Monetary Policy and Labor Income Risk with a Billion Observations

Margio Giarda Central Bank of Chile Ignacio Rojas

Central Bank of Chile

Sergio Salgado Wharton

November, 2024

LACEA-LAMES Annual meeting 2024

Disclaimer: The views expressed are those of the authors and do not represent the views of the Central Bank of Chile or its board members.

Motivation: Monetary Policy and Labor Income Risk

Motivation

- Growing literature on how policy interacts with worker heterogeneity e.g., Kaplan-Moll-Violante (18), Holm et al. (21), Leahy-Thapar (22), McKay-Wolf (23), Patterson (23)
- Most of this literature focuses on response of income levels to shocks
- Large literature on how workers' risk varies over the business cycle
 e.g., Storesletten-Telmer-Yaron (01), Guvenen-Ozkan-Song (14), McKay (17), Bayer et al. (19), Catherine (21)
- Little on the response of the distribution of income changes to aggregate shocks

Motivation: Monetary Policy and Labor Income Risk

Motivation

- Growing literature on how policy interacts with worker heterogeneity
 e.g., Kaplan-Moll-Violante (18), Holm et al. (21), Leahy-Thapar (22), McKay-Wolf (23), Patterson (23)
- Most of this literature focuses on response of income levels to shocks
- Large literature on how workers' risk varies over the business cycle
 e.g., Storesletten-Telmer-Yaron (01), Guvenen-Ozkan-Song (14), McKay (17), Bayer et al. (19), Catherine (21)
- Little on the response of the distribution of income changes to aggregate shocks

This paper: how does income risk respond to monetary shocks?

- Does it affect overall dispersion (second moment) or downside risk (third moment)?
- What is the labor market flow that drives income risk (e.g., JtU, JtJ, etc.)

This paper

Use high-frequency administrative panel income data for formal workers

- o Build monthly moments of the labor income annual growth distribution
- Study the response of these moments to monetary policy shocks
- Study responses conditional on labor market flows (JU, UJ, JTJ, Stayers)

This paper

Use high-frequency administrative panel income data for formal workers

- o Build monthly moments of the labor income annual growth distribution
- Study the response of these moments to monetary policy shocks
- Study responses conditional on labor market flows (JU, UJ, JTJ, Stayers)

We find

- o Skewness of labor earnings growth declines after contractionary monetary policy shock
- Dispersion does not respond to monetary shocks
- The skewness of all (most relevant) labor market flows fall in response to monetary policy
 - → Unemployment risk is not the only source of labor income risk!

Aggregates and Income Risk

Data

Data from unemployment insurance fund (AFC)

- o Employer-employee monthly panel: wages, U insurance, firm identifier, education, gender, industry
- Formal workers in private sector; about 1 billion obs from 2002m1-2022m12 (Do not consider self-employment income)
- \circ Data reported by firms each month, little misreporting, no attrition, low share top coded ($\approx 2.7\%$)

Variables

- Labor income from main employer and CPI deflated
- Measure log-change of real earnings $\Delta^h y_{i,t} = y_{i,t} y_{i,t-h}$ where $h \in \{1,6,12,24\}$
- We account for zeros and income below min wage according to Guvenen et al. (2021,WP):
 - * If $y_{it} < y_t^{min}$ we set $y_{it} \approx y_t^{min} + \Delta$
 - ★ Preserves the ranking between workers and the information from JtU and UtJ Accounting for zeros

Moments Over the Business Cycle

Note: gray bars indicate recessions measured as more than three consecutive month with negative y-o-y GDP growth. These are 2009m1-2009m10 and 2020m3-2020m10

- Average: procyclical
- **Dispersion:** $(\mathcal{D}_t = \mathcal{P}_{90t} \mathcal{P}_{10t})$ is **acyclical**
- ∘ Skewness $(S_t) = \frac{(\mathcal{P}_{90t} \mathcal{P}_{50t}) (\mathcal{P}_{50t} \mathcal{P}_{10t})}{\mathcal{P}_{90t} \mathcal{P}_{10t}}$ is procyclical → Risk: countercyclical

4

Monetary Shocks and Income Risk

(Smooth) Local Projections:

$$y_{t+k} - y_t = c + \beta^k mps_t + \Gamma' X_t + \delta_t + \varepsilon_{kt},$$

- y_{t+k} : macro variables (check) and moments of 12-month changes
 - **Monetary Shock:** *mps*_t. Daily difference btw effective MPR and Bloomberg expectations (Gonzalez and Tadle, 2018, Aruoba et al, 2022) Shocks
- Controls: 14 lags of: MPR, inflation, output, Terms of Trade index, and nominal exchange rate, lagged moments
- o Sample: 2005m1-2019m12
- o Report the Smooth LP (Barnichon and Brownlees, 2019) and the 90% confidence interval

Monetary Shocks on Aggregates

Aggregate responses to 25bp increase

- Output ↓
- Unemployment ↑
- ∘ CPI↓
- Real Wages ↓

Monetary Shocks on 12M Changes Distribution

Moments to 25bp increase

- Average income growth ↓
- No effect on dispersion
- Skewness ↓
- Skewness falls from both tails!

$$S_t \downarrow = \frac{(\mathcal{P}_{90t} - \mathcal{P}_{50t}) \downarrow \downarrow - (\mathcal{P}_{50t} - \mathcal{P}_{10t}) \uparrow}{(\mathcal{P}_{90t} - \mathcal{P}_{10t})}$$

The response of skewness is large

- ∘ $\Delta S_t \approx -0.035$ to 25bp is large
- ∘ In the GFC $\Delta S_t \approx -0.2$
- \circ 75bp \rightarrow around half the GFC

7

Monetary Shocks on 12M Changes Distribution

Moments to 25bp increase

- Average income growth ↓
- No effect on dispersion
- Skewness ↓
- Skewness falls from both tails!

$$S_t \downarrow = \frac{(\mathcal{P}_{90t} - \mathcal{P}_{50t}) \downarrow \downarrow - (\mathcal{P}_{50t} - \mathcal{P}_{10t}) \uparrow}{(\mathcal{P}_{90t} - \mathcal{P}_{10t})}$$

The response of skewness is large

- $\circ \ \Delta S_t \approx -0.035$ to 25bp is large
- ∘ In the GFC $\Delta S_t \approx -0.2$
- \circ 75bp \rightarrow around half the GFC

Income Risk from Labor Flows

Labor Market Flows: Definitions

- Three states: *J* (work), *U* (unemployment), *UI* (Unemployment Insurance)
- Flow: state in t compared with state in t 12 (ignore "within period" flows)

Labor Market Flows: Descriptive Statistics

Note: Distributions for 2015. All distributions sum to one.

- o Job-to-Job, Job-to-Unemployment Insurance, Unemployment Insurance-to-Job
- o Stayers, Unemployment-to-Job, Job-to-Unemployment

Labor Market Flows: Descriptive Statistics

Note: Distributions for 2015. All distributions sum to one.

Table 1: Flows 12-month changes.

Flow	Pct.	$\mathcal A$	\mathcal{D}	S
Stayers	39.02	0.07	0.36	0.19
JtJ	16.13	0.11	0.84	0.04
JtUI	0.42	-0.78	0.63	-0.01
JtU	9.67	-0.74	0.95	-0.14
UtJ	10.29	0.82	0.90	-0.03
UItJ	0.21	0.80	0.83	-0.07
Jan-05 to	Dec-21.	N: 100	678047	3

- $\circ \ \ Job\text{-to-Job}, Job\text{-to-Unemployment Insurance, Unemployment Insurance-to-Job}$
- o Stayers, Unemployment-to-Job, Job-to-Unemployment

Distribution of Labor Market Flows over the Business Cycle: 12-month Changes

Note: gray bars indicate recessions measured as more than three consecutive month with negative y-o-y GDP growth. These are 2009m1-2009m10 and 2020m3-2020m10

- Average: procyclical mostly JtJ and Stayers
- **Dispersion:** $(\mathcal{D}_t = \mathcal{P}_{90t} \mathcal{P}_{10t})$ is **acyclical** in all flows
- **Risk: countercyclical**. $S_t = \frac{(\mathcal{P}_{90t} \mathcal{P}_{50t}) (\mathcal{P}_{50t} \mathcal{P}_{10t})}{\mathcal{P}_{90t} \mathcal{P}_{10t}}$ is **procyclical** mostly **JtJ** and **Stayers**

Moments of Flows: Response of Skewness to MP Shocks

Moments of Flows to 25bp increase

- JtU and UtJ skewness ↓
- JtJ and Stayers skewness ↓ too!
 → U not the only source high risk
- UI helps to mute higher risk
- UI result implies the existence of an optimization from workers

Heterogeneity across Income

Distribution

Heterogeneity: Response to MP shock

- For lower quintiles of income the MP shock affects the level, while for high quintiles the shock move the risk.
- Avg: Q2 and Q3 Average income growth exhibit the highest response to a MP shock.
- Ske: Q3, Q4 and Q5 the Kelley response is deeper and longer lasting.
- The Kurtosis affects similarly all quintiles, except the *Q*1.

Conclusions

Conclusion and Next Steps

Conclusions

- We revisit the countercyclicality of labor income risk and study how it responds to MP shocks
- We show that **risk** measured by the skewness earnings growth **increases** in response to MP shock
- We show that all labor market flows contribute to aggregate skewness after an MP shock
- That suggests income risk goes beyond unemployment risk
- For low income groups, the MP shock affects the levels of its income growth distribution
- For high income groups a MP shock affect its **income risk**

Conclusion and Next Steps

Conclusions

- We revisit the countercyclicality of labor income risk and study how it responds to MP shocks
- We show that risk measured by the skewness earnings growth increases in response to MP shock
- We show that all labor market flows contribute to aggregate skewness after an MP shock
- That suggests income risk goes beyond unemployment risk
- For low income groups, the MP shock affects the levels of its income growth distribution
- For high income groups a MP shock affect its income risk

Next steps

- Study the flows of other shocks (external rate, commodity prices)
- Finish the model (in early stage) and calibrate it to Chile
- Heterogeneity and the role of firms

Appendix

Heterogeneity

- Major difference between Qs are on the third moment.
- The Q5 skewness respond significantly, while Q1 and Q2 ruturn to its previous level the quickest.
- The larger response in flow terms come from the richest part of the distribution. (Next slide)

Note: Quintiles obtained as individuals' FE coefficient.

Skewness by Quintile/Flow

Accounting for zeros

o If wages are low or zero, we use

$$\hat{y}_{i,t} = \ln\left(\overline{w}_{min} + \frac{\overline{w}_{min}}{10(\overline{w}_{min} + 10)} \left\{ \exp(w_{i,t}) + 10U[0,1] \right\} \right)$$

$$\rightarrow w_{i,t} = 0, \, \hat{y}_{i,t} = \ln(\overline{w}_{min} + \Delta)$$

- $W_{i,t} = 0$ has relevant information for income risk (UtJ,JtU).
- Calculate an approx log-change if unemployed at t or t+h
- Preserve the earnings' ranking among individuals.
- o log-changes in UtJ and JtU have a distribution
- o Fluctuations with zeros represent compositional effects

Distribution

Table 2: Description of δw h-month changes.

Н	Mean	Std. Dev	Kelley	
1-M	0.005	0.167	0.082	
6-M	0.033	0.442	0.040	
12-M	0.067	0.551	0.103	
24-M	0.138	0.663	0.062	
Jan-2015 to Dec-2015. N=70795178				

Shocks

Figure 8: Monetary Shocks in Chile, 2002-2021 (Aruoba et al., 2022)

Levels

Note: gray bars indicate recessions measured as more than three consecutive month with negative y-o-y GDP growth. These are 2009m1-2009m10 and 2020m3-2020m10

Averages Fall

◆ Back

Dispersion mixed

Flows as expected

Heterogeneity income & flows: Response to MP shock

- Conditional to remain in job the Q1 is the group that face the higher income risk
- When passing through a long period of unemployment Q1 faces the major income risk