PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-353144

(43) Date of publication of application: 06.12.2002

(51)Int.CI.

H01L 21/205 H01L 27/15 H01L 29/201 H01L 33/00 H01S 5/323

(21)Application number: 2001-153583

(71)Applicant: RICOH CO LTD

(22)Date of filing:

23.05.2001

(72)Inventor: IWATA HIROKAZU

(54) p-TYPE III NITRIDE SEMICONDUCTOR. ITS PRODUCING METHOD AND SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a low resistance p-type III nitride semiconductor, and its producing method, in which a mother crystal can be doped efficiently and heavily with three atom complex dopant.

SOLUTION: A low temperature GaN buffer layer 11 and a p-type GaN layer 12 are formed sequentially on a sapphire substrate 10. The ptype GaN layer 12 is doped with p-type impurities, i.e., Mg (magnesium) and O (oxygen), by about 1×1020 cm-3 and 3×1019 cm-3, respectively.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

		•	\$, ,
•			

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

		•	
		•	

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-353144 (P2002-353144A)

(43)公開日 平成14年12月6日(2002.12.6)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
H01L 21/205 27/15			H01L 21/20	5	5 F 0 4 1
			27/15	:	Z 5F045
	29/201		29/20	1	5 F O 7 3
	33/00		33/00	(C
H01S	5/323	6 1 0	H01S 5/32	3 610	
		審查請求 未記	請求 請求項の数8	OL (全 13 頁)	
(21)出願番号	特願2001-153583(P2001-153583)	(71)出願人 000	0006747		
			株式	式会社リコー	
(22)出顧日	平成13年5月23日(2001.5.23)	東東	京都大田区中馬込17	「目3番6号	
		(72)発明者 岩E	田 浩和		
			東	京都大田区中馬込17	「目3番6号 株式
		会社	吐リコー内		
		(74)代理人 100	0090240		
		弁理	理士 植本 雅治		
				•	
					最終頁に続く

(54)【発明の名称】 p型 I I I 族窒化物半導体およびその作製方法および半導体装置

(57)【要約】

【課題】 効率よく高濃度に3原子複合体ドーパントを 母体結晶中にドーピングできる低抵抗のp型III族窒化 物半導体およびその作製方法を提供する。

【解決手段】 サファイア基板10上に、低温GaNバッファー層11、p型GaN層12が順次に形成されている。ここで、p型GaN層12は、p型不純物のMg(マグネシウム)とO(酸素)が、それぞれ、Mgは 1×10^{20} c m⁻³程度、O(酸素)は 3×10^{19} c m⁻³程度ドーピングされている。

【特許請求の範囲】

【請求項1】 アクセプター性不純物とドナー性不純物の複合体を含むp型III族窒化物半導体の作製方法において、アクセプター性不純物元素とドナー性不純物元素との結合を有する化合物をドーパント原料に使用してp型III族窒化物半導体を作製することを特徴とするp型II族窒化物半導体の作製方法。

【請求項2】 請求項1記載のp型III族窒化物半導体の作製方法において、アクセプター性不純物元素とドナー性不純物元素の結合を有する化合物ドーパントの他に、アクセプター性不純物原料を同時にドーピングしてp型III族窒化物半導体を作製することを特徴とするp型III族窒化物半導体の作製方法。

【請求項3】 請求項1または請求項2記載のp型III 族窒化物半導体の作製方法で作製されたことを特徴とす るp型III族窒化物半導体。

【請求項4】 請求項3記載のp型III族窒化物半導体 を含む半導体積層構造を有していることを特徴とする半 導体装置。

【請求項5】 請求項4記載の半導体装置において、前記p型III族窒化物半導体にオーミック電極が形成されていることを特徴とする半導体装置。

【請求項6】 請求項4または請求項5記載の半導体装置において、該半導体装置は、p型半導体とn型半導体とに挟まれた発光領域を有する発光素子であることを特徴とする半導体装置。

【請求項7】 請求項6記載の半導体装置において、前記発光素子は半導体レーザーであることを特徴とする半導体装置。

【請求項8】 請求項7記載の半導体装置において、前 記半導体レーザーを構成するp型III族窒化物半導体層 の全ての層が請求項3記載のp型III族窒化物半導体で 形成されていることを特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、DVDやCD等の 光ピックアップ用光源,電子写真用の書き込み光源,光 通信用光源,ディスプレイパネル,照明器具,紫外線セ ンサー,高温動作トランジスター等に利用されるp型II I族窒化物半導体およびその作製方法および半導体装置 に関する。

[0002]

【従来の技術】近年、GaNで代表されるIII族窒化物 半導体を利用した高輝度青色LEDや30mW程度の出 力で発振する紫色LDが実用化されている。また、紫外 線センサー、高温動作トランジスター等も開発されてい る。さらに、これらの半導体素子を利用して、フルカラ ーディスプレイ、白色光源、信号機、照明器具、光記録 メディアの書き込み/読み取り装置、レーザー顕微鏡等 が開発されている。これらのIII族窒化物半導体を利用 した半導体装置の実用化には、p型III族窒化物半導体の作製技術が重要な基本技術となっている。

【0003】例えば、高い電流密度を必要とする発光素 子等の半導体装置に使用されるp型III族窒化物半導体 には高いキャリア濃度が要求される。しかしながら、バ ンドギャップの広いIII族窒化物半導体は、キャリア濃 度の高いp型のものは得られない。例えば、半導体レー ザーのクラッド層に使用されるAIGaNでは、キャリ ア濃度が1018 c m-3を超えるものを作製することは困 難である。この原因は、III族窒化物半導体のアクセプ ター準位が深いことにある。AIGaNではそのバンド ギャップが大きくなればなるほどアクセプター準位が深 くなるため、室温でのアクセプターの活性化率が小さく なる。例えばA1を含まないGaNであっても、室温で のアクセプターの活性化率は1%以下である。従って、 10²⁰ c m⁻³程度のアクセプター性不純物をGaNにド ーピングしてもキャリア濃度は10¹⁸ c m⁻³程度にしか ならない。アクセプター準位がGaNよりも深いA1G aNでは、さらに活性化率は小さくなるので、キャリア 濃度もさらに小さくなる。キャリア濃度を増加するため に、アクセプター性不純物のドーピング量を増加して も、ドーピング量が1 O20 c m-3 を超えるとアクセプタ 一性不純物は格子間位置に入り、ドナーとして働く。そ のためキャリア濃度は逆に減少してしまう。従って、ド ーピング量を増加してもキャリア濃度には上限が有る。 例えばGaNで10¹⁸cm⁻³程度である。

【0004】これを解決する方法として、特開平10-101496号(以下、従来技術1という)には、MgとSiを2:1、あるいは、MgとOを2:1、あるいは、BeとSiを2:1、あるいは、BeとOを2:1の比率で、GaNに10¹⁸cm⁻³~10²⁰cm⁻³程度同時ドーピングすることにより、キャリア濃度を増加させる方法が示されている。この方法では、母体結晶(この場合は、GaN)中にアクセプター性不純物2原子とドナー性不純物1原子からなる複合体が形成されることで、不純物準位(アクセプター準位)が浅くなるとともに、アクセプター性不純物の固容限が上昇するため、高キャリア濃度のp型GaNが作製できる。

【0005】また、特開平10-144960号(以下、従来技術2という)には、SiとMgを1/10以上1/1以下のSi/Mg比でドーピングすることで、従来技術1と同様の効果が得られることが示されている。また、特開平10-154829号(以下、従来技術3という)には、OとMgを1/10以上1/1以下のO/Mg比でドーピングすることで、従来技術1と同様の効果が得られることが示されている。また、特開2000-294880号(以下、従来技術4という)には、OとZnを1/5以上1/2以下のO/Zn比でドーピングすることで、従来技術1と同様の効果が得られることが示されている。

[0006]

【発明が解決しようとする課題】前述したように、キャリア濃度の高い低抵抗のp型III族窒化物半導体を作製することは難しい。そのため、p型III族窒化物半導体を使用した半導体装置の動作電圧は高く、消費電力の増加の原因となっている。また、半導体レーザーの場合には、p型クラッド層の抵抗やp側オーミック電極の接触抵抗が高いことは、高出力動作時の動作電圧を増大させるため、発熱を招き、寿命を短くする。

【0007】従来技術1~従来技術4に示されているアクセプター2原子とドナー1原子の複合体を母体結晶に形成し、低抵抗のp型半導体を作製する方法では、母体結晶の結晶成長中にアクセプター性不純物とドナー性不純物をそれぞれ別々のドーパント原料ガスとして供給するものであるため、成長母体結晶中にドーパントが取り込まれる際に複合体が形成される確率が低く、多くは単独のドーパントとしてもしくは2原子複合体として母体結晶中に取り込まれてしまう。そして、アクセプター性不純物であるMg原子あるいはZn原子が深い準位を形成してしまい、これらのドーパントが目的の複合体ドーパントの機能を妨げるので、キャリア濃度の高いp型II I族窒化物半導体を容易に結晶成長することは困難であった。

【0008】本発明は、上述した従来技術の問題点を解決するものであって、効率よく高濃度に3原子複合体ドーパントを母体結晶中にドーピングできる低抵抗のp型III族窒化物半導体およびその作製方法および半導体装置を提供することを目的としている。

[0009]

【課題を解決するための手段】上記目的を達成するために、請求項1記載の発明は、アクセプター性不純物とドナー性不純物の複合体を含むp型III族窒化物半導体の作製方法において、アクセプター性不純物元素とドナー性不純物元素との結合を有する化合物をドーパント原料に使用してp型III族窒化物半導体を作製することを特徴としている。

【0010】また請求項2記載の発明は、請求項1記載のp型III族窒化物半導体の作製方法において、アクセプター性不純物元素とドナー性不純物元素の結合を有する化合物ドーパントの他に、アクセプター性不純物原料を同時にドーピングしてp型III族窒化物半導体を作製することを特徴としている。

【0011】また請求項3記載の発明は、請求項1または請求項2記載のp型III族窒化物半導体の作製方法で作製されたp型III族窒化物半導体である。

【0012】また請求項4記載の発明は、請求項3記載のp型III族窒化物半導体を含む半導体積層構造を有している半導体装置である。

【0013】また請求項5記載の発明は、請求項4記載の半導体装置において、前記p型III族窒化物半導体に

オーミック電極が形成されていることを特徴としてい る。

【0014】また請求項6記載の発明は、請求項4また は請求項5記載の半導体装置において、該半導体装置 は、p型半導体とn型半導体とに挟まれた発光領域を有 する発光素子であることを特徴としている。

【0015】また請求項7記載の発明は、請求項6記載の半導体装置において、前記発光素子は半導体レーザーであることを特徴としている。

【0016】また請求項8記載の発明は、請求項7記載の半導体装置において、前記半導体レーザーを構成するp型III族窒化物半導体層の全ての層が請求項3記載のp型III族窒化物半導体で形成されていることを特徴としている。

[0017]

【発明の実施の形態】以下、本発明の実施形態を図面に 基づいて説明する。

【0018】第1の実施形態

本発明の第1の実施形態は、アクセプター性不純物とドナー性不純物の複合体を含むp型III族窒化物半導体の作製方法において、アクセプター性不純物元素とドナー性不純物元素との結合を有する化合物をドーパント原料に使用してp型III族窒化物半導体を作製することを特徴としている。

【0019】ここで、III族窒化物半導体とは、GaN,A1N,InN,BNの2元化合物や、これら2元化合物の混晶である3元系、4元系、5元系混晶半導体を意味するものである。

【0020】また、アクセプター性不純物元素とドナー性不純物元素との結合を有する化合物とは、化合物の構成元素にアクセプター性不純物元素とドナー性不純物元素を含み、アクセプター性不純物元素とドナー性不純物元素との結合が一対以上ある化合物である。

【0021】具体的には、アクセプター性不純物元素とドナー性不純物元素との結合を有する化合物とは、III 族窒化物結晶中でIII族原子と置換して格子位置に入りアクセプターになるMg,Zn,Cd,Be,その他のアクセプターになり得る元素と、窒素原子と置換して格子位置に入りドナーになる〇(酸素),Se,S,Te,その他のドナーになり得る元素とを構成元素に含み、例えば、Mgと〇、MgとSe、Znと〇、ZnとSe等の結合を有する化合物である。

【0022】例えば、ZnあるいはMgとO(酸素)との結合を有する化合物では、Mg($C_5H_7O_2$)。(ビスアセチルアセトナートマグネシウム)、Mg($C_{11}H_{19}O_2$)。(ビスジピバロイルメタナートマグネシウム)、Zn($C_5H_7O_2$)。(ビスアセチルアセトナートジンク)、Zn($C_{11}H_{19}O_2$)。(ビスジピバロイルメタナートジンク)等のアセチルアセトンやジピロイルメタンの β ージケトン化合物がある。

【0023】この第1の実施形態の作製方法では、G a, Al, In, BなどのIII族元素原料と窒素原料と 前記ドーパント原料(アクセプター性不純物元素とドナ 一性不純物元素との結合を有する化合物)とを、加熱し た基板表面に輸送して、基板上にIII族窒化物半導体を 結晶成長し、p型III族窒化物半導体を作製することが できる。ここで、アクセプター性不純物は10¹⁹ c m⁻³ ~10²⁰ c m⁻³程度、ドナー性不純物は、アクセプター 性不純物の量の1/10~1/2程度の量をドーピング する。なお、結晶成長法に関しては特に限定されるもの ではない。また、III族原料や窒素原料も特に限定され るものではない。例えば、MOCVD法では、III族原 料として、TMGa, DEGa, TMAI, TMIn, TEBを使用することができ、窒素原料として、NH3 を使用できる。

【0024】この第1の実施形態によれば、アクセプタ ー性不純物元素とドナー性不純物元素とが結合している 化合物をドーパント原料に使用するので、ドーパント原 料中のドナー性不純物元素の一部がアクセプター性不純 物元素と結合した状態で、III族窒化物母体結晶中に取 り込まれる。そして、アクセプターとドナーとの対を形 成し、静電エネルギーが安定化する。安定化したIII族 窒化物結晶に新たにアクセプター性不純物 (II族原子) が1原子付け加えられると、安定にIII族原子位置を置 換し、高濃度のアクセプター性不純物(II族原子)がド ーピング可能になるとともに、アクセプター2原子とド ナー1原子の3原子複合体が形成される。その結果、ア クセプター準位が浅くなり、低抵抗のp型III族窒化物 半導体結晶が作製できる。

【0025】従来では、アクセプター性不純物とドナー 性不純物とをそれぞれ別々のドーパント材料としてドー ピングしていたので、3原子複合体が形成されにくかっ たが、本発明では、効率よく高濃度に3原子複合体ドー パントが母体結晶中にドーピングされるので、従来より も低抵抗のp型III族窒化物半導体結晶が作製できる。

【0026】第2の実施形態

また、本発明の第2の実施形態は、上述した本発明の第 1の実施形態のp型III族窒化物半導体の作製方法にお いて、アクセプター性不純物元素とドナー性不純物元素 の結合を有する化合物ドーパントの他に、アクセプター 性不純物原料を同時にドーピングすることを特徴として いる。

【0027】この第2の実施形態の作製方法では、結晶 成長時に、III族原料と窒素原料とアクセプター性不純 物元素とドナー性不純物元素との結合を有する化合物ド ーパント原料と同時に、MgやZn等のアクセプター性 不純物のドーパント原料を、加熱した基板表面に輸送し て、基板上にIII族窒化物半導体を結晶成長し、p型III 族窒化物半導体を作製することができる。ここで、アク セプター性不純物は10¹⁹ c m⁻³~10²⁰ c m⁻³程度、

ドナー性不純物は、アクセプター性不純物の量の1/1 0~1/2程度の量をドーピングする。なお、MgやZ n等のアクセプター性不純物のドーパント原料は、特に 限定されるものではない。例えば、MOCVD法では、 Cp₂Mgや(EtCp)₂Mg, DEZnが使用でき

【0028】この第2の実施形態によれば、アクセプタ 一性不純物元素とドナー性不純物元素の結合を有する化 合物ドーパントの他に、アクセプター性不純物のドーパ ント原料を同時にドーピングするので、アクセプター性 不純物とドナー性不純物のドーピング濃度と量比を精度 良く制御することがでる。その結果、より一層効率よく 高濃度に3原子複合体ドーパントを母体結晶中に形成で きるようになり、低抵抗のp型III族窒化物半導体結晶 を作製することができる。

【0029】上述した第1または第2の実施形態の作製 方法で作製されたp型III族窒化物半導体は、III族窒化 物半導体母体結晶中に、10¹⁹cm⁻³~10²⁰cm⁻³程 度のアクセプター性不純物と、アクセプター性不純物の 1/10~1/2程度の量のドナー性不純物とがドーピ ングされており、アクセプター2原子とドナー1原子と が結合した複合体が形成されている。なお、このように 作製されたp型III族窒化物半導体結晶は、単結晶であ っても多結晶であっても良く、特に限定されるものでは ない。

【0030】このように第1または第2の実施形態のp 型III族窒化物半導体の作製方法で作製されたp型III族 窒化物半導体は、高濃度に3原子複合体ドーパントが母 体結晶中にドーピングされており、従来よりも低抵抗の p型III族窒化物半導体となる。

【0031】また、上述した第1または第2の実施形態 の作製方法で作製されたp型III族窒化物半導体を含む 半導体積層構造を有している半導体装置を構成すること ができる。上述した第1または第2の実施形態の作製方 法で作製されたp型III族窒化物半導体は、半導体装置 を構成する半導体積層構造のどの部分にあっても良く、 特に限定されるものではない。また、積層構造は、単結 晶であっても多結晶であっても良く、特に限定されるも のではない。また、このような半導体装置は、上述した 第1または第2の実施形態の作製方法で作製されたp型 III族窒化物半導体の特性を用いて機能するものであれ ば、発光素子, 受光素子, 電子デバイス等、その形態は 限定されるものではない。

【0032】この半導体装置は、従来高い素子抵抗の原 因の1つであったp型III族窒化物半導体層に抵抗の低 いp型III族窒化物半導体(上述した第1または第2の 実施形態の作製方法で作製されたp型III族窒化物半導 体)を使用しているので、従来のIII族窒化物半導体装 置よりも素子抵抗が低く、従って、従来よりも動作電圧 を低くすることができる。

【0033】また、上記半導体装置において、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体にオーミック電極を形成することができる。このような半導体装置は、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体にp側オーミック電極が形成され、電流を注入することにより機能するものであれば、発光素子、受光素子、電子デバイス等、その形態は限定するものではない。また、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体は、積層構造の最表面である必要はなく、例えば最下層であっても良い。また、積層構造は、単結晶であっても多結晶であっても良く、特に限定されるものではない。

【0034】この半導体装置では、キャリア濃度の高いp型III族窒化物半導体(上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体)にオーミック電極が形成されているので、p側オーミック電極の接触抵抗率が従来のものよりも低い。従って、III族窒化物半導体を利用した装置の動作電圧が高いことの原因の1つであったp側オーミック電極の接触抵抗を低くすることができ、従来のものよりも動作電圧が低い半導体装置を提供できる。

【0035】また、上述した半導体装置は、p型半導体とn型半導体とに挟まれた発光領域を有する発光素子の形態をとることができる。すなわち、この発光素子は、p型の半導体層とn型の半導体層が積層された積層構造からなり、p型半導体の一部あるいは全部が、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体層となっている。そして、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体にオーミック電極を形成することができる。

【0036】このような発光素子において、発光部は、 n型半導体とp型半導体とに挟まれた領域にある。この 発光部は、電流が注入されキャリアの再結合によって発 光する構造であれば、ホモ接合(p-n接合),シング ルヘテロ接合,ダブルヘテロ接合,量子井戸構造,多重 量子井戸構造、その他どのような構造であっても差し支 えない。また、この発光素子は、p型半導体とn型半導 体から発光領域に電流が注入されキャリアの再結合によって発光するものであれば、その形態は特に限定される ものではない。すなわち、発光素子としては、発光ダイオード、半導体レーザー、スーパールミネッセントダイオード等の形態をとることができる。また、積層構造 も、単結晶、多結晶いずれの構造であっても良い。

【0037】具体的に、上記発光素子が半導体レーザーである場合、半導体レーザーの構造は特に限定されるものではない。すなわち、p型III族窒化物半導体の積層構造を有する半導体レーザーであって、活性層にキャリアが注入され、レーザー光が外部に取り出されるもので

あればよく、端面発光型、面発光型のどちらの構造であっても良い。

【0038】このような発光素子においては、p型III 族窒化物半導体層に抵抗の低いp型III 族窒化物半導体 (上述した第1または第2の実施形態の作製方法で作製されたp型III 族窒化物半導体)を使用しているので、素子抵抗が従来のものよりも低く、従って、動作電圧が従来のものよりも低い。また、素子抵抗が低いので、大電流動作時においても発熱が少なく、発熱による欠陥の発生や増殖が抑制され、素子の劣化が少ない。そのため、高出力動作が可能である。従って、従来のIII 族窒化物半導体発光素子よりも動作電圧が低く、高出力,長寿命,高信頼性の発光素子を提供できる。

【0039】また、上記発光素子が半導体レーザーであ る場合、半導体レーザーを構成する半導体積層構造のp 型III族窒化物半導体層のうちのいずれかに、上述した 第1または第2の実施形態の作製方法で作製されたp型 HI族窒化物半導体層を使用することで、素子抵抗を低 くすることができる。また、上述した第1または第2の 実施形態の作製方法で作製されたp型III族窒化物半導 体層にp側オーミック電極を形成した場合には、オーミ ック電極の接触抵抗を低くすることができる。従って、 本発明の半導体レーザーでは、動作電圧を従来のものよ りも低くすることができる。また、素子抵抗が低いの で、大電流動作時においても発熱が少なく、発熱による 欠陥の発生や増殖が抑制され、レーザー素子の劣化が少 ない。そのため、高出力動作が可能である。従って、従 来のIII族窒化物半導体レーザーよりも動作電圧が低 く、高出力、長寿命、高信頼性の半導体レーザーを提供 できる。

【0040】また、上記半導体レーザーにおいて、半導体レーザーを構成するp型III族窒化物半導体層の全ての層を、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体にすることができる。すなわち、半導体レーザーを構成する全てのp型III族窒化物半導体を、上述した第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体にすることができる。

【0041】半導体レーザーを構成する全てのp型III 族窒化物半導体層を上述した第1または第2の実施形態の作製方法で作製された低抵抗のp型III族窒化物半導体にする場合には、素子半導体層部分の抵抗とp側オーミック電極の接触抵抗が低い。すなわち素子抵抗が低い。従って、この半導体レーザーでは、動作電圧をより一層低くすることができる。また、素子抵抗が低いので、大電流動作時においても発熱が少なく、発熱による欠陥の発生や増殖が抑制され、レーザー素子の劣化が少ない。そのため、高出力動作が可能である。従って、従来のIII族窒化物半導体レーザーよりも動作電圧が低く、高出力、長寿命、高信頼性の半導体レーザーを提供

できる。

[0042]

【実施例】以下、本発明の実施例について説明する。 【0043】実施例1

実施例1では、第1の実施形態の作製方法でp型III族 窒化物半導体を作製した。なお、作製したp型III族窒 化物半導体はp型GaNである。

【0044】図1は作製された実施例1のp型III族窒化物半導体(p型GaN層)を示す図である。図1を参照すると、サファイア基板10上に、低温GaNバッファー層11、p型GaN層12が順次に形成されている。ここで、p型GaN層12は、p型不純物のMg(マグネシウム)とO(酸素)が、それぞれ、Mgは1×10 20 c m $^{-3}$ 程度、O(酸素)は3×10 19 c m $^{-3}$ 程度ドーピングされている。

【0045】次に、実施例1のp型III族窒化物半導体(p型GaN層12)の作製方法を説明する。実施例1のp型GaN層12は、MOCVD法で結晶成長して作製することができる。このとき、ドーパント原料として、 $Mg(C_5H_7O_2)_2$ (ビスアセチルアセトナートマグネシウム)を使用することができる。

【0046】すなわち、まず、サファイア基板10を反応管にセットし、水素ガス中、1120℃で加熱し、基板10の表面をクリーニングした。次いで、温度を520℃に下げ、成長雰囲気をNH3と窒素の混合ガス雰囲気にし、TMGを流し、低温GaNバッファー層11を堆積した。

【0048】p型GaN層12は、キャリア濃度が 2×10^{18} c m $^{-3}$ 以上で、従来のものよりも低抵抗のp型を示した。なお、Mg とO (酸素)を別々のドーパント原料でドーピングしたものは、キャリア濃度は 2×10^{17} c m $^{-3}$ であった。

【0049】実施例2

実施例2では、第2の実施形態の作製方法でp型III族 窒化物半導体を作製した。なお、作製したp型III族窒 化物半導体はp型GaNである。

【0050】図2は作製された実施例2のp型III族窒化物半導体 (p型GaN層)を示す図である。図2を参照すると、サファイア基板20上に、低温GaNバッファー層21、p型GaN層22が順次に形成されている。ここで、p型GaN層22は、p型不純物のZnとO(酸素)が、それぞれ、Znは 1×10^{20} cm $^{-3}$ 程度、O(酸素)は 2×10^{19} cm $^{-3}$ 程度ドーピングされている。

【0051】次に、実施例2のp型III族窒化物半導体 (p型GaN層22)の作製方法を説明する。実施例2 のp型GaN層22は、MOCVD法で結晶成長して作製することができる。このとき、ドーパント原料として、 $Zn(C_5H_7O_2)_2$ (ビスアセチルアセトナートジンク)とDEZnを使用することができる。

【0052】すなわち、まず、サファイア基板20を反応管にセットし、水素ガス中、1120℃で加熱し、基板20の表面をクリーニングした。次いで、温度を520℃に下げ、成長雰囲気をNH3と窒素の混合ガス雰囲気にし、TMGを流し、低温GaNバッファー層21を堆積した。

【0053】次いで、温度を1050℃に上げ、窒素をキャリアガスとして、TMG, Zn ($C_5H_7O_2$) $_2$ (ビスアセチルアセトナートジンク) EZnを供給し、p型GaN層 $_2$ 2を積層した。

【0054】p型GaN層22は、キャリア濃度が 2×10^{18} c m $^{-3}$ 以上で、従来のものよりも低抵抗のp型を示した。なお、 $Zn\left(C_5H_7O_2\right)_2$ (ビスアセチルアセトナートジンク)を使用せずに、Zn とO(酸素)を別々のドーパント原料でドーピングしたものは、キャリア濃度は 5×10^{16} c m $^{-3}$ であった。

【0055】実施例3

実施例3は、第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体を含む半導体積層構造を有している半導体装置である。具体的に、実施例3の半導体装置は、端面発光型発光ダイオードと端面受光型フォトダイオードとがモノリシックに集積化された受発光素子として構成されている。

【0056】図3,図4は実施例3の半導体装置(受発光素子)を示す図である。なお、図3は受発光素子の発光ダイオードの光出射端面に垂直な面での断面図であり、また、図4は発光ダイオードの光出射端面に平行な面での断面図である。

【0057】図3,図4の例では、発光ダイオードとフォトダイオードとは、概ね直方体の形状をしており、発光ダイオードの1つの光出射端面とフォトダイオードの受光端面とが向き合うように、空間的に分離されて形成されている。

【0058】そして、発光ダイオードとフォトダイオードとは、同一の積層構造からなってる。その積層構造は、サファイア基板30上に、 $A1N低温バッファー層31、n型<math>A1_{0.03}$ Ga $_{0.97}$ Nコンタクト層32、n型A $1_{0.07}$ Ga $_{0.93}$ Nクラッド層33、 $In_{0.17}$ Ga $_{0.83}$ N活性層34、 $p型A1_{0.07}$ Ga $_{0.93}$ Nクラッド層35、p型Ga $_{0.07}$ Ga $_{0.07}$ Ga $_{0.07}$ Ga $_{0.07}$ Ga $_{0.07}$ Ga $_{0.07}$ Ca $_$

【0059】ここで、p型Al_{0.07}Ga_{0.93}Nクラッド 層35,p型GaNコンタクト層36には、MgとO (酸素)がドーピングされている。

【0060】そして、発光ダイオードとフォトダイオードの上記積層構造は、p型GaNコンタクト層36の表

面から n型A $1_{0.03}$ G $a_{0.97}$ N 3

【0061】また、発光ダイオードとフォトダイオードの側面は、基板30に対して概ね垂直に形成されている。そして、発光ダイオードとフォトダイオードの溝を介して向き合う側面が、それぞれ、光出射端面102と受光面103になる。また、発光ダイオードのフォトダイオードと向き合う側面と反対側の端面が外部へ光を出射する光出射端面101となる。

【0062】次に、図3,図4の集積型受発光素子の作製方法を説明する。図3,図4の集積型受発光素子の積層構造は、MOCVD法で結晶成長して作製することができる。

【0063】すなわち、まず、サファイア基板30を反応管にセットし、水素ガス中、1120℃で加熱し、基板30の表面をクリーニングした。次いで、温度を520℃に下げ、成長雰囲気をNH3と窒素と水素の混合ガス雰囲気にし、TMAを流し、低温A1Nバッファー層31を堆積した。

【0064】次いで、温度を1070℃に上げ、水素をキャリアガスとして、TMG, TMA, SiH_4 を組成にあわせて供給し、 $n型Al_{0.03}Ga_{0.97}N$ コンタクト層32を3 μ mの厚さに、また、n20、100 1

【0065】次に、幅 30μ m, 長さ 50μ mの矩形パターンを長さ方向に 5μ m離して20並べたパターンをレジストで形成した。このレジストパターンをマスクとして、ドライエッチングを行い、発光ダイオードとフォトダイオードになる高さ約1. 5μ mの直方体形状を形

また、p型GaNコンタクト層36を0.2μmの厚さ

に順次積層した。

成するとともに、n型A1 $_{0.03}$ G $a_{0.97}$ Nコンタクト層32を露出させた。次いで、絶縁保護膜37となるSi O_2 を積層構造の表面に約0.5 μ mの厚さに堆積した。次いで、p側オーミック電極38を形成した。

【0066】p側オーミック電極38の形成工程は次の通りである。すなわち、まず、発光ダイオードとフォトダイオードの上部に、レジストでヌキストライプパターンを形成した後、SiO₂膜37をエッチングしてリッジ上のp型GaNコンタクト層36を露出させる。次いで、p側オーミック電極材料であるNi/Auを蒸着した。その後、ウエハーを有機溶剤に浸し、レジストを溶かしてレジスト上に蒸着された電極材をリフトオフして、発光ダイオードとフォトダイオードの上部にp側オーミック電極パターンを形成した。その後、窒素雰囲気中、600℃で熱処理し、p型GaNコンタクト層36上にp側オーミック電極38を形成した。

【0067】次いで、n側オーミック電極39と配線電 極40を形成した。n側オーミック電極39と配線電極 40の形成工程は次の通りである。すなわち、まず、n 型A 1_{0.03} G a_{0.97} Nコンタクト層32上部のSiO₂ 膜37上に、レジストで約100μm幅のヌキストライ プパターンを形成した後、SiO₂膜37をエッチング して n型A 1_{0.03}G a_{0.97}Nコンタクト層32を露出さ せる。次に、レジストを除去し、再度レジストで、配線 電極40とn側電極39のリフトオフパターンを形成す る。次いで、n側オーミック電極と配線電極材料である Ti/Alを蒸着した。その後、ウエハを有機溶剤中に 浸し、レジストを溶かしてレジスト上に蒸着された電極 材料をリフトオフし、n側オーミック電極と配線電極パ ターンを形成した。その後、窒素雰囲気で450℃で熱 処理し、n側オーミック電極39を形成した。次いで、 ダイシングを行い、集積型受発光素子をチップに分離し た。

【0068】図3,図4の集積型受発光素子は、発光ダイオードに順方向電流を注入し、フォトダイオードに逆バイアスを印加することによって動作する。すなわち、それぞれの素子のp側オーミック電極,n側オーミック電極に順方向あるいは逆方向にバイアスを印加すると、発光ダイオードは2つの光出射端面101,102から光を出射する。そして、フォトダイオードに向いた光出射端面102から出射した光がフォトダイオードの受光面103に入射し、その強度に対応した光起電力がフォトダイオードで発生し、外部に光電流として取り出される。フォトダイオードの光電流をモニターすることによって、発光ダイオードに注入する電流を調整し、光出力を制御することができる。なお、発光ダイオードに電流を注入して発光させたところ、発光のピーク波長は、約412nmであった。

【0069】実施例4

実施例4は第1または第2の実施形態の作製方法で作製

されたp型III族窒化物半導体を含む半導体積層構造を有している半導体装置である。具体的に、実施例4の半導体装置は、端面発光型発光ダイオードとして構成されている。図5は実施例4の半導体装置(端面発光型発光ダイオード)を示す図である。図5の例では、発光ダイオードは、概ね直方体の形状をしており、発光ダイオードの1つの側面200が光出射端面となっている。

【0070】図5を参照すると、実施例4の発光ダイオードは、 $n型GaN基板50上に、<math>n型A1_{0.07}Ga_{0.93}$ N低温バッファー層51、 $n型A1_{0.2}Ga_{0.8}$ Nクラッド層52、 $A1_{0.07}Ga_{0.93}$ N活性層53、 $p型A1_{0.2}Ga_{0.8}$ Nクラッド層54、p型GaNコンタクト層55が順次に積層された積層構造を有している。

【0071】ここで、p型 $Al_{0.2}Ga_{0.8}N$ クラッド層 54, p型GaN コンタクト層 55には、それぞれ、2 nとO(酸素)が同時に添加されている。

【0072】そして、発光ダイオードのp型GaNコンタクト層55上には、Ni/Auからなるp側オーミック電極56が形成されている。また、基板50の裏面の積層構造が形成されていない側には、Ti/Alからなるn側オーミック電極57が形成されている。また、発光ダイオードの側面200は基板に対して垂直に形成されている。

【0073】次に、図5の発光ダイオードの作製方法を 説明する。図5の発光ダイオードの積層構造は、MOC VD法で結晶成長して作製することができる。

【0074】すなわち、まず、n型GaN基板50を反応管にセットし、アンモニアガス中、1120℃で加熱し、基板50の表面をクリーニングした。次いで、温度を600℃に下げ、雰囲気をNH3と窒素と水素の混合ガス雰囲気にし、TMAとTMGおよびn型ドーパントガスであるSiH4ガスを流し、n型低温Al_{0.07}Ga_{0.93}Nバッファー層51を堆積した。

【0075】次いで、温度を1070℃に上げ、TM G, TMAおよびn型不純物ガスとしてSiH₄を組成 にあわせて供給し、n型A 10.2G a0.8 Nクラッド層5 2を0.3μmの厚さに、また、A1_{0.07}Ga_{0.93}N活 性層53を0.05μmの厚さに順次積層した。次い で、n型不純物原料の代わりに、Z n (C₅ H₇ O₂) ₂ と それと同時にDEZnを組成にあわせて供給し、p型A 1_{0.2}Ga_{0.8}Nクラッド層54を0.3µmの厚さに、 また、p型GaNコンタクト層55を0.2μmの厚さ に順次積層した。次いで、p側オーミック電極材料であ るNi/Auを積層構造の上面に蒸着した。その後、窒 素雰囲気中、600℃で熱処理し、p型GaNコンタク ト層55上にp側オーミック電極56を形成した。次い で、GaN基板50の裏面を研磨し、約100μmの厚 さにした。次いで、n側オーミック電極材料であるTi /A1を蒸着し、窒素雰囲気で450℃で熱処理して、 n側オーミック電極57を形成した。次いで、基板をへ き開して、出射端面200の形成と、チップ分離を行った。

【0076】図5の発光ダイオードは、p側オーミック電極56,n側オーミック電極57に順方向のバイアスを印加すると動作する。すなわち、p側オーミック電極56,n側オーミック電極57に順方向のバイアスを印加すると、発光ダイオードの1つの側面である光出射端面200から光が外部に出射される。この発光ダイオードの発光のピーク波長は、約350nmであった。【0077】実施例5

実施例5は、第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体を含む半導体積層構造を有している半導体装置である。具体的に、実施例5の半導体装置は半導体レーザーとして構成されている。

【0078】図6は実施例5の半導体装置(半導体レーザー)を示す図である。図6の例では、半導体レーザーは、サファイア基板60上に、A1GaN低温バッファー層61、n型A1_{0.03}Ga_{0.97}Nコンタクト層62、n型A1_{0.08}Ga_{0.92}Nクラッド層63、n型GaNガイド層64、In_{0.15}Ga_{0.85}N/In_{0.02}Ga_{0.98}N多重量子井戸活性層(2ペア)65、p型A1_{0.2}Ga_{0.8}N層66、p型GaNガイド層67、p型A1_{0.08}Ga_{0.92}Nクラッド層68、p型GaNコンタクト層69が順次積層されて積層構造として形成されている。【0079】ここで、p型A1_{0.2}Ga_{0.8}N層66, p

TOO 791 ここで、P型A 1_{0.2}G a_{0.8}N 層 6 6, P型G a Nガイド層 6 7, p型A 1_{0.08}G a_{0.92}N クラッド層 6 8, p型G a Nコンタクト層 6 9には、MgとO(酸素)がドーピングされている。

【0080】そして、上記積層構造は、p型GaNコン タクト層69の表面からn型Alo.03Gao.97Nコンタ クト層62までエッチングされ、n型A10.03Ga0.97 Nコンタクト層62の表面が露出している。露出したn 型A 1_{0.03} G a_{0.97} N コンタクト層 6 2 上には、T i / A1からなるn側オーミック電極72が形成されてい る。また、p型GaNコンタクト層69の表面からp型 A 1_{0.08}G a_{0.92}Nクラッド層68の途中までエッチン グされ、電流狭窄リッジ構造400が形成されている。 リッジ400最表面のp型GaNコンタクト層69上 に、Ni/Auからなるp側オーミック電極71が形成 されている。また、電極形成部以外は絶縁保護膜70と してSiO₂が堆積されており、絶縁保護膜70上には p側電極71から引き出された配線電極73が形成され ている。そして、積層構造と電流狭窄リッジ構造と概ね 垂直に光共振器端面が形成されている。

【0081】次に、図6の半導体レーザーの作製方法を説明する。図6の半導体レーザーの積層構造の結晶成長はMOCVD法で行った。すなわち、まず、サファイア基板60を反応管にセットし、水素ガス中、1120℃で加熱し、基板60の表面をクリーニングした。次いで、温度を520℃に下げ、雰囲気をNH3と窒素と水

素の混合ガス雰囲気にし、TMGとTMAを流し、低温A1GaNバッファー層61を堆積した。次いで、温度を1050℃に上げ、水素をキャリアガスとして、TMG, TMI, SiH4を組成にあわせて供給し、n型A $1_{0.03}$ Ga $_{0.97}$ Nコンタクト層62を 2μ mの厚さに、また、n型A $1_{0.08}$ Ga $_{0.92}$ Nクラッド層63を0.7 μ mの厚さに、また、n型GaNガイド層64を0.1 μ mの厚さに順次積層した。次いで、水素ガスの供給を止め、雰囲気をNH3と窒素の混合ガス雰囲気にし、温度を810℃に下げ、水素をキャリアガスとしてTMG, TMIを供給し、In $_{0.15}$ Ga $_{0.85}$ N/In $_{0.02}$ Ga $_{0.98}$ N多重量子井戸活性層65(2ペア)を成長した。

【0082】次いで、成長雰囲気を NH_3 と窒素と水素の混合ガス雰囲気にし、温度を1070℃に上げ、水素をキャリアガスとして、TMG, TMA, Mg (C_5H_7 O_2) $_2$, (EtCp) $_2$ Mgを組成にあわせて供給し、p型A $1_{0.2}$ Ga $_{0.8}$ N層66を20nmの厚さに、また、p型GaNガイド層67を0.1 μ mの厚さに、また、p型A $1_{0.08}$ Ga $_{0.92}$ Nクラッド層68を0.7 μ mの厚さに、また、p型GaNコンタクト層69を0.2 μ mの厚さに順次積層した。

【0084】次いで、p側オーミック電極71を形成した。p側オーミック電極71の形成工程は次の通りである。まず、リッジ400上部に、レジストでヌキストライプパターンを形成した後、SiO₂膜70をエッチングしてリッジ400上のp型GaNコンタクト層69を露出させる。次いでレジストを除去し、再度レジストで約450μm幅のヌキストライプパターンを形成し、リッジ400上にp側オーミック電極材料であるNi/Auを蒸着した。その後、ウエハーを有機溶剤に浸し、レジストを溶かしてレジスト上に蒸着された電極材をリフトオフして、半導体レーザーの積層構造上にのみp側オーミック電極パターンを形成した。その後、窒素雰囲気中、600℃で熱処理し、p型GaNコンタクト層69上にp側オーミック電極71を形成した。

【0085】次いで、n側オーミック電極72と配線電極73を形成した。n側オーミック電極72と配線電極73の形成工程は次の通りである。すなわち、まず、n

型A10.03 Ga0.97 Nコンタクト層62上部のSiO2 膜70上に、レジストで約100μm幅のヌキストライプパターンを形成した後、SiO2膜70をエッチングしてn型A10.03 Ga0.97 Nコンタクト層62を露出させる。レジストを除去した後、再びレジストを塗布して、p側電極上とn側オーミック電極を形成する部分にリプトオフ用の電極パターンを形成する。次いで、n側オーミック電極材料と配線電極材料であるTi/A1の蒸着を行い、ウエハーを有機溶剤中に浸し、レジストを溶かしてレジスト上に蒸着された電極材料をリフトオフし、n側オーミック電極パターンと配線電極パターンを形成した。その後、窒素雰囲気中、450℃で熱処理し、n側オーミック電極72を形成した。

【0086】次いで、サファイア基板60を薄く研磨 し、リッジ400に概ね垂直になるように割り、光共振 器端面を形成した。

【0087】図6の半導体レーザーは、電極71,72 に順方向に電流を注入すると発光し、さらに電流を増加 させるとレーザー発振する。発振波長は約409nmで あった。

【0088】実施例6

実施例6は第1または第2の実施形態の作製方法で作製されたp型III族窒化物半導体を含む半導体積層構造を有している半導体装置である。具体的に、実施例6の半導体装置は半導体レーザーとして構成されている。図7は実施例6の半導体レーザーの斜視図である。また、図8は実施例6の半導体レーザーの光出射方向に垂直な面での断面図である。

【0089】図7,図8を参照すると、半導体レーザーの積層構造2000は、n型GaN基板120上に、n型A1GaN低温バッファー層121、n型 $A1_{0.03}Ga_{0.97}$ N高温バッファー層122、 $A1_{0.15}Ga_{0.85}$ N層123aとGaN層123bとの超格子からなるn型クラッド層123、n型GaNガイド層124、 $In_{0.15}Ga_{0.85}$ N/I $n_{0.02}Ga_{0.98}$ N多重量子井戸活性層125、p型 $A1_{0.2}Ga_{0.85}$ N層128aとGaNガイド層127、 $A1_{0.15}Ga_{0.85}$ N層128aとGaN 128a 128

【0090】ここで、p型A $1_{0.2}$ Ga $_{0.8}$ N層126, p型GaNガイド層127, p型クラッド層128, p型GaNコンタクト層129には、ZnとO(酸素)がドーピングされている。

【0091】そして、積層構造2000は、p型GaNコンタクト層129の表面からp型クラッド層128の途中までエッチングされ、電流狭窄リッジ構造900が形成されている。そして、リッジ900最表面のp型GaNコンタクト層129上には、Ni/Auからなるp側オーミック電極131が形成されている。また、p側

電極形成部以外は絶縁保護膜130としてSiO₂膜が 堆積されている。

【0092】そして、積層構造2000と電流狭窄リッジ構造900と概ね垂直に光共振器端面901,902が形成されている。そして、GaN基板120の裏面には、Ti/Alからなるn側オーミック電極132が形成されている。

【0093】次に、図7、図8の半導体レーザーの作製 方法を説明する。図7、図8の半導体レーザーの積層構 造2000の結晶成長はMOCVD法で行った。すなわ ち、まず、n型GaN基板120を反応管にセットし、 水素と窒素とアンモニアガスの混合ガス中、1120℃ に加熱し、基板120の表面をクリーニングした。次い で、温度を600℃に下げ、NH3と窒素と水素の混合 ガス雰囲気で、TMAとTMGおよびn型ドーパントガ スであるSiH₄ガスを流し、n型低温A1GaNバッ ファー層121を堆積した。次いで、温度を1070℃ に上げ、水素をキャリアガスとしてTMG、TMA、n 型不純物ガスとしてSiH。を組成にあわせて供給し、 n型A 1_{0.03}Ga_{0.97}N高温バッファー層122を1μ mの厚さに積層した。次いで、TMG, TMA, n型不 純物ガスとしてSiH4を組成にあわせて供給し、A1 0.15 Ga0.85 N層123aとGaN層123bとの超格 子からなるn型クラッド層123を約0.6μmの厚さ に積層した。ここで、各層の厚さは、A 10.15 G a 0.85 N層123aが7nm、GaN層123bが7nmで、 43周期成長した。

【0094】次いで、温度を1050℃に下げ、n型G aNガイド層124を0.1μmの厚さに積層した。次 いで、水素ガスの供給を止め、雰囲気をNH3と窒素の 混合ガス雰囲気にし、温度を810℃に下げ、水素をキ ャリアガスとして、TMG, TMIを供給し、In_{0.15} Ga_{0.85} N/In_{0.02} Ga_{0.98} N多重量子井戸活性層1 25 (2ペア)を成長した。次いで、成長雰囲気をNH 3と窒素と水素の混合ガス雰囲気にし、温度を1070 ℃に上げ、TMG, TMA, Zn(C₅H₇O₂)₂, DE Znを組成にあわせて供給し、p型Alo.2Gao.8N層 126を20nmの厚さに、また、p型GaNガイド層. 127を 0.1μ mの厚さに順次積層した。次いで、A 1_{0.15}Ga_{0.85}N層128aとGaN層128bとの超 格子からなる n型クラッド層128を約0.6 μmの厚 さに積層した。ここで、各層の厚さは、Alo.15 Ga _{0.85}N層128aが7nm、GaN層128bが7nm で、43周期成長した。次いで、p型GaNコンタクト 層129を0.2μmの厚さに積層した。

【0095】次いで、レジストで幅4μmのストライプパターンを繰り返しピッチ300μmで形成した。このレジストパターンをマスクとして、約0.7μmの深さをドライエッチングして、リッジ900を形成した。レジストマスクを除去した後、絶縁保護膜130となるS

i O_2 膜を積層構造の表面に約0. 5μ mの厚さに堆積した。

【0096】次いで、p側オーミック電極131を形成した。p側オーミック電極131の形成工程は次の通りである。すなわち、まず、リッジ900上部に、レジストでヌキストライプパターンを形成した後、SiO₂絶縁保護膜130をエッチングしてリッジ上のp型GaNコンタクト層129を露出させる。次いで、レジストを除去し、ウエハー表面に、p側オーミック電極材料であるNi/Auを蒸着した。その後、窒素雰囲気中、600℃で熱処理し、p型GaNコンタクト層129上にp側オーミック電極131を形成した。

【0097】次いで、基板120の裏面を研磨し、厚さを約100μmにした後、n側オーミック電極材料であるTi/A1を蒸着した。その後、窒素雰囲気で450℃で熱処理し、n側オーミック電極132を形成した。次いで、半導体レーザー構造が形成されたウエハーをリッジ900に概ね垂直になるようにへき開し、光共振器端面901,902を形成した。

【0098】この半導体レーザーは、電極131,13 2に順方向に電流を注入すると発光し、さらに電流を増加させるとレーザー発振した。発振波長は約403nmであった。

[0099]

【発明の効果】以上に説明したように、請求項1,請求項2記載の発明によれば、アクセプター性不純物とドナー性不純物の複合体を含むp型III族窒化物半導体の作製方法において、アクセプター性不純物元素とドナー性不純物元素との結合を有する化合物をドーパント原料に使用してp型III族窒化物半導体を作製するので、効率よく高濃度に3原子複合体ドーパントを母体結晶中にドーピングできるようにし、低抵抗のp型III族窒化物半導体を作製することができる。

【0100】また、請求項3記載の発明によれば、請求項1または請求項2記載のp型III族窒化物半導体の作製方法で作製されたことを特徴とするp型III族窒化物半導体であるので、高濃度に3原子複合体ドーパントが母体結晶中にドーピングされた低抵抗のp型III族窒化物半導体を提供することができる。

【0101】また、請求項4,請求項5記載の発明によれば、請求項3記載のp型III族窒化物半導体を含む半導体積層構造を有していることを特徴とする半導体装置であるので、従来のIII族窒化物半導体装置よりも動作電圧の低い半導体装置を提供することができる。

【0102】また、請求項6乃至請求項8記載の発明によれば、請求項4または請求項5記載の半導体装置において、該半導体装置は、p型半導体とn型半導体とに挟まれた発光領域を有するので、従来のIII族窒化物半導体発光素子よりも動作電圧が低く、高出力、長寿命、高信頼性の発光素子を提供することができる。

(自1))02-353144 (P2002-35PJL8

【図面の簡単な説明】

【図1】本発明の実施例1のp型III族窒化物半導体を示す図である。

【図2】本発明の実施例2のp型III族窒化物半導体を示す図である。

【図3】本発明の実施例3の半導体装置を示す図である。

【図4】本発明の実施例3の半導体装置を示す図である

【図5】本発明の実施例4の半導体装置を示す図である。

【図6】本発明の実施例5の半導体装置を示す図である。

【図7】本発明の実施例6の半導体装置を示す図である。

【図8】本発明の実施例6の半導体装置を示す図であ ス

【符号の説明】

10,	20,	60	サファイア基板
11,	21	低温G	a Nバッファー層
12,	22	p型G	aN層
31		AIN低温バ	ッファー層
32		n型Al _{0.03}	G a _{0.97} Nコンタクト層
33		n型A 1 _{0.07}	G a _{0.93} Nクラッド層
34		I n _{0.17} Ga	_{0.83} N活性層
35		p型Al _{0.07}	G a _{0.93} Nクラッド層
36,	129	, 55, 69	p型GaNコンタク
ト層			

37,70,130 絶縁保護膜

38,56,71,131p側オーミック電極37,57,72,132n側オーミック電極

40,73 配線電極

50,120 n型GaN基板

51 n型 Al_{0.07}Ga_{0.93}N低温バッファー

層

52 n型Al_{0.2}Ga_{0.8}Nクラッド層

53 Al_{0.07}Ga_{0.93}N活性層

54 p型Al_{0.2}Ga_{0.8}Nクラッド層

61 AIGaN低温バッファー層

62 n型Al_{0.03}Ga_{0.97}Nコンタクト層

63 n型Al_{0.08}Ga_{0.92}Nクラッド層

64,124 n型GaNガイド層

65, 125 I $n_{0.15}$ G $a_{0.85}$ N/I $n_{0.02}$ G

a_{0.98}N多重量子井戸活性層

66, 126 p型Al_{0.2}Ga_{0.8}N層 67, 127 p型GaNガイド層 68 p型Al_{0.08}Ga_{0.92}Nクラッド層

101,102,200 光出射端面

103 受光面

121 n型AlGaN低温バッファー層

122 n型A l_{0.03}Ga_{0.97}N高温バッファー

層

123 超格子からなる n型クラッド層

123a Al_{0.15}Ga_{0.85}N層

123b GaN層

128 超格子からなるp型クラッド層

128a Al_{0.15}Ga_{0.85}N層

128b GaN層

400,900 電流狭窄リッジ構造

901,902 光共振器端面

2000 半導体レーザーの積層構造

【図1】

【図2】

(113))02-353144 (P2002-35PJL8

【図8】

フロントページの続き

Fターム(参考) 5F041 AA08 CA04 CA14 CA34 CA49

CA53 CA54 CA57 CA65 CA84

CB03 CB11 CB32 FF01 FF13

5F045 AA04 AB09 AB14 AB17 AC08

AC09 AC11 AC12 AC19 AD12

AD14 AF04 AF05 AF09 BB16

CA11 CA12 CA13 CB01 CB02

DA53 DA63

5F073 AA11 AA45 AA74 AA77 BA01

BA04 CA07 CB03 CB16 CB22

DA05 DA24 DA30 DA32 EA23

OLASON MINER BEARD SIMT