NAIVE BAYES to predict GRADE (no pass/pass)

Bogdan Tanasa

THE SECTIONS in the RMARKDOWN DOCUMENT :

1. INTRODUCTION
2. DATA EXPLORATION
3. DATA FILTERING
4. DATA TRANSFORMATION
5. TRAINING AND TEST SETS
6. PRE-PROCESSING THE DATA
7. PERFORMING THE TRAINING
8. MAKING THE PREDICTIONS
9. THE CONFUSION MATRIX (CARET package)
10. THE RESULTS (klaR package)

1. INTRODUCTION

We are using the data from UCI: !(https://archive.ics.uci.edu/ml/datasets/Student+Performance)

We are reading a file about **STUDENTS**, and we aim to predict whether they have passed or not the exams (**PASS/no_PASS**);

In contrast to the previous version where we have used the KNN-based approach, in the document below:

- we are not showing the BAR PLOTS during DATA EXPLORATION step (we have done it already when we have presented the results after using KNN-approach)
- we are using the NAIVE BAYES algorithm instead of KNN

The attributes in the \mathbf{INPUT} \mathbf{FILE} are the following:

- 1 school student's school (binary: "GP" Gabriel Pereira or "MS" Mousinho da Silveira)
- 2 sex student's sex (binary: "F" female or "M" male)
- 3 age student's age (numeric: from 15 to 22)
- 4 address student's home address type (binary: "U" urban or "R" rural)
- 5 famsize family size (binary: "LE3" less or equal to 3 or "GT3" greater than 3)
- 6 Pstatus parent's cohabitation status (binary: "T" living together or "A" apart)
- 7 Medu mother's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
- 8 Fedu father's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
- 9 Mjob mother's job (nominal: "teacher", "health" care related, civil "services" (e.g. administrative or police), "at_home" or "other")
- 10 Fjob father's job (nominal: "teacher", "health" care related, civil "services" (e.g. administrative or police), "at home" or "other")
- 11 reason reason to choose this school (nominal: close to "home", school "reputation", "course" preference or "other")
- 12 guardian student's guardian (nominal: "mother", "father" or "other")
- 13 traveltime home to school travel time (numeric: 1 <15 min., 2 15 to 30 min., 3 30 min. to 1 hour, or 4 >1 hour)
- 14 study time - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours)
- 15 failures number of past class failures (numeric: n if $1 \le n \le 3$, else 4)
- 16 schoolsup extra educational support (binary: yes or no)
- 17 famsup family educational support (binary: yes or no)
- 18 paid extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
- 19 activities extra-curricular activities (binary: yes or no)
- 20 nursery attended nursery school (binary: yes or no)
- 21 higher wants to take higher education (binary: yes or no)
- 22 internet Internet access at home (binary: yes or no)

- 23 romantic with a romantic relationship (binary: yes or no)
- 24 famrel quality of family relationships (numeric: from 1 very bad to 5 excellent)
- 25 freetime free time after school (numeric: from 1 very low to 5 very high)
- 26 goout going out with friends (numeric: from 1 very low to 5 very high)
- 27 Dalc workday alcohol consumption (numeric: from 1 very low to 5 very high)
- 28 Walc weekend alcohol consumption (numeric: from 1 very low to 5 very high)
- 29 health current health status (numeric: from 1 very bad to 5 very good)
- 30 absences number of school absences (numeric: from 0 to 93)

2. DATA EXPLORATION

```
library(ggplot2)
library(reshape2)
library(readxl)
library(dplyr)
library(tibble)
library(class)
library(gmodels)
library(caret)
library(e1071)
library(GGally)
library(klaR)
FILE1="student.mat.txt"
# FILE2="student.por.txt"
# FILE3="student.mat.and.por.txt"
student <- read.delim(FILE1, sep="\t", header=T, stringsAsFactors=F)</pre>
summary(student)
```

```
## school sex age address
## Length:395 Length:395 Min. :15.0 Length:395
## Class :character Class :character 1st Qu.:16.0 Class :character
## Mode :character Median :17.0 Mode :character
```

```
##
                                           Mean :16.7
##
                                           3rd Qu.:18.0
##
                                           Max.
                                                  :22.0
##
      famsize
                         Pstatus
                                                Medu
                                                                Fedu
##
   Length: 395
                       Length: 395
                                          Min.
                                                  :0.000
                                                           Min.
                                                                  :0.000
##
   Class : character
                       Class : character
                                           1st Qu.:2.000
                                                           1st Qu.:2.000
##
   Mode :character
                       Mode :character
                                          Median :3.000
                                                           Median :2.000
##
                                          Mean :2.749
                                                           Mean :2.522
##
                                           3rd Qu.:4.000
                                                           3rd Qu.:3.000
                                                  :4.000
##
                                           Max.
                                                           Max.
                                                                 :4.000
##
        Mjob
                           Fjob
                                              reason
                                                                guardian
##
   Length: 395
                       Length: 395
                                           Length:395
                                                              Length:395
##
   Class : character
                       Class :character
                                           Class : character
                                                              Class : character
   Mode :character
##
                       Mode :character
                                          Mode :character
                                                              Mode :character
##
##
##
##
      traveltime
                      studytime
                                       failures
                                                       schoolsup
##
          :1.000
                          :1.000
                                          :0.0000
                                                      Length:395
   Min.
                    Min.
                                    Min.
##
   1st Qu.:1.000
                    1st Qu.:1.000
                                    1st Qu.:0.0000
                                                      Class : character
                                                      Mode :character
##
   Median :1.000
                    Median :2.000
                                    Median :0.0000
##
   Mean :1.448
                    Mean :2.035
                                    Mean
                                           :0.3342
##
   3rd Qu.:2.000
                    3rd Qu.:2.000
                                    3rd Qu.:0.0000
##
   Max.
           :4.000
                    Max.
                           :4.000
                                    Max.
                                           :3.0000
##
                           paid
       famsup
                                           activities
                                                                nursery
                       Length:395
   Length:395
                                          Length:395
                                                              Length:395
##
   Class : character
                       Class : character
                                          Class : character
                                                              Class : character
##
   Mode :character
                       Mode : character
                                          Mode :character
                                                              Mode : character
##
##
##
##
       higher
                         internet
                                             romantic
                                                                  famrel
##
   Length: 395
                       Length:395
                                           Length:395
                                                              Min.
                                                                     :1.000
                                                              1st Qu.:4.000
##
   Class :character
                       Class : character
                                           Class :character
##
   Mode :character
                       Mode :character
                                          Mode :character
                                                              Median :4.000
##
                                                              Mean
                                                                     :3.944
                                                              3rd Qu.:5.000
##
##
                                                              Max.
                                                                     :5.000
##
       freetime
                        goout
                                          Dalc
                                                          Walc
##
          :1.000
                    Min. :1.000
                                           :1.000
                                                            :1.000
   Min.
                                    Min.
                                                     Min.
   1st Qu.:3.000
                    1st Qu.:2.000
                                    1st Qu.:1.000
                                                     1st Qu.:1.000
##
   Median :3.000
                    Median :3.000
                                    Median :1.000
                                                     Median :2.000
   Mean :3.235
                    Mean :3.109
                                    Mean :1.481
                                                     Mean
                                                            :2.291
##
   3rd Qu.:4.000
                    3rd Qu.:4.000
                                     3rd Qu.:2.000
                                                     3rd Qu.:3.000
##
          :5.000
                    Max.
                           :5.000
                                           :5.000
   Max.
                                    Max.
                                                     Max.
                                                            :5.000
##
                                           G1
                                                            G2
       health
                       absences
                          : 0.000
                                           : 3.00
##
   Min.
          :1.000
                    Min.
                                     Min.
                                                      Min. : 0.00
##
   1st Qu.:3.000
                    1st Qu.: 0.000
                                     1st Qu.: 8.00
                                                      1st Qu.: 9.00
   Median :4.000
                    Median : 4.000
                                     Median :11.00
                                                      Median :11.00
                    Mean : 5.709
##
   Mean
         :3.554
                                     Mean
                                           :10.91
                                                      Mean :10.71
##
   3rd Qu.:5.000
                    3rd Qu.: 8.000
                                     3rd Qu.:13.00
                                                      3rd Qu.:13.00
##
          :5.000
                           :75.000
                                     Max.
                                           :19.00
   Max.
                    Max.
                                                      Max. :19.00
##
          G3
## Min.
         : 0.00
```

```
## 1st Qu.: 8.00
## Median :11.00
## Mean :10.42
## 3rd Qu.:14.00
## Max.
        :20.00
str(student)
## 'data.frame':
                  395 obs. of 33 variables:
  $ school : chr "GP" "GP" "GP" "GP" ...
                     "F" "F" "F" "F" ...
## $ sex
             : chr
## $ age
              : int
                     18 17 15 15 16 16 16 17 15 15 ...
## $ address : chr "U" "U" "U" "U" ...
## $ famsize : chr "GT3" "GT3" "LE3" "GT3" ...
## $ Pstatus : chr "A" "T" "T" "T" ...
   $ Medu
              : int 4 1 1 4 3 4 2 4 3 3 ...
             : int 4 1 1 2 3 3 2 4 2 4 ...
## $ Fedu
## $ Mjob
             : chr
                     "at home" "at home" "health" ...
                     "teacher" "other" "other" "services" ...
## $ Fjob
              : chr
   $ reason
              : chr "course" "course" "other" "home" ...
## $ guardian : chr "mother" "father" "mother" "mother" ...
## $ traveltime: int 2 1 1 1 1 1 2 1 1 ...
   $ studytime : int  2 2 2 3 2 2 2 2 2 2 ...
##
##
   $ failures : int 003000000...
## $ schoolsup : chr
                     "yes" "no" "yes" "no" ...
            : chr
                     "no" "yes" "no" "yes" ...
   $ famsup
                     "no" "no" "yes" "yes" ...
##
   $ paid
              : chr
   $ activities: chr "no" "no" "no" "yes" ...
##
## $ nursery : chr "yes" "no" "yes" "yes" ...
                     "yes" "yes" "yes" "yes" ...
## $ higher
             : chr
##
   $ internet : chr "no" "yes" "yes" "yes" ...
## $ romantic : chr "no" "no" "no" "yes" ...
## $ famrel : int 4543454445 ...
## $ freetime : int 3 3 3 2 3 4 4 1 2 5 ...
## $ goout
             : int 4 3 2 2 2 2 4 4 2 1 ...
## $ Dalc
             : int 1 1 2 1 1 1 1 1 1 1 ...
## $ Walc
             : int 1131221111...
## $ health : int 3 3 3 5 5 5 3 1 1 5 ...
   $ absences : int 6 4 10 2 4 10 0 6 0 0 ...
##
## $ G1
             : int 5 5 7 15 6 15 12 6 16 14 ...
##
   $ G2
              : int 6 5 8 14 10 15 12 5 18 15 ...
##
   $ G3
              : int 6 6 10 15 10 15 11 6 19 15 ...
class(student)
```

[1] "data.frame"

Here we are starting to display the data for visual exploration.

```
# ggsave("display.1.school.png")
student$school = as.factor(student$school)
# 2 sex - student's sex (binary: "F" - female or "M" - male)
# unique(student$sex)
# qqplot(data = student) +
    geom_bar(mapping = aes(x=sex , fill=sex))
# qqsave("display.2.sex.pnq")
student$sex = as.factor(student$sex)
# 3 age - student's age (numeric: from 15 to 22)
# unique(student$age)
# ggplot(data = student) +
    geom_bar(mapping = aes(x=age , fill=age))
# qqsave("display.3.aqe.pnq")
# AGE is already on the numerical scale !!
student$age = as.integer(student$age)
# 4 address - student's home address type (binary: "U" - urban or "R" - rural)
# unique(student$address) ## [1] "U" "R"
# qqplot(data = student) +
    geom_bar(mapping = aes(x=address, fill=address))
# ggsave("display.4.address.png")
student$address = as.factor(student$address)
# 5 famsize - family size (binary: "LE3" - less or equal to 3 or "GT3" - greater than 3)
# unique(student$famsize)
# qqplot(data = student) +
    geom_bar(mapping = aes(x=famsize, fill=famsize))
```

```
# ggsave("display.5.famsize.png")
student$famsize = as.factor(student$famsize)
# 6 Pstatus - parent's cohabitation status (binary: "T" - living together or "A" - apart)
# unique(student$Pstatus)
# ggplot(data = student) +
    geom_bar(mapping = aes(x=Pstatus, fill=Pstatus))
# qqsave("display.6.Pstatus.pnq")
student$Pstatus = as.factor(student$Pstatus)
# 7 Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 â€" 5th to 9th
# unique(student$Medu)
# ggplot(data = student) +
     geom_bar(mapping = aes(x=Medu, fill=Medu))
# qqsave("display.7.Medu.pnq")
# we may wanna use the numerical values in various regression models
student$Medu = as.integer(student$Medu)
# 8 Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th gr
unique(student$Fedu)
## [1] 4 1 2 3 0
# ggplot(data = student) +
    geom_bar(mapping = aes(x=Fedu, fill=Fedu))
# ggsave("display.8.Fedu.png")
# we may wanna use the numerical values in various regression models
student$Fedu = as.integer(student$Fedu)
# 9 Mjob - mother's job (nominal: "teacher", "health" care related, civil "services" (e.g. administrati
# unique(student$Mjob)
# qqplot(data = student) +
```

```
geom_bar(mapping = aes(x=Mjob, fill=Mjob))
# ggsave("display.9.Mjob.png")
student$Mjob = as.factor(student$Mjob)
# 10 Fjob - father's job (nominal: "teacher", "health" care related, civil "services" (e.g. administrat
# unique(student$Fjob)
# ggplot(data = student) +
    geom\_bar(mapping = aes(x=Fjob, fill=Fjob))
# ggsave("display.10.Fjob.png")
student$Fjob = as.factor(student$Fjob)
# 11 reason - reason to choose this school (nominal: close to "home", school "reputation", "course" pre
# unique(student$reason)
# qqplot(data = student) +
     geom_bar(mapping = aes(x=reason, fill=reason))
# ggsave("display.11.reason.png")
student$reason = as.factor(student$reason)
# 12 guardian - student's guardian (nominal: "mother", "father" or "other")
# unique(student$quardian)
# ggplot(data = student) +
     geom_bar(mapping = aes(x=guardian, fill=guardian))
# ggsave("display.12.guardian.png")
student$guardian = as.factor(student$guardian)
# 13 traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to
# unique(student$traveltime)
# ggplot(data = student) +
     geom_bar(mapping = aes(x=traveltime, fill=traveltime))
```

```
# ggsave("display.13.traveltime.png")
# we may wanna use the NUMERICAL VALUES :
student$traveltime = as.integer(student$traveltime)
# 14 studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 -
# unique(student$studytime)
# ggplot(data = student) +
     geom_bar(mapping = aes(x=studytime, fill=studytime))
# qqsave("display.14.studytime.pnq")
# we may wanna use the NUMERICAL VALUES :
student$studytime = as.integer(student$studytime)
# 15 failures - number of past class failures (numeric: n if 1<=n<3, else 4)
# unique(student$failures)
# qqplot(data = student) +
     qeom_bar(mapping = aes(x=failures, fill=failures))
# ggsave("display.15.failures.png")
# we may wanna use the NUMERICAL VALUES :
student$failures = as.integer(student$failures)
# 16 schoolsup - extra educational support (binary: yes or no)
# unique(student$schoolsup)
# qqplot(data = student) +
     geom_bar(mapping = aes(x=schoolsup, fill=schoolsup))
# qqsave("display.16.schoolsup.pnq")
student$schoolsup = as.factor(student$schoolsup)
# 17 famsup - family educational support (binary: yes or no)
# unique(student$famsup)
# ggplot(data = student) +
```

```
geom_bar(mapping = aes(x=famsup, fill=famsup))
# ggsave("display.17.famsup.png")
student$famsup = as.factor(student$famsup)
# 18 paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
# unique(student$paid)
# qqplot(data = student) +
     qeom_bar(mapping = aes(x=paid, fill=paid))
# ggsave("display.18.paid.png")
student$paid = as.factor(student$paid)
# 19 activities - extra-curricular activities (binary: yes or no)
# unique(student$activities)
# qqplot(data = student) +
    geom_bar(mapping = aes(x=activities, fill=activities))
# ggsave("display.19.activities.png")
student$activities = as.factor(student$activities)
# 20 nursery - attended nursery school (binary: yes or no)
# unique(student$nursery)
# ggplot(data = student) +
    geom_bar(mapping = aes(x=nursery, fill=nursery))
# ggsave("display.20.nursery.png")
student$nursery = as.factor(student$nursery)
# 21 higher - wants to take higher education (binary: yes or no)
# unique(student$higher)
# ggplot(data = student) +
    geom_bar(mapping = aes(x=higher, fill=higher))
```

```
# ggsave("display.21.higher.png")
student$higher = as.factor(student$higher)
# 22 internet - Internet access at home (binary: yes or no)
# unique(student$internet)
# qqplot(data = student) +
     geom_bar(mapping = aes(x=internet, fill=internet))
# qqsave("display.22.internet.pnq")
student$internet = as.factor(student$internet)
# 23 romantic - with a romantic relationship (binary: yes or no)
# unique(student$romantic)
# ggplot(data = student) +
     geom_bar(mapping = aes(x=romantic, fill=romantic))
# qqsave("display.23.romantic.png")
student$romantic = as.factor(student$romantic)
# 24 famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent)
# unique(student$famrel)
# qqplot(data = student) +
     geom bar(mapping = aes(x=famrel, fill=famrel))
# qqsave("display.24.famrel.png")
# i believe that we can keep these as numerical :
student$famrel = as.integer(student$famrel)
# 25 freetime - free time after school (numeric: from 1 - very low to 5 - very high)
# unique(student$freetime)
# qqplot(data = student) +
     geom_bar(mapping = aes(x=freetime, fill=freetime))
```

```
# ggsave("display.25.freetime.png")
# i believe that we can keep these as numerical :
student$freetime = as.integer(student$freetime)
# 26 goout - going out with friends (numeric: from 1 - very low to 5 - very high)
# unique(student$goout)
# ggplot(data = student) +
     geom_bar(mapping = aes(x=goout, fill=goout))
# qqsave("display.26.qoout.pnq")
# i believe that we can keep these as numerical :
student$goout = as.integer(student$goout)
# 27 Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high)
# unique(student$Dalc)
# qqplot(data = student) +
     geom_bar(mapping = aes(x=Dalc, fill=Dalc))
# ggsave("display.27.Dalc.png")
# i believe that we can keep these as numerical :
student$Dalc = as.integer(student$Dalc)
# 28 Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)
# unique(student$Walc)
# qqplot(data = student) +
     geom_bar(mapping = aes(x=Walc, fill=Walc))
# ggsave("display.28.Walc.png")
# i believe that we can keep these as numerical :
student$Walc = as.integer(student$Walc)
# 29 health - current health status (numeric: from 1 - very bad to 5 - very good)
# unique(student$health)
```

```
# ggplot(data = student) +
    geom_bar(mapping = aes(x=health, fill=health))
# qqsave("display.29.health.pnq")
# i believe that we can keep these as numerical :
student$health = as.integer(student$health)
# 30 absences - number of school absences (numeric: from 0 to 93)
# unique(student$absences)
# qqplot(data = student) +
    geom_bar(mapping = aes(x=absences, fill=absences))
# ggsave("display.30.absences.png")
# i believe that we can keep these as numerical :
student$absences = as.integer(student$absences)
: int 5 5 7 15 6 15 12 6 16 14 ...
# unique(student$G1)
# qqplot(data = student) +
   geom\_bar(mapping = aes(x=G1, fill=G1))
# qqsave("display.0.G1.pnq")
# i believe that we can keep these as numerical, although we may not need it :
student$G1 = as.factor(student$G1)
# $ G2
       : int 6 5 8 14 10 15 12 5 18 15 ...
# unique(student$G2)
# qqplot(data = student) +
    geom\_bar(mapping = aes(x=G2, fill=G2))
# ggsave("display.0.G2.png")
# i believe that we can keep these as numerical, although we may not need it :
student$G2 = as.factor(student$G2)
: int 6 6 10 15 10 15 11 6 19 15 ...
```

```
# unique(student$G3)
# qqplot(data = student) +
      geom\ bar(mapping = aes(x=G3, fill=G3))
# qqsave("display.0.G3.pnq")
# i believe that we can covert it into RANGES of VALUES :
student$G3 = as.factor(student$G3)
summary(student)
##
 school
        sex
                 age
                        address famsize
                                    Pstatus
                                             Medu
## GP:349
        F:208
              Min. :15.0
                        R: 88
                             GT3:281
                                    A: 41
                                          Min.
                                               :0.000
  MS: 46
              1st Qu.:16.0
                        U:307
                                    T:354
                                          1st Qu.:2.000
       M:187
                             LE3:114
##
              Median:17.0
                                          Median :3.000
##
              Mean :16.7
                                          Mean :2.749
##
              3rd Qu.:18.0
                                          3rd Qu.:4.000
##
              Max.
                  :22.0
                                          Max.
                                               :4.000
##
##
     Fedu
                 Mjob
                           Fjob
                                      reason
                                               guardian
## Min. :0.000
             at_home : 59
                       at_home : 20
                                  course
                                         :145
                                             father: 90
  1st Qu.:2.000
             health: 34 health: 18
                                         :109
##
                                  home
                                             mother:273
## Median :2.000
             other :141 other :217
                                  other
                                         : 36
                                             other: 32
## Mean :2.522
             services:103 services:111
                                  reputation:105
             teacher: 58 teacher: 29
##
  3rd Qu.:3.000
##
 Max. :4.000
##
##
   traveltime
              studytime
                          failures
                                    schoolsup famsup
                                                  paid
## Min. :1.000
            Min. :1.000 Min. :0.0000
                                    no :344 no :153
                                                 no:214
 1st Qu.:1.000
            1st Qu.:1.000
                        1st Qu.:0.0000
                                    yes: 51 yes:242
##
                                                 yes:181
## Median :1.000
            Median :2.000
                        Median : 0.0000
## Mean :1.448
             Mean :2.035
                        Mean :0.3342
##
  3rd Qu.:2.000
             3rd Qu.:2.000
                        3rd Qu.:0.0000
## Max. :4.000
             Max. :4.000
                        Max. :3.0000
##
##
 activities nursery higher
                       internet romantic
                                        famrel
##
  no :194
        no : 81
                no : 20
                       no: 66 no:263
                                     Min. :1.000
##
  yes:201
          yes:314
                 yes:375
                       yes:329
                              yes:132
                                     1st Qu.:4.000
##
                                     Median :4.000
##
                                     Mean :3.944
##
                                     3rd Qu.:5.000
                                     Max. :5.000
##
##
##
    freetime
                goout
                            Dalc
                                       Walc
##
 Min. :1.000
             Min. :1.000
                        Min. :1.000
                                   Min. :1.000
```

```
1st Qu.:3.000
                   1st Qu.:2.000
                                   1st Qu.:1.000
                                                   1st Qu.:1.000
##
  Median :3.000
                   Median :3.000
                                   Median :1.000
                                                   Median :2.000
                   Mean :3.109
                                   Mean :1.481
   Mean :3.235
                                                   Mean :2.291
   3rd Qu.:4.000
                   3rd Qu.:4.000
                                   3rd Qu.:2.000
                                                   3rd Qu.:3.000
##
##
   Max. :5.000
                   Max. :5.000
                                   Max. :5.000
                                                   Max. :5.000
##
##
                                          G1
                                                        G2
       health
                      absences
                                                                      G3
                   Min. : 0.000
                                                         : 50
                                                                       : 56
##
   Min. :1.000
                                    10
                                           : 51
                                                  9
                                                                10
##
   1st Qu.:3.000
                   1st Qu.: 0.000
                                    8
                                           : 41
                                                  10
                                                         : 46
                                                                11
                                                                       : 47
                                           : 39
   Median :4.000
                   Median : 4.000
                                    11
                                                  12
                                                         : 41
                                                                0
                                                                       : 38
  Mean :3.554
                   Mean : 5.709
                                    7
                                           : 37
                                                  13
                                                         : 37
                                                                15
                                                                       : 33
##
   3rd Qu.:5.000
                   3rd Qu.: 8.000
                                    12
                                           : 35
                                                         : 35
                                                                       : 32
                                                  11
                                                                8
                                           : 33
                                                         : 34
                                                                       : 31
   Max. :5.000
                   Max. :75.000
                                    13
                                                                12
                                                  15
##
                                     (Other):159
                                                  (Other):152
                                                                (Other):158
str(student)
## 'data.frame':
                   395 obs. of 33 variables:
               : Factor w/ 2 levels "GP", "MS": 1 1 1 1 1 1 1 1 1 1 ...
   $ school
                : Factor w/ 2 levels "F","M": 1 1 1 1 1 2 2 1 2 2 \dots
   $ sex
## $ age
                : int 18 17 15 15 16 16 16 17 15 15 ...
               : Factor w/ 2 levels "R", "U": 2 2 2 2 2 2 2 2 2 2 ...
## $ address
               : Factor w/ 2 levels "GT3", "LE3": 1 1 2 1 1 2 2 1 2 1 ...
##
   $ famsize
               : Factor w/ 2 levels "A", "T": 1 2 2 2 2 2 1 1 2 ...
   $ Pstatus
## $ Medu
               : int 4 1 1 4 3 4 2 4 3 3 ...
## $ Fedu
               : int 4 1 1 2 3 3 2 4 2 4 ...
               : Factor w/ 5 levels "at_home", "health", ...: 1 1 1 2 3 4 3 3 4 3 ...
## $ Mjob
               : Factor w/ 5 levels "at_home", "health", ...: 5 3 3 4 3 3 3 5 3 3 ...
## $ Fjob
               : Factor w/ 4 levels "course", "home", ...: 1 1 3 2 2 4 2 2 2 2 ...
## $ guardian : Factor w/ 3 levels "father", "mother", ...: 2 1 2 2 1 2 2 2 2 2 ...
##
   $ traveltime: int 2 1 1 1 1 1 1 2 1 1 ...
## $ studytime : int 2 2 2 3 2 2 2 2 2 2 ...
## $ failures : int 003000000...
## $ schoolsup : Factor w/ 2 levels "no", "yes": 2 1 2 1 1 1 1 2 1 1 ...
##
               : Factor w/ 2 levels "no", "yes": 1 2 1 2 2 2 1 2 2 2 ...
##
   $ paid
                : Factor w/ 2 levels "no", "yes": 1 1 2 2 2 2 1 1 2 2 ...
   $ activities: Factor w/ 2 levels "no","yes": 1 1 1 2 1 2 1 1 1 2 ...
               : Factor w/ 2 levels "no", "yes": 2 1 2 2 2 2 2 2 2 2 ...
##
   $ nursery
                : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 2 2 ...
##
   $ higher
##
   $ internet : Factor w/ 2 levels "no","yes": 1 2 2 2 1 2 2 1 2 2 ...
## $ romantic : Factor w/ 2 levels "no", "yes": 1 1 1 2 1 1 1 1 1 1 ...
##
   $ famrel
               : int 4543454445 ...
   $ freetime : int 3 3 3 2 3 4 4 1 2 5 ...
## $ goout
               : int 4 3 2 2 2 2 4 4 2 1 ...
## $ Dalc
               : int 1 1 2 1 1 1 1 1 1 1 ...
##
   $ Walc
               : int 1 1 3 1 2 2 1 1 1 1 ...
##
   $ health
               : int 3 3 3 5 5 5 3 1 1 5 ...
## $ absences : int 6 4 10 2 4 10 0 6 0 0 ...
               : Factor w/ 17 levels "3", "4", "5", "6", ...: 3 3 5 13 4 13 10 4 14 12 ...
## $ G1
                : Factor w/ 17 levels "0", "4", "5", "6", ...: 4 3 6 12 8 13 10 3 16 13 ...
   $ G2
   $ G3
                : Factor w/ 18 levels "0","4","5","6",..: 4 4 8 13 8 13 9 4 17 13 ...
class(student)
```

[1] "data.frame"

3. DATA FILTERING

```
## the OUTPUT VARIABLES is G3
## when SELECTING the FEATURES : we may remove G1 and G2
student1 <- subset(student, select = -c(G1, G2))</pre>
student2 <- subset(student1,</pre>
                  select = -c(school, sex, address, famsize, Pstatus,
                  Mjob, Fjob, reason, guardian, schoolsup, famsup, paid, activities, nursery,
                  higher, internet, romantic))
str(student2)
## 'data.frame':
                  395 obs. of 14 variables:
           : int 18 17 15 15 16 16 16 17 15 15 ...
## $ age
## $ Medu
             : int 4 1 1 4 3 4 2 4 3 3 ...
## $ Fedu
              : int 4 1 1 2 3 3 2 4 2 4 ...
## $ traveltime: int 2 1 1 1 1 1 2 1 1 ...
## $ studytime : int 2 2 2 3 2 2 2 2 2 2 ...
## $ failures : int 003000000...
## $ famrel
             : int 4543454445...
## $ freetime : int 3 3 3 2 3 4 4 1 2 5 ...
## $ goout : int 4 3 2 2 2 2 4 4 2 1 ...
## $ Dalc
              : int 1 1 2 1 1 1 1 1 1 1 ...
              : int 1131221111...
## $ Walc
## $ health
              : int 3 3 3 5 5 5 3 1 1 5 ...
## $ absences : int 6 4 10 2 4 10 0 6 0 0 ...
## $ G3
              : Factor w/ 18 levels "0","4","5","6",..: 4 4 8 13 8 13 9 4 17 13 ...
student2$G3 = as.factor(student2$G3)
table(student2$G3)
##
## 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## 38 1 7 15 9 32 28 56 47 31 31 27 33 16 6 12 5 1
### for simplicity, to work with a copy of STUDENT3
### although we may keep as well ALL the FEATURES
student3 = subset(student2,
                 select= c(age, traveltime, studytime, failures, absences, G3))
table(student3$G3)
##
      4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## 38 1 7 15 9 32 28 56 47 31 31 27 33 16 6 12 5 1
### shall we keep as well ALL the FEATURES
### student3 = student1
```

4. DATA TRANSFORMATION


```
ggsave("display.0.G3.after.filtering.grade3.png")
## Saving 6.5 x 4.5 in image
student3 = student4
```

```
## TRANSFORMING G3 into RANGES of PASS and NO-PASS :
student3$G3 = as.integer(student3$G3)
student3$RESULT[student3$G3 <= 10] = "NO_PASS"
student3$RESULT[student3$G3 >=10] = "PASS"
student3 <- subset(student3, select = -c(G3))
student3$RESULT = as.factor(student3$RESULT)</pre>
```

5. TRAINING AND TEST SETS

```
## CHOOSING the TRAINING and TESTING SETS
indxTrain <- createDataPartition(student3$RESULT,</pre>
                               p = .75,
                               list = FALSE)
training <- student3[indxTrain,]</pre>
head(training)
    age traveltime studytime failures absences RESULT
## 1 18
               2
                         2
                                 0
                                         6 NO_PASS
                                       4 NO_PASS
4 NO_PASS
10 PASS
## 2 17
                1
                         2
                                  0
                         2
## 5 16
                1
                                 0
                         2
## 6 16
                1
                                  0
## 7 16
                         2
                                          O NO_PASS
                1
                                  0
## 8 17
                 2
                                           6 NO_PASS
                                  0
testing <- student3[-indxTrain,]</pre>
head(testing)
     age traveltime studytime failures absences RESULT
                                  3
## 3
                           2
                                           10 NO_PASS
     15
                 1
     15
## 4
                 1
                           3
                                   0
                                           2
                                                 PASS
                          2
## 10 15
                 1
                                  0
                                           0
                                                 PASS
## 14 15
                 2
                           2
                                  0
                                            2 NO_PASS
## 27 15
                 1
                           1
                                   0
                                            2 NO PASS
## 32 15
                 2
                           2
                                   0
                                                 PASS
dim(student3)
## [1] 356
dim(training)
## [1] 268
dim(testing)
## [1] 88 6
```

6. PRE-PROCESSING THE DATA

```
### PRE-PROCESSING the DATA
              <- training[, names(training) != "RESULT"]</pre>
trainX
\# for NB we may not need to CENTER and SCALE the data :)
# preProcValues <- preProcess(x = trainX, method = c("center", "scale"))</pre>
# preProcValues
names(trainX)
## [1] "age"
                    "traveltime" "studytime" "failures"
                                                            "absences"
dim(trainX)
## [1] 268
names(training)
## [1] "age"
                    "traveltime" "studytime" "failures"
                                                            "absences"
## [6] "RESULT"
### THE BALANCE of the DATA in TRAINING and TESTING SETS
prop.table(table(training$RESULT)) * 100
##
## NO_PASS
                PASS
## 54.47761 45.52239
prop.table(table(testing$RESULT)) * 100
##
## NO_PASS
               PASS
## 54.54545 45.45455
```

7. PERFORMING THE TRAINING

Naive Bayes

```
##
## 268 samples
     5 predictor
##
##
     2 classes: 'NO_PASS', 'PASS'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 10 times)
## Summary of sample sizes: 241, 242, 240, 241, 242, 241, ...
## Resampling results across tuning parameters:
##
##
     usekernel Accuracy
                            Kappa
##
     FALSE
                0.5576699
                           0.1443084
##
      TRUE
                0.5691555
                           0.1496703
##
## Tuning parameter 'fL' was held constant at a value of \mathbf{0}
## Tuning
## parameter 'adjust' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = TRUE and adjust
##
   = 1.
plot(nbFit)
```



```
png("the.results.nb.FIT.png")
plot(nbFit)
dev.off()
```

```
## pdf
## 2
```

8. MAKING THE PREDICTIONS

```
### Making the PREDICTIONS :

nbPredict <- predict(nbFit, newdata = testing)</pre>
```

9. THE CONFUSION MATRIX (caret package)

```
### COMPUTING the CONFUSION MATRIX :
confusionMatrix(nbPredict, testing$RESULT)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction NO_PASS PASS
      NO_PASS
##
                   15
##
      PASS
                   33
                        32
##
##
                  Accuracy: 0.5341
                    95% CI: (0.4246, 0.6412)
##
##
       No Information Rate: 0.5455
##
       P-Value [Acc > NIR] : 0.6269466
##
##
                     Kappa: 0.1069
##
##
    Mcnemar's Test P-Value: 0.0001781
##
##
               Sensitivity: 0.3125
##
               Specificity: 0.8000
##
            Pos Pred Value: 0.6522
##
            Neg Pred Value: 0.4923
##
                Prevalence: 0.5455
##
            Detection Rate: 0.1705
##
      Detection Prevalence: 0.2614
##
         Balanced Accuracy: 0.5563
##
##
          'Positive' Class : NO_PASS
mean(nbPredict == testing$RESULT)
## [1] 0.5340909
dim(student3)
## [1] 356
```

```
# We implement the NB model also in other packages ("klaR", "e1071").
# here only another version of the R code
# library(e1071)
\# x = training[, -6]
# y = training$RESULT
\# model = train(x, y, 'nb', trControl=trainControl(method='cv',number=10))
# predict(model$finalModel,x)
# head(predict(model$finalModel,x)$class)
# table(predict(model$finalModel,x)$class,y)
# Predict <- predict(model, newdata = testing )</pre>
# We draw a plot that shows how each predictor variable is independently
# responsible for predicting the outcome.
# to display Variable Performance
# X <- varImp(model)</pre>
# plot(X)
# the confusion matrix to see accuracy value and other parameter values
# confusionMatrix(Predict, testing$RESULT)
X <- varImp(nbFit)</pre>
plot(X)
```


10. THE RESULTS (klaR package)

ggpairs(testing)

As we can see, shall we set up the ML approach with NB, the accuracies of our models are almost equal and not too great.

[1] 0.6022727