The Fibonacci numbers f_0, f_1, f_2, \ldots and Lucas numbers l_0, l_1, l_2, \ldots are defined by the equations:

- $f_0 = 0$, $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$;
- $l_0 = 2$, $l_1 = 1$ and $l_n = l_{n-1} + l_{n-2}$ for all $n \ge 2$

respectively. Prove that $f_n + f_{n+2} = l_{n+1}$ for all $n \ge 1$.

Let P(n) be the proposition $f_n + f_{n+2} = l_{n+1}$ for all $n \ge 1$. We use the second principle of mathematical induction.

Base cases: P(1) and P(2) hold since:

$$f_1 + f_3 = 1 + 2 = l_1 + l_0 = l_2$$

 $f_2 + f_4 = 1 + 3 = 3 + 1 = l_2 + l_1 = l_3$

Inductive step: Suppose $n \geq 2$ and P(k) is true for all $1 \leq k \leq n$, Now, by definition of the Fibonacci numbers we have:

$$f_{n+1} + f_{n+3} = (f_{n-1} + f_n) + (f_{n+1} + f_{n+2})$$

$$= (f_{n-1} + f_{n+1}) + (f_n + f_{n+2})$$
rearranging
$$= l_n + l_{n+1}$$
by induction (using $P(n-1)$ and $P(n)$)
$$= l_{n+2}$$
by definition of the Lucas numbers

and hence P(n+1) holds.

Therefore by the principle of induction we have proved that P(n) holds for all $n \ge 1$.

The set of bit strings \mathbb{B}^* are be defined recursively by:

- $\varepsilon \in \mathbb{B}^*$ (where ε is the empty string);
- if $w \in \mathbb{B}^*$ and $x \in \{0, 1\}$, then $wx \in \mathbb{B}^*$.

We can define concatenation of two bit strings denoted ++, recursively as follows:

- if $w \in \mathbb{B}^*$, then $w++\varepsilon=w$;
- if $w, v \in \mathbb{B}^*$ and $x \in \{0, 1\}$, then w + +(vx) = (w + +v)x.

Give a recursive definition of the function ones: $\mathbb{B}^* \to \mathbb{N}$ which counts the number of ones in a bit string. The function ones: $\mathbb{B}^* \to \mathbb{N}$ is defined as follows. For any $v \in \mathbb{B}^*$:

$$\mathtt{ones}(v) = \left\{ \begin{array}{ll} 0 & \text{if } v = \varepsilon \\ \mathtt{ones}(w) & \text{if } v = wx \text{ and } x{=}0 \\ 1 + \mathtt{ones}(w) & \text{if } v = wx \text{ and } x{=}1 \end{array} \right.$$

The use structural induction to prove that ones(w++v) = ones(w) + ones(v) for all $w, v \in \mathbb{B}^*$.

We will prove ones(w++v) = ones(w) + ones(v) for all $w, v \in \mathbb{B}^*$ by induction on the structure of v.

Base cases: in this case we have $v = \varepsilon$, and hence by definition of concatenation:

$$ones(w++v) = ones(w)$$

= $ones(w) + 0$ rearranging
= $ones(w) + ones(v)$ by definition of ones and since $v=\varepsilon$.

Induction step: in this case we have v = v'x for some $v' \in \mathbb{B}^*$ and $x \in \{0,1\}$. We have two cases to consider.

• If x=0, then

$$\begin{array}{lll} \operatorname{ones}(w++v) &=& \operatorname{ones}(w++(v'x)) \\ &=& \operatorname{ones}((w++v')x) & \text{by definition of concatenation} \\ &=& \operatorname{ones}(w++v') & \text{by definition of ones \& since } x{=}0 \\ &=& \operatorname{ones}(w) + \operatorname{ones}(v') & \text{by the induction hypothesis} \\ &=& \operatorname{ones}(w) + \operatorname{ones}(v'x) & \text{by definition of ones \& since } x{=}0 \\ &=& \operatorname{ones}(w) + \operatorname{ones}(v) & \text{by construction.} \end{array}$$

• If x=1, then

$$\begin{array}{lll} \operatorname{ones}(w++v) &=& \operatorname{ones}(w++(v'x)) \\ &=& \operatorname{ones}((w++v')x) & \text{by definition of concatenation} \\ &=& 1+\operatorname{ones}(w++v') & \text{by definition of ones \& since } x{=}0 \\ &=& 1+\operatorname{ones}(w)+\operatorname{ones}(v') & \text{by the induction hypothesis} \\ &=& \operatorname{ones}(w)+(1+\operatorname{ones}(v')) & \operatorname{rearranging} \\ &=& \operatorname{ones}(w)+\operatorname{ones}(v'x) & \text{by definition of ones \& since } x{=}1 \\ &=& \operatorname{ones}(w)+\operatorname{ones}(v) & \text{by construction.} \end{array}$$

Since these are the other cases to consider the inductive step holds.

Therefore by the principle of structural induction we have proved that

$$\mathtt{ones}(w{+}{+}v) = \mathtt{ones}(w) + \mathtt{ones}(v)$$

for all $w, v \in \mathbb{B}^*$.

Non-empty proper binary trees over X (where X is a data set):

- base case: if $x \in X$, then node(nil, nil, x) is a tree over X;
- inductive step: if t_1 and t_2 are non-empty proper binary trees over X and $x \in X$, then $node(t_1, t_2, x)$ is a tree over X.

Define recursive functions for the number of nodes n(t) and height h(t) of a complete non-empty binary tree.

The height of a true is the length of the longest path from the root and the length of a path is the number of edges in the path.

The functions n and h are defined as follows. For any tree t:

$$\mathbf{n}(t) = \left\{ \begin{array}{ll} 1 & \text{if } t = \mathtt{node}(\mathtt{nil},\mathtt{nil},x) \\ 1 + \mathbf{n}(t_1) + \mathbf{n}(t_2) & \text{if } t = \mathtt{node}(t_1,t_2,x) \end{array} \right.$$

$$\mathbf{h}(t) = \left\{ \begin{array}{ll} 0 & \text{if } t = \mathtt{node}(\mathtt{nil},\mathtt{nil},x) \\ 1 + \max\{\mathbf{n}(t_1),\mathbf{n}(t_2)\} & \text{if } t = \mathtt{node}(t_1,t_2,x) \end{array} \right.$$

Use structural induction to show $\mathbf{n}(t) \geq 2 \cdot \mathbf{h}(t) + 1$ for any complete non-empty binary tree t.

Base case: In the base case we have that $t = \varepsilon$ and by definition of n:

$$\begin{array}{ll} \mathbf{n}(\varepsilon) = 1 \\ &= 2 \cdot 0 + 1 \\ &= 2 \cdot \mathbf{h}(\varepsilon) + 1 \end{array}$$
 rearranging by definition of \mathbf{h}

as required.

Inductive step: Noe assume $\mathbf{n}(t_i) \geq 2 \cdot \mathbf{h}(t_i) + 1$ for i = 1, 2 and consider an arbitrary $x \in X$. By definition of \mathbf{n} :

$$\begin{split} \mathbf{n}(\mathsf{node}(t_1,t_2,x)) &= \ 1 + \mathbf{n}(t_1) + \mathbf{n}(t_2) \\ &\geq \ 1 + 2 \cdot \mathbf{h}(t_1) + 1 + 2 \cdot \mathbf{h}(t_2) + 1 \qquad \qquad \text{by the inductive hypothesis} \\ &= \ 1 + 2 \cdot (1 + \mathbf{h}(t_1) + 2 \cdot \mathbf{h}(t_2)) \qquad \qquad \text{rearranging} \\ &\geq \ 1 + 2 \cdot (1 + \max\{\mathbf{h}(t_1) + 2 \cdot \mathbf{h}(t_2)\}) \qquad \text{since } l + m \geq \max\{l,m\} \text{ for any } l, m \in \mathbb{N} \\ &\geq \ 1 + 2 \cdot \mathbf{h}(\mathbf{node}(t_1,t_2,x)) \qquad \qquad \text{by definition of } \mathbf{h} \end{split}$$

and therefore the inductive step holds.

Therefore by the principle of structural induction we have proved that $\mathbf{n}(t) \geq 2 \cdot \mathbf{h}(t) + 1$ for any complete non-empty binary tree t.