The propositional set approach

Core assumption

The meaning of questions is defined based on possible **propositional** answers (Hamblin 1973).

- (1) [which girl smiled] $w_0 = \begin{cases} \lambda w.\mathsf{smiled}_w(\mathbf{a}), \\ \lambda w.\mathsf{smiled}_w(\mathbf{b}), \\ \lambda w.\mathsf{smiled}_w(\mathbf{c}) \end{cases}$
- (2) [which girl smiled]] $^{w_0} = \{\lambda w. \text{smiled}_w(x) \mid x \in \text{human}_{w_0}\}$

Answerhood

- (3) A: Which girl smiled?
 - B: (i) Anna.
- (ii) Anna smiled.

Deriving true propositional answers (Dayal 1996):

$$\mathsf{Ans}_{w_0}(Q) = \iota p.p \in Q \land p(w_0) \land \forall q \in Q.q(w_0) \to p \subseteq q$$

i.e., The unique strongest true answer

Information maximality

Fact: John, Mary, and Sue were at the party, but Bob wasn't.

- (4) A: Who was at the party?
 - B: John, Mary, and Sue were at the party.
 - \rightarrow no one else were at the party.
- (5) Peter knows who was at the party.→ Peter knows J+M+S were at the party and B was not.

Minimal answers (Beck & Rullmann 1999)

- (6) A: How many eggs are sufficient to bake this cake?
 - B: Five eggs are sufficient.
 - → Five are the smallest number.

Deriving short answers

(7) Anna [smiled]

(syntactic ellipsis)

Can short answers are derived semantically?

(8) [which girl smiled]
$$w_0 = \begin{cases} \{w_0, w_2, w_3\}, \\ \{w_1, w_2, w_4\}, \\ \{w_3, w_4, w_5\} \end{cases}$$

✓ Individuals cannot be extracted from a set of sets of possible worlds. (see also Groenendijk & Stokhof 1989)

Composition

Wh-expressions denote existential quantifiers (Cresti 1995; cf. Karttunen 1977).

(9) [which book]^{w₀} = $\lambda f \lambda p. \exists x \in \mathsf{book}_{w_0}(x) : f(x)(p)$ (e{st}){st} ({st}: a set of propositions)

Interrogative complementizer:

(10)
$$[C] = \lambda p \lambda q. p = q$$
 (st){st}

Multiple-wh questions

- (11) [who brought what]]^{w₀} {st} = [who]]^{w₀} λx .[what]]^{w₀} λy .[C]]([brought]](y)(x)) = $\lambda p \exists x \in \text{hmn}_{w_0} : \exists y \in \text{tng}_{w_0} : p = \lambda w.\text{read}_w(y)(x)$
- ✓ All questions have a unified type.

Wh-coordination

Point-wise coordination:

- (12) $[Q_1 \text{ and } Q_2] = \{p \land q \mid p \in [Q_1], q \in [Q_2] \}$
- (13) [who came and who brought what]] w_0

$$= \begin{cases} \lambda w.\mathsf{came}_w(x) \land \mathsf{brought}_w(z)(y) & x \in \mathsf{hmn}_{w_0}, \\ y \in \mathsf{hmn}_{w_0}, \\ z \in \mathsf{tng}_{w_0} \end{cases}$$

Uniqueness

A single-wh question in which the wh-expression is singular can have exactly one true answer.

- (14) Which student laughed? #I heard many did.
- (15) Which students laughed? I head many did.
- (16) Who laughed? I heard many did.

Single vs. Plural *wh*-expressions

- (17) [which student]] $^{w_0} = \lambda f \lambda p \exists x \in \mathsf{std}_{w_0} : f(x)(p)$
- (18) [which students]] $^{w_0} = \lambda f \lambda p \exists x \in *std_{w_0} : f(x)(p)$

Suppose that Anna and Bob laughed:

- (19) [which students laughed]] w_0 $= \begin{cases} \lambda w. \text{laughed}_w(\mathbf{a}), \lambda w. \text{laughed}_w(\mathbf{b}), \\ \lambda w. \text{laughed}_w(\mathbf{c}), \text{laughed}_w(\mathbf{a} \oplus \mathbf{b}), \\ ..., \lambda w. \text{laughed}_w(\mathbf{a} \oplus \mathbf{b} \oplus \mathbf{c}) \end{cases}$
- (20) [which student laughed]] w_0 $= \begin{cases} \lambda w. \text{laughed}_w(\mathbf{a}), \lambda w. \text{laughed}_w(\mathbf{b}), \\ \lambda w. \text{laughed}_w(\mathbf{c}) \end{cases}$

Applying Ans_{w_0} to (19) and (20):

- $\mathbf{Ans}_{w_0}(19) = \lambda w. \text{laughed}_{w}(\mathbf{a} \oplus \mathbf{b})$
- $\mathsf{Ans}_{w_0}(20)$ is undefined!

Discussion: A *which*-NP is the interrogative counterpart of a definite expression (Rullmann & Beck 1998).

(21) [which student]]^{w₀} (the uniqueness requirement of ι) $= \lambda f \lambda p \exists x \in D_e : f(\iota y.\mathsf{std}_{w_0}(y) \land y = x)(p)$