Problem Set #4

OSM Lab, Jorge Barro John Wilson

Problem 6.1

min
$$-e^{-w^Tx}$$
 s.t.
$$w^TAw - w^TAy - w^Tx \le -a$$

$$y^Tw - w^Tx = b$$

Problem 6.5

min
$$-0.07m - 0.05k$$

s.t. $4m + 3k \le 240000$
 $2m + k \le 6000$

where m is the number of milk bottles and k is the number of knobs produced.

Problem 6.6 First observe that

$$f_x(x,y) = 6xy + y + 4y^2$$

$$f_y(x,y) = 3x^2 + 8xy + x$$

$$f_{xy}(x,y) = 6x + 8y + 1$$

$$f_{xx}(x,y) = 6y$$

$$f_{yy}(x,y) = 8x$$

Setting the first order derivatives equal to zero yields the following four critical points: $(0,0), (-\frac{1}{3},0), (0,-\frac{1}{4}), (-\frac{1}{9},-\frac{1}{12})$. First consider (0,0). We have that $f_{xx}=f_{yy}=0$, implying that this point is a saddle point. Now consider $(-\frac{1}{3},0)$. We have $f_{xx}=0$, $f_{yy}=-\frac{8}{3}$, $f_{xy}<0$, so this point is a local maximum. For $(0,-\frac{1}{4})$, we know that $f_{xx}=-\frac{3}{2}$, $f_{yy}=0$, $f_{xx}f_{yy}-f_{xy}^2=-1$, so this is a local maximum. Now consider $(-\frac{1}{9},-\frac{1}{12})$. We have $f_{xx}=-\frac{1}{2}$, $f_{yy}=-\frac{8}{9}$, $f_{xy}=-\frac{1}{3}$, $f_{xx}f_{yy}-f_{xy}^2=\frac{1}{3}$, so the point is a saddle point.

Problem 6.11 We first solve for the unique minimum point of a function $f(x) = ax^2 + bx + c$, a > 0 using Second Order Sufficient conditions. $f'(x) = 2ax + b = 0 \Rightarrow x = -\frac{b}{2a}$. Checking second order conditions shows that f''(x) = 2a > 0, so $x = -\frac{b}{2a}$ is an optimal solution. We now demonstrate that Newton's method will immediately converge for such a problem. Note that $x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)} = x_0 - \frac{2ax_0 + b}{2a} = x_0 - x_0 - \frac{b}{2a} = -\frac{b}{2a}$, as desired.

Problem 6.14 See the Jupyter notebook included in this same folder titled "Newton's Method.ipynb" for the code.