Analyse complexe

Théorie de Cauchy

Question 1/13

Théorème de Morera

Réponse 1/13

Si U est un ouvert de \mathbb{C} et $f:U\to\mathbb{C}$, il y a équivalence entre f est analytique sur U et f est continue et vérifie $\forall (a,b,c)\in U^3$ tels que

$$\Delta(a,b,c) \subset U,$$

$$\int_{[a,b]} f(z) dz + \int_{[b,c]} f(z) dz + \int_{[c,a]} f(z) dz = 0$$

Question 2/13

Invariance par homotopie des intégrales

Réponse 2/13

Si f est holomorphe et Γ de classe \mathcal{C}^2 , en posant $\gamma_s = \Gamma(s, \cdot)$, si γ_s vérifie l'une des deux conditions suivantes, $\forall s \in [0, 1], \gamma_s$ est fermé ou $\gamma_s(0)$ et $\gamma_s(1)$ sont indépendant de s alors $\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$

Question 3/13

Intégration sur le chemin opposé

Réponse 3/13

Si
$$\gamma^*(t) = \gamma(a+b-t),$$

$$\int_{\gamma^*} f(z) dz = -\int_{\gamma} f(z) dz$$

Question 4/13

Invariance par paramétrage de l'intégrale

Réponse 4/13

Si
$$\varphi: [a', b'] \to [a, b]$$
 est croissante et \mathcal{C}^1 , en posant $\gamma_0 = \gamma \circ \varphi$, $\int_{\gamma_0} f(z) dz = \int_{\gamma} f(z) dz$

Question 5/13

Théorème de Cauchy

Réponse 5/13

Pour U un ouvert de \mathbb{C} et $f:U\to\mathbb{C}$, f est holomorphe sur U si et seulement si f est analytique sur U

Question 6/13

Formule de Cauchy

Réponse 6/13

Si
$$U$$
 est un ouvert de \mathbb{C} , f holomorphe sur U et $z_0 \in U$ alors pour tout $z \in D(z_0, r)$,
$$f(z) = \frac{1}{2i\pi} \int_{C(z_0, r)} \frac{f(w)}{w - r} dw$$

Question 7/13

Intégrales sur un lacet

Réponse 7/13

Si
$$f$$
 est holomorphe sur U et $\gamma(a) = \gamma(b)$,
$$\int_{\gamma} f(z) dz = 0$$

Question 8/13

Majoration d'une intégrale

Réponse 8/13

$$\left| \int_{\gamma} f(z) \, dz \right| \leq \max_{z \in \gamma([a,b])} |f(z)| \times \underbrace{\int_{a}^{b} |\gamma'(t)| \, dt}_{\text{longueur de } \gamma}$$

Question 9/13

Concaténation d'intégrales

Réponse 9/13

Si
$$c \in [a, b]$$
, $\gamma_1 = \gamma_{|[a,c]}$ et $\gamma_2 = \gamma_{|[c,b]}$,
$$\int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz = \int_{\gamma} f(z) dz$$

Question 10/13

Coefficients de la série de Taylor d'une fonction holomorphe

Réponse 10/13

$$a_n = \frac{1}{2i\pi} \int_{C(z_0,r)} \frac{f(w)}{(w-z_0)^{n+1}} dw$$

Question 11/13

Intégrale sur $\partial \Gamma$ où $\Gamma: [0,1]^2 \to U$

Réponse 11/13

Si f est holomorphe et Γ de classe \mathcal{C}^2 alors $\int_{\partial \Gamma} f(z) \, \mathrm{d}z = 0$

$$\int_{\partial \Gamma} f(z) \, \mathrm{d}z = 0$$

Question 12/13

Primitive de fonctions holomorphe sur un ouvert simplement connexe U (ie connexe par arcs et tout lacet est homotope à un lacet constant)

Réponse 12/13

Toute fonction f holomorphe de classe \mathcal{C}^1 admet une primitive holomorphe sur U Ce résultat est en particulier vrai si U est étoilé

Question 13/13

$$\int_{\gamma} f(z) dz$$

$$\gamma \colon [a,b] \to \mathbb{C} \text{ de classe } \mathcal{C}^1 \text{ par morceaux}$$

Réponse 13/13

$$\int_{a}^{b} f(\gamma(t)) \times \gamma'(t) dt$$