TUPOLOGICAL PROPERTIES

Given a deta set, construct a top. space (5 metric space) an determine topological features, i.e., shape.

- what are topological features?

These features should not be affected by "nice" smooth deformations of the space.

Today's goals: homeomorphisms

- . Connectedness
- . compactness

Next: . counting generalized holes

Def. If (X, d_X) and (Y, d_Y) are metric spaces,

a homeomorphism between X and Y is a map $f: X \longrightarrow Y$

that is brigictive (1-1 and out.), continuous and such that $f^{-1}: Y \longrightarrow X$ is also continuous.

Bijetire means reverable:

f': Y -> X

y -> the only x x X such that f(x)=y.

Existence of 2: f is onto (surjective).

Uniqueness of x: f is 1-1 (injective).

- . How do we recognize homeomorphism?
- . What properties are preserved by homeomorphisms?

Ex. Counider $X = S(0,1) \subseteq \mathbb{R}^3$ $2^2 + y^2 + 2^2 = 1$

and $Y = S((3,3,3), 2) \subseteq \mathbb{R}^3$ $(x-3)^2 + (y-3)^2 + (z-3)^2 = 4$

Write a homeomorphism between X and Y.

Recall: if u, v are bijections, then mov is a bijection (and (Mov) = v'ou').

if u, van continuous, then so is nov.

Here: 1th step: inflate X to dilate the radius by 2. 2nd step: shift it so the center is at (3,3,3).

-S(0,1)

1 step: inflate X.

$$v: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\binom{3}{2} \longmapsto \binom{2x}{2x}$$

· v is polynomial in each coordinate, therefore continuous.

. V is bijective with inverse $v^{-1}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$

$$\begin{pmatrix} 3 \\ 4 \end{pmatrix} \longmapsto \begin{pmatrix} 3/5 \\ 3/5 \\ 3/5 \end{pmatrix}$$

v' is also continuous (same reason): v' is a homeo.

Claim: v transforms X into 5(0,2).

To cheek this, we need to prove that if

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} \text{ with } x^2 + y^4 + z^2 = 1$$

Hun $X^2 + Y^2 + Z^2 = 4$ S(0,2)

Indud,
$$X^2 + Y^2 + Z^2 = (2x)^2 + (2y)^2 + (2z)^2$$

= $4(x^2 + 4y^2 + 4z^2)$
= $4(x^2 + y^2 + z^2) = 4$

Next: shift the inflated sphere.

2 "d ptp: travolate v(X) = S(0,2).

$$\mathcal{L}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \longmapsto \begin{pmatrix} 2 \\ 3 \\ 4 + 3 \\ 2 + 3 \end{pmatrix}$$

· u is continuous (polynomial)

. et is bajective on the

$$u^{-1}: \begin{pmatrix} x \\ y \\ e \end{pmatrix} \longmapsto \begin{pmatrix} x-3 \\ y-3 \\ z-3 \end{pmatrix}$$

also continuous.

-s u is a homeomorphism.

=> 1100 is a homeomorphisms.

let f= nov.

Claim: f is a homeomorphism from X to Y.

We already know that f is a homeomorphism, hence we only need to check that it maps $S(\mathfrak{D},1)$ to S((3,33),2).

Concretely,
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ \vdots \end{pmatrix} \longmapsto \begin{pmatrix} 2x+3 \\ 2y+3 \\ \vdots \\ 2+3 \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

We verify that: $x^2 + y^2 + z^2 = 1$ $\left(\begin{pmatrix} \frac{3}{2} \end{pmatrix} \in S(0,1) \right)$

$$\left(\begin{pmatrix} \frac{5}{\lambda} \\ \frac{1}{\lambda} \end{pmatrix} \in \lambda \right)$$

 $= (2x+3-3)^{2} + (2y+3-3)^{2} + (2x+3-3)^{2}$ $= (2x+3-3)^{2} + (2y+3-3)^{2} + (2x+3-3)^{2}$

Conclusion: X~Y, X is homomorphic to Y.

Courider S1 the unit circle in IR2 (Hw):

Find a homeomorphism between S2 and E.

CONNECTED SPACES

Goal: formalize, give a vigorous definition for a topological deject to consist of only one piece.

First approach: open/closed (or clopen) sets

Recall that in a metric space X, $U \in X$ is open if $\forall x \in \mathcal{U}$, $\exists r > 0$ s.t. $B(x,r) \subseteq \mathcal{U}$

Def: A subset C of X metric is said closed if

I its complement C is open.

Many sets are neither open nor closed.

[0,1) is neither open nor closed in R.

- . Not open because of O (see yesterday's notes)
- . Not closed: the complement is $(-\infty, 0) \cup [1, +\infty)$,

Combinations of closed sets:

- . An intersection of closed sets is always closed.

 . A finite union of closed sets is always closed.

To prove this, use de Morgan's Laws and the result on open sets:

$$\left(\bigcap_{\alpha\in\mathbb{I}}C_{\alpha}\right)^{c}=\bigcup_{\alpha\in\mathbb{I}}C_{\alpha}^{c}$$
 ; open

Ex. In X = IR equipped with ordinary distouce $d(x_1y) = |x-y|.$

& and IR are both open and closed.

- · Dand IR are open (easy)
- . Ø = R° and IR = ذ ⇒ pand R are

Ø and IR are clopen in R.

In fact, they are the only clopen sets.

"Grinected = in one piece"

For instance, $(1, 2) \subseteq \mathbb{R}^d$ is connected but $(3,4) \cup (5,7)$ is not:

Both (3,4) is open in D \rightarrow (3,4) is closed in D Both (3,4) and (5,7) are clopen in D.

Def A metric space (X, dx) is connected if the only clopen sets of X are Ø and X.

 \underline{E}_{X} . Assume X is equipped with do (discrete metric). Then X is connected if and only if $Card(X) \leq I$. (HW).

- Discrete repasses are (almost) never connected.

Theorem (Characterizations of connected spaces)

The following conditions on X metric are equivalent:

- (1) X is connected.
- (2) There does not exist U, V open subsects of X with $U \cap V = \emptyset$ and $U \cup V = X$
- (3) There does not exist any continuous map $f: X \longrightarrow 10,13$ that is surjective.

Ideas: (1) X is connected

(2) "X is not made of 2 separate pieces."

Proof. let us check that (1) (3)

Assume $f: X \longrightarrow \{0, 4\}$ is continuous and onto. Then $X = f^{-1}(\{0\}) \cup f^{-1}(\{1\})$ $\{0\}$ and $\{4\}$ are open in $\{0, 4\}$, discrete. Since f is continuous and onto, both f-'(201) (12)

and f((1)) are open, closed and + X.

Therefore X is not connected. This shows that (1) =>(3)

To prove that (3) =1 (1), let us assume that X is not connected. Consider S clopen in X with S # p and S # X.

Then X = SUS^c with S, S^c clopen.

f: × ---> 10,13 x ← o if x ∈ S a Lif x ESC

Claim (HW): f is continuous and surjective.

This shows (3) => (1).

To prove (21 (-> (3), use the same idea with U=S

then we would have $X = f'(u) \cup f'(v)$ U open $\Rightarrow f'(u)$ open (f cont.)

V open $\Rightarrow f'(v)$ open (\longrightarrow)

Un $V = \emptyset$ \Rightarrow $f'(u) \cap f'(v) = \emptyset$ \Rightarrow X is not connected!!!

It is a contradiction, meaning it was wrong to asknow f(x) disconnected, hence f(x) is connected.

Corollary: If X and Y are homeomorphic metric spaces, then:

X connected \iff Y connected.

The other approach to connectedness is: X is connected if every two points in X can be joined by a path in X.