

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$\left(+\frac{5}{14}I(3,2) \right) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Decision Tree Induction: Algorithm

- Basic algorithm
 - Tree is constructed in a top-down, recursive, divide-and-conquer manner

 - At start, all the training examples are at the root

 Examples are partitioned recursively based on selected attributes
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left
- Prediction
 - Majority voting is employed for classifying the leaf

How to Handle Continuous-Valued Attributes?

- Method 1: Discretize continuous values and treat them as categorical values
 - E.g., age: < 20, 20..30, 30..40, 40..50, > 50
- Method 2: Determine the best split point for continuous-valued attribute A
 - Sort the value A in increasing order:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: the midpoint between each pair of adjacent values
 - \Box (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - \blacksquare e.g., (15+18/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the split-point for A
- Split: Based on split point P
 - The set of tuples in D satisfying $A \le P$ vs. those with A > P

Math 1 category ye 15, 18, 21, 22, 24, 25, 29, 31, ... 214, 18-22, 22-30, 731 nath a Best spitpoint 15,318,3213,223,24,3253,29,331,...

8 data 8 m \ \(\frac{29}{29} \) \(\frac{23}{29} \) \(\frac{29}{215} \) \(\frac{29}{29} \) \(\frac{29}{215} \) \(\frac{29}{2} \) \(\f

Gain Ratio: A Refined Measure for Attribute Selection

- □ Information gain measure is biased towards attributes with a large number of values
- ☐ Gain ratio: Overcomes the problem (as a normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- □ The attribute with the maximum gain ratio is selected as the splitting attribute
- ☐ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
 - □ SplitInfo_{income}(D) = $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
 - \Box GainRatio(income) = 0.029/1.557 = 0.019

Another Measure: Gini Index

- Gini index: Used in CART, and also in IBM IntelligentMiner
- If a data set D contains examples from n classes, gini index, gini(D) is defined as

- \square p_i is the relative frequency of class j in D
- \square If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is

defined as
$$= \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

- Reduction in Impurity:
- \square The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
- Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

