Estimering av forventet respons og predikasjon av ny verdi y^* .

Akkurat som ved enkel lineær regresjon vil vi være interessert i å estimere, gitt forklaringsvariable $x_1, x_2, ..., x_p$,

forventningen til y med disse forklaringsvariablene

$$\mu_{y} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{p}x_{p}$$

• verdien av ny y^* med de samme forklaringsvariablene

$$y^* = \mu_y + \varepsilon = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

Her er ε et feilledd som antas å ha forventning 0 og standardavvik σ , og kanskje er normalfordelt.

For begge størrelsene benytter vi samme punktestimat

$$\hat{\mu}_{y} = b_{0} + b_{1}x_{1} + b_{2}x_{2} + \cdots + b_{p}x_{p}$$

men variasjonen må behandles på ulike måter.

Usikkerhet i forventet respons - og i predikert ny verdi y*:

Standardfeilen $SE_{\hat{\mu}_y}$ til $\hat{\mu}_y = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_p x_p$ avhenger av usikkerheten (varianser og kovarianser) til minste kvadraters estimatorene $b_0, b_1, b_2, \cdots, b_p$ samt av verdiene av forklaringsvariablene x_1, x_2, \ldots, x_p .

Et 95% konfidensintervall for $\hat{\mu}_y$ blir nå gitt ved $\hat{\mu}_y \pm t^* SE_{\hat{\mu}_y}$ der t^* er 97.5 persentilen i t-fordelingen med n-p-1 frihetsgrader.

Tilsvarende blir til et 95% prediksjonsintervall for ny y^* gitt ved

$$\hat{\mu}_{y} \pm t^{*} SE_{y^{*}}$$

der $SE^2_{y^*} = s^2 + SE^2_{\hat{\mu}}$ er estimert varians for ny y^* .

Usikkerhet i forventet respons og predikert ny GPA verdi y* ved ulike verdier av HSM, HSS, HSE

Variable Setting: HSM = 5, HSS = 5, HSE = 5

```
Fit SE Fit 95% CI 95% PI
1,659 0,202 (1,259; 2,058) (0,169; 3,148)
```

Variable Setting: HSM = 2, HSS = 2, HSE = 2

```
Fit SE Fit 95% CI 95% PI 0,705 0,352 (0,009; 1,401) (-0,890; 2,300) XX
```

Variable Setting: HSM = 10, HSS = 10, HSE = 10

```
Fit SE Fit 95% CI 95% PI 3,248 0,088 (3,074; 3,422) (1,802; 4,693)
```

Merk: Ved HSM=HSS =HSE får vi negativ nedre grense, umulig! Tilsvarende øvre grense ved HSM=HSS=HSE=10 større enn 4 (også umulig!)

Forklart andel av varians: R²

Ved enkel lineær regresjon hadde vi at forklart andel av variasjon

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

faktisk var lik korrelasjonskoeffisienten opphøyd i 2 ($R^2=r^2$).

En så enkel sammenheng har vi ikke ved multippel regresjon. Men vi er fortsatt interessert i å se hvor mye av variasjonen i de opprinnelige dataene som kan forklares ved regresjonen og denne størrelsen er gitt ved den generelle definisjonen, altså

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

som lett kan regnes ut også i dette generaliserte tilfellet.

Kvadratroten $R = \sqrt{R^2}$ kalles den multiple korrelasjonskoeffisient

Minitab-utskrift for GPA-data: nå uthevd for R²

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0,726103	22,77%	21,19%	18,01%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value
Constant	0,069	0,454	0,15	0,879
HSM	0,1232	0,0549	2,25	0,026
HSS	0,1361	0,0700	1,95	0,054
HSE	0,0585	0,0654	0,89	0,373

Regression Equation

GPA = 0,069 + 0,1232 HSM + 0,1361 HSS + 0,0585 HSE

Noen egenskaper ved R²

- $0 \le R^2 \le 1$
- R² er kvadratet av korrelasjonskoeffisienten mellom observasjonene y_i og prediksjonene \hat{y}_i .
- R² vil øke (kan ikke avta) når vi inkluderer en ny forklaringsvariabel
- R^2 er større enn kvadrert korrelasjon mellom alle forklaringsvariable x_i og respons y.

Siden R² vil øke med antall forklaringsvariable også når disse har helt marginal betydning vil den overestimere betydningen av alle forklaringsvariablene. Derfor oppgis også andre varianter av dette målet i statistikkpakker, bl.a.: Justert (adjusted) og predikert R²

```
Model Summary
```

```
S R-sq R-sq(adj) R-sq(pred)
0,726103 22,77% 21,19% 18,01%
```