DHDS - TURMA 6 PROJETO INTEGRADOR: COVID-19

CÁLCULO DO RISCO DE ÓBITO POR COVID-19 (%) FRENTE A DIVERSOS PARÂMETROS PESSOAIS PRÉ-EXISTENTES.

Fernando Rodrigues
Paulo Assunção
João Pacher

Outubro/2020

OBJETIVO

- Risco individual de óbito (%) ao se contaminar com o vírus SARS2 da COVID19.
- Abordagem alternativa ao isolamento horizontal adotado no Brasil pelo vertical que implica manter apenas as pessoas dos grupos de riscos isolados.

ABORDAGEM

MODELAGEM DE CLASSIFICAÇÃO COM CÁLCULO DE PROBABILIDADE

Dataset público SIVEP-Gripe
 (Sistema de Informação de Vigilância Epidemiológica da Gripe) .

```
raw_df.shape
(291130, 134)
```

```
# número de casos covid
raw_df['PCR_SARS2'].value_counts(dropna=False)

NaN 193206
1.0 97924
Name: PCR SARS2, dtype: int64
```

291.130 Observações

97.924 Casos de Covid-19

43.146
Casos com Dados
Correlacionáveis

Target ['EVOLUCAO']

133
Atributos no dataset

Atributos de interesse ("leakage")

(43146, 21)

ETAPAS

- Cleaning, Wrangling e Feature Engineering
 - Tratamento dos Nulos,
 - Agrupamentos,
 - Inputações,
 - Alteração de Data Types
- EDA
 - Histogramas,
 - Dados dos atributos em relação ao target,
 - Codificação de variáveis categóricas
- Pré-processamento
 - Redução de dimensionalidade (PCA, Feature Selection com o XGBClassifier, ExtraTreesClassifier, PPS, Sumário estatístico LogReg)

10000

4000

2000

- Separação em subconjuntos Treino/Teste
- Declaração das variáveis categóricas

ATRIBUTOS:

Idade

ATRIBUTOS

UF

FORTE: IDADE

MÉDIA: UF, SEXO, ALGUMAS COMORBIDADES

FRACA: DEMAIS EM GERAL

RESULTADOS

- Modelos de Classificação
 - Sem otimização
 - Com otimização
 - Ensemble
- Pickling

		Trainning_Accuracy	Validation_Accuracy
×	Logistic	0.725055	0.733372
/ 1	BernoulliNB	0.669545	0.674739
Ran	ndomForest	0.914735	0.682387
De	ecision Tree	0.914735	0.649131
Gra	adientBoost	0.729343	0.728042
	LightGBM	0.741482	0.731981
	XGBoost	0.755041	0.730359
	AdaBoost	0.728387	0.729316
	SVC	0.703790	0.706373
-	CatBoost	0.754288	0.732445

Accuracy: 0.73 (+/- 0.00) [Voting_Classifier_Hard]
Recall: 0.70 (+/- 0.01) [Voting_Classifier_Hard]
Accuracy: 0.73 (+/- 0.00) [Voting_Classifier_Soft]
Recall: 0.70 (+/- 0.01) [Voting_Classifier_Soft]

PROBA_THRESHOLD: 50%

ACCURACY: 73%

RECALL: 70%

PROBA_THRESHOLD: 20%

ACCURACY: 64%

RECALL: 95%

RISCO ALTO	RISCO MÉDIO	RISCO BAIXO
PROBA > 50%	PROBA 20 A 50%	PROBA < 20%

NEXT STEPS / MELHORIAS

- Usar outras bibliotecas para codificar as variáveis categóricas: https://contrib.scikit-learn.org/category_encoders/ e/ou https://feature-engine.readthedocs.io/en/latest/index.html;
- Estudar redução de dimensionalidade com o Features Importance do CatBoost;
- Rodar o CatBoost com os atributos categóricos antes de serem dummiezados;
- Aumentar de 3 modelos para Fine tunning entre os 10 prospectados inicialmente;
- Aplicar Deep Learning;
- Buscar um dataset com mais atributos que possam explicar a previsão.