Comparing two numeric variables: Basics of linear regression

Research Methods for Human Inquiry
Andrew Perfors

What is linear regression?

- A tool for describing the relationships between multiple interval scale variables
- Outcome and predictor are BOTH numeric
 - we can have multiple predictors
 - (it can be generalised to handle other situations too, but we won't talk about them for now)

We've already seen this...

 A correlation is a relationship between two (or more) numeric variables

This was useful, but what if we want to compare multiple variables to see which is contributing most?

Regression: lets you hypothesis test and check which variables most influence an outcome. Can also characterise more about the relationship between variables

Regression

Fundamental idea: fit the best regression line to the data, and then try to understand that line

Formula for a regression line

$$Y = b_1 X + b_0$$

A regression line

From regression lines to regression models

The regression line is what we've just seen

$$Y = b_1 X + b_0$$

 A regression model acknowledges the existence of random variation in the data

$$Y_i = b_1 X_i + b_0 + \varepsilon_i$$

- The "i" subscript indicates we're talking about data here, specifically the i-th observation in the data set
- The "epsilon" term ϵ_i is a "residual"... a deviation from the regression line

What the regression line predicts is $\overset{\circ}{Y}{}_{i}$

What we actually observe is Y_i

How do we **estimate** a regression line?

Imagine the following data

The best-fitting regression line

NOT the best-fitting regression line

How do we know what the best fitting regression line is?

- In this case it's visually obvious:
 - It's a nice simple problem with one predictor X and one outcome Y, so the scatter plot makes it easy
 - Real life problems are rarely this helpful.
- We're going to need something a bit fancier than "just looking at it"

The best-fitting regression line

NOT the best-fitting regression line

The principle of "least squares"

• The best regression line for data (X,Y) is the one that minimises the sum squared deviation between the predictions \hat{Y}_i and the actual values Y_i

The principle of "least squares"

• The best regression line for data (X,Y) is the one that minimises the sum squared deviation between the predictions \hat{Y}_i and the actual values Y_i

$$SS_{res} = \sum_{i} (Y_i - \hat{Y}_i)^2$$

- This is referred to as the <u>residual</u> sum of squares, and it's analogous to the within groups sum of squares (residuals) in ANOVA.
- Our goal is to estimate the values of b_0 and b_1 that minimise SS_{res}

And how do we do that?

- By using an ugly looking bit of matrix algebra, which is implemented using blah blah blah magic blah QR blah.
- You don't need to know it for this class (or ever) so I haven't included it.
- Here's a picture of a kitten instead:

Estimating a regression model in R

Regression in R

- Like ANOVA, regression is done in stages
 - 1. 1m() estimates the values of b_0 , b_1 etc
 - 2. summary() runs some hypothesis tests
 - 3. other functions to pull out things of interest
- The lm() function
 - This is the main "workhorse" function
 - It creates an "lm" object (i.e. variable), which contains lots of quantities of interest relating to regressions
 - Let's see how this works in practice...

Using the lm() function

- 1m() is a very powerful function, with many arguments that you can play with
- We only need two:
 - formula: a formula specifying the regression model
 - data: the data frame

```
lm(formula = yield \sim diversity, data = d)
```

Running the regression

> model1 <- lm(yield ~ diversity, data=d)

The formula uses an outcome

The formula uses an outcome variable of yield and a predictor variable of diversity (i.e., how much is the yield of a plot of land affected by the diversity of the species doing the farming?)

The dataset is called d

This command asks R to estimate the regression model, and store the results in a variable called model1

Running the regression

```
> model1 <- lm(yield ~ diversity, data=d )</pre>
> model1
Call:
lm(formula = yield ~ diversity, data = d)
Coefficients:
                 diversity
(Intercept)
    139.877
                      4.233 ←
                                    The slope, b<sub>1</sub>
   The intercept, b<sub>0</sub>
```

Relationship between diversity and productivity

- **Intercept:** If there was no diversity (i.e., max-min size was zero, everyone was the same size), you could expect about 139.9 units of food from that land
- **Slope:** For every additional unit of increase in diversity of range, you can expect about 4.2 more units of food from that land

So it really does look like having a range of sizes of species is associated with an increase in the productivity of the land! Often quite substantially!

