Surjectivité

www.cafeplanck.com info@cafeplanck.com

Surjection

Première définition:

On dit que la fonction $f: \begin{vmatrix} A \to B \\ x \to f(x) \end{vmatrix}$ est *surjective* si sa courbe a au moins un point

d'intersection avec les droites parallèles à Ox qui coupent Oy dans la zone représentant B .

La fonction f est *surjective* lorsque :

$$\forall y \in B, (\exists x \in A, f(x) = y)$$

1

Deuxième définition:

On dit que la fonction $f: \begin{vmatrix} A \to B \\ x \to f(x) \end{vmatrix}$ est surjective si f(B) = A.

Non surjection

Première définition:

On dit que la fonction $f: \begin{vmatrix} A \to B \\ x \to f(x) \end{vmatrix}$ est non surjective si sa courbe n'a pas de point

d'intersection avec au moins une droite parallèle à $\mathit{Ox}\,$ qui coupe $\mathit{Oy}\,$ dans la zone représentant B .

La fonction f est $\emph{non surjective}$ lorsque :

$$\exists y \in B, (\exists x \in A, f(x) \neq y)$$

Deuxième définition :

On dit que la fonction $f: \begin{vmatrix} A \to B \\ x \to f(x) \end{vmatrix}$ est non surjective si $f(B) \neq A$.

