Evaluación de la influencia de la llegada de LeBron James a Los Angeles Lakers: Análisis comparativo por temporada.

IECD421: Visualización de datos

Bastián Barraza

November 28, 2023

- Introducción
- 2 Objetivos
- Metodología
- Resultados
- Conclusión

Introducción

- LeBron James es uno de los atletas más dominantes de su generación.
- El año 2018 LeBron James deja Cleveland Cavaliers para unirse a Los Ángeles Lakers.
- Los precios de las entradas al estadio Stapples Center aumentaron un 427%.
- Durante su primer partido de pretemporada, ESPN tuvo 1.17 millones de visitas, la tercera audiciencia mas grande en un partido de pretemporada desde 2009

Introducción

Impacto de LeBron James

- ¿Su llegada ha influenciado en la producción de puntos del equipo?
- ¿La presencia de LeBron James es determinante en el rendimiento del equipo en términos de producción de puntos?

Hipótesis

Existe una diferencia significativa en la producción de puntos antes y después de la llegada de LeBron James al equipo.

- Introducción
- 2 Objetivos
- Metodología
- 4 Resultados
- 6 Conclusión

Objetivos

Objetivo general

Evaluar la influencia de LeBron James en el rendimiento de los Los Angeles Lakers en términos de la cantidad de puntos anotados por el equipo durante las temporadas 2017-18, 2018-19 y 2019-20.

Objetivos específicos

- Analizar la cantidad promedio de puntos anotados por el equipo en intervalos de 10 segundos, antes de la llegada de LeBron James y durante los dos años posteriores a su incorporación al equipo.
- Determinar si existen diferencias significativas en la cantidad de puntos anotados en cada partido de la temporada en Los Angeles Lakers.

- Introducción
- 2 Objetivos
- Metodología
- 4 Resultados
- Conclusión

Metodología

Series de tiempo

Se plantea una serie temporal en donde los datos son el promedio de puntos cada 10 segundos realizados en cada partido.

Librerías utilizadas

- bfast
- ggplot2

Se analiza la serie temporal mediante:

- ACF.
- PACF.
- Descomposición de series temporales.
- Puntos de quiebre.

Metodología ^{ANOVA}

Se plantea un análisis de varianza (ANOVA) con la cantidad de puntos totales por partido del equipo en cada temporada.

Librerías utilizadas

- agricolae
- ggplot2

Los supuestos se chequean con:

- Test de Shapiro-Wilks.
- Test de Levene.

Además, el post-anova se realiza mediante la prueba de Tukey.

- Introducción
- 2 Objetivos
- 3 Metodología
- 4 Resultados
- 6 Conclusión

Series de Tiempo

Media de puntos cada 10 segundos de Los Angeles Lakers por temporada

Series de Tiempo

Función de autocorrelación parcial para la serie de cantidad de puntos cada 10 segundos por temporada 2017-18 0.6 0.4 0.2 2018-19 Temporada 0.6 PACF 0.2 0.6 0.4 0.2 0.0 3

Figure: Gráfico ACF

Figure: Gráfico PACF

Lag

November 28, 2023

12 / 23

Series de Tiempo

Figure: Descomposición de la serie temporal en la temporada 2017-18

Series de Tiempo

Figure: Descomposición de la serie temporal en la temporada 2018-19

Series de Tiempo

Figure: Descomposición de la serie temporal en la temporada 2019-20

Series de Tiempo

2.5%	Breakpoints	97.5%
71	75	78
142	147	149
216	218	222

Table: Temporada 2017-18

2.5%	Breakpoints	97.5%
74	78	80
144	147	151
212	217	221

2.5%	Breakpoints	97.5%
74	83	84
142	144	154
213	217	220

Table: Temporada 2018-19

Table: Temporada 2019-20

Fórmula de ANOVA planteada:

$$X_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

Donde:

- X_{ij} es la cantidad de puntos en el partido i del año j.
- μ es la media global de todos los partidos jugados.
- α_i es el efecto del año i.
- ϵ_{ij} es el error aleatorio asociado con la observación X_{ij} .

Total de puntos por temporada de Los Angeles Lakers

Año	Media de puntos	Desv. Estándar
2017	91.439	11.997
2018	95.475	11.396
2019	95.690	12.354

Table: Estadísticas descriptivas por año

Variable	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Year	2	915	457.5	3.23	0.0413*
Residuals	232	32864	141.7		

Table: Resultados del test ANOVA

ANOVA

Boxplot de Residuos del Modelo ANOVA

Prueba	Estadístico	P-value
Shapiro-Wilks	0.994	0.632
Levene	0.783	0.458

Table: Resultados de pruebas de normalidad y homocedasticidad.

Año	Diferencia	P-Value
2017 - 2018	-4.037	0.079
2017 - 2019	-4.251	0.073
2018 - 2019	-0.215	0.993

- Introducción
- 2 Objetivos
- Metodología
- 4 Resultados
- 6 Conclusión

Conclusión

- Se cumplen los objetivos propuestos.
- Se confirma la hipótesis planteada.

Puntos clave

- La tendencia de los equipos es a aumentar la produccion de puntos a medida que transcurre el tiempo.
- Existen cambios en las tendencias de la serie cercano al comienzo de cada cuarto.
- La llegada de LeBron James generó un aumento significativo en la producción de puntos totales por partido del equipo.