Introducción a la Inteligencia Artificial Clase 5

Índice

Clase 5

- 1. Regularización
 - a. Caso general
 - b. Ridge
 - c. Lasso
- 2. Gradient descent
 - a. GD
 - b. GD Estocástico
 - c. GD Mini-Batch
- 3. Entrenamiento de modelos
 - a. Selección de modelos
 - b. Cross-Validation

Regularización - Motivación

Riesgo Empírico

$$P_{i}(f) = E(L(f,\hat{f})) \sim D L(f,\hat{f}) = (f-\hat{f})^{2} - D$$
 pérdide condidad la perdident la per

c'com predo nejorar mi endencia desenida?

+ Combiar L:

$$-L_2 = (f - \hat{f})^2$$
 -> $E(L_2) = ECM$

 $L_{4} = |f - \hat{f}| \rightarrow E(\mathcal{L}) = EAM$

$$L_{I} = I_{H-\hat{f}/7}C^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Riesgo empírico vamos a elegit un Ladewards. =) si utilizo modelos robustos no en gral tenyo más para-metros para optimizar siempre busannos univinirar R, si us se prede (o us se jostifica) usos regresores Bloushos =1) podemus regularizar. Regularinación: Con rey. bus cames min. el riesgo emp R al mismo tiempo que restringimos (o limitamos) el comportamiento de los parámetros (parameter 8 haintage). no buscomus disminuir et error de representación

Couls que remos robusteur el

Vamos a condicionar Budidos (-,--), arymin Z [= pi2 < t (11 p 11 < t) con esto: $\hat{\beta} = arg min \left(\sum_{i} y_{i} - \sum_{j} \beta_{j} x_{j} \right)^{2} - \lambda \sum_{j} \beta_{j}^{(2)}$ en gral es términs de regularización cle complejedod

termino de regularización = Weight de cay

$$\frac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2+\frac{\lambda}{2}\sum_{j=1}^{M}|w_j|^q \text{ Término de regularización "weight decay" }\longrightarrow \text{ w afecta la pérdida}$$

q = 0.5

Lasso

Ridge

$$w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$$

q=4

Maximum A Posteriori como regularización

$$p(w) \sim D(\theta)$$

 $(\mathcal{X},\mathcal{Y})$

$$p(w|\mathcal{X}, \mathcal{Y}) = \frac{p(\mathcal{Y}|\mathcal{X}, w)p(w)}{p(\mathcal{Y}|\mathcal{X})}$$

Actualizar distribución (Posterior)

$$w_{map} = (\Phi^T \Phi + \frac{\sigma^2}{h^2} I)^{-1} \Phi^T y$$

Gaussian prior con varianza b2

Recordemos que je en gral tiene crivas de vivel elipticos, este es por construcción del estimador.

El costo de regularizar es que vos aléjanus del óptimo

¿ Cómo fonciona?

1. plantear (elegir) 9 (lasso 1, ridge 2)

2. elegiones un vector de 2's 'apropiado' (2 => 1 penalidad)

3. optiminar con un limb RSS (2; 2) = 114-xp112+11/11/19

4. Calulamos las métricas (Error de representación, bondoct de ojuste, etc...)

5. Comporannes y elegimes et mejor.

Maximum A Posteriori como regularización - Ridge (L2)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n}_{\mathsf{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\mathsf{log prior}}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(eta) \propto e^{-eta^Teta/2 au^2}$$

Gaussian Prior
$$\beta \sim \mathcal{N}(0,\tau^2\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^T\beta/2\tau^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_2^2 \qquad \text{Ridge Regression}$$

$$\mathrm{Ridge Regression}$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{Y}$$

Maximum A Posteriori como regularización - LASSO (L1)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta) \}$$
 Conditional log likelihood log prior

II) Laplace Prior

$$\beta_i \stackrel{iid}{\sim} \mathsf{Laplace}(0,t)$$

$$p(\beta_i) \propto e^{-|\beta_i|/t}$$

Regularización

Ejemplo interactivo:

https://shinylive.io/py/app/#regularization

Regularización

(a) L1 Constraint Diamond

ElasticNet

$$(\alpha \lambda ||\beta||_1 + \frac{1}{2}(1-\alpha)||\beta||_2^2)$$

¿Qué β se reduce más?

Regularización

Gradiente Descendente

Implementación de Gradiente Descendente

Solucion analitica

$$\min_{W} \|Y - XW\|_2^2$$

$$W = (X^T X)^{-1} X^T Y$$

Implementación de Gradiente Descendente

Solución numérica

$$\min_{W} \|Y - XW\|_{2}^{2} \implies \min_{W} \sum_{i} (y_{i} - X_{i} \cdot W)^{2}$$

Gradiente Descendente

Gradiente Descendente

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Implementación de Gradiente Descendente

Solución numérica

$$\nabla_w J(w) = \nabla_w \left(\sum_i (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - (x_{i1} w_1 + x_{i2} w_2 + \dots + x_{im} w_m))^2 \right)$$

$$= \sum_i \left(-2(y_i - \hat{y}_i) x_{ij} \right) \quad \forall j \in (1 \dots m)$$

en sklearm Linear_models, SGD Regressor

Implementación de Gradiente Descendente

Solución numérica

$$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$$

Gradient Descent algorithm (doub Winicial) for epoch in n_epochs:

- compute the predictions for all the samples
- compute the error between truth and predictions
- compute the gradient using all the samples
- update the parameters of the model

Implementación de Gradiente Descendente Estocástico

Solución numérica

$$\nabla \left((y_i - f_W(X_i))^2 \right)$$

Stochastic Gradient Descent algorithm

for epoch in n_epochs: (Samples = 106)

- shuffle the samples N_{-80Mp} $M_{2} = 10^{2}$
- for sample in n_samples:
 - compute the predictions for the sample
 - compute the error between truth and predictions
 - compute the gradient using the sample
 - update the parameters of the model

Implementación de Gradiente Descendente Estocástico

Solución numérica

Implementación de Gradiente Descendente Mini-Batch

Solución numérica

$$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$$

Mini-Batch Gradient Descent algorithm

for epoch in n_epochs:

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - compute the gradient for the batch
 - update the parameters of the model

Comparativa de gradientes

	Gradient Descent	Stochastic Gradient Descent	Mini-Batch Gradient Descent
Gradient	$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$	$\nabla \left((y_i - f_W(X_i))^2 \right)$	$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$
Speed	Very Fast (vectorized)	Slow (compute sample by sample)	Fast (vectorized)
Memory	O(dataset)	O(1)	O(batch)
Convergence	Needs more epochs	Needs less epochs	Middle point between GD and SGD
Gradient Stability	Smooth updates in params	Noisy updates in params	Middle point between GD and SGD

Entrenamiento de modelos - Cross-Validation

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Cross-Validation

Cross-Validation

Entrenamiento numérico del modelo seleccionado - Obtención de parámetros

Mini-Batch Gradient Descent

for epoch in n_epochs:

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - o compute the gradient for the batch
 - update the parameters of the model
- plot error vs epoch

Entrenamiento de modelos - Hiper parámetros

Selección de los hiper parámetros

Grid Search

Random Search

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig
- A visual explanation for regularization of linear models Terence Parr
- A Complete Tutorial on Ridge and Lasso Regression in Python Aarshay Jain
- . Deep Learning con Pytorch, Chiutala

