1 BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 27 43 260

Aktenzeichen:

P 27 43 260.6

Anmeldetag:

26. 9.77

Offenlegungstag:

5. 4, 79

30

(1) (2)

Ø

Unionspriorität:

Bezeichnung:

Nachrichtenkabel mit Lichtwellenleitern und Verfahren zu seiner

Herstellung

0

Anmelder:

Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover

0

Erfinder:

Rohner, Peter, Dr. rer.nat., 3004 Isernhagen; Still, Michael, Dipl.-Ing.,

3012 Langenhagen

Kabel - und metallwerke Gutehoffnungshütte Aktiengesellschaft

> 1 1554 21. Sept. 1977

Patentansprüche

- 1. Nachrichtenkabel, bestehend aus einer Lichtwellenleiter enthaltenden Kabelseele und einen dieselbe umgebenden, quer zur Kabelachse gewollten rietallmantel, bei welchem die Lichtwellenleiter länger als der sotallmantel jedoch vollständig innerhalb desselben angeordnet sind, dadurch gekennzeichnet, daß die Lichtwellenleiter (3) innerhalb der Kabelseele (2) in beliebiger räumlicher Anordnung, einen Teil des lichten Querschnitts des setallmantels (4) ausfüllend innerhalb desselben angebracht sind, und daß jeder Lichtwellenleiter entsprechend einer für diesen Lichtwellenleiter vorgegebenen axialen Verlängerbarkeit ungeradlinig bzw. wellenförmig verläuft.
- Kabel nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß die
 Lichtwellenleiter (3) zueinander räumlich statistisch verteilt oder definiert angeordnet sind.
 - 3. Kabel nach Anspruch 1 oder 2, <u>dadurch gekennzeichnet</u>, daß der im eletallmantel (4) verbleibende Raum kontinuierlich oder diskontinuierlich mit einem füllmaterial (6) ausgefüllt ist.

20

- 4. Nabel nach Anspruch 3. dadurch gekennzeichnet, daß als Füllmaterial (b) ein Schaumstoff, ein Pulver, eine plastische masse oder eine Masse zäher Konsistenz verwendet ist.
- 5. Kabel nach Anspruch 3, dadurch gekennzeichnet, daß ein Füllmaterial (6) auf der Basis von Bitumen oder Polybuten verwendet ist.
- b. Kabel nach Anspruch 3, <u>dadurch gekonnzeichnet</u>, daß als Füllmaterial (6) ein bei Wasserzutritt quellendes Material verwendet ist.
- 10 7. Kabel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Kabelseele (2) insgesamt längswasserdicht ist.
- 8. Kabel nach einem der Ansprüche 1 bis 7, <u>dadurch gekenn-zeichnet</u>, daß über der Kabelseele (2) eine Schicht aus einem isolierenden Naterial angebracht ist.
 - 9. Kabel nach Anspruch 8, <u>dadurch gekennzeichnet</u>, daß als isolierendes Haterial Kunststoff oder Papier verwendet ist.
- 20 zeichnet, daß in der Kabelseele (2) zusätzlich mindestens ein isolierter elektrischer Leiter angeordnet ist.
 - 11. Nabel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß in der Kabelseele (2) ein zugfestes Element
 angeordnet ist.
- 2512. Kabel nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß über dem Metallmantel (4) eine zugfeste
 Elemente aufweisende Hülle angebracht ist.

- 13. Kabel nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Hetallmantel (4) aus Kupfer, Aluminium oder Stahl besteht.
- 14. Kabel nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der metallmantel (4) ringförmig gewellt ist.
- 15. Kabel nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Lichtwellenleiter (3) einzeln oder zu mehreren in unterschiedlich gekennzeichnete Hüllen eingebettet sind.
- 16. Verfahren zur Herstellung eines Nachrichtenkabels nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Lichtwellenleiter (3) in belichiger räumlicher Anordnung kontinuierlich in ein noch offenes, zum Schlitzrohr geformtes Metallband (8) eingelegt werden, daß das Metallband danach mittels einer Längsnaht (5) zum Metallmantel (4) verschlossen wird, und daß der Metallmantel abschließend quer zur Kabelachse gewellt wird.

- 4 -

Kabel - und Hetallwerke Gutehoffnungshütte Aktiengesellschaft

> 1 1554 21. Sept. 1977

Nachrichtenkabel mit Lichtwellenleitern und Verfahren zu seiner Herstellung

Die Erfindung bezieht sich auf ein Nachrichtenkabel, bestehend aus einer Lichtwellenleiter enthaltenden Kabelseele und einem 5 dieselbe umgebenden, quer zur Kabelachse gewellten Metallmantel, bei welchem die Lichtwellenleiter länger als der Metallmantel, jedoch vollständig in demselben angeordnet sind, und auf ein Verfahren zur Herstellung eines derartigen Kabels.

Lichtwellenleiter im Sinne der Erfindung sind fertige Gebilde

10 aus Glasfasern, die ohne zusätzliche Bearbeitung zur Übertragung von Lichtwellen geeignet sind. Solche Lichtwellenleiter sollen in der Nachrichtentechnik als Ersatz der bisher üblichen metallischen Leiter dienen. Gegenüber den metallischen Leitern haben sie eine Reihe von Vorteilen. Die Licht15 wellenleiter sind sehr breitbandig und dämpfungsarm, so daß
über einen Leiter mehr Kanale bei vergrößertem Verstärkerabstand übertragen werden können. Sie sind gut biegbar und haben

kleine Durchmesser, so daß der Kabelquerschnitt verringert werden kann. Ferner treten keine Beeinflussungen durch äußere elektrische und magnetische Störfelder auf. Der Grundstoff zur Herstellung der Lichtwellenleiter ist billig 5 und in ausreichender Menge auf der ganzen Erde vorhanden.

Zum Einsatz der Lichtwellenleiter für Übertragungszwecke der Nachrichtentechnik müssen dieselben in Kabeln verarbeitet werden. Hierbei muß sichergestellt sein, daß weder während der Herstellung noch beim Transport oder der Verlegung der 10 Kabel eine Beschädigung der Lichtwellenleiter eintritt. Da dieselben spröde sind und nur eine sehr geringe Dehnbarkeit aufweisen, ist für diese Fälle eine relativ große Sorgfalt erforderlich.

Durch die DT-OS 25 19 684 ist ein Nachrichtenkabel bekanntge15 worden, wie es eingangs beschrieben ist. Die Lichtwellenleiter sind hier in Abständen mit Folien fest verbunden und
diese Folien sind in dem äußeren gewellten Metallmantel festgelegt. Zwischen zwei Festpunkten hängen die Lichtwellenleiter
durch, so daß sie bei einer Dehnung des Metallmantels - bei20 spielsweise durch Biegen beim Auftrommeln - dieser Dehnung
ohne Zerstörung folgen können. Der gewellte Metallmantel
stellt für die Lichtwellenleiter einen gut biegbaren und
stabilen mechanischen Schutz dar, jedoch erfordert die Art
der Anbringung der Lichtwellenleiter im Metallmantel eine
25 aufwendige Sonder-fertigung, und das bekannte Kabel ist dadurch auch nicht in nur einem Arbeitsgang herstellbar.

Der Erfindung liegt die Aufgabe zugrunde, ein Nachrichtenkabel mit Lichtwellenleitern anzugeben, das unter Beibehaltung eines wirksamen mechanischen Schutzes der Lichtwellen-30 leiter mit in der Kabeltechnik üblichen Haschinen in einem einzigen Arbeitsgang herstellbar ist. Diesc Aufgabe wird mit einem Nachrichtenkabel der eingangs geschilderten Art gemäß der Erfindung dadurch gelöst, daß die Lichtwellenleiter innerhalb der Kabelseele in beliebiger räumlicher Anordnung, einen Teil des lichten Querschnitts des sietallmantels ausfüllend innerhalb desselben angebracht sind, und daß jeder Lichtwellenleiter entsprechend einer für diesen Lichtwellenleiter vorgegebenen axialen Verlängerbarkeit ungeradlinig bzw. wellenförmig verläuft.

Der Vorteil eines derartigen Nachrichtenkabels ist darin zu 10 sehen, daß für die Unterbringung der beliebig aufgebauten Lichtwellenleiter keinerlei Vorfertigung erforderlich ist. Es kann eine beliebige Anzahl dieser Lichtwellenleiter einzeln oder zu Gruppen zusammengefaßt in den Metallmantel bei dessen Formung mit eingefahren werden. Auf diese Weise 15 ist eine kontinuierliche Herstellung eines Kabels in nur einem einzigen Arbeitsgang möglich. Die Lichtwellenleiter sind innerhalb des gewellten Metallmantels bei guter Biegbarkeit ausreichend mechanisch geschützt. Da die Lichtwellenleiter bei ihrer Einbringung in den Metallmantel ungeradlinig 20 bzw. wellenförmig verlaufen, haben sie eine größere axiale Länge als der Metallmantel, so daß sie Dehnungen des Metallmantels, die beispielsweise beim Auftrommeln desselben entstehen, unbeschadet überstehen können. Die Herstellung des Kabels nach der Erfindung kann mit herkömmlichen Maschinen 25 durchgeführt werden, die in jedem Betrieb für die Herstellung von Nachrichtenkabeln vorhanden sind.

Weitere Vorteile des Erfindungsgegenstandes gehen aus der folgenden Beschreibung hervor. So können die Lichtwellen-leiter beispielsweise räumlich zueinander eine beliebige An-30 ordnung haben, sie können dementsprechend statistisch verteilt im Kabelquerschnitt untergebracht werden oder auch in definierter Position zueinander. Der verbleibende Raum im gewellten Metallmantel kann kontinuierlich oder diskontinuierlich mit einem beliebigen Füllmaterial ausgefüllt werden, 35 durch welches das Kabel auch längswasserdicht gemacht werden

kann. Innerhalb der Kabelseele kann zusätzlich mindestens ein elektrischer Leiter angebracht werden, der für Stromversorgungszwecke von Verstärkereinheiten eingesetzt werden kann. Des weiteren können im Kabelaufbau zugfeste Elemente angebracht werden, die beispielsweise in Form von Drähten in der Kabelseele vorhanden sind oder als zugfeste Hülle außerhalb des gewellten Metallmantels angebracht werden. Der Metallmantel selbst kann aus elektrisch gut leitendem Material, wie Kupfer oder Aluminium, oder auch aus einem mechanisch festen 10 Metall, wie Stahl, bestehen.

Ausführungsbeispiele des Erfindungsgegenstandes sind in den Zeichnungen dargestellt.

Die Fig. 1 und 2 zeigen teilweise im Schnitt unterschiedliche Ansichten von Nachrichtenkabeln nach der Erfindung und Fig. 3 15 gibt in schematischer Darstellung eine Vorrichtung zur Herstellung eines solchen Kabels wieder.

Mit 1 ist ein Nachrichtenkabel bezeichnet, in dessen Kabelseele 2 eine größere Anzahl von Lichtwellenleitern 3 (LWL)
angeordnet ist. Der Einfachheit halber sind sowohl in Fig. 1
20 als auch in den Fig. 2 und 3 nur drei derartige Lichtwellenleiter eingezeichnet. Die tatsächliche Anzahl der LWL ist
beliebig und ihre Anordnung innerhalb der Kabelseele ist
ebenfalls völlig beliebig. Als äußerermechanischer Schutz für
die Kabelseele 2 dient ein gewellter Netallmantel 4, der

25 mittels einer Längsnaht 5 zu einem geschlossenen Rohr verschweißt ist. Über diesem Metallmantel 4 können gegebenenfalls noch weitere Schichten angebracht sein, die aus Kunststoff bestehen und auch zugfeste Elemente enthalten können. Der Metallmantel 4 kann entsprechend der Darstellung in Fig. 1 30 schraubenlinienförmig oder gemäß Fig. 2 auch ringförmig gewellt werden.

Da die LWL den Querschnitt innerhalb des Metallmantels 4 nur zum Teil ausfüllen, ist es erforderlich, dieselben zumindest abschnittsweise innerhalb des Metallmantels 4 festzulegen. Hierzu kann diskontinuierlich entsprechend Fig. 1 oder kontinuierlich entsprechend Fig. 2 ein Füllmaterial 6 angebracht werden, welches zumindest an bestimmten Stellen den gesamten

- 5 Kabelquerschnitt ausfüllt und so die LWL festlegt. Als Füllmaterilien können die unterschiedlichsten aus der Kabeltechnik
 bekannten Materialien eingesetzt werden. So ist es beispielsweise möglich, hierfür einen geschäumten Kunststoff zu verwenden oder ein pulverförmiges Material, das durch ent-
- 10 sprechende Begrenzungen auch nur stellenweise im Kabelquerschnitt angebracht werden kann. Weitere geeignete Materialien sind Petrolate, die bei Raumtemperatur eine zähe Konsistenz aufweisen und bei höheren Temperaturen flüssiger werden. Solche Fetrolate sind vaselineartige Massen und bestehen im wesent-
- 15 lichen aus Wachsen und Öl. Es können ebenso Massen eingesetzt werden, die rein auf der Basis von hochmolekularen Polymeren aufgebaut sind. Weiterhin eignen sich alle plastischen Massen oder auch Massen auf der Basis von Bitumen oder Polybuten.
- 20 Der gewellte Metallmantel 4 kann für den Fall, daß er selbst für die Stromversorgung von Verstärkereinheiten als Leiter verwendet werden soll, aus Kupfer oder Aluminium bestehen. Es ist jedoch auch möglich, diesen Metallmantel aus Stahl oder jedem anderen geeigneten Metall aufzubauen, insbesondere 25 dann, wenn innerhalb der Kabelseele mindestens zwei für die
- 25 dann, wenn innerhalb der Kabelseele mindestens zwei für die Stromversorgung benötigte Leiter vorhanden sind.

Die LWL 3 sollen innerhalb des Metallmantels 4 ungeradlinig bzw. wellenförmig verlaufen, so wie es in den Fig. 1 und 2 dargestellt ist. Hierdurch erhalten die LWL gegenüber dem 30 Metallmantel 4 eine größere axiale Länge und können somit Dehnungen des Kabels in gewissen Grenzen folgen, ohne daß sie zerstört werden. Die LWL selber können bei ihrer Einbringung in den Metallmantel nach statistischer Verteilung oder nach einer definierten Verlegeform relativ zueinander

angebracht werden, und es ist genau so gut möglich, mehrere LWL vorher zu einer Gruppe zusammenzufassen. Zu Zwecken der eindeutigen Identifizierung einzelner LWL, was insbesondere dann erforderlich ist, wenn dieselben ungeordnet im Kabel- querschnitt verlegt werden, können die LWL einzeln oder auch zu mehreren zusammengefaßt in Hüllen eingebettet werden, die in irgendeiner Form gekennzeichnet sind. Diese Kennzeichnung kann beispielsweise durch unterschiedliche Färbung dieser Hüllen oder auch durch Ringe auf diesen Hüllen erfolgen.

- 10 Wenn der gesamte Querschnitt innerhalb des Metallmantels 4 mit dem Füllmaterial 6 ausgefüllt wird, so wie es in Fig. 2 dargestellt ist, dann kann hierfür ein Material verwendet werden, das die gesamte Kabelseele längswasserdicht macht, so daß Wasser, das durch eine Beschädigung des Metallmantels 15 4 irgendwo in die Kabelseele eingedrungen ist, sich nicht in axialer Richtung ausbreiten kann. Für die Herstellung dieser Längswasserdichtigkeit ist es möglich, das gesamte Füllmaterial als Material auszubilden, das bei Zutritt von Wasser quillt. Genauso gut ist es jedoch möglich, auf der äußeren 20 Lage des Füllmaterials 6 eine dünne Schicht eines solchen bei Wasserzutritt aufquellenden Materials anzubringen.
 - Das Nachrichtenkabel nach der Erfindung kann neben den LwL auch übliche metallische Leiter in seinem Querschnitt aufweisen. Für Stromversorgungszwecke ist es zweckmäßig, mindestens einen isolierten elektrischen Leiter innerhalb der
- 25 stens einen isolierten elektrischen Leiter innerhalb der Kabelseele anzuordnen, der dann mit dem Metallmantel 4 einen Stromkreis bilden kann. Es ist jedoch genauso gut möglich, eine größere Anzahl solcher isolierter elektrischer Leiter innerhalb der Kabelseele anzuordnen. Weiterhin kann innerhalb
- 30 der Kabelseele ein zugfestes Element, beispielsweise ein Draht aus Eisenfäden angebracht werden, und es ist ebenso gut möglich, für diese Zugfestigkeit über dem Metallmantel 4 eine Hülle anzubringen, die aus zugfesten Elementen, wie beispielsweise Glasseidefäden, besteht, die in eine Kunststoff-
- 35 schicht eingebettet sind.

Zum weiteren Schutz der Kabelseele ist es möglich, vor der Anbringung des Actallmantels 4 über der Kabelseele eine isolierende Folie, beispielsweise aus Kunststoff oder Fapier anzubringen, wobei sich insbesondere ein Kreppapier eignet, wenn die Kabelseele insgesamt längswasserdicht sein soll.

Bei der Herstellung eines Nachrichtenkabels nach der Erfindung wird in einem bevorzugten Verfahren beispielsweise wie folgt vorgegangen:

- 10 Die gewinschte Anzahl von LwL, von denen auch in Fig. 3 wiederum nur drei Stück dargestellt sind, läuft von einer entsprechenden Anzahl von Vorratsspulen 7 ab. Die LWL werden dabei vor der Herstellung des Metallmantels 4 in denselben eingebracht. Der Metallmantel 4 selber wird aus einem Metallband
- 15 8 geformt, das von einer Vorratsspule 9 abläuft. Die Formung erfolgt dabei durch ein nicht genauer dargestelltes Rollensystem zu einem Schlitzrohr. Bevor der Schlitz im Rohr verschlossen wird, werden die LWL 3 und außerdem gegebenenfalls Füllmaterialien eingebracht. Das Schlitzrohr wird dann mit
- 20 einer Schweißeinrichtung 10 durch eine Längsnaht 5 verschweißt und in der Welleinrichtung 11 quer zu seiner Achse gewellt. Diese Wellung kann schraubenlinienförmig oder ringförmig ausgebildet sein. Das fertige Kabel wird dann auf eine Trommel 12 aufgewickelt. Die Länge des so kontinuierlich herstellbaren
- 25 Nachrichtenkabels wird durch das Fassungsvermögen der Trommel 12 bestimmt.

Durch die Anbringung der Wellung wird der Metallmantel gegenüber einer glatten Ausführung vom Materialaufwand her verlängert. Die Folge davon ist, daß das Metallband 8 schneller
30 abgezogen wird als die LWL 3. Da die LWL im fertigen Kabel
jedoch ungeradlinig bzw. wellenförmig verlaufen sollen, ist
es erforderlich, daß sie gegenüber dem Metallband mit größerer
Geschwindigkeit abgezogen werden. Zwischen den Vorratsspulen 7

und dem Einlauspunkt der LWL in den Metallmantel 4 ist dementsprechend eine spezielle Abzugsvorrichtung anzubringen, die dafür sorgt, daß die LWL 3 mit einer gegen- über der Abzugsgeschwindigkeit des Metallbandes 8 höheren Geschwindigkeit abgezogen werden. Gleichzeitig können die LWL über entsprechende bewegliche Führungen quer zur Verlegungsrichtung hin und her bewegt werden, so daß sie im fertigen Metallmantel 4 ungeradlinig angeordnet sind. Die Bewegung dieser Führungen kann dabei gleichmäßig sein, die einzelnen Führungen können jedoch auch nach statistischen werten unregelmäßig hin und her bewegt werden.

Neben den LWL 3, die gegenüber dem Metallband 8 mit höherer Geschwindigkeit in dasselbe "eingeschoben" werden, können vor dem Schließen des Metallbandes auch kontinuierlich oder 15 diskontinuierlich Füllmaterialien 6 eingebracht werden. Auch eine über der Seele 2 liegende Schicht aus Isoliermaterial ist gegebenenfalls vor dem Verschließen des Metallmantels anzubringen. Wenn innerhalb der Kabelseele zugfeste Elemente und elektrische Leiter angebracht werden sollen, dann müssen 20 diese Teile ebenfalls vor dem Verschließen des Metallmantels 4 in denselben eingebracht werden.

Leerseite

Fig. 1

Fig. 2

