

Common functional principal component models for mortality forecasting

Rob J Hyndman and Farah Yasmeen

Outline

- 1 Functional time series
- 2 Functional time series models
- 3 Common functional principal components
- 4 Australian mortality
- **5** References

Outline

- 1 Functional time series
- **2** Functional time series models
- 3 Common functional principal components
- 4 Australian mortality
- **5** References

Functional time series model

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + r_{t,j}(x)$$

- If $f_{t,j}(x) = \text{smoothed log mortality rate for age } x \text{ in group } j \text{ in year } t.$
- **2** Compute $\mu_j(x)$ as $\bar{f}_j(x)$ across years.
- **3** Compute $\beta_{t,j,k}$ and $\phi_{j,k}(x)$ using functional principal components.
- Forecast $\{\beta_{t,j,k}\}$ using univariate time series models (e.g., ETS, ARIMA, ARFIMA, . . .)

Functional time series model

Functional time series model

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + r_{t,j}(x)$$

- Groups may be males and females, or states within a country.
- Expected that groups will behave similarly.
- Fitting separate models to the groups leads to divergent forecasts when the coefficients are non-stationary.
- We require "coherent" forecasts:

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + r_{t,j}(x)$$

- Groups may be males and females, or states within a country.
- Expected that groups will behave similarly.
- Fitting separate models to the groups leads to divergent forecasts when the coefficients are non-stationary.
- We require "coherent" forecasts

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + r_{t,j}(x)$$

- Groups may be males and females, or states within a country.
- Expected that groups will behave similarly.
- Fitting separate models to the groups leads to divergent forecasts when the coefficients are non-stationary.
- We require "coherent" forecasts:

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + r_{t,j}(x)$$

- Groups may be males and females, or states within a country.
- Expected that groups will behave similarly.
- Fitting separate models to the groups leads to divergent forecasts when the coefficients are non-stationary.
- We require "coherent" forecasts:

 $\lim_{t \to \infty} \mathsf{E} \|f_{t,j} - f_{t,i}\| < \infty ext{ for all } i ext{ and } j$

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + r_{t,j}(x)$$

- Groups may be males and females, or states within a country.
- Expected that groups will behave similarly.
- Fitting separate models to the groups leads to divergent forecasts when the coefficients are non-stationary.
- We require "coherent" forecasts:

$$\lim_{t \to \infty} \mathsf{E} \|f_{t,j} - f_{t,i}\| < \infty$$
 for all i and j

Outline

- 1 Functional time series
- 2 Functional time series models
- 3 Common functional principal components
- 4 Australian mortality
- **5** References

PCFPC(K, L) model

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

■ Coherence when $\{\gamma_{t,i,\ell} - \gamma_{t,i,\ell}\}$ is stationary for each combination of i,j and ℓ so that

$$\lim_{t\to\infty} \mathbb{E}\|f_{t,j}-f_{t,i}\|<\infty$$
 for all i and j

 Can impose coherence by requiring either cointegrated scores, or stationary scores.

Common functional principal component models for mortali

PCFPC(K, L) model

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

■ Coherence when $\{\gamma_{t,j,\ell} - \gamma_{t,i,\ell}\}$ is stationary for each combination of i,j and ℓ so that

$$\lim_{t\to\infty} \mathsf{E} \|f_{t,j} - f_{t,i}\| < \infty$$
 for all i and j .

Can impose coherence by requiring either cointegrated scores, or stationary scores.

PCFPC(K, L) model

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

■ Coherence when $\{\gamma_{t,j,\ell} - \gamma_{t,i,\ell}\}$ is stationary for each combination of i,j and ℓ so that

$$\lim_{t\to\infty} \mathsf{E} \|f_{t,j} - f_{t,i}\| < \infty$$
 for all i and j .

Can impose coherence by requiring either cointegrated scores, or stationary scores.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- Model 1: PCFPC(K, 0). No idiosyncratic principal components in the model.
- **Model 2: PCFPC**(K, L) with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i, j.
- constraint. For each ℓ and j, $\{\gamma_{\ell,\ell,j}\}$ is stationary.

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

- Model 1: PCFPC(K, 0). No idiosyncratic principal components in the model.
- Model 2: PCFPC(K, L) with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i, j.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,\ell,j}\}$ is stationary.
- **Model 4: PCFPC(**0, *L*). All principal components and scores are idiosyncratic.

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

- **Model 1:** PCFPC(K, 0). No idiosyncratic principal components in the model.
- Model 2: PCFPC(K,L) with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,\ell,j}\}$ is stationary.
- **Model 4: PCFPC(**0, *L*). All principal components and scores are idiosyncratic.

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

- **Model 1: PCFPC**(K, 0). No idiosyncratic principal components in the model.
- **Model 2: PCFPC(**K,L**)** with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,\ell,j}\}$ is stationary.
- **Model 4: PCFPC(**0, *L*). All principal components and scores are idiosyncratic.

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

- Model 1: PCFPC(K, 0). No idiosyncratic principal components in the model.
- **Model 2: PCFPC(**K,L**)** with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j.
- **Model 3: PCFPC(**K,L**)** with a coherence constraint. For each ℓ and j, $\{\gamma_{t,\ell,j}\}$ is stationary.
- Model 4: PCFPC(0, L). All principal components and scores are idiosyncratic.

Outline

- 1 Functional time series
- 2 Functional time series models
- 3 Common functional principal components
- 4 Australian mortality
- **5** References

- Data obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.

- Data obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.

- Data obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.

- Data obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.

- Data obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.

- Data obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.

Experimental set up

Experimental set up

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead

Out-of-sample MSE

Forecast horizon	Groups	Model 1 PCFPC(6,0) (All common)	Model 2 PCFPC(6,6) (Cointegrated)	Model 3 PCFPC(6,6) (Stationary)	Model 4 PCFPC(0,6) (Divergent)
h = 5	Combined (F & M) Female (F) Male (M)	2.59 2.81 2.38	2.60 2.75 2.45	2.50 2.70 2.29	2.52 2.63 2.42
h = 10	Combined (F & M) Female(F) Male (M)	4.57 4.67 4.48	4.66 4.43 4.89	4.60 4.63 4.57	4.65 4.23 5.06
h = 15	Combined (F & M) Female (F) Male(M)	7.72 7.31 8.14	8.00 6.64 9.36	7.84 7.23 8.44	8.15 6.47 9.82
h = 20	Combined (F & M) Female (F) Male (M)	12.97 12.26 13.69	13.56 10.41 16.70	13.35 12.08 14.63	14.10 10.35 17.86

- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- The independent models work better for female data due to the hump in male mortality being captured in common components?
- PCFPC model more general, so poor performance a problem of model selection.
- PCFPC used K = L = 6. May be too many? How to do order selection?
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.

- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- The independent models work better for female data due to the hump in male mortality being captured in common components?
- PCFPC model more general, so poor performance a problem of model selection.
- PCFPC used K = L = 6. May be too many? How to do order selection?
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.

- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- The independent models work better for female data – due to the hump in male mortality being captured in common components?
- PCFPC model more general, so poor performance a problem of model selection.
- PCFPC used K = L = 6. May be too many? How to do order selection?
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.

- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- The independent models work better for female data – due to the hump in male mortality being captured in common components?
- PCFPC model more general, so poor performance a problem of model selection.
- PCFPC used K = L = 6. May be too many? How to do order selection?
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.

- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- The independent models work better for female data – due to the hump in male mortality being captured in common components?
- PCFPC model more general, so poor performance a problem of model selection.
- PCFPC used K = L = 6. May be too many? How to do order selection?
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.

Outline

- 1 Functional time series
- **2** Functional time series models
- 3 Common functional principal components
- 4 Australian mortality
- **5** References

Selected references

Hyndman, Booth, Yasmeen (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models".

Demography **50**(1), 261–283.

Hyndman (2014). demography: Forecasting mortality, fertility, migration and population data.

cran.r-project.org/package=demography