Dualidade

2011/2012

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Árvores abrangentes
 - Caminhos mais curtos
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Resumo

- Motivação
- Formulações
 - Forma Standard
 - Forma Slack
- Algoritmo Simplex
 - Operação Pivot
 - Solução Exequível Inicial
 - Resultados Formais
- Dualidade

Motivação

Exemplo

	Urbanos	Suburbanos	Rurais
Estradas	-2	5	3
Liberalização da Droga	8	2	-5
Subsídios Agricultura	0	0	10
Imposto sobre Gasolina	10	0	-2

- Cada entrada representa o número de votos (em milhares) ganhos por cada 1000 Euros gastos em campanhas
- Objectivo a atingir:
 - Queremos ganhar pelo menos 50% dos votos (100.000 urbanos, 200.000 suburbanos e 50.000 rurais)
 - Minimizar o total a gastar nas campanhas

Motivação

Exemplo

	Urbanos	Suburbanos	Rurais
Estradas	-2	5	3
Liberalização da Droga	8	2	-5
Subsídios Agricultura	0	0	10
Imposto sobre Gasolina	10	0	-2

Algoritmo Simplex

- Considere que as seguintes variáveis denotam a quantia a gastar em campanha para os diferentes temas:
- x_1 = estradas; x_2 = droga; x_3 = subsídios; x_4 = imposto

minimizar
$$\sum_{j=1}^{4} x_{j}$$
 sujeito a
$$\begin{aligned} -2x_{1} + 8x_{2} + 0x_{3} + 10x_{4} & \geq & 50 \\ 5x_{1} + 2x_{2} + 0x_{3} + 0x_{4} & \geq & 100 \\ 3x_{1} - 5x_{2} + 10x_{3} - 2x_{4} & \geq & 25 \\ x_{1}, x_{2}, x_{3}, x_{4} & \geq & 0 \end{aligned}$$

Formulação Geral

Programação Linear

 Optimizar (minimizar ou maximizar) função linear sujeita a conjunto de restrições lineares

Algoritmo Simplex

Função linear (função objectivo):

$$f(x_1,x_2,\ldots,x_n)=\sum_{j=1}^n c_jx_j$$

Restrições Lineares:

$$g_1(x_1,x_2,\ldots,x_n) = \sum_{j=1}^n a_{ij}x_j = b_i$$

$$\leq$$

Exemplo

maximize subject to

Exemplo maximize subject to $4x_1 - x_2 \leq 8$ $x_1, x_2 \geq 0$

Exemplo

maximize subject to

$$4x_1 - x_2 \le 8$$

 $2x_1 + x_2 \le 10$

$$x_1, x_2 \geq 0$$

Exemplo

maximize subject to

Exemplo maximize $\begin{array}{cccc} x_2 & \leq & c \\ x_2 & \leq & 10 \\ 2x_2 & \geq & -2 \\ & \geq & r \end{array}$ subject to $4x_{1}$ $2x_{1}$ $5x_{1}$

 x_1, x_2

Exemplo					
maximize subject to	<i>X</i> ₁	+	x ₂		
	$4x_{1}$	_	<i>X</i> ₂	\leq	8
	$2x_{1}$	+	<i>X</i> ₂	\leq	10
	5 <i>x</i> ₁	_	$2x_2$	\geq	-2
		x_1, x_2		\geq	0

Exemplo					
maximize subject to	<i>X</i> ₁	+	<i>x</i> ₂		
	$4x_{1}$	_	<i>x</i> ₂	\leq	8
	$2x_{1}$	+	<i>X</i> ₂	\leq	10
	5 <i>x</i> ₁	_	$2x_{2}$	\geq	-2
		x_1, x_2		\geq	0

Exemplo maximize $x_1 + x_2$ subject to $4x_1 - x_2 \le 8$ $2x_1 + x_2 \le 10$ $5x_1 - 2x_2 \ge -2$ $x_1, x_2 \ge 0$

Exemplo

Solução

$$x_1 = 2, x_2 = 6$$

Região Exequível

- Qualquer solução que satisfaça o conjunto de restrições designa-se por solução exequível
- A cada solução exequível corresponde um valor (custo) da função objectivo
- O conjunto de soluções exequíveis é designado por região exequível
- A região exequível é um conjunto convexo no espaço n-dimensional
 - Conjunto convexo S: qualquer ponto de um segmento que liga quaisquer dois pontos em S está também em S
 - S é designado por simplex

Região Exequível

- Qualquer solução que satisfaça o conjunto de restrições designa-se por solução exequível
- A cada solução exequível corresponde um valor (custo) da função objectivo
- O conjunto de soluções exequíveis é designado por região exequível
- A região exequível é um conjunto convexo no espaço n-dimensional
 - Conjunto convexo S: qualquer ponto de um segmento que liga quaisquer dois pontos em S está também em S
 - S é designado por simplex
- A solução óptima encontra-se num vértice do simplex

Algoritmos

- Algoritmo Simplex
 - Exponencial no pior caso; eficiente na prática e muito utilizado
- Algoritmo da Elipsóide
 - Polinomial; normalmente ineficiente
- Métodos de Ponto Interior

Perspectiva sobre Programação Linear

Conceitos a reter:

- Solução: exequível ou não exequível
- Valor da função objectivo: valor objectivo
- Valor máximo/mínimo: valor objectivo óptimo
- Se formulação não tem soluções exequíveis diz-se não exequível; caso contrário diz-se exequível
- Se formulação é exequível, mas sem solução óptima, diz-se não limitado

Caminhos Mais Curtos

Caminhos mais curtos entre s e t:

maximizar
$$d[t]$$

sujeito a $d[v] \le d[u] + \omega(u, v), \forall (u, v) \in E$
 $d[s] = 0$

Fluxo Máximo

$$\begin{array}{ll} \text{maximizar} & \sum\limits_{v \in V} f(s,v) \\ \text{sujeito a} & f(u,v) \leq c(u,v) & \forall u,v \in V \\ & f(u,v) = -f(v,u) & \forall u,v \in V \\ & \sum_{v \in V} f(u,v) = 0 & \forall u \in V - \{s,t\} \end{array}$$

Forma Standard

$$\begin{array}{ll} \text{maximizar} & \sum\limits_{j=1}^{n} c_{j}x_{j} \\ \text{sujeito a} & \sum\limits_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad i=1,2,\ldots,m \\ & x_{j} \geq 0 \qquad \qquad j=1,2,\ldots,n \end{array}$$

- Todos os valores c_j, a_{ij}, b_i são valores reais
- Representação Matricial

maximizar
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 sujeito a $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq 0$

Em que
$$\mathbf{A} = (a_{ij}), \mathbf{b} = (b_i), \mathbf{c} = (c_i)$$
 e $\mathbf{x} = (x_i)$

Problemas na Conversão para a Forma Standard

- Minimização em vez de maximização
- Variáveis sem restrição de serem não negativas
- Restrições com igualdade
- Restricões com ≥

Problemas na Conversão para a Forma Standard

- Minimização vs. Maximização:
 - Multiplicar coeficientes por -1
- Variáveis sem restrição de serem não negativas:
 - Substituir cada ocorrência de x_i por $(x_{i1}-x_{i2})$, em que x_{i1} e x_{i2} são novas variáveis
- Restrições com igualdade:
 - Introduzir duas restrições, uma com < e outra com >
- Restrições com ≥ :
 - Multiplicar restrição por -1

Conversão para a Forma Slack

- Objectivo é trabalhar apenas com igualdades
- Todas as restrições, excepto as restrições das variáveis serem não negativas, são igualdades
- Para cada restrição introduzir uma nova variável s_i (variável de slack)

$$s_i = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$s_i > 0$$

Conversão de forma standard para forma slack:

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$x_{n+i} \ge 0$$

Conversão para a Forma Slack

Nas expressões: $x_{n+i} = b_i - \sum_{i=1}^{n} a_{ij}x_j$

- Variáveis expressas em função de outras variáveis designam-se por variáveis básicas
- As variáveis que definem as variáveis básicas designam-se por variáveis não-básicas
- A solução básica é obtida quando se colocam as variáveis não-básicas com valor 0

Na forma slack, a função objectivo é definida como:

$$z = \sum_{j=1}^{n} c_j x_j$$

Conversão para a Forma Slack

- N: Conjunto de índices das variáveis não básicas, |N| = n
- B: Conjunto de índices das variáveis básicas, |B| = m

•
$$N \cup B = \{1, 2, ..., n+m\}$$

- Forma slack descrita por: (N, B, A, b, c, v)
 - v: constante na função objectivo

$$z = v + \sum_{j=1}^{n} c_{j}x_{j}$$

 $x_{n+i} = b_{i} - \sum_{j=1}^{n} a_{ij}x_{j} \quad i = 1, 2, ..., m$

minimize
$$-2x_1 + 3x_2$$

subject to $x_1 + x_2 = 7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

maximize
$$2x_1 - 3x_2$$
 subject to $x_1 + x_2 = 7$ $x_1 - 2x_2 \le 4$ $x_1 \ge 0$

maximize
$$2x_1 - 3x_2$$

subject to $x_1 + x_2 = 7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

Motivação

Forma Slack

Forma Slack

Motivação

Algoritmo Simplex

Operação Pivot

Operação central do algoritmo Simplex

- Escolher variável não básica x_e para passar a básica
 - Variável de entrada
- Escolher variável básica x_i para passar a não básica
 - Variável de saída
- Calcular nova forma slack do problema

•
$$N' = N - \{x_e\} \cup \{x_l\}$$

•
$$B' = B - \{x_I\} \cup \{x_e\}$$

$$\bullet$$
 (N', B', A, b, c, v)

Motivação

Algoritmo Simplex

- Calcular forma slack inicial
 - Para a qual solução básica inicial é exequível
 - Caso contrário reporta problema não exequível (unfeasible) e termina
- Enquanto existir $c_e > 0$ (i.e. valor de z pode aumentar)
 - x_e define variável de entrada (i.e. nova variável básica)
 - Seleccionar x_l
 - x_i corresponde a linha i que minimiza b_i/a_{ie} , para $a_{ie} > 0$
 - Se a_{ie} < 0 para todo o i, retornar "unbounded"
- Aplicar pivoting com (N, B, A, b, c, v, I, e)
- No final, retornar solução básica
 - $\overline{x}_i \leftarrow b_i$, se $i \in B$ (variáveis básicas)
 - $\overline{x}_i \leftarrow 0$, se $i \in N$ (variáveis não-básicas)

Motivação

maximize
$$3x_1 + x_2 + 2x_3$$
 subject to
$$x_1 + x_2 + 3x_3 \leq 30$$
 $2x_1 + 2x_2 + 5x_3 \leq 24$ $4x_1 + x_2 + 2x_3 \leq 36$ $x_1, x_2, x_3 \geq 0$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_6}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_6}{8} - \frac{x_6}{16}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Solução Exequível Inicial

Um programa linear pode ser exequível, mas solução básica inicial pode não ser exequível

 Seja L um programa linear na forma standard, e seja L_{aux} definido da seguinte forma:

maximizar
$$-x_0$$
 sujeito a $\sum\limits_{j=1}^n a_{ij}x_j-x_0\leq b_i$ $i=1,2,\ldots,m$ $x_j\geq 0$ $j=0,1,2,\ldots,n$

- Então L é exequível se e só se o valor objectivo óptimo de Laux é 0
 - Se L tem solução, então L_{aux} tem solução com $x_0 = 0$, o valor óptimo
 - Se o valor óptimo de x₀ é 0, então solução é solução para L

Solução Exequível Inicial

Se solução básica inicial for não exequível:

- A partir de L construir Laux
- Determinar índice / com menor bi
 - Aplicar operação pivot entre x_l e x₀
 - A solução básica calculada é exequível para Laux
- Aplicar passos do Simplex para calcular solução óptima
 - Se solução óptima verifica $x_0 = 0$, retornar solução calculada, sem x_0
 - Caso contrário L não é exequível

Solução Exequível Inicial

Após a primeira aplicação de pivot, a solução básica é exequível para

• *I* tal que
$$b_I < b_i$$
, $i = 1, ..., m$

•
$$b_l < 0$$
, pois solução inicial exequível se $bi \ge 0$

Após aplicar operação pivot tem-se:

•
$$x_0 = b_I/a_{I0}$$

$$x_i = b_i - a_{i0}(b_1/a_{i0}), i \neq 0$$

• Como
$$a_{i0} = -1$$
 para todo o i ,

•
$$x_0 = -b_1 > 0$$

•
$$x_i = b_i - b_l > 0$$

maximize
$$2x_1 - x_2$$
 subject to $2x_1 - x_2 \le 2$ $x_1 - 5x_2 \le -4$ $x_1, x_2 \ge 0$

maximize
$$-x_0$$
 subject to
$$2x_1 - x_2 - x_0 \leq 2 \\ x_1 - 5x_2 - x_0 \leq -4 \\ x_1, x_2, x_0 \geq 0$$

Resultados Formais

Dado um programa linear (A, b, c):

- Se o algoritmo Simplex retorna uma solução, a solução é exequível
- Se o algoritmo Simplex retorna "unbounded", o programa é não limitado
- Dado um programa linear (A, b, c) na forma standard, e B um conjunto de variáveis básicas, a forma slack é única

Resultados Formais

Variação do valor da função objectivo após pivoting:

- Valor da função objectivo não pode diminuir
 - Variável escolhida tem coeficiente positivo
 - Valor da variável é não negativo, pelo que novo valor da função de custo não pode diminuir
- Valor da função objectivo pode não aumentar
 - Degenerescência
 - Mas é sempre possível assegurar que algoritmo termina

Resultados Formais

O Simplex está em ciclo se existem formas slack idênticas para duas iterações do algoritmo

- Se o algoritmo Simplex não termina após C_m^{n+m} iterações, então o algoritmo está em ciclo
 - Cada conjunto B determina unicamente a forma slack
 - Existem n + m variáveis e |B| = m
 - Número de modos de escolher B: C_m^{n+m}
 - Número de formas slack distintas: C_m^{n+m}
 - Se algoritmo executar mais de C_m^{n+m} iterações, então está em ciclo
- Eliminar ciclos:
 - Regra de Bland: desempates na escolha de variáveis através da escolha da variável com o menor indíce

Dualidade

- Conceito essencial em optimização
 - Normalmente associado com existência de algoritmos polinomiais
 - E.g., fluxo máximo corte mínimo
- Programa linear dual:

minimizar
$$\sum_{i=1}^{m} b_i y_i$$

sujeito a $\sum_{i=1}^{m} a_{ij} y_i \geq c_j$ $j=1,2,\ldots,n$
 $y_i \geq 0$ $i=1,2,\ldots,m$

A formulação original é conhecida como o programa primal

Dualidade Fraca em Programação Linear

Seja *x* uma qualquer solução exequível do programa primal e seja *y* uma qualquer solução exequível do programa dual. Nestas condições:

$$\sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

Prova:

$$\sum_{j=1}^{n} c_j x_j \leq \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ij} y_i) x_j$$

$$= \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} x_j) y_i$$

$$\leq \sum_{i=1}^{m} b_i y_i$$

Dualidade em Programação Linear

Seja *x* uma qualquer solução pelo algoritmo Simplex, e sejam *N* e *B* os conjuntos de variáveis para a forma slack final.

Seja c' o vector dos coeficientes da forma slack final e seja $y_i = -c'_{n+i}$ para $(n+i) \in N$; 0 caso contrário.

Nestas condições:

- x é solução óptima para o programa primal
- y é a solução óptima para o programa dual

$$\bullet e, \sum_{j=1}^n c_j x_j = \sum_{i=1}^m b_i y_i$$

Dualidade

Teorema Fundamental da Programação Linear

Qualquer programa linear na forma standard:

- Ou tem solução óptima com valor finito,
- Ou não é exequível,
- Ou não é limitado.
- Se L não é exequível, o algoritmo Simplex retorna "infeasible"
- Se L não é limitado, o algoritmo Simplex retorna "unbounded"
- Caso contrário, o algoritmo Simplex retorna uma solução óptima com um valor objectivo finito