CLASSIFICAÇÃO BAYESIANA PARA PREDIÇÃO DE CÂNCER DE FÍGADO

Anderson Luis Marchi

Instituto Federal Catarinense

andersonlmarchi@gmail.com

1. Introdução

O presente estudo utiliza o dataset *Predict Liver Cancer from & Clinical Features*, disponibilizado originalmente no Kaggle (2025). Este é um conjunto de dados de classificação de câncer de figado sintético, porém clinicamente realista, contendo 5.000 registros de pacientes e 14 colunas. Os dados simulam atributos reais de pacientes que influenciam o risco de câncer de figado, combinando características demográficas, de estilo de vida, clínicas e baseadas em biomarcadores.

Esse dataset pode ser utilizado em pesquisas de aprendizado de máquina, pois combina variáveis demográficas, comportamentais e de percepção subjetiva, o que permite a construção de modelos preditivos voltados à análise do risco de câncer no figado em contextos clínicos.

2. Desenvolvimento da solução

O dataset contém 5000 registros de indivíduos e um conjunto de variáveis categóricas e numéricas. Entre os principais grupos de atributos, destacam-se:

- Variáveis demográficas: idade, gênero.
- Variáveis de estilo de vida: índice de massa corporal (BMI), consumo de álcool (nunca, ocasional, regular), status de tabagismo (nunca, ex-fumante, atual) e nível de atividade física (baixo, moderado, alto).
- Variáveis clínicas: presença de hepatite B, presença de hepatite C, histórico de cirrose hepática, presença de diabetes e histórico familiar de câncer.
- Variáveis laboratoriais: escore de função hepática (0–100) e nível de alfa-fetoproteína (AFP) em ng/mL.
- **Variável alvo:** diagnóstico final de câncer de figado (0 = não possui câncer, 1 = possui câncer).

De modo geral, o dataset possui um caráter misto, conforme visualizado na Figura 1 a seguir, com dados qualitativos (nominais e ordinais) e quantitativos sendo um modelo perfeito para ser usado em MLP.

А В	c	D	E	F	G	Н	1	J	К	L	M	N
							re alpha fetoprotein level					
68 Femal			Former	0		51.9	16.44	(0 Low	0	
		Occasional	Never	0		41.6	8.09	()	0 Moderate	1	
58 Female	25.5	Never	Never	0)	76 0.64	()	0 Moderate	0	
44 Male	10	6 Never	Former	0	(50.3	19.09	()	0 Low	1	
72 Male	2	1 Occasional	Former	0	(39.5	4.95	1	1	0 Low	1	
37 Female	23.1	Regular	Never	0	(50.8	0.75	()	0 Moderate	0	
50 Male	19.4	Regular	Current	0	(0 68.3	0.31	1	1	0 Moderate	0	
68 Male	15.4	Regular	Former	0	(70.8	40.18	()	0 High	0	
48 Male	27.4	Occasional	Former	0	(70.2	4.36	()	0 Low	0	
52 Male		Occasional	Never	1	(48.8	8.91	(1 High	0	
40 Male		Never	Current	0	(77.7	45.11	(0 High	0	
40 Female		Occasional	Never	0		75.3	9.45	(0 Low	0	
53 Female			Former	0	(71.5	1.23	(0 Moderate	0	
		Occasional	Current	0	(48.4	12.04	1		0 Moderate	0	
		Occasional	Never	1	(55.2	1.38	(0 Moderate	1	
69 Male		3 Never	Former	1		69.2	1.5	(1 Moderate	0	
53 Male		Never	Never	0		73.2	28.61			0 Moderate	0	
32 Female			Former	0		0 49.3	5.13			0 Low	0	
51 Male		Never	Former	0		90.8	17.03			0 Low	1	
82 Male		Never	Current	0		062.5	10.67			0 Low	1	
31 Female			Current	1		78.8	3.77			0 Moderate	0	
53 Male		2 Never	Former	0		1 45.9	10.94			1 Low	0	
73 Female			Former	0		067.6	1.07			0 High	0	
59 Female			Former	0		0 45.6	6.4			0 Moderate	0	
67 Male		Never	Never	0		0 66.8	11.1		•	1 Moderate	0	
31 Male		Never		1		71.5	3.89			1 High	0	
		Occasional	Former	0		71.5	16.19			0 PoM	0	
62 Female			Current	0		053.5	0.8				1	
			Never	0		037.3	9.95	,		0 Low	1	
		Occasional	Never	0		069.4	18.83			0 High	0	
51 Femal			Never	1		0 58.6	18.83 8.43	,	•	1 Moderate	1	
		Occasional	Never	_						0 Fox	_	
		Occasional	Never	1		58.6	31.14			0 Low	0	
78 Male		Occasional	Never	1		50.7	15	5 (0 High	0	
		Occasional	Never	0		0 63.7	47.73	1		0 Moderate	1	
71 Male		Regular	Former	0		0 64.5	5.01	1		0 Low	0	
57 Femal			Never	0		0 80.4	41.9	1		0 High	1	
45 Male	27.5	Occasional	Former	0		34.3	14	1 1	l .	0 Moderate	0	

Figura 1: Amostra do dataset aberto em software de planilha

No treinamento de uma rede do tipo Naive-Bayes usamos soluções pré-implementadas em bibliotecas para a linguagem de programação Python e dividimos o processo nos seguintes estágios:

• **Leitura do dataset**: Nele usamos a biblioteca "pandas" para leitura e pré-processamento dos dados. Onde removemos a coluna de classificação "liver_cancer" que indica se teve, ou não, o câncer.

```
df = pd.read_csv('liver_cancer_dataset.csv')
X = df.drop('liver_cancer', axis=1)
y = df['liver_cancer']
```

• Codificação de variáveis categóricas: Usamos a classe "LabelEnconde" da biblioteca "scikit-learn" para converter variáveis categóricas (gender, alcohol consumption, smoking status, physical activity level) em numéricas.

```
label_encoders = {}
for col in X.select_dtypes(include=['object']).columns:
    le = LabelEncoder()
    X[col] = le.fit_transform(X[col])
    label_encoders[col] = le
```

• **Treinamento**: Aqui utilizamos a classe "GaussianNB" da biblioteca "scikit-learn" para testar diferentes proporções de dados: 0.2, 0.3, 0.4, 0.5.

```
test_sizes = [0.2, 0.3, 0.4, 0.5]
accuracies = []

for test_size in test_sizes:
    X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=test_size, random_state=42)
    model = GaussianNB()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    accuracies.append(acc)
    print(f'Test size: {test_size}, Accuracy: {acc:.4f}')
```

• **Predição de novos casos**: Incluímos três novos casos com diferentes perfis clínicos e de hábitos para avaliarmos a acurácia do modelo treinado.

```
def encode case(case dict):
   case = case_dict.copy()
   for col, le in label_encoders.items():
       case[col] = le.transform([case[col]])[0]
   return case
new_cases = [
  {'age': 60, 'gender': 'Female', 'bmi': 25.0, 'alcohol_consumption':
'physical_activity_level': 'Moderate', 'diabetes': 0},
'hepatitis c': 0, 'liver function score': 55.0,
'diabetes': 1},
   {'age': 70, 'gender': 'Female', 'bmi': 22.0, 'alcohol_consumption':
'cirrhosis history': 0, 'family history cancer': 0,
'physical_activity_level': 'High', 'diabetes': 0}
new_cases_encoded = pd.DataFrame([encode_case(c) for c in new_cases])
probs = model.predict_proba(new_cases_encoded)
preds = model.predict(new_cases_encoded)
```

4. Resultados

O modelo de classificação foi treinado utilizando quatro proporções de dados para teste. Em cada experimento, avaliamos o desempenho por meio da acurácia mostrada na tabela a seguir.

Proporção	Acurácia
20%	82%
30%	83.4%
40%	84.6%
50%	85.76%

Tabela 1: Acurácia x Proporção de Teste

Através desses valores podemos ver um crescimento de 1.2% na acurácia a cada aumento na proporção de testes tendo um crescimento menor quando alteramos de 40% para 50% do conjunto de dados para teste conforme visto na figura 2 a seguir.

Figura 2: Acurácia X Proporção de Teste

Através desses resultados de acurácia mantemos o treinamento com proporção de 50/50, com maior acurácia verificada, para predição de 3 novos casos conforme tabela a seguir.

Variável	Caso 1	Caso 2	Caso 3
age	60	45	70
gender	Female	Male	Female
bmi	25.0	30.0	22.0
alcohol_consumption	Regular	Occasional	Never
smoking_status	Never	Current	Former
hepatitis_b	0	1	0
hepatitis_c	0	0	1
liver_function_score	70.0	55.0	80.0
alpha_fetoprotein_level	10.0	20.0	5.0
cirrhosis_history	0	1	0
family_history_cancer	0	1	0
physical_activity_level	Moderate	Low	High
diabetes	0	1	0

Tabela 2: Novos casos para testes da rede

E os resultados apontaram que os casos **Caso 1** e **Caso 3** tem Predição de **Não** para câncer de figado e o **Caso 2** com Predição de **Sim**. No Caso **3** vemos um equilíbrio na predição com 59% para **Não** e 41% para **Sim** como podemos ver no gráfico a seguir.

Figura 3: Probabilidades dos novos casos

5. Referências

KAGGLE. **Predict Liver Cancer from & Clinical Features**. Disponível em: https://www.kaggle.com/datasets/miadul/predict-liver-cancer-from-and-clinical-features Acesso em: 03 out. 2025.