Параллельная симуляция. Часть 3

Курс «Программное моделирование вычислительных систем»

Григорий Речистов grigory.rechistov@phystech.edu

3 марта 2014 г.

- 1 Обзор
- 2 Атомарные инструкции
- 3 Модели памяти
- 4 Примеры симуляторов
- 5 Литература
- 6 Конец

На прошлой лекции

- Оптимистичные схемы
- Откат состояния
- Time Warp и virtual time

На прошлой лекции

- Оптимистичные схемы
- Откат состояния
- Time Warp и virtual time
- Вопрос: как выполнять вывод (printf) в оптимистичной симуляции?

Общая схема моделируемой системы

Хозяйский поток 1	Хозяйский поток 2	Хозяйский поток <i>N</i>			
Процессор 1	Процессор 3	Процессор $K-1$			
Процессор 2	Процессор 4	Процессор К			
		1			
Устройство А	Устройство В	Устройство Ю			
Устройство Б	Устройство Г	Устройство Я			
Очередь 1	Очередь 2	Очередь <i>N</i>			
	Общая память				
	l I	İI			

Атомарные инструкции

- Read–Modify–Write для ячейки в памяти
- Средства реализации семафоров
- «Дорогие» для исполнения

Атомарные инструкции

- Read-Modify-Write для ячейки в памяти
- Средства реализации семафоров
- «Дорогие» для исполнения
- Вопрос: нужны ли атомарные инструкции для однопроцессорных систем?

Симуляция инструкций

- 1 Использование хозяйских инструкций
- 2 Использование критических секций
- Использование транзакций

Использование хозяйских инструкций

- Разные ISA для атомарных инструкций (напр. IA-32 больше 10 инструкций, ARM две)
- Не все атомарные операции одинаково сильны (consensus number) [1]
 - ∞ Mem-Mem, CAS, LL/SC
 - 2 TAS, SWAP, FAA
 - 1 атомарное чтение и запись
- Метод наиболее удобен в случаях совпадения архитектур хозяина и гостя

Использование критических секций

 Хозяйская критическая секция для моделирования одной атомарной операции

Использование критических секций

- Хозяйская критическая секция для моделирования одной атомарной операции ... но это не работает
- Пример [2]: взятие семафора с помощью CAS, освобождение — с помощью атомарной записи

Использование транзакций

- Не предотвращать, а детектировать гонки данных
- Повторять попытку атомарной операции в случае неуспеха
- Используются хозяйские инструкции CAS или (лучше)
 LL/SC

Консистентность памяти

- Между процессорами и ОЗУ может лежать несколько буферов (кэши, очереди)
- Возможны ситуации, в которых разные процессоры «видят» разные значения для одних и тех ячеек
- Правила, которые определяют допустимые порядки видимости значений для архитектуры — модель консистентности памяти

Консистентность памяти

- Между процессорами и ОЗУ может лежать несколько буферов (кэши, очереди)
- Возможны ситуации, в которых разные процессоры «видят» разные значения для одних и тех ячеек
- Правила, которые определяют допустимые порядки видимости значений для архитектуры — модель консистентности памяти
- Модели консистентности различаются между собой

Отношение строгости

Что же делать? Барьеры памяти

- Устанавливают частичный порядок для операций
- Т.е. какие из доступов в каком направлении могут опережать соседние
- Чтение, запись, доступ к устройствам, чтение инструкций
- Примеры инструкций: sfence, lfence, mfence; mf, ld.acq, ld.rel; eioeio, sync; cpuid
- Атомарные инструкции не обязательно являются барьерами!

Из [4]

	Loads Reordered After Loads?	Loads Reordered After Stores?	Stores Reordered After Stores?	Stores Reordered After Loads?	Atomic Instructions Reordered With Loads?	Atomic Instructions Reordered With Stores?	Dependent Loads Reordered?	K Incoherent Instruction Cache/Pipeline?
Alpha	Y	Y	Y	Y	Y	Y	Y	Y
AMD64				Y Y Y				$\overline{}$
ARMv7-A/R	Y	Y	Y	Y	Y	Y	у	Y
IA64 (PA-RISC)		Y	Y	Y	Y	Y		Y
(PA-RISC)	Y	Y	Y	Y				
PA-RISC CPUs								
POWER	Y	Y	Y	Y	Y	Y		Y
(SPARC RMO)	Y	Y	Y	Y	Y	Y		Y
(SPARC PSO)			Y	Y		Y		Y
SPARC TSO				Y Y Y Y				Y Y Y Y Y Y
x86				Y				Y
(x86 OOStore)	Y	Y	Y	Y				Y
zSeries [®]				Y				Y

Практические параллельные симуляторы

- Simics
- Graphite
- SimOS
- Coremu
- Pqemu
- BigSim
- DynamoRIO

Дополнительные вопросы параллельной симуляции

- Параллельная двоичная трансляция
- Распределённая общая память

Дополнительные вопросы параллельной симуляции

- Параллельная двоичная трансляция
- Распределённая общая память
- Почему параллельная симуляция настолько сложна?

- Параллельная двоичная трансляция
- Распределённая общая память
- Почему параллельная симуляция настолько сложна?
 «...необходимо определить, может или нет сообщение E₁
 быть обработано одновременно с E₂. Но каким образом узнать, влияет или нет E₁ на E₂, без его симуляции?»

Maurice Herlihy. "Wait-Free Synchronization" http:
//cs.brown.edu/~mph/Herlihy91/p124-herlihy.pdf

Zhaoguo Wang et al. COREMU: a Scalable and Portable Parallel Full-System Emulator http://ppi.fudan.edu.cn/_media/publications%3Bcoremu-ppopp11.pdf,

Kourosh Gharachorloo Memory Consistency Models for Shared-Memory Multiprocessors. http://infolab.stanford.edu/pub/cstr/reports/csl/ tr/95/685/CSL-TR-95-685.pdf

Paul E. McKenney Memory Barriers: a Hardware View for Software Hackers http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.5245

Рекомендуемая литература II

Материалы курса выкладываются на сайте

http://iscalare.mipt.ru/material/course_materials/

Замечание: все торговые марки и логотипы, использованные в данном материале, являются собственностью их владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.

