Ma5827 井钻井工程设计

目录

1、	设计依据	1
	1.1 有关钻井技术标准、规范及法规	1
	1.2 构造名称	1
	1.3 地理及环境资料	1
	1.4 地质要求	1
	1.5 地质分层及油气水层位置	2
2、	技术指标及质量要求	3
	2.1 井身质量要求	3
	2.2 固井质量要求	
3.	工程设计	4
•	3.1 井下复杂情况提示	
	3.2 井身结构	
	3.3 钻机选型及钻井主要设备	7
	3.4 钻柱设计(钻具组合设计) (最后开次井眼的钻柱设计计算)	10
	3.5 钻进参数设计	11
	3.5.1 钻头设计 (钻头设计要有邻井统计分析依据)	11
	3.5.4 水力参数设计 (最后开次并眼的水力参数设计计算)	12
	3.5.5 下部防斜钻具结构	14
	3.5.6 钻进参数设计表	15
	3.6 钻井液及油气层保护设计绘制表格填写钻井液体系、配方及主要性能参数	16
	3.6.1 油气层保护	16
	3.6.2 玛湖地区防漏、堵漏技术建议	
	3.7 固井工程设计	
	3.7.1 套管柱强度设计油层套管柱强度校核	
	3.8 套管柱强度设计表	
	3.7.2 套管柱管串结构及扶正器安放	
	3.7.3 注水泥浆量及流变学设计	
	3.9 各次开钻或分井段施工的特殊点要求	
	3.10 技术经济指标钻井进度计划	27

1、设计依据

1.1 有关钻井技术标准、规范及法规

《Ma5827 井钻井地质设计》 《艾湖油田玛 18 井区三叠系百口泉组油藏开发试验钻井工程方案》 《Ma5827 井临井钻完井相关资料,有关技术规范及技术法规》

1.2 构造名称

准噶尔盆地中央坳陷玛湖凹陷

1.3 地理及环境资料

井口海拔: 261.18米

井口坐标: X: 5,076,081.44 Y: 15,406,532.58

构造位置: 位于准噶尔盆地中央坳陷玛湖凹陷西斜坡区

地理位置: 位于玛 18 井东偏南 719 米, 玛 601 井西偏北 1169 米, 玛 604 井北东 2808 米处。

地形地貌及交通情况: 地表大部分为戈壁砾石, 植被较少, 地势较为平坦。井区周围为 戈壁区, 东南部靠近玛纳斯湖区域盐厂生产区。沙漠简易公路从工区附近通过, 奎北铁路横 穿工区, 交通、通讯便利。气候条件较为恶劣, 四季温差悬殊, 夏季炎热最高温度 43℃以上, 冬季寒冷, 最低气温达-36℃以下。年降水量少, 年降水量小于 200mm, 蒸发量大, 属于大陆 干旱气候。

1.4 地质要求

设计井深: 3960 米

井型: 直井 井别: 注水井

目的层位: 三叠系百口泉组 (T₁b) 完钻层位: 二叠系下乌尔禾组 (P₂w)

完钻原则: 钻穿三叠系百口泉组 (T₁b) 底界后留 30 米 "口袋" 完钻。

完井方法: 固井射孔完井

1.5 地质分层及油气水层位置

地质分层:

地质年代						设计地层	
界	系	统	组	代号	底界深度	厚度	倾角(°)
中生界 Mz	白垩系K	下统 K ₁	吐谷鲁群	K₁tg	1605	1605	1
	侏罗系J	上统 J ₃	齐古组	J₃q			
		中统 J ₂	头屯河组	J ₂ t	1685	80	1
			西山窑组	J ₂ x	1840	156	1
		下统 J ₁	三工河组	J ₁ s	2180	340	1
			八道湾组	J ₁ b	2895	715	0.5
	三叠 系 T	上统 T ₃	白碱滩组	T ₃ b	3310	415	0.5
		中统 T2	克上组	T ₂ k ₂	3575	265	0.5
			克下组	T ₂ k ₁	3765	190	0.5
		上统 T ₁	百口泉组	T₁b	3930	165	0.5
古生界	二叠系P	上统 P ₂	下乌尔禾 组	P ₂ w	3960	30	

预计油气层位置: 井段 3765-3930m, 厚度 165 米, 层位: 百口泉组 (T₁b)

2、技术指标及质量要求

2.1 井身质量要求

井深 (m)	井斜 (°)	全角变化率	水平位移	井径扩大率	井斜测量间
		(°/30m)	(m)	(%)	距要求
0~500	≤ 2	≤ 1.5	≤ 15	油气井固井	电测井斜每
~1000	≤ 3	≤ 1.5	≤ 30	水泥封固段	30m 一个点,
~1500	≤ 5	≤ 1.75	≤ 40	平均井径扩	单点测斜间
~2000	≤ 5	≤ 1.75	≤ 50	大率小于	距不大于
~2500	≤ 7	≤ 2.25	≤ 60	10%;非油气	300m。
~3000	≤ 7	≤ 2.25	≤ 70	层固井水泥	
~3500	≤ 9	≤ 2.75	≤ 80	封固段平均	
~3960	≤ 9	≤ 2.75	≤ 90	井径扩大率	
				不大于 15%	
				最大井径扩	
				大率不大于	
				25%	

2.2 固井质量要求

开钻次	钻头尺	井段	套管尺	套管下	水泥封固	阻位	测井项	固井质
数	寸 (mm)	(m)	寸 (mm)	深 (m)	井段 (m)	(m)	目	量要求
一开	444.5	0~500	339.7	500	0~500	490		水泥浆
								反至地
								面
二开	311.2	~3140	244.5	3140	2540~3140	3120	声幅	合格
三开	215.9	~3960	139.7	3960	3265~3960	3940	声幅	合格

3、工程设计

3.1 井下复杂情况提示

ы. н	라 H Vz iz	E B	
地层	底界深度	厚度	复杂情况提示
吐谷鲁群 K1tg	1605	1605	(1) 八道湾组地层承压
齐古组 J3q			能力低,区域内完钻多
头屯河组 J2t	1685	80	口井在八道湾组发生井
西山窑组 J2x	1840	155	漏,漏失密度
三工河组 J1s	2180	340	1.22g/cm3~1.25
八道湾组 J1b	2895	715	g/cm3 钻进过程中提前
白碱滩组 T3b	3310	415	做好防漏准备
克上组 T2k2	3575	265	(2) 纵向上白垩系底
克下组 T2k1	3765	190	部、八道湾组底部、克
百口泉组 T1b	3930	165	拉玛依组、白口泉组地
下乌尔禾组 P2w	3960	30	层含砾,钻井过程中需
			调整好钻井参数,预防
			先期磨损。
			(3) 白垩系、侏罗系、
			三叠系白碱滩组泥岩,
			克拉玛依组砂泥岩夹层
			地层稳定性差, 防垮塌、
			防卡。
			(4) 三叠系克拉玛依
			组、百口泉组地层为异
			常高压, 注意预防溢流、
			井喷

3.2 井身结构

通过现场实践可知, 自下而上设计井身结构可以确定每层套管的最小下深, 经济性高, 适用于已探明区块或地质情况清楚的地区的井。

1、设计原理:

钻井液密度:
$$\rho_m \ge \rho_{pmax} + \Delta \rho$$
 (1)

考虑坍塌压力对井壁稳定性的影响:
$$\rho_{mmax} = \max \left[(\rho_{pmax} + \Delta \rho), \rho_{cmax} \right]$$
 (2)

避免井段内地层压裂,考虑最大井内压力,正常工作和井涌压井时井内压力不同,最大井内压力发生在下钻时,激动压力使井底压力升高。

正常作业
$$ρ_{bnmax} = ρ_{mmax} + S_{q}$$
: (3)

溢流关井:
$$\rho_{bamax} = \rho_{mmax} + \frac{D_m}{D_x} S_k$$
 (4)

安全地层破裂压力当量密度:
$$\rho_{ff} = \rho_f - S_f$$
 (5)

压力平衡约束条件:
$$\rho_b \leq \rho_{ffmin}$$
 (6)

压差卡钻约束条件:
$$\Delta P = 10^{-3}g \times (\rho_{mmax} - \rho_{mmin}) \times D_n \le \Delta P_n (\Delta P_a)$$
 (7)

白垩系、侏罗系、三叠系白碱滩组泥岩 (井深约为 0~3930m), 克拉玛依组砂泥岩夹层地层稳定性差, 防垮塌、防卡。选取较大钻井液附加压力保证安全 Δ ρ取 0.1g/cm³。三叠系克拉玛依组, 百口泉组地层异常高压注意预防溢流和井喷(井深约为 3310~3930m), 技术套管设计选用公式 (4)。而目的层位于 3960m 处二叠系下乌尔禾组。

根据临井经验,4000米地层应选择三开完井方式。一开完钻井深 500米。为规避一场高压危险段二开完钻井深小于3300米,三开完钻井深应大于3930米,三开套管承受异常高压。

2、技术套管设计:根据地质设计

$$ρ_{ff} = ρ_f - S_f$$
; S_f $⊕ 般取 0.03$; $ρ_b ≤ 1.81 − 0.03 = 1.78 g/cm3$

$$\rho_b \ge \rho_{mmax} + \frac{D_m}{D_x} S_k$$
; $\rho_b \ge 1.18 + \frac{3300}{500} \times 0.05 = 1.51 \text{ g/cm}^3$

根据玛 18并百口泉组油藏 4井 5层压力资料 T1B2 原始地层压力 59.82MPa, 压力系数 1.56。 $\triangle P = 0.00981 \times (1.78 - 1.56) \times 3300 = 7.12 \leq \triangle P_n (\triangle P_a)$ 根据钻井手册

 $\Delta P_n = 11^{-17} \text{MPa} \Delta P_a = 14^{-22} \text{MPa}$ 。符合设计要求钻井液密度取值 1.56~1.78 g/cm³

3、表层套管设计:

根据临井设计经验, 表套一般下入深度为 500 米。接下来校核 500 米一开是否符合设计要求。

$$\rho_{ff} = \rho_f - S_f$$
; $S_f - \Re \Re 0.03$; $\rho_b \le 2.41 - 0.03 = 2.38 \text{ g/cm}^3$

$$\rho_{bnmax} = \rho_{mmax} + S_g = 1.01 + 0.024 = 1.034 \text{ g/cm}^3$$

 \triangle $P = 0.00981 \times (x - 1.01) \times 500 \le 11 \triangle P_n (\triangle P_a) \triangle P_n = 11^17 MPa \triangle P_a = 14^22 MPa. <math>x \le 2.24 \text{ g/cm}^3$ 一开下人 500 米符合设计要求。

4、尾管设计:

技术套管下入 3300 米处时为节省钢材最后一开次采用尾管作为生产套管

$$\rho_b \ge \rho_{mmax} + \frac{D_m}{D_x} S_k; \ \rho_b \ge 1.51 + \frac{3960}{3300} \times 0.05 = 1.57 \text{ g/cm}^3$$

$\triangle~P = 0.00981 \times (x - 1.56) \times 3300 \leq 11 \triangle~P_n(\triangle~P_a)~\triangle~P_n$

 $x \le 1.9 \text{ g/cm}^3$

钻井液密度应控制在 1.57~1.9 g/cm³ 经过校核该井身结构合理。

地层	底界深度	井身结构示意图
吐谷鲁群	1605	
K₁tg		- VA VA
头屯河组	1685	
J_2t		
西山窑组	1840	Ø339.7mm表套× 500 <i>m</i>
J_2x		
三工河组	2180	
J ₁ s		
八道湾组	2895	
J₁b		
白碱滩组	3310	
T ₃ b		
克上组 T ₂ k ₂	3575	技套水泥返高2840m
克下组 T ₂ k ₁	3765	汉基小龙区同2840III
百口泉组	3930	封隔器3300m
T₁b		到 PRN 前 3300 m
下乌尔禾	3960	
组 P ₂ w		
		- Ø215.9mm钻头× 3960 <i>m</i> Ø139.7mm尾管× 3960 <i>m</i>

- 1、井身结构示意图
- 2、井身结构设计说明

开钻次数	套管尺寸 (mm)	设计说明
一开	339.7	水泥返至地面
→ T	044 5	
二开	244.5	水泥返至 2840 米,封隔上部易漏地层
三开	139.7	安装封隔器,水泥返高至 3265 米

开钻次数	井深	钻头尺寸	套管尺寸	套管下入	套管下入	环空水泥
			(mm)	层位	深度	反高
一开	500	444.5	339.7	K	500	地面
二开	3340	311.2	244.5	T ₃ b	3340	2840
三开	3960	215.9	139.7	P ₂ W	3960	3265

^{3、}井深结构设计数据表

3.3 钻机选型及钻井主要设备

序号	名称		名称 型号		功率 (KW)	备注												
_		钻机	ZJ40L	2250														
$\vec{\Box}$		开架	JJ225142-A2	2250														
		绞车	JC32B		735													
	提升系统	提升系统												天车	TC2-225	2250		
三			游动滑车	YC250	2250													
			大钩	DG25D	2250													
							水龙头	SL250	2250									
四	转盘		ZP520B1															
T.	循环系统配置	钻井泵 1#	F-1300		960													
五.		钻井泵 2#	F-1300		960													

钻井工程课程设计 2018015122

		钻井液罐	13000×3000×250D		总 容 量:196m ³
		搅拌器	NJ-7.5		12个
		柴油机 1#	GV12V190B-3	930	
六	钻机动力 系统	染泊机 2#	GV12V190B-3	930	
		柴汕机 3#	GV12V190B-3	930	
	发电机组	发电机 1#	PZ8V-190D-2	300	
七		发电机 2#	P78V-190D-2	300	
		MCC 房			
		自动压风机	2V6.5/12	55	
		电动压风机	2V6.5/12	55	
八	钻机控制 系统	气源净化装暨			
		刹车系统			
		辅助刹车			

序号		名称	型号	载荷(kN)	功率(kw)	备注
		振动筛 1#				AL TO
		振动筛 2#	RCz2000			处理 量:210m ^{3/} h
九	固控系统	除砂器			55	处理
		除泥器	RCZ2000		3	量;200~250m³ /h
		离心机	LW400×8		24	处理 量:40m ^{3/} h
		加重漏斗				1套
+	加重装置	电动加重泵				1套
		气动下灰 装置				
	井控系统	双闸板防喷器	2FZ35-35			1套
		控制装置	FKQ3204			1套
+-		节流管汇	JG-35			1套
		压井管汇	YG-35			套
		除气器	zCQ ₂ -1/4			1套
	仪器仪表	钻井参数 仪表	多参数仪			1套
十二		测斜仪	自浮式单点测斜仪			1套
		硫化氢监测仪	便携式			≥3 套
十三		液压大钳				1套

3.4 钻柱设计(钻具组合设计) (最后开次井眼的钻柱设计计算)

最后开次强度设计:

- 1、设计原则: 满足强度要求 (抗拉、抗挤) 保证钻柱安全工作 尽量减轻每个钻柱的重力。
- 2、根据井口尺寸选择 215.9mm 钻头、158.8mm 钻铤。

$$K_B = 1 - \frac{\rho_d}{\rho_s} = 1 - \frac{1.57}{7.8} = 0.798$$

根据浮重原则: $L_c = \frac{W_{max}S_N}{q_cK_Bcosa} = \frac{180 \times 1.18}{1.328 \times 0.798 \times cos17}$ =204.18m。需要 158.8mm 钻铤 21 根 210m。

3、钻杆设计:

 $F_y = K_B(q_c L_c + q_p L_p) = 0.798 \times (1.328 \times 210 + 0.3724 \times 3750) = 1337kN$ 初选第一段钻杆: 选择外径 127mm,内径 108.6mm 的 E 级钻杆。线重 0.2842kN/m 最小屈服强度 517.11MPa。 $F_y = 0.1\sigma_y A_p = \frac{\pi}{40}\sigma_y (d_{po}^2 - d_{pi}^2) = 1760kN$

最大安全静压力: i 安全系数法

$$F'_{max1} = \frac{0.9F_y}{S_t} = \frac{0.9 \times 1760}{1.3} = 1218.46kN$$

ii 设计系数法

$$F_{max1}^{"} = \frac{0.9F_y}{S_d} = \frac{0.9 \times 1760}{1.42} = 1115.49kN$$

lii 拉力余量法:

$$F_{max1}^{""} = 0.9F_y - MOP = 0.9 \times 1760 - 200 = 1384kN$$

第一段钻杆安全静压力F_{max1}=1115.5kN。

第一段钻杆许用长度为:

$$\mathsf{L}_{p1} = \frac{\mathsf{F}_{max1}/\mathsf{K}_B}{q_{p1}} - \frac{q_c L_c}{q_{p1}} = \frac{1115.5}{0.2842 \times 0.798} - \frac{1.328 \times 210}{0.2842} = 3937m > 3960 - 210m$$

一级钻杆就可满足要求。

4、选择 215mm 扶正器和 158.8mm 随钻震击器形成符合钻具组合。

тг.	-TF HEI	<i>F</i> L\#-4F	<i>F</i> L = /	Α 11.
开	井眼	钻进井	钻具组	祖首
钻	尺寸	段		
次				
序				
_	444.5	0-500m	略	
开				
$\vec{-}$	311.2	-3340m	略	
开			略	
			略	
三	215.9	-3960m	常	φ215.9mm 钻头+φ158.8mm 钻铤 2根+φ215mm 稳定器
开			规	+φ158.8mm 钻铤 19 根+φ158.8mm 随钻震击器
				+φ158.8mm 钻铤 3 根+φ127mm 钻杆
			提	φ215.9mm 钻头 (扭力冲击器配套) +扭力冲击器
			速	+φ158.8mm 钻铤 21 根+φ158.8mm 随钻震击器
			エ	+φ127mm 钻杆
			具	

3.5 钻进参数设计

3.5.1 钻头设计(钻头设计要有邻井统计分析依据)

	序号	尺寸 (mm)	型号	数量	钻进井段 (m)	进尺(m)	纯钻时间 (h)	预测机械 钻速 (m/h)			
一开	1	444.5	ST115G	1	0-500	520	20.8	25			
二开	2	311.2	FS2563BGZV	1	~3100	980	49	20			
二开	3	311.2	FX65DX3	1	-3340	1257	62.85	20			
三开	4	215.9	SF56H3	1	3850						
三开	5	215.9	HJT517GK	1	3960						
三开	4'	215.9	扭力冲击	1	3960						
			器+配套								
			钻头								
三开	5'	215.9	HJT517GK	1	钻套管附件、通井、划眼						

3.5.4 水力参数设计(最后开次井眼的水力参数设计计算)

$$A_0 = \frac{\pi}{4} \sum_{i=1}^{5} d_{ni}^2 = \frac{\pi}{4} \times (5 \times 1.2^2) = 5.65 cm^2$$

$$A_1 = \frac{\pi}{4} \sum_{i=1}^{3} d_{ni}^2 = \frac{\pi}{4} \times (1.6^2 + 1.8^2 + 1.6^2) = 6.57 cm^2$$

钻井液密度 ρ =1.75g/cm3

钻井液密度 ρ 1=1.80g/cm3

C=0.98 Q=28L/s

内平管路 B=0.51655

dpi=10.86cm dpo=12.7cm

dh=21.59cm

dci=5.715cm dco=15.875cm

Lp=3960m Lc=243m

塑性粘度μpv=35mPas

塑性粘度μpv₁=40mPas

(1)喷射速度

$$v_{j1} = \frac{10Q}{A_1} = \frac{10 \times 28}{6.57} = 42.62 \text{m/s}$$

$$v_j = \frac{10Q}{A_0} = \frac{10 \times 28}{5.65} = 49.56 \text{m/s}$$

(2)射流冲击力

$$F_j = \frac{\rho_d Q^2}{100 A_0} = \frac{1.75 \times 28^2}{100 \times 5.65} = 2.43 \text{kN}$$

$$F_{j1} = \frac{\rho_{d1}Q^2}{100A_1} = \frac{1.80 \times 28^2}{100 \times 6.75} = 2.09 \text{kN}$$

(3)射流水功率

$$P_j = \frac{0.05 \rho_d Q^3}{A_0^2} = \frac{0.05 \times 1.75 \times 28^3}{5.65^2} = 60.17 \text{kW}$$

$$P_{j1} = \frac{0.05 \rho_{d1} Q^3}{A_1^2} = \frac{0.05 \times 1.80 \times 28^3}{6.57^2} = 45.77 \text{kW}$$

(4)钻头压降

$$\Delta P_b = \frac{0.05 \,\rho_d Q^2}{C^2 A_0^2} = \frac{0.05 \times 1.75 \times 28^2}{0.98^2 \times 5.65^2} = 2.24 MPa$$

$$\Delta P_{b1} = \frac{0.05 \,\rho_{d1} Q^2}{C^2 A_1^2} = \frac{0.05 \times 1.8 \times 28^2}{0.98^2 \times 6.57^2} = 1.70 MPa$$

(5)钻头水功率

$$N_b = \frac{0.05 \rho_d Q^3}{C^2 A_0^2} = \frac{0.05 \times 1.75 \times 28^3}{0.98^2 \times 5.65^2} = 62.65 kW$$

$$N_{b1} = \frac{0.05 \,\rho_{d1} Q^3}{C^2 A_1^2} = \frac{0.05 \times 1.80 \times 28^3}{0.98^2 \times 6.57^2} = 47.66 kW$$

(6)钻杆内外压耗:

钻铤内外压耗:

(7)比水功率

T₁b: 比水功率=
$$\frac{N_bC^2}{$$
 井底面积 = $\frac{10\times62.65\times0.98^2}{21.59^2\times(\pi/4)}$ = $1.64w/mm^2$ P₂w₃比水功率= $\frac{N_bC^2}{$ 井底面积 = $\frac{10\times47.66\times0.98^2}{21.59^2\times(\pi/4)}$ = $1.25w/mm^2$

(8)上返速度

$$v_a = \frac{18.24}{\rho_d d_h} = 0.48 m / s$$
$$v_{a1} = \frac{18.24}{\rho_{d1} d_h} = 0.47 m / s$$

开钻次序	立管压力 MPa	钻头压降 MPa	环空压耗 MPa	冲击力 kN	喷射速度 m/S	钻头水功率 kw	比水 功率 w/mm²	上返 速度 m/s
一开	10.72	2.53	0.01	4.20	61.06	138.93	0.90	0.39
二开	16.73	2.95	0.53	4.05	65.78	147.45	1.68	0.69
	18.16	4.32	0.56	4.52	77.33	193.8	2.2	0.74
→ π.	19.32	3.87	4.01	3.03	65.49	109.78	2.59	1.07
三开	21.17	3.47	4.23	2.91	58.47	94.31	2.24	1.07

3.5.5 下部防斜钻具结构

常规稳定防斜组合: φ215.9mm 钻头+φ158.8mm 钻铤 2 根+φ215mm 稳定器 +φ158.8mm 钻铤 19 根+φ158.8mm 随钻震击器+φ158.8mm 钻铤 3 根

若未遇到复杂情况,也可选择提速工具缩短工期: φ 215.9mm 钻头(扭力冲击器配套)+ 扭力冲击器+ φ 158.8mm 钻铤 21 根+ φ 158.8mm 随钻震击器

3.5.6 钻进参数设计表

开钻次序	井段 m	喷嘴组合mm	钻	井液性能			钻进参数						水力参	参数		
			密度 g/cm ³	PV mpa.s	YP Pa	钻压 kN	转速 r/min	排量l/s	立管压力 MPa	钻头压降 MPa	循环压耗 MPa	冲击力 kN	喷射速度 m/s	钻头水功率 kw	比水功率 w/mm²	上返速度 m/s
一开	0~500	18+20+20	1.1	15	8	100-150	65-90	55	10.72	2.53	0.01	4.2	61	138.93	0.9	0.39
	~3140	20×5	1.3	25	15	60~120	60-90	50	17.64	1.75	0.19	3.1	51	86.96	1	0.74
二开	~3340	20×5	1.52	25	8	60-120	60-90	45	16.81	2.25	0.19	3.2	56	100.56	1.14	0.66
	~3960	12×5	1.57	30	10	60-120	60-100	30	18.75	5.9	2.02	3.8	84	176.77	4.18	1.15
三开		14+16+18	1.60	30	10	100-180	60-90	30	20.27	5.73	2.34	4.0	78	171.45	4.05	1.15

3.6钻井液及油气层保护设计绘制表格填写钻井液体系、配方及主要性能参数

3.6.1 油气层保护

百口泉组 T1b: 段储层岩性主要为灰色、灰绿色砂质细砾岩、小砾岩,局部夹薄层含砾粗砂岩。百口泉组 T;b2 段储层岩性主要为灰色、灰绿色砂质细砾岩、含砾粗砂岩。百口泉组 T1b2 储集空间以粒内溶孔 (90%)为主,少量微裂缝 (10%);百口泉组 T1b1 储集空间孔隙类型以剩余粒间孔 (45%)、收缩孔 (35%)为主,局部发育粒内溶孔 (20%)

百口泉组 T1b;储层孔隙度平均 9.89%,渗透率平均 5.57mD,油层孔隙度平均 10.69%,油层渗透率平均 8.38mD;百口泉 Tb2 储层孔隙度平均 9.00%,渗透率平均 1.78mD,油层孔隙度平均 9.52%,油层渗透率平均 2.11mD.百口泉组 T1b;储层物性整体上好于 T1b,属特低孔隙、特低渗透性的储集层。3.5.3.2油气层保护措施要求

- 1) 本井使用屏蔽暂堵技术保护油气层,钻井完井液配方设计为井浆加 2%QCX-1、1%WC-1和 3%阳离子乳化沥青(磺化沥青粉、天然沥青粉、PHT)。必须按钻井完井液设计调整好钻井液性能,严格按设计要求加入屏蔽暂堵材料,并在钻进过程中随时补充,确保屏蔽暂堵材料在钻井完井液中的含量达到设计要求,以形成致密高强度的"屏蔽环",防止钻井完井液对油气层造成严重伤害。
- 2) 要求目的层段钻井中严格控制钻井完井液 API 失水不大于 5ml, HTHP 滤失量应控制在 12ml/30min 之内。
 - 3) 钻井完井液处理剂须有合格检验报告,对质检不合格的钻井完井液处理剂严禁入井。
- 4) 加强固控设备的使用和维护,严格控制无用固相含量和含砂量,目的层钻进含砂量控制在 0.5%以内。
 - 5) 钻开目的层后提下钻操作要平稳、减小井底压力激动、避免井漏及井喷事故发
- 6) 快速钻穿目的层,提高裸眼井段电测一次成功率,快速完井,尽可能缩短钻井完井液 对油气层的浸泡时间,减少钻井完井液对目的层的污染。
- 7) 严格按设计控制水泥浆 API 失水量, 防止发生水泥浆漏失而造成对目的层的永久性损害。
- 8) 其它方面严格按中国石油天然气集团公司《钻井液技术规范(试行)》(2010.8 有关内容执行。

3.6.2 玛湖地区防漏、堵漏技术建议

根据 8 月 6 日玛湖开发项目经理部组织召开的《艾湖 1-玛 18 井区阶段钻井技术分析会》会议精神,结合玛湖地区各施工单位钻井经验,总结了玛湖地区防漏、堵漏技术措施,供现场施工单位参考。(1) 先期防漏、随钻堵漏

在钻井液中加入随钻堵漏剂 (颗粒或纤维) 2%~3%、胶凝剂 (如 1%ZL 或 0.5%(①7 APSORB-1、ZND)、凝胶纤维剂等,提高钻井液的防渗漏性,对地层的微孔、裂缝进行先期封堵.

根据室内实验研究和现场试验,在钻井液中加入 YB-1 或在其他防漏、堵漏措施一中配合加入 YB-1 可提高防漏效果,并能缩短提高地层承压能力所需的时间。采用多级别刚性堵漏剂 (CaCO3) 复配短棉绒型的复合堵漏剂,与凝胶配合防漏。)

(2) 堵漏

钻井中一旦发生井漏,根据漏失情况和漏失特点,采用不同比例和不同浓度的桥堵浆, 对漏层进行及时、有效的桥塞封堵。推荐两种方法供施工方参考:

①3%~5%配方:1%~3%综合堵漏剂+0.5%~1%核桃壳(0.8mm~1mm)+0.5%~1%核桃壳(1mm~3mm)+1%~2%蛭石+1%~2%石灰石+0.5%胶凝剂

②8%~10%配方:3%~5%综合堵漏剂+1%~3%核桃壳(1mm~3mm)+1%~2%蛭石+1%~2%石灰石+1%~3%沥青干粉(3)提高地层承压能力桥堵或注灰成功后应进行承压试验,以提高堵漏的成功率和有效率。

- ① 以浓度 8%~12%的桥堵浆封闭裸眼段,提高钻井液密度,提高三叠系地层的承压能力,满足固井水泥返高需要。桥堵浆中堵漏剂以综合堵漏剂配合 KZ 系列、凝胶纤维、单封、云母、锯末等;施工单位可根据自己的经验采取其他更为有效、快捷的防漏、堵漏和提高地层承压能力的方法。
 - ②采用不同粒径、刚性承压材料 ZD-A、ZD-B、ZD-C、ZD-D 配合提高地层承压能力。
- ③ 钻井液中加入 4%的 YB-1 提高地层的承压能力。室内实验表明, 配合 4%的 YB-1 可明显缩短提高地层承压能力所需的时间,提高岩芯的承压能力和返排压力。

3.5.1 钻井液设计

						常夫	见性能							流变参数				
开 钻次序	次序	密度 g/cm ³	漏斗粘度s	API 失 ml		泥饼 mm	pH 值		HTHP 失水 ml	摩阻系数	静切力	J Pa	塑性粘度 mPa.s	动切力 Pa	n 值	K值	固相含量%	膨润土含量%
											初切终切							
一开	0~500	1.03~2.24	50~90	≤10														
类	<u></u> 型		西方	j	•							处	理方法与维抗	户	•	•		
	-CMC 夜体系	1)按设计要求配制坂土浆,充分预水化 24 坂含、高粘切,注意防塌、防漏。 7%~8%坂土 +0.4%Na ₂ CO ₃ ,+0.2%~0.4%CMC(中) 2)保证固控设备运转良好,合理使用好固除砂器根据实际情况间歇性使用。							5土浆和	コCMC 胶液	为主,并以:	细水长	流的方	5式补充到护	‡浆中-			

						常	规性能					;	流变参数				
开钻	 井段 m		漏斗	API				HTHP		静切力	Ра	V=11.11				总固	膨润土
次序	77+2 111	密度 g/cm3	粘度 s	失水 ml	泥饼 mm	pH 值	含砂%	失水 ml	摩阻 系数	初切	终切	塑性粘度 mPa.s	动切力 Pa	n值	K值	含%	含量%
二开	500~3340	1.51~1.78	45~80	≤ 5	<0.5	9~11	<0.5	≤ 12	<0.15	1~5	2~5	15~35	5~15			<18	3.5~4.5
	<u> </u>		配方														
	聚磺钻井 8.井液体系	SJ-1、SD-HE +2%SPNH+ 化沥青、白》	F、JB66、F %~0.7%MA BJ、JK-3、F 0.3%-0.5%; 历青)+2%SF YG、SMP-1 前 150m 开始	MHA-2、 N101(SP-8 IJ-3、NA ⁻ 复配铵盐+ IC-1(YLSH 、TSH-1)-	IND30、 3、JT888 T20) -2%磺化》 IA、SHY- +1%低荧分	、 SY-3、 历青(乳 1、 长润滑剂 か加完油	2) 二开加 3) 钻进的 钻井液,i 4)保证聚的 PMHA-2、 HJ-3、NA 磺化沥青	加强钻井液的 过程中应根据 避免钻井液性 合物加量,聚 IND30、FA AT20)配合组	的包被和封地 居井下实际的 主能波动过之 各合物要配以 A367)加强包 更配铵盐降的	者作用,提高钻井 青况和钻井液性 大。 公适宜,防止粘。 包被,抑制泥岩 低滤失量,以	‡液的抑制 能,将所需 土矿物的 水化膨≤,l SHC-1(YLS	再按配方要求转化和防塌能力。加入的处理剂按比水化膨胀,控制滤以 MAN101 (SP-85HA、SHY-1、SF量,调整流变性和	比例配成胶 失量。以(S、JT888、 IP-3、SD-k	液以细 MAN10 SY-3、 (YG.SM	水长流 4(YLJB SJ-1、5 IP-1、T	的办法补 、JTAOI 5D-HBJ、	ト充维护 F、JB66、 JK-3、

						常	规 性 能					ì					
开钻	井段 m		漏斗粘度	API	泥饼			HTHP 失		静切力 Pa		塑性粘度	动切力				膨润土
次序		密度g/cm3	S	失水 ml	mm	pH值	含砂%	水 ml	摩阻系数	初切	终切	mPa.s	Pa	n值	K值	含%	含量%
三开	3340~3960	1.57~1.9	45~80	<5	<0.5	9~11	1 <0.5 ≤ 12 <0.15 2~7 1~5 15~50 5~25 处理方法与维护									<18	3~4
	类型		酉	己方		•	处理方法与维护										
	聚磺钻井 井液体系	4%坂土 +0.2%NazC 04(YLJB、JT FA367)+0.4' SY-3、SJ-1、 +2%SPNH+ (乳化沥青、 SHP-3,SD-K 剂+重品石 进入目的层部 油层保护剂, 充碘化沥青(AOF、JB6 %~0.7%M SD-HBJ、 0.3%-0.59 白沥青)+2 YG、SMP- 前150m 开 共加入 2%	6、PMH, AN101(SF JK-3、H 6复配铵盐 %SHC-1(1、TSH-1 始在钻井 QCX-1、	A-2、INI P-8、JT8 J-3、NA L+2%磺 YLSHA、)+1%低克 液中分三 1%WC-1	D30、 88、 T20) 化沥青 SHY-1、 支光润滑 三次加完	工中应根序, 经批6) 进入汽达到 2%, 成严重伤7) 在钻线8) 保证服务 (2%) 电弧 (2%)	据压力监测准后实施。由层前在钻井以改善泥饼害。 中液中目的原理较级的一种。	结果结合钱 若遇紧急怕 井完井液中 质量,增5 层要求控制 层要求控制 满足钻井和 足够的堵漏	占井情况,合理 情况(溢流、井 加入 2%QCX- 虽泥饼的防透灯 钻井完井液 Al , 钻进中要求执 该相关的性能要	E调整钻井喷 涌或井喷 1、1%WC 生,以形; 中I 滤失量 最动筛(筛 要求,以	况,本井段钻井 井液密度。当发现),可先处理,再 一1,并随时补充码 成致密高强度的 不大于 5ml。 布使用 60~80 目1 "净化"保"优存 ,施工井队应根	实际与设计及时上报。 及时上报。 黄化沥青(乳 "屏蔽环", 以上)开动率 比"。	汁不相。 比化沥青 防止氧 率 100%	符合时 青、白活 钻井完	历青), (所青), (井液对〉	计审批程 使其含量 油气层造 寸率 80%,

3.7 固井工程设计

3.7.1 套管柱强度设计油层套管柱强度校核

- (1) 中 339.7mm 表层套管下入深度 500m, 采用内管注水泥固井, 水泥浆返至地面。(2) 中 244.5mm 技术套管下入深度 3140m, 采用微珠低密度水泥浆双胶塞有控固井, 水泥浆返至井深 2540m。
- (3)) 中 139.7mm 油层套管下入深度 3960m, 采用胶乳水泥浆体系单级有控固井, 水泥浆返至井深 3265m。3.9.2 固井施工要求
- (1) ♦ 339.7mm 表层套管①采用内管注水泥固井工艺固井。
- ②严格按《SY/T5374.2-2006 固井作业规程 第 2 部分:特殊固井》中内管法注水泥要求进行施工。
- ③表层套管下完先开泵循环、找正并固定好井口后再固井。
- ④内管串:钻杆插入接头+中 127mm 钻杆 (第一、二根带扶正器) +方钻杆。⑤注水泥前注 人 2m3 清水作隔离液。
- ⑥现场注水泥施工要连续进行,套管外水泥浆应返出地面。
- ②注水泥时要随时观察井口钻井液返出情况, 若发生井漏, 水泥浆未返至地面, 井口应挤水泥帽子。
- ⑧注水泥结束后候凝 12h 再动井口。(2) Φ 244.5mm 技术套管
- ①采用微珠低密度水泥浆双胶塞有控固井。
- ②为确保完井固井正常施工和固井质量,电测完后根据实际完钻泥浆密度和使用水泥浆密度,使用在井口蹩压或者提高钻井液密度的方式做地层承压试验,要求稳压 15min 以上,压降不大于 0.5MPa。
- ③下套管前换应换中 244.5mm 防喷器芯子,按照 3.7.2.1 井口装置试压要求进行试压,试压合格。
- ④下套管期间严格控制套管下放速度,防止激动压力过大压漏地层:下完套管后先小排量顶通,再逐步提高排量至正常钻进时排量洗井,洗井过程中调整泥浆性能,洗井时间以排净后效为准,进出口泥浆密度差小于0.01g/cm³。
- ⑤根据地层压力和完钻泥浆密度,严格控制清洗液用量,防固井过程中油气窜,⑥采用过渡罐注水泥,水泥浆密度偏差范围控制在±0.02g/cm²内,注力续进行,水泥浆返至井深 2540m。
- ②固完井后控制好井口, 候凝 48h 后测声幅, 测完声幅后再进行套管内试压, (3)
- ①139.7mm 油层套管
- ①采用胶乳水泥浆体系单级有控固井。
- ②为确保完井固井正常施工和固井质量, 电测完后根据实际完钻泥浆密度和使用水泥浆密度, 通过在井口整压或者提高钻井液密度的方式做地层承压试验, 要求稳压 15mn 以上, 压降不大于 0.5MPa。
- ③下套管前换应换中 139.7mm 防喷器芯子,按照 3.7.2.1 井口装置试压要求进行试压试压合格。

④下套管期间严格控制套管下放速度,防止激动压力过大压漏地层;下完套管后先小排量顶通,再逐步提高排量至正常钻进时排量洗井,洗井过程中调整泥浆性能,洗井时间以排净后效为准,进出口泥浆密度差小于 0.01g/cm³。

⑤根据地层压力和完钻泥浆密度,严格控制清洗液用量,防固井过程中油气窜。⑥采用过渡罐注水泥,水泥浆密度偏差范围控制在±0.02g/cm³内,注水泥施工要连续进行,水泥浆返至井深 3265m。

- ②碰压后根据完井泥浆密度及实际水泥浆密度确定井口回压值,根据水泥浆胶凝强度试验结果确定加压时间,在井口环空用水泥车逐渐加压至计算压力,保持至水泥浆终凝。
- ®固完井后控制好井口, 候凝 48h 后测声幅, 测完声幅后再进行套管内试压。(4) 井口挤水 泥帽子
- ①交井前井口表套与技套环空挤水泥 15t, 若油套水泥未返至技套内, 油套及技套环空挤水泥 10t。
- ②先注入 2m³清水, 再注入水泥浆。
- ③调节注入排量,控制反挤水泥施工泵压小于 15MPa (表套抗内压强度的 80%)。油层套管(Φ139.7mm)设计数据:

下人深度 D =4200m; 钻井液密度 ρ d=1.8g/cm³; 天然气与空气密度之比 G=0.55, 抗外挤安全系数 Sc=1.34, 抗拉安全系数 St=2.52, 抗内压安全系数 Si=1.58。 等安全系数法: 各危险截面最小安全系数等于或大于规定的安全系数。

下部抗挤设计,水泥面上按双向应力;上部满足抗拉和抗内压。

(1) 计算井口最大内压力:

$$P_{gas} = \rho_d gD = 1.80 \times 0.00981 \times 4200 = 74.16 MPa$$

$$P_{i\text{max}} = \frac{P_{gas}}{e^{1.115 \times 10^{-4} GD}} = \frac{74.16}{e^{1.115 \times 10^{-4} \times 0.55 \times 4200}} = 57.32 MPa$$

$$P_{iD} \ge P_{i\max} S_i = 90.56 MPa$$

因此, 抗内压强度小于 90.56MPa 的套管均不选用。

(2) 确定下部第一段套管,设计抗挤强度为:

$$P_{oc} = \rho_d gD = 1.80 \times 0.00981 \times 4200 = 74.16 MPa$$

$$P_{c1} \ge P_{cc}S_{c} = 99.37MPa$$

因此, 抗外挤强度小于 99.37MPa 的套管均不选用。

(3) 第一段选用 P-110, 壁厚 10.54mm 套管, 查表得套管性能:

Pc=100MPa

Pi=90.74MPa

 $P_{T} = 2861 kN$

q = 342.3 N/m

$$S_{c1} = \frac{P_c}{\rho_d gD} = \frac{100}{1.8 \times 0.00981 \times 4200} = 1.35 > 1.34$$

第二段选用 P-110, 壁厚 9.17mm 套管, 查表得套管性能:

Pc=76.5 MPa

Pi=87.15MPa

Pt=2440kN

q = 244 N/m

许用长度:
$$H = \frac{P_c}{\rho_d g S_c} = \frac{76.5}{1.8 \times 0.00981 \times 1.34} = 3233 m$$

 $L_1 = D_1 - D_2 = 4200 - 3200 = 1000 \text{m}$

由计算可知,P-110,壁厚10.54mm油管可下至井底,试油层段顶部为4200m,但为压裂安全考虑,井口至第一段套管顶部都采用P-110,壁厚9.17mm套管,第一段油层套管下至3200m,第二段油层套管P-110,壁厚10.54mm套管长度为1000m。

(4) 抗拉强度设计

$$T_{z1} = L_1 q K_B 10^{-3} = 601.2 kN$$

$$S_{t1} = \frac{Pt}{T_{z1}} = \frac{2861}{60.12} = 4.76 > 2.52$$

由于第二段套管穿过了水泥封固面(3200m),故应进行双轴应力校核。先计算在水泥面处套管

在双轴应力作用下的实际抗挤强度。

$$F = \frac{244 \times 3200 + 342.3 \times 1000}{1000} \times 0.77 = 864.79kN$$
$$S_t = \frac{2440}{864.79} = 2.82 > .52$$

综上, 第一段套管 P-110、壁厚 9.17mm 套管共 3200m, 第二段套管选用 P-110、壁厚 10.54mm 套管共 1000m。

套管程序					壁厚	每米重	抗外	挤	抗内	万压	抗	拉
	井段 m	尺寸 mm	长度 m	钢级	至序 mm	kg/m	强度 MPa	安全系	强度	安全系	强度	安全系
							」 ISI IVII a	数	MPa	数	kN	数
油层套管	0~3200	139.7	3200	P110	9.17	24.4	76.5	1.35	87.15	1.52	2440	1.92
(田)云岳 目	3200~4200	139.7	1000	P110	10.54	34.2	100.2	1.87	87.1	2.26	2852	2.52

3.8 套管柱强度设计表

		规范								抗.外拐	······································	抗内压		抗拉		
かが、田						ᅲᅜᄅ	重量	ı								
志 巨套	尺寸mm	扣型	长度 m	钢级	壁厚 mm	每米 重 Kg/m	段重 t	累计重t	强度 MPa	安全系数	强度 MPa	安全系	数	强度 kN	安全系数	
表层套管	0~520	273.1	BCSG	520	J55	8.89	60.31	31.36	31.36	10.9	1.82	21.57	2.16		3114	10.1
	0~2400	139.7	LCSG	2400	N80	7.72	25.32	60.77	71.41	43.3	1.52	53.4	2.36		1548	2.21
油层套 管 ~ <u>/</u>	~2757	139.7	LCSG	357	N80	9.17	29.79	10.64	10.64	60.7	1.91	63.3	2.80		1901	

3.7.2 套管柱管串结构及扶正器安放

套管程序	井深 m	套管下深 m	套管串结构(套管钢级、壁厚、长度 , 浮鞋、浮箍、分级箍、 悬挂器等位置)
表层套管	520	520	273.1mm 引鞋 + 273.1mm 套管(1根)(J55×8.89mm)+273.1mm 内管注接头 + 273.1mm 套管串(J55×8.89mm)+273.1mm 联顶节
油层套管	2757	2757	139.7mm 浮鞋 + 139 7mm 套管(1根)(N80×9.17mm) + 139.7mm 浮箍 + 139.7mm 套管串(N80×9.17mm)+139.7mm 套管串(N80× 7.72mm)+139.7mm 联顶节

套管扶正器安放要求表

套管程序	套管尺 寸 mm	钻头尺寸 mm	井段 m	扶正器类型	扶正器间距 m	扶正器数量
表层套管	273.1	381.0	0~520	弹性扶正器	20	26
	139.7	215.9	1998 ~ 2198	弹性扶正器	40	5
油层套管	139.7	215.9	2198 ~ 2657	弹性扶正器	20	23
/II/A A E	139.7	215.9	2657 ~ 2757	弹性扶正器	10	10

3.7.3 注水泥浆量及流变学设计

套管程 序	套管尺 寸	环空容 积	水泥浆 返深	水泥塞 长度	水泥类型	纯水泥 量	备注
表套	339.7	40	地面	10	G	60	
技套	244.5	27	2840	20	G	30	微珠
油套	139.7	24	3265	20	G	35	

3.9 各次开钻或分井段施工的特殊点要求

- 1) 根据方案提供的三叠系百口泉组试油压力资料, 玛 18 井区 T1b1 油藏压力系数
- 1.68, 属于异常高压。钻井液使用情况具体以钻井工程设计为准,钻井以保护油层为原则,选择配套的钻井液体系,设计合理的钻井液密度。要求在目的层钻井时采用优质低固相钻井液,尽量缩短油层浸泡时间,以减少对油层的伤害。
- 2) 开钻前要认真贯彻设计,要求进行地质、工程、钻井液、固井技点技术措施和施工要求, 并按设计要求做好开钻准备工作。3) 振动筛、罐区或泥浆坑位置不得影响节流管汇的安装。 3.10.2 一开钻进
- 3) 为保证井身质量, 刚开钻时钻压 10~20kN, 以后逐渐增加钻压, 其原则钻铤浮重的 80%。 每钻完一根单根洗井 2~3min, 上下划眼 2 次修好井壁再挂钻时抓好灌泥浆工作, 确保井内压力平衡。
- 4) 做到早开泵、晚停泵,接单根要迅速,防止堵水眼蹩泵。钻进中必须开 夕

除砂器, 控制固相含量, 防止坍塌和沉砂。

- 5) 表层完钻后用 ϕ 390mm 非标准扶正器通井一次,确保井眼畅通,方可下人表房套管。
- 3.10.3 二开、三开钻进
- 6) 二开、三开钻进前对套管以及井控装置进行试压,试压合格后方可钻水泥塞。2) 钻套管 附件时,钻压 20~40kN,转速 60r/min,以防下部套管脱落;用好振动筛,防止钻套管附件产生的碎屑堵塞钻头水眼。
- 7) 二开、三开第一只钻头前 50m 用小于 50~100kN 钻压钻进, 待新井眼形成后再加至设计钻压钻进。
- 8) 钻井施工时可根据实际岩性变化优选使用钻头和钻井参数,以提高机械钻速。5) 白垩系、侏罗系地层泥岩发育,易吸水膨胀引起地层缩径和垮塌,钻进过程中应坚持短程提下钻制度,每钻进 200m~300m 井段必须短程起下钻一次,复杂层段每钻进 150m~200m 短程起下钻一次,保证起下钻畅通。起钻过程中如有遇阻要反复修井壁或划眼,直到畅通无阻再下到井底继续钻进。每钻完一根单根先上提划眼一次再接单根。
- 9) 钻进时接单根前应留有一定的返屑时间,避免井下岩屑沉积过多,接好单根后小排量柔和开泵,待正常后再使用钻进排量:钻进排量在保证足够的环空返速前慢

提下应采用较小排量以尽量减小激动压力,减轻对油气层产生污染。

警唯低

- 10) 钻具在井内的静止时间不得超过 3min, 钻具活动范围 3~5m。如遇特殊情况钻具必须静止或停泵、停钻时间较长时,应将钻具提到安全井段,尽可能进行不停转盘洗井,防止井下事故或其它井下复杂情况发生。
- 11) 要严格控制提下钻速度,防止抽汲压力过大造成井涌、井喷,激动压力过大造成井漏。 提钻按规定灌好钻井液,下钻过程中注意观察井口返出钻井液情况并安排中间洗井,起下钻 过程中操作要快速,减少钻具静止时间。
- 12) 下套管要操作平稳,严禁猛刹、猛放,防止溜钻、顿钻,按规程下套管,双大#紧扣,以保证套管连接强度。
- 10) 二开井段, 地层承压能力低, 钻井过程中要加强随钻监测, 根据实际需要及时调整钻井液密度。
- 13) 八道湾底部存在厚层底砾岩, 在钻进过程中要控制钻进参数, 优选排量, 避免钻头损耗

过快。

14) 三叠系地层存在异常高压,钻井过程中加强随钻地层压力监测,根据井下实际情况合理控制钻井液密度,重点预防发生溢流和井喷。

3.10 技术经济指标钻井进度计划

套管扶正器安放要求表

套管程序	套管尺 寸 mm	钻头尺寸 mm	井段 m	扶正器类型	扶正器间距 m	扶正器数量
表层套管	273.1	381.0	0~520	弹性扶正器	20	26
	139.7	215.9	1998 ~ 2198	弹性扶正器	40	5
油层套管	139.7	215.9	2198 ~ 2657	弹性扶正器	20	23
/ш/Д 😽 🖯	139.7	215.9	2657 ~ 2757	弹性扶正器	10	10

