Epipolar Constraint Derivation

FOR THE FUNDAMENTAL MATRIX

November 15, 2018

Let p, p' be corresponding points in image 1 and 2 respectively, with cameras related by rotation R and translation t.¹ Let the intrinsic matrices of cameras 1 and 2 be K and K' respectively.

Then p' in camera 1 coordinates² is

$$R^{T}((K')^{-1}p'-t) = R^{T}(K')^{-1}p'-R^{T}t$$

This point, along with $R^T t$, lies in the epipolar plane.³ So a normal to the epipolar plane is

$$R^{T}t \times (R^{T}(K')^{-1}p' - R^{T}t) = R^{T}t \times R^{T}(K')^{-1}p' - R^{T}t \times R^{T}t$$
$$= R^{T}(t \times (K')^{-1}p')$$

Since $K^{-1}p$ also lies in the epipolar plane, $K^{-1}p$ dotted with this normal should equal 0:

$$(R^{T}(t \times (K')^{-1}p'))^{T}K^{-1}p = 0$$

$$(t \times (K')^{-1}p')^{T}RK^{-1}p = 0$$

$$(T_{x}(K')^{-1}p')^{T}RK^{-1}p = 0$$

$$p'^{T}(K')^{-T}T_{x}^{T}RK^{-1}p = 0$$

$$p'^{T}(K')^{-T}T_{x}RK^{-1}p = 0$$

$$p'^{T}Fp = 0$$

where $F = (K')^{-T} T_x R K^{-1}$ is the fundamental matrix.

 T_x is a skew-symmetric matrix constructed from the translation vector t:

$$\begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

¹Specifically, R, t is the transformation from camera 2's frame to camera 1's frame, meaning the relationship between a point p_1 in camera 1 coordinates and a point p_2 in camera 2 coordinates is $p_2 = Rp_1 + t$.

²We define "camera coords" as points in the camera frame, and "image coords" as projected points in the image.

³Under our formulation, $-R^T t$ is the vector in the camera 1 frame from O_1 to O_2 .