COP3530

Marco Austria

Sorting Analysis Project

ь	2.6	+ 2 + ±	Draw Pa	Page Layout	Formulas	Sorting Analysis - Excel				Chart Tools		Al	ustria,Marco J	=			
Fil	e Hom	ne Insert				Data	Review \	√iew Add-	ins Foxit	PDF Team	Design	n Format	Q Tell me	what you wa	int to do	A Share	-
ha	rt 3	* X	√ f _x														
4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	ĺ
							_										
		Ascending B	Best Case (m	s)			Descending	Worst Case	(ms)			Random Ave	rage Case (ms)			
		Selection					Selection					Selection		O'GIDID O			
H		5000	10000	20000	50000		5000	10000	20000	50000		5000	10000	20000	50000		
		61	200	549	4727		46	129	496	3651		34	169	739	8671		
		69	324	1139	5541		76	385	1546	9155		86	356	1406	9648		
3		69	167	480	3880		70	350	1371	2165		86	348	1402	9570		
)		73	166	482	3982		129	117	485	3592		30	156	640	5153		
0		67	146	478	3838		50	343	1415	8813		86	350	1405	9394		
	Average	67.8	200.6	625.6	4393.6		74.2	264.8	1062.6	5475.2		64.4	275.8	1118.4	8487.2		
12																	
3		Insertion					Insertion					Insertion					
4		5000	10000	20000	50000 y		5000	10000	20000	50000		5000	10000	20000	50000		
5																	
6		0	2	2	1		197	646	2310	14692		76	312	1139	7889		
17		0	1	3	2		299	865	3087	17812		85	281	842	5253		
8		0	0	1	1		185	605	2165	14097		72	282	1120	7215		
9		0	1	2	1		190	587	2103	14179		71	267	1051	6898		
20		1	0	1	1		182	593	2253	14766		70	266	1158	6839		
-	Average	0.2	0.8	1.8	1.2		210.6	659.2	2383.6	15109.2		74.8	281.6	1062	6818.8		
2																	
4	>	Sheet1	(+)							1 4							
eady	,												III				ŀ

After evaluating the sorts, we see that the insertion sort is very good in the ascending best case scenario, worse than selection sort in the descending worst case scenario, and almost the same as selection sort in a random average case scenario. In general, as the number of integers increases, the time it takes to organize becomes significant with both sorts. This displays how inefficient these sorts are, unless the list size is relatively small, or the list is almost sorted and near a best case scenario with the insertion sort. In the ascending best case, the insertion sort is O(n), as it only has to visit every integer in the unsorted side to see that they're all in order with no swaps being necessary, and therefore no search through the sorted side needed. Otherwise, in all other cases, both sorts are $O(n^2)$, requiring 2 loops(one nested in the other).