AI1110 Assignment 1

Hema Sri Cheekatla, CS21BTECH11013

April 1, 2022

Question 4a

Solve the following inequation, write down the solution set and represent it on the real number line:

$$-2 + 10x \le 13x + 10 < 24 + 10x, x \in \mathbb{Z}$$

Solution

$$-2 + 10x \le 13x + 10 < 24 + 10x, x \in \mathbb{Z}$$

Let us solve the above expression geometrically. now consider each equation in this expression as a line equation

$$y_1 = 10x - 2$$

 $y_2 = 13x + 10$
 $y_3 = 10x + 24$

Clearly slopes of y_1 and y_3 are same i.e., slope = 10 and $y_1 \le y_2 < y_3$, so the integral values of x on x-axis satisfying this inequality are the required solution set.

So we need to find the range of x at where the line y_2 lies between between line y_1 and the line y_3

We can obtain the x value at intersection point of y_1 and y_2 by equating them that is,

$$y_1 = y_2$$

$$10x - 2 = 13x + 10$$

$$-10 - 2 = 13x - 10x$$

$$-12 = 3x$$

$$x = -4$$

Similary we get the x value at intersection point of y_2 and y_3 by equating y_2 and y_3

$$y_3 = y_2$$
 $10x + 24 = 13x + 10$
 $24 - 10 = 13x - 10x$
 $14 = 3x$
 $x = 4.67$

Since $y_1 \le y_2 < y_3$, this implies $-4 \le x < 4.67$

Now let us draw the corresponding lines

Figure 1: lines y_1 , y_2 and y_3

If we observe this graph, it is clear that the lines y_1 and y_2 are intersecting at x = -4 and the lines y_2 and y_3 are intersecting at some point where x > 4 Hence the required range of x is [-4, 4.67)

Therefore the integers in this range are,

$$\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

Here is the plot of corresponding points on the real number line

Figure 2: set of points that obey given expression on real number line