Лабораторная работа №5

Дисциплина: Математическое моделирование

Дудырев Глеб Андреевич

Содержание

Сг	писок литературы	15
5	Выводы	14
4	Выполнение лабораторной работы 4.1 Реализация на Julia	9 9
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	График изменения численности хищников и численности жертв .	10
4.2	График зависимости численности хищников от численности жертв	11
4.3	График изменения численности хищников и численности жертв в	
	стационарном состоянии	12
4.4	График зависимости численности хищников от численности жертв	
	в стационарном состоянии	13

Список таблиц

1 Цель работы

Исследовать математическую модель Лотки-Волтьерры.

2 Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.77x(t) + 0.077x(t)y(t) \\ \frac{dy}{dt} = 0.33y(t) - 0.033x(t)y(t) \end{cases}$$

Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=4, y_0=9$. Найти стационарное состояние системы.

3 Теоретическое введение

Модель "Хищник-жертва" основывается на следующих предположениях [book?]:

- 1. Численность популяции жертв x и хищников y зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса (экспоненциальный рост с постоянным темпом), при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хишников

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x — число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, c - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность

взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников. Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Найдём стационарное состояние системы. Для этого приравняем её правые части к нулю.

$$\begin{cases} ax(t) - bx(t)y(t) = 0\\ -cy(t) + dx(t)y(t) = 0 \end{cases}$$

Из полученной системы получаем, что стационарное состояние системы будет в точке $x_0 = c/d$, $y_0 = a/b$. Если начальные значения задать в стационарном состоянии $x(0) = x_0$, $y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки.

4 Выполнение лабораторной работы

Для выполнения лабораторной работы будем использовать язык программирования Julia.

4.1 Реализация на Julia

p = [-0.77, -0.077, -0.33, -0.033]

Напишем код для решения системы ДУ, используя библиотеки DifferentialEquations, а затем построим графики с помощью библиотеки Plots.

```
# Используемые библиотеки

using DifferentialEquations, Plots

# Задание системы ДУ, описывающей модель Лотки-Вольтерры

function LV(u, p, t)

x, y = u

a, b, c, d = p

dx = a*x - b*x*y

dy = -c*y + d*x*y

return [dx, dy]

end

# Начальные условия

u0 = [4, 9]
```

```
tspan = (0.0, 50.0)

# Постановка проблемы и ее решение

prob = ODEProblem(LV, u0, tspan, p)

sol = solve(prob, Tsit5())
```

Построение графика

```
plot(sol, title = "Модель Лотки-Вольтерры", xaxis = "Время", yaxis = "Численность попу
plot(sol, idxs=(1, 2), title = "Модель Лотки-Вольтерры", xaxis = "Жертвы", yaxis = "Хи
```

В результате получаем следующие графики изменения численности хищников и численности жертв (рис. 4.1), и зависимости численности хищников от численности жертв (рис. 4.2).

Рис. 4.1: График изменения численности хищников и численности жертв

Рис. 4.2: График зависимости численности хищников от численности жертв

Графики периодичны, фазовый портрет замкнут, как и должно быть в жесткой модели Лотки-Вольтерры.

Далее найдем стационарное состояние системы по формуле:

$$\begin{cases} x_0 = \frac{\gamma}{\delta} \\ y_0 = \frac{\alpha}{\beta} \end{cases}$$

В результате,
$$x_0 = \frac{0.77}{0.077} = 10$$
, а $y_0 = \frac{0.33}{0.033} = 10$.

Проверим, что эта точка действительно является стационарной, подставив в начальные условия.

```
u0_c = [10, 10]
prob2 = ODEProblem(LV, u0_c, tspan, p)
sol2 = solve(prob2, Tsit5())
```

```
plot(sol2, xaxis = "Жертвы", yaxis = "Хищники", label = ["Жертвы" "Хищники"], c = ["gr
plot((10, 10), seriestype=:scatter, xlims=(3, 15), ylims=(3, 15), box =:on, c = "blue"
```

Получаем график из двух прямых, параллельных оси абсцисс, то есть численность жертв и хищников не меняется, как и должно быть в стационарном состоянии (рис. 4.3).

Рис. 4.3: График изменения численности хищников и численности жертв в стационарном состоянии

Фазовый портрет в стационарном состоянии выглядит следующим образом (рис. 4.4).

Рис. 4.4: График зависимости численности хищников от численности жертв в стационарном состоянии

5 Выводы

В результате выполнения лабораторной работы я построила математическую модель Лотки-Вольтерры на Julia.

Список литературы