Claims

5

10

15

20

 A pyrazole derivative represented by the general formula [I] or a salt thereof:

$$R^2$$
 R^3
 N
 R^4
 R^4
 R^1
 R^1

wherein R^1 represents a C1 to C6 alkyl group, R^2 represents a C1 to C3 haloalkyl group, R^3 represents a hydrogen atom, a C1 to C3 alkyl group which may be substituted with one or more substituents selected from the following substituent group α , or a formyl group, R^4 represents a hydrogen atom or a C1 to C3 haloalkyl group, provided that R^4 represents a C1 to C3 haloalkyl group in the case that R^3 is a hydrogen or a formyl group and R^4 is a hydrogen group or a C1 to C3 haloalkyl group in the case that R^3 is a C1 to C3 alkyl group which may be substituted with one or more substituents selected from the following substituent group α ; "Substituent group α "

halogen atoms, -SH group, $-SC(=NH)NH_2$ group

- 2. The pyrazole derivative or salt thereof according to claim 1, wherein \mathbb{R}^4 is a C1 to C3 haloalkyl group.
 - 3. The pyrazole derivative or salt thereof according to claim 1, wherein ${\bf R}^3$ is a C1 to C3 alkyl group and ${\bf R}^4$ is a hydrogen atom.
- 25 4. The pyrazole derivative or salt thereof according to claim 1, wherein \mathbb{R}^3 is a methyl group which may

be substituted with one or more substituents selected from the substituent group $\alpha.$

- 5. The pyrazole derivative or salt thereof according to claim 1, wherein \mathbb{R}^3 is a methyl group.
- 6. A process for producing a pyrazole derivative represented by the general formula [3], comprising a step of reacting a compound represented by the general formula [1] with a compound represented by the general formula [2]:

5

10

15

20

wherein R^1 and R^2 represent the same meanings as mentioned above, R^5 represents a C1 to C3 alkyl group, a phenyl group which may be substituted, or a benzyl group which may be substituted, and R^6 represents a C1 to C3 alkyl group.

7. A process for producing a pyrazole derivative represented by the general formula [6], comprising a step of reacting a compound represented by the general formula [4] with a compound represented by the general formula [5] in the presence of a base:

wherein R^1 , R^2 , R^4 , and R^6 represent the same meanings as mentioned above, and L^1 is a leaving group which is more

reactive than a halogen atom remaining after haloalkylation and represents a halogen atom, a C1 to C3 alkylsulfonyloxy group, a C1 to C3 haloalkylsulfonyloxy group, a phenylsulfonyloxy group which may be substituted, or a benzylsulfonyloxy group which may be substituted, and the like.

8. A process for producing a pyrazole derivative represented by the general formula [6], comprising a step of reacting a compound represented by the general formula [4] with triphenylphosphine, a compound represented by the general formula [7], and an azo compound [8]:

5

10

15

20

wherein R^1 , R^2 , R^4 , and R^6 represent the same meanings as mentioned above.

9. A process for producing a pyrazole derivative represented by the general formula [10], comprising a step of reacting a compound represented by the general formula [9] with a halogenating agent:

wherein R^1 , R^2 , and R^4 represent the same meanings as mentioned above, R^7 and R^8 each represents a hydrogen atom or

a C1 to C2 alkyl group, and X is a halogen atom.

5

10

15

10. A process for producing a pyrazole derivative represented by the general formula [12], comprising a step of reacting a compound represented by the general formula [10] with a compound represented by the general formula [11]:

wherein R^1 , R^2 , R^4 , R^7 , R^8 , and X represent the same meanings as mentioned above.

- 11. The process for producing a pyrazole derivative represented by the general formula [13] according to claim 10, wherein the compound represented by the general formula [12] according to the above (10) is hydrolyzed.
- 12. The process for producing a pyrazole derivative represented by the general formula [13] according to claim 10, wherein the compound represented by the general formula [10] according to the above (10) is reacted with a sulfide.
 - 13. A process for producing a pyrazole derivative

represented by the general formula [15], comprising a step of formylating a compound represented by the general formula [14]:

$$\begin{array}{c|c}
R^2 & R^2 \\
N & OHC & N \\
N & N \\
N & N \\
N & R^1 \\
HO & HO \\
[14] & [15]
\end{array}$$

5

10

15

20

wherein $\ensuremath{\mbox{R}^{1}}$ and $\ensuremath{\mbox{R}^{2}}$ represent the same meanings as mentioned above.

14. A process for producing a pyrazole derivative represented by the general formula [17], comprising a step of reacting a compound represented by the general formula [16] with a compound represented by the general formula [5] in the presence of a base:

OHC
$$\stackrel{R^2}{\stackrel{N}{\stackrel{}}}$$
 $\stackrel{R^4-L^1}{\stackrel{}{\stackrel{}}}$ base $\stackrel{R^2}{\stackrel{}}$ OHC $\stackrel{N}{\stackrel{}}$ $\stackrel{N}{\stackrel{}}$ $\stackrel{N}{\stackrel{}}$ $\stackrel{R^1}{\stackrel{}}$ $\stackrel{R^4O}{\stackrel{}}$ $\stackrel{R^1}{\stackrel{}}$

wherein R^1 , R^2 , R^4 , and L^1 represent the same meanings as mentioned above.

15. A process for producing a pyrazole derivative represented by the general formula [19], comprising a step of halomethylating a compound represented by the general formula [18]:

$$R^2$$
 N
 R^4O
 R^1
 R^4O
 R^1
 R^4O
 R^1
 R^4O
 R^1
 R^4O
 R^1
 R^4O
 R^1

5

wherein R^1 , R^2 , R^4 , and X represent the same meanings as mentioned above.