Density Matrices & QuBits

Saverio Monaco

Quantum Information and Computing

December 14, 2021

Theory

Wavefunction

Goal of the exercise: numerical handling of pure N-body wavefunctions.

Assume N particles each described by a d-dimensional Hilbert space $(\varphi_i \in \mathcal{H}^d)$.

There are two possible systems:

• (general) Unseparable case:

$$\Psi = \sum_{a_1, a_2, \dots, a_N} C_{a_1, a_2, \dots, a_N} |a_1\rangle \otimes |a_2\rangle \otimes \dots \otimes |a_N\rangle \qquad dim \equiv d^N$$

• Separable case: (no interactions between particles)

$$\Psi = \bigotimes_{i=1}^{N} \varphi_{i} \qquad dim \equiv d \times N$$

Theory

Density matrix

It is possible to construct an operator $\hat{\rho}$ out of the total wavefunction Ψ described before:

$$\rho = \left|\Psi\right\rangle\left\langle\Psi\right| = \sum_{a_{1},..,a_{N}}\sum_{a_{1}^{\prime},..,a_{N}^{\prime}}\left.C_{a_{1},..,a_{N}}C_{a_{1}^{\prime},..,a_{N}^{\prime}}^{*}\left|a_{1},..,a_{N}\right\rangle\left\langle a_{1}^{\prime},..,a_{N}^{\prime}\right|$$

Properties:

- hermitian \leftrightarrow $\rho = \rho^{\dagger}$
- $Tr(\rho) = 1$
- Eigenvalues of ρ are: $\{1,0,...,0\}$

Other properties:

- $\rho^2 = \rho$
- \bullet < ρ >= $Tr(\rho^2) \le 1$

Code development

Derived type and related functions

Custom derived type:

```
type qsystem
  integer :: N ! Number of systems
  integer :: d ! number of states
  logical :: separability ! Wether the whole system is separable
  double complex, dimension(:), allocatable :: PSI ! Total WF
  double complex, dimension(:,:), allocatable :: rho ! Density matrix
end type qsystem
```

Related functions:

```
function densmat_pure_init(N, d, SEP, DEBUG) result(system)
subroutine densmat_genstates(system)
subroutine densmat_readcoeffs(system)
function densmat_computerho1(system,d) result(rho1)
```

Code development

Indices

A explicit way to visualize the total wavefunction (non-separable case):

$$\Psi = a_0 |0,0,...,0\rangle + a_1 |0,0,...,1\rangle + ...$$

... + $a_{d-1} |0,0,...,d-1\rangle + a_d |0,0,...,1,0\rangle + ...$

Getting the index of the array from the eigenvectors combination and viceversa is just a **change of base**:

```
function basechange to (b to, number, N)
                                                   function basechange from (b from . number from . N)
                       result(number b to)
                                                                             result (number_b10)
                                                   integer :: b_from, number_b10, N, ii
integer :: b to, number, N. ii
integer, dimension(N) :: number_b_to
                                                   integer, dimension(N) :: number_from
number b to = 0*number b to
                                                   do ii = 1. N. 1
do ii = 1. N. 1
                                                     number b10 = number b10 +
 number_b_to(N - ii + 1) = modulo(number, b_to)
                                                                  number_from(N - ii + 1)*
                                                                  b from**(ii - 1)
 number = number/b to
end do
                                                   end do
end function
                                                   end function
```

Results

- Correctness: Trace and eigenvalues of ρ , (and it's partial trace as well) were computed to check the correctness. The results given match the theory up to some numerical error.
- Stability: The program may give errors when trying to allocate too much memory. The number of elements of ρ is d^{2N} and each element occupies 16 bytes (double complex)

Data was generated using a Ubuntu machine with 8GB of RAM