UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji

Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej

filip.wojcik@ue.wroc.pl

Uczenie maszynowe a wspomaganie zarządzania

Uczenie maszynowe jako część produktu

Produkty "inteligentne", wchodzące w interakcję z użytkownikiem

Przedsięwzięcia raczej niskiego ryzyka (rekomendacja, elementy interfejsu)

Klient nie musi rozumieć ich działania: jest użytkownikiem

Uczenie maszynowe we wspomaganiu zarządzania

Produkty wspomagające działalność organizacji

Powiązanie z decyzjami na różnych poziomach – operacyjnym, taktycznym i strategicznym

Odbiorcy analiz chcą rozumieć zasady działania systemów

Uczenie maszynowe w zarządzaniu zasobami ludzkimi

	Wyzwania	Zastosowanie uczenia
		maszynowego
Planowanie zasobów ludzkich	Prognozowanie zapotrzebowania na pracowników	Prognozowanie zapotrzebowaniaPrognozowanie utylizacji zasobów ludzkich
		Automatyczna identyfikacja
() Nabór pracowników	> • Efektywna selekcja kandydatów	kompetencji
		Dobór osób pod kątem stanowisk
Ocena efektów pracy	 Zdefiniowanie obiektywnych i weryfikowalnych kryteriów oceny 	Obserwacja zachowania metryk projektowych (Agile) i ich
geena crektow pracy	Monitoring	prognozowanie
		Identyfikacja przeszkód w realizacji
Szkolenie pracowników	 Dobór szkoleń do oczekiwań Ocena jakości szkoleń 	 System dobierający szkolenia do kompetencji
		Ocena satysfakcji
Motyvyovia pro ovymilyóvy	Opracowanie systemów	Korelowanie zastosowanego
Motywowanie pracowników	 motywacyjnych Weryfikacja ich działania 	systemu z wynikami

E. McKenna, N. Beech 1997

System identyfikacji kompetencji

Projekt algorytmu wspierającego nabór pracowników, ocenę zapotrzebowania kompetencyjnego w projektach i dobór szkoleń.

PREZTWARZANIE JĘZYKA NATURALNEGO

Ekstrakcja słów-kluczy z dokumentów aplikacyjnych, profili pracowników oraz opisów zadań/projektów

BUDOWANIE SŁOWNIKA WYRAŻEŃ

Zebranie fraz w postaci słownika i ocena ich istotności. Usunięcie fraz nieznaczących, odnalezienie synonimów

REPREZENTACJA W POSTACI WEKTORÓW

Reprezentacja profili pracowników/aplikantów/opisów zadań i projektów w postaci wektorów, wskazujących wagę i występowania fraz

REPREZENTACJA W POSTACI WEKTORÓW

Wykorzystanie algorytmów analizy asocjacyjnej i klasyfikacji (drzewa decyzyjne, sieci neuronowe) do zbudowania grafów częstości występowania kompetencji i ich korelacji z projektami/zdaniami

System doboru zadań

Na podstawie historycznych informacji o wykonywanych zadaniach oraz wektorowej reprezentacji kluczowych cech pracowników/projektów można wstępnie wyznaczać odpowiednie osoby do poszczególnych aktywności.

Wektory cech osób służą do predykcji najlepiej dopasowanych zadań.

Białoskrzynkowe algorytmy klasyfikacjiW celu zapewnienia czytelności i przejrzystości czynników wpływających na decyzje. Cenione ze względu na prostotę.

Drzewa decyzyjne / systemy reugłowe / systemy probabilistyczne

Czarnoskrzynkowe algorytmy klasyfikacji Dla uzyskania lepszej trafności predykcji, w warunkach dużego rozdrobnienia i nierównowagi klas.

Sieci neuronowe / Maszyny wektorów nośnych (SVM) / XGBoost (eXtreme Gradien Boosting)

Systemy rekomendacyjne oparte na cechach

Wykorzystywane w e-commerce do rekomendowania podobnych elementów. Używane, gdy obiekty posiadają bogate charakterystyki.

Collaborative filtering / Hybrid similarity

System identyfikacji kompetencji

10 Zespołów w próbce

151

Zidentyfikowanych istotnych cech

Algorytm wyszukiwania korelacji między

CECHAMI OSÓB a ZESPOŁAMI PROJEKTOWYMI

Model	Średnia precyzja	Średnia czułość	Komentarz
	67% std: 0.15	55% std: 0.13	 Wyniki zróżnicowane w poszczególnych zespołach Należy kalibrować algorytm wg. ich specyfiki Sieć ma dość dużą wariancję predykcji – należy ją ustabilizować
	51% std: 0.1	49% std: 0.09	 Model lasów losowych i drzew decyzyjnych nie sprawdza się Nie wykrywa złożonych zależności Wariancja jest stabilniejsza niż w sieci neuronowej

47
Pracowników w próbce

1953
Zadania w systemie, historyczne i aktualne

151

Zidentyfikowanych istotnych cech

Algorytm wyszukiwania korelacji między

CECHAMI OSÓB a ZADANIAMI

Model	Średnia precyzja	Średnia czułość	Komentarz
	68% std: 0.04	71% std: 0.04	 Model rekomendacyjny oparty o cechy sprawdza się bardzo dobrze Analogia z systemami e-commerce Algorytm można usprawnić, poprzez iteracyjny dobór wag pomiędzy cechami, a zadaniami
	51% std: 0.23	49% std: 0.22	 Sieci neuronowe nie sprawdzają się Zbytnie rozdrobnienie "klas" (zadań) Redukcja wymiarów (PCA) nie rozwiązała problemu

Napotkane trudności w badaniach

Niechęć organizacji do współpracy

- · Obawa przed dzieleniem się informacjami poufnymi dotyczącymi pracowników
- Obawa przed publikowaniem wyników badań szpiegostwo przemysłowe i ujawnianie tajemnicy korporacyjnej

Obawa przed skutkami wdrożenia opisywanych rozwiązań

- Instrumentalizacja podejścia do pracowników
- Rzutowanie decyzji algorytmów na ich karierę i drogę zawodową

Badania prowadzone na homogenicznej próbce pracowników

- Niewielka dywersyfikacja umiejętności głównie programiści kilku wiodących języków
- Relatywnie homogeniczne sposoby zarządzania projektami i profil działalności – tzw. Software House'y (firmy wykonujące oprogramowanie na zlecenie), działające w metodologii Agile

Niska jakość danych

- Brak standaryzacji opisów stanowisk i zadań
- Rozbieżności pomiędzy departamentami i komórkami firm

Problem "zimnego startu"

- W projektach/departamentach z małą ilością danych
- Charakterystyczny dla systemów rekomendacyjnych

Kalibracja systemu dla poszczególnych zespołów

- Zespoły w metodologii Agile mają swoją unikalną charakterystykę
- System klasyfikacyjny/rekomendacyjny musi być kalibrowany osobno Dla niektórych zespołów próbki mogą być zbyt małe

Dziękuję za uwagę