TYPES OF DATA SETS

[Record data; Graphs and networks; Ordered data {sequential}; Spatial, image and multimedia data]

STRUCTURED DATA CHARACTERISTICS

[Dimensionality; Resolution (分解); Sparsity; Distribution (e.g. centrality)]

Attributes -> Data Objects -> Data Sets [Nominal; Binary; Ordinal; Numeric]

VISUALIZATION

Histogram; Quantile plot;

1. Pixel-oriented; 2. Geometric projection {direct; scatterplot; landscape; parallel}; 3. Icon-based {Chernoff Faces; stick figures; shape coding; color icons; tile bars}; 4. Hierarchical {dimensional stacking: Worlds-within-worlds: TreeMap: 3D Cone trees. InfoCube \: 5. Complex {Tag Cloud; social network}.

PROXIMITY (SIMILARITY) (dissimilarity = distance)

1. Nominal [m: matches, p: total variables]

Quantile-Quantile (q-q) plot; Scatter plot.

 $d(i,j) = \frac{r-m}{p}$ $d(i,j) = \frac{r+s}{q+r+s+t}$ $d(i,j) = \frac{r+s}{q+r+s}$ sim(i,j)2. Binary {Jaccard / coherence} 0 sum r q + rt s + tsum q+s r+t p

3. Numeric Standardizing:
$$sim(i,j) = \frac{q}{q+r+s}$$
 Z-score or Mean Absolute Deviation
$$z = \frac{x-\mu}{\sigma} \qquad m_f = \frac{1}{n}(x_{1f} + x_{2f} + \ldots + x_{nf}) \quad z_{if} = \frac{x_{if} - m_f}{s_{if}}$$

$$= \frac{x \mu}{\sigma} \qquad m_f = \frac{1}{\hbar} (x_{1f} + x_{2f} + \dots + x_{nf}) \qquad z_{if} = \frac{y}{s_f}$$

$$s_f = \frac{1}{\hbar} (|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f|)$$

Minkowski distance [h = {1: Manhattan; 2: Euclidean; inf: supremum $= \max |x_{if} - x_{if}| \}$

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \cdots + |x_{ip} - x_{jp}|^h}$$

Cosine Ordinal

 $sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

[Map to [0, 1]]

4. Mixed Type:

 $d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ii}^{(f)}}$

f is binary or nominal:

 $d_{ij}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ij}^{(f)} = 1$ otherwise

f is numeric: use the normalized distance

f is ordinal

☐ Compute ranks r_{if} and

☐ Treat z_{if} as interval-scaled

$$Z_{if} = \frac{r_{if} - 1}{M_{if} - 1}$$

MEASUREMENT FOR DATA QUALITY

[Accurate, Complete, Consistent, Timely, Believable, Interpretable]

DATA CLEANING

- 1. Incomplete/Missing {global constant; attr mean (global/sameclass); most probable}
- 2. Noisy {Binning (smooth by bin means / median / boundaries); regression; clustering (rm outliers); semi-supervised}
- 3. Discrepancy detection {metadata; overload; uniqueness / consecutive / null rule}

DATA INTEGRATION

1. Data integration; 2. Schema integration (metadata);

3. Entity identification; 4. Data conflicts;

5. Redundancy [Object identification; Derivative data]

$$\chi^2 = \sum_{i}^{n} \frac{(O_i - E_i)^2}{E_i}$$

Correlation analysis X^2 (chi-square) test:

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \hat{\mu})^{2}$$

Covariance analysis Single variable:

Single variable: *sample: and d has the same measure value as c)
$$\sigma^2 = \text{var}(X) = E[(X - \mu)^2] = E[X^2] - \mu^2 = E[X^2] - [E(x)]^2$$
Two variables: *sample: $\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)$

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1]E[X_2]$$

$$\text{使此独立可以推出 } \sigma_{12} = 0, \quad \text{反之不成立} \quad \Sigma = E[(X - \mu)(X - \mu)^T]_{PRO}$$

$$\text{计算 Multi-way Array Aggregation} \text{[BottomUp]}$$

$$\text{2. MOLAP (Multi-way Array Aggregation)}$$

DATA REDUCTION

1. Regression & Log-linear models [最小二乘; Parametric: 假设符合 模型, 估算参数, 只存储参数, 舍弃除 outlier 的数据; Y: dependent / response / measurement, X: independent / explanatory / predictors]

{Linear reg.; Nonlinear reg.; Multiple reg.; Log-linear reg.} 2. Histograms {Equal-width; Equal-freq/depth}, Clustering Sampling {Simple random ~; ~ w/o or w/ replacement; stratified ~}

4. Data cube aggregation

5. Data compression {String ~ (lossless); Audio/Video ~ (lossy)} e.g. Wavelet transform [O(N); length 必须二次方]

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	[0 1 1 0]
$\frac{4}{2}$	$[2, 1, 4, 4]$ $[1\frac{1}{2}, 4]$	[0, -1, -1, 0]
1	$[2\frac{3}{4}]$	$[-1\frac{1}{4}]$

DATA TRANSFORMATION

shell fragment size, the fragment cubes' space 1. Smoothing [Rm noise from data]; requirement is:

Attr / feature construction (new from old):

3. Aggregation {Summarization; Data cube};
4. Normalization { $v' = \frac{v - min_{\star}}{max_{\star} - min_{\star}} (new _max_{\star} - new _min_{\star}) + new _min_{\star}}{max_{\star} - min_{\star}}$ Min-max ~; $v - \mu_{\star}$ v $v' = \frac{v - \mu_{\Lambda}}{v'}$ $v' = \cdot$

Z-score ~: Z-score ~; σ_{Λ} Decimal scaling ~ [j: smallest integer such that Max(|v'|) < 1]}; 10^{j} 5. Discretization {Binning {Equal-width (distance), Equal-depth (freq.); Smoothing: by bin mean/boundary); *Histogram*; *Clustering*; *DT*; *Correlation* (Chi-merge (χ^2 -based discretization): [Bottom-up

merge] {Find best neighboring intervals (those having similar

distributions of classes, i.e., low χ2 values) to merge}}

Concept Hierarchy [Organizes concepts (i.e. attr. val.) hierarchically; usually associated with each dim, in a data warehouse] {Recursively reduce the data by collecting and replacing low level concepts (e.g. age numeric val.) by higher level concepts (e.g. youth, adult, or senior)}

DIMENSIONALITY REDUCTION

(Reduce the number of random variables under consideration, via obtaining a set of principal variables) [Avoid the curse of dim.; Eliminate irrelevant features, reduce noise; Reduce time & space required: Allow easier visualization1

1. Feature selection (find a subset);

Attribute Subset Selection {Redundant, Irrelevant};

Heuristic Search in Attribute Selection (Best single attribute under the attribute independence assumption (choose by significance tests); Best step-wise feature selection (best); Step-wise attribute elimination (worse); Best combined attribute selection and elimination}; Optimal branch and bound (Use attribute elimination and backtracking);}

2. Feature extraction (transform the space);

Principal Component Analysis [*covariance matrix 的特征向量]

DATA WAREHOUSE

[A Subject-oriented, Integrated {multiple, heterogeneous}, Timevariant (t > operational system), Non-volatile: [independent; static (initial loading, access of data)] collection of data in support of management's decision-making process]

Models: {Enterprise warehouse; Data mart; Virtual warehouse} (Extraction Transform Loading)

Conceptual Model {Star schema (1-N); Snow-flake schema (1-N-Ms); Fact constellations (1-N-1s)}

Design Process {Top-down / bottom-up / combination; Software Engineering (waterfall; spiral)} 模型 Usage {Info processing; Analytical processing; DM}

OLTP (OnLine Transactional Processing) [smaller DB size; smaller

#records accessed; more users] VS OLAP (OnLine Analytical Processing) {extraction, cleaning, transformation, load}

OLAP Server Architecture { <u>Relational OLAP</u> [Greater scalability]; Multidimensional OLAP [Sparse array-based multi-dim. storage engine; Fast indexing to pre-computed summarized data]; Hybrid <u>OLAP</u> [Flexibility (low-level: relational, high-level: array)] {e.g. SQLServer \; Specialized SQL servers (e.g., Redbricks) \}

Indexing OLAP Data {Bitmap Index}{Each value in the column has a bit vector: bit-op is fast; The length of the bit vector: # of records in the base table; The i-th bit is set if the i-th row of the base table has the value for the indexed column; not suitable for high cardinality domains}

Base tab	1e			Ind	ex on R	egion		Index on Ty		
Region	Type		RecID	Asia	Europe	America	R	ecID	Retail	Dea
Asia	Retail	1	- 1	-1	0	0		1	1	0
Europe	Dealer	1	2	0	- 1	0		2	0	- 1
Asia	Dealer	1	3	- 1	0	0		3	0	1
America	Retail		4	0	0	1		4	- 1	0
Europe	Dealer		5	0	1	0		5	0	- 1
	Region Asia Europe Asia America	Asia Retail Europe Dealer Asia Dealer America Retail	Region Type Asia Retail Europe Dealer Asia Dealer America Retail	Region Type Recold Asia Retail 1 Europe Dealer 2 Asia Dealer 3 America Retail 4	Region Type RecID Asia Asia Retail 1 1 Europe Dealer 2 0 Asia Dealer 3 1 America Retail 4 0	Region Type RecID Asia Europe Asia Retail 1 0 Europe Dealer 2 0 1 Asia Dealer 3 1 0 America Retail 4 0 0	Region Type Recil Asia Europe America	Region Type Rec C Asia Europe America Retail 1	Region Type Asia Europe America RecID Asia Europe America RecID Asia Europe America RecID Asia Dealer 2	Region Type RecID Asia Europe America RecID Retail 1 0 0 1 1 1 1 0 0 1 1

(A lattice of cuboids (0-D: apex cuboid (parent); n-D: base cuboid))

Measure { Distributive (若应用到 aggregate value 与应用到全部数 $T = \prod\limits_{i=1}^{n} (L_i + 1)$ 据的的结果相同 $(\overline{\textit{可分布式计算并汇总}})$ {count / sum, min / max}; $\underline{\textit{Algebraic}}$ (用有限个 Distributive 几何运算得到); $\underline{\textit{Holistic}}$ (描述子集所需内存没有常数上限) {median, mode, rank)} OLAP Operation {Roll/Drill-up/down (summarize / detailize); Slice(去掉整个维度); Dice (只取一部分); Pivot (旋转)}

E.g. "SELECT item, city, year, SUM (amount) FROM SALES CUBE BY item, city, year", Need compute the following Group-Bys: {(date, product, customer), (date, product),(date, customer), (product,

customer), (date), (product), (customer), ()} Close cube (if there exists no cell d, such that d is a descendant of c,

and d has the same measure value as c)

 $E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1X_2] - \mu_1\mu_2 = E[X_1X_2] - E[X_1]E[X_2]$ with 独立可以推出 $\sigma_{12} = 0$, 反之不成立! $\Sigma = E[(X - \mu)(X - \mu)^T]$ [PRO: 计算小维度 full cube 高效; 同时多维度 aggr.; 中间 aggr 值复 Two variable correlation $\rho_{12} = \frac{\sigma_{12}}{\sigma_1\sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2\sigma_2^2}} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$ *sample: (上下的 n 批消力) $\rho_{12} = \frac{\sigma_{12}}{\sigma_1\sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2\sigma_2^2}} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$ >0: 正相关; <0: 负相关 $\rho_{12} = \frac{\sigma_{12}}{\sigma_1\sigma_2} = \frac{\sigma_{12}}{\sigma_1\sigma_2} = \frac{\sigma_1}{\sigma_2} = \frac$

[PRO: 适合 large-dim.(与 16Fall-Mid-Sol矛盾?); Iceberg pruning {If

Given a database of T tuples, D dimensions, and F a partition < minsup, its descendants pruned}]

4. Semi-Online Computational Model

[Tradeoff: amount of pre-computation VS speed of online computation] [PRO: Offline + online OLAP; High-dim.; Lossless reduction]

{将 dimension 分成 shell fragment (不必 disjoint); Compute data cubes for each shell fragment while retaining inverted indices or value-list indices; Given the pre-computed fragment cubes, dynamically computed cube cells of the high-dimensional data cube online;}

tid 1	A a1	B b1	c c1	D d1	E e1			Attribute Value	TID List	List Size
2	a1	b2	c1	d2	e1			a1	123	3
3	a1	b2	c1	d1	e2	7	V	a2	45	2
4	a2	b1	c1	d1	e2	T	٦	b1	145	3
5	a2	b1	c1	d1	e3			b2	23	2
						_		c1	12345	5
Cell	Inte	rsectio	1 TID	List	List Si	ze		d1	1345	4
a1 b1	123	0 1 4 !	5 1	L	1		J	d2	2	1
a1 b2	123	3 ∩ 2 3	2	3	2	۲	1	e1	12	2
a2 b1	2 b1 45 ∩ 145		4	5	2	_	1	e2	34	2
a2 b2	4.5	∩ 23	d	þ	0			e3	5	1
Onlin.	Quer	v Comn	utatio	n wit	h Shal	LF	-4	amonte		

frequent super-pattern Y 5 X; Lossy compression]

Online Query Computation with Shell-Fragments
[Query form: <a1, a2, ..., an: M>, each ai has 3 possible values: {Instantiated value; Aggregate * function;

Inquire ? Function}] {(e.g., <3, ?, ?, *, 1: count> 返回 a 2-D data cube)}

FREQUENT ITEMSETS / PATTERNS (support ≥ 大于等于!) **Association Rule** $(X \rightarrow Y)$ [support = sup $(X \cup Y)$, confidence = $\sup(X \cup Y) / \sup(X)$]; **Closed Pattern** [If X is *frequent*, AND there exists no *super-pattern* Y > X, *with the same support* as X; Lossless compression]; *Max Pattern* [if X is frequent AND there exists no

PATTERN MINING METHODS

1. Downward Closure / Apriori

{Reduce passes of transaction database scans: { Partitioning [任何可能频繁 @TDB 的 itemset 必然在至少一个 TDB's partition 里频繁] {Scan DB only twice; Consolidate global FP); Dynamic itemset counting }; Shrink the Candidates: a, b, c, d, e

number of candidates

hashing bucket count 低力 threshold 的 k-itemset 必不 Frequent 1-itemset: a, b, d, e 频繁]; <u>Pruning by support</u> ab is not a candidate 2-itemset if the sum of count

wwer pounding; Sampling; of {ab, ad, ae} is below support threshold Exploring special data structures { Tree rojection; Atransaction DB in H. Indiana H. I <u>H-miner</u>; <u>Hypecube decomposition</u>}}

*ECLAT (Equivalent CLAss Transformation) (DFS using set intersection) [Tid-List:包含一个 itemset 的 transac.-ids 列表] [t(X) = t(Y): X and Y 总是一起发生); t(X) ⊂ t(Y): 包含 X 的交易 总是包含 Y] {(e.g., Vertical format: t(e) = $\{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10},$ T_{20} ; t(ac) = t(d), $t(ac) \subset t(ce)$ *<u>使用 diffset 加速</u> [Only keep track of diff. of

tids] $\{t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow$

b, c, e 20, 30 10 10, 20, 30

{ab, ad, ae}

(bd. be. de)

a, c, d, e

$Diffset(ce, e) = \{T_{20}\}\}$ 2. FPGrowth

Ordered, frequent Items in the Transaction 100 $\{f, a, c, d, g, i, m, p\}$ $\{f, c, a, m, p\}$ 200 $\{a, b, c, f, l, m, o\}$ $\{f, c, a, b, m\}$ 300 $\{b, f, h, j, o, w\}$ {f, b} 400 $\{b, c, k, s, p\}$ $\{c,\,b,\,p\}$ $\{a, f, c, e, l, p, m, n\}$ $\{f, c, a, m, p\}$

{扫描 DB-次, 找到 single item FP; 按 freq 降序排列 frequent item, 得到 f-list: 再 扫 DB 一遍, {} 构建 FP-tree}

Header Table c:3 b:1 -> b:1 p:1 a:3 b m:2 b:1 p:2 m:1 For each conditional pattern-base itionai pattern pases

Mine single-item patterns

Construct its FP-tree & mine it

p-conditional PB: $fcam:2, cb:1 \rightarrow c:3$ m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$ b-conditional PB: fca:1, f:1, c:1 $\rightarrow \phi$

 $8 = 1 (m) + 2^3 (fca)$, i.e. m: 3: fm: 3, cm: 3, am: 3 fcm: 3, fam:3, cam: 3; fcam: 3 Item Conditional pattern base f:3 min_support = 3 fc:3 fca.(1) f(1) c(1)

fca:2, fcab:1

DB Projection (若 FPTree 放不下內存, scale FPGrowth) {Parallel projection (proj. DB on each freq. item) [Space costly, 所有 partitions 可以并行处理]; Partition projection (partition DB in order)

CLOSET+ (Efficient, direct mining closed patterns by Pattern-Growth) [Itemset merging: 若 X 出现的地方 Y 也都出现,那么 merge Y with X]

其他: {Hybrid tree projection {Bottom-up physical ~; Top-down pseudo ~} Sub-itemset pruning; Item skipping; Efficient subset checking}

PATTERN EVALUATION

[Interestingness Measure: {Objective (sup., conf., corr.); Subjective (Query-based; Knowledge-base; Visualization)]

I. Lift [=1: 独立; >1: Lift $(B,C)=\frac{c(B\to C)}{C}=\frac{s(B\cup C)}{C}$ 正相关; <1: 负相关1. 正相关; <1: 负相关]; $s(B) \times s(C)$ 2. Cnt-Square [=0: 独立; \neq 0: 正或负相关]} $\chi^2 = \sum \frac{(Observed - Expected)^2}{\sum_{i=1}^{n}}$ s(C)

Null invariance (Value does not change with the # of null-

Measure	Definition	Range	Null-Invariant
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A)+s(B)-s(A \cup B)}$	[0, 1]	Yes
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
Kulczynski(A, B)	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0, 1]	Yes
MaxConf(A, B)	$max\{\frac{s(A)}{s(A \cup B)}, \frac{s(B)}{s(A \cup B)}\}$	[0, 1]	Yes
Data set mc	$\neg mc$ $m \neg c$ $\neg m \neg c$	AllConf	Jaccard Cosi
$D_1 = 10.000$	1.000 1.000 100.000	0.91	0.83 0.9

_				,						
Г	D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99
Γ	D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
	D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
Г	D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
	D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
L	D_1	10,000	1,000	1,000	(100,000)	(0.91)	0.83	0.91	0.91	0.91

	3.	IR	(Imbe	alance	Ratio	o):	
_						01	,

Ì	R(A,	B) =		$\frac{ s(A)- }{+s(B)}$	$\frac{s(B)}{-s(A \cup A)}$	\overline{R}	¬co;		$m \neg c$	_	¬c	_	ic.
			3(21)	15(D)	3(210)	,	Σ_c	ol	m		n	2	d
	Data set	mc	$\neg mc$	$m\neg c$	$\neg m \neg c$	Jac	card	Cos	ine .	Kulc	IR		
	D_1	10,000	1,000	1,000	100,000	0.	83	0.9	1	0.91	0		

Data set	me	$\neg mc$	$m\neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	0.5	0
D_5	1,000	100	10,000	100,000	0.09	0.29	0.5	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

MINING MULTI-LEVEL ASSOCIATIONS

1. Shared Multi-level Mining [用最低的 min-sup.来 pass down 候选 项集]; 2. Redundancy Filtering [Redundant rule: sup≈祖先的期望 值 AND conf ~ 祖先;] 3. Use group-based "individualized" minsup

MINING MULTI-DIMENSIONAL ASSOCIATIONS

Multi-dimensional Rules (Items in ≥ 2 dimensions OR predicates) [Inter-dimension association rules (no repeated predicates) (e.g. age("18-25") \land iob("student") \Rightarrow buvs("coke")): Hybrid-dimension association rules (repeated predicates) (e.g. age("18-25") ∧ buys("popcorn") ⇒ buys("coke"))]

MINING QUANTITATIVE ASSOCIATIONS

(Mining associations with num. attrs.) 1. Static discretization based on predefined concept hierarchies {Data cube-based aggregation}; 2. Dynamic discretization based on data distribution; 3. Clustering $\{First\ one-dimensional\ clustering,\ then\ association\}; \textit{\textbf{4. Deviation}}$ analysis (e.g. Gender = $F \Rightarrow Wage: mean = \$7/hr (overall mean = \$9))$

* Mining Extraordinary Phenomena in Quantitative Associations [Rule: accepted ONLY IF a stat. test confirms the inference with high conf.; Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule]

MINING NEGATIVE CORRELATIONS

[Rare patterns (sup.很低但有趣); Negative Patterns (负相关: 很少一 起发生); Negatively Correlated (A&B 频繁 AND sup(A∪B) << $\sup(A) \times \sup(B)$] { $Kulczynski\ measure-based\ [(P(A|B)+P(B|A))/2 < \varepsilon$, e: negative pattern threshold]};

MINING COMPRESSED PATTERNS [Pattern dist. $Dist(P_1,P_2)=1-\frac{|T(P_1)\cap T(P_2)|}{|T(P_1)\cup T(P_2)|}$ δ -clustering [对每个 pattern P: 找到所有可以用 P 表达 AND 距离 P 在 δ 之内 (δ-cover)}

MINING REDUNDANCY-AWARE PATTERNS

(High significance AND low redundancy) { Maximal Marginal Significance: measure combined significance of a pattern set}

MINING CONSTRAINT-BASED FP

Constraints [Knowledge type ~ (classification; association; clustering; outlier); Data ~ (SQL-like query); Dimension / level ~ (region, price, brand, cat.); $Rule / Pattern \sim ($ \$% price < 10 ⇒ sum > 200);Interestingness ~]

META-RULE GUIDED MINING

[Meta rules: 总体上可以用 "P₁ ^ P₂ ^ ... ^ P₁ ⇒ Q₁ ^ Q₂ ^ ... ^ Q_r"的形 式表示] {Find frequent (l + r) predicates (based on min-support); Push constants deeply when possible into the mining process (Using constraint-push techniques introduced in this lecture); Also, push min conf, min correlation, and other measures as early as possible (measures acting as constraints)}

[设定: 在C的限定条件下,从交易T里挖掘当前的FP/P]

PATTERN SPACE PRUNING (Prune 植整 pattern)

[Anti-monotonic (c 被违反则可以停止深入; Itemset S 违反 C,则 S 紹集均违反): Monotonic (Itemset S 符合 C. S 紹集也均符合): Succinct (c can be enforced by directly manipulating the data); Convertible (通过排列 transaction 里的 item 顺序,可转化成其他种 类的条件, 如 avg()→降序)]

DATA SPACE PRUNING (Prune 掉整个 transaction)

[Data succinct] (Can be pruned at the initial process); Data antimonotonic (若一个 data entry 不能满足 pattern P, 它也不能满足 P 的所有超集, 因此可以被 prune)] [应当被 explored recursively]

Succinctness (Pruning both Data and Pattern Spaces)

 $\{Ex. 1: To find patterns without item i: \{Remove i from DB and then \}$ mine (pattern space pruning)}; Ex. 2: To find patterns containing item i: {Mine only i-projected DB (data space pruning)}; Ex. 3: c3: $min(S.Price) \le v$ is succinct {Start with only items whose price $\le v$ and remove transactions with high-price items only (pattern + data space pruning); Ex. 4: c_4 : $sum(S.Price) \ge v$ is not succinct {It cannot be determined beforehand since sum of the price of itemset S keeps

* Multiple Constraints:

Ex. c_1 : avg(S.profit) > 20, and c_2 : avg(S.price) < 50

Sorted in profit descending order and use c_1 first (assuming c_1 has more pruning power)

For each project DB, sort trans. in price ascending order and use c, at

MINING LONG PATTERNS

「挑战: Curse of "downward closure" property of frequent patterns (FP's children 也是 FP, 于是 len 大的会衍生太多子孙)]

[Fuse small patterns together in one step ("short-cuts") to generate $\frac{Kulc}{MaxConf}$ new pattern candidates of significant sizes

("leaps")]
[PRO: Strive for mining almost complete
and representative colossal patterns]
[CON: Not strive for completeness]
[Core patterns of a colossal pattern a: a s
of subpatterns of α that cluster around α b
sharing a similar support;

Core patterns: 给定 FP α, 其 subpattern β 是 τ-core pattern of α, 若 β shares a similar support set with α (见右边条件, τ : core ratio, $|D_{\alpha}|$: 数据库 D $\frac{|D_{\alpha}|}{|D_{\beta}|} \ge \tau$ 里包含 α 的 pattern 数量)

(d, τ)-robustness: 若最多可以去掉 d \uparrow item,且剩下的 pattern 是其 $\tau\text{-core};$ $- \uparrow (d, \tau)\text{-robust pattern }\alpha$ 含有 $\Omega(2^d)$ core patterns; Colossol pattern 倾向于含有比 small patterns 多得多的 core patterns]

{在每次迭代中: 从当前 pattern pool 里随机选 K 个 seed patterns; 对 于每个 seed pattern: 找到所有以其为中心的 bounding ball 内的 patterns; 将所有这些找到的 patterns 融合(fuse)到一起来生成 a set of super-patterns; 所有生成的 super-patterns 形成一个新的 pool 用 于下次迭代; 在迭代开始时, 若当前 pool 包含小于等于 K patterns 则终止}

SEQUENTIAL PATTERN MINING

(Given a set of sequences, find the complete set of frequent

	subsec			
Α	sequence	d	atai	base

A <u>se</u>	quence database	A <u>sequence:</u> < (ef) (ab) (df) c b >
SID	Sequence	
10	$\langle a(\underline{ab}c)(a\underline{c})d(cf)\rangle$	☐ An element may contain a set of items (also ca
20	<(ad)c(bc)(ae)>	events)
	J. O. I. V. 10. 1.	Items within an element are unordered and w

them alphabetically <a(bc)dc> is a <u>subsequence</u> of <a(bc)(ac)d(cf)>

☐ Given <u>support threshold</u> <u>min_sup</u> = 2, <(ab)c> is a <u>sequential pattern</u>

1. GSP (Generalized Sequential Patterns) [Apriori based] {Initial candidates: All singleton sequences; Scan DB once, count support for each candidate; Generate length-2 candidate sequences}

5th scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> 4th scan: 8 cand, 7 length-4 seg, pat, <abba> <(bd)bc> .. cand, not in DB at all 10 cand, not in DB at all 1st scan: 8 cand. 6 length-1 seq. pat.

2. SPADE (Sequential PAttern <u>Discovery using Equivalent Class</u>) [Vertical format-based] {A

sequence database is mapped to: <SeqID, EleID> (用以判断 candidate 是否存在及其顺序); Grow the subsequences (patterns) one item at a time by Apriori candidate generation}

3. PrefixSpan (Prefix-projected Sequential PAttern Mining)

[Given <a(abc)(ac)d(cf)>: Prefixes: <a>, <aa>, <a(ab)>, <a(abc)>, ... Suffix: Prefixes-based projection] [PRO: No candidate subseqs. to be generated; Projected DBs keep shrinking] [CON: Major cost of

constructing projected DBs] {Find length-1 sequential patterns; <a> <(abc)(ac)d(cf)> Divide search space and mine each projected DB} <aa> <(_bc)(ac)d(cf)> <ab> SID <(_c)(ac)d(cf)>

* Pseudo-Projection [If DB does not fit in memory]

* Physical-Projection [Used when DB can be held in main memory] {No physically copying suffixes; Pointer to the sequence; Offset of the

4. CLOSPAN (Mining Closed Sequential Patterns)

[PRO: Efficienty!; Reduce # of (redundant) patterns; Attain the same expressive power]

[closed sequential pattern: There exists no super-pattern s' s.t. s' ɔ s AND s' and s have same sup.; If $s \supset s_i$, s is closed iff. two project DBs have the same size] {Explore *Backward Subpattern* and Backward Superpattern pruning to prune redundant search space}

CONSTRAINT-BASED SEQUENTIAL-PATTERN MINING

[Anti-monotonic (If S violates c, the super-sequences of S also violate c); <u>Monotonic</u> (If S satisfies c, the super-sequences of S also do so); <u>Data anti-monotonic</u> (If a sequence s1 with respect to S violates c3, s1 can be removed); <u>Succinct</u> (Enforce constraint c by explicitly manipulating data); Convertible (Projection based on the sorted value not sequence order]

TIMING-BASED CONSTRAINTS IN SEQ.-PATTERN MINING

[Order constraint (Some items must happen before the other); Antimonotonic (Constraint-violating sub-patterns pruned); Min-gap/max-gap constraint (Confines two elements in a pattern); Succinct (Enforced directly during pattern growth); Max-span constraint (Maximum allowed time difference between the 1st and the last elements in the pattern); Window size constraint (Events in an element don't have to occur at the same time: Enforce max allowed time difference)]

GRAPH PATTERN MINING

[Given a labeled graph dataset $D = \{G_1, G_2, ..., G_n\}$, the supporting graph set of a subgraph ${\it g}$ is $D_g = \{G_i \mid {\it g} \subseteq G_i, G_i \in D\}$ [support $(g) = |D_g|/|D|$] {Generation of candidate subgraphs: {Apriori vs. pattern growth (e.g., FSG vs. gSpan)}; Search order: {Breadth vs. depth}; Elimination of duplicate subgraphs: {Passive vs. active (e.g., gSpan (Yan&Han'02))}; Support calculation: {Store embeddings (e.g., GASTON, FFSM, MoFa)}; Order of pattern discovery {Path \rightarrow tree \rightarrow graph (e.g., GASTON)}

1. gSPAN (Graph Pattern Growth in Order) [Completeness: The enumeration of graphs using <u>right-most path extension</u> is complete; DFS Code: Flatten a graph into a sequence using depth-first search] {Right-most path extension in subgraph pattern growth {Right-most path: The path from root to the right-most leaf (choose the vertex w. the smallest index at each step); Reduce generation of duplicate subgraphs;}}

2. CloseGraph (Mines closed graph patterns directly) [PRO: Lossless compression; Extension of gSpan] {Suppose G and G1 are frequent, and G is a subgraph of G1; If in any part of the graph in the dataset where G occurs, G1 also occurs, then we need not grow G, since none o called of G's children will be closed except those of G1;}

d we list 3. SpiderMine (Mining Top-K Large Structural Patterns in a Massive Network) [Large patterns are composed of a number of small components ("spiders") which will eventually connect together after some rounds of pattern growth] [r-Spider: An r-spider is a frequent graph pattern P such that there exists a vertex u of P, and all other vertices of P are within distance r from u]

> [PRO: Good for mining large patterns: {Small patterns are much less likely to be hit in the random draw; Even if a small pattern is hit, it is peven less likely to be hit multiple times; The larger the pattern, the

greater the chance it is hit and saved}]
Candidates not in DB {Graph indexing: {gIndex (Indexing Frequent and Discriminative

Substructures)}; Support substructure similarity search {Keep the graph index structure, but select features in the query space}}

1	1	a	i	SID	EID	SID	EID				
1	2	abc	1	1	1	1	2				
1	3	ac	1	1	2	2	3				
1	4	d	1	1	3	3	2		_		
1	5	cf		2	1	3	- 5				
2	1	ad	1	2	4	4	5				
2	2	c	1	3	2				_		
2	3	be		4	3						
2	4	ae	1		ab						
3	1	ef	1	em		EID(L)		em	1211	ba.	PID/-)
3	2	ab	1	SID	EID (a)	EID(b)		SID	EU) (b)	EID(a)
3	3	df		_1_	1	2		1		2	3
3	4	e		2	1	3		2		3	4
3	5	b		3	2	- 5					
				4	3	5					
4	1	e				-1					
4	2	g				aba					
4	3	af	1	SID	EID (a)	EID	(b)	EID((a)		
4	4	с	1	1	1	2		3			
4	5	b		2	1	3		4			
4	- 6	c				-					