'외워서' 끝내는 네트워크 핵심이론 - 응용

당장 네트워크를 전공할 수 없다면 그냥 외워라!

널널한 개발자 최호성 (cx8537@naver.com)

YouTube: 널널한 개발자 TV

수강에 앞서

- 1. 외워서 끝내는 네트워크 핵심이론 기초 를 완강한 것으로 가정.
- 2. 인터넷 **공유기**를 사용해본 경험이 있으며 내용을 이해하지 못하더라도 관련 설정을 찾아보고 변경할 수 있음.

학습목표

- •네트워크 장치의 3대 구조를 이해한다.
- •NAT기술 기반 인터넷 공유기 작동원리 를 이해한다.
- •부하분산 장치의 원리를 이해한다.
- •VPN의 구조와 원리를 이해한다.
- •주요 네트워크 보안 장치의 특징을 이해 한다.

세 가지 네트워크 장치 구조

- Inline
 - Packet + Drop/Bypass + Filtering
- Out of path
 - Packet + Read only, Sensor
- Proxy
 - Socket stream + Filtering

Inline 구조

Inline 구조

Out of path 구조

Out of path 구조

Proxy 구조 (우회)

Proxy 구조

Process User mode Kernel mode TCP ΙP S/W Driver H/W

Proxy 구조 (보호와 감시)

Proxy 구조 (서버 보호)

Proxy 구조 (Fiddler)

		Process		Proxy	
	User mode				
	Kernel mode	TCP			
		IP			
S/W			Drive	r	
H/W			11111		

공유기 작동원리

- •일반적인 인터넷 공유기는 NAT(Network Address Translation) 기술이 적용된 장치이다.
- •보통 주소와 포트번호를 모두 제어한다.
- •인터넷 IP주소 부족 문제를 해결해준다.
- •패킷 필터링 방화벽과 비슷한 **보안성**을 제공한다.

공유기 구조에 따른 분류

- Cone NAT
 - Host 단위로 외부포트 지정
 - Full Cone
 - Restricted Con
 - IP Address restricted
 - Port restricted
- Symmetric NAT
 - TCP 세션마다 외부 포트 지정

공유기 네트워크 구성 예

Private network

출발지 IP주소가 **192.168.0.10에서 3.3.3.3**으로 변경. 출발지 포트가 **3000번에서 23000번**으로 변경.

NAT Gateway (L3-4)

Private IP **192.168.0.1**

Global IP **3.3.3.3**

NAT table

Local IP	Local Port	External Port	Remote IP	Remote Port	Protocol
192.168.0.10	3000	23000	15.15.15.15	80	TCP
192.168.0.12	2500	23001	15.15.15.15	80	TCP
192.168.0.11	4000	23002	15.15.15.15	80	TCP

NAT Gateway (L3-4)

Private IP **192.168.0.1**

Global IP **3.3.3.3**

IP **192.168.0.10**

Internet

Web server
IP 15.15.15.15

NAT table

Local IP	Local Port	External Port	Remote IP	Remote Port	Protocol
192.168.0.10	3000	23000	15.15.15.15	80	TCP
192.168.0.12	2500	23001	15.15.15.15	80	TCP
192.168.0.11	4000	23002	15.15.15.15	80	TCP

 IP
 TCP

 Src: 15.15.15.15
 Src: 80
 Payload(Data)

 Dst: 192.168.0.10
 Dst: 3000

Full Cone NAT

Local IP	Local Port	External Port	Remote IP	Remote Port	Protocol
192.168.0.10	3000	8080	Any	Any	TCP

192.168.0.10 호스트를 3.3.3.3:8080번에 매핑하므로 3.3.3.3:8080 으로 유입되는 모든 것을 192.168.0.10:3000으로 보낸다.

(IP) Restricted Cone NAT

Local IP	Local Port	External Port	Remote IP	Remote Port	Protocol
192.168.0.10	3000	8080	15.15.15.15	Any	TCP

192.168.0.10:8080과 15.15.15.15간의 통신으로 말미암 아 15.15.15.15의 패킷 유입만 허용되고 나머지는 차단한다.

Port Restricted Cone NAT

Local IP	Local Port	External Port	Remote IP	Remote Port	Protocol
192.168.0.10	3000	8080	15.15.15.15	5555	TCP

192.168.0.10:8080과 15.15.15.15:5555간의 통신만 허용하고 나머지는 모두 차단된다.

포트 포워딩

Local IP	Local Port	External Port	Remote Port	Protocol
192.168.0.12	80	80	Any	TCP

UPnP

L4 부하분산

GSLB

- Global Server Load Balancing
- DNS 체계를 활용하는 구조
- 각 서버들의 콘텐츠는 CDN을 활용해 동 기화 하는 것이 대부분
- •부하 상태, Health check 결과, **클라이** 언트의 지리적 위치 등을 고려한다.

GSLB

GSLB

```
■ 명령 프롬프트 - nslookup
Microsoft Windows [Version 10.0.19044.1889]
(c) Microsoft Corporation. All rights reserved.
C:₩Users₩cx853>nslookup
기본 서버: dns.google
Address: 8.8.8.8
> www.naver.com
서버:
        dns.google
Address: 8.8.8.8
권한 없는 응답:
이름:
        e6030.a.akamaiedge.net
Address: 23.201.36.184
Aliases: www.naver.com
          www.naver.com.nheos.com
          www.naver.com.edgekey.net
```

VPN 기술

• 보안 서비스 기술

• 내부 사설망을 외부로부터 스스로 보호하고, <u>사용자 인증</u>을 통한 접근통제가 가능해야 한다.

• 데이터 인증 및 암호화 기술

 사설망 간의 Traffic을 무결성과 기밀성을 유지 하기 위해서, 모든 Traffic에 인증 메커니즘을 적용하거나, 정보 유출의 방지를 위해서 암호화 할 수 있어 야 한다.

• 터널링 기술

• 기존의 공개 네트워크에서 가상의 사설 망을 구성하기 위해서, 기존 네트워크에서 정보 이동이 가능하도록 정보를 캡슐화 하고, 다시 풀어 내어 <u>논리적으</u>로 두 네트워크를 연결하는 기술(망연계)이다.

IPSec

- IPSec은 네트워크 계층에 보안 서비스를 제공하며 패킷 단위에 적용된다. IPSec은 현재 사용 중인 IPv4, IPv6를 모두 지원한다. IPSec은 GtoG VPN 구현을 위해서 현재 가장 많 이 사용되고 있는 방식으로 다음과 같은 서비스를 제공한다.
 - Access control
 - Connectionless integrity
 - Data original authentication
 - Protection against replay
 - Confidentiality
- IPSec은 IP수준(L3) 보안을 제공한다. 따라서 응용 프로그램에 대한 의존성이 없고 IP기반 통신을 모두 보호할 수 있다는 장점이 있다.
- IPSec VPN은 대부분 GtoG(망대망) VPN에 주로 활용한다.

IPSec Protocol

- ISAKMP
 - Internet Security Association Key Management Protocol은 보안 합성 및 암호화 키들을 관리하는 메커니즘을 제공한다.
- IP AH (Authentication Header)
 - AH는 데이터의 원본 인증 및 무결성 재연공격 방지 기능을 제공한다.
- IP ESP (Encapsulation Security Payload)
 - ESP는 데이터의 기밀성, 원본 인증 및 기밀성 및 재연공격 방지 기능을 제공한다.

VPN Tunneling

Original Datagram

IP Header	Payload

Original Datagram protected by ESP-Transport mode

Original Datagram protected by ESP-tunnel

VPN GtoG

Server IP 5.5.5.100

VPN GtoG

Server IP 5.5.5.100

VPN GtoE

VPN 악용

Point-to-Point Protocol

- 1. PPP 링크 설정
- 2. 물리적인 연결을 설정함
- 3. 사용자 인증
- 4. Call back 제어 단계(Option)
- 5. Call back이 구현되어 있다면, 인증서버가 사용자 인증후 연결을 종료하고 다시 클라이언트에게 연결함
- 6. 네트워크 제어 프로토콜 호출 단계
- 7. 사용자에게 동적으로 주소 할당

Point-to-Point Tunneling Protocol

• MS사가 개발한 것으로 IP, IPX, NetBEUI 를 암호화하고 IP 헤더로 캡슐화 한다.

AH Header

AH in tunnel mode

AH in transport mode

IP Header						
Next Header Payload Reserved						
	Security Parameters Index					
	Sequence Number					
	TCP Header					
Data						

패킷 무결성 검사

네트워크 보안 솔루션 종류

- PC방화벽
- NAC
- 방화벽, IPS, NIDS
- UTM
- VPN, SSL VPN,
- •망분리, 망연계

네트워크 보안 솔루션 종류별 대응 계층

NIDS 침입탐지 규칙

```
alert TCP any any -> any 80 (
    msg: "TestAttack";
    content: "Test";
    sid:12345;
    rev:1;
)
```

NIDS 침입탐지 규칙

```
alert tcp any any -> any 80 (
    msg: "Web Test";
    uricontent: "test/"; nocase;
)
```

Name	Descriptions
Action	alert (경고)
Protocol	TCP
Source	룰 적용대상 출발지(공격자) IP주소 및 포트는 '전체'
Direction	전체 네트워크
Destination	룰 적용대상 홈 네트워크 IP는 전체, 포트는 80번 한정
Message	"Web Test"
Pattern	URI에 "test/"라는 문자열이 있는지 검사. 단, 대/소문자는 고려하지 않는다.

NIDS 침입탐지 규칙

```
alert tcp any any -> 192.168.1.0/24 111 (
    msg:"mountd access";
    content:"|00 01 86 a5|";
)
```

Name	Descriptions
Action	alert (경고)
Protocol	TCP
Source	룰 적용대상 출발지(공격자) IP주소 및 포트는 '전체'
Direction	특정 네트워크 Inbound
Destination	192.168.1.x 네트워크 111 포트에 대한 접근
Message	"mountd access"
Pattern	TCP payload에서 Hexa 스트링 0x00, 0x01, 0x86, 0xA5 패턴을 찾는다.