

Learned Vertex Descent: A New Direction for 3D Human Model Fitting Enric Corona¹, Gerard Pons-Moll^{2,3}, Guillem Alenyà¹, Francesc Moreno-Noguer¹

¹IRI, CSIC-UPC ²University of Tubingen, Germany, ³Max Planck Institute for Informatics, Germany

Motivation:

Optimization [1]

- Fits input well
- Represents shapes that are far from the mean
- Often trapped in local minima
- Slow

Learning-based [2, 3]

- Poses are accurate
- Fast
- Strong bias towards average body shape

Learned Vertex Descent:

- Novel learning-based optimization where a network predicts vertex direction towards global minima.
- Optimization is fast, does not require handcrafted objective functions, and is not sensitive to initialization.
- State-of-the-art results in body shape estimation from a single image.
- The proposed formulation can be easily adapted to other domains, achieving state-of-the-art results in body and hand registration given input 3D scans.

Reconstruction

Input image Initialization

References:

- [1] SMPL-X, CVPR 2019 [2] ExPose, ECCV 2020
- [3] ProHMR, ICCV 2021

Method:

Input image

- MLP predicts clipped direction towards global minima
- The use of local features ensures that the 3D reconstruction will be aligned with the input image

Body shape estimation:

Results:

SMPL estimation from monocular images

Body registration from input point clouds

Hand registration from input point clouds

Ours

3D Scan

3D Scan

Ours

Groundtruth

3D Scan

Ours