CPEN 400Q / EECE 571Q Lecture 03 Multi-qubit systems and entanglement

Tuesday 18 January 2022

Announcements

- Assignment 1 available (due 23:59 Thursday 27 Jan)
 - Update forked repo permissions to remove "Students" team
 - Make single PR to master branch on *your* copy of the repo (good idea to do this before adding any of your contents)
 - Error in problem 3 update to shots=100000 on devices
- Quiz 1 opens around last 10 mins of class today (work individually; due at 19:30)

Last time

We learned how to implement quantum circuits in PennyLane, explored a number single-qubit operations, and introduced the notion of *universal gate sets*.

```
import pennylane as qml
dev = qml.device('default.qubit', wires=1, shots=100)
@qml.qnode(dev)
def my_circuit():
    qml.Hadamard(wires=0)
    qml.PauliZ(wires=0)
    qml.PauliX(wires=0)
    return qml.sample()
result = mv_circuit()
```

Last time

We saw how qubits can be represented in 3D space on the Bloch sphere, and how unitary operations rotate the Bloch vector.

Fun website: https://javafxpert.github.io/grok-bloch/

Image credit: Codebook node I.6

Learning outcomes

- Measure single-qubit expectation values
- Measure a qubit in different bases
- Mathematically describe a system of multiple qubits
- Describe the action of common multi-qubit gates

Sampling

So far, we've learned how take measurement samples in the computational basis.

```
dev = qml.device('default.qubit', wires=1, shots=100)

@qml.qnode(dev)
def rotate_with_rz(theta):
    qml.Hadamard(wires=0)
    qml.RZ(theta, wires=0)
    return qml.sample()
```

What else can we do?

Measurement outcome probabilities

Compute the measurement outcome probabilities from the results:

```
dev = qml.device('default.qubit', wires=1, shots=100)

@qml.qnode(dev)
def rotate_with_rz(theta):
    qml.Hadamard(wires=0)
    qml.RZ(theta, wires=0)
    return qml.probs()
```

Extract the state

Since we are running on a simulator...

```
# Note that we did NOT specify shots: analytic mode
dev = qml.device('default.qubit', wires=1)

@qml.qnode(dev)
def rotate_with_rz(theta):
    qml.Hadamard(wires=0)
    qml.RZ(theta, wires=0)
    return qml.state()
```

(Can analytically compute probabilities too. But of course we cannot do this with a real device!)

Generally, we are interested in measuring real, physical quantities. In physics, these are called observables. They are represented by Hermitian matrices. An operator (matrix) H is Hermitian if

$$H = H^{\dagger}$$

Why Hermitian? The possible measurement outcomes are given by the eigenvalues of the operator, and eigenvalues of Hermitian operators are real.

Example:

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Z is Hermitian:

Its eigensystem is

Example:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

X is Hermitian and its (normalized) eigensystem is

Example:

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Y is Hermitian and its (normalized) eigensystem is

Expectation values

When we measure X, Y, or Z on a state, for each shot we will get one of the eigenstates (/eigenvalues). If we take multiple shots, what do we expect to see *on average*?

Analytically, the **expectation value** of measuring the observable M given the state $|\psi\rangle$ is

$$\langle \mathbf{M} \rangle = \langle \psi | \mathbf{M} | \psi \rangle.$$

Expectation values: analytical

Example: consider the quantum state

$$|\psi\rangle = \frac{1}{2}|0\rangle - i\frac{\sqrt{3}}{2}|1\rangle.$$

Let's compute the expectation value of Y:

Expectation values and the Bloch sphere

The Bloch sphere offers us some more insight into what a projective measurement is.

Expectation values and the Bloch sphere

In this picture, we can visualize measurement in different bases by projecting onto different axes.

Exercise: derive this by computing $\langle \psi | Y | \psi \rangle$.

Expectation values: from measurement data

Let's compute the expectation value of Z for the following circuit using 10 samples:

```
dev = qml.device('default.qubit', wires=1, shots=10)

@qml.qnode(dev)
def circuit():
    qml.RX(2*np.pi/3, wires=0)
    return qml.sample()
```

Results might look something like this:

```
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1]
```

Expectation values: from measurement data

The expectation value pertains to the measured eigenvalue; recall Z eigenstates are

$$\lambda_1 = +1, \qquad |\psi_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 $\lambda_2 = -1, \qquad |\psi_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$

So when we observe $|0\rangle,$ this is eigenvalue +1 (and if $|1\rangle,$ -1). Our samples shift from

to

$$[-1, -1, -1, 1, -1, -1, -1, 1, -1, -1]$$

Expectation values: from measurement data

The expectation value is the weighted average of this, where the weights are the eigenvalues:

$$\langle Z \rangle = \frac{1 \cdot n_1 + (-1) \cdot n_{-1}}{N}$$

where

- n_1 is the number of +1 eigenvalues
- n_{-1} is the number of -1 eigenvalues
- N is the total number of shots

For our example, $\langle Z \rangle = -0.6$.

Expectation values

Let's do this in PennyLane instead:

```
dev = qml.device('default.qubit', wires=1)

@qml.qnode(dev)
def measure_z():
    qml.RX(2*np.pi/3, wires=0)
    return qml.expval(qml.PauliZ(0))
```

Basis rotations

So far we've seen 4 ways of extracting information out of a QNode:

- 1. qml.state()
- 2. qml.probs(wires=x)
- 3. qml.sample()
- 4. qml.expval(observable)

The first three all return results of measurements taken with respect to the computational basis; and most hardware only allows for computational basis measurements. How can we measure with respect to *different bases* with that restriction? (and what does that mean?)

Basis rotations

What does it mean to measure in a different bases? Projective measurement with respect to a different set of orthonormal states. For example, $\{|+\rangle, |-\rangle\}$ are an orthonormal basis.

Basis rotations

Use a basis rotation to "trick" the quantum computer into measuring in a different basis.

Suppose we want to measure in the Y basis:

$$|i\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle), \quad |-i\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle).$$

Unitary operations preserve length *and* angles between normalized quantum state vectors.

There exists some unitary transformation that will convert between these eigenvectors, and the eigenvectors of Z (the basis in which we will take the measurement).

Let's try to turn

$$|0\rangle \rightarrow |i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

 $|1\rangle \rightarrow |-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$

At the end of our circuit, we can then apply the reverse (adjoint) of this transformation rotate *back* to the computational basis.

That way, if we measure and observe $|0\rangle$, we know that this was previously $|i\rangle$ in the Y basis (and similarly for $|1\rangle$).

Adjoints

In PennyLane, we can compute adjoints of operations and entire quantum functions using qml.adjoint:

```
def some_function(x):
    qml.RZ(Z, wires=0)

def apply_adjoint(x):
    qml.adjoint(qml.S)(wires=0)
    qml.adjoint(some_function)(x)
```

qml.adjoint is a special type of function called a **transform**. We will cover transforms in more detail around beginning of week 4.

Basis rotations: hands-on

Let's run the following circuit, and measure in the Y basis

$$|0\rangle$$
 $RX(x)$ $RY(y)$ $RZ(z)$

Hands-on time...

Mathematics of multi-qubit systems

Recall this slide from lecture 1...

How do we express the mathematical space of multiple qubits?

Tensor products

Hilbert spaces compose under the tensor product.

Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}.$$

The tensor product of A and B, $A \otimes B$ is

$$A \otimes B = \begin{pmatrix} a \begin{pmatrix} e & f \\ g & h \end{pmatrix} & b \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ c \begin{pmatrix} e & f \\ g & h \end{pmatrix} & d \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix} = \begin{pmatrix} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{pmatrix}$$

Qubit state vectors are also combined using the tensor product:

$$|01
angle = |0
angle \otimes |1
angle = egin{pmatrix} 1 \ 0 \end{pmatrix} \otimes egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \ 0 \ 0 \end{pmatrix}$$

An n-qubit state is therefore a vector of length 2^n .

The states $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ are the computational basis vectors for 2 qubits:

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \quad |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

We can create arbitrary linear combinations of them as long as the normalization on the coefficients holds.

Same pattern for 3 qubits: $|000\rangle, |001\rangle, \dots, |111\rangle$.

The tensor product is linear and distributive, so if we have

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad |\varphi\rangle = \gamma|0\rangle + \delta|1\rangle,$$

then they tensor together to form

Single-qubit unitary operations also compose under tensor product.

For example, apply U_1 to qubit $|\psi\rangle$ and U_2 to qubit $|\varphi\rangle$:

If an *n*-qubit ket is a vector with length 2^n , then a unitary acting on *n* qubits has dimension $2^n \times 2^n$.

Qubit ordering (very important!)

In PennyLane:

$$0: |0\rangle \longrightarrow |0\rangle$$

$$1: |0\rangle \longrightarrow X \longrightarrow |1\rangle$$

$$|01100\rangle \longrightarrow 2: |0\rangle \longrightarrow X \longrightarrow |1\rangle$$

$$3: |0\rangle \longrightarrow |0\rangle$$

$$4: |0\rangle \longrightarrow |0\rangle$$

(This is different in other frameworks!)

Multi-qubit gates

The few small circuits we've seen so far only involve gates on single qubits:

Surely this isn't all we can do...

Image credit: Xanadu Quantum Codebook I.11

Multi-qubit gates

SWAP

We can swap the state of two qubits using the SWAP operation. First define what it does to the basis states...

$$SWAP|00\rangle = |00\rangle$$

 $SWAP|01\rangle = |10\rangle$
 $SWAP|10\rangle = |01\rangle$
 $SWAP|11\rangle = |11\rangle$

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Circuit element:

PennyLane: qml.SWAP

SWAP

More generally,

$$\mathit{SWAP}\left(\ket{\psi}\otimes\ket{\phi}
ight)=\ket{\phi}\otimes\ket{\psi}$$

Let's show this. Start by writing

$$|\psi\rangle \otimes |\phi\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes (\gamma|0\rangle + \delta|1\rangle)$$
$$= \alpha\gamma|00\rangle + \alpha\delta|01\rangle + \beta\gamma|10\rangle + \beta\delta|11\rangle$$

Now apply the SWAP:

CNOT

Consider a two-qubit operation U with the following action on the basis states:

$$U|00\rangle = |00\rangle$$

 $U|01\rangle = |01\rangle$
 $U|10\rangle = |11\rangle$
 $U|11\rangle = |10\rangle$

CNOT

CNOT = "controlled-NOT". A NOT (X) is applied to second qubit only if first qubit is in state $|1\rangle$.

$$CNOT|00\rangle = |00\rangle$$

 $CNOT|01\rangle = |01\rangle$
 $CNOT|10\rangle = |11\rangle$
 $CNOT|11\rangle = |10\rangle$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Circuit elements:

PennyLane: qml.CNOT

CNOT hands-on

What does CNOT do with qubits in a superposition?

CNOT hands-on

The output state of this circuit is:

$$\mathit{CNOT}\cdot\left(H\otimes I\right)\ket{00}=rac{1}{\sqrt{2}}\left(\ket{00}+\ket{11}
ight)$$

This state is **entangled!**

Entanglement

We cannot express

$$rac{1}{\sqrt{2}}\left(\ket{00}+\ket{11}
ight)$$

as a tensor product of two single-qubit states.

Entanglement

Entanglement generalizes to more than two qubits:

Reversibility

Consider the AND of two bits a and b:

a	b	ab
0	0	0
0	1	0
1	0	0
1	1	1

This gate is *not* reversible: we cannot recover the inputs from the outputs.

But, we can make it reversible by adding one extra bit...

Toffoli

The **Toffoli** implements a reversible AND gate. (It is universal for classical reversible computing).

Controlled-CNOT, or controlled-controlled-NOT.

PennyLane: qml.Toffoli

Toffoli

What does it do to the basis states?

$$TOF|000\rangle = TOF|001\rangle = TOF|010\rangle = TOF|011\rangle = TOF|100\rangle = TOF|101\rangle = TOF|110\rangle = TOF|111\rangle = TOF|1111\rangle = TOF|11111\rangle = TOF|1111\rangle = TOF|11111\rangle = TOF|11111\rangle = TOF|11111$$

Toffoli

What is actually going on here?

$$TOF|000\rangle = |000\rangle$$

 $TOF|001\rangle = |001\rangle$
 $TOF|010\rangle = |010\rangle$
 $TOF|011\rangle = |011\rangle$
 $TOF|100\rangle = |100\rangle$
 $TOF|101\rangle = |101\rangle$
 $TOF|110\rangle = |111\rangle$
 $TOF|111\rangle = |110\rangle$

Hands-on: the half-adder

We can interpret CNOT in a similar way.

X, CNOT, TOF can be used to create Boolean arithmetic circuits.

Controlled unitary operations

Any unitary operation can be turned into a controlled operation, controlled on any state.

Most common controls are controlled-on- $|1\rangle$ (filled circle), and controlled-on- $|0\rangle$ (empty circle).

Example: controlled-Z(CZ)

What does this operation do?

PennyLane: qml.CZ

Image credit: Codebook node I.13

Example: controlled rotations (RX, RY, RZ)

Or this one?

$$CRY(heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & \cosrac{ heta}{2} & -\sinrac{ heta}{2} \ 0 & 0 & \sinrac{ heta}{2} & \cosrac{ heta}{2} \end{pmatrix}$$

Circuit elements:

PennyLane: qml.CRX, qml.CRY, qml.CRZ

Controlled-U

There is a pattern here:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad CRY(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ 0 & 0 & \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

More generally,

$$CU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{pmatrix} = \begin{pmatrix} I_2 & 0_2 \\ 0_2 & U \end{pmatrix}$$

... we don't want to be writing these matrices all the time.

Hands-on: qml.ctrl

Remember from earlier, qml.adjoint:

```
@qml.qnode(dev)
def my_circuit():
    qml.S(wires=0)
    qml.adjoint(qml.S)(wires=0)
    return qml.sample()
```

There is a similar *transform* that allows us to perform arbitrary controlled operations (or entire quantum functions)!

```
@qml.qnode(dev)
def my_circuit():
    qml.S(wires=0)
    qml.ctrl(qml.S, control=1)(wires=0)
    return qml.sample()
```

Universal gate sets

Last class, we learned that with just

- \blacksquare H and T
- \blacksquare any two of RX, RY, and RZ,

we can implement *any* single-qubit unitary operation up to arbitrary precision.

What about for two qubits?

Universal gate sets

What about for two qubits?

- H, T, and CNOT
- any two of RX, RY, RZ, and CNOT
- H and TOF

With just 2-3 gates, we can implement *any* two-qubit unitary operation up to arbitrary precision.

What about three or more qubits? (Same thing!)

Universal gate sets

In general, finding such an implementation (quantum circuit synthesis, part of the quantum compilation pipeline) is computationally hard.

- sometimes we can do so for small cases (PennyLane has many decompositions pre-programmed)
- sometimes having auxiliary qubits around can simplify the decomposition

Auxiliary qubits

Auxiliary qubits are like "scratch", or "work" qubits. They start in state $|0\rangle,$ and must be returned to state $|0\rangle,$ but can be used to store intermediate results in a computation.

 $|a\rangle$

 $|b\rangle$

 $|c\rangle$

 $|0\rangle$

 $|abc\rangle$

Recap

- Measure single-qubit expectation values
- Measure a qubit in different bases
- Mathematically describe a system of multiple qubits
- Describe the action of common multi-qubit gates

What topics did you find unclear today?

Next time

Content:

- Measuring multi-qubit systems
- Superdense coding
- No-cloning and teleportation

Action items:

1. Continue with Assignment 1 (you can do problem 2 now)

Recommended reading:

- Codebook nodes I.11-I.14
- Nielsen & Chuang 4.3

Quiz time...