LA 1 Zusammenfassung

 $\begin{array}{c} {\rm Julius\ Vater} \\ 2603322 \end{array}$

Inhalt

1	Allg	gemein	e Grundlagen 1
	1.1	Logisc	hes
		1.1.1	Beweis durch Widerspruch
		1.1.2	Äquivalenz von Aussagen
	1.2	Menge	en
		1.2.1	Teilmengen
		1.2.2	Konsturktion neuer Mengen
		1.2.3	Die Kardinalität
	1.3	Abbilo	$lungen \dots \dots$
		1.3.1	Abbildug
		1.3.2	Die Identität
		1.3.3	Die Komposition von Abbildungen
		1.3.4	Urbild und Bild
		1.3.5	Die Umkehrfunktion
		1.3.6	injektiv, surjektiv, bijektiv
		1.3.7	Einschränkung einer Abbildung
	1.4	Relati	onen
		1.4.1	Eigenschaften von Relationen
		1.4.2	Äqivalenzrelation
		1.4.3	Äquivalenzklassen
2		ippen	4
	2.1		ben - Definitionen und Beispiele
		2.1.1	Verknüpfung, Asoziativitä, Kommututivität 4
		2.1.2	Gruppe
		2.1.3	Abelsche Gruppe
	2.2		gruppen
		2.2.1	Untergruppe
		2.2.2	Gruppenerzeugnis, zyklische Gruppe 5
		2.2.3	Ordnung
		2.2.4	Satz von Lagrange
	2.3		morphismen von Gruppen
		2.3.1	Gruppenhomomorphismus
		2.3.2	Eigenschaften von Homomorphismen 5
		2.3.3	Kern
		2.3.4	Endo-, Auto-, Isomorphismus 5
3	Rin	ge iind	l Körper 6
_	3.1	_	und Rinhomomorphismen 6
	J. 1	3.1.1	Ring und Teilring
		3.1.2	Ringhomomophismus
		3.1.3	Einheiten und Einheitengruppe 6
		3.1.4	Rinhomomorphismen und Einheiten 6
	2.2	Vänna	

		3.2.1 3.2.2	Körper
	0.0	J	1
	3.3		omringe
		3.3.1	Polynome, Polynomringe
		3.3.2	Grad eines Polynoms und Leitkoeffizient
		3.3.3	Rechenregeln für den Grad
		3.3.4	Nullteilerfreiheit
		3.3.5	Zentrum
		3.3.6	Teilbarkeit im Polynomring 8
4	Line		leichungssysteme und Matrizen 8
	4.1	Grund	llegenedes
		4.1.1	Lineares Gleichungssystem 8
		4.1.2	LGS aus Sichtweise der Gruppentheorie 8
		4.1.3	Matrizen
		4.1.4	Φ_A und das Produkt zweier Matrizen 9
		4.1.5	Summe zweier Matrizen
		4.1.6	Die Einheitsmatrix
		4.1.7	Multiplikation mit Skalaren
		4.1.8	Transponieren
		4.1.9	Fazit
	4.2		ierbare Matrizen
		4.2.1	Invertierbare Matrizen
		4.2.2	Elementarmatrizen
		4.2.3	Addtionsmatrizen
		4.2.4	Vertaurschungsmatrizen
		4.2.5	Diagonalmatrizen
	4.3		auß-Normalform
	4.0	4.3.1	Treppenform/Guaß-Normalform und Rang
		4.3.1	,
			Lösen eines LGS mit einer Matrix in Treppenform 11
	4.4	4.3.3	Der (-1)-Trick
	4.4		auß-Verfahren
		4.4.1	Hilfestellung
		4.4.2	Der Rang einer Matrix
		4.4.3	Lösungsstrategie eines LGS (Satz 4.4.4)
		4.4.4	Regularität und Rang
		4.4.5	Invertieren einer Matrix
5	Vek	torräu	
	5.1	Grund	llegende Definitionen
		5.1.1	Vektorraum
		5.1.2	Untervektorraum
		5.1.3	Untervektorraumkriterium
		5.1.4	Linearkombination
		5.1.5	Linerare Hülle
	5.2	Homo	morphismen

		5.2.1	Vektorraumhomomorphismen
	5.3	Basen	
		5.3.1	Basis
		5.3.2	Koordinatenvektoren
		5.3.3	Linerare Unabhängigkeit
		5.3.4	Charakterisierende Eigenschaften
		5.3.5	Existenz einer Basis
		5.3.6	Dimension
		5.3.7	Monontonie der Dimension
	5.4	Summ	en von Untervektorräumen
		5.4.1	Direkte Summe von Untervektorräumen
		5.4.2	Dimensionsformel
		5.4.3	Komplementärer Untervektorraum
	5.5	Faktor	räume
		5.5.1	Die Menge $V \setminus U$
		5.5.2	Vektorraumstrkutur auf $V \setminus U$
		5.5.3	Kanonische Projektion
		5.5.4	Homomorphiesatz
		5.5.5	Basis des Faktorraumes
		5.5.6	Rang-Defekt-Fromel
6	Bas		l lineare Abbildungen 16
	6.1	Linear	e Fortsetzung
		6.1.1	Rekonstruktion
		6.1.2	Lineare Fortsetzung
	6.2	Der D	ualraum
		6.2.1	Linearform und Dualraum
	6.3	Die Al	obildungsmatrix
		6.3.1	Abbildungsmatrix
	6.4	Basisw	vechsel für Homomorphismen
		6.4.1	Äquivalenz von Matrizen
		6.4.2	Hilfsformeln
7	Dot	ermina	anten 18
'	7.1		eterminantenform
	1.1	7.1.1	Determinantenform
		7.1.1 $7.1.2$	Merkregeln
		7.1.2 $7.1.3$	Wichtige Eigenschaften
	7.0		6 6
	7.2		place Entwicklung
		7.2.1	Die Determinante
		7.2.2	Die Laplace Entwicklung
		7.2.3	Der Multiplikationssatz
		7.2.4	Laplace-Entwicklung

	ndomor	·
8	.1 Basisv	vechsel
	8.1.1	Basiswechsel bei Endomorphismen
	8.1.2	Ähnlichkeit
	8.1.3	Ähnlichkeitsinvarianten
	8.1.4	Spur
8	.2 Invari	ante Unterräume
	8.2.1	Invarianter Unterraum
	8.2.2	Blockgesalt
8	.3 Eigen	räume
	8.3.1	Eigenvektor und -Werte
	8.3.2	Die Summe von Eigenräumen
	8.3.3	Folgerung
	8.3.4	Diagonalisierbarkeit
8	.4 Das C	Charakteristische Polynom
	8.4.1	Das Charakteristische Polynom
	8.4.2	Alghebraische und geometrische Vielfachheit
	8.4.3	Diagonalisierbarkeit

1 Allgemeine Grundlagen

1.1 Logisches

- Die Konjuktion $A \wedge B$ (ist wahr, wenn sowohl A als auch B wahr sind)
- Die **Negation** $\neg A$ (ist wahr, wenn A falsch ist)
- Die **Disjunktion** $A \vee B$ (ist wahr, wenn A, oder B, oder beide wahr sind)
- Die Implikation $A \Rightarrow B$ (ist wahr, wenn A falsch ist oder sowhol A als auch B wahr)

1.1.1 Beweis durch Widerspruch

Man versucht nachzuweisen, dass etwas nicht gilt mit Hilfe einer Aussage bei der man weiß, dass sie falsch ist.

1.1.2 Äquivalenz von Aussagen

Zwei Aussagen heißen Äquivalnet, wenn sie sich gegenseitig implizieren.

$$A \Leftrightarrow B = (A \Rightarrow B) \land (B \Rightarrow A)$$

1.2 Mengen

Eine Menge ist eine Gesamtheit von Objetkten, sodass von allen Objetkten feststeht ob sie zu der Menge gehören oder nicht.

1.2.1 Teilmengen

Eine Menge N heißt Teilmenge von M, wenn alle ihre Elemente auch in M liegen. Man schreibt: $N\subseteq M$ oder $M\supseteq N$

1.2.2 Konsturktion neuer Mengen

- Der **Durchschnitt** $M \cap N := \{x \in M \text{ und } x \in N\}$
- Die Vereiningung $M \cup N := \{x \in M \text{ oder } x \in N\}$
- Die **Differentmenge** $M \setminus N := \{x \in M \text{ und } x \notin N\}$
- Für $k \in \mathbb{N}$ ist $M^k := \{(m_1, m_2, \dots, m_k) \mid \forall i : m_i \in M\}$
- Die Potenzmenge $\mathcal{P}(\{0,1,2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$

1.2.3 Die Kardinalität

Die Kardinalität oder auch Mächtigkeit einer Menge ist die Anzahl ihrer Elemente. Man schreibt $|{\cal M}|$

1.3 Abbildungen

1.3.1 Abbildug

Eine Abbildung von Menge M nach Menge N ist eine Teilmenge $f \subseteq M \times N$, soadss für alle $x \in M$ genau ein $y \in N$ existiert, sodass $(x,y) \in f$ Eine Abbildung von Menge M nach Menge N ist eine Teilmenge $f \subseteq M \times N$, soadss für alle $x \in M$ genau ein $y \in N$ existiert, sodass $(x,y) \in f$. Für dieses y scheiben wir kurz y = f(x).

M hießt hierbei der **Definitonsbereich** und N die **Wertebereich** von f Wir schreiben:

$$f: M \longrightarrow N, x \mapsto f(x)$$

1.3.2 Die Identität

Die Abbildung $Id_M: M \longrightarrow M$, die durch

$$\forall x \in M : Id_M(x) := x$$

definiert ist, heißt die **Identität** auf M.

1.3.3 Die Komposition von Abbildungen

Die Kompostion zweier Abbildungen $f:M\longrightarrow N,\ g:N\longrightarrow P$ ist definiert durch

$$f \circ g : M \longrightarrow P, \ x \mapsto g(f(x))$$

Kompositionen sind assoziativ. Also gilt:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

1.3.4 Urbild und Bild

Für eine Abbildung $f: M \longrightarrow N$ und $B \subseteq N$ heißt

$$f^{-1}(B) := \{x \in M \mid f(x) \in B\}$$

Urbild von B unter f. (Alle x, deren f(x) in B liegen) Für eine Abbildung $f:M\longrightarrow N$ und $A\subseteq M$ heißt

$$f(A) := \{ f(a) \mid a \in A \} \subseteq N$$

Bild von A unter f.

1.3.5 Die Umkehrfunktion

Eine Abbdildung $f^{-1}:N\longrightarrow M$ hießt Umkehrfunktion, wenn f(m)=n und $m=f^{-1}(n).$

1.3.6 injektiv, surjektiv, bijektiv

• $f: M \longrightarrow N$ heißt **injektiv**, wenn für alle $m_1, m_2 \in M$ gilt:

$$f(m_1) = f(m_2) \Rightarrow m_1 = m_2$$

Also: es gibt <u>höchstens</u> ein m mit f(m) = n. $(\exists g: N \longrightarrow M \text{ mit } g \circ f = Id_M)$

• $f: M \longrightarrow N$ heißt $\mathbf{surjekitv}$, wenn gilt:

$$f(M) = N$$

Also: es gibt <u>mindestens</u> ein m mit f(m) = n. $(\exists h : N \longrightarrow M \text{ mit } f \circ h = Id_M)$

• $f: M \longrightarrow N$ heißt **bijektiv**, wenn sie sowohl injektiv als auch surjektiv ist.

Also: es gibt genau ein m mit f(m) = n.

1.3.7 Einschränkung einer Abbildung

Für $f: M \longrightarrow N$ und $T \subseteq M$ heißt

$$f|_T: T \longrightarrow N, t \mapsto f(t)$$

die Einschränkung von f nach T.

1.4 Relationen

Eine Relation auf die Menge M ist eine Teilmenge $R\subseteq M\times M$. Wir schreiben xRy statt $(x,y)\in R$

1.4.1 Eigenschaften von Relationen

- reflexiv, wenn $\forall x \in M : (x, x) \in R$.
- symmetrisch, wenn $\forall x, y \in M : xRy \Rightarrow yRx$.
- antisymmetrisch, wenn $\forall x, y \in M : [xRy \land yRx] \Rightarrow x = y$.
- transitiv, wenn $\forall x, y, z \in M : [xRy \land yRz] \Rightarrow xRz$.

1.4.2 Ägivalenzrelation

Eine Relation heißt Äquivalenz
relation, wenn sie reflexiv, symmetrisch und transitiv ist

1.4.3 Äquivalenzklassen

Es sei \sim eine Äquivalentz
relation auf der Menge M. Dann heißt für
 $x\in M$ die Teilmenge

$$[x]_{\sim} := \{ y \in M \mid x \sim y \} \subseteq M$$

die Äquivalenzklasse von x (bezüglich \sim)(Die Menge aller y, die zu x in Relation stehen).

• Für jede Äquivalenz
relation \sim auf M sind die Äquivalenz
lklassen betüglich \sim nicht leer und es gilt

$$M = \bigcup_{x \in M} [x]_{\sim}$$

und es gilt

$$[x]_{\sim} \cap [y]_{\sim} = \emptyset$$
 oder $[x]_{\sim} = [y]_{\sim}$

 $\bullet\,$ Ist umgekehrt $S\subseteq \mathcal{P}(M)$ ein System von Teilmengen von M, sowie

$$M = \bigcup_{A \in S} A \text{ und } \forall A, B \in S : [A \cap B = \emptyset \vee A = B],$$

dann gibt es eine Äquivalentrelation \sim auf M, für die S die Menge Äquivalenzklassen ist.

2 Gruppen

2.1 Gruppen - Definitionen und Beispiele

2.1.1 Verknüpfung, Asoziativitä, Kommututivität

Eine Verknüpfung auf Mist eine Abbildung $*:M\times M\longrightarrow M, (x,y)\mapsto x*y$ Die Verknügung * heißt

- kommutativ, wenn $\forall x, y \in M : x * y = y * x$

2.1.2 Gruppe

Ein Paar (M,*) heißt eine Gruppe, wenn:

- i * ist assoziativ
- ii $\exists e : \forall x \in M : x * e = e * x = x$
- iii $\forall x \in M \exists y \in M : x * y = e = y * x$

2.1.3 Abelsche Gruppe

Eine Gruppe (G,*) hießt kommutativ, wenn * eine kommutative Verknüpfung ist. Oft sagt man dann auch, die Gruppe sei abelsch

2.2 Untergruppen

2.2.1 Untergruppe

H ist genau dann eine Untergruppe von G, wenn gilt:

$$H \neq \emptyset$$
 und $\forall h_1, h_2 \in H : h_1 * h_2^{-1} \in H$

2.2.2 Gruppenerzeugnis, zyklische Gruppe

 \bullet Sei $M \subseteq G$ und I die Menge aller Untergruppen von G, die M enthalten. Dann ist

$$\langle M \rangle := \bigcup_{i \in I} i$$

eine Gruppe. Sie heißt das (Gruppen-) Erzeugnis von M oder die von M erzeugte Untergruppe von G. Sie ist die kleinste Untergruppe von G, die M enthält.

• Eine Gruppe G heißt Zyklisch, wenn es ein Element $a \in G$ gibt, sodass $G = \langle \{a\} \rangle$. Hierfür schreibt man kürzer auch $G = \langle a \rangle$

2.2.3 Ordnung

Die Kardinalität einer Gruppe nennt man auch ihre Ordnung. Die Ordnung eines Elementes $g \in G$ ist definert als die Ordnung der von g erzeugten Untergruppe

2.2.4 Satz von Lagrange

Es sei G eine endliche Gruppe und H eine Untergruppe von G. Dann ist die Ordnung von H ein Teiler der Ordnung von G

2.3 Homomorphismen von Gruppen

2.3.1 Gruppenhomomorphismus

Seien (G,*) und (H,\bullet) zwei Gruppen. Ein (Gruppen-)Homomorphismus von G nach H ist eine Abbildung $f:G\longrightarrow H$ mit

$$\forall x, y \in G : f : (x * y) = f(x) \bullet f(y)$$

2.3.2 Eigenschaften von Homomorphismen

- $f(e_G) = e_H$
- $\forall g \in G : f(g^{-1}) = f(g)^{-1}$ (links das Inverse in G, rechts das inverse in H)
- $f^{-1}(\{e_H\})$ (das Urbild des neutralen Elementes von H) ist eine Untergruppe von G
- f(G) ist Untergruppe von H
- f ist genau dann injektiv, wenn $f^{-1}(\{e_H\}) = \{e_G\}$

2.3.3 Kern

Sei $f: G \longrightarrow H$ Gruppenhomomorphismus. Dann heißt $f^{-1}(\{e_H\})$ der Kern von f

$$f \in \text{Hom}(G, H)$$
 injektiv $\Leftrightarrow \text{Kern}(f) = \{e_G\}$

2.3.4 Endo-, Auto-, Isomorphismus

- Für eine Gruppe G heißt ein Homomorphismus von G nach G auch ein **Endomorphismus** ($\operatorname{End}(G)$)
- $\bullet\,$ Ein bijektiver Homomorphismus zwischen zwei Gruppen G und Hheißt Isomorphismus zwischen G und H
- ullet Einen bijketiver Endomorphismus der Gruppe G nennt man ${f Automorphismus}$

3 Ringe und Körper

3.1 Ringe und Rinhomomorphismen

3.1.1 Ring und Teilring

Eine Menge R mit zwei Verknüpfungen + (Addition) und \cdot (Multiplikation) heißt **Ring**, wenn:

- (R, +) kommutative Gruppe ist mit neutralem Element: 0_R
- \bullet die Verknüpfung \cdot assoziativ ist mit neutralem Element 1_R (Einselement)
- die Distributivgesetzte gelten:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

$$(y+z)\cdot x = (y\cdot x) + (z\cdot x)$$

Ein Ring $(R,+,\cdot)$ mit kommutativer Multiplikation heißt kommutativer Ring $T\subseteq R$ heißt **Teilirng** von R, wenn:

- $1_R \in T$
- $\forall t_1, t_2 \in T : t_1 + t_2, t_1 \cdot t_2 \in T$
- $(T, +, \cdot)$ ein Ring ist

3.1.2 Ringhomomophismus

Ein Homomorphismus zwischen zwei Ringen $(R, +_R, \cdot_R)$ und $(S, +_S, \cdot_S)$ ist eine Abbildung $\Phi: R \longrightarrow S$, sodass:

- $\forall x, y \in R : \Phi(x +_R y) = \Phi(x) +_S \Phi(y)$
- $\forall x, y \in R : \Phi(x \cdot_R y) = \Phi(x) \cdot_S \Phi(y)$
- $\Phi(1_R) = 1_S$
- $\operatorname{Kern}(\Phi) := \{ x \in R \mid \Phi(x) = 0_S \}$

In diesem Fall gilt: Φ ist injektiv \Leftrightarrow Kern $(f) = \{0_R\}$

3.1.3 Einheiten und Einheitengruppe

Ein Element $x \in R$ heißt **invertierbar** in R oder Einheit in R, wenn

$$\exists y \in R: x \cdot y = y \cdot x = 1_R$$

Dieses y ist eindeutig bestimmbar und man nennt es \boldsymbol{x}^{-1}

Die **Einheitengruppe** R^{\times} ist die Menge aller Einhieten von R. Sie wird durch die Multiplikation zur Gruppe.

3.1.4 Rinhomomorphismen und Einheiten

Sei $\Phi:R\longrightarrow S$ ein Ringhomomophismus. Dann ist die Einschränkung Φ^{\times} von Φ auf die Einhitengruppe R^{\times} ein Gruppenhomomorphismus:

$$\Phi^{\times}:R^{\times}\longrightarrow S^{\times}$$

3.2 Körper

3.2.1 Körper

Ein Körper ist ein kommutuativer Ring K, in dem $0_K \neq 1_K$ gilt und jedes von Null verschiedene Element invertierbar ist: $K^{\times} = K \setminus \{0\}$

Wenn K ein Körper und R ein Ring mit $1_R \neq 0_R$ ist jeder Ringhomomophismus von K nach R injektiv.

3.2.2 Komplexe Zahlen

Handelt es sich bei K um den Körper der Reelen Zahlen und d=-a, dann heißt der konstruierte größere Köper $\mathbb C$ der komplexen Zahlen. Es gilt $i^2=-1$, sowie:

$$\mathbb{C} = \mathbb{R}(i) = \{a + bi \mid a, b \in \mathbb{R}\}$$
$$(a + bi) + (c + di) = a + c + (b + d)i$$
$$(a + bi) \cdot (c + di) = ac - bd + (ad + bc)i$$

Die reelle Zahl a heißt Realteil und b Imaginärteil von a + bi

Zwei komplexe Zahlen sind genau dann gleich, wenn sie den selben Real- und den selben Imaginärteil haben.

3.3 Polynomringe

Im folgenden sei R ein kommututaiver Ring der Gestalt

$$\sum_{i=0}^{d} a_i X^i$$

3.3.1 Polynome, Polynomringe

Ein **Polynom** über R ist eine Folge $(a_i)_{i\in\mathbb{N}_0}$ mit Einrägen aus R, sodass $N\in\mathbb{N}$ existiert, für die die "Abbruchsbedingung"

$$\forall i \geq N : a_i = 0$$

erfüllt is

Der **Polynomring** R[X] über R bezeichnet die Menge aller Polynome mit Koeffizienten in R Für Polynome (a_i) und (b_i) gilt:

$$(a_i)_{i\in\mathbb{N}_0} + (b_i)_{i\in\mathbb{N}_0} := (a_i + b_i)_{i\in\mathbb{N}_0}$$

$$(a_i)_{i\in\mathbb{N}_0}\cdot (b_i)_{i\in\mathbb{N}_0}:=(c_k)_{k\in\mathbb{N}_0}, \text{ wobei } c_k:=\sum_{i=0}^k a_ib_{k-i}$$

3.3.2 Grad eines Polynoms und Leitkoeffizient

Der Grad des Polynoms $f = \sum_{i=0}^{d} r_i X^i \in R[X]$ ist definiert als

$$\operatorname{Grad}(f) := \begin{cases} \max(\{i \in \mathbb{N}_0 \mid r_i \neq 0\}), & f \neq 0 \\ -\infty, & f = 0 \end{cases}$$

3.3.3 Rechenregeln für den Grad

Für Polynome $f, g \in R[X]$ gilt stets:

- $Grad(f+g) \le max(Grad(f) + Grad(g))$
- $Grad(f \cdot g) \leq Grad(f) + Grad(g)$
- $\operatorname{Grad}(f \cdot g) = \operatorname{Grad}(f) + \operatorname{Grad}(g)$, falls $\forall a, b \in R \setminus \{0\} : a \cdot b \neq 0$

3.3.4 Nullteilerfreiheit

Ein Ring $R \neq \{0_R\}$ mit der Eigentschaft $\forall a,b \in R \setminus \{0_r\}: a\cdot b \neq 0$ nennt man einen nullteilergreien Ring

Zentrum 3.3.5

Die Menge

$$Z(A) := \{ a \in A \mid \forall x \in A : a \cdot x = x \cdot a \}$$

heißt das Zentrum von A. Das Zentrum ist ein Kommutativer Teilring von A. Ist A kommutativ, so gilt Z(A) = A

Teilbarkeit im Polynomring

g heißt **Teiler** von f $(f, g \in R[X])$, wenn $\exists h \in R[X]$, sodass $f = g \cdot h$

Lineare Gleichungssysteme und Matrizen 4

Grundlegenedes 4.1

Lineares Gleichungssystem

Ein Lineares Gleichungssystem über R mit p Gleichungen und q Unbekannten ist ein System

wobei die **Koeffizienten** $a_{ij}, 1 \le i \le p, 1 \le j \le q$ und auch die $b_i, 1 \le i \le p$, in R liegen. Die Menge aller Lösungen bezeichnen wir mit $\mathcal{L}(*)$ (Lösungsraum) Statt (*) schreiben wir

$$\sum_{i=1}^{q} a_{ij} x_j = b_i, \ 1 \le i \le p$$

 \mathbb{R}^q ist hierbei die Menge aller q-Tupel in \mathbb{R} . Das Nullelement ist das Tupel, dessen Einträge alle 0 sind

4.1.2 LGS aus Sichtweise der Gruppentheorie

Die Abbildung

$$\Phi: R^q \longrightarrow R^p, \Phi((x_j)_{1 \le j \le q}) = (\sum_{j=1} 1qa_{ij}x_j)_{a \le i \le p}$$

ist ein Gruppenhomomorphismus. Statt $\mathcal{L}(*)$ schreiben wir $\mathcal{L}(\Phi,b)$ Wenn $\mathcal{L}(\Phi,b)$ nicht leer ist, so gilt für jede beliebeige "spezielle Löusng" $x^{(s)}$ von (*) die Aussage

$$\mathcal{L}(\Phi, b) = \{x^{(h)} + x^{(s)} \mid x^{(h)} \in \text{Kern}(\Phi)\}$$

4.1.3 Matrizen

Eine $p \times q$ -Matrix mit Einträgen in R ist eine Abbildung

$$A: \{1, \ldots, p\} \times \{1, \ldots, q\} \longrightarrow R$$

Dabei heißt p die Anzahl der Zeilen und q die Anzahl der Spalten von A. Wir schreiben $a_{ij} = A(i,j)$ und notieren die Matrix A als

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1q} \\ a_{21} & a_{22} & \dots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{11} & a_{p2} & \dots & a_{pq} \\ a_{p1} & a_{12} & \dots & a_{1q} \end{pmatrix}$$

Die Menge aller $p \times q$ -Matrizen notieren wir als $R^{p \times q}$ und $R^p := R^{p \times 1}$

4.1.4 Φ_A und das Produkt zweier Matrizen

Die oben definierte Abbildung Φ und die Matrix A legen sich gegenseitig fest. Wenn A gegeben ist schreibe Φ_A für die zugehörige Abbildung von R^q nach R^p . Statt $\mathcal{L}(\Phi_A,b)$ schreibe $\mathcal{L}(A,b)$. Das Produkt zweier Matrizen $F = A \cdot C(A \in \mathbb{R}^{p \times q}, C \in \mathbb{R}^{q \times r})$ ist definiert durch

$$f_{ik} := \sum_{j=1}^{q} a_{ij} c_{jk}, \ 1 \le i \le p, 1 \le k \le r$$

Das Matrix
produkt ist so gemacht, dass $\Phi_A\circ\Phi_C=\Phi_{A\cdot C}$ gilt.

Im Allgemeinen ist der Eintrag von $A\cdot C$ an der Stelle (i,k) die Multiplikation der i-ten Zeile von A mit der k-ten Spalte von C

Desweiteren ist die Multiplikation von Matrizen Assoziativ.

4.1.5 Summe zweier Matrizen

Die Summer $S = A + B(A \in \mathbb{R}^{p \times q}, B \in \mathbb{R}^{p \times q})$ zweier Matrizen der selben Größt gitl:

$$S(i,j) := A(i,j) + B(i,j)$$

Außerdem gilt $\forall x \in R^q : A \cdot x + B \cdot x = (A + B) \cdot x$, also gilt auch

$$\Phi_{A+B} = \Phi_A + \Phi_B$$

Somit gilt also auch das Distributivgesetz. Die Addition von Matrizen ist auüerdem assoziativ und kommutatuv.

4.1.6 Die Einheitsmatrix

Die Matrix $I_p \in \mathbb{R}^{p \times p}$, definiert durch

$$I_P(i,j); = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{falls } i \neq j \end{cases}$$

Die Einheitsmatrix ist das Multiplikativ neutrale.

4.1.7 Multiplikation mit Skalaren

Für eine Matrix $A = (a_{ij})_{ij} \in \mathbb{R}^{p \times q}$ und $r \in \mathbb{R}$ gilt

$$r \cdot A := A \cdot r := (r \cdot a_{ij})_{ij}$$

Also wird jeder Eintrag von A mit r mutlipliziert

4.1.8 Transponieren

Die Transposition einer Matrix $A \in \mathbb{R}^{p \times q}$ ist definiert durch

$$A^{T}(j,i) := A(i,j)$$

Außerdem gilt $(A \cdot B)^T = B^T \cdot A^T$

4.1.9 Fazit

Also ist $(R^{p\times p},+,\cdot)$ ein Ring, genannt Matrizenring, mit Einselement I_p Die Abbildung

$$\sigma: R \longrightarrow R^{p \times p}, r \mapsto r \cdot I_p$$

ist ein injektiver Ringhomomorphismus.

Wir können auch Polynome R[X] bei Matrizen auswerten:

$$f(x) = \sum_{i=0}^{j} c_i X^i$$

$$f(A) = \sum_{i=0}^{j} c_i A^i$$

4.2 Invertierbare Matrizen

4.2.1Invertierbare Matrizen

Die Einheitsgruppe des Ringes $R^{p \times p}$ bezeichnet man mit $\mathrm{GL}_p(R)$, was "general linear group" abküzrt:

$$GL_p(R) = \{ A \in R^{p \times 9} \mid \exists B \in R^{p \times p} : AB = BA = I_p \}$$

4.2.2Elementarmatrizen

Für zwei natürliche Zahlen $1 \leq i \leq p, 1 \leq j \leq q$ ist die **Elementarmatrix** $E_{i,j} \in R^{p \times q}$ definiert durch ihre Einträge $E_{i,j}(k,l), 1 \leq k \leq p, 1 \leq l \leq q$, die auf folgenede Art festgelegt

$$E_{i,j}(k,l) := \begin{cases} 1 & \text{falls } i = k \text{ und } j = l \\ 0 & \text{sonst} \end{cases}$$

Beispiel:
$$R^{3\times4} \ni E_{2,3} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ein Spezialfall ist der einer einzelnen Spalte. In dem Fall schreiben wir kürzer

$$e_i := E_{i,1} \in \mathbb{R}^q$$

 $A \cdot e_i$ gibt die j-te Spalte von A aus.

4.2.3 Addtionsmatrizen

Für $1 \leq i \neq j \leq p$ und $\alpha \in R$ definieren wir die Matrix $A_{i,j}(\alpha) \in R^{p \times p}$ durch

$$A_{i,j}(\alpha) := I_p + \alpha E_{i,j}$$

Diese Matrix heißt **Additionsmatrix**. Sie als Einträge Einsen auf der Diagonalen, α an der Stelle (i, j) und Null überall sonst. Es gilt:

$$A_{i,j}(\alpha) \cdot A_{i,j}(-\alpha) = I_p$$
, sowie:

$$A_{i,j}(-\alpha) \cdot A_{i,j}(\alpha) = I_p$$
, also: $A_{i,j}(\alpha) \in GL_p(R)$

da $i \neq j$. Also sind Additions
matrizen invertierbar. Für $M = \sum_{i,j} m_{ij} \cdot E_{i,j} \in R^{p \times q}$ gilt nun

$$A_{i,j}(\alpha) \cdot M = M + \sum_{l} \alpha m_{jl} E_{i,l}$$

Also entsteht M, indem man zur i-ten Zeile das α -fache der j-ten Zeile addiert

4.2.4 Vertaurschungsmatrizen

Für $1 \le i, j \le p$ ist die **Vertauschungsmatrix** $V_{i,j} \in \mathbb{R}^{p \times p}$ definiert durch

$$V_{i,j} := I_p - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$$

Bildlich ersetzt man also die Einsen der Einheistmatrix an den Stellen (i,i) und (j,j) durch einsen an den Stellen (i, j) und (j, i)

Mulitpliziert man $V_{i,j}$ von links an M, erhält man die Matrix M mit vertauschten Zeilen i und j. Außerdem gilt:

$$V_{i,j} \cdot V_{i,j} = I_p$$
, also: $V_{i,j} \in \mathrm{GL}_p(R)$

4.2.5Diagonalmatrizen

Die **Diagonalmatrix** diag $(\alpha_1, \dots, \alpha_p)$ ist definiert durch

$$\operatorname{diag}(\alpha_1, \dots, \alpha_p) := \sum_{i=1}^p \alpha_i E_{i,i} \in \mathbb{R}^{p \times p}$$

Also die Matrix mit $(\alpha_1, \ldots, \alpha_p)$ als Einträgen auf der Diagonalen Diagonalmatrizen sind auch invertierbar, also:

$$\operatorname{diag}(\alpha_1,\ldots,\alpha_p) \in \operatorname{GL}_p(R)$$

4.3 Die Gauß-Normalform

4.3.1 Treppenform/Guaß-Normalform und Rang

Eine Matrix T hat **Treppenform** oder auch **Gauß-Normalform**, wenn es eine Zahlt $r \in \mathbb{N}_0$ und natürliche Zahlen $1 \leq s_1 < s_2 \cdots < s_r \leq q$ gibt, sodass die folgenden Bdinungen erfüllt sind:

- $\forall i (1 \leq i \leq r)$ gilt: $t_{i,s_i} = 1$ und $\forall k \neq i : t_{k,s_i} = 0$ und $\forall k < s_i : t_{i,k} = 0$
- $\forall i \geq r+1$ und $\forall j \in \{1, \ldots, q\}$ gilt $t_{i,j}=0$

Wenn T Treppenform hat, so heißt die Zahl r Rang von T, und s_1,\ldots,s_r heißen Stufenindizes von T

Beispiel:

$$\begin{pmatrix} 0 & 1 & 0 & * & 0 & * \\ 0 & 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Wobei an der Stelle der Sterne beliebige Einträge aus R stehen können

4.3.2 Lösen eines LGS mit einer Matrix in Treppenform

 \bullet Das LGS $T \cdot x = b$ ist genau dann lösbar, wenn die Einträge einer Spalte der Treppenform 0 ist. In diesem Fall ist zum Beispiel

$$x^{(s)} := \sum_{i=1}^{r} b_i e_{s_i} \in \mathcal{L}(T, b)$$

eine spezielle Lösung

- Für $j \in J := F\{1,\ldots,q\} \setminus \{s_1,\ldots,s_r\}$ ist $F^{(j)}: e_j \sum_{i=1}^r t_{ij}e_{s_i}$ eine Lösung des homogenen Gleichungssystems $T \cdot x = 0$. Die $F^{(j)}$ nenne wir **Fundamentallösungn**
- Die Lösungsmenge $\mathcal{L}(T,0)$ des zuTgehörigen homogenen Gleichungssystems ist gegeben durch

$$\mathcal{L}(T,0) = \{ \sum_{j \in J} x_j F^{(j)} \mid x_j \in R \}$$

4.3.3 Der (-1)-Trick

Für jedes 1 < i < r sei die i-te Zeile von T die s_i -te Zeile einer neuen $q \times q$ -Matrix S, deren übrige Zeilen 0 sind.

Dann sind die von Null verschiedenen Spatlten der Matrix

$$I_q - S$$

genau die Fundamentallösugen von Ty=0. Genauer ist $f^{(j)}$ die j-te Spalte in I_q-S Beispiel mit $p=4, q=6, r=3, s_1=2, s_2=3, s_3=5$:

$$T = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & c \\ 0 & 0 & 1 & b & 0 & d \\ 0 & 0 & 0 & 0 & 1 & e \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

"Einpflanzen" der von Null verschiedenen Zeilen an der richtigen Stelle:

Daraus folgt:

$$I_6 - S = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -a & 0 & -c \\ 0 & 0 & 0 & -b & 0 & -d \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & o & -e \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

In der ersten, vierten und sechsten Spalte stehen jetzt die drei Fundamentallösugen:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -a \\ -b \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -c \\ -d \\ 0 \\ -e \\ 1 \end{pmatrix}$$

4.4 Das Gauß-Verfahren

4.4.1 Hilfestellung

Für eine Matrix $A \in K^{p \times q}$ eine Matrix. Dann exististiert eine invertierbare Matrix $C \in GL_p(K)$, sodass $C \cdot A$ Gauß-Normalform hat.

Dies Gauß-Normalform (aber nicht C!) ist eindeutig durch A bestimmt.

4.4.2 Der Rang einer Matrix

Der ${\bf Rang}$ von A ist der Rang dieser Treppenform, die Stufenindizes von A sind die Treppenform

4.4.3 Lösungsstrategie eines LGS (Satz 4.4.4)

$$\mathcal{L}(A, b) \neq \emptyset \iff \operatorname{Rang}(A) = \operatorname{Rang}(A \mid b)$$

 Φ_A ist injektiv $\iff \operatorname{Rang}(A) = q$
 Φ_A ist surjektiv $\iff \operatorname{Rang}(A) = p$

4.4.4 Regularität und Rang

$$A$$
 ist regulär \iff Rang $(A) = p \iff \exists S \in K^{p \times p} : AS = I_p$

4.4.5 Invertieren einer Matrix

Eine Matrix Aist genau dann invertierbar, wenn der Rang von A=pist. Wenn wir gaußen, bis für die Matrix

$$(A \mid I_p) \in K^{p \times 2p}$$

links vom Strich die Einheitsmatrix steht, dann steht rechts vom Strich die Inverse A^{-a} .

5 Vektorräume

5.1 Grundlegende Definitionen

5.1.1 Vektorraum

Ein **Vektorraum** über dem Körper K(K-VR) ist eine kommutative Gruppe (V,+), für die zusätzlich eine Abbilung

$$\cdot := K \times V \longrightarrow V, (a,v) \mapsto a \cdot v$$

definiert ist, sodass:

- $\bullet \ \, \forall v \in V: 1_K \cdot v = v$
- $\forall a, b \in K, v \in V : a \cdot (b \cdot v) = (a \cdot b) \cdot v$
- $\begin{array}{l} \bullet \ \, \forall a,b \in K, u,v \in V: \\ a \cdot (u+v) = a \cdot u + a \cdot v \\ (a+b) \cdot v = a \cdot v + b \cdot v \end{array}$

5.1.2 Untervektorraum

Ein (K-)Untervekotrraum von V(K-VR) ist eine Teilmenge $U\subseteq V$, die bezüglich der Addition eine Untergruppe von V ist und für die gilt:

$$\forall a \in K, u \in U : a \cdot u \in U$$

Dann ist Uselber auch ein Vektorraum. Um Uvon belibiegen Teilmengen zu unterscheiden schreiben wir $U \leq V$

5.1.3 Untervektorraumkriterium

U ist ein UVR von $U \iff U \neq \emptyset, \forall u_1, u_2 \in U : u_1 + u_2 \in U, \forall a \in K, u \in U : a \cdot u \in U$

5.1.4 Linearkombination

Für eine Abbildung $\alpha:V\supseteq M\longrightarrow K$, die für alle bis auf endlich viele Elemente $m\in M$ den Wert 0 annimmt, die Summe

$$\sum_{m \in M} \alpha(m) \cdot m \in V$$

eine Linearkombination von M

5.1.5 Linerare Hülle

Die Menge $\langle M \rangle$ aller Linearkombinationen von M heißt linerare Hülle von M und M heißt Erzeugendensystem von $\langle M \rangle$

5.2 Homomorphismen

5.2.1 Vektorraumhomomorphismen

Ein Homomorphismus zweier Vektorräum $\Phi: V \longrightarrow W$ ist eine Abbildung, sodass:

$$\forall v_1, v_2 \in V : \Phi(v_1 + v_2) = \Phi(v_1) + \Phi(v_2)$$

$$\forall a \in K, v \in V : \Phi(av) = a\Phi(v)$$

$$\operatorname{Kern}(\Phi) := \{v \in V \mid \Phi(v) = 0_v\} = \Phi^{-1}(\{o\})$$

$$\Phi \text{ ist injektiv} \iff \operatorname{Kern}(\Phi) = \{0\}$$

5.3 Basen

5.3.1 Basis

Eine Teilmenge $B\subseteq V$ heißt eine Basis von V, falls sich jeder Vektor $v\in V$ auf genau eine Art als Linerakombination von B schreiben lässt:

$$\forall v \in V : \exists_1 \lambda \in Abb(B, K)_0 : v = \sum_{b \in B} \lambda(b) \cdot b$$

Jede Basis von K^p hat genau p Elemente.

Wenn B Basis von V ist, gibt es einen Isomorphismus zwischen $Abb(B, K)_0$ und V

5.3.2 Koordinatenvektoren

Für $v \in B$ hießt die Abbildung

$$D_B: V \longrightarrow Abb(B, K)_0$$

der Koordinatenvektor von u bezüglich der Basis B, der Isomorphismus D_B heißt Koordinatenabbildung bezüglich der Basis B

5.3.3 Linerare Unabhängigkeit

 $M\subset V$ heißt linear unabhänging, wenn die einzige Möglichkeit den Nullvektor als Linearkombination von M zu schreiben die trivieal ist:

$$\forall \lambda \in \mathrm{Abb}(M,K)_0 : [\sum_m \in M\lambda(m) \cdot m = 0 \Leftrightarrow \lambda = 0]$$

5.3.4 Charakterisierende Eigenschaften

Es sind äquivalent:

- B ist eine Basis
- $\bullet\,$ B ist maximal unter den linear unabhängigen Teilmengen von V
- $\bullet\,$ B ist minimal unter den Erzeugendensystemen von V
- B ist linear unabhängiges Erzeugendensystem

5.3.5 Existenz einer Basis

Der K-VR V besitze ein endliches Erzeugendensystem. Dann gelten:

- ullet V hat eine Basis
- $\bullet\,$ Jedes Erzeugendensystem von V enthält eine Basis von V
- $\bullet\,$ Jede linear unabhängige Teilmenge von V lässt sich durch Hinzunahme endlich vieler Vektoren zu einer Basis ergänzen
- ullet Je zwei Basen von V besitzen gleich viele Elemente

5.3.6 Dimension

Die Mächtigkeit einer Basis B von V wird die ${\bf Dimension}$ genannt

$$\dim_K(V) := |B|$$

Vheißt endlichdimensional, wenn Veine endliche Basis hat, sonst nennt man Vunendlichdimensional

5.3.7 Monontonie der Dimension

Ist V ein endlich dimensionaler K-VR, dann ist jeder UVR U endlichdimensional und es gilt:

$$\dim_K(U) \le \dim_K(V)$$

Gleichheit in der Dimension gibt es genau dann, wenn U=V

5.4 Summen von Untervektorräumen

5.4.1 Direkte Summe von Untervektorräumen

Für UVR U_1, \ldots, U_n von V ist die Summe definiert. Diese heißt eine **direkte Summer**, wenn gilt:

$$\forall u_i \in U_i : [u_1 + u_2 + \dots + u_n = 0 \Longrightarrow u_1 = 0, u_2 = 0, \dots, u_n = 0]$$

Also gibt es nur eine Möglichkeit, den Nullvektor als Summe von Vektoren $u_i \in U_i$ zu schreiben. Insbesondere gilt im Falle der Direktheit der Summe für $1 \leq i \neq j \leq n$ die Gleichheit $U_i \cap U_j = \{0\}$

Falls die Summe direkt ist, so schreiben wir auch $\bigoplus_{i=1}^n U_i$ statt $\sum_{i=1}^n U_i$

5.4.2 Dimensionsformel

Für U und W UVR von V gilt:

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cup W)$$

5.4.3 Komplementärer Untervektorraum

Zu U UVR von V heißt W ein zu U komplemntärer Untervektorraum in V oder auch Vektorraumkomplement zu U, wenn:

$$V = U \oplus W$$

Oder komkret, wenn V = U + W und $U \cap W = \{0\}$

IsV endlichdimensional gibt es zu jedem UVR mindestens einen komplementären UVR. Ergänze hierzu die Basis B von U zur Basis C von V und setzte $W := \langle C \setminus B \rangle$. Es gilt:

$$\dim(U) + \dim(W) = \dim(V)$$

5.5 Faktorräume

5.5.1 Die Menge $V \setminus U$

Für einen beliebigen UVR $U \leq V$ definieren wir die Äquivalenzrelation

$$v_1 \sim v_2 :\Leftrightarrow v_1 - v_2 \in U$$

5.5.2 Vektorraumstrkutur auf $V \setminus U$

Mit den Verknüpfungen

$$[v_1] + [v_2] := [v_1 + v_2]$$

 $\alpha[v] := [\alpha v]$

wird aus $V \setminus U$ ein $K\text{-}\mathrm{VR}.$ Dieser heißt **Faktorraum** von V modulo U

5.5.3 Kanonische Projektion

Für $U \leq V$ heißt die Abbildung

$$\pi_{V \backslash U} : V/longrightarrow V \backslash U, v \mapsto [v] = v + U$$

kanonische Projektion von V auf $V \setminus U$.

 $\pi_{V \backslash U}$ ist hierbei ein surjektiver Vektorraumhomomorphismus und der Kern ist U

5.5.4 Homomorphiesatz

Für V, W K-VR und $\Phi \in \text{Hom}(V, W)$ und $U \leq \text{Kern}(\Phi)$

• gibt es ganu eine linerare Abbildung

$$\tilde{\Phi}: V \setminus U \longrightarrow \Phi(V) \leq W$$

sodass gilt:

$$\forall v \in V : \Phi(v) = \tilde{\Phi}([v])$$

• gilt, wenn sogar $U=\mathrm{Kern}(\Phi),$ dass dann $\tilde{\Phi}$ ein Isomorphismus zwischen $V\setminus U$ und $\Phi(V)$ ist

5.5.5 Basis des Faktorraumes

Wenn $U \subseteq V$ K-VR und Basis B von V, die eine Basis B_U von U enthält, dann ist

$$C := \{b + U \mid b \in B \setminus B_U\}$$

eine Basis von $V \setminus U$. Im endlichdimensionalen Fall gilt außerdem:

$$\dim(V \setminus U) = \dim(V) - \dim(U)$$

5.5.6 Rang-Defekt-Fromel

Ist $\Phi: V \longrightarrow W$ linear und V, W endlich dimension, dann gilt:

$$\operatorname{Bild}(\Phi) = V \setminus \operatorname{Kern}(\Phi)$$
, also $\dim(V) = \dim(\operatorname{Bild}(\Phi)) + \operatorname{Kern}(\Phi)$

hierbei ist $\dim(\operatorname{Bild}8\Phi)$) der Rang und $\dim(\operatorname{Kern}(\Phi))$ der Defekt

6 Basen und lineare Abbildungen

6.1 Lineare Fortsetzung

6.1.1 Rekonstruktion

Wenn B eine Basis von V. Dann ist $\Phi:V\longrightarrow W$ ein Homomophismus von K-Vektorräumen. Dann ist Φ eindeutig definiert durch die Einschränkung $\Phi\mid_B:\longrightarrow W$ festgeleget.

6.1.2 Lineare Fortsetzung

Für eine Basis B von V und $f:B\longrightarrow W$ eine Abbildung, dann gibt es genau eine lineare Abbildung $\Phi:V\longrightarrow W$ mit $\Phi\mid_B=f$ Die Abbildung

$$\operatorname{Hom}(V, W) \longrightarrow \operatorname{Abb}(B, W), \Phi \mapsto \Phi \mid_B$$

ist ein Isomorphismus von Vektorräumen

6.2 Der Dualraum

6.2.1 Linearform und Dualraum

Für einen Körper K und einen $K\text{-}\mathrm{VR}\ V$ ist eine **Linearform** auf V eine $K\text{-}\mathrm{lineare}\ \mathrm{Abbilung}$ von V nach K.

Der Raum $\operatorname{Hom}(V,K)$ aller Linearformen heißt der $\mathbf Dualraum$ von V und wird oft mit V^* notirt

Der Dualraum ist also ein Spezialfall der Vektorräume $\operatorname{Hom}(V,W),$ allerdings ein besonders richtigen

6.3 Die Abbildungsmatrix

6.3.1 Abbildungsmatrix

Seien Beine Basis von Vund Ceine Basis in Wund sei zusätzlich ein Hom Φ von Vnach W gegeben.

Wir wollen eine Methode angeben, wie man für $v \in V$ die Koeffizienten von $\Phi(v)$ bezüglich C ausrechnen kann, wenn die Koeffizienten von v bezüglich B bekannt sind.

Dazu schreiben wir erstaml die Vektoren $\Phi(b_j), 1 \leq j \leq q$ c als Linerakombination von c_1, \dots, c_p :

$$\Phi(b_j) = \sum_{i=1}^p a_{ij} c_i$$

Diese Koeffizienten fassen wir zur $p \times q$ -Matrix $A \in K^{p \times q}$ zusammen. Dann gilt für $v = \sum_{j=1}^q \alpha_j b_j$:

$$\Phi(v) = \sum_{j=1}^{q} \alpha_j \Phi(b_j) = \sum_{j=1}^{q} \sum_{i=1}^{p} \alpha_j \alpha_{ij} c_i = \sum_{i=1}^{p} (\sum -j = 1^q a_{ij} \alpha_j) c_i = \sum_{i=1}^{p} \beta_i c_i,$$

wobei

$$\beta = A \cdot \alpha$$

Diese Matrix heißt die **Abbildungsmatrix** von Φ bezütlich der Basn B und C. Oft werden wir hierfür $D_{CB}(\Phi)$ schreiben. Erinniern wir uns an die Koordinaten-Abbildung erhalten wir folgende Merkregel:

$$D_C(\Phi(v)) = D_{CB}(\Phi) \cdot D_B(v)$$

6.4 Basiswechsel für Homomorphismen

Wie ändert sich die Abbildungsmatrix $A:=D_{CB}(\Phi)$ eines Homomorphismus von V nach W bezüglich gegebener Basen B von V und C von W die Abbildungsmatrix von Φ bezüglich "neuer" Basen \tilde{B}, \tilde{C} berechnen lässt.

Hierzu schrreiben wir $b_j \in B$ als

$$\tilde{b}_j = \sum_{i=1}^q s_{ij} b_i,$$

fassen also die Koeffizienten von \tilde{B} bezüglich B in einer Matrix $S = (S_{ij})_{1 \leq i,j \leq q} \in GL_q(K)$ zusammen. Diese Matrix is nichts anderes als

$$S = D_{B\tilde{B}}(\mathrm{Id}_V)$$

Genau so schreiben wir ein $c_k \in C$ bezüglich \tilde{C} als

$$c_k = \sum l = 1^p t_{lk} \tilde{c}_l,$$

also

$$T = (t_{lk})_{1 \le l, k \le p} = D_{\tilde{C}C}(\mathrm{Id}_W)$$

Daran lesen wir ab, dass die Abbildug
nsmatrix von Φ bezüglich \tilde{C} und \tilde{B} gegeben ist durch

$$\tilde{A} := D_{\tilde{C}\tilde{B}}(\Phi) = TAS$$

6.4.1 Äquivalenz von Matrizen

Zwei Matrizen A und B heißen dann **äquivalent**, wenn es invertierbare Matrizen $S \in GL_q(K)$ und $T \in GL_p(K)$ gibt, sodass

$$B = TAS$$

Nach dem Vorangehenden sind zwei Matrizen genau dann äquivalent, wenn sie dieselbe linerare Abbildung von K^q nach K^p begüblich zweier Basenpaare beschreiben.

6.4.2 Hilfsformeln

Für Basen B,C,D der endlichdimensionalen K-VR U,V,W und $\Phi:U\longrightarrow V$ und $\Psi:V\longrightarrow W$ Homomorphismen. Dann gilt:

$$D_{DB}(\Psi \circ \Phi) = D_{DC}(\Psi) \cdot D_{CB}(\Phi)$$

Für einen Homomorphismus Φ von Vnach Wund Basen B,\tilde{B} von V, sowie $C.\tilde{C}$ von W, dann gilt:

$$D_{\tilde{C}\tilde{B}}(\Phi) = D_{\tilde{C}C}(\mathrm{Id}_W) \cdot D_{CB}(\Phi) \cdot D_{B\tilde{B}}(\mathrm{Id}_v)$$

7 Determinanten

7.1 Die Determinantenform

7.1.1 Determinantenform

Für einen Körper K und $n \in \mathbb{N}$ heißt die Abbildung

$$D: (K^n)^n \longrightarrow K$$

eine **Determinantenform** auf K^n , wenn die folgenden Bedingugen erfüllt sind:

D1 Für die Standardbasisvektoren gilt $D(e_1,\ldots,e_n)=1$

D2 Für $1 \le i \le n$ sowie $v_i' \in K^n$ gilt

$$D(v_1, \dots, v_{i-1}, v_i + v_i', v_{i+1}, \dots, v_n) = D(v_1, \dots, v_n) + D(v_1, \dots, v_i', \dots, v_n)$$

D3 Für $1 \le i \le n$ gilt

$$D(v_1,\ldots,\alpha\cdot v_i,\ldots,v_n)=\alpha\cdot D(v_1,\ldots,v_n)$$

D4 Wenn für zwei Indizes $1 \le i < j \le n$ die Spalten v_i und v_j übereinstimmen, dann ist

$$D(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n)=0$$

7.1.2 Merkregeln

Für die Determinante zu einer Determinat
ntenform D gilt für beliebiges $M \in K^{n \times n}$

$$\det(M \cdot A_{ij}(\alpha)) = \det(M) \qquad \qquad \text{für } 1 \le i, j \le n, i \ne j, \alpha \in K$$

$$\det(M \cdot V_{ij}) = -\det(M) \qquad \qquad \text{für } 1 \le i, j \le n, i \ne j$$

$$\det(M \cdot \operatorname{diag}(\alpha_1, \dots, \alpha_n)) = (\prod_{i_1}^n \alpha_i) \cdot \det(M) \qquad \qquad \text{für } \alpha_i \in K$$

7.1.3 Wichtige Eigenschaften

- $\bullet \ \forall M \in K^{n \times n} : \det(M) \neq 0 \Leftrightarrow M \in \mathrm{GL}(K)$
- $\forall M, N \in K^{n \times n} : \det(M \cdot N) = \det(M) \cdot \det(N)$
- Es gibt genau eine Determinantenform
- $\forall M \in K^{n \times n} : \det(M) = \det(M^T)$

7.2 Die Laplace Entwicklung

7.2.1 Die Determinante

Wir definieren rekusiv eine Abbildung

$$\det: K^{n \times n} \longrightarrow K$$

durch

$$\det((a)) := a \quad (n = 1)$$

und für $A \in K^{n \times n}, n \ge 2$,

$$\det(A) := \sum_{i=1}^{n} (-1)^{j+1} a_{ij} \cdot \det(A_{1,j}),$$

wobei $A_{1,j} \in K^{(n-1)\times (n-1)}$ die Matrix ist, die aus A durch Streichen der ersten Zeile und j-ten Spalte entsteht, z.B:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

$$=a(ei-fh)-b(di-fg)+c(dh-ge)$$

Der Vollständigkeit halber setzt man kanonische

$$det(A) = 1$$
, wenn $A \in K^{0 \times 0}$

Wir nennen det(A) die **Determinante** von A.

7.2.2 Die Laplace Entwicklung

Für $N \in \mathbb{N}$ wird auf K^n durch

$$(K^n)^n \ni (v_1, \dots, v_n) \mapsto \det((v_1|v_2|\dots|v_n)) \in K$$

eine Determinantenform festgelegt

7.2.3 Der Multiplikationssatz

$$\forall A \in K^{n \times n} : A \text{ regul\"ar } \Leftrightarrow \det(A) \neq 0$$

 $\forall A, B \in K^{n \times n} : \det(AB) = \det(A) \cdot \det(B)$

7.2.4 Laplace-Entwicklung

Es sei A eine $n \times n$ -Matrix über dem Körper K. Für $1 \le i, j \le n$ sei A_{ij} die Matrix, die aus A durch Streichen der i-ten Zeile und der j-ten Spalte ensteht. Dann gilt für festes k zwischen 1 und n:

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+k} a_{kj} \cdot \det(A_{kj})$$

Diese Formel heißt (Laplace-)Entwicklung der Determinante nach der k-ten Zeile. Analog geht die Entwicklung nach der k-ten Zeile:

$$\det(A) = \sum_{i=1}^{n} (-1)^{k+i} a_{ik} \cdot \det(A_{ik})$$

8 Endomorphismen

8.1 Basiswechsel

Im Folgenden sei $A:=D_{BB}(\Phi),$ wobei der Endomorphismus $\Phi:V/longrightarrowV$ eine lineare Abbildung ist.

Basiswechsel bei Endomorphismen

Sei $A \in K^{n \times n}, \Phi : K^n \longrightarrow K^n, \Phi(v) = A \cdot v$ und $B = \{b_1, \dots, b_n\}$ eine Bais von K^n . Wir setzten $S=(b_1|\dots|b_n)\in \mathrm{GL}_p(K)=D_{EB}(\mathrm{Id}_K)$, wobei $E=\{e_1,\dots,e_n\}$. Außerdem, gilt $K^n\ni v=S\cdot D_B(V)$

Was ist $D_{BB}(\Phi)$?

Der Koordinatenvektor $D_B(\Phi(v))$ erfüllt

$$\Phi(v) = S \cdot D_B(\Phi(v)) = S \cdot D_{BB}(\Phi) \cdot D_B(v)$$

also

$$\begin{split} S\cdot S^{-1}Av &= S\cdot \tilde{A}\cdot S^{-1}v\\ \forall v: A\cdot v &= S\cdot \tilde{A}S^{-1}v \text{ oder auch}\\ \tilde{A} &= S^{-1}\cdot A\cdot S \end{split}$$

In der abstrakten Situation: $\Phi: V \longrightarrow V$ linear, wenn $B, \tilde{B} \subset V$ Basen sind und $D_{BB}(\Phi)$

$$D_{\tilde{B}\tilde{B}} = D_{\tilde{B}B}(\mathrm{Id}_V) \cdot D_{BB}(\Phi) \cdot D_{B\tilde{B}}(\mathrm{Id}_V), \text{ wobei } D_{\tilde{B}B}(\mathrm{Id}_V) = S^{-1}, D_{B\tilde{B}}(\mathrm{Id}_V) = S$$

$$\tilde{b}_j = \sum_{i=1}^n s_{ij} b_i$$
$$\tilde{A} = S^{-1} A S$$

$$\tilde{A} = S^{-1}AS$$

8.1.2 Ähnlichkeit

Zwei Matrizen $A, \tilde{A} \in K^{d \times d}$ hießen **ähnlich**, wenn es (mindestens) eine invertierbare Matrix $S \in \mathrm{GL}_d(K)$ gibt mit

$$\tilde{A} = S^{-1}AS$$

Ähnlichkeitsinvarianten

Für eine Menge X heißt eine Abbildung $f: K^{n \times n} \longrightarrow X$ Ähnlichkeitsinvariante, wenn

$$\forall A \in K^{n \times n}, S \in GL_n(K) : f(S^{-1}AS) = f(A)$$

D.h. insbesondere: Wen für $A, \tilde{A} \in K^{n \times n}$ gilt

$$f(A) \neq f(\tilde{A})$$

sind A und \tilde{A} nicht ähnlich

8.1.4 Spur

Eine andere Ähnlichkeitsinvariante einer Matrix $A \in K^{n \times n}$ ist die Summe der Diagonalelement. Dies Summe die **Spur** von A:

$$Spur(A) := \sum_{i=1}^{d} a_{ii}$$

8.2 Invariante Unterräume

8.2.1 Invarianter Unterraum

Sei $\Phi:V\longrightarrow V$ ein linearer Endomorphismus. $U\leq V$ heißt $\Phi\text{-invarianter}$ Unterraum, wenn

$$\forall u \in U : \Phi(U) \subseteq U$$

8.2.2 Blockgesalt

Wenn V ein endlichdimensionaler K-VR und $U \leq V$ unter Φ von V invariant bleibt, dann wählt man eine Basis $\tilde{B} := \{b_1, \dots, b_e\}$ von U und ergänzt sie zu einer Basis $B = \{b_1, \dots, b_e, c_1, \dots, c_f\}$ von V mit $e + f = \dim(V)$. Bezüblich der Basis B hat dann Φ eine Abbildungsmatrix der folgenden **Blockgestalt**:

$$D_{BB}(\Phi) = \begin{pmatrix} D_1 & M \\ 0 & D_2 \end{pmatrix}, D_1 \in K^{e \times e}, M \in K^{e \times f}, 0 \in K^{f \times e}, D_2 \in K^{f \times f}$$

wobei 0 die Nullmatrix bezeichnet. Dies gilt, da für $b_i \in \tilde{B} \subseteq U$ der Vektor $\Phi(b_i)$ in U liegt, was die lineare Hülle von \tilde{B} ist.

Dabei ist $D_1=D_{\tilde{B}\tilde{B}}(\Phi|_U)$ die Abbildungsmatrix des Endomorphismus $\Phi|_U$ von U Φ liefert eine lineare Abbildung $\Phi_1:V\longrightarrow V/U,v\mapsto \pi_u(\Phi(v))=\Phi(v)+u$

$$\forall u \in U : \Phi_1(u) = \Phi(u) + U = 0_{V/U} : U \le Kern(\Phi_1)$$

$$\Phi: V/U \longrightarrow V/U, \tilde{\Phi}(v+U) = \Phi(v) * U$$
 ist Endomorphismus von V/U

Die Matrix D_2 beschreibt Φ bezüglich

$$\{b_{e+1} + U, b_{e+2} + U, \dots, b_{e+f} + U\}$$

8.3 Eigenräume

Wir suchen jetzt nach den kleinstmöglichen Φ -invarianten UVR, die vom Nullvektorrraum verschieden sind. Diese sind idealer Wiese endlichdimensionaler

8.3.1 Eigenvektor und -Werte

 $v \in V$ heißt ein **Eigenvektor** von Φ , wenn $K \cdot v$ ein eindimensionaler Φ invarianter UVR ist. D.h. $V \neq 0$ und $\Phi(v) \in K \cdot v$, d.h. $\exists \lambda \in K$:

$$\Phi(v) = \lambda \cdot v \text{ (Eigenvektorgleichung)}$$

 $\lambda \in K$ heißt **Eigenwert** von Φ , wenn $\exists v \in V, v \neq 0 : \Phi(v) : \lambda \cdot v$ Die Menge aller Eigenwerte von Φ heißt **Spektrum** von Φ (Spec(Φ))

8.3.2 Die Summe von Eigenräumen

Für eien $K\text{-VR }V,\,\Phi\in\mathrm{End}(V)$ und $\lambda_1,\ldots,\lambda_n\in K$ paarweise verschieden gilt:

$$\sum_{i=1}^{n} \operatorname{Eig}(\Phi, \lambda_i) = \bigoplus_{i=1}^{n} \operatorname{Eig}(\Phi, \lambda_i)$$

Also ist die Summe von Eigenräumen eine direkte Summe

8.3.3 Folgerung

$$|\mathrm{Spec}(\Phi)| \leq \dim(V)$$

8.3.4 Diagonalisierbarkeit

Ein Endomorphismus Φ des K-VR Vheißt **diagonalisierbar**, wenn Veine Basis aus Eigenvektoren zu Φ besitzt.

Im endlichdimensionalen Fall wird Φ bezüglich solch einer Basis aus Eigenvektoren durch eine Abbildungsmatrix in Diagonalgestalt beschrieben, was den Namen erklärt und ebefalls eine Charakterisierung der Diagonalisierbarkeit ist. Eine (beliebige) Abbildungsmatrix von Φ ist ähnlich zu einer Diagonalmatrix.

Eine weiter Möglichkeit, die Diagonalisierbarkeit zu charakterisieren ist:

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(\Phi))} \operatorname{Eig}(\Phi, \lambda)$$

Dies wiederum ist äquivalent zu

$$\dim V = \sum_{\lambda \in \operatorname{Spec}(\Phi)} \dim \operatorname{Eig}(\Phi, \lambda)$$

8.4 Das Charakteristische Polynom

Der Polynomring liegt in einem Körper: Rationale Umkehrfunktion

8.4.1 Das Charakteristische Polynom

Für $A \in K^{n \times n}$ heißt

$$CP_A(x) := \det(xI_n - A)$$

das Charakteristische Polynom von A

Das char. Polynom ist eine Ähnlichkeitsinvariante.

8.4.2 Alghebraische und geometrische Vielfachheit

 $A \in K^{n \times n}, x \in K$

geometrische Vielfachheit von $\lambda:\mu_g(\lambda)=\dim(\mathrm{Eig}(A,\lambda))$ algebraische Vielfachheit von $\lambda:\mu_a(\lambda)=e$

wenn λ eine e-fache Nullstelle von $\operatorname{CP}_A(x)$ ist, also

$$CP_A(x) = (x - \lambda)^e \cdot g(x), g \in K[x], g(\lambda) \neq 0$$

Für
$$\lambda \in \text{Spec}(\Phi)$$
 gilt $1 \leq \mu_g(\Phi, \lambda) \leq \mu_a(\Phi, \lambda)$

8.4.3 Diagonalisierbarkeit

Für $A \in K^{n \times n}$ sind äquivalent:

- ullet A ist diagonalisierbar
- $\operatorname{CP}_A(\lambda)$ zerfällt in Linearfaktoren und für jedes $\lambda \in \operatorname{Spec}(A): \mu_g(\lambda) = \mu_a(\lambda)$

 $\Longrightarrow A \in K^{n \times n}$ ist sicher dann diagonalisierbar, wenn $\operatorname{CP}_A(x) = (x - \lambda_1) \cdot \dots \cdot (x - \lambda_n)$, $(\lambda_i \neq \lambda_j, i \neq j)$ n paarweise verschiedene NS hat.

$$\forall i \mu_a(x_i) = 1 : 1 \le \mu_g(\lambda_i) \le \mu(\lambda_i) = 1$$