Oplossingen examen

Jens Buysse

12/7/2020

Oplossingen examen

Opgave 1.1

• CRC Checksum:

1	0	0	0	0	1	0	1	1	0
1	0	1	1	1					
0	0	1	1	1	1	0	1	1	0
		1	0	1	1	1			
		0	1	0	0	1	1	1	0
			1	0	1	1	1		
			0	0	1	0	0	1	0
					1	0	1	1	1
					0	0	1	0	1

De CRC checksum is dus 0101.

Opgave 1.2

1	1	0	1	0	0	0	0	1	1	0	0
1	0	1	1	1	1						
0	1	1	0	1	1	0	0	1	1	0	0
	1	0	1	1	1	1					
	0	1	1	0	0	1	0	1	1	0	0
		1	0	1	1		1				
		0	1	1	1	0	1	1	1	0	0
			1	0	1	1	1	1			
			0	1	0	1	0	0	1	0	0
				1	0	1	1	1	1		
				0	0	0	1	1	0	0	0

 $1100 \neq 1011$ dus de reeks bevat bitfouten

Opgave 1.3

1	1	1	1	1	1	1	1	1	1	1
1	2	3	4	5	6	7	8	9	10	11
p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7

	1	1	1	1	1	1	1	1	1	1	1	
<u>—</u>	1		1		1		1		1		1	6
p2		1	1			1	1			1	1	6
p3				1	1	1	1					4
p4								1	1	1	1	4

Opgave 1.4

Zelf oplossen

Opgave 2

- $(1011010, 0111)_2$
 - Voor de komma : $64 + 16 + 8 + 2 = 90 (2^1 + 2^3 + \dots + 2^6)$
 - Na de komma: 0.25 + 0.125 + 0.0625 = 0.4375
 - Volledig dus: $(90.4375)_{10}$
- $(E15, 03B)_{16}$
 - Voor de komma: $(1110.0001.0101)_2$
 - Na de komma: $(0000.0011.1011)_2$
 - Samen is dit: $(111000010101, 000000111011)_2$
 - Samen is dit: $(7025, 0073)_8$
- $(130, 32)_{16}$
 - Binair: $(0001.0011.0000, 0011.0010)_2$
 - Decimaal: (16+32+256) = 304, (0+0.125+0.0625+0.0078125) of dus 0.1953125
 - Samen: $(304, 1953125)_{10}$
- (739)₁₀
 - $-2 \times 256 = 512$
 - -739 512 = 227
 - -256/16 = 14
 - $-14 \times 16 = 224$
 - -227 224 = 3
 - $-\ 2\times 16^2 + 14\times 16^1 + 3\times 16^0$
 - $-(2E3)_{16}$

Opgave 3

- (-118) in 2-complement $01110110 \rightarrow 10001001 \rightarrow 10001010$
- (-80) in 2-complement $01010000 \rightarrow 10101111 \rightarrow 10110000$

1	1	0	0	0	1	0	1	0
	1	0	1	1	0	0	0	0
	0	0	1	1	1	0	1	0

Carry over naar buiten, dus overflow en foute berekening. Antwoord D.

Opgave 4

- $(32B00000)_{16}$
- - Teken: 0, dus positief

- Exponent: $(01100101)_{E2} = 64 + 32 + 4 + 1 = (101)_{10} \rightarrow 101 127 = -26$
- Samen dus $+12^{-26} \times 1,375$

Opgave 5.1

- 2+2+1=5
- f(4) = 4 + 1 = 5
- $dom(f) = \mathbb{R}$
- $bld(g) = \mathbb{R}^+_{\nvDash}$

Nulpunten:

- f: -1
- g: /
- h: 0

```
curve(x+1,from = -4,to= 4, col="RED")
curve(2^x,from = -4,to= 4, add= TRUE, col="BLUE")
curve(x^2,from = -4,to= 4, add= TRUE, col="GREEN")
grid()
```


Tekening Opgave 5

We noteren x als 1 en \overline{x} als 0, zelfde voor y en z.

	00	01	11	10
0	1	0	0	0
1	1	1	1	1

•
$$\overline{f(1,0,1)}.f(0,1,1) = 0$$

- Er staat sowieso +1, dat blijft dus 1 (begrenzing)
- Meest eenvoudige vorm: $\overline{x}.\overline{y} + z$ (er zijn twee rechthoeken te bespeuren: eerste kolom, tweede rij)
- CNV: $(x + \overline{y} + z).(\overline{x} + \overline{y} + z).(\overline{x} + y + z)$

Opgave 6

$$f(x,y,z) = (x.y) + (y.(y + \overline{z})) + (\overline{y}.z) \quad (opgave)$$

$$= (x.y) + (y.y + y.\overline{z}) + (\overline{y}.z) \quad (distributief)$$

$$= (x.y) + (y + y.\overline{z}) + (\overline{y}.z) \quad (idempotentie)$$

$$= (x.y) + (y) + (\overline{y}.z) \quad (absorptie)$$

$$= x.y + y + \overline{y}.z \quad (associatief)$$

$$= y + \overline{y}.z \quad (absorptie)$$

$$(6)$$

$$(7)$$

Opgave 7

• Antwoord 1 is juist: (A + B).C.D.E

Opgave 8

- Het aantal elementen in \mathbb{Z}_{29} : andere waarde, 29
- $31.30 2902 \equiv 2.1 2 \equiv 0 \mod 29$
- $x \equiv 21 \mod 29$
- $x \equiv 16 \mod 29$

Opgave 9

p	q	$p \wedge q$	$(p \wedge q) \vee q$	$(p \land q) \lor q \to q$
0	0	0	0	1
0	1	0	1	1
1	0	0	0	1
1	1	1	1	1

 $((p \land q) \lor q) \to q$ is wel een tautologie en is geen contradictie.