

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
IČO:	47813121
Projekt:	OP VK 1.5
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol (32 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	STT IV
Popis sady vzdělávacích materiálů:	Strojírenská technologie IV, 4. ročník
Sada číslo:	I-04
Pořadové číslo vzdělávacího materiálu:	23
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_52_INOVACE_I-04-23
Název vzdělávacího materiálu:	Tažení I
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Hynek Palát

Schéma tažení

Tažení

- Tažení patří do lisovacích technik.
- Většinou se provádí na lisech.
- Tažení je druh tváření za studena.
- Objemové tváření ⇒ V_{polotovaru} = V_{výtažku}.
- Polotovary jsou většinou plechy.
- Výrobky = duté nádoby hrnky, hrnce, ale i nerotační výtažky.
- Lisovací nástroj = tažidlo = tažník + tažnice.
- Povrch ocelových plechů se fosfátuje (↓ tření a "p" materiálu).

Tažnost

- Tažené plechy musí mít dostatečnou tažnost "A".
- **Tažnost** = technologická vlastnost materiálu, která určuje vhodnost materiálu k tažení.
- Představu o velikosti tažnosti získáme z tahové zkoušky.
- $A = \varepsilon \cdot 100$ [%]
- "A" zjišťujeme **zkouškou hlubokotažnosti plechů** podle Erichsena.
- Měřítkem tažnosti je velikost prohloubení plechu do objevení první trhliny.
- Hluboké nádoby se většinou nevytáhnou na 1 tah, proto musíme použít více zdvihů a tažníků ⇒ více tahů.
- Pokud musíme nádoby vytahovat na více tahů, materiál se zpevňuje a ztrácí tažnost,
 proto je nutné ji obnovit. Do procesu zařazujeme mezioperační žíhání na měkko.

Princip tažení

Materiál polotovaru je při tažení tvářen - vytahován a stlačován.

Čím větší je rozdíl mezi průměrem polotovaru D_p a konečným vnitřním průměrem výtažku, tím více materiálu v podobě kruhových výsečí se musí přemístit \Rightarrow tyto důsledky:

- 1. $D_p \neq d + 2 \cdot h$, protože "přemístěný" materiál se podílí na "vytvoření" vyšky h.
- Žím více materiálu se musí "přemístit", tím větší napětí v materiálu vzniká a tvoří se větší vlny ⇒ musíme zvolit nástroj s přidržovačem.
- 3. U hlubokých výtažků vznikají velké F_t, vytahujeme proto na více tahů.

Postup tažení

Polotovar pro kruhové výtažky

Polotovar pro tažení se nazývá přístřih, výstřižek nebo také "rondel".

Úkoly:

• Podle obrázku popište postup tažení.

Seznam použité literatury

- Řasa, J., Haněk, V., Kafka, J. *Strojírenská technologie 4*, 1. vyd. Praha: Scientia, 2003. ISBN 80-7183-284-7.
- Dillinger, J. a kol. *Moderní strojírenství pro školu a praxi,* Praha: Europa
 Sobotáles, 2007. ISBN 978-80-86706-19-1.
- http://upload.wikimedia.org/wikipedia/commons/e/e0/Tiefziehvorgang.JPG
- http://upload.wikimedia.org/wikipedia/commons/9/97/Deep_Draw_L
 ine_example_by_Pressteck_Italy.jpg
- http://upload.wikimedia.org/wikipedia/commons/2/27/Tiefziehpresse _%28Kaldewei%29.jpg