8 de octubre de 2007 Total: 31 puntos Tiempo: 2 h.

SEGUNDO EXAMEN PARCIAL

1. Sea $A = \{1, 2, 3, 5\}$, sea \mathcal{R} una relación sobre A, cuya matriz asociada está definida por

$$M_{\mathcal{R}}[i,j] = \begin{cases} 1 & \text{si } i=2 \lor j=3\\ 0 & \text{en cualquier otro caso} \end{cases}$$

y sea S otra relación sobre A, definida por

$$aSb \Leftrightarrow a+b < 6$$

(a) Determine el gráfico de \mathcal{R} , el gráfico de \mathcal{S} y el gráfico de $\mathcal{R}^{-1} \circ \overline{\mathcal{S}}$

(4 puntos)

- (b) Determine la matriz asociada a $(\overline{\mathcal{R}} \cap \mathcal{S})^{-1}$ (2 puntos)
- 2. En $\mathbb{Z} \times \mathbb{Z}$ se define la relación \mathcal{R} de la siguiente manera:

$$(a,b)\mathcal{R}(c,d) \Leftrightarrow [2(a-c)=5(b-d)]$$

- (a) Demuestre que \mathcal{R} es una relación de equivalencia.
- (b) Calcule tres elementos que pertenecen a la clase de equivalencia de (2, -3)

(5 puntos)

3. Sea \mathcal{R} una relación definida sobre el conjunto A, con A no vacío. Demuestre que si \mathcal{R} es transitiva, entonces $\mathcal{R} \cap \mathcal{R}^{-1}$ es transitiva. (4 puntos)

- 4. Pruebe que la función $f: \mathbb{R} \{2\} \longrightarrow \mathbb{R} \{-1\}$ definida por $f(x) = \frac{3-x}{x-2}$ es una función biyectiva. (4 puntos)
- 5. Considere las funciones G y H, definidas sobre el conjunto de los números reales, con criterios G(z) = 2z + 3, H(w) = 3 5w. Determine el criterio de la función $(H \circ G \circ H^{-1})^{-1}$.

(3 puntos)

- 6. Sea $A=\{a,b,c\}$ y considere la función $f\colon P(A)\to\{0,1,2,3,4\}$ definida por f(B)=|B|.
 - (a) Determine si f es inyectiva o sobreyectiva.
 - (b) Si es posible, calcule

i.
$$f(\{\{a\},\{a,b\},\{b\}\})$$

ii.
$$f(f^{-1}(\{4\}))$$

iii.
$$f^{-1}(0)$$

iv.
$$f^{-1}(f(\{b\}))$$

(5 puntos)

7. Sean A, B y C conjuntos no vacíos, suponga que f es una función de A en B y g una función de C en B.

Demuestre que si f y g son biyectivas, entonces $g^{-1} \circ f$ es biyectiva. (4 puntos)