PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-189497

(43)Date of publication of application: 21.07.1998

(51)Int.CI.

H01L 21/301 H01L 21/3205

(21)Application number: 08-344732

25.12.1996

(71)Applicant: TOSHIBA CORP

(72)Inventor: KUBOTA TAKESHI

MATSUI YOSHITAKA

KITAMURA TOSHIHIKO

MASE KOICHI

(54) SEMICONDUCTOR DEVICE AND ITS FABRICATION

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To avoid degradation of the lifetime of a dicing blade by forming a pseudo pattern having microspace parts in a dicing line region at the time of making a trench for buried interconnetion in an insulation layer or a contact hole in a buried interconnetion layer.

SOLUTION: A semiconductor substrate 101 is coated with an insulation layer 102 and a contact hole 103 or an interconnedction trench 104 are made in the region at a body part. A pseudo pattern 102P having a plurality of microspace parts 102S is formed in a dicing line region simultaneously with formation of the contact hole 103 or the interconnedction trench 104. Subsequently, a barrier metal 105 and Cu 106 are deposited by sputtering and interconnection materials are buried. The contact hole 103 and the interconnection trench 104 are filled with these interconnection materials in the body region but the space part 102S is limited in the dicing region, the sputtered particles adhere to the pseudo pattern 102P and scarcely adhere to the inside thereof.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(J P)

H01L 21/301

21/3205

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-189497

(43)公開日 平成10年(1998) 7月21日

(51) Int.Cl.⁶

識別記号

FΙ

H01L 21/78

L

21/88

7.

審査請求 未請求 請求項の数18 OL (全 8 頁)

(21)出願番号

特願平8-344732

(71)出願人 000003078

株式会社東芝

(22)出願日

平成8年(1996)12月25日

神奈川県川崎市幸区堀川町72番地

(72)発明者 久保田 剛

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝多摩川工場内

(72)発明者 松井 嘉孝

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝多摩川工場内

(72)発明者 北村 敏彦

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝多摩川工場内

(74)代理人 弁理士 外川 英明

最終頁に続く

(54) 【発明の名称】 半導体装置及びその製造方法

(57) 【要約】

【課題】埋め込み配線の形成方法において、ダイシングライン領域に配線材料が埋めこまれた状態でダイシングを行うとダイシングブレードの寿命を著しく下げてしまうという問題を解決する事を目的とする。

【解決手段】絶縁膜に対する埋め込み配線用の溝形成時若しくは埋め込み配線の下層の接続孔形成時に、ダイシングライン領域に微小なスペース部を有する擬似パターンを形成するものであり、工程数を増加させずに問題を回避する。

1

【特許請求の範囲】

【請求項1】半導体素子が形成された本体領域と前記本体領域に隣接して設けられたダイシング領域とを有する半導体装置において、前記ダイシング領域には微小なスペース部を有する擬似パターンが設けられた絶縁膜が形成されている事を特徴とする半導体装置。

【請求項2】前記擬似パターンは、溝パターンである事を特徴とする請求項1記載の半導体装置。

【請求項3】前記擬似パターンは、孔パターンである事を特徴とする請求項1記載の半導体装置。

【請求項4】前記擬似パターンは、前記スペースの幅が 前記絶縁膜の厚みの半分以下である事を特徴とする請求 項1乃至3記載の半導体装置。

【請求項5】前記擬似パターンは、前記スペースの幅が 1μm以下である事を特徴とする請求項1乃至4記載の 半導体装置。

【請求項6】前記擬似パターンは、複数の微小なスペース部を含むパターンである事を特徴とする請求項1乃至5記載の半導体装置。

【請求項7】前記擬似パターンは、前記ダイシング領域 20 の長手方向に連続的に形成されている事を特徴とする請求項1乃至6記載の半導体装置。

【請求項8】前記本体領域上に、前記半導体素子に電気的に接続される金属配線が埋めこまれた絶縁膜が形成されている事を特徴とする請求項1乃至7記載の半導体装置。

【請求項9】半導体素子が形成された本体領域と前記本体領域に隣接して設けられたダイシング領域とを有する半導体基板上に絶縁膜を堆積する工程と、前記半導体基板のダイシング領域における前記絶縁膜に微小なスペー 30 ス部を有する擬似パターンを形成する工程を含む事を特徴とする半導体装置の製造方法。

【請求項10】前記半導体基板のダイシング領域における前記擬似パターンを形成する工程は、前記本体領域における絶縁膜の形成と同時に行われる事を特徴とする請求項9記載の半導体装置。

【請求項11】半導体素子が形成された本体領域と前記本体領域に隣接して設けられたダイシング領域とを有する半導体基板上に絶縁膜を堆積する工程と、前記本体領域における前記絶縁膜に配線溝を形成する工程と、前記 40 配線溝底面に接続孔を形成する工程を有し、前記配線溝若しくは前記接続孔の形成工程において前記半導体基板のダイシングライン領域における前記絶縁膜に、微小なスペース部を有する擬似パターンを形成する事を特徴とする半導体装置の製造方法。

【請求項12】半導体素子が形成された本体領域と前記本体領域に隣接して設けられたダイシング領域とを有する半導体基板上に絶縁膜を堆積する工程と、前記本体領域における前記絶縁膜に接続孔を形成する工程と、前記絶縁膜に、前記接続孔に少なくとも一部が重なる様に配50

2

線溝を形成する工程を有し、前記接続孔若しくは前記配 線溝の形成工程において前記半導体基板のダイシングラ イン領域における前記絶縁膜に、微小なスペース部を有 する擬似パターンを形成する事を特徴とする半導体装置 の製造方法。

【請求項13】前記擬似パターンは、溝パターンである事を特徴とする請求項9乃至12記載の半導体装置の製造方法。

【請求項14】前記擬似パターンは、孔パターンである 事を特徴とする請求項9乃至12記載の半導体装置の製 造方法。

【請求項15】前記擬似パターンは、前記スペースの幅が前記絶縁膜の厚みの半分以下である事を特徴とする請求項9万至14記載の半導体装置の製造方法。

【請求項16】前記擬似パターンは、前記スペースの幅が1μm以下である事を特徴とする請求項9乃至15記載の半導体装置の製造方法。

【請求項17】前記擬似パターンは、複数の微小なスペース部を含むパターンである事を特徴とする請求項9乃至16記載の半導体装置の製造方法。

【請求項18】前記擬似パターンは、前記ダイシング領域の長手方向に連続的に形成されている事を特徴とする請求項9乃至17記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置及びその製造方法に関し、特に埋め込み配線構造を有する場合におけるダイシングライン領域の構造に関する。

[0002]

【従来の技術】近年、集積回路の微細化とともに多層配 線化が進められており、製品の安定した歩留りや信頼性 を確保する為に、より厳しい平坦性が要求されるように なっている。従来、一般的に用いられている半導体装置 における配線の形成方法は、絶縁膜上にスパッタにより 配線材料を形成し、リソグラフィ及びエッチングにより 配線形成を行うものであった。ところが、微細化及び配 線の低抵抗の為に配線のアスペクト比(配線の高さと幅 の比)が増大し、より優れた平坦化の必要性が出て来た 為、従来の平坦化技術であるSOG (Spin On Glass) エッチバック、TEOS(テトラエチルオルソシリケー ト) - O3 系BPSG (Boron Phosho Silicate Glass) リフロー等に変わり、絶縁膜上に配線溝を形成し、 その中に配線材料を埋めこんでしまう埋め込み配線法が 検討されて来ている。また将来の配線材料として、その 低抵抗、高信頼性の特性を有するが故に、AL配線に変 わりCu配線が候補の一つとして上がっているが、Cu 配線は従来のRIEによる加工が困難であることから、 また埋め込み配線法によると、工程削減(配線を加工す る工程等が減る、配線と絶縁膜の平坦化が同時に出来る 等) によるコストの低減効果も同時に有している事か

3

ら、上記埋め込み配線の検討が盛んになって来ている。 図4に従来技術に係る半導体装置の製造方法における工 程の一例を示す。401は半導体基板、402は絶縁 膜、403は接続孔、404は配線溝、405はバリア メタル、406はA1系合金、407はダイシング部を 示している。埋め込み配線の形成は、図4 (a) に示す 様に半導体基板401上の絶縁膜402を被膜し、リソ グラフィ及びエッチングにより接続孔403及び配線溝 404を形成する。この接続孔403と配線溝404は どちらを先に形成しても構わない。この際、図4(a) に示すダイシングライン部の絶縁膜は接続孔403若し くは配線溝404と同時にリソグラフィ及びエッチング により除去される。次に図4(b)に示す様にスパッタ によりバリアメタル405 (Ti 15nm, TiN 60nm) 及びA1系合金406 (1.0 μm) の成膜 をして接続孔403及び配線溝404に配線材料の埋め 込みを行う。次に図4 (c) に示す様に熱処理 (レーザ 一照射 1.5 J/c m²) を施してA 1 系合金406 をリフローさせる。次に図4(d)に示す様にCMP (Chemical Mechanical Polishing : 化学的機械研磨)

(Chemical Mechanical Polishing: 化学的機械研磨) 20 により接続孔403と配線溝404以外に存在するA1 系合金406を除去する事により平坦化を行い、埋め込み配線を形成する。この埋め込み配線形成後において、図4(d)の様にダイシングライン領域にはA1系合金406が埋め込まれる。図5は図4(d)の上面図である。この様にダイシングライン領域に配線材料が埋め込まれた状態でこの後パッシベーション膜形成を行い、パッシベーション用のリソグラフィ及びエッチングを行った後もダイシングライン領域は図4(d)の様になり、A1合金はダイシングライン領域に残る。この状態でダ 30 イシング部 [図4(d)407,図5(d)507] においてダイシングを行うと、ダイシングブレードの寿命を著しく下げてしまうという問題点があった。上記問題は上記配線材料をA1系合金の変わりにCuを用いる場合も同様の工程であり同じ問題点があった。

4

示す様にスパッタによりバリアメタル605 (Ti 1 5 nm, TiN 60nm) 及びA1系合金606 (1.0 μm) の成膜をして接続孔603及び配線溝6 04に配線材料の埋め込みを行う。次に図6(c)に示 す様に熱処理 (レーザー照射 1.5 J/c m²) を施 してA1系合金606をリフローさせる。次に図6 (d) に示す様にCMPにより接続孔6.03と配線溝6 04以外に存在するA1系合金606を除去する事によ り平坦化を行い、埋め込み配線を形成する。この埋め込 み配線形成後において、図6 (d) の様にダイシングラ イン領域にはA1系合金606が埋め込まれる。次に図 6 (e) に示す様にリソグラフィでレジストパターン6 08を形成し、図6(f)の様にエッチングによりダイ シングライン領域のA1系合金606を除去する。次に 図6(g)の様にアッシャーによりレジスト剥離を行 う。この様に、上記第一の例で説明した問題を回避する 為にダイシングライン領域の配線材料を除去するもので あり、図6(e)(f)(g)の3工程を追加する必要 があった。この追加工程数は、以下に示す様に配線材料 として C u を 使う 場合にはより 増加する。 図 7 に、 配線 材料として Cuを使う場合の工程の一例を示す。 701 は半導体基板、702は絶縁膜、703は接続孔、70 4は配線溝、705はバリアメタル、706はCu、7 07はダイシング部、708はレジスト、709はプラ ズマSiNを示している。埋め込み配線の形成は、図7 (a) に示す様に半導体基板701上の絶縁膜702を 被膜し、リソグラフィ及びエッチングにより接続孔70 3及び配線溝704を形成する。この接続孔703と配 線溝704はどちらを先に形成しても構わない。この 際、図7(a)に示すダイシングライン領域の絶縁膜は 接続孔703若しくは配線溝704と同時にリソグラフ ィ及びエッチングにより除去される。次に図7(b)に 示す様にスパッタによりバリアメタル705 (Ti 1 5 nm, TiN 60nm) 及びCu 706 (1.0 μm)の成膜をして接続孔703及び配線溝704に配 線材料の埋め込みを行う。次に図7(c)に示す様に熱 処理 (レーザー照射 1.5 J/c m2) を施してA1 系合金706をリフローさせる。次に図7(d)に示す 様にСMPにより接続孔703と配線溝704以外に存 在するCu 706を除去する事により平坦化を行い、 埋め込み配線を形成する。この埋め込み配線形成後にお いて、図7(d)の様にダイシングライン領域にはCu 706が埋め込まれる。次に図7(e)に示す様にP -SiN710 (200nm) を被膜し、図7 (f) の 様にリソグラフィでレジストパターン708を形成す る。次に図7(g)に示す様に、エッチングによりダイ シングライン部のP-SiN 710を除去する。次に 図7(h)の様にウェットエッチングによりダイシング ライン部のCu 706及びバリアメタル705を除去 パターン708の剥離を行う。この様に、配線材料としてCuを使用する場合において、上記第一の例で説明した問題を回避する為には、ダイシングライン領域の配線材料を除去する事が必要であり、その為には図7(e)(f)(g)(h)(i)の5工程を追加する必要があった。尚、配線材料としてCuを使用する場合にA1系合金を使用する場合に比べて2工程さらに追加しなければならない理由は、図7(i)のアッシャーによるレジスト剥離の際にCuが酸化されるのを防ぐ事を目的として、図7(e)においてレジストの下層膜としてのプラブマSiNを形成する工程が追加されている事及び図7(f)においてダイシングライン領域のプラズマSiNを形成する工程が必要となる事による。

[0004]

【発明が解決しようとする課題】上記の様に、従来の埋め込み配線の形成方法においては、ダイシングライン領域に配線材料が埋めこまれた状態でダイシングを行う為、ダイシングブレードの寿命を著しく下げてしまうという問題点があった。

[0005]

【課題を解決するための手段】本発明は、上記の問題を解決すべくなされたもので、絶縁膜に対する埋め込み配線用の溝形成時若しくは埋め込み配線の下層の接続孔形成時に、ダイシングライン領域に微小なスペース部を有する擬似パターンを形成するものであり、工程数を増加させずに問題を回避する。

[0006]

【発明の実施の形態】以下、図1乃至3を参照して本発 明に係る半導体装置の製造方法の実施例を、詳細に説明 する。図1は、本発明に係る半導体装置の製造工程の一 30 例を断面により示した説明図である。101は半導体基 板、102は絶縁膜、102Pは擬似パターン、103 は接続孔、104は配線溝、105はパリアメタル、1 06はCuを示している。また、半導体基板101上は 本体領域とダイシング領域に分かれている。本体領域に は半導体素子 (表示せず) が形成されており、所定の領 域において埋め込み配線(表示せず)と電気的に接続さ れている。図1(a)に示す様に半導体基板101上に CVDにより絶縁膜102を 1.5μ m被膜し、リソグ ラフィ及びエッチングにより本体部の領域に深さ1.5 40 μmの接続孔103を形成する。次に深さ0.75μm の配線溝104を形成する。この接続孔103と配線溝 104の形成順序は逆でも構わない。その際、接続孔1 03若しくは配線溝104の形成と同時に、深さ1.5 μ m, 残し部0. 5μ m幅, スペース部0. 5μ m幅の 複数の微小スペース部102Sを有する擬似パターン1 02Pをリソグラフィ及びエッチングによりダイシング ライン領域に形成する。次に図1 (b) に示す様にスパ ッタによりTi 15nm, TiN 60nmの積層か らなるパリアメタル105及び1.0μmのCu 10 50 6

6を成膜することにより配線材料の埋め込みを行う。こ の時、本体領域ではこれらの配線材料が接続孔103と 配線溝104に埋め込まれるが、ダイシングライン領域 では擬似パターン102Pのスペース部102Sが狭い 為、スパッタ粒子は擬似パターン102P上に被着し、 擬似パターン102P内部へはわずかに被着するのみで ある。次に図1 (c) に示す様に熱処理 (レーザー照射 1. 5 J / c m²) を施してCu 106をリフロー させる。この時、やはりダイシングライン領域では擬似 パターン102Pのスペース部102Sが狭い為、レー ザー照射を行っても擬似パターン上の隣り合ったCu 106が凝集し合うが、擬似パターン102Pの底部へ は入らない。また、擬似パターン102P内においても Cuの凝集や絶縁膜表面への吸い上げといった現象が発 生し、結果的に擬似パターン102P内へはCuは埋め 込まれない。次に図1(c)に示す様にCMPにより接 続孔103と配線溝104以外に存在するCu 106 を除去する事により平坦化を行い、埋め込み配線を形成 する。この時、ダイシングライン領域の擬似パターン1 02P上のCu 106はCMPの研削によりすべて除 去される。この状態でダイシングされる場合、ダイシン グブレードは配線金属による傷みが発生しない為、その 寿命劣化が回避できる。

【0007】次に上記擬似パターンの形状及び寸法につ いて説明する。擬似パターンは、シャドーイング効果 (溝へ侵入する被膜材料の垂直入射成分と斜方入射成分 の内、斜方入射成分が溝部へ侵入出来ない現象)により 出来るだけスパッタ時の粒子をブロックし、そのスペー ス部にスパッタ粒子が入り込まないものが好ましい。図 2 (a) は図1 (d) 擬似パターン102Pの上面図で あり、パターン形状が溝(ライン部202Lとスペース 部202S)で構成されていることを示している。ま た、図2(b)は擬似パターンが孔パターンの例を示し ており、複数の微小スペースからなる202Hで構成さ れていることを示している。図3に、図2(a)に示し た溝(ライン部202Lとスペース部202S)による 擬似パターンについてスペース部のアスペクト比(幅/ 絶縁膜の厚み)に対する埋め込み状態の差を示す。溝形 状の場合は2.0、ホール形状の場合は1.5を境界と してアスペクト比がそれらより大きい領域において空孔 が発生している事が分かる。従って、擬似パターンの形 状としてはこの領域の範囲内である事が好ましい。ま た、寸法は微細である事が必要とされ、上記擬似パター ンのスペース部が、溝形状の場合は1. 0μm以下、ホ ール形状の場合は1. 2μm以下であることが好まし い。尚、上記絶縁膜に形成される擬似パターン202P が溝パターンの場合、微小スペース部となる溝が、図1 (d) の本体領域とダイシングライン部107間を横切 る様に少なくとも1つの連続領域として存在すれば、絶 縁膜における本体ダイシング時のストレスが本体領域に

7

達するのをこの微小スペース部によって防ぐことができる。

[0008]

【発明の効果】上述した様に本発明によれば、工程を増加させることなくダイシングブレードが配線材料を削ることによる傷みを無くす事ができる為、ダイシングブレードの寿命劣化を回避することが可能となる。

【図面の簡単な説明】

【図1】本発明に係る半導体装置の製造工程断面図である。

【図2】図1 (d) のダイシングライン領域の上面図である。

【図3】 溝形状, ホール形状の埋め込みパターンにおける各アスペクト比に対する空孔発生の状態を示した図である。

【図4】従来の方法による半導体装置の製造工程断面図である。

【図5】図4 (d) のダイシングライン領域の上面図である。

【図6】従来の別の方法による半導体装置の製造工程断 20 面図である。

【図7】従来の別の方法による半導体装置の製造工程断面図である。

【符号の説明】

101

401

601 701 :*

*半導体基板 102 402 502 602 702 : 絶縁膜 103 403 603 703 接続孔 104 404 604 704 配線溝 105 405 505 605 705 バリアメタル 106 706 Сu 406 506 606 : A I 系合金 107 207 407 507 607 707 : ダイシング部 608 708 : レジスト 709 : プラズマSiN 102P 202P : 擬似パターン 102L 202L ライン部 (残し) 102S 202S スペース部 (抜き) 202H :スペース部

【図1】

(孔)

【図2】

【図5】

,

【図6】 【図7】 本体領域 ダイシングライン領域 ダイシングライン領域 **- 602** (a) 605 (b) (b) (c) 605 602 606 (c) (d) *-* 606 (d) 708 702 -- 608 602 √ 606 (e) 608 **(f)** 605 (3) (i)

フロントページの続き

(72) 発明者 間瀬 康一 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝多摩川工場内