SAMPLE PROBLEM A

A 1.0×10^{-4} M solution of HNO₃ has been prepared for a laboratory experiment.

a. Calculate the [H₃O⁺] of this solution. b. Calculate the [OH⁻].

SOLUTION

1 ANALYZE

Given: Concentration of the solution = 1.0×10^{-4} M HNO₃

Unknown: a. $[H_3O^+]$ b. $[OH^-]$

2 PLAN

 HNO_3 is a strong acid, which means that it is essentially 100% ionized in dilute solutions. One molecule of acid produces one hydronium ion. The concentration of the hydronium ions thus equals the concentration of the acid. Because the ion product, $[\mathrm{H_3O^+}]$ $[\mathrm{OH^-}]$, is a constant, $[\mathrm{OH^-}]$ can easily be determined by using the value for $[\mathrm{H_3O^+}]$.

a. $HNO_3(l) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$ (assuming 100% ionization) 1 mol 1 mol 1 mol

molarity of
$$HNO_3 = \frac{\text{mol } HNO_3}{1 \text{ L solution}}$$

$$\frac{\text{mol-HNO}_3}{\text{L solution}} \times \frac{1 \text{ mol H}_3\text{O}^+}{1 \text{ mol-HNO}_3} = \frac{\text{mol H}_3\text{O}^+}{\text{L solution}} = \text{molarity of H}_3\text{O}^+$$

b. $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$

$$[\mathrm{OH^-}] = \frac{1.0 \times 10^{-14}}{[\mathrm{H_3O^+}]}$$

3 COMPUTE

a. $\frac{1.0 \times 10^{-4} \text{ mol HNO}_3}{1 \text{ L solution}} \times \frac{1 \text{ mol H}_3\text{O}^+}{1 \text{ mol HNO}_3} = \frac{1.0 \times 10^{-4} \text{ mol H}_3\text{O}^+}{1 \text{ L solution}} = 1.0 \times 10^{-4} \text{ M H}_3\text{O}^+$

b. $[OH^-] = \frac{1.0 \times 10^{-14}}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-4}} = 1.0 \times 10^{-10} \text{ M}$

4 EVALUATE

Because the $[H_3O^+]$, 1.0×10^{-4} , is greater than 1.0×10^{-7} , the $[OH^-]$ must be less than 1.0×10^{-7} . The answers are correctly expressed to two significant digits.

PRACTICE

Answers in Appendix E

- 1. Determine the hydronium and hydroxide ion concentrations in a solution that is 1×10^{-4} M HCl.
- 2. Determine the hydronium and hydroxide ion concentrations in a solution that is 1.0×10^{-3} M HNO₃.
- 3. Determine the hydronium and hydroxide ion concentrations in a solution that is 3.0×10^{-2} M NaOH.
- **4.** Determine the hydronium and hydroxide ion concentrations in a solution that is 1.0×10^{-4} M Ca(OH)₂.

extension

Go to **go.hrw.com** for more practice problems that ask you to calculate concentration of hydronium and hydroxide ions.

