Tema 4: Búsqueda con adversario: juegos

Objetivos

• Conocer las técnicas básicas de búsqueda con adversario (minimax, poda alfa-beta) y su relación con los juegos.

Estudia el tema en ...

- Nils J. Nilsson, "Inteligencia Artificial: Una nueva síntesis", Ed. Mc
 Graw Hill, 2000. pp. 175-192
- S. Russell, P. Norvig, Artificial Intelligence: A modern Approach, Tercera Edición, Ed. Pearson, 2010.

Contenido

- Juegos bipersonales con información perfecta
- Árboles de exploración de juegos
- El modelo básico
- Juegos en los que interviene un elemento aleatorio

Juegos

- Hasta ahora hemos considerado un solo agente reactivo/deliberativo.
 - El espacio (árbol/grafo) de búsqueda se genera a partir de solo sus propias acciones
 - Por cada estado, él decide qué acción tomar, y en el nuevo estado resultante, él vuelve a controlar qué acción tomar.
 - ¿qué ocurre con más de un agente?
- Entorno multiagente
 - Cualquier agente necesita considerar las acciones de otros agentes y cómo afectan a su propio estado.
 - Cooperativo: agentes trabajan para alcanzar un objetivo común
 - Competitivo: el objetivo de cada agente entra en conflicto con los del resto.
- Búsqueda con adversario: problemas de búsqueda en entornos multiagente competitivos que a partir de ahora llamaremos juegos.

Interés

- Laboratorios perfectos para investigar en técnicas de resolución de problemas.
- Es fácil medir el éxito o el fracaso.
- Fascinación para cierta gente.
- Aspecto comercial.
- Aplicaciones en ámbitos empresariales.

- Estas situaciones se estudian y resuelven utilizando la **Teoría de Juegos**. La teoría matemática de juegos fue inventada como tal por **John von Neumann** y por **Oskar Morgenstern** en 1944.
 - Entorno multiagente visto como un juego en el que el impacto de cada agente sobre sus pares es significante. A menudo en economía muchos agentes se ven como economías en lugar de juegos.
 - Usada para modelar decisiones en este tipo de entornos

• ¿Qué es un juego?

- Es cualquier situación de decisión, caracterizada por poseer una interdependencia estratégica, gobernada por un conjunto de reglas y con un resultado bien definido.
- En un juego, cada jugador intenta conseguir el mayor beneficio para sus intereses. La solución de un juego permite indicar a cada jugador qué resultado puede esperar y cómo alcanzarlo.

• Ejemplo de juego: El dilema del prisionero

• Dos individuos son detenidos por la policía debido a que cometieron cierto delito. Ambos son encerrados en celdas diferentes y son interrogados de forma individual. Ambos tienen dos alternativas: no confesar o delatar al compañero. Saben que si ninguno confiesa, ambos irán a la cárcel por 2 años, pero si uno delata a su compañero y el otro no, entonces al que confiesa le absuelven y al otro le encierran por 10 años. Si ambos confesasen, entonces la pena se repartiría y ambos irían a prisión por 5 años.

• Ejemplo de juego: El dilema del prisionero

	Prisionero 1		
		No delatar	Delatar
Prisionero 2	No delatar	(-2, -2)	(0, -10)
	Delatar	(-10, 0)	(-5, -5)

- ¿Qué harán los prisioneros? Con toda lógica: Cooperar. Sin embargo, la tentación de hacer la promesa de no delatar, para después traicionar al compañero es muy grande.
- El juego tiene una estructura no cooperativa.

- Ejemplo de juego: El juego de los palillos
 - Inicialmente, hay **n** palillos sobre la mesa, y dos jugadores A y B. El jugador A comienza el juego quitando 1, 2 ó 3 palillos. Le sigue el jugador B, que también podrá quitar 1, 2 ó 3 palillos. El turno vuelve al jugador A, y estas acciones se repiten hasta que quede un único palillo en la mesa. Aquel que quite este último palillo pierde el juego.

• **Pregunta:** ¿Cómo debe jugar **A** para maximizar su beneficio?

Juegos bipersonales con información

perfecta

- Juegos de **suma nula** (zero-sum games): en la situación final el beneficio de un jugador es total y la pérdida del oponente es total, o hay empate.
- Es decir las valoraciones de los estados finales del juego son o bien iguales , o bien opuestas.
- Por ejemplo, si un jugador gana al ajedrez (valoración +1), el otro necesariamente pierde (valoración -1).

• Un juego de **información perfecta** es aquel en los jugadores tienen a su disposición toda la información de la situación del juego.

Nos centraremos en juegos determinísticos, bipersonales, por turnos, de suma nula y con información perfecta.

Juegos como problema de búsqueda

- Estado inicial: donde se representa la posición inicial del tablero y se identifica el jugador que mueve.
- **Función sucesor**: devuelve una lista de pares *(movimiento, estado)*, cada una indicando un movimiento legal y el estado resultante.
- Test terminal, función que determina cuándo un juego ha finalizado. Los estados donde el juego finaliza se llaman estados terminales.
- Función de valoración: (función de utilidad) devuelve un valor numérico para estados terminales. Ajedrez (V,D,E o +1, -1, 0). En otros juegos hay variedad de posibles resultados (por ejemplo puntos ganados...).

Árboles de exploración de juegos

- Un árbol del juego es una representación explícita de todas las formas de jugar a un juego
 - El estado inicial más todos los movimientos legales forman un árbol de juego.
- Correspondencia entre árboles de juegos y árboles Y/O

Ejemplo simple

Notación min-max

- MAX: primer jugador
- MIN: segundo jugador
- Nodos MAX y nodos MIN
- Los nodos terminales se etiquetan con V, D o E desde el punto de vista de MAX

Estrategia

- En un problema de búsqueda normal, la solución es una secuencia de movimientos que llevan a un estado objetivo (un estado terminal que es victoria).
- En un juego MIN tiene algo que decir al respecto.
- MAX debe encontrar una estrategia contingente (que tiene en cuenta los movimientos de MIN).

Resolución del ejemplo

Resolver un juego

- ¿Qué significa resolver un juego?.
 - Encontrar un valoración para el nodo inicial.
 - Determinar una estrategia ganadora para MAX o para MIN.

Algoritmo STATUS

- Si J es un nodo MAX no terminal, entonces STATUS(J)=
 - V si alguno de los sucesores de J tiene STATUS V
 - D si todos los sucesores de J tienen STATUS D
 - E en otro caso
- Si J es un nodo MIN no terminal, entonces STATUS(J)=
 - V si todos los sucesores de J tienen STATUS V
 - D si alguno de los sucesores de J tiene STATUS D
 - E en otro caso

La regla minimax

- El valor V(J) de un nodo J de la frontera de búsqueda es igual al de su evaluación estática; en otro caso
- Si J es un nodo MAX, entonces su valor V(J) es igual al máximo de los valores de sus nodos sucesores
- Si J es un nodo MIN, entonces su valor V(J) es igual al mínimo de los valores de sus nodos sucesores.

Algoritmo Minimax

Para determinar el valor minimax, V(J) de un nodo J, hacer lo siguiente:

- Si J es un nodo terminal, devolver V(J)=f(J); en otro caso
- Para k=1,2,...,b, hacer:
 - Generar J_k, el k-ésimo sucesor de J
 - Calcular $V(J_k)$
 - − Si k=1, hacer AV(J) \leftarrow V(J₁); en otro caso, para k>=2,
 - hacer AV(J) ← max{AV(J),V(J_k)} si J es un nodo MAX o
 - hacer AV(J) ← min{AV(J),V(J_k)} si J es un nodo MIN
- Devolver V(J)=AV(J)

Comentarios

- Sobre complejidad
 - Complejidad en tiempo
 - Complejidad en espacio.
- Variantes: NEGMAX.

Poda alfa-beta

 ¿podríamos obtener el mismo resultado que el algoritmo minimax con menos esfuerzo computacional?

Dos cotas

- Cada nodo va a tener dos variables asociadas $\alpha y \beta$
- α: representa el **mejor valor** encontrado hasta el momento por los nodos MAX
 - Intuitivo: "variable auxiliar" usada por nodos MAX para calcular el máximo.
 - Inicialmente −∞
 - Es una cota inferior (sólo puede crecer)
 - Se actualiza en cada nodo MAX como resultado de evaluar sus hijos MIN.
- β : representa el **mejor valor** encontrado hasta el momento por los nodos MIN
 - Intuitivo: "variable auxiliar" usada por nodos MIN para calcular el mínimo.
 - Inicialmente +∞
 - Es una cota superior (solo puede decrecer)
- Criterio de poda:
 - En cada nodo el intervalo $[\alpha, \beta]$ se va estrechando conforme avanza la búsqueda.
 - Se poda cuando los valores se crucen.

Algoritmo ALFA-BETA

Para calcular el valor V(J,alfa,beta), hacer lo siguiente:

1. Si J es un nodo terminal, devolver V(J)=f(J). En otro caso, sean $J_1,...,J_k,...,J_b$ los sucesores de J. Hacer $k \leftarrow 1$ y, si J es un nodo MAX ir al paso 2; si J es un nodo MIN ir al paso 5.

2. NODO MAX

- 1. Hacer alfa \leftarrow max(alfa, V(J_k , alfa, beta)).
- 2. Si alfa >= beta devolver beta (icriterio de poda!); si no, continuar
- 3. Si k=b, devolver alfa; si no, hacer k \leftarrow k+1 y volver al paso 2.

3. NODO MIN

- 1. Hacer beta \leftarrow min(beta, V(J_k,alfa,beta)).
- 2. Si beta <= alfa devolver alfa (icriterio de poda!); si no, continuar
- 3. Si k=b, devolver beta; si no, hacer k \leftarrow k+1 y volver al paso 5.

Comentarios

- Sobre complejidad.
- En resumen: es impracticable tratar de resolver un juego con un factor de ramificación y una profundidad "decentes".
- Aun así la poda $\alpha \beta$ es la técnica de básica para la mayoría de las aplicaciones de juegos.

Nuevo modelo de solución

- Los juegos complejos no se pueden resolver ya que es imposible la exploración total hasta la terminación
- Nuevo objetivo: encontrar una buena jugada inmediata
- Importancia de la heurística en el proceso

El modelo básico para decisiones en tiempo real

- Arquitectura percepción/planificación/actuación
- Búsqueda con horizonte
- Uso de heurísticas

Juegos en los que interviene un elemento aleatorio

Modelo

Algunos problemas

