

General information

Designation

Acer saccharum (L)

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Octidio36/Fichilochidio36/Eighin/Fiz/01120		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%
	,	
Composition detail (polymers and natural materials	5)	
Wood	100	%
Price		

Price	* 0.608	-	0.912	USD/lb
Price per unit volume	* 24.3	-	44.5	USD/ft^3

Physical properties

Density	0.0231	-	0.0282	lb/in^3

Mechanical properties

Mechanical properties				
Young's modulus	* 1.81	-	2.22	10^6 psi
Yield strength (elastic limit)	* 7.25	-	8.86	ksi
Tensile strength	* 13.2	-	16.2	ksi
Elongation	* 1.97	-	2.4	% strain
Compressive strength	7.05	-	8.62	ksi
Flexural modulus	1.65	-	2.02	10^6 psi
Flexural strength (modulus of rupture)	14.2	-	17.4	ksi
Shear modulus	* 0.135	-	0.164	10^6 psi
Shear strength	2.1	-	2.57	ksi
Bulk modulus	* 0.157	-	0.174	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.2			
Hardness - Vickers	* 6.78	-	8.28	HV
Hardness - Brinell	* 52.6	-	64.3	HB
Hardness - Janka	* 1.52e3	-	1.86e3	lbf

#EJUPITCK								
Fatigue strength at 10^7 cycles	* 4.26	-	5.21	ksi				
Mechanical loss coefficient (tan delta)	* 0.006	7 -	0.0082					
Differential shrinkage (radial)	0.17	-	0.23	%				
Differential shrinkage (tangential)	0.25	-	0.32	%				
Radial shrinkage (green to oven-dry)	4.3	-	5.3	%				
Tangential shrinkage (green to oven-dry)	8.9	-	10.9	%				
Volumetric shrinkage (green to oven-dry)	13.2	-	16.2	%				
Work to maximum strength	1.24	-	1.51	ft.lbf/in^3				
Impact & fracture properties								
Fracture toughness	* 5.28	-	6.46	ksi.in^0.5				
Thermal properties								
Glass temperature	171	-	216	F				
Maximum service temperature	248	-	284	F				
Minimum service temperature	* -99.4	-	-9.4	F				
Thermal conductivity	* 0.179	-	0.214	BTU.ft/hr.ft^2.F				
Specific heat capacity	0.396	-	0.408	BTU/lb. F				
Thermal expansion coefficient	* 1.11	-	6.11	µstrain/℉				
Electrical properties								
Electrical resistivity	1.22e	14 -		μohm.in				
Dielectric constant (relative permittivity)	* 6.95	-	0.0					
Dissipation factor (dielectric loss tangent)	* 0.082	-	0.1					
Dielectric strength (dielectric breakdown)	* 10.2	-	15.2	V/mil				
Magnetic properties								
Magnetic type	Non-r	nagnet	tic					
Optical properties								
Transparency	Opaq	ue						
Critical materials risk								
Contains >5wt% critical elements?	No							
December 1846								
Durability Water (freeh)	1 ::4	ed use						
Water (fresh)		ea use ed use						
Water (salt)								
Weak acids		ed use						
Strong acids		ceptab	ile					
Weak alkalis	Acce		Jo.					
Strong alkalis	Unac	Unacceptable						

Maple (acer saccharum) (I)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
-------------------------------------	--------	---	-------	--------	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 1.84e4	-	2.03e4	in^3/lb		
-------------	----------	---	--------	---------	--	--

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 515	-	569	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0898	-	0.0993	lb/lb
Fine machining energy (per unit wt removed)	* 3.31e3	-	3.66e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.577	-	0.638	lb/lb
Grinding energy (per unit wt removed)	* 6.42e3	-	7.09e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.12	-	1.24	lb/lb

Recycling and end of life

, ,				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

