

Introduction to Coresets

Stroia Dacian - ML Researcher

Alpa About me

Stroia Dacian -- Experience

- Finished my 3rd year at Politehnica University of Timisoara
- At CoreAl / Ethergate for 1 year -- working on coresets for 5 months
- Started learning ML from my 1st uni year

Other fields

- I like cryptography
- I like maths

Contacts

- https://www.linkedin.com/in/dacian-stroia/
- https://github.com/zademn
- Or search my name on other platforms

0. What are we trying to solve?

1. Introduction to Coresets

1. An application -- Streaming data

1. What are coresets?

Intuition:

Given a dataset X we want to construct a smaller dataset C that is a good representation of X.

We will discuss:

- What it means to be a good representation?
- How do we construct coresets

1.1 Coresets - A visual approach

1.1 Coresets - A visual approach

$$f(X) \approx f(C)$$

"Compression"

1.2 Coresets - A mathematical approach

Notation

X – Dataset of dimension $n \times d$

C — Coreset

cost—some additive cost function, usually based on distance functions f

Q—queries - models, classifiers, hypothesis

 $w: X \to \mathbb{R}$ – a weight function

1.2 Coresets - A mathematical approach

Example - for kmeans. - Here Q represents the set of cluster centers:

$$cost(X, Q) = \sum_{x \in X} w(x) \cdot f_Q(x) = \sum_{x \in X} w(x) \cdot \min_{q \in Q} ||x - q||_2^2$$

1.2 Coresets - A mathematical approach

Let's define the coreset: A coreset is a set of points C that for some epsilon it satisfies:

$$|cost(X,Q) - cost(C,Q)| \le \epsilon \cdot cost(X,Q)$$

If the equation holds for all queries then we call it a **strong coreset**If the equation holds for at least 1 query then we call it a **weak coreset**

1.3 Simple Example

Suppose all weights are 1. What is the best coreset C?

1.4 Constructing coresets

Data types

1. Subset sampling -- Ex: random sampling, importance $\mathbf{v} \subset \mathbb{D}^d \subset \mathbf{v}$

 $X \subset \mathbb{R}^d, \ C \subseteq X$

2. Subset space -- Ex: constructing new samples in kmeans

$$X \subset \mathbb{R}^d, \ C \subset \mathbb{R}^d$$

3. Linear combination of input points

$$X \subset \mathbb{R}^d$$
, $C = SX$ for some S

1.4 Constructing coresets

Construction techniques

- 1. Sampling -- Find an algorithm to compute probabilities
- 2. Deterministic (greedy) -- Find an algorithm to select samples based on history
- 3. Grids -- Discretize the space and select best representatives

1.5 Constructions via sampling

The sensitivity framework

Intuition: For each sample, we want to assign a number representing the **importance** of the sample in the dataset. We can look at it as **reweighting** the dataset

$$\sigma(x) = \sup_{Q \in \mathcal{Q}} \frac{f_Q(x)}{\sum_{x' \in X} w_X(x') f_Q(x')}$$

Then we construct the probability distribution $\sigma(x) \sim p(x)$ with

- Representative coresets might not exist (shortest path in graphs)
- 2. Hard to design -- like in the optimization field, coresets schemes are hard to construct and sometimes provide little improvement
- 3. Sometimes the approximation error is too large

4. Coreset constructions might take too long

All on the state of the state o

Demo time

Resources

- https://arxiv.org/pdf/2011.09384.pdf
- https://arxiv.org/pdf/1910.08707.pdf
- https://arxiv.org/pdf/1703.06476.pdf
- https://arxiv.org/abs/1702.08248