\$102\$11/\$102\$12 \$202\$11/\$202\$12

■ Features

- 1. High radiation resin mold package
- 2. Built-in snubber circuit
- 3. Built-in zero-cross circuit

(S102S12/S202S12)

- 4. High repetitive peak OFF-state voltage $S102S11/S102S12 \quad V_{DRM}: 400V \\ S202S11/S202S12 \quad V_{DRM}: 600V$
- 5. RMS ON-state current I_T : MAX. 8Arms at $T_C <= 88^{\circ}C$ (With heat sink)
- 6. Isolation voltage between input and output ($V_{\rm iso}$: $4~000V_{\rm rms}$)
- 7. Recognized by UL, file No. E94758 Approved by CSA, No. LR63705

■ Applications

- 1. Automatic vending machines
- 2. Amusement equipment
- 3. Programmable controllers

■ Model line-ups

	For 100V lines	For 200V lines
Built-in snubber circuit	S102S11	S202S11
Built-in snubber circuit and zero-cross circuit	S102S12	S202S12

SIP Type SSR with Snubber Circuit and Mouning Capability for External Heat Sink

■ Outline Dimensions

(Unit: mm)

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Parameter			Symbol	Rating	Unit	
T .	Forward current		I_{F}	50	mA	
Input	Reverse voltage			6	V	
	RMS ON-state current		I_{T}	*48	A rms	
Output	*1Peak one cycle surge current			80	A	
	Repetitive peak-OFF	S102S11/S102S12	37	400	37	
	state voltage	S202S11/S202S12	V DRM	600	V	
	Non-repetitive peak-OFF state voltage	S102S11/S102S12	3.7	400	17	
		S202S11/S202S12	V _{DSM}	600	V	
	Critical rate of rise of ON-state current			50	A/μ s	
	*2 Isolation voltage			4 000	V _{rms}	
Operating temperature			T opr	- 20 to + 80	°C	
	Storage temperature			- 30 to + 100	°C	
	*3Soldering temperature			260	°C	
	T 1 1 1	S102S11/S102S12	**	135	***	
Load supply voltage		S202S11/S202S12	V out	250	V _{rms}	

^{*1 50}Hz sine wave, start at Tj= 25°C

■ Electro-optical Characteristics

 $(Ta = 25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
T.,	Forward voltage		VF	$I_F = 20mA$	-	1.2	1.4	V
Input	Reverse current		I_R	$V_R = 3V$	-	-	10 - 4	A
	ON-state voltage		V _T	$I_T = 2Arms$	-	-	1.5	V _{rms}
Output	11211111111111	S102S11/S102S12	Iop	$V_{out} = 120 Vrms$	-	-	50	mA rms
		S202S11/S202S12		$V_{out} = 240 Vrms$				
	Open circuit	S102S11/S102S12		$V_{out} = 120 Vrms$	-	-	5	mA rms
	leak current	S202S11/S202S12	I leak	$V_{out} = 240 Vrms$	-	-	10	
	Critical rate of rise of OFF-state voltage		dV/dt	$V_D = 2/3V_{DRM}$	30	-	-	V/μ s
	Critical rate of rise of Commutating OFF-state voltage		(dV/dt) _C	$Tj = 125$ °C $dI_1/dt = -4.0A/ms$, *5	5	ı	-	V/μ s
	Zero-cross voltage	S102S12/S202S12	V _{ox}	$I_F=8mA$	-	-	35	V
Transfer charac- teristics	Minimum trigger current	S102S11/S202S11	I _{FT}	$V_D = 12V$, R $_L = 30 \Omega$	-	-	8	mA
		\$102\$12/\$202\$12		$V_D = 6V$, $R_L = 30 \Omega$	-	-	8	mA
	Isolation resistance		R _{ISO}	DC500V, RH = 40 to 60 %	10 10	-	-	Ω
	Turn-on time	S102S11/S202S11	t on	AC60Hz	-	-	1	ms
		\$102\$12/\$202\$12			-	-	9.3	ms
	Turn-off time		t off	AC60Hz	-	-	9.3	ms
Thermal resistance (Between junction and case)		$R_{th(j-c)}$	-	-	4.0	-	°C/W	
Thermal resistance (Between junction and ambience)		$R_{th(j-a)}$	-	-	40	-	°C/W	

^{*5} S102S11/S102S12: $V_D = 400V$ S202S11/S202S12: $V_D = 600V$

^{*2 60}Hz AC for 1 minute, RH= 40 to 60%, Apply voltages between input and output, by the dielectric withstand voltage tester with zero-cross circuit.(Input and output shall be shorted respectively).

⁽Note) When the isolation voltage is necessary at using external hear sink, please use the insulation sheet.

^{*3} For 10 seconds

^{*4} Tc <= 88°C

Fig. 1 RMS ON-state Current vs. Case Temperature

Fig. 3 Forward Current vs. Forward Voltage (Typical Value)

Fig. 5 Maximum ON-state Power Dissipation vs. RMS ON-state Current (Typical Value)

Fig. 2 RMS ON-state Current vs.
Ambient Temperature

Fig. 4 Surge Current vs. Power-on Cycle

Fig. 6 Minimum Trigger Current vs. Ambient Temperature (Typical Value) (S102S11/S202S11)

Fig. 7 Minimum Trigger Current vs.
Ambient Temperature (Typical Value)
(S102S12 / S202S12)

Fig. 9 Open Circuit Leak Current vs. Supply Voltage (Typical Value) (S202S11/S202S12)

• Please refer to the chapter "Precautions for Use."

Fig. 8 Open Circuit Leak Current vs. Supply Voltage (Typical Value) (S102S11/S102S12)

