Fundamentals of Solid State Physics

Optical Properties

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Further Reading

Fox, Chapter 1, 2, 7

Optical Properties of Materials

Metal

SiO₂

Silicon

- Crystal Structures
 - polycrystalline, amorphous, single crystalline
- Electronics
 - conductor, insulator, semiconductor
- Optics (in the visible range)
 - □ reflective, transparent, absorbing

Fundamentals of Solid State Physics

Optical Processes

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Optical Processes

- Review: Maxwell's Equations
- Reflection, Transmission, Absorption, ...
- Optical propagation in multi-layers
 - Transfer Matrix Method

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_{V}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$\oint_{s} \mathbf{D} \cdot d\mathbf{A} = \int_{v} \rho \cdot dV$$

$$\oint_{s} \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint_{l} \mathbf{E} \cdot d\mathbf{l} = -\int_{s} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{A}$$

$$\oint_{l} \mathbf{H} \cdot d\mathbf{l} = \int_{s} \mathbf{J} \cdot d\mathbf{A} + \int_{s} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{A}$$

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_{V}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Constitutive Relations 本构关系

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$$
$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

$$\varepsilon_0 \, \varepsilon_r$$
 - Permittivity (dielectric constant) $\varepsilon_r = 1$ for vacuum $\varepsilon_0 = 8.85^*10^{-12}$ F/m $\mu_0 \mu_r$ - Permeability $\mu_r = 1$ for vacuum $\mu_0 = 4\pi^*10^{-7}$ H/m

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_{V}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Constitutive Relations 本构关系

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$$
$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

For most non-magnetic materials (no magnetic field), $\mu_r = 1$

Optical properties of materials is determined by ε_r

In vacuum

$$\rho_{V} = 0, J = 0$$

$$\mu_r = 1$$
, $\varepsilon_r = 1$

$$\nabla \cdot \mathbf{D} = \rho_V$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$\nabla^2 \mathbf{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

-

$$\mathbf{E}(x,t) = \mathbf{E}_0 e^{i(kx - \omega t)}$$

Plane Wave

$$k = \frac{2\pi}{\lambda}$$

$$\omega = \frac{2\pi}{T}$$

wavevector

angular frequency

In vacuum

$$\rho_{V} = 0, J = 0$$

$$\mu_r = 1$$
, $\varepsilon_r = 1$

$$\nabla \cdot \mathbf{D} = \rho_V$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$\nabla^2 \mathbf{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\mathbf{E}(x,t) = \mathbf{E}_0 e^{i(kx - \omega t)}$$

Plane Wave

$$c = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \text{ m/s}$$

light speed in vacuum

In a dielectric medium

$$\rho_{V} = 0, J = 0$$

$$\mu_r = 1, \varepsilon_r \neq 1$$

$$\nabla \cdot \mathbf{D} = \rho_{V}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$\nabla^2 \mathbf{E} = \mu_0 \varepsilon_0 \varepsilon_r \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\mathbf{E}(x,t) = \mathbf{E}_0 e^{i(kx - \omega t)}$$

Plane Wave

$$v = \frac{\omega}{k} = \frac{c}{\sqrt{\varepsilon_r}} = \frac{c}{n}$$

$$\varepsilon_r = n^2$$

light speed in a material *n* - refractive index

In a dielectric medium

$$\rho_{V} = 0, J = 0$$

$$\mu_r = 1, \varepsilon_r \neq 1$$

$$\left| \mathbf{E}(x,t) = \mathbf{E}_0 e^{i(kx - \omega t)} \right|$$

Plane Wave

$$k = \frac{2\pi}{\lambda'} = \frac{2\pi}{\lambda_0} n$$

 λ' - wavelength in the medium

 λ_0 - wavelength in vacuum Frequency ω does not change

Complex Form of ε_r and n

$$|\tilde{\varepsilon}_r = \tilde{n}^2|$$

$$\left| \tilde{\varepsilon}_r = \varepsilon_1 + i\varepsilon_2 \right| \qquad \tilde{n} = n + i\kappa$$

$$\tilde{n} = n + i\kappa$$

$$\mathcal{E}_{1} = n^{2} - \kappa^{2}$$

$$\mathcal{E}_{2} = 2n\kappa$$

Complex Form of ε_r and n

$$\begin{cases} n = \frac{1}{\sqrt{2}} \left(\varepsilon_1 + \sqrt{\varepsilon_1^2 + \varepsilon_2^2}\right)^{1/2} \\ \kappa = \frac{1}{\sqrt{2}} \left(-\varepsilon_1 + \sqrt{\varepsilon_1^2 + \varepsilon_2^2}\right)^{1/2} \end{cases}$$

when $\varepsilon_1 >> \varepsilon_2$ (or $n >> \kappa$), weakly absorbing

Reflection 反射

Incident wave

$$\mathbf{E}(x,t) = \mathbf{E}_0 e^{i(kx - \omega t)}$$

Reflective wave

$$\mathbf{E}_{R}(x,t) = \mathbf{E}_{R}e^{i(-kx-\omega t)}$$

Reflectivity 反射率

based on boundary conditions of Maxwell's Equations

$$R = \left| \frac{\mathbf{E}_R}{\mathbf{E}_0} \right|^2 = \left| \frac{\tilde{n}_2 - \tilde{n}_1}{\tilde{n}_2 + \tilde{n}_1} \right|^2$$

Intensity

$$I \propto |\mathbf{E}|^2$$

If medium 1 is air $(\tilde{n}_1 = 1)$

$$R = \left| \frac{\tilde{n}_2 - 1}{\tilde{n}_2 + 1} \right|^2 = \frac{(n - 1)^2 + \kappa^2}{(n + 1)^2 + \kappa^2}$$

for normal incidence

Transmission 透射率

$$T = 1 - R$$

Absorption 吸收

Incident wave

$$\mathbf{E}(x,t) = \mathbf{E}_0 e^{i(kx - \omega t)}$$

After traveling a distance L

$$\begin{aligned} \mathbf{E}_{T}(x,t) &= \mathbf{E}_{0} e^{i(kx-\omega t)} e^{ikL} \\ &= \mathbf{E}_{0} e^{i(kx-\omega t)} e^{i2\pi \tilde{n}/\lambda^{*}L} \\ &= \mathbf{E}_{0} e^{i(kx-\omega t)} e^{i2\pi n/\lambda^{*}L} e^{-2\pi\kappa/\lambda^{*}L} \end{aligned}$$

Lambert Beer's Law $I = I_0 e^{-\alpha L}$

$$I = I_0 e^{-\alpha L}$$

$$\alpha = \frac{4\pi\kappa}{\lambda}$$

absorption coefficient (unit: /m)

Transmission 透射

Reflection R反射

Absorption A 吸收

Transmission T 透射

$$R + A + T = 1$$

Example: Silicon

- At λ = 600 nm, for Si, \tilde{n} = 3.94 + i*0.025, calculate
 - □ Reflection R at the air/Si interface
 - \square Absorption coefficient α at 600 nm
 - \Box Absorption by a Si film with thickness L = 0.01 mm

Example: Silicon

- At λ = 600 nm, for Si, \tilde{n} = 3.94 + i*0.025, calculate
 - Reflection R at the air/Si interface
 - \square Absorption coefficient α at 600 nm
 - \square Absorption by a Si film with thickness L = 0.01 mm

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 35.4\%$$

$$\alpha = \frac{4\pi\kappa}{\lambda} = 5.24 * 10^5 / \text{m}$$

$$A = 1 - e^{-\alpha L} = 99.5\%$$

Example: Silicon

- Silicon is a very good absorber at λ = 600 nm
- It can be used to make solar cells and cameras
- Surface reflection is very strong
- It needs an anti-reflective coating ARC (减反膜)

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 35.4\%$$

$$\alpha = \frac{4\pi\kappa}{\lambda} = 5.24 * 10^5 / \text{m}$$

$$A = 1 - e^{-\alpha L} = 99.5\%$$

bare Si wafer

Si solar cell with ARC

Example: Silver

- At λ = 600 nm, for Ag, \tilde{n} = 0.12 + i*3.66, calculate
 - □ Reflection *R* at the air/Ag interface
 - \square Absorption coefficient α at 600 nm
 - \Box Absorption by a Ag film with thickness L = 100 nm

Example: Silver

- At λ = 600 nm, for Ag, \tilde{n} = 0.12 + i*3.66, calculate
 - Reflection R at the air/Ag interface
 - $\ \square$ Absorption coefficient α at 600 nm
 - □ Absorption by a Ag film with thickness L = 100 nm

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 96.7\%$$

$$\alpha = \frac{4\pi\kappa}{\lambda} = 7.67 * 10^7 / \text{m}$$

$$A = 1 - e^{-\alpha L} = 99.95\%$$

Example: Silver

- Ag is a very good mirror at visible wavelengths
- Light can only propagate in Ag at a very small depth

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 96.7\%$$

$$\alpha = \frac{4\pi\kappa}{\lambda} = 7.67 * 10^7 / \text{m}$$

$$A = 1 - e^{-\alpha L} = 99.95\%$$

mirror reflection

Multilayer Optical Structures

Solution based on the boundary conditions of Maxwell's Equations

calculated by *Transfer Matrix Method* see posted reference notes

Example: Anti-Reflective Coating (ARC)

At λ = 600 nm, no ARC

$$R(air/Si) = 35.4\%$$

Design an ARC

$$n = \sqrt{n(\text{air}) * n(\text{Si})} = 1.98$$

$$L = \frac{\lambda}{4n} = 75 \text{ nm}$$

$$R(\lambda = 600 \text{ nm}) = 0$$

Example: ARC for Si

At λ = 600 nm, no ARC

$$R(air/Si) = 35.4\%$$

Design an ARC

$$n = \sqrt{n(\text{air}) * n(\text{Si})} = 1.98$$

$$L = \frac{\lambda}{4n} = 75 \text{ nm}$$

$$R(\lambda = 600 \text{ nm}) = 0$$

Example: ARC for Glass

For glass

$$n = 1.45$$

At λ = 600 nm, no ARC

$$R(\text{air/glass}) = 3.4\%$$

Design an ARC

$$n = \sqrt{n(\text{air}) * n(\text{glass})} = 1.2$$

thickness =
$$\frac{\lambda}{4n}$$
 = 125 nm

without ARC

with ARC

Example: Bragg Reflector

N pairs of A/B films

If we choose

$$L_A = \frac{\lambda}{4n_A}$$

$$L_B = \frac{\lambda}{4n_B}$$

Project 2

$$R = \left(\frac{n_A^{2N} - n_B^{2N}}{n_A^{2N} + n_B^{2N}}\right)^2$$

$$R = \left(\frac{n_A^{2N} - n_B^{2N}}{n_A^{2N} + n_B^{2N}}\right)^2 \quad \text{If } n_A \neq n_B, \text{ when } N \to +\infty$$

$$R \to 100\%$$

Example: Bragg Reflector

A perfect mirror (better than silver)

Project 2

$$R = \left(\frac{n_A^{2N} - n_B^{2N}}{n_A^{2N} + n_B^{2N}}\right)^2 \quad \text{If } n_A \neq n_B, \\ R \to 100\%$$

If
$$n_A \neq n_B$$
, when $N \rightarrow +\infty$
 $R \rightarrow 100\%$

Thank you for your attention