

Адаптация изображений аншлифов, полученных в разных условиях съемки, в задаче сегментации минералов

Индычко Олеся Игоревна

https://imaging.cs.msu.ru/

Laboratory of Mathematics Methods of Image Processing
Department of Computational Mathematics and Cybernetics
Lomonosov Moscow State University

Аншлиф – образец горной породы, поверхность которого пришлифована и отполирована для изучения в отраженном свете под поляризационным микроскопом.

Примеры аншлифов из датасета LumenStone

Основная задача компьютерного зрения – автоматическая сегментация минералов.

Аншлиф и наложенная поверх него маска

Сложность задачи автоматической сегментации:

> Трудоемкий сбор размеченных данных для обучения

Сложность задачи автоматической сегментации:

- > Трудоемкий сбор размеченных данных для обучения
- Обучение на небольшом количестве изображений, полученных в схожих условиях освещения и оборудования

Сложность задачи автоматической сегментации:

- > Трудоемкий сбор размеченных данных для обучения
- Обучение на небольшом количестве изображений, полученных в схожих условиях освещения и оборудования
- Нестабильная работа алгоритма на изображениях, сильно отличающихся от обучающей выборки

Сложность задачи автоматической сегментации:

- > Трудоемкий сбор размеченных данных для обучения
- Обучение на небольшом количестве изображений, полученных в схожих условиях освещения и оборудования
- Нестабильная работа алгоритма на изображениях, сильно отличающихся от обучающей выборки

Изображения одного и того же аншлифа, полученные в разных условиях съемки

Что хотим:

 Использовать алгоритм автоматической сегментации на всех изображениях аншлифов и не зависимо от условий съемки получать хороший результат

Изображения одного и того же аншлифа, полученные в разных условиях съемки

Что хотим:

 Использовать алгоритм автоматической сегментации на всех изображениях аншлифов и не зависимо от условий съемки получать хороший результат

Как этого можно добиться:

 Предобработка входных изображений – адаптация под цвето-яркостные характеристики обучающей выборки

Изображения одного и того же аншлифа, полученные в разных условиях съемки

Разработать **алгоритм приведения изображений аншлифов**, полученных с разных микроскопов, камер и сделанных при разных условиях съемки, **к референсному виду** изображений (т.е. тех, на которых обучался алгоритм сегментации).

Алгоритм приведения изображений аншлифов к референсному виду изображений (т.е. тех, на которых обучался алгоритм сегментации).

Предположим, что изображения обучающей выборки имели следующий вид:

Входное изображение

Изображение, преобразованное к референсному виду

Входное изображение

Изображение, преобразованное к референсному виду

Входное изображение

Изображение, преобразованное к референсному виду

Входное изображение

Изображение, преобразованное к референсному виду

План работы

- 1. Получение **датасета**, содержащего размеченные референсные изображения и вариации этих изображений в различных условиях съемки
- 2. Разработка алгоритма, реализующего
 - совмещение изображения с референсным,
 - приведение цветовых распределений изображения к референсному
- 3. Адаптация алгоритма для software калибровки
- 4. Адаптация алгоритма для **hardware калибровки**

Используемые данные

Датасет LumenStone, содержащий размеченные референсные изображения и вариации этих изображений в различных условиях съемки.

Референсное изображение и его семантическая маска сегментации

Вариации изображения в различных условиях съемки

Подаем на вход:

Подаем на вход:

Идея – совместить гистограммы изображений

Подаем на вход:

Работает!

Source Reference Matched

White the second s

skimage.exposure.match_histograms(image, ...)

Совмещение гистограмм

Изображения с предыдущего шага:

Идея – попиксельное сравнение изображений

Изображения с предыдущего шага:

П Совмещаем изображения:

Изображения с предыдущего шага:

Попиксельно сравниваем:

Попиксельное сравнение изображений

Результат:

Референсное изображение:

Метрика качества работы алгоритма

Референсное изображение:

Метрика качества работы алгоритма

Референсное изображение:

Входное изображение:

Метрика качества работы алгоритма

Референсное изображение:

Что нужно улучшить в алгоритме?

Схема работы алгоритма адаптации сейчас:

Что нужно улучшить в алгоритме?

Схема работы алгоритма адаптации сейчас:

Что нужно улучшить в алгоритме?

Схема работы алгоритма адаптации сейчас:

Слишком дорого, будем от этого избавляться!

План работы

1. Получение **датасета**, содержащего размеченные референсные изображения и вариации этих изображений в различных условиях съемки

- 2. Разработка алгоритма, реализующего
 - совмещение изображения с референсным,
 - приведение цветовых распределений изображения к референсному
- 3. Адаптация алгоритма для software калибровки

Software калибровка

1. Пользователь делает несколько снимков аншлифов, на которых присутствуют распространенные минералы

Software калибровка

1. Пользователь делает несколько снимков аншлифов, на которых присутствуют распространенные минералы

2. Пользователь штрихами или точками наносит разметку некоторых материалов

План работы

- V
- 1. Получение **датасета**, содержащего размеченные референсные изображения и вариации этих изображений в различных условиях съемки
- V
- 2. Разработка алгоритма, реализующего
 - совмещение изображения с референсным,
 - приведение цветовых распределений изображения к референсному
- V
- 3. Адаптация алгоритма для software калибровки
- 4. Адаптация алгоритма для **hardware калибровки**

Hardware калибровка

Изготавливается набор **одинаковых** образцов с вкраплениями минералов

Изображения аншлифов изготовленных образцов размечаются

Hardware калибровка

Зная форму вкраплений, алгоритм адаптации **самостоятельно** распознает минералы на снимке аншлифа в новых условиях и «откалибруется»

Перед сбором данных, делаем снимки изготовленных образцов в текущих условиях съемки

План работы

- V
 - 1. Получение **датасета**, содержащего размеченные референсные изображения и вариации этих изображений в различных условиях съемки
- V
- 2. Разработка алгоритма, реализующего
 - совмещение изображения с референсным,
 - приведение цветовых распределений изображения к референсному
- V
- 3. Адаптация алгоритма для software калибровки
- V
- 4. Адаптация алгоритма для hardware калибровки

... to be continued

Спасибо за внимание!

