2CPI

Contrôle intermédiaire Analyse mathématique 3 Durée : 2 heures

Les documents, calculatrices et téléphones sont interdits. Veuillez répondre aux exercices sur le cahier.

Exercice 1 (6 points): Les questions sont indépendantes.

- 1. Déterminer la nature de la série numérique $\sum_{n \ge t_0} \left(1 + \frac{1}{(\log n)^2}\right)^{n^2}$.
- **2.** Etudier la nature (convergence absolue et semi-convergence) de la série numérique de terme général $u_n = \sin\left(\frac{(-1)^n}{n+1}\right)$.
 - 3. Calculer $\lim_{n\to+\infty} \frac{n^3}{n!}$.
 - 4. Rappeler la régle d'Abel pour la convergence des séries numériques.

Exercice 2 (3 points):

Montrer que la série de fonctions de terme général

$$f_n(x) = \frac{\sin(nx).x}{n^3}$$

est continue sur \mathbb{R} .

Exercice 3 (5,5 points):

I- Montrer la convergence uniforme sur \mathbb{R}_+^* de la suite de fonctions $(u_n)_{n\geq 1}$ où

$$u_n(x) = \frac{(-1)^n x^2}{x^4 + n}.$$

II- On considère la série de fonctions $\sum_{n=1}^{\infty} u_n$.

- 1) Etudier la convergence simple de la série sur R*.
- 2) On pose $F(x) = \sum_{n \ge 1} u_n(x)$. Montrer que F est continue sur \mathbb{R}_+^* .

Question bonus: (1point):

Soit $(a_n)_n$ une suite numérique bornée telle que la série $\sum_{n\geq 0} a_n$ diverge.

Quel est le rayon de convergence de la série entière $\sum a_n x^n$.