CHAPTER

Limits, Continuity and Differentiability

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

Let $f(x) = \begin{cases} (x-1)^2 \sin \frac{1}{(x-1)} - |x| & \text{if } x \neq 1 \\ -1, & \text{if } x = 1 \end{cases}$

be a real-valued function. Then the set of points where f(x)(1981 - 2 Marks)

Let $f(x) = \begin{cases} \frac{(x^3 + x^2 - 16x + 20)}{(x - 2)^2}, & \text{if } x \neq 2\\ k, & \text{if } x = 2 \end{cases}$

If f(x) is continuous for all x, then $k = \dots (1981 - 2 Marks)$

- A discontinuous function y = f(x) satisfying $x^2 + y^2 = 4$ is given by f(x) = (1982 - 2 Marks)
- $\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2} = \dots$ 4.
- If $f(x) = \sin x$, $x \neq n\pi$, $n = 0, \pm 1, \pm 2, \pm 3, \dots$ = 2, otherwise

and
$$g(x) = x^2 + 1$$
, $x \ne 0$, 2
= 4, $x = 0$
= 5, $x = 2$,

- 6. $\lim_{x \to -\infty} \left| \frac{x^4 \sin\left(\frac{1}{x}\right) + x^2}{(1 + |x|^3)} \right| = \dots (1987 2 \text{ Marks})$
- 7. If f(9) = 9, f'(9) = 4, then $\lim_{x \to 9} \frac{\sqrt{f(x)} 3}{\sqrt{x} 3}$ equals.....

ABC is an isosceles triangle inscribed in a circle of radius r. If AB = AC and h is the altitude from A to BC then the triangle ABC has perimeter $P = 2(\sqrt{2hr - h^2}) + \sqrt{2hr}$) and

area A = also $\lim_{h \to 0} \frac{A}{P^3} =$

- $Lt \underset{x \to \infty}{\left(\frac{x+6}{x+1}\right)^{x+4}} = \dots$
- Let $f(x) = x \mid x \mid$. The set of points where f(x) is twice differentiable is
- 11. Let $f(x) = [x] \sin \left(\frac{\pi}{[x+1]} \right)$, where $[\bullet]$ denotes the greatest integer function. The domain of f is... and the points of discontinuity of fin the domain are.... (1996 - 2 Marks)
- 12. $\lim_{x \to 0} \left(\frac{1+5x^2}{1+3x^2} \right)^{1/x^2} = \dots$ (1996 - 1 Mark)
- 13. Let f(x) be a continuous function defined for $1 \le x \le 3$. If f(x) takes rational values for all x and f(2) = 10, then (1997 - 2 Marks) *f*(1.5)=.....

True / False

If $\underset{x\to a}{Lt} [f(x)g(x)]$ exists then both $\underset{x\to a}{Lt} f(x)$ and $\underset{x \to a}{Lt} g(x) \text{ exist.}$

MCQs with One Correct Answer

- 1. If $f(x) = \sqrt{\frac{x \sin x}{x + \cos^2 x}}$, then $\lim_{x \to \infty} f(x)$ is

 (a) 0 (1979)

- (d) none of these
- For a real number y, let [y] denotes the greatest integer less than or equal to y: Then the function $f(x) = \frac{\tan(\pi[x-\pi])}{1+[x]^2}$
 - (1981 2 Marks)
 - discontinuous at some x
 - (b) continuous at all x, but the derivative f'(x) does not
 - f'(x) exists for all x, but the second derivative f'(x)does not exist for some x
 - (d) f'(x) exists for all x

- (a) f''(x) > 0 for all x
- (b) -1 < f''(x) < 0 for all x
- (c) $-2 \le f''(x) \le -1$ for all (d) f''(x) < -2 for all x
- If $G(x) = -\sqrt{25 x^2}$ then $\lim_{x \to 1} \frac{G(x) G(1)}{x 1}$ has the value

(1983 - 1 Mark)

- (b) $\frac{1}{5}$
- (c) $-\sqrt{24}$
- (d) none of these
- If f(a) = 2, f'(a) = 1, g(a) = -1, g'(a) = 2, then the

value of $\lim_{x\to a} \frac{g(x)f(a) - g(a)f(x)}{x-a}$ is (1983 - 1 Mark)

(b) $\frac{1}{5}$

- (d) none of these
- The function $f(x) = \frac{\ln(1+ax) \ln(1-bx)}{x}$ is not defined

at x = 0. The value which should be assigned to f at x = 0 so that it is continuous at x = 0, is (1983 - 1 Mark)

- (a) a-b
- (b) a + b
- (c) $\ln a \ln b$
- (d) none of these
- $\lim_{n \to \infty} \left\{ \frac{1}{1 n^2} + \frac{2}{1 n^2} + \dots + \frac{n}{1 n^2} \right\}$ is equal to

(1984 - 2 Marks)

(a) 0

(b) $-\frac{1}{2}$

- (d) none of these
- If $f(x) = \frac{\sin[x]}{[x]}$, $[x] \neq 0$ (1985 - 2 Marks)

Where [x] denotes the greatest integer less than or equal to x. then $\lim f(x)$ equals –

(a) 1

(b) 0

(c) -1

- (d) none of these
- Let $f: R \to R$ be a differentiable function and f(1) = 4. Then

the value of $\lim_{x\to 1} \int_{-1}^{f(x)} \frac{2t}{x-1} dt$ is (1990 - 2 Marks)

- (a) 8f'(1) (b) 4f'(1) (c) 2f'(1)
- 10. Let [.] denote the greatest integer function and $f(x) = [\tan^2 x]$, then: (1993 - 1 Mark)

- (a) $\lim_{x \to 0} f(x)$ does not exist
- (b) f(x) is continuous at x = 0
- (c) f(x) is not differentiable at x = 0
- (d) f'(0)=1
- 11. The function $f(x) = [x] \cos\left(\frac{2x-1}{2}\right)\pi$, [.] denotes the greatest

integer function, is discontinuous at

(1995S)

- (a) All x
- (b) All integer points
- (c) No x
- (d) x which is not an integer

12.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}}$$
 equals (1997 - 2 Marks)

- (a) $1+\sqrt{5}$ (b) $-1+\sqrt{5}$ (c) $-1+\sqrt{2}$ (d) $1+\sqrt{2}$
- The function $f(x) = [x]^2 [x^2]$ (where [y] is the greatest integer less than or equal to y), is discontinuous at (1999 - 2 Marks)
 - (a) all integers
 - (b) all integers except 0 and 1
 - (c) all integers except 0
 - (d) all integers except 1
- 14. The function $f(x) = (x^2 1)|x^2 3x + 2| + \cos(|x|)$ is

NOT differentiable at

(1999 - 2 Marks)

- 15. $\lim_{x \to 0} \frac{x \tan 2x 2x \tan x}{(1 \cos 2x)^2}$ is
 - (a) 2 (b) -2 (c) 1/2

(c) 1

(d) -1/2

16. For
$$x \in R$$
, $\lim_{x \to \infty} \left(\frac{x-3}{x+2} \right)^x =$ (2000S)

- (a) e (b) e^{-1} (c) e^{-5}

17.
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$$
 equals (2001S)

- - (b) π
- (c) $\pi/2$
- The left-hand derivative of $f(x) = [x] \sin(\pi x)$ at x = k, k an integer, is (b) $(-1)^{k-1}(k-1)\pi$ (d) $(-1)^{k-1}k\pi$
 - (a) $(-1)^k(k-1)\pi$
- (c) $(-1)^k k\pi$
- 19. Let $f: R \to R$ be a function defined by $f(x) = \max\{x, x^3\}$. The set of all points where f(x) is NOT differentiable is (2001S) $(d)\{-1,0,1\}$ (a) $\{-1,1\}$ (b) $\{-1,0\}$ (c) $\{0,1\}$
- 20. Which of the following functions is differentiable at x = 0? (b) $\cos(|x|) - |x|$ (a) $\cos(|x|) + |x|$
 - (c) $\sin(|x|) + |x|$

- (d) $\sin(|x|) |x|$
- The domain of the derivative of the function

$$f(x) = \begin{cases} \tan^{-1} x & \text{if } |x| \le 1\\ \frac{1}{2} (|x| - 1) & \text{if } |x| > 1 \end{cases}$$
 is (2002S)

- (a) $R \{0\}$
- (b) $R \{1\}$
- (c) $R \{-1\}$
- (d) $R \{-1, 1\}$

22. The integer n for which $\lim_{x\to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n}$ is a finite 32. Let $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; 0 < x < 2, m and n are integers,

non-zero number is

- (a) 1
- (b) 2

- 23. Let $f: R \to R$ be such that f(1) = 3 and f'(1) = 6. Then

$$\lim_{x \to 0} \left(\frac{f(1+x)}{f(1)} \right)^{1/x}$$
 equals

- (b) $e^{1/2}$ (c) e^2 (d) e^3
- 24. If $\lim_{x\to 0} \frac{((a-n)nx \tan x)\sin nx}{x^2} = 0$, where n is nonzero real

number, then a is equal to

- (a) 0

- (b) $\frac{n+1}{n}$ (c) n (d) $n+\frac{1}{n}$
- 25. $\lim_{h \to 0} \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+1)-f(1)}$, given that f'(2) = 6 and f'(1) = 4
 - (a) does not exist
- (b) is equal to -3/2
- (c) is equal to 3/2
- (d) is equal to 3 (2003S)
- 26. If (x) is differentiable and strictly increasing function, then

the value of $\lim_{x\to 0} \frac{f(x^2) - f(x)}{f(x) - f(0)}$ is

(2004S)

- (c) -1
- 27. The function given by y = ||x| 1| is differentiable for all real numbers except the points (2005S)
 - (a) $\{0, 1, -1\}$ (b) ± 1
- (c) 1
- 28. If f(x) is continuous and differentiable function and $f(1/n) = 0 \ \forall \ n \ge 1 \text{ and } n \in I, \text{ then }$ (2005S)
 - (a) $f(x) = 0, x \in (0, 1]$
 - (b) f(0) = 0, f'(0) = 0
 - (c) $f(0) = 0 = f'(0), x \in (0, 1]$
 - (d) f(0) = 0 and f'(0) need not to be zero
- The value of $\lim_{x\to 0} \left((\sin x)^{1/x} + (1+x)^{\sin x} \right)$, where x > 0 is

- (a) 0 (b) -1 (c) 1 (d) 2 30. Let f(x) be differentiable on the interval $(0, \infty)$ such that

f(1) = 1, and $\lim_{t \to x} \frac{t^2 f(x) - x^2 f(t)}{t - x} = 1$ for each x > 0. Then

(a) $\frac{1}{3x} + \frac{2x^2}{3}$ (b) $\frac{-1}{3x} + \frac{4x^2}{3}$ (c) $\frac{-1}{x} + \frac{2}{x^2}$ (d) $\frac{1}{x}$

31. $\lim_{x \to \frac{\pi}{4}} \frac{\int_{-2}^{-2\pi} f(t)dt}{x^2 - \frac{\pi^2}{16}}$ equals

- (a) $\frac{8}{\pi}f(2)$ (b) $\frac{2}{\pi}f(2)$ (c) $\frac{2}{\pi}f(\frac{1}{2})$ (d) 4f(2)

 $m \neq 0$, n > 0, and let p be the left hand derivative of |x - 1|

at x = 1. If $\lim_{x \to 1^+} g(x) = p$, then

(2008)

- (a) n=1, m=1
- (c) n=2, m=2
- 33. If $\lim_{x\to 0} \left[1+x \ln(1+b^2)\right]^{1/x} = 2b\sin^2\theta, b>0$ and $\theta \in (-\pi, \pi]$,

then the value of θ is

(2011)

- (a) $\pm \frac{\pi}{4}$ (b) $\pm \frac{\pi}{3}$ (c) $\pm \frac{\pi}{6}$ (d) $\pm \frac{\pi}{2}$

- 34. If $\lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x + 1} ax b \right) = 4$, then (2012)
- (a) a=1, b=4(b) a=1, b=-4(c) a=2, b=-3(d) a=2, b=3
- 35. Let $f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right|, & x \neq 0 \\ 0, & x = 0 \end{cases}$, $x \in R$ then f is (2012)
 - (a) differentiable both at x = 0 and at x = 2
 - (b) differentiable at x = 0 but not differentiable at x = 2
 - (c) not differentiable at x = 0 but differentiable at x = 2
 - (d) differentiable neither at x = 0 nor at x = 2
- 36. Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $(\sqrt[3]{1+a}-1)x^2 + (\sqrt{1+a}-1)x + (\sqrt[6]{1+a}-1) = 0$

a > -1. Then $\lim_{a \to 0^+} \alpha(a)$ and $\lim_{a \to 0^+} \beta(a)$ are (2012)

- (a) $-\frac{5}{2}$ and 1 (b) $-\frac{1}{2}$ and -1
- (c) $-\frac{7}{2}$ and 2 (d) $-\frac{9}{2}$ and 3

MCQs with One or More than One Correct

- If x+|y|=2y, then y as a function of x is (1984 3 Marks)
 - (a) defined for all real x
 - (b) continuous at x = 0
 - (c) differentiable for all x
 - (d) such that $\frac{dy}{dx} = \frac{1}{3}$ for x < 0
- If $f(x) = x(\sqrt{x} \sqrt{x+1})$, then— (1985 - 2 Marks)
 - (a) f(x) is continuous but not differentiable at x = 0
 - (b) f(x) is differentiable at x = 0
 - (c) f(x) is not differentiable at x = 0
 - (d) none of these

- 3. The function $f(x) = 1 + |\sin x|$ is
 - continuous nowhere
 - continuous everywhere (b)
 - (c) differentiable nowhere
 - (d) not differentiable at x = 0
 - (e) not differentiable at infinite number of points.
- Let [x] denote the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is (1986 - 2 Marks)
 - (a) continuous at x = 0
- (b) continuous in (-1, 0)
- (c) differentiable at x = 1
- (d) differentiable in (-1, 1)
- (e) none of these
- The set of all points where the function $f(x) = \frac{x}{(1+|x|)}$ is

differentiable, is

(1987 - 2 Marks)

(1986 - 2 Marks)

- (a) $(-\infty,\infty)$
- (b) $[0,\infty)$
- (c) $(-\infty,0)\cup(0,\infty)$
- (d) $(0,\infty)$
- (e) None
- The function $f(x) = \begin{cases} |x-3|, & x \ge 1 \\ \frac{x^2}{4} \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$

(1988 - 2 Marks)

- (a) continous at x = 1
- (b) differentiable at x = 1
- (c) continous at x = 3
- (d) differentiable at x = 3.
- If $f(x) = \frac{1}{2}x 1$, then on the interval [0, π] (1989 2 Marks)
 - (a) $\tan [f(x)]$ and 1/f(x) are both continuous
 - (b) $\tan [f(x)]$ and 1/f(x) are both discontinuous
 - (c) $tan [f(x)] and f^{-1}(x)$ are both continuous
 - (d) $\tan [f(x)]$ is continuous but 1/f(x) is not.
- The value of $\lim_{x\to 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2x)}}{x}$ (d) does not exist because to the right hand limit. 15. If $f(x) = \min\{1, x^2, x^3\}$, then 8.
 - (a) 1

- (d) none of these
- 9. The following functions are continuous on $(0, \pi)$.

(1991 - 2 Marks)

- (a) $\tan x$
- (b) $\int_{0}^{\infty} t \sin \frac{1}{t} dt$

(c)
$$\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2}{9}x, & \frac{3\pi}{4} < x < \pi \end{cases}$$

(d)
$$\begin{cases} x \sin x, & 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin(\pi + x), & \frac{\pi}{2} < x < \pi \end{cases}$$

- 10. Let $f(x) = \begin{cases} 0, & x < 0 \\ x^2, & x \ge 0 \end{cases}$ then for all x(1994)
 - (a) f' is differentiable
- (b) f is differentiable
- (c) f' is continuous
- (d) f is continuous

11. Let
$$g(x) = xf(x)$$
, where $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. At $x = 0$

- (a) g is differentiable but g' is not continuous
- (b) g is differentiable while f is not
- (c) both f and g are differentiable
- (d) g is differentiable and g' is continuous
- The function $f(x) = \max \{(1-x), (1+x), 2\}, x \in (-\infty, \infty)$ is
 - (a) continuous at all points

(1995)

- (b) differentiable at all points
- (c) differentiable at all points except at x = 1 and x = -1
- continuous at all points except at x = 1 and x = -1, where it is discontinuous
- 13. Let $h(x) = \min \{x, x^2\}$, for every real number of x, Then (1998 - 2 Marks)
 - (a) h is continuous for all x
 - (b) h is differentiable for all x
 - (c) h'(x) = 1, for all x > 1
 - (d) h is not differentiable at two values of x.

14.
$$\lim_{x \to 1} \frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}$$
 (1998 - 2 Marks)

- (a) exists and it equals $\sqrt{2}$
- (b) exists and it equals $-\sqrt{2}$
- (c) does not exist because $x-1 \rightarrow 0$
- (d) does not exist because the left hand limit is not equal
- (2006 5M, -1)
- (a) f(x) is continuous $\forall x \in R$
- (b) f(x) is continuous and differentiable everywhere.
- (c) f(x) is not differentiable at two points
- (d) f(x) is not differentiable at one point

16. Let
$$L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4}$$
, $a > 0$.

If L is finite, then

(a)
$$a=2$$
 (b) $a=1$ (c) $L=\frac{1}{64}$ (d) $L=\frac{1}{32}$

- 17. Let $f: \mathbf{R} \to \mathbf{R}$ be a function such that f(x+y) = f(x) + f(y), $\forall x, y \in \mathbf{R}$. If f(x) is differentiable at x = 0, then (2011)
 - (a) f(x) is differentiable only in a finite interval containing zero
 - (b) f(x) is continuous $\forall x \in \mathbb{R}$
 - (c) f'(x) is constant $\forall x \in \mathbb{R}$
 - (d) f(x) is differentiable except at finitely many points.

18. If
$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0, \text{then} \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$
 (2011)

- (a) f(x) is continuous at $x = -\frac{\pi}{2}$
- (b) f(x) is not differentiable at x = 0
- (c) f(x) is differentiable at x = 1
- (d) f(x) is differentiable at $x = -\frac{3}{2}$
- 19. For every integer n, let a_n and b_n be real numbers. Let function $f: IR \rightarrow IR$ be given by (2012)

$$f(x) = \begin{cases} a_n + \sin \pi x, & \text{for } x \in [2n, 2n + 1] \\ b_n + \cos \pi x, & \text{for } x \in (2n - 1, 2n) \end{cases}$$

for all integers n. If f is continuous, then which of the following hold(s) for all n?

- (a) $a_{n-1} b_{n-1} = 0$ (b) $a_n b_n = 1$ (c) $a_n b_{n+1} = 1$ (d) $a_{n-1} b_n = -1$

- **20.** For $a \in \mathbb{R}$ (the set of all real numbers), $a \neq -1$,

(JEE Adv. 2013)

$$\lim_{n\to\infty} \frac{(1^a + 2^a + ... + n^a)}{(n+1)^{a-1} [(na+1) + (na+2) + ... + (na+n)]} = \frac{1}{60}.$$

Then a =

- (a) 5
- (b) 7 (c) $\frac{-15}{2}$ (d) $\frac{-17}{2}$
- 21. Let $f:[a, b] \to [1, \infty)$ be a continuous function and let $g: R \rightarrow R$ be defined as (JEE Adv. 2014)

$$g(x) = \begin{cases} 0, & \text{if } x < a, \\ \int_{a}^{x} f(t) dt, & \text{if } a \le x \le b; \text{ then} \\ \int_{a}^{b} f(t) dt, & \text{if } x > b. \end{cases}$$

- g(x) is continuous but not differentiable at a (a)
- (b) g(x) is differentiable on R
- g(x) is continuous but not differentiable at b
- g(x) is continuous and differentiable at either (a) or (b) but not both

22. For every pair of continuous functions $f, g: [0, 1] \rightarrow R$ such

that max $\{f(x): x \in [0,1]\} = \max \{g(x): x \in [0,1]\}$, the correct statement(s) is (are): (JEE Adv. 2014)

- $(f(c))^2 + 3f(c) = (g(c))^2 + 3g(c)$ for some $c \in [0, 1]$
- (b) $(f(c))^2 + f(c) = (g(c))^2 + 3g(c)$ for some $c \in [0, 1]$
- (c) $(f(c))^2 + 3f(c) = (g(c))^2 + g(c)$ for some $c \in [0, 1]$
- (d) $(f(c))^2 = (g(c))^2$ for some $c \in [0, 1]$
- 23. Let $g: R \to R$ be a differentiable function with g(0) = 0,

$$g'(0) = 0$$
 and $g'(1) \neq 0$. Let $f(x) = \begin{cases} \frac{x}{|x|} g(x), & x \neq 0 \\ 0, & x = 0 \end{cases}$

and $h(x) = e^{|x|}$ for all $x \in R$. Let (foh)(x) denote f(h(x)) and (hof)(x) denote h(f(x)). Then which of the following is (are) true?

(JEE Adv. 2015)

- (a) f is differentiable at x = 0
- (b) h is differentiable at x = 0
- (c) foh is differentiable at x = 0
- (d) hof is differentiable at x = 0
- **24.** Let a, b $\in \mathbb{R}$ and f : $\mathbb{R} \to \mathbb{R}$ be defined by $f(x) = a \cos(|x^3-x|) + b |x| \sin(|x^3+x|).$

Then f is (JEE Adv. 2016)

- differentiable at x=0 if a=0 and b=1
- differentiable at x=1 if a=1 and b=0
- NOT differentiable at x=0 if a=1 b=0
- (d) NOT differentiable at x=1 if a=1 and b=1
- 25. Let $f: \left[-\frac{1}{2}, 2\right] \to \mathbb{R}$ and $g: \left[-\frac{1}{2}, 2\right] \to \mathbb{R}$ be functions

defined by $f(x) = [x^2-3]$ and g(x) = |x| f(x) + |4x-7| f(x), where [y] denotes the greatest integer less than or equal to y for $y \in R$. Then (JEE Adv. 2016)

- (a) f is discontinuous exactly at three points in $\left| -\frac{1}{2}, 2 \right|$
- (b) f is discontinuous exactly at four points in $\left| -\frac{1}{2}, 2 \right|$
- (c) g is NOT differentiable exactly at four points in
- (d) g is NOT differentiable exactly at five points in $\left(-\frac{1}{2}, 2\right)$

Subjective Problems

- Evaluate $\lim_{x\to a} \frac{\sqrt{a+2x} \sqrt{3x}}{\sqrt{3a+x} 2\sqrt{x}}$, $(a \neq 0)$ 1. (1978)
- f(x) is the integral of $\frac{2\sin x \sin 2x}{x^3}$, $x \ne 0$, find $\lim_{x \to 0} f'(x)$ (1979)

- 3. Evaluate: $\lim_{h\to 0} \frac{(a+h)^2 \sin(a+h) a^2 \sin a}{h}$ (1980)
- 4. Let f(x+y) = f(x) + f(y) for all x and y. If the function f(x) is continuous at x = 0, then show that f(x) is continuous at all x.

 (1981 2 Marks)
- 5. Use the formula $\lim_{x\to 0} \frac{a^x 1}{x} = \ln a$ to find

$$\lim_{x \to 0} \frac{2^x - 1}{(1+x)^{1/2} - 1}$$
 (1982 - 2 Marks)

6. Let
$$f(x) = \begin{cases} 1 + x, 0 \le x \le 2 \\ 3 - x, 2 \le x \le 3 \end{cases}$$
 (1983 - 2 Marks)

Determine the form of g(x) = f[f(x)] and hence find the points of discontinuity of g, if any

7. Let
$$f(x) = \begin{cases} \frac{x^2}{2}, & 0 \le x < 1 \\ 2x^2 - 3x + \frac{3}{2}, & 1 \le x \le 2 \end{cases}$$
 (1983 - 2 Marks)

Discuss the continuity of f, f' and f'' on [0, 2].

8. Let
$$f(x) = x^3 - x^2 + x + 1$$
 and

$$g(x) = \max\{f(t); 0 \le t \le x\}, \ 0 \le x \le 1 \quad (1985 - 5 \text{ Marks})$$

= 3-x \quad 0 \le x \le 2

Discuss the continuity and differentiability of the function g(x) in the interval (0, 2).

9. Let f(x) be defined in the interval [-2, 2] such that

$$f(x) = \begin{cases} -1, -2 \le x \le 0 \\ x - 1, 0 < x \le 2 \end{cases}$$

and
$$g(x) = f(|x|) + |f(x)|$$

Test the differentiability of g(x) in (-2, 2). (1986 - 5 Marks)

- 10. Let f(x) be a continuous and g(x) be a discontinuous function. prove that f(x) + g(x) is a discontinuous function.

 (1987 2 Marks)
- 11. Let f(x) be a function satisfying the condition f(-x)=f(x) for all real x. If f'(0) exists, find its value. (1987 2 Marks)
- 12. Find the values of a and b so that the function

$$f(x) = \begin{cases} x + a\sqrt{2}\sin x, & 0 \le x < \pi/4 \\ 2x\cot x + b & \pi/4 \le x \le \pi/2 \\ a\cos 2x - b\sin x & \pi/2 < x \le \pi \end{cases}$$

is continuous for $0 \le x \le \pi$. (1989 - 2 Marks)

13. Draw a graph of the function y = [x] + |1 - x|, $-1 \le x \le 3$. Determine the points, if any, where this function is not differentiable. (1989 - 4 Marks)

14. Let
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2}, & x < 0 \\ a, & x = 0 \end{cases}$$
 (1990 - 4 Marks)
$$\frac{\sqrt{x}}{\sqrt{16+\sqrt{x}-4}}, & x > 0$$

Determine the value of a, if possible, so that the function is continuous at x = 0

- 15. A function $f: R \to R$ satisfies the equation f(x+y) = f(x)f(y) for all x, y in R and $f(x) \ne 0$ for any x in R. Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2f(x) for all x in R. Hence, determine f(x). (1990 4 Marks)
- 16. Find $\lim_{x\to 0} \left\{ \tan(\pi/4 + x) \right\}^{1/x}$ (1993 2 Marks)

17. Let
$$f(x) = \begin{cases} \{1 + |\sin x|\}^{a/|\sin x|} & ; & \frac{\pi}{6} < x < 0 \\ b & ; & x = 0 \\ e^{\tan 2x/\tan 3x} & ; & 0 < x < \frac{\pi}{6} \end{cases}$$

(1994 - 4 Marks)

Determine a and b such that f(x) is continuous at x = 0

18. Let
$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$
 for all real x and y. If $f'(0)$

exists and equals -1 and f(0) = 1, find f(2). (1995 - 5 Marks) 9. Determine the values of x for which the following function fails to be continuous or differentiable: (1997 - 5 Marks)

$$f(x) = \begin{cases} 1 - x, & x < 1\\ (1 - x)(2 - x), & 1 \le x \le 2 \text{ Justify your answer.} \\ 3 - x, & x > 2 \end{cases}$$

20. Let $f(x), x \ge 0$, be a non-negative continuous function, and

let
$$F(x) = \int_{0}^{x} f(t) dt$$
, $x \ge 0$. If for some $c > 0$, $f(x) \le cF(x)$ for all

 $x \ge 0$, then show that f(x) = 0 for all $x \ge 0$. (2001 - 5 Marks) 21. Let $\alpha \in R$. Prove that a function $f: R \to R$ is differentiable at α if and only if there is a function $g: R \to R$ which is continuous at α and satisfies $f(x) - f(\alpha) = g(x)(x - \alpha)$ for all $x \in R$. (2001 - 5 Marks)

22. Let
$$f(x) = \begin{cases} x + a & \text{if } x < 0 \\ |x - 1| & \text{if } x \ge 0, \end{cases}$$
 and (2002 - 5 Marks)

Let
$$f(x) = \begin{cases} |x-1| & \text{if } x \ge 0, \end{cases}$$
 and $(2002 - 3 \text{ Marks})$

$$g(x) = \begin{cases} x+1 & \text{if } x < 0 \\ (x-1)^2 + b & \text{if } x \ge 0, \end{cases}$$
 where a and b are

non-negative real numbers. Determine the composite function $g \circ f$. If $(g \circ f)(x)$ is continuous for all real x, determine the values of a and b. Further, for these values of a and b, is $g \circ f$ differentiable at x = 0? Justify your answer.

- 23. If a function $f:[-2a, 2a] \rightarrow R$ is an odd function such that f(x) = f(2a x) for $x \in [a, 2a]$ and the left hand derivative at x = a is 0 then find the left hand derivative at x = -a.

 (2003 2 Marks)
- 24. $f'(0) = \lim_{n \to \infty} nf\left(\frac{1}{n}\right)$ and f(0) = 0. Using this find $\lim_{n \to \infty} \left((n+1) \frac{2}{\pi} \cos^{-1} \left(\frac{1}{n}\right) n \right), \left| \cos^{-1} \frac{1}{n} \right| < \frac{\pi}{2}$

25. If $|c| \le \frac{1}{2}$ and f(x) is a differentiable function at x = 0 given

by
$$f(x) = \begin{cases} b \sin^{-1}\left(\frac{c+x}{2}\right) &, & -\frac{1}{2} < x < 0 \\ & \frac{1}{2} &, & x = 0 \\ & \frac{e^{ax/2} - 1}{x} &, & 0 < x < \frac{1}{2} \end{cases}$$

Find the value of 'a' and prove that $64 b^2 = 4 - c^2$ (2004 - 4 Marks)

26. If $f(x-y) = f(x) \cdot g(y) - f(y) \cdot g(x)$ and $g(x-y) = g(x) \cdot g(y) - f(x) \cdot f(y)$ for all $x, y \in R$. If right hand derivative at x = 0 exists for f(x). Find derivative of g(x) at x = 0 (2005 - 4 Marks)

F Integer Value Correct Type

DIRECTIONS (Q. 1 and 2): Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example:

(2004 - 2 Marks)

A P Q T S T
B P Q T S T
C P Q T S T
D P Q T S T

If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given.

1. In this questions there are entries in columns I and II. Each entry in column I is related to exactly one entry in column II. Write the correct letter from column II against the entry number in column I in your answer book. (1992 - 2 Marks)

Column I

- (A) $\sin(\pi[x])$
- (B) $\sin(\pi(x-[x])$

Column II

- (p) differentiable everywhere
- (q) nowhere differentiable
- (r) not differentiable at 1 and -1
- 2. In the following [x] denotes the greatest integer less than or equal to x.

Match the functions in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS. (2007 - 6 marks)

Column I

- (A) x |x|
- (B) $\sqrt{|x|}$
- (C) x + [x]
- (D) |x-1|+|x+1|

Column II

- (p) continuous in (-1, 1)
- (q) differentiable in (-1, 1)
- (r) strictly increasing in (-1, 1)
- (s) not differentiable at least at one point in (-1, 1)

DIRECTIONS (Q. 3): Following question has matching lists. The codes for the list have choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

3. Let
$$f_1: R \to R$$
, $f_2: [0, \infty) \to R$, $f_3: R \to R$ and $f_4: R \to [0, \infty)$ be defined by $f_1(x) = \begin{cases} |x| & \text{if } x < 0, \\ e^x & \text{if } x \ge 0; \end{cases}$

$$f_2(x) = x^2; \ f_3(x) = \begin{cases} \sin x & \text{if } x < 0, \\ x & \text{if } x \ge 0; \end{cases} \text{ and } f_4(x) = \begin{cases} f_2(f_1(x)) & \text{if } x < 0, \\ f_2(f_1(x)) - 1 & \text{if } x \ge 0. \end{cases}$$
 (JEE Adv. 2014)

List-I

- P. f_4 is
- Q. f_3 is
- **R.** $f_2 o f_1$ is
- S. f_2 is

PQRS

- 3 1 4 2 (a)
- (c) 3 1 2 4

Integer Value Correct Type

Let $f: [1, \infty) \to [2, \infty)$ be a differentiable function such that

$$f(1) = 2$$
. If $6 \int_{1}^{x} f(t)dt = 3xf(x) - x^3$ for all $x \ge 1$, then the

value of f(2) is

(2011)

2. The largest value of non-negative integer a for which

$$\lim_{x \to 1} \left\{ \frac{-ax + \sin(x - 1) + a}{x + \sin(x - 1) - 1} \right\}^{\frac{1 - x}{1 - \sqrt{x}}} = \frac{1}{4} \text{ is} \quad (JEE Adv. 2014)$$

3. Let $f: R \to R$ and $g: R \to R$ be respectively given by f(x) = |x| + 1 and $g(x) = x^2 + 1$. Define $h: R \to R$ by

List-II

- 1. Onto but not one-one
- 2. Neither continuous nor one-one
- 3. Differentiable but not one-one
- 4. Continuous and one-one

PORS

- 3 4 2 (b)
- 3 2 4 (d)

$$h(x) = \begin{cases} \max \left\{ f(x), g(x) \right\} & \text{if } x \le 0, \\ \min \left\{ f(x), g(x) \right\} & \text{if } x > 0. \end{cases}$$

The number of points at which h(x) is not differentiable is (JEE Adv. 2014)

Let m and n be two positive integers greater than 1. If

$$\lim_{\alpha \to 0} \left(\frac{e^{\cos(\alpha^n)} - e}{\alpha^m} \right) = -\left(\frac{e}{2} \right) \text{ then the value of } \frac{m}{n} \text{ is}$$

(JEE Adv. 2015)

Let α , $\beta \in \mathbb{R}$ be such that $\lim_{x\to 0} \frac{x^2 \sin(\beta x)}{\alpha x - \sin x} = 1$. Then $6(\alpha + \beta)$ equals. (JEE Adv. 2016)

Section-B **1EE Main / Aleee**

- $\lim_{x \to 0} \frac{\sqrt{1 \cos 2x}}{\sqrt{2}x}$ is
- [2002]

- (a) 1
- (b) -1
- (c) zero
- (d) does not exist
- $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x$ [2002]
 - (a) e^4
- (b) e^{2}
- (c) e^{3}
- (d) 1
- Let f(x) = 4 and f'(x) = 4. Then $\lim_{x \to 2} \frac{xf(2) 2f(x)}{x 2}$ is
 - given by

[2002]

- (a) 2
- (b) -2
- (c) 4
- (d) 3
- 4. $\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is [2002]
 - (a) $\frac{1}{n+1}$ (b) $\frac{1}{1-n}$ (c) $\frac{1}{n} \frac{1}{n-1}$ (d) $\frac{1}{n+2}$

- $\lim_{x \to 0} \frac{\log x^n [x]}{\lceil x \rceil}, n \in \mathbb{N}, ([x] \text{ denotes greatest integer less})$
 - than or equal to x) (a) has value -1
- (b) has value 0
- (c) has value 1
- (d) does not exist
- If f(1) = 1, f'(1) = 2, then $\lim_{x \to 1} \frac{\sqrt{f(x) 1}}{\sqrt{x} 1}$ is [2002]
 - (a) 2
- (b) 4
- (c) 1
- (d) 1/2
- f is defined in [-5, 5] as
- [2002]

[2002]

- f(x) = x if x is rational
 - =-x if x is irrational. Then
- (a) f(x) is continuous at every x, except x = 0
- (b) f(x) is discontinuous at every x, except x = 0
- (c) f(x) is continuous everywhere
- (d) f(x) is discontinuous everywhere
- f(x) and g(x) are two differentiable functions on [0, 2] such that f''(x) - g''(x) = 0, f'(1) = 2g'(1) = 4f(2) = 3g(2) = 9

then
$$f(x)-g(x)$$
 at $x=3/2$ is

[2002]

- (a) 0
- (b) 2
- (c) 10
- (d) 5

- If $f(x+y) = f(x).f(y) \forall x.y$ and f(5) = 2, f'(0) = 3, then
 - (a) 0
- (b) 1
- (c) 6
- (d) 2
- 10. $\lim_{n\to\infty} \frac{1+2^4+3^4+...n^4}{n^5} \lim_{n\to\infty} \frac{1+2^3+3^3+...n^3}{n^5}$

- (a) $\frac{1}{5}$ (b) $\frac{1}{30}$ (c) Zero (d) $\frac{1}{4}$
- 11. If $\lim_{x\to 0} \frac{\log(3+x) \log(3-x)}{x} = k$, the value of k is [2003]
 - (a) $-\frac{2}{3}$ (b) 0 (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$

- 12. The value of $\lim_{x\to 0} \frac{\int_{0}^{x^2} \sec^2 t dt}{x \sin x}$ is [2003]

- (d) 1
- 13. Let f(a) = g(a) = k and their nth derivatives

 $f^{n}(a), g^{n}(a)$ exist and are not equal for some n. Further if

$$\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + f(a)}{g(x) - f(x)} = 4$$

then the value of k is

[2003]

- (b) 4
- (c) 2
- (d) 1
- 14. $\lim_{x \to \frac{\pi}{2}} \frac{\left[1 \tan\left(\frac{x}{2}\right)\right] [1 \sin x]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] [\pi 2x]^3} \text{ is}$ [2003]

 - (a) ∞ (b) $\frac{1}{8}$ (c) 0
- (d) $\frac{1}{32}$
- 15. If $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then f(x) is [2003]
 - (a) discontinuous every where
 - (b) continuous as well as differentiable for all x
 - (c) continuous for all x but not differentiable at x = 0
 - (d) neither differentiable nor continuous at x = 0
- 16. If $\lim_{x\to\infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2$, then the values of a and b, are

[2004]

- (a) a = 1 and b = 2
- (b) $a = 1, b \in R$
- (c) $a \in \mathbf{R}, b = 2$
- (d) $a \in \mathbf{R}, b \in \mathbf{R}$

17. Let $f(x) = \frac{1-\tan x}{4x-\pi}, x \neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right]$. If f(x) is continuous

in
$$\left[0, \frac{\pi}{2}\right]$$
, then $f\left(\frac{\pi}{4}\right)$ is [2004]

- (a) -1 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) 1
- 18. $\lim_{n \to \infty} \left[\frac{1}{n^2} \sec^2 \frac{1}{n^2} + \frac{2}{n^2} \sec^2 \frac{4}{n^2} + \dots + \frac{1}{n} \sec^2 1 \right]$ [2005]

 - (a) $\frac{1}{2} \sec 1$ (b) $\frac{1}{2} \csc 1$
- (d) $\frac{1}{2} \tan 1$
- 19. Let α and β be the distinct roots of $ax^2 + bx + c = 0$, then

$$\lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$$
 is equal to [2005]

- (a) $\frac{a^2}{2}(\alpha-\beta)^2$
- (c) $\frac{-a^2}{2}(\alpha \beta)^2$ (d) $\frac{1}{2}(\alpha \beta)^2$
- 20. Suppose f(x) is differentiable at x =

$$\lim_{h \to 0} \frac{1}{h} f(1+h) = 5 \text{ , then } f'(1) \text{ equals}$$
 [2005]

- (b) 4

- 21. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$ for $x \in [1, 6]$, then [2005]
 - (a) $f(6) \ge 8$ (b) f(6) < 8 (c) f(6) < 5 (d) f(6) = 5
- If f is a real valued differentiable function satisfying

$$|f(x)-f(y)| \le (x-y)^2$$
, $x, y \in R$ and $f(0) = 0$, then $f(1)$ equals [2005]
(a) -1 (b) 0 (c) 2 (d) 1

- 23. Let $f: R \to R$ be a function defined by
 - $f(x) = \min \{x+1, |x|+1\}$, Then which of the following is true?
 - (a) f(x) is differentiable everywhere

[2007]

- (b) f(x) is not differentiable at x = 0
- (c) $f(x) \ge 1$ for all $x \in R$
- (d) f(x) is not differentiable at x = 1
- The function $f: R/\{0\} \to R$ given by [2007]

$$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$$

can be made continuous at x = 0 by defining f(0) as

- (a) 0
- (b) 1
- (c) 2
- (d) -1

25. Let
$$f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1} & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$$
 [2008]

Then which one of the following is true?

- (a) f is neither differentiable at x = 0 nor at x = 1
- (b) f is differentiable at x = 0 and at x = 1
- (c) f is differentiable at x = 0 but not at x = 1
- (d) f is differentiable at x = 1 but not at x = 0
- 26. Let $f: \mathbf{R} \to \mathbf{R}$ be a positive increasing function with

$$\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1. \text{ Then } \lim_{x \to \infty} \frac{f(2x)}{f(x)} =$$
 [2010]

(a)
$$\frac{2}{3}$$
 (b) $\frac{3}{2}$ (c) 3 (d) 1

27.
$$\lim_{x \to 2} \left(\frac{\sqrt{1 - \cos\{2(x - 2)\}}}{x - 2} \right)$$
 [2011]

- (a) equals $\sqrt{2}$ (b) equals $-\sqrt{2}$
- (c) equals $\frac{1}{\sqrt{2}}$ (d) does not exist
- 28. The values of p and q for which the function [2011]

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x}, & x < 0 \\ q, & x = 0 \text{ is continuous for all } x \text{ in } R, \text{ are} \\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x^{3/2}}, & x > 0 \end{cases}$$

- (a) $p = \frac{5}{2}, q = \frac{1}{2}$ (b) $p = -\frac{3}{2}, q = \frac{1}{2}$
- (c) $p = \frac{1}{2}, q = \frac{3}{2}$ (d) $p = \frac{1}{2}, q = -\frac{3}{2}$
- 29. Let $f: R \to [0,\infty)$ be such that $\lim_{x\to 5} f(x)$ exists and

$$\lim_{x \to 5} \frac{\left(f(x)\right)^2 - 9}{\sqrt{|x - 5|}} = 0$$
. Then $\lim_{x \to 5} f(x)$ equals:

- (a) 0 (b) 1 (c) 2 (d)
- 30. If $f: R \to R$ is a function defined by f(x) = [x] $\cos\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes the greatest integer function, then f is . [2012]
 - (a) continuous for every real x.
 - (b) discontinuous only at x = 0
 - (c) discontinuous only at non-zero integral values of x.
 - (d) continuous only at x = 0.

31. Consider the function, $f(x) = |x-2| + |x-5|, x \in \mathbb{R}$.

Statement-1: f'(4) = 0

Statement-2: f is continuous in [2,5], differentiable in (2,5) and f(2) = f(5). [2012]

- (a) Statement-1 is false, Statement-2 is true.
- (b) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
- (c) Statement-1 is true, statement-2 is true; statement-2 is **not** a correct explanation for Statement-1.
- (d) Statement-1 is true, statement-2 is false.

32.
$$\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$$
 is equal to [JEE M 2013]

- (a) $-\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) 2
- 33. $\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$ is equal to: [JEE M 2014]
 - (a) $-\pi$ (b) π (c) $\frac{\pi}{2}$ (d) 1
- 34. $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to: [JEE M 2015]
 - (a) 2 (b) $\frac{1}{2}$ (c) 4 (d) 3
- 35. If the function.

$$g(x) = \begin{cases} k\sqrt{x+1}, & 0 \le x \le 3\\ mx+2, & 3 < x \le 5 \end{cases}$$
 is differentiable, then the value

fk + m is: [JEE M 2015]

- (a) $\frac{10}{3}$ (b) 4 (c) 2 (d) $\frac{16}{5}$
- 36. For $x \in \mathbb{R}$, $f(x) = |\log 2 \sin x|$ and g(x) = f(f(x)), then : [JEE M 2016]

(a) $g'(0) = -\cos(\log 2)$

- (b) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$
- (c) g is not differentiable at x = 0
- (d) $g'(0) = \cos(\log 2)$

37.
$$\lim_{n\to\infty} \left(\frac{(n+1)(n+2)...3n}{n^{2n}} \right)^{\frac{1}{n}}$$
 is equal to: [JEE M 2016]

- (a) $\frac{9}{e^2}$
- (b) $3 \log 3 2$
- (c) $\frac{18}{e^4}$ (d) $\frac{27}{e^2}$
- 38. Let $p = \lim_{x \to 0^+} (1 + \tan^2 \sqrt{x})^{\frac{1}{2x}}$ then log p is equal to :

[JEE M 2016]

- (a) $\frac{1}{2}$
- (b) $\frac{1}{4}$

(c) 2

(d) 1