Autómatas y Lenguajes Formales, 2021-1. Práctica 1

Calvario González Berenice Reyes Gutiérrez Jesús Alberto

16 de noviembre de 2020

1. Expresiones Regulares

Para las expresiones regulares de los siguientes incisos, realice los pasos que se solicitan de forma escrita en un editor de texto o en una hoja, y luego verifique que el resultado obtenido es correcto utilizando JFLAP.

Ejercicio 1. Consideremos la expresión regular $(ab)^*(ba + aba)$

Solución. Vamos a seguir los algoritmos vistos en clase pero trataré de reducir el autómata cuando sea posible así que cuando no sean necesarias no pondré transiciones épsilon o estados de más.

a) Convierta la expresión regular a un $AFN - \varepsilon$

Aplicamos el caso base para obtener el autómata que reconozca los lenguajes a y b y obtenemos los siguientes respectivamente:

Aplicamos el algoritmo para multiplicar los autómatas anteriores para obtener un autómata cuyo lenguaje es $\{ab\}$ y obtenemos el primero de los que se muestra a continuación pero nos damos cuenta de que se puede simplificar al segundo:

Aplicamos el método al autómata anterior para obtener el autómata correspondiente a la expresión $(ab)^*$ y obtenemos el primero de los siguientes, lo simplificamos al segundo el cual podemos simplificar al tercero obteniendo el mismo autómata:

Por otro lado, de una forma análoga obtenemos el autómata para la expresión $(ba + aba) = (\varepsilon + a)ba$ (el primero) y utilizamos el algoritmo para multiplicar estos autómatas con lo que obtenemos un $AFN - \varepsilon$ que acepta el mismo lenguaje que el de la expresión $(ab)^*(ba + aba)$ (el segundo):

b) Convierta el $AFN - \varepsilon$ a un AFN.

Primero obtenemos los ECLOSURE de cada estado:

$$ECLOSURE(q_0) = \{q_0, q_2\} \qquad ECLOSURE(q_2) = \{q_2\} \qquad ECLOSURE(q_4) = \{q_4\}$$

$$ECLOSURE(q_1) = \{q_1\} \qquad ECLOSURE(q_3) = \{q_3\}$$

A partir de esto calculamos la función de transición δ de nuestro autómata no determinista sin transiciones ε bajo el alfabeto $\{a,b\}$:

$$\begin{array}{lll} \delta(q_0,a) = \{q_1,q_2\} & \delta(q_1,a) = \varnothing & \delta(q_2,a) = \varnothing & \delta(q_3,a) = \{q_4\} & \delta(q_4,a) = \varnothing \\ \delta(q_0,b) = \{q_3\} & \delta(q_1,b) = \{q_0,q_2\} & \delta(q_2,b) = \{q_3\} & \delta(q_3,b) = \varnothing & \delta(q_4,b) = \varnothing \end{array}$$

Finalmente modificamos las transiciones en el autómata que teníamos y obtenemos el siguiente AFN, como ε no es aceptada y ningún estado de $ECLOSURE(q_0)$ es final no hacemos a q_0 final:

c) Convierta el AFN a un AFD.

Aplicamos el algoritmo visto en las notas y obtenemos el siguiente autómata finito determinista de $2^5=32$ estados:

d) Minimice el autómata resultante si es posible hacerlo.

Sí es posible reducirlo y obtenemos el siguiente AFD:

Ejercicio 2. Consideremos la expresión regular (011 + 10)*00 Solución.

a) Convierta la expresión regular a un $AFN - \varepsilon$

Aplicamos el caso base para obtener el autómata que reconozca los lenguajes 1 y 0 y obtenemos los siguientes respectivamente:

Aplicamos el algoritmo para multiplicar los autómatas anteriores para obtener los autómatas cuyos lenguajes son $\{011\}$, $\{10\}$ y $\{00\}$ y obtenemos los primeros que se muestran a continuación respectivamente pero nos damos cuenta de que se puede simplificar al segundo respectivamente:

Obtenemos la expresión (011+10) que corresponde el primero de los siguientes el cual podemos simplificar al segundo obteniendo el mismo autómata:

Obtenemos la expresión $(011 + 10)^*$:

Finalmente obtenemos la expresión (011+10)*00 siguientes el cual podemos simplificar al segundo obteniendo el mismo autómata:

b) Convierta el $AFN - \varepsilon$ a un AFN.

Primero obtenemos los ECLOSURE de cada estado:

$$ECLOSURE(q_0) = \{q_0, q_4\}$$
 $ECLOSURE(q_2) = \{q_2\}$ $ECLOSURE(q_4) = \{q_4, q_0\}$ $ECLOSURE(q_1) = \{q_1\}$ $ECLOSURE(q_3) = \{q_3\}$ $ECLOSURE(q_5) = \{q_5\}$ $ECLOSURE(q_6) = \{q_6\}$

A partir de esto calculamos la función de transición δ de nuestro autómata no determinista sin transiciones ε bajo el alfabeto $\{0,1\}$:

$$\begin{array}{lll} \delta(q_0,0) = \{q_2,q_5\} & \delta(q_1,0) = \{q_4,q_0\} & \delta(q_2,0) = \varnothing & \delta(q_6,0) = \varnothing \\ \delta(q_0,1) = \{q_1\} & \delta(q_1,1) = \varnothing & \delta(q_2,1) = \{q_3\} & \delta(q_6,1) = \varnothing \\ \delta(q_3,0) = \varnothing & \delta(q_4,0) = \{q_5,q_2\} & \delta(q_5,0) = \{q_6\} \\ \delta(q_3,1) = \{q_4,q_0\} & \delta(q_4,1) = \{q_1\} & \delta(q_5,1) = \varnothing \end{array}$$

Finalmente modificamos las transiciones en el autómata que teníamos y obtenemos el siguiente AFN:

c) Convierta el AFN a un AFD.

d) Minimice el autómata resultante si es posible hacerlo.

No es posible minimizarlo más, entonces queda igual:

Ejercicio 3. Consideremos la expresión regular $(x+y)^*xy(x+y)^*$ Solución.

a) Convierta la expresión regular a un $AFN - \varepsilon$

Aplicamos el caso base para obtener el autómata que reconozca los lenguajes x y y y obtenemos los siguientes respectivamente:

Aplicamos el algoritmo para multiplicar los autómatas anteriores para obtener un autómata cuyo lenguaje es $\{xy\}$ y obtenemos el primero de los que se muestra a continuación pero nos damos cuenta de que se puede simplificar al segundo:

Obtenemos la expresión (x + y) que corresponde el primero de los siguientes el cual podemos simplificar al segundo obteniendo el mismo autómata:

Obtenemos la expresión $(x+y)^*$ que corresponde el primero de los siguientes el cual podemos simplificar al segundo obteniendo el mismo autómata:

Finalmente obtenemos la expresión $(x+y)^*xy(x+y)^*$:

b) Convierta el $AFN - \varepsilon$ a un AFN.

c) Convierta el AFN a un AFD.

d) Minimice el autómata resultante si es posible hacerlo.

