Lecture 13: Categorical Predictors and Interactions STAT 432, Spring 2021

Introduction

- ▶ Predictors in a multiple linear regression model can either be quantitative (e.g., weight, age) or qualitative (e.g., gender, education level). Qualitative predictors are also called categorical or factors.
- A categorical predictor with two levels (0 or 1) is called a dummy or indicator variable.
- ➤ Sometimes the effect that a quantitative predictor has on the response changes depending on the level of categorical predictor. For example, perhaps the effect age has on salary depends on the education status of the person. This is called an *interaction* effect.

Parallel Regression Lines

Let x be a quantitative variable, and d a dummy variable.

$$y = \beta_0 + \beta_1 x + \beta_2 d + \epsilon = \begin{cases} \beta_0 + \beta_1 x + \epsilon, & \text{if d=0} \\ (\beta_0 + \beta_2) + \beta_1 x + \epsilon, & \text{if d=1} \end{cases}$$

- This model gives two separate regression lines that have the same slope but different intercepts.
- ▶ The parameter β_2 represents the vertical distance between the two lines.

Unrelated Regression Lines

Let x be a quantitative variable, and d a dummy variable.

$$\begin{split} y &= \beta_0 + \beta_1 x + \beta_2 d + \beta_3 d \cdot x + \epsilon \\ &= \begin{cases} \beta_0 + \beta_1 x + \epsilon, & \text{if d=0} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x + \epsilon, & \text{if d=1} \end{cases} \end{split}$$

- ► This model gives two separate regression lines that have different slopes, and different intercepts.
- β_3 is the coefficient for the *interaction* between the dummy variable, d, and the quantitative variable, x.

Example: Credit Card Data Set

- ► We consider the Credit data set from the ISLR package. Type help(Credit) to read about this data set in the help menu.
- The response variable is Balance, the average credit card balance in dollars.
- ▶ The predictors of interest are Income (in thousands of dollars) and Student, a dummy variable indicating student status (No = 0 or Yes = 1).

```
> library(ISLR)
```

> head(Credit, n=5)

	nead(Credit, n-5)													
	ID	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance		
1	1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333		
2	2	106.025	6645	483	3	82	15	${\tt Female}$	Yes	Yes	Asian	903		
3	3	104.593	7075	514	4	71	11	Male	No	No	Asian	580		
4	4	148.924	9504	681	3	36	11	Female	No	No	Asian	964		
5	5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331		

> library(ggplot2)

```
> lm1 <- lm(Balance ~ Income + Student, data=Credit)
# shows coding R uses for the dummy variable
> contrasts(Credit$Student)
   Yes
No
Yes 1
> summary(lm1)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 211.1430 32.4572 6.505 2.34e-10 ***
Income
             5.9843 0.5566 10.751 < 2e-16 ***
StudentYes 382.6705 65.3108 5.859 9.78e-09 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 391.8 on 397 degrees of freedom Multiple R-squared: 0.2775, Adjusted R-squared: 0.2738 F-statistic: 76.22 on 2 and 397 DF, p-value: < 2.2e-16

We can write the regression equation for the fit:

$$\begin{split} \widehat{\texttt{Balance}} &= \hat{\beta}_0 + \hat{\beta}_1 \mathtt{income} + \hat{\beta}_2 \mathtt{student} = \\ &= \begin{cases} \hat{\beta}_0 + \hat{\beta}_1 \mathtt{income}, & \text{if student} = 0 \text{ (No)} \\ (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 \mathtt{income}, & \text{if student} = 1 \text{ (Yes)} \end{cases} \end{split}$$

Plugging in the coefficients from the regression summary gives:

$$\widehat{\texttt{Balance}} = 211.14 + 5.98 \texttt{income} + 382.67 \texttt{student} = \\ = \begin{cases} 211.14 + 5.98 \texttt{income}, & \texttt{if student} = \texttt{0 (No)} \\ 593.81 + 5.98 \texttt{income}, & \texttt{if student} = \texttt{1 (Yes)} \end{cases}$$

```
ggplot(Credit, aes(Income, Balance, color = Student)) +
geom_point(alpha=0.7) +
geom_abline(intercept = 211.1, slope = 5.98, color = "#F8766D", size = 1) +
geom_abline(intercept = 593.8, slope = 5.98, color = "#00BFC4", size = 1)
```



```
> lm2 <- lm(Balance ~ Income + Student + Income:Student, data=Credit)
> summary(lm2)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	200.6232	33.6984	5.953	5.79e-09	***
Income	6.2182	0.5921	10.502	< 2e-16	***
StudentYes	476.6758	104.3512	4.568	6.59e-06	***
${\tt Income:StudentYes}$	-1.9992	1.7313	-1.155	0.249	

Residual standard error: 391.6 on 396 degrees of freedom Multiple R-squared: 0.2799, Adjusted R-squared: 0.2744 F-statistic: 51.3 on 3 and 396 DF, p-value: < 2.2e-16

We can write the regression equation for the fit:

$$\begin{split} \widehat{\texttt{Balance}} &= \hat{\beta}_0 + \hat{\beta}_1 \texttt{income} + \hat{\beta}_2 \texttt{student} + \hat{\beta}_3 \texttt{student} \cdot \texttt{income} \\ &= \begin{cases} \hat{\beta}_0 + \hat{\beta}_1 \texttt{income}, & \text{if student=0 (No)} \\ (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3) \texttt{income}, & \text{if student=1 (Yes)} \end{cases} \end{split}$$

Plugging in the coefficients from the regression summary gives:

$$\widehat{\texttt{Balance}} = 200.62 + 6.22 \texttt{income} + 476.68 \texttt{student} - 2.00 \texttt{student} \cdot \texttt{income}$$

$$= \begin{cases} 200.62 + 6.22 \texttt{income}, & \text{if student} = 0 \text{ (No)} \\ 677.3 + 4.22 \texttt{income}, & \text{if student} = 1 \text{ (Yes)} \end{cases}$$

Note that the coefficient for the interaction, β_3 , is not significant (*p*-value= 0.249), so we do not necessarily need to include the interaction term.

```
ggplot(Credit, aes(Income, Balance, color = Student)) +
  geom_point(alpha=0.7) +
  geom_smooth(method="lm", se=FALSE)
```



```
ggplot(Credit, aes(Income, Balance, color = Student)) +
  geom_point(alpha=0.7, size=0.9) +
  facet_wrap(~ Student) +
  geom_smooth(method="lm", se=FALSE, size=1)
```

