Foundation Algebra for Physical Sciences and Engineering (CELEN036)

Homework 7

1. Given that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$,

and n! = n(n-1)(n-2)! or $n! = n(n-1)(n-2)(n-3)......3 \times 2 \times 1$, where $n \in \mathbb{N}$.

Evaluate and simplify the following.

(a) $\binom{n}{n-1}$

(b) $\binom{n+1}{n-1}$

(c) $\frac{\binom{n}{k+1}}{\binom{n}{k}}$

(d) $\frac{\binom{n+1}{r}}{\binom{n}{r-1}}$

2. Use the formula for the binomial theorem to expand the following expressions.

(a) $(x-1)^5$

(b) $(x-3y)^4$

(c)
$$\left(\frac{1}{x} - 2y^2\right)^4$$

(d)
$$\left(x^2 + \frac{2}{x}\right)^6$$

(e)
$$\left(3x + \frac{1}{x^2}\right)^5$$

(f)
$$(x-1)^7$$

3. Find the coefficient of the term that contains the given power of x^n .

(a) $(x^3 - \frac{2}{x})^4$; x^4

(b) $\left(2x-\frac{1}{3}\right)^{10}$; x^7

(c) $(x^2+2)^{11}$; x^8

(d) $\left(x^2 - \frac{2}{x}\right)^{10}$; x^8

(e) $\left(x^3 - \frac{1}{x}\right)^{15}$; x^{25}

(f) $\left(x^2 - \frac{3}{x}\right)^{12}$; x^9

(g) $(x^2 - 2x + 1)^3$; x^4

4.

- (a) Use the generalised binomial theorem to find an approximate value for $(1.05)^{-\frac{1}{2}}$ correct to 4 decimal places, by expanding until the term with x^3 .
- (b) Given that $\beta=\pi\alpha v^{\frac{2}{3}}$, where α is a constant. If the error in calculating v is 1.25%, find the error in calculating β . Give your answer correct to 3 decimal places, and use the expansion from the generalised binomial theorem up to the term with x^3 .