A labelled graph is a graph in which every vertex and every edge is labelled. Most of the times, a graph means a labelled graph.

Question 1: Draw a labelled graph G having (4, 3, 2, 2, 2, 1) as degree sequence.

$$deg(V_3) = 4$$
 $deg(V_3) = 4$
 $deg(V_5) = 3$
 $deg(V_1) = deg(V_1) = deg(V_2)$
 $= 2$
 $deg(V_6) = 1$

$$\Delta(\zeta) = 4$$

$$|E(\zeta)| = 7$$

Question 2: Draw a graph G having (2, 2, 2, 2, 2) as degree sequence. Is there exists more than one graph on a given degree sequence? Yes it is possible. (G, & G, Qre differen)

Question 3: If possible draw a graph G having (4, 4, 3, 3, 2) as degree sequence. How many edges can this graph contain?

Theorem 1: Let Gbe a (p, 2) graph. The sum of degreed of a graph Ges twice the number of edger i.e. zdig(v) = 29 $V \in V(G)$

Proof: Since every edge ls incident with 2 vertices, each edge contributes 2 to the sum of degree of the vertice.

Question 4: If possible draw a graph G having (4, 3, 2, 1, 0) as degree sequence. If not possible, then explain why.

$$|v(x)|=5=b$$
 v_1
 v_2
 v_3
 v_4
 v_4
 v_5
 v_6
 v_7
 v_8
 v_8
 v_8
 v_8
 v_9
 v_9

A graph is perfect if no two vertices are of same degree.

Theorem 2: No graph is perfect. OR In a (p, q) graph G, there exists at least 2 vertices with same degree.

Proof: We know that	ing vertex	v EVLG),
satisfier $0 \le \text{deg}(v) \le p-1$. Suppose G has a very then G cannot have G have G there for G and G have G have G and G have G have G and G have	rtex with	degree 0, with degree
p-1 choices. Hence, there exists		2 Vertices
Dith same degree. Example: A graph with of same degree and alegree and alegree and are degreed.	remaining	2 vertices al vertices
are of summer and	راح	7 Seg (1, 2, 2, 3, 4

Question 5: Draw a graph with degree sequence as (3, 3, 2, 2, 1).

p=5, Not possible.

Theorem 3 : In any graph, the number of vertices of odd degree is even.

Proof: Let Sé: sum of all degreep of vertices which have even degreep of vertices which So: sum of all degrees of vertices which have odd degrees.

By definition. Set So = 29

=> So = 29 - Se an even number

Each term in So is odd

is so is even only if there are even number of terms in So.

A directed graph or digraph D consists of a finite nonempty set V of vertices together with a prescribed collection X of ordered pairs of distinct vertices. The elements of X are directed edges or arcs. By definition, a digraph has no loops or multiple arcs.

Two graphs G and H are isomorphic (written G \cong H or sometimes G = H) if there exists one-to-one correspondence between their vertices and between their edges such that structure is preserved.

Question 6: Check whether the following graphs are isomorphic or not?

$$(33) = 6, 9 = 7$$
 $(33) = 7$

$$H \rightarrow p = 6, 9 = 8$$
 (333333)

a is not isomorphic since dug seg is not same.

H:
$$\beta = 6$$
, $q = 9$
(3 3 3 3 3)

Not esomorphic. a has no triangle but H das.

Subgraph of a graph:

A graph H is called a subgraph of G of $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

A subgraph H of G is called a spanning subgraph if V(H) = V(G).

S= {V₁, V₂, V₃, V₁, V₈}

V₁

V₂

V₃

V₄

V₈

H₂ -> graphindumys.

Let <u>s</u> be a subset of the vertex set V(a) of G(a). Then, the subgraph induced by G(a), denoted by G(a) is the maximal subgraph of G(a) with G(a) as the vertex sets

Thus, a vertices of save adjacent in $\angle s > e^- \int$ and only if they are adjacent in \underline{G} .

Find the induced subgraph of the graph G spanned by the set $S = \{A, C, D, G, J\}$. Also find one spanning subgraph of the graph G.

The removal of a vertex v from a graph G results in that subgraph G - v of G consisting of all vertices of G except v and all edges not incident with v.

The removal of an edge e from G yields the spanning subgraph G - e containing all edges of G except e.

A walk in G is an alternating sequence of vertices and edges, begining and ending with vertices, in which each each edge is incident with the 2 vertices immediately preceeding and following it.

A walk is closed if the starting and end vertex is same.

The length of a walk is the number of edges in a walk.

A walk is a trail if all the edges are distinct, and a path if all the vertices and edges are distinct. A clsed path is a cycle.

A cycle of length 3 is also known as triangle. (ひ y v u) is a triangle.

The girth of a graph G is denoted by g(G) is the length of the shortest cycle (if any) in G.

The circumference c(G) is the length of the longest cycle in G.

$$g(G) = 3$$
 and $c(G) = 5$