

Supermicro-1 HackEDA

陳冠誠 | 王政元 | 許致瑋 | 姜承佑

CONTENTS

Problem Formulation

Given a set of n_1 containers, n_2 pallets, n_3 boxes, output a packing methodology such that all boxes are in the container.

Diverse B*-tree Applications

• 箱子

• 棧板

• 貨櫃

01

Legalization Considering Gravity and Weight-Balance

Simulated Annealing

Result Visualization

Sequence Triple

Data Structure for 3D Relationship

- H-constraint: (..a..b.., ..a..b..) iff a is on the left of b
- V-constraint: (..a..b..,..b..a..) iff b is below a

Positive loci: abdecf

 $(\Gamma_+, \Gamma_-) = (abdecf, cbfade)$

 Table 1
 Decode rule of the seq-triple sorted w.r.t. the 1st sequence

Γ_1	Γ_2	Γ_3		
$(\cdots a \cdots b \cdots$	$\cdots a \cdots b \cdots$	$\cdots a \cdots b \cdots)$	\rightarrow	b is rear-of a
$(\cdots a \cdots b \cdots$	$\cdots a \cdots b \cdots$	$\cdots b \cdots a \cdots)$	\rightarrow	b is left-of a
$(\cdots a \cdots b \cdots$	$\cdots b \cdots a \cdots$	$\cdots a \cdots b \cdots)$	\rightarrow	b is right-of a
$(\cdots a \cdots b \cdots$	$\cdots b \cdots a \cdots$	$\cdots b \cdots a \cdots)$	\rightarrow	b is below a
$(\cdots b \cdots a \cdots$	$\cdots b \cdots a \cdots$	$\cdots b \cdots a \cdots)$	\rightarrow	b is front-of a
$(\cdots b \cdots a \cdots$	$\cdots b \cdots a \cdots$	$\cdots a \cdots b \cdots)$	\rightarrow	b is right-of a
$(\cdots b \cdots a \cdots$	$\cdots a \cdots b \cdots$	$\cdots b \cdots a \cdots)$	\rightarrow	b is left-of a
$(\cdots b \cdots a \cdots$	$\cdots a \cdots b \cdots$	$\cdots a \cdots b \cdots)$	\rightarrow	b is above a

Simulated Annealing

Probabilistic technique

It is a technique to approximate global optimization in a large search space for an optimization problem.

• Gravity consideration

Create topological order along y-axis. Make sure every boxes have a maximum height of the boxes below it.

Weight-Balance

Before considering weight-balance

After considering weight-balance

Graphics

30 boxes in 140*102

Graphics

100 boxes in 6 pallets

Cases	# of Boxes	# of Pallets	Runtime	Boxes Volume	Packing Volume	Packing Rate	Fit Outline	Weight-Balence
1	10	2	18s	2,284,244	2,550,854	1.11	✓	✓
2	22	1	2m39s	318739	411916	1.29	✓	✓
3	50	6	53s	7697373	9945075	1.29	✓	✓
4	100	6	2m51s	7955562	11260308	1.42	✓	✓

Our Features

- 1. The Whole Flow (testcase \rightarrow 3dbp \rightarrow render visualization)
- 2. Weight-Balance-Aware 3D packing
- 3. Parallel Computing

Reference

Wong & Liu, "A new algorithm for floorplan design," DAC-86.; Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," Science, May 1983 Three-Dimensional Container Loading: A Simulated Annealing Approach The-3D-Packing-by-Meta-Data-Structure-and-Packing-Heuristics

Thanks for Listening

Backup slides

Pseudocode for Simulated Annealing

```
1 begin
2 Get an initial solution S;
3 Get an initial temperature T > 0;
4 while not yet "frozen" do
5
      for 1 \le i \le P do
6
          Pick a random neighbor S' of S;
          \Delta \leftarrow cost(S') - cost(S);
          /* downhill move */
8
          if \Delta \leq 0 then S \leftarrow S'
          /* uphill move */
          if \Delta > 0 then S \leftarrow S' with probability e^{-\frac{\Delta}{T}};
      T \leftarrow rT; /* reduce temperature */
11 return S;
12 end
```


Objective for Simulated Annealing

