Miara i calka

speedrun przed terminem 0

by a MEEEE

21.03.2137

ROZDZIAŁ 2

Funkcja Σ -mierzalna f : X $ightarrow \mathbb{R}$ to funkcja, która dla każdego f⁻¹[B] $\in \Sigma$ spełnia B \in Bor(\mathbb{R}), równoważnie jeżeli $\mathscr{G}\subseteq \mathsf{Bor}(\mathbb{R})$ takie, że $\sigma(\mathscr{G})=\mathsf{Bor}(\mathbb{R})$, to wystarczy dla każdego $G \in \mathscr{G}$ $f^{-1}[G] \in \Sigma$.

Każdy z poniższych pociąga mierzalność:

 $\{x : f(x) < t\} \in \Sigma$ $\{x : f(x) \leq t\} \in \Sigma$ $\{x : f(x) > t\} \in \Sigma$ $\{x : f(x) \geq t\} \in \Sigma$

Jeżeli funkcja f : X $ightarrow \mathbb{R}$ jest Σ -mierzalna, a g : $\mathbb{R}
ightarrow \mathbb{R}$ jest ciągła, to g o f : X $ightarrow \mathbb{R}$ jest Σ -mierzalna.

Granica punktowa zbieżnego ciągu funkcji mierzalnych jest mierzalna.

Każdą Σ -mierzalna funkcję $f:X\to\mathbb{R}$ można zapisać w postaci $f^+ - f^-$, różnicy funkcji mierzalnych i nieujemnych.

Funkcja prosta to funkcja o skończonym zbiorze wartości, czyli kombinacja liniowa skończenie wielu funkcji charakterystycznych

Ciąg funkcji mierzalnych jest zbieżny prawie wszędzie, jeżeli $\lim_{n} f_n(x) = f(x)$ poza zbiorem miary zero.

Dla każdej λ -mierzalnej funkcji f istnieje borelowska funkcja g taka, że f = g λ -prawie wszędzie.

Jeżeli $f_n \rightarrow f$ prawie wszędzie, to dla każdego ε > 0 istnieje $A \in \Sigma$ o $\mu(A) < \varepsilon$ i f_n jest jednostajnie zbieżny do j na zbiorze A^c.

Ciąg funkcji mierzalnych jest niemal jednostajnie zbieżny, jeżeli dla każdego ε > 0 ciąg f_n zbiega jednostajnie na dopełnieniu pewnego zbioru miary $< \varepsilon$.

Mówimy, że ciąg jest zbieżny według miary, jeżeli dla każdego ε lim_n $\mu(\{x : |f_n(x) - f(x)| \ge \varepsilon\}) = 0$.

- miary.
- zbieżny według miary.

Twierdzenie Riesza: jeżeli ciąg funkcji spełnia warunek Cauchy'ego według miary, czyli dla dowolnego ε > 0

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f_m(x)| \ge \varepsilon\}) = 0$$

to f_n jest zbieżny według miary do pewnego f oraz istnieje podciąg liczb naturalnych n(k) taki, że f_{n(k)} jest zbieżny prawie wszędzie oraz według miary.

ROZDZIAŁ 3

Całkę po funkcji prostej f = $\sum a_i \chi_{A_i}$ definiujemy jako

$$\int_{X} f d\mu = \sum a_{i} \mu(A_{i})$$

Dla nieujemnej mierzalnej funkcji f definiujemy

$$\int_{\mathsf{X}}\mathsf{fd}\mu=\sup\{\int_{\mathsf{X}}\mathsf{sd}\mu\ :\ 0\leq\mathsf{s}\leq\mathsf{f}\},$$

czyli jeżeli $s_1 \leq s_2 \leq ...$ jest ciągiem funkcji prostych takich, że $\lim_{n} s_n = f$ prawie wszędzie, to

$$\int_{\mathbf{x}} \mathbf{f} d\mu = \lim_{\mathbf{x}} \int_{\mathbf{x}} \mathbf{s}_{n} d\mu.$$

Funkcja mierzalna jest całkowalna, jeżeli $\int_X |f| d\mu < \infty$, wtedy definiujemy całkę wzorem $\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$ dla $f = f^{x} - f^{-}$ nieujemnych.

Dla f, g całkowalnych i h mierzalnej:

$$\hookrightarrow \int_X (af + gb) d\mu = a \int_X f d\mu + b \int_X g d\mu$$

 $\hookrightarrow h = 0$ prawie wszędzie, to $\int_X h d\mu = 0$

$$\Leftrightarrow$$
 h = 0 prawie wszędzie, to $\int_X h d\mu = 0$

$$\hookrightarrow$$
 f \leq g prawie wszędzie, to $\int_X f d\mu \leq \int_X g d\mu$

$$\hookrightarrow$$
 dla A,B $\in \Sigma$ jeżeli A \cap B = \emptyset , to $\int_{\mathsf{A}\cup\mathsf{B}}\mathsf{fd}\mu$ = $\int_{\mathsf{A}}\mathsf{fd}\mu+\int_{\mathsf{B}}\mathsf{fd}\mu$

Twierdzenie o zbieżności monotonicznej: niech f_n będzie ciągiem nieujemnych funkcji mierzalnych takich, że $f_1 \leq f_2 \leq ...$ zbieżnych prawie wszędzie do $f = \lim_n f_n$

$$\int_{X} f d\mu = \lim_{n} \int_{X} f_{n} d\mu$$

Lemat Fatou: dla dowolnego ciągu funkcji nieujemnych f_n zachodzi

$$\int_{X} \lim\inf f_n d\mu = \lim\inf \int_{X} f_n d\mu$$

Twierdzenie Lesbegue'a o zbieżności ograniczonej: niech f_n , g będą mierzalne, że dla każdego n $|f_n| \leq g$ zachodzi prawie wszędzie przy czym $\int_X g d\mu < \infty$. Jeżeli $f = \lim_n f_n$ prawie wszędzie, to

$$\lim_{n} \int_{X} |f_{n} - f| d\mu = 0$$

$$\lim_{\mathsf{n}} \int_{\mathsf{X}} \mathsf{f} \mathsf{d} \mu = \lim_{\mathsf{X}} \int_{\mathsf{X}} \mathsf{f}_{\mathsf{n}} \mathsf{d} \mu$$

Jeżeli teraz $\mu(X) < \infty$ oraz f_n są wspólnie ograniczone i $\int_X \lim_n f_n d\mu = \lim_n \int_X f_n d\mu$.

Jeżeli f jest mierzalna i nieujemna, to funkcja $\nu:\Sigma\to [0,\infty]$

$$\nu(A) = \int_{A} f d\mu$$

jest miarą na Σ .

.....

Jeżeli $f:[a,b]\to\mathbb{R}$ jest całkowalna w sensie Riemanna, to jest λ -mierzalna i obie całki są sobie równe: $\int_a^b f(x) dx = \int_{[a,b]} f d\lambda$.

ROZDZIAŁ 4

Niech (X, Σ) i (Y, Θ) będą przestrzeniami z Σ , Θ będącymi σ -ciałami. W X \times Y możemy zdefiniować następujące σ -ciało:

$$\Sigma \otimes \Theta = \sigma(\{A \times B : A \in \Sigma, B \in \Theta\}),$$

wtedy $\Sigma \otimes \Theta$ jest produktem σ -ciał Σ i Θ .

Zbiór $F \subseteq X \times Y$ należy do ciała prostokątów na Σ, Θ wtw $F = \bigcup A_i \times B_i$ dla $A_i \in \Sigma$ i $B_i \in \Theta$.

Jeżeli $E \in \Sigma \otimes \Theta$, to dla każdego $x \in X$ i $y \in Y$ definiujemy cięcia pionowe i poziome $E_X = \{z \in Y : (x,z) \in E\}$ i $E^y = \{z \in Z : (z,y) \in E\}$.

Jeżeli E $\in \Sigma \otimes \Theta$, a funkcja f : X \times Y $\to \mathbb{R}$ jest $\Sigma \otimes \Theta$ -mierzalna, to funkcja f_x jest θ -mierzalna, a f^y jest Σ -mierzalna.

$$\mathsf{Bor}(\mathbb{R}) \otimes \mathsf{Bor}(\mathbb{R}) = \mathsf{Bor}(\mathbb{R} \times \mathbb{R})$$

Miarę na produkcie przestrzeni (X, Σ , μ) i (Y, Θ , ν) definiujemy:

$$\mu \otimes \nu(A \times B) = \mu(A) \cdot \mu(B)$$

Funkcja definiowana na σ -ciele prostokątów podzbiorów X \times Y postaci A \times B = F określona wzorem

$$\kappa(F) = \int_{X} \nu(F_X) d\mu(x)$$

jest przeliczalnie addytywna i $\kappa(A \times B) = \mu(A) \cdot \nu(B)$ dla wszystkich $A \in \Sigma$ i $B \in \Theta$.