Mathematics for Machine Learning

— Vector Calculus: Differentiation, Partial Differentiation & Gradients

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

Differentiation of Univariate Functions

Partial Differentiation & Gradients

Motivations

- Machine learning algorithms that optimize an objective function w.r.t.
 a set of model parameters.
- Examples:
 - Curve-fitting.
 - Neural networks (parameters as weights & biases of layers, repeatedly application of chain rule, etc.)
 - Gaussian mixture models (maximizing the likelihood of the model).
- We focus on functions.
 - $f: \mathbb{R}^D \mapsto \mathbb{R}$ (i.e., $\mathbf{x} \mapsto f(\mathbf{x})$).

Get used to

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{x}, \ \mathbf{x} \in \mathbb{R}^2.$$

Get used to

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^2.$$

$$\mathbf{x} \mapsto x_1^2 + x_2^2$$
.

Outline

Differentiation of Univariate Functions

Partial Differentiation & Gradients

Derivative

Consider a univariate function y = f(x), $x, y \in \mathbb{R}$.

Difference Quotient

$$\frac{\delta y}{\delta x} := \frac{f(x + \delta x) - f(x)}{\delta x}.$$

Derivative

For h > 0, the derivative of f at x:

$$\frac{\mathrm{d}f}{\mathrm{d}x} := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Derivative of a Polynomial

Given $f(x) = x^n$.

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\sum_{i=0}^n \binom{n}{i} x^{n-i} h^i - x^n}{h}$$

Note that $x^n = \binom{n}{0} x^{n-0} h^0$.

Derivative of a Polynomial

Given
$$f(x) = x^n$$
.

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{\sum_{i=1}^{n} \binom{n}{i} x^{n-i} h^{i}}{h}$$

Derivative of a Polynomial

Given
$$f(x) = x^n$$
.

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{\sum_{i=1}^{n} \binom{n}{i} x^{n-i} h^{i}}{h}$$

$$= \lim_{h \to 0} \sum_{i=1}^{n} \binom{n}{i} x^{n-i} h^{i-1}$$

$$= \lim_{h \to 0} \binom{n}{1} x^{n-1} + \lim_{h \to 0} \sum_{i=2}^{n} \binom{n}{i} x^{n-i} h^{i-1}$$

$$= nx^{n-1} + 0.$$

Differentiation of Univariate Functions

The Taylor polynomial of degree n of $f : \mathbb{R} \to \mathbb{R}$ at x_0 is:

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

For a function $f: \mathbb{R} \mapsto \mathbb{R}, f \in \mathcal{C}^{\infty}$, the Taylor series f at x_0 is:

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

For a function $f: \mathbb{R} \mapsto \mathbb{R}, f \in \mathcal{C}^{\infty}$, the Taylor series f at x_0 is:

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

For $x_0 = 0$, it is the *Maclaurin series*.

For a function $f: \mathbb{R} \mapsto \mathbb{R}, f \in \mathcal{C}^{\infty}$, the Taylor series f at x_0 is:

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

For $x_0 = 0$, it is the *Maclaurin series*.

$$f$$
 is analytic: $f(x) = T_{\infty}(x)$.

Example

$$f(x) = x^4$$
. Seek the Taylor polynomial T_6 evaluated at $x_0 = 1$.

Check if $T_6(x) = f(x)$.

Example

Given $f(x) = \sin(x) + \cos(x)$. We know $f(x) \in \mathcal{C}^{\infty}$. Seek the Taylor series $T_{\infty}(x)$ evaluated at $x_0 = 0$.

Check if $T_{\infty}(x) = f(x)$.

Example

Given $f(x) = \sin(x) + \cos(x)$. We know $f(x) \in \mathcal{C}^{\infty}$. Seek the Taylor series $T_{\infty}(x)$ evaluated at $x_0 = 0$.

Check if $T_{\infty}(x) = f(x)$.

- $\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} x^{2k}$.
- $\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} x^{2k+1}$.

Differentiation Rules

- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
- (f(x) + g(x))' = f'(x) + g'(x).
- $(g(f(x)))' = (g \circ f)'(x) = g'(f(x))f'(x)$.
 - Chain rule.
- **Example:** Compute h'(x) where $h(x) = (2x + 1)^4$.

Outline

Differentiation of Univariate Functions

Partial Differentiation & Gradients

Motivation

- We consider a more general case: $f : \mathbb{R}^n \to \mathbb{R}$.
 - The derivative to functions of several variables ⇒ gradient.

Partial Derivative

Partial Derivative

For a function $f: \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$ of n variables x_1, \dots, x_n , the partial derivatives are:

$$\frac{\partial f}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(\mathbf{x})}{h}$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{n-1}, x_n + h) - f(\mathbf{x})}{h}$$

We collect them in the row vector:

$$\nabla_{\mathbf{x}} f = \frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1} \frac{\partial f(\mathbf{x})}{\partial x_2} \cdots \frac{\partial f(\mathbf{x})}{\partial x_n} \right]$$

Partial Derivative

Partial Derivative

For a function $f: \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$ of n variables x_1, \dots, x_n , the partial derivatives are:

$$\frac{\partial f}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(\mathbf{x})}{h}$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{n-1}, x_n + h) - f(\mathbf{x})}{h}$$

We collect them in the row vector:

$$\nabla_{\mathbf{x}} f = \frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1} \frac{\partial f(\mathbf{x})}{\partial x_2} \cdots \frac{\partial f(\mathbf{x})}{\partial x_n} \right] \in \mathbb{R}^{1 \times n},$$

where $\mathbf{x} = [x_1, \dots, x_n]^\top$.

Example

Given
$$f(x,y) = (x+2y^3)^2$$
, compute $\frac{\partial f(x,y)}{\partial x}$ and $\frac{\partial f(x,y)}{\partial y}$.

Example

Given
$$f(x,y) = x_1^2 x_2 + x_1 x_2^3 \in \mathbb{R}$$
, compute $\frac{\partial f(x,y)}{\partial x}$, $\frac{\partial f(x,y)}{\partial y}$ and $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$.

Basic Partial Differentiation Rules

•
$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x})g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}}g(\mathbf{x}) + f(\mathbf{x})\frac{\partial g}{\partial \mathbf{x}}$$
.

•
$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x}) + g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}} + \frac{\partial g}{\partial \mathbf{x}}$$
.

•
$$\frac{\partial}{\partial \mathbf{x}}(g \circ f)(\mathbf{x}) = \frac{\partial g}{\partial \mathbf{x}}(g(f(\mathbf{x}))) = \frac{\partial g}{\partial f}\frac{\partial f}{\partial \mathbf{x}}$$
.

• Chain rule.

Chain Rule (Partial Differentiation)

• Consider a function $f: \mathbb{R}^2 \to \mathbb{R}$ of two variables x_1, x_2 .

•
$$x_1(t), x_2(t) : \mathbb{R} \mapsto \mathbb{R}$$
.

Then,

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \end{bmatrix} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}.$$

Here 'd' denotes the gradient and ' ∂ ' denotes partial derivatives.

- **Note:** Here the 't' in dt is in \mathbb{R}^1 .
- Trick: View $[x_1, x_2]^{\top}$ as $\mathbf{x} \in \mathbb{R}^2$.

$$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{v}}$$
: \mathbb{R} w.r.t. \mathbb{R}^2 .

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}$$
: \mathbb{R}^2 w.r.t. \mathbb{R} .

Example

Consider
$$f(x_1, x_2) = x_1^2 + 2x_2$$
, where $x_1 = \sin t$ and $x_2 = \cos t$. Calculate

$$\frac{\mathrm{d}f}{\mathrm{d}t} = ?$$

What if $x_1, x_2 : \mathbb{R}^2 \mapsto \mathbb{R}$?

• Again, consider a function $f : \mathbb{R}^2 \mapsto \mathbb{R}$ of two variables x_1, x_2 . However,

What if $x_1, x_2 : \mathbb{R}^2 \mapsto \mathbb{R}$?

• Again, consider a function $f : \mathbb{R}^2 \mapsto \mathbb{R}$ of two variables x_1, x_2 . However,

•
$$x_1(s,t), x_2(s,t) : \mathbb{R}^2 \mapsto \mathbb{R}$$
.

Then,

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial s} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial s},$$

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t},$$

• Trick: View $[x_1, x_2]^{\top}$ as $\mathbf{x} \in \mathbb{R}^2$ and $[s, t]^{\top}$ as $\boldsymbol{\theta} \in \mathbb{R}^2$. $\frac{\mathrm{d} f}{\mathrm{d} \mathbf{x}} \colon \mathbb{R}$ w.r.t. \mathbb{R}^2 . $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} \mathbf{x}} \colon \mathbb{R}^2$ w.r.t. \mathbb{R}^2 .

$$\frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\theta}} =$$

$$\frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}$$

$$\frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial s} & \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial s} & \frac{\partial x_2}{\partial t} \end{bmatrix}.$$

$$\frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial \mathbf{s}} & \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial \mathbf{s}} & \frac{\partial x_2}{\partial t} \end{bmatrix}.$$

Somehow we can see why the gradient is defined as a row vector.

Heads up

We will see that

- $f: \mathbb{R}^D \mapsto \mathbb{R}$: the gradient is a $1 \times D$ row vector.
- $\mathbf{f} : \mathbb{R} \mapsto \mathbb{R}^E$: the gradient is a $E \times 1$ column vector.
- $\mathbf{f}: \mathbb{R}^D \mapsto \mathbb{R}^E$: the gradient is a $E \times D$ matrix.

Discussions