Math 21 Module 1: Limits and Continuity

Nile Jocson <atraphaxia@gmail.com>

February 19, 2025

Contents

		it of a Fur	action:	An Inti	uitive	Appro	ach						5
	1.1							 	 	 		 	
	1.2							 	 	 		 	-
		-						 	 	 		 	
								 	 	 		 	•
		1.2.10						 	 	 		 	. 13
	1.3							 	 	 		 	. 14
		1.3.1						 	 	 		 	. 14
		1.3.2						 	 	 		 	. 15
2	One	e-Sided Lir	$_{ m nits}$										16
	2.1							 	 	 		 	. 16
		2.1.1						 	 	 		 	. 16
								 	 	 		 	. 17
		2.1.2											
		2.1.2 2.1.3						 	 	 		 	. 18
		2.1.2 2.1.3 2.1.4						 	 	 		 	. 18
		2.1.2 2.1.3 2.1.4 2.1.5						 	 	 	 	 	. 18 . 19
		2.1.2 2.1.3 2.1.4 2.1.5 2.1.6						 	 	 	· · · · · · · · · · · · · · · · · · ·	 	. 18 . 19 . 20 . 21
		2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7						 	 			 	. 18 . 19 . 20 . 21
g	Lim	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8						 	 			 	. 18 . 19 . 20 . 21 . 22 . 23
3		2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8							 			 	. 18 . 19 . 20 . 21 . 22 . 23
3	Lim 3.1	2.1.2 2.1.3	ing Infi									 	. 18 . 19 . 20 . 21 . 22 . 23
3		2.1.2 2.1.3		nity								 	. 18 . 19 . 20 . 25 . 25 . 24 . 24 . 24
3		2.1.2 2.1.3	ing Infi	nity								 	. 18 . 19 . 20 . 21 . 22 . 23 . 24 . 24 . 24
3		2.1.2 2.1.3	ing Infi	nity								 	. 18 . 19 . 20 . 22 . 22 . 23 . 24 . 24 . 24 . 25
3		2.1.2 2.1.3	ing Infi	nity								 	. 18 . 19 . 20 . 21 . 22 . 23 . 24 . 24 . 24 . 26 . 26
3		2.1.2 2.1.3	ing Infi	nity									. 18 . 19 . 20 . 21 . 22 . 23 . 24 . 24 . 24 . 25 . 26 . 27 . 28

3 Limits Involving Infinity

3.1

Evaluate the following limits.

3.1.1

$$\lim_{x \to \frac{1}{3}^-} \frac{2}{1 - 3x}$$

 $=\lim_{x\to\frac{1}{3}^-}\frac{2}{0^+}$ $=+\infty$ Final answer.

$$\lim_{t\to 0^+} \left(\frac{1}{t\sqrt{t+3}} - \frac{1}{t}\right)$$

$$\begin{split} &\text{Indeterminate, type} \ \infty - \infty \\ &= \lim_{t \to 0^+} (\frac{1}{t\sqrt{t+3}} - \frac{\sqrt{t+3}}{t\sqrt{t+3}}) \\ &= \lim_{t \to 0^+} \frac{1-\sqrt{t+3}}{t\sqrt{t+3}} \\ &= \lim_{t \to 0^+} \frac{1-\sqrt{3}}{0^+} \\ &= -\infty \end{split} \qquad \qquad \text{Final answer. } 1 - \sqrt{3} \text{ is negative.} \end{split}$$

25

$$\lim_{x \to 2^{-}} \frac{x - 2}{2 - \sqrt{4x - x^2}}$$

Indeterminate, type $\frac{0}{0}$	
$= \lim_{x \to 2^{-}} \frac{(x-2)(2+\sqrt{4x-x^2})}{x^2-4x+4}$	Rationalize.
$= \lim_{x \to 2^{-}} \frac{(x-2)(2+\sqrt{4x-x^2})}{(x-2)(x-2)}$	Factor.
$= \lim_{x \to 2^{-}} \frac{2 + \sqrt{4x - x^2}}{x - 2}$	
$=\lim_{x\to 2^-} \frac{4}{0^-}$	
$=-\infty$	Final answer.
	•

$$\lim_{x \to -2^{-}} \left(\frac{4}{(x+2)^{2}(2-x)} - \frac{1}{(x+2)^{2}} - \frac{1}{x} \right)$$

Indeterminate, type
$$\infty - \infty$$

$$= \lim_{x \to -2^{-}} \left(\frac{4x}{x(x+2)^{2}(2-x)} - \frac{x(2-x)}{x(x+2)^{2}(2-x)} - \frac{(x+2)^{2}(2-x)}{x(x+2)^{2}(2-x)} \right) \qquad \text{lcm} = x(x+2)^{2}(2-x)$$

$$= \lim_{x \to -2^{-}} \frac{4x - x(2-x) - (x+2)^{2}(2-x)}{x(x+2)^{2}(2-x)}$$

$$= \lim_{x \to -2^{-}} \frac{x^{2} + 2x - (x+2)^{2}(2-x)}{x(x+2)^{2}(2-x)}$$

$$= \lim_{x \to -2^{-}} \frac{x(x+2) - (x+2)^{2}(2-x)}{x(x+2)^{2}(2-x)}$$

$$= \lim_{x \to -2^{-}} \frac{(x+2)(x-(x+2)(2-x))}{x(x+2)^{2}(2-x)}$$

$$= \lim_{x \to -2^{-}} \frac{x^{-}(x+2)(x-(x+2)(2-x))}{x(x+2)^{2}(2-x)}$$

$$= \lim_{x \to -2^{-}} \frac{x^{-}(x+2)(2-x)}{x(x+2)(2-x)}$$

$$= \lim_{x \to -2^{-}} \frac{-2 - (-2+2)(2+2)}{-2(-2+2)(2+2)}$$

$$= \lim_{x \to -2^{-}} \frac{-2}{-2(0^{-})(4)}$$

$$= \lim_{x \to -2^{-}} \frac{-2}{0^{+}}$$
Final answer.

27

$$\lim_{x \to +\infty} \frac{2x^3 - 6x + 5}{4 + 7x - 6x^3}$$

Indeterminate, type $\frac{\infty}{\infty}$

$$= \lim_{x \to +\infty} \frac{2x^3 - 6x + 5}{4 + 7x - 6x^3} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}}$$

Divide by highest denominator power.

$$= \lim_{x \to +\infty} \frac{\frac{2 - \frac{6}{x^2} + \frac{5}{x^3}}{\frac{4}{x^3} + \frac{7}{x^2} - 6}}$$

$$= \lim_{x \to +\infty} \frac{2}{-6}$$

$$=-\frac{1}{2}$$

Final answer.

$$\lim_{z \to +\infty} \frac{4z^3 + 5}{1 - 2z + 3z^2}$$

Indeterminate, type $\frac{\infty}{\infty}$

$$= \lim_{z \to +\infty} \tfrac{4z^3 + 5}{1 - 2z + 3z^2} \cdot \tfrac{\frac{1}{z^2}}{\frac{1}{z^2}}$$

Divide by highest denominator power.

$$= \lim_{z \to +\infty} \frac{4z + \frac{5}{z^2}}{\frac{1}{z^2} - \frac{2}{z} + 3}$$

$$= \lim_{z \to +\infty} \frac{\infty}{3}$$

 $=+\infty$ Final answer.

$$\lim_{x \to +\infty} \frac{3 - x^2}{\sqrt{4x^2 + 1} + x^2}$$

Indeterminate, type $\frac{\infty}{\infty}$ $= \lim_{x \to +\infty} \frac{3 - x^2}{\sqrt{4x^2 + 1} + x^2} \cdot \frac{\frac{1}{x^2}}{\frac{1}{\sqrt{x^4}}}$ Divide by highest denominator power. $= \lim_{x \to +\infty} \frac{\frac{3}{x^2} - 1}{\sqrt{\frac{x^2}{4} + \frac{1}{x^4}} + 1}$

 $= \lim_{x \to +\infty} \frac{-1}{1}$

=-1 Final answer.