Матрицу M можно представить в виде $M=uu^{\rm T}+kE$, где $u^{\rm T}=\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$, а E — единичная матрица. Тогда если $\{\lambda_i\}$ — собственные значения матрицы $uu^{\rm T}$, то

$$\det M = \det (uu^{\mathrm{T}} + kE) = \prod_{i} (\lambda_i + k).$$

Найдем собственные значения uu^{T} . Заметим, что $(uu^{\mathrm{T}})x=uu^{\mathrm{T}}x=(u,x)u$. Пространство V, на котором действует uu^{T} , раскладывается в прямую сумму $V=<u>> \oplus <u>^{\perp}$. Нетрудно видеть, что оба слагаемых являются собственными подпространствами для uu^{T} с собственными значениями $u^{\mathrm{T}}u=\sum_{i=1}^n a_i^2$ и 0. Отсюда окончательно получим

$$\det M = k^{n-1} \left(k + \sum_{i=1}^{n} a_i^2 \right).$$