 p(x \mid y)$$

Conditional Entropy and Mutual Information

Entropy of a random variable X:

$$H(X) = -\sum_{x \in \mathcal{E}} p(x) \log_2 p(x)$$

Conditional Entropy between two random variables X and Y:

$$H(X \mid Y) = -\sum_{x,y \in \mathcal{E}} p(x,y) \log_2 p(x \mid y)$$

► Mutual Information between two random variables X and Y:

$$I(X; Y) = D(p(x, y) || p(x)p(y)) = \sum_{x} \sum_{y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}$$

Adding probabilities is expensive to compute: logadd(x, y) = log(exp(x) + exp(y))

- Adding probabilities is expensive to compute: logadd(x, y) = log(exp(x) + exp(y))
- ► A more efficient soln, let *big* be a large constant e.g. 10³⁰:

```
function logadd(x, y): # returns log(exp(x) + exp(y))
if (y - x) > log(big) return y
elsif (x - y) > log(big) return x
else return
min(x, y) + log(exp(x - min(x, y)) + exp(y - min(x, y)))
endif
```

- Adding probabilities is expensive to compute: logadd(x, y) = log(exp(x) + exp(y))
- ► A more efficient soln, let *big* be a large constant e.g. 10³⁰:

```
function logadd(x, y): # returns log(exp(x) + exp(y))
if (y - x) > log(big) return y
elsif (x - y) > log(big) return x
else return
min(x, y) + log(exp(x - min(x, y)) + exp(y - min(x, y)))
endif
```

► There is a more efficient way of computing log(exp(x - min(x, y)) + exp(y - min(x, y)))

```
function logadd(x, y):
   if (y-x) > \log(big) return y
   elsif (x - y) > \log(big) return x
   elsif (x \ge y) return x + \log(1 + \exp(y - x))
       # note that max(x, y) = x and y - x < 0
   else return y + \log(\exp(x - y) + 1)
       # note that max(x, y) = y and x - y < 0
   endif
Also, in ANSI C, log1p efficiently computes log(1+x)
http://www.ling.ohio-state.edu/~jansche/src/logadd.c
In Python, numpy.logaddexp2(x1,x2) for base 2
```

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael Collins, Chris Dyer, Adam Lopez, and Luke Zettlemoyer from their NLP course materials. All mistakes are my own.