Meta-Analysis with R: The metafor Package

Wolfgang Viechtbauer Maastricht University The Netherlands

Quick R Intro

- R (https://www.r-project.org)
- a programming language/environment for data processing, statistical computing, and graphics
- based on S (Bell Labs: Chambers, Becker, & Wilks)
- free & open-source (GPL)
- cross-platform (UNIX/Linux, Windows, MacOS, ...)
- · command-driven & object-oriented
- user community & packages (8000+)

Quick Meta-Analysis Intro

- a set of statistical methods and techniques for combining and contrasting the findings from studies examining a common phenomenon
- key idea: quantify the outcome (usually some measure of effect or association) and its variance in each study and use this data in further analyses (averaging, modeling, metaregression, ...)

Outcome Measures for Meta-Analysis

- commonly used outcome measures:
 - · raw or standardized mean differences
 - · risk differences, risk/odds ratios
 - correlations (raw or Fisher r-to-z transformed)
 - raw means, (logit transformed) proportions
 - ..

Meta-Analysis with R

- · several meta-analysis packages
- · all lacked meta-regression capabilities
- wrote my own function (mima) in 2006
- turned into full package (metafor) in 2009
- Viechtbauer, W. (2010). Conducting metaanalyses in R with the metafor package. *Journal of Statistical Software, 36*(3), 1-48.
- http://www.metafor-project.org
- · ongoing development

Meta-Analytic Data

- i = 1, ..., k studies
- have y_i and corresponding v_i
- assume:

$$y_i \mid \theta_i \sim N(\theta_i, v_i)$$

- and independence of the estimates (for now)
- approx. 95% CI for θ_i : $y_i \pm 1.96\sqrt{v_i}$

Example: BCG Vaccine

- effectiveness of the Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB)
- for each study, can compare the proportion of TB positive cases in the vaccinated versus the non-vaccinated group

Example: BCG Vaccine

	Tuber		
	Positive	Negative	
Vaccinated	4	119	123
Not Vaccinated	11	128	139

$$p_T = 4/123 = .0325$$

$$p_C = 11/139 = .0791$$

$$RR = \frac{4/123}{11/139} = .41$$

$$y = \ln[RR] = \ln\left[\frac{4/123}{11/139}\right] = -.89$$

$$v = \frac{1}{4} - \frac{1}{123} + \frac{1}{11} - \frac{1}{139} = .326$$

	Ex	ampl	e: BCG	Vacci	ine	
Study	Year	RR	y = ln(<i>RR</i>)	v	Allocation	Latitude
1	1948	0.41	-0.89	.326	random	44
2	1949	0.20	-1.59	.195	random	55
3	1960	0.26	-1.35	.415	random	42
4	1977	0.24	-1.44	.020	random	52
5	1973	0.80	-0.22	.051	alternate	13
6	1953	0.46	-0.79	.007	alternate	44
7	1973	0.20	-1.62	.223	random	19
8	1980	1.01	0.01	.004	random	13
9	1968	0.63	-0.47	.056	random	27
10	1961	0.25	-1.37	.073	systematic	42
11	1974	0.71	-0.34	.012	systematic	18
12	1969	1.56	0.45	.533	systematic	33
13	1976	0.98	-0.02	.071	systematic	33

Standard Random-Effects Model

$$\begin{array}{lll} y_i &=& \mu & & \text{average true outcome} \\ & & +u_i & & \text{for a particular study larger/smaller by some} \\ & & +e_i & & \text{sampling error} \end{array}$$

$$e_i \sim N(0, v_i)$$
 $u_i \sim N(0, \tau^2)$

Meta-Analysis with R (metafor)

- install with: install.packages("metafor")
- (only need to do this once, or after reinstalling R, or to upgrade to a new package version)
- load package with: library(metafor)
- (have to do this each time you (re)start R)
- · comments start with #


```
> ### fit random-effects model
> res <- rma(vi, vi, data=dat)
Random-Effects Model (k = 13; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.3132
tau (square root of estimated tau^2 value):
                                                     0.5597
I^2 (total heterogeneity / total variability): 92.225
H^2 (total variability / sampling variability): 12.86
                                                    92.22%
Test for Heterogeneity:
Q(df = 12) = 152.2330, p-val < .0001
Model Results:
estimate
                       zval
                                pval
                                         ci.lb
               se
 -0.7145 0.1798 -3.9744 <.0001 -1.0669 -0.3622
> ### estimated average relative risk (and 95% CI/CR)
> predict(res, transf=exp, digits=2)
                                           cr.lb/cr.ub = bounds of a 95%
 pred ci.lb ci.ub cr.lb cr.ub
                                          credibility/prediction interval
 0.49 0.34 0.70 0.15 1.55
```

Back-Transformation where necessary, can use predict() to backtransform the estimate and CI/CR bounds basic syntax: predict(res, transf=<>>, digits=2) name of the transformation function for exponentiation: exp for z-to-r transformation: transf.ztor

Mixed-Effects Meta-Regression Model

- can include moderators/predictors/covariates in the model (to account for heterogeneity)
- mixed-effects meta-regression model:
 - $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + u_i + e_i$
 - $u_i \sim N(0, \tau^2)$ (but now 'residual' heterogeneity)
 - $e_i \sim N(0, v_i)$

Mixed-Effects Meta-Regression Model

· basic syntax as before, but now:

```
res <- rma(yi, vi, mods = ~ var1, data=dat)
```

- for multiple predictors/moderators:
 - main effects: mods = ~ var1 + var2 + ...
 - interactions: mods = ~ var1 * var2 + ...
- character/factor variables:
 - · are automatically dummy-coded
 - to remove the intercept: mods = ~ var1 1

```
> ### fit mixed-effects meta-regression model
> res <- rma(yi, vi, mods = ~ alloc + ablat, data=dat)
Mixed-Effects Model (k = 13; tau^2 estimator: REML)
tau^2 (estimated amount of residual heterogeneity):
tau (square root of estimated tau^2 value):
1/2 (residual heterogeneity / unaccounted variability): 70.11%
H^2 (unaccounted variability / sampling variability): 3.35
R^2 (amount of heterogeneity accounted for): 53.84%
Test for Residual Heterogeneity:
QE(df = 9) = 26.2034, p-val = 0.0019
Test of Moderators (coefficient(s) 2,3,4):
QM(df = 3) = 11.0605, p-val = 0.0114
Model Results:
                       estimate se
0.2932 0.4050
                                                zval pval ci.lb
0.7239 0.4691 -0.5006
intropt
                                                                                    1.0870
allocrandom
                        -0.2675 0.3504
                                              -0.7633 0.4453
                                                                      -0.9543
allocsystematic
                        0.0585 0.3795
                                                0.1540 0.8776
                                                                      -0.6854
                                                                                    0.8023
                        -0.0273 0.0092
```

```
    wald-Type Tests and Contrasts
    syntax: anova(res, btt=<>)
        vector of numbers indicating which coefficients to test
    syntax: anova(res, L=c())
        comma separated vector to specify the values to use for the contrast
```

Predicted Values

- use predict() to compute predicted values
- basic syntax:

```
predict(res, newmods=c(), transf=<>)

comma separated
vector to specify
the values to use
for the prediction
```

 note: intercept term is automatically included and is not part of the c() vector

```
> ### predicted RR for 'random' at 10, 30, and 50 degrees
> predict(res, newmods = c(1,0,10), transf=exp, digits=2)
pred ci.lb ci.ub cr.lb cr.ub
0.78  0.44  1.38  0.31  1.99
> predict(res, newmods = c(1,0,30), transf=exp, digits=2)
pred ci.lb ci.ub cr.lb cr.ub
0.45  0.31  0.66  0.20  1.05
> predict(res, newmods = c(1,0,50), transf=exp, digits=2)
pred ci.lb ci.ub cr.lb cr.ub
0.26  0.16  0.42  0.11  0.64
```



```
### load data
> dat <- get(data(dat.konstantopoulos2011))</pre>
                                    standardized mean
> ### show data
                                     differences and
> dat
                                    sampling variances
    district school study year
                              1976
                                    -0.18 0.118
          11
          11
                             1976
                                     -0.22 0.118
3
          11
                   3
                           3
                             1976
                                     0.23
                                           0.144
          11
                           4
                             1976
                                     -0.30
                                           0.144
          12
                           5
                             1989
                                     0.13 0.014
6
          12
                             1989
                                     -0.26
                                           0.014
          12
                             1989
                                     0.19
                                           0.015
                             1989
                                           0.024
          12
                           8
                                     0.32
                                           0.023
                             1994
                                     0.45
          18
                           9
                                     0.38
10
          18
                          10
                             1994
                                           0.043
                                     0.29 0.012
                          11 1994
11
          18
                          56 1994 -0.05 0.067
```

```
> ### fit standard random-effects model
> res <- rma(yi, vi, data = dat)</pre>
> res
Random-Effects Model (k = 56; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.0884
tau (square root of estimated tau^2 value):
                                                0.2974
I^2 (total heterogeneity / total variability):
                                                94.70%
H^2 (total variability / sampling variability): 18.89
Test for Heterogeneity:
Q(df = 55) = 578.8640, p-val < .0001
Model Results:
estimate
               se
                     zval
                              pval
                                      ci.lb
 0.1279 0.0439 2.9161 0.0035 0.0419 0.2139
```

The rma.mv() Function

- more flexible model fitting function, but must specify random effects manually
- · for now, replicate previous results

- random = ~ 1 | study adds a random effect for each level of the study variable
- method = "REML" is default (other option: ML)

```
> ### load data
  dat <- get(data(dat.konstantopoulos2011))</pre>
> ### show data
> dat
    district school study year
                             1976
                                   -0.18 0.118
                          2 1976 -0.22 0.118
          11
                            1976
                                    0.23
                                          0.144
                          4 1976
                                    -0.30 0.144
          12
                            1989
                                     0.13
                                          0.014
                                                   between 3 and
                                                  11 schools within
          12
                          6 1989 -0.26 0.014
                                                    11 different
          12
                          7 1989
                                    0.19 0.015
                                                    districts (56
          12
                          8 1989
                                     0.32 0.024
                                                   studies in total)
          18
                            1994
                                     0.45
                                          0.023
10
          18
                         10 1994
                                    0.38 0.043
11
          18
                         11 1994
                                    0.29 0.012
12
                         56 1994 -0.05 0.067
```


The rma.mv() Function

- rma.mv() allows for the addition of multiple nested random effects
- random = ~ 1 | var1/var2 adds a random effect for each level of var1 and a random effect for each level of var2 within each level of var1

```
> ### fit multilevel random-effects model
> res <- rma.mv(yi, vi, random = ~ 1 | district/school,
                 data = dat)
> res
Multivariate Meta-Analysis Model (k = 56; method: REML)
Variance Components:
            estim
                     sqrt nlvls fixed
                                                      factor
sigma^2.1 0.0651 0.2551
sigma^2.2 0.0327 0.1809
                             11 no district
56 no district/school
Test for Heterogeneity:
Q(df = 55) = 578.8640, p-val < .0001
Model Results:
                se
                       zval
                                 pval
                                          ci.lb
  0.1847 \quad 0.0846 \quad 2.1845 \quad 0.0289 \quad 0.0190 \quad 0.3504
```

Correlation due to Multilevel Structure

 the multilevel structure implies that the true outcomes within a cluster are correlated:

$$\rho = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2}$$

· in example:

$$\hat{\rho} = \frac{0.0651}{0.0651 + 0.0327} = .67$$

• also note: 0.0651 + 0.0327 = 0.0978

$\begin{aligned} \textbf{Multivariate Parameterization} \\ y_{ij} &= \mu & \text{average true outcome} \\ &+ u_{ij} & \text{correlated random effects for the true outcomes within the same cluster} \\ &+ e_{ij} & \text{sampling error} \\ \hline \\ \begin{bmatrix} u_{i1} \\ u_{i2} \\ u_{i3} \end{bmatrix} \sim MVN \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau^2 & \rho \tau^2 & \rho \tau^2 \\ \tau^2 & \rho \tau^2 \\ 0 \end{bmatrix} & e_{ij} \sim N(0, v_{ij}) \\ \end{bmatrix} \end{aligned}$

The rma.mv() Function

- rma.mv() allows for the addition of correlated random effects within a variable
- random = ~ var1 | var2 adds correlated random effects for each level of var1 within each level of var2
- note: var1 must be a character/factor type variable (if it is not, use factor() function)

Notes

- models assume independent sampling errors within clusters (sensible if no overlap in the data/subjects used to compute outcomes)
- · examples:
 - multiple independent studies reported in paper
 - multiple papers published by the same group
 - results reported for different subgroups
- but true outcomes within clusters may be more similar to each other than those from different clusters (correlated true outcomes)

Multiple (Correlated) Outcomes

 multivariate data also arise when multiple outcomes are measured within the studies

note: not all studies have to measure all outcomes

Multiple (Correlated) Outcomes

- since the outcomes are measured in the same subjects, the sampling errors are correlated
- true outcomes may also be correlated
- equations for the covariance between the sampling errors can be found in Gleser & Olkin (2009), Wei & Higgins (2013), Steiger (1980), ...

Multivariate Random-Effects Model

$$y_{ij} = \mu_j$$
 average true outcome for j th outcome $+ u_{ij}$ correlated random effects corresponding to the true outcomes of the same study correlated sampling errors of the observed outcomes for the same study (with known var-cov matrix) $Var\begin{bmatrix} u_{i1} \\ u \end{bmatrix} = \begin{bmatrix} \tau_1^2 & \rho \tau_1 \tau_2 \\ \tau_2^2 \end{bmatrix}$ $Var\begin{bmatrix} e_{i1} \\ e_{i1} \end{bmatrix} = \begin{bmatrix} v_{i1} & \text{COV}_i \\ v_{i1} & \text{COV}_i \end{bmatrix}$

```
> ### load data
> dat <- get(data(dat.berkey1998))</pre>
                                                    mean differences
                                                    and corresponding
> ### show data
                                                    var-cov matrix of
> dat
                                                   the sampling errors
       al author year ni outcome
1 Pihlstrom et al. 1983 14 PD
                                                yi v1i v2i
0.47 0.0075 0.0030
       1 Pihlstrom et al. 1983 14
                                                -0.32 0.0030 0.0077
           Lindhe et al. 1982 15
                                                 0.20 0.0057 0.0009
             Lindhe et al. 1982 15
                                                -0.60 0.0009 0.0008
            Knowles et al. 1979 78
                                            PD
                                                 0.40 0.0021 0.0007
           Knowles et al. 1979 78
Ramfjord et al. 1987 89
                                                -0.12 0.0007 0.0014
                                            AL
                                                0.26 0.0029 0.0009
                                            PD
       4 Ramfjord et al. 1987 89
                                            AL -0.31 0.0009 0.0015
             Becker et al. 1988 16
                                            PD 0.56 0.0148 0.0072
10
             Becker et al. 1988 16
                                            AL -0.39 0.0072 0.0304
```

```
> ### construct var-cov matrix of the sampling errors
> dat$trial <- factor(dat$trial, levels=unique(dat$trial))
> V <- split(dat[,c("v1i","v2i")], dat$trial)
> V <- lapply(V, as.matrix)</pre>
> V <- bldiag(V)
[2,] 0.0030 0.0077 0.0000 0.0000 ... ...
                                                           . . .
     0.0000 0.0000 0.0057 0.0009
 [4,] 0.0000 0.0000 0.0009 0.0008
[5,] ... ...
                           0008 ... ... ...
                                                     ...
                                                           ...
 [6,]
                          0.0148 0.0072
 [7,1
 [8,]
 [9,]
                           ... ... ... 0.0072 0.0304
[10,]
```

```
The rma.mv() Function

name of object with the var-cov matrix of the sampling errors (and remove intercept)

res <- rma.mv(yi, V, mods = ~ outcome - 1, random = ~ outcome | study, struct = "UN", data = dat)

structure of var-cov matrix of the random effects (UN = unstructured)

recall: outcome must be a character/factor type variable (if it is not, use factor() function)
```

Random Effects Structures

for two outcomes, "UN" and "HCS" is the same

> ### contrast for differences in outcomes > anova(res, L=c(1,-1)) Hypothesis: 1: outcomeAL - outcomePD = 0 Results: estimate zval pval 1: -0.6926 0.0744 -9.3120 <.0001 Test of Hypothesis: QM(df = 1) = 86.7139, p-val < .0001

Network Meta-Analysis

- · often there are multiple treatments available for the same condition/disease
- studies comparing the effectiveness of these treatments form a network of comparisons
- · some of the goals:
 - · synthesize evidence provided by all studies and comparisons in one parsimonious model
 - obtain indirect evidence about comparisons that have not been examined head-to-head
 - · determine a hierarchy of treatment effectiveness

Star-Shaped Networks

Second-generation antiepileptic drugs in partial epilepsy

a: levetiracetam, b: gabapentin, c: lamotrigine, d: oxcarbazepine, e: tiagabine, f: topiramate, g: zonisamide, h: placebo

Complex Networks

Chemotherapy regimens for ovarian cancer

- a: platinum monotherapy, b: platinum-based combination, c: taxane monotherapy, d: platinum + taxane-based combination,
- e: nonplatinum/nontaxane monotherapy, f: platinum-based combination (ip), g: nonplatinum/nontaxane combination, h: taxane-based combination, i: platinum/taxane-based combination (ip)

Network Meta-Analysis

- · can analyze such data with appropriate multilevel/multivariate models
- · two general approaches: arm- vs. contrastbased model (e.g., Salanti et al., 2008)
- · errors are correlated in contrast-based model for studies with more than two groups
- equations for the correlation between the sampling errors can be found in Gleser and Olkin (2009) and several other papers

Arm-Based Network Meta-Analysis

 $u_{ij} \sim N(0, \sigma_T^2)$ $e_{ij} \sim N(0, v_{ij})$

 $w_i \sim N(0, \sigma_S^2)$

	a+ /-	got/do	ta(dat.hasselbla	41000			
	at (-	get(ua	ta(uat.nasseivia	uı	"		
>							
			log odds for ea				
> d	at <-	escalc	(measure="PLO",	xi=xi	, ni=n	i, data=	:dat)
>							
> #	## sh	ow data					
> d	at				log	odds and c	
						sampling	variances
	id	study	trt	хi	ni	yi	vi
1	1	1	no_contact	75	731	-2.169	0.015
2	2	1	ind_counseling	363	714	0.034	0.006
3	3	2	no_contact	9	140	-2.678	0.119
4	4	2	ind_counseling	23	140	-1.627	0.052
5	5	2	<pre>grp_counseling</pre>	10	138	-2.549	0.108
6	6	3	no contact	2	106	-3.951	0.510
7	7	3	ind counseling	9	205	-3.081	0.116
8							
	49	24	no contact	69	1177	-2.776	0.015
9			ind counseling	54	888	-2.737	0.020


```
> ### network meta-analysis using a multilevel model
Multivariate Meta-Analysis Model (k = 50; method: REML)
Variance Components:

        estim
        sqrt
        nlvls
        fixed

        sigma^2.1
        0.195
        0.441
        24
        no

        sigma^2.2
        0.249
        0.499
        50
        no

                                                       studv
                                             no study/trt
Test for Residual Heterogeneity:
QE(df = 46) = 815.812, p-val < .001
Test of Moderators (coefficient(s) 2,3,4):
QM(df = 3) = 19.441, p-val < .001
Model Results:
                                                   zval pval ci.lb ci.ub
                         estimate
                                          se
intrcpt
                             -2.456 0.174 -14.129 <.001 -2.796 -2.115
trt self help
                                                1.657 0.098 -0.092
                              0.501 0.302
                                                                              1.093
trt ind_counseling
                              0.777 0.196
                                                   3.969
                                                           <.001
trt grp_counseling
                              1.056 0.324
                                                  3.259 0.001
                                                                      0.421
```

```
> ### pairwise odds ratios of interventions versus no contact
> predict(res, newmods=diag(3),
            intercept=FALSE, transf=exp, digits=2)
  pred ci.lb ci.ub cr.lb cr.ub
1 1.65 0.91 2.98 0.39 6.92
2 2.18 1.48 3.19 0.56 8.49
                                        Self-Help versus No Contact
                                        Individual Counseling versus No Contact
3 2.88 1.52 5.43 0.67 12.29
                                        Group Counseling versus No Contact
> ### pairwise odds ratios comparing interventions
> predict(res, newmods=rbind(c(-1,1,0), c(-1,0,1), c(0,-1,1)),
    intercept=FALSE, transf=exp, digits=2)
  pred ci.lb ci.ub cr.lb cr.ub
1 1.32 0.73 2.39 0.31 5.54
2 1.74 0.84 3.62 0.39 7.79
                                        Individual Counselina versus Self-Help
                                         Group Counseling versus Self-Help
3 1.32 0.72 2.43 0.31 5.58
                                        Group versus Individual Counseling
```


Dealing with Inconsistency

- restrict analysis to a subset of studies providing consistent evidence
- try to account for it based moderators
- · model it (various proposals)

Some Other Package Features

- for 2x2 table data:
 - Mantel-Haenszel and Peto's (one-step) method
 - generalized linear mixed-effects models (i.e., mixed-effects (conditional) logistic models)
- · publication bias:
 - · rank correlation test
 - · Egger's regression test
 - trim and fill method
- · inference methods:
 - · best linear unbiased predictions
 - · permutation tests
 - (cluster) robust tests and confidence intervals

Plots

forest plots: forest()

• funnel plots: funnel()

radial (Galbraith) plots: radial()

• Baujat plots: baujat()

• Q-Q normal plots: qqnorm()

• L'Abbé plots: labbe()

cumulative forest plots: cumul() → forest()

GOSH plots: gosh() → plot()

• diagnostics: influence() → plot()

Ongoing Development

- psychometric meta-analysis (Hunter & Schmidt)
- · fully Bayesian models
- · selection models
- · lots of small improvements
- ..

References

Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17(22), 2537-2550. Cooper, H., Valentine, J. C., Charlton, K., & Melson, A. (2003). The effects of modified school calendars on student achievement and on school and community attitudes. Review of Educational Research, 73(1), 1-52. Gleser, L. J., & Olikin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.

Hasselbad, V. (1998). Meta-analysis of multitreatment studies. Medical Decision Making, 18(1), 37-43. Ishak, K. J., Platt, R. W., Joseph, L., Hanley, J. A., & Caro, J. J. (2007). Meta-analysis of longitudinal studies.

Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2(1), 61-76.

Salanti, G., Higgins, J. P. T., Ades, A. E., & Ioannidis, J. P. A. (2008). Evaluation of networks of randomized trials. Statistical Methods in Medical Research, 17(3), 279-301.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245-251.

Trikalinos, T. A., & Olkin, I. (2012). Meta-analysis of effect sizes reported at multiple time points: A multivariate approach. Clinical Trials, 9(5), 610-620.

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48.

Wel, Y., & Higgins, J. P. (2013). Estimating within-study covariances in multivariate meta-analysis with multiple outcomes. Statistics in Medicine, 32(7), 1191-1205.

Thank You!

Questions?