

Images Search. Outline

- Search tasks
- Indexing
- Near-duplicates
- Search for objects
- Results expansion

Images Search. Task Statement

- Content-based image retrieval
- Search for images with specific content in the image database
- The task is similar to image recognition, but it focuses mainly on scaling and interaction with the end user

Datta, Ritendra, et al. "Image retrieval: Ideas, influences, and trends of the new age." *ACM Computing Surveys (Csur)* 40.2 (2008): 1-60.

Images Search. A user request

- 1. Text request
 - Example: "The Great Wall, photos" image annotation
 - database categorization is required
- 2. Sample image (find the same or similar one)

- 3. Query as content features
 - Example: color histogram

- What is a "Similar image"?
- Semantic gap the mismatch between the information that can be extracted from visual data and the interpretation of this data by the user

Images Search. Similar Image Type 1 ITMO

Near-duplicates

 slightly modified version of the same image (different angle, colors, size, etc.).

Images Search. Similar Image Type 2

- The same object or scene (object retrieval)
 - strong variations in angles, backgrounds, and other changes compared to near-duplicates

Images Search. Similar Image Type 3

ITMO

- Scenes with similar configuration
 - may have the different purpose

Images Search. Similar Image Type 4 ITMO

- Images of the same category (category-level classification)
 - scenes or objects

Banqueting hall

Images Search. Task Statement

- All 4 tasks have different task statements
- They require different algorithms to solve them.
- QBIC «Query By Image Content» (1995) the very first image content search engine:
 - Calculates the following feature sets of objects:
 - Feature colour histograms
 - Area, perimeter, etc.
 - Binary mask is used to describe objects
 - Segmentation of objects is carried out manually or automatically:
 - Highlighting contrasting objects against the uniform background (museum exhibits)
 - Flood-fill and "snakes" methods
 - Database contains about 10 000 images

QBIC Example

Histogram

Spatial color distribution

QBIC Example

Image search. General Workflow

1. Building image index

2. Search

Image Descriptors

Color histograms

Gradient histograms (GIST / HOG)

A spatial bag of words and individual features

Required Computation Resources

- Desired number of images in the database: billions
- Example: GIST descriptor:
 - 4 x 4 grid with 8 orientations and 4 scales: 4 * 4 * 8 * 4 = 512 parameters
 - If single parameter is 4 bytes: 2048 bytes for image = 2 KB
 - With a collection of 1 million images: descriptors would occupy 2 GB
- Conclusion: a simple descriptor usage requires a lot of memory

Required Computation Resources

- Example: Bag Of Words (Bag Of Features):
 - Dictionary size is from 200 to 1 million words
 - Up to 1 million parameters in single histogram
 - Up to 4 MB per image
- Example: Pyramidal Bag Of Words:
 - Pyramid of three levels 21 histograms
 - BOW * 21 = up to 80 MB per image
- Example: object filters:
 - 200 main classes;
 - Pyramid of three levels 21 histograms
 - 21 * 200 * 4 bytes = 16 KB;
 - 1 million images would require 16GB for descriptors

Search for the Nearest Neighbour

- It is necessary to find the Nearest Neighbors by descriptor in the entire collection
- The simplest index is a linear list of all descriptors
- Full search comparison of the test vector with each example from the collection
 - C = 1M images, GIST = 512 parameters, C * GIST = 512M operations
- Approximate methods for finding neighbours are required
 - Approximate nearest neighbor

Inverted Index

- Execute clustering (quantize) of all descriptors to get K-clusters
- Split the entire collection into clusters
- Build the «inverted index»:
 - List of clusters (with corresponding GIST)
 - Each cluster stores the indices of images that belong to the cluster

Inverted Index

- Search by index:
 - Check the inverted index to find the nearest cluster
 - All elements in the nearest cluster list are the nearest vectors (approximately)

- To improve the accuracy, we will can reorder results from the cluster:
 - Calculate the distances to each element of the list by their full descriptors
 - Re-rank results basing on the proximity (the nearest ones first)

Simple Approach

Indexing:

- Calculate GIST for each image
- Quantize of the descriptors to get 200 clusters
- Building an inverted index of clusters
- We store the entire GIST in memory

Search:

- Calculate GIST for image
- Find the nearest cluster in the inverted index by comparing against GIST
- Re-rank the list from the index by GIST

Semantic Hashing

«Address»

of the image

Address

space

Allows you to speed up a simple algorithm and increase the size of the collection

Idea: build such short binary signatures for images that if images close in L_2 they will have close signatures

We assume that there is a description of the images that can be compared by L_2 .

Salakhutdinov, Ruslan, and Geoffrey Hinton. "Semantic hashing." International Journal of Approximate Reasoning 50.7 (2009): 969-978.

Formalize

- We have vector descriptors x, y
- Need to get the binary signature h(x) for image search:
 - If $x \approx y$ then $h(x) \approx h(y)$
 - h(x) semantic hash function (*binary signature*)

Locality Sensitive Hashing (LSH)

- Let's take a random projection of data onto a straight line
- Randomly choose a threshold and mark the projections by 0 or 1
 - 1 signature bit
- With an increase in the number of bits, the signature approximates L_2 , the metric in the original descriptors
- Disadvantages:
 - L_2 Approximation is asymptotic
 - The implementation may require too many bits for the signature

GIST Indexing Structure (GISTIS)

- Build a GIST for each image
- Quantize all descriptors using the k-means method for k=200 words
- For each cluster, calculate the binary signature using LSH
- Image indices and binary signatures (512 bits) are stored in an index in random access memory (RAM);
- GISTs are stored on the hard drive
- Can execute sorting multiple times
 - At first by binary signatures
 - Then by GIST from the hard drive

Image Search

ITMO

Workflow

Results

110 millions images

method	bytes (RAM)	time per query image	
	per image	fingerprint	search
SV [11]	501,816	440 ms	13 h
HE [5]	35,844	780 ms	96 ms
BOF	11,948	775 ms	353 ms
GHE	35,844	780 ms	$47~\mathrm{ms}$
GBOF	11,948	775 ms	67 ms
GIST	3840	35 ms	$1.26 \mathrm{\ s}$
GISTIS	68	36 ms	2 ms
GISTIS+L2	68	36 ms	6/192 ms

Trainable Metrics

• In case if the Euclidean metric L_2 is not suitable and it is difficult to choose the correct metric, then it can be trained

Trainable Metrics

ITMO

Training set

Partially tagged image database

Tagged image database

Trainable Metrics

ITMO

Distance learning via LSH

Split pairs of similar images with less probability

Split pairs of not similar images with higher probability

Results

- Comparison is performed on 80 million small images
- The trained metric allows you to find the same results, but with accessing less than 1% of the database
- Execution time is 0.5 second instead of 45 seconds

Kulis, Brian, and Kristen Grauman. "Kernelized locality-sensitive hashing for scalable image search." 2009 IEEE 12th international conference on computer vision. IEEE, 2009.

Search for Same Objects or Scenes

Search for Same Objects or Scenes

- Sime straightforward approach:
 - Find image feature points (Harris, SIFT, SURF)
 - Calculate descriptors for found feature points (SIFT)
 - Match feature points by descriptors
 - Use the Random Samples Consensus method(RANSAC) to find the image transformation, reject the false matches;
 - If more than K matches were found then images are considered similar

Search for Same Objects or Scenes

- Advantages:
 - Quality
- Disadvantages:
 - If we had N points, then each of them has 2(x, y) + 128 (SIFT) parameters requires too much RAM
 - Matching descriptors of all points by SIFT with some metric (e.g., using L₂ metric) will take a very long time

Speed Up Feature Matching and Reduce Index Size

- Decrease the size of the descriptor to describe the local feature
- Dictionary quantization:
 - Build a dictionary of feature descriptors
 - Quantize the features by replacing the descriptor with an index in the dictionary
 - Modify the metric to compare descriptors:
 - Features are similar (distance is 0) if index is the same
 - Features are not similar (infinite distance) if index is not the same
- Matching can be even more simplified:
 - Let use describe an image with Bag Of Words
 - The image matching can be calculated as the intersection of histograms (Bags Of Words)

Inverted Index

- The vector of words in the descriptor is very sparse
 - For example, it may have 1K non-zero elements of 1M dictionary

C(2)

- It's convenient to store it in an inverted index
 - Table (words) x (images)
 - List of words in dictionary (features)
 - For each word, we store a list of images in which the "word" occurs

- Search acceleration:
 - The most frequent words are at the top of the list

Side Effect of Quantization

201 matches

20 000 words dictionary

240 matches

- Let's compare the features in two pairs of images according to the dictionary, and see the effect of the size of the dictionary
- The more words in the dictionary, the more accurate the representation of descriptors

200 000 words dictionary

Increasing the dictionary size increases the accuracy of image matching

Algorithm Requirements

- Quickly build a dictionary
- Quickly quantize features
- Reduce discretization errors
- Minimize index size

Basic Approaches

- To build a dictionary and solve the quantization problem:
 - Hierarchical k-means (HKM)
 - Approximate k-means (AKM)
 - Hamming embedding
 - Soft assignment
 - Fine vocabulary

Hierarchical k-means (HKM)

ITMO

- «Words tree»
- Hierarchical subdivision
 - Quantize all data by K clusters (k = 10)
 - Then quantize each cluster by k clusters
- For example:
 - Tree depth 6 results in 1M leaves
- To reduce the effect of quantization, the descriptor is "softly" assigned to all parents along the corresponding tree branch

Nister, David, and Henrik Stewenius. "Scalable recognition with a vocabulary tree." 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). Vol. 2. Ieee, 2006.

Approximate k-means (AKM)

- Algorithm
 - Forest of 8 randomized k-d trees
 - The partition parameter (coordinate) is chosen randomly from the set the one with the largest spread
 - The partition threshold is chosen randomly close to the median
- Such a partition allows one to reduce the side effects of quantization
- The complexity of each k-means phase is reduced from O(NK) to O(Nlog(K))

Quantization

- Direct comparison of a descriptor with the entire dictionary is very slow
- Build a hierarchical structure:
 - Build the first level of k-words with k-means algorithm
 - Repeat the k-means algorithm on clusters
 - Train additional connections between levels with the learning set

Bag Of Words Summary

Algorithm

- "Bag Of Words" descriptor of high dimension (1M)
- Approximate k-means to build a dictionary for a large collection (5k)
- Inverted index for storage

Testing

- 5k+100k images, 1M words, 1GB index, 0.1sec. search time
- 5k+100k+1M images, 1M слов, 4GB+ index, stored on HDD, 10-35 sec. search time

Dictionary size selection problem:

20 000 words

200 000 words

- Clustering does not approximate the descriptor comparison function accurately enough
- Small dictionary lot of false matches, large dictionary lot of misses

Dictionary size selection problem:

- Small dictionary big clusters
 - Too rough comparison threshold
- Big dictionary small clusters
 - Too precise comparison threshold

- We want to store not only the index of the word for the feature from the image, but also describe its position inside the cluster (additional code)
- Then compare features not only by index, but also by additional code
- The code should be small and the comparison is fast:
 - We need a binary code
 - We will compare codes by the Hamming distance
 - the number of positions at which the word symbols are different

Locality Sensitive Hashing (LSH)

- Let's take a random projection of data onto a straight line
- Randomly choose a threshold and mark the projections by 0 or 1
 - 1 signature bit
- With an increase in the number of bits, the signature approximates L_2 , the metric in the original descriptors
- Disadvantages:
 - L_2 Approximation is asymptotic
 - The implementation may require too many bits for the signature

- Take all the descriptors that are quantized into one cluster
- Generate n random straight lines (projection directions)
- Project all descriptors onto these lines
- Choose a point on each line (threshold) in such a way that there is equal number of points on both sides of it
- Build a binary code basing on feature position related to a selected lines and thresholds
 - Such a code would be optimal

Collection Index Modification

• Each feature has its own entry in the index (before that, they were combined into one with their number)

General Algorithm

- For each descriptor:
 - Quantize it by dictionary (word index)
 - Compute binary code
- We consider points to be matched only if both conditions are met:
 - Word indices are the same
 - Binary codes differ by no more than z computed with Hamming distance

- Example
- 20k words

- Example
- 200k words

83 matches

- Example
- 200k words + HE

8 matches

- Each feature point is also described by its scale (characteristic size) and orientation
- Example:

difference in orientation is 20° scaled by 1.5 times

- Each pair of matched points sets the difference in angle and scale
- For the entire image, these angles and scales should be consistent
- Each pair of matching points will vote for a certain combination of difference in orientation and scale.

ITMO

Orientation consistency

Example

Pisa tower: Let analyze the dominent orientation difference of matching descriptors

- Orientation consistency
- Example

- Orientation consistency
- Example

- Orientation consistency
- Example

- Scale consistency
- Example

Weakly Geometry Consistency Method

- Scale and orientation are almost independent from each other
- Voting with discrete scale and rotation:
 - Separate weight for each combination (rotation angle/scale):
 - In fact, a histogram
 - We take the maxima in terms of rotation angle / scale
- Only matches that match in scale and orientation terms contribute to the final matching score

Results

- Each method: weakly geometry, hamming embedding, geometry re-ranking – significantly improves accuracy
- At the same time, the combined use of WGC and HE does not make it possible to achieve a speed comparable to the baseline

Alternative Words

- The SIFT descriptor is not always sufficiently invariant
- Strong perspective distortions lead to a significant increase in distance between descriptors of the same feature point
- The same feature point can be placed into different clusters

Descriptors of the same feature point on a series of images

Alternative Words

- At the training stage, store the "alternative words", because such cells may also contain the "correct" matches
- At the search stage, vote not only for the same word, but also for alternative ones
- This will increase the index size by:
 - number of alternative words * dictionary size

Processing the Search Results

- Re-rank the search results list
- Search query expansion
 - If we solve the problem of finding objects, then the found images can be well matched with the request
 - The standard scheme (local features + robust transformation calculation) is too slow for exhaustive search
 - Instead, we can use it for post-processing ranking the found images

Re-Rank Results

- Compare the features between the "query" and the images filtered by the search
- Filter outliers with LO-RANSAC (Locally-Optimized Random Sequence Consensus):
 - At first, build a simple model
 - Then, build a more complex model basing on inliers
- Refine a good model based on the found inliers:
 - Affine model
- Reorder images:
 - For those who matched:
 - To the beginning of the list
 - Reorder by the number of inliers (the more inliers the higher is the position in the list)
 - For those who didn't match:
 - To the end of the list
 - Without reordering

Model Estimation By 1 Pair of Points

- One pair of matched points is enough to generate a hypothesis for RANSAC
- Up to 5 parameters can be estimated:
 - Shift (2)
 - Scale (1)
 - Rotation (1)
 - Proportions (ellipsoid)

 Percentage of desired images at the top of the re-ranked list after geometric matching:

 When searching images of architecture, the re-ranking shows a significant increase in an accuracy

Search Query Expansion

- Transitive closure expansion (TCE)
 - Building a query tree
 - The root node is the original query
 - Children are the best-matched images from the query results
- Additive query expansion (AQE)
 - Display feature points from the found images to the original image
 - Use the modified image to search and expand the results
- Average query expansion
 - We average the descriptors of all found images and use them for the search

Confusing Features

 In repeating semi-random textures (e.g., water) there are many feature points that are not related to the object, and they reduce the search quality

- Idea: in such cases, the images are very poorly comparable geometrically
- Have to detect such situations, teach the model of "confusing features" and remove them from the search request

Model Improvement

- Model the set of features from the search query
- Idea: If we found a well-matched image, then it is worth adding features this image to the model
- The updated model will allow finding more similar images

Incremental Spatial Re-Ranking (iSP) ITMO

Idea:

 If we have found a well-matched image, then it is worth adding features from it to the model

Method:

- We have the model M features from the search query X
- Iterate through the search results list S
- If model M and search result S[i] matched more than T=15 features, then add features from result S[i] to model M.

Incremental Spatial Re-Ranking (iSP) ITMO

 iSP allows adding new features to the model, even when are outside the image-query

THANK YOU FOR YOUR TIME!

ITSMOre than a UNIVERSITY

s.shavetov@itmo.ru