eMa ν 1.: Breaking $\sum m_{\nu}$ Parameter Degeneracies with Three-point Statistics Changhoon Hahn^{1, 2, *} and Francisco Villaescusa-Navarro

¹Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley CA 94720, USA ²Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA

(Dated: DRAFT --- ad466c7 --- 2019-01-30 --- NOT READY FOR DISTRIBUTION)

ABSTRACT

blah

Keywords: cosmology: —

1. INTRODUCTION

talk about the impact of massive active neutrinos on the matter powerspectrum and how that's detectable with CMB and LSS.

one big roadblock is the degerenacy among τ σ_8 and $\sum m_{\nu}$. short thing about how τ is hard to constrain

2. HADES AND QUIJOTE SIMULATIONS

Figure 1. Impact of $\sum m_{\nu}$ and σ_8 on the halo power spectrum monopole and quadrupole. $\sum m_{\nu}$ and σ_8 produce almost identical effects on halo clustering on small scales $(k > 0.1 \, h/\text{Mpc})$. This degeneracy can be partially broken through the quadrupole; however, $\sum m_{\nu}$ and σ_8 produce, within a few percent, almost the same effect on two-point clustering. CH: update to coarser binning

^{*} hahn.changhoon@gmail.com

Figure 2. The redshift-space halo bispectrum, $B(k_1, k_2, k_3)$ as a function of triangle configuration shape for $\sum m_{\nu} = 0.0, 0.06, 0.10$, and $0.15 \,\text{eV}$ (top panels) and $\sigma_8 = 0.822, 0.818, 0.807$, and 0.798 (lower panels). CH: details on the triangle configurations and the colormap. We describe the estimator used to calculate $B(k_1, k_2, k_3)$ in Section 3.

brief description of the hades simulation and the halo catalogs

3. BISPECTRUM

Brief description of the Scoccimarro et al. bispectrum estimator here

- 4. RESULTS
- 5. SUMMARY

Figure 3. The redshift-space halo bispectrum, $B(k_1, k_2, k_3)$, as a function of all triangle configurations for $\sum m_{\nu} = 0.0, 0.06, 0.10$, and $0.15 \,\text{eV}$ (top panel) and $\sigma_8 = 0.822, 0.818, 0.807$, and 0.798 (lower panel). CH: details on the ordering of the triangle configurations; also mention how it's roughly scale dependence. We describe the estimator used to calculate $B(k_1, k_2, k_3)$ in Section 3.

Figure 4. The shape dependence of the $\sum m_{\nu}$ and σ_8 impact on the redshift-space halo bispectrum, $\Delta B/B^{(\text{fid})}$. $\sum m_{\nu} = 0.06, 0.10$, and $0.15 \,\text{eV}$ (top panels; left to right) are aligned with $\sigma_8 = 0.822, 0.818$, and $0.807 \,\text{eV}$ (bottom planes; left to right), which produce mostly degenerate imprints on the redshift-space power spectrum. CH: Details on the shape dependence. The difference between the top and bottom panels illustrate that $\sum m_{\nu}$ induces a significantly different impact on the shape-dependence of the halo bispectrum than σ_8 .

Figure 5. The impact of $\sum m_{\nu}$ and σ_8 on the redshift-space halo bispectrum for all triangle configurations: $\Delta B/B^{(\mathrm{fid})}$. The impact of $\sum m_{\nu}$ differs significantly from the impact of σ_8 both in amplitude and scale dependence. For instance, $\sum m_{\nu} = 0.15\,\mathrm{eV}$ (red) has a $\sim 5\%$ stronger impact on the bispectrum than $\sigma_8 = 0.798$ (cyan dotted), which has little difference in the power spectrum (Figure 1). Combined with the shape-dependence of Figure 4, the contrasting impact of $\sum m_{\nu}$ and σ_8 on the redshift-space halo bispectrum illustrate that the bispectrum break the degeneracy between $\sum m_{\nu}$ and σ_8 that degrade constraints from two-point analyses.