CPEN 400Q Lecture 02 Single-qubit systems; introducing PennyLane

Wednesday 8 January 2024

Announcements

- Assignment 1 available later today
- Quiz 1 Monday about lectures 01 and 02 (bring your laptop)
- Tomorrow office hour 2:30-3:00 only
- Next Tuesday tutorial: hands-on activity

Learning outcomes

- Implement single-qubit quantum algorithms in PennyLane
- Describe the behaviour of common single-qubit gates
- Represent the state of a single qubit on the Bloch sphere

Recap from last time

Qubits are physical quantum systems with two basis states:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Arbitrary states are complex-valued linear combinations

where $|\alpha|^2 + |\beta|^2 = 1$ and $\alpha, \beta \in \mathbb{C}$.

Qubit states live in Hilbert space.

Recap from last time

Unitary matrices (gates/operations) modify a qubit's state.

A matrix
$$U$$
 is unitary if $(U^*)^T$

$$U U^{\dagger} = I = U^{\dagger}U \qquad (U^{\dagger} = U^{\dagger})$$

They preserve lengths of state vectors and angles between them (to prove on assignment!).

We saw two examples:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
107 - 117 \qquad
H | 0 \rangle = \frac{1}{\sqrt{2}} (107 + 117) = 1+7
H | 17 = \frac{1}{\sqrt{2}} (107 - 117) = 1-7$$

Where we left off

What happens if we apply
$$H$$
 twice?

0.5

0.5

0.5

0.5

0.5

0.5

H | 0 > = $\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ => $H(H|0\rangle) = H(\frac{1}{\sqrt{2}}|0\rangle) + H(\frac{1}{\sqrt{2}}|0\rangle)$
 $H(H|0\rangle) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}}(|0\rangle - |2\rangle) = |0\rangle$
 $H(H|1\rangle) = |1\rangle$
 $H(H|1\rangle) = |1\rangle$
 $H(0.7) = |1\rangle$
 $H(0.7) = |1\rangle$

Example: Z

The gate

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

does something a little different.

Apply to basis states:

Apply to basis states:

$$\frac{Z|0\rangle = 10\rangle \text{ eigenstate } }{Z|1\rangle = -(1)}$$

$$\frac{Z|+\rangle = \frac{1}{2}(2|0\rangle + 2|1\rangle) = \frac{1}{\sqrt{2}}(10\gamma - 11\gamma) = 1-\gamma$$

Measuring qubits

Applying operations changes the amplitudes in a qubit's state.

Amplitudes determine probability of observing the qubit in $|0\rangle$ or $|1\rangle$ when measured (it's **probabilistic!**).

Measuring gives us a single bit of information (0 or 1) (generally must run an algorithm many times, i.e., multiple shots).

Quantum computing

Quantum computing is the act of manipulating the state of qubits in a way that represents solution of a computational problem:

- 1. Prepare qubits in a superposition
- 2. Apply **operations** that **entangle** the qubits and manipulate the amplitudes
- 3. Measure qubits to extract an answer

A simple quantum algorithm

Exercise: What is the measurement outcome probability of 0 if we apply H, then Z, then X to a qubit starting in $|0\rangle$?

Programming quantum computers

Everything we've done so far is just matrix-vector multiplication...

```
def ket \theta():
    return np.array([1.0, 0.0])
def apply ops(ops, state):
    for op in ops:
        state = np.dot(op, state)
    return state
def measure(state, num samples=100);
    prob 0 = state[0] * state[0].coni()
    prob 1 = state[1] * state[1].conj()
    samples = np.random.choice(
        [0, 1], size=num samples, p=[prob 0, prob 1]
    return samples
H = (1/np.sqrt(2)) * np.array([[1, 1], [1, -1]])
X = np.array([[0, 1], [1, 0]])
Z = np.array([[1, 0], [0, -1]])
input state = ket 0()
output state = apply ops([H, X, Z], input state)
results = measure(output state, num samples=10)
print(results)
                              Sample NumPy
[1 0 0 1 0 0 0 1 1 0]
```

Programming quantum computers

Better to use real quantum software instead. There is a fantastic ecosystem of open-source tools.


```
import pennylane as qml

H = qml.Hamiltonian(...)

dev = qml.device('default.qubit', wires=2)

@qml.qnode(dev)
def quantum_circuit(params):
    qml.RY(params[0], wires=0)
    qml.RY(params[1], wires=1)
    qml.CNOT(wires=[0, 1])
    qml.RY(params[2], wires=0)
    return qml.expval(H)

quantum_circuit([0.1, 0.2, 0.3])
```

PennyLane

PennyLane is a Python framework developed by **Xanadu** (a Toronto-based quantum startup).

GitHub: https://github.com/PennyLaneAI/PennyLane
Documentation: https://pennylane.readthedocs.io/en/stable/
Demonstrations: https://pennylane.ai/qml/demonstrations.html
Discussion Forum: https://discuss.pennylane.ai/

Image credit: https://pennylane.ai/

Quantum functions

Recall our three quantum gates:

$$H = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}, \quad X = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad Z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}.$$

We can apply these gates to a qubit and express the computation in matrix form, or as a quantum circuit.

$$XZH|0\rangle$$
 $|0\rangle -H -Z -X$

We can express circuits as quantum functions in PennyLane.

Quantum functions

Quantum functions are like normal Python functions, with two special properties:

1. They apply one or more quantum operations

```
import pennylane as qml

def my_quantum_function():
    qml.Hadamard(wires=0) # Apply Hadamard gate to qubit 0
    qml.PauliZ(wires=0) # Apply Pauli Z gate to qubit 0
    qml.PauliX(wires=0) # Apply Pauli X gate to qubit 0
    return qml.sample()
```

Q: Why wires? A: PennyLane can be used for continuous-variable quantum computing, which does not use qubits.

Quantum functions

Quantum functions are like normal Python functions, with two special properties:

- 1. They apply one or more quantum operations
- 2. They return a measurement on one or more qubits

```
import pennylane as qml

def my_quantum_function():
    qml.Hadamard(wires=0)
    qml.PauliZ(wires=0)
    qml.PauliX(wires=0)
    return qml.sample() # Return measurement samples
```

Devices

Quantum functions are executed on **devices**. These can be either *simulators*, or *actual quantum hardware*.

```
import pennylane as qml
dev = qml.device('default.qubit', wires=1, shots=100)
```

This creates a device of type 'default.qubit' with 1 qubit that returns 100 measurement samples when executed.

Quantum nodes

A **QNode (quantum node)** is an object that binds a quantum function to a device, and executes it.

Image credit: https://pennylane.ai/qml/glossary/quantum_node.html

Quantum nodes

```
import pennylane as qml

dev = qml.device('default.qubit', wires=1, shots=100)

def my_quantum_function():
    qml.Hadamard(wires=0)
    qml.PauliZ(wires=0)
    qml.PauliX(wires=0)
    return qml.sample()
```

With these two components, we can create and execute a QNode.

```
# Create a QNode
my_qnode = qml.QNode(my_quantum_function, dev)
# Execute the QNode
result = my_qnode()
```

Let's go do it!

You probably have some questions...

- 1. Where's the state?
 - Inside the device!
- 2. What happens to the gates?
 - Operations are recorded onto a "tape"
 - The QNode constructs the tape when it is called
 - The tape is then executed on the device.

More quantum gates

So far we know the following 3 gates:

But a general qubit state looks like

where α and β are *complex numbers* (such that $|\alpha|^2 + |\beta|^2 = 1$).

How do we make the rest?

Parametrization of qubit states

Exercise: Consider the states
$$|\psi_1\rangle=\alpha|0\rangle+\beta|1\rangle, \quad |\psi_2\rangle=\alpha e^{i\phi}|0\rangle+\beta e^{i\phi}|1\rangle$$

How does $e^{i\phi}$ affect the measurement outcome probabilities of $|\psi_2\rangle$ compared to $|\psi_1\rangle$?

$$|\Upsilon_{i}\rangle = \alpha |0\rangle + \beta |1\rangle \implies |\alpha|^{2} \text{ for } 0$$

$$|\Upsilon_{k}\rangle = \alpha e^{i\phi} |0\rangle + \beta e^{i\phi} |1\rangle \implies$$

$$|\alpha|^{2} = \alpha \alpha^{*} \qquad |\Upsilon_{2}\rangle = e^{i\phi} |\alpha|^{0} + \beta |1\rangle$$

$$|\alpha e^{i\phi}|^{2} = (\alpha e^{i\phi})(\alpha e^{-i\phi}) = |\alpha|^{2} \qquad \text{global phase}$$

Parametrization of qubit states

Q: How many real numbers are required to fully specify a single-qubit state vector? $|47 = \alpha |07 + \beta |17 > 3, 4$ = $\alpha e^{i\phi} |07 + be^{i\omega} |17 = a, b, \phi, \omega$ real = e i (a 10) + b e i (w - 0) 11) $\sim a |0\rangle + b e^{i(\omega-\phi)} |1\rangle$ 3 parans $a^{2} + b^{2} = 1 \implies a = \cos\left(\frac{\theta}{2}\right)$ $b = \sin\left(\frac{\theta}{2}\right)$ |a|2+ (B12=1 $|147 = \cos(\frac{\theta}{2})|07 + \sin(\frac{\theta}{2})e^{i\varphi}|17$

Introducing the Bloch sphere

Introducing the Bloch sphere

https://javafxpert.github.io/grok-bloch/

Rotations: the Bloch sphere

Unitary operations rotate the state vector on the Bloch sphere.

Image credit: Codebook node I.6

Z rotations

$$RZ(\theta) = e^{-i\frac{\theta}{2}Z} = \begin{pmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$$

$$RZ(\pi) : \begin{pmatrix} -i & 0\\ 0 & i \end{pmatrix} \sim \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}_{|0\rangle + |1\rangle}$$

In PennyLane, it is called like this:

Exercise: expand out the exponential of Z to obtain the matrix representation.

S and T

Two other special cases: $\theta = \pi/2$, and $\theta = \pi/4$.

$$S = RZ(\pi/2) = \begin{pmatrix} e^{-i\frac{\pi}{4}} & 0\\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix} \sim \begin{pmatrix} 1 & 0\\ 0 & i \end{pmatrix}$$
$$T = RZ(\pi/4) = \begin{pmatrix} e^{-i\frac{\pi}{8}} & 0\\ 0 & e^{i\frac{\pi}{8}} \end{pmatrix} \sim \begin{pmatrix} 1 & 0\\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$

In PennyLane:

```
qml.PauliZ(wires=wire)
qml.S(wires=wire)
qml.T(wires=wire)
```

S is part of a special group called the **Clifford group**.

T is used in universal gate sets for fault-tolerant QC.

Rotations: RY

Rotations: RY

The matrix representation of RY is

$$RY(\theta) = egin{pmatrix} \cos rac{ heta}{2} & -\sin rac{ heta}{2} \ \sin rac{ heta}{2} & \cos rac{ heta}{2} \end{pmatrix}$$

Rotations: RX

RX is similar but has complex components:

$$RX(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

Pauli rotations

These unitary operations are called **Pauli rotations**.

	Math	Matrix	Code	Special cases (θ)
RZ	$e^{-i\frac{\theta}{2}Z}$	$\begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$	qml.RZ	$Z(\pi), S(\pi/2), T(\pi/4)$
RY	$e^{-i\frac{\theta}{2}Y}$	$\begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$	qml.RY	$Y(\pi)$
RX	$e^{-i\frac{\theta}{2}X}$	$\begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$	qml.RX	$X(\pi), SX(\pi/2)$

Pauli rotations

Try at home! Use demo code from class as Exercise: design a quantum circuit that prepares a Starting point.

$$|\psi
angle=rac{\sqrt{3}}{2}|0
angle-rac{1}{2}e^{irac{5}{4}}|1
angle$$

Hint 1: carefully consider RZ and compare with the phase above.

Hint 2: you can also return the state or measurement outcome probabilities in PennyLane:

```
@qml.qnode(dev)
def some_circuit():
    # Gates...
    # return qml.probs(wires=0)
    return qml.state()
```

Pauli rotations

Try at home!

Exercise: In PennyLane, implement the circuit below

Run your circuit with two different values of θ and take 1000 shots.

How does θ affect the measurement outcome probabilities?

Next time

Content:

- The theory of projective measurements
- Measuring in different bases

Action items:

- 1. Start looking at Assignment 1
- 2. Quiz 1 next class

Recommended reading:

- Codebook modules IQC, SQ
- Nielsen & Chuang 4.2, 2.2.3, 2.2.5, 2.2.7