

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

AD			

Genetic and Physical Structure of Salmonella-coli Phage Hybrids and Development of New Generalized Transducing Hybrid Phages for E. Coli

Annual Report

Nobuto Yamamoto, Ph.D.

May 1984

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-79-C-9134

Hahnemann University School of Medicine Philadelphia, Pennsylvania 19102

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

DTE FILE COF

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
4. TITLE (and Sublitle) Genetic and Physical Structure	of Salmonella-	5. TYPE OF REPORT & PERIOD COVERED (2/1/83 to 8/31/83)				
coli Phage Hybrids and Develop		Annual Report				
Generalized Transducing Phag		6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)				
Nobuto Yamamoto		DAMD 17 -79-C-9134				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
Hahnemann University School of	Medicine	61102A				
Broad and Vine Sts Philadelphia, Pa. 19102	,	3M161102BS X 0·AE·062				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
U.S. Army Research and Develo	May 1984					
Command, Fort Detrick, Freder	5012	12				
14. MONITORING AGENCY NAME & ADDRESS(If different	t from Controlling Office)	15. SECURITY CLASS. (of this report)				
		Unclassified				
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>				
Approved for public release: dist	ribution unlimit	ed				
17. DISTRIBUTION STATEMENT (of the abatract entered	in Block 20, Il different fro	om Report)				
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and	· ·					
High specialized transducing pha		_				
Host range, Tail antigen, Serolo	gicai neutranza	tion, invertible segment				
20. ABSTRACT (Continue on reverse side if necessary and	f Identify by block number)					
We have isolated various unusua	al hybrid bacter					
the evolutionary diverse bacterio		lla phage P22 and coli-				
phages \$80 or a mutator phage M						
Genetic analy of \$80immP22	 -	-				
carries a segment, containing dispensable genes, situated next to the attachment site. Such dispensible genes can be lost and replaced by						
attachment site Such dispensibl	e genes can be i	iost and replaced by				

the bacterial segment adjacent to the prophage attachment site of E. coli chromosome by improper excision during induction. Consequently we isolated high specialized transducing phage for argF and proA although the parental phage \$80 is a specialized transducing phage for the trp operon, because the \$80immP22dis phage carries the P22 prophage attachment site.

P22 can recombine with coli-mutator phage Mu to yield MuimmP22 hybrids. Genetic studies correlated with serological and host range analysis of MuimmP22 hybrids revealed that crossovers occurred at the essential genes within the invertible G segment of Mu phage and the tail spike gene of P22 phage to form MuimmP22. Thus this hybrid phage carries unusual tail fibers whose genetic region consists of a mixedly constructed gene derived from these two unrelated phages. MuimmP22 hybrids infect hosts carrying the smooth O-antigen (Man-Rha-Gal)_n repeating unit which is the specific receptor for adsorption of P22 phage. However, anti-P22 serum is unable to neutralize the MuimmP22 hybrid. This is probably due to conformational change of the P22 tail spike portion from globular to fibrous structure because the hybrid tail fiber gene carries a short P22 spike gene segment.

NTIS GRA&I DTIC This Unannounced Justification By Distribution/ Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes	Acces	sion For	
Unannounced Justification By Distribution/ Availability Codes Available and/or	NTIS	GRA&I	r ik
By	DTIC	T.13	7
By	Unann	ounced	ñ
Distribution/ Availability Codes Avail and/or	Justi	fication_	
		Av dil an	d/or
		U-1-1-	

Genetic and Physical Structure of Salmonella-coli Phage Hybrids and Development of New Generalized Transducing Hybrid Phages for E. Coli

Annual Report

Nobuto Yamamoto, Ph.D.

May 1984

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-79-C-9134

Hahnemann University School of Medicine Philadelphia, Pennsylvania 19102

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

SUMMARY

We have isolated unusual hybrid bacteriophages by recombining the evolutionary diverse bacteriophages Salmonella phage P22 and coliphages \$80 or a mutator phage Mu. Genetic analysis of \$80 immP22 hybrid genomes led us to isolate high specialized transducing phages for argF and proAB genes of the E. coli chromosome although the parental phage, \$80, is a specialized transducing phage for the E. coli trp operon.

Phage P22 can recombine with coli-mutator phage Mu. Genetic studies correlated with serological and host range analyses of MuimmP22 hybrids revealed that crossovers occurred at the tail fiber genes within the invertible G segment of Mu phage and the tail spike gene of P22 phage to form MuimmP22 hybrids. MuimmP22 hybrids infect hosts carrying the smooth host O-antigen (Man-Rha-Gal)_n repeating unit which is specific receptor for adsorption of P22 phage. However, anti-P22 serum is unable to neutralize the MuimmP22 hybrids. This is probably because the contribution of P22 spike peptide to the hybrid tail fiber is to short to form P22 spike like structure and antigenicity. Anti-serum prepared for the G(+) orientation of Mu phage neutralized the MuimmP22 hybrid at about a 1/10 neutralization rate of MuG(+) phage. Thus we suggested that MuimmP22hybrid may carry the inverted (-) orientation of the G segment of Mu phage. \(\) In fact near the distal ends of both P22 tail spike and Mu tail fiber there is an accidental homology. Therefore, we concluded that MuimmP22 hybrids carry the (-) orientation of the G segment and the G(-) sequence facilitates crossovers with the P22 spike gene to yelld the hybrid tail fiber.

FOREWORD

Though we initially planned for development of a gene cloning vector, we have not established a recombinant DNA method for these hybrid phages during this period.

Table of Contents

Fro	ont	Cover	1
Rep	or	Documentation Page	2
Tit]	le I	Page	4
Sun	am	ary	5
For	ew	ord	6
Pro	gr	ess	8
	1.	Intergeneric high transducing activity of \$80 imm P22 dis	
		hybrid type.	8
	2 .	The structure of the P22 homologous segment in MuimmP22	
		hybrids.	9
	3.	Serological and genetic evidence for formation mechanis of	
		the new tail fiber antigen of hybrids between coliphage Mu	
		and Salmonella phage P22.	9
Pub	lic	ations	11
Dis	tril	oution list	12

PROGRESS

1. Intergeneric high transducing activity of \$80immP22dis hybrid type

♦80immP22dis hybrid type carries all the late genes of coliphage **♦**80 and most of the P22 early region including both the bipartite immunity region (c and Im). Such hybrids can grow in hosts lysogenic for \$80immP22 and carry not only att region but also gene 9 or al of P22, because these genes are situated between c and Im regions of P22. Thus the prophage of this hybrid type is inserted into the attP22 region adjacent to the proline region of the E. coli-S. typhimurium recombinant WR4027 chromosome. Induction of such a prophage creates a new hybrid type by losing the Im region and the genes between the Im and att regions of P22 and acquiring a bacterial chromosomal segment. Such new hybrids are now unable to grow in \$80immP22 lysogens, thus designated as \$80immP22dis. S. typhimurium chromosome consists of S. typhimurium chromosomal segment coding for at least synthesis of cell wall lipopolysaccharide and E. coli segment(s) containing mal B rep, proAB and lac gene, \$80immP22dis hybrids are likely to carry a coli chromosomal segment containing proline A, B and adjacent genes. Because of the lack of sufficient auxotrophic mutants in E. coli-S. typhimurium recombinant species, E. coli K12 auxotrophic mutants were used for transduction assays with \$80immP22dis hybrid type. Transduction frequencies are extremely high, more than 10% for these genes. Arginine F of E. coli is a gene for ornitine carbamoyltransferase at 6min of E. coli map and is efficiently transduced by \$80immP22dis hybrid type at a frequency of about 21%. Proline A of E. coli K12 was also transduced by \$80immP22dis at a high frequency (about 12%) but this frequency is lower than that with arginine F. In addition methionine D was transduced with some of the

\$80\text{immP22dis}\$ strains but not all the \$80\text{immP22dis}\$ hybrids strains, whereas arginine F and proline A of E. coli K12 were transduced with all the \$80\text{immP22dis}\$ strains tested. These observations suggest the genetic order attP22-argF-proA-metD is in counterclockwise orientation of the E. coli chromosome.

2 The structure of the P22 homologous segment in MuimmP22 hybrids

We reported previously that MuimmP22 hybrid carries the P22 early

regions including the c region and the regulatory genes of DNA synthesis

(12 and 18). Infection of WR4028 with MuimmP22 produces lysogens at a high frequency. The resultant lysogens are inducible although strains

lysogenic for the parent MU phage are not inducible. These results suggest that MuimmP22 hybrid carries the att and int region of P22 phage. Therefore it became desirable to determine the left end of the P22 homology in MuimmP22 hybrids.

Since WR4028 strain lysogenic for MuimmP22 is sensitive to P22 infection, superinfection of such a lysogen with P22c2ts12 induced the prophage and also produced P22 recombinants. Computation of crossovers between markers by scoring various P22 recombinant types suggests that the left arm of P22 homology in MuimmP22 hybrid ends at or near the att region of P22.

3. Serological and genetic evidence for formation mechanism of the new tail fiber antigen of hybrids between coliphage and Salmonella phage P22

MuimmP22 hybrids form plaques on smooth derivatives such as WR4028 of E. coli S. typhimurium hybrids while Mu phage infects a rough

derivative WR4027. Moreover, anti-Mu serum neutralizes the plaqueforming ability of MuimmP22 Hybrid at a 10-fold reduced rate as compared with that of Mu phage. Thus, we suspected that MuimmP22 hybrids carry the tail fiber coded in the inverted G(-) segment of Mu phage. However, anti-Mu G(-) serum was prepared and also found to neutralize MuimmP22hybrids at a 10-fold reduced rate. Since MuimmP22 infects smooth host WR4028, the distal end of MuimmP22 hybrid tail fiber might have been derived from P22. In fact a small accidental homology exists near the distal ends of both P22 tail spike and MuG(-) tail fiber regions. Therefore, we suggested that genetic crossovers between Mu and P22 occur at the tail fiber region U of the G segment with the inverted (-) orientation of Mu phage, resulting in the replacement of the rest of the right hand end of Mu phages genome with a P22 segment. Backcross frequencies of the P22 markers of MuimmP22 with P22 phage is explained by single crossovers toward the right end of the hybrid genome, supporting the above theory.

Publications

Yamamoto, N., Droffner, M.L., Yamamoto, S., Gemski, P., and Baron, L.S. Characterization of high transducing derivatives of \$80immP22dis phage a hybrid between coliphage \$80 and Salmonella phage P22. Submitted to J. Gen. Virology.

Yamamoto, N., Gemski, P., and Baron, L.S. Expression of Salmonella somatic O-1 antigen conversion gene al in E. coli K12 and E. coli-S. typhimurium recombinants by hybrid phages between Salmonella phage P22 and coliphages. Submitted to J. Gen. Microbiol.

DISTRIBUTION LIST

12 copies

Director

Walter Reed Army Institute of Research

Walter Reed Army Medical Center

ATTN: SGRD-UWZ-C

Washington, DC 20307-5100

4 copies

Commander

US Army Medical Research and Development Command

ATTN: SGRD-RMS

Fort Detrick, Frederick, Maryland 21701-5012

12 copies

Defense Technical Information Center (DTIC)

ATTN: DTIC-DDAC Cameron Station

Alexandria, VA 22304-6145

1 copy

Dean

School of Medicine

Uniformed Services University of the

Health Sciences 4301 Jones Bridge Road Bethesda, MD 20814-4799

1 copy

Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234-6100

Genetic and Physical Structure of Salmonella-coli Phage Hybrids and Development of New Generalized Transducing Hybrid Phages for E. Coli

Annual Report

Nobuto Yamamoto, Ph.D.

May 1984

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-79-C-9134

Hahnemann University School of Medicine Philadelphia, Pennsylvania 19102

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)	READ INSTRUCTIONS				
REPORT DUCUMENTATION PAGE BEFORE COMPLETING FOR					
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED				
Genetic and Physical Structure of Salmonella-	(2/1/83 to 8/31/83)				
· · · · · · · · · · · · · · · · · · ·	Annual Report				
coli Phage Hybrids and Development of New	6. PERFORMING ORG. REPORT NUMBER				
Generalized Transducing Phages for E. coli	o. PERFORMING ONC. NEW OW. Nomber.				
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)				
- AUTHOR(4)					
Nobuto Yamamoto	DAMD 17 - 79-C-9134				
-102410 -41142-1010	2, ,0 0 0101				
AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK				
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
Hahnemann University School of Medicine	61102A				
Broad and Vine Sts	3M161102BS 10 · AE · 062				
Philadelphia, Pa. 19102					
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
U.S. Army Research and Development	May 1984				
Command, Fort Detrick, Frederick, MD 21701-	13. NUMBER OF PAGES				
5/11/2	12				
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)				
	Unclassified				
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different fro	om Report)				
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number, High specialized transducing phage, Mutator pha Host range, Tail antigen, Serological neutraliza	ige, Tail fiber, Tail spike,				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) We have isolated various unusual hybrid bacter the evolutionary diverse bacteriophages Salmone	riophages by recombining				

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

the bacterial segment adjacent to the prophage attachment site of E. coli chromosome by improper excision during induction. Consequently we isolated high specialized transducing phage for $\arg F$ and $\gcd A$ although the parental phage \$80 is a specialized transducing phage for the $\gcd A$ operon, because the $\$80 \varliminf P22 \varlimsup P22$

P22 can recombine with coli-mutator phage Mu to yield MuimmP22 hybrids. Genetic studies correlated with serological and host range analysis of MuimmP22 hybrids revealed that crossovers occurred at the essential genes within the invertible G segment of Mu phage and the tail spike gene of P22 phage to form MuimmP22. Thus this hybrid phage carries unusual tail fibers whose genetic region consists of a mixedly constructed gene derived from these two unrelated phages. MuimmP22 hybrids infect hosts carrying the smooth O-antigen (Man-Rha-Gal)_n repeating unit which is the specific receptor for adsorption of P22 phage. However, anti-P22 serum is unable to neutralize the MuimmP22 hybrid. This is probably due to conformational change of the P22 tail spike portion from globular to fibrous structure because the hybrid tail fiber gene carries a short P22 spike gene segment.

AI)					

Genetic and Physical Structure of Salmonella-coli Phage Hybrids and Development of New Generalized Transducing Hybrid Phages for E. Coli

Annual Report

Nobuto Yamamoto, Ph.D.

May 1984

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-79-C-9134

Hahnemann University School of Medicine Philadelphia, Pennsylvania 19102

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

SUMMARY

We have isolated unusual hybrid bacteriophages by recombining the evolutionary diverse bacteriophages Salmonella phage P22 and coliphages \$\psi80\$ or a mutator phage Mu. Genetic analysis of \$\psi80\text{imm}P22\$ hybrid genomes led us to isolate high specialized transducing phages for argF and proAB genes of the E. coli chromosome although the parental phage, \$\psi80\$, is a specialized transducing phage for the E. coli trp operon.

Phage P22 can recombine with coli-mutator phage Mu. Genetic studies correlated with serological and host range analyses of MuimmP22 hybrids revealed that crossovers occurred at the tail fiber genes within the invertible G segment of Mu phage and the tail spike gene of P22 phage to form MuimmP22 hybrids. MuimmP22 hybrids infect hosts carrying the smooth host O-antigen (Man-Rha-Gal)_n repeating unit which is specific receptor for adsorption of P22 phage. However, anti-P22 serum is unable to neutralize the MuimmP22 hybrids. This is probably because the contribution of P22 spike peptide to the hybrid tail fiber is to short to form P22 spike like structure and antigenicity. Anti-serum prepared for the G(+) orientation of Mu phage neutralized the MuimmP22 hybrid at about a 1/10 neutralization rate of MuG(+) phage. Thus we suggested that Muimm P22hybrid may carry the inverted (-) orientation of the G segment of Mu phage. In fact near the distal ends of both P22 tail spike and Mu tail fiber there is an accidental homology. Therefore, we concluded that MuimmP22 hybrids carry the (-) orientation of the G segment and the G(-) sequence facilitates crossovers with the P22 spike gene to yeild the hybrid tail fiber.

FOREWORD

Though we initially planned for development of a gene cloning vector, we have not established a recombinant DNA method for these hybrid phages during this period.

Table of Contents

Front Cover	1
Report Documentation Page	2
Title Page	4
Summary	5
Foreword	6
Progress	8
1. Intergeneric high transducing activity of \$80immP22dis	
hybrid type.	8
2. The structure of the P22 homologous segment in MuimmP22	
hybrids.	9
3. Serological and genetic evidence for formation mechanis of	
the new tail fiber antigen of hybrids between coliphage Mu	
and Salmonella phage P22.	9
Publications	11
Distribution list	12

PROGRESS

1. Intergeneric high transducing activity of \$80immP22dis hybrid type \$80immP22dis hybrid type carries all the late genes of coliphage \$80 and most of the P22 early region including both the bipartite immunity region (c and Im). Such hybrids can grow in hosts lysogenic for \$80 immP22 and carry not only att region but also gene 9 or al of P22, because these genes are situated between c and Im regions of P22. Thus the prophage of this hybrid type is inserted into the attP22 region adjacent to the proline region of the E. coli-S. typhimurium recombinant WR4027 chromosome. Induction of such a prophage creates a new hybrid type by losing the Im region and the genes between the Im and att regions of P22 and acquiring a bacterial chromosomal segment. Such new hybrids are now unable to grow in \$80immP22 lysogens, thus designated as \$80immP22dis. Since E. coli -S. typhimurium chromosome consists of S. typhimurium chromosomal segment coding for at least synthesis of cell wall lipopolysaccharide and E. coli segment(s) containing mal B rep, proAB and lac gene, \$80immP22dis hybrids are likely to carry a coli chromosomal segment containing proline A, B and adjacent genes. Because of the lack of sufficient auxotrophic mutants in E. coli-S. typhimurium recombinant species, E. coli K12 auxotrophic mutants were used for transduction assays with \$80immP22dis hybrid type. Transduction frequencies are extremely high, more than 10% for these genes. Arginine F of E. coli is a gene for ornitine carbamoyltransferase at 6min of E. coli map and is efficiently transduced by \$80immP22dis hybrid type at a frequency of about 21%. Proline A of E. coli K12 was also transduced by \$80immP22dis at a high frequency (about 12%) but this frequency is lower than that with arginine F. In addition methionine D was transduced with some of the

\$80\text{immP22dis}\$ strains but not all the \$80\text{immP22dis}\$ hybrids strains, whereas arginine F and proline A of E. \text{coli} K12 were transduced with all the \$80\text{immP22dis}\$ strains tested. These observations suggest the genetic order \text{attP22-argF-proA-metD}\$ is in counterclockwise orientation of the E \text{coli} chromosome.

The structure of the P22 homologous segment in MuimmP22 hybrids

We reported previously that MuimmP22 hybrid carries the P22 early

regions including the c region and the regulatory genes of DNA synthesis

(12 and 18). Infection of WR4028 with MuimmP22 produces lysogens at a high frequency. The resultant lysogens are inducible although strains

lysogenic for the parent MU phage are not inducible. These results suggest that MuimmP22 hybrid carries the att and int region of P22 phage. Therefore it became desirable to determine the left end of the P22 homology in MuimmP22 hybrids.

Since WR4028 strain lysogenic for MuimmP22 is sensitive to P22 infection, superinfection of such a lysogen with P22c2ts12 induced the prophage and also produced P22 recombinants. Computation of crossovers between markers by scoring various P22 recombinant types suggests that the left arm of P22 homology in MuimmP22 hybrid ends at or near the att region of P22.

3. Serological and genetic evidence for formation mechanism of the new tail fiber antigen of hybrids between coliphage and Salmonella phage P22

MuimmP22 hybrids form plaques on smooth derivatives such as WR4028

of E. coli S. typhimurium hybrids while Mu phage infects a rough

derivative WR4027. Moreover, anti-Mu serum neutralizes the plaqueforming ability of MuimmP22 Hybrid at a 10-fold reduced rate as compared with that of Mu phage. Thus, we suspected that MuimmP22 hybrids carry the tail fiber coded in the inverted G(-) segment of Mu phage. However, anti-Mu G(-) serum was prepared and also found to neutralize MuimmP22hybrids at a 10-fold reduced rate. Since MuimmP22 infects smooth host WR4028, the distal end of MuimmP22 hybrid tail fiber might have been derived from P22. In fact a small accidental homology exists near the distal ends of both P22 tail spike and MuG(-) tail fiber regions. Therefore, we suggested that genetic crossovers between Mu and P22 occur at the tail fiber region U of the G segment with the inverted (-) orientation of Mu phage, resulting in the replacement of the rest of the right hand end of Mu phages genome with a P22 segment. Backcross frequencies of the P22 markers of MuimmP22 with P22 phage is explained by single crossovers toward the right end of the hybrid genome, supporting the above theory.

Publications

Yamamoto, N., Droffner, M.L., Yamamoto, S., Gemski, P., and Baron, L.S. Characterization of high transducing derivatives of \$80immP22dis phage a hybrid between coliphage \$80 and Salmonella phage P22. Submitted to J. Gen. Virology.

Yamamoto, N., Gemski, P., and Baron, L.S. Expression of Salmonella somatic O-1 antigen conversion gene al in E. coli K12 and E. coli-S. typhimurium recombinants by hybrid phages between Salmonella phage P22 and coliphages. Submitted to J. Gen. Microbiol.

DISTRIBUTION LIST

12 copies Director

Walter Reed Army Institute of Research

Walter Reed Army Medical Center

ATTN: SGRD-UWZ-C

Washington, DC 20307-5100

4 copies Commander

US Army Medical Research and Development Command

ATTN: SGRD-RMS

Fort Detrick, Frederick, Maryland 21701-5012

12 copies Defense Technical Information Center (DTIC)

ATTN: DTIC-DDAC Cameron Station

Alexandria, VA 22304-6145

1 copy Dean

School of Medicine

Uniformed Services University of the

Health Sciences 4301 Jones Bridge Road Bethesda, MD 20814-4799

1 copy Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234-6100

END

FILMED

1-85

DTIC