Profiling & Parallelization

Lecture 20

Dr. Colin Rundel

Profiling & Benchmarking

profvis demo

```
1  n = le6
2  d = tibble(
3     x1 = rt(n, df = 3),
4    x2 = rt(n, df = 3),
5     x3 = rt(n, df = 3),
6     x4 = rt(n, df = 3),
7     x5 = rt(n, df = 3),
8  ) |>
9     mutate(y = -2*x1 - 1*x2 + 0*x3 + 1*x4 + 2*x5 + rnorm(n))
```

```
1 profvis::profvis(lm(y~., data=d))
```

Benchmarking - bench

```
1 d = tibble(
x = runif(10000),
 y = runif(10000)
 4
5
   (b = bench::mark(
    d[d$x > 0.5, ],
    d[which(d\$x > 0.5), ],
    subset(d, x > 0.5),
   filter(d, x > 0.5)
10
11 ))
```

```
# A tibble: 4 \times 6
                                median `itr/sec` mem alloc `gc/sec`
 expression
                          min
 <bch:expr>
                  <br/><bch:tm> <bch:tm> <dbl> <bch:byt>
                                                            <dbl>
1 d(dx > 0.5, )
               49.4\mu s 57.4\mu s 16967. 240.14KB
                                                            46.5
                              102.6μs 9559. 272.03KB
                                                             50.8
2 d[which(d$x > 0.5), ] 90\mus
3 subset(d, x > 0.5) 87.6\mus
                               104.1 \mu \mathrm{s}
                                          9350. 298.36KB
                                                            49.3
4 filter(d, x > 0.5) 290.9\mus
                              318 \mu 	extsf{s}
                                          3000. 1.48MB
                                                             48.7
```

Larger n

```
1 d = tibble(
   x = runif(1e6),
    y = runif(1e6)
 3
 4
 5
   (b = bench::mark(
    d[d$x > 0.5, ],
    d[which(d$x > 0.5), ],
    subset(d, x > 0.5),
10
     filter(d, x > 0.5)
11 ))
```

```
# A tibble: 4 \times 6
                                median `itr/sec` mem alloc `gc/sec`
 expression
                          min
 <bch:expr>
                     <br/>
<br/>
dh:tm> <bch:tm>
                                          <dbl> <bch:byt>
                                                           <dbl>
                                           240.
                                                            160.
1 d[d$x > 0.5, ]
               3.64 \mathrm{ms}
                              4.19ms
                                                  13.4MB
2 d[which(d$x > 0.5), ] 8.45ms 8.85ms
                                          113.
                                                  24.8MB
                                                            142.
3 subset(d, x > 0.5) 9.15ms
                                          102.
                              9.87ms
                                                  24.8MB
                                                            117.
4 filter(d, x > 0.5) 4.9ms
                                           181.
                                 5.5ms
                                                  24.8MB
                                                            228.
```

bench - relative results

4 filter(d, x > 0.5) 1.35 1.31

Sta 523 - Fall 2023

1.95

1.78 1.86

Parallelization

parallel

Part of the base packages in R

- tools for the forking of R processes (some functions do not work on Windows)
- Core functions:
 - detectCores
 - pvec
 - mclapply
 - mcparallel & mccollect

detectCores

Surprisingly, detects the number of cores of the current system.

```
1 detectCores()
```

[1] 10

pvec

Parallelization of a vectorized function call

```
1 system.time(pvec(1:1e7, sqrt, mc.cores = 1))
      system elapsed
 user
0.088
      0.011 0.099
1 system.time(pvec(1:1e7, sqrt, mc.cores = 4))
      system elapsed
 user
0.164
     0.118 0.224
1 system.time(pvec(1:1e7, sqrt, mc.cores = 8))
 user system elapsed
0.091 0.166 0.165
1 system.time(sqrt(1:1e7))
 user system elapsed
0.017 0.016
              0.035
```

pvec - bench::system_time

```
1 bench::system_time(pvec(1:le7, sqrt, mc.cores = 1))

process    real
58.6ms   58.4ms

1 bench::system_time(pvec(1:le7, sqrt, mc.cores = 4))

process    real
    157ms   199ms

1 bench::system_time(pvec(1:le7, sqrt, mc.cores = 8))

process    real
    180ms   204ms
```

```
1 bench::system_time(Sys.sleep(.5))

process real
60µs 497ms

1 system.time(Sys.sleep(.5))

user system elapsed
0.000 0.000 0.505
```

Cores by size

```
1 cores = c(1,4,6,8,10)
 2 order = 6:8
 3 f = function(x,y) {
   system.time(
   pvec(1:(10^y), sqrt, mc.cores = x)
 6
    )[3]
7 }
 8
9 \text{ res} = map(
    cores,
10
11 function(x) {
12
   map dbl(order, f, x = x)
13
14 ) |>
     do.call(rbind, args = )
15
16
17 rownames(res) = paste0(cores, " cores")
18 colnames(res) = paste0("10^",order)
19
20 res
```

```
10^6 10^7 10^8

1 cores 0.004 0.057 0.324

4 cores 0.038 0.149 1.738

6 cores 0.031 0.143 1.336

8 cores 0.042 0.137 1.438

10 cores 0.032 0.168 1.406
```

mclapply

0.368

0.157

0.169

Parallelized version of lapply

```
1 system.time(rnorm(1e7))
       system elapsed
 user
0.262
        0.004
                0.265
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 2)))
       system elapsed
 user
        0.092
0.327
                0.268
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 4)))
       system elapsed
user
0.335
        0.100
                0.174
  system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 8)))
       system elapsed
 user
                0.163
0.338
        0.150
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 10)))
       system elapsed
user
```

Sta 523 - Fall 2023

16

mcparallel

Asynchronously evaluation of an R expression in a separate process

```
1 m = mcparallel(rnorm(1e6))
 2 n = mcparallel(rbeta(1e6,1,1))
 3 \circ = mcparallel(rgamma(1e6,1,1))
 1 str(m)
List of 2
 $ pid: int 19229
 $ fd : int [1:2] 4 7
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
 1 str(n)
List of 2
 $ pid: int 19230
 $ fd : int [1:2] 5 9
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
```

mccollect

Checks mcparallel objects for completion

```
1 str(mccollect(list(m,n,o)))
List of 3
$ 19229: num [1:1000000] 1.088 0.48 0.706 -2.542 -0.594 ...
$ 19230: num [1:1000000] 0.192 0.934 0.861 0.64 0.575 ...
$ 19231: num [1:1000000] 0.25 0.84 1.124 2.366 0.922 ...
```

mccollect - waiting

```
1 p = mcparallel(mean(rnorm(1e5)))

1 mccollect(p, wait = FALSE, 10)

$`19232`
[1] 0.0004659567

1 mccollect(p, wait = FALSE)

NULL

1 mccollect(p, wait = FALSE)
```

NULL

doMC & foreach

doMC & foreach

Packages by Revolution Analytics that provides the foreach function which is a parallelizable for loop (and then some).

- Core functions:
 - registerDoMC
 - foreach, %dopar%, %do%

registerDoMC

Primarily used to set the number of cores used by foreach, by default uses options ("cores") or half the number of cores found by detectCores from the parallel package.

```
1 options("cores")
$cores
NULL
 1 detectCores()
[1] 10
  1 getDoParWorkers()
[1] 1
   registerDoMC(4)
  2 getDoParWorkers()
[1] 4
```

foreach

A slightly more powerful version of base for loops (think for with an lapply flavor). Combined with %do% or %dopar% for single or multicore execution.

```
1 for(i in 1:10) {
2    sqrt(i)
3 }
4
5 foreach(i = 1:5) %do% {
6    sqrt(i)
7 }
```

```
[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051
```

[[4]] [1] 2

foreach - iterators

foreach can iterate across more than one value, but it doesn't do length coercion

```
1 foreach(i = 1:5, j = 1:5) %do% {
                                                   1 foreach(i = 1:5, j = 1:2) %do% {
  2 sqrt(i^2+j^2)
                                                   2 sqrt(i^2+j^2)
 3 }
                                                   3 }
                                                 [[1]]
[[1]]
[1] 1.414214
                                                 [1] 1.414214
[[2]]
                                                 [[2]]
[1] 2.828427
                                                 [1] 2.828427
[[3]]
[1] 4.242641
[[4]]
[1] 5.656854
\Gamma \Gamma \Gamma \Gamma \Gamma \Gamma
```

foreach - combining results

[1] 8.382332

```
1 foreach(i = 1:5, .combine='c') %do% {
   sqrt(i)
 3 }
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
 1 foreach(i = 1:5, .combine='cbind') %do% {
   sqrt(i)
 3 }
    result.1 result.2 result.3 result.4 result.5
[1,] 1 1.414214 1.732051 2 2.236068
 1 foreach(i = 1:5, .combine='+') %do% {
 2 sqrt(i)
 3 }
```

foreach - parallelization

Swapping out %do% for %dopar% will use the parallel backend.

```
1 registerDoMC(4)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.298
       0.028
               0.110
1 registerDoMC(8)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.302
      0.039
               0.078
1 registerDoMC(10)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
       system elapsed
 user
      0.051
               0.067
0.336
```


furrr / future

```
1 system.time( purrr::map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
0.000
      0.000 3.011
1 system.time( furrr::future_map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
      0.006
              3.074
0.045
1 future::plan(future::multisession) # See also future::multicore
2 system.time( furrr::future map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
0.168
      0.004
              1.436
```

Example - Bootstraping

Bootstrapping is a resampling scheme where the original data is repeatedly reconstructed by taking a samples of size n (with replacement) from the original data, and using that to repeat an analysis procedure of interest. Below is an example of fitting a local regression (loess) to some synthetic data, we will construct a bootstrap prediction interval for this model.

```
1  set.seed(3212016)
2  d = data.frame(x = 1:120) |>
3     mutate(y = sin(2*pi*x/120) + runif(length(x),-1,1))
4
5  l = loess(y ~ x, data=d)
6  p = predict(l, se=TRUE)
7
8  d = d |> mutate(
9   pred_y = p$fit,
10  pred_y_se = p$se.fit
11 )
```

```
1 ggplot(d, aes(x,y)) +
2     geom_point(color="gray50") +
3     geom_ribbon(
4     aes(ymin = pred_y - 1.96 * pred_y_se,
5         ymax = pred_y + 1.96 * pred_y_se),
6     fill="red", alpha=0.25
7     ) +
8     geom_line(aes(y=pred_y)) +
9     theme_bw()
```


Bootstraping Demo

What to use when?

Optimal use of parallelization / multiple cores is hard, there isn't one best solution

- Don't underestimate the overhead cost
- Experimentation is key
- Measure it or it didn't happen
- Be aware of the trade off between developer time and run time

BLAS and LAPACK

Statistics and Linear Algebra

An awful lot of statistics is at its core linear algebra.

For example:

• Linear regession models, find

$$\hat{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

- Principle component analysis
 - Find T = XW where W is a matrix whose columns are the eigenvectors of X^TX .
 - Often solved via SVD Let $X = U\Sigma W^T$ then $T = U\Sigma$.

Numerical Linear Algebra

Not unique to Statistics, these are the type of problems that come up across all areas of numerical computing.

- Numerical linear algebra \neq mathematical linear algebra
- Efficiency and stability of numerical algorithms matter
 - Designing and implementing these algorithms is hard
- Don't reinvent the wheel common core linear algebra tools (well defined API)

BLAS and LAPACK

Low level algorithms for common linear algebra operations

BLAS

- Basic Linear Algebra Subprograms
- Copying, scaling, multiplying vectors and matrices
- Origins go back to 1979, written in Fortran

LAPACK

- Linear Algebra Package
- Higher level functionality building on BLAS.
- Linear solvers, eigenvalues, and matrix decompositions
- Origins go back to 1992, mostly Fortran (expanded on LINPACK, EISPACK)

Modern variants?

Most default BLAS and LAPACK implementations (like R's defaults) are somewhat dated

- Written in Fortran and designed for a single cpu core
- Certain (potentially non-optimal) hard coded defaults (e.g. block size).

Multithreaded alternatives:

- ATLAS Automatically Tuned Linear Algebra Software
- OpenBLAS fork of GotoBLAS from TACC at UTexas
- Intel MKL Math Kernel Library, part of Intel's commercial compiler tools
- cuBLAS / Magma GPU libraries from Nvidia and UTK respectively
- Accelerate / vecLib Apple's framework for GPU and multicore computing

OpenBLAS Matrix Multiply Performance

```
1 x=matrix(runif(5000^2),ncol=5000)
   sizes = c(100,500,1000,2000,3000,4000,5000)
   cores = c(1,2,4,8,16)
   sapply(
     cores,
     function(n_cores)
 9
       flexiblas::flexiblas_set_num_threads(n_cores)
1.0
       sapply(
11
12
         sizes,
         function(s)
13
14
15
           y = x[1:s,1:s]
            system.time(y %*% y)[3]
16
17
18
19
20 )
```

n	1 core	2 cores	4 cores	8 cores	16 cores
100	0.000	0.000	0.000	0.000	0.000
500	0.004	0.003	0.002	0.002	0.004
1000	0.028	0.016	0.010	0.007	0.009
2000	0.207	0.110	0.058	0.035	0.039
3000	0.679	0.352	0.183	0.103	0.081
4000	1.587	0.816	0.418	0.227	0.145
5000	3.104	1.583	0.807	0.453	0.266

Matrix Multiply of (n x n) matrices

Matrix Multiply of (n x n) matrices

