Digital Logic

DPP - 1

Comparator, MUX Part-I

- 1. Let $x = x_1x_0$ and $y = y_1y_0$ be unsigned 2-bit numbers. The function F = 1 if x > y and F = 0 otherwise. The minimal sum of product expression for F, is
 - (a) $y_1y_0 + x_0y_0 + \overline{x_1} \overline{x_0} \overline{y_1}$
 - (b) $x_0 y_1 + y_1 y_0 + x_1 x_0$
 - (c) $y_1 x_1 + y_0 x_1 x_0 + y_1 y_0 x_0$
 - (d) $x_1 y_1 + x_0 y_0 y_1 + x_0 x_1 y_0$
- 2. The two 4 bit numbers A_3 A_2 A_1 A_0 and B_3 B_2 B_1 B_0 are applied to a comparator circuit shown below. A pair of correct input numbers forcing the output y = 0, will be

- (a) 1100, 1100
- (b) 0111, 0111
- (c) 1011, 1011
- (d) 1100, 1101
- **3.** The output y of a 2-bit comparator is logic-1 whenever the 2-bit A is greater than 2-bit B the number of combination for which the output is logic -1 is _____?

- (a) 6
- (b) 2
- (c) 1
- (d) 7

Common Statement for Question 4 and 5

A logic Circuit is given,

- **4.** A pair of correct input number (AB) forcing the output x = 1, will be
 - (a) 10
- (b) 01
- (c) 11
- (d) 00
- 5. A pair of correct input number (AB) forcing the output $y_2 = 1$, will be
 - (a) 00,11
- (b) 01,10
- (c) 00,10
- (d) 11,01

Answer Key

1. (d)

2. (d)

3. (a)

4. (b)

5. (a)

 $\textbf{PW Mobile APP:} \ https://play.google.com/store/apps/details?id=xyz.penpencil.physicswala$

For PW Website: https://www.physicswallah.live/contact-us