Business Intelligence Lab 3

Task: Descriptive Analysis, Unsupervised Learning – IKEA Case

Objectives:

- Identify essential features of Sweden's municipalities that are relevant for IKEA stores.
- Explore the ikea_kommun_data.txt file and gain insights into the data.
- Transform the data into a suitable format for clustering analysis.
- Reduce the dimensionality of the data to improve the performance of the clustering algorithm.
- Apply the k-means clustering method to discover new places in Sweden that may be suitable for IKEA stores.
- Evaluate the clusters obtained and determine the most promising municipalities for IKEA expansion.
- Visualize the results to gain a better understanding of the clusters and the distribution of the data.
- Provide actionable insights and recommendations for IKEA's expansion strategy based on the findings.

This task is about finding and evaluating clusters that contain data with similar properties.

Your task: is to discover some new places here in Sweden that may be suitable for IKEA department stores. You will do this by using the *k-means* clustering method. You have a text file, <u>ikea kommun data.txt</u>, which contains essential features for many of Sweden's municipalities to aid you in your findings. The English term *municipality* translated to Swedish is *kommun*.

IKEA stores are already available in the following municipalities: Borlänge, Gävle, Göteborg, Haparanda, Helsingborg, Jönköping, Kalmar, Karlstad, Linköping, Malmö, Stockholm, Sundsvall, Uddevalla, Umeå, Uppsala, Västerås, Älmhult, and Örebro. Some of these municipalities are missing in the ikea_data.txt file. The following link shows a map of Sweden's municipalities, https://www.scb.se/contentassets/1e02934987424259b730c5e9a82f

The general steps are data exploration, data transformation, data reduction, and the k-means clustering method.

Data Description:

Column Name	Description
Kommun_code	Unique identifier code for the municipality
Year	Year of data (all entries are for 2010)
Kommun_name	Name of the Swedish municipality
Revenue	IKEA revenue (in unspecified units, likely million SEK) in the municipality
Employee	Number of IKEA employees in the municipality
Population	Total population of the municipality
Population_University	Number of people with university education
Percent_University	Proportion of population with university education (as a decimal)
Productivity	IKEA productivity (Revenue per Employee)
SalesIndex	IKEA Sales Index (likely relative sales performance indicator)
Infrast	Infrastructure indicator (possibly a composite or proxy value)
Border	Binary indicator (1 = border municipality, 0 = not)

Submission:

Upload Yourusername_Lab3.ipynb file(add both the tasks in the same python file).

Main Python libraries to use:

- scikit-learn (a Python library that features various classification, regression, and clustering algorithms) https://scikit-learn.org/stable/
- pandas https://pandas.pydata.org/docs/
- NumPy https://numpy.org/
- Matplotlib https://matplotlib.org/
- seaborn: statistical data visualisation https://seaborn.pydata.org/

[&]quot;You can have data without information, but you cannot have information without data."

[~] Daniel Keys Moran