

Taiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA)

蕭輔沛 (Fu-Pei Hsiao)

國家地震工程研究中心研究員

國立成功大學土木工程學系合聘副教授

Outline

- Tools
- Flowchart
- A Single Input File
- EXE Programs
- Example

Tools

ETABS commercial software :

To perform pushover analysis

--- Need version 16.

MATLAB compiled .EXE programs :

COLPH.exe: get plastic hinges for columns

BWPH.exe: get plastic hinges for brick walls

PGA.exe: get **PGA** for performance points

• Attention! Install MCRInstaller.exe first! (http://w3.ncree.org/rcbpa/191MB/MCRInstaller.exe)

Assistant programs from NCREE

Before running following programs, please install MCRInstaller.exe first.

Calculate the nonlinear hinges for beam and column	COLPH	COLPH.EXE	Unit: kgf, cm
Calculate the nonlinear hinges for brick wall	BWPH	BWPH.EXE	Unit: kgf, cm
Calculate the nonlinear hinges for RC wall	SWPH	SWPH.EXE	Unit: kgf, cm
Calculate the PGA for performance point	PGA	PGA.EXE	Unit: kgf, cm

Flowchart for pushover analysis with TEASPA

Direction for pushover

 In practical, 4 directions included ±X and ± Y are needed.

 For instruction, only +X direction is introduced.

Flowchart (1/9)

Basic information for target building

- The school was located in East area of Tainan city, and the site class is normal site.
- The school building was a 3-story RC school building. Each story is 3.6 m high.
- The total length along the corridor (X-direction) was 53.5m and the transverse width (Y-direction) was 10.2m.
- Each floor consisted of 4 classrooms and a unilateral hallway without exterior columns.
 Each classroom consisted of 3 spans, which lay along the longitudinal direction.

Front view

Plan view

Dimension and Detail: Column (1/3)

Name	C1L	C1S	C2	C 3
Section				
Longitudinal Steel	4-D22 8-D19	4-D22 8-D19	6-D16	4-D19 4-D16
Transverse Steel	D9@25	D9@25	D9@25	D9@25
Dimension	50×30	50×30	30×24	36×36

Dimension and Detail: Beam (2/3)

Name	B1		В	2	В3	
	End	Mid.	End	Mid.	End	Mid.
Section			0000		0 0	
Longitudinal Steel	4-D192-D16		○ 8-D22		○ 10-D22	
Transverse Steel	D9@25		D9@25		D9@25	
Dimension	25×60		30×60		30×90	

Dimension and Detail: Beam (3/3)

Name	B4		В	5	В6	
	End	Mid.	End	Mid.	End	Mid.
Section	0000	0000				
Longitudinal Steel	○ 11-D22		○ 4-D13		○ 6-D16	
Transverse Steel	D9@25		D9@25		D9@25	
Dimension	30×55		15×55		24×45	

Material List

Compression strength of concrete	$f_c \not = 160 \text{kgf/cm}^2$
Yield strength of longitudinal steel	$f_y = 2800 \text{kgf/cm}^2$
Yield strength of transverse steel	$f_y = 2800 \text{kgf/cm}^2$
Compression strength of brick	$f_{bc} = 150 \text{kgf/cm}^2$
Split strength of brick	$f_{bt} = 33 \text{kgf/cm}^2$
Compression strength of mortar	$f_{mc} = 210 \text{kgf/cm}^2$
Split strength of mortar	$f_{tm} = 21 \text{kgf/cm}^2$
Split strength of interface of brick and mortar	$f_{mbt} = 2.04 \text{kgf/cm}^2$

Brick wall and window sill

Brick wall and window sill

Brick wall and window sill

Dir.	Name	Width (cm)	Height (cm)	Thick.	Confinement	Line	Brace
V	BW1	218	90	24	Window sill	Y-2	BW1 \ BW2
X	BW2	303	90 24	24	Window sill	Y-6	BW1

Note for modeling (1/6)

Define dead load and live load

Applied Load = DL+ 0.5LL, $0.5LL= 150 \text{ kgf/m}^2$

- 1. Use [Select/by Area Object Type] to select all floor
- 2. Use [Assign/Shell Loads/Uniform] to define live load

Note for modeling (2/6)

Stiffness reduction factor for column and beam
Stiffness reduction factor : Column=0.7 E_c I_g, Beam=0.7 E_c I_g

- 1. Use [Select/by Line Object Type] to select Column or Beam.
- 2. Then use [Assign/Frame/Property Modifiers] to set I2 and I3 = 0.7.

Note for modeling (3/6)

Rigid zone factor

Set rigid zone factor=1, when default value is 0.

- 1. Use [Select/by line Object Type], select all Column and Beam
- 2. Use [Assign/Frame/End Length Offsets] to set [Rigid-zone factor] = 1

Note for modeling (4/6)

Rigid diaphragm

- 1. Use [Select/by Area Object Type] to select floors.
- 2. Use [Assign/Shell/Diaphram] to set D1

Note for modeling (5/6)

- Weight of brick wall and partition wall
- 1. Because the density of equilibrium truss simulating brick wall was set as zero, the weight of brick wall and partition wall could be considered from slab.

Note for modeling (6/6)

2. The density of slab could be consider as original weight plus weight of brick wall and partition wall over the slab area.

Use [Define/Material Property] to modify SLAB3, SLAB2 and SLAB1.

In Hou-Jia.e2k

- Stiffness reduction factor for beam and column
- Rigid zone factor
- Rigid diaphragm
- Weight of brick wall and partition wall

Analytical model in ETABS

Flowchart (2/9)

Output axial load for column

- 1. Use [Analyze/Run Analysis], perform static analysis
- 2. Use [Display/Show Tables], check [Frame Results]

Output axial load for column

3. Choose [Column Forces] → Select [Load Case/Combo: Dead]. Copy all data to EXCEL by selecting all data [right click -> export to Excel], and only keep [Story], [Column], [Station], [P] for a single input file.

Output axial load for column

Flowchart (3/9)

Create a single input file (hjx1.txt)

- Building Properties
- Site Spectrum Parameter
- Brick Wall Properties
- Column Properties
- Beam Properties
- Column Data
- Beam Data
- Axial Load
- Column Section Properties

Building Properties (3 Lines)

 \$ Weight
 Height

 488420
 360

 488420
 720

1080

422588

Weight: weight of lump mass

Height: height of lump mass

Site Spectrum Parameter (1 Line)

The site is in East area of Tainan city, and the site class is normal site.

S_DS: the site-adjusted spectral response accelerations at short periods

S_{D1}: the site-adjusted spectral response accelerations at 1.0 second

Brick Wall Properties (2 Lines)

\$ Name	width	height	thick	f_mc	f_bc	Р	Bond	Confinement
BW1	218	90	24	210	150	0	3	2

Name: name of brick wall

Width: width of brick wall

Height: height of brick wall

Thick: thickness of brick wall

f_mc : compression strength

of mortar

f_bc : compression strength

of brick

P : axial load applied in

brick wall

Bond:

1 is English bond

2 is French bond

3 is Type III bond

4 is Stretching bond

Confinement:

4 is 4-sides confined

3 is 3-sided confined

2 is window sill

Material List

Compression strength of concrete	$f_c \not = 160 \text{kgf/cm}^2$
Yield strength of longitudinal steel	$f_y = 2800 \text{kgf/cm}^2$
Yield strength of transverse steel	$f_y = 2800 \text{kgf/cm}^2$
Compression strength of brick	$f_{bc} = 150 \text{kgf/cm}^2$
Split strength of brick	$f_{bt} = 33 \text{kgf/cm}^2$
Compression strength of mortar	$f_{mc} = 210 \text{kgf/cm}^2$
Split strength of mortar	$f_{tm} = 21 \text{kgf/cm}^2$
Split strength of interface of brick and mortar	$f_{mbt} = 2.04 \text{kgf/cm}^2$

Column Properties (4 Lines)

\$ Name	f_cp	f_yl	f_yt	cover	hoop	spacing	num_hoop	TR
C1L	160	2800	2800	4	3	25	2	0

Name: name of column

f_cp: f'c

f_yl: f_{yl}

f_yt: fyt

Num hoop=3

COVET: thickness of coverage

hoop: size number of stirrup

Spacing: spacing of stirrup

num_hoop: number of stirrup

for shear resistance

TR: confinement quality

Beam Properties (12 Lines)

Name: Name of Beam

L: effective length

f_cp:f'c

 $f_yl: f_{yl}$

TR: confinement quality

f_yt: f_{yt}

COVER: thickness of coverage

hoop: size number of stirrup

spacing: spacing of stirrup

num_hoop: number of stirrup

for shear resistance

Long Column

\$ Name	story	section	shape	Height	L	fromBtm
C1	2FL	C3	C3	360	315	0

Name : name of column

Story : name of story

Section : name of column

section

Shape : name of column

section

Height: height of floor

L: effective length of column

fromBtm: height of window sill

Long Column

Short Column

\$ Name	story	section	shape	Height	L	fromBtm
C6	2FL	C1S	C1S	360	180	90

Name : name of column

Story : name of story

Section : name of column

section

Shape : name of column

section

Height: height of floor

L: effective length of column

fromBtm: height of window sill

Short column

Beam Data (116 Lines)

```
$ Name story sectionB1 2FL B6S_450
```

Name: name of beam

story: name of story

section: name of beam section (Name in BEAM DATA)

Beam Data (116 Lines)

Axial Load (47x3x3=423 Lines)

\$ Story	Column	Loc	P
RFL	C1	0	-3932.74

Story: name of story

Column: name of column

Loc: position of axial load at column

P: axial load

	Story	Column	Unique Name	Load Case/Combo	Station cm	P kgf		
•	RFL	C1	291	DEAD	0	-3932.74		
	RFL	C1	291	DEAD	157.5	-3442.24		
	RFL	C1	291	DEAD	315	-2951.74		
	RFL	C2	292	DEAD	0	-8162.75		
	RFL	C2	292	DEAD	152.5	-7687.82		
	RFL	C2	292	DEAD	305	-7212.89		
	RFL	C3	293	DEAD	0	-5971.66		

Column Section Properties (4 groups)

C₁L

30 50 6.1 2800 7 6 6 7 12 2800 6 6 18 2800 6 6 23.9 2800 7 6 6 7

4(Cover)+1(#3)+2.2/2(#7)=6.1 (30-6.1×2)/3 \equiv 5.9 \Rightarrow 6.1+5.9=12 12+5.9 \equiv 18 Name of column section

depth and width of column

distance from compression side, f_y

Compression side

30-6.1=23.9

Beam Section Properties (12x2=24 groups) (1/3)

B1D_333

15	83.25	60	60		24		
2.5	2800	3	3	3	3		
6	2800	6	6	6	6		
12.5	2800	3	3	3	3		
54	2800	5			5		

Compression side

Beam Section Properties (12x2=24 groups) (1/3)

T Shape beam 雙翼
$$T$$
型梁: $b_E = \min(L/4, b_w + 8t_2 + 8t_3, b_w + \frac{S_2}{2} + \frac{S_3}{2})$

L Shape beam 單翼
$$T$$
型梁: $b_E = \min(b_w + \frac{L}{12}, b_w + 6t_1, b_w + \frac{S_1}{2})$

在此為雙翼T型梁, $t_2 = t_3 = 15cm$ $b_E = 333/4 = 83.25$

Beam Section Properties (12x2=24 groups) (2/3)

Contents in hjx1.txt

- **\$ BUILDING PROPERTIES**
- **\$ SITE SPECTRUM PARAMETER**
- **\$ BRICK WALL PROPERTIES**
- **\$ COLUMN PROPERTIES**
- **\$ BEAM PROPERTIES**
- **\$ COLUMN DATA**
- **\$ BEAM DATA**
- **\$ AXIAL LOAD**
- **\$ COLUMN SECTION PROPERTIES**

Flowchart (4/9)

Run COLPH.exe

- Run COLPH.exe
- Output for the X direction or Y direction of the nonlinear hinges of columns?(X:Xdirection; Y:Y-direction) ? (X/Y): X
- Do you want to include the nonlinear hinges of beams ? (Y/N): Y
- Please enter the name of the single input file (*.txt): hjx1
- Please enter the name of the ETABS model file (*.e2k): Hou-Jia
- Please enter the name of the ouput file after computing (*.e2k): hjx1-colph

Run COLPH.exe

Check hinge properties for column (C5)

Flowchart (5/9)

Run BWPH.exe

- Run BWPH.exe
- Please enter the name of the single input file (*.txt): hjx1
- Please enter the name of the ETABS model file (*.e2k): hjx1-colph
- Please enter the name of the ouput file after computing (*.e2k): hjx1-bwph
- Draw equivalent truss with plastic hinges for brick wall in ETABS

Run BWPH.exe

```
C:\Example\BWPH.exe
       建議請至鋼筋混凝土結構耐震詳評討論區討論
            http://pushover.ncree.org
請輸入輔助程式共用輸入檔檔名(*.t×t)
[Please enter the name of the single input file (*.txt)]
: hix1
請輸入 ETABS 結構模型檔檔名(*.e2k)
[Please enter the name of the ETABS model file (*.e2k)]
: hix1 colph
請輸入完成磚牆等値斜撐非線性鉸計算後之 ETABS 結構模型檔檔名(*.e2k)
[Please enter the name of the ouput file after computing (*.e2k)]
: hjx1_bwph
> 輔助程式共用輸入檔讀取中...
Reading the single input file...
 輔助程式共用輸入檔讀取完畢...
 Finish reading the single input file...
 BWPH程式計算中...
Computing with BWPH program...
 BWPH程式計算完畢!!!
 Done!
```

Check hinge properties for brick wall (BW2)

Flowchart (6/9)

Import .e2k file

hjx1-bw.e2k

Flowchart (7/9)

Output data of base shear and roof displacement from ETABS

Flowchart (8/9)

Run PGA.exe

- Run PGA.exe
- Please enter cofficient k (For old school building, k = 0.33): 0.33
- Please enter the name of the single input file (*.txt): hjx1
- Please enter the P-D curve from [1] Userdefined, or [2] ETABS, or [3] MIDAS: 2
- Please enter the filename of P-D curve form ETABS (*.txt): hjx1_pd
- Do you want to include the Sa-Sd curve computed by ETABS ? (Y/N): N
- Please enter the name of the ouput file after computing (*.e2k): hjx1_pga

PGA.exe

```
C:\Example\pga.exe
請輸入阻尼修正係數 k(既有校舍建築 k 可設爲 0.33)
[Please enter cofficient k (For old school building, k = 0.33)]
: 0.33
請輸入輔助程式共用輸入檔檔名(*.t×t)
[Please enter the name of the single input file (*.txt)]
: hjx1
請輸入[1]自行定義,或[2]ETABS定義,或[3]MIDAS定義之 P-D 曲線檔
[Please enter the P-D curve from [1] User-defined, or [2] ETABS, or [3] MIDAS]
請輸入 ETABS 定義之 P-D 曲線檔檔名(*.t×t)
[Please enter the filename of P-D curve form ETABS (*.txt)]
: hjx1 pd
是否輸入 ETABS 所計算之 Sa-Sd 曲線檔 ? (Y/N)
[Do you want to include the Sa-Sd curve computed by ETABS ? (Y/N)]
: N
請輸入完成性能目標地表加速度計算之文字檔檔名(*.t×t)
[Please enter the name of the ouput file after computing (*.e2k)]
: hjx1 pga
>> 輔助程式共用輸入檔讀取中...
> Reading the single input file...
◇ 輔助程式共用輸入檔讀取完畢...
>> Finish reading the single input file...
> PGA程式計算中...
>> Computing with PGA program...
> PGA程式計算完畢!!!
 Done!
```

PGA.exe

Flowchart (9/9)

Performance point criteria

The design spectral response acceleration in the design level with a return period of 475 years,

	A	A_{T}		
$I\!=\!1.25$ (for normal purpose school building)	$V_{ m max}$	$D_R^T = 2.0\%$	$0.4S_{DS}$	
$I\!=\!1.5$ (for emergency purpose school building)	0.80V _{max}	$D_R^T = 1.0\%$	$0.4S_{DS}$	

hjx1_pga.txt

\$	PGA	DATA									
\$S_a	S_d	A_e	BETA_0	BETA_eq	T_e	T_0	B_s	B_1	Force	Disp.	A_p
0	0.015838	0	0	0.05	0	0	0	0	0	0.0208	0
0.185812	1.67038	0.153716	0	0.05	0.601473	0.742857	1	1	217769	2.1937	0.074325
0.284913	2.77112	0.41279	0.029069	0.059593	0.625628	0.753737	1.06331	1.04796	333915	3.6393	0.121181
0.342799	4.11674	0.835121	0.116851	0.088561	0.695188	0.781281	1.2545	1.1928	401756	5.4065	0.172017
0.362878	5.03846	1.16034	0.171429	0.106572	0.747505	0.790554	1.34774	1.26643	425288	6.617	0.195626
0.366302	5.35781	1.27677	0.191698	0.11326	0.767219	0.790707	1.3658	1.28315	429301	7.0364	0.200118
0.36642	5.377	1.2838	0.19302	0.113697	0.768468	0.790717	1.36698	1.28424	429439	7.0616	0.200355
0.369568	6.40472	1.662	0.257397	0.134941	0.835119	0.791176	1.42434	1.33735	433129	8.4113	0.222251
0.369621	6.45909	1.68209	0.260461	0.135952	0.838595	0.791197	1.42707	1.33988	433191	8.4827	0.22363

Thank You for Your Attention!

