Санкт-Петербургский политехнический университет

Петра Великого

Институт прикладной математики и механики

Кафедра "Прикладная математика"

Отсчет

По лабораторным работам №1-4

По дисциплине

"Математическая статистика"

Выполнил студен;

Золотухин Илья Сергеевич

Группа:

5030102/90101

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

1. Теория

1.1 Распределения

Плотности классических распределений:

• Нормальное распределение

$$N(x, \mu, \sigma) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}$$
(1)

• Распределение Коши

$$C(x, x_0, \gamma) = \frac{1}{\pi \cdot \gamma} \frac{1}{1 + \frac{(x - x_0)^2}{\gamma^2}}$$
 (2)

• Распределение Лапласа

$$L(x, \beta, \alpha) = \frac{\alpha}{2} e^{-\alpha|x-\beta|}$$
 (3)

• Распределение Пуассона

$$P(k,\lambda) = \frac{\lambda^k}{k!} e^{-\lambda} \tag{4}$$

• Равномерное распределение

$$U(x,a,b) = \begin{cases} \frac{1}{b-a} & \text{при } x \in [a,b] \\ 0 & \text{при } x \notin [a,b] \end{cases}$$
 (5)

1.2 Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{6}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при } n = 2l+1, \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$
 (7)

• Полу сумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{8}$$

• Полу сумма квартилей Выборочная квартиль z_p порядка р определяется формулой

$$z_p = \left\{ egin{array}{ll} x_{([np]+1)} & \mbox{при } np \ \ \mbox{дробном,} \ x_{(np)} & \mbox{при } np \ \mbox{целом} \end{array}
ight.$$

Полу сумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, \ r \approx \frac{n}{4}$$

2.Реализация

2.1 Гистограмма и график плотности распределения.

Рис.1. Нормальное распределение

Рис.2. Распределение Коши

Рис.5. Равномерное распределение

2.2. Характеристики положения и рассеяния

normal n = 10					
	\overline{x}	med x	z_R	Z_Q	z _{tr}
E(z)	0.0001	0.0001	-0.004	0.0021	-0.0017
D(z)	0.0012	0.0020	0.060	0.0022	0.0013
normal $n = 100$					
	\overline{x}	med x	z_R	z_Q	z_{tr}

E(z)	-0.00011	0.0000	-0.0143	0.0000	-0.0020
D(z)	0.00097	0.0016	0.0571	0.0012	0.0013
normal $n = 1000$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	0.0038	0.0030	0.013	0.0047	0.0019
D(z)	0.0010	0.0015	0.062	0.0013	0.0012

Таблица 1: Нормальное распределение

cauchy n = 10					
	\overline{x}	med x	z_R	Z_Q	z_{tr}
E(z) (1)	0.0004	-0.0003	0.002	0.0036	-0.0015
D(z)(2)	0.0011	0.0016	0.060	0.0050	0.0013
cauchy $n = 100$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	-0.0029	-0.0012	0.0	0.0003	-0.0028
D(z)	0.0028	0.0015	2.4	0.0014	0.0012
cauchy $n = 1000$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	0.0005	0.0008	0.0	0.0021	-0.0008
D(z)	0.0014	0.0015	191.0	0.0012	0.0011

Таблица 2. Распределение Коши

laplace n = 10					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	-0.0004	-0.0004	0.010	0.0012	-0.0016
D(z)	0.0010	0.0016	0.065	0.0014	0.0012
laplace $n = 100$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	-0.00168	0.0023	-0.003	0.0001	-0.0039
D(z)	0.00093	0.0015	0.061	0.0012	0.0013
laplace $n = 1000$					
	\overline{x}	med x	z_R	z_0	z_{tr}

E(z)	0.0010	0.0008	-0.003	0.0028	-0.0006
D(z)	0.0010	0.0016	0.060	0.0013	0.0012

Таблица 3. Распределение Лапласа

pois n = 10					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	0.0008	0.0005	0.002	0.0022	-0.0008
D(z)(2)	0.0011	0.0015	0.064	0.0013	0.0012
pois n = 100					
	\overline{x}	med x	z_R	Z_Q	z_{tr}
E(z)	-0.0015	-0.0028	-0.003	0.0006	-0.0031
D(z)	0.0011	0.0016	0.060	0.0013	0.0013
pois n = 1000					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	-0.0006	-0.0013	-0.0077	0.0004	-0.0022
D(z)	0.0011	0.0016	0.0589	0.0013	0.0013

Таблица 4. Распределение Пуассона

pois n = 10					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	0.0015	0.0010	0.012	0.0030	-0.0003
D(z)(2)	0.0012	0.0017	0.063	0.0015	0.0012
pois n = 100					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z)	-0.0003	0.0010	-0.004	0.0002	-0.0013
D(z)	0.0012	0.0018	0.066	0.0015	0.0014
pois n = 1000					
	\overline{x}	med x	z_R	Z_Q	z_{tr}

E(z)	0.0011	0.0024	0.007	0.0023	0.0002
D(z)	0.0013	0.0020	0.062	0.0015	0.0015

Таблица 5. Равномерное распределение