第八章 假设检验

- 1 假设检验
- 2 正态总体均值的假设检验
- 3 正态总体方差的假设检验
- 4 置信区间与假设检验之间的关系
- 7 假设检验问题的p值法

勿后浪

The Lady Tasting Tea

How Statistics Revolutionized Science in the Twentieth Century

女士品茶

统计学如何变革了科学和生活

[美] 戴维·萨尔斯伯格 (David Salsburg) 著 刻清山 译

了解统计学的人,运气都不会太差

科学松鼠会推荐统计学领域人门必读书

大师辈出的时代, 一场连环颠覆的思想盛宴 若想了解上帝在想什么,我们 就必须学统计学,因为统计学 在测量他的旨意。

——弗洛伦斯·南丁格尔

《女士品茶——20世纪统计学怎样变革了科学》,是美国 统计学家萨尔斯伯格以"女士品茶问题"为切入点所著的 一部关于统计学历史与变革的书,以一种全新的视角带领 读者进入统计学的世界, 体会统计学带给哲学观、宇宙观 的变革.

力后浪 The Lady Tasting Tea How Statistics Revolutionized Science in the Twentieth Century 女士品茶 统计学如何变革了科学和生活 [美] 戴维·萨尔斯伯格 (David Salsburg) 著 若想了解上帝在想什么,我们 了解统计学的人,运气都不会太差 就必须学统计学, 因为统计学 科学松鼠会推荐统计学领域人们必读书 一场连环颠覆的思想盛宴

□ 20世纪20年代后期在英国剑桥一个夏日的下午,一群大学的绅士和他们的夫人以及来访者,正围坐在户外的桌旁享用下午的奶茶.

- □ 20世纪20年代后期在英国剑桥一个夏日的下午,一群大学的绅士和他们的夫人以及来访者,正围坐在户外的桌旁享用下午的奶茶.
- □ 奶茶调制时候可以先倒茶后倒牛奶(TM),也可以先倒牛奶后倒茶(MT).这时候,一名女士说她能区分这两种不同做法的调制出来的奶茶.

- □ 20世纪20年代后期在英国剑桥一个夏日的下午,一群大学的绅士和他们的夫人以及来访者,正围坐在户外的桌旁享用下午的奶茶.
- □ 奶茶调制时候可以先倒茶后倒牛奶(TM),也可以先倒牛奶后倒茶(MT).这时候,一名女士说她能区分这两种不同做法的调制出来的奶茶.
- □ "让我们检验这个命题吧."为此Fisher开始规划实验.

□ 他准备了10杯调好的奶茶,先倒茶与先倒奶都有.服务员一杯 一杯地奉上,

□ 他准备了10杯调好的奶茶,先倒茶与先倒奶都有.服务员一杯 一杯地奉上,结果那位女士全部正确地分辨出来.

- □ 他准备了10杯调好的奶茶,先倒茶与先倒奶都有.服务员一杯 一杯地奉上,结果那位女士全部正确地分辨出来.
- □ Fisher的想法是这样的,如果女士无此鉴别能力,只能猜, 每次猜对的概率是0.5

- □ 他准备了10杯调好的奶茶,先倒茶与先倒奶都有.服务员一杯 一杯地奉上,结果那位女士全部正确地分辨出来.
- □ Fisher的想法是这样的,如果女士无此鉴别能力,只能猜,每次猜对的概率是0.5

$$0.5^2 = 0.25$$

$$0.5^3 = 0.125$$

$$0.5^4 = 0.0625$$

$$0.5^5 = 0.03125$$

• • • • •

$$0.5^{10} = 0.0009765625 \approx 0.001$$

- □ 他准备了10杯调好的奶茶,先倒茶与先倒奶都有.服务员一杯 一杯地奉上,结果那位女士全部正确地分辨出来.
- □ Fisher的想法是这样的,如果女士无此鉴别能力,只能猜,每次猜对的概率是0.5

$$0.5^2 = 0.25$$

$$0.5^4 = 0.0625$$
 几乎是不发生的。

$$0.5^5 = 0.03125$$
 (称之为实际推断原理).

 $0.5^{10} = 0.0009765625 \approx 0.001$

- □ 他准备了10杯调好的奶茶,先倒茶与先倒奶都有.服务员一杯 一杯地奉上,结果那位女士全部正确地分辨出来.
- □ Fisher的想法是这样的,如果女士无此鉴别能力,只能猜,每次猜对的概率是0.5

$$0.5^2 = 0.25$$

Fisher的思维方式

$$0.5^3 = 0.125$$

$$0.5^4 = 0.0625$$

$$0.5^5 = 0.03125$$

如果试验结果与原有假设发生矛盾, 拒绝原有假设。

• • • • •

 $0.5^{10} = 0.0009765625 \approx 0.001$

"假设检验"思想:

为了检验一个假设是否成立,先假定它是成立的,然后看在这个假设成立的条件下,是 否会导致不合理结果.

- ▶ 如果该女士说对了9杯(或8杯),该如何进行判断呢? 判断会发生错误吗?发生错误的概率是多少?
- ➤ Fisher 对这些细节做了周密的研究,提出一些新的概念, 建立了一套可行的方法,形成了假设检验理论,为进一 步发展假设检验理论与方法打下了牢固基础.

例8(P14) 某接待站在某一周曾接待过12次来访, 所有这12次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的. 例8(P14) 某接待站在某一周曾接待过 12次来访, 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.

解 假设接待站的接待时间没有规定,且各来访者在一周的任一天中去接待站是等可能的.

故一周内接待 12 次来访共有712种.

12 次接待都是在周二和周四进行的共有212种.

故12次接待都是在周二和周四进行的概率为

$$p = \frac{2^{12}}{7^{12}} = 0.0000003.$$

小概率事件在一次试验中实际上几乎是不发生的(称之为实际推断原理),从而可知接待时间是有规定的.

例1. 某车间用一台包装机包装葡萄糖.包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015公斤.某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得净重为:

0. 497 0. 506 0. 518 0. 524 0. 498

0. 511 0. 520 0. 515 0. 512

问机器是否正常?

例1. 某车间用一台包装机包装葡萄糖.包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015公斤.某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得净重为:

0. 497 0. 506 0. 518 0. 524 0. 498

0.511 0.520 0.515 0.512

问机器是否正常?

 $H_0: \mu = \mu_0 = 0.5$ $H_1: \mu \neq \mu_0$

"假设检验"思想:

为了检验一个假设是否成立,先假定它是成立的,然后看在这个假设成立的条件下,是 否会导致不合理结果. 如果假设 H_0 为真, 则观察值 \bar{x} 与 μ_0 的偏差 $|\bar{x}-\mu_0|$ 一般不应太大.

检验法则:

$$\left| \overline{x} - \mu_0 \right| \ge c$$
 拒绝 H_0

如果假设 H_0 为真,

则观察值 x与 μ_0 的偏差 $|x-\mu_0|$ 一般不应太大.

检验法则:

$$\left| \overline{x} - \mu_0 \right| \ge c$$
 拒绝 H_0

$$\frac{X-\mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$

检验法则:
$$\frac{|\overline{x} - \mu_0|}{\sqrt{2}} \ge k$$
 拒绝 H_0

$$\frac{1}{\sigma/\sqrt{n}} \geq k$$
 拒绝 H_0

检验法则:

$$\frac{|\bar{x} - \mu_0|}{\sigma / \sqrt{n}} \ge k \quad 拒绝 H_0$$

- ◆因为决策的依据是样本,当实际上 H_0 为真时仍可能做出拒绝 H_0 的决策.
- ◆这是一种错误, 犯这种错误的概率记为 $P\{\exists H_0$ 为 真拒绝 $H_0\}$

P{当 H_0 为真拒绝 H_0 }≤α.

(1.1)

$$\frac{|\bar{x} - \mu_0|}{\sigma / \sqrt{n}} \ge k \quad 拒绝 H_0$$

$$P\{$$
 当 H_0 为真拒绝 $H_0 \} = P_{\mu_0} \left\{ \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge k \right\} = \alpha.$

$$\frac{\left|\overline{x} - \mu_0\right|}{\sigma / \sqrt{n}} \ge k$$
 拒绝 H_0

检验法则:

$$\frac{\left|\overline{x} - \mu_0\right|}{\sigma / \sqrt{n}} \ge z_{\frac{\alpha}{2}}$$

拒绝H₀

$$\frac{\left|\overline{x} - \mu_0\right|}{\sigma / \sqrt{n}} < z_{\frac{\alpha}{2}}$$

接受 H_0

$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$
称为检验统计量

检验法则:

$$\frac{\left|\overline{x} - \mu_0\right|}{\sigma / \sqrt{n}} \ge z_{\frac{\alpha}{2}}$$

$$\frac{\left|\overline{x} - \mu_0\right|}{\sigma / \sqrt{n}} < z_{\frac{\alpha}{2}}$$

接受 H_0

上例所采用的检验法则符合实际推断原理:

"一个小概率事件在一次试验中几乎是不可能发生的".

前面的检验问题常叙述成: 在显著性水平 α 下,检验假设

 $H_0: \mu = \mu_0,$

 $H_1: \mu \neq \mu_0$.

(1.2)

 H_0 称为<u>原假设</u>或<u>零假设</u>, H_1 称为<u>备择假设</u>.

当检验统计量取某个区域C中的值时,我们拒绝原假设 H_0 ,则C称为<u>拒绝域</u>,拒绝域的边界点称为临界点。

对Ho采取保护的态度

鉴定某药品的疗效,研发主管应该提出假设

 H_0 :

, H_1 :

对Ho采取保护的态度

此药无效此药有效

鉴定某药品的疗效,研发主管应该提出假设

 H_0 :

, H_1 :

此人尤非此人有罪

法庭审判时,对于被告人,法官应该提出假设

 H_0 :

 H_{1} :

🚹 | ★ 收藏 | 📫 403 | 🙋 10

无罪推定 🛂

无罪推定(presumption of innocence),又可称为无罪类推(与有罪类推相对应),简单地说是指任何人在未经依法判 决有罪之前,应视其无罪。除以上内容外,无罪推定还包括:被告人不负有证明自己无罪的义务,被告人提供证明有利于自 己的证据的行为是行使辩护权的行为,不能因为被告人没有或不能证明自己无罪而认定被告人有罪。

无罪推定原则是现代法治国家刑事司法通行的一项重要原则,是国际公约确认和保护的基本人权,也是联合国在刑事司 法领域制定和推行的最低限度标准之一。

1996年3月第一次修正后的《中华人民共和国刑事诉讼法》第12条明确规定:"未经人民法院依法判决,对任何人都不得 确定有罪"。虽然该规定中没有出现"推定"或"假定"无罪的规范性表述,但却含有无罪推定的精神。同时,在该法第162条第 (3) 项中还相应规定了罪疑从无原则,即:"证据不足,不能认定被告人有罪的,应当作出证据不足、指控的犯罪不能成立 的无罪判决。"具体体现在以下几个方面:

真实情况	所作决策	
只 大	接受从	拒绝份
Ho为真	正确	犯第 类错误
Ho非真	犯第11类错误	正确

真实情况	所作决策			
央头间师	接受H	拒绝H		
Ho为真	正确	犯第1类错误		
Ho非真	犯第11类错误	正确		
		*		
	所作决	策		
真实情况	所作决 认为无罪	策 认为有罪		
真实情况 无罪				

真实情况	所作决策			
央 大	接受从	拒绝H		
Ho为真	正确	犯第 类错误		
Ho非真	犯第11类错误	正确		
一直 亦樗识	所作决	策		
真实情况	所作决 认为无罪	策 认为有罪		
	, , , ,			

漏网之鱼

冤假错案

真实情况	所作决策	
具 大	接受H	拒绝H
Ho为真	正确	犯第1类错误
Ho非真	犯第11类错误	正确

这种只对犯第I类错误的概率加以控制, 而不考虑犯第II类错误的概率的检验, 称为<u>显著性检验</u>.

在显著性水平 α 下, 检验假设 $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$. (1.2)

形如(1.2)式中的备择假设 H_1 ,表示 μ 可能大于也可能小于 μ_0 ,称为<u>双边备择假设</u>,而称形如(1.2)式的假设检验为双边假设检验.

- 综上所述, 处理参数的假设检验问题步骤为:
- 1. 根据实际问题要求, 提出原假设 H_0 及备择假设 H_1 ;
- 2. 给定显著性水平 α 以及样本容量n;
- 3. 确定检验统计量以及拒绝域的形式;
- 4. 按P{当 H_0 为真拒绝 H_0 }<= α 求出拒绝域;
- 5. 取样, 根据样本观察值作出决策, 是接受 H_0 还是拒绝 H_0 .

练习1. 已知某炼铁厂生产的铁水的含碳量在正常情况下服从正态分布N(4.55,0.12 2). 现在测定了9炉铁水,测得其平均含碳量为4.49,若方差没有变化,可否认为现在生产的铁水的平均含碳量仍为4.55(取 α =0.05)?

有时只关心总体均值是否增大. 例如试验新工艺以提高材料的强度。此时, 我们需要检验假设

 $H_0: \mu \leq \mu_0, \qquad H_1: \mu > \mu_0.$ (1.3)

形如(1.3)的假设检验, 称为右边检验。

类似地,有时需要检验假设

 $H_0: \mu \geq \mu_0, \qquad H_1: \mu < \mu_0.$ (1.4)

形如(1.4)的假设检验, 称为左边检验.

设总体 $X\sim N(\mu,\sigma^2)$, σ 为已知, $X_1,X_2,...,X_n$ 是来自X的样本. 给定显著性水平 α . 来求检验问题 $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ (1.3)

的拒绝域.

检验法则:

 $\bar{x} \geq c$ 拒绝 H_0

$$\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$

检验法则:

$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge k$$
 拒绝 H_0

由标准正态分布 分位点的定义得:

$$k=\mathbf{Z}_{\alpha}$$

$$\frac{\overline{x} - \mu_0}{\frac{1}{\sqrt{L}}} \ge k$$
 拒绝**H**

例 公司从生产商购买牛奶。公司怀疑生产商在 牛奶中掺水以谋利。通过测定牛奶的冰点,可以 检测出牛奶是否掺水。天然牛奶的冰点温度近似 服从正态分布,均值 μ_{σ} -0.545,标准差为 $\sigma=0.008$.牛奶掺水可使冰点温度升高而接近于水 的冰点温度,测得生产商提交的5批牛奶的冰点 温度, 其均值为-0.535.

问是否可以认为生产商在牛奶中掺水?取显著性水平 α =0.05.

第二节 正态总体均值的假设检验

- 一、单个总体均值μ的检验
- 二、两个总体均值差的检验
- 三、基于成对数据的检验

- 一、单个总体 $N(\mu,\sigma^2)$ 均值 μ 的检验
 - 1. σ^2 为已知, 关于 μ 的检验

在上节中讨论过正态总体 $N(\mu,\sigma^2)$

当 σ^2 为已知时,关于 $\mu = \mu_0$ 的检验问题:

- (1) 假设检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$;
- (2) 假设检验 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$;
- (3) 假设检验 $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$.

讨论中都是利用 H_0 为真时服从 N(0,1) 分布的统计量 $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$ 来确定拒绝域的,这种检验法称为 Z 检验法.

2. σ^2 为未知,关于 μ 的检验

设总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 未知,显著性水平为 α

检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ 。

$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge k \quad \text{拒绝} H_0$$

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge k$$
 拒绝 H_0

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

不是统计量

$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge k$$
 拒绝 H_0

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t \left(n - 1 \right)$$

不是统计量

检验法则:
$$\frac{|\overline{x} - \mu_0|}{s/\sqrt{n}} \ge k$$
 拒绝 H_0

检验法则:
$$\frac{|\overline{x} - \mu_0|}{s/\sqrt{n}} \ge k$$
 拒绝 H_0

$$\left|t\right| = \frac{\left|\overline{x} - \mu_0\right|}{\frac{c}{\sqrt{n}}} \ge t_{\alpha/2}(n-1) \qquad \text{拒绝}H_0$$

拒绝域为
$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\alpha/2}(n-1)$$
.

上述利用 t 统计量得出的检验法称为t 检验法.

在实际中,正态总体的方差常为未知, 所以我们常用 t 检验法来检验关于正态总 体均值的检验问题. 例 某种电子元件的寿命X(以小时计)服从正态分布, μ , σ^2 均为未知. 现测得16只元件的寿命如下:

问是否有理由认为元件的平均寿命等于225(小时)?

解 依题意需检验假设

$$H_0: \mu = \mu_0 = 225, \ H_1: \mu \neq 225,$$

 $\mathfrak{R} \alpha = 0.05, \quad n = 16, \quad \overline{x} = 241.5, \quad s = 98.7259,$

二、两个正态总体均值差的检验(方差已知)

给定显著性水平为 α , 并设 X_1, X_2, \dots, X_{n_1} 为第一个总体 $N(\mu_1, \sigma_1^2)$ 的样本, Y_1, Y_2, \dots, Y_{n_2} 为第二个总体 $N(\mu_2, \sigma_2^2)$ 的样本, \bar{X}, \bar{Y} 分别是第一、二个总体的样本均值, S_1^2, S_2^2 分别是第一、二个总体的样本方差.

检验假设 $H_0: \mu_1 - \mu_2 = \delta, H_1: \mu_1 - \mu_2 \neq \delta$ 。

二、两个正态总体均值差的检验(方差未知但相等)

设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_1, \sigma^2)$ 的样本, Y_1, Y_2, \dots, Y_n 为来自正态总体 $N(\mu_2, \sigma^2)$ 的样本, 且设两样本独立. 注意两总体的方差相等

又设 \overline{X} , \overline{Y} 分别是总体的样本均值, S_1^2 , S_2^2 是样本方差, μ_1 , μ_2 , σ^2 均为未知,

检验假设 $H_0: \mu_1 - \mu_2 = \delta, H_1: \mu_1 - \mu_2 \neq \delta$ 。

确定拒绝域

$$\frac{(x-y)-\delta}{s_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$$

k 拒绝H₀

$$P\{H_0$$
为真,拒绝 $H_0\}$

$$= P_{\mu_1 - \mu_2 = \delta} \left\{ \frac{(\overline{X} - \overline{Y}) - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge k \right\} = \alpha$$

$$\frac{(\bar{x} - \bar{y}) - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$\geq t_{\alpha/2} (n_1 + n_2 - 2)$$
 拒绝 H_0

常用 $\delta = 0$ 的情况.

例 3 有两台光谱仪 I_x , I_y , 用来测量材料中某种金属的含量,为鉴定它们的测量结果有无显著的差异,制备了 9 件试块(它们的成分、金属含量、均匀性等各不相同),现在分别用这两台仪器对每一试块测量一次,得到 9 对观察值如下.

x(%)	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
y(%)	0.10	0.21	0.52	0.32	0.78	0.59	0.68	0.77	0.89

问能否认为这两台仪器的测量结果有显著的差异(\mathbf{p} α =0.01)?

(三)基于成对数据的检验(t 检验)

有时为了比较两种产品、两种仪器、两种方法等的差异,我们常在相同的条件下做对比试验,得到一批成对的观察值.然后分析观察数据作出推断.这种方法常称为**逐对比较法**.

例3 有两台光谱仪 I_x , I_y , 用来测量材料中某种金属的含量,为鉴定它们的测量结果有无显著的差异,制备了 9 件试块(它们的成分、金属含量、均匀性等各不相同),现在分别用这两台仪器对每一试块测量一次,得到 9 对观察值如下.

x(%)	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
y(%)	0.10	0.21	0.52	0.32	0.78	0.59	0.68	0.77	0.89

问能否认为这两台仪器的测量结果有显著的差异(\mathbf{p} α =0.01)?

(三)基于成对数据的检验(t 检验)

有时为了比较两种产品、两种仪器、两种方法等的差异,我们常在相同的条件下做对比试验,得到一批成对的观察值.然后分析观察数据作出推断.这种方法常称为**逐对比较法**.

例3 有两台光谱仪 I_x , I_y , 用来测量材料中某种金属的含量,为鉴定它们的测量结果有无显著的差异,制备了9件试块(它们的成分、金属含量、均匀性等各不相同),现在分别用这两台仪器对每一试块测量一次,得到9对观察值如下.

x(%)	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
y(%)	0.10	0.21	0.52	0.32	0.78	0.59	0.68	0.77	0.89
d=x-y(%)	0.10	0.09	-0.12	0.18	-0.18	0.11	0.12	0.13	0.11

问能否认为这两台仪器的测量结果有显著的差异(\mathbf{p} α =0.01)?

第三节 正态总体方差的假设检验

- 一、单个总体的情况
- 二、两个总体的情况

一、单个总体 $N(\mu,\sigma^2)$ 的情况

设总体 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 均为未知, X_1, X_2, \dots, X_n 为来自总体X的样本,

(1) 要求检验假设: $H_0:\sigma^2=\sigma_0^2$, $H_1:\sigma^2\neq\sigma_0^2$,

一、单个总体 $N(\mu,\sigma^2)$ 的情况

设总体 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 均为未知, X_1, X_2, \dots, X_n 为来自总体X的样本,

(1) 要求检验假设: $H_0:\sigma^2=\sigma_0^2$, $H_1:\sigma^2\neq\sigma_0^2$, 其中 σ_0 为已知常数. 设显著性水平为 α ,

当 H_0 为真时,

比值 $\frac{s^2}{\sigma_0^2}$ 在1附近摆动, 不应过分大于1或过分小于1,

$$\frac{(n-1)s^2}{\sigma_0^2} \le k_1 \operatorname{othical points} \frac{(n-1)s^2}{\sigma_0^2} \ge k_2 \qquad 拒絕H_0$$

 $P\{H_0$ 为真,拒绝 $H_0\}$

$$= P_{\sigma_0^2} \left\{ \left(\frac{(n-1)S^2}{\sigma_0^2} \le k_1 \right) \cup \left(\frac{(n-1)S^2}{\sigma_0^2} \ge k_2 \right) \right\} = \alpha.$$

为了计算方便,习惯上取

$$P_{\sigma_0^2}\left\{\frac{(n-1)S^2}{\sigma_0^2} \le k_1\right\} = \frac{\alpha}{2}, \quad P_{\sigma_0^2}\left\{\frac{(n-1)S^2}{\sigma_0^2} \ge k_2\right\} = \frac{\alpha}{2},$$

故得
$$k_1 = \chi_{1-\alpha/2}^2(n-1)$$
, $k_2 = \chi_{\alpha/2}^2(n-1)$.

检验法则:

$$\frac{(n-1)s^{2}}{\sigma_{0}^{2}} \leq \chi_{1-\alpha/2}^{2}(n-1) \mathbf{x} \frac{(n-1)s^{2}}{\sigma_{0}^{2}} \geq \chi_{\alpha/2}^{2}(n-1) \mathbf{1} \mathbf{x} \mathbf{H}_{0}$$

上述检验法称为 χ^2 检验法.

例1 某厂生产的某种型号的电池,其寿命长期以 来服从方差 $\sigma^2 = 5000$ (小时²) 的正态分布, 现有一 批这种电池,从它生产情况来看,寿命的波动性有 所变化. 现随机的取26只电池, 测出其寿命的样本 方差 $s^2 = 9200$ (小时²). 问根据这一数据能否推断 这批电池的寿命的波动性较以往的有显著的变化? $(\alpha = 0.02)$

解 要检验假设 $H_0: \sigma^2 = 5000$, $H_1: \sigma^2 \neq 5000$, n = 26, $\alpha = 0.02$, $\sigma_0^2 = 5000$, $\chi_{\alpha/2}^2(n-1) = \chi_{0.01}^2(25) = 44.314$, $\chi_{1-\alpha/2}^2(n-1) = \chi_{0.99}^2(25) = 11.524$,

拒绝域为:
$$\frac{(n-1)s^2}{\sigma_0^2} \le 11.524$$
, 或 $\frac{(n-1)s^2}{\sigma_0^2} \ge 44.314$.

因为
$$\frac{(n-1)s^2}{\sigma_0^2} = \frac{25 \times 9200}{5000} = 46 > 44.314$$

所以拒绝 H_0 ,认为这批电池的寿命波动性较以往有显著的变化.

二、两个总体 $N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2)$ 的情况

设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_1, \sigma_1^2)$ 的样本,

 Y_1, Y_2, \dots, Y_n 为来自正态总体 $N(\mu_2, \sigma_2^2)$ 的样本,

且设两样本独立,其样本方差为 S_1^2 , S_2^2 .

又设 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均为未知,

需要检验假设: $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$,

当 H_0 为真时, $E(S_1^2) = \sigma_1^2 = \sigma_2^2 = E(S_2^2)$,

观察值 $\frac{S_1^2}{S_2^2}$ 不应该过分大刊或过分小刊

检验法则:

 $P\{H_0$ 为真,拒绝 $H_0\}$

$$=P_{\sigma_1^2=\sigma_2^2}\left\{\left(\frac{{S_1^2/S_2^2}}{{\sigma_1^2/\sigma_2^2}}\leq k_1\right)\cup\left(\frac{{S_1^2/S_2^2}}{{\sigma_1^2/\sigma_2^2}}\geq k_2\right)\right\}=\alpha.$$

为了计算方便,习惯上取

$$P_{\sigma_1^2 = \sigma_2^2} \left\{ \frac{S_1^2 / S_2^2}{\sigma_1^2 / \sigma_2^2} \le k_1 \right\} = \frac{\alpha}{2} P_{\sigma_1^2 = \sigma_2^2} \left\{ \frac{S_1^2 / S_2^2}{\sigma_1^2 / \sigma_2^2} \ge k_2 \right\} = \frac{\alpha}{2}$$

故得
$$k_1 = F_{1-2/\alpha}(n_1 - 1, n_2 - 1)$$

 $k_2 = F_{2/\alpha}(n_1 - 1, n_2 - 1)$

第八章 假设检验

- 1 假设检验
- 2 正态总体均值的假设检验
- 3 正态总体方差的假设检验
- 4 置信区间与假设检验之间的关系

作业

2题 10题 13题 17题

P187 某种电子元件的寿命X(以小时计)服从正态分布, μ , σ^2 均为未知. 现测得16只元件的寿命如下:

问是否有理由认为元件的平均寿命等于225(小时)?

解 依题意需检验假设

$$H_0: \mu = \mu_0 = 225, \ H_1: \mu \neq 225,$$

 $\mathbb{R} \alpha = 0.05, \quad n = 16, \quad \overline{x} = 241.5, \quad s = 98.7259,$

🛀 *未标题1 [数据集0] - IBM SPSS Statistics 数据编辑器

文件(F) 编辑(E) 视图(V) 数据(D) 转换(T) 分析(A) 直销(M) 图形(G) 实用程序(U) 窗口(W) 帮助

11:

	寿命	变量									
1	159										
2	280										
3	101										
4	212										
5	224										
6	379										
7	179										
8	264										
9	222										
10	362										
11	168										
12	250										
13	149										
14	260										
15	485										
16	170										

数据视图 变量视图

单个样本统计量

	N	均值	标准差	均值的标准误
寿命	16	241.50	98.726	24.681

单个样本检验

	检验值 = 225								
					差分的 95% 置信区				
	t	df	Sig.(双侧)	均值差值	下限	上限			
寿命	.669	15	.514	16.500	-36.11	69.11			

第八章 假设检验

- 1 假设检验
- 2 正态总体均值的假设检验
- 3 正态总体方差的假设检验
- 4 置信区间与假设检验之间的关系
- 7 假设检验问题的p值法

第7节 假设检验问题的p值法

- ◇以上讨论的假设检验方法称为临界值法。
- 例1 设总体X服从 $N(\mu,\sigma^2)$, μ 未知, $\sigma^2=100$,现有样本 $x_1,x_2,...,x_{52}$,算得样本均值为62.75.现在来检验假设

$$H_0: \mu \leq \mu_0 = 60, H_1: \mu > 60$$

采用Z检验法,检验统计量为 $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$ 检验统计量的观察值为

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{62.75 - 60}{10 / \sqrt{52}} = 1.983$$

看 z_0 是否落入拒绝域 $\{z \geq z_\alpha\}$ 其实就是要比较 $_0$ 和 z_α

采用Z检验法,检验统计量为 $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$ 检验统计量的观察值为

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{62.75 - 60}{10 / \sqrt{52}} = 1.983$$

看 z_0 是否落入拒绝域 $\{z \geq z_\alpha\}$ 其实就是要比较 $_0$ 和 z_α

$$P\{Z \ge z_0\} = P\{Z \ge 1.983\} = 1 - \Phi(1.983) = 0.0238$$
 这个概率称为Z检验法的右边检验的p值。

$$p$$
值= $P{Z \ge z_0} = 0.0238$

是原假设Ho可被拒绝的最小显著性水平。

$$p$$
值= $P{Z \ge z_0} = 0.0238$

是原假设Ho可被拒绝的最小显著性水平。

对于任意给定的显著性水平 α ,

- (1)若p值 $\leq \alpha$,则 在显著性水平 α 下拒绝 H_0
- (2)若p值 > α ,则在显著性水平 α 下接受 H_0

正态总体 $N(\mu,\sigma^2)$ 均值的检验中

假设检验
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0;$$

假设检验 $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0.$
假设检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0;$

 σ^2 未知时,可采用检验统计量

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

假设检验 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$;

$$p$$
值= P_{μ_0} $\{t \ge t_0\}$ = t_0 右侧尾部面移

假设检验 $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0;$

$$p$$
值= P_{μ_0} { $t \le t_0$ }= t_0 左侧尾部面移

假设检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0;$

当 $t_0 > 0$ 时

p值 = $2 \times (t_0$ 右侧尾部面积

$$=P_{\mu_0}\{t\big|\geq t_0\}=P_{\mu_0}\{(t\leq -t_0)\cup (t\geq t_0)\}$$

假设检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$; 当 $t_0 < 0$ 时

$$p$$
值 = 2× $(t_0$ 左侧尾部面积)
= $P_{\mu_0}\{t| \ge -t_0\} = P_{\mu_0}\{(t \le t_0) \cup (t \ge -t_0)\}$

若p值≤0.01

称拒绝H₀的依据很强, 或称检验是高度显著的。

若0.01 < p值 ≤ 0.05

称拒绝H₀的依据是强的, 或称检验是显著的。

若0.05 < p值≤0.1

称拒绝H₀的依据是弱的, 或称检验是不显著的。

若p值>0.1

一般没有理由拒绝H₀

P187 例1

文件(<u>F</u>)	编辑(<u>E</u>)	视图(<u>V</u>)	数据(<u>D</u>)	转换(<u>T</u>)	分析(<u>A</u>)	直销(<u>M</u>)	图形(<u>G</u>)	实用程序(<u>U</u>)	窗口(<u>W</u>)	帮助			
	=			2		L	22	*5				A (ABO
11:													
		寿命	变量	变	量	变量	变量	变量	变量		变量	变量	变量
1		159											
2		280											
3		101											
4		212											
5		224											
6		379											
7		179											
8		264											
9		222											
10		362											
11		168											
12		250											
13		149											
14		260											
15		485											
16	4 🖩	170											
数据视图 变量视图													

单个样本统计量

	N	均值	标准差	均值的标准误
寿命	16	241.50	98.726	24.681

单个样本检验

	检验值 = 225								
	差分的 95% 置信				6 置信区间				
	t	df	Sig.(双侧)	均值差值	下限	上限			
寿命	.669	15	.514	16.500	-36.11	69.11			

第八章 假设检验

- 1 假设检验
- 2 正态总体均值的假设检验
- 3 正态总体方差的假设检验
- 4 置信区间与假设检验之间的关系
- 7 假设检验问题的p值法