Math Review – Background

- Linear Algebra
- Probabilities
- Information Theory
- Optimization

Linear Algebra

- Let \Re^d be the *d*-dimensional Euclidean space
- Vector: An ordered tuple

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

The transpose of x is a 1×d matrix:

$$\mathbf{x}^t = [x_1 \, x_2 \dots x_d]$$

• Inner (dot) product: Given $x, y \in \Re^d$, $x^t y$ given by resulting in a scalar that $\in \Re$

$$\mathbf{x}^t \ \mathbf{y} = \sum_{i=1}^d x_i y_i$$

Example (Matlab)

```
>> x = [1.2; 3.5; -.8; .3]
y = [.8; 3.6; 2.1; -1.7]
x' * y
X =
   1.2000
  3.5000
  -0.8000
  0.3000
y =
  0.8000
  3.6000
  2.1000
  -1.7000
ans =
  11.3700
```

Outer product

$$\mathbf{x}\mathbf{y}^{t} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{d} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nd} \end{bmatrix}$$

where

$$a_{ij} = x_i y_j$$

```
>> x = [2;1]
y = [4;2;3]'
X =
ans =
   8
```

Euclidean norm

- Also known as L₂-norm obtained as $\|\mathbf{x}\| = \sqrt{\mathbf{x}^t \ \mathbf{x}} = \left(\sum_{i=1}^d x_i^2\right)^{\frac{1}{2}}$
- A vector, x, is normalized if
- The angle θ between **x** and **y** is given by:

$$\cos \theta = \frac{\mathbf{x}^t \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- Then, the inner product measures the co-linearity of x and
 y
- If \mathbf{x} and \mathbf{y} are *orthogonal*, we have $\mathbf{x}^t \mathbf{y} = 0$
- If \mathbf{x} and \mathbf{y} are *co-linear*, we have $|\mathbf{x}^t \mathbf{y}| = ||\mathbf{x}|| ||\mathbf{y}||$

% Orthogonal

```
>> x = [2;1]; y = [4;2]; % Co-linear
X =
y =
abs(x' * y)
ans = 10
norm(x)*norm(y)
ans = 10.0000
```

Basis

- Let the set of vectors $\{x_1, x_2, ..., x_d\}$ be linearly independent
- Informally, a set of d linearly independent vectors "spans" \Re^d , and hence it is a *basis* of \Re^d .
- A basis {x₁,x₂,...,x_d} is orthogonal, if for all i and j, i ≠ j
 x_i and x_j are orthogonal, i.e. x_i^tx_j = 0 if all x_i are normalized, the basis is orthonormal.

```
>> A = [2,-1;1,2] % Orthogonal basis
B = orth(A) % Orthonormal basis
B(1:2) * B(3:4)'
I = [1,0;0,1]
A =
  2 -1
B =
 -0.8944 -0.4472
 -0.4472 0.8944
ans =
-5.5511e-017 \approx 0
```

Matrices

• An $n \times d$ matrix, **A**, has the form:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nd} \end{bmatrix}$$

- The transpose of A is denoted by A^t
- Matrix multiplication: A B = C
- Multiplication of a matrix by a vector: y = A x

 Rank: The rank of A is the number of linearly independent rows (columns = "column rank").

• Inner (dot) product:

$$\mathbf{A} \cdot \mathbf{B} = \operatorname{tr}{\{\mathbf{A}\mathbf{B}^t\}}$$

• Norm of a matrix (Frobenius norm):

$$\|\mathbf{A}\|_F = \mathbf{A} \cdot \mathbf{A} = \operatorname{tr}\{\mathbf{A}\mathbf{A}^t\}$$

Square matrix:

- If d = n, **A** is called a *square* matrix.
- **A** is symmetric iff $a_{ij} = a_{ji}$
- Let **A** be a square matrix. Then,
- **Determinant:** Denoted by $|\mathbf{A}|$, and defined as the product of the eigenvalues λ_i of \mathbf{A}

$$|\mathbf{A}| = \prod_{i=1}^d \lambda_i$$

Trace: Defined as the sum of diagonal elements

$$\operatorname{tr}\{\mathbf{A}\} = \sum_{i=1}^{d} a_{ii}$$

If A is square, rank = # of nonzero eigenvalues of A

```
>> A = [2,1,0;1,5,3;0,3,4] % Determinant, trace
det(A)
trace(A)
A =
   1 5 3
       3
ans =
  18
ans =
```

Properties

- Let a A be square. A is not singular iff |A| ≠ 0.
- If A is not singular, then it has an inverse
- Inverse of A, denoted by A⁻¹ satisfies:
 - It is unique
 - $A A^{-1} = A^{-1}A = I$
- If **A** is not square (or if **A**⁻¹ does not exist), then...
- Pseudoinverse: Denoted by A[†] is defined as:

and satisfies:

• $A^{\dagger} A = I$

```
>> B = [1,2;4,5;7,8] % Pseudoinverse
Bpseudo = inv(B' * B) * B'
Bpseudo * B
B =
       8
Bpseudo =
 -1.1667 -0.3333 0.5000
  1.0000 0.3333 -0.3333
ans =
  1.0000
          -0.0000
  0.0000
           1.0000
```

- Eigenvectors and eigenvalues:
- Given a square matrix A, a special class of linear equations:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

• for scalar λ , or:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

- where **0** is the zero vector.
- The solution vector $\mathbf{x} = \mathbf{e}_i$ and the corresponding scalar λ_i
- are the ith eigenvector and the associated eigenvalue of A

```
Eigenvectors and Eigenvalues
>A := Matrix([[a,b],[c,d]]);
                                                 A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}
> Lambda := DiagonalMatrix([lambda,lambda]);
                                                  \Lambda := \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}
> eqn := Determinant(A-Lambda);;
                                  eqn := a d - a \lambda - \lambda d + \lambda^2 - b c
> solve(eqn,lambda);
\frac{1}{2}a + \frac{1}{2}d + \frac{1}{2}\sqrt{a^2 - 2ad + d^2 + 4bc}, \frac{1}{2}a + \frac{1}{2}d - \frac{1}{2}\sqrt{a^2 - 2ad + d^2 + 4bc}
```

Positive Definite Matrices

- A is positive definite iff for all \mathbf{x} , $\mathbf{x}^t \mathbf{A} \mathbf{x} > 0$
- If **A** is positive definite, then all $\lambda_i > 0$, and real.
- If A is also symmetric, all e_i are orthogonal (orthonormal)
- How to find the eigenvalues and eigenvectors?
- One method: Solve the *characteristic equation*:

$$|\mathbf{A} - \lambda \mathbf{I}| = \lambda^d + a_{d-1}\lambda^{d-1} + \dots + a_1\lambda^1 + a_0 = 0$$

- If **A** is diagonal, the eigenvectors compose the *canonical* basis in \Re^d , i.e. the *identity matrix*
- Other much more efficient methods exist!

Functions of Matrices

Function of a matrix:

```
f(\mathbf{A}) = \Phi f(\Lambda) \Phi^{-1}, where \Phi: eigenvectors of \mathbf{A} \Lambda: eigenvalues of \mathbf{A}
```

- $f(\Lambda) = \text{diag}(f(\lambda_{11}), f(\lambda_{22}), ..., f(\lambda_{dd}))$ $f \text{ can be any function on } \Re$
- Example: logarithm of A, or log(A)

$$\begin{split} \log{(\mathbf{A})} &= \Phi \log{(\Lambda)} \; \Phi^{\text{-1}} \; , \; \text{where} \\ \log(\Lambda) &= \text{diag}(\log(\lambda_{11}), \; \log(\lambda_{22}), \; \dots, \; \log(\lambda_{dd})) \end{split}$$

Identity function:

$$\mathbf{A} = \mathbf{\Phi} \Lambda \mathbf{\Phi}^{-1}$$

Derivatives of Matrices

- Derivatives of matrices (special cases):
- Let **A** be a matrix, and **x**, **y** be vectors, then:

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{A} \mathbf{x} = \mathbf{A} \qquad \frac{\partial}{\partial \mathbf{x}} \mathbf{y}^t \mathbf{x} = \mathbf{y} \qquad \frac{\partial}{\partial \mathbf{x}} \mathbf{x}^t \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^t) \mathbf{x}$$

• if A is symmetric, then

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^t \mathbf{A} \mathbf{x} = 2\mathbf{A} \mathbf{x}$$

Derivatives of Matrices

```
>x := Vector([x1,x2]);
                                            x := \begin{bmatrix} x1 \\ x2 \end{bmatrix}
>A . x;
                                         \begin{bmatrix} a x1 + b x2 \\ c x1 + d x2 \end{bmatrix}
>y := Vector([y1,y2]);
                                           y := \begin{bmatrix} yI \\ y2 \end{bmatrix}
> Transpose (y) . x;
                                        x1 y1 + x2 y2
A quadratic equation
> eqn2 := expand(Transpose(x) . A . x);
                      eqn2 := a x1^2 + x1 x2 c + x2 x1 b + d x2^2
>diff(eqn2,x1); diff(eqn2,x2);
                                     2 a x1 + x2 c + b x2
c x1 + x1 b + 2 d x2
```

```
> (A + Transpose(A)) . x;
                                          \begin{bmatrix} 2 a x l + (b+c) x 2 \\ (b+c) x l + 2 d x 2 \end{bmatrix}
If A is symmetric, then the derivative is 2 A x
>A := Matrix([[a,b],[b,c]]);
                                               A := \begin{bmatrix} a & b \\ b & c \end{bmatrix}
> eqn2 := expand(Transpose(x) . A . x);
                                eqn2 := a x1^2 + 2 x2 x1 b + x2^2 c
> diff(eqn2,x1); diff(eqn2,x2);
                                             2 a x1 + 2 b x2
                                             2 x1 b + 2 x2 c
>2 . A . x;
                                           \begin{bmatrix} 2 a x1 + 2 b x2 \\ 2 x1 b + 2 x2 c \end{bmatrix}
```

Level sets

The level set of a function
 f: R^d → R at level c
 is the set of points

$$S = \{\mathbf{x} : f(\mathbf{x}) = c\}$$

where c is a constant

- If d = 2, the level set is a level curve
- Example: Rosenbrock's function (aka "banana" function)

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Gradient

- Given a continuously differentiable function $f: \mathbb{R}^d \to \mathbb{R}$
- the gradient ∇ of f is defined as:

$$\nabla f(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}$$
• TI

- Suppose a level curve g of level set S at a particular point t_0 , and $g(t_0) = \mathbf{x}_0$, where $\mathbf{x}_0 \in S$,
- Then, there is a vector v that is tangent to g at \mathbf{x}_0
- That is, v = ∂g(t₀)
 ∇f(x₀) is orthogonal to v

Level sets

Gradient to a level set

Steepest ascent

- \(\nabla f(\mathbf{x}_0)\) is the maximum rate of increase of \(f(\mathbf{x}_0)\)
- Different level sets will give different directions:
 - of maximum rate of increase
 - called path of steepest ascent

•
$$f(\mathbf{x}) = -x_1^2 - x_2^2$$

 In this example, path of steepest ascent always leads to maximum of f in one step

Hessian matrix

• If $\nabla f(\mathbf{x})$ is continuously differentiable, then

$$\mathbf{H} = \frac{\partial}{\partial \mathbf{x}} \nabla f(\mathbf{x}) = \frac{\partial^{2} f}{\partial \mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{d} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{d} \partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{d}} & \cdots & \frac{\partial^{2} f}{\partial x_{d}^{2}} \end{bmatrix},$$

where H is called the Hessian matrix

Probability

- If x is a discrete random variable, then
- it assumes values from a discrete set $\Omega = \{v_1, v_2, ..., v_m\}$, and
- for all i, p_i , which is $Pr[x = v_i]$, satisfies:

$$p_i \ge 0$$
 and $\sum_{i=1}^m p_i = 1$

• The set of probabilities, $\{p_1, p_2, ..., p_m\}$, can be expressed as a probability mass function, P(x), that satisfies:

$$P(x) \ge 0$$
 and $\sum_{i=1}^{m} P(x) = 1$

Example (discrete r.v.)

$$\Omega = \{a, b, c, d\}$$
 $Pr[x = a] = p_1 = 0.4$

$$p_{1} = 0.4$$

$$p_{2} = 0.3$$

$$p_{3} = 0.2$$

$$p_{4} = 0.1$$

$$\sum_{i=1}^{4} p_{i} = 1.0$$

Expected value

Also, mean or average of a r.v. x:

$$E[x] = \mu = \sum_{i=1}^{m} xP(x) = \sum_{i=1}^{m} v_i p_i$$

- Example:
- Use integers or numeric values:

$$\Omega = \{a, b, c, d\} \rightarrow \{1, 2, 3, 4\}$$

 $E[x] = 1(0.4) + 2(0.3) + 3(0.2) + 4(0.1)$
 $= 0.4 + 0.6 + 0.6 + 0.4 = 2$

Not necessarily integer, for example if

$$p_1 = 0.5$$
 $p_2 = 0.25$ $p_3 = 0.2$ $p_4 = 0.05$
 $E[x] = 1(0.5) + 2(0.25) + 3(0.2) + 4(0.05) =$
 $= 0.5 + 0.5 + 0.6 + 0.2 = 1.8$

• Ideally, x should be on a measurable field (e.g., Borel)

Variance

Also, second moment around the mean of x

$$Var[x] = \sigma^2 = E[(x - \mu)^2] = \sum_{i=1}^{m} (x_i - \mu)^2 P(x_i)$$

Expanding the quadratic term:

$$Var[x] = E[x^2] - (E[x])^2$$

Example:

$$Var[x] = \sigma^2 =$$

$$= (1-1.8)^2(0.5) + (2-1.8)^2(0.25) + (3-1.8)^2(0.2) + (4-1.8)^2(0.05)$$

$$= (0.64)^2(0.5) + (0.04)^2(0.25) + (1.44)^2(0.2) + (4.84)^2(0.05)$$

$$= 0.5720$$

Joint Probabilities

- Let x and y be two r.v. taking values from $\{v_1, v_2, ..., v_n\}$ and $\{w_1, w_2, ..., w_m\}$,
- defined as $p_{ij} = Pr[x = v_i, y = w_j]$
- The prob. mass function, P(x, y), also satisfies:

$$P(x,y) \ge 0$$
 and $\sum_{x} \sum_{y} P(x,y) = 1$

Marginal distribution:

• Like a "separate" distribution for each variable:

$$P_x(x) = \sum_y P(x, y)$$
 and $P_y(y) = \sum_x P(x, y)$

- Notation: P_x is used to denote a function (different from P_y)
- When using only one r.v., we will use P instead

Let x be a r.v. in $\{a,b,c,d\}$

y be a r.v. in {1,2}

$$P_{r}[x = a] = \sum_{y} p(x, y) = 0.4$$

$$P_{r}[x = b] = \sum_{y} p(x, y) = 0.3$$

$$P_{r}[x = c] = \sum_{y} p(x, y) = 0.2$$

$$P_{r}[x = d] = \sum_{y} p(x, y) = 0.1$$

$$P_{r}[y=1] = \sum_{x} p(x, y) = 0.6$$

$$P_{r}[y=2] = \sum_{x} p(x, y) = 0.4$$

© Luis Rueda, 2019

COMP-8740 -- Suppl. 1 - Math

• **Independence:** *x* and *y* are statistically independent iff:

$$P(x, y) = P_{x}(x)P_{y}(y)$$

But, for the example:

$$P_r[x=a, y=1] = 0.3$$

 \neq

$$P_r[x=a]P_r[y=1] = (0.4)(0.6) = 0.24$$

x and y are not independent

- Mutually exclusive events:
 - We now talk about "events". E_i and E_j are mutually exclusive if

$$\Pr[x = E_i \cap E_j] = 0$$

Conditional Probabilities

Denoted by P(x|y), and defined as:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

- Knowing y gives us "some information" about x.
- Then, if x and y are independent, P(x|y) = P(x).
- Example:

$$P_{r}[x=a \mid y=1] = \frac{P_{r}[x=a, y=1]}{P_{r}[y=1]} = \frac{0.3}{0.6} = 0.5$$

$$P_{r}[x=a \mid y=2] = \frac{P_{r}[x=a, y=2]}{P_{r}[y=2]} = \frac{0.1}{0.4} = 0.25$$

We can also write (Bayes Theorem):

$$P(x, y) = P(x | y)P(y) = P(y, x) = P(y | x)P(x)$$

or

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

by the law of total probabilities

$$P(y) = \sum_{x} P(x, y) = \sum_{x} P(y | x) P(x)$$

then, we write:

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{\sum_{x} P(y \mid x)P(x)}$$

Example (law of total probabilities):

$$P(y) = \sum_{x} P(x, y) = \sum_{x} P(y \mid x) P(x)$$

$$P_{r}[y = 1 \mid x = a] P_{r}[x = a] = 0.75 \cdot 0.4 = 0.3$$

$$P_{r}[y = 1 \mid x = b] P_{r}[x = b] = 0.67 \cdot 0.3 = 0.2$$

$$P_{r}[y = 1 \mid x = c] P_{r}[x = c] = 0.25 \cdot 0.2 = 0.05$$

$$P_{r}[y = 1 \mid x = d] P_{r}[x = d] = 0.5 \cdot 0.1 = 0.05$$

$$P_{r}[y = 1] = \sum_{x} P(y \mid x) P(x) = 0.6$$

Example (Bayes Theorem):

$$P_{r}[x=a \mid y=1] = \frac{P_{r}[y=1 \mid x=a]P_{r}[x=a]}{P_{r}[y]} = \frac{0.75 \cdot 0.4}{0.6} = 0.5$$

Chain Rule of Conditional Probabilities

Given a collection of d random variables:

$$x_1, x_2, \dots, x_d$$

The joint probability distribution can be computed as:

$$P(x_1, x_2, ..., x_d) = P(x_d) \prod_{i=1}^{d-1} P(x_i | x_1, x_2, ..., x_{i-1})$$

- known as the chain rule
- Example:

$$P(x,y,z) = P(x|y,z)P(y,z)$$

= $P(x|y,z)P(y|z)P(z)$

Random vectors

A pair of values of two r.v., v_x and v_y , can be considered as a vector \mathbf{x} in the 2D space, whose prob. is $P(v_x, v_y)$

- Similarly, $\mathbf{x} = [x_1 \ x_2 \ ... \ x_d]^t$ is a random vector
- The joint probability mass function is now $P(\mathbf{x}) \ge 0$, and
- if $x_1 x_2 \dots x_d$ are independent, we have

$$P(\mathbf{x}) = \prod_{i=1}^{d} P_{x_i}(x_i)$$

Example

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \begin{array}{l} x_1 \text{ is in } \{1, 2, 3, 4\} \\ x_2 \text{ is in } \{1, 2\} \end{array}$$

P[x] for
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 its $P_r[x_1 = 1, x_2 = 1] = 0.3$

Mean vector: A *d*-dimensional vector, μ, given by

$$\mu = E[\mathbf{x}] = \sum_{\mathbf{x}} \mathbf{x} P(\mathbf{x})$$

also known as the center of the prob. mass

Covariance matrix:

• A $d \times d$ matrix, Σ , defined using the *outer* product:

$$\Sigma = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{\mu}) (\mathbf{x} - \mathbf{\mu})^t P(\mathbf{x}) = \mathbf{E}[(\mathbf{x} - \mathbf{\mu}) (\mathbf{x} - \mathbf{\mu})^t]$$

• Σ is positive semidefinite and symmetric

Example

$$\mu = \begin{bmatrix} 1 \\ 1 \end{bmatrix} 0.3 + \begin{bmatrix} 1 \\ 2 \end{bmatrix} 0.1 + \begin{bmatrix} 2 \\ 1 \end{bmatrix} 0.2 + \begin{bmatrix} 2 \\ 2 \end{bmatrix} 0.1 + \begin{bmatrix} 3 \\ 1 \end{bmatrix} 0.05 + \begin{bmatrix} 3 \\ 2 \end{bmatrix} 0.15 + \begin{bmatrix} 4 \\ 1 \end{bmatrix} 0.05 + \begin{bmatrix} 4 \\ 2 \end{bmatrix} 0.05$$

$$= \begin{bmatrix} 2 \\ 1.55 \end{bmatrix}$$

$$\Sigma = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.3) + \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.1) +$$

$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.2) + \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.1) +$$

$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.05) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.15) +$$

$$= \begin{pmatrix} 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.05) + \begin{pmatrix} 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix}) \begin{pmatrix} 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1.55 \end{pmatrix})^{t} (0.05) +$$

$$= \begin{pmatrix} 1.0 & 0.15 \\ 0.15 & 0.2625 \end{pmatrix} \quad \text{(covariance matrix)}$$

Continuous random variables:

- Represented by a probability density function (pdf): p(x)
- But p(x) is 0 for any value x
- Now, if x falls in an interval [a,b]
- P(x) is the probability **mass** function, and

$$\Pr[x \in [a,b]] = \int_a^b p(x) \, dx$$

- where $p(x) \ge 0$ and $\int_{-\infty}^{\infty} p(x) dx = 1$
- Expected values and variances are defined in terms of integrals

The normal distribution

- Fully defined by its two parameters, μ and σ^2 .
- Probability density function:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Notation: A normally distributed r.v. with mean μ and variance σ^2 is denoted by $x \sim N(\mu, \sigma^2)$

Normal distibution (univariate) > mu := 0;sigma := 1; p2 := evalf(1/sqrt(2*Pi)) * 1/sqrt(sigma) * exp(-1/2 * (xmu)^2/sigma); $\mu := 0$ $\sigma := 1$ $p2 := 0.3989422802 \mathbf{e}^{(-1/2 x^2)}$ > plot (p2, x=-4..4); 0.3 0.2 0.1

© Luis Rueda, 2019

COMP-8740 -- Suppl. 1 - Math

Properties of normal distribution:

- Joint distribution of normal distns is normal
- Generalization: Multivariate of normal distns is normal, i.e., normal random vector
- Linear transformation of normal is normal
- Characterized by just two moments: mean and variance
- Central limit theorem

Central limit theorem:

- If $x_1, x_2, ..., x_n$ are n independent r.v. with a common pdf,
- and for all i, $E[x_i] = 0$ and $Var[x_i] = 1$, then, as $n \to \infty$ is a N(0,1) r.v.

$$\bar{x} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i$$

Multivariate normal density

- Similarly, a normally distributed random vector, x, of dimension d is fully defined by
 - a mean vector: μ
 - a covariance matrix: Σ
- The probability density function is given by:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{d}{2}}/\Sigma^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{t} \Sigma^{-1}(\mathbf{x}-\mu)}$$

• The central limit theorem is also valid in d > 1 dimensions

Recall, normal r.v. pdf:
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

```
Normal distribution (multivariate)
>X := Vector([x,y]);
Mu := Vector([0,0]);
Sigma := Matrix([[1,0.35],[0.35,0.2625]]);
p3 := evalf(1/(2*Pi) * 1/sqrt(Determinant(Sigma)) * exp(-1/2 *
Transpose(X-Mu) . MatrixInverse(Sigma). (X-Mu)));
                                            X := \begin{bmatrix} x \\ y \end{bmatrix}
                                           M := \begin{bmatrix} 0 \\ 0 \end{bmatrix}
                                        \Sigma := \begin{bmatrix} 1 & 0.35 \\ 0.35 & 0.2625 \end{bmatrix}
p3 := 0.4253594775 \mathbf{e}^{(-1. \ x (0.9375000000 \ x - 1.250000000 \ y) - 1. \ y (-1.250000000 \ x + 3.571428572 \ y)}
> with (plots):plot3d(p3, x=-2..2, y=-2..2);
```

Graphical Example

 Points with the same probability belong to the same level set

Mahalanobis distance

- From a vector x to the mean μ
- Defined by a positive semidefinite matrix, like Σ

$$r^2 = (\mathbf{x} - \mathbf{\mu})^t \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})$$

- In the normal distribution, all points with the *same* Mahalanobis distance from μ have the *same* probability
- These points are in the same ellipsoid, whose
 - "radii" are the eigenvalues of Σ: Λ
 - "axes" are in the direction of the *eigenvectors* of Σ : Φ
- Thus:

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix} \qquad \mathbf{\Phi} = \begin{bmatrix} \varphi_1 | \varphi_2 | \cdots | \varphi_d \end{bmatrix}$$

Pictorially

Example

Mahalanobis Distance

```
>X := Vector([x,y]);
Mu := Vector([2,1]);
Sigma := Matrix([[1,0.35],[0.35,0.2625]]);
r := expand(Transpose(X-Mu) . MatrixInverse(Sigma) . (X-Mu));
implicitplot(r=0.3, x=0..3,
y=0..10,color=blue,numpoints=20000);
                                     X := \begin{bmatrix} x \\ y \end{bmatrix}
                                     M := \begin{bmatrix} 2 \\ 1 \end{bmatrix}
                                \Sigma := \begin{bmatrix} 1 & 0.35 \\ 0.35 & 0.2625 \end{bmatrix}
r := 1.87499999999999998x^2 - 2.500000000x - 5.000000000x y + 4.6428571
      -4.285714286y + 7.14285714285714235y^2
```

$$r^2 = (\mathbf{x} - \mathbf{\mu})^t \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})$$

Correlation coefficient

- Defined as follows: $\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
- where σ_{xy} is the covariance of x and y, and
- measures the statistical dependence of x and y
- If x and y are statistically independent, then they are *uncorrelated*, i.e., $\sigma_{xy} = 0$ and $\rho = 0$
- The converse is not always true, but...
- If x and y are normally dist. r.v.:
- x and y are independent if and only if they are uncorrelated.
- Note: $\sigma_{xy} = E[(x \mu_x)(x \mu_y)]$ -- or "cross-moment"

Then, if

- $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^t$ is a normal r.v., and
- $x_1 x_2 \dots x_d$ are independent,

we have:

- $\Sigma = \Lambda$ is a diagonal matrix with the *eigenvalues*.
- The eigenvectors compose the identity matrix, i.e. $\Phi = \mathbf{I}$
- The ellipsoids containing points with the same Mahalanobis distance have their axes parallel to the system coordinates

```
> Eigenvectors (Sigma);
  1.13965590328988142+ 0. I
 0.122844096710118866+ 0. I
     \lceil 0.928791228100000032 + 0.I - 0.370603365500000004 + 0.I \rceil
     0.370603365500000004+ 0. I 0.928791228100000032+ 0. I
>Mu := Vector([2,1]);
Sigma := Matrix([[1,0],[0,3]]);
r := Transpose(X-Mu) . MatrixInverse(Sigma) . (X-Mu);
implicitplot(r=0.2, x=0..3,
y=0..10, color=blue, numpoints=40000, scaling=constrained);
                                     M := \begin{bmatrix} 2 \\ 1 \end{bmatrix}
                                   \Sigma := \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix}
                     r := (x-2)^2 + (y-1)\left(\frac{1}{3}y - \frac{1}{3}\right)
```

$$r^2 = (\mathbf{x} - \mathbf{\mu})^t \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})$$

Identity function:

$$\Sigma = \Phi \Lambda \Phi^{-1}$$

Distance Between Distributions

Chernoff distance

■ Between two *normal* random vectors, x_i and x_i :

$$k_{ij}(\beta) = \frac{\beta(1-\beta)}{2} (\boldsymbol{\mu}_j - \boldsymbol{\mu}_i)^t [\beta \boldsymbol{\Sigma}_i + (1-\beta)\boldsymbol{\Sigma}_j]^{-1} (\boldsymbol{\mu}_j - \boldsymbol{\mu}_i)$$
$$+ \frac{1}{2} \ln \frac{|\beta \boldsymbol{\Sigma}_i + (1-\beta)\boldsymbol{\Sigma}_j|}{|\boldsymbol{\Sigma}_i|^{\beta} |\boldsymbol{\Sigma}_i|^{1-\beta}}$$

- Among **many** random vectors, $x_1, x_2, ..., x_c$:
 - > Many ways to compute it; one way is to weight pairwise distances:

$$k(\beta) = \sum_{i=1}^{c-1} \sum_{j=i+1}^{c} p_{i} p_{j} k_{ij}(\beta)$$

- Setting $\beta = \frac{1}{2}$ leads to **Battacharyya distance**
- Chernoff distance can be used even if dist are not normal

Distance Between Distributions

• Kullback-Leibler (two *normal* r. v., x_i and x_i):

$$d_{ij} = \frac{1}{2} tr \left\{ \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Sigma}_{j} + \boldsymbol{\Sigma}_{j}^{-1} \boldsymbol{\Sigma}_{i} - 2\mathbf{I} \right\} + \frac{1}{2} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})^{t} \left(\boldsymbol{\Sigma}_{i}^{-1} + \boldsymbol{\Sigma}_{j}^{-1} \right) (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})$$

- Multivariate (normal r.v.):
 - Many ways... one way is to weight distances for pairs of classes:

$$d = \sum_{i=1}^{c-1} \sum_{j=i+1}^{c} p_i p_j d_{ij}$$

Information and Entropy

Information amount:

 Measures how surprised we are when we observe an event based on how likely is to occur

Example:

- We would not be surprised if we see an "e" in English text (low information amount)
- But we would be very surprised if we see a "q" (high info amount) Given a discrete r.v. x that takes values $\Omega = \{v_1, v_2, ..., v_m\}$ whose probs are $\{p_1, p_2, ..., p_m\}$

Definition (information amount):

$$I_i = -p_i \log p_i$$

log base 2 is commonly used related to number of bits that could be used to represent that value

Example: Information amount

Example:

x is a symbol from the alphabet $\Omega = \{a, b, c, d\}$ Probabilities: $\{0.4, 0.3, 0.2, 0.1\}$

$$I_1 = -\log_2 0.4 \approx 1.32$$

 $I_2 = -\log_2 0.3 \approx 1.74$
 $I_3 = -\log_2 0.2 \approx 2.32$
 $I_4 = -\log_2 0.1 \approx 3.32$

 I_i is the minimum number of bits we could use to encode the symbol

Entropy

- Entropy:
 - Measures the average information amount of a r.v.
 - Summation on discrete r.v.; Integral on continuous r.v.

Definition (Entropy):

$$H(x) = -\sum_{1}^{m} p_i \log p_i$$

Continuous r.v.:

$$H(x) = -\int_{-\infty}^{\infty} p(x) \log p(x)$$

- Natural logarithm is common in continuous r.v.
- Normal distribution has maximum entropy

Relative Entropy

- Aka Kullback-Leibler distance or cross entropy
 - Measures the "distance" between two distributions
 - Two distributions over x that takes values $\Omega = \{v_1, v_2, ..., v_m\}$:

$$p(x) = \{p_1, p_2, ..., p_m\} \text{ and } q(x) = \{q_1, q_2, ..., q_m\}$$

Definition (Relative Entropy):

$$D_{KL}(p(x), q(x)) = \sum_{1}^{m} q_i \ln \frac{q_i}{p_i}$$

Continuous r.v.:

$$D_{KL}(p(x), q(x)) = \int_{-\infty}^{\infty} q(x) \ln \frac{q(x)}{p(x)} dx$$

•
$$D_{KL}(p(x), q(x)) = 0$$
 iff $p(x) = q(x)$

Mutual Information

Given two discrete r.v., x and y, w.p.:

$$p(x) = \{p_1, p_2, ..., p_n\}$$
 and $q(y) = \{q_1, q_2, ..., q_m\}$, and $r(x, y)$ is the joint prob of x and y

Definition (Mutual Information):

$$I(p;q) = H(p) - H(p|q)$$

$$= \sum_{x,y} r(x,y) \log_2 \frac{r(x,y)}{p(x)q(x)}$$

 Mutual information measures how much the distributions of the variables differ from statistical independence. Relationships among entropy, mutual information and conditional entropies

Figure from Duda et al.

Example: Data Encoding

Entropy:

$$\mathcal{H}(\mathcal{S}) = \mathcal{H} = -\sum_{i=1}^{m} p_i \log_r p_i = \sum_{i=1}^{m} p_i \mathcal{I}_i$$

Average code word length of encoding:

$$\bar{\ell} = \sum_{i=1}^{m} \ell_i p_i$$

where ℓ_i is the length of encoding symbol s_i

Example:

$$S = \{a,b,c,d\}, \ \mathcal{A} = \{0,1\}, \ \mathcal{P} = [0.4,0.3,0.2,0.1]$$

 $C \to S: \ a \to 0, \ b \to 10, \ c \to 110, \ d \to 111$
 $\mathcal{H}(S) = (0.4)(1.32) + (0.3)(1.74) + (0.2)(2.32) + (0.1)(3.32) \approx 1.846$

$$\bar{\ell} = 1(0.4) + 2(0.3) + 3(0.2) + 3(0.1) = 1.9$$

Shannon's First Theorem

Shannon's First Theorem:

For any source, there exists at least one encoding scheme (need not be the optimal) such that:

$$\mathcal{H} \leq \overline{\ell} < \mathcal{H} + 1$$

In the previous example:

$$1.846 \le 1.9 < 2.846$$

Optimization

- Given a function $f: \mathbb{R}^d \to \mathbb{R}$
- Optimization problem $f(\mathbf{x})$ minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$
- Called constrained optimization problem,
 where Ω is the constraint set
- Unconstrained optimization problem:

$$\Omega = \Re^d$$

- Here, we want to *minimize f*
- If we want to maximize f, reformulate the problem:

minimize $-f(\mathbf{x})$

subject to $x \in \Omega$

Minimizers

 x_1 : strict global minimizer

 x_2 : inflection (saddle) point

 x_3 : strict local minimizer

 x_4 : local (not strict) minimizer

The same principles apply to maximizers, i.e., -f(x)

Conditions for minimizers

First order necessary condition (FONC):

$$\nabla f(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}) = \mathbf{0}$$

- A vector x* that satisfies the FONC can be
 - A local minimizer
 - A global minimizer
 - A saddle point

Conditions for minimizers (maximizers)

- Given \mathbf{x}^* , such that $\nabla f(\mathbf{x}^*) = \mathbf{0}$
- Second order sufficient condition (SOSC):

$$\mathbf{H} = \frac{\partial}{\partial \mathbf{x}} \nabla f(\mathbf{x}) = \frac{\partial^2}{\partial \mathbf{x}} f(\mathbf{x})$$

- One-dimensional optimization:
 - $H(x^*) > 0$ yields a minimum
 - H(x*) < 0 yields a maximum</p>
 - $\mathbf{H}(\mathbf{x}^*) = 0$ yields a saddle point

Examples

$$(x-2)^2+1$$

$$-(x-2)^2+6$$

$$0.5 * (x - 2)^3 + 4$$

 $x^* = 2$ is a maximizer

 $x^* = 2$ yields a saddle point

SOSC - Multivariate optimization

- Given \mathbf{x}^* , such that $\nabla f(\mathbf{x}^*) = \mathbf{0}$
- Second order sufficient condition (SOSC):

$$\mathbf{H} = \frac{\partial}{\partial \mathbf{x}} \nabla f(\mathbf{x}) = \frac{\partial^2}{\partial \mathbf{x}} f(\mathbf{x})$$

- Then
 - $H(x^*) > 0$, i.e., H is positive definite yields a minimum
 - $H(x^*) < 0$, i.e., H is negative definite yields a maximum
 - H(x*) is indefinite yields a saddle point
 - ➤ indefinite means some eigenvalues > 0, some < 0 and/or some = 0
 </p>

Examples

$$f(\mathbf{x}) = x_1^2 + x_2^2$$

$$\nabla f(\mathbf{x}) = [2x_1, 2x_2]^t$$

$$\mathbf{H}([0,0]^t) = \begin{bmatrix} 2 & 0\\ 0 & 2 \end{bmatrix} > 0$$

$$f(\mathbf{x}) = -x_1^2 - x_2^2$$

$$\nabla f(\mathbf{x}) = [-2x_1, -2x_2]^t$$

$$\mathbf{H}([0,0]^t) = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} < 0$$

Example

$$f(\mathbf{x}) = -x_1^2 + x_2^2$$

$$\nabla f(\mathbf{x}) = [-2x_1, 2x_2]^t$$

$$\mathbf{H}([0,0]^t) = \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$$
 is indefinite

- yields a maximum in direction of eigenvector 1
- yields a minimum in direction of eigenvector 2

 $\mathbf{x}^* = [0,0]^t$ is a saddle point

Iterative Methods for Optimization

- Golden search
- Fibonacci search
- Gradient methods
 - Uses first order derivative
- Newton's method
 - Uses second order derivatives
- Secant method
 - When second order derivative
 - Uses approximation
- Stochastic methods

Gradient Method

- Uses the gradient operator ∇
- Given a differentiable function

$$f: \mathbb{R}^d \to \mathbb{R}$$

• the gradient ∇ of f:

$$\nabla f(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x})$$

- On a particular point x_0
- $-\nabla f(\mathbf{x}_0)$ gives the steepest direction of descent

Gradient Descent

- Iterative optimization
- Start with $\mathbf{x}^{(0)}$
- Repeat

$$\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} - \eta_k \nabla f(\mathbf{x}^{(k)})$$

- Until small change
 - $|f(\mathbf{x}^{(k+1)}) f(\mathbf{x}^{(k)})| < \theta$
- η_k is called learning rate
- Can be optimized as:

Steepest Ascent

- $\nabla f(\mathbf{x}_0)$ is the maximum rate of increase of f at x_0
- Different level sets will give different directions:
 - of maximum rate of increase
 - called path of steepest ascent

Example 2

•
$$f(\mathbf{x}) = -x_1^2 - x_2^2$$

 In this example, path of steepest ascent always leads to maximum of f in one step

Constrained Optimization

Formulated as follows

```
minimize f(\mathbf{x})

subject to h_i(\mathbf{x}) = 0, \ i = 1, ..., m

g_j(\mathbf{x}) \leq 0, \ j = 1, ..., p
```

- $h_i(\mathbf{x}) = 0$ are equality constraints
- $g_i(\mathbf{x}) \leq 0$ are inequality constraints

Equality constraints

Lagrange multipliers

minimize
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0, i = 1, ..., m$

Transform it into:

minimize
$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i} \lambda_{i} h_{i}(\mathbf{x})$$

• λ_i are called Lagrange multipliers

Inequality constraints

Karush-Kuhn-Tucker (KKT) condition (approach)

minimize
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0, i = 1, ..., m$
 $g_i(\mathbf{x}) \leq 0, j = 1, ..., p$

Transform it into:

minimize
$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i} \lambda_{i} h_{i}(\mathbf{x}) - \sum_{j} \alpha_{j} g_{j}(\mathbf{x})$$
 subject to
$$\alpha_{i} \geq 0$$

Convex Optimization

Optimization problem:

minimize

 $f(\mathbf{x})$

subject to

 $\mathbf{x} \in \Omega$

• where $\Omega \in \mathcal{R}$ is a convex region

Example:

minimize

$$f(\mathbf{x}) = x_1^2 + x_2^2$$

subject to

$$x_2 - x_1 - 2 \le 0$$

$$x_1^2 - x_2 - 4 \le 0$$

A function $f: \Omega \to \mathcal{R}$ defined on a convex set $\Omega \in \mathcal{R}^d$ has a global minimizer x^* over Ω if f is convex on Ω . That is, Ω and f are both convex. The KKT are satisfied for x^*

References

- 1. D. Harville, Matrix Algebra from a Statistician's Perspective, Springer, 1997
- 2. D. Hankerson et al., Introduction to Information Theory and Data Compression, CRC Press, 1997
- 3. E. Chong et al., An Introduction to Optimization. 2nd Edition, Wiley, 2001
- 4. R. Duda et al., Pattern Classification. 2nd Edition, Wiley, 2001