# **Calculus and Analytical Geometry**

## Lecture no. 04

## **Amina Komal**

## **March 2022**

**Topic:** Functions and graphs

### **Outline of the lecture:**

- i. Functions
  - Domain
  - Range
- ii. Geometrical Approach
  - Onto function
  - One-to-one function
- iii. Some basic functions
  - Constant function
  - Identity function
  - Linear function
  - Quadratic function
  - Rational function
  - Square root function
  - Exponential function
  - Sine function
  - Cosine function
  - Tangent function
  - Piecewise function
- iv. Practice questions

#### 1. Function:

If a variable y **depends** on a variable x in such a way that each value of x determines **exactly one** value of y, then we say that y is a function of x.

### Domain of a function:

The domain is the set of all possible *x*-values which will make the function "work", and will output real *y*-values.

### Range of a function:

The **range** of a function is the complete set of all possible **resulting values** of the dependent variable (*y*, usually), after we have substituted the domain.

## 2. Geometrical Approach:

Every vertical line intersects the graph of a function f exactly at one point. If a horizontal line intersecting the graph meets the y-axis at the point y, then y belongs to the range of f. The set of all such y points from range of f.

### • Onto function:

f is onto if every horizontal line intersects the graph of f.

### • One-to-one function:

f is one-to-one if every horizontal line intersects the graph of f exactly at one point.

### **Example:**

Sketch the graph of the function  $f(x) = x^2$  and find its domain and range. Check whether its onto and onto one or not.

Step 1: Graph



Step 2:

**Domain:** The domain of function is real numbers  $\mathbb{R}$  because square of every real number is possible.

**Range:** Since all the horizontal lines that cut the graph lie above the x-axis, the range(f)= $[0,+\infty)$ .

### Step 3:

Onto function: Since the lines that lie below the x-axis do not intersect the graph, f is not onto.

One to One function: Since each horizontal line that lies above the x-axis intersects the graph at TWO points, f is not one-to-one.

#### 3. Some basic functions:

• Constant function: A constant function is a function having the same range for different values of the domain. Graphically a constant function is a straight line, which is parallel to the x-axis. Its domain is the set of all real numbers, R. So, domain = R. Since a constant function f(x) = k leads to only one output, which is k, its range is the set with just one element k. Range = {k}.

**Example:** f(x)=2



Identity function: Let R be the set of real numbers. Thus, the real-valued function f: R → R by y = f(a) = a for all a ∈ R, is called the identity function. Here the domain and range (codomain) of function f are R.

**Example:** f(x)=x



• Linear Function: A linear function is of the form f(x) = mx + b where 'm' and 'b' are real numbers.

Example: 2x-4



• Quadratic function: the function of the form  $f(x) = ax^2 + bx + c$ ,  $x \in R$  and a and b are fixed real numbers.









• Rational function: The function of the form  $\frac{P(x)}{Q(x)}$  is known as rational function where P(x) and Q(x) are polynomials.





• Square root function: The function of the form  $f(x) = \sqrt{x}$ . The domain and range of the function is  $\geq 0$ .



$$f(x) = \sqrt{x}$$



**Exponential Function:** The function of the form  $f(x) = e^x$  or  $f(x) = a^x$ , where a > 0.

**Example:** Graph of function  $f(x) = e^x$  where  $e = 2.718 \approx 2.72$ 



The direction of curve can change depending upon the sign with the power.



• **Power function:** The function of the form  $f(x) = x^n$ ,  $n \in \mathbb{Z}^+$  The graph of power function when the power is even or odd, is given below.

|                           | Even power                                                                                                     | Odd power                                                                                                     |
|---------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Positive constant $k > 0$ | $x \to -\infty, f(x) \to \infty$ and $x \to \infty, f(x) \to \infty$                                           | $ \begin{array}{c} x \to -\infty, f(x) \to -\infty \\ \text{and } x \to \infty, f(x) \to \infty \end{array} $ |
| Negative constant $k < 0$ | $ \begin{array}{c} x \to -\infty, f(x) \to -\infty \\ \text{and } x \to \infty, f(x) \to -\infty \end{array} $ | $x \to -\infty, f(x) \to \infty$ and $x \to \infty, f(x) \to -\infty$                                         |

• Sine function: A function of the form  $f(x) = \sin x$  is known as sine function. It is represented in the interval  $[-2\pi, 2\pi]$ 



• Cosine function: A function of the form  $f(x) = \cos x$  is known as sine function. It is represented in the interval  $[-2\pi, 2\pi]$ 



• Tangent function: A function of the form  $f(x) = \tan x$  is known as sine function. It is represented in the interval  $[-2\pi, 2\pi]$ 



• Piece-wise function:

A piecewise function is a function built from pieces of different functions over different intervals.

**Example 1:** Absolute value function.

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x > 0 \end{cases}$$

## **Graph of piece wise function:**

Draw the graph of the following function:

$$f(x) = \begin{cases} x^2 & \text{if } x \le 1\\ 3 & \text{if } 1 < x \le 2\\ x & \text{if } x > 2 \end{cases}$$

### **Solution:**

Let's divide the function into 3 subfunctions:  $f_1(x) = x^2$ ,  $f_2(x) = 3$ ,  $f_3(x) = x$ **Step 1:** Completing the table

| X        | 1 | 0 | -1 | -2 |
|----------|---|---|----|----|
| $f_1(x)$ | 1 | 0 | 1  | 4  |

| X        | 2 |
|----------|---|
| $f_2(x)$ | 3 |

| X        | 3 | 4 | 5 | 6 |
|----------|---|---|---|---|
| $f_3(x)$ | 3 | 4 | 5 | 6 |







Graph of complete piece wise function:



# Example 2:

Draw graph of the following piece-wise function

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

**Graph:** 



## **Practice Questions:**

Draw the graphs of following equations:

1) 
$$f(x) = 3 \sin x$$

2) 
$$f(x) = 2x - 5$$

3) 
$$f(x) = |x + 3|$$

4) 
$$f(x) = \frac{-2}{x-3}$$

5) 
$$G(x) = \begin{cases} 1/x, & x < 0 \\ x, & 0 \le x \end{cases}$$

3) 
$$f(x) = |x+3|$$
  
4)  $f(x) = \frac{-2}{x-3}$   
5)  $G(x) = \begin{cases} 1/x, & x < 0 \\ x, & 0 \le x \end{cases}$   
6)  $f(x) = \begin{cases} \frac{-3}{2}x & -2 \le x < 0 \\ -x & 0 \le x < 1 \\ 2 & 1 \le 3 \\ 0 & 3 < x \end{cases}$   
7)  $f(x) = -2x^2 + 1$ 

7) 
$$f(x) = -2x^2 + 1$$