1.1 Diffusion Theory:

There are two major approaches for tackling diffusion problems:

1.4 Diffusion Equation

$$\frac{\partial C}{\partial t} = D \frac{\partial 2C}{\partial x^2}$$

Ex 4 A P+N junction is made by diffusing boron into an n-type substrate with background concentration $C_B=10^{1016} cm$ -3. A constant source coincentrataintained during the diffusion. Calculate the time required to form the junction at a depth of 1 μ m if the diffusion temperature is 1050^o

Ex. 5 A boron predeposition lasting 30 min is performed at 950°C on a wafer having a background concentration $C_B = 5 \times 10^{15} \text{cm}^{-3}$. Calculate the junction depth x_J . How many impurity atoms/cm² have been deposited? The wafer is then subjected to a drive-in lasting 2 hr at 1150°C. Calculate the junction depth. What is the new surface concentration?

Ex. 6 A p-type wafer of background concentration $10^{16} \rm cm^{-3}$ is diffused with phosphorous at a temperature of $1{,}000^{\rm o}$

Ex. 7 Determine the diffusivity of phosphorus at 1200°C if the diffusivity at 1050°

1.10 Lateral Diffusion: The one-diffusion process except at the edge downward and sideways (laterally	ge of the mask windov	

	n-type		p-type					
	P	As	Sb	В	Al	Ga	In	
SS	1.3x10 ²¹							

To carry out a diffusion the discs are placed parallel with the silicon wafers about 2 mm apart and at right angles to the carrier gas flow. Using this set-up good yield and reproducibility are obtained. Each wafer has its own diffusion source so gas-flow patterns are less critical leading to better uniformity across the wafer and good reproducibility. The need for connection of liquid or gaseous sources is obviated.

1000°C C