Job No.: Lisa Welch and Daniel Address: Lot 10 DP 535188 Te Kapua Rise, Date: 17/04/2025

Mouatt Puketapu, New Zealand

Latitude: -39.483081 **Longitude:** 176.817103 **Elevation:** 29.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	6.03 m
Wind Region	NZ2	Terrain Category	1.78	Design Wind Speed	37.68 m/s
Wind Pressure	0.85 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.68 m Cpe = -1.035 pe = -0.77 KPa pnet = -0.77 KPa

For roof CP,e from 2.68 m To 5.35 m Cpe = -0.8325 pe = -0.62 KPa pnet = -0.62 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 12 m Cpe = 0.7 pe = 0.53 KPa pnet = 0.78 KPa

For side wall CP,e from 0 m To 5.35 m Cpe = pe = -0.49 KPa pnet = -0.49 KPa

Maximum Upward pressure used in roof member Design = 0.77 KPa

Maximum Downward pressure used in roof member Design = 0.33 KPa

Maximum Wall pressure used in Design = 0.78 KPa

Maximum Racking pressure used in Design = 0.89 KPa

Design Summary

Rafter Design External

External Rafter Load Width = 3095 mm External Rafter Span = 3916 mm Try Rafter 240x45 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.94 S1 Downward =13.82 S1 Upward =13.82

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	2.00 Kn-m	Capacity	7.41 Kn-m	Passing Percentage	370.50 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.00 Kn-m	Capacity	9.89 Kn-m	Passing Percentage	247.25 %
$ m M_{0.9D ext{-W}nUp}$	-3.23 Kn-m	Capacity	-12.36 Kn-m	Passing Percentage	382.66 %
V _{1.35D}	2.05 Kn	Capacity	17.37 Kn	Passing Percentage	847.32 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	4.09 Kn	Capacity	23.16 Kn	Passing Percentage	566.26 %
$ m V_{0.9D ext{-W}nUp}$	-3.30 Kn	Capacity	-28.94 Kn	Passing Percentage	876.97 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 6.66 mm Limit by Woolcock et al, 1999 Span/240= 17.08 mm

Deflection under Dead and Service Wind = 7.38 mm Limit by Woolcock et al, 1999 Span/100 = 41.00 mm

Reactions

Maximum downward = 4.09 kn Maximum upward = -3.30 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -28.35 kn > -3.30 Kn

Single Shear Capacity under short term loads = -14.56 Kn > -3.30 Kn

Intermediate Design Front and Back

Intermediate Spacing = 3095 mm Intermediate Span = 5163 mm Try Intermediate 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward = 1.00 S1 Downward = 13.93 S1 Upward = 1.06

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow	8.04 Kn-m	Capacity	16.8 Kn-m	Passing Percentage	208.96 %
$ m V_{0.9D ext{-}WnUp}$	6.23 Kn	Capacity	-48.24 Kn	Passing Percentage	774.32 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 18.38 mm Limit by Woolcock et al, 1999 Span/100 = 51.63 mm

Reactions

Maximum = 6.23 kn

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 3095 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.55 S1 Downward =12.23 S1 Upward =22.68

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.84 Kn-m	Capacity	1.65 Kn-m	Passing Percentage	196.43 %
$ m V_{0.9D ext{-}WnUp}$	1.09 Kn	Capacity	13.75 Kn	Passing Percentage	1261.47 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.87 mm Limit by Woolcock et al, 1999 Span/100 = 30.95 mm Sag during installation = 6.87 mm

Reactions

Maximum = 1.09 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 4100 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward =0.98

K8 Upward =0.75

S1 Downward = 12.23

S1 Upward = 18.45

Shear Capacity of timber = 3 MPa

Bending Capacity of timber = 14 MPa NZS 3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow 1.

1.48 Kn-m Capacity

2.26 Kn-m

Passing Percentage

152.70 %

 $V_{0.9D\text{-WnUp}}$

1.44 Kn

Capacity

13.75 Kn

Passing Percentage

954.86 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 14.99 mm Limit by Woolcock et al. 1999 Span/100 = 41.00 mm Sag during installation = 21.15 mm

Reactions

Maximum = 1.44 kn

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2200) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2200)

Skin Friction = 39.09 Kn

Weight of Pile + Pile Skin Friction = 42.94 Kn

Uplift on one Pile = 13.83 Kn

Uplift is ok