Géométrie différentielle Résumé de cours (II)

II - Courbes gauches

1 - Courbe paramétrée de \mathbb{R}^3

Une courbe paramétrée de \mathbb{R}^3 c'est une application γ d'un intervalle [a,b] de \mathbb{R} à valeur dans \mathbb{R}^3 .

On note
$$M(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$
 l'image de t par γ .

Dans un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, $\overrightarrow{OM}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{j}$.

2 - Vecteur vitesse - Tangente

a/ Vecteur vitesse. Soit γ $[a,b] \to \mathbb{R}^3$ une courbe <u>de classe C^1 </u> et $M(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ l'image de t par γ .

le vecteur vitesse (au point
$$t$$
) est le vecteur $\frac{dM}{dt} = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{pmatrix} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$

b/ Propriété

Si
$$\frac{dM}{dt}(t_0) \neq 0$$
, la courbe γ possède une tangente au point $M(t_0)$, de vecteur directeur $\frac{dM}{dt}(t_0)$.

Si
$$\forall t \in [a,b] / \frac{dM}{dt}(t) \neq 0$$
, on dit que la courbe est régulière. En tout point elle a une tangente.

3 - Vecteur accélération - Plan osculateur

a/ Le vecteur accélération (au point
$$t$$
) est le vecteur $\frac{d^2M}{dt^2} = \begin{pmatrix} x''(t) \\ y''(t) \\ z''(t) \end{pmatrix} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2z}{dt^2}\vec{k}$

b/ Si
$$\forall t \in [a,b] / \frac{d^2M}{dt^2} / \frac{dM}{dt} \left(i.e. \frac{d^2M}{dt^2} \wedge \frac{dM}{dt} = 0 \right)$$
, alors la courbe est un segment de droite.

c/ Si
$$\forall t \in [a,b] / \frac{d^3M}{dt^3}$$
 est dans le plan contenant $\frac{dM}{dt}$ et $\frac{d^2M}{dt^2}$ (i.e. $\det\left(\frac{dM}{dt}, \frac{d^2M}{dt^2}, \frac{d^3M}{dt^3}\right) = 0$),

alors la courbe est contenue dans un plan. : c'est en fait une courbe plane.

d/ Si
$$\frac{d^2M}{dt^2}(t_0)$$
 n'est pas parallèle à $\frac{dM}{dt}(t_0)$, le plan défini par le point $M(t_0)$ et les vecteurs $\frac{dM}{dt}(t_0)$ et

$$\frac{d^2M}{dt^2}(t_0)$$
 est appelé plan osculateur de la courbe en $M(t_0)$. En ce point, l'approximation au $2^{\text{ème}}$ ordre

de la courbe est une courbe plane contenue dans ce plan : $M(t_0 + h) = M(t_0) + h \cdot \frac{dM}{dt}(t_0) + \frac{h^2}{2} \cdot \frac{d^2M}{dt^2}(t_0)$

4 - Longueur d'une courbe de l'espace de classe C¹

a/ Définition : comme pour une courbe plane, on définit la longueur d'une courbe de l'espace comme limite des longueurs des lignes polygonales s'appuyant sur la courbe.

b/ Théorème : Si
$$\gamma:[a,b] \to \mathbb{R}^3$$
 est de classe C^1 alors elle est mesurable et sa longueur est :
$$\int_a^b \|\gamma'(t)\| dt = \int_a^b \left\| \frac{dM}{dt} \right\| dt = \int_a^b \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2 + \left(z'(t)\right)^2} dt$$