CHAPTER 10

Challenges, Opportunities, and Future Prospects

```
modifier_ob.
 mirror object to mirror
mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
mirror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 _operation == "MIRROR_Z";
 lrror_mod.use_x = False
 lrror_mod.use_y = False
 rror_mod.use_z = True
 selection at the end -add
  ob.select= 1
  er ob.select=1
  ntext.scene.objects.action
  "Selected" + str(modified
   irror ob.select = 0
 bpy.context.selected_obj
  lata.objects[one.name].se
 int("please select exactle
  OPERATOR CLASSES ----
    X mirror to the selected
    vpes.Operator):
   ject.mirror_mirror_x"
 ext.active_object is not
```

INTERNET OF THINGS SECURITY

- Security Standardization
- Software or Code Integrity

CLOUD COMPUTING BASED SECURITY SOLUTIONS

DDoS attacks in cloud- backed IoT

DDoS and communication overhead

Interior cloud DDoS attack

Instantaneous cumulative analysis of traffic flows

Commercial loss

SDN-based cloud solutions

DDoS-for-Hire service

Data location evidence identification Data proliferation Forensics Crime scene reconstruction evidence collection Nonstandard hardware/software End-to-end analysis Challenges loT evidence analysis Integrity analysis Lifespan limitation evidence presentation Transparency Legal issues attack attribution Presentation

CLOUD COMPUTING BASED SECURITY SOLUTIONS

FOG COMPUTING BASED SECURITY SOLUTIONS

FOG INTELLIGENCE

SECURITY ISSUES

PRIVACY ISSUES

MAINTENANCE ISSUES

INTEROPERABILITY ISSUES

EDGE COMPUTING BASED SECURITY SOLUTIONS

Context-Informed Security

Microservicesbased design Mechanisms
Orchestration
and
Standardization

DEEP LEARNING FOR IOT SECURITY

The dataset scarcity

IoT Security
Solution based
on low-quality
data

IoT security data
Augmentation

Zero-day attacks

Enduring Learning

Transfer learning

Interdependent, interrelated, and collaborative ecosystems

DEEP REINFORCEMENT LEARNING

Resistance against Adversarial reinforcement learning

Deficient Perception Dilemma

Joint reward from multiple agents