עבודה 5 – חלק תיאורטי

מגישים: עומרי אטל 208625103, רעי וייס ליפשיץ 208347039

שאלה 1

<u>סעיף א</u>

head ולכל הפעלה של $head(lzl_1)=head(lzl_2)$ ולכל הפעלה של נאמר כי הם שקולים כאשר ולכל נאמר מספר שווה של פעמים של tail על שתי הרשימות, נקבל שהערכים שווים.

סעיף ב

נראה ש- $z_1=ven-squares$ שקולים לפי הגדרת סעיף א. $ven-squares-1\equiv even-squares-1$ שנוצר מ- $z_1=ven-squares-1$ שנוצר מ- $z_1=ven-squares-1$ שנוצר מ- $z_1=ven-squares-1$ נשים לב שכאשר נפעיל $z_1=ven-squares-1$ נשים לב שכאשר נפעיל $z_1=ven-squares-1$. $z_1=ven-squar$

- את הריבוע הזוגי הבא. lzl_1 על tail את הריבוע הזוגי הבא.
- את המספר הזוגי הבא, בריבוע. lzl_2 על tail את המספר הזוגי הבא, בריבוע.

 lzl_1, lzl_2 ידוע שעבור x טבעי, x זוגי אם ורק אם x^2 זוגי. לכן הערכים שחוזרים מ-x זוגי אם ורק אם tail לאחר ביצוע מספר שווה של

שאלה 2

<u>סעיף א</u>

נאמר שפרוצדורה $(f x_1 \dots x_n \ success - cont \ fail - cont)$ שקולה ל- $(f x_1 \dots x_n)$ שקולה ל $(f x_1 \dots x_n)$ אם $(f x_1 \dots x_n \ success - cont \ fail - cont)$ אם $(f x_1 \dots x_n \ success - cont \ fail - cont)$

<u>סעיף ד</u>

<u>שאלה 3</u>

<u>סעיף א</u>

.1

Equations	Substitution
t(s(s), G, H, p, t(E), s) = t(s(H), G, p, p, t(E), K)	{}
Equations	Substitution
s(s) = s(H)	{}
G = G	
H = p	
p = p	
t(E) = t(E)	
s = K	
Equations	Substitution
G = G	{}
H = p	
p = p	
t(E) = t(E)	
s = K	
s = H	
Equations	Substitution
H = p	{}
p = p	
t(E) = t(E)	
s = K	
s = H	
Equations	Substitution
p = p	$\{H=p\}$
t(E) = t(E)	
s = K	
s = H	
Equations	Substitution
t(E) = t(E)	$\{H=p\}$
s = K	
s = H	
Equations	Substitution
s = K	${H=p}$
s = H	
E = E	
Equations	Substitution
s = H	$\{H=p,K=s\}$
E = E	
Equations	Substitution

E = E	$\{H=p,K=s\}$
s = p	
Equations	Substitution
s = p	FAIL

The algorithm failed in step 6, since eq' is s=p which are both atomic.

.2

Equations	Substitution
g(c,v(U),g,G,U,E,v(M))	{}
· · · · · · · · · · · · · · · · · · ·	U
= g(c, M, g, v(M), v(G), g, v(M))	
Equations	Substitution
c = c	{}
v(U) = M	
g = g	
G = v(M)	
U = v(G)	
E = g	
v(M) = v(M)	
Equations	Substitution
G = v(M)	$\{M=v(U)\}$
U = v(G)	
E = g	
v(M) = v(M)	
Equations	Substitution
U = v(G)	$\{M = v(U), G = v(M)\}$
E = g	
v(M) = v(M)	
Equations	Substitution
	FAIL

The algorithm fails because when applying the substitution $\{M=v(U), G=v(M)\}$ on the equation U=v(G) we get $U=v\left(v\big(v(U)\big)\right)$ \Rightarrow the algorithm fails because we don't allow circular mapping.

Equations	Substitution
s([v [v V] A]]) = s([v [v A]])	8
Equations	Substitution
[v [[v V] A]] = [v [v A]]	{}
Equations	Substitution
v = v	{}
[[v V] A] = [v A]	
Equations	Substitution
[[v V] A] = [v A]	8
Equations	Substitution
v = [v V]	8
A = A	
Equation	Substitution
	FAIL

The algorithm fails because of the equation $v = \lfloor v \vert V \rfloor$ since $\lfloor v \vert V \rfloor$ is not atomic.

<u>סעיף ג</u>

:proof tree-א.

 $\{Y=s(zero), X=zero\}$ substitution עבור ענף ההצלחה השמאלי נקבל $\{Y=zero, X=s(zero)\}$ substitution עבור ענף ההצלחה הימני נקבל

- $\{Y=zero,X=s(zero)\},\{Y=s(zero),X=zero\},false:$ ב. התשובות הן
 - .true שכן קיים לו חישוב המסתיים ב $successful\ proof\ tree$ ג. זהו
 - ד. זהו עץ סופי כי אין בו ענפים אינסופיים.