Testing differences in gene abundance among regions and pathotypes

Assessing potential differences in distribution of genes among microbes

The purpose of this analysis is to assess potential differences in the distribution of a specific gene among microbes from a specific microbe. Because this document is public, I'm not going to name the gene or the microbe.

ANOVA

A simple way to do this would be an ANOVA. Let's try and check whether the distributions of residuals and stability of variances look reasonable.

```
library(tidyverse)
library(MASS)

# Load and pre-process the data by region and pathotype
region <- read_csv("data/region.csv") %>%
  filter(`gene number`!="TOTAL") %>%
  pivot_longer(cols = 2:7, names_to = "category", values_to = "count") %>%
  mutate(gene.count = as.numeric(`gene number`)) %>%
  dplyr::select(-`gene number`) %>%
  group_by(category) %>%
  mutate(freq = count / sum(count, na.rm = TRUE))

path <- read_csv("data/pathotype.csv") %>%
  #filter(`gene number`!="TOTAL") %>%
  pivot_longer(cols = 2:5, names_to = "category", values_to="count") %>%
  mutate(gene.count = as.numeric(`gene number`)) %>%
```

```
dplyr::select(-`gene number`) %>%
     group_by(category) %>%
     mutate(freq = count / sum(count, na.rm = TRUE))
   # I need to recreate the raw data to do an anova
   # I wrote some *very* ugly code to do this, so I hid it in a separate file
   source("R/recreate raw data.R")
  raw_region_data <- recreate_raw(region) %>%
     arrange(category) # this appears to have worked
  raw_path_data <- recreate_raw(path)</pre>
  raw_plot <- function(df) {</pre>
     p <- ggplot(df, aes(x=category, y=gene.count)) +</pre>
     geom_boxplot() +
     geom_point(position=position_jitter(height = 0.3), alpha = 0.5) +
     theme_classic() +
     theme(axis.text.x = element_text(angle=-45, hjust=0))
   }
  p_region <- raw_plot(raw_region_data)</pre>
  p_path <- raw_plot(raw_path_data)</pre>
  8
                                           8
                                       gene.count
  6
gene.count
                       North America
                             Oceania
                 category
                                                           category
```

I don't see obvious differences in distribution, but this is why we do statistics I suppose.

Is a linear model (ANOVA) good for these data? Specifically: ANOVA is fairly robust to unbalanced designs and to heteroskedasticity, but not to heteroskedastic data in an unbalanced design. So let's check the heteroskedasticity.

Linear model for regions

Signif. codes:

```
region_model <- lm(gene.count ~ category, data=raw_region_data)
summary(aov(region_model))

Df Sum Sq Mean Sq F value Pr(>F)
category 5 89 17.84 9.24 1.07e-08 ***
Residuals 1781 3438 1.93
---
```

This model finds significant differences among regions. But before we take this too seriously, let's check whether the residuals are normally distributed. A good way to do that is via a QQ plot. The

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(region_model, which=2) # actually these don't look as bad as I imagined?

Oof, that's pretty grim. I'd say we these residuals are non-normally distributed enough that I don't think this is a great model.

We could do a Tukey post-hoc analysis to determine which categories are significantly different from which. But given that QQ plot, I don't think we should go down that road.

Linear model for pathotypes

```
path_model <- lm(gene.count ~ category, data=raw_path_data)
summary(aov(path_model))

Df Sum Sq Mean Sq F value Pr(>F)
category    3  207.8  69.28  47.19 <2e-16 ***
Residuals  602  883.8  1.47
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Again, significant differences among pathotypes.

```
plot(path_model, which=2)
```


Same situation here. Not great!

Poisson distribution?

I propose that we can think of gene distribution as a poisson process, where different values of λ indicate different probabilities of the gene being "handed out". If this is the case, we can assess whether there are difference in lambda among regions or pathotypes - but first we need to assess whether the data are, in fact, poisson-distributed. We'll simply load the data, fit it to a poisson distribution, and see whether the fit looks good. I think in this case a qualitative assessment is at least as good as some kind fo statistical test of goodness-of-fit.

```
Af_fits <- data.frame(x = 0:8, y=dpois(x=0:8, lambda=Africa_lambda$estimate))
ggplot() +
  geom_line(data = Af_fits, aes(x=x, y=y)) +
  geom_point(data = region %>% filter(category=="Africa"), aes(x=gene.count, y=freq)) +
  scale_x_continuous(breaks = 0:8) # I think 3 and 4 is throwing it off. Hmm.
```

