Table of Contents

S	ection 1	2
	Question 1	2
	A	2
	В	
	Question 2	
	Question 3	5
	Α	
	В	
	Question 4	
	Question 5	
	Question 6	
	Question 7	
	Question 8	
	Question 9	
	Question 10	13

Section 1

Question 1

A Given

identical twins	$P(\text{identical twins}) = \frac{1}{300}$
fraternal twins	$P(\text{fraternal twins}) = \frac{1}{125}$
Boy = gril	P(boy) = 0.5

P(identical twins|twins boys) = ?

Equation

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\bar{A}) \cdot P(\bar{A})}$$

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

$$P(A) = P(\text{identical twins } \cap \text{Boy}) = P(\text{identical twins}) \cdot P(\text{Boy}) = \frac{1}{300} * \frac{1}{2}$$

$$P(B) = P(\text{fraternal twins } \cap \text{Boy}) = P(\text{fraternal twins}) \cdot P(\text{Boys}) = \frac{1}{125} * \frac{1}{4}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{300} * \frac{1}{2}}{\frac{1}{300} * \frac{1}{2} + \frac{1}{125} * \frac{1}{4}}$$

$$P(A \mid B) = \frac{5}{11}$$

$\frac{B}{\text{Given}}$

 $P(Bowl\ 1|chocolate) = ?$

Equation

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\bar{A}) \cdot P(\bar{A})}$$

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

$$P(A \cap B) = P(Bowl \ 1 \cap chocolate) = \frac{1}{2} * \frac{3}{4}$$

$$P(B) = P(chocolate) = \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{3}{4}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{2} * \frac{3}{4}}{\frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{3}{4}}$$

$$P(A \mid B) = \frac{3}{5}$$

Given

P(1994|Yellow) = ?

Equation

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\bar{A}) \cdot P(\bar{A})}$$

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

$$P(1994 \cap \text{Yellow}) = P(\text{Yellow}|1994) * P(1994) = 0.2 * 0.5$$

$$P(1994|Yellow) = \frac{P(A \cap B)}{P(B)} = \frac{0.2 * 0.5}{0.2 * 0.5 * 0.5 * 0.14}$$

$$P(1994|\text{Yellow}) = \frac{10}{17}$$

A Given

P(true positive|positive) =?

Equation

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\bar{A}) \cdot P(\bar{A})}$$

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

Calculation

 $P(\text{true positive} \cap \text{positive}) = P(\text{positive}|\text{true positive}) * P(\text{sick}) = \frac{1}{10000} * 1$

$$P(\text{true positive}|\text{positive}) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{10000} * 1}{\frac{1}{10000} * 1 + \frac{9999}{10000} * 0.01}$$

$$P(\text{true positive}|\text{positive}) = \frac{100}{10099}$$

B Given

P(true positive|positive) = ?

Equation

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\bar{A}) \cdot P(\bar{A})}$$

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

Calculation

 $P(\text{true positive} \cap \text{positive}) = P(\text{positive}|\text{true positive}) * P(\text{sick}) = \frac{1}{10000} * 1$

$$P(\text{true positive}|\text{positive}) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{200} * 1}{\frac{1}{200} * 1 + \frac{199}{200} * 0.01}$$

$$P(\text{true positive}|\text{positive}) = \frac{100}{299}$$

Given

2 six-sided dice

divisible by 3-> 6\$

not divisible by 3->-3\$

Equation

$$E(x) = \sum x_i P(x_i)$$

x is the outcome of the event

P(x) is the probability of the event occurring

6\$)							
	1	2	3	4	5	6		
1	2	3	4	5	6	7		
2	3	4	5	6	7	8		
3	4	5	6	7	8	9		
4	5	6	7	8	9	10		
5	6	7	8	9	10	11		
6	7	8	9	10	11	12		
		5 6 7 8 9 10 6 7 8 9 10 11						

$$E(x) = \sum x_i P(x_i) = \frac{1}{3} * 6 + \frac{2}{3} * (-3)$$

$$E(x)=0$$

Given

Alex:

more than 12, he will win 5\$

sum is less than 12, he will lose 6\$.

exactly 12, he will break even -> 0\$ (assumption)

Equation

$$E(x) = \sum x_i P(x_i)$$

x is the outcome of the event

P(x) is the probability of the event occurring

	1	2	3	4	5	D(avm < 12) - 15
6	7	8	9	10	11	$P(sum < 12) = \frac{13}{25}$
7	8	9	10	11	12	$P(c_{1}m > 12) - \frac{6}{m}$
8	9	10	11	12	13	$P(sum > 12) = \frac{3}{25}$
9	10	11	12	13	14	$P(sum = 12) = \frac{4}{}$
10	11	12	13	14	15	$P(sum = 12) = \frac{1}{25}$

$$E(x) = \sum x_i P(x_i) = 5 * \frac{6}{25} + (-6) * \frac{15}{25} + \frac{4}{25} * 0$$

$$E(x) = -\frac{12}{5}$$

Given

$$n = 8$$

 $200\;people$

P = 40% man

Equation

$$\mu = \sum x_i P(x_i)$$

$$\sigma = \sqrt{\frac{P - P^2}{n}}$$

$$\mu = nP = 0.4 * 8$$

$$\mu = 3.2$$

$$\sigma = \sqrt{\frac{P - P^2}{n}} = \sqrt{\frac{0.4 - (0.4)^2}{8}} = \frac{\sqrt{3}}{10} \sim 0.2$$

$$\sigma \sim 0.2$$

Given

$$\mu = 26$$

$$\sigma = 2$$

$$P(26 < X < 30) = ?$$

Equation

$$Z = \frac{X - \mu}{\sigma}$$

Calculation

$$P(26 < X < 30) = P(\frac{26 - 26}{2} < \frac{X - \mu}{\sigma} < \frac{30 - 26}{2})$$

$$P(26 < X < 30) = P(0 < Z < 2)$$

Using: https://www.statisticshowto.com/tables/z-table/

2.0 <mark>0.4772</mark> 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

$$P(26 < X < 30) = 0.4772 \sim 0.48$$

$$P(26 < X < 30) \sim 0.48 = 48\%$$

Given

$$P(X > 3) = ?$$

With help of

https://en.wikipedia.org/wiki/Probability_density_function

Explanation

Assuming that the y-axis is Probability density function then the way to calculate P(X > 3) is the area below the triangle

$$P(X > 3) = 0.4 * \frac{5 - 3}{2}$$

$$P(X > 3) = 0.4$$

Given

$$k = 3$$

$$n = 4$$

$$P = 0.6$$

$$q = 1 - P = 0.4$$

$$P(x = k) = ?$$

Equation

$$P(X = k) = C_n^k P^k q^{(n-k)}$$

$$P(X = k) = C_4^3 (0.6)^3 (0.4)^{4-3}$$

$$P(X=k) = \frac{216}{625} \sim 0.34$$

Given

Equation

$$E(x) = \sum x_i P(x_i)$$

x is the outcome of the event

P(x) is the probability of the event occurring

$$E(x) = \sum x_i P(x_i) = 0.1 * -10 + 0.35 * (-5) + 0.1 * 0 + 0.35 * 5 + 0.1 * 10$$

$$E(x)=0$$