

Uma Brevíssima Introdução à Aprendizagem de Máquina

Bedrooms	Sq. feet	Neighborhood	Sale price
3	2000	Normaltown	\$250,000
2	800	Hipsterton	\$300,000
2	850	Normaltown	\$150,000
1	550	Normaltown \$78,000	
4	2000	Skid Row	\$150,000

Bedrooms	Sq. feet	Neighborhood	Sale price
3	2000	Hipsterton	???

https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

Solução do programador...

```
def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
 price = 0
 # In my area, the average house costs $200 per sqft
 price_per_sqft = 200
 if neighborhood == "hipsterton":
    # but some areas cost a bit more
   price_per_sqft = 400
 elif neighborhood == "skid row":
    # and some areas cost less
   price_per_sqft = 100
 # start with a base price estimate based on how big the place is
 price = price_per_sqft * sqft
 # now adjust our estimate based on the number of bedrooms
 if num of bedrooms == 0:
   # Studio apartments are cheap
   price = price-20000
  else:
    # places with more bedrooms are usually
   # more valuable
   price = price + (num of bedrooms * 1000)
return price
```

Solução mais inteligente...

```
def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
 price = 0
# a little pinch of this
 price += num of bedrooms * .841231951398213
# and a big pinch of that
 price += sqft * 1231.1231231
# maybe a handful of this
 price += neighborhood * 2.3242341421
# and finally, just a little extra salt for good measure
 price += 201.23432095
 return price
```

Solução de Aprendizagem de Máquina

"Computador, é o seguinte: eu sei que tem uma relação linear entre o preço do imóvel e essas variáveis! Me traz a melhor relação possível com esses dados, te vira!"

Aprendizagem de Máquina

Não diz pro computador como fazer, mas sim o que fazer!

Aprendizagem de Máquina

Modelo é uma relação matemática entre variáveis

Aprendizagem de Máquina é construir modelos com base nos dados! (J. Grus)

Aprendizagem de Máquina

Supervisionada: dados já possuem a variável a ser prevista

Ex. Regressão Linear, Árvore de Decisão

Não supervisionada: dados não possuem variável a ser prevista, padrão tem que ser descoberto

Ex. Clusterização

Aprendizagem Supervisionada

Modelos de Regressão: variável a ser prevista é numérica

Ex. Regressão Linear

Modelos de Classificação: variável a ser prevista é categórica

Ex. Árvore de Decisão

Sobreajuste e Sub-Ajuste

High bias (underfit)

"Just right"

Sobreajuste e Sub-Ajuste

variance)

Regressão Linear

$$S \equiv \sum_{i=1}^{N} \left(y_i^o - y_i \right)^2$$

Métrica R²

Regressão Logística

Regressão Logística

Regressão Logística

```
def logistic(x):
    return 1.0 / (1 + math.exp(-x))
```


Figure 16-3. The logistic function

Métricas de Modelos de Classificação (Regressão Logística, Árvore de Decisão)

- Acurácia
- Precisão
- Abrangência
- F1
- e muitas outras...

Matriz de Confusão

Classe Predita

		Positivo	Negativo
ira	tivo	Verdadeiro	Falso
dade Posit		Positivo (VP)	Negativo (FN)
se Ver	.§ Falso		Verdadeiro
Classe	Nega	Positivo (FP)	Negativo (VN)

Acurácia

$$Acur\'acia = \frac{Verdadeiros\ Positivos\ (TP) + Verdadeiros\ Negativos\ (VN)}{Total}$$

Precisão

 $Precisão = \frac{Verdadeiros Positivos (TP)}{Verdadeiros Positivos (TP) + FalsosPositivos (FP)}$

Recall (abrangência)

 $Recall = \frac{Verdadeiros Positivos (TP)}{Verdadeiros Positivos (TP) + Falsos Negativos (FN)}$

F1: Combina precisão e recall

$$F1 = \frac{2 * precisão * recall}{precisão + recall}$$