Analyse spatiale Statistiques spatiales

Juste Raimbault^{1,2,3,4,*}

* juste.raimbault@ign.fr

¹LASTIG, Univ Gustave Eiffel, IGN-ENSG ²CASA, UCL ³UPS CNRS 3611 ISC-PIF ⁴UMR CNRS 8504 Géographie-cités

Filière Data Science - UE2 Analyse de données 16/11/2022

Objectifs des séances d'analyse spatiale

"Point de vue du géographe" :

Importance des localisations et des structures spatiales dans l'analyse des phénomènes géographiques - quelles théories, modèles, outils pour exploiter l'information géographique afin de comprendre et expliquer les processus sous-jacents aux dynamiques territoriales ?

- → Notions de base formalisées de l'analyse spatiale
- ightarrow Culture générale sur la modélisation en géographie théorique et quantitative, principalement urbaine et des transports
- \rightarrow Outils d'analyse spatiale : TPs principalement en R comme le reste de l'UE

Organisation des séances

- Séance 1 (16/11/2022) 6h : statistiques spatiales, cours et TP en R.
- Séance 2 (21/11/2022) 6h : modèles d'interaction spatiale, cours et TP en R.
- Lancement des projets le 22/11/2022
- Séance 3 (25/11/2022) 6h : analyse de réseau, réseaux de transport et accessibilité, cours et TP en R.
- Séance 4 (13/12/2022) 3h : modèles de simulation, modèles de transport et modèles urbains
- Présentation des projets le 16/12/2022

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- Corrélation spatiale
- Régression géographique pondérée
- Pour aller plus loin

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- 2 Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- 6 Corrélation spatiale
- 6 Régression géographique pondérée
- Pour aller plus loin

Analyse spatiale : définition

"Etude formalisée de la configuration et des propriétés de l'espace produit et vécu par les sociétés humaines" [Pumain and Saint-Julien, 2010]

 \rightarrow Théories et méthodes pour l'analyse et la mesure des effets de la situation géographique

Exemples d'analyse

- Décrire les configurations de certains objets: naturels (sources, feux, séismes, ...), des villes, des aménités, des infrastructures, ...
- Synthétiser ("modéliser") leur structure spatiale: semis concentrés, réguliers, aléatoires, organisation centre-périphérie, réseau, structure hiérarchique, . . .
- Relier leur localisation relative à leur caractéristiques en partie
- Inclure les positions relatives, les effets de voisinage et la distance géographique dans les analyses quantitatives.

Analyse spatiale en géographie

[Cuyala, 2014]

Référentiel de l'analyse spatiale

- \rightarrow objectif explicatif, principalement par la dimension "horizontale" des interactions ("vertical": sociétés-environnement)
- \rightarrow relations entre lieux engendrées par les relations entre acteurs sociaux spatialisés
- \rightarrow hypothèse d'une certaine autonomie et spécificité de la dimension spatiale de l'organisation sociale (interférant avec les dimensions culturelle, environnementale, politique, économique, \dots)
- ightarrow lien entre formes et processus: existence de régularités dans la morphogenèse des systèmes géographique, indépendantes de la variété des milieux physiques
- ightarrow ces régularités sont intégrées dans des modèles pour expliquer le fonctionnement et l'évolution des systèmes spatiaux

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- 2 Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- 6 Corrélation spatiale
- 6 Régression géographique pondérée
- Pour aller plus loin

Particularités des phénomènes spatiaux

Difficultés récurrentes lors de la prise en compte de l'espace :

- Modifiable Areal Unit Problem
- Echelle des objets et processus
- Non-stationarité spatiale
- Données incertaines et/ou bruitées
- Général et particulier

Modifiable Areal Unit Problem (MAUP)

MAUP: exemple

[Oliveau and Doignon, 2016]

Systèmes multi-échelles

Processus spécifiques aux échelles [Raimbault, 2021]

Non-stationnarité spatiale

Exemple : variations des indicateurs topologiques du réseau routier [Raimbault, 2019]

Données incertaines ou bruitées

Qualité des données dans OpenStreetMap [Fan et al., 2014]

Général et particulier

Hiérarchie urbaine comme une propriété universelle des systèmes urbains [Pumain et al., 2015]

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- 2 Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- 6 Corrélation spatiale
- 6 Régression géographique pondérée
- Pour aller plus loin

Géolocalisation

Coordonnées d'un point sur la surface terrestre déterminées par :

- Système géodésique de référence : RGF93, ETRS89, WGS84
- Ellipsoide: Clarke1880, GRS 1980
- Système de projection : Mercator, Lambert, Mollweide, etc.

Projections

Exemples de systèmes de projection :

- Universal Transverse Mercator : cylindrique conforme (conserve angles)
- Lambert (II, 93) : conique conforme
- Mollweide : pseudo-cylindrique équivalente (conserve surfaces)
- Azimutale, Fuller (polyhédrale) ...

Données : raster et vecteur

Formats raster : geotif, images (avec fichiers annexes de référencement), formats compressés, . . .

Formats vecteur:

- shapefile (ESRI) : binaire, simple couche
- geodatabase (ESRI) : binaire, multiples couches
- GeoJSON: JSON, simple couche
- GML (Open Geospatial Consortium), KML (Google): XML, simple
- Geopackage (OGC): Sqlite, multiple
- PostGIS, Spatialite : extensions SIG aux systèmes de bases de données

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- Corrélation spatiale
- Régression géographique pondérée
- Pour aller plus loin

Coordonnées

Coordonnées projetées : $(\lambda, \phi, r) \rightarrow (x, y, z)$

Analyse spatiale en pratique : données spatiales en 2D (x, y)

Espace métrique

Définition: E ensemble non vide muni de $d: E \times E \to \mathbb{R}_+$ tel que d soit une distance, i.e. vérifiant les trois propriétés :

- Symétrie : $\forall x, y \in E, d(x, y) = d(y, x)$
- Séparation : $\forall x, y \in E, d(x, y) = 0 \iff x = y$
- Inégalité triangulaire : $\forall x, y, z \in E, d(x, y) \leq d(x, z) + d(z, y)$

Topologie: boules ouvertes, ouverts, fermés

Espace vectoriel normé

Définition : E espace vectoriel sur \mathbb{K} muni d'une norme N avec :

- Séparation : $\forall x \in E, N(x) = 0 \implies x = 0_E$
- homogénéité : $\forall (\lambda, x) \in \mathbb{K} \times E, N(\lambda x) = |\lambda| N(X)$
- Sous-additivité : $\forall x, y \in E, N(x + y) \leq N(x) + N(Y)$

Exercice: Définir une distance sur un espace vectoriel normé

Distance de Minkowski

Pour $x, y \in \mathbb{R}^n$

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$$

Question: inégalité triangulaire?

Application pratique : distance euclidienne (p=2), distance de Manhattan (p=1)

Distance orthodromique

Great-circle distance : à partir des coordonnées géographiques (λ,ϕ)

$$d_{ij} = R \cdot \arccos(\sin \phi_i \sin \phi_j + \cos \phi_i \cos \phi_j \cos(\lambda_i - \lambda_j))$$

Exercice : à λ (longitude) constant, à partir de quel ordre de grandeur de $\delta\phi=|\phi_i-\phi_j|$ une distance euclidienne sur des coordonnées non projetées devient incohérente ?

Distance-temps et réseaux

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- Corrélation spatiale
- Régression géographique pondérée
- Pour aller plus loin

Point moyen pondéré

Barycentre du nuage de points

$$\vec{\mu} = \frac{\sum_{i=1}^{n} w_i \vec{x_i}}{\sum_{i=1}^{n} w_i}$$

Exercice : Minimise la distance au carré à tous les points

Point médian

Point minimisant la somme des distances à tous les points

$$\vec{m} = \operatorname{argmin}_{\vec{x}} \sum_{i=1}^{n} d(\vec{x_i}, \vec{x})$$

Point médian pondéré

Point minimisant la somme des distances aux éléments du stock w_i aux points $\vec{x_i}$

$$\vec{m} = \operatorname{argmin}_{\vec{x}} \frac{\sum_{i=1}^n w_i \cdot d(\vec{x_i}, \vec{x})}{\sum_{i=1}^n w_i}$$

Exercice 1 : existence et unicité du point médian

Exercice 2 : localisation du point médian en termes de quantiles

Exercice 3: définition dans le cas d'un champ continu?

Mesure de dispersion

Distance-type pondérée

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} w_i \left[(x_i - x_{\mu})^2 + (y_i - y_{\mu})^2 \right]}{\sum_{i=1}^{n} w_i}}$$

Mesure de l'étendue spatiale de la distribution autour du barycentre

Application / exemple

Première partie du TP en R : calculer/représenter l'évolution des points moyens, médian, dispersion, pour la population des aires urbaines françaises entre 1830 et 2000

Données : aires urbaines dans le temps long, Géographie-cités, [Pumain and Riandey, 1986]

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- Corrélation spatiale
- Régression géographique pondérée
- Pour aller plus loin

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- 2 Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- 6 Corrélation spatiale
- 6 Régression géographique pondérée
- Pour aller plus loin

Distance moyenne

Indice pour quantifier un niveau d'agrégation d'un stock x_i [Le Néchet, 2011]

$$\bar{d} = \sum_{i,j} \frac{P_i P_j}{\left(\sum_k P_k\right)^2} d_{ij}$$

Généralisation : fonction croissante arbitraire de la distance

Distance au plus proche voisin

Comparaison de la distance moyenne au plus proche voisin à la distance attendue dans le cas aléatoire, pour une densité globale λ

$$v = 2\sqrt{\lambda} \cdot \frac{1}{N} \sum_{i} min_{j \neq i} d_{ij}$$

Fonction K de Ripley

Rapport entre densité locale et globale pour tester la concentration de points.

$$K(r) = \frac{1}{\lambda} \sum_{i \neq j} \frac{\mathbb{1}(d_{ij} < r)}{n}$$

avec λ densité globale de points

 \rightarrow test statistique pour comparer K(r) et le nombre de points attendus avec une distribution aléatoire $\pi \cdot r^2$

Exemple

Application à la concentration des accidents cyclistes [Vandenbulcke et al., 2017]

Kernel Density Estimation

Estimation d'une densité continue à partir du nuage de point, comme une agrégation de noyaux (Rosenblatt-Parzen) de distance caractéristique h

$$f_n(x) = \frac{1}{nh} \sum_{i=1}^n k\left(\frac{d(x,x_i)}{h}\right)$$

Statistiques spatiales

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- 2 Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- 6 Corrélation spatiale
- 6 Régression géographique pondérée
- Pour aller plus loin

Rapport entre la part locale d'une activité j et sa part globale, pour l'unité spatiale i

$$S_{ij} = \frac{A_{ij}/\sum_{j}A_{ij}}{\sum_{i}A_{ij}/\sum_{i,j}A_{i,j}}$$

Indice de Gini

Indice de dissimilarité entre des stocks (utilisé pour quantifier des inégalités)

$$G = \frac{\sum_{i} \sum_{j} |x_i - x_j|}{2n \sum_{i} x_i}$$

Indice non spatialisé

Entropie

Indice pour quantifier la régularité de la distribution statistique

$$H(x) = -\sum_{i=1}^{n} p_i \log(p_i)$$

Indice non spatialisé

Grouper des points dans l'espace

Exemples d'algorithmes pour classifier des points spatiaux :

- k-means
- DBSCAN (basé sur la densité) et extension
- Détection de communautés dans des réseaux de proximité

Détection de communautés dans un réseau de liens industriels (filiales) [Raimbault et al., 2020]

Statistiques spatiales

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- 6 Corrélation spatiale
- Régression géographique pondérée
- Pour aller plus loin

Autocorrélation: Indice de Moran

Indice d'autocorrélation spatiale pour un champ x_i étant donné des poids spatiaux w_i permettant de définir un voisinage

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \times \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

 \rightarrow positif pour des configurations agrégées, nul pour des configurations aléatoires, négatifs pour des configurations "échiquier"

Application : régimes d'autocorrélation

Extraction des échelles typiques des processus dans un système multi-scalaire [Bergeaud and Raimbault, 2020]

LISA : indice localisés

Statistique locale d'autocorrélation: $I_i \propto (x_i - \bar{x}) \cdot \sum_i w_{ij} (x_j - \bar{x})$

Exemple d'analyse LISA intégrée au logiciel Geoda : significativité statistique et clusters de corrélation [Anselin et al., 2010]

Exemple

Application

Deuxième partie du TP en R : application des indices de densité/concentration, corrélation spatiale

Données : différents types d'aménités obtenus d'OpenStreetMap https://demo.openstreetmap.fr/map

Statistiques spatiales

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- Corrélation spatiale
- 6 Régression géographique pondérée
- Pour aller plus loin

Régression géographique pondérée

Comment inclure des effets de voisinage et prendre en compte la non-stationnarité spatiale dans des modèles statistiques ?

Modèle GWR basique pour les variables y_i aux positions $\vec{u_i}$ et variables explicatives x_{ik}

$$y_i = \beta_0(\vec{u}_i) + \sum_k \beta_k(\vec{u}_i) x_{ik} + \varepsilon_i$$

avec les observations pondérées par un poids spatial $w_i(r)$ en fonction de la distance à $\vec{u_i}$

- Différents kernels pour les poids (gaussien, exponentiel, puissance, bisquare)
- Estimation de la taille de kernel optimale par optimisation de l'AIC par exemple

Méthode complète d'application

Exemple

Application avec échelle spatiale optimale (critère AIC) aux déterminants des prix du carburants aux US [Bergeaud and Raimbault, 2020]

Application

Troisième partie du TP en R : analyse GWR

Données : caractéristiques socio-économiques et prix du carburant pour les Comtés au US

Statistiques spatiales

- Introduction
 - Cadre théorique
 - Particularités des phénomènes spatiaux
 - Information géographique
- Coordonnées et distances
- Analyse d'un semis de points
- Mesures de densité et concentration
 - Densité
 - Concentration
- Corrélation spatiale
- Régression géographique pondérée
- Pour aller plus loin

Autres méthodes de géostatistiques

- Extrapolation, kriging
- Processus de points spatiaux
- Modèles statistiques avec auto-corrélation spatiale
- Apprentissage supervisé, non-supervisé, semi-supervisé
- Modèles de simulation
- ...

References I

Anselin, L., Syabri, I., and Kho, Y. (2010).

Geoda: an introduction to spatial data analysis.

In *Handbook of applied spatial analysis*, pages 73–89. Springer.

Bergeaud, A. and Raimbault, J. (2020). An empirical analysis of the spatial variability of fuel prices in the united states.

Transportation Research Part A: Policy and Practice, 132:131–143.

Cai, X., Wu, Z., and Cheng, J. (2013). Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation.

International Journal of Geographical Information Science, 27(2):222–230.

References II

Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., et al. (2021). A route map for successful applications of geographically weighted regression.

Geographical Analysis.

Cuyala, S. (2014).

Analyse spatio-temporelle d'un mouvement scientifique. L'exemple de la géographie théorique et quantitative européenne francophone. PhD thesis, Université Paris 1 Panthéon-Sorbonne.

Fan, H., Zipf, A., Fu, Q., and Neis, P. (2014).

Quality assessment for building footprints data on openstreetmap.

International Journal of Geographical Information Science,
28(4):700–719.

References III

Le Néchet, F. (2011).

Consommation d'énergie et mobilité quotidienne selon la configuration des densités dans 34 villes européennes. Cybergeo: European Journal of Geography.

l'Hostis, A. (2003).

Théorie des graphes et représentations des distances: chronocartes et autres représentations.

oliveau, S. and Doignon, Y. (2016).

La diagonale se vide? analyse spatiale exploratoire des décroissances démographiques en france métropolitaine depuis 50 ans.

Cybergeo: European Journal of Geography.

Pumain, D. and Riandey, B. (1986). Le fichier de l'ined:" urbanisation de la france". Espace Populations Sociétés, 11(2):269–278.

References IV

Pumain, D. and Saint-Julien, T. (2010).

Analyse spatiale: les localisations.

Armand Colin.

Pumain, D., Swerts, E., Cottineau, C., Vacchiani-Marcuzzo, C., Ignazzi, C. A., Bretagnolle, A., Delisle, F., Cura, R., Lizzi, L., and Baffi, S. (2015).

Multilevel comparison of large urban systems.

Cybergeo: European Journal of Geography.

Raimbault, J. (2019).

An urban morphogenesis model capturing interactions between networks and territories.

In *The mathematics of urban morphology*, pages 383–409. Springer.

References V

Raimbault, J. (2021).

Strong coupling between scales in a multi-scalar model of urban dynamics.

arXiv preprint arXiv:2101.12725.

Raimbault, J., Zdanowska, N., and Arcaute, E. (2020). Modeling growth of urban firm networks. arXiv preprint arXiv:2009.05528.

Vandenbulcke, G., Int Panis, L., and Thomas, I. (2017).

On the location of reported and unreported cycling accidents: A spatial network analysis for brussels.

Cybergeo: European Journal of Geography.

Wong, D. W. (2004).

The modifiable areal unit problem (maup).

In WorldMinds: Geographical perspectives on 100 problems, pages 571–575. Springer.