Clase Práctica 1 Recursión Primitiva

Lógica y Computabilidad 2do cuatrimestre de 2023

Conceptos preliminares

Definición

Llamamos funciones iniciales a

$$n(x)=0$$

$$s(x)=x+1$$
 $u_i^n(x_1,\ldots,x_n)=x_i$ para todo $1\leqslant i\leqslant n$.

Observación

Hay infinitas funciones u_i^n . Por lo tanto, hay infinitas funciones iniciales.

Conceptos preliminares

Definición

Sean $f: \mathbb{N}^k \to \mathbb{N}$ y $g_1, \dots, g_k: \mathbb{N}^n \to \mathbb{N}$. Sea $h: \mathbb{N}^n \to \mathbb{N}$ definida como

$$h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n)).$$

Decimos que h es obtenida a partir de f y g_1, \ldots, g_k por composición.

Definición

Una clase de funciones \mathcal{C} es *cerrada por composición* si para cualquier elección de $f, g_1, \ldots, g_k \in \mathcal{C}$, la h obtenida por composición de ellas está en \mathcal{C} .

1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:

a. uno : $\mathbb{N} \to \mathbb{N}$, uno(x) = 1.

- 1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:
 - a. uno : $\mathbb{N} \to \mathbb{N}$, uno(x) = 1. Tomando en el esquema de composición k = n = 1, f = s y $g_1 = n$ (que están en \mathcal{C} por ser funciones iniciales), tenemos que uno(x) = 1 = s(n(x)), para todo $x \in \mathbb{N}$.

1. Sea \mathcal{C} una clase cerrada por composición que contiene las funciones iniciales. Ver si están en \mathcal{C} :

b. $id : \mathbb{N} \to \mathbb{N}$, id(x) = x.

- 1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:
 - b. id : $\mathbb{N} \to \mathbb{N}$, id(x) = x. id es simplemente la proyección de una componente, es decir, id = $u_1^1 \in \mathcal{C}$.

1. Sea \mathcal{C} una clase cerrada por composición que contiene las funciones iniciales. Ver si están en \mathcal{C} :

c.
$$s_1 : \mathbb{N}^2 \to \mathbb{N}$$
, $s_1(x, y) = x + 1$.

- 1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:
 - c. $s_1: \mathbb{N}^2 \to \mathbb{N}$, $s_1(x,y) = x+1$. Tomando en el esquema de composición k=1, n=2, f=s y $g_1=u_1^2$, tenemos que $s_1(x,y)=x+1=f(g_1(x,y))$, para todo $(x,y)\in \mathbb{N}^2$.

1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:

d.
$$\tilde{f}: \mathbb{N}^2 \to \mathbb{N}$$
, $\tilde{f}(x,y) = f(y,x)$, donde $f: \mathbb{N}^2 \to \mathbb{N} \in \mathcal{C}$.

- 1. Sea $\mathcal C$ una clase cerrada por composición que contiene las funciones iniciales. Ver si están en $\mathcal C$:
 - d. $\tilde{f}: \mathbb{N}^2 \to \mathbb{N}$, $\tilde{f}(x,y) = f(y,x)$, donde $f: \mathbb{N}^2 \to \mathbb{N} \in \mathcal{C}$. Tomando k=2, n=2, $g_1=u_2^2$ y $g_2=u_1^2$, tenemos que $\tilde{f}(x,y)=f(y,x)=f(g_1(x,y),g_2(x,y))$, para todo $(x,y) \in \mathbb{N}^2$.

1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:

e. $h: \mathbb{N} \to \mathbb{N}$, h(x) = g(x, x, x), donde $g: \mathbb{N}^3 \to \mathbb{N} \in \mathcal{C}$.

- 1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:
 - e. $h: \mathbb{N} \to \mathbb{N}$, h(x) = g(x, x, x), donde $g: \mathbb{N}^3 \to \mathbb{N} \in \mathcal{C}$. Tomando k = 3, n = 1, f = g, $g_1 = g_2 = g_3 = u_1^1$, tenemos que $h(x) = f(g_1(x), g_2(x), g_3(x))$, para todo $x \in \mathbb{N}$.

1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:

f. $p: \mathbb{N} \to \mathbb{N}$, $p(x) = x \div 1$.

- 1. Sea C una clase cerrada por composición que contiene las funciones iniciales. Ver si están en C:
 - f. $p: \mathbb{N} \to \mathbb{N}$, $p(x) = x \div 1$. Podría no estar en \mathcal{C} . Usen el ejercicio 3 de la práctica 1 para aclarar esta afirmación. Parte de la razón está relacionada con el siguiente ejercicio.

2. Sea \mathcal{C} <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea $f: \mathbb{N}^n \to \mathbb{N}$ una función en \mathcal{C} . Demostrar que existen $i \in \mathbb{N}$ y $g: \mathbb{N} \to \mathbb{N}$ en \mathcal{C} tales que $f = g \circ u_i^n$.

2. Sea \mathcal{C} <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea $f:\mathbb{N}^n\to\mathbb{N}$ una función en \mathcal{C} . Demostrar que existen $i\in\mathbb{N}$ y $g:\mathbb{N}\to\mathbb{N}$ en \mathcal{C} tales que $f=g\circ u_i^n$.

Demostración por inducción estructural.

Usaremos inducción estructural para probar que para toda $f \in \mathcal{C}$ vale la propiedad

"existen $i \in \mathbb{N}$ y $g : \mathbb{N} \to \mathbb{N}$ en \mathcal{C} tales que $f = g \circ u_i^n$ "

Para esto, primero veremos que la propiedad se cumple en los casos base (o sea, para f cualquier función inicial), y luego veremos que vale en los casos inductivos (funciones construidas mediante composición a partir de funciones en $\mathcal C$ que cumplen la propiedad).

Sea C <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea f: Nⁿ → N una función en C. Demostrar que existen i ∈ N y g: N → N en C tales que f = g ∘ u_iⁿ.

Demostración: Casos base.

La propiedad vale para los tres casos base:

- $\bullet \quad s = s \circ u_1^1 \checkmark$
- $n = n \circ u_1^1 \checkmark$
- para cualesquiera $i, n \in \mathbb{N}$ con $1 \leqslant i \leqslant n$, $u_i^n = u_1^1 \circ u_i^n$ ✓

Sea C <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea f: Nⁿ → N una función en C. Demostrar que existen i ∈ N y g: N → N en C tales que f = g ∘ u_iⁿ.

Demostración: Caso inductivo.

Sea h una función obtenida por composición de las funciones f y g_1, \ldots, g_k , para las cuales vale la propiedad.

$$h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))$$

2. Sea \mathcal{C} <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea $f: \mathbb{N}^n \to \mathbb{N}$ una función en \mathcal{C} . Demostrar que existen $i \in \mathbb{N}$ y $g: \mathbb{N} \to \mathbb{N}$ en \mathcal{C} tales que $f = g \circ u_i^n$.

Demostración: Caso inductivo.

En particular, existen $i \in \mathbb{N}$ y g en C tales que $f = g \circ u_i^k$. Así, para toda tupla $(x_1, \ldots, x_n) \in \mathbb{N}^n$,

$$h(x_1,...,x_n) = f(g_1(x_1,...,x_n),...,g_k(x_1,...,x_n))$$

= $g(u_i^k(g_1(x_1,...,x_n),...,g_k(x_1,...,x_n)))$
= $g(g_i(x_1,...,x_n)).$

Sea C <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea f: Nⁿ → N una función en C. Demostrar que existen i ∈ N y g: N → N en C tales que f = g ∘ u_iⁿ.

Demostración.

Como g_i también cumple la propiedad, existen $j_i \in \mathbb{N}$ y g_i' en \mathcal{C} tales que $g_i = g_i' \circ u_{j_i}^n$. Así, para toda tupla $(x_1, \ldots, x_n) \in \mathbb{N}^n$,

$$h(x_1,...,x_n) = g(g_i(x_1,...,x_n))$$

= $g(g'_i(u^n_{j_i}(x_1,...,x_n))).$

2. Sea \mathcal{C} <u>la clase más chica</u> que contiene las funciones iniciales y está cerrada por composición. Sea $f: \mathbb{N}^n \to \mathbb{N}$ una función en \mathcal{C} . Demostrar que existen $i \in \mathbb{N}$ y $g: \mathbb{N} \to \mathbb{N}$ en \mathcal{C} tales que $f = g \circ u_i^n$.

Demostración.

Así, $h = g'' \circ u_{j_i}^n$, donde $g'' = g \circ g_i'$. Observar que $g'' \in \mathcal{C}$, ya que $g \in \mathcal{C}, g_i' \in \mathcal{C}$ y \mathcal{C} es cerrada por composición. Tenemos entonces que la propiedad vale para h.

Conceptos preliminares

Definición

Sean $f: \mathbb{N}^n \to \mathbb{N}$, $g: \mathbb{N}^{n+2} \to \mathbb{N}$. Definamos $h: \mathbb{N}^{n+1} \to \mathbb{N}$ como

$$h(x_1,...,x_n,0) = f(x_1,...,x_n) h(x_1,...,x_n,t+1) = g(h(x_1,...,x_n,t),x_1,...,x_n,t).$$

Decimos entonces que h es obtenida a partir de f y g por recursión primitiva. En este contexto vamos a considerar que una función 0-aria es una constante k.

Definición

Una clase de funciones $\mathcal C$ es *cerrada por recursión primitiva* si para cualquier elección de $f,g\in\mathcal C$ la h obtenida por recursión primitiva a partir de ellas está en $\mathcal C$.

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

a. n = 0, f = 0, $g = u_2^2$.

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

a.
$$n = 0$$
, $f = 0$, $g = u_2^2$.
 $h: \mathbb{N} \to \mathbb{N}$ queda dada por

$$h(0) = f = 0$$

 $h(t+1) = g(h(t), t) = u_2^2(h(t), t) = t$

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

a.
$$n = 0$$
, $f = 0$, $g = u_2^2$.
 $h: \mathbb{N} \to \mathbb{N}$ queda dada por

$$h(0) = f = 0$$

 $h(t+1) = g(h(t), t) = u_2^2(h(t), t) = t$

Notar que para todo x, $h(x) = x \div 1$.

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

b.
$$n = 1$$
, $f = s$, $g(x, y, z) = x + z$.

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

b.
$$n = 1$$
, $f = s$, $g(x, y, z) = x + z$.
 $h : \mathbb{N}^2 \to \mathbb{N}$ dada por
$$h(x, 0) = f(x) = x + 1$$

$$h(x,0) = f(x) = x + 1$$

 $h(x, t + 1) = g(h(x, t), x, t) = h(x, t) + t.$

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

b.
$$n = 1$$
, $f = s$, $g(x, y, z) = x + z$.
 $h: \mathbb{N}^2 \to \mathbb{N}$ dada por

$$h(x,0) = f(x) = x + 1$$

 $h(x, t + 1) = g(h(x, t), x, t) = h(x, t) + t.$

Notar que para todos $x, y \in \mathbb{N}$,

$$h(x,y) = (x+1) + \sum_{i=1}^{y} (i-1).$$

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

c. n = 2, f(x, y) = x + y, g(x, y, z, w) = xyz.

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

c.
$$n = 2$$
, $f(x, y) = x + y$, $g(x, y, z, w) = xyz$.
 $h: \mathbb{N}^3 \to \mathbb{N}$ dada por

$$h(x, y, 0) = f(x, y) = x + y$$

 $h(x, y, t + 1) = g(h(x, y, t), x, y, t) = h(x, y, t)xy.$

3. ¿Cómo se comportan las siguientes funciones definidas por recursión primitiva a partir de f y g?

c.
$$n = 2$$
, $f(x, y) = x + y$, $g(x, y, z, w) = xyz$.
 $h: \mathbb{N}^3 \to \mathbb{N}$ dada por

$$h(x, y, 0) = f(x, y) = x + y$$

$$h(x, y, t + 1) = g(h(x, y, t), x, y, t) = h(x, y, t)xy.$$

Notar que para todos $x, y, z \in \mathbb{N}$, $h(x, y, z) = (x + y)x^zy^z$.

Conceptos preliminares

Definición

Una clase de funciones \mathcal{C} es PRC (por $Primitive\ Recursively\ Closed$) si contiene a las funciones iniciales y es cerrada por composición y recursión primitiva.

4. Sea n > 0 un número natural fijo y C la clase de todas las funciones de aridad no mayor a n (funciones definidas sobre no más de n variables). ¿Es C una clase PRC?

4. Sea n > 0 un número natural fijo y C la clase de todas las funciones de aridad no mayor a n (funciones definidas sobre no más de n variables). ¿Es C una clase PRC? No. Por muchas razones, pero la más simple es que C no contiene a todas las funciones iniciales. En particular, u₁ⁿ⁺¹ no está en C.

5. Sea $f: \mathbb{N} \to \mathbb{N}$ en \mathcal{C} . La *n-ésima iteración* de f, escrita como f^n , es la función

$$f^n(x) = (\underbrace{f \circ \cdots \circ f}_{n\text{-veces}})(x),$$

donde f^0 = id. Demostrar que si f pertenece a una clase PRC \mathcal{C} , entonces $\iota_f(x,n) = f^n(x)$ también pertenece a \mathcal{C} .

5. Sea $f: \mathbb{N} \to \mathbb{N}$ en \mathcal{C} . La *n-ésima iteración* de f, escrita como f^n , es la función

$$f^n(x) = (\underbrace{f \circ \cdots \circ f}_{n\text{-veces}})(x),$$

donde f^0 = id. Demostrar que si f pertenece a una clase PRC \mathcal{C} , entonces $\iota_f(x,n) = f^n(x)$ también pertenece a \mathcal{C} .

Demostración.

Veamos que \imath_f se puede definir mediante recursión primitiva. Es decir, debemos encontrar $h: \mathbb{N} \to \mathbb{N}$ y $g: \mathbb{N}^3 \to \mathbb{N}$ en \mathcal{C} tales que

$$i_f(x,0) = x = h(x)$$

 $i_f(x,t+1) = f^{t+1}(x) = g(i_f(x,t), x, t).$

5. Sea $f: \mathbb{N} \to \mathbb{N}$ en \mathcal{C} . La *n-ésima iteración* de f, escrita como f^n , es la función

$$f^n(x) = (\underbrace{f \circ \cdots \circ f}_{n \text{-veces}})(x),$$

donde f^0 = id. Demostrar que si f pertenece a una clase PRC C, entonces $\iota_f(x, n) = f^n(x)$ también pertenece a C.

Demostración.

Veamos que i_f se puede definir mediante recursión primitiva. Es decir, debemos encontrar $h: \mathbb{N} \to \mathbb{N}$ y $g: \mathbb{N}^3 \to \mathbb{N}$ en \mathcal{C} tales que

$$i_f(x,0) = x = h(x)$$

 $i_f(x,t+1) = f^{t+1}(x) = g(i_f(x,t), x, t).$

Tomando h = id y $g = f \circ u_1^3$, se obtiene lo buscado.