# Paths of analysis\*

# Synthia

October 10, 2022

# 1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

#### Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

## My Stockroom:

1. Max. molecular weight - 1000 g/mol

**Reaction scoring formula:** TUNNEL\_COEF\*FGI\_COEF\*STEP\*20+1000 000\*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

<sup>\*</sup>The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

# 2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

#### 2.1 Path 1

Score: 1000115.31



Figure 1: Outline of path 1

# 2.1.1 Synthesis of O-substituted N-substituted hydroxamic acids

## Substrates:

- 1. 1-methyl-1,1-dithiooxalsaeure
- 2. n-methoxymethylamine available at Sigma-Aldrich

#### **Products:**

1. CON(C)C(=O)C(=S)SC

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

**Reference:** Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

# 2.1.2 Synthesis of ketones from Weinreb amides

## Substrates:

1. Allyl bromide - available at Sigma-Aldrich

2. CON(C)C(=O)C(=S)SC

#### **Products:**

1. C=CCC(=O)C(=S)SC

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 6837

# 2.1.3 Olefination of ketones followed by hydrolysis

# ${\bf Substrates:}$

1. triphenylphosphonium methoxymethylide

 $2. \ \mathrm{C=CCC(=O)C(=S)SC}$ 

## **Products:**

1. C=CCC(C=O)C(=S)SC

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

**Reference:** 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

# 2.1.4 Grignard-Type Reaction

# Substrates:

- 1. C=CCC(C=O)C(=S)SC
- 2. (4-trifluormethyl-phenyl)-magensium-bromid

## **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: Mg or Li.ether

Protections: none

**Reference:** 10.1055/s-0030-1260809 or 10.1021/jm061429p or 10.1021/jo0621423

or 10.1021/ja00373a036 or 10.1016/S0040-4020(01)00457-4

# 2.1.5 Condensation of ketones with dithioesters

## Substrates:

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

2. Acetophenone - available at Sigma-Aldrich

# Products:

 $1. \ C{=}CCC(C({=}S)CC({=}O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$ 

Typical conditions: NaH.DMF

## **Protections:**

| Functional group SMARTS | Classification | Protecting groups                   |
|-------------------------|----------------|-------------------------------------|
| [#6][CH]([#6])[OH]      | alcohols       | Methoxymethyl Ether (MOM)           |
|                         |                | 2-Methoxyethoxymethyl Ether (MEM)   |
|                         |                | Tetrahydropyranyl Ether (THP)       |
|                         |                | Benzyl Ether ( PMB)                 |
|                         |                | t-Butyldimethylsilyl Ether (TB-DMS) |
|                         |                | Methyl Ether                        |

**Reference:** 10.1021/jo400599e and 10.1002/ejoc.201301667

# 2.2 Path 2

Score: 1000125.08



Figure 2: Outline of path 2

# 2.2.1 Alkylation of ketones

## Substrates:

1. Allyl bromide - available at Sigma-Aldrich

 $2. \ \, \hbox{p-chlor-benzoyl-dithioes sigsacure-methylester}$ 

# **Products:**

 $1. \ \, \hbox{a--allyl-a-(p-chlorobenzoyl)} \\ \hbox{dithioacetate}$ 

Typical conditions: LDA or other base.THF.-78C

Protections: none

**Reference:** DOI: 10.1021/jo1019738 OR DOI: 10.1021/jm00114a016

Retrosynthesis ID: 1866

# 2.2.2 Nucleophilic aromatic substitution



1. a-allyl-a-(p-chlorobenzoyl)dithioacetate

#### **Products:**

1. C=CCC(C(=O)c1ccc(N)cc1)C(=S)SC

Typical conditions: solvent. Heating or pressure

Protections: none

**Reference:** 10.1021/jm00040a009 or 10.1111/bph.12233 or 10.1246/cl.1987.1187

Retrosynthesis ID: 5003

## 2.2.3 Reduction of ketones with NaBH4

## Substrates:

1. C=CCC(C(=O)c1ccc(N)cc1)C(=S)SC

## **Products:**

 $1. \ C{=}CCC(C({=}S)SC)C(O)c1ccc(N)cc1 \\$ 

Typical conditions: NaBH4.EtOH.0-20 C

Protections: none

**Reference:** 10.1016/j.ejmech.2020.112360 p. 3, 8 and 10.1016/j.ejmech.2010.10.012 p. 434, 436

Retrosynthesis ID: 50432

# 2.2.4 One-Pot Sandmeyer Trifluoromethylation

$$+ \bigvee_{S_{i}}^{HO} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{HO} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{HO} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{HO} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{F_{i}} \bigvee_{S_{i}}^{HO} \bigvee_{S_{i}}^{$$

 $1. \ C{=}CCC(C({=}S)SC)C(O)c1ccc(N)cc1 \\$ 

2. TFMTMS - available at Sigma-Aldrich

#### **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: 1.pTSA.tBuONO.2.TMSCF3.CuSCN.Cs2CO3.MeCN.rt

or AgCF3  $\,$ 

Protections: none

**Reference:** 10.1002/adsc.201400340 and 10.1021/ja4056239

Retrosynthesis ID: 10000381

# 2.2.5 Condensation of ketones with dithioesters

#### Substrates:

- 1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1
- 2. Acetophenone available at Sigma-Aldrich

## **Products:**

 $1. \ C = CCC(C(=S)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$ 

Typical conditions: NaH.DMF

**Protections:** 

| Functional group SMARTS | Classification | Protecting groups                   |
|-------------------------|----------------|-------------------------------------|
| [#6][CH]([#6])[OH]      | alcohols       | Methoxymethyl Ether (MOM)           |
|                         |                | 2-Methoxyethoxymethyl Ether (MEM)   |
|                         |                | Tetrahydropyranyl Ether (THP)       |
|                         |                | Benzyl Ether ( PMB)                 |
|                         |                | t-Butyldimethylsilyl Ether (TB-DMS) |
|                         |                | Methyl Ether                        |

**Reference:** 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

# 2.3 Path 3

Score: 1000125.08



Figure 3: Outline of path 3

# 2.3.1 Alkylation of ketones

- 1. Allyl bromide available at Sigma-Aldrich
- $2.\ \ p\text{-chlor-benzoyl-dithioessigsacure-methylester}$

## **Products:**

 $1. \ \, \hbox{a--allyl-a-(p-chlorobenzoyl)} \\ \hbox{dithioacetate}$ 

Typical conditions: LDA or other base.THF.-78C

Protections: none

**Reference:** DOI: 10.1021/jo1019738 OR DOI: 10.1021/jm00114a016

Retrosynthesis ID: 1866

## 2.3.2 Nucleophilic aromatic substitution

#### Substrates:

1. a-allyl-a-(p-chlorobenzoyl)dithioacetate

## **Products:**

1. C=CCC(C(=O)c1ccc(N)cc1)C(=S)SC

Typical conditions: solvent. Heating or pressure

Protections: none

**Reference:** 10.1021/jm00040a009 or 10.1111/bph.12233 or 10.1246/cl.1987.1187

Retrosynthesis ID: 5003

# 2.3.3 One-Pot Sandmeyer Trifluoromethylation

#### Substrates:

1. C=CCC(C(=O)c1ccc(N)cc1)C(=S)SC

2. TFMTMS - available at Sigma-Aldrich

## **Products:**

1. C=CCC(C(=O)c1ccc(C(F)(F)F)cc1)C(=S)SC

Typical conditions: 1.pTSA.tBuONO.2.TMSCF3.CuSCN.Cs2CO3.MeCN.rt

or AgCF3

Protections: none

**Reference:** 10.1002/adsc.201400340 and 10.1021/ja4056239

Retrosynthesis ID: 10000381

#### 2.3.4 Reduction of ketones with NaBH4

## Substrates:

1. C=CCC(C(=O)c1ccc(C(F)(F)F)cc1)C(=S)SC

# **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: NaBH4.EtOH.0-20 C

Protections: none

**Reference:** 10.1016/j.ejmech.2020.112360 p. 3, 8 and

 $10.1016/j.ejmech.2010.10.012~\mathrm{p.}~434,~436$ 

Retrosynthesis ID: 50432

## 2.3.5 Condensation of ketones with dithioesters



#### Substrates:

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

2. Acetophenone - available at Sigma-Aldrich

## **Products:**

1. C=CCC(C(=S)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1

 ${\bf Typical\ conditions:}\ {\rm NaH.DMF}$ 

# Protections:

| Functional group SMARTS | Classification | Protecting groups                   |
|-------------------------|----------------|-------------------------------------|
| [#6][CH]([#6])[OH]      | alcohols       | Methoxymethyl Ether (MOM)           |
|                         |                | 2-Methoxyethoxymethyl Ether (MEM)   |
|                         |                | Tetrahydropyranyl Ether (THP)       |
|                         |                | Benzyl Ether ( PMB)                 |
|                         |                | t-Butyldimethylsilyl Ether (TB-DMS) |
|                         |                | Methyl Ether                        |

**Reference:** 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

## 2.4 Path 4

Score: 1000164.14



Figure 4: Outline of path 4

# 2.4.1 Nucleophilic aromatic substitution

#### Substrates:

1. p-chlor-benzoyl-dithioessigsaeure-methylester

## **Products:**

1. CSC(=S)CC(=O)c1ccc(N)cc1

Typical conditions: solvent. Heating or pressure

Protections: none

**Reference:** 10.1021/jm00040a009 or 10.1111/bph.12233 or 10.1246/cl.1987.1187

Retrosynthesis ID: 5003

# 2.4.2 One-Pot Sandmeyer Trifluoromethylation



#### Substrates:

1. TFMTMS - available at Sigma-Aldrich

 $2. \ \mathrm{CSC}(=\!\mathrm{S})\mathrm{CC}(=\!\mathrm{O})\mathrm{c1ccc}(\mathrm{N})\mathrm{cc1}$ 

## **Products:**

1. CSC(=S)CC(=O)c1ccc(C(F)(F)F)cc1

Typical conditions: 1.pTSA.tBuONO.2.TMSCF3.CuSCN.Cs2CO3.MeCN.rt

or AgCF3

Protections: none

**Reference:** 10.1002/adsc.201400340 and 10.1021/ja4056239

# 2.4.3 Aldol Condensation

## Substrates:

1. Acrolein

 $2. \ CSC(=S)CC(=O)c1ccc(C(F)(F)F)cc1 \\$ 

# Products:

 $1. \ C{=}CC{=}C(C({=}O)c1ccc(C(F)(F)F)cc1)C({=}S)SC \\$ 

Typical conditions: NaOEt.base

Protections: none

**Reference:** 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

# 2.4.4 Reduction of enones to saturated alcohols

## Substrates:

1. C=CC=C(C(=O)c1ccc(C(F)(F)F)cc1)C(=S)SC

#### **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: NaBH4.transition.metal.salt.(eg.Pd(OAc)2.or.CeCl3)

Protections: none

Retrosynthesis ID: 15304

## 2.4.5 Condensation of ketones with dithioesters

#### Substrates:

- 1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1
- 2. Acetophenone available at Sigma-Aldrich

#### **Products:**

 $1. \ C = CCC(C(=S)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$ 

Typical conditions: NaH.DMF

**Protections:** 

| Functional group SMARTS | Classification | Protecting groups                   |
|-------------------------|----------------|-------------------------------------|
| [#6][CH]([#6])[OH]      | alcohols       | Methoxymethyl Ether (MOM)           |
|                         |                | 2-Methoxyethoxymethyl Ether (MEM)   |
|                         |                | Tetrahydropyranyl Ether (THP)       |
|                         |                | Benzyl Ether ( PMB)                 |
|                         |                | t-Butyldimethylsilyl Ether (TB-DMS) |
|                         |                | Methyl Ether                        |

**Reference:** 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

# 2.5 Path 5

Score: 1000164.14



Figure 5: Outline of path 5

# 2.5.1 Alkylation of ketones

- 1. Allyl bromide available at Sigma-Aldrich
- $2.\ \ p\text{-chlor-benzoyl-dithioessigsacure-methylester}$

## **Products:**

 $1. \ \, \hbox{a--allyl-a-(p-chlorobenzoyl)} \\ \hbox{dithioacetate}$ 

Typical conditions: LDA or other base. THF.-78C

Protections: none

**Reference:** DOI: 10.1021/jo1019738 OR DOI: 10.1021/jm00114a016

Retrosynthesis ID: 1866

## 2.5.2 Reduction of ketones with NaBH4



#### Substrates:

1. a-allyl-a-(p-chlorobenzoyl)dithioacetate

## **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(Cl)cc1

Typical conditions: NaBH4.EtOH.0-20  $\rm C$ 

Protections: none

**Reference:** 10.1016/j.ejmech.2020.112360 p. 3, 8 and

10.1016/j.ejmech.2010.10.012 p. 434, 436

Retrosynthesis ID: 50432

# 2.5.3 Coupling of Ammonia with Aryl Halides

 $1. \ C{=}CCC(C({=}S)SC)C(O)c1ccc(Cl)cc1 \\$ 

## **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(N)cc1

Typical conditions: Pd[(P(p-tol)3]2.NaOtBu.dioxane.heat

Protections: none

**Reference:** 10.1021/ja903049z and 10.1021/ol027119s and 10.1021/jo9006738

Retrosynthesis ID: 10142

# 2.5.4 One-Pot Sandmeyer Trifluoromethylation

#### Substrates:

1. C=CCC(C(=S)SC)C(O)c1ccc(N)cc1

2. TFMTMS - available at Sigma-Aldrich

## **Products:**

1. C=CCC(C(=S)SC)C(O)c1ccc(C(F)(F)F)cc1

 $\textbf{Typical conditions:} \ 1.pTSA.tBuONO.2.TMSCF3.CuSCN.Cs2CO3.MeCN.rt$ 

or AgCF3

Protections: none

**Reference:** 10.1002/adsc.201400340 and 10.1021/ja4056239

Retrosynthesis ID: 10000381

## 2.5.5 Condensation of ketones with dithioesters



## Substrates:

 $1. \ C{=}CCC(C({=}S)SC)C(O)c1ccc(C(F)(F)F)cc1 \\$ 

2. Acetophenone - available at Sigma-Aldrich

## **Products:**

 $1. \ C = CCC(C(=S)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$ 

 $\textbf{Typical conditions:}\ \mathrm{NaH.DMF}$ 

# Protections:

| Functional group SMARTS | Classification | Protecting groups                   |
|-------------------------|----------------|-------------------------------------|
| [#6][CH]([#6])[OH]      | alcohols       | Methoxymethyl Ether (MOM)           |
|                         |                | 2-Methoxyethoxymethyl Ether (MEM)   |
|                         |                | Tetrahydropyranyl Ether (THP)       |
|                         |                | Benzyl Ether ( PMB)                 |
|                         |                | t-Butyldimethylsilyl Ether (TB-DMS) |
|                         |                | Methyl Ether                        |

**Reference:** 10.1021/jo400599e and 10.1002/ejoc.201301667