University of Mars Institute of Intergalactic Travel

Homework #1

Student name: Felipe Portales-Oliva

Course: *Special Relativity (Physics 301)* – Professor: *Dr. Albert Einstein*Due date: *March 28th, 2025*

Question 1

Suppose that

 $A = \{x : x \in \mathbb{N} \text{ and } x \text{ is even}\}$ $B = \{x : x \in \mathbb{N} \text{ and } x \text{ is prime}\}$ $C = \{x : x \in \mathbb{N} \text{ and } x \text{ is a multiple of 5}\}$

Answer. Describe each of the following sets:

- a) $A \cap B = \{2\}$ because 2 is the only even prime number
- b) $B \cap C = \emptyset$ because a multiple of 5 cannot be prime
- c) $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, ...\}$, the set of all naturals minus composite odd numbers
- d) $A \cap (B \cup C)$ includes 2 and the even multiples of 5, because 2 is the only even prime.

Question 2

Suppose that
$$A = \{a, b, c\}, B = \{1, 2, 3\}, C = \{x\}, \text{ and } D = \emptyset.$$

Answer. List all of the elements in each of the following sets

- a) $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3)\}$
- b) $B \times A = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c)\}$
- c) $A \times B \times C = \{(a,1,x), (a,2,x), (a,3,x), (b,1,x), (b,2,x), (b,3,x), (c,1,x), (c,2,x), (c,3,x)\}$
- d) $A \times D = \emptyset$

Question 8

Prove
$$A \subset B$$
 if and only if $A \cap B = A$

Answer. Take any two sets *B* and $A \subset B$.

$$A \subset B \iff \forall a \in A, a \in B \iff A \cap B = A$$

as required. ■

Question 10

Prove
$$A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A)$$

Answer. Take any two sets A, B.

$$A \cup B = \{x : x \in A\} \cup \{x : x \in B\}$$

$$= ((A \setminus B) \cup (A \setminus B')) \cup ((B \setminus A) \cup (B \setminus A'))$$

$$= ((A \setminus B) \cup (A \cap B)) \cup ((B \setminus A) \cup (B \cap A))$$

$$= (A \cap B) \cup (B \cap A) \cup (A \setminus B) \cup (B \setminus A)$$

$$= (A \cap B) \cup (A \setminus B) \cup (B \setminus A)$$

as required. ■

Question 11

Prove
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Answer. Take any three sets *A*, *B*, *C*.

$$(A \cup B) \times C = \{(x,c) : x \in (A \cup B), c \in C\}$$

= $\{(x,c) : x \in A, c \in C\} \cup \{(x,c) : x \in B, c \in C\}$
= $(A \times C) \cup (B \times C)$

as required.

Question 14

Prove
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

Answer. Take any three sets *A*, *B*, *C*.

$$A \setminus (B \cup C) = A \cap (B \cup C)'$$

$$= A \cap A \cap (B' \cap C')$$

$$= A \cap B' \cap A \cap C'$$

$$= (A \setminus B) \cap (A \setminus C)$$

as required. ■

Question 16

Prove
$$(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$$

Answer. Take any two sets A, B.

$$(A \backslash B) \cup (B \backslash A) = (A \cap B') \cup (B \cap A')$$

$$= ((A \cap B') \cup B) \cap ((A \cap B') \cup A')$$

$$= ((A \cup B) \cap (B \cup B')) \cap ((A \cup A') \cap (B' \cup A'))$$

$$= (A \cup B) \cap (B' \cup A')$$

$$= (A \cup B) \cap (A \cap B)'$$

$$= (A \cup B) \setminus (A \cap B)$$

as required. ■

Question 18

Determine which of the following functions are one-to-one and which are onto. If the function is not onto, determine its range.

Answer. Functions:

a) $f: \mathbb{R} \to \mathbb{R}: x \mapsto e^x$

This function is one-to-one but not onto. Its range is $\mathbb{R}_{>0}$

- b) $f: \mathbb{Z} \to \mathbb{Z}: n \mapsto n^2 + 3$
- c) $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$
- d) $f: \mathbb{Z} \to \mathbb{Z}: n \mapsto n^2$