Date: 01-10-10

EXPERIMENT #8 ANALOG TO DIGITAL CONVERSION

I OBJECTIVES

The objective of this experiment is to familiarize the student with the basic principles of analog to digital conversion. The aspects of converting a uni-polar analog signal to a 8-bit digital signal are explored. The emphasis will be on the Successive Approximation technique based conversion.

II COMPONENTS AND INSTRUMENTATION

The focus will be on the ADC0809 which is a 8-bit Successive Approximation type ADC. For power, you will use +5 V. As well, you need some resistors, capacitors and a few LEDs. Also a hex inverter IC (SN7414) for generating the clock signal. Note that it is important to bypass the power supplies directly on your prototyping

board, using, for each supply, a parallel combination of a $100\mu F$ tantalum or electrolyte capacitors and or $0.1~\mu F$ low inductance ceramic capacitor. For measurement, you will use a bench multimeter.

III BRIEF THEORY

To convert an analog signal to digital form (i.e. to represent an analog voltage of 2.83623V using a binary number such as 101) we must know both the maximum possible range of the input signal (from 0V to a maximum, traditionally called \dot{V}_{ref}) and the number of bits that will be used to represent it (called N). Dividing a 0-4V range into 4 distinct levels gives four 1V steps: these are 0, 1, 2, and 3V (NOT 4V). So, in summary, if you power your A/D converter with 0 and V_{ref} volts, you can get out of it anything from 0V to just 1 step less than V_{ref} , which mathematically is 0V to $V_{ref}(2^N-1)$.

Fig. 8.1 Pin diagram of ADC 0809 (refer to data sheets for more details)

The following general formula converts an analog input voltage V_{analog} to a digital output V_{out} (decimal equivalent of N-bit binary input with scaling):

$$Vout = \frac{B}{2^N} V_{ref}$$
 (8.1) where 'B' is the decimal equivalent of the N-bit binary output. That is

$$B = \sum_{i=0}^{N-1} b_i \, 2^i$$

Fig. 8.2 shows the transfer characteristics which is also known as the stair-case waveform of a 3-bit ADC. This is extended to 256 steps in a 8-bit ADC such as ADC0809. The operation of ADC-0809 is based on 'Successive Approximation' principle using (8.1).

The digital output voltage can be computed as

$$V_{out} = \frac{V_{ref}}{256} \left[\sum_{i=0}^{7} b_i 2^i \right]$$

Fig. 8.2 Transfer characteristics for a 3-bit ADC

The resolution of an ADC is the smallest change in the analog signal that can be processed by the ADC. It is given by

Resolution = $\frac{1}{2^N} pu$.

IV PREPARATION

- 1. An 8-bit ADC outputs all 1's when the input voltage is 5.1V. Calculate the resolution. Find the output voltage for an input of a)1 V b) 2.50 V c) 3.40V d) 4.68 V
- 2. An ADC converts a given positive analog signal into a digital signal. The reference voltage is 5 V. The least measurable voltage is not greater than 0.0048828 V. What is the number of bits at output?
- 3. What is the purpose of a clock input signal in the experiment using ADC-0809?
- 4. Specify the required voltages at AD A, AD B and AD C for selecting input channel 3 in ADC0809. (refer to data sheets)

V EXPLORATIONS

5.

5.11 Design: Configure the voltage levels at AD A, AD B and AD C for selecting input channel in your set up using ADC0809. Use Vref= +5V. Indicate how the channel is selected.

5.12 Draw a neat circuit diagram with all details for your ADC circuit.(Include details of input channel selection, clock frequency).

R= 289.37 12

f= 55KH2 C=0.01 RF

Supot channel = 1N6

ADA = LOW ADB = HIGH ADC = HIGH

ALE - address latch anable

5.2 Procedure:

- 1. Make the connections as shown in the circuit diagram.
- 2. Set the analog signal input at the minimum level.
- 3. Set the ALE pin to logical high.
- 4. Set the SOC pin to logical high momentarily and then connect back to ground.
- 5. Set the **ALE** pin to back to logical low. The **EOC** should now be seen (indicated by the glow of the EOC LED).
- 6. Record the state of the output bits (logical high or low, indicated by the corresponding LED glowing or otherwise). Compute the equivalent analog output voltage.
- 7. Repeat the above steps (2-6) for different values of analog inputs (from 0 V to 5 V) and fill in the rest of the Table 8.1.

S.No.	Analog input V	Digital output (logical '0' or '1')								Decimal count (B)	V _{out} (measured)	% error
1		b 7	b6	b5	b4	b3	b2	b1	b0	(B)		
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0.522	0	0	0	t	1	0	1	1	27	0.5273	-1.015
4	1.02	0	0		ı	0	t	0	0	52	10156	0.4313
5	1.502	0	1	0	0	1	1	0	1	77	1.5039	-0.126
6	2.02	0	1	1	0	0	1	1	1	103	2.0117	0.411
7	2.60	1	0	0	0	0	1	0	i	133	2.5976	0.092
8	2.83	1	0	0	1	0	0	0	0	144	2.8125	0.618
9	3.02	1	0	0	1	1	0	1	0	154	3.0078	0.4039
10	3.15	1	0	1	0	0	0	0	0	160	3-125	0.7936
11	3.31	1	0	t	0	1	O	0	O	168	3-2813	0.867
12	3.71	1	0	1	1	1	1	0	1	189	3-6914	0.5013
13	4.12	1	1	0	1	0	0	0	1	209	4.082	6-9223
14	4.516	1	1	1	0	0	1	t	0	230	4-492	0.5314
15	4.8276	1	1	1	1	0	y	0	1	245	4.785	0.8824
16	5.012	1	1	1	1	1	1	1	1	255	49804	0.6301

5.3 Plot the transfer characteristics for the ADC0809 using both predicted (continuous line) and your measured data (markers).

VI. INFERENCE/CONCLUSIONS

- The use of an ADC to convert a uni-polar analog signal to a 8-bit digital signal cois explored.
- . The ADC used was of Successive Approximation Type.
- · The clock to this ADC is given using the oscillator operation of two invertees, where the outtime a off-time depend on the R-C changing and discharging times.
- The error in the digital output measured and compoted is found to be less than 1% for any input between or and Uret. The reason is that the resolution of an 8-bit ADC is high enough.
- no. of bits or resolution.

	Integrated Circuits Lab								
		Credit	Maximum Marks						
SA	Preparation	31/2	5	0					
Co	Experimentation	91/2	10 (40					
AP	Reporting	5	5						
200	Total Marks	18	20						

Dr C.Nagamani

TRANSFER CHARACTERISTICS OF ADO 0809

0

V SCERLOG-C = 4.V

ariogen evidentimes toligib of policies the (E

beniedo at diglio lelipito

[1] 40 t = 40V

Resolution = 20 p.u

N= 8

:
$$\epsilon$$
 esolution = $\frac{1}{28}$

Vout =
$$\frac{8}{2^N}$$
 V-ref

a)
$$V = \frac{\text{Vef}}{256} \left[\frac{3}{2} \text{bi} 2^{i} \right]$$

c)
$$3.4 = \frac{5.12}{2.56} \left[\frac{5}{4.50} \text{ bi } 2^{i} \right]$$

d)
$$4.68 = \frac{5.12}{256} \left[\frac{5}{100} \text{ bi } 2^{i} \right]$$

BOO

HAIH : A GA

AD E : AIGH

The least measurable voltage would yield a digital output of "1"

= 3.40625 KB P PUL

WIND I WANTED

$$a^{N} = \frac{5}{0.0048828}$$

N= 10

- 3) is analog to digital conversions require some time in which sampling of the analog waveform is done, and at the sampling rate, the digital output is obtained.
 - . The clock to the ADC decides the sampling frequency.
 - · If unclocked, then even before the digital equivalent of an analog input is found, the analog input would have already changed.
 - · Thus the sample + hold circuit has to be synchronized with the clock pulse to the ADC.
- 4) To select input channel 3 in ADC0809:

AD A: HIGH

ADB : HIGH

AD C : LOW

4.68 = 512

= welloless?

51= 125E Wel

11 togloo loligio

: kate paint :