C8 problems

For the circuit in Fig. 8.7, find: (a) $i_L(0^+)$, $v_C(0^+)$, $v_R(0^+)$, (b) $di_L(0^+)/dt$, $dv_C(0^+)/dt$, $dv_R(0^+)/dt$, (c) $i_L(\infty)$, $v_C(\infty)$, $v_R(\infty)$.

If $R = 10 \Omega$, L = 5 H, and C = 2What type of natural response wi

Refer to the circuit in Fig. 8.17. Find v(t) for t > 0.

Answer: $150(e^{-10t} - e^{-2.5t})$ V.

4

Having been in position a for a moved to position b at t = 0. Fir

Determine v and i for t > 0 in the circuit of Fig. 8.28. (See comments about current sources in Practice Prob. 7.5.)

Answer: $12(1 - e^{-5t})$ V, $3(1 - e^{-5t})$ A.

In the op amp circuit shown in F: t > 0. Assume that $R_1 = R_2 = 10$

Answer: $(10 - 12.5e^{-t} + 2.5e^{-5})$

For the circuit in Fig. 8.50, obtai

Answer: See Fig. 8.51.

For the circuit in Fig. 8.50, obtai

Comparison of mesh eq. and nodal eq. in original and dual circuits: By replacing i with v, we get totally same equations.

8.76 Find the dual of the circuit

Mesh eq. 1: -60V = 0

Node eq. 1: -60A = 0

Leaving node 1 with −60A

→ Entering node 1 with 60A

- 8.2 (s8.2)
- 8.3 (s8.3)
- 8.6 (s8.4)
- 8.7 (s8.5)
- 8.9 (s8.7)
- 8.11 (s8.8)
- 8.15 (s8.10)