Tutorial 9

I utorial 9		TAIL = [1
1. VERT	TAIL HEAD NE	HEAD = [NEXT = [Compute b
2 1 2	2 7 2 /	3
6 V 5	2 7 3 1	5
5	4 7 4 1	7
6	3 + 41	0
4	1 -> 3 /	0
V		1234
A STATE OF THE STA	Mg-	10110

1. The following arrays describe a relation R on a set $A = \{1, 2, 3, 4\}$:

VERT = [1, 2, 6, 4]TAIL = [1, 2, 2, 4, 4, 3, 4, 1]HEAD = [2, 2, 3, 3, 4, 4, 1, 3]NEXT = [8, 3, 0, 5, 7, 0, 0, 0]Compute both the digraph of R and the matrix \mathbf{M}_R .

2. Let
$$A = B = \{1, 2, 3\}$$
 and let $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$ and let $S = \{(2, 1), (3, 1), (3, 2), (3, 3)\}$. Let R and S be the relations from A to B . Compute

i)
$$\bar{R}$$

2. Let $A = B = \{1, 2, 3\}$ and let $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$ and let $S = \{(2, 1), (3, 1), (3, 2), (3, 3)\}$. Let R and S be the relations from A to B. Compute

i)
$$\overline{R}$$
iii) $R \cup S$

ii)
$$R \cap S$$

iv) S^1

2. Let
$$A = B = \{1, 2, 3\}$$
 and let $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$ and let $S = \{(2, 1), (3, 1), (3, 2), (3, 3)\}$. Let R and S be the relations from A to B . Compute

$$S^{-1} = \{(1, 2), (1, 3), (2, 3), (3, 3)\}$$

$$M_{S}-1 = (M_{S})^{T}$$

$$= \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}$$

3. Let
$$A = \{2, 4, 5, 7\}$$
 and let R and S be the relations on A described by $x R y$ if and only if $x + y$ is even and $M_S = \{0, 1, 0, 0\}$. List the ordered pairs belonging to the following

relations.

$$S = \{(2,4), (4,5), (4,7), (5,4), (5,5), (5,7)\}$$

$$s = \{(1,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$$

$$s^{-1} = \{(2,1), (3,2), (4,2), (2,3), (3,3), (4,3)\}$$

$$S^{-1} = \{(4,1), (5,4), (4,4), (4,5), (5,5), (4,5)\}$$

$$Optional:$$

$$M_{S^{-1}} = \{M_{S}\}^{T} = \{(4,1), (4,5), (5,5), (4,5)\}$$

$$0 = \{(4,1), (5,4), (4,4), (4,5), (5,5), (4,5)\}$$

$$0 = \{(4,1), (5,4), (4,4), (4,5), (5,5), (4,5)\}$$

$$0 = \{(4,1), (5,4), (4,4), (4,5), (5,5), (4,5)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (5,4), (4,2), (2,3), (3,3), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,3)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2)\}$$

$$0 = \{(4,1), (4,2), (4,2), (4,2), (4,2)\}$$

$$=\{(4,2),(5,5),(7,5)\}$$

$$=\{(2,2),(2,4),(4,2),(4,4),(5,5),(5,$$

iii)
$$(S^1 \circ R)^1$$

$$Ms = \{2, 4, 5, 7\}$$

$$Ms = \begin{cases} 2, 4, 5, 7 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} \quad S = \{(2, 4), (4, 5), (4, 7), (5, 4), (5, 5), (5, 7)\}$$

$$Mk = \begin{cases} 2, 4, 5, 7 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{cases} \quad R = \{(2, 2), (2, 4), (4, 2), (4, 4), (5, 5), (7, 7)\}$$

$$(5, 5), (5, 7), (7, 5), (7, 7)\}$$

(iii)
$$(S^{\prime} \circ R)^{5/3}$$

 $R^{-1} = \{(2,2), (\underline{4},2), (2,4), (\underline{4},4), (5,5), (7,5), (5,7), (5,7), (7,7),$

Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3\}$. The matrices \mathbf{M}_R and \mathbf{M}_S of the relation R and S be the

relations from A to B are given by
$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, $\mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Compute

- MRUS
- i) iii)

- MROS
- M.

4. iii)
$$M_{R^{-1}} = (M_{R})^{T}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$(iv) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

5. Let $A = \{a, b, c, d, e\}$ and let the equivalence relations R and S on A be given by

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- i) Compute
 - a) $M_{R \circ R}$

 $M_{S \circ R}$

c) $M_{R \circ S}$

 $M_{S \circ S}$

Let $A = \{a, b, c, d, e\}$ and let the equivalence relations R and S on A be given by

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

diagonal relation, $\Delta = \{(1,1),(2,2)...\}$ [* *]

6. $A = \{1, 2, 3, 4, 1, \dots\} = R^{-1}$ $R = \{(1, 2), (1, 3), (2, 3), (3, 4)\}$ $= \{(1, 2), (1, 3), (2, 3), (3, 4)\}$ $= \{(1, 2), (1, 3), (2, 3), (3, 4), (1, 1), (2, 2), (3, 3), (4, 4)\}$ $= \{(1, 2), (1, 3), (2, 3), (3, 4), (2, 1), (3, 1), (3, 2), (4, 3)\}$ $= \{(1, 2), (1, 3), (2, 3), (3, 4), (2, 1), (3, 1), (3, 2), (4, 3)\}$

Tutores a

andrion 7

$$W_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $C_2 : 1,3$ $AW: (1,5), (1,4), (3,5), (3,4)$

$$W_2 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_3 & 21, 2, 3 \\ R_3 & 2, 3, 4 \end{bmatrix} (1, 2), (1, 3), (1, 4), (3, 2), (3, 3), (3, 4)$$

.

8. Let $A = \{1, 2, 3, 4\}$ and let R and S be relations on A described by

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \mathbf{M}_{S} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\left(\begin{array}{c} M_{RVS} \end{array} \right)^{C}$$

Use Warshall's algorithm to compute the transitive closure of $R \cup S$.

Continued Q8.

$$W_0 = M_{RVS} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
 $C_1 : I$
 $R_1 : I_1, 2, 4$
 $Add : (I_1, I_2), (I_1, 2), (I_2, 4)$

$$W_{1} = \begin{pmatrix} \sqrt{101} & C_{2} : 1, 2, 3, 4 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} C_{2} : 1, 2, 3, 4 \\ R_{2} : 2 \\ Add : (1, 2), (2, 2), (3, 12), (4, 2) \end{array}$$

$$W_2 = W_1$$
 $C_3 : 3,4$
 $R_3 : 2,3$
Add : $(3,2),(3,3),(4,3),(4,3)$

$$W_3 = W_3$$
 $(4:1.4), R_4:2,3.4$
 $Add:(1.2),(1.3),(1.4),(4.2),(4.3),(4.4)$

$$W4^{-1}\left[\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}\right] = M_{(RVS)} \infty$$