

Our Goals

Zeitreihenprognose

Featureanalyse

Persönliche Prognose

TABLE OF CONTENTS

Einleitung

Motivation & Ziel

03 Endergebnis

- Zeitreihenprognose
 Prognose der Gehälter der
 nächsten Jahre
- Kritische Reflektion
 Herausforderungen

Gehaltsprognose
Vorhersage des Gehalts
für bestimmte Parameter

Ussons learned
Was wir im Laufe des
Projekts gelernt haben

Unsere Daten

Durchschnittlicher Monatsverdienst vollzeitbeschäftigter Arbeitnehmer in der ITK-Branche in Deutschland vom 1. Quartal 2007 bis zum 4. Quartal 2021 (in Euro)

Vorgehensweise

Identifizieren des Trendes

Prüfen, ob zyklische Schwankungen vorliegen

Prognose

Vorhersage neuer Werte

Testen, ob sich statistische Werte verändern

Zeitreihenprognose

Weniger Daten, mehr Features

Unser Dataframe

	Age	Gender	City	yearsExperience	SeniorityLevel	salary	MainLanguage	Company Size	CompanyType
0	43	M	München	11	Senior	77000	Deutsch	100-1000	Product
1	33	F	München	8	Senior	65000	Deutsch	50-100	Product
2	32	M	München	10	Senior	88000	Deutsch	1000+	Product
3	25	M	München	6	Senior	78000	English	1000+	Product
4	39	M	München	10	Senior	69000	English	100-1000	Ecom retailer
					***	***		***	***
3004	31	M	Berlin	9	Senior	70000	English	51-100	Product
3005	33	M	Berlin	10	Senior	60000	English	1000+	Product
3006	39	M	Munich	15	Lead	110000	English	101-1000	eCommerce
3007	26	M	Saarbrücken	7	Middle	38350	German	101-1000	Product
3008	26	M	Berlin	2	Middle	65000	English	51-100	Startup
2603 r	2603 rows × 9 columns								

Korrelationsmatrix

Unsere Modelle

Lineare Regression

Ridge Regression

Random Forest

mittlere absolute Abweichung

Lineare Regression

Model Performance Average Error: 7752.1617 €. Accuracy = 88.10%.

Lineare Regression

Model Performance

Average Error: 8936.7533 degrees.

Accuracy = 86.06%.

Polynomial Features

Polynomial Features

Model Performance Average Error: 5777.8281 €. Accuracy = 91.36%.

Polynomial Features

Model Performance Average Error: 11351.5377 €. Accuracy = 81.20%.

Ridge Regression

Model Performance

Average Error: 6251.0682 €.

Accuracy = 90.58%.

Ridge Regression

Model Performance Average Error: 9163.5630 €. Accuracy = 85.53%.

Random Forest

Model Performance

Average Error: 3732.5367 €.

Accuracy = 94.15%.

Random Forest

Model Performance

Average Error: 9024.4113 €.

Accuracy = 85.46%.

Random Forest Hyperparameter

Model Performance Average Error: 6121.8609 €. Accuracy = 90.54%.

Model Performance Average Error: 8760.5704 €. Accuracy = 85.96%.

Grid Search

Model Performance Average Error: 6987.2766 €. Accuracy = 88.94%. Model Performance Average Error: 8966.0671 €. Accuracy = 85.62%.

Modelle im Vergleich

Lineare Regression

Polynomial Features

Ridge Regression

Random Forest

Average Error	Accuracy		
7753 €	86,06%		
11352 €	81,2%		
9164 €	85,53%		
8760 €	85,96%		

Lineare Regression mit 86,06 % accuracy auf den Testdaten das beste Model

Kritische Reflektion

Zu kleiner Datensatz

Ohne ausreichende Recherche einfach Modelle ausgetestet und dann von den Ergebnissen verwundert gewesen

Nicht alle von uns am Anfang gestellten Ziele erreicht

Lessons learned

Größe des Datensatzes und Menge der Daten pro Feature extrem wichtig

→ Kann sonst Ergebnisse verfälschen

Komplexe Modelle bedeutet nicht gleich bessere Ergebnisse

Ridge Regression für AOT verstanden ©

THANKS

Do you have any questions?

