CSE 321 Operating Systems Lab Assignment 3

Total Marks: 30

Given the list of processes, their CPU burst times, arrival times and priorities implement SJF,

Priority and Round Robin scheduling algorithms on the processes with preemption. For each of

the scheduling policies, compute and print the completion Time(CT), Turnaround Time(TAT),

and Waiting Time(WT) for each process using C Programming.

Waiting time: Processes need to wait in the process queue before execution starts and in

execution while they get preempted.

Turnaround time: Time elapsed by each process to get completely served. (Difference between

submission time and completion time).

Instructions:

1. You must use Struct to implement each of the algorithms

2. You must take user input for no. of processes, AT and BT.

3. Need to show individual CT, TAT and WT for each of the processes not

the average.

4. For Priority Scheduling, lower number will get the highest priority.

Task 1: SJF Scheduling with preemption

You can use the following input as sample:

Process	Arrival Time	Burst Time	
P1	0	5	
P2	2	2	
Р3	3	7	
P4	4	4	
P5	5	5	

Solution in a Gantt chart:

]	P1	P2	P2	P1	P4	P5	Р3	
0		2	3 4	1 7	7	11 1	16 2	23

Task 2: Round Robin

You can use the following input as sample:

Time Quantum = 20 ms

Process	Burst Time
P1	53
P2	17
Р3	68
P4	24

Solution in a Gantt chart:

P1	P2	P3	P4	P1	P3	P4	P1	P3	P3
0	20	37	57	77	97	117	121	134	154
16	2								

Task 3: Priority Scheduling

Note: Lower number will get the highest priority.

You can use the following input as sample:

Process	Arrival Time	Burst Time	Priority
P1	0	15	2
P2	14	5	4
Р3	3	10	0
P4	9	22	3
P5	7	16	1

Solution in a Gantt chart:

	P1	Р3	P5	P1	P4	P2
0	3	3 13	3 2	9 41	6	3 68