Содержание

- 1 Определение ортогональных и ортонормированных систем 1
- 2 Теорема о линейной независимости ортогональной системы

3

- 3 Координаты вектора в ортогональном базисе 4
- 4 Линейные подпространства Евклидовых пространств и ортогональные дополнения 4
- 5 Процесс Грама–Шмидта. Следствие о дополняемости ортогональной системы до ортогонального базиса 5

1 Определение ортогональных и ортонормированных систем

Пусть X — это Евклидово векторное пространства. Это означает, что

- 1. X конечномерное линейное пространство над полем вещественных чисел \mathbb{R} :
- 2. В X задано скалярное произведение $(x,y) \in \mathbb{R}, \forall x \in X, y \in X$.

По определению справедливы соотношения

- 1. $(x,x) > 0 \ \forall x \in X, \ x \neq 0$, иначе (x,x) = 0 (то есть при x = 0);
- 2. (x,y) = (y,x) (симметричность);
- 3. $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z), \forall \alpha, \beta \in \mathbb{R}.$

В частности, если $X = \mathbb{R}^n$, то dim X = n и для стандартного базиса $e_1 = (1,0,\ldots,0), e_2 = (0,1,0,\ldots,0),\ldots,e_n = (0,0,\ldots,0,1)$ этого линейного пространства справедливы соотношения

$$\begin{vmatrix} x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n \\ y = y_1 e_1 + y_2 e_2 + \dots + y_n e_n \end{vmatrix} \Rightarrow (x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{j=1}^n x_j y_j.$$

Наличие скалярного произведения в X позволяет вводить в нем метрические соотношения. Длиной вектора $v \in X$ называется вещественное число $|v| = \sqrt{(v,v)}$. Длина v равна нулю $\Leftrightarrow v = 0$, в противном случае длина строго положительна

 $\forall x, y \in X$ справедливо неравенство Коши-Буняковского:

$$|(x,y)| \le |x| \cdot |y|, \tag{(C-B)}$$

причем равенство здесь возможно в том и только том случае, если векторы x и y линейно зависимы (Коллинеарны). Из неравенства (C-B) следует, в частности, что тригонометрическое уравнение $\cos{(\varphi)} = \frac{(x,y)}{|x|\cdot|y|},$ $\forall x \neq 0, y \neq 0$ имеет на отрезке $0 \leq \varphi \leq \pi$ ровно один корень φ . Именно этот корень называется углом между ненулевыми векторами x и y.

Определение

Векторы x и y ортогональны друг другу $(x \perp y)$, если угол между ними равен $\frac{\pi}{2}$.

Если в X имеется система x_1, x_2, \ldots, x_m попарно ортогональных векторов $(x_i \perp x_j \text{ при } i \neq j; i, j = 1, 2, \ldots, m)$, то справедлива теорема Пифагора

$$|x_1 + x_2 + \ldots + x_m|^2 = |x_1|^2 + |x_2|^2 + \ldots + |x^m|^2$$
.

Система:
$$(x_1 + x_2 + \ldots + x_m, x_1 + x_2 + \ldots + x_m) = \sum_{i,j=1}^m (x_i, x_j) = \sum_{i=1}^m (x_i, x_i).$$

В пространстве \mathbb{R}^n со стандартным скалярным произведением векторы $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)$ попарно ортогональны и образуют канонический (стандартный) базис. При этом $|e_i| = 1, j = 1, 2, \dots, n$.

Оказывается, что базисы с аналогичными свойствами существуют и в любом Евклидовом пространстве X.

Определение

Базис

$$(e_1, e_2, \dots, e_n) \tag{(B)}$$

Евклидова векторного пространства X называется ортогональным, если $(e_i,e_j)=0$ при $i\neq j;\ i,j=1,2,\ldots,n.$ Если при этом $|e_i|=\sqrt{(e_i,e_j)}=1$ для $i=1,2,\ldots,n$, то базис (B) называется ортонормированным.

Любой ортогональный базис (B) преобразуется в ортонормированный с помощью замены $e'_j=\frac{1}{|e_j|}e_j,\ j=1,2,\ldots,n.$ При этой замене имеем $(e'_i,e'_j)=\frac{1}{|e_i|}\cdot\frac{1}{|e_j|}\ (e_i,e_j)=\delta_i^j,$ где δ_i^j — символ Кронекера, $\delta_i^j=\begin{cases} 0, i\neq j,\\ 1, i=j \end{cases}$

2 Теорема о линейной независимости ортогональной системы

Теорема (линейная независимость ортогональных векторов)

Любые ненулевые взаимно ортогональные векторы e_1, e_2, \ldots, e_m из X линейно независимы.

Доказательство

Пусть e_1, e_2, \ldots, e_n взаимно ортогональны; $|e_j| \neq 0, j = 1, 2, \ldots, n$; Предположим, что имеется какая-то линейная комбинация

$$\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_m e_m = 0, \tag{(1)}$$

в которой не все коэффициенты α_j нулевые. Пусть, например, $\alpha_k \neq 0$. Тогда, домножив обе части равенства (1) скалярно на e_k , получим $0 = (0, e_k) = (\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_m e_m, e_k) = \sum_{j=1}^m \alpha_j(e_j, e_k) = \alpha_k \cdot (e_k, e_k) = \alpha_k |e_k|^2$.

По условию вектор $e_k \neq 0 \Rightarrow |e_k|^2 > 0$. Следовательно, из равенства $0 = \alpha_k \cdot |e_k|^2$ вытекает, что $\alpha_k = 0$. Но это противоречит первоначальному выбору номера k.

Таким образом, должно быть: $\alpha_1=\alpha_2=\ldots=\alpha_m=0$, т.е. система (e_1,e_2,\ldots,e_m) линейно независима. \square

Следствие

Если в условиях теоремы $\dim x = n$, а число m векторов в ортогональной системе $(e_1, e_2, \ldots, e_m) = n$, то есть m = n, то (B) — это ортогональный базис исходного Евклидова векторного пространства X.

Как мы докажем, во всяком n-мерном пространстве X ортогональные базисы существуют.

3 Координаты вектора в ортогональном базисе

Пусть (e_1, e_2, \ldots, e_n) — ортонормированный базис X. Тогда координаты любого вектора

$$v = c_1 e_1 + c_2 e_2 + \ldots + c_n e_n \tag{(2)}$$

в этом базисе находятся особенно просто.

Домножая скаляр на обе части равенства (2) на базисный вектор e_k , получаем $(v,e_k)=(\sum\limits_{j=1}^n c_je_j,e_k)=\sum\limits_{j=1}^n c_j(e_j,e_k)=\sum\limits_{j=1}^n c_j\cdot\delta_j^k=c_k,\ \forall k=1,2,\ldots,n.$ Это и есть искомое выражение координат вектора в ортонормированном базисе.

В Евклидовом пространстве X линейная оболочка $\langle e \rangle_{\mathbb{R}} \equiv \operatorname{span}\{e\}$ для любого ненулевого вектора e называется прямой. Если |e|=1, то величина (x,e) называется проекцией вектора x на прямую $\langle e \rangle_{\mathbb{R}}$.

Пусть e_1, e_2, \ldots, e_n — ортонормированный базис X. Тогда прямые $\langle e_1 \rangle_{\mathbb{R}}, \langle e_2 \rangle_{\mathbb{R}}, \ldots, \langle e_n \rangle_{\mathbb{R}}$ называются осями координат в X.

Таким образом, координаты любого вектора $v \neq 0$ в ортонормированном базисе совпадают с проекциями v на оси координат, соответствующих этому базису.

4 Линейные подпространства Евклидовых пространств и ортогональные дополнения

Пусть X_1 — линейное подпространство X, то есть $X_1 \subset X$ и при этом

- 1. $\forall x, y \in X_1 \Rightarrow x + y \in X_1;$
- 2. $\forall x \in X_1, \forall \lambda \in \mathbb{R} \Rightarrow \lambda x \in X_1$.

Если X_1 — линейное подпространство X, то имеет место неравенство

$$\dim X_1 \leq \dim X$$
.

Если $\dim X_1 < \dim X$, то $X_1 \neq X$ и называется собственным подпространством X.

Пример. Пусть $v \in X$, $v \neq 0$. Множество $\{u \in X : u \perp v\}$ является линейным подпространством X. Пусть $x \perp v$ и $y \perp v$. Тогда $(\alpha x + \beta y, v) =$

 $\alpha(x,v)+\beta(y,v)=0\Rightarrow \alpha x+\beta y\perp v.$ Пространство $\{u\in X\colon u\perp v\}$ называется ортогональным дополнением к v.

Определение

Вектор $v \in X$ ортогонален подпространству $X_1 \subset X$, если $v \perp u \ \forall u \in X_1$. Множество всех векторов из X, ортогональных заданному подпространству $X_1 \subset X$, является подпространством X. Для этого подпространства используется специальное обозначение X_1^{\perp} .

Определение

Пространство X_1^{\perp} называют ортогональным дополнением к X_1 в пространстве X.

5 Процесс Грама—Шмидта. Следствие о дополняемости ортогональной системы до ортогонального базиса

Теорема (процесс ортогонализации)

Пусть (e_1,e_2,\ldots,e_m) — система из m линейно независимых векторов Евклидова пространства X. Тогда существует ортонормированная система векторов (e'_1,e'_2,\ldots,e'_n) , обладающая тем свойством, что линейные оболочки $L_i=\mathrm{span}\{e_1,e_2,\ldots,e_i\}$ и $L'_i=\mathrm{span}\{e'_1,e'_2,\ldots,e'_i\}$ совпадают при всех $i=1,2,\ldots,m;$ $m\leq n$.

Доказательство

Построение ортонормированной системы $(e'_1, e'_2, \dots, e'_m)$ с нужными свойствами проведем по индукции.

Первый вектор зададим равенством $e'_1=\lambda e_1$, где $\lambda=\frac{1}{|e_1|}$. Тогда $|e'_1|=1$ и при этом $L_1=\langle e_1\rangle_{\mathbb{R}}=\langle e'_1\rangle_{\mathbb{R}}=L'_1$.

Предположим, что имеется ортонормированная система $(e'_1, e'_2, \ldots, e'_k)$ со свойством span $\{e_1, e_2, \ldots, e_i\} = \text{span}\{e'_1, e'_2, \ldots, e'_i\}$ для всех $i = 1, 2, \ldots, k$ $(\Leftrightarrow L_i = L;$ для $i = 1, 2, \ldots, k)$.

Построим в этих предположениях следующий вектор e'_{k+1} — искомая система. Заметим, что e_{k+1} исходной системы в подпространстве $L_k = L'_k$ не содержится (иначе e_{k+1} представим линейной комбинацией векторов (e_1, e_2, \ldots, e_k) , что противоречит исходному условию о линейной независимости векторов $(e_1, e_2, \ldots, e_k, e_{k+1})$). Рассмотрим множество векторов вида

$$v = e_{k+1} - \sum_{i=1}^{k} \lambda_i e'_i, \ \lambda_i \in \mathbb{R}.$$
 ((3))

Для любого набора скаляров $\lambda_1, \lambda_2, \ldots, \lambda_k$ имеет место равенство $L_{k+1} = \mathrm{span}\{e_1, e_2, \ldots, e_k; v\}$. Оказывается, что скаляры $\lambda_1, \lambda_2, \ldots, \lambda_k$ в формуле (3) для вектора v можно выбрать таким образом, что вектор v будет ортогонален векторам $(e'_1, e'_2, \ldots, e'_k)$, то есть ортогонален пространству L'_k . Искомые значения скаляров $\lambda_1, \lambda_2, \ldots, \lambda_k$ ищем из системы условий $(v, e'_j) = 0, \ j = 1, 2, \ldots, k$. Подставляя сюда вместо v разложение (3), получаем $(e_{k+1}, e'_j) - (\sum_{i=1}^k \lambda_i e'_i, e_j) = (e_{k+1}, e'_j) - \sum_{i=1}^k \lambda_i (e'_i, e'_j) = (e_{k+1}, e'_j) - \sum_{i=1}^k \lambda_i \delta_i^k = (e_{k+1}, e'_j) - \lambda_j = 0; \ j = 1, 2, \ldots, k$. Таким образом, взяв $\lambda_j = (e_{k+1}, e'_j), \ j = 1, 2, \ldots, k$, получим вектор $v_* = e_{k+1} - \sum_{j=1}^k (e_{k+1}, e'_j) e'_i$, обладающий свойствами:

- 1. $v_* \neq 0$;
- 2. $v_* \perp L'_k$:
- 3. $L_{k+1} = \operatorname{span}\{e_1, e_2, \dots, e_k; v_*\}.$

Возьмем теперь $e'_{k+1} = \mu v_*$, где $\mu = \frac{1}{|v_*|}$. Тогда система $(e'_1, e'_2, \dots, e'_k, e'_{k+1})$ ортонормированная и при этом $L_{k+1} = L'_{k+1}$.

Заключаем теперь, что теорема верна в соответствии с принципом математической индукции. \square

Процесс ортогонализации, примененный при доказательстве предыдущей теоремы, носит название процесса Грама–Шмидта. Подчеркнем, что этот процесс конструктивен.

Следствие

Всякую ортонормированную систему векторов Евклидова пространства X можно дополнить до ортонормированного базиса X.

Доказательство

В частности, любой ненулевой вектор v Евклидова пространства X можно нормировать и дополнить затем до ортогонального базиса пространства X.