Curve Segments

After normalizing u, each curve can be written as

$$\mathbf{p}(u) = [x(u), y(u), z(u)]^T, 0 \le u \le 1$$

In classical numerical methods, we design a single global curve

In computer graphics and CAD, it is better to design small connected curve segments

ant + an + で + tant + an ー きati Parametric Polynomial Curves

 $\mathbf{p}(t) = (x(t), y(t), z(t))^T$ is called a polynomial curve if x(t), y(t) and z(t) are polynomial functions of t.

A polynomial curve of degree n is of the form

$$\mathbf{p}(t) = \sum_{k=0}^{n} \mathbf{c}_k t^k \text{ where } \mathbf{c}_k = \begin{pmatrix} c_{xk} \\ c_{yk} \\ c_{zk} \end{pmatrix}.$$

also a polynomial curve of

Hence,

$$x(t) = \sum_{k=0}^{n} c_{xk} t^{k}, y(t) = \sum_{k=0}^{n} c_{yk} t^{k}, z(t) = \sum_{k=0}^{n} c_{zk} t^{k}$$

 $t \in [0,1].$

We need to determine 3(n+1) coefficients Equivalently we need 3(n + 1) independent conditions

Why Polynomials

Easy to evaluate – need only +, -, \times , \div (e.g., no sin/cos)

Continuous and differentiable everywhere

 Still need to worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

We mostly use cubic curves which gives balance between ease of evaluation and flexibility in design

$$\mathbf{p}(t) = \sum_{k=0}^{3} \mathbf{c}_{k} t^{k}$$

Four coefficients to determine for each of x, y and z

Seek four independent conditions for various values of t resulting in 4 equations in 4 unknowns for each of x, y and z

 Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

Representation in Matrix-Vector Form

$$\mathbf{p}(u) = \sum_{k=0}^{3} \mathbf{c}_{k} u^{k} = \mathbf{c}_{0} + \mathbf{c}_{1} u + \mathbf{c}_{2} u^{2} + \mathbf{c}_{3} u^{3}$$

$$= \mathbf{u}^{T} \mathbf{c} = \mathbf{c}^{T} \mathbf{u}$$

where

$$\mathbf{c} = \begin{pmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} 1 \\ u \\ u^2 \\ u^3 \end{pmatrix}, \quad \mathbf{c}_k = \begin{pmatrix} c_{kx} \\ c_{ky} \\ c_{kz} \end{pmatrix}$$

Interpolating Curve

Given four data (control) points \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 determine cubic $\mathbf{p}(u)$ which passes through them

Need to find \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3

Interpolation Equations

$$\mathbf{p}(u) = \sum_{k=0}^{3} \mathbf{c}_{k} u^{k} = \mathbf{c}_{0} + \mathbf{c}_{1} u + \mathbf{c}_{2} u^{2} + \mathbf{c}_{3} u^{3}$$

$$\mathbf{p}_{0} = \mathbf{p}(0)$$

$$\mathbf{p}_{0} = \mathbf{p}(0)$$

$$\mathbf{p}_{2} = \mathbf{p}(2/3)$$

apply the interpolating conditions at u = 0, 1/3, 2/3, 1

$$\mathbf{p}_{0} = \mathbf{p}(0) = \mathbf{c}_{0}$$

$$\mathbf{p}_{1} = \mathbf{p}(1/3) = \mathbf{c}_{0} + (1/3)\mathbf{c}_{1} + (1/3)^{2}\mathbf{c}_{2} + (1/3)^{3}\mathbf{c}_{2}$$

$$\mathbf{p}_{2} = \mathbf{p}(2/3) = \mathbf{c}_{0} + (2/3)\mathbf{c}_{1} + (2/3)^{2}\mathbf{c}_{2} + (2/3)^{3}\mathbf{c}_{2}$$

$$\mathbf{p}_{3} = \mathbf{p}(1) = \mathbf{c}_{0} + \mathbf{c}_{1} + \mathbf{c}_{2} + \mathbf{c}_{2}$$

or in matrix form
$$\mathbf{p} = (\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)^T = \mathbf{Ac}, \quad \mathbf{p} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & (\frac{1}{3}) & (\frac{1}{3})^2 & (\frac{1}{3})^3 \\ 1 & (\frac{2}{3}) & (\frac{2}{3})^2 & (\frac{2}{3})^3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \end{pmatrix}$$

Interpolation Matrix $P(u) = \sum_{i=0}^{3} C_i u^i$ $p = Ac, \qquad A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & (\frac{1}{3}) & (\frac{1}{3})^2 & (\frac{1}{3})^3 \\ 1 & (\frac{2}{3}) & (\frac{2}{3})^2 & (\frac{2}{3})^3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ Let $\mathbf{M}_I = \mathbf{A}^{-1}$ and solving for \mathbf{c}_I

$$\mathbf{c} = \mathbf{M}_{I}\mathbf{p}, \qquad \mathbf{M}_{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -5.5 & 9 & -4.5 & 1 \\ 9 & 22.5 & 18 & -4.5 \\ -4.5 & 13.5 & -13.5 & 4.5 \end{pmatrix}$$

Note that M_I does not depend on input data and can be used for each segment in x, y, and z

Interpolating Multiple Segments

Get continuity at join points but not continuity of derivatives

Blending Functions

Blending Functions

Rewriting the equation for p(u) $p(u) = \mathbf{u}^T \mathbf{c} = \mathbf{u}^T \mathbf{M}_I \mathbf{p} = \mathbf{b}(u)^T \mathbf{p}$

$$\mathbf{C}_{i} \mathbf{u}^{i} = \mathbf{p}(u) = \mathbf{u}^{T} \mathbf{c} = \mathbf{u}^{T} \mathbf{M}_{I} \mathbf{p} = \mathbf{b}(u)^{T} \mathbf{p}$$

where $\mathbf{b}(u) = [b_0(u) \ b_1(u) \ b_2(u) \ b_3(u)]^T$ is an array of blending polynomials such that

$$\mathbf{p}(u) = b_0(u)\mathbf{p}_0 + b_1(u)\mathbf{p}_1 + b_2(u)\mathbf{p}_2 + b_3(u)\mathbf{p}_3$$

$$b_0(u) = -4.5(u - \frac{1}{3})(u - \frac{2}{3})(u - 1)$$

$$b_1(u) = 13.5u (u - \frac{2}{3})(u - 1)$$

$$b_2(u) = -13.5u (u - \frac{1}{3})(u - 1)$$

$$b_3(u) = 4.5u (u - \frac{1}{3})(u - \frac{2}{3})$$

Blending Functions

These functions are not smooth

• Hence the interpolation polynomial is not smooth

Cubic Polynomial Surfaces

A degree
$$m \times n$$
 parametric polynomial surface is defined as
$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix} = \sum_{i=0}^{n} \sum_{j=0}^{n} \mathbf{c}_{ij} \, u^i \, v^j, \qquad (u,v) \in [0,1]^2$$

More specifically, a cubic polynomial surface is given by

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j}, \qquad (u,v) \in [0,1]^{2}.$$

Need 48 coefficients $(4 \times 4 \times 3)$ to determine a surface patch

Interpolating Patch

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j}$$

a bicubic surface

Define
$$\mathbf{u} = [1 \ u \ u^2 \ u^3]^T$$
, $\mathbf{v} = [1 \ v \ v^2 \ v^3]^T$, $\mathbf{c} = [\mathbf{c}_{ij}]$

4x4 matrix, each element is a 3-vector

We may write

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j} = \mathbf{u}^{T} \mathbf{C} \mathbf{v}$$

Interpolating Patch in Matrix Form

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j} = \mathbf{u}^{T} \mathbf{C} \mathbf{v}$$

a 3-vector

Need 16 conditions to determine the 16 coefficients \mathbf{c}_{ij}

Consider u = v = 0, and we have

 $V = \frac{1}{3}$ Choose $u, v = 0, \frac{1}{3}, \frac{2}{3}, 1$ and we have the 16 conditions $\frac{1}{3}$ $V = \frac{1}{3}$ $V = \frac$

Interpolating Patch in Matrix Form

Instead of writing the 16 equations one by one and solve for \mathbf{C} ,

let's consider v = 0,

$$\mathbf{p}(u,0) = \sum_{i=0}^{3} \mathbf{c}_{i0} u^{i} = \mathbf{u}^{T} \mathbf{C} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \mathbf{u}^{T} \mathbf{M}_{I} \begin{bmatrix} \mathbf{p}_{00}\\\mathbf{p}_{10}\\\mathbf{p}_{20}\\\mathbf{p}_{30} \end{bmatrix}$$

$$= \mathbf{A} \text{ dubic curve interpolating } \mathbf{p}_{00} \mathbf{p}_{10} \mathbf{p}_{20} \mathbf{p}_{30}$$

$$= \mathbf{A} \text{ dubic curve interpolating } \mathbf{p}_{00} \mathbf{p}_{10} \mathbf{p}_{20} \mathbf{p}_{30}$$

Doing the same for $v = \frac{1}{3}, \frac{2}{3}, 1$, and we have 3 more equations similar to the above. Hence we have

$$\mathbf{u}^T \mathbf{C} \mathbf{A}^T = \mathbf{u}^T \mathbf{M}_I \mathbf{P}$$
 where $\mathbf{P} = [\mathbf{p}_{ij}]$ and therefore $\mathbf{C} = \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T$

$$\mathbf{M}_I = \mathbf{A}^{-1}$$

The bicubic surface is given by $\mathbf{p}(u, v) = \mathbf{u}^T \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T \mathbf{v}$

Blending Patches

We can build and analyze surfaces from our knowledge of curves

$$\mathbf{p}(u,v) = \mathbf{u}^T \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T \mathbf{v}$$

Note that $\mathbf{M}_I \mathbf{u}^T$ are the blending functions

$$\mathbf{b}(u) = [b_0(u) \ b_1(u) \ b_2(u) \ b_3(u)]^T$$

Hence we may rewrite the surface equation as

$$\sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(\mathbf{V}) \mathbf{p}_{ij}$$

Each $b_i(u)$ $b_j(v)$ describes a blending patch