Tema 05: Correlación de señales

Análisis de señales

Marco Teran

Docente

Escuela de Ciencias exactas e Ingeniería

Outline

Correlación de señales

- Correlación cruzada de señales tiempo continuo
- Autocorrelación de señales tiempo continuo
- Correlación cruzada de señales tiempo discreto
- Correlación de señales periódicas tiempo discreto
- Autocorrelación de señales tiempo discreto

Marco Teran 2020II Correlación de señales 2 / 17

Correlación de señales

La teoría de la correlación es importante en la teoría de señales.

Correlación

La **correlación** es una operación matemática del procesamiento de señales que genera como resultado el *grado de similitud* entre dos señales, aunque no exista *coincidencia temporal*, es decir, la verificación se realiza en todo el espacio temporal de ambas señales.

Objetivo: Medir el grado de semejanza entre ambas señales.

La aplicación de la suma de convolución es el determinar la respuesta de sistemas LTI a cualquier tipo de entrada, aunque esta operación puede efectuarse de una manera mas sencilla en el dominio de la frecuencia (Fourier, Laplace o Z).

Marco Teran 2020II Correlación de señales 4 / 1'

Correlación de señales

La correlación, aunque es una operación parecida, tiene una gran cantidad de aplicaciones por el tipo de resultado que ella arroja. Discriminación de señales. Ejemplos:

- La estimación de retardos en radar y sonar
- La detección y sincronización en comunicaciones digitales
- El control predictivo de máquinas y procesos
- El reconocimiento de patrones, con aplicaciones en procesado de voz y de imágenes
- Estimación espectral
- Identificación de sistemas

Son dos señales x y y las que deseamos comparar.

Marco Teran 2020II Correlación de señales 5 / 1'

Radar

Se entiende por **RADAR** (*ing.* RAdio Detection And Ranging) un sistema de radiodetección y radiolocalización. Los sistemas de radar tienen dos funciones principales

- Detectar los blancos.
- Localizar estos blancos por medio de coordenadas.

La localización del blanco se hace por terminación de sus coordenadas polares. Es preciso:

- Determinar la distancia Radar—Blanco
- Determinar la dirección del blanco con respecto al radar.

Marco Teran 2020II Correlación de señales 6 / 3

En un radar de vigilancia (2D) la indicación de dirección es unicamente acimutal, y no de altitud (*cenital*).

Figure 1: Modelo básico del sistema radar.

Marco Teran 2020II Correlación de señales 7 / 17

Para determinar la distancia R es preciso medir el tiempo t_{ret} de ir y volver de un impulso de energía electromagnética.

$$R = \frac{c_0 t_{ret}}{2} \tag{1}$$

Donde, c_0 — Velocidad de propagación de la onda electromagnética ($c_0 = 3 \cdot 10^8 \ m/s$).

• La medición de la distancia se reduce a la medición del tiempo de retardo de la señal.

 Marco Teran
 2020II
 Correlación de señales
 8 / 1

Para determinar la distancia R es preciso medir el tiempo t_{ret} de ir y volver de un impulso de energía electromagnética.

$$R = \frac{c_0 t_{ret}}{2} \tag{2}$$

Donde, c_0 — Velocidad de propagación de la onda electromagnética ($c_0 = 3 \cdot 10^8 \, m/s$).

- La medición de la distancia se reduce a la medición del tiempo de retardo de la señal. Tenemos dos señales:
 - x(t) versión de la señal a trasmitir.
 - y(t) Versión de la señal recibida en la salida

Correlación de señales

Si existe un blanco en la *línea de vista* del radar, entonces:

- $\mathbf{y}\left(t
 ight)$ será una versión retardada de la señal transmitida: $x\left(t-t_{ret}
 ight)$ reflejada desde el blanco
- Estará muy atenuada
- Estará contaminada con ruido blanco Gaussiano aditivo (AWGN).

Podemos representar la secuencia recibida como:

$$y(t) = \alpha x (t - t_{ret}) + n(t)$$

Donde, α — factor de atenuación (pérdida de potencia por la propagación, difracción y absorción en el blanco). t_{ret} — es el retardo de la señal. n(t) — ruido blanco Gaussiano aditivo.

Marco Teran 2020II Correlación de señales 10 / 1'

Correlación cruzada de señales tiempo continuo

Se le conoce como a la secuencia secuencia $r_{xy}(\tau)$

$$r_{xy}(\tau) = x(t) \oplus y(t) = \int_{-\infty}^{\infty} x(t)y(t-\tau) dt$$
(3)

Donde, au — desplazamiento en el tiempo o retardos; xy — subíndice de correlación cruzada.

El retardo $\tau \in \mathbb{R}$.

Es posible hallar $r_{xy}(\tau)$ mediante,

$$r_{xy}(\tau) = \int_{-\infty}^{\infty} x(t+\tau)y(t) dt$$

Marco Teran 2020II Correlación de señales 11 / 1

Correlación cruzada de señales tiempo continuo

Si se invierte tenemos que:

$$r_{yx}(\tau) = y(t) \oplus x(t) = \int_{-\infty}^{\infty} y(t)x(t-\tau) dt$$
 (4)

La correlación no es una operación conmutativa.

$$r_{xy}(\tau) \neq r_{yx}(\tau)$$

porque,

$$r_{yx}(\tau) = \int_{-\infty}^{\infty} y(t+\tau)x(t) dt$$

Al comparar las las ecuaciones de $r_{xy}(\tau)$ y $r_{ux}(\tau)$ obtenemos la relación:

$$r_{xy}(\tau) = r_{yx}(-\tau) \tag{5}$$

Las similitudes con la convolución son evidentes:

$$r_{xy}(\tau) = x(t) \oplus y(t) = x(t) * y(-t)$$

Autocorrelación de señales tiempo continuo

Se considera un caso especial de la correlación cruzada cuando x[n] = y[n] entonces se dice que us una copia de si misma retardada l muestras y se denota:

$$r_{xx}(\tau) = \int_{-\infty}^{\infty} x(t)x(t-\tau) dt$$
 (7)

que es lo mismo que.

$$r_{xx}(\tau) = \int_{-\infty}^{\infty} x(t+\tau)x(t) dt$$
 (8)

Correlación de señales

Correlación cruzada de señales tiempo discreto

Se le conoce como a la secuencia secuencia $r_{xy}[l]$

$$r_{xy}[l] = x[n] \oplus y[n] = \sum_{n = -\infty}^{\infty} x[n]y[n - l]$$

$$\tag{9}$$

Donde, l — desplazamiento en el tiempo o retardos; xy — subíndice de correlación cruzada. El restardo $l \in \mathbb{Z}$.

Se dice que se desplaza l unidades a la derecha si l es positivo y se desplaza l unidades a la izquierda si l es negativo.

Es posible hallar $r_{xy}[l]$ mediante,

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n+l]y[n]$$

Marco Teran 2020II Correlación de señales 14 / 1'

Correlación de señales periódicas tiempo discreto

Se considera un caso especial de dos señales periódicas x[n] y y[n], con periodo total de ambas N:

$$r_{xy}[l] = \sum_{n=\langle N \rangle} x[n]y[n-l] \tag{10}$$

para el caso de la autocorrelación,

$$r_{xx}[l] = \sum_{n=\langle N \rangle} x[n]x[n-l] \tag{11}$$

Marco Teran 2020II Correlación de señales 15 / 1

Correlación cruzada de señales tiempo discreto

Si se invierte tenemos que:

$$r_{yx}[l] = y[n] \oplus x[n] = \sum_{n=-\infty}^{\infty} y[n]x[n-l]$$

$$\tag{12}$$

La correlación no es una operación conmutativa.

$$r_{xy}[l] \neq r_{yx}[l]$$

porque,

$$r_{yx}[l] = \sum_{n = -\infty}^{\infty} y[n + l]x[n]$$

Al comparar las las ecuaciones de r_{xy} y r_{yx} obtenemos la relación:

$$r_{xy}[l] = r_{yx}[-l] \tag{13}$$

Las similitudes con la convolución son evidentes:

$$r_{xy}[l] = x[n] \oplus y[n] = x[n] * y[-n]$$
 (14)

Marco Teran 2020II Correlación de señales 16

Autocorrelación de señales tiempo discreto

Se considera un caso especial de la correlación cruzada cuando x[n] = y[n] entonces se dice que us una copia de si misma retardada l muestras y se denota:

$$r_{xx}[l] = \sum_{n = -\infty}^{\infty} x[n]x[n - l]$$

$$\tag{15}$$

que es lo mismo que,

$$r_{xx}[l] = \sum_{n = -\infty}^{\infty} x[n+l]x[n]$$
(16)

Propiedades de la autocorrelación:

- \blacksquare La función de autocorrelación es una señal real y par $r_{xx}(\tau) = r_{xx}(-\tau)$
- El valor máximo de la función de autocorrelación ocurre en un retardo τ y l=0 $|r_{xx}[l]| \leq r_{xx}[0]$
- \blacksquare Si x(t) es periódica, entonces la función de auto-correlación es periódica.

Marco Teran 2020II Correlación de señales 17