Comp615 - Lab 11

Jessica Wong – 14877422

Ling Bin - 21152215

Q1: Perform a similar 'breakdown' analysis for the rest of the features. Provide the plots and explain your findings

Buying	high	low	med	vhigh
class				
acc	108	89	115	72
good	0	46	23	0
unacc	324	258	268	360
vgood	0	39	26	0

The buying feature shows that cars with a higher buying price are more likely to be in the 'unacc' class. There is no occurrence of 'good' or 'vgood' classes for any buying price category.

Maint	high	TOM	med	vhigh
class				
acc	105	92	115	72
good	0	46	23	0
unacc	314	268	268	360
vgood	13	26	26	0

Cars with higher maintenance costs are more likely to be in the 'unacc' class. There is no occurrence of 'good' or 'vgood' classes for any maintenance cost category.

Lug_boot	big	med	small
class			
acc	144	135	105
good	24	24	21
unacc	368	392	450
vgood	40	25	0

The size of the luggage boot doesn't have a strong association with the car class. However, cars with a 'big' size luggage boot tend to have a higher likelihood of being in the 'acc' class.

2	3	4 5	more
1 9	99 1	02	102
.5 1	18	18	18
6 30	90 2	92	292
.0 1	15	20	20
	1 9 5 1 6 30	1 99 1 5 18 6 300 2	1 99 102 5 18 18 6 300 292

The number of doors doesn't show a strong association with the car class. However, cars with 5 or more doors have a higher likelihood of being in the 'unacc' class.

Q2: Compare the Chi-square selected features with Lab 9's Classification Tree ('mytree_gini') feature importance result ('mytree_gini.feature_importances_'). Provide the plots and explain your findings.

We can see from the two plots below from the chi-square selected features and the feature importance result from the Gini Classification tree that they are quite similar and the first plot shows more detail than the second plot. Safety and persons are more important features for the y variable class and luggage boot and doors are the lowest importance.

Q3: Summarise the ANOVA F-scores results in a 30 by 2 table with the first column holding the scores and the second column specifying the features name. Your table should be sorted based on F-scores in descending order. Present the first 10 rows of your table.

Top 10 rows of the feature scores table:

	Feature	F-Score
28	concave points_worst	662.320337
8	concave points_mean	616.646516
23	perimeter_worst	580.041174
21	radius_worst	547.254347
3	perimeter_mean	443.061554
24	area_worst	414.736757
1	radius_mean	409.324586
7	concavity_mean	362.653784
4	area_mean	356.084616
27	concavity worst	330.705030

Q4: Using the outcome of Q3, choose the top 6 features. Explain the distribution of their Class/features using proper visualization (e.g. factegrid or paired plots)

Looking at the scatter graph below to show the top 6 features in association with the diagnosis classes. We can see that the plots form a upwards line which shows its strength of correlation and relationships between the features and the classes. The strongest looks like perimeter_worst and radius_worst, having a strong relationship and potential significance in predicting the diagnosis of breast cancer.

