Which spheres are Lie groups?

JUNMING ZHANG

Abstract. In this article, we will prove that a Lie group is a sphere if and only if it has dimension 0,1 or 3 and construct the covering homomorphism from SU(2) to SO(3).

1. A BRIEF INTRODUCTION TO LIE GROUP AND LIE ALGEBRA

We denote the standard Euclidean space and the sphere with dimension n by \mathbb{R}^n and S^n respectively.

Definition 1.1. A Lie group is a smooth manifold G with a group structure which makes

$$G \times G \to G$$

 $(q,h) \mapsto qh^{-1}$

smooth.

Definition 1.2. For a Lie group G and an arbitrary $g \in G$, the map

$$l_g: G \to G$$
$$h \mapsto gh$$

is called the left translation by g. It is a diffeomorphism. Similarly, we could define the right translation by g, i.e. $r_g := [h \mapsto hg]$.

When $l_g = r_g$ for all $g \in G$, G is called an abelian Lie group.

Example 1.1. \mathbb{R}^n is an abelian Lie group. For $x, y \in \mathbb{R}^n$, $l_x y = r_x y = x + y$.

Example 1.2. S^1 is an abelian Lie group. When we regard S^1 as $\mathbb{R}/2\pi\mathbb{Z}$, $l_{x+2\pi\mathbb{Z}}(y+2\pi\mathbb{Z})=x+y+2\pi\mathbb{Z}$.

Example 1.3. S^0 is a disconnected Lie group.

For two smooth manifolds M, N, a point $p \in M$ and a smooth map $f: M \to N$, let $T_pM, TM, f_*: TM \to TN$ denote the tangent space of M at p, the tangent bundle of M, the differential of f respectively.

Definition 1.3. For a Lie group G, if a section $s: G \to TG$, i.e. s is a continuous map and $s(g) \in T_qG$ for any $g \in G$, satisfies

$$s \circ l_q = (l_q)_* \circ s$$
,

then s is called a left invariant vector field.

Remark 1.1. s is automatically smooth. Its proof could be found in [1].

For a Lie group G with the identity e, denote the collection of its left invariant vector fields by \mathfrak{g} . \mathfrak{g} is isomorphism to T_eG as linear space. For instance, $[X \mapsto X(e)]$ has the linear inverse $[v \mapsto [g \mapsto (l_g)_* v]]$.

Similarly we could define left invariant form, right invariant vector field and right invariant form. A vector field or a form is called bi-invariant if it is both left and right invariant. **Definition 1.4.** For a field F, a Lie algebra over F is a linear space V equipped with a bilinear map $[-,-]:V\times V\to V$ which satisfies

- $(a)(anti-commutativity)[x,x] = 0, \forall x \in V;$
- (b)(Jacobi's identity)[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, $\forall x, y, z \in V$. [-.-] is called the Lie bracket.

A Lie algebra is called abelian if $[-,-] \equiv 0$. Now let [-,-] be the Lie bracket defined on the smooth vector fields of a smooth manifold, by the following proposition we could claim \mathfrak{g} is a Lie algebra over \mathbb{R} which has the same dimension with G.

Proposition 1.1. For two arbitrary $X, Y \in \mathfrak{g}$, $[X, Y] \in \mathfrak{g}$.

Thus \mathfrak{g} is called the Lie algebra of G.

Definition 1.5. An abstract group homomorphism between two Lie groups G, H is called a (Lie group) homomorphism when it is smooth. A Lie group homomorphism is called a (Lie group) isomorphism if it is a diffeomorphism.

Example 1.4. The natural quotient map from \mathbb{R} to $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ is a homomorphism.

Definition 1.6. For two Lie algebras \mathfrak{g} , \mathfrak{h} , a linear map $\varphi: \mathfrak{g} \to \mathfrak{h}$ is called a (Lie algebra) homomorphism if it preserves the Lie bracket, i.e. $\varphi([x,y]) = [\varphi(x), \varphi(y)]$. A Lie algebra homomorphism is called a (Lie algebra) isomorphism if it is invertible.

The Lie group homomorphism will induce a Lie algebra homomorphism.

Theorem 1.1. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} respectively, and let $\varphi: G \to H$ be a homomorphism. Then $\varphi_*: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Conversely, Lie algebra homomorphism sometimes raise to a Lie group homomorphism.

Theorem 1.2. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} respectively and with G simply connected. Let $\psi : \mathfrak{g} \to \mathfrak{h}$ be a homomorphism. Then there exists a unique homomorphism $\varphi : G \to H$ such that $\varphi_* = \psi$.

Another object we need is the exponential map.

Definition 1.7. Let G be a Lie group with Lie algebra \mathfrak{g} , for any $v \in T_eG$, there exists a unique Lie group homomorphism $\gamma_v : \mathbb{R} \to G$ such that $\gamma'_v(0) = v$, γ_v is called the one parameter subgoup of G associated with v and the map

$$\exp: \mathfrak{g} \to G$$
$$X \mapsto \gamma_{X(e)}(1)$$

is called the exponential map.

In the end, we introduce the covering group, let G be a connected Lie group.

Theorem 1.3. If \tilde{G} is a connected manifold and $\varphi : \tilde{G} \to G$ is a covering, then \tilde{G} has a unique structure of a Lie group such that φ is a homomorphism.

Theorem 1.4. A Lie group homomorphism is a covering if and only if its differential is an isomorphism.

The proofs of theorems above could be found in [1] and [5].

2. BI-INVARIANT METRIC AND BI-INVARIANT FORM

We first explain what is a bi-invariant metric.

Definition 2.1. A Riemannian metric on a Lie group G is left invariant if

 $\langle X, Y \rangle_h = \langle (l_g)_* X, (l_g)_* Y \rangle_{gh}, \forall g, h \in G, \forall X, Y \in T_h G.$

Similarly we could define right invariant metric. If a Riemannian metric is both left invariant and right invariant, it is said to be bi-invariant.

An important question is which Lie group could admit a bi-invariant metric. In fact, we have the following theorem.

Theorem 2.1. A compact connected Lie group G admits a bi-invariant metric.

Proof. Let $n := \dim G$. By the left translation, we could define a left invariant positive n-form ω and a left invariant metric $\langle -, - \rangle$ on G. Then

$$(X,Y)_g = \int_G \langle (r_h)_*(X), (r_h)_*(Y) \rangle_{gh} \omega(h)$$

defines a bi-invariant metric (-,-).

Its converse is also true in some sense, John Milnor proved the following theorem in [2].

Theorem 2.2. The connected Lie group G admits a bi-invariant metric if and only if it is isomorphic to the cartesian product of a compact group and an additive vector group.

The bi-invariant metric restricted on \mathfrak{g} has the following relation.

Theorem 2.3. For a bi-invariant metric $\langle -, - \rangle$ and $X, Y, Z \in \mathfrak{g}$,

$$\langle [X,Y],Z\rangle = \langle X,[Y,Z]\rangle.$$

Proof. Let $Ad_g = (l_g r_{g^{-1}})_*$ be the adjoint action on \mathfrak{g} and Y_t be the flow induced by Y, i.e. $Y_t(g) = \gamma_g(t)$, where γ_g is the integral curve of Y in a neighborhood of g and $\gamma_g(0) = g$. Note that $l_g \circ Y_t$ and $Y_t \circ l_g$ are both the solution of the first order ordinary differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f_t(p) = Y(f_t)(p), f_0 = l_g,$$

so $l_g \circ Y_t = Y_t \circ l_g$. Thus $Y_t(g) = gY_t(e) = r_{Y_t(e)}(g)$, which means that $(Y_t)_* = (r_{Y_t(e)})_*$. So through $Ad_g(X) = (r_{g^{-1}})_*(X \circ l_g)$ we get

$$[X,Y] = \lim_{t \to 0} \frac{Ad_{(Y_t(e))^{-1}}(X) - X}{t}.$$

Then by differentiating $\langle X,Z\rangle=\langle (r_{Y_t(e)})_*X,(r_{Y_t(e)})_*Y\rangle$ and set t=0 we prove

$$0 = \langle [X, Y], Z \rangle + \langle X, [Z, Y] \rangle.$$

Thus the result follows.

Corollary 2.1. Let $\langle -, - \rangle$ be a bi-invariant metric on G, then

$$t(X, Y, Z) := \langle [X, Y], Z \rangle$$

is a bi-invariant 3-form on G.

Proof. Let $\{v_i\}$ be a basis of \mathfrak{g} , then for a smooth vector field X on G, there exists a collection of smooth functions $\{X^i\}$ such that $X = X^i v_i$, by $\langle -, - \rangle$ is a bi-invariant 2-form and the theorem above we conclude that the corollary follows.

Now we would like to prove that bi-invariant form defines a cohomology class, i.e. bi-invariant form is closed. We first prove a lemma.

Lemma 2.1. Let ψ be the map $g \mapsto g^{-1}$ on a Lie group G. A form ω is left invariant if and only if $\psi^*\omega$ is right invariant. And the value of a k-form ω at the identity e satisfies that $\psi^*\omega(e) = (-1)^k\omega(e)$

Proof. By $\psi \circ r_g = l_{g^{-1}} \circ \psi$ we could get

$$(r_g)^* \psi^* \omega = \psi^* (l_{g^{-1}})^* \omega,$$

thus the first result follows. For the second one, it suffices to prove it when k=1, i.e. for a $X \in T_eG$, $\psi_*X=-X$. X is just the tangent vector of the curve $[t \mapsto \exp tX]$, so ψ_*X is the tangent vector of the curve $[t \mapsto \exp -tX]$, which is just -X.

Theorem 2.4. A bi-invariant form is closed.

Proof. Let ψ be the map $[g \mapsto g^{-1}]$ and ω is a bi-invariant k-form, we have shown that $\psi^*\omega(e) = (-1)^k\omega(e)$. Because ω and $\psi^*\omega$ are both left invariant, $\psi^*\omega = (-1)^k\omega$. Similarly, $\psi^*\mathrm{d}\omega = (-1)^{k+1}\mathrm{d}\omega$ since $\mathrm{d}\omega$ is a bi-invariant k+1-form. But

$$\psi^* d\omega = d\psi^* \omega = (-1)^k d\omega,$$

that implies $d\omega = 0$.

As a corollary, we could claim that abelian Lie group has abelian Lie algebra.

Corollary 2.2. Let G be an abelian Lie group with abelian Lie algebra \mathfrak{g} , then \mathfrak{g} is also abelian.

Proof. For any $X, Y \in \mathfrak{g}$ and a nonzero left invariant 1-form ω ,

$$d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y]) = -\omega([X,Y]).$$

Since G is abelian, ω is bi-invariant and $d\omega = 0$, which means [X, Y] = 0. \square Form this we can conclude the following corollary.

Corollary 2.3. When $n \ge 1$, S^n could be an abelian Lie group if and only if n = 1.

Proof. If S^n is an abelian Lie group, it will have abelian Lie algebra, then by Theorem 1.2 there is a Lie group homomorphism from \mathbb{R}^n to S^n , and by Theorem 1.4 we conclude that \mathbb{R}^n is the universal cover of S^n . That is true if and only if n = 1. On the other hand, we have shown that S^1 is an abelian Lie group.

3. The third de Rham cohomology group

For the nonabelian case, we would prove that a nonabelian connected compact Lie group's third de Rham cohomology group is nontrivial. We first introduce the result that the de Rham cohomology group of a compact Lie group, (or much stronger, a homogeneous space) could be reduced to the invariant form version without proof.

Proposition 3.1. Let G be a connected compact Lie group. The k^{th} de Rham cohomology group $H^k(G)$ is naturally isomorphic to

$$\frac{closed \ k-forms \ on \ G}{\{d\eta: \eta \ is \ an \ invariant \ (k-1)-form \ on \ G\}}$$

Remark 3.1. The connected compact Lie group could also be replaced to a G/H, where G is a connected compact Lie group and H is a closed subgroup. Its proof could be found in [4].

Now we show that t defined in Corollary 2.1 is a nontrivial element of $H^3(G)$.

Theorem 3.1. Let G be a nonabelian connected compact Lie group. Then $H^3(G)$ is nontrivial.

Proof. Let $\langle -, - \rangle$ be a bi-invariant metric on G and t be the invariant 3-form defined in Corollary 2.1. Then for some X,Y that $[X,Y] \neq 0$, $t(X,Y,[X,Y]) = \langle [X,Y],[X,Y] \rangle \neq 0$, so t is nonzero. We have known that t is a closed form. If it equals to $d\eta$ for some bi-invariant 2-form η , then $t = d\eta = 0$, thus t defines a nontrivial cohomology class in $H^3(G)$.

From this we conclude that if S^n is a Lie group, then $n \in \{0, 1, 3\}$, since $H^3(S^n)$ is nontrivial if and only if n = 3. However, is there really a Lie group structure on S^3 ?

4.
$$SO(3)$$
 AND $SU(2)$

The special orthogonal group SO(3) is a matrix Lie group, we claim that it is diffeomorphic to the real projective space $\mathbb{R}P^3$.

Theorem 4.1. SO(3) is diffeomorphic to $\mathbb{R}P^3$.

Proof. Let D^3 be the closed ball in \mathbb{R}^3 centered at the origin and with radius π . Then we could define a map $D^3 \to SO(3)$ by for a vector v in D^3 , let the associated rotation in SO(3) have the axis collinear with v and have the angle ||v||. Obviously if two vectors are mapped to the same rotation, then they are antipodal points on the boundary of D^3 . Thus there is a diffeomorphism from $\mathbb{R}P^3$ to SO(3).

By Theorem 1.3, through $S^3 \to \mathbb{R}P^3$ is a covering, we immediately prove the below corollary.

Corollary 4.1. There exists a Lie group structure on S^3 .

For instance, we would like to construct the matrix Lie group structure on S^3 . In fact,

Theorem 4.2. S^3 is diffeomorphic to the special unitary group SU(2).

To prove this theorem, we would like to introduce one other group isomorphic to SU(2), which is correspondent to the quaternions group \mathbb{H} .

Definition 4.1. The group

$$S\mathbb{H} := \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H} : a, b, c, d \in \mathbb{R}, a^2 + b^2 + c^2 + d^2 = 1 \}$$

is called the unit quaternions group, where the group operation is quaternion multiplication (determined by $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$) and the group inverse is quaternion conjugation.

We could identify S^3 with $S\mathbb{H}$ by $[(a, b, c, d) \mapsto a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}]$, obviously $S^3 = S\mathbb{H}$ is a Lie subgroup of \mathbb{H} . Now we are ready to prove Theorem 4.2. **Proof.** By identify the imaginary unit $\mathbf{i} \in \mathbb{C}$ and $\mathbf{i} \in \mathbb{H}$, we could construct a bijection

$$\mathbb{C}^2 \to \mathbb{H}$$

$$\binom{z_1}{z_2} \mapsto z_1 + \mathbf{j}z_2$$

which induce a map φ from quaternion multiplication to linear map, or precisely,

$$\varphi: \mathbb{H} \to \mathbb{C}^{2\times 2}$$

$$w_1 + \mathbf{j}w_2 \mapsto \begin{pmatrix} w_1 & -\bar{w}_2 \\ w_2 & \bar{w}_1 \end{pmatrix}$$

If $\gamma \in S\mathbb{H}$, then it is readily to check $\varphi(\gamma) \in SU(2)$. Conversely, if $A \in SU(2)$, then A must have the form

$$\begin{pmatrix} w_1 & -\bar{w_2} \\ w_2 & \bar{w_1} \end{pmatrix}$$

then $\varphi^{-1}(A)$ must be $w_1 + \mathbf{j}w_2$, that shows φ is a bijection between $S\mathbb{H}$ and SU(2).

From the above discussion it is clear that φ and φ^{-1} are smooth maps since their components are linear functions of the coordinates. Since SU(2) and $S\mathbb{H}$ are submanifolds of $\mathbb{C}^{2\times 2}$ and \mathbb{H} respectively, the restrictions of φ and φ^{-1} to these submanifolds are also smooth. Therefore, φ is a diffeomorphism, and so $S^3 = S\mathbb{H}$ is diffeomorphic to SU(2). Moreover, we could check φ is an abstract group homomorphism between SU(2) and $S\mathbb{H}$, hence it is a Lie group isomorphism.

The last object we would like to construct is the covering homomorphism from SU(2) to SO(3). We now regard \mathbb{R}^3 as the linear space spanned by $\mathbf{i}, \mathbf{j}, \mathbf{k} \in \mathbb{H}$, and consider the map

$$\psi: S\mathbb{H} \to [\mathbb{R}^3 \to \mathbb{R}^3]$$

 $q \mapsto [v \mapsto qvq^{-1}].$

It is easy to check that $[v \mapsto qvq^{-1}] \in SO(3)$, and obviously, $\psi(q) = \psi(q') \iff q = \pm q'$. Moreover, ψ is a homomorphism. At last, we could also write down the matrix version of ψ with respect to the fixed basis of \mathbb{R}^3 . Explicitly,

Theorem 4.3.

$$\psi: SU(2) \to SO(3)$$

which maps

$$\begin{pmatrix} a+b\mathbf{i} & -c+d\mathbf{i} \\ c+d\mathbf{i} & a-b\mathbf{i} \end{pmatrix} \in SU(2)$$

to
$$\begin{pmatrix}
a^2 + b^2 - c^2 - d^2 & 2(bc - ad) & 2(ac + bd) \\
2(bc + ad) & a^2 + c^2 - b^2 - d^2 & 2(cd - ab) \\
2(bd - ac) & 2(ab + cd) & a^2 + d^2 - b^2 - c^2
\end{pmatrix} \in SO(3)$$

References

- [1] Frank, W.W., Foundations of Differentiable manifolds and Lie Groups, Springer-Verlag Berlin Heidelberg GmbH, 1983.
- [2] John, M., Curvatures of Left Invariant Metrics on Lie Groups, ADVANCES IN MATHEMATICS 21, 1976.
- [3] Manfredo, P.C., Riemannian Geometry, Birkhäuser, 1992.
- [4] Michael, S., A Comprehensive Introduction to Differential Geometry, Publish or Perish,
- [5] Wolfgang, Z., Lie Groups. Representation Theory and Symmetric Spaces, University of Pennsylvania, 2010.
- [6] Thomas, J.M., The Identity of SU(2) and S³, http://www.integralscience.org/, 1992.