로드 밸런싱

인터넷의 발달로 데이터 통신이 활발해지면서 한대의 서버로 모든 트래픽을 감당하기 어려워졌다. 수많은 사용자를 동시에 처리하고 정확한 데이터를 제공하기 위해 여러 대의 서버에 동일한 데이터를 저장하고 트래픽을 분산하여 처리한다. 한 서버에 트래픽이 몰리는 상황이 발생하지 않으려면 로드 밸런싱이 필요하다.

기존 서버로 트래픽을 감당할 수 없는 경우 이에 대처할 수 있는 방법은 다음과 같다.

- 기존 서버의 하드웨어 성능을 올리는 Scale-up 방식
- 기존 서버와 동일하거나 낮은 성능의 서버를 증설하는 Scale-out 방식

하드웨어 향상에 드는 비용이 높기도하고, 서버가 여러 대이면 무중단 서비스를 제공하는 환경을 구성하기에도 용이하기에 Scale-out으로 서버를 증설한다. 여러 대의 서버를 사용하면 트래픽을 균등하게 분산시키는 로드 밸런싱이 필요하다.

로드 밸런싱

서버가 처리해야 할 요청(Load)를 여러 대의 서버로 분산하여(Balancing) 처리하는 것을 의미한다. 로드 밸런싱을 통해 애플리케이션의 가용성, 확장성, 보안, 성능이 향상될 수 있다.

로드밸런서가 요청을 배정할 서버를 선택하는 알고리즘은 다음과 같다.

Round Robin

요청을 순서대로 돌아가며 배정하는 방식이다. 여러 대의 서버가 동일한 스펙을 갖고 있고, 서버와의 연결이 길지 않은 경우에 적합하다.

Weighted Round Robin

서버마다 가중치를 매기고 가중치가 높은 서버에 요청을 우선적으로 배분한다. 서버마다 트래픽 처리 능력이 다른 경우 처리 능력이 높은 서버의 가중치를 높게 설정하는 방식으로 사용하기에 적합하다.

IP Hash

클라이언트의 IP 주소를 특정 서버로 매핑하여 요청을 처리하는 방식이다. IP 주소를 해싱하기 때문에 사용자는 항상 동일한 서버로 연결된다.

Least Connection

요청이 들어온 시점에 가장 적은 연결상태를 가진 서버에 우선적으로 배분한다. 자주 세션이 길어지거나 서버에 분배된 트래픽이 일정하지 않은 경우에 적합하다.

Least Response Time

서버의 현재 연결 상태와 응답 시간을 모두 고려하여 트래픽을 배분한다.

L4 로드 밸런싱과 L7 로드 밸런싱

L4는 전송 계층 프로토콜의 헤더를, L7은 응용 계층 프로토콜의 헤더를 부하 분산에 이용한다.

L4 로드 밸런서

L4 로드 밸런서는 네트워크 계층이나 전송 계층의 정보를 바탕으로 로드를 분산한다.

• 전송 계층의 정보: IP 주소, 포트번호, MAC주소, 전송 프로토콜

L7 로드 밸런서

L7 로드 밸런서는 애플리케이션 계층에서 HTTP 헤더, 쿠키와 같은 사용자 요청을 기준으로 특정 서버에 트래픽을 분산할 수 있다. 패킷의 내용을 확인하고 이에 따라 클라이언트의 요청을 보다 세분화해 서버에 분산시킬 수 있다. L7 로드 밸런서는 특정 패턴을 지닌 바이러스를 감지할 수 있어서 DoS/DDos 같은 비정상 트래픽을 필터링할 수도 있다.

로드 밸런서의 주요 기능

NAT(Network Address Translation)
사설 IP 주소를 공인 IP 주소로 바꾼다

• DSR(Direct Server Return)

- Tunneling 데이터를 캡슐화하여 연결된 노드만 캡슐화된 패킷을 구별해 이를 해제할 수 있도록 한다
- 서버에서 클라이언트로 되돌아가는 경우 목적지 주소를 스위치의 IP 주소가 아닌 클라이언트 IP 주소로 전달해서 네트워크 스위치를 거치지 않고 클라이언트를 찾아가도록 한다.

로드 밸런싱 2