July 11, 2016 ISIT 2016

Information Decomposition on Structured Space

Mahito Sugiyama (Osaka Univ.) Hiroyuki Nakahara (RIKEN), Koji Tsuda (UTokyo)

Contributions

- We build information geometry for posets (partially ordered sets)
 - Decomposition of KL divergence
- Key observations:
 - θ -coordinate → principal ideals (lower sets) → p-coordinate
 - \circ θ -coordinate: coefficients of a log-linear model
 - p-coordinate: probabilities
 - p-coordinate \rightarrow principal filters (upper sets) \rightarrow η-coordinate
 - \circ η -coordinate: frequencies (sufficient statistics)
- Code: https://git.io/decomp

Summary

Summary

Transaction database

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Transaction database

ID 1: ID 2: ID 3: ID 4: ID 5: ID 6: 0 ID 7: 0 ID 8:

0

ID 9:

ID10:

Transaction database

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Upward = Pattern mining

η: Frequency

p: Probability

$$\eta(\{\bullet,\bullet\}) = p(\{\bullet,\bullet\}) + p(\{\bullet,\bullet,\bullet\})$$

Exponential p(x) = exp($\sum \theta(s)F_s(x) - \psi(\theta)$) family:

Triple for each node

Triple for each node

Make a Poset from Data

Dataset

ID10: 0 1

Make a Poset from Data

Remove Nodes with Probability 0

Dataset

Example on Real Data (kosarak)

features: 41,270

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0 ···

ID 4: 1 1 1

ID 5: 1 1 0

•

Total runtime: 4.95 seconds

nodes: 3,253 (Threshold: 10⁻⁵)

significant interactions: 583

Single feature: 537

Pairwise interactions: 41

Triple interactions: 5

13/15

Example on Real Data (accidents)

features: 468 ID 1: 1 1 0 ID 2: 1 1 1 ID 3: 1 1 0 ··· ID 4: 1 1 1 ID 5: 1 1 0

Total runtime: 4.95 seconds

nodes: 281 (Threshold: 5×10^{-6}) Sample size: 340,183

significant interactions: 280 # features in each interaction is between 26 to 41

Conclusion

- We build information geometry for posets (partially ordered sets)
 - Natural connection between the information geometric dual coordinates and the partial order structure
 - Code: https://git.io/decomp
- We can decompose a probability distribution and asses the significance of any-order interactions
- Our results generalizes the following:
 - S. Amari, Information geometry on hierarchy of probability distributions, IEEE Trans. on Information Theory (2001)
 - H. Nakahara, S. Amari, Information-geometric measure for neural spikes, Neural Computation (2002)