

Detailed Course 2.0 on Function of One and Several Variable - IIT JAM, 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Save up to 20% on your IIT JAM Subscriptions!*

Now available at the lowest prices!*

Plus

Duration	Current Price	Price Drop	What you Pay	What you save
3 Months	₹ 6,807	₹ 1,361	₹ 5,446	20%

Subscribe Now

Use code GPSIR Call 8585858585 for more details

^{*}T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Important result:

- (1) Every continuous function in [a,b] is integrable in [a,b]
- (2) A monotonic function in [a,b] is integrable in [a,b].
- (3) If f is bounded and discontinuous at only countable point, then it is integrable.
- (4) If f(x) is bounded in [a, b] and limit point of set of discontinuous point is finite then it will be integrable.

Q.1. Let
$$f(x) = \begin{cases} \sin 1/x & x \neq 0 \\ 7, & x = 0 \end{cases}$$

Then, which of the following is/are true?

- (a) f(x) is continuous on [0, 1]
- (b) f(x) is differentiable on [0, 1]
- (c) f(x) is Riemann integrable.
 - (d) None of these

から

- A function defined on [0, 4] by f(x) = [x] where [x]denotes the greatest integer function t then
 - (a) f is not integrable

(c)
$$\int_0^4 f(x)dx = 5$$

(d) $\int_0^4 f(x)dx = 6$

(n) $\int_0^4 f(x)dx = 6$

(n)

Dr.Gajendra Purohit (PhD,NET) Referral Code GPS R

Q.3. Define $f: [0,1] \to [0,1]$ by

and define g : [0,1]
$$\to$$
 [0,1] by $g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \in (0,1] \end{cases}$

Then which of the following is true JAM 2022

- (a) f is Riemann integrable in [0,1]
- (b) g is Riemann integrable in [0.1]
- (c) fog is Riemann integrable in [0.1]
- (d) gof is Riemann integrable in [0,1]

Q.4. The function defined by

$$f(x) = \begin{cases} 0; & x = 0 \\ \frac{1}{2^n}; & \frac{1}{2^{n+1}} < x < \frac{1}{2^n}, \text{ n} = 0, 1, \dots \text{ then} \end{cases}$$
(a) f is integrable (b) f is not integrable
$$(c) \int_0^1 f(x) dx = \frac{2}{3} \qquad (d) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(c) \int_0^1 f(x) dx = \frac{2}{3} \qquad (d) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(d) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{2}{3} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{3}{2} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{3}{2} \qquad (e) \int_0^1 f(x) dx = \frac{3}{2}$$

$$(e) \int_0^1 f(x) dx = \frac{3}{2} \qquad (e) \int_0^1 f(x)$$

Dr.Gajendra Purohit (PhD,NET)
Referral Code GPSIR

Q.5. Define
$$f : [0, 1] \to [0, 1]$$
 by $f(x) = \frac{2^{k-1}}{2^k}$ for $x \in \begin{bmatrix} \frac{2^{k-1}-1}{2^{k-1}}, \frac{2^{k-1}}{2^k} \end{bmatrix}$, $k \ge 1$. Then f is a Riemann integrable function such that

CSIR NET

DEC 2011

(a) $\int_0^1 f(x) dx = \frac{2}{3}$ (b) $\frac{1}{2} < \int_0^1 f(x) dx < \frac{2}{3}$

(c) $\int_0^1 f(x) dx = 1$ (d) $\frac{2}{3} < \int_0^1 f(x) dx < 1$

$$= \frac{1}{2} \left(\frac{1}{1-1} \right) + \frac{1}{2} \left(\frac{1}{1-1} \right)$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.6. Let f(x) be real valued function defined by

$$f(x) = \begin{cases} 0 & x = 0 \\ \frac{1}{n} \left(\frac{1}{n+1} < x \le \frac{1}{n} \right) & \text{for } n \in \mathbb{N} \end{cases}$$

which of the following is true &

D.U. 2020

- (a) f is monotonically decreasing function on [0,1] and $f \notin R[0,1]$
- (b) f is monotonically decreasing function on [0,1] and $f \in \mathbb{R}[0,1]$
- (a) f is monotonically increasing function on [0,1] and $f \in \mathbb{R}[0,1]$
- (a) f is discontinuous at infinitely many points in on [0,1] and $f \in R[0,1]$

Q.7. Let = $\int_0^\infty \frac{1}{1+t^2} dt$. which of the following are true? CSIR NET JUNE 2018

$$(a)\frac{d\alpha}{dt} = \frac{1}{1+t^2}$$

(b) α is a rational number

(c)
$$\log(\alpha) = 1$$

(d)
$$\sin(\alpha) = 1$$

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR