TUTORIAL 2: KINEMATICS SOLUTIONS

Level 1 Solutions

1	[C] Acceleration is defined as the rate of CHANGE of velocity & By Newton's 2nd Law, Resultant force = ma. Hence the acceleration, a, is always in the same direction as the change in velocity and net force. Option A is wrong as acceleration is not related to velocity at that instant. Should be change in velocity. Option C is correct as this can occur at the highest point of the projectile motion. Option B is wrong as at the highest point, weight is acting on the object. Hence since weight is the resultant force, acceleration of the object is downwards. Option D is wrong. When acceleration is zero, the object can also move at constant velocity.	
2	[D] The gradient of the <i>s-t</i> graph of option D shows that the velocity increases (accelerating down the hill), becomes constant, then decreases.	
10	s v a 1 + + - 2 + - - 3 - - -	
11	[D] Option A is wrong because acceleration should be $-9.81~m~s^{-2}$ Option B is wrong because acceleration is not zero but $-9.81~m~s^{-2}$ Option C is wrong because velocity should be $-9.81~m~s^{-1}$ since ball is travelling downwards after reaching its maximum height at t = $2.0~s$. Using v = u + a t (taking upwards as positive), v = $(19.6) + (-9.81)(5.0)$ = $-29.45~m~s^{-1}$	
12(a)	Using $v = u + at$, Note: 1 km / 1 hour = 1000 m / 3600 s i.e. 90 km hr ⁻¹ = 90000 m / 3600 s (90 000 / 3 600) = (30 000 / 3 600) + 2 t t = 8.3 s	
(b)	Using $v = u + at$, $0 = (90\ 000\ /\ 3\ 600) + (-5)\ t$ Note: $a = -5$ as it is in the opposite direction of u $t = 5.00\ s$ Using $s = ut + \frac{1}{2}at^2$, $s = 25\ (5) + \frac{1}{2}\ (-5)(5.00)^2$ $s = 62.5\ m$	
(c)	Using $v^2 = u^2 + 2as$, $(100\ 000\ /\ 3600)^2 = 0 + 2\ (a)(50)$ $a = 7.72\ \text{m s}^{-2}$	

16	[C] Using $v_y = u_y + a_y t$, (taking upwards as positive), $v_y = (40 \sin 45^\circ) + (-9.81)(5)$ = -20.77 m s ⁻¹ Hence $v = \sqrt{v_x^2 + v_y^2} = \sqrt{(40 \cos 45^\circ)^2 + (-20.77)^2}$ Note: v_x is constant = 35.1 m s ⁻¹	
17	Let speed at take-off = u_x . Taking downwards as +ve, Using $s_y = u_y t + \frac{1}{2} g t^2$ $1.25 = 0 + \frac{1}{2} (9.81) t^2$ $\rightarrow t = 0.5 \text{ s}$ Using $s_x = u_x t$ $10 = u_x (0.5)$ $\rightarrow u_x = 19.8 \text{ m s}^{-1}$	

Level 2 Solutions

3	[C]. Area under the acceleration-time graph is change in velocity. Positive area represents positive change in velocity (implying increasing velocity). Option B is wrong because between B and C, the car is still accelerating and its velocity will thus continue to increase until point C. Beyond C, the car starts to decelerate and slow down.	
4	[D] Question states taking downwards as positive. Points A, B, C are when the ball impacts on the ground. From C to D, the velocity is negative, indicating that the ball is moving upwards (away from ground). At D, the ball is at its maximum height.	
5	[D] Initially, the parachutist undergoes free fall for the first 2 s and his acceleration is constant at 9.81 m s ⁻² . At the instant the parachute opens, there is a sudden great upwards force acting on the parachutist / parachute. Hence, the acceleration becomes large and negative.	
6	[D] Let the entire distance fallen be s in time t. Initial velocity $u=0$ Using $s=ut+\frac{1}{2}$ at ² $s=\frac{1}{2}$ gt ² (1) 0.25 s= $\frac{1}{2}$ g (t - 1) 2 (2) Solving simultaneous equations, $t=2$ s	
7(a)	At E, the body <u>decelerates uniformly(constant value)</u> until it comes to <u>rest</u> and then experiences <u>uniform acceleration in the opposite direction</u> until its <u>speed</u> <u>is 5 m s⁻¹</u> . At F, it continues moving in this (opposite) direction at a <u>constant speed</u> of 5 m s ⁻¹ until it comes to an abrupt stop at 65 s.	[1] [1] [1]

13	{For such questions, it is helpful to sketch a v-t graph}	
	* 1	
	13	
	Gradient = -4.5	
	$0 \xrightarrow{0.7} t$	
	Distance travelled during his reaction time = 0.7 x 13 = 9.1 m	
	Braking distance: $v^2 = u^2 + 2as$ (Note : <i>a</i> is opposite direction of <i>u</i>)	
	$0 = 13^2 + 2(-4.5)(s)$ s = 18.8 m	
	Total distance covered = 18.8 m + 9.1 m = 27.9 m	
	Therefore, the motorist stops 2.9 m after the stop line.	
14(i)	$v^2 = u^2 + 2 a s$ (taking downwards as positive), = 0 + 2 (9.81) (2.50)	[1]
	$v = 7.00 \text{ m s}^{-1}$	[1]
(ii)	$s = u t + \frac{1}{2} a t^2$ (taking downwards as positive),	
	$0.12 = 7 \ t + \frac{1}{2} (9.81) \ t^2$ $4.91 \ t^2 + 7t - 0.12 = 0$	[1]
	$t = \frac{-7 \pm \sqrt{7^2 - 4(4.91)(-0.12)}}{2(4.91)}$	
	= 0.0169 s	[1]
(iii)	Yes, it confirms this time.	[1]
	The shutter is open for 0.0169 s, which is close to the specification of $\frac{1}{60}$ s or	[1]
	0.0167 s.	1.1
15(a)(i) (ii)	1.8 s The gradient of the tangent to the velocity-time graph.	[1] [1]
` ,		
(iii)	The ball experiences the gravitational force (ie its own weight) and drag force due to air resistance, both acting downwards.	[1]
	Hence, the downward acceleration of the ball is more than 9.81 m s ⁻² and in this case, approximately 20 m s ⁻² .	[1]
(iv)	At $t = 1.8 \text{ s}$.	[1]
(17)	At this instant, the ball is at its maximum height. Its velocity is momentarily zero	[1]
	and hence, drag force is also zero. The only force on the ball is the gravitational force (ie its own weight) and hence its acceleration is <i>g</i> .	[1]
	- 	

(ii)	$\sin \theta = \frac{V_Y}{V} = \frac{25}{34} = 0.7352$	[1]
	$\theta = 47.5^{\circ}$	[1]
(b)	If the stone causes a splash on hitting the sea, then some KE & GPE of the stone is transferred to the KE and GPE of the splashing water, sound and thermal energy (to a lesser extent).	[1]
	With less KE (of the stone) remaining, the stone will be slowed down by the viscous force of water in a shorter distance. (Since work done against viscous	[1]
	force of water = viscous force x displacement).	
20		
	210m	
	Hyturk' Le	
	250m	
	500m	
	Consider the motion from the ball from the "ground level" to the "highest point"	
	$ \begin{array}{l} $	
	\uparrow : $v_y = u_y + at$ $0 = u \sin \theta - 9.81t$ (2)	
	Making t the subject, to eliminate t: $t = \frac{usin\theta}{9.81} (3)$	
	Sub (3) in (1): $\frac{250 - \mu \cos \theta}{100}$	
	$250 = u\cos\theta \left(\frac{u\sin\theta}{9.81}\right) $ $(9.81)(250) = u^2 \sin\theta \cos\theta(4)$	
	Hmmmmm. We need to find θ , so we need to eliminate u. So we need to set up another equation!	
	$\uparrow: v_y^2 = u_y^2 + 2as 0 = (usin\theta)^2 - 2(9.81)(210)$	
	$0 = (u\sin\theta)^2 - 2(9.81)(210)$ $u = \frac{\sqrt{2(9.81)(210)}}{\sin\theta} (5)$	
	Sub (5) in (4): $(9.81)(250) = (\frac{\sqrt{2(9.81)(210)}}{\sin\theta})^2 \sin\theta \cos\theta(4)$	
	$\frac{250}{2(210)} = \frac{\cos\theta}{\sin\theta}$ $tan\theta = \frac{2(210)}{250}$	
	$\theta = 59.2^{\circ}$	

Note: This is a rather hard A level question.