2008年2月

- $egin{array}{c} 1 \\ \end{bmatrix}$ 次の主張はすべて誤りである。反例をあげて説明を加えよ。
- (1) $\{f_n\}$ が [0,1] 上の非負連続関数の単調減少列(つまり、 $f_1 \geq f_2 \geq f_3 \geq \cdots \geq 0$)とすると、 $f(x) = \lim_{n \to \infty} f_n(x)$ は [0,1] で連続である。
- (2) 0 を含む開区間で定義された微分可能な関数 f(x),g(x) に対し、その区間で $g(x) \neq 0$, $g'(x) \neq 0$ であり、 $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = a$ ならば、 $\lim_{x\to 0} \frac{f(x)}{g(x)} = a$ である。
- (3) f(x) が $(0,\infty)$ 上で f(x)>0 をみたす凸関数であり、g(x) が $(0,\infty)$ 上の凸関数ならば、合成関数 g(f(x)) は $(0,\infty)$ 上の凸関数である。

2

- (1) α を実数の定数とするとき, $\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{dx}{x^{\alpha}}$ を計算せよ。
- (2) $\lim_{\epsilon \to +0} \int_{\epsilon}^{1} \frac{\sin x}{x^{\alpha}} dx$ が収束するような実数 α の範囲を求めよ。
- 3 a,b,c を 0 でない実数の定数とし、x,y,z を未知数とする次の連立一次方程式を考える。

$$\begin{cases} ax + by + cz = a \\ bx + cy + az = b \\ cx + ay + bz = c \end{cases}$$

以下の問いに答えよ。

- (1) 方程式が少なくとも1つの解をもつことを示せ。
- (2) a+b+c=0 のとき、方程式のすべての解を求めよ。

4 実係数の2次以下の8項式のなすベクトル空間をV とし、V に内積を

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

で定める。

- (1) $f_1(x) = 1$, $f_2(x) = x$ とする。 $(f_1, f_3) = (f_2, f_3) = 0$ をみたす 0 でない $f_3 \in V$ を求めよ。
- (2) 1次以下の多項式 f(x) で

$$\int_{-1}^{1} (f(x) - x^2)^2 dx$$

が最小となるものを求めよ。

 $oxedsymbol{5}_n$ を自然数として, $V=\{1,2,\ldots,n\}$ とおく。 $k\in V$ に対して

$$f(k) = \begin{cases} n+1 - \frac{k+1}{2} & (k \text{ が奇数のとき}) \\ \frac{k}{2} & (k \text{ が偶数のとき}) \end{cases}$$

とおく。以下の問いに答えよ。

- (1) f は V から V への全単射であることを示せ。
- (2) f の逆写像 f^{-1} を求めよ。
- (3) f(k) = k をみたす $k \in V$ が存在するように n を定めよ。
- 6 2枚のコインを同時に投げる。このとき、確率変数 X,Y を次で定義する。

次の量を計算せよ。

- (1) 条件付確率 P(X = 1|Y = 0).
- (2) X と Y の平均値 $\mathbf{E}[X]$ と $\mathbf{E}[Y]$.
- (3) $X \geq Y$ の共分散 $Cov(X,Y) = \mathbf{E}[(X \mathbf{E}[X])(Y \mathbf{E}[Y])].$
- $\begin{bmatrix} 7 \end{bmatrix}_{xy}$ 平面にある曲線 C 上の任意の点 P(x,y) における法線へ原点 (0,0) から下ろした垂線の長さが,点 P の y 座標の絶対値に等しいという。以下の問いに答えよ。
 - (1) 曲線 C は微分方程式

$$y^2 - 2xyy' - x^2 = 0$$

をみたすことを示せ。

- (2) (1) の微分方程式を解いて、曲線 C の方程式を求めよ。
- (1) 複素数 z の関数

$$f(z) = \frac{1}{(z^2 - 2az + a^2)\left(z - \frac{1}{a}\right)}$$

の極とその位数を求めよ。

- (2) 関数 f は (1) におけるものとし、複素平面上の曲線 $C: z = e^{i\theta}$ $(-\pi \le \theta \le \pi)$ 上の積分 $\frac{1}{2\pi i} \int_C (z-a) \, z \, f(z) \, dz$ を求めよ。
- (3) a を実数で 0 < |a| < 1 をみたすものとする。積分

$$\int_0^{\pi} \frac{\cos \theta}{\frac{1}{2} \left(a + \frac{1}{a} \right) - \cos \theta} d\theta$$

を求めよ。

 $oxed{9}$ $_3$ 次元ユークリッド空間 ${f R}^3$ 内の原点を中心とし,半径1の球面を

$$S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$$

とする。このとき,次の問に答えよ。

- (1) 点 P(x,y,z) と N(0,0,1) を通る直線 t(x,y,z)+(1-t)(0,0,1) $(-\infty < t < \infty)$ と xy 平面との交点を $(\xi,\eta,0)$ とする。 ξ と η を x,y,z で表せ。
- (2) 点 P(x,y,z) が球面 S^2 上にあるとき, x,y,z を ξ,η で表示せよ。
- (3) このことを用いて、 $S^2 \setminus \{N\}$ が \mathbf{R}^2 と微分同相であることを示せ。
- 10 R は実数体を表し、 $\mathbf{R}(x)$ は x を変数とする実数係数有理関数全体のなす体を表す。体 $\mathbf{R}(x)$ の R 上の自己同型写像 σ, τ を

$$\sigma(x) = 1 - \frac{1}{x}, \qquad \tau(x) = 1 - x$$

で定める。以下の問いに答えよ。

- (1) $\sigma(x^2)$, $\sigma(x^3)$, $\sigma^2(x)$, $\sigma^3(x)$ を求めよ。
- (2) σ の作用で不変な、定数でない有理関数を1つあげよ。
- (3) σ, τ が生成する体 $\mathbf{R}(x)$ の自己同型群 $G=<\sigma, \tau>$ の位数を求めよ。
- (4) (3) の群 G の作用で不変な、定数でない有理関数を1つあげよ。