KHÔLLES 3 ET 4 : RAISONNEMENT ET VOCABULAIRE ENSEMBLISTE

- **1.** Tout entier b divise 0 et 0 ne divise que 0.
 - Si b|a et si $a \neq 0$, alors $|b| \leq |a|$.
 - Si b|a et a|b, alors |a| = |b|.
 - Si a|b et b|c, alors a|c.
 - Si a|b et a|c, alors a|(bu+cv) pour tout $(u,v) \in \mathbb{Z}^2$.
 - Si a|b, alors pour tout entier c, ac|bc.
- 2. L'ensemble des nombres premiers est infini.
- **3.** Pour $(a, b) \in \mathbb{N} \times \mathbb{N}^*$, il existe un unique couple $(q, r) \in \mathbb{N}^2$ tel que a = bq + r, avec $0 \le r < b$.
- **4.** Soient $f \in F^E$ et $g \in G^F$.
 - Si $g \circ f$ est injective, alors f est injective.
 - Si $g \circ f$ est surjective, alors g est surjective.
 - La composée de deux injections est une injection.
 - La composée de deux surjections est une surjection.
- **5.** Soient $f \in F^E$, $(A, A') \in E^2$ et $(B, B') \in F^2$. On a :

 - $A \subset f^{-1}(f(A))$ et $f(f^{-1}(B)) \subset B$ $f(A \cup A') = f(A) \cup f(A')$ et $f(A \cap A') \subset f(A) \cap f(A')$ $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$ et $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$ $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$