

UNIVERSIDADE FEDERAL DO CARIRI CENTRO DE CIÊNCIAS E TECNOLOGIA

2^a Lista de Exercícios de Cálculo Numérico

Unidade II: Raízes de Equações

Tópico: Método da Bisseção

Prof Dr. Diego Frankin de Souza Veras Sant'Ana

1) Seja f uma função contínua no intervalo [-2, 2] tal que f(-2) = 1 e f(2) = 3. Indique qual (ou quais) das expressões seguintes define uma função g(x), para a qual o Teorema de Bolzano garante a existência de pelo menos uma raiz no intervalo [-2, 2]:

A)
$$g(x) = -f(x)$$

E)
$$g(x) = x - f(x)$$

B)
$$g(x) = x^2 + f(x)$$

$$\mathbf{F)} \ q(x) = f(x) - x$$

C)
$$g(x) = x^2 - f(x)$$

G)
$$g(x) = 2x + f(x)$$

D)
$$g(x) = x + f(x)$$

H)
$$g(x) = 2x - f(x)$$

2) Seja f a função de domínio $(-1, +\infty)$, definida por $f(x) = 4 - x + \ln(x+1)$. Mostre, aplicando o teorema de Bolzano, que a função f tem, pelo menos uma raiz no intervalo [5, 7].

3) Considere a função $f(x) = 1 - 2x + \ln(x+1)$ de domínio $x \in (-1, +\infty)$. Com base no teorema de Bolzano, em qual (ou quais) dos seguintes intervalos é garantido que se tenha pelo menos uma raiz?

A)
$$[-0,9;-0,45]$$

B)
$$[-0,5;0]$$

E)
$$[2;3]$$

4) Considere as funções

$$f(x) = x^2 + x \ln x$$
 $g(x) = \cos(x^2) + \ln(x)$ $h(x) = \ln(\cos x)$

$$y(x) = \ln x - \cos^2 x \qquad z(x) = \sin(e^{-x})$$

Com base no Teorema de Bolzano, para qual(ou quais) das funções acima é garantido que haja pelo menos uma raiz no intervalo [0.5, 1.5]?

5) Encontre a raiz da função $f(x) = x^2 + xe^x$ pelo **método da bisseção** no intervalo [a, b] = [-0, 75; -0, 5] com precisão $\epsilon < 0, 02$.

6) Encontre a raiz da função $f(x) = \cos(x) - x$ pelo **método da bisseção** no intervalo [a, b] = [0, 5; 1, 0] com precisão $\epsilon < 0, 01$. Lembre de configurar sua calculadora para operar em radianos. Isto deve ser feito em todas as questões que apresentarem funções trigonométricas.

7) Seja $f(x) = x^3 - 9x + 3$. Supondo que a raiz de f esteja no intervalo [0,1]. Encontre esta raiz pelo **método da bisseção** com precisão $\epsilon < 0, 1$.

- 8) A função $V(x) = (1-x^2)^2 1$ possui três raízes. Sabendo que uma dessas raízes pertence ao intervalo [1,2], encontre esta raiz pelo método da bisseção com precisão $\epsilon < 0,05$.
- 9) Use o método da bisseção para encontrar a solução das equações a seguir no intervalo [0,1] com precisão $\epsilon < 0,05$.

a)
$$x^3 - 7x^2 + 14x - 6 = 0$$

a)
$$x^3 - 7x^2 + 14x - 6 = 0$$

b) $x + \frac{14}{x} - \frac{6}{x^2} - 7 = 0$

10) Utilize a expressão

$$k \ge \log_2\left(\frac{b-a}{\epsilon}\right)$$

para estimar o número mínimo k de iterações para se atingir uma precisão menor do que ϵ nas questões 4 à 8.

11) Resolva novamente as questões 04 à 08 utilizando o método da falsa posição, que é um aprimoramento do método da Bisseção, onde o ponto médio x_i é trocado pela média ponderada entre a_i e b_i com pesos $|f(b_i)|$ e $|f(a_i)|$

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

GABARITO

- 01) Itens D, G e H
- 02) Questão de demonstração.
- 03) Item C, apenas
- **04)** Apenas as funções $f, g \in y$
- **05**) $\xi = -0.5703125$
- **06)** Na sexta iteração, a raiz encontrada é $\xi=0,73828$ com erro relativo 0,00528. O valor funcional neste resultado é de $f(0,73828)=1,33\times 10^{-3}$.
 - **07**) $\xi = 0,34375$
 - **08)** $\xi = 1,4375$
 - **09)** a) $\xi = 0.578125$
 - b) Não é possível. Há uma divisão por zero. Mude o intervalo para $[0.1\ ,\ 1.0]$ e encontre a raiz $\xi=0,578125$
 - 10) 04: Pelo menos quatro iterações
 - 05: Pelo menos seis iterações
 - 06: Pelo menos quatro iterações
 - 07: Pelo menos cinco iterações
 - 08: Pelo menos cinco iterações