几何与代数讨论课

(特征值,特征向量)

- 一、判断下列结论是否正确,并说明理由:
- (1) 设 $A \in n$ 阶方阵,若 $A^m = 0$,则 A 的特征值只能是零.
- (2) 设 $A \in n$ 阶实方阵,若 $A^2 = A$,则 A 的特征值只能是 1 或 0.
- (3) 设 X,Y 是 n 阶方阵 A 的属于不同特征值的特征向量,则必有 $X^TY=0$.
- (4) 设 A 是 n 阶方阵, λ_0 是 A 的一个特征值, X_1, X_2 是 $(\lambda_0 I A)X = 0$ 的基础解系,则 A 的属于特征值 λ_0 的全部特征向量为 $k_1 X_1 + k_2 X_2$,其中 k_1, k_2 是两个任意常数.
- (5) 设 A 是 3 阶方阵,A 的特征值为 0,0,1, X_1,X_2 是 AX=0 的基础解系, X_3 是 AX=X 的非零解,则 A 的全部特征向量为 $k_1X_1+k_2X_2+k_3X_3$,其中 k_1,k_2,k_3 是不全为零的任意常数.
 - (6) 设 X 是 n 阶方阵 A 的特征向量,P 是 n 阶可逆方阵,则 $P^{-1}X$ 是 $P^{-1}AP$ 的特征向量.
 - (7) 设 X 是 n 阶方阵 A 的特征向量,若 A 可逆,则 $A^{-1}X$ 是 A^{-1} 的特征向量.
 - (8) 设 A 是 n 阶方阵,若 A 的特征值都是 1,则 A 与 I 相似.
 - (9) 设 $A \in n$ 阶方阵, 若 $A^2 + A + I = 0$, 则 A 没有实的特征值.
 - (10) 设 A 是 n 阶方阵, 若 A 可相似于对角阵, 则 A 的 n 个特征值互异.
 - (11) 若 n 阶矩阵 A, B 的特征值相同,则 $A \sim B(相似)$.
 - (12) 若 A 与 B 等价 (相抵),则 $A \sim B$ (相似).
 - (13) 若 $A \sim B(相似)$,则 A 与 B等价(相抵).
 - (14) 若 A 与 B 有共同的特征值 (包含重数) 及都有 n 个线性无关的特征向量,则
 - (A) $A \sim B$ (相似); (B) A = B; (C) $|\lambda I A| = |\lambda I B|$; (D) |A B| = 0.
 - (15) 若 A, B 的特征值分别为 λ, μ , 则:
 - (A) A^T 与 A 有相同的特征值与特征向量; (B) $A + A^T$ 及 AA^T 的特征值分别为 2λ 及 λ^2 ;
 - (C) A + B 及 AB 的特征值分别为 $\lambda + \mu$ 及 $\lambda \mu$;
 - (D) 以上结论都不正确.
 - 二、下列矩阵可否与对角矩阵相似,矩阵可对角化的条件是什么?

$$\left(\begin{array}{ccc}
A_1 & & & \\
& A_2 & & \\
& & \ddots & \\
& & & A_s
\end{array}\right)$$

2. $A \in M_n, r(A) = 2, A^2 + A = 0.$

三、设 $A = (a_{ij})_{n \times n}$,且 A 可逆, $\sum_{j=1}^{n} a_{ij} = a \neq 0 (i = 1, \dots, n)$,试证: a^{-1} 为 A^{-1} 的一个特征值,并求对应的一个特征向量.

四、设 $A, B \in M_n$,且 A 有 n 个互异的特征值.

证明: $AB = BA \iff A$ 的特征向量也是 B 的特征向量.

五、设 A 为三阶实对称矩阵, $\lambda = 1, 2, -1$ 是其三个特征值, $\alpha_1 = (1, a+1, 2)^T$, $\alpha_2 = (a-1, -a, 1)^T$,分别为 A 的对应 $\lambda = 1, 2$ 的特征向量, A^* 的特征值为 λ_0 ,且 $A^*\beta_0 = \lambda_0\beta_0$,其中 $\beta_0 = (2, -5a, 2a+1)^T$,求 a 及 λ_0 的值.

六、设 A, B 为 n 阶矩阵, 证明: AB 与 BA 有相同的特征值.