A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem SED

Problem

Prove the following for an integers a, b, c and all positive integers m and n:

If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$ where $\gcd(m, n) = 1$, then $a \equiv b \pmod{mn}$.

Step-by-step solution

Step 1 of 3

Here, objective is to prove that $a = b \pmod{mn}$ Comment

Step 2 of 3

Consider a, b are integers, m, n are positive integer.

Step 3 of 3

If m divides a-b, then a is congruent to b modulo m which is represented by $a=b \pmod{m}$

Consider $a = b \pmod{m}$ a - b is divided by mConsider $a = b \pmod{n}$

Comment

```
a-b is divided by m, Then, a-b is divided by mn That is, a is congruent to b modulo mn The above statement can be represented as, a=b \pmod{mn} Therefore, if a\equiv b \pmod{m} and a\equiv b \pmod{n}, Then a\equiv b \pmod{mn} Hence, proved
```