# MPSS.JO.1.0 RF Frontend Software Overview

# **O**LIALCOMM<sup>®</sup>

Qualcomm Technologies, Inc.

80-NT093-16 A

 ${\bf Confidential\ and\ Proprietary-Qualcomm\ Technologies, Inc.}$ 

**Restricted Distribution:** Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.



## Confidential and Proprietary – Qualcomm Technologies, Inc.

2018.03-1820nuadin.com

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: <a href="mailto:DocCtrlAgent@qualcomm.com">DocCtrlAgent@qualcomm.com</a>.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2015 Qualcomm Technologies, Inc. All rights reserved.

# **Revision History**

| Revision | Date     | Description     |
|----------|----------|-----------------|
| А        | Feb 2015 | Initial release |

## **Contents**

- MSM8909 Overview
- MPSS.JO.1.0 (JO.1.0) RF Cards and RFFE Design Overview

Confidential and Proprietary - Qualcomm Technologies, Inc.

- JO.1.0 RFC Overview
- JO.1.0 RFC Structure
- JO.1.0 RFFE Structures
- References
- Questions?

**MSM8909 Overview** 



## MSM8916/MSM8909







## **MSM8909 Feature Set**

|                    | MSM8909                                                                                |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Process technology | 28 nm                                                                                  |  |  |  |  |
| Package            | 12 mm x 11.1 mm non-PoP                                                                |  |  |  |  |
| CPU                | Quad Core ARM A7 upto 1.1 GHz                                                          |  |  |  |  |
| Memory             | 1x533 MHz LPDDR2/3 eMCP and nMCP memory packages                                       |  |  |  |  |
| Modem              | "Jolokia" modem<br>LTE Cat 4, 2x10 MHz CA, HSPA+ 42/11,<br>1xAdv, DOrA, TD-SCDMA, DSDS |  |  |  |  |
| RF WTR4905/WTR4605 |                                                                                        |  |  |  |  |
| PMIC               | PM8909                                                                                 |  |  |  |  |
| Application DSP    | Shared with Modem QDSP6                                                                |  |  |  |  |
| Bluetooth/WLAN/FM  | WCN3610                                                                                |  |  |  |  |
| USB/Miscellaneous  | 1xUSB2.0                                                                               |  |  |  |  |

# MSM8909 Feature Set (cont.)

|          |                          | MSM8909                                            |  |  |  |
|----------|--------------------------|----------------------------------------------------|--|--|--|
| Craphics | GPU                      | Adreno 304 @ 400 MHz                               |  |  |  |
| Graphics | APIs                     | OpenGL ES 1.1/2.0/3.0, OpenCL1.1e, DX9.3           |  |  |  |
| Display  | Resolution               | HD 720p @ 60 fps performance                       |  |  |  |
| Display  | Interface                | 1xDSI 4-lane                                       |  |  |  |
|          |                          | Single ISP, 8 MP                                   |  |  |  |
| Camera   | Performance<br>Interface | 1X CSI: 2+1 lane, 1.5 Gbps/lane                    |  |  |  |
| Video    | Decode                   | 1080p30: HEVC/H.264/MP4/DivX/VP8<br>WVGA30: H.263  |  |  |  |
| video    | Encode                   | 720p30:H.264<br>WVGA30: VP8/MP4                    |  |  |  |
|          | Analog                   | Integrated Codec; I2S                              |  |  |  |
| Audio    | Audio                    | HD Audio; 16 bit/48 kHz; SVA;<br>Snapdragon Audio+ |  |  |  |
|          | Voice                    | Fluence™; Snapdragon Voice+                        |  |  |  |
| Location |                          | Gen 8C feather (GPS, Galileo, Glonass and BeiDou)  |  |  |  |

# MSM8909 Block Diagram



## **RF Features**

- Rx SAW-less for GSM and TDSCDMA
- ASDiv
- No Tx SAW required for majority of bands
- Support for intra and inter-band CA
- Support for APT, APT+DPD (No ET support)
- MSM8909 LA 1.0 supports WTR4905 RFIC
- MSM8909 LA 1.1 supports WTR4905 and WTR4605 RFIC
- Supports Qualcomm RF360 Front-End
  - QFE2340/QFE2320/QFE3320/QFE1040 Power Amplifiers/ASM (PA/ASM)
  - QFE2520/QFE2550 antenna tuners
  - QFE2101 Power Amplifier Power Management (PAPM)
- Mobile Industry Processor Interface (MIPI) RF Front-End (RFFE) interface support
  - 5 MIPI RFFE buses

Note: No support for SVLTE, SGLTE, SGTDS and DSDA

# MPSS.JO.1.0 (JO.1.0) RF Cards and RFFE Design Overview



## WTR4905 RF Card List

## MSM8909 LA 1.0

| RF Card – MTP              | Hardware<br>ID | Available time                | Reference schematic |
|----------------------------|----------------|-------------------------------|---------------------|
| RFC_WTR4905_CHILE_SRLTE_V2 | 32             | Available in current software | 80-NL713-48         |

Note: For the designs which need to use other RF cards, refer MSM8909 LA 1.1 baseline

# WTR4905 RF Card List (cont.)

## MSM8909 LA 1.1

| RF Card – MTP              | Hardware ID | Available time                | Reference schematic |
|----------------------------|-------------|-------------------------------|---------------------|
| RFC_WTR4905_CHILE_SRLTE_V2 | 32          | Available in current software | 80-NL713-48         |
| RFC_WTR4905_NON_CA         | 31          | MPSS FC Jan end               | 80-NL713-43         |
| RFC_WTR4905_JAPAN_V2       | 37 3        | MPSS FC Jan end               | 80-NL713-46         |
| RFC_WTR4905_NA_DLCA        | 190         | MPSS FC Jan end               | 80-NL713-49         |
| RFC_WTR4905_CHILE_3G       | 43          | MPSS FC Jan end               | TBD                 |

## For GSM/TD-SCDMA Sawless Rx design, refer to CHINA\_CMCC\_3M QRD card

| RF Card – QRD             | Hardware ID |
|---------------------------|-------------|
| RFC_WTR4905_CHINA_CMCC_3M | 56          |
| RFC_WTR4905_CHINA_CU_4M   | 57          |
| RFC_WTR4905_CHINA_CT_4M   | 58          |
| RFC_WTR4905_AMX           | 59          |
| RFC_WTR4905_OM            | 60          |

# RFC\_WTR4905\_CHILE\_SRLTE\_V2

- Supported band
  - GSM G850, G900, G1800, G1900, GSM
  - CDMA BC0, BC1, BC6
  - WCDMA B1, B2, B3, B4, B5, B8
  - LTE B1, B2, B3, B4, B5, B7, B8, B17, B20, B26, B28, B38, B39, B40, B41
  - TDSCDMA B34, B39
- QFE devices
  - QFE2101, QFE2340, QFE2320, QFE2520
- Features
  - GSM diversity

# RFC\_WTR4905\_NON\_CA

- Supported band
  - GSM G850, G900, G1800, G1900
  - CDMA BC0
  - WCDMA B1, B2, B5, B8
  - LTE B1, B3, B4, B7, B17, B20, B26, B28, B38, B39, B40, B41
  - TDSCDMA B34, B39
- QFE devices
  - QFE2101, QFE2340, QFE3320, QFE2550

## RFC\_WTR4905\_JAPAN\_V2

- Supported band
  - GSM G850, G900, G1800, G1900
  - CDMA BC0, BC1, BC6, BC10
  - WCDMA B1, B2, B3, B5, B6, B8, B9, B11, B19
  - LTE B1, B2, B3, B5, B8, B9, B11, B18, B19, B21, B25, B26, B28, B41
- QFE devices
  - QFE2101, QFE3320, QFE2520
- Features
  - GSM diversity

## RFC WTR4905 NA DLCA

## 2DLCA RF card using 2\*WTR4905

- Supported band
  - GSM G850, G900, G1800, G1900
  - CDMA BC0, BC1, BC6, BC10, BC15
  - WCDMA B1, B2, B4, B5, B8
  - LTE B1, B2, B4, B5, B7, B8, B10, B12, B13, B17, B23, B25, B26, B29, B30, B41
- Supported CA
  - 12+30, 17+30, 2+13, 2+17, 2+29, 2+30, 2+4, 4+12, 4+13, 4+17, 4+29, 4+30, 4+5, 5+30
- QFE devices
  - QFE2101, QFE3320, QFE2340, QFE2550, QFE1040
- **Features** 
  - 2DLCA

# RFC\_WTR4605\_CHILE\_3G

#### WTR4605 RF card

- Supported band
  - GSM G850, G900, G1800, G1900, GSM
  - CDMA BC0, BC1, BC6
  - WCDMA B1, B2, B3, B4, B5, B8
  - TDSCDMA B34, B39
- QFE devices
  - QFE2101, QFE2320, QFE2520
- Features
  - WTR4905 for 3G-only
  - GSM diversity

Note: WTR4905 is enabled for 3G only, and is not enabled for LTE.

## Non-POR Overview

- The RF cards listed in previous slides are Plan of Record (POR). For customer who does not use those cards needs non-POR support.
- Non-POR feature request process as shown below:



# **Non-POR Customer Information Template**

- Project information
  - Base RF card
  - Supported carrier and bands
- Port-mapping
- GPIO table
- RFFE device list

# **Non-POR Customer Information Template (cont.)**

| General Information  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|
| Based RF Card        |  |  |  |  |  |  |
| Supported bands      |  |  |  |  |  |  |
| Design review case # |  |  |  |  |  |  |
| SW baseline          |  |  |  |  |  |  |
| Project plan         |  |  |  |  |  |  |

| Signal Name     | Function | GPIO#  | GRFC# |
|-----------------|----------|--------|-------|
| PA_ON0          |          |        |       |
| PA_ON1          |          |        |       |
| PA_ON2          |          |        |       |
| PA_ON3          |          |        |       |
| PA_ON4          |          |        |       |
| PA_ON5          |          |        |       |
|                 |          |        |       |
| RF_ON0          |          |        |       |
| RF_ON1          |          |        |       |
| RX_ON0          |          |        |       |
| RX_ON1          |          |        |       |
| PA0_RANGE0      |          |        |       |
| PA0_RANGE1      |          |        |       |
| PA1_RANGE0      |          |        |       |
| PA1_RANGE1      |          |        | - (   |
| I A CHMINOLI    |          |        |       |
| ANT_SW_SEL4     |          |        | 3     |
| BC1_SW_SEL1     |          | - (    | 37 /  |
| DRX_SWITCH_SELO |          | 12.1   | 0     |
|                 |          | 100    | 0/17  |
| DRX_SWITCH_SEL1 |          | $\sim$ | 0     |
| PRX_SWITCH_SELO |          | 2      | 77.   |
| PRX_SWITCH_SEL1 | ₹        | -0/1   | -     |
| 1X_MRD_BC0_BC1  |          | 6      |       |
| 1X_MRD_IQ_SWSEL |          |        |       |
|                 |          |        |       |
| TX_GTR_THRES    |          |        |       |
| PA_INDICATOR    |          |        |       |
|                 |          |        |       |
| GSM_TX_PHASE_D  |          |        |       |
| GSM_TX_PHASE_D  |          |        |       |
| GSM_TX_PHASE_D  | [2]      |        |       |
|                 |          |        |       |
| LTE_ACTIVE      |          |        |       |
| LTE_SYNC        |          |        |       |
|                 |          |        |       |
| WCN_PRIORITY    |          |        |       |
| SSBI1_RTR0      |          |        |       |
| SSBI2_RTR0      |          |        |       |
| SSBI1_RTR1      |          |        |       |
| SSBI2_RTR1      |          |        |       |
|                 |          |        |       |
| RFFE1_CLK       |          |        |       |
| RFFE1_DATA      |          |        |       |
| RFFE2_CLK       |          |        |       |
| RFFE2_DATA      |          |        |       |
| HSIC_STROBE     |          |        |       |
| HSIC_DATA       |          |        |       |
|                 |          |        |       |
| GPS_EXT_LNA_EN  |          |        |       |
| GPS_TX_AGGRESS  | con      |        |       |
|                 | DUR      |        |       |

|         |   |   | Non- | POR |     |        |            |          |
|---------|---|---|------|-----|-----|--------|------------|----------|
| RF port |   |   |      |     |     |        | <- Support | ed bands |
|         | G | С | W    | L   | TDS | TD-LTE |            |          |
| TX_DA1  |   |   |      |     |     |        |            |          |
| TX_DA2  |   |   |      |     |     |        |            |          |
| TX_DA3  |   |   |      |     |     |        |            |          |
| TX_DA4  |   |   |      |     |     |        |            |          |
| TX_DA5  |   |   |      |     |     |        |            |          |
|         |   |   |      |     |     |        |            |          |
| PRX_LB1 |   |   |      |     |     |        |            |          |
| PRX_LB2 |   |   |      |     |     |        |            |          |
| PRX_LB3 |   |   |      |     |     |        |            |          |
| PRX_MB1 |   |   |      |     |     |        |            |          |
| PRX_MB2 |   |   |      |     |     |        |            |          |
| PRX_MB3 |   |   |      |     |     |        |            |          |
| PRX_HB1 |   |   |      |     |     |        |            |          |
| PRX_HB2 |   |   |      |     |     |        |            |          |
|         |   |   |      |     |     |        |            |          |
| DRX_LB1 |   |   |      |     |     |        |            |          |
| DRX_LB2 |   |   |      |     |     |        |            |          |
| DRX_LB3 |   |   |      |     |     |        |            |          |
| DRX_MB1 |   |   |      |     |     |        |            |          |
| DRX_MB2 |   |   |      |     |     |        |            |          |
| DRX_HB1 |   |   |      |     |     |        |            |          |
| DRX_HB2 |   |   |      |     |     |        |            |          |

| RX0   | MIPI/GRFC | Manufacturer | Part Number | CHANNEL | PID | MID | USID |
|-------|-----------|--------------|-------------|---------|-----|-----|------|
| ASM   |           |              |             |         |     |     |      |
| TUNER |           |              |             |         |     |     |      |
|       |           |              |             |         |     |     |      |
| RX1   | MIPI/GRFC | Manufacturer | Part Number | CHANNEL | PID | MID | USID |
| ASM   |           |              |             |         |     |     |      |
| TUNER |           |              |             |         |     |     |      |
|       |           |              |             |         |     |     |      |
| TX0   | MIPI/GRFC | Manufacturer | Part Number | CHANNEL | PID | MID | USID |
| НСРА  |           |              |             |         |     |     |      |
| PAPM  |           |              |             |         |     |     |      |
| ASM   |           |              |             |         |     |     |      |
| HDET  |           |              |             |         |     |     |      |
| THERM |           |              |             |         |     |     |      |
|       |           |              |             |         |     |     |      |
| TX0   | MIPI/GRFC | Manufacturer | Part Number | CHANNEL | PID | MID | USID |
| НСРА  |           |              |             |         |     |     |      |
| PAPM  |           |              |             |         |     |     |      |
| ASM   |           |              |             |         |     |     |      |
| HDET  |           |              |             |         |     |     |      |
| THERM |           |              |             |         |     |     |      |

# **Non-POR Application Note**

- Port-mapping changes
- Static NV file changes
- Calibration sequence changes

2018-03-18-20-13-14-Lorn

## **Non-POR Application Note (cont.)**





#### 8CH\_BC1\_0019 MSM8909+WTR4905 Add CDMA BC1 to CHINA

Application Note

80-NR417-1 A

November 12, 2014

Submit technical questions at: https://support.cdmatech.com/

#### 2.3 Code changes

If you are viewing this document using a color monitor, or if you print this document to a color printer, **red boldface** indicates code that is to be **added**, and **blue strikethrough** indicates code that is to be replaced or removed.

#### 2.3.1 Add CDMA BC1 port configurations

File: rfc\_wtr4905\_china\_cdma\_config\_data\_ag.c
Add the following code in the file to map the ports:

#### 2.1 Port mapping

The new design (non-POR) is based on the CHINA configuration (shown on the left side of Table 2-1).

Table 2-1 Port mapping comparison

|         | WTR4905_CHINA |    |           |                                      |         |                 | Non-POR   |     |           |                                |          |
|---------|---------------|----|-----------|--------------------------------------|---------|-----------------|-----------|-----|-----------|--------------------------------|----------|
| RFport  | QB            | 0  | 1,2,4,5,8 | 1,2,3,4,5,7<br>,8,17,20,2<br>6,27,28 | 34,39   | 38,39,40,<br>41 | QB        | 0,1 | 1,2,4,5,8 | 1,2,3,4,5,7<br>,8,17,20,2<br>8 | 38,40,41 |
|         | G             | С  | W         | L                                    | TDS     | TD-LTE          | G         | С   | W         | L                              | TD-LTE   |
| TX_DA1  | 1800,1900     |    | 1,2,4     | 1,2,3,4                              | 34,39   | 39              | 1800,1900 | 1   | 1,2,4     | 1,2,3,4                        |          |
| TX_DA2  | 850,900       | 0  | 5,8       | 5,8,20,26,<br>27                     |         |                 | 850,900   | 0   | 5,8       | 5,8,20                         |          |
| TX_DA3  |               |    |           | 7                                    |         | 38,40,41        |           |     |           | 7                              | 38,40,41 |
| TX_DA4  |               |    |           | 17,28                                |         |                 |           |     |           | 17,28                          |          |
| TX_DA5  |               |    |           |                                      |         |                 |           |     |           |                                |          |
|         |               |    |           |                                      |         |                 |           |     |           |                                |          |
| PRX_LB1 |               |    |           | 17,20,28                             |         |                 |           |     |           | 17,20,28                       |          |
| PRX_LB2 | 900           |    | 8         | 8                                    |         |                 | 900       |     | 8         | 8                              |          |
| PRX_LB3 | 850           | 0  | 5         | 5,26,27                              |         |                 | 850       | 0   | 5         | 5                              |          |
| PRX_MB1 |               |    |           |                                      | 34,39   | 39              |           |     |           |                                |          |
| PRX_MB2 |               |    | 1,4       | 1,4                                  |         |                 |           |     | 1,4       | 1,4                            |          |
| PRX_MB3 | 1800,1900     |    | 2         | 2,3                                  |         |                 | 1800,1900 | 1   | 2         | 2,3                            |          |
| PRX_HB1 |               |    |           |                                      |         | 40              |           |     |           |                                | 40       |
| PRX_HB2 |               |    |           | 7                                    |         | 38,41           |           |     |           | 7                              | 38,41    |
|         |               |    |           |                                      |         |                 |           |     |           |                                |          |
| DRX_LB1 |               |    |           | 17d,20d,2<br>8d                      |         |                 |           |     |           | 17d,20d,2<br>8d                |          |
| DRX_LB2 |               | 0d | 5d        | 5d ,28d ,27<br>d                     |         |                 |           | Od  | 5d        | 5d                             |          |
| DRX_LB3 |               |    | 8d        | 8d                                   |         |                 |           |     | 8d        | 8d                             |          |
| DRX_MB1 |               |    | 1d,4d     | 1d,4d                                |         |                 |           |     | 1 d,4d    | 1 d,4d                         |          |
| DRX_MB2 |               |    | 2d        | 2d,3d                                | 34d,39d | 39d             |           | 1d  | 2d        | 2d,3d                          |          |
| DRX_HB1 |               |    |           |                                      |         | 40d             |           |     |           |                                | 40d      |
| DRX_HB2 |               |    |           | 7d                                   |         | 38d,41d         |           |     |           | 7d                             | 38d,41d  |

#### 2.4 Static NV items

The following NV items/files must be modified to include CDMA BC1.

#### 2.4.1 Make changes in masterfile to add CDMA BC1 support

#### 2.5 Modify test tree (.xtt) for calibration using QSPR

Use QSPR to add CDMA BC1 into the test tree. To copy files using QSPR, right-click the selected nodes and select Copy. To paste files using QSPR, right-click the node in the CDMA section and select Paste.

 To add CDMA BC1 into the CH calibration tree, copy the selected nodes from the calibration tree of the JAP configuration:

**JO.1.0 RFC Overview** 



## **RFC Overview**

- RFC contains hardware information which the RF driver uses to configure.
- RFC queries different RF devices configured
  - MIPI RFFE components, such as WTR, Antenna Switch (ASM), Power Amplifier (PA), are detected during RF initialization.
  - The RF driver reprograms USIDs of all MIPI devices based on RFC setting.
  - WTR and RFFE devices are then assigned to the respective Tx/Rx (primary and diversity) paths.
- RFC must accurately represent the design, which includes:
  - Bands supported
  - WTR port mapping
  - MIPI devices present
  - Supported GRFC signals

**JO.1.0 RFC Structure** 



# **RFC Folder Structure**

| Source                                                | Folder location                                              | Note                             |
|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------|
| Target-specific GPIO/GRFC table and chain definitions | \modem_proc\rfc_jolokia\target                               | List of all RF GPIOs             |
| RF card files                                         | \modem_proc\rfc_jolokia\rf_card                              | Design-specific RFFE settings    |
| Static XML files/RF calibration XTTs                  | \modem_proc\rftarget_jolokia                                 | Static QCN and calibration trees |
| Transceiver devices                                   | \modem_proc\rfdevice_WTR4905                                 | WTR settings                     |
| QFE devices                                           | \modem_proc\rfdevice_QFE2101                                 | PAPM                             |
|                                                       | \modem_proc\rfdevice_QFE2520                                 | Antenna tuner                    |
|                                                       | \modem_proc\rfdevice_QFE2550                                 | Antenna tuner                    |
|                                                       | \modem_proc\rfdevice_QFE2340                                 | High-band PA                     |
|                                                       | \modem_proc\rfdevice_QFE3320<br>\modem_proc\rfdevice_QFE2320 | Mid/low-band PA module           |
|                                                       | \modem_proc\rfdevice_QFE1040                                 | Diversity ASM                    |

# **RFC Folder Structure (cont.)**

## RFC target folder

- MSM8909 specific GRFC/GPIO definitions can be found in \modem\_proc\rfc\_jolokia\target\msm8909\src\rfc\_msm\_signal\_info\_ag.c file.
- General RF Controls (GRFC) These are digital control signals that be controlled with precise timing.
- More information on how to configure GRFCs' for RF purposes can be found in App Note 80-NE606-4

#### RF card folder

- The RF card folder houses the RF card configuration settings for different RF cards.
- Each RF card has multiple sub-folders' which are used to configure the different physical/logical devices used and also the different RATs' for both Tx and Rx path.

## **RFC Folder Structure (cont.)**

## RF card common file

- The RF card common file contains the device's RF configuration. This includes the physical device list, logical device list, the GRFC signals that are used for this RF card etc.
- This file must accurately capture only the RF devices used in the design. All unused device settings must be removed from this file.
- This file also captures each RF device's physical path on the MIPI RFFE bus.
  - RFFE is a serial bus to interface RF components following the MIPI standard.
  - The MSM8909 modem supports five RFFE channels.
  - Multiple peripherals may be connected to each bus
  - Devices should meet requirements in RFFE Vendor Specification (80-N7876-1).

## **RFC Folder Structure - RF Card Common File**

- RF card common file
  - Following is a snippet of code from the RF card common file of RFC WTR4905 NON CARF card

```
rfc phy device info type rfc wtr4905 non ca phy devices list[] =
//Snip
          { /*Device: WTR4905 */
            WTR4905, /* PHY_DEVICE_NAME */
            O, /* PHY DEVICE INSTANCE */
            RFC NO ALTERNATE PART, /* PHY_DEVICE_ALT_PART_NUM_OF_INSTANCE */
            REDEVICE COMM PROTO REFE, /* PHY DEVICE COMM PROTOCOL */
                 4,0 /* 0 not specified */,), /* PHY DEVICE COMM BUS */
            0x217, /* PHY DEVICE MANUFACTURER ID */
            0xC8, /* PHY_DEVICE_PRODUCT_ID */
            o, /* PHY DEVICE PRODUCT REV */
            0x1, /* DEFAULT USID RANGE START */
            0x1, /* DEFAULT USID RANGE END */
            0x1, /* PHY DEVICE ASSIGNED USID */
            0 /*Warning: Not specified*/, /* RFFE GROUP ID
            FALSE, /* INIT */
            RFC TX MODEM CHAIN 0, /* ASSOCIATED_DAC
          ), /* END - Device: WTR4905 */
          //Snip
```

The RFFE channel corresponding to each device is defined when defining the physical devices in RF card common file.

Note: Parameter PHY\_DEVICE\_COMM\_BUS defines the serial BUS on which the physical device is present.

For example, from the above code snippet WTR is seen on BUS 4, with the associated RFFE5\_CLK and RFFE5\_DATA lines.

**Note:** For more details on how to define other physical and logical MIPI devices, refer to App Notes *Third-Party MIPI PA Customization (80-NE606-3) (PA)* and Third-Party MIPI ASM Customization (80-NE606-2) (ASM) respectively.

## RFC Folder Structure - RF Card Common File (cont.)

- Physical device list and Logical device list MSM8909/MSM8209/MSM8208 Digital Baseband (80-NP408-5B)
  - Multiple logical components within a single chip are used in the hardware design. These devices usually use a single MIPI digital communication core but have multiple functions, for example, QFE2340 contains PA and ASM.
  - Prior to this change, multiple device type instances were created in cmn\_devices\_list to support a single physical MIPI device, for example, QFE2340 needs the following devices in rfc\_<rf\_card>\_cmn\_devices\_list:
    - PA instance 0 to support PA module inside of QFE2340
    - ASM instance 0 to support ASM module inside of QFE2340

```
/*Device: QFE2340 */
 RFDEVICE PA, /* DEVICE_TYPE *,
  OFE2340, /* DEVICE NAME */

    /* DEVICE TYPE INSTANCE */

  RFDEVICE COMM PROTO RFFE, /* DI
       0,0 /* 0 not specified */,},
  0x0217, /* MANUFACTURER_ID */
  0x21, /* PRODUCT_ID */
  /* PRODUCT REV */
  0x0F, /* DEFAULT USID RANGE ST/
  0x0F, /* DEFAULT USID RANGE ENI
  0x0F, /* ASSIGNED_USID */
  0x0F, /* RFFE_GROUP_ID */
  FALSE, /* INIT */
  RFC_INVALID_PARAM, /* ASSOCIAT
  RFDEVICE TYPE INVALID, /* ASSO
  0 /*Warning: Not specified*/, /* A
}, /* END - Device: QFE2340 */
```

```
/*Device: OFE2340 */
 RFDEVICE ASM, /* DEVICE TYPE */
 QFE2340, /* DEVICE_NAME */
  0, /* DEVICE_TYPE_INSTANCE */
 RFDEVICE COMM PROTO RFFE, /* DE\
      0,0 /* 0 not specified */,}, /*
 0x0217, /* MANUFACTURER_ID */
 0x21, /* PRODUCT_ID */
 /* PRODUCT REV */
 0x0F, /* DEFAULT USID RANGE STAF
 0x0F, /* DEFAULT USID RANGE END
 0x0F, /* ASSIGNED USID */
 0x0F, /* RFFE_GROUP_ID */
 FALSE, /* INIT */
 RFC INVALID PARAM, /* ASSOCIATE
 RFDEVICE_PA, /* ASSOCIATED_DEVI
 0, /* ASSOCIATED_DEVICE_TYPE_IN
}, /* END - Device: QFE2340 */
```

## RFC Folder Structure - RF Card Common File (cont.)

- MIPI device configuration must be listed in both PA and ASM instances. This requires additional effort to maintain the RFC code. Additionally, in the old method, self-calibration and functions related to the physical device have to be executed for each logical device, which is redundant.
- To optimize the efficiency of RFC code, physical and logical device lists are added into the RFC code structure to separate the concept of physical devices and logical devices.

## Physical Device

```
{ /*Device: QFE2340 */
 QFE2340, /* PHY DEVICE NAME */
 2, /* PHY_DEVICE_INSTANCE */
 RFC NO ALTERNATE PART, /* PHY_DEVICE_ALT_PART_NUM_OF_INSTANCE */
 REDEVICE COMM PROTO REFE, /* PHY_DEVICE_COMM_PROTOCOL */
       0,0 /* 0 not specified */,), /* PHY_DEVICE_COMM_BUS */
 0x0217, /* PHY_DEVICE_MANUFACTURER_ID */
 0x21, /* PHY_DEVICE_PRODUCT_ID */
 o, /* PHY_DEVICE_PRODUCT_REV */
 OxOF, /* DEFAULT USID RANGE START */
 OxOF, /* DEFAULT USID RANGE END */
 OxOF, /* PHY_DEVICE_ASSIGNED_USID */
 0 /*Warning: Not specified*/, /* RFFE_GROUP_ID */
 FALSE, /* INIT */
 RFC_INVALID_PARAM, /* ASSOCIATED_DAC */
), /* END - Device: QFE2340 */
```

## **Logical Devices**

```
/ /*Device: QFE2340 */
  REDEVICE PA, /* DEVICE_MODULE_TYPE */
  OFE2340, /* DEVICE MODULE NAME */
 O, /* DEVICE_MODULE_TYPE_INSTANCE */
  2, /* ASSOCIATED_PHY_DEVICE_INSTANCE */
). /* END - Device: QFE2340 */
{ /*Device: QFE2340 */
  RFDEVICE ASM, /* DEVICE_MODULE_TYPE */
  QFE2340, /* DEVICE MODULE NAME */
  3, /* DEVICE_MODULE_TYPE_INSTANCE */
  2, /* ASSOCIATED_PHY_DEVICE_INSTANCE */
), /* END - Device: QFE2340 */
```

## RFC Folder Structure - RF Card Common File (cont.)

- Association between Physical and Logical Device Lists
   MSM8909/MSM8209/MSM8208 Digital Baseband (80-NP408-5B)
  - One physical device can be associated with one or more logical devices based on functionality.



## RFC Folder Structure

## RF card files

- Each RAT has its own sub-folder where the corresponding configuration for that particular RAT is defined.
- These files are used to configure the Tx/Rx path for each technology/bands.
- The configuration settings involve defining the different MIPI devices that are used for the particular technology/band and also configuring the device port settings.
- For example, consider LTE B1 Tx/Rx settings.
  - Since the technology is LTE, the settings corresponding to LTE RAT can be found in the file <rfcard> Ite config data ag.c under \modem proc\rfc jolokia\rf card\<rfcard>\lte\src folder.
  - The MIPI RFFE device settings corresponding to LTE B1 for PRx are configured in rf card <rfcard> rx0 Ite b1 device info
  - The GRFC settings corresponding to LTE B1 in PRx are configured in rf\_card <rfcard> rx0 lte b1 sig\_cfg
  - Similarly, MIPI RFFE device settings corresponding to LTE B1 DRx are configured in rf\_card <rfcard> rx1\_lte\_b1\_device\_info
  - The GRFC settings corresponding to LTE B1 in DRx are configured in rf card\_<rfcard>\_rx1\_lte\_b1\_sig\_cfg
  - The Tx path is similarly configured based on rf\_card\_<rfcard>\_tx0\_lte\_b1\_device\_info and rf card <rfcard> tx0 lte b1 sig cfg respectively.

## **RFC Folder Structure - RF Card Files**

 Example code snippet for LTE B1 Tx0 settings for RF card RFC\_WTR4905\_NON\_CA

```
rfc_device_info_type rf_card_wtr4905_non_ca_tx0_lte_b1_device_info =
  RFC ENCODED REVISION,
                                  /* Modem Chain */
  RFC_TX_MODEM_CHAIN_O,
        Warning: Not Specified */, /* FBRX ADC for Tx States */
/* NV Container */
  PRC_INVALID_PARAM /* Warning: Not Specified */, /* Antenna */
7, /* NUM_DEVICES_TO_CONFIGURE */
      RFDEVICE_TRANSCEIVER,
WTR4905, /* NAME */
0, /* DEVICE_MODULE_TYPE_INSTANCE */
0, /* PHY_PATH_NUM */
         0 /*Warning: Not specified*/, /* INTF_REV */
          (int)WTR4905_LTEFDD_TX_BAND1_THMLB1, /* PORT */
          ( RFDEVICE PA_LUT_MAPPING_VALID | WTR4905_LP_LUT_TYPE << RFDEVICE_PA_STATE_O_BSHFT | WTR4905_HP_LUT_TYPALSE, /*TXAGC_LUT */
          WTR4905_FBRX_LOW_ATTN_MODE, /* FBRX_ATTN_STATE */
          0, /* Array Filler */
       RFDEVICE_PA,
       QFE3320_EPT, /* NAME */
1, /* DEVICE_MODULE_TYPE_INSTANCE */
       0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
         0 /* Orig setting: */, /* INTF_REV */
(0x0217 << 22)/*mfg_id*/ | (0x26 << 14)/*prd_id*/ | (28)/*port_num*/, /* PORT_NUM */
         0, /* Array Filler */
0, /* Array Filler */
               /* Array Filler */
               /* Array Filler */
       RFDEVICE_PAPM,
QFE2101, /* NAME */
            /* DEVICE_MODULE_TYPE_INSTANCE */
        0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
         0 /* Orig setting: */, /* INTF_REV */
(0x217 << 22)/*mfg_id*/ | (0x31 << 14)/*prd_id*/ | (9)/*port_num*/, /* PORT_NUM */
         0, /* Array Filler */
0, /* Array Filler */
               /* Array Filler */
              /* Array Filler */
       RFDEVICE_ASM,
QFE3320 TX, /* NAME */
       0, /* DEVICE_MODULE_TYPE_INSTANCE */
        0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
          0 /* Orig setting: */, /* INTF_REV */
(0x0217 << 22)/*mfg_id*/ | (0x26 << 14)/*prd_id*/ | (17)/*port_num*/, /* PORT_NUM */
         0, /* Array Filler */
0, /* Array Filler */
               /* Array Filler */
               /* Array Filler */
```

```
RFDEVICE_ASM,
      QFE3320_MB, /* NAME */
      2, /* DEVICE_MODULE_TYPE_INSTANCE */
      0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
         0 /* Orig setting: */, /* INTF_REV */
(0x0217 << 22)/*mfg_id*/ | (0x26 << 14)/*prd_id*/ | (5)/*port_num*/, /* PORT_NUM */
         0, /* Array Filler */
         0, /* Array Filler */
        0. /* Array Filler */
        0, /* Array Filler */
      TRX_HDET, /* NAME */
           /* DEVICE MODULE TYPE INSTANCE */
      0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
        0 /* Orig setting: */, /* INTF_REV */
0, /* Array Filler */
         0, /* Array Filler */
             /* Array Filler */
             /* Array Filler */
             /* Array Filler */
      RFDEVICE_TUNER,
      QFE2550, /* NAME */
      0, /* DEVICE_MODULE_TYPE_INSTANCE */
      0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
        0 /* Orig setting: */, /* INTF_REV */
0 /* Orig setting: */, /* DISTORION_CONFIG */
         0, /* Array Filler */
         0, /* Array Filler */
         0. /* Array Filler */
        0, /* Array Filler */
rfc_sig_info_type rf_card_wtr4905_non_ca_tx0_lte_b1_sig_cfg =
  RFC ENCODED REVISION,
      (int)RFC_WTR4905_NON_CA_TX_GTR_TH, { RFC_CONFIG_ONLY, 0 }, {RFC_LOW, 0 } ),
      (int) RFC SIG LIST END, { RFC LOW, 0 }, {RFC LOW, 0 } }
```

# RFC Folder Structure - RF Card Files (cont.)

- As shown in the previous code snippet, define all the devices used and their corresponding port settings for LTE B1 Tx path in rf\_card\_wtr4905\_non\_ca\_tx0\_lte\_b1\_device\_info.
- The Tx path in reference design uses WTR4905. The different devices along its Tx path are QFE3320 LB/MB PA+ASM, QFE2101 PAPM and the QFE2550 Tuner component.
- Each MIPI device used in this path must be defined previously in the RF Card Common file, i.e. rfc\_wtr4905\_non\_ca\_cmn\_ag.cpp as mentioned earlier.
- All GRFCs' used (if any) are shown in the rf\_card\_wtr4905\_non\_ca\_tx0\_lte\_b1\_sig\_cfg code block.
- Similar settings can be found for other LTE bands in this file.
- Other technology settings are stored in the corresponding folders under \modem\_proc\rfc\_jolokia\rf\_card\<rfcard> folder.

### RFC Folder Structure - Static XML Files/RF Calibration XTTs

- RF static NV files corresponding to each RF card can be found in \modem\_proc\rftarget\_jolokia\qcn\<rfcard> folder.
- These NV files consists of reference static NV items for all the supported bands of the particular RF card.
- NV items are required to be configured for each tech/band.
- Some of the most common NV items are as follows:
  - NV RF HW CONFIG I This NV item must be set based on the hardware ID corresponding to the RF card used.
  - NV\_RF\_BC\_CONFIG\_I This NV item is used to enable/disable GSM/WCDMA/CDMA bands on the primary chain.
  - NV\_RF\_BC\_CONFIG\_DIV\_I This NV item is used to enable/disable GSM/WCDMA/CDMA bands on the diversity chain.
  - NV LTE BC CONFIG I This NV item is used to enable/disable LTE bands.
  - RFNV\_TDSCDMA\_BC\_CONFIG\_I This NV item is used to enable/disable TDSCDMA bands on primary chain.
  - RFNV TDSCDMA BC CONFIG DIV I This NV item is used to enable/disable TDSCDMA bands on diversity chain.
  - More description and details on NV settings for each tech can be found from App Note 80-NH377-170.

# RFC Folder Structure - Static XML Files/RF Calibration XTTs (cont.)

- RF calibration XTT files can be found in \modem\_proc\rftarget\_jolokia\xtt folder.
- These files are used to calibrate different technology/band corresponding to the RF card.
- The XTT chosen is based on the RF card choice. There are different XTT files for each RF card.
- Each XTT has its own parameter file settings.
- The parameter file consists of calibration settings corresponding to each XTT. This file can be found in \modem\_proc\rftarget\_jolokia\xtt\<rfcard>\RFCalInput folder.

PAGE 38

### RFC Folder Structure – QFE Devices - QFE2101

#### QFE2101

- QFE2101 is a PA power management IC that implements power tracking technology as part of an overall RF frontend solution
- The device supports multiple operating modes to improve PA efficiency over its entire operating range
  - Average Power Tracking (APT) for 3G/4G mode
  - APT for 2G mode In APT modes, the software programs the QFE output voltage (which powers the PA) to track the transmitter's RF waveform average power, as it changes incrementally over time. The QFE provides a fast step response so it quickly changes its output voltage when RF power is increased or decreased.
  - Bypass mode This mode connects the battery directly to the PA supply pins, and can be entered either through an RFFE command or automatically in APT mode once the PA supply voltage is too low to sustain the required output power.
  - Sleep/standby The PA is inactive and most QFE2101 circuits are disabled.

### QFE2101 RFC settings

Physical device list

```
{ /*Device: QFE2101 */
 QFE2101, /* PHY_DEVICE_NAME */

    /* PHY_DEVICE_INSTANCE */

 RFC NO ALTERNATE PART, /* PHY_DEVICE_ALT_PART_NUM_OF_INSTANCE
 RFDEVICE COMM PROTO RFFE, /* PHY_DEVICE_COMM_PROTOCOL */
      0,0 /* 0 not specified */,}, /* PHY_DEVICE_COMM_BUS */
 0x217, /* PHY DEVICE MANUFACTURER ID */
 0x31, /* PHY_DEVICE_PRODUCT_ID */
 0, /* PHY DEVICE PRODUCT REV */
 0x4, /* DEFAULT USID RANGE START */
 0x4, /* DEFAULT USID RANGE END */
 0x4, /* PHY_DEVICE_ASSIGNED_USID */
 0 /*Warning: Not specified*/, /* RFFE GROUP ID
 TRUE, /* INIT */
 RFC INVALID PARAM, /* ASSOCIATED_DAC */
}, /* END - Device: OFE2101 */
```

| Device       | QFE2101 |
|--------------|---------|
| MID          | 0x217   |
| PID          | 0x31    |
| Default USID | 0x4     |

Logical device list

```
{ /*Device: QFE2101 */
   RFDEVICE_PAPM, /* DEVICE_MODULE_TYPE */
   QFE2101, /* DEVICE_MODULE_NAME */
   0, /* DEVICE_MODULE_TYPE_INSTANCE */
   1, /* ASSOCIATED_PHY_DEVICE_INSTANCE */
}, /* END - Device: QFE2101 */
```

### RFC Folder Structure – QFE Devices – QFE2340

- QFE2340
  - QFE2340 is a High band PA module. It consists of:
    - Two PA input switches
    - Two gain paths
      - High-power PA path
      - Low-power bypass path
    - Four PA output switches for band selection
      - B7, B38, B40, and B41
    - Two Rx path switches for TDD operation
      - B40 and B38/B41 (including XGP) TDD reception
    - Digital circuits for modem IC interfaces and device status and control
      - MIPI standard for RFFE components

Confidential and Proprietary - Qualcomm Technologies, Inc.

**QFE2340** is a single physical component which consists of both PA component and an ASM component internally. Hence, it is necessary to define both RFDEVICE\_PA and RFDEVICE\_ASM component when defining QFE2340 in RFC.

### Physical device list

```
/ /*Device: QFE2340 */
  QFE2340, /* PHY_DEVICE_NAME */
 2, /* PHY_DEVICE_INSTANCE */
 RFC_NO_ALTERNATE_PART, /* PHY_DEVICE_ALT_PART_NUM_OF_INSTANCE */
 REDEVICE COMM PROTO REFE, /* PHY_DEVICE_COMM_PROTOCOL */
       0,0 /* 0 not specified */,), /* PHY_DEVICE_COMM_BUS */
 0x0217, /* PHY_DEVICE_MANUFACTURER_ID */
  0x21, /* PHY_DEVICE_PRODUCT_ID */
  o, /* PHY_DEVICE_PRODUCT_REV */
 OxOF, /* DEFAULT USID RANGE START */
 OXOF, /* DEFAULT USID RANGE END */
 OxOF, /* PHY_DEVICE_ASSIGNED_USID */
 0 /*Warning: Not specified*/, /* RFFE_GROUP_ID */
  FALSE, /* INIT */
  RFC INVALID PARAM, /* ASSOCIATED_DAC */
), /* END - Device: QFE2340 */
```

| Device       | QFE2340 |
|--------------|---------|
| MID          | 0x217   |
| PID          | 0x21    |
| Default USID | 0xF     |

### Logical device list

```
{ /*Device: QFE2340 */
  REDEVICE PA, /* DEVICE MODULE TYPE */
  QFE2340, /* DEVICE MODULE NAME */
  o, /* DEVICE MODULE TYPE INSTANCE */
  2, /* ASSOCIATED PHY DEVICE INSTANCE */
), /* END - Device: QFE2340 */
{ /*Device: QFE2340 */
 REDEVICE ASM, /* DEVICE MODULE TYPE */
 QFE2340, /* DEVICE MODULE NAME */
 3, /* DEVICE MODULE TYPE INSTANCE */
 2, /* ASSOCIATED PHY DEVICE INSTANCE */
), /* END - Device: QFE2340 */
```

#### B7 TX RFC

```
rfc_device_info_type_rf_card_wtr3925_ssku_qfes_et_tx0_lte_b7_device_info_=
//Snip
  REDEVICE PA.
  QFE2340, /* NAME */
  o, /* DEVICE_MODULE_TYPE_INSTANCE */
  0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
    o /* Orig setting: */, /* INTF_REV */
    (0x217 << 22)/*mfg_id*/ | (0x21 << 14)/*prd_id*/
    /* Array Filler */
    0, /* Array Filler */
    0, /* Array Filler */
       /* Array Filler */
//Snip
  REDEVICE ASM,
  QFE2340, /* NAME */
  o, /* DEVICE_MODULE_TYPE_INSTANCE */
  0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
    0 /* Orig setting: */, /* INTF_REV */
    (0x217 << 22)/*mfg_id*/ | (0x21 << 14)/*prd_id*/ | (3)/*port_num*/, /* PORT NUM */
    /* Array Filler */
    0, /* Array Filler */
    /* Array Filler */
    0, /* Array Filler */
```

**Note**: In this example above, the PA settings define the input port for the PA in case of band 7, which is HB1\_IN. The QFE2340 ASM settings is used to configure the ASM switch inside the component to HB1\_TX for B7.

### RFC Folder Structure – QFE Devices – QFE3320

- QFE3320
  - QFE3320 is a Mid/Low band PA module. It consists of:
    - Mid-band switched PA paths
    - Low-band switched PA paths
    - Multiband antenna switch Nine ports for mid bands and seven ports for low bands
    - Bias circuits that extend the device's linearity performance
    - Digital circuits for modem IC interfaces and device status and control
      - MIPI standard for RFFE components

- QFE3320 is a single physical component which consists of PA component and an ASM component internally.
- The PA component is logically separated for GSM and Non-GSM operations.

Confidential and Proprietary – Qualcomm Technologies, Inc.

- The ASM component is logically divided into LB ASM and MB ASM. Hence, it is necessary to define all supported logical components when defining QFE3320 in RFC.
- Physical device list

```
{ /*Device: QFE3320_EPT */
 QFE3320, /* PHY_DEVICE_NAME */
 /* PHY_DEVICE_INSTANCE */
 RFC NO ALTERNATE PART, /* PHY DEVICE ALT PART NUM OF INSTANCE */
 RFDEVICE COMM PROTO RFFE, /* PHY_DEVICE_COMM_PROTOCOL */
      0,0 /* 0 not specified */,}, /* PHY DEVICE COMM BUS */
 0x0217, /* PHY_DEVICE_MANUFACTURER ID */
 0x26, /* PHY DEVICE PRODUCT ID */
 o, /* PHY DEVICE PRODUCT REV */
 0xC, /* DEFAULT USID RANGE START */
 0xC, /* DEFAULT USID RANGE END */
 0x02, /* PHY_DEVICE_ASSIGNED_USID */
 0 /*Warning: Not specified*/, /* RFFE GROUP ID */
 TRUE, /* INIT */
 RFC INVALID PARAM, /* ASSOCIATED_DAC */
  /* END - Device: QFE3320 EPT */
```

| Device       | QFE2101 |
|--------------|---------|
| MID          | 0x217   |
| PID          | 0x26    |
| Default USID | 0xC     |

### Logical device list

```
{ /*Device: QFE3320_EPT */
  RFDEVICE PA, /* DEVICE_MODULE_TYPE */
  QFE3320 EPT, /* DEVICE_MODULE_NAME */

    /* DEVICE_MODULE_TYPE_INSTANCE */

  * ASSOCIATED_PHY_DEVICE_INSTANCE */

    /* END - Device: OFE3320 EPT */

{ /*Device: OFE3320 GSM */
  RFDEVICE PA, /* DEVICE_MODULE_TYPE */
  QFE3320 GSM, /* DEVICE_MODULE_NAME */
  2, /* DEVICE_MODULE_TYPE_INSTANCE */
  /* ASSOCIATED_PHY_DEVICE_INSTANCE */

    /* END - Device: OFE3320 GSM */

{ /*Device: QFE3320_TDD */
  RFDEVICE PA, /* DEVICE_MODULE_TYPE */
  QFE3320 TDD, /* DEVICE_MODULE_NAME */
 /* DEVICE_MODULE_TYPE_INSTANCE */
  /* ASSOCIATED_PHY_DEVICE_INSTANCE */

    /* END - Device: OFE3320 TDD */

{ /*Device: QFE3320_TX */
 RFDEVICE ASM, /* DEVICE MODULE TYPE */
 QFE3320 TX, /* DEVICE_MODULE_NAME */
 0, /* DEVICE_MODULE_TYPE_INSTANCE */

 /* ASSOCIATED PHY DEVICE INSTANCE */

}, /* END - Device: QFE3320_TX */
{ /*Device: OFE3320 LB */
 RFDEVICE ASM, /* DEVICE_MODULE_TYPE */
 QFE3320 LB, /* DEVICE_MODULE_NAME */

    /* DEVICE_MODULE_TYPE_INSTANCE */

 /* ASSOCIATED PHY DEVICE INSTANCE */

}, /* END - Device: QFE3320_LB */
{ /*Device: QFE3320_MB */
 RFDEVICE ASM, /* DEVICE_MODULE_TYPE */
 QFE3320 MB, /* DEVICE_MODULE_NAME */
 /* DEVICE_MODULE_TYPE_INSTANCE */
 /* ASSOCIATED_PHY_DEVICE_INSTANCE */
}, /* END - Device: QFE3320 MB */
```

#### GSM 850 Tx RFC

```
rfc device info type rf card wtr4905 non ca tx0 gsm g850 device info =
//Snip
  RFDEVICE PA,
  QFE3320 GSM, /* NAME */
  2, /* DEVICE_MODULE_TYPE_INSTANCE */
  0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
    0 /* Orig setting: */, /* INTF REV */
    (0x0217 \ll 22)/*mfg_id*/ | (0x26 \ll 14)/*prd_id*/

 /* Array Filler */

    0, /* Array Filler */
    0, /* Array Filler */
    0, /* Array Filler */
//Snip
   RFDEVICE ASM,
  QFE3320 LB, /* NAME */

    /* DEVICE_MODULE_TYPE_INSTANCE */

  0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
     0 /* Orig setting: */, /* INTF_REV */
     (0x0217 << 22)/*mfg_id*/ | (0x26 << 14)/*prd_id*/ | (6)/*port_num*/, /* PORT_NUM */
     /* Array Filler */
     0, /* Array Filler */
     0, /* Array Filler */
     /* Array Filler */
```

**Note**: In this example above, the PA settings define the input port for the PA in case of GSM 850, which is LB3\_IN. The QFE3320 ASM settings is used to configure the ASM switch inside the component to TRX\_LB5 for GSM850.

#### LTE B17 TX RFC

```
rfc_device_info_type rf_card_wtr4905_non_ca tx0 lte b17 device info =
//Snip
  REDEVICE PA.
  QFE3320 EPT, /* NAME */

    /* DEVICE_MODULE_TYPE_INSTANCE */

  0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
    0 /* Orig setting: */, /* INTF_REV */
    (0x0217 << 22)/*mfg id*/ | (0x26 << 14)/*prd id*/
    0, /* Array Filler */
    0, /* Array Filler */
    0, /* Array Filler */
        /* Array Filler */
//Snip
  REDEVICE ASM.
  QFE3320 LB, /* NAME */

    /* Device_module_type_instance */

  0 /*Warning: Not specified*/, /* PHY_PATH_NUM */
    0 /* Orig setting: */, /* INTF_REV */
    (0x0217 << 22)/*mfg id*/ | (0x26 << 14)/*prd id*/ | (3)/*port num*/, /* PORT NUM */
    0, /* Array Filler */
```

**Note**: In this example above, the QFE3320\_EPT LB/MB PA settings define the input port for the PA for LTE B17 (LB). The QFE3320\_LB ASM settings is used to configure the ASM switch inside the component to LTE B17.

**JO.1.0 RFFE Structures** 



# **RF Physical Device Structure Definition**

```
/*Physical Device Structure to store physical device info from RFC*/
typedef struct
  rfdevice_id_enum_type rf_device_id; /*PHY_DEVICE_NAME*/
  uint8 phy dev instance; 7* PHY_DEVICE_INSTANCE*/
  uint32 alternate part idx; /* Alternate Part Index Num */
  rfdevice_comm_proto_enum_type rf device comm_protocol; /*PHY_DEVICE_COMM_PROTOCOL*/
  uint32 bus[RFC MAX SLAVES PER DEVICE]; /*PHY_DEVICE_COMM_BUS*/
  uint32 manufacturer id;
  uint32 product id;
  uint32 product rev;
  uint32 default usid range start;
  uint32 default usid range end;
  uint32 assigned usid;
  uint32 group id;
  boolean init required;
  uint32 associated dac;
) rfc phy device info type;
4 /*Device: QFE2340 */
  QFE2340, /* PHY DEVICE NAME */
  2, /* PHY_DEVICE_INSTANCE */
 RFC_NO_ALTERNATE_PART, /* PHY_DEVICE_ALT_PART_NUM_OF_INSTANCE */
 REDEVICE COMM PROTO REFE, /* PHY_DEVICE_COMM_PROTOCOL */
       0,0 /* 0 not specified */,), /* PHY_DEVICE_COMM_BUS */
  0x0217, /* PHY_DEVICE_MANUFACTURER_ID */
  0x21, /* PHY_DEVICE_PRODUCT_ID */
 o, /* PHY_DEVICE_PRODUCT_REV */
  OXOF, /* DEFAULT USID RANGE START */
  OxOF, /* DEFAULT USID RANGE END */
  OxOF, /* PHY_DEVICE_ASSIGNED_USID */
 0 /*Warning: Not specified*/, /* RFFE_GROUP_ID */
  FALSE, /* INIT */
 RFC INVALID PARAM, /* ASSOCIATED_DAC */
), /* END - Device: QFE2340 */
```

# **RF Logical Device Structure Definition**

```
/*Logical Device Structure to store logical device info from RFC*/
typedef struct
 rfdevice_type_enum_type rf_device_type; /*DEVICE_MODULE_TYPE*/
 rfdevice_id_enum_type rf_device_id; /*LOGICAL_DEVICE_NAME*/
  uint32 rf asic id; /*DEVICE_MODULE_TYPE_INSTANCE*/
  uint8 associated phy dev instance; /* ASSOCIATED PHY_DEVICE_INSTANCE*/
) rfc logical device info type;
 { /*Device: QFE2340 */
   RFDEVICE PA, /* DEVICE_MODULE_TYPE */
   QFE2340, /* DEVICE_MODULE_NAME */
   O, /* DEVICE_MODULE_TYPE_INSTANCE */
   2, /* ASSOCIATED_PHY_DEVICE_INSTANCE */
 ), /* END - Device: QFE2340 */
```

### **Modem Chain to Baseband Connection**

#### Modem Chain

- Modem chain is the physical connection between RF (WTR) and the Baseband (MSM8909).
- This represents the connection between WTR IQ lines to the baseband IQ channel as seen below.



# **Modem Chain to Baseband Connection (cont.)**

 RFC files use the same modem chain macro for all basebands, which may have different physical connections.

| Modem chain macro in RFC <a href="mailto:rfc_msm_signal_info_ag.h">rfc_msm_signal_info_ag.h</a> | Physical mapping (MSM8909) |
|-------------------------------------------------------------------------------------------------|----------------------------|
| RFC_RX_MODEM_CHAIN_0                                                                            | 0                          |
| RFC_RX_MODEM_CHAIN_1                                                                            | 1                          |
| RFC_RX_MODEM_CHAIN_2                                                                            | 2                          |
| RFC_RX_MODEM_CHAIN_3                                                                            | 3                          |
| RFC_TX_MODEM_CHAIN_0                                                                            | 0                          |
| RFC_TX_MODEM_CHAIN_1                                                                            | 1                          |

- Chain 0 in RFC maps to BBRX\_IP\_CH0/BBRX\_QP\_CH0
- Chain 1 in RFC maps to BBRX\_IP\_CH1/BBRX\_QP\_CH1.

### **Modem Chain to Baseband Connection (cont.)**

Software configuration for Modem Chain

```
rfc device info type rf card wtr4905 chile srlte v2 rx0 lte b1 device info =
  RFC ENCODED REVISION
                            / * Modem Chain *.
  RFC RX MODEM CHAIN 0,
  0 / * Warning: Not Specified */ ,
     /* NV Container */
  RFC INVALID PARAM /* Warning: Not Specified */,
  3, /* NUM_DEVICES_TO_CONFIGURE */
rfc_device_info_type rf_card_wtr4905_chile_srlte_v2_rx1_lte_b1_device_info =
  RFC ENCODED REVISION
  RFC RX MODEM CHAIN 1,
                            / * Modem Chain */
  0 /* Warning: Not Specified */,
                                  /* FBRx ADC for Tx States */

    /* NV Container */

  RFC INVALID PARAM /* Warning: Not Specified */,
  3, /* NUM_DEVICES_TO_CONFIGURE */
rfc device info type rf card wtr4905 chile srlte v2 tx0 lte b1 device info =
  RFC ENCODED REVISION
 RFC TX MODEM CHAIN 0, /* Modem Chain */
  0 /* Warning: Not Specified */, /* FBRx ADC for Tx States */
     /* NV Container */
 RFC INVALID PARAM /* Warning: Not Specified */, /* Antenna */
    /* NUM DEVICES TO CONFIGURE */
```

# Generic RF Controls (GRFC) Frontend Devices

- Qualcomm Technologies Inc. (QTI) recommends all customers to undergo a hardware review for every RF project.
- All GPIO assignments are reviewed during this process to ensure that the assigned GPIO is used for the intended functionality.
- A GRFC control logic table is required to make the necessary code changes for GRFC.
- For additional information on GRFC device customization, see Chile Non-CA with Qualcomm RF360<sup>™</sup> for MSM8909 + WTR4905 Reference Schematic (80-NL713-48)



# **Software Design Review (SDR)**

- It is highly recommended that customer have Software Design Review (SDR) with QTI before bringup to minimize the bringup issues
- Required item when submitting SDR
  - Customized RFC code. (defined macro)
  - Customized PA/ASM driver if any 3<sup>rd</sup> party devices are used.
  - PA/ASM datasheet.
  - 4. Schematic
  - 5. Supported band list
  - 6. Special feature i.e., CA combo, SxLTE/DSDx
- Include all above items when submitting SDR case.
- Include hardware review case number.

# Software Design Review (SDR) (cont.)

- Following Items will be checked through SDR.
  - Supported band
  - 2. MIPI device setting in Cmn file (MID/PID/USID/Assigned USID)
  - WTR port mapping (each band)
  - MIPI PA/ASM driver implementation
  - 5. MIPI device port setting in RFC (each band)
  - 6. GRFC signals setting in RFC (each band)
  - 7. Removing all un-used MIPI devices/ GRFC signals.
  - Other features (LTE CA/ DSDx/ etc)
- A general report will be provided, which covers above items.
- Code change will be provided if needed.

# **SDR Report Sample**

Below is a snapshot of SDR report

#### 9.1 LTE B1

| RF<br>path | Device Type          | Name    | Instance<br>Type | Phy_<br>path | Manufactur<br>erID | Product ID | Port                                   | Note |
|------------|----------------------|---------|------------------|--------------|--------------------|------------|----------------------------------------|------|
| rx0        | RFDEVICE_TRANSCEIVER | WTR4905 | 0                | 0            |                    | ,          | (int)WTR4905_LTEFDD_PRXLGY1_BAND1_PMB2 |      |
| 120        | RFDEVICE_ASM         | GEN_ASM | 1                | 0            | 0x0107             | 0x02       | 0                                      |      |
|            | RFDEVICE_TRANSCEIVER | WTR4905 | 0                | 0            |                    | >          | (int)WTR4905_LTEFDD_TX_BAND1_THMLB1    |      |
| tx0        | RFDEVICE_PA          | GEN_PA  | 1                | 0            | 0x107              | 0x2        | 0                                      |      |
| LXU        | RFDEVICE_PAPM        | QFE1100 | 0                | 0            | 0x217              | 0x30       | 9                                      |      |
|            | RFDEVICE_ASM         | GEN_ASM | 1                | 0            | 0x0107             | 0x02       | 0                                      |      |
|            | RFDEVICE_TRANSCEIVER | WTR4905 | 0                | 1            | 200                |            | (int)WTR4905_LTEFDD_DRXLGY1_BAND1_DMB2 |      |
| rxl        | RFDEVICE_ASM         | GEN_ASM | 9                | 0            | 0x11A              | 0xD0       | 3                                      |      |

#### Comment:

- Rx1 port is 3, maps to HB4 on DRx ASM, which is NC
- WTR\_DMB2 is NC

# **Problem Area Code for RFFE Software Cases**

| Field                | Category                     | Comment                                                                                                                |
|----------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Initial problem type | Software                     |                                                                                                                        |
| Problem Area 1       | RF                           |                                                                                                                        |
| Problem Area 2       | RF driver design             |                                                                                                                        |
| Problem Area 3       | RF band support              | Questions related to band support                                                                                      |
|                      | RF bringup                   | Questions during RF bringup                                                                                            |
|                      | RF card/RF chipset (WTR/WFR) | Questions related to RF card and WTR/WFR chipset                                                                       |
|                      | RF design review             | Software design review request in RF                                                                                   |
|                      | RFFE – GRFC/GPIO (PA/ASM)    | Questions related to GRFC-controlled<br>RFFE devices, i.e., PA/ASM<br>All questions/issues related to GRFC<br>settings |
|                      | RFFE – MIPI (PA/ASM)         | Questions related to MIPI-controlled RFFE devices, i.e., PA/ASM                                                        |

### References

| Documents                                                                                  |                                    |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------|--|--|
| Qualcomm Technologies, Inc.                                                                |                                    |  |  |
| Title                                                                                      | DCN                                |  |  |
| Application Note: Software Glossary for Customers                                          | CL93-V3077-1                       |  |  |
| MSM8909 RF Software Overview                                                               | 80-NR964-12                        |  |  |
| MSM8909/MSM8209/MSM8208 Digital Baseband                                                   | 80-NP408-5B                        |  |  |
| WTR4905 with Qualcomm RF360 5-Mode CMCC China Optimized Preliminary Reference<br>Schematic | 80-NL713-43                        |  |  |
| Chile Non-CA with Qualcomm RF360™ for MSM8909 + WTR4905 Reference Schematic                | 80-NL713-48                        |  |  |
| WTR4905 with Qualcomm RF360™ (Japan) Preliminary Reference Schematic                       | 80-NL713-46                        |  |  |
| NA CA with Qualcomm RF360 for MSM8909 + WTR4905 Preliminary Reference Schematic            | 80-NL713-49                        |  |  |
| Third-Party MIPI ASM Customization                                                         | 80-NE606-2                         |  |  |
| Third-Party MIPI PA Customization                                                          | 80-NE606-3                         |  |  |
| Application Note: Generic RF Controls (GRFC) Customization                                 | 80-NE606-4                         |  |  |
| RFFE Vendor Specification                                                                  | 80-N7876-1                         |  |  |
| QFE2101 PA Power Management IC Device Specification                                        | 80-NL893-1                         |  |  |
| QFE2330/QFE2340 High-Band Multimode Power Amplifier Device Specification                   | 80-NF232-1                         |  |  |
| QFE3320 Low/Mid Band Tx Front-End Device Specification (Advance Information)               | 80-NJ121-1                         |  |  |
| RF Controls (RFC) Software Implementation                                                  | 80-NT180-102                       |  |  |
| Standards                                                                                  | •                                  |  |  |
| MIPI Alliance Specification for RF Front-End Control Interface                             | Draft Ver 1.01 Rev 0.04 (Jul 2011) |  |  |

# References (cont.)

| Acronyms |                          |  |
|----------|--------------------------|--|
| Term     | Definition               |  |
| ASDiv    | Antenna Switch Diversity |  |
| GRFC     | Generic RF Controls      |  |
| RFC      | RF Controls              |  |
| ASM      | Antenna Switch Module    |  |
| PA       | Power Amplifier          |  |
| RFFE     | RF Front End             |  |
| APT      | Average Power Tracking   |  |
| QFE      | Qualcomm Front End       |  |
| SDR      | Software Design Review   |  |

# **Questions?**

https://support.cdmatech.com

