Перестановки, повторение

Определение 1. Перестановкой n элементов (или подстановкой из n элементов) называется биекция n-элементного множества на себя. Множество всех перестановок множества $\{1,\ldots,n\}$ обозначается S_n .

Определение 2. Произведением перестановок называется их композиция как отображений (обозначение: $\alpha\beta$). Перестановка, переводящая каждый элемент в себя, называется тождественной и обозначается е.

Определение 3. Порядком перестановки α называется наименьшее натуральное число n, такое что $\alpha^n = e$.

Определение 4. Циклом длины l называется перестановка $\alpha \in S_n$ элемантов i_1 , ..., i_l , такая что $\alpha(i_j) = \alpha(i_{j+1})$ (сложение происходит по модулю l), а на всех остальных элементах тождественна. Для упрощения записи $\alpha = (i_1, \ldots, i_l)$.

Определение 5. Циклы называются независимыми, если их элементы не пересекаются. Если цклы α и β независимы, то $\alpha\beta = \beta\alpha$.

Теорема 1. Любую перестановку можно представить в виде произведения независимых циклов.

Определение 6. Графом перестановки α называется ориентированный граф, вершины которого числа от 1 до n, а ребра ведут из i в $\alpha(i)$.

Определение 7. Транспозицией называется перестанока, которая меняет два элемента местами, а все остальные оставляет неподвижными. Т.е. циклическая перестановка длины два, обозначать можно (i,j). Элементарной транспозицией называется транспозиция, меняющая два соседнии элемента местами (i,i+1).

Определение 8. Пусть перестановка σ разложена в произведение транспозиций. Тогда $v\ddot{e}mhocmbo$ nepecmahobku σ называется четность количества этих транспозиций.

Определение 9. *Инверсией* перестановки σ называется такая пара чисел $i,\ j,$ что i < j, но $\sigma(i) > \sigma(j).$

- **1.** а) Докажите, что при домнажении на элементарную транспозицию изменяется чётность числа инверсий.
- б) Докажите, что четность перестановки определена корректно (т.е. четность числа транспозиций не зависит от выбора разложения).
- 2. Любую перестановку можно представить в виде произведения а) транспозицей.
- **3.** Зная чётность двух перестановое из S_n можно ли определить чётность их произведения?
- **4.** Каких перестановок в S_n больше: четных или нечетных?
- 5. Определите чётность циклической перестановки.

Перестановки, повторение

- **6.** Граф перестановки распался на циклы длины d_1, \ldots, d_k . Можно ли определить чётность перестановки?
- 7. Докажите, что любую чётную перестановку можно представить в виде произведения тройных циклов.
- 8. Докажите, что любую перестановку можно получить перемножая транспозицию (12) и длинный цикл ((12...n)).
- 9. Что происходит с циклической перестановкой при возведении её в квадрат?
- 10. Любая ли четная перестановка является квадратом некоторой перестановки?
- 11. Докажите, что существует ровно два отображения их перестановок в числа таких, что f(e) = 1 и $f(\alpha\beta) = f(\alpha)f(\beta)$. А именно $f(\alpha) = 1$ и $f(\alpha) = (-1)^{\alpha}$ (минус один в степени чётность перестановки α).