Middleware and Web Services

Lecture 10: Enterprise Service Bus

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • http://vitvar.com

Czech Technical University in Prague

Faculty of Information Technologies • Software and Web Engineering • http://vitvar.com/courses/mdw

Modified: Mon Jan 05 2015, 10:53:57 Humla v0.3

Overview

• Central intermediary in SOA

- Types of services: shared and infrastructure
- Types of processes: Technical and Business

• ESB Application

- Application running on an application server
- Exposes functionality via Web service interface
- Allows to communicate with various messaging protocols

• Integration Patterns

- Technical-level interoperability message broker
- Location transparency
- Dynamic routing
- Data transformations mediator
- Resequencing of messages
- Session pooling
- Service orchestrations BPMN, BPEL
- Message enrichment

ESB Vendors

- Oracle
 - Oracle Service Bus (OSB)
 - Oracle SOA Suite
 - Oracle Enterprise Gateway (OEG)
- IBM
 - IBM WebSphere
- SAP
 - SAP NetWeaver
- Microsoft
 - .NET Framework
 - BizTalk server
- Opensource
 - JBoss
 - Apache ServiceMix
 - WSMX Semantic Web Service Execution Environment

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 3 -

Overview

- Architecture
 - Service Component Architecture
 - Metadata Repository
 - Service Types
- Integration Patterns

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 4

Enterprise Service Bus

- Integration organized
 - Enterprise Service Bus, to be used wisely

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 5 -

Overview

- Architecture
 - Service Component Architecture
 - Metadata Repository
 - Service Types
- Integration Patterns

Service Component Architecture

Industry standard

- SCA defines an architecture and a technology for composing applications following SOA principles
- Many adopters: Apache Tuscany, Service Conduit, Oracle SOA Suite 11g

SCA Application

Composite

collection of components, services, references

Component

application bulding block that provides certain functionality; it can be implemented by various technologies (BPEL, Java, etc.)

Services

exposed services by the application

References

references to external services that the application uses

Wires

links between components, services and references.

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

-7-

Simplified Order Process

• Example from Lecture 9

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 8 -

Order Process – SCA Application

- SCA Application Composite
 - Service implements Order Process WSDL interface (processOrder, getStatus, cancel, processOrderResponse callback)
 - A screenshot from JDeveloper IDE:

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 9 -

Composite.xml

- Main configuration file of the composite application
 - previous slide shows its graphical representation
- service exposes the composite as a service

```
{ns-path}='mimdw.fit.cvut.cz/mdw_examples/ProcessOrder'
```

• component – implements the composite in a specific technology

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

Composite.xml (cont.)

• reference – provides an access to an external service

{ns-path}='mimdw.fit.cvut.cz/mdw_examples/APP_CRM_GetCustomer'

```
</reference name="CustomerHandling"
    ui:wsdllocation="http://sb.vitvar.com/soa-infra/services/mdw-examples/APP_CRM_GetCus

<interface.wsdl
    interface="http://{ns-path}/GetCustomer#wsdl.interface(GetCustomer)"/>

<binding.ws
    port="http://sns-path}/GetCustomer#wsdl.endpoint(getcustomer_client_ep/GetCustomer
    location="http://sb.vitvar.com/soa-infra/services/mdw-examples/APP_CRM_GetCustomer
    soapVersion="1.1">

</
```

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 11 -

Order Process SCA Application Instance

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

– 12 -

Overview

- Architecture
 - Service Component Architecture
 - Metadata Repository
 - Service Types
- Integration Patterns

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 13 -

Metadata Repository

- Central Store
 - Central store for common artefacts used by applications
- Artefacts
 - Abstract WSDLs common interface for integration between clients and ESB and among applications running in ESB
 - XML Schemas common information models used in WSDLs
 - → Common Data Model (CDM)
- Oracle SOA Suite 11g
 - MDS Metadata Store; can be in the DB or on file system
 - Common artefacts as above + deployed composites
 - Artefacts can be referenced/access by orands protocol:

```
...
wsdl:types>
schema

xmlns="http://www.w3.org/2001/XMLSchema">
import namespace="http://mimdw.fit.cvut.cz/mdw-examples/cdm/order"
schemaLocation="oramds:/apps/MDWMetaData/order.xsd"/>
```

Overview

- Architecture
 - Service Component Architecture
 - Metadata Repository
 - Service Types
- Integration Patterns

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 15 -

Service Types

- ESB services
 - shared services created for particular domain
 - infrastructure services support integration and interoperability

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

_ 16 -

Connectivity Services

- Purpose
 - Adapters for various back-end technologies
 - Connectivity to legacy applications
 - No business logic, Usually stateless, ESB internal
- Example
 - Database adapters
 - \rightarrow SQL statement:
 - 1 | SELECT ID, NAME FROM CUSTOMERS C
 - 2 WHERE C.REVENUE > :revenue

Revenue – *input parameter*

- ID, NAME structure of output message
- \rightarrow Expose the SQL statement as a connectivity service
- Example implementation: OSB Proxy service, JCA adapters

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 17 -

JCA Adapters

- JCA Java EE Connector Architecture
 - Standard Java interface to connect to back-end systems
 - Standardized in JSR 112 ₺
 - Main JCA Adapters
 - \rightarrow JCA DB Adapter access to DB objects
 - \rightarrow JCA JMS Adapter JMS queues
 - \rightarrow JCA AQ Adapter Oracle AQ (in a database)
 - \rightarrow JCA MQ Adapter IBM MQ
 - \rightarrow JCA FTP Adapter FTP access
 - → JCA File Adapter File system access
- Major Features (Contracts)
 - Connection pool
 - \rightarrow cache of connections to a back-end system (DB, etc.)
 - Transaction management
 - → JCA adapters can participate in a distributed transaction

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

– 18 –

Entity Services

Purpose

- Expose services on top of one or more entities in a database
- Do not add any specific logic to entities' operations
 - \rightarrow Provide CRUD operations only
- May be used to facilitate a Common Data Model
 - \rightarrow Business entities entities of CDM
 - → Business objects instances of business entities
 - → Business Entity Service manipulations for business entities
- No business logic, usually stateless, ESB internal

Example

- Two entities in a database: CUSTOMERS, ADDRESS (1:N)
- Business entity CUSTOMER

- Operarions: read, write

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

_ 19 _

Business Services

Purpose

- Business/integration logic, can be stateful or stateless
- Atomic business activities
 - → direct mapping to back-end application services
- Can be "imported" in ESB to be used in a business process
- Can be exposed by ESB and add values in terms of business/integration logic or technical processing

Example

- Data transformation
 - → Back-end application service exposed in CDM language
- Message enrichment
 - \rightarrow Adds information to content from other sources
- Monitoring
 - \rightarrow Every invocation of the service logged
 - → Monitoring of business metrics
 - → Number of orders, total revenue per customer

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

Business Processes

Purpose

- Business/integration logic, usually stateful
- Complex processes involving invocations of multiple business services at various back-end applications
- Handles transformations from various data formats of back-end applications
- Handles **key-mapping**
 - → Business entities exist in multiple systems
 - → Each back-end application maintains its own ID for corresponding business objects
- Usually implemented in a process language such as BPMN or BPEL
- OSB uses its own orchestration language which translates to XQuery

Example

- Order processing
 - → Get customer information from the CRM system
 - \rightarrow Add line items to OMS
 - \rightarrow Close order

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 21

Overview

- Architecture
- Integration Patterns

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

– 22 -

Overview

- Applied in implementation of business services and processes
 - Usually a combination of more patterns
- Technical patterns
 - Deals with technical aspects of service communication
 - Message broker technical-level interoperability
 - Location transparency
 - Session pooling

Business patterns

- Deals with business aspects (message content) of service communication
- Dynamic routing
- Data transformations mediator
- Service orchestrations BPMN, BPEL
- Message enrichment
- Resequencing of messages

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 23 -

Message Broker

- Message broker
 - ESB can mix and match transports both standard and proprietary

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

– 24 -

Location Transparency

Location transparency

- ESB can hide changes in location of services
- Such changes will not affect clients
- Can also be used for load balancing for multiple service instances

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 25 -

Session Pooling

Session Pooling

- ESB can maintain a pool of connections (session tokens) to a back-end app when creating a new connection is expensive
- A single session token can be reused by multiple instances of business processes

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 26 -

Dynamic Routing

• Dynamic routing

- ESB exposes a service that routes to various back-end services based on message contents.

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 27 -

Message Enrichment

• Message enrichmenet

- Enriches a message before invoking back-end application service.

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 28

Data Transformation

- Data transformation phases:
 - Definition of mapping and execution of mappings
- Definition of mappings (design-time)
 - A mapping associates one data structure to another data structure and defines a conversion between them.
 - Mapping languages
 - \rightarrow graphical for design that translates to XSLT, XQuery
 - → Sometimes implemented in 3rd gen. languages (e.g., Java)
- Execution of mappings (runtime)
 - application of mappings to instance data
- CDM terminology
 - Application Business Message back-end app format
 - Enterprise Business Message CDM format

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

- 29 -

Definitions of Data Mapping Example

- Source and target schemas
 - Source: Order flat data structure
 - Target: UPS order with address as a sub-entity
 - Differences in names of entities
 - Conversion function applied to postal code

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

– 30 –

Service Orchestration

Orchestration of multiple business services

- Includes transformation, message enrichmenet, service callouts, etc.
- A step in orchestration is an activity

Patterns

- Sequential processing of activities
- Parallel processing of activities with synchronization points
- Decision branches, iterations

Technologies

- Graphical languages
- Standard representations: BPEL, BPMN
- Proprietary, for example OSB uses graphical language that translates to XQuery

Good design

- Orchestration faciliates communication in CDM
- Orchestration handles key-mapping

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

_ 31 -

Resequencer

• Resequencer in update sales order

- Every order line item needs to update its status several times (e.g. open, completed)
- Resequencer makes sure that the update status messages arrive to CRM in the same order as they were created in OMS system (FIFO resequencer)

Lecture 10: Enterprise Service Bus, CTU Winter Semester 2016/2017, @TomasVitvar

– 32 -