註: 每題 20 分,只計得分較高之 5 題,合計滿分 100 分。

 $\sqrt{1/2}$. A $\lambda/4$ section of characteristic impedance $\frac{\lambda}{200}$ is used to minimize the SWR to the left of the section. Please (a) plot the locus of \bar{z}_{l} , in Smith chart versus d_1 and using the Smith chart, (b) find the minimum value of d_1 that minimized the SWR and (c) the minimum value of the SWR.

- 2. A resonator system is made up of two transmission line sections of characteristic impedances Z_{01} and Z_{02} , lengths ℓ_1 and ℓ_2 ; and same phase velocity v_p . The resonator is short-circuited at one end while open-circuited at the other end. Let the wavelength corresponding to the smallest resonant for a fairly = 12. frequency f be $\lambda = v_p/f$.
- (a) Find the characteristic equation for the resonant frequency f.
- (b) In case of same characteristic impedance, i.e., $Z_{01} = Z_{02}$, find the total length $\ell = \ell_0 + \ell_0$ in torque ℓ $\ell = \ell_1 + \ell_2$ in terms of the wavelength λ . attan(x
- (c) If we hope to reduce the total length required to achieve the same smallest resonant frequency, should we choose Z_{0I} larger or smaller than Z_{02} ?
- Intona + Intolo = X (d) Following (c), determine the best ratio between ℓ_1 and ℓ_2 such that the total length ℓ can be minimized while keeping the smallest resonant frequency unchanged.
- (e) If $Z_{01}/Z_{02} = \sqrt{3}$, find the minimal length ℓ in terms of λ by (d). Compare the result with that in (b). How much is the length reduction?

- 3. The electric field of a right-hand circularly polarized uniform plane wave propagating in free space is given by $\tilde{E} = 10(A\hat{x} + j0.4\hat{y} + B\hat{z})e^{j(0.6,y-0.8z)}$ where A and B are constants.
- (a) Determine the frequency of the wave.
- **(b)** What is the direction of propagation?
- (c) Find the values of A and B.
- (d) Obtain the associated magnetic field in phasor form.
- (e) Find the time-average power flow per unit area normal to the direction of propagation.

4. A uniform plane wave having the electric field
$$\mathbf{E} = E_0(\mathbf{a}_y) \cdot \cos\left[6\pi \times 10^8 t - \sqrt{2}\pi(x+z)\right]$$
 Siva. Sind $-k$ CBQ. Sind $-k$ CBQ.

is incident on the interface between free space and a dielectric medium of $\varepsilon=1.5\varepsilon_0$ and $\mu=\mu_0$. The angle of incidence is 45° as shown in Fig.P4. Obtain the expressions for the electric fields of the reflected and transmitted waves.

2 of 3

The power density pattern for an antenna located at the origin is given by

$$f(\theta, \phi) = \begin{cases} \csc^2 \theta & \text{for } \pi/6 \le \theta \le \pi/2 \\ 0 & \text{Otherwise} \end{cases}$$

Find the directivity of the antenna.

Useful Formula

$$\Gamma_{\perp} = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}$$

$$\tau_{\perp} = \frac{2\eta_2 \cos \theta_1}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}$$

$$\begin{split} \Gamma_{\parallel} &= \frac{\eta_2 \cos \theta_2 - \eta_1 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1} \\ \tau_{\parallel} &= \frac{2\eta_2 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1} \end{split}$$

TABLE 9.1 Field Expressions and Associated Parameters for TE and TM Modes in a Rectangular Waveguide

Transverse electric (TE) waves	Transverse magnetic (TM) waves
Field Expressions:	Field Expressions:
$(m, n = 0, 1, 2, \ldots, \text{but not both zero})$	$(m,n=1,2,3,\ldots)$
$\bar{E}_z = 0$	$\bar{H}_z = 0$
$\bar{H}_z = \bar{A}\cos\frac{m\pi x}{a}\cos\frac{n\pi y}{b}e^{\mp j\beta_z z}$	$\vec{E}_z = \vec{A} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{\mp j\beta_z z}$
$\bar{E}_x = j \frac{\lambda_c^2}{4\pi^2} \omega \mu \frac{n\pi}{b} \bar{A} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{\mp j\beta_z z}$	$\overline{E}_x = \mp j \frac{\lambda_c^2}{2\pi\lambda_g} \frac{m\pi}{a} \overline{A} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{\mp j\beta_z z}$
$\bar{E}_y = -j \frac{\lambda_c^2}{4\pi^2} \omega \mu \frac{m\pi}{a} \bar{A} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{\mp j\beta_c z}$	$\bar{E}_y = \mp j \frac{\lambda_c^2}{2\pi\lambda_g} \frac{n\pi}{b} \bar{A} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{\mp j\beta_z z}$
$ar{H}_x = \mp rac{ar{E}_y}{oldsymbol{\eta}_g}$	$\widetilde{H}_x = \mp \frac{\overline{E}_y}{\eta_g}$
$\bar{H}_{y} = \pm \frac{\bar{E}_{x}}{\eta_{g}}$	$\bar{H}_{y} = \pm \frac{\bar{E}_{x}}{\eta_{g}}$
$f_{c} \approx \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$	$f_c = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$
$\lambda_c = \frac{2}{\sqrt{(\ln/a)^2 + (n/b)^2}}$	$\lambda_c = \frac{2}{\sqrt{(m/a)^2 + (n/b)^2}}$
$\lambda_{\rm g} = \frac{\lambda}{\sqrt{1 - (\lambda/\lambda_c)^2}} = \frac{\lambda}{\sqrt{1 - (f_c/f)^2}}$	$\lambda_{g} = \frac{\lambda}{\sqrt{1 - (\lambda/\lambda_{c})^{2}}} = \frac{\lambda}{\sqrt{1 - (f_{c}/f)^{2}}}$
$v_{\rho_{\mathcal{L}}} = \frac{1}{\sqrt{\mu\varepsilon}\sqrt{1-\left(f_{c}/f\right)^{2}}} = \frac{1}{\sqrt{\mu\varepsilon}\sqrt{1-\left(\lambda/\lambda_{c}\right)^{2}}}$	$v_{pz} = \frac{1}{\sqrt{\mu \epsilon} \sqrt{1 - (f_c/f)^2}} = \frac{1}{\sqrt{\mu \epsilon} \sqrt{1 - (\lambda/\lambda_c)^2}}$
$ \eta_g = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1 - (f_c/f)^2}} = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1 - (\lambda/\lambda_c)^2}} $	$ \eta_g = \sqrt{\frac{\mu}{\varepsilon}} \sqrt{1 - \left(\frac{f_c}{f}\right)^2} = \sqrt{\frac{\mu}{\varepsilon}} \sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2} $