Piyush Khushlani

15ME30057

2nd(Affine) Projection Matrix

Requirements

This program uses a number of open source libraries to work properly:

- OpenCV Open Source Computer Vision Library
- Tkinter Graphical User Interface
- Standard Python Libraries.

Instructions

- To run program, open terminal to run "church.py"
- Open image in the folder you want to perform calculations
- Please follow the commands on terminal to get respective values and thus, get the Projection Matrix

A test case is solved and output is given below.

Note: The selected modules in requirement section may not work properly for some PCs. Please get back to me in that case

Calculations

The main part of calculation is to solve for Linear Equations to find the co-efficient(lambda) of the Projection Vectors.

Calculation of co-efficients will occur after you will select the two points across width of the Window Pane(9th Point) which solves for lambda(s) by simple linear equation.

Test Output

```
$ python church.py
Select 2 points in each direction x, y and z
Clicked Pixel: (795, 282)
Clicked Pixel : (833, 271)
length in pixels between two image points = 39.56008088970496
Line: [-11, -38, 19461]
Clicked Pixel : (957, 293)
Clicked Pixel : (977, 306)
length in pixels between two image points = 23.85372088375312
7
Line: [13, -20, -6581]
Clicked Pixel: (920, 299)
Clicked Pixel : (928, 385)
length in pixels between two image points = 86.37129152675674
Line: [86, -8, -76728]
Select corner point where two walls meet with the attic which
will be image of World Origin
Clicked Pixel : (914, 196)
Select 2 points across width of windows on left wall from lef
```

```
t to right to calculate px/meter
Clicked Pixel: (815, 428)
Clicked Pixel: (846, 421)

##Projection Matrix##

[-44.846505330677545, 47.74102765482496, 3.9987302291391384, 914]
[12.981883122038235, 31.031667975636225, 42.986349963245736, 196]
[0.0, -0.0, -0.0, 1]
```

For more, see my Github.

Thank You