20221060 한성민

Structure

이번 과제는 이전의 quasi static approximation을 가정했던 시뮬레이션과는 달리 시간의 변화에 대한 current density의 변화를 고려한 transient simulation을 제작하는 것이다. time term을 고려하면 currnet density 식은 다음과 같이 나타낼 수 있다.

Time term

$$\begin{split} &\frac{dn}{dt} = \frac{1}{q} \, \nabla \, \cdot J_n \, \to \, \oint J_n \cdot dS = q \iiint_{\Omega} \frac{dn}{dt} dV \\ &\frac{dp}{dt} = -\frac{1}{q} \, \nabla \, \cdot J_p \, \to \, \oint J_p \cdot dS = -q \iiint_{\Omega} \frac{dp}{dt} dV \end{split}$$

1) electron case

$$\frac{dn}{dt} = \frac{1}{q} \nabla \cdot J_n \rightarrow -q \frac{dn}{dt} + \nabla \cdot J_n = 0$$

 $res(n) = -q \frac{dn}{dt} + \nabla \cdot J_n$ 이므로 이를 residue 항과 jacobian의 항으로 나타내면 다음과 같다.

$$\mathit{res}(n) = - \, q \times 0.25 \times \frac{n(t) - n(t-1)}{\Delta \, t} \times \mathit{length} \times \mathit{edge}$$

 $jac(n) = -q \times 0.25 / \Delta t \times length \times edge$

n(t-1)은 t-1의 old electron을 저장한 값이므로 constant한 값이기에 jacobian matrix에서는 고려해주지 않는다.

2) hole case

$$\frac{dp}{dt} = -\frac{1}{q} \nabla \cdot J_p \rightarrow q \frac{dn}{dt} + \nabla \cdot J_p = 0$$

 $res(p) = q \frac{dp}{dt} + \nabla \cdot J_p$ 이므로 이를 residue 항과 jacobian의 항으로 나타내면 다음과 같다.

$$res(p) = q \times 0.25 \times \frac{p(t) - p(t-1)}{\Delta t} \times length \times edge$$

 $jac(n) = -q \times 0.25 / \Delta t \times length \times edge$

동일하게 p(t-1)은 t-1의 old hole을 저장한 값이므로 constant한 값이기에 jacobian matrix에 서는 고려해주지 않는다.

위의 값들은 추가적으로 고려해준 사항이므로 기존의 jacobian, residue matrix에 더해준다.

Displacement current term

$$J_{dis} = rac{dD}{dt} = -\epsilon rac{E - E_{old}}{\Delta t}$$

또한, 시간에 대한 potantial 변화분을 고려해주어야 하기에 displacement current term을 고려해준다.

$$J_{dis} = \epsilon_{si} \epsilon_0 \left(\frac{\phi(t)_{(element)} - \phi(t)_{(contact)}}{\Delta t} - \frac{\phi(t-1)_{(element)} - \phi(t-1)_{(contact)}}{\Delta t} \right) \times length \times edge$$

$$I_{dis} = J_{dis} \times W$$

Result

1) Vd=1V, time step = $0.1 \mu sec$, rising/falling time = $1 \mu sec$

2) Vd=1V, time step = 0.1nsec rising/falling time = 1nsec

결과 1번은 Vd=1V, time step = $0.1\mu sec$, rising/falling time = $1\mu sec$ 로 설정하고 time에 대한 Vg, Id graph를 그린 것이다. rising time과 falling time 동안 Vg는 linear 하게 변화하고 Id는 non-linear하게 변화하는 것을 확인할 수 있었다.

결과 2번은 Vd=1V, time step = 0.05nsec, rising/falling time = 1nsec로 설정하고 time에 대한 Vg, Id graph를 그린 것이다. 동일하게 rising time과 falling time 동안 Vg는 linear 하게 변화하고 Id는 non-linear하게 변화하는 것을 확인할 수 있었다.