

Algorítmica

Capítulo 6. Otras Metodologías Algorítmicas. Tema 16. Algoritmos de Precomputación

- -Algoritmos numéricos
 - Evaluación de polinomios, Multiplicación de matrices, Sistemas de ecuaciones lineales

Eficiencia de Algoritmos Numéricos

- Los programas numéricos suelen hacer cálculos muy concretos un gran número de veces
- Pequeñas, casi insignificantes, mejoras pueden producir importantes ahorros de tiempo debido a la gran cantidad de veces que se hace un cierto cálculo
- La eficiencia algorítmica se mide en términos de exactitud.

Preprocesamiento

- Sea I el conjunto de los casos de un problema, y supongamos que cada caso i∈I consiste en dos componentes j∈J y k∈K (es decir I ⊆ JxK)
- Un algoritmo de preprocesamiento para este problema es un algoritmo A que acepta como input algún elemento j∈J y produce como output otro algoritmo B_i
- Ese algoritmo B_j debe ser tal que si k∈K y
 (j,k)∈I, entonces la aplicación de B_j en k da la
 solución del caso (j,k) del problema original.

- Sea J un conjunto de gramáticas para una familia de lenguajes de programación (C, Fortran, Cobol, Pascal ...) y K un conjunto de programas
- El problema general es saber si un programa dado es sintácticamente correcto en alguno de los lenguajes dados
- Aquí I es el conjunto de casos del tipo: ¿Es válido el programa k en el lenguaje que define la gramática j∈J?
- Un posible algoritmo de preprocesamiento para este ejemplo es un generador de compiladores:
 - Aplicado a la gramática j∈J genera un compilador B_j para el lenguaje en cuestión
 - Por tanto para saber si $k \in K$ es un programa en el lenguaje j, simplemente aplicamos el compilador B_i a K

Preprocesamiento

- Sea:
 - a(j) = tiempo para producir B_i dado j
 - $-b_j(k)$ = tiempo para aplicar B_j a k
 - -t(j,k) = tiempo para resolver (j,k) directamente
- Generalmente $b_j(k) \le t(j,k) \le a(j) + b_j(k)$
- No interesa el preprocesamiento si

$$b_j(k) > t(j,k)$$

Utilidad del Preprocesamiento

- Suele ser útil en dos situaciones:
 - Emergencias: Necesitamos ser capaces de resolver cualquier caso muy rápidamente
 - Hay que resolver una serie de casos para un mismo valor de j: (j, k_1) , (j, k_2) , ..., (j, k_n) . El tiempo consumido en resolver todos los casos si trabajamos sin preprocesamiento es

$$t_1 = \sum_{i=1..n} t(j, k_i)$$

y

$$t_2 = a(j) + \sum_{i=1..n} b_j(k_i)$$

si trabajamos con preprocesamiento

Cuando n es suficientemente grande, t2 suele ser menor que t1

 Lo estudiaremos asociado a problemas de tipo numérico en los que siempre intervienen unos mismos coeficientes.

Eficiencia en Algoritmos Numéricos

- Contaremos adiciones y multiplicaciones
- Como normalmente las adiciones son mucho mas rápidas que las multiplicaciones, la reducción del número de multiplicaciones, a costa del aumento de las adiciones, puede producir mejoras
- Nuestros análisis se basarán en la potencia mayor de un polinómio o en el tamaño de las matrices con las que estemos trabajando

Cálculo de Polinomios

Usaremos la forma general de un polinomio

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + L + a_1 x + a_0$$

- en la que los valores de los coeficientes se suponen conocidos y constantes.
- Queremos evaluar (repetidamente) ese polinomio.
- El valor de x será el input y el output será el valor del polinomio usando ese valor de x

Algoritmo de Evaluación Estándar

```
result = a[0] + a[1]*x
xPower = x
for i = 2 to n do
    xPower = xPower * x
    result = result + a[i]*xPower
end for
return result
```

• El análisis fácil: Antes del lazo, hay una multiplicación y una adición. El lazo se hace N-1 veces y hay dos multiplicaciones y una adición. Por tanto hay un total de 2N-1 multiplicaciones y N adiciones

Evaluación con el Método de Horner

- Se basa en la factorización de un polinomio
- Nuestra ecuación general puede factorizarse como

$$p(x) = \{ L [(a_n x + a_{n-1}) * x + a_{n-2}] * x + L + a_2 \} * x + a_1) * x + a_0$$

Por ejemplo, el polinomio

$$p(x) = x^3 - 5x^2 + 7x - 4$$

se factorizaría como

$$p(x) = [(x-5)*x+7]*x-4$$

Evaluación con el Método de Horner

```
result = a[n]
for i = n - 1 down to 0 do
  result = result * x
  result = result + a[i]
end for
return result
```

• El análisis es sencillo: el lazo for se hace N veces y conlleva una multiplicación y una adición. Así que hay un total de N multiplicaciones y N adiciones. Por tanto nos ahorramos N-1 multiplicaciones sobre el algoritmo estándar.

Preprocesamiento de Coeficientes

- Usa la factorización de un polinomio, considerada a partir de polinomios de grado mitad del original
- Por ejemplo, cuando el algoritmo estándar tuviera que hacer 255 multiplicaciones para calcular x²⁵⁶, nosotros podriamos considerar el cuadrado de x y el del resultado, con lo que ahorraríamos mucho tiempo para obtener el mismo resultado
- Suponemos polinomios mónicos (a_n =1), con la mayor potencia siendo de valor uno menos que cierta potencia de 2.
- Así, si nuestro polinomio tiene como mayor potencia 2^k-1, lo podemos factorizar como:

$$p(x) = (x^{j} + b) * q(x) + r(x)$$

donde $j = 2^{k-1}$

Preprocesamiento de Coeficientes

• Si miramos el coeficiente del término j - 1 del polinomio

tomamos b = $a_{j-1} - 1$ y entonces q(x) + r(x) también serán mónicos, con lo que el proceso podrá aplicarse recursivamente sobre ellos también.

• Eso llevará a reducir el número de operaciones a efectuar.

Preprocesamiento de Coeficientes: Ejemplo

Sea

$$p(x) = x^3 - 5x^2 + 7x - 4$$

Como la mayor potencia es $3 = 2^2-1$, entonces j sería $2^1 = 2$, y b valdría $a_1 - 1 = 6$.

 Así, nuestro factor es x² + 6. Entonces dividimos p(x) por este polinomio para encontrar q(x) y r(x), y se obtiene

$$q(x) = x - 5$$
, $r(x) = x + 26$

• Y por tanto $p(x) = (x^2 + 6)(x-5) + (x + 26)$

Análisis

- Analizamos el preprocesamiento de coeficientes desarrollando una ecuación de recurrencia para el número de multiplicaciones y adiciones.
- En nuestra factorización, partimos el polinomio en otros dos mas pequeños, haciendo una multiplicación mas y dos sumas adicionales
- Sea M(k) el número de multiplicaciones requeridas para evaluar el polinomio de grado $N=2^k-1$.
- Sea A(k) = M(k) k + 1 el número de multiplicaciones requeridas si no contamos las usadas en el cálculo de x^2 , x^4 , ..., $x^{(n+1)/2}$
- Se obtiene la siguiente ecuación recurrente,

$$A(0) = 0 \text{ si } k = 1$$

 $A(k) = 2A(k-1) + 1 \quad \text{si } k \ge 2$

Análisis

Resolviendo esta ecuación obtenemos

$$A(k) = 2^{k-1} - 1$$
, cuando $k \ge 1$,

y así

$$M(k) = 2^{k-1} + k - 2$$

• En otras palabras, $(N-3)/2 + \log(N+1)$ multiplicaciones son suficientes para evaluar un polinomio de grado $N = 2^k - 1$.

Comparación de los tres Algoritmos

- En el ejemplo que hemos visto:
 - Algoritmo Estándar:
 - 5 multiplicaciones y 3 adiciones
 - Método de Horner
 - 3 multiplicaciones y 3 adiciones
 - Preprocesamiento de Coeficientes
 - 2 multiplicaciones y 4 adiciones

- Para un polinomio de grado N:
 - Algoritmo Estándar:
 - 2N-1 multiplicaciones y N adiciones
 - Método de Horner
 - N multiplicaciones y N adiciones
 - Preprocesamiento de coeficientes
 - N/2+lg N multiplicaciones y (3N-1)/2 adiciones

Multiplicación de Matrices

- Dos matrices se pueden multiplicar si el número de columnas de la primera es igual al número de filas de la segunda
- Cada fila de la primera matriz se multiplica por cada columna de la segunda matriz
- El valor en la casilla i, j de la matriz es el resultado de la suma de los productos correspondientes a la fila i de la primera matriz por la columna j de la segunda

Multiplicación de Matrices Estándar

```
\label{eq:for i = 1 to a do} \\ \text{for } j = 1 \text{ to c do} \\ R_{i,j} = G_{i,1} * H_{1,j} \\ \text{for } k = 2 \text{ to b} \\ R_{i,j} = R_{i,j} + G_{i,k} * H_{k,j} \\ \text{end for } k \\ \text{end for } j \\ \text{end for } I \\
```

 Por tanto, como sabemos, para multiplicar dos matrices G(axb) y H(bxc) el algoritmo hace a*b*c multiplicaciones y a*(b-1)*c adiciones

Multiplicación de Matrices de Winograd

- Podemos considerar cada fila y columna como vectores: $V = (v_1, v_2, v_3, v_4)$ y $W = (w_1, w_2, w_3, w_4)$
 - Cada elemento del resultado será el producto de dos vectores:

$$V \bullet W = V_1 * W_1 + V_2 * W_2 + V_3 * W_3 + V_4 * W_4$$

Cada uno de esos productos se puede factorizar:

$$V \bullet W = (v_1 + w_2) * (v_2 + w_1) + (v_3 + w_4) * (v_4 + w_3)$$
$$- v_1 * v_2 - v_3 * v_4$$

• Aunque esto parecē mas thabājoso, las dos últimas lineas se pueden hacer solo una vez para cada fila de la primera matriz y cada columna de la segunda matriz.

Multiplicación de Matrices de Winograd

• Entonces para multiplicar una fila por una columna, tendríamos

$$V \bullet W = \sum_{i=1}^{n/2} (v_{2i-1} + w_{2i})(v_{2i} + w_{2i-1})$$
$$- \sum_{i=1}^{n/2} v_{2i-1} v_{2i} - \sum_{i=1}^{n/2} w_{2i-1} w_{2i}$$

 Donde estos dos valores se calculan una vez, pero se usan muchas veces.

Algoritmo de Winograd Etapa de Preprocesamiento

```
d = b/2
// calcular los factores de las filas de la primera matriz (G)
for i = 1 to a do
     rowFactor[i] = G_{i,1} * G_{i,2}
     for j = 2 to d do
           rowFactor[i] = rowFactor[i] + G_{i,2i-1} * G_{i,2i}
     end for j
end for I
// calcular los factores de las columnas de la segunda matriz (H)
for i = 1 to c do
     columnFactor[i] = H_{1,i} * H_{2,i}
     for j = 2 to d do
           columnFactor[i] = columnFactor[i] + H_{2i-1,i} * H_{2i,i}
     end for j
end for i
```

Algoritmo de Winograd Etapa de Cálculo

```
for i = 1 to a do
      for j = 1 to c do
           R_{i,j} = -rowFactor[i] - columnFactor[j]
            for k = 1 to d do
                  R_{i,i} = R_{i,i} + (G_{i,2k-1} + H_{2k,i})*(G_{i,2k} + H_{2k-1,i})
            end for k
      end for j
end for i
// sumas de terminos para la dimension compartida impar
if (2 * (b / 2) \neq b) then
      for i = 1 to a do
            for j = 1 to c do
                  R_{i,j} = R_{i,j} + G_{i,b} * H_{b,i}
            end for j
      end for i
end if
```

Análisis del Algoritmo de Winograd

- Etapa de Preprocesamiento:
 - El lazo "for j" se hace d-1 veces, realizando una multiplicación y una adición
 - El lazo "for i" se hace a (ó c) veces, llevando a cabo d multiplicaciones y d-1 adiciones
- Etapa de calculo para una dimensión par compartida (b) de las matrices:
 - El lazo "for k" se ejecuta d veces y hace una multiplicación y tres adiciónes
 - El lazo "for j" se ejecuta c veces y hace d multiplicaciones y 3d + 1 adiciones
 - El lazo "for i" se ejecuta a veces y hace c*d multiplicaciones y c*(3d + 1) adiciones

Análisis del Algoritmo de Winograd

El algoritmo completo hace:

$$a*(d-1) + c*(d-1) + a*c*(3d+1)$$
 adiciones

cuando b es par y d = b/2

Algoritmo de Strassen para la Mutiplicación de Matrices

- Analizado ya con la técnica Divide y Vencerás:
- Usa siete formulas para multiplicar dos matrices 2 x 2
- No tiene en cuenta la conmutatividad de los productos de elementos
- Puede aplicarse recursivamente:
 - Dos matrices 4 x 4 se pueden multiplicar
 considerando cada una de ellas como una matriz 2 x 2
 de matrices 2 x 2

Análisis del Algoritmo de Strassen

- Esas formulas requieren 7 multiplicaciones y 18 adiciones para multiplicar dos matrices 2x2
- El ahorro real se da cuando se aplica recursivamente, haciendo aproximadamente N^{2.81} multiplicaciones y 6N^{2.81}-6N² adiciones
- Aunque no se usa en la práctica, el método de Strassen es importante porque fue el primer algoritmo que bajó de O(N³)

Análisis del Algoritmo de Strassen

 Si suponemos que multiplicamos dos matrices de dimensiones idénticas NxN, la comparativa de los tres algoritmos es la de esta tabla

Algoritmo	Multiplicaciones	Adiciones
Estándar	N^3	N ³ -N ²
Winograd	$(N^3+2N^2)/2$	$(3N^3+4N^2-4N)/2$
Strassen	$N^{2.81}$	$6 N^{2.81} - 6N^2$

Ecuaciones Lineales

- Un sistema de ecuaciones lineales es un conjunto de N ecuaciones en N incógnitas.
- Los coeficientes (los valores a) son constantes y los resultados (los términos independientes) suelen ser los input de cada problema.
- Buscamos los valores x que satisfacen estas ecuaciones y producen los resultados indicados.
- Por ejemplo,

$$2x_1 - 4x_2 + 6x_3 = 14$$

 $6x_1 - 6x_2 + 6x_3 = 24$
 $4x_1 + 2x_2 + 2x_3 = 18$

Solución de Ecuaciones Lineales

- Un primer método de solución consiste en sustituir una ecuación en la otra
 - Por ejemplo, resolveriamos la primera ecuación para x₁ y entonces la sustituiriamos en el resto de las ecuaciones
- Esta sustitución reduce el número de ecuaciones y de incógnitas
- Iterando llegamos a una incógnita y una ecuación, de donde podremos ir recuperando los valores del resto
- Pero si hay muchas ecuaciones, el proceso es lento, produce errores y es dificil de implementar.

Algoritmo de Gauss-Jordan

- Este método se basa en la idea anterior
- Almacenamos las constantes en una matriz con N filas y N+1 columnas
- En nuestro ejemplo tendríamos:

2 -4 6 14

6 -6 6 24

4 2 2 18

Algoritmo de Gauss-Jordan

 Manipulamos algebraicamente las filas hasta obtener la matriz identidad en las primeras N columnas, con lo que los valores de las incógnitas se encontrarán en la última columna:

Algoritmo de Gauss-Jordan

- En cada paso, tomamos una nueva fila y la dividimos por el primer elemento que no es cero
- Restamos múltiplos de esta fila a todas las demás para obtener todo ceros en esta columna, menos en esta fila
- Cuando esto lo hemos hecho N veces, cada fila tendrá un valor 1 y la última columna presentará los valores de las incógnitas

Consideremos de nuevo el ejemplo:

 Comenzamos dividiendo la primera fila por 2, y entonces la restamos 6 veces de la segunda fila y cuatro de la tercera

• Ahora dividimos la segunda fila por 6, y entonces la sustraemos -2 veces de la primera y 10 veces de la tercera

 Ahora, dividimos la tercera fila por 10, y la restamos -1 veces de la primera y -2 veces de la segunda

Así logramos:

• Y tenemos que $x_1 = 3$, $x_2 = 1$, y $x_3 = 2$, los valores que aparecen en el término independiente

Dificultades

- En la práctica, los redondeos producen resultados inexactos
- Si la matriz es singular, una fila será múltiplo exacto de alguna otra, dando lugar a un error al dividir por cero
- Hay mejores algoritmos para el problema, pero son propios de Análisis Numérico
- El cálculo de la inversa de la matriz de los coeficientes es un típico ejemplo de preprocesamiento: Regla de Cramer.

Fin de Curso

- Los objetivos del curso han sido
 - Dominar los métodos de cálculo de la eficiencia teórica de los algoritmos
 - Conocer en profundidad las técnicas de diseño de algoritmos y
 - Saber asociar a un problema el mejor algoritmo para su resolución
- Solo quedan dos aspectos que comentar:
 - El futuro a corto plazo (como será el examen), y
 - El futuro a medio plazo (como evaluaré el examen)

Últimas recomendaciones

• Pondré 6 preguntas:

- Una será un ejercicio numérico que se puntuará sobre 10 y que, ponderado por 0.1 se sumará a la nota de prácticas (40% de prácticas).
- Las otras 5 incluirán notaciones, greedy, DV, exploración de grafos y PD, y cada una puntuará sobre 10. La nota de teoría será la de la media de estas 5 preguntas ponderada por 0.6.
- La nota final, será la suma de la nota de teoría (sobre 6)
 con las dos de prácticas (sobre 3 y sobre 1)
- Evaluación única: Las 6 preguntas del examen (cada una puntuada sobre 10)

Últimas recomendaciones

- El examen durará por lo menos 2 horas y media. El tiempo no será un problema
- No traigan dispositivos móviles o digitales. En concreto: calculadoras, teléfonos o cualquier dispositivo digital está prohibido en el examen.
- No se podrán usar apuntes o libros. Ahorrense su traslado
- Para preparar el examen,
 - No memoricen.
 - Estudien sobre libros y no sobre transparencias
 - Razonen el por qué de las cosas.
 - Relacionen métodos, conceptos
- Escriban claro, expresense bien, presenten bien el examen, repásenlo antes de entregarlo,

Y por último...

- Aprovechen las oportunidades que brindan los programas de intercambio
 - Erasmus (Europa)
 - LATAM, Canada, ...
 - Cooperación: CICODE
- Inicien contactos formativos sobre emprendimiento
- Contrato tácito
 - Formación contínua. Mantengase en contacto con la Escuela y con sus profesores.