

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Vietnam - Korea University of Information and Communication Technology

Chương 3

PHÉP TÍNH TÍCH PHÂN CỦA HÀM MỘT BIẾN

ĐÀ NẪNG - 2020

CHUONG 3

3.1 TÍCH PHÂN BẤT ĐỊNH

3.2 TÍCH PHÂN XÁC ĐỊNH

3.3 MỘT SỐ ỨNG DỤNG CỦA TPXĐ

3.4 TÍCH PHÂN SUY RỘNG

3.4 TÍCH PHÂN SUY RỘNG

3.4.1. Tích phân có cận vô hạn (Tp suy rộng loại 1)

+ Nếu f(x) khả tích trên [a, b], \forall b > a thì

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx = F(\infty) - F(a)$$
 (1)

Với F(x) là nguyên hàm của f(x) trên [a, b).

+ Nếu f(x) khả tích trên [a, b], \forall a < b thì

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$
 (2)

ightharpoonup Nếu f(x) khả tích trên [a, b], \forall a, b \in R thì

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$
 (3) (với $c \in R$)

Nếu các kết quả ở (1), (2), (3) là *hữu hạn* thì ta nói tích phân *hội tụ*, ngược lại ta nói tích phân *phân kỳ*.

Tính các tích phân suy rộng sau:

a.
$$\int_{1}^{+\infty} \frac{\mathrm{dx}}{(x+1)^2}$$

b.
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$

$$c. \int_{\sqrt{2}}^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$

b.
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$
d.
$$\int_{1}^{+\infty} e^{-\sqrt{x}} dx$$

3.4.2. Tích phân của hàm không bị chặn trong khoảng lấy tích phân (Tp suy rộng loại 2)

→ Nếu f(x) khả tích trên [a, b) và có $\lim_{x\to b^-} f(x) = \infty$ thì

$$\left| \int_{a}^{b} f(x) dx = \lim_{k \to b^{-}} \int_{a}^{k} f(x) dx = F(b^{-}) - F(a) \right|$$
 (1)

Với F(x) là nguyên hàm của f(x) trên [a, b).

→ Nếu f(x) khả tích trên (a, b] và có $\lim_{x\to a^+} f(x) = \infty$ thì

$$\left| \int_{a}^{b} f(x)dx = \lim_{k \to a^{+}} \int_{k}^{b} f(x)dx = F(b) - F(a^{+}) \right|$$
 (2)

→ Nếu f(x) khả tích trên [a, c) \cup (c, b] và có $\lim_{x\to c} f(x) = \infty$ thì

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (3)

Nếu kết quả ở (1), (2), (3) là số hữu hạn thì ta nói tích phân hội tụ ngược lại ta nói tích phân phân kì.

Tính các tích phân suy rộng sau:

a.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$
 b. $\int_{2}^{3} \frac{dx}{\sqrt{x-2}}$ c. $\int_{0}^{2} \frac{dx}{x-1}$

b.
$$\int_{2}^{3} \frac{dx}{\sqrt{x-2}}$$

c.
$$\int_{0}^{2} \frac{dx}{x-1}$$

Một số tích phân suy rộng đặc biệt

1. Tích phân:
$$\int_{a}^{+\infty} \frac{dx}{x^{\alpha}} (a > 0), \int_{-\infty}^{b} \frac{dx}{x^{\alpha}} (b < 0)$$

Hội tụ khi $\alpha > 1$, phân kỳ khi $\alpha \le 1$

2. Tích phân:
$$\int_{0}^{b} \frac{dx}{x^{\alpha}}, \int_{a}^{0} \frac{dx}{x^{\alpha}}$$

Hội tụ khi $0 < \alpha < 1$, phân kỳ khi $\alpha \ge 1$

Xét các tích phân sau, tích phân nào hội tụ, phân kì?

a.
$$\int_{2}^{+\infty} \frac{\mathrm{dx}}{\mathrm{x}^{3}}$$

$$b. \int_{0}^{1} \frac{dx}{\sqrt[3]{x}}$$

c.
$$\int_{-\infty}^{1} \frac{\mathrm{dx}}{x}$$

3.4.3. Các định lý so sánh của tp suy rộng

Định lí 1:

Giả sử
$$f(x)$$
, $g(x)$ khả tích trên $[a, b]$, $và $\forall x \in [a, +\infty)$: $0 \le f(x) \le g(x)$$

Khi đó:

* Nếu
$$\int_{a}^{+\infty} g(x)dx$$
 hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.
* Nếu $\int_{a}^{+\infty} f(x)dx$ phân kì thì $\int_{a}^{+\infty} g(x)dx$ phân kì

Định lí 2:

Giả sử $f(x) \ge 0$, $g(x) \ge 0$, $\forall x \ge a$, khả tích trên [a, b]

Nếu
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = K$$
 $(0 < K < +\infty)$

thì
$$\int_{a}^{+\infty} f(x) dx$$
 và $\int_{a}^{+\infty} g(x) dx$ cùng hội tụ hoặc phân kì.

Định lí 3:

Nếu
$$\int_{a}^{+\infty} |f(x)| dx$$
 hội tụ thì $\int_{a}^{+\infty} f(x) dx$ hội tụ

Khi đó, ta nói:
$$\int_{-\infty}^{+\infty} f(x) dx$$
 hội tụ tuyệt đối.

Nếu
$$\int_{a}^{+\infty} f(x) dx$$
 hội tụ nhưng $\int_{a}^{+\infty} |f(x)| dx$ phân kì

Khi đó, ta nói:
$$\int_{a}^{+\infty} f(x) dx$$
 bán hội tụ.

xét sự hội tụ của các tích phân suy rộng sau đây:

a.
$$\int_{1}^{+\infty} \frac{\mathrm{dx}}{x^5 + 2x}$$

a.
$$\int_{1}^{+\infty} \frac{dx}{x^5 + 2x}$$
 b. $\int_{0}^{+\infty} \frac{dx}{\sqrt{x + 4} - 1}$

c.
$$\int_{1}^{+\infty} x \left(\cos \frac{1}{x} - 1 \right) dx \qquad d. \int_{1}^{+\infty} \frac{\cos x}{x^2} dx$$

$$d. \int_{1}^{+\infty} \frac{\cos x}{x^2} dx$$