## PMat - wspólna praca domowa seria III

Gracjan Barski, album: 448189

January 22, 2024

W poniższych rozumowaniach moc zbioru oznaczam modułami, to znaczy moc zbioru A to |A|, oraz zaliczam 0 do liczb naturalnych.

## Zadanie 309:

a) Pokazać, że r jest relacją równoważności.

Weźmy funkcję  $h: \mathbb{Z}[x] \to \mathbb{Z}[x]$ . Ta funkcja otrzyma wielomian na wejściu i wszystkie jego współczynniki zredukuje mod 2. Traktując wielomian jako wektor w przestrzeni liniowej nad  $\mathbb{Z}$  to można zapisać:

$$h\left(\begin{bmatrix} x_1\\x_2\\\vdots\\x_n\end{bmatrix}\right) = \begin{bmatrix} x_1 \mod 2\\x_2 \mod 2\\\vdots\\x_n \mod 2\end{bmatrix}$$

Łatwo zaważyć że  $r = \ker h$ . Prosty dowód poprzez wzajemną inkluzję:

 $(\subseteq)$  weźmy taką parę  $\langle f,g\rangle \in r$ . Wiemy że ich odpowiadające współczynniki mają taką samą parzystość (bo tylko różnica dwóch liczb o tej samej parzystości daje wynik parzysty). Korzystając z faktu że dwie liczby  $a,b\in\mathbb{Z}$  spełniają równość  $a\equiv b\mod 2$  wtedy i tylko wtedy gdy ich parzystość jest taka sama otrzymujemy h(f)=h(g), czyli  $\langle f,g\rangle \in \ker h$ .

 $(\supseteq)$  weźmy taką parę  $\langle f,g\rangle\in\ker h$ . Korzystając z tych samych dwóch faktów co wyżej wnioskujemy że ich odpowiadające współczynniki mają taką samą parzystość. Czyli ich różnica będzie miała tylko współczynniki parzyste, więc  $\langle f,g\rangle\in r$ .

Z wzajemnej inkluzji wnioskujemy równość zbiorów.

Z wykładu wiadomo że relacja jest relacją równoważności wtedy i tylko wtedy gdy istnieje funkcja, której ta relacja jest jądrem, więc wnioskujemy że r jest relacją równoważności.

- b) Wskazać trzy różne klasy abstrakcji.
  - 1)  $[0]_r$ zbiór wszystkich wielomianów o współczynnikach parzystych
  - 2)  $[1]_r$  zbiór wszystkich wielomianów które przy  $x^0$  mają współczynnik nieparzysty, a pozostałe współczynniki parzyste
  - 3)  $[x+1]_r$  zbiór wszystkich wielomianów które przy  $x^0$  i  $x^1$  mają współczynniki nieparzyste, a pozostałe współczynniki parzyste
- c) Wyznaczyć moc zbioru  $\mathbb{Z}[x]/r$ .

Rozważmy funkcję  $f\colon \mathcal{P}_{\mathrm{fin}}(\mathbb{N})\to \mathbb{Z}[x]/_r$ określoną wzorem

$$f(A) = \left[\sum_{n=0}^{\max A} \chi_A(n) \cdot x^n\right]_r$$

Gdzie  $\mathcal{P}_{\text{fin}}(\mathbb{N})$  to zbiór wszystkich skończonych podzbiorów  $\mathbb{N}$ , a  $\chi_A$  to indykator zbioru A. Biorę tylko skończone podzbiory  $\mathbb{N}$ , ponieważ gdybym wziął wszystkie to argument funkcji mógłby nie mieć elementu największego, a jeżeli suma we wzorze iterowałaby do nieskończoności to otrzymany obiekt nie byłby wielomianem, więc byłby poza dziedziną (wielomiany muszą mieć skończony stopień).

Pokażę, że f jest iniekcją.

Weźmy dwa dowolne  $A_1, A_2 \in \mathcal{P}(\mathbb{N})$  takie że  $A_1 \neq A_2$ , to oznacza że w którymś jest element, którego nie ma w drugim. Bez straty ogólności załóżmy  $\exists_{a_1 \in A_1} \ a_1 \notin A_2$ . Weźmy to  $a_1$ . Rozważmy wartość  $f(A_1)$ :

$$f(A_1) = \left[\sum_{n=0}^{\max A_1} \chi_{A_1}(n) \cdot x^n\right]_r = \left[\chi_{A_1}(0) \cdot x^0 + \chi_{A_1}(1) \cdot x^1 + \ldots + \chi_{A_1}(a_1) \cdot x_1^a + \ldots + \chi_{A_1}(\max A_1) \cdot x^{\max A_1}\right]$$

Jako że  $\chi_{A_1}(a_1) = 1$ , to wielomiany w  $f(A_1)$  mają współczynniki nieparzyste przy  $x^{a_1}$ . W przeciwieństwie do tego, wszystkie wielomiany w  $f(A_2)$  mają współczynniki parzyste (bo  $\chi_{A_2}(a_1) = 0$ ), więc wnioskujemy, że:

$$\left\langle \sum_{n=0}^{\max A_1} \chi_{A_1}(n) \cdot x^n, \sum_{n=0}^{\max A_2} \chi_{A_2}(n) \cdot x^n \right\rangle \notin r$$

A jeśli nie są ze sobą w relacji r to ich klasy abstrakcji są różne (ponieważ r jest relacją równoważności), więc istotnie f jest iniekcją.

Teraz pokaże, że f jest surjekcja:

Weźmy klasę abstrakcji  $[p]_r$ , dla dowolnego  $p \in \mathbb{Z}[x]$ . Weźmy wielomian  $p' \in \mathbb{Z}[x]$ , który spełnia p' = h(p) (gdzie funkcja p' to funkcja zdefiniowana w podpunkcie a)). Czyli p' to po prostu wielomian ze zredukowanymi mod 2 współczynnikami wielomianu p. Jak wykazano w podpunkcie wcześniejszym, p i p' są ze sobą w relacji p', więc p' i sprawdzam przy jakich potęgach p' ma on współczynniki równe 1, a następnie te potęgi umieszczam w zbiorze p'. Formalnie:

$$A = \{n \in \mathbb{N} \mid \text{współczynnik} \ p' \ \text{przy} \ x^n \ \text{jest równy} \ 1\}$$

Dla ścisłości warto zaznaczyć, że taki zbiór jest skończony, ponieważ wielomiany mają skończony stopień, więc istotnie  $A \in \mathcal{P}_{\mathrm{fin}}(\mathbb{N})$ . Z własności f mamy:  $f(A) = [p']_r = [p]_r$  więc istotnie f jest surjekcją.

Więc f jest bijekcją, a to oznacza, że  $\mathcal{P}_{\text{fin}}(\mathbb{N}) \sim \mathbb{Z}[x]_r$ . Z ćwiczeń wiadomo że  $|\mathcal{P}_{\text{fin}}(\mathbb{N})| = \aleph_0$ , więc wnioskujemy:  $|\mathbb{Z}[x]/_r| = \aleph_0$ .

d) Wskazać wszystkie liczby kardynalne, które są mocami klas abstrakcji tej relacji.

Weźmy klasę abstrakcji  $[p]_r$  dla dowolnego  $p \in \mathbb{Z}[x]$ .

Rozważmy funkcję identycznościową  $f_p: [p]_r \to \mathbb{Z}[x]$  zadaną wzorem f(p) = p. Z oczywistych względów ta funkcja jest iniekcją. Więc wnioskujemy, że  $|[p]_r| \le |\mathbb{Z}[x]|$ . Wiemy że  $|\mathbb{Z}[x]| = \aleph_0$  (fakt z wykładu), więc mamy  $|[p]_r| \le \aleph_0$ . Teraz potrzebujemy dolnego ograniczenia, jednak jest ono trywialne.

Pokażę, że dla dowolnej takiej klasy  $[p]_r$  mamy w niej nieskończenie wiele elementów. Skorzystam z faktu, że wielomian jest wyznaczony unikalnie przez jego współczynniki. Weźmy ten wielomian p oraz jego pewien współczynnik  $a_i$  przy  $x^i$ . Teraz weźmy wielomian p', który ma wszystkie współczynniki te same co p, oprócz tego  $a_i$ . Chcielibyśmy żeby  $p' \in [p]_r$ , więc jeśli za współczynnik przy  $x^i$  wezmę  $a_i+2k$  dla dowolnego  $k \in \mathbb{Z}$ , to faktycznie  $p' \in [p]_r$  (ponieważ  $a_i+2k-a_i\equiv 0 \mod 2$  dla każdego  $k\in \mathbb{Z}$ ). Więc mam do wyboru  $\aleph_0$  współczynników, więc istotnie klasa abstrakcji  $[p]_r$  jest nieskończona. A z tego wnioskuję, że  $\aleph_0 \leq |[p]_r|$  (ponieważ  $\aleph_0$  to najmniejsza możliwa nieskończoność).

Z twierdzenia Cantora-Bernsteinta otrzymuję  $|[p]_r| = \aleph_0$  dla każdego  $p \in \mathbb{Z}[x]$ .

## Zadanie 336:

a) Znaleźć  $\bigcup_{r\in\mathcal{R}}\ g(r)$ i $\bigcap_{r\in\mathcal{R}}\ g(r)$ 

Najpierw pokażę, że  $\bigcup_{r \in \mathcal{R}} \ g(r) = \mathcal{P}(\mathbb{N})$ . Prosty dowód poprzez wzajemną inkluzję:

- $(\subseteq)$  Weźmy dowolne  $A \in \bigcup_{r \in \mathcal{R}} g(r)$ . Z definicji mamy  $\exists_{r \in \mathcal{R}} A \in g(r)$ , a to oznacza że w szczególności  $A \in \mathcal{P}(\mathbb{N})$ , ponieważ g(r) jest typu  $\mathcal{P}(\mathcal{P}(\mathbb{N}))$ .
- (⊇) Weźmy dowolne  $A \in \mathcal{P}(\mathbb{N})$ . Weźmy taką relację równoważności  $r \in \mathcal{R}$  której jedną z klas abstrakcji jest zbiór A, a drugą  $\mathbb{N} A$ . Wtedy  $g(r) = \{A, \mathbb{N} A\}$ , więc  $A \in r$ , a z tego  $A \in \bigcup_{r \in \mathcal{R}} g(r)$ .

Z wzajemnej inkluzji wnioskujemy równość zbiorów.

Teraz pokażę, że  $\bigcap_{r \in \mathcal{R}} g(r) = \emptyset$ .

Załóżmy nie wprost, że  $\bigcap_{r \in \mathcal{R}} g(r)$  jest niepuste. To oznacza, że istnieje  $A \in \mathcal{P}(\mathbb{N})$  takie że  $\forall_{r \in \mathcal{R}} A \in g(r)$ , czyli innymi słowy A jest klasą abstrakcji w każdej relacji  $r \in \mathcal{R}$ . Rozważmy dwa przypadki:

- 1) A jest singletonem: Wtedy A nie należy do  $g(\mathbb{N}^2)$ , ponieważ relacja  $\mathbb{N}^2$  posiada tylko jedną klasę abstrakcji, która nie jest singletonem (a mianowicie cały zbiór  $\mathbb{N}$ ).
- 2) A nie jest singletonem: Wtedy A nie należy do  $g(\mathbf{1}_{\mathbb{N}})$ , ponieważ relacja  $\mathbf{1}_{\mathbb{N}}$  posiada tylko klasy abstrakcji które są singletonami.

Mamy sprzeczność w obu przypadkach, więc takie A nie istnieje, a to oznacza że  $\bigcap_{r \in \mathcal{R}} g(r) = \emptyset$ .

b) Czy g jest iniekcją? Czy jest surjekcją?

Wykażę iniektywność g:

Wiadomo, że każda relacja równoważności na danym zbiorze jest definiowana **unikalnie** przez podział na tym zbiorze (fakt z wykładu), więc jeśli wezmę dwie relacje równoważności  $r_1, r_2 \in \mathcal{R}$  takie że  $r_1 \neq r_2$ , to są one zdefiniowane przez dwa różne podziały  $\mathbb{N}$ . Warto zauważyć, że funkcja g(r), mapuje r właśnie na ten podział (bo  $\mathbb{N}/r$  to w istocie to samo co podział  $\mathbb{N}$  według relacji r), więc z  $g(r_1)$  i  $g(r_2)$  otrzymamy dwa różne podziały, a to dowodzi że q jest iniekcja.

Teraz czy jest surjektywna? Nie jest. Kontrprzykład:

Jak już zostało opisane wyżej, dla każdego  $r \in \mathcal{R}$  wynikiem g(r) jest podział  $\mathbb{N}$ , więc z g nie dostanę zbioru który nie jest podziałem  $\mathbb{N}$ , a w szczególności takiego zbioru  $A \in \mathcal{P}(\mathcal{P}(\mathbb{N}))$  dla którego zachodzi  $\bigcup A \neq \mathbb{N}$  (ponieważ dla podziału musiałaby zachodzić równość). Przykładem A może być  $\{\{1\}\}$ , które jest nieosiągalne.

c) Znaleźć  $g(\mathcal{R})$  oraz  $g^{-1}(\{Z \subseteq \mathcal{P}(\mathbb{N}) \mid |Z|=1\})$  i  $g^{-1}(\{\{Z \in \mathcal{P}(\mathbb{N}) \mid |Z|=1\}\})$ .

Najpierw  $g(\mathcal{R})$ . Pokażę, że:

$$g(\mathcal{R}) = \{ A \in \mathcal{P}(\mathcal{P}(\mathbb{N})) \mid A \text{ jest podziałem } \mathbb{N} \}$$

Oznaczę ten zbiór po prawej jako  $\mathcal{B}$ . Dowód poprzez wzajemną inkluzję:

- (⊆) Weźmy dowolne  $A \in g(\mathcal{R})$ , czyli  $\exists_{r \in \mathcal{R}} g(r) = A$ , czyli A jest podziałem  $\mathbb{N}$  (z podpunktu b)). Z tego mamy  $A \in \mathcal{B}$ .
- $(\supseteq)$  Weźmy dowolne  $A \in \mathcal{B}$ , czyli A jest podziałem  $\mathbb{N}$ , a to oznacza, że unikalnie definiuje pewną relację równoważności  $r \in \mathcal{R}$ . A z tego mamy że g(r) = A, więc  $A \in g(\mathcal{R})$ .

Z wzajemnej inkluzji wnioskujemy równość zbiorów.

Teraz  $g^{-1}(\{Z\subseteq\mathcal{P}(\mathbb{N})\mid |Z|=1\})$ . Czyli szukamy przeciwobrazu zbioru, który zawiera zbiory, które zawierają dokładnie jeden podzbiór  $\mathbb{N}$ . Z definicji g, każdy taki podzbiór  $\mathbb{N}$ , który jest w tych zbiorach, powinien być klasą abstrakcji i jednocześnie być podziałem  $\mathbb{N}$ . Istnieje tylko jeden podział  $\mathbb{N}$  który ma jeden element, a mianowicie  $\{\mathbb{N}\}$ . Łatwo zauważyć, że  $g(\mathbb{N}^2)=\{\mathbb{N}\}$ , więc szukany przeciwobraz to  $\{\mathbb{N}^2\}$ 

Teraz  $g^{-1}(\{\{Z \in \mathcal{P}(\mathbb{N}) \mid |Z|=1\}\})$ . Czyli szukamy relacji  $r \in \mathcal{R}$ , do której po przyłożeniu g otrzymamy zbiór wszystkich singletonów z  $\mathbb{N}$ . Innymi słowy taka relacja dla której zachodzi  $g(r)=\{\{1\},\{2\},\{3\},\ldots\}$ . Widać że jeśli weźmiemy  $r=\mathbf{1}_{\mathbb{N}}$  to właśnie taki rezultat otrzymamy, ponieważ klasami abstrakcji  $\mathbf{1}_{\mathbb{N}}$  są wszystkie podzbiory  $\mathbb{N}$ , które są jednoelementowe. Więc szukany przeciwobraz to  $\{\mathbf{1}_{\mathbb{N}}\}$ .

## Zadanie 579:

a) Narysować  $F(\{1,2\})$ :



b) Czy F jest iniekcją lub czy jest surjekcją.

Pokażę że F jest iniekcją.

Weźmy  $A_1, A_2 \in \mathcal{P}(\mathbb{R})$  takie że  $A_1 \neq A_2$ . Czyli muszą różnić się co najmniej jednym elementem. Bez straty ogólności założę, że  $\exists_{a_1 \in A_1} a_1 \notin A_2$ . Więc do  $F(A_1)$  należą wszystkie pary liczb rzeczywistych x, y które spełniają  $x - y = a_1$ , ale do  $F(A_2)$  nie należą, więc istotnie  $F(A_1) \neq F(A_2)$  co dowodzi że F jest iniekcją.

Teraz pokaże że F nie jest surjekcja.

Załóżmy przeciwnie że F jest surjekcją i istnieje takie  $A \in \mathcal{P}(\mathbb{R})$  że  $F(A) = \{\langle 0, 0 \rangle\}$ . Z definicji F wiemy że w takim wypadku  $0 \in A$ , ale wtedy również:

$$\{\langle x, y \rangle \in \mathbb{R}^2 \mid x - y = 0\} \subseteq F(A)$$

Mamy sprzeczność z założeniem, wiec nie istnieje takie A, wiec F nie jest surjekcja.

c) Udowodnić że  $F(\mathbb{N})$  jest częściowym porządkiem w  $\mathbb{R}$  i podać przykład nieskończonego antyłańcucha w tym porządku.

Relacja częściowego porządku musi być zwrotna, antysymteryczna i przechodnia.

1) Zwrotność:

Weźmy dowolne  $x \in R$ .  $x - x = 0 \in \mathbb{N}$  wiec  $\langle x, x \rangle \in F(\mathbb{N})$ .

2) Antysymetria:

Weźmy dowolne  $x,y\in\mathbb{R}$  takie że  $\langle x,y\rangle\in F(\mathbb{N})$  i  $\langle y,x\rangle\in F(\mathbb{N})$ . Z definicji F to oznacza że  $x-y\in\mathbb{N}$  i  $y-x\in\mathbb{N}$ . Zauważmy że (x-y)+(y-x)=0 Więc są to elementy przeciwne w grupie  $(\mathbb{Z},+,0)$  Ale jedynym elementem  $\mathbb{Z}$  który należy do  $\mathbb{N}$  i jego element przeciwny również należy do  $\mathbb{N}$  jest 0, więc x-y=0, a z tego x=y.

3) Przechodniość:

Weźmy dowolne  $x,y,z\in\mathbb{R}$  takie że  $\langle x,y\rangle\in F(\mathbb{N})$  i  $\langle y,z\rangle\in F(\mathbb{N})$ . Z tego wiemy że  $x-y\in\mathbb{N}$  i  $y-z\in\mathbb{N}$ . Teraz dodajmy te dwa elementy do siebie: (x-y)+(y-z)=x-z. Korzystając z faktu że zbiór liczb naturalnych jest zamknięty na dodawanie, otrzymujemy  $x-z\in\mathbb{N}$ . Więc  $\langle x,z\rangle\in F(\mathbb{N})$ .

Wnioskujemy że istotnie  $F(\mathbb{N})$  jest relacją częściowego porządku.

Teraz znaleźć nieskończony antyłańcuch w tym porządku. Rozpatrzmy zbiór B:

$$B = \{a\sqrt{2} \mid a \in \mathbb{N}\}$$

Niewątpliwie ten zbiór jest nieskończony. Pokażmy że dowolne dwa elementy B nie są porównywalne w porządku  $F(\mathbb{N})$ :

Weźmy dowolne dwa różne elementy  $b_1, b_2 \in B$ , takie że  $b_1 \neq b_2$  Można je zapisać odpowiednio jako  $a_1\sqrt{2}, a_2\sqrt{2}$ , gdzie  $a_1, a_2 \in \mathbb{N}$ . Jeśli  $b_1 \neq b_2$  to łatwo wywnioskować że  $a_1 \neq a_2$ . Różnica  $b_1 - b_2$  jest równa  $(a_1 - a_2)\sqrt{2}$  i jeśli  $a_1 \neq a_2$  to ta wartość nigdy nie jest naturalna (to samo dla różnicy  $b_2 - b_1$ ), więc para składająca się z tych dwóch elementów nie jest w zbiorze  $F(\mathbb{N})$  więc nie są porównywalne.

d) Wyznaczyć przeciwobraz zbioru wszystkich relacji zwrotnych w  $\mathbb{R}$  przy funkcji F.

Oznaczmy zbiór wszystkich relacji zwrotnych jako  $\mathcal{R}$ . Pokażę, że  $F^{-1}(\mathcal{R}) = \{A \in \mathcal{P}(\mathbb{R}) \mid 0 \in A\}$ . Dowód poprzez wzajemną inkluzję:

- (⊆) Weźmy dowolne  $A \in F^{-1}(\mathcal{R})$ . Wiemy że F(A) = r gdzie r jest zwrotne, czyli  $\forall_{x \in \mathbb{R}} \langle x, x \rangle \in r$  Ale z definicji F to oznacza że  $0 \in A$ , więc  $A \in \{A \in \mathcal{P}(\mathbb{R}) \mid 0 \in A\}$ .
- (⊇) Weźmy dowolne  $A \in \{A \in \mathcal{P}(\mathbb{R}) \mid 0 \in A\}$ . Jeśli  $0 \in A$  to z definicji F mamy:

$$\{\langle x, y \rangle \in \mathbb{R}^2 \mid x - y = 0\} \subseteq F(A)$$

Więc do F(A) należą wszystkie pary postaci  $\langle x, x \rangle$  gdzie  $x \in \mathbb{R}$ . A to oznacza, że jest to relacja zwrotna. Wnioskujemy że  $A \in F^{-1}(\mathcal{R})$ .

Z wzajemnej inkluzji wnioskujemy równość zbiorów.

e) Jakiej mocy jest zbiór  $F(\mathbb{Q})$ ?

Rozważmy funkcję  $f: \mathbb{R} \times \mathbb{Q} \to F(\mathbb{Q})$  określoną wzorem:

$$f(x,q) = \langle x, x - q \rangle$$

Sprawdźmy czy taka funkcja jest poprawnie zdefiniowana:

Weźmy dowolne  $x \in \mathbb{R}$  i  $q \in \mathbb{Q}$ . Mamy  $f(x,q) = \langle x, x - q \rangle$ , i to musi należeć do  $F(\mathbb{Q})$ , więc różnica elementów w parze musi być wymierna:  $x - (x - q) = q \in \mathbb{Q}$ , więc funkcja jest poprawnie zdefiniowana.

Teraz wykażmy jej iniektywność.

Weźmy dowolne dwie pary  $\langle x_1, q_1 \rangle, \langle x_2, q_2 \rangle \in \mathbb{R} \times \mathbb{Q}$ . Jak przyłożymy funkcję f do tych par to otrzymamy odpowiednio  $\langle x_1, x_1 - q_1 \rangle$  oraz  $\langle x_2, x_2 - q_2 \rangle$ . Chcemy aby otrzymane pary nie były równe sobie więc rozpatrzmy dwa przypadki:

- 1)  $x_1 \neq x_2$ : Pierwsze elementy otrzymanych par się różnią, więc wartości funkcji istotnie są różne.
- 2)  $q_1 \neq q_2$ : Jeśli zachodzi również  $x_1 \neq x_2$  to lądujemy w przypadku 1) i sprawa jest załatwiona, więc teraz załóżmy  $x_1 = x_2$ . Pierwsze elementy otrzymanych par są takie same, więc spójrzmy na drugie. Wynoszą odpowiednio  $x_1 q_1$  i  $x_2 q_2$ . Łącząc ze sobą dwa założenia  $q_1 \neq q_2$  i  $x_1 = x_2$  otrzymujemy:  $x_1 q_1 \neq x_2 q_2$ , więc istotnie otrzymane pary są różne.

Wnioskujemy że f jest iniekcją.

Teraz pokażę jej surjektywność:

Weźmy dowolną parę liczb $a, b \in \mathbb{R}$  taką że  $\langle a, b \rangle \in F(\mathbb{Q})$ . Z definicji funkcji F musi zachodzić  $a - b \in \mathbb{Q}$ . Jeśli wezmę  $x \in \mathbb{R}$  takie że x = a oraz wezmę  $q \in \mathbb{Q}$  takie że q = a - b (istotnie jest to elementem  $\mathbb{Q}$  z założenia), to mam  $f(x,q) = \langle a,b \rangle$ . Więc mamy surjekcję.

Więc f jest bijekcją, a co za tym idzie  $\mathbb{R} \times \mathbb{Q} \sim F(\mathbb{Q})$ . Z operacji na liczbach kardynalnych mamy:

$$|\mathbb{R} \times \mathbb{Q}| = |\mathbb{R}| \cdot |\mathbb{Q}| = \mathfrak{c} \cdot \aleph_0 = \mathfrak{c}$$

Więc  $|F(\mathbb{Q})| = \mathfrak{c}$ .