# Certified Algebraic Path Tracking with Algebrah

Alexandre Guillemot & Pierre Lairez MATHEXP, Université Paris-Saclay, Inria, France

Issac 2025

July 28 - August 1, 2025 | Cimat, Guanajuato, Mexico









Parametrized polynomial system

Certified homotopy continuation

Input: F



Parametrized polynomial system

#### Certified homotopy continuation

**Input:** F,  $\zeta_0$ 

Unique continuous extension 
$$F_t(\zeta_t)=0, \quad orall t\in [0,1]$$

Parametrized polynomial system

## Certified homotopy continuation

**Input:** F,  $\zeta_0$ 

Unique continuous extension 
$$F_t(\zeta_t)=0, \quad orall t\in [0,1]$$

Parametrized polynomial system

## Certified homotopy continuation

**Input:** F,  $\zeta_0$ 

**Output:** A "certified approximation" of  $\zeta$ 

#### Related work

#### **Noncertified** path trackers

- PHCpack by Verschelde (1999)
- Bertini by Bates, Sommese, Hauenstein, and Wampler (2013)
- HomotopyContinuation.jl by Breiding and Timme (2018)

#### Certified path trackers using Smale's alpha-theory

NAG for M2 by Beltrán and Leykin (2012, 2013)

#### **Certified path trackers in one variable**

- SIROCCO by Marco-Buzunariz and Rodríguez (2016)
- Kranich (2016)
- Xu, Burr, and Yap (2018)

#### Certified path trackers using interval arithmetic

- Kearfott and Xing (1994)
- van der Hoeven (2015) Krawczyk operator + Taylor models
- Duff and Lee (2024)

## Algpath

#### **Features**

- Rust implementation available at https://gitlab.inria.fr/numag/algpath,
- certified corrector-predictor loop,
- relies on interval arithmetic and Krawczyk's method,
- SIMD double precision interval arithmetic following [Lambov, 2008],
- NEW! adaptive precision using Arb<sup>1</sup>,
- NEW! mixed precision between double precision and Arb without overhead.

#### **Applications**

- Monodromy computations,
- Braid computations

<sup>&</sup>lt;sup>1</sup>F. Johansson. "Arb: efficient arbitrary-precision midpoint-radius interval arithmetic"

Recall: for all 
$$t \in [0,1]$$
,  $F_t(\zeta_t) = 0$ 



## **def** track(F, z):

- 1  $t \leftarrow 0$ ;  $L \leftarrow []$
- 2 while t < 1:
- $z \leftarrow refine(F_t, z)$ 
  - $\delta \leftarrow validate(F, t, z)$
- 5  $t \leftarrow t + \delta$
- append (t, z) to L
- 7 return L

Recall: for all  $t \in [0,1]$ ,  $F_t(\zeta_t) = 0$ 



```
def track(F, z):
```

- 1  $t \leftarrow 0$ ;  $L \leftarrow []$
- 2 while t < 1:
- $z \leftarrow refine(F_t, z)$ 
  - $\delta \leftarrow validate(F, t, z)$
- 5  $t \leftarrow t + \delta$
- append (t, z) to L
- 7 return L

Recall: for all 
$$t \in [0,1]$$
,  $F_t(\zeta_t) = 0$ 



## **def** track(F, z):

- 1  $t \leftarrow 0$ ;  $L \leftarrow []$
- 2 while t < 1:
- $z \leftarrow refine(F_t, z)$
- $\delta \leftarrow validate(F, t, z)$
- $t \leftarrow t + \delta$
- append (t, z) to L
- 7 return L

Recall: for all  $t \in [0,1]$ ,  $F_t(\zeta_t) = 0$ 



## **def** track(F,z):

- 1  $t \leftarrow 0$ ;  $L \leftarrow []$
- 2 while t < 1:
- $z \leftarrow refine(F_t, z)$ 
  - $\delta \leftarrow validate(F, t, z)$
- 5  $t \leftarrow t + \delta$
- append (t, z) to L
- 7 return L

Recall: for all  $t \in [0,1]$ ,  $F_t(\zeta_t) = 0$ 



```
def track(F,z):
```

- 1  $t \leftarrow 0$ ;  $L \leftarrow []$
- 2 while t < 1:
- $z \leftarrow refine(F_t, z)$
- 4  $\delta \leftarrow validate(F, t, z)$
- 5  $t \leftarrow t + \delta$
- append (t, z) to L
- 7 return L

Recall: for all  $t \in [0,1]$ ,  $F_t(\zeta_t) = 0$ 



## **def** track(F, z):

- 1  $t \leftarrow 0$ ;  $L \leftarrow []$
- 2 while t < 1:
- $z \leftarrow refine(F_t, z)$
- $\delta \leftarrow validate(F, t, z)$
- 5  $t \leftarrow t + \delta$
- append (t, z) to L
- 7 return L

## **Adaptive precision**

## Writting the algorithm in an idealized setup

- Easier termination proofs
- Cannot implement the theory, termination is not ensured in practice...

# **Adaptive precision**

## Writting the algorithm in an idealized setup

- Easier termination proofs
- Cannot implement the theory, termination is not ensured in practice...

## The model we chose (also Arb's model)

- Precision is managed globally
- A change of precision induces no changes on data, only operations are changed
- Precision of data is indirectly changed by performing operations on it

#### **Pros**

- Algorithms written in this model can be implemented
- ▲ Termination: careful precision management in theory
- Precision decreases do not hinder correction

## **Adaptive precision**

## Writting the algorithm in an idealized setup

- Easier termination proofs
- Cannot implement the theory, termination is not ensured in practice...

#### The model we chose (also Arb's model)

- Precision is managed globally
- A change of precision induces no changes on data, only operations are changed
- Precision of data is indirectly changed by performing operations on it

#### **Pros**

- Algorithms written in this model can be implemented
- ▲ Termination: careful precision management in theory
- Precision decreases do not hinder correction

In practice we use Arb and decrease precision by 1 bit at each iteration of the main loop.

# Mixed precision

Double precision SIMD interval arithmetic is faster than Arb, but it lacks the ability to manage precision. . .

#### Goal

Use double precision when possible, else use Arb. We want to have no overhead over double precision only.

- Data can either be double precision or Arb balls.
  Operations manage arithmetic switch depending on precision
- Overhead
- Challenging implementation

```
enum MixedRI {
  Fast(F64RI),
  Accurate(Arb),
}
```

# **Spacing arithmetic switches**

#### One iteration of the main loop

- 1 **def**  $one\_step(F, m)$ : # m isolating box
- 2 **try:**
- 3 convert m to double precision
- 4 perform a corrector-predictor round at double precision
- 5 except:
- convert m to Arb #  $\triangle$  exact interval conversions are tricky
- 7 perform a corrector-predictor round using Arb

# **Spacing arithmetic switches**

## One iteration of the main loop

- 1 **def** one\_step(F, m): # m isolating box
- 2 **try:**
- 3 convert *m* to double precision
- 4 perform a corrector-predictor round at double precision
- 5 except:
- 6 convert m to Arb #  $\triangle$  exact interval conversions are tricky
- 7 perform a corrector-predictor round using Arb

|         |      |         | algpath  | algpath (fixed precision) time (s) |  |  |
|---------|------|---------|----------|------------------------------------|--|--|
| name    | dim. | max deg | time (s) |                                    |  |  |
| dense   | 1    | 100     | 0.4      | 0.4                                |  |  |
| katsura | 16   | 2       | 42 min   | 41 min                             |  |  |
| dense   | 2    | 50      | 588      | 588                                |  |  |

#### Conclusion

| name         | dim. | max deg | ${\sf HomotopyContinuation.jl}$ |       |      | algpath  |       |      |
|--------------|------|---------|---------------------------------|-------|------|----------|-------|------|
|              |      |         | time (s)                        | fail. | max. | time (s) | prec. | max. |
| dense        | 1    | 1000    | 6.8                             |       | 100  | 12 min   | 59    | 17 k |
| dense        | 1    | 2000    | 26                              | 3     | 79   | 1 h      | 62    | 69 k |
| katsura      | 21   | 2       | 4 h                             |       | 468  | 60 h     | 65    | 12 k |
| resultants   | 3    | 16      | 5.6                             |       | 128  | 92       | 58    | 1857 |
| resultants   | 2    | 40      |                                 | 200   |      | 185      | 69    | 1414 |
| structured * | 3    | 10      | 3.0                             |       | 118  | 1.5      | 53    | 313  |
| structured * | 3    | 20      | 3.0                             | 12    | 164  | 4.2      | 56    | 634  |
| structured * | 3    | 30      | 2.9                             | 92    | 133  | 24       | 71    | 818  |

Figure 1: Total degree homotopy benchmarks. A \* means that only 100 random roots were tracked.

<sup>&</sup>lt;sup>2</sup>Breiding, P., Timme, S. HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia.

#### Test data

We tested systems of the form  $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$  ( $f^{\triangleright}$  is the start system,  $f^{\odot}$  is the target system).

#### **Target systems**

- Dense:  $f_i^{\odot}$ 's of given degree with random coefficients
- Structured:  $f_i^{\odot}$ 's of the form  $\pm 1 + \sum_{i=1}^{\ell} \left(\sum_{j=1}^n a_{i,j} z_j\right)^d$ ,  $a_{i,j} \in_R \{-1,0,1\}$
- Resultants: pick  $h_1, h_2 \in \mathbb{C}[z_1, \dots, z_n][y]$ , compute their resultant  $h \in \mathbb{C}[z_1, \dots, z_n]$  and fill with random dense polynomials
- Katsura family (sparse high dimension low degree)

#### Start systems

• Total degree homotopies:  $f_i^{\triangleright}$ 's of the form  $\gamma_i(z_i^{d_i}-1)$ ,  $\gamma_i \in_R \mathbb{C}$ ,  $d_i=\deg f_i^{\odot}$ 

#### References i



Bates, D. J., Sommese, A. J., Hauenstein, J. D., & Wampler, C. W. (2013). *Numerically Solving Polynomial Systems with Bertini*. Society for Industrial; Applied Mathematics.



Beltrán, C., & Leykin, A. (2012). Certified Numerical Homotopy Tracking. Experimental Mathematics, 21(1), 69-83.



Beltrán, C., & Leykin, A. (2013). Robust Certified Numerical Homotopy Tracking. Found Comput Math, 13(2), 253-295.



Breiding, P., & Timme, S. (2018). HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia. In J. H. Davenport, M. Kauers, G. Labahn, & J. Urban (Eds.), Mathematical Software – ICMS 2018 (pp. 458–465). Springer International Publishing.



Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method. Proc. ISSAC 2024, 274–282.



Kearfott, R. B., & Xing, Z. (1994). An Interval Step Control for Continuation Methods. SIAM J. Numer. Anal., 31(3), 892–914.



Kranich, S. (2016). An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves. arXiv: 1505.03432 [math].



Lambov, B. (2008). Interval Arithmetic Using SSE-2. In P. Hertling, C. M. Hoffmann, W. Luther, & N. Revol (Eds.), Reliab. Implement. Real Number Algorithms (pp. 102–113). Springer.



Marco-Buzunariz, M. Á., & Rodríguez, M. (2016). SIROCCO: A Library for Certified Polynomial Root Continuation. In G.-M. Greuel, T. Koch, P. Paule, & A. Sommese (Eds.), Mathematical Software – ICMS 2016 (pp. 191–197). Springer International Publishing.



van der Hoeven, J. (2015). Reliable homotopy continuation (Research Report). LIX, Ecole polytechnique. Retrieved February 19, 2024, from https://hal.science/hal-00589948



Verschelde, J. (1999). Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw., 25(2), 251–276.

## References ii



Xu, J., Burr, M., & Yap, C. (2018). An Approach for Certifying Homotopy Continuation Paths: Univariate Case. Proc. ISSAC 2018, 399–406.