Decision Trees and Industrial Machine Learning

Jeremy Barnes, Recoset (jeremy@recoset.com)

November 9, 2010

www.recoset.com

Me

- ► BEng/BSc (1995-1999)
- Founded two companies:
 - ▶ Idilia (Montreal): Computational Linguistics (2000-2009)
 - ► Recoset (Montreal): Recommendations & Online Advertising (2009-)
- ▶ 10 years industrial machine learning

Contents

- Decision Trees
- Industrial Machine Learning
- My toolbox
- ► Applications: Computational Linguistics, Recommendations
- 4 stories: Tanks, Fraud, Terrorists, Monkeys

Story: Tanks in the Desert

Story: Tanks in the Desert

► Using ML requires insight

Story: Tanks in the Desert

- ► Using ML requires insight
- An algorithm is only a good as its data

Decision Trees

- ► A very simple Machine Learning algorithm
- Learns a hierarchical set of rules:

```
if predicate
then action1
else action2
```

for example

```
if gender=Male
then
if age < 25
then p(crash) = 0.6
else p(crash) = 0.1
else p(crash) = 0.4
```

Space Partitioning

How?

Greedy Algorithm to Separate Data

- 1. Learns the "best" split at the top level
 - ► Try every value of every variable
 - Choose the one that minimizes a cost function
- 2. Partition the dataset along the best split
- 3. Repeat (recursion) on each of the halves of the dataset
- 4. Stop when:
 - Maximum depth reached
 - Data is perfectly separated

Cost Functions

Regression

- Calculate label mean of each half of the data
- cost = least squares between data and partition means

Classification

- Measure the impurity of each of the classes
- ► Gini, entropy, ...

Advantages

- Simple
- Fast
- Easy to understand output
- Can learn highly non-linear surfaces
- Works well with lots of dimensions (features)
- Not affected by redundant features

Disadvantages

- Sensitive to noise
- Cannot learn smooth functions
- Cannot extrapolate
- Requires enormous amounts of data for complex cases
- Decisions must be parallel to an axis

Story: Medical Expense Fraud

Story: Medical Expense Fraud

Story: Medical Expense Fraud

Feature Engineering

- Adding information to the dataset to make the classifier's job easier
- For example, adding "buys insulin regularly"
- Feature types
 - Derived from existing features
 - Added information
 - Art

Add two features:

 $x' = 8x \mod 2$

 $y' = 8y \mod 2$

Added features:

▶
$$d_1 = \sqrt{x^2 + y^2}$$

$$d_2 = \sqrt{(1-x)^2 + (1-y)^2}$$

▶
$$m_1 = 8d_1 \mod 8$$

 $m_2 = 8d_2 \mod 8.$

Ensemble Methods

- Decision Trees are not very useful by themselves
- Excellent basis for ensemble methods
- Use Boosting, Bagging, random sampling
- Random Forests of 10,000 decision trees
 - Better noise rejection
 - Higher capacity
 - More robust

My Toolbox

- Feature Engineering
 - Mathematical Modelling
 - Smoothing
 - Principal Component Analysis
 - Deep Neural Networks
 - Auto-encoders
- Data
 - Data visualization and exploration (TSNE)
 - Data cleanup
- Machine Learning
 - Neural Nets
 - Generalized Linear Models
 - Decision trees (random forests)
 - Boosting, bagging, randomization
 - Exploration tools (explain algorithms' responses)

Boosting Algorithm

- Build on a weak learning algorithm (eg, Decision Trees)
 - it may have characteristics we want to preserve
- Use the weak learner multiple times
- Boost the weight of hard examples each time
- Robust to overfitting

Industrial Machine Learning

- ▶ Up to 90% of time in ETL (Extract, Transform, Load)
- Very important: data, understanding
- ▶ Important: process, features
- Least important: algorithm

When should ML be used?

- ► To augment modelling
- ▶ To aid in data exploration
- When you can identify what influences an outcome but not how
- ▶ When you can measure your success

When should ML not be used?

- ▶ To solve the entire problem
- ► To replace modelling
- ▶ To replace thought
- Without a nullable hypothesis
- When controlling something dangerous or important

Traps and Pitfalls

Overfitting and other forms of over-optimization

Traps and Pitfalls

- Overfitting and other forms of over-optimization
- Overfitting and other forms of over-optimization

Traps and Pitfalls

- Overfitting and other forms of over-optimization
- Overfitting and other forms of over-optimization
- Overfitting and other forms of over-optimization

Traps and Pitfalls

- Overfitting and other forms of over-optimization
- Overfitting and other forms of over-optimization
- Overfitting and other forms of over-optimization
- Training on testing data
- Biasing
 - Predicting the past from the future
 - Non-representative samples
 - Multi-stage pipelines
 - Can be very subtle
- Not having a nullable hypothesis (is it really better)
- Using a complex classifier with little data
- Trying to do everything with one model
- ► No Free Lunch principle

Story: Optimizing the Random Numbers

Story: Optimizing the Random Numbers

- ▶ Numbers go up, but the system gets worse
- ▶ Worse than a waste of time

Undesirable Characteristics of Classifiers

- Can't run the same experiment twice...
 - Results got worse when I retried (repeatability)
 - ▶ It took 300 CPU-years and my account was revoked (speed)
- Black box that can't tell us how to improve (explorability)
- Needs \$10 million of data to learn a non-planar decision surface (non-linearity)
- Lots of knobs to play with
 - No automatic capacity control (done manually)
 - ▶ Requires $\alpha_{0,0}...\zeta_{23,37}$ to be set just right... (automatic tuning)
 - Need to perform manual feature selection experiments
- ► Changing feature z from 0.12345 to 0.12346 lead to 13% better test performance (sensitivity)
- Output is not probabilistic

Toolbox: Cleaning Data Using Boosting

- Boosted classifiers focus almost exclusively on examples with high weights
 - High-weighted examples can have 100 times more weight than average
 - ► To improve the classifier, we only need to improve these examples (they effectively ignore the rest)
- ▶ If an example has a high boosting weight, it either:
 - Is a difficult (and so informative) example; or
 - Is mis-tagged
- Re-tag (carefully) those with high weights
- ► Can get a true positive rate > 50% with this technique

Toolbox: Explaining a Forest of Decision Trees

Feature	Value	Score
Bias		0.3
Male	Y	+0.1
Age	45	-0.3

- Immensely useful in finding problems
- Given a feature vector, what features were the strongest contributors to the result?
- Record the prediction at both internal nodes and leaves
- When we follow a branch, we assign the difference between the node predictions to the splitting feature
- ► For multiple trees, we take the weighted sum

Application: Word Sense Disambiguation (Idilia)

- ► An important computational linguistics problem
 - ▶ Needed to reliably solve information retrieval, machine translation, speech recognition, ...
- Identify the meaning of words in context
 - "I enjoy a hot java in the afternoon" → coffee
 - "The economy of Java lags that of Indonesia" → island
 - ► "Weka is written in Java" → programming language
 - BUT: Do Java programmers in Java drink java?

Different Types of Ambiguity

▶ I saw the man with the telescope.

Different Types of Ambiguity

▶ I saw the man with the telescope.

▶ I saw the cow with the telescope.

Different Types of Ambiguity

I saw the man with the telescope.

▶ I saw the cow with the telescope.

- Different types of ambiguity; different ways of resolving
- Sometimes not possible to know (ill-posed)
- Some kinds of errors are very costly

Difficulties Particular to Computational Linguistics

- Language is inherently ambiguous
- Meaning is difficult to represent precisely
- Difficulties of annotation
 - ► Expert humans can be < 80% accurate
- Uneven Cost of errors
 - Some errors are catastrophic; others inconsequential
- III-posedness
- Skewed towards common meanings
 - Uncommon meanings are just as important

Using ML for Computational Linguistics

- Designed for ML from the ground up
- ▶ \$1,000,000s spent tagging data
- ▶ \$1,000,000s spent buying ancillary data sources
- ▶ \$1,000,000s spent improving data sources

Using ML for Computational Linguistics

- Designed for ML from the ground up
- ▶ \$1,000,000s spent tagging data
- ▶ \$1,000,000s spent buying ancillary data sources
- ▶ \$1,000,000s spent improving data sources
- ▶ 1000s of classifiers
- Pure ML algorithms never useful

Using ML for Computational Linguistics

- Designed for ML from the ground up
- ▶ \$1,000,000s spent tagging data
- ▶ \$1,000,000s spent buying ancillary data sources
- ▶ \$1,000,000s spent improving data sources
- ▶ 1000s of classifiers
- Pure ML algorithms never useful
- ► ML augments language models, doesn't replace
- Each one solves a simple problem, well
- ▶ Processing pipeline of 20 stages, each unbiased wrt input
- Random forests
- Generalized Linear Models

Story: Named Entity Classification

Khalid bin Sultan, son of the Saudi Crown Prince, with US Army Commander Norman Schwartzkopf

Application: Recommendations (Recoset)

Netflix Prize

- Goal
 - Predict which product a person is most likely to buy
 - Predict which people will buy a product

Application: Recommendations (Recoset)

Netflix Prize

- Goal
 - Predict which product a person is most likely to buy
 - Predict which people will buy a product
- Data available
 - Past purchases (sometimes)
 - Clicks and ad views (sometimes)
 - Some demographic information (sometimes)
 - Product descriptions, attributes (mostly text)

Application: Recommendations (Recoset)

Netflix Prize

- Goal
 - Predict which product a person is most likely to buy
 - Predict which people will buy a product
- Data available
 - ► Past purchases (sometimes)
 - Clicks and ad views (sometimes)
 - Some demographic information (sometimes)
 - Product descriptions, attributes (mostly text)
- Challenges
 - Real-time
 - Very sparse data
 - Need to make predictions for unknown people
 - Must map textual descriptions to behaviour
 - Need to model attitude and preference
 - Must respect the users' privacy

Questions