CROSSLAND et al Serial No. 10/085,140

- 5. (Amended) A semiconductor active backplane according to claim 1 wherein the active element(s) have a MOS construction.
- 6. (Amended) A semiconductor active backplane according to claim 1 wherein substantially the whole of each active element is covered by a metallic conductor, or a pair of metallic conductors.

9. (Amended) A backplane according to claim 1 wherein the array of active elements is covered by an insulating layer, each said active element being connected to a metal electrode on said insulating layer, the array of said metal electroes thus formed covering more than 65% of the area of said array.