1^a Lista de Exercícios de Circuitos Eletrônicos – Computação – 1^o Semestre de 2018

1- O circuito mostrado na figura abaixo é a representação de um amplificador diferencial com dupla entrada e saída simples. Ele é o circuito de entrada de um amplificador operacional.

Faça o que se pede:

- a) Calcular o valor do resistor R a fim de que a corrente do coletor do transistor Q1 seja de 5 mA.
- b) Calcular a potência dissipada no transistor Q1.
- c) Calcular a tensão de saída do circuito por causa das entradas v1 e v2.
- d) Suponha que ambas as entradas do amplificador diferencial foram sensibilizadas por um sinal de 10 mV na frequência de 60 Hz. Calcular a tensão que aparecerá na saída por causa desse ruído provocado em ambas as entradas do circuito.

Supor: transistores iguais, VBE = 0,7 V, $I_C >> I_B$, $I_C \approx I_E$ e β_{CC} = 250 v_1 = 50 sen (1000 π t) mV, v_2 = 20 sen (1000 π t) mV

- 2- No circuito mostrado na figura abaixo o transistor Q1 tem um β CC de 100 e o transistor Q2 um β CC de 120.
- a) Se as entradas v₁ e v₂ forem aterradas, calcular o valor das correntes cc da base em cada transistor.
- b) Calcular a corrente de compensação da entrada e a corrente de polarização na entrada.

- 3- Uma folha de dados fornece I entrada (polarização) = 300 nA e I entrada (compensação) = 100 nA. Calcular os valores de IB_1 e IB_2 .
- 4- No circuito da figura da questão 2, calcular as seguintes quantidades:
- a) ganho de tensão diferencial.
- b) ganho de tensão do modo comum.
- c) Razão de Rejeição do Modo Comum em decibéis.

Obs: Para os cálculos pedidos considerar que os transistores são iguais, ou seja, $I_C \approx I_E$ e $I_C >> I_B$.

- 5- Se um amplificador diferencial tem uma razão de rejeição para o modo comum de 100 dB e um ganho de tensão diferencial de 300, calcular o valor da tensão de saída que se obtém com uma tensão de entrada para o modo comum de 30 mV.
- 6- O amplificador diferencial é o circuito de entrada do amplificador operacional por isso que o estudo dele é importante para poder compreender o funcionamento do amplificador operacional que é um circuito integrado e não temos acesso a sua estrutura interna.

Faça o que se pede:

- a- Calcular o valor do resistor R_C a fim de que o circuito funcione adequadamente.
- b- Calcular a tensão de saída diferencial e a tensão de saída de modo comum.
- c- Calcular a razão de rejeição do modo comum para o circuito. Expressar em dB.

Dados:

$$V_{BE} = 0.7 \text{ V}; \ V_{CE}(Q_2) = 7.5 \text{ V}; \ v_1 = 50 \text{ mV}; \ v_2 = 20 \text{ mV}; \ v_{(modo\ comum)} = 70 \text{ mV}.$$
 Supor transistores iguais, $I_C >> I_B \ e \ I_C \approx I_E$

- 7- No circuito da figura abaixo considerar que os transistores são iguais, ou seja, $I_C \approx I_E$ e $I_C >> I_B$. Faça o que se pede:
- a) Calcular o ganho de tensão diferencial.
- b) Calcular a impedância de entrada do circuito para um β ca de 100

- 8- No circuito mostrado na figura abaixo faça o que se pede:
- a) Calcular a corrente de cada emissor no circuito da figura abaixo.
- b) Calcular a tensão contínua (V_C) que aparece na saída do circuito.
- c) Calcular o ganho de tensão diferencial do circuito.

Supor transistores iguais, $I_C \gg I_B$, $I_C \approx I_E$ e $V_{BE} = 0.7$ V.

- 9- No circuito mostrado na figura abaixo faça o que se pede:
- a) Identificar o ponto de operação do transistor Q_2 (V_{CE} e I_C).
- b) Calcular o resistor R_E para o circuito da figura abaixo para obter um ganho de tensão diferencial de aproximadamente 150.

Supor transistores iguais, $I_C \gg I_B$, $I_C \approx I_E$ e $V_{BE} = 0.7$ V.

10- O amplificador operacional da figura abaixo tem impedância de entrada de $2M\Omega$, impedância de saída de 75Ω e um ganho de tensão diferencial de 100000. Calcular a tensão aproximada na saída do circuito.

11- Se o ganho de tensão diferencial, no circuito da figura abaixo, for igual a 100000 e a impedância de saída igual a 75 Ω , calcular a tensão de saída.

- 12- Suponha que os sinais de entradas no circuito da questão 12 são alternados, estão na frequência de 100 Hz e que o gráfico mostrado na figura da questão 16 representa a relação ganho versus frequência para o operacional usado na questão. Calcular a tensão de saída nestas condições.
- 13- Um amplificador operacional tem uma taxa de inclinação de 45 V / μ s. Quanto tempo leva a saída para variar de 0 a 18 V?
- 14- O amplificador operacional 741 tem uma taxa de inclinação de 0,5 V / μ s. A tensão de saída senoidal num circuito onde o 741 está sendo usado tem um pico de 10 V. Calcular a máxima frequência obtida na saída do circuito sem que o sinal de saída saia distorcido por causa da taxa de inclinação.
- 15- Observar a figura abaixo para responder as seguintes indagações:
- a) Usar o gráfico para dizer qual o ganho de tensão de malha aberta do amplificador operacional na frequência de 1kHz.
- b) Usar o gráfico para dizer qual a frequência de corte superior de malha aberta para o amplificador operacional
- c) Usar o gráfico para dizer em que frequência o amplificador operacional tem um ganho de malha aberta igual a 100.
- d) Usar o gráfico para comprovar a relação que diz: ganho de tensão x frequência = frequência unitária

