Séries numériques

$$\alpha 6 - MP^*$$

1 Généralités

Soit $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soit $u_n \in \mathbb{K}^{\mathbb{N}}$, on peut lui associer $(S_n)_{n \in \mathbb{N}}$ définie par : $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$. Soit $(\sigma_n) \in \mathbb{K}^{\mathbb{N}}$, il existe une unique suite (u_n) telle que $\sigma_n = S_n$: c'est $u_0 = \sigma_0$ et $\forall n \in \mathbb{N}, u_n = \sigma_n - \sigma_{n-1}$.

On dit que la série $\{u_n\}$ converge si la suite (S_n) converge. Lorsque c'est le cas, la somme de la série $\{u_n\}$ est

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n.$$

On utilise la notation $\{u_n\}_{n\in\mathbb{N}}$ ou $\sum u_n$ pour désigner la série u_n .

On appelle reste à l'ordre N de la série la somme $R_N = \sum_{n=N+1}^{+\infty} u_n$. On a toujours : $\sum_{n=0}^{+\infty} u_n = S_N + R_N$, et $\lim_{n \to +\infty} R_N = 0$. Structure d'ev, \lim earité : Si $\{u_n\}$ et $\{v_n\}$ convergent, alors :

- $\{u_n + v_n\}$ converge et $\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$.
- Si $\lambda \in \mathbb{K}$, $\{\lambda u_n\}$ converge et $\sum_{n=0}^{+\infty} (\lambda u_n) = \lambda \sum_{n=0}^{+\infty} u_n$.

L'ensemble des suites (u_n) telles que la série $\{u_n\}$ converge est donc un sev de $\mathbb{K}^{\mathbb{N}}$. Sur ce sev, l'application $(u_n) \longmapsto \sum_{n=0}^{+\infty} u_n$ est

Critère de Cauchy: Soit $\{u_n\}$ une série dans \mathbb{K} , elle converge ssi $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall n \geqslant n_0, \forall p > 1, |u_n + \ldots + u_{n+p}| \leqslant \varepsilon$

2 Étude des séries positives

Une série $\{u_n\}$ est positive si :

- $\forall n \geq 0, u_n \in \mathbb{R}$
- $\exists n_0 \in \mathbb{N}/\forall n \geq n_0, u_n \geq 0$

2.1 Sommes partielles et convergence

 (u_n) une série positive, (S_n) associée à (u_n) . Alors (S_n) croît. La série $\{u_n\}$ est convergente ssi la suite (S_n) est majorée.

2.2 Règles de comparaison

- 1. Soient $\{u_n\}$ et $\{v_n\}$ deux séries positives, telles que $\exists n_0 \in \mathbb{N}/\forall n \geqslant n_0, 0 \leqslant u_n \leqslant v_n$.
 - Si $\{v_n\}$ converge alors $\{u_n\}$ converge
 - Si $\{u_n\}$ diverge alors $\{v_n\}$ diverge
- 2. Soient $\{u_n\}$ et $\{v_n\}$ deux séries positives. Si $u_n \sim v_n$, les deux séries sont de même nature.

2.3 Sommation des relations de comparaison

Soit deux suites réelles positives (u_n) et (v_n) de sommes partielles respectives (S_n) et (S'_n) .

- 1. Si $\{v_n\}$ diverge et $u_n = O(v_n)$, alors $S_n = O(S'_n)$.
- 2. Si $\{v_n\}$ diverge et $u_n = o(v_n)$, alors $S_n = o(S'_n)$
- 3. Si $\{v_n\}$ diverge et $u_n \sim v_n$, alors $S_n \sim S_n'$

Soit R_n et R' les restes à l'ordre n respectifs de (u_n) et (v_n)

- 1. Si $\{v_n\}$ converge et $u_n = O(v_n)$, alors $\{u_n\}$ converge et $R_n = O(R'_n)$
- 2. Si $\{v_n\}$ converge et $u_n = o(v_n)$, alors $\{u_n\}$ converge et $R_n = o(R'_n)$
- 3. Si $\{v_n\}$ converge et $u_n \sim v_n$, alors $\{u_n\}$ converge et $R_n \sim R'_n$.

2.4 Règle de d'Alembert

 $\{u_n\}$ série réelle strictement positive pour n assez grand.

- 1. Si $\exists k < 1$ tel que $\frac{u_{n+1}}{u_n} \leqslant k$ pour n assez grand, alors $\{u_n\}$ converge
- 2. Si $\frac{u_{n+1}}{u}$ a une limite l < 1, alors $\{u_n\}$ converge
- 3. Si $\exists k \ge 1$ tel que $\frac{u_{n+1}}{u_n} \ge k$ pour n assez grand, alors $\{u_n\}$ diverge
- 4. Si $\frac{u_{n+1}}{u_n}$ a une limite l>1, alors $\{u_n\}$ diverge
- 5. Si $\frac{u_{n+1}}{n} \stackrel{\geqslant}{\longrightarrow} 1$, alors $\{u_n\}$ diverge

Aucune réciproque, aucun résultat si $\frac{u_{n+1}}{n} \stackrel{\leqslant}{\longrightarrow} 1$.

2.5 Comparaison entre série et intégrale

 $f: [n_0, +\infty[\longrightarrow \mathbb{R}^+ \mathcal{C}_m^0, \text{ décroissante. Pour } n \geqslant n_0, \text{ soit } u_n = f(n).$

- 1. Les séries de terme général $v_n = u_n \int_{r_n}^{n+1} f(t) dt$ et $v'_n = \int_{r_n-1}^{n} f(t) dt u_n$ sont positives et convergentes.
- 2. La suite de terme général $A_n = u_{n_0} + \ldots + u_n \int_{n_0}^n f(t) dt$ est convergente.
- 3. $\{u_n\}$ converge ssi $n \longmapsto \int_{-n}^n f(t) dt$ admet une limite finie

2.6 Règle de Riemann

 $\{u_n\}$ une série réelle positive

- 1. Si $\exists \alpha > 1$ tel que $u_n = O(\frac{1}{n^{\alpha}})$ alors u_n converge.
- 2. Si $\exists \alpha > 1$ tel que $n^{\alpha}u_n$ ait une limite l finie, alors $\{u_n\}$ converge.
- 3. Si $\exists \alpha \leq 1$ et m > 0 tel que $n^{\alpha}u_n \geq m$ pour n assez grand, alors $\{u_n\}$ diverge.
- 4. Si $\exists \alpha \leqslant 1$ tel que $n^{\alpha}u_n$ admette une limite éventuellement infinie, alors $\{u_n\}$ diverge.
- 5. Si $u_n \sim \frac{A}{r^{\alpha}}$ avec A > 0, alors $\{u_n\}$ converge ssi $\alpha > 1$.

Pas de réciproque à ces règles. Séries de Bertrand : $u_n = \frac{1}{n^a \ln^b(n)}$ pour $n \ge 2$. $\{u_n\}$ converge ssi $(a,b) \succ (1,1)$ (ordre lexicographique). Formule de Stirling : $n! \sim \sqrt{2\pi n} (\frac{n}{n})^n$

3 Règles sur les séries générales

3.1 Règle des séries alternées

 $\{u_n\}$ est alternée si ses termes sont réels et si $(-1)^n u_n$ a un signe constant pour n assez grand. Soit (u_n) une suite réelle ; on suppose que $\lim_{n\to+\infty} u_n=0$ et $\exists n_0\in\mathbb{N}$ tel que pour $n\geqslant n_0$:

- 1. $n \longmapsto |u_n|$ décroît
- 2. $n \longmapsto (-1)^n u_n$ est de signe constant

Alors:

- 1. $\{u_n\}$ converge
- 2. $\forall n \ge n_0, |R_n| \le |u_{n+1}|$

3.2 Séries absolument convergentes

 $\{u_n\} \in \mathbb{C}^{\mathbb{N}}$ est dite absolument convergente si la série réelle positive $\{|u_n|\}$ converge. Dans ce cas $\{u_n\}$ converge et on a l'inégalité triangulaire : $\forall n \in \mathbb{N}, |R_n| \leqslant \sum_{k=n+1}^{+\infty} |u_k|$. Si $\{u_n\}$ est absolument convergente, elle satisfait le critère de Cauchy. Une série convergente mais non absolument convergente est dite semi-convergente.

3.3 Utilisation des développements limités

La forme générale d'un développement asymptotique est $u_n = u_n^{(1)} + u_n^{(2)} + \dots + u_n^{(p)} + O(u_n^{(p+1)})$. On peut conclure grâce à un développement limité en matière de séries lorsqu'on termine par $O(u_n^{(p+1)})$ où $\{u_n^{(p+1)}\}$ est absolument convergente.

3.4 Transformation d'Abel

On transforme une somme finie $S_n = a_0b_0 + \ldots + a_nb_n$ comme il suit : $\mathcal{B}_0 = b_0$, $\mathcal{B}_1 = b_0 + b_1$, ..., $\mathcal{B}_n = b_0 + \ldots + b_n$. On a alors $S_n = a_0\mathcal{B}_0 + a_1(\mathcal{B}_1 - \mathcal{B}_0) + \ldots + a_n(\mathcal{B}_n - \mathcal{B}_{n-1})$. On réécrit cette somme $S_n = \mathcal{B}_0(a_0 - a_1) + \ldots + \mathcal{B}_{n-1}(a_{n-1} - a_n) + a_n\mathcal{B}_n$. Les sommes paritelles de la série $\{a_nb_n\}$ sont donc celles de la série $\{\mathcal{B}_n(a_n - a_{n-1})\}$ au terme correctif près $a_n\mathcal{B}_n$.

4 Opérations sur les séries numériques

4.1 Produit de Cauchy

Soit $\{u_n\}_{n\geqslant 0}$ et $\{v_n\}_{n\geqslant 0}$ deux séries ; on définit leur produit de Cauchy par : $w_n = \sum_{k=0}^n u_k v_{n-k}$. Si $\{u_n\}$ et $\{v_n\}$ sont absolument convergentes, $\{w_n\}$ est absolument convergente et $(\sum_{k=0}^{+\infty} u_n)(\sum_{k=0}^{+\infty} v_n) = \sum_{k=0}^{+\infty} w_n$.

4.2 Sommation par paquets

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$, $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante, posons : $v_n = u_{\varphi(n)} + u_{\varphi(n)+1} + \ldots + u_{\varphi(n+1)-1}$. Alors si $\{u_n\}$ converge, $\{v_n\}$ converge également et a même somme. *Réciproque* : si

- 1. $\{v_n\}$ converge
- $2. \lim_{n \to +\infty} u_n = 0$
- 3. $n \longmapsto \varphi(n+1) \varphi(n)$ est majorée

alors $\{u_n\}$ converge.

4.3 Permutation des termes (hors programme)

Soit $\sigma: \mathbb{N} \xrightarrow{bijective} \mathbb{N}, \{u_n\}_{n \geq 0}$ une série et $\{v_n = u_{\sigma(n)}\}_{n \geq 0}$

- 1. Si $\{u_n\}$ est absolument convergents, alors $\{v_n\}$ est absolument convergente et a même somme
- 2. Si au contraire $\{u_n\}$ est semi-convergente, alors $\exists \sigma/\{v_n\}$ diverge
- 3. Si $\{u_n\}$ est semi-convergente, alors $\forall S \in \mathbb{R}, \exists \sigma/\{v_n\}$ converge et $\sum_{k=0}^{+\infty} v_n = S$

5 Séries doubles

5.1 Position du problème

On cherche à donner un sens à $\sum_{n=0}^{+\infty} u_{p,q}$ et surtout à changer l'ordre de sommation.

5.2 Cas des familles positives

Soit une suite double $u_{p,q} \in (\mathbb{R}^+)^{\mathbb{N} \times \mathbb{N}}$. On dit que $\sum_{p=0}^{+\infty} (\sum_{q=0}^{+\infty} u_{p,q})$ a un sens si

- 1. $\forall p \in \mathbb{N}$, la série de terme général $q \longmapsto u_{p,q}$ converge
- 2. La série positive de terme général $p \mapsto \sum_{q=0}^{+\infty} u_{p,q}$ converge

Dans ces conditions, on désigne par $\sum_{p=0}^{+\infty} (\sum_{q=0}^{+\infty} u_{p,q})$ la somme de ces séries.

 $Propriété: \sum_{p=0}^{+\infty} (\sum_{q=0}^{+\infty} u_{p,q})$ a un sens ssi $\sum_{q=0}^{+\infty} (\sum_{p=0}^{+\infty} u_{p,q})$ a un sens. En outre, si elles sont définies, ces deux séries doubles on même somme.

5.3 Cas général

 $(u_{p,q}) \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ une série double. On dit que cette série (ou suite) est sommable si la suite positive $(|u_{p,q}|)$ satisfait $\sum_{p \in \mathbb{N}q \in \mathbb{N}} |u_{p,q}|$ (ou $\sum_{q \in \mathbb{N}p \in \mathbb{N}} |u_{p,q}|$) a un sens. Dans ces conditions, $\sum_{p=0}^{+\infty} (\sum_{q=0}^{+\infty} u_{p,q})$ a un sens, $\sum_{q=0}^{+\infty} (\sum_{p=0}^{+\infty} u_{p,q})$ a un sens et ces deux séries ont même somme.