SURF (SPEEDED UP ROBUST FEATURES)

Lecturer: Sang Hwa Lee

Reference

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
SURF: Speeded Up Robust Features. European
Conference on Computer Vision, May 2006.

Introduction

- Search for image correspondences
 - Detection
 - Interest points corners, blobs, and T-junctions
 - Repeatability
 - Description
 - Descriptor represented by a feature vector
 - Distinctive, robust
 - Matching
 - Based on distance between feature vectors

Introduction

- Interest Point Detectors
 - Harris corner detector
 - Harris-Laplace and Hessian-Laplace
 - DoG (Difference of Gaussians)
- Feature Descriptors
 - □ SIFT: Histogram of local oriented gradients around the interest point, 128-dimension
 - □ PCA-SIFT: 36-dimension

SURF

- □ Integral Image
- Detector
 - Approximated Hessian-based detector
- Descriptor
 - Based on distribution of Haar-wavelet responses within the interest point neighborhood
 - 64 dimensions
- Matching
 - New indexing step based on the sign of the Laplacian

SURF

■ Integral Image

$$I_{\sum} (\mathbf{x}) = \sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I(i, j)$$

$$I_{\sum} (\mathbf{x}) = \sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I(i, j) \qquad I_{\sum} (\mathbf{x}_4) - I_{\sum} (\mathbf{x}_3) - I_{\sum} (\mathbf{x}_2) + I_{\sum} (\mathbf{x}_1)$$

SURF - Detector

Hessian matrix

$$\blacksquare \ \ \mathbf{H}(\mathbf{x},\sigma) = \begin{vmatrix} L_{xx}(\mathbf{x},\sigma) & L_{xy}(\mathbf{x},\sigma) \\ L_{xy}(\mathbf{x},\sigma) & L_{yy}(\mathbf{x},\sigma) \end{vmatrix}, \ \ L_{xx}(\mathbf{x},\sigma) = \frac{\partial^2}{\partial x^2} g(\sigma)$$

$$det(H_{approx}) = D_{xx}D_{yy} - (0.9D_{xy})^2$$

SURF - Detector

□ Scale-space

SURF - Detector

- Local maximum detection
 - Blob-like features
 - $\det(\mathbf{H}_{\text{approx}}) = D_{xx}D_{yy} (0.9D_{xy})^2$

- □ Two steps
 - 1. Orientation Assignment
 - 2. Descriptor Components

Orientation Assignment

(s = the scale at which the point was detected)

Orientation Assignment

Descriptor Components

- lacktriangle At sample point, calculate d_x , d_y , $|d_x|$, and $|d_y|$
- At each sub-region, $\mathbf{v} = (\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|)$
- A descriptor vector for all 4x4 sub-regions of length 64

- Descriptor Components
 - Properties of the descriptor

SURF - Matching

- Based on the sign of the Laplacian
 - Laplacian

- The trace of the Hessian matrix
- Computed during the detection phase
- Type

- Compare features if they have the same type
- Euclidean distance

$$\|\mathbf{p}_{1,n} - \mathbf{p}_{2,n'}\| < 0.7 \times \|\mathbf{p}_{1,n} - \mathbf{p}_{2,n''}\|$$

Experimental Results

- Environments
 - # of octaves : 1
 - No scale variant
 - # of layers: 4
 - Sigma: 1.2, 2.0, 2.8, 3.6
 - Threshold : 600 (database), 100 or 150 (previous real image)
 - Matching constraint
 - $\| \mathbf{p} \mathbf{p}_{1^{st} \text{ cand.}} \| < 0.5 \| \mathbf{p} \mathbf{p}_{2^{nd} \text{ cand.}} \|$

1^{st} Test Image (517 x 374)

□ Threshold: 600

1st Test Image (517 x 374)

1st Test Image (517 x 374)

2nd Test Image (800 x 640)

□ Threshold: 600

2nd Test Image (800 x 640)

2nd Test Image (800 x 640)

3rd Test Image (640 x 480)

□ Threshold: 150

3rd Test Image (640 x 480)

4th Test Image (640 x 480)

Problems of Repetitive Pattern (1)

Mismatching results by repetitive pattern in the building image

Problems of Repetitive Pattern (2)

Grouping the repetitive pattern and recognition