Mikroelel	,		Jméno Jakub	ID 240844					
١		nikroelek	Ročník	Obor	Skupina				
	FEK	Γ VUT v	3.	MET	MET/2				
Spolupracoval		Měřeno dne			lne	Hodnocení			
	_		5.12. 2023		5.12. 2023				
Název zadání Měření a dostavování rezistorů									

1 Teoretický úvod

Teorie potřebná k této úloze vychází z předešlých laboratorních úloh, zejména úlohy 2, kdy jsme měřili hodnoty tlustovrstvých rezistorů v závislosti na různých podobách výpalu a také změnu jejich odporu v závislosti na teplotě. Přijde mi zbytečné uvádět znovu základní informace o samotné technologii nebo výpočtu odporu na čtverec, které již v této době semestru musí znát opravdu každý student, proto bude tato sekce o něco kratší.

1.1 Dostavování TLV rezistorů

Co se týče nové teorie věnuje se tato úloha také dostavování (nebo také trimmování) již natištěných rezistorů. Jak jsme si již vyzkoušeli na předchozích úlohách, přesnost tisku je velkou neznámou a i při optimalizaci všech dostupných parametrů jsou hodnoty stále poměrně nepřesné. Z tohoto důvodu se s nepřesností v návrhu počítá a tisknou se rezistory s o něco nižšími hodnotami než je požadováno. Následně jsou rezistory měřeny a v průběhu měření je jich část odebrána tak, aby se svou hodnotou více přiblížili požadavku.

Nejčastějšími způsoby je mechanické osbroušení, obvykle proudem částic korundu nebo křemíku, nebo odpaření vrstvy laserem, většinou typ YAG nebo CO₂.

Pro dostavení je možné vyřezat do tlustovrstvého motivu různé obrazce. Obvykle se volí přímý řez od kraje směrem ke středu. Pokud se takovýchto provede více vedle a naproti sobě, vznikne serpentýnový motiv. Alternativou je ještě výřez ve tvaru L [1, 2].

2 Praktická část

Měřili jsme hodnoty odporů vytvořených technologií tlusté vrstvy na testovacím substrátu, viz obr. 1. Na substrátu byl uvedený motiv 4x a to vždy pootočen o 90°, díky takovému měření je pak teoreticky možné stanovit vliv různých parametrů tisku TLV, zejména ověřit, jestli je tisk homogenní v obou osách. Na základě měření je pak možné upravit parametry tisku tak, aby při tisku skutečného integrovaného obvodu byl výsledek co nejvíce optimální a předvídatelný.

Všechny měřené hodnoty se nachází v tabulce, která je pro lepší přehlednost umístěna až na samotném konci dokumentu.

2.1 Zpracování měřených dat

Na základě pokynů vyučujícího byla stanovena teoretická hodnota odporu (viz zmíněná tabulka). Vypočtena byla následovně:

$$R_{teor} = R_{sq} \cdot \frac{L}{W}$$

Ačkoliv toto nebylo vyučujícím upřesněno, předpokládaná jednotka zadaných rozměrů jsou µm. Z nám dodaných údajů vyplývá, že byla použita odporová pasta s odporem $100\,\Omega/\mathrm{sq}$.

Následně byla do grafu vynesena závislost odporu na délce rezistoru. Byl vytvořen graf pro každou odporovou sérii a nachází se v něm data ze všech čtyř kvadrantů, pro jednotlivé série se jedná o grafy 2, 3, 4 a 5.

Obr. 1: Testovací substrát. Převzato z [1].

Obr. 2: Závislost odporu na délce. Série RX_1.

Obr. 3: Závislost odporu na délce. Série RX_2.

Obr. 4: Závislost odporu na délce. Série RX_3.

Obr. 5: Závislost odporu na délce. Série RX_4.

3 Závěr

Jak je vidět z grafů a tubulky naměřených hodnot, pro některé série jsou výsledky v různých kvadrantech obdobné, pro některé naopak vůbec. Nejhomogennějšíh výsledku dosáhla série RX_3. Také je vidět, že napříč sériemi vycházely celkově o něco menší hodnoty v prvním kvadrantu a naopak vyšší ve druhém a třetím.

Při porovnání naměřených hodnot s teoretickými se ale dostáváme do prekérní situace. Odchylka zde dosahuje několika řádů kdy namísto stovek Ω měříme hodnoty i v nižších stovkách $M\Omega$, typycky pak v jednotkách $M\Omega$. Toto nasvědčuje buď to hrubé systematické chybě měření neno špatným informacím ohledně použité odporové pasty, popř. kombinaci obou faktorů. Vzhledem k tomu, že měření bylo prováděno poměrně dlouhý čas a dohlíženo čtyřmi osobami se mi takto hruhá chyba jeví jako nepravděpodobná, ovšem vyloučna není.

Reference

- [1] OTÁHAL, A.; ADÁMEK, M.; HEJÁTKOVÁ, E. *Měření a dostavování rezistorů* [online]. 2022. [cit. 2023-12-04]. Dostupné z: https://moodle.vut.cz/pluginfile.php/797149/mod_resource/content/1/LC_05_navod_v02_2022.pdf.
- [2] SCHROEDER, Kory. How Trimming Affects Thick-Film Resistor Performance. Power Electronics Tips. 2022. URL: https://www.powerelectronictips.com/how-trimming-affects-thick-film-resistor-performance-faq/.

cíto	300	MESH				l							
síto	poč.vrst.	Emulze											
ovrstvení	3/2	COL POLY-PLU	S LIV Evtr	émní výška šab	lony								
pasta	100	Ω/□	R2	ESL 2912	18.12.2000								
разта	100	\$2/	NZ	L3L 2/12	10.12.2000	MOhm	MOhm	MOhm	MOhm				
P.Č.	L	W	Počet □	R - Teor		RM_100_1_1	RM_100_1_2		RM_100_1_4				T
R1_1	250	250	1	100		0,025	0,03536	0,127	0,0727				
R2_1	500	250	2	200		0,627	1,242	1,976	1,534				1
	750	250	3	300		i	-	47,78	6,869				-
R3_1						1,504	7,1667				-	-	-
R4_1	1000	250	4	400		1,442	12,02	33,542	66,574				
R5_1	1250	250	5	500		1,617	98,5	103,23	47,126		-	-	
R6_1	1500	250	6	600		2,476	43,47	160,57	74,42			-	-
R7_1	1750	250	7	700		2,673	179,37	198,28	192,76	_		-	-
R8_1	2000	250	8	800		4,159	324,5	163,36	-				
R9_1	2250	250	9	900		4,629	297,44	402,9	526,827				
R10_1	2500	250	10	1000		5,447	-	270,9	215,219		-	-	
R11_1	2500	500	5	500		2,139	161,75	39,392	30,513				
R1_2	250	500	0,5	50		0,0598	0,1306	0,0914	0,0935				1_
R2_2	500	500	1	100		0,562	1,849	1,235	1,077				_
R3_2	1000	500	2	200		1,428	10,839	6,182	5,904				
R4_2	1500	500	3	300		2,285	31,286	17,227	15,189				
R5_2	2000	500	4	400		2,925	31,424	30,244	18,578				
R6_2	2500	500	5	500		3,876	66,84	36,445	25,633				
R7_2	3000	500	6	600		4,722	70,627	55,17	33,168				
R8_2	3500	500	7	700		5,642	76,456	61,563	38,279				
R9_2	4000	500	8	800		6,939	96,564	99,66	36,242				
R10_2	4500	500	9	900		8,592	26,58	111,688	55,327				
R11_2	5000	500	10	1000		9,375	9,356	311,5	93,408				
_						,							
R1_3	500	1000	0,5	50		0,4301	0,284	0,65	0,667				
R2_3	1000	1000	1	100		1,746	1,208	3,598	3,1				
R3_3	2000	1000	2	200		6,171	7,117	10,459	7,1				
R4_3	3000	1000	3	300		9,288	14,362	17,55	12,3				
R5_3	4000	1000	4	400		13,623	19,46	24,505	17,3				
R6_3	5000	1000	5	500		19,844	27,562	29,858	24,6				-
R7_3	6000	1000	6	600		24,45	27,362	37,777	30,6				1
		1000	7	700		30,609						-	1
R8_3	7000	+					37,257	42,718	34,4		-	-	-
R9_3	8000	1000	8 9	800		35,985	44,347	46,436	38,1	_		-	-
R10_3	9000	1000		900		39,541	51,617	48,712	44,8				
R11_3	10000	1000	10	1000		44,362	60,407	58,775	47,9				
D4 :			0 /-			0.0551	4 4	0 = 0 =	0.555				
R1_4	500	750	0,67	66,67		0,8031	1,117	0,782	0,883	<u> </u>	-	-	1
R2_4	750	750	1	100		1,798	3,016	2,353	2,8		-	-	-
R3_4	1500	750	2	200		6,86	7,39	8,743	9,1		-	-	1
R4_4	2250	750	3	300		12,532	12,214	14,873	14,6		1	-	1
R5_4	3000	750	4	400		16,224	16,268	23,029	21,2				1_
R6_4	3750	750	5	500		20,697	23,122	34,231	25,8				1_
R7_4	4500	750	6	600		26,229	31,128	40,384	30,7				1
R8_4	5250	750	7	700		31,029	33,886	49,307	33,8				
R9_4	6000	750	8	800		34,687	24,51	62,611	40,1				
R10_4	6750	750	9	900		40,658	12,179	78,069	48,3				
R11_4	7500	750	10	1000		48,594	5,753	125,315	63,4				
R1_5	1000	2000	0,5	50		0,59041	1,8006	1,3127	1,186				
R2_5	1000	5000	0,2	20		0,19901	0,671	0,40085	0,523				
R3_5	1000	10000	0,1	10		0,120577	0,08805	0,2447	0,248				1