Class VI: Introduction to Aerospace Engineering

M. G. Bharath and M. Ramakrishna, Department of Aerospace Engineering, Indian Institute of Technology Madras

September 11, 2020

Control Volume in Region of Interest

How much in an elemental volume?

How much in the Control Volume?

Time rate of change

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\sigma} Q \mathrm{d}\sigma$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\sigma} \rho \, \mathrm{d}\sigma$$

$$\frac{\mathrm{d}m\vec{V}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\sigma} \rho \vec{V} \, \mathrm{d}\sigma$$

Control Surface

Flux through elemental surface

Generalised Conservation Principle (FRP)

$$\frac{\mathsf{d}}{\mathsf{d}t} \int_{\sigma} Q \mathsf{d}\sigma = -\int_{S} Q \vec{V} \cdot \hat{n} \mathsf{d}S + \frac{\mathsf{Production}}{\mathsf{terms}}$$

$$\frac{\mathsf{d}}{\mathsf{d}t} \int_{\sigma} \rho \, \mathsf{d}\sigma = - \int_{S} \rho \, \vec{V} \cdot \hat{n} \, \mathsf{d}S$$

for steady flow

$$\int_{S} \rho \vec{V} \cdot \hat{n} \, dS = 0$$

CM - 2D Application - Streamlines

CLM

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\sigma} \rho \vec{V} \, \mathrm{d}\sigma = - \int_{S} \rho \vec{V} \vec{V} \cdot \hat{n} \, \mathrm{d}S + \int_{\sigma} \vec{f} \, \mathrm{d}\sigma + \int_{S} \vec{T} \, \mathrm{d}S$$