

59-20

Appendix N

N 92-10053⁰⁵⁵

P-19

MPD Thruster Technology Workshop

NASA H.Q., Washington D.C.

16 May 1991

54353604

IRS Presentation

E. Messerschmid

Electric Propulsion and Plasma Wind Tunnel

Activities at the IRS

May 1991

Activity / Thruster	MPD (Selffield)	Arcjet			Reentry (Material-Tests)		Missions. Trajectories
Power Level	100 kW-1 MW	1 kW	< 20 kW	< 100 kW	$h_0 < 10^8 \text{ J/kg}$		
Isp [km/s]	10 - 20	5 - 6	< 10	10 - 15			
Thrust [N]	5 - 20	0.1	> 1	> 10			
Propellant	Ar, N ₂ , H ₂ , NH ₃	NH ₃ , H ₂ , N ₂ , H ₂	N ₂ -H ₂ , H ₂	NH ₃ , H ₂			
Theories	Flowfield Stability Arc-Attachment Erosion	Constrictor Flow Heat Transport					Traject. - Optimizat.
Diagnostics	Emission Spectroscopy, el. Probes, Fabry-Perot Interferometry, Mechan. Probes, Mass Spectroscopy, Optical Temperature Measurement						
Status	Water Cooled Laboratory Devices	Radiation Cooled Lab. Model	Water Cooled Devices	Water Cooled Devices	PWK1 - IRS Operat. since 1987	PWK2 - IRS Operative	in Work
Contractors	USAF DFG BMFT	DARA		NASA (IST)	ESA / CNES, AMD-BA, AS, SEP, DO, MBB, MAN, DLR	DARA SFB ESA, FGE	

IRS Facilities

High DC Power Supply:

Power: ≤ 6 MW
Current: ≤ 48 kA
Ripple: $\leq 1\%$

Vacuum System:

Four Stage Pump System:

1) 3 MTP 50,000 m³/h roots pumps
1 Alcatel 120,000 m³/h roots pump

2) 1 MTP 50,000 m³/h roots pump

3) 1 multiple slide valve type pump RV 500

4) Rotary vane pump BA 600

Total suction power: > 200,000 m³/h at 10 Pa

Tank pressure can be set

Vacuum tanks:

8 tanks connected to vacuum system

6 for plasma accelerator development
2 plasma wind tunnels

2 independent test stands for smaller thrusters or basic experiments

History of MPD Activities at IRS

- | | |
|-----------|--|
| 1976 | Begin of Building-Up of IRS Propulsion Laboratory |
| 1982-1991 | Cooperation Grants "Basic Processes of Plasma Propulsion" from AFOSR (analytical and numerical). |
| 1982-1991 | Cooperation Grants with interruptions "MPD Thruster Development" from AFRPL, AFOSR. 1987-1988 financed by the SDIO over ONR (experimental and numerical). |
| 1989-1991 | "MPD Thruster Instabilities", contract by the German Research Organisation DFG (theoretical studies). |
| 1990-1993 | "Plasma Instabilities in MPD Thrusters", contract by the German Ministry of Research BMFT (numerical and experimental; together with MAN). |

History of Thermal Arcjet Activities at IRS

- 1986-1990 "Arcjet Flow Analysis", contract by ESA/ESTEC (analytical and numerical).**
- 1987-1990 "1 N Arcjet", sub-contract by ESA/ESTEC (experimental), main-contractor BPD, Italy.**
- 1989-1991 "High Power Arcjet", Cooperation Grant by NASA (IST) (experimental and numerical studies).**
- 1990-1993 "A 1 kW Hydrazine Arcjet", contract by the German Aerospace Agency DARA (together with MBB).**

Nozzle Type Thruster DT-IRS

DT-IRS

throat length: 17.6 mm

Configuration of the DT-Thrusters with different throat diameters

Maximum values reached with the DT2-Thruster with argon as propellant:

electrical power: $P_{el} \leq 800 \text{ kW}$

specific impulse: $I_{sp} \leq 1500 \text{ s}$

thrust efficiency: $\eta_t \leq 25\%$

Electron temperature distribution for three different throat geometries at 2 kA current and a mass flow of 0.8 g/s.

INSTITUT FÜR RAUMFAHRTSYSTEME

UNIVERSITÄT STUTTGART

Calculated and measured discharge voltage.

Nozzle Type MPD Thrusters

1.) Specific impulse limited to 1500 s because of low $\frac{I^2}{m}$ - values.

(Onset - Phenomenon)

2.) Efficiency : not more than 30% achieved with experiments.

Expectation with higher massflow rates and higher power:
above 30% .

3.) High power limitations: Heat load of nozzle throat.

4.) Propellant: no significant difference in γ and c_e with Ar, N₂, H₂,

lower $\frac{I^2}{m}$ with H₂ and N₂.

5.) High power limits:

vacuum system (high power \Rightarrow high mass flow rates)

(Influence of ambient pressure not so important with
selffield MPD's)

Research plans: Geometry optimization:

- Transition from nozzle to conical (flared) configurations.
- Radiation cooled anode.

Hot Anode Thruster (HAT)

Configuration of the HAT-Thruster with radiation cooled anode

Voltage vs. current dependence for the HAT
in comparison with the DT2-Thruster

DT6-Thruster

Configuration of the DT6-Thruster without throat constriction
(in construction)

ZT1-Thruster

Configuration of the cylindrical ZT1-Thruster

Voltage vs. current dependence for the ZT1- respectively DT2-Thruster
with argon as propellant

Cylindrical MPD thruster

- 1.) Higher onset ($\frac{I^2}{m}$) than with nozzle type thrusters
⇒ higher specific impulse possible.
- 2.) Efficiency with continuous thruster not yet measured.
(Thrust balance in construction.)
- 3.) Lower voltage levels than with nozzle type thrusters.
- 4.) High current issues:
 - a) heat loads to anode (~ 1)
 - b) heat loads to cathode: can be solved by cathode geometrical configuration.
- 5.) High power limits:
vacuum system (high power ⇒ high massflow rates)
(Not so important with selffield MPD)

DAMAGED CATHODE OF THRUSTER ZT1

SCHEME OF THRUSTER ZT1

TYPICAL STRUCTURE OF AREA I (MELTED ZONE)

DETAIL OF THE VOID

ORIGINAL PAGE IS
OF POOR QUALITY

Comparison

continuous MPD ↔ quasi-steady MPD

Biggest problem: different cathode modes:

thermionic ↔ cold

- ⇒ **different arc attachments**
- ⇒ **different voltages**
- ⇒ **different current distributions**

Comparison

continuous MPD ↔ quasi-steady MPD

Comparison of the voltage vs. current dependence for the continuous DT2-Thruster (open signs) and the quasi-steady MPD-Thruster (Closed signs)

Thrust vs. current curves for both thrusters

MPD-Thrusters

1.) Nozzle Type MPD-Thrusters (DT-IRS serie)

- Geometrical optimisation of the nozzle
(experimental and numerical)
- Investigation of the plasma instabilities
(experimental and numerical)

2.) Hot Anode Thruster (HAT)

- Reduction of the anode losses

3.) Cylindrical Thruster (ZT-IRS)

- Thrust measurements will hopefully resulting in
higher c_e !

MMW-Thrusters

MMW thruster have to be cooled actively (at least partly).

Cathode heat loads could be solved by geometrical configuration.

How to address these issues:

- 1.) Measure heat loads in cooled devices and surface temperatures.**
- 2.) Establish thermal models (numerical).**
- 3.) Numerical variation of geometries and configurations.**
- 4.) Validate with new device.**

Facility requirements

- 1.) Vacuum:**
 - for selffield MPD better 1 mbar**
 - for applied field MPD better 10^{-3} mbar**
- 2.) Thrust balances for MMW-Thrusters are difficult to realize.**