ISS – projekt

1. Tabulka sentences

Název souboru	Délka ve vzorcích	Délka v sekundách	
sa1	81177	05,07	
sa2	76161	04,76	
si1513	43294	02,71	
si2143	67431	04,21	
si883	63158	03,95	
sx163	66502	04,16	
sx253	44768	02,80	
sx343	77090	04,82	
sx433	80062	05,00	
sx73	51269	03,20	

Tato databáze může být použita pro výzkum a vývoj v rámci řečové skupiny na FITu BUT Speech@FIT a pro tvorbu volně dostupné databáze "Czenglish TIMIT".

2. Tabulka queries

Název souboru	Délka ve vzorcích	Délka v sekundách	
q1	11699	00,73	
q2	12760	00,80	

3. Spektrogram

Obrázek 1: Spektrogram věty sa2

Na obrázku 1 je vyobrazen spektrogram věty s2. K jeho získání byl veden následující výpočet. Před zahájením výpočtu se odečetla od signálu jeho střední hodnota, tím došlo k jeho pročištění. Funkcí hammig v pythonu bylo získáno hammingovo okno pro výpočet spektrogramu, který provedla funkce spektrogram. Před vykreslením grafu byla navrácená hodnota z funkce spectrogram zlogaritmována podle vzorce $P[k] = 10log_10|X[k]|^2$

4. Výpočet features

Výpočet features byl veden na základě vzorce F = AP, kde P je výstupní matice spectrogramu, P je matice naplněna pomocí lineární banky a P je výstupní matice obsahující features. Výpočet matice P je realizován maticovým násobením P0 a P1, kde P3 je naplněno pomocí algoritmu 4.1.

4.1 Algoritmus naplnění matice A

```
A = np.zeros((16, 256))

for i in range(0,16):
    for j in range(0,16):
        A[i][j+i*16] = 1
```

Matice A se tedy plní po řádcích šestnácti jedničkami, přičemž každý posun o řádek je doplněn posunem startovního bodu plnění o 16 v řádku vpravo.

5. Výpočet skóre klíčového slova

Pro výpočet skóre byla využita matice parametrů **F** prohledávané věty a **Q** hledaného query. Pro lepší postup byla matice **F** transponována, aby mohlo přikládání matice **Q** probíhat po řádcích. Výpočet skóre byl realizován součtem Personových korelačních koeficientů, ty byly získány funkci pearsonr. Při průchodu jednotlivými řádky byly skóre ukládána za sebe do pole, které bylo následně vykresleno.

6. Hlavní grafický výstup

7. Popis vyhledávání

Pole obsahující skóre bude postupně procházeno, pokud hodnota skóre stoupne nad 0.9, pak byl nalezen začátek query a ze zdrojového signálu prohledávané věty bude vybrána část od tohoto hitu o délce query. Hledání pak bude pokračovat až od indexu hitu + délky query.

8. Výsledky vyhledávání

Název věty	query	nalezeno	začátek a konec slova
sa1	overweight	ne	-
sa2	overweight	ano	45920 - 47619
si1513	overweight	ne	-
si2143	overweight	ne	-
si883	overweight	ne	-
sx163	overweight	ne	-
sx253	overweight	ne	-
sx343	overweight	ne	-
sx433	overweight	ano	2240 - 13939
sx73	overweight	ne	-
sa1	retaliatory	ne	-
sa2	retaliatory	ne	-
si1513	retaliatory	ne	-
si2143	retaliatory	ne	-
si883	retaliatory	ano	12000 - 24760
sx163	retaliatory	ne	-
sx253	retaliatory	ne	-
sx343	retaliatory	ne	-
sx433	retaliatory	ne	-
sx73	retaliatory	ne	-

9. Závěr

Výsledná funkčnost naimplementovaného detektoru je uspokojující. Nicméně pro nalezení shody musela být hranice stanovena vysoko na 0.9, pokud by byla hranice menší, pak by vyhledávání označilo mnoho chybných shod. Nepřesnost mohla být způsobena různou rychlostí a intenzitou vyslovení query, nebo nečistou nahrávkou věty. Bylo by optimální vyhledávání obohatit o detekci roztažených a zúžených query. I přes tyto problémy byly slova s vysokou úspěšnosti nalezena, nicméně s jedním nesprávným.