

Agenda of Today's Session

- What is Clustering?
- Types of Clustering
- What is K- Means Clustering?
- How does a K-Means Algorithm works?
- K-Means with Python

What is Clustering?

"Clustering is the process of dividing the datase into groups, consisting of similar data-points"

- Points in the same group are as similar as possible
- Points in different group are as dissimilar as possible

What is Clustering?

Group of dine in a restaurar

Items arranged in a mall

Where is it Used?

Recommendation System

How business use Clustering?

Retail Store

Banking

Insurance Companies

Types of Clustering

- Exclusive Clustering
- Overlapping Clustering
- Hierarchical Clustering

Exclusive Clustering

- Hard Clustering
- Data Point / Item belongs exclusively to one cluster
- For Example: K-Means Clustering

Types of Clustering

- Exclusive Clustering
- Overlapping Clustering
- Hierarchical Clustering

Overlapping Clustering

- Soft Cluster
- Data Point/ Item belongs to multiple cluster
- For Example: Fuzzy/ C-Means Clustering

Hierarchical Clustering

Types of Clustering

- Exclusive Clustering
- Overlapping Clustering
- Hierarchical Clustering

What is K-Means Clustering?

"K-Means is a clustering algorithm whose mail go to group similar elements or data points into cluster."

NOTE: 'K' in K-Means represent the number of clusters

What is K-Means Clustering?

Pile of dirty clothes

Where Can I apply K-Means?

https://gfer.com/an/Cisco

Number of Clusters, K = 3

K-Means Algorithm

- Step 1: Select the number of clusters to be identified,
 i.e select a value for K = 3 in this case
- Step 2: Randomly select 3 distinct data point
- Step 3: Measure the distance between the 1st point and selected 3 clusters

Distance from point 1 to Distance from point 1 to the red the share cluster the green cluster

K-Means Algorithm

(red in this case).

K-Means Algorithm

Find to which cluster does point 2 belongs to, how?

 Repeat the same procedure but measure the distance to the red mean

K-Means Algorithn

Find to which cluster does point 3 belongs to, how?

 Repeat the same procedure but measure the distance to the red mean

K-Means Algorithm

Measure the distance and add the 3rd point to the nearest

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

K-Means Algorithm

Original/Expected Result

K-Means Algorithm

Total variation within the cluster

According to the K-Means Algorithm it iterates over again and agunless and until the data points within each cluster stops changing

Iteration 2: Again we will start from the beginning. But this time we will be selecting different initial random point (as compared to what we chose in the 1st iteration)

- Step 1: Select the number of clusters to be identified, i.e. K =3 in this
- Step 2: Randomly select 3 distinct data point
- Step 3: Measure the distance between the 1st point and selected 3 clusters

K-Means Algorithn

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

K-Means Algorithm

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

K-Means Algorithm

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

K-Means Algorithn

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

Total variation within the cluster

K-Means Algorithm

Iteration 3: Again we will start from the beginning and select different initial random point (as compared to what we chose in the 1st and 2nd iteration)

Pick 3 initial clusters

K-Means Algorithm

K-Means Algorithm

Finally sum the variation within each cluster

Total variation within the cluster

K-Means Algorithm

The algorithm can now compare the result and select the best variance out of it

1st Iteration

2nd Iteration

3rd Iteration

Now what if we have our data plotted on the X and Y axis

K-Means Algorithm

K-Means

Similarly, pick initial 3 random points..

K-Means Algorithm

We will be using the Euclidean distance (in 2D its same as that of a Pythagorean Theorem)

Again assign the point to the nearest cluster

K-Means Algorithm

K-Means Algorithm

Finally calculate the centroid (mean of cluster) including the new point

K-Means Algorithm

Finally in first iteration you get something like this...again you have to iterate this process to get the final cluster

How will you find K value

In the previous scenario k value was known to be 3, but this is not always true

How will you find K value

For deciding the value of k, you have to use hi and trail method, starting from K = 1

K=1 is the worst case scenario, even you crossverify it with total variation

Now try with K = 2

K value

Now try with K = 3

How will you find K value

K=3 is even better than K =2 (Total Variation)

Now try with K = 4

K value

Total variation in K=4 is less than K=3

K = 3

How will you find K value

Now try with K = 4

Each time you increase the cluster the variation decreases, no. of clusters = no. of data points there in that case the variation = 0

Total variation in K=4 is less than K =3

How will you find K value

Let's learn to code

K-Means Algorithm

Summarizing the K-Means Algorithm

randomly chose k examples as initial centroic
while true:
 create k clusters by assigning each
 example to closest centroid
 compute k new centroids by averaging
 examples in each cluster
 if centroids don't change:
 break

edurel

600,000 + SATISFIED LEARNERS Thank you!

For more information please visit our website www.edureka.co

