ECO-PTM Overview

April 16, 2024

Delta Smelt

Longfin Smelt

Chinook Salmon

ECO-PTM

Sacramento River

tidal water

levels

Movement and survival of listed species?

Chinook salmon

longfin smelt

Delta smelt

San Joaquin River

ECO-PTM Model Grid

tidal water

levels

Sacramento River

Movement and survival of listed species?

Chinook salmon

longfin smelt

ECO-PTM

Movement, Routing, & Survival

hydrodynamics:

advection + diffusion + dispersion

How real fish move

hydrodynamics:

advection + diffusion + dispersion

behavior

hydrodynamics:

advection + diffusion + dispersion

behavior:

responses to hydrodynamic stimuli

hydrodynamics:

advection + diffusion + dispersion

behavior:

responses to hydrodynamic stimuli

Н

chemotaxis; microhabitats; landscape of fear (predators); bioenergetics; phenology; individual variation; etc.

ECO-PTM

- three modules:
 - 1. PTM: passive, neutrally buoyant Delta smelt larvae
 - 2. PTM + position (surface) orientation longfin smelt larvae
 - 3. PTM + salmon behavior and mortality Chinook salmon smolts

Quasi-3D: channels and nodes

Quasi-3D: velocity profiles

Quasi-3D: mixing

Quasi-3D: dispersion

= dispersion

Flow-split routing

ECO-PTM

neutrally buoyant surface oriented

salmon model

PTM + surface orientation

passive movement

advection + dispersion

10

Salmon model

Behaviors

- stochastic swimming velocity
- diel holding: hold position during daytime
- selective tidal stream transport (STST): hold when upstream flow velocity exceeds threshold
- probabilistic oceanward/landward swimming orientation

Salmon model

- Survival
 - XT mean free-path length model[†]
 - survival probability = f(x, t)
 - x = travel distance
 - t = travel time
 - parameters
 - λ: mean free-path length, ~predator density
 - ω : random encounter speed

Salmon model

parameters

- mean and standard deviation of swimming speed
- probability of daytime holding
- STST flow threshold
- shape of flow relationship governing probability of oceanward/landward orientation
- etc.

Interpretation of behaviors

conceptual slide:
hypothetical behaviors

Interpretation of behaviors

Interpretation of behaviors

- What are the relationships represented in the model?
- What data were used to fit the model?
- Are the model assumptions and data appropriate for the proposed application?

hypothesized behaviors

Questions? Please type them into Teams chat

Include slide # if possible

Doug Jackson (doug@qedaconsulting.com)