# FUZZY RECOMMENDER SYSTEM

Fuzzy Clustering per il Supporto alle Decisioni in Sistemi di Raccomandazione

Contesto e Obiettivo

Fondamenti Teorici 03

Analisi Esplorativa Dataset

# PANORAMICA

Implementazione del Sistema

05

Esperimenti e Analisi

Conclusioni e Sviluppi Futuri

## Contesto e Obiettivo



## Insiemi Fuzzy e Sistemi di Raccomandazione

I sistemi di raccomandazione sono strumenti fondamentali per filtrare informazioni e suggerire contenuti rilevanti agli utenti.

Gli insiemi fuzzy permettono di modellare l'incertezza e la gradualità tipiche delle preferenze umane.

L'integrazione tra insiemi fuzzy e sistemi di raccomandazione consente una rappresentazione più realistica delle preferenze degli utenti.

## Obiettivo del Progetto

Esplorare l'utilizzo del fuzzy clustering nei sistemi di raccomandazione per contenuti audiovisivi.

Estendere metodologicamente l'approccio in "User based Collaborative Filtering using fuzzy C-means" di Koohi e Kiani. (2016).

Fornire un framework riproducibile per valutare il clustering fuzzy, tramite metriche quantitative, qualitative e analisi visive.



## Fondamenti Teorici



## Logica Fuzzy e Clustering

Gli insiemi fuzzy generalizzano gli insiemi classici: l'appartenenza non è più "tutto o niente", ma graduata tra 0 e 1.

La funzione di appartenenza esprime similarità, incertezza o preferenza in modo flessibile.

Il clustering fuzzy (es. Fuzzy C-Means) permette a ciascun elemento di appartenere a più cluster con diversi gradi di appartenenza.

Il parametro di fuzzificazione controlla la "morbidezza" della partizione: più alto è, più le appartenenze sono distribuite.



### Sistemi di Raccomandazione

I sistemi di raccomandazione guidano l'utente verso contenuti rilevanti in grandi spazi di opzioni.

#### Principali approcci:

- Filtraggio demografico: usa attributi dell'utente.
- Filtraggio collaborativo: si basa sulle valutazioni degli utenti.
- Raccomandazione basata sul contenuto: sfrutta le caratteristiche degli oggetti.
- Approcci ibridi: combinano più strategie.

Il filtraggio collaborativo è tra i più diffusi: utenti simili ricevono raccomandazioni simili.



## Clustering nei sistemi di raccomandazione

Le misure di similarità tradizionali possono essere inefficaci su grandi dataset o in presenza di dati sparsi. Il clustering organizza gli utenti in gruppi omogenei, facilitando la raccomandazione.

#### Tecniche comuni:

- K-Means: partizioni nette, semplice ma poco flessibile.
- SOM: reti neurali che preservano la topologia dei dati.
- Fuzzy Clustering: consente appartenenze multiple, utile per utenti con gusti complessi.

Il clustering migliora la scalabilità, riduce la sparsità e rafforza la coerenza delle raccomandazioni.



## Analisi Esplorativa Dataset



### Descrizione Dataset

Utilizzato il dataset MovieLens 100k: 100.000 valutazioni, 943 utenti, 1682 film, 6% densità.

Ogni valutazione è un intero da 1 a 5; disponibili anche informazioni su utenti e film.

Le valutazioni sono fortemente sbilanciate verso i valori alti (bias positivo).





## Preprocessamento del Dataset

Mantenuti solo utenti e film con almeno 100 valutazioni.

Il filtraggio riduce il dataset a 45.926 valutazioni, 364 utenti e 338 film, 37% densità.

Ratings Per User Hist Ratings Per Item Hist









## Sparsità Matrice



### Distribuzioni

L'analisi dei generi rivela una forte predominanza di alcuni generi.





## Implementazione del Sistema



## Architettura e pipeline sperimentale

Architettura modulare e scalabile organizzata in quattro livelli:

- Livello di Configurazione: gestione centralizzata dei parametri
- Livello di Orchestrazione: coordinamento del flusso di esecuzione
- Livello di Elaborazione: clustering, valutazione e visualizzazione
- Livello di Utilità: funzioni di supporto

Configurazione centralizzata tramite file JSON per facilitare la sperimentazione



### Gestione dati e normalizzazione

DataManager responsabile di caricamento, preprocessamento e normalizzazione

Filtraggio automatico: utenti e item con almeno 100 valutazioni

Split train/test configurabile con allineamento delle matrici
Quattro strategie di normalizzazione implementate.



## Algoritmi di clustering e predizione

Fuzzy C-Means (FCM): algoritmo principale con membership graduali

K-Means: baseline per confronto con clustering hard

Funzione obiettivo FCM: minimizzazione della somma pesata delle distanze

Predizione rating tramite media pesata dei centroidi



### Defuzzificazione e selezione vicini

#### Due strategie di defuzzificazione:

- Metodo del Massimo: assegna utente al cluster con membership massima
- Center of Gravity (COG): calcola indice continuo come media pesata

#### Selezione vicini opzionale:

- Nessuna selezione: considera tutti gli utenti del cluster
- Correlazione di Pearson: filtra basandosi su similarità (threshold 0.5)



### Metriche e Visualizzazione

#### Metriche

- Predittive: RMSE, MAE
- Qualitative: Precision, Recall, Accuracy,
   F1-score

Moduli di visualizzazione: heatmap, boxplot, barplot, lineplot, violinplot, histogram ecc...



## Esperimenti e Analisi



### Run KMeans - Train

Simple Centering risulta la normalizzazione migliore per RMSE e MAE in training.

I valori di errore (RMSE ~0.69, MAE ~0.51) sono costanti al variare del numero di cluster (2-5).

Il clustering non produce separazioni significative tra i profili utente: utenti attivi hanno gusti simili.

Precision e accuracy in training intorno al 59%, recall molto basso (~14%).

F1-score basso (~0.21) a causa del recall limitato

### Run KMeans - Train





### Run KMeans - Test

Simple Centering domina anche in test per RMSE (0.68) e precision/accuracy (60.5%).

Z-score per utente ottiene il miglior MAE (0.54).

I valori di precision, recall e F1-score migliorano sensibilmente rispetto al training (recall ~51%, F1 ~0.52).

Le performance sono stabili al variare del numero di cluster.

Il sistema generalizza bene su dati non visti.

### Run KMeans - Test



### Run FCM - Train

Simple Centering con 2 cluster domina per RMSE (0.685) e MAE (0.511).

I valori di Avg Max Membership e Avg Entropy sono costanti, indicando una distribuzione uniforme delle membership.

Le metriche di qualità (precision, accuracy) sono simili a K-Means (~59%), recall basso (~14%), F1-score basso (~0.21).

FCM introduce una maggiore flessibilità nella rappresentazione delle preferenze, ma non migliora le metriche rispetto a K-Means.



### Run FCM - Train

#### 3 Cluster, 1.2 m, Maximum, Pearson



### Run FCM- Test

Le performance di FCM in test sono quasi identiche a quelle di K-Means. Il sistema non riesce ad identificare pattern evidenti all'interno dei dati, nè sfumature di preferenze.

| Metrica   | FCM Train | K-Means Train | FCM Test | K-Means Test |
|-----------|-----------|---------------|----------|--------------|
| RMSE      | 0.6851    | 0.6864        | 0.6789   | 0.6817       |
| MAE       | 0.5107    | 0.5092        | 0.5448   | 0.5409       |
| Precision | 58.9%     | 58.8%         | 60.5%    | 60.5%        |
| Recall    | 13.8%     | 13.8%         | 51.2%    | 51.2%        |
| F1-Score  | 21.1%     | 21.1%         | 52.4%    | 52.4%        |

## Conclusioni e Sviluppi Futuri



### Conclusioni

Confrontato Fuzzy C-Means (FCM) e K-Means su MovieLens 100k tramite un framework sperimentale flessibile.

Le prestazioni dei due algoritmi sono risultate molto simili sia per metriche di errore che di qualità delle raccomandazioni.

FCM fatica a individuare cluster realmente significativi: le membership risultano distribuite in modo uniforme e l'entropia è elevata.

L'omogeneità del dataset limita la possibilità di apprendere strutture fuzzy informative.



Il framework sviluppato si è dimostrato efficace e facilmente estendibile ad altri contesti.

## Sviluppi Futuri

Mantenere la sparsità originale del dataset per valutare l'impatto sulle performance e sulle strutture individuate.

Applicare il framework a dataset di dominio differente (e-commerce, musica, news) per testare la formazione di cluster fuzzy più significativi.

Estendere l'analisi a dataset di dimensioni maggiori (es. MovieLens 1M) per aumentare l'eterogeneità.

Variare sistematicamente altri parametri sperimentali (rumore, test set, min rating) per studiarne l'impatto.



Integrare e confrontare altre tecniche di clustering fuzzy o approcci ibridi per superare i limiti osservati con FCM.

### Domande?

#### Grazie dell'attenzione!

