

X36PKO Bezpečnost v počítačových sítích

Osnova

- základní pojmy
- typy šifer
- autentizace
- integrita
- distribuce klíčů
- firewally
- typy útoků
- zabezpečení aplikací

Základní pojmy

- síťová bezpečnost
 - utajení přenášených dat
 - šifrování a dešifrování
 - autentizace
 - ověření totožnosti odesílatele a příjemce
 - integrita a nepopiratelnost
 - dostupnost a řízení přístupu
 - řízení přístupu ke zdrojům
 - zamezení zneužití zdrojů
 - znesnadnění DoS útoků
 - detekce útoků
 - reakce na útoky
 - Intruder Detection System

Komunikace

Principy kryptografie

- počátky v období Julia Caesara
- moderní techniky cca 30 let
- šifrovací algoritmus umožňuje
 - odesílateli zašifrovat otevřený text na text šifrovaný
 - příjemci dešifrovat šifrovaný text na text otevřený
- klíč K_A K_B
 - sdílené tajemství využívané šifrovacím algoritmem
 - stejné klíče
 - symetrické šifrování
 - různé klíče
 - asymetrické šifrování, šifrování s veřejným klíčem
- m ... otevřený text
- c=K_A(m) ... šifrovaný text
- K_B(K_A(m))=m ... otevřený (dešifrovaný) text

Principy kryptografie II

Symetrické šifry

- substituce, transpozice
- Caesarova šifra
 - substituce
 - abcdefghijklmnop...
 - defghijklmnopqrs...
 - klíč K=3 ahoj dkrm
 - 25 klíčů
- monoalfabetické šifry
 - náhrada jednoho písmena abecedy jiným písmenem
 - 26! klíčů (cca 10²⁶)
 - statistický útok
- polyalfabetické šifry
 - náhrada jednoho písmena abecedy různými písmeny
 - více monoalfabetických šifer určených pozicí
 - abcdefghijklmnop...
 - defghijklmnopqrs...
 - rstuvwxyzabcdefg...
 - klíč $K_1=3$ $K_2=16$ vzor: C_1, C_2, C_2, C_1 ahoj dyfm

Symetrické šifry II

transpozice

AHOJALICEZDRAVITEBOB

OAAHJCZLIEAIDRVBTEBO

Data Encryption Standard

- DES, publikován 1977
- 56b symetrický klíč (+8b parita)
- původní návrh 112b klíč, IBM Lucifer
- několikrát obnovený standard
- v současnosti slabá šifra
 - 1997 ... 4 měsíce
 - 2/1998 ... 41 dní
 - 7/1998 ... 56 hodin
 - 1/1999 ... 22h 15m
 - prodloužení klíče
 - Triple DES
 - 2001 přijat standard AES (Advanced Encryption Standard)
 - 128b bloky; 128, 192, 256b klíče

DES

Asymetrické šifry

- řešení problému předání sdíleného klíče
- množství klíčů při komunikaci různých subjektů
- privátní klíč K_B
 - k dispozici pouze Bobovi
- veřejný klíč K⁺_B
 - veřejně k dispozici
 - je složité je vzájemně odvodit
- $c_1 = K_B^+(m)$, nebo $c_2 = K_B^-(m)$
- $K_B^-(K_B^+(m))=K_B^+(K_B^-(m))=m$

Asymetrické šifry

RSA

- Ron Rivest, Adi Shamir, Leonard Adleman
- výběr (vytváření) klíčů
 - dvě prvočísla p,q (cca 1024b, 768b)
 - n=pq; z=(p-1)(q-1)
 - e (e<n, nesoudělné se z)
 - $d (e^*d \mod z = 1)$
 - $-K_{B}^{+}=(e,n); K_{B}^{-}=(d,n)$
- algoritmus pro šifrování a dešifrování
 - šifrování c=m^e mod n
 - dešifrování m=c^d mod n

RSA - příklad

- p=11; q=13
- n=143; z=120
- e=17 (<143, nesoudělné s 120)
- d=113 ((17*101-1)/120=16)
- $K_B^+ = (17,143)$
- $K_B^- = (113,143)$

а	97	15
h	104	91
0	111	89
j	106	6

šifrování: c=me mod n

97	5958260438588051333281183456765537	15
104	19479004955562800041143429584912384	91
111	58950927085808534612621863737327471	89
106	26927727857668114717879465805479936	6

dešifrování: m=cd mod n

15	7912473587054162145177528994231061743778010900350190448846387999370221107500824737250596867775553899804208413115702569484710693359375	97
91	235330020306433888581424803782979895833988112645915012928091461931015209041921281141423188605893790789892256195891639038011777159440723864868389202730650215311698134079596531469164024580497081700375937796851962658130610971	104
89	9 19101644179342991163077317940645270940278040079903283744458805689067655926701304966817426090261522381889164892394209611370166934888400335479246590897170500695447734901931142180766471642556505023248705616315309920133297369	
6	8532794636488733058832740489676687102871474765106158220600648717419444560622670122582016	106

Autentizace

- poskytnutí informace o identitě jednoho subjektu subjektu druhému
- provádí se před použitím dalších protokolů
- často se provádí oboustranně

- Alice se pouze představí
- velmi nedostatečný

- Alice se představí a použije velmi známou IP adresu (rlogin)
- možnost podvržení adresy

Autentizační protokoly 3.0, 3.1

- Alice použije heslo (telnet, ftp)
- možnost odposlechnutí hesla, zašifrování hesla je nedostatečné

- Alice použije pokaždé jiné heslo (S/KEY)
- problém generování hesel, race útok

- Alice použije heslo pro zašifrování výzvy
- bezpečné, problém s předáním klíčů

využití asymetrické šifry

- chyba při získání veřejného klíče
- možnost zjistit, že Alice nekomunikovala

- chyba při získání veřejného klíče
- nemožnost zjistit, že Alice nekomunikovala

- nutnost bezpečného předání veřejného klíče
- osobní předání
- obecné zveřejnění
- důvěryhodný prostředník
 - certifikační autorita
 - digitální podpis
- asymetrická šifra je výpočetně složitější (xor x ^)
 - předání dočasného klíče pro symetrickou šifru

Integrita, digitální podpis

- integrita
 - zaručení, že dokument nebyl změněn
- nepopiratelnost
 - podpis zodpovědného subjektu
- doručenka
- využití asymetrického šifrování
 - podpis soukromým klíčem
 - ověření veřejným klíčem

Podpis

- šifrujeme celý dopis zbytečně náročné
- použití otisku
 - vytvoření otisku
 - zašifrování otisku
 - dešifrování otisku
 - vytvoření a porovnání otisku
 - využití hashovacích funkcí
 - problém kolizí (řízených)

Podpis

Podpis - ověření

Distribuce klíčů

- symetrické i asymetrické řešení
- symetrické
 - KDS (Key Distribution Center)
 - Kerberos
 - každý uživatel má vlastní klíč
 - Kerberos přiděluje dočasné komunikační klíče
- asymetrické
 - CA (Certification Authority)
 - ověření uživatele
 - průkaz totožnosti, ...
 - vystavení certifikátu podepsaného CA
 - průkaznost CA
 - · obecně známá
 - osobní kontakt
 - doporučená důvěryhodným prostředníkem

KDC

CA - vytvoření certifikátu

Řízení přístupu

- zamezení útočníkům v přístupu k prostředkům
- ochrana ve vstupním bodě firewall
- firewall
 - HW prostředky
 - SW prostředky
 - pravidla
 - politika
- vlastnosti
 - zahazování, akceptace a forwardování paketů
 - logování
- paketové filtry
 - rozhodují se jen podle obsahu paketu
- kontextové filtry
 - rozhodují se podle kontextu spojení
- aplikační brány
 - speciální aplikace (např. proxy)

Fajrvol

Filtr

Filtr a proxy

Filtry, proxy, DMZ

Typy útoků I

- mapování (mapping)
 - první fáze útoku, sběr informací, ping, portscanner
 - dobrý předpoklad pro DDoS
- odposlouchávání (sniffing)
 - možnost zjištění hesel
 - fyzický přístup k síti
 - zneužití směrování (přepínače i směrovače)
- podvrhnutí (spoofing)
 - podvrhnutí zdrojové adresy
 - poměrně jednoduše lze omezit na fw
- DoS(Denial-of-Service)
 - omezení dostupnosti služby pro legitimní uživatele
 - využívá chyby, nebo přetížení
 - SYN flooding attack podvržený SYN paket, alokace zdrojů
 - smurf attack podvržené ping pakety, zahlcení odpověďmi
 - dlouhý ping využívá chybu v TCP/IP zásobníku

Typy útoků II

- DDoS (Distributed DoS)
 - velmi nebezpečná varianta DoS útoku
 - téměř bez možnosti obrany
- únos spojení (hijacking)
 - možnost ukradení navázaného spojení
 - šifrování tento problém řeší

Zabezpečení aplikací

- na více vrstvách
- aplikační vrstva
 - zabezpečení souboru např. PGP
- transportní vrstva
 - SSL Secure Socket Layer
 - zabezpečení spoje
- síťová vrstva
 - IPsec
 - zabezpečení mezi dvěma uzly
- linková vrstva
 - šifrování modemů, IEEE 802.11
 - zabezpečení linky
- šifrování může být na libovolné vrstvě, nižší vrstvy šifrují i hlavičky vyšších vrstev

co dál?
SSL, IPsec
pravidla pro firewally
bezpečnostní politiky
IDS
co po útoku

• • • •

zase někdy jindy?