Кольца Илья Вячеславович

Лабораторная работа № 5

Вариант 4

```
In [10]:
```

```
import pandas as pd
import warnings
import numpy as np
import scipy.stats as sts
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transform
import math
warnings.filterwarnings('ignore')
%matplotlib inline
```

In [6]:

```
df = pd.read_table('spambase.dat', sep=',', index_col=None, header=None)
columns = ['Word_freq_make', 'Word_freq_address', 'Word_freq_all', 'Word_freq_3d', 'Word
_freq_our', 'Word_freq_over', 'Word_freq_remove', 'Word_freq_internet', 'Word_freq_order'
, 'Word_freq_mail', 'Word_freq_receive', 'Word_freq_will', 'Word_freq_people', 'Word_freq
_report', 'Word_freq_addresses', 'Word_freq_free', 'Word_freq_business', 'Word_freq_email
', 'Word_freq_you', 'Word_freq_credit', 'Word_freq_your', 'Word_freq_font', 'Word_freq_00
0', 'Word_freq_money', 'Word_freq_hp', 'Word_freq_pl', 'Word_freq_george', 'Word_freq_65
0', 'Word_freq_lab', 'Word_freq_labs', 'Word_freq_telnet', 'Word_freq_857', 'Word_freq_da
ta', 'Word_freq_415', 'Word_freq_85', 'Word_freq_technology', 'Word_freq_1999', 'Word_freq
_parts', 'Word_freq_pm', 'Word_freq_direct', 'Word_freq_cs', 'Word_freq_meeting', 'Word_freq_original', 'Word_freq_project', 'Word_freq_re', 'Word_freq_edu', 'Word_freq_table',
'Word_freq_conference', 'Char_freq1', 'Char_freq2', 'Char_freq3', 'Char_freq4', 'Char_freq5', 'Char_freq6', 'Capital_run_length_longest', 'Capital_run_length_total', 'Spam']
df.columns = columns
df.head()
```

Out[6]:

	Word_freq_make	Word_freq_address	Word_freq_all	Word_freq_3d	Word_freq_our	Word_freq_over	Word_freq_remove	Wo
0	0.00	0.64	0.64	0.0	0.32	0.00	0.00	
1	0.21	0.28	0.50	0.0	0.14	0.28	0.21	
2	0.00	0.00	0.00	0.0	0.63	0.00	0.31	
3	0.00	0.00	0.00	0.0	1.85	0.00	0.00	
4	0.00	0.00	0.00	0.0	1.92	0.00	0.00	

5 rows × 58 columns

```
In [ ]:
```

```
In [11]:
```

```
def confidence_ellipse(x, y, ax, p_value, facecolor='none', **kwargs):
   if x.size != y.size:
     raise ValueError("x и y должны иметь одинкаковый size")

cov = np.cov(x,y)
```

```
pearson = cov[0, 1]/np.sqrt(cov[0, 0]*cov[1, 1])
    ell radius x = np.sqrt(1 + pearson)
    ell_radius_y = np.sqrt(1 - pearson)
    ellipse = Ellipse(
        (0, 0),
        width=ell radius x*2,
        height=ell radius y*2,
        facecolor=facecolor,
        **kwargs
    if p value < 0 or p value > 1:
        raise ValueError
    n \text{ std} = \text{math.sqrt}(-2 * \text{math.log}(p \text{ value}))
    scale x = np.sqrt(cov[0, 0]) * n_std
    mean x = np.mean(x)
    scale_y = np.sqrt(cov[1, 1]) * n_std
    mean y = np.mean(y)
    transf = transform.Affine2D().rotate_deg(45).scale(scale_x, scale_y).translate(mean_
x, mean y)
    ellipse.set transform(transf + ax.transData)
    return ax.add patch(ellipse)
```

In [12]:

```
def print_ellipse(n, m):
    for i in df.columns[df.columns != 'Spam'][:n]:
        for j in df.columns[(df.columns != 'Spam') & (df.columns != i)][:m]:
            fig, ax = plt.subplots(figsize=(8, 8))
            ax.set_xlabel(i)
            ax.set_ylabel(j)
            confidence_ellipse(df[i], df[j], ax, 0.01, edgecolor='red')
            confidence_ellipse(df[i], df[j], ax, 0.05, edgecolor='green')
            confidence_ellipse(df[i], df[j], ax, 0.10, edgecolor='black')
            ax.scatter(df[i], df[j])
    plt.show()
```


In [13]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df[df.columns[df.columns != 'Spam']] = scaler.fit_transform(df[df.columns[df.columns != 'Spam']])
df
```

Out[13]:

Word_freq_make Word_freq_address Word_freq_all Word_freq_3d Word_freq_our Word_freq_over Word_freq_remove 0 -0.342532 0.330601 0.713333 -0.04692 0.011273 -0.350224 -0.291932

1	Word_fr e cβ444869	Word_freq_@@filess	Word <u>#6</u>	Word <u>-17:04632</u>	Word <u>-(теq6942</u>	Word_f (%)720%2	Word_freq <u>0</u> 1244092
2	-0.342532	-0.165146	-0.556341	-0.04692	0.472113	-0.350224	0.499784
3	-0.342532	-0.165146	-0.556341	-0.04692	2.285742	-0.350224	-0.291932
4	-0.342532	-0.165146	-0.556341	-0.04692	2.389803	-0.350224	-0.291932
4592	-0.342532	-0.165146	0.713333	-0.04692	-0.464433	-0.350224	-0.291932
4593	-0.342532	-0.165146	-0.556341	-0.04692	-0.464433	-0.350224	-0.291932
4594	-0.342532	-0.165146	-0.556341	-0.04692	-0.464433	-0.350224	-0.291932
4595	0.214032	-0.165146	0.792687	-0.04692	0.041005	0.891087	-0.291932
4596	-0.342532	-0.165146	1.923491	-0.04692	3.252020	-0.350224	-0.291932

4597 rows × 58 columns

```
In [18]:
```

```
# Компоненты, объясняющие 95% изменчивости
from sklearn.decomposition import PCA

pca = PCA(n_components=57)
table = pca.fit_transform(df.drop('Spam', axis=1))
comp = pca.components_
explained_var = pca.explained_variance_
explained_var2 = pca.explained_variance_ratio_
n = 0
while sum(explained_var2[:n]) < 0.95:
n += 1
print(f'{n} главных компонент объясняют {sum(explained_var2[:n])} дисперсии.')
```

48 главных компонент объясняют 0.95271864041545 дисперсии.

```
In [15]:
```

```
cov = pca.get_covariance()
cov
```

Out[15]:

```
array([[ 1.00021758e+00, -1.68025676e-02, 6.58282052e-02, ..., 4.44762257e-02, 6.13498106e-02, 8.91304741e-02], [-1.68025676e-02, 1.00021758e+00, -3.34761629e-02, ..., 2.06929837e-03, 2.50131833e-04, -2.27032964e-02], [ 6.58282052e-02, -3.34761629e-02, 1.00021758e+00, ..., 9.75180033e-02, 1.07632661e-01, 7.03600257e-02], ..., [ 4.44762257e-02, 2.06929837e-03, 9.75180033e-02, ..., 1.00021758e+00, 4.92740185e-01, 1.62339309e-01], [ 6.13498106e-02, 2.50131833e-04, 1.07632661e-01, ..., 4.92740185e-01, 1.00021758e+00, 4.75571049e-01], [ 8.91304741e-02, -2.27032964e-02, 7.03600257e-02, ..., 1.62339309e-01, 4.75571049e-01, 1.00021758e+00]])
```

In [16]:

```
#Кайзер
print("Число компонет по методу Кайзера:")
len(explained_var[explained_var >= 1])
```

Число компонет по методу Кайзера:

Out[16]:

20

In [20]:

Компоненты по Кайзеру

```
pca = PCA(n_components=20)
table = pca.fit_transform(df.drop("Spam", axis=1))
pd.DataFrame(pca.components_.T)
```

Out[20]:

	0	1	2	3	4	5	6	7	8	9	10	11	
0	0.043685	0.169399	0.064332	0.097097	0.021577	0.028225	- 0.015486	0.210651	- 0.272708	- 0.136579	0.091783	0.247722	C
1	- 0.011123	0.017070	0.009835	0.043066	0.070820	0.030315	0.039577	0.094976	0.052753	0.055055	0.073017	0.276427	C
2	0.047123	0.165656	- 0.021305	0.042509	0.101406	0.113031	0.048483	0.111796	0.033034	0.153340	0.285720	- 0.139712	C
3	0.006229	0.010777	0.011809	0.040338	0.045703	0.029310	0.005422	0.012176	0.004153	0.042886	0.036756	0.211645	C
4	0.036760	0.121642	0.137243	0.089186	0.274592	0.074134	0.097343	0.006337	0.262081	0.151965	0.044635	0.000861	C
5	0.045844	0.167805	0.005642	0.060584	0.083192	0.137270	0.145652	0.062084	0.115254	0.017558	0.121073	0.150907	C
6	0.046228	0.144570	0.129924	0.014431	0.025199	0.188365	0.026846	0.129826	0.224934	0.234025	0.067582	0.066315	C
7	0.033924	0.132267	0.046079	- 0.112627	0.003327	0.195901	0.049585	0.253998	0.121026	- 0.115116	0.228838	0.191433	C
8	0.045562	0.234904	0.130366	0.055797	0.052958	0.010601	0.042656	- 0.169257	0.008097	0.182080	0.005385	0.048444	C
9	0.020227	0.153603	0.059762	0.097742	0.010881	0.081936	0.051933	0.109133	0.022381	0.046966	0.103533	0.037513	C
10	0.050376	0.218744	0.101713	0.094259	0.065855	0.269712	0.044847	0.090934	0.074152	- 0.176526	0.002260	0.161779	C
11	0.022207	0.076269	0.093654	0.035913	0.323718	0.067484	0.113518	0.115201	0.204521	0.174668	0.225367	0.134806	C
12	0.037566	0.125129	0.010087	0.081967	0.059469	0.240888	0.103124	0.125666	0.106827	0.104827	- 0.188047	0.028242	C
13	0.017955	0.068913	0.061149	0.045565	0.037316	0.018815	0.071299	0.068248	0.242690	0.219906	0.255267	0.037720	C
14	0.030902	0.217254	0.149059	- 0.159214	0.002689	0.311039	0.230191	0.215909	0.206259	0.005078	0.071168	0.055747	C
15	0.042789	0.101652	0.126778	0.047975	0.046753	0.098241	0.053468	0.031144	0.107757	0.202634	0.032070	0.311466	C
16	0.045230	0.199130	- 0.112957	0.051907	0.042489	0.285095	0.106819	0.166094	0.097413	0.056915	0.155349	0.193903	C
17	0.019461	0.168678	0.049814	0.109622	0.049988	0.141488	0.110156	0.153229	0.123356	0.127637	0.332066	0.175463	C
18	0.083449	0.182582	0.247601	- 0.124588	0.101236	0.033905	0.063345	0.300669	- 0.108547	0.138015	0.046254	0.091665	C
19	0.030774	0.133779	0.007950	0.020263	0.015171	0.267764	0.133135	- 0.121550	0.031375	- 0.116354	- 0.149371	- 0.118497	C
20	0.075635	0.272648	0.203539	0.098563	0.015466	0.200109	0.036471	0.049825	- 0.074547	0.009905	0.042482	0.050927	C
					- 0.246341								
22	0.053331	0.247819	0.062840	- 0.104019	0.063698	- 0.276894	0.255739	0.090238	0.085098	0.035301	- 0.145465	0.070645	C
23	0.039925	0.148519	- 0.081458	0.057362	- 0.078152	0.004509	0.001813	0.160135	0.239007	0.069843	0.059596	0.348124	C
24	0.211572	0.054277	0.074889	0.052862	0.055237	0.048726	0.055830	0.161929	0.121199	0.010903	0.207057	- 0.194180	C

25	0.20794	0.050061	0.06784 2	0.087263	0.104964	0.03631 5	0.06474	0.150429	0.11453	0.029993	0.2293 85	0.1564 29	C
26	0.038724	- 0.116912	- 0.018458	0.116507	- 0.112027	- 0.153656	0.161050	- 0.133679	0.024046	0.028639	0.226339	0.272691	C
27	0.278579	0.042019	0.000008	0.004092	0.026858	- 0.015389	0.040054	0.011033	0.008853	0.020646	0.092974	0.033219	c
28	0.219285	0.032534	0.080139	0.111332	0.306665	- 0.015464	0.170893	0.163837	0.106204	0.072623	- 0.137686	0.089069	C
29	0.303487	0.062695	0.026432	0.004705	0.050543	0.016496	0.010343	0.028617	0.006271	0.029268	0.112966	0.048035	C
30	0.311910	0.090778	0.050746	0.013629	0.057655	0.006718	0.012431	0.010551	0.002281	0.000197	0.026096	0.029055	C
31	0.348439	0.111856	0.056025	0.013054	0.065675	0.009055	0.010732	0.063825	0.023619	0.024005	- 0.109456	0.058618	c
32	0.005369	- 0.084844	0.088082	- 0.020794	0.091223	- 0.044140	0.019977	- 0.144046	- 0.071095	0.019032	0.038064	0.106268	C
33	0.347536	0.112808	- 0.053674	0.014010	0.065095	0.009494	0.013069	0.066225	0.022902	0.025564	- 0.108987	0.058841	C
34	0.268528	0.053390	0.025201	0.009775	0.032822	- 0.017541	0.012535	0.021401	0.010497	0.047237	0.066024	- 0.013878	C
35	0.316781	0.074820	0.034185	0.009235	0.043144	0.002062	0.014937	- 0.016421	0.025956	0.004454	0.001816	- 0.014119	c
36	0.046208	- 0.128720	0.221607	0.398651	0.092497	0.187797	0.080101	0.040235	0.024526	0.076488	0.040534	0.087726	C
37	0.002016	- 0.018218	0.025173	0.083023	0.260998	0.000517	0.095536	0.001661	0.155536	0.001676	0.063948	0.091747	C
38	0.036849	0.084066	0.123504	0.302619	0.128908	0.097345	0.074260	0.048102	0.152513	0.228182	0.153324	0.068463	C
39	0.320152	0.138705	0.056496	0.003622	0.064703	0.006026	0.002144	0.026907	0.048671	0.014166	0.097145	0.046568	C
40	0.008612	0.086351	0.109343	0.245505	- 0.124351	0.109973	0.009526	0.251364	0.379334	0.326304	0.119158	0.049696	C
41	0.024242	0.073861	0.050323	0.135550	0.535838	0.030608	0.254950	0.160838	0.156090	0.070863	0.128858	0.094227	C
42	0.065097	0.070779	0.149151	0.405143	0.081795	0.133313	- 0.129851	0.029572	0.069210	0.198644	0.151786	0.153668	C
43	0.011608	0.057088	0.002269	0.042124	0.070005	0.038174	0.040047	0.056150	0.036304	0.069846	0.077701	0.048975	C
44	0.008918	0.092634	0.024918	0.180921	0.049939	0.002634	0.031389	0.192442	0.030816	0.311373	0.171093	0.226956	C
45	0.002973	0.108327	0.083283	0.215188	0.172259	0.055630	0.054001	0.335019	0.403648	0.320247	0.067417	0.002571	C
46	0.002971	0.008487	0.000983	0.011269	0.014670	0.018219	0.025566	0.010016	0.098036	0.011882	0.185108	0.054984	C
47	0.003533	0.053294	0.021210	0.000925	0.060184	0.029578	0.016731	0.045007	0.094410	0.055854	0.112027	0.066288	C
48								0.080540					
49	0.140713	0.061925	0.291230	0.016972	0.054913	0.008756	0.167074	0.164826	0.017538	0.121563	0.040755	0.028831	C
50	0.018434	0.050406	0.108884	0.142009	0.051028	0.032957	0.068838	0.153490	0.034216	0.045995	0.042942	0.135921	C
51	0.044644	0.120946	0.043238	0.001625	0.087224	0.038528	0.023032	0.232958	0.019023	0.297380	0.040357	0.215697	C
52	0.051356	0.236069	0.100782	- 0.018747	0.058305	- 0.187676	0.082714	0.100594	0.068074	0.009788	0.198231	0.099614	C
53	0.001007	0.028149	0.081540	0.166437	- 400404	0.145031	-	-	0.018001	0.074324	0.093018	0.012822	c

	0	1	2	3	0.106104 4	5	0.207807 6	0.036369 7	8	9	10	11	
54	0.016394	0.135497	0.285428	0.154469	0.130779	0.106727	0.285737	0.112215	0.088684	0.168467	0.138157	0.018674	C
55	- 0.029501	0.252195	0.444817	0.139024	0.115558	0.013886	0.225926	0.127002	0.070235	0.129994	0.058549	0.020071	C
56	0.043676	0.225370	0.373126	0.099192	0.032686	0.022730	0.035739	0.026027	- 0.127512	- 0.143250	0.053998	0.021699	c
4							18						

In [21]:

#новые признаки df.drop("Spam", axis=1) @ pca.components_.T

Out[21]:

	0	1	2	3	4	5	6	7	8	9	10	11
0	- 0.731694	- 0.042418	- 0.579372	0.275785	- 0.158930	- 0.550722	0.015283	0.031319	0.288896	0.734581	1.261732	0.186586
1	- 1.184979	2.067532	0.040801	- 0.417820	- 0.311988	- 0.847389	- 0.481976	0.640062	- 0.845505	- 0.474849	- 0.122487	0.146151
2	0.806288	0.426563	- 0.579036	0.021666	- 0.045184	0.540751	0.387035	- 0.480560	0.200077	- 0.351933	- 0.429434	0.030725
3	- 0.492776	0.490047	0.368708	0.422867	0.439445	0.711374	0.521656	- 1.469893	1.387905	- 0.238546	- 1.331810	- 0.872859
4	- 1.025857	1.020138	- 1.727360	0.000551	0.919238	1.444387	0.005674	0.090521	0.060503	- 0.274234	0.412262	0.866362
4592	0.240446	- 1.437519	0.598757	1.476768	0.651428	0.179334	0.373923	1.957817	0.774774	0.725139	0.022194	0.791989
4593	0.306226	- 2.282756	0.840331	- 1.528081	- 1.136189	0.371810	0.496464	1.515212	2.207795	1.743083	0.181777	0.174680
4594	0.606132	- 1.355527	0.203776	0.603586	- 0.759628	0.202020	0.404838	0.005050	0.540894	- 0.515036	0.029352	0.014310
4595	0.852773	0.065496	- 1.161792	- 0.162885	- 0.513167	0.352502	- 0.048911	0.748825	0.016829	0.558378	0.453633	0.399030
4596	0.607480	0.700749	- 0.402167	0.088988	0.555383	- 0.745835	- 0.134695	0.918131	1.730560	- 0.136167	0.015583	- 0.571040
4597	rows × 20) columns	6									