Proposta e Resultados Parciais

Algoritmos:

- Evolution Strategies (ES)
- ES Multimodal Ilhas constantes
- ES Memético Potêncial GLA
- Evolutionary Programming (EP)
- EP Distribuição de Cauchy (FEP)

Características comuns:

- Mutação: Não correlacionada de passo múltiplo ($\varepsilon_0 = 10^{-3}$)
- Recombinação: X discreto e σ linear (ES/Variantes)
- Seleção de Sobreviventes:
 - ES/Variantes: Elitismo (μ, λ)
 - EP/Variantes: SUS $(\mu + \lambda)$

Metodologia

- Parâmetros variados comuns:
 - $\mu \in \{10, 30, 80\}$
 - $\lambda/\mu \in \{3, 7, 10, 25\}$
- Limite computacional: $5 \cdot 10^5$ avaliações da função custo
- Dificuldade crescente: Número de Clusters (\mathbb{R}^2) $\in \{10, 20, 30, ...\}$
- 35 lançamentos por configuração
- Sucesso: tolerância de 5% · J_{min}
- Critérios: SR, MBF e AES dos melhores parâmetros em SR

Multimodal

- Ilhas / Especiação
- População C^{TE}
- Parâmetros:
 - N ilhas
 - T migração
 - n imigrantes

Memético

- Lamarck (?)
- GLA \rightarrow Potencial
- Parâmetros:
 - época
 - n passos

Fast EP

$$\sigma' = \sigma \cdot e^{\tau_1 \cdot \mathcal{N} + \tau_2 \cdot \mathcal{N}_i}$$

$$x_i' = x_i + \sigma' \cdot \mathcal{N}(0, 1)$$

$$x_i' = x_i + \sigma' \cdot \mathcal{C}(0,1)$$

Dúvidas

- É esperado bom resultado do algoritmo memético proposto?
- Controle de parâmetro, vale a pena a comparação? Usar ou não o controle do σ pelo Regra de Rechemberg nas demais variantes?
- Vale a pena variar τ_1 e τ_2 ?
- É válido Controlar a dispersão da população inicial? Conta como modificação?