TopogrElow

TensorFlow API r1.4

tf.contrib.distributions.ConditionalTransformedDistribution

Contents

Class ConditionalTransformedDistribution

Properties

allow_nan_stats

batch_shape

Class ConditionalTransformedDistribution

Inherits From: ConditionalDistribution, TransformedDistribution

 $Defined \ in \ \ tensorflow/contrib/distributions/python/ops/conditional_transformed_distribution.py\ .$

A TransformedDistribution that allows intrinsic conditioning.

Properties

allow_nan_stats

Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = $E[(X - mean)^{**}2]$ is also undefined.

Returns:

• allow_nan_stats: Python bool.

batch_shape

Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Returns:

• batch_shape : **TensorShape** , possibly unknown.

bijector

Function transforming x => y.
distribution
Base distribution, p(x).
dtype
The DType of Tensor's handled by this Distribution.
event_shape
Shape of a single sample from a single batch as a TensorShape .
May be partially defined or unknown.
Returns:
• event_shape : TensorShape , possibly unknown.
name
Name prepended to all ops created by this Distribution .
parameters
Dictionary of parameters used to instantiate this Distribution .
reparameterization_type
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances distributions.FULLY_REPARAMETERIZED or distributions.NOT_REPARAMETERIZED.
Returns:
An instance of ReparameterizationType.
validate_args
Python bool indicating possibly expensive checks are enabled.
Methods
init

```
__init__(
    distribution,
    bijector=None,
    batch_shape=None,
    event_shape=None,
    validate_args=False,
    name=None
)
```

Construct a Transformed Distribution.

Args:

- distribution: The base distribution instance to transform. Typically an instance of Distribution.
- bijector: The object responsible for calculating the transformation. Typically an instance of Bijector. None
 means Identity().
- batch_shape: integer vector Tensor which overrides distribution batch_shape; valid only if distribution.is_scalar_batch().
- event_shape: integer vector Tensor which overrides distribution event_shape; valid only if distribution.is_scalar_event().
- validate_args: Python bool, default False. When True distribution parameters are checked for validity despite
 possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
- name: Python str name prefixed to Ops created by this class. Default: bijector.name + distribution.name.

batch_shape_tensor

```
batch_shape_tensor(name='batch_shape_tensor')
```

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

name: name to give to the op

Returns:

• batch_shape: Tensor.

cdf

```
cdf(
    *args,
    **kwargs
)
```

Additional documentation from ConditionalTransformedDistribution:

kwargs:

bijector_kwargs: Python dictionary of arg names/values forwarded to the bijector.

• distribution_kwargs: Python dictionary of arg names/values forwarded to the distribution.

copy

```
copy(**override_parameters_kwargs)
```

Creates a deep copy of the distribution.

Note: the copy distribution may continue to depend on the original initialization arguments.

Args:

**override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

• distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

```
covariance(name='covariance')
```

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

```
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
```

where Cov is a (batch of) $k \times k$ matrix, $0 \leftarrow (i, j) \leftarrow k$, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), **Covariance** shall return a (batch of) matrices under some vectorization of the events, i.e.,

```
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
```

where Cov is a (batch of) $k' \times k'$ matrices, $0 \le (i, j) \le k' = reduce_prod(event_shape)$, and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

• name: The name to give this op.

Returns:

covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

entropy

```
entropy(name='entropy')
```

Shannon entropy in nats.

event_shape_tensor

```
event_shape_tensor(name='event_shape_tensor')
```

Shape of a single sample from a single batch as a 1-D int32 **Tensor**.

Args:

• name: name to give to the op

Returns:

• event_shape: Tensor.

is_scalar_batch

```
is_scalar_batch(name='is_scalar_batch')
```

Indicates that batch_shape == [].

Args:

• name: The name to give this op.

Returns:

• is_scalar_batch: bool scalar Tensor.

is_scalar_event

```
is_scalar_event(name='is_scalar_event')
```

Indicates that event_shape == [].

Args:

• name: The name to give this op.

Returns:

• is_scalar_event: bool scalar Tensor.

log_cdf

```
log_cdf(
    *args,
    **kwargs
)
```

Additional documentation from ConditionalTransformedDistribution:

kwargs:

- bijector_kwargs: Python dictionary of arg names/values forwarded to the bijector.
- distribution_kwargs: Python dictionary of arg names/values forwarded to the distribution.

log_prob

```
log_prob(
    *args,
    **kwargs
)
```

Additional documentation from ConditionalTransformedDistribution:

kwargs:

- bijector_kwargs: Python dictionary of arg names/values forwarded to the bijector.
- distribution_kwargs: Python dictionary of arg names/values forwarded to the distribution.

log_survival_function

```
log_survival_function(
    *args,
    **kwargs
)
```

Additional documentation from ConditionalTransformedDistribution:

kwargs:

- **bijector_kwargs**: Python dictionary of arg names/values forwarded to the bijector.
- distribution_kwargs: Python dictionary of arg names/values forwarded to the distribution.

mean

```
mean(name='mean')
```

Mean.

mode

```
mode(name='mode')
```

Mode.

param_shapes

```
param_shapes(
    cls,
    sample_shape,
    name='DistributionParamShapes'
)
```

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given **Distribution** so that a particular shape is returned for that instance's call to **sample()**.

Subclasses should override class method _param_shapes .

Args:

- sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
- name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

```
param_static_shapes(
    cls,
    sample_shape
)
```

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given **Distribution** so that a particular shape is returned for that instance's call to **sample()**. Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

ValueError: if sample_shape is a TensorShape and is not fully defined.

prob

```
prob(
    *args,
    **kwargs
)
```

Additional documentation from ConditionalTransformedDistribution:

kwargs:

- bijector_kwargs: Python dictionary of arg names/values forwarded to the bijector.
- distribution_kwargs: Python dictionary of arg names/values forwarded to the distribution.

quantile

```
quantile(
   value,
   name='quantile'
)
```

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

```
quantile(p) := x such that P[X \leftarrow= x] == p
```

Args:

- value: float or double Tensor.
- name: The name to give this op.

Returns:

• quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

```
sample(
    *args,
    **kwargs
)
```

kwargs:

• **condition_kwargs : Named arguments forwarded to subclass implementation.

stddev

```
stddev(name='stddev')
```

Standard deviation.

Standard deviation is defined as,

```
stddev = E[(X - E[X])**2]**0.5
```

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape .

Args:

• name: The name to give this op.

Returns:

stddev: Floating-point Tensor with shape identical to batch_shape + event_shape , i.e., the same shape as self.mean().

survival_function

```
survival_function(
   *args,
   **kwargs
)
```

Additional documentation from ConditionalTransformedDistribution:

kwargs:

- bijector_kwargs: Python dictionary of arg names/values forwarded to the bijector.
- distribution_kwargs: Python dictionary of arg names/values forwarded to the distribution.

variance

```
variance(name='variance')
```

Variance.

Variance is defined as,

```
Var = E[(X - E[X])**2]
```

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape .

Args:

• name: The name to give this op.

Returns:

variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

Stay Connected
Blog
GitHub
Twitter
Support
Issue Tracker
Release Notes
Stack Overflow
English
Terms Privacy