### Introducción al Machine Learning Temas básicos en Álgebra Lineal



### Asistencia

Martes: Presencial

Jueves: Virtual por Zoom

Ambas clases serán grabadas

### Evaluaciones

- EC1 (50%)
  - Semana 5 (40%): Trabajo de investigación
    - Componente grupal (70%)
    - Componente individual (30%)
  - Semana 7 (50%): Examen
  - Continuo (10%): Participación

- EC2 (50%)
  - Semana 12 (30%): Trabajo de investigación
    - Componente grupal (70%)
    - Componente individual (30%)
  - Semana 14 (50%): Examen
  - Semana 15 (20%): Exposición
    - Componente grupal (30%)
    - Componente individual (70%)

| Nota del Curso<br>(100%)  |                 |                           |                           |                 |               |
|---------------------------|-----------------|---------------------------|---------------------------|-----------------|---------------|
| EC1<br>(50%)              |                 |                           | EC2<br>(50%)              |                 |               |
| Trabajo Inv Grup<br>(20%) | Examen<br>(25%) | Particip<br>ación<br>(5%) | Trabajo Inv Grup<br>(15%) | Examen<br>(25%) | Expo<br>(10%) |

# Datos de Contacto



<u>Maria Maria Mania Maria Maria Mania Mari</u>



mensajes en BlackBoard



© martes 3pm-4pm





### Definición Formal

 Según Mitchell (1997) "Un programa de computador se dice que aprende de la experiencia E con respecto a una clase de tarea T y con una medida de rendimiento P, si su rendimiento en la tarea T, medido por P, mejora con la experiencia E"



Fuente: https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55

### Aplicaciones Prácticas



Agrupar clientes por el comportamiento de compra



Gente que compra X producto también compra producto Y



Análisis de lenguaje (acentos, pronunciación)



Detección de transacciones fraudulentas



### Tipos de ML



Supervisado

Predicción y etiquetado



No Supervisado

Identifica clústeres



Reforzado

Aprende de errores

### Aprendizaje Supervisado

• Algoritmos que aprenden, en base a ejemplos, una función que relaciona entradas a salidas.



Regresión



Redes Neuronales



Árboles de Decisión



**SVM** 

### Aprendizaje Supervisado



### Aplicaciones



Reconocimiento de Objetos



Tiempo de viaje



¿Más ejemplos?

### Aprendizaje No Supervisado

- No existe etiqueta de salida
- El objetivo es descubrir relaciones entre la data existente



Clasificación

Reducción de dimensiones

### Aprendizaje No Supervisado



### Aprendizaje No Supervisado



### Aplicaciones







¿Más ejemplos?

# entorno mediante acciones

## Aprendizaje Reforzado

El algoritmo recibe una recompensa que depende de las acciones

El algoritmo interactúa con el

El objetivo del algoritmo es maximizar la recompensa acumulada



Fuente: https://arxiv.org/abs/1812.04948

## Aprendizaje Reforzado





# Trabajemos

Buscar 3 ejemplos adicionales de los 3 tipos de ML que hay



Fuente: https://7wdata.be/visualization/types-of-machine-learning-algorithms-2/

### Repasemos

- Predecir el precio de una casa dado el área y número de habitaciones
- Indicar si una imagen es un perro o un gato
- Encontrar segmentos de clientes
- Tengo muchos atributos y quiero ver cuáles son los más relevantes



- Identifica patrones complejos
- Manejo de datos complejos
- Automatización
- Mejora continua

### Desventajas 👇

- Data
- Tiempo
- Interpretabilidad
- Susceptible a errores

### Notas



Problemas bien definidos

Data, Data, Data!

Las matemáticas son inevitables



### Las matemáticas son inevitables





Álgebra Lineal

- Matrices
- Vectores



Estadística



Cálculo

Derivadas





|    | <b>←</b> | 12 atributos |                 |          |       |
|----|----------|--------------|-----------------|----------|-------|
|    | x1       | y            | <b>x</b> 2      | x3       | x4    |
|    | sqft     | price        | City            | bedrooms | baths |
|    | 3392     | 339000       | Dublin          | 3        | 2.1   |
|    | 4100     | 899900       | pleasanton      | 4        | 3     |
|    | 3200     | 448641       | Clayton         | 5        | 4     |
|    | 1436     | 239999       | Moraga          | 4        | 3     |
| ıs | 1944     | 377500       | Antioch         | 3        | 2     |
|    | 1500     | 299900       | Danville        | 3        | 2.5   |
|    | 1700     | 265000       | El Dorado Hills | 4        | 3     |
|    | 2507     | 449000       | Shingle Springs | 4        | 3     |
|    | 1580     | 439950       | McKinleyville   | 3        | 2     |
|    | 1500     | 699888       | Marina          | 4        | 2     |
|    | 2705     | 1250000      | Roseville       | 3        | 2     |
|    | 1715     | 439000       | Rocklin         | 4        | 3     |

- $x_i$  son los atributos
- y variable de salida



- $x^{(i)}$  variables de entrada o *input feature*
- $y^{(i)}$  función de salida, target variable
- x<sub>j</sub><sup>i</sup> dato de
  entrenamiento, donde
  i es el *feature* y j es un
  registro en particular.

| x1           | y                 | x2                                 | x3       | x4       |
|--------------|-------------------|------------------------------------|----------|----------|
| sqft         | price             | -                                  | bedrooms | baths    |
| 3392<br>4100 | 339000<br>899900  | Dublin<br>pleasanton               | 3<br>4   | 2.1<br>3 |
| 3200<br>1436 | 448641<br>239999  | Clayton<br>Moraga                  | 5<br>4   | 4<br>3   |
| 1944<br>1500 | 377500<br>299900  | Antioch<br>Danville                | 3<br>3   | 2<br>2.5 |
| 1700<br>2507 | 265000<br>449000  | El Dorado Hills<br>Shingle Springs | _        | 3        |
| 1580         | 439950            | McKinleyville                      | 3        | 2        |
| 1500<br>2705 | 699888<br>1250000 | Marina<br>Roseville                | 4<br>3   | 2<br>2   |
| 1715         | 439000            | Rocklin                            | 4        | 3        |

a) Una variable del tipo  $x_{ij}$  indicaría el valor del *feature i* para la observación j; es decir:

$$i = 1, 2, ..., p$$
  
 $j = 1, 2, ..., n$ 

Donde n es el total de casas (5000) y p es la cantidad de attributos (12)

En forma de una matriz  $X_{np}$ 

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

#### b) Cuando se requiere filas:

$$x_1, x_2, \ldots, x_n$$

$$oldsymbol{x}_i = egin{bmatrix} x_{i1} \ x_{i2} \ dots \ x_{ip} \end{bmatrix}$$

c) A veces se requiere

columnas:  $x_1, x_2, \dots, x_p$ 

$$\boldsymbol{x}_{j} = \begin{bmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{bmatrix}$$

Es un vector de longitud p

Es un vector de longitud n

d) Vector de vectores

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_p \end{bmatrix}$$

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \boldsymbol{x}_2^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix}$$

## Resumiendo

|          | sqft | City            | bedrooms | baths | price   |
|----------|------|-----------------|----------|-------|---------|
| $\chi_i$ | 3392 | Dublin          | 3        | 2.1   | 339000  |
|          | 4100 | pleasanton      | 4        | 3     | 899900  |
|          | 3200 | Clayton         | 5        | 4     | 448641  |
|          | 1436 | Moraga          | 4        | 3     | 239999  |
|          | 1944 | Antioch         | 3        | 2     | 377500  |
|          | 1500 | Danville        | 3        | 2.5   | 299900  |
|          | 1700 | El Dorado Hills | 4        | 3     | 265000  |
|          | 2507 | Shingle Springs | 4        | 3     | 449000  |
|          | 1580 | McKinleyville   | 3        | 2     | 439950  |
|          | 1500 | Marina          | 4        | 2     | 699888  |
|          | 2705 | Roseville       | 3        | 2     | 1250000 |
|          | 1715 | Rocklin         | 4        | 3     | 439000  |

### Resumiendo

b) c) d) 
$$x_1 = x_2$$
 ... 
$$x_p$$
 bedrooms baths 
$$x_i = \begin{array}{c} 3392 \\ \text{Dublin} \\ 3 \\ 2.1 \end{array}$$
 and 
$$x_j = \begin{array}{c} 3392 \\ 4100 \\ 1436 \\ 1500 \end{array}$$
 
$$x_j = \begin{array}{c} 1944 \\ 1500 \\ 2507 \\ 1580 \\ 2705 \\ 1715 \end{array}$$
 
$$X = \begin{bmatrix} x_1 \\ 3392 \\ 4100 \\ 3200 \\ 1436 \\ 1944 \\ 1500 \end{bmatrix}$$
 Dublin pleasanton of the control o



Vectores

### Video Recomendado

https://www.youtube.com/watch?v=wiuEEkP\_XuM

### Vectores



$$d = \sqrt{3^2 + (-4)^2} = 5$$

- Magnitud
- Dirección



(gráfica tomada de http://tutorial.math.lamar.edu/Classes/CalcII/Vectors\_Basics.aspx)

## Norma o longitud de un vector

Si tenemos un vector  $\vec{v} = \langle x_1, x_2, x_3 \rangle$  entonces su longitud estará dada por:

$$||\vec{v}|| = \sqrt{v_0^2 + v_1^2 + v_3^2}$$



### Vector unitario

- Es cualquier vector cuya magnitud es igual a 1, es decir ||x||=1.
- Notación acerca de los vectores: Algunos textos suelen representar a los vectores o matrices mediante el siguiente símbolo  $\vec{v}$  o  $\bf v$



$$\mathbf{a} = 2\,\hat{x} + 1.3\,\hat{y}$$

#### Suma de Vectores

Si se tienen dos vectores:

$$\mathbf{x} = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}$$
,  $\mathbf{y} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$ , entonces su suma estará dada por:

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_0 + y_0 \\ x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}$$

De forma geométrica tendríamos:



(gráfica tomada de http://tutorial.math.lamar.edu/Classes/CalcII/Vectors Basics.aspx)

Se puede multiplicar un vector  $\mathbf{x}$  por un número cualquiera  $\mathbf{u}$  denominado escalar, es decir:

$$u * \vec{x}$$

• Encontrar un vector unitario que apunte en la misma dirección de  $\vec{w} = \begin{pmatrix} -5 \\ 2 \\ 1 \end{pmatrix}$ 



- **Solución**: Lo que necesitamos es hallar un vector cualquiera que sea paralelo a  $\vec{w}$ .
- Esto se puede obtener al multiplicar nuestro vector original por un escalar
- $\vec{u} = \vec{w}$ , donde u es un vector unitario
- $\vec{u} = \alpha \vec{w}$ , podemos multiplicar por un escalar, el cual puede tomar la siguiente forma:

$$\overrightarrow{u} = \frac{1}{||w||}\overrightarrow{w}$$

Concepto básico usado en SVM

• 
$$u = \begin{pmatrix} -5 \\ 2 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{(-5)^2 + 2^2 + 1^2}}$$

$$\bullet = \begin{pmatrix} -5\\2\\1 \end{pmatrix} \cdot \frac{1}{\sqrt{30}} = \begin{pmatrix} \frac{-5}{\sqrt{30}}\\\frac{2}{\sqrt{30}}\\\frac{1}{\sqrt{30}} \end{pmatrix}$$

• 
$$\vec{u} = \sqrt{\left(\frac{-5}{\sqrt{30}}\right)^2 + \left(\frac{2}{\sqrt{30}}\right)^2 + \left(\frac{1}{\sqrt{30}}\right)^2} = 1$$

$$\overrightarrow{u} = \frac{1}{||w||} \overrightarrow{w}$$

### Transpuesta de un vector

 La transpuesta de un vector columna v consiste en convertirlo en un vector fila con los mismos componentes

$$m{x} = egin{pmatrix} x_1 \ x_2 \ x_3 \ dots \ x_n \end{pmatrix}$$
, entonces  $m{x^T} = (x_1 x_2 & ... & x_n)$ 

Importante: Esta sección y las siguientes se utiliza en todo lo que es manipulación de datos.

# Producto punto

• Si tenemos dos vectores  $x = (x_1, x_2, x_3)$ ,  $y = (y_1, y_2, y_3)$ , entonces su producto punto o dot product estará dado por:

$$\mathbf{x}.\,\mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

$$x. y = x_1 y_1 + x_2 y_2 + x_3 y_3$$

## Algunos Ejercicios

- $\vec{a} = [1, 2, 8]$
- b = [-5, 10, 0]
- c = [7, -1, 11]

- Calcular:
- La norma
- El vector unitario de cada uno

• 
$$\vec{a} + \vec{b}$$

• 
$$\vec{a} - \vec{b} + \vec{c}$$

• 
$$-7\vec{a} + 1.3\vec{b} - 3.7\vec{c}$$

#### Referencias

- 1. Paul's Online Math Notes, disponible en: <a href="http://tutorial.math.lamar.edu/Classes/CalcII/VectorArithmetic.aspx">http://tutorial.math.lamar.edu/Classes/CalcII/VectorArithmetic.aspx</a> (estos apuntes son especialmente útiles en caso no recuerde temas de matemática básica o de cálculo en todos los niveles)
- 2. Poole, D. (2003). Linear algebra: A modern introduction. Australia: Brooks/Cole-Thomson Learning.
- 3. Strogatz, S. H. (1994). Nonlinear dynamics and Chaos: With applications to physics, biology, chemistry, and engineering. Reading, MA: Addison-Wesley Pub. (este autor hace una explicación bastante interesante de la utilidad del cálculo de los eigenvalues y eigenvectors para casos de Dinámicas no lineales)
- 4. Williams, G., & Williams, G. (1984). Linear algebra with applications. Boston: Allyn and Bacon.
- 5. Tan, P., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston: Pearson Addison Wesley.
- 6. Müller, Andreas & Guido, Sara (2017). Introduction to Machine Learning with Python.
- 7. Hastie, T., Tibshirani, R.,, Friedman, J. (2001). The Elements of Statistical Learning. New York, NY, USA: Springer New York Inc.
- 8. James, G., Witten, D., Hastie, T.,, Tibshirani, R. (2013). An Introduction to Statistical Learning -- with Applications in R (Vol. 103). New York: Springer. ISBN: 978-1-4614-7137-0