Color Models

Dept. of Computer Science & Engineering Chittagong University of Engineering & Technology

Kaushik Deb, Ph.D.

What is Color Models?

- → Also known as color spaces or color systems
- → To facilitate the specification of colors in some standard way
- → Provides a coordinate system and a subspace in it where each color is represented by a single point

What is Color?

- → Color is a powerful descriptor that often simplifies object identification and extraction from a scene (or visual perceptual properties)
- → Color is a fundamental attribute of our viewing experience
- Very important in human perception
- → Same shapes with different color coding may look different

Tiger in a jungle!

Preview

Preview

Light

Light is fundamental for *color vision*

Unless there is a source of light, there is nothing to see!

What do we see?

We do not see objects, but the light that has been

reflected by or transmitted through the objects

Light and EM waves

Light is an electromagnetic wave

If its wavelength is comprised between 400 and 700 nm (*visible spectrum*), the wave can be detected by the human eye and is called *monochromatic light*

Electromagnetic Spectrum

Physical properties of light

This distribution may indicate:

- A <u>dominant wavelength</u> (or frequency) which is the color of the light (hue)
- <u>Brightness</u> (luminance), intensity of the light (value)
- <u>Purity</u> (saturation), which describes the degree of vividness (Interest and variety and intensity)

CIE standard

- → International Commission on Illumination (1931) is the international authority on light, illumination, color, and color spaces
- not a computer model
- each color = a weighted su
 m of three imaginary primar
 y colors

Types of Color Model

- RGB model
 - Color monitor, color video cameras
- CMY model
 - Color printer
- HSI model
 - Color image manipulation
- Grayscale
- XYZ (CIE standard, Y directly measures the luminance)
- YUV (used in PAL color TV)
- YIQ (used in NTSC color TV)

Standard wavelength values for the primary colors

FIGURE 6.3 Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength.

11 Department of CSE, CUET

• Tri-stimulus values: The amount of Red, Green and Blue needed to form any particular color

Denoted by: X, Y and Z

Tri-chromatic coefficient:

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z} \qquad z = \frac{Z}{X + Y + Z}$$
$$x + y + z = 1$$

- The *purpose* of a color model (also called color space or color system) is to facilitate the specification of colors in some standard, generally accept way.
- RGB (red, green, blue): monitor, video camera
- CMY (cyan, magenta, yellow), CMYK (CMY, black) model for color printing
- HSI model, which corresponds closely with the way humans describe and interpret color

RGB (red, green, blue) color model

- → The RGB color space is related to human vision through the tristim ulus theory of color vision
- → The RGB color space or typical color image consists of the 3 additive primaries: red, green and blue
 - r gives the intensity of the red component
 - g gives the intensity of the green component
 - b gives the intensity of the blue component
- → Spectral components of these color combine additively to produce a resultant color
- → Use 8 bits for each primary color
- Obtain 16 million colors

• For example, if all three primary colors are 0 percent, the result is black

If all three primary colors are 100 percent (the maximum value),

the result is

RGB Color model

Source: www.mitsubishi.com

Active displays, such as computer monitors and television sets, emit combinations of red, green and blue light. This is an **additive** color model

CMY Color Model

Passive displays, such as color inkjet printers, **absorb** light instead of emitting it. Combinations of **cyan**, **magenta** and **yellow** inks are used. This is a **subtractive** color model.

CMY cartridges for colour printers.

The CMY and CMYK Color Spaces

- Cyan, Magenta and Yellow are the secondary colors of light
- Most devices that deposit colored pigments on paper, such as color printers and copiers, require CMY data input.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ - \begin{bmatrix} G \\ B \end{bmatrix}$$

The conversion from RGB to CMY is given by the formula

$$\begin{bmatrix} c \\ m \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

Example: The red colour is written in RGB as (1,0,0). In CMY it is written as

$$\begin{bmatrix} c \\ m \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ - \begin{bmatrix} g \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

that is, magenta and yellow.

Example: The magenta is written in CMY as (0,1,0). In RGB it is written as

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

giving,

$$\begin{bmatrix} r \\ g \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ - \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

that is, red and blue.

- □ For printing and graphics art industry, CMY is not enough; a fourth primary, K which stands for black, is added
- □ Conversions between RGB and CMYK are possible, alth ough they require some extra processing

HSI Color Model

- HSI (=HSB)
 - Hue, Saturation, Value (=Brightness)
 - HUE: the actual color.
 - measured in angular degrees around the cone
 - Ex) red = 0 or 360 (so yellow = 60, green = 120, etc.).
 - SATURATION: the purity of the color
 - measured in percent from the center of the cone (0) to the surface (100).
 - At 0% saturation, hue is meaningless.
 - BRIGHTNESS/INTENSITY
 - measured in percent from black (0) to white (100).
 - At 0% brightness, both hue and saturation are meaningless.

Computer Vision

HSI Color Model

- HSI color are not described on the basis of percentages of primary colors, but rather by their hue, saturation and intensity
- Hue and saturation taken together are called *Chromaticity*, and therefore, a color may be characterized by its Brightness and Chromaticity.


```
onversion of RGB encoding to HSI encoding.
                                                                 * * *
R,G,B: input values of RGB all in range [0,1] or [0,255];
I : output value of intensity in same range as input;
S: output value of saturation in range [0,1];
H: output value of hue in range [0,2\pi), -1 if S is 0:
R,G,B,H,S,I are all floating point numbers;
      procedure RGB_to_HSI( in R,G,B; out H,S,I)
     I := \max (R, G, B);
     min := min (R, G, B);
     if (I \ge 0.0) then S := (I - \min)/I else S := 0.0:
     if (S \le 0.0) then { H := -1.0; return; }
        "compute the hue based on the relative sizes of the RGB components"
     diff := I - min;
     "is the point within +/- 60 degrees of the red axis?"
     if (r = I) then H := (\pi/3)^*(g - b)/diff;
     "is the point within +/- 60 degrees of the green axis?"
     else if (g = I) then H := (2 * \pi/3) + \pi/3 * (b - r)/diff;
     "is the point within +/- 60 degrees of the blue axis?"
     else if (b = I) then H := (4 * \pi/3) + \pi/3 * (r - g)/diff;
     if (H \le 0.0) H := H + 2\pi;
```


Algorithm 15: Conversion of RGB to HSI.

Department of Cor, CJET

Department of CSE, CUET

Converting colors from RGB to HSI

$$H = \begin{cases} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B > G \end{cases}$$

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)]^{1/2}} \right\}$$

$$S = 1 - \frac{3}{(R+G+B)} [\min(R,G,B)]$$

$$I = \frac{1}{3}(R + G + B)$$

- **Converting colors from HSI to RGB**
 - RG sector :

$$0^{\circ} \le H < 120^{\circ}$$

$$R = I \left[1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$G = 3I - (R + B)$$

$$B = I(1 - S)$$

- Converting colors from HSI to RGB
 - **GB** sector :

$$120^{\circ} \le H < 240^{\circ}$$

$$H = H - 120^{\circ}$$

$$R = I(1 - S)$$

$$G = I \left[1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$B = 3I - (R + G)$$

- Converting colors from HSI to RGB
 - BR sector :

$$240^{\circ} \le H < 360^{\circ}$$

$$H = H - 240^{\circ}$$

$$G = I(1-S)$$

$$B = I \left[1 + \frac{S \cos H}{\cos(60^\circ - H)} \right]$$

$$R = 3I - (G + B)$$

	RGB	СМА	HSI
RED	(255, 0, 0)	(0,255,255)	(0.0 , 1.0, 255)
YELLOW	(255,255, 0)	(0, 0,255)	(1.05, 1.0, 255)
	(100,100, 50)	(155,155,205)	(1.05, 0.5, 100)
GREEN	(0,255, 0)	(255, 0,255)	(2.09, 1.0, 255)
BLUE	(0, 0,255)	(255,255, 0)	(4.19, 1.0, 255)
WHITE	(255,255,255)	(0, 0, 0)	(-1.0, 0.0, 255)
GREY	(192,192,192) (127,127,127)	(63, 63, 63) (128,128,128)	(-1.0, 0.0, 192) (-1.0, 0.0, 127)
	(63, 63, 63)	(192,192,192)	(-1.0, 0.0, 63)
BLACK	(0, 0, 0)	(255,255,255)	(-1.0, 0.0, 0)

Gray color model

- Grayscale
 - BLACK = 0% brightness, 100% grey.
 - WHITE = 100% brightness, 0% grey.

YIQ Color Coordinate System

- → YIQ is defined by the National Television System Committee (N TSC)
- → Y describes the luminance, I and Q describes the chrominance.
- → A more compact representation of the color.
- → YUV plays similar role in PAL and SECAM.

YUV/ YCbCr Coordinate

- → YUV is the color coordinate used in color TV in PAL system, so mewhat different from YIQ.
- YCbCr is the digital equivalent of YUV, used for digital TV, with
 8 bit for each component, in range of 0-255

YCbCr Color Space is used in MPEG video compression standards

- Y is luminance
- Cb is blue chromaticity
- Cr is red chromaticity

$$Y = 0.257*R + 0.504*G + 0.098*B + 16$$

$$Cr = 0.439*R - 0.368*G - 0.071*B + 128$$

$$Cb = -0.148*R - 0.291*G + 0.439*B + 128$$

• YIQ color space (Matlab conversion function: rgb2ntsc):

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.528 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Question Please?

