

SOLUCIÓN DEL PROBLEMA PRINCIPAL

El uso de los generadores de oscilaciones de presión con el empleo posterior del polímero aumenta la productividad y permite "vitalizar" los pozos incluso en condiciones complicadas de explotación de los yacimientos.

- 1. Desarrollo y aumento de la productividad de los pozos con el empleo de bombas a chorro.
- 2. Limpieza de los pozos combinando con el bombeo de soluciones iniciadoras (composiciones de reactivos químicos).
- 3. Acumulación de cavernas en los colectores de carbonatos.
- 4. Intensificación del bombeo de agua y soluciones de reactivos químicos en los pozos de compresión.
- 5. Impacto térmico, de gas y de ondas de depresión.
- 6. Purificación de los filtros de los pozos de toma de agua.
- 7. Medición del caudal y presión del fluido en capas bajo el obturador y determinación del grado de recuperación de la permeabilidad de la zona adyacente al testero de la capa productiva según el calor de incremento del caudal del pozo con la presión fijada del fluido en capas.

PROCESO DE BOMBEO DEL POLÍMERO

- 1. El equipo se baja con el tubo tecnológico MKT y comprende una bomba de chorro, un generador de oscilaciones de presión, un manguito y un manómetro.
- 2. Limpieza de la zona adyacente al testero de la capa antes de empezar el bombeo del polímero.
- 3. El polímero se ubica en el pozo con ayuda de los generadores de oscilaciones de presión, lo cual permite bombearlo selectivamente a las rocas de poca permeabilidad y emplear dicha tecnología en los pozos sin susceptibilidad.
- 4. El bombeo del polímero el régimen de oscilaciones aumenta la viabilidad del polímero en la capa a costa de la adhesión volumétrica.
- 5. Tras la polimerización se realizan varias de medidas geológicas.

EQUIPMENT - VIBROGENERATOR

Oil well fluid vibrowave generator.

Código del generador: "GVg"

Caudal de trabajo del líquido, dm³/s: 4,5–5,0

Salto de presión de trabajo, MPa: 9,5

Amplitud de oscilaciones de la presión (teniendo en cuenta el resonador), MPa: 5.0-6.0

Diámetro mínimo de instalación NKT, mm: 73

Largo, m: <u>1.27</u>

Masa, kg: 9,5

Destinación: Tratamiento de los pozos que abren las capas carbonizadas y arcilladas de profundidad de hasta 2000 m

EQUIPMENT - PUMP

Oil well jet pump.

Código de la bomba de chorro:

Profundidad máxima del pozo, m:

Presión máxima de trabajo, MPa

Di amento máximo, mm

Largo, m

Masa, kg

MC-3' 6000 50,0 89,0 0,6 15 MCB-1" 2500 25,0 54,0 0,6 12,5

POLÍMERO

PGCP (Prometheus Group Chemicals Polymer) - una ventaja única para trabajar en condiciones de alta temperaturas y alta salinidad, en los que otros simplemente no funcionan.

Beneficios PGCP (Prometheus Group Chemicals Polymer):

- Excepcional resistencia a la hidrólisis térmica;
- Excelente versatilidad;
- Aplicable en un amplio rango de temperaturas;
- Entrecruzado con iones metálicos o sistemas orgánicos;
- Grapado inmediata para su uso en la zona de la cara;
- A cámara lenta costura para la transformación profunda de la modificación del perfil;
- Excelente estabilidad al corte de geles estables a largo plazo;
- Puede ser utilizado en agua salada, el depósito de agua marina, alta resistencia a los cambios en el pH;
- La estabilidad a largo plazo del gel a temperaturas elevadas.

RESULTADOS DE RENDIMIENTO Y DESPUÉS DE LA APLICACIÓN TECNOLOGÍA

Región, empresa productora del petróleo	Plazos de los trabajos y la implantación	Cant .pozos/ operaciones	De ellos los productores	Compresión adicional del agua, mil m³	Mil toneladas Éxito	% duración del efecto	Meses
Compañía anónima petrolera "Bashneft"	1996–2010	280	50	10000	260	80	6–18
"Purneftegaz, S.A."	2002	10	5	250	faltan datos	80	8–12
"Kondpetroleum, S.A."	1999–2005	70	10	4500	70	75	8–20
"Uraineftegaz, S.A."	2001–2002	6	5	100	faltan datos	80	6–12
"Surgutneftegaz, S.A."	2002	15	10	faltan datos	faltan datos	80	10–15
"Yuganskneftegaz, S.A."	2001–2005	25	10	400	70	80	8–15 y más
"Oremburgneftegaz, S.A."	2004–2005	7	3	faltan datos	faltan datos	70	8–12
"Tatneft, S.A."	2005–2010	284	175	850	300	90	8–15 y más
"Lukoil-Permneftegaz, S.A."	2005–2010	38	22	faltan datos	faltan datos	90	10–15
"Ukrneft, S.A."	2007–2010	15	10	faltan datos	faltan datos	90	12 y más
"Aktobe-munaigaz, S.A."	2007–2010	10	6	faltan datos	faltan datos	80	8-12

N° de	N° de pozos/ clúster	Yacimiento, índice de capa	Fecha del tratamiento,	Caudal del petróleo/aguado, toneladas/ porcentaje diario de agua,				
			mes, año	Antes del tratamiento	Después del tratamiento			
DESARROLLO Y DESARROLLO FINAL DE LOS POZOS TRAS LA PERFORACIÓN								
1	366 g/27	EM-Egovskoe BK-1	12.03	4,0 / 15	22,0 / 4			
2	2331 g/82		09.04	4,0 / 30	10,0 / 25			
3	2302 g/82		10.04	7,0 / 30	18,0 / 10			
4	364 g/28		01.04	3,0 / 15	10,0 / 3			
5	709 g	Arlanskoe C_1^{TUR}	08.07	2,0 / F/D	6,0 / F/D			
6	832 g	Arlanskoe C _{vi}	03.08	F/D	10,0 / F/D			
AUMENTO DEL RENDIMIENTO DE LOS POZOS HORIZONTALES								
1	295 g/29	EM-Egovskoe BK-1	10.03	1,0 / 69	5,0 / 11			
2	386 g/28		09.04	5,0 / 10	26,0 / 14			
3	6662 g/21		12.04	2,0 / 34	15,0 / 54			
4	11404 g	Arlanskoe $C_2^{2\kappa}$	10.06	1,2 / 40	2,5 / 50			
5	11633 g		09.07	0,6 / 11	2,3 / 28			
6	11491 g		02.08	0,9 / 35	3,0 / 28			
7	11419 g		07.08	0,9 / 58	1,0 / 44			
8	11695 g		07.08	1,3 / 10	2,6 / 15			
9	11412 g		12.08	2,0 / 41	2,9 / 35			
10	13014 g	Vyatskaya ar. C ₂ ^{2κ}	09.08	2,7 / 21	2,9 / 55			
11	4847	Ugomash-Maksimovsk. C ₂	07.08	4,2 / 6	10,0 / 25			
12	4846		08.08	3,8 / 6	16,8 / 6			
13	8221 g	Novo-Elovskoe C ₁ TUR	11.08	2,0 / 13	4,0 / 20			
14	8746		09.09	3,0 / 7	7,9 / 7			
15	5600 g	Novo-Elovskoe C ₁ BASH	04.09	1,0/9	11,9/8			
16	1052	Pavlovskoe C ₁ ^{TUR}	12.10	2,0 / 5	6,0 / 5			

RESULTADOS E INDICADORES DESPUÉS DE LA INTRODUCCIÓN DE VIBROVOLNOVOGO IMPACTO

ÁREA DE APLICACIÓN DE LA TECNOLOGÍA

Pozos:	Según la categoría:	Según la destinación:	Según el perfil del tronco:	Según la estructura:		
	De prospección;De exploración;De explotación	De producción;De bombeo	Verticales;Inclinados;Horizontales;Troncos laterales	 De profundidad de 10 a 5000 m; diámetro de la columna de entubado 90 245 mm y más; testero entubado; testero no entubado 		
Colectores:	Según la litología:		Según la composición:			
	Terrígenos (porosidad >16%,	 Greses Aleurolitas				
	Carbonáticos (porosidad >10	CalizasDolomitas				
	Según el tipo del espacio vacío:					
	• porosos;	• fisurosos;	• mixtos			
Fluidos de capa	Petróleo	Agua	Gas	Condensado		
	viscosidad < 4060 mPas, densidad 650980 kg/m³	Mineralizada, No mineralizada	Diluido, libre			
Colmatantes	Inorgánicos:	Orgánicos:	Otros:			
	 Arcillosos; Depósitos de sales; Productos de sales; Productos de corrosión; Lodos bentoníticos; Cementos Resinas; Asfáltenos; parafinas; Productos de la reacción tras los tratamientos con reactivos químicos; Sistemas estructurados; Emulsiones 			ras los tratamientos con		

REQUISITOS PARA LOS POZOS

- Pozos en que se manifiesta el efecto pelicular debido a la contaminación en la zona adyacente al pozo con diversos compuestos colmatantes. Además, para garantizar la rentabilidad de los trabajos importa que haya la suficiente reserva potencial de la emergía de capa y de reproductividad para alcanzar, tras el tratamiento del caudal, no memos de 5...7 toneladas /día (para los pozos de pequeño caudal).
- La profundidad del yacimiento de las capas productivas no debe superar 5000 m con la presión en capa no menos de 30%–40% de la presión hidrostática de la columna de líquido en el pozo.
- La capa debe tener el grosor eficiente no menos de 3 m y debe estar representada por las rocas propensas a la destrucción.
- El aguado de los pozos productores no debe superar el 50%.
- Los pozos deben estar fuera de la zona de acuñamiento, y es preferible el nexo hidrodinámico de la capa con los pozos circundantes.
- Las columnas entubadas de los pozos deben ser herméticas, tener el diámetro interior de no menos de 90 mm y el anillo bien cementado faltando los flujos fuera de las columnas.

