Neo4j airport project

Създаване на nodes:

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/YordanTop/airport_routes_project/prototype/airports.csv" AS row

CREATE (:_Airports {`Airport ID`:row.`Airport ID`, City:row.City, Country:row.Country, IATA:row.IATA, ICAO:row.ICAO, Latitude:row.Latitude, Longitude:row.Longitude, Altitude:row.Altitude, Timezone:row.Timezone, DST:row.DST, `TZ database timezone`:row.`TZ database timezone`, Type:row.Type, Source:row.Source});

Създаване на връзки:

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/YordanTop/airport_routes_project/prototype/routes.csv" AS row

WITH row

MATCH (a: Airports {IATA: row.`Source airport`})

WITH row, a

MATCH (_a2:_Airports {IATA: row.`Destination airport`})

CREATE (_a)-[:ROUTE{Stops:row.Stops}]->(_a2);

Създаване на Уникален ключ.

CREATE CONSTRAINT FOR (a: Airports) REQUIRE a.IATA IS UNIQUE;

1.Кои летища можем да посетим от София и които са на 1 дъга разстояние?

MATCH (a:_Airports)-[r:ROUTE]->(b:_Airports) WHERE a.IATA = 'SOF' RETURN a,b,r

2.А на 2 дъги разстояние?

MATCH (a:_Airports)-[r:ROUTE]-(b:_Airports)-[r2:ROUTE]->(c:_Airports) WHERE a.IATA = 'SOF' RETURN a,b,c,r,r2

3.Същото за Пловдив

MATCH (a: Airports)-[r:ROUTE]->(b: Airports) WHERE a.IATA = 'PVD' RETURN a,b,r

MATCH (a:_Airports)-[r:ROUTE]-(b:_Airports)-[r2:ROUTE]->(c:_Airports) WHERE a.IATA = 'PVD 'RETURN a,b,c,r,r2

4. Най-краткият път от Пловдив до Сидни?

MATCH p = shortestPath((a:_Airports {IATA:'PVD'})-[*]->(b:_Airports {IATA:'SYD'})) return p

5.А най-бързият?

MATCH (a:`_Airports`{IATA:"PVD"}),(b:`_Airports`{IATA:"SYD"}) CALL apoc.algo.dijkstra(a,b,'ROUTE',"SYD") yield path,weight return path,weight

6.Същото, но за Лондон

MATCH p = shortestPath((a:_Airports {IATA:'PVD'})-[*]->(b:_Airports {IATA:'LCY'})) return p

MATCH (a:`_Airports`{IATA:"PVD"}),(b:`_Airports`{IATA:LCY"}) CALL apoc.algo.dijkstra(a,b,'ROUTE',"LCY") yield path,weight return path,weight

7.Същото от Монреал до София

MATCH p = shortestPath((a:_Airports {IATA:'YUL'})-[*]->(b:_Airports {IATA:'SOF'})) return p

MATCH (a:`_Airports`{IATA:"YUL"}),(b:`_Airports`{IATA:"SOF"}) CALL apoc.algo.dijkstra(a,b,'ROUTE',"SOF") yield path,weight return path,weight

8.Най-натовареното летище?

MATCH (a:`_Airports`)<-[r:ROUTE]-(b:`_Airports`) RETURN a,count(*) ORDER BY count(*) DESC LIMIT 1