線性迴歸(Linear Regression)

學習目標

- ■線性迴歸原理
- ■使用預測房價公開資料集
- ■以線性迴歸模型預測房價

線性迴歸原理

- ■什麼是迴歸學習
- ■什麼是線性迴歸
- ■簡單線性迴歸
- ■多元線性迴歸

什麼是迴歸學習

- ■迴歸學習是一種近似方法,從未知機率的分佈的隨機樣本中獲得目標函數, 例如從大資料中找出一個規則,像是股票預測。
- ■對於存在統計關係的變數,透過大量試驗來獲得的統計資料來建置目標函 數去逼近該關係,即是迴歸學習

此例希望由大量的藍色資料離散點,經由重複的學習來取得連續藍色線

什麼是線性迴歸

- ■線性迴歸模型是學習迴歸工作的好起點
- ■以線性表示·簡單明瞭
- ■監督式機器學習的子類別
- ■因為擬合非常快速,這個模型很受歡迎
- ■迴歸分析在預測連續輸出的值

簡單線性迴歸

- ■簡單線性迴歸目標就是擬合一條線到資料(樣本點)
- ■一條線直線擬合是一個型式為 $\hat{y} = \omega_1 x + \omega_0$ 的模型, ω_1 是斜率(slope), ω_0 是截距(intercept)

偏移值(offsets)或殘差(residuals)

vertical offset
(y - y|

w₀ (intercept)

x (explanatory variable)

vertical offset
(x₁, y₁)

線性迴歸就是希望
找到的資料都可以fit直線

多元線性迴歸表示法

■多元線性迴歸就是簡單線性迴歸的延展

使用預測房價公開資料集

- ■探索房屋的數據集
- ■探索式數據分析
- ■視覺化數據集中的重要特徵
- ■相關矩陣(混淆矩陣)

探索房屋的數據集

- ■使用pandas的read_csv函數
- ■波士頓房屋數據集包含506個樣本,包含14個特徵

	犯罪率													房價
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

也可以直接從Scikit-Learn匯入Dataset

- from sklearn.datasets import load_boston
- boston_dataset = load_boston()
- ■boston_dataset.keys() # 查看此資料集的Keys
- # output: dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
- ■data:每個房子的資訊
- ■target:每個房子的價格
- ■feature_names:每個房子的特徵
- ■DESCR:這個資料集的描述
- ■filename:此資料集的檔案位置

把Scikit-Learn的資料轉成Pandas.DataFrame

- boston_df['target']=boston_dataset['target']
- boston_df.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	target
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

探索式數據分析

- ■使用探索式數據分析(Exploratory Data Analysis, EDA)工具
- ■運用視覺化的基本的統計等工具,來看資料
- ■安裝seaborn套件 pip install seaborn
- ■安裝Matplotlib套件 pip install matplotlib

- ■使用探索式數據分析(Exploratory Data Analysis, EDA)工具
 - □散點圖矩陣
- sns.pairplot(df[cols], size=2)
- plt.tight_layout()
- plt.show()

相關矩陣

以線性迴歸模型預測房價

- ■建立簡單線性迴歸流程
- ■建立迴歸預測模型
- ■迴歸學習
- ■檢驗結果

建立簡單線性迴歸流程

- 1. 依據預測目標·確立自變數(x)跟因變數(y)
- 2. 建立迴歸預測模型 · 例如 : y = ax +b
- 3. 進行相關分析,例如用什麼誤差法,怎麼更新參數
- 4. 檢驗迴歸預測模型,計算預測誤差
- 5. 計算並確定預測值

Scikit-learn使用LinearRegression實現簡單線性迴歸學習

```
from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)
```

建立迴歸預測模型

- ■用波士頓房屋數據集
 - □RM(每套住房的平均房間數):自變數(x)
 - □MEDV(房價):因變數(y)

迴歸學習

Scikit-learn的LinearRegression套件

```
In [15]: slr = LinearRegression()
slr.fit(X, y)
y_pred = slr.predict(X)
print('Slope: %.3f' % slr.coef_[0])
print('Intercept: %.3f' % slr.intercept_)

Slope: 9.102
Intercept: -34.671
```

檢驗結果

- ■圖中藍色散點資料對應X軸(RM)跟Y軸房價(MEDV)
- ■黑線是線性迴歸模型

重點精華回顧

- ■學習簡單線性迴歸
- ■使用公開資料集及資料圖形化分析
- ■建立線性迴歸模型
- ■執行線性迴歸學習
- ■預測結果圖形化

程式練習題

■多項式迴歸練習

多項式迴歸也是線性模型,在scikit-learn的實作上,是用PolynomialFeature轉換器投影到高維

■簡單線性迴歸練習

使用scikit-learn機器學習套件從隨機產生的資料,找出簡單線性函數的斜率(a)跟截距(b)

■多元線性迴歸練習

此練習題要用Scipy語法的來建力一個5X5的稀疏矩陣