Section 2F. Bias-Variance Tradeoff Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Bias-Variance Tradeoff

We can explain the shape of the test MSE as follows:

Consider a training dataset $\mathcal{D}_{\mathsf{Tr}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, where the input/output data pairs (\mathbf{x}_i, y_i) are drawn independently from an additive model:

$$\mathbf{x}_i \sim f_X$$
 and $y_i = f(\mathbf{x}_i) + \varepsilon$ with $\varepsilon \sim f_{\varepsilon}$

where ε is a measurement noise and f is an unknown regression function that "nature" is using to generate the dataset. Notice that the additive model induces a joint PDF, f_{XY}

Assuming a parametric form of our regression function $\hat{f}(\mathbf{x}; \theta)$, our task is to find the parameters θ^* that minimize the *training MSE*

$$\theta^{\star} = \arg\min_{\theta} \frac{1}{N} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}_{\mathbf{T}_{\mathbf{x}}}} \left(y_i - \widehat{f}(\mathbf{x}_i; \theta) \right)^2$$

Once we have a trained model $\widehat{f}(\mathbf{x}; \theta^*)$, we are interested in analyzing the *test MSE*. Considering a new datapoint $(\mathbf{x}_0, y_0) \sim f_{XY}$ (not used in the training process), we can theoretically write the test MSE as

$$\mathsf{MSE}_{\mathsf{Te}} = \mathbb{E}_{(\mathbf{x_0}, y_0) \sim f_{XY}} \left[\left(y_0 - \widehat{f}\left(\mathbf{x}_0; \theta^\star\right) \right)^2 \right]$$

Notice that, since \mathbf{x}_0 is a r.v., the function $\widehat{f}(\mathbf{x}_0; \theta^*)$ is also a r.v. The test MSE can be written as (proof omitted)

$$\mathsf{MSE}_{\mathsf{Te}} = \mathsf{Var}\left[\widehat{f}\left(\mathbf{x}_0; \theta^{\star}\right)\right] + \left(\mathsf{Bias}\left[\widehat{f}\left(\mathbf{x}_0; \theta^{\star}\right)\right]\right)^2 + \mathsf{Var}\left[\varepsilon\right]$$

where

$$\operatorname{Bias}\left[\widehat{f}\left(\mathbf{x}_{0}; \theta^{\star}\right)\right] = \mathbb{E}\left[\widehat{f}\left(\mathbf{x}_{0}; \theta^{\star}\right)\right] - f\left(\mathbf{x}_{0}\right)$$

$$\operatorname{Var}\left[\widehat{f}\left(\mathbf{x}_{0}; \theta^{\star}\right)\right] = \mathbb{E}\left[\left(\widehat{f}\left(\mathbf{x}_{0}; \theta^{\star}\right) - \mathbb{E}\left[\widehat{f}\left(\mathbf{x}_{0}; \theta^{\star}\right)\right]\right)^{2}\right]$$

- ▶ The sum of the terms $\operatorname{Var}\left[\widehat{f}\left(\mathbf{x}_{0};\theta^{\star}\right)\right]+\left(\operatorname{Bias}\left[\widehat{f}\left(\mathbf{x}_{0};\theta^{\star}\right)\right]\right)^{2}$ is called the *reducible error*, since it can be reduced by choosing a good parametric function $\widehat{f}(\mathbf{x};\theta)$
- ▶ The term $Var[\varepsilon]$ is called *irreducible error*, since it is always there, even when your parametric function is exactly the same as the regression function f that "Nature" is using to generate the dataset you observe

The two terms in the reducible error depend on the flexibility of the model $\hat{f}(\mathbf{x}; \theta)$

- ▶ The bias term Bias $\left[\widehat{f}\left(\mathbf{x}_{0};\theta^{\star}\right)\right]$ decreases monotonically as the flexibility of the model increases (cyan plot)
- ► The variance term $Var\left[\widehat{f}(\mathbf{x};\theta)\right]$, increases monotonically as the flexibility of the model increases (orange plot)

Numerical interpretation: Run 10 different polynomial fits (with 10 different training datasets) when d = 1, 3 and 20.

- For d = 1 (rigid case), the variance is low, but the bias is high
- For d = 3 (cubic case), the variance and bias are both low
- ▶ For d = 20 (flexible case), the bias is still low, but the variance increases

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.