Задача 9-3. Систематические погрешности электрических схем

Часть 1. Погрешность делителя напряжения.

1.1 Расчет напряжений проводится с использованием закона Ома и законов последовательного и параллельного соединения проводников. Так

$$U_1 = U_0 \frac{R_1}{R_1 + R_2} \,. \tag{1}$$

Для расчета напряжения при подключении исследуемой цепи r в формуле (1) сопротивление R_1 заменить сопротивлением \tilde{R}_1 параллельно соединенных резистора R_1 и исследуемой цепи сопротивлением r. При этом

$$\frac{1}{\widetilde{R}_{1}} = \frac{1}{R_{1}} + \frac{1}{r}.\tag{2}$$

Тогда

$$\widetilde{U}_{1} = U_{0} \frac{\widetilde{R}_{1}}{\widetilde{R}_{1} + R_{2}} = U_{0} \frac{1}{1 + \frac{R_{2}}{\widetilde{R}_{1}}} = U_{0} \frac{1}{1 + R_{2} \left(\frac{1}{R_{1}} + \frac{1}{r}\right)} = U_{0} \frac{1}{1 + \frac{R_{2}}{R_{1}} + \frac{R_{2}}{r}} = \frac{U_{0}}{1 + \frac{R_{1}R_{2}}{R_{1}}} \left(1 + \frac{R_{1}R_{2}}{r(R_{1} + R_{2})}\right)^{-1} \approx \frac{U_{0}R_{1}}{R_{1} + R_{2}} \left(1 - \frac{R_{1}R_{2}}{r(R_{1} + R_{2})}\right) = U_{1} \left(1 - \frac{R_{1}R_{2}}{r(R_{1} + R_{2})}\right).$$
(3)

При выводе учтено, что для малого изменения напряжения должно выполняться условие $r >> R_1, R_2$. На сколько это меньше, показывает формула (3), из которой следует, что относительное изменение напряжения равно

$$\varepsilon_V = \left| \frac{U_1 - \widetilde{U}_1}{U_1} \right| = \frac{R_1 R_2}{r(R_1 + R_2)}.$$
 (4)

Указанное изменение напряжение не превысит указанную величину при выполнении условия

$$\frac{R_1 R_2}{r(R_1 + R_2)} < \varepsilon_V \quad \Rightarrow \quad r > \frac{R_1 R_2}{\varepsilon_V (R_1 + R_2)}. \tag{5}$$

При $R_1 = R_2 = 10 \ Om \$ и $\varepsilon_V = 0.01$

$$r > 500 O_{\mathcal{M}}. \tag{6}$$

Часть 2. Погрешность, вносимая амперметром

2.1 Силы тока в приведенных цепях рассчитываются элементарно:

$$I = \frac{U_0}{r}$$

$$\widetilde{I} = \frac{U_0}{r + R_A} \approx \frac{U_0}{r} \left(1 - \frac{R_A}{r} \right). \tag{6}$$

Таким образом, относительное изменение силы тока при подключении амперметра равно

$$\varepsilon_A = \left| \frac{I - \widetilde{I}}{I} \right| = \frac{R_A}{r} \,. \tag{7}$$

Указанное требование будет выполнено, при

$$\frac{R_A}{r} < \varepsilon_A \quad R_A < \varepsilon_A r = 0.10 \ Om \ . \tag{8}$$

Часть 3. Погрешность, вносимая вольтметром.

3.1 Для решения этой части задачи достаточно заметить, что рассматриваемые здесь схемы полностью эквивалентны схемам, рассмотренным в Части 1. Поэтому можно воспользоваться результатами, полученными в этой части, если сопротивление r заменить на сопротивление вольтметра R_V . Тогда относительное изменение напряжения не превысит 1% при выполнении условия

$$\frac{R_1 R_2}{R_V (R_1 + R_2)} < \varepsilon_V \quad \Rightarrow \quad R_V > \frac{R_1 R_2}{\varepsilon_V (R_1 + R_2)} = 500 \ OM. \tag{9}$$

Часть 4. Корректировка измеренной ВАХ

4.1 В использованной схеме показания вольтметра равны напряжению на исследуемом элементе

$$U = \widetilde{U} . (10)$$

Амперметр показывает сумму сил токов через исследуемый элемент и вольтметр:

$$\widetilde{I} = I + I_{\scriptscriptstyle A} \ . \tag{11}$$

Таким образом, для корректировки полученной зависимости необходимо из показаний амперметра вычесть силу тока через амперметр, которая рассчитывается по закону Ома:

$$I = \tilde{I} - \frac{\tilde{U}}{R_{V}}.$$
 (12)

Необходимые расчеты и скорректированный график приведены в таблице и на бланке.

На этом графике: верхняя кривая — исходный Рафик; нижняя прямая — зависимость силы тока через вольтметр от напряжения, средняя кривая — «истинный» график вольтамперной характеристики исследуемого элемента.

Теоретический тур. Вариант 2.

9

Решения задач 9 класс. Бланк для жюри.

Бланк к задаче 3 (Часть 4)

Таблица 1.

\widetilde{U} , B	\widetilde{I} , мА	I_V , MA	I_r , MA	
0,00	0,00	0,00	0,00	
0,50	2,46	0,25	2,21	
1,00	4,00	0,50	3,50	
1,50	5,31	0,75	4,56	
2,00	6,50	1,00	5,50	
2,50	7,60	1,25	6,35	
3,00	8,63	1,50	7,13	
3,50	9,61	1,75	7,86	
4,00	10,56	2,00	8,56	
4,50	11,46	2,25	9,21	
5,00	12,34	2,50	9,84	

Расчетные формулы

Сила тока через вольтметр: $I_V = \frac{\widetilde{U}}{R_V}$.

Сила тока через исследуемый элемент $I_r = \widetilde{I} - I_V$.