Digital Design and Computer Organisation Laboratory 3rd Semester, Academic Year 2025

Date:08-09-2025

Name: Aakash Desai	SRN:PES1UG24CS006	Section
		3A

Week Number: 5 Program Number: 1

TITLE: Write a verilog program to model a D Flip-flop. Generate the VVP output and simulation waveform using GTKWave.

Deliverables

- I. Verilog Code Screenshot
- II. Verilog VVP Output Screen Shot
- III. GTKWAVE Screenshot
- IV. Output Table to be completed and included

I.Verilog Code Snippet

Main code

• Test Bench

```
module tb_dff;
     reg D;
reg CLK;
reg RST;
     wire Q;
     dff newD(.D(D), .clk(CLK), .rst(RST), .Q(Q));
      initial begin
           CLK = 1'b0;
           forever #5 CLK = ~CLK; // 10 time units period
     end
      initial begin
           $dumpfile("dff.vcd");
$dumpvars(0, tb_dff);
     end
      initial begin
           RST = 1'b1; D = 1'b0; #9;
RST = 1'b0; #
                                              #6:
           RST = 1'b0; #6;

D = 1'b1; #7;

D = 1'b0; #9;

D = 1'b1; #11;

D = 1'b0; #6;

RST = 1'b1; #5; RST = 1'b0; #15;
           D = 1'b1; #12;
D = 1'b0; #8;
           $finish;
     end
      initial begin
           #200 $finish;
     end
      initial begin
           $display("Time\tRST\tCLK\tD\tQ");
$monitor("%0t\t%b\t%b\t%b\t%b", $time, RST, CLK, D, Q);
     end
endmodule
```

II Verilog VVP output ScreenShot

VCD	info: dump	file df	f.vcd	opened	for output.
Time		CLK	D	Q	
0	1	0	Θ	Õ	
5	1	1	Θ	0	
9	0	1	Θ	0	
10	0	0	Θ	0	
15	0	1	1	1	
20	0	0	1	1	
22	0	0	Θ	1	
25	0	1	Θ	0	
30	0	0	Θ	0	
31	0	0	1	0	
35	0	1	1	1	
40	0	0	1	1	
42	0	0	0	1	
45	0	1	0	0	
48	1	1	0	0	
50	1	0	0	0	
53	0	0	0	0	
55	0	1	0	0	
60	0	0	0	0	
65	0	1	0	0	
68	0	1	1	0	
70	0	0	1	0	
75	0	1	1	1	
80	0	0	0	1	
85	0	1	0	0	

III GTKWave ScreenShot

IV Characteristic Table

TITLE: Write a verilog program to model T Flip-flop.

Generate the VVP output and simulation waveform using GTKWave.

Deliverables

- I. Verilog Code Screenshot
- II. Verilog VVP Output Screen Shot
- III. GTKWAVE Screenshot
- IV. Output Table to be completed and included

I. Verilog Code Snippet

Main Code

Test Bench

```
module TB T;
reg T;
reg CLK;
reg RST;
wire Q;
        t_{ff} newT (.T(T), .clk(CLK), .rst(RST), .Q(Q));
        initial begin
                CLK = 1'b0;
                forever #5 CLK = ~ CLK;
        end
        initial begin
                $dumpfile("t_ff.vcd");
                $dumpvars(0,TB T);
        end
        initial begin
                $monitor ("Time=%0t | RST=%b | T=%b | Q=%b", $time, RST, T, Q);
        end
        initial begin
                RST = 1'b1; T=1'b0; #7;
                RST = 1'b0;
                                         #8;
                T= 1'b0; #20;
                                 //hold
                T = 1'b1; #40; //toggle
                T = 1'b0; #20; //hold
                RST = 1'b1; #6;
                RST = 1'b0; #14;
                $finish;
        end
endmodule
```

II Verilog VVP ScreenShot

```
Time=0
          RST=1
                    T=0
                           0=x
Time=5
                    T=0
                           0=0
          RST=1
Time=7
                    T=0
          RST=0
                           Q = Q
Time=35
           RST=0
                     T=1
                            0 = 1
Time=45
           RST=0
                     T=1
                            0=1
Time=55
           RST=0
                     T=1
                            0=1
Time=65
           RST=0
                     T=1
                            0=1
Time=75
           RST=0
                     T=0
                            0=0
Time=95
           RST=1
                     T=0
Time=101
             RST=0
                      T=0
                             0=0
```

III GTK wave Screenshot

IV Truth Table

TITLE: Write a verilog program to model J-K Flip Flop.Generate the VVP output and simulation waveform using GTKWave.

Deliverables

- I. Verilog Code Screenshot
- II. Verilog VVP Output Screen Shot
- III. GTKWAVE Screenshot
- IV. Output Table to be completed and included
- I Iverilog code

```
module jk ff(
    input wire j,
    input wire k,
    input wire clk,
    input wire rst,
    output reg q
);
    always @(posedge clk or posedge rst) begin
        if (rst)
            q <= 1'b0;
        else begin
            case ({j,k})
                2'b00: q <= q;
                2'b01: q <= 1'b0;
                 2'b10: q <= 1'b1;
                 2'b11: q <= ~q;
            endcase
        end
    end
endmodule
```

Testbench

```
module tb_jk;
    reg J, K, CLK, RST;
   wire Q;
   jk_ff uut (
        .j(J),
        .k(K),
        .clk(CLK),
        .rst(RST),
        \cdot q(Q)
    );
    initial begin
        CLK = 0;
        forever #5 CLK = ~CLK;
    end
    initial begin
        $dumpfile("jk.vcd");
        $dumpvars(0, tb_jk);
    end
    initial begin
        RST = 1; J = 0; K = 0; #12;
        RST = 0;
        J = 0; K = 0; #10;
        J = 0; K = 1; #10;
        J = 1; K = 0; #10;
        J = 1; K = 1; #10;
        J = 1; K = 1; #10;
        J = 0; K = 1; #10;
        J = 1; K = 0; #10;
        $finish;
    end
    initial begin
        $display("Time\tRST\tCLK\tJ\tK\tQ");
        $monitor("%0t\t%b\t%b\t%b\t%b\t%b\t%b", $time, RST, CLK, J, K, Q);
    end
endmodule
```

II VVP screenshot

C:\iverilog\bin\Week5>vvp dsn						
VCD info	o: dumpf	ile jk.vo	cd opene	d for ou	tput.	
Time	RST	CLK	J	K	Q	
Θ	1	0	0	0	0	
5	1	1	Θ	0	0	
10	1	Θ	Θ	0	0	
12	Θ	Θ	Θ	0	0	
15	Θ	1	Θ	0	0	
20	Θ	Θ	Θ	0	0	
22	Θ	Θ	Θ	1	0	
25	Θ	1	Θ	1	0	
30	Θ	Θ	Θ	1	0	
32	Θ	0	1	Θ	0	
35	Θ	1	1	Θ	1	
40	Θ	0	1	Θ	1	
42	Θ	Θ	1	1	1	
45	Θ	1	1	1	0	
50	Θ	Θ	1	1	0	
55	0	1	1	1	1	
60	0	0	1	1	1	
62	0	0	0	1	1	
65	0	1	0	1	0	
70	0	0	0	1	0	
72	0	Θ	1	0	0	
75	0	1	1	0	1	
80	0	0	1	0	1	

III GTKwave screenshot

IV Characteristic Table

TITLE: Write a verilog program to model SR Flip Flop.

Generate the VVP output and simulation waveform using GTKWave.

Deliverables

- I. Verilog Code Screenshot
- II. Verilog VVP Output Screen Shot
- III. GTKWAVE Screenshot
- IV. Output Table to be completed and included

I.Verilog code

Main code

```
module sr ff(
    input wire s,
    input wire r,
    input wire clk,
    input wire rst,
    output reg q
);
    always @(posedge clk or posedge rst) begin
        if (rst)
            q <= 1'b0;
        else begin
            case ({s,r})
                2'b00: q <= q;
                2'b01: q <= 1'b0;
                2'b10: q <= 1'b1;
                2'b11: q <= 1'bx;
            endcase
        end
    end
endmodule
```

Test bench

```
module tb sr ff;
    reg s, r;
    reg clk, rst;
    wire q;
    sr ff uut(
        .s(s),
        .r(r),
        .clk(clk),
        .rst(rst),
        .q(q)
    );
    initial clk = 0;
    always #5 clk = ~clk;
    initial begin
        $dumpfile("sr ff.vcd");
        $dumpvars(0, tb sr ff);
        s = 0; r = 0; rst = 1;
        #10 \text{ rst} = 0;
        s = 0; r = 0; #10;
        s = 1; r = 0; #10;
        s = 0; r = 1; #10;
        s = 1; r = 1; #10;
        s = 0; r = 0; #10;
        s = 1; r = 0; #10;
        s = 0; r = 1; #10;
        s = 0; r = 0; #10;
        $finish;
    end
    initial begin
        $monitor("Time=%0t | S=%b R=%b | Q=%b", $time, s, r, q);
    end
endmodule
```

II VVP Screenshot

```
C:\iverilog\bin\Week5>vvp dsn
VCD info: dumpfile sr_ff.vcd opened for output.
Time=0 | S=0 R=0 | O=0
Time=20
          S=1 R=0
                    0 = 0
Time=25 | S=1 R=0
                    0=1
Time=30 | S=0 R=1
                    0=1
Time=35 | S=0 R=1
                    0 = 0
Time=40 | S=1 R=1
                    0 = 0
Time=45 | S=1 R=1
                    0=x
Time=50 | S=0 R=0
                    Q=x
Time=60 | S=1 R=0
                    Q=x
Time=65 | S=1 R=0
                    0=1
Time=70 |
          S=0 R=1
                    Q=1
Time=75
        S=0 R=1
                    Q=0
Time=80
          S=0 R=0
                    Q=0
```

III GTKWave output

IV Truth Table

of the same	ch	an	actev	isti	es t	able			•
-									
- 50			S	R	Bn	Qn+		•	
14			0	0	Ö	0			
18			0	0	. 1	J .			
- 13			0	1	0	0			
20			0	- 1	1	0			
3			1	0	0 -	1		•	•
13			1	0	1	1.			
100			1	1	0	X	•		•
10			i	i	1	X			

TITLE: Write a verilog program to design and implement a D flip flop using a T flip flop. Generate the VVP output and simulation waveform using GTKWave.

Deliverables

- I. Verilog Code Screenshot
- II. Verilog VVP Output Screen Shot
- III. GTKWAVE Screenshot
- IV. Output Table to be completed and included

I Verilog Code

Main code

```
module t ff(
    input wire t,
    input wire clk,
input wire rst,
    output reg q
);
    always @(posedge clk or posedge rst) begin
         if (rst)
             q <= 1'b0;
         else if (t)
            q <= ~q;
         else
             q  <= q;
    end
endmodule
module d_ff_using_t(
    input wire d,
    input wire clk,
    input wire rst,
    output wire q
);
    wire t;
    assign t = d ^ q;
    t ff uut (
         .t(t),
         .clk(clk),
         .rst(rst),
         ·q(q)
endmodule
```

Test bench

```
module tb d ff using t;
    reg d;
    reg clk, rst;
    wire q;
    d ff using t uut(
        .d(d),
        .clk(clk),
        .rst(rst),
        .q(q)
    );
    initial clk = 0;
    always #5 clk = ~clk;
    initial begin
        $dumpfile("d ff using t.vcd");
        $dumpvars(0, tb d ff using t);
        d = 0; rst = 1;
        #10 \text{ rst} = 0;
        d = 0; #10;
        d = 1; #10;
        d = 0; #10;
        d = 1; #10;
        d = 1; #10;
        d = 0; #10;
        $finish;
    end
    initial begin
        $monitor("Time=%0t | D=%b | Q=%b", $time, d, q);
    end
endmodule
```

II VVP output Screenshot

```
C:\iverilog\bin\Week5>vvp dsn
VCD info: dumpfile d_ff_using_t.vcd opened for output.
Time=0 | D=0 | O=0
Time=20 | D=1 |
Time=25
         D=1
               0=1
               0=1
Time=30
         D=0
               Q=0
Time=35
        D=0
Time=40
               Q=0
        D=1
              0=1
Time=45
        D=1
Time=60
             Q=1
       D=0
Time=65 |
               Q=0
         D=0
```

III GTKwave output screenshot

IV Truth Table

Current State	D Input	Required T Input	T Flip-Flop Action	Next State		
Q_n	D	$T=D\oplus Q_n$		Q_{n+1}		
0	0	$0 \oplus 0 = 0$	Hold	0		
0	1	$1\oplus 0=1$	Toggle	1		
1	0	$0 \oplus 1 = 1$	Toggle	0		
1	1	$1\oplus1=0$	Hold	1		
Export to Sheets						